UP > Mreinn oplinger Faktomi:

4. mrét seiset dur vellez ØVXV-JV (X+X

45 -> OTXV-JV 7. sixlam hommlation. $\forall x_{1}y \in V : X \oplus Y = \neq \emptyset X$ 7. -1. aso. $\forall x_{1}y_{1}a \in V : (x+y) + n = x + (y+e)$ 3 misoben slalaren season. +2,BET 4xeV: x. (P.X) = (2.13) x Misolen cho Milhim plane Hict Hayer . L(x+g) = RX)+(L) Ppmn(Hact)(Kx12CV):(X+2) d = 2x+dy 6 rentialignal vier masolen txcV: 1.X=X 7 existence mloveko proku tx cV, 0:x=0 [N= (x1...xn) => Hay... 2 ot idx ... 2 m= 0 > 2,... 2 =0 hold airly hose:

-((2,11,2), (1,011), (1,1/1) ; 21.(2,1/21) + B.(1/011) + J.(1/11) = (01010) (2d+13+y,1d+y,2d+13+y) = (0,0,0) d(27) + B(01) + D(02) = (00)(27+12 7+12+5N)=(00) d+B+2y=0 | (2770 0 101 0 101 0 22413 20 24B128=0

 $Z = \begin{pmatrix} 0 & 4 \\ -2 & -1 \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} 2 & 1 \\ 7 & 1 \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 2 \\ 1 & 2 \end{pmatrix} \end{pmatrix}$ b joste 2660 -> put mos (0,4) = 2.(27) + 13(37) + 1.(02)(04)=(22+B 2+B+2) 22+13=0 J-13-12/24 ナナン = -2 4+13+2 yz-1 Nolemile l'uni VP (10) (12) (02) (20) (21) souralling (22) voice lag. 24 LK. L (29)+B.(22).) (32)+g. (33)= (35) (7+12+6 513+5) 00) (11010) » viee rès. » sonlu setz 00000 Xze XX1Ki C/tn1X21X4> > jeLN gener olal

2+2B=0 1200 1010 1000b Mine velloy xy 12 2 P V most +: 2 EXX19 (b). (X12) = (X1210) (XID) C(XIDIR) PX. NE(XIX) => FLORET VELIX +Ley => N = dixtexy + D.RE 26(X+1) => 7 By MOET 2= By X+1827 W= 1, X+ d2 y+ d3. (B1X+B2y) = (1, t/2. P2) x + (d2 + d3. P2) y E < (13) 1 MCCVP WD) MAO 12) Hxigemi Xtgem 13) Hxem Vget dxEM Mine down Achie M:= {XCR2N | A.X=XA} MCC 10^{2n} 1) $29 M \neq 0$? A $(A \mid \Theta)$ $= C N^{2n} \qquad A = E - E \cdot A$ $= C M \Rightarrow M \neq 0$ DXCM : AX = XA 3 ycm Az=yA = X+yeM $A(X+g) = A \times A = (X+g) A = X + M = (X+g) A = X + M =$

LAZ -	
	Diream roboson. Mojno PIDVP rod Typel robroson. A.P. Q mossene lineami (=> plant.
	A.P. Q mosure linearm (=> plans.
	Dadition (Uxy cP) (A(X+g) = Ax+Ag
	(droz sonich je sonich oboes)
	2) homogrila (YzcT)(YxcP)(A(dx) = dAx
	(obor raterilene -> ratifanté oborn)
	Mriam LZd. L(P/Q)
	A ((X),Xm) = (AX),AX m) Solve Lo lin old obross
	Solve Lo lin dal obraci
	$\mathcal{V}_{\mathbf{d}}$
	Robert robon ge R(A) = dim P (obom Locher)
	Ap
	V V AP
	Jadro robara, je movem = fer A = EXCP AX = GB
	mæin seelvelen plevé voor 6 A EAS
	ne robon ma O
	Defet je Ninez júdn d(A) = Aim ker A
	5ACI(P(R) A ze prestics les A= 203
	4
	Prèmo sim
	AEL(PIQ) => & (A) + A (A) = din P

(1)Jesth: Roburer je Lin.? A (a,b) = (0+b,2b,a) jaid of (2) ,A:1/2->1/23 1) A(x+y)=A(x)+A(y) Hy cP / robosenzelin. 2) A(JX)=JA(x) Kxop, Hot / 3 nigire dun lib. velly x = (a,b) i y = (qd) = 1k2 (X+y) = A(a+c,b+d) = (a+c+b+d; 7.(b+d), a+c) = = (a+b+c+d, 2b+2d, a+c) A(x)+A(z) = A((a,e))+A((10) = (v+b 12b+ v)+(c+o),2d,c) 2) niene lil. X = (a, b) or dek lilvroké A(dx) = A(da,db) = (da,db;2.(dp);dA) = $d(\alpha+b)(2b,0) = dA(x)V$ A: R212->P B) A(ab) = (atb) 22,20 td , a, even de 1) advision A(X+y) = A(X)-1AF2) V XIZE RIR niene dur hil. malice x = (a t) GR2 ay = (g h) GR22 A(X+y) = A(o+e b 1b) = (a+e+b+b).x+2.(a+g)+d+b A(x) +A(y) = (a+b) x2+2c+d +(a+b) x+2g+h = 0x2 x fx2 + ex2 + bx2 + 2c + 2c + 2c + d + l - (01 f 1 e 2 b) · x 4 (1 + g) · 2 + a + l,

2) homogenin A(LX) = LA(X); V Magne lib. molici X = (ab) C/122 a LET A(LX) = (Ja-12b) & +2dc+ Id = L((a+b) x-12c+a): LA(X) A122->122 A(a,b) = (IA),b) u,bok Daditivila A(X+y) = A(X)+A(y) Dragno due lilo dugie x = (a,b), y - (c,d) c/R? A(X+y) = A(a+c,b+d) = (|a+c|,b+d) th A(x) -A(x) = (|a|, b) + (|c|, a) = (|a|+|c|, b+a) 2) homogenin A(dX) = dA(x) Thene lib dugin X=(a, b) ad GR A(dx) = A (da,db) = C/da/,db) = (/d/.la/,db) LA(x) = d. (121,6) = (2141,26)

J2: AGZ (PIQ) ~ MCCQ => A (M) CCQ 1) obre podpistin je podpistorem 43d2. 1) représentes A(Or) = A (O.Or) = O.A (Op) = Qa 2) X12 6 A(M) => X+2 6 A (M) Frem AV=X; ober someth se most round of line-JNEMITO-NI JWGMA(W) = Z Clike A(M+m) - A(M) JA(W) CM = X+n NT+111, MM MMM 3) x livrelly A(M) Flor A(W)=X LET = 12 X = A(M) 2. A(dw) = dA(v) = dx A(dw) =a obrer lim ob je lim o oboro A((x1) - x ~) = K A(x1) A(x2) 2 $A(\langle x_1,...,x_m\rangle) \leq \langle A(x_1),...,A(x_m)\rangle$ magne NEA((XIX) =) Fairs eT:A(1 x + By) re sedi dis lin. repal joho A(X) +A(By) = dA(x) +PA(y) => lose vellar 2 & (A(X), A6D)

(A(x),A(y)) & A(Tx/y)? Loebry jelv (K magne vellor w <</p>
(A(x), A(y)); For w = L A(x) + DA(x) vjeldy W=A(JX+BA) E(XIM) => (XIM) = A((XIM)) men 10 mich sayou gabo abox Pf. ker, d, ban obom hedred, hochest judro ker $A = A^{-1}(\Theta_{Q})$ A:R3->R2 (1) A(a, b,c) = (2a-c, b+c), a,b,cor A(a,b,c) = (2 ac, b+c) = (0,0) 2a - (-0) (2 - 10)bte =0 (172) d(A) - 1 d(A) = 1dim 1/23 = L(A) +d(A) 3 = R(A)+1 h(a)=2 A(R3) CCR2 dim A(IR3) = 2. IA (IR3) = IR2 - slání obombahr zi Sib line

b) A112-21123 A(a,b) = (a+b,o-b,20) o,bell In (A) = A (O) A(a,b) = (a+b, 10-b) 12a) = (0,010) a+6=0 0=0 = her A=0= \(\(\frac{2}{0}\) 20-6-0 bo d(A)=0 zvěleodi l(A) = 2 dim(R2-d(A)=R(A) MimA(IB)=z 2-0=2 for bound che nozil obrochononich vellous A(1/2) = A ((1/0)(0/1)) = (A(1/0)) A(0/1)) = = <(1112)(11-110)> -> LN genery olal, yerenjiolal => Noir lan. A.R">P 2 A(nb)=(n+le) x2+c +d; applicatelle yadro ker A = A⁻¹(Oa) M(e) =0 Nur hleg se notres ner O. A(cd)=(a+b)-x2+2c+d- 0x2+0x+0.1 0+6=0 (00/0) =7 reson john old doon vellens 2(+0=0) (0/0/11-2) + her A CCR717

$$\int_{A} (A) = 2 \qquad \int_{A} (A) + \int_{A} (A) +$$

1A2(5) hell AEL (PIQ) $Y = (x_1, y_x_n)$ love $P u J = (y_1, y_y_n)$ loin Q plan mobie. $A^g \in T^{min}$, definition por sloupeach properties := $(A(x_i)_y)$ morrowers motion line. robra, A volledom le box on X, y $(x_i)_y = (x_i)_y$ DK: $A^{y} = (A(x_1)y A(x_2)y ... A(x_n)y) e-T^{m/m}$ $(\forall R \in P) (A(R)_{y} = {}^{k}A^{y} \cdot (R)_{g})$ rehlor r je vsorem vellom w (REA (W)=A(r)=W) (=> (XA) (W)y) (re je reserim sousley) $\mathcal{J}^{-1} = (R_1, \dots, R_m) \in T^m \Rightarrow R = R_1 \cdot R_1 + \dots + R_m \cdot R_m$ vēlu: A-1 (503) = Ber A

$$\frac{A^{2}}{A^{2}} = \frac{A^{2}}{A^{2}} = \frac{A^{2}}{A$$

Pr. 2
$$A(\alpha_{11}) = (\alpha_{1} + 2 \delta_{1} + \alpha_{1} + \delta_{1} +$$

```
(R) X = (u, b)
                                           A \cdot x = \begin{pmatrix} 6 \\ 8 \end{pmatrix}
                                          (270) ~ (210) ~ (393) 5 = <(111) \ \pi\tus A
                                                                                                                                                     len A = <1.x1+1x2) = <(0,2)
PF4
       A: P_2 \rightarrow |p^{7/2}| A(\alpha x^7 + b x + c) = (\alpha + b + c)

\alpha = 1 b = 2 c + 3

A(x^7 - 2x + b) = (-1)

A(x^7 - 2x + b) = (-1)
                                         B=(1/x/x2); (2) = ((10)/(00)/(00)/(00)
                                              ((ab) (cd) (clb) (cd)
                                       P_{A} \in_{n} = \left( A(1)_{\epsilon_{2n}} A(x)_{\epsilon_{2n}} A(x) \right) =
                                       A(1)6212 = (010) == (010) 11)
A(X) E112 = (10) exe = (1/1/10)
                                         A(x) Ezz = (11) ezz = (1/10,1)
                                          DA = 212 - (011)
                                         R(A) = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \wedge \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}
                                    A(x) = 3

A(x) = 3

A(x) = 3

A(x) = 3

A(x) = 6

A(x)
```

$$\begin{array}{lll}
\Pr(S) & X = (X_{11}X_{11}X_{2}) & A : P > P & VP - P \\
Ax_{1} = X_{1} & Ax_{2} = X_{2} & Ax_{3} = X_{1} - X_{3} \\
& X_{1} X = ((Ax_{1})_{K} & (Ax_{2})_{K} & (A(x_{3})_{K}) & = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix} \\
& (Ax_{1})_{K} = ((Ax_{1})_{K} & (Ax_{2})_{K} & (A(x_{3})_{K}) & = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix} \\
& (Ax_{2})_{K} = ((0, 1, 1)_{1}) \\
& (Ax_{3})_{K} = (1, 0, 1) \\
& (Ax_{3})_{K} = (1, 0,$$

LA2-(4) Modici Mentického operátoru E-modice medodu PeF. r Kdoy. Ex=X $\times_{\text{E}}^{\times} = ((\chi_1)_{\chi} \dots (\chi_n)_{\chi})^{\chi} A^{\chi} = ((A(\chi_1)_{\chi} \dots (A(\chi_n))_{\chi})^{\chi}$ vēlu: Xyaz pon line P, dim PLD: 1. mobre * E y ze regulármi a plati (*E*)-1 = YE* (*A*)-7 = YA* 2. pro libovohi XEP ploh:

XEY.(X) x =(X) y (A 12) y = A (12) x EZE Sty YEZ XEY = XEZ X (AB) = YAU . KBY Esen = (x1 x2 x2) et mm $e^{x} = (x_1 x_2 \dots x_m)^{-1}$ X = x = em = () = em) · Een NEL. LS &AY EX

$$\begin{array}{l} \text{Pind} & \text{Interpolation} \\ \text{Modifice production} & \text{Ke few } \text{Ye few } \text{Ye$$

```
misim to oblerit whodyn morriem predoch

\frac{\epsilon_{2}}{A} = \frac{\epsilon_{3}}{E} \times \frac{\epsilon_{2}}{A} \times \frac{\epsilon_{2}}{E} \times = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 4 & 3 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 & 2 \\ 1 & 1 \end{pmatrix} = \frac{\epsilon_{2}}{A} \times \frac{\epsilon_{2}
         \frac{1}{1} = \frac{1}
(3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) 
                        AZ = EAE3. Z = (04). (4) = (4b) => (4b,0,b)

(2)

Ri (a,b)

Als loom dane vellar p, but pishime jelo obraz
                                   A(u,b) = (46,0,b)
                 A:B = Rie
                A(\alpha x^2 + bx + c) = \begin{pmatrix} c & b \\ c & \alpha + b + c \end{pmatrix} \cdot x^2 = \frac{10}{200}
X = \begin{pmatrix} x^2 + b & x + b \\ x^2 + b & x + b \end{pmatrix} \cdot x^2 = \frac{10}{200}
                                y = ((10), (10), (00), (10))
                                  A(x^{2}+1) = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} (A(x+1)) = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} (A(1)) = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}
                             X_A e_{212} = ((A \times 1)_{e_1} A(\times 1)_{e_{212}} A(\times 1)_{e_{212}}
                                                                                                                \left(=\left(\begin{pmatrix}10\\12\end{pmatrix}\right)_{p}=\left(1_{1}0_{1}1_{1}^{2}\right)
                                                                                                                             0 1 0
```

Př.4