CODATA RECOMMENDED VALUES OF THE FUNDAMENTAL PHYSICAL CONSTANTS: 2018

NIST SP 961 (May 2019)

An extensive list of constants is available on the NIST Physics Laboratory Web site physics.nist.gov/constants. For numerical values a number in parentheses, if present, is the one-standarddeviation uncertainty in the last two digits. For units with square brackets the full descriptions of m^{-1} and m are cycles per meter and meter per cycle, respectively. For the first radiation constant the full description of m^2 is m^{-2} (m/cycle)⁴.

Quantity	Symbol	Numerical value	Unit	Quantity	Symbol	Numerical value	Unit
speed of light in vacuum	c	299 792 458 (exact)	${\rm m}\ {\rm s}^{-1}$	muon g-factor $-2(1+a_{\mu})$	g_{μ}	-2.0023318418(13)	
Newtonian constant of gravitation	G	$6.67430(15) \times 10^{-11}$	$m^3 kg^{-1} s^{-2}$	muon-proton magnetic moment ratio	$\dot{\mu_{ m \mu}}/\mu_{ m p}$	-3.183345142(71)	
Planck constant	h	$6.62607015 \times 10^{-34} \text{ (exact)}$	$ m J~Hz^{-1}$	proton mass	$m_{ m p}$	$1.67262192369(51)\times 10^{-27}$	kg
in eV s		$4.135667696\times10^{-15}$	${ m eV~Hz^{-1}}$	in u		1.007276466621(53)	u
	\hbar	$1.054571817\ldots\times10^{-34}$	Js	energy equivalent in MeV	$m_{ m p}c^2$	938.272 088 16(29)	MeV
in eV s		$6.582119569\times10^{-16}$	eV s	proton-electron mass ratio	$m_{\mathrm{p}}/m_{\mathrm{e}}$	1836.152 673 43(11)	
elementary charge	e	$1.602176634 \times 10^{-19} \text{ (exact)}$	C	proton magnetic moment		$1.41060679736(60)\times10^{-26}$	$\rm J~T^{-1}$
vacuum magnetic permeability $4\pi\alpha\hbar/e^2c$	μ_0	$1.25663706212(19) \times 10^{-6}$	$N A^{-2}$	to nuclear magneton ratio	$\mu_{ m P}/\mu_{ m N}$	2.79284734463(82)	
$\mu_0/(4\pi \times 10^{-7})$		1.00000000055(15)	$N A^{-2}$	proton magnetic shielding correction $1-\mu'_{\rm p}/\mu_{\rm p}$	$\sigma'_{\rm p}$	$2.5689(11) \times 10^{-5}$	
vacuum electric permittivity $1/\mu_0 c^2$	ϵ_0	$8.8541878128(13) \times 10^{-12}$	$F m^{-1}$	$(H_2O, \text{ sphere, } 25 ^{\circ}C)$	r		
Josephson constant $2e/h$	$K_{ m J}$	$483597.8484\ldots\times10^9$	$Hz V^{-1}$	proton gyromagnetic ratio $2\mu_{\rm p}/\hbar$	$\gamma_{ m p}$	$2.6752218744(11)\times 10^8$	$s^{-1} T^{-1}$
von Klitzing constant $\mu_0 c/2\alpha = 2\pi\hbar/e^2$	$R_{\mathbf{K}}$	$25812.80745\dots$	Ω		•	42.577 478 518(18)	$ m MHz~T^{-1}$
nagnetic flux quantum $2\pi\hbar/(2e)$	Φ_0	$2.067833848\ldots\times10^{-15}$	Wb	shielded proton gyromagnetic ratio $2\mu'_{\rm p}/\hbar$	$\gamma_{ m p}'$	$2.675153151(29) \times 10^{8}$	$s^{-1} T^{-1}$
Bohr magneton $e\hbar/2m_{\rm e}$	$\mu_{ m B}$	$9.2740100783(28)\times 10^{-24}$	$J T^{-1}$	$(H_2O, \text{ sphere, } 25 ^{\circ}C)$	· P	,	
in eV T^{-1}	7.2	$5.7883818060(17) \times 10^{-5}$	${ m eV}~{ m T}^{-1}$	(2-)		42.576 384 74(46)	$ m MHz~T^{-1}$
nuclear magneton $e\hbar/2m_{ m p}$	$\mu_{ m N}$	$5.0507837461(15) \times 10^{-27}$	$J T^{-1}$	neutron mass in u	m_n	1.008 664 915 95(49)	u
in eV T^{-1}	7-14	$3.15245125844(96) \times 10^{-8}$	$eV T^{-1}$	energy equivalent in MeV	$m_{ m n} \ m_{ m n} c^2$	939.565 420 52(54)	MeV
ine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	$7.2973525693(11) \times 10^{-3}$		neutron-proton mass ratio	$m_{ m n}/m_{ m p}$	1.001 378 419 31(49)	
inverse fine-structure constant	α^{-1}	137.035 999 084(21)		neutron magnetic moment	$\mu_{ m n}$	$-9.6623651(23) \times 10^{-27}$	$\rm J~T^{-1}$
Rydberg frequency $\alpha^2 m_e c^2 / 2h = E_h / 2h$	cR_{∞}	$3.2898419602508(64)\times10^{15}$	$_{ m Hz}$	to nuclear magneton ratio	$\mu_{\rm n}/\mu_{\rm N}$	-1.913 042 73(45)	
energy equivalent in eV		13.605 693 122 994(26)	eV	deuteron mass in u	m i	2.013 553 212 745(40)	u
Rydberg constant	R_{∞}	10973731.568160(21)	$[m^{-1}]$	energy equivalent in MeV	$m_{\rm d}c^2$	1875.612 942 57(57)	MeV
Bohr radius $\hbar/\alpha m_e c = 4\pi\epsilon_0 \hbar^2/m_e e^2$	a_0	$5.29177210903(80) \times 10^{-11}$	m	deuteron-proton mass ratio	$m_{ m d}/m_{ m p}$	1.999 007 501 39(11)	
Hartree energy $\alpha^2 m_e c^2 = e^2 / 4\pi \epsilon_0 a_0 = 2(cR_\infty)h$	E_{b}	$4.3597447222071(85) \times 10^{-18}$	J	deuteron magnetic moment	$\mu_{ m d}$	$4.330735094(11) \times 10^{-27}$	$J T^{-1}$
in eV	11	27.211 386 245 988(53)	eV	to nuclear magneton ratio	$\mu_{ m d}/\mu_{ m N}$	0.857 438 2338(22)	
electron mass	$m_{ m e}$	$9.1093837015(28) \times 10^{-31}$	kg	helion (³ He nucleus) mass in u	$m_{-\mathbf{L}}$	3.014 932 247 175(97)	u
in u	_	$5.48579909065(16) \times 10^{-4}$	u	energy equivalent in MeV	$m_{\rm h}c^2$	2808.391 607 43(85)	MeV
energy equivalent in MeV	$m_{ m e}c^2$	0.51099895000(15)	MeV	shielded helion magnetic moment	$\mu_{ m h}'$	$-1.074553090(13) \times 10^{-26}$	$J T^{-1}$
electron-muon mass ratio	$m_{ m e}/m_{ m \mu}$	$4.83633169(11) \times 10^{-3}$		(gas, sphere, 25 °C)	. 11	` ,	
electron-proton mass ratio	$m_{ m e}/m_{ m p}$			to Bohr magneton ratio	$\mu_{ m h}'/\mu_{ m B}$	$-1.158671471(14) \times 10^{-3}$	
electron charge to mass quotient	$-e/m_{\rm e}$	$-1.75882001076(53) \times 10^{11}$	$C kg^{-1}$	to nuclear magneton ratio	$\mu_{ m h}'/\mu_{ m N}$	-2.127497719(25)	
reduced Compton wavelength $\hbar/m_e c = \alpha a_0$	λc	$3.8615926796(12) \times 10^{-13}$	m	alpha particle mass in u	m_{α}	4.001 506 179 127(63)	u
Compton wavelength	$\lambda_{ m C}$	$2.42631023867(73)\times10^{-12}$	[m]	energy equivalent in MeV	$m_{\alpha}c^2$	3727.379 4066(11)	MeV
classical electron radius $\alpha^2 a_0$	$r_{ m e}$	$2.8179403262(13) \times 10^{-15}$	m	Boltzmann constant	k	1.380649×10^{-23} (exact)	$\mathrm{J}~\mathrm{K}^{-1}$
Thomson cross section $(8\pi/3)r_c^2$	$\sigma_{ m e}$	$6.6524587321(60) \times 10^{-29}$	m^2	Avogadro constant	$N_{ m A}$	6.02214076×10^{23} (exact)	mol^{-1}
electron magnetic moment	$\mu_{ m e}$	$-9.2847647043(28) \times 10^{-24}$	$J T^{-1}$	atomic mass constant $\frac{1}{2}m(^{12}C) = 1$ u	$m_{\cdot \cdot \cdot}$	$1.66053906660(50)\times 10^{-27}$	kg
to Bohr magneton ratio	$\mu_{ m e}/\mu_{ m B}$	-1.001 159 652 181 28(18)		energy equivalent in MeV	$m_{\mathrm{u}}c^{2}$	931.494 102 42(28)	MeV
to nuclear magneton ratio	$\mu_{\rm e}/\mu_{ m N}$	-1838.281 971 88(11)		Faraday constant $N_A e$	F	96 485.332 12	$C \text{ mol}^{-1}$
electron magnetic moment anomaly $ \mu_{\rm e} /\mu_{\rm B}-1$	$a_{ m e}$	$1.15965218128(18) \times 10^{-3}$		molar gas constant $N_{\Delta} k$	R	8.314 462 618	$\mathrm{J} \; \mathrm{mol}^{-1} \; \mathrm{K}$
electron g-factor $-2(1+a_e)$	$g_{ m e}$	-2.00231930436256(35)		in eV K^{-1}		8.617333262×10^{-5}	${ m eV~K^{-1}}$
electron-proton magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}$	-658.210 687 89(20)		molar volume of ideal gas RT/p			$m^3 \text{ mol}^{-1}$
nuon mass in u	m_{μ}	0.113 428 9259(25)	u	(T = 273.15 K, p = 101.325 kPa)	7 111		
energy equivalent in MeV	$m_{\mu}^{\mu}c^2$	105.658 3755(23)	MeV	Stefan-Boltzmann constant $\pi^2 k^4/60\hbar^3 c^2$	σ	$5.670374419\ldots \times 10^{-8}$	$\mathrm{W}~\mathrm{m}^{-2}~\mathrm{K}^{-}$
nuon-electron mass ratio	$m_{ m \mu}/m_{ m e}$	206.768 2830(46)		first radiation constant $2\pi hc^2$	c_1	$3.741771852 \times 10^{-16}$	$[W m^2]$
nuon magnetic moment	μ_{μ}	$-4.49044830(10) \times 10^{-26}$	$\rm J~T^{-1}$	second radiation constant hc/k		$1.438776877 \times 10^{-2}$	[m K]
to Bohr magneton ratio	$\mu_{ m \mu}/\mu_{ m B}$	$-4.84197047(11) \times 10^{-3}$		Wien displacement law constant	-		. ,
to nuclear magneton ratio	$\mu_{\mu}/\mu_{ m N}$	-8.890 597 03(20)		$b = \lambda_{\text{max}} T = c_2/4.965114231$	b	$2.897771955 \times 10^{-3}$	[m K]
muon magnetic moment anomaly	r-μ/ r-11	()		Cu x unit: $\lambda(\text{Cu K}\alpha_1)/1537.400$		$1.00207697(28)\times10^{-13}$	m
$ \mu_{\mu} /(e\hbar/2m_{\mu})-1$	a_{μ}	$1.16592089(63) \times 10^{-3}$		Mo x unit: $\lambda(\text{Cu K}\alpha_1)/707.831$	xu(Mo Ka1)	$1.00207057(20) \times 10^{-13}$ $1.00209952(53) \times 10^{-13}$	m
[[μ] (Θ ψ μ μ μ μ μ μ μ μ μ	ωμ	-:			(-:::= 000 0 = (00) / 10	

	Energy equivalents							
	$[1 \text{ m}^{-1}]c = 299792458 \text{ Hz}$	$(1 \text{ Hz})h/k = 4.799 243 073 \dots \times 10^{-11} \text{ K}$	(1 J) = $6.241509074 \times 10^{18} \text{ eV}$	$(1 \text{ eV})/c^2 = 1.07354410233(32) \times 10^{-9} \text{ u}$				
	$[1 \text{ m}^{-1}]hc/k = 1.438776877 \times 10^{-2} \text{ K}$	$(1 \text{ Hz})h = 4.135667696 \times 10^{-15} \text{ eV}$	$(1 \text{ eV}) = 1.602176634 \times 10^{-19} \text{ J}$	$(1 \text{ kg}) = 6.0221407621(18) \times 10^{26} \text{ u}$				
	$[1 \text{ m}^{-1}hc = 1.239841984 \times 10^{-6} \text{ eV}]$	$(1 \text{ K})k/hc = 69.50348004 [m^{-1}]$	$(1 \text{ eV})/hc = 8.065543937 \times 10^5 \text{ [m}^{-1}]$	$(1 \text{ u}) = 1.66053906660(50) \times 10^{-27} \text{ kg}$				
	$[1 \text{ m}^{-1}]h/c = 1.33102505010(40) \times 10^{-15} \text{ u}$	$(1 \text{ K})k/h = 2.083661912 \times 10^{10} \text{ Hz}$	$(1 \text{ eV})/h = 2.417989242 \times 10^{14} \text{ Hz}$	$(1 \text{ u})c/h = 7.5130066104(23) \times 10^{14} \text{ [m}^{-1]}$				
L	$(1 \text{ Hz})/c = 3.335640951 \times 10^{-9} \text{ [m}^{-1}]$	$(1 \text{ K})k = 8.617333262 \times 10^{-5} \text{ eV}$	$(1 \text{ eV})/k = 1.160451812 \times 10^4 \text{ K}$	$(1 \text{ u})c^2 = 9.3149410242(28) \times 10^8 \text{ eV}$				