

# EEE6212 "Semiconductor Materials" -Optical Transitions

Professor Richard Hogg,
Centre for Nanoscience & Technology, North Campus
Tel 0114 2225168,
Email - r.hogg@shef.ac.uk



2

#### **Outline**

- Absorption
- · Spontaneous emission
- · Stimulated emission
- Density of states
- Occupancy
- Summary





## **Absorption**



Photon is annihilated and gives energy up to an electron and promotes it to a higher energy level. "Stimulated" – in response to a passing photon

Fundamental absorption – exciting electrons from valence band to conduction band

27/04/15 © The University of Sheffield



4

#### **Conserve Momentum**

Momentum of electron at Brillouin Zone edge  $p = k\hbar = \pi h/2\pi a$  a=interatomic spacing ~  $3x10^{-10}$  m

Momentum of photon =  $h/\lambda$   $\lambda$ ~840 nm =  $8.4x10^{-7}$  m

Photon Momentum ~1000<sup>th</sup> that of electron so is essentially vertical when plotted on electron E-k graph





## **Absorption Rate**

Will look later at how quantum mechanics can be used to calculate transition rates. Initially we will use the original Einstein coefficients for these transition rates

Absorption probability

=  $B_{12}x$  photon density x density of e in VB x density of h in CB

B<sub>12</sub> is a rate coefficient for absorption (s<sup>-1</sup>)

Recombination probability proportional to photon density – "stimulated" absorption

27/04/15 © The University of Sheffield



6

## **Absorption Coefficient**



 $I_0$  photons incident/unit area/unit time at z = 0.

Absorption reduces  $I_0$  to I(z) at z.

In a further distance dz number of photons absorbed is  $\alpha I(z)dz = -dI$ . Hence,  $dI/dz = -\alpha I(z)$ , so  $I(z) = const.xexp(-\alpha z) = I_0exp(-\alpha z)$ .

 $\alpha$  = absorption coefficient = inverse absorption length - dimensions 1/L. Typically  $\alpha$  = 10<sup>6</sup> m<sup>-1</sup> for GaAs at energy just above the band gap.





# **Direct Band-Gap**





Direct Band-gap

27/04/15 © The University of Sheffield



8

# **Indirect Band-gap**





Indirect Absorption process only possible by phonon

emission



## **Spontaneous Emission**



Recombination without any apparent provocation Rate =  $A_{21}$  x density of e in CB x density of h in VB

Photons are created with random direction and phase

27/04/15 © The University of Sheffield



10

#### Stimulated Emission



Recombination rate proportional to photon density

Photons created are identical in energy, phase, direction to stimulating photon

Rate =  $B_{21}$  x density of e in CB x density of h in VB x photon density



#### **Einstein Coefficients**



Formulated before quantum mechanics, A & B coefficients are proportional to "Oscillator Strength"

In quantum picture rate is governed by Fermi's Golden Rule

27/04/15 © The University of Sheffield



12

## Absorption/Stimulated Emission

SE Rate =  $B_{21}$  x density of e in CB x density of h in VB x photon density

Abs Rate =  $B_{12}x$  density of e in VB x density of h in CB x photon density





#### Fermi's Golden Rule

$$W_{i\to f} = \frac{2\pi}{\hbar} |M|^2 g(\hbar\omega)$$

W - transition rate

i - initial

f - final

ħ - reduced Planck constant

M – matrix element

 $g(\hbar\omega)$  – joint density of states

In all cases, we can see that the density of states, and their occupancy is important. Park this for now...

27/04/15 © The University of Sheffield



14

#### **Matrix Element**

Matrix element describes effect of external perturbation of light on electrons

(See Fox pages.....)

Important factors are the overlap of the initial and final wavefunctions







## **Density of States**

Want to evaluate g(E)dE Density of states over a given interval at energy E



$$\psi(x,y,z) = \sin(k_x x)\sin(k_y y)\sin(k_z z)$$

$$k_x L_x = \pi n_x$$
,  $k_y L_y = \pi n_y$ ,  $k_z L_z = \pi n_z$ , for  $n_x$ ,  $n_y$ ,  $n_z$  integers



16

## K-Space

Each state in k-space occupies k-space volume V<sub>k</sub>

$$V_k = k_X . k_Y . k_Z$$

$$V_k = (\pi/L_X). (\pi/L_Y). (\pi/L_Z)$$

Number of states per volume in k-space is reciprocal of this

$$= L_X L_Y L_Z / \pi^3$$
 
$$= V / \pi^3$$

-V is the volume of the semiconductor in real space



#### Number of States for Given Ikl



Construct a spherical shell of radius lkl and thickness dk

Volume of this spherical shell in k-space is 4πk<sup>2</sup>dk

Number of k-states within the shell – k-space volume x k-space state density

$$g(k)dk = 4\pi k^2 \left[\frac{V}{\pi^3}\right] dk$$



18

# Contd. (1)

Each state can hold 2 spins so x2

$$g(k)dk = 8\pi k^2 \left[\frac{V}{\pi^3}\right] dk$$

Each octant is indistinguishable so x 1/8

$$g(k)dk = \pi k^2 \left[\frac{V}{\pi^3}\right] dk = \left[\frac{Vk^2}{\pi^2}\right] dk$$

Need to convert to E not k

$$p = \hbar k, E = p^2 / 2m^* \quad E = \frac{\hbar^2 k^2}{2m^*}$$

Rewriting and noting E is w.r.t.  $E_{\rm C}$ 

$$k^2 = \frac{\left(E - E_c\right) 2m^*}{\hbar^2}$$



# Contd. (2)

Differentiation

$$2kdk = \frac{2m^*dE}{\hbar^2}$$

Combine two previous Eqns

$$dk = \frac{2m^*dE}{2k\hbar^2} = \frac{m^*dE}{k\hbar^2} = \frac{m^*dE}{\hbar^2 \sqrt{2m^*(E - E_c)/\hbar^2}}$$
$$= \frac{m^*dE}{\hbar\sqrt{2m^*(E - E_c)}}$$

Next put this into

$$g(k)dk = \pi k^2 \left[\frac{V}{\pi^3}\right] dk = \left[\frac{Vk^2}{\pi^2}\right] dk$$

28/04/15 © The University of Sheffield



20

## Contd. (3)

Gives

$$g(k)dk = \frac{Vk^{2}}{\pi^{2}} \frac{m^{*}dE}{\hbar\sqrt{2m^{*}(E - E_{c})}}$$

$$= \frac{V\left[2m^{*}(E - E_{c})/\hbar^{2}\right]\left(m^{*}dE\right)}{\pi^{2}\hbar\left[2m^{*}(E - E_{c})\right]^{1/2}}$$

$$= \frac{Vm^{*}\left[2m^{*}(E - E_{c})\right]^{1/2}}{\pi^{2}\hbar^{3}}dE$$

Divide by V

$$g(E)dE = \frac{m^* \left[ 2m^* \left( E - E_c \right) \right]^{1/2}}{\pi^2 \hbar^3} dE$$





## **Density of States**



$$g(E) = \frac{1}{2\pi^2} \left(\frac{2m^*}{\hbar^2}\right)^{\frac{2}{2}} E^{\frac{1}{2}}$$

Importance of m\*

High effective mass – high density of states

27/04/15 © The University of Sheffield



22

#### **Carrier Distribution**

Electrons and holes have thermal energy

$$f(E) = \frac{1}{1 + e^{(E - E_F)/kT}}$$







## Behind the scenes....



27/04/15 © The University of Sheffield



24

## Summary

- Discussed the optical transitions and their probabilities/ rates
- · Touched upon matrix element
- · Looked at density of states for a bulk material
- Introduced Fermi-function to describe carrier distribution