Group Theory

Buce-Ithon

 $10^{\rm th}$ August, 2024

Contents

0	What is Group?-Introduction to Group	4
1	Definition of Group and some Examples	6

Figure 1: Beautiful Algebra To My Elma

0 What is Group?-Introduction to Group

According to Chiniese Wikipeida:

In mathematics, the **Group** is a special set equiped a binary operation, (the core of Group operation) which has associativity, identity and inverse element.

Since lots of mathematical structure are all groups (for instance: the integer system equiped with addition forms a Group), therefore, common results can be succinctly summarized from different mathematical structures, which makes groups a core concept in contemporary mathematics.

The unilateral (left) definition of Group (weak definition) is below:

If a given set G, and it's equiped binary operation \circ : $G \times G \to G$ satisfying (the result of operation \circ (a,b) is simplified as $a \circ b$):

simplest definition of the Group

Associativity	$\forall g_1, g_2, g_3 \in G$, we have $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$	
(L)Identity & (L)Inverse	$\exists e \in G, \forall g \in G$, we have	$e \circ g = g$ and exists $\gamma \in G$, s.t. $\gamma \circ g = e$

then we say (G, \circ) is a **Group**. If \circ is understood, (G, \circ) is simplified as G.

The order of group operations is very important, i.e $a \cdot b = b \cdot a$ (commutative) doesn't necessarily hold.

A group satisfies the commutative law is called Commutative Group (or Abelian Group named after Niels-Abel), those doesn't satisfy is called Non-commutative Group (Non-Abelian Group). (For instance: The Dihedra Group (appearing next chapter) is a Non-Abelian Group.)

Equivalence definition of Group: unilateral (right) definition of Group (strong definition) is below: The above definition part of identity and inverse can also be changed to:

equivalance and full definition

Because no matter the original definition of lavender or the alternative definition of light-yellow, combined with the associativity, it's equivalent to the following definition:

Identity	$\exists e \in G, \forall g \in G, \text{ then }$	$e \circ g = g \circ e = g$
& Inverse	we have	and exists $\gamma \in G$, s.t. $\gamma \circ g = g \circ \gamma = e$

Ohh! Please remember the definitions above, because this is the most concise definition of Group. And it will be very helpful for us to understand Group Theory!

1 Definition of Group and some Examples

Definition 1.1. (Group) If a set G of some elements (finite or infinite) equiped with a binary operation \circ (or \cdot , or even can be omitted), satisfies:

- 1. $\forall a, b \in G, a \circ b \in G, closure$
- 2. $\forall a, b, c \in G$, $(a \circ b) \circ c = a \circ (b \circ c)$, associativity
- 3. $\exists e \in G, \forall g \in G, e \circ g = g \circ e = g, identity (or neutral)$
- 4. $\forall g \in G, \exists g' \in G, g' \circ g = g \circ g' = e, inverse$ what's more, we denote $g' = g^{-1}$.

Then, we denote (G, \circ) is a **Group**.

Example.

- 1. $(\mathbb{Z},+)$ is a group, identity e=0, for some $g\in G$, its inverse $g^{-1}=-g$
- 2. (Q, +) is a group, similar with $(\mathbb{Z}, +)$ Special, (Q^{\times}, \times) is a group, with $Q^{\times} = Q/\{0\}$ and identity e = 1
- 3. $(\mathbb{R},+)$, $(\mathbb{R}^{\times},\times)$ with $\mathbb{R}^{\times}=\mathbb{R}/\{0\}$ both are groups
- 4. $\mathbb{Z}_n = \{m | m = x \mod n, \ \forall x \in \mathbb{Z}\} = \{0, 1, \dots, n-1\}, \ (\mathbb{Z}_n, +) \ is \ a \ cyclic group$
- 5. Dihedra group: a group of symetries of regular polygon, with elements of rotations (r_i) and reflections (s_i) , often denoted by D_{2n} (or (D_{2n}, \circ)) or D_n for n-gon polygon with 2n elements.

Cyclic group: a group can be generated by at least one element of the group.

Generate: Applying the binary operation of this group to the element, that is, all integer powers of the element.