

WHAT IS CLAIMED IS:

1 1. A method of making nanoparticles of a copper/zinc (Cu/Zn) alloy comprising:

2 mounting one or more targets in a chamber;

3 vaporizing material from each of the one or more targets by subjecting each of the

4 one or more targets to a beam of laser energy to form a vapor; and

5 condensing the vapor to form the Cu/Zn alloy nanoparticles.

1 2. The method according to claim 1, wherein the one or more targets comprises a

3 single target comprising a Cu/Zn alloy.

1 3. The method according to claim 2, wherein the single target comprises a Cu/Zn

2 alloy wrapped in zinc.

1 4. The method according to claim 2, wherein the single target is a compact

2 comprising copper and zinc powders or a compact comprising brass and zinc powders.

1 5. The method according to claim 1, wherein the Cu/Zn alloy nanoparticles have an

2 average particle size of less than about 20 nm.

1 6. The method according to claim 1, wherein the laser is a YAG-Nd laser and

2 wherein the emission from the laser comprises the second harmonic at a wavelength of 532 nm.

1 7. The method according to claim 1, wherein the laser energy is pulsed.

1 8. The method according to claim 7, wherein the pulses of laser energy have a

2 duration of about 10 nanoseconds.

1 9. The method according to claim 7, wherein each pulse of laser energy delivers
2 from 20 - 40 mJ of energy to the target.

1 10. The method according to claim 1, wherein the nanoparticles are formed in the
2 presence of an electric field and wherein the nanoparticles comprise filaments, nanowires or
3 nanotubes.

1 11. The method according to claim 10, wherein the nanoparticles have an aspect ratio
2 greater than 1.

1 12. The method according to claim 10, wherein the electric field is applied at 30 to
2 300 V/cm.

1 13. The method according to claim 1, wherein the vaporization and condensing are
2 carried out in a diffusion cloud chamber.

1 14. The method according to claim 13, wherein the diffusion cloud chamber
2 comprises an upper portion and a lower portion and wherein the upper portion is maintained
3 at a lower temperature than the lower portion such that the nanoparticles condense in the
upper portion.

1 15. The method according to claim 1, wherein an inert carrier gas or a reactive
2 mixture comprising an inert carrier gas and a reactive gas is added to the chamber.

1 16. The method according to claim 15, wherein the inert carrier gas is helium or
2 argon.

1 17. The method according to claim 15, wherein the reactive mixture comprises an
2 inert gas and isobutene.

1 18. The method according to claim 15, wherein the reactive mixture comprises
2 oxygen and an inert gas and wherein the nanoparticles comprise one or more oxides of
3 copper and/or zinc.

1 19. The method according to claim 18, wherein the nanoparticles comprising one or
2 more oxides of copper and/or zinc are CuO, ZnO, or Cu₂O.

1 20. The method according to claim 1, wherein the nanoparticles comprise
2 intermetallic compounds of copper and zinc.

1 21. The method according to claim 20, wherein the intermetallic compounds comprise
2 Cu₅Zn₈ and/or CuZn₅.

1 22. The method according to claim 1, wherein the one or more targets comprises a
2 first target comprising copper and a second target comprising zinc, the method further
3 comprising steps of:

4 splitting the beam of laser energy into a first beam and a second beam of laser
5 energy;

6 subjecting the first target to the first beam of laser energy to form a first vapor;
7 subjecting the second target to the second beam of laser energy to form a second
8 vapor;

9 mixing the first and second vapors; and
10 condensing the mixed vapors to form the Cu/Zn alloy nanoparticles.

1 23. The method according to claim 1, wherein the beam of laser energy is moved
2 relative to the one or more targets.

1 24. The method according to claim 1, wherein pressure in the chamber is maintained
2 in the range of 10^{-3} to 10^4 torr during the vaporization step.

1 25. The method according to claim 1, further comprising maintaining a temperature
2 gradient in the chamber during the vaporization step.

1 26. The method according to claim 1, wherein pressure in the chamber during
2 vaporization is maintained above atmospheric pressure.

1 27. A method of making nanoparticles of copper (Cu) comprising:
2 mounting one or more targets in a chamber, at least one of the targets comprising
3 a first target comprising copper;
4 vaporizing material from at least one of the one or more targets by subjecting the
5 at least one target to a beam of laser energy to form a first vapor; and
6 condensing the first vapor to form the Cu nanoparticles.

1 28. The method according to claim 1, further comprising steps of:
2 optionally mixing the first vapor and a second vapor,
3 wherein the second vapor is an inert carrier gas or a reactive mixture comprising an
4 inert carrier gas and a reactive gas and the Cu nanoparticles comprise one or more oxides of
5 copper.

1 29. A method of making nanoparticles of zinc (Zn) comprising:
2 mounting one or more targets in a chamber, at least one of the targets comprising
3 a first target comprising zinc;
4 vaporizing material from at least one of the one or more targets by subjecting the
5 at least one target to a beam of laser energy to form a first vapor; and
6 condensing the first vapor to form the Zn nanoparticles.

1 30. The method according to claim 29, further comprising steps of:
2 optionally mixing the first vapor and a second vapor,
3 wherein the second vapor is an inert carrier gas or a reactive mixture comprising an
4 inert carrier gas and a reactive gas and the Zn nanoparticles comprise one or more oxides of
5 zinc.

1 31. A nanosized particle of Cu/Zn alloy having an average particle size of \leq 20 nm,
2 wherein the nanosized particle is condensed from a laser vaporized material.

1 32. The nanosized particle of claim 31, wherein the average particle size is less than
2 about 20 nm.

1 33. The nanosized particle of claim 31, wherein the nanosized particles comprise one
2 or more intermetallic compounds of copper and zinc.

1 34. The nanosized particle of claim 33, wherein the intermetallic compounds comprise
2 Cu_5Zn_8 and/or CuZn_5 .

1 35. A nanosized particle produced by condensation of material from a laser
2 vaporization of first and/or second targets, wherein a first target comprises copper and a
second target comprises zinc.

1 36. The nanosized particles of claim 35, wherein the nanosized particles comprise one
2 or more intermetallic compounds of copper and zinc.

1 37. The nanosized particle of claim 36, wherein the intermetallic compounds comprise
2 Cu_5Zn_8 and/or CuZn_5 .

1 38. A supported catalytic structure comprising:
2 a catalytic structure; and
3 a catalyst,
4 wherein the catalyst comprises a plurality of nanoparticles of Cu, Zn or Cu/Zn formed
5 by the process of laser vaporization with controlled condensation.