TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

ULN2803AP, ULN2803AFW, ULN2804AP, ULN2804AFW

8CH DARLINGTON SINK DRIVER

The ULN2803AP/AFW Series are high-voltage, high-current darlington drivers comprised of eight NPN darlington

All units feature integral clamp diodes for switching inductive loads.

Applications include relay, hammer, lamp and display (LED) drivers.

FEATURES

- Output current (single output) 500mA (Max.) (ULN2803AP/AFW series)
- High sustaining voltage output 50V (Min.) (ULN2803AP/AFW series)
- Output clamp diodes
- Inputs compatible with various types of logic.

Package type-AP : DIP-18pin Package type-AFW : SOL-18pin

TYPE	INPUT BASE RESISTOR	DESIGNATION
ULN2803AP/AFW	2.7k Ω	TTL, 5V CMOS
ULN2804AP/AFW	10.5k Ω	6~15V PMOS, CMOS

Weight

DIP18-P-300-2.54F : 1.478g (Typ.) SOL18-P-300-1.27 : 0.48g (Typ.)

PIN CONNECTION (TOP VIEW)

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 The products described in this document are subject to foreign exchange and foreign trade control laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice. TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor

The information contained herein is subject to change without notice.

SCHEMATICS (EACH DRIVER)

ULN2803AP / AFW ULN2804AP / AFW INPUT 2.7kΩ 7.2kΩ GND GND OCOMMON 10.5kΩ 7.2kΩ GND

(Note) The input and output parasitic diodes cannot be used as clamp diodes.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERIS	STIC	SYMBOL	RATING	UNIT	
Output Sustaining Voltage		VCE (SUS)	-0.5~50	V	
Output Current		lout	500	mA / ch	
Input Voltage		V _{IN}	-0.5~30	V	
Clamp Diode Revers	e Voltage	V _R	50	\ \	
Clamp Diode Forward Current		IF	500	mA	
Dayyor Dissipation	AP	D-	1.47	W	
Power Dissipation	AFW	PD	0.92 / 1.31 (Note)] vv	
Operating Temperature		T _{opr}	- 40~85	°C	
Storage Temperature	e	T _{stg}	- 55∼150	°C	

(Note) On Glass Epoxy PCB (75×114×1.6mm Cu 20%)

RECOMMENDED OPERATING CONDITIONS (Ta = $-40 \sim 85$ °C)

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Output Sustaining Voltage		V _{CE} (SUS)		0	_	50	V	
Output Current		ΔD	Гоит	T _{pw} = 25ms, Duty = 10%, 8 Circuits	0	_	347	- mA / ch
		AP		T _{pw} = 25ms, Duty = 50%, 8 Circuits	0	_	123	
		AFW		T _{pw} = 25ms, Duty = 10%, 8 Circuits	0	_	268	
				T _{pw} = 25ms, Duty = 50%, 8 Circuits	0	_	90	
Input Voltage		VIN		0	_	30	V	
		N2803AP -W			3.5	_	30	V
(Output On)	ULI / Al	N2804AP =W	VIN (ON)		8	_	30	
Clamp Diode Reverse Voltage		V _R		_	_	50	V	
Clamp Diode Forward Current		IF		_	_	400	mA	
Power Dissipation AP AFW		PD	Ta = 85°C	_	_	0.76	W	
		ַ טי	Ta = 85°C (Note)	—	_	0.48		

(Note) On Glass Epoxy PCB (75×114×1.6mm Cu 20%)

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION		MIN.	TYP.	MAX.	UNIT	
Output Leakage			1	V _{CE} = 50V	Ta = 25°C		_	50	μΑ	
Current _				V _{CE} = 50V	Ta = 85°C	_	_	100		
Carrent	JLN2804AP/AFW			V _{CE} = 50V	$V_{IN} = 1V$		_	500		
Collector-Emitter Saturation				I _{OUT} = 350mA, I _I I		_	- 1.3 1.6			
Voltage	Jaturation	VCE (sat)	2	$I_{OUT} = 200 \text{mA}, I_{IN} = 350 \mu \text{A}$			1.1	1.3	V	
Voltage				I _{OUT} = 100mA, I _I N	$_{ m A}$ = 250 μ A	1	0.9	1.1		
l	ULN2803AP / AFW	1		V _{IN} = 3.85V		1	— 0.93 1.35		A	
Input	ULN2804AP /	IN (ON)	2	V _{IN} = 5V		_	0.35	0.5	mA	
Current	AFW			V _{IN} = 12V		_	1.0	1.45		
<u></u>		IN (OFF)	4	I _{OUT} = 500 μA, Ta = 85°C		50	65	_	μΑ	
Lea (M. Head	ULN2803AP/	VIN (ON)		V _{CE} = 2V, I _{OUT} = 200mA		_	_	2.4		
	AFW		5	$V_{CE} = 2V$, $I_{OUT} = 3$			_	2.7		
				$V_{CE} = 2V$, $I_{OUT} = 3$	300mA	_	_	3.0	7	
Input Voltage (Output On)				$V_{CE} = 2V$, $I_{OUT} = 1$	125mA	_	_	5.0	7 v	
(Output Oil)	ULN2804AP /			$V_{CE} = 2V$, $I_{OUT} = 3$	200mA	_	_	6.0	6.0	
	AFW			$V_{CE} = 2V$, $I_{OUT} = 3$	275mA	_	_	7.0		
				$V_{CE} = 2V$, $I_{OUT} = 3$	350mA	_	_	8.0	<u> </u>	
DC Current Transfer Ratio		hFE	2	V _{CE} = 2V, I _{OUT} = 350mA		1000	_	_		
Clamp Diode Reverse Current		I _R	6	Ta = 25°C (Note)		_	_	50		
				$Ta = 85^{\circ}C$ (Note)				100	μΑ	
Clamp Diode Forward Voltage		V _F	7	I _F = 350mA		_	_	2.0	V	
Input Capacitance		C _{IN}	_			_	15	_	pF	
Turn-On Delay		ton	8	$R_L = 125\Omega$, V_{OUT}	= 50V	_	0.1	<u> </u>		
Turn-Off Delay		tOFF	ð	$R_L = 125\Omega$, V_{OUT}		_	0.2	_	μ s	

(Note) $V_R = V_R MAX$.

TEST CIRCUIT

1. I_{CEX}

2. V_{CE} (sat), h_{FE}

3. I_{IN} (ON)

4. IIN (OFF)

5. V_{IN} (ON)

6. I_R

7. V_F

8. ton, toff

(Note 1) Pulse Width 50 μ s, Duty Cycle 10% Output Impedance 50 Ω , $t_r \le 5$ ns, $t_f \le 10$ ns

(Note 2) See below.

INPUT CONDITION

TYPE NUMBER	R1	V _{IH}
ULN2803AP / AFW	0Ω	3V
ULN2804AP / AFW	0Ω	8V

(Note 3) C_L includes probe and jig capacitance

PRECAUTIONS for USING

Utmost care is necessary in the design of the output line, COMMON and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

OUTLINE DRAWING DIP18-P-300-2.54F

Unit: mm

Weight: 1.478g (Typ.)

OUTLINE DRAWING

SOL18-P-300-1.27

Unit: mm

Weight: 0.48g (Typ.)