Đếm

Trần Vĩnh Đức

HUST

Tài liêu tham khảo

► E.Lehman, T. Leighton, A. Meyer, Mathematics for Computer Science, 2015.

Nội dung

Tập, dãy, và ánh xạ

Luật ánh xạ

Luật tích và luật tổng

Nguyên lý bù trù

Luât BOOKEEPER

Chứng minh tổ hợp

Dãy và tập

Dãy: có thứ tự, các phần tử có thể trùng nhau

$$(a, b, a) \neq (b, a, a)$$

► Tập: không thứ tự, các phần tử không trùng nhau

$$\{a,b,c\}=\{b,a,c\}$$

Định nghĩa

Một hoán vị của một tập S là một dãy chứa mỗi phần tử của S đúng một lần.

Số hoán vị của một tập

▶ Tập $\{a, b, c\}$ có 6 hoán vị:

$$\{ (a, b, c), (b, c, a), (c, a, b), (c, b, a), (b, a, c), (a, c, b) \}$$

ightharpoonup Số hoán vị của tập n phần tử là

$$n! = n(n-1)\cdots 1$$

Định nghĩa Một ánh xạ

$$f: X \to Y$$

là một quy tắc cho tương ứng mỗi phần tử của X với đúng một phần tử của Y.

Ví dụ

Quy tắc tương ứng $f\colon \{a,b,c\}\to \{1,2,3\}$ định nghĩa dưới đây có phải ánh xạ không?

Ví dụ Quy tắc sau đây có phải ánh xạ không?

Định nghĩa

Ánh xạ $f: X \to Y$ là

- ightharpoonup toàn ánh nếu mỗi phần tử của Y đều có ít nhất một phần tử tương ứng từ X.
- đơn ánh nếu mỗi phần tử của Y đều có nhiều nhất một phần tử tương ứng từ X.
- ightharpoonup song ánh nếu mỗi phần tử của Y đều có chính xác một phần tử tương ứng từ X.

Ví dụ

Ánh xạ dưới đây là đơn ánh hay toàn ánh hay song ánh?

Ví dụ

Xét hoán vị
$$(a_1,a_2,\cdots,a_n)$$
 của tập $S=\{a_1,a_2,\cdots,a_n\}$. Ánh xạ

$$\pi: \{a_1, a_2, \dots, a_n\} \to \{1, 2, \dots, n\}$$

định nghĩa bởi

$$\pi(a_i) = i$$

là song ánh. Tại sao?

Nội dung

Tập, dãy, và ánh xạ

Luật ánh xạ

Luật tích và luật tổng

Nguyên lý bù trù

Luật BOOKEEPER

Chứng minh tổ hợp

Định lý

Nếu ánh xạ $f\colon X\to Y$ là

- ▶ toàn ánh thì $|X| \ge |Y|$.
- ightharpoonup đơn ánh thì $|X| \leq |Y|$.
- ▶ song ánh thì |X| = |Y|.

Định lý

Số cây gán nhãn với n đỉnh là n^{n-2} .

Ví dụ

Có bao nhiều cách chọn 12 chiếc bánh từ 5 loại bánh sô cô la, chanh, có đường, kem, nguyên chất?

- ightharpoonup X =tập mọi cách chọn 12 chiếc bánh từ 5 loại bánh.
- ightharpoonup Y =tập mọi xâu 16 bit có đúng 4 số 1.
- ightharpoonup Song ánh từ X đến Y

$$\underbrace{0\ 0}_{\text{sô cô la}} \quad 1 \underbrace{0\ 0\ 0\ 0\ 0}_{\text{chanh}} \quad 1 \underbrace{0\ 0\ 0\ 0\ 0}_{\text{có đường}} \quad 1 \underbrace{0\ 0}_{\text{kem}} \quad 1 \underbrace{0\ 0}_{\text{nguyên chất}}$$

$$ightharpoonup |X| = |Y|$$

Ví dụ

 \blacktriangleright Xét song ánh từ các tập con của $X=\{1,2,\ldots,n\}$ tới dãy n-bit

$$S \to (b_1, \ldots, b_n)$$

với

$$b_i = \begin{cases} 1 & \text{n\'eu } i \in S \\ 0 & \text{n\'eu } i \notin S \end{cases}$$

- ightharpoonup Số dãy n-bit là 2^n .
- ightharpoonup Vậy X có 2^n tập con.

Ánh Xạ "k đến 1"

Định nghĩa

Ánh xạ $f\colon X\to Y$ gọi là ánh xạ "k đến 1" nếu nó ánh xạ đúng k phần tử của X tới mỗi phần tử của Y.

Song ánh là ánh xạ "1 đến 1"

Luật chia (tổng quát hóa của luật song ánh)

ightharpoonup Nếu $f\colon X\to Y$ là ánh xạ "k đến 1", thì

$$|X| = k \cdot |Y|.$$

 $\qquad \qquad \textbf{N\'eu} \; f \; \textbf{l\'a} \; \text{song anh vậy} \; |X| = |Y|.$

Ví dụ

Có bao nhiều cách đặt hai quân cờ giống nhau lên bàn cờ 8×8 sao cho chúng không chung hàng và không chung cột ?

- Y= tập mọi cấu hình hợp lệ cho hai quân cờ.
- ightharpoonup X =mọi dãy

$$(\underbrace{h_1, c_1}_{\mathsf{quân}1}, \underbrace{h_2, c_2}_{\mathsf{quân}2})$$

thỏa mãn $h_1 \neq h_2$ và $c_1 \neq c_2$.

- ► Có môt ánh xa "2 đến 1" từ X lên Y. Tai sao?
- Vậy

$$|Y| = \frac{|X|}{2} = \frac{8 \times 8 \times 7 \times 7}{2}.$$

Nội dung

Tập, dãy, và ánh xạ

Luật ánh xạ

Luật tích và luật tổng

Nguyên lý bù trì

Luật BOOKEEPER

Chứng minh tổ hợp

Luật tích

Định nghĩa

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, \cdots, a_n) \mid a_i \in A_i\}$$

Định lý

Nếu A_1,\ldots,A_n là các tập hữu hạn, vậy thì

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1| \times |A_2| \times \cdots \times |A_n|.$$

Luật tổng

Định lý

Nếu A_1, A_2, \ldots, A_n là các tập rời nhau, vậy

$$|A_1 \cup A_2 \cup \cdots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|.$$

Bài toán

Có bao nhiều cách chọn trong nhóm n người một ủy ban ba người trong đó một người làm chủ tịch, một người làm thư ký, và một người làm tư vấn?

Lời giải

► Mỗi cách chọn một ủy ban

$$(\underbrace{x}, \underbrace{y}, \underbrace{x})$$

- với n người có thể làm chủ tịch,
- ightharpoonup còn lại n-1 người có thể làm thư ký (trừ x),
- **c**òn lại n-2 người có thể làm tư vấn (trừ x và y).
- Vậy có n(n-1)(n-2) cách chọn.

Bài toán

► Số seri của các tờ tiền có dạng

MQ 09 19 99 99

- ► Tờ tiền khuyết số nếu có một chữ số xuất hiện hơn một lần trong số seri gồm 8 chữ số.
- Từ tiền khuyết số có phổ biến không?

Bài toán

Đếm xem có bao nhiều mật khẩu thỏa mãn 4 yêu cầu sau đây:

- 1. Dài từ 6 đến 8 ký hiệu;
- 2. Phải bắt đầu bằng một chữ cái;
- 3. Chỉ gồm 26 chữ cái thường hoặc 26 chữ cái hoa hoặc các số 0 đến 9:
- 4. Có phân biệt chữ hoa chữ thường.

Nội dung

Tập, dãy, và ánh xạ

Luật ánh xạ

Luật tích và luật tổng

Nguyên lý bù trừ

Luât BOOKEEPER

Chứng minh tổ hợp

Theo luật tổng ta có:

$$\begin{aligned} |A| &= |A \setminus B| + |A \cap B| \\ |B| &= |B \setminus A| + |A \cap B| \\ |A \cup B| &= |A \setminus B| + |A \cap B| + |B \setminus A| \end{aligned}$$

Nguyên lý bù trừ cho hai tập

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Nguyên lý bù trừ cho ba tập

$$|A \cup B \cup C| = |A| + |B| + |C|$$
$$-|A \cap B| - |B \cap C| - |A \cap C|$$
$$+|A \cap B \cap C|.$$

Nguyên lý bù trừ

$$|S_1 \cup S_2 \cup \dots \cup S_n| = \sum_{i=1}^n |S_i|$$

$$- \sum_{1 \le i < j \le n} |S_i \cap S_j|$$

$$+ \sum_{1 \le i < j < k \le n} |S_i \cap S_j \cap S_k| + \dots$$

$$(-1)^{n-1} |\cap_{i=1}^n S_i|.$$

Nguyên lý bù trừ (cách viết khác)

$$|S_1 \cup S_2 \cup \dots \cup S_n| = \sum_{\emptyset \neq I \subseteq \{1, 2, \dots, n\}} (-1)^{|I|-1} \left| \bigcap_{i \in I} S_i \right|$$

Bài toán

- Có bao nhiều hoán vị của tập $\{0,1,\ldots,9\}$ có chứa (liền nhau) 42,04 hoặc 60?
- ▶ Ví dụ, hoán vị sau đây chứa 60 và 04.

Bài toán (François Édouard Anatole Lucas, 1894)

Cho một cái bàn tròn và m cặp vợ chồng, có bao nhiều cách để xếp họ ngồi nam nữ xem kẽ sao cho không cặp vợ chồng nào ngồi kề nhau?

Nội dung

Tập, dãy, và ánh xạ

Luật ánh xạ

Luật tích và luật tổng

Nguyên lý bù trừ

Luật BOOKEEPER

Chứng minh tổ hợp

Định lý (Luật BOOKEEPER)

- ightharpoonup Xét k chữ phân biệt c_1, c_2, \ldots, c_k .
- ightharpoonup Số dãy gồm n_1 chữ c_1 , n_2 chữ c_2 , ..., và n_k chữ c_k là

$$\binom{n_1 + n_2 + \dots + n_k}{n_1, n_2, \dots, n_k} = \frac{(n_1 + n_2 + \dots + n_k)!}{n_1! n_2! \dots n_k!}$$

Định lý (Công thức nhị thức)

$$\binom{n}{k, n-k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Ví dụ

Số dãy 16-bit chứa đúng 4 bit 1 là

$$\binom{16}{4} = \frac{16!}{4!12!}.$$

Đây chính là số cách chọn tập con 4 phần tử từ tập 16 phần tử.

Ví dụ (Luật tập con) Số tập con k phần tử của tập n phần tử là $\binom{n}{}$

Định lý (Hệ số nhị thức)

Với mọi $n \geq 0$ ta có

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

- $(a+b)^2 = aa + ab + ba + bb = a^2 + 2ab + b^2$
- $(a+b)^3 =$

$$aaa + aab + aba + baa + abb + bab + bba + bbb$$

= $a^3 + 3a^2b + 3b^2a + b^3$

= a + 3a + 3b + 4b

Số dãy độ dài n chứa k chữ a và (n-k) chữ b là $\binom{n}{k}$.

Nội dung

Tập, dãy, và ánh xạ

Luật ánh xạ

Luật tích và luật tống

Nguyên lý bù trù

Luât BOOKEEPER

Chứng minh tổ hợp

Ví dụ

- ▶ Có n chiếc áo phân biệt,
- ▶ Số cách giữ lại k chiếc áo là $\binom{n}{k}$.
- Số cách bỏ đi n-k chiếc áo là $\binom{n}{n-k}$.
- ► Vậy ta có

$$\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k!(n-k)!}$$

Ví dụ

- ightharpoonup Chon một đôi gồm k sinh viên trong số n sinh viên.
- Số đội có Bob là $\binom{n-1}{k-1}$.
- ightharpoonup Số đội không có Bob là $\binom{n-1}{k}$.
- ▶ Vậy ta có (đẳng thức Pascal)

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}.$$

Đếm bằng hai cách

- **1.** Dịnh nghĩa S.
- **2.** Chứng minh |S| = n (một cách đếm).
- 3. Chứng minh |S| = m (một cách đếm khác).
- **4.** Kết luận m = n.

Định lý

$$\sum_{r=0}^{n} \binom{n}{r} \cdot \binom{2n}{n-r} = \binom{3n}{n}.$$

Chứng minh

- S= các bộ bài gồm n quân chọn từ n quân đỏ và 2n quân đen trên bàn.
- Vậy

$$|S| = \binom{3n}{n}.$$

Chứng minh 2

ightharpoonup Số bộ bài với đúng r quân đỏ là

$$\binom{n}{r}\binom{2n}{n-r}$$

ightharpoonup Số quân đỏ có thể từ 0 đến n nên ta có

$$|S| = \sum_{r=0}^{n} \binom{n}{r} \binom{2n}{n-r}.$$