This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PARTIAL TRANSLATION OF JAPANESE UNEXAMINED PATENT PUBLICATION

(KOKAI) NO. 10-145615

Title of the Invention:

Image Forming Apparatus

Publication Date: May 29, 1998

Patent Application No: 8-300236

Filing Date: November 12, 1996

Applicants: <u>Hitachi Ltd.</u>

(57) [Abstract]

[Object] An object of the present invention is to improve the quality of an image that can be formed with the same data amount.

[Means for Solving the Problems] A hexadecimal dither unit 104 converts input color data into four bit color data by applying a hexadecimal dithering process to the input color data, and 3 bit/2 bit/1 bit data production units 105, 106 and 107 reduce the information amount of the 4 bit color data to 3 bit/2 bit/1 bit data. A pixel position dependent selector 108 selects color data of a given pixel at the corresponding pixel position from the 3 bit/2 bit/1 bit data, in accordance with the small/medium/large magnitude of the value of a dither matrix of the hexadecimal dither unit 104, and stores the selected color data in an image memory 109. A 4 bit data production unit 110 converts the color data read out from the image memory 109 into 4 bit color data, and a pulse width modulator 111 outputs a signal having a pulse width in response to the value of 4 bit color data, and a printer engine 112 prints out data in an area corresponding to the pulse width.

[Effects] The number of gradations can be increased only for a low density area in which the quality of the image significantly deteriorates due to the reduction in the number of bits, thereby making it possible to improve the quality of the image.

[2] [Scope of Claim for Patent]

[Claim 1] An image forming apparatus for forming an image representing gradations by changing the magnitude of the coloring amount in each area corresponding to each pixel, based on image data including pixel data representing the gradations of each pixel, comprising:

converting means for converting said image data into an image forming signal constituting a signal for determining the magnitude of the coloring amount in each area corresponding to each pixel, so that the width of the step of change of the magnitude of the coloring amount in a low density area of said image to be formed is smaller than the width of the step of change of the magnitude of the coloring amount in a high density area; and

forming means for coloring said image, based on said image forming signal.

[Claim 2] An image forming apparatus for forming an image having gradations by carrying out a multilevel dithering process for image data including pixel data representing the gradations of each pixel, comprising:

variable multilevel dithering processing means for performing different multilevel dithering process for the respective pixel data, so that the data amount after said multilevel dither process of said image data for coloring said image in an area for expressing low density gradations is larger than the data amount after the multilevel dithering process of said image data for coloring said image in an area for expressing high density gradations;

a memory for accumulating said pixel data subjected to said multilevel dithering process; and

forming means for coloring said image in a coloring range in a given area corresponding to said image data and determined by said pixel data that is read out from said memory and that is subjected to said multilevel dithering process.

[Detailed Description of the Invention]

[0009]

[Means for Solving the Problems] In order to achieve the above-mentioned object, according to the present invention, there is provided an image forming apparatus for forming an image representing gradations by changing the magnitude of the coloring amount in each area corresponding to each pixel, for example, based on image data including pixel data representing gradations of each pixel, which comprises conversion means for converting the image data into an image forming signal constituting a signal for determining the magnitude of the coloring amount in each area corresponding to each pixel, so that the width of the step of change of the magnitude of the coloring amount in a low density area of the image to be formed is smaller than the width of the step of change of the magnitude of the coloring amount in a high density area; and forming means for coloring the image, based on the image forming signal.

[0010] In this image forming apparatus, only the number of gradations which is to be expressed in the low density area is increased. The increase in the number of the gradations in the low density area can be realized without increasing the number of bits of the pixel data uniformly. According to this image forming apparatus, therefore, the generation of isolated dots in the low density area having a large influence on the deterioration of the quality of the image due to the reduction in the number of bits of the pixel data, can be suppressed without increasing the number of bits of the pixel data uniformly.

[0071] Fig. 10 shows an example of the shape of dots printed on a sheet of paper by the operation mentioned above.
[0072] Portion (a) of Fig. 10 shows the case in which the

color data of 2 bits are used according to the prior art, and portion (b) of Fig. 10 the case in which the color data can be used according to this embodiment.
[0073] Now, in the drawings, each of the squares surrounded by thick frames represents a printing area of one pixel.

Also, each of the rectangles having a thin line in the square represents a unit of print. Portions (a) and (b) of Fig. 10 show a printing area for five adjacent pixels defined by a thick line in the dither matrix 202 in Fig. 2.

[0074] As shown, in the prior art shown in portion (a), the color data of 2 bit pixels is printed by using a pulse width modulation, regardless of the pixel positions. Thus, four gradations are expressed including 0/3 print, 1/3 print, 2/3 print and 3/3 print for each of the five pixels.

[0075] According to this embodiment shown in portion (b), in contrast, the data of 3 bit pixels is printed by using a pulse width modulation in the pixel positions (two pixels, an upper left portion and a lower left portion, in this example) having the small value in the dither matrix in Fig. 3, and therefore eight kinds of prints can be realized including 0/7 to 7/7 in the area of one pixel. Also, in the upper right pixel in which the data of 2 bit pixels is printed by using a pulse width modulation, the printing in four gradations including 0/3 to 3/3 can be carried out, and in the lower right two pixels in which the data of 1 bit pixels is printed by using a pulse width modulation, the printing in two gradations including 0/1 and 1/1 can be carried out.

[0076] The value of the color data at the pixel positions having the small value in the dither matrix of Fig. 3

having the small value in the dither matrix of Fig. 3 represents gradations in the low density area having a color near to white. In any area other than the low density area, the entire area is printed at the pixel positions having a small value in the dither matrix of Fig. 3, while in the low density area, only a portion of the pixel positions having a small value in the dither matrix of Fig. 3 is printed, instead of the entire area. The degree of the smallness of a

unit to which the printing can be carried out in the particular area, therefore, has a large direct influence on the degree of gradations of the image. To increase the gradations that can be expressed in the low density area is effective for improving the quality of the image as a whole with a small amount of data. The reason is that even in the case in which the number of bits of the color data is decreased uniformly, the image quality remains comparatively unchanged in the high density area. In the low density area, however, isolated spots generally called isolated dots are generated as shown in portion (a) of Fig. 11 and would make the quality of the image considerably deteriorate. increasing only the number of gradations expressed in the low density area as in this embodiment, the generation of the isolated dots can be suppressed with the smaller amount of data than in the case in which the number of bits of the color data is increased uniformly.

[0077] In both cases of portions (a) and (b), for example, the color data amount is 10 bits per 5 pixels, i.e. 2 bits per pixel in the average level. According to this embodiment, in contrast, the number of bits is increased in the low density area in which the isolated dots are liable to be salient while the number of bits is decreased in the high density area in which the isolated dots are not liable to be salient, thereby making it possible to form an image of the quality equivalent to a conventional image forming method involving 3 bits per pixel.

[0078] Typically, this applies to the case using a dithering technique of distribution type in which dots are arranged distributively and progressively with the increase in density, as well as the case of a dithering technique generally called a dithering technique of concentration type using a dither matrix mentioned in Fig. 3 in which dots become larger with the increase in the density. Fig. 12 shows the units capable of being printed by using the dithering technique of distribution type for five pixels

similar to Fig. 10. The upper left and lower right pixel positions in Fig. 12 represent the area in which only a portion is printed when the density is low.

【図1】[Fig. 1]

[図2][Fig. 2]

[図3] [Fig. 3]

【図4】[Fig. 4]

[図11] [Fig. 11]

【図13】[Fig. 13]

(19) 日本国特許庁(JP)

四公開特許公報(A)

(11)特許出願公開番号

特開平10-145615

(43)公開日 平成10年(1998)5月29日

(51) Int. Cl. 6	識別記	号		FI				
H04N	1/52			H 0 4 N	1/46		В	
B41J	2/525			B 4 1 J	3/00		В	
G 0 6 T	11/00			G 0 6 F	15/72	3 1 0		
H 0 4 N	1/60			H 0 4 N	1/40		D	
	審查	請求 未請求	請求項の数	8 0	L		(全12頁)	
(21)出願番号	特願平8-3	00236		(71)出願人		5108 会社日立製	作所	
(22) 出願日 平成8年(1996)11月12日							 神田駿河台四丁目	6番地
(22) 田頭泉日	1 1123 (1000	,11,,110		(72)発明者				
					茨城坝	具日立市大	みか町七丁目1番1 日立研究所内	号 株式
				(72) 発明者				
				(10/)0//1	茨城坝	具日立市大	みか町七丁目1番1 日立研究所内	号 株式
			1	(72)発明者	犬塚	達基		
					茨城坝	具日立市大	みか町七丁目1番1	号 株式
					会社日	日立製作所	日立研究所内	
	•	•		(74)代理人	弁理	ヒ 富田	和子	

(54) 【発明の名称】画像形成装置

(57) 【要約】

【課題】 同データ量で形成できる画像の品質を向上する。

【解決手段】 16値ディザ104は、入力する色データに16値ディザを施し4ビット化し、3/2/1ビット化105、106、107は4ビットの色データの情報量を低減し色データを3/2/1ビット化し、画素位置対応選択108は、16値ディザ104のディザマトリクスの値の小中大に応じて、対応する画素位置の画像メモリ109に格納する。4ビット化110は、画像メモリ109から読み出した色データを4ビット化し、パルス幅変調111は4ビットの値に応じたパルス幅をもつ信号を出力し、プリンタエンジン112はパルス幅に応じた領域に印刷を行う。

【効果】 低ビット数化による劣化が目立つ低濃度領域 の階調数のみを増やし、画像の品質を向上することができる。

【特許請求の範囲】

【請求項1】 各画素の階調を表す画素データよりなる 画像データに基づいて、各画素に対応する領域における 着色量の大きさを変化させることにより階調を表した画 像を形成する画像形成装置であって、

形成する画像の低濃度領域における着色量の大きさの変化の段階の幅が、高濃度領域における着色量の大きさの変化の段階の幅より小さくなるように、前記画像データを、各画素に対応する各領域における着色量の大きさを定める信号である形成画像信号に変換する変換手段と、形成画像信号に基づいて着色を行う形成手段とを有することを特徴とする画像形成装置。

【請求項2】 各画素の階調を表す画素データよりなる 画像データに多値ディザ処理を施すことにより階調を有 する画像を形成する画像形成装置であって、

低濃度の階調を表現するための領域を着色する画像データの多値ディザ処理後のデータ量が、高濃度の階調を表現するための領域を着色する画像データの多値ディザ処理後のデータ量より多くなるように、各画素データに異なる多値ディザ処理を施す可変多値ディザ処理手段と、多値ディザ処理を施した画素データを蓄積するメモリレ

メモリより読み出した、多値ディザ処理を施した画素データによって定まる、当該画素データに対応する領域中 の着色範囲に着色する形成手段とを有することを特徴と する画像形成装置。

【請求項3】 請求項2記載の画像形成装置であって、 前記可変多値ディザ処理手段は、

前記画像データに所定の多値ディザ処理を施す多値ディザ処理手段と、

多値ディザ処理を施された画素データのデータ量を削減 するデータ量削減手段とを有し、

前記データ量削減手段は、多値ディザ処理を施された画素データのデータ量の削減を、対応するディザマトリクスの要素の値が第1の基準値以上のもののデータ量の削減量が、前記第1の基準値より小さい第2の基準値より小さいもののデータ量の削減量より大きくなるように行うことを特徴とする画像形成装置。

【請求項4】 請求項3記載の画像形成装置であって、前記多値ディザ処理は、k値ディザ処理(但し、k>2)であって、

前記データ量削減手段は、k値ディザ処理を施された画素データに、n値ディザ処理(但し、n≥1)とm値ディザ処理(但し、k>m>n)の各々を施す手段と、'k値ディザ処理を施された画素データのうち、k値ディザ処理に用いたディザマトリクスの対応する要素の値が第1の基準値以上のものに対してはn値ディザ処理を施した結果をメモリに記憶する画素データとして選択し、前記第1の基準値より小さい第2の基準値より小さいものに対してはm値ディザ処理を施した結果をメモリに記憶す 50

る画素データとして選択する手段とを有することを特徴 とする画像形成装置。

【請求項5】 請求項3または4記載の画像形成装置であって、

画像形成装置は、データ処理装置と、当該データ処理装置と接続された印刷装置もしくは表示装置より構成され、

前記多値ディザ処理手段は、データ処理装置に配置されており、

10 前記データ量削減手段とメモリと形成手段は、前記印刷 装置もしくは表示装置に配置されていることを特徴とす る画像形成装置。

【請求項6】 請求項2,3または4記載の画像形成装置であって、

画像形成装置は、データ処理装置と、当該データ処理装置と接続された印刷装置もしくは表示装置より構成され.

前記可変多値ディザ処理手段は、データ処理装置に配置されており、

20 前記メモリと形成手段は、前記印刷装置もしくは表示装置に配置されていることを特徴とする画像形成装置。

【請求項7】 各画素の階調を表す画素データよりなる 画像データを入力し、入力した画像データに多値ディザ 処理を施すことにより階調を有する画像を印刷する印刷 装置であって、

低濃度の階調を表現するための印刷領域を着色する画像 データの多値ディザ処理後のデータ量が高濃度の階調を 表現するための印刷領域を着色する画像データの多値ディザ処理後のデータ量より多くなるように、各画素デー タに異なる多値ディザ処理を施す可変多値ディザ処理手 段と、

多値ディザ処理を施した画案データを蓄積するメモリ

メモリより読み出した、多値ディザ処理を施した画素データによって定まる、当該画素データに対応する領域中の着色範囲に着色する印刷手段とを有することを特徴とする印刷装置。

【請求項8】 多値ディザ処理を施された画像データを入力し、入力した多値ディザ処理を施された画像データ40 に従って画像を印刷する印刷装置であって、

入力した多値ディザ処理を施された画素データのデータ 量を削減するデータ量削減手段と、

データ最を削減した画素データを蓄積するメモリと、 メモリより読み出した、データ量を削減された画素デー タによって定まる、当該画素データに対応する領域中の 範囲に着色する印刷手段とを有し、

前記データ量削減手段は、多値ディザ処理を施された画 素データのデータ量の削減を、対応するディザマトリク スの要素の値が第1の基準値以上のもののデータ量の削 減量が、前記第1の基準値より小さい第2の基準値より

2

小さいもののデータ量の削減量より大きくなるように行 うことを特徴とする印刷装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、階調画像を出力する装置に関するものであり、特に画像の階調を、代表色の面積比によって表現する画像出力装置に関するものである。

[0002]

【従来の技術】フルカラー画像をC(シアン)、Y(イ 10 エロウ)、M(マゼンダ)、K(ブラック)の4つの代表色を用いて印刷する技術として、多値ディザ処理の技術が知られている。この多値ディザ処理は、画素のマトリクスの各要素と、当該要素に対応する所定のディザマトリクスの要素との差分を多値で表し、この多値の値に従って、各画素に対応する印刷領域内における代表色の面積比を定め、画像を形成することにより階調を擬似的に表現するものである。

【0003】なお、このような多値ディザ処理の技術としては、例えば特公平5-50909号公報記載の技術 20が知られている。

【0004】この特公平5-50909号公報記載の技術では、主走査方向に順次ディザ値が増加するディザマトリクスを用いることにより、ドット集中型のディザパターンを実現し、多値ディザ処理による階調性を安定化させている。

[0005]

【発明が解決しようとする課題】さて、レーザビームプリンタのように一ページ分の画像データを一旦メモリに蓄積した後にプリントを開始するプリンタシステムに適 30用する場合を考えると、n値ディザ処理、すなわち、画素とディザマトリクスの要素との差分をnビットで表す多値ディザ処理では、一ページ分の画素数についてC、M、Y、Kの4色それぞれnビットのデータを格納するメモリ容量が必要となる。

【0006】また、多値ディザ処理をホスト側のコンピュータで行ってから、伝送線路を通ってプリンタ内のメモリに画像データを転送する場合、4色分の一画素 n ビットの画像データを一ページ分伝送する必要がある。

【0007】したがって、従来の多値ディザ処理の技術 40 によれば、多値ディザ処理後の各画素のビット数を大きくすれば表現できる階調数は多くなるが、必要メモリ容量と伝送時間が増大し、多値ディザ処理後の各画素のビット数を小さくすれば、必要メモリ容量と伝送時間は減少するが、表現できる階調数が少なくなり画像の品質が劣化するという問題がある。

【 0 0 0 8 】そこで、本発明は、画像データのビット数を従来と同等である場合に、従来よりより高品質の画像を形成することができる画像形成装置を提供することを目的とする。

[0009]

【課題を解決するための手段】前記目的達成のために本 発明は、たとえば、各画素の階調を表す画素データより なる画像データに基づいて、各画素に対応する領域にお ける着色量の大きさを変化させることにより階調を表し た画像を形成する画像形成装置であって、形成する画像 の低濃度領域における着色量の大きさの変化の段階の 幅より小さくなるように、前記画像データを、各画素に 対応する各領域における着色量の大きさを定める信号で ある形成画像信号に変換する変換手段と、形成画像信号 に基づいて着色を行う形成手段とを有することを特徴と する画像形成装置を提供する。

【0010】このように本画像形成装置は、低濃度領域における表現階調数のみを増加させる。そして、このような低濃度領域における表現階調数の増加は、一律に画素データのビット数を増加することなく実現することができるので、本画像形成装置によれば、画素データのビット数の削減による画質の劣化への影響が大きい低濃度領域における孤立ドットの発生を、一律に画素データのビット数を増加することなく抑止することができる。

[0011]

【発明の実施の形態】以下、本発明の一実施形態について、カラーレーザプリンタシステムへの適用を例にとり 説明する。

【0012】図1に、本実施形態に係るカラーレーザー プリンタシステムの構成を示す。

【0013】図中、PC101はホストコンピュータであり、画像出力として、各画素ごとに、R (赤), G (緑), B (青) 各8ビット/画素の色データとして出力する。

【0014】色変換部102は、R、G、Bで表現された画像情報を、記録紙に印字する色材であるC(シアン)、M(マゼンタ)、Y(イエロー)、K(ブラック)の各7ビット/画素の色データに変換する。ただし、本実施形態では、C、Y、M、Kの色データは、各々0から75までの間の値をとる。

【0015】また、色変換部102は、たとえば、変換後C、M、Y、K28ビットの値を、色変換前のR、G、B24ビットの値と等しいアドレスに記憶した半導体メモリで構成した変換テーブルとして実現できる。こ

のような変換テーブルに、色変換前のR, G, Bの24 ビットを与えれば、色変換後のC, M, Y, K28ビットを読み出すことができる。

【0016】面順次選択部103は、色データC, M, Y, Kを一ページ単位に順次切り替えて出力するものであり、論理回路のセレクタで実現できる。

【0017】16値ディザ部104はC, M, Y, Kの 各色について、それぞれ複数色データ毎に多値ディザ処 50 理を行い、7ビット/画素の色データを4ビット/画素

の色データに変換する。

【0018】3ビット化部105は16値ディザ部10 4から入力する4ビット/画素の色データを3ビット/ 画素の色データに変換する。2ビット化部106は16 値ディザ部104から入力する4ビット/画素の色デー タを2ビット/画素の色データに変換する。1ビット化 部107は16値ディザ部104から入力する4ビット /画素の色データを1ビット/画素の色データに変換す

【0019】次に、画素位置対応選択部108は、各色 10 データの印刷位置に応じて、3ビット化部105の出 カ、2ビット化部106の出力、1ビット化部107の 出力の三つの入力から一つを選択して出力する。

【0020】画像メモリ109は、印刷する画像データ ーページ分のC、M、Y、Kの色データを記憶するメモ リである。

【0021】4ビット化部110は画像メモリ109か ら出力される1ビット/画素、2ビット/画素、3ビッ ト/画素の色データを4ビット/画素の色データに変換

【0022】パルス幅変調部111は、4ビット/画素 の色データを、その値に対応したパルス幅をもつパルス に変換する。

【0023】プリンタエンジン112は、記録紙にパル ス幅変調部111が出力するパルスの幅に応じて印刷ド ットの大きさを変化させて、対応する色の色素を記憶紙 に付着することにより記録紙上に階調のあるカラー画像 を形成する。

【0024】以下、以上示した各部の詳細について説明 する。

【0025】まず、16値ディザ部104について説明

【0026】図2に16値ディザ104部の構成を示 す。

【0027】図2において、減算部201は、各々7ビ ットの色データから、当該色データに対応する色(CY MK) 用のディザマトリクス202の出力値を減算す る。減算部201は論理回路の減算器で実現できる。

【0028】ディザマトリクス202は、CYMKの各 色毎に設けられており、それぞれ主走査方向5画素、副 40 域が黒の四角は、その画素についての7ビット/画素の 走査方向5画素の25画素を単位として、入力する各色 データごとに、その色データの画素の位置に対応した数 値を出力する。具体的には、たとえば、各ラインの開始 時にリセットされ色データ1画素の入力周期を1周期と するクロックで0から4までを循環的にカウントするカ ウンタと、各ページの開始時にリセットされ、色データ 1ラインの入力周期を1周期とするクロックで0から4 までを循環的にカウントするカウンタと、これらのカウ ンタの出力値をアドレスとして、記憶した数値が読み出 される、あらかじめ対応する数値が記憶されたレジスタ 50

ファイルで、各ディザマトリクス部202を構成するこ とができる。

【0029】図3はディザマトリクス202の内容の一 例を示したものである。

【0030】太線で囲まれた5画素を一ブロックとし、 この組み合わせでディザマトリクス202を構成する。 また、図示するように、C、M、Y、Kの4色でブロッ クの配置を変えてある。これは網点印刷におけるスクリ ーン角を色ごとに変えることで、各色が重ならないよう にして、色の再現性と色ズレによる画質劣化を抑えるた めである。

【0031】図2に戻り、オーバフローアンダフロー制 御部203は、減算部201の出力値が10進数で15 を越えた場合は値15を出力し、また0以下になった場 合は値0を出力し、その他の場合は減算部201の出力 値を、そのまま出力する。

【0032】このような構成において、16値ディザ部 104は、入力される0から75までの間の値をとる7 ビット/画素の色データから、その色データの画素の位 置に対応したディザマトリクス202の値を減算部20 1で減算する。そして、その出力が15以上であれば1 5とし、また0以下であれば0とする。0から15の間 の値はそのまま出力する。

【0033】ここで、このような処理の出力結果の例を

【0034】図4は、図3のY (イエロー) のディザマ トリクスの太線内の5画素分の色データについての処理 結果を示したものである。一つの四角が一画素を表す。 図4の各ブロックの上の数字は図2の16値ディザ10 4へ入力した色データの値を示している。ここでは、各 ブロックに対応する5画素の色データの値が全て等しく 上記数値である場合を示している。白の四角は、その画 素についての7ビット/画素の色データのディザ処理結 果の4ビット/画素の色データが0であることを示す。 黒の四角は、その画素についての7ビット/画素の色デ ータのディザ処理結果の4ビット/画素の色データが1 5であることを示す。また1/3の領域が黒の四角は、 その画素についての7ビット/画素の色データのディザ 処理結果の4ビット/画素の色データが5、2/3の領 色データのディザ処理結果の4ビット/画素の色データ が10であることを示す。この図のように、図3のY (イエロー) のディザマトリクスで16値ディザを行う と、入力色データが全体的に大きくなるにつれて左上の 画素、左下の画素、次に右上の画素という順で着色され る結果となる。

【0035】そして、ディザ処理を行わない場合には、 4ビット/画素の色データで0から15までの16段階 の階調しか表現できないが、ディザ処理を行ったときに は、0から75までの間での値をとる4ビット/画素の

色データで隣接5 画素の固まりを一画素と見做した場合 において0から75までの間での76段階の階調を表現 できる。

【0036】次に、3ビット化部105、2ビット化部 106、1ビット化部107について説明する。

【0037】図5に、3ビット化部105、2ビット化 部106、1ビット化部107の構成を示す。

【0038】図中の、ディザマトリクス301a.30 1 b は主走査方向2 画素、副走査方向2 画素の4 画素単 位として、入力する色データ1画素ごとに、その色デー 10 夕に対応する画素の位置に対応した数値を出力する。ま た、ディザマトリクス301cは主走査方向4画素、副 走査方向4画素の16画素単位として、入力する色デー タ画素ごとに、その色データの画素の位置に対応した数 値を出力する。これらは、前述した、16値ディザ部1 04のディザマトリクス202と同様に構成することが

【0039】次に、比較部302aは入力する色データ の下位1ビットの値が、ディザマトリクス301aより の入力値より大きな値であれば出力として1を出力し、 それ以外であれば0を出力する。比較部302bは入力 する色データの下位2ビットの値が、ディザマトリクス 301bよりの入力値より大きな値であれば出力として 1を出力し、それ以外であれば0を出力する。比較部3 02cは入力する色データの値が、ディザマトリクス3 01よりの入力値より大きな値であれば出力として1を 出力し、それ以外であれば0を出力する。比較部302 a, b, cは論理回路で構成する比較器で実現できる。 【0040】加算部303aは入力する色データの上位 3ビットの値と比較302aからの入力データを加算す 30 る。これは論理回路で構成する3ビット加算器で実現で きる。加算部303bは入力する色データの上位2ビッ トの値と、比較302bからの入力データを加算する。 これは論理回路で構成する2ビット加算器で実現でき

【0041】オーバフロー制御部304aは加算部30 3 a からの入力値が 1 0 進数で7を越える場合は7を出 カし、7を越えない場合は入力する値をそのまま出力す る。これは加算部303aとした加算器のキャリーアウ ト信号が1であったら出力を7に固定する論理回路によ 40 ってで実現できる。またオーバフロー制御部304bは 入力値が10進数で3を越える場合は3を出力し、3を 越えない場合は入力する値をそのまま出力する。これは 加算部303bとした加算器のキャリーアウト信号が1 であったら出力を3に固定する論理回路によって実現で きる。

【0042】次に動作について説明する。3ビット化部 105は4ビット/画素で表現される色データを3ビッ ト/画素の色データに変換する。

【0043】ここで、たとえば、4ビット/画素の色デ 50

ータの上位3ビットを出力することにより3ビット/画 素の色データへの変換を行うと、4ビットで16階調表 現が3ビットで8階調表現になる。たとえば、図5の例 のように主走査2画素、副走査2画素の4画素の色デー タが全て9という値を持っていた場合、全て4という値 となる。これは入力4ビット値が全て8の場合と同じ結 果である。そこで、本実施形態では、ディザマトリクス 301aの出力と画像データの下位1ビットを比較し て、その結果を上位3ビットに加算することにより、2 画素×2画素の領域で見た場合に、入力4ビット値が全 て8の場合と9の場合とで異なった階調が表現されるよ うにする。この例では、入力する4画素の色データが全 て9という値であった場合、5と4が交互に出されて平 均4.5の値になるので、全て4が出力され平均4とな る入力する4画素の色データが全て8という値であった 場合と異なった階調が2画素×2画素の領域で見た場合 に表現される。

【0044】同様に2ビット化部106は、色データの 下位2ビットをディザマトリクス301bの値と比較し てその結果の1ビットを上位2ビットに加算することで 2ビット化する。その結果、例えば互いに隣接する4画 素の色データが全て9という値であった場合、2と3が 出され、平均2.25の値になり、全て2が出力され平 均2となる入力する4画素の色データが全て8という値 であった場合と異なった階調が4画素の領域で見た場合 表現される。同様に1ビット化107は4ビットをディ ザマトリクス301cの値と比較してその結果の1ビッ トを出力する。その結果、例えば互いに隣接する16画 素が9という値であった場合、1が9個と0が7個出力 され、16画素で平均約0.56の値になり、1と0が 交互に出力され平均0.5となる入力する16画素の色 データが全て8という値であった場合と異なった階調が 16 画素の領域でみた場合表現される。

【0045】次に、画素位置対応選択部108について 説明する。

【0046】図6に、画素位置対応選択部108の構成 を示す。

【0047】図中、ビット数選択テーブル501は主走 査方向5画素、副走査方向5画素の25画素単位として 1 色データごとにその画素位置に対応した数値を出力す る。このような論理回路は、16値ディザ104のディ ザマトリクス202と同様に構成することができる。

【0048】図7に、このビット選択テープル108の 出力する数値と画素位置との関係を、各色別に示す。

【0049】図示するように、この数値と画素位置との 関係は、図3に示した16値ディザのためのディザマト リクス202a~dに対応しており、ディザマトリクス 202a~dにおける値が小さい画素位置ほど大きな値 を出力するようになっている。

【0050】次に、図6において、パラレルーシリアル

9

変換部502は、図1の3ビット化105の出力する3ビットの並列データを1ビット直列のデータに変換する。これは論理回路であるパラレルーシリアル変換器で実現できる。また、パラレルーシリアル変換部503は図1の2ビット化部106の2ビットの並列データを1ビット直列のデータに変換する。これは論理回路であるパラレルーシリアル変換器で実現できる。

【0051】選択部504は、ビット選択テーブル50 1の出力する値に応じて、3ビット化部105、2ビット化部106、1ビット化部107の出力のうちの一つ 10 を選択して出力する。これは論理回路であるセレクタで 実現できる。

【0052】シリアルーパラレル変換部505は選択部504が出力する1ビット直列のデータを、複数ビット (例えば32ビット)並列に出力する。これは論理回路であるシリアルーパラレル変換回路で実現できる。

【0053】以上の構成において、画素位置対応選択部108は、処理の対象となる画素の位置に応じてビット数選択テーブル501から選択部504の選択内容を制御する値を出力する。その値により、選択部504は、3ビット画素データの1ビットシリアル変換後のデータ、2ビット画素データの1ビットシリアル変換後のデータ、または1ビット画素データを選択する。その出力をシリアルーパラレル変換505でパラレル変換し、32ビット蓄積されるごとに画像メモリ109へ出力する。

【0054】この結果、各色データについて、図3に示した16値ディザのためのディザマトリクス202a~dの値0、15に対応する画素位置の画素の色データについては3ビット化部105で処理された3ビットのデータについては2ビット化部106で処理された3ビットのデータが選択され、値45、60に対応する画素位置の画素の色データについては1ビット化部106で処理された1ビットのデータが選択され、32ビットのデータにパラレル化された後、画像メモリ109に書き込まれる。

【0055】さて、このようにして、32ビット並列に画像メモリ109に書き込まれた色データは、画像メモリ109に1ページ分の色データが蓄積された後、書き込まれた順に読み出され、図1の4ビット化部110に供給される。

【0056】次に、図1の4ビット化部について説明する。

【0057】図8に、4ビット化部110の構成を示す。

【0058】ビット数選択テーブル705は、図6に示した画素位置対応選択部108のビット数選択テーブル501と同様の部位であり、4ビット化110で処理しようとする色データの画素位置に応じた数値を出力す

る。具体的には、3ビット化部105で処理された3ビットの色データを処理するときには3を、2ビット化部106で処理された2ビットの色データを処理するときには2を、1ビット化部107で処理された1ビットの色データを処理するときには1を出力する。

10

【0059】クロック発生部701はビット数選択テーブル705の出力に応じて、一画素の処理期間内にシフタ702に入力するクロックを発生する。ビット数選択テーブル705の出力値が3の場合は一画素の処理期間内に3クロック分のパルスを発生する。テーブル出力が2の場合は2クロック分のパルスを発生する。テーブル出力が1のときは1クロック分のパルスを発生する。これは論理回路であるカウンタとその出力を選択するセレクタと組み合わせて実現できる。

【0060】シフタ702は画像メモリ109から読み出された32ビットのパラレル入力データを格納し、格納した入力データの上位3ビットを出力する。また、シフタ702は、クロック発生701の出力するクロックにより下位ビットから上位ビット方向に格納したデータをクロック数分ビットシフトする。これは論理回路であるシフトレジスタで実現できる。

【0061】3-4変換部703aは、シフタ702が出力する3ビットの入力データを4ビットのデータに変換して出力する。これはアドレスに3ビットデータを入力し、そのアドレスに格納されている4ビットのデータを出力するレジスタファイルで実現できる。2-4変換部703bはシフタ702の出力する3ビットのうちの上位2ビットの入力データを4ビットのデータに変換して出力する。これはアドレスに2ビットデータを入力し、そのアドレスに格納されている4ビットのデータを出力するレジスタファイルで実現できる。1-4変換部703cはシフタ702が出力する3ビットのうちの上位1ビットの入力データを4ビットのデータに変換して出力する。これはアドレスに1ビットデータを入力し、そのアドレスに格納されている4ビットのデータを出力するレジスタファイルで実現できる。

【0062】次に、選択部704はビット数変換テーブル705の値に応じて、3-4変換部703a、2-4変換部703cの出力のうちの、一つを選択して出力する。これは論理回路であるセレクタで実現できる。

【0063】このような構成において、4ビット化部110は画像メモリ109に蓄積された、画素位置ごとに異なるビット数 (3ビット、2ビット、1ビット)で画像メモリ109に蓄積され、読み出された画像データを4ビットの画像データに変換する。すなわち、最初に画像メモリ109から32ビットのデータがシフタ702にラッチされる。次にビット数選択テーブル705から、処理の対象となる色データビット数が出力される。たとえばビット数選択テーブル705の出力が3のと

き、シフタ702の上位3ビットのデータを3-4変換部703で4ビットに変換した値が選択部704で選択されて出力する。その後、クロック発生701から3クロック分のパルスが出力されシフタ内の画素データが3ビット分上位方向にシフトされて、次の画素のデータが最上位にくる。そしてビット数変換テーブルの出力が2の場合、シフタの上位2ビットが2-4変換部704で4ビットのデータに変換され選択部704から出力される。そしてクロック発生701より2クロック分のパルスが出力されシフタ内のデータが2ビット分上位方向に10シフトされる。以下同様にビット数選択テーブル705の出力値に応じて各画素のデータが順次4ビットのデータに変換され、選択部704で選択され図1のパルス幅変調部111に供給される。

【0064】ここで、バルス幅変調111に供給される 色データは、全て4ビットとなるが、個々の色データの 取り得る値の数は、異なっている。3ビットから4ビットに変換された色データの取り得る値が最も多く、1ビットから4ビットに変換された色データの取り得る値の 数が最も少ない。このことは、3ビットから4ビットに20 変換された色データが単独で表現できる階調数が最も多く、1ビットから4ビットに変換された色データ単独で表現できる階調数が最も多く、1ビットから4ビットに変換された色データ単独で表現できる階調数が最も少ないと捕らえることができる。

【0065】次に、図1のバルス幅変調部111について説明する。

【00.66】図9(a)にバルス幅変調部111の実施例を示す。D/A801は入力される4ビットのデジタル信号をアナログ信号に変換して出力する機能である。これは一般のD/A変換器で実現できる。

【0067】ノコギリ波発生部802は画素クロックが1の期間は電圧が時間の経過に比例して直線状に上昇し、画素クロックが0の期間は電圧がグランドレベルにリセットするノコギリ波電圧を発生する。これはコンデンサと抵抗とオべアンプの組み合わせで実現できる。

【0068】比較部803はD/A801の出力電圧が下部のノコギリ波電圧より大きい場合に1を出力し、それ以外の場合0を出力する。これはアナログコンパレータで実現できる。

【0069】このような構成において、まず最初に、4 40 ビット画像信号をD/A801でアナログ信号に変換する。比較部803はD/A801の出力とノコギリ波電圧を比較し、D/A801の出力がノコギリ波電圧より大きいとき1を出力する。その結果、図9(b)、PW M出力として示すように入力画像信号に比例して、画像信号が大きいほどパルス期間が長いパルス信号が得られる。このパルス信号は、図1のプリンタエンジン112 に供給される。

【 O O 7 O 】 プリンタエンジン 1 1 2 は、このパルス信 号に変換された色データの画素位置に対応する用紙上の .50

領域に、パルス期間、対応する色を印刷を行うよう動作 する。

【0071】図10に、以上のような動作によって、用紙上に印刷されたドットの形状の例を示す。

【0072】図10(a)は、従来の2ビットの色データを用いた場合を示しており、図10(b)が本実施形態における場合を示している。

【0073】さて、図中において、太枠の四角は一画素分の印刷領域を示している。また四角内の細線の長方形は印刷の単位を示している。また、図10の(a)および(b)は図2のディザマトリクス202内の太線で囲った隣接する5画素分の印刷領域を示したものである。

【0074】図示するように、(a)の従来の場合は画素位置に依存せず2ビット/画素の色データをパルス幅変調して印字するため5画素全てについて0/3印刷、1/3印刷、2/3印刷、3/3印刷の4通りの4階調を表現する。

【0075】これに対し(b)の本実施形態では、図3のディザマトリクスの値が小さい画素位置(ごの例では左上と左下の2画素)では3ビット/画素のデータをパルス幅変調して印字するため一画素分の領域で0/7印刷から7/7印刷まで8通りの印刷ができる。また右上の画素は2ビット/画素のデータをパルス幅変調して印字するため0/3から3/3までの4通り、右下2画素は1ビット/画素のデータをパルス幅変調して印字するため0/1と1/1の2通りの印刷が行える。

【0076】ここで、図3のディザマトリクスの値が小 さい画素位置の色データの値は、白に近い低濃度領域に おける階調を表すことになる。低濃度領域以外では、図 3のディザマトリクスの値が小さい画素位置は領域全て が印刷されることになるが、低濃度領域では、図3のデ ィザマトリクスの値が小さい画素位置の領域は全て印刷 されず、その一部分のみが印刷される。したがって当該 領域内で、どれだけ小さい部分を単位に印刷を行えるか が、直接画像の階調の品質に大きな影響を与える。そし て、このように低濃度領域における表現可能な階調を増 やすことは、少ないデータ量で、画像全体の品質を向上 する上で効果的である。なぜならば、一律に色データの ビット数を少なくしても、高濃度領域では画像品質に比 較的差がみられないのに対し、図11 (a) に示すよう に低濃度領域では、孤立ドットと呼ばれる孤立した点が 表れ、これが画像の品質を大きく劣化させるが、本実施 形態のように低濃度領域における階調表現数のみを増加 することにより、このような孤立ドットの発生を、一律 に色データのビット数を増やす場合に比べ少ないデータ 量で抑止ずることができるからである。

【0077】たとえば、(a)および(b)の場合は両方とも5画素で10ビット、1画素あたり平均2ビットの色データ量であるが、本実施形態の場合は、孤立ドットの目立ちやすい低濃度領域はビット数を多くし、目立

ちにくい高濃度領域はビット数を少なくすることで従来 の3ビット/画素の場合と同等な品質の画像を形成する ことができる。

【0078】これは、図3に示したような、濃度が上がるにつれてドットが太っていくようなディザマトリクスを用いた、いわゆる集中型ディザを採用した場合に限られず、たとえば、濃度の上昇に伴い順次ドットを分散的に配置していく、分散型ディザを用いる場合も同様である。ここで、図12に、分散型ディザを用いた場合に印刷できる単位を、図10に示した場合と同様5画素分に 10ついて示す。図12の左上と右下の画素位置の領域は、濃度が低いときに、一部のみが印刷される領域である。

【0079】さて、最後に、本実施形態に係るカラープリンタシステムの、各部の配置例を図13に示す。 【0080】図13においてホストコンピュータ110

【0080】図13においてホストコンピュータ110 1は、一般的な構成を備えたコンピュータであり、印刷 する画像情報を作成する。プリンタコントーラ1102 は入力された画像データをプリンタエンジンに印刷可能 なアナログ情報に変換する。画像ファイル1103は、 ホストコンピュータに接続したハードディスク装置など 20 を用いて構成された、ホストコンピュータで作成した画 像情報を蓄える部位である。色変換部1104はR. G、Bの色情報をC、M、Y、Kの色情報に変換するも のであり、図1の色変換部102に対応する。多値ディ ザ部1105はディザ処理を行い、例えば8ビット/画 素の画像データを4ビット/画素に変換するものであ り、図2の16値ディザ部に対応する。ビット数削減部 1106は画素位置に応じて異なるビット削減を行うも ので図1の105, 106, 107, 108に対応す る。画像メモリ1107は画像データを一ページ分蓄積 30 するもので図1の画像メモリ109に対応する。パルス 幅変調部1108は画像データを値に応じたパルス幅に 変換するもので図1の111に対応する。プリンタエン ジン1109は記録紙に画像情報を印字する機能であ り、図1のプリンタエンジン112に対応する。

【0081】図13の(a)はホストコンピュータ1101からR, G, Bの各色データをプリンタコントローラに伝送して、それ以後を全てプリンタコントローラ1102が実行する配置であり、図13の(b)はホストコンピュータ1101で多値ディザ処理まで行ってから40プリンタコントローラ1102に画像データを伝送する配置であり、図13(c)はホストコンピュータ1101でビット削減1106まで行ってからプリンタコントローラ1102に画像データを伝送する配置である。

【0082】また、各配置において、一般的には、プリンタコントローラ1102とプリンタエンジン1109は、一つのプリンタ装置として構成する。

14

【0083】以上、本発明の一実施形態について説明した。なお、本実施形態では、カラーレーザプリンタシステムへの適用を例にとり、本発明に係る画像形成装置の実施形態を説明したが、カラーレーザープリンタシステム以外の各種プリンタシステムや、表示装置などの、その他の画像形成装置に本発明を適用するようにしてもよい。また、以上の実施形態で示した各処理を、ソフトウエア的に実現するようにしてもよい。

[0084]

【発明の効果】以上のように、本発明によれば、画像データのビット数を従来と同等である場合に、従来よりより高品質の画像を形成することができる画像形成装置を 提供することができる。

【図面の簡単な説明】

【図1】カラーレーザプリンタシステムの構成を示すブロック図である。

【図2】16値ディザの構成を示すブロック図である。

【図3】16値ディザに用いるディザマトリクスを示した図である。

【図4】16値ディザの出力例を示した図である。

【図5】 3 / 2 / 1 ビット化の構成を示したブロック図である。

【図 6 】画素位置対応選択の構成を示したブロック図である。

【図7】ビット選択テーブルの出力を示した図である。

【図8】4ビット化の構成を示したブロック図である。

【図9】パルス幅変調の構成を示したブロック図である。

【図10】印刷の単位を示した図である。

| 【図11】孤立ドットの発生のようすを示した図である。

【図12】分散型ディザを採用した場合の印刷の単位を示した図である。

【図13】各部位の配置例を示したブロック図である。 【符号の説明】

101 PC

102 色変換部

103 面順次選択部

104 16値ディザ部

105 3ビット化部

106 2ビット化部

107 1ビット化部

108 画素位置対応選択部

109 画像メモリ

110 4ビット化部

111 パルス幅変調部

112 プリンタエンジン

【図11】

【図13】

