第 6 次作业题解答

1. 求下列函数的二阶导数:

(1)
$$y = x \arcsin^2 x$$
, (2) $y = x (\sin(\ln x) + \cos(\ln x))$.

解: (1) 由题设可知
$$y' = \arcsin^2 x + \frac{2x \arcsin x}{\sqrt{1-x^2}}$$
, 于是

$$y'' = \frac{2 \arcsin x}{\sqrt{1 - x^2}} + \frac{2(\arcsin x + \frac{x}{\sqrt{1 - x^2}})\sqrt{1 - x^2} - (2x \arcsin x)\frac{-x}{\sqrt{1 - x^2}}}{1 - x^2}$$

$$= \frac{2 \arcsin x}{\sqrt{1 - x^2}} + \frac{2 \arcsin x + 2x\sqrt{1 - x^2}}{(\sqrt{1 - x^2})^3}$$

$$= \frac{2(2 - x^2) \arcsin x + 2x\sqrt{1 - x^2}}{(\sqrt{1 - x^2})^3}$$

(2) 由题设我们立刻可知

$$y' = \left(\sin(\ln x) + \cos(\ln x)\right) + x\left(\frac{\cos(\ln x) - \sin(\ln x)}{x}\right) = 2\cos(\ln x),$$

于是我们有 $y'' = -\frac{2\sin(\ln x)}{x}$.

2. 已知 f 三阶可导且 $y = f(x^2)$, 求 y'', y'''.

解: 由题设可知
$$y' = 2xf'(x^2), y'' = 2f'(x^2) + 4x^2f''(x^2),$$
 进而

$$y''' = 4xf''(x^2) + 8xf''(x^2) + 8x^3f'''(x^2)$$
$$= 12xf''(x^2) + 8x^3f'''(x^2).$$

3. 求下列函数指定阶数的导数:

(1)
$$y = \frac{1}{2-x-x^2}$$
, $x y^{(20)}$, (2) $y = e^{ax} \sin bx$, $x y^{(n)}$.

解: (1) 由题设可知
$$y^{(20)} = \frac{1}{3} \left(\frac{1}{x+2} - \frac{1}{x-1} \right)^{(20)} = \frac{20!}{3} \left(\frac{1}{(x+2)^{21}} - \frac{1}{(x-1)^{21}} \right)$$
.

(2) 方法 1. 由 Leibniz 公式可知

$$y^{(n)} = \sum_{k=0}^{n} \binom{n}{k} (e^{ax})^{(n-k)} (\sin bx)^{(k)} = e^{ax} \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \sin \left(bx + \frac{\pi}{2}k\right).$$

方法 2. 由题设可知

$$\begin{split} y^{(n)} &= & \operatorname{Im} \left(e^{(a+bi)x} \right)^{(n)} = \operatorname{Im} \left((a+bi)^n e^{(a+bi)x} \right) \\ &= & \operatorname{Im} \left(e^{ax} \sum_{k=0}^n \binom{n}{k} a^{n-k} (ib)^k e^{bix} \right) = \operatorname{Im} \left(e^{ax} \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k e^{i\frac{\pi}{2}k} e^{bix} \right) \\ &= & \operatorname{Im} \left(e^{ax} \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k e^{i(bx+\frac{\pi}{2}k)} \right) = e^{ax} \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \sin \left(bx + \frac{\pi}{2}k \right). \end{split}$$

4.
$$\Re \left\{ \begin{array}{l} x = e^{2t} \cos^2 t \\ y = e^{2t} \sin^2 t \end{array} \right.$$
, $\Re y''(x)$, $y'''(x)$.

解: 由题设可知 $\frac{\mathrm{d}x}{\mathrm{d}t} = e^{2t} \left(2\cos^2 t - \sin(2t)\right), \ \frac{\mathrm{d}y}{\mathrm{d}t} = e^{2t} \left(2\sin^2 t + \sin(2t)\right), \ \mathbb{N}$

$$y'(x) = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2\sin^2 t + \sin(2t)}{2\cos^2 t - \sin(2t)},$$

$$y''(x) = \frac{dy'(x)}{dt} \cdot \frac{1}{x'(t)} = \frac{4(\sin(2t) + \cos(2t))}{e^{2t}(2\cos^2 t - \sin(2t))^3},$$

$$y'''(x) = \frac{dy''(x)}{dt} \cdot \frac{1}{x'(t)} = \frac{8(3 + 2\sin(4t) - 2\sin(2t) + 2\sin^2(2t))}{e^{4t}(2\cos^2 t - \sin(2t))^5}.$$

5. 设隐函数 y = y(x) 由方程 $e^y + xy - e = 0$ 确定, 求 y''(x).

解: 将方程关于 x 求导可得 $y' = -\frac{y}{e^y + x}$, 于是我们有

$$y'' = -\frac{y'(e^y + x) - y(e^y y' + 1)}{(e^y + x)^2} = \frac{y(2e^y + 2x - ye^y)}{(e^y + x)^3}.$$

6. 设 $f(x) = \arctan x$. $\forall n \in \mathbb{N}$, 证明:

$$(1+x^2)f^{(n+2)}(x) + 2(n+1)xf^{(n+1)}(x) + n(n+1)f^{(n)}(x) = 0,$$

并求 $f^{(n)}(0)$.

证明: 方法 1. 对 $n \ge 0$ 应用数学归纳法证明上述等式成立. 当 n = 0 时成立, 由于 f 为初等函数, 故无穷可导且 $\forall x \in \mathbb{R}$, 均有

$$f'(x) = \frac{1}{1+x^2}, \quad f''(x) = -\frac{2x}{(1+x^2)^2},$$

于是 $(1+x^2)f''(x) + 2xf'(x) = 0$, 也即上述等式在 n=0 时成立. 现在假设所证等式对 $n \ge 0$ 成立, 也即 $\forall x \in \mathbb{R}$, 均有

$$(1+x^2)f^{(n+2)}(x) + 2(n+1)xf^{(n+1)}(x) + n(n+1)f^{(n)}(x) = 0.$$

将上式对 x 求导可得

$$\begin{split} 0 &= & \left((1+x^2)f^{(n+2)}(x) + 2(n+1)xf^{(n+1)}(x) + n(n+1)f^{(n)}(x) \right)' \\ &= & (1+x^2)'f^{(n+2)}(x) + (1+x^2)f^{(n+3)}(x) + 2(n+1)f^{(n+1)}(x) \\ &+ 2(n+1)xf^{(n+2)}(x) + n(n+1)f^{(n+1)}(x) \\ &= & (1+x^2)f^{(n+3)}(x) + 2(n+2)xf^{(n+2)}(x) + (n+1)(n+2)f^{(n+1)}(x), \end{split}$$

也即所证等式对 n+1 也成立.

于是由数学归纳法可知所证等式对所有 $n \ge 0$ 均成立.

方法 2. 由于 f 为初等函数, 故无穷可导且 $\forall x \in \mathbb{R}$, 均有

$$f'(x) = \frac{1}{1+x^2}, \quad f''(x) = -\frac{2x}{(1+x^2)^2},$$

从而 $(1+x^2)f''(x)+2xf'(x)=0$,也即所证结论在 n=0 时成立. 于是由 Leibniz 公式可知, $\forall n \geq 1$, 我们有

$$0 = ((1+x^{2})f''(x) + 2xf'(x))^{(n)}$$

$$= (1+x^{2})f^{(n+2)}(x) + n(1+x^{2})'f^{(n+1)}(x) + \frac{1}{2}n(n-1)(1+x^{2})''f^{(n)}(x)$$

$$+2xf^{(n+1)}(x) + 2nx'f^{(n)}(x)$$

$$= (1+x^{2})f^{(n+2)}(x) + 2nxf^{(n+1)}(x) + n(n-1)f^{(n)}(x)$$

$$+2xf^{(n+1)}(x) + 2nf^{(n)}(x)$$

$$= (1+x^{2})f^{(n+2)}(x) + 2(n+1)xf^{(n+1)}(x) + n(n+1)f^{(n)}(x).$$

因此所证等式成立.

特别地, $\forall n \in \mathbb{N}$, 我们有 $f^{(n+2)}(0) + n(n+1)f^{(n)}(0) = 0$, 也即

$$f^{(n+2)}(0) = -n(n+1)f^{(n)}(0).$$

但 f(0) = 0, f'(0) = 1, 于是 $\forall n \ge 0$, 我们有

$$f^{(2n)}(0) = 0, \ f^{(2n+1)}(0) = (-1)^n (2n)!.$$

7. 设 $a_0, \ldots, a_n \in \mathbb{R}$ 使得 $\sum_{k=0}^n \frac{a_k}{k+1} = 0$, 求证: $\sum_{k=0}^n a_k x^k$ 在 (0,1) 内有零点.

证明: $\forall x \in \mathbb{R}$, 定义 $f(x) = \sum_{k=0}^{n} \frac{a_k}{k+1} x^{k+1}$, 则 f 为初等函数,因此可导.又由题设得 f(0) = f(1) = 0,则由 Rolle 知, $\exists \xi \in (0,1)$ 使得 $0 = f'(\xi) = \sum_{k=0}^{n} a_k \xi^k$. 故所证结论成立.

8. 设 I 为区间, M > 0, 而函数 $f: I \to \mathbb{R}$ 使得 $\forall x, y \in I$, 均有

$$|f(x) - f(y)| \leqslant M|x - y|^2.$$

求证: 函数 f 恒为常数.

证明: $\forall x \in I$, 由夹逼原理可知 $\lim_{I \ni y \to x} |f(y) - (x)| = 0$, 故 f 在点 x 处连续, 从而 f 为连续函数. 任取 x 为 I 的内点, 由夹逼原理可知

$$\lim_{y \to x} |\frac{f(y) - (x)}{y - x}| = 0,$$

故 f 在点 x 可导且 f'(x) = 0, 进而由 Lagrange 中值定理知 f 恒为常数.

9. 求证: $py^{p-1}(x-y) \leq x^p - y^p \leq px^{p-1}(x-y)$, 其中 0 < y < x, p > 1.

证明: $\forall x > 0$, 定义 $f(x) = x^p$. 则 f 为初等函数, 故可导且 $f'(x) = px^{p-1}$. 于是由 Lagrange 中值定理可知, $\forall x, y > 0$, 当 x > y 时, $\exists \xi \in (y, x)$ 使得

$$x^{p} - y^{p} = f(x) - f(y) = f'(\xi)(x - y) = p\xi^{n-1}(x - y).$$

又 $y^{p-1} \leq \xi^{p-1} \leq x^{p-1}$, 故所证结论成立.

10. 设 $f,g,h \in \mathcal{C}[a,b]$ 在 (a,b) 内可导, 求证: $\exists \xi \in (a,b)$ 使得

$$\begin{vmatrix} f(a) & g(a) & h(a) \\ f(b) & g(b) & h(b) \\ f'(\xi) & g'(\xi) & h'(\xi) \end{vmatrix} = 0$$

证明: $\forall x \in [a, b]$, 我们定义

$$F(x) = \begin{vmatrix} f(a) & g(a) & h(a) \\ f(b) & g(b) & h(b) \\ f(x) & g(x) & h(x) \end{vmatrix},$$

则 $F \in \mathcal{C}[a,b]$ 在(a,b)内可导,F(a) = F(b) = 0,由Rolle 定理知 $\exists \xi \in (a,b)$ 使得

$$0 = F'(\xi) = \begin{vmatrix} f(a) & g(a) & h(a) \\ f(b) & g(b) & h(b) \\ f'(\xi) & g'(\xi) & h'(\xi) \end{vmatrix}.$$

11. 设 0 < a < b, 而 $f \in \mathcal{C}[a,b]$ 在 (a,b) 内可导, 求证: $\xi \in (a,b)$ 使得

$$\frac{1}{b-a} \begin{vmatrix} a & b \\ f(a) & f(b) \end{vmatrix} = \xi f'(\xi) - f(\xi).$$

证明: $\forall x \in [a,b]$, 定义 $F(x) = \frac{f(x)}{x}$, $G(x) = \frac{1}{x}$, 则由题设可知 $F,G \in \mathcal{C}[a,b]$ 在 (a,b) 内可导, 于是由 Cauchy 中值定理可知, $\exists \xi \in (a,b)$ 使得

$$\frac{1}{b-a} \begin{vmatrix} a & b \\ f(a) & f(b) \end{vmatrix} = \frac{af(b) - bf(a)}{b-a}
= -\frac{\frac{f(b)}{b} - \frac{f(a)}{a}}{\frac{1}{b} - \frac{1}{a}}
= -\frac{F(b) - F(a)}{G(b) - G(a)} = -\frac{F'(\xi)}{G'(\xi)}
= -\frac{\frac{\xi f'(\xi) - f(\xi)}{\xi^2}}{-\frac{1}{\xi^2}}
= \xi f'(\xi) - f(\xi),$$

故所证结论成立.

12. (思考题, 不用交) 设函数 $f:[a,b] \to \mathbb{R}$ 可导且在 (a,b) 内二阶可导. 若 f(a) = f(b) = 0, $f'_{+}(a)f'_{-}(b) > 0$, 求证:

- (1) $\exists \rho \in (a,b)$ 使得 $f''(\rho) = 0$,
- (2) $\exists \xi \in (a, b)$ 使得 $f''(\xi) + 2f'(\xi) + f(\xi) = 0$,
- $(3) \exists \theta \in (a,b) \notin \mathcal{F}''(\theta) 2f'(\theta) + f(\theta) = 0,$
- (4) $\exists \eta \in (a,b)$ 使得 $f''(\eta) = f'(\eta)$,
- (5) $\exists \zeta \in (a,b)$ 使得 $f''(\zeta) = f(\zeta)$.

证明: (1) 由于 $f'_{+}(a)f'_{-}(b) > 0$, 不失一般性, 可假设 $f'_{+}(a) > 0$, $f'_{-}(b) > 0$ (否则考虑 -f). 于是由导数的定义以及函数极限的保号性可知 $\exists c, d \in (a,b)$ 使得 $\forall x \in (a,c]$, 均有 f(x) > f(a) = 0, 而 $\forall x \in [d,b)$, 则有 f(x) < f(b) = 0. 特别地, 我们有 c < d, f(c) > 0, f(d) < 0. 由于 f 在 [a,b] 上可导, 因此连续, 从而由连续函数介值定理知, $\exists \lambda \in (c,d)$ 使得 $f(\lambda) = 0$. 又 f 在 [a,b] 上可导且 $f(a) = f(\lambda) = f(b) = 0$, 于是由 Rolle 定理可知, $\exists \lambda_1 \in (a,\lambda)$, $\exists \lambda_2 \in (\lambda,b)$ 使得 $f'(\lambda_1) = f'(\lambda_2) = 0$. 由于 f 在 (a,b) 上二阶可导, 因此 f' 在 $[\lambda_1,\lambda_2]$ 上可导,再由 Rolle 定理可知, $\exists \rho \in (\lambda_1,\lambda_2)$ 使得 $f''(\rho) = 0$.

(2) $\forall x \in [a,b]$, 令 $F(x) = e^x f(x)$. 则 F 在 [a,b] 上可导, 在 (a,b) 内二阶可导, 且 F(a) = F(b) = 0. $\forall x \in [a,b]$, 我们有

$$F'(x) = (f'(x) + f(x))e^x,$$

于是我们有 F'(a)F'(b) > 0. 因此 F 满足与 f 完全类似的性质, 从而由前面讨论可知, $\exists \xi \in (a,b)$ 使得 $0 = F''(\xi) = \left(f''(\xi) + 2f'(\xi) + f(\xi)\right)e^{\xi}$, 由此我们立刻可得 $f''(\xi) + 2f'(\xi) + f(\xi) = 0$, 故所证结论成立.

- (3) $\forall x \in [a,b]$, 定义 $G(x) = e^{-x} f(x)$. 则 G 在 [a,b] 上可导, 在 (a,b) 内二阶可导, 且 G(a) = G(b) = 0. $\forall x \in [a,b]$, 我们有 $G'(x) = (f'(x) f(x))e^{-x}$, 于是我们有 G'(a)G'(b) > 0. 因此 G 满足与 f 完全类似的性质, 从而由前面讨论可知, $\exists \theta \in (a,b)$ 使得 $0 = G''(\theta) = (f''(\theta) 2f'(\theta) + f(\theta))e^{\theta}$, 由此立刻可得 $f''(\theta) 2f'(\theta) + f(\theta) = 0$, 故所证结论成立.
- (4) $\forall x \in [a,b]$, 令 $H(x) = f'(x)e^{-x}$. 则 H 在 (a,b) 内可导. 由前面讨论, $\exists \lambda_1, \lambda_2 \in (a,b)$ 使得 $\lambda_1 < \lambda_2$ 且 $f'(\lambda_1) = f'(\lambda_2) = 0$,于是 $H(\lambda_1) = H(\lambda_2) = 0$. 再由 Rolle 定理知, $\exists \eta \in (\lambda_1, \lambda_2)$ 使得 $0 = H'(\eta) = (f''(\eta) f'(\eta))e^{-\eta}$,由此立刻可得 $f''(\eta) = f'(\eta)$,故所证结论成立.
- (5) 在 (2) 中定义函数的 G 满足与 f 完全类似的性质,则由前面的讨论可知 $\exists \zeta_1, \zeta_2 \in (a,b)$ 使得 $\zeta_1 < \zeta_2$ 且 $G'(\zeta_1) = G'(\zeta_2) = 0$. 注意到 $\forall x \in [a,b]$, 我们有 $G'(x) = (f'(x) f(x))e^{-x}$, 故 $f'(\zeta_1) = f(\zeta_1)$, $f'(\zeta_2) = f(\zeta_2)$.

 $\forall x \in [a,b]$, 令 $L(x) = (f'(x) - f(x))e^x$. 由于 f 在 (a,b) 内二阶可导,则 L 在 $[\zeta_1,\zeta_2]$ 上可导,并且 $L(\zeta_1) = L(\zeta_2) = 0$,于是由 Rolle 定理可知, $\exists \zeta \in (\zeta_1,\zeta_2)$ 使得 $0 = L'(\zeta) = (f''(\zeta) - f(\zeta))e^{\zeta}$,由此立刻可得 $f''(\zeta) = f(\zeta)$,故所证结论成立.