

j

0,5

EXAMEN BLANC N°2 DE

MATHEMATIQUES

1/4

DATE: 20/04/2017

2 BAC: pc: fr

Durée: 3H, Coefficient: 7

EXERCICE 1: (3 pts)

On considère dans l'espace rapporté à un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$ les points A(3,0,2)

$$B(5,-1,1)$$
 et $C(0,2,3)$ et la sphère (S) d'équation : $x^2 + y^2 + z^2 - 2x - 2z - 25 = 0$

0,5 1) Montrer que le centre de la sphère (S) est le point $\Omega(1,0,1)$ et que son rayon est $R=3\sqrt{3}$

0,75 2)a) Montrer que : $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ et que : x + y + z - 5 = 0 est une équation cartésienne Du plan (ABC)

b) Vérifier que : $d(\Omega_r(ABC)) = \sqrt{3}$ puis montrer que le plan (ABC) coupe la sphère (S) en un Cercle (Γ) de rayon $r = 2\sqrt{6}$

3) Soit (Δ) la droite passant par le point Ω est perpendiculaire au plan (ABC)

0,25 a) Montrer que : $\begin{cases} x = 1 + t \\ y = t \\ z = 1 + t \end{cases}$ est une représentation paramétrique de la droite (Δ)

 $[0,\!25]$ b) Montrer que : $H(2,\!1,\!2)$ c'est le point d'intersection de la droite (Δ) et le plan (ABC)

0,25 c) Déduire le centre du cercle (Γ)

EXERCICE 2: (3pts)

0,75 1) Résoudre dans l'ensemble des nombres complexe $\mathbb C$ l'équation : $z^2-6z+25=0$

2) On considère dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v})

Les points A et B et C d'affixes respectivement a=3-4i et b=1-i et c=-1+2i

0.5 a) Calculer $\frac{a-c}{b-c}$ et déduire que les points A, B et C sont alignés

b) On considère la translation T de vecteur \vec{u} d'affixe : -5+i

Vérifier que l'affixe du point D image du pont C par la translation T est d = -6 + 3i

0,75 c) Montrer que : $\frac{d-c}{b-c} = -1-i$ et que : $-\frac{3\pi}{4}$ c'est l'argument du nombre complexe : -1-i

0,5 d) Déduire une mesure de l'angle orienté $(\overrightarrow{CB}, \overrightarrow{CD})$

EXERCICE 3 (3pts)

Une urne contient huit jetons : un jeton porte le nombre : 1 et cinq jetons portent le nombre : 2

Et deux jetons portent le nombre : 3 (les jetons sont indiscernables au toucher)

On tire au hasard et simultanément trois jetons de l'urne

1) Soit A l'événement " obtenir trois jetons portant des nombres distincts deux à deux "

Montrer que: $p(A) = \frac{5}{28}$

1

1 2) Soit B l'événement " les jetons tirés portent des nombres de somme égale à 8 "

Montrer que : $p(B) = \frac{5}{56}$

3) Soit C l'événement "Les jeton tirés portent des nombres de somme égale à 7"

Montrer que : $p(C) = \frac{3}{8}$

EXERCICE 4:(3pts)

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0=4$ et $u_{n+1}=\frac{2u_n+2}{u_n+3}$ pour tout n de \mathbb{N}

0,5 | 1) Montrer par récurrence que : $(\forall n \in \mathbb{N})$ $u_n > 1$

2) On pose pour tout $n ext{ de } \mathbb{N}$ $v_n = \frac{u_n - 1}{u_n + 2}$

0,5 a) Vérifier que : $1-v_n = \frac{3}{u_n+2}$ pour tout n de \mathbb{N} et déduire que : $1-v_n \succ 0$ pour tout n de \mathbb{N}

0,5 b) Montrer que: $u_n = \frac{2v_n + 1}{1 - v_n}$ pour tout n de \mathbb{N}

3)a) Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $\frac{1}{4}$ et déduire v_n en fonction

De n

b) Montrer que: $\lim_{n \to +\infty} v_n = 0$ et déduire la limite de la suite $(u_n)_{n \in \mathbb{N}}$

EXERCICE 5: (8pts)

Partie 1:

Soit g la fonction numérique de variable x définie sur $]0,+\infty[$ par : $g(x)=2\ln(x)+1+\frac{3}{x^2}$

- 0,5 1)a) Montrer que: $g'(x) = \frac{2(x^2-3)}{x^3}$ pour tout x de $]0,+\infty[$
- b) Montrer que la fonction g est croissante sur l'intervalle $\left[\sqrt{3},+\infty\right[$ et décroissante sur L'intervalle $\left[0,\sqrt{3}\right]$
- 0,5 2)a) Montrer que : $g(\sqrt{3}) = 2 + \ln(3)$ et vérifier que $g(\sqrt{3}) > 0$
- [0,25] b) Déduire que : $g(x)\succ 0$ pour tout x de $]0,+\infty[$

Partie 2:

On considère la fonction f de variable réel x définie sur $]0,+\infty[$ par : $f(x)=(x^2+3)\ln(x)$

Et soit (C_f) la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) (unité 3cm)

- [0,5] [1) a) Calculer $\lim_{x\mapsto 0^+}f(x)$ et interpréter géométriquement le résultat
- b) Calculer $\lim_{x \to +\infty} f(x)$ puis montrer que $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$ (on peut écrire $\frac{f(x)}{x}$ sous la forme $\left(\frac{x^2+3}{x}\right) \ln(x)$) et déduire que $\left(C_f\right)$ admet une branche parabolique au voisinage de $+\infty$

A déterminer

- 1,25 2) Montrer que : f'(x) = xg(x) pour tout x de $]0,+\infty[$ puis déduire que f est strictement Croissante sur $]O_r+\infty[$
- 0,5 3) a) Montrer que: $f''(x) = \frac{2x^2 \ln(x) + 3(x^2 1)}{x^2}$ pour tout $x \text{ de }]0, +\infty[$
- b) Etudier le signe de $3(x^2-1)$ et $2x^2\ln(x)$ sur l'intervalle $]0,+\infty[$ puis déduire l'étude De la concavité $de(C_f)$

- 0,25 4) Montrer que : y=4x-4 est une équation cartésienne de la droite (T) tangente à (C_f) au Point d'abscisse 1
- 1 5) Tracer la droite (T) et la courbe (C_f) dans le repère (O, \vec{i}, \vec{j})
- 0,5 6) a) Montrer que : $u: x \mapsto \frac{x^3}{3} + 3x$ est une fonction primitive de la fonction $x \mapsto x^2 + 3$ sur \mathbb{R}
- b) En utilisant une intégration par partie montrer que :

$$\int_{1}^{e} (x^{2} + 3) \ln(x) dx = \frac{2}{9} (14 + e^{3})$$

0,25 c) Calculer en cm^2 l'aire du domaine délimite par la courbe (C_f) et l'axe des abscisses et les Deux droites d'équations : x=1 et x=e