∠ Expand

⊘ Correct

▲ Try again once you are ready

 $\textbf{Grade received 70\%} \quad \textbf{Latest Submission Grade 70\%} \quad \textbf{To pass } 80\% \text{ or higher}$

Try again

1.	what do you think applying this litter to a grayscale image will do: $\begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix}$	1 / 1 point
	$\begin{bmatrix} 1 & 3 & -3 & -1 \\ 1 & 3 & -3 & -1 \\ 0 & 1 & -1 & 0 \end{bmatrix}$	
	Oetect 45 degree edges	
	O Detect horizontal edges	
	O Detect image contrast	
	Detect vertical edges	
	∠ [™] Expand	
	Correct Correct! As you can see the difference between values from the left part and values from the right of this filter is high. When convolving this filter on a grayscale image, the vertical edges will be detected.	
2.	Suppose your input is a 128 by 128 color (RGB) image, and you are not using a convolutional network. If the first hidden layer has 64 neurons, each one fully connected to the input, how many parameters does this hidden layer have (including the bias parameters)?	1 / 1 point
	O 1048640	
	O 1048576	
	3145792	
	○ 3145728	
	∠ ⁷ Expand	
	Correct Correct, the number of inputs for each unit is \$\$128 \times 128 \times 3\$\$ since the input image is RGB, so we need \$\$128 \times 128 \times 3 \times 64\$\$ parameters for the weights and \$\$64\$\$ parameters for the bias parameters, thus \$\$128 \times 128 \times 3 \times 64 + 64 = 3145792\$\$.	
3.	Suppose your input is a 300 by 300 color (RGB) image, and you use a convolutional layer with 100 filters that are each 5x5. How many parameters does this hidden layer have (including the bias parameters)?	1 / 1 point
	O 7500	
	7600	
	O 2501	
	O 2600	

4.	You have an input volume that is $121 imes 121 imes 16$, and convolve it with 32 filters of $4 imes 4$, using a stride of 3 and no padding. What is the output volume?	0 / 1 point
	$\bigcirc \ 118 \times 118 \times 16$	
	\bigcirc 40 × 40 × 16	
	$\bigcirc \hspace{0.1cm} 40 imes 40 imes 32$	
	∠ ^N Expand	
	No, check that you use \$\$s = 3\$\$ for the stride when computing the dimensions of the output volume.	
5.	You have an input volume that is 31x31x32, and pad it using "pad=1". What is the dimension of the resulting volume (after padding)?	1/1 point
	○ 31x31x34	
	○ 32x32x32	
	○ 33x33x33	
	33x33x32	
	∠ [≯] Expand	
	Yes, if the padding is 1 you add 2 to the height dimension and 2 to the width dimension.	
6.	You have an input volume that is 63x63x16, and convolve it with 32 filters that are each 7x7, and stride of 1. You want to use a "same" convolution. What is the padding?	1/1 point
	O 2	
	O 7	
	3	
	∠ [≯] Expand	
	© Correct Correct, you need to satisfy the following equation: \$\$ n_H - f + 2 \times p + 1 = n_H\$\$ as you want to keep the dimensions between the input volume and the output volume.	
7.	You have an input volume that is 66x66x21, and apply max pooling with a stride of 3 and a filter size of 3. What is the output volume?	1/1 point
	\bigcirc 21 \times 21 \times 21	
	22 × 22 × 21	
	\bigcirc 66 × 66 × 7	
	\bigcirc 22 $ imes$ 22 $ imes$ 27	
	∠ [™] Expand	

8.	Because pooling layers do not have parameters, they do not affect the backpropagation (derivatives) calculation.	0 / 1 point
	True	
	False	
	∠ ² Expand	
	National Everything that influences the loss should appear in the backpropagation because we are computing derivatives. In fact, pooling layers modify the input by choosing one value out of several values in their input volume. Also, to compute derivatives for the layers that have parameters (Convolutions, Fully-Connected), we still need to backpropagate the gradient through the Pooling layers.	
9.	Which of the following are true about convolutional layers? (Check all that apply)	1/1 point
	It allows a feature detector to be used in multiple locations throughout the whole input volume.	
	✓ Correct	
	Yes, since convolution involves sliding the filter throughout the whole input volume the feature detector is computed over all the volume.	
	It speeds up the training since we don't need to compute the gradient for convolutional layers.	
	It allows parameters learned for one task to be shared even for a different task (transfer learning).	
	Convolutional layers provide sparsity of connections.	
	 Correct Yes, this happens since the next activation layer depends only on a small number of activations from the previous layer. 	
	∠ ⁷ Expand	
	∠ Expand	
	The sparsity of connections and weight sharing are mechanisms that allow us to use fewer parameters in a convolutional layer making it possible to train a network with smaller training sets. True/False?	0 / 1 point
	False	
	○ True	
	∠ Expand	
	No, weight sharing reduces significantly the number of parameters in a neural network, and sparsity of connections allows us to use a smaller number of inputs thus reducing even further the number of parameters.	

 $Yes, using the formula $$n_H^{[[l]]} = \frac{n_H^{[[l-1]]} + 2 \times p - f}{s} + 1$$ with $$p = 0$$, $$f = 3$$, $$s = 3$$ and $$n_H^{[[l-1]]} = 66$$.$

⊘ Correct