Predicting on-time shipping with Machine Learning

FINC 514 Introduction to Data Science Spring 2021

Professor: Xiaodi Zhu

Students: Tiyanna Jenkins

Erika Leonida

Thi Diem My Nguyen

Anchal Patel

Outline

- 1. Introduction
- 2. Data summary
- 3. Data cleaning process
- 4. Methodology & Results
- 5. Model selection
- 6. Conclusion and future works
- 7. Q&A

1. Introduction

- Project focused on how to apply Machine Learning to make predictions regarding shipping on-time, from an international e-commerce company to their customers.
- Researched and tested several Machine Learning algorithms in order to select the one that maximizes the prediction accuracy score.
- This algorithm introduces a prediction component to the output by giving an estimated on-time delivering to the customer for a shipment.

1. Introduction

Using Machine Learning to solve the business questions:

- Discover key insights to figure which factors affected a product reaching on time
- Using logistic regression and train/testing method to build 3 models
- Select the one that maximizes the prediction accuracy score

1. Introduction

Motivation for doing this project

Ensuring on-time delivery to customer indicates:

- The company is doing well in satisfying customers
- The company has direct impact of increased revenues. It is a good starting point would be to have statistical analyses of inside every shipment success and predict accurately about the shipping time

1. Introduction:

The specific data science question we want to analyze

Which factor(s) significantly affect Reached on time?

Predict whether the product will deliver on-time or not?

Type of analysis and model that plan to use for each data science question

For the data science question:

'Which factor(s) significantly affect Reached on time' by using similar data for whether delivered on time.

Type of analysis: Regression Analysis

Model: A Logistic Regression Model

For the data science question:

'Predict whether the product will deliver on-time or not'

Type of analysis: use the training/testing method

Model: Logistic Regression, Decision Tree, and SVM; Run the model and pick the best model

a. Data source

Data saved in a CSV file covering a total of 10,999 observation shipments, called Train(2).csv

First five records from our dataset:

					dat.head()						
10	Warehouse_block	Mode_of_Shipment	Customer_care_calls	Customer_rating	Cost_of_the_Product	Prior_purchases	Product_importance	Gender	Discount_offered	Weight_in_gms	Reached.on.Time_Y.
1	D	Fight	4	2	177	3	low	F	44	1233	
1 2	F	Fight	4	5	216	2	low	М	59	3088	
2 3	A	Fight	2	2	183	4	low	M	48	3374	
3 4	В	Fight	3	3	176	4	nedum	М	10	1177	
4 5	C	Flight	2	2	184	3	medium	F	46	2484	

Target variable: Reached On Time (1/0)

Featured Variables:

- Warehouse blocks
- Mode of shipment
- Cost of the product
- Prior purchase
- Product importance
- Gender
- Weight in grams.

b. Statistical summary and Correlation matrix

Variable	Cost of the product	Discount offered	Weight in gms
Observation	10,999	10,999	10,99
Mean	210	13	3,634
Median	214	7	4,149
Max	310	65	7,846
Min	96	1	1,001
Standard	4.0	4.6	4 (0=

The distribution of Cost of the product

Visualize the correlations using a heatmap

2. Data summary Relation between Prior purchases and Reached on time.

3. Data cleaning process

• The data has no null value so we pass the cleaning process.

```
subdat.info()
#There are no missing values
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10999 entries, 0 to 10998
Data columns (total 9 columns):
                       Non-Null Count Dtype
    Column
  Warehouse_block 10999 non-null object
  Mode_of_Shipment 10999 non-null object
  Cost_of_the_Product 10999 non-null int64
   Prior_purchases
                     10999 non-null int64
   Product_importance 10999 non-null object
   Gender
                       10999 non-null object
   Discount_offered 10999 non-null int64
    Weight in gms
                  10999 non-null int64
    Reached.on.Time_Y.N 10999 non-null int64
dtypes: int64(5), object(4)
memory usage: 773.5+ KB
```

4. Methodology & Results

To answer the research question about which factor(s) significantly affect reach on-time:

- Used Logistic Regression model
- > Reached on time as a dependent variable Y
- ➤ Warehouse blocks, mode of shipment, cost of the product, prior purchases, product importance, gender, and weight in grams as independent variables X

```
X_dat = sm.add_constant(X_dat)
logit = sm.Logit(y_dat, X_dat)
logit.fit().summary()
```

The outcome allows to estimate the parameters of the logistic regression model, the values of which are presented in table.

Iterat	t function ions 8							
	Logit Regression Results							
Dep. Variable:	Dep. Variable: Reached.on.T			Time_Y.N No. Observations: 10999				
Model:	Logit		Df Residuals: 10985					
Method:	Method: MLE		Df Model: 13					
Date:	Date: Wed, 05 Mag		y 2021 Pseudo R-squ.: 0.1888					
Time:	e: 00:57:38		Log-l	Likelihoo	d: -6	016.9		
converged:	converged: True		LL-Null: -7417.0					
Covariance Type	Covariance Type: nonrobust		LLR p-value: 0.000					
		coef	std err	z	P> z	[0.025	0.975]	
cons	t	1.2915	0.191	6.756	0.000	0.917	1.666	
Cost_of_the_	Cost_of_the_Product		0.000	-5.267	0.000	-0.004	-0.002	
Prior_puro	Prior_purchases		0.015	-5.439	0.000	-0.112	-0.053	
Discount_c	offered	0.1138	0.004	25.664	0.000	0.105	0.122	
Weight_in	_gms	-0.0002	1.52e-05	-14.107	0.000	-0.000	-0.000	
Warehouse_	Warehouse_block_B		0.075	1.132	0.258	-0.062	0.233	
Warehouse_	block_C	0.0522	0.075	0.693	0.488	-0.095	0.200	
Warehouse_	block_D	0.0621	0.075	0.826	0.409	-0.085	0.209	
Warehouse_	block_F	0.0422	0.065	0.646	0.518	-0.086	0.170	
Mode_of_Shipr	ment_Road	-0.0322	0.077	-0.420	0.674	-0.182	0.118	
Mode_of_Ship	ment_Ship	-0.0150	0.060	-0.249	0.803	-0.133	0.103	
Product_impor	tance_low	-0.3566	0.084	-4.268	0.000	-0.520	-0.193	
Product_importa	nce_medium	-0.3417	0.084	-4.076	0.000	-0.506	-0.177	
Gender	_M	0.0528	0.044	1.211	0.226	-0.033	0.138	

10	Variable	Coefficient	P-value	
11	Cost_of_the_Product	-0.0026	.000***	
12	Prior_purchases	-0.0823	.000***	
13	Discount_offered	0.1138	.000***	
14	Weight_in_gms	-0.0002	.000***	
15	Warehouse_block_B	0.0852	0.258	
16	Warehouse_block_C	0.0522	0.488	
17	Warehouse_block_D	0.0621	0.409	
18	Warehouse_block_F	0.0422	0.518	
19	Mode_of_Shipment_Road	-0.0322	0.674	
20	Mode_of_Shipment_Ship	-0.015	0.803	
21	Product_importance_low	-0.3566	.000***	
22	Product_importance_medium	-0.3417	.000***	
23	Gender_M	0.0528	0.226	
24	* p < 0.05, ** p < 0.01, *** p	< 0.001		
25				

Parameters of the logistic regression model and their assessment:

- + Parameters turned out to be statistically significant:
- Cost of the product
- Prior purchase
- Discount offered
- Weight in gms
- Product importance
- + Parameters didn't turn out to be statistically significant:
- Warehouse block
- Mode of shipment
- Gender

4. Methodology & Results

To answer the research question about how to use Machine Learning to predict whether a shipment will be delivered on-time or not

- Apply the training/testing method with three models Logistic Regression, Decision Tree, and SVM
- ➤ Pick the best model base on the accuracy score
- > Selected statistically significant variables to tie our model
- ➤ Algorithms were trained and tested on the same training and test set so that we could compare their performance

Apply Logistics regression model

Apply Logistics regression model

- About logistic regression: Logistic regression is the appropriate regression analysis to conduct when the dependent variable is dichotomous (binary),
- Logistic regression is used to describe data and to explain the relationship between one dependent binary variable and one or more nominal, ordinal, interval or ratio-level independent variables.

The code used to fit the model:

```
lr = LogisticRegression()
lr.fit(trainX, trainY)
```

Apply Logistics regression model

Accuracy Score for LR model: 0.64036363636363636364. The model makes 64% accuracy rate on testing dataset.

Apply Decision Tree model

A decision tree is a decision support tool that uses a treelike model of decisions and their possible consequences including

- Chance event outcomes
- Resource costs
- Utility

In our decision tree model, we have 5 classes with 6 input variables, and we use Reached on time as output variable. This is the code we use to fit the model.

```
# Decision Tree - training
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier(max_depth=5)
dt.fit(trainX, trainY)
```

Accuracy Score for Decision Tree model: 0.68327272727273

Apply SVM model

About SVM:

- A support vector machine (SVM) is a supervised <u>machine learning</u> model that uses classification algorithms for two-group classification problems.
- After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.

The code used to fit the model:

```
svm = SVC(kernel='linear')
svm = svm.fit(trainX, trainY)
```

Accuracy Score for SVM model: 0.6432727272727272

The model makes 64% accuracy rate on testing dataset

5. Model selection

Model	Accuracy Score	Type I Error
Logistic Regression	64%	454
Decision Tree	68%	65
SVM	64%	333

Decision Tree model has the highest accuracy score and lowest type I error. We will choose this model to predict the on-time shipping on our dataset

6. Conclusion and future works

a. Results and Analysis:

- ✓ Relationship between feature variables and target variable
- Cost of the product, Prior purchases, Discount offered, Weight in grams and Product important function have significant influence on the model, specially Cost of the product and Prior purchases
- Cost of the product has a negative influence on the prediction, higher cost of the product is correlated with a not on-time shipment, higher on cost of the product, less on not on-time shipment or heigher in on-time shipping

6. Conclusion and future works Results and Analysis

✓ Predict on-time shipment:

• Built the final prediction model with a Decision Tree algorithm as they result in the highest accuracy score (68%) and the least type I error (65), depending on the model segments.

6. Conclusion and future works

b. Limitations of our approach

- It requires a lot of data in order to kick-start the analysis and modelling and the data should be at best great quality
- A model demands analytics and coding skills
- A project only supply a functioning tool, this means the company will have to work on the models in order to make them a part of their computing environment

6. Conclusion and future works

c. Potential future works

- Limited our scope to electronic products but the same models developed for this purpose could be used for any products.
- Insight of our study is that our approach could be applied to any shipping industry.
- In the future, it would be worth investigating the possibility of including weather and customer's area patterns in the model as a way to improve its accuracy, if access to reliable data can be guaranteed.

7. Reference

- Antoine Charles Jean Jonquais and Florian Krempl. "Predicting Shipping Time with Machine Learning." The Program in Supply Chain management, May 10 2019.
- Borucka, Anna. "Logistic regression in modeling and assessment of transport services." Open Engineering 10.1 (2020): 26-34.
- Prachi Gopalani. "Product Shipment Delivered on time or not? To Meet E-Commerce Customer Demand." https://www.kaggle.com/prachi13/customer-analytics, Feb 23 2021
- Susan Li. "Building A Logistic Regression in Python, Step by Step." https://towardsdatascience.com/building-a-logistic-regression-in-python-step-by-step-becd4d56c9c8, Sep 28, 2017.
 - De Gruyter. "Logistic regression in modeling and assessment of transport services", Jan 31 2020.

