Lecture Notes in Cryptography Engineering

Óscar Pereira¹

1st December 2020

 $^{^{1} {\}tt oscar@di.uminho.pt}.$

Contents

1	Introduction		2
	1.1	On Problems and Solutions	2
	1.2	On Probabilities—exact and otherwise	3
	1.3	On Numbers—big and small	3
2	Symmetric Ciphers		
	2.1	Perfect Secrecy	4
	2.2	Security Definitions	4
	2.3	PRNGs	7
3	Message Authentication Codes		11
	3.1	Isn't secrecy enough?	11
	3.2	Definitions	11
	3.3	Constructing MAC schemes	14
	3.4	Authenticated Encryption	16
	3.5	Authenticated Encryption with Associated Data	18
	3.6	Padding oracle	19
4	Hash Functions 2		20
	4.1	Intuition	20
	4.2	Definitions	20
	4.3	Domain Extension: Merkle-Damgård	22
	4.4	HMAC	22
	4.5	Birthday Attacks	24
	4.6	Password Hashing and Key Derivation	24
5	RSA		25
	5.1	A Gentle Introduction	25
References			27

5 RSA

5.1 A Gentle Introduction

Pierre de Fermat's so-called little theorem tells us that for any integer a, and prime p, we have $a^p \equiv a \pmod{p}$. Now, if $a \not\equiv 0 \pmod{p}$, or equivalently, if a is not a multiple of p (symbolically, $p \nmid a$, read "p does not divide a"), the extended Euclidean Algorithm tells us that a has a modular inverse modulo p—indeed, it shows us how to compute it. That is, there exists an integer b such that $ab \equiv 1 \pmod{p}$. And so, if we multiply both sides of the first congruence above by b, we obtain $a^{p-1} \equiv 1 \pmod{p}$ —valid for any a that is **not** a multiple of p.

Now, as your favourite book on abstract algebra or number theory will happily explain to you, when the modulus is not prime, things get a bit more complicated. In particular, we have to use *Euler's* ϕ *function*, also called the *totient* function. For a positive integer n, $\phi(n)$ equals the number of integers i such that $1 \le i < n$ and gcd(i,n) = 1. This allows to generalise Fermat's little theorem as follows:

Theorem 5.1 (Euler's theorem). *If* a *and* n *are integers such that* n > 0 *and* gcd(a, n) = 1, *then the following holds:*

$$a^{\phi(n)} \equiv 1 \pmod{n} \tag{5.1}$$

Remark 5.2. If n is prime, then $\phi(n) = n - 1$ and we get back Fermat's (little) theorem.

Most books explain RSA with the totient, but we can simplify things somewhat.¹ This is because the modulus used in RSA, though not a prime, has the (relatively) simple form of a product of two primes: n = pq. Now, just as above, we are trying to find a value t such that $x^t \equiv 1 \pmod{n}$, for almost all values of x. We already know we can set $t = \phi(n)$, in which case the condition holds for all x relatively prime to n. But we can do better. For $x^t \equiv 1 \pmod{n}$ means that $n \mid (x^t - 1)$, and as n = pq, this implies that $p \mid (x^t - 1)$ and $q \mid (x^t - 1)$ —or equivalently, $x^t \equiv 1 \pmod{p}$ and $x^t \equiv 1 \pmod{q}$ respectively. Note that, as p and q are both primes, and hence also co-prime, we have lcm(p, q) = pq = n.² And so the *converse* also holds: if $x^t \equiv 1 \pmod{p}$ and $x^t \equiv 1 \pmod{q}$, then also $x^t \equiv 1 \pmod{n}$.

Fermat's theorem shows that to have $x^t \equiv 1 \pmod{p}$, we must have $(p-1) \mid t$. And similarly, to have $x^t \equiv 1 \pmod{q}$, we must have $(q-1) \mid t$. The smallest t for which this holds is t = lcm(p-1, q-1), which you learned back in high school to compute as:

$$lcm(p-1, q-1) = \frac{(p-1)(q-1)}{gcd(p-1, q-1)}$$
 (5.2)

¹See Ferguson and Schneier ([5], §13).

²lcm stands for least common multiple; gcd for greatest common divisor.

26

So we set t = lcm(p-1, q-1), for which $x^t \equiv 1 \pmod n$ holds—for almost all values of x. Which values of x should be excluded? Those for which either $x^t \equiv 1 \pmod p$ or $x^t \equiv 1 \pmod q$ fails to hold. Fermat's theorem says that these are the multiples of p and q, and as here we are working with modulo n, we want those multiples that are between 0 and n-1. So we have the multiples of p: $p, 2p, \ldots, (q-1)p$ —so we have q-1 multiples of p. For q, we have $q, 2q, \ldots (p-1)q$ —so p-1 multiples of q. And there is 0 (multiple of all numbers), so in total we have (q-1)+(p-1)+1=p+q-1. For a large enough n, this is a very small fraction of the total number of values $0, \ldots, n-1$.

Remark 5.3. For n=pq, $\phi(n)$ is equal to the number of values from 1 to n-1 (so pq-1 values), minus the number of multiples of either p or q in that range. As we are excluding the 0, this is just (q-1)+(p-1)=p+q-2. And so we have $\phi(n)=(pq-1)-(p+q-2)=pq-p-q+1=(p-1)(q-1)$. Comparing with (5.2), we see that $t\mid \phi(n)$, and so $x^{\phi(n)}\equiv 1\pmod{n}$ also holds.

RSA. This allows us to compute e, d such that $ed \equiv 1 \pmod{t}$, which means that ed can be written as ed = tk+1, for some value of k. Thus, if we cipher a message m as m^e , and decipher the cryptogram doing $(m^e)^d$, we obtain $m^{ed} = m^{tk+1} = (m^t)^k m \equiv m \pmod{n}$.

References

- 1. **Arora**, Sanjeev and Boaz **Barak** (2009). *Complexity Theory: A Modern Approach*. Cambridge, UK: Cambridge University Press. ISBN: 978-0-521-42426-4. Not cited.
- Bellare, Mihir, Ran Canetti, and Hugo Krawczyk (1996). Keying Hash Functions for Message Authentication. In Koblitz, N. (ed.), Advances in Cryptology CRYPTO '96. Berlin, Heidelberg: Springer, pp. 1–15. Not cited.
- 3. **Bellovin**, Steve (2009). Email sent to comp.risks (Risks Digest), 25.71, June 6, 2009. It used to be availabe at https://groups.google.com/forum/#!topic/comp.risks/4V3cECtN_vQ (last checked at 2016-05-09), but that URL is no longer accessible. Not cited.
- 4. Benoit, Viguier (2016). https://gitlab.insa-rennes.fr/bviguier/mri/blob/fd9d822a6cb4eea2bce422701a2b011811d78cb1/MRI/tikz/CBC-MAC.tex Not cited.
- 5. **Ferguson**, Niels and Bruce **Schneier** (2003). *Practical Cryptography*. Indianapolis: Wiley Publishing. ISBN: 0-471-22357-3. Cited on page 25.
- Katz, Jonathan and Yehuda Lindell (2015). Introduction to Modern Cryptography, 2nd edition. Boca Raton, FL, U.S.: CRC Press. ISBN: 978-1-4665-7027-6. Not cited.