Show that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.

If $a \mid b$ and $b \mid a$, there are integers c and d such that b = ac and a = bd. Hence, a = acd. Because $a \neq 0$ it follows that cd = 1. Thus, either c = d = 1 or c = d = -1. Hence, either a = b or a = -b

2. Show that if a, b, and c are integers, where $a \neq 0$ and $c \neq 0$, such that $ac \mid bc$, then $a \mid b$.

Because $ac \mid bc$ there is an integer k such that ack = bc. Hence, ak = b, so $a \mid b$.

- Suppose that a and b are integers, $a \equiv 4 \pmod{13}$, and $b \equiv 9 \pmod{13}$. Find the integer c with $0 \le c \le 12$ such that
 - **a)** $c \equiv 9a \pmod{13}$.
 - **b**) $c \equiv 11b \pmod{13}$.
 - c) $c \equiv a + b \pmod{13}$.
 - **d)** $c \equiv 2a + 3b \pmod{13}$.
 - e) $c \equiv a^2 + b^2 \pmod{13}$.
 - **f**) $c \equiv a^3 b^3 \pmod{13}$.

a)10 b)8 c)0 d)9 e)6 f)11

- 4. Convert the binary expansion of each of these integers to a decimal expansion.
 - **a**) $(1\ 11111)_2$
 - **c)** $(1\ 0101\ 0101)_2$
 - a) 31 b) 513 c) 341 d) 26896

- **b**) (10 0000 0001)₂
- **d**) (110 1001 0001 0000)₂

- 5. Convert the hexadecimal expansion of each of these integers to a binary expansion.
 - **a**) $(80E)_{16}$
 - \mathbf{c}) (ABBA)₁₆

- **b**) $(135AB)_{16}$
- **d**) $(DEFACED)_{16}$

6. Use the Euclidean algorithm to find

a) gcd(12, 18).

b) gcd(111, 201).

c) gcd(1001, 1331). **d)** gcd(12345, 54321).

e) gcd(1000, 5040). **f)** gcd(9888, 6060).

a) 6 b) 3 c) 11 d) 3 e) 40 f) 12

7. Use the extended Euclidean algorithm to express gcd(26, 91) as a linear combination of 26 and 91.

 $(-3)\cdot 26+1\cdot 91=13$

8. Find all solutions, if any, to the system of congruences $x \equiv 7 \pmod{9}$, $x \equiv 4 \pmod{12}$, and $x \equiv 16 \pmod{21}$.

All integers of the form 16 + 252k, where k is an integer

9. Show that 15 is an inverse of 7 modulo 26.

 $15.7 = 105 \equiv 1 \pmod{26}$

- Which memory locations are assigned by the hashing function $h(k) = k \mod 97$ to the records of insurance company customers with these Social Security numbers?
 - **a**) 034567981

b) 183211232

c) 220195744

d) 987255335

a) 91 b) 57 c) 21 d) 5

11. What is the original message encrypted using the RSA system with $n = 43 \cdot 59$ and e = 13 if the encrypted message is 0667 1947 0671? (To decrypt, first find the decryption exponent d which is the inverse of e = 13 modulo $42 \cdot 58$.)