DoSA-3D 사용 메뉴얼

Voice Coil Motor Example

(Speaker, Auto-Focus, Linear Vibrator)

2022-06-05 zgitae@gmail.com

DoSA 구성

PC 요구사항

➤ CPU : 4 Core 이상

➤ RAM : 16GB 이상

프로그램 구성

Ribbon Bar

1. 작업관리

✓ New : 신규작업 생성

✓ Open : 이전작업 열기

✓ Save : 작업 저장

✓ SaveAs : 다른 이름으로 저장

✓ Shape : 3D 형상 확인

2. 설계

✓ Coil : 권선 추가 및 사양 설계

✓ Magnet : 영구자석 추가 및 사양 설정

✓ Steel: 연자성체 추가 및 사양 설정

Coil Magnet Steel

DESIGN

FILE

3. 가상실험

✓ Force : 자기력 예측

작업 흐름

제품 설계

<u>가상 실험</u>

해석 모델

해석모델 설명

1. 형상 모델

2. 제품 사양

가. 코일권선

• Coil Turns: 126 turns

• Coil Resistance: 15.75 Ohm

나. 영구자석

• Material : NdFeB 40

• 착자방향: 90 (UP)

다. 전원

• Voltage: 2.5V

(작업 예제파일 : DoSA-3D 설치 디렉토리 > Samples > VCM)

Design 생성

1. Toolbar > New 버튼 클릭

2. Design Name: "VCM"

3. Shape File (STEP): VCM.step 선택 (튜토리얼 문서와 함께 제공됨)

[형상작업 주의사항]

DoSA-3D 는 아직 아래의 기능제한을 가지고 있음

가. 형상 제한

- 코일 중심축은 Y 축과 일치해야 합니다.
- 전류는 다각 코일이라도 원통 형태로 인가됩니다. (다각 코일의 경우 약간의 차이가 발생할 수 있음)
- 나. 파트 수 제한
 - 동작은 하나의 파트만 지원합니다.
 - 하나의 코일만 지원합니다.
- 다. 형상작업 가이드
 - https://solenoid.or.kr/data/Drawing Guide KOR.pdf

Design 생성

- 4. Gmsh 에서 Solenoid 3차원 형상을 확인한다.
- 5. Gmsh 를 종료한다.
- 6. Part Name 을 확인 한다.
- 7. 형상과 Part Name 에 문제가 없다면 OK 를 클릭한다.

Design 생성

8. Design 생성을 확인한다.

Parts Design

Coil 추가

- 1. Toolbar > Coil 버튼 클릭
- 2. List Box 에서 "Coil" 선택
- 3. OK 버튼 클릭

Coil 설계

자기력 계산 파트 선정

1. Coil 기구사양 입력

✓ Moving Parts : MOVING

✓ Coil Wire Grade : Bonded_IEC_Grade_1B

✓ Inner Diameter: 3

✓ Outer Diameter: 3.73

✓ Coil Height: 1.18

✓ Copper Diameter: 0.045

✓ Horizontal Coefficient : 0.95 (Bonded Type)

✓ Vertical Coefficient : 1.13 (Bonded Type)

✓ Resistance Coefficient : 1.1 (Bonded Type)

2. Coil 사양 계산

✓ Design Coil 버튼 클릭

3. Coil 사양 확인

Δ	Common Fields	
	Node Name	Coil
Δ	Specification Fields	
	Part Material	Copper
	Curent Direction	IN
	Moving Parts	MOVING
Δ	Calculated Fields	
	Coil Turns	126
	Coil Resistance [Ω]	15,74769
	Coil Layers	6
	Turns of One Layer	21
4	Nesign Fields (optio	nal)
1	Design Fields (option Coil Wire Grade	nal) Bonded_IEC_Grade_1B
1		•
1	Coil Wire Grade	Bonded_IEC_Grade_1B 3
1	Coil Wire Grade Inner Diameter [mm]	Bonded_IEC_Grade_1B 3
1	Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm]	Bonded_IEC_Grade_1B 3 3,73 1,18
	Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm]	Bonded_IEC_Grade_1B 3 3,73 1,18
	Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm] Copper Diameter [mm]	Bonded_IEC_Grade_1B 3 3,73 1,18 0,045
	Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm] Copper Diameter [mm] Wire Diameter [mm]	Bonded_IEC_Grade_1B 3 3,73 1,18 0,045 0,04953
	Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm] Copper Diameter [mm] Wire Diameter [mm] Coil Temperature [*C]	Bonded_IEC_Grade_1B 3 3,73 1,18 0,045 0,04953 20

3

Magnet 추가

- 1. Toolbar > Magnet 버튼 클릭
- 2. List Box 에서 "Magnet" 선택
- 3. OK 버튼 클릭

Magnet 설정

- 1. Magnet 속성 설정
 - ✓ 기본 설정 값 사용

1

>	Common Fields				
	Node Name	Magnet			
~	Specification Fields				
	Part Material	NdFeB_40			
	Hc	969969			
	Br	1,26497			
	Moving Parts	FIXED			
~	Magnetization Fields				
	Rotation Axis	Z_AXIS			
	Rotation Angle	90			
_					

Rotation Axis : Z_Axis

[참고] 영구자석 착자

1. 영구자석 착자 방향 이해

■ 영구자석 착자 방향 : X 축 방향

■ Rotation Axis: X 축의 회전 기준 축

■ Rotation Angle : X 축이 회전하는 각도

Rotation Axis Z_	AXIS
Rotation Angle 90	

2. 착자 방향 설정

Rotation Axis : Z_Axis

Rotation Axis : Y_Axis

[참고] 영구자석 착자 사례

✓ Rotation Axis : Z_Axis

✓ Rotation Angle: 90

✓ Rotation Axis : Y_Axis

✓ Rotation Angle: 45°, 135°, 225°, 315°

회전 축 : Y_Axis

Plate 추가

- 1. Toolbar > Steel 버튼 클릭
- 2. List Box 에서 "Plate" 선택
- 3. OK 버튼 클릭

Plate 설정

1. Plate 속성 설정

✓ Part Material : SUS_430 선택

[BH 곡선]

1

Case 추가

- 1. Toolbar > Steel 버튼 클릭
- 2. List Box 에서 "Case" 선택
- 3. OK 버튼 클릭

Case 설정

1. Case 속성 설정

✓ Part Material : SUS_430 선택

[BH 곡선]

1

Virtual Test

자기력 가상실험

- 1. Toolbar > Force 버튼 클릭
- 2. Test Name: "Force"
- 3. OK 버튼 클릭
- 4. 자기력 가상실험 설정
 - ✓ Voltage: 2.5
 - ✓ B Rotation Angle: 45
 - ✓ B Vector Resolution: 80
 - ✓ Mesh Size Percent: 7
 - ✓ Actuator Type : VCM
- 5. Force Test 버튼 클릭

~	Common Fields			
	Node Name	Force		
~	Input Fields			
	Voltage [V]	2,5	4	
	Max, Current [A]	0, 15875		
~	Initial Position Fields			
	X Movement [mm]	0		
	Y Movement [mm]	0		
	Z Movement [mm]	0		
~	Post-Processing Fields			
	B Rotation Angle [°]	45		
	B Vector Resolution	80		
~	Condition Fields			
	Mesh Size [%]	7		
	Actuator Type	VCM		

자기력 가상실험 실행

- 7. 자기력 해석 진행 상황을 확인한다.
- 8. 자속밀도를 확인 한다. (해석 시간은 컴퓨터 사양에 따라 다름)
- 9. Gmsh 를 종료한다.

자기력 가상실험 실행

- 10. VCM 방식은 자기력 정확도를 높이기 위해 추가 해석이 자동으로 진행 된다.
- 11. DoSA-3D 에서 VCM 의 자기력을 확인한다.

Tips

Design 열기

- 1. Toolbar > Open 버튼 클릭
- 2. Design 디렉토리 더블 클릭
- 3. Design 파일 더블 클릭

감사합니다

Email: zgitae@gmail.com