Vorkurs Mathematik 2019 | Lösungen zum Thema

Folgen und Grenzwerte

\times Aufgabe 1

Notiere jeweils die ersten fünf Folgenglieder der durch a_n definierten Folge (a_n) . Falls nichts anderes angegeben ist, gilt $n \in \mathbb{N}$.

1.
$$a_n = \sum_{k=1}^n 2k$$

2.
$$a_n = \frac{1}{2n-1}$$
, $n \in \mathbb{N}_0$ 3. $a_n = \frac{(-1)^n}{n+5}$

3.
$$a_n = \frac{(-1)^n}{n+5}$$

4.
$$a_n = c^n$$
, $n \in \mathbb{N}_0, c \in \mathbb{R} \setminus \{0\}$ 5. $a_n = \log_4(2^n)$

5.
$$a_n = \log_4(2^n)$$

Lösung:

1.
$$a_1 = 2$$
, $a_2 = 6$, $a_3 = 12$, $a_4 = 20$, $a_5 = 30$

2.
$$a_0 = -1$$
, $a_1 = 1$, $a_2 = \frac{1}{3}$, $a_3 = \frac{1}{5}$, $a_4 = \frac{1}{7}$

3.
$$a_1 = -\frac{1}{6}$$
, $a_2 = \frac{1}{7}$, $a_3 = -\frac{1}{8}$, $a_4 = \frac{1}{9}$, $a_5 = -\frac{1}{10}$

4.
$$a_1 = 1$$
, $a_2 = c$, $a_3 = c^2$, $a_4 = c^3$, $a_5 = c^4$

5.
$$a_n = \frac{n}{2}$$
, daher: $a_1 = \frac{1}{2}$, $a_2 = 1, a_3 = \frac{3}{2}$, $a_4 = 2$, $a_5 = \frac{5}{2}$

× Aufgabe 2

(a) Untersuche die Folge (a_n) auf Monotonie, mit

1.
$$a_n = -\frac{5}{n}$$

1.
$$a_n = -\frac{5}{n}$$
 2. $a_n = \lambda^n$, $0 < \lambda < 1$ 3. $a_n = (-1)^{n+1} \cdot n$

3.
$$a_n = (-1)^{n+1} \cdot n$$

(b) Bestimme bei den drei in (a) definierten Folgen die größte untere Schranke, die kleinste obere Schranke sowie die kleinste Schranke.

Lösung:

(a) 1. (a_n) ist monoton wachsend, denn:

$$a_n \stackrel{!}{<} a_{n+1} \quad \Leftrightarrow \quad \frac{-5}{n} < \frac{-5}{n+1} \quad \Leftrightarrow \quad \frac{1}{n} > \frac{1}{n+1} \quad \Leftrightarrow \quad n+1 > n \quad \Leftrightarrow \quad 1 > 0$$

2. (a_n) ist <u>monoton fallend</u>, denn:

$$a_n \stackrel{!}{>} a_{n+1} \Leftrightarrow \lambda^n > \lambda^{n+1} \Leftrightarrow \lambda^n > \lambda^n \cdot \lambda \Leftrightarrow 1 > \lambda$$

3. (a_n) ist <u>nicht monoton fallend</u>, denn dann müsste gelten:

$$\begin{aligned} a_n &\overset{!}{\geq} a_{n+1} &\Leftrightarrow & (-1)^{n+1} \cdot n \geq (-1)^{n+2} \cdot (n+1) \\ &\Leftrightarrow & (-1)^{n+1} \geq (-1)^{n+2} \cdot \frac{n+1}{n} \\ &\Rightarrow & \begin{cases} -1 \geq \frac{n+1}{n}, & \textit{n gerade 4} \\ -1 \leq \frac{n+1}{n}, & \textit{n ungerade} \end{cases} \end{aligned}$$

 (a_n) ist auch nicht monoton wachsend, denn dann müsste gelten:

$$a_n \stackrel{!}{\leq} a_{n+1} \quad \Leftrightarrow \quad (-1)^{n+1} \cdot n \leq (-1)^{n+2} \cdot (n+1)$$

$$\Leftrightarrow \quad (-1)^{n+1} \leq (-1)^{n+2} \cdot \frac{n+1}{n}$$

$$\Rightarrow \quad \begin{cases} -1 \leq \frac{n+1}{n}, & n \text{ gerade} \\ -1 \geq \frac{n+1}{n}, & n \text{ ungerade 4} \end{cases}$$

- (b) 1. \circ größte untere Schranke s=-5 finden: (a_n) ist streng monoton wachsend, also ist die größte untere Schranke $s=a_1=-5$
 - \circ kleinste obere Schranke S=0 finden: Eine obere Schranke ist offensichtlich S=0. Angenommen es existiert eine kleinere obere Schranke $\tilde{S} < S$. Dann existiert ein $\varepsilon > 0$, sodass $\tilde{S} < -\varepsilon < 0$. Dann würde für alle $n \in \mathbb{N}$ gelten:

$$a_n \le \tilde{S} \quad \Leftrightarrow \quad a_n \le 0 - \varepsilon \quad \Leftrightarrow \quad \frac{-5}{n} \le -\varepsilon \quad \Leftrightarrow \quad \frac{5}{n} \ge \varepsilon$$

$$\Leftrightarrow \quad \frac{5}{\varepsilon} \ge n \qquad \stackrel{\checkmark}{\checkmark} \text{ Gilt nicht für alle } n \in \mathbb{N}$$

 \circ Also ist (a_n) mit $B = \max\{|s|, |S|\} = 5$ beschränkt.

 \circ größte untere Schranke s = 0 finden:

Eine untere Schranke ist offensichtlich s=0.

Angenommen, es existiert eine größere untere Schranke $\tilde{s} > s$. Dann existiert ein $\varepsilon > 0$, sodass $\tilde{s} = s + \varepsilon$ gilt und somit für alle $n \in \mathbb{N}$ folgt:

$$a_n \ge \tilde{s} \quad \Leftrightarrow \quad a_n \ge s + \varepsilon \quad \Leftrightarrow \quad \lambda^n > \varepsilon \quad \xrightarrow[\log]{\lambda^n, \varepsilon > 0} \quad \log(\lambda^n) > \log(\varepsilon)$$

$$\Leftrightarrow \quad n \cdot \log(\lambda) > \log(\varepsilon) \quad \xrightarrow[\log]{\lambda} \quad n < \frac{\log(\varepsilon)}{\log(\lambda)} \quad \not\downarrow \quad \text{Gilt nicht für alle } n \in \mathbb{N}$$

2.

- o <u>kleinste obere Schranke $S = \lambda$ finden:</u> (a_n) ist monoton fallend, also ist die kleinste obere Schranke $a_1 = \lambda$.
- o Also (a_n) mit $B = \max\{|s|, |S|\} = \lambda$ beschränkt.
- 3. $\circ \underline{(a_n) \ nicht \ nach \ oben \ unbeschränkt:}$ $Angenommen, \ es \ existiert \ S \in \mathbb{R}^+, \ sodass \ für \ alle \ n \in \mathbb{N} \ gilt: \ a_n \leq S.$

$$a_n \leq S \quad \Leftrightarrow \quad (-1)^{n+1} \cdot n \leq S \Rightarrow \begin{cases} n \leq S, & \text{n ungerade } \not \text{4 Nur f\"ur} \\ S = \infty \not \in \mathbb{R}^+ \\ \text{erf\"ullt} \end{cases}$$

$$n \geq -S, \quad \text{n gerade}$$

Existiert in \mathbb{R}^+ keine obere Schranke, dann auch nicht in \mathbb{R} .

o (a_n) ist nicht nach unten unbeschränkt: Angenommen, es existiert $s \in \mathbb{R}^-$, sodass für alle $n \in \mathbb{N}$ gilt: $a_n \geq s$. Dann:

$$a_n \geq s \Leftrightarrow (-1)^{n+1} \cdot n \geq s \Rightarrow \begin{cases} n \geq s, & \textit{n ungerade} \\ n \leq -s, & \textit{n gerade} \end{cases} \text{ f is $s = -\infty \not \in \mathbb{R}^-$ erfillt}$$

Existiert in \mathbb{R}^- keine untere Schranke, dann auch nicht in \mathbb{R} und somit ist die Folge auch nicht beschränkt..

• Die Folge ist nicht beschränkt, da sie nicht nach oben und unten beschränkt ist

× Aufgabe 3

- (a) Welche der Folgen aus Aufgabe 1 konvergieren? Gegen welchen Grenzwert konvergieren diese?
- (b) Beweise deine Aussage bei der ersten konvergenten Folge.

Lösung:

- (a) Es konvergieren die Folge aus 2. und die Folge aus 3. jeweils gegen 0 sowie die Folge aus 4. gegen 0, falls $c \in (-1,1)$, und gegen 1, falls c = 1. Falls $c \leq -1$ divergiert die Folge aus 4., falls c > 1, so divergiert sie (gegen ∞).
- (b) Beweis der Konvergenz der Folge aus 2.: <u>Zeige</u>: (a_n) konvergiert für $n \to \infty$ gegen 0.

Es gilt für $n \in \mathbb{N}$:

$$|a_n - 0| = \left| \frac{1}{2n - 1} \right| = \frac{1}{2n - 1}$$

An dieser Stelle erkennen wir, dass $\lim_{n\to\infty} 1 = 1$ und $\lim_{n\to\infty} (2n-1) = \infty$ (nach dem Satz über Grenzwerte aus der VL). Also gilt nach dem Satz über Grenzwerte aus der VL, dass $\lim_{n\to\infty} \frac{1}{2n-1} = 0$.

Aufgabe 4

- 1. Betrachte die Folge (a_n) mit $a_n = \frac{15n 5n^2 + 3n^3}{n^3 10n}$.
 - a) Konvergiert (a_n) ? Falls ja, was ist ihr Grenzwert?
 - b) Ist (a_n) beschränkt? Hinweis: Ein Blick auf Aufgabe 8 kann helfen. ©
- 2. Beweise, dass konstante Folgen konvergieren.
- 3. Zeige mittels ε -Beweis, dass (a_n) mit $a_n = \frac{(-1)^n}{n}$ konvergiert.

Lösung:

1. a) Wir formen a_n um:

$$a_n = \frac{15n - 5n^2 + 3n^3}{n^3 - 10n} = \frac{n^3 \left(\frac{15}{n^2} - \frac{5}{n} + 3\right)}{n^3 \left(1 - \frac{10}{n^2}\right)} = \frac{\left(\frac{15}{n^2} - \frac{5}{n} + 3\right)}{\left(1 - \frac{10}{n^2}\right)} \xrightarrow[n \to \infty]{} \frac{3}{1} = 3$$

Wir sehen also: (a_n) konvergiert und hat den Grenzwert a = 3.

- b) Mit Satz I aus Aufgabe 8 und Aufgabenteil a) folgt die Beschränktheit.
- 2. (a_n) konstant $\Leftrightarrow a_n = c$, mit $c \in \mathbb{R}$. Vermutung: Der Grenzwert von (a_n) ist c. Sei $\varepsilon > 0$, $n_0 \in \mathbb{N}$ kann beliebig gewählt werden. Dann gilt für alle $n \ge n_0$:

$$|a_n - a| = |c - c| = 0 < \varepsilon$$

3. Vermutung: a = 0. Also: Sei $\varepsilon > 0$, wähle $n_0 \in \mathbb{N}$ mit $n_0 > \frac{1}{\varepsilon}$, dann gilt für alle $n \ge n_0$:

$$|a_n - 0| = \left| \frac{(-1)^n}{n} \right| = \frac{|(-1)^n|}{|n|} = \frac{1}{n} \le \frac{1}{n_0} < \frac{1}{\frac{1}{\varepsilon}} = \varepsilon$$

Aufgabe 5

Sei (a_n) eine Folge mit dem Bildungsgesetz $a_n = 44 - \frac{3 \cdot (-1)^n}{2n}$.

- 1. Skizziere die ersten fünf Folgenglieder in einem Koordinatensystem.
- 2. Konvergiert die Folge (a_n) ? Falls ja, welchen Grenzwert a hat die Folge? Zeichne ihn und einen ε -Streifen mit $\varepsilon = 1$ gegebenenfalls mit in das Koordinaten-
- 3. Bestimme jeweils zum gegebenen ε das kleinste $n_0 \in \mathbb{N}$, sodass für alle $n \geq n_0$ gilt:

$$a) \varepsilon = 1$$

$$b) \varepsilon = \frac{1}{2}$$

b)
$$\varepsilon = \frac{1}{2}$$
 $c) \varepsilon = \frac{1}{10}$

Lösung:

1. Die ersten fünf Folgenglieder lauten:

$$a_1 = 45 + \frac{1}{2} = 45.5$$
 $a_2 = 44 - \frac{3}{4} = 43.25$ $a_3 = 44 + \frac{1}{2} = 44.5$

$$a_2 = 44 - \frac{3}{4} = 43,25$$

$$a_3 = 44 + \frac{1}{2} = 44,5$$

$$a_4 = 44 - \frac{3}{8} = 43,625$$
 $a_5 = 44 + \frac{3}{10} = 44,3$

$$a_5 = 44 + \frac{3}{10} = 44,3$$

Abbildung 1: Die ersten 20 Folgenglieder der Folge (a_n) mit $a_n = 44 - \frac{3 \cdot (-1)^n}{2n}$.

2. Wir formen a_n um:

$$a_n = 44 - \frac{3}{2} \cdot \frac{(-1)^n}{n} \xrightarrow[n \to \infty]{} 44 - \frac{3}{2} \cdot 0 = 44$$

Achtung: Die Konvergenz von $\left(\frac{(-1)^n}{n}\right)$ haben wir in Aufgabe 4, 3.), bewiesen, dies wäre sonst erstmal nicht trivial, da $((-1)^n)$ nicht konvergiert!

3. Es gilt:

$$|a_n - a| = \left| 44 - \frac{3}{2} \cdot \frac{(-1)^n}{n} - 44 \right| = \left| -\frac{3}{2} \cdot \frac{(-1)^n}{n} \right| = \left| -\frac{3}{2} \right| \cdot |(-1)^n| \cdot \left| \frac{1}{n} \right|$$
$$= \frac{3}{2n} \stackrel{!}{<} \varepsilon \quad \Leftrightarrow \quad \frac{3}{2\varepsilon} < n$$

Somit:

a)
$$\varepsilon = 1 \implies \frac{3}{2} < n_0 \implies n_0 = 2$$
 b) $\varepsilon = 0.5 \implies 3 < n_0 \implies n_0 = 4$ c) $\varepsilon = 0.2 \implies \frac{15}{2} < n_0 \implies n_0 = 8$ d) $\varepsilon = 0.1 \implies 15 < n_0 \implies n_0 = 16$

× Aufgabe 6

Zeige, dass die Folge (c_n) mit $c_n = (-1)^n$ divergiert.

Hinweis: Erinnere dich an das Negieren von Aussagen aus dem Quantorenlogik-Vortrag und negiere die ε -Definition

$$\exists a \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 : |a_n - a| < \varepsilon$$

der Konvergenz mit Grenzwert a (diesen Grenzwert gibt es ja nicht, wenn die Folge divergiert – warum ergibt dann der Quantor vor dem a in der negierten Aussage Sinn?). Dann weißt du, was du zeigen musst, um Divergenz nachzuweisen. Eine Skizze kann anschließend auch immer gute Denkanstöße liefern.

Lösung: Es ist zu zeigen: $\forall c \in \mathbb{R} \ \exists \varepsilon > 0 \ \forall n_0 \in \mathbb{N} \ \exists n \geq n_0 : |c_n - c| \geq \varepsilon \ zeigen.$

Beweis: Sei $c \in \mathbb{R}$ beliebig. Betrachte $\varepsilon = \frac{1}{10}$ (jede andere Zahl aus (0,1] ginge auch) und sei $n_0 \in \mathbb{N}$ beliebig.

• Falls $c \ge 0$, betrachte $n = 2n_0 + 1 > n_0$. Dann:

$$|c_n - c| = |-1 - c| = |(-1) \cdot (1 + c)| = |-1| \cdot |1 + c| \ge 1 > \frac{1}{10} = \varepsilon$$

• Falls c < 0, wähle $n = 2n_0$. Dann:

$$|c_n - c| = |1 - c| > 1 > \frac{1}{10} = \varepsilon$$

Egal welches $c \in \mathbb{R}$ wir also betrachten, wir finden immer ein $\varepsilon > 0$, sodass wir zu jedem $n_0 \in \mathbb{N}$ ein $n \geq n_0$ finden, sodass $|c_n - c| \geq \varepsilon$.

Aufgabe 7

Finde und korrigiere den Fehler:

Behauptung: (b_n) mit $b_n = \frac{\cos(n)}{n+1} + 5$ konvergiert nicht gegen 5.

Beweis: Sei $\varepsilon > 0$ beliebig, $n_0 = 56$. Dann gilt für alle $n \ge n_0$:

$$|b_n - b| = \left| \frac{\cos(n)}{n+1} + 5 - 5 \right| = \left| \frac{\cos(n)}{n+1} \right| = \frac{|\cos(n)|}{|n+1|} \le \frac{1}{n} \le \frac{1}{n_0} < 1 \not< \varepsilon$$

Lösung: (b_n) konvergiert gegen 5. Die Fehler im Beweis sind:

- 1.) n_0 muss hier abhängig von ε gewählt werden, genauer ist $n_0 > \frac{1}{\varepsilon}$ notwendig.
- 2.) Am Ende vom Beweis wurde zu grob abgeschätzt.

Richtig ist: $\dots \frac{1}{n_0} < \frac{1}{\frac{1}{n_0}} = \varepsilon.$

! Aufgabe 8

Beweise den folgenden Satz:

Satz I

Jede konvergente Folge ist beschränkt.

Hinweis: Mache vielleicht zunächst eine Skizze, um dir die Aussage bildlich klar zu machen.

Lösung:

Beweis: Sei (a_n) eine Folge mit Grenzwert $a \in \mathbb{R}$. Wir wollen zuerst zeigen, dass (a_n) ab einem gewissen Folgenglied (dem n_0 -ten mit $n_0 \in \mathbb{N}$) beschränkt ist. Wir wissen, dass $\lim_{n\to\infty} a_n = a$, also:

$$\lim_{n \to \infty} a_n = a \quad \Leftrightarrow \quad \forall \, \varepsilon > 0 \,\, \exists \, n_0 \in \mathbb{N} \,\, \forall \, n \geq n_0 \,\, : \, |a_n - a| < \varepsilon$$

$$\Rightarrow \quad \exists \, n_0 \in \mathbb{N} \,\, \forall \, n \geq n_0 : \, |a_n - a| < 1 \qquad \text{(wenn es f. a. } \varepsilon \,\, \text{gilt,}$$
 insbeondere auch für $\varepsilon = 1$
$$\Rightarrow \quad \exists \, n_0 \in \mathbb{N} \,\, \forall \, n \geq n_0 : \, |a_n| = |a_n - a + a| \leq |a_n - a| + |a| < 1 + |a|$$

Zeige, dass auch $(a_1, a_2, a_3, ..., a_{n_0})$ beschränkt ist:

Sei $b := \max\{|a_1|, |a_2|, |a_3|, ..., |a_{n_0}|\} \in \mathbb{R}_{\geq 0}$. Dann ist b nach Definition eine Schranke von $\{a_1, a_2, a_3, ..., a_{n_0}\}$.

Mit $B := \max\{1 + |a|, b\} \in \mathbb{R}_{>0}$ gilt für alle $n \in \mathbb{N}$, dass $-B \le a_n \le B$. Also ist (a_n) beschränkt (durch B).

! Aufgabe 9

Findest du heraus, ob (a_n) mit $a_n = \left(1 - \frac{1}{n}\right)^n$ konvergiert? Falls ja, wogegen?

Hinweis: Führe die Substitution k = n - 1 durch. Es darf außerdem verwendet werden, dass $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$ gilt.

Lösung:
$$\lim_{n \to \infty} a_n = \frac{1}{e}$$

Aus dem Hinweis ergibt sich schon die Lösung (Bemerkung: Die Limes-Schreibweise benutzen wir erst einmal und müssen am Ende rechtfertigen, dass wir diese verwenden durften, da wir herausbekommen werden, dass die Folge konvergiert):

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \lim_{n \to \infty} \left(\frac{n-1}{n} \right)^n = \lim_{n-1 \to \infty} \left(\frac{n-1}{n-1+1} \right)^{n-1+1} = \lim_{k \to \infty} \left(\frac{k}{k+1} \right)^{k+1}$$

$$= \lim_{k \to \infty} \left[\left(\frac{k}{k+1} \right)^k \cdot \left(\frac{k}{k+1} \right) \right] = \lim_{k \to \infty} \left[\frac{1}{\left(\frac{k+1}{k} \right)^k} \cdot \frac{1}{\frac{k+1}{k}} \right]$$

$$= \lim_{k \to \infty} \left[\frac{1}{\left(1 + \frac{1}{k} \right)^k} \cdot \frac{1}{1 + \frac{1}{k}} \right] \stackrel{*}{=} \frac{1}{e} \cdot 1 = \frac{1}{e}$$

Zu *: Beide Grenzwerte existieren, daher darf Satz 10.2.1. angewendet werden.

