MATH 110 Notes

Book: Linear Algebra Done Right

Neo Lee

Fall 2023

CONTENTS

Chapter 1	ISOMETRY	PAGE 3
1.1	November 30	3

Chapter 1

Isometry

1.1 November 30

Definition 1.1: Isometry and Unitary

 $T \in \mathcal{L}(V, w)$ is called an isometry if $||T\vec{v}|| = ||\vec{v}||$ for all $\vec{v} \in V$.

Note:

In case $T \in \mathcal{L}(V)$ is an *invertible* isometry, it is called *unitary*.

Note:

If $T \in \mathcal{L}(v)$ is unitary, then any eigen-pair (λ, \vec{v}) of T satisfies

$$||T\vec{v}|| = ||\lambda\vec{v}|| = |\lambda|||\vec{v}|| = ||\vec{v}||.$$

So $|\lambda| = 1$.

Proposition 1.1 Isometry only has eigenvalues of modulus 1.

If T is an isometry, then

$$||T\vec{e_i}|| = ||\vec{e_i}|| = 1,$$

but also

$$||T\vec{e_j}|| = ||s_j \cdot \vec{f_j}|| = s_j = 1.$$

Proposition 1.2 Isometry is injective.

Proof: Recall null $T^*T = \text{null } T$. So if $\vec{v} \in \text{null } T \Longrightarrow T\vec{v} = \vec{0}$, then

$$\|\vec{v}\| = \|T\vec{v}\| = \|\vec{0}\| = 0 \Longrightarrow \vec{v} = \vec{0}.$$

This also shows isometries do not have zero singular values.

Definition 1.2: Jordan Normal Form

Note:

4

The goal of Jordan Normal Form is to get a matrix representation of T that is as simple (diagonal) as possible. This way, we get sparse matrices that are easy to compute with or understand.

Setting: Let V be a finite-dimensional vector space over \mathbb{C} and $T \in \mathcal{L}(V)$.

First, represent $V = U \oplus W$ where U, W are invariant subspaces of T, and T is nilpotent on U and invertible on W. Here nilpotent on U means $T^k \vec{v} = \vec{0}$ for all $\vec{v} \in U$ and some $k \in \mathbb{N}$. We already get a block diagonal matrix representation of T when writing $\vec{v} = \vec{u} + \vec{w}$ for $\vec{v} \in V$, $\vec{u} \in U$, and $\vec{w} \in W$.

 $\{0\} \subseteq \operatorname{null} T \subseteq \operatorname{null} T^2 \subseteq \cdots$ is a chain of subspaces of V. Since V is finite-dimensional, there exists $k \in \mathbb{N}$ such that $\operatorname{null} T^k = \operatorname{null} T^{k+1}$. In other words, $\operatorname{null} T^k$ will stabilize at some point.

Take $U=\operatorname{null} T^k$ and $W=\operatorname{range} T^k$ where $\operatorname{null} T^k$ stabilize. Notice, by the rank-nullity theorem, $\dim U+\dim W=\dim V.$ If $\vec x\in U\cap W,$ i.e., $\vec x=T^k\vec v$ for some $\vec v\in V,$ then $T^k\vec x=T^{2k}\vec v=\vec 0,$ so $\vec v\in\operatorname{null} T^{2k}=\operatorname{null} T^k.$ Thus, $\vec x=T^k\vec v=\vec 0.$

Within the subspace U, $T^k = 0$. Witout loss of generality, U is our whole space. Then there exists $\vec{u_0} \in U$ such that $T^{k-1}\vec{u_0} \neq 0$ but $T^k\vec{u_0} = 0$. Then, there exists $v_0 \in V$ such that $\langle T^{k-1}\vec{v_0}, v_0 \rangle \neq 0$. Consider the matrix

$$\langle T^{j-1}\vec{u_0}, T^{*^{k-i}}\vec{v_0} \rangle$$
 for $i, j = 1, 2, \dots, k$,

which is an invertible matrix.

This implies that span $(\vec{u_0}, T\vec{u_0}, \dots, T^{k-1}\vec{u_0}) \oplus \text{span}(\vec{v_0}, T^*\vec{v_0}, \dots, T^{k^{k-1}}\vec{v_0})^{\perp} = U$. Indeed, if \vec{v} is in the intersection of the two subspaces, this creates a linear system precisely with the matrix above, which is invertible. Thus, $\vec{v} = \vec{0}$.

Then, represent U as a direct sum of generalized eigenspaces of T.