- 1. Escreva as seguintes frases como fórmulas proposicionais (indicando a variável proposicional correspondente a cada "afirmação atómica"):
 - a) Se um número é positivo, o seu quadrado também o é.
 - b) Não ganharemos o jogo se não marcarmos mais do que o adversário.
 - c) Francisco vai ao cinema apenas se o filme for uma comédia.
 - d) Uma condição necessária para que uma sucessão seja convergente é ela ser limitada.
 - e) Uma condição suficiente para que um número seja ímpar é ele ser primo e diferente de 2.
 - f) Uma condição necessária e suficiente para que a soma de dois números seja par é os dois números serem simultaneamente pares ou ímpares.
- 2. Encontre exemplos de "frases verdadeiras" que possam ser escritas como as seguintes fórmulas:
 - a) $((p \land (\sim q)) \leftrightarrow r)$
 - b) $((\sim p) \rightarrow (q \lor r))$
 - c) $((p \land q) \land (\sim r))$
- 3. Diga quais das seguintes expressões são fórmulas proposicionais:
 - a) $((p \land (\sim q)) \rightarrow r)$
 - b) $(p \sim q)$
 - c) $((p \rightarrow \sim) \lor q)$
 - d) $((\sim (p \land q)) \leftrightarrow ((\sim p) \lor (\sim q))$
- 4. Mostre que as seguintes expressões são fórmulas proposicionais:
 - a) $((p \land (\sim q)) \leftrightarrow r)$
 - b) $((p \to (\sim q)) \lor ((\sim p) \leftrightarrow r))$
- 5. Elimine parênteses, tanto quanto possível, das seguintes proposições:
 - a) $((p_1 \leftrightarrow ((\sim p_2) \lor (p_3 \land p_0))) \leftrightarrow (p_1 \rightarrow p_2))$
 - b) $(((p_0 \land (\sim p_1)) \land p_2) \lor p_3)$
 - c) $((\sim (p \land q)) \leftrightarrow ((\sim p) \lor (\sim q)))$
 - d) $(q \rightarrow ((\sim p) \rightarrow (q \lor (\sim r))))$
- 6. Restaure os parênteses nas seguintes proposições:
 - a) $r \to (\sim (p \lor r) \land (p \leftrightarrow q))$
 - b) $(p \to r) \to (r \leftrightarrow (\sim r \lor q))$
- 7. Construa tabelas de verdade das seguintes fórmulas:
 - a) $\sim (p \land q) \leftrightarrow (\sim p \lor \sim q)$
 - b) $(p \rightarrow q) \lor \sim (p \leftrightarrow \sim q)$
 - c) $p \leftrightarrow ((\sim q \land p) \rightarrow q)$
 - d) $((p \rightarrow q) \rightarrow q) \lor \sim p$
 - e) $(\sim p \land \sim q) \rightarrow (q \rightarrow r)$
 - f) $p \to ((q \lor r) \to (r \to \sim p))$

- 8. Indique quais das seguintes fórmulas são tautologias e quais são contradições:
 - a) $\varphi \leftrightarrow (\varphi \lor \varphi)$
 - b) $(\varphi \to \psi) \to ((\psi \to \sigma) \to (\varphi \to \sigma))$
 - c) $(p \rightarrow q) \leftrightarrow (\sim p \rightarrow \sim q)$
 - d) $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$
 - e) $\sim \varphi \rightarrow (\varphi \wedge \psi)$
 - f) $(\varphi \wedge \psi) \rightarrow \varphi$
- 9. Diga quais dos seguintes pares de fórmulas são pares de fórmulas semanticamente equivalentes:
 - a) $p \land (p \lor q); p$
 - b) $(p \land q) \lor \sim p; \sim p \lor q$
 - c) $p \land (\sim p \lor q); \sim p \land q$
 - d) $p \land (q \lor r); (p \land q) \lor r$
- 10. Mostre que:
 - a) As operações lógicas de conjunção e de disjunção gozam das propriedades associativa e comutativa.
 - b) São válidas as leis distributivas:
 - i) $\varphi \wedge (\psi \vee \sigma) \Leftrightarrow (\varphi \wedge \psi) \vee (\varphi \wedge \sigma)$.
 - ii) $\varphi \lor (\psi \land \sigma) \Leftrightarrow (\varphi \lor \psi) \land (\varphi \lor \sigma)$.
 - c) A dupla negação de uma proposição é semanticamente equivalente a essa proposição.
 - d) São válidas as leis de De Morgan.
- 11. Mostre que a fórmula $p \to q$ é semanticamente equivalente a $\sim p \lor q$. Deduza que $p \to q$ é também semanticamente equivalente a $\sim (p \land \sim q)$.
- 12. Mostre que $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$.
- 13. Quais das seguintes afirmações são verdadeiras?
 - a) Uma condição suficiente para $p \rightarrow q$ ser verdadeira é p ser falsa.
 - b) Se $p \to q$ é verdadeira, então $p \to (q \to r)$ é também verdadeira.
 - c) Uma condição necessária para $p \to (q \to r)$ ser falsa é p ser verdadeira e r ser falsa.
- 14. Diga o que pode concluir de cada uma das seguintes hipóteses:
 - a) $p \in p \rightarrow q$ são ambas verdadeiras.
 - b) $q \in p \rightarrow q$ são ambas verdadeiras.
 - c) q é falsa e $p \rightarrow q$ é verdadeira.
- 15. Determine proposições semanticamente equivalentes a $((p \lor q) \land \sim (p \land q)) \leftrightarrow p$ envolvendo apenas os conetivos
 - a) \sim e \wedge .
 - b) \sim e \vee .
 - c) \sim e \rightarrow .