제조업을 위한 스마트 불량 검출 Vision AI 기반 기판 불량 검출 시스템

회사명: 또봇

대표: 이선우

직원: 김영수, 최범석, 한건희

목차

- 1. 목적 및 필요성
- 2. 회사 목표
- 3. 모델의 목표 성능
- 4. 소프트웨어 아키텍쳐
- 5. 데이터 구축
- 6. 모델 소개
- 7. 모델 성능 : 정확도, 처리량
- 8. 개선 사례
- 9. 기대 효과
- 10. 리스크 관리
- 11. 모델 동작 시연

목적및필요성

기판 불량품 검증 시스템 구축 인건비절약

회사목표

3. 실제 공정환경에 적용 가능한 AI 모델 처리 속도

모델의목표성능

성능지표

신뢰도

- 모델이 Class를 분류했을 때 얼마나 신뢰할 만한 정보인가
- 값이 1에 가까울 수록 믿을만한 정보이다.
- 목표 신뢰도: 80% 이상

분당처리량

- 모델이 1분 동안 처리할 수 있는 이미지 수
- 값이 높을수록 더 많은 데이터를 빠르게 처리할 수 있음을 의미
- 목표 1분 당 처리량 : 10개/분

재현율

• 실제 불량인 기판(TP+FN) 중에서 AI가 올바르게 찾아낸 비율

• 목표 재현율 : 80%

모델의목표성능

데이터구축

Class

Raspberry Pico - 전체 칩 모형

Hole - 칩 고정 핀

Bootsel - 부트로더

Oscillator - 신호 생성

USB - 연결 단자

Chipset - 데이터 관리

Data Type	JPG
Data Amount	1200장 (정상 600 / 비정상 600)
Labeling	Bounding Box
Labeling Unit per Data	5~9

데이터구축

Class

Broken Normal

Data Type	JPG
Data Amount	3720장 (증강 2520 / 실제 1200)
Labeling	Bounding Box
Labeling Unit per Data	1

모델소개

모델성능

기판 부품: 60%

불량 판별: 75%

신뢰도

분 당 12

처리량

기판 부품: 100%

불량 판별: 100%

재현율

개선 사례 - 구성요소 판별 모델

문제점 정상품 120, 불량품 120개로 DETA모델 학습시 train loss와 val loss가 약 30. + HOLE 신뢰도가 80% 이하. 바운딩 박스를 대략적으로 생성.	
문제점	문제 검증
모델	모델의 알고리즘을 알기 어려운 환경에서 데이터셋과 라 벨링 문제를 우선적으로 검토하여 원인을 분석
데이터셋	가로 방향의 데이터셋을 만들어서 DETA모델로 학습시 동일한 train loss, val loss가 똑같이 30으로 수렴
라벨링	라벨링을 정상,비정상으로 해서 학습시 train loss, val loss가 7로 수렴, 라벨링으로 인한 문제 확인

개선 사례 - 구성요소 판별 모델

문제점

정상품 120, 불량품 120개로 DETA모델 학습시 train loss와 val loss가 약 30. + HOLE 신뢰도가 80% 이하. 바운딩 박스를 대략적으로 생성.

개선 방향 1

개선 방향 2

데이터를 더 넣어서 바운딩 박스의 신뢰도 상승과 바운딩 박스의 생성 을 확인한다.

라벨링을 정상, 불량품으로 한 모델을 만들어서 개선해 나간다.

개선 방향 - 불량 판별 모델

문제점	증강 데이터와 실제 데이터를 혼합해서 Yolo 학습시 모델이 편향되어 학습됨
문제점	문제 검증
데이터셋	정상품 데이터와 불량품 데이터의 비율을 1:1 ~ 1:6을 실
양	험하였지만 모든 실험에서 편향성이 나타남
데이터셋	정상품 데이터셋에서 특정 방향의 데이터가 너무 많이 학
방향	습되어 모델이 오버피팅됨

개선 방향 - 불량 판별 모델

문제점

증강 데이터와 실제 데이터를 혼합해서 Yolo 학습시 모델이 편향되어 학습됨

개선 방향

증강 데이터가 아닌 **실제 데이터를 기반**으로 정상품과 불량품의 **비율을 1:2**로 학습 시킨다.

기대효과

품질 검사 자동화 생산성 향상

높은 검사 수준, 정확도 상향 고객 신뢰도 상승

> 인원 감축 **인건비 절감**

단기적으로 품질 검사 효율 증가

장기적으로 데이터 축적을 통해 제품 품질의 향상 불량률 감소

리스크 관리

예상되는 리스크

1. 훈련 데이터와 실제 생산 환경에서 들어오는 **데이터의 분포가 다를 경우 모델 성능이 저하**될 가능성

2. 모델이 학습 데이터에 과도하게 적응하여 **새로운 데이터에 대한** 일반화 성능이 낮아질 가능성

대응방안

1. 지속적인 **데이터 모니터링** 및 **재학습 시스템** 구축

2. 주기적으로 새로운 데이터로 모델을 평가 및 검증

모델동작시연