Let $A \in \mathcal{V}$ source, $B \in \mathcal{V}$ sink. For the following, we suppose that $Turn_{j-1}$ has just finished and A = Player(j) is currently deciding $Turn_j$. We use the following notation:

$$c_{Av} = DTr_{A \to v, j-1}$$
$$c'_{Av} = DTr_{A \to v, j}$$

Moreover, X and X' will be the flows returned by some execution of $MaxFlow_{\mathcal{G}_{i-1}}(A,B)$ and $MaxFlow_{\mathcal{G}_i}(A,B)$ respectively.

Furthermore, we suppose an arbitrary ordering of the members of $N^+(A)$. We set $n = |N^+(A)|$. Thus

$$N^{+}(A) = \{v_1, ..., v_n\}$$

We use these subscripts to refer to the respective capacities (a.k.a. direct trusts) and flows. Thus

$$x_i = x_{Av_i}$$
, where $i \in [n]$

Definition 1 (Trust Reduction).

Trust Reduction on neighbour i is defined as $\delta_i = c_i - c_i'$. Flow Reduction on neighbour i is defined as $\Delta_i = x_i - c_i'$. We will also use the standard notation for 1-norm and ∞ -norm:

$$||\delta_i||_1 = \sum_{i=1}^n \delta_i$$
$$||\delta_i||_{\infty} = \max_{1 \le i \le n} \delta_i$$

Definition 2 (Restricted Flow).

Let $i \in [n]$. Let $F_{A_i \to B}$ be x'_i when:

$$c'_i = c_i \text{ and}$$

$$\forall k \in [n] \setminus \{i\}, c'_k = 0.$$

This definition can be rephrased equivalently as follows: Let $v \in N^+(A)$. Let $F_{A_v \to B}$ be x'_{Av} when:

$$c'_{Av} = c_{Av} \ and$$

$$\forall w \in N^{+}(A) \setminus \{v\}, c'_{Aw} = 0 \ .$$

Let
$$L \subset [n]$$
. Let $F_{A_L \to B}$ be $\sum_{i \in L} x'_i$ when:

$$\forall i \in L, c'_i = c_i \text{ and}$$

 $\forall i \in [n] \setminus L, c'_i = 0$.

The latter definition can be rephrased equivalently as follows: Let $S \subset N^+(A)$. Let $F_{A_S \to B}$ be $\sum_{v \in S} x'_{Av}$ when:

$$\forall v \in S, c'_{Av} = c_{Av} \text{ and}$$

 $\forall v \in N^+(A) \setminus S, c'_{Av} = 0$.

The choice of the definition will depend on whether K in $F_{A_K \to B}$ is a node, an index or a set of nodes or indices.

Theorem 1 (Saturation theorem).

If
$$\forall i \in [n], c'_i \leq x_i$$
, then $\forall i \in [n], x'_i = c'_i$.

Proof. From the flow definition we know that

$$\forall i \in [n], x_i' \le c_i' . \tag{1}$$

In turn j-1, there exists some valid flow Y such that

$$\forall i \in [n], y_i = c'_i$$

with a flow value $\sum_{i=1}^{n} y_i$ (NEEDS PROOF/ARGUMENT). Y is also obviously valid for turn j and, since all capacities c'_i are saturated, there can be no more outgoing flow from the source, thus Y is a maximum flow in \mathcal{G}_j .

Theorem 2 (Trust transfer theorem (flow terminology)).

Let s source, t sink, $n = N^+(s)$

 $X = \{x_1, \ldots, x_n\}$ outgoing flows from s,

 $U = \{u_1, \ldots, u_n\}$ outgoing capacities from s,

V the value to be transferred.

Nodes apart from s, t follow the conservative strategy.

Obviously maxFlow = $F = \sum_{i=1}^{n} x_i$.

We create a new graph where

1.
$$\sum_{i=1}^{n} u'_{i} = F - V$$

2. $\forall i \in [n] \ u'_{i} \le x_{i}$

2.
$$\forall i \in [n] \ u_i' \leq x_i$$

It holds that maxFlow' = F' = F - V.

Proof. From theorem 1 we can see that
$$x_i' = u_i'$$
. It holds that $F' = \sum_{i=1}^n x_i' = \sum_{i=1}^n u_i' = F - V$.

Lemma 1 (Flow limit lemma).

It is impossible for the outgoing flow x_i from A to an out neighbour of A to be greater than $F_{A_i \to B}$. More formally, $x_i \leq F_{A_i \to B}$.

Proof. Suppose a configuration where $\exists i: x_i > F_{A_i \to B}$. If we reduce the capacities $u_k, k \neq i$ the flow that passes from i in no case has to be reduced. Thus we can set $\forall k \neq i, u'_k = 0$ and $u'_i = u_i$. Then $\forall k \neq i$ $i, x'_k = 0, x'_i = x_i$ is a valid configuration and thus by definition $F_{A_i \to B} = x_i$ $x_i' = x_i > F_{A_i \to B}$, which is a contradiction. Thus $\forall i \in [|N^+(A)|], x_i \leq$ $F_{A_i \to B}$.

Theorem 3 (Trust Saving Theorem).

A configuration $U': u'_i = F_{A_i \to B}$ for some $i \in [|N^+(A)|]$ can yield the same maxFlow with a configuration $U'': u_i'' = u_i, \forall k \in [|N^+(A)|], k \neq 0$ $i, u_k'' = u_k'.$

Proof. We know that $x_i \leq F_{A_i \to B}$ (lemma 1), thus we can see that any increase in u_i' beyond $F_{A_i \to B}$ will not influence x_i and subsequently will not incur any change on the rest of the flows.

Theorem 4 (Invariable trust reduction with naive algorithms). Let A source, $n = |N^+(A)|$ and u'_i new direct trusts. If $\forall i \in [n], u'_i \leq x_i$, Trust Reduction $||\delta_i||_1$ is independent of $x_i, u_i' \forall$ valid configurations of x_i

Proof. Since
$$\forall i \in [n], u'_i \leq x_i$$
 it is (according to 1) $x'_i = u'_i$, thus $\delta_i = u_i - x'_i$. We know that $\sum_{i=1}^n x'_i = F - V$, so we have $||\delta_i||_1 = \sum_{i=1}^n \delta_i = \sum_{i=1}^n (u_i - x'_i) = \sum_{i=1}^n u_i - F + V$ independent from x'_i, u'_i

Here we show three naive algorithms for calculating new direct trusts so as to maintain invariable risk when paying a trusted party. To prove the correctness of the algorithms, it suffices to prove that $\forall i \in [n] \ u_i' \leq x_i$ and that $\sum_{i=1}^{n} u'_i = F - V$ where $F = \sum_{i=1}^{n} x_i$.

Algorithm 1: First-come, first-served trust transfer

```
Input: x_i flows, n = |N^+(s)|, V value
    Output: u'_i capacities
\mathbf{1} \ F \leftarrow \sum_{i=1}^{n} x_i
 2 if F < V then
 _3 return _\perp
 4 F_{cur} \leftarrow F
 5 for i \leftarrow 1 to n do
 a \mid u_i' \leftarrow x_i
 7i \leftarrow 1
 8 while F_{cur} > F - V do
         reduce \leftarrow \min(x_i, F_{cur} - F + V)
         F_{cur} \leftarrow F_{cur} - reduce
         u_i' \leftarrow x_i - reduce
11
       i \leftarrow i + 1
13 return U' = \bigcup_{k=1}^{n} \{u'_k\}
```

Proof of correctness for algorithm 1. - We will show that $\forall i \in [n] \ u'_i \leq$

Let $i \in [n]$. In line 6 we can see that $u'_i = x_i$ and the only other occurrence of u_i' is in line 11 where it is never increased $(reduce \ge 0)$, thus we see that, when returned, $u_i' \leq x_i$.

– We will show that $\sum_{i=1}^{n} u'_i = F - V$.

$$F_{cur,0} = F$$

If $F_{cur,i} \leq F - V$, then $F_{cur,i+1}$ does not exist because the while loop breaks after calculating $F_{cur,i}$.

Else
$$F_{cur,i+1} = F_{cur,i} - \min(x_{i+1}, F_{cur,i} - F + V)$$
.

If for some i, $\min (x_{i+1}, F_{cur,i} - F + V) = F_{cur,i} - F + V$, then $F_{cur,i+1} = F - V$, so if $F_{cur,i+1}$ exists, then $\forall k < i, F_{cur,k} = F_{cur,k-1} - x_k \Rightarrow F_{cur,i} = F - \sum_{k=1}^{i} x_k$ Furthermore, if $F_{cur,i+1} = F - V$ then $u'_{i+1} = x_{i+1} - F_{cur,i} + F - V = x_i - F + \sum_{k=1}^{i-1} x_k + F - V = \sum_{k=1}^{i} x_k - V$, $\forall k \le i, u'_k = 0$ and $\forall k > i + 1, u'_k = x_k$.

In total, we have $\sum_{k=1}^{n} u'_k = \sum_{k=1}^{i} x_k - V + \sum_{k=i+1}^{n} x_k = \sum_{k=1}^{n} x_k - V \Rightarrow \sum_{k=1}^{n} u'_k = F - V$.

Complexity of algorithm 1. First we will prove that on line $13 \ i \le n+1$. Suppose that i > n+1 on line 13. This means that $F_{cur,n}$ exists and $F_{cur,n} = F - \sum_{i=1}^{n} x_i = 0 \le F - V$ since, according to the condition on line $2, F - V \ge 0$. This means however that the while loop on line 8 will break, thus $F_{cur,n+1}$ cannot exist and i = n+1 on line 13, which is a contradiction, thus $i \le n+1$ on line 13. Since i is incremented by 1 on every iteration of the while loop (line 12), the complexity of the while loop is O(n) in the worst case. The complexity of lines 2 - 4 and 7 is O(1) and the complexity of lines 1, 5 - 6 and 13 is O(n), thus the total complexity of algorithm 1 is O(n).

Algorithm 2: Absolute equality trust transfer $(||\Delta_i||_{\infty} \text{ minimizer})$

```
Input: x_i flows, n = |N^+(s)|, V value
    Output: u'_i capacities
 1 F \leftarrow \sum_{i=1}^{n} x_i
 2 if F < V then

m return \perp
 4 for i \leftarrow 1 to n do
 u_i' \leftarrow x_i
 6 reduce \leftarrow \frac{V}{n}
 7 reduction \leftarrow 0
 \mathbf{8} \ empty \leftarrow 0
 \mathbf{9} \ i \leftarrow 0
10 while reduction < V do
         if u_i' > 0 then
              if x_i < reduce then
12
                   empty \leftarrow empty + 1
13
                   if empty < n then
14
                    | reduce \leftarrow reduce + \frac{reduce - x_i}{n - empty} 
 reduction \leftarrow reduction + u'_i 
15
16
                    u_i' \leftarrow 0
17
              else if x_i \ge reduce then
18
                   reduction \leftarrow reduction + u'_i - (x_i - reduce)
19
                   u_i' \leftarrow x_i - reduce
20
         i \leftarrow (i+1) mod n
22 return U' = \bigcup_{k=1}^{n} \{u'_k\}
```

We will start by showing some results useful for the following proofs. Let j be the number of iterations of the **while** loop for the rest of the proofs for algorithm 2 (think of i from line 21 without the mod n).

First we will show that $empty \leq n$. empty is only modified on line 13 where it is incremented by 1. This happens only when $u_i' > 0$ (line 11), which is assigned the value 0 on line 17. We can see that the incrementation of empty can happen at most n times because |U'| = n. Since $empty_0 = 0$, $empty \leq n$ at all times of the execution.

Next we will derive the recursive formulas for the various variables. $empty_0=0$

$$empty_{j+1} = \begin{cases} empty_j, & u'_{(j+1) \bmod n} = 0 \\ empty_j + 1, & u'_{(j+1) \bmod n} > 0 \land x_{(j+1) \bmod n} < reduce_j \\ empty_j, & u'_{(j+1) \bmod n} > 0 \land x_{(j+1) \bmod n} \ge reduce_j \end{cases}$$

$$reduce_0 = \frac{V}{n}$$

$$reduce_{j+1} = \begin{cases} reduce_j, & u'_{(j+1) \bmod n} = 0 \\ reduce_j + \frac{reduce_j - x_{(j+1) \bmod n}}{n - empty_{j+1}}, & u'_{(j+1) \bmod n} > 0 \land x_{(j+1) \bmod n} < reduce_j \\ reduce_j, & u'_{(j+1) \bmod n} > 0 \land x_{(j+1) \bmod n} \ge reduce_j \end{cases}$$

$$reduction_0 = 0$$

$$reduction_{j+1} = \begin{cases} reduction_{j}, & u'_{(j+1) \, mod \, n} = 0 \\ reduction_{j} + u'_{(j+1) \, mod \, n}, & u'_{(j+1) \, mod \, n} > 0 \, \wedge \, x_{(j+1) \, mod \, n} \\ reduction_{j} + u'_{(j+1) \, mod \, n} - x_{(j+1) \, mod \, n} + reduce_{j+1}, & u'_{(j+1) \, mod \, n} > 0 \, \wedge \, x_{(j+1) \, mod \, n} \\ V - \sum x \end{cases}$$

In the end, r = reduce is such that $r = \frac{\widetilde{x \in S}}{n - |S|}$ where $S = \{\text{flows } y \text{ from } s \text{ to } N^+(s) \text{ according to } max \ y < r\}$. Also, $\sum_{i=1}^n u_i' = \sum_{i=1}^n \max(0, x_i - r)$. TOPROVE

Proof of correctness for algorithm 2. – We will show that $\forall i \in [n] \ u'_i \leq x_i$.

On line 5, $\forall i \in [n] \ u_i' = x_i$. Subsequently u_i' is modified on line 17, where it becomes equal to 0 and on line 20, where it is assigned $x_i - reduce$. It holds that $x_i - reduce \le x_i$ because initially $reduce = \frac{V}{n} \ge 0$ and subsequently reduce is modified only on line 15 where it is increased (n > empty because of line 14 and $reduce > x_i$ because of line 12, thus $\frac{reduce - x_i}{n - empty} > 0$). We see that $\forall i \in [n], u_i' \le x_i$.

– We will show that $\sum_{i=1}^{n} u_i' = F - V$.

The variable reduction keeps track of the total reduction that has happened and breaks the **while** loop when reduction $\geq V$. We will first show that $reduction = \sum_{i=1}^{n} (x_i - u_i')$ at all times and then we will prove that reduction = V at the end of the execution. Thus we will have proven that $\sum_{i=1}^{n} u_i' = \sum_{i=1}^{n} x_i - V = F - V$.

• On line 5, $u'_i = x_i \Rightarrow \sum_{i=1}^n (x_i - u'_i) = 0$ and reduction = 0.

On line 17, u'_i is reduced to 0 thus $\sum_{i=1}^{n} (x_i - u'_i)$ is increased by u'_i . Similarly, on line 16 reduction is increased by u'_i , the same as the increase in $\sum_{i=1}^{n} (x_i - u_i')$.

On line 20, u'_i is reduced by $u'_i - x_i + reduce$ thus $\sum_{i=1}^n (x_i - u'_i)$ is increased by $u'_i - x_i + reduce$. On line 19, reduction is increased by $u'_i - x_i + reduce$, which is equal to the increase in $\sum_{i=1}^n (x_i - u'_i)$. We also have to note that neither u'_i nor reduction is modified in any other way from line 10 and on, thus we conclude that $reduction = \sum_{i=1}^n (x_i - u'_i)$ at all times.

• Suppose that $reduction_j > V$ on the line 22. Since $reduction_j$ exists, $reduction_{j-1} < V$. If $x_{j \bmod n} < reduce_{j-1}$ then $reduction_j = reduction_{j-1} + u'_{j \bmod n}$. Since $reduction_j > V$, $u'_{j \bmod n} > V - reduction_{j-1}$. TOCOMPLETE

Complexity of algorithm 2. In the worst case scenario, each time we iterate over all capacities only the last non-zero capacity will become zero and every non-zero capacity must be recalculated. This means that every n steps exactly 1 capacity becomes zero and eventually all capacities (maybe except for one) become zero. Thus we need $O(n^2)$ steps in the worst case.

A variation of this algorithm using a Fibonacci heap with complexity O(n) can be created, but that is part of further research.

Proof that algorithm 2 minimizes the $||\Delta_i||_{\infty}$ norm. Suppose that U' is the result of an execution of algorithm 2 that does not minimize the $||\Delta_i||_{\infty}$ norm. Suppose that W is a valid solution that minimizes the $||\Delta_i||_{\infty}$ norm. Let δ be the minimum value of this norm. There exists $i \in [n]$ such that $x_i - w_i = \delta$ and $u_i' < w_i$. Because both U' and W are valid solutions $(\sum_{i=1}^n u_i' = \sum_{i=1}^n w_i = F - V)$, there must exist a set $S \subset U'$ such that $\forall u_j' \in S, u_j' > w_j$ TOCOMPLETE.

Algorithm 3: Proportional equality trust transfer

Input: x_i flows, $n = |N^+(s)|$, V value

Output: u'_i capacities

- $\mathbf{1} \ F \leftarrow \sum_{i=1}^{n} x_i$
- 2 if F < V then
- 3 return ⊥
- 4 for $i \leftarrow 1$ to n do
- $\mathbf{5} \quad | \quad u_i' \leftarrow x_i \frac{V}{F}x_i$
- 6 return $U' = \bigcup_{k=1}^{n} \{u'_k\}$

Proof of correctness for algorithm 3. – We will show that $\forall i \in [n] \ u'_i \leq x_i$.

According to line 5, which is the only line where u_i' is changed, $u_i' = x_i - \frac{V}{F}x_i \le x_i$ since $x_i, V, F > 0$ and $V \le F$.

– We will show that $\sum_{i=1}^{n} u'_i = F - V$.

With $F = \sum_{i=1}^{n} x_i$, on line 6 it holds that $\sum_{i=1}^{n} u_i' = \sum_{i=1}^{n} (x_i - \frac{V}{F}x_i) =$

$$\sum_{i=1}^{n} x_i - \frac{V}{F} \sum_{i=1}^{n} x_i = F - V.$$

Complexity of algorithm 3. The complexity of lines 1, 4 - 5 and 6 is O(n) and the complexity of lines 2 - 3 is O(1), thus the total complexity of algorithm 3 is O(n).

Naive algorithms result in $u_i' \leq x_i$, thus according to 4, $||\delta_i||_1$ is invariable for any of the possible solutions U', which is not necessarily the minimum (usually it will be the maximum). The following algorithms

concentrate on minimizing two δ_i norms, $||\delta_i||_{\infty}$ and $||\delta_i||_1$.

```
Algorithm 4: ||\delta_i||_{\infty} minimizer
```

```
Input : X = \{x_i\} flows, n = |N^+(s)|, V value, \epsilon_1, \epsilon_2
Output: u_i' capacities

1 if \epsilon_1 < 0 \lor \epsilon_2 < 0 then

2 | return \bot

3 F \leftarrow \sum_{i=1}^n x_i

4 if F < V then

5 | return \bot

6 \delta_{max} \leftarrow \max_{i \in [n]} \{u_i\}

7 \delta^* \leftarrow \text{BinSearch}(\theta, \delta_{max}, F - V, n, X, \epsilon_1, \epsilon_2)

8 for i \leftarrow 1 to n do

9 | u_i' \leftarrow \max(u_i - \delta^*, 0)

10 return U' = \bigcup_{k=1}^n \{u_k'\}
```

Since trust should be considered as a continuous unit and binary search dissects the possible interval for the solution on each recursive call, inclusion of the ϵ -parameters in BinSearch is necessary for the algorithm to complete in a finite number of steps.

Algorithm 5: *

```
Input : bot, top, F', n, X, \epsilon_1, \epsilon_2
     Output: \delta^*
 1 function BinSearch if bot = top then
           return bot
 3 else
           \mathbf{for}\ i \leftarrow 1\ to\ n\ \ \mathbf{do}
 4
            | u_i' \leftarrow \max(0, u_i - \frac{top + bot}{2})  if \max Flow < F' - \epsilon_1 then
 5
 6
          return BinSearch(bot, \frac{top+bot}{2}, F', n, X, \epsilon_1, \epsilon_2) else if maxFlow > F' + \epsilon_2 then
 7
 8
                 return BinSearch(\frac{top+bot}{2}, top,F',n,X.\epsilon_1,\epsilon_2)
 9
           else
10
                 return \frac{top+bot}{2}
11
```

Proof that $maxFlow(\delta)$ is strictly decreasing for $\delta : maxflow(\delta) < F$. Let $maxFlow(\delta)$ be the maxFlow with $\forall i \in [n], u'_i = max(0, u_i - \delta)$. We will prove that the function $maxFlow(\delta)$ is strictly decreasing for all $\delta \leq \max_{i \in [n]} \{u_i\}$ such that $\max Flow(\delta) < F$.

Suppose that $\exists \delta_1, \delta_2 : \delta_1 < \delta_2 \land maxFlow(\delta_1) \leq maxFlow(\delta_2) < F$. We will work with configurations of $x'_{i,j}$ such that $x'_{i,j} \leq x_i, j \in \{1,2\}$.

Let $S_j = \{i \in N^+(s) : i \in MinCut_j\}$. It holds that $S_1 \neq \emptyset$ because otherwise $MinCut_1 = MinCut_{\delta=0}$ which is a contradiction because then $maxFlow(\delta_1) = F$. Moreover, it holds that $S_1 \subseteq S_2$, since $\forall u'_{i,2} > 0, u'_{i,2} < u'_{i,1}$. Every node in the $MinCut_j$ is saturated, thus $\forall i \in S_1, x'_{i,j} = u'_{i,j}$. Thus $\sum_{i \in S_1} x_{i,2} < \sum_{i \in S_1} x_{i,1}$ and, since $maxFlow(\delta_1) \leq maxFlow(\delta_2)$,

we conclude that for the same configurations, $\sum_{i \in N^+(s) \setminus S_1} x_{i,2} > \sum_{i \in N^+(s) \setminus S_1} x_{i,1}.$

However, since $x'_{i,j} \leq x_i, j \in \{1,2\}$, the configuration $[x''_{i,1} = x'_{i,2}, i \in N^+(s) \setminus S_1], [x''_{i,1} = x'_{i,1}, i \in S_1]$ is valid for $\delta = \delta_1$ and then $\sum_{i \in S_1} x''_{i,1} + \sum_{i \in S_1} x''_{i,1}$

 $\sum_{i \in N^+(s) \backslash S_1} x_{i,1}'' = \sum_{i \in S_1} x_{i,1}' + \sum_{i \in N^+(s) \backslash S_1} x_{i,2}' > maxFlow(\delta_1), \text{ contradiction.}$ Thus $maxFlow(\delta)$ is strictly decreasing.

We can see that if V > 0, F' = F - V < F thus if $\delta \in (0, \max_{i \in [n]} \{u_i\}]$: $\max Flow(\delta) = F' \Rightarrow \delta = \min ||\delta_i||_{\infty} : \max Flow(||\delta_i||_{\infty}) = F'.$

Proof of correctness for function 5. Supposing that $[F' - \epsilon_1, F' + \epsilon_2] \subset [maxFlow(top), maxFlow(bot)]$, or equivalently $maxFlow(top) \leq F' - \epsilon_1 \wedge maxFlow(bot) \geq F' + \epsilon_2$, we will prove that $maxFlow(\delta^*) \in [F' - \epsilon_1, F' + \epsilon_2]$.

First of all, we should note that if an invocation of BinSearch returns without calling BinSearch again (line 2 or 11), its return value will be equal to the return value of the initial invocation of BinSearch, as we can see on lines 7 and 9, where the return value of the invoked BinSearch is returned without any modification. The case where BinSearch is called again is analyzed next:

- If $\max Flow(\frac{top+bot}{2}) < F' \epsilon_1 < F'$ (line 6) then, since $\max Flow(\delta)$ is strictly decreasing, $\delta^* \in [bot, \frac{top+bot}{2})$. As we see on line 7, the interval $(\frac{top+bot}{2}, top]$ is discarded when the next BinSearch is called. Since $F' + \epsilon_2 \leq \max Flow(bot)$, we have $[F' \epsilon_1, F' + \epsilon_2] \subset [\max Flow(\frac{top+bot}{2}), \max Flow(bot)]$ and the length of the available interval is divided by 2.
- Similarly, if $maxFlow(\frac{top+bot}{2}) > F' + \epsilon_2 > F'$ (line 8) then $\delta^* \in (\frac{top+bot}{2}, top]$. According to line 9, the interval $[bot, \frac{top+bot}{2})$ is discarded when the next BinSearch is called. Since $F' \epsilon_1 \geq maxFlow(top)$, we have $[F' \epsilon_1, F' + \epsilon_2] \subset (maxFlow(top), maxFlow(\frac{top+bot}{2})]$ and the length of the available interval is divided by 2.

As we saw, $[F'-\epsilon_1,F'+\epsilon_2]\subset[maxFlow(top),maxFlow(bot)]$ in every recursive call and top-bot is divided by 2 in every call. From topology we know that $A\subset B\Rightarrow |A|<|B|$, so the recursive calls cannot continue infinitely. $|[F'-\epsilon_1,F'+\epsilon_2]|=\epsilon_1+\epsilon_2$. Let bot_0,top_0 the input values given to the initial invocation of BinSearch, bot_j,top_j the input values given to the j-th recursive call of BinSearch and $len_j=|[bot_j,top_j]|=top_j-bot_j$. We have $\forall j>0, len_j=top_j-bot_j=\frac{top_0-bot_$

Complexity of function 5. Lines 1 - 2 have complexity O(1), lines 4 - 5 have complexity O(n), lines 6 - 11 have complexity O(maxFlow) + O(BinSearch). As we saw in the proof of correctness for function 5, we need at most $\log_2(\frac{top-bot}{\epsilon_1+\epsilon_2})$ recursive calls of BinSearch. Thus the function 5 has worst-case complexity $O((maxFlow+n)\log_2(\frac{top-bot}{\epsilon_1+\epsilon_2}))$.

Proof of correctness for algorithm 4. We will show that $\max Flow \in [F-V-\epsilon_1,F-V+\epsilon_2]$, with u_i' decided by algorithm 4. Obviously $\max Flow(0)=F,\max Flow(\max_{i\in [n]}\{u_i\})=0$, thus $\delta^*\in\max_{i\in [n]}\{u_i\}$.

According to the proof of correctness for function 5, we can directly see that $\max Flow(\delta^*) \in [F - V - \epsilon_1, F - V + \epsilon_2]$, given that ϵ_1, ϵ_2 are chosen so that $F - V - \epsilon_1 \geq 0, F - V + \epsilon_2 \leq F$, so as to satisfy the condition $[F' - \epsilon_1, F' + \epsilon_2] \subset [\max Flow(top), \max Flow(bot)]$.

Complexity of algorithm 4. The complexity of lines 1 - 2 and 4 - 5 is O(1), the complexity of lines 3, 6, 8 - 9 and 10 is O(n) and the complexity of line 7 is $O(BinSearch) = O((maxFlow + n)\log_2(\frac{\delta_{max}}{\epsilon_1 + \epsilon_2}))$, thus the total complexity of algorithm 4 is $O((maxFlow + n)\log_2(\frac{\delta_{max}}{\epsilon_1 + \epsilon_2}))$.

However, we need to minimize $\sum_{i=1}^{n} (u_i - u_i') = ||\delta_i||_1$.