KOSHA GUIDE

M - 25 - 2012

목재가공용 좁은 띠톱 작업에 관한 기술지침

2012. 6.

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 작성자 : 한성대학교 최 기흥 교수

ㅇ 개정자 : 안전연구실

○ 제·개정경과

- 2009년 11월 기계안전분야 기준제정위원회 심의

- 2012년 4월 기계안전분야 기준제정위원회 심의(개정)

ㅇ 관련규격 및 자료

- WIS-31: Safety in the use of narrow band saws

○ 관련 법규·규칙·고시 등

- 산업안전보건기준에 관한 규칙 제108조 (띠톱기계의 날접촉예방장치 등)

ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 6 월 20 일

제 정 자 : 한국산업안전보건공단 이사장

목재가공용 좁은 띠톱작업에 관한 기술지침

1. 목 적

이 지침은 절단작업을 하기 위해 목재가공용 좁은 띠톱 사용 시 등에 관한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 절단작업을 하기 위한 목재가동용 좁은 띠톱의 사용 시에 적용한다.

3. 정 의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "가드(Guard)"란 기계의 일부로서 방호기능을 수행하는 물리적 방벽으로 서 구조에 따라 케이싱, 덮개, 스크린, 문, 울타리(방호울)등으로 지칭되는 것을 말한다.
- (나) "유지보수 (Maintenance)"란 장비의 양호한 작동 상태를 유지하기 위한 정기 또는 비정기적 행위 (서비스의 정의 참조)를 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행 규칙,「산업안전보건기준에 관한 규칙」및 고용노동부 고시에서 정하는 바에 따른다.

4. 위험요인

- (1) 이 지침은 구부러지거나 불규칙한 형태의 공작물, 원형 공작물, 사면 (Bevel), 장부(Tenon) 및 웨지(Wedge) 절단 작업, 또한 펜스가 있거나 없는 상태에서 가공작업을 하기 위해 좁은 띠톱 (날 폭이 50 mm 이하)을 사용할 때, 안전한 작업이 이루어지도록 실질적인 지침을 제공하는 것이 기본 목적이다.
- (2) 본 기기의 사용과 관련한 법적 요건은 산업안전보건기준에 관한 규칙 제 108조 (띠톱기계의 날접촉예방장치 등)에 기술되어 있다.
- (3) 목재 가공 기기에서 발생한 1000건의 사고를 조사한 결과, 4%가 좁은 띠톱 기기와 관련이 있었다.
- (4) 대부분은 자재를 날로 가져가거나, 작업대에서 자재를 치울 때 움직이는 날 과 접촉하게 됨으로써 발생하였다.
- (5) 또한 톱날이 아직 작동 중에 기기를 설정하거나 청소, 조정 및 유지, 보수할 때 사고가 발생하였다.

5. 방호조치

- (1) 위 풀리와 작업대 사이에 아래쪽으로 움직이는 부분을 제외하고, 풀리와 톱 날은 가드로 둘러싸여야 한다. 가드는 기기 드라이브와 연동되어야 한다.
- (2) 작업대와 위 풀리 외함간의 톱날 부분을 커버하기 위해 조절 가능한 가드 가 제공되어야 한다. 이 가드는 상단 톱날 가이드에 부착되고 이와 함께 움직여야 한다. 그리고 공작물의 높이에 따라 손쉽게 조절될 수 있고, 설정된 위치에 안전하게 유지되어야 한다.
- (3) 작업대 아래 및 가이드 아래쪽 사이에 위치한 톱날 부분은 작업대가 어떤 각도로 기울어도 방호되어야 한다.

KOSHA GUIDE

M - 25 - 2012

5.1 기기 설정

좁은 띠톱이 정확하고 효과적으로 사용되기 위해서는 다음이 필요하다.

- (1) 톱 유형 및 폭이 작업 대상이 되는 자재에 적합하도록 한다.
- (2) 톱날의 이가 날카롭고 적절해야 한다.
- (3) 톱날이 올바른 방식으로 인장 및 트래킹되도록 한다.
- (4) 풀리휠 지름에 알맞은 수준으로 톱날의 최대 두께를 설정한다.

5.2 장력조절 (Tensioning)

톱날 사용 후, 즉 작업 시간이 끝난 후 톱날장력이 완화된다면 톱의 상태를 더 오래 유지할 수 있다. 이런 내용을 기기에 부착하여 다음 사용자들에게 톱 을 사용하기 전에 장력을 조절하도록 한다.

5.3 트래킹 (Tracking)

- (1) 트래킹은 띠톱 풀리에서 톱날이 올바른 포지션에서 작동하도록 한다. 이것은 위 풀리의 각도를 기울임으로써 가능하다.
- (2) 트래킹 시, 접착 휠 및 가이드가 톱날에서 완전히 벗어나게 하여 자유롭게 움직이도록 한다. 기기를 고립시킨 상태에서, 톱날이 올바른 포지션에서 작동할 때까지 위 풀리를 수동으로 회전시키고 기울인다.
- (3) 가이드 및 접착 휠을 올바른 위치로 설정하고, 가드를 닫힌 상태로 한 후, 기기를 저동력 상태로 작동한다. 톱날이 저동력 상태에서 제대로 작동하지 않으면, 수동으로 트래킹을 반복한다. 트래킹 후 톱날의 인장력을 다시 체 크한다.

5.4 톱날 가이드 및 접착 휠

- (1) 고정식 패드, 페그(Peg) 또는 회전 롤러인 톱날 가이드는 목(Gullet)뒤에서 톱날을 지지해야 한다. 톱날을 잡는 방식이 아니라, 절단 작업 시 톱날을 지지하는 방식이어야 한다.
- (2) 접착 휠은 절단 작업 시 톱날을 지지한다. 이들은 일렬로 정렬되어야 하며, 인장 및 트래킹 작업 후 톱날이 쉬고 있을 때 톱날 뒤쪽에 떨어져 있어야 한다. 충분히 떨어져 있지 않을 경우 접착 휠에 홈(Groove)이 발생하며, 톱 날이 손상된다.

5.5 기기 작동

톱 가이드 및 부착된 조정식 가드는 작업 시작 전에 가능한 한 공작물과 가깝게 조정하며, 작업이 이루어지는 동안 그대로 유지한다.

5.6 동력 피드

<그림 1> 과 같이 펜스의 탈부착이 가능한 동력 피드를 사용한다. 이는 작업자가 톱날에 가까이 접근할 필요성을 없애며, 생산량도 늘릴 수 있다. 이송속도를 일정하게 유지함으로써 톱날을 세우기 작업(Sharpening)할 시기를 연장해 준다.

<그림 1> 탈부착 가능한 동력피드를 장착한 좁은띠톱

5.7 펜스가 있는 상태에서의 가공작업

- (1) 공작물이 움직이거나 미끄러지는 것을 방지하기 위해 일직선으로 절단작업을 할 때에는 <그림 2> 와 같이 펜스를 사용 한다 공작물이 얇을 때에는 낮은 펜스를 사용하여 톱날 가이드 및 가드가 아래로 조정될 수 있도록 하며, 푸쉬 스틱을 사용하여 톱날로부터 안전하게 자재를 제거할 수 있도록 한다.
- (2) 펜스에 기대어 손으로 자재를 투입할 때는 목재 가이드 블록을 사용하여 공작물에 고른 압력이 가해지도록 한다. 톱날에 가까이 자재를 투입할 때는 푸시 스틱을 사용한다.

<그림 2> 펜스가 있는 상태에서의 직선 가공

5.8 펜스가 없는 상태에서의 가공

- (1) 펜스를 사용하는 것이 현실적으로 어려울 때에는 (과도한 압력을 가하지 않고) 공작물을 고르게 앞으로 투입하며 가공작업 시 효과적인 제어를 위해 작업대에 견고하게 유지시킨다.
- (2) 손은 안전하게 위치시키며 <그림 3>과 같이 가능한 한 톱날로부터 멀리한

> 다. <그림 4>와 같이 .불가피하게 손을 톱날 가까이 해야 할 경우, 톱날과 일렬로 하지 않고 측면에 위치하도록 해야 한다

<그림 3> 좁은 띠톱을 사용한 형상가공에서 공작물의 취급

<그림 4> 자유가공 (Freeahnd Cutting)

5.9 구부러지거나 불규칙한 형태의 공작물

- (1) 구부러지거나 불규칙한 형태의 다양한 공작물들은 형판(Template)을 사용하여 또는 형판이 없는 상태로 제작될 수 있다.
- (2) 반복적인 작업의 경우 <그림 5>와 같이 톱날 앞에 고정된 가이드를 통해 작업 속도뿐만 아니라 안전성을 개선할 수 있다

<그림 5> 형판(Template)과 가이드를 사용한 좁은 띠톱기계에서의 불규칙형상 가공

5.10 사면 가공 (Bevel cutting)

(1) 사면 가공은 일반적으로 작업대를 기울이면서 행해진다. <그림 6>과 같이 경사 테이블 또는 펜스와 같은 추가적인 지지대를 사용해서 공작물이 작업 대에서 떨어지는 것을 방지해야 함을 의미한다.

(2) 고정된 작업대 또는 기울일 수 있는 작업대를 가진 기기에서는 공작물을 지지하기 위해 지그가 필요하다. 절단된 공작물 끝에서는 푸시스틱을 사용한다.

<그림 6> 경사테이블을 사용한 사면가공 (Bevel Cutting)

(3) <그림 7> 과 같이 사각 공작물을 대각선으로 절단할 때에는 작업대에 홈통(Trough) 유형의 지그를 고정한 후 공작물을 투입하여 실시한다.

<그림 7> 대각선 가공

5.11 장부 가공 (Cutting tenon)

간단한 장부는 절단될 수 있다 <그림 8>과 같이. 복잡한 장부를 사용하거나 반복적인 작업의 경우에는 지그를 사용하는 것이 안전성 측면에서 가장바람직하다.

<그림 8> 펜스와 백스톱을 사용한 좁은띠톱기계에서의 장부(Tenon) 가공 5.12 웨지 가공 (Wedge cutting)

작은 웨지는 <그림 9>에서와 같은 홀더를 사용하여 안전하게 가공할 수 있다.

<그림 9> 웨지가공

5.13 원형 가공

- (1) 원형 디스크 절단을 위한 지그는 <그림 10>에 제시되어 있다.
- (2) 공작물을 피봇의 중앙에 올려놓고, 한쪽 끝은 톱날과 닿게 하면서 회전시켜 원형 디스크를 만든다. 절단 작업은 끝의 조직에서 시작하며, 공작물에 천 천히 고른 압력을 가하면서 투입한다.

5.14 횡절삭 (Cross-cutting) 또는 둥근 공작물의 리핑

- (1) 절단 압력에 의한 회전을 방지하기 위해 공작물을 단단히 고정해야 한다.
- (2) 적절한 지그 또는 홀더를 사용하여 고정한다. 그리고 톱날이 횡절삭에 적합한 것이어야 한다.

5.15 공작물 지지

작업대는 공작물 전체를 지지해야 한다. 공작물이 작업대 밖으로 돌출되는

경우, 확장 테이블 또는 로울러 가대(Roller trestle)를 사용하여 공작물을 지지해야 한다. 공작물이 넘어지는 것이 사고의 주요 원인 중 하나이다.

5.16 안전장치

- (1) 톱날이 움직이고 있을 때 손으로 브러쉬나 스크래퍼를 잡고 톱날이나 풀리를 닦지 않는다. 톱날을 신중히 조정하고 정기적으로 유지, 보수하며, 풀리청소 장비를 사용하여 잔여물이 쌓이지 않도록 한다.
- (2) 정기적인 유지, 보수 일정을 세운다. 예를 들면, 톱날 상태, 풀리 베어링 마모, 풀리 마모, 가이드 및 접착 휠의 올바른 작동, 톱날 인장 장비, 톱날 및 풀리 청소 장비, 가이드, 및 안전 장비 등을 모두 포함하도록 한다.

5.17 띠톱 선택

- (1) 절단 될 곡선의 가장 적은 반경을 측정한 후 적절한 톱날 폭을 선택한다. 작업자는 이 곡선을 구부리지 않고 절단할 수 있는 가장 폭이 넓은 날을 선택한다. 과도하게 톱날을 비틀면 날이 부러질 수 있다.
- (2) 치차 피치는 자재의 두께에 적합한 것으로 고른다. 즉, 피치는 자재의 두께 를 넘어서면 안 되며, 치차 형태는 절단되는 자재에 적합한 것으로 선택한다. 즉, 자연 목재의 경우 표준 치차를 택하며, 제조업체의 권고 사항에 따른다.

5.18 띠톱 처리

- (1) 톱날이 손상되지 않도록 주의를 기울인다. 사용하지 않을 경우에는 좁은 대톱날은 3등분으로 나누어 안전하게 보관한다.
- (2) 톱날은 안전하고 건조한 장소에서 보관하며 금이 가거나 치차가 손상되지 않았는지 사용 전에 점검한다. 운반할 때에는 지그를 사용한다.

6. 교육 및 훈련

띠톱 사용자는 다음과 같은 교육을 받는다.

- (1) 기기 작동 원리, 기울어지는 작업대, 펜스, 지그, 홀더 및 형판의 정확한 사용 및 조정
- (2) 작업에 적합한 날의 선택, 치차 세트, 날의 장력조정 및 트래킹
- (3) 작업 시 공작물의 안전한 취급 및 손의 올바른 위치
- (4) 상면 가이드 및 가드, 작업대 아래의 톱날 가드의 올바른 조정