

Learning from UAV based Spatio-temporal-**Spectral Environment Maps**

Jannic Veith

Semester Project - Intermediate presentation Supervised by Raghav Khanna

Goal

- Thanujan Mohanadasan's Master Thesis: Multispectral Environment Mapping and Inference using Aerial Imagery
- Built pipeline from aerial images to 3D point clouds and 2D orthomosaics
- Multiclass segmentation using 41 spectral bands
 - Best accuracy: 67.7%
 - Best F1 score: 62.1

Find out whether the classification accuracy can be improved using convolutional networks

Approach

 Extend Thanujan's methods to convolutional networks

- Choose fitting software
- Data preparation
- Machine learning methods

Current progress

Choose fitting software

- Data preparation with Matlab
- Machine learning with Python (Keras)
 - Matlab does not support multispectral images, need 41 channels instead of the supported 3. Rewriting matlab functions proved to be too time intensive.

Machine learning

- Python pipeline works
- Choose Fully Convolutional Networks (FCN)

Current progress: Labeling training data

NDVI to distinguish plants and soil/road

Label and set all unlabeled pixels in the images to 0, pad images

Future work

- Fully Convolutional Network
 - Implement SegNet, U-Net
- Training data
 - More training data
 - Data augmentation
- Evaluate results

