Mathematical Analysis 1

Giacomo

April 12, 2025

Pre-Derivatives

Theorems, functions and axioms

"Calvin: You know, I don't think math is a science, I think it's a religion.

Hobbes: A religion?

Calvin: Yeah. All these equations are like miracles. You take two numbers and when you add them, they magically become one NEW number! No one can say how it happens. You either believe it or you don't. [Pointing at his math book] This whole book is full of things that have to be accepted on faith! It's a religion!"

Logic

Propositional Logic

A proposition is a statement. Statements in math are either true or false, if you combined multiple propositions there are multiple outcomes depending on the validity of each proposition in the statement. I call them compound statements (but I dont think its the actual name).

Negation (Negazione): Represented by a \neg . Inverts the value of a statement, e.g (Bob went to the store), the opposite can be represented as \neg (Bob went to the store).

Disjunction (Disgiunzione): Represented by a \lor . Statement is true if at least one of the propositions is also true.

Conjunction (Congiunzione): Represented by a \wedge . Statement is true only if both propositions are also true.

Implication (Implicazione): Represented by a \rightarrow . Its formally defined as : $\neg P \lor Q$.

Biconditional (Bicondizionale): Represented by a \leftrightarrow . Statement is true if both of the propositions share the same value.

Predicate Logic

Universal: It is represented by \forall . "For every ..."

Existence: It is represented by ∃. "There exists ..."

Axioms DEF:- NOT SURE WHAT TO DO WITH THIS

Axioms: Self Evident Truths (Obvious)

Definitions: New terms

Group Theory (Theoria degli insiemi)

Definition of a Group

A group is a set, that has the following requirements:

Closure: For all $a, b \in G, a * b \in G$

Associativity: $a, b, c \in G, (a * b) * c = a * (c * b)$

Identity: Lets say e exists $e \in G$ such that e * a = a * e = a for all $a \in G$

Inverse: If there exists a a, such that $a \in G$ therefore there exists a inverses

Functions

A **function** (*funzione*) is a very common conecept in math that formalizes the relationship between two sets by assigning each element of the first set to exactly one element of the second set. Formally, a function $f:A\to B$ consists of:

- A **domain** (*dominio*) A, the set of all possible inputs.
- A **codomain** (codominio) B, the set into which all outputs are mapped.
- A rule or correspondence that links each element $x \in A$ to a unique element $f(x) \in B$.

Formal Definition A function f is a subset of the Cartesian product $A \times B$ such that for every $x \in A$, there exists exactly one $y \in B$ where $(x,y) \in f$. This is denoted as y = f(x).

Key Properties

1. **Injectivity** (*iniettiva*): A function is injective if distinct inputs map to distinct outputs:

$$\forall x_1, x_2 \in A, \quad f(x_1) = f(x_2) \implies x_1 = x_2.$$

2. **Surjectivity** (suriettiva): A function is surjective if every element in B is an output for some input:

$$\forall y \in B, \quad \exists x \in A \text{ such that } y = f(x).$$

3. **Bijectivity** (*biiettiva*): A function is bijective if it is both injective and surjective, establishing a one-to-one correspondence between A and B.

Natural Numbers

The **natural numbers** (*numeri naturali*) are the standard version of numbers in maths, used for counting and ordering. Formally, the set of natural numbers \mathbb{N} is defined as:

 $\mathbb{N} = \{1, 2, 3, \ldots\}$ (sometimes including 0 depending on context).

They are characterized by their discrete, non-negative integer values and form the foundation for number theory and arithmetic.

Formal Definition (Peano Axioms) The properties of natural numbers are axiomatically defined by the **Peano axioms** (assiomi di Peano):

- 1. 1 (or 0) is a natural number.
- 2. Every natural number n has a unique successor S(n), which is also a natural number.
- 3. 1 (or 0) is not the successor of any natural number.
- 4. Distinct natural numbers have distinct successors: $S(m) = S(n) \implies m = n$.
- 5. **Induction**: If a property holds for 1 (or 0) and holds for S(n) whenever it holds for n, then it holds for all natural numbers.

Key Properties

- Closure under addition and multiplication: For all $a,b\in\mathbb{N}$, $a+b\in\mathbb{N}$ and $a\cdot b\in\mathbb{N}$
- Non-closure under subtraction and division: Subtraction a-b or division a/b may not result in a natural number.
- Well-ordering principle (principio del buon ordinamento): Every non-empty subset of $\mathbb N$ has a least element.
- Infinite cardinality: N is countably infinite.

Number Theory Natural numbers are central to number theory, which studies:

1. **Prime numbers** ($numeri\ primi$): Natural numbers > 1 with no divisors other than 1 and themselves:

$$\mathbb{P} = \{2, 3, 5, 7, 11, \ldots\}.$$

- 2. **Divisibility**: A number a divides b $(a \mid b)$ if $\exists k \in \mathbb{N}$ such that $b = a \cdot k$.
- 3. **Mathematical induction** (*induzione matematica*): A proof technique leveraging the Peano axioms.
- 4. **Modular arithmetic** (*aritmetica modulare*): Operations on residues modulo n, e.g., $7 \equiv 2 \mod 5$.

Whole Numbers

Whole Numbers (numeri interi non negativi) are an extension of the natural numbers that include zero, forming the set $\mathbb{W}=\{0,1,2,3,\ldots\}$. They are used for counting discrete objects and represent non-negative integers without fractions or decimals.

Formal Definition The set \mathbb{W} satisfies the **Peano axioms** (assiomi di Peano) with zero as the base element:

- 0 is a whole number.
- Every whole number n has a unique successor $S(n) \in \mathbb{W}$.
- 0 is not the successor of any whole number.
- Distinct numbers have distinct successors: $S(a) = S(b) \implies a = b$.
- **Induction**: If a property holds for 0 and for S(n) whenever it holds for n, it holds for all \mathbb{W} .

Key Properties

- Closure under addition and multiplication: For $a,b\in \mathbb{W},\ a+b\in \mathbb{W}$ and $a\cdot b\in \mathbb{W}.$
- Non-closure under subtraction: $a b \in \mathbb{W}$ only if $a \ge b$.
- Additive identity: 0 + a = a for all $a \in \mathbb{W}$.
- Well-ordering principle (principio del buon ordinamento): Every non-empty subset of W has a least element.

Representation Whole numbers are represented in numeral systems such as:

- **Decimal**: 0, 1, 2, . . .
- $\bullet \ \, \textbf{Binary} \colon \, 0_2 = 0_{10}, 1_2 = 1_{10}, 10_2 = 2_{10}$
- Unary: 0 (often represented as an absence of marks), |=1, ||=2.

Differences from Natural Numbers Unlike natural numbers (numeri naturali), which sometimes exclude zero, whole numbers explicitly include 0. This makes \mathbb{W} the set $\mathbb{N} \cup \{0\}$ in contexts where natural numbers start at 1.

Trigonometric Functions

Trigonometric Functions (funzioni trigonometriche) are periodic functions that relate angles in a right triangle or on the unit circle to ratios of side lengths. The primary trigonometric functions are sine (\sin) , cosine (\cos) , tangent (\tan) , and their reciprocals: cosecant (\csc) , secant (\sec) , and cotangent (\cot) .

Formal Definition (Unit Circle) For an angle θ measured counterclockwise from the positive x-axis on the unit circle ($x^2 + y^2 = 1$):

$$\sin \theta = y$$
, $\cos \theta = x$, $\tan \theta = \frac{y}{x}$ $(x \neq 0)$.

The reciprocals are defined as:

$$\csc \theta = \frac{1}{\sin \theta}, \quad \sec \theta = \frac{1}{\cos \theta}, \quad \cot \theta = \frac{x}{y} \quad (y \neq 0).$$

Key Properties

- **Periodicity** (*periodicità*): $\sin \theta$ and $\cos \theta$ have period 2π ; $\tan \theta$ and $\cot \theta$ have period π .
- Range:

$$\sin \theta, \cos \theta \in [-1, 1]; \quad \tan \theta \in \mathbb{R}$$
 (excluding asymptotes).

• **Parity**: $\sin \theta$ and $\tan \theta$ are odd functions; $\cos \theta$ is even:

$$\sin(-\theta) = -\sin\theta, \quad \cos(-\theta) = \cos\theta.$$

• Pythagorean Identity (identità pitagorica):

$$\sin^2\theta + \cos^2\theta = 1.$$

Representation Trigonometric functions can be expressed as:

- Geometric: Ratios of triangle sides or coordinates on the unit circle.
- Series expansions:

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \quad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.$$

• Exponential (Euler's formula):

$$e^{i\theta} = \cos\theta + i\sin\theta$$
.

Differences from Other Functions Unlike polynomial or exponential functions, trigonometric functions:

- Are periodic and bounded (except $\tan \theta$ and $\cot \theta$).
- Model oscillatory behavior (e.g., waves, circular motion).
- Require angular input (radians or degrees) rather than purely scalar quantities.

Exponent and Logarithms

I dont really know what to do with this section. I might add actual explanations, but for not III just keep properties

Exponential Properties

For a>0, b>0, and $x,y\in\mathbb{R}$:

$$a^{x}a^{y} = a^{x+y}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$(a^{x})^{y} = a^{xy}$$

$$a^{0} = 1$$

$$a^{-x} = \frac{1}{a^{x}}$$

$$(ab)^{x} = a^{x}b^{x}$$

$$(\frac{a}{b})^{x} = \frac{a^{x}}{b^{x}}$$

Def of Logarithms

For a > 0 $(a \neq 1)$, b > 0:

$$\log_a b = x \iff a^x = b$$

$$\log_a 1 = 0$$

$$\log_a a = 1$$

$$a^{\log_a b} = b$$

Logarithm Properties

For a > 0 $(a \neq 1)$, x, y > 0, $k \in \mathbb{R}$:

$$\log_a(xy) = \log_a x + \log_a y$$

$$\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$$

$$\log_a(x^k) = k \log_a x$$

$$\log_a a^x = x$$

Change of Base

For a, b > 0 $(a, b \neq 1)$, c > 0:

$$\log_a c = \frac{\log_b c}{\log_b a}$$

Special case: $\log_a b = \frac{1}{\log_b a}$

Natural Exponential and Logarithm

$$e^x = \exp(x)$$

$$\ln x = \log_e x$$

$$e^{\ln x} = x \text{ for } x > 0$$

$$\ln(e^x) = x \text{ for } x \in \mathbb{R}$$

Exponential-Logarithmic Equations

Key solving techniques:

If
$$a^x = a^y$$
 then $x = y$

If
$$\log_a x = \log_a y$$
 then $x = y$

To solve $a^{f(x)} = b$: take logarithms of both sides

To solve
$$\log_a f(x) = b$$
: rewrite as $f(x) = a^b$

Complex numbers

A complex number is defined, by $x,y\in\mathbb{R}$ and i as the imaginary unit.

$$z = x + iy \tag{1}$$

Imagine $\mathbb R$ covering the whole x axis, and $\mathbb C$ covering the whole y axis, that's the complex plane.

Operations

Addition

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$
(2)

Subtraction

$$z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$$
(3)

Multiplication

$$z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2) = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$$
(4)

Complex Conjugate

$$\bar{z} = x - iy \tag{5}$$

Modulus

$$|z| = \sqrt{x^2 + y^2} \tag{6}$$

Inverse

$$z^{-1} = \frac{\bar{z}}{|z|^2} = \frac{x - iy}{x^2 + y^2} \tag{7}$$

Sums and Sequences

Series

Post-Derivatives

Derivatives

"The Difference Between the Almost Right Word and the Right Word Is Really a Large Matter—'Tis the Difference Between the Lightning Bug and the Lightning" - Mark Twain

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{8}$$

Methods for Differentiation

Product rule

$$\frac{d}{dx}\left[f(x)g(x)\right] = f'(x)g(x) + f(x)g'(x) \tag{9}$$

Quotient Rule

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} \tag{10}$$

Chain Rule

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x) \tag{11}$$

Integrals

"If you're gonna shoot an elephant Mr. Schneider, you better be prepared to finish the job."

— Gary Larson, The Far Side

Riemann Integral

A Riemann integral is the the limit $f:[a,b]\to\mathbb{R}$ of all the Riemann sums between the points a and b. Defined as:

$$\int_{a}^{b} f(x)dx = \lim_{||P|| \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i$$

Where:

n is the sub-intervals

 Δx_i is the width of the i sub-interval

 c_i is a sample point

*this exact definition will likely never be used in

Properties,

Linearity:
$$\int_a^b \left(\alpha f(x) + \beta g(x)\right) dx = \alpha \int_a^b f(x) \, dx + \beta \int_a^b g(x) \, dx$$

Additivity:
$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx \quad \text{for } c \in (a,b)$$

Monotonicity:
$$f(x) \le g(x) \ \forall x \in [a,b] \implies \int_a^b f(x) \, dx \le \int_a^b g(x) \, dx$$

$$\text{Bounds:}\quad m(b-a) \leq \int_a^b f(x)\,dx \leq M(b-a) \quad \text{ where } m = \inf_{[a,b]} f, \ M = \sup_{[a,b]} f$$

Integrability: f is Riemann integrable $\iff f$ bounded $\land f$ continuous a.e. on [a,b]

Fundamental Theorem:
$$F'=f \implies \int_a^b f(x)\,dx = F(b) - F(a)$$

Fundamental theorem of calculus

Methods for integration

Substitution, if u = f(x), then du = g'(x)dx

$$\int f(g(x))g'(x)dx = \int f(u)du \tag{12}$$

Integration by parts

$$\int udv = uv - \int vdu \tag{13}$$

Product rule

(14)

Chain Rule

Lebiz rule for differentiation. If f(t) is continuous and g(x) is differentiable

$$f(x) = \int_{a}^{g(x)} f(t)dt$$

If this is true, then:

$$F(x)' = f(g(x)) \cdot g'(x) \tag{15}$$

If both the limits are dependent on x:

$$I(x) = \int_{g_1(x)}^{g_2(x)} f(t)dt$$

then:

$$I'(x) = f(g_2(x)) g_2'(x) - f(g_1(x)) g_1'(x)$$
(16)

Limit under a derviative

Differential Equations

"Would you tell me, please, which way I ought to go from here?"

"That depends a good deal on where you want to get to," said the Cat.

ODEs and PDEs

Ordinary Differential Equations (ODEs) are a differential equation which has a single variable. ODEs have a general form:

$$F\left(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots, \frac{d^ny}{dx^n}\right) = 0$$
(17)

where

- x independent
- y dependent

Partial Differential Equations (PDEs) are a Differential equation which has multiple independent variables. Instead of using the standard d, they use partial derivatives (∂) to show the change with respect for multiple variables. The general form is:

$$F\left(x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial^2 u}{\partial x^2}, \dots\right) = 0$$
 (18)

where

- x,y independent
- u(x,y) dependent

Fundamentally image a ODE as a means to track a single car, while PDE track all the traffic in the city.

Types of ODEs

ODEs are usually classified by 2 primary things. their order, aka the degree of their derivative, and by whether they are linear or non-linear.

First order ODEs are pretty self explanatory, they involve only the 1st derivative. Here is a basic first order ODE:

$$\frac{dy}{dx} + y = x \tag{19}$$

Second order ODEs involve UP to the 2nd derivative. Here is a example:

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0 \tag{20}$$

Higher order ODEs involve everything 3rd derivative or higher. It is unlikely to ever appear in a 1st year analisis exam, but you never know.

Liniar and Non-liniear ODEs. An ODE is linear if the dependent variable and the derivatives are in a linear form. Basically: they are not multiplied together. Anything else is considered non-liniear. A linear ODE can be written in the form:

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = f(x)$$
 (21)

- a(x) is a function of x

Here are some basic examples. We will go in much more detail when solving ODEs.

$$\frac{dy}{dx} + 3y = x$$
, and $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = sinx$

Ineed to learn better formating:)

A non-linear ODE is any ordinary differential equation that cannot be written in the linear form shown earlier. This is because the dependent variable or its derivatives are not linear. I will cover this more later on in the chapter.

The weird classifications of ODEs

A Homogeneous ODE, is a differential equation where L is a linear differential operator.

$$L[y] = 0$$

A Non-Homogeneous ODE, is a differential equation where $f(x) \neq 0$

$$L[y] = f(x)$$

A Autonomous ODE, is a differential equation where the independent variable (usually x or t) does not appear in the equation.

$$\frac{d^n y}{dx^n} = F\left(y, y', ..., y^{(n-1)}\right)$$

A Non-Autonomous ODE, is a differential equation if the independent variable appears eq (1).

*You can use multiple types at once, just use common sense to make sure its right

Basic existence

Dealing with ODEs

Separable ODE, can be written as

$$\frac{dy}{dx} = f(x)g(y)$$

Divide both sides by g(y), and multiply both sides by dx

$$\frac{dy}{g(y)} = f(x)dx$$

Integrate both sides, make sure to keep the constant on the RHS

$$\int \frac{dy}{g(y)} = \int f(x)dx$$

Integrating Method. Format the equation to fit the following before using the method

$$\frac{dy}{dx} + P(x)y = Q(x)$$

Find the function $\mu(x)$ that will help simplify the problem. (Symplify as much as possible here it will help a lot later on)

$$\mu(x) = e^{\int P(x)dx}$$

Multiply every term by the function $\mu(x)$ and using the product rule calculate the derivative of the LHS

$$\frac{d}{dx}(\mu(x)y) = \mu(x)Q(x)$$

Integrate both sides, remember the constant!

$$y = \frac{1}{\mu(x)} \int \mu(x)Q(x)dx + C$$

Quick note on integrating factor. A integrating factor is the method used to solve derivative equation above. The $\mu(x)$ also called the integrating factor, works for any, first-order linear differential equations. A function is derived by multiplying the equation with $\mu(x)$, which makes the left-hand side a derivative of $\mu(x)y$.

Exact Method If a DE is exact, which can be found if it is in this form

$$M(x,y)dx + N(x,y)dy = 0$$

After this, calculate the partial derivative of M in respect to y and the partial derivative of N with respect to x. If these are equivalent the DE is exact.

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Lets make a function that we will call Ψ such that, $\Psi_x = M(x,y)$ and $\Psi_y = N(x,y)$

Therefore we can write this now as

$$\Psi_x + \Psi_y \frac{dy}{dx} = 0$$

we can start to find this function Ψ . So we will start to integrate M with respect to x. (h(y) is a function of y)

$$\Psi(x,y) = \int Mdx + h(y)$$

We can now differentiate Ψ with respect to y

$$\frac{\partial \Psi}{\partial y} = \frac{\partial}{\partial y} \left(\int M dx \right) + h'(y) = N$$

Solve the integral for h(y)

Types of Problems

Initial Value Problem

Generally, IVPs are a DE and a <u>initial condition</u> or condition's which when used in unison they can be used to solve a function, that will also fit the DE. The steps are pretty straight forward.

1. Solve the DE

$$y(x) = \int f(x)dx + C$$

2. Use the initial condition, lets say that $y(x_0) = y_0$

$$y_0 = \int f(x_0)dx + C$$

Where C is:

$$C = y_0 - V$$

*V is the value of the integral at x_0 , therefore if we replace C, the final answer is

$$y(x) = \int f(x)dx + (y_0 - V)$$

Proving existence and uniqueness

Theorem Definition: If f(x,y) and the partial derivative $\frac{\partial f}{\partial y}$ are continuous in:

$$D = \{(x, y) | |x - x_0| \le a, |y - y_0| \le b\}$$

around the point (x_0, y_0) therefore, there exits a interval between x and x_0 where there is at least one solution of y(x). And it proves that this solution is unique on the interval.

Steps: Write the ODE in standard form, aka:

$$\frac{dy}{dx} = f(x, y)$$

use intuition to check that the function f is continuous between the points you want. Then if there are any points where the function is non continuous, then be sure to mark it such that it is clear, using $\leq \geq > <$. This is the first rule.

Now, do a partial derivative of y such that:

$$\frac{\partial f}{\partial y} = f(x, y)$$

Remember to treat x as a constant in this case!!!

If the result is continuous in D between x and x_0 then this proves that there is at least a solution.

Interpreting answers

Interval of validity for Linear DE. The interval of validity for a Linear DE is largest around x_0 where p(x) and q(x) are continuous. Make sure to exclude discontinuities.

Interval of validity for Non-Linear DE, Solutions may be exponential to infinity or become undefined despite f(x,y) being smooth. Therefore check all the points where the solution becomes undefined. Extend the interval on both sides of x_0 till it is no longer possible.

Interpreting answers

(this whole section is a bit useless, I may remove it if I don't find any use for it son)

Explicit Solution, is when the dependent variable is isolated and in terms of the independent variable. e.g

$$y = x^2 + C$$

(soluzione esplicita)

Implicit Solution, is when the dependent variable is not explicitly isolated from the independent. e.g

$$x^2 + y^2 = C$$

(soluzione implicita)

General Solution, is the solution containing all the possible solutions for the differential equation, ie it keeps the constants, its the trivial form. (soluzione generale)

Particular Solution, is the solution which is a specific solution by locking the constants by using the initial conditions, ie the C has a fixed value. (soluzione particolare)

Equilibrium Solution, is a solution which is constant because the dependent variable does not change and therefore the derivative is zero. (soluzione di equilibrio)

Parametric Solution, is a solution represented using a parameter like (t,u,z...) instead of using x and y. eg.

$$y(t) = \sqrt{t^2 + C}$$

(soluzione parametrica)

Second Order Equations- temporary latex code which isnt my own for the exam

Solving Second-Order Differential Equations

A second-order differential equation has the general form:

$$F(y'', y', y, x) = 0$$

Below are methods for solving linear and nonlinear cases.

1. Linear Homogeneous Equations with Constant Coefficients General form:

$$ay'' + by' + cy = 0 \quad (a \neq 0)$$

Solution procedure:

1. Solve the characteristic equation:

$$ar^2 + br + c = 0$$

- 2. Case analysis for roots r_1, r_2 :
 - Distinct real roots: If $r_1 \neq r_2$,

$$y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

• Repeated real root: If $r_1 = r_2 = r$,

$$y(x) = (C_1 + C_2 x)e^{rx}$$

ullet Complex conjugate roots: If $r=\alpha\pm ieta$,

$$y(x) = e^{\alpha x} \left[C_1 \cos(\beta x) + C_2 \sin(\beta x) \right]$$

2. Linear Nonhomogeneous Equations General form:

$$y'' + p(x)y' + q(x)y = q(x)$$

Method 1: Undetermined Coefficients

- 1. Find the complementary solution y_c (solve the homogeneous equation).
- 2. Assume a particular solution y_p based on g(x) (e.g., $g(x)=e^{kx} \Rightarrow y_p=Ae^{kx}$).
- 3. If g(x) matches part of y_c , multiply y_p by x (or x^n for repeated roots).
- 4. Substitute y_p into the DE and solve for coefficients.
- 5. General solution: $y = y_c + y_p$.

Method 2: Variation of Parameters

- 1. Find $y_c = C_1 y_1 + C_2 y_2$.
- 2. Compute the Wronskian:

$$W = y_1 y_2' - y_1' y_2$$

3. Particular solution:

$$y_p = -y_1 \int \frac{y_2 g(x)}{W} dx + y_2 \int \frac{y_1 g(x)}{W} dx$$

4. General solution: $y = y_c + y_p$.

3. Cauchy-Euler Equations General form:

$$x^2y'' + bxy' + cy = 0$$

Solution steps:

1. Assume $y = x^r$. Substitute to get:

$$r^2 + (b-1)r + c = 0$$

- 2. Solve for r. The solution mirrors constant-coefficient cases:
 - Real distinct roots: $y = C_1 x^{r_1} + C_2 x^{r_2}$
 - Repeated root: $y = x^r(C_1 + C_2 \ln x)$
 - Complex roots $r = \alpha \pm i\beta$: $y = x^{\alpha} \left[C_1 \cos(\beta \ln x) + C_2 \sin(\beta \ln x) \right]$

4. Reduction of Order When one solution y_1 is known:

- 1. Let $y_2 = v(x)y_1$.
- 2. Substitute y_2 into the DE and solve for v(x).
- 3. The second solution is $y_2=y_1\int rac{e^{-\int p(x)\;dx}}{y_1^2}\;dx.$

Special cases:

- Equation missing y: Let p = y', reducing to p' = f(x, p).
- Equation missing x: Let p=y', then $y''=p\frac{dp}{dy}$, reducing to $p\frac{dp}{dy}=f(y,p)$.

5. Series Solutions Near Ordinary Points For P(x)y'' + Q(x)y' + R(x)y = 0 with ordinary point at x_0 :

- 1. Assume $y = \sum_{n=0}^{\infty} a_n (x x_0)^n$.
- 2. Substitute into DE and equate coefficients of like powers.
- 3. Derive a recurrence relation for a_n .

6. Laplace Transform for Initial Value Problems Procedure:

1. Take Laplace transform of the DE:

$$\mathcal{L}{y''} + a\mathcal{L}{y'} + b\mathcal{L}{y} = \mathcal{L}{g(x)}$$

2. Use:

$$\mathcal{L}{y'} = sY(s) - y(0), \quad \mathcal{L}{y''} = s^2Y(s) - sy(0) - y'(0)$$

3. Solve for Y(s), then compute $y(x) = \mathcal{L}^{-1}\{Y(s)\}.$

Nonlinear Second-Order DEs No universal method exists. Common approaches:

- Substitutions to reduce order (e.g., p = y')
- Exact equations (identify integrable combinations)
- Numerical methods (e.g., Runge-Kutta)

Homogeneous Equations with constant coefficients have the general form:

$$y'' + ay' + by = 0$$

Non-homogeneous Equations: Method of Undetermined Coefficients

Finished

Nth order Differential Equation

0.0.1 Solving *n*-th Order Differential Equations

Linear Homogeneous Equations with Constant Coefficients Consider the equation:

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0$$

Solution Steps:

1. Form characteristic equation:

$$a_n r^n + a_{n-1} r^{n-1} + \dots + a_1 r + a_0 = 0$$

- 2. Find roots r_1, r_2, \ldots, r_n
- 3. Construct general solution:
 - Distinct real roots:

$$y_h = \sum_{i=1}^n C_i e^{r_i x}$$

• Repeated real root r with multiplicity k:

$$e^{rx}\left(C_1 + C_2x + \dots + C_kx^{k-1}\right)$$

• Complex conjugate pairs $\alpha \pm \beta i$:

$$e^{\alpha x} \left[C_1 \cos(\beta x) + C_2 \sin(\beta x) \right]$$

For repeated pairs (multiplicity m):

$$x^{m-1}e^{\alpha x} \left[C_1 \cos(\beta x) + C_2 \sin(\beta x) \right]$$

Linear Nonhomogeneous Equations For equations:

$$a_n y^{(n)} + \dots + a_1 y' + a_0 y = g(x)$$

General Solution:

$$y = y_h + y_p$$

where $y_h =$ homogeneous solution, $y_p =$ particular solution.

Method of Undetermined Coefficients Use when g(x) is polynomial, exponential, sine, cosine, or combinations:

- 1. Assume y_p with same form as g(x)
- 2. If any term matches y_h , multiply by x^s (s = smallest integer eliminating duplication)
- 3. Substitute y_p into DE and solve for coefficients

Variation of Parameters General method for arbitrary g(x):

- 1. Find fundamental set $\{y_1, \ldots, y_n\}$ from y_h
- 2. Compute Wronskian:

$$W(y_1, \dots, y_n) = \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}$$

- 3. Find $u_i' = \frac{W_i}{W}$ where $W_i = \text{Wronskian with } i\text{-th column replaced by } \begin{bmatrix} 0 \\ \vdots \\ g(x) \end{bmatrix}$
- 4. Integrate to get u_i , then:

$$y_p = \sum_{i=1}^n u_i y_i$$

Variable Coefficient Equations For $y^{(n)} + P_{n-1}(x)y^{(n-1)} + \cdots + P_0(x)y = Q(x)$:

Reduction of Order If solution y_1 is known, let:

$$y = y_1 \int v(x) dx$$

Substitute to reduce equation order by 1.

Cauchy-Euler Equations Form: $x^n y^{(n)} + a_{n-1} x^{n-1} y^{(n-1)} + \cdots + a_0 y = 0$

- 1. Assume solution $y = x^m$
- 2. Substitute to get characteristic equation:

$$m(m-1)\cdots(m-n+1) + \sum_{k=0}^{n-1} a_k m(m-1)\cdots(m-k+1) = 0$$

3. Handle roots as with constant coefficient equations

Nonlinear Equations

Order Reduction Techniques

- Missing y: Let v = y', reduces order by 1
- \bullet $\it Missing x: Let $v=y'$, then $y''=v\frac{dv}{dy}$, reduces to 1st order in $v$$

Exact Equations If equation can be written as:

$$\frac{d}{dx} \left[\text{Lower order expression} \right] = 0$$

Integrate successively to solve.

Integrating Factors Find $\mu(x)$ or $\mu(y)$ such that:

$$\mu(x)M(x,y)dx + \mu(x)N(x,y)dy = 0$$

becomes exact.

Special Forms

- Bernoulli: $y' + P(x)y = Q(x)y^n$, use $z = y^{1-n}$
- • Riccati: $y' = P(x)y^2 + Q(x)y + R(x)$, use $y = y_1 + \frac{1}{v}$ if particular solution y_1 known

Systems of Differential Equations

Solving Systems of Differential Equations

Linear Systems with Constant Coefficients For the system $\mathbf{x}' = A\mathbf{x}$ where A is an $n \times n$ constant matrix:

Solution Method:

1. Find eigenvalues λ by solving:

$$\det(A - \lambda I) = 0$$

2. **Find eigenvectors** ξ for each eigenvalue by solving:

$$(A - \lambda I)\xi = 0$$

- 3. Construct general solution:
 - Real distinct eigenvalues:

$$\mathbf{x}(t) = \sum_{i=1}^{n} C_i e^{\lambda_i t} \xi_i$$

• Complex eigenvalues $\alpha \pm \beta i$:

$$\mathbf{x}(t) = C_1 e^{\alpha t} [\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t)] + C_2 e^{\alpha t} [\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t)]$$

where $\mathbf{a} + i\mathbf{b}$ is the complex eigenvector

- Repeated eigenvalues:
 - If geometric multiplicity = algebraic multiplicity: proceed as distinct eigenvalues
 - If deficient eigenvectors: use generalized eigenvectors

Nonhomogeneous Systems For $\mathbf{x}' = A\mathbf{x} + \mathbf{g}(t)$: General Solution:

$$\mathbf{x}(t) = \mathbf{x}_h(t) + \mathbf{x}_p(t)$$

Variation of Parameters

- 1. Find fundamental matrix $\Phi(t)$ from homogeneous solutions
- 2. Compute particular solution:

$$\mathbf{x}_p(t) = \Phi(t) \int \Phi^{-1}(t)\mathbf{g}(t)dt$$

Method of Undetermined Coefficients Use when $\mathbf{g}(t)$ contains polynomials, exponentials, or trigonometric functions:

- 1. Assume \mathbf{x}_p with same form as $\mathbf{g}(t)$
- 2. Adjust for resonance if any term matches homogeneous solution
- 3. Substitute and solve for coefficients

Matrix Exponential Method For x' = Ax:

$$\mathbf{x}(t) = e^{At}\mathbf{x}_0$$

where e^{At} can be computed via:

- \bullet Diagonalization: $A=PDP^{-1}\Rightarrow e^{At}=Pe^{Dt}P^{-1}$
- Jordan form for defective matrices
- Taylor series expansion for simple cases

Nonlinear Systems

Linearization Near Critical Points

- 1. Find equilibrium points \mathbf{x}_0 where $\mathbf{f}(\mathbf{x}_0) = 0$
- 2. Compute Jacobian matrix:

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}_{\mathbf{x}_0}$$

3. Analyze eigenvalues of J to determine stability

Phase Plane Analysis (2D Systems)

- Classify critical points: node, spiral, saddle, center
- Use nullclines and direction fields
- Lyapunov functions for stability (when applicable)

Conversion to First-Order Systems Any n-th order DE can be converted to a system:

- 1. Let $x_1 = y$, $x_2 = y'$, ..., $x_n = y^{(n-1)}$
- 2. Create system:

$$\begin{cases} x'_1 = x_2 \\ x'_2 = x_3 \\ \vdots \\ x'_n = F(t, x_1, \dots, x_n) \end{cases}$$

Important Special Cases

Coupled Oscillators

$$\begin{cases}
m_1 x_1'' = -k_1 x_1 + k_2 (x_2 - x_1) \\
m_2 x_2'' = -k_2 (x_2 - x_1)
\end{cases}$$

Solve by diagonalizing the coefficient matrix

Competing Species Model

$$\begin{cases} x' = x(a - by) \\ y' = y(c - dx) \end{cases}$$

Analyze using linearization and phase plane methods

Special theorems and Problems

Picard-Lindelöf theorem

Picard-Lindelöf Theorem (Existence & Uniqueness)

Theorem Statement Consider the initial value problem (IVP):

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

where $f:D\subset\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n$. If:

- f is **continuous** in t on rectangle $R = [t_0 a, t_0 + a] \times \overline{B}(y_0, b)$
- f is **Lipschitz continuous** in y:

$$\exists L > 0 \text{ s.t. } ||f(t,y_1) - f(t,y_2)|| \le L||y_1 - y_2||, \ \forall (t,y_1), (t,y_2) \in R$$

Then $\exists \tau > 0$ such that the IVP has a **unique solution** y(t) on $[t_0 - \tau, t_0 + \tau]$.

Proof Outline (Method of Successive Approximations)

1. Reformulate IVP as integral equation:

$$y(t) = y_0 + \int_{t_0}^{t} f(s, y(s))ds$$

2. Define Picard iterations:

$$y_{n+1}(t) = y_0 + \int_{t_0}^t f(s, y_n(s)) ds$$

Starting with $y_0(t) \equiv y_0$

- 3. Show $\{y_n\}$ converges uniformly to solution y:
 - Use Lipschitz condition to prove $\|y_{n+1}-y_n\| \leq \frac{M}{L} \frac{(L|t-t_0|)^{n+1}}{(n+1)!}$
 - Apply Banach fixed-point theorem in complete metric space

Implementation Steps To apply the theorem:

1. Verify continuity of f(t, y) in t

2. Check Lipschitz condition in y:

ullet If $rac{\partial f}{\partial y}$ exists and bounded \Rightarrow Lipschitz

ullet For scalar case: $|f(t,y_1)-f(t,y_2)|\leq L|y_1-y_2|$

3. Determine existence interval $au=\min\left(a,\frac{b}{M}\right)$ where:

$$M = \max_{(t,y)\in R} \|f(t,y)\|$$

Example Application For IVP y' = y, y(0) = 1:

• Picard iterations:

$$y_0(t) = 1$$

$$y_1(t) = 1 + \int_0^t y_0(s)ds = 1 + t$$

$$y_2(t) = 1 + \int_0^t (1+s)ds = 1 + t + \frac{t^2}{2}$$

$$\vdots$$

$$y_n(t) = \sum_{l=0}^n \frac{t^k}{k!} \to e^t$$

Important Notes

• Local vs Global: Theorem guarantees local solution - need additional conditions for global existence

• Sharpness: τ estimate often conservative

• Failure Cases:

- f not Lipschitz \Rightarrow possible non-uniqueness (e.g., $y' = \sqrt{|y|}$)

- Discontinuous $f \Rightarrow$ solutions may not exist

Cauchy's Problem

Here we have a nth order ODE

$$y^{(n)}(t) = f\left(t, y, y',, y^{(n-1)}\right)$$

The Cauchy problem also known as the