1

Gate EE 2023 EE1205 Signals and Systems

Nimal Sreekumar EE23BTECH11044

Question Gate 2023 EE: For the signals x(t) and y(t) shown in the figure, z(t) = x(t) * y(t) is maximum at $t = T_1$. Then T_1 in seconds is (Round off to the nearest integer)

 $x(\tau)$ is an even signal,

$$x(\tau) = x(-\tau) \tag{3}$$

$$x(-\tau) = \begin{cases} 1 & ; -1 \le -\tau \le 1 \\ 0 & ; \text{ otherwise} \end{cases}$$
 (4)

$$x(-\tau) \stackrel{\text{Time shifting}}{\longleftrightarrow} x(t-\tau)$$
 (5)

$$x(t-\tau) = \begin{cases} 1 & ; t-1 \le t-\tau \le t+1 \\ 0 & ; \text{otherwise} \end{cases}$$
 (6)

For z(t) to be maximum both $y(\tau)$ and $x(t-\tau)$ must be maximum,

$$\implies t - 1 = 3 \text{ or } t + 1 = 5$$

 $t = T_1 = 4$

Solution:

$$z(t) = x(t) * y(t) = y(t) * x(t)$$
 (1)

$$z(t) = \int_{-\infty}^{\infty} y(\tau) x(t - \tau) d\tau$$
 (2)