期末突击

概率论基础

• 条件概率: $P(B|A) = \frac{P(AB)}{P(A)}$

• 乘法公式: P(AB) = P(A)P(B|A)

一维随机变量

• $\int_{-\infty}^{+\infty} f(x) dx = 1$

• $F(x) = \int_{-\infty}^{x} f(x) dx$

• Y = F(X) 的分布函数 $G(y) = P\{Y \le y\} = P\{F(X) \le x\} = P\{X \le H(y)\} = F[H(y)]$

二维随机变量

• $\int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} f(x,y) dy = 1$

• $P{a < X < b} = \int_a^b dx \int_{-\infty}^{+\infty} f(x, y) dy$

• $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$

• $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$

• 相互独立: $f(x,y) = f_X(x)f_Y(y)$

随机变量的数字特征

• $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$

• $D(X) = E(X^2) - [E(X)]^2$

• Cov(X,Y) = E(XY) - E(X)E(Y)

• $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(x)D(y)}}$

• $D(aX + bY + c) = a^2D(X) + b^2D(y) + 2abCov(X, Y)$

Cov(aX+bY,cX+dY) = acCov(X,X) + adCov(X,Y) + bcCov(Y,X) + bdCov(Y,Y)

分布名称	分布律或概率密度	数学期望	方差
二项分布 $X \sim B(n,p)$	$p_k = C_n^k p^k (1-p)^{n-k}$	np	np(1-p)
泊松分布 $X \sim \pi(\lambda)$	$p_k = rac{\lambda^k}{k!} e^{-\lambda}$	λ	λ
均匀分布 $X \sim U(a,b)$	$f(x) = rac{1}{b-a}, \ a < x < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
指数分布 $X \sim Exp(\lambda)$	$f(x)=\lambda e^{-\lambda x},\;x>0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
正态分布 $X \sim N(\mu, \sigma^2)$	$f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2

大数定律与中心极限定理

• 独立同分布中心极限定理

$$\circ P\{\sum_{i=1}^n X_i \leq x\} pprox \Phi(\frac{x-n\mu}{\sqrt{n}\sigma})$$

• 棣莫弗-拉普拉斯定理

。 若
$$Y_n$$
 服从二项分布,则 $P\{a < Y_n \leq b\} pprox \Phi(rac{b-np}{\sqrt{npq}}) - \Phi(rac{a-np}{\sqrt{npq}})$

参数估计

• 矩估计

$$\circ \ A_k = \frac{1}{n} \sum_{i=1}^n X_i^k \longrightarrow E(X^k)$$

• 最大似然估计

1.
$$L(heta) = \prod_{i=1}^n f(x_i)$$

2.
$$lnL(\theta) = \cdots$$

3.
$$\frac{dlnL(\theta)}{d\theta} = \cdots = 0$$

4.
$$\hat{\theta} = \cdots$$

• 无偏估计

$$\circ E(\hat{\theta}) = \theta$$

类型	公式	置信区间
σ^2 已知	$Z=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}}\sim N(0,1)$	μ 的置信水平为 $1-lpha$ 的置信区间为 $(ar{X}-z_{lpha/2}rac{\sigma}{\sqrt{n}},ar{X}+z_{lpha/2}rac{\sigma}{\sqrt{n}})$
σ^2 未知	$t=rac{ar{X}-\mu_0}{S/\sqrt{n}}\sim t(n-1)$	μ 的置信水平为 $1-lpha$ 的置信区间为 $(ar{X}-rac{S}{\sqrt{n}}t_{lpha/2}(n-1),ar{X}+rac{S}{\sqrt{n}}t_{lpha/2}(n-1))$
μ 未 知	$\chi^2=rac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)$	σ^2 的置信水平为 $1-lpha$ 的置信区间为 $ig(rac{(n-1)S^2}{\chi^2_{lpha/2}(n-1)},rac{(n-1)S^2}{\chi^2_{1-lpha/2}(n-1)}ig)$

假设检验

类型	假设	检验统计量	拒绝域
σ^2 已知	$egin{aligned} H_0: \mu = \mu_0, \ H_0: \mu eq \mu_0 \ H_0: \mu & \leq \mu_0, \ H_0: \mu > \mu_0 \ H_0: \mu & \geq \mu_0, \ H_0: \mu & \leq \mu_0 \end{aligned}$	$Z=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}}$	$ z \geq z_{lpha/2} \ z \geq z_{lpha} \ z \leq z_{lpha}$
σ^2 未知	$egin{aligned} H_0: \mu = \mu_0, \ H_0: \mu eq \mu_0 \ H_0: \mu &\leq \mu_0, \ H_0: \mu > \mu_0 \ H_0: \mu &\geq \mu_0, \ H_0: \mu &< \mu_0 \end{aligned}$	$t=rac{ar{X}-\mu_0}{S/\sqrt{n}}$	$ t \geq t_{lpha/2}(n-1) \ t \geq t_lpha(n-1) \ t \leq t_lpha(n-1)$