Last time: For differentiable functions f,

1 1st derivative test:

f(xo) local max/min => f(xo) = 0

2 Rollers theorem:

 $f(a) = f(b) \implies \exists c \in (a,b) \text{ s.t. } f'(c) = 0$

Thm (Mean value theorem) If $f: [a,b] \rightarrow \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b), then f: ce(a,b) s.t.

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
.

- . This = slope of blue line = mean slope of f
 - . In order to connect f(a) and f(b), a differentiable function

must attain the mean slope.

Pf: Set $g(x) = f(n) - [f(a) + \frac{f(b) - f(a)}{b - a} \cdot (n - a)].$

. This is the height of the graph of f above the blue line

As $x \mapsto -f(a) - \frac{f(b) - f(a)}{b - a} \cdot (x - a)$ is a polynomial, it is continuous and differentiable at any $x \in \mathbb{R}$.

U

So a satisfies:

- 1 continuous on [a,b]
- 2) differentiable on (a,b)
- (3) g(a) = g(b): since g(a) = f(a) [f(a) + 0] = 0 $g(b) = f(b) - [f(a) + f(b) - f(a) \cdot (b-a)] = 0$

Therefore, by Rolle's theorem, I ce (a,b) s.t.

$$D = g'(c) = f'(c) - \left[O + \frac{f(b) - f(a)}{b - a} \right]$$

$$\implies f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Cor 1 let I $\subseteq \mathbb{R}$ be an open interval and $f: I \rightarrow \mathbb{R}$. If f'(n) = 0 $\forall x \in I$, then f is a constant function.

Pf: Let a, b \in I with acb. We will prove that f(a) = f(b).

• This is sufficient. Indeed, f not constant => $\exists a, b \in I$ s.t. $f(a) \neq f(b)$.

As f is differentiable at x $\forall x \in I$ and $[a,b] \subseteq I$, then:

- [d,b] no evolutions si ?
- (2) I is differentiable on (a.b)

So, by the MVT, FCE(a,b) st.

$$O = f(c) = \frac{f(b) - f(a)}{b - a} \Longrightarrow f(a) = f(b).$$

Cor Z let $I \subseteq \mathbb{R}$ be an open interval and $f, g: I \rightarrow \mathbb{R}$. If $f'(x) = g'(x) \ \forall x \in I$, then $f \subset \mathbb{R}$ s.t. f(x) = g(x) + c $\forall x \in I$.

Pf: let $h: I \rightarrow \mathbb{R}$, h(x) = f(x) - g(x). Then $\forall x \in I$ we have h'(x) = f'(x) - g'(x) = 0.

So, by Cor 1, we know h is constant: 3 cell st.

c = h(x) = f(x) - g(x) $\forall x \in I$ $\Rightarrow f(x) = g(x) + c$ $\forall x \in I$.

ANET.

Cor 3 let I ⊆ IR be an open interval and $f: I \rightarrow IR$.

(D) If f'(x) > 0 ∀x∈I, then f is strictly

increasing: ∀x, y∈I, x<y ⇒> f(x) < f(y).

2) If f'(n) < 0 Y ne I, then f is strictly decreasing: Y n, y ∈ I, x < y => f(n) > f(y).

Pf: (1) Let a, b ∈ I with acb. Want: f(a) < f(b).
As I is differentiable at x ∀x∈I, then:

· f is continuous on [a,b]

. I is differentiable on (a,b)

$$0 < f'(c) = \frac{f(b) - f(a)}{b - a} \Rightarrow f(a) < f(b).$$

② Suppose $f'(n) < 0 \forall n \in I$. Then -f satisfies $-f'(n) > 0 \forall n \in I$. So, by 0, we know -f is strictly increasing:

$$\forall a, b \in I$$
, $a < b \implies -f(a) < -f(b)$
 $\implies f(a) > f(b)$

So f is shictly decreasing.

Ex Fix a, b > 0. Find the global minimum of $f:(0,\infty) \to \mathbb{R}$, $f(x) = \frac{a}{x} + bx$ and prove your answer.

Scratch work: Critical points are $0 = f'(x) = -\frac{a}{x^2} + b = \frac{bx^2 - a}{x^2}$

Solution: We will prove that $f(n_0) = 2\sqrt{ab}$ is the global minimum of f, where $n_0 = \sqrt{\frac{a}{b}}$.

(1) Claim: $f(x) > f(x_0) \quad \forall x \in (x_0, \infty)$. Note that $x > x_0 = \sqrt{\frac{a}{b}} \implies x^2 > \frac{a}{b} \implies bx^2 - a > 0$

$$\Rightarrow f'(x) = \frac{bx^2 - a}{x^2} > 0$$

Given $x>x_0$, by the MVT there is a point $CE(x_0,x)$ where

$$0 < f'(c) = \frac{f(x) - f(x_0)}{x - x_0} \implies f(x) > f(x_0).$$

(2) Claim: f(n) > f(no) Y ne (0, no). Note that

$$0< x< x_0 = \sqrt{\frac{a}{b}} \implies x^2 < \frac{a}{b} \implies bx^2 - a < 0$$

$$\Rightarrow f'(x) = \frac{bx^2 - a}{x^2} < 0$$

Given $x < x_0$, by the MVT there is a point $CE(x, x_0)$ where

$$0 > f'(c) = \frac{f(x_0) - f(x)}{x_0 - x} \Rightarrow f(x) > f(x_0).$$

Altogether, we conclude that $f(x_0)$ is the (strict) global minimum of $f:(0,\infty) \to \mathbb{R}$.