Weather Forecasting Using Machine Learning

March 9, 2025

1 Introduction

Accurate weather forecasting is crucial for farmers to optimize irrigation, planting, and harvesting schedules. Traditional weather predictions often fail at hyper-local scales, making machine learning a valuable alternative. This project aims to predict rainfall using historical weather data and machine learning models.

2 Dataset Description

The dataset contains daily weather observations for 300 days with the following attributes:

- avg_temperature: Average temperature in °C
- humidity: Humidity in percentage
- avg_wind_speed: Average wind speed in km/h
- cloud_cover: Cloud coverage percentage
- pressure: Atmospheric pressure
- rain_or_not: Binary target variable (1 = Rain, 0 = No Rain)
- date: Date of observation

3 Data Preprocessing

- Handling Missing Values: Used mean imputation for numerical features.
- Encoding Categorical Variables: Converted 'rain_or_not' into binary format using label encoding.
- Feature Scaling: Applied StandardScaler to normalize numerical features.
- Data Splitting: Split into training (80%) and testing (20%) sets.

4 Exploratory Data Analysis (EDA)

- Target Distribution: Visualized rain occurrence using count plots.
- Feature Correlations: Computed correlation matrix and plotted heatmap.
- Pairwise Relationships: Used pair plots to explore dependencies between variables.

5 Machine Learning Models

We trained and evaluated the following models:

- Logistic Regression: Baseline classifier.
- Decision Tree: Captures non-linear dependencies.
- Random Forest: Reduces overfitting and improves accuracy.
- **Gradient Boosting**: Boosting technique for higher predictive performance.

5.1 Model Performance

Table 1 shows the accuracy scores of different models.

Model	Accuracy
Logistic Regression	0.85
Decision Tree	0.80
Random Forest	0.88
Gradient Boosting	0.90

Table 1: Accuracy Scores of Different Models

6 Hyperparameter Tuning and Feature Engineering

- Random Forest Hyperparameter Tuning: Used GridSearchCV to optimize hyperparameters like 'n_estimators', 'max_depth', 'min_samples_split', and 'min_samples_leaf'.
- Feature Engineering: Generated polynomial features to capture higherorder interactions.

7 Final Output

The final model predicts rainfall probabilities for future 21 days. The probability values are converted into binary predictions (0 = No Rain, 1 = Rain) based on a threshold of 0.5.

8 Conclusion and Future Work

- The Gradient Boosting model achieved the highest accuracy of 90%.
- Future improvements:
 - Integrate additional meteorological data such as wind direction.
 - Implement deep learning models (e.g., LSTMs) for sequential forecasting.
 - Deploy the model as a real-time API for continuous predictions.