AIML430/COMP309: ML Tools and Techniques Lecture 8: Exploratory Data Analysis

Ali Knott School of Engineering and Computer Science, VUW

What we're doing this week

We'll introduce a second data analytics paradigm, called Exploratory Data Analysis (EDA).

- Today: an introduction to EDA.
 - With a focus on some new visualisation methods.
- Tomorrow: a survey of Python tools for EDA.
 - With some Python background we skipped in Weeks 1-2...
 - With some very useful Python tricks...
- Thursday: EDA demos in Python and Orange.

But first—what's EDA got to do with CRISP-DM??

It kind of overlaps with these bits...

 But it's really just a method of its own—with several new techniques.

EDA

EDA is structured as a cycle, like CRISP-DM.

 But the cycle here is all about understanding and manipulating your data.

Step 2: 'Understand, transform, visualise'...

We'll focus on Step 2 in this lecture.

• This step involves a collection of useful data analysis methods.

There's some useful structure here—

EDA methods are either graphical or non-graphical.

We'll look at lots of examples of each.

EDA Methods are either univariate or multivariate.

- Univariate methods analyse just one feature...
- Multivariate methods analyse relations between several features.
 - Bivariate methods analyse exactly two features.

EDA data analysis methods

	Univariate	Multivariate
Non-Graphical	Categorical Variable: tabular representation of frequency Quantitative Variable: Location (mean, median) Shape and Spread Modality Outliers	One Categorical Variable and One Quantitative Variable: Standard univariable non-graphical statistics for the quantitative variable separately for each level of the categorial variable Two and more Quantitative Variable: Correlation, Covariance,
Graphical	Categorical Variable: Bar Chart Quantitative Variable: Histogram Boxplot	One Categorical Variable and One Quantitative Variable: • Side-by-side Boxplots Two and more Categorical Variable: • Grouped Bar Chart Two and more Quantitative Variable: • Scatter plot, Correlation Heatmap, Pairplot

There's a standard order for EDA methods...

- We'll go through these one by one...
- Note that EDA still connects with 'business-oriented' analytics!

Ali Knott Lecture 8: EDA 7 / 28

Step 1: 'Distinguish attributes'...

'Attributes' are just the features in your dataset.

• The analysis here is just to identify the different types of feature.

Ali Knott Lecture 8: EDA 8 / 28

Step 1: Possible feature types

Categorical features place items into discrete categories.

- Sometimes there's an ordering to categories.
 - E.g. 'big', 'medium', 'small'
- Sometimes categories are unordered.
 - E.g. color of a car (blue, red, green).

Numerical features place items on numerical scales.

- Sometimes these are whole integers (e.g. number of children)
- Sometimes they can be any 'real number'.
 - E.g. length
 - E.g. price.

Step 2: Univariate analyses (non-graphical)

For a categorical variable, we can create a table, showing frequency of different possible values.

For a quantitative variable, there are a few things to compute.

- The shape of its distribution.
 - Is it normally distributed, or something else?
 - We'll discuss skew and kurtosis below...
- The modality of its distribution.
 - Unimodal (one bump)?
 - Bimodal (two bumps)?
 - Multimodal (more than one bump)?
- If it's normal, we can compute its mean and standard deviation.
- If not, the median and/or mode may be useful.

Step 2: Univariate analyses (graphical)

Background: there are several standard ways of visualising data.

- Some can be used for either univariate or multivariate analyses.
- Some aren't suitable for multivariate, because they can't show relationships between variables very well.

Background: visualisations can be used to show four different things:

- Distribution (of a single variable, or of multiple variables)
- Comparison (between variables, of of one variable over time)
- Composition (to show the parts that make up a whole)
- Relationships (between variables).

Visualising distribution of a quantitative variable

Histograms are a standard way to do this.

- Break variable values into 'bins' of equal ranges...
- Then plot a bar chart showing frequency for each bin.

The 'shape' of a quantitative variable distribution

Distributions can be skewed, either left or right...

The 'shape' of a quantitative variable distribution

Distributions can also be 'sharper' or 'flatter' than a normal distribution.

We use the term kurtosis to describe this.

Box and violin plots

A box plot visualises some values from 'nonparametric' statistics.

- We rank the data, and split into 4 'quartiles', holding 25% each.
- The 'box' shows the range for the two middle quartiles.
 - Also called the 'interquartile range' ('IQR').
- The median value (the middle one in the ranked list) is also shown.
- The 'whiskers' extend to the 1.5 IQR values in each direction.

Ali Knott Lecture 8: EDA 15 / 28

Box and violin plots

A violin plot shows a function that *models* the distribution of the data.

- The model is a kernel density estimation—you don't need to know the details!
- A box-and-whisker plot is often overlaid on a violin plot.

Ali Knott Lecture 8: EDA 15 / 28

Visualising distribution of a categorical variable

Here, we're mainly interested in what proportion of items fall into each class.

- Pie charts are one possibility.
- Bar charts are another.

Bar charts are better for showing small differences between categories.

Visualising a single variable over time: Line charts

Sometimes a dataset includes one variable at a succession of times.

- That's several different variables, but with a particular relationship!
- We can use a line chart to show how a variable changes over time.

NB we use lines for *numerical* variables, and bars for *categorical* ones!

If you have a categorical variable and some other variable V, you can do a univariate analys of V for each category.

• That includes visual and nonvisual analyses.

If you have a categorical variable and some other variable V, you can do a univariate analys of V for each category.

• That includes visual and nonvisual analyses.

If *V* is quantitative, you could show *overlaid histograms*:

If you have a categorical variable and some other variable V, you can do a univariate analys of V for each category.

• That includes visual and nonvisual analyses.

If *V* is quantitative, you could show *multiple box or violin plots*:

If you have a categorical variable and some other variable V, you can do a univariate analys of V for each category.

• That includes visual and nonvisual analyses.

If V is categorical, you could show a grouped bar chart.

 If your features measure components of some whole, you can use a stacked bar chart

Ali Knott Lecture 8: EDA 18 / 28

If you have a categorical variable and some other variable V, you can do a univariate analys of V for each category.

• That includes visual and nonvisual analyses.

For multiple time series, you can show a line graph with several lines:

Aside: Make your visualisations accessible!

Some of your viewers will have colourblindness, of various different types.

You can find some good advice on colourblind-friendly palettes here.

• Simple advice: don't use red & green togetheror yellow & blue!

Non-visual multivariate analyses

If you have a set of quantitative variables, two key nonvisual measures are correlation and covariance.

- These both operate on pairs of variables.
- But if you have *n* dimensions, you can build a *matrix* of values, running correlation/covariance on *each pair*.

Remember:

- PCA works by computing the covariance matrix for the data...
- Regression analyses don't work well if input variables are highly correlated!
 - We called that 'the problem of collinearity'...
- If you have collinear inputs, PCA is a good idea!

Correlation and covariance analyses

Correlation and covariance both measure how well the relationship between two variables can be modelled with a straight line. (And the slope of the best line.)

- Covariance provides an absolute number, that grows as points spread...
- Correlation (Pearson's correlation coefficient) normalises covariance by the spread of the data, so it lies between 1 and -1.

Some statistical multivariate analyses

You can also run an analysis of variance (ANOVA), to identify *effects* of input variables on a quantitative output variable.

- This identifies 'main effects', due to individual variables...
- And cases where input variables 'interact' to influence the output.

A t-test can test a *hypothesis* that some manipulation influences some output variable.

 It tells you how likely the output variable values were obtained 'by chance'.

Ali Knott Lecture 8: EDA 22 / 28

Graphical multivariate analyses

For two or three dimensions, we can use a scatter plot.

• We just saw some examples!

NB we can use *dimension reduction* to get our data into 2 or 3 dimensions, to help visualise like this.

Heat maps for 2D multivariate visualisations

A heat map can be used to show the value of one numerical variable for all values of two other variables. (Normally numerical or ordinal.)

	January	112	115	145	171	196	204	242					417
	February	118	126	150	180	196	188	233	277	301	318	342	391
	March	132	141	178	193	236	235	267	317	356	362	406	419
	April	129	135	163	181	235	227	269	313	348	348	396	461
	May	121	125	172	183	229	234	270	318	365	363	420	472
Đ.	June	135	149	178	218	243	264	315	374	422	435	472	535
month	July	148	170	199	230	264	302	364	413	465	491	548	622
	August	148	170	199	242	272	293	347	405	467	505	559	606
	September	136	158	184	209	237	259	312	355	404	404	463	508
	October	119	133	162	191	211	229	274	306	347	359	407	461
	November	104	114	146	172	180	203	237	271	305	310	362	390
	December	118	140	166	194	201	229	278	306	336	337	405	432
		1949	1950	1951	1952	1953		1955 ar	1956	1957	1958	1959	1960

Ali Knott Lecture 8: EDA 24 / 28

400

200

200

Correlograms

A heat map can also be used to show the correlation coefficient between each pair of numerical features. (Called a correlogram.)

 The map is symmetrical about its leading diagonal, so we only need to show half...

Ali Knott Lecture 8: EDA 25 / 28

EDA Steps 4 and 5: Data preprocessing

Some concrete methods:

EDA	Data Preprocessing			
Duplicate Data-Points?	Delete Duplicate Data-Points			
Missing Values?	Imputation			
Outlier?	Exclude outliers			
Highly Correlated Features?	Handling Highly Correlated Features			
Low-Variance Features?	Handling Low-Variance Features			
Imbalanced Data?	Oversampling, Undersampling			
Features vary in their scale?	Feature Scaling			
High-dimensional data?	Dimensionality Reduction, Feature selection			

We'll talk more about these in tomorrow's lecture.

Dimensionality reduction

I told you about PCA—but it's also worth knowing about the T-SNE (T-distributed stochastic neighbour embedding) method.

T-SNE often works better.

Next lecture...

A survey of Python tools for EDA.

- With some Python background we skipped in Weeks 1-2...
- And some very useful Python tricks!