#### **Outline**

- Introduction to Machine Learning
- ID3 Decision Tree Learning
- Naïve Bayesian Learning

### Acknowledgements

- This slide is mainly based on the textbook AIMA (3<sup>rd</sup> edition)
- Some parts of the slide are adapted from
  - Maria-Florina Balcan, Introduction to Machine Learning, 10-401, Spring 2018, Carnegie Mellon University
  - Ryan Urbanowicz, An Introduction to Machine Learning, PA CURE Machine Learning Workshop: December 17, School of Medicine, University of Pennsylvania

# **Machine Learning**



#### What is machine learning?

 Machine learning involves adaptive mechanisms that enable computers to learn from experience, learn by example and learn by analogy.



### Types of machine learning



#### Machine learning algorithms



Regression Algorithms



Regularization Algorithms



Instance-based Algorithms



Dimensional Reduction Algorithms



Clustering Algorithms



Decision Tree Algorithms



Support Vector Machines



Association Rule Learning Algorithms



Artificial Neural Network Algorithms



Bayesian Algorithms



Ensemble Algorithms



Evolutionary Algorithms

Non-exhaustive list of ML families



Deep Learning Algorithms



Learning Classifier Systems

### Types of learning algorithms

SUPERVISED LEARNING UNSUPERVISED LEARNING

REINFORCEMENT LEARNING







#### Types of learning algorithms

- Labeled data
- Direct feedback
- · Predict outcome/future



- No labels
- No feedback
- "Find hidden structure"

- Decision process
- Reward system
- · Learn series of actions

### Supervised learning

 Learn a function that maps an input to an output based on example input-output pairs



- Spam detection: Decide which emails are spam and which are important
  - Use emails seen so far to obtain good prediction rule for future data



- Spam detection: Decide which emails are spam and which are important
  - Represent each message by features. (e.g., keywords, spelling, etc.)

| (    | "money" | "pills" | "Mr." | bad spelling | known-sender | spam? | )     |
|------|---------|---------|-------|--------------|--------------|-------|-------|
|      | Y       | Ν       | Υ     | Υ            | N            | Υ     | _     |
|      | Ν       | Ν       | Ν     | Y            | Y            | N     |       |
|      | N       | Y       | N     | N            | N            | Y     |       |
| exam | ple Y   | Ν       | Ν     | Ν            | Y            | N     | label |
|      | Ν       | Ν       | Υ     | Ν            | Y            | N     |       |
|      | Y       | Ν       | Ν     | Y            | Ν            | Y     |       |
|      | Ν       | Ν       | Y     | Ν            | N            | N     | J     |
|      |         |         |       |              |              | 1     |       |

#### Reasonable RULES

- Predict SPAM if unknown AND (money OR pills)
- Predict SPAM if 2money + 3pills 5 known > 0



Linearly separable

 Object detection and recognition: Localize and identify instances of semantic objects of a certain class (e.g., humans, buildings, or cars) in digital images and videos













Scene text recognition

 Object detection and recognition: Localize and identify instances of semantic objects of a certain class (e.g., humans, buildings, or cars) in digital images and videos



ImageNet object recognition



Home

Indoor scene recognition

Leisure

#### Supervised learning: More examples

 Weather prediction: Predict the weather type or the temperature at any given location...



- Medicine: diagnose a disease (or response to chemo drug X, or whether a patient is re-admitted soon?)
  - Input: from symptoms, lab measurements, test results, DNA tests, ...
  - Output: one of set of possible diseases, or "none of the above"
  - E.g., audiology, thyroid cancer, diabetes, etc.



- Computational Economics:
  - Predict if a user will click on an ad so as to decide which ad to show
  - Predict if a stock will rise or fall (with specific amounts)

### Classification vs. Regression

- Train a model to predict a categorical dependent variable
- Case studies: predicting disease, classifying images, predicting customer churn, buy or won't buy, etc.
- Binary classification vs.
   Multiclass classification vs.
   Multilabel classification





### Classification vs. Regression

- Train a model to predict a continuous dependent variable
- Case studies: predicting height of children, predicting sales, forecasting stock prices, etc.



#### Regression

What is the temperature going to be tomorrow?



### Unsupervised learning

- Infer a function to describe hidden structure from "unlabeled" data
  - A classification (or categorization) is not included in the observations.



 Social network analysis: cluster users of social networks by interest (community detection)





Facebook network



### Semi-supervised learning



 The model is initially trained with a small amount of labeled data and a large amount of unlabeled data.



#### Reinforcement learning

• The agent learns from the environment by interacting with it and receives rewards for performing actions.



#### Reinforcement learning: Example



#### Machine learning and related concepts



Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

#### Machine learning and related concepts



# **ID3 Decision Tree Learning**



### **Learning agents – Why learning?**

#### Unknown environments

 A robot designed to navigate mazes must learn the layout of each new maze it encounters.

#### Environment changes over time

- An agent designed to predict tomorrow's stock market prices must learn to adapt when conditions change from boom to bust.
- No idea how to program a solution
  - The task to recognizing the faces of family members

#### Learning element

- Design of a learning element is affected by
  - Which components is to be improved
  - What prior knowledge the agent already has
  - What representation is used for the components
  - What feedback is available to learn these components

- Type of feedback
  - Supervised learning: correct answers for each example
  - Unsupervised learning: correct answers not given
  - Reinforcement learning: occasional rewards

# Supervised learning

- Simplest form: learn a function from examples
- Given a training set of N example input-output pairs

$$(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$$

- where each  $y_i$  was generated by an unknown function y = f(x)
- Find a hypothesis h such that  $h \approx f$
- To measure the accuracy of a hypothesis, give it a **test set** of examples that are different with those in the training set.



### Supervised learning

- Construct h so that it agrees with f.
- The hypothesis h is **consistent** if it agrees with f on all observations.
- Ockham's razor: Select the simplest consistent hypothesis.



# Supervised learning problems

- h(x) = the predicted output value for the input x
  - Discrete valued function → classification
  - Continuous valued function → regression



#### Regression vs. Classification

Estimating the price of a house



#### Regression vs. Classification

• Is this number 9?

2 classes: Yes/No



Will you pass or fail the exam?

2 classes: Fail/Pass



- Is this an apple, an orange or a tomato?
  - 3 classes: Apple/Orange/Tomato



#### A classification problem example

Predicting whether a certain person will wait to have a seat in a restaurant.



#### A classification problem example

- The decision is based on the following attributes
  - **1. Alternate:** is there an alternative restaurant nearby?
  - 2. Bar: is there a comfortable bar area to wait in?
  - 3. Fri/Sat: is today Friday or Saturday?
  - **4. Hungry:** are we hungry?
  - **5. Patrons:** number of people in the restaurant (None, Some, Full)
  - **6. Price:** price range (\$, \$\$, \$\$\$)
  - 7. Raining: is it raining outside?
  - **8. Reservation:** have we made a reservation?
  - **9. Type:** kind of restaurant (French, Italian, Thai, Burger)
  - 10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

#### The wait@restaurant decision tree



#### Learning decision trees

- Divide and conquer: Split data into smaller and smaller subsets
- Splits usually on a single variable



 After splitting up, each outcome is a new decision tree learning problem with fewer examples and one less attribute.

# Learning decision trees



Splitting the examples by testing on attributes

### Learning decision trees

- 1. The remaining examples are all positive (or all negative),
  - → DONE, it is possible to answer Yes or No.
  - E.g., in Figure (b), None and Some branches
- 2. There are **some** positive and **some** negative examples → choose the **best** attribute to split them
  - E.g., in Figure (b), Hungry is used to split the remaining examples

### Learning decision trees

- 3. No examples left at a branch  $\rightarrow$  return a default value.
  - No example has been observed for a combination of attribute values
  - The default value is calculated from the plurality classification of all the examples that were used in constructing the node's parent.
  - These are passed along in the variable parent examples
- 4. No attributes left but both positive and negative examples
   → return the plurality classification of remaining ones.
  - Examples of the same description, but different classifications
  - Usually an error or noise in the data, nondeterministic domain, or no observation of an attribute that would distinguish the examples.

## Decision-tree learning algorithm

```
function DECISION-TREE-LEARNING(examples, attributes, parent examples)
returns a tree
                                             No examples left
 if examples is empty
        then return PLURALITY-VALUE(parent examples)
  else if all examples have the same classification
                                                      remaining examples
        then return the classification
                                                       are all pos/all neg
  else if attributes is empty-
    then return PLURALITY-VALUE(examples)
                                                     No attributes left but
  else
                                                 examples are still pos & neg
```

# Decision-tree learning algorithm

```
function DECISION-TREE-LEARNING(examples, attributes, parent examples)
returns a tree
  else
    A \leftarrow argmax_{a \in attributes} IMPORTANCE(a, examples)
    tree \leftarrow a new decision tree with root test A
    for each value v_k of A do
        exs \leftarrow \{e : e \in examples \text{ and } e.A = vk\}
        subtree \leftarrow DECISION-TREE-LEARNING(exs, attributes - A, examples)
        add a branch to tree with label (A = v_k) and subtree subtree
    return tree
```

### Inductive learning of decision tree

- Simplest: Construct a decision tree with one leaf for every example = memory based learning.
  - → Not very good generalization.
- Advanced: Split on each variable so that the purity of each split increases (i.e. either only yes or only no)
  - E.g., using Entropy to measure the purity of data

## A purity measure with entropy

• Entropy is a measure of the uncertainty of a random variable V with values  $v_k$ .

An indicator of how messy your data is

$$H(V) = \sum_{k} P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_{k} P(v_k) \log_2 P(v_k)$$

- $v_k$  is a class in V (e.g., yes/no in binary classification)
- $P(v_k)$  is the proportion of the number of elements in class  $v_k$  to the number of elements in V

# A purity measure with entropy

- Entropy is maximal when all possibilities are equally likely.
- Entropy is zero in a pure "yes" (or pure "no") node.





Provost, Foster; Fawcett, Tom. Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking

Decision tree aims to decrease the entropy in each node.

# The wait@restaurant training data

T = True, F = False

| Example  |     | Attributes |     |     |      |               |      |     |         |       |          |  |  |
|----------|-----|------------|-----|-----|------|---------------|------|-----|---------|-------|----------|--|--|
|          | Alt | Bar        | Fri | Hun | Pat  | Price         | Rain | Res | Type    | Est   | WillWait |  |  |
| $X_1$    | T   | F          | F   | T   | Some | \$\$\$        | F    | T   | French  | 0–10  | T        |  |  |
| $X_2$    | T   | F          | F   | Τ   | Full | \$            | F    | F   | Thai    | 30–60 | F        |  |  |
| $X_3$    | F   | Τ          | F   | F   | Some | \$            | F    | F   | Burger  | 0–10  | T        |  |  |
| $X_4$    | T   | F          | T   | Τ   | Full | \$            | F    | F   | Thai    | 10–30 | T        |  |  |
| $X_5$    | T   | F          | T   | F   | Full | <i>\$\$\$</i> | F    | T   | French  | >60   | F        |  |  |
| $X_6$    | F   | Τ          | F   | Τ   | Some | \$\$          | T    | Τ   | Italian | 0–10  | T        |  |  |
| $X_7$    | F   | Τ          | F   | F   | None | \$            | Τ    | F   | Burger  | 0–10  | F        |  |  |
| $X_8$    | F   | F          | F   | Τ   | Some | \$\$          | T    | Τ   | Thai    | 0–10  | T        |  |  |
| $X_9$    | F   | Τ          | T   | F   | Full | \$            | Τ    | F   | Burger  | >60   | F        |  |  |
| $X_{10}$ | T   | Τ          | T   | Τ   | Full | <i>\$\$\$</i> | F    | Τ   | ltalian | 10–30 | F        |  |  |
| $X_{11}$ | F   | F          | F   | F   | None | \$            | F    | F   | Thai    | 0–10  | F        |  |  |
| $X_{12}$ | T   | T          | T   | T   | Full | \$            | F    | F   | Burger  | 30–60 | T        |  |  |

$$H(S) = -\binom{6}{12}\log_2(\frac{6}{12}) - \binom{6}{12}\log_2(\frac{6}{12})$$

6 True, 6 False



| Example    |     |     |     |     | At   | tributes | 3    |     |         |       | Target   |
|------------|-----|-----|-----|-----|------|----------|------|-----|---------|-------|----------|
| Litearipre | Alt | Bar | Fri | Hun | Pat  | Price    | Rain | Res | Type    | Est   | WillWait |
| $X_1$      | T   | F   | F   | T   | Some | \$\$\$   | F    | T   | French  | 0–10  | T        |
| $X_2$      | T   | F   | F   | T   | Full | \$       | F    | F   | Thai    | 30–60 | F        |
| $X_3$      | F   | Τ   | F   | F   | Some | \$       | F    | F   | Burger  | 0–10  | T        |
| $X_4$      | T   | F   | T   | T   | Full | \$       | F    | F   | Thai    | 10–30 | T        |
| $X_5$      | T   | F   | T   | F   | Full | \$\$\$   | F    | T   | French  | >60   | F        |
| $X_6$      | F   | Τ   | F   | Τ   | Some | \$\$     | Τ    | T   | Italian | 0–10  | T        |
| $X_7$      | F   | Τ   | F   | F   | None | \$       | Τ    | F   | Burger  | 0–10  | F        |
| $X_8$      | F   | F   | F   | Τ   | Some | \$\$     | T    | T   | Thai    | 0–10  | T        |
| $X_9$      | F   | Τ   | T   | F   | Full | \$       | T    | F   | Burger  | >60   | F        |
| $X_{10}$   | T   | Τ   | T   | T   | Full | \$\$\$   | F    | T   | Italian | 10–30 | F        |
| $X_{11}$   | F   | F   | F   | F   | None | \$       | F    | F   | Thai    | 0–10  | F        |
| $X_{12}$   | T   | Τ   | T   | T   | Full | \$       | F    | F   | Burger  | 30–60 | T        |

Calculate Average Entropy of attribute Alternate

$$AE_{Alternate} = P(Alt = T) \times H(Alt = T) + P(Alt = F) \times H(Alt = F)$$

$$AE_{Alternate} = \frac{6}{12} \left[ -\left(\frac{3}{6}\log_2\frac{3}{6}\right) - \left(\frac{3}{6}\log_2\frac{3}{6}\right) \right] + \frac{6}{12} \left[ -\left(\frac{3}{6}\log_2\frac{3}{6}\right) - \left(\frac{3}{6}\log_2\frac{3}{6}\right) \right] = 1$$



| Example        |     |     |     |     | At   | tributes | 3    |     |         |       | Target   |
|----------------|-----|-----|-----|-----|------|----------|------|-----|---------|-------|----------|
| Little III pro | Alt | Bar | Fri | Hun | Pat  | Price    | Rain | Res | Type    | Est   | WillWain |
| $X_1$          | T   | F   | F   | T   | Some | \$\$\$   | F    | T   | French  | 0–10  | T        |
| $X_2$          | T   | F   | F   | T   | Full | \$       | F    | F   | Thai    | 30–60 | F        |
| $X_3$          | F   | Τ   | F   | F   | Some | \$       | F    | F   | Burger  | 0–10  | T        |
| $X_4$          | T   | F   | T   | T   | Full | \$       | F    | F   | Thai    | 10-30 | T        |
| $X_5$          | T   | F   | T   | F   | Full | \$\$\$   | F    | T   | French  | >60   | F        |
| $X_6$          | F   | Τ   | F   | T   | Some | \$\$     | T    | T   | Italian | 0–10  | T        |
| $X_7$          | F   | Τ   | F   | F   | None | \$       | T    | F   | Burger  | 0–10  | F        |
| $X_8$          | F   | F   | F   | Τ   | Some | \$\$     | T    | T   | Thai    | 0–10  | T        |
| $X_9$          | F   | Τ   | T   | F   | Full | \$       | T    | F   | Burger  | >60   | F        |
| $X_{10}$       | T   | Τ   | T   | T   | Full | \$\$\$   | F    | T   | Italian | 10–30 | F        |
| $X_{11}$       | F   | F   | F   | F   | None | \$       | F    | F   | Thai    | 0–10  | F        |
| $X_{12}$       | T   | Τ   | T   | T   | Full | \$       | F    | F   | Burger  | 30–60 | T        |

 Information Gain is the difference in entropy from before to after the set S is split on the selected attribute.

$$IG(Alternate, S) = H(S) - AE_{Alternate} = 1 - 1 = 0$$



| Example    |     |     |     |     | At   | tributes | 3    |     |         |       | Target   |
|------------|-----|-----|-----|-----|------|----------|------|-----|---------|-------|----------|
| Literingie | Alt | Bar | Fri | Hun | Pat  | Price    | Rain | Res | Type    | Est   | WillWait |
| $X_1$      | T   | F   | F   | Τ   | Some | \$\$\$   | F    | T   | French  | 0–10  | Τ        |
| $X_2$      | T   | F   | F   | Τ   | Full | \$       | F    | F   | Thai    | 30-60 | F        |
| $X_3$      | F   | Т   | F   | F   | Some | \$       | F    | F   | Burger  | 0–10  | T        |
| $X_4$      | T   | F   | Τ   | Τ   | Full | \$       | F    | F   | Thai    | 10-30 | T        |
| $X_5$      | T   | F   | Τ   | F   | Full | \$\$\$   | F    | T   | French  | >60   | F        |
| $X_6$      | F   | Т   | F   | Τ   | Some | \$\$     | T    | T   | Italian | 0–10  | T        |
| $X_7$      | F   | T   | F   | F   | None | \$       | T    | F   | Burger  | 0–10  | F        |
| $X_8$      | F   | F   | F   | T   | Some | \$\$     | T    | T   | Thai    | 0–10  | T        |
| $X_9$      | F   | Τ   | Τ   | F   | Full | \$       | T    | F   | Burger  | >60   | F        |
| $X_{10}$   | T   | T   | Τ   | T   | Full | \$\$\$   | F    | T   | ltalian | 10-30 | F        |
| $X_{11}$   | F   | F   | F   | F   | None | \$       | F    | F   | Thai    | 0–10  | F        |
| $X_{12}$   | T   | Τ   | Τ   | T   | Full | \$       | F    | F   | Burger  | 30–60 | T        |

$$AE_{Bar} = \frac{6}{12} \left[ -\left(\frac{3}{6}\log_2\frac{3}{6}\right) - \left(\frac{3}{6}\log_2\frac{3}{6}\right) \right] + \frac{6}{12} \left[ -\left(\frac{3}{6}\log_2\frac{3}{6}\right) - \left(\frac{3}{6}\log_2\frac{3}{6}\right) \right] = 1$$

$$IG(Bar, S) = H(S) - AE_{Bar} = 1 - 1 = 0$$



| Example  |     |     |     |     | At   | tributes | 3    |     |         |       | Target   |
|----------|-----|-----|-----|-----|------|----------|------|-----|---------|-------|----------|
| Litering | Alt | Bar | Fri | Hun | Pat  | Price    | Rain | Res | Type    | Est   | WillWait |
| $X_1$    | T   | F   | F   | Τ   | Some | \$\$\$   | F    | T   | French  | 0–10  | Т        |
| $X_2$    | T   | F   | F   | Τ   | Full | \$       | F    | F   | Thai    | 30–60 | F        |
| $X_3$    | F   | Τ   | F   | F   | Some | \$       | F    | F   | Burger  | 0–10  | Τ        |
| $X_4$    | T   | F   | T   | Τ   | Full | \$       | F    | F   | Thai    | 10-30 | T        |
| $X_5$    | T   | F   | T   | F   | Full | \$\$\$   | F    | T   | French  | >60   | F        |
| $X_6$    | F   | Τ   | F   | Τ   | Some | \$\$     | T    | T   | Italian | 0–10  | T        |
| $X_7$    | F   | Τ   | F   | F   | None | \$       | T    | F   | Burger  | 0–10  | F        |
| $X_8$    | F   | F   | F   | Τ   | Some | \$\$     | T    | T   | Thai    | 0–10  | T        |
| $X_9$    | F   | T   | T   | F   | Full | \$       | T    | F   | Burger  | >60   | F        |
| $X_{10}$ | T   | T   | T   | Τ   | Full | \$\$\$   | F    | T   | Italian | 10–30 | F        |
| $X_{11}$ | F   | F   | F   | F   | None | \$       | F    | F   | Thai    | 0–10  | F        |
| $X_{12}$ | T   | T   | T   | Τ   | Full | \$       | F    | F   | Burger  | 30–60 | T        |

$$AE_{Sat/Fri?} = \frac{5}{12} \left[ -\left(\frac{2}{5}\log_2\frac{2}{5}\right) - \left(\frac{3}{5}\log_2\frac{3}{5}\right) \right] + \frac{7}{12} \left[ -\left(\frac{4}{7}\log_2\frac{4}{7}\right) - \left(\frac{3}{7}\log_2\frac{3}{7}\right) \right] = 0.979$$

$$IG(Sat/Fri?, S) = H(S) - AE_{Sat/Fri?} = 1 - 0.979 = 0.021$$



| Example  |     |     |     |     | At   | tributes | 3    |     |         |       | Target   |
|----------|-----|-----|-----|-----|------|----------|------|-----|---------|-------|----------|
|          | Alt | Bar | Fri | Hun | Pat  | Price    | Rain | Res | Type    | Est   | WillWait |
| $X_1$    | T   | F   | F   | T   | Some | \$\$\$   | F    | T   | French  | 0–10  | T        |
| $X_2$    | T   | F   | F   | T   | Full | \$       | F    | F   | Thai    | 30–60 | F        |
| $X_3$    | F   | Τ   | F   | F   | Some | \$       | F    | F   | Burger  | 0–10  | T        |
| $X_4$    | T   | F   | T   | T   | Full | \$       | F    | F   | Thai    | 10-30 | T        |
| $X_5$    | Τ   | F   | T   | F   | Full | \$\$\$   | F    | Τ   | French  | >60   | F        |
| $X_6$    | F   | T   | F   | T   | Some | \$\$     | T    | T   | Italian | 0–10  | T        |
| $X_7$    | F   | T   | F   | F   | None | \$       | T    | F   | Burger  | 0–10  | F        |
| $X_8$    | F   | F   | F   | T   | Some | \$\$     | T    | T   | Thai    | 0–10  | T        |
| $X_9$    | F   | T   | T   | F   | Full | \$       | T    | F   | Burger  | >60   | F        |
| $X_{10}$ | T   | T   | T   | T   | Full | \$\$\$   | F    | T   | Italian | 10–30 | F        |
| $X_{11}$ | F   | F   | F   | F   | None | \$       | F    | F   | Thai    | 0–10  | F        |
| $X_{12}$ | T   | T   | T   | T   | Full | \$       | F    | F   | Burger  | 30–60 | T        |

$$AE_{Hungry} = \frac{7}{12} \left[ -\left(\frac{5}{7}\log_2\frac{5}{7}\right) - \left(\frac{2}{7}\log_2\frac{2}{7}\right) \right] + \frac{5}{12} \left[ -\left(\frac{1}{5}\log_2\frac{1}{5}\right) - \left(\frac{4}{5}\log_2\frac{4}{5}\right) \right] = 0.804$$

$$IG(Hungry, S) = H(S) - AE_{Hungry} = 1 - 0.804 = 0.196$$



| Example  |     |     |     |     | At   | tributes | 8    |     |         |       | Target   |
|----------|-----|-----|-----|-----|------|----------|------|-----|---------|-------|----------|
|          | Alt | Bar | Fri | Hun | Pat  | Price    | Rain | Res | Type    | Est   | WillWait |
| $X_1$    | T   | F   | F   | T   | Some | \$\$\$   | F    | Τ   | French  | 0–10  | T        |
| $X_2$    | T   | F   | F   | Τ   | Full | \$       | F    | F   | Thai    | 30–60 | F        |
| $X_3$    | F   | T   | F   | F   | Some | \$       | F    | F   | Burger  | 0–10  | T        |
| $X_4$    | T   | F   | T   | Τ   | Full | \$       | F    | F   | Thai    | 10-30 | T        |
| $X_5$    | Τ   | F   | T   | F   | Full | \$\$\$   | F    | Τ   | French  | >60   | F        |
| $X_6$    | F   | T   | F   | T   | Some | \$\$     | T    | Τ   | Italian | 0–10  | T        |
| $X_7$    | F   | T   | F   | F   | None | \$       | T    | F   | Burger  | 0–10  | F        |
| $X_8$    | F   | F   | F   | T   | Some | \$\$     | T    | Τ   | Thai    | 0–10  | T        |
| $X_9$    | F   | T   | T   | F   | Full | \$       | T    | F   | Burger  | >60   | F        |
| $X_{10}$ | Т   | Т   | Τ   | Τ   | Full | \$\$\$   | F    | Τ   | ltalian | 10–30 | F        |
| $X_{11}$ | F   | F   | F   | F   | None | \$       | F    | F   | Thai    | 0–10  | F        |
| $X_{12}$ | T   | T   | T   | T   | Full | \$       | F    | F   | Burger  | 30–60 | T        |

$$AE_{Raining} = \frac{4}{12} \left[ -\left(\frac{2}{4}\log_2\frac{2}{4}\right) - \left(\frac{2}{4}\log_2\frac{2}{4}\right) \right] + \frac{8}{12} \left[ -\left(\frac{4}{8}\log_2\frac{4}{8}\right) - \left(\frac{4}{8}\log_2\frac{4}{8}\right) \right] = 1$$

$$IG(Raining, S) = H(S) - AE_{Hungry} = 1 - 1 = 0$$



| Example  |     |     |     |     | At   | tributes | 3    |     |         |       | Target   |
|----------|-----|-----|-----|-----|------|----------|------|-----|---------|-------|----------|
|          | Alt | Bar | Fri | Hun | Pat  | Price    | Rain | Res | Type    | Est   | WillWait |
| $X_1$    | T   | F   | F   | T   | Some | \$\$\$   | F    | T   | French  | 0-10  | T        |
| $X_2$    | T   | F   | F   | Τ   | Full | \$       | F    | F   | Thai    | 30–60 | F        |
| $X_3$    | F   | T   | F   | F   | Some | \$       | F    | F   | Burger  | 0–10  | T        |
| $X_4$    | Τ   | F   | T   | Τ   | Full | \$       | F    | F   | Thai    | 10-30 | T        |
| $X_5$    | T   | F   | T   | F   | Full | \$\$\$   | F    | Τ   | French  | >60   | F        |
| $X_6$    | F   | T   | F   | T   | Some | \$\$     | T    | Τ   | Italian | 0–10  | T        |
| $X_7$    | F   | T   | F   | F   | None | \$       | T    | F   | Burger  | 0–10  | F        |
| $X_8$    | F   | F   | F   | T   | Some | \$\$     | T    | Τ   | Thai    | 0–10  | T        |
| $X_9$    | F   | Τ   | Τ   | F   | Full | \$       | Τ    | F   | Burger  | >60   | F        |
| $X_{10}$ | T   | T   | T   | T   | Full | \$\$\$   | F    | Τ   | ltalian | 10–30 | F        |
| $X_{11}$ | F   | F   | F   | F   | None | \$       | F    | F   | Thai    | 0–10  | F        |
| $X_{12}$ | T   | T   | T   | T   | Full | \$       | F    | F   | Burger  | 30–60 | T        |

$$AE_{Reservation} = \frac{5}{12} \left[ -\left(\frac{3}{5}\log_2\frac{3}{5}\right) - \left(\frac{2}{5}\log_2\frac{2}{5}\right) \right] + \frac{7}{12} \left[ -\left(\frac{3}{7}\log_2\frac{3}{7}\right) - \left(\frac{4}{7}\log_2\frac{4}{7}\right) \right]$$

$$= 0.979$$

$$IG(Reservation, S) = H(S) - AE_{Reservation} = 1 - 0.979 = 0.021$$



| Example  |     |     |     |     | A    | ttributes   | 3    |     |         |       | Target   |
|----------|-----|-----|-----|-----|------|-------------|------|-----|---------|-------|----------|
|          | Alt | Bar | Fri | Hun | Pat  | Price       | Rain | Res | Type    | Est   | WillWait |
| $X_1$    | T   | F   | F   | T   | Some | \$\$\$      | F    | T   | French  | 0–10  | T        |
| $X_2$    | T   | F   | F   | T   | Full | \$          | F    | F   | Thai    | 30–60 | F        |
| $X_3$    | F   | Τ   | F   | F   | Some | \$          | F    | F   | Burger  | 0–10  | T        |
| $X_4$    | T   | F   | T   | Т   | Full | \$          | F    | F   | Thai    | 10-30 | T        |
| $X_5$    | T   | F   | T   | F   | Full | \$\$\$      | F    | T   | French  | >60   | F        |
| $X_6$    | F   | T   | F   | T   | Some | \$\$        | T    | T   | Italian | 0–10  | T        |
| $X_7$    | F   | T   | F   | F   | None | \$          | T    | F   | Burger  | 0–10  | F        |
| $X_8$    | F   | F   | F   | T   | Some | <i>\$\$</i> | T    | T   | Thai    | 0–10  | T        |
| $X_9$    | F   | T   | T   | F   | Full | \$          | T    | F   | Burger  | >60   | F        |
| $X_{10}$ | T   | T   | T   | T   | Full | \$\$\$      | F    | T   | Italian | 10–30 | F        |
| $X_{11}$ | F   | F   | F   | F   | None | \$          | F    | F   | Thai    | 0–10  | F        |
| $X_{12}$ | T   | T   | T   | T   | Full | \$          | F    | F   | Burger  | 30–60 | T        |

$$\begin{split} &AE_{Patron} \\ &= \frac{2}{12} \left[ -\left(\frac{0}{2}\log_2\frac{0}{2}\right) - \left(\frac{2}{2}\log_2\frac{2}{2}\right) \right] + \frac{4}{12} \left[ -\left(\frac{4}{4}\log_2\frac{4}{4}\right) - \left(\frac{0}{4}\log_2\frac{0}{4}\right) \right] \\ &+ \frac{6}{12} \left[ -\left(\frac{2}{6}\log_2\frac{2}{6}\right) - \left(\frac{4}{6}\log_2\frac{4}{6}\right) \right] = 0.541 \end{split}$$

$$IG(Patron, S) = H(S) - AE_{Patron} = 1 - 0.541 = 0.459$$



| Example  |     |     |     |     | A    | ttributes | 3    |     |         |       | Target   |
|----------|-----|-----|-----|-----|------|-----------|------|-----|---------|-------|----------|
| 1        | Alt | Bar | Fri | Hun | Pat  | Price     | Rain | Res | Type    | Est   | WillWait |
| $X_1$    | T   | F   | F   | T   | Some | \$\$\$    | F    | T   | French  | 0–10  | T        |
| $X_2$    | T   | F   | F   | Τ   | Full | \$        | F    | F   | Thai    | 30–60 | F        |
| $X_3$    | F   | T   | F   | F   | Some | \$        | F    | F   | Burger  | 0–10  | T        |
| $X_4$    | T   | F   | T   | Τ   | Full | \$        | F    | F   | Thai    | 10-30 | T        |
| $X_5$    | T   | F   | T   | F   | Full | \$\$\$    | F    | T   | French  | >60   | F        |
| $X_6$    | F   | T   | F   | T   | Some | \$\$      | Τ    | T   | Italian | 0–10  | T        |
| $X_7$    | F   | T   | F   | F   | None | \$        | T    | F   | Burger  | 0–10  | F        |
| $X_8$    | F   | F   | F   | T   | Some | \$\$      | T    | T   | Thai    | 0–10  | T        |
| $X_9$    | F   | Τ   | Τ   | F   | Full | \$        | Τ    | F   | Burger  | >60   | F        |
| $X_{10}$ | T   | T   | T   | T   | Full | \$\$\$    | F    | T   | Italian | 10-30 | F        |
| $X_{11}$ | F   | F   | F   | F   | None | \$        | F    | F   | Thai    | 0–10  | F        |
| $X_{12}$ | T   | T   | T   | T   | Full | \$        | F    | F   | Burger  | 30–60 | T        |

$$\begin{split} &AE_{Price} \\ &= \frac{6}{12} \left[ -\left(\frac{3}{6}\log_2\frac{3}{6}\right) - \left(\frac{3}{6}\log_2\frac{3}{6}\right) \right] + \frac{2}{12} \left[ -\left(\frac{2}{2}\log_2\frac{2}{2}\right) - \left(\frac{0}{2}\log_2\frac{0}{2}\right) \right] \\ &+ \frac{4}{12} \left[ -\left(\frac{1}{4}\log_2\frac{1}{4}\right) - \left(\frac{3}{4}\log_2\frac{3}{4}\right) \right] = 0.770 \end{split}$$

$$IG(Price, S) = H(S) - AE_{Price} = 1 - 0.770 = 0.23$$



| Example  |     |     |     |     | At   | tributes | 3    |     |         |       | Target   |
|----------|-----|-----|-----|-----|------|----------|------|-----|---------|-------|----------|
|          | Alt | Bar | Fri | Hun | Pat  | Price    | Rain | Res | Type    | Est   | WillWait |
| $X_1$    | T   | F   | F   | T   | Some | \$\$\$   | F    | T   | French  | 0–10  | T        |
| $X_2$    | T   | F   | F   | T   | Full | \$       | F    | F   | Thai    | 30–60 | F        |
| $X_3$    | F   | Τ   | F   | F   | Some | \$       | F    | F   | Burger  | 0–10  | T        |
| $X_4$    | T   | F   | T   | Τ   | Full | \$       | F    | F   | Thai    | 10–30 | T        |
| $X_5$    | T   | F   | T   | F   | Full | \$\$\$   | F    | T   | French  | >60   | F        |
| $X_6$    | F   | T   | F   | T   | Some | \$\$     | T    | T   | Italian | 0–10  | T        |
| $X_7$    | F   | Т   | F   | F   | None | \$       | Τ    | F   | Burger  | 0–10  | F        |
| $X_8$    | F   | F   | F   | T   | Some | \$\$     | T    | T   | Thai    | 0–10  | T        |
| $X_9$    | F   | Τ   | Τ   | F   | Full | \$       | Τ    | F   | Burger  | >60   | F        |
| $X_{10}$ | T   | T   | T   | T   | Full | \$\$\$   | F    | T   | ltalian | 10–30 | F        |
| $X_{11}$ | F   | F   | F   | F   | None | \$       | F    | F   | Thai    | 0–10  | F        |
| $X_{12}$ | T   | T   | T   | T   | Full | \$       | F    | F   | Burger  | 30–60 | T        |

$$\begin{split} AE_{Type} &= \frac{2}{12} \left[ -\left(\frac{1}{2}\log_2\frac{1}{2}\right) - \left(\frac{1}{2}\log_2\frac{1}{2}\right) \right] + \frac{2}{12} \left[ -\left(\frac{1}{2}\log_2\frac{1}{2}\right) - \left(\frac{1}{2}\log_2\frac{1}{2}\right) \right] \\ &+ \frac{4}{12} \left[ -\left(\frac{2}{4}\log_2\frac{2}{4}\right) - \left(\frac{2}{4}\log_2\frac{2}{4}\right) \right] + \frac{4}{12} \left[ -\left(\frac{2}{4}\log_2\frac{2}{4}\right) - \left(\frac{2}{4}\log_2\frac{2}{4}\right) \right] = 1 \\ &IG(Type, S) = H(S) - AE_{Type} = 1 - 1 = 0 \end{split}$$



| Example  |     |     |     |     | At   | tributes | 3    |     |         |       | Target   |
|----------|-----|-----|-----|-----|------|----------|------|-----|---------|-------|----------|
| Litering | Alt | Bar | Fri | Hun | Pat  | Price    | Rain | Res | Type    | Est   | WillWait |
| $X_1$    | T   | F   | F   | Τ   | Some | \$\$\$   | F    | T   | French  | 0–10  | Τ        |
| $X_2$    | T   | F   | F   | T   | Full | \$       | F    | F   | Thai    | 30–60 | F        |
| $X_3$    | F   | Τ   | F   | F   | Some | \$       | F    | F   | Burger  | 0–10  | Τ        |
| $X_4$    | T   | F   | T   | Τ   | Full | \$       | F    | F   | Thai    | 10–30 | T        |
| $X_5$    | T   | F   | T   | F   | Full | \$\$\$   | F    | T   | French  | >60   | F        |
| $X_6$    | F   | T   | F   | Τ   | Some | \$\$     | Τ    | T   | Italian | 0–10  | Τ        |
| $X_7$    | F   | T   | F   | F   | None | \$       | T    | F   | Burger  | 0–10  | F        |
| $X_8$    | F   | F   | F   | T   | Some | \$\$     | T    | T   | Thai    | 0–10  | Τ        |
| $X_9$    | F   | T   | T   | F   | Full | \$       | T    | F   | Burger  | >60   | F        |
| $X_{10}$ | T   | T   | T   | Τ   | Full | \$\$\$   | F    | T   | ltalian | 10–30 | F        |
| $X_{11}$ | F   | F   | F   | F   | None | \$       | F    | F   | Thai    | 0–10  | F        |
| $X_{12}$ | T   | T   | T   | T   | Full | \$       | F    | F   | Burger  | 30–60 | T        |

 $AE_{Est.waiting\ time}$ 

$$= \frac{6}{12} \left[ -\left(\frac{4}{6}\log_2\frac{4}{6}\right) - \left(\frac{2}{6}\log_2\frac{2}{6}\right) \right] + \frac{2}{12} \left[ -\left(\frac{1}{2}\log_2\frac{1}{2}\right) - \left(\frac{1}{2}\log_2\frac{1}{2}\right) \right] + \frac{2}{12} \left[ -\left(\frac{1}{2}\log_2\frac{1}{2}\right) - \left(\frac{1}{2}\log_2\frac{1}{2}\right) \right] + \frac{2}{12} \left[ -\left(\frac{0}{2}\log_2\frac{0}{2}\right) - \left(\frac{2}{2}\log_2\frac{2}{2}\right) \right] = 0.792$$

 $IG(Est.waiting\ time, S) = H(S) - AE_{Est.waiting\ time} = 1 - 0.792$ 

= 0.208

Largest Information Gain (0.459) / Smallest Entropy (0.541)

achieved by splitting on Patrons.



Continue making new splits, always purifying nodes



Induced tree (from examples)

### Performance measurement

- How do we know that h ≈ f?
  - 1. Use theorems of computational or statistical learning theory
  - 2. Try *h* on a new test set of examples
    - Use the same distribution over example space as training set



Learning curve = % correct on test set as a function of training set size

### Quiz 01: ID3 decision tree

- The data represent files on a computer system. Possible values of the class variable are "infected", which implies the file has a virus infection, or "clean" if it doesn't.
- Derive decision tree for virus identification.

| No. | Writable | Updated | Size  | Class    |
|-----|----------|---------|-------|----------|
| 1   | Yes      | No      | Small | Infected |
| 2   | Yes      | Yes     | Large | Infected |
| 3   | No       | Yes     | Med   | Infected |
| 4   | No       | No      | Med   | Clean    |
| 5   | Yes      | No      | Large | Clean    |
| 6   | No       | No      | Large | Clean    |

# **Bayesian Approaches**

- naïve Bayesian Classification
- Bayesian Belief Networks



### **Bayesian classification**

- A statistical classifier performs probabilistic prediction, i.e., predicts class membership probabilities
- Foundation: Based on Bayes' Theorem



$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

### **Bayesian classification**

#### Performance

 A simple Bayesian classifier (e.g., naïve Bayesian), has comparable performance with decision tree and selected neural networks.

#### Incremental

- Each training example can incrementally increase/decrease the probability that a hypothesis is correct
- That is, prior knowledge can be combined with observed data.

#### Standard

 Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

## The Bayes' Theorem

- Total Probability Theorem:  $P(B) = \sum_{i=1}^{M} P(B|A_i)P(A_i)$
- Let X be a data sample ("evidence") with unknown class label and H be a hypothesis that X belongs to class C
- Bayes' Theorem:  $P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$
- Classification is to determine  $P(H \mid X)$ , i.e. the probability that the hypothesis H holds given the observed data sample X.

# The buying computer dataset

| age  | income | student | credit_rating | buys_computer |
|------|--------|---------|---------------|---------------|
| <=30 | high   | no      | fair          | no            |
| <=30 | high   | no      | excellent     | no            |
| 3140 | high   | no      | fair          | yes           |
| >40  | medium | no      | fair          | yes           |
| >40  | low    | yes     | fair          | yes           |
| >40  | low    | yes     | excellent     | no            |
| 3140 | low    | yes     | excellent     | yes           |
| <=30 | medium | no      | fair          | no            |
| <=30 | low    | yes     | fair          | yes           |
| >40  | medium | yes     | fair          | yes           |
| <=30 | medium | yes     | excellent     | yes           |
| 3140 | medium | no      | excellent     | yes           |
| 3140 | high   | yes     | fair          | yes           |
| >40  | medium | no      | excellent     | no 66         |

### The Bayes' Theorem

- P(H) (prior probability): the initial probability
  - E.g., X will buy computer, regardless of age, income, ...
- P(X): the probability that sample data is observed
  - E.g., X is 31..40 and has a medium income, regardless of the buying
- P(X | H) (likelihood): the probability of observing the sample
   X, given that the hypothesis holds
  - E.g., Given that **X** will buy computer, the probability that **X** is 31..40 and has a medium income
- $P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$  (posterior probability)
  - E.g., given that X is 31..40 and has a medium income, the probability that X will buy computer

### The Bayes' Theorem

- Informally,  $P(H \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid H)P(H)}{P(\mathbf{X})}$  can be viewed as posteriori = likelihood \* prior / evidence
- X belongs to  $C_i$  iff the probability  $P(C_i|X)$  is the highest among all the  $P(C_k|X)$  for all the k classes

### Practical difficulty

- Require initial knowledge of many probabilities
- Significant computational cost involved

### Classification with Bayes' Theorem

- Let D be a training set of tuples and associated class labels
- Each tuple is represented by a *n*-attribute  $\mathbf{X} = (x_1, x_2, ..., x_n)$
- Suppose there are m classes  $C_1, C_2, \dots, C_m$
- Classification is to derive the maximum posteriori  $P(C_i | \mathbf{X})$  from **Bayes' theorem**

$$P(C_i \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid C_i)P(C_i)}{P(\mathbf{X})}$$

• P(X) is constant for all classes, only  $P(X | C_i)P(C_i)$  needs to be maximized.

### naïve Bayesian classifier

- Class-conditional independence: There are no dependence relationships among the attributes
- The naïve Bayesian classification formula is written as

$$P(\mathbf{X} \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times \dots \times P(x_n \mid C_i)$$

- $A_k$  is categorical:  $P(x_k \mid C_i)$  is the number of tuples in  $C_i$  having value  $x_k$  for  $A_k$  divided by  $|C_{i,D}|$  (# of tuples of  $C_i$  in D)
- $A_k$  is continuous:  $P(x_k \mid C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$  with the Gaussian distribution  $g(x, \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- Count class distributions only → computation cost reduced

### naive Bayesian for the example dataset

| P(buys_computer = "yes") | 9/14 |
|--------------------------|------|
| P(buys_computer = "no")  | 5/14 |

|                             | buys_computer = "yes" | buys_computer = "no" |
|-----------------------------|-----------------------|----------------------|
| age = "<=30"                | 2/9                   | 3/5                  |
| age = "31…40"               | 4/9                   | 0/5                  |
| age = ">40"                 | 3/9                   | 2/5                  |
| income = "low"              | 3/9                   | 1/5                  |
| income = "medium"           | 4/9                   | 2/5                  |
| income = "high"             | 2/9                   | 2/5                  |
| student = "yes"             | 6/9                   | 1/5                  |
| student = "no"              | 3/9                   | 4/5                  |
| credit_rating = "fair"      | 6/9                   | 2/5                  |
| credit_rating = "excellent" | 3/9                   | 3/5                  |

### naive Bayesian for the example dataset

| age  | income | student | credit_rating | buys_computer |
|------|--------|---------|---------------|---------------|
| <=30 | medium | yes     | fair          | ?             |

- $P(\mathbf{X}|C_i)$ 
  - $P(X \mid buys\_computer = "yes") = 2/9 * 4/9 * 6/9 * 6/9 = 0.044$
  - $P(X \mid buys\_computer = "no") = 3/5 * 2/5 * 1/5 * 2/5 = 0.019$
- $P(\mathbf{X}|C_i) * P(C_i)$ 
  - $P(X \mid buys\_computer = "yes") * P(buys\_computer = "yes") = 0.028$
  - $P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.007$
- $P(C_i \mid \mathbf{X})$ 
  - $P(buys\_computer = "yes" | \mathbf{X}) = 0.8$
  - $P(buys\_computer = "no" | \mathbf{X}) = 0.2$

### Therefore, X belongs to class ("buys\_computer = yes")

### Avoiding the zero-probability problem

 The naïve Bayesian prediction requires each conditional probability be non-zero.

$$P(\mathbf{X} \mid C_i) = \prod_{k=1}^n P(x_k \mid C_i)$$

- Otherwise, the predicted probability will be zero
- For example,

| age  | income | student | credit_rating | buys_computer |
|------|--------|---------|---------------|---------------|
| 3140 | medium | yes     | fair          | ?             |

- $P(X \mid buys\_computer = "no") = 0 * 2/5 * 1/5 * 2/5 = 0$
- Therefore, the conclusion is always **yes** regardless the value of  $P(X \mid buys\_computer = "yes")$

### Avoiding the zero-probability problem

Laplacian correction (or Laplacian estimator)

$$P(C_i) = \frac{|C_i| + 1}{|D| + m}$$
  $P(x_k | C_i) = \frac{|x_k \cup C_i| + 1}{|C_i| + r}$ 

- where m is the number of classes,  $|x_k \cup C_i|$  denotes the number of tuples contains both  $A_k = x_k$  and  $C_i$ , and r is the number of values of attribute  $A_k$
- The "corrected" probability estimates are close to their "uncorrected" counterparts

### naive Bayesian for the example dataset

| P(buys_computer = "yes") | 10/16 |
|--------------------------|-------|
| P(buys_computer = "no")  | 6/16  |

|                             | buys_computer = "yes" | buys_computer = "no" |
|-----------------------------|-----------------------|----------------------|
| age = "<=30"                | 3/12                  | 4/8                  |
| age = "31…40"               | 5/12                  | 1/8                  |
| age = ">40"                 | 4/12                  | 3/8                  |
| income = "low"              | 4/12                  | 2/8                  |
| income = "medium"           | 5/12                  | 3/8                  |
| income = "high"             | 3/12                  | 3/8                  |
| student = "yes"             | 7/11                  | 2/7                  |
| student = "no"              | 4/11                  | 5/7                  |
| credit_rating = "fair"      | 7/11                  | 3/7                  |
| credit_rating = "excellent" | 4/11                  | 4/7                  |

### naive Bayesian for the example dataset

| age  | income | student | credit_rating | buys_computer |
|------|--------|---------|---------------|---------------|
| 3140 | medium | yes     | fair          | ?             |

- $P(\mathbf{X}|C_i)$ 
  - $P(X \mid buys\_computer = "yes") = 5/12 * 5/12 * 7/11 * 7/11 = 0.070$
  - $P(X \mid buys\_computer = "no") = 1/8 * 3/8 * 2/7 * 3/7 = 0.006$
- $P(\mathbf{X}|C_i) * P(C_i)$ 
  - $P(X \mid buys\_computer = "yes") * P(buys\_computer = "yes") = 0.044$
  - $P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.002$
- $P(C_i \mid \mathbf{X})$ 
  - $P(buys\_computer = "yes" | \mathbf{X}) = 0.953$
  - $P(buys\_computer = "no" | \mathbf{X}) = 0.047$

### Therefore, X belongs to class ("buys\_computer = yes")

## Handling missing values

- If the values of some attributes are missing, these attributes are omitted from the product of probabilities
- As a result, the estimation is less accurate
- For example,

| age | income | student | credit_rating | buys_computer |
|-----|--------|---------|---------------|---------------|
| ?   | medium | yes     | fair          | ?             |

## Algorithm efficiency

### Advantages

- Easy to implement
- Good results obtained in most of the cases
- Disadvantages
  - Class conditional independence → loss of accuracy
  - Practically, dependencies exist among variables, which cannot be modeled by Naïve Bayes
    - E.g., in medical records, patients' profile (age, family history, etc.), symptoms (fever, cough etc.), disease (lung cancer, diabetes, etc.)
- How to deal with these dependencies?
  - Bayesian Belief Networks

### Quiz 02: naïve Bayesian classification

- The data represent files on a computer system. Possible values of the class variable are "infected", which implies the file has a virus infection, or "clean" if it doesn't.
- Derive naïve Bayesian probabilities for virus identification in either cases, with or without Laplacian correction.

| No. | Writable | Updated | Size  | Class    |
|-----|----------|---------|-------|----------|
| 1   | Yes      | No      | Small | Infected |
| 2   | Yes      | Yes     | Large | Infected |
| 3   | No       | Yes     | Med   | Infected |
| 4   | No       | No      | Med   | Clean    |
| 5   | Yes      | No      | Large | Clean    |
| 6   | No       | No      | Large | Clean    |



# THE END