(global-font-lock-mode t)

#!/bin/sh

(compile (concat "g++_-g_-O2_-o_" (file-name-sans-extension buffer-file-name)

sed ':a;N; $$!ba;s/[_\n\t]//g' \mid md5sum \mid cut -d'_' -f1$

ACM ICPC TEAM REFERENCE 2010 WORLD FINALS

Team Anuncie Aqui Universidade Federal de Sergipe

1. Configuration files and scripts

1.1. .emacs. Hash: b1040cede72bb06f9b3197eba2d833f5

```
(setq transient-mark-mode t)
                                                                                                     "_" buffer-file-name))
(global-set-key [f5] 'cxx-compile)
                                                                                       (add-hook 'c++-mode-hook (lambda () (c-set-style "stroustrup")
(defun cxx-compile()
 (interactive)
                                                                                                                 (flymake-mode t)))
  (save-buffer)
1.2. Makefile. Hash: 7381d22266f4ef5a9a601b80a76a956c
check-syntax:
                                                                                             q++ -Wall -fsyntax-only $(CHK_SOURCES)
1.3. .vimrc. Hash: da63747b3e94a58450094526d21a9e41
syn on
                                                                                       ab #i #include
set nocp number ai si ts=4 sts=4 sw=4
1.4. Hash generator. Hash: 0d22aecd779fc370b30a2c628aff517c
```

1.5. **Solution template.** Hash: 220ea9d23d25447636bd67aeaf899fee

```
#include <algorithm>
                                                                                            #include <set>
#include <cassert>
                                                                                            #include <sstream>
                                                                                            #include <string>
#include <cmath>
#include <cstdio>
                                                                                            #include <utility>
#include <cstdlib>
                                                                                            #include <vector>
#include <cstring>
#include <ctime>
                                                                                            using namespace std;
#include <iostream>
#include <map>
                                                                                            int main() {
#include <queue>
```

2. Graph algorithms

2.1. Tarjan's SCC algorithm. Hash: 16e646ee186fcff5ed68116af46b0820

```
int lowest[MAXV], num[MAXV], visited[MAXV], comp[MAXV];
int prev_edge[MAXE], last_edge[MAXV], adj[MAXE], nedges;
int cur_num, cur_comp;
stack<int> visiting;
int t_init() {
  memset(last_edge, -1, sizeof last_edge);
   nedges = 0;
void t_edge(int v, int w) {
  prev_edge[nedges] = last_edge[v];
   adj[nedges] = w;
   last_edge[v] = nedges++;
int tarjan_dfs(int v) {
   lowest[v] = num[v] = cur_num++;
   visiting.push(v);
   visited[v] = 1;
   for(int i = last_edge[v]; i != -1; i = prev_edge[i]) {
      int w = adj[i];
      if(visited[w] == 0) lowest[v] = min(lowest[v], tarjan_dfs(w));
      else if(visited[w] == 1) lowest[v] = min(lowest[v], num[w]);
```

```
if(lowest[v] == num[v]) {
    int last = -1;
    while(last != v) {
        comp[last = visiting.top()] = cur_comp;
        visited[last] = 2;
        visiting.pop();
    }
    ++cur_comp;
}

return lowest[v];
}

void tarjan_scc(int num_v = MAXV) {
    visiting = stack<int>();
    memset(visited, 0, sizeof visited);
    cur_num = cur_comp = 0;

for(int i = 0; i < num_v; ++i)
    if(!visited[i])
        tarjan_dfs(i);
}</pre>
```

2.2. Dinic's maximum flow algorithm. Hash: 4dd537effe7e233681c099912397839a

```
int last_edge[MAXV], cur_edge[MAXV], dist[MAXV];
int prev_edge[MAXE], cap[MAXE], flow[MAXE], adj[MAXE];
int nedges;
void d_init() {
   nedges = 0;
   memset(last_edge, -1, sizeof last_edge);
void d_edge(int v, int w, int capacity, bool r = false) {
   prev_edge[nedges] = last_edge[v];
   cap[nedges] = capacity;
   adj[nedges] = w;
   flow[nedges] = 0;
  last_edge[v] = nedges++;
   if(!r) d_edge(w, v, 0, true);
bool d_auxflow(int source, int sink) {
   queue<int> q;
   q.push(source);
   memset(dist, -1, sizeof dist);
   dist[source] = 0;
   memcpy(cur_edge, last_edge, sizeof last_edge);
   while(!q.empty()) {
      int v = q.front(); q.pop();
      for(int i = last_edge[v]; i != -1; i = prev_edge[i]) {
         if(cap[i] - flow[i] == 0) continue;
         if(dist[adj[i]] == -1) {
            dist[adj[i]] = dist[v] + 1;
            q.push(adj[i]);
            if(adj[i] == sink) return true;
```

```
return false;
inline int rev(int i) { return i ^ 1; }
int d_augmenting(int v, int sink, int c) {
   if(v == sink) return c;
   for(int& i = cur_edge[v]; i != -1; i = prev_edge[i]) {
     if(cap[i] - flow[i] == 0 || dist[adj[i]] != dist[v] + 1)
         continue;
     int val;
     if(val = d_augmenting(adj[i], sink, min(c, cap[i] - flow[i]))) {
        flow[i] += val;
        flow[rev(i)] -= val;
        return val;
   return 0;
int dinic(int source, int sink) {
  int ret = 0;
   while(d_auxflow(source, sink)) {
     int flow;
      while(flow = d_augmenting(source, sink, 0x3f3f3f3f))
         ret += flow;
   return ret;
```

2.3. Successive shortest paths mincost maxflow algorithm. Hash: 1899233cb68a8d5f6e280654146e1747

```
int dist[MAXV], last_edge[MAXV], d_visited[MAXV], bg_prev[MAXV], pot[MAXV],
    capres[MAXV];
```

```
int prev_edge[MAXE], adj[MAXE], cap[MAXE], cost[MAXE], flow[MAXE];
```

```
int nedges;
priority_queue<pair<int, int> > d_q;
inline void bg_edge(int v, int w, int capacity, int cst, bool r = false) {
   prev_edge[nedges] = last_edge[v];
   adj[nedges] = w;
   cap[nedges] = capacity;
   flow[nedges] = 0;
   cost[nedges] = cst;
   last_edge[v] = nedges++;
   if(!r) bg_edge(w, v, 0, -cst, true);
inline int rev(int i) { return i ^ 1; }
inline int from(int i) { return adj[rev(i)]; }
inline void bg_init() {
   nedges = 0;
   memset(last_edge, -1, sizeof last_edge);
   memset(pot, 0, sizeof pot);
void bq_dijkstra(int s, int num_nodes = MAXV) {
   memset(dist, 0x3f, sizeof dist);
   memset(d_visited, 0, sizeof d_visited);
   d_q.push(make_pair(dist[s] = 0, s));
   capres[s] = 0x3f3f3f3f3f;
   while(!d_q.empty()) {
      int v = d_q.top().second; d_q.pop();
      if(d_visited[v]) continue; d_visited[v] = true;
      for(int i = last_edge[v]; i != -1; i = prev_edge[i]) {
```

```
if(cap[i] - flow[i] == 0) continue;
         int w = adj[i], new_dist = dist[v] + cost[i] + pot[v] - pot[w];
         if(new_dist < dist[w]) {</pre>
            d_q.push(make_pair(-(dist[w] = new_dist), w));
            bg_prev[w] = rev(i);
            capres[w] = min(capres[v], cap[i] - flow[i]);
pair<int, int> busacker_gowen(int src, int sink, int num_nodes = MAXV) {
   int ret flow = 0, ret cost = 0;
  bg_dijkstra(src, num_nodes);
   while(dist[sink] < 0x3f3f3f3f) {</pre>
      int cur = sink;
      while(cur != src) {
         flow[bg_prev[cur]] -= capres[sink];
        flow[rev(bq_prev[cur])] += capres[sink];
        ret_cost += cost[rev(bq_prev[cur])] * capres[sink];
         cur = adj[bg_prev[cur]];
      ret_flow += capres[sink];
      for (int i = 0; i < MAXV; ++i)
        pot[i] = min(pot[i] + dist[i], 0x3f3f3f3f);
      bg_dijkstra(src, num_nodes);
   return make_pair(ret_flow, ret_cost);
```

2.4. Gabow's general matching algorithm. Hash: a173c8d78c8dfd97bfacfc98e6ef92ea

```
int prev_edge[MAXE], v[MAXE], w[MAXE], last_edge[MAXV];
int type[MAXV], label[MAXV], first[MAXV], mate[MAXV], nedges;
bool g_flag[MAXV], g_souter[MAXV];

void g_init() {
   nedges = 0;
   memset(last_edge, -1, sizeof last_edge);
}
```

```
void g_edge(int a, int b) {
  prev_edge[nedges] = last_edge[a];
  v[nedges] = a;
  w[nedges] = b;
  last_edge[a] = nedges++;

  prev_edge[nedges] = last_edge[b];
```

```
v[nedges] = b;
   w[nedges] = a;
   last_edge[b] = nedges++;
void g_label(int v, int join, int edge, queue<int>& outer) {
   if(v == join) return;
   if(label[v] == -1) outer.push(v);
  label[v] = edge;
   type[v] = 1;
   first[v] = join;
   g_label(first[label[mate[v]]], join, edge, outer);
void q_augment(int _v, int _w) {
   int t = mate[_v];
  mate[\_v] = \_w;
   if (mate[t] != _v) return;
   if(label[_v] == -1) return;
   if(type[_v] == 0) {
      mate[t] = label[_v];
      g_augment(label[_v], t);
   else if(type[_v] == 1) {
      g_augment(v[label[_v]], w[label[_v]]);
      g_augment(w[label[_v]], v[label[_v]]);
int gabow(int n) {
   memset (mate, -1, sizeof mate);
  memset(first, -1, sizeof first);
   int u = 0, ret = 0;
   for (int z = 0; z < n; ++z) {
      if (mate[z] != -1) continue;
      memset(label, -1, sizeof label);
      memset (type, -1, sizeof type);
      memset(q_souter, 0, sizeof q_souter);
      label[z] = -1; type[z] = 0;
```

```
queue<int> outer;
outer.push(z);
bool done = false;
while(!outer.empty()) {
  int x = outer.front(); outer.pop();
  if(g_souter[x]) continue;
  g_souter[x] = true;
   for(int i = last_edge[x]; i != -1; i = prev_edge[i]) {
      if (mate[w[i]] == -1 \&\& w[i] != z) {
         mate[w[i]] = x;
         g_augment(x, w[i]);
         ++ret;
         done = true;
         break;
      if(type[w[i]] == -1) {
         int v = mate[w[i]];
         if(type[v] == -1) {
            type[v] = 0;
            label[v] = x;
            outer.push(v);
            first[v] = w[i];
         continue;
      int r = first[x], s = first[w[i]];
      if(r == s) continue;
      memset(g_flag, 0, sizeof g_flag);
      g_flag[r] = g_flag[s] = true;
      while(true) {
        if(s != -1) swap(r, s);
         r = first[label[mate[r]]];
         if(q_flag[r]) break; q_flag[r] = true;
      q_label(first[x], r, i, outer);
```

```
g_label(first[w[i]], r, i, outer);

for(int c = 0; c < n; ++c)
    if(type[c] != -1 && first[c] != -1 && type[first[c]] != -1)
        first[c] = r;
}</pre>
```

```
if(done) break;
}
return ret;
}
```

3. Матн

3.1. Fractions. Hash: f73600ea77d3b558454e5c6a48ad82de

```
struct frac {
  long long num, den;

  frac() : num(0), den(1) { }
  frac(long long num, long long den = 1) { set_val(num, den); }

void set_val(long long _num, long long _den) {
    num = _num/__gcd(_num, _den);
    den = _den/__gcd(_num, _den);
    if(den < 0) { num *= -1; den *= -1; }
}

void operator*=(frac f) { set_val(num * f.num, den * f.den); }
void operator+=(frac f) { set_val(num * f.den + f.num * den, den * f.den); }
void operator-=(frac f) { set_val(num * f.den - f.num * den, den * f.den); }
void operator/=(frac f) { set_val(num * f.den, den * f.num); }
};</pre>
```

```
bool operator==(frac a, frac b) { return a.num * b.den == b.num * a.den; }
bool operator!=(frac a, frac b) { return ! (a == b); }
bool operator<(frac a, frac b) { return a.num * b.den < b.num * a.den; }
bool operator<=(frac a, frac b) { return (a == b) || (a < b); }
bool operator>(frac a, frac b) { return !(a <= b); }
bool operator>(frac a, frac b) { return !(a < b); }
frac operator/(frac a, frac b) { frac ret = a; ret /= b; return ret; }
frac operator*(frac a, frac b) { frac ret = a; ret *= b; return ret; }
frac operator+(frac a, frac b) { frac ret = a; ret += b; return ret; }
frac operator-(frac a, frac b) { frac ret = a; ret -= b; return ret; }
frac operator-(frac a, frac b) { frac ret = a; ret -= b; return ret; }
frac operator-(frac f) { return 0 - f; }}
std::ostream& operator<<(std::ostream& o, const frac f) {
    o << f.num << "/" << f.den;
    return o;</pre>
```

3.2. Chinese remainder theorem. Hash: 06b5ebd5c44c204a4b11bbb76d09023d

```
struct t {
   long long a, b; int g;
   t(long long a, long long b, int g) : a(a), b(b), g(g) { }
   t swap() { return t(b, a, g); }
};

t egcd(int p, int q) {
   if(q == 0) return t(1, 0, p);

   t t2 = egcd(q, p % q);
```

```
t2.a -= t2.b * (p/q);
    return t2.swap();
}

int crt(int a, int p, int b, int q) {
    t t2 = egcd(p, q); t2.a %= p*q; t2.b %= p*q;
    assert(t2.g == 1);
    int ret = ((b * t2.a)%(p*q) * p + (a * t2.b)%(p*q) * q) % (p*q);
    return ret >= 0 ? ret : ret + p*q;
}
```

3.3. Longest increasing subsequence. Hash: 0c94974a1a54f572893029cececcbe23

```
vector<int> lis(vector<int>& seq) {
  int smallest_end[seq.size()+1], prev[seq.size()];
  smallest_end[1] = seq[0];

int sz = 1;
  for(int i = 1; i < seq.size(); ++i) {
    int lo = 0, hi = sz;
    while(lo < hi) {
        int mid = (lo + hi + 1)/2;
        if(seq[smallest_end[mid]] <= seq[i])
            lo = mid;
        else
            hi = mid - 1;
    }
}</pre>
```

```
prev[i] = smallest_end[lo];
  if(lo == sz)
     smallest_end[++sz] = i;
  else if(seq[i] < seq[smallest_end[lo+1]])
     smallest_end[lo+1] = i;
}

vector<int> ret;
for(int cur = smallest_end[sz]; sz > 0; cur = prev[cur], --sz)
    ret.push_back(seq[cur]);
reverse(ret.begin(), ret.end());

return ret;
```

3.4. Simplex (Warsaw University). Hash: c687094970cf1953fd6f87a01adc6a95

```
const double EPS = 1e-9;
typedef long double T;
typedef vector<T> VT;
vector<VT> A;
VT b,c,res;
VI kt.N:
int m;
inline void pivot(int k,int l,int e){
   int x=kt[1]; T p=A[1][e];
   REP(i,k) A[1][i]/=p; b[1]/=p; N[e]=0;
   REP(i,m) if (i!=1) b[i]-A[i][e]*b[1],A[i][x]-A[i][e]*-A[1][x];
   REP(j,k) if (N[j]) {
      c[j]-=c[e]*A[1][j];
      REP(i,m) if (i!=1) A[i][j]-=A[i][e]*A[1][j];
   kt[1]=e; N[x]=1; c[x]=c[e]*-A[1][x];
VT doit(int k) {
   VT res; T best;
   while (1) {
      int e=-1, l=-1; REP(i,k) if (N[i] && c[i]>EPS) {e=i; break;}
      if (e==-1) break;
      REP(i,m) if (A[i][e]>EPS && (l==-1 || best>b[i]/A[i][e]))
         best=b[ l=i ]/A[i][e];
```

```
if (l==-1) /*ilimitado*/ return VT();
      pivot(k,l,e);
   res.resize(k,0); REP(i,m) res[kt[i]]=b[i];
   return res;
VT simplex(vector<VT> &AA, VT &bb, VT &cc) {
   int n=AA[0].size(),k;
  m=AA.size(); k=n+m+1; kt.resize(m); b=bb; c=cc; c.resize(n+m);
  A=AA; REP(i,m) \{ A[i].resize(k); A[i][n+i]=1; A[i][k-1]=-1; kt[i]=n+i; \}
  N=VI(k,1); REP(i,m) N[kt[i]]=0;
   int pos=min_element(ALL(b))-b.begin();
  if (b[pos] <-EPS) {
      c=VT(k,0); c[k-1]=-1; pivot(k,pos,k-1); res=doit(k);
      if (res[k-1]>EPS) /*impossivel*/ return VT();
      REP(i,m) if (kt[i] == k-1)
         REP(j, k-1) if (N[j] && (A[i][j] < -EPS || EPS < A[i][j])){
            pivot(k,i,j); break;
      c=cc; c.resize(k,0); REP(i,m) REP(j,k) if (N[j]) c[j]-=c[kt[i]] *A[i][j];
   res=doit(k-1); if (!res.empty()) res.resize(n);
   return res;
```

3.5. **Romberg's method.** Hash: a56c42a3dac08d2c5fc932f92468dd03

```
long double romberg(int a, int b, double(*func) (double)) {
  long double approx[2][50];
  long double *cur=approx[1], *prev=approx[0];

prev[0] = 1/2.0 * (b-a) * (func(a) + func(b));
  for(int it = 1; it < 25; ++it, swap(cur, prev)) {
    if(it > 1 && cmp(prev[it-1], prev[it-2]) == 0)
      return prev[it-1];

  cur[0] = 1/2.0 * prev[0];
```

```
long double div = (b-a)/pow(2, it);
for(long double sample = a + div; sample < b; sample += 2 * div)
    cur[0] += div * func(a + sample);

for(int j = 1; j <= it; ++j)
    cur[j] = cur[j-1] + 1/(pow(4, it) - 1)*(cur[j-1] + prev[j-1]);
}
return prev[24];</pre>
```

3.6. Floyd's cycle detection algorithm. Hash: 97a42d1ac6750f912c5a06e04636c1db

```
pair<int, int> floyd(int x0) {
  int t = f(x0), h = f(f(x0)), start = 0, length = 1;
  while(t != h)
    t = f(t), h = f(f(h));

h = t; t = x0;
  while(t != h)
    t = f(t), h = f(h), ++start;
```

h = f(t);
while(t != h)
h = f(h), ++length;
return make_pair(start, length);
}

3.7. **Pollard's rho algorithm.** Hash: ad4ee1d4afc564b2c55f90d6269994c4

```
long long pollard_r, pollard_n;
inline long long f(long long val) { return (val*val + pollard_r) % pollard_n; }
inline long long myabs(long long a) { return a >= 0 ? a : -a; }

long long pollard(long long n) {
    srand(unsigned(time(0)));
    pollard_n = n;

    long long d = 1;
    do {
```

d = 1;
pollard_r = rand() % n;

long long x = 2, y = 2;
while(d == 1)
 x = f(x), y = f(f(y)), d = __gcd(myabs(x-y), n);
} while(d == n);

return d;

3.8. Miller-Rabin's algorithm. Hash: 5288cd2ac5d62a97ea1175eec20d0010

```
int fastpow(int base, int d, int n) {
```

int ret = 1;

```
for(long long pow = base; d > 0; d >>= 1, pow = (pow * pow) % n)
    if(d & 1)
        ret = (ret * pow) % n;
    return ret;
}

bool miller_rabin(int n, int base) {
    if(n <= 1) return false;
    if(n % 2 == 0) return n == 2;

    int s = 0, d = n - 1;
    while(d % 2 == 0) d /= 2, ++s;

    int base_d = fastpow(base, d, n);
    if(base_d == 1) return true;</pre>
```

3.9. Polynomials (PUC-Rio). Hash: d69d1ad494e487327d2338e69eccfa2f

```
typedef complex<double> cdouble;
int cmp(cdouble x, cdouble y = 0) {
   return cmp(abs(x), abs(y));
const int TAM = 200;
struct poly {
   cdouble poly[TAM]; int n;
   poly(int n = 0): n(n) { memset(p, 0, sizeof(p)); }
   cdouble& operator [](int i) { return p[i]; }
   poly operator ~() {
      poly r(n-1);
      for (int i = 1; i <= n; i++)</pre>
         r[i-1] = p[i] * cdouble(i);
      return r;
   pair<poly, cdouble> ruffini(cdouble z) {
      if (n == 0) return make_pair(poly(), 0);
      poly r(n-1);
      for (int i = n; i > 0; i--) r[i-1] = r[i] * z + p[i];
      return make_pair(r, r[0] * z + p[0]);
   cdouble operator () (cdouble z) { return ruffini(z).second; }
   cdouble find_one_root(cdouble x) {
      poly p0 = *this, p1 = ~p0, p2 = ~p1;
      int m = 1000;
```

```
int base_2r = base_d;
   for(int i = 0; i < s; ++i) {</pre>
      if(base_2r == 1) return false;
      if (base_2r == n - 1) return true;
     base_2r = (long long)base_2r * base_2r % n;
   return false;
bool isprime(int n) {
  if(n == 2 || n == 7 || n == 61) return true;
   return miller_rabin(n, 2) && miller_rabin(n, 7) && miller_rabin(n, 61);
      while (m--) {
         cdouble y0 = p0(x);
        if (cmp(y0) == 0) break;
         cdouble G = p1(x) / y0;
        cdouble H = G * G - p2(x) - y0;
         cdouble R = sqrt(cdouble(n-1) * (H * cdouble(n) - G * G));
        cdouble D1 = G + R, D2 = G - R;
        cdouble a = cdouble(n) / (cmp(D1, D2) > 0 ? D1 : D2);
         x -= a;
        if (cmp(a) == 0) break;
      return x;
  vector<cdouble> roots() {
      poly q = *this;
      vector<cdouble> r;
      while (q.n > 1) {
        cdouble z(rand() / double(RAND_MAX), rand() / double(RAND_MAX));
        z = q.find_one_root(z); z = find_one_root(z);
        q = q.ruffini(z).first;
        r.push_back(z);
      return r;
```

};

4. Geometry

4.1. **Point class.** Hash: 4a0fc00fd27520d94e04b2fc6c05ed73

```
typedef double TYPE;
const TYPE EPS = 1e-9, INF = 1e9;
inline int sgn(TYPE a) { return a > EPS ? 1 : (a < -EPS ? -1 : 0); }</pre>
inline int cmp(TYPE a, TYPE b) { return sgn(a - b); }
struct pt {
   TYPE x, v;
   pt(TYPE x = 0, TYPE y = 0) : x(x), y(y) { }
   bool operator== (pt p) { return cmp(x, p.x) == 0 \&\& cmp(y, p.y) == 0; }
   bool operator<(pt p) const {</pre>
      return cmp(x, p.x) ? cmp(x, p.x) < 0 : cmp(y, p.y) < 0;
   bool operator<=(pt p) { return *this < p || *this == p; }</pre>
   TYPE operator||(pt p) { return x*p.x + y*p.y; }
   TYPE operator%(pt p) { return x*p.y - y*p.x; }
   pt operator () { return pt(x, -y); }
   pt operator+(pt p) { return pt(x + p.x, y + p.y); }
   pt operator-(pt p) { return pt(x - p.x, y - p.y); }
   pt operator*(pt p) { return pt(x*p.x - y*p.y, x*p.y + y*p.x); }
   pt operator/(TYPE t) { return pt(x/t, y/t); }
```

4.2. Intersection primitives. Hash: ab780978106a5c062b8f7a129ebc9196

```
pt operator/(pt p) { return (*this * ~p)/(p||p); }
const pt I = pt(0,1);
struct circle {
  pt c; TYPE r;
  circle(pt c, TYPE r) : c(c), r(r) { }
};
TYPE norm(pt a) { return a | |a; }
TYPE abs(pt a) { return sqrt(a||a); }
TYPE dist(pt a, pt b) { return abs(a - b); }
TYPE area(pt a, pt b, pt c) { return (a-c)%(b-c); }
int ccw(pt a, pt b, pt c) { return sqn(area(a, b, c)); }
pt unit(pt a) { return a/abs(a); }
double arg(pt a) { return atan2(a.v, a.x); }
pt f_polar(TYPE mod, double ang) { return pt(mod * cos(ang), mod * sin(ang)); }
inline int q_mod(int i, int n) { if(i == n) return 0; return i; }
ostream& operator<<(ostream& o, pt p) {
  return o << "(" << p.x << "," << p.y << ")";
pt parametric_isect(pt p, pt v, pt q, pt w) {
   double t = ((q-p)%w)/(v%w);
   return p + v*t;
pt ss_isect(pt p, pt q, pt r, pt s) {
  pt isect = parametric_isect(p, q-p, r, s-r);
  if(ps_isects(p, q, isect) && ps_isects(r, s, isect)) return isect;
   return pt (1/0.0, 1/0.0);
```

4.3. Polygon primitives. Hash: 621a339a657d07de8f651d55e13d988b

```
double p_signedarea(vector<pt>& pol) {
    double ret = 0;
    for(int i = 0; i < pol.size(); ++i)
        ret += pol[i] % pol[g_mod(i+1, pol.size())];
    return ret/2;
}
int point_polygon(pt p, vector<pt>& pol) {
    int n = pol.size(), count = 0;
```

4.4. **Miscellaneous primitives.** Hash: be051245293a9db9c991d414c598e854

```
bool point_circle(pt p, circle c) {
    return cmp(abs(p - c.c), c.r) <= 0;
}

double ps_distance(pt p, pt a, pt b) {
    p = p - a; b = b - a;
    double coef = min(max((b||p)/(b||b), TYPE(0)), TYPE(1));
    return abs(p - b*coef);
}</pre>
```

4.5. Smallest enclosing circle. Hash: 00dd4dbd6779989a64c1e935443a1d80

```
circle enclosing_circle(vector<pt>% pts) {
    srand(unsigned(time(0)));
    random_shuffle(pts.begin(), pts.end());

    circle c(pt(), -1);
    for(int i = 0; i < pts.size(); ++i) {
        if(point_circle(pts[i], c)) continue;
        c = circle(pts[i], 0);
        for(int j = 0; j < i; ++j) {
            if(point_circle(pts[j], c)) continue;
        }
        c = circle(pts[i], 0);
        continue;
        contin
```

4.6. Convex hull. Hash: 2b14ae1a97e5ff686efb4d7e0e7ca78a

```
pt pivot;
```

```
for (int i = 0; i < n; ++i) {
      int i1 = g_mod(i+1, n);
      if (ps_isects(pol[i], pol[i1], p)) return -1;
      else if(((sgn(pol[i].y - p.y) == 1) != (sgn(pol[i1].y - p.y) == 1)) &&
            ccw(pol[i], p, pol[i1]) == sgn(pol[i].y - pol[i1].y)) ++count;
   return count % 2;
pt circumcenter(pt a, pt b, pt c) {
  return parametric_isect((b+a)/2, (b-a)*I, (c+a)/2, (c-a)*I);
bool compy(pt a, pt b) {
  return cmp(a.y, b.y) ? cmp(a.y, b.y) < 0 : cmp(a.x, b.x) < 0;
bool compx(pt a, pt b) { return a < b; }</pre>
         c = circle((pts[i] + pts[j])/2, abs(pts[i] - pts[j])/2);
         for(int k = 0; k < j; ++k) {
            if(point_circle(pts[k], c)) continue;
            pt center = circumcenter(pts[i], pts[j], pts[k]);
            c = circle(center, abs(center - pts[i])/2);
   return c;
bool hull_comp(pt a, pt b) {
   int turn = ccw(a, b, pivot);
```

```
return turn == 1 || (turn == 0 && cmp(norm(a-pivot), norm(b-pivot)) < 0);
}

vector<pt> hull(vector<pt> pts) {
    if(pts.size() <= 1) return pts;
    vector<pt> ret;

int mini = 0;
    for(int i = 1; i < pts.size(); ++i)
        if(pts[i] < pts[mini])
            mini = i;

pivot = pts[mini];
    swap(pts[0], pts[mini]);</pre>
```

4.7. Closest pair of points. Hash: d704271ff258aac5dad13bb04cf0cfb6

```
pair<pt, pt> closest_points_rec(vector<pt>& px, vector<pt>& py) {
   pair<pt, pt> ret;
   double d:
   if(px.size() <= 3) {
      double best = 1e10;
      for(int i = 0; i < px.size(); ++i)</pre>
         for(int j = i + 1; j < px.size(); ++j)</pre>
            if(dist(px[i], px[j]) < best) {</pre>
                ret = make_pair(px[i], px[j]);
               best = dist(px[i], px[j]);
      return ret;
   pt split = px[(px.size() - 1)/2];
   vector<pt> qx, qv, rx, ry;
   for(int i = 0; i < px.size(); ++i)</pre>
      if(px[i] <= split) qx.push_back(px[i]);</pre>
      else rx.push_back(px[i]);
   for(int i = 0; i < py.size(); ++i)</pre>
      if(py[i] <= split) qy.push_back(py[i]);</pre>
      else ry.push_back(py[i]);
   ret = closest_points_rec(qx, qy);
   pair<pt, pt> rans = closest_points_rec(rx, ry);
```

```
sort(pts.begin() + 1, pts.end(), hull_comp);
   ret.push_back(pts[0]);
   ret.push_back(pts[1]);
   int sz = 2;
   for(int i = 2; i < pts.size(); ++i) {</pre>
      while (sz \ge 2 \&\& ccw(ret[sz-2], ret[sz-1], pts[i]) \le 0)
         ret.pop_back(), --sz;
      ret.push_back(pts[i]), ++sz;
   return ret;
   double delta = dist(ret.first, ret.second);
   if((d = dist(rans.first, rans.second)) < delta) {</pre>
      delta = d:
      ret = rans;
   vector<pt> s;
   for(int i = 0; i < py.size(); ++i)
      if(cmp(abs(py[i].x - split.x), delta) <= 0)</pre>
         s.push_back(py[i]);
   for(int i = 0; i < s.size(); ++i)</pre>
      for(int j = 1; j <= 7 && i + j < s.size(); ++j)</pre>
         if((d = dist(s[i], s[i+j])) < delta) {</pre>
            delta = d;
            ret = make_pair(s[i], s[i+j]);
   return ret;
pair<pt, pt> closest_points(vector<pt> pts) {
   if(pts.size() == 1) return make_pair(pt(-INF, -INF), pt(INF, INF));
   sort(pts.begin(), pts.end());
   for(int i = 0; i + 1 < pts.size(); ++i)</pre>
      if(pts[i] == pts[i+1])
```

```
return make_pair(pts[i], pts[i+1]);
vector<pt> py = pts;
sort(py.begin(), py.end(), compy);
```

4.8. **Kd-tree.** Hash: de78e67c89c057ba920d2060641a7f48

```
int tree[4*MAXSZ], val[4*MAXSZ];
TYPE split[4*MAXSZ];
vector<pt> pts;
void kd_recurse(int root, int left, int right, bool x) {
   if(left == right) {
      tree[root] = left;
      val[root] = 1;
      return;
   int mid = (right+left)/2;
   nth_element(pts.begin() + left, pts.begin() + mid,
            pts.begin() + right + 1, x ? compx : compy);
   split[root] = x ? pts[mid].x : pts[mid].y;
   kd_recurse(2*root+1, left, mid, !x);
   kd_recurse(2*root+2, mid+1, right, !x);
   val[root] = val[2*root+1] + val[2*root+2];
void kd build() {
   memset(tree, -1, sizeof tree);
   kd_recurse(0, 0, pts.size() - 1, true);
int kd_query(int root, TYPE a, TYPE b, TYPE c, TYPE d, TYPE ca = -INF,
          TYPE cb = INF, TYPE cc = -INF, TYPE cd = INF, bool x) {
   if(a <= ca && cb <= b && c <= cc && cd <= d)
      return val[root];
  if(tree[root] != -1)
      return a <= pts[tree[root]].x && pts[tree[root]].x <= b &&</pre>
         c <= pts[tree[root]].y && pts[tree[root]].y <= d ? val[root] : 0;</pre>
```

```
return closest_points_rec(pts, py);
   int ret = 0;
   if(x) {
      if(a <= split[root])</pre>
         ret += kd_query(2*root+1, a, b, c, d, ca, split[root], cc, cd, !x);
      if(split[root] <= b)</pre>
         ret += kd_{query}(2*root+2, a, b, c, d, split[root], cb, cc, cd, !x);
   else {
      if(c <= split[root])</pre>
         ret += kd_query(2*root+1, a, b, c, d, ca, cb, cc, split[root], !x);
      if(split[root] <= d)</pre>
         ret += kd_query(2*root+2, a, b, c, d, ca, cb, split[root], cd, !x);
   return ret:
pt kd_neighbor(int root, pt a, bool x) {
   if(tree[root] != -1)
      return a == pts[tree[root]] ? pt(2e9, 2e9) : pts[tree[root]];
   TYPE num = x ? a.x : a.y;
   int term = num <= split[root] ? 1 : 2;</pre>
   pt ret;
   TYPE d = norm(a - (ret = kd_neighbor(2*root + term, a, !x)));
   if((split[root] - num) * (split[root] - num) < d) {</pre>
      pt ret2 = kd_neighbor(2*root + 3 - term, a, !x);
      if(norm(a - ret2) < d)
         ret = ret2;
   return ret;
```

4.9. Range tree. Hash: 47db21e0b6328b90025fa4e9c03e3431

```
vector<pt> pts, tree[MAXSZ];
vector<TYPE> xs;
vector<int> lnk[MAXSZ][2];
int rt_recurse(int root, int left, int right) {
   if(left == right) {
      vector<pt>::iterator it;
      it = lower_bound(pts.begin(), pts.end(), pt(xs[left], -INF));
      for(; it != pts.end() && it->x == xs[left]; ++it)
         tree[root].push_back(*it);
      sort(tree[root].begin(), tree[root].end(), compy);
      return tree[root].size();
   int mid = (left + right)/2, cl = 2*root + 1, cr = cl + 1;
   int sz1 = rt_recurse(cl, left, mid);
   int sz2 = rt_recurse(cr, mid + 1, right);
   int l = 0, r = 0, llink = 0, rlink = 0; pt last;
   while(1 < sz1 || r < sz2) {
      if(r == sz2 || (1 < sz1 && compy(tree[c1][1], tree[cr][r])))</pre>
         tree[root].push_back(last = tree[cl][l++]);
      else tree[root].push_back(last = tree[cr][r++]);
      while(llink < tree[cl].size() && compy(tree[cl][llink], last))</pre>
      while(rlink < tree[cr].size() && compy(tree[cr][rlink], last))</pre>
         ++rlink;
      lnk[root][0].push_back(llink);
      lnk[root][1].push_back(rlink);
```

```
lnk[root][0].push_back(tree[cl].size());
   lnk[root][1].push_back(tree[cr].size());
   return tree[root].size();
void rt_build() {
   sort(pts.begin(), pts.end());
   for(int i = 0; i < pts.size(); ++i) xs.push_back(pts[i].x);</pre>
   rt_recurse(0, 0, xs.size() - 1);
int rt_query(int root, int 1, int r, TYPE a, TYPE b, TYPE c, TYPE d,
          int pos1 = -1, int posr = -1) {
  if(root == 0 && posl == -1) {
      posl = lower_bound(tree[0].begin(), tree[0].end(), pt(a, c), compy)
         - tree[0].begin();
      posr = upper_bound(tree[0].begin(), tree[0].end(), pt(b, d), compy)
         - tree[0].begin();
  if(a <= xs[1] && xs[r] <= b)</pre>
      return posr - posl;
  if(posl >= tree[root].size()) return 0;
  int mid = (1 + r)/2, ret = 0;
  if(a <= xs[mid])
      ret += rt_query(2*root+1, 1, mid, a, b, c, d,
                  lnk[root][0][pos1], lnk[root][0][posr]);
   if(xs[mid+1] <= b)
      ret += rt_query(2*root+2, mid+1, r, a, b, c, d,
                  lnk[root][1][posl], lnk[root][1][posr]);
   return ret;
```

5. Data structures

5.1. **Treap.** Hash: 2199b72803301716616a462d9d5e9a66

```
typedef int TYPE;
class treap {
```

```
public:
    treap *left, *right;
    int priority, sons;
```

```
TYPE value;
   treap(TYPE value) : left(NULL), right(NULL), value(value), sons(0) {
      priority = rand();
   ~treap() {
      if(left) delete left;
      if(right) delete right;
};
treap* find(treap* t, TYPE val) {
   if(!t) return NULL;
   if(val == t->value) return t;
   if(val < t->value) return find(t->left, val);
   if(val > t->value) return find(t->right, val);
void rotate_to_right(treap* &t) {
   treap* n = t->left;
   t->left = n->right;
   n->right = t;
   t = n;
void rotate_to_left(treap* &t) {
   treap* n = t->right;
   t->right = n->left;
   n\rightarrow left = t;
   t = n;
void fix_augment(treap* t) {
   if(!t) return;
   t\rightarrowsons = (t\rightarrow)left ? t\rightarrowleft\rightarrowsons + 1 : 0) +
5.2. Heap. Hash: e334218955a73d1286ad0fc19e84b642
struct heap {
   int heap[MAXV][2], v2n[MAXV];
   int size;
```

void init(int sz) __attribute__((always_inline)) {

```
void insert(treap* &t, TYPE val) {
  if(!t)
     t = new treap(val);
   else
      insert(val <= t->value ? t->left : t->right, val);
  if(t->left && t->left->priority > t->priority)
      rotate_to_right(t);
   else if(t->right && t->right->priority > t->priority)
     rotate_to_left(t);
   fix_augment(t->left); fix_augment(t->right); fix_augment(t);
inline int p(treap* t) {
  return t ? t->priority : -1;
void erase(treap* &t, TYPE val) {
  if(!t) return;
  if(t->value != val)
     erase(val < t->value ? t->left : t->right, val);
  else {
     if(!t->left && !t->right)
        delete t, t = NULL;
         p(t->left) < p(t->right) ? rotate_to_left(t) : rotate_to_right(t);
        erase(t, val);
   fix_augment(t->left); fix_augment(t->right); fix_augment(t);
     memset(v2n, -1, sizeof(int) * sz);
     size = 0;
```

void swap(int& a, int& b) __attribute__((always_inline)) {

(t->right ? t->right->sons + 1 : 0);

```
int temp = a;
  a = b;
  b = temp;
void s(int a, int b) __attribute__((always_inline)) {
   swap(v2n[heap[a][1]], v2n[heap[b][1]]);
  swap(heap[a][0], heap[b][0]);
  swap(heap[a][1], heap[b][1]);
int extract_min() {
  int ret = heap[0][1];
  s(0, --size);
  int cur = 0, next = 2;
  while(next < size) {</pre>
     if(heap[next][0] > heap[next - 1][0])
         next--;
      if(heap[next][0] >= heap[cur][0])
         break;
      s(next, cur);
      cur = next;
      next = 2*cur + 2;
```

5.3. Big numbers (PUC-Rio). Hash: a7d74e7158634f9201c19235badd3364

```
const int DIG = 4;
const int BASE = 10000; // BASE**3 < 2**51
const int TAM = 2048;

struct bigint {
   int v[TAM], n;
   bigint(int x = 0): n(1) {
      memset(v, 0, sizeof(v));
      v[n++] = x; fix();
   }
   bigint(char *s): n(1) {
      memset(v, 0, sizeof(v));
      int sign = 1;
      while (*s && !isdigit(*s)) if (*s++ == '-') sign *= -1;
      char *t = strdup(s), *p = t + strlen(t);
      while (p > t) {
```

```
if(next == size && heap[next - 1][0] < heap[cur][0])</pre>
         s(next - 1, cur);
      return ret;
   void decrease_key(int vertex, int new_value) __attribute__((always_inline))
      if(v2n[vertex] == -1) {
         v2n[vertex] = size;
         heap[size++][1] = vertex;
      heap[v2n[vertex]][0] = new_value;
      int cur = v2n[vertex];
      while(cur >= 1) {
         int parent = (cur - 1)/2;
         if(new_value >= heap[parent][0])
            break;
         s(cur, parent);
         cur = parent;
};
```

```
*p = 0; p = max(t, p - DIG);
    sscanf(p, "%d", &v[n]);
    v[n++] *= sign;
}
free(t); fix();
}
bigint& fix(int m = 0) {
    n = max(m, n);
    int sign = 0;
for (int i = 1, e = 0; i <= n || e && (n = i); i++) {
     v[i] += e; e = v[i] / BASE; v[i] %= BASE;
     if (v[i]) sign = (v[i] > 0) ? 1 : -1;
}

for (int i = n - 1; i > 0; i--)
    if (v[i] * sign < 0) { v[i] += sign * BASE; v[i+1] -= sign; }</pre>
```

```
while (n && !v[n]) n--;
   return *this;
int cmp(const bigint& x = 0) const {
   int i = max(n, x.n), t = 0;
   while (1) if ((t = ::cmp(v[i], x.v[i])) || i-- == 0) return t;
bool operator <(const bigint& x) const { return cmp(x) < 0; }</pre>
bool operator ==(const bigint& x) const { return cmp(x) == 0; }
bool operator !=(const bigint& x) const { return cmp(x) != 0; }
operator string() const {
   ostringstream s; s << v[n];
   for (int i = n - 1; i > 0; i--) {
      s.width(DIG); s.fill('0'); s << abs(v[i]);
   return s.str();
friend ostream& operator <<(ostream& o, const bigint& x) {</pre>
   return o << (string) x;</pre>
bigint& operator += (const bigint& x) {
   for (int i = 1; i <= x.n; i++) v[i] += x.v[i];
   return fix(x.n);
bigint operator +(const bigint& x) { return bigint(*this) += x; }
bigint& operator -= (const bigint& x) {
   for (int i = 1; i <= x.n; i++) v[i] -= x.v[i];</pre>
   return fix(x.n);
bigint operator -(const bigint& x) { return bigint(*this) -= x; }
bigint operator -() { bigint r = 0; return r -= *this; }
void ams(const bigint x, int m, int b) { //* *this += (x * m) << b;}
   for (int i = 1, e = 0; (i <= x.n || e) && (n = i + b); i++) {
      v[i+b] += x.v[i] * m + e; e = v[i+b] / BASE; v[i+b] %= BASE;
bigint operator *(const bigint& x) const {
   bigint r;
```

```
for (int i = 1; i \le n; i++) r.ams(x, v[i], i-1);
      return r:
  bigint& operator *=(const bigint& x) { return *this = *this * x; }
   // cmp(x / y) == cmp(x) * cmp(y); cmp(x % y) == cmp(x);
  bigint div(const bigint& x) {
      if (x == 0) return 0;
      bigint q; q.n = max(n - x.n + 1, 0);
      int d = x.v[x.n] * BASE + x.v[x.n-1];
      for (int i = q.n; i > 0; i--) {
         int j = x.n + i - 1;
         q.v[i] = int((v[j] * double(BASE) + v[j-1]) / d);
         ams (x, -q.v[i], i-1);
         if (i == 1 || j == 1) break;
         v[j-1] += BASE * v[j]; v[j] = 0;
      fix(x.n); return q.fix();
   bigint& operator /=(const bigint& x) { return *this = div(x); }
   bigint& operator %=(const bigint& x) { div(x); return *this; }
   bigint operator / (const bigint& x) { return bigint(*this).div(x); }
   bigint operator % (const bigint& x) { return bigint(*this) %= x; }
   bigint pow(int x) {
      if (x < 0) return (*this == 1 \mid | *this == -1) ? pow(-x) : 0;
      bigint r = 1;
      for (int i = 0; i < x; i++) r *= *this;</pre>
      return r;
  bigint root(int x) {
      if (cmp() == 0 || cmp() < 0 && x % 2 == 0) return 0;</pre>
      if (*this == 1 \mid \mid x == 1) return *this;
      if (cmp() < 0) return -(-*this).root(x);</pre>
      bigint a = 1, d = *this;
      while (d != 1) {
         bigint b = a + (d /= 2);
         if (cmp(b.pow(x)) >= 0) { d += 1; a = b; }
      return a;
};
```

6. String algorithms

6.1. Kärkkäinen-Sanders' suffix array algorithm. Hash: ad9edfdbf9c673ff57d1e2624bd0fc5b

```
bool k_{emp} (int a1, int b1, int a2, int b2, int a3 = 0, int b3 = 0) {
   return a1 != b1 ? a1 < b1 : (a2 != b2 ? a2 < b2 : a3 < b3);
int bucket[MAXSZ+1], tmp[MAXSZ];
template < class T > void k_radix (T keys, int *in, int *out,
                        int off, int n, int k) {
   memset(bucket, 0, sizeof(int) * (k+1));
   for (int j = 0; j < n; j++)
      bucket[keys[in[j]+off]]++;
   for (int j = 0, sum = 0; j \le k; j++)
      sum += bucket[j], bucket[j] = sum - bucket[j];
   for (int j = 0; j < n; j++)
      out[bucket[keys[in[j]+off]]++] = in[j];
int mod0[MAXSZ/3+1];
vector<int> k_rec(const vector<int>& v, int k) {
   int n = v.size()-3, sz = (n+2)/3, sz2 = sz + n/3;
  if(n < 2) return vector<int>(n);
   vector<int> sub(sz2+3);
   for (int i = 1, j = 0; j < sz2; i += i%3, j++)
      sub[j] = i;
   k_radix(v.begin(), &sub[0], tmp, 2, sz2, k);
   k_radix(v.begin(), tmp, &sub[0], 1, sz2, k);
   k_radix(v.begin(), &sub[0], tmp, 0, sz2, k);
   int last[3] = \{-1, -1, -1\}, unique = 0;
   for(int i = 0; i < sz2; i++) {</pre>
      bool diff = false;
      for(int j = 0; j < 3; last[j] = v[tmp[i]+j], j++)</pre>
         diff |= last[j] != v[tmp[i]+j];
      unique += diff;
      if(tmp[i]%3 == 1) sub[tmp[i]/3] = unique;
      else sub[tmp[i]/3 + sz] = unique;
   vector<int> rec;
   if(unique < sz2) {</pre>
```

```
rec = k_rec(sub, unique);
      rec.resize(sz2+sz);
      for(int i = 0; i < sz2; i++) sub[rec[i]] = i+1;</pre>
      rec.resize(sz2+sz);
      for(int i = 0; i < sz2; i++) rec[sub[i]-1] = i;</pre>
   for (int i = 0, j = 0; j < sz; i++)
      if(rec[i] < sz)</pre>
         tmp[j++] = 3*rec[i];
   k_radix(v.begin(), tmp, mod0, 0, sz, k);
   for(int i = 0; i < sz2; i++)</pre>
      rec[i] = rec[i] < sz ? 3*rec[i] + 1 : 3*(rec[i] - sz) + 2;
   int prec = sz2-1, pmod0 = sz-1, pret = sz2+sz-1;
   while(prec >= 0 && pmod0 >= 0)
      if(rec[prec]%3 == 1 && k_cmp(v[mod0[pmod0]], v[rec[prec]],
                             sub[mod0[pmod0]/3], sub[rec[prec]/3+sz]) ||
        rec[prec] %3 == 2 \&\& k\_cmp(v[mod0[pmod0]], v[rec[prec]],
                            v[mod0[pmod0]+1], v[rec[prec]+1],
                            sub[mod0[pmod0]/3+sz], sub[rec[prec]/3+1]))
         rec[pret--] = rec[prec--];
         rec[pret--] = mod0[pmod0--];
   if(pmod0 >= 0) memcpy(&rec[0], mod0, sizeof(int) * (pmod0+1));
  if(n%3==1) rec.erase(rec.begin());
   return rec;
vector<int> karkkainen(const string& s) {
  int n = s.size(), cnt = 1;
  vector<int> v(n + 3);
   for(int i = 0; i < n; i++) v[i] = i;</pre>
  k_radix(s.begin(), &v[0], tmp, 0, n, 256);
   for (int i = 0; i < n; cnt += (i+1 < n && s[tmp[i+1]] != s[tmp[i]]), i++)
      v[tmp[i]] = cnt;
   return k_rec(v, cnt);
```

```
vector<int> lcp(const string& s, const vector<int>& sa) {
  int n = sa.size();
  vector<int> prm(n), ans(n-1);
  for(int i = 0; i < n; i++) prm[sa[i]] = i;

for(int h = 0, i = 0; i < n; i++)
  if(prm[i]) {</pre>
```

```
ans[prm[i]-1] = h;
   if(h) h--;
}
return ans;
```

int j = sa[prm[i]-1], ij = max(i, j);

while (ij + h < n && s[i+h] == s[j+h]) h++;

6.2. Morris-Pratt's algorithm. Hash: 0234dfb6e26b39d35704838d84f1e86e

```
int pi[MAXSZ], res[MAXSZ], nres;

void morris_pratt(string text, string pattern) {
    nres = 0;
    pi[0] = -1;
    for(int i = 1; i < pattern.size(); ++i) {
        pi[i] = pi[i-1];
        while(pi[i] >= 0 && pattern[pi[i] + 1] != pattern[i])
            pi[i] = pi[pi[i]];
        if(pattern[pi[i] + 1] == pattern[i]) ++pi[i];
    }
}
```

```
int k = -1; //k + 1 eh o tamanho do match atual
for(int i = 0; i < text.size(); ++i) {
    while(k >= 0 && pattern[k + 1] != text[i])
        k = pi[k];
    if(pattern[k + 1] == text[i]) ++k;
    if(k + 1 == pattern.size()) {
        res[nres++] = i - k;
        k = pi[k];
    }
}
```

6.3. Aho-Corasick's algorithm (UFPE). Hash: 273f4391174d22898bfe3f2415f95915

```
struct No {
   int fail;
   vector< pair<int, int> > out; // num e tamanho do padrao
   //bool marc; // p/ decisao
   map<char, int> lista;
   int next; // aponta para o proximo sufixo que tenha out.size > 0
};
No arvore[1000003]; // quantida maxima de nos
//bool encontrado[1005]; // quantidade maxima de padroes, p/ decisao
int qtdNos, qtdPadroes;
// Funcao para inicializar
void inic() {
   arvore[0].fail = -1;
   arvore[0].lista.clear();
   arvore[0].out.clear();
   arvore[0].next = -1;
   qtdNos = 1;
```

```
qtdPadroes = 0;
   //arvore[0].marc = false; // p/ decisao
   //memset(encontrado, false, sizeof(encontrado)); // p/ decisao
}

// Funcao para adicionar um padrao

void adicionar(char *padrao) {
   int no = 0, len = 0;
   for (int i = 0; padrao[i]; i++, len++) {
      if (arvore[no].lista.find(padrao[i]) == arvore[no].lista.end()) {
          arvore[qtdNos].lista.clear(); arvore[qtdNos].out.clear();
          //arvore[qtdNos].marc = false; // p/ decisao
          arvore[no].lista[padrao[i]] = qtdNos;
          no = qtdNos++;
      } else no = arvore[no].lista[padrao[i]];
}
arvore[no].out.push_back(pair<int,int>(qtdPadroes++,len));
}
```

```
// Ativar Aho-corasick, ajustando funcoes de falha
void ativar() {
   int no, v, f, w;
   queue<int> fila;
   for (map<char,int>::iterator it = arvore[0].lista.begin();
      it != arvore[0].lista.end(); it++) {
      arvore[no = it->second].fail = 0;
      arvore[no].next = arvore[0].out.size() ? 0 : -1;
      fila.push(no);
   while (!fila.empty()) {
      no = fila.front(); fila.pop();
      for (map<char,int>::iterator it=arvore[no].lista.begin();
         it!=arvore[no].lista.end(); it++) {
         char c = it->first;
         v = it -> second;
         fila.push(v);
         f = arvore[no].fail;
         while (arvore[f].lista.find(c) == arvore[f].lista.end()) {
            if (f == 0) { arvore[0].lista[c] = 0; break; }
            f = arvore[f].fail;
         w = arvore[f].lista[c];
         arvore[v].fail = w;
         arvore[v].next = arvore[w].out.size() ? w : arvore[w].next;
```

```
// Buscar padroes no aho-corasik
void buscar(char *input) {
  int v, no = 0;
   for (int i = 0 ; input[i] ; i++) {
      while (arvore[no].lista.find(input[i]) == arvore[no].lista.end()) {
         if (no == 0) { arvore[0].lista[input[i]] = 0; break; }
         no = arvore[no].fail;
      v = no = arvore[no].lista[input[i]];
      // marcar os encontrados
      while (v != -1 /* \&\& !arvore[v].marc */ ) { // p/ decisao}
         //arvore[v].marc = true; // p/ decisao: nao continua a lista
         for (int k = 0 ; k < arvore[v].out.size() ; k++) {</pre>
            //encontrado[arvore[v].out[k].first] = true; // p/ decisao
            printf("Padrao %d na posicao %d\n", arvore[v].out[k].first,
                 i-arvore[v].out[k].second+1);
        v = arvore[v].next;
   // for (int i = 0; i < qtdPadroes; i++)
  //printf("%s\n", encontrado[i]?"y":"n"); // p/ decisao
```

7. Useful mathematical facts

7.1. Prime counting function $(\pi(x))$. The prime counting function is asymptotic to $\frac{x}{\log x}$, by the prime number theorem.

	X	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
Ì	$\pi(x)$	4	25	168	1.229	9.592	78.498	664.579	5.761.455

7.2. Partition function. The partition function p(x) counts show many ways there are to write the integer x as a sum of integers.

X	36	37	38	39	40	41	42
p(x)	17.977	21.637	26.015	31.185	37.338	44.583	53.174
X	43	44	45	46	47	100	
p(x)	63.261	75.175	89.134	105.558	125.754	190.569.292	

7.3. Catalan numbers. Catalan numbers are defined by the recurrence:

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$$

A closed formula for Catalan numbers is:

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n+1}$$

7.4. Stirling numbers of the first kind. These are the number of permutations of I_n with exactly k disjoint cycles. They obey the recurrence:

7.5. Stirling numbers of the second kind. These are the number of ways to partition I_n into exactly k sets. They obey the recurrence:

$${n \brace k} = k {n-1 \brace k} + {n-1 \brace k-1}$$

A "closed" formula for it is:

$${n \brace k} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^n$$

7.6. **Bell numbers.** These count the number of ways to partition I_n into subsets. They obey the recurrence:

$$\mathcal{B}_{n+1} = \sum_{k=0}^{n} \binom{n}{k} \mathcal{B}_k$$

X	5	6	7	8	9	10	11	12
\mathcal{B}_x	52	203	877	4.140	21.147	115.975	678.570	4.213.597

- 7.7. **Turán's theorem.** No graph with n vertices that is K_{r+1} -free can have more edges than the Turán graph: A k-partite complete graph with sets of size as equal as possible.
- 7.8. **Generating functions.** A list of generating functions for useful sequences:

$(1,1,1,1,1,1,\ldots)$	$\frac{1}{1-z}$
$(1,-1,1,-1,1,-1,\ldots)$	$\frac{1}{1+z}$
$(1,0,1,0,1,0,\ldots)$	$\frac{1}{1-z^2}$
$(1,0,\ldots,0,1,0,1,0,\ldots,0,1,0,\ldots)$	$\frac{1}{1-z^2}$
$(1, 2, 3, 4, 5, 6, \ldots)$	$\frac{1}{(1-z)^2}$
$(1, \binom{m+1}{m}, \binom{m+2}{m}, \binom{m+3}{m}, \ldots)$	$\frac{1}{(1-z)^{m+1}}$
$(1,c,\binom{c+1}{2},\binom{c+2}{3},\ldots)$	$\frac{1}{(1-z)^c}$
$(1,c,c^2,c^3,\ldots)$	$\frac{1}{1-cz}$
$(0,1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\ldots)$	$\ln \frac{1}{1-z}$

A neat manipulation trick is:

$$\frac{1}{1-z}G(z) = \sum_{n} \sum_{k \le n} g_k z^n$$

7.9. **Polyominoes.** How many free (rotation, reflection), one-sided (rotation) and fixed *n*-ominoes are there?

	n	3	4	5	6	7	8	9	10
	free	2	5	12	35	108	369	1.285	4.655
	one-sided	2	7	18	60	196	704	2.500	9.189
Ì	fixed	6	19	63	216	760	2.725	9.910	36.446

7.10. The twelvefold way (from Stanley). How many functions $f \colon N \to X$ are there?

	N	X	Any f	Injective	Surjective
ſ	dist.	dist.	x^n	$(x)_n$	$x!\binom{n}{x}$
	indist.	dist.	$\binom{x+n-1}{n}$	$\binom{x}{n}$	$\binom{n-1}{n-x}$
	dist.	indist.	$\binom{n}{1} + \ldots + \binom{n}{x}$	$[n \leq x]$	$\binom{n}{k}$
	indist.	indist.	$p_1(n) + \dots p_x(n)$	$[n \leq x]$	$p_x(n)$

Where $\binom{a}{b} = \frac{1}{b!}(a)_b$ and $p_x(n)$ is the number of ways to partition the integer n using x summands.

7.11. **Common integral substitutions.** And finally, a list of common substitutions:

$\int F(\sqrt{ax+b})dx$	$u = \sqrt{ax + b}$	$\frac{2}{a}\int uF(u)du$
$\int F(\sqrt{a^2-x^2})dx$	$x = a\sin u$	$a \int F(a\cos u)\cos u du$
$\int F(\sqrt{x^2+a^2})dx$	$x = a \tan u$	$a \int F(a \sec u) \sec^2 u du$
$\int F(\sqrt{x^2 - a^2})dx$	$x = a \sec u$	$a \int F(a \tan u) \sec u \tan u du$
$\int F(e^{ax})dx$	$u = e^{ax}$	$\frac{1}{a}\int \frac{F(u)}{u}du$
$\int F(\ln x)dx$	$u = \ln x$	$\int F(u)e^udu$

7.12. **Table of non-trigonometric integrals.** Some useful integrals are:

$\int \frac{dx}{x^2 + a^2}$	$\frac{1}{a} \arctan \frac{x}{a}$
$\int \frac{dx}{x^2 - a^2}$	$\frac{1}{2a} \ln \frac{x-a}{x+a}$
$\int \frac{dx}{a^2 - x^2}$	$\frac{1}{2a} \ln \frac{a+x}{a-x}$
$\int \frac{dx}{\sqrt{a^2 - x^2}}$	$\arcsin \frac{x}{a}$
$\int \frac{dx}{\sqrt{x^2 - a^2}}$	$\ln\left(u+\sqrt{x^2-a^2}\right)$
$\int \frac{dx}{x\sqrt{x^2 - a^2}}$	$\frac{1}{a}\operatorname{arcsec}\left \frac{u}{a}\right $
$\int \frac{dx}{x\sqrt{x^2+a^2}}$	$-\frac{1}{a}\ln\left(\frac{a+\sqrt{x^2+a^2}}{x}\right)$
$\int \frac{dx}{x\sqrt{a^2+x^2}}$	$-\frac{1}{a}\ln\left(\frac{a+\sqrt{a^2-x^2}}{x}\right)$

7.13. **Table of trigonometric integrals.** A list of common and not-so-common trigonometric integrals:

$\int \tan x dx$	$-\ln \cos x $
$\int \cot x dx$	$\ln \sin x $
$\int \sec x dx$	$\ln \sec x + \tan x $
$\int \csc x dx$	$\ln \csc x - \cot x $
$\int \sec^2 x dx$	$\tan x$
$\int \csc^2 x dx$	$\cot x$
$\int \sin^n x dx$	$\frac{-\sin^{n-1}x\cos x}{n} + \frac{n-1}{n}\int \sin^{n-2}xdx$
$\int \cos^n x dx$	$\frac{\cos^{n-1}x\sin x}{n} + \frac{n-1}{n}\int \cos^{n-2}x dx$
$\int \arcsin x dx$	$x \arcsin x + \sqrt{1 - x^2}$
$\int \arccos x dx$	$x \arccos x - \sqrt{1 - x^2}$
$\int \arctan x dx$	$x\arctan x - \frac{1}{2}\ln 1 - x^2 $

8. Mistakes to avoid and strategy hints

General strategy hints:

- (1) Everyone should have read every problem by the end of the second hour of competition.
- (2) In the last hour, only one question should be attempted at once.
- (3) Always use vectors instead of arrays in the single dimensional case. Use vectors instead of arrays in the bidimensional case if the outermost dimension is not too big. This allows for better debugging.

When thinking (before coding):

- (1) Be organized!
- (2) Don't touch the computer unless the solution is done, including implementation details: avoid thinking too much at the computer. Time spent on paper detailing a solution is time well spent.
- (3) A corollary to the above: **Don't touch the computer if you doubt your idea**.

In case you have no solution ideas:

(1) (Include tricks from Pólya here)

In case of Wrong Answer:

(1) Make sure the algorithm is correct (i.e. **sketch a proof of correctness**) as soon as possible. Take your time and check

- it carefully. If you're sure the idea is correct, make sure you don't second-guess it when checking for bugs, even if an implementation bug is nowhere to be found.
- (2) If the code uses vectors (c.f. general strategy hints), add #define _GLIBCXX_DEBUG at the very beginning of the source code and submit it again. A runtime error means out-of-bounds array access or other STL misuse.
- (3) Debug on paper, and don't go back to the computer for every bug you find: check the whole solution at least once more after finding each new bug.
- (4) Think of tricky test cases.
- (5) Read the problem again. For every constraint found, check the printed source code.
- (6) If you can't find any bug in five minutes, go to the bathroom. If you still can't find the bug, go to another problem and come back to the wrong solution later. Debugging a single program for too long leads to finding a lot of false bugs and makes it easy to overlook simple mistakes.

In case of Runtime Error:

- (1) Check divisions and modulo operations.
- (2) Check array indices (both in declarations and in accesses).
- (3) Check for infinite recursion.

ACM ICPC TEAM REFERENCE - CONTENTS

Team Anuncie Aqui Universidade Federal de Sergipe

Contents		4.8. Kd-tree	13
1 Configuration flog and gonints	1	4.9. Range tree	14
1. Configuration files and scripts	1	5. Data structures	14
 Graph algorithms Tarjan's SCC algorithm 	2	5.1. Treap	14
2.1. Tarjan's SCC algorithm2.2. Dinic's maximum flow algorithm	3	5.2. Heap	15
2.3. Successive shortest paths mincost maxflow algorithm	3 3	5.3. Big numbers (PUC-Rio)	16
	4	6. String algorithms	1'
2.4. Gabow's general matching algorithm 3. Math	4 6	6.1. Kärkkäinen-Sanders' suffix array algorithm	18
3.1. Fractions	6	6.2. Morris-Pratt's algorithm	19
3.2. Chinese remainder theorem	6	6.3. Aho-Corasick's algorithm (UFPE)	19
3.3. Longest increasing subsequence	7	7. Useful mathematical facts	21
3.4. Simplex (Warsaw University)	7	7.1. Prime counting function $(\pi(x))$	21
3.5. Romberg's method	8	7.2. Partition function	21
3.6. Floyd's cycle detection algorithm	8	7.3. Catalan numbers	21
3.7. Pollard's rho algorithm	8	7.4. Stirling numbers of the first kind	21
3.8. Miller-Rabin's algorithm	8	7.5. Stirling numbers of the second kind	21
3.9. Polynomials (PUC-Rio)	9	7.6. Bell numbers	2
4. Geometry	10	7.7. Turán's theorem	2
4.1. Point class	10	7.8. Generating functions	2.
4.2. Intersection primitives	10	7.9. Polyominoes	22
4.3. Polygon primitives	11	7.10. The twelvefold way (from Stanley)	22
4.4. Miscellaneous primitives	11	7.11. Common integral substitutions	22
4.5. Smallest enclosing circle	11	7.12. Table of non-trigonometric integrals	22
4.6. Convex hull	11	7.13. Table of trigonometric integrals	22
4.7. Closest pair of points	12	8. Mistakes to avoid and strategy hints	25