New Resources and Perspectives for Biomedical Event Extraction

Event extraction (EE)

- Information extraction using expressive structured representations
- Major focus of recent work in BioNLP:
 BioNLP Shared Tasks (ST) in 2009 and 2011
- Many systems and resources introduced
- Despite progress, many challenges remain

Compilation of analyses from broad set of EE systems
Analysis of events that cannot be recovered by any system
Document-level representation and evaluation for EE
Document-level evaluation of BioNLP ST'11 systems
All newly introduced resources and tools available

This work

New Resources

Compilation of automatically created analyses from BioNLP Shared Task 2011 event extraction systems

Team	BioNLP ST'11 tasks	Contributors / system description authors (proc. BioNLP ST'11)
UTurku	(all eight tasks)	Björne and Salakoski (2011)
ConcordU	GE, EPI, ID, CO, REL, REN	Kilicoglu and Bergler (2011)
UMass	GE, EPI, ID	Riedel and McCallum (2011)
Stanford	GE, EPI, ID	McClosky, Surdeanu and Manning (2011)
FAUST	GE, EPI, ID	Riedel, McClosky, Surdeanu, McCallum and Manning (2011)
MSR-NLP	GE, EPI	Quirk, Choudhury, Gamon and Vanderwende (2011)
CCP-BTMG	GE, EPI	Liu, Komandur, and Verspoor (2011)
BMI@ASU	GE	Emadzadeh, Nikfarjam and Gonzalez (2011)
TM-SCS	GE	Bui and Sloot (2011)
UWMadison	GE	Vlachos and Craven (2011)
HCMUS	GE, REL	Le Minh, Nguyen Truong, and Ho Bao (2011)
PredX	ID	Gobert and Royauté
VIBGhent	REL	Van Landeghem, Abeel, De Baets and Van de Peer (2011)

Both final test set submissions and representative development set submissions for all participants included

Maximum recall analysis

 Task
 Recall

 GE
 69%

 EPI
 79%

 IE
 74%

Results for union of systems on development sets of three ST'11 main tasks (task 1/core)

All resources available: http://2011.bionlp-st.org

Common properties of events not extracted by any system

Event property	Count
Implicit argument	66
Cross-sentence	58
Weak trigger	53
Coreference	50
Static Relation	40
Error in gold	30
Ambiguous type	22
Shared trigger	15

Results for manual analysis of properties of events not extracted by any system.

The National Centre for Text Mining

New Perspectives

ioNLP Shared Task

Text-bound annotation

each associated with a specific span of text

Instance-based evaluation

• all annotations considered independently

Detailed evaluation and system output, but may not reflect real-world extraction needs, and excludes some extraction approaches

Proposed approach

Document-level annotation

no requirement to identify "trigger" texts

"Off the page" unique event-based evaluation

identical events need only be extracted once

Less detailed system output, but fewer constraints on extraction approaches, evaluation more accurately reflects needs of applications such as semantic search

