

II SEMESTER B. TECH (PHYSICS) IN SEMESTER EXAMINATION – II, JUNE 2020 (Re Test 1)

SUBJECT: ENGINEERING PHYSICS (PHY 1051)
REVISED CREDIT SYSTEM

Time: 90 Minutes MAX. MARKS: 15

Note: Answer ALL the questions.

PHY 1051 Page **1** of **3**

A beam of bright red light of wavelength 654 nm passes through a diffraction grating. Enclosing the space beyond the grating is a large semi-cylindrical screen centered on the grating, with its axis parallel to the slits in the grating. Fifteen bright spots appear on the screen. Assuming that there are 2183 grooves/cm, calculate the angular position of the highest order.

02

HAND BOOK FOR STUDENTS

Interference of light waves					
Young's double slit expt.: Condition for constructive and destructive interference Relation between phase difference and path difference Linear positions of bright and dark fringes	$d \sin \theta_{\text{bright}} = m\lambda \; ; (m = 0, \pm 1, \pm 2, \ldots)$ $d \sin \theta_{\text{dark}} = \left(m + \frac{1}{2}\right)\lambda$ $(m = 0, \pm 1, \pm 2, \ldots)$ $\varphi = \frac{2\pi}{\lambda}\delta$ $y_{\text{bright}} = L\frac{m\lambda}{d} \text{(small angle approximation)}$ $y_{dark} = L\frac{\left(m + \frac{1}{2}\right)\lambda}{d}$	λ : θ : ϕ : δ : L : I_{max} : t :	: :	distance between the two slits wavelength of light used angular position on the screen order number phase difference	
Average light intensity at a point on the screen	$(m = 0, \pm 1, \pm 2,)$ $I = I_{max} \cos^{2} \left(\frac{\varphi}{2}\right)$ $I = I_{max} \cos^{2} \left(\frac{\pi d \sin \theta}{\lambda}\right)$ $I = I_{max} \cos^{2} \left(\frac{\pi d}{\lambda L} y\right)$		path difference linear position on the screen distance between the slit and the screen the maximum		
Condition for interference in thin films in air (reflective system) Radius of m th order Newton's ring	Constructive interference: $2nt = \left(m + \frac{1}{2}\right)\lambda (m = 0, 1, 2, \dots)$ Destructive interference: $2nt = m\lambda (m = 0, 1, 2, \dots)$ $r_{dark} \approx \sqrt{mR\lambda} (m = 0, 1, 2, \dots)$ $r_{bright} \approx \sqrt{\frac{\left(m + \frac{1}{2}\right)R\lambda}{n_{film}}} (m = 0, 1, 2, \dots)$		intensity on the screen refractive index thickness of the film radius of curvature of lens		

PHY 1051 Page 2 of 3

Diffraction patterns and Polarization					
Single slit diffraction: condition for minima Intensity due to single slit diffraction	$sin \ \theta_{\text{dark}} = m \frac{\lambda}{a} \qquad m = \pm 1, \ \pm 2, \ \pm 3, \ \dots$ $I = I_{max} \left[\frac{\sin (\pi a \sin \theta / \lambda)}{(\pi a \sin \theta) / \lambda} \right]^2$	A: width of single slit			
Intensity of two slit diffraction pattern [combined effect] Rayleigh's criterion:	$I = I_{max} \cos^2 \left(\frac{\pi d \sin \theta}{\lambda}\right) \left[\frac{\sin (\pi a \sin \theta/\lambda)}{(\pi a \sin \theta)/\lambda}\right]^2$ $\theta_{min} = 1.22 \frac{\lambda}{D} \text{ [for circular aperture]}$	slits			
limiting angle of resolution Grating equation for	$ heta_{min} = rac{\lambda}{a}$ [for rectangular aperture] $d \sin \theta_{bright} = m\lambda$; $m = 0, \pm 1, \pm 2, \pm 3, \dots$	D : diameter of the aperture			
maxima X-ray diffraction: Bragg's law	$2d \sin \theta = m\lambda \qquad m = 1, 2, 3,$	d : Inter-planar spacing in the crystal			
Malus's law	$I = I_{max} \cos^2 \theta$	 Imax : the intensity of the polarized beam incident on the analyzer θ : angle made by the analyzer transmission axis with the polarizer axis 			
Brewster's law	$\tan\theta_p = \frac{n_2}{n_1}$	$ heta_p$: polarizing or Brewster's angle n_1, n_2 : refractive indices of first and second medium			

PHY 1051 Page **3** of **3**