Determinacy of games

Dan Saattrup Nielsen

November 25, 2016

• (Loose) introduction to games and determinacy

- (Loose) introduction to games and determinacy
- Consequences of determinacy

- (Loose) introduction to games and determinacy
- Consequences of determinacy
- Which games are determined?

- (Loose) introduction to games and determinacy
- Consequences of determinacy
- Which games are determined?
- A bird's eye view

Key properties:

• 2 players

- 2 players
- Perfect information

- 2 players
- Perfect information
- No draws

- 2 players
- Perfect information
- No draws
- Finite

Say A is the set of winning moves for player I.

Say *A* is the set of winning moves for player I.

Then player I has a winning strategy if

$$\exists x_0 \in \omega \forall x_1 \in \omega \cdots Q x_n \in \omega (\vec{x} \in A)$$

Say A is the set of winning moves for player I.

Then player II has a winning strategy if

$$\forall x_0 \in \omega \exists x_1 \in \omega \cdots Q x_n \in \omega(\vec{x} \notin A)$$

Say A is the set of winning moves for player I.

Then the game is determined if

$$\neg \exists x_0 \in \omega \forall x_1 \in \omega \cdots Q x_n \in \omega (\vec{x} \in A)$$

$$\equiv \forall x_0 \in \omega \exists x_1 \in \omega \cdots Q x_n \in \omega (\vec{x} \notin A)$$

Switching focus

- 2 players
- Perfect information
- No draws
- Finite

Switching focus

- 2 players
- Perfect information
- No draws
- Finite

Switching focus

- 2 players
- Perfect information
- No draws
- Finite
- Infinite

Say A is the set of winning moves for player I.

Then the game is determined if

$$\neg \exists x_0 \in \omega \forall x_1 \in \omega \cdots (\vec{x} \in A) \equiv \forall x_0 \in \omega \exists x_1 \in \omega \cdots (\vec{x} \notin A)$$

Say A is the set of winning moves for player I.

Then the game is determined if

$$\neg \partial^{\exists} \vec{x} (\vec{x} \in A) \equiv \partial^{\forall} \vec{x} (\vec{x} \notin A)$$

Say A is the set of winning moves for player I.

Then the game is determined if

$$\neg \exists \vec{x} (\vec{x} \in A) \equiv \exists \forall \vec{x} (\vec{x} \notin A)$$

We can identify the set of all such sequences \vec{x} with the reals.

The Continuum Hypothesis (CH)

Every infinite subset of the reals is either equinumerous with the integers or the reals.

The Continuum Hypothesis (CH)

Every infinite subset of the reals is either equinumerous with the integers or the reals.

The Davis Game

Let A be a set of reals, s_i finite 0-1 sequences and $x_i \in \{0,1\}$. Then the Davis game $\mathcal{G}(A)$ is played as

Player I wins iff $s_0^{\hat{}}\langle x_0\rangle \hat{}s_1^{\hat{}}\cdots \in A$.

The Continuum Hypothesis (CH)

Every infinite subset of the reals is either equinumerous with the integers or the reals.

Theorem (Davis 1964)

If G(A) is determined then CH holds for A.

 \dashv

Determinacy and choice

Determinacy and choice

Theorem (AC)

There is an undetermined game.

Determinacy and choice

Theorem (AC)

There is an undetermined game.

(Proof on board)

We define the projective formulas as:

We define the projective formulas as:

• φ is Σ_0^1 if $\varphi \equiv \exists n \in \omega : \psi(n)$ for some ψ having only quantifiers bounded by a finite set

We define the projective formulas as:

- φ is Σ_0^1 if $\varphi \equiv \exists n \in \omega : \psi(n)$ for some ψ having only quantifiers bounded by a finite set
- φ is Π_n^1 if $\varphi \equiv \neg \psi$ for ψ being Σ_n^1

We define the projective formulas as:

- φ is Σ_0^1 if $\varphi \equiv \exists n \in \omega : \psi(n)$ for some ψ having only quantifiers bounded by a finite set
- φ is Π_n^1 if $\varphi \equiv \neg \psi$ for ψ being Σ_n^1
- φ is Σ_{n+1}^1 if $\varphi \equiv \exists x \in \mathbb{R} : \psi(x)$ for ψ being Π_n^1

We define the projective formulas as:

- φ is Σ_0^1 if $\varphi \equiv \exists n \in \omega : \psi(n)$ for some ψ having only quantifiers bounded by a finite set
- φ is Π_n^1 if $\varphi \equiv \neg \psi$ for ψ being Σ_n^1
- φ is Σ_{n+1}^1 if $\varphi \equiv \exists x \in \mathbb{R} : \psi(x)$ for ψ being Π_n^1

We also have the relativised versions $\Sigma_n^0(x)$ and $\Pi_n^0(x)$ for reals x, and say φ is Σ_n^0 if φ is $\Sigma_n^0(x)$ for some real x.

- φ is Σ_0^1 if $\varphi \equiv \exists n \in \omega : \psi(n)$ for some ψ having only quantifiers bounded by a finite set
- φ is Π_n^1 if $\varphi \equiv \neg \psi$ for ψ being Σ_n^1
- φ is Σ_{n+1}^1 if $\varphi \equiv \exists x \in \mathbb{R} : \psi(x)$ for ψ being Π_n^1

- φ is Σ_0^1 if $\varphi \equiv \exists n \in \omega : \psi(n)$ for some ψ having only quantifiers bounded by a finite set
- φ is Π_n^1 if $\varphi \equiv \neg \psi$ for ψ being Σ_n^1
- φ is Σ_{n+1}^1 if $\varphi \equiv \exists x \in \mathbb{R} : \psi(x)$ for ψ being Π_n^1

- φ is Σ_0^1 if $\varphi \equiv \exists n \in \omega : \psi(n)$ for some ψ having only quantifiers bounded by a finite set
- φ is Π_n^1 if $\varphi \equiv \neg \psi$ for ψ being Σ_n^1
- φ is Σ_{n+1}^1 if $\varphi \equiv \exists x \in \mathbb{R} : \psi(x)$ for ψ being Π_n^1

- φ is Σ_0^1 if $\varphi \equiv \exists n \in \omega : \psi(n)$ for some ψ having only quantifiers bounded by a finite set
- φ is Π_n^1 if $\varphi \equiv \neg \psi$ for ψ being Σ_n^1
- φ is Σ_{n+1}^1 if $\varphi \equiv \exists x \in \mathbb{R} : \psi(x)$ for ψ being Π_n^1

- φ is Σ_0^1 if $\varphi \equiv \exists n \in \omega : \psi(n)$ for some ψ having only quantifiers bounded by a finite set
- φ is Π_n^1 if $\varphi \equiv \neg \psi$ for ψ being Σ_n^1
- φ is Σ_{n+1}^1 if $\varphi \equiv \exists x \in \mathbb{R} : \psi(x)$ for ψ being Π_n^1

Projective determinacy

Projective determinacy (PD): Every projective set is determined.

Projective determinacy

Projective determinacy (PD): Every projective set is determined.

Theorem (Martin, Steel)

Large cardinals imply PD.

Note: $A \subset \mathbb{R}$ is projective iff A is definable in $\langle \mathcal{P}(\omega), \omega, \in, +, \cdot \rangle$

Note: $A \subset \mathbb{R}$ is projective iff A is definable in $\langle \mathcal{P}(\omega), \omega, \in, +, \cdot \rangle$

Woodin (2003): "PD is the 'correct' axiom for the structure $\langle \mathcal{P}(\omega), \omega, \in, +, \cdot \rangle$ "

Note: $A \subset \mathbb{R}$ is projective iff A is definable in $\langle \mathcal{P}(\omega), \omega, \in, +, \cdot \rangle$

Woodin (2003): "PD is the 'correct' axiom for the structure $\langle \mathcal{P}(\omega), \omega, \in, +, \cdot \rangle$ "

Note: $V \equiv \langle \mathcal{P}(\mathsf{On}), \mathsf{On}, \in, +, \cdot \rangle$

Note: $A \subset \mathbb{R}$ is projective iff A is definable in $\langle \mathcal{P}(\omega), \omega, \in, +, \cdot \rangle$

Woodin (2003): "PD is the 'correct' axiom for the structure $\langle \mathcal{P}(\omega), \omega, \in, +, \cdot \rangle$ "

Note: $V \equiv \langle \mathcal{P}(\mathsf{On}), \mathsf{On}, \in, +, \cdot \rangle$

The next step: Find the 'correct' axiom for $\langle \mathcal{P}(\omega_1), \omega_1, \in, +, \cdot \rangle$

Note: $A \subset \mathbb{R}$ is projective iff A is definable in $\langle \mathcal{P}(\omega), \omega, \in, +, \cdot \rangle$

Woodin (2003): "PD is the 'correct' axiom for the structure $\langle \mathcal{P}(\omega), \omega, \in, +, \cdot \rangle$ "

Note: $V \equiv \langle \mathcal{P}(\mathsf{On}), \mathsf{On}, \in, +, \cdot \rangle$

The next step: Find the 'correct' axiom for $\langle \mathcal{P}(\omega_1), \omega_1, \in, +, \cdot \rangle$

Note: CH is definable in $\langle \mathcal{P}(\omega_1), \omega_1, \in, +, \cdot \rangle$

Note: $A \subset \mathbb{R}$ is projective iff A is definable in $\langle \mathcal{P}(\omega), \omega, \in, +, \cdot \rangle$

Woodin (2003): "PD is the 'correct' axiom for the structure $\langle \mathcal{P}(\omega), \omega, \in, +, \cdot \rangle$ "

Note: $V \equiv \langle \mathcal{P}(\mathsf{On}), \mathsf{On}, \in, +, \cdot \rangle$

The next step: Find the 'correct' axiom for $\langle \mathcal{P}(\omega_1), \omega_1, \in, +, \cdot \rangle$

Note: CH is definable in $\langle \mathcal{P}(\omega_1), \omega_1, \in, +, \cdot \rangle$

Theorem (Woodin)

No matter what 'correct' axiom we choose, CH will turn out false.

