Project 1 CS 301 – Amar Raheja

Joshua Camacho 2-13-2017

Numerical Root Approximation

Joshua Camacho California State Polytechnic University, Pomona Numerical Methods

I. Overview

Frequently, the solution to a scientific problem is a number about which we have little information other than that it satisfies some equation. Since every equation can be written so that a function stands on one side and zero on the other, the desired number must be a zero of the function. Thus, if we possess an arsenal of methods for locating zeros of functions, we shall be able to solve such problems.

II. Assignment

The assignment was to write programs for the following root approximation methods

- Bisection
- Newton-Raphson
- Secant
- False-Position
- Modified Secant

Use those programs to evaluate the roots for the following functions

a)
$$f(x) = 2x^3 - 11.7x^2 + 17.7x - 5$$

b)
$$f(x) = e^{-x} - x$$

Lastly, present graphs of the functions, graphs of the error evaluations, and discuss the results of each method.

III. FUNCTION GRAPHS

Looking at the graphs of the functions can help determine where the roots are located.

Amar Raheja Professor of Computer Science California State Polytechnic University, Pomona

$$f(x) = 2x^3 - 11.7x^2 + 17.7x - 5$$

Figure 1: Function A

From the graph, there appears to be 3 roots. One on the interval (0,0.5), (1.5,2), and (3.5,4).

$$f(x) = e^{-x} - x$$

Figure 2: Function B

This graph was harder to see, but upon zoom there appears to be a root between (0,1). The true root for this function was also given, at x=0.56714329.

IV. ROOT EVALUATION

Function A) $f(x) = 2x^3 - 11.7x^2 + 17.7x - 5$

This function had 3 roots on the intervals (0,0.5), (1.5,2), and (3.5,4)

Bisection Method – Function A

Bisection Method Root 1, using a=0, b=1

```
n = 0
         a = 0.0
                        b = 1.0
                                      c = 0.5
                                                     f(a) = -5.0
                                                                            f(b) = 3.000001
                                                                                                  f(c) = 1.1750002
                                                                                                                       Error = 1.0
n = 1
         a = 0.0
                        b = 0.5
                                      c = 0.25
                                                     f(a) = -5.0
                                                                            f(b) = 1.1750002
                                                                                                  f(c) = -1.2749999
                                                                                                                       Error = 0.333333334
n = 2
         a = 0.25
                        b = 0.5
                                     c = 0.375
                                                    f(a) = -1.2749999
                                                                           f(b) = 1.1750002
                                                                                                  f(c) = 0.09765673
                                                                                                                       Error = 0.2
                        b = 0.375
         a = 0.25
                                     c = 0.3125
                                                     f(a) = -1.2749999
                                                                                                  f(c) = -0.55029297
n = 3
                                                                           f(b) = 0.09765673
                                                                                                                       Error = 0.09090909
                                                    f(a) = -0.55029297
n = 4
         a = 0.3125
                        b = 0.375
                                      c = 0.34375
                                                                           f(b) = 0.09765673
                                                                                                  f(c) = -0.21690655
                                                                                                                       Error = 0.04347826
        a = 0.34375 b = 0.375

a = 0.359375 b = 0.375
n = 5
                        b = 0.375
                                      c = 0.359375 f(a) = -0.21690655
                                                                           f(b) = 0.09765673
                                                                                                  f(c) = -0.057294846 Error = 0.021276595
                                      c = 0.3671875 f(a) = -0.057294846
                                                                            f(b) = 0.09765673
                                                                                                  f(c) = 0.020760536
                                                                                                                       Error = 0.010752688
        a = 0.359375 b = 0.3671875 c = 0.36328125 f(a) = -0.057294846
                                                                                                                       Error = 0.0053475937
                                                                                                  f(c) = -0.01812172
n = 7
                                                                           f(b) = 0.020760536
        a = 0.36328125 b = 0.3671875 c = 0.36523438 f(a) = -0.01812172
                                                                           f(b) = 0.020760536
                                                                                                  f(c) = 0.001355648
n = 8
```

Figure 3: Function A, Bisection Method, Root 1

Method converges at c = 0.36523438 after 8 iterations

Bisection Method Root 2, using a=1, b=2

```
b = 2.0
n = 0
         a = 1.0
                                                  f(a) = 3.000001
                                                                       f(b) = -0.3999977
                                                                                            f(c) = 1.9750023
                                                                                                                Error = 0.14285715
n = 1
        a = 1.5
                      b = 2.0
                                   c = 1.75
                                                  f(a) = 1.9750023
                                                                      f(b) = -0.3999977
                                                                                           f(c) = 0.86250305 Error = 0.06666667
                                   c = 1.875
                                                                                          f(c) = 0.23828125
        a = 1.75
n = 2
                      b = 2.0
                                                  f(a) = 0.86250305
                                                                      f(b) = -0.3999977
                                                                                                                Error = 0.032258064
n = 3
        a = 1.875
                      b = 2.0
                                   c = 1.9375
                                                  f(a) = 0.23828125
                                                                       f(b) = -0.3999977
                                                                                            f(c) = -0.080566406
                                                                                                                Error = 0.016393442
n = 4
        a = 1.875
                      b = 1.9375
                                  c = 1.90625
                                                  f(a) = 0.23828125
                                                                      f(b) = -0.080566406 f(c) = 0.07911682
                                                                                                                 Error = 0.008130081
n = 5
        a = 1.90625 b = 1.9375
                                   c = 1.921875 f(a) = 0.07911682
                                                                      f(b) = -0.080566406 f(c) = -6.828308E-4
```

Figure 4: Function A, Bisection Method, Root 2

Method converges at c = 1.921875 after 5 iterations

Root 3, using a=3, b=4

```
a = 3.0
n = 0
                       b = 4.0
                                    c = 3.5
                                                  f(a) = -3.1999931
                                                                       f(b) = 6.600006
                                                                                            f(c) = -0.6249924
                                                                                                                 Error = 0.06666667
n = 1
        a = 3.5
                       b = 4.0
                                  c = 3.75
                                                  f(a) = -0.6249924
                                                                     f(b) = 6.600006
                                                                                           f(c) = 2.3125
                                                                                                                Error = 0.03448276
                                   c = 3.625
        a = 3.5
                      b = 3.75
                                                  f(a) = -0.6249924
                                                                       f(b) = 2.3125
                                                                                             f(c) = 0.6867218
                                                                                                                 Error = 0.01754386
n = 2
n = 3
        a = 3.5
                      b = 3.625
                                    c = 3.5625
                                                  f(a) = -0.6249924
                                                                       f(b) = 0.6867218
                                                                                             f(c) = -0.0069351196 Error = 0.008695652
                                                  f(a) = -0.0069351196 f(b) = 0.6867218
       a = 3.5625
                      b = 3.625
                                    c = 3.59375
                                                                                             f(c) = 0.33026505
```

Figure 5: Function A, Bisection Method, Root 3

Method converges at c = 3.59375 after 4 iterations

Newton Method - Function A

Newton Method Root 1, using x=1

n = 0	x = 1.0	f(x) = 3.000001	x+1 = -8.999965	error = 1.1111115
n = 1	x = -8.999965	f(x) = -2569.9749	x+1 = -5.402049	error = 0.66602796
n = 2	x = -5.402049	f(x) = -757.3339	x+1 = -3.0294547	error = 0.7831754
n = 3	x = -3.0294547	f(x) = -221.60545	x+1 = -1.4868301	error = 1.0375258
n = 4	x = -1.4868301	f(x) = -63.755424	x+1 = -0.5172516	error = 1.8744813
n = 5	x = -0.5172516	f(x) = -17.56246	x+1 = 0.041902423	error = 13.344193
n = 6	x = 0.041902423	f(x) = -4.278723	x+1 = 0.29765365	error = 0.8592242
n = 7	x = 0.29765365	f(x) = -0.7153802	x+1 = 0.3611499	error = 0.17581691
n = 8	x = 0.3611499	f(x) = -0.039459705	x+1 = 0.36508343	error = 0.010774302
n = 9	x = 0.36508343	f(x) = -1.4734268E-4	x+1 = 0.36509824	error = 4.056923E-5

Figure 6: Function A, Newton Method, Root 1

Method converges at x = 0.36509824 after 10 iterations

Newton Method Root 2, using x=2

```
n = 0 x = 2.0 f(x) = -0.3999977 x+1 = 1.9215691 error = 0.040816065

n = 1 x = 1.9215691 f(x) = 8.8119507E-4 x+1 = 1.9217416 error = 8.9760164E-5
```

Figure 7: Function A, Newton Method, Root 2

Method converges at x = 1.9217416 after 2 iterations

Newton Method Root 3, using x=3

n = 0	x = 3.0	f(x) = -3.1999931	x+1 = 5.1333237	error = 0.4155833
n = 1	x = 5.1333237	f(x) = 48.08954	x+1 = 4.269744	error = 0.20225564
n = 2	x = 4.269744	f(x) = 12.956093	x+1 = 3.792931	error = 0.12571092
n = 3	x = 3.792931	f(x) = 2.9475555	x+1 = 3.599818	error = 0.05364524
n = 4	x = 3.599818	f(x) = 0.39796448	x+1 = 3.5643375	error = 0.009954304

Figure 8: Function A, Newton Method, Root 3

Method converges at x = 3.5643375 after 5 iterations

Secant Method – Function A

Secant Method Root 1, using $x_0=0$, x=1

```
n = 0
         x-1 = 1.0
                              x = 0.0
                                                  x+1 = 0.62499994
                                                                       error = 1.0
n = 1
         x-1 = 0.0
                              x = 0.62499994
                                                  x+1 = 0.4476776
                                                                       error = 0.39609382
        x-1 = 0.62499994
                             x = 0.4476776
                                                  x+1 = 0.3376152
                                                                       error = 0.32599962
n = 2
n = 3
        x-1 = 0.4476776
                              x = 0.3376152
                                                 x+1 = 0.3673572
                                                                       error = 0.08096208
n = 4
         x-1 = 0.3376152
                              x = 0.3673572
                                                 x+1 = 0.36515644
                                                                       error = 0.0060268757
```

Convergence reached at x = 0.36515644

Secant Method Root 2, using $x_0=1$, x=2

n = 0	x-1 = 2.0	x = 1.0	x+1 = 1.8823535	error = 0.46875018	
n = 1	x-1 = 1.0	x = 1.8823535	x+1 = 1.9456805	error = 0.03254746	
n = 2	x-1 = 1.8823535	x = 1.9456805	x+1 = 1.9217039	error = 0.012476721	
n = 3	x-1 = 1.9456805	x = 1.9217039	x+1 = 1.9217412	error = 1.941599E-5	
Convergence reached at $x = 1.9217412$					

Secant Method Root 2, using $x_0=3$, x=4

n = 0	x-1 = 4.0	x = 3.0	x+1 = 3.32653	error = 0.098159336
n = 1	x-1 = 3.0	x = 3.32653	x+1 = 3.8487203	error = 0.13567895
n = 2	x-1 = 3.32653	x = 3.8487203	x+1 = 3.5037088	error = 0.09847036
n = 3	x-1 = 3.8487203	x = 3.5037088	x+1 = 3.5497475	error = 0.01296955
n = 4	x-1 = 3.5037088	x = 3.5497475	x+1 = 3.5639358	error = 0.0039810734

Convergence reached at x = 3.5639358

False Position Method – Function A

False Position Method Root 1, using $x_0=0$, x=1

n = 0	a = 0.0	b = 1.0	c = 0.62499994	f(c) = 1.9804688	error = 0.10201422	
n = 1	a = 0.0	b = 0.62499994	c = 0.44767764	f(c) = 0.75847864	error = 0.3960937	
n = 2	a = 0.0	b = 0.44767764	c = 0.38871175	f(c) = 0.2298317	error = 0.15169567	
n = 3	a = 0.0	b = 0.38871175	c = 0.3716293	f(c) = 0.064621925	error = 0.04596638	
n = 4	a = 0.0	b = 0.3716293	c = 0.36688748	f(c) = 0.017784595	error = 0.012924447	
n = 5	a = 0.0	b = 0.36688748	c = 0.36558712	f(c) = 0.0048656464	error = 0.0035569216	
Convergence reached at c = 0.36558712						

False Position Method Root 2, using $x_0=1$, x=2

n = 0	a = 1.0	b = 2.0	c = 1.8823535	f(c) = 0.2008934	error = 2.319009	
n = 1	a = 1.8823535	b = 2.0	c = 1.9216857	f(c) = 2.861023E-4	error = 0.020467525	
n = 2	a = 1.9216857	b = 2.0	c = 1.9217417	f(c) = 0.0	error = 2.9154993E-5	
Convergence reached at $c = 1.9217417$						

False Position Method Root 3, using $x_0=3$, x=4

n = 0	a = 3.0	b = 4.0	c = 3.32653	f(c) = -1.968853	error = 4.865414	
n = 1	a = 3.32653	b = 4.0	c = 3.4812722	f(c) = -0.79590607	error = 0.04444991	
n = 2	a = 3.4812722	b = 4.0	c = 3.5370946	f(c) = -0.26710892	error = 0.015781984	
n = 3	a = 3.5370946	b = 4.0	c = 3.5551002	f(c) = -0.083992004	error = 0.0050647263	
Convergence reached at $c = 3.5551002$						

Modified Secant Method – Function A

Modified Secant Method Root 1, using x=1, delta=0.01

n = 0	x = 1.0	x+1 = -11.336192	f(x) = 3.000001	error = 1.0882131
n = 1	x = -11.336192	x+1 = -6.9877443	f(x) = -4622.8193	error = 0.62229633
n = 2	x = -6.9877443	x+1 = -4.095392	f(x) = -1382.3805	error = 0.7062454
n = 3	x = -4.095392	x+1 = -2.1890981	f(x) = -411.10144	error = 0.87081254
n = 4	x = -2.1890981	x+1 = -0.9592707	f(x) = -120.79617	error = 1.2820442
n = 5	x = -0.9592707	x+1 = -0.20634699	f(x) = -34.51088	error = 3.6488235
n = 6	x = -0.20634699	x+1 = 0.1955705	f(x) = -9.168089	error = 2.0551028
n = 7	x = 0.1955705	x+1 = 0.34339914	f(x) = -1.9709413	error = 0.43048635
n = 8	x = 0.34339914	x+1 = 0.36473054	f(x) = -0.22054434	error = 0.058485366
n = 9	x = 0.36473054	x+1 = 0.36509937	f(x) = -0.0036621094	error = 0.0010102278
Converger	nce reached at $x = 0$.	36509937		

Modified Secant Method Root 2, using x=2, delta=0.01

n = 0	x = 2.0	x+1 = 1.9214658	f(x) = -0.3999977	error = 0.040872052
n = 1	x = 1.9214658	x+1 = 1.9217411	f(x) = 0.0014076233	error = 1.4329373E-4
Convergence reached at $x = 1.9217411$				

Modified Secant Method Root 3, using x=3, delta=0.01

n = 0	x = 3.0	x+1 = 4.8928747	f(x) = -3.1999931	error = 0.38686353	
n = 1	x = 4.8928747	x+1 = 4.143112	f(x) = 35.7763	error = 0.18096602	
n = 2	x = 4.143112	x+1 = 3.742388	f(x) = 9.734337	error = 0.10707713	
n = 3	x = 3.742388	x+1 = 3.5910718	f(x) = 2.2040863	error = 0.04213677	
n = 4	x = 3.5910718	x+1 = 3.5647001	f(x) = 0.30062866	error = 0.0073980186	
Convergence reached at $x = 3.5647001$					

Function B) f(x) = e-x -x

Bisection Method – Function B

Using a=0, b=1

Newton Method – Function B

Using x=3.0

Secant Method – Function B

Using $x_0=1.0$, x=0

False Position Method – Function B

Using a=0, b=1

Modified Secant Method – Function B

Using x=1, delta=0.01

```
n = 0   x = 1.0   x+1 = 0.53726363   f(x) = -0.63212055   error = 0.05268445   n = 1   x = 0.53726363   x+1 = 0.56700975   f(x) = 0.04708141   error = 2.3541566E-4 Convergence reached at x = 0.56700975
```

V. ERROR GRAPHS

VI - DISCUSSION

Root Summary

Function A

	Bisection	Newton	Secant	False Position	Modified Secant
Root 1	0.36523438	0.36509824	0.365156	0.36558712	0.36509937
Root 2	1.921875	1.9217416	1.927412	1.9217417	1.9217411
Root 3	3.59375	3.5643375	3.56395	3.5551002	3.5647001

Function B

	Bisection	Newton	Secant	False Position	Modified Secant
Root	0.56726074	0.566987	0.5721814	0.5721814	0.56700975

On function A- Newton method and Modified took the longest to converge for the first point. Newton method was an outlier in approximate error, at one point shooting up to a very high error % before reaching convergence.

On function B – Modified Secant, Secant, and Newton method all converged extremely fast, with bisection method being the slowest to converge.

I used the float data types for the methods, since the significant digits of error can fit into a float data type.