公原実用 昭和63-18 915

⑲ 日本国特許庁(JP)

①実用新案出願公開

⊕ 公開実用新案公報(U) 昭63-184915

@Int_Cl_1	識別記号	庁内整理番号	砂公開 昭和63年(1988)11月28日
E 04 C 5/12 E 04 G 21/12 F 16 G 11/04	104	2101-2E C-6539-2E 8312-3 J	審査請求 未請求 (全 頁)

図考案の名称 FRP製ローブの緊張定着体

②実 願 昭62-75193

願 昭62(1987)5月21日 22出

砂考 案 者 兼板 専 市 東京都昭島市玉川町 1-23-8 神奈川県横浜市瀬谷区阿久和町3559-17 砂考 案 者 犬 飼 晴 雄 兜 森 神奈川県横浜市南区六ツ川2-25-4 砂考 案 者 保 人 東京都中央区月島1-6-12 ロゴーハイム401号 砂考 案 者 広 岡 政之 ピー・エス・コンクリ 東京都千代田区丸の内3丁目4番1号 ①出 願 ート株式会社

四代 理 人 弁理士 佐々木 功

明 細 書

1. 考案の名称

FRP製ロープの緊張定着体

2. 実用新案登録請求の範囲

FRP製ロープが挿通される平滑な中心孔を有し複数の縦割り分割体からなり全体として外周面がテーパ状をなす楔と、内周面がテーパ状をなし前記楔が挿入される貫通孔を有するスリーブとを備え、前記楔の外周面のテーパ角度を前記スリーブの貫通孔の内周面のテーパ角度よりも大きくしたことを特徴とするFRP製ロープの緊張定着体。

3. 考案の詳細な説明

(産業上の利用分野)

本考案は、プレストレストコンクリート構造用の緊張材や海洋構造物の接合用ロープ等として使用されるFRP製ロープの緊張定着体に関するものである。

(従来の技術)

従来のFRP製ロープの緊張定着体は、全体と して円錐状をなす楔の外周面のテーパ角度と、こ

公 実用 昭和63- →4915

(Frank)

の楔が挿入されるスリーブの貫通孔の内周面のテーパ角度を同じにしていた。そして楔の内周面に 凹凸を付けたものを使用していた。

(考案が解決しようとする問題点)

FRP製ロープは、髙引張り強度を有している が、層間剪断強度や圧縮強度が極めて低く、また、 表面が弱いので損傷を受け易い。従って、上記従 来の場合、楔の内周面に凹凸が付けてあり、この 凹凸部分への応力集中及び楔の長手方向の応力分 布における最大応力の位置が当該楔の小径側寄り にあってその最大応力値が非常に大きくなること によって、当該ロープは引張強度以下にて特に当 該楔の小径側寄りで破断し易く、長手方向の引張 強度を十分に生かすことができない。また、凹凸 のない楔を使用すると、前述の如く長手方向の応 力分布が不均一であるために、FRP製ロープは、 緊張定着操作に際して、表面が非常に滑り易く、 楔の中心孔から抜け出てしまって緊張定着させる ことができず、たとえ緊張定着できたとしても定 着効率に大きなばらつきがあり、安定した緊張定

着を行うのが極めて困難であるという欠点があった。

本考案は、上記従来の欠点にかんがみ、端末を引張ってFRP製ロープに緊張力を加えてもその端末が損傷を受けたり抜け出てしまうことがなく十分な緊張力を保持し、安定した緊張定着を行うことができるFRP製ロープの緊張定着体を提供することを目的とする。

(問題点を解決するための手段)

(作用)

このように本考案に係るFRP製ロープの緊張

公司実用 昭和63- 34915

(実施例)

次に、本考案の一実施例について、図面を参照 しながら説明する。

第1回は、本考案の一実施例に係るFRP製ロープの緊張定着体を示す縦断面図である。

緊張定着体1は、スリーブ2の内周面2bがテ

ーパ状になっている貫通孔 2 a にFRP 製 ロープ 4 を 挿通し、二つの 縦割り分割体からなり全体として外間面 3 b がテーパ状を位置させ、前記を 2 a に 数 1 で 2 a と 数 1 で 2 を 0 間に 挿入した 対する 2 を 0 間に 挿入した 対する 2 の 間に 対する 3 b の 傾斜 する 5 で の 内 周面 2 b の 傾斜 する 5 で の 内 周面 2 b の の 的 と か ら で 発 取 の テーパ 角 度 の テーパ 角 度 に よ り 、 楔 作 用 を 十 分 に 発 取 こ で つ 前 記 FRP 製 ロープ 4 を 損 傷 す る こ と く 引 張 0 、 緊 張 定 着 さ せ る。

第 2 図(a)は、スリーブを示す正面図、同図(b)はその縦断面図である。

スリーブ2は、耐腐蝕性材料のセラミックス、 合成樹脂又は金属等の短円柱状をなし、中央に楔 3が挿入される貫通孔2aを有し、当該貫通孔2 aの内間面2bが楔3の外間面3bに対応してテ ーパ状とされており、外間に雄ねじ2cが刻設し てある。前記内間面2bは、軸線C1に対する傾

公 実用 昭和63- 4915

(5)

斜角度即ちテーパ角度 θ_1 が第 3 図に示す楔 3 の外周面 3 b の軸線 C_2 に対する傾斜角度即ちテーパ角度 θ_2 よりも小さい所定値になっている。

第3図(a)及び(b)は、それぞれ楔を示す側面 図及び背面図である。

楔3は、セラミックス、合成樹脂又は金属等の 耐腐食性材料の二つの縦割り分割体からなり、全体として外周面3bがテーパ状をなし、ロープ4が挿通される中心孔3aを有し、この中心孔3a の両端の直径がロープ4自体の直径よりも若干大きく外広がりになって当該ロープ4に無用な面3c、 をく外広がりになっており、相互対向面3c、 3cをそれぞれ適当な厚さ分だけ一様に削除された形状をなしている。また、楔3は、内周面された形状をない平滑な状態に仕上げられており、当該内周面をロープ4の外周に当接させてスリーブ2の 貫通孔2aに挿入される。前記外周面3bは、テーパ角度θ。がスリーブ2の貫通孔2aの内周面2bのテーパ角度θ」よりも大きい所定値にて当該テーパ角度θ」に対して角度差が例えば0.11 4 度となるように設定してある。

次に、前記テーパ角度 0 1 を 2 . 0 6 ~ 2 . 8 6 度の範囲で、テーパ角度 0 2 を 2 . 0 6 ~ 3 . 0 9 度の範囲でそれぞれ種々変えてロープ4 を緊張させた場合における、当該ロープ4 の破断荷重に及ぼす影響に関する実験例について説明する。

第4図は、横軸にスリーブ2の貫通孔2aの内 周面2bのテーパ角度θ,をとり、縦軸に一定の ロープ4の破断荷重W(単位t)をとり、楔3の外

▶開実用 昭和63 184915

周面 3 b のテーパ角度 θ 2 と貫通孔 2 a の内周面 2 b のテーパ角度 θ 1 との差をそれぞれ 0 度、 0 · 1 1 4 度、 0 · 2 2 9 度とし、 その他の条件を全 て同一とした場合における実験結果を示すグラフである。

この実験例により、テーパ角度 θ_2 とテーパ角度 θ_1 との差を 0.114 度とした場合に、貫通孔 2 b の内周面 2 b のテーパ角度 θ_1 が約 $2.5 \sim 2.8$ 度の範囲においてロープ 4 の破断荷重 W が 7.5 5 (t) 以上となり、良好な結果が得られることが確認できた。これに対してテーパ角度 θ_2 とテーパ角度 θ_1 との角度差が 0.229 度の場合には、ロープ 4 の破断荷重 W が略一定の約 6.5 (t) であり、両テーパ角度が等しい場合、ロープ 4 の破断荷重 W がいずれも 5.5 (t) 以下であった。

上記実施例に係る緊張定着体1は、第1図において、2点鎖線で示すようにコンクリート構造物5の端部に固定した支圧板6に、スリーブ2の外間の雄ねじ2cに螺合する定着ナット7をもって、所定の位置に配置したロープ4を緊張定着させる

と、前記楔3の外周面3bのテーパ角度 6 2 が前記スリーブ2の貫通孔2aの内周面2bのテーパ角度 6 1 よりも大きくなっているので、このテーパ角度の差により、楔3の長手方向の応力分布における最大応力の作用位置を楔3の大径側寄りへ移行させるとともにその最大応力値を小さく発揮さるととあってとり、かつ楔作用を十分に発揮させつつ前記FRP製ロープ4を損傷することができる。

なお、本考案に係るFRP製ロープ4の緊張定着体1は、海岸近辺の構造物の接合用ロープ、軽量で高抗張力と電気絶縁性を要する通信ケーブルの端末加工、吊り橋用補張ロープなどの産業用が可能であり、FRP製ロープは、スパイラルはであり、FRP製ロープは、スパイラルく、ストランド型その他の任意の形式のものでより、ストランド型その他の任意の形式のものでよるよい。また、緊張定着体1は、スリーブの貫通孔2aを複数備えていても良く、それぞれの貫通孔2

公開実用 昭和63- ■84915

aにFRP製ロープを捕過し、それぞれ楔3を挿入して複数の当該ロープを同時に緊張定着させることも可能である。

(考案の効果)

本考案は以上のように構成され、FRP製ロー プが挿通される平滑な中心孔を有し複数の縦割り 分割体からなり全体として外周面がテーパ状をな す楔と、内周面がテーパ状をなし前記楔が挿入さ れ貫通孔を有するスリーブとを備えることにより、 ロープの外周に楔の平滑な中心孔の内面が当接す るので当該ロープが損傷を受けることがなく、前 記楔の外周面のテーパ角度を前記スリーブの貫通 孔の内周面のテーパ角度よりも大きくしたことに より、端末を引張ってFRP製ロープに緊張力を 加える際に、楔の長手方向の応力分布における最 大応力の作用位置が楔の大径側寄りへ移行すると ともにその最大応力値が小さく抑えられて当該応 力分布が均一になり、楔作用を十分に発揮させつ つ前記FRP製ロープを損傷することなく引張り、 安定した緊張定着をさせその端末が抜け出てしま

The state of

うことがなく十分な緊張力を保持することができる等の効果を有する。

4. 図面の簡単な説明

第1回は、本考案の一実施例に係るFRP製ロープの緊張定着体を示す縦断面図、第2図(a)はスリーブを示す正面図、同図(b)はその縦断面図、第3図(a)及び(b)はそれぞれ楔を示す側面図及び背面図、第4図はスリーブの貫通孔の内周面のテーパ角度と楔の外周面のテーパ角度とがロープの破断荷重に及ぼす影響に関して行った実験結果を示すグラフである。

1 … 緊張定着体、 2 … スリーブ、 2 a … 貫通孔、 2 b … 内周面、 2 c … 雄ねじ、 3 … 楔、 3 a … 中心孔、 3 b … 外周面、 3 c … 相互対向面、 4 … ロープ、 5 … コンクリート、 6 … 支圧板、 7 … 定着ナット、 C1, C2 … 軸線、 θ1, θ2 … テーパ角度

実用新案登録出願人 ピー・エス・コンクリート 株 式 会 社 保証 人 弁理士 佐 々 木 功 選出

開実用 昭和63-84915

第1図

実用新案登録出願人 ピー・エス・コンクリート 監代 理人 弁理士 佐々木 曲

実開 63-184915

174

第4図

実用新来登録出願人 ピー・エス・コンクリート 2000 175 代理人 弁理士 佐々木 功 実開 63-1849

公開 定用 昭和63-18 915

手 続 補 正 書(自発)

昭和62年8月6日

特許庁長官 小川邦夫 殿

1. 事件の表示

昭和62年実用新案登録願第75193号

2. 考案の名称

FRP製ロープの緊張定着体・

3. 補正をする者

事件との関係 実用新案登録出願人 東京都千代田区丸の内三丁目4番1号 ピー・エス・コンクリート株式会社

4.代 理 人 〒105 東京都港区虎ノ門1丁目11番7号 第2文成ビル5階501 (6317) 弁 理 士 佐 々 木 功

5. 補正の対象

明細書の「実用新案登録請求の範囲」及び「考案の詳細な説明」の各欄

6. 補正の内容

方式 審査

62.8.6

176

- A THILL
- (1) 明細書第1頁の「実用新案登録請求の範囲」を 別紙のとおり補正する。
- (2) 同書第2頁第2行に「…同じにし…」とあるそ の後に「6乃至7度にし」なる7字を加入する。
- (3) 同書第8頁第14行に「両テーパ角度」とあるその前に下記文章を加入する。

記

「いずれもテーパ角度 0、が $2.1 \sim 2.8$ 度の範囲にあり、テーパ角度 02 が $2.2 \sim 3.0$ 度の範囲にあるとき、ロープ 4 の破断荷重 W が 6.5 (t) を越え、」

(4) 同書第11頁第1行に「…ことができ…」とあるその後に下記文章を加入する。

記

「、更に前記楔の外周面のテーパ角度が2.2 ~3.0度の範囲にあることにより、従来の6~ 7度の場合に比較してFRP製ロープの緊張定着 の安定性と損傷防止をより確実なものとすること ができ」

公 月実用 昭和63- ■84915

実用新案登録請求の範囲

- (1) FRP製ロープが挿通される平滑な中心孔を有し複数の縦割り分割体からなり全体として外周面がテーパ状をなす楔と、内周面がテーパ状をなし前記楔が挿入される貫通孔を有するスリーブとを備え、前記楔の外周面のテーパ角度を前記スリーブの貫通孔の内周面のテーパ角度よりも大きくしたことを特徴とするFRP製ロープの緊張定着体。
- (2) 前記楔の外周面のテーパ角度が2.2~3.0度 の範囲にある実用新案登録請求の範囲第1項記載 のFRP製ロープの緊張定着体。