NT 東京 2025

DDD E-4 ブース
ZSG
Z80 Study Group
from Odawara

目次

- 1.DDD
- 2.今回の展示内容
 - 1.8080ALUを動かしてみた
- 3.Smart knob

DDDとは

Deadline-Driven Developers

https://dddev.group/

今回の展示内容 CPUの動作を可視化してみた

- CPUの内部を理解したい
- そのためには8bitが最適
 - 8bitマシンが普及したから
 - Z80が特に普及したから
 - 16bit機はそれ程
 - それ以上は複雑
- 最終的にはZ80を動かしたい
- レジスターや内部バスの状態を見える化したい

i8080 ALUのロードマップ

Z80全体 i8080全体

i8080ALU

山岡の履歴

- 1975 3月の大学の卒業論文として「i8080を 使ったフーリエ変換機の製作」でPCを開発
 - 原始アセンブラーからFFTまで開発
- 1977 ヤマハ入社 半導体に所属
 - FM音源の最初の開発チームに所属
 - 楽器用音源等各種開発
 - 各種CPUアーキテクチャーの調査
 - MSX2用のグラフィック・プロセッサーV9938開発
 - セガ社ゲーム用LSIの開発
 - 1チップ・メガドライブの開発他

18080 ALU Block Diagram

i8080ALU基板

10cm X 10cm

i8080ALU基板

i8080ALU基板

18080ALI

(生基板)

i8080ALUで使える命令語

命令語	code	バイト数	機能	フラグ	命令語	code	バイト数	機能	フラグ
ADD B	80	1	A=A+r	CHZSP	NOP	00	1		
ADI	C6	2	A=A+B2	CHZSP	HLT	76	1		
ADC B	88	1	A=A+r+C	CHZSP	RLC	07	1	Lシフト	С
ACI	CE	2	A=A+B2+C	CHZSP	RAL	17	1	Lシフト	С
SUB B	90	1	A=A-r	CHZSP	NAL	17	ı	w/C	C
SUI	D6	2	A=A-B2	CHZSP	RRC	OF	1	Rシフト	С
SBB B	98	1	A=A-r-C	CHZSP	RAR	1F	1	Rシフト	С
SBI	DE	2	A=A-B2-C	CHZSP				w/C	
ANA B	A0	1	A=A and r	ZSP	STA	32	3		
ANI	E6	2	A=A and B2	ZSP	LDA	3A	3		
ORA B	В0	1	A=A or r	ZSP	MOV B,A	47	1	B=A	
ORI	F6	2	A=A or B2	ZSP					
XRA B	A8	1	A=A xor r	ZSP					
XRI	EE	2	A=A xor B2	ZSP					

の記明 制御信

番号	制御信号	DESTINATION	信号名説明	内容
0	LFS	F	Load Flag S(sign)	Sign Flag に入力する
1	LFZ	F	Load Flag Z(sero)	Zero Flag に入力する
2	LFH	F	Load Flag H(Half carry)	Half Carry Flagに入力する
3	LFP	F	Load Flag P(parity)	Parity Flagに入力する
4	LFC	F	Load Flag C(Carry)	Carry Flag に入力する
5	ENF	F	Enable Flags to BUS	Flag全てをBUSに出力
6	SFC	F	Select "fc" for Carry	Carry入力として"fc"を選択する
7	SRHI	F	Select "RHO" for Carry	Carry入力として"RHO"を選択する
8	SRLI	F	Select "RLO" for Carry	Carry入力として"RLO"を選択する
9	SNOT	ALU8	Select NOT 出力	Accの出力の反転を選択しBUSに出力
10	SADD	ALU8	Select ADD 出力	ADD出力を選択しBUSに出力
11	SOR	ALU8	Select OR 出力	OR出力を選択しBUSに出力
12	SAND	ALU8	Select AND 出力	AND出力を選択しBUSに出力
13	SXOR	ALU8	Select XOR 出力	Exclusive OR出力を選択しBUSに出力
14	SROT	ALU8	Select ROT 出力	Rotation出力を選択しBUSに出力
15	SRR	ALU8	Rotate Right	右Rotateを選択
16	SRL	ALU8	Rotate Left	左Rotateを選択
17	WC	ALU8	With Carry flag	RotateにCarry Flagを含める、WCが"0"の時は含めない
18	SCI	ALU8	Select Carry In	ALUのCarry InとしてCIを選択
19	SUB	ALU8	Subtract	引き算 Adderの一方の入力を反転しCIを通して"1"を足す
20	AINH	ALU8	Acc Inhibit	ALUへのAccからの入力を強制的に"0"とする
21	LAC	ACC	Load BUS入力	DINTO BUSの値をAccに入力する
22	ENAC	ACC	Enable Acc出力	Accの内容をBUS (DO)に出力する
23	LRGB	REGSTER ARRAY	Load to Register B	BUS信号をRegister Bに入力する
24	LRGC	REGSTER ARRAY	Load to Register C	BUS信号をRegister Cに入力する
25	LRGD	REGSTER ARRAY	Load to Register D	BUS信号をRegister Dに入力する
26	LRGE	REGSTER ARRAY	Load to Register E	BUS信号をRegister Eに入力する
27	LRGH	REGSTER ARRAY	Load to Register H	BUS信号をRegister Hに入力する
	LRGL	REGSTER ARRAY	Load to Register L	BUS信号をRegister Lに入力する
	ERGB	REGSTER ARRAY	Enable Register B	Register B の内容をBUSに出力する
	ERGC	REGSTER ARRAY	Enable Register C	Register C の内容をBUSに出力する
	ERGD	REGSTER ARRAY	Enable Register D	Register D の内容をBUSに出力する
	ERGE	REGSTER ARRAY	Enable Register E	Register E の内容をBUSに出力する
	ERGH	REGSTER ARRAY	Enable Register H	Register H の内容をBUSに出力する
	ERGL	REGSTER ARRAY	Enable Register L	Register L の内容をBUSに出力する
	LINST	DBC	Load Instruction	外部データBUSの内容(Instruction)をInstruction Reg.に取込む
	DBWR	DBC	Write Data	外部データBUSに書き込みを行う
	SELDB	DBC	Select Data BUS for BUS1	外部データBUSの内容を内部BUS1(DINT1)に取込む
	ENDB	DBC	Select Data BUS for BUS0	外部データBUSの内容を内部BUS0(DINT0)に取込む
	RDMN	SRAM	/(Read Memory)	SRAMデータの読み出しの反転(書き込み信号)
	DPCH	PC16	Load Data BUS to PC high	内部データBUSの内容をPCの上位バイトに取込む
	DPCL	PC16	Load Data BUS to PC low	内部データBUSの内容をPCの下位バイトに取込む
	ENPC	PC16	Enable PC counter	Program Counterの内容をAddress BUSに出力
43	INCPC	PC16	Increment PC	Program Counterの内容をIncrement(Halt命令の時は除く)
	SELAB	ABC	Select Address Bus	Address BUSにAddress Register の内容を出力
	LAH	ABC	Load BUS data to Addr reg H	内部BUS(DINT1)の内容をアドレスレジスターの上位バイトに入力
46	LAL	ABC	Load BUS data to Addr reg L	内部BUS(DINT1)の内容をアドレスレジスターの下位バイトに入力
47	STMCL	STATE MACHINE	Clear State Macine	ステートマシンの内容をリセットする

プログラム例

動作の流れ

- 1. (B) \leftarrow "AA" //B=AA
- 2. (A)←"55" //A=55
- 3. $(A) \leftarrow (A) + (B) //A = FF$
- 4. (A) \leftarrow (A) +"01" //A=00, Carry=1
- 5. (A) \leftarrow (A) or (B) //A = AA
- 6. Rotate Left (A) with Carry //A=55
- 7. (A) \leftarrow (A) ex-or "FF" //A=AA
- 8. (A) \leftarrow (A) and "3F" //A=2A
- 9. (M 1000番地) ← (A)
- 10. (A) \leftarrow "00" //A=00
- 11. (A) ← (M 1000番地) //A=2A

機械語プロ グラム

ANI "00" ORI "AA" MOV B,A ANI "00" ORI "55" ADD B ADI "01" **ORAB** RAI XRI "FF" ANI "3F" STA 1000 ANI "00" LDA 1000

SRAM 内容

Addr Data 00 E6 ANI 01 00 02 F6 ORI 03 AA 04 47 MOV 05 E6 ANI 06 00 07 F6 ORI 55 80 09 80 ADD 0Α C6 ADI 0B 01 0C B0 ORA 0D 17 **RAL** OE EE XRI OF FF 10 E6 ANI 11 3F 12 32 STA 13 00 14 10 15 E6 ANI 16 00 17 3A LDA 18 00 19 10

プログラム例

動作の流れ

- 1. (B) \leftarrow "AA" //B=AA
- 2. (A)←"55" //A=55
- 3. $(A) \leftarrow (A) + (B) //A = FF$
- 4. (A) \leftarrow (A) +"01" //A=00, Carry=1
- 5. (A) \leftarrow (A) or (B) //A = AA
- 6. Rotate Left (A) with Carry //A=55
- 7. (A) \leftarrow (A) ex-or "FF" //A=AA
- 8. (A) \leftarrow (A) and "3F" //A=2A
- 9. (M 1000番地) ← (A)
- 10. (A) \leftarrow "00" //A=00
- 11. (A) ← (M 1000番地) //A=2A

機械語プロ グラム

ANI "00" ORI "AA"

MOV B,A

ANI "00"

ORI "55"

ADD B

ADI "01"

ORA B

RAL

XRI "FF"

ANI "3F"

STA 1000

ANI "00"

LDA 1000

SRAM 内容

Addr Data 00 E6 ANI

02 F6 ORI

03 AA

04 47 MOV

05 E6 ANI 06 00

07 F6 ORI

08 55

09 80 ADD

0A C6 ADI 0B 01

OC BO ORA

0D 17 RAL

OE EE XRI OF FF

10 E6 ANI

11 3F

12 32 STA 13 00

14 10

15 E6 ANI

16 00

17 3A LDA

18 00 19 10

Block Diagram

プログラム例

動作の流れ

- 1. (B) \leftarrow "AA" //B=AA
- 2. (A)←"55" //A=55
- 3. $(A) \leftarrow (A) + (B) //A = FF$
- 4. (A) \leftarrow (A) +"01" //A=00, Carry=1
- 5. (A) \leftarrow (A) or (B) //A = AA
- 6. Rotate Left (A) with Carry //A=55
- 7. (A) \leftarrow (A) ex-or "FF" //A=AA
- 8. (A) \leftarrow (A) and "3F" //A=2A
- 9. (M 1000番地) ← (A)
- 10. (A) \leftarrow "00" //A=00
- 11. (A) ← (M 1000番地) //A=2A

機械語プロ グラム

ANI "00"

ORI "AA" MOV B,A

ANI "00"

ORI "55"

ADD B

ADI "01"

ORA B

RAL

XRI "FF"

ANI "3F"

STA 1000

ANI "00"

LDA 1000

SRAM 内容

Addr Data 00 E6 ANI

01 00

02 **F6** ORI

03 AA

04 47 MOV

05 E6 ANI

06 00

07 F6 ORI

08 55

09 80 ADD

OA C6 ADI

0B 01

OC BO ORA

0D 17 RAL

OE EE XRI OF FF

10 E6 ANI

11 3F

12 32 STA 13 00

14 10

15 E6 ANI

16 00

17 3A LDA

18 00

19 10

Block Diagram

プログラム例

動作の流れ

- 1. (B) \leftarrow "AA" //B=AA
- 2. (A)←"55" //A=55
- 3. $(A) \leftarrow (A) + (B) //A = FF$
- 4. (A) \leftarrow (A) +"01" //A=00, Carry=1
- 5. (A) \leftarrow (A) or (B) //A = AA
- 6. Rotate Left (A) with Carry //A=55
- 7. (A) \leftarrow (A) ex-or "FF" //A=AA
- 8. (A) \leftarrow (A) and "3F" //A=2A
- 9. (M 1000番地) ← (A)
- 10. (A) \leftarrow "00" //A=00
- 11. (A) ← (M 1000番地) //A=2A

機械語プロ グラム

ANI "00" ORI "AA" MOV B,A ANI "00" ORI "55" ADD B ADI "01" **ORAB** RAI XRI "FF" ANI "3F" STA 1000 ANI "00"

LDA 1000

SRAM 内容

Addr Data 00 E6 ANI 01 00 02 F6 ORI 03 AA 04 47 MOV E6 ANI 05 06 00 F6 07 ORI 80 55 09 80 ADD 0Α C6 ADI 0B 01 0C B0 ORA 0D 17 **RAL** OE EE XRI OF FF 10 E6 ANI 11 3F 12 32 STA 13 00 14 10 15 E6 ANI 16 00 17 3A LDA 18 00 19 10

Block Diagram

有難うございました

Block Diagram

