STUDENT NAME - EID CS 341 Automata Theory Homework 15

Due: Tuesday, April 30

Th	is assignment covers Chapters 22 and 24.
1)	Solve the linear Diophantine farmer problem presented in Section 22.1.
	\Box
2)	Consider the following instance of the Post Correspondence problem. Does it have a solution? If so, show one.
	//TODO: Table width
	XY
	1 a bab 2 bbb bb
	3 aab ab
	4 b a
	Solution. \Box
3)	Prove that, if an instance of the Post Correspondence problem has a solution, it has an infinite number of solutions. (Hint: this is really easy.)
	Proof.
4)) Let $TILES=\{\langle T \rangle:$ any finite surface on the plane can be tiled, according to the rules described in the book, with the tile set $T\}$. Let s be the string that encodes the following tile set:
	//TODO: include graphics
	Is $s \in TILES$? Prove your answer.
	Answer. \Box
	Proof. \Box
5)	Is $L=\{\langle M\rangle: M$ is a PDA and $L(M)=\{x: x\in \{a,b\}^* \text{ and } \exists m\ (x =2^m)\}\}$ decidable? Prove your answer.
	Answer. \Box

	Proof.
6)	A language L is D-complete iff (1) L is in D , and (2) for every language L' in D , $L' \leq_M L$. Consider the following claim: If $L \in D$ and $L \neq \Sigma^*$ and $L \neq \emptyset$, then L is D-complete. Prove or disprove this claim.
	Proof.

7) Let $\Sigma = \{1\}$. Show that there exists at least one undecidable language with alphabet Σ . (Hint: Use a counting argument.)

Proof.

8) The following sequence of figures corresponds to a fractal called a $Koch\ island$:

These figures were drawn by interpreting strings as turtle programs, just as we did in Example 24.5 and Example 24.6. The strings were generated by an L-system G, defined with:

$$\Sigma = \{F, +, -\}.$$

$$\omega = F - F - F - F$$

To interpret the strings as turtle programs, attach meanings to the symbols in Σ as follows (assuming that some value for k has been chosen):

- F means move forward, drawing a line of length k.
- + means turn left 90° .
- – means turn right 90° .

Figure (a) was drawn by the first generation string ω . Figure (b) was drawn by the second generation string, and so forth. R_G contains a single rule. What is it?

Answer. \Box