Задача 8. Выпуклый минимум

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда* Ограничение по памяти: разумное

Массив чисел $A_0, A_1, A_2, \dots A_{n-1}$ называется выпуклым вверх, если:

$$\forall i < k < j: \qquad A_k < \frac{(j-k)A_i + (k-i)A_j}{(j-i)}$$

Дан выпуклый вверх массив A и коэффициент C. Требуется найти индекс элемента массива, на котором достигается минимум линейной функции:

$$\operatorname*{argmin}_{i=0}^{n-1} (A_i + C \cdot i) = ?$$

Если минимальное значение достигается на нескольких элементах массива, нужно найти номер первого такого элемента.

Формат входных данных

В первой строке записано одно целое число n — размер выпуклого массива $(1 \le n \le 10^5)$. Далее записаны элементы массива A_i (n целых чисел, $|A_i| \le 10^{15}$). Затем записано целое число q — количество запросов, которые нужно обработать $(1 \le q \le 10^5)$. В остальных q строках записаны целые числа C_j , определяющие значения коэффициента линейной функции ($|C_j| \le 10^9$).

Формат выходных данных

Требуется вывести q целых чисел: для каждого коэффициента C_j , записанного во входных данных, нужно вывести номер i первого элемента A_i , на котором достигается минимум $(A_i + C \cdot i)$ при $C = C_i$.

Пример

input.txt	output.txt
10	8
9 4 0 -2 -2 -1 1 4 8 20	3
8	5
-5	3
1	0
-2	2
0	2
6	1
3	
2	
4	

Императивное программирование Контест 9,

Пояснение к примеру

Рассмотрим коэффициент $C_2 = -2$. Выпишем значение соответствующей функции для всех элементов:

$$i=0: 9-2*0=9$$

$$i=1: 4-2*1=2$$

$$i=2: 0-2*2=-4$$

$$i=3: -2-2*3=-8$$

$$i=4: -2-2*4=-10$$

$$i=5: -1-2*5=-11$$

$$i=6: 1-2*6=-11$$

$$i=7: 4-2*7=-10$$

$$i=8: 8-2*8=-8$$

$$i=9: 20-2*9=2$$

Минимум достигается на двух элементах i=5 и i=6, и ответом является меньший номер i=5.

Комментарий

Представьте себе, как бы вы решали задачу, если бы вместо массива A была дана гладкая функция A(x), и нужно было бы найти минимум функции (A(x) + Cx). Задача с массивом решается точно так же, нужно лишь найти дискретный аналог для понятия производной.