Introducción a los tipos dependientes y a la programación verificada en Agda

Marcelo Lynch

Instituto Tecnológico de Buenos Aires

16 de diciembre de 2019

Programación verificada

- Se está volviendo cada vez más importante garantizar que el software hace lo que queremos que haga.
- Los bugs pueden ser muy costosos y hasta costar vidas
- **Objetivo**: que nuestros programas y algoritmos sean correctos de acuerdo a alguna especificación

Técnicas de verificación

Existen varias maneras de aproximarse a este objetivo:

- Testing y revisión de pares
- Análisis estático y dinámico para encontrar bugs
- Verificación formal
 - Model checking
 - Verificación deductiva: demostradores de teoremas

Verificación formal

- Los métodos formales nos permiten demostrar la corrección con rigor matemático.
- Podemos describir a los métodos formales como "la matemática aplicada para modelar y analizar sistemas de software".
- Esta verificación se hace proveyendo una demostración formal de un modelo matemático del sistema.
 - La correspondencia entre el modelo matemático y el sistema real se presume.

Demostradores de teoremas

El nivel de automaticidad de estas herramientas nos deja categorizarlas en:

- Demostradores automáticos
- Asistentes de demostraciones
- Verificadores de demostraciones

Asistentes de demostraciones

- Incluyen una interfaz en la que el usuario guía de alguna manera la búsqueda de la demostración
- Se habla en estos casos de una "colaboración humano-máquina"
- Ejemplos notables:
 - Coq
 - Isabelle
 - Agda

Agda - Introducción

- Agda es un lenguaje funcional con tipos dependientes, y sintaxis similar a Haskell
- Al mismo tiempo es un asistente de demostraciones que funciona dentro del mismo lenguaje (mediante su type checker)
- Desarrollado mayormente por Ulf Norell para su tesis de doctorado en la Universidad Tecnológica Chalmers en Gotemburgo, Suecia

Agda y Haskell

- Agda está desarrollado en Haskell
- La sintaxis de Agda esta inspirada en Haskell y el estilo de programación es similar
- Tienen distintas teorías subyacentes
 - Haskell está basado en System F (lambda cálculo tipado con polimorfismo paramétrico)
 - Agda está basado en la teoría de tipos dependientes de Martin-Löf
- Agda posee un termination checker: todos los programas deben terminar. Es decir, no hay recursión general y no es Turing-completo.

Teorías de tipos

- Se llama teoría de tipos a una serie de sistemas formales que sirven como alternativa a la teoría de conjuntos como fundamento formal de la matemática.
- Los matemáticos y científicos de la computación trabajan siempre con construcciones u objetos teóricos.
- Implícitamente se suele categorizar a los objetos con los que trabaja, asociándolos a un tipo.
- Las teorías de tipos hacen explícita esta asociación, tratando a los distintos tipos como "ciudadanos de primera clase"

La teoría de tipos de Martin-Löf

- Presentada por Per Martin-Löf como un fundamento matemático intuicionista (constructivista): por esto es también conocida como teoría de tipos intuicionista.
- La descripción de la teoría y sus elementos se hace a partir de juicios, es decir afirmaciones en el lenguaje metalógico (por afuera del sistema)
 - Así, por ejemplo, en lugar de definir el concepto de tipo veremos en qué condiciones se puede decir (es decir, emitir un juicio, o "explicar") que algo es un tipo.

Tipos

Podemos emitir el juicio "A es un tipo" cuando conocemos:

- Cuándo un objeto pertence al tipo (las condiciones de pertenencia)
- que significa que dos objetos del tipo sean iguales (mediante una relación de equivalencia)

Tipos

- La pertenencia de un objeto a al tipo A se nota $a \in A$ o a : A.
- Decimos que B es una familia de tipos indexada por A si B es una asignación que para cada $a \in A$ asigna un tipo B(a).

Términos y objetos

- La teoría tiene asociada una noción de cómputo, que es relevante al contextualizarla dentro de un lenguaje de programación
- En rigor en lugar de objetos hablamos de términos
 - Por ejemplo, 4, 2+2 y 2·2 podrían ser términos distintos del tipo Nat

Términos y objetos

- La teoría tiene asociada una noción de cómputo, que es relevante al contextualizarla dentro de un lenguaje de programación
- En rigor en lugar de objetos hablamos de términos
 - Por ejemplo, 4, 2+2 y 2·2 podrían ser términos distintos del tipo Nat
- Existen reglas de reescritura sobre los términos:
 - ullet Por ejemplo, 2+2 se puede reescribir mediante una serie de reglas de reescritura al término 4
 - Decimos que 2 + 2 reduce a 4
 - Podemos pensar a dos términos que se pueden reducir a un mismo término como "iguales" en cierto sentido: esta noción se llama igualdad definicional

Ejemplos de tipos: Set

- La colección de todos los conjuntos forma un tipo, que podemos llamar Set.
- También podemos pensar al tipo Set como un tipo que contiene a otros tipos (pensando a los tipos estructuralmente como conjuntos de objetos). Esta es la noción que usamos en Agda, donde si A es un tipo entonces A: Set.

Ejemplos de tipos: Set

- La colección de todos los conjuntos forma un tipo, que podemos llamar Set.
- También podemos pensar al tipo Set como un tipo que contiene a otros tipos (pensando a los tipos estructuralmente como conjuntos de objetos). Esta es la noción que usamos en Agda, donde si A es un tipo entonces A: Set.
 - Observación: *Set* es un tipo, pero el juicio *Set* : *Set*, lleva a la clásica inconsistencia de Bertrand Russell.
 - Esto se puede arreglar introduciendo una jerarquía de tipos Set_0 , Set_1 , ..., con $\mathbf{Set} = Set_0$ y $Set_i : Set_{i+1}$. No nos adentraremos demasiado en esto, y manejamos a continuación tipos de "primer nivel" que estan en \mathbf{Set} .

Tipos funcionales

- Si A y B son tipos podemos introducir el tipo A → B, el espacio de funciones de A a B.
- Un elemento $f \in A \rightarrow B$ se puede *aplicar* a cualquier $a \in A$, y tenemos $f(b) \in B$.

Pares ordenados

- Si A y B son tipos podemos introducir el tipo A × B de pares ordenados: la primera componente tiene elementos de A y la segunda elementos de B.
- Notamos a un elemento de $A \times B$ como (a, b).
- Los tipos de pares ordenados vienen equipados con proyecciones π_1, π_2 funciones tales que $\pi_1((a,b)) = a$ y $\pi_2((a,b)) = b$.

El tipo suma

- Si A y B son tipos podemos introducir el tipo A + B, la suma disjunta de A y B.
- Un elemento de este tipo será o bien un elemento de A o uno de B, junto con una indicación de si provino de A o de B
- Todos los elementos de A+B pueden describirse mediante dos funciones $inj_A: A \rightarrow A+B$ e $inj_B: B \rightarrow A+B$.
- En Haskell el concepto análogo es el the la forma del tipo
 Either a b = Left a | Right b, donde podemos saber
 el "origen" por pattern matching en los constructores Left y
 Right (estos constructores son análogos a las funciones inj).

Tipos dependientes

- El concepto central de esta teoría de tipos es el de tipo dependiente
- La definición de un tipo dependiente depende de un valor (y no de otros tipos como lo que veníamos viendo).
- Veremos que la existencia de tipos dependientes es lo que nos deja hacer demostraciones usando esta teoría de tipos

Funciones dependientes

Si *B* es una familia de tipos sobre *A*, existe el llamado producto dependiente, tipo de funciones dependientes o *tipo pi*:

$$\prod_{a\in A}B(a)$$

Este tipo contiene funciones con dominio (o entrada) en *A* pero cuyo codominio (o tipo de salida) depende del valor en la que se aplica la función.

Funciones dependientes (tipos Π)

Por ejemplo: si llamamos VecN(n) al conjunto de listas de n elementos naturales, podemos considerar una función f que aplicada en un numero natural n resulta en una lista de n ceros. Con esto:

$$f \in \prod_{n \in \mathbb{N}} VecN(n)$$

Notemos que cuando B es una asignación constante, este tipo corresponde al tipo de funciones $A \to B$ antes mencionado (donde el codominio no depende del valor de entrada).

Pares dependientes (tipos Σ)

Los elementos de los tipos Σ son pares ordenados donde el tipo de la segunda componente depende del valor en la primera componente.

Esto es, si B es una familia de tipos sobre A, existe el tipo de pares dependientes:

$$\sum_{a\in A}B(a)$$

Cuando B es una asignación constante, este tipo corresponde al tipo de pares ordenados $A \times B$.

El tipo igualdad

- Dados dos términos x, y puede introducirse el tipo igualdad $x \equiv y$.
- Existe un único constructor refl para cada tipo A que dado un objeto de A devuelve un valor de $a \equiv a$:

$$\mathtt{refl} \in \prod_{a \in A} a \equiv a$$

El tipo igualdad

- Notemos que ref1 es la única forma de construir (encontrar, describir) un valor del tipo igualdad
- Esto significa que si bien podemos hablar de un tipo x ≡ y para cualesquiera dos términos x, y, el tipo x ≡ y solo estará habitado si x es igual a y.

¿El tipo igualdad?

Con la introducción del tipo igualdad nos acercamos a la idea central que nos permite demostrar cosas en lenguajes como Agda: estamos diciendo que existe un **tipo** que representa a la **igualdad**, que es una afirmación lógica.

Veremos ahora precisamente como se establece este paralelismo entre tipos y fórmulas lógicas

Lógica intuicionista

- En la lógica clásica vale el principio del tercero excluido: "o bien A es verdadero, o bien A es falso".
- La lógica intuicionista rechaza el principio del tercero excluido: exige una demostración concreta o bien de que A es verdadero o de que B es verdadero para concluir que A V B es verdadero: en otras palabras, con la demostración de A V B debemos saber cuál de los dos vale.
- La lógica intuicionista es constructivista: para demostrar la existencia de un elemento que satisface una propiedad hay que construirlo, exhibirlo.

Proposiciones como tipos

El concepto de *proposiciones como tipos*, o *correspondencia de Curry-Howard* es la relación directa que existe entre las fórmulas de la lógica (proposiciones) con los tipos en la teoría de tipos.

Lógica	Teoría de tipos
Proposición, fórmula	Tipo
Demostración	Programa
Evidencia	Habitante de un tipo

Cuadro: Correspondencia de Curry-Howard

Proposiciones como tipos

Aquí ya vemos como la correspondencia se da en el marco de la lógica intuicionista:

- La evidencia la da un habitante concreto de un tipo
- Una demostración se da con un programa, que es una verdadera construcción de la evidencia

La correspondencia de Curry-Howard

- $A \wedge B$ corresponde a $A \times B$
- $A \lor B$ corresponde a A + B
- $A \Rightarrow B$ corresponde a $A \rightarrow B$
- $\forall x : A. \ B(x)$ corresponde a $\prod_{x \in A} B(x)$
- $\exists x : A. \ B(x)$ corresponde a $\sum_{x \in A} B(x)$

Demostrando con el sistema de tipos

Podemos imaginar ahora cómo se demuestran las propiedades de los programas en un lenguaje con tipos dependientes como Agda: simplemente debemos exhibir un elemento que habite el tipo que corresponde a la proposición que queremos demostrar.

Es decir, para demostrar una propiedad como

$$\forall n : \mathbb{N} . \forall m : \mathbb{N} . n + m = m + n$$

basta con exhibir (construir) un elemento del tipo

$$\prod_{n\in\mathbb{N}}\prod_{m\in\mathbb{N}}n+m\equiv m+n$$

Programando en Agda - Definiciones

```
-- Definimos los booleanos
data B: Set where
  tt: B -- true
  ff: B -- false
-- Un tipo definido por inducción: los naturales
data N : Set where
  zero: N
  \operatorname{\mathsf{suc}}:\mathbb{N}\to\mathbb{N}
-- Un tipo polimórfico: lista de A
data List (A : Set) : Set where
  []: List A
  :: A \to \mathsf{List}\ A \to \mathsf{List}\ A
-- Pragmas
{-# BUILTIN NATURAL N #-}
{-# BUILTIN LIST List #-}
```

Funciones

```
-- And booleano
&& : \mathbb{B} \to \mathbb{B} \to \mathbb{B}
tt && b = b
ff \&\& = ff
-- Suma de naturales
+ : \mathbb{N} \to \mathbb{N} \to \mathbb{N}
zero + n = n
\operatorname{suc} m + n = \operatorname{suc} (m + n)
if then else : \{A: \mathsf{Set}\} \to \mathbb{B} \to A \to A \to A
if tt then a else = a
if ff then else a = a
\mathsf{pred}: \mathbb{N} \to \mathbb{N}
pred 0 = 0
pred (suc n) = n
```

Tipos dependientes

```
data Vec012 (A:\mathsf{Set}):(n:\mathbb{N})\to\mathsf{Set} where v012[]: Vec012 A 0 v012[_]: A\to\mathsf{Vec}012 A 1 v012[_,_]: A\to A\to\mathsf{Vec}012 A 2
```

Tipos dependientes

```
\begin{array}{l} \mathsf{data} \ \mathbb{V} \ (A : \mathsf{Set}) : \mathbb{N} \to \mathsf{Set} \ \mathsf{where} \\ [] : \mathbb{V} \ A \ 0 \\ \_ :: \_ : \forall \ \{n : \mathbb{N}\} \ (x : A) \ (xs : \mathbb{V} \ A \ n) \to \mathbb{V} \ A \ (\mathsf{suc} \ n) \end{array}
```

La igualdad

```
data Eq (A:\operatorname{Set}) (x:A):A\to\operatorname{Set} where refl : (Eq A x) x
```

La igualdad

```
data \_\equiv\_ \{A: \mathsf{Set}\}\ (x:A): A \to \mathsf{Set}\ \mathsf{where} refl: x\equiv x -- Asociamos \equiv a la noción interna de igualdad de Agda \{-\# \ \mathsf{BUILTIN} \ \mathsf{EQUALITY} \ \_\equiv\_ \ \#-\} infix 3\ \_\equiv\_
```

Igualdad proposicional y definicional

$$1+1-es-2: 1+1\equiv 2$$

 $1+1-es-2=refl$
 $pred3: pred 3\equiv 2$
 $pred3=refl$
 $pred3': pred 3\equiv pred (suc 2)$
 $pred3'=refl$

Algunas propiedades de la igualdad

```
-- La igualdad es simétrica

sym : ∀ {A : Set} {x y : A}

→ x ≡ y → y ≡ x

sym refl = refl

-- La igualdad es una congruencia

cong : ∀ {A B : Set} (f : A → B) {x y}

→ x ≡ y → f x ≡ f y

cong f refl = refl
```

Demostraciones

```
-- Negación
\tilde{\phantom{a}}:\mathbb{B}\to\mathbb{B}
\tilde{t} tt = ff
\sim ff = tt
-- Demostrando un enunciado universalmente cuantificado
-- En este caso basta con enumerar
-- todos los casos por pattern matching
\sim-elim : \forall (b : \mathbb{B}) \rightarrow \sim b \equiv b
\sim -elim tt = refl
\sim -elim ff = refl
-- Reutilizando demostraciones con rewrite
\sim \&\&: \forall (b1 \ b2: \mathbb{B}) \rightarrow (\sim b1) \&\& \ b2 \equiv b1 \&\& \ b2
~~&& b1 \ b2 \ \text{rewrite} \ (~~-\text{elim} \ b1) = \text{refl}
```

Demostraciones

```
_++_ : \forall {A : Set} → List A → List A → List A

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

-- Con rewrite

++-r-identity : \forall {A : Set} (xs : List A) → xs ++ [] \equiv xs

++-r-identity [] = refl

++-r-identity (x :: xs) rewrite ++-r-identity xs = refl
```

Demostraciones

```
++: \forall \{A: Set\} \rightarrow List A \rightarrow List A \rightarrow List A
\lceil \rceil + + ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
-- Con rewrite
++-r-identity : \forall \{A : Set\} (xs : List A) \rightarrow xs ++ [] \equiv xs
++-r-identity [] = refl
++-r-identity (x :: xs) rewrite ++-r-identity xs = refl
-- Usando razonamientos
++-r-identity': \forall \{A : Set\} (xs : List A) \rightarrow xs ++ [] \equiv xs
++-r-identity'[]=refl
++-r-identity' (x :: xs) =
                begin
                   (x :: xs) ++ []
                =()
                  x :: (xs ++ [])
                \equiv \langle cong(x::)(++-r-identity xs) \rangle
                 x :: xs
```

Razonamientos con igualdad

```
-- Cosmético
  begin_: \forall \{x y : A\}
    \rightarrow x \equiv y
   \rightarrow x \equiv y
  begin x \equiv y = x \equiv y
-- Me deja encadenar cosas definicionalmente iguales
 =\langle \rangle: \forall (x : A) \{y : A\}
   \rightarrow x \equiv y
      -----
   \rightarrow x \equiv y
 x \equiv \langle \rangle x \equiv y = x \equiv y
```

Razonamientos con igualdad

```
-- El argumento del medio es 'justificación' (mediante transitividad)
-- para decir que el de la izquierda y la derecha son iguales
 \equiv \langle \rangle : \forall (x : A) \{yz : A\}
   \rightarrow x \equiv y
   \rightarrow y \equiv z
   \rightarrow X \equiv 7
 x \equiv (x \equiv y) y \equiv z = trans x \equiv y y \equiv z
-- Cosmético
 ■ : ∀ (x : A)
   \rightarrow x \equiv x
 x = refl
```

```
-- Asociatividad de append
++-assoc : ∀ {A : Set} (xs ys zs : List A)
 \rightarrow (xs ++ vs) ++ zs \equiv xs ++ (vs ++ zs)
++-assoc [] ys zs =
 begin
  ([] ++ ys) ++ zs
 =()
  ys ++ zs
 =⟨⟩
 [] ++ (ys ++ zs)
++-assoc (x :: xs) ys zs =
 begin
  ((x :: xs) ++ ys) ++ zs
                                          -- Definición de ++
 =()
  (x :: (xs ++ vs)) ++ zs
                                          -- Definición de ++
 ()
  x :: ((xs ++ ys) ++ zs)
 \equiv (cong (x::) (++-assoc xs ys zs))
                                          -- Hipótesis inductiva
  x :: (xs ++ (ys ++ zs))
 =()
                                          -- Definición de ++
  (x :: xs) ++ (ys ++ zs)
```

```
-- Reverse lento: O(N²)
reverse : ∀ {A : Set} → List A → List A
reverse [] = []
reverse (x :: xs) = reverse xs ++ [ x ]

-- Reverse rápido (helper)
fastrev : ∀ {A : Set} → List A → List A → List A
fastrev [] ys = ys
fastrev (x :: xs) ys = fastrev xs (x :: ys)

-- Reverse rápido: O(N)
rev : ∀ {A : Set} → List A → List A
rev xs = fastrev xs []
```

Quiero demostrar que reverse y rev hacen lo mismo...

```
-- Demostremos este lema

fastrev-lem : ∀ {A : Set} (xs ys : List A)

→ fastrev xs ys ≡ reverse xs ++ ys

-- Caso base
fastrev-lem [] ys =
begin
fastrev [] ys
≡()
ys
≡()
reverse [] ++ ys
```

```
-- Paso inductivo
fastrev-lem (x :: xs) ys =
begin
fastrev (x :: xs) ys
```

```
≡⟨⟩
reverse (x :: xs) ++ ys
```

```
-- Paso inductivo
fastrev-lem (x :: xs) ys =
begin
fastrev (x :: xs) ys
≡()
fastrev xs (x :: ys)
```

-- Definicion de fastrev

```
\equiv \langle \rangle reverse (x :: xs) ++ ys
```

```
-- Paso inductivo
fastrev-lem (x :: xs) ys =
    begin
    fastrev (x :: xs) ys
    ≡()
    fastrev xs (x :: ys)
    ≡( fastrev-lem xs (x :: ys) )
    reverse xs ++ (x :: ys)
```

```
-- Definicion de fastrev
```

```
-- Hipótesis inductiva
```

```
≡()
reverse (x :: xs) ++ ys
```

```
-- Paso inductivo
fastrev-lem (x::xs) ys =
begin
fastrev (x::xs) ys

=()
fastrev xs (x::ys)
=( fastrev-lem xs (x::ys) )
reverse xs ++ (x::ys)
```

- -- Definicion de fastrev
 - -- Hipótesis inductiva

```
=()
(reverse xs ++ [ x ]) ++ ys
=()
reverse (x :: xs) ++ ys
```

-- Definición de reverse

```
-- Paso inductivo
fastrev-lem (x :: xs) ys =
     begin
       fastrev (x :: xs) ys
                                                   -- Definicion de fastrev
     ≡()
       fastrev xs(x::ys)
     \equiv ( fastrev-lem xs (x :: ys) )
                                                     -- Hipótesis inductiva
       reverse xs ++ (x :: ys)
    ≡()
      reverse xs ++ ([ x ] ++ ys)
     ≡( sym (++-assoc (reverse xs) ([ x ]) ys) ) -- Asociatividad de ++
      (reverse xs ++ [x]) ++ ys
     \equiv \langle \rangle
                                                   -- Definición de reverse
      reverse (x :: xs) ++ ys
```

```
-- Paso inductivo
fastrev-lem (x :: xs) ys =
     begin
       fastrev (x :: xs) ys
                                                   -- Definicion de fastrev
     ≡()
       fastrev xs (x :: ys)
     \equiv ( fastrev-lem xs (x :: ys) )
                                                     -- Hipótesis inductiva
       reverse xs ++ (x :: ys)
     =()
      reverse xs ++ ((x :: []) ++ ys)
                                                   -- Notación: x :: [] ≡ [ x ]
     ≡()
      reverse xs ++ ([x]++ ys)
     ≡( sym (++-assoc (reverse xs) ([ x ]) ys) ) -- Asociatividad de ++
      (reverse xs ++ [x]) ++ ys
     \equiv \langle \rangle
                                                   -- Definición de reverse
      reverse (x :: xs) ++ ys
```

```
-- Paso inductivo
fastrev-lem (x :: xs) ys =
     begin
      fastrev (x :: xs) ys
                                                 -- Definicion de fastrev
     ≡()
       fastrev xs (x :: ys)
     \equiv ( fastrev-lem xs (x :: ys) )
                                                   -- Hipótesis inductiva
       reverse xs ++ (x :: ys)
      reverse xs ++ (x :: ([] ++ ys))
     ≡()
                                                 -- Definición de ++ (2)
      reverse xs ++ ((x::[]) ++ vs)
                                                 -- Notación: x :: [] ≡ [ x ]
     ≡()
      reverse xs ++ ([x]++ ys)
     \equiv( sym (++-assoc (reverse xs) ([x]) ys) ) -- Asociatividad de ++
      (reverse xs ++ [x]) ++ ys
     =⟨⟩
                                                 -- Definición de reverse
      reverse (x :: xs) ++ vs
```

```
-- Paso inductivo
fastrev-lem (x :: xs) ys =
     begin
       fastrev (x :: xs) ys
     ≡()
                                                  -- Definicion de fastrev
       fastrev xs (x :: ys)
     \equiv ( fastrev-lem xs (x :: ys) )
                                                   -- Hipótesis inductiva
       reverse xs ++ (x :: ys)
     ≡()
                                                  -- Definicion de ++ (1)
      reverse xs ++ (x :: ([] ++ ys))
     =⟨⟩
                                                  -- Definición de ++ (2)
      reverse xs ++ ((x :: []) ++ ys)
                                                  -- Notación: x :: [1] \equiv [x]
     ≡()
      reverse xs ++ ([x]++ ys)
     \equiv( sym (++-assoc (reverse xs) ([x]) ys) ) -- Asociatividad de ++
      (reverse xs ++ [x]) ++ ys
     =⟨⟩
                                                  -- Definición de reverse
      reverse (x :: xs) ++ vs
```

```
-- Demostración: reverse y rev hacen lo mismo para cualquier argumento reverses-equal-app : ∀ {A : Set} (xs : List A) → rev xs ≡ reverse xs reverses-equal-app xs = begin rev xs ≡ ⟨⟩ fastrev xs [] ≡ ⟨ fastrev-lem xs [] ⟩ -- Aplico el lema reverse xs ++ [] ≡ ⟨ ++-r-identity (reverse xs) ⟩ -- xs + [] ≡ xs reverse xs
```

Extensionalidad como postulado

postulate

```
extensionality : \forall \{\ell\} \{A B : Set \ell\} \{f g : A \rightarrow B\}

\rightarrow (\forall (x : A) \rightarrow f x \equiv g x)

\rightarrow f \equiv g
```

- No se puede demostrar extensionalidad dentro de Agda
- Sin embargo el postulado es consistente con Agda así que podemos usarlo sin problemas

Extensionalidad como postulado

postulate

```
extensionality : \forall \{\ell\} \{A B : Set \ell\} \{f g : A \rightarrow B\}

\rightarrow (\forall (x : A) \rightarrow f x \equiv g x)

\rightarrow f \equiv g
```

-- Con extensionalidad puedo probar la igualdad de las funciones reverses-equal : ∀ {A : Set} → rev {A} ≡ reverse {A} reverses-equal = extensionality reverses-equal-app

Verificación interna

- Hasta ahora definimos tipos de datos (como List) y programas (como ++) y luego demostramos propiedades sobre los mismos.
 - Esto podría llamarse verificación externa: las demostraciones son externas a los programas.
- En contraste, podemos considerar un estilo de verificación que podemos llamar verificación interna en donde expresamos las proposiciones dentro de los mismos tipos de datos y programas
- La idea es escribir tipos y funciones más expresivos: la corrección de las funciones y las invariantes de las estructuras de datos están garantizadas por el propio tipo.

Vectores: el tipo ♥

```
data \mathbb{V}(A:\mathsf{Set}):\mathbb{N}\to\mathsf{Set} where []:\mathbb{V}A\ 0 \_::\_:\mathbb{V}\{n:\mathbb{N}\}\ (x:A)\ (xs:\mathbb{V}A\ n)\to\mathbb{V}A\ (\mathsf{suc}\ n) -- Concatenación de vectores \_++\mathbb{V}\_:\mathbb{V}\{A:\mathsf{Set}\}\{n\ m:\mathbb{N}\}\to\mathbb{V}A\ n\to\mathbb{V}A\ m\to\mathbb{V}A\ (n+m) []++\mathbb{V}\ ys=ys (x::xs)++\mathbb{V}\ ys=x::(xs++\mathbb{V}\ ys) -- Extraer el primer elemento de vectores no vacíos head \mathbb{V}:\mathbb{V}\{A:\mathsf{Set}\}\{n:\mathbb{N}\}\to\mathbb{V}A\ (\mathsf{suc}\ n)\to A head \mathbb{V}(x::xs)=x
```

Árboles binarios de búsqueda

```
\leq : \mathbb{N} \to \mathbb{N} \to \mathbb{B}
zero < zero = tt
zero < (suc a) = tt
(suc b) < zero = ff
(\operatorname{suc} a) \leq (\operatorname{suc} b) = a \leq b
-- Árboles binarios de búsqueda con elementos naturales.
-- Indizados por dos elementos naturales, la cota inferior
-- y la superior de los elementos del árbol
data bst\mathbb{N}: \mathbb{N} \to \mathbb{N} \to \mathsf{Set} where
  \mathsf{leaf} : \forall \ \{l \ u : \mathbb{N}\} \to l \le u \equiv \mathsf{tt} \to \mathsf{bst} \mathbb{N} \ l \ u
   node : \forall \{ll \ lr \ ul \ ur : \mathbb{N}\}
                   (elem : \mathbb{N}) \to \mathsf{bst}\mathbb{N} \ ll \ ul \to \mathsf{bst}\mathbb{N} \ lr \ ur \to
                   ul \le elem \equiv tt \rightarrow elem \le lr \equiv tt \rightarrow
                   hstN 11 ur
```

Conclusiones

- Conclusiones respecto de Agda
 - Interesante e importante conocer el costado teórico
 - Experiencia interactiva muy rica
 - Intuitivo, estilo parecido a demostración en papel
- Otras aproximaciones a la programación verificada
 - Coq
 - Haskell
 - Idris