Section circulaire:

- moment quadratique par rapport à l'axe (G,\vec{y}) : $I_{Gy} = \frac{\pi \cdot d^4}{64}$
- moment quadratique par rapport à l'axe (G,\vec{x}) : $I_{Gx} = \frac{\pi \cdot d^4}{64}$

Section rectangulaire :

- moment quadratique par rapport à l'axe (G,\vec{y}) : $I_{Gy} = \frac{b \cdot h^3}{12}$
- moment quadratique par rapport à l'axe (G,\vec{x}) : $I_{Gx} = \frac{h \cdot b^3}{12}$

	Relations entre contraintes et efforts intérieurs	Relations entre contraintes et déformations	Relations entre déplacements et efforts
Traction pure	$\sigma = \frac{N}{S}$	σ = E·ε	$\Delta L = \frac{N \cdot L_0}{E \cdot S}$
Flexion pure	$\sigma = -\frac{M_{fy} \cdot x}{I_{Gy}}$	$\varepsilon = \frac{\sigma}{E}$	$E \cdot I_{Gy} \cdot x'' = M_{fy}$

Avec:

- N, effort normal (N);
- S, section (mm²);
- M_{fy}, moment fléchissant (N·mm);
- x, position du point M considéré dans la section droite (mm);
- I_{Gv}, moment quadratique (mm⁴);
- I_{Gy}, moment quadratique (mm⁴)
 σ, contrainte normale (MPa);
- E, module d'Young (MPa);
- ε, déformation ;
- ΔL, allongement (mm);
- L₀, longueur initiale (mm).