《模形式初步》勘误表 跨度: 2022 修订版迄今

李文威

2023-11-23

◇ 第 2 页第一行 (仅 PDF 版) 原文 透过过 更正 透过	
\diamond 导言的拓扑空间符号部分原文 $\partial D := D \setminus D^{\circ}$ 更正 $\partial D := \overline{D} \setminus D^{\circ}$ 指正	D° 感谢雷嘉乐
	$im[SL(n,R) \rightarrow S$ 感谢雷嘉乐指正
◇ §1.1 第一个脚注 (仅纸本) 原文 [50] 更正 [59]	感谢孙超超指正
\diamond 命题 1.4.12 关于 $Stab_{SL(2,\mathbb{Z})}(\rho)$ 生成元的描述原文($_1$ $_{-1}$)更正谢余君指正	(1) 感
	enjun Huang 指正
⋄ 例 3.5.4 之前的 (i) 原文 线性代群 更正 线性代数群	感谢杨箐浩指正
定义 3.6.4 之后的讨论条列第二项 从"变 α 为 $\alpha\beta$ " 之后关于 g^* 的公只差一个因子 a^{-k} ." 为止, 所有的 a^{-k} 都应该改成 a^k (共 5 处)	、式起,直到"… 感谢余君指正
\diamond 等式 (5.2.1) 的下一行	感谢汤一鸣指正
\diamond 等式 (5.4.1) 的下一行原文 $f(\delta_1\delta_1)$ 更正 $f(\delta_1\delta_2)$	感谢汤一鸣指正
\diamond 定理 6.5.1 证明 将证明中间 "定义 $S_k(\Gamma(N))$ 的线性自同态…" 之前一中的 $\alpha_n(f)$ 改为 $\alpha_n(\varphi)$.	行的显示公式
	感谢余君指正
◇ 定理 7.1.2 证明第一行 在 "命题 2.6.3" 之后加上一条脚注: "该节构设	造的 Eisenstein

节比较复杂, 详阅 [41, §7.2]."

级数, 其 Fourier 展开和对应的直和分解可以通过解析延拓推及 k = 1, 2 的情形, 细

 \diamond 引理 A.1.10 证明第三行 $\boxed{\mathbb{G}}$ $\boxed{\mathbb{G}}$ $\boxed{\mathbb{G}}$ $\boxed{\mathbb{G}}$