# Estructuras algebráicas

# 1 Generalidades y teorema de Lagrange

#### 1.1 Grupos

**Definición 1.1** Un grupo es un conjunto no vacío G en el que se define una operación binaria  $G \times G \to G$ ;  $(a,b) \mapsto ab$  que cumple (1) **asociatividad** ((ab)c = a(bc)), (2) **existencia de elemento neutro**  $u \in G$ ; ua = a = au y (3) **existencia de elemento inverso**  $a, x \in G$ ; ax = u = xa. Tanto u como a son únicos. Para la suma u = 0, a = -x y para el producto u = 1,  $a = x^{-1}$ .

Otras propiedades inmediatas de los grupos son (1) **simplificación**:  $ab = ac \iff b = c$ ;  $ba = ca \iff b = c$ ; (2) **asociatividad generalizada**:  $(a_1 \cdots a_k)(a_{k+1} \cdots a_n) = (a_1 \cdots a_l)(a_{l+1} \cdots a_n)$ , (3) **inverso de un producto**:  $(a_1 \cdots a_n)^{-1} = a_n^{-1} \cdots a_1^{-1}$ .

**Definición 1.2** Un **grupo simétrico**  $S_n$  es el conjunto de biyecciones de un conjunto X con n elementos. Se cumple que  $card(S_n) = n!$ . Otros ejemplos de grupos son  $GL_n(\mathbb{R})$ , el grupo de matrices no singulares para la operación producto; o  $D_n$  es el conjunto de biyecciones que conserva la distancia en un polígono de n lados.

**Definición 1.3** Un grupo es **abeliano** si  $ab = ba \ \forall a, b \in G$ . Todo grupo con dos elementos es abeliano, pues aa = aa; uu = uu; ua = a = au; pero para  $n \ge 3$ ,  $S_n$  no puede ser abeliano.  $GL_n; n \ge 2$ , ni  $D_n; n \ge 3$  son abelianos.

**Proposición 1.4** (1) Si  $x^2 = 1 \ \forall x \in G$ , entonces G es abeliano; (2) si  $(ab)^2 = a^2b^2$  entonces G es abeliano.

Demostración. (1) Para cada x,  $x \cdot x = 1 \iff x = x^{-1}$ , luego si  $a, b \in G$  entonces  $a = a^{-1}$ ;  $b = b^{-1}x$  y si c = ab entonces  $ab = c = c^{-1} = (ab)^{-1} = b^{-1}a^{-1} = ba$ . (2) Dados  $a, b \in G$ , se tiene que  $a(ba)b = (ab)^2 = a^2b^2 = a(ab)b$  y, por simplificación, ab = ba.

**Definición 1.5** Si G, G' son dos grupos con operaciones  $G \times G \to G : (a,b) \mapsto ab$  ;  $G' \times G' \to G' : (a',b') \mapsto a'b'$  el **producto cartesiano**  $G'' = G \times G''$  es un grupo con operación  $G'' \times G'' \to G'' : ((a,a'),(b,b')) = (ab,a'b')$ . La asociatividad se mantiene, y se ve que  $1_{G''} = (1_G,1_{G'})$ . Además, si G, G' son abelianos, G'' también lo es. Se dice que  $G_1 \times \cdots \times G_r$  es el **producto directo**.

#### 1.2 Subgrupos

**Definición 1.6** Un subconjunto no vacío  $H \subset G$  es un **subgrupo** de G si es un grupo con la misma operación que G. **EN ALGUNOS SITIOS**  $H \subset G$  **INDICA QUE** H **ES SUBGRUPO DE** G. Se puede ver que el elemento neutro de H es  $1_G$ , y que si  $x \in H$ ;  $x^{-1} \in H$ . Para que (1) H sea subgrupo de G se tiene que cumplir que (2) si  $x, y \in H$ , entonces  $xy^{-1} \in H$ .

 $\{1_G\}$  y G son subgrupos de G. El resto de subgrupos se llaman **subgrupos propios** de G. Por ejemplo,  $m\mathbb{Z} = \{mx \mid x, m \in \mathbb{Z}; \}$  es un subgrupo de  $\mathbb{Z}$ .

**Definición 1.8.3** Se denomina a  $\langle S \rangle$  al **subgrupo generado** por S.

$$\langle S \rangle = \left\{ s_1^{h_1} \cdots s_n^{h_n} \mid n \in \mathbb{N}, s_i \in S, h_i \in \mathbb{Z}, 1 \leq i \leq n \right\}$$
. Esto se puede simplificar como

 $\langle S \rangle = \{x_1 \cdots x_m \mid m \in \mathbb{N}, x_i \in S, 1 \le i \le m\}$ . Es decir, es el conjunto de todos los elementos de S combinados con operación binaria. Si  $\mathcal{F}_S$  es la familia de los subgrupos de G que contienen a S, entonces se cumple que  $\langle S \rangle = \bigcap_{H \in \mathcal{F}_S} H$ .

Un caso particular es cuando  $S = \{a\}$ . En tal caso es el **subgrupo generado por a**,  $\langle a \rangle = \{a^k \mid k \in \mathbb{Z}\}$ . Un subconjunto  $S \subset G$  se llama **generador de** G si  $G = \langle S \rangle$ . Es cierto que  $\langle G \rangle = G$ . Si S es finito, entonces se dice que G es **finitamente generado**.

**Definición 1.8.4** Si H es subgrupo de G, se llama **centralizador de** H **en** G a  $C_G(H) = \{x \in G \mid ax = xa \ \forall a \in H\}$ . El centralizador de G en G, llamado **centro de** G es el caso  $Z(G) = \{x \in G \mid xa = ax \ \forall a \in G\}$ . Se ve que  $C_G(H)$  es un subgrupo de G.

**Definición 1.8.5** Si  $S \subset G$  y  $a \in G$ , se llama **conjugado de** S **por** a al conjunto  $S^a = \{a^{-1}xa \mid x \in S\}$ 

**Definición 1.8.6** Si  $S \subset G$ , se llama **normalizador de** S **en** G al conjunto  $N_G(S) = \{a \in G \mid S^a = S\}$ . El normalizador de S es un subgrupo de G porque si  $a, b \in N_G(S)$ , entonces  $S^{ab^{-1}} = (S^a)^{b^{-1}} = S^{b^{-1}} = (S^b)^{b^{-1}} = S$ 

**Definición 1.8.8** Dados dos subgrupos K, H de G, se define  $HK = \{hk \mid h \in H, k \in K\}$ . Para que HK sea un subgrupo de G entonces HK = KH. Si  $H \subset K$ , HK = K = KH.

## 1.3 Orden de un grupo

**Definición 1.9** El **orden** de un subgrupo finito  $H \subset G$  es el número de elementos que tiene. Se denota por o(H). Un elemento  $a \in G$  es **de torsión** si  $\langle a \rangle$  es finito. En tal caso el orden es o(a).

**Proposición 1.10** Sea G un grupo y  $a \in G$  de torsión. Entonces se cumple que

- Existe  $k \ge 1$  tal que  $a^k = 1$
- o(a) es el menor número tal que  $a^n = 1$
- Si  $n = o(a), \langle a \rangle = \{1, a, \dots, a^{n-1}\}$
- $a^k = 1 \sin k$  es múltiplo de n
- $o(a^{-1}) = o(a)$
- Si  $x = a^k$  y n = o(a), entonces  $o(x) = \frac{n}{mcd(n,k)}$
- Si  $b \in G$  es de torsion y ab = ba entonces o(ab) es divisor de mcm(o(a), o(b)). Si o(a), o(b) son primos entre si, o(ab) = o(a)o(b)
- o(ab) = o(ba)

# 1.4 Índice de un subgrupo

**Definición 1.2/Observación 1.12.6/7** Sea G un grupo y  $H \subset G$ . Sean  $R^H$ ,  $R_H$  las relaciones de equivalencia en G:

$$xR_Hy \iff xy^{-1} \in H$$

$$xR^Hy\iff x^{-1}y\in H$$

Además, se definen  $Hx = \{hx \mid h \in H\}; xH = \{xh \mid h \in H\}$ . Se cumple que si  $x, y \in G$ ,  $y \ yR_Hx$  entonces  $yx^{-1} = h \in H$  y, por tanto,  $y = hx \in Hx$ .

Además, las aplicaciones  $H \to Hx$ :  $h \mapsto hx$  y su equivalente en xH son biyectivas. Es importante que pese a existir una biyección entre Hx y xH, no siempre Hx y xH son iguales.

**Proposición 1.12.3** La aplicación entre conjuntos cocientes  $G/R_H \to G/R^H : Hx \to x^{-1}H$  es biyectiva.

**Definición 1.12.4**  $H \subset G$  es un subgrupo de **índice infinito** si  $G/R_H$  es un conjunto infinito. Por otra parte, el índice de H en G, [G:H] es el número de elementos de  $G/R_H$ .

**Proposición 1.12.8 (T de Lagrange)** Sea  $H \subset G$  un subgrupo. Se cumple que si G es finito, entonces o(H) es finito, H tiene índice finito en G y  $o(G) = o(H) \cdot [G : H]$ .

**Corolario 1.12.9** Si H, K son subgrupos finitos de G, o(H) = m, o(K) = n, entonces  $o(H \cap K) = 1 \iff H \cap K = \{1_G\}$ 

**Proposición 1.12.10 (F de transitividad del índice)** Sean H, K subgrupos de G. Si H es subgrupo de K, Y los indices entre subgrupos, Y con Y0, son finitos, entonces se cumple Y1 = Y2 = Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | Y8 | Y9 | Y9

**Proposición 1.12.11** Sean *H*, *K* subgrupos de *G*, finito. Entonces

$$card(HK) = \frac{o(H)o(K)}{o(H \cap K)}$$

**Definición 1.15** / **Observación 1.15.4** Un grupo G se llama **cíclico** si existe a ∈ G tal que  $G = \langle a \rangle$ . Si o(a) = p, primo, el grupo es cíclico.

**Proposición 1.16 / 1.17** Sea G cíclico y n = o(G), para cada divisor m de n existe un único subgrupo de G de orden m, y ese subgrupo es cíclico. Además, todo subgrupo de un grupo cíclico [finito o no] es cíclico.

**Definición 1.18** Sea *G* finitamente generado. Un sistema generador *S* se llama **minimal** si cualquier subconjunto de *G* con menos elemenos que *S* no es generador de *G*.

**Proposición 1.19** Sea G finito de orden n y  $S = \{x_1, \dots, x_p\}$  un sistema generador minimal de G. Entonces  $2^p \le n$ .

Demostración. Llamamos  $S_i = \{x_1, \dots, x_i\}$ ,  $1 \le i \le p$ ; y  $H_i = \langle S_i \rangle$ . Evidentemente,  $H_i \subset H_{i+1}$ . Por ele teorema de Lagrange y la fórmula de la transitividad del índice,

$$[G: H_1] = [H_P: H_1] = [H_P: H_{P-1}][H_{P-1}: H_{P-2}] \cdots [H_2: H_1]$$

Además,

$$[H_{i+1}: H_i] = \frac{o(H_{i+1})}{o(H_i)} > 1 \iff [H_{i+1}: H_i] \ge 2$$

pues los índices son enteros. Por tanto,  $[G:H_1] \ge 2^{p-1}$ , y como  $o(H_1) \ge 2$ , entonces,  $o(G) = o(H_1)[G:H_1] \ge 2^p$ 

Page intentionally left in blank

# 2 Subgrupos normales, homomorfismos, teorema de estructura de grupos abelianos finitos

● Proposición 2.1 Sea G un grupo y H un subgrupo. H es un subgrupo normal (LO DEFINO AQUÍ COMO  $\subset_N$ ) si se cumplen las condiciones equivalentes:

- 1. Para todo  $a \in G$ , aH = Ha
- 2. Para todo  $a \in G$ ,  $H = H^a$
- 3. Para todo  $a, b \in G$ ,  $ab \in H \iff ba \in H$ , luego H es abeliano.

Demostración.  $1 \Longrightarrow 2$ . Si  $y \in H^a$  entonces  $aya^{-1} = h \in H$ . Como  $ay = ha \in Ha = aH$  existe  $h' \in H$  tal que ay = ah'. Así,  $y \in H^a = h' \in H$   $\iff H^a \subset H$ . Si aplicamos lo mismo con  $xa^{-1}$  tenemos  $H^{a^{-1}} \subset H$  y, con ello  $H \subset H^a$ , luego  $H = H^a$ .  $2 \Longrightarrow 3$ . Como  $ab \in H$ ,  $ba = a^{-1}aba \in H^a$ , y como  $ba \in H$ ,  $H = H^a$ .  $3 \Longrightarrow 1$ . Sea  $x \in Ha$ , luego  $\exists h \in H$ , x = ha, y  $xa^{-1} = h \in H$ . Por hipótesis  $h' = a^{-1}x \in H$  y  $x = ah' \in aH$ , luego  $Ha \subset aH$ . Si empezamos con  $x \in aH$  obtenemos que  $aH \subset Ha$ , luego  $aH \in Ha$ .

**Observación 2.2.1** Si H es normal, entonces  $R^H = R_H$ , y  $G/R_H$  se escribe G/H.

**Observación 2.2.4/2.2.5** Si H es un subgrupo de G, y [G:H]=2, H es subgrupo normal de G. Asimismo, los subgrupos  $\{1_G\}$ , G son normales.

**Definición 2.2.14** Un grupo G es **simple** si los únicos subgrupos son  $\{1_G\}$ , G. Si o(G) es primo p, por el teorema de Lagrange, los únicos subgrupos son  $\{1_G\}$ , G, luego G es simple.

**Proposición 2.2.8** Todo subgrupo  $H \subset Z(G) = \{a \in G \mid ag = ga \ \forall g \in H\}$  es subgrupo normal de G.

**Proposición 2.2.10** Sea *H* subgrupo de *G*.

- 1. H es subgrupo de  $N_G(H) = \{a \in G \mid H = H^a\}$ .
- 2.  $H \subset_N N_G(H)$ .
- 3. Si  $H \subset K \subset G$  y  $H \subset_N K$ , entonces  $K \subset N_G(H)$ .

**Definición 2.2.11** Si H, K son subgrupos de G, K es un **subgrupo conjugado** de H si existe  $a \in G$  tal que  $K = H^a$ . Como la relación es recíproca, se dice que K y H son conjugados.

#### Proposición 2.2.11

- Si  $\Sigma$  es la familia de conjugados de H y  $N=N_G(H)$ , la aplicación  $\phi:G/R_N\to\Sigma:Na\to H^a$  es biyectiva.
- Si N tiene índice finito en G, el número de conjugados con H es [G:N].

**Proposición 2.2.13** Si  $A \subset_N G$ ,  $H \subset K \subset G$ , y  $H \subset_N K$ , entonces  $AH \subset_N AK$ .

● La normalidad no es transitiva, es decir, si  $H \subset_N K \subset_N G$ , no siempre es cierto que  $H \subset_N G$ .

**Definición 2.2.16/Observación 2.2.16.1** Si H ⊂ G, se llama corazón de H a

$$\heartsuit(H) = K(H) = \bigcap_{a \in G} H^a$$

Si  $N \subset_N H$  entonces  $N \subset K(H)$ , pues para cada  $a \in G$ :  $N = N^a \subset H^a$ , luego  $N = N^a \subset \cap_{a \in G} H^a = K(H)$ 

**Proposición 2.2.17 (T de Poincaré)** Si *G* posee un subgrupo de índice finito, también posee un subgrupo normal de índice finito.

#### 2.1 Grupos cocientes

**Proposición 2.3** El grupo cociente G/H de  $H \subset_N G$  tiene estructura de grupo con la operación:

$$G/H \times G/H \longrightarrow G/H$$
  
 $(aH, bH) \longmapsto abH$ 

El elemento neutro del grupo cociente es H, y el inverso de aH es  $(aH)^{-1} = a^{-1}H$ .

**Observación 2.3.1** Si  $H \subset_N K \subset G$  (entonces  $H \subset_N G$ ), el grupo cociente  $K/H \subset G/H$ , ya que si  $aH, bH \in K/H, a, b \in K$ , entonces  $(aH)(bH)^{-1} = (aH)(b^{-1}H) = ab^{-1}H \in K/H$ , ya que como  $K \subset G, ab^{-1} \in K$ 

**Observación 2.3.1.1**  $K \subset_N G \iff K/H \subset_N G/H$ 

**Ejemplo 2.3.3 (Función**  $\phi$  **de Euler)** Si denotamos  $\mathbb{Z}_m^* = \{a + m\mathbb{Z} \in \mathbb{Z}/m\mathbb{Z} \mid mcd(a, m) = 1\}$  y consideramos la operación binaria

$$\mathbb{Z}_m^* \times \mathbb{Z}_m^* \to \mathbb{Z}_m^* : (a + m\mathbb{Z}, b + m\mathbb{Z}) \mapsto ab + m\mathbb{Z}$$

vemos que  $\mathbb{Z}_m^*$  forma un grupo abeliano con elemento neutro  $1+m\mathbb{Z}$  y elemento inverso  $u+m\mathbb{Z}$ , con au=1.

Entonces, la función  $\phi: \mathbb{N}\{0\} \to \mathbb{N}\{0\}$  que a cada m positivo le corresponde el orden de  $\mathbb{Z}_m^*$  es la función de Euler. Para p primo,  $\phi(p) = p-1$ , y  $\phi(p^k) = p^{k-1}(p-1)$ . Si tenemos m,n tal que mcd(m,n) = 1, entonces  $\phi(mn) = \phi(m)\phi(n)$ . Con todo esto, si tenemos un numero  $a = p_1^{k_1} \cdots p_i^{k_i}$ , entonces  $\phi(a) = p_1^{k_1-1} \cdots p_i^{k_i-1}(p_1-1) \cdots (p_i-1)$ 

#### 2.2 Homomorfismos

**Definición 2.4 / 2.6** Una aplicación  $f: G \to G'$  es un **homomorfismo de grupos** si  $f(ab) = f(a)f(b) \forall a,b \in G$ . Para todo homomorfismo se tiene que  $f(1_G) = 1_{G'}$  y  $f(a^{-1}) = (f(a))^{-1}$ . Si un homomorfismo es biyectivo se llama **isomorfismo**. Se denota por  $G \simeq G'$  cuando dos grupos son isomorfos.

**Definición 2.4.3/Proposición 2.4.4** El **núcleo** de un homomorfismo es  $ker(f) = \{a \in G \mid f(a) = 1_{G'}\}$ . f es inyectiva sii  $ker(f) = \{1_G\}$ .

**Definición 2.4.5** Se llama **imagen** de f a  $im(f) = \{f(x) \mid x \in G\}$ .

**Proposición 2.4.6** Si  $f: G \to G'$  es homomorfismo y  $H' \subset G'$ , entonces  $f^{-1}(H') = \{x \in G \mid f(x) \in H'\}$  es un subgrupo de G. Además, si  $H' \subset_N G'$  entonces  $f^{-1}(H') \subset_N G$ .

**Observación 2.4.7/2.4.8** Si  $H \subset G$ , la inclusión  $j: H \to G: x \mapsto x$  es un homomorfismo inyectivo; y si  $H \subset_N G$ , la proyección  $\pi: G \to G/H: x \mapsto xH$  es un homomorfismo sobreyectivo.

**Proposición 2.4.9** Si  $f: G \to G'$  y  $g: G' \to G''$  son homomorfismos,  $g \circ f: G \to G''$  también lo es, pues  $(g \circ f)(xy) = g(f(xy)) = g(f(x)f(y)) = g(f(x))g(f(y)) = (g \circ f)(x)(g \circ f)(y)$ 

**Proposición 2.4.10** Si f es un homomorfismo y  $x \in G$  tiene orden m, se cumple que (i) o(f(x)) divide a m (ii) Si f es inyectiva, o(f(x)) = m.

#### Proposición 2.5 (Factorización canónica de un homomorfismo)

Sea  $f:G\to G$  un homomorfismo. Entonces existe un homomorfismo biyectivo  $b:G/ker(f)\to im(f)$  que hace conmutativo el diagrama

$$G \xrightarrow{f} G'$$

$$\pi \downarrow \qquad \qquad \uparrow j$$

$$G/ker(f) \xrightarrow{h} im(f)$$

**Proposición 2.6.X (Propiedades de isomorfismos)** Si  $G \simeq G'$ , y G es abeliano o cíclico, entonces G' también lo es. Si X, Y son conjuntos con el mismo número de elementos, entonces  $Biy(X) \simeq Biy(Y)$ .

**Corolario 2.7 (Primer teorema de la isomorfía)** Si  $f: G \to G'$  es un homomorfismo,  $G/ker(f) \simeq im(f)$ .

Corolario 2.8 Todo grupo cíclico es isomorfo a  $\mathbb{Z}$  o a  $\mathbb{Z}/m\mathbb{Z}$ . Demostración. Sea  $G = \langle a \rangle$  cíclico. Consideramos  $f: \mathbb{Z} \to G: k \to f(k) = a^k$ . Como  $f(x+y) = a^{x+y} = a^x a^y = f(x)f(y)$ , f es homomorfismo. Cada elemento  $b \in G$  es de la forma  $a^k$ , luego f es sobreyectiva, es decir, im(f) = G. Por el primer tma de isomorfía tenemos que  $\mathbb{Z}/ker(f) \simeq im(f)$ , luego  $\mathbb{Z}/ker(f) \simeq G$ , y como ker(f) es subgrupo de  $\mathbb{Z}$ , existe m tal que  $ker(f) = m\mathbb{Z}$ . Si m = 0,  $ker(f) = 0\mathbb{Z} = \{0\}$ , y  $\mathbb{Z} \simeq G$ . Si m > 0,  $\mathbb{Z}/m\mathbb{Z} \simeq G$ .

**Ejemplo 2.9.6** Sea  $n \ge 2$  y  $X = \{1, 2, \dots, n\}$  y  $f_n \in S_n = Biy(X)$ . Se llama **signatura de f**, s(f) al número de pares  $(i, j) \in X \times X$  tales que i < j f(i) > (j). La aplicación  $\varepsilon : S_n \to U_2 = \{-1, 1\}$   $f \mapsto \varepsilon(f) = (-1)^{s(f)}$  es homomorfismo. Esta fórmula puede ser calculada también así:  $\varepsilon(f) = \prod_{i < j} \frac{f(i) - f(j)}{i - j}$  Se denomina **grupo alternado**,  $A_n$  al núcleo de  $\varepsilon$ :  $A_n = \{f \in S_n \mid \varepsilon(f) = 1\}$ 

**Proposición 2.10** Si G es un grupo con o(G) < 12, para cada dividor d de n existe un subgrupo G, o(G) = d. Sin embargo, si  $o(G) \ge 12$ , no siempre se cumple esto ( $A_4$  tiene  $o(A_4) = 12$ , pero no tiene subgrupos de orden 6. Esto verifica que el **recíproco del teorema de Lagrange no es cierto siempre**.

#### 2.3 Teoremas de isomorfía

**Proposición 2.15 (Segundo teorema de isomorfía)** Sean  $N, H \subset_N G$ , y  $N \subset H$ . Entonces  $H/N \subset_N G/N$  y  $(G/N)/(H/N) \simeq G/H$ 

**Proposición 2.16 (Tercer teorema de isomorfía** Si  $H, N \subset G$ , y  $N \subset_N G$ ,

- 1.  $H \cap N \subset_N H$
- 2.  $HN \subset G$
- 3.  $N \subset_N HN$
- 4.  $HN/N \simeq H/(H \cap N)$

**Lema 2.17** Sean A, B,  $C \subset G$ ,  $y B \subset A$ . Entonces  $A \cap BC = B(A \cap C)$ 

Alex Martínez Ascensión October 16, 2019

**Proposición 2.18 (Cuarto teorema de isomorfía)**. Sea  $H_1, H_2 \subset G$ ,  $N_i \subset_N H_i$ . Entonces

- $N_1(H_1 \cap H_2) \subset H_1 \text{ y } N_2(H_1 \cap H_2) \subset H_2$
- $N_1(H_1 \cap N_2) \subset_N N_1(H_1 \cap H_2) \vee N_2(N_1 \cap H_2) \subset_N N_2(H_1 \cap H_2)$
- $(H_1 \cap N_2)(N_1 \cap H_2) \subset_N H_1 \cap H_2$
- $(N_1(H_1 \cap H_2))/(N_1(H_1 \cap N_2)) \simeq (H_1 \cap H_2)/(H_1 \cap N_2) (N_1 \cap H_2) \simeq (N_2(H_1 \cap H_2))/(N_2(N_1 \cap H_2))$

### 2.4 Estructura de grupos abelianos finitos

Lema 2.20 Sea G grupo abeliano finito y  $x \in G$  un elemento de orden máximo. Entonces, para cada  $y \in G$ , el orden de y divide al de x.

Lema 2.20.2 Sea G abeliano finito y  $x \in G$  de orden máximo. Sean  $H = \langle x \rangle$  e  $y \in G$ , entonces existe  $z \in Hy$  tal que o(z) = o(Hy)

**Lema 2.20.3** Sean  $H, K \subset_N G$  tales que  $H \cap K = \{1\}$ . Entonces  $HKimorfH \times K$ .

**Proposición 2.2.1 (Teorema de estructura de grupos abelianos finitos)** Si G es abeliano finito, existen  $m_1, \dots, m_r$ , denominados **coeficientes de torsión de G**, tales que

$$G \simeq \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_r\mathbb{Z}$$

y cada  $m_i$  divide a  $m_{i-1}$ . Además, los coeficientes son únicos.

**Observación 2.22.3** Si  $p_1 < \cdots < p_s$  son primos, todo grupo abeliano de orden  $n = p_1 \cdots p_s$  es cíclico.

**Proposición 2.23** Si p es primo,  $\mathbb{Z}_p^*$  es cíclico.