#### Politecnico di Milano

Dipartimento di Elettronica e Informazione

# Reti di Comunicazione e Internet

Laboratorio 4. Packet Tracer





## Agenda della lezione

- Dynamic Host Configuration Protocol (DHCP)
- Network Address Translation (NAT)
- Port Forwarding
- Esercizio di Ricapitolazione

# Agenda: Dynamic Host Configuration Protocol (DHCP)

Laboratorio 4. Packet Tracer

# **Dynamic Host Configuration Protocol**

- Il Dynamic Host Configuration Protocol (DHCP) permette di ricevere dinamicamente una configurazione IP
- Il Client DHCP è un dispositivo che ha bisogno di una configurazione IP
- Il Server DHCP è il dispositivo che assegna configurazioni IP (talvolta questa funzione è incorporata in un router)



## **Configurazione DHCP Server**

Creare un pool di indirizzi a cui assegnare un nome arbitrario

```
Router(config)#ip dhcp pool NOME_POOL
Router(dhcp-config)#
```

Assegnare il default router per il pool che si sta configurando

```
Router(dhcp-config) #default-router IP_router
```

 Definire la rete a cui appartengono gli indirizzi che verranno assegnati ai client

```
Router(dhcp-config) #network network address netmask
```

Per escludere un indirizzo dal pool:

Router(config) #ip dhcp excluded-address IP\_da\_escludere

## **Configurazione DHCP Client**

Selezionare configurazione DHCP



6

17/12/2012

## **Esercizio 13**

- Creare la rete in figura
- Il router Roma deve assegnare automaticamente a tutti i client della sua sottorete gli indirizzi IP e la configurazione di rete
- Per tale rete si utilizzi la rete privata 192.168.0.0/24
- Il PCO deve avere l'indirizzo IP statico 192.168.0.2/24, mentre gli altri due PC devono poterlo acquisire dinamicamente
- Continua...





## **Esercizio 13**

- L'interfaccia Fa0/1 del router Roma deve avere indirizzo IP 192.168.0.1/24
- □ La rete tra *Roma* e *Firenze* è 88.1.0.0/16
- □ Assegnare a *Roma* l'IP 88.1.0.1 e a *Firenze* l'indirizzo 88.1.0.2
- Verificare gli indirizzi di PC1 e PC2



# Agenda: Network Address Translation (NAT)

Laboratorio 4. Packet Tracer

## **Network Address Translation**

Quando un dispositivo riceve un pacchetto da un computer di un'altra rete privata, in che modo risponde? Quale sarà l'indirizzo IP di destinazione del pacchetto di risposta?



## **Network Address Translation**

- Il Network Address Translation (NAT) risolve questo problema modificando gli indirizzi IP dei pacchetti in transito sul router "responsabile" della rete locale
- La rete dei client che ricevono la configurazione di rete tramite DHCP da Roma è una rete privata





## **Network Address Translation**

È necessario configurare Roma affinché faccia il NAT degli indirizzi per permettere ai client di raggiungere le altre reti e ricevere risposte



# **Configurazione NAT**

1) Specificare, per **OGNI** interfaccia del router, se è interna (inside) o esterna (outside) alla rete da "nattare"

Router(config)#interface type port/slot Router(config-interface)#ip nat inside oppure

Router(config-interface) #ip nat outside



# **Configurazione NAT**

2) Creare una lista di indirizzi a cui sarà permesso il NAT

Router(config) #access-list list\_num permit net\_addr net\_wildcard

#### Esempio:



# **Configurazione NAT**

#### 3) Associare il NAT alla lista indicata prima:

Router(config) #ip nat inside source list list\_num interface IFName(quella outside) overload

#### Esempio:

Router(config) #ip nat inside source list 1 interface fastEthernet 0/0 overload

#### Differenza tra inside e outside:

#### ip nat inside source

- Traduce l'IP sorgente dei pacchetti che vanno da INSIDE a OUTSIDE
- Traduce l'IP destinazione dei pacchetti che vanno da OUTSIDE a INSIDE

#### ip nat outside source

- Traduce l'IP sorgente dei pacchetti che vanno da OUTSIDE a INSIDE
- Traduce l'IP destinazione dei pacchetti che vanno da INSIDE a OUTSIDE

## **Esercizio 14**

- Configurare il NAT su Roma
- □ Effettuare il ping tra il *PC1* e il router *Firenze*:
  - Funziona il ping?
  - Che indirizzi di livello 3 hanno i pacchetti IP che vengono inviati sulla rete tra *Roma* e *Firenze*?



# **Agenda: Port Forwarding**

Laboratorio 4. Packet Tracer

## **Port Forwarding**

Come è possibile inviare pacchetti ad un computer di una rete privata?



Reti di Comunicazione e Internet

# **Port Forwarding**

- Il port forwarding permette ad un dispositivo A di raggiungere un dispositivo B di un'altra rete privata
- Per tale operazione, il router del dispositivo B deve essere in grado di eseguire una traduzione degli indirizzi di rete (NAT)
- Su tale router viene riservata una porta, P, per la comunicazione con B
- Il dispositivo A deve conoscere tale porta e l'indirizzo del router per poter comunicare con B: invierà un pacchetto con avente come destinazione il router e come porta P
- Quando il router riceve un pacchetto avente come indirizzo di destinazione il suo indirizzo e come porta P, inoltra questo pacchetto a B



# **Configurazione Port Forwarding**

1) Come per il NAT, specificare per **OGNI** interfaccia se è interna o se è esterna

Router(config)#interface type port/slot Router(config-interface)#ip nat inside oppure

Router(config-interface)#ip nat outside



# **Configurazione Port Forwarding**

2) Associare staticamente l'indirizzo e la porta esterna a quelli interni

```
Router(config) #ip nat inside source static tcp IP_int Port_int
IP_est Port_est
```

Esempio:

Router(config)#ip nat inside source static tcp 192.168.1.2 80 88.1.0.2 8888

Indirizzo ip e porta ESTERNI del router (nell'esempio di prima quelli dell'interfaccia del router *Firenze* verso *Roma*)

Indirizzo ip e porta dell'host (nell'esempio di prima quelli del Server0)

A SMANO

## **Esercizio 15**

- Modificare la rete dell'esercizio 14 come in figura
- □ La rete tra *Firenze* e Server0 è 192.168.1.0/24 (assegnare 192.168.1.1 a *Firenze* e 192.168.1.2 al *Server0*)
- Configurare su Firenze il NAT per la rete 192.168.1.0/24 ed il Port Forwarding per il Server0 mappando la porta 8888 di Firenze sulla porta 80 di Server0 (continua...)



## **Esercizio 15**

- Verificare la connettività della rete e la raggiungibilità del ServerO usando lo strumento "Add Complex PDU"
- Generare il PDU dal PCO
- Selezionare application HTTP
- Attenzione:
  - Come indirizzo di destinazione inserire quello dell'interfaccia esterna di Firenze (ovvero quella usata per il port forwarding)
  - Come Desination Port usare 8888 (ovvero quella usata per il port forwarding)
- Continua...



## **Esercizio 15**

 Provare ad inviare la richiesta HTTP mediante web browser dal PCO

 Come URL inserire indirizzo di destinazione inserire quello dell'interfaccia esterna di Firenze (ovvero quella usata per il port forwarding) e la porta 8888 (ovvero http://88.1.0.2:8888)



# Agenda: Esercizio di Ricapitolazione

Laboratorio 4. Packet Tracer

## **Esercizio 16**

 Aggiungere i router che compongono la backbone geografica come in figura, aggiungendo le interfacce opportune (prima di spegnere i router salvare la configurazione corrente)

Continua...



## **Esercizio 16**

- Configurare le interfacce dei router:
  - Roma Milano: 193.69.1.0/24
  - Milano Firenze: 193.69.2.0/24
  - Roma Napoli: 193.69.3.0/24
  - Firenze Lecce: 193.69.4.0/24
  - Napoli Lecce: 193.69.5.0/24
  - Napoli Palermo: 193.69.6.0/24
  - Palermo- Lecce: 193.69.7.0/24
- Configurare EIGRP sui router considerando che i router fanno parte dell'Autonomous System 57
- Riconfigurare NAT\Port forwarding
- Verificare la connettività completa della rete con un traceroute dal PC2 al router Palermo

