AIRLINE SAFETY

Do past accidents predict future safety?

Applied Data Mining—Final Project Q. Herron | 8 May 2017 ► "Can we use data on an airline's history of incidents and fatal accidents in one time period to predict its safety in the next?"

THE QUESTION

► H_o: There is no link between past incidents and current safety.

► H₁: Past incidents can predict current airline safety.

THE HYPOTHESIS

- ► Data source: **fivethirtyeight** (R package)—**airline_safety** dataset
- ▶ Observations on 56 airlines
 - ▶ Data for two 15-year periods (1985-1999 and 2000—2014)
 - ► Total incidents, fatal accidents, and number of fatalities
 - ► Available Seat-Kilometers (ASK), weekly average
 - Distance Flown times Seats Available
 - ► Indicator of airline size

THE DATA

- ▶ Objective—Make all airlines and their figures easily comparable
- ► Solution—Express the safety figures "per trillion ASK"

► Method—Adjustment factor = $\frac{1,000,000,000}{Avail. Seat \ KM}$. Then multiply each safety figure by the adjustment factor.

DATA PREPARATION

Original Data									
Airline	ASK	ASK Adjust	Incidents (85-99)	Fatal Accidents (85-99)	Fatalities (85-99)	Incidents (00-14)	Fatal Accidents (00-14)	Fatalities (00-14)	
United / Continental	7,139,291,291		19	8	319	14	2	109	
Adjusted (per trillion ASK)									
Airline	ASK	ASK Adjust	Incidents (85-99)	Fatal Accidents (85-99)	Fatalities (85-99)	Incidents (00-14)	Fatal Accidents (00-14)	Fatalities (00-14)	
United / Continental	7,139,291,291	0.14	2.66	1.12	44.68	1.96	0.28	15.27	

ADJUSTMENT: EXAMPLE

- Objective—Sort airlines into clusters based on safety records
- ➤ Solution—Use k-Medoids to find best-fit clusters

CLUSTER ANALYSIS

CLUSTER ANALYSIS

Dendrogram—Shows how clusters are formed.

Left side—"safer" airlines

Right side—"riskier" airlines

CLUSTER ANALYSIS

Silhouette plot—Shows each observation as a line. The width of the line shows how well an observation fits into its cluster.

Top cluster—"safer" airlines

Bottom cluster—"riskier" airlines

1985—1999

- Aeroflot (Russia)
- **Avianca** (Colombia)
- China Airlines
- Egyptair
- Ethiopian Airlines
- Garuda Indonesia
- Pakistan International
- Philippine Airlines
- **Royal Air Maroc** (Morocco)
- > Saudi Arabian

CLUSTER ANALYSIS

2000-2014

- Aeroflot (Russia)
- Avianca (Colombia)
- China Airlines
- **Egyptair**
- Ethiopian Airlines
- Garuda Indonesia
- ► Pakistan International
- Philippine Airlines
- Royal Air Maroc (Morocco)
- ➤ TACA (Avianca El Salvador)
- Vietnam Airlines
- Xiamen Airlines

- "Risky" clusters are very similar between time periods
- ▶ However, these were two independent clusters
 - Doesn't necessarily imply a correlation

CLUSTER ANALYSIS: RESULTS

- ▶ Objective—Predict "risky" airlines today based on past performance
- ▶ Solution—Define a "risky" airline, and fit a logistic regression model

LOGISTIC REGRESSION

- Create a target variable—We will define "risky" as follows:
 - Ten or more fatalities per trillion ASK, between 2000 and 2014
 - This can be user-specified as desired
 - ➤ Should not be too restrictive (Need 25-50% positive class)

In the real world, this "risk" is about on par with your odds of winning the Powerball jackpot.

LOGISTIC REGRESSION

- ▶ No Significance—Past variables were not good predictors
 - ▶ p-values from 0.12 to 0.45 (p < 0.05 is significant)
- ► Confusion Matrix—Risk = TRUE
 - Correctly predicted all "non-risky" airlines
 - ▶ But only 33% effective for picking "risky"

		Actual		
		TRUE	FALSE	
Duadiated	TRUE	2	4	
Predicted	FALSE	0	10	

LOGISTIC REGRESSION: RESULTS

- ▶ Objective—Prove whether or not past data can predict risk
- ► Solution—Use bootstrap aggregating ("bagging"), a complex ensemble model approach

BAGGING

► Method—Run random forest models on multiple subsets of the data. "Majority vote" determines each prediction.

- ➤ Out-of-Bag Error—An estimate of how often the model will fail to predict correctly
 - ► OOB Error estimate is 40%—not looking good

BAGGING

► Confusion Matrix—Risk = TRUE

- ► Sensitivity (true prediction) has improved (67%)
- ► Specificity (false prediction) dropped to 50%
- ► Overall Accuracy is 56%

		Actual		
		TRUE	FALSE	
Duadiatad	TRUE	4	5	
Predicted	FALSE	2	5	

Kappa Statistic

- ▶ Kappa adjusts Accuracy to account for predictions due to chance.
- ▶ Value of 0.15 suggests that 85% of correct prediction is the result of luck.

BAGGING: RESULTS

- ► Clustering suggested a potential link
 - ► Most of the same airlines in both "risky" clusters
 - ▶ Airlines of poorer countries more dangerous? Look at GDP per capita.
- ► Regression failed to support a significant link
- ▶ Bagging proved no substantial link was present in the data
 - ▶ Kappa—most of the correct predictions were due to random chance.

CONCLUSION

- ► H_o: There is no link between past incidents and current safety.
- We fail to reject the null hypothesis.
 - ▶ <u>Not enough evidence</u> to prove any significant correlation.
 - Inaccurate and unfair to arbitrarily label some airlines—especially "third-world" airlines—as more risky.
- ▶ An airline's current safety cannot be reasonably predicted by past incidents and accidents.

CONCLUSION

Source: https://fivethirtyeight.com/features/should-travelers-avoid-flying-airlines-that-have-had-crashes-in-the-past/