

1. fejezet

Algoritmus

A Structure from motion (SfM) folyamat segítségével 3D rekonstrukciót hajthatunk végre egy képpár segítségével.

- 1. Két kép közötti ritka ponthalmazok megfeleltetése (pontmegfeleltetés): az első kép sarkainak azonosítása a detectMinEigenFeatures függvénnyel, majd azok követése a második képre a vision.PointTracker segítségével.
- 2. Az esszenciális mátrix becslése estimateEssentialMatrix használatával.
- 3. Kamera elmozdulásának kiszámítása estrelpose függvénnyel.
- 4. Két kép közötti sűrű ponthalmazok megfeleltetése (pontmegfeleltetés): több pont kinyeréséhez újra kell detektálni a pontokat a detectMinEigenFeatures függvény segítségével a 'MinQuality' opciót használva. Ezt követi a sűrű ponthalmaz követése a második képre a vision. PointTracker használatával.
- 5. Az illeszkedő pontok 3D helyzeteinek meghatározása a *triangulate* segítségével (háromszögelés).

2. fejezet

Kód magyarázata

2.1. Képpár betöltése

1. fullfile(string1, string2, ...) = az argumentumként kapott stringekből összeállít egy elérési útvonalat, pl.:

```
path = fullfile('myfolder', 'mysubfolder')
path = 'myfolder\mysubfolder\'
```

toolboxdir(toolbox) = visszaadja az argumentumként kapott toolbox abszolút elérési útvonalát.

- 2. imageDatastore(path) = létrehoz egy ImageDatastore objektumot a kapott elérési útvonallal meghatározott képekből. Az ImageDatastore objektum segítségével egy mappában található összes képet össze lehet gyűjteni egy változóba (de alapból nem lesz az összes kép egyszerre betöltve).
- 3. readimage(datastore, n) = betölti az n. képet a megadott datastoreból.
- 4. figure = létrehoz egy új, üres ábra ablakot.
- 5. imshowpair(image1, image2, 'montage') = a meghatározott két képet egymás mellé helyezi a legutolsó ábrán.
- 6. title('string') = hozzáad egy címet a legutolsó ábrához.

2.2. A Camera Calibrator alkalmazás segítségével előre kiszámolt kamera paraméterek betöltése.

1. load(file_name.mat) = betölti egy korábban elmentett workspace adatait a jelenlegi workspace-be. A workspace egy ideiglenes tároló amely a MATLAB elindítása óta létrehozott változókat tárolja. Alapértelmezetten a MATLAB ablak jobb oldalán látható. A workspace-t el lehet menteni, így a benne tárolt változókat később vissza lehet tölteni a MATLAB-ba.

2.3. Lencse által okozott torzítás eltávolítása.

1. undistortImage(image, intrinsics) = a második argumentumként megadott kamera paramétereket felhasználva eltűnteti a kamera lencséje által okozott torzítást a megadott képről.

A kamera kalibrációja során kapott kamera paramétereket és a torzítási együtthatókat felhasználva kiszámítjuk a bemeneti kép minden pixelének eredeti pozícióját. Az egyes pixelek pozícióját az alábbi torzítások módosítják:

• Radiális torzítás = kiváltó oka, hogy a lencse szélén áthaladó fény jobban törik, mint a lencse közepén környezetében áthaladó fény. Ez kiszámolható:

$$x_d = x_u(1 + k_1r^2 + k_2r^4)$$
$$y_d = y_u(1 + k_1r^2 + k_2r^4)$$

(Ahol x_u, y_u = torzulásmentes koordináták; x_d, y_d = torzított koordináták; k_1, k_2 = radiális torzítási együtthatók; $r^2 = x_u^2 + y_u^2$)

• Tangenciális fordítás = előfordul, ha a kameraszenzor és a lencse nem állnak tökéletesen párhuzamosan. Ez kiszámolható:

$$x_d = 2p_1x_uy_u + p_2(r^2 + 2x_u^2)$$
$$y_d = 2p_2x_uy_u + p_1(r^2 + 2y_u^2)$$

(Ahol x_u, y_u = torzulásmentes koordináták; x_d, y_d = torzított koordináták; p_1, p_2 = tangenciális torzítási együtthatók; $r^2 = x_u^2 + y_u^2$)

Az egyes pixelek korrigált helyének kiszámítása nem egész számú értékeket is előállít. Mivel a nem egész szám nem lehet pixel koordináta, ezért bilineáris interpolációt is végre kell hajtani. A bilineáris interpoláció során, a legközelebbi négy szomszédot felhasználva először lineáris interpolációt hajtunk végre az egyik irányba (pl. az x tengely mentén), majd pedig a másik irányba (az y tengely mentén):

$$out_P = I_1(1 - \Delta X)(1 - \Delta Y) + I_2(\Delta X)(1 - \Delta Y) + I_3(1 - \Delta X)(\Delta Y) + I_4(\Delta X)(\Delta Y)$$

(Ahol I_1, I_2, I_3, I_4 = a szomszédos négy koordináta intenzitása az eredeti, torzított képen; $\Delta X, \Delta Y$ = a nem egész értékű koordinátákkal rendelkező vizsgált pixel és a vizsgált pixelhez legközelebb eső, egész értékű koordinátákkal rendelkező szomszédai közötti távolság; out_P = végeredményként kapott pixel intenzitás)

A szomszédos pixelek efféle súlyzott átlagolásával, az interpoláció eredményeképp egy pixel intenzitás értéket kapunk, amely a legközelebbi egész érték koordinátával rendelkező pixel intenzitása lesz.

Az előállított, torzítatlan képen néhány pixel (leginkább a kép szélein) nem rendelkezik megfelelő pixel párral az eredeti, torzított képről (ezek azok a területek, ahol az eredeti képből nincs információ). Ezek a pixelek alapértelmezetten 0 értéket kapnak (feketék lesznek).

2.4. Pontmegfeleltetés a képek között.

1. detectMinEigenFeatures(grayImage, MinQuality=0.1) = a minimum sajátérték algoritmust (Shi & Tomasi, Minimum Eigenvalue Algorithm) használva keresi meg a kép sarokpontjait (a sarokpont jelen esetben olyan pixeleket jelentenek, amelyek éles változást mutatnak a környező pixelekhez képest). Szürkeárnyalatos képet vár argumentumként, ezért a képet még előtte az im2gray függvénnyel szürkeárnyalatosra változtatjuk. A MinQuality argumentum a detektált sarokpontok minőségét határozza meg. Az értékének [0, 1] tartományból választhatunk. Magasabb érték, jobb minőségű, viszont kevesebb sarokpontot is eredményez.

3. fejezet

Forrás

- $\bullet \ https://www.mathworks.com/help/vision/ug/structure-from-motion-from-two-views.html \\$
- $\bullet \ \ https://www.mathworks.com/help/vision/ref/undistortimage.html?s_tid=doc_ta$
- https://www.mathworks.com/help/visionhdl/ug/image-undistort.html
- https://e-learning.ujs.sk/pluginfile.php/23441/mod_resource/content/1/01-ProjektivKamera.pdf
- $\bullet \ https://www.mathworks.com/help/vision/ref/detectmineigenfeatures.html$