浙江理工大学 2009 —2010 学年第 — 学期

《复变函数与积分变换 B 》期末试卷 (A) 卷

	址级:		字号:		名:
– ,	填空题(10×3=30 分)			
1.	设 $f(z) = \frac{1}{z^2 + 1}$,则 $f(z) = \frac{1}{z^2 + 1}$	$f(z)$ 的孤立 Ξ	奇点有	·	
2.	幂级数 $\sum_{n=0}^{\infty} nz^n$ 的收敛	半径为	·		
3.	$\operatorname{Res}(\frac{e^z}{z^n},0) = \underline{\qquad}.$				
4.	函数 $f(z) = \frac{1}{1+z^2}$ 的泵	幂级数展开 式	入为		
5.	设 $C: z =1$,则 $\int_C(z-1)$	-1)dz =			
6.	函数 $w = \frac{1}{z}$ 将 z 刊	面 上 的 曲	线 (x-1)2+	- y² =1 变成	w平面上的曲线
7.	3 ³⁻ⁱ =	·			
8.	若已知 $f(z) = x(1+$	$\frac{1}{x^2 + y^2}) + iy($	$(1-\frac{1}{x^2+y^2})$,	则其关于多	₹量 z 的表达式为
9.	$\int_{0}^{\frac{\pi}{4}} z \cos z dz = \underline{\qquad}$		·		
10.	单位脉冲函数 $\delta(t)$ 的	内拉氏变换 F	F(s)为		
	选择题(5×4=20分) 下列命题正确的是()			
	A. $i < 2i$ B. $\frac{1}{i}z = i$	\overline{z} C. $ z $	$ z_1 + z_2 = z_1 + z_2 $	z ₂ D. 零的	的幅角为零
2,	下列积分中,其积分值	直不为零的是	1 ()		
	$A. \oint_{ z =2} \frac{z}{z-3} dz$	B. $\oint_{ z =1} \frac{\operatorname{Si}^2}{z}$	$\frac{\ln z}{z}dz$	$C. \oint_{ z =1} \frac{e^z}{z^5} dz$	$D. \oint_{ z =1} \frac{zdz}{z^2 - 3}$
3, 2	z=0 为函数 f(z)=e ² f	j ().			
欢	迎加入浙江	理工大:	学考试	资料群:	462349252

B. 可去奇点 C. 本性奇点 D. 非孤立奇点

- 4、设 $f(z) = \frac{z-1}{z^2 + 2z}$,则Res[f(z),0]=()。

- A. $-\frac{1}{2}$ B. $\frac{3}{2}$ C. $\frac{1}{2}$ D. $-\frac{3}{2}$
- 5、 $\sum ch(\frac{i}{n})(z-1)^n$ 的收敛半径为 ()。
 - A. 1 B. 2 C. 0 D. ∞
- 三、计算题(50分)
- 1. 设 $f(z) = \frac{1}{(z-1)(z-2)}$, 求f(z)在 $D = \{z: 0 < |z| < 1\}$ 内的罗朗展式. (5分)

2. 计算下列积分。(10分)

$$(1) \quad \int_{|z|=2} \frac{1}{\cos z} dz \,,$$

$$(2) \oint_{|z|=2} \frac{\sin z}{\left(z - \frac{\pi}{2}\right)^2}$$

3.求函数 $sin(2z^3)$ 的幂级数展开式。(5 分)

4. 设 $u = x^2 - y^2 + xy$, 验证u 是调和函数, 并求解析函数 f(z) = u + iv, 使之 f(i) = -1 + i. (8分)

5. 设 $f(z) = my^3 + nx^2y + i(x^3 + lxy^2)$ 为复平面上的解析函数, 试确定 l , m , n 的值. (6 分)

6.求函数 $f(t) = e^{-\beta|t|}(\beta > 0)$ 的 Fourier 变换,并推证 $\int_0^{+\infty} \frac{\cos \omega t}{\beta^2 + \omega^2} d\omega = \frac{\pi}{2\beta} e^{-\beta|t|}$. (10分)

7. 求正弦函数 $f(t) = \sin kt(k$ 为实数) 的 Laplace 变换。(6 分)

浙江理工大学 2009 —2010 学年第 一 学期

《复变函数与积分变换 B》期末试卷(A)卷标准答案和评分标准

一、填空题。

1.
$$z = \pm i$$
; 2. 1; 3. $\frac{1}{(n-1)!}$.; 4. $\sum_{n=0}^{\infty} (-1)^n z^{2n}$ ($|z| < 1$); 5. 0; 6. $u = \frac{1}{2}$;

7.
$$27e^{2k\pi}[\cos(\ln 3) - i\sin(\ln 3)], k = 0, \pm 1, \pm 2, \dots; 8.$$
 $f(z) = z + \frac{1}{z}$

9.
$$\frac{\sqrt{2}}{2}(1+\frac{\pi}{4})-1$$
 10. 1

二、选择题

1.B; 2.C; 3. C; 4.A; 5,A

三、计算题

1. 解 因为0<|z|<1,

$$f(z) = \frac{1}{(z-1)(z-2)} = \frac{1}{1-z} - \frac{1}{2(1-\frac{z}{2})} = \sum_{n=0}^{\infty} z^n - \frac{1}{2} \sum_{n=0}^{\infty} (\frac{z}{2})^n.$$
 (5')

2. 解 (1) 因为

Re
$$s[f(z), z = -\frac{\pi}{2}] = \lim_{z \to -\frac{\pi}{2}} \frac{z + \frac{\pi}{2}}{\cos z} = \lim_{z \to -\frac{\pi}{2}} \frac{1}{-\sin z} = 1$$

Re
$$s[f(z), z = \frac{\pi}{2}] = \lim_{z \to \frac{\pi}{2}} \frac{z - \frac{\pi}{2}}{\cos z} = \lim_{z \to \frac{\pi}{2}} \frac{1}{-\sin z} = -1$$
.

$$\mathbb{E}\int_{|z|=2} \frac{1}{\cos z} dz = 2\pi i \left\{ [\operatorname{Re} s \, f(z), z = -\frac{\pi}{2}] + [\operatorname{Re} s \, f(z), z = \frac{\pi}{2}] \right\} = 0 \tag{5'}$$

(2),
$$\oint_{|z|=2} \frac{\sin z}{\left(z - \frac{\pi}{2}\right)^2} dz = 2\pi i (\sin z)' \Big|_{z = \frac{\pi}{2}} = 2\pi i \cos z \Big|_{z = \frac{\pi}{2}} = 0$$
 (10')

3.
$$\Re \sin(2z^3) = \sum_{n=0}^{\infty} \frac{(-1)^n (2z^3)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n+1} z^{6n+3}}{(2n+1)!}, R=+\infty$$
 (5')

4.
$$\Re: u = x^2 - y^2 + xy \Rightarrow u_x = 2x + y, u_y = -2y + x$$

$$\Rightarrow \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 2 - 2 = 0 \Rightarrow u \text{ } \text{£ iii} \text{ } \text{A in } \text{ } \text{iii} \text{ } \text{.}$$

$$v(x,y) = \int_{(0,0)}^{(x,y)} (-u_y) dx + u_x dy + c = \int_{(0,0)}^{(x,y)} (2y - x) dx + (2x + y) dy + c$$
$$= \int_0^x (-x) dx + \int_0^y (2x + y) dy + c$$

$$= -\frac{x^2}{2} + 2xy + \frac{y^2}{2} + c \tag{6'}$$

$$\Rightarrow f(z) = u + iv = (x^2 - y^2 + xy) + i(-\frac{x^2}{2} + 2xy + \frac{y^2}{2} + \frac{1}{2}) = z^2 + \frac{i}{2}(1 - z^2).$$
 (8')

5、解 设 $u(x,y) = my^3 + nx^2y, v(x,y) = x^3 + lxy^2$,则

$$\frac{\partial u}{\partial x} = 2nxy, \frac{\partial u}{\partial y} = 3my^2 + nx^2, \quad \frac{\partial v}{\partial x} = 3x^2 + ly^2, \frac{\partial v}{\partial y} = 2lxy,$$
(2')

因
$$f(z)$$
解析,由 $C-R$ 条件有
$$\begin{cases} 2nxy = 2lxy \\ 3my^2 + nx^2 = -3x^2 - ly^2 \end{cases}$$
 (4')

解得
$$l = -3, m = 1, n = -3$$
. (6')

6.
$$F(w) = F[f(t)] = \int_{-\infty}^{+\infty} e^{-\beta|t|} e^{-jwt} dt = 2 \int_{0}^{+\infty} e^{-\beta t} \cos wt dt = \frac{2\beta}{\beta^2 + w^2}$$
 (3')

$$\Rightarrow f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(w) e^{jwt} dw = \frac{1}{\pi} \int_{0}^{+\infty} \frac{2\beta}{\beta^2 + w^2} \cos wt dw$$

$$=\frac{2\beta}{\pi} \int_0^{+\infty} \frac{\cos wt}{\beta^2 + w^2} dw \tag{6'}$$

$$\mathbb{E}\int_{0}^{+\infty} \frac{\cos wt}{\beta^{2} + w^{2}} dw = \frac{\pi}{2\beta} f(t) = \frac{\pi}{2\beta} e^{-\beta|t|} (\beta > 0)$$
 (9')

7.
$$L(\sin kt) = \int_0^{+\infty} \sin kt e^{-st} dt$$
 (2')

$$= \frac{e^{-st}}{s^2 + k^2} (-s \sin kt - k \cos kt) \Big|_{0}^{\infty} = \frac{k}{s^2 + k^2} (\text{Re}(s) > 0)$$
 (6')

浙江理工大学 2009 —2010 学年第 一 学期

《复变函数与积分变换 B》期末试卷(B)卷

一. 填空题。(10×3=30 分)
1. 设 $z=1-\sqrt{3}i$,则 $ z =$, $\overline{z}=$
2. $\operatorname{Re} s(\frac{e^z}{z^n}, 0) = \underline{\hspace{1cm}}$
3. 级数 $\sum_{n=0}^{\infty} (\cos in) z^n$ 的收敛半径为
4. 设 a 为函数 $f(z) = \frac{\varphi(z)}{\psi(z)}$ 的一阶极点,且 $\varphi(a) \neq 0$, $\psi(a) = 0$, $\psi'(a) \neq 0$,则
$\operatorname{Re} s[f(z), a] = \underline{\hspace{1cm}}.$
5. 设 $z = r(\cos\theta + i\sin\theta)$,则 $z^n = $
6. 单位脉冲函数 $\delta(t)$ 的拉氏变换 $F(s)$ 为
7. 设 $f(z) = \frac{1}{1-z^2}$,则 $f(z)$ 在 $z = 0$ 的邻域内的泰勒展式为
8. $\int_0^{1+i} ze^z dz = $
9. 设 $f(z) = z^2 \sin \frac{1}{z}$,则 $f(z)$ 在 $z = 0$ 处的留数为
$10.e^{\frac{1}{4}(1+i\pi)} =$ 二、选择题(5×4=20 分)
1、复数 $z = \sin \frac{\pi}{3} - i \cos \frac{\pi}{3}$ 的幅角主值为 ()。
$A\frac{\pi}{6}$ $B.\frac{\pi}{6}$ $C\frac{\pi}{3}$ $D.\frac{\pi}{3}$ 2. 若函数 $f(z)$ 在正向简单闭曲线 C 所包围的区域 D 内解析,在 C 上连续,且 $z=a$
为 D 内任一点,n 为正整数,则积分 $\oint_c \frac{f(z)}{(z-a)^{n+1}}$ 等于 ()
A. $\frac{2\pi i}{(n+1)!} f^{(n+1)}(a)$ B. $\frac{2\pi i}{n!} f(a)$ C. $2\pi i f^{(n)}(a)$ D. $\frac{2\pi i}{n!} f^{(n)}(a)$
欢迎加入浙江理工大学考试资料群: 462349252

- 3. 幂级数 $\sum_{n=1}^{\infty} \frac{z^{n-1}}{n!}$ 的收敛区域为(
 - $A. \quad 0 < \mid z \mid < +\infty \qquad \qquad B. \quad \mid z \mid < +\infty \qquad \qquad C. \quad 0 < \mid z \mid < -1 \qquad \quad D. \quad \mid z \mid < 1$

- - A. 一阶极点 B. 可去奇点 C. 一阶零点 D. 本性奇点

- 5. 设 Q (z) 在点 z=0 处解析, $f(z) = \frac{Q(z)}{z(z-1)}$,则 Res[f(z),0]等于 ()

 - A. Q(0) B. -Q(0)
- C. Q'(0) D. -Q'(0)

- 三、计算题(50分)
- 1.求 $\oint_c \frac{2z-1}{z^2-z} dz, c$ 为包含|z|=1在内的任意简单正向曲线。(10 分)

2. 把下列函数展成 z 的幂级数; (10 分)

(1).
$$\frac{1}{(1+z)^2}$$

(2).
$$ln(1+z)$$

3. 设 $u = x^2 - y^2 + xy$, 验证u 是调和函数, 并求解析函数f(z) = u + iv, 使之 f(i) = -1 + i. (9分)

4. 试将函数
$$f(z) = \frac{1}{(z-1)(z-2)}$$
在圆环域 $1 < |z| < 2$ 内展开为洛朗级数。(6分)

5.求函数 $f(t) = e^{-\beta|t|}(\beta > 0)$ 的 Fourier 变换,并推证 $\int_0^{+\infty} \frac{\cos \omega t}{\beta^2 + \omega^2} d\omega = \frac{\pi}{2\beta} e^{-\beta|t|}$. (9分)

6. 求正弦函数 $f(t) = \sin kt(k$ 为实数) 的 Laplace 变换。(6 分)

浙江理工大学 2009 —2010 学年第 一 学期

《复变函数与积分变换 B》期末试卷(B)卷标准答案和评分标准 一. 填空题。

1. 2,
$$-\frac{\pi}{3}$$
, $1+\sqrt{3}i$; 2. $\frac{1}{(n-1)!}$ 3. $\frac{1}{e}$ 4. $\frac{\varphi(a)}{\psi'(a)}$ 5. $r^n(\cos n\theta + i\sin n\theta)$; 6.1

7.
$$1+z^2+z^4+\cdots+z^{2n}+\cdots; 8. ie^{1+i}+1 ; 9. -\frac{1}{6} ; 10. \frac{\sqrt{2}}{2}e^{\frac{1}{4}}(1+i);$$

二. 选择题

1.A; 2D 3.B; 4.B; 5.B

三. 计算题

1.
$$\oint_{c} \frac{2z-1}{z^{2}-z} dz = \oint_{C_{1}} \frac{2z-1}{z^{2}-z} dz + \oint_{C_{2}} \frac{2z-1}{z^{2}-z} dz$$
 (2')

$$= \oint_{C_1} \frac{\frac{2z-1}{z-1}}{z} dz + \oint_{C_2} \frac{\frac{2z-1}{z}}{z-1} dz$$
 (8')

$$=2\pi i \cdot \frac{2z-1}{z-1}|_{z=0} + 2\pi i \cdot \frac{2z-1}{z}|_{z=1} = 4\pi i \tag{10'}$$

2.(1).
$$\frac{1}{(1+z)^2} = \frac{d}{dz} \left[-\frac{1}{1+z} \right] = -\frac{d}{dz} \left[\sum_{n=0}^{\infty} \left(-1 \right)^n z^n \right] = \sum_{n=0}^{\infty} \left(-1 \right)^{n+1} n_Z^{n-1}, |z| < 1, \quad (5')$$

(2)
$$\ln(1+z) = \int_0^z \frac{dz}{1+z} = \int_0^z \sum_{n=0}^\infty (-1)^n z^n dz = \sum_{n=0}^\infty (-1)^n \frac{z^{n+1}}{n+1}, |z| < 1,$$
 (10)

3.
$$\not H$$
: $u = x^2 - y^2 + xy \Rightarrow u_x = 2x + y, u_y = -2y + x$

$$\Rightarrow \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 2 - 2 = 0 \Rightarrow u \neq \emptyset.$$
 (3')

$$v(x,y) = \int_{(0,0)}^{(x,y)} (-u_y) dx + u_x dy + c = \int_{(0,0)}^{(x,y)} (2y - x) dx + (2x + y) dy + c$$

$$= \int_0^x (-x) dx + \int_0^y (2x + y) dy + c$$

$$= -\frac{x^2}{2} + 2xy + \frac{y^2}{2} + c$$
(7')

$$\Rightarrow f(z) = u + iv = (x^2 - y^2 + xy) + i\left(-\frac{x^2}{2} + 2xy + \frac{y^2}{2} + \frac{1}{2}\right) = z^2 + \frac{i}{2}(1 - z^2). \tag{9'}$$

4.
$$1 < |z| < 2$$
 $\forall f(z) = \frac{1}{(z-1)(z-2)} = \frac{1}{z-2} - \frac{1}{z-1} = \frac{-1}{2(1-\frac{z}{2})} - \frac{1}{z(1-\frac{1}{z})}$ (3')

$$= -\sum_{n=0}^{+\infty} \frac{z^n}{2^{n+1}} - \sum_{n=1}^{+\infty} \frac{1}{z^n}$$
 (6')

5.
$$F(w) = F[f(t)] = \int_{-\infty}^{+\infty} e^{-\beta|t|} e^{-jwt} dt = 2 \int_{0}^{+\infty} e^{-\beta t} \cos wt dt = \frac{2\beta}{\beta^2 + w^2}$$
 (3')

$$\Rightarrow f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(w) e^{jwt} dw = \frac{1}{\pi} \int_{0}^{+\infty} \frac{2\beta}{\beta^2 + w^2} \cos wt dw$$

$$=\frac{2\beta}{\pi} \int_0^{+\infty} \frac{\cos wt}{\beta^2 + w^2} dw \tag{6'}$$

$$\mathbb{E}\int_{0}^{+\infty} \frac{\cos wt}{\beta^{2} + w^{2}} dw = \frac{\pi}{2\beta} f(t) = \frac{\pi}{2\beta} e^{-\beta|t|} (\beta > 0)$$
(9')

6.
$$L(\sin kt) = \int_0^{+\infty} \sin kt e^{-st} dt$$
 (2')

$$= \frac{e^{-st}}{s^2 + k^2} (-s \sin kt - k \cos kt) \Big|_{0}^{+\infty} = \frac{k}{s^2 + k^2} (\text{Re}(s) > 0)$$
 (6')

	浙江理工大学 2015/2016 学年第一学期	《复变函数与积分变换》	期末试卷(A)
姓名	学号	班级	得分

一、填空题(4x10=40分)

$$3, \int_0^i z \sin z dz = \underline{\qquad}.$$

4、函数
$$f(z) = \frac{1}{z(z^2+1)}$$
 的奇点为______.

5、幂级数
$$\sum_{n=1}^{+\infty} (1+\sqrt{2})^n z^n$$
 的收敛半径为______.

6、设
$$C$$
为逆时针方向的圆周: $|z|=r<1$,则 $\oint_c \sum_{n=-2}^{\infty} (n+3)^2 z^n dz = ______.$

$$8 \cdot [\sin(-i)]^2 + [\cos(-i)]^2 = \underline{\hspace{1cm}}.$$

9、函数
$$f(z) = u(x,y) + iv(x,y)$$
 在区域 D 内解析,则其满足的 Cauchy-Riemann 方程为______.

10、若
$$z_0$$
是 $f(z)$ 的极点,则 $\lim_{z\to z_0} f(z) =$ ______.

二、计算(4x5=20分)

1、 计算积分
$$\oint_C \frac{\sin^2 z}{z^2(z-1)}$$
, 其中 C 为正圆周 $|z|=2$ 。

2、 将函数
$$f(z) = \frac{1}{z(z-2)^2}$$
 分别在圆环 $0 < |z| < 2$ 内展开为罗朗级数。

3、求解析函数 $\sin^2 z$ 的麦克劳林展开式。

4、计算留数
$$\operatorname{Re} s\left(\frac{\sin z}{z^3}, 0\right)$$
。

三、解答题。(10x4=40分)

1. 讨论函数
$$f(z) = \frac{1 + \cos z}{z^2 (z^2 + 1)^2}$$
的奇点类型,若是极点,指出其级数。

2. 求函数
$$f(t) = \begin{cases} 0, & t < 0 \\ ae^{-\beta t}, & t \ge 0 \end{cases}$$
 的傅立叶变换,其中 $a \ne 0, \beta > 0$.

3. 求函数
$$f(t) = t^2 + 3\sin t\delta(t)$$
 的拉普拉斯变换.

4. 用拉普拉斯变换变换方法解方程
$$y'' + 2y' - 3y = e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.

参考-1

	、单项选择是							
1.	z 为复数,以 $(A) z^2 +$		的是((B)	$ z ^2 - (\mathbf{P}$). (a. 7)	$^2 + (\mathbf{Paz})^2$		
			(D)	_				
	(C) RC 2	-		J 003 242 -	- 5111	.210		
2.	$z=1 \not = \frac{z^3 + z^3}{(z-1)^2}$	$\frac{-z+4}{-1)^3}$ 的() 💆	及极点.				
	(A) 5		(B) 2	(C)	3	(D)	1
3.	若 $f(z)$ 在单	单连通区域 [)内解析,则	().			
	(A) $f(z)$) 在区域 <i>D</i> p	内恒为常数		(B)	f'(z)在区域	域 D 内恒 $ angle$	为常数
	(C) $f(z)$	在区域 D 内	有界	((D)	f(z)在区域	D内连续	
4	. 若 C: 单位	圆周 $ z =1$,	逆时针方向	」,则积分				
	$ \oint_C \frac{z^3 + 3z + z^2}{z^2} $	-1 — <i>dz</i> 的值等	于 ().				
	(A) $2\pi ie$;	(B	0;	(C) $6\pi i$;	(D) 3π	τί.	
5.	幂级数 $\sum_{n=1}^{\infty}$	$\frac{n}{3^n}z^n$ 的收敛	/域为().		
	(A) z	$ x-1 <+\infty$	(B) $ z $ <	3 (C)	z-1 < 3	(D)	z < +∞
_	、填空题(3	分×10=30 g	分).					
1.	辐角主值 ar	g(1+i) =					·	
2.	$a = \cos \theta$	$+i\sin\theta$,	则 a =			·		
3.	$(1+i)^{16} =$	=						
	Ln(-1)							
5.	双边级数	$\sum_{n=1}^{\infty} \frac{3^n}{z^n} + \sum_{n=0}^{\infty}$	$\frac{z^n}{n!}$ 的收敛[圆环为				_·
6.	设 $L[f(t)]$ 表	表示函数 $f(i$	t)的拉普拉斯	所变换, $\it L$	[1]=		·	

7. 将函数
$$\frac{1}{(1+z)^3}$$
 在 $z=0$ 处展开成 $\sum_{n=0}^{+\infty} C_n z^n$ 的形式,

$$\frac{1}{\left(1+z\right)^3} = \underline{\hspace{1cm}}$$

- 8. 如果函数 f(z) = u + iv 解析,则 Cauchy-Riemann 方程为
- $\sin(2i) =$
- 三. 解答计算题 (第1至第9题每题5分,第10题10分,共55分)
- 1. 计算 $(-1)^{\sqrt{2}}$.
- 2. $\oint_{|z|=1} \frac{\cos(z+e^z)}{z} dz$. (积分方向沿单位圆周|z|=1的逆时针方向进行)
- 3. (1) 验证函数 $u(x, y) = e^x \cos y + x$ 为调和函数.
 - (2) 求一调和函数v(x,y), 使f(z)=u+iv是解析函数.
- 4. 用 Cauchy-Riemann 方程讨论函数 $w = |z|^2 + z$ 的解析性.
- 5. 把函数 $f(z) = (\cos z)^2$ 展开成 z 的幂级数,并指出它们的收敛半径.
- 6. 把函数 $f(z) = \frac{1}{(z+1)(z+2)}$ 在指定的圆环1 < |z| < 2内展开成罗朗级数.
- 7. 已知 C: 单位圆周|z|=1,方向为逆时针方向。分别讨论点 a 在 C 内和 C 外情况下积分

$$\int_C \frac{1+z^3}{(z-a)^3} dz$$

的值.

8.求函数 $f(t) = t^2 - t$ 的拉普拉斯变换.

$$_{9.$$
求函数 $f(t) =$
$$\begin{cases} e^t, & |t| \leq 1, \\ 0, & |t| > 1. \end{cases}$$
 的傅立叶变换.

10. 用拉普拉斯变换方法求方程 $y'' - y = e^{2t}$, y(0) = y'(0) = 0 的解.

一、选择题(3分×5=15分)

- 1. A 2. C 3. D 4. C 5. B

二、填空题(每空3分×10=30分)

- 1. $\frac{\pi}{4}$ 2. 1 3. 2^8 4. πi ; 5. $3 < |z| < +\infty$

6.
$$\frac{1}{s}$$
, (Re $s > 0$)

6.
$$\frac{1}{s}$$
, (Re $s > 0$) 7. $1 - 3z + \dots + (-1)^n \frac{n(n-1)}{2} z^{n-2} + \dots$, $|z| < 1$;

8.
$$u_x = v_y, u_y = -v_x;$$
 9. 1; 10. $\frac{e^2 - e^{-2}}{2}i$.

三、解答计算题 (第1至第9题每题5分,第10题10分,共55分)

1.
$$(-1)^{\sqrt{2}} = \exp{\{\sqrt{2}Ln(-1)\}}$$
 3%
= $\exp{\{\sqrt{2}(2k+1) \pi i\}}$ 5%

- 2. 由 Cauchy 积分公式, $I = 2\pi i \cos(z + e^z)|_{z=0} = 2\pi i \cos 1$ (5分)
- 3. (1) $u = e^x \cos y + 1$, $u_{xx} = e^x \cos y$, $u_{yy} = -e^x \cos y$, $u_{xx} + u_{yy} = 0$ (2 %)

(2)
$$f'(z) = u_x - iu_y = e^z + 1$$
$$f(z) = e^z + z + C$$
(4 \(\frac{1}{2}\))

$$v = e^x \sin y + y + C \quad (5 \, \text{β})$$

4.
$$u = x^2 + y^2 + x$$
, $v = y$, $u_x = 2x + 1$, $u_y = 2y$, $v_x = 0$, $v_y = 1$, (3 $\%$)

$$u_x = v_y$$
, $u_y = -v_x \Longrightarrow x = y = 0$

所以函数只在原点可导, 处处不解析。

(5分)

5.
$$f(z) = \frac{1 + \cos 2z}{2} = \frac{1}{2} + \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{4^n z^{2n}}{(2n)!} + \cdots, \quad |z| < +\infty$$
6.
$$f(z) = \frac{1}{z+1} - \frac{1}{z+2}$$
(2 \(\frac{1}{2}\))

奖

$$= \frac{1}{z} \frac{1}{1 + \frac{1}{z}} - \frac{1}{2} \frac{1}{1 + \frac{z}{2}}$$

$$= \frac{1}{z} \left[1 - \frac{1}{z} + \dots + \frac{(-1)^n}{z^n} + \dots \right] - \frac{1}{2} \left[1 - \frac{z}{2} + \dots + \frac{(-1)^n z^n}{2^n} + \dots \right]$$
(5 $\frac{1}{z}$)

7. 当 *a* 在 C 外时,积分等于 0; (2 分) 当 *a* 在 C 内时,积分

$$\int_{C} \frac{1+z^{3}}{(z-a)^{3}} dz = \frac{2\pi i}{2!} [1+z^{3}]'' \big|_{z=a} = 6i\pi a$$
 (5 \(\frac{1}{2}\))

ij 8. $L[f(t)] = \int_0^{+\infty} (t^2 - t)e^{-st}dt$ (3)

$$= \frac{2}{s} \int_{0}^{+\infty} t e^{-st} dt - \int_{0}^{+\infty} t e^{-st} dt = \frac{1}{s^{2}} (\frac{2}{s} - 1), \quad \text{Re } s > 0$$
 (5 \(\frac{c}{2}\))

9. $F[f(t)] = \int_{-\infty}^{+\infty} f(t)e^{-jwt}dt$

$$= \int_{-1}^{1} e^{t} e^{-jwt} dt = \frac{1}{1 - iw} \left[e^{1 - jw} - e^{jw-1} \right]$$
 (4 \(\frac{1}{2}\)

$$= \frac{(e - \frac{1}{e})\cos w + w(e + \frac{1}{e})\sin w}{1 + w^2} + j\frac{(e - \frac{1}{e})w\cos w - (e + \frac{1}{e})w\sin w}{1 + w^2}$$
 (5 $\%$)

10. 设L[y(t)] = Y(s),

$$s^{2}Y(w) - sy(0) - y'(0) - Y(s) = \frac{1}{s-2}$$
, (6 $\%$)

$$Y(s) = \frac{1}{(s^2 - 1)(s - 2)} = \frac{1}{2} \frac{1}{s + 1} - \frac{1}{3} \frac{1}{s - 2} - \frac{1}{6} \frac{1}{s - 1}$$
 (8 $\%$)

$$y(t) = L^{-1}[Y(s)] = \frac{1}{2}e^{-t} - \frac{1}{6}e^{t} - \frac{1}{3}e^{2t}$$
 (10 $\%$)

一、单项选择题(3分×5=15分).

1.
$$z = 1 \stackrel{\sin z}{=} \frac{\sin z}{(z^2 - 1)^2}$$
 的 () 级极点.

- (A) 5 (B) 2 (C) 3
- (D) 4

2. 关于 cos z (z 为复数)以下结论错误的是(

(A)
$$\cos 2z = \cos^2 z - \sin^2 z$$
 (B) $\cos z = \frac{e^{iz} + e^{-iz}}{2}$

(B)
$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$(C)|\cos z| \le 1$$

$$(D)\frac{d}{dz}\cos z = -\sin z$$

3. 以下函数中是周期函数的是(

- (A) $e^z + 1$ (B) $\ln z$ (C) $\sin(z^3 + 1)$ D. $z + \sin z$

4. 若积分方向沿单位圆周|z|=1的逆时针方向进行,则积分

$$\oint\limits_{|z|=1} rac{e^z}{z^2} dz$$
 的值等于() .

- (A) $2\pi i e$; (B) 0; (C) $2\pi i$; (D) $\frac{1}{2}$.

5. 幂级数 $\sum_{n=1}^{\infty} \frac{n^2}{2^n} (z-1)^n$ 的收敛半径为 (

- (A) 1, (B) 0,
- (C) +∞ (D) 2

二、填空题(3分×10=30分).

2. 留数 $\operatorname{Re} s\left(\frac{z-\sin z}{z^4}, 0\right) = \underline{\hspace{1cm}}$

3. 若函数 f(z) 在区域 D 内解析,且|f(z)|为常数,则 $|f(z)| = _____.$

5. 设L[f(t)]表示函数f(t)的拉普拉斯变换。单位阶跳跃函数为 $u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$, 拉普

拉斯变换 L[u(t)+t]= .

6. 函数 $\frac{1}{\left(1+z\right)^2}$ 的麦克劳林级数(即函数在z=0处展开,或表示成 $\sum_{n=0}^{+\infty}C_nz^n$ 的形式),

$$\frac{1}{\left(1+z\right)^2} = \underline{\hspace{1cm}}$$

- 7. 如果函数 f(z) = u + iv 解析,则 Cauchy-Riemann 方程为
- 8. 复数1-i 的辐角主值 arg(1-i) =_______.
- 9. $i^{2017} =$ ______.
- 三. 解答计算题 (第1至第9题每题5分,第10题10分,共55分)
- 1. 计算 $\operatorname{Ln}\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$.
- 2. $\oint_{|z|=1} \sin(\sin z + e^z) dz$. (积分方向沿单位圆周|z|=1的逆时针方向进行)
- 3. 讨论函数 $w = |z|^2$ 的解析性.
- 4. (1)验证函数 $u(x,y) = e^x \cos y$ 为调和函数.
 - (2) 求一调和函数v(x,y), 使 f(z)=u+iv 是解析函数.
- 5.把函数 $f(z) = \ln(1+z^2)$ 展开成 z 的幂级数,并指出它们的收敛半径.
- 6.把函数 $f(z) = \frac{1}{z(z+1)^2}$ 在指定的圆环 $1 < |z+1| < +\infty$ 内展开成罗朗级数.
- 7. 讨论函数 $f(z) = \frac{1 e^z}{z^3(z-1)}$ 的有限奇点的类型,若是极点,指出极数.

- 8.求函数 $f(t) = e^{3t} + 5\delta(t)$ 的拉普拉斯变换
- 9. 求函数 $f(t) = \begin{cases} 0, & -\infty < t < -1 \\ e^t, & -1 \le t \le 1 \end{cases}$ 的傅立叶变换. $0, \quad 1 < t < +\infty$
- 10. 用傅立叶变换方法求方程 y'' y' + 2y = f(t) 的解, 其中 f(t) 为已知函数, 且 f(t) 的傅 立叶变换为F(w).
- 一、选择题(3分×5=15分)
 - 1. (B) 2. (C) 3. (A) 4. (C) 5. (D)

- 二、填空题(每空3分×10=30分)

- 1. $e^{-\frac{\pi}{4}} \cdot e^{i\ln\sqrt{2}}$; 2. $\frac{1}{6}$; 3. # 3. # 4. $1 < |z| < +\infty$; 5. $\frac{1}{s} + \frac{1}{s^2}$, Re s > 0
- 6. $\sum_{n=0}^{\infty} (-1)^n (n+1) z^n$, |z| < 1; 7. $u_x = v_y$, $u_y = -v_x$; 8. $-\frac{\pi}{4}$

- 9. i; 10. $\cos x + i \sin x$.
- 三、解答计算题(第1至第9题每题5分,第10题10分,共55分)

1.
$$\operatorname{Ln}\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = \ln 1 + (2k + \frac{1}{3}) \quad \pi i = (2k + \frac{1}{3}) \quad \pi i.$$
 (5 $\frac{4}{3}$)

- 2. 由于被积函数解析,由 Cauchy 积分定理, I = 0. (5分)
- 3. $u = x^2 + y^2, \quad v = 0$ (2 \(\frac{\pi}{2}\))

$$\begin{cases} u_x = 2x = v_y = 0 \\ u_y = 2y = -v_y = 0 \end{cases}$$

(4分)

所以函数只在原点可导,因此处处不解析。 (5分)

- 4. (1) $u = e^x \cos y$, $u_{xx} + u_{yy} = 0$, (2%)
 - (2) $\begin{cases} u_x = e^x \cos y = v_y \\ -u_y = e^x \sin y = v_x \end{cases}$ (4%)
 - (5分) $v = e^x \sin y + c$

5.
$$\frac{1}{1+z} = 1 - z + \dots + (-1)^n z^n + \dots, |z| < 1$$
 (2 $\%$)

$$\ln(1+z) = z - \frac{z^2}{2} + \dots + (-1)^n \frac{z^{n+1}}{n+1} + \dots, \quad |z| < 1$$
 (3 $\%$)

$$\ln(1+z^2) = z^2 - \frac{z^4}{2} + \dots + (-1)^n \frac{z^{2(n+1)}}{n+1} + \dots, \quad |z| < 1$$
 (5 $\%$)

6.
$$f(z) = \frac{1}{(z+1)^2} \cdot \frac{1}{(z+1)-1}$$
 (2 $\%$)

 $= \frac{1}{(z+1)^3} \cdot \frac{1}{1 - \frac{1}{z+1}}$ (3 %)

$$= \frac{1}{(z+1)^3} \cdot \left(1 + \frac{1}{z+1} + \dots + \frac{1}{(z+1)^n} + \dots\right)$$
 (5 $\%$)

7. 函数在 z=1 有单极点, 函数在 z=0 有 2 级极点. (5 分)

8.
$$L[f(t)] = \int_0^{+\infty} (e^{3t} + 5\delta(t))e^{-st}dt$$
 (3 $\%$)

$$=\frac{1}{s-3}+5=\frac{5s-14}{s-3}.$$
 (5 $\%$)

9.
$$F[f(t)] = \int_{-\infty}^{+\infty} f(t)e^{-jwt}dt$$
 (3 $\%$)

 $= \int_{-1}^{1} e^{(1-jw)t} dt = \frac{e^{1-jw} - e^{-1+jw}}{1-iw}$ (5 %)

$$((jw)^2 - jw+2)Y(w) = -F(w)$$
, (6分)

$$Y(w) = \frac{1}{(2 - w^2 - jw)} F(w)$$

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1}{(2 - w^2 - jw)} F(w) e^{jwt} dw$$
(10 分)

订