

Bella Falkenberg

Ava Klissouras

Manoj Kambara

Background

Myocardial Infarction

Muscle of the heart fails to receive enough blood

Major Complications of an MI:

- Atrial Fibrillation
- •Pulmonary Edema
- •Relapse of MI

Atrial Fibrillation

Signals originate from the SA—node, located in the right atria of the heart

Irregular contractions of the atria caused by imbalanced signals

Atrial Fibrillation

This causes mistimed contractions of the left - ventricle, which pumps blood into the aorta

Atrial Fibrillation

AFib can lead to blocks in the aorta

Blocks in the aorta can keep blood from the brain, causing a stroke¹

AFib can lead to heart failure¹

1700 Patients

Mean: 67.124

Distribution of ages of patients that developed AFib as a complication of their MI.

Aim

- Create models to predict probability of AFib as a complication following treatment for an MI.
- 1. Find and apply a method to clean the data
- 2. Use R methods to make a model
- 3. Evaluate the models for calibration and discrimination

Missing Data Imputation Multiple Imputation by Chained Equations (MICE)

MICE Imputation²: Data Preparation

Removed columns in which greater than 50% of values were missing

- KFK Blood
 - Serum PCK content
- IBS_NASL
 - Heredity on CHD
- S AD KBRIG/D AD KBRIG
 - Systolic/Diastolic by emergency cardiology team

MICE Imputation²: Data Preparation

Removed a highly correlated column

- S_AD_ORIT
 - Systolic BP by ICU
- Used findCorrelation()
 - Used a cutoff of 0.8
- Assumed that data is Missing at Random (MAR)
- Applied the function mice () to the data set

MICE Imputation²: Data Preparation

Removed a highly correlated column

- S_AD_ORIT
 - Systolic BP by ICU
- Used findCorrelation()
 - Used a cutoff of 0.8
- Assumed that data is Missing at Random (MAR)
- Applied the function mice () to the data set

Modeling

LASSO Regression

Introduction to LASSO

Our LASSO Regression

- •Categorical variables --> dummy variables
- •p-value = 6.59E-9
- •50 significant covariates

Table 1. Significant	covariates for	LASSO	regression
0			0

Covariate	Log Odds	Probability	p-value
Age (AGE)	0.037	0.51	0.003
Afib in anamnesis (nr03)	1.73	0.85	< 0.001
ECG rhythm @ hospital (bradycardia) (ritm_ecg_p_08)	2.33	0.91	< 0.001
ECG rhythm @ hospital (Afib) (n_r_ecg_p_05)	1.82	0.86	< 0.001
NSAID use by ECT (NOT_NA_KB)	-0.41	0.12	< 0.001

Evaluating LASSO

- Calibration plot
- Discrimination plot
- •AUC of ROC plot
- Confusion Matrix
 - •Accuracy = 0.8112
 - •Sensitivity = 0.9704
 - •Specificity = 0.3181

		AFib	No AFib
		Complication	Complication
Pred	AFib	1247	283
icte	Com		
d	plicat		
	ion		
	No	38	132
	AFib		152
	Com		
	plicat		
	ion		

Actual

Random Forest

Random Forest

- •Supervised machine learning model
- •Combines the output of multiple decision trees in order to make a single result
- •Can perform both regression and classification
- •Random forests can be greedy

- •We split the data into a training set (70%) and a testing set (30%)
 - Most significant:
 - •Age
 - •Time to hospital
 - •Blood content

- •We split the data into a training set (70%) and a testing set (30%)
- Calibration Plot
 - Slope
 - 1.04 [0.62,1.45]
 - Y-intercept
 - -0.01 [-0.07,0.05]

- •We split the data into a training set (70%) and a testing set (30%)
- Calibration Plot
- ROC Curve
 - AUC = 0.78

- We split the data into a training set (70%) and a testing set (30%)
- Calibration Plot
- ROC Curve
 - AUC = 0.78
- Confusion Matrix
 - Accuracy = 0.8381
 - Sensitivity = 0.9514
 - Specificity = 0.3118

		Actual		
		AFib Complication	No AFib Complication	
Pred icte d	AFib Com plicat ion	411	64	
	No AFib Com plicat ion	21	29	

Forward Selection

Our Forward Selection

- We chose forward selection because:
 - Step and backwards selection were computationally intensive
- Used $\alpha = 0.05$
- Final model had 25 predictors

Calibration Plot

Slope: point estimate = 0.949 confidence interval [0.831, 1.068]

Intercept: point estimate = 0.005 confidence interval [-0.013, 0.024]

- Calibration Plot
- Discrimination Plot

- Calibration Plot
- Discrimination Plot
- AUC of ROC Plot

AUC: point estimate = 0.8207 Confidence Interval [0.7880, 0.8534]

- Calibration Plot
- Discrimination Plot
- AUC of ROC Plot
- Confusion Matrix
 - Accuracy = 0.8229
 - Sensitivity = 0.9443
 - Specificity = 0.2934

		AFib	No AFib	
		Complication	Complication	
Pre	AFib	1306	224	
dict	Compli			
ed	cation			
	No	77	93	
	AFib			
	Compli			
	cation			

Actual

Best Model

Forward Selection

Why Forward Selection?

- Well-calibrated
- •AUC under ROC = 0.82
- •High accuracy (0.823)

Covariates: Anamnesis

Table 2. Significant covariates of anamnesis from the forward selection model

Covariate	Log Odds	Probability	p-value
Atrial Fibrillation (nr03)	1.75	0.85	< 0.001
Persistent Atrial Fibrillation (nr04)	-2.26	0.09	0.048
Ventricular Fibrillation (nr07)	17.14	0.99	0.974
Arrhythmia (nr11)	1.12	0.75	0.011
Chronic Bronchitis (zab_leg_01)	-0.88	0.29	0.055
Bronchial Asthma (zab_leg_03)	1.21	0.77	0.001
Exertional Angina Pectoris (IBS_POST1)	0.32	0.58	0.193
Unstable Angina Pectoris (IBS_POST2)	-0.45	0.39	0.082

Covariates: Demographic & Testing

Table 3. Significant covariates of demographics and testing from the forward selection model

Covariate	Log Odds	Probability	p-value
Sex (SEX)	-0.45	0.39	< 0.001
Age (AGE)	0.04	0.51	0.03
Hypokalemia (GIPO_K)	-0.79	0.31	0.006
Blood Potassium (K_BLOOD)	-0.78	0.31	<0.001

Covariates: Treatments

Table 4. Significant co	ovariates of treatments fro	om the forward sele	ction model

Covariate	Log Odds	Probability	p-value
Opioids Used on Day 3 Once	1.13	0.76	0.001
$(NA_R_3_n1)$			
Opioids Used on Day 3 Twice	-0.16	0.46	0.880
(NA_R_3_n2)			
NSAID Use by ECT	-1.89	0.13	< 0.001
(NOT_NA_KB)			
Lidocaine Use in ICU	0.70	0.67	< 0.001
(LID_S_n)			
Heparin use in ICU	0.45	0.61	0.041
(GEPAR_S_n)			

Covariates: ECG Measurements

Table 5. Significant covariates of ECG measurements from the forward selection model

Covariate	Log Odds	Probability	p-value
Paroxysms of Atrial Fibrillation on ECG (n_r_ecg_p_05)	1.29	0.78	<0.001
Premature Atrial Contractions on ECG (n_r_ecg_p_01)	1.12	0.75	0.002
Idioventricular on ECG (ritm_ecg_p_06)	2.99	0.95	0.047
Bradycardia on ECG (ritm_ecg_p_08)	2.05	0.89	<0.001

Conclusions

Conclusions

- The model developed from forward selection was the best model
- This model included many different factors, from patient history, patient biometrics, treatments, and demographics
- Is well calibrated, discriminates well, and had a high accuracy
- Limitations
 - This model is done solely on a Russian cohort which is not fully representative of a wide range of patient populations
 - The data set was missing 7.6% of values. Using imputation adds more variance to the model

Acknowledgements

SIBS Faculty

SIBS Mentors

Dr. Sujit Ghosh

Dr. Herle McGowan

Dr. Megan Neely

References

- 1. Atrial fibrillation. Heart and Stroke Foundation of Canada. Accessed July 14, 2023. https://www.heartandstroke.ca/heart-disease/conditions/atrial-fibrillation#:~:text=People%20with%20atrial%20fibrillation%20have,get%20pumped%20to%20the%20brain.
- 2. Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what is it and how does it work? Int J Methods Psychiatr Res. 2011;20(1):40-49. doi:10.1002/mpr.329