Chapter 8: Lewis Structure

November 15, 2022

Chemistry Department, Cypress College

Class Announcements

Lecture

- Finish Ch 7 and begin Ch 8
- Quiz and Homework assignment released Fri, Nov 18th at 3pm
- Exam 3 on Nov 22nd; 10 questions covering Exam 2 and Chs 7-8

Outline

Types of Bonds

Ionic and Covalent Bonds

Electronegativity

Drawing Lewis Structures

VSEPR Theory

Water is Life

- Liquid water made up of moles upon moles of water molecules
- Molecules are made up of atoms connected by "chemical bonds"

4

What are Chemical Bonds?

Bonds are made up of atomic orbitals

 Overlap of atomic orbitals lead to the formation of molecular orbitals (same energy and specific orientation)

Ionic Bonds

Ionic Compounds - Made up of cation and anion

Ionic Bonds - Hold the cations and anions together; purely electrostatic interaction

6

Ionic Bonds

Ionic Compounds - Made up of cation and anion

Ionic Bonds - Hold the cations and anions together; purely electrostatic interaction

Q: For ionic bond, are the electrons shared between the cation and anion?

6

Covalent Bonds

- Electrons are shared between atoms to achieve the octet rule
- Note: Octet rule can be broken for atoms after the 3rd row e.g. P, S, Cl, etc.

Electronegativity: Tug-of-War

 Sharing of electrons can lead to unequal pull (electronegativity)

Electronegativity Trends

Practice: Polarity

Which of the following is the most polar bond?

Outline

Types of Bonds

Ionic and Covalent Bonds

Electronegativity

Drawing Lewis Structures

VSEPR Theory

Octet Rule

Octet Rule - Atoms have a tendency to achieve an electron configuration having 8 valence electrons

Q: How many electrons are needed for the following atoms to achieve the octet rule: C, N, O, F, Xe, and Ne

Exception to Octet Rule

Exceptions: Atoms starting in the 3rd row can break the octet rule

Exception to Octet Rule

Exceptions: Atoms starting in the 3rd row can break the octet rule

Q: Why are these atoms able to break the octet rule?

Drawing Lewis Structures

- 1. Count the total number of valence electrons
- 2. Draw the atomic skeleton by determining the central atoms (generally the one capable of making many bonds)
- 3. Add single bonds (each counts as 2 electrons) to atoms and add lone pairs if needed to satisfy the octet rule
- 4. Check that if the amount of valence electrons counted match the Lewis structure

Practice: Draw Lewis Structures

Draw the Lewis structures and compute the formal charges for the following: CO_2 , CN, HCI, O_3 , CO_3^{2-}

Resonance Structures

As seen in the previous slide, O_3 and CO_3^{-2} have multiple structures that are valid

Resonance structures - the movement of electrons satisfying a valid Lewis Structure

$$\begin{bmatrix} : \ddot{O}: \\ | \\ \vdots \\ C \end{bmatrix}^{2-} \longleftrightarrow \begin{bmatrix} : O: \\ | \\ \vdots \\ O \end{bmatrix}^{2-} \longleftrightarrow \begin{bmatrix} : \ddot{O}: \\ | \\ \vdots \\ O \end{bmatrix}^{2-} \longleftrightarrow \begin{bmatrix} : \ddot{O}: \\ | \\ \vdots \\ O \end{bmatrix}^{2-}$$

Practice: Drawing Resonance Structures

Draw the resonance structures and resonance hybrid for the following:

$$\mathsf{HCO}^-_2,\ \mathsf{NO}^-_2,\ \mathsf{SO}_2,\ \mathsf{CNS}^-,\ \mathsf{and}\ \mathsf{N}_2\mathsf{O}$$

Functional Groups in Hydrocarbons

Functional Groups - derivatives of a hydrocarbon

where R represents hydrocarbon component

Practice: Drawing Hydrocarbons

Draw the lewis structures for the following hydrocarbons: CH_4 , C_3H_8 , CH_8 , C_2H_2

Outline

Types of Bonds

Ionic and Covalent Bonds

Electronegativity

Drawing Lewis Structures

VSEPR Theory

VSEPR Theory

VSEPR Theory - predict the geometric shape of a molecule or an ion; minimizes the electronic repulsion of the lone pairs

Electron Pairs	L.P: 0	L.P: 1	L.P: 2	L.P: 3
2	Linear	Linear		
3	Trigonal Planar	Bent	Linear	
4	Tetrahedral	Trigonal Pyramidal	Bent	Linear

Bond Polarity and Molecular Polarity

$$\begin{bmatrix} \vdots \ddot{O} \vdots \\ \vdots \ddot{O} \end{bmatrix}^{2-} \longleftrightarrow \begin{bmatrix} \vdots \ddot{O} \vdots \\ \vdots \ddot{O} \end{bmatrix}^{2-} \longleftrightarrow \begin{bmatrix} \vdots \ddot{O} \vdots \\ \vdots \ddot{O} \end{bmatrix}^{2-} \longleftrightarrow \begin{bmatrix} \vdots \ddot{O} \vdots \\ \vdots \ddot{O} \end{bmatrix}^{2-} \end{bmatrix}^{2-}$$

Q: Is the C-O bond polar? Does this make the molecule overall polar?

Practice: Determine the Geometry

 $\mathsf{CO}_2,\ \mathsf{CN},\ \mathsf{HCI},\ \mathsf{O}_3,\ \mathsf{CO}_3^{2-},\ \mathsf{CH}_4,\ \mathsf{C}_3\mathsf{H}_8,\ \mathsf{CH}_8,\ \mathsf{C}_2\mathsf{H}_2$