$$y = f'(a)(x - a) + f(a)$$

Normal

$$K_{\text{tangent}} * K_{\text{normal}} = -1$$

$$K_{\text{normal}} = -\frac{1}{f'(a)} = -\frac{1}{K_{\text{tangent}}}$$

Lokalt minimum

$$y$$
 y'
 y'
 y''
 y''
 y''

Lokalt maximum

Terasspunkt

Grader till radianer

$$radianer = grader * \frac{\pi}{180}$$

Radianer till grader

$$grader = radianer * \frac{180}{\pi}$$

Kedieregeln

$$y = f(g(x))$$
$$y' = f'(g(x)) * g'(x)$$

Produktregeln

$$y = f(x) * g(x)$$

$$y' = f'(x) * g(x) + f(x)g'(x)$$

Kvotregeln

$$y = \frac{f(x)}{g(x)}$$
$$y' = \frac{f'(x) * g(x) - f(x)g'(x)}{g(x)^2}$$

Derivation definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+b) - f(x)}{h}$$
$$= \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Rotlagar

$$\sqrt{a} * \sqrt{b} = \sqrt{ab}$$

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

$$\sqrt{a^2b} = |a|\sqrt{b}$$

$$\frac{\sqrt{a}}{b} = \frac{\sqrt{a}}{\sqrt{b^2}} = \sqrt{\frac{a}{b^2}}$$

Potensregler

$$\begin{split} a^x a^y &= a^{x+y} \\ a^x b^x &= (ab)^x \\ \frac{a^x}{a^y} &= a^{x-y} \\ \frac{a^x}{b^x} &= (\frac{a}{b})^x \\ (a^x)^y &= a^{xy} \\ a^{1/n} &= \sqrt[n]{a}, \quad (n \in \mathbb{Z}, n \ge 2) \end{split}$$

Logaritmer

$$\begin{array}{ll} \text{Potensform} & \text{Logaritmform} \\ a^x = b & x = \log_a b \\ 2^x = 32 & x = \log_2 32 \\ e^x = 3 & x = \ln 3 \end{array}$$

Logaritmregler

$$\log AB = \log A + \log B$$
$$\log \frac{A}{B} = \log A - \log B$$
$$\log A^{x} = x \log A$$

Intervall

$$[a,b] \Leftrightarrow a \le x \le b$$
$$[a,b] \Leftrightarrow (a,b] \Leftrightarrow a < x \le b$$
$$(a,b) \Leftrightarrow a < x < b$$

Avståndsformeln

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

Cirkelns ekvation

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

Funktioner

* Injektiv

För varje värde y finns det högst ett värde x så att f(x) = y

* Surjektiv

Varje värde y är nåbart av minst ett x $d\ddot{a}r f(x) = y$

* Bijektiv

Både injektiv och surjektiv

Inverterbar

En funktion är inverterbar endast om den är bijektiv

*
$$f^{-1}(f(x)) = x$$

* $D_f^{-1} = V_f$
* $V_f^{-1} = D_f$
Exempel:

$$y = ax + b$$

$$x = \frac{y - b}{a}$$

2. Byt från x till y

$$y = \frac{x - b}{a}$$

Gränsvärden

- 1. $\lim_{x \to \infty} \frac{3 4^x + 5x^3 \ln x^2}{7 \cdot 4^x 8x^{70} + \arctan x}$ Bryt ut snabbast växande term
- $2. \quad \lim_{x \to 0} \frac{\ln(1+2x)}{\sin 3x}$ Variabelbyte, standardgränsvärden
- 3. $\sqrt{4x^2-5x+2}-2x$ Förläng med konjugat
- 4. $\frac{x-4}{x^2-16}$ Faktoriesera
- 5. Variabelbyte alt. derivera täljare och nämnare var för sig (L'Hôpital)

| Hierarki då $x \to \infty$

Snabbare totalt sett till vänster, snabbare inom klassen högst upp. Klasserna är fakultet, exponential, polynomial och logaritmisk - i den ordningen.

$$e^{x} x^{2} + 2 (\ln x)^{3}$$

$$x! > 3^{\sqrt{x}} > x > \lg x$$

$$2^{x} \sqrt{x} \ln(\ln x)$$

Variabelbyte

$$\lim_{x \to 0} \frac{1}{x} = \begin{bmatrix} t = \frac{1}{x} & x = \frac{1}{t} \\ t \to \infty & \text{då } x \to 0 \end{bmatrix}$$
$$= \lim_{t \to \infty} t$$

Asymptot

* Lodrät

Då nämnaren blir 0.
$$\frac{1}{x^2 - 1}: \begin{array}{c} x = -1 \\ x = 1 \end{array}$$

* Vågrät

Då täljare är av samma eller lägre grad än nämnaren.

$$\lim_{x \to \infty} \frac{x+2}{x^2-1}$$

* Sned

Då täljaren är av högre grad än nämnaren. Polynomdividera

$$\frac{P}{Q} = K + \frac{R}{Q}$$

Notera att R är av lägre grad än $Q, \frac{R}{Q} \to 0$

Konjugat

Finns en lösning x = 1 + i finns även en lösning x = 1-i. Faktorer blir då (x-1-i)och (x-1+i). Produkten av faktorerna blir en reell faktor $(x^2 - 2x + 2)$ som kan användas vid vidare polynomdivision för att hitta resterande lösningar.

| Skissa graf

* Hitta asymptoter

Testa gränser. Om ett intervall är givet, testa detta, annars oändligheten; lim, $\lim_{x \to -\infty}$, $\lim_{x \to +0}$ och $\lim_{x \to -0}$. Testa även för lodräta, vågräta och sneda asymptoter. Skissa dessa

* Extremvärden

Lös f'(x) = 0. Kontrollera om minimum eller maximum via teckentabell eller f''. Sätt in lösta x i f(x) och skissera punkterna. Skissera även var funktionen skär origo

Standardderivator

andardderivator									
f(x)	f'(x)								
x^a	ax^{a-1}								
$\frac{1}{x}$	$-\frac{1}{x^2}$								
\sqrt{x}	$\frac{1}{2\sqrt{x}}$								
e^x	e^x								
a^x	$a^x \ln a$								
$\ln x$	$\frac{1}{x}$								
$\log_a x$	$\frac{1}{x}\log_a e = \frac{1}{x\ln a}$								
$\sin x$	$\cos x$								
$\cos x$	$-\sin x$								
$\tan x$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$								
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$ $(-1 < x < 1)$								
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$ $(-1 < x < 1)$								
$\arctan x$	$\frac{1}{1+x^2}$								

Trigonometriska samband

sin²
$$x + \cos^2 x = 1$$

 $\sin x = \sin(\pi - x)$
 $\cos x = \cos(-x)$
 $\sin(-x) = -\sin(x)$
 $\cos(\pi - x) = -\cos x$
 $\sin(\frac{\pi}{2} - x) = \cos x$
 $\cos(\frac{\pi}{2} - x) = \sin x$
 $\cos(2x) = 2\cos^2 x - 1$
 $\sin(2x) = 2\sin x \cos x$
 $\sin^2(\frac{x}{2}) = \frac{1 - \cos x}{2}$
 $\sin^2 x = \sin^2(\frac{2x}{2}) = \frac{1 - \cos(2x)}{2}$
 $\cos^2(\frac{x}{2}) = \frac{1 + \cos x}{2}$
 $\cos^2 x = \cos^2(\frac{2x}{2}) = \frac{1 + \cos(2x)}{2}$

Standardgränsvärden

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to \infty} \frac{\sin x}{x} = 0$$

$$\lim_{x \to \infty} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to \infty} \frac{\arcsin x}{x} = 0$$

$$\lim_{x \to \infty} \frac{\tan x}{x} = 1$$

$$\lim_{x \to \infty} \frac{\arctan x}{x} = 1$$

$$\lim_{x \to \infty} \frac{\arctan x}{x} = 0$$

$$\lim_{x \to \infty} \frac{\sin \frac{n}{x}}{x} = 1$$

$$\lim_{x \to \infty} \frac{\arcsin \frac{n}{x}}{\frac{n}{x}} = 1$$

$$\lim_{x \to \infty} \frac{\arctan \frac{n}{x}}{\frac{n}{x}} = 1$$

$$\lim_{x \to \infty} \frac{\arctan \frac{n}{x}}{\frac{n}{x}} = 1$$

$$\lim_{x \to \infty} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x \to \infty} \frac{\ln(1+x)}{x} = 0$$

$$\lim_{x \to 0} x^a \ln x = 0, a > 0$$

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$

$$\lim_{x \to \infty} (1 + x)^{1/x} = e$$

$$\lim_{x$$

 $\lim_{x \to \infty} e^{-x} = 0$

Standardvinklar

	Vinkel	0°	30°	45°	60°	90°	120°	135°	150°	180°
	v inkei	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
	\sin	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$
	cos	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$	$-\frac{\sqrt{1}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{4}}{2}$
	tan	$\sqrt{\frac{0}{4}}$	$\sqrt{\frac{1}{3}}$	$\sqrt{\frac{2}{2}}$	$\sqrt{\frac{3}{1}}$	•	$-\sqrt{\frac{3}{1}}$	$-\sqrt{\frac{2}{2}}$	$-\sqrt{\frac{1}{3}}$	$-\sqrt{\frac{0}{4}}$