ABSTRACT FORWARD PROPAGATE

KILDALL'S ALGORITHM

```
AbstractForwardPropagate(\Gamma_c, P)
   S := \{l_0\};
   \hat{\mu}(l_0) := \alpha(\mathsf{P});
   \hat{\mu}(l) := \bot, for l \in L \setminus \{l_0\};
   while S \neq \emptyset do{
        l := Choose S;
         S := S \setminus \{l\};
         foreach (l, c, l') \in T do{
               \mathsf{F} := \hat{sp}(\hat{\mu}(l), c);
               if \neg (\mathsf{F} \leq \hat{\mu}(l')) then{
                    \hat{\mu}(l') := \hat{\mu}(l') \sqcup F;
                    S := S \cup \{l'\};
```

- Does this algorithm actually calculate the abstract JOP?
- What are the conditions under which it is guaranteed to terminate?

ABSTRACT FORWARD PROPAGATE KILDALL'S ALGORITHM

```
AbstractForwardPropagate(\Gamma_c, P)
   S := \{l_0\};
   \hat{\mu}_K(l_0) := \alpha(\mathsf{P});
   \hat{\mu}_{K}(l) := \bot, for l \in L \setminus \{l_{0}\};
   while S \neq \emptyset do{
        l := Choose S;
         S := S \setminus \{l\};
         foreach (l, c, l') \in T do{
               F := f_c(\hat{\mu}_K(l));
               if \neg (\mathsf{F} \leq \hat{\mu}_{\mathsf{K}}(l')) then{
                    \hat{\mu}_{K}(l') := \hat{\mu}_{K}(l') \sqcup F;
                    S := S \cup \{l'\};
```

EXAMPLE - KILDALL'S ALGORITHM

EXAMPLE - KILDALL'S ALGORITHM

EXAMPLE - ABSTRACT JOP

EXAMPLE - ABSTRACT JOP

EXAMPLE - KILDALL VS ABSTRACT JOP

 $\hat{\mu}_K \neq \hat{\mu}$: This is because Kildall's Algorithm applies join eagerly We will prove that $\hat{\mu}_K \geq \hat{\mu}$

PROPERTIES OF KILDALL'S ALGORITHM

- 1. The values computed using Kildall's algorithm are an overapproximation of the abstract JOP, if the underlying Al framework is monotonic.
- 2. In general, Kildall's algorithm computes the least solution to a system of equations.
- 3. If the abstract domain satisfies the ascending chain condition, then Kildall's algorithm is guaranteed to terminate.

DATAFLOW EQUATIONS

- Program $\Gamma_c = (V, L, l_0, l_e, T)$ induces a system of data flow equations:
 - $X_{l_0} = d_0$
 - For all other locations $l \in L \setminus \{l_0\}, \ X_l = \bigsqcup_{(l',c,l) \in T} \hat{f}_c(X_{l'})$
- For collecting semantics, replace d_0 with c_0 , \square with \cup and \hat{f}_c with f_c .

EXAMPLE - DATAFLOW EQUATIONS

DATAFLOW EQUATIONS AS FUNCTION

- Consider the 'vectorised' lattice $(\bar{D}, \leq 1)$, where $\bar{D} = D^{|L|}$.
 - $\bar{d} \leq \bar{d}' \Leftrightarrow \forall l \in L . \bar{d}(l) \leq \bar{d}'(l)$
 - Homework: Prove that if (D, \leq) is a complete lattice, then $(\bar{D}, \bar{\leq})$ is also a complete lattice.
- We can view the data flow equations as a function $\bar{f}:\bar{D}\to\bar{D}$:

•
$$(\bar{f}(\bar{d}))(l_0) = d_0$$

$$\hat{f}(\bar{d}))(l) = \int_{(l',c,l)\in T} \hat{f}_c(\bar{d}(l'))$$

DATAFLOW EQUATIONS AS FUNCTION

EXAMPLE

$$\bar{f}(d_{l_0},d_{l_1},d_{l_2}) = (d_0,\hat{f}_{p_1}(d_{l_0}) \sqcup \hat{f}_{p_3}(d_{l_2}),\hat{f}_{p_2}(d_{l_1}))$$

DATAFLOW EQUATIONS AS FUNCTION

- If every abstract transfer function $\hat{f}:D\to D$ is monotonic, then the function $\bar{f}:\bar{D}\to\bar{D}$ is also monotonic.
 - Homework: Prove this.
- We have a monotonic function \bar{f} on a complete lattice \bar{D} . Hence, we can apply Knaster-Tarski fixpoint theorem.
- The least fixpoint $lfp(\bar{f})$ exists, and is in fact the least solution to the dataflow equations.
- We will show that Kildall's algorithm actually computes $lfp(\bar{f})$.
- Note that we can also use the sequence \bot , $\bar{f}(\bot)$, $\bar{f}^2(\bot)$, ... to compute $lfp(\bar{f})$.
 - This method is also called Kleene Iteration.

LFP INTRODUCES THE LEAST OVER APPROXIMATION: EXAMPLE

(+-,+,+,+) is a solution to the data flow equations, And (+-,+-,+-) is also another solution

ABSTRACT JOP $\leq lfp(\bar{f})$ FOR MONOTONIC AI FRAMEWORK PROOF

• Given Al $(D, \leq, \alpha, \gamma, \hat{F}_D)$, if all functions in \hat{F}_D are monotonic, then Abstract JOP $\leq lfp(\bar{f})$.

Proof: Abstract JOP
$$\hat{\mu}(l) = \bigsqcup_{\pi \in \Pi_l} \hat{f}_{\pi}(d_0)$$

Let $lfp(\bar{f}) = \bar{d}$. We have to show that $\forall l \in L \cdot \hat{\mu}(l) \leq \bar{d}(l)$.

We will show that for all locations l, all paths $\pi \in \Pi_l$, $\hat{f}_{\pi}(d_0) \leq \bar{d}(l)$.

This proves the required result. Why?

We will use induction on length of the paths.

Base Case: Paths π of length 0 are empty and end at l_0 . Hence, $\hat{f}_{\pi}(d_0)=d_0$.

Since
$$\bar{f}(\bar{d})=\bar{d}$$
 and $(\bar{f}(\bar{d}))(l_0)=d_0$, we have $\bar{d}(l_0)=d_0$.

Thus,
$$\hat{f}_{\pi}(d_0) \leq \bar{d}(l_0)$$

ABSTRACT JOP $\leq lfp(\bar{f})$ FOR MONOTONIC AI FRAMEWORK PROOF

Inductive Case: Assume that the claim holds for all paths of length n.

Consider a path π of length n+1 ending at location l.

ABSTRACT JOP $\leq lfp(\bar{f})$ FOR MONOTONIC AI FRAMEWORK PROOF

Inductive Case: Assume that the claim holds for all paths of length n.

Consider a path π of length n+1 ending at location l.

Let π' be the prefix of the path of length n, ending at location l'.

By Inductive Hypothesis, $\hat{f}_{\pi'}(d_0) \leq \bar{d}(l')$.

Since \hat{f}_p is monotonic, $\hat{f}_p(\hat{f}_{\pi'}(d_0)) \leq \hat{f}_p(\bar{d}(l'))$.

Hence, $\hat{f}_{\pi}(d_0) \leq \hat{f}_p(\bar{d}(l'))$.

Now
$$\bar{f}(\bar{d}) = \bar{d}$$
. Hence, $\bar{d}(l) = \bigsqcup_{(l',p,l) \in T} \hat{f}_p(\bar{d}(l'))$.

Hence, $\hat{f}_p(\bar{d}(l')) \leq \bar{d}(l)$. Thus, $\hat{f}_\pi(d_0) \leq \bar{d}(l)$.

EXAMPLE - LFP VS ABSTRACT JOP

DISTRIBUTIVE AND INFINITELY DISTRIBUTIVE FUNCTIONS

- Given two posets (D_1, \leq_1) and (D_2, \leq_2) , function $f: D_1 \to D_2$ is called distributive if for $x, y \in D_1$ such that $x \sqcup_1 y$ exists, then $f(x) \sqcup_2 f(y)$ also exists, and $f(x \sqcup_1 y) = f(x) \sqcup_2 f(y)$.
- Given two posets (D_1, \leq_1) and (D_2, \leq_2) , function $f: D_1 \to D_2$ is called infinitely distributive if for all $X \subseteq D_1$ such that $\sqcup_1 X$ exists, then $\sqcup_2 f(X)$ also exists, and $\sqcup_2 f(X) = f(\sqcup_1 X)$.
- Exercise: If f is distributive, then f is also monotonic.

ABSTRACT JOP = $lfp(\bar{f})$ FOR INFINITELY DISTRIBUTIVE AI FRAMEWORK PROOF

• Given Al $(D, \leq, \alpha, \gamma, \hat{F}_D)$, if all functions in \hat{F}_D are infinitely distributive, then Abstract JOP = $lfp(\bar{f})$.

Proof: We will show that Abstract JOP $(\hat{\mu})$ is a fixpoint of \bar{f} . This is sufficient to prove the result. Why?

ABSTRACT JOP = $lfp(\bar{f})$ FOR INFINITELY DISTRIBUTIVE AI FRAMEWORK PROOF

• Given Al $(D, \leq, \alpha, \gamma, \hat{F}_D)$, if all functions in \hat{F}_D are infinitely distributive, then Abstract JOP = $lfp(\bar{f})$.

Proof: We will show that Abstract JOP $(\hat{\mu})$ is a fixpoint of \bar{f} . This is sufficient to prove the result. Why?

$$\begin{split} (\bar{f}(\hat{\mu}))(l) &= \bigsqcup_{(l',p,l) \in T} \hat{f}_p(\hat{\mu}(l')) \\ &= \bigsqcup_{(l',p,l) \in T} \hat{f}_p(\bigsqcup_{\pi \in \Pi_{l'}} \hat{f}_{\pi}(d_0)) \\ &= \bigsqcup_{(l',p,l) \in T} \bigsqcup_{\pi \in \Pi_{l'}} \hat{f}_p \circ \hat{f}_{\pi}(d_0) \end{split}$$

ABSTRACT JOP = $lfp(\bar{f})$ FOR INFINITELY DISTRIBUTIVE AI FRAMEWORK PROOF

$$(\bar{f}(\hat{\mu}))(l) = \bigsqcup_{(l',p,l) \in T} \bigsqcup_{\pi \in \Pi_{l'}} \hat{f}_p \circ \hat{f}_{\pi}(d_0)$$

And we know that
$$\hat{\mu}(l) = \coprod_{\pi' \in \Pi_l} \hat{f}_{\pi'}(d_0)$$
.

Then, due to associativity of \sqcup , $(\bar{f}(\hat{\mu}))(l) = \hat{\mu}(l)$.

Thus, $\hat{\mu}$ is a fixpoint of \bar{f} . We know from previous result that $\hat{\mu} \leq lfp(\bar{f})$. Thus, $\hat{\mu} = lfp(\bar{f})$.

• The abstract transfer functions in sign abstract domain are monotonic, but not infinitely distributive.

Consider p: j:= i*k and $d_1=(+,+-,+)$, $d_2=(-,+-,-)$. Then, $\hat{f}_p(d_1\sqcup d_2)=???$

• The abstract transfer functions in sign abstract domain are monotonic, but not infinitely distributive.

Consider p: j:= i*k and $d_1=(+,+-,+)$, $d_2=(-,+-,-)$. Then, $\hat{f}_p(d_1\sqcup d_2)=(+-,+-,+-)$.

• The abstract transfer functions in sign abstract domain are monotonic, but not infinitely distributive.

Consider
$$p: j:= i*k$$
 and $d_1=(+,+-,+)$, $d_2=(-,+-,-)$. Then, $\hat{f}_p(d_1\sqcup d_2)=(+-,+-,+-)$. $\hat{f}_p(d_1)\sqcup\hat{f}_p(d_2)=???$

• The abstract transfer functions in sign abstract domain are monotonic, but not infinitely distributive.

Consider
$$p: j:= i*k$$
 and $d_1=(+,+-,+)$, $d_2=(-,+-,-)$. Then, $\hat{f}_p(d_1\sqcup d_2)=(+-,+-,+-)$.
$$\hat{f}_p(d_1)\sqcup\hat{f}_p(d_2)=(+,+,+)\sqcup(-,+,-)=(+-,+,+-)$$

• The abstract transfer functions in sign abstract domain are monotonic, but not infinitely distributive.

Consider
$$p: j:= i*k$$
 and $d_1=(+,+-,+), d_2=(-,+-,-).$ Then, $\hat{f}_p(d_1\sqcup d_2)=(+-,+-,+-).$ $\hat{f}_p(d_1)\sqcup\hat{f}_p(d_2)=(+,+,+)\sqcup(-,+,-)=(+-,+,+-)$

• The concrete transfer functions are always infinitely distributive. Hence, the concrete JOP is the least solution of the concrete data-flow equations.

BIG PICTURE

For Monotonic Al Framework

BIG PICTURE

For Infinitely Distributive AI Framework

• First, we will show that $\hat{\mu}_K \leq lfp(\bar{f})$

We will show that $\hat{\mu}_K \leq lfp(\bar{f})$ is a loop invariant of the outer while loop.

At the beginning, $\hat{\mu}_K(l_0) = \alpha(P) \leq d_0$.

Hence, $\forall l . \hat{\mu}_K(l) \leq (lfp(\bar{f}))(l)$.

Assuming that the claim holds at the beginning of some iteration, let $\hat{\mu}_K = \bar{d}$, $lfp(\bar{f}) = \bar{g}$. We have $\bar{d} \leq \bar{g}$.

```
AbstractForwardPropagate(\Gamma_c, P)
   S := \{l_0\};
   \hat{\mu}_K(l_0) := \alpha(\mathsf{P});
   \hat{\mu}_K(l) := \bot, for l \in L \setminus \{l_0\};
   while S \neq \emptyset do{
         l := Choose S;
         S := S \setminus \{l\};
         foreach (l, c, l') \in T do{
                \mathsf{F} := \hat{f}_{c}(\hat{\mu}_{K}(l));
                if \neg (\mathsf{F} \leq \hat{\mu}_{\mathsf{K}}(l')) then{
                     \hat{\mu}_{K}(l') := \hat{\mu}_{K}(l') \sqcup F;
                     S := S \cup \{l'\};
```

```
AbstractForwardPropagate(\Gamma_c, P)
   S := \{l_0\};
   \hat{\mu}_K(l_0) := \alpha(\mathsf{P});
  \hat{\mu}_{K}(l) := \bot, for l \in L \setminus \{l_{0}\};
   while S \neq \emptyset do{
         l := Choose S;
         S := S \setminus \{l\};
         foreach (l, c, l') \in T do{
               \mathsf{F} := \hat{f}_{c}(\hat{\mu}_{K}(l));
               if \neg(\mathsf{F} \leq \hat{\mu}_{\mathit{K}}(l')) then{
                     \hat{\mu}_K(l') := \hat{\mu}_K(l') \sqcup F;
                     S := S \cup \{l'\};
```

```
For some successor l' of l,
\hat{\mu}_K(l') = d(l') \sqcup \hat{f}_c(d(l)).
Now, \bar{d}(l) \leq \bar{g}(l) \Rightarrow \hat{f}_c(\bar{d}(l)) \leq \hat{f}_c(\bar{g}(l)).
Further, \bar{g}(l') = \int_{c}^{c} \hat{g}(l)
Hence, \bar{g}(l') \geq \hat{f}_c(\bar{g}(l)) \geq \hat{f}_c(\bar{d}(l))
We also know that \bar{g}(l') \geq \bar{d}(l').
Thus, \bar{g}(l') \geq \bar{d}(l') \sqcup \hat{f}_c(\bar{d}(l)).
Hence, \bar{g}(l') \geq \hat{\mu}_{K}(l').
```

```
AbstractForwardPropagate(\Gamma_c, P)
   S := \{l_0\};
   \hat{\mu}_K(l_0) := \alpha(\mathsf{P});
   \hat{\mu}_K(l) := \bot, for l \in L \setminus \{l_0\};
   while S \neq \emptyset do{
         l := Choose S;
         S := S \setminus \{l\};
         foreach (l, c, l') \in T do{
               \mathsf{F} := \hat{f}_{c}(\hat{\mu}_{K}(l));
               if \neg (\mathsf{F} \leq \hat{\mu}_{\mathsf{K}}(l')) then{
                     \hat{\mu}_{K}(l') := \hat{\mu}_{K}(l') \sqcup F;
                     S := S \cup \{l'\};
```

Next, we will show that $\hat{\mu}_K \ge lfp(\bar{f})$.

To prove this, we will show that when the algorithm terminates, the final $\hat{\mu}_K$ is a post-fixpoint of \bar{f} , i.e. $\bar{f}(\hat{\mu}_K) \leq \hat{\mu}_K$.

Then, by Knaster-Tarski theorem, $lfp(\bar{f})$ is the glb of all post-fixpoints, and hence the claim follows.

We will prove that following is a loop invariant of the outer while-loop:

$$\forall l \in L \setminus S . \forall l' \in L . (l, c, l') \in T$$

$$\Rightarrow \hat{\mu}_K(l') \ge \hat{f}_c(\hat{\mu}_K(l))$$

```
AbstractForwardPropagate(\Gamma_c, P)
   S := \{l_0\};
   \hat{\mu}_K(l_0) := \alpha(\mathsf{P});
   \hat{\mu}_{K}(l) := \bot, for l \in L \setminus \{l_{0}\};
   while S \neq \emptyset do{
         l := Choose S;
         S := S \setminus \{l\};
         foreach (l, c, l') \in T do{
                \mathsf{F} := \hat{f}_{c}(\hat{\mu}_{K}(l));
                if \neg (\mathsf{F} \leq \hat{\mu}_{\mathsf{K}}(l')) then{
                     \hat{\mu}_{K}(l') := \hat{\mu}_{K}(l') \sqcup F;
                     S := S \cup \{l'\};
```

```
\forall l \in L \backslash S . \forall l' \in L . (l, c, l') \in T
                                                                          AbstractForwardPropagate(\Gamma_c, P)
                                    \Rightarrow \hat{\mu}_K(l') \geq \hat{f}_c(\hat{\mu}_K(l)) S := \{l_0\};
                                                                             \hat{\mu}_K(l_0) := \alpha(\mathsf{P});
                                                                             \hat{\mu}_{K}(l) := \bot, for l \in L \setminus \{l_{0}\};
                                                                              while S \neq \emptyset do{
                                                                                    l := Choose S;
                                                                                    S := S \setminus \{l\};
                                                                                     foreach (l, c, l') \in T do{
                                                                                           \mathsf{F} := \hat{f}_{c}(\hat{\mu}_{K}(l));
                                                                                           if \neg(\mathsf{F} \leq \hat{\mu}_{\mathit{K}}(l')) then{
                                                                                                 \hat{\mu}_K(l') := \hat{\mu}_K(l') \sqcup F;
                                                                                                 S := S \cup \{l'\};
```

```
\forall l \in L \backslash S \,.\, \forall l' \in L \,.\, (l,c,l') \in T \Rightarrow \hat{\mu}_K(l') \geq \hat{f}_c(\hat{\mu}_K(l)) On exiting the loop, we will have \forall l,l' \in L \,.\, (l,c,l') \in T \Rightarrow \hat{\mu}_K(l') \geq \hat{f}_c(\hat{\mu}_K(l)) \Rightarrow \forall l' \in L \,.\, \hat{\mu}_K(l') \geq \bigsqcup_{(l,c,l') \in T} \hat{f}_c(\hat{\mu}_K(l)) \Rightarrow \forall l' \in L \,.\, \hat{\mu}_K(l') \geq (\bar{f}(\hat{\mu}_K))(l')
```

```
AbstractForwardPropagate(\Gamma_c, P)
   S := \{l_0\};
 \hat{\mu}_K(l_0) := \alpha(\mathsf{P});
  \hat{\mu}_{K}(l) := \bot, for l \in L \setminus \{l_{0}\};
   while S \neq \emptyset do{
         l := Choose S;
         S := S \setminus \{l\};
         foreach (l, c, l') \in T do{
               \mathsf{F} := \hat{f}_{c}(\hat{\mu}_{K}(l));
                if \neg (\mathsf{F} \leq \hat{\mu}_{\mathsf{K}}(l')) then{
                     \hat{\mu}_{K}(l') := \hat{\mu}_{K}(l') \sqcup F;
                     S := S \cup \{l'\};
```

 $\forall l \in L \backslash S . \forall l' \in L . (l, c, l') \in T$

 $\Rightarrow \hat{\mu}_K(l') \geq \hat{f}_c(\hat{\mu}_K(l))$ S:= $\{l_0\}$;

At the beginning, the invariant holds, assuming that $\hat{f}_c(\perp) = \perp$.

Note that if $\hat{f}_c(\perp) \neq \perp$, we can initialise S with L.

```
AbstractForwardPropagate(\Gamma_c, P)
  \hat{\mu}_K(l_0) := \alpha(\mathsf{P});
   \hat{\mu}_K(l) := \bot, for l \in L \setminus \{l_0\};
   while S \neq \emptyset do{
         l := Choose S;
         S := S \setminus \{l\};
         foreach (l, c, l') \in T do{
               \mathsf{F} := \hat{f}_{c}(\hat{\mu}_{K}(l));
                if \neg(\mathsf{F} \leq \hat{\mu}_{\mathit{K}}(l')) then{
                     \hat{\mu}_K(l') := \hat{\mu}_K(l') \sqcup F;
                     S := S \cup \{l'\};
```

KILDALL'S ALGORITHM COMPUTES $lfp(\bar{f})$ PROOF

 $\forall l \in L \backslash S . \forall l' \in L . (l, c, l') \in T$

$$\Rightarrow \hat{\mu}_K(l') \ge \hat{f}_c(\hat{\mu}_K(l))$$

Assume that the claim holds at the beginning of some iteration.

For each successor l' of l, either $\hat{\mu}_K(l') \geq \hat{f}_c(\hat{\mu}_K(l))$, or we enter the ifbody and re-assign $\hat{\mu}_K(l')$ to ensure that $\hat{\mu}_K(l') \geq \hat{f}_c(\hat{\mu}_K(l))$.

Thus, the loop invariant continues to hold.

This concludes the proof that the final $\hat{\mu}_K = lfp(\bar{f})$.

```
AbstractForwardPropagate(\Gamma_c, P)
   S := \{l_0\};
   \hat{\mu}_K(l_0) := \alpha(\mathsf{P});
  \hat{\mu}_{K}(l) := \bot, for l \in L \setminus \{l_{0}\};
   while S \neq \emptyset do{
         l := Choose S;
         S := S \setminus \{l\};
         foreach (l, c, l') \in T do{
                \mathsf{F} := \hat{f}_{c}(\hat{\mu}_{K}(l));
                if \neg(\mathsf{F} \leq \hat{\mu}_{\mathit{K}}(l')) then{
                     \hat{\mu}_{K}(l') := \hat{\mu}_{K}(l') \sqcup F;
                     S := S \cup \{l'\};
```

BIG PICTURE

Kildall's Algorithm computes this

For Monotonic Al Framework

KILDALL'S ALGORITHM: TERMINATION

- Consider the vector of values maintained by the algorithm across locations.
- After each iteration of the outer loop, either this vector increases or it stays the same and S decreases.
- If (D, \leq) satisfies the ascending chain condition, then so does $(\bar{D}, \bar{\leq})$.
 - In this case, the loop is guaranteed to terminate.

```
AbstractForwardPropagate(\Gamma_c, P)
   S := \{l_0\};
   \hat{\mu}_K(l_0) := \alpha(\mathsf{P});
   \hat{\mu}_{K}(l) := \bot, for l \in L \setminus \{l_{0}\};
  while S \neq \emptyset do{
         l := Choose S;
         S := S \setminus \{l\};
          foreach (l, c, l') \in T do{
                \mathsf{F} := \hat{f}_{c}(\hat{\mu}_{K}(l));
                if \neg (\mathsf{F} \leq \hat{\mu}_{\mathsf{K}}(l')) then{
                     \hat{\mu}_{K}(l') := \hat{\mu}_{K}(l') \sqcup F;
                     S := S \cup \{l'\};
```

KILDALL'S ALGORITHM SUFFICIENT CONDITIONS

- Kildall's Algorithm can be used with an abstract domain $(D, \leq, \alpha, \gamma, \hat{F}_D)$ if:
 - (D, \leq) is a complete lattice.
 - $(\mathbb{P}(State), \subseteq) \stackrel{\alpha}{\underset{\gamma}{\rightleftharpoons}} (D, \leq)$
 - Every abstract transfer function in \hat{F}_D is a consistent abstraction of the corresponding concrete transfer function.
 - Every abstract transfer function in \hat{F}_D is monotonic.
 - (D, \leq) satisfies the ascending chain condition.

APPLYING KILDALL'S ALGORITHM USING CONCRETE PROGRAM STATES

- Recall the concrete lattice of program states: ($\mathbb{P}(States)$, \subseteq) where $States = Var \rightarrow \mathbb{Z}$.
- Does this lattice satisfy ACC?
- Kildall's Algorithm using concrete lattice

 ForwardPropagate Algorithm.
 - Since the concrete lattice does not satisfy ACC, termination of Kildall's Algorithm is not guaranteed.
- Since the concrete transfer functions are infinitely distributive, LFP = JOP.

CONSTANT ABSTRACT DOMAIN

•
$$I = \mathbb{Z} \cup \{ \top, \bot \}$$

- $\forall n \in \mathbb{Z} . \perp \leq n \leq \mathsf{T}$
- Flat, but infinite lattice.
- Satisfies ACC.
- $D = V \rightarrow I$

CONSTANT ABSTRACT DOMAIN ABSTRACTION AND CONCRETIZATION FUNCTION

- $\alpha(c) = d$
 - If $c = \emptyset$, then $\forall v . d(v) = \bot$
 - Otherwise, $d(v) = \begin{cases} n & \text{if } \forall \alpha \in c . \ \sigma(v) = n \\ \top & \text{otherwise} \end{cases}$
- $\gamma(d) = \{ \sigma \mid \forall v \in V . \ \forall n \in \mathbb{Z} . \ d(v) = n \to \sigma(v) = n \}$
- α and γ form an onto Galois connection.

COMPUTING ABSTRACT JOP VERSUS LFP: EXAMPLE

Algorithm for computing the abstract JOP will never terminate However, due to ACC, LFP computation is guaranteed to terminate

CONSTANT ABSTRACT DOMAIN ABSTRACT TRANSFER FUNCTIONS

- What will be \hat{f}_c for c: x := e?
 - Is \hat{f}_c distributive?
- What will be \hat{f}_c for c: assume(x = n)?

INTERVAL ABSTRACT DOMAIN

- $I = \{[a,b] \mid a,b \in \mathbb{Z} \cup \{-\infty,\infty\}\} \cup \{\perp\}$
 - $D = V \rightarrow I$
 - Also called Box abstract domain.
- $[a_1, b_1] \sqsubseteq [a_2, b_2] \Leftrightarrow a_2 \le a_1 \land b_1 \le b_2$, $\forall d \in I. \bot \sqsubseteq d$
- Is (I, \sqsubseteq) a lattice?
 - $[a_1, b_1] \sqcup [a_2, b_2] = [min(a_1, a_2), max(b_1, b_2)]$
- Is (I, \sqsubseteq) a complete lattice?
 - Maximal element?
- $\begin{array}{c} \bullet & (D,\sqsubseteq) \colon \\ \forall d_1,d_2 \in D \,.\, d_1 \sqsubseteq d_2 \Leftrightarrow \forall v \in V \,.\, d_1(v) \sqsubseteq d_2(v) \end{array}$

INTERVAL ABSTRACT DOMAIN ABSTRACTION AND CONCRETIZATION FUNCTION

- $\alpha : \mathbb{P}(States) \to D, \gamma : D \to \mathbb{P}(States)$
- $\alpha(c) = d$
 - $d(v) = [min\{\sigma(v) | \sigma \in c\}, max\{\sigma(v) | \sigma \in c\}]$
- $\gamma(d) = \{ \sigma \mid \forall v \in V . d(v) = [a, b] \Rightarrow a \le \sigma(v) \le b \}$
- Is $(\mathbb{P}(States), \subseteq) \stackrel{\alpha}{\rightleftharpoons} (D, \sqsubseteq)$ a Galois Connection?
 - Is it an Onto Galois Connection?

INTERVAL ABSTRACT DOMAIN ABSTRACT TRANSFER FUNCTION

- Consider c: x := x + y
 - We can use interval arithmetic for \hat{f}_c
- Assuming $d(x) = [l_x, u_x], d(y) = [l_y, u_y]$
 - $\hat{f}_c(d) = d[x \mapsto [l_x + l_y, u_x + u_y]]$
- Is \hat{f}_c distributive?
 - What about \hat{f}_c for c: x := x y? Is this function distributive?

USING INTERVAL DOMAIN

USING INTERVAL DOMAIN

Interval Abstract Domain does not satisfy ACC, hence Kildall's Algorithm may not terminate

WIDENING

- A widening function $\nabla: D \times D \to D$ on a poset (D, \leq) satisfies the following properties:
 - $\forall x, y \in D . x \sqcup y \leq x \triangledown y$
 - For an ascending chain x_0, x_1, \ldots , the ascending chain y_0, y_1, \ldots where $y_0 = x_0$ and $y_n = y_{n-1} \nabla x_n$ eventually stabilizes.

- We can define the widening operator for interval domain as follows:
 - $[a,b] \nabla \bot = [a,b]$
 - $\bot \nabla [a,b] = [a,b]$
 - $[a_1, b_1] \nabla [a_2, b_2] = [(a_2 < a_1)? \infty : a_1, (b_1 < b_2)?\infty : b_1]$
- Examples
 - $[1,2] \nabla [0,2] = ???$

- We can define the widening operator for interval domain as follows:
 - $[a,b] \lor \bot = [a,b]$
 - $\bot \triangledown [a,b] = [a,b]$
 - $[a_1, b_1] \nabla [a_2, b_2] = [(a_2 < a_1)? \infty : a_1, (b_1 < b_2)?\infty : b_1]$
- Examples
 - $[1,2] \nabla [0,2] = [-\infty,2]$

- We can define the widening operator for interval domain as follows:
 - $[a,b] \nabla \bot = [a,b]$
 - $\bot \triangledown [a,b] = [a,b]$
 - $[a_1, b_1] \nabla [a_2, b_2] = [(a_2 < a_1)? \infty : a_1, (b_1 < b_2)?\infty : b_1]$
- Examples
 - $[1,2] \nabla [0,2] = [-\infty,2]$
 - $[0,2] \nabla [1,2] = ???$

 We can define the widening operator for interval domain as follows:

•
$$[a,b] \nabla \bot = [a,b]$$

•
$$\bot \nabla [a,b] = [a,b]$$

•
$$[a_1, b_1] \nabla [a_2, b_2] = [(a_2 < a_1)? - \infty : a_1, (b_1 < b_2)?\infty : b_1]$$

Examples

•
$$[1,2] \nabla [0,2] = [-\infty,2]$$

•
$$[0,2] \nabla [1,2] = [0,2]$$

 We can define the widening operator for interval domain as follows:

•
$$[a,b] \nabla \bot = [a,b]$$

•
$$\bot \nabla [a,b] = [a,b]$$

•
$$[a_1, b_1] \nabla [a_2, b_2] = [(a_2 < a_1)? - \infty : a_1, (b_1 < b_2)?\infty : b_1]$$

Examples

•
$$[1,2] \nabla [0,2] = [-\infty,2]$$

•
$$[0,2] \nabla [1,2] = [0,2]$$

•
$$[2,3] \nabla [4,6] = ???$$

 We can define the widening operator for interval domain as follows:

•
$$[a,b] \nabla \bot = [a,b]$$

•
$$\bot \nabla [a,b] = [a,b]$$

•
$$[a_1, b_1] \nabla [a_2, b_2] = [(a_2 < a_1)? - \infty : a_1, (b_1 < b_2)?\infty : b_1]$$

Examples

•
$$[1,2] \nabla [0,2] = [-\infty,2]$$

•
$$[0,2] \nabla [1,2] = [0,2]$$

•
$$[2,3] \nabla [4,6] = [2,\infty]$$

KILDALL'S ALGORITHM WITH WIDENING

```
AbstractForwardPropagate(\Gamma_c, P)
   S := \{l_0\};
   \hat{\mu}_K(l_0) := \alpha(\mathsf{P});
   \hat{\mu}_{K}(l) := \bot, for l \in L \setminus \{l_{0}\};
   while S \neq \emptyset do{
        l := Choose S;
         S := S \setminus \{l\};
          foreach (l, c, l') \in T \text{ do}\{
               \mathsf{F} := f_{c}(\hat{\mu}_{K}(l));
                if \neg (\mathsf{F} \leq \hat{\mu}_{\mathsf{K}}(l')) then{
                    \hat{\mu}_K(l') := \hat{\mu}_K(l') \nabla F;
                     S := S \cup \{l'\};
```

WIDENING EXAMPLE

$$\begin{array}{c} \mathbf{i} := \mathbf{0}; \\ \text{while}(\mathbf{i} < \mathbf{n}) \text{ do} \\ \mathbf{i} := \mathbf{i} + \mathbf{1}; \\ \\ \mathbf{i} := \mathbf{0} \\ \\ \mathbf{assume}(\mathbf{i} \geq \mathbf{n}) \\ \\ \mathbf{l}_{\mathbf{0}} \\ \\ \mathbf{l$$

WIDENING EXAMPLE

$$\begin{array}{c} \mathbf{i} := \mathbf{0}; \\ \text{while}(\mathbf{i} < \mathbf{n}) \text{ do} \\ \mathbf{i} := \mathbf{i} + \mathbf{1}; \\ \\ \mathbf{i} := \mathbf{0} \\ \\ \mathbf{i} := \mathbf{i} + \mathbf{1} \\ \\ \mathbf{i} := \mathbf{i} + \mathbf{i} \\ \\ \mathbf{i} :$$

ANOTHER WIDENING EXAMPLE

NARROWING

- A narrowing function $\triangle: D \times D \to D$ on a poset (D, \leq) satisfies the following properties:
 - $\forall x, y \in D . y \le x \Rightarrow y \le x \land y \le x$
 - For a decreasing chain $x_0 \ge x_1 \ge \dots$, the decreasing chain y_0, y_1, \dots where $y_0 = x_0$ and $y_n = y_{n-1} \triangle x_n$ eventually stabilizes.

NARROWING FOR THE INTERVAL DOMAIN

- We can define the narrowing operator for interval domain as follows:
 - $[a,b] \triangle \perp = \perp$
 - $[a_1, b_1] \triangle [a_2, b_2] = [(a_1 = -\infty)?a_2 : a_1, (b_1 = \infty)?b_2 : b_1]$
- Examples
 - $[1,3] \triangle [1,2] =$
 - $[-\infty, 6] \triangle [1,3] =$

NARROWING FOR THE INTERVAL DOMAIN

- We can define the narrowing operator for interval domain as follows:
 - $[a,b] \triangle \perp = \perp$
 - $[a_1, b_1] \triangle [a_2, b_2] = [(a_1 = -\infty)?a_2 : a_1, (b_1 = \infty)?b_2 : b_1]$
- Examples
 - $[1,3] \triangle [1,2] = [1,3]$
 - $[-\infty,6] \triangle [1,3] = [1,6]$

NARROWING EXAMPLE

Apply Narrowing pass after Widening

RELATIONAL DOMAINS

- Both the sign and the interval abstract domains are non-relational,
 i.e. they do not track relationships between variables.
- Relational domains track relationships between variables and are more powerful.
- Examples of relational domains
 - Karr's Domain: Tracks equalities between linear expressions (e.g. x = 2y + z). For details, refer to BM Chapter 12.
 - Octagon Domain: Constraints of the form $\pm x \pm y \le c$
 - Polyhedra Domain: Constraints of the form $c_1x_1 + ... + c_nx_n \le c$
- You can experiment with different abstract domains here: http://pop-art.inrialpes.fr/interproc/interprocweb.cgi.

THE NEED FOR RELATIONAL DOMAINS

EXAMPLE

Using the interval domain, we will only be able to show i = 10. We need the invariant i = x to show x = 10.

INTER-PROCEDURAL ABSTRACT INTERPRETATION

• For programs with multiple functions, we first consider the interprocedural LTS:

INTER-PROCEDURAL ABSTRACT INTERPRETATION

• For programs with multiple functions, we first consider the interprocedural LTS:

INTER-PROCEDURAL ABSTRACT INTERPRETATION

- Assuming that variable names are distinct across functions, function call and return statements can be replaced by assignments to parameters and return variables.
- However, the challenge is to only consider inter-procedurally valid paths.
- Naively applying AI on the inter-procedural LTS will result in highly imprecise analysis.

SHARIR AND PNUELI'S APPROACHES TO INTER-PROCEDURAL AI

- Call-Strings based approach
 - Change the abstract domain to also record the history of callsites.
 - Since call-strings can be infinite in size, two practical approaches are also proposed: Approximate call-string method and Bounded call-string method.
- Functional approach
 - Maintain an abstract summary of every method which maps abstract value of input parameter(s) to abstract value of return variable.
 - Abstract summaries calculated on-the-fly during the analysis.

LIMITATIONS OF ABSTRACT INTERPRETATION

- Precision depends upon the choice of the abstract domain.
- Hard to choose the right abstract domain: may depend on the program and the specification.
- Hard to interpret a negative result
 - If verification fails, then we don't know whether the program is actually incorrect, or the abstract domain was not precise enough.
 - No counterexample is provided as output.