同样可定义对偶图 $\Omega_{\delta}^* = (V_{\delta}^*, E_{\delta}^*)$ 为 $(\delta \mathbb{Z}^2)^*$ 的如下子图: $V_{\delta}^* = V_1^* \cup V_2^*$,其中 $V_1^* = \Omega \cap (\delta \mathbb{Z}^2)^*$, V_2^* 为与 ∂_{ab} 距离最近的并且不在 Ω 中的顶点; E_{δ}^* 为连接 V_{δ}^* 中的顶点的边。记 $a_{\delta}^*, b_{\delta}^*$ 分别为距离 a, b 最近的并且不在 Ω 中的 $(\delta \mathbb{Z}^2)^*$ 中的点。当 δ 足够小时,可知 $\partial \Omega_{\delta}^*$ 为一条闭的简单折线并且 $a_{\delta}^*, b_{\delta}^* \in \partial \Omega_{\delta}^*$ 。记 $(\partial_{ab}^{\delta})^*$ 为 $\partial \Omega_{\delta}^*$ 上的从 a_{δ}^* 按逆时针方向到 b_{δ}^* 的边, $(\partial_{ba}^{\delta})^*$ 为 $\partial \Omega_{\delta}^*$ 上的从 a_{δ}^* 按顺时针方向到 b_{δ}^* 的边。

同样可定义中间图 $\Omega_{\delta}^{\circ} = (V_{\delta}^{\circ}, E_{\delta}^{\circ})$,其中 $V_{\delta}^{\circ} = \Omega \cap (\delta \mathbb{Z}^{2})^{\circ}$, E_{δ}° 为连接 V_{δ}° 中的 顶点的边。记 $a_{\delta}^{\circ}, b_{\delta}^{\circ}$ 分别为距离 a, b 最近的并且不在 Ω 中的 $(\delta \mathbb{Z}^{2})^{\circ}$ 中的点。当 δ 足够小时,可以得到存在 $(\delta \mathbb{Z}^{2})^{\circ}$ 中的边 e_{a} 指向 a_{δ}° ,并且 a_{δ} 和 a_{δ}^{*} 分别位于以 e_{a} 为边的 $(\delta \mathbb{Z}^{2})^{\circ}$ 的面中,存在 $(\delta \mathbb{Z}^{2})^{\circ}$ 中的边 e_{b} 从 b_{δ}° 出发,并且 b_{δ} 和 b_{δ}^{*} 分别位于以 e_{b} 为边的 $(\delta \mathbb{Z}^{2})^{\circ}$ 的面中。

以上三个图的构造通过如下示意图可清晰看出:

上图中,黑色、红色、蓝色的边为实线的图分别为 $\Omega_{\delta},\Omega_{\delta}^{*},\Omega_{\delta}^{\diamond}$ 。

采用以上记号, δ 足够小,定义 $\Omega_{\delta} = (V_{\delta}, E_{\delta})$ 上的以 $(p,q)_{0 \le p \le 1, q > 0}$ 为参数的**随机簇**模型如下:记

$$\mathcal{S} := \{ \omega : E_{\delta} \to \{0, 1\}, \omega|_{\partial_{ha}^{\delta}} = 1 \},$$

对任意的 $\omega \in \mathcal{S}$,记 $o(\omega) = \#\{e \in E_{\delta} : \omega(e) = 1\}$, $c(\omega) = \#\{e \in E_{\delta} : \omega(e) = 0\}$,通常如果 $\omega(e) = 1$,则称 e 是开的,如果 $\omega(e) = 0$,则称 e 是闭的。(V_{δ} , $\{e \in E_{\delta} : \omega(e) = 0\}$)