

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DO DESENVOLVIMENTO, INDÚSTRIA, COMÉRCIO E SERVIÇOS INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL

RELATÓRIO DE EXAME TÉCNICO

N.° do Pedido: BR102018069690-4 N.° de Depósito PCT:

Data de Depósito: 26/09/2018

Prioridade Unionista: -

Depositante: UNIVERSIDADE FEDERAL DE OURO PRETO (BRMG) ;

UNIVERSIDADE FEDERAL DE MINAS GERAIS (BRMG)

Inventor: MARCELO GOMES SPEZIALI; STEFÂNIA SALES DE OLIVEIRA

SANTOS; RUBÉN DÁRIO SINISTERRA MILLAN

Título: "Processo, para ancoragem de líquido iônico em celulose, produtos

baseados em celulose e uso como matriz de adsorção/dessorção de

componentes aniônicos "

PARECER

Quadro 1 – Páginas do pedido examinadas					
Elemento	Páginas	n.º da Petição	Data		
Relatório Descritivo	1 a 10	870230053625	22/06/2023		
Quadro Reivindicatório	1 a 3	870230053625	22/06/2023		
Desenhos	1 a 2	870180134714	26/09/2018		
Resumo	1 a 1	870180160787	10/12/2018		

Quadro 2 – Considerações referentes aos Artigos 10, 18, 22 e 32 da Lei n.º 9.279 de 14 d maio de 1996 – LPI		
Artigos da LPI	Sim	Não
A matéria enquadra-se no art. 10 da LPI (não se considera invenção)		Х
A matéria enquadra-se no art. 18 da LPI (não é patenteável)		Х
O pedido apresenta Unidade de Invenção (art. 22 da LPI)	Х	
O pedido está de acordo com disposto no art. 32 da LPI	Х	

Comentários/Justificativas

Quadro 3 – Considerações referentes aos Artigos 24 e 25 da LPI		
Artigos da LPI	Sim	Não
O relatório descritivo está de acordo com disposto no art. 24 da LPI	Х	
O quadro reivindicatório está de acordo com disposto no art. 25 da LPI	Х	

Comentários/Justificativas

Quadro 4 – Documentos citados no parecer			
Código	Data de publicação		
D1	US9708757 B2	18/07/2017	
D2	EP2484749 A1	08/08/2012	
D3	BRPI0716658 A2	29/05/2008	
D4	Xiaoyi Wei, Gang Chang, Jihua Li, Fei Wang, Lihong Cui (2014). Preparation of pH- and salinity-responsive cellulose copolymer in ionic liquid. Journal of Polymer Research, 21(8), —. doi:10.1007/s10965-014-0535-z		
D5	Li, Hai Feng; Li, Huan; Zhong, Xuan; Li, Xin Da; Gibril, Magdi E.; Zhang, Yue; Han, Ke Qing; Yu, Mu Huo (2012). Study on the Chemical Modification of Cellulose in Ionic Liquid with Maleic Anhydride. Advanced Materials Research, 581-582(), 287–291 doi:10.4028/www.scientific.net/AMR.581-582.287		
Tang, Er Jun; Yuan, Miao; Li, Liang; Bian, Feng; Zhao, Di Shun (2012). Synthesis of Microcrystalline Cellulose Grafting Poly (methyl methacrylate) Copolymers by ATRP in 1-Allyl-3-Methylimidazolium Chloride. Advanced Materials Research, 621(), 157–161. doi:10.4028/www.scientific.net/amr.621.157			
D7	Xiao, Shu; Dai, Lin; He, Jing (2012). Dissolution of Cellulose and Synthesis of Cellulose-Graft-Poly (L-Lactide) via Ring-Opening Polymerization in an Ionic Liquid. Advanced Materials Research, 476-478(), 1897–1900 doi:10.4028/www.scientific.net/AMR.476-478.1897		

Quadro 5 – Análise dos Requisitos de Patenteabilidade (Arts. 8.º, 11, 13 e 15 da LPI)				
Requisito de Patenteabilidade	Cumprimento	Reivindicações		
Aplicação Industrial	Sim	1-5		
	Não			
Novidade	Sim	1-5		
	Não			
Atividade Inventiva	Sim	1-5		
	Não			

Comentários/Justificativas

Através da petição 870180160787, de 10/12/2018, o Depositante apresentou as páginas referentes: ao Relatório Descritivo; e ao Resumo; que se constituem em matéria aceita para o presente exame técnico.

Através da petição 870230053625 de 22/06/2023, o Depositante apresentou manifestação, tendo em vista o parecer de ciência 7.1, dato de 22/03/2023, publicado na RPI 2725 de 28/03/2023. Foram apresentadas: explicações; novas páginas do Relatório Descritivo; um novo Quadro Reivindicatório; e nova página do Resumo; que se constituem em matéria aceita para o presente exame técnico.

Considerando as argumentações do Depositante, de fato, é possível observar, que em nenhum documento, D1-D7, do estado da técnica foram encontradas informações utilizando líquidos iônicos que pudessem agir simultaneamente como solvente e reagente, promovendo a ligação covalente entre o Si- do líquido iônico e a OH- da celulose. Também não são adiantados nenhum ensinamento mostrando reações químicas entre líquidos iônicos catiônicos silanizados que consigam promover a ligação Si-O com outra molécula polimérica, tampouco monomérica, o que mantém o presente pedido de patente dotado de novidade (ineditismo no processo químico, molécula obtida e uso dessa) bem como atividade inventiva (mesmo combinando 2 ou mais documentos encontrados na literatura, sem o devido conhecimento empírico das reações e seus processos seriam capazes de se obter o produto ora descrito e reivindicado na presente patente.

Considerando as explicações, bem como as modificações realizadas, pelo Depositante, as objeções anteriores em relação aos Arts. [8° C/C 11; 8° C/C 13] da LPI; 24 e 25] da LPI; bem como a Instrução Normativa nº 30/2013 – Arts. 4° (III), 4° (VIII), 5° (II) e Art. 6° (I); foram superadas.

O presente pedido refere-se a um processo de modificação da celulose, em etapa única, utilizando reações de ancoragem de líquidos iônicos na estrutura desta.

As reivindicações nºs 1-5 referem-se essencialmente a:

Processo para ancoragem de líquido iônico em celulose, caracterizado por compreender reação química entre i) líquidos iônicos do tipo haleto de 3-alquil-1-[(trialcoxissilil)alquil]-1H-imidazol, em que o grupo alquil poderá ser qualquer alquila de C1 - C12, haleto ser quaisquer tipos de haletos e ii) celulose sendo que a reação de i) com ii) ocorre por meio das seguintes etapas: a. adicionar excesso de líquido iônico à celulose, considerando a quantidade de matéria de monômero de celulose por quantidade de matéria de líquido iônico; b. agitar a mistura obtida na etapa "a", pelo tempo necessário até que haja o intumescimento da celulose, sob aquecimento entre 50 – 200 °C; c. opcionalmente adicionar solvente orgânico à mistura obtida na etapa "b" até a sua solubilização e manter o refluxo de 24 a 120 horas; d. filtrar a mistura obtida na etapa "c" e lavar com clorofórmio, acetona e éter etílico; e. secar a mistura obtida na etapa "d".

Processo para ancoragem de líquido iônico em celulose, **caracterizado pelas** etapas opcionais de metátese do íon haleto: a. adicionar à matriz de celulose modificada obtida na

BR102018069690-4

reivindicação 1 uma solução de base forte de Arrhenius, na concentração entre 0,1 a 5,0 M; b. agitar a mistura obtida em "a" por 1 a 10 horas; filtrar e secar o produto obtido na etapa "b".

Processo para ancoragem de líquido iônico em celulose, caracterizado pelas etapas de metátese do fármaco: a. Adicionar à matriz de celulose modificada, obtida nas reivindicações 1 ou 2 um excesso de fármaco aniônico dissolvido em solvente orgânico, considerando a quantidade de matéria de monômeros de celulose por quantidade de fármaco aniônico; b. Agitar mistura obtida na etapa "a" por tempo entre 12 – 100 horas; c. Filtrar e secar o produto obtido na etapa "b".

Produtos baseados em celulose, caracterizados por serem constituídos de celulose modificada por ligações químicas entre as hidroxilas dos carbonos primários da celulose e o grupamento silanizante da cadeia lateral de líquidos iônicos imidazólicos do tipo haleto de 3-alquil-1- [(trialcoxissilil)alquil]-1H-imidazol, em que o grupo alquil poderá ser qualquer alquila de C1 - C12, haleto ser quaisquer tipos de haletos; sendo esse líquido iônico ligado covalentemente entre a hidroxila do carbono primário da celulose e a parte silanizante do líquido iônico.

Uso dessas como matriz de adsorção/dessorção de componentes aniônicos,, caracterizado por compreender processos de adsorção de contaminantes aniônicos, compostos moleculares e/ou metálicos, resina de troca iônica ou qualquer outro tipo de uso que envolva processos sortivos envolvendo ânions, sendo feitos com o auxílio da celulose modificada por líquidos iônicos contendo grupamento silanizante na cadeia lateral de líquidos iônicos imidazólicos tipo haleto de 3-alquil-1-[(trialcoxissilil)alquil]-1H-imidazol, em que o grupo alquil poderá ser qualquer alquila de C1 - C12, haleto ser quaisquer tipos de haletos; sendo esse líquido iônico ligado covalentemente entre a hidroxila do carbono primário da celulose e a parte silanizante do líquido iônico.

Conclusão

A matéria reivindicada apresenta novidade, atividade inventiva e aplicação industrial (Art. 8º da LPI), e o pedido está de acordo com a legislação vigente, encontrando-se em condições de obter a patente pleiteada.

Assim sendo, defiro o presente pedido como Patente de Invenção, devendo integrar a Carta Patente os documentos que constam no Quadro 1 deste parecer, exceto o resumo.

Para a concessão da patente o depositante deverá efetuar o pagamento da retribuição e a respectiva comprovação correspondente à expedição da carta-patente, conforme os prazos estabelecidos no Artigo 38 da LPI.

Publique-se o deferimento (9.1).

Rio de Janeiro, 5 de julho de 2023.

José Rufino de Oliveira Junior Pesquisador/ Mat. Nº 1550195 DIRPA / CGPAT I/DIPOL Deleg. Comp. - Port. INPI/DIRPA Nº 002/11