

FUNDAMENTAL PRINCIPLES OF PHYSICAL LAYER

- ★ One of the major functions of the physical layer is to move data in the form of electromagnetic signals across a transmission medium.
- ★ The data usable to a person or an application are not in a form that can be transmitted over a network.
- ★ For example, an image must first be changed to a form that transmission media can accept.
- ★ To be transmitted, data must be transformed to electromagnetic signals.

SIGNAL

★ It is a function that represents the variation of a physical quantity with respect to time.

PHYSICAL LAYER MEDIA

Electrical Signals
Copper cable

PHYSICAL LAYER MEDIA

Light pulses Fibre Optic cable

PHYSICAL LAYER MEDIA

Microwave signals
Wireless

COMPARISON OF VARIOUS PHYSICAL MEDIA

Media	Physical Components	Signal
Copper Cable (Wired)	·UTP/STP ·Coaxial ·Connectors ·NICs ·Ports/·Interfaces	Electromagnetic Signal
Fiber Optic Cable (Wired)	·Single-mode Fiber ·Multimode Fiber ·Connectors ·NICs and Interfaces ·Lasers and LEDs	·A light pulse equals 1. ·No light pulse is 0.
Wireless Media	·Access Points ·NICs ·Radio ·Antennae	·Radio waves

WIRED MEDIA

- ★ Copper cable (Ethernet cable)
 - Unshielded Twisted Pair (UTP).
 - Shielded Twisted Pair (STP).

COPPER MEDIA - ETHERNET

COPPER MEDIA - ETHERNET

Unshielded Twisted Pair (UTP)
Ethernet Cable

Shielded Twisted Pair (STP) Ethernet cable

DATA LINK LAYER

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

It is responsible for moving data(frames) from one node to another node.

SERVICES PROVIDED BY DATA LINK LAYER

- ★ Framing.
- ★ Physical Addressing.
- ★ Flow Control.
- ★ Error Control.
- ★ Access Control.

- ★ The data link layer needs to pack bits into frames, so that each frame is distinguishable from another.
- ★ Our postal system practices a type of framing.
- ★ The simple act of inserting a letter into an envelope separates one piece of information from another; the envelope serves as the delimiter.

PHYSICAL ADDRESSING

- ★ A Frame is the encapsulation of the header and trailer information with the packet.
- ★ In the header, the source and the destination MAC address are dealt.

FLOW CONTROL

- ★ Flow Control is one of the duties of data link control sublayer.
- ★ The flow control in data link layer is end to end flow control.
- ★ Speed matching mechanism.
- ★ Flow control coordinates the amount of data that can be sent before receiving an acknowledgment.

ERROR CONTROL

- ★ Error Detection.
- ★ Error Correction.

DATA LINK LAYER

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

DATA LINK SUBLAYERS

Logical Link Control (LLC) or Data Link Control (DLC) Sublayer

- ★ Handles communication between upper and lower layers.
- ★ Takes the network protocol data and adds control information to help deliver the packet to the destination. (Flow control)

MAC Sublayer

- ★ Constitutes the lower sublayer of the data link layer.
- ★ Implemented by hardware, typically in the computer NIC.
- ★ Two primary responsibilities:
 - ★ Data encapsulation
 - ★ Media access control

MAC SUBLAYER

Data encapsulation

- ★ Frame assembly before transmission and frame disassembly upon reception of a frame.
- ★ MAC layer adds a header and trailer to the network layer PDU.

Provides three primary functions:

- ★ Framing.
- ★ Physical Addressing or MAC Addressing.
- ★ Error control.

MAC SUBLAYER

- ★ Responsible for the placement of frames on the media and the removal of frames from the media
- ★ Communicates directly with the physical layer.

Service	Sublayer
Flow Control	LLC or DLC
Framing	MAC
Physical Addressing	MAC
Error Control	MAC
Access Control	MAC

Bits flow between adaptors, frames between hosts

ANY PROBLEM HERE...

ANY PROBLEM HERE ...

FRAMING ERROR

Misunderstanding

FRAMING ERROR

- ★ Framing in the data link layer separates a frame distinguishable from another frame.
- ★ Frame = Header + Network Layer PDU + Trailer.
- ★ In packet switched networks, the block of data called frames are exchanged between nodes, not bits streams.

- ★ When node A wishes to transmit a frame to node B, it tells its adaptor to transmit a frame from the node's memory.
- ★ This results in a sequence of bits being sent over the link.

- ★ When node A wishes to transmit a frame to node B, it tells its adaptor to transmit a frame from the node's memory.
- ★ This results in a sequence of bits being sent over the link.
- ★ The adaptor on node B then collects together the sequence of bits arriving on the link and deposits the corresponding frame in B's memory.

Types of framing

- 1. Fixed-size framing.
- 2. Variable-size framing.

Types of framing

Fixed-size framing.

- ★ Here the size of the frame is fixed and so the frame length acts as delimiter of the frame.
- ★ Consequently, it does not require additional boundary bits to identify the start and end of the frame.

2. Variable-size framing.

★ Here, the size of each frame to be transmitted may be different.

VARIOUS FRAMING APPROACHES

BIT ORIENTED APPROACH

- ★ It simply views the frame as a collection of bits.
- ★ In bit-oriented framing, data is transmitted as a sequence of bits that can be interpreted in the upper layers both as text as well as multimedia data.

BYTE ORIENTED APPROACH

- ★ One of the oldest approaches to framing.
- ★ Here each frame is viewed as a collection of bytes (characters) rather than bits.

BYTE ORIENTED PROTOCOLS

- ★ BISYNC <-> Binary Synchronous Communication Protocol.
- ★ DDCMP <-> Digital Data Communication Message Protocol.
- ★ PPP <-> Point-to-Point Protocol

CLOCK BASED FRAMING

- ★ The third approach to framing is the clock based framing.
- ★ Example: SONET <-> Synchronous Optical Network.

HDLC

- ★ The Synchronous Data Link Control (SDLC) protocol developed by IBM is an example of a bit-oriented protocol.
- ★ SDLC was later standardized by the ISO as the High-Level Data Link Control (HDLC) protocol.
- ★ Bit Oriented Protocol.

HDLC - FRAME FORMAT

HDLC - FRAME FORMAT

Beginning and Ending Sequences: 01111110

This sequence is also transmitted during any times that the link is idle so that the sender and receiver can keep their clocks synchronized.

Header: Address and Control Field.

Body: Payload (Variable size)

CRC: Cyclic Redundancy check - Error Detection

Types of HDLC Frames

The type of frame is determined by the control field.

I-Frame: Information Frame.

S-Frame: Supervisory Frame.

U-Frame: Un-numbered Frame.

I-Frame	Ist bit is 0
S-Frame	1st two bits is 10
U-Frame	1st two bits is 11

PROBLEM HERE...

PROBLEM

BIT STUFFING

