Contents

1	Linear Programming										2																	
	1.1	Linear Programming.																										2

1

Linear Programming

1.1 Linear Programming

Recall that in general, an optimisation problem can be formulated as

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

s.t. $\mathbf{x} \in P$,

where $P \subseteq \mathbb{R}^n$ is called the *feasible set* (or *feasible region*).

Definition 1.1.1 ► **Linear Programming Problem**

A linear programming (LP) problem is an optimisation problem where the objective function f is linear and the feasible set P is a polyhedron.

We can therefore formulate a linear programming problem as

$$\begin{aligned} \min_{\boldsymbol{x} \in \mathbb{R}^n} & \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \\ \text{s.t. } & \boldsymbol{a}_i^{\mathrm{T}} \boldsymbol{x} \leq b_i \quad \text{for } i = 1, 2, \cdots, p \\ & \boldsymbol{a}_j^{\mathrm{T}} \boldsymbol{x} = b_j \quad \text{for } i = 1, 2, \cdots, m, \end{aligned}$$

where $c \in \mathbb{R}^n$ is called the *cost* or *profit* vector, $\mathbf{a}_i^T \mathbf{x}$ and $\mathbf{a}_j^T \mathbf{x}$ are called the *constraints* and \mathbf{x} is known as *decision variables*.