Module 1.7: Powerset and Cartesian Product MCIT Online - CIT592 - Professor Val Tannen

LECTURE NOTES

Powerset

The **powerset** of a set A is the set whose elements are all the subsets of A. Notation: 2^A

Using set-builder notation: $2^A = \{X \mid X \subseteq A\}.$

Examples:

$$2^{\{1,2,3\}} = \{\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\},\emptyset\}.$$

Is
$$\{1,3\}$$
 in $2^{\{1,2\}} \cup 2^{\{2,3\}}$? No.

What is the powerset of the set whose only element is the empty set?

$$2^{\{\emptyset\}} = \{\emptyset, \{\emptyset\}\}.$$

Quiz

Which of the following is **not** an element of the powerset of $\{0, \emptyset, \{0\}\}$?

- (A) 0
- (B) $\{0\}$
- (C) ∅
- (D) $\{\emptyset, \{0\}\}$

Answer

Which of the following is not an element of the powerset of $\{0, \emptyset, \{0\}\}$?

- (A) 0

 Correct. Any element of a powerset must be a set.
- (B) {0} Incorrect. Since 0 is an element of the set, {0} is an element of the powerset.
- (C) \emptyset Incorrect. The empty set is an element of any powerset.
- (D) $\{\emptyset, \{0\}\}$ Incorrect. This is a subset of the given set hence an element of the powerset.

More Information

The power set is the set of all subsets, so the power set of $\{0,\emptyset,\{0\}\}$ is

$$\{\emptyset,\{0\},\{\emptyset\},\{\{0\}\},\{0,\{0\}\},\{\emptyset,\{0\}\},\{0,\emptyset\},\{0,\emptyset,\{0\}\}\}$$

Sequences

A **sequence** is an ordered collection of elements, with possible repetitions.

Alternative terminology **list, array, string, tuple, word**.

However, mathematically, these are all the same as sequences.

A sequence has **positions**, 1,2,3, etc. and **length**.

Examples:

Consider the set $\{x, 2, a\}$. The sequences of length 2 whose elements are from this set:

xx, x2, xa, 22, 2x, 2a, aa, a2, ax.

A string of digits of length 6: 737334 (has 7 in position 3)

A word made of letters from the English alphabet:

floccinaucinihilipilification.

Tuples, triples, pairs

Sometimes we write sequences as

(2, a, 2, x) instead of 2a2x

and call them tuples, or more specifically, n-tuples where n is the length.

(2, a, 2, x) is a 4-tuple.

Triples are the same as 3-tuples.

Pairs are the same as 2-tuples.

In a pair (a, b) we call a the **first component** and b the **second component**.

Cartesian (cross) product

The **cartesian product** (or **cross product**) of two sets A and B is the set whose elements are pairs whose first component is an element of A and whose second component is an element of B.

Notation: $A \times B$.

Using set-builder notation: $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$

Examples:

Let's enumerate the set $\{p,q\} \times \{2,3\}$:

.
$$\{(p,2),(p,3),(q,2),(q,3)\}.$$

(e, f) is an element of $V \times C$.

(2,2) is an element of $\mathbb{Z}^+ \times \mathbb{N}$.

If $A \subseteq B$ then $A \times B \subseteq B \times B$.

ACTIVITY : Subsets

Name all the subsets of $\{1, 2, 3\}$ containing 2 but not 3.

In the video, there is a box here for learners to put in an answer to the question above. As you read these notes, try it yourself using pen and paper!

ACTIVITY: Subsets (Continued)

Answer.

The subsets of $\{1,2,3\}$ containing 2 but not 3 are $\{2\}$ and $\{1,2\}$.

Observe that all the subsets containing 2 are $\{2\}$, $\{1,2\}$, $\{1,2,3\}$, and $\{2,3\}$. From these subsets, we do not consider the subsets that contain 3, and thus we get $\{2\}$ and $\{1,2\}$.

ACTIVITY: Cartesian Product

Problem. Consider two sets $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$. Name all the elements of $A \times B$ (the cartesian product of A and B) whose second component is b.

In the video, there is a box here for learners to put in an answer to the question above. As you read these notes, try it yourself using pen and paper!

ACTIVITY: Cartesian Product (Continued)

Answer.

The elements of $A \times B$ whose second component is b are:

The cartesian product of A and B contains all ordered pairs where the first element is from set A and the second element is from set B, i.e.,

$$A \times B = \{(1, a), (2, a), (3, a), (1, b), (2, b), (3, b), (1, c), (2, c), (3, c)\}.$$

From these elements the ones whose second component is *b* are: