

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta027

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\$

◆ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.
La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

(4p) a) Să se calculeze modulul numărului complex $\frac{3+2i}{3-2i}$

(4p) b) Să se calculeze distanța de la punctul D(1,2,4) la punctul E(2,3,9).

(4p) c) Să se arate că $\sin 45^{\circ} \notin \mathbb{Q}$.

(4p) d) Să se calculeze coordonatele punctelor de intersecție dintre elipsa de ecuație $\frac{x^2}{4} + \frac{y^2}{9} = 1$ și dreapta de ecuație x + y = 0.

(2p) e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(1, -1, 2), B(-1, 2, 1), C(2, 1, -1) și D(1, 2, 4).

(2p) f) Să se determine $a, b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe $\left(\cos 1^{\circ} + i \sin 1^{\circ}\right)^{360} = a + bi$.

SUBIECTUL II (30p)

1.

(3p) a) Să se arate că $\log_2 3 < 2$.

(3p) b) Să se calculeze probabilitatea ca un număr $n \in \{0,1,2,3,4\}$ să verifice relația $3^n + 4^n \ge 7^n$.

(3p) c) Dacă funcția $f : \mathbf{R} \to \mathbf{R}$, f(x) = 3x + 5, are inversa $g : \mathbf{R} \to \mathbf{R}$, să se calculeze g(8).

(3p) d) Să se rezolve în mulțimea numerelor reale ecuația $x^3 + 5x - 6 = 0$.

(3p) e) Să se calculeze suma pătratelor rădăcinilor polinomului $f = X^4 - X - 8$.

2. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, f(x) = 2x - arctgx.

(3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.

(3p) b) Să se calculeze $\int_{0}^{1} f'(x)dx$.

(3p) c) Să se arate că funcția f este strict crescătoare pe \mathbf{R} .

(3p) d) Să se calculeze $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1}$.

(3p) e) Să se calculeze $\int_0^1 \frac{2x^2}{x^3 + 1} dx.$

1

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

SUBIECTUL III (20p)

Se consideră matricele $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \ A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ U = \begin{pmatrix} x & 1 \\ 0 & \frac{1}{x} \end{pmatrix}, \ x \in \mathbf{C}^*$ și mulțimile $M = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{M}_2(\mathbf{C}) \ \middle| \ a+d=0 \right\}$ și $N = \left\{ X \in \mathbf{M}_2(\mathbf{C}) \ \middle| \ X^2 = O_2 \right\}.$

- (4p) a) Să se verifice că $A \in N$ și $B \in N$.
- (4p) $| \mathbf{b} |$ Să se calculeze determinantul și rangul matricei A.
- **(4p)** c) Să se găsească o matrice $C \in M$, cu proprietatea $C \notin N$.
- (2p) d) Să se arate că, dacă $X \in N$ atunci $X \in M$.
- (2p) e) Să se verifice că matricea U este inversabilă și $U^{-1} = \begin{bmatrix} \frac{1}{x} & -1 \\ 0 & x \end{bmatrix}$.
- (2p) \mathbf{f}) Dacă $D = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{M}_2(\mathbf{C})$ cu $c \cdot d \neq 0$ și $V = \begin{pmatrix} \frac{c}{d} & 1 \\ 0 & \frac{d}{c} \end{pmatrix}$, să se calculeze $V \cdot D \cdot V^{-1}$.
- (2p) g) Să se arate că orice matrice $E = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M$ cu $ac \neq 0$ se scrie ca sumă de două matrice din mulțimea N.

SUBIECTUL IV (20p)

Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x - \sin x$ și integralele $I_n = \int_0^{2006} \sin(x^n) dx$, $\forall n \in \mathbf{N}^*$.

- (4p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (4p) b) Să se arate că $x \ge \sin x$, $\forall x \ge 0$.
- (4p) | c) Să se calculeze I_1 .
- (2**p**) **d**) Să se arate că $\lim_{n\to\infty} \int_{0}^{1} \sin(x^{n}) dx = 0$.
- (2p) e) Utilizând metoda integrării prin părți, să se arate că

$$\int_{1}^{2006} \frac{\cos(x^{n})}{x^{n}} dx = \frac{\cos 1}{n-1} - \frac{\cos(2006^{n})}{(n-1) \cdot 2006^{n-1}} - \frac{n}{n-1} \int_{1}^{2006} \sin(x^{n}) dx, \quad \forall n \in \mathbb{N}^{*}, n \ge 2.$$

- (2p) Să se arate că $\lim_{n\to\infty} \int_{1}^{2006} \frac{\cos(x^n)}{x^n} dx = 0$.
- (2p) g) Să se calculeze $\lim_{n\to\infty} I_n$.

2