Baye's rule
$$P(x|y) = \frac{P(x,y) = P(y|x) P(x)}{P(y)}$$

Gaussian distribution or normal
$$\longrightarrow N(X|M, B) = \frac{1}{\sqrt{2\pi B^2}} e^{-\frac{(X-M)^2}{2B^2}}$$

OPtimize Parameters $\Theta \in M, B$
 $Polf \times Yes$
 $(\Theta|X)$

MLE
$$\rightarrow$$
 all data points are independent $L(\Theta|X) = P(X_1, X_2, ..., X_n|\Theta)$

$$\frac{\text{MLE}}{P(X_1|\Theta)} P(X_2|\Theta) - ... P(X_n|\Theta)$$

$$\chi^2$$
 $-\chi^2$

$$\frac{1}{1}(x|\mu,6) = \frac{1}{\sqrt{2\pi 6^2}}$$

is it for (multivarcate) on univariate gaussian.

$$\int (x|M,E) = \frac{1}{\sqrt{2\pi(2)^2}}$$

co variance dxd

Information Theory

Mahdi Roozbahani Georgia Tech

Outline

Motivation

- Entropy
- Conditional Entropy and Mutual Information
- Cross-Entropy and KL-Divergence

Uncertainty and Information

Information is processed data whereas **knowledge** is **information** that is modeled to be useful.

You need information to be able to get knowledge

• information ≠ knowledge
 Concerned with abstract possibilities, not their meaning

Created by Bruce Campbell: "DIKA – ancient Chinese saying for get up and DO! Data-Information-Knowledge-Action."

Uncertainty and Information

Which day is more uncertain?

How do we quantify uncertainty?

High entropy correlates to high information or the more uncertain

$$P(cat) = 1$$
 $P(cat) = 1$ $P(cat) = 1$ $P(cat) = \frac{3}{4}$ $P(dog) = \frac{1}{4}$

$$\overline{I}(X) = \log \frac{1}{P(X)}$$

$$\overline{I}(\alpha t) = \log_2 1 = 0$$

$$P(cae) = \frac{3}{4}$$
 $P(dog) = \frac{1}{4}$ $I(cat) = \log_2 \frac{4}{3}$ $I(dog) = \log_2 \frac{2}{3} = 2$ bits of information information

$$E[aw] = \sum P(x)g(x) \Rightarrow E[I(x)] = H(x) = \sum P(x)I(x)$$
Entropy

$$H(x) = \frac{3}{4} \log_2 \frac{4}{3} + \frac{1}{4} \log_2^4$$

Pive
$$\mathcal{E}_1 \circ \circ \cdots \circ \mathcal{I} = 2 \times 1 + \cdots$$
Information

Let X be a random variable with distribution p(x)

$$I(X) = \log(\frac{1}{p(x)})$$

Have you heard a picture is worth 1000 words?

Information obtained by random word from a 100,000 word vocabulary:

$$I(word) = \log_{2} \left(\frac{1}{p(x)}\right) = \log_{2} \left(\frac{1}{1/100000}\right) = 16.61 \ bits$$

A 1000 word document from same source:

$$I(document) = 1000 \times I(word) = 16610$$

A 640*480 pixel, 16-greyscale video picture (each pixel has 16 bits information):

Plane bit in a pixel) =
$$\frac{1}{16}$$

$$I(Picture) = \log\left(\frac{1}{1/16^{640*480}}\right) \neq 1228800$$

$$I(X = one \ bit) = ? \log_2^{16}$$
 A picture is worth (a lot more than) 1000 words!

- Suppose we observe a sequence of events:
 - Coin tosses
 - Words in a language
 - notes in a song
 - etc.
- We want to record the sequence of events in the smallest possible space.
- ► In other words we want the shortest representation which preserves all information.
- Another way to think about this: How much information does the sequence of events actually contain?

To be concrete, consider the problem of recording coin tosses in

unary.

T, T, T, T, H

 $I(\tau) < I(H)$

Approach 1:

Н	T	
0	00	

00, 00, 00, 00, 0

We used 9 characters

Which one has a higher probability: T or H?

Which one should carry more information: T or H?

To be concrete, consider the problem of recording coin tosses in unary.

Approach 2:

Н	T	
00	0	

0, 0, 0, 0, 00

We used 6 characters

- Frequently occurring events should have short encodings
- We see this in english with words such as "a", "the", "and", etc.
- We want to maximise the information-per-character
- seeing common events provides little information
- seeing uncommon events provides a lot of information

Information Theory

- Information theory is a mathematical framework which addresses questions like:
 - ► How much information does a random variable carry about?
 - ► How efficient is a hypothetical code, given the statistics of the random variable?
 - ► How much better or worse would another code do?
 - ► Is the information carried by different random variables complementary or redundant?

Claude Shannon

Outline

- Motivation
- Entropy
- Conditional Entropy and Mutual Information
- Cross-Entropy and KL-Divergence

Entropy

• Entropy H(Y) of a random variable Y

$$H(y) = \sum P(y) \log_2 P(y)^{-1}$$

= $-\sum P(y) \log_2 P(y)$

$$H(Y) = -\sum_{k=1}^{K} P(y = k) \log_2 P(y = k)$$

- H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)
- Information theory:

Most efficient code assigns $-\log_2 P(Y=k)$ bits to encode the message Y=k, So, expected number of bits to code one random Y is:

$$-\sum_{k=1}^{K} P(y=k) \log_2 P(y=k)$$

Entropy

S is a sample of coin flips

$$H(S) = -P(H) \log_2 P(H) - P(T) \log_2 P(T)$$

- p_+ is the proportion of heads in S
- ullet p_- is the proportion of tails in S
- Entropy measure the uncertainty of S

$$H(S) \equiv \bigcirc p_+ \log_2 p_+ \bigcirc p_- \log_2 p_-$$

Entropy Computation: An Example

$$H(S) \equiv -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-}$$

head	0	
tail	6	

$$P(h) = 0/6 = 0$$
 $P(t) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

head	1	
tail	5	

$$P(h) = 1/6$$
 $P(t) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

$$P(h) = 2/6$$
 $P(t) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Properties of Entropy

Actual dog
$$\rightarrow [1]$$
 0 0] [0.8 0.1 0.1] $\Rightarrow [1]$ 0 0]

Cut $\rightarrow [0]$ 1 0]

 $fish_{\sim}[0]$ 0 1] $H(P)$ = $\sum_{i} p_{i} \cdot \log \frac{1}{p_{i}}$

- 1. Non-negative: $H(P) \ge 0$ $\mathbb{Z}_{P_i} \left(\log \frac{1}{P_i} \log \frac{1}{Q_i} \right) < 0$
- 2. Invariant wrt permutation of its inputs: $\sum_{\rho_i \mid \rho_j} \left(\frac{q_i}{\rho_i} \right) < O$ $H(p_1, p_2, \dots, p_k) = H(p_{\tau(1)}, p_{\tau(2)}, \dots, p_{\tau(k)})$
- 3. For any *other* probability distribution $\{q_1, q_2, \dots, q_k\}$:

$$H(P) = \sum_{i} p_{i} \cdot \log \frac{1}{p_{i}} < \sum_{i} p_{i} \cdot \log \frac{1}{q_{i}}$$

The with equality iff $p_{i} = 1/k$ with equality $p_{i} = 1/k$

- 4. $H(P) \leq \log k$, with equality iff $p_i = 1/k \ \forall i$
- 5. The further P is from uniform, the lower the entropy.

Outline

- Motivation
- Entropy
- Conditional Entropy and Mutual Information
- Cross-Entropy and KL-Divergence

Joint Entropy

Temperature

huMidity

	cold	mild	ho
low	(0.1)	0.4	0.
high	0.2	0.1	(0.:
	0.0		

log (T=cold) = log2 0.3 P(T = cold) = 0.3 P(T = mild) = 0.5 P(T = hot) = 0.2

• $H(T) = H(0.3, 0.5, 0.2) = 1.48548 \ H = 0.3 \log_2 \frac{1}{0.3} + 0.5 \log_2 \frac{1}{0.5} + 0.2 \log_2 \frac{1}{0.5}$

0.6

•
$$H(M) = H(0.6, 0.4) = 0.970951$$

•
$$H(T) + H(M) = 2.456431$$

• Joint Entropy: consider the space of (t, m) events H(T, M) =

$$\sum_{t,m} P(T=t,M=m) \cdot \log \frac{1}{P(T=t,M=m)}$$

$$H(0.1,0.4,0.1,0.2,0.1,0.1) = 2.32193$$

$$0.1 \log_2 \frac{1}{0.7} + - - + 0.1 \log_2 \frac{1}{0.7}$$

Notice that $H(T, M) \leqslant H(T) + H(M)$!!!

$$H(T,M) = H(T|M) + H(M) = H(M|T) + H(T)$$

Conditional Entropy

ZPWga)

average conditional Entropy

$$\frac{1}{H(Y|X)} = \sum_{x \in X} p(x)H(Y|X=x) = \sum_{x \in X, y \in Y} p(x,y)\log \frac{p(x)}{p(x,y)}$$

$$P(T=t|M=m)$$

	cold	mild	hot			
low	1/6	4/6	(1/6)	1.0	, entroly	
high	2/4	(1/4)	1/4	1.0	corditional entroly	. 0 (1
				Orchade	$= 0.6 \times 1.25163$	+ O. 9 x
ronv.				O ³		1.5

Conditional Entropy:

- $\bullet (H(T|M = low) = H(1/6, 4/6, 1/6) = 1.25163$
- H(T|M = high) = H(2/4, 1/4, 1/4) = 1.5
- Average Conditional Entropy (aka equivocation):

$$H(T/M) = \sum_{m} P(M = m) \cdot H(T|M = m) =$$

0.6 · $H(T|M = low) + 0.4 \cdot H(T|M = high) = 1.350978$

Conditional Entropy

$$P(M=m|T=t)$$

	cold	mild	hot
low	1/3	4/5	1/2
high	2/3	1/5	1/2
	1.0	1.0	1.0

Conditional Entropy:

- H(M|T = cold) = H(1/3, 2/3) = 0.918296
- H(M|T = mild) = H(4/5, 1/5) = 0.721928
- H(M|T = hot) = H(1/2, 1/2) = 1.0
- Average Conditional Entropy (aka Equivocation): $H(M/T) = \sum_t P(T=t) \cdot H(M|T=t) = 0.3 \cdot H(M|T=cold) + 0.5 \cdot H(M|T=mild) + 0.2 \cdot H(M|T=hot) = 0.8364528$

Conditional Entropy

• Conditional entropy H(Y|X) of a random variable Y given X_i

Discrete random variables:
$$H(Y|X) = \sum_{x \in X} p(x_i) H(Y|X = x_i) = \sum_{x \in X, y \in Y} p(x_i, y_i) \log \frac{p(x_i)}{p(x_i, y_i)}$$
 Continuous:
$$H(Y|X) = -\int \left(\sum_{k=1}^K P(y = k|x_i) \log_2 P(y = k)\right) p(x_i) dx_i$$

Mutual Information

• Mutual information: quantify the reduction in uncerntainty in Y after seeing feature X_i

$$I(X_i, Y) = H(Y) - H(Y|X_i)$$

- The more the reduction in entropy, the more informative a feature.
- Mutual information is symmetric

•
$$I(X_i, Y) = I(Y, X_i) = H(X_i) - H(X_i|Y)$$

•
$$I(Y|X) = \int \sum_{k}^{K} p(x_i, y = k) \log_2 \frac{p(x_i, y = k)}{p(x_i)p(y = k)} dx_i$$

$$\bullet = \int \sum_{k}^{K} p(x_i|y=k) p(y=k) \log_2 \frac{p(x_i|y=k)}{p(x_i)} dx_i$$

Properties of Mutual Information

$$I(X,Y) = H(X) - H(X|Y)$$

$$= \sum_{x} P(x) \cdot \log \frac{1}{P(x)} - \sum_{x,y} P(x,y) \cdot \log \frac{1}{P(x|y)}$$

$$= \sum_{x,y} P(x,y) \cdot \log \frac{P(x|y)}{P(x)}$$

$$= \sum_{x,y} P(x,y) \cdot \log \frac{P(x,y)}{P(x)P(y)}$$

Properties of Average Mutual Information:

- Symmetric
- Non-negative
- Zero iff *X*, *Y* independent

CE and MI: Visual Illustration

$$H(x,y) = H(x) + H(y|x)$$

Outline

- Motivation
- Entropy
- Conditional Entropy and Mutual Information
- Cross-Entropy and KL-Divergence

Let's work on this subject in our Optimization lecture

actual Cat [1 0 0] Cross Entropy

predicted cat [0.8 0.1 0.1]

Cross Entropy: The expected number of bits when a wrong distribution Q is assumed while the data actually follows a

distribution P

on Q is assumed while the data actually follows a on P

$$C \in H(p,q) = -\sum_{x \in \mathcal{X}} p(x) \log q(x) = H(P) + KL[P][Q]$$

$$\log_{OSS} \int_{UNCKU(p)} \int_{S} \int_{Reed} \int_{To \ VNinim(Re \ this)} E[g(x)] = \sum_{S} P(x) \log \frac{1}{g(x)}$$
ecause:

This is because:

$$egin{aligned} H(p,q) &= \mathrm{E}_p[l_i] = \mathrm{E}_p\left[\lograc{1}{q(x_i)}
ight] &= \mathrm{E}_p[\lograc{1}{q(x_i)}
ight] \ H(p,q) &= \sum_{x_i} p(x_i)\,\lograc{1}{q(x_i)} \ H(p,q) &= -\sum_{x} p(x)\,\log q(x). \end{aligned}$$

Kullback-Leibler Divergence

Another useful information theoretic quantity measures the difference between two distributions.

$$\begin{aligned} \mathbf{KL}[P(S)\|Q(S)] &= \sum_{s} P(s) \log \frac{P(s)}{Q(s)} \\ &= \underbrace{\sum_{s} P(s) \log \frac{1}{Q(s)}}_{\mathbf{Cross\ entropy}} - \mathbf{H}[P] = H(P,Q) - H(P) \end{aligned}$$
 KL Divergence is

Excess cost in bits paid by encoding according to Q instead of P.

a **KIND OF**distance
measurement

$$-\mathbf{KL}[P\|Q] = \sum_{s} P(s) \log \frac{Q(s)}{P(s)}$$
 log function is concave or convex?
$$\sum_{s} P(s) \log \frac{Q(s)}{P(s)} \leq \log \sum_{s} P(s) \frac{Q(s)}{P(s)} \quad \underline{\text{By Jensen Inequality}}$$

$$= \log \sum_{s} Q(s) = \log 1 = 0$$

So $KL[P||Q] \ge 0$. Equality iff P = Q

When P = Q, KL[P||Q] = 0

Take-Home Messages

Entropy

- ► A measure for uncertainty
- Why it is defined in this way (optimal coding)
- ► Its properties

Joint Entropy, Conditional Entropy, Mutual Information

- ► The physical intuitions behind their definitions
- ► The relationships between them

Cross Entropy, KL Divergence

- ► The physical intuitions behind them
- ► The relationships between entropy, cross-entropy, and KL divergence