UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE CIENCIAS ECONÓMICAS Y DE ADMINISTRACIÓN

EXAMEN DE ECONOMETRÍA II 16 de diciembre de 2015

Ejercicio 1 (32 puntos)

La Encuesta Financiera de los Hogares Uruguayos (EFHU1) aporta información relativa a la posesión de tarjetas de crédito en los hogares, así como datos respecto a los hogares y sus miembros. En particular, se cuenta con las siguientes variables para el año 2012.

tarjeta_credito: binaria, toma el valor 1 si hay al menos una tarjeta de crédito en el hogar

lingreso: ingreso total del hogar (en logaritmos)

edad: edad del jefe de hogar

Universidad_completa: binaria, toma el valor 1 si hay al menos una tarjeta de crédito en el hogar

Mujer: binaria toma el valor 1 si la jefe de hogar es mujer

Djefa: binaria, toma el valor 1 si la jefa de hogar es mujer y no tiene pareja cohabitando

nmiembros: cantidad de miembros del hogar

informal: binaria, toma el valor 1 si el jefe de hogar tiene un trabajo informal

Afro: binaria, toma el valor 1 si el jefe de hogar tiene ascendencia afro.

Se estiman modelos logit usando dos especificaciones. En la primera se omite las variables *Mujer* y *Djefa*. Los resultados son los siguientes:

Estimación logit 1

```
. logit tarjeta_credito lingreso Universidad_completa edad nmiembros informal Afro
```

```
Iteration 0: log likelihood = -4586.7715
Iteration 1: log likelihood = -3807.1215
Iteration 2: log likelihood = -3787.6636
Iteration 3: log likelihood = -3787.5846
Iteration 4: log likelihood = -3787.5846
```

 $Log likelihood = -3787.5846 \qquad Pseudo R2 \qquad = \qquad 0.1742$

tarjeta_credito	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lingreso	1.716814	.0604526	28.40	0.000	1.598329	1.835299
Universidad_completa	.3252979	.1457651	2.23	0.026	.0396034	.6109923
edad	0164778	.0017452	-9.44	0.000	0198984	0130572
nmiembros	1651252	.0210073	-7.86	0.000	2062987	1239517
informal	5531765	.0756031	-7.32	0.000	7013559	4049971
Afro	2644467	.0973775	-2.72	0.007	455303	0735904
_cons	-16.03695	.6018439	-26.65	0.000	-17.21655	-14.85736

Estimación logit 2

Iteration 0: log likelihood = -4586.7715

. logit tarjeta_credito lingreso Universidad_completa edad nmiembros informal Afro Mujer Djefa

tarjeta_credito	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lingreso	1.732535	.0610222	28.39	0.000	1.612933	1.852136
Universidad_completa	.3108377	.145945	2.13	0.033	.0247907	.5968847
edad	0167472	.0017512	-9.56	0.000	0201795	013315
nmiembros	1570493	.0213604	-7.35	0.000	1989149	1151836
informal	5416446	.0757917	-7.15	0.000	6901937	3930955
Afro	2658485	.0975019	-2.73	0.006	4569487	0747484
Mujer	.1614871	.0695233	2.32	0.020	.0252239	.2977503
Djefas	0841385	.0880537	-0.96	0.339	2567206	.0884436
_cons	-16.26482	.6122865	-26.56	0.000	-17.46488	-15.06476

A continuación se calculan los efectos marginales de esta segunda especificación, evaluados en la media de los regresores. Los resultados son los siguientes.

```
. mfx compute

Marginal effects after logit
    y = Pr(tarjeta_credito) (predict)
```

= .6461417

variable	dy/dx	Std. Err.	z	P> z	[95%	C.I.]	Х
lingreso	.3961313	.01373	28.84	0.000	.369211	.423051	10.5
Univer~a*	.0680774	.03034	2.24	0.025	.008611	.127544	.082244
edad	0038291	.0004	-9.57	0.000	004613	003045	51.4295
nmiemb~s	0359082	.00488	-7.36	0.000	045468	026349	2.74441
informal*	1289058	.01855	-6.95	0.000	165258	092553	.165068
Afro*	0625148	.02348	-2.66	0.008	108535	016495	.087329
Mujer*	.0367809	.01576	2.33	0.020	.005884	.067678	.427492
Djefas*	0193882	.02044	-0.95	0.343	059452	.020676	.171316

(*) $\mbox{dy/dx}$ is for discrete change of dummy variable from 0 to 1

Se pide:

- 1) Interprete los resultados de la Estimación Logit 1.
- 2) Realice un test de significación conjunta de las variables *Mujer* y *Djefa*. ¿Qué especificación le resulta más adecuada entre la 1 y la 2?
- 3) ¿Cómo cambia la probabilidad de contar con al menos una tarjeta de crédito en el hogar en las siguientes situaciones (manteniendo el resto de las variables en su valor medio)? Indique si es un cálculo exacto o aproximado, y si es aproximado si espera una buena aproximación:
 - a. El jefe de hogar completó estudios universitarios frente a no los completó
 - b. La edad del jefe de hogar pasa de 51 a 52
 - c. La edad del jefe de hogar pasa de 70 a 71
 - d. La cantidad de miembros del hogar pasa de 2 a 5

Ejercicio 2 (32 puntos)

Se cuenta con el índice de empleo canadiense, con frecuencia trimestral desde el primer trimestre de 1962 hasta el cuarto trimestre de 1995. En el siguiente gráfico se presenta la serie en niveles y el correlograma de la misma:

Grafico 1

1) Defina estacionariedad en sentido débil. ¿Es la serie de tasa de empleo estacionaria en sentido débil? ¿Considera usted se debe proceder a realizar alguna transformación a la serie? Justifique.

Se desea modelizar la serie de empleo utilizando la metodología Box-Jenkins. Un analista propone los siguientes tres modelos.

Modelo 1 ARMA, usando las observaciones 1962:1-1995:4 (T = 136) Variable dependiente: empleo

Desviaciones típicas basadas en el Hessiano Desv. Típica

Valor p

Coeficiente

Const	97,4773	4,40285	22,1396	<0,0001	***
phi_1	1,45048	0,0748908	19,3680	<0,0001	***
phi_2	-0,476183	0,0761683	-6,2517	<0,0001	***
Media de la vble. dep	100,219	98 I	D.T. de la vble. dep). 7	,997169
media innovaciones	0,00217	78 I	D.T. innovaciones	1	,421887
Log-verosimilitud	-242,78	59 (Criterio de Akaike	4	93,5718
Criterio de Schwarz	505,222	24 (Crit. de Hannan-Qı	uinn 4	98,3063
	Real	Imaainari	a Módulo	Frecuen	cia

AR		кеаі	imaginaria	ivioauio	Frecuencia
,	Raíz 1	1,0544	0,0000	1,0544	0,0000
	Raíz 2	1,9916	0,0000	1,9916	0,0000

Modelo 2
ARMA, usando las observaciones 1962:1-1995:4 (T = 136)
Variable dependiente: empleo

Desviaciones típicas basadas en el Hessiano

	Coeficiente	Desv. Típica	Ζ	Valor p	
Const	99,8437	1,11661	89,4171	<0,0001	***
theta_1	1,60805	0,076962	20,8941	<0,0001	***
theta_2	1,79859	0,122691	14,6595	<0,0001	***
theta_3	1,54685	0,139552	11,0844	<0,0001	***
theta_4	1,01543	0,12381	8,2015	<0,0001	***
theta_5	0,399831	0,0698345	5,7254	<0,0001	***
Media de la vble.	dep. 100,2	198 D.T	de la vble. de	p. 7,99	97169
media innovacion	es -0,043	3993 D.T	: innovaciones	1,79	94796
Log-verosimilitud	-274,3	3274 Cri	terio de Akaike	562	,6548
Criterio de Schwar	z 583,0	433 Cri	t. de Hannan-C	Quinn 570	,9402

		Real	Imaginaria	Módulo	Frecuencia
MA					
	Raíz 1	-1,2776	0,0000	1,2776	0,5000
	Raíz 2	-0,8015	-0,9153	1,2166	-0,3645
	Raíz 3	-0,8015	0,9153	1,2166	0,3645
	Raíz 4	0,1704	-1,1374	1,1501	-0,2263
	Raíz 5	0,1704	1,1374	1,1501	0,2263

Modelo 3 ARMA, usando las observaciones 1962:1-1995:4 (T = 136)

Variable dependiente: empleo Desviaciones típicas basadas en el Hessiano

Valor p Coeficiente Desv. Típica Ζ 30,7407 Const 99,0508 3,22214 <0,0001 phi 1 2,19046 0,224544 9,7551 <0,0001 phi_2 <0,0001 -1,49762 0,36066 -4,1524 2,0474 0,0406 phi_3 0,298462 0,145773 0,199707 -3,9109 <0,0001 theta_1 -0,781041

Media de la vble. dep.	100,2198	D.T. de la vble. dep.	7,997169
media innovaciones	-0,034042	D.T. innovaciones	1,413822
Log-verosimilitud	-242,0093	Criterio de Akaike	496,0187
Criterio de Schwarz	513,4946	Crit. de Hannan-Quinn	503,1205

		Real	Imaginaria	Módulo	Frecuencia
AR					
	Raíz 1	1,0773	-0,0984	1,0817	-0,0145
	Raíz 2	1,0773	0,0984	1,0817	0,0145
	Raíz 3	2,8633	0,0000	2,8633	0,0000
MA					
	Raíz 1	1,2803	0,0000	1,2803	0,0000

²⁾ Utilizando la notación ARIMA(p,d,q) escriba los 3 modelos sugeridos. Comente brevemente que elementos hicieron proponer al analista el Modelo 1. ¿Cuál puede ser la justificación de incluir el modelo 2? ¿Y la del modelo 3?

A continuación se presenta información resumida de los correlogramas de los residuos de los 3 modelos, en particular información seleccionada sobre el estadístico Q del contraste de Ljung-Box de sus residuos. De considerar la información sobre los residuos relevante, especifique hipótesis nula y alternativa, estadístico de prueba concluya al respecto. Con esta información y la presentada en las salidas anteriores proceda a la validación de los modelo según la metodología de Box-Jenkins.

	Q-Stat [p-value]					
Rezagos	Modelo 1	Modelo 2	Modelo 3			
1						
3	0,1570 [0,692]					
5	0,2224 [0,974]		0,3500 [0,554]			
10	1,2630 [0,996]	43,4680 [0,000]	1,9020 [0,928]			
15	4,7554 [0,980]	45,7350 [0,000]	4,1205 [0,966]			
20	8,5434 [0,969]	48,2357 [0,000]	6,6278 [0,980]			

3) Finalmente, para concluir la etapa de validación ¿cuál considera usted es el modelo más adecuado para empleo en Canadá en el período considerado? Justifique.

Pregunta 1 (12 puntos)

Dado el siguiente modelo para la variable y:

$$(1-\alpha L)y_t = 0.8 + (1-\beta L)y_{t-1} + \varepsilon_t$$

- 1) Determine para qué valor(es) de α y β el proceso para y_t posee una raíz unitaria
- 2) ¿Es estacionario el modelo en primeras diferencias resultante (Δy_t) para los valores antes señalados?

Pregunta 2 (12 puntos)

El equipo docente de Econometría II está estudiando implementar un plan de apoyo para los estudiantes que les vaya mal en la primera revisión. El plan de apoyo consiste en clases extra los martes y jueves a las 15 hrs, podrán ir todos los estudiantes que lo deseen, se deberán anotar con el compromiso de ir a todas las clases extras, las clases duran 2 horas y se pasará lista. Si bien se sabe que la mayoría de los estudiantes que trabajan no podrán ir no se consiguió salón en otro horario.

A la salida de la segunda revisión se les pedirá a los todos los estudiantes que den la prueba que completen un breve cuestionario, donde indiquen: el promedio de las horas diarias que pudieron dedicarle de estudio para la segunda revisión de econometría; si asistieron regularmente en la segunda parte del curso a: i) clases prácticas; b) clases teóricas. Ud. podría sugerir incluir una o dos preguntas más para el cuestionario. ¿Cómo procedería para evaluar el resultado de las clases extra utilizando los puntajes de la segunda revisión? Detalle y justifique indicando: la ecuación a estimar, efecto causal a medir, método(s) utilizado(s) para estimar, contrastes deseables a realizar, conclusiones posibles.

Pregunta 3 (12 puntos) (Basado en el EJEMPLO 17.4 de Intro Wooldrigde)

Se realizó un relevamiento sobre el tiempo que transcurre hasta que un ex prisionero reincide en un delito. Se tiene información acerca de las características de 1445 ex prisioneros que fueron seguidos durante cierto tiempo. Al final del seguimiento se observó que 893 ex prisioneros no habían reincidido. Variables:

- Idurat: duración hasta que reincide en un delito (en meses)
- wrkprg: vale 1 si participó en programa de trabajo
- priors: número de delitos previos
- tserved: total de meses en prisión
- felon: vale 1 si estuvo en prisión por delito grave
- alcohol: vale 1 si adicción al alcohol

Se quiere estimar un modelo que relaciona el tiempo (en logaritmos) hasta que el convicto reincide con haber participado de un programa de trabajo y otras características demográficas y de la situación en prisión de los individuos:

- durat: duración hasta que reincide en un delito (en meses)
- wrkprg: vale 1 si participó en programa de trabajo
- priors: número de delitos previos
- tserved: total de meses en prisión
- felon: vale 1 si estuvo en prisión por delito grave
- alcohol: vale 1 si adicción al alcohol

Estimación 1 reg ldurat workprg priors tserved felon alcohol

Source	SS	df	MS		Number of obs	
Model Residual	83.038995 1152.60276		6.607799 00974812		F(5, 1439) Prob > F R-squared	= 0.0000 = 0.0672
Total	1235.64175	1444 .8	55707583		Adj R-squared Root MSE	= .89497
ldurat	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
workprg priors tserved felon alcohol cons	.06589880387468009982 .17043521610135 3.941672	.0490094 .0085768 .0013225 .0594585 .0597377	-4.52 -7.55 2.87 -2.70	0.179 0.000 0.000 0.004 0.007 0.000	0302387 0555712 0125762 .0538006 2781958 3.862566	.1620363 0219224 0073878 .2870698 0438313 4.020778

$\underline{Estimación}$ 2 cnreg ldurat workprg priors tserved felon alcohol, censored(cens)

,			
Censored-normal regression	Number of obs	=	1445
	LR chi2(5)	=	82.67
	Prob > chi2	=	0.0000
Log likelihood = -1639.0938	Pseudo R2	=	0.0246

ldurat	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
workprg priors tserved felon alcohol _cons	.1076059080668802106 .41450873391146 5.23616	.120784 .019729 .0030481 .1483702 .1438816 .1124868	0.89 -4.09 -6.91 2.79 -2.36 46.55	0.373 0.000 0.000 0.005 0.019 0.000	1293255 1193695 0270393 .1234639 6213545 5.015505	.3445374 0419682 0150808 .7055535 0568746 5.456816
/sigma	1.879638	.0650336			1.752068	2.007209

Observation summary:

0 left-censored observations 552 uncensored observations 893 right-censored observations

1) ¿Es la estimación MCO de este modelo adecuada? Justifique

- 2) Comente los resultados de las estimaciones 1 y 2 respecto al coeficiente asociado a la variable priors. Señale cuál de ellas considera más apropiada. Justifique
- 3) Ninguno de los estimadores señala un efecto significativo de la variable workprg en la duración estudiada. ¿Esta evidencia es suficiente para concluir que el efecto causal de participar en un programa de trabajo es nulo? En caso negativo señale que estrategia de estimación podría seguir.