Honeycomb or web structure ceramic body production process, including chemical or physical dispersion process

Publication number: DE10012501 (A1)

Publication date: 2000-10-26

Inventor(s):

YAMADA MASANORI [JP]; NAKANISHI TOMOHIKO [JP];

MURATA MASAKAZU [JP]

Applicant(s):

DENSO CORP [JP]

Classification:
- international:

C04B35/622; B28B3/20; B28B3/26; B28B17/02; B28C1/14;

B28C1/16: C04B35/195: C04B38/00; C04B35/622;

B28B3/20; B28B3/26; B28B17/00; B28C1/00; C04B35/18;

C04B38/00; (IPC1-7): B28B3/20

- European:

B28B17/02C; B28C1/14; C04B35/195; C04B38/00B

Application number: DE20001012501 20000315 Priority number(s): JP19990114656 19990422

Abstract of DE 10012501 (A1)

The ceramic body production process includes a chemical or physical dispersion process for the weighed out material, following the weighing out of the initial material This process takes place in a liquid medium and is followed by a kneading of the press mass, extrusion pressing, drying, cutting and burning.

(1) ABWIEGEN (AUSGANGSMATERIAL)

(2) DISPERSION

(FLÜSSIGES MEDIUM, DISPERSIONSÄTTTEL,
AGGREGIERTE PARTIKEL, ULTRASCHALL-DISPERGIERER)

(3) KNETEN DER PRESSMASSE
(DISPERSION, ANDERE AUSGANGSMATERIALIEN)

(4) STRANGPRESSEM

(5) TROCKNEN

(6) SCHNEIDEN

(7) BRIENNEN

KÖRPER MIT WABEN- ODER GITTERSTRUKTUR

Also published as:

BE1014620 (A3)

区 JP2000301516 (A)

Data supplied from the esp@cenet database --- Worldwide

® BUNDESREPUBLIK DEUTSCHLAND

© Offenlegungsschrift © DE 100 12 501 A 1

(5) Int. Cl.⁷: **B 28 B 3/20**

DEUTSCHES
PATENT- UND
MARKENAMT

(a) Aktenzeichen:

100 12 501.8

② Anmeldetag:

15. 3. 2000

(43) Offenlegungstag: 26. 10. 2000

③ Unionspriorität:

11-114656

22. 04. 1999 JP

① Anmelder: DENSO CORPORATION, Kariya, Aichi, JP

(14) Vertreter:

WINTER, BRANDL, FÜRNISS, HÜBNER, RÖSS, KAISER, POLTE, Partnerschaft, 85354 Freising

(12) Erfinder:

Yamada, Masanori, Nishio, Aichi, JP; Nakanishi, Tomohiko, Nishio, Aichi, JP; Murata, Masakazu, Kariya, JP

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(A) Verfahren zur Herstellung keramischer Körper mit Waben- oder Gitterstruktur

Beschrieben wird ein Verfahren zur Herstellung hochqualitativer keramischer Körper mit Waben- oder Gitterstruktur, welche geringe Wärmekapazität haben und welche keinen Bruch der Zellenwände während des Strangpressens zeigen, wenn sie mit geringen Zellwanddicken hergestellt werden. Nach dem Abwiegen eines oder mehrerer Typen von keramischen Ausgangsmaterialien für die gewünschte Keramikzusammensetzung vor dem Schritt des Knetens wird dasjenige keramische Ausgangsmaterial aus den keramischen Ausgangsmaterialien, welches aggregierte Partikel zeigt, durch ein Verfahren einer chemischen und/oder physikalischen Dispergierung in einem flüssigen Medium vor-dispergiert oder -feinverteilt, um es bzw. die aggregierten Partikel in eine Größe umzuwandeln, welche durch die Schlitze des Strangpreßformwerkzeuges laufen können. Durch Hinzufügung anderer keramischer Ausgangsmaterialien zu der Dispersion und durch Kneten zur Herstellung einer Preßmasse ist es möglich, eine Rück-Aggregation oder erneute Aggregation zu verhindern und einen Strangpreßvorgang durchzuführen, bei welchem sich die Partikel des Ausgangsmaterials bzw. der Ausgangsmaterialien in einem dispergierten oder feinverteilten Zustand befinden. (1) ABWIEGEN (AUSGANGSMATERIAL)

(2) DISPERSION

(FLÜSSIGES MEDIUM, DISPERSIONSMITTEL,
AGGREGIERTE PARTIKEL, ULTRASCHALL-DISPERGIERER)

(3) KNETEN DER PRESSMASSE
(DISPERSION, ANDERE AUSGANGSMATERIALIEN)

(4) STRANGPRESSEN

(5) TROCKNEN

(6) SCHNEIDEN

(7) BRENNEN

KÖRPER MIT WABEN- ODER GITTERSTRUKTUR

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung keramischer Körper mit Waben- oder Gitterstruktur, welche beispielsweise als Träger für Katalysatoren in 5 Abgasreinigungs-Katalysatoren von Verbrennungsmotoren, beispielsweise Kraftfahrzeugmotoren, oder als Filter zur Wasserreinigung verwendet werden, und welche durch Strangpressen von Preßmassen oder -körpern in Wabenoder Gitterform unter Verwendung von Strangpreßformen 10 mit engen Schlitzen gebildet werden.

Durch die Verschärfung der Abgasemissionsstandards für Kraftfahrzeugmotoren in den letzten Jahren entstand ein Bedürfnis für eine raschere Aktivierung von Abgasreinigungs-Katalysatoren, um die Kohlenwasserstoffemissionen unmit- 15 telbar nach dem Anlassen des Motors zu verringern. Ein Ansatz, der untersucht wurde, um dies zu erhalten, ist, die Wärmekapazität der keramischen Körper mit Waben- oder Gitterstruktur, welche als Katalysatorenträger dienen, abzusenken, was dadurch bewerkstelligt wird, daß die Dicke der 20 Zellenwände verringert wird. Ein Schmälermachen der Zellenwände hat jedoch zu einem Brechen der Zellenwände während des Strangpressens des Körpers mit Waben- oder Gitterstruktur geführt. Der Grund hierfür ist darin anzunehmen, daß es grobe, d. h. aggregierte oder verklumpte Parti- 25 kel im Rohmaterial gibt, welches zum Formen des Körpers mit Waben- oder Gitterstruktur verwendet wird, wobei diese groben verklumpten Partikel die gitterartigen Schlitze oder den Einlaß des Strangpreßformwerkzeuges verlegen, so daß die Ausbildung des Preßkörpers oder Preßlings behindert 30

Was die Partikelgröße des Ausgangsmaterialpulvers betrifft, offenbart beispielsweise die ungeprüfte japanische Patentveröffentlichung Nr. 8-112528, daß Preßlinge mit keinen Gitterfehlern dadurch erhalten werden können, daß das Ver- 35 hältnis von R/M auf 1/3 beschränkt wird, wobei R die maximale Partikelgröße des Ausgangsmaterialpulvers und M die Schlitzbreite der Strangpresse für den Preßvorgang ist. Im Falle von keramischen Roh- oder Ausgangsmaterialien, welche sich leicht zusammenklumpen und Sekundärpartikel 40 bilden, hat jedoch das Ausgangspulver, das durch Aussortieren, Aussieben oder dergleichen auf eine Partikelgröße nicht größer als eine bestimmte Größe vorbereitete wird, sehr kleine Bestandteile der primären Partikelgröße und von daher wird der Körper mit der Waben- oder Gitterstruktur 45 beim Pressen und Brennen verdichtet und hat damit ein niedriges Hohlraum- oder Porenvolumen. Infolgedessen wächst die Wärmekapazität an und der thermische Ausdehnungskoeffizient ist höher, was zu einer niedrigen thermischen Schockfestigkeit führt. Weiterhin tritt selbst bei Aus- 50 gangsmaterialien, bei denen die primäre Partikelgröße kleiner als die Schlitzbreite ist, eine erneute Zusammenklumpung oder Re-Aggregation aufgrund von Feuchtigkeit etc. auf, was zu einer größeren tatsächlichen Partikelgröße führt, solange nicht Sorgfalt bei der Handhabung während des 55 Herstellungsvorganges vor der Vorbereitung der Preßmasse und während der nachfolgenden Speicherung des Rohmaterials angewendet wird. Es ist nicht einfach, Partikel, welche sich auf diese Weise zusammengeklumpt haben, wieder zu zerteilen oder zu entflocken und in mehr Basis- oder Grund- 60 partikel zurückzuverteilen, und dieses Problem war bislang ein Hindernis beim Schmälermachen der Zellenwanddikken.

Wenn weiterhin das Aussieben mit einem Trockensieb durchgeführt wird, bewirken die zusammengeklumpten Partikel unmittelbar ein Verstopfen des Siebs, wenn sie ausgesiebt werden und dieser schlechtere Siebvorgang oder diese schlechtere Siebausbeute führt zu höheren Kosten. Bei Naß-

sieben tritt eine Re-Aggregation nach dem Trocknen trotz des Aussiebens auf und die sich hieraus ergebende wachsende Anzahl von Verfahrensschritten führt ebenfalls zu höheren Kosten.

Wenn somit versucht wird, die Zellenwanddicken eines Körpers mit Waben- oder Gitterstruktur durch ein Verfahren nach dem Stand der Technik dünner oder schmäler zu machen, führt dies zu einem Verstopfen der gitterartigen Schlitze des Strangpreßformwerkzeugs während des Strangpressens aufgrund der groben zusammengeklumpten Partikel, welche in der Preßmasse vorhanden sind, was zu Problemen hinsichtlich eines Zellenwandbruches und einer geringeren Qualität des Körpers mit Waben- oder Gitterstruktur führt.

Es ist von daher Aufgabe der vorliegenden Erfindung, einen qualitativ hochwertigen keramischen Körper mit geringer Wärmekapazität schaffen zu können, wobei diesem schmälere Zellenwanddicken verliehen werden können, ohne daß die Zellenwände während des Strangpressens brechen.

Zur Lösung dieser Aufgabe schlägt die vorliegende Erfindung die im Anspruch 1 angegebenen Merkmale vor, wobei die Unteransprüche vorteilhafte Weiterbildungen der Erfindung zum Inhalt haben.

Gemäß der vorliegenden Erfindung wird demnach ein keramischer Körper mit Waben- oder Gitterstruktur dadurch hergestellt, daß ein flüssiges Medium mit einem oder mehreren Typen von keramischen Roh- oder Ausgangsmaterialien, welche abgewogen worden sind, um die gewünschte Keramikzusammensetzung zu erhalten, gemischt wird, wonach die Mischung durchgeknetet wird, um eine Preßmasse zu erhalten, welche dann unter Verwendung eines Strangpreßformwerkzeuges mit waben- oder gitterförmig angeordneten engen Schlitzen einem Strangpreßvorgang unterworfen wird, wonach ein Brennvorgang erfolgt, wobei ein Schritt des Dispergierens zusammengeklumpter Partikel durchgeführt wird nach dem Abwiegen des keramischen Ausgangsmaterials und vor dem Schritt des Knetens. Bei diesem Dispergierungs- oder Verteilungsschritt wird das keramische Ausgangsmaterial, welches die aggregierten oder zusammengeklumpten Partikel in dem keramischen Ausgangsmaterial bildet, durch ein Verfahren einer chemischen und/oder physikalischen Dispergierung in dem flüssigen Medium dispergiert oder verteilt, um die aggregierten Partikel auf eine derartige Größe zu bringen, daß sie durch die Schlitze des Strangpreßformwerkzeugs laufen können, wonach dann das Material dem Knetschritt unterworfen wird.

Das keramische Ausgangsmaterial neigt zur Aggregation, wodurch Sekundärpartikel gebildet werden, und selbst wenn während der Vorbereitung des Ausgangsmaterials ein Siebvorgang durchgeführt wird, tritt danach eine Re-Aggregation auf, was ein Grund des Zellenbruchs während des Strangpressens ist. Somit werden bei dem oben beschriebenen Dispergierungsschritt die aggregierten Partikel in dem keramischen Ausgangsmaterial in dem flüssigen Medium vor-dispergiert, um die Partikel auf eine Größe derart einzustellen, daß sie durch die Schlitze des Strangpreßformwerkzeugs laufen können, und danach kann diesem ohne ein Trocknen ein Knetschritt und die Hinzufügung anderer keramischer Ausgangsmaterialien, Preß-Hilfsmitteln oder dergleichen und ein letztendliches Kneten folgen, um eine Preßmasse vorzubereiten mit den Ausgangsmaterialpartikeln hierin verteilt. Da dies es möglich macht, ein Strangpressen ohne Verstopfen durch aggregierte Partikel durchzuführen und somit auf zufriedenstellende Weise ein Zellenbruch verhindert werden kann, wird es möglich, die Zellenwanddicken geringer zu machen, um einen Keramikkörper mit Waben- oder Gitterstruktur zu erhalten, der hohe Qualität und niedrige Wärmekapazität hat. Da hierdurch weiterhin der Vorgang des Aussiebens etc. des Ausgangsmaterials beseitigt wird, wird der Herstellungsprozeß vereinfacht und Kosten lassen sich verringern.

Das chemische Dispergierungsverfahren kann ein Verfahren der Entflockung und Dispergierung der aggregierten Partikel sein, welches als Dispergierungsmittel wenigstens einen Typ aus der nachfolgenden Gruppe bestehend aus anionischen, kationischen, amphoterischen und nicht-ionischen oberflächen- oder grenzflächenaktiven Mitteln verwendet, wobei das Dispergierungsmittel dem flüssigen Medium zusammen mit dem keramischen Ausgangsmaterial hinzugefügt wird, welches die aggregierten Partikel enthält und dann gleichförmig untergemischt wird.

Wenn die Dispersion, welche ein geeignetes oberflächenaktives Mittel enthält, so zu liegen kommt, daß sie die feinen
Partikel des keramischen Rohmaterials, welche die aggregierten Partikel bilden, umgibt, wird eine wechselseitig abstoßende Kraft durch die gleiche Polarität wie diejenige des
oberflächenaktiven Mittels erzeugt, was die Entflockung
und Dispergierung der aggregierten Partikel in mehr Grundpartikel erleichtert und eine erneute Aggregation verhindert.
Durch Hinzufügen eines anderen keramischen Ausgangsmaterials, eines Preß-Hilfsmittels oder dergleichen zu der
Dispersion, ist es möglich, eine Preßmasse zu bilden, welche diesen dispergierten oder feinverteilten Zustand beibehält.

Das physikalische Dispergierungsverfahren kann ein Verfahren sein, bei dem eine Vibrations- oder Drehkraft auf ein flüssiges Medium aufgebracht wird, welchem ein keramisches Ausgangsmaterial hinzugefügt worden ist, das aggregierte Partikel enthält, um hierdurch die aggregierten Partikel zu entflocken und zu verteilen.

Die Anwendung einer physikalischen Kraft, beispielsweise einer Vibrations- oder Drehkraft auf feine Partikel eines keramischen Ausgangsmaterials, welches aggregierte Partikel bildet, kann auch die Entflockung und Dispergierung der aggregierten Partikel in mehr Grundpartikel erleichtern und eine erneute Aggregation verhindern.

Es kann auch wenigstens ein Typ eines Dispergierungsmittels enthalten sein, welches aus anionischen, kationischen, amphoterischen und nicht-ionischen oberflächenoder grenzflächenaktiven Mitteln ausgewählt wird und dem flüssigen Medium zugefügt wird, welches das keramische Ausgangsmaterial enthält, welches einem physikalischen 45 Dispergierungsprozeß unterworfen werden soll.

Indem somit das Dispergierungsmittel aus dem chemischen Dispergierungsverfahren zusammen mit einem physikalischen Dispergierungsverfahren verwendet wird, ist es möglich, den Dispergierungseffekt weiter zu erhöhen und eine noch wirksamere Entflockung und Dispergierung oder Verteilung der aggregierten Partikel zu erzielen.

Weitere Einzelheiten, Aspekte und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung anhand der Zeichnung.

Es zeigt:

Fig. 1 ein Flußdiagramm einer Ausführungsform der Produktionsschritte für einen keramischen Körper mit Wabenoder Gitterstruktur gemäß dem erfindungsgemäßen Verfahren;

Fig. 2 eine graphische Darstellung der Partikelgrößenverteilung von Kaolin vor der Entflockungs- und Dispergierungsbehandlung gemäß einem Beispiel der vorliegenden Erfindung:

Fig. 3 eine graphische Darstellung der Partikelgrößenverteilung von Kaolin nach der Entflockungs- und Dispergierungsbehandlung gemäß einem Beispiel der vorliegenden Erfindung;

Fig. 4 eine schematische Darstellung des Zustandes am Ende (oder einer Schnittfläche) eines keramischen Körpers mit Waben- oder Gitterstruktur, wie er durch ein Beispiel eines erfindungsgemäßen Verfahrens hergestellt ist; und

Fig. 5 eine schematische Darstellung des Zustandes am Ende (oder einer Schnittfläche) eines keramischen Körpers mit Waben- oder Gitterstruktur, wie er ohne Entflockungsund Dispergierungsbehandlung hergestellt worden ist.

Ein Herstellungsverfahren für keramische Körper mit Waben- oder Gitterstruktur (nachfolgend "Keramikkörper" genannt) gemäß der Erfindung wird nachfolgend im Detail erläutert.

Gemäß der Erfindung kann die Keramik, welche den Keramikkörper bildet, beispielsweise Cordierit sein. Cordierit hat als theoretische Zusammensetzung die Darstellung 2MgO · 2Al₂O₃ · 5SiO₂ und die Zusammensetzung hat für gewöhnlich die Anteile von 49,0 bis 53,0 Gew.-% SiO₂, 33,0 bis 37,0 Gew.-% Al₂O₃ und 11,5 bis 15,5 Gew.-% MgO. Es können jedoch auch andere strangpreßfähige Keramiken zur Herstellung des Keramikkörpers verwendet werden, das heißt, es besteht keine Einschränkung auf Cordierit.

Fig. 1 ist ein Flußdiagramm, in welchem die Herstellungsschritte für einen Keramikkörper gemäß dem erfindungsgemäßen Verfahren dargestellt sind.

Zunächst werden in dem mit (1) bezeichneten Schritt ein oder mehrere Typen von Keramikroh- oder -ausgangsmaterialien, welche als Startmaterialien dienen, abgewogen, um die gewünschte Keramikzusammensetzung zu bilden. Das verwendete Keramikausgangsmaterial ist für gewöhnlich ein Oxid, Nitrid, Carbid, Borid, Hydroxid oder Chlorid, welches wenigstens eines der Metallelemente enthält, welche die Keramik bilden sollen, und sie können wie geeignet oder gewünscht, abhängig von den jeweiligen Notwendigkeiten und Gegebenheiten, ausgewählt werden. Um beispielsweise einen Keramikkörper aus Cordierit herzustellen, ist das verwendete Cordierit-Ausgangsmaterial für gewöhnlich Talk (Mg₃Si₄O₁₀(OH)₂), Kaolin (Al₂Si₂O₅(OH)₄), Aluminiumoxid (Al₂O₃), Aluminiumhydroxid (Al(OH)₃) oder dergleichen und diese Ausgangsmaterialien können in einer Zusammenmischung verwendet werden, um die theoretische Zusammensetzung zu bilden.

In dem mit (2) bezeichneten Schritt wird von den keramischen Ausgangsmaterialien zumindest dasjenige keramische Ausgangsmaterial, welches grobe aggregierte oder zusammengeklumpte Partikel bildet, welche nicht durch die Schlitze des Strangpreßformwerkzeugs laufen können, durch ein chemisches und/oder physikalisches Dispergierungsverfahren im flüssigen Medium vorverteilt oder vordispergiert. In diesem Schritt wird ein Effekt erhalten, wenn zumindest dasjenige keramische Ausgangsmaterial, welches die aggregierten Partikel bildet, entflockt und dispergiert wird und wenn nur ein Teil des keramischen Ausgangsmaterials aggregiert hat, dann die aggregierten Partikel alleine dem Dispergierungsschritt (2) zugeführt werden können oder ansonsten das gesamte keramische Ausgangsmaterial mit den aggregierten Partikeln hierin dem Dispergierungsschritt zugeführt wird.

Das chemische Dispergierungsverfahren ist ein Verfahren, bei welchem ein Dispergierungsmittel zur Entflockung und Dispergierung der aggregierten Partikel auf eine Größe verwendet wird, welche es ihnen erlaubt, durch die Schlitze des Strangpreßformwerkzeuges hindurchzutreten, und das verwendete Dispergierungsmittel ist von wenigstens einem Typ, ausgewählt aus der nachfolgenden Gruppe: anionische, kationische, amphoterische und nicht-ionische grenzflächen- oder oberflächenaktive Mittel (wobei die letzteren Typen wie beispielsweise Ether, Ester, Amine, Amide und deren Derivate sind, welche nicht-ionisch sind); Art und

5

Menge von Dispergierungsmittel oder Dispergierungsmitteln wird optimal abhängig von der Art der aggregierten Partikel ausgewählt, welche wiederverteilt oder dispergiert werden sollen. Hierbei ist es vorzuziehen, ein Mittel zu verwenden, welches hohe Dispergierungseigenschaften hat, wenn es in geringen Mengen hinzugefügt wird. Das flüssige Medium kann Wasser oder ein geeignetes organisches flüssiges Medium, beispielsweise ein Alkohol sein. Wenn eine Dispergierung durch dieses Verfahren durchgeführt wird, kann das Dispergierungsmittel dem flüssigen Medium hin- 10 zugefügt und mit diesem innig gemischt werden, um eine Lösung zu bilden, welcher dann das keramische Ausgangsmaterial, welches die aggregierten Partikel bildet, hinzugefügt wird, wonach dann die Mischung weiter bis zur Homogenität gemischt werden kann, wodurch eine Entflockung 15 und Verteilung der aggregierten Partikel durch die Wirkung des Dispergierungsmittels erleichtert wird und eine erneute Aggregation oder Re-Aggregation verhindert wird.

Im Falle mehrerer keramischer Ausgangsmaterialien, welche aggregierte Partikel enthalten, kann jeder Typ sepa- 20 rat unter Verwendung geeigneter Dispergierungsmittel dispergiert werden, und sodann werden die Materialien im Knetprozeß für die Preßmasse zusammengemischt. Wenn es andererseits möglich ist, das gleiche Dispergierungsmittel zu verwenden, kann eine Mehrzahl von keramischen Aus- 25 gangsmaterialien, welche aggregierte Partikel enthalten, gleichzeitig in das flüssige Medium mit dem Dispergierungsmittel eingebracht und hierin dispergiert werden. Bei diesem Schritt ist es auch möglich, andere keramische Ausgangsmaterialien hinzuzufügen, welche keine aggregierten 30 Partikel enthalten; wenn jedoch ihr Anteil höher wird, verringert sich der Dispergierungseffekt und daher werden sie bevorzugt in einer Menge hinzugefügt, welche die Dispergierungsfähigkeit nicht verringert.

Das physikalische Dispergierungsverfahren ist ein Ver- 35 fahren, bei dem bekannte Dispergierungsvorrichtungen verwendet werden, um eine Vibrations- oder Drehkraft auf das flüssige Medium aufzubringen, welchem das keramische Ausgangsmaterial mit den aggregierten Partikeln hinzugefügt worden ist, wodurch Scherbelastungen auf die kerami- 40 schen Ausgangsmaterialpartikel, welche die aggregierten Partikel in dem flüssigen Medium bilden, aufgebracht werden, um die aggregierten Partikel physikalisch zu entflocken und zu verteilen. Als flüssiges Medium kann geeigneterweise Wasser oder ein organisches flüssiges Medium, bei- 45 spielsweise ein Alkohol, verwendet werden. Eine Dispergierungsvorrichtung mit höherer Frequenz (höherer Drehzahl) und höherer Durchsatz- oder Ausgangsleistung, beispielsweise ein Ultraschall-Dispergierer, der Ultraschallwellen verwendet, erzeugt einen höheren Dispergierungseffekt, je- 50 doch sind geringerer Durchsatz und geringere Scherbelastungen ökonomischer, vorausgesetzt, daß eine Entflockung und Dispergierung innerhalb relativ kurzer Zeit möglich ist. Auch bei diesem Verfahren können bei mehreren keramischen Ausgangsmaterialien, welche aggregierte Partikel 55 enthalten, diese separat oder gleichzeitig im gleichen flüssigen Medium dispergiert werden.

Ein physikalisches Dispergierungsverfahren kann auch in Kombination mit einem chemischen Dispergierungsverfahren verwendet werden. In diesem Fall wird wenigstens ein oberflächenaktives Mittel des anionischen oder kationischen oder amphoterischen oder nicht-ionischen Typs als Dispergierungsmittel verwendet und gleichförnig mit dem flüssigen Medium gemischt, um eine Lösung herzustellen, welcher dann das keramische Ausgangsmaterial mit den aggregierten Partikeln hinzugefügt wird, und dann wird eine Dispergierungsvorrichtung verwendet, um die aggregierten Partikel zu entflocken und zu verteilen. Dies ist bevorzugt,

da der Dispergierungs- oder Verteilungseffekt erhöht wird und eine wirksamere Entflockung und Dispergierung der aggregierten Partikel ermöglicht ist.

Im Schritt (3) werden ein anderes keramisches Ausgangsmaterial und ein allgemein verwendetes Preß-Hilfsmittel, beispielsweise ein Benetzungsmittel, ein Schmiermittel, ein Binder oder dergleichen der Dispersion mit dem keramischen Ausgangsmaterial, welches entflockt und dispergiert worden ist, hinzugefügt und eine geeignete Menge eines flüssigen Mediums wird hinzugefügt und untergeknetet, um eine strangpreßfähige Preßmasse zu erstellen. Als Beispiele von Benetzungsmitteln und Schmiermitteln lassen sich Wachse, wasserlösliche Derivate mehrwertiger Alkohole, oberflächenaktive Mittel etc. nennen und als Beispiele für Binder lassen sich Methylcellulose, Polyvinylalkohol oder dergleichen nennen. Diese Preß-Hilfsmittel können in dem Dispergierungsschritt (2) genausogut hinzugefügt werden, vorausgesetzt, daß sie die Dispergierungseigenschaften nicht beeinflussen. Weiterhin wird Schritt (3) bevorzugt nach dem Dispergierungsschritt (2) durchgeführt, da dies es möglich macht, eine möglicherweise auftretende Re-Aggregation durch Trocknung zu vermeiden. Eine Aggregation tritt nicht ohne weiteres auf aufgrund der hohen Energie der Partikelbewegung während, des Knetvorgangs, so daß eine Preßmasse hergestellt werden kann, in der die Partikel des Ausgangsmaterials in einem feinverteilten, dispergierten Zustand vorliegen.

Im nachfolgenden Schritt (4) wird die Preßmasse, welche in Form eines Preßlings mit rundem stabförmigem Querschnitt vorgeformt sein kann, unter Verwendung einer Strangpreßform mit waben- oder gitterförmig liegenden engen Schlitzen stranggepreßt. Da sämtliche Partikel des Ausgangsmaterials des runden Stabes eine Größe haben, welche durch die Schlitze hindurchtreten können, ist es möglich, Defekte oder Fehler, beispielsweise Zellenwandbruch, an dem sich ergebenden Strangpreßprodukt zu vermeiden. Nach dem Trocknen in Schritt (5) erfolgt ein Zuschnitt auf schritt (7) ein Keramikkörper mit Waben- oder Gitterstruktur durch Brennen mit bestimmten Bedingungen abhängig von dem Keramiktyp hergestellt.

Somit erlaubt bei dem Verfahren gemäß der Erfindung die Einbringung des Schrittes, bei dem die aggregierten Partikel dispergiert werden, vor dem Schritt des Knetens, daß die Partikel des Ausgangsmaterials in der Preßmasse auf einen Grad oder eine Größe dispergiert werden können, daß sie durch die Schlitze des Strangpreßformwerkzeugs treten können. Es ist daher möglich, eine gestörte oder unterbrochene Zufuhr der Preßmasse aufgrund eines Verstopfens der aggregierten Partikel während des Strangpressens zu verhindern, so daß ein Keramikkörper erhalten werden kann, der dünne Zellenwände hat, jedoch keine Brüche in den Zellenwänden aufweist.

Da weiterhin Ausgangsmaterialien mit groben aggregierten Partikeln ebenfalls ohne Sieben oder dergleichen verwendet werden können, wird der Herstellungsvorgang vereinfacht und die Produktionskosten lassen sich verringern.

Beispiel

Ein Körper mit Waben- oder Gitterstruktur aus Cordierit wurde gemäß dem Verfahren der vorliegenden Erfindung hergestellt. Pulver von Talk, Kaolin, Aluminiumoxid und Aluminiumhydroxid wurden als Ausgangsmaterialien für das Cordierit verwendet, und zwar in Mengen derart, daß die Zusammensetzung vor dem Brennen nahe der theoretischen Zusammensetzung für Cordierit war. Von den Cordierit-Ausgangsmaterialien war es das Kaolin (Halloysit oder Hy-

8

dro-Kaolin) mit Primärpartikeln, welche nadelförmige Kristalle sind und welche aggregierte Partikel bildeten, wohingegen die anderen Cordierit-Ausgangsmaterialien, welche enthalten waren, keine aggregierten Partikel enthielten. Das Kaolin, das aggregierte Partikel ausgebildet hatte, wurde daher einer Behandlung unterworfen, bei welcher eine Dispergierung unter Verwendung eines chemischen oder physikalischen Dispergierungsverfahrens erfolgte. Zur Herstellung des flüssigen Mediums wurde Ammonium-Polycarboxylat, eine wäßrige Lösung, welche als anionisches oberflächenaktives Mittel wirkt, einer Wassermenge notwendig zum Durchkneten der Preßmasse für das Strangpressen mit 0,4 Gew.-% auf der Grundlage der Menge von Kaolin hinzugefügt und die Komponenten wurden gleichförmig gemischt. Das Kaolin wurde dieser Lösung hinzugefügt und 15 ein Ultraschallmischer wurde als Dispergierungsvorrichtung für eine rasche Dispergierung verwendet, wonach die Mischung weiter zur Entflockung und Dispergierung der aggregierten Partikel gleichförmig gemischt wurde.

Fig. 2 zeigt die Meßergebnisse der Partikelgrößenverteilung in einem nassen System durch Laserlichtstreuung vor der Entflockung und Dispergierung des Kaolins und Fig. 3 zeigt die Meßergebnisse der Partikelgrößenverteilung nach der Entflockung und Dispergierung der aggregierten Partikel auf oben beschriebene Weise. Aus einem Vergleich dieser graphischen Darstellung ergibt sich, daß der Spitzenwert der Partikelverteilung vor der Behandlung nahe einiger Dutzend Mikrometer lag, einschließlich einer Vielzahl von groben aggregierten Partikeln über 100 µm, jedoch nach der Entflockung und Dispergierungsbehandlung war die Partikelgröße auf ungefähr 1 µm oder kleiner verringert.

Nachfolgend wurden dieser erhaltenen Dispersion die zusätzlichen Cordierit-Ausgangsmaterialien, nämlich Talk, Aluminiumoxid und Aluminiumhydroxid, 2,8 Gew.-% eines Schmiermittels und Oberflächenbenetzungsmittels und 35 5.5 Gew.-% eines Binders bezogen auf 100 Gew.-% des Cordierit-Ausgangsmaterials hinzugefügt und Wasser wurde in einer Menge hinzugefügt, um einen Zustand einzustellen, der geeignet ist für eine Preßmasse (was Viskosität, Formhaltevermögen, Fluidität, Härte etc. betrifft) und ein 40 Knetvorgang wurde durchgeführt, um die Preßmasse zu bilden. Eine 5-%-ige Lösung von Polyalkylen-Glykol wurde als Schmiermittel und Oberflächenbenetzungsmittel verwendet und als Binder wurde eine wasserlösliche Binder-Methylcellulose verwendet. Die Preßmasse wurde in einen 45 langgestreckten Preßling runden Querschnitts geeigneter Größe für eine Strangpreßmaschine geformt und dann einem Strangpreßvorgang unter Verwendung eines Strangpreßformwerkzeugs mit einer Schlitzbreite von 50 µm unterworfen. Nach dem Trocknen des erhaltenen Preßlings 50 oder Preß-Endprodukts erfolgte ein Zuschnitt auf eine bestimmte Länge und ein Brennvorgang mit der Brenntemperatur für Cordierit, um einen Cordierit-Körper mit Wabenoder Gitterstruktur herzustellen.

Fig. 4 zeigt den Zustand am Austrittsende oder einer Schnittsläche des erhaltenen Cordierit-Körpers mit Wabenoder Gitterstruktur. Zum Vergleich zeigt Fig. 5 den Zustand an dem Austrittsende oder einer Schnittsläche eines Körpers mit Waben- oder Gitterstruktur, der ohne vorherige Entslokkung oder Dispergierung des Kaolins nach der Vorbereitung hergestellt worden ist. Gemäß Fig. 4 erlaubt die erfindungsgemäße Vorgehensweise die Herstellung eines Cordierit-Körpers mit Waben- oder Gitterstruktur mit dünnen Zellenwänden, jedoch ohne Bruch der Zellenwände. Im Gegensatz hierzu zeigt Fig. 5 erheblichen Zellenwandbruch, was anzeigt, daß während des Strangpressens aufgrund von aggregierten Partikeln in der Preßmasse Verstopfungen aufgetreten sind.

Somit können Cordierit-Körper mit Waben- oder Gitterstruktur, welche gemäß der vorliegenden Erfindung hergestellt werden, dünne Zellenwände haben, ohne daß ein Bruch der Zellenwände auftritt, und sie sind daher als Katalysatorträger für Abgasreinigungskatalysatoren in Brennkraftmaschinen geeignet, wobei ihre verringerte Wärmekapazität es ermöglicht, daß eine rasche Aktivierung der Katalysatoren möglich ist. Das oben beschriebene Beispiel war ein Beispiel der Herstellung eines Cordierit-Körpers mit Waben- oder Gitterstruktur; der erfindungsgemäße Vorgang oder das erfindungsgemäße Verfahren kann jedoch selbstverständlich auch bei anderen keramischen Körpern mit Waben- oder Gitterstruktur angewendet werden, welche durch Strangpressen ihre Waben- oder Gitterform erhalten, beispielsweise ein Keramikkörper mit Waben- oder Gitterstruktur, wie er in einem Ultrafilter zur Wasserreinigung verwendet wird.

Weiterhin verwendet das oben beschriebene Beispiel ein anionisches oberflächenaktives Mittel als Dispergierungsmittel, da Wasser als flüssiges Medium verwendet wurde, da weiterhin nadelförmige Hälloysit-Kristalle (Kaolin-Kristalle) als eines der Cordierit-Ausgangsmaterialien, aggregierte Partikel enthaltend, verwendet wurde, und da es bevorzugt war, den pH-Wert der Lösung näher an neutral zu bringen, da als Dispergierungsvorrichtung ein Ultraschall-Dispergierer verwendet wurde; ein anionisches, kationisches, amphoterisches oder nicht-ionisches oberflächenaktives Mittel kann jedoch wie geeignet, abhängig von der Art des flüssigen Mediums und dem Keramikmaterial, den Partikelformen, den Preß-Hilfsmitteln, den Dispergierungsvorrichtungen etc. verwendet werden.

Obgleich weiterhin im obigen Beispiel ein Ultraschall-Dispergierer als Dispergierungsvorrichtung verwendet wurde, kann genausogut ein Rührer (Mischer), der eine Drehkraft auf die Dispersion aufbringt, verwendet werden, um einen ähnlichen Entflockungs- und Dispergierungseffekt an den aggregierten Partikeln zu bewirken. Da jedoch das Risiko besteht, daß Materialabtrag von den rotierenden Mischschaufeln als Verunreinigung in die Preßmasse gelangt, wenn das keramische Rohmaterial die mit hoher Geschwindigkeit drehenden Misch- oder Rührschaufeln kontaktiert und abschleift, ist ein Ultraschall-Dispergierer, der Vibrationen verwendet, vorzuziehen, da er das Risiko des Einschlusses derartiger Verunreinigungen nicht hat.

Beschrieben wurde ein Verfahren zur Herstellung hochqualitativer keramischer Körper mit Waben- oder Gitterstruktur, welche geringe Wärmekapazität haben und welche keinen Bruch der Zellenwände während des Strangpressens zeigen, wenn sie mit geringen Zellenwanddicken hergestellt werden. Nach dem Abwiegen eines oder mehrerer Typen von keramischen Ausgangsmaterialien für die gewünschte Keramikzusammensetzung vor dem Schritt des Knetens wird dasjenige keramische Ausgangsmaterial aus den keramischen Ausgangsmaterialien, welches aggregierte Partikel zeigt, durch ein Verfahren einer chemischen und/oder physikalischen Dispergierung in einem flüssigen Medium vordispergiert oder -feinverteilt, um es bzw. die aggregierten Partikel in eine Größe umzuwandeln, welche durch die Schlitze des Strangpreßformwerkzeuges laufen können. Durch Hinzufügung anderer keramischer Ausgangsmaterialien zu der Dispersion und durch Kneten zur Herstellung einer Preßmasse ist es möglich, eine Rück-Aggregation oder erneute Aggregation zu verhindern und einen Strangpreßvorgang durchzuführen, bei welchem sich die Partikel des Ausgangsmaterials bzw. der Ausgangsmaterialien in einem dispergierten oder feinverteilten Zustand befinden.

Patentansprüche

1. Ein Verfahren zur Herstellung eines keramischen Körpers mit Waben- oder Gitterstruktur, bei dem ein keramischer Körper mit Waben- oder Gitterstruktur dadurch hergestellt wird, daß ein flüssiges Medium mit einer oder mehreren Arten von keramischen Ausgangsmaterialien gemischt wird, welche abgewogen werden, um die gewünschte Keramikzusammensetzung zu haben, dann die Mischung geknetet wird, um eine Preß- 10 masse zu erhalten und dann ein Strangpreßvorgang unter Verwendung eines Strangpreßformwerkzeugs mit waben- oder gitterförmigen engen Schlitzen durchgeführt und ein Brennvorgang angeschlossen wird, wobei das Verfahren dadurch gekennzeichnet ist, daß nach 15 dem Abwiegen der keramischen Ausgangsmaterialien und vor dem Schritt des Knetens dasjenige keramische Ausgangsmaterial aus den keramischen Ausgangsmaterialien, welches aggregierte Partikel gebildet hat, durch ein Verfahren einer chemischen oder physikali- 20 schen Dispergierung oder durch beides in dem flüssigen Medium dispergiert wird, um die aggregierten Partikel in eine Größe umzuwandeln, derart, daß sie durch die Schlitze in dem Strangpreßformwerkzeug hindurchtreten können, wonach dann das Material dem 25 Knetschritt unterworfen wird.

Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß nach der Dispergierung das keramische Ausgangsmaterial dem Knetschritt ohne Trocknen zugeführt wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Verfahren der chemischen Dispergierung ein Verfahren des Entflockens und Dispergierungsmittel wenigstens einen Typ, ausgewählt aus der nachfolgenden Gruppe, verwendet: anionische, kationische, amphoterische und nicht-ionische oberflächenaktive Mittel, wobei das Dispergierungsmittel dem flüssigen Medium zusammen mit dem keramischen Ausgangsmaterial hinzugefügt wird, welches die aggregierten Partikel enthält, und gleichförmig mit diesem vermischt wird.

4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das physikalische Dispergierungsverfahren ein Verfahren ist, bei dem eine Vibrations- oder Drehkraft auf das flüssige Medium, welchem das keramische Ausgangsmaterial mit den aggregierten Partikeln hinzugefügt wurde, aufgebracht wird, um eine Entflockung und Dispergierung der aggregierten Partikel durchzuführen.

5. Verfahren nach Anspruch 4, wobei wenigstens ein Typ, ausgewählt aus der nachfolgenden Gruppe, dem flüssigen Medium als Dispergierungsmittel hinzugefügt wird: anionische, kationische, amphoterische und nicht-ionische oberflächenaktive Mittel.

Hierzu 5 Seite(n) Zeichnungen

60

- Leerseite -

Nummer: Int. Cl.⁷:

Offenlegungstag:

DE 100 12 501 A1 B 28 B 3/20 26. Oktober 2000

Fig.1

(1) ABWIEGEN (AUSGANGSMATERIAL)

(2) DISPERSION (FLÜSSIGES MEDIUM, DISPERSIONSMITTEL, AGGREGIERTE PARTIKEL, ULTRASCHALL-DISPERGIERER)

> (3) KNETEN DER PRESSMASSE (DISPERSION, ANDERE AUSGANGSMATERIALIEN)

> > (4) STRANGPRESSEN

(5) TROCKNEN

(6) SCHNEIDEN

(7) BRENNEN

KÖRPER MIT WABEN- ODER GITTERSTRUKTUR

Nummer: Int. Cl.⁷: Offenlegungstag: DE 100 12 501 A1 B 28 B 3/20 26. Oktober 2000

Nummer: Int. Cl.⁷: Offenlegungstag: DE 100 12 501 A1 B 28 B 3/20 26. Oktober 2000

Fig.4

Nummer: Int. Cl.⁷: Offenlegungstag: DE 100 12 501 A1 B 28 B 3/20 26. Oktober 2000

Fig.5

