Distrbuovaný systém pre algorimické obchodovanie na burze

Michal Hornický

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2. 612 66 Brno - Královo Pole xhorni14@fit.vutbr.cz

Webová aplikácia

- Webová aplikácia
- Používatelské stratégie

```
1 local slow = ta.sma(20);
2 local fast = ta.ema(20);
3 local macd = ta.macd(1,2,3);
4 local rsi = ta.rsi(10);
5 local eee = ta.sma(10);
6 rif fast() > slow() then
8 return "long"
9 elseif slow() > fast() then
10 return "short"
11 else
12 return 'neutral'
13 end
```


- Webová aplikácia
- Používatelské stratégie
- Automatické vyhodnocovanie stratégie a obchodovanie systémom

- Webová aplikácia
- Používatelské stratégie
- Automatické vyhodnocovanie stratégie a obchodovanie systémom
- Požiadavky na škálovať elnosť a latenciu

```
1 local slow = ta.sma(20);
2 local fast = ta.ema(20);
3 local macd = ta.mac(d1,2,3);
4 local rsi = ta.rsi(10);
5 local eee = ta.sma(10);
6
7 if fast() > slow() then
8 | return "long"
9 elseif slow() > fast() then
10 | return "short"
11 else | return 'neutral'
12 | return 'neutral'
13 end
```


Distribuovaná architektúra

- Distribuovaná architektúra
- Actor model

- Distribuovaná architektúra
- Actor model
- Cloudové výpočetné prostredie

- Distribuovaná architektúra
- Actor model
- Cloudové výpočetné prostredie
- Moderný implementačný jazyk

Systém rozdelený do komponentov

- Systém rozdelený do komponentov
- Komponenty spravované systémom Kubernetes
 - Monitoring a správa jednotlivých komponentov
 - DNS pre service discovery
 - Dynamické škálovanie na základe záťaže

- Systém rozdelený do komponentov
- Komponenty spravované systémom Kubernetes
 - Monitoring a správa jednotlivých komponentov
 - DNS pre service discovery
 - Dynamické škálovanie na základe záťaže
- Komunikácia pomocou ZeroMQ

- Systém rozdelený do komponentov
- Komponenty spravované systémom Kubernetes
 - Monitoring a správa jednotlivých komponentov
 - DNS pre service discovery
 - Dynamické škálovanie na základe záťaže
- Komunikácia pomocou ZeroMQ
- Jazyk Rust s knižnicou Actix

Výstupy práce

- 2 Open source knižnice:
 - Knižnica Actix-comm pre komunikáciu aktérov pomocou ZeroMQ
 - Knižnica Actix-arch pre architekturálne komponenty

Výstupy práce

- 2 Open source knižnice:
 - Knižnica Actix-comm pre komunikáciu aktérov pomocou ZeroMQ
 - Knižnica Actix-arch pre architekturálne komponenty
- Systém dostupný na trader.semtexzv.com
 - Podporuje burzu Bitfinex

Meranie výkonu

Prístup:

- Virtuálny používatelia
- Zmena počtu používateľov a konfigurácie systému
- Meranie latencie

Meranie výkonu

Prístup:

- Virtuálny používatelia
- Zmena počtu použivateľov a konfigurácie systému
- Meranie latencie

Primárny cieľ: latencia < 1s

Namerané výsledky

Namerané výsledky

Konfigurácia C1: \$30 - 4000 priradení

Namerané výsledky

- Konfigurácia C1: \$30 4000 priradení
- Konfigurácia C2: \$ 60 16 000 priradení
- Náročnejšie konfigurácie budú vyžadovať automatické škalovanie komponentov

| Budúcnosť

2 aspekty:

Budúcnosť

2 aspekty:

- Samotný projekt
 - Používateľ ské rozhranie
 - Simulácia na historických dátach (Backtesting)

Budúcnosť

2 aspekty:

- Samotný projekt
 - Používateľ ské rozhranie
 - Simulácia na historických dátach (Backtesting)
- 2 Architektúra
 - Úprava knižníc actix-comm a actix-arch
 - Používanie pri dalších projektoch

Príklad stratégie


```
-- Fast exponential moving average closely follows price while smoothing out
   -- random swings
   local ema fast = ta.ema(3)
 4 -- Slow exponential moving average tracks longer term trend
    local ema slow = ta.ema(29)
 7 -- We use RSI to determine when an asset is overbought or oversold
   local rsi = ta.rsi(14)
   -- Triggering signal for buying and selling
    local buy_signal = ema_fast() > ema_slow() * 1.001
   local sell signal = ema fast() < ema slow() * 0.999
13
   -- RSA quards for overbought or oversold markets
    local rsi overbought = rsi() > 80
   local rsi oversold = rsi() < 20
17
18 - if buy_signal and not rsi_overbought then
        return 'long'
    elseif sell signal and not rsi oversold then
        return 'short'
    else
        return 'neutral'
24 end
```

Strata 2% po týždni používania

Príklad stratégie


```
-- Fast exponential moving average closely follows price while smoothing out
   -- random swings
   local ema fast = ta.ema(3)
 4 -- Slow exponential moving average tracks longer term trend
   local ema_slow = ta.ema(29)
 7 -- We use RSI to determine when an asset is overbought or oversold
   local rsi = ta.rsi(14)
   -- Triggering signal for buying and selling
    local buy_signal = ema_fast() > ema_slow() * 1.001
   local sell signal = ema fast() < ema slow() * 0.999
13
   -- RSA guards for overbought or oversold markets
    local rsi overbought = rsi() > 80
   local rsi oversold = rsi() < 20
17
18 - if buy_signal and not rsi_overbought then
        return 'long'
    elseif sell signal and not rsi oversold then
        return 'short'
    else
        return 'neutral'
24 end
```

Strata 2% po týždni používania

Ďakujem za pozornosť

Otázky oponenta

- Prečo ste zvolili ZeroMQ ?
- Popíšte ako funguje Load balancing v komponente ktorý vyhodnocuje stratégie.

1. Voľba ZeroMQ

Možné alternatívy:

- 1 TCP
- 2 ZeroMQ
- 3 HTTP

Výhody ZeroMQ:

- Komplexné topológie Pub-sub
- Jednoduchý formát správ
- Nízka latencia

Popis Distribúcie záťaže

- Nemožnosť použitia DNS distribúcie zátaže kvôli dlhodobým pripojeniam
- 1 distribučný kontajner, niekoľ ko výkonných
- Implementované ako sada aktérov v knižnici Actix-arch
- Distribúcia Round-robin na úrovni požiadavkov

