ТЕОРИЈСКЕ ОСНОВЕ ИНФОРМАТИКЕ 1

ЗАДАЦИ ЗА ВЕЖБУ

– ИСКАЗНА ЛОГИКА –

- 1. Испитати да ли су формуле таутологије
 - (a) $(\neg p \Rightarrow (q \land \neg q)) \Rightarrow p$;
 - (6) $(p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r));$
 - (B) $\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q);$
 - (Γ) $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$;
 - (π) $(p \lor (q \land r)) \Rightarrow ((p \lor q) \land (p \lor r)).$
- 2. Свођењем на противречност доказати да су формуле таутологије
 - (a) $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r));$
 - (6) $(p \lor q \Rightarrow r) \Leftrightarrow (p \Rightarrow r) \land (q \Rightarrow r)$;
 - (B) $((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r);$
 - $\text{(f) } \left(\left((p \Rightarrow r) \wedge (q \Rightarrow r) \right) \wedge (p \vee q) \right) \Rightarrow r;$
 - $(\pi) (\neg p \Rightarrow (q \land \neg q)) \Rightarrow p.$
- **3.** Формула A има таблицу:

p	q	r	A
T	Т	Т	T
Т	Т	1	\perp
Т		Т	Т
T	上	1	Т
工	Т	Т	\perp
	Т	1	Т
上	1	Т	Т
	\perp	\perp	\perp
			4

Одредити две формуле еквивалентне са формулом A.

- **4.** Одредити две формуле са словима p, q и r које су тачне само за валуације у којима је једно слово нетачно.
- **5.** Формула A има таблицу:

p	q	r	A
Т	\vdash	Т	\vdash
Т	Т	1	\perp
T	\perp	Т	\perp
T	丄	1	Т
	Т	Т	上
	Т	1	Т
上	1	Т	Т
Ī	Ţ	Ī	Ţ

Одредити две формуле еквивалентне са формулом A.

- **6.** Конструисати исказну формулу над три исказне променљиве тако да је она тачна за неку валуацију ако и само ако су за ту валуацију тачне тачно две исказне променљиве.
- 7. Користећи елементарне трансформације показати да су формуле таутологије:
 - (a) $(p \Leftrightarrow q) \Leftrightarrow ((p \Rightarrow q) \land (q \Rightarrow p));$
 - (6) $(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r);$
 - (B) $((p \land q) \lor r \Rightarrow p \land (q \lor r)) \Rightarrow (r \Rightarrow p);$
 - (Γ) $(r \Rightarrow p) \Rightarrow (p \land (q \lor r) \Rightarrow (p \land q) \lor r);$
 - (π) $(p \Rightarrow r) \land (q \Rightarrow r) \Rightarrow r \lor \neg (p \lor q);$
 - (ħ) $p \land (q \Rightarrow \neg r) \Rightarrow ((p \Rightarrow q) \Rightarrow \neg q);$
 - (e) $p \land (q \Rightarrow r) \Rightarrow ((p \Rightarrow q) \Rightarrow r)$;
 - $(\mathsf{x}) \ (p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r));$
 - (3) $(p \land q \Rightarrow r) \Rightarrow (p \land \neg r \Rightarrow \neg q)$.
- **8.** Пера, Влада и Сава су другари који често излазе заједно на пиће у кафану. Познато је да свако од њих пије увек исто пиће и то или вино или пиво (само једно од тога, јер знају ако се пиће меша, ујутро боли глава). У вези тога ко од њих шта пије, познати су следећи искази:
 - (1) Ако Пера пије пиво, онда Влада пије исто пиће као и Сава.
 - (2) Ако Влада наручује пиво, онда Сава пије другачије пиће од Периног.
 - (3) Ако Сава наручује вино, онда Пера пије исто пиће као и Сава.

Да ли су ове изјаве непротивречне? За кога од њих са сигурношћу можете да тврдите шта пије?

9. Четворо пријатеља Аца, Боки, Цеца и Дуда су осумњичени за убиство. Могуће је да је више особа истовремено криво за убиство. Пред истражним судијом они су изјавили следеће:

Аца: Ако је Боки крив, крива је и Дуда.

Боки: Ако Аца није крив, онда је крива Цеца.

Цеца: Ја нисам крива, али је или Аца крив или је Дуда крива.

Дуда: Ја нисам крива.

Да ли су ове четири изјаве непротивречне? Ако свако говори истину ко је крив? (Уколико има више могућих решења навести их сва!)

10. Пред студентске лиге у фудбалу, рукомету и кошарци разговарају четворица студената ПМФ-а.

Аца каже: "Ако победимо у фудбалу, победићемо или у кошарци или у рукомету."

Филип каже: "Ако не победимо у кошарци, победићемо и у фудбалу и у рукомету."

Михајло каже: "Победићемо у бар једном од ова три спорта."

Данко каже: "Ако Филип није у праву онда је бар један од Аце и Михајла у праву."

Да ли су њихове изјаве непротивречне? Да ли је Данко у праву? уколико сви студенти говоре истину за који спорт можемо са сигурношћу рећи да ће ПМФ победити у њему?

- **11.** Ана, Беба, Цица и Даца су другарице које често излазе заједно у посластичарницу. Познато је да свака од њих једе увек исти колач и то или баклаву или орасницу (само једно од тога). У вези тога која од њих шта једе, познати су следећи искази:
 - (1) Ако Ана једе ораснице, онда Беба једе исти колач као и Даца.

- (2) Ако Цица једе ораснице, онда Ана и Даца једу различите колаче.
- (3) Ако Беба и Цица једу различите колаче, онда Ана једе баклаву.
- (4) Даца и Цица једу различите колаче.

Да ли су ове изјаве непротивречне? За које од њих са сигурношћу можете да тврдите који колач једу?

- **12.** Ана, Беба, Цица и Даца су другарице које често излазе заједно у посластичарницу. Познато је да свака од њих једе увек исти колач и то или баклаву или орасницу (само једно од тога). У вези тога која од њих шта једе, познати су следећи искази:
 - (1) Ако Ана једе ораснице, онда Беба једе исти колач као и Даца.
 - (2) Ако Цица једе баклаве, онда Ана и Беба једу различите колаче.
 - (3) Ако Цица и Даца једу исти колач, онда Ана једе баклаву.
 - (4) Беба и Цица једу исти колач.

Да ли су ове изјаве непротивречне? За које од њих са сигурношћу можете да тврдите који колач једу?

13. Доказати:

(a)
$$\vdash (p \land q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r));$$

(6)
$$\vdash (p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \land q \Rightarrow r);$$

(B)
$$\vdash (p \land q \Rightarrow r) \Leftrightarrow (p \Rightarrow (q \Rightarrow r));$$

$$(\Gamma) \vdash (p \Rightarrow (q \Rightarrow r)) \Leftrightarrow (q \Rightarrow (p \Rightarrow r));$$

$$(\pi) \vdash (p \land q \Rightarrow r) \Leftrightarrow (p \land \neg r \Rightarrow \neg q);$$

$$(\mathfrak{h}) \vdash (p \Rightarrow q \land r) \Leftrightarrow (p \Rightarrow q) \land (p \Rightarrow r);$$

(e)
$$\vdash ((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r);$$

$$(\mathbf{x}) \vdash ((p \Rightarrow q) \land (p \Rightarrow r)) \Rightarrow (p \Rightarrow (q \land r));$$

$$(3) \vdash (p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r));$$

$$(\mathtt{u}) \vdash (((p \Rightarrow r) \land (q \Rightarrow r)) \land (p \lor q)) \Rightarrow r;$$

(i)
$$\vdash (\neg p \Rightarrow (q \land \neg q)) \Rightarrow p$$
;

$$(\kappa) \vdash (p \Rightarrow r) \land (q \Rightarrow r) \Rightarrow (p \lor q \Rightarrow r);$$

$$(\pi) \vdash p \land (q \Rightarrow r) \Rightarrow ((p \Rightarrow q) \Rightarrow r);$$

$$(\pi)$$
 $\vdash p \land (q \Rightarrow \neg r) \Rightarrow ((p \Rightarrow r) \Rightarrow \neg q);$

$$(M) \vdash (p \land (q \lor r) \Rightarrow p \land (q \lor r)) \Rightarrow (r \Rightarrow p);$$

(H)
$$\vdash (\neg p \lor q) \Rightarrow (p \Rightarrow q)$$
;

(в)
$$\vdash (p \Rightarrow r) \land (q \Rightarrow r) \Leftrightarrow (p \lor q \Rightarrow r)$$
;

(o)
$$\vdash ((p \Rightarrow q) \Rightarrow \neg p) \Rightarrow (p \Rightarrow \neg (p \land q));$$

$$(\pi) \vdash (p \Rightarrow \neg (p \land q)) \Rightarrow ((p \Rightarrow q) \Rightarrow \neg p);$$

$$(p) \vdash ((p \Rightarrow q) \Rightarrow p) \Rightarrow p;$$

(c)
$$\vdash p \land (p \Rightarrow q) \Rightarrow q$$
;

(T)
$$\vdash p \Rightarrow ((p \Rightarrow q) \Rightarrow q);$$

$$(\hbar) \vdash p \lor q \Rightarrow ((p \Rightarrow q) \Rightarrow q);$$

$$(\mathbf{y}) \vdash (p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow q \land r));$$

$$(\phi) \vdash ((p \land \neg q) \Rightarrow \neg p) \Rightarrow (p \Rightarrow \neg (p \Rightarrow \neg q));$$

$$(\mathbf{x}) \vdash (p \Rightarrow \neg(p \Rightarrow \neg q)) \Rightarrow ((p \land \neg q) \Rightarrow \neg p);$$

$$(\mathbf{u}) \vdash \neg p \Leftrightarrow (p \Rightarrow \bot);$$

$$(\mathbf{q}) \vdash (r \Rightarrow p) \land (r \Rightarrow q) \Rightarrow (r \Rightarrow p \lor q);$$

$$(\mathfrak{u}) \vdash (p \Rightarrow q) \Rightarrow \neg (p \land \neg q);$$

$$(\text{III}) \vdash (p \Rightarrow q) \Rightarrow (\neg q \Rightarrow \neg p).$$

14. Методом резолуције доказати да су формуле таутологије

(a)
$$F = (p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r));$$

(6)
$$F = (r \Rightarrow p) \Rightarrow ((p \land q) \lor r \Rightarrow p \land (q \lor r));$$

(B)
$$F = (r \Rightarrow \neg p) \Rightarrow (p \land \neg (q \land \neg r) \Rightarrow p \land \neg q \land \neg r);$$

(r)
$$F = (p \lor q) \land (q \lor r) \land (r \lor p) \Rightarrow (p \land q) \lor (q \land r) \lor (r \land p);$$

(д)
$$F = (p \Rightarrow r) \land (q \Rightarrow r) \Rightarrow (p \lor q \Rightarrow r);$$

(ħ)
$$F = (((p \Rightarrow r) \land (q \Rightarrow r)) \land (p \lor q)) \Rightarrow r;$$

(e)
$$F = (p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r));$$

(ж)
$$F = ((p \Rightarrow q) \land (p \Rightarrow r)) \Rightarrow (p \Rightarrow (q \land r));$$

(3)
$$F = (r \Rightarrow p) \Rightarrow (p \land (q \lor r) \Rightarrow (p \land q) \lor r).$$

15. Одредити валуације, уколико постоје, које показују да је формула задовољива, односно порецива:

(a)
$$(p \Rightarrow q) \land (p_1 \Rightarrow q_1) \Rightarrow ((p \Rightarrow p_1) \Rightarrow (q \Rightarrow q_1));$$

(6)
$$(p \Rightarrow q) \land (p_1 \Rightarrow q_1) \Rightarrow ((p \Leftrightarrow p_1) \Rightarrow (q \Leftrightarrow q_1)).$$

16. Нека је скуп формула $\Gamma = \{p \Rightarrow q, \neg r \Rightarrow \neg q, p\}$. Испитати које од следећих формула су логичке последице скупа формула Γ :

(a)
$$p \wedge \neg q$$
;

(6)
$$r \Rightarrow q$$
;

(B)
$$\neg r$$
;

(r)	$p \wedge q \wedge r;$
(д)	$\neg q \Rightarrow \neg p;$
(ħ)	$p \Rightarrow \bot$.
7. F	Нека је ску
оспе	елине скупа

17. Нека је скуп формула $\Gamma = \{p \Rightarrow \neg q, r \Rightarrow q, r\}$. Испитати које од следећих формула су логичке последице скупа формула Γ :

- (a) $p \wedge \neg q$;
- (6) $\neg p \land q$;
- (B) $\neg (p \Rightarrow q)$;
- $(\Gamma) p;$
- $(д) q \Rightarrow \neg p;$
- (ħ) $p \Rightarrow \bot$.

18. Доказати да је формула $p \lor r \Rightarrow q$ логичка последица скупа формула $\{p \Rightarrow q, r \Rightarrow q\}$.

19. Испитати која од датих формула је логички еквивалентна формули $p \Rightarrow \neg (q \lor r)$:

- (a) $\neg p \lor q \lor r$;
- (6) $\neg p \lor \neg (q \Rightarrow \neg r);$
- (B) $\neg q \land \neg r \Rightarrow \neg p$;
- (Γ) $\neg p \lor \neg (\neg q \Rightarrow r)$.

20. Испитати која од датих формула је логички еквивалентна формули $p \lor \neg q \Rightarrow \neg r$:

- (a) $\neg p \lor q \lor \neg r$;
- (6) $\neg (q \Rightarrow p) \lor \neg r;$
- (B) $\neg (p \Rightarrow q) \vee \neg r$;
- (r) $r \Rightarrow \neg p \lor q$.

21. Доказати да су формуле $p \Rightarrow q$ и $\neg q \Rightarrow \neg p$ логички еквивалентне формуле.

22. Нека је дата следећа аргументација:

- (1) Ако је знање стање ума (попут осећаја бола), онда бих на основу самопроматрања увек могао да кажем шта знам.
- (2) Ако бих на основу самопроматрања увек могао да кажем шта знам, онда никад не бих био у заблуди да знам.
- (3) Ја сам понекад у заблуди да знам.
- (4) Дакле, знање није стање ума.

Превести ове реченице у исказне формуле и установити да ли је аргументација исправна.

23. Четири пријатеља - Милена, Марија, Алекса и Милан осумњичени су за убиство. Пред истражним судијом они су изјавили следеће:

Милена: Ако је Марија крива, крив је и Милан.

Марија: Милена је крива, а Милан није крив.

Алекса: Ја нисам крив, али су Милена или Милан криви.

Милан: Ако Милена није крива, тада је крив Алекса.

- (а) Да ли су ове четири изјаве непротивречне, односно да ли је скуп формула добијен превођењем у исказну логику непротивречан?
 - (б) Ако свако говори истину, ко је крив?
- 24. Превести следећа тврђења у исказне формуле и одредити исправност аргументације:
 - (1) Ако су једине особе присутне у кући у време убиства били батлер и собарица, тада је батлер убица или је собарица убица.
 - (2) Једине особе присутне у кући у време убиства су били батлер и собарица.
 - (3) Ако је собарица убица, онда је собарица имала мотив за убиство.
 - (4) Собарица није имала мотив за убиство.

Закључак: Батлер је убица.

- **25.** Пера, Влада и Сава су другари који често излазе заједно на пиће у кафану. Познато је да свако од њих пије увек исто пиће и то или вино или пиво (само једно од тога, јер знају ако се пиће меша, ујутро боли глава). У вези тога ко од њих шта пије, познати су следећи искази:
 - (1) Ако Пера пије пиво, онда Влада пије исто пиће као и Сава.
 - (2) Ако Влада наручује пиво, онда Сава пије другачије пиће од Периног.
 - (3) Ако Сава наручује вино, онда Пера пије исто пиће као и Сава.

Да ли су ове изјаве непротивречне? За кога од њих са сигурношћу можете да тврдите шта пије?

26. Четворо пријатеља Аца, Боки, Цеца и Дуда су осумњичени за убиство. Могуће је да је више особа истовремено криво за убиство. Пред истражним судијом они су изјавили следеће:

Аца: Ако је Боки крив, крива је и Дуда.

Боки: Ако Аца није крив, онда је крива Цеца.

Цеца: Ја нисам крива, али је или Аца крив или је Дуда крива.

Дуда: Ја нисам крива.

Да ли су ове четири изјаве непротивречне? Ако свако говори истину ко је крив? (Уколико има више могућих решења навести их сва!)