$11a_{81} \ (K11a_{81})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 1.12437 \times 10^{21} u^{64} + 2.08104 \times 10^{21} u^{63} + \dots + 3.92161 \times 10^{20} b - 9.56908 \times 10^{20},$$

$$6.77960 \times 10^{19} u^{64} - 7.94718 \times 10^{20} u^{63} + \dots + 3.92161 \times 10^{20} a + 1.89541 \times 10^{21}, \ u^{65} + 2u^{64} + \dots + u - 1 \rangle$$

$$I_2^u = \langle b + u, \ a - u - 1, \ u^2 + u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 67 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $\begin{matrix} \text{I.} \\ I_1^u = \langle 1.12 \times 10^{21} u^{64} + 2.08 \times 10^{21} u^{63} + \dots + 3.92 \times 10^{20} b - 9.57 \times 10^{20}, \ 6.78 \times 10^{19} u^{64} - 7.95 \times 10^{20} u^{63} + \dots + 3.92 \times 10^{20} a + 1.90 \times 10^{21}, \ u^{65} + 2u^{64} + \dots + u - 1 \rangle \end{matrix}$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.172878u^{64} + 2.02651u^{63} + \dots + 2.31811u - 4.83325 \\ -2.86712u^{64} - 5.30659u^{63} + \dots + 1.95308u + 2.44009 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.142247u^{64} + 2.05786u^{63} + \dots + 1.94975u - 4.74893 \\ -2.69775u^{64} - 4.93896u^{63} + \dots + 2.26672u + 2.24110 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 5.04000u^{64} + 5.88259u^{63} + \dots + 11.8961u + 0.0715256 \\ 0.371835u^{64} + 4.36917u^{63} + \dots + 11.7089u - 4.79741 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.206126u^{64} + 1.99373u^{63} + \dots + 3.07367u - 4.01687 \\ -3.03387u^{64} - 5.47353u^{63} + \dots + 2.13727u + 2.43980 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.206126u^{64} + 1.99373u^{63} + \dots + 3.07367u - 4.01687 \\ -3.03387u^{64} - 5.47353u^{63} + \dots + 2.13727u + 2.43980 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $-\frac{3365010802379045894269}{392161237007130374129}u^{64} - \frac{314262698830792944879}{392161237007130374129}u^{63} + \cdots + \frac{15377811800569051171877}{392161237007130374129}u - \frac{7348835260697976503736}{392161237007130374129}u^{63} + \cdots + \frac{15377811800569051171877}{392161237007130374129}u^{64} - \frac{1314262698830792944879}{392161237007130374129}u^{64} - \frac{1314262698830792944879}{392161237007130374129}u^{64} + \cdots + \frac{1314262698830792944879}{392161237007130374129}u^{64} + \frac{1314262698830792944879}{392161237007130374129}u^{64} + \frac{1314262698830792944879}{392161237007130374129}u^{64} + \frac{1314262698830792944879}{392161237007130374129}u^{64} + \frac{1314262698830792944879}{392161237007130374129}u^{64} + \frac{1314262698830792944879}{392161237007130374129}u^{64} + \frac{131426269883079294879}{392161237007130374129}u^{64} + \frac{13142626988307997979}{392161237007130374129}u^{64} + \frac{1314262698897979799}{3921612370071303799799}u^{64} + \frac{1314262698897997999999999999999999999999999$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{65} - 2u^{64} + \dots + u + 1$
c_2	$u^{65} + 36u^{64} + \dots - 5u - 1$
c_3	$u^{65} + 2u^{64} + \dots - 77u - 209$
c_4	$u^{65} - 14u^{63} + \dots - 51079u - 9713$
c_6,c_{11}	$u^{65} + 2u^{64} + \dots - 27u + 17$
	$u^{65} - 2u^{64} + \dots + u - 1$
c_8, c_{10}	$u^{65} - 3u^{64} + \dots - 6u + 1$
<i>c</i> ₉	$u^{65} + 11u^{64} + \dots - 12u - 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{65} + 36y^{64} + \dots - 5y - 1$
c_2	$y^{65} - 12y^{64} + \dots - 97y - 1$
<i>c</i> ₃	$y^{65} - 80y^{64} + \dots + 680999y - 43681$
c_4	$y^{65} - 28y^{64} + \dots - 2283276729y - 94342369$
c_6, c_{11}	$y^{65} - 60y^{64} + \dots - 15013y - 289$
<i>C</i> ₇	$y^{65} + 12y^{64} + \dots - 5y - 1$
c_8, c_{10}	$y^{65} - 51y^{64} + \dots - 94y - 1$
<i>c</i> ₉	$y^{65} + 15y^{64} + \dots - 152y - 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.255209 + 0.948908I		
a = -0.99928 + 1.01479I	-4.38791 + 0.83519I	-11.90532 - 1.80779I
b = 2.04192 - 0.64047I		
u = 0.255209 - 0.948908I		
a = -0.99928 - 1.01479I	-4.38791 - 0.83519I	-11.90532 + 1.80779I
b = 2.04192 + 0.64047I		
u = 0.379172 + 0.954880I		
a = 0.44986 + 1.99487I	-3.54308 + 4.03035I	-8.72949 - 8.88482I
b = -0.95093 - 2.01516I		
u = 0.379172 - 0.954880I		
a = 0.44986 - 1.99487I	-3.54308 - 4.03035I	-8.72949 + 8.88482I
b = -0.95093 + 2.01516I		
u = 0.484262 + 0.914397I		
a = 1.118230 + 0.362011I	0.85073 + 5.73380I	0 9.30698I
b = -2.04011 - 0.02854I		
u = 0.484262 - 0.914397I		
a = 1.118230 - 0.362011I	0.85073 - 5.73380I	0. + 9.30698I
b = -2.04011 + 0.02854I		
u = -0.350482 + 0.867729I		
a = 0.86949 - 2.41938I	-2.05273 - 1.79214I	-3.9608 - 27.3479I
b = -2.39364 - 0.40176I		
u = -0.350482 - 0.867729I		
a = 0.86949 + 2.41938I	-2.05273 + 1.79214I	-3.9608 + 27.3479I
b = -2.39364 + 0.40176I		
u = -0.416907 + 0.814224I		
a = -0.0826608 - 0.0580767I	-0.06086 - 1.78141I	0.16593 + 3.65886I
b = -0.394803 + 0.423441I		
u = -0.416907 - 0.814224I		
a = -0.0826608 + 0.0580767I	-0.06086 + 1.78141I	0.16593 - 3.65886I
b = -0.394803 - 0.423441I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.688274 + 0.597046I		
a = 0.937870 + 0.013321I	-1.20524 - 3.66120I	-3.96415 + 8.51812I
b = -0.177796 - 0.445216I		
u = -0.688274 - 0.597046I		
a = 0.937870 - 0.013321I	-1.20524 + 3.66120I	-3.96415 - 8.51812I
b = -0.177796 + 0.445216I		
u = 0.895488 + 0.125785I		
a = -0.09492 + 1.43200I	-7.23534 - 2.53854I	-7.87268 + 2.81634I
b = -0.376735 - 0.287159I		
u = 0.895488 - 0.125785I		
a = -0.09492 - 1.43200I	-7.23534 + 2.53854I	-7.87268 - 2.81634I
b = -0.376735 + 0.287159I		
u = 0.042517 + 0.896108I		
a = -1.233970 - 0.489969I	-1.88737 - 1.49983I	-7.09909 + 4.37897I
b = 1.50275 + 1.00485I		
u = 0.042517 - 0.896108I		
a = -1.233970 + 0.489969I	-1.88737 + 1.49983I	-7.09909 - 4.37897I
b = 1.50275 - 1.00485I		
u = -0.873776 + 0.112840I		
a = -0.53746 - 2.51675I	-7.98517 + 11.01330I	-4.27925 - 5.99396I
b = -0.325555 + 0.658517I		
u = -0.873776 - 0.112840I		
a = -0.53746 + 2.51675I	-7.98517 - 11.01330I	-4.27925 + 5.99396I
b = -0.325555 - 0.658517I		
u = -0.457366 + 1.034950I		
a = -0.505700 + 0.060882I	-0.33001 - 3.05900I	0
b = 0.747461 + 0.669285I		
u = -0.457366 - 1.034950I		
a = -0.505700 - 0.060882I	-0.33001 + 3.05900I	0
b = 0.747461 - 0.669285I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.571139 + 0.977969I		
a = -0.414828 - 0.730148I	-3.06278 + 10.75520I	0
b = 1.62844 + 0.58978I		
u = 0.571139 - 0.977969I		
a = -0.414828 + 0.730148I	-3.06278 - 10.75520I	0
b = 1.62844 - 0.58978I		
u = -0.637047 + 0.936500I		
a = 0.173925 + 0.578410I	-2.16059 - 1.39700I	0
b = 0.317828 - 0.930103I		
u = -0.637047 - 0.936500I		
a = 0.173925 - 0.578410I	-2.16059 + 1.39700I	0
b = 0.317828 + 0.930103I		
u = 0.681051 + 0.492285I		
a = 0.499375 + 1.028690I	-1.66713 - 5.95884I	-1.87973 + 5.22029I
b = -0.444176 + 0.382574I		
u = 0.681051 - 0.492285I		
a = 0.499375 - 1.028690I	-1.66713 + 5.95884I	-1.87973 - 5.22029I
b = -0.444176 - 0.382574I		
u = 0.026760 + 1.174520I		
a = 0.625886 + 0.349711I	-7.09632 - 4.52850I	0
b = -1.65520 - 0.65340I		
u = 0.026760 - 1.174520I		
a = 0.625886 - 0.349711I	-7.09632 + 4.52850I	0
b = -1.65520 + 0.65340I		
u = -0.824553 + 0.021951I		
a = -0.07187 + 1.73665I	-7.00163 + 2.10905I	-8.59887 - 3.22074I
b = 0.732613 - 0.631471I		
u = -0.824553 - 0.021951I		
a = -0.07187 - 1.73665I	-7.00163 - 2.10905I	-8.59887 + 3.22074I
b = 0.732613 + 0.631471I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.816612 + 0.075250I		
a = 0.48242 + 2.15457I	-2.82170 + 5.12577I	-2.55858 - 6.00397I
b = -0.036633 - 0.982310I		
u = -0.816612 - 0.075250I		
a = 0.48242 - 2.15457I	-2.82170 - 5.12577I	-2.55858 + 6.00397I
b = -0.036633 + 0.982310I		
u = 0.792642		
a = 4.90851	-4.52444	15.6460
b = -0.401921		
u = -0.268889 + 0.735800I		
a = -1.80208 + 0.80816I	-1.59108 - 1.22204I	-11.25340 + 3.73985I
b = 2.05899 + 1.16628I		
u = -0.268889 - 0.735800I		
a = -1.80208 - 0.80816I	-1.59108 + 1.22204I	-11.25340 - 3.73985I
b = 2.05899 - 1.16628I		
u = 0.775998 + 0.055269I		
a = -1.05405 - 1.76675I	-2.68758 - 0.98018I	-2.13142 - 1.09675I
b = 0.272202 + 0.513943I		
u = 0.775998 - 0.055269I	_	_
a = -1.05405 + 1.76675I	-2.68758 + 0.98018I	-2.13142 + 1.09675I
b = 0.272202 - 0.513943I		
u = 0.487308 + 0.547787I		
a = -0.01925 - 1.62217I	1.87042 - 1.68269I	3.98101 + 2.38110I
b = 0.231211 + 0.350100I		
u = 0.487308 - 0.547787I	1.05040 . 1.00007	2.00101 2.001101
a = -0.01925 + 1.62217I	1.87042 + 1.68269I	3.98101 - 2.38110I
b = 0.231211 - 0.350100I		
u = 0.432502 + 1.204000I	0.04550 - 0.050505	
a = -1.75345 + 0.89087I	-6.34559 + 3.27358I	0
b = 2.78335 - 1.12697I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.432502 - 1.204000I		
a = -1.75345 - 0.89087I	-6.34559 - 3.27358I	0
b = 2.78335 + 1.12697I		
u = 0.477979 + 1.199780I		
a = 1.55306 + 0.77188I	-6.01852 + 5.55484I	0
b = -2.26994 - 1.41320I		
u = 0.477979 - 1.199780I		
a = 1.55306 - 0.77188I	-6.01852 - 5.55484I	0
b = -2.26994 + 1.41320I		
u = -0.420103 + 1.222350I		
a = -2.02050 + 0.09514I	-6.68706 + 0.82473I	0
b = 2.61282 - 0.57494I		
u = -0.420103 - 1.222350I		
a = -2.02050 - 0.09514I	-6.68706 - 0.82473I	0
b = 2.61282 + 0.57494I		
u = 0.457248 + 1.211200I		
a = 0.96035 - 3.09348I	-8.07040 + 4.48064I	0
b = -1.90067 + 5.72471I		
u = 0.457248 - 1.211200I		
a = 0.96035 + 3.09348I	-8.07040 - 4.48064I	0
b = -1.90067 - 5.72471I		
u = -0.448174 + 1.226550I		
a = -1.149020 - 0.597546I	-10.71550 - 2.40472I	0
b = 1.70773 - 0.09090I		
u = -0.448174 - 1.226550I		
a = -1.149020 + 0.597546I	-10.71550 + 2.40472I	0
b = 1.70773 + 0.09090I		
u = -0.490148 + 1.212660I		
a = 2.22210 + 0.44255I	-6.18604 - 9.87507I	0
b = -3.07486 - 0.48626I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.490148 - 1.212660I		
a = 2.22210 - 0.44255I	-6.18604 + 9.87507I	0
b = -3.07486 + 0.48626I		
u = -0.468861 + 1.223140I		
a = 1.95666 - 0.56765I	-10.56670 - 6.75210I	0
b = -2.74601 + 0.33365I		
u = -0.468861 - 1.223140I		
a = 1.95666 + 0.56765I	-10.56670 + 6.75210I	0
b = -2.74601 - 0.33365I		
u = -0.393745 + 1.260010I		
a = 1.72213 - 0.24493I	-12.22780 + 6.64210I	0
b = -2.67784 + 1.24472I		
u = -0.393745 - 1.260010I		
a = 1.72213 + 0.24493I	-12.22780 - 6.64210I	0
b = -2.67784 - 1.24472I		
u = 0.384245 + 1.272530I		
a = 0.918549 - 0.118993I	-11.61320 + 1.86120I	0
b = -1.61318 - 0.48242I		
u = 0.384245 - 1.272530I		
a = 0.918549 + 0.118993I	-11.61320 - 1.86120I	0
b = -1.61318 + 0.48242I		
u = -0.517285 + 1.227500I		
a = -2.38902 - 0.02987I	-11.3347 - 16.0510I	0
b = 3.77402 + 0.28861I		
u = -0.517285 - 1.227500I		
a = -2.38902 + 0.02987I	-11.3347 + 16.0510I	0
b = 3.77402 - 0.28861I		
u = 0.526288 + 1.234520I		
a = -1.41665 - 0.19459I	-10.58890 + 7.68258I	0
b = 2.29059 + 0.00902I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.526288 - 1.234520I		
a = -1.41665 + 0.19459I	-10.58890 - 7.68258I	0
b = 2.29059 - 0.00902I		
u = -0.488804 + 0.385911I		
a = -0.885850 - 0.643188I	1.49244 - 0.86359I	5.03880 + 1.53624I
b = -0.403529 + 0.183900I		
u = -0.488804 - 0.385911I		
a = -0.885850 + 0.643188I	1.49244 + 0.86359I	5.03880 - 1.53624I
b = -0.403529 - 0.183900I		
u = 0.287539 + 0.230477I		
a = -3.01358 - 1.00850I	-1.91160 - 0.92204I	-3.30845 + 0.88312I
b = 0.980634 + 0.158120I		
u = 0.287539 - 0.230477I		
a = -3.01358 + 1.00850I	-1.91160 + 0.92204I	-3.30845 - 0.88312I
b = 0.980634 - 0.158120I		

II.
$$I_2^u = \langle b+u, \ a-u-1, \ u^2+u+1 \rangle$$

(i) Arc colorings

a) Are colorings
$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ u+1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u+1 \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u+1 \\ -u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u+1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u+1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4u 1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_7	$u^2 + u + 1$
c_3, c_4, c_5 c_{11}	$u^2 - u + 1$
<i>c</i> ₈	$(u-1)^2$
c_9	u^2
c_{10}	$(u+1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_{11}	$y^2 + y + 1$
c_8, c_{10}	$(y-1)^2$
<i>c</i> ₉	y^2

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0.500000 + 0.866025I	-1.64493 - 2.02988I	-3.00000 + 3.46410I
b = 0.500000 - 0.866025I		
u = -0.500000 - 0.866025I		
a = 0.500000 - 0.866025I	-1.64493 + 2.02988I	-3.00000 - 3.46410I
b = 0.500000 + 0.866025I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^2 + u + 1)(u^{65} - 2u^{64} + \dots + u + 1) $
c_2	$(u^2 + u + 1)(u^{65} + 36u^{64} + \dots - 5u - 1)$
<i>c</i> ₃	$(u^2 - u + 1)(u^{65} + 2u^{64} + \dots - 77u - 209)$
c_4	$(u^2 - u + 1)(u^{65} - 14u^{63} + \dots - 51079u - 9713)$
c_5	$(u^2 - u + 1)(u^{65} - 2u^{64} + \dots + u + 1)$
c_6	$(u^2 + u + 1)(u^{65} + 2u^{64} + \dots - 27u + 17)$
c_7	$(u^2 + u + 1)(u^{65} - 2u^{64} + \dots + u - 1)$
c_8	$((u-1)^2)(u^{65} - 3u^{64} + \dots - 6u + 1)$
<i>c</i> ₉	$u^2(u^{65} + 11u^{64} + \dots - 12u - 4)$
c_{10}	$((u+1)^2)(u^{65} - 3u^{64} + \dots - 6u + 1)$
c_{11}	$(u^2 - u + 1)(u^{65} + 2u^{64} + \dots - 27u + 17)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^2 + y + 1)(y^{65} + 36y^{64} + \dots - 5y - 1)$
c_2	$(y^2 + y + 1)(y^{65} - 12y^{64} + \dots - 97y - 1)$
c_3	$(y^2 + y + 1)(y^{65} - 80y^{64} + \dots + 680999y - 43681)$
c_4	$(y^2 + y + 1)(y^{65} - 28y^{64} + \dots - 2.28328 \times 10^9 y - 9.43424 \times 10^7)$
c_6, c_{11}	$(y^2 + y + 1)(y^{65} - 60y^{64} + \dots - 15013y - 289)$
c_7	$(y^2 + y + 1)(y^{65} + 12y^{64} + \dots - 5y - 1)$
c_8, c_{10}	$((y-1)^2)(y^{65} - 51y^{64} + \dots - 94y - 1)$
<i>c</i> 9	$y^2(y^{65} + 15y^{64} + \dots - 152y - 16)$