Michael Dang - 16257750

MATH434

HW5

1.

a) $\int_{1+x^{2}}^{1} dx$ a) $dx = \cos\theta \cos\theta - \sin\theta(-\sin\theta)d\theta = \cos^{2}\theta + \sin^{4}\theta d\theta = \frac{1}{\cos^{4}\theta} d\theta$ $\cos^{2}\theta - \cos^{2}\theta - \cos^{2}\theta - \cos^{2}\theta$ $\cos^{2}\theta - \cos^{2}\theta - \cos^{2}\theta - \cos^{2}\theta$ $\cos^{2}\theta - \cos^{2}\theta - \cos^{2}\theta$ $\cos^{4}\theta - \cos^{4}\theta - \cos^{4}\theta$ $\cos^{4}\theta - \cos^{4}\theta - \cos^{4}\theta - \cos^{4}\theta$ $\cos^{4}\theta - \cos^{4}\theta - \cos^{4}\theta - \cos^{4}\theta$ $\cos^{4}\theta - \cos^{4}\theta - \cos^{4}\theta - \cos^{4}\theta - \cos^{4}\theta$ $\cos^{4}\theta - \cos^{4}\theta -$

b. Infinite geometric series $S = 1 + C + C^{2} + ... + C^{k} + ... = \sum_{k=0}^{\infty} C^{k} \cdot \frac{1}{1 + (-x^{2})^{2}} + (-x^{2})^{3} + ...$ Consider: $\frac{1}{1 + x^{2}} = \frac{1}{1 - (-x^{2})} + (-x^{2})^{2} + (-x^{2})^{3} + ...$ $= 1 - x^{2} + x^{4} - x^{6} + x^{8} + ...$ $= \sum_{k=0}^{\infty} (-1)^{k} x^{2k}$ Hence, $\int_{0}^{1} \frac{1}{1 + x^{2}} dx = \int_{0}^{1} (1 - x^{2} + x^{4} - x^{6} + x^{8} + ...) dx$ $= \tan^{-1}(1) - \tan^{-1}(0) = 1 - \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + ...$ $= \int_{0}^{\infty} \frac{1}{5} + \frac{1}{3} + \frac{1}{3} + ...$ $= \int_{0}^{\infty} \frac{1}{5} + \frac{1}{3} + \frac{1}{3} + ...$ $= \int_{0}^{\infty} \frac{1}{5} + \frac{1}{3} + \frac{1}{3} + ...$

c) From a)
$$\int_{-1}^{1} \frac{1}{4x} dx = \frac{\pi}{4}$$

b) $tan^{1}(1) = \frac{\pi}{4} = \frac{1}{3} + \frac{1}{5} = \frac{1}{7} + \cdots$

=) $\pi = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots\right)$

= $4\left(\frac{2\pi}{2}(-1)^{k+1} - \frac{1}{2k-1}\right)$

a.

Open with
$$\star$$
a) $f(x) = \begin{cases} 1 & 0 < x < \frac{n}{2}, \\ 0 & \frac{n}{12} < 1 \times 1 < n, \\ -\frac{n}{12} < x < 0. \end{cases}$

The Fourier series is given by
$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2n}{L}nx\right) + b_n \sin\left(\frac{2n}{L}nx\right)$$
Since L is the 'period of the function to be approximated.

a) $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\frac{2n}{L}x) + b_n \sin(\frac{2n}{L}nx) + dere$, L = $\frac{n}{12}$

$$a_n = \frac{2}{L} \int_0^1 f(x) \cos\left(\frac{2nL}{L}x\right) dx$$

$$= \frac{2}{L} \int_0^1 f(x) \cos(\frac{2nL}{L}x) dx$$

$$= \frac{2}{L} \int_0^1 f(x) \cos(\frac{2nL}{L}x) dx + \int_0^{n/L} \cos(\frac{2nL}{L}x) dx + \int_{n/L}^n O\cos(\frac{2nL}{L}x) dx$$

$$= \frac{2}{L} \int_0^1 f(x) \sin(\frac{2nL}{L}x) dx + \int_0^{n/L} f(x) \sin(\frac{2nL}{L}x) dx$$

$$= \frac{2}{L} \int_0^1 f(x) \sin(\frac{2nL}{L}x) dx + \int_0^{n/L} f(x) \sin(\frac{2nL}{L}x) dx$$

$$= \frac{2}{L} \int_0^1 f(x) \cos(\frac{2nL}{L}x) dx$$

$$= \frac{2}{L} \int_0^1 f(x) \sin(\frac{2nL}{L}x) dx$$

$$= \frac{2}{L} \int_0^1 f(x) \cos(\frac{2nL}{L}x) dx$$

$$= \frac{2}{L} \int_0^1 f(x) \cos(\frac{2nL$$

c.

```
Fourier series f(x) = \sum_{n=1}^{\infty} \frac{1}{n\pi} (2 - (-1)^n - (-1)^{-n}) \sin(4nx)
= 5 f(x = \sqrt[n]{2}) = \sum_{n=1}^{\infty} \frac{1}{n\pi} [2 - (-1)^n - (-1)^{-n}] \sin(2n\pi)
= 0
```

d.

e.

f.

As the n increase the Fourier series converge to 0.

I don't know it this you are looking for. I'm thinking you want to fit the Fourier series into the piecewise function. In that case, as n increase the Fourier series will get closer to the piecewise function, however, no matter how much it increases, there still appear the overshooting phenomenon.

```
f(x) = 1 cosx1 ; -n(x(n
The Fourier series is given by (L=n)

f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2n}{L}nx\right) + b_n \sin\left(\frac{2n}{L}nx\right)
                           -\cos(x)dx + \int_{-n/2}^{n/2} \cos(x)dx + \int_{n/2}^{n} -\cos(x)dx
              \int \left[ -\sin(x) \right]_{-n}^{-n/2} + \left[ \sin(x) \right]_{-n/2}^{n/2} + \left[ -\sin(x) \right]_{-n/2}^{n/2}
 Since f(x) is an even function, hence the term by >0
          1 JT leos(2) leos(noc) de
                  (T |cos(x) | cos(nx)dx
                \int_{-\pi/2}^{\pi/2} 2\cos(nx)\cos(x)dx + \int_{\pi/2}^{\pi} 2\cos(nx)[-\cos(x)]dx
               (π/2 [cos(n+1)x + cos(n-1)x]dx = 

π [cos(n+1)x + cos(n-1)x]dx
              \left\{ \frac{\left(\sin(n+1)x + \sin(n-1)x\right)^{\frac{\pi}{2}}}{n+1} - \frac{\left(\sin(n+1)x + \sin(n-1)x\right)^{\frac{\pi}{2}}}{n+1} \right\} = \frac{1}{n+1}
               sin(n+1). T/2 sin(n-1). T/2 + sin(n+1). T/2
              cos(nt/2) cos(nt/2)
         \frac{-4}{\pi (n^2-1)} \cos\left(\frac{n\pi}{2}\right)
```

Now,
$$a_1 = \frac{1}{\pi U} \int_{-\pi}^{\pi} f(x) \cos(x) dx$$

$$= \frac{2}{\pi U} \int_{0}^{\pi} |\cos(x)| \cos(x) dx$$

$$= \frac{2}{\pi U} \int_{0}^{\pi U/2} |\cos^{2}(x) dx| - \int_{\pi U/2}^{\pi U} |\cos^{2}(x) dx|$$

$$= \frac{2}{\pi U} \int_{0}^{\pi U/2} (\frac{1 + \cos^{2}(x)}{2}) dx - \int_{\pi U/2}^{\pi U/2} (\frac{1 + \cos^{2}(x)}{2}) dx$$

$$= \frac{1}{\pi U} \left[\frac{1 + \sin^{2}(x)}{2} \right]_{0}^{\pi U/2} - \left[\frac{1 + \cos^{2}(x)}{2} \right]_{0}^{\pi U/2}$$

$$= \frac{1}{\pi U} \left[\frac{\pi}{2} - \pi + \frac{\pi}{2} \right]_{0}^{\pi U/2} - \left[\frac{1 + \sin^{2}(x)}{2} \right]_{0}^{\pi U/2}$$

$$= \frac{1}{\pi U} \left[\frac{\pi}{2} - \pi + \frac{\pi}{2} \right]_{0}^{\pi U/2}$$

$$= \frac{1}{\pi U} \left[\frac{\pi}{2} - \pi + \frac{\pi}{2} \right]_{0}^{\pi U/2}$$

$$= \frac{1}{\pi U} \left[\frac{\pi}{2} - \frac{\cos^{2}(x)}{2} + \frac{\cos^{2}(x$$

a.

Given:
$$\cosh x = \frac{1}{2} (e^{x} + e^{-x})$$
 "Hyberbolic Junction"

$$S(x) = \cosh x - \pi \le c \le \pi , f(x + 2\pi) = f(x).$$
a)
Since $S(x)$ is a even function => $b_n = 0$

$$a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n\pi}{L} \cdot x\right) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \cosh(x) \cos(nx) dx$$
Apply 1.8.?


```
azcos22 + azcos3x + ...
          2 sinh(Tt)
                         Σ [ 2 sinh(π) Σ (-1) ~ 1
b.
     For any values of x & C-TT, TT) the Fourier sories will
    converge
c.
                                            n(1-in)
                                           x(1-in) - TT
```

$$= \frac{1}{2\pi} \sinh(2\pi)$$

$$= \sum_{n=-\infty}^{\infty} \frac{1}{1+n^2} = \frac{\pi}{2} \frac{\sinh(\pi)}{\sinh^2(\pi)}$$
Note: $\frac{\infty}{1+n^2} = \frac{1}{1+0^2} + \frac{\infty}{1+n^2}$

$$= \sum_{n=1}^{\infty} \frac{1}{1+n^2} + 1 = \frac{\pi}{2} \frac{\sinh(2\pi)}{\sinh^2(\pi)}$$

$$= \sum_{n=1}^{\infty} \frac{1}{1+n^2} = \frac{1}{2} \left(\frac{\pi}{2} \frac{\sinh(2\pi)}{\sinh^2(\pi)} - 1 \right)$$

$$= \sum_{n=1}^{\infty} \frac{1}{1+n^2} = \frac{1}{2} \left(\frac{\pi}{2} \frac{\sinh(2\pi)}{\sinh^2(\pi)} - 1 \right)$$

a.

6.
$$\frac{\partial u}{\partial t} = \frac{\delta^{2}u}{\delta x^{2}}, -\omega < x < \omega, t > 0 \quad \text{"Heat eq"}$$

$$u(x,0) = \begin{cases} 100 & |x| < 1 \\ 0 & |x| > 1 \end{cases}$$
Fourier graneform
$$f(d)(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} u(x,t) e^{i\omega t} dx$$

$$= \frac{1}{2\pi} \int_{-1}^{0} t00 e^{i\omega x} dx$$

$$= \frac{50}{\pi} \left[\frac{e^{i\omega x}}{i\omega} \right]_{-1}^{0}$$

$$= \frac{50}{\pi} \left[\frac{1}{i\omega} - \frac{e^{-i\omega}}{i\omega} \right]$$

$$= \frac{50}{\pi} \left[\frac{1}{i\omega} - \frac{e^{-i\omega}}{i\omega} \right]$$

D		(- maria de la como		
Proof:	FIF(x-B)	(w) = eine	F(w) F(x-B)eiwx	
Consider	FIFCX-B	33 cm) = 100	F(x-B)eiwx	7
- ×		-00	A SECTION OF THE SECT	
F	2-B)eiwx	Eimp eimp de		
-00	- M			-
= ewp	f Flx-B) eiw(z-B) do	•	
	-00			
det in	2-B =>	dw=dx	∫ [∞] f(u) e ^{iw u}	-
=) F'{	F(z-B)31	(w) = eiws	f(n) ewa	du
		:	0	
		- eiwß	()	

	8
	Consider: $g(x) = \sin(\alpha x)$, $\alpha > 0$ f is an even function on 19. Hence,
	f is an even function on 13
	Hence,
	$\int_{-\infty}^{\infty} f(x) \sin(\alpha x) dx = \int_{-\infty}^{\infty} f(-x) \sin(-\alpha x) dx$
	-00 -00
*	$= -\int_{-\infty}^{\infty} f(x) \sin(\alpha x) dx$
-	- 00
	= O
	Now, $\widehat{f}(\alpha) = \int_{-\infty}^{\infty} f(x)e^{-i\alpha x} dx$ "Fuler"
	$= \frac{1}{2} \int f(x)e^{-x} dx$ =\text{"Euler"}
	$= \int_{-\infty}^{\infty} f(x) \cos(\alpha x) dx - i \int_{-\infty}^{\infty} f(x) \sin(\alpha x) dx$
	-00 -00
	· - (* f(=) - = (=) - =
	$-\int_{\infty}^{\infty} f(x) \cos(\alpha x) dx$
	The 1 - 0 (x) - 100 (x)
	Then, f + g(x) = 500 f(t).g(x-t)dt
)	$= \int_{-\infty}^{\infty} f(t), \sin(\alpha(x-t)) dt$
	= for fet)[sin(ax)cos(at)-cos(ax)sin(at)] dt

			,	,	00
	= 2m	sin(ax)	f(t)cos(at)d	t - (0s(0x))	f(t)sin(at)d
	= 2Ttsin(u	2). f(a) - coscaxi) x O	
=> f + g(x)= 2TLS	in (ax). J	(a)		