TABLEAU CONFERENCE

Welcome

#TC18

Building Data Science Applications with TabPy and R

Nathan Mannheimer

Product Manager

Advanced Analytics

Who Am I?

- Product Manager for Advanced Analytics
- Lecturer in Data Science and HCDE at University of Washington
- Former high school teacher in Japan and NCAA swimmer

Hiding within those mounds of data is knowledge that could change the life of a patient, or change the world.

Atul Butte Stanford

Session Goals

Introduce Tableau's external analytics integrations

Explore real data science use cases

Learn how to adapt analysis scripts for Tableau

Build self-service interactive dashboards to share insights

Who is this Session For?

Data Scientist/Analyst

Where does Tableau fit into a data science and advanced analytics workflow and how can we most effectively share findings with business partners?

Business Data Explorers

How can we increase our cooperation and knowledge share with advanced analytics teams and put data insights into action?

Agenda

Connecting to External Services

1. Sharing Interactive Exploratory Analysis

2. Self-Service Time Series Forecasting

3. Building and Deploying a Credit Classification Application

External Services Workflow


```
Cars
 PCA Component 1
Results are computed along Table (across).
SCRIPT_REAL("import pandas as pd
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
df = pd.DataFrame({'mpg':_arg1,'Cyl':_arg2,'Cost':_arg3,'EngSize':_arg4,'HP':_arg5,'Len':_arg6,'Width':_arg7})
scale = StandardScaler()
dat = scale.fit_transform(df)
n comp = len(df.columns)
pca = PCA(n_components = n_comp)
comps = pca.fit_transform(dat)
return list(comps[:,_arg8[0]])",
SUM([City MPG]),
SUM([Cyl]),
SUM([Dealer Cost]),
SUM([Engine Size]),
SUM([HP]),
SUM([Len]),
SUM([Width]),
[Selected PCA Component 1])
                                                                                                        Default Table Calculation
The calculation is valid.
                                                                                       2 Dependencies ▼ Apply
```


Connecting to R or Python

Connecting to an External Service

Supported Connections

- Rserve
- TabPy/MATLAB

Connection Information:

- Specify Service Type (New!)
- Choose Host and Port

Security:

- Authenticate with Username/Password
- Set up encryption with SSL Cert (New!)

Connecting to an External Service

Sharing Interactive Exploratory Analysis

User Story – Dynamic Customer Analysis

Question:

- What customers have similar attributes across dozens or hundreds of categories?
- Who stands out from the group?

Answer:

- Decompose data into a two dimensional visualization.
- Explore dynamically using parameters and filters.

Answer - Presenting Exploratory Analysis

Visualizing PCA:

- Converting a python script for Tableau
- Handling data and aggregation
- Building an interactive dashboard

Further Exploration:

- Using parameters
- Using filters

Directly From Python

```
import pandas as pd
```



```
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
df = pd.read_csv('cars.csv')
```

```
scale = StandardScaler()

dat = scale.fit_transform(df)

pca = PCA(n_components = len(df.columns))

comps = pca.fit_transform(dat)

df = pd.DataFrame(comps, columns=["comp 1","comp 2","comp 3"])
```



```
df.plot(x="comp 1",y="comp 2", kind='scatter', c=cars['City_MPG'], colormap='viridis', legend=False, colorbar=True,
title='First and Second Principal Components Colored by City MPG')
```


Tableau Calculation

Edit Parameter [Selected PCA Component 1]	×
Name: Selected PCA Component 1	Comment >>
Properties	
Data type: Integer ▼	
Current value: 0	
Display format: Automatic ~	
Allowable values: ○ All ○ List ● Range	
Range of values	
☑ Minimum: 0	Set from Parameter 🕨
✓ Maximum: 6	Set from Field ▶
✓ Step size: 1	
	OK Cancel

Fully Adapted Code

```
SCRIPT REAL( "import pandas as pd
```


from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

```
df = pd.DetdFrame({dmpgcsvamg1, Cyl':_arg2, Cost':_arg3, EngSize':_arg4, HP':_arg5, Len':_arg6, Width':_arg7})
scale = StandardScaler()
dat = scale.fit transform(df)
n comp = len(df.columns)
pca = PCA(n components = n comp)
comps = pca.fit transform(dat)
deturntixsteemmps : ɣ=端ԲჹჾႼჿႯႨϡײֻkind='scatter', c=cars['City_MPG'], colormap='viridis', legend=False,
colorbar=True, title='First and Second Principal Components Colored by City MPG')
SUM([City MPG]), SUM([Cyl]), SUM([Dealer Cost]), SUM([Engine Size]), SUM([HP]), SUM([Len]), SUM([Width]),
  elected PCA Component 1])
```

```
SCRIPT_REAL("import pandas as pd
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
df = pd.DataFrame({'mpg':_arg1,'Cyl':_arg2,'Cost':_arg3,'EngSize':_arg4,'HP':_arg5,'Len':_arg6,'Width':_arg7})
scale = StandardScaler()
dat = scale.fit transform(df)
n comp = len(df.columns)
pca = PCA(n components = n comp)
comps = pca.fit_transform(dat)
return list(comps[:,_arg8[0]])",
SUM([City MPG]), SUM([Cyl]), SUM([Dealer Cost]), SUM([Engine Size]), SUM([HP]), SUM([Len]), SUM([Width]),
[Selected PCA Component 1])
```


R PCA Code

```
SCRIPT_REAL(
princomp(data.frame(.arg1,.arg2,.arg3,.arg4,.arg5,.arg6,.arg7), cor
= TRUE)$score[,.arg8[1]]",
SUM([City MPG]),
SUM([Cyl]),
SUM([Dealer Cost]),
SUM([Engine Size]),
SUM([HP]),
SUM([Len]),
SUM([Width]),
[Selected PCA Component 1])
```


Let's Take a Look!

Tech Tip - Setting the Correct Table Calculation

Abc 2004_cars_data.csv Vehicle	# 2004_cars_data.csv Retail Price	# 2004_cars_data.csv Dealer Cost	# 2004_cars_data.csv Engine Size	# 2004_car Cyl	# 2004_car HP	# 2004_cars_data.csv City MPG	# 2004_cars_data.csv Hwy MPG	# 2004_cars_data Weight	# 2004_cars_data.csv Wheel Base	# 2004_cars Len	# 2004_cars_da Width
Acura 3.5 RL 4dr	43,755	39,014	3.50000	6	225	18	24	3,880	115	197	72
Acura 3.5 RL w/Navig	46,100	41,100	3.50000	6	225	18	24	3,893	115	197	72
Acura MDX	36,945	33,337	3.50000	6	265	17	23	4,451	106	189	77
Acura NSX coupe 2dr	89,765	79,978	3.20000	6	290	17	24	3,153	100	174	71
Acura RSX Type S 2dr	23,820	21,761	2.00000	4	200	24	31	2,778	101	172	68
Acura TL 4dr	33,195	30,299	3.20000	6	270	20	28	3,575	108	186	72
Acura TSX 4dr	26,990	24,647	2.40000	4	200	22	29	3,230	105	183	69
Audi A4 1.8T 4dr	25,940	23,508	1.80000	4	170	22	31	3,252	104	179	70
Audi A4 3.0 4dr	31,840	28,846	3.00000	6	220	20	28	3,462	104	179	70
Audi A4 3.0 convertibl	42,490	38,325	3.00000	6	220	20	27	3,814	105	180	70
Audi A4 3.0 Quattro 4	34,480	31,388	3.00000	6	220	18	25	3,627	104	179	70
Audi A4 3.0 Quattro 4	33,430	30,366	3.00000	6	220	17	26	3,583	104	179	70
Audi A4 3.0 Quattro c	44,240	40,075	3.00000	6	220	18	25	4,013	105	180	70
Audi A41.8T converti	35,940	32,506	1.80000	4	170	23	30	3,638	105	180	70
Audi A6 2.7 Turbo Qua	42,840	38,840	2.70000	6	250	18	25	3,836	109	192	71
Audi A6 3.0 4dr	36,640	33,129	3.00000	6	220	20	27	3,561	109	192	71
Audi A6 3.0 Avant Qu	40,840	37,060	3.00000	6	220	18	25	4,035	109	192	71
Audi A6 3.0 Quattro 4dr	39,640	35,992	3.00000	6	220	18	25	3,880	109	192	71
Audi A6 4.2 Quattro 4dr	49,690	44,936	4.20000	8	300	17	24	4,024	109	193	71
Audi A8 L Quattro 4dr	69,190	64,740	4.20000	8	330	17	24	4,399	121	204	75
Audi RS 6 4dr	84,600	76,417	4.20000	8	450	15	22	4,024	109	191	78
Audi S4 Avant Quattro	49,090	44,446	4.20000	8	340	15	21	3,936	104	179	70
Audi S4 Quattro 4dr	48,040	43,556	4.20000	8	340	14	20	3,825	104	179	70

Tech Tip - Setting the Correct Table Calculation

Tech Tip - Setting the Correct Table Calculation

Self-Service Time Series Forecast Application

User Story – Dynamic Forecasting at

Question:

- Visually exploring forecast results during model evaluation.
- Sharing product utilization forecasts with business managers with current data.

Answer:

- Adapting custom model script for use in Tableau.
- Sharing results in interactive dashboard in Tableau Server.

Creating a Self-Service Forecast Application

Converting a Script:

- Understanding how to pass data
- Returning correct results.

Enabling Self-Service:

- Building an interactive forecast dashboard.
- Deploying a Dashboard to Tableau Server for self-service exploration.

Directly From Python


```
import pandas as pd
import numpy as np
from fbprophet import Prophet
df = pd.read_csv('login_history.csv')
periods_to_fcast = 50
m = Prophet()
m.fit(df);
```



```
future = m.make_future_dataframe(periods=periods_to_fcast)
forecast = m.predict(future)
m.plot(forecast)
```


Tableau Calculation

Edit Parameter [Per	iods to Forecast]	×
Name: Periods to F	orecast	Comment >>
Properties		
Data type:	Integer ▼	
Current value:	150	
Display format:	Automatic	
Allowable values:	All	
		OK Cancel

Fully Adapted Code

```
SCRIPT_REAL(" import pandas as pd
import numpy as np
from fbprophet import Prophet
period = \_arg3[0]+1
df = pd.DataFrame({'ds': _arg1, 'y': _arg2 })
m = Prophet()
df = df[:-period]
m.fit(df)
future = m.make_future_dataframe(periods=period)
forecast = m.predict(future)
return forecast['yhat'].tolist()
"ATTR([Date]), SUM([Logins]), [Periods to Forecast])
```


R Forecast Code

```
SCRIPT_REAL(
```



```
"library(prophet)
period = .arg3[1]+1

df = data.frame('ds' = .arg1, 'y' = .arg2)

divide = nrow(df)-period

df = df[1:divide,]
```

```
m = prophet(df)
future = make_future_dataframe(m, periods=period)
forecast = predict(m, future)
```

```
forecast[,'yhat']",

ATTR([Date]),SUM([Logins]),[Periods to Forecast])
```


Let's Take a Look!

Tech Tip - Custom Forecasting in Tableau

Date © Customer	Activity					>	×
DATE [IF [Ds]={FIXED [Compared to the last of the last	ny]: MAX([Ds])]	then	DATEADD('day'	,[Periods to	Forecast]	[Ds])	
							•
The calculation is valid.				9 Dependencies ▼	Apply	OK	

Edit Parameter [Per	ods to Forecast]	×
Name: Periods to Fo	recast	Comment >>
Properties		
Data type:	Integer ▼	
Current value:	500	
Display format:	Automatic	
Allowable values:	All	
		OK Cancel

TABLEAU CONFERENCE

Building and Deploying a Credit Classification Application

User Story – Self-Service Model Deployment

Question:

- Teams have models they want to deploy into production.
- Business users want to explore and iterate on models in real time.

Answer:

- Deploy model in TabPy.
- Make model accessible and interactive in a dashboard application.

Building a Loan Scoring Application

Building a Model:

- Training and evaluating
- Adapting for Tableau

Model Simulation:

- Inputting data
- Visualizing results

Deploying at Scale:

- Self-service applications
- Tableau Server

Let's Take a Look!

Tech Tip - Creating a Model in Jupyter

Tech Tip – Deploying a Function in TabPy

```
In []: metrics.confusion matrix(y test, threshold preds)
In [ ]: def loanclassifierfull( arg1, arg2, arg3, arg4, arg5):
            from pandas import DataFrame
            # Load data from tableau (brought in as lists) into a dictionary
            # Like I mentioned in my email, the columns get sorted alphabetically in this constructor
            # Adding the numbers sorts them correctly
            d = {'1-grade': arg1, '2-income': arg2, '3-sub grade num': arg3, '4-purpose': arg4, '5-dti': arg5}
            # Convert the dictionary to a Pandas Dataframe
            df = DataFrame(data=d)
            # Transform categorical variables into numerical/continuous features
            df['1-grade'] = enc.transform(df['1-grade'])
            df['4-purpose'] = enc2.transform(df['4-purpose'])
            print(df.head())
            # This is the missing step from my first version
            # We need to scale the inputs to the Model or it will be totally off
            # Hope no one saw this
            # The scaler, since it's saved in the code, should be pickled automatically by TabPy and available for reuse
            # This should also be the case for the feature encoder above
            df = scaler.transform(df)
            # Use the loaded model to develop predictions for the new data from Tableau
            probs = model.predict proba(df)
            return [loan[1] for loan in probs]
In [ ]: func probs =loanclassifierfull(test.iloc[:,0],test.iloc[:,1],test.iloc[:,2],test.iloc[:,3],test.iloc[:,4])
        print('Calc Results Come After This')
        print(func probs[:10])
        client = tabpy client.Client('http://localhost:9004')
In [ ]: client.deploy('loanclassifierfull', loanclassifierfull,
                      'Returns the probablility that a loan will result in a bad loan based on its Grade, Income, '
                      'SubGradeNum, Purpose, and DTI', override=True)
```


Let's Take a Look!

Tech Tip – Model Simulation

ne: Test Purpose				Comment >>
operties				
ata type:	String	▼		
urrent value:	home impoveme	nt 🔻		
isplay format:		~		
llowable values:	○ All ● List	Range		
ist of values Value		Display As	^	Add from Parameter
Value		Display As	^	
Value car			^	Add from Parameter Add from Field
Value car credit_card		car	^	
Value car credit_card small_business		car credit card	^	Add from Field
Value car credit_card small_business		car credit card small business	^	Add from Field
car credit_card small_business other	1	car credit card small business other	^	Add from Field Paste from Clipboard
Value car credit_card small_business other wedding debt_consolidation		car credit card small business other wedding	^	Add from Field
Value car credit_card small_business other wedding		car credit card small business other wedding debt consolidation		Add from Field Paste from Clipboard

Edit Parameter [Tes	t DTI]	×
Name: Test DTI		Comment >>
Properties		
Data type:	Float ▼	
Current value:	7	
Display format:	Automatic	
Allowable values:	○ All ○ List ● Range	
Minimum: 0		Set from Parameter
✓ Maximum: 50	0	Set from Field
Step size: 1		
		OK Cancel

dit Parameter [Test	t Sub Grade Num]	×
Name: Test Sub Gra	de Num	Comment >>
Properties		
Data type:	Float ▼	
Current value:	1 ▼	
Display format:	Automatic	
Allowable values	○ All ● List ○ Range	
List of values		
List of values Value	Display As	Add from Parameter >
	Display As 0.2	
Value	' '	Add from Field
Value 0.2	0.2	
Value 0.2 0.4	0.2	Add from Field
Value 0.2 0.4 0.6	0.2 0.4 0.6	Add from Field
Value 0.2 0.4 0.6 0.8	0.2 0.4 0.6 0.8	Add from Field Paste from Clipboard
Value 0.2 0.4 0.6 0.8	0.2 0.4 0.6 0.8	Add from Field
Value 0.2 0.4 0.6 0.8	0.2 0.4 0.6 0.8	Add from Field Paste from Clipboard
Value 0.2 0.4 0.6 0.8	0.2 0.4 0.6 0.8	Add from Field Paste from Clipboard

Conclusion

Data Science:

- Framing business questions
- Building a model
- Adapting code and operationalizing using Tableau

Business Use Cases:

- Exploring complex problems visually
- Scaling with Tableau Server

Tableau in Data Science:

- Exploratory data analysis
- Operationalization

Questions?

nmannheimer@tableau.com

Please complete the session survey from the Session Details screen in your TC18 app

RELATED SESSIONS

Advanced analytics at scale | Deploying machine learning in the enterprise Today | 12:30 - 1:30 | MCCNO - L3 - 346

Embedding Tableau for self-service data science Today | 2:15 – 3:15 | MCCNO - L2 - R02

Thank you!

Contact me at nmannheimer@tableau.com

TABLEAU CONFERENCE