Number Systems

Logic Design

Digital Systems

- Digital discipline
 - -Discrete voltages instead of continuous
 - -Simpler to design than analog circuits
 - can build more sophisticated systems
 - Digital systems replacing analog predecessors
 - i.e., digital cameras, digital television, cell phones, CDs

The Digital Abstraction

- Most physical variables are continuous
 - –Voltage on a wire
 - Frequency of an oscillation
 - –Position of a mass
- Digital abstraction considers discrete subset of values

The Analytical Engine

- Designed by Charles Babbage from 1834 – 1871
 - Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
 - Babbage died before it was finished

Digital Discipline: Binary Values

- Two discrete values:
 - -1's and 0's
 - -1, TRUE, HIGH
 - -0, FALSE, LOW
- 1 and 0: voltage levels, rotating gears, fluid levels, etc.
- Digital circuits use voltage levels to represent 1 and 0
- Bit: Binary digit

George Boole, 1815-1864

- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT

Number Systems

Decimal numbers

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

Binary numbers

Powers of Two

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•
$$2^7 = 128$$

$$\bullet$$
 2⁸ = 256

$$\bullet$$
 2⁹ = 512

•
$$2^{10} = 1024$$

•
$$2^{11} = 2048$$

•
$$2^{12} = 4096$$

•
$$2^{13} = 8192$$

•
$$2^{14} = 16384$$

•
$$2^{15} = 32768$$

Number Conversion

- Binary to decimal conversion:
 - Convert 10011₂ to decimal

- Decimal to binary conversion:
 - Convert 47₁₀ to binary

Number Conversion

- Binary to decimal conversion:
 - Convert 10011₂ to decimal
 - $-16\times1+8\times0+4\times0+2\times1+1\times1=19_{10}$

- Decimal to binary conversion:
 - Convert 47₁₀ to binary
 - $-32\times1+16\times0+8\times1+4\times1+2\times1+1\times1=101111_{2}$

Two methods:

- Method 1: Find the largest power of 2 that fits, subtract and repeat
- Method 2: Repeatedly divide by 2, remainder goes in next most significant bit

Method 1: Find the largest power of 2 that fits, subtract and repeat 53_{10}

Method 2: Repeatedly divide by 2, remainder goes in next most significant bit 53_{10}

Method 1: Find the largest power of 2 that fits, subtract and repeat

$$53_{10}$$
 32×1
 $53-32 = 21$ 16×1
 $21-16 = 5$ 4×1

5-4 = 1 1×1

Method 2: Repeatedly divide by 2, remainder goes in next most significant bit

$$53_{10} = 53/2 = 26 R1$$
 $26/2 = 13 R0$
 $13/2 = 6 R1$
 $6/2 = 3 R0$
 $3/2 = 1 R1$
 $1/2 = 0 R1 = 110101_{2}$

Another example: Convert 75₁₀ to binary.

$$75_{10} = 64 + 8 + 2 + 1 = 1001011_2$$

or

Binary Values and Range

• N-digit decimal number

- How many values?
- Range?
- Example: 3-digit decimal number:

N-bit binary number

- How many values?
- Range:
- Example: 3-digit binary number:

Binary Values and Range

N-digit decimal number

- How many values? 10^N
- -Range? $[0, 10^{N} 1]$
- Example: 3-digit decimal number:
 - $10^3 = 1000$ possible values
 - Range: [0, 999]

N-bit binary number

- How many values? 2^N
- -Range: [0, $2^N 1$]
- Example: 3-digit binary number:
 - 2³ = 8 possible values
 - Range: $[0, 7] = [000_2 \text{ to } 111_2]$

Hexadecimal Numbers

Shorthand for binary (Base 16)

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
А	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111 17

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary

- Hexadecimal to decimal conversion:
 - Convert 0x4AF to decimal

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - 0100 1010 1111₂

- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal
 - $-16^2 \times 4 + 16^1 \times 10 + 16^0 \times 15 = 1199_{10}$

Bits, Bytes, Nibbles...

```
Bits 10010110 most least significant bit bit
```

Bytes & Nibbles

Bytes

Large Powers of Two

- $2^{10} = 1 \text{ kilo } \approx 1000 \text{ (1024)}$
- $2^{20} = 1 \text{ mega } \approx 1 \text{ million } (1,048,576)$
- $2^{30} = 1$ giga ≈ 1 billion (1,073,741,824)

Estimating Powers of Two

• What is the value of 2^{24} ?

 How many values can a 32-bit variable represent?

Estimating Powers of Two

• What is the value of 2^{24} ?

$$2^4 \times 2^{20} \approx 16$$
 million

 How many values can a 32-bit variable represent?

$$2^2 \times 2^{30} \approx 4$$
 billion

Addition

Decimal

Binary

Addition

Decimal

Binary

Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

Overflow!

Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits

Signed Binary Numbers

- We have two representation:
 - Sign/Magnitude Numbers
 - Two's Complement Numbers

Sign/Magnitude Numbers

• 1 sign bit, N-1 magnitude bits

$$A: \{a_{N-1}, a_{N-2}, \dots a_2, a_1, a_0\}$$

$$A = (-1)^{a_{N-1}} \sum_{i=0}^{N-2} a_i \, 2^i$$

- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

Sign/Magnitude Numbers

• Example, 4-bit sign/mag representations of ± 6:

$$+6 = 0110$$

Range of an N-bit sign/magnitude number:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

Sign/Magnitude Numbers

Problems:

Addition doesn't work, for example -6 + 6:

```
1110
+ 0110
10100 (wrong!)
```

Two representations of 0 (± 0):

1000

0000

Two's Complement Numbers

- Don't have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

Two's Complement Numbers

• msb has value of -2^{N-1}

$$A = a_{N-1}(-2^{N-1}) + \sum_{i=0}^{N-2} a_i 2^i$$

- Most positive 4-bit number: 0111
- Most negative 4-bit number: 1000
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an N-bit two's complement number:

$$[-(2^{N-1}), 2^{N-1}-1]$$

"Taking the Two's Complement"

- "Taking the Two's complement" flips the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$
 - 1. 1100
 - $2. + 1 \\ \hline 1101 = -3_{10}$

Two's Complement Examples

• Take the two's complement of $6_{10} = 0110_2$

 What is the decimal value of the two's complement number 1001₂?

Two's Complement Examples

- Take the two's complement of $6_{10} = 0110_2$
 - 1. 1001

2.
$$+$$
 1 $1010_2 = -6_{10}$

- What is the decimal value of the two's complement number 1001₂?
 - 1. 0110
 - 2. $\frac{+}{0111_2} = 7_{10}$, so $1001_2 = -7_{10}$

Two's Complement Addition

Add 6 + (-6) using two's complement numbers

Add -2 + 3 using two's complement numbers

Two's Complement Addition

Add 6 + (-6) using two's complement numbers

Add -2 + 3 using two's complement numbers

Increasing Bit Width

Extend number from N to M bits (M > N):

- Sign-extension
- Zero-extension

Sign-Extension

- Sign bit copied to msb's
- Number value is same

Example 1:

- 4-bit representation of 3 = 0011
- 8-bit sign-extended value: 00000011

Example 2:

- 4-bit representation of -5 = 1011
- 8-bit sign-extended value: 11111011

Zero-Extension

- Zeros copied to msb's
- Value changes for negative numbers

Example 1:

– 4-bit value =

 $0011 = 3_{10}$

- 8-bit zero-extended value: $00000011 = 3_{10}$

Example 2:

– 4-bit value =

$$1011 = -5_{10}$$

- 8-bit zero-extended value: $00001011 = 11_{10}$

Number System Comparison

Number System	Range	
Unsigned	$[0, 2^N-1]$	
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$	
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$	

For example, **4-bit** representation:

