El quinto produce una gráfica de los puntos originales (con un símbolo "*") y un dibujo de la gráfica del polinomio (doc plot).

Debe observarse que la gráfica del polinomio pasa a través de los puntos originales (etiquetados con "*").

d) Genere x = rand (7,1) y y = rand (7,1) o genere un vector de coordenadas x y un vector de coordenadas y de su preferencia. Asegúrese de cambiar (o elegir) las coordenadas x de manera que sean distintas. Siga los comandos del inciso c) para visualizar el ajuste polinomial.

12. Gráfica de planos

Podemos graficar planos en MATLAB de la siguiente forma, considere la ecuación normal de un plano ax + by + cz = d donde a, b, c, d son constantes conocidas. Los siguientes comandos de MATLAB construyen el plano y lo despliegan en una gráfica:

```
% Crea datos x e y entre -1 y 1 espaciados 0.1
[x, y] = meshgrid(-1:0.1:1,-1:0.1:1); %doc meshgrid
% Evalua los puntos de la malla xy en el plano
z = -1/c*(a*x + b*y + c);
% Grafica el plano en una ventana
surf(x,y,z) %Plot the surface
% Incluye etiquetas en los ejes
xlabel('x'); ylabel('y'); zlabel('z')
```

Como ejemplo, el plano tiene la siguiente gráfica

Grafíque los siguientes planos

- a) -x-y+z=1 entorno al punto (-2, 4). Sugerencia: [x, y] = meshgrid(-3:0.1:-1,3:0.1:5);
- **b)** 3x + 2y z = 0 entorno al punto (0, 0).
- c) 3x + 2y z = 0 en el primer cuadrante.
- d) 3x + 2y z = 0 y x y + z = 1 en la misma gráfica. Sugerencia: Después de graficar el primer plano utilice el comando hold on (doc hold on para más información).
- e) Elija planos adecuados para reproducir los diferentes casos presentados en las figuras 1.4 a 1.8 de la sección 1.2.