Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

METODY OPTYMALIZACJI MINIMUM GRAPH COLORING

Kamil Sikorski

Nr indeksu: 221481

Przedmiot prowadzony przez

Pawła Zielińskiego

Spis treści

1	Wstęp			
	1.1	Opis problemu		
		1.1.1 Model		
	1.2	Przykłady		
2	Spo	soby rozwiązania		
	2.1	Dokładne rozwiązanie		
	2.2	Metody zachłanne		
	2.3	Metody heurystyczne		
3	Zad	anie 3		
Bi	ibliog	grafia		

\mathbf{Wstep}

W $Teori\ Grafów$ kolorowanie grafu jest szczególnym przypadkiem etykietowania, tradycyjnie nazywanymi kolorami. $Minimalne\ Kolorowanie\ Grafu$ inaczej nazywane $Liczba\ Chromantyczna$ jest problemem NP-trudnym[3], dlatego nie ma wielomianowego algorytmu rozwiązującego zadanie.

Zastosowaniem algorytmu rozwiązującego kolorowanie grafu, może być szeregowanie zadań. Gdzie wierzchołki są zadaniami, a krawędzie pomiędzy nimi zasobem współdzielonym. Rozwiązanie problemu mówiło by w jaki sposób uruchamiać grupy zadań, by zasób wspódzielony wykorzystywany byłby przez jedną maszynę w jednym momencie.

1.1 Opis problemu

Minimalne Kolorowanie Grafu jest przypisaniem kolorów do każdego wierzchołka grafu, tak że żadna krawędź nie łączy dwóch identycznie pokolorowanych wierzchołków. Problemem jest znalezienie jak najmniejszej liczby kolorów.

1.1.1 Model

- Dane: Graf G(V, E) gdzie V to wierzchołki, a E to krawędzie.
- Rozwiązanie: Kolorowanie G, tj. podział wierzchołków V na zbiory $V_1,V_2,...,V_k$, takie że każdy zbiór V_i jest niezależny w G.
- Miara: Ilość zbiorów V_i

1.2 Przykłady

Poniżej zostały przedstawione przykłady rozwiązania problemu *Minimalnego Kolorowania Grafu* z różnymi rodzajami grafów. Omawiane grafy przedstawione są są na rysunkach 1.1.

- Graf pelny rozwiązaniem dla niego jest |V|, ponieważ każdy wierzchołek posiada krawędź z pozostałymi wierzchołkami, dlatego każdy z nich musi mieć inny kolor.
- Graf k-dzielny jego definicja opisuje szukane rozwiązanie dla Minimalnego Kolorowania Grafu, tzn. wartość k k-dzielności grafu opisuje rozwiązanie. W rysunku b został przedstawiony graf graf 3-dzielny, gdzie kolory wierzchołków opisują grupy do której należą.
- Graf planarny każdy graf prosty tego rodzaju jest 4 kolorowalny [1]. Na przedstawionym przykładzie grafu planarnego widać, że nie można znaleźć miejsca dla wierzchołka połączonego z czteroma wierzchołkami o różnych kolorach, nie przecinając istniejącej krawędzi.
- Dla pozostałych grafów przedstawione zostało górne ograniczenie Kolorowanie grafu, znane jako Twierdzenie Brooksa [2]. Ustala że liczba chromatyczna jest niewiększa niż maksymalny stopień wierzchołka (max(deg(V))), z wyjątkiem grafu z nieparzystym cyklem wtedy wartość jest nie większa niż max(deg(V))+1.

(a) Graf Pełny o 8 wierzchołkach - rozwiązaniem jest 8

(b) Graf 3-dzielny - rozwiązaniem jego jest 3

(c) Graf planarny - rozwiązaniem jego jest $4\,$

(d) Graf z cyklem nieparzystym - maksymalny stopień 3, rozwiązaniem jego jest 4

(e) Graf bez cyklu nieparzystego - maksymalny stopień 2, rozwiązaniem jego jest 2

Rysunek 1.1: Przykładowe grafy

Sposoby rozwiązania

- 2.1 Dokładne rozwiązanie
- 2.2 Metody zachłanne
- 2.3 Metody heurystyczne

Zadanie 3

Bibliografia

- [1] K. Appel, W. Haken. Every planar map is four colorable. *Bulletin of the American Mathematical Society*, strony 711–712, 1976.
- [2] R. L. Brooks. On colouring the nodes of a network. *Mathematical Proceedings of the Cambridge Philoso-phical Society*, strony 194–197, 1941.
- [3] R. M. Karp. Reducibility among combinatorial problems. *Complexity of Computer Computations*, strony 85–103, 1972.