- 1. **(20 баллов)**. Пусть задана матрица $A \in \mathbb{R}^{m \times n}, m \geq n$.
 - (a) Покажите, что A можно привести к верхнетреугольной матрице R с помощью преобразований Хаусхолдера, используя

$$2mn^2 - \frac{2}{3}n^3 + \mathcal{O}(mn),$$
 H: $\in \mathbb{R}^{M \times N}$

арифметических операций.

(1)
$$H = He \in \mathbb{R}^{m \times m}$$
 $V^TA - (m+m-1)n = nm-n$ one payout

$$H = H_{\ell} \in \mathbb{R}^{m \times m}$$
 $V = (I - 2VV^{T})A = A - 2VV^{T}A = A - 2V(V^{T}A) = A - V(2V^{T}A)$
 $V = A - 2VV^{T}A = A - 2VV^{T}A = A - 2V(V^{T}A) = A - V(2V^{T}A)$
 $V = A - 2VV^{T}A = A - 2VV^{T}A = A - 2V(V^{T}A) = A - V(2V^{T}A)$
 $V = A - 2VV^{T}A = A - 2VV^{T}A = A - 2V(2V^{T}A) = A - V(2V^{T}A)$
 $V = A - 2VV^{T}A = A - 2VV^{T}A = A - 2V(2V^{T}A) = A - V(2V^{T}A)$
 $V = A - 2VV^{T}A = A - 2VV^{T}A = A - 2VV^{T}A = A - 2V(2V^{T}A)$
 $V = A - 2VV^{T}A = A - 2VV^{T}A = A - 2VV^{T}A = A - 2V(2V^{T}A)$
 $V = A - 2VV^{T}A = A - 2VV^{T}A = A - 2VV^{T}A = A - 2V^{T}A = A - 2V^{T}A$

$$(3) H_{\lambda} = \begin{pmatrix} 1 & 0 \\ 0 & H(V_2) \end{pmatrix} \in \mathbb{R}^{m \times m} \quad H(V_{\lambda}) \in \mathbb{R}^{(m-1) \times (m-1)}$$

Dance na k-où umepousur
$$Hu = \begin{pmatrix} Iu \\ H(Uu) \end{pmatrix}$$
 u non-bo oneparsuri:

B umore
$$\sum_{k=0}^{N-1} (4mn - 4ku - 4ku + 4u^2) = 4mn^2 - 4n \sum_{k=0}^{N-1} k - 4m \sum_{k=0}^{N-1} k + 4 \sum_{k=0}^{N-1} k^2 = 4m \sum_{k=0}^{N-1} k - 4m \sum_{k=0}^{N-1} k + 4 \sum_{k=0}^{N-1} k^2 = 4m \sum_{k=0}^{N-1} k - 4m \sum_{k=0}^{N-1} k + 4 \sum_{k=0}^{N-1} k^2 = 4m \sum_{k=0}^{N-1} k - 4m \sum_{k=0}$$

$$= 4mn^{2} - 4n \cdot \frac{n(n-1)}{2} - 4m \cdot \frac{n(n-1)}{2} + 4 \cdot \frac{(n-1)(n-2)(2n-3)}{6} =$$

$$= 4mn^2 - 2(n+m)(n^2-n) + \frac{2}{3}(2n^3 + O(n)) = 2mn^2 - 2n^3 + \frac{4}{3}n^3 + O(mn) =$$

=
$$2mn^2 - \frac{2}{3}n^3 + O(mn)$$

(b) Покажите, что количество арифметических операций для вычисления
$$Q \in \mathbb{R}^{m \times n}$$
 из тонкого QR будет:

$$2mn^2 - \frac{2}{3}n^3 + \mathcal{O}(mn).$$

$$Q = H_1 ... H_n \cdot [\bar{b}]_{(M-n)\times n}^{n\times n}$$
 $H \cdot [\bar{b}] = H - \sigma_{noc} m \times n u_s H$
 $M \times n$
 $M \times n$

$$=2mn^2-3n^3+\frac{4}{3}n^3+O(mn)=2mn^2-\frac{2}{3}n^3+O(mn)$$

2. (20 баллов). Запишем решение x_{μ} задачи наименьших квадратов с ℓ_2 -регуляризацией

$$\|Ax - b\|_2^2 + \mu \|x\|_2^2 \to \min_x$$

для заданной матрицы $A \in \mathbb{R}^{m \times n}$ ранга r, вектора правой части $b \in \mathbb{R}^{m \times n}$ и константы $\mu \in \mathbb{R}$ в виде $x_{\mu} = B(\mu)b$ с матрицей $B(\mu) \in \mathbb{R}^{n \times m}$, которая выражается через A и μ (см. лекцию).

(a) Покажите, что для $\mu > 0$ справедливо:

$$||B(\mu) - A^+||_2 = \frac{\mu}{(\mu + \sigma_r(A)^2) \, \sigma_r(A)}.$$

$$A^{+} = V \Sigma^{+} U^{T} , \Sigma^{+} = \begin{bmatrix} \Sigma_{1}^{-} & \mathcal{B} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

$$B(\mu) = (A^{T}A + \mu I)^{-1}A^{T}$$

$$\|B(\mu) - A^{+}\|_{2} = \|(A^{T}A + \mu I)^{-1}A^{T} - A^{+}\|_{2} = \|(V \Sigma^{T} \Sigma^{V}^{T} + \mu V V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(V(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(V(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(V(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V \Sigma^{T}U^{T}\|_{2} = \|(\Sigma^{2}V^{T} + \mu V^{T})^{T}V \Sigma U^{T} - V$$

(b) Покажите, что $B(\mu) \to A^+$ и что $x_\mu \to A^+ b$ при $\mu \to +0$.

1)
$$B(\mu) \rightarrow A^{+}$$
, $\mu \rightarrow +0$ $(=)$ $\lim_{N \rightarrow +0} \| B(\mu) - A^{+} \|_{2} = 0$, $\lim_{N \rightarrow +0} \frac{M}{(6r^{2} + \mu)6r} = \lim_{N \rightarrow +0} \frac{0}{6r^{3}} = 0$

2) $2(\mu) = B(\mu)B \Rightarrow B(\mu)B \rightarrow A^{+}B$, $\mu \rightarrow +0$

3. **(15 баллов)**. Покажите, что для решений $x \in \mathbb{R}^n$ задачи $||Ax - b|| \to \min_x$, где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ заданы, справедливо:

$$||x||_2^2 = ||A^+b||_2^2 + ||(I - A^+A)y||_2^2,$$

где
$$y$$
 — произвольный вектор (см. обозначения в лекции). Сделайте отсюда вывод, какое решение имеет наименьшую $\|x\|_{2}$.

Значем, ято ви римения имеет вир $x = A^+b + (I - A^+A)y \ \forall y \in \mathbb{R}^n$ и $X_* = A^+b$ имеет имения объеме значение $\|x\|_2$. Народ поможные : $\|x\|_2^2 = \|A^+b\|_2^2 + \|(I - A^+A)y\|_2^2 <=>$ (=> $\angle X_*K^* > = \angle A^+b + (I - A^+A)y$, $A^+b + (I - A^+A)y > = \angle A^+b$, $A^+b > + \angle (I - A^+A)y$, $(I - A^+A)y > = A^+b + \angle (I - A^+A)y$, $(I - A^+A)y > = A^+b + \angle (I - A^+A)y$, $(I - A^+A)y > = A^+b + \angle (I - A^+A)y$, $(I - A^+A)y > = A^+b + \angle (I - A^+A)y$, $(I - A^+A)y > = A^+b + \angle (I - A^+A)y$, $(I - A^+A)y > = A^+b + \angle (I - A^+A)y > = A^+b + \angle (I$

4. **(25 баллов)**. Пусть ненулевые $a,b \in \mathbb{R}^n, n \geq 2$ ортогональны друг другу и

$$A = a \circ a \circ a + 2(a \circ b \circ a) + 3(b \circ b \circ a).$$

- (a) Запишите матрицы $U, V, W \in \mathbb{R}^{n \times 2}$ из канонического разложения A. **Подсказка:** используйте линейность тензорного произведения по каждому из аргументов.
- (b) Запишите ядро $G \in \mathbb{R}^{2 \times 2 \times 1}$ и факторы U, V, W из разложения Таккера A.

(*)
$$0 \otimes [a \ b] = \begin{pmatrix} a_1 a & a_1 b \\ a_2 a & a_2 b \end{pmatrix} \in N^2 \times 2$$
, unontigor numeritio nezabucuseon

5. (20 баллов). Пусть $A, B \in \mathbb{R}^{n \times n}$ — некоторые заданные матрицы, и пусть стоит задача вычисления матрично-векторного произведения:

$$y = (A \otimes B) x, \quad x \in \mathbb{R}^{n^2}.$$

- (a) Каково асимптотическое число арифметических операций для вычисления y по x без учета дополнительной структуры матрицы $(A \otimes B)$?
- (b) Предложите алгоритм вычисления y, имеющий асимптотическое число операций $\mathcal{O}(n^3)$. **Подсказка:** в этой задаче может помочь операция векторизации.

(a)
$$A \otimes B \in \mathbb{R}^{n^{\frac{1}{2}}n^{\frac{1}{2}}}$$

(b) $A \otimes B \in \mathbb{R}^{n^{\frac{1}{2}}n^{\frac{1}{2}}}$

(a) $A \otimes B \otimes \dots \otimes A \otimes B \otimes \mathbb{R}^{n^{\frac{1}{2}}}$

(a) $A \otimes B \otimes \dots \otimes A \otimes B \otimes \mathbb{R}^{n^{\frac{1}{2}}}$

(b) $A \otimes B \otimes \mathbb{R}^{n^{\frac{1}{2}}} \times \mathbb{R}^$

(c) C- y_{μ} $y_{$

Уммотение $BX: BX^{(i)}$ - умкомение вентора ка умри. - O(nlogn) 1.e. виго $n O(nlogn) = O(n^2logn)$.

Tycmb $BX = Y YA^{T} = (AY^{T})^{T} : A(Y^{T})^{(i)} max me za O(nlogn) u bæco O(n^{2}logn)$ Umorobak enonuroab nongraera O(n^{2}logn).