Galaxy Field Name	Abs Mag M	Photon Count	App Mag m	Dist in pc	Dist in Mpc	λ _{Kme asured} Κ Line	λ _{Hme asured} Η Line	$\Delta \lambda_{_{ m H}}$	$\Delta \lambda_{ m K}$	Velocity H	Velocity K	Velocity AVG
	-22											
	-22											
	-22											
	-22											
	-22											

km/sec/Mpc Using the Graph: Average Value of H = _

Useful Equations and Quantities

$$\mathbf{M} = \mathbf{m} + \mathbf{5} \, \tilde{\mathbf{n}} \, \mathbf{5} * \log \mathbf{D}$$

$$\mathbf{v}_{\mathbf{K}} = \mathbf{c} * \underline{\Delta \lambda_{\mathbf{K}}} \\ \lambda_{\mathbf{K}}$$

$$1$$
 light year = $.306$ pc

$$\log D = \underline{m \ \tilde{n} \ M + 5}{5}$$

$$\Delta \lambda_H = \lambda_{H~measured}$$
 - λ_H

$$1 \text{ MPC} = 1 \times 10^6 \text{ pc}$$

$$\mathbf{v}_{\mathbf{H}} = \mathbf{c} * \underline{\Delta \lambda_{\mathbf{H}}} \\ \lambda_{\mathbf{H}}$$

$$\Delta \lambda_K = \lambda_{K \; measured} \; \text{--} \; \lambda_K$$

Wavelength of K Line:

$$\lambda_{\rm K}=3968.47$$

Wavelength of H Line:
$$c = 3 \times 10^5 \text{ km/sec}$$

$$c = 3 \times 10^5 \text{ km/sec}$$

$$\lambda_{\rm H}=3968.47$$