\mathcal{M} is a set and $d: \mathcal{M} \times \mathcal{M} \longrightarrow \mathbb{R}$. (\mathcal{M}, d) is said to be a metric space (\mathcal{M}, d) :

(a)
$$d(x, x) \ge 0$$

(b)
$$d(x, y) = 0 \Leftrightarrow x = y$$

$$(c) d(x, y) = d(y, x)$$

$$(d) d(x,y) \leq d(x,z) + d(y,z)$$

Notation: If
$$A \subset M$$
,
 $B(a; \delta) = \{x \in M; \ d(x, a) < \delta\}$
 $int(A) = \{a \in A; \exists \ \delta > 0, B(a; \delta) \subset A\}$
 $x_n \to x : d(x_n, x) \to 0$
 $A' = \{a \notin A; \exists \ \{a_n\} \subset A, a_n \to a\}, \overline{A} = A \cup A'$

 $\mathcal{O} \subset \mathcal{M}$ is an open set : $\mathcal{O} \subset \text{int}(\mathcal{O})$.

 $\mathcal{C} \subseteq \mathcal{M}$ is a closed set : \mathcal{C}^c is open.

Theorem

 $\mathcal{C} \subset \mathcal{M}$ is closed $\Leftrightarrow \mathcal{C}' \subset \mathcal{C}$

Property

 \emptyset and $\mathcal M$ are both closed and open.

$$\overline{\mathcal{A}} = \cap_{\{\mathcal{A} \subset \mathcal{C}\}} \mathcal{C}$$
, $int(\mathcal{A}) = \cup_{\{\mathcal{O} \subset \mathcal{A}\}} \mathcal{O}$.

 $\{x_n\}\subset \mathcal{M}$ is a Cauchy sequence if $\sup_{n,m>N}\{d(x_n,x_m)\to 0.$ If every Cauchy $\{x_n\}\subset \mathcal{M}, \exists x\in \mathcal{M} \text{ s.t. } x_n\to x, \text{ we call } (\mathcal{M},d)$ is complete.

Property

If
$$x_n \to x$$
, then $\{x_n\}$ is Cauchy $\{x_n\}$ is Cauchy and $x_{n_k} \to x$, then $x_n \to x$

 (\mathcal{M},d) is a metric space, then \exists a metric space (\mathcal{M}',d') s.t. $M \subset \mathcal{M}'$ and (\mathcal{M}',d) is complete.

Proof.

 $\mathcal{M}'=\{ \text{ all the Cauchy sequences in } \mathcal{M} \}, \text{ we can extend}$ the metric d to \mathcal{M}' : $d'(\{x_n\},\{y_n\})=\lim_n d(x_n,y_n)$ and define the equivalence relation of \mathcal{M}' : $\{x_n\}=\{y_n\}$: $\lim_n d(x_n,y_n)=0$.

We should carefully check the existence, uniqueness and ambiguity of the definition of metric d'.

If $\mathcal{B} \subset \mathcal{A}$ s.t. $\mathcal{A} \subset \overline{\mathcal{B}}$, we call \mathcal{B} is dense in \mathcal{A} . \mathcal{A} is separable if \exists a countable dense set \mathcal{B} .

Property

If a metric space (\mathcal{M}, d) is separable, then the sub-metric space (\mathcal{A}, d') is separable.

 $\mathcal{A} \subset \mathcal{M}$ is complete in $\mathcal{A} \Rightarrow \mathcal{A}$ is closed. If \mathcal{M} is complete, then \mathcal{A} complete in $\mathcal{A} \Leftrightarrow \mathcal{A}$ is closed.

"
$$\Rightarrow$$
": $x_n \to x$, $x_n \in \mathcal{A} \Rightarrow \{x_n\}$ Cauchy in $\mathcal{A} \Rightarrow x \in \mathcal{A}$.

"\(=":
$$\{x_n\}$$
 Cauchy in $\mathcal{A} \Rightarrow \exists x \in \mathcal{M}, x_n \to x \Rightarrow x \in \mathcal{A}$.

 $\mathcal{A} \subset \mathcal{M}$ is compact: $\forall \{x_n\} \subset \mathcal{A}$, $\exists \{x_{n_k}\}$ and $x \in \mathcal{A}$ s.t. $x_{n_k} \to x$.

Compact set \mathcal{A} is complete since that \forall Cauchy $\{x_n\}$, \exists $\{x_{n_k}\}$ and $x \in \mathcal{M}$ s.t. $x_{n_k} \to x \Rightarrow x_n \to x$.

Definition

 $\mathcal{A} \subset\subset M$: $\forall \{x_n\} \subset \mathcal{A}$, \exists a convergent subsequence $\{x_{n_k}\}$, which limit is in \mathcal{M} .

 \mathcal{A} is totally bounded: for $\forall \varepsilon > 0$, \exists finite $\{a_k\} \subset \mathcal{A}$ s.t. $A \subset \cup_k B(a_k; \varepsilon)$.

The closure of totally bound set A is separable.

Proof.

Take $b_{jk} \in B(a_{jj_k}; 1/j)$, then $\{b_{jk_j}\}$ is countable and dense in

$$\overline{\mathcal{A}}$$
, since $\forall a \in A$, $d(a,b_{jk}) < d(a,a_{jj_k}) + d(a_{jj_k},b_{jk})$.

Lemma

 \mathcal{A} is totally bounded $\Leftrightarrow \forall \{x_n\} \subset \mathcal{A}, \exists a \ Cauchy \{x_{n_k}\}$

Proof.

"
$$\Rightarrow$$
": $\forall \{x_n\} \subset \mathcal{A}, \exists \text{ finite } \{a_{1k}\}, \{x_n\} \subset \cup_k B(a_{1k}; 1)$

- $\Rightarrow \exists g_1 \in \{a_{1k}\}$, infinite term in $\{x_n\} \in B(a_{1g_1}; 1)$
- \Rightarrow infinite term in $\{x_n\} \in B(a_{1g_1}; 1) \cap (\bigcup_k B(a_{2k}; 1/2))$
- \Rightarrow infinite term in $\{x_n\} \in B(a_{1g_1}; 1) \cap B(a_{2g_2}; 1/2)$
- \Rightarrow infinite term in $\{x_n\} \in \cap_j B(a_{jg_i}; 1/j)$.

Take
$$x_{n_k} \in \bigcap_{i=1}^k B(a_{jg_i}; 1/j)$$
, then $\{x_{n_k}\}$ Cauchy

"
$$\Leftarrow$$
" : $\forall \varepsilon > 0$ and a fixed x_1 , if $AA \subset B(x_1; \varepsilon)$, claim holds.

If not, take $x_2 \in A - B(x_1; \varepsilon)$, if $A \in \bigcup_{j=1}^2 B(x_j; \varepsilon)$, claim holds.

If it never ends, then we get a $\{x_n\}$ and it has no Cauchy.

 $A \subset\subset M \Rightarrow A$ is totally bounded. If M is complete, then

 $A \subset\subset M \Leftrightarrow A$ is totally bounded.

M is compact $\Leftrightarrow M$ is complete and totally bounded.

A is compact $\Leftrightarrow \forall$ open covering of *A*, \exists finite sub-covering.

```
"\(\Rightarrow\)": G is an open covering of A, \forall x \in A, define \delta_x = \sup\{d; B(x;d) \subset \Omega, \Omega \in G\}, \delta = \inf_{x \in A} \{\delta_x\}.

Claim that \delta > 0. Take \delta_{x_n} \to \delta, \exists \ x \in A, x_{n_k} \to x s.t. B(x_{n_k}; \delta_x/2) \subset B(x;\delta_x) \Rightarrow \delta_{x_{n_k}} \geq \delta_x/2. Claim hold. A totally bounded \Rightarrow \exists finite \{a_n\} \ A \subset \cup_n B(a_n;\delta/2) \subset \cup_n \Omega_n, and B(a_n;\delta/2) \subset \Omega_n \in G.

"\(\Rightarrow\)": Take a mutually different \{x_n\}, if A is not compact \Rightarrow \overline{\{x_n\}} \cap A = \{x_n\}. Let \Omega_i = (\overline{\{x_n\}})^c \cup \{x_i\}, (\Omega_i)^c = \overline{\{x_n\}} - \{x_i\} (closed), \cup_i \Omega_i = (\overline{\{x_n\}})^c \cup A \supset A \Rightarrow \cup_i \Omega_i is an open covering of A, but it have no finite covering.
```

 $(M_1,d_1),(M_2,d_2)$ are two metric spaces. $f:M_1\to M_2$ is continuous at x, if $\forall \varepsilon>0$, $\exists \delta>0$ s.t. $f(B_1(x;\delta))\subset B_2(f(x);\varepsilon)$

Theorem

f continuous $\Leftrightarrow f^{-1}(\Omega)$ is open, for \forall open set Ω

"
$$\Rightarrow$$
" : $\forall \varepsilon > 0, \forall x \in \Omega, \exists \delta > 0, B_1(x; \delta) \subset f^{-1}(B_2(f(x); \varepsilon))$, If ε is small enough, then $f^{-1}(B_2(f(x); \varepsilon)) \subset f^{-1}(\Omega)$ " \Leftarrow " : $f^{-1}(B_2(f(x); \varepsilon))$ is an open set contained x

 $(M_1,d_1),(M_2,d_2)$ are two metric spaces. And A is a compact set in $M_1,f:M_1\to M_2$ is continuous in A. So f(A) is a compact set in M_2 .

Proof.

 $\cup_{\alpha\in F}\Omega_{\alpha}$ is an open covering of $f(A)\Rightarrow \cup_{\alpha\in F}f^{-1}(\Omega_{\alpha})$ is an open covering of $A\Rightarrow \exists$ a finite sub-covering $\cup_n f^{-1}(\Omega_n)$ of $A\Rightarrow \cup_n \Omega_n$ is a finite sub-covering of f(A)

Finite-dim vector space: \exists finitely linear independent $\{v_n\} \subset V$ s.t. $V = span\{v_n\}$.

Definition

V is a vector space over field F, and a norm $||\cdot||:V\to R$, we say $(V,||\cdot||)$ is said to be a normed vector space if:

(a)
$$||x|| \ge 0$$
 and $||x|| = 0 \Rightarrow x = 0$

(b)
$$||ax|| = |a| ||x||$$
 and (c) $||x + y|| \le ||x|| + ||y||$.

Noticed that $\forall x, y \in V$, we can define d(x, y) = ||x - y||, so (V, d) is a metric space.

Any p-dim vector space V over filed R is isomorphic to R^p

Proof.

Take basis
$$\{v_n\}$$
. $\forall x \in V$, $\exists ! \{a_n\} \subset R$, $x = \sum_n a_n v_n$

So V and R^p are the same thing, and a norm of V can be regarded as the norm of R^p . R^p equipped with an Euclidean norm is complete and separable.

Definition

 $||\cdot||_i$ norms of V, we say $||\cdot||_1, ||\cdot||_2$ are equivalent if $\exists c, C > 0$, $\forall x \in V$, $c||x||_1 \le ||x||_2 \le C||x||_1$. We mark that: $||\cdot||_1 \hookrightarrow ||\cdot||_2$. " \sim " is an equivalence relation.

All the norm for R^p are equivalent.

Proof.

 $||\cdot||_p$ is the Euclidean norm for R^p and $||\cdot||_a$ is the other norm for R^p , which can be view as a function $f:(R^p,||\cdot||_p)\to (R,||\cdot||_1)$.

 $\forall x, y \in R^p$, $||f(x) - f(y)||_1 \le f(x - y) = ||x - y||_a \le \sum_i |x_i - y_i|$ $||e_i||_a \le ||x - y||_p (\sum_i ||e_i||_a^2)^{1/2} \Rightarrow f$ is continuous.

Then $f(\lbrace x \in R^p; ||x||_p = 1 \rbrace)$ is a bound closed set. $\exists c_a, C_a, c_a \leqslant ||x||_a \leqslant C_a, \forall ||x||_p = 1 \Leftrightarrow \forall x \in R^p, c_a \leqslant ||x||_a/||x||_p \leqslant C_a \Rightarrow ||\cdot||_a \backsim ||\cdot||_p$

 $dim(V) < \infty$, $A \subset V$. Then A is compact $\Leftrightarrow A$ is closed and bounded.

Proof.

" \Rightarrow ": *A* is closed and totally bounded.

" \Leftarrow " : $\exists M > 0, A \subset B(0; M)$. Finite-dim means B(0; M) is totally bounded and complete $\Rightarrow B(0; M)$ is compact. Then a closed subset A of B(0; M) is compact.

Infinite-dim vector space: \forall finite $\{v_n\}$, $span\{v_n\} \subseteq V$, $span\{v_n\}$ is a closed subspace of V.

Lemma

V normed vector space, $M \subsetneq V$ is a closed vector subspace. Then $\forall \varepsilon > 0$, $\exists v \text{ s.t. } ||v|| = 1$, $||v - M|| \geqslant 1 - \varepsilon$

Take
$$u \in M^c$$
, $d := ||u - M|| > 0$, and $\exists m \in M$ s.t. $d \le ||u - m|| \le d/(1 - \varepsilon)$. Let $v = (u - m)/||u - m||$, then $||v - M|| = ||u - m - M||/||u - m|| = ||u - M||/||u - m|| \ge 1 - \varepsilon$

V normed vector space, define $B[V] = \{x \in V; ||x|| \le 1\}$, B[V] is not compact $\Leftrightarrow dim(V) = \infty$.

Proof.

" \Rightarrow ": We consider $V=R^p$. Then B[V] is compact.
" \Leftarrow ": If $dim(V)=\infty$. Take closed sub-space sequence $\{V_n\}$ s.t. $V_n \subsetneq V_{n+1} \subsetneq V$. $\exists \ x_n \in V_n$ s.t. $||x_n||=1$, $||x_n-V_{n-1}|| \geqslant 1/2 \Rightarrow \{x_n\} \subset B[V]$ but it has no convergent subsequence.

 $(V, ||\cdot||)$ over F is a Banach space if $(V, ||\cdot||)$ is a complete normed vector space.

Theorem

V Banach space, $A \subset V$ is separable, which countable dense subset of A is $\{x_n\}$, then $\overline{span(A)} = \overline{\bigcup_{X \in G} span(X)}$, G is a collection of all the finite sub-sequences of $\{x_n\}$.

Proof.

" $\overline{\bigcup_{X\in G} span(X)}\subset \overline{span(A)}$ " is apparent. $\forall x\in \overline{span(A)}, \ \forall \varepsilon>0$, \exists finite $a_m\in A$ and $k_m\in F, \ ||x-\sum_m a_mk_m||\leq \varepsilon/2$. Take $x^{(m)}\in \{x_n\}$ s.t. $x^{(m)}$ and a_m are sufficiently closed to achieve $||x-\sum_m x^{(m)}k_m||\leq \varepsilon$

V is a vector space over R, an inner product

$$\langle \cdot, \cdot \rangle : V \times V \to R$$

(a)
$$\langle x, x \rangle \in R$$
 and ≥ 0

(b)
$$\langle x, y \rangle = \langle y, x \rangle$$

(c)
$$\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$$

(d)
$$x = 0 \Leftrightarrow \langle x, x \rangle = 0$$

When "2,4" are not satisfied, we call $\langle \cdot, \cdot \rangle$ semi-inner-product.

 $\langle \cdot, \cdot \rangle$ is a semi-inner-product of vector space V, define $||x|| = \sqrt{\langle x, x \rangle}$, then $|\langle x, y \rangle| \le ||x|| \ ||y||$

Proof.

$$\hat{y} = \langle x, y \rangle / ||x||^2 x$$
, \hat{y} is the projection of y onto x . Let $r = y - \hat{y} \Rightarrow r \perp \hat{y}$, we call r and \hat{y} are orthonormal. $||y||^2 = ||\hat{y} + r||^2 = \langle \hat{y} + r, \hat{y} + r \rangle > ||\hat{y}||^2 = |\langle x, y \rangle|^2 / ||x||^2$.

$$||x + y||^2 \le ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2.$$

Corollary

 $(V, \langle \cdot, \cdot \rangle)$ inner product space, then V is normed vector space.

Parallelogram rule:
$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

 $\langle \cdot, \cdot \rangle$ is a norm $||\cdot||^2$, but a norm $||\cdot||$ may not be induced by an inner product.

Theorem

If a norm $||\cdot||$ satisfies parallelogram rule, we can define $\langle x,y\rangle=(||x+y||^2-||x-y||^2)/4$, then $\langle\cdot,\cdot\rangle$ is an inner product and $||\cdot||$ is induced by $\langle\cdot,\cdot\rangle$.

 $(V, \langle \cdot, \cdot \rangle)$ inner product space, and $x_n \to x$, $y_m \to y$, then $\langle x_n, y_m \rangle \to \langle x, y \rangle$.

$$\begin{aligned} |\langle x_n, y_m \rangle - \langle x, y \rangle| &= |\langle x_n, y_m \rangle - \langle x, y_m \rangle + \langle x, y_m \rangle - \langle x, y \rangle| \\ &\leq |\langle x_n - x, y_m \rangle| + |\langle x, y_m - y \rangle| \leq ||x_n - x|| ||y_m|| + ||x|| ||y_n - y|| \end{aligned}$$

 $(V, \langle \cdot, \cdot \rangle)$ inner product space, $A \subset V$, then orthogonal complement of A: $A^{\perp} = \{x \in V; \langle x, y \rangle = 0, \forall y \in A\}$

Property

$$x \perp V \Leftrightarrow x = 0$$

 $A \cap A^{\perp} \subset \{0\}$
 $A \subset B \Rightarrow B^{\perp} \subset A^{\perp}$
 $x \perp y$, $||x + y||^2 = ||x||^2 + ||y||^2$
 A^{\perp} is a closed sub-space and $A \subset (A^{\perp})^{\perp}$

 $(V, \langle \cdot, \cdot \rangle)$ inner product space, A is a sub-space. For $x \in V$, if $\exists x_0 \in A, x_1 \in A^{\perp}$ s.t. $x = x_0 + x_1$, then x_0 is the projection of x onto A.

 x_0 is unique since if $x = x_0 + x_1 = y_0 + y_1$, $x_0 - y_0 \in A \cap A^{\perp}$ $\Rightarrow x_0 - y_0 = 0$.

Theorem

If the projection of x exists, then $\exists ! x_0 \in A \text{ s.t. } ||x - x_0|| = \inf_{y \in A} ||x - y||$, and x_0 is the projection of x onto A.

$$||x - y||^2 = ||x - x_0||^2 + ||x_0 - y||^2 \ge ||x - x_0||^2$$

If x_0 minimizes the distance between x and A, x_0 is the projection of x? The answer is no since that we can not ensure the existence of projection of x.

Lemma

A is a sub-space, if $\exists x_0 \in A$ minimizes the distance between x and A, then x_0 is the projection of x.

$$\forall z \in A, ||x - z||^2 \ge ||x - x_0||, \text{ let } z = x_0 + \lambda y. \\ ||x - x_0 + \lambda y||^2 = ||x - x_0||^2 + \lambda^2 ||y||^2 + 2\lambda \langle x - x_0, y \rangle \\ \ge ||x - x_0||^2, \forall y \in A, \ \lambda \in R \Rightarrow (\lambda ||y||^2 + 2\langle x - x_0, y \rangle)\lambda \ge 0 \Rightarrow \\ \langle x - x_0, y \rangle = 0, \ \forall y \in A.$$

Lemma

V Banach space, which norm satisfied parallelogram rule, *A* is a closed convex subset, then $\forall x \in V$, $\exists ! \ x_0 \in A \ s.t.$ $||x - x_0|| = \inf_{y \in A} ||x - y||$.

Take
$$y_n \in A$$
 s.t. $\lim_n ||x-y_n|| = \inf_{y \in A} ||x-y||$, $\{y_n\}$ Cauchy since $||y_n-y_m||^2 = 2||x-y_n||^2 + 2||x-y_m||^2 - ||2x-y_n-y_m||^2 = 2||x-y_n||^2 + 2||x-y_m||^2 - 4||x-(y_n+y_m)/2||^2$. $(y_n+y_m)/2 \in A$, then $||x-(y_n+y_m)/2|| \ge \inf_{y \in A} ||x-y||$ $\Rightarrow \{y_n\}$ Cauchy $\Rightarrow \exists !x_0 \in A$ s.t. $y_n \to x_0$.

A complete inner-product space H is called a Hilbert space.

Theorem

H Hilbert space, and A closed sub-space, then $H = A \oplus A^{\perp}$.

Proof.

A is convex $\Rightarrow \exists x_0 \in A$ minimizes the distance between x and A. Then x_0 is the projection of x and $x - x_0 \in A^{\perp}$.

Corollary

H Hilbert space, *A* is a sub-space, then $\overline{A} = (A^{\perp})^{\perp}$

$$A \subset (A^{\perp})^{\perp} \Rightarrow \overline{A} \subset (A^{\perp})^{\perp}, (A^{\perp})^{\perp} = \overline{A} \oplus (\overline{A}^{\perp} \cap (A^{\perp})^{\perp})$$
$$\forall x \in (A^{\perp})^{\perp}, \exists ! x_0 \in \overline{A}, x_1 \in \overline{A}^{\perp} \cap (A^{\perp})^{\perp} \subset A^{\perp} \cap (A^{\perp})^{\perp} \text{ s.t.}$$
$$x = x_0 + x_1 = x_0 \in \overline{A}.$$

A mutually orthogonal countable $\{e_n\}$ s.t. $||e_n|| = 1$ in a inner-product space V is said to be an orthonormal sequence.

Theorem

H Hilbert space, $\{x_n\}$ is a linear independent. Define $\{e_n\}$: $e_1 = x_1/||x_1||$, $v_n = x_n - \sum_{k=1}^{n-1} \langle x_n, e_k \rangle e_k$, $e_n = v_n/||v_n||$, then $\{e_n\}$ is an orthonormal sequence and $\overline{span}\{x_n\} = \overline{span}\{e_n\}$.

V inner product space, $\{e_n\}$ orthonormal sequence. $\forall x \in V$, the Fourier series of x: $\sum_n \langle x, \underline{e_n} \rangle e_n$ converges in V and $\sum_n \langle x, e_n \rangle e_n$ is the projection of x onto $\overline{span\{e_n\}}$.

Bessel Inequality:
$$\sum_{n} \langle x, e_n \rangle^2 \le ||x||^2$$
, it holds since that $||x - \sum_{k=1}^{n} \langle x, e_k \rangle e_k||^2 = ||x||^2 - 2 \sum_{n} \langle x, e_n \rangle^2 + \sum_{n} \langle x, e_n \rangle^2 \Rightarrow ||x||^2 - \sum_{n} \langle x, e_n \rangle^2 \ge 0.$ $||\sum_{n} \langle x, e_n \rangle e_n||^2 = \sum_{n} \langle x, e_n \rangle^2 \Rightarrow \sum_{n} \langle x, e_n \rangle e_n$ exist. and it's the projection of $\overline{span}\{e_n\}$ since that $\forall i, \langle x - \sum_{n} \langle x, e_n \rangle e_n, e_i \rangle = \langle x, e_i \rangle - \langle x, e_i \rangle = 0.$

H Hilbert space, $\{e_n\}$ orthonormal sequence. $\forall x \in H$,

(a)
$$||x||^2 = \sum_n \langle x, e_n \rangle^2 \Leftrightarrow$$
 (b) $x = \sum_n \langle x, e_n \rangle e_n$

$$\Leftrightarrow$$
 (c) If $\langle x, e_n \rangle = 0$, $\forall n$, then $x = 0 \Leftrightarrow$ (d) $\overline{span\{e_n\}} = H$.

(a)
$$\Leftrightarrow$$
 (b): $||x - \sum_{n} \langle x, e_n \rangle e_n||^2 = ||x||^2 - \sum_{n} \langle x, e_n \rangle^2$

(b)
$$\Leftrightarrow$$
 (c): $\langle x - \sum_{n} \langle x, e_n \rangle e_n, e_m \rangle = 0, \forall m$

$$(b)\Rightarrow (d)$$
: $\overline{span\{e_n\}}$ closed sub-space, and $H\subset \overline{span\{e_n\}}$

$$(b) \leftarrow (d)$$
: $\sum_{n} \langle x, e_n \rangle e_n$ is the projection of x .

 $\{e_n\}$ is a complete orthonormal basis in Hilbert space H if $\{e_n\}$ is an orthonormal sequence and $\overline{span\{e_n\}} = H$

Theorem

H Hilbert space is separable \Leftrightarrow *H* has a COB.

"\(\Rightarrow\)":
$$\{\underline{e_n}\}$$
 is dense in H . $\forall x \in H$, $\forall \varepsilon > 0$, $\exists \ e_k$ s.t. $||x - e_k||$ $\leq \varepsilon \Rightarrow x \in \overline{span\{e_n\}} \Rightarrow H \subset \overline{span\{e_n\}}$ "\(\infty\)": $\{e_n\}$ COB, let $A = \{x \in H; \langle x, e_k \rangle \in Q, \forall k\}$. Then A is countable and dense in H .

 $l^2 = \{(a_1, a_2, ...); a_k \in R\}$ and $\langle a, b \rangle = \sum_n a_n b_n$, then l^2 is a separable Hilbert space.

Theorem

Any infinite-dim separable Hilbert space H isometrically isomorphic to l^2 . We mark that $H \approx l^2$.

$$\{e_n\}$$
 COB, $\forall x \in H, x = \sum_n \langle x, e_n \rangle e_n$, define $f: H \to l^2$, $f(x) = (\langle x, e_n \rangle)_n$. f is a bijection. $||x - y||^2 = ||x||^2 + ||y||^2 - 2\langle x, y \rangle = \sum_n \langle x, e_n \rangle^2 + \sum_n \langle y, e_n \rangle^2 - 2\sum_n \langle x, e_n \rangle \langle y, e_n \rangle = \sum_n (\langle x, e_n \rangle - \langle y, e_n \rangle)^2$.