Introduction to Enumerative Geometry

Jan. 11 - Jan. 22, 2021

Lecture 4: Chern <u>classes</u>

- Final remarks from last lecture
- · Sections of vector bundles_____ p hies on cerbic surface
- · Chern classes of lines bundles
- · Chern classes in general
- 27 lines on a cubic surface

Let V be a vector space, dim V = n. We saw that CH(G(k, V)) is generated by Schubert classes

$$\sigma_{\lambda}$$
 for λ partition in the $k \times (n-k)$ box. \forall

If $|\lambda| + |\mu| = k(n-k)$, then

$$\sigma_{\lambda} \cdot \sigma_{\mu} = \left\{ \begin{array}{ll} \sigma_{(n-k)^k} & \text{if } \lambda, \mu \text{ are complementary in } \underbrace{(n-k) \times k}_{\text{K x } \text{ (wrk)}} \end{array} \right.$$

Let V be a vector space, dim V = n. We saw that CH(G(k, V)) is generated by Schubert classes

$$\sigma_{\lambda}$$
 for λ partition in the $k \times (n-k)$ box.

If
$$|\lambda| + |\mu| = k(n-k)$$
, then

$$\sigma_{\lambda} \cdot \sigma_{\mu} = \left\{ \begin{array}{ll} \sigma_{(n-k)^k} & \text{if } \lambda, \mu \text{ are complementary in } (n-k) \times k \\ 0 & \text{otherwise} \end{array} \right.$$

We get a pairing:

$$CH^{p}(G(k,V)) \times CH^{p}(G(k,V)) \to \mathbb{Z}$$

$$(\sigma_{\lambda},\sigma_{\mu}) \mapsto \deg(\sigma_{\lambda}\sigma_{\mu^{*}}) = \operatorname{deg}(\overbrace{\chi^{*}} \cdot \overbrace{\chi^{*}})$$

where μ^* is the complement of μ in the $k \times (n-k)$ box.

Let V be a vector space, dim V = n. We saw that CH(G(k, V)) is generated by Schubert classes

$$\sigma_{\lambda}$$
 for λ partition in the $k \times (n-k)$ box.

If
$$|\lambda| + |\mu| = k(n-k)$$
, then

$$\sigma_{\lambda} \cdot \sigma_{\mu} = \left\{ \begin{array}{ll} \sigma_{(n-k)^k} & \text{if } \lambda, \mu \text{ are complementary in } (n-k) \times k \\ 0 & \text{otherwise} \end{array} \right.$$

We get a pairing:

$$extit{CH}^{
ho}(G(k,V)) imes extit{CH}^{
ho}(G(k,V)) o \mathbb{Z} \ (\sigma_{\lambda},\sigma_{\mu})\mapsto ext{deg}(\sigma_{\lambda}\sigma_{\mu^*})$$

where μ^* is the complement of μ in the $k \times (n-k)$ box.

This gives us the coefficients of a class $\alpha \in CH^p(G(k,V))$ as $\alpha \in CH^p(G(k,V))$

$$\alpha = \underbrace{\sum_{|\lambda| = p}} \deg(\alpha \cdot \sigma_{\lambda^*}) \sigma_{\lambda}$$

Let V be a vector space, dim V = n. We saw that CH(G(k, V)) is generated by Schubert classes

$$\sigma_{\lambda}$$
 for λ partition in the $k \times (n-k)$ box.

If $|\lambda| + |\mu| = k(n-k)$, then

$$\sigma_{\lambda} \cdot \sigma_{\mu} = \left\{ \begin{array}{ll} \sigma_{(n-k)^k} & \text{if } \lambda, \mu \text{ are complementary in } (n-k) \times k \\ 0 & \text{otherwise} \end{array} \right.$$

We get a pairing:

$$CH^p(G(k,V)) \times CH^p(G(k,V)) \to \mathbb{Z}$$

 $(\sigma_{\lambda},\sigma_{\mu}) \mapsto \deg(\sigma_{\lambda}\sigma_{\mu^*})$

where μ^* is the complement of μ in the $k \times (n-k)$ box.

This gives us the coefficients of a class $\alpha \in CH^p(G(k, V))$ as

$$\alpha = \sum_{|\lambda| = \rho} \overline{\deg(\alpha \cdot \sigma_{\lambda^*}) \sigma_{\lambda}}$$
 and in particular $c_{\lambda\mu}^{\pi} = \overline{\deg(\sigma_{\lambda} \cdot \sigma_{\mu} \cdot \sigma_{\pi^*})}$.

Sections of vector bundles

Let $\mathcal E$ be a vector bundle on X of rank e with projection $\pi:\mathcal E\to X$.

E locally books like $X \times C$ in the sense that there are open sets suchthat $U \subseteq X$ with $\overline{\mathcal{L}}'(U) \cong U \times C$ and "they glue together nice by".

Sections of vector bundles

Let \mathcal{E} be a vector bundle on X of rank e with projection $\pi: \mathcal{E} \to X$.

Let $U\subseteq X$ be an open set of X. An algebraic section on U is an algebraic function $s:U\to \mathcal{E}$ such that $\pi\circ s=\mathrm{id}_U.$

Denote by $H^0(U,\mathcal{E})$ the space of sections on U. If U=X, we say that s is a global section and we write $H^0(\mathcal{E})=H^0(X,\mathcal{E})$.

$$\mathcal{E} \geq \pi'(\mathcal{V})$$

$$\int_{\mathcal{X}} S(x) \in \mathcal{E} = \pi'(x)$$

$$\int_{\mathcal{X}} S(x) = \int_{\mathcal{X}} \mathcal{E} \quad \text{form a 'sheaf'}$$

$$\int_{\mathcal{X}} S(x) = \int_{\mathcal{X}} \mathcal{E} \quad \text{form a 'sheaf'}$$

$$\int_{\mathcal{X}} S(x) = \int_{\mathcal{X}} \mathcal{E} \quad \text{form a 'sheaf'}$$

Two exercises: Bundles with very few global sections

Exercise: Baniki closed subset of pr

Let X be a smooth projective variety and let V be a vector space. Write \underline{V}_X for the trivial bundle on X with fiber V, that is $\underline{V}_X = X \times V$. Then the only global sections of \underline{V}_X are constant functions, that is $H^0(\underline{V}_X) = V$.

Reason: Liouville's Thu in Coupl. An: Holoworphic function on compact menifolds are constant.

Two exercises: Bundles with very few global sections

Exercise:

Let X be a smooth projective variety and let V be a vector space. Write \underline{V}_X for the trivial bundle on X with fiber V, that is $\underline{V}_X = X \times V$. Then the only global sections of \underline{V}_X are constant functions, that is $H^0(\underline{V}_X) = V$.

Exercise:

Let S be the tautological bundle on G(k, V). Show that S has "no global sections", that is $H^0(S) = 0$.

Recail:
$$S$$

$$S_{\lambda} = \Lambda \quad \text{for } \Lambda \in G(k, V).$$

$$G(k, V)$$

Global sections of \mathcal{S}^{\vee}

Let S^{\vee} be the dual of the tautological bundle on G(k, V).

Claim: Every element $\underline{\ell \in V^*}$ defines a global section of \mathcal{S}^{\vee} .

Global sections of \mathcal{S}^{\vee}

Let S^{\vee} be the dual of the tautological bundle on G(k, V).

Claim: Every element $\ell \in V^*$ defines a global section of \mathcal{S}^{\vee} .

Fact:
$$H^0(S^{\vee}) = V^*$$
.

Global sections of Q

Let Q be the universal quotient bundle on G(k, V).

Claim: Every element $v \in V$ defines a global section of Q.

Global sections of ${\mathcal Q}$

Let Q be the universal quotient bundle on G(k, V).

Claim: Every element $v \in V$ defines a global section of Q.

Fact:
$$H^0(Q) = V$$
.

Globally generated bundles

Let $\mathcal{E} \to X$ be a vector bundle of rank e. We say that \mathcal{E} is globally generated if there exists global sections s_1, \ldots, s_N such that

$$\underbrace{\langle s_1(x),\ldots,s_N(x)\rangle}_{S_j(x)}=\mathcal{E}_x \text{ for every } x.$$
 Sy(x) \in $\underbrace{\sum}_{\mathbf{z}}$ They spen $\underbrace{\sum}_{\mathbf{z}}$ at every point

Globally generated bundles

Let $\mathcal{E} \to X$ be a vector bundle of rank e. We say that \mathcal{E} is globally generated if there exists global sections s_1, \ldots, s_N such that

$$\langle s_1(x), \ldots, s_N(x) \rangle = \mathcal{E}_x$$
 for every x .

Examples

 \mathcal{Q} and \mathcal{S}^{\vee} are globally generated.

Toward Chern classes: Lines on Cubic surfaces

Let $X \subseteq \mathbb{P}^3$ be a generic cubic surface. How many lines are contained in X?

Idea: PV Junvaly Answer: 24 X smooth

We will answer for generic X.

Say $X = \{g = 0\}$ g hom eq. of deg 3 a V $g \in S^3 V^*$

Want to compute $\#\{\Lambda \in G(2,4): P\Lambda \subseteq X\}=$

 $= \#\{ \bigwedge \in \mathbb{Q}(2,4) : g | = 0 \}$

We saw: H°(S')=V* Similarly: H°(Syu3S')=S3V*

Toward Chern classes: Lines on Cubic surfaces - cont'd

is the vector bundle with $(Syu^3 S^{\vee}) = S^3 \Lambda^4$ than pol. of deg 3 on Λ If fe SV Then S: G(2,4) — o Sym³ S'

defines a global

A > fly section and Ney all

bok like this.

The set we care about is the vombing bous of the section g defining X.

Question: What is the degree of the vomishing bous of a generic section?

The first Chern class of a line bundle

Let \mathcal{L} be a line bundle on X. Suppose \mathcal{L} is globally generated. Let $s \in H^0(\mathcal{L})$ be a generic section and consider

$$Y = \{x \in X : s(x) = 0\}.$$

The first Chern class of a line bundle

Let \mathcal{L} be a line bundle on X. Suppose \mathcal{L} is globally generated. Let $s \in H^0(\mathcal{L})$ be a generic section and consider

$$Y = \{x \in X : s(x) = 0\}.$$

Locally Y is given by a single equation, so $\operatorname{codim}_X(Y) = 1$ or $Y = \emptyset$.

The first Chern class of a line bundle - cont'd

Theorem

If $Y = \emptyset$ then $\mathcal L$ is the trivial bundle, i.e. $\mathcal L \stackrel{\sim}{=} X \times \mathbb C$.

Pf/ If Y= \$ Then There is s which never vanishes
$$H^{\circ}(L)$$

Define:

$$(x, \lambda) \mapsto \lambda S(x) \in L_{n}$$

The first Chern class of a line bundle - cont'd

Let \mathcal{L} be a line bundle on X. Suppose \mathcal{L} is globally generated. Let $s \in H^0(\mathcal{L})$ be a generic section and consider

$$Y = \{x \in X : s(x) = 0\}.$$

The class of Y in CH(X) does not depend on the choice of s.

The first Chern class of a line bundle - cont'd

Let $\mathcal L$ be a line bundle on X. Suppose $\mathcal L$ is globally generated. Let $s\in H^0(\mathcal L)$ be a generic section and consider

$$Y = \{x \in X : s(x) = 0\}.$$

The class of Y in CH(X) does not depend on the choice of s.

The first Chern class of \mathcal{L} is

$$c_1(\mathcal{L}) = [Y] \in CH^1(X).$$

$$\forall z \mid u : s(x) = 0 \quad \text{s generic section of } \lambda$$

Properties of the first Chern class of a line bundle

Fact: Let \mathcal{L} be a line bundle on X. Then there exists a globally generated line bundle \mathcal{P} such that $\mathcal{L} \otimes \mathcal{P}$ is globally generated.

Properties of the first Chern class of a line bundle

Fact: Let \mathcal{L} be a line bundle on X. Then there exists a globally generated line bundle \mathcal{P} such that $\mathcal{L} \otimes \mathcal{P}$ is globally generated. PIC(X)= EL: line bend les

Using this fact, we define the Chern class of any line bundle:

$$c_1(\mathcal{L}) = c_1(\mathcal{L} \otimes \mathcal{P}) - c_1(\mathcal{P}).$$

Properties:

•
$$c_1(\underbrace{\mathcal{L}\otimes\mathcal{M}})=c_1(\mathcal{L})+c_1(\mathcal{M})$$

•
$$c_1(\mathcal{L}^{\vee}) = -c_1(\mathcal{L})$$

roperties:
•
$$c_1(\underline{\mathcal{L}} \otimes \mathcal{M}) = c_1(\mathcal{L}) + c_1(\mathcal{M})$$
• $c_1(\underline{\mathcal{L}}^{\vee}) = -c_1(\mathcal{L})$
is a gp homomorphism

Line bundles on projective space

Let $\mathcal{O}(d)$ be the line bundle on $\mathbb{P}V$ whose fiber at [v] is $\langle v^{\otimes d} \rangle^*$.

Fact:
$$\overline{H^0}(\mathcal{O}(d)) = \underbrace{S^d V^*}$$

$$O(1) = S^{\vee}$$
 regarding $PV = G(1, V)$

A generic section is $f \in S^{1}V^{*}$ in the sense that

$$S: PV \longrightarrow O(d)$$

$$V \longrightarrow f_{(V)} \in S^{d}V^{*} \simeq (S^{d}V)^{*}$$

$$Y = \frac{1}{2}(v)$$
: $f(v) = 0$ | $f(v) = 0$ | hypersurface defined by f

So
$$c_1(O(d)) = [Y] = d \cdot 3$$
 3 is the hyperplene class.

Line bundles on projective space – cont'd

What if we take
$$\mathcal{O}(-m)$$
 for some $m \ge 0$. $\mathcal{O}(m)$

So $c_1(\mathcal{O}(-m)) = -m \mathcal{J}$.

Alternatively, consider $P = \mathcal{O}(N)$ for $N > m$

so that $c_1(\mathcal{O}(-m)) = c_1(\mathcal{O}(-m) \otimes P) - c_2(P) =$
 $c_2(\mathcal{O}(-m+N)) - c_1(\mathcal{O}(N)) =$
 $c_2(m+N-N) \mathcal{J} = -m \mathcal{J}$.

Line bundles on projective space - cont'd

What are the fibers of
$$O(-m) \otimes O(N)$$
.

$$(O(-m)) = \langle v^{\otimes m} \rangle \qquad (O(N)) = \langle v^{\otimes N} \rangle^*$$
Claim:
$$\langle v^{\otimes m} \rangle \otimes \langle v^{\otimes N} \rangle^* \simeq \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes N} \rangle^* = \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes m} \rangle^* = \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes m} \rangle^* = \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes m} \rangle^* = \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes m} \rangle^* = \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes m} \rangle^* = \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes m} \rangle^* = \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes m} \rangle^* = \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes m} \rangle^* = \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

$$| \langle v^{\otimes N-m} \rangle \otimes \langle v^{\otimes N-m} \rangle^*$$

Degeneracy loci

Let $\mathcal E$ be a vector bundle of rank e on X and suppose it is globally generated.

For $p \leq e$, fix $\underline{s_0, \ldots, s_{e-p}} \in H^0(\mathcal{E})$. Define

 $Y(s_0,\ldots,s_{e-p})=\{\underbrace{x\in X}:s_0(x),\ldots,s_{e-p}(x)\}$ are linearly dependent} the degeneracy locus of s_0,\ldots,s_{e-p}

Locally $Y(s_0,...,s_{e-p+1})$ is defined by a vonk condition on some mothix whose entries are functions on X.

Y is a possibly reducible algebraic variety

The class of a degeneracy locus

Theorem

Every component of $Y(s_0, \ldots, s_{e-p})$ has codimension at most p in X (or Y is empty).

Moreover, if the s_j 's are chosen generically, then $\operatorname{codim}_X Y(s_0, \dots, s_{e-p}) = p$ (or Y is empty).

Idee of proof:

Call
$$h_s = dum H^{\circ}(\Sigma)$$
.

Define $\oint : X \longrightarrow \mathcal{E}(h_s - e, H^{\circ}(\Sigma))$
 $\Rightarrow ker(e_{X} : H^{\circ}(\Sigma) \longrightarrow \mathcal{E}_{x})$

Since Σ globally generated,

 e_{X} is surjective at every point.

 $\lim_{x \to \infty} (\ker(e_{X}) - \ker(e_{X})) = \lim_{x \to \infty} (\ker(e_$

The class of a degeneracy locus – cont'd

I define a warghism of varieties

Let
$$S_0, \dots, S_{e-p}$$
 be generic sections of \mathcal{E} .

Define $F_{e-p+1} = \langle S_0, \dots, S_{e-p} \rangle \subseteq H^0(\mathcal{E})$

Consider: $S_0(F_{e-p+1}) = \{ \Lambda \in G(h_0-e, H^0(\mathcal{E})) : dia (\Lambda \cap F_{h_0-(h_0-e)+1-p}) = 1 \}$

$$\frac{1}{\sqrt{2}}\left(\frac{E_{p+1}}{E_{p+1}}\right) = \frac{1}{\sqrt{2}}\left(\frac{E_{p+1}}{E_{p+1}}\right) = \frac{1}{\sqrt{2}}\left(\frac{E_{p+1}}{E_{p+$$

The class of a degeneracy locus - cont'd

Fact: If the s_j 's are chosen generically, then

- $Y(s_0, \ldots, s_{e-p})$ is generically reduced;
- $[Y(s_0,\ldots,s_{e-p})]\in \underline{CH^p(X)}$ does not depend on the chosen sections.

The class of a degeneracy locus – cont'd

Fact: If the s_i 's are chosen generically, then

- $Y(s_0, \ldots, s_{e-p})$ is generically reduced;
- $[Y(s_0, ..., s_{e-p})] \in CH^p(X)$ does not depend on the chosen sections.

Define the p-th Chern class of \mathcal{E} to be

$$c_p(\mathcal{E}) = [Y(s_0, \dots, s_{e-p})] \in \mathit{CH}^p(X)$$

for generic s_0, \ldots, s_{e-p} .

tor generic s_0,\ldots,s_{e-p} . In particular $c_0(\mathcal{E})=[X]\in CH^0(X)$. We write $\mathcal{L}_{H(X)}$

Properties of Chern classes

Setting: \mathcal{E} vector bundle of rank e on X. \mathcal{E} globally granted

Notation:

Lotal Ohern
$$c(\mathcal{E}) = c_0(\mathcal{E}) + c_1(\mathcal{E}) + \cdots + c_e(\mathcal{E}) \in CH(X)$$

$$c_{loss} c_{[t]}(\mathcal{E}) = c_0(\mathcal{E}) + c_1(\mathcal{E})\underline{t} + \cdots + c_e(\mathcal{E})\underline{t}^e \in CH(X)[t]$$
Ohern polynomial

Properties of Chern classes

Setting: \mathcal{E} vector bundle of rank e on X.

Notation:

$$c(\mathcal{E}) = c_0(\mathcal{E}) + c_1(\mathcal{E}) + \dots + c_e(\mathcal{E}) \in CH(X)$$

$$c_{[t]}(\mathcal{E}) = c_0(\mathcal{E}) + c_1(\mathcal{E})t + \dots + c_e(\mathcal{E})t^e \in CH(X)[t]$$

Properties:

• Whitney's formula: If $0 \to \mathcal{E} \xrightarrow{\mathcal{F}} \mathcal{F} \to \mathcal{G} \to 0$ is a short exact sequence of vector bundles, then $c(\mathcal{F}) = c(\mathcal{E})c(\mathcal{G}).$

• Functoriality: If $\varphi: X \to Y$ is a morphism of varieties and $\mathcal E$ is a bundle on Y

Properties of Chern classes - cont'd

Splitting principle

Whitney's formula implies that if $\mathcal{E}=\bigoplus_1^e \mathcal{L}_i$ for line bundles \mathcal{L}_i then

$$\underbrace{c(\mathcal{E}) = c(\mathcal{L}_1) \cdots c(\mathcal{L}_e)}_{} = \prod_{1}^{e} (1 + c_1(\mathcal{L}_i)).$$

If
$$\mathcal{E}$$
 splits as our of line bundles the $C(\mathcal{E})$ as the p-th elementary symmetric polynomial in $C_1(\mathcal{L}_1)$, ..., $C_1(\mathcal{L}_e)$.

$$\mathcal{E} = \bigoplus \mathcal{L}_{i}^{V}$$
 $c_{i}(\mathcal{E}) = (-1)^{i} c_{i}(\mathcal{E})$
 $c_{i}(\mathcal{E}) = c_{i}(\mathcal{E}^{V}).$

Properties of Chern classes - cont'd

Splitting principle

When we do calculations with Chern classes, we can pretend that bundles split as direct sums of line bundles. The Chern classes of these line bundles are called *virtual Chern classes* of \mathcal{E} ; their opposites are the "roots" of the Chern polynomial of \mathcal{E} .

Thun:

X with a v.bun.
$$\mathcal{E}$$

Than There is $\varphi: Y \longrightarrow X$ such that

 $\varphi^{\sharp}: CH(X) \longrightarrow CH(Y)$ is injective

 $\varphi^{\sharp}: CH(X) \longrightarrow C$

Grassmannian

We compute the Chern classes of S and Q on G(k, V). Am V = M

$$H^{2}(Q) = V$$
 Given $V \in V$
 $S_{v}: G(k, V) \longrightarrow Q$
 $\bigwedge \longrightarrow V \text{ mod } \bigwedge$

To compute $C_p(Q)$ consider $V_{0,-}, V_{n-k-p}$ generic

$$Y(v_{0},...,v_{n-k-p}) = \{ \wedge : v_{0} \text{ with } ,...,v_{n-k+p} \text{ with are dep. } \} =$$

$$= \{ \wedge : \text{dum} (\wedge \cap \overline{F}_{k-k-p+1}) \geq 1 \} = \{ f_{k-k+1-p} \}$$

Grassmannian

So
$$C_{p}(Q) = \overline{C_{p}}$$
.

What about S:

$$0 \longrightarrow S \longrightarrow \underbrace{V} \longrightarrow Q \longrightarrow 0$$

$$c(\underbrace{V}) = c(S) = (Q)$$

Let $g \in S^3V^*$ with dim V = 4. Let $X = \{g = 0\} \subseteq \mathbb{P}V$. How many lines are contained in X? When g is generic.

The number of lines is the degree of $\left\{ \Lambda : g_{\Lambda} = 0 \right\} = Y(s_{o}) \quad \text{for } s = s$ as a section of Sym Sr.

rank Sym S = du S S = 4 The vanishing of a single section gives (Syu S')

because 0+4-p=0 for p=4.

Referred S'splits S'=
$$\mathcal{R} \oplus \mathcal{B}$$
 $\alpha = q(\mathcal{R})$

$$C(S') = (1+\alpha)(1+\beta)$$

$$C_1(S') = \sigma_1 = \alpha+\beta$$

$$C_2(S') = \sigma_2 = \alpha+\beta$$

$$C_2(S') = \sigma_1 = \alpha+\beta$$

$$C_2(S') = \sigma_2 = \alpha+\beta$$

$$C_2(S') = \sigma_1 = \alpha+\beta$$

$$C_2(S') = \sigma_2 = \alpha+\beta$$

$$C_2(S') = \sigma_1 = \alpha+\beta$$

$$C_2(S') = \sigma_2 = \alpha+\beta$$

$$C_2(S') = \sigma_1 = \alpha+\beta$$

$$C_2(S') = \sigma_2 = \alpha+\beta$$

$$C_2(S') = \sigma_1 = \alpha+\beta$$

$$C_2(S') = \sigma_2 = \alpha+\beta$$

$$C_2(S') = \sigma_1 = \alpha+\beta$$

$$C_2(S') = \sigma_2 = \alpha+\beta$$

$$C_2(S') = \sigma_1 = \alpha+\beta$$

$$C_2(S') = \sigma_2 = \alpha+\beta$$

$$C_2(S') = \sigma_1 = \alpha+\beta$$

$$C_2(S') = \sigma_2 = \alpha+\beta$$

$$C_2(S') = \sigma_1 = \alpha+\beta$$

$$C_2(S') = \sigma_2 = \alpha+\beta$$

$$C_2(S') = \sigma_1 = \alpha+\beta$$

$$C_2(S') = \sigma_2 = \alpha+\beta$$

$$C_2(S') = \sigma_1 = \alpha+\beta$$

$$C_2(S') = \sigma_2 = \alpha+\beta$$

$$C_2(S') = \sigma_1 = \alpha+\beta$$

$$C_2(S') = \sigma_2 = \alpha+\beta$$

$$C_2(S') = \sigma_1 = \alpha+\beta$$

$$C_2(S') = \sigma_2 = \alpha+\beta$$

$$C_2(S') = \sigma_1 =$$

$$G_{1}(Sym^{3}(S^{\prime})) = (3\alpha)(2\alpha+\beta)(\alpha+2\beta)(3\beta) =$$

$$= 9\alpha\beta(2(\alpha+\beta)^{2}+\alpha\beta) =$$

$$= 9\sigma_{1}\cdot(2\sigma_{2}^{2}+\sigma_{1}) =$$

$$= 9\sigma_{1}\cdot(2(\sigma_{2}+\sigma_{1})+\sigma_{1}) = 27\sigma_{22}^{2}-27\sigma_{22}$$

$$sdeg(\{\Lambda: \Lambda \in X\}) = 27$$