PRIM

Optimisation d'une infrastructure de cloud par l'analyse prédictive des usages

Mohamed Elhedi Ben Yedder

Introduction

Description des données

Description des données

Archive

Pas Fonction de consolidation

Attributs

Structuration de données

- RRD et XMLRRD
- VM
- Node
- Platform

Modélisation de la consommation d'une machine virtuelle

Labellisation/Regroupement

• pas = 3heures

 $\cdot k = 3$

Labelled Clusters

Modèle pour prévoire la consommation

Les modèles des differentes machines virtuelles i-1 i i+1 n

Nouvelle machine virtuelle à instancier de l'utilisateur i

Heure (0,..23)

Jour dans la semaine (Lundi, ..Dimanche)

TimeStamp

Est-il le weekend? (Oui ,Non)

Jour (1,2...31)

Les paramètre du modèle de la consommatiion de la machine virtuelle i

Prédiction de la consommation de la machine virtuelle i

· Données

$$I_p = \{vm_1, ..vm_p\}$$
 $C(N, I_p, t_{p+1})$
 $C(vm_{p+1}, t_{p+1})$

Objective

$$I_{p+1} = I_p U\{v m_{p+1}\}\$$

$$C(N, I_{p+1}, t_{p+1}) = ?$$

Regression linéaire :

$$C(N, I_{p+1}, t_{p+1}) = C(N, I_p, t_{p+1}) + aC(vm_{p+1}, t_{p+1}) + b$$

• Changement de l'équation :

$$C(N, I_{p+1}, t) = \alpha \sum_{vm \in I_{p+1}} C(vm, t) + \beta(p+1) + \gamma$$

• Identification des coeficients :

$$a = \alpha, b = \beta$$

Détails de calcul :

$$C(N, I_{p+1}, t_{p+1}) = C(N, I_p, t_{p+1}) + aC(vm_{p+1}, t_{p+1}) + b$$

$$C(N, I_{p+1}, t) = \alpha \sum_{vm \in I_{p+1}} C(vm, t) + \beta(p+1) + \gamma$$

$$C(N, I_{p+1}, t) = \alpha (\sum_{vm \in I_p} C(vm, t) + C(vm_{p+1}, t)) + \beta(p+1) + \gamma$$

$$C(N, I_{p+1}, t) = (\alpha \sum_{vm \in I_p} C(vm, t) + \beta(p) + \gamma) + \alpha C(vm_{p+1}, t) + \beta$$

$$C(N, I_{p+1}, t) = C(N, I_p, t) + \alpha C(vm_{p+1}, t) + \beta,$$

$$C(N, I_{p+1}, t_{p+1}) = C(N, I_p, t_{p+1}) + \alpha C(vm_{p+1}, t_{p+1}) + \beta$$

C(VM i)

· Le modèle:

 $C(N, I_{p+1}, t_{p+1}) = C(N, I_p, t_{p+1}) + aC(vm_{p+1}, t_{p+1}) + b$

Critère d'évaluation

• Comment évaluer que la charge est distribuée uniformément sur les noeuds?

-Considérer une seule variable au lieu de considérer un vecteur de charge (RAM,CPU,Net..)

-Calculer l'écart-type

• Critère:

-Si l'écart-type est faible, la varible est uniformement distribué sur les noeud

Critère d'évaluation

	MEM_mean	CPU_mean	netin_mean	netout_mean	MEM_std	CPU_std	netin_std	netout_std	MEM_node	CPU_Nodes	netin_node	netout_node
1616929620	2.610687	0.000000	1.747025e+05	5.073333	3.692069	0.000000	2.470666e+05	2470.666449	1=>0	0=>1	1=>0	1=>0
1616929680	2.610791	0.000000	2.210367e+05	0.526667	3.692216	0.000000	3.125931e+05	3125.930518	1=>0	0=>1	1=>0	1=>0
1616929740	2.610002	0.000000	1.885030e+05	4.283333	3.691100	0.000000	2.665835e+05	2665.834991	1=>0	0=>1	1=>0	1=>0
1616929800	2.610292	0.000000	1.562687e+05	0.000000	3.691511	0.000000	2.209973e+05	2209.972678	1=>0	0=>1	1=>0	0=>1
1616929860	2.610554	0.000000	1.791633e+05	4.283333	3.691880	0.000000	2.533752e+05	2533.752159	1=>0	0=>1	1=>0	1=>0
***			***	***	***	***	***		•••	•••	***	3.000
1637158860	51.204827	5.431000	1.145022e+07	5525.711667	36.216493	1.269021	1.384594e+07	138459.424998	1=>0	0=>1	0=>1	0=>1
1637158920	12.797679	3.137500	1.054849e+07	2889.175000	18.098651	4.437095	1.491782e+07	149178.211561	0=>1	0=>1	0=>1	0=>1
1637158980	12.797888	3.129167	1.044338e+07	2624.366667	18.098947	4.425310	1.476917e+07	147691.731685	0=>1	0=>1	0=>1	0=>1
1637159040	12.797976	3.115833	1.057341e+07	3028.883333	18.099071	4.406454	1.495306e+07	149530.633581	0=>1	0=>1	0=>1	0=>1
1637159100	12.797815	3.148333	6.468289e+06	4662.316667	18.098843	4.452416	9.147542e+06	91475.422646	0=>1	0=>1	0=>1	0=>1

Critère généralisé

Equart-type normalisé

$$\sigma_{v}' = \frac{\sigma_{v}}{max(v) - min(v)}$$

Moyenne pondérée

$$\sigma' = \sum_{v}^{n} \alpha_{v}' * \sigma_{v}'$$

Algorithme de décision

```
Algorithm 1 Algorithme de décision
  for N \in N_1, ..., N_m do
                                                                                       ▶ Initialisation
      \sigma'[N] = 0
  end for
  C(vm_i) \leftarrow f_{vm_i}(t)
                                                     \triangleright f_{vm_i}(t) c'est le modèle de prédiction 4.4.2
  for N \in N_1, ..., N_m do
      C'(N) = C(N) + a * C(vm_i) + b \triangleright C(N): la charge actuelle du noeud N, voir
  l'équation (5)
      C'(N') = C(N') \ \forall \ N' \neq N > C et C' sont deux vecteurs chaque composante
  représente la consommation par rapport une variable (CPU, Mémoire,...)
      for v \in \{CPU, NetIN, NetOUt, ...\} do
          \sigma_v = \sqrt{(var(C'[v]))/(max(v) - min(v))}
          \sigma'[N] + = \alpha_v * \sigma_v
                                                         \triangleright \alpha_n sont les coefficient de pondérations
      end for
  end for
                                                             \triangleright on choisit le noeud qui minimise \sigma'
  decision \leftarrow arg_N min(\sigma')
```


Résultats

• Évaluation du modèle de prédiction de la charge d'un noeud

 $C(N, I_{p+1}, t_{p+1}) = C(N, I_p, t_{p+1}) + aC(vm_{p+1}, t_{p+1}) + b$

Variable	а	b
RAM	0.99585645	-545.52709379
CPU	1.85953154	-0.34058604
netIN	0.845185	-730.66786327
netOUT	0.99585645	-545.52709379

Résultats

· Évaluation du modèle de prédiction de la charge d'un noeud

$$R = 1 - eqm(y_{pred})/var(y_{true})$$

Variable	R
RAM	-6.5697299777050615
CPU	0.935705329122057
netIN	0.9505782370514909
netOUT	0.7888001188592341

Résultats

• Évaluation du modèle de prédiction de la consommation d'une machine virtuelle

```
err=[208, 228, 231, 242, 159, 229, 316, 254, 235]
```

