PROJETO DE DISPOSITIVO DIGITAL PARA CÁLCULO DO FATOR DE POTÊNCIA

Ângelo Polotto
Orientador: Prof. Dr. Felipe W. D. Pfrimer
angelopolotto@gmail.com
polotto@alunos.utfpr.edu.br

Engenharia Eletrônica - COELE Universidade Tecnológica Federal do Paraná - Campus Toledo

19 de novembro de 2015

Sumário

- Objetivos
- 2 Referencial Teórico
- 3 Placa de Desenvolvimento TivaTMC Series
- Sensor de Corrente Baseado no Efeito Hall ACS712

- 5 Circuito Condicionador de Sinais
- 6 Construção do Medidor
- Calibração do Medidor
- 8 Código Desenvolvido
- 9 Construção do Circuito das Cargas de Teste

- 10 Terminal de Comunicação
- Sistema de Medição Proposto
- Resultados
- Conclusões
- Propostas para Trabalhos Futuros
- **15** Agradecimentos

Objetivos

Figura: Ilustração do Projeto Proposto.

O objetivo desse trabalho é a construção de dispositivo embarcado que pode ser acoplado entre a fonte de alimentação e a carga de teste (monofásica) capaz de calcular a potência ativa, potência aparente e o fator de potência, com base em valores amostrados de tensão e corrente na entrada.

Definição

Figura: Ponto de Medição do Fator de Potência.

Fórmula:

$$FP = \frac{P}{S} = \frac{\frac{1}{T} \int_0^T v(t)i(t)dt}{V_{RMS}I_{RMS}}$$
 (1)

Resentação para CL

Figura: Representação Vetorial das Potências para CL.

Fórmula:

$$FP = \cos \varphi$$
 (2)

Respresentação para CNL

Figura: Representação Vetorial das Potências para CNL.

Fórmula:

$$FP = \frac{\cos(\varphi)}{\sqrt{1 + I_{THD}^2}} = \cos(\varphi)\cos(\lambda)$$
 (3)

Taxa de Distorção Harmônica

Figura: Distorção Harmônica da Corrente..

Definição:

$$I_{RMS} = \sqrt{I_{1RMS}^2 + \sum_{n=2}^{\infty} I_{nRMS}^2}$$
 (4)

Taxa de Distorção Harmônica

Observação:

Para a curva de tensão, a distorção não é significativa.

Componentes Harmônicas

Figura: Corrente com distorção harmônica no domínio da frequência.

Definição:

$$I_{THD} = \frac{\sqrt{\sum_{n=2}^{\infty} I_{nRMS}^2}}{I_{1RMS}} \tag{5}$$

Placa de Desenvolvimento *TivaTMC Series*

Figura: Placa de Desenvolvimento *TivaTMC Series*.

Sensor de Corrente Baseado no Efeito *Hall* ACS712

Figura: Sensor de Corrente ACS712.

Circuito Condicionador de Sinais

Diagrama Esquemático

Figura: Diagrama do Circuito do Medidor.

Circuito Condicionador de Sinais

Placa de Circuito Impresso

Figura: Vista Inferior da Placa (Sem os Componentes).

Figura: Vista Superior da Placa.

Construção do Medidor

Diagrama de Blocos

Figura: Diagrama do Medidor.

Construção do Medidor

Dispositivo Construído

Figura: Vista Superior

Figura: Vista Inferior

Calibração do Medidor

Sinais Obtidos com Osciloscópio

Figura: Sinais de tensão(amarelo) e corrente(verde) calibradas

Figura: Sinais de tensão(amarelo) e detector de cruzamento(verde)

Calibração do Medido

Fundos de Escala

Figura: Fundo de Escala da Tensão.

Figura: Fundo de Escala da Corrente.

Código Desenvolvido

Figura: Diagrama Lógico do Dispositivo Proposto.

Diagrama Esquemárico

Figura: Diagrama do Circuito das Cargas.

Diagrama de Blocos

Figura: Diagrama Completo do Circuito de Cargas.

Circuito Montado

Figura: Vista superior

Figura: Vista inferior

21

Figura: Cargas de Teste.

Componentes Robustos

Figura: Indutor de potência

Figura: Reostato regulado em $43,5\Omega$

Figura: Componentes Robustos.

Terminal de Comunicação

Figura: Medições

Figura: Gráficos das amostras de tensão e corrente

Figura: Terminal de Comunicação.

Sistema de Medição Proposto

Diagrama de Blocos

Figura: Diagrama do Dispositivo Proposto.

Sistema de Medição Proposto

Sistema Montado

Figura: Sistema de Medição Montado.

Resultados

Curvas Obtidas com o CRI

Figura: Gráfico Obtido no Terminal com o CRI. Curva de tensão (superior); curva de corrente (inferior).

Tabela: Valores Teóricos e Medidos com o CRI.

Amostra	$FP_3 = cos(arctg(-(\omega L)/R))$	$FP_1 = P/S$	I _{THD2} (%)	I _{THD1} (%)	$e_{\%} = (FP_3 - FP_1/FP_3)100(\%)$
1	0,359	0,334	0	0,683	6,964
2	0,359	0,330	0	0,695	8,078
3	0,359	0,321	0	0,890	10,585
4	0,359	0,329	0	0,715	8,357
5	0,359	0,322	0	0,650	10,306
6	0,359	0,319	0	0,728	11,142
7	0,359	0,317	0	0,645	11,699
8	0,359	0,302	0	1,090	15,877
9	0,359	0,295	0	0,994	17,827
10	0,359	0,297	0	0,950	17,270
Média	0,359	0,317	0	0,804	11,811
Desvio Padrão	0	0,014	0	0,162	3,889

Resultados

Curvas Obtidas com o CRC

Figura: Gráfico Obtido no Terminal com o CRC.

Tabela: Valores Teóricos e Medidos com o CRC.

Amostra	$FP_3 = cos(arctg(1/(\omega RC)))$	$FP_1 = P/S$	I _{THD2} (%)	I _{THD1} (%)	$e_{\%} = (FP_3 - FP_1/FP_3)100(\%)$
1	0,441	0,415	0	0,781	5,896
2	0,441	0,423	0	0,822	4,082
3	0,441	0,411	0	0,883	6,803
4	0,441	0,419	0	0,673	4,989
5	0,441	0,421	0	0,596	4,535
6	0,441	0,425	0	1,030	3,628
7	0,441	0,440	0	0,888	0,227
8	0,441	0,417	0	0,931	5,442
9	0,441	0,421	0	0,672	4,535
10	0,441	0,420	0	0,652	4,762
Média	0,441	0,421	0	0,793	4,490
Desvio Padrão	0	0,008	0	0,142	1,753

Resultados

Curvas Obtidas com o RMMO

Figura: Gráfico Obtido no Terminal com o RMMO.

Tabela: Valores Teóricos e Medidos com o RMMO.

Amostra	$FP_3 = \sqrt{2}/2$	$FP_1 = P/S$	$I_{THD2}(\%)$	I _{THD1} (%)	$e_{\%} = (FP_3 - FP_1/FP_3)100(\%)$
1	0,707	0,689	9,714	7,808	2,546
2	0,707	0,687	9,714	7,940	2,829
3	0,707	0,677	9,714	7,609	4,543
4	0,707	0,689	9,714	7,970	2,546
5	0,707	0,683	9,714	7,773	3,395
6	0,707	0,694	9,714	7,968	1,839
7	0,707	0,686	9,714	7,846	2,970
8	0,707	0,681	9,714	7,721	3,677
9	0,707	0,684	9,714	7,717	3,253
10	0,707	0,682	9,714	7,781	3,536
Média	0,707	0,685	9,714	7,813	3,083
Desvio Padrão	0	0,005	0	0,119	0,746

ou assita pelo link: https://youtu.be/bc7M2BVwBcQ

Conteúdo do vídeo: apresentação do sistema de medição, primeiros testes, medição do CRI, do CRC e do RMMO.

Conclusões

- O circuito das cargas de teste produziram as ondas esperadas;
- Ruído prejudicial à exatidão foi encontrado na corrente amostrada;
- CRI apresentou o maior erro percentual médio (11,81%) devido aos ruídos;
- O medidor confundiu a classificação das cargas CRI e CRC em alguns momentos (a obtenção do θ pode ser falha);
- As medidas efetuadas foram todas próximas aos valores teóricos e simulados;
- O dispositivo funcionou como o esperado;
- Provou a eficiência do uso digital dos métodos descritos no Referencial Teórico;
- Pode ser aplicado em experimentos laboratoriais.

Propostas para Trabalhos Futuros

- Buscar novos métodos para medida de corrente que não sejam tão ruidosos;
- Amostrar mais períodos de rede para se obter uma medida mais exata;
- Remover o circuito detector de cruzamento por zero através de um software mais inteligente;
- Verificar a possibilidade de utilizar o sistema como medidor digital de energia;
- Chaveamento automático da escala do medidor para melhorar a resolução de medida de tensão e corrente;
- Utilizar o dispositivo como um controlador de banco de capacitores.

Agradecimentos

- Professor Felipe W. Pfrimer;
- Universidade Tecnológica Federal do Paraná.