

InstaCart

What will you order next?

michael fedell - 2019-06-10

Shopping

Shopping is ubiquitous in our lives. With so much data, we can solve lots of problems

Food

am a personal lover of food and think it's exciting to explore new foods and ways to shop

(Y) Solution

This application quantifies grocery shopping history and exposes hidden value to shoppers and suppliers

Overview of Data

Products

Specific product information like name, aisle, department, etc.

Orders

Data for each order including attributes like date/time of order, size, and individual products

Order Types

Archetype labels describing the type of order based on data-mined attributes

Shoppers

Shopper profiles built on all historical orders in the dataset

Modeling Techniques

Clustering

Orders were clustered based on produce-level statistics and metadata. Gaussian Mixture Models were used to find 6 distinct neighborhoods of similar orders.

Classification

After extensive model evaluation, a linear support vector classifier was chosen based on its light weight and relatively strong classification power.

Factor Analysis

The model predicts on 52 features - this would not be ideal for user input. To remedy, features were mapped to 4 dimensions obtained by factor analysis

Insights gained

- Shoppers are predictable
- Orders are not easily classified
- Significant pattern in temporality
- Online grocery shopping likely different than in-store

Thanks for listening!

Any Questions?

- Michael Fedell

MS in Analytics Candidate - Dec 2019 michaelfedell@u.northwestern.edu