EE4415 Tutorial for Chapter 4

Q1. The circuit shown below is constrained by: create_clock -period 20 [get_ports Clk] set_input_delay -max 7.4 -clock Clk [get_ports A]

What is the maximum allowed time for circuit N?

- (a) 7.4 ns, (b) 12.6 ns, (c) 20 ns, (d) none of the above.
- Q2. Consider the following code.

always@(posedge clock)

$$C \leq A+B$$
;

If it is synthesized with the following constraints

create_clock -period 10 -waveform {0 5} clock

set_clock_uncertainty -setup 1.0 clock

set_input_delay -max 2.0 -clock clock [remove_from_collection \

[all_inputs] [get_ports clock]]

then what is the maximum allowed delay for the logic A+B if the setup time for the flip-flops with output C is 1 ns?

- (a) A. 1 ns
- (b) B. 4 ns
- (c) C. 6 ns
- (d) D. 10 ns
- (e) E. None of the above
- Q3. The circuit shown below is constrained by:

create_clock -period 20 [get_ports Clk] set_output_delay -max 7.0 -clock Clk [get_ports B]

What is the maximum allowed time for circuit S?

- (a) 20 ns, (b) 13 ns, (c) 7 ns, (d) none of the above.
- Q4. In the circuit below, the clock period is 20 ns. What are the time budgets for circuits N, X, and S? (Assume delays for FF1, FF2, FF3, and FF4 are zero).

- (a) T_N = 12ns, T_X =12ns, T_S = 12ns; (b) T_N = 8ns, T_X =12ns, T_S = 8ns; (c) T_N = 8ns, T_X =20ns, T_S = 8ns; (d) Can't decide.
- Q5. Assume the clock period is 10ns, the fastest arrival time for circuit M and FF1 is 0.5ns. What is the minimum delay allowed for N if FF2 has $T_{HOLD} = 1$ ns?

(a) 9.5 ns, (b) 9 ns, (c) 8.5 ns, (d) 1 ns, (e) none of the above.

Q6. In the circuit below, assume the clock period is 5ns and the hold time of FF4 is 0.5ns. What is the minimum delay for FF3+S?

(a) 4.3ns, (b) 0.5 ns, (c) 0.3 ns, (d) 0.2 ns, (e) none of the above.