Lecture 2

CS436/536: Introduction to Machine Learning

Zhaohan Xi Binghamton University

zxi1@binghamton.edu

Quick Note on Probability

• Sample Space S

The set of all possible outcomes of an experiment
The outcomes are mutually exclusive

Ex. $\{H, T\}$ is the sample space for the experiment of tossing a single coin Ex. The set of all possible transactions or itemsets

Event *E* is any subset of the sample space *S*

Estimating Population Mean from Sample Mean

Pick a *random* sample of *N* marbles with replacement *independently*

Observe the fraction of red marbles ν

Note: the only random quantity here is ν . μ is fixed (albeit unknown)

What does ν tell us about μ ? Nothing for sure. But...

Estimating Population Mean from Sample Mean

Can we say anything <u>for certain</u> about μ (outside the data) having observed ν (the data)?

• No.

It is possible to pick only red marbles while the bin has mostly green marbles

But not probable

See the binomial distribution

• What is the relationship between ν and μ ?

Probability to the Rescue: Hoeffding's Inequality

Hoeffding / Chernoff proved that ν tends to be close to μ , most of the time

$$\mathbb{P}[|\nu-\mu|>\epsilon]\leq 2e^{-2\epsilon^2N}$$
, for any $\epsilon>0$

i.e. ν is approximately correct most of the time or in other words... probably approximately correct (PAC) We can learn *something*!

Hoeffding's Inequality
$$|\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2e^{-2\epsilon^2N}$$
, for any $\epsilon>0$

• Sample N=1,000 and observe ν

$$\mu - 0.05 \le \nu \le \mu + 0.05$$

$$\mu \in [\nu - 0.05, \nu + 0.05]$$

of the time

$$\mu - 0.10 \le \nu \le \mu + 0.10$$

$$\mu \in [\nu - 0.10, \nu + 0.10]$$

of the time

Hoeffding's Inequality

$$\mathbb{P}[|\nu-\mu|>\epsilon]\leq 2e^{-2\epsilon^2N}$$
, for any $\epsilon>0$

• Samples must be independent

If the data is constructed arbitrarily, we cannot say anything about μ

Hoeffding's bound is:

- Independent of μ
- Independent of size of bin
- Depends only on
 - size of the dataset N
 - tolerance ϵ
- If we desire a small ϵ , we will need large N If $N \to \infty$, $\mu \approx \nu$ with *very* high probability

What does this have to do with ML?

- Want: Pick a function g that approximates f out-of-sample
- What a learning algorithm does:
 - Pick a function $g \in \mathcal{H}$
- How do we know if g is any good?
 - Evaluate its in-sample (training) error
- How do we evaluate in-sample error?
 - Using a sample, data generated at random
- Can we be sure that the data is truly representative of the whole population?

Learning Problem Setup

Fixed, Unknown

UNKNOWN TARGET FUNCTION

$$f: \mathcal{X} \to \mathcal{Y}$$

(optimal credit approval function)

$$y_n = f(x_n)$$

Given Dataset

TRAINING EXAMPLES

$$(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$$

(historical records of credit customers)

HYPOTHESIS SET

 ${\mathcal H}$

(set of candidate functions)

Learning

- ullet Start with a set of candidate hypotheses ${\mathcal H}$ which likely represent f
- $\mathcal{H} = \{h_1, h_2, ...\}$ The hypothesis set or *model*
- Select a hypothesis g from \mathcal{H} A Decision Problem: What is the Criterion?
- Using a *learning algorithm* A Computational Problem
- Use *g* for new customers
- Hope that $g \approx f$

 \mathcal{X} , \mathcal{Y} and \mathcal{D} are **given** by the learning problem

The target function *f* is **fixed but unknown**

We choose ${\mathcal H}$ and the learning algorithm

Credit Approval

- Using salary, debt, years in residence, etc., approve for credit or not
- Nobody has an optimal credit approval formula
- But banks have data
 - Customer information
 - Credit history

age	33 years
salary	50,000
debt	27,500
years employed	1
years at residence	2
	•••

Approve for credit?

	Approve for credit?		
Compute a "credit score"			
	years at residence	2	
	years employed	1	
Credit Approval	debt	27,500	
	salary	50,000	

age	salary	debt	•••
x_1	x_2	x_3	•••
w_1	w_2	W_3	

 $creditscore = w_1x_1 + w_2x_2 + w_3x_3 + \cdots$

33 years

age

A Simple Learning Model

- Input vector $\mathbf{x} = [x_1, x_2, \dots, x_d]^T$
- Compute a "credit score" by giving

importance weights to the different inputs: $creditscore = \sum_{i=1}^{d} w_i x_i$

Decision rule:

- If *creditscore* > *threshold*: Approve credit (good credit score)
- If creditscore < threshold: Deny credit (poor credit score)
- How to choose the importance weights w_i ?
 - input x_i is important in deciding credit approval \Rightarrow large w_i
 - input x_i has a beneficial effect to credit $\Rightarrow w_i > 0$ (weighs positively)
 - input x_i has an adverse effect on credit $\Rightarrow w_i < 0$ (weighs negatively).

A Simple Learning Model

- Decision rule:
 - If *creditscore* > *threshold*: Approve credit (good credit score) ⇒ output +1
 - If creditscore < threshold: Deny credit (poor credit score) \Rightarrow output -1
- Can be written formally as:

$$h(\mathbf{x}) = sign\left(\left(\sum_{i=1}^{d} w_i x_i\right) - threshold\right)$$

Simplifying a little...

$$h(\mathbf{x}) = sign\left(\left(\sum_{i=1}^{d} w_i x_i\right) + w_0 1\right)$$

 w_0 is a "bias weight" which corresponds to the threshold: Approve if $\sum_{i=1}^d w_i x_i > w_{0_{14}}$

A Simple Learning Model

$$h(\mathbf{x}) = sign\left(\left(\sum_{i=1}^{d} w_i x_i\right) + w_0 1\right)$$

$$= sign(w_0 1 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d)$$

$$\boldsymbol{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \dots \\ w_d \end{bmatrix} \in \mathbb{R}^{d+1} \qquad \boldsymbol{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \dots \\ x_d \end{bmatrix} \in 1 \times \mathbb{R}^d \text{ (where } x_0 = 1\text{)}$$

$$h(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x})$$

The Perceptron Hypothesis Set

• We define a hypothesis set \mathcal{H} $\mathcal{H} = \{h(x) = sign(\mathbf{w}^T \mathbf{x})\}$

The *perceptron* or *linear separator*

Geometry of The Perceptron in \mathbb{R}^2

Learning Problem Setup

UNKNOWN TARGET FUNCTION

$$f: \mathcal{X} \to \mathcal{Y}$$

(optimal credit approval function)

$$y_n = f(x_n)$$

TRAINING EXAMPLES

 $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$

(historical records of credit customers)

(set of candidate functions)

Geometry of The Perceptron in \mathbb{R}^2

Which one to pick?

Using Data

Select a Hypothesis Using Data

Our data suggests we pick this

Age

Income

perfectly classified

How to Learn a Final Hypothesis g from \mathcal{H} ?

- Want: Select g from \mathcal{H} so that $g \approx f$
- Certainly want $g \approx f$ on the dataset \mathcal{D} , i.e., $g(\pmb{x}_n) = y_n \text{ for each } (x_n, y_n) \text{ in } \mathcal{D}$
- But $\mathcal H$ is uncountably infinite How to find g in the infinite hypothesis set $\mathcal H$?

Start with *some* weights and improve it iteratively

(Coming Soon: The Perceptron Learning Algorithm)

ncome

How Does the Bin Model Relate to Learning?

Unknown target function f

A known fixed hypothesis h

How Does the Bin Model Relate to Learning?

- Unknown, fixed target function $f: \mathcal{X} \to \mathcal{Y}$
- For any $h \in \mathcal{H}$:
 - Suppose we compare h(x) to f(x) on each point $x \in \mathcal{X}$
 - If h(x) = f(x), color x green
 - Otherwise, if $h(x) \neq f(x)$, color x red
 - μ : the fraction of all possible data points that are red This is the out-of-sample error of h

How Does the Bin Model Relate to Learning?

The Error Function

Green:
$$h(x) = f(x)$$

Red: $h(x) \neq f(x)$

$$E_{out}(h) = \mathbb{P}_{\mathbf{x}}[h(\mathbf{x}) \neq f(\mathbf{x})]$$
(size of red region)

But this is UNKNOWN

The Error Function

Green: h(x) = f(x)Red: $h(x) \neq f(x)$

Income

 $E_{in}(h)$ = fraction of sampled data points in **red** region i.e. misclassified data points

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} \llbracket h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n) \rrbracket$$

We know this

Age

Learning Problem Setup with Probability

How does the Bin Model Relate to Learning?

Learning

<u>Bin</u>

- input space ${\mathcal X}$
- \boldsymbol{x} for which $h(\boldsymbol{x}) = f(\boldsymbol{x})$
- \boldsymbol{x} for which $h(\boldsymbol{x}) \neq f(\boldsymbol{x})$
- sample according to P(x)
- data set \mathcal{D} of size N
- $E_{out}(h) = \mathbb{P}_x[h(x) \neq f(x)]$
- $E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} [h(\mathbf{x}_n) \neq f(\mathbf{x}_n)]$

- Bin
- green marble
- red marble

- randomly pick a marble
- sample of *N* marbles
- μ = probability of picking red
- ν = fraction of red observed

Hoeffding's Inequality for Learning

For a *fixed* hypothesis h

$$\mathbb{P}[|E_{in}(h) - E_{out}(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$
, for any $\epsilon > 0$

• If $E_{in} \approx 0$ then $E_{out} \approx 0$ i.e. $\mathbb{P}_x[h(x) \neq f(x)]$ with high probability i.e. $f \approx h$ over all of \mathcal{X}

Now: Given h, we can **verify** whether it is "good"

Hoeffding's Inequality for Learning Verification

For a *fixed* hypothesis h

$$\mathbb{P}[|E_{in}(h) - E_{out}(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$
, for any $\epsilon > 0$

• If $E_{in} \approx 0$ then $E_{out} \approx 0$ i.e. $\mathbb{P}_x[h(x) \neq f(x)]$ with high probability i.e. $f \approx h$ over all of \mathcal{X}

Now: Given h, we can **verify** whether it is "good"