Kandom Variables
A random variable is in fact a function from somple space to
set E (usually IR)
$X: \Sigma \rightarrow E$
So random variable is a function that assigns a number (if E= IR)
to every dement in the sample space S2.
=> E is continues = P(x=a) = P(\{\overline{\pi}\overline{\pi}\in \text{V}\ \times \overline{\pi}\)
=> E is Continues => P(xe[a,b]) = P(zweo2 axxw1xb3)
Most of the times we can assign a distribution fuenction to a
random variable:
Comulative distribution Function (CDF) => Fx(n): P(XXX) Probability distribution Function (PDF) => Fx(n) = dx (Fx(n)) The last Probability distribution function (PDF) => Fx(n) = dx (Fx(n))
Probability distribution function (PDF) => fx(n) = dx (Fx(n))
Intutively, fx (n) dx means the probability that * is in range [x, x+dn]
Examples Por random variables: Height, Weight, Sum of faces of 3 dices, 3
Function of rondom variables:
as Applying a function f on the outputs of random variable will
produce another random variable Y=F(X)
given that Fx(n), fx(n) are cumulative and density functions
Let's Cakulate Fy(n) and Fy(x).

