Etapa 2 – Arquitetura e Modelagem

Projeto: Sistema Embarcado de Identificação de Módulos Roubados via CAN

Autor: Arthur Franco Neto

2.1 Arquitetura do Sistema

O sistema será desenvolvido na plataforma **BitDogLab** (**Raspberry Pi Pico W**), integrando:

- MCP2515 (com transceiver CAN) para comunicação com o barramento CAN via SPI.
- **Display OLED 128x64** para interface visual.
- **LED RGB** para indicação de status.
- **Botões** para seleção de modos e interação.
- Buzzer para alertas sonoros.
- **Módulo SDCard** para armazenamento de whitelist, base VIN e logs.
- **Bluetooth** para interação com aplicativo móvel (App Inventor).
- Wi-Fi para sincronização com servidor remoto.

Dois modos operacionais serão implementados:

- 1. **Modo 1 Verificação Direta:** consulta módulos no CAN e compara Identificações com whitelist.
- 2. **Modo 2 Verificação por VIN:** recebe VIN, obtém lista esperada de módulos e verifica se IDs obtidos correspondem.

2.2 Pinagem e Conexões

Componente / Função	Pinos GPIO Pico W	Interface
MCP2515 (CAN)	16 (SPI0_MISO)	SPI0
	17 (SPIO_CS)	
	18 (SPI0_SCK)	
	19 (SPI0_MOSI)	
	20 (RESET/INT)	Controle
Display OLED 128x64	14 (I ² C0_SDA)	I ² C0
	15 (I ² C0_SCL)	
Botão 1	5	Digital IN
Botão 2	6	Digital IN
Buzzer	10	$PWM \ / \ OUT$
LED RGB	11 (R)	PWM / OUT
	12 (G)	$PWM \ / \ OUT$
	13 (B)	$PWM \ / \ OUT$
Bluetooth	UART / GPIOs a definir	UART/BLE

Wi-Fi Interno no Pico W 802.11b/g/n

2.3 Diagrama de Hardware

2.4 Blocos Funcionais

- 1. **Aquisição e Envio CAN** Recebe e envia quadros CAN.
- 2. **Processamento e Validação** Modo 1 (Whitelist) e Modo 2 (VIN).
- 3. **Interface do Usuário** OLED, botões, LED RGB, buzzer.
- 4. **Comunicação Externa** Bluetooth (App Inventor), Wi-Fi (servidor).
- 5. **Armazenamento Local** Whitelist, base VIN e logs no SDCard.

2.5 Fluxograma de Software

```
[Início]
Inicializa Periféricos (SPI CAN, I<sup>2</sup>C Display, GPIO LED/Botões, PWM Buzzer, UART
Bluetooth, Wi-Fi)
Carrega Whitelist/Base VIN do SDCard
Aguarda Seleção de Modo (Botão ou Bluetooth)
               — Modo 1 —
 Envia comandos CAN p/ ler IDs
 Recebe IDs e compara com Whitelist
 Atualiza Display, LED RGB, Buzzer
   ↓ OU
               — Modo 2 -
 Recebe VIN (Bluetooth)
 Obtém lista esperada (local/remota)
 Envia comandos CAN p/ ler IDs
 Compara com lista do VIN
 Atualiza Display, LED RGB, Buzzer
```

Envia resultados via Bluetooth

Se Wi-Fi ativo, sincroniza dados com servidor

↓

[Fim / Novo ciclo]