機械学習

- 1 機械学習って何?
- 2 モデル開発の流れ
- 3 アルゴリズム概論

- 1 機械学習って何?
- 2 モデル開発の流れ
- 3 アルゴリズム概論

はじめに

機械学習ってどういった技術なの?

はじめに

機械学習ってどういった技術なの?

コンピュータに知的処理を行わせるため、データからパターンを見つけ出す技術!

機械学習とは データからパターンを見つけ出す技術

データ

	築年数 (年)	専有面積 [㎡]	駅からの距離 [m]	家賃 [円]
物件A	20	40	200	45,000
物件B	15	35	400	40,000
:	÷	÷	:	i
物件Y	8	45	500	60,000
物件Z	5	50	100	85,000

パターン

築年数:●●年

専有面積:●●m²

駅からの距離: ●●●m

であれば、

機械学習で何ができる?

ケース1:仕入れのための売上予測

課題

あるスーパーでは、必要な仕入れ 量を**ベテラン社員の勘と経験**で見 積もっていた。

しかし属人性が高く、ベテラン社 員がいないと正確に見積もりがで きない...

機械学習の使いどころ

その日の情報や店舗の立地条件から最適な仕入れ量を予測

→ **見積もり作業を機械化**することで属人性を排除!

機械学習で何ができる?

ケース2:工場製造における不良品検知

課題

ある工場では、製造ラインの不良 品を**目視で検査**している。

しかし、単純作業のため従業員の 負担が大きく、疲労によるミスも 起きやすい ...

機械学習の使いどころ

製品の画像データを読み込ませ、**不良品を自動で検知**

→ 従業員の**負担を軽減し、検出のムラを改善**!

説明変数から目的変数を出力する"関数"をつくる

機械学習とは

持っている情報から**知りたい情報**を 出力してくれるようにデータを使って モデルを学習させる方法

持っている情報=説明変数

知りたい情報=目的変数

機械学習のしくみ

実は説明変数の選び方も重要!

各々の状況に合わせて うまく**関数**をつくる

教師あり学習で解ける問題は大きく分けて2つ「回帰」と「分類」

教師あり学習

説明変数と目的変数のペア (=**教師データ**) を大量に学習させて 予測できるようにする方法

回帰と分類

教師あり学習で解ける問題

回帰

連続値を予測する問題

(例)売上金額の予測

分類

クラスを予測する問題

(例)不良品の分類

教師データを使わない学習方法もある

教師なし学習

教師データを与えずに データの特徴や構造を抽出する

強化学習

明確な正解は与えないが、 AIの判断結果に報酬を与えて学習させる

(報酬の例)

- ・敵を倒したら1点
- ・穴に落ちたら-5点

https://commons.wikimedia.org/wiki/File:Super_Mario_Bros._World_1-1.jpg

データの種類や目的によって学習方法を選ぶ必要がある

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision (pp. 2223-2232).

まとめ

01

機械学習とは、 データからパターンを見つけ出す技術である

02

教師あり学習では**回帰・分類**を行えるが、 問題の種類や状況に適した手法を選ぶ必要がある

- 1 機械学習って何?
- 2 モデル開発の流れ
- 3 アルゴリズム概論

はじめに

Q モデルの開発はどのようにして行う?

はじめに

Q モデルの開発はどのようにして行う?

大まかな流れとして 「前処理」「学習」「評価・検証」 を行っていく!

機械学習プロジェクトの流れ

機械学習プロジェクトの流れ

データの前処理

前処理の例

前処理とは...

データを加工してモデルに適した形に整えること

探索的データ分析(EDA, Exploratory Data Analysis) を行って、データを深く理解することが重要

- **□ 欠損値**がないか?
- **□** 数値の**スケール**はどうか?
- □ **カテゴリ変数**は数値に変換されているか etc...

説明変数の選択

一般的には、説明変数を多くすれば精度は上がる しかし、**次元の呪い**という問題がある

学習モデルの評価と検証

評価・検証の重要性

運用開始して「AIが全然使い物にならない!」となってしまっては手遅れ

→ データの一部を検証用にとっておく

過学習

過去問に過剰適合すると、過去問では満点をとれるが、傾向が変わると解けなくなる

→これが機械学習でも起こる(過学習)

類題も解けるかどうかを確かめる

→ 機械学習では**検証用データ**で確かめる

分類モデルの評価方法① ~正解率(Accuracy)~

犬画像か猫画像かを判定するAI

この分類モデルの精度を どのように検証すればよいか?

正解率

最もシンプルな評価方法は **正解率**(Accuracy)を見ること

[1]DogBreedClassifier https://github.com/srirammanikumar/DogBreedClassifier/blob/master/images/Labrador_retriever_06457.jpg から引

[2] (OPTIONAL) EXPORTING A MODEL FROM PYTORCH TO ONNX AND RUNNING IT USING ONNX RUNTIME https://ovtorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html #> 6-5

© AVILEN, Inc.

分類モデルの評価方法② **~**再現率(Recall)**~**

不良品を検出するAI

再現率

正解・不正解の内訳を詳しく見てみよう

不良品に対する 正解率は0%...

全部「**良品**」と判定してしまっている...

不良品をどれだけ検出できるかが重要
→不良品に対する正解率のことを **再現率**(Recall)という

混同行列(Confusion Matrix)とは

混同行列

前スライドで登場した、下のような表を **混同行列**(Confusion Matrix)という

		予測結果	
		陽性 (Positive)	陰性 (Negative)
実際	陽性 (Positive)	TP (True Positive)	FN (False Negative)
	陰性 (Negative)	FP (False Positive)	TN (True Negative)

陽性と陰性

どちらを陽性/陰性にするかは状況により異なる

(例) 不良品を検出するAI

「不良品かどうか」が重要なので **不良品=陽性**(Positive)とする

(例) 迷惑メールを検出するAI

「迷惑メールかどうか」が重要なので 迷惑メール=陽性(Positive)とする

分類モデルの評価方法③

~適合率(Precision)~

迷惑メール判定AI

迷惑メールと判定されたものは自動的に 迷惑メールフォルダへ振り分けられてしまう

→迷惑メールでないものを誤検出するのは避けたい

考えてみよう!

この例ではどんな指標で精度を評価すべきでしょうか?

適合率

迷惑メールと予測したメールのうちどれだけ正解したか?

陽性と予測したデータに対する正解率 のことを**適合率**(Precision)という

分類モデルの評価方法(4) ~F值~

迷惑メールの見逃しも減らしたい

普诵のメールが 迷惑メールフォルダ に入るのは嫌...

適合率(Precision)を 高くしたい

迷惑メールを きちんと検出して くれないのも嫌...

再現率(Recall)を 高くしたい

しかし…両者の間<u>には**トレードオフ**の関係</u>

再現率が低くなる

Precision Recall バランスが良い

適合率が低くなる

F値

適合率と再現率のバランスを重視した **F値**という評価指標がある

適合率=0.1, 再現率=0.8 $F = (2 \times 0.1 \times 0.8) / (0.1 + 0.8) = 0.18$

適合率=0.5, 再現率=0.5 $F=(2\times0.5\times0.5)/(0.5+0.5)=0.5$

数学的には、F値は適合率と再現率の**調和平均**とも言える

分類モデルの評価方法⑤ ~ROC曲線とAUC~

分類モデルは確率を出力する

人が設定した**閾値**に基づき、迷惑メールかどうか判定

閾値によってモデルの精度が変わってしまう →閾値の影響を受けずに精度評価したい!

ROC曲線

ROC曲線とは...

分類の閾値を変えていったときの **真陽性率と偽陽性率**の関係をプロットしたもの

分類モデルの評価方法⑤ ~ROC曲線とAUC~

分類モデルの評価方法のまとめ

混同行列

Accuracy

正解率:検証データに対して何%正解したか

Recall 再現率

Precision 適合率

陽性のデータに対して 陽性と予測したデータに対 何%正解したか して何%正解したか

		予測結果		
		Positive	Negative	
実際	Positive	TP	FN	
	Negative	FP	TN	

F値・AUC

F値:再現率と適合率のバランスを表す

AUC:ROC曲線の下の面積

回帰モデルの評価例①

~MAE & MSE · RMSE~

MAE

MAE(Mean Absolute Error)

$$ext{MAE} = rac{1}{N} \sum_{i=1}^N \lvert \hat{y_i} - y_i
vert \qquad egin{array}{c} \hat{y_i} :$$
 予測値 $y_i :$ 正解値

メリット

- 人間にとって解釈しやすい
- 外れ値の影響を受けにくい

MSE · RMSE

MSE(Mean Squared Error)

$$ext{MSE} = rac{1}{N} \sum_{i=1}^{N} \left(\hat{y_i} - y_i
ight)^2$$

誤差が大きいほど過大に評価

二乗しているため単位が変わり、解釈しづらい... →ルートをとって元の単位に戻す

RMSE(Root Mean Squared Error) $RMSE = \sqrt{MSE}$

回帰モデルの評価例② ~RMSLEとMAPE~

RMSLE

RMSLE(Root Mean Squared Logarithmic Error)

$$ext{RMSLE} = \sqrt{rac{1}{N}\sum_{i=1}^{N}\left\{\log\left(1+\hat{y_i}
ight) - \log\left(1+y_i
ight)
ight\}^2}$$

1を足しているのは「log 0」となるのを防ぐため

メリット

ጔ 下振れの誤差を過大評価したいときに有用

デメリット

❖ 予測値や正解値に負の数があると使えない

MAPE

MAPE(Mean Absolute Percentage Error)

$$ext{MAPE} = rac{100}{N} \sum_{i=1}^N ig| rac{\hat{y_i} - y_i}{y_i} ig|$$

メリット

□ スケールが異なるデータに対応できる

デメリット

- ❖ 正解値に0があると使えない
- ❖ 正解値が0に近いと値が大きくなりやすい

まとめ

01

学習モデルを構築する前に、 **前処理**や説明変数の選択を行っておくことが重要

02

分類モデルの評価指標には **正解率・再現率・適合率・F値・AUC**などがある

03

回帰モデルの評価指標には MAE・RMSE・RMSLE・MAPEなどがある

- 1 機械学習って何?
- 2 モデル開発の流れ
- 3 アルゴリズム概論

はじめに

機械学習ではどのようにして 学習・予測を行っているの?

はじめに

機械学習ではどのようにして 学習・予測を行っているの?

A これから代表的な機械学習の アルゴリズムを紹介していく!

回帰タスクのアルゴリズム① ~单回帰分析~

気温から電力需要量を予測したい

ある日の予想される**平均気温**から その日の電力需要量を予測したい

どんな関数にするか?

単回帰分析

単回帰分析では気温と電力需要量 の関係が**1次関数**であると仮定する

f(x) = ax + b

係数a,bはデータから学習して求められる

回帰タスクのアルゴリズム②~重回帰分析~

単回帰分析のメリットとデメリット

メリット

■ モデルがシンプルで解釈がしやすい

デメリット

❖ 1つの説明変数しか考慮しないため低精度

湿度や日照時間も 電力需要に関係しそう!

重回帰分析

重回帰分析

重回帰分析では複数の説明変数から 目的変数の値を予測することができる

 $f(x_1,x_2,x_3)=w_0+w_1x_1+w_2x_2+w_3x_3$

係数はデータから学習して求められる

重回帰分析で説明変数の影響度を知る

重回帰分析のメリット

メリット

- □ 複数の説明変数を考慮することができ、 単回帰分析よりも高精度に予測が可能
- □ 係数の大小から説明変数の影響度がわかる

デメリット

◆ 説明変数が<u>正規分布</u>に従っていない場合や 変数間に<u>強い相関</u>がある(=多重共線性)場合、 適切に予測できないことがある

重回帰分析の係数の意味

重回帰分析の結果が下のようになったとする

湿度が上がると 電力需要もやや増える

係数を見ることで、説明変数が目的変数に **正負**どちらの影響を**どれだけ**与えるかがわかる

機械学習でタイタニックの生存予測

タイタニックの生存予測

タイタニック号沈没事故(1912)

この事故で1,514人が死亡、710人生還

→乗員乗客に関するデータを使い生存予測を行う

重回帰分析ではうまくいかない

重回帰分析の結果が下のようになったとする

$$f(x_1,x_2,x_3)=0.2x_1+0.9x_2-0.3x_3$$

例えば $x_1 = 3.0, x_2 = 0.8, x_3 = 0.1$ とすると 1.29となり、**確率にならない**!

→カテゴリ変数では重回帰分析できない

分類タスクのアルゴリズム① **~**ロジスティック回帰**~**

ロジスティック回帰

ロジスティック回帰とは...

重回帰分析の左辺を**ロジット**にしたもの

$$\log\left(rac{p}{1-p}
ight)=w_0+w_1x_1+w_2x_2+\cdots$$
 p :目的変数が1である確率

今知りたいのは確率なので、pについて解くと

$$p=rac{1}{1+e^{-(w_0+w_1x_1+w_2x_2+\cdots)}}$$

ロジスティック関数

ロジスティック回帰では 必ず0~1に収まるようになっている

$$f(x)=rac{1}{1+e^{-x}}$$

分類タスクのアルゴリズム② ~SVM~

SVM

SVM(Support Vector Machine)とは... データごとの説明変数の分布図に 直線(平面)を引いて分類を行うアルゴリズム

線形分離可能な場合

サポートベクトル: 直線に最も近いデータ点 マージン: サポートベクトルと直線との距離

→マージンが最大となるような直線を引く

分類タスクのアルゴリズム② ~SVM~

線形分離不可能な場合

直線(平面)を超えてしまってもOKとする ただし、その場合はペナルティを与える

カーネル法

カーネル法とは...

高次元なデータに変換することで うまく分離できるようにする手法

分類タスクのアルゴリズム③ **~**k-NN法**~**

k-NN法

k-NN法(k-Nearest Neighbors)とは... 最も近いデータ k 個の多数決で クラスを決定するアルゴリズム

メリットとデメリット

メリット

- □ 学習を行う必要がない
- □ シンプルなので様々な問題に適用しやすい

デメリット

- ❖ データ量が多いと計算時間がかかる
- ❖ 次元の高いデータに弱い(次元の呪い)

次元が高いと、データ間の距離を測定する際に <u>どのデータとの距離も同程度になってしまう</u> という問題が生じやすくなる

教師なし学習のアルゴリズム ~k-means法~

クラスター分析

クラスター分析(クラスタリング)とは...

データを似たもの同士でグループ分けすること

k-means法

k-means法とは...

平均を用いてk個のクラスターに分類する手法

① ランダムに

 各データを k個の中心点を選択 最も近い中心点の クラスターに割当て

③ 各クラスターの 中心点を更新

k-means法のメリットとデメリット

メリット・デメリット

メリット

□ 計算量が比較的小さく済む

デメリット

◆ 初期値によって結果が大きく変わりやすい

初期值依存性

機械学習の"設定" ハイパーパラメータ

ハイパーパラメータ

ハイパーパラメータとは...

機械学習のアルゴリズムでは最適化できず、 手動で設定する必要のあるパラメータ

(例) k-means法

(例) SVM

チューニング

ハイパーパラメータチューニングとは...

適切なハイパーパラメータを探して 機械学習モデルの精度を上げること

2種類以上のハイパーパラメータを チューニングする方法

グリッドサーチ

グリッドサーチとは...

各パラメータの候補を列挙して全組合せを試し 最も精度が高いものを探し出す方法

ランダムサーチ

ランダムサーチとは...

全組合せを試すのではなく、 ある確率分布に従ってランダムに探索する方法

まとめ

回帰タスクのアルゴリズムには 単回帰分析・重回帰分析などがある

02 分類タスクのアルゴリズムには ロジスティック回帰・SVM・k-NN法などがある

03 モデルの**ハイパーパラメータ**を調整することで 精度を向上させることができる