Alumno: Carpio Rodriguez David

1. La regla trapezoidal del libro

```
david@T-C45:~/Escritorio/tarea3$ mpicc -o m mpi_trapezoidal.c
david@T-C45:~/Escritorio/tarea3$ mpirun -np 2 ./m
Con n = 12 trapezoides la integral de 0.0000000 a 3.0000000 = 9.03125000000000000+00
david@T-C45:~/Escritorio/tarea3$
```

- 2. Ejemplo de distribución y lectura (recolección) de los datos de un vector, MPI Scatter y MPI Gather
 - Integral de 0 a 3 con 12 trapecios y 2 procesos

```
david@T-C45:~/Escritorio/tarea3$ mpirun -np 2 ./m
Proceso 0 tiene datos : 1 3
Procesador 0 tiene datos 1
Proceso 0 duplica los datos, ahora tiene 2
Procesador 1 tiene datos 3
Proceso 1 duplica los datos, ahora tiene 6
Procesador 0 tiene datos : 2 6
```

- 3. Ejemplo de la multiplicación de matriz-vector usando MPI Allgather
 - Multiplicacion de una matriz cuadrada de 1024x1024 con 4 procesos

```
david@T-C45:~/Escritorio/tarea3$ mpicc -o m mpi_matrix_vector.c david@T-C45:~/Escritorio/tarea3$ mpiexec -n 4 ./m
Tiempo = 2.476931e-03
david@T-C45:~/Escritorio/tarea3$ ■
```

- 4. Utilizar la función para tomar el tiempo para obtener cuadros análogos a las tablas de libro: 3.5, 3.6 y 3.7
- Tiempo de ejecucion de la multiplicacion de matriz-vector(tabla 3.5)

	Orden de la matriz						
com_sz	1024	2048	4096	8192	16384		
1	4.41E-03	1.66E-02	5.99E-02	2.32E-01	9.43E-01		
2	2.73E-03	8.89E-03	3.23E-02	1.27E-01	5.05E-01		
4	2.66E-03	8.95E-03	3.04E-02	1.42E-01	5.01E-01		
8	2.07E-03	4.97E-03	2.21E-02	1.31E-01	4.92E-01		
16	1.86E-03	3.41E-03	4.68E-03	1.54E-01	5.77E-01		

- Speed Up de la multiplicación de matriz-vector(tabla 3.6)

	Orden de la matriz						
com_sz	1024	2048	4096	8192	16384		
1	1.0	1.0	1.0	1.0	1.0		
2	1.6	1.9	1.9	1.8	1.9		
4	1.7	1.8	2.0	1.6	1.9		
8	2.1	3.3	2.7	1.8	1.9		
16	2.4	4.9	12.8	1.5	1.6		

- Eficiencia de la multiplicacion de matriz-vector (tabla $3.7)\,$

	Orden de la matriz						
com_sz	1024	2048	4096	8192	16384		
1	1.00	1.00	1.00	1.00	1.00		
2	0.81	0.93	0.93	0.91	0.93		
4	0.41	0.46	0.49	0.41	0.47		
8	0.27	0.42	0.34	0.22	0.24		
16	0.15	0.30	0.80	0.09	0.10		

 $5.\$ Implementar los algoritmos de la sección de $3.7\ \mathrm{parallel}\text{-}\mathrm{sorting}$ del libro.