Bayesian occupancy modeling with the spOccupancy R package

Jeff Doser

Michigan State University

July 27, 2022

Tel Aviv University Seminar

Overview

- Overview of occupancy modeling and spatial autocorrelation
- spOccupancy functionality
- spOccupancy syntax and example: single-species occupancy model
- Additional resources

https://github.com/doserjef/spOccupancy_examples

Motivation

- Species distribution modeling
 - Where do species occur and how does this change over time?
 - What drives species distributions?
- Two key complexities when modeling species distributions
 - Imperfect detection
 - Spatial autocorrelation

Imperfect Detection

How do we account for imperfect detection?

- Occupancy modeling
- Basic idea: perform multiple surveys (i.e., visits) at each site
- Multiple visits give information on detection probability
- Allows us to separately estimate occupancy probability from detection probability

Detection-nondetection matrix

Site	Survey 1	Survey 2	Survey 3	Survey 4
1	1	0	0	1
2	0	0	0	0
3	1	Ī	0	NA
4	1	NA	0	NA
5	0	Ī	Ī	Ī
6	0	0	0	1

Occupancy model: what is it?

- Two distinct sub-models
 - Model occupancy probability as a function of site-level covariates
 - Model detection probability as a function of site and/or survey-level covariates
 - Can only detect a species if it truly occupies a site
 - Detection probability is modeled "conditional" on true occupancy

Occupancy model

Occupancy (ecological) sub-model

$$z_j \sim \text{Bernoulli}(\psi_j)$$

 $\text{logit}(\psi_j) = \beta_1 + \beta_2 \cdot X_{2,j} + \dots + \beta_r \cdot X_{r,j}$

Detection (observation) sub-model

$$y_{j,k} \sim \text{Bernoulli}(p_{j,k} \cdot z_j)$$

 $\text{logit}(p_{j,k}) = \alpha_1 + \alpha_2 \cdot V_{2,j,k} + \dots + \alpha_r \cdot V_{r,j,k}$

Spatial autocorrelation

- Things closer together in space tend to be more similar than things further apart
- What leads to spatial autocorrelation in species distributions?
 - Environmental drivers, habitat requirements
 - Biotic factors (dispersal, conspecific attraction)
- Usual approach: explain spatial variation in species distributions with covariates (e.g., forest cover, temperature)

Residual spatial autocorrelation

- Spatial correlation in data after including spatial covariates
- Often arises from missing/unavailable covariates
- Can lead to bias if unaddressed
- Account for using spatial random effects
 - Each site has a local adjustment in occupancy probability
 - The local adjustments are given a spatial structure
 - Estimated parameters: spatial variance and spatial range

Spatial occupancy model

Occupancy (ecological) sub-model

$$z_j \sim \text{Bernoulli}(\psi_j)$$

 $\text{logit}(\psi_j) = \beta_1 + \beta_2 \cdot X_{2,j} + \dots + \beta_r \cdot X_{r,j} + w_j$
 $w_j \sim \text{Normal}(0, \Sigma)$

Detection (observation) sub-model

$$y_{k,j} \sim \text{Bernoulli}(p_{j,k} \cdot z_j)$$

 $\text{logit}(p_{j,k}) = \alpha_1 + \alpha_2 \cdot V_{2,j,k} + \dots + \beta_r \cdot V_{r,j,k}$

spOccupancy

- Designed to fit a variety of Bayesian occupancy models
- Options to efficiently accommodate spatial autocorrelation
- Workflow completely in R using standard model syntax (no Bayesian programming languages necessary)
- Key functionality:
 - Single-species models
 - Multi-species models
 - Data integration
 - Multi-season (spatio-temporal) models

Why Bayesian for occupancy modeling?

- Interpretation
- More flexible to accommodate spatial autocorrelation
- Easy to extend to multi-species frameworks/integrate multiple data sources
- Fully propagate uncertainty in all estimates (and derived) quantities)

More Resources

Bayesian computation: what to know

Markov Chain Monte Carlo (MCMC)

Overview

- MCMC "chains" eventually converge to a posterior distribution (what we use to compute means, credible intervals, etc)
 - Assess convergence by running multiple chains with different starting values

Bayesian computation: what to specify

- What do you need to specify?
 - Priors
 - Initial values
 - Number of samples/iterations
 - Burn-in: initial part of the chain that we throw away
 - Thinning rate: how often do you want to save a sample?

spOccupancy workflow

- 1. Data simulation/prep
- 2. Model fitting

Overview

- 3. Model validation
- 4. Model comparison
- 5. Posterior summaries
- 6. Prediction

https://github.com/doserjef/spOccupancy_examples

Single-species occupancy model example

- Data from Ribeiro Jr. Et al (2018) Eco Apps
- 50 sites along a gradient of landscape characteristics
- Focus on the tropical frog species Crossodactylus caramaschii

Ribeiro Jr. et al. (2018) Eco Apps

Multi-species occupancy model

Amphibian community from Ribeiro Jret al (2018) Eco Apps

Integrated occupancy model

Bottlenose dolphin data from Lauret et al. (2021) Ecology

Multi-season occupancy model

Eastern wood pewee data from Doser et al. (2021) Eco Apps

spOccupancy

Occupancy Modeling

- Package website
 - https://www.jeffdoser.com/files/spoccupancy-web/
- GitHub development page
 - https://github.com/doserjef/spOccupancy/
- MEE intro paper
- arXiv preprint
- 😈 @jeffdoser18
- Email: doserjef@msu.edu

Joint species distribution models with imperfect detection for high-dimensional spatial data

Jeffrey W. Doser^{1, 2}, Andrew O. Finley^{2, 3}, Sudipto Banerjee⁴

Acknowledgements

Elise Zipkin

Marc Kéry

Sudipto Banerjee

Thank you!