

The
Patent
Office

PCT/GB 99 / 03331
07 NOVEMBER 1999

INVESTOR IN PEOPLE

09 / 763983

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

GB 99 / 3331

REC'D 26 NOV 1999
WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 3 November 1999

THIS PAGE BLANK (USPTO)

The
Patent
Office

070CT98 E395300-1 D02884
P01/7700 0.00 - 9821736.7

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office

Cardiff Road
Newport
Gwent NP9 1RH

1. Your reference

P22412/LXM/BOU

2. Patent application number

(The Patent Office will fill in this part)

9821736.7

- 7 OCT 1998

3. Full name, address and postcode of the or of each applicant (underline all surnames)

Giltech Limited
12 North Harbour Estate
AYR
KA8 8AA

Patents ADP number (if you know it)

4015822 001

If the applicant is a corporate body, give the country/state of its incorporation

United Kingdom

S

4. Title of the invention

"Alginate Foam"

5. Name of your agent (if you have one)

Murgitroyd & Company

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

373 Scotland Street
GLASGOW
G5 8QA

Patents ADP number (if you know it)

1198013

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country	Priority application number (if you know it)	Date of filing (day / month / year)
---------	---	--

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application	Date of filing (day / month / year)
-------------------------------	--

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:

YES

- a) any applicant named in part 3 is not an inventor, or
 - b) there is an inventor who is not named as an applicant, or
 - c) any named applicant is a corporate body.
- See note (d))

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description 18

Claim(s) -

Abstract -

Drawing(s) -

10. If you are also filing any of the following, state how many against each item.

Priority documents -

Translations of priority documents -

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

Any other documents
(please specify) -

11.

I/We request the grant of a patent on the basis of this application.

Signature
Murgitroyd & Company

Date 6.10.1998

12. Name and daytime telephone number of person to contact in the United Kingdom

Beverley Ouzman

0141 307 8400

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- Write your answers in capital letters using black ink or you may type them.
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

1 FOAM

2

3 The present invention is concerned with a foamable
4 formulation and the foam formed therefrom.

5

6 A wide variety of gels, creams, ointments, lotions and
7 other formulations are available for application to a
8 body surface. The exact content of these compositions
9 will vary depending upon the purpose of application.
10 For example, a formulation may be applied to clean a
11 body surface, to promote healing of any wound or
12 injury, to prevent an exposed wound on the body from
13 drying out, to prevent infection, etc. In certain
14 circumstances the composition may include an active
15 ingredient.

16

17 In our International Patent Application published 13
18 June 1996 under No WO-A-96/17595 we describe a foamable
19 formulation which comprises a foamable carrier or
20 gelling agent, for example an alginate gel, and an
21 active ingredient, such as a water soluble glass
22 powder.

23

24 The product described in WO-A-96/17595 represented a
25 considerable advance over the use of gel or cream.

1 We have now found that by including a precipitant for
2 the gelling agent, in a slow-release form within the
3 composition, further improvements with regard to the
4 setting time of the foam and its stability can be
5 achieved. In particular, the added stability enables a
6 pre-foamed pad to be sterilised by irradiation or other
7 conventional means.

8

9 Thus, the present invention provides a formulation
10 comprising a foamed gelling agent admixed with a slow-
11 release precipitant therefor. The gelling agent may be
12 any agent capable of forming a foam, although
13 preferably the gelling agent is physiologically
14 compatible and non-irritant when maintained in contact
15 with the body surface. The gelling agent may be a gel,
16 for example a sodium alginate gel, carageenan gel,
17 sodium carboxymethylcellulose gel or mixtures thereof.

18

19

20 The precipitant is desirably intimately admixed
21 throughout the whole of the foamed gelling agent,
22 preferably during the foaming process. In certain
23 circumstances however the presence of the precipitant
24 on one surface of the foamed gelling agent may be
25 sufficient to cause stabilisation of the foam.

26 Examples of precipitants include stabilising
27 crosslinking agents which render the gelling agent
28 insoluble. Examples include polyvalent metal ions of
29 calcium, zinc, copper, silver or aluminium as well as
30 borates, glyoxal and amino-formaldehyde precondensates.

31

32 The role of the precipitant is to stabilise the foamed
33 gel so that a stable foam is produced. Generally, the
34 stable foam should be produced within a reasonable time
35 period since if the precipitant is too slow-acting, the
36 foam structure will have collapsed prior to

1 stabilisation. However, a very fast acting precipitant
2 may not allow sufficient time for the admixed gel to be
3 foamed. Desirably, the precipitant stabilises the gel
4 over a time period of 1 minute to 120 minutes,
5 preferably within 30 minutes. The solubility of the
6 precipitant and hence the setting time of the foam may
7 be varied by adjusting the pH of the composition
8 especially where the precipitant is based upon a
9 calcium salt. Generally, the solubility of a calcium
10 salt will be increased by lowering the pH. Typical pH
11 adjusters include organic acids such as acetic, adipic,
12 citric, fumeric, lactic and tartaric acids.

13
14 Suitable precipitants include calcium citrate, calcium
15 carbonate, calcium phosphate, calcium hydrogen phosphate
16 (CaHPO_4), barium carbonate, barium phosphate, barium
17 sulphate, barium chloride and zinc carbonate.

18
19 Where the gelling agent comprises an alginate gel, a
20 carageenan gel or a carboxymethylcellulose gel one
21 preferred precipitant is a calcium salt. Whilst
22 calcium citrate has been used in the examples, other
23 slowly dissolving calcium salts are also suitable.

24
25 Where the gelling agent comprises
26 carboxymethylcellulose gel one preferred precipitant is
27 an aluminium salt.

28
29 In one embodiment the gelling agent and precipitant are
30 packaged separately and only admixed during the foaming
31 process or subsequent to foaming.

32
33 Optionally, the formulation may comprise other
34 additives such as decompactants which promote the
35 desired foam structure or other foaming agents,
36 plasticisers, humectants, preservatives, additives,

1 sequestering agents or active ingredients such as
2 antimicrobial agents, growth factors, hormones, living
3 cells, etc.

4

5 The foam may be applied directly to the body area and
6 allowed to produce a stable foam protective cover, for
7 example over a wound.

8

9 Alternatively, the foam can be produced onto a mould or
10 other surface area, allowed to cure and then applied to
11 the body surface. Optionally, the foam may be applied
12 about a substrate (for example cloth, mesh, non-woven
13 pad of alginate fibres, nylon, rayon, polylactid acid,
14 polyglycolic acid, polycaprolactone or biocompatible
15 glass fibres) which are then integrated into the foam
16 pad produced.

17

18 As an example, the foam may be used to treat
19 dermatological conditions (including psoriasis, atopic
20 and allergic eczema). It may be convenient in this
21 embodiment for the foam to deliver an active ingredient
22 normally used to alleviate such conditions, for example
23 a steroid such as hydrocortisone.

24

25 In another embodiment the foam may be used to treat
26 burns or scalds, including sunburn.

27

28 In another embodiment the foam may be applied
29 cosmetically, and for example may include skin
30 moisturising agents, nutritional agents and growth
31 factors suitable to promote skin regeneration. A foam
32 intended for cosmetic use may include colorants or
33 pigments so that the foam may be applied to the skin as
34 a cosmetic or to disguise any blemishes in the skin.

35

36 The foam may be used prophylactically. In particular a

1 foam containing a UV blocking agent may be applied to
2 exposed areas of the skin to protect it from the
3 effects of the sun.

4

5 The formulation of the invention is applied to the body
6 site of interest in the form of a foam and it is
7 therefore essential that the composition undergoes a
8 foaming process before application to the body. In the
9 foaming process gas is forced into or is formed within
10 the formulation to entrap small bubbles of gas therein,
11 thereby forming the foam. Any suitably gas or gas
12 producing system can be used to produce the foam.
13 Mention may be made of butane and nitrous oxide, but
14 other gases like air, nitrogen, hydrofluorocarbons such
15 as HFC134a or 227, hydrocarbons like propane,
16 isopropane or a mixture thereof, are also suitable.
17 Conveniently the foam may be produced by conventional
18 means such as by using aerosol technology.

19

20 The formulation according to the present invention may
21 be stored in any convenient container until required.
22 Generally, the container will be designed to preserve
23 the sterile nature of the formulation. Conveniently
24 the container will be provided with means to foam the
25 composition when required. Details are given in WO-A-
26 96/17595.

27

28 Generally, the foam will be produced from sterile
29 ingredients.

30

31 Prior to the foaming process, the foamable carrier is
32 preferably in the form of a gel. The gel may be
33 sterilised and this is generally desirable where the
34 foam is intended for medical use. Usually,
35 sterilisation will take place by autoclaving the
36 formulation, since this is currently the most economic

1 means of achieving sterilisation. Autoclaving at
2 temperatures of from 100°C to 125°C for under ½ hour is
3 normally sufficient. Generally, the autoclaving
4 process should be as mild as possible, whilst being
5 sufficient to sterilise the formulation. For example,
6 autoclaving at temperatures of about 121°C for 15-20
7 minutes is acceptable. The autoclaved formulation may
8 then be foamed when cool. It is also possible,
9 however, to sterilise the formulation by other means,
10 for example by γ -irradiation or e-beam irradiation. It
11 has been found that autoclaving the gel may cause the
12 MW of the foamable carrier to be slightly reduced.
13 Consequently it may be desirable to select a foamable
14 carrier having a higher MW than that ultimately
15 required.

16

17 The foam forms an air-tight cover around any wound or
18 injury to which it is applied, and this prevents that
19 area from drying out and may also combat infection.
20 The advantages of applying a topical product in the
21 form of a foam include:

22

- 23 1. Easy rapid application,
- 24 2. Conforms to surface irregularities,
- 25 3. Insulates the wound,
- 26 4. Cools the tissues,
- 27 5. Offers antibacterial action to prevent
 infection,
- 29 6. Biocompatibility with tissue,
- 30 7. Suitable for use as a vehicle for the
 administration of pharmaceutical agents,
 and/or
- 33 8. Maintains a moist environment.

34

35 Generally, the formulation of the present invention
36 will be applied directly to the body site of interest

1 in the form of a foam, the foam being produced from any
2 suitable device (such as an aerosol) immediately before
3 application. It is, however, possible for a quantity
4 of the foamed formulation to be produced and then
5 applied onto the body site by any suitable means, for
6 example by hand or by spatula. This method may be
7 required for wounds having a narrow opening.

8
9 As stated above, the foam may also be produced on a
10 suitable surface and then dried to produce the foam
11 sheet described above. Generally, the production of
12 the sheet will take place under sterile conditions or
13 may be sterilised after production. In the prior
14 described foam product of WO-A-96/17595, it was not
15 possible to provide a foamed pad product and then
16 sterilise the pad by conventional means such as γ -
17 irradiation, since it was found that the foam structure
18 deteriorated during sterilisation. With the inclusion
19 of the precipitant however, sterilisation of the
20 pad is possible both by γ -irradiation, ethylene oxide
21 sterilisation or other conventional means. This
22 represents a very considerable advantage over the prior
23 art product. Optionally the manufacture of a
24 prefoamed product may envisage a continuous foaming
25 process. The sheet may be divided into a convenient
26 size and may be packaged. Optionally the foam sheet
27 may be produced on contoured surface so that it is
28 moulded to a pre-determined shape.

29
30 Examples of suitable foamable carriers for use in the
31 composition of the present invention include (but are
32 not limited to) alginic acid and derivatives thereof,
33 carboxymethylcellulose and derivatives thereof,
34 collagen, polysaccharides (including, for example,
35 dextran, dextran derivatives, pectin, starch, modified
36 starches such as starches having additional carboxyl

1 and/or carboxamide groups and/or having hydrophilic
2 side-chains, cellulose and derivatives thereof), agar
3 and derivatives thereof (such as agar stabilised with
4 polyacrylamide), carageenan, polyethylene oxides,
5 glycol methacrylates, gelatin, gums such as xanthum,
6 guar, karaya, gellan, arabic, tragacanth and locust
7 bean gum. Also suitable are the salts of the
8 aforementioned carriers, for example, sodium alginate.
9 Mixtures of any of the aforementioned carriers may also
10 be used, as required.

11

12 Preferred foamable carriers include alginate,
13 carageenan, carboxymethylcellulose, the derivatives and
14 salts thereof and mixtures of any of these. Alginate
15 (the derivatives or salts thereof, such as sodium and
16 calcium alginate) are especially preferred. Foamable
17 carriers having a molecular weight of from 10,000 to
18 200,000 kDa are preferred, especially over 100,000 kDa,
19 for example 150,000 to 200,000 kDa, may be used.

20

21 The formulation may further comprise a foaming agent,
22 which promotes the formation of the foam. Any agent
23 having a surfactant character may be used. The
24 surfactants may be cationic, non-ionic or anionic.
25 Examples of suitable foaming agents include cetrimide,
26 lecithin, soaps, silicones and the like. Commercially
27 available surfactants such as Tween™ are also suitable.
28 Cetrimide (which additionally has an anti-bacterial
29 activity) is especially preferred.

30

31 The formulation of the present invention (and thus the
32 foam) may be used to deliver pharmaceutically active
33 agents, in particular to deliver such agents in a
34 controlled release manner. Mention may be made of:

35

36 Antiseptics, Antibacterials and Antifungal agents,

1 such as Chlorhexidine, acetic acid, polynoxylin,
2 povidone iodine, mercurochrome phenoxyethanol,
3 acridene, silver nitrate, dyes eg brilliant green,
4 undecanoic acid, silver sulphadiazine, silver
5 proteins and other silver compounds,
6 metronidazole, benzalconium chloride;

7

8 Nutritional agents, such as vitamins and proteins;

9

10 Growth factors and healing agents, including
11 Ketanserin a serotonergic blocking agent;

12

13 Living Cells;

14

15 Enzymes include streptokinase and streptodornase;

16

17 Elements - zinc, selenium, cerium, copper,
18 manganese, cobalt, boron, arsenic, chromium
19 silver, gold, gallium;

20

21 Charcoal;

22

23 Desloughing and Debriding agents such as
24 hypochlorite and hydrogen peroxide;

25

26 Astringents including potassium permanganate;

27

28 Antibiotics exemplified by neomycin and framycetin
29 sulphate, sulfamylon, fusidic acid, mupirocin,
30 bacitracin, gramicidin.

31

32 In addition the formulation of the present invention
33 may further comprise other conventional additives such
34 as plasticisers and humectants (such as glycerol,
35 propan -1,2-diol, polypropylene glycol and other
36 polyhydric alcohols), free radical scavengers to

1 stabilise against the effects of sterilisation by
2 irradiation, viscosity-adjusting agents, dyes and
3 colorants, and the like.

4

5 Several experiments including comparatives tests have
6 been achieved by the Applicant in order to demonstrate
7 some of the advantages of the new compositions of the
8 invention. Of course the embodiments described
9 hereinbelow are submitted in order to better described
10 the invention and not to limit its scope.

11

12

13 **EXAMPLE 1**

14 **PROCEDURE FOR MANUFACTURE OF UNIT BATCH (100 g) OF**
15 **ALGINATE GEL**

16

17 Typically the alginate gels are made according to the
18 following process:

- 19 1. De-ionised (DI) water is measured and poured
20 into mixing vessel 1.
- 21 2. Desired amounts of suitable alginate (for
22 example Keltone) and glycerine are weighed
23 using a calibrated balance, reading to 2
24 decimal places.
- 25 3. Alginate and glycerine are mixed together in a
26 beaker until no lumps remain.
- 27 4. The whole alginate/glycerine mix is added very
28 slowly to the water.
- 29 5. Once all the alginate/glycerine has been added to
30 the water, the mixture is stirred until a smooth
31 gel has formed.

32

33 Several different alginate gels have been made
34 according the above process. They differ and are
35 referred to by the amount of alginate (for example
36 Keltone) used. For example the alginate gel code 6½ has

1 the following composition:

2	GEL CODE	6½
3	DI Water	80 ml
4	Glycerine	25.22 g
5	Keltone	6.5 g
6	Unit Batch Wt	111.72 g

7
8 The above composition can be varied to include other
9 weights of alginate, which would be reflected in the
10 gel code number. For example a composition having 8g
11 alginate (plus 80ml DI water and 25.22g glycerine)
12 would have gel code 8. Analogous gel codes are used
13 when other gel formers (eg carageenan or CMC) are
14 substituted for the alginate in the above composition.

15

16 **PROCEDURE FOR FOAM PRODUCTION**

17 The propellant used to produce the foam can be
18 compressed gases such as air, nitrogen, nitrous oxide
19 or air, hydrofluorocarbons such HFC134a or 227 or
20 hydrocarbons including propane, isopropane, n-butane,
21 isobutane and 2-methylbutane.

22

23 Propellant vapour pressure can range from 0 to 110 PSIG
24 at 70°C although the preferred range is 20 to 70 PSIG.
25 Values within this range can be achieved for example by
26 blending the three hydrocarbons propane, isobutane and
27 butane. Calor Aerosol Propellants (CAP) sold by Calor
28 Gas Ltd Slough may be used as propellant gas, when a
29 blend of propane, isobutane and butane is used the
30 proportions can be as follows:

31

	<u>Grade</u>	<u>Propane %</u>	<u>Isobutane %</u>	<u>n Butane%</u>
2	CAP 30	11	29	60
3	CAP 40	22	24	54
4	CAP 70	55	15	30

5

6 A foam according to the invention can advantageously be
7 produced following the following process:

- 8 1. 100 g of a gel according to the invention is
9 poured to an aerosol cannister.
- 10 2. 2.5 g of calcium citrate (food grade) is
11 added to the cannister.
- 12 3. A valve is crimped onto the cannister.
- 13 4. Air is purged from the cannister.
- 14 5. 4.5 g of propellant gas is added into the
15 cannister (65:35 CAP 40 : Isopentane
16 propellant) and an actuator is positioned on
17 the valve.
- 18 6. The cannister is shaken vigorously for 20-30
19 seconds.
- 20 7. the cannister is inverted and the foam dispensed.

21

22 **EXAMPLE 2**

23 Using a range of water-based gel formulations detailed
24 below tests were done to improve the "setting" time and
25 stability of the gel and its foam.

26

27 Preferred alginate compositions have an amount of
28 Keltone ranging from 5-9g in the composition set out in
29 Example 1.

30

31 Experiment 1. Gel Code 6½ Alginate gel and foam mixed
32 with calcium citrate compared to Gel Code 6½ alginate
33 gel alone

34

35 **Foamed gel with calcium citrate**

36 2.5 g calcium citrate was added to 100 g of gel and the

1 foamed gel was spread out onto plastic sheeting. The
2 resultant foam pad was liftable in 15 minutes.
3

4 Foamed gel without calcium citrate

5 The above experiment was reproduced by foaming the gel
6 on its own as described above. The "setting" time of
7 the foam was 10 hours.
8

9 The experiments were repeated using 100 g unfoamed gel
10 with and without calcium citrate. Similar setting
11 times to those observed for the foamed gels were
12 obtained (15 minutes and 10 hours respectively) before
13 the gel pads were liftable.
14

15 Conclusion: Calcium citrate speeds up and controls the
16 setting time of the gel and the foam.
17

18 Experiment 2. Gel Code 8 Alginate gel mixed with water
19 soluble glass (WSG) containing phosphate and boron
20 compared to gel code 8 alginate gel alone.
21

22 The WSG was comprised as follows:
23 28.5M% CaO
24 3M% Ag
25 5M% B₂O₃
26 18.5M% MgO
27 45M% P₂O₅
28

29 Foamed gel with WSG

30 2.5 g of WSG was mixed with 100 g gel and the foamed
31 mixture was spread out onto plastic sheeting. The
32 resultant foam pad was liftable in 120 mins.
33

34 Foamed gel without WSG

35 The above experiment was repeated by foaming the gel on
36 its own. The "setting" time of the foam was

1 approximately 10 hours.

2

3 The experiments were repeated using 100 g unfoamed gel
4 with and without WSG. Similar setting times to those
5 observed for the foamed gels were obtained (120 minutes
6 and 10 hours respectively) before the gel pads were
7 liftable.

8

9 Conclusion: WSG speeds up and controls the setting
10 time of the gel and the foam.

11

12 **Experiment 3. Gel Code 4 Carageenan gel mixed with**
13 **calcium citrate compared to gel code 4 gel alone**

14

15 **Foamed gel with calcium citrate**

16 3 g of calcium citrate was mixed with 100 g gel and the
17 foamed mix was spread out onto plastic sheeting. The
18 resultant foam pad was liftable in 120 mins.

19

20 **Foamed gel without calcium citrate**

21 The above experiment was repeated by foaming gel on its
22 own as described above. The "setting" time of the foam
23 was 10 hours.

24

25 The experiments were repeated using 100 g unfoamed gel
26 with and without calcium citrate. Similar setting
27 times to those observed for the foamed gels were
28 obtained (120 minutes and 10 hours respectively) before
29 the gel pads were liftable.

30

31 **Experiment 4. Gel Code 4½ Carageenan gel and gel code**
32 **6½ alginate gel mixed with calcium citrate compared to**
33 **gel code 4½ carageenan gel and gel code 6½ alginate gel**
34 **alone**

35

1

2 Foamed gel with calcium citrate

3 2.5 g of calcium citrate was mixed with (50 g alginate
4 and 50 g carageenan) gel and the foamed mix was spread
5 out onto plastic sheeting. The resultant foam pad was
6 liftable in 15 mins.

7

8 Foamed gel without calcium citrate

9 The above experiment was repeated by foaming the mixed
10 gel on its own. The "setting" time of the foam pad was
11 10 hours.

12

13 The experiments were repeated using 100 g unfoamed gel
14 with and without calcium citrate. Similar setting
15 times to these observed for the foamed gels were
16 obtained (120 minutes and 10 hours respectively) before
17 the gel pads were liftable.

18

19 **Experiment 5. Gel Code 6½ Alginate gel mixed with
20 calcium citrate and added bentone IPM gel**

21

22 2.5 g calcium citrate was added to 100 g of gel with 1g
23 bentone IPM gel, admixed in an aerosol cannister and
24 dispensed therefrom as a foam onto a plastic surface.
25 The resultant foam pad was liftable in 12 minutes.
26 Bentone IPM gel is an admixture of isopropyl myristate,
27 stearalkonium hectorite and propylene carbonate.

28

29 Conclusion: Calcium citrate and bentone gel control
30 the setting time of the foam. Bentone gel also acts as
31 a reological agent and assists in the smoothness of
32 delivery from the can.

33

1

2 **Experiment 6. Gel Code 6½ Alginate gel mixed with**
3 **calcium citrate and added cetrimide**

4

5 2.5 g calcium citrate was added to 100 g of alginate
6 gel with 1g cetrimide in an aerosol cannister and
7 foamed onto a plastic surface. The resultant foam pad
8 was liftable in 15 minutes.

9

10 Conclusion: Calcium citrate speeds up the setting time
11 of the foam. Cetrimide increases the cell structure of
12 the product.

13

14 **Experiment 7. Gel Code 6½ Alginate gel mixed with**
15 **calcium citrate and added Tween 20**

16

17 2.5 g Calcium citrate was added to 100 g of alginate
18 gel with 1g Tween 20 and foamed onto a plastic surface.
19 The resultant foam pad was liftable in 12 minutes.

20

21 Conclusion: Calcium citrate speeds up the setting time
22 of the gel. The additive Tween 20 gave a much smoother
23 delivery and an airier foam. Tween 80, 60 and 40 were
24 also tried and all assisted in the delivery and product
25 cell structure.

26

27 **Experiment 8. Gel Code 4 Carboxymethyl cellulose and gel**
28 **code 6½ alginate gel mixed with calcium citrate**
29 **compared to the gel alone**

30

31 2.5 g calcium citrate was added to (50 g CMC & 50 g
32 alginate gel) and then the mixture was foamed onto a
33 plastic surface. The resultant foam pad was liftable
34 in 25 minutes. The gel foamed on its own was liftable
35 overnight (approx. 10 hours).

36

1 **Experiment 9. Gel Code 4 Carboxymethyl cellulose gel**
 2 **mixed with aluminium chloride compared with the gel**
 3 **alone**

4
 5 2 g aluminium chloride was mixed with 100 g CMC gel.
 6 The gel was spread onto a plastic surface. The
 7 resultant gel was liftable instantly. The gel alone was
 8 liftable overnight (approx. 10 hours).
 9

10 **Experiment 10. Gel Code 6 Alginic acid mixed with**
 11 **citric acid compared to gel code 6 alginic acid alone**

12
 13 2.5 g of citric acid was mixed with 100 g alginic acid
 14 and the mix was spread out onto plastic sheeting. The
 15 resultant gel pad was liftable in 120 mins. 100 g of
 16 the gel alone was spread onto plastic sheeting and the
 17 resultant pad was only liftable overnight (approx. 10
 18 hours).
 19

20 **Experiment 11. Gel Code 6½ Alginic acid was mixed with**
 21 **the following powders on a 100 g gel: 2.5 g powder**
 22 **basis**

Powder	Results as a gel	Results as a foam
Calcium Chloride	Gel pad was formed instantly	Fast setting foam
Calcium Sulphate	Gel pad formed reasonably quickly	Foam set reasonably quickly
Aluminium Chloride	Gel pad formed instantly	Fast setting foam
Calcium Metaborate	Gel pad formed instantly	Fast setting foam

1

2 Experiment 12. Setting performances of a foam of a gel
 3 code 6½ alginate gel as a function of the amounts of
 4 calcium citrate.

5	Batch No	Amount of calcium citrate per 100 g gel	Result
6	DM02 210798	4 g	Not dispensed - set in can
7	DM03 210798	3 g	Very difficult to dispense. 9½ minutes to set.
8	DM04 210798	2.5 g	Easier to dispense than above. 18½ minutes to set
9	DM05 210798	2.25 g	Taking longer to set. 20 minutes.
10	DM02 200798	2 g	Setting time - 40 minutes

11

12 Experiment 13. Gel Code 6½ alginate gel with calcium
 13 vibrate and isopertrane.

14

15 100g gel code 6½ alginate gel was admixed with varying
 16 amounts of calcium citrate (2 to 4g), added to
 17 isopentane and mixed thoroughly before being spread
 18 onto a glass sheet. The isopentane vaporises at
 19 ambient temperatures and boils off through the gel
 20 leaving a foam pad of similar consistency to those
 21 produced by dispersion from an aerosol can. After
 22 half-an-hour the foam pads were liftable.

23

PCT GB 99 03331

Murgitroyd & Co.

7/10/99

THIS PAGE BLANK (USPTO)
