NAVODIT CHANDRA

navoditchandra0708@gmail.com | (+91) 9453001199 | linkedin.com/in/navoditchandra/ | navoditc.github.io/

EDUCATION

Carnegie Mellon University

Pittsburgh, USA

Master of Science in Mechanical Engineering - Advanced Study

Dec 2022

GPA: 3.97/4.0

Selected Coursework: Machine Learning and Artificial Intelligence, Deep Learning, Computer Vision, Trustworthy AI Autonomy, Numerical Methods in Engineering, Linear Control Systems

Indian Institute of Technology Kanpur

Kanpur, India

Bachelor of Technology in Mechanical Engineering | Graduated with Distinction

CPI: 9.1/10.0

Selected Coursework: Fundamentals of Computing, Robot Motion Planning

May 2021

SKILLS

Programming Languages: *Proficient*: Python, C++, *Familiar*: SQL, Java, HTML **Libraries:** PyTorch, OpenCV, Gym, NumPy, Pandas, Matplotlib, Scikit-learn

Software and Tools: Linux (Ubuntu), CARLA, MATLAB, MAPLE, Arduino, Git, AutoCAD, Latex

RESEARCH EXPERIENCE

Carnegie Mellon University

Pittsburgh, USA

Graduate Researcher, Mechanical and Artificial Intelligence Lab

May 2022 - Dec 2022

- Generated a dataset consisting of **RGB images** and **LIDAR point cloud** in autopilot mode on CARLA simulator
- Refined image and point cloud feature maps processed by ResNet neural network architecture by introducing Convolutional Block Attention Module
- Improved **Driving Score** evaluation metric by **9.5%** by implementing **Additive Attention** for computation of alignment scores in **transformer block** used to combine intermediate image and LiDAR feature maps
- Experimented model performance in simulation by replacing Self-Attention module with Cross-Attention module

Indian Institute of Technology Kanpur

Kanpur, India

Students-Undergraduate Research Graduate Excellence Fellow, Energy Conservation & Storage Lab

May 2019 - July 2019

• Studied effects of gas velocity, operating current, surface wettability and capillary number on a **PEM Fuel Cell** operation by means of a **parametric study**

RELEVANT PROJECTS

End to End Learning for Self-Driving Cars

Feb 2022 - Apr 2022

- Predicted **steering angle** of a self-driving car from images captured by it by developing an **end-to-end** learning pipeline
- Accomplished reasonably good performance on training and testing tracks by executing CNN and CNN-LSTM neural network topologies in a team of 2

Modeling and Study of Adversarial Attacks Arising from Deceiving Perception in Car Autopilot

Feb 2022 - Apr 2022

- Collaborated in a team of 3 and simulated a **real-life incident** of tricking a self-driving car to misidentify **moon** as a **yellow traffic light** deploying a targeted **adversarial attack algorithm**
- Executed **PGD algorithm** to trick autopilot system and carried out adversarial training as an effective **adversarial defensive technique** to avert such safety-critical scenarios

Seven Segment Digit Recognition using Computer Vision

Mar 2022 - Apr 2022

- Collaborated with 2 colleagues and developed an algorithm to take readings from electronic devices
- Enhanced accuracy by 7.8% and speeded up process of taking readings by 10.4 times in comparison to average computer typists by utilizing image processing operations and computer vision techniques

Depth Estimation leveraging Stereo Vision and Generation of 3D Point Cloud

Apr 2022 - Apr 2022

- Found **depth** of each pixel from a **disparity map** produced by a pair of parallel **stereo images** to calculate distance of objects present
- Generated colored **3D point cloud** for visualization and verification of correctness of scaling ratio used to estimate depth

Identification of Abnormal Breasts as Potential Cancers using Machine Learning

Oct 2021 - Dec 2021

- Applied **feature engineering** leveraging **shallow machine learning** algorithms in a joint effort with 2 colleagues to estimate **minimum** number of **features** to predict whether tumors were malignant or benign
- Achieved an **implementation time** of **4.61 ms** and an **accuracy** of **100%** using a single feature with the K-Nearest Neighbor algorithm found to be best at making predictions

Controllers for Unmanned Ground Vehicle

Nov 2021 - Dec 2021

- Designed longitudinal PID and lateral PID, full state feedback and optimal controllers in Python and simulated the path followed by vehicle on Webots simulator
- Bagged position in top 20% in terms of completion time of track by implementing A* path planning algorithm and EKF SLAM to control the vehicle in absence of sensor input