

Pulmonary, Lung and Respiratory Imaging Sheffield

A hybrid model- and deep learning-based framework for functional lung image synthesis from non-contrast multi-inflation CT

Joshua R. Astley^{1,2}, Alberto M. Biancardi¹, Helen Marshall¹, Guilhem J. Collier¹, Paul J.C. Hughes¹, Jim M. Wild¹, Bilal A. Tahir^{1,2}
¹POLARIS, Department of Infection, Immunity & Cardiovascular Disease and ²Department of Oncology and Metabolism, University of Sheffield, UK

Introduction

- Hyperpolarised gas MRI is a functional lung imaging modality capable of visualising regional ventilation with exquisite detail. However, the modality requires highly specialised equipment and a contrast agent such as Helium-3 (³He) or Xenon-129 (¹²⁹Xe).
- CT ventilation imaging (CTVI) aims to derive images of regional ventilation from multi-inflation CT, acquired during tidal breathing or breath-hold, without exogenous contrast.

Aim

Can deep learning improve upon state-of-the-art model-based CTVI methods?

Methods

We used four combinations of input channels for the CNN:

- 1) Expiratory CT + inspiratory CT + CTVI
- 2) Expiratory CT + inspiratory CT
- 3) Expiratory CT
- 4) Inspiratory CT

Results / Conclusion

Synthetic ventilation generation methods	Spearman's ρ	MSE
	Mean ± SD	Mean ± SD
CT ^{HU} model	0.39 ± 0.18	N/A
DL (expiration CT)	0.41 ± 0.18	0.032 ± 0.01
DL (inspiration CT)	0.37 ± 0.20	0.027 ± 0.01
DL (expiration CT + inspiration CT)	0.42 ± 0.18	0.027 ± 0.01
DL (expiration CT + inspiration CT + CT ^{HU} model)	0.46 ± 0.16	0.025 ± 0.01

The hybrid model/DI method achieved a mean Spearman's correlation on 47 scans of 0.46 and significantly outperformed other DL methods as well as CTVI modelling.

DL (Exp CT)

DL (Insp CT)

 $\rho = 0.52$ $\rho = 0.21$ $\rho = 0.32$ $\rho = 0.06$ $\rho = 0.18$ Qualitatively, we can see for 3 cases that the hybrid model / DL-based approach is able to accurately $\rho = 0.41$ $\rho = 0.52$ $\rho = 0.29$ $\rho = 0.30$ $\rho = 0.26$ replicate defects present in the hyperpolarised gas MRI scans. $\rho = 0.64$ $\rho = 0.48$ $\rho = 0.49$ $\rho = 0.55$ $\rho = 0.57$

DL (Exp CT + Insp CT + CTHU model) DL (Exp CT + Insp CT)