End Sem on 8th May

Syllobus: Exerything after midsen

+ sæleded section from

nidsen

(email on this)

2.9 Modeling: Electric Circuits

sum of voltage drop = voltage supplied accross auch comparent

Fig. 61. RLC-circuit

Name	Symbol		Notation	Unit	Voltage Drop
Ohm's Resistor	- \\\\-	R	Ohm's Resistance	ohms (Ω)	RI
Inductor		L	Inductance	henrys (H)	$L \frac{dI}{dt}$
Capacitor	 }	C	Capacitance	$farads\left(F\right)$	Q/C

RLC-Circuit

Find the current I(t) in an *RLC*-circuit with $R=11~\Omega$ (ohms), $L=0.1~\mathrm{H}$ (henry), $C=10^{-2}~\mathrm{F}$ (farad), which is connected to a source of EMF $E(t)=110~\mathrm{sin}~(60\cdot 2\pi t)=110~\mathrm{sin}~377~t$ (hence 60 Hz = 60 cycles/sec, the usual in the U.S. and Canada; in Europe it would be 220 V and 50 Hz). Assume that current and capacitor

charge are 0 when t = 0.

$$T(0) = 0 \quad T(0) = 0$$

$$\int_{R}^{(0)} f(x) = 0 \quad \int_{R}^{(0)} f(x) = 0$$

$$0.1d^{2}I + 11d^{2}I + 100I = (110)(377) \omega s (377E)$$

easily solvable

8–14 Find the **steady-state current** in the *RLC*-circuit in Fig. 61 for the given data. Show the details of your work.

$$R = 4 \Omega, L = 0.5 \text{ H}, C = 0.1 \text{ F}, E = 500 \sin 2t \text{ V}$$

8–14 Find the **steady-state current** in the *RLC*-circuit in Fig. 61 for the given data. Show the details of your work.

$$R = 4 \Omega, L = 0.1 \text{ H}, C = 0.05 \text{ F}, E = 110 \text{ V}$$

2.10 Solution by Variation of Parameters

$$(wronskian)$$
 $W = |Y_1| |Y_2|$

$$u = -\int \frac{y_2 r}{W} dx, \qquad v = \int \frac{y_1 r}{W} dx.$$
$$y_p(x) = u(x)y_1(x) + v(x)y_2(x)$$

Solve the nonhomogeneous ODF

homogenous part
$$y'' + y = \sec x$$

$$\forall homogenous part$$

$$\exists homog$$

 $u = -\left|\frac{y_2r}{W}dx\right|, \qquad v = \left|\frac{y_1r}{W}dx\right|.$ $y_p(x) = u(x)y_1(x) + v(x)y_2(x)$

$$y'' + 9y = \csc 3x$$

$$\Delta_{n} = A \cos 3x + B \sin 3x$$

$$\Delta_{1} = \Delta_{1} \cos 3x + B \sin 3x$$

$$W = \begin{cases} \cos 3x & \sin 3x \\ 3\sin x & 3\cos x \end{cases} = 3$$

$$u = -\int \frac{4\pi}{3} dx = -\int \frac{4\pi}{3} dx = -\frac{1}{3} \int \frac{4\pi}{3} dx = -\frac{1}{$$

where $y = y_1 + y_2 = y_2 = y_2 = y_1 + y_2 = y_2 =$

$$u = -\int \frac{y_2 r}{W} dx, \qquad v = \int \frac{y_1 r}{W} dx.$$

Idea of the Method.

noxt time: