多变量解析

第5回: 主成分分析(1)基礎概念

藤本 衡

2018年5月9日

1/14

本日の内容

- 多変量データを「より少ない尺度で」比較する
- 主成分分析の考え方
- 2 変数での例

多変量データの比較

- 多変量を1個ずつ比較するのは容易だが、順序・優劣・分類が明確でない
- できれば1つか2つの尺度で並べ替えができないだろうか?

例: 誰が理系で、誰が文系?

あるいは、「どの科目が理系的で、どの科目が文系的なのか」

学生	数学	英語	国語	理科	社会
А	88	75	65	90	70
В	62	60	77	70	78
С	90	58	52	82	65
D	57	68	70	64	72
Е	72	64	70	90	70

主成分分析 (Principal Component Analysis: PCA)

- N 個の変量を持つ個体の群を1つの指標で並べ替えたい
- できるだけ多くの変量から情報を取り込み、重み付けして新たな指標を合成する = 主成分

$$Z = w_1 X_1 + w_2 X_2 + \cdots + w_N X_N$$

2変数での例: 数学と国語

- 数学の点数で並べ替える手もある
- でも国語の点数も加味したい
- 軸を変えてしまえばいいのでは?

軸の回転

回転行列

$$\begin{pmatrix} Z \\ Z' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$

新しい軸に沿った指標Zは

$$Z = w_1 X_1 + w_2 X_2 = X_1 \cos \theta - X_2 \sin \theta$$

となる。

ここで

$$w_1^2 + w_2^2 = \cos^2 \theta + \sin^2 \theta = 1$$

である (重みの平方和が1となる) 点に注意。

主成分を求める基準(1)

- 似た個体は近い場所に、異なる個体は遠くに「ばらけて」ほしい
- ullet Z の分散が最大になるように (w_1,w_2) を選べばよい?

制約条件付き最大化問題

maximize
$$\mathbb{V}[Z] = \mathbb{V}[w_1X_1 + w_2X_2]$$

= $w_1^2\mathbb{V}[X_1] + 2w_1w_2\text{Cov}[X_1, X_2] + w_2^2\mathbb{V}[X_2]$ (1) subject to $w_1^2 + w_2^2 - 1 = 0$

ラグランジュの未定乗数法

(1) 式はそのままラグランジュの未定乗数法が適用可能 λ をラグランジュ乗数とおき、

$$L = \mathbb{V}[Z] - \lambda(w_1^2 + w_2^2 - 1)$$

$$\frac{\partial L}{\partial w_1} = 2w_1 \mathbb{V}[X_1] + 2w_2 \text{Cov}[X_1, X_2] - 2\lambda w_1 = 0$$
(2)

$$\frac{\partial L}{\partial w_2} = 2w_2 \mathbb{V}[X_2] + 2w_1 \text{Cov}[X_1, X_2] - 2\lambda w_2 = 0$$
 (3)

9/14

固有值問題

(2),(3) 式を行列で表現すると

$$\begin{pmatrix} \mathbb{V}[X_1] & \operatorname{Cov}[X_1, X_2] \\ \operatorname{Cov}[X_1, X_2] & \mathbb{V}[X_2] \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \lambda \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \tag{4}$$

つまり

$$Cw = \lambda w$$

の形の固有値問題となる。

 $m{C}$ は X_1, X_2 の分散共分散行列であり、 λ は $m{C}$ の固有値、 $m{w}$ は対応する右固有ベクトル。

固有値を求める

2次正方行列なら固有値は簡単に求まるよね?

特性方程式(固有方程式)

$$|C - \lambda I| = \begin{vmatrix} \mathbb{V}[X_1] - \lambda & \text{Cov}[X_1, X_2] \\ \text{Cov}[X_1, X_2] & \mathbb{V}[X_2] - \lambda \end{vmatrix}$$

$$= \lambda^2 - (\mathbb{V}[X_1] + \mathbb{V}[X_2])\lambda + \mathbb{V}[X_1] \mathbb{V}[X_2] - (\text{Cov}[X_1, X_2])^2$$

$$= 0$$

$$\lambda = -\frac{1}{2} \left\{ (\mathbb{V}[X_1] + \mathbb{V}[X_2]) \mp \sqrt{(\mathbb{V}[X_1] - \mathbb{V}[X_2])^2 + 4(\text{Cov}[X_1, X_2])^2} \right\}$$

最大固有値と固有ベクトル

- C は半正定値行列なので固有値はすべて非負
- \bullet λ の解は 2 つ得られる 大きい方 (最大固有値)を λ_1 とおく
- ullet λ_1 に対応する右固有ベクトル(第 1 固有ベクトル)を求める $\mathbb{V}\left[Z
 ight]$ を最大化する (w_1,w_2) が得られる
 - また連立一次方程式です
 - ただし制約 $w_1^2+w_2^2=1$ がないと比例関係しか出てこないので注意
- 第1固有ベクトルから得られる主成分を、第1主成分と呼ぶ

第2主成分

- もう1個の固有値は使えないの?
- 楕円の短軸を表す=第2主成分
- これも使える「かも」しれない

変量の標準化

- この例では X₁ と X₂ はともに 100 点満点(同じスケール)
- もし一方が 10 点満点だったら? 単位を合わせたい

標準化 (standardization)

$$T_{j} = \frac{X_{j} - \mathbb{E}\left[X_{j}\right]}{\sqrt{\mathbb{V}\left[X_{j}\right]}}$$

 $\mathbb{E}\left[T_j\right]=0,\ \ \mathbb{V}\left[T_j\right]=1$ となる。また $\operatorname{Cov}\left[T_1,\,T_2\right]$ は X_1 と X_2 の相関係数に等しいので、標準化したとき (4) 式の C は相関係数行列 R に置き換えられる。

$$\mathbf{R}\mathbf{w} = \lambda \mathbf{w}$$