Scilab Textbook Companion for Thermodynamics by F. P. Durham¹

Created by
Rahul Paramata
Chemical engineering
Chemical Engineering
IIT Bombay
College Teacher
Na
Cross-Checked by
Mukul R. Kulkarni

July 11, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Thermodynamics

Author: F. P. Durham

Publisher: Prentice Hall

Edition: 2

Year: 1959

ISBN: 1105809269

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
2	Types of energy	5	
3	properties of thermodynamic media	9	
4	The first law of thermodynamics	12	
5	The second law of thermodynamics	17	
6	The ideal gas	20	
7	Thermodynamic processes	26	
8	Engine Cycles	35	
9	Vapor power cycles	41	
10	Refrigeration	45	
11	Nozzles and Jet propulsion	48	
12	Mixtures	55	
13	Gas Dynamics	62	
14	Heat transfer	66	

List of Scilab Codes

Exa 2.1	example 1	5
Exa 2.2	example 2	5
Exa 2.3	example 3	6
Exa 2.4	example 4	6
Exa 2.5	example 5	7
Exa 2.6	example 6	7
Exa 3.1	example 1	9
Exa 3.2	example 2	9
Exa 3.3	example 3	10
Exa 3.4	example 4	10
Exa 4.1	example 1	12
Exa 4.2	example 2	13
Exa 4.3	example 3	13
Exa 4.4	example 4	14
Exa 4.5	example 5	14
Exa 4.6	example 6	15
Exa 4.7	example 7	15
Exa 4.8	example 8	16
Exa 4.9	example 9	16
Exa 5.1	example 1	17
Exa 5.2	example 2	17
Exa 5.3	example 3	18
Exa 6.1	example 1	20
Exa 6.2	example 2	20
Exa 6.3	example 3	21
Exa 6.4	example 4	21
Exa 6.5	example 5	22
Eva 6.6	example 6	22

Exa 6.7	example 7	23
Exa 6.8	example 8	24
Exa 6.9	example 9	24
Exa 7.1	example 1	26
Exa 7.2	example 2	26
Exa 7.3	example 3	27
Exa 7.4	example 4	28
Exa 7.5	example 5	28
Exa 7.6	example 6	29
Exa 7.7	example 7	30
Exa 7.8	example 8	31
Exa 7.9	example 9	32
Exa 7.10	example 10	32
Exa 7.11	example 11	33
Exa 7.12	example 12	34
Exa 8.1	example 1	35
Exa 8.2	example 2	36
Exa 8.3	example 3	37
Exa 8.4	example 4	37
Exa 8.5	example 5	38
Exa 8.6	example 6	39
Exa 9.1	example 1	41
Exa 9.2	example 2	42
Exa 9.3	example 3	43
Exa 9.4	example 4	43
Exa 10.1	example 1	45
Exa 10.2	example 2	45
Exa 10.3	example 3	46
Exa 11.1	example 1	48
Exa 11.2	example 2	48
Exa 11.3	example 3	49
Exa 11.4	example 4	50
Exa 11.5	example 5	50
Exa 11.6	example 6	51
Exa 11.7	example 7	51
Exa 11.8	example 8	52
Exa 11.9	example 9	53
	example 10	53

Exa 12.1	example 1		55
Exa 12.3	example 3		56
Exa 12.4	example 4		56
Exa 12.5	example 5	 •	57
Exa 12.6	example 6	 ٠	58
Exa 12.7	example 7	 •	58
Exa 12.8	example 8	 ٠	59
Exa 12.9	example 9		59
Exa 12.10			60
Exa 12.11	example 11	 •	60
Exa 13.1	example 1	 •	62
Exa 13.2	example 2	 •	63
Exa 13.3	example 3	 •	63
Exa 13.4	example 4	 •	64
Exa 13.5	example 5	 ٠	64
Exa 13.6	example 6	 ٠	65
Exa 14.1	example 1	 ٠	66
Exa 14.2	example 2	 ٠	66
Exa 14.3	example 3	 •	67
Exa 14.4	example 4	 •	67
Exa 14.5	example 5	 ٠	68
Exa 14.6	example 6	 •	68
Exa 14.7	example 7	 ٠	69
Exa 14.8	example 8	 •	69
Exa. 14 9	example 9		70

Types of energy

Scilab code Exa 2.1 example 1

```
1 clc
2 //initialization of variables
3 k=20 //lb/in
4 x=3 //in
5 //calculations
6 function [y]=fun(x)
7    y=k*x
8 endfunction
9 w=intg(0,3,fun)
10 //results
11 printf("Work done = %d in-lb",w)
```

Scilab code Exa 2.2 example 2

```
1 clc
2 //initialization of variables
3 w=0.1 //lbm
4 Pv=30000 //ft-lb/lbm
```

```
5 v1=14 //ft^3 /lbm
6 v2=3 //ft^3/lbm
7 //calculations
8 function [W]=func(v)
9     W=Pv/v
10 endfunction
11 Work=w*intg(v1,v2,func)
12 //results
13 //Answer varies a bit from the text due to rounding off of log value
14 printf("Work done = %d ft-lb", Work)
```

Scilab code Exa 2.3 example 3

Scilab code Exa 2.4 example 4

```
1 clc
2 //initialization of variables
3 T1=500 //R
4 T2=1060 //R
```

Scilab code Exa 2.5 example 5

```
1 clc
2 //initialization of variables
3 w=1 //lbm
4 Sw=0.3120 //B/lbm R
5 Ss=1.7566 //B/lb R
6 T=672 //R
7 //calculations
8 Q=T*(Ss-Sw)
9 //results
10 printf("Latent heat of water = %d B/lbm",Q)
```

Scilab code Exa 2.6 example 6

```
1 clc
2 //initialization of variables
3 w=1 //lbm
4 T1=492 //R
5 T2=672 //R
6 cp=1 //B/lbm F
7 //calculations
8 dQ=cp*(T2-T1)
```

```
9 function [s]=ds(T)
10    s=1/T
11 endfunction
12 entropy=intg(T1,T2,ds)
13 //results
14 printf("Entropy change = %.3 f B/lbm R",entropy)
```

properties of thermodynamic media

Scilab code Exa 3.1 example 1

```
1 clc
2 //initialization of variables
3 P=80 //lb/in^2
4 x=0.9 //quality
5 hg=1183.1 //B/lbm
6 hfg=901.1 //B/lbm
7 //calculations
8 h=hg-(1-x)*hfg
9 //results
10 printf("Enthalpy of steam = %.1f B/lbm",h)
```

Scilab code Exa 3.2 example 2

```
1 clc
2 //initialization of variables
3 P=100 //lb/in^2
```

Scilab code Exa 3.3 example 3

```
1 clc
2 //initialization of variables
3 R=1544 //ft-lb/R
4 M=44 //lbm
5 //calculations
6 Rdash=R/M
7 //results
8 printf("Gas constant for CO2 = %.1 f ft-lb/lbm R", Rdash)
```

Scilab code Exa 3.4 example 4

```
1 clc
2 //initialization of variables
3 P=80 //lb/in^2
4 T=120+460 //R
5 R=53.3 //ft-lb/lbmR
6 //calculations
7 disp("From table 6,")
```

```
8 h=138.66 //B/lbm
9 P=P*144 //lb/ft^2
10 v=R*T/P
11 //results
12 printf("Specific volume = %.2 f ft^3/lbm",v)
```

The first law of thermodynamics

Scilab code Exa 4.1 example 1

```
1 clc
2 //Initialization of variables
3 \text{ m=0.5} //\text{lbm/sec}
4 Pi=14 // lb / in^2
5 SVi=13 // ft^3/lbm
6 Vi=100 //ft/sec
7 P = 75.5 //hp
8 Hr=8.65 //zB/sec
9 Pd=150 // lb / in^2
10 SVd=2.1 // ft^3/lb
11 Vd = 200 // ft / sec
12 z1=3 //ft
13 z2=10 //ft
14 //calculations
15 WbyJ=P*550/(m*778)
16 \, Q=Hr/m
17 Wi = 144 * Pi * SVi / (778)
18 Wo = 144 * Pd * SVd / (778)
19 PEi = z1/778
```

Scilab code Exa 4.2 example 2

```
1 clc
2 //Initialization of variables
3 d=500 //ft
4 Pi=14 //lb/in^2
5 Pd=15 //lb/in^2
6 Sv=0.016 //ft^3 /lb
7 //calculations
8 Wi=144*Pi*Sv
9 Wf=144*Pd*Sv
10 PEi=0
11 PEf=d
12 Winput=Wf-Wi+PEf-PEi
13 //results
14 printf("Input work = %.1 f ft-lb/lbm", Winput)
```

Scilab code Exa 4.3 example 3

```
1 clc
2 //Initialization of variables
3 T1=70 //F
4 T2=140 //F
5 m=10 //lb
6 Cp=1 //B/lbm F
```

```
7 //calculations
8 Q=Cp*(T2-T1)
9 Qdot=m*Q
10 w=0
11 //results
12 printf("Work done = %d",w)
13 printf("\n Change in enthalpy= %d",Qdot)
14 printf("\n Heat added per pound = %d ",Q)
```

Scilab code Exa 4.4 example 4

```
1 clc
2 //Initialization of variables
3 W=64000 //ft-lbm/lb
4 P=14 //lb/in^2
5 W2=48000 //ft-lbm/lb
6 //calculations
7 dh1=W/778
8 dh2=W2/778
9 //results
10 printf("For the actual process = %.1 f B/lbm",dh1)
11 printf("\n For the frictionless process = %.1 f B/lbm",dh2)
```

Scilab code Exa 4.5 example 5

```
1 clc
2 //Initialization of variables
3 ht=308 //B/lbm
4 h=298 //B/lbm
5 //calculations
6 V=sqrt(2*32.2*778*(ht-h))
7 //results
```

```
8 printf("Velocity of the gas= %d ft/sec", V)
```

Scilab code Exa 4.6 example 6

```
1 clc
2 //Initialization of variables
3 hp=10000 //hp
4 v=100 //lbm/sec
5 //calculations
6 W=hp*550/v
7 enthalpy=W/778
8 //results
9 printf("Decrease in stagnation enthalpy= %.1 f B/lbm", enthalpy)
```

Scilab code Exa 4.7 example 7

```
1 clc
2 //Initialization of variables
3 w1=100 //lbm
4 w2=2 //lbm
5 h1=127 //B/lbm
6 h2=125 //B/lbm
7 hc=401 //B/lbm
8 //calculations
9 ht1=w1*h1
10 ht2=w2*h2
11 ht3=(w1+w2)*hc
12 Q=ht3-ht1-ht2
13 //results
14 printf("Heat liberated = %d B/sec",Q)
```

Scilab code Exa 4.8 example 8

```
1 clc
2 //Initialization of variables
3 du=75 //B/lbm
4 m=0.01 //lbm
5 //calculations
6 W=778*du
7 Wdot=m*W
8 //results
9 printf("Work for the process = %d ft-lb", Wdot)
```

Scilab code Exa 4.9 example 9

```
1 clc
2 //Initialization of variables
3 m=0.5 //lbm
4 //calculations
5 disp("From tables")
6 h1=48.02 //B/lbm
7 hf=180.07 //B/lbm
8 hfg=970.3 //B/lbm
9 h2=hf+m*hfg
10 Q=h2-h1
11 //results
12 printf("Heat added = %.1 f B",Q)
```

The second law of thermodynamics

Scilab code Exa 5.1 example 1

```
1 clc
2 //Initialization of variables
3 Tr=540 //R
4 Te=2000 //R
5 m=200 //B/lbm
6 //calculations
7 eta=1-(Tr/Te)
8 Qr=m*(1-eta)
9 //results
10 printf("Heat rejected = %d B/lbm",Qr)
```

Scilab code Exa 5.2 example 2

```
1 clc
2 //Initialization of variables
3 cv=0.171 //B/lbm F
```

```
4 T2=580 //F
5 T1=520 //F
6 //calculations
7 function [cp]=fun(T)
8     cp=cv/T
9 endfunction
10 ds=intg(T1,T2,fun)
11 //results
12 printf("Change in entropy = %.4 f B/lbm R",ds)
```

Scilab code Exa 5.3 example 3

```
1 clc
2 //Initialization of variables
3 Q = 100 //B/lbm
4 Cp=0.24 //B/lbm F
5 T1 = 70 + 460 / R
6 T2 = 550 + 460 / R
7 Ts=50+460 //R
8 //calculations
9 function [cp]=fun(T)
10
        cp = Cp/T
11 endfunction
12 ds1=intg(T1,T2,fun)
13 Tf = Q/Cp + T1
14 ds2=intg(T1,Tf,fun)
15 \text{ Qr=Ts*(ds2)}
16 \quad Qa=Q-Qr
17 Qun=Ts*(ds1)
18 Qa2=Q-Qun
19 //results
20 printf("Case 1")
21 printf("\n Change in entropy = \%.4 \, \text{f B/lbm R}", ds1)
22 printf("\n case 2")
23 printf("\n Entropy change = \%.4 \, \text{f B/lbm R}", ds2)
```

```
24 printf("\n Available energy = \%.1\,\mathrm{f} B/lbm",Qa)
25 printf("\n case 3")
26 printf("\n Available energy = \%.1\,\mathrm{f} B//lbm",Qa2)
```

The ideal gas

Scilab code Exa 6.1 example 1

Scilab code Exa 6.2 example 2

```
1 clc
2 //Initialization of variables
3 cp=0.24 //B/lbm F
```

```
4 R=53.3 //ft-lb/lbm F
5 //calculations
6 cv=cp-R/778
7 //results
8 printf("Specific heat at constant volume = %.3 f B/ lbm F",cv)
```

Scilab code Exa 6.3 example 3

Scilab code Exa 6.4 example 4

```
1 clc
2 //Initialization of variables
3 T1=100+460 //R
4 T2=300+460 //R
5 P1=15 //lb/in^2
6 P2=30 //lb/in^2
7 Cp=0.3 //B/lbm F
8 R=40 //ft-lb/lbm R
9 //calculations
```

Scilab code Exa 6.5 example 5

```
1 clc
2 //Initialization of variables
3 T1=40+460 //R
4 T2=340+460 //R
5 P1=15 //lb/in^2
6 cp=0.24
7 cv=0.171
8 //calculations
9 gamma=cp/cv
10 P2=P1 *(T2/T1)^(gamma/(gamma-1))
11 //results
12 printf("Final pressure = %.1 f lb/in^2", P2)
```

Scilab code Exa 6.6 example 6

```
1 clc
2 //Initialization of variables
3 P1=16 //lb/in^2
4 P2=14 //lb/in^2
5 Tt=83+460 //R
6 gamma=1.4
```

```
7 cp=0.24 //B/lbm F
8 //calculations
9 T=Tt *(P2/P1)^((gamma-1)/gamma)
10 dh=cp*(Tt-T)
11 V=sqrt(2*32.2*778*dh)
12 //results
13 printf("Actual temperature in the flow = %d R",T)
14 printf("\n Flow velocity = %d ft/sec",V)
```

Scilab code Exa 6.7 example 7

```
1 clc
2 //Initialization of variables
3 T1 = 400 + 460 / R
4 P1=100 //lb/in^2
5 P2=20 //lb/in^2
6 T2 = 140 + 460 / R
7 \text{ Cp} = 50
8 //calculations
9 Pratio=P1/P2
10 Tratio=T1/T2
11 C=log(Tratio) /log(Pratio)
12 n=1/(1-C)
13 v1 = Cp * T1 / (144 * P1)
14 v2 = Cp*T2/(144*P2)
15 \quad w = 144 * P1 * v1^n
16 function[p]=fun(v)
17
       p=w/v^n
18 endfunction
19 Work=intg(v1,v2,fun)
20 //results
21 printf("Work done = \%.d ft-lb/lbm", Work)
22 //The answers in the textbook varies a bit due to
      rounding off errors
```

Scilab code Exa 6.8 example 8

```
1 clc
2 //Initialization of variables
3 P1=15 //lb/in^2
4 P2=20 //lb/in^2
5 T1=40+460 //R
6 T2=540+460 //R
7 //calculations
8 disp("From table 6 at the two temperatures")
9 phi1=0.58233
10 phi2=0.75042
11 ds=phi2-phi1-53.3*log(P2/P1) /778
12 //results
13 printf("Entropy change = %.5 f B/lbm R",ds)
```

Scilab code Exa 6.9 example 9

```
1 clc
2 //Initialization of variables
3 T1=1440+460 //R
4 T2=1000+460 //R
5 n=1.4
6 //calculations
7 Pratio=(T2/T1)^(n/(n-1))
8 Vratio=(T1/T2)^(1/(n-1))
9 disp("From table 6")
10 Pr1=141.51
11 Pr2=50.34
12 vr1=4.974
13 vr2=10.743
14 Pratio2=Pr2/Pr1
```

```
15 Vratio2=vr2/vr1
16 //results
17 //The answer in the textbook given for Vratio is wrong.
18 printf("Case 1")
19 printf("\n Pressure ratio = %.1 f", Pratio+0.1)
20 printf("\n Volume ratio = %.2 f", Vratio)
21 printf("\n Case 2")
22 printf("\n Pressure ratio = %.3 f", Pratio2)
23 printf("\n Volume ratio = %.2 f", Vratio2)
```

Thermodynamic processes

Scilab code Exa 7.1 example 1

```
1 clc
2 //initialization of variables
3 P1=160 // lb / in^2
4 T1=100 //F
5 P2 = 140 / lb / in^2
6 T2 = 550 / F
7 disp("From steam tables,")
8 h1 = 67.97 / B/lbm
9 h2=1299.3 //B/lbm
10 s1=0.1295 //B/lbm R
11 s2=1.6785 //B/lbm R
12 //calculations
13 dh=h2-h1
14 \, ds = s2 - s1
15 //results
16 printf("Change in enthalpy = \%.1 \, f B/lbm", dh)
17 printf("\n Change in entropy = \%.4 \, f B/lbm R",ds)
```

Scilab code Exa 7.2 example 2

```
1 clc
2 //initialization of variables
3 P1=160 //lb/in^2
4 T1=100 //F
5 \text{ P2} = 140 // \text{lb/in}^2
6 T2=550 //F
7 disp("From steam tables,")
8 h1=67.97
9 \text{ s1} = 0.1295
10 \text{ h}2=1300.9
11 	 s2=1.6945
12 //calculations
13 dh=h2-h1
14 \, ds = s2 - s1
15 //results
16 printf ("Change in enthalpy = \%.1 \text{ f B/lbm}", dh)
17 printf("\n Change in entropy = \%.4 \text{ f B/lbm R}", ds)
```

Scilab code Exa 7.3 example 3

```
1 clc
2 //initialization of variables
3 \text{ P1=30} // \text{lb/in}^2
4 T1=300+460 //R
5 T2 = 60 + 460 / R
6 cp=0.25 //B/lbm F
7 R=53.3 // ft - lb / lbm R
8 //calculations
9 Q = cp * (T2 - T1)
10 du = (cp-R/778)*(T2-T1)
11 W = 778 * (Q - du)
12 function [ds]=c(T)
13
        ds = cp/T
14 endfunction
15 S=intg(T1,T2,c)
```

```
16 //results
17 printf("Change in entropy = %.3f B/lbm R",S)
```

Scilab code Exa 7.4 example 4

```
1 clc
2 //initialization of variables
3 T1=300 //F
4 disp("From steam tables,")
5 h1=269.59 //B/lbm
6 h2=1179.7 //B/lbm
7 s1=0.4369 //B/lbm R
8 s2=1.6350 //B/lbm R
9 //calculations
10 dh=h2-h1
11 ds=s2-s1
12 //results
13 printf("Change in enthalpy = %.1 f B/lbm",dh)
14 printf("\n Change in entropy = %.4 f B/lbm R",ds)
```

Scilab code Exa 7.5 example 5

```
1 clc
2 //initialization of variables
3 v=12.8 //ft^3
4 T=80+460 //R
5 P=14 //lb/in^2
6 Pf=500 //lb/in^2
7 //calculations
8 Q=-53.3*T*log(Pf/P) /778
9 W=778*Q
10 v2=53.3*T/(144*Pf)
11 w=v/v2
```

```
12 Qdot=w*Q
13 Wdot=w*W
14 ds=Q/T
15 dsbar=ds*w
16 //results
17 printf("Work required = %d ft-lb", Wdot)
18 printf("\n Heat transfer = %d B", Qdot)
19 printf("\n Change in entropy = %.3 f B/lbm ", dsbar)
20 //The answer given for Qdot is a printing error in textbook and the values are a bit different due to rounding off error
21 printf("\n Change in internal energy is 0 cause this is a constant temperature process")
```

Scilab code Exa 7.6 example 6

```
1 clc
2 //initialization of variables
3 P1=14.7 // lb/in^2
4 P2=20 //lb/in^2
5 \text{ w=1} //\text{lbm}
6 //calculations
7 printf("From table 3 of appendix,")
8 v1 = 26.8
9 h1 = 1150.4
10 \text{ s1} = 1.7566
11 u1=h1- 144*P1*v1/778
12 printf("\n Internal energy 1 = \%.1 \text{ f B/lbm}",u1)
13 disp("For pressure of 20 lb/in^2, from table 2,")
14 v2 = 26.8
15 h2=1260.9
16 	 s2=1.8637
17 u2=h2-144*P2*v2/778
18 du=u2-u1
19 \, ds = s2 - s1
```

Scilab code Exa 7.7 example 7

```
1 clc
2 //initialization of variables
3 P1 = 100 // lb / in^2
4 T1=240+460 //R
5 T2 = 740 + 460 / R
6 cp=0.171 //B?lbm F
7 //calculations
8 dq=cp*(T2-T1)
9 function [ds]=s(T)
10
        ds = cp/T
11 endfunction
12 ds = intg(T1, T2, s)
13 \text{ cpm} = 0.247
14 \text{ cv} = \text{cpm} - 53.3/778
15 Q = cv * (T2 - T1)
16 \text{ ds2=cv*log}(T2/T1)
17 v1=53.3*T1/(144*P1)
18 P2=P1*(T2/T1)
19 disp("from table 6")
20 h1=167.56
21 phi1=0.66321
22 u1=h1-144*P1*v1/778
23 h2=291.30
24 phi2=0.79628
25 \quad u2=h2-144*P2*v1/778
26 Q3=u2-u1
27 ds3=phi2-phi1-53.3*log(P2/P1) /778
28 disp("Part a")
```

```
29  printf("\n work is zero")
30  printf("\n Heat = %.1 f B/lbm",dq)
31  printf("\n Change in entropy = %.4 f B/lbm R",ds)
32  disp("Part b")
33  printf("\n Heat = %.1 f B/lbm",Q)
34  printf("\n Change in entropy = %.4 f B/lbm R",ds2)
35  disp("Part c")
36  printf("\n Heat low = %.1 f B/lbm",Q3)
37  printf("\n Change in entropy = %.5 f B/lbm R",ds3)
```

Scilab code Exa 7.8 example 8

```
1 clc
2 //initialization of variables
3 P1 = 100 // lb / in^2
4 T1=500+460 //R
5 \text{ P2=16} // \text{lb/in}^2
6 //calculations
7 disp("From table 4 of appendix, initial conditions
      are")
8 ht1=1279.1
9 \text{ st1}=1.7085
10 \text{ hg} = 1152.0
11 \text{ sg} = 1.7549
12 hfg=969.7
13 \text{ sfg} = 1.4415
14 \text{ st1}=1.7085
15 Xdash=(sg-st1)/sfg
16 ht2=hg-(Xdash)*hfg
17 hdiff=ht1-ht2
18 \text{ W=hdiff}*778
19 //results
20 printf("\n Change in entropy is zero")
21 printf("\n heat trasnfer is zero since adiabatic")
22 printf("\n Work done = \%d ft-lb/lbm", W)
```

```
23 printf("\n Change in enthalpy = %.1f B/lbm",hdiff)
24 //The answer is a bit different due to rounding off
    error in textbook
```

Scilab code Exa 7.9 example 9

```
1 clc
2 //initialization of variables
3 g=1.4
4 cv = 0.171 //B/lbm
5 P1=14.7 // lb/in^2
6 P2=100 // lb/in^2
7 T1 = 60 + 460 / R
8 \text{ w=1} //\text{lbm}
9 //calculations
10 Tratio=(P2/P1)^{(g-1)/g}
11 T2=T1*Tratio
12 WbyJ = cv * (T1 - T2)
13 \quad W = WbyJ * 778
14 //results
15 printf("Work done = \%.1 \text{ f B/lbm}", W)
16 printf("\n CHange in internal energy = \%d ft-lb/lbm"
      ,WbyJ)
17 //The answer in the textbook varies a bit due to
      rounding of error in textbook
```

Scilab code Exa 7.10 example 10

```
1 clc
2 //initialization of variables
3 P1=25 //lb/in^2
4 T1=840+460 //R
5 P2=14.7 //lb/in^2
```

```
6  //calculations
7  disp("from table 6 of appendix")
8  ht1=316.94
9  Prt1=32.39
10  Pratio=P1/P2
11  Pr2=Prt1/Pratio
12  h2=272.4
13  V2=sqrt(2*32.2*778*(ht1-h2))
14  //results
15  printf("Nozzle exit velocity = %d ft/sec", V2)
```

Scilab code Exa 7.11 example 11

```
1 clc
2 //initialization of variables
3 P1=100 // lb / in^2
4 P2=16 // lb / in^2
5 T1 = 500 + 460 / R
6 \text{ eta} = 0.996
7 //calculations
8 disp("from appendix table 4")
9 ht1=1279.1
10 \text{ st1}=1.7085
11 hg=1152
12 \text{ sg} = 1.7549
13 hfg=969.7
14 \text{ sfg} = 1.4415
15 \text{ ht2=hg-(1-eta)*hfg}
16 \text{ st2=sg-(1-eta)*sfg}
17 WbyJ=ht1-ht2
18 W = WbyJ * 778
19 \text{ ds}=\text{st2}-\text{st1}
20 / results
21 printf("Work done = \%d ft-lb/lbm", W)
22 printf("\n Change in enrtropy = \%.4 \text{ f B/lbm R}",ds)
```

Scilab code Exa 7.12 example 12

```
1 clc
2 //initialization of variables
3 P1=14.7 //lb/in^2
4 T1=60+460 //R
5 P2=100 //lb/in^2
6 T2=470+460 //R
7 cv=0.171 //B/lbm F
8 cp=0.24//B/lbm F
9 //calculations
10 WbyJ=cv*(T1-T2)
11 W=778*WbyJ
12 ds=cp*log(T2/T1) - 53.3*log(P2/P1) /778
13 //results
14 printf("Work done = %d ft-lb/lbm", W)
15 printf("\n Change in entropy = %.4 f B/lbm R",ds)
```

Engine Cycles

Scilab code Exa 8.1 example 1

```
1 clc
2 //Initialization of variables
3 \text{ ratio} = 7
4 Q = 300 / B/lbm
5 \text{ T1} = 60 + 460 / \text{R}
6 P1=14.7 // lb/in^2
7 cv = 0.1715 //B/lvm F
8 g=1.4
9 //calculations
10 Tratio=(ratio)^(g-1)
11 T2=Tratio*T1
12 T3 = T2 + Q/cv
13 eta=1- 1/Tratio
14 \text{ WbyJ=eta*Q}
15 \ W = 778 * WbyJ
16 //results
17 printf("Final temperature = %d R", T3)
18 printf("\n Thermal efficiency = \%.3 f", eta)
19 printf("\n Work done = \%d ft-lb/lbm", W)
20 //The answers in the textbook are a bit different
      due to rounding off error
```

Scilab code Exa 8.2 example 2

```
1 clc
2 //initialization of variables
3 \text{ cydia=3 } //\text{in}
4 \text{ crdia=5} //\text{in}
5 ratio=7
6 rpm=3000 //rpm
7 hp=50 //hp
8 \text{ w} = 24.2 //\text{lbm}
9 Q = 18000 //B/lbm
10 P1=14.7 //lb/in^2
11 T1=60+460 //R
12 g = 1.4
13 \text{ cv} = 0.1715
14 //calculations
15 eta=hp*550*3600/(778*w*Q)
16 vol=%pi*(cydia/12)^2 *(crdia/12)*6/4
17 vdot=vol*rpm/(60*2)
18 \text{ v1} = 53.3 \times \text{T1} / (144 \times \text{P1})
19 wdot=vdot/v1
20 \, Qdot = w * Q / 3600
21 Qdash=Qdot/wdot
22 T2=T1*(ratio)^{(g-1)}
23 T3=T2+Qdash/cv
24 \text{ eta} 2=1-1/(\text{ratio})^{(g-1)}
25 WbyJ=eta2*Qdot
26 Wdot=WbyJ*778/550
27 //results
28 disp("Part a")
29 printf("\n Thermal efficiency = \%.3 \, \text{f}", eta)
30 disp("part b")
31 printf("\n Temperature at the end of compression =
      \%d R", T2)
```

Scilab code Exa 8.3 example 3

```
1 clc
2 //initialization of variables
3 Pi = 14 // lb / in^2
4 T1 = 70 + 460 / F
5 \text{ ratio} = 13
6 T3 = 2500 + 460 / F
7 \text{ cv} = 0.171
8 \text{ cp} = 0.23
9 R = 53.3
10 g = 1.4
11 //calculations
12 T2=T1*(ratio)^(g-1)
13 v3ratio=T3/T2
14 cutoff = (v3ratio-1)/(ratio-1)
15 v1ratio=ratio/v3ratio
16 T4=T3*(1/v1ratio)^(g-1)
17 eta=1- cv*(T4-T1)/(T3-T2)/cp
18 percent=eta*100
19 //results
20 printf ("cut off ratio = \%.4 \, \text{f}", cutoff)
21 printf("\n T end expansion = \%d R", T4)
22 printf("\n Thermal efficiency = \%.1 \, f", percent)
```

Scilab code Exa 8.4 example 4

```
1 clc
2 //initialization of variables
3 Pratio=6
4 P=14.7 //lb/in^2
```

```
5 Tt1=60+460 //R
6 Tt3=1600+460 //R
7 w=60 //lb/sec
8 cp=0.24 //B/lbm F
9 g = 1.4
10 R=53.3 // \text{ft} - \text{lb} / \text{lbm} R
11 //calculations
12 Tt2=Tt1*(Pratio)^{(g-1)/g}
13 Tratio=Tt2/Tt1
14 Q=cp*(Tt3-Tt2)
15 eta=1- 1/Tratio
16 \ W=eta*778*Q
17 \quad \text{Wdot} = \text{w*W}/550
18 //results
19 printf("Thermal efficiency = \%.3 \, f", eta)
20 printf("\n Horsepower output = \%d hp", Wdot)
```

Scilab code Exa 8.5 example 5

```
1 clc
2 //initialization of variables
3 P=14.7 // lb / in^2
4 T=60+460 / R
5 \text{ e1} = 0.8
6 P2=3 //lb/in^2
7 T2=1600+460 //R
8 Pt4=15.6 //lb/in^2
9 w=60 / lbm / sec
10 e2=0.85
11 //calculations
12 disp("from table 6, initial conditions are")
13 ht1=124.3
14 Prt1=1.215
15 Prt2s=6*Prt1
16 \text{ ht2s} = 207.6
```

```
17 ht2=ht1+(ht2s-ht1)/e1
18 dht1=(ht2s-ht1)/e1
19 ht3=521.4
20 Prt3=196.2
21 \text{ Pt3} = 6 * P - P2
22 Pratio=Pt3/Pt4
23 Prt4s=Prt3/Pratio
24 \text{ ht4} = 326.5
25 \text{ dht3}=e2*(ht3-ht4)
26 W = 778 * (dht3 - dht1)
27 Q=ht3-ht2
28 \text{ etaf} = W/778/Q
29 \text{ Wdot} = \text{w*W}/550
30 //results
31 printf("Thermal efficiency = \%.3 \, f", W)
32 printf("\n Horsepower output = \%d hp", Wdot)
33 //The answers in the textbook are a bit different
      due to rounding off error in the book
```

Scilab code Exa 8.6 example 6

```
1 clc
2 //initialization of variables
3 g=1.4
4 Tt4=2060 //R
5 cp=0.24
6 //calculations
7 Tt5=Tt4/1.67
8 Tt2=868 //R
9 Tt3s=1234
10 dTt3=(Tt3s-Tt2)/2
11 Tt3=Tt2+dTt3
12 Q=cp*(Tt4-Tt3)
13 eta=286*0.401/Q
14 //results
```

Vapor power cycles

Scilab code Exa 9.1 example 1

```
1 clc
2 //initialization of variables
3 P = 500 // lb / in^2
4 T = 800 + 460 / R
5 Pf=1 //lb/in^2
6 //calculations
7 disp("From table 4 of appendix,")
8 \text{ ht1} = 69.7
9 vt1=0.01614
10 W = vt1*(P-Pf)*144
11 \text{ ht2=W/778 +ht1}
12 ht3=1412.1
13 \quad s3 = 1.6571
14 ht4=925.8
15 WbyJ=ht3-ht4
16 \ W3 = 778 * WbyJ
17 \, dW = W3 - W
18 eta=1-((ht4-ht1)/(ht3-ht2))
19 //results
20 printf("Neglecting pump work, Work = \%d ft-lb/lbm",
      W3)
```

Scilab code Exa 9.2 example 2

```
1 clc
2 //initialization of variables
3 P1 = 400 // lb / in^2
4 T1=800+460 //R
5 Pt1=1 //lb/in^2
6 T2 = 95 + 460 / R
7 Pt2=500 //lb/in^2
8 \text{ es} = 0.8
9 \text{ ep=0.75}
10 \text{ et} = 0.8
11 //calculations
12 disp("From Appendix steam tables and mollier chart")
13 ht1=62.98
14 ht3=1416.4
15 \text{ ht4s} = 941.1
16 vt1=0.0161
17 WbyJ=vt1*(Pt2-Pt1)/(ep*778)
18 \text{ ht2=WbyJ+ht1}
19 Q = (ht3 - ht2) / et
20 WtbyJ=et*(ht3-ht4s)
21 	ext{ dW} = 778 * (WtbyJ - WbyJ)
22 eta=WtbyJ/Q
23 //results
24 printf ("Thermal efficiency = \%.3 \, \text{f}", eta)
25 printf("\n Specific net work = \%d B/lbm", dW)
26 //The answers in the textbook are a bit different
```

Scilab code Exa 9.3 example 3

```
1 clc
2 //initialization of variables
3 P1=500 //lb/in^2
4 T1=800 //F
5 //calculations
6 disp("From steam tables,")
7 \text{ ht1} = 69.7
8 ht3=1412.1
9 \text{ s3}=1.6571
10 \text{ ht}4=1175
11 Pt4=53
12 \text{ ht5} = 1430
13 \text{ s5} = 1.917
14 ht6=1070
15 \times 6 = 0.966
16 \text{ Wsum} = 778*(ht3-ht4+ht5-ht6)
17 Qsum=ht3-ht1+ht5-ht4
18 eta=Wsum/(778*Qsum)
19 //results
20 printf ("Specific work = \%d ft-lb/lbm", Wsum)
21 printf("\n Thermal efficiency = \%.3 \, \text{f}", eta)
```

Scilab code Exa 9.4 example 4

```
1 clc
2 //initialization of variables
3 disp("From steam tables")
4 ht1=218.12
5 ht3=1412.1
```

```
6 st3=1.6571
7 ht4=1134.6
8 ht5=925.8
9 ht6=69.7
10 //calculations
11 w=(ht1-ht6)/(ht4-ht6)
12 WbyJ=ht3-ht4+(1-w)*(ht4-ht5)
13 W=778*WbyJ
14 Q=ht3-ht1
15 eta=WbyJ/Q
16 //results
17 printf("Specific work = %d ft-lb/lbm", W)
18 printf("\n Efficiency = %.3 f", eta)
```

Refrigeration

Scilab code Exa 10.1 example 1

```
1 clc
2 //Initialization of variables
3 capacity=50 //tons
4 hp=10 //hp
5 //calculations
6 beta=778*3.33*capacity/(hp*550)
7 //results
8 printf("Coefficient of performance = %.2f",beta)
9 //The answer given in textbook is wrong
```

Scilab code Exa 10.2 example 2

```
1 clc
2 //Initialization of variables
3 P1=30 //lb/in^2
4 P2=200 //lb/in^2
5 capacity=3 //tons
6 //calculations
```

```
7 disp("From the pressure enthalpy chart")
8 Tt1= -1 //F
9 \text{ st1}=1.34
10 ht1=612
11 ht2=733
12 ht3=141
13 ht4=141
14 WbyJ=ht2-ht1
15 Q=ht1-ht3
16 beta=Q/WbyJ
17 Qdot=capacity*3.33
18 \text{ wdot} = Qdot/Q
19 Power=wdot*778*WbyJ
20 Power=Power/550
21 //results
22 printf ("Coefficient of performance = \%.2 f", beta)
23 printf("\n Evarator temperature = \%d F", Tt1)
24 printf("\n Power required = \%.2 \, \text{f hp}", Power)
```

Scilab code Exa 10.3 example 3

```
1 clc
2 // Initialization of variables
3 P1=14 //lb/in^2
4 P2=60 //lb/in^2
5 Tt1=80+460 //R
6 Tt4=-20+460 //R
7 m=30 //lbm/sec
8 cp=0.24
9 //calculations
10 Tt2=Tt1*(P2/P1)^(0.286)
11 Tt3=Tt4*(P2/P1)^(0.286)
12 WbyJ1=cp*(Tt2-Tt1)
13 WbyJ2=cp*(Tt3-Tt4)
14 Q=cp*(Tt1-Tt4)
```

```
15 beta=Q/(WbyJ1-WbyJ2)
16 Power=m*778*(WbyJ1-WbyJ2)
17 Wdot=Power/550
18 //results
19 printf("Coefficient of performance = %.3f",beta)
20 printf("\n Net power = %d hp",Wdot)
21 //The answers given in textbook are a bit different due to rounding off error
```

Nozzles and Jet propulsion

Scilab code Exa 11.1 example 1

```
1 clc
2 //initialization of variables
3 P1=100 //lb/in^2
4 P2=14.7 / lb/in^2
5 \text{ T1} = 600 + 460 / \text{R}
6 T2 = 300 + 460 / R
7 area=1 //in^2
8 //calculations
9 disp("From steam tables")
10 \text{ ht1} = 1329.1
11 h2=1192.8
12 \quad v2=30.53
13 Vel=sqrt(2*32.2*778*(ht1-h2))
14 wdot=area*Vel/(144*v2)
15 //results
16 printf("Exit velocity = %d ft/sec", Vel)
17 printf("\n Mass flow rate = %.3 f lbm/sec", wdot)
```

Scilab code Exa 11.2 example 2

```
1 clc
2 //initialization of variables
3 Pt1=100 // lb/in^2
4 P2=15 // lb / in^2
5 \text{ A=1} // \text{in}^2
6 T = 500 + 460 / F
7 \text{ gamma} = 1.4
8 //calculations
9 Pratio=P2/Pt1
10 \text{ r1}=(P2/Pt1)^{(gamma-1)/gamma}
11 r2=(P2/Pt1)^{(2/gamma)}
12 r3 = (P2/Pt1)^{(gamma+1)/gamma)}
13 V2=sqrt(2*gamma*32.2*53.3*T*(1-r1)/(gamma-1))
14 wdot=A*Pt1*sqrt(2*gamma*(r2-r3)/(gamma-1)) /(sqrt
      (53.3*T/32.2))
15 //results
16 printf("Exit velocity = %d ft/sec", V2)
17 printf("\n Mass flow rate = %.2 f lbm/sec", wdot)
```

Scilab code Exa 11.3 example 3

```
1 clc
2 //initialization of variables
3 Pt1=100 //lb/in^2
4 Tt1=960 //RP2=15 //lb/in^2
5 wdot=1.13 //lbm/sec
6 gamma=1.4
7 //calculations
8 Pstar=Pt1*(2/(1+gamma))^(gamma/(gamma-1))
9 Tstar=Tt1*(2/(1+gamma))
10 Vstar=sqrt(gamma*32.2*53.3*Tstar)
11 vstar=53.3*Tstar/(144*Pstar)
12 Astar=wdot*vstar*144/Vstar
13 //results
14 printf("Ideal throat area = %.3 f in^2", Astar)
```

```
15 printf("\n Ideal pressure = %.1f lb/in^2",Pstar)
16 printf("\n Ideal temperature = %d R",Tstar)
17 printf("\n Ideal throat specific volume = %.1f ft^3/lbm",vstar)
```

Scilab code Exa 11.4 example 4

```
1 clc
2 //initialization of variables
3 ht1=1329.1
4 st1=1.7581
5 h2s=1151.4
6 s2s=1.7581
7 //calculations
8 eta=sqrt((ht1-1192.8)/(ht1-h2s))
9 //results
10 printf("\n efficiency = %.2f",eta)
```

Scilab code Exa 11.5 example 5

```
1 clc
2 //initialization of variables
3 P1=100 //lb/in^2
4 T1=500+460 //R
5 P2=15 //lb/in^2
6 eta=0.95
7 A=1 //in^2
8 gamma=1.4
9 //calculations
10 Ve=2200 //ft/sec
11 V2=eta*Ve
12 T2=T1*(1-eta*(1-(P2/P1)^((gamma-1)/gamma)))
13 vexit=53.3*T2/(144*P2)
```

```
14 wdot=A*V2/(144*vexit)
15 //results
16 printf("Exit velocity = %.1 f ft^3/lbm", vexit)
17 printf("\n Mass flow = %.3 f lbm/sec", wdot)
```

Scilab code Exa 11.6 example 6

Scilab code Exa 11.7 example 7

```
1 clc
2 //initialization of variables
3 P=30 //lb/in^2
4 T=1000+460 //R
5 Pd=14.7 //lb/in^2
6 w=60 //lbm/sec
7 eta=0.95 //percent
8 R=53.3
```

Scilab code Exa 11.8 example 8

```
1 clc
2 //initialization of variables
3 v = 600 //ft/sec
4 T=60+460 / R
5 P=14.7 // lb / in^2
6 Pratio=6
7 Tin=1540+460 //R
8 \text{ cp} = 0.264
9 \text{ cpratio} = 1.35
10 //calculations
11 Pt2byP1=(1+ (cpratio-1)*v^2 /(cpratio*2*32.2*53.3*T)
      )^(3.86)
12 Pt3byP1=Pt2byP1*Pratio
13 eta=1- 1/(Pt3byP1)^0.259
14 Tt3=T*(Pt3byP1)^((cpratio-1)/cpratio)
15 Q=cp*(Tin-Tt3)
16 \ V6 = sqrt(eta*2*32.2*778*Q + v^2)
17 Fn = (V6 - v)/32.2
18 //resullts
19 printf ("Thermal efficiency = \%.2 \,\mathrm{f}", eta)
20 printf("\n thrust per pound of air per sec = \%.1 f lb
      -\sec/lbm", Fn)
21 //The answers are a bit different due to rounding
```

Scilab code Exa 11.9 example 9

```
1 clc
2 //initialization of variables
3 V=1000 //mph
4 P=14.7 //lb/in^2
5 T=60 //F
6 g=1.4
7 //calculations
8 V1=V*(88/T)
9 Pratio=(1+ (g-1)*V1^2 /(2*g*32.2*53.3*(T+460)))^(g/(g-1))
10 eta=1-1/(Pratio)^0.286
11 //results
12 printf("Theoretical cycle efficiency = %.3f",eta)
```

Scilab code Exa 11.10 example 10

```
1 clc
2 //initialization of variables
3 P=300 //lb/in^2
4 P2=14.7 //lb/in^2
5 T=4540+460 //R
6 w=100 //lbm/sec
7 g=1.25
8 MW=30
9 R=1544
10 //calculations
11 R=R/MW
12 Pratio=P2/P
```

```
13 V4=sqrt(2*g*32.2*51.5*T*(1-(Pratio)^((g-1)/g))/(g-1)
    )
14 Fn=w*V4/32.2
15 //results
16 printf("Thrust = %d lb",Fn)
17 //The answer in the textbook is a bit different due
    to rounding off error.
```

Mixtures

Scilab code Exa 12.1 example 1

```
1 clc
2 //initialization of variables
3 \text{ w1=2 } //\text{lbm}
4 \text{ w} 2 = 1 // \text{lbm}
5 \text{ P=30} //\text{lbm/in}^2
6 T = 60 + 460 / R
7 //calculations
8 R1 = 35.1
9 R2 = 55.1
10 Rm = (w1*R1+w2*R2)/(w1+w2)
11 vm = (w1 + w2) * Rm * T / (144 * P)
12 p1=w1*R1*T/(144*vm)
13 p2=w2*R2*T/(144*vm)
14 //results
15 printf("Gas constant of the mixture = \%.1 \text{ f lb/in}^2",
      Rm)
16 printf("\n Volume of the mixture = \%.1 \, \text{f ft}^3", vm)
17 printf("\n Partial pressure of CO2 = \%.1 \text{ f lb/in}^2",
18 printf("\n Partial pressure of N2 = \%.1 f lb/in^2",p2
```

Scilab code Exa 12.3 example 3

```
1 clc
2 //initialization of variables
3 \text{ cpm} = 0.2523
4 \text{ Rm} = 54.7
5 \text{ T1} = 60 + 460 / \text{R}
6 T2 = 400 + 460 / R
7 //calculations
8 \text{ cvm} = \text{cpm} - \text{Rm} / 778
9 Q = cpm * (T2 - T1)
10 W = Rm * (T2 - T1)
11 //Rm is divided and multiplied by 778.!
12 function [cp]=s(T)
13
        cp = cpm/T
14 endfunction
15 ds=intg(T1,T2,s)
16 //results
17 printf("Entropy change = %.4 f B/lbm ",ds)
18 printf("\n specific work = \%d ft-lb/lbm", W)
19 printf("\n Heat added per pound of mixture = \%.1 \, f B/
      lbm",Q)
```

Scilab code Exa 12.4 example 4

```
1 clc
2 //initialization of variables
3 P=14.7 //lb/in^2
4 T=80+460 //R
5 //calculations
6 disp("From steam tables,")
```

Scilab code Exa 12.5 example 5

```
1 clc
2 //initialization of variables
3 P=14.7 //lb/in^2
4 T = 80 + 460 / R
5 M = 18
6 Ps=0.5069 //lb/in^2
7 //calculations
8 Pair=P-Ps
9 R = 1544/M
10 v=R*T/(144*Ps)
11 vair=53.3*T/(144*Pair)
12 wair=1/(1+vair/v)
13 wwater=vair/v/(1+vair/v)
14 //results
15 printf("Partial pressure of air = \%.1 \, \text{f t} \, ^3/\text{lbm}",
      Pair)
16 printf("\n Gravimetric analysis of air = \%.4 \, \text{f}", wair)
17 printf("\n Gravimetric analysis of water = \%.4 \,\mathrm{f}",
```

Scilab code Exa 12.6 example 6

```
1 clc
2 //initialization of variables
3 RH=0.62
4 T=80+460 //R
5 //calculations
6 disp("From stram tables,")
7 P=RH*0.5069
8 //results
9 printf("Partial pressure of water vapor = %.4f lb/in ^2",P)
```

Scilab code Exa 12.7 example 7

```
1 clc
2 //initialization of variables
3 P=14.5 //lb/in^2
4 T=70+460 //R
5 rh=0.34
6 //calculations
7 disp("From steam tables,")
8 Pg=0.3631 //lb/in^2
9 Pair=P-Pg
10 wratio=rh*0.622*Pg/Pair
11 //results
12 printf("Specific humidity = %.5 f lbm/lbm", wratio)
```

Scilab code Exa 12.8 example 8

```
1 clc
2 //initialization of variables
3 T=100+460 //R
4 rh=0.6
5 //calculations
6 disp("From steam tables,")
7 Pg=0.9492 //lb/in^2
8 Pwv=rh*Pg
9 T=83 //F
10 //results
11 printf("Dew point is obtained from saturation pressure table and is equal to %d F",T)
```

Scilab code Exa 12.9 example 9

```
1 clc
2 //initialization of variables
3 \text{ T1} = 80 + 460 / R
4 T2=90+460 //R
5 P=14.5 //lb/in^2
6 \text{ cp} = 0.24
7 //calculations
8 disp("From steam tables,")
9 \text{ hg}2=1096.6
10 \text{ hf3} = 48.02
11 \text{ Pg2} = 0.5069
12 hf2=hf3
13 Pair=P-Pg2
14 \text{ wg}2=0.622*Pg}2/Pair
15 \text{ hgv1} = 1100.9
16 wwv1 = (cp*(T1-T2)+wg2*(hg2-hf3))/(hgv1-hf3)
17 Pg=0.6982
18 xi = wwv1*(P-Pg)/(Pg*0.622)
```

```
19 //results
20 printf("Specific humidity = %.4 f lbm/lbm", wwv1)
21 printf("\n relative humidity = %.2 f", xi)
```

Scilab code Exa 12.10 example 10

```
1 clc
2 //initialization of variables
3 \text{ T1=69} //\text{F}
4 T2=84 //F
5 P=14.7 // lb / in^2
6 //calculations
7 disp("from wet bulb n dry bulb temperature charts,")
8 \text{ sh} = 82/7000
9 \text{ rh}=47
10 \text{ Pwv} = 0.27
11 T=62 / F
12 h=33.3
13 //results
14 printf("Specific humidity = \%.4 f lbm/lbm", sh)
15 printf("\n Relative humidity = \%d",rh)
16 printf("\n Partial pressure = \%.2 \text{ f lb/in}^2", Pwv)
17 printf("\n Dew point = \%d F",T)
18 printf("\n Enthalpy per pound of air = \%.1 \, f \, V/lbm
      dry air",h)
```

Scilab code Exa 12.11 example 11

```
1 clc
2 //initialization of variables
3 g1=[0.489 100 700 35.1 0.154]
4 g2=[0.483 15 600 55.2 0.177]
5 g3=[0.028 30 500 386 0.754]
```

```
6 //calculations
7 v1=g1(1) *g1(4) *g1(3) /(144*g1(2))
8 v2=g2(1) *g2(4) *g2(3) /(144*g2(2))
9 v3=g3(1) *g3(4) *g3(3) /(144*g3(2))
10 \text{ vm} = \text{v1} + \text{v2} + \text{v3}
11 Tm = (g1(1) *g1(5) *g1(3) +g2(1) *g2(5) *g2(3) +g3(1)
      *g3(5) *g3(3) )/(g1(1) *g1(5) +g2(1) *g2(5) +g3
      (1) *g3(5)
12 Pm = (g1(1) *g1(4) +g2(1) *g2(4) +g3(1) *g3(4)) *Tm/(
      vm * 144)
13 ds1=g1(1) *(g1(5) *log(Tm/g1(3)) +g1(4) /778 *log(vm)
14 ds2=g2(1) *(g2(5) *log(Tm/g2(3)) +g2(4) /778 *log(vm)
      /v2))
15 ds3=g3(1) *(g3(5) *\log(Tm/g3(3)) +g3(4) /778 *\log(vm)
      /v3))
16 \, ds = ds1 + ds2 + ds3
17 //results
18 printf ("Pressure = \%.1 \, \text{f lb/in^2}", Pm)
19 printf("\n Temperature = %d R", Tm)
20 printf("\n Entropy change = \%.4 \, f \, B/R", ds)
```

Gas Dynamics

Scilab code Exa 13.1 example 1

```
1 clc
2 //initialization of variables
3 v = 2000 //ft/sec
4 P=14.7 // lb / in^2
5 g=1.4
6 T = 10 + 460 / R
7 //calculations
8 c = sqrt(g*32.2*53.3*T)
9 \text{ Nm} = \text{v/c}
10 Tratio=1+ (g-1)/2 *Nm^2
11 Tt=Tratio*T
12 Pratio=(Tratio)^(g/(g-1))
13 Pt=Pratio*P
14 //results
15 printf("Stagnation temperature = %d R", Tt)
16 printf("\n Stagnation pressure = \%.1 \text{ f lb/in}^2",Pt)
17 //The answers are a bit different due to rounding
      off error.
```

Scilab code Exa 13.2 example 2

Scilab code Exa 13.3 example 3

```
1 clc
2 //initialization of variables
3 Mn = 3
4 \text{ Mni} = 0.2
5 \text{ w=10} //\text{lbm/sec}
6 g = 1.4
7 P = 200 // lb / in^2
8 T = 400 + 460 / R
9 //calculations
10 Astar=w*sqrt(53.3*T) *((g+1)/2)^3 /(P*sqrt(g*32.2))
11 Alratio=(2/(g+1) + (g-1)*Mni^2/(g+1))^3/Mni
12 A1=A1ratio*Astar
13 A2ratio=(2/(g+1) + (g-1)*Mn^2 / (g+1))^3 / Mn
14 A2=A2ratio*Astar
15 Pexit=P/(1+ Mni*Mn^2)^(g/(g-1))
16 //results
17 printf ("Throat Area = \%.2 \, \text{f in} \, ^2", Astar)
18 printf("\n Inlet Area = \%.2 \, \text{f in}^2", A1)
```

Scilab code Exa 13.4 example 4

```
1 clc
2 //initialization of variables
3 Pi = 750 // lb / in^2
4 g=1.25
5 TA=2 //in^2
6 r=3
7 //calculations
8 Fstar=(g+1)*(2/(g+1))^5 *TA*750
9 \text{ Me} = 2.45
10 Fratio=(1+g*Me^2)/(Me*(sqrt(4.5+ (g^2 -1)*Me^2)))
11 F2=Fratio*Fstar
12 Pratio=(1+ 0.2*Me^2)^5
13 Fnstar=Fratio-((g+1)/2)^5 *r/(Pratio*2.25)
14 Fn=Fnstar*Fstar
15 //results
16 printf("Internal rocket thrust = %d lb",F2)
17 printf("\n External thrust = \%d lb", Fn)
18 //The calculation for Fstar in textbook is wrong
```

Scilab code Exa 13.5 example 5

```
1 clc
2 //initialization of variables
3 Tt2=1620+460 //R
4 Tt1=60+460 //R
5 Mi=0.2
```

Scilab code Exa 13.6 example 6

```
1 clc
2 //initialization of variables
3 M = 0.4
4 l=10 //ft
5 \text{ dia} = 3 //in
6 P=50 // lb / in^2
7 \text{ ff} = 0.008
8 T = 100 + 460 / R
9 //calculations
10 constant= 4*ff*1/dia
11 exitM=2.9-constant
12 \, \text{Nm} \, 2 = 0.5
13 Ptratio=2.73/2.3
14 Pt2=P/Ptratio
15 //results
16 printf("Exit total pressure = %.1 f lb/in^2",Pt2)
```

Heat transfer

Scilab code Exa 14.1 example 1

```
1 clc
2 //initialization of variables
3 T=50 //F
4 Q=3.9 //B/hr-ft^2
5 //calculations
6 disp("From table 14.1")
7 k=0.026 //B/hr-ft-F
8 dx=k*T/Q
9 //results
10 printf("Required thickness = %.3 f ft",dx)
```

Scilab code Exa 14.2 example 2

```
1 clc

2 //initialization of variables

3 x1=1 //in

4 x2=4 //in

5 T1=85 //F
```

```
6 T2=30 //F
7 //calculations
8 QbyA=12*(T1-T2)/(x1/0.3 + x2/0.026)
9 //results
10 printf("Rate of heat flow = %.1 f B/r-ft^2-F", QbyA)
```

Scilab code Exa 14.3 example 3

```
1 clc
2 //initialization of variables
3 L=6.5 //in
4 thick=1 //in
5 k=0.06 //B/hr-ft-F
6 T1=350 //F
7 T2=110 //F
8 //calculations
9 QbyL=2*%pi*k*(T1-T2)/log(1+2/L)
10 //results
11 printf("heat flow = %d B/hr-ft",QbyL)
12 //The answer given in textbook is wrong. Please calculate using a calculator
```

Scilab code Exa 14.4 example 4

```
1 clc
2 //initialization of variables
3 t=0.25 //in
4 dia=5.5 //in
5 t2=0.6 //in
6 To=100 //F
7 kp=34.5 //B/hr-ft-F
8 ki=0.05 //B/hr-ft-F
9 l=10 //ft
```

Scilab code Exa 14.5 example 5

```
1 clc
2 //initialization of variables
3 Tsurr=90 //F
4 T=85 //F
5 //calculations
6 H=4.2/(Tsurr-T)
7 //results
8 printf("Film coefficient = %.2 f B/hr-ft^2-F", H)
```

Scilab code Exa 14.6 example 6

```
1 clc
2 //initialization of variables
3 k=0.04 //B/hr-ft-F
4 thick=1 //in
5 T1=90 //F
6 T2=30 //F
7 Air=2.5 //B/hr-ft^2-F
8 film=2 //B/hr-ft^2-F
9 //calculations
10 U=1/(1/Air + thick/12/k + 1/film)
11 Q=U*(T1-T2)
```

```
//results
frintf("Rate of heat transfer per unit square area =
%.1 f B/hr-ft^2",Q)
```

Scilab code Exa 14.7 example 7

```
1 clc
2 //initialization of variables
3 U=115 //B/hr-ft^2-F
4 T1=190 //F
5 T2=160 //F
6 Tc1=65 //F
7 Tc2=100 //F
8 w=140 //lbm/min
9 c=0.8 //B/lbm F
10 //calculations
11 Q=w*60*c*(T1-T2)
12 dT=((T1-Tc2) - (T2-Tc1))/log((T1-Tc2)/(T2-Tc1))
13 A=Q/(U*dT)
14 //results
15 printf("Required Area = %.1 f ft^2", A)
```

Scilab code Exa 14.8 example 8

```
1 clc
2 //initialization of variables
3 e=0.8
4 T1=100+460 //R
5 T2=300+460 //R
6 //calculations
7 Qdot=0.173*10^-8 *(T2^4 - T1^4)/(1/e +1/e -1)
8 //results
```

9 printf("Radiant heat transfer per sq. foot = %d B/hr $-\text{ft}^2$ ",Qdot+1)

Scilab code Exa 14.9 example 9

```
1 clc
2 //initialization of variables
3 T1=400+460 //R
4 A=40 //in^2
5 e=0.1
6 T2=70+460 //R
7 //calculations
8 Q=A*e*0.173*10^-8 *(T1^4 - T2^4)/144
9 //results
10 printf("Rate of heat transfer = %.1 f B/hr",Q)
11 //The answer given in textbook is wrong. Please use a calculator to check it
```