1. HW Jednoduchý genetický algoritmus

3. Upravte algoritmus (fitness funkci) tak, aby vyvíjel jedince, kde se střídají 1 a 0

```
def fitness(ind):
return sum([1-g if i % 2 == 0 else g for i, g in enumerate(ind)])
```

4. Zkuste změnit některé parametry algoritmu (např. pravděpodobnost mutace nebo křížení) a podívejte se, co se stane.

Pozorovani

- Turnajova selekce je znatelne lepsi nez ruletova selekce
- Vyssi pravdepodobnost krizeni jedincu ma lepsi vysledky
- Vyssi pravdepodobnost mutace naopak ma vysledky horsi

5. Pošlete graf, který srovnává konvergenci algoritmu pro různá nastavení operátorů.

Nastaveni evoluce

Jedincu v populaci: 2000

Delka jedince: 100

Pocet generaci: 100

• Pravdepodobnost mutace casti jedince: 1 / delka jedince

• Opakovani: 10

Selekce

Porovnani dvou typu selekci

Ruletova selekce

Zavislost evoluce na pravdepodobnosti zkrizeni jedincu

Zavislost evoluce na pravdepodobnosti mutace

Turnajova selekce

Zavislost evoluce na pravdepodobnosti zkrizeni jedincu

Zavislost evoluce na pravdepodobnosti mutace

6. Napište mi, co vše jste zkusili.

Porovnal jsem vsechny parametry mezi sebou a to pres dva ruzne typy selekce.

Grafy jsou nekolikatou iteraci podle velikosti populace, delky behu i dalsich nastaveni tak, aby byly prehledne a snadno porovnatelne.

Uchovani nejlepsiho jedince stejne jako uchovani lepsi poloviny populace neprineslo zadne zlepseni (v turnajove selekci)

Na zaver graf porovnavajici nejlepsi a nejhorsi evolucni parametry

