

MatCont and PyDSTool

Mark Blyth

Intro to MATCONT

MATCONT is a MATLAB-based bifurcation analysis tool

- K GUI version (demo'd here), and command-line version
- Fully integrated into MATLAB
- More sleek interface than XPP, and less prone to crashing!

MATCONT vs XPP

Feature	MatCont	XPPAUTO	PyDSTool
ODEs	У	у	у
PDEs (discretized)	n	У	n
DDEs	n	У	limited
SDEs	n	У	limited
DAEs	n	У	У
BVPs	n	У	n
Hybrid systems	n	limited	У
Main language	MATLAB	С	Python
Simulation tools	у	у	у

MATCONT vs XPP

Bifurcation Type	Codimension	MatCont	XPPAUTO	PyDSTool
Equilibrium	0	С	D,C	D,C
Limit cycle	0	С	С	С
Limit point	1	D,C	D,C	D,C
Hopf	1	D,C	D,C	D,C
Limit point of cycles	1	D,C	-	D
Neimark-Sacker	1	D,C	D,C	D,C
Period doubling	1	D	D,C	D,C
Homoclinic	1	С	С	-
Cusp	2	D	-	D
Bogdanov Takens	2	D	-	D
Zero-Hopf	2	D	-	D
Double Hopf	2	D	-	D
Generalised Hopf	2	D	-	D
Cusp point of cycles	2	D	-	-
Chenciner	2	D	-	-
Fold-Neimark-Sacker	2	D	-	-
Flip-Neimark-Sacker	2	D	-	-

Step 1: navigate to https://sourceforge.net/projects/matcont/

Step 2: hit the download button and save somewhere memorable

Step 3: navigate to and extract the ZIP folder

Step 3: navigate to and extract the ZIP folder

Step 4: open MATLAB and matcont.m

Step 5: right-click, change current folder to ... Matcont

Step 6: launch MATCONT by typing 'matcont' into the prompt

Issues

MATCONT requires a compiler. If you can't run it, it'll likely be a compiler issue. The solution depends on your system. Google is your friend here.

PyDSTool

- Python-based continuation package
- ₭ Simulation and analysis routines for nonlinear dynamical systems
- More scope to integrate into scientific computing applications
- Steeper learning curve
- Leveloped by a Bristol alumnus!

https://github.com/robclewley/pydstool