Name : Suryal D . Khirade

Roll NO: T190424399 Assignment No :02

Data Wrangling II Perform the following operations using P ython on any open source dataset

(eg. data.csv)

1. Scan all variables for missing values and inconsistenci es. If there are missing values

and/or inconsistencies, use any of the suitable techniques to deal with them

2. Scan all numeric variables for outliers. If there are o utliers, use any of the suitable

techniques to deal with them.

3. Apply data transformations on at least one of the varia bles. The purpose of this

 $\hbox{transformation should be one of the following reasons: to } \\$ change the scale for better

understanding of the variable, to convert a non-linear rel ation into a linear one, or to

decrease the skewness and convert the distribution into a normal distribution. Reason

and document your approach properly.

Import all the required Python Libraries.

```
In [1]: import numpy as np
import pandas as pd
import random as rd
import seaborn as sns
```

```
In [19]: df = pd.read_csv("C:\\Users\\alisu\\Downloads\\archive (1)\\Student Perform
```

In [20]: df.describe()

Out[20]:

	math score	reading score	writing score
count	1000.00000	1000.000000	1000.000000
mean	66.08900	69.169000	68.054000
std	15.16308	14.600192	15.195657
min	0.00000	17.000000	10.000000
25%	57.00000	59.000000	57.750000
50%	66.00000	70.000000	69.000000
75%	77.00000	79.000000	79.000000
max	100.00000	100.000000	100.000000

```
df.isnull().sum()
In [21]:
Out[21]: gender
                                          0
         race/ethnicity
                                          0
          parental level of education
                                          0
                                          0
          lunch
                                          0
          test preparation course
                                          0
          math score
          reading score
                                          0
         writing score
                                          0
          dtype: int64
```

Create a DataFrame from the dictionary

```
In [23]: df.to_csv('StudentPerformance' , index =False)
df=pd.DataFrame(data )
```

```
In [24]: df
```

Out[24]:

	studentid	Age	class	attendence	score
0	1	17	11 th	47.894979	50
1	2	18	11 th	46.373847	100
2	3	18	11 th	46.636907	76
3	4	16	11 th	25.126863	77
4	5	16	10 th	55.518510	41
95	96	17	10 th	34.682479	59
96	97	16	10 th	52.756471	87
97	98	15	10 th	72.759473	30
98	99	16	12 th	59.991836	82
99	100	15	12 th	35.561988	91

100 rows × 5 columns

Load the Dataset into pandas dataframe.

In [31]: import pandas as pd
 df = pd.read_csv("C:\\Users\\alisu\\Downloads\\archive (1)\\Student Perform
 df.head()

Out[31]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

In [32]: df.shape

Out[32]: (1000, 8)

In [33]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	gender	1000 non-null	object
1	race/ethnicity	1000 non-null	object
2	parental level of education	1000 non-null	object
3	lunch	1000 non-null	object
4	test preparation course	1000 non-null	object
5	math score	1000 non-null	int64
6	reading score	1000 non-null	int64
7	writing score	1000 non-null	int64

dtypes: int64(3), object(5)
memory usage: 62.6+ KB

In [34]: | df.describe()

Out[34]:

	math score	reading score	writing score
count	1000.00000	1000.000000	1000.000000
mean	66.08900	69.169000	68.054000
std	15.16308	14.600192	15.195657
min	0.00000	17.000000	10.000000
25%	57.00000	59.000000	57.750000
50%	66.00000	70.000000	69.000000
75%	77.00000	79.000000	79.000000
max	100.00000	100.000000	100.000000

Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.

Data Preprocessing

```
In [35]: df.isnull().sum()
Out[35]: gender
                                          0
          race/ethnicity
                                          0
          parental level of education
                                          0
                                          0
                                          0
          test preparation course
                                          0
          math score
          reading score
                                          0
          writing score
                                          0
          dtype: int64
In [36]: | df.nunique()
Out[36]: gender
                                           2
         race/ethnicity
                                           5
          parental level of education
                                           6
                                           2
          lunch
         test preparation course
                                           2
          math score
                                          81
          reading score
                                          72
          writing score
                                          77
          dtype: int64
In [37]: |df["gender"].value_counts() #categorical column
Out[37]: gender
          female
                    518
          male
                    482
          Name: count, dtype: int64
In [38]: |df['gender'].fillna('female',inplace=True)
         df.isnull().sum()
Out[38]: gender
                                          0
                                          0
          race/ethnicity
          parental level of education
                                          0
                                          0
          lunch
                                          0
          test preparation course
                                          0
          math score
          reading score
                                          0
                                          0
          writing score
          dtype: int64
In [39]: |df['gender'].mode(0)
Out[39]: 0
               female
          Name: gender, dtype: object
```

```
In [40]: df['race/ethnicity'].value_counts()
Out[40]: race/ethnicity
         group C
                     319
                     262
         group D
                     190
         group B
         group E
                     140
         group A
                      89
         Name: count, dtype: int64
In [41]: df['race/ethnicity'].fillna('Group C',inplace=True)
         df.isnull().sum()
Out[41]: gender
                                          0
         race/ethnicity
                                          0
         parental level of education
                                          0
         lunch
                                          0
         test preparation course
                                          0
                                          0
         math score
         reading score
                                          0
         writing score
         dtype: int64
In [42]: |df['lunch'].value_counts()
Out[42]: lunch
         standard
                          645
         free/reduced
                          355
         Name: count, dtype: int64
In [43]: |df['lunch'].mode()
Out[43]: 0
               standard
         Name: lunch, dtype: object
In [44]: |df['lunch'].mode()[0]
Out[44]: 'standard'
In [45]: | df['lunch'].fillna(df['lunch'].mode()[0],inplace=True)
         df.isnull().sum()
Out[45]: gender
                                          0
                                          0
         race/ethnicity
         parental level of education
                                          0
         lunch
                                          0
                                          0
         test preparation course
         math score
                                          0
         reading score
                                          0
                                          0
         writing score
         dtype: int64
```

In [46]:	df.isnull().sum()	
Out[46]:	_	0
	race/ethnicity	0
	parental level of education	0
	lunch	0
	test preparation course	0
	math score	0
	reading score	0
	writing score dtype: int64	0
	writing score dtype: int64	0

In [47]: sns.distplot(df['math score'])

C:\Users\alisu\AppData\Local\Temp\ipykernel_17132\2354272343.py:1: UserWa
rning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function w ith

similar flexibility) or `histplot` (an axes-level function for histogram
s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df['math score'])

Out[47]: <Axes: xlabel='math score', ylabel='Density'>

In [48]: sns.kdeplot(df['reading score'])#normally distributed

Out[48]: <Axes: xlabel='reading score', ylabel='Density'>


```
In [49]: sns.distplot(df['writing score'],hist=False,)
```

C:\Users\alisu\AppData\Local\Temp\ipykernel_17132\3897196859.py:1: UserWa
rning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function w ith

similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df['writing score'],hist=False,)

Out[49]: <Axes: xlabel='writing score', ylabel='Density'>


```
In [50]: df['math score'].fillna(df['math score'].mean(),inplace=True)
    df.isnull().sum()
```

```
Out[50]: gender
                                          0
                                          0
          race/ethnicity
          parental level of education
                                          0
                                          0
          lunch
          test preparation course
                                          0
          math score
                                          0
          reading score
                                          0
                                          0
          writing score
          dtype: int64
```

Scan all numeric variables for outliers. If there are outliers, use any of the suitable \Box techniques to deal with them.

```
In [51]: sns.boxplot(df)
```

Out[51]: <Axes: >


```
In [52]: Q1=df['math score'].quantile(0.25)
    Q3=df['math score'].quantile(0.75)
    IQR=Q3-Q1
    lower= Q1-(1.5*IQR)
    upper=Q3+(1.5*IQR)
```

```
In [53]: np.clip(df['math score'],lower,upper,inplace=True)
sns.boxplot(df['math score'])
```

Out[53]: <Axes: >

Apply data transformations on at least one of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better understanding of the variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution.

```
In [54]: df['math score'].skew()
    -0.12912399951580147
    df['reading score'].skew()
    -0.2595478399998487
    df['writing score'].skew()
    -0.3125529577143879
    from sklearn.preprocessing import StandardScaler,MinMaxScaler
    scaler=StandardScaler()
```

```
In [55]: scaler.fit(df[['math score']])
```

Out[55]: StandardScaler()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [58]: df.head()

Out[58]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

In [59]: scaler.fit(df[['reading score']])

Out[59]: StandardScaler()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [60]: scaled_rscore=scaler.transform(df[['reading score']])