Flow Join

Adaptive Skew Handling for Distributed Joins

UTN - CloudDB Project SS24
Irene Santana Martin, Tim Leonard, Luca Heller

Agenda

Problematic
What problem are we trying to solve?

3 Implementation

How does our solution look like?

5 Conclusion

Introduction

What is a Flow-Join? What is our task?

Evaluation

What are our results? What do they show?

The Problem of Skewed Data

The Problem of Skewed Data

Flow Join (Rödiger W. et al.)

Source [1], Fig. 4

Source [1], Fig. 5

SpaceSaving Algorithm (Metwally A. et al.)

Implementation

Comparison Data Structures

Comparison Data Structures

Performance: Python vs. C++

Results

Results

Comparison Hash Join vs Flow Join

Number of tuples sent

Results

Comparison Hash Join vs Flow Join

Conclusion

Thank you for your attention!

A&Q

Resources

[1] Roediger W. et al. Flow-Join: Adaptive Skew Handling for Distributed Joins over High-Speed Networks. 2016

[2] Metwally A. et al. Efficient Computation of Frequent and Top-k Elements in Data Streams. In ICDT, pages 398-412, 2005