

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

00098

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Física Estadística		

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Octavo	172082	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Que el alumno aplique sus conocimientos de los métodos estadísticos de interés en la física para la descripción de sistemas formados por muchas partículas en equilibrio y deducir los principios generales puramente macroscópico de la termodinámica. Que aplique sus conocimientos básicos de mecánica cuántica, específicamente a) los niveles de energía de un oscilador armónico simple y b) la descripción cuántica de una partícula libre en una caja; y métodos estadísticos para el entendimiento de las estadísticas cuánticas de los gases ideales.

TEMAS Y SUBTEMAS

1. Descripción Estadística de los Sistemas de Partículas.

- 1.1. Estudio general del problema del camino aleatorio.
- 1.2. Especificación del estado de un sistema.
- 1.3. Conjunto estadístico.
- 1.4. Postulados básicos.
- 1.5. Cálculo de probabilidades.
- 1.6. Comportamiento de la densidad de estados.
- 1.7. Interacciones térmica, mecánica y general.
- 1.8. Procesos cuasi-estáticos.

2. Termodinámica Estadística.

- 2.1. Procesos reversibles e irreversibles.
- 2.2. Interacción térmica entre sistemas macroscópicos.
- 2.3. Depósitos de calor.
- 2.4. Agudeza de la distribución de probabilidad.
- 2.5. Interacción general entre sistemas macroscópicos.
- 2.6. Propiedades de la entropía.
- 2.7. Cálculo estadístico de magnitudes termodinámicas.

3. Métodos Básicos y Resultados de la Mecánica Estadística.

- 3.1. Sistemas aislados: el conjunto microcanónico.
- 3.2. Sistema en contacto con un foco calorífico: la distribución canónica.
- 3.3. Algunas aplicaciones de la distribución canónica: Paramagnetismo (caso simple), molécula en un gas ideal, molécula en un gas ideal en presencia de la gravedad.
- 3.4. Sistema con energía media especificada.
- 3.5. Cálculo de valores medios en un conjunto canónico: la función de partición.
- 3.6. La función de partición y la termodinámica.
- 3.7. La distribución macrocanónica.

4. Algunas Aplicaciones de la Mecánica Estadística.

- 4.1. El gas monoatómico ideal: la paradoja de Gibbs.
- 4.2. El teorema de la equipartición de la energía.
- 4.3. Energía cinética media de una molécula en un gas.
- 4.4. El oscilador armónico (a) clásico y (b) cuántico.
- 4.5. Calores específicos de sólidos.
- 4.6. Cálculo general de la imantación en paramagnetismo.
- 4.7. Teoría cinética de gases diluidos en equilibrio.
- 4.8. Distribución de velocidades de Maxwell.
- 4.9. Distribución de velocidad y valores medios.

5. Equilibrio Entre Fases o Especies Químicas.

- 5.1. Condiciones generales de equilibrio.
- 5.2. Sistema en contacto con un foco a temperatura constante.
- 5.3. Sistema en contacto con un foco a temperatura y presión constantes.

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

00099

PROGRAMA DE ESTUDIOS

- 5.4. Condiciones de estabilidad para una sustancia homogénea.
- 5.5. Equilibrio entre fases: ecuación de Clausius-Clapeyron.
- 5.6. Transformaciones de fase y las ecuaciones de estado.
- 5.7. Equilibrio químico y sus condiciones generales.
- 5.8. El potencial químico y ley de acción de masas en gases ideales.

6. Estadísticas Cuánticas de los Gases Ideales.

- 6.1. Partículas idénticas y requisitos o condiciones de simetría.
- 6.2. Estadística clásica de Maxwell-Boltzmann (MB).
- 6.3. Estadística cuántica de Bose-Einstein (BE).
- 6.4. Estadística cuántica de Fermi-Dirac (FD).
- 6.5. Estadística del fotón.
- 6.6. Estadística cuántica en el límite clásico.
- 6.7. Gas ideal en el límite clásico.
- 6.8. Estados cuánticos de una partícula: La función de onda, condiciones de contorno y enumeración de estados.
- 6.9. Cálculo de la función de partición.
- 6.10. Implicaciones físicas de la enumeración mecánico-cuántica de los estados.
- 6.11. Electrones de conducción en los metales: consecuencias de la distribución de Fermi-Dirac

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y los proyectores. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica

- 1. Fundamentos de Física Estadística y Térmica, Reif F., Ediciones del Castillo, (1968)
- 2. Termodinámica, Callen H.B., John Wiley and Sons, (1960)
- 3. Termodinámica Estadística, García-Colín L., UAM, (1995)
- 4. Statistical Mechanics, Haung K., John Wiley & Sons, 2nd Ed. (1987)
- 5. Statistical Mechanics, McQuarrie D.A., Harper & Row Publishers, (1976)

Consulta:

- 1. Elementary Statistical Physics, Kittel C., John Wiley and Sons, (2000)
- 2. The Principles of Statistical Mechanics, Tolman C., Oxford University Press, (2000)
- 3. Física Estadística, Terliestski Y.P., Instituto Cubano del Libro, (1971)
- 4. Statistical Mechanics, Pathria R.K. and Beale P.D., Elsevier, 3th Ed., (2011)

PERFIL PROFESIONAL DEL DOCENTE

Maestría y/o Doctorado en Física.

DR. SALOMÓN GONZÁLEZ MARTÍÑEZ^(AC) JEFE DE CARRE**ÑE**FATURA DE CARRERA

INGENIERIA EN FÍSICA APLICADA DR. AGUSTIN SANTIAGO ALVARADO VICE-RECTOR ACADEMICO TORIA ACADEMICA