Esercizi per la Quinta Settimana

Esercizio 5.1 Stabilire quali delle seguenti applicazioni $T: \mathcal{V} \to \mathcal{V}$ sono lineari:

- 1) $T(\underline{x}) = \underline{x} \wedge \underline{v}$
- $2) T(\underline{x}) = \underline{x} + \underline{w}$
- 3) $T(\underline{x}) = (\underline{x} \cdot \underline{w})\underline{v}$
- 4) $T(\underline{x}) = \underline{x} \wedge \underline{v} + 5\underline{x}$

Esercizio 5.2 Siano $T, S: \mathcal{V} \to \mathcal{V}$ due applicazioni lineari da \mathcal{V} in \mathcal{V} . Sia poi T+S l'applicazione da \mathcal{V} in \mathcal{V} definita da

$$(T+S)(x) \stackrel{\text{def}}{=} T(x) + S(x)$$
.

È vero che anche T + S è lineare?

Esercizio 5.3 Sia $\underline{v} \neq \underline{0}$ un vettore assegnato e sia $T: \mathcal{V} \to \mathcal{V}$ l'applicazione definita da $T(\underline{x}) \stackrel{\text{def}}{=} (\underline{x} \wedge \underline{v}) \wedge \underline{v}$.

- 1) Mostrare che T è lineare.
- 2) Trovare tutti i vettori \underline{x} tali che $T(\underline{x}) = \underline{0}$.

Esercizio 5.4 Sia \underline{e}_1 , \underline{e}_2 e \underline{e}_3 una base per $\mathcal V$ e sia $T_{s,t}:\mathcal V\to\mathcal V$ l'applicazione definita da

$$T_{s,t}(a\underline{e}_1+b\underline{e}_2+c\underline{e}_3) \stackrel{\text{def}}{=} (a+2b+c)\underline{e}_1 + (a-b+s)\underline{e}_2 + (3a-b)\underline{e}_3 + (t+1)\underline{e}_1.$$

Trovare tutti i valori per s e t per i quali $T_{s,t}$ è lineare.

Esercizio 5.5 Sia $\underline{v} \neq \underline{0}$ un vettore non nullo assegnato. Descrivere geometricamente l'immagine dell'applicazione lineare $T(\underline{x}) \stackrel{\text{def}}{=} \underline{x} \wedge vv$ (si ricorda che l'immagine di una applicazione è l'insieme formato dai vettori $T(\underline{x})$ al variare di \underline{x} in \mathcal{V}).

Esercizio 5.6 Sia $A=\begin{bmatrix}3&1&2\\-1&0&1\\4&2&6\end{bmatrix}$ e sia $T:\mathbf{R}^3\to\mathbf{R}^3$ l'applicazione

lineare definita da $T(x,y,z)\stackrel{\text{def}}{=} A\cdot \left[\begin{array}{c} x\\y\\z\end{array}\right]$. Trovare le terne (x,y,z) tali che T(x,y,z)=(0,0,0).

Esercizio 5.7 Sia $\underline{v} \neq \underline{0}$ un vettore assegnato e sia $T: \mathcal{V} \to \mathcal{V}$ l'applicazione lineare definita da $T(\underline{x}) \stackrel{\text{def}}{=} \underline{x} \wedge \underline{v}$. Esistono autovettori per T?

Esercizio 5.8 Sia \underline{e}_1 , \underline{e}_2 e \underline{e}_3 una base per $\mathcal V$ e sia $T:\mathcal V\to\mathcal V$ un'applicazione lineare che soddisfa alle condizioni $T(\underline{e}_1)=\underline{e}_1+\underline{e}_2$, $T(\underline{e}_2)=\underline{e}_1+\underline{e}_2+\underline{e}_3$ e

 $T(\underline{e}_3) = \underline{e}_1 - \underline{e}_3$. Trovare il vettore che si ottiene applicando T ad un generico vettore $a\underline{e}_1 + b\underline{e}_2 + c\underline{e}_3$.

Esercizio 5.9 Siano \underline{w} e \underline{t} due vettori assegnati e sia $T: \mathcal{V} \to \mathcal{V}$ la trasformazione lineare definita da $T(\underline{x}) \stackrel{\text{def}}{=} (\underline{x} \cdot \underline{t})\underline{w}$. Quali sono gli eventuali autovettori e autovalori di T?

Esercizio 5.10 Sia \underline{w} un vettore assegnato e sia $T: \mathcal{V} \to \mathcal{V}$ la trasformazione lineare definita da $T(\underline{x}) \stackrel{\text{def}}{=} \underline{x} \wedge \underline{w} + \underline{x}$. Determinare gli autovalori ed autovettori

Esercizio 5.11 Trovare gli eventuali autovalori ed autovettori della trasfor-

mazione lineare
$$T(x,y,z) = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
.

Esercizio 5.12 Trovare gli eventuali autovalori ed autovettori della trasfor-

mazione lineare
$$T(x,y,z) = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
.

Esercizio 5.13 Sia \underline{e}_1 , \underline{e}_2 e \underline{e}_3 una base per $\mathcal V$ e sia $T:\mathcal V\to\mathcal V$ la trasformazione lineare definita da

$$T(a\underline{e}_1 + b\underline{e}_2 + c\underline{e}_3) \stackrel{\text{\tiny def}}{=} (3a - b - c)\underline{e}_1 + (5a - 3b - c)\underline{e}_2 + (3a - 3b + c)\underline{e}_3 \ .$$

Trovare gli eventuali autovalori ed autovettori di T.

Esercizio 5.14 Sia $\underline{e}_1, \underline{e}_2$ e \underline{e}_3 una base per \mathcal{V} e sia $T: \mathcal{V} \to \mathcal{V}$ la trasformazione lineare definita da

$$T(a\underline{e}_1 + b\underline{e}_2 + c\underline{e}_3) \stackrel{\text{def}}{=} (6a - 12b + 6c)\underline{e}_1 + (10a - 20b + 10c)\underline{e}_2 + (12a - 24b + 12c)\underline{e}_3 \ .$$

Trovare gli eventuali autovalori ed autovettori di T.

Esercizio 5.15 Un'applicazione lineare $T: \mathcal{V} \to \mathcal{V}$ si dice diagonalizzabile se esiste una base di \mathcal{V} costituita da vettori che sono autovettori per T.

Siano $v \in w$ due vettori assegnati non paralleli fra loro. Stabilire quali delle seguenti applicazioni sono diagonalizzabili

- 1) $T(\underline{x}) \stackrel{\text{def}}{=} \underline{x} \wedge \underline{v};$ 2) $T(\underline{x}) \stackrel{\text{def}}{=} \underline{x} \wedge \underline{v} + \underline{x};$
- 3) $T(\underline{x}) \stackrel{\text{def}}{=} (\underline{x} \wedge \underline{v} \cdot \underline{w})\underline{v};$
- 4) $T(x) \stackrel{\text{def}}{=} (x \cdot v)v + x$.