기말고사

학번_____ 이름____

2016-12-01

1.(10점) 다음 행렬식들의 값을 확인하여라.

(a)(4점)

$$\begin{vmatrix} 1 & 5 & -5 \\ 3 & 2 & -5 \\ 6 & -2 & -5 \end{vmatrix} = -5, \begin{vmatrix} -3 & 2 & -6 \\ -3 & 5 & -7 \\ -2 & 3 & -4 \end{vmatrix} = -5$$

(b)(2점)

(c)(4점)

$$\begin{vmatrix} 21 & 6 & 3 & 9 \\ 12 & 16 & 36 & 4 \\ 13 & 10 & 19 & 5 \\ 1 & 93 & 81 & 6 \end{vmatrix} = 0, \begin{vmatrix} 4 & 6 & 8 & 1 & 2 \\ -1 & -7 & 2 & 3 & 1 \\ 2 & -8 & 12 & 7 & 4 \\ 7 & 9 & 17 & 27 & -5 \\ 8 & 3 & 6 & 2 & 37 \end{vmatrix} = 0$$

2.(5점) 행렬식을 전개하지 않고 다음 등식이 성립하는 이유를 설명하라.

$$\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ yz & xz & xy \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix}$$

3.(15점) 세 개의 벡터 \vec{u} , \vec{v} , \vec{w} 가 다음과 같이 주어져 있다.

$$\vec{u} = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}, \vec{v} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}, \vec{w} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix},$$

 $a_1\vec{u} + a_2\vec{v} + a_3\vec{w} = \vec{b}$ 를 만족하는 a_1, a_2, a_3 를 구하라.

(a)(5점)
$$\vec{b} = \begin{bmatrix} 5 \\ 9 \\ 5 \end{bmatrix}$$

	[2
(b)(5점) $\vec{b}=$	0
	6

(c)(5점)
$$\vec{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

4.(20점) 다음 벡터들 $\overrightarrow{x_1}$, $\overrightarrow{x_2}$, $\overrightarrow{x_3}$, $\overrightarrow{x_4}$ 에 대하여 물음에 답하라.

$$\overrightarrow{x_1} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \overrightarrow{x_2} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}, \overrightarrow{x_3} = \begin{bmatrix} -13 \\ -1 \\ 2 \end{bmatrix}, \overrightarrow{x_4} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

(a) $\overrightarrow{x_1}$, $\overrightarrow{x_2}$, $\overrightarrow{x_3}$ 는 선형종속임을 증명하라. 또한 이것들 사이의 선형관계를 구하라.

(b)
$$\overrightarrow{x_1}$$
, $\overrightarrow{x_2}$, $\overrightarrow{x_4}$ 는 선형독립임을 증명하라. 또한 이것들의 선형결합, $a_1\overrightarrow{x_1} + a_2\overrightarrow{x_2} + a_3\overrightarrow{x_4}$ 이 $\overrightarrow{a} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

이 되도록 하는 계수를 찾아라.

5.(20점) 다음 행렬
$$A = \begin{bmatrix} 1 & 2 & 1 & 5 \\ 2 & 5 & 1 & 14 \\ 4 & 9 & 3 & 24 \end{bmatrix}$$
 가 $PAQ = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$ 로 나타나는 P 와 Q 가

$$P = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & -1 & 1 \end{bmatrix}, Q = \begin{bmatrix} 1 & -2 & -3 & 3 \\ 0 & 1 & 1 & -4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
임을 보이고, $A_{p \times q} = K_{p \times r} L_{r \times q}$ 의 형태로 나타내라.

단,
$$P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 1 & 1 \end{bmatrix}$$
, $Q^{-1} = \begin{bmatrix} 1 & 2 & 1 & 5 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ 임을 이용하라.

6.(20점) 행렬 $A = \begin{bmatrix} 5 & -7 & 7 \\ 4 & -3 & 4 \\ 4 & -1 & 2 \end{bmatrix}$ 의 고유값과 고유벡터를 계산하고, 고유벡터들이 선형독립임을 보이고 대각화하시오.

7.(10점) 행렬
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 3 & 5 \end{bmatrix}$$
의 LU 분해가 $L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & -3 & 0 \\ 0 & 3 & 2 \end{bmatrix}$, $U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ 로 계산됨을 보이시오.