Interrogation écrite Durée 1h

Exercice 1 (2 points)

Etudier la satisfiabilité des ensembles suivants :

 $S1 = \{P \rightarrow Q \lor R, \exists Q \rightarrow P, \exists R \land S, P \longleftrightarrow S\}$

Oui Justification :

Il existe une valuation v : v(P,Q,R,S)= (v, v, f, v) qui satisfait toute les formules de S1

 $(v|=P \rightarrow Q \lor R , v|= Q \rightarrow P, v|= R \land S, v|= P \leftrightarrow S)$

 $S2 = \{P \rightarrow Q \lor R, \exists Q \rightarrow P, \exists R \land S, P \longleftrightarrow S, R \longleftrightarrow S \}$

Non Justification:

Par l'absurde:

Supposons qu'il existe une valuation v tel que v satisfaite toutes les formules de S2 donc

 $v = R \land S$ et $v = R \leftrightarrow S$

On a $v = R \le v = R \le v \le v \le contradiction$

 $S3 = \{P \rightarrow Q \lor R, \exists Q \rightarrow P, P \leftrightarrow S \}$

Oui Justification :

S3 ⊆ S1

Tout sous-ensemble d'un ensemble satisfiable est satisfiable

 $S4 = \{P \rightarrow Q \lor R, \exists Q \rightarrow P, \exists R \land S, P \leftrightarrow S, R \leftrightarrow S, Q \rightarrow P \lor R\}$

Non Justification:

S2 ⊆ S4

Tout sur-ensemble d'un ensemble non satisfiable est non satisfiable

Exercice 2 (2 points)

Traduire dans le langage propositionnel les énoncés suivants :

 $\alpha 1$: Si ma voiture est en panne, je ne vais pas à l'école

P: ma voiture est en panne

E : je vais à l'école

 $\alpha 1: P \rightarrow 1E$

 $\alpha 2$: Je ne maitrise ni le français ni l'anglais

R : Je métrise le français

A : Je métrise l'anglais

 $\alpha 2: 1R \land 1A$

α3: Tout nombre pair est divisible par 2

P: Tout nombre pair est divisible par 2

 $\alpha 3 : P$

α4 : Certains étudiants sont présents et certains ne sont pas présents

P : Certains étudiants sont présents

Q : Tous les étudiants sont présents

 $\alpha 4: P \wedge 1Q$

Exercice 3 : (4 points)

Pour chacune des propositions suivantes, indiquez si valide ou pas

-Dans le cas d'une proposition non valide donnez un contre exemple concret

NB : Pour les propositions valides, une réponse fausse élimine une réponse correcte

1. Si l'ensemble $\Gamma = \{\alpha_1, \alpha_2,, \alpha_n\}$ est satisfiable alors toutes les formules de Γ sont satisfiable ($\forall \alpha_i \in \Gamma$, α_i est satisfiable)

Valide

2. Soit $\Gamma = \{\alpha_1, \alpha_2,, \alpha_n\}$, Si toute formule de Γ est satisfiable ($\forall \alpha_i \in \Gamma$, α_i est satisfiable) alors Γ est satisfiable.

Non valide

Contre exemple :

 $\Gamma = \{\alpha_1 : P, \alpha_2 : P\}$ on a α_1 satisfiable et α_1 satisfiable or Γ n'est pas satisfiable

3. Si α_1 , α_2 ,, α_n = β alors il existe une valuation qui satisfait toute les formules α_i et satisfait β

Non valide

Contre exemple:

 α_1 : P, α_2 : P et β : Q on a P, P = Q or il n'existe pas de valuation qui satisfait {P, P, Q}

4. S'il existe une valuation qui satisfait toutes les formules α_i et satisfait β alors $\alpha_1, \alpha_2, ..., \alpha_n = 0$

Non valide

Contre exemple:

 α_1 : P, β : Q on a une valuation v_0 qui satisfait P et Q: $v_0(P,Q)=(v,v)$ or $P|\neq Q$ car on a une valuation qui satisfait P et ne satisfait pas Q ($v_1(P,Q)=(v,f)$)

5. α_1 , α_2 ,, $\alpha_n \ne \beta$ ssi toute valuation qui satisfait toutes les formules α_i ne satisfait pas β ($\forall v$ si $v \models \alpha_1$ et $v \models \alpha_2$,, $v \models \alpha_n$ alors $v \not\models \beta$

Non valide

Contre exemple:

 α_1 : P, β : Q on a P| \neq Q car on a une valuation qui satisfait P et ne satisfait pas Q ($v_1(P,Q)=(v,f)$) or qu il existe une valuation v_0 qui satisfait P et Q: $v_0(P,Q)=(v,v)$)

6. Si α_1 , α_2 ,, α_n = β alors α_1 = β et α_2 = β et et α_n = β

Non valide

Contre exemple:

 α_1 : P, α_2 : Q et β : Q \wedge P on a P,Q|= Q \wedge P or que P| \neq Q \wedge P (on a une valuation v_0 qui satisfait P et ne satisfait pas P \wedge Q: v_0 (P,Q)=(v_0 (P,Q))

7. Si α_1 |= β et α_2 |= β et et α_n |= β alors α_1 , α_2 ,, α_n |= β

valide

8. Si α_1 |= β ou α_2 |= β ou ou α_n |= β alors α_1 , α_2 ,, α_n |= β

valide

9. Si α_1 , α_2 ,, $\alpha_n = \beta$ alors α_1 , α_2 ,, $\alpha_n = \beta \delta$

Non valide

Contre exemple:

 α_1 : P et β : P et δ : Q on a P |= P or que P| \neq $P \land Q$ (on a une valuation v_0 qui satisfait P et ne satisfait pas $P \land Q$: $v_0(P,Q)=(v,f)$)

10. Si α_1 , α_2 ,, $\alpha_n = \beta$ alors α_1 , α_2 ,, $\alpha_n = \beta \delta$

valide