Unconstrained Optimization Algorithms

General Ideas

- Select step size s_k and direction v_k such that $f_0(x_k + s_k v_k)$ is substantially smaller than $f_0(x_k)$.
- v_k is usually selected such that $\nabla f_0(x_k)^{\top} v_k < 0$
- First order descent

Armijo backtracking step size rule

- 1. Chosse $\alpha, \beta \in (0,1)$, set s=1
- 2. If $f_0(x_k + sv_k) \leq f_0(x_k) + s\alpha \nabla f_0(x_k)^{\top} v_k$, then return
- 3. Set $s = \beta s$ and return to step 2.

Newton-type methods

- Newton's method: $v_k = -\nabla^2 f_0(x_k)^{-1} \nabla f_0(x_k)$
- Interpretation: Minimizing second order approximation: $\min_{x} f_0(x_k) + \nabla f_0(x_k)^{\top} x + \frac{1}{2} x^{\top} \nabla^2 f_0(x_k) x$
- Quasi-Newton and variable-metric: $v_k = -H_k \nabla f_0(x_k)$
- Combined with any step size rule

Constrained Optimization Algorithms

Methods

- **Projected Descent:** Use a direction v_k from unconstrained algorithms and compute $x'_{k+1} = x_k + s_k v_k$ and then project x'_{k+1} onto the feasible set.
- Construct an unconstrained problem that approximates the original problem.

Barrier method

- Consider the problem $\min_x f_0(x)$ subject to $f_i(x) \leq 0$ for
- Define the approximate problem for some parameter $t \geq 0$: $\min_x f_0(x) + \frac{1}{t}\phi(x)$, where the barrier function $\phi(x)$ tends to ∞ as x tends to the boundary of the feasible set from inside.
- We can use the logarithmic barrier function: $\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x))$
- If f_0 , f_i are convex, the approximated problem is convex
- The KKT condition is $t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) = 0$
- The approximation error: $0 \le f_0(x^*(t)) p^* \le \frac{m}{t}$

Machine Learning

Linear Model

- Linear model: $y(x) = w^{\top} \phi(x) + e(x)$, where $\phi(x)$ is a feature map and e(x) is a random error
- Least square: $\hat{w} \in \arg\min_{w} \sum_{i} (w^{\top} \phi(x_i) y_i)^2$
- Quantile for $\alpha \in [0, 1)$: $\hat{w} \in \arg\min_{w} \frac{1}{m(1-\alpha)} \sum_{i} \max\{0, w^{\top} \phi(x_i) y_i\} \frac{1}{m(1-\alpha)} \sum_{i} \max\{0, w^{\top} \phi(x_i) y_i\}$ $\frac{1}{2} \sum_{i} w^{\top} \phi(x_i) - y_i$. Still a linear program.

Support Vector Machine

- Classification rule: $\hat{y}(x) = sign(\phi(x)^{\top}x)$
- Convex error function(hinge): $\max\{0, 1 \alpha\}$
- Objective: $\min_{w} \frac{1}{m} \sum_{i} \max\{0, 1 y_{i} \phi(x_{i})^{\top} w\}$ We can add L_{1} or L_{2} norm regularization on w

Logistic Regression

- Variant of SVM with another loss function: $\min_{w} \frac{1}{m} \sum_{i} log[1 + exp(-y_i \phi(x_i)^{\top} w)]$
- Interpretation: $P\{Y = y | X = x\} = \frac{1}{1 + exp(-y\phi(x)^{\top}w)}$

Fisher discrimination

- Idea: find a direction in \mathbb{R}^n , such that the projection of data points onto the direction results in those points with positive label are from those with negative label
- Define $A_+ \in \mathbb{R}^{n,m_+}$ is the matrix whose column cosists of x_i such that $y_i = 1$, and A_- similarly for negive labeled points. The centered (mean subtracted) data matrices are $A_{\pm} = A_{\pm} (I_{m_{\pm}} - \frac{1}{m_{\pm}} \mathbf{1} \mathbf{1}^{\top})$
- ullet The mean-squared variation of the data projected on uaround its centroid is: $u^{\top}Mu = u^{\top}(\frac{1}{m}\widetilde{A}_{-}\widetilde{A}_{-}^{\top} + \frac{1}{m}\widetilde{A}_{+}\widetilde{A}_{+}^{\top})u$
- The goal is: $\max_{u\neq 0} \frac{(u^\top c)^2}{u^\top M u} = \min u^\top M u$ subject to
- The problem is convex, hence KKT condition implies: $u = \frac{1}{c^{\top} M^{-1} c} M^{-1} c$

SPCA and NNMF

- The original PCA problem: $\max_z z^{\top} \widetilde{X} \widetilde{X}^{\top} z$ s.t. $||z||_2 = 1$
- In sparse PCA, we add constraint card(z) < k
- The problem leads to the rank 1 approximation problem: $\min_{p,q} \|X - pq^{\top}\|_F$ s.t. card(p) < k, card(q) < h
- One example of rank 1 approximation is: $\min_{p>0,q>0} \|X-pq^{\top}\|_F$ s.t. $card(p) \leq k, card(q) \leq h$. A standard solution is coordinate descent.

Finance

Mean-Variance (Markowitz) Models

- $x \in \mathbb{R}^n$ is the wealth allocation in n groups, r is the random vector of unit wealth return for each group. $\hat{r} = E[r], \Sigma = Cov(r)$
- Hence, $\hat{r}^{\top}x$ is the expected return and $x^{\top}\Sigma x$ is the variance of the portfolio.
- The problems are usually maximize return with variance constraints and minimize variance, with return constraints.
- Buget constraint: $x^{\top} \mathbf{1} \leq b$, no short-selling: $x \geq 0$
- Sector bounds: $\sum_{i \in S} x_i \leq \alpha x^{\top} \mathbf{1}$ for some $\alpha \in (0,1)$ and
- Diversification: sum of k largest x_i must not exceed $\eta x^{\top} \mathbf{1}$ for $\eta \in (0,1)$. This is equivalent to $kt + s^{\top} \mathbf{1} < \eta x^{\top} \mathbf{1}$, $s \geq 0, x - t\mathbf{1} \leq s$ where $t \in \mathbb{R}$ and $s \in \mathbb{R}^n$ are additional variables.
- The Sharpe Ratio of a portfolio is $(\hat{r}^{\top}x r_f)/\sqrt{x^{\top}\Sigma x}$, where r_f is the return of a risk-free asset.
- If $\hat{r}^{\top}x > r_f$ and $\Sigma > 0$, then the portfolio that maximizes SR corresponds to a point on the efficient frontier. Max SR can be formulated as SOCP.

Value at Risk and Conditional Value at Risk

- The value-of-risk of a portfolio $r^{\top}x$ at probability level $\alpha \in (0,1)$ is defined as $VaR_{\alpha}(r^{\top}x) = -F^{-1}(\alpha)$, where F is the CDF of $r^{\top}x$.
- With probability no smaller that 1α , the investor is guaranteed to receive a return higher than $-VaR_{\alpha}$
- If r is Gaussian with mean \hat{r} and covariance Σ , we have $VaR_{\alpha}(r^{\top}x) \leq \gamma$ is equivalent as SOC constraint $\Phi^{-1}(1-\alpha)\|\Sigma^{\frac{1}{2}}\|_2 < \gamma + \hat{r}^{\top}x$
- The conditional value at risk is the average of outcomes that are more extreme than VaR_{α}

Capital Asset Pricing Model

• The CAPM says that the expected return should be $E[r_i] = r_f + \beta_i (E[r_m] - r_f)$, where r_f is the return of a risk-free asset, r_m is the random return of the market and the systematic risk $\beta_i = Cov(r_i, r_m)/Var(r_m)$

Epi-Spline Curve Fitting

Epi-splines

- Epi-spline: Left continuous, piece-wise polynomial
- On the k^{th} segment, $q^k(x) = \sum_{i=0}^p a_i^k x^i$. Hence if we split the domain into N segments with degree p polynomial, our total number of parameters would be N(p+1)
- Continuity constraint: Let $m_1...m_{N-1}$ be the mesh points, we have $q^k(m_k) = q^{k+1}(m_k)$ for k = 1...N - 1.
- Continuous differentiability: Continuity constraint plus $(q^k(m_k))' = (q^{k+1}(m_k))'$ for k = 1...N - 1.
- Fixed values: $q^k(x) = s(k)$
- Monotonicity (non-increasing): $(q^k(x))' \leq 0$ for $x \in (m_{k-1}, m_k)$, and $q^k(m_k) \ge q^{k+1}(m_{k+1})$. The second requirement is satisfied with continuity.
- Convexity: Continuity constraint and $(q^k(x))'' > 0$, $(q^k(m_k))' < (q^{k+1}(m_{k+1}))'$ for k = 1...N-1.
- All constraints above are linear.

Optimization in Control

Continuous LTI Systems

- A continuous LTI system is described by a system ODEs: $\dot{x}(t) = Ax(t) + Bu(t), \ y(t) = Cx(t)$
 - $x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau, \ t \ge t_0$

Discrete-time LTI System and Discretization

- We discretize the time interval $t = k\Delta$ for $k = \dots -1, 0, 1, \dots$ and DTLTI system can be described as x(k+1) = Ax(k) + Bu(k), y(k) = Cx(k)
- The solution is: $x(k) = A^{k-k_0}x(k_0) + \sum_{i=k_0}^{k-1} A^{k-i-1}Bu(i)$
- Assuming constant control input during one time interval, i.e. $u(t) = u(k\Delta), \forall t \in [k\Delta, (k+1)\Delta)$, we can discretize a CTLTI system by letting $A_{\Delta} = e^{A\Delta}$, $B_{\Delta} = \int_{0}^{\Delta} e^{A\tau} d\tau$. The we get the system $x(k+1) = A_{\Delta}x(k) + B_{\Delta}u(k)$

Optimization-based Control Synthesis

- Consider a generic DTLTI system, with a scalar input signal u(k) and scalar output signal y(k) (SISO)
- Given $x(0) = x_0$, determine control sequence u(k), k = 0, ...T - 1 such that $x(T) = x_T$
- $x(T) = A^{\top} x_0 + \sum_{i=0}^{T-1} A^{T-i-1} Bu(i) =$ $A^{\top}x_0 + [A^{T-1}B, A^{T-2}B...AB, B][u(0), u(1)...u(T-1)]^{\top} =$ $A^{\top}x_0 + R_T\mu_T$ where $R_T = [A^{T-1}B...B]$
- Define $\xi_T = x_T A^{\top} x_0$, the optimization problem becomes finding a vector $\mu_T \in \mathbb{R}^T$ such that $R_T \mu_T = \xi_T$.
- We assume that T > n and that R_T is full row rank, then the problem admits an infinite number of possible solutions. We want to choose the one with minimum effort.
- Mimimizing energy: $\min_{\mu_T} \|\mu_T\|_2^2$ s.t. $R_T \mu_T = \xi_T$, the solution is $R_T^{\top}(R_T R_T^{\top})^{-1} \xi_T$
- Minimum fuel control: $\min_{\mu_T} \|\mu_T\|_1$ s.t. $R_T \mu_T = \xi_T$. The problem can be formulated as LP.

Control Synthesis for Trajectory Tracking

- Finding a control sequence such that the output y(k) tracks as closely as possible an assigned reference trajectory $y_{ref}(k)$
- We assume SISO, x(0) = 0 and $y_{ref}(0) = 0$, then we get $x(k) = A^{k-1}Bu(0) + ... + ABu(k-2) + Bu(k-1)$
- The output sequence $y(k) = Cx(k) = CA^{k-1}Bu(0) + ... + CABu(k-2) + CBu(k-1)$ for k=1,...,T
- Rewrite in matrix form, we have

$$\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(T) \end{bmatrix} = \begin{bmatrix} CB & 0 & \dots & 0 \\ CAB & CB & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ CA^{T-1}B & \dots & CAB & CB \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(T-1) \end{bmatrix}$$

that is $y_T = \Phi_T \mu_T$

- Define $\mathcal{Y}_{ref} = [y_{ref}(1), \dots, y_{ref}(T)]^{\top}$. The problem now becomes $\min_{\mu_T} \|\Phi_T \mu_T \mathcal{Y}_{ref}\|_2^2$
- We can also add a L_2 norm or instantaneous rate of variation of μ_T to penalize energy output.

Continuous-time Lyapunov Stability Analysis

- The CTLTI system $\dot{x}(t) = Ax(t) + Bu(t)$ is said to be (asymptotically) stable if, for u(t) = 0, it holds that $\lim_{t \to \infty} x(t) = 0, \forall x(0) = x_0$
- A necessary condition is the existance of a quadratic Lyapunov function $V(x) = x^{\top}Px \succ 0$ such that $\dot{V}(x) = x^{\top}(A^{\top}P + PA)x \prec 0$. The condition is equivalent to $\exists P \succ 0$ such that $A^{\top}P + PA \prec 0$.
- We can reformulate the strict LMIs into non-strict LMIs: $\exists W \succeq I$ such that $WA^{\top} + AW \preceq -I$.
- Then we can use optimization technique to find P: $\min_{W,v} v$ subject to $WA^{\top} + AW \prec -I$, $I \prec W \prec vI$

Stabilizing State-feedback Design

- Assume that the control input takes the following state-feedback form: u(t) = Kx(t) where K is the state-feedback gain matrix.
- We have the controlled system: $\dot{x}(t) = (A + BK)x(t)$
- The stability condition is:

 $\exists W \succ 0, WA^\top + AW + (KW)^\top B^\top + B(KW) \prec -I$

- Define Y = KW, the condition becomes $\exists W \succ 0, WA^{\top} + AW + Y^{\top}B^{\top} + BY \prec -I$
- Then we can solve: $\min_{W,Y,v} v + \eta \|Y\|_2$ subject to $WA^\top + AW + Y^\top B^\top + BY \prec -I, I \preceq W \preceq vI$ and then recover K as $K = YW^{-1}$. $\eta \geq 0$ is the trade off parameter.

Robust Feedback Design

- Consider the system $\dot{x}(t) = Ax(t) + Bu(t)$, where now the matrices A, B can vary inside a polytope of given matrices $(A_i, B_i), i = 1, \dots, N$. That is $(A(t), B(t)) \in co\{(A_1, B_1), \dots, (A_N, B_N)\}$.
- A sufficient condition for stability of the uncertain system is the existence of a common quadratic Lyapunov function for all the vertex systems, that is $\exists W \succ I : WA_i^\top + A_iW \prec -I, i=1,\ldots,N$
- Based on this condition, we can build a controller.
- The controlled system is described by $\dot{x}(t) = (A+BK)x(t)$. It is stable if $\exists W \succ I : W(A_i+B_iK)^\top + (A_i+B_iK)W \prec -I, i=1,\ldots,N$
- Introducing the variable Y=KW, the feedback gain matrix K of a stabilizing controller can be found by solving the following problem. $\min_{W,Y,v}v+\eta\|Y\|_2$ subject to

$$\begin{split} WA_i^\top + A_iW + Y^\top B_i^\top + B_iY \prec -I, i = 1, \dots, N, \\ I \preceq W \preceq vI, \text{ and then recover } K \text{ as } K = YW^{-1} \end{split}$$