# Week 3 Research

Maria Shevchuk

#### Feature Extraction via Convolution

- Apply a set of weights (a filter/kernel)
- Want to extract different features?
  - use multiple filters!
- Are the images below equal?





| -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
|----|----|----|----|----|----|----|----|----|
| -1 | -1 | -1 | -1 | -1 | -1 | 1  | -1 | -1 |
| -1 | 1  | -1 | -1 | -1 | 1  | -1 | -1 | -1 |
| -1 | -1 | 1  | 1  | -1 | 1  | -1 | -1 | -1 |
| -1 | -1 | -1 | -1 | 1  | -1 | -1 | -1 | -1 |
| -1 | -1 | -1 | 1  | -1 | 1  | 1  | -1 | -1 |
| -1 | -1 | -1 | 1  | -1 | -1 | -1 | 1  | -1 |
| -1 | -1 | 1  | -1 | -1 | -1 | -1 | -1 | -1 |
| -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |









#### **CNNs for Classification**

- Feature extraction
  - Convolution
  - Non-linearity (activation function)
  - Pooling



# Output volume

So what if we do want to detect multiple features?



```
tensorflow a
                   s tf
def generate model():
   model = tf.keras.Sequential([
      tf keras layers Conv2D(32, filter size=3, activation='relu'),
      tf.keras.layers.MaxPool2D(pool size=2, strides=2),
      tf keras layers Conv2D(64, filter size=3, activation='relu'),
      tf.keras.layers.MaxPool2D(pool size=2, strides=2),
      tf.keras.layers.Flatten(),
      tf keras layers Dense(1024, activation='relu'),
      tf keras layers Dense(10, activation='softmax') # 10 outputs
   1)
   return model
```

## What's so special about CNNs?

- Feature extraction
- Classification
- Uses:
  - Detection
  - Semantic Segmentation
    - downsampling/upsampling
  - Image captioning
- Applications:
  - Medicine
  - Security
  - Robotics





#### Backpropagation

- Computes negative gradient of the cost function
- Goal: efficiently decrease the cost



#### We can:

- Increase b
- Increase w\_i (in proportion to a\_i)
- Change a\_i (in proportion to w\_i)



|              | 2     | 5     | 0     | 4     | /     | 9     |       | age over ning data |
|--------------|-------|-------|-------|-------|-------|-------|-------|--------------------|
| $w_0$        | -0.08 | +0.02 | -0.02 | +0.11 | -0.05 | -0.14 | ··· → | -0.08              |
| $w_1$        | -0.11 | +0.11 | +0.07 | +0.02 | +0.09 | +0.05 | ··· → | +0.12              |
| $w_2$        | -0.07 | -0.04 | -0.01 | +0.02 | +0.13 | -0.15 | ··· → | -0.06              |
| :            | :     | :     | :     | :     | :     | :     | ٠.    |                    |
| $w_{13,001}$ | +0.13 | +0.08 | -0.06 | -0.09 | -0.02 | +0.04 | •••   | +0.04              |

### Fun with(out) numbers

Calculating the gradient component of the individual weights



