Undetermined Coefficients

Department of Mathematics

Salt Lake Community College

Remember

If L is a linear differential operator defined by

$$L(y) = a_n(t)y^{(n)} + a_{n-1}(t)y^{(n-1)} + \cdots + a_1(t)y' + a_0(t)y$$

(where all functions of t are assumed to be defined over some interval I) then we can look at superposition for the DE L(y) = f(t).

Remember

If L is a linear differential operator defined by

$$L(y) = a_n(t)y^{(n)} + a_{n-1}(t)y^{(n-1)} + \cdots + a_1(t)y' + a_0(t)y$$

(where all functions of t are assumed to be defined over some interval I) then we can look at superposition for the DE L(y) = f(t).

Superposition Principle for Nonhomogeneous Linear DEs

If $y_i(t)$ is a solution of $L(y) = f_i(t)$, for i = 1, 2, ..., n, and constants $c_1, c_2, ..., c_n \in \mathbb{R}$, then

$$y(t) = c_1y_1(t) + c_2y_2(t) + \cdots + c_ny_n(t)$$

is a solution of

$$L(y) = c_1 f_1(t) + c_2 f_2(t) + \cdots + c_n f_n(t)$$

Nonhomogeneous Principle for Linear DEs

The general solution of the nonhomogeneous linear DE L(y) = f is

$$y = y_h + y_p$$

where

- y_h is the general solution of L(y) = 0
- y_p is a particular solution of L(y) = f

Nonhomogeneous Principle for Linear DEs

The general solution of the nonhomogeneous linear DE L(y) = f is

$$y = y_h + y_p$$

where

- y_h is the general solution of L(y) = 0
- y_p is a particular solution of L(y) = f

Note

This is just applying the superposition principle for $f_1(t) = 0$ and $f_2(t) = f$.

Consider the nonhomogeneous second-order DE

$$y'' - y' - 2y = 2t + 1 - 2e^t$$

Consider the nonhomogeneous second-order DE

$$\underbrace{y''-y'-2y}_{L(y)} = \underbrace{2t+1}_{f_1} \underbrace{-2e^t}_{f_2}$$

Consider the nonhomogeneous second-order DE

$$\underbrace{y'' - y' - 2y}_{L(y)} = \underbrace{2t + 1}_{f_1} \underbrace{-2e^t}_{f_2}$$

We can verify the following following:

$$y_1 = -t$$
 is a solution to $L(y) = f_1$

Consider the nonhomogeneous second-order DE

$$\underbrace{y''-y'-2y}_{L(y)} = \underbrace{2t+1}_{f_1} \underbrace{-2e^t}_{f_2}$$

We can verify the following following:

$$y_1 = -t$$
 is a solution to $L(y) = f_1$
 $y_2 = e^t$ is a solution to $L(y) = f_2$.

Consider the nonhomogeneous second-order DE

$$\underbrace{y'' - y' - 2y}_{L(y)} = \underbrace{2t + 1}_{f_1} \underbrace{-2e^t}_{f_2}$$

We can verify the following following:

$$y_1 = -t$$
 is a solution to $L(y) = f_1$
 $y_2 = e^t$ is a solution to $L(y) = f_2$.

We can then use superposition to build a particular solution

$$y_p = y_1 + y_2 = -t + e^t$$

Consider the nonhomogeneous second-order DE

$$\underbrace{y'' - y' - 2y}_{L(y)} = \underbrace{2t + 1}_{f_1} \underbrace{-2e^t}_{f_2}$$

We can verify the following following:

$$y_1 = -t$$
 is a solution to $L(y) = f_1$
 $y_2 = e^t$ is a solution to $L(y) = f_2$.

We can then use superposition to build a particular solution

$$y_p = y_1 + y_2 = -t + e^t$$

Finally, we use characteristic roots to solve L(y) = 0

$$r^2-r-2=0$$

Consider the nonhomogeneous second-order DE

$$\underbrace{y'' - y' - 2y}_{L(y)} = \underbrace{2t + 1}_{f_1} \underbrace{-2e^t}_{f_2}$$

We can verify the following following:

$$y_1 = -t$$
 is a solution to $L(y) = f_1$
 $y_2 = e^t$ is a solution to $L(y) = f_2$.

We can then use superposition to build a particular solution

$$y_p = y_1 + y_2 = -t + e^t$$

Finally, we use characteristic roots to solve L(y) = 0

$$r^2 - r - 2 = 0 \rightarrow r_1 = 2, \ r_2 = -1$$

Consider the nonhomogeneous second-order DE

$$\underbrace{y'' - y' - 2y}_{L(y)} = \underbrace{2t + 1}_{f_1} \underbrace{-2e^t}_{f_2}$$

We can verify the following following:

$$y_1 = -t$$
 is a solution to $L(y) = f_1$
 $y_2 = e^t$ is a solution to $L(y) = f_2$.

We can then use superposition to build a particular solution

$$y_p = y_1 + y_2 = -t + e^t$$

Finally, we use characteristic roots to solve L(y) = 0

$$r^2 - r - 2 = 0 \rightarrow r_1 = 2, \ r_2 = -1 \rightarrow y_h = c_1 e^{2t} + c_2 e^{-t}$$

Consider the nonhomogeneous second-order DE

$$\underbrace{y''-y'-2y}_{L(y)} = \underbrace{2t+1}_{f_1} \underbrace{-2e^t}_{f_2}$$

We can verify the following following:

$$y_1 = -t$$
 is a solution to $L(y) = f_1$
 $y_2 = e^t$ is a solution to $L(y) = f_2$.

We can then use superposition to build a particular solution

$$y_p = y_1 + y_2 = -t + e^t$$

Finally, we use characteristic roots to solve L(y) = 0

$$r^2 - r - 2 = 0 \rightarrow r_1 = 2, \ r_2 = -1 \rightarrow y_h = c_1 e^{2t} + c_2 e^{-t}$$

Thus, the general solution is

$$y = y_h + y_p = c_1 e^{2t} + c_2 e^{-t} - t + e^t$$

Consider the nonhomogeneous second-order DE

$$y'' - y' - 2y = t + \frac{1}{2} + 8e^t$$

Consider the nonhomogeneous second-order DE

$$\underbrace{y'' - y' - 2y}_{L(y)} = \underbrace{t + \frac{1}{2}}_{\frac{1}{2}f_1} + \underbrace{8e^t}_{-4f_2}$$

Consider the nonhomogeneous second-order DE

$$\underbrace{y'' - y' - 2y}_{L(y)} = \underbrace{t + \frac{1}{2}}_{\frac{1}{2}f_1} + \underbrace{8e^t}_{-4f_2}$$

Using the solutions found in the last example, we can use superposition to build a particular solution to this DE.

$$y_p = \frac{1}{2}y_1 - 4y_2$$

Consider the nonhomogeneous second-order DE

$$\underbrace{y'' - y' - 2y}_{L(y)} = \underbrace{t + \frac{1}{2}}_{\frac{1}{2}f_1} + \underbrace{8e^t}_{-4f_2}$$

Using the solutions found in the last example, we can use superposition to build a particular solution to this DE.

$$y_p = \frac{1}{2}y_1 - 4y_2 = -\frac{1}{2}t - 4e^t$$

Consider the nonhomogeneous second-order DE

$$\underbrace{y'' - y' - 2y}_{L(y)} = \underbrace{t + \frac{1}{2}}_{\frac{1}{2}f_1} + \underbrace{8e^t}_{-4f_2}$$

Using the solutions found in the last example, we can use superposition to build a particular solution to this DE.

$$y_p = \frac{1}{2}y_1 - 4y_2 = -\frac{1}{2}t - 4e^t$$

Finally, we have already solved L(y) = 0. So, the general solution is

$$y = y_h + y_p = c_1 e^{2t} + c_2 e^{-t} - \frac{1}{2}t - 4e^t$$

Consider the nonhomogeneous second-order DE

$$\underbrace{y'' - y' - 2y}_{L(y)} = \underbrace{t + \frac{1}{2}}_{\frac{1}{2}f_1} + \underbrace{8e^t}_{-4f_2}$$

Using the solutions found in the last example, we can use superposition to build a particular solution to this DE.

$$y_p = \frac{1}{2}y_1 - 4y_2 = -\frac{1}{2}t - 4e^t$$

Finally, we have already solved L(y) = 0. So, the general solution is

$$y = y_h + y_p = c_1 e^{2t} + c_2 e^{-t} - \frac{1}{2}t - 4e^t$$

Note

After accumulating some experience, a solution can be guessed by just "inspecting" the equation. By recognizing the patterns.

Consider the second-order DE

$$ay'' + by' + cy = d$$

where all the coefficients and forcing term are constant.

Consider the second-order DE

$$ay'' + by' + cy = d$$

where all the coefficients and forcing term are constant.

We can see that, when $c \neq 0$, $y_p = \frac{d}{c}$ is a particular solution.

Consider the second-order DE

$$ay'' + by' + cy = d$$

where all the coefficients and forcing term are constant.

We can see that, when $c \neq 0$, $y_p = \frac{d}{c}$ is a particular solution.

Note

This idea works well for the *n*th-order equation

$$a_n(t)y^{(n)} + a_{n-1}(t)y^{(n-1)} + \cdots + a_1(t)y' + a_0(t)y = d$$

provided that $a_0 \neq 0$.

Inspection of

$$y'' + y' = 1$$

Inspection of

$$y'' + y' = 1$$

leads to the solution $y_p = t$.

Inspection of

$$y'' + y' = 1$$

leads to the solution $y_p = t$.

Example 5

Inspection of

$$y'' - y = \sin(t)$$

Inspection of

$$y'' + y' = 1$$

leads to the solution $y_p = t$.

Example 5

Inspection of

$$y'' - y = \sin(t)$$

leads to the solution $y_p = -\frac{1}{2}\sin(t)$

Inspection of

$$y'' + y' = 1$$

leads to the solution $y_p = t$.

Example 5

Inspection of

$$y'' - y = \sin(t)$$

leads to the solution $y_p = -\frac{1}{2}\sin(t)$

Example 6

Inspection of

$$y'' + y' - 3y = 9e^{3t}$$

Inspection of

$$y'' + y' = 1$$

leads to the solution $y_p = t$.

Example 5

Inspection of

$$y'' - y = \sin(t)$$

leads to the solution $y_p = -\frac{1}{2}\sin(t)$

Example 6

Inspection of

$$y'' + y' - 3y = 9e^{3t}$$

leads to the solution $y_p = e^{3t}$

Note

There are a few limitations of this method: It only works for linear differential equations with specific forcing terms.

Note

There are a few limitations of this method: It only works for linear differential equations with specific forcing terms.

Forcing Terms That Work With Undetermined Coefficients

Any finite products or sums of:

- Polynomials in t.
- Exponentials eat.
- Sinusoidal functions of the form cos(kt) and sin(kt).

Note

There are a few limitations of this method:

It only works for linear differential equations with specific forcing terms.

Forcing Terms That Work With Undetermined Coefficients

Any finite products or sums of:

- Polynomials in t.
- Exponentials e^{at}.
- Sinusoidal functions of the form cos (kt) and sin (kt).

Note

Even with these limitations, undetermined coefficients is widely used, given that many functions are built from the above parts.

Consider

$$y'' - y' - 2y = 3t^2 - 1$$

Consider

$$y'' - y' - 2y = 3t^2 - 1$$

Let us look for y_p in \mathbb{P}_2 . Which means y_p will be of the form

$$y_p = At^2 + Bt + C$$

Consider

$$y'' - y' - 2y = 3t^2 - 1$$

Let us look for y_p in \mathbb{P}_2 . Which means y_p will be of the form

$$y_p = At^2 + Bt + C$$

We can then calculate:

$$y_p' = 2At + B$$
$$y_p'' = 2A$$

Consider

$$y'' - y' - 2y = 3t^2 - 1$$

Plugging these into the DE gives

$$2A - (2At + B) - 2(At^2 + Bt + C) = 3t^2 - 1$$

Consider

$$y'' - y' - 2y = 3t^2 - 1$$

Plugging these into the DE gives

$$2A - (2At + B) - 2(At^{2} + Bt + C) = 3t^{2} - 1$$
$$(-2A)t^{2} + (-2A - 2B)t + (2A - B - 2C) = 3t^{2} - 1$$

Consider

$$y'' - y' - 2y = 3t^2 - 1$$

Plugging these into the DE gives

$$2A - (2At + B) - 2(At^{2} + Bt + C) = 3t^{2} - 1$$
$$(-2A)t^{2} + (-2A - 2B)t + (2A - B - 2C) = 3t^{2} - 1$$

So, equating both sides gives the system

$$-2A = 3$$
, $-2A - 2B = 0$, $2A - B - 2C = -1$

Consider

$$y'' - y' - 2y = 3t^2 - 1$$

Plugging these into the DE gives

$$2A - (2At + B) - 2(At^{2} + Bt + C) = 3t^{2} - 1$$
$$(-2A)t^{2} + (-2A - 2B)t + (2A - B - 2C) = 3t^{2} - 1$$

So, equating both sides gives the system

$$-2A = 3$$
, $-2A - 2B = 0$, $2A - B - 2C = -1$

Which has solution $A = -\frac{3}{2}$, $B = \frac{3}{2}$, and $C = -\frac{7}{4}$.

Consider

$$y'' - y' - 2y = 3t^2 - 1$$

Thus, the particular solution is

$$y_p = -\frac{3}{2}t^2 + \frac{3}{2}t + \frac{7}{4}$$

Consider

$$y'' - y' - 2y = 3t^2 - 1$$

Thus, the particular solution is

$$y_p = -\frac{3}{2}t^2 + \frac{3}{2}t + \frac{7}{4}$$

Since the homogeneous equation has characteristic equation

$$r^2 - r - 2 = (r - 2)(r + 1) = 0$$

Consider

$$y'' - y' - 2y = 3t^2 - 1$$

Thus, the particular solution is

$$y_p = -\frac{3}{2}t^2 + \frac{3}{2}t + \frac{7}{4}$$

Since the homogeneous equation has characteristic equation

$$r^2 - r - 2 = (r - 2)(r + 1) = 0$$

The general solution is

$$y = c_1 e^{2t} + c_2 e^{-t} - \frac{3}{2}t^2 + \frac{3}{2}t + \frac{7}{4}$$

Consider

$$y'' - y' - 2y = 2e^{-3t}$$

Consider

$$y'' - y' - 2y = 2e^{-3t}$$

Let us look for y_p of the form

$$y_p = Ae^{-3t}$$

Consider

$$y'' - y' - 2y = 2e^{-3t}$$

Let us look for y_p of the form

$$y_p = Ae^{-3t}$$

We can then calculate:

$$y_p' = -3Ae^{-3t}$$
$$y_p'' = 9Ae^{-3t}$$

Consider

$$y'' - y' - 2y = 2e^{-3t}$$

Plugging these into the DE gives

$$9Ae^{-3t} + 3Ae^{-3t} - 2Ae^{-3t} = 2e^{-3t}$$

Consider

$$y'' - y' - 2y = 2e^{-3t}$$

Plugging these into the DE gives

$$9Ae^{-3t} + 3Ae^{-3t} - 2Ae^{-3t} = 2e^{-3t}$$
$$10Ae^{-3t} = 2e^{-3t}$$

Consider

$$y'' - y' - 2y = 2e^{-3t}$$

Plugging these into the DE gives

$$9Ae^{-3t} + 3Ae^{-3t} - 2Ae^{-3t} = 2e^{-3t}$$
$$10Ae^{-3t} = 2e^{-3t}$$

So, equating both sides gives

$$10A = 2 \rightarrow A = \frac{1}{5}$$

Consider

$$y'' - y' - 2y = 2e^{-3t}$$

Thus, the particular solution is

$$y_p = \frac{1}{5}e^{-3t}$$

Consider

$$y'' - y' - 2y = 2e^{-3t}$$

Thus, the particular solution is

$$y_p = \frac{1}{5}e^{-3t}$$

Since the homogeneous equation has characteristic equation

$$r^2 - r - 2 = (r - 2)(r + 1) = 0$$

Consider

$$y'' - y' - 2y = 2e^{-3t}$$

Thus, the particular solution is

$$y_p = \frac{1}{5}e^{-3t}$$

Since the homogeneous equation has characteristic equation

$$r^2 - r - 2 = (r - 2)(r + 1) = 0$$

The general solution is

$$y = c_1 e^{2t} + c_2 e^{-t} + \frac{1}{5} e^{-3t}$$

Consider

$$y''-y'-2y=2\cos(3t)$$

Consider

$$y'' - y' - 2y = 2\cos(3t)$$

Let us look for y_p of the form

$$y_p = A\cos(3t) + B\sin(3t)$$

Consider

$$y'' - y' - 2y = 2\cos(3t)$$

Let us look for y_p of the form

$$y_p = A\cos(3t) + B\sin(3t)$$

We can then calculate:

$$y_p' = -3A\sin(3t) + 3B\cos(3t)$$

$$y_p'' = -9A\cos(3t) - 9B\sin(3t)$$

Consider

$$y'' - y' - 2y = 2\cos(3t)$$

Plugging these into the DE gives

$$(-9A\cos(3t) - 9\sin(3t)) - (-3A\sin(3t) + 3B\cos(3t)) - 2(A\cos(3t) + B\sin(3t)) = 2\cos(3t)$$

Consider

$$y'' - y' - 2y = 2\cos(3t)$$

Plugging these into the DE gives

$$(-9A\cos(3t) - 9\sin(3t))$$

$$-(-3A\sin(3t) + 3B\cos(3t))$$

$$-2(A\cos(3t) + B\sin(3t)) = 2\cos(3t)$$

$$(-11A - 3B)\cos(3t) + (3A - 11B)\sin(3t) = 2\cos(3t)$$

Consider

$$y'' - y' - 2y = 2\cos(3t)$$

Plugging these into the DE gives

$$(-9A\cos(3t) - 9\sin(3t))$$

$$-(-3A\sin(3t) + 3B\cos(3t))$$

$$-2(A\cos(3t) + B\sin(3t)) = 2\cos(3t)$$

$$(-11A - 3B)\cos(3t) + (3A - 11B)\sin(3t) = 2\cos(3t)$$

So, equating both sides gives the system

$$-11A - 3B = 2$$
, $3A - 11B = 0$

Consider

$$y'' - y' - 2y = 2\cos(3t)$$

Plugging these into the DE gives

$$(-9A\cos(3t) - 9\sin(3t))$$

$$-(-3A\sin(3t) + 3B\cos(3t))$$

$$-2(A\cos(3t) + B\sin(3t)) = 2\cos(3t)$$

$$(-11A - 3B)\cos(3t) + (3A - 11B)\sin(3t) = 2\cos(3t)$$

So, equating both sides gives the system

$$-11A - 3B = 2$$
, $3A - 11B = 0$

Which has solution $A = -\frac{11}{65}$ and $B = -\frac{3}{65}$.

Consider

$$y'' - y' - 2y = 2\cos(3t)$$

Thus, the particular solution is

$$y_p = -\frac{11}{65}\cos(3t) - \frac{3}{65}\sin(3t)$$

Consider

$$y'' - y' - 2y = 2\cos(3t)$$

Thus, the particular solution is

$$y_p = -\frac{11}{65}\cos(3t) - \frac{3}{65}\sin(3t)$$

Since the homogeneous equation has characteristic equation

$$r^2 - r - 2 = (r - 2)(r + 1) = 0$$

Consider

$$y'' - y' - 2y = 2\cos(3t)$$

Thus, the particular solution is

$$y_p = -\frac{11}{65}\cos(3t) - \frac{3}{65}\sin(3t)$$

Since the homogeneous equation has characteristic equation

$$r^2 - r - 2 = (r - 2)(r + 1) = 0$$

The general solution is

$$y = c_1 e^{2t} + c_2 e^{-t} - \frac{11}{65} \cos(3t) - \frac{3}{65} \sin(3t)$$

Consider

$$y'' - y' - 2y = t^2 e^t$$

Consider

$$y'' - y' - 2y = t^2 e^t$$

Let us look for y_p of the form

$$y_p = \left(At^2 + Bt + C\right)e^t$$

Consider

$$y'' - y' - 2y = t^2 e^t$$

Let us look for y_p of the form

$$y_p = \left(At^2 + Bt + C\right)e^t$$

We can then calculate:

$$y'_p = (At^2 + (2A + B)t + (B + C))e^t$$

 $y''_p = (At^2 + (4A + B)t + (2A + 2B + C))e^t$

Consider

$$y'' - y' - 2y = t^2 e^t$$

Plugging these into the DE gives

$$(At^{2} + (4A + B)t + (2A + 2B + C)) e^{t}$$
$$- (At^{2} + (2A + B)t + (B + C)) e^{t}$$
$$+ 2 (At^{2} + Bt + C) e^{t} = t^{2}e^{t}$$

Consider

$$y'' - y' - 2y = t^2 e^t$$

Plugging these into the DE gives

$$(At^{2} + (4A + B)t + (2A + 2B + C)) e^{t}$$

$$- (At^{2} + (2A + B)t + (B + C)) e^{t}$$

$$+ 2 (At^{2} + Bt + C) e^{t} = t^{2}e^{t}$$

$$((-2A)t^{2} + (2A - 2B)t + (2A + B - 2C)) e^{t} = t^{2}e^{t}$$

Consider

$$y'' - y' - 2y = t^2 e^t$$

Plugging these into the DE gives

$$(At^{2} + (4A + B)t + (2A + 2B + C)) e^{t}$$

$$- (At^{2} + (2A + B)t + (B + C)) e^{t}$$

$$+ 2 (At^{2} + Bt + C) e^{t} = t^{2}e^{t}$$

$$((-2A)t^{2} + (2A - 2B)t + (2A + B - 2C)) e^{t} = t^{2}e^{t}$$

So, equating both sides gives the system

$$-2A = 1$$
, $2A - 2B = 0$, $2A + B - 2C = 0$

Consider

$$y'' - y' - 2y = t^2 e^t$$

Plugging these into the DE gives

$$(At^{2} + (4A + B)t + (2A + 2B + C)) e^{t}$$

$$- (At^{2} + (2A + B)t + (B + C)) e^{t}$$

$$+ 2 (At^{2} + Bt + C) e^{t} = t^{2}e^{t}$$

$$((-2A)t^{2} + (2A - 2B)t + (2A + B - 2C)) e^{t} = t^{2}e^{t}$$

So, equating both sides gives the system

$$-2A = 1$$
, $2A - 2B = 0$, $2A + B - 2C = 0$

Which has solution $A=-\frac{1}{2}$, $B=-\frac{1}{2}$, and $C=-\frac{3}{4}$.

Consider

$$y'' - y' - 2y = t^2 e^t$$

Thus, the particular solution is

$$y_p = \left(-\frac{1}{2}t^2 - \frac{1}{2}t - \frac{3}{4}\right)e^t$$

Consider

$$y'' - y' - 2y = t^2 e^t$$

Thus, the particular solution is

$$y_p = \left(-\frac{1}{2}t^2 - \frac{1}{2}t - \frac{3}{4}\right)e^t$$

Since the homogeneous equation has characteristic equation

$$r^2 - r - 2 = (r - 2)(r + 1) = 0$$

Consider

$$y'' - y' - 2y = t^2 e^t$$

Thus, the particular solution is

$$y_p = \left(-\frac{1}{2}t^2 - \frac{1}{2}t - \frac{3}{4}\right)e^t$$

Since the homogeneous equation has characteristic equation

$$r^2 - r - 2 = (r - 2)(r + 1) = 0$$

The general solution is

$$y = c_1 e^{2t} + c_2 e^{-t} + \left(-\frac{1}{2}t^2 - \frac{1}{2}t - \frac{3}{4}\right) e^t$$

Consider

$$y'' - y' - 2y = 5e^{2t}$$

Consider

$$y'' - y' - 2y = 5e^{2t}$$

Let us look for y_p of the form

$$y_p = Ae^{2t}$$

Consider

$$y'' - y' - 2y = 5e^{2t}$$

Let us look for y_p of the form

$$y_p = Ae^{2t}$$

We can then calculate:

$$y_p' = 2Ae^{2t}$$
$$y_p'' = 4Ae^{2t}$$

Consider

$$y'' - y' - 2y = 5e^{2t}$$

Let us look for y_p of the form

$$y_p = Ae^{2t}$$

We can then calculate:

$$y_p' = 2Ae^{2t}$$
$$y_p'' = 4Ae^{2t}$$

$$4Ae^{2t} - 2Ae^{2t} - 2Ae^{2t} = 5e^{2t}$$

Consider

$$y'' - y' - 2y = 5e^{2t}$$

Let us look for y_p of the form

$$y_p = Ae^{2t}$$

We can then calculate:

$$y_p' = 2Ae^{2t}$$
$$y_p'' = 4Ae^{2t}$$

$$4Ae^{2t} - 2Ae^{2t} - 2Ae^{2t} = 5e^{2t}$$
$$0 = 5e^{2t}$$

Consider

$$y'' - y' - 2y = 5e^{2t}$$

Let us look for y_p of the form

$$y_p = Ae^{2t}$$

We can then calculate:

$$y_p' = 2Ae^{2t}$$
$$y_p'' = 4Ae^{2t}$$

Substituting into the DE gives

$$4Ae^{2t} - 2Ae^{2t} - 2Ae^{2t} = 5e^{2t}$$
$$0 = 5e^{2t}$$

Thats not good. We'll have to try something else.

Consider

$$y'' - y' - 2y = 5e^{2t}$$

Let us look for y_p of the form

$$y_p = Ate^{2t}$$

Consider

$$y'' - y' - 2y = 5e^{2t}$$

Let us look for y_p of the form

$$y_p = Ate^{2t}$$

We can then calculate:

$$y'_p = (2At + A)e^{2t}$$

 $y''_p = (4A + 4A)e^{2t}$

Consider

$$y'' - y' - 2y = 5e^{2t}$$

$$(4A + 4A)e^{2t} - 2Ae^{2t} - 2Ate^{2t} = 5e^{2t}$$

Consider

$$y'' - y' - 2y = 5e^{2t}$$

$$(4A + 4A)e^{2t} - 2Ae^{2t} - 2Ate^{2t} = 5e^{2t}$$
$$3Ae^{2t} = 5e^{2t}$$

Consider

$$y'' - y' - 2y = 5e^{2t}$$

Substituting into the DE gives

$$(4A + 4A)e^{2t} - 2Ae^{2t} - 2Ate^{2t} = 5e^{2t}$$
$$3Ae^{2t} = 5e^{2t}$$

When we equate both sides we get 3A = 5 and so $A = \frac{5}{3}$.

Consider

$$y'' - y' - 2y = 5e^{2t}$$

Substituting into the DE gives

$$(4A + 4A)e^{2t} - 2Ae^{2t} - 2Ate^{2t} = 5e^{2t}$$
$$3Ae^{2t} = 5e^{2t}$$

When we equate both sides we get 3A = 5 and so $A = \frac{5}{3}$. And so, the particular solution is

$$y_p = \frac{5}{3}te^{2t}$$

Consider

$$y'' - 2y' + y = 3e^t$$

Consider

$$y'' - 2y' + y = 3e^t$$

Let us look for y_p of the form

$$y_p = Ae^t$$

Consider

$$y'' - 2y' + y = 3e^t$$

Let us look for y_p of the form

$$y_p = Ae^t$$

We can then calculate:

$$y_p' = Ae^t$$
$$y_p'' = Ae^t$$

$$y_p^{\prime\prime}=Ae^t$$

Consider

$$y'' - 2y' + y = 3e^t$$

Let us look for y_p of the form

$$y_p = Ae^t$$

We can then calculate:

$$y_p' = Ae^t$$
$$y_p'' = Ae^t$$

$$Ae^t - 2Ae^t + Ae^{2t} = 3e^t$$

Consider

$$y'' - 2y' + y = 3e^t$$

Let us look for y_p of the form

$$y_p = Ae^t$$

We can then calculate:

$$y_p' = Ae^t$$
$$y_p'' = Ae^t$$

$$Ae^t - 2Ae^t + Ae^{2t} = 3e^t$$
$$0 = 3e^t$$

Consider

$$y'' - 2y' + y = 3e^t$$

Let us look for y_p of the form

$$y_p = Ae^t$$

We can then calculate:

$$y_p' = Ae^t$$
$$y_p'' = Ae^t$$

Substituting into the DE gives

$$Ae^t - 2Ae^t + Ae^{2t} = 3e^t$$
$$0 = 3e^t$$

Thats not good. We'll have to try something else.

Consider

$$y'' - 2y' + y = 3e^t$$

Let us look for y_p of the form

$$y_p = Ate^t$$

Consider

$$y'' - 2y' + y = 3e^t$$

Let us look for y_p of the form

$$y_p = Ate^t$$

We can then calculate:

$$y'_{p} = Ae^{t} + Ate^{t}$$
$$y''_{p} = 2Ae^{t} + Ate^{t}$$

Consider

$$y'' - 2y' + y = 3e^t$$

Let us look for y_p of the form

$$y_p = Ate^t$$

We can then calculate:

$$y'_{p} = Ae^{t} + Ate^{t}$$
$$y''_{p} = 2Ae^{t} + Ate^{t}$$

$$2Ae^{t} + Ate^{t} - 2\left(Ae^{t} + Ate^{t}\right) + Ate^{t} = 3e^{t}$$

Consider

$$y'' - 2y' + y = 3e^t$$

Let us look for y_p of the form

$$y_p = Ate^t$$

We can then calculate:

$$y'_{p} = Ae^{t} + Ate^{t}$$
$$y''_{p} = 2Ae^{t} + Ate^{t}$$

$$2Ae^{t} + Ate^{t} - 2(Ae^{t} + Ate^{t}) + Ate^{t} = 3e^{t}$$
$$0 = 3e^{t}$$

Consider

$$y'' - 2y' + y = 3e^t$$

Let us look for y_p of the form

$$y_p = Ate^t$$

We can then calculate:

$$y'_{p} = Ae^{t} + Ate^{t}$$
$$y''_{p} = 2Ae^{t} + Ate^{t}$$

Substituting into the DE gives

$$2Ae^{t} + Ate^{t} - 2(Ae^{t} + Ate^{t}) + Ate^{t} = 3e^{t}$$
$$0 = 3e^{t}$$

This too is a problem. We'll have to try something else.

Consider

$$y'' - 2y' + y = 3e^t$$

Let us look for y_p of the form

$$y_p = At^2e^t$$

Consider

$$y'' - 2y' + y = 3e^t$$

Let us look for y_p of the form

$$y_p = At^2e^t$$

We can then calculate:

$$y'_{p} = 2Ate^{t} + At^{2}e^{t}$$
$$y''_{p} = 2Ae^{t} + 4Ate^{t} + At^{2}e^{t}$$

Consider

$$y'' - 2y' + y = 3e^t$$

$$2Ae^{t} + 4Ate^{t} + At^{2}e^{t} - 2(2Ate^{t} + At^{2}e^{t}) + At^{2}e^{t} = 5e^{2t}$$

Consider

$$y'' - 2y' + y = 3e^t$$

$$2Ae^{t} + 4Ate^{t} + At^{2}e^{t} - 2(2Ate^{t} + At^{2}e^{t}) + At^{2}e^{t} = 5e^{2t}$$

 $2Ae^{t} = 5e^{2t}$

Consider

$$y'' - 2y' + y = 3e^t$$

Substituting into the DE gives

$$2Ae^{t} + 4Ate^{t} + At^{2}e^{t} - 2(2Ate^{t} + At^{2}e^{t}) + At^{2}e^{t} = 5e^{2t}$$

 $2Ae^{t} = 5e^{2t}$

When we equate both sides we get 2A = 5 and so $A = \frac{5}{2}$.

Consider

$$y'' - 2y' + y = 3e^t$$

Substituting into the DE gives

$$2Ae^{t} + 4Ate^{t} + At^{2}e^{t} - 2(2Ate^{t} + At^{2}e^{t}) + At^{2}e^{t} = 5e^{2t}$$

 $2Ae^{t} = 5e^{2t}$

When we equate both sides we get 2A = 5 and so $A = \frac{5}{2}$.

And so, the particular solution is

$$y_p = \frac{5}{2}te^{2t}$$