Análisis Frecuencial

Ing. José Miguel Barboza Retana Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2019

Espectro de señales continuas periódicas

Espectro de señales continuas periódicas

Señales continuas periódicas: serie de Fourier

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\Omega_0 kt}$$

$$c_k = \frac{1}{T_p} \int_{t_0}^{t_0 + T_p} x(t) e^{-j\Omega_0 kt} dt$$

Si la señal tiene potencia media finita P_x

$$P_{x} = \frac{1}{T_{p}} \int_{t_{0}}^{t_{0} + T_{p}} |x(t)|^{2} dt$$

Relación de Parseval: señales continuas periódicas

Con $|x(t)|^2 = x(t)x^*(t)$ se reduce la **Relación de Parseval**:

$$P_{x} = \frac{1}{T_{p}} \int_{t_{0}}^{t_{0}+T_{p}} |x(t)|^{2} dt = \frac{1}{T_{p}} \int_{t_{0}}^{t_{0}+T_{p}} x(t) x^{*}(t) dt$$

$$= \frac{1}{T_{p}} \int_{t_{0}}^{t_{0}+T_{p}} x(t) \sum_{k=-\infty}^{\infty} c_{k}^{*} e^{-j\Omega_{0}kt} dt$$

$$= \sum_{k=-\infty}^{\infty} c_{k}^{*} \left[\frac{1}{T_{p}} \int_{t_{0}}^{t_{0}+T_{p}} x(t) e^{-j\Omega_{0}kt} dt \right]$$

$$= \sum_{k=-\infty}^{\infty} c_{k}^{*} c_{k} = \sum_{k=-\infty}^{\infty} |c_{k}|^{2}$$

 $kF_0 \rightarrow |c_k|^2$: Densidad espectral de potencia.

Paridad de espectro de densidad de potencia

Si $x(t) \in \mathbb{R}$, densidad de potencia es par puesto que $|c_{-k}| = |c_k^*| = |c_k|$.

Al par de gráficas de $|c_k|$ vs. kF_0 y $\theta_k = \angle c_k$ vs. kF_0 se le denomina **espectro de tensión**.

Puesto que para funciones reales $\theta_{-k} = \angle c_k^* = -\angle c_k = -\theta_k$, la fase es impar.

Ejemplo: Serie de Fourier de pulsos rectangulares (1)

La serie de Fourier de un tren periódico de pulsos rectangulares de ancho τ en tiempo continuo tiene como coeficientes

$$c_k = \frac{A\tau}{T_p} \frac{\operatorname{sen}(\pi k F_0 \tau)}{\pi k F_0 \tau}$$

Analice el efecto del periodo T_p y el ancho del pulso τ en el espectro de la señal.

Ejemplo: Serie de Fourier de pulsos rectangulares (2)

Solución:

$$au=1$$
 y $T_P=5$

$$au=2$$
 y $T_p=5$

$$au=1$$
 y $T_p=10$

Ejemplo: Serie de Fourier de pulsos rectangulares (3)

- La distancia entre dos líneas espectrales correspondientes a c_k y c_{k+1} es $F_0 = 1/T_p$ y el término τ , además de determinar el ancho del pulso temporal, indica qué tan extensa resulta la función sen(x)/x.
- Si se modifica el ancho del pulso temporal manteniendo el periodo, la distancia entre cada línea espectral se mantiene, mientras que el espectro se contrae (si τ aumenta).
- Por otro lado, si T_p aumenta (o lo que es equivalente, la frecuencia fundamental F_0 baja), pero se mantiene el ancho del pulso τ , la misma función en la frecuencia $sen(k\pi F_0\tau)/\pi kF_0\tau$ es muestreada más a menudo (la densidad de líneas espectrales aumenta).

Propiedad	Señal en el tiempo	Coeficientes
	x(t)	c _k
	$x_1(t)$	c_{1_k}
Linealidad	$x_2(t)$	c _{2k}
Linealidad	$\alpha_1 x_1(t) + \alpha_2 x_2(t)$	$\alpha_1 c_{1_k} + \alpha_2 c_{2_k}$
Simetría par	x(t) = x(-t)	$c_k = \frac{2}{T_p} \int_0^{\frac{T_p}{2}} x(t) \cos(\omega_0 kt) dt$
		$c_k \in \mathbb{R}$
Simetría impar	x(t) = -x(-t)	$c_k = -rac{2j}{T_p}\int_0^{rac{T_p}{2}} x(t) \operatorname{sen}(\omega_0 kt) dt$
		$c_k \in j \mathbb{R}$
Función real	$x(t) \in \mathbb{R}$	$c_k = c^*_{-k}$
Desplazamiento temporal	$x(t-\tau)$	$e^{-J\omega_0 k \tau} c_k$
Conjugación	x*(t)	c*_k
	x(-t)	c_k
Escalamiento en el tiempo		c _k
Convolución periódica	$\int_{T_p} x_1(\tau) x_2(t-\tau) d\tau$	$T_p c_{1_k} c_{2_k}$
Multiplicación	$x_1(t)x_2(t)$	$\sum_{l=0}^{\infty} c_{1_{l}} c_{2_{k-l}}$
Diferenciación	$\frac{dx(t)}{dt}$	$jk\omega_0c_k$
Integración	$\int_{-\infty}^{\infty} x(t) dt, c_0 = 0$	$\frac{c_k}{jk\omega_0}$
Relación de Parseval	$\frac{1}{T_p} \int_{t_0}^{t_0+T_p}$	$\frac{c_k}{jk\omega_0}$ $ x(t) ^2 dt = \sum_{k=-\infty}^{\infty} c_k ^2$

Propiedades de la Serie de Fourier

Espectro de señales continuas aperiódicas

Transformada de Fourier

Distancia entre líneas espectrales (señales periódicas): $F_0 = 1/T_p$

Coeficientes calculados con $t_0 = T_p/2$:

$$c_k = \frac{1}{T_p} \int_{-T_p/2}^{T_p/2} x(t) e^{-j2\pi F_0 kt} dt$$

Si T_p aumenta, $F_0 \rightarrow \Delta F_0$ (pequeño)

Si $T_p \to \infty$, entonces $\Delta F_0 \to dF$ y $k\Delta F_0 \to F$

Transformada de Fourier: eliminar $1/T_p$ y hacer $T_p \to \infty$:

$$X(F) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi Ft}dt$$

Relación de la transformada y la serie de Fourier

Coeficientes de la serie:

$$X(F) = \lim_{T_p \to \infty} T_p c_k$$

Con frecuencia angular $\Omega = 2\pi F$:

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

Transformada Inversa de Fourier

Transformada inversa:

$$x(t) = \int_{-\infty}^{\infty} X(F)e^{j2\pi Ft}dF$$

O con $d\Omega = 2\pi dF$:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$$

Serie de extensión periódica

Si x(t) es una señal de extensión finita entonces existe una extensión periódica $x_p(t)$ de periodo T_p mayor a la extensión de x(t).

$$c_k = \frac{1}{T_p} X(kF_0)$$

Es decir, la extensión periódica de una señal aperiódica conduce al muestreo del espectro de la transformada de Fourier con una tasa F_0 .

Condiciones de Dirichlet

Condiciones de Dirichlet similares a caso periódico, donde $T_p \rightarrow \infty$

$$\int_{-\infty}^{\infty} |x(t)| dt < \infty$$

Lo que se deduce del hecho que

$$|X(F)| = \left| \int_{-\infty}^{\infty} x(t)e^{-j2\pi Ft} dt \right|$$

$$\leq \int_{-\infty}^{\infty} |x(t)| |e^{-j2\pi Ft}| dt = \int_{-\infty}^{\infty} |x(t)| dt < \infty$$

Energía

De forma similar a las señales periódicas puede demostrarse que

$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt = \int_{-\infty}^{\infty} |X(F)|^{2} dF$$

Densidad espectral de energía $S_{\chi\chi}(F) = |X(F)|^2$ es la distribución de energía de la señal en función de la frecuencia X(F) tiene simetría hermítica si $\chi(t) \in \mathbb{R}$.

Ejemplo: Serie de Fourier del pulso rectangular continuo

(1)

Calcule la transformada de Fourier del pulso rectangular

$$x(t) = \begin{cases} A & |t| \le \tau/2 \\ 0 & |t| > \tau/2 \end{cases}$$

Ejemplo: Serie de Fourier del pulso rectangular continuo (2

Solución: Utilizando la definición se obtiene:

$$X(F) = \int_{-\tau/2}^{\tau/2} Ae^{-j2\pi Ft} dt = \frac{A\tau sen(\pi F\tau)}{\pi F\tau}$$

Pulso de ancho au

Transformada de Fourier

Principio de incertidumbre

Mientras x(t) sea más localizada en el tiempo (más pequeño τ), más amplio es su espectro.

Propiedad	Señal en el tiempo	Transformada
	x(t) x ₁ (t) x ₂ (t)	$X(j\omega)$ $X_1(j\omega)$ $X_2(j\omega)$
Linealidad		$\alpha_1 X_1(j\omega) + \alpha_2 X_2(j\omega)$
Simetría par	x(t) = x(-t)	$2\int_{0}^{\infty} x(t) \cos(\omega t) dt$
		$X(j\omega) \in \mathbb{R}$
Simetría impar	x(t) = -x(-t)	$-2i\int_{0}^{\infty}x(t)\operatorname{sen}(\omega t)dt$
		$X(j\omega) \in j\mathbb{R}$
Función real	$x(t) \in \mathbb{R}$	$X(j\omega) = X^*(-j\omega)$
Dualidad		$2\pi x(-\omega)$
Desplazamiento temporal	$X(t-\tau)$	
Desplazamiento en frecuencia		$X(j\omega - j\omega_0)$
Modulación	$\cos(\omega_0 t)x(t)$	2 + - / 2 + - /
Conjugación Inversión en el tiempo	$x^*(t)$ x(-t)	X*(–jω) X(–jω)
inversion en el tiempo	X(-L)	(2)
Escalamiento en el tiempo	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Convolución	$x_1(t) * x_2(t)$	$X_1(j\omega)X_2(j\omega)$
Multiplicación	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(j\omega) * X_2(j\omega)$
Diferenciación	$\frac{dx(t)}{dt}$	jω X (jω)
	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
Integración		$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
Relación de Parseval	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$	

Propiedades de la Transformada de Fourier

Espectro de señales en tiempo discreto periódicas

Espectro de señales en tiempo discreto

- Espectro de señales continuas → frecuencias de -∞ a ∞.
- Si además periódicas \rightarrow frecuencias "discretas" $k/T_p = kF_0$

Señal discreta periódica

Señal discreta periódica con periodo N.

Se utiliza una base funcional de N exponenciales complejas armónicamente relacionadas de frecuencia racional f = k/N o $\omega = 2\pi/N$.

$$s_k(n) = e^{j2\pi kn/N}, \qquad k = 0, ..., N-1.$$

(1)

Utilizando la serie generalizada de Fourier con estas señales como base se obtiene para la síntesis de una señal:

$$x(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N}$$

Y considerando que

$$\sum_{n=0}^{N-1} a^n = \begin{cases} N & a = 1\\ \frac{1-a^N}{1-a} & a \neq 1 \end{cases}$$

Se puede afirmar para las exponenciales complejas

$$\sum_{n=0}^{N-1} e^{j2\pi kn/N} = \begin{cases} N & k = 0, \pm N, \pm 2N, ... \\ 0 & \text{en el resto} \end{cases}$$

(2)

Tomando $a = e^{j2\pi k/N}$ por lo que $a^N = 1$.

Multiplicando $x(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N}$ por $e^{-j2\pi ln/N}$ y sumando de 0 a N-1:

$$\sum_{n=0}^{N-1} x(n)e^{-j2\pi ln/N} = \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N} e^{-j2\pi ln/N}$$

$$= \sum_{k=0}^{N-1} c_k \sum_{n=0}^{N-1} e^{j2\pi(k-l)n/N}$$

$$= Nc_l$$

Y finalmente

$$c_l = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi l n/N}, \qquad l = 0,1,2,...,N-1$$

(3)

que es la Serie de Fourier en Tiempo Discreto (DTFS, discrete time Fourier Series)

(4)

Los coeficientes son periódicos con periodo N

$$c_{k+N} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-\frac{j2\pi(k+N)n}{N}} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-\frac{j2\pi kn}{N}} e^{-j2\pi n} = c_k$$

Por conveniencia se utiliza para c_k normalmente el intervalo k = 0,1,...,N-1.

(5)

La relación de Parseval es en este caso

$$\frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2 = \sum_{k=0}^{N-1} |c_k|^2$$

Es decir, la potencia media de la señal es igual a la suma de las potencias de cada componente en el dominio de la frecuencia.

Espectro de señales en tiempo discreto aperiódicas

Espectro de señales discretas aperiódicas (1)

La transformada de Fourier de una señal de energía finita en tiempo discreto x(n) se define como:

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

Como $X(\omega) = X(\omega + 2\pi k)$ el rango de frecuencias únicas se limita a $[0,2\pi[$, o de forma equivalente a $]-\pi,\pi]$, que contrasta con el rango $[-\infty,\infty]$ de las señales continuas.

Espectro de señales discretas aperiódicas (2)

Como la señal x(n) es discreta, una sumatoria reemplaza la integral del caso continuo. Puede demostrarse además que

$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$

La transformada de Fourier converge si

$$|X(\omega)| = \left|\sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}\right| \le \sum_{n=-\infty}^{\infty} |x(n)| < \infty$$

Es decir, si la señal es absolutamente sumable.

Espectro de señales discretas aperiódicas (3)

La relación de Parseval en este caso es:

$$E_{x} = \sum_{n=-\infty}^{\infty} |x(n)|^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(j\omega)|^{2} d\omega$$

Para señales reales $X(\omega)$ tiene simetría hermítica.

Relación entre dominios

 $peri\'odico \leftrightarrow discreto$

aperiódico

continuo

Relación entre las transformadas de Fourier y z

Relación entre las transformadas de Fourier y z (1)

La transformada z de la secuencia x(n) se ha definido como:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
, ROC: $r_2 < |z| < r_1$

Expresando z como $z=re^{j\omega}$ $(r=|z|,\,\omega=\angle z)$, entonces

$$X(z)|_{z=e^{j\omega}} = \sum_{n=-\infty}^{\infty} [x(n)r^{-n}]e^{-j\omega n}$$

Que equivale a la transformada de Fourier de la secuencia $x(n)r^{-n}$. Para el caso especial de r=1 se obtiene:

$$X(z)|_{z=e^{j\omega}} = X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

Relación entre las transformadas de Fourier y z (2)

Función con par de polos complejos conjugados en $z=0.95e^{\pm j30^{\circ}}$ y un cero en z=0.

Relación entre las transformadas de Fourier y z (3)

Si X(z) no converge en |z| = 1 entonces la transformada de Fourier no existe.

Relación entre las transformadas de Fourier y z (4)

Por otro lado, existen funciones con transformada de Fourier, que no tienen transformada z. Por ejemplo, $x(n) = \frac{sen(\omega_c n)}{\pi n}$ tiene transformada de Fourier

$$X(\omega) = \begin{cases} 1 & |\omega| \le \omega_c \\ 0 & \omega_c < |\omega| < \pi \end{cases}$$

mas no posee transformada z, puesto que para la serie $\sum_{n=-\infty}^{\infty} \frac{sen(\omega_c n)}{\pi n} z^{-n}$ no existe ninguna región de convergencia.

Relación entre las transformadas de Fourier y z (5)

Algunas secuencias con polos en |z| = 1 en su transformada z pueden tener una transformada de Fourier si se extiende la definición de transformada para utilizar impulsos de Dirac

$$\delta(\omega) = \begin{cases} \infty & \omega = 0 \\ 0 & \omega \neq 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(\omega) d\omega = 1$$

Ejemplo: Transformada discreta de Fourier (1)

Determine la transformada de Fourier de las señales

1.
$$x_1(n) = u(n)$$

2.
$$x_2(n) = (-1)^n u(n)$$

3.
$$x_3(n) = \cos(\omega_0 n) u(n)$$

Ejemplo: Transformada discreta de Fourier (2)

Solución:

1. La transformada de $x_1(n)$ es $X_1(z) = \frac{1}{1-z^{-1}} = \frac{z}{z^{-1}}$ con una ROC |z| > 1, pues tiene un polo en z = 1. Con $z = e^{j\omega}$ se obtiene:

$$X_1(\omega) = \frac{e^{j\omega}}{e^{j\omega} - 1} = \frac{e^{j\omega/2}}{e^{j\omega/2} - e^{-j\omega/2}}$$

$$=\frac{1}{2sen(\omega/2)}e^{j\frac{\omega-\pi}{2}}; \quad \omega\neq 2\pi k, k\in\mathbb{R}$$

Cuya magnitud y fase se muestran a continuación:

Ejemplo: Transformada discreta de Fourier (3)

El término $\pi\delta(\omega)$ en el dominio de la frecuencia introduce el nivel CD faltante.

Ejemplo: Transformada discreta de Fourier (4)

2. $X_2(z) = \frac{1}{1+z^{-1}} = \frac{z}{z+1}$ con un polo en $z = -1 = e^{j\pi}$. La transformada de Fourier es entonces $X_2(\omega) = \frac{e^{j\omega/2}}{2\cos(\omega/2)}$, con $\omega \neq \pi k$, $k \in \mathbb{Z}$. Se agregan impulsos en $\omega = k\pi$, $k \in \mathbb{Z}$ (recuérdese la periodicidad espectral)

Ejemplo: Transformada discreta de Fourier (5)

3. $X_3(z) = \frac{1-z^{-1}\cos(\omega_0)}{1-2z^{-1}\cos(\omega_0)+z^{-2}}$, ROC |z| > 1 puesto que tiene dos polos complejos conjugados en $e^{\pm j\omega_0}$. Por lo tanto, la transformada de Fourier es:

$$X_3(\omega) = \frac{1 - e^{-j\omega}\cos(\omega_0)}{(1 - e^{-j(\omega - \omega_0)})(1 - e^{-j(\omega + \omega_0)})}$$

Con $\omega \neq \pm \omega_0 + 2\pi k$.

Ejemplo: Transformada discreta de Fourier (6)

Teorema del muestreo

Función puente de muestreo

La función puente $p_T(t)$ modela la toma de muestras cada T de $x_a(t)$.

Señal muestreada

Señal muestreada $x_s(t)$ dada por $x_s(t) = x_a(t)p_T(t)$

Espectro de la señal muestreada

Dado que $p_T(t)$ es periódica se expresa por serie de Fourier

$$p_T(t) = \sum_{n=-\infty}^{\infty} P_n e^{jn\Omega_0 t}, \qquad \Omega_0 = \frac{2\pi}{T} = 2\pi F$$

De modo que se cumple

$$x_s(t) = x_a(t) \sum_{n=-\infty}^{\infty} P_n e^{jn\Omega_0 t}$$

Replicación espectral

Transformando a ambos lados y con propiedad de linealidad:

$$X_{S}(j\Omega) = \mathcal{F}\{x_{S}(t)\} = \mathcal{F}\left\{x_{a}(t)\sum_{n=-\infty}^{\infty} P_{n}e^{jn\Omega_{0}t}\right\}$$
$$= \sum_{n=-\infty}^{\infty} P_{n}\mathcal{F}\{x_{a}(t)e^{jn\Omega_{0}t}\}$$

Y con la propiedad de desplazamiento en frecuencia:

$$X_{S}(j\Omega) = \sum_{n=-\infty}^{\infty} P_{n}X_{a}(j\Omega - jn\Omega_{0})$$

$$= P_{0}X_{a}(j\Omega) + \sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} P_{n}X_{a}(j\Omega - jn\Omega_{0})$$

Replicación espectral

El muestreo produce **réplicas** del espectro $X_a(j\Omega)$ separadas por $\Omega_0 = 2\pi/T$ y sumadas.

Derivación conceptual

- Máxima frecuencia normalizada representable $f_{max} = \frac{F_{max}}{F_S} = \frac{1}{2}$.
- Sea la representación de Fourier de la señal discreta

$$x(n) - X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}, \qquad \omega \in]-\pi,\pi]$$

- La frecuencia mínima de muestreo F_s debe ser elegida de tal modo que sea al menos el doble de la frecuencia máxima de la señal.
- De otro modo: ALIASING.

Equivalencias entre ω , f y F

(1)

Sea $x_a(t)$ la señal analógica muestreada con periodo T:

$$x(n) = x_a(nT), \quad -\infty < n < \infty$$

Si $x_a(t)$ es aperiódica de energía finita, entonces su espectro es:

$$X_a(F) = \int_{-\infty}^{\infty} x_a(t)e^{-j2\pi Ft} dt \longrightarrow x_a(t) = \int_{-\infty}^{\infty} X_a(F)e^{j2\pi Ft} dF$$

En el dominio discreto se tiene:

$$X(f) = \sum_{n = -\infty}^{\infty} x(n)e^{-j2\pi fn} - x(n) = \int_{-\frac{1}{2}}^{\frac{1}{2}} X(f)e^{j2\pi fn}df$$

(2)

Puesto que para la señal muestreada

$$t = nT = \frac{n}{F_S}$$

Entonces:

$$x(n) = x_a(nT) = \int_{-\infty}^{\infty} X_a(F)e^{j2\pi nF/F_S}dF = \int_{-1/2}^{1/2} X(f)e^{j2\pi fn}df$$

Considerando que $f = F/F_s$ y $df = dF/F_s$ se obtiene entonces:

$$\frac{1}{F_S} \int_{-F_S/2}^{F_S/2} X(F/F_S) e^{j2\pi nF/F_S} dF = \int_{-\infty}^{\infty} X_a(F) e^{j2\pi nF/F_S} dF$$

(3)

La integral

$$\int_{-\infty}^{\infty} X_a(F) e^{j2\pi nF/F_S} dF$$

Se puede segmentar en bloques de ancho F_s de la siguiente manera:

$$\int_{-\infty}^{\infty} X_a(F)e^{j2\pi nF/F_S}dF = \sum_{k=-\infty}^{\infty} \int_{(k-1/2)F_S}^{(k+1/2)F_S} X_a(F)e^{j2\pi nF/F_S}dF$$

(4)

Con un cambio de variable $F' = F - kF_s$, dF' = dF, se obtiene un desplazamiento del k-ésimo bloque al intervalo $[-F_s/2, F_s/2]$:

$$\int_{(k-1/2)F_S}^{(k+1/2)F_S} X_a(F)e^{j2\pi nF/F_S}dF = \int_{-F_S/2}^{F_S/2} X_a(F' + kF_S)e^{j2\pi n\frac{F' + kF_S}{F_S}}dF'$$

$$= \int_{-F_{s}/2}^{F_{s}/2} X_{a}(F + kF_{s})e^{j2\pi nF/F_{s}}dF$$

(5)

Por lo que:

$$\frac{1}{F_S} \int_{-F_S/2}^{F_S/2} X(F/F_S) e^{j2\pi nF/F_S} dF = \sum_{k=-\infty}^{\infty} \int_{-F_S/2}^{F_S/2} X_a(F+kF_S) e^{j2\pi nF/F_S} dF$$

$$= \int_{-F_S/2}^{-F_S/2} \left[\sum_{k=-\infty}^{\infty} X_a(F + kF_S) \right] e^{j2\pi nF/F_S} dF$$

(6)

Es decir:

$$X\left(\frac{F}{F_S}\right) = X(f) = F_S \sum_{k=-\infty}^{\infty} X_a(F + kF_S)$$

Nótese que el espectro de la señal discreta X(f) es igual a la repetición periódica con periodo F_s del espectro escalado $F_sX_a(F)$.

Solapamiento

• Si el espectro de $x_a(t)$ es de banda limitada B, entonces si $F_s > 2B$ entonces para $|F| \le F_s/2$:

$$X\left(\frac{F}{F_S}\right) = F_S X_a(F), \qquad |F| \le F_S/2$$

donde no hay **aliasing**, y los espectros son idénticos excepto por el factor F_s .

• Si $F_s < 2B$ entonces el solapamiento espectral impide que la señal original pueda ser recuperada a partir de las muestras.

Solapamiento

(1)

Si no hay solapamiento, entonces:

$$X_a(F) = \begin{cases} \frac{1}{F_S} X \left(\frac{F}{F_S} \right) & |F| \le F_S/2 \\ 0 & |F| > F_S/2 \end{cases}$$

Y puesto que:

$$X\left(\frac{F}{F_S}\right) = \sum_{n=-\infty}^{\infty} x(n)e^{-j2\pi Fn/F_S}$$

Y además:

$$x_a(t) = \int_{-F_s/2}^{F_s/2} X_a(F) e^{j2\pi Ft} dF$$

(2)

Se tiene que:

$$x_{a}(t) = \frac{1}{F_{S}} \int_{-F_{S}/2}^{F_{S}/2} \left[\sum_{n=-\infty}^{\infty} x(n) e^{-\frac{j2\pi Fn}{F_{S}}} \right] e^{j2\pi Ft} dF$$

$$= \frac{1}{F_{S}} \sum_{n=-\infty}^{\infty} x(n) \int_{-F_{S}/2}^{F_{S}/2} e^{j2\pi F(t-\frac{n}{F_{S}})} dF$$

Para $t = n/F_s$ se cumple:

$$\int_{-F_S/2}^{F_S/2} e^{j2\pi F\left(t - \frac{n}{F_S}\right)} dF = \int_{-F_S/2}^{F_S/2} dF = F_S$$

(3)

Y puesto que para $t \neq n/F_s$:

$$\begin{split} \int_{-F_S/2}^{F_S/2} e^{j2\pi F \left(t - \frac{n}{F_S}\right)} dF &= \frac{e^{j2\pi F \left(t - \frac{n}{F_S}\right)}}{j2\pi \left(t - \frac{n}{F_S}\right)} \bigg|_{-F_S/2}^{F_S/2} \\ &= \frac{e^{j\pi F_S \left(t - \frac{n}{F_S}\right)} - e^{-j\pi F_S \left(t - \frac{n}{F_S}\right)}}{j2\pi \left(t - \frac{n}{F_S}\right)} \\ &= \frac{sen\left(\pi F_S \left(t - \frac{n}{F_S}\right)\right)}{\pi \left(t - \frac{n}{F_S}\right)} = \frac{F_S sen\left(\pi F_S \left(t - \frac{n}{F_S}\right)\right)}{\pi F_S \left(t - \frac{n}{F_S}\right)} \end{split}$$

(4)

Se cumple para todo *t*:

$$\int_{-F_S/2}^{F_S/2} e^{j2\pi F\left(t-\frac{n}{F_S}\right)} dF = F_S sa\left(\pi F_S\left(t-\frac{n}{F_S}\right)\right)$$

Entonces:

$$x_{a}(t) = \sum_{n=-\infty}^{\infty} x(n)sa\left(\pi F_{s}\left(t - \frac{n}{F_{s}}\right)\right)$$
$$= \sum_{n=-\infty}^{\infty} x_{a}(nT)sa\left(\pi F_{s}\left(t - \frac{n}{F_{s}}\right)\right)$$

Interpolación ideal

$$x_a(t) = \sum_{n = -\infty}^{\infty} x(n) sa\left(\pi F_S\left(t - \frac{n}{F_S}\right)\right) = \sum_{n = -\infty}^{\infty} x(n) sa\left(\pi F_S(t - nT)\right)$$

Es la interpolación de las muestras x(n) utilizando el interpolador ideal:

$$g(t) = \frac{sen\left(\pi \frac{t}{T}\right)}{\pi \frac{t}{T}} = sa\left(\pi \frac{t}{T}\right)$$

Interpolación ideal

Secuencia $x(n) = \{0,3,2,-1,1,0\}$

Propiedades de la transformada de Fourier de señales discretas

Simetría

$$x(n) = [x_R^e(n) + jx_I^e(n)] + [x_R^o(n) + jx_I^o(n)]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X(\omega) = [X_R^e(\omega) + jX_I^e(\omega)] + [jX_I^o(\omega) + X_R^o(\omega)]$$

Si x(n) es real, entonces $X(-\omega) = X^*(\omega)$

Linealidad

Si $x_1(n) \circ - X_1(\omega)$ y $x_2(n) \circ - X_2(\omega)$, entonces:

$$a_1 x_1(n) + a_2 x_2(n) \circ - a_1 X_1(\omega) + a_2 X_2(\omega)$$

Desplazamiento temporal

$$x(n) \longrightarrow X(\omega) \Rightarrow x(n-k) \longrightarrow e^{-j\omega k}X(\omega)$$

Reflexión temporal

$$x(n) \longrightarrow X(\omega) \Rightarrow x(-n) \longrightarrow X(-\omega)$$

Teorema de la Convolución

Si $x_1(n) \circ - X_1(\omega)$ y $x_2(n) \circ - X_2(\omega)$, entonces:

$$x_1(n) * x_2(n) \longrightarrow X_1(\omega)X_2(\omega)$$

Teorema de la Correlación

Si $x_1(n) \hookrightarrow X_1(\omega)$ y $x_2(n) \hookrightarrow X_2(\omega)$, entonces:

$$r_{x_1x_2}(n) \circ - S_{x_1x_2}(\omega) = X_1(\omega)X_2(-\omega)$$

Si la señal es real, puesto que $X(-\omega) = X^*(\omega)$ entonces:

$$r_{xx}(n) - X(\omega)X(-\omega) = X(\omega)X^*(\omega) = |X(\omega)|^2 = S_{xx}(\omega)$$

Que se conoce como el teorema de Wiener-Khinchin

Desplazamiento frecuencial

$$x(n) \longrightarrow X(\omega) \Rightarrow e^{j\omega_0} x(n) \longrightarrow X(\omega - \omega_0)$$

Teorema de Modulación

$$x(n) \circ X(\omega) \Rightarrow x(n)\cos(\omega_0 n) \circ \frac{1}{2} [X(\omega + \omega_0) + X(\omega - \omega_0)]$$

Teorema de la Parseval

Si $x_1(n) \hookrightarrow X_1(\omega)$ y $x_2(n) \hookrightarrow X_2(\omega)$, entonces:

$$\sum_{n=-\infty}^{\infty} x_1(n)x_2^*(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\omega)X_2^*(\omega)d\omega$$

Para el caso $x_1(n) = x_2(n) = x(n) \circ X(\omega)$

$$E_{x} = \sum_{n=-\infty}^{\infty} |x(n)|^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^{2} d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{xx}(\omega) d\omega$$

Teorema del enventanado: Multiplicación de secuencias

Si $x_1(n) \hookrightarrow X_1(\omega)$ y $x_2(n) \hookrightarrow X_2(\omega)$, entonces:

$$x_3(n) = x_1(n)x_2(n) - X_3(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\lambda)X_2(\omega - \lambda)d\lambda = X_1(\omega) * X_2(\omega)$$

Diferenciación en el dominio de la frecuencia

$$x(n) \longrightarrow X(\omega) \Rightarrow nx(n) \longrightarrow j \frac{dX(\omega)}{d\omega}$$

Bibliografía

• [1] P. Alvarado, Señales y Sistemas. Fundamentos Matemáticos. Instituto Tecnológico de Costa Rica: Centro de Desarrollo de Material Bibliográfico, 2008.

