

Lecture Music Processing

Audio Decomposition

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Book: Fundamentals of Music Processing

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Chapter		Music Processing Scenario
1		Music Represenations
2		Fourier Analysis of Signals
3		Music Synchronization
4		Music Structure Analysis
5		Chord Recognition
6	1	Tempo and Beat Tracking
7		Content-Based Audio Retrieval
8		Musically Informed Audio Decomposition

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Chapter		Music Processing Scenario
1		Music Represenations
2		Fourier Analysis of Signals
3		Music Synchronization
4		Music Structure Analysis
5		Chord Recognition
6	A++++	Tempo and Beat Tracking
7		Content-Based Audio Retrieval
8		Musically Informed Audio Decomposition

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Chapter 8: Audio Decomposition

- 8.1 Harmonic-Percussive Separation
- 8.2 Melody Extraction
- 8.3 NMF-Based Audio Decomposition
- 8.4 Further Notes

In the final Chapter 8 on audio decomposition, we present a challenging research direction that is closely related to source separation. Within this wide research area, we consider three subproblems: harmonic–percussive separation, main melody extraction, and score-informed audio decomposition. Within these scenarios, we discuss a number of key techniques including instantaneous frequency estimation, fundamental frequency (F0) estimation, spectrogram inversion, and nonnegative matrix factorization (NMF). Furthermore, we encounter a number of acoustic and musical properties of audio recordings that have been introduced and discussed in previous chapters, which rounds off the book.

Example: Chopin, Mazurka Op. 63 No. 3

Ta.

Ta.

Ted.

Example: Chopin, Mazurka Op. 63 No. 3

Waveform

Example: Chopin, Mazurka Op. 63 No. 3

Waveform / Spectrogram

Example: Chopin, Mazurka Op. 63 No. 3

- Waveform / Spectrogram
- Performance
 - Tempo
 - Dynamics
 - Note deviations
 - Sustain pedal

Example: Chopin, Mazurka Op. 63 No. 3

Waveform / Spectrogram

- Performance
 - Tempo
 - Dynamics
 - Note deviations
 - Sustain pedal
- Polyphony

Main Melody

Additional melody line

Accompaniment

Source Separation

- Decomposition of audio stream into different sound sources
- Central task in digital signal processing
- "Cocktail party effect"

Source Separation

- Decomposition of audio stream into different sound sources
- Central task in digital signal processing
- "Cocktail party effect"
- Several input signals
- Sources are assumed to be statistically independent

Source Separation (Music)

- Main melody, accompaniment, drum track
- Instrumental voices
- Individual note events
- Only mono or stereo
- Sources are often highly dependent

Literature: [Driedger/Müller/Disch, ISMIR 2014]

Demo: https://www.audiolabs-erlangen.de/resources/2014-ISMIR-ExtHPSep/

Singing Voice Extraction

Singing Voice Extraction

Score-Informed Source Separation

Exploit musical score to support separation process

Parametric Model Approach

Rebuild spectrogram information

NMF (Nonnegative Matrix Factorization)

NMF (Nonnegative Matrix Factorization)

Templates: Pitch + Timbre

Activations: Onset time + Duration

"How does it sound"

"When does it sound"

Initialized template

Initialized activations

Random initialization -> No semantic meaning

Initialized activations

Template constraint for p=55

Initialized activations

Activation constraints for p=55

Score-Informed Audio Decomposition

Application: Audio editing

Informed Drum-Sound Decomposition

Literature: [Dittmar/Müller, IEEE/ACM-TASLP 2016]

Demo: https://www.audiolabs-erlangen.de/resources/MIR/2016-IEEE-TASLP-DrumSeparation

Audio Mosaicing

Literature: [Driedger/Müller, ISMIR 2015]

Demo: https://www.audiolabs-erlangen.de/resources/MIR/2015-ISMIR-LetItBee

Non-negative matrix factorization (NMF)

Proposed audio mosaicing approach

Core idea: support the development of sparse diagonal activation structures

Audio Mosaicing

Audio Mosaicing

Target signal: Adele–Rolling in the Deep Source signal: Race car **Mosaic** signal

Links

- SiSEC: Signal Separation Evaluation Campaign https://www.sisec17.audiolabs-erlangen.de/
- MedleyDB: A Dataset of Multitrack Audio http://steinhardt.nyu.edu/marl/research/medleydb
- LibROSA (Python)
 https://librosa.github.io/librosa/