Quantum Mechanics B (Physics 212B) Winter 2019 Worksheet 1 – Solutions

Problems

1. Bogliubov Transformation

In our last discussion we solved a new Hamiltonian by defining a set of transformed creation/annihilation operators which satisfy the same algebra $[A, A^{\dagger}] = 1$

More generally consider $\hat{b} = \hat{a} \cosh \eta + \hat{a}^{\dagger} \sinh \eta$

- (a) Show that $[\hat{b}, \hat{b}^{\dagger}] = 1$ $[\hat{b}, \hat{b}^{\dagger}] = \cosh^2 \eta[a, a^{\dagger}] - \sinh^2 \eta[a, a^{\dagger}] = 1[a, a^{\dagger}] = 1$
- (b) Show that $\hat{b} = U\hat{a}U^{\dagger}$ for $U = e^{\frac{\eta}{2}(\hat{a}\hat{a} \hat{a}^{\dagger}\hat{a}^{\dagger})}$ Time to bust out BCH: $U\hat{a}U^{\dagger} = \hat{a} + [A, a] + \frac{1}{2}[A, [A, a]] + \cdots$ Where $A \equiv \frac{\eta}{2}(\hat{a}\hat{a} - \hat{a}^{\dagger}\hat{a}^{\dagger})$. Note $[a^{\dagger}a^{\dagger}, a] = -2a^{\dagger}$ and $[aa, a^{\dagger}] = 2a$ So $[A, a] = \eta a^{\dagger}$ and $[A, [A, a]] = \eta[A, a^{\dagger}] = \eta^2 a$ So everything decomposes into odd terms with a^{\dagger} and even terms a. All plus

Now consider the Hamiltonian

signs. This gives the form of b

$$\hat{H} = \omega \hat{a}^{\dagger} \hat{a} + \frac{V}{2} (\hat{a} \hat{a} + \hat{a}^{\dagger} \hat{a}^{\dagger}) \tag{1}$$

- (c) Diagonalize the Hamiltonian (1) using the \hat{b} operators for suitably chosen η We should look for an operator of the form $H = \Omega b^{\dagger}b + F$ for some constant F $b^{\dagger}b = (\cosh^2 \eta + \sinh^2 \eta)a^{\dagger}a + \sinh^2 \eta + \cosh \eta \sinh \eta (aa + a^{\dagger}a^{\dagger})$ So $\Omega \cosh(2\eta) = \omega$ and $\Omega \sinh(2\eta) = V \implies V = \omega \tanh(2\eta)$ It also must be that $\Omega \sinh^2 \eta + F = 0$; solving for Ω and F independently is just algebra. $\Omega = \omega \cosh(2\eta) V \sinh(2\eta)$ The spectrum is simple now though! $E_n = \Omega n + F$
- (d) Show there is a limit on V for which this Hamiltonian makes physical sense Ω must be positive. $\omega \cosh(2\eta) > V \sinh(2\eta) \implies V < \frac{\omega}{\tanh(2\eta)} = \frac{\omega^2}{V}$ Thus $V < \omega$

2. Fermionic Harmonic Oscillator

Let's discuss a system with no simple classical analog. Consider "fermionic" operators c and c^{\dagger} which obey the following anti-commutation relation:

$$\hat{c}^2 = 0 = (\hat{c}^{\dagger})^2 \qquad \{\hat{c}, \hat{c}^{\dagger}\} \equiv cc^{\dagger} + c^{\dagger}c = 1$$
 (2)

- (a) Assuming the Hilbert space cannot be empty, show there exists a state $|0\rangle$ for which $c|0\rangle = 0$. Similarly, show there must exist a non-vanishing state $|1\rangle \equiv c^{\dagger}|0\rangle$ By assumption there must exist a state $|\psi\rangle$. Either $c|\psi\rangle = 0$, in which case $|\psi\rangle \equiv |0\rangle$ and we're done, or $c|\psi\rangle \neq 0$ In the latter case $|0\rangle \propto c|\psi\rangle$ as $c^2|\psi\rangle = 0$ by fermionic algebra. To show $c^{\dagger}|0\rangle \neq 0$ we consider acting c on it. $cc^{\dagger}|0\rangle = (1 c^{\dagger}c)|0\rangle = |0\rangle$ from algebra. This cannot happen if $c^{\dagger}|0\rangle$ vanished.
- (b) Write explicit matrix representations of the operators c and c^{\dagger} in the $|0\rangle, |1\rangle$ basis. $c = \sigma^{-} = X \mathbf{i}Y$ and $c^{\dagger} = \sigma^{+} = X + \mathbf{i}Y$ where X and Y are Pauli matrices. From Pauli algebra they obey the fermionic statistics.
- (c) Show that $\hat{d} = \hat{c}\cos\theta + \hat{c}^{\dagger}\sin\theta$ is the analogous Bougliobuv transform Similar but the anticommutation means $\{d, d^{\dagger}\} = \cos^2\theta\{\hat{c}, \hat{c}^{\dagger}\} + \sin^2\theta\{\hat{c}, \hat{c}^{\dagger}\} = 1$
- (d) Define the Hamiltonian in analogy to the bosonic SHO as:

$$H = \frac{\omega}{2} (c^{\dagger} c - c c^{\dagger}) \tag{3}$$

What are it's eigenstates and eigenvalues?

It's easy to see that it's diagonal in the $|0\rangle, |1\rangle$ basis which eigenvalues $E_{\pm} = \pm \frac{\omega}{2}$ with $|0\rangle$ as the groundstate.

The operator $c^{\dagger}c$ is again a number operator and labels 0, 1 are fermion number.