Machine Learning Course

Lecture 14: Unsupervised learning

Harbour.Space University
March 2020

Radoslav Neychev Vladislav Goncharenko

Outline

- 1. Dimensionality reduction
 - a. Multidimensional Scaling (MDS) b. Isomap
 - c. Locally linear embedding (LLE)
 - d. t-SNE
- e. LargeVis 2. Clustering
- a. K-means
 - b. DBSCAN

Dimensionality reduction

Multidimensional Scaling (MDS)

Decrease the dimensionality using linear methods

How to do that?

Parameters: p - target dimensionality

Wikipedia page: link

Isomap

Idea: Make distancies geodesic!

Measure distances on the produced graph.

n - number of neighbours to connect

p - dimensionality of manifold

Source: A Global Geometric Framework for Nonlinear Dimensionality Reduction

(١	6	اد	
_	•	•	٦,	۲

2

Compute shortest paths

1	Construct neighborhood graph	Define the graph G over all data points by connecting
		points i and j if [as measured by $d_x(i,j)$] they are
		closer than ϵ (ϵ -Isomap), or if i is one of the K
		nearest neighbors of j (K -Isomap). Set edge lengths
		equal to $d_{\chi}(i,j)$.

 $\min\{d_{C}(i,j), d_{C}(i,k) + d_{C}(k,j)\}$. The matrix of final values $D_C = \{d_C(i,j)\}$ will contain the shortest path distances between all pairs of points in G (16, 19). 3 Construct d-dimensional embedding Let λ_p be the *p*-th eigenvalue (in decreasing order) of the matrix $\tau(D_G)$ (17), and v_D^i be the *i*-th

Initialize $d_c(i,j) = d_x(i,j)$ if i,j are linked by an edge; $d_{c}(i,j) = \infty$ otherwise. Then for each value of k = 11, 2, ..., N in turn, replace all entries $d_{c}(i,j)$ by

component of the p-th eigenvector. Then set the p-th component of the d-dimensional coordinate

vector \mathbf{y}_i equal to $\sqrt{\lambda_0 v_0^i}$.

Floyd-**Warshall** algorithm

^{17.} The operator τ is defined by $\tau(D) = -HSH/2$, where S is the matrix of squared distances $\{S_{ij} = D_{ij}^2\}$, and H is the "centering matrix" $\{H_{ij} = \delta_{ij} - 1/N\}$ (13).

Locally linear embedding (LLE)

Idea:

Smooth manifold can be locally approximated linearly.

Linear pieces can be flattened

Source: Nonlinear Dimensionality Reduction by Locally Linear Embedding

Locally linear embedding (LLE)

Two steps of embedding and two objective functions:

1. estimate point by its K neighbours

$$\varepsilon(W) = \sum_{i=1}^{n} ||x_i - \sum_{i=1}^{K} W_{ij} x_j||^2$$

Estimate new points based on known relations

$$\Phi(Y) = \sum_{i=1}^{n} ||y_i - \sum_{i=1}^{n} W_{ij} y_j||^2$$

Parameters:

n - number of neighbours to connectp - dimensionality of manifold

Many more...

- Hessian Eigenmapping
- Spectral Embedding
- Local Tangent Space Alignment
- Riemannian Geometry
-

t-distributed Stochastic Neighbor Embedding

t-SNE

t-SNE makes every slide 42% better (c)

Source: <u>Habrahabr post on t-SNE</u>

Stochastic Neighbor Embedding

Idea:

Convert pairwise distances to probabilities, preserve probabilities through the spaces

$$p_{j|i} = \frac{\exp(-\frac{||x_i - x_j||^2}{2\sigma_i^2})}{\sum_{k \neq i} \exp(-\frac{||x_i - x_k||^2}{2\sigma_i^2})}$$

asymmetric probability of object i chooses j as its neighbour

$$q_{j|i} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq i} \exp(-||y_i - y_k||^2)}$$

the same in target space

Idea: construct embedding s.t. this distributions are close. What are close distributions?

Kullback–Leibler divergence

$$D_{KL}(P \mid\mid Q) = \sum_{i,j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

Seems similar to cross-entropy, doesn't it?

Stochastic Neighbor Embedding

$$p_{j|i} = \frac{\exp(-\frac{||x_i - x_j||^2}{2\sigma_i^2})}{\sum_{k \neq i} \exp(-\frac{||x_i - x_k||^2}{2\sigma_i^2})}$$
$$q_{j|i} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq i} \exp(-||y_i - y_k||^2)}$$

$$D_{KL}(P \mid\mid Q) \to \min_{Y}$$

t-distributed Stochastic Neighbor Embedding

How to improve it:

- 1. make distribution symmetric
- make it decrease faster than Gaussian (use <u>Student's t-distribution</u>)

$$p_{ij} = \frac{\exp(-||x_i - x_j||^2 / 2\sigma^2)}{\sum_{k \neq l} \exp(-||x_k - x_l||^2 / 2\sigma^2)}$$
$$q_{ij} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq l} \exp(-||y_k - y_l||^2)}$$

Link to original paper

Make it faster: Barnes-Hut procedure

Source: Habrahabr post on t-SNE

Make it faster: Barnes-Hut procedure

Source: Habrahabr post on t-SNE

We need more speed! LargeVis

Idea: Use stochastic trees

Source: <u>Habrahabr post on t-SNE</u>

Clustering

k-means

DBSCAN

Further readings:

- 1. Good lecture on MDS, Isomap, LLE
- 2. <u>Lecture on t-SNE</u>
- 3. Slides about clusterization
- 4. Metrics in clusterization
- 5. Slides about ICA