ISD1820P 8~20秒单段语音电路

一、 主要特性

- 1. 自动节电,维持电流0.5uA
- 2. 边沿/电平触发放音
- 3. 外接电阻调整录音时间(详见附表)
- 4. 3v 单电源工作

二、 封装形式

三、 引脚描述

电源(VCC): 芯片内部的模拟和数字电路使用的不同电源总线在此引脚汇合,这样使

得噪声最小。去耦合电容应尽量靠近芯片。

地线(VSSA, VSSD): 芯片内部的模拟和数字电路的不同地线汇合在这个引脚。

录音 (REC): 高电平有效,只要 REC 变高(不管芯片处在节电状态还是正在放音),芯片即开始录音。录音期间,REC 必须保持为高。REC 变低或内存录满后,录音周期结束,芯片自动写入一个信息结束标志(EOM),使以后的重放操作可以及时停止。然后芯片自动进入节电状态。

注: REC 的上升沿有84毫秒防颤, 防止按键误触发。

边沿触发放音(PLAYE): 此端出现上升沿时,芯片开始放音。放音持续到 EOM 标志或内

存结束,芯片自动进入节电状态。放音后,可以释放 PLAYE。

电平触发放音(PLAYL): 此端从低变高时,芯片开始放音。持续至此端回到低电平或遇到 EOM 标志,或内存结束。放音结束后自动进入节电状态。

录音指示(/RECLED): 处于录音状态时,此端为低,可驱动 LED。此外,放音遇到 EOM 标志时,此端输出一个低电平脉冲。此脉冲可用来触发 PLAYE,实现循环放音。

话筒输入(MIC):此端连至片内前置放大器。片内自动增益控制电路(AGC)控制前置放大器的增益。外接话筒应通过串联电容耦合到此端。耦合电容值和此端的10KΩ输入阻抗决定了芯片频带的低频截止点。

话筒参考(MIC REF): 此端是前置放大器的反向输入。当以差分形式连接话筒时,可减小噪声,提高共模抑制比。自动增益控制(AGC): AGC 动态调整前置增益以补偿话筒输入电平的宽幅变化,使得录制变化很大的音量(从耳语到喧嚣声)时失真都能保持最小。通常4.7uF的

电容器在多数场合下可获得满意的效果。

喇叭输出(SP+, SP-):输出端可直接驱动 8Ω 以上的喇叭。单端使用必须在输出端和喇叭之间接耦合电容,而双端输出既不用电容又能将功率提高至4倍。SP+和 SP-之间通过内部的 $50K\Omega$ 的电阻连接,不放音时为悬空状态。

振荡电阻(ROSC): 此端接振荡电阻至 VSS, 由振荡电阻的阻值决定录放音的时间。

直通模式(FT): 此端允许接在 MIC 输入端的外部语音信号经过芯片内部的 AGC 电路、

滤波器和喇叭驱动器而直接到达喇叭输出端。平时 FT 端为低,要实现直通

功能,需将FT端接高电平,同时REC、PLAYE和PLAYL保持低。

四、录放音操作方式

按住 REC 录音按键不放即录音, RECLED 灯会亮起, 松开按键录音停止。放音有三种情况:

- 2、 电平触发放音, 按住 PL 键时即放音, 松开按键即停止;
- 3、 循环放音,置循环放音开关闭合,按动 PE 键即开始循环放音,只能断电才能停止。

在直通模式下,直通开关闭合,对话筒说话会从喇叭里扩音播放出来,构成喊话器功能,由于该模式下的话筒放大同时经过 AGC 自动增益调节和带通滤波器,其音质比通常的话筒放大器要好很多,而且不会出现喇叭过载的情况。

五、应用线路图

附表:

ROSC	录放时间	采样频率	典型带宽
80k Ω	8秒	8. OKHZ	3.4 KHZ
100 kΩ	10秒	6.4 KHZ	2.6 KHZ
120 kΩ	12秒	5.3 KHZ	2.3 KHZ
160 kΩ	16秒	4.0 KHZ	1.7 KHZ
200 kΩ	20秒	3.2 KHZ	1.3 KHZ