13. Zjawiska transportu w gazach

Wybór i opracowanie zadań.13.1-13.11.Bogumiła Strzelecka

- 13.1. Ile razy zmieni się współczynnik dyfuzji gazu dwuatomowego, jeżeli w wyniku:
 - a) izotermicznego,
 - b) adiabatycznego

rozprężania gazu jego ciśnienie zmniejszyło się dwukrotnie?

- **13.2.** Współczynnik dyfuzji tlenu w warunkach normalnych jest równy $1,41 \cdot 10^{-4} \text{ m}^2/\text{s}$. Znaleźć współczynnik dyfuzji tego gazu w temperaturze $50^{\circ}C$, jeżeli gaz ogrzewano przy stałej objętości.
- **13.3.** Współczynnik przewodnictwa cieplnego gazu trójatomowego jest równy $1,45\cdot10^{-2}$ $W/m\cdot K$, a współczynnik dyfuzji w tych samych warunkach wynosi 10^{-5} m^2/s . Znaleźć liczbę cząsteczek gazu w Im^3 w tych warunkach.
- 13.4. Znaleźć współczynnik przewodnictwa cieplnego chloru, jeżeli wiadomo, że współczynnik lepkości dynamicznej tego gazu w danych warunkach jest równy $1,29\cdot10^{-5}$ $N\cdot s/m^2$.
- **13.5.** W jakiej temperaturze współczynnik lepkości dynamicznej azotu jest równy współczynnikowi lepkości dynamicznej wodoru w temperaturze $19^{\circ}C$? Średnica atomu azot wynosi $3.1 \cdot 10^{-10}$ m, a średnica atomu wodoru $-2.3 \cdot 10^{-10}$ m.
- 13.6. Obliczyć ilość ciepła przewodzonego przez ścianę mieszkania w zimie w czasie t., jeżeli przewodnictwo cieplne ściany wynosi χ , grubość ściany jest równa d, zaś jej powierzchnia S. Temperatura w mieszkaniu wynosi T_I , a na zewnątrz $T_2 < T_I$. Ile należy spalić węgla w celu wyrównania ubytku ciepła przez przewodnictwo, zakładając, że tylko η część ciepła dostarczonego przez spalanie węgla idzie na wyrównanie tego braku. Ze spalenia I kg węgla uzyskujemy r J ciepła.
- 13.7. Naczynie szklane o powierzchni S i grubości ścianek d, zawierające mieszaninę wody z lodem w równowadze termicznej, postawiono w pokoju o temperaturze T_l . Wiedząc, że przez jednostkę powierzchni szkła, przy gradiencie temperatur $\Delta T/d$, w każdej sekundzie dopływa ilość ciepła χ , obliczyć ile lodu ulegnie stopieniu w tym naczyniu w czasie τ . Ciepło topnienia lodu jest równe l.
- **13.8.** Ściana drewniana ma grubość d. Jaką grubość powinien mieć mur z cegieł, aby miał taką samą przewodność cieplną jak ta ściana z drewna. Współczynnik przewodnictwa cieplnego drewna wynosi χ_I a cegły χ_2 .
- 13.9. Dwie płytki miedziana i żelazna, z których każda ma grubość l cm, dokładnie przylegają do siebie. Temperatura zewnętrznej powierzchni płytki miedzianej jest równa 373 K, a temperatura zewnętrznej powierzchni płytki żelaznej jest równa 273 K. Znaleźć temperaturę płaszczyzny zetknięcia płytek jeżeli współczynniki przewodnictwa cieplnego są równe $\chi_1 = 390 \ W/m \cdot K$ (miedź), $\chi_2 = 62 \ W/m \cdot K$ (żelazo).

- **13.10.** Piec elektryczny o mocy P = 2kW i powierzchni $S = 0.25 m^2$ pokryty jest ogniotrwałym materiałem o grubości d = 10 cm. Współczynnik przewodnictwa cieplnego tego materiału jest równy $\chi = 0.8W/m \cdot K$. Jaka jest temperatura zewnętrznej powierzchni pieca, jeżeli temperatura jego wewnętrznej powierzchni jest równa $t = 1200 \, ^{\circ}C$?
- **13.11.** Zamknięty termos styropianowy zawierający masę m cieczy o temperaturze T_o wstawiono do pieca o stałej temperaturze $T_l > T_w$ (T_w temperatura wrzenia cieczy). Ogrzewana powierzchnia termosu wynosi S, zaś grubość ścianek naczynia d. Współczynnik przewodnictwa cieplnego styropianu jest równy χ , zaś ciepło właściwe wody wynosi c. Po jakim czasie ciecz w naczyniu zagotuje się?

Rozwiązania:

13.1.R.

Współczynnik dyfuzji wyraża się wzorem:

$$D = \frac{1}{3} \, \overline{v} \cdot \overline{\lambda} \,,$$

 \overline{v} – wartość średniej prędkości arytmetycznej cząsteczek gazu, $\overline{\lambda}$ - średnia droga swobodna cząsteczek.

$$\overline{v} = \sqrt{\frac{8kT}{\pi \cdot m}}$$
, gdzie k – stała Boltzmanna, T – temperatura, \mathbf{m} – masa cząsteczki;

$$\overline{\lambda} = \frac{1}{\sqrt{2}\pi \cdot d^2 \frac{n}{V}}$$
, gdzie d –średnica czynna cząsteczki, n – liczba cząsteczek, V – objętość.

Podstawiając powyższe zależności do wyrażenia opisującego współczynnik dyfuzji i uwzględniając, że : $\frac{n}{V} = \frac{p}{kT}$ otrzymujemy zależność:

(1)
$$D = \frac{1}{3} \sqrt{\frac{8kT}{\pi \cdot m}} \cdot \frac{kT}{\sqrt{2\pi \cdot d^2 p}}$$

a) w przemianie izotermicznej T = const, możemy więc napisać, że $D \sim \frac{1}{p}$

Wówczas
$$\frac{D_2}{D_1} = \frac{p_1}{p_2} = 2$$

b) Przy przemianie adiabatycznej możemy napisać D $\sim \frac{\sqrt{T^3}}{p}$

Wówczas

(2)
$$\frac{D_2}{D_1} = \sqrt{\frac{T_2^3}{T_1^3}} \cdot \frac{p_1}{p_2}$$
.

Korzystając z równania adiabaty otrzymujemy zależność:

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\chi-1}{\chi}}, \text{ gdzie } \chi = \frac{\frac{i}{2}+1}{\frac{i}{2}}, \text{ i - liczba stopni swobody dla gazu dwuatomowego jest równa 5.}$$

Podstawiając powyższe zależności do równania (2) otrzymujemy :

$$\frac{D_2}{D_1} = \sqrt{\left(\frac{p_2}{p_1}\right)^{3\frac{\chi-1}{\chi}}} \cdot \frac{p_1}{p_2} = 1,49$$

13.2. O.

$$D = D_0 \sqrt{\frac{T}{T_0}}$$

13.3.R.

Należy obliczyć wielkość: $\frac{n}{V}$.

Korzystamy z następujących zależności:

 $\chi = \frac{1}{3} \overline{v} \cdot \overline{\lambda} \cdot \rho \cdot c_v - \text{współczynnik przewodnictwa cieplnego};$

$$D = \frac{1}{3}\overline{v} \cdot \overline{\lambda}$$
 - współczynnik dyfuzji.

Obliczamy:

$$\frac{\chi}{D} = \frac{m}{V} \cdot \frac{C_v}{\mu}$$
, ponieważ $c_V = \frac{C_v}{\mu}$.

 $n = \frac{m}{\mu} \cdot N_A$, gdzie μ jest masą 1 mola gazu, N_A - stała Avogadro,

 $C_V = \frac{i}{2}R$, gdzie R – uniwersalna stała gazowa, i – liczba stopni swobody (dla gazu trójatomowego wynosi 7), otrzymujemy zależność

$$\frac{\chi}{D} = \frac{n \cdot \mu}{V \cdot N_4} \cdot \frac{\frac{i}{2}R}{\mu}.$$

Po przekształceniach oraz uwzględniając, że $\frac{R}{N_A} = k = 1,38 \cdot 10^{-23} J/K$

otrzymujemy:

$$\frac{n}{V} = \frac{2\chi}{Dki} = 3.5 \cdot 10^{23} \, m^{-3}$$
.

13.4.R.

 $\chi = \frac{1}{3} \overline{v} \cdot \overline{\lambda} \cdot \rho \cdot c_v \text{ -współczynnik przewodnictwa cieplnego;}$

$$\eta = \frac{1}{3} \overline{v} \cdot \overline{\lambda} \cdot \rho$$
 - współczynnik lepkości dynamicznej.

Uwzględniając powyższe zależności otrzymujemy:

$$\chi = \eta \cdot c_V = \frac{i}{2} \cdot \frac{R}{\mu} \cdot \eta = 3,77 \cdot 10^{-3} W / m \cdot K$$

13.5.R.

 $\eta = \frac{1}{3} \overline{v} \cdot \overline{\lambda} \cdot \rho$ - współczynnik lepkości dynamicznej

$$\overline{v} = \sqrt{\frac{8RT}{\pi \cdot \mu}}$$
, gdzie k – stała Boltzmanna, T – temperatura, m – masa cząsteczki;

$$\overline{\lambda} = \frac{1}{\sqrt{2\pi} \cdot d^2 \frac{n}{V}}$$
, gdzie d –średnica czynna cząsteczki, n – liczba cząsteczek, V – objętość

Uwzględniając powyższe zależności oraz pamiętając, że

$$\eta_N = \eta_H$$

otrzymujemy

$$T_N = T_H \cdot \frac{\mu_N}{\mu_H} \cdot \frac{d_N^4}{d_H^4} \cong 204^{\circ} C$$

13.6.R.

Ilość ciepła przewodzonego przez ściany mieszkania:

$$Q = \chi \cdot S \cdot t \frac{T_1 - T_2}{d}$$

Ilość ciepła uzyskana ze spalenia m masy węgla:

$$Q_1 = m \cdot r$$
.

Część uzyskanego ze spalenia węgla ciepła wyrównuje straty ciepła:

$$\eta Q_1 = Q$$

Po przekształceniach otrzymujemy:

$$m = \eta \cdot S \cdot t \cdot \chi \cdot \frac{T_1 - T_2}{d \cdot r}$$

13.7.R.

Ilość ciepła przewodzonego przez ścianki naczynia

$$Q = \chi \cdot S \cdot \frac{\Delta T}{d} \cdot \tau$$

Masa lodu stopiona przez to ciepło wynosi:

$$m = \frac{\chi \cdot S \cdot \Delta T \cdot \tau}{d \cdot l}$$

13.8.R.

Ilość ciepła przewodzona przez ścianę z drewna w czasie τ musi byś równa ilości ciepła przewodzonego przez mur z cegieł w tym samym przedziale czasu:

$$\chi_1 \cdot S \cdot \frac{\Delta T}{d} \cdot \tau = \chi_2 \cdot S \cdot \frac{\Delta T}{d_r} \cdot \tau$$

Stad:

$$d_x = \frac{\chi_2}{\chi_1} d$$

13.9.R.

Ilość ciepła przewodzonego przez płytkę z miedzi musi być równa ilości ciepła przewodzonego przez płytkę z żelaza:

$$\chi_1 S \frac{T_2 - T_s}{d} \tau = \chi_2 S \frac{T_x - T_1}{d} \tau$$

Po przekształceniach otrzymujemy:

$$T_x = \frac{\chi_1 T_1 + \chi_2 T_2}{\chi_1 + \chi_2} = 339.3K$$

13.10.R.

Ciepło wytwarzane przez piec:

$$Q = P \cdot \tau$$

Ciepło przenoszone przez warstwę:

$$Q = \chi \cdot S \cdot \frac{T - T_x}{d} \cdot \tau$$

Porównując powyższe równania i przekształcając otrzymujemy:

$$T_x = T - \frac{P \cdot d}{\chi \cdot S} = 473K$$

13.11.R.

Ciepło, które przepłynie do naczynia w czasie dt:

$$dQ = \chi \cdot S \cdot \frac{\Delta T}{d} dt$$
, gdzie: $\Delta T = T_1 - T$, a T jest temperaturą, jaką osiągnie woda

pobierając ciepło dQ w czasie dt.

Ciepło pobrane przez wodę zmieni jej temperaturę o dT:

$$dT = \frac{dQ}{m \cdot c}$$
.

Porównując powyższe równania otrzymujemy:

$$dT = \frac{\chi \cdot S}{d \cdot m \cdot c} (T_1 - T) \cdot dt.$$

Woda w naczyniu zagotuje się gdy temperatura T osiągnie wartość temperatury wrzenia dla wody T_w .

Przekształcając powyższe równanie, całkujemy je obustronnie

$$\int_{T_0}^{T_w} \frac{dT}{T_1 - T} = \frac{\chi \cdot S}{d \cdot m \cdot c} \int_{0}^{\tau} dt$$

i otrzymujemy wzór na czas, po którym ciecz w termosie zagotuje się:

$$\tau = \frac{d \cdot m \cdot c}{\chi \cdot S} \ln \frac{T_1 - T_0}{T_1 - T_w}.$$