	Name : Syed Riaz Ali
	Email: syedriazali1997@gmail.com
	Whatsapp : 923002502513 Day_25 : Logistic Regression Analysis
In [7]:	<pre># Importing Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns</pre>
In [8]:	<pre># Importing online data from sklearn.datasets import load_digits digits = load_digits()</pre>
In [14]:	<pre># Input variable / Features (X) digits.data.shape X = digits.data #It means 1797 pictures with the size 64 = 8x8</pre>
In [15]:	<pre># Output variable / Lables (y) digits.target.shape y = digits.target</pre>
In [13]:	<pre>sns.set_style("darkgrid") plt.figure(figsize=(20,4)) for index, (image, label) in enumerate(zip(digits.data[0:10], digits.target[0:10])): plt.subplot(1, 10, index + 1) plt.imshow(np.reshape(image, (8,8)), cmap = plt.cm.gray) plt.title('Training: %i\n' % label, fontsize = 20)</pre> Training: 0 Training: 1 Training: 2 Training: 3 Training: 5 Training: 6 Training: 7 Training: 9
In [16]:	<pre># Splitting the data from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2, random_state= 0)</pre>
In [17]:	print("Train input data: ", X_train.shape) print("Test input data: ", X_test.shape) print("Train output data: ", y_train.shape) print("Test output data: ", y_test.shape) Train input data: (1437, 64) Test input data: (360, 64) Train output data: (1437,) Test output data: (360,)
In [19]:	<pre># Model train from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression().fit(X_train, y_train) log_reg</pre>
Out[19]:	<pre>C:\Users\syedriaz\AppData\Local\Programs\Python\Python39\lib\site-packages\sklearn\linear_model_logistic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check_optimize_result(LogisticRegression()</pre>
In [20]: Out[20]:	log_reg.predict(X_test[0:5]) array([2, 8, 2, 6, 6])
In [24]: Out[24]:	predictions = log_reg.predict(x_test) predictions array([2, 8, 2, 6, 6, 7, 1, 9, 8, 5, 2, 8, 6, 6, 6, 6, 1, 0, 5, 8, 8, 7,
	8, 4, 7, 5, 4, 9, 2, 9, 4, 7, 6, 8, 9, 4, 3, 1, 0, 1, 8, 6, 7, 7, 1, 0, 7, 6, 2, 1, 9, 6, 7, 9, 0, 0, 9, 1, 6, 3, 0, 2, 3, 4, 1, 9, 2, 6, 9, 1, 8, 3, 5, 1, 2, 8, 2, 2, 9, 7, 2, 3, 6, 0, 9, 3, 7, 5, 1, 2, 9, 9, 3, 1, 4, 7, 4, 8, 5, 8, 5, 5, 2, 5, 9, 0, 7, 1, 4, 7, 3, 4, 8, 9, 7, 9, 8, 2, 1, 5, 2, 5, 8, 4, 1, 7, 0, 6, 1, 5, 5, 9, 9, 5, 9, 9, 5, 7, 5, 6, 2, 8, 6, 9, 6, 1, 5, 1, 5, 9, 9, 1, 5, 3, 6, 1, 8, 9, 8, 7, 6, 7, 6, 5, 6, 0, 8, 8, 9, 8, 6, 1, 0, 4, 1, 6, 3, 8, 6, 7, 4, 9, 6, 3, 0, 3, 3, 3, 0, 7, 7, 5, 7, 8, 0, 7, 1, 9, 6, 4, 5, 0, 1, 4, 6, 4, 3, 3, 0, 9, 5, 9, 2, 1, 4, 2, 1, 6, 8, 9, 2, 4, 9, 3, 7, 6, 2, 3, 3, 1, 6, 9, 3, 6, 3, 3, 2, 0, 7, 6, 1, 1, 9, 7, 2, 7, 8, 5, 5, 7, 5, 2, 3, 7, 2, 7, 5, 5, 7, 0, 9, 1, 6, 5, 9, 7, 4, 3, 8, 0, 3, 6, 4, 6, 3, 2, 6, 8, 8, 8, 4, 6, 7, 5, 2, 4, 5, 3, 2, 4, 6, 9, 4, 5, 4, 3, 4, 6, 2, 9, 0, 1, 7, 2, 0, 9, 6, 0,
In [21]:	4, 2, 0, 7, 9, 8, 5, 7, 8, 2, 8, 4, 3, 7, 2, 6, 9, 1, 5, 1, 0, 8, 2, 8, 9, 5, 6, 2, 2, 7, 2, 1, 5, 1, 6, 4, 5, 0, 9, 4, 1, 1, 7, 0, 8, 9, 0, 5, 4, 3, 8, 8]) # Accuracy test score = log_reg.score(X_test, y_test) print("The accuracy score is: ", score)
In [25]:	The accuracy score is: 0.96666666666667 # Confusion Matrix from sklearn import metrics cm = metrics.confusion_matrix(y_test, predictions) cm
Out[25]:	array([[27, 0, 0, 0, 0, 0, 0, 0, 0, 0],
In [26]:	sns.heatmap(cm, annot= True , fmt =".3f", linewidth= .5, square = True , cmap = "Spectral") plt.ylabel("Actual Output") plt.xlabel("Predicted Output")
Out[26]:	all_sample_title= "Accuracy Score : {0}" .format(score) plt.title(all_sample_title, size = 15) Text(0.5, 1.0, 'Accuracy Score : 0.96666666666667') Accuracy Score : 0.966666666666667 -40
	- 2700
In [27]:	<pre># Getting miss classified labels index = 0 misclassifiedIndexes = [] for label, predict in zip(y_test, predictions): if label != predict: misclassifiedIndexes.append(index) index += 1</pre>
In [35]:	# Plotting missclassified labels with known labels plt.figure(figsize = (20,4)) for plotIndex, badIndex in enumerate(misclassifiedIndexes[0:5]): plt.subplot(1, 5, plotIndex + 1) plt.imshow(np.reshape(X_test[badIndex], (8,8)), cmap = plt.cm.gray) plt.title("Predicted : {}, Actual: {}".format(predictions[badIndex], y_test[badIndex]), fontsize = 10) Predicted: 2, Actual: 2 Predicted: 8, Actual: 8 Predicted: 2, Actual: 2 Predicted: 6, Actual: 6 Predicted: 6, Actual: 6
In [47]:	<pre>index = 0 misclassifiedIndexes = [] for label, predict in zip(y_test, predictions): if label != predict: misclassifiedIndexes.append(index) index +=1</pre>
	<pre>plt.figure(figsize=(20,4)) for plotIndex, badIndex in enumerate(misclassifiedIndexes[0:5]): plt.subplot(1, 5, plotIndex + 1) plt.imshow(np.reshape(X_test[badIndex], (8,8)), cmap=plt.cm.gray) plt.title('Predict: {}, Actual: {}'.format(predictions[badIndex], y_test[badIndex]), fontsize = 15)</pre> Predict: 9, Actual: 5
In [36]:	Another way of writing that code import matplotlib.pyplot as plt misclassifiedIndexes = np.where(y_test!=predictions)[0]
	<pre>fig, ax = plt.subplots(4, 3,figsize=(15,8)) ax = ax.ravel() for i, badIndex in enumerate(misclassifiedIndexes): ax[i].imshow(np.reshape(X_test[badIndex], (8, 8)), cmap=plt.cm.gray) ax[i].set_title(f'Predict: {predictions[badIndex]}, '</pre>
Out[36]:	(-0.5, 7.5, 7.5, -0.5) Predict: 9, Actual: 5 Predict: 4, Actual: 7
	Predict 1 Actual: 6 Predict 5 Actual: 6 Predict 5 Actual: 6 Predict 5 Actual: 6 Predict 7 Actual: 4 Predict 7, Actual: 4 Predict 8, Actual: 1 Predict 2, Actual: 8
In []:	