Mathématiques I

Préliminaires et objectif du problème

On rappelle que $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ et que $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$.

Pour tout entier $n \in \mathbb{N}$ on note $\mathbb{C}_n[X]$ le sous-espace vectoriel de $\mathbb{C}[X]$ constitué par les polynômes à coefficients complexes de degré inférieur ou égal à n.

On munit l'algèbre $C([-1,1],\mathbb{C})$ des fonctions à valeurs complexes continues sur le segment [-1,1] de la norme $\| \|_{\infty}$ de la convergence uniforme, définie par

$$(\forall f \in C([-1, 1], \mathbb{C})), \quad \|f\|_{\infty} = \sup_{x \in [-1, 1]} |f(x)|$$

Tout polynôme de $\mathbb{C}[X]$ est identifié à la fonction polynomiale qu'il induit sur [-1, 1].

Soit $(\lambda_n)_{n \in \mathbb{N}}$ une suite de réels positifs.

• On dit que cette suite $(\lambda_n)_{n \in \mathbb{N}}$ est à décroissance rapide si pour tout entier $k \in \mathbb{N}$ elle est dominée par la suite $(n^{-k})_{n \in \mathbb{N}^*}$, c'est-à-dire si

$$(\forall k \in \mathbb{IN}) \ (\exists M_k \in \mathbb{IR}_+) \ (\forall n \in \mathbb{IN}^*), \ \lambda_n \leq \frac{M_k}{n^k}.$$

On note \mathcal{E}_{∞} l'ensemble des fonctions $f \in C([-1,1],\mathbb{C})$ pour lesquelles il existe une suite $(Q_n)_{n \in \mathbb{N}}$ de polynômes telle que :

- $\forall n \in \mathbb{N}, Q_n \in \mathbb{C}_n[X]$
- la suite $(\|f Q_n\|_{\infty})_{n \in \mathbb{N}}$ est à décroissance rapide.
- On dit que cette suite $(\lambda_n)_{n\in\mathbb{N}}$ est à décroissance exponentielle si, pour un certain réel $r\in\]0,1[$, elle est dominée par la suite géométrique $(r^n)_{n\in\mathbb{N}}$, c'est-à-dire si

$$(\exists r \in]0, 1[), (\exists M \in \mathbb{R}_+), (\forall n \in \mathbb{N}), \lambda_n \leq Mr^n$$

On note \mathcal{E}_{\exp} l'ensemble des fonctions $f \in C([-1,1],\mathbb{C})$ pour lesquelles il existe une suite $(Q_n)_{n \in \mathbb{N}}$ de polynômes telle que :

- $\forall n \in \mathbb{N}$, $Q_n \in \mathbb{C}_n[X]$
- la suite $(\|f Q_n\|_{\infty})_{n \in \mathbb{N}}$ est à décroissance exponentielle.

Filière MP

Remarque : Une suite à décroissance rapide (resp. exponentielle) converge vers 0 mais n'est pas forcément décroissante.

L'objectif du problème est de montrer, en utilisant les propriétés des polynômes de Tchebychev établies en Partie I, que les fonctions de l'ensemble \mathcal{E}_{∞} sont exactement les fonctions de classe C^{∞} sur [-1,1] et de relier les fonctions f de l'ensemble \mathcal{E}_{exp} aux fonctions f dont la série de Taylor

$$\sum_{n\geq 0} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

en tout point $a \in [-1,1]$ converge vers f(x) sur un voisinage de a.

- a) Vérifier que si une suite est à décroissance exponentielle alors elle est à décroissance rapide.
- b) Vérifier que les ensembles \mathcal{E}_{∞} et \mathcal{E}_{\exp} sont des sous-espaces vectoriels de $C([-1,1],\mathbb{C})$. Quelle relation d'inclusion existe-t-il entre ces deux sous-espaces ?
 - i) Soit f une fonction de classe C^{∞} sur [-1,1] dont toutes les dérivées sont bornées sur [-1,1] par un même réel M. Montrer que $f\in\mathcal{E}_{\exp}$.
 - ii) Donner des exemples de fonctions de \mathcal{E}_{exp} .

Partie I - Polynômes de Tchebychev

Pour tout entier $n \in \mathbb{N}$ on pose : $(\forall x \in [-1, 1])$, $T_n(x) = \cos(n \arccos x)$.

I.A - Premières propriétés des T_n

- I.A.1) Montrer que T_n est une fonction polynomiale à coefficients entiers. Le polynôme associé est encore noté T_n et s'appelle le n-ième polynôme de Tchebychev.
- I.A.2) Expliciter T_1 , T_2 , T_3 et T_4 .
- I.A.3) Montrer que pour tout $n \in \mathbb{N}$, $T_{n+2}(x) = 2xT_{n+1}(x) T_n(x)$.
- I.A.4) En déduire la parité, le degré et le coefficient dominant de T_n .
- I.A.5) Écrire un algorithme pour calculer $T_n(X)$.

On pourra employer le langage de programmation associé au logiciel de calcul formel utilisé ou un langage naturel non ambigu.

I.A.6) Montrer que, pour tout $t \in [0, \pi]$, on a : $T_n(\cos t) = \cos nt$.

I.B - Calcul de normes

- I.B.1) Calculer $||T_n||_{\infty}$.
- I.B.2) Montrer que $(\forall n \in \mathbb{N})$ $(\forall u \in \mathbb{R}), |\sin nu| \le n |\sin u|$.
- I.B.3) En déduire que $||T'_n||_{\infty} = n^2$.

I.C - Encadrement de $T_n(x)$ sur [1, + ∞ [

I.C.1) Montrer que

$$(\forall r\!\in\!\mathrm{I\!R}^*),\ T_n\!\left(\!\frac{r+r^{-1}}{2}\!\right)\,=\,\frac{r^n+r^{-n}}{2}\,.$$

- I.C.2) Soit un réel $x \in [1, +\infty)$.
- a) Montrer qu'il existe $r \in \mathbb{R}^*$, tel que $x = \frac{r + r^{-1}}{2}$.
- b) En déduire que $1 \le T_n(x) \le \left(x + \sqrt{x^2 1}\right)^n$.

I.D - Équation différentielle vérifiée sur IR par T_n

- I.D.1) En dérivant l'égalité $T_n(\cos t) = \cos nt$ valable pour tout réel $t \in [0, \pi]$, trouver une équation différentielle linéaire homogène du second ordre vérifiée sur IR par T_n .
- I.D.2) Soit $k \in \mathbb{N}$, $k \le n$. Déduire de la question I.D.1 que

$$T_n^{(k)}(1) = \frac{n}{n+k} \frac{(n+k)!}{(n-k)!} \frac{2^k k!}{(2k)!}$$
.

Montrer que $T_n^{(k)}(-1) = (-1)^{n+k} T_n^{(k)}(1)$.

Partie II - Application des polynômes de Tchebychev à la majoration des polynômes et de leurs dérivées

On introduit la subdivision $\sigma = (a_0, a_1, ..., a_n)$ du segment [-1, 1] définie par :

$$\forall j \in [0, n], a_j = \cos\left[\left(1 - \frac{j}{n}\right)\pi\right].$$

Par ailleurs, pour tout $i \in [0, n]$ on appelle $E_i = [0, n] \setminus \{i\}$ l'ensemble des entiers naturels autres que i qui sont inférieurs ou égaux à n.

Enfin, pour tout $i \in [0, n]$ on note

$$L_i(X) = \frac{\prod_{j \in E_i} (X - a_j)}{\prod_{j \in E_i} (a_i - a_j)}$$

le i-ème polynôme élémentaire de Lagrange associé à la subdivision σ .

II.A - Majoration d'un polynôme sur [1, +∞[

II.A.1) Résoudre sur [-1,1] l'équation $|T_n(x)| = 1$ et calculer $T'_n(a_j)$ pour j = n, pour j = 0 puis pour $j \in [1, n-1]$.

II.A.2) Montrer que

$$T_n(X) = \sum_{i=0}^n (-1)^{n-i} L_i(X)$$
.

II.A.3) On suppose que $x \in [1, +\infty[$. Montrer que

$$T_n(x) = \sum_{i=0}^n |L_i(x)|.$$

II.A.4) Soit P(X) un polynôme appartenant à $\mathbb{C}_n[X]$. Montrer que

$$(\forall x \in [1, +\infty[), |P(x)| \le ||P||_{\infty} \left(x + \sqrt{x^2 - 1}\right)^n.$$

II.B - Majoration des dérivées successives d'un polynôme sur [1,+\infty]

II.B.1) On suppose que $x \in [1, +\infty)$. Montrer que :

$$(\forall k \in [1, n]), T_n^{(k)}(x) = \sum_{i=0}^n |L_i^{(k)}(x)|.$$

II.B.2) Soit P(X) un polynôme appartenant à $\mathbb{C}_n[X]$. Montrer que :

$$(\forall k \in [1, n]), (\forall x \in [1, +\infty[), |P^{(k)}(x)| \le ||P||_{\infty} T_n^{(k)}(x).$$

II.C - Majoration des dérivées successives d'un polynôme sur [-1,1]

Soit $P \in \mathbb{C}_n(X)$. On considère un entier $k \in [1, n]$.

II.C.1) On pose

$$(\forall \lambda \in [-1, 1]), P_{\lambda}(X) = P(\frac{\lambda + \varepsilon}{2}X + \frac{\lambda - \varepsilon}{2}) \text{ avec}$$

$$\epsilon$$
 = 1 si $\lambda\!\in\![0,1]$ et ϵ = -1 si $\lambda\!\in\![-1,0[$.

Montrer que :

$$\left|P_{\lambda}^{(k)}(1)\right| = \left(\frac{|\lambda|+1}{2}\right)^k \left|P^{(k)}(\lambda)\right|.$$

II.C.2) En déduire que $||P^{(k)}||_{\infty} \le 2^k T_n^{(k)}(1) ||P||_{\infty}$.

II.C.3) Montrer que :

$$||P^{(k)}||_{\infty} \le 2^{2k} \frac{k!}{(2k)!} \frac{(n+k)!}{(n-k)!} ||P||_{\infty}$$

et que, si k = 1, on a la majoration plus fine $||P'||_{\infty} \le 2n^2 ||P||_{\infty}$.

Partie III - Détermination de l'ensemble E

On note $C_{2\pi}$ l'algèbre des fonctions 2π -périodiques et continues sur IR, à valeurs complexes. On munit $C_{2\pi}$ de deux normes, la norme quadratique N_2 définie pour $\varphi \in C_{2\pi}$, par

$$N_2(\varphi) = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |\varphi(t)|^2 dt\right)^{\frac{1}{2}}$$
 induite par le produit scalaire hermitien :

$$(\varphi|\psi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \overline{\varphi(t)} \psi(t) dt$$

et la norme N_{∞} de la convergence uniforme définie par

$$N_{\infty}(\varphi) = \sup_{t \in [-\pi, \pi]} |\varphi(t)|$$
.

Pour tout entier $k\in\mathbb{Z}$ on pose $e_k:t\mapsto e^{ikt}$. On rappelle que la famille $(e_k)_{k\in\mathbb{Z}}$ est une famille orthonormale de l'espace préhilbertien $(C_{2\pi},N_2)$ et que, pour tout $k\in\mathbb{Z}$, le k-ième coefficient de Fourier d'une fonction $\phi\in C_{2\pi}$ est le complexe

$$c_k(\varphi) = (e_k | \varphi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi(t) e^{-ikt} dt$$
.

Pour tout entier $n\in\mathbb{N}$ on note τ_n le sous-espace vectoriel de $C_{2\pi}$ engendré par les fonctions e_k où $k\in[-n,n]$:

$$\tau_n = \text{vect}(e_{-n}, ..., e_0, ..., e_n) \; ; \dim(\tau_n) = 2n + 1 \; .$$

Soit $\varphi \in C_{2\pi}$. Pour tout entier $n \in \mathbb{N}$, on note

$$S_n(\varphi) = \sum_{k=-n}^n c_k(\varphi) e_k$$
 le $n-$ ième polynôme trigonométrique de Fourier de φ .

III.A - Propriétés liées aux normes N_2 et N_{∞}

III.A.1) On suppose que la série

$$\sum_{n \ge 1} (\left| c_n(\varphi) \right| + \left| c_{-n}(\varphi) \right|) \text{ converge.}$$

Montrer que la suite $(S_n(\varphi))_{n \in \mathbb{N}}$ converge uniformément sur \mathbb{R} vers φ .

III.A.2) Soit $\varphi \in C_{2\pi}$ muni de la norme quadratique N_2 . On rappelle que $S_n(\varphi)$ est la projection orthogonale de φ sur τ_n . En déduire que :

$$(\forall \omega \in \tau_n \setminus \{S_n(\varphi)\}) \ , \ N_2(\varphi - \omega) > N_2(\varphi - S_n(\varphi)) \ .$$

III.A.3) On suppose que la fonction $\phi\in C_{2\pi}$ est de classe C^p sur IR , avec $p\ge 1$. Montrer que :

$$(\forall k \in \mathbb{Z}^*) , |c_k(\varphi)| \leq \frac{N_{\infty}(\varphi^{(p)})}{|k|^p} .$$

III.B - Étude d'une application linéaire

On rappelle que $C([-1,1],\mathbb{C})$ est muni de la norme $\|\cdot\|_{\infty}$. On note L l'application linéaire qui à toute fonction f de $C([-1,1],\mathbb{C})$, associe la fonction Lf de $C_{2\pi}$ définie par $\forall t \in \mathbb{R}$ $Lf(t) = f(\cos t)$.

Montrer que L est injective et calculer la norme subordonnée $||L|||_{\infty}$ de L lorsque l'on munit $C_{2\pi}$ de la norme N_{∞} puis la norme subordonnée $|||L|||_{2}$ de L lorsque l'on munit $C_{2\pi}$ de la norme N_{2} .

III.C - Propriétés liées aux coefficients de Fourier d'une fonction Lf

Dans cette section on considère une fonction f fixée dans $C([-1, 1], \mathbb{C})$.

III.C.1) Vérifier que $c_{-k}(Lf) = c_k(Lf)$.

III.C.2) Soit $(Q_n)_{n \in \mathbb{IN}}$ une suite de polynômes telle que pour tout $n \in \mathbb{IN}$ on ait $Q_n \in \mathbb{C}_n[X]$. Montrer que :

$$(\forall k \ge 2), |c_k(Lf)| \le \frac{1}{\sqrt{2}} ||f - Q_{k-1}||_{\infty}.$$

III.C.3) Pour tout entier $n \in \mathbb{N}$ on pose :

$$(\forall x \in [-1, 1])$$
, $U_n(f)(x) = S_n(Lf)(\arccos x)$.

Montrer que:

$$U_n(f) = c_0(Lf) + 2\sum_{k=1}^n c_k(Lf)T_k$$
.

III.C.4) On suppose que la série $\sum_{k>1} |c_k(Lf)|$ converge. Montrer que :

$$||f - U_n(f)||_{\infty} \le 2 \sum_{k=n+1}^{+\infty} |c_k(Lf)|.$$

III.D - Développement en série de Tchebychev d'une fonction f de \mathcal{E}_{∞}

On suppose dans cette question que f est une fonction de l'ensemble \mathcal{E}_{∞} .

III.D.1) Montrer que la suite $\left(\left|c_n(Lf)\right|\right)_{n\,\in\,\mathrm{I\!N}}$ est à décroissance rapide.

III.D.2) Montrer que :

$$(\forall x \in [-1, 1]), f(x) = c_0(Lf) + 2\sum_{n=1}^{+\infty} c_n(Lf)T_n(x)$$

et que la série de fonctions converge normalement sur [-1, 1].

III.D.3) En déduire que f est de classe C^{∞} sur [-1, 1] et que :

$$(\forall k \in IN), (\forall x \in [-1, 1]), f^{(k)}(x) = 2 \sum_{n=1}^{+\infty} c_n(Lf) T_n^{(k)}(x)$$

III.E - Achèvement de la détermination de l'ensemble \mathcal{E}_{∞}

On suppose dans cette question que f est une fonction de classe C^{∞} sur [-1, 1].

- III.E.1) Montrer que la suite $(|c_n(Lf)|)_{n \in \mathbb{N}}$ est à décroissance rapide.
- III.E.2) En déduire que $f \in \mathcal{E}_{\infty}$.

Partie IV - Étude de l'ensemble E

IV.A - Caractérisation des éléments de l'ensemble $\mathcal{E}_{\mathrm{exp}}$

IV.A.1) Soit f une fonction de $C([-1,1],\mathbb{C})$. Montrer que les assertions suivantes sont équivalentes :

- a) $f \in \mathcal{E}_{exp}$.
- b) La suite $(|c_n(Lf)|)_{n \in \mathbb{N}}$ est à décroissance exponentielle.

IV.B - Développement en série de Tchebychev d'une fonction f de \mathcal{E}_{exp} On suppose dans cette question que f est une fonction de l'ensemble \mathcal{E}_{exp} . Il existe donc un réel $f \in [0, 1[$ tel que :

$$(\exists M \in \mathbb{R}_+)$$
, $(\forall n \in \mathbb{N})$, $|c_n(Lf)| \leq Mr^n$.

IV.B.1) Justifier le fait que :

$$(\forall x \in [-1, 1]), f(x) = c_0(Lf) + 2\sum_{n=1}^{+\infty} c_n(Lf)T_n(x),$$

que la série de fonctions converge normalement sur [-1,1], que f est de classe C^{∞} sur [-1,1] et que :

$$(\forall k \in \mathbb{IN}), (\forall x \in [-1, 1]), f^{(k)}(x) = 2 \sum_{n=1}^{+\infty} c_n(Lf) T_n^{(k)}(x).$$

IV.B.2) En déduire que

$$(\forall k \in \mathbb{IN}), \|f^{(k)}\|_{\infty} \leq \frac{2M}{1-r} \cdot \frac{k!}{[\lambda(r)]^k}, \text{ avec } \lambda(r) = \frac{(1-r)^2}{4r}.$$

IV.C - Développement en série de Taylor au voisinage de tout point $a \in [-1,1]$ d'une fonction f de \mathcal{E}_{\exp}

On conserve les mêmes hypothèses qu'à la question précédente pour f. Soit un point $a \in [-1, 1]$.

Montrer que la série de Taylor :

$$\sum_{n\geq 0} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

de f au point a converge vers f(x) sur le voisinage $[-1, 1] \cap]a - \lambda(r), a + \lambda(r)[$ du point a.

IV.D - Inclusion stricte entre $\mathcal{E}_{\mathrm{exp}}$ et \mathcal{E}_{∞}

Montrer que la fonction f définie par

$$(\forall x \in [-1, 1] \setminus \{0\}), f(x) = \exp(-\frac{1}{x^2}) \text{ et } f(0) = 0$$

appartient à \mathcal{E}_{∞} mais n'appartient pas à \mathcal{E}_{\exp} .

IV.E - Réciproque partielle concernant la détermination de l'ensemble \mathcal{E}_{exp}

Soit f une fonction à valeurs réelles ou complexes développable en série entière sur un intervalle ouvert $]-\rho, \rho[$, avec $\rho > 1$. Montrer que la restriction de f au segment [-1,1] appartient à $\mathcal{L}_{\rm exp}$.

