Algorithm Design and Analysis

Day 3 Divide and Conquer

2015, AUT - CJLU

Day 3: Divide and Conquer

Part I: Divide-and-Conquer – Integer Multiplication

故用兵之法,十則圖之,五則攻之, 倍則分之,敵則能戰之,少則能守 之,不若則能避之。

"It is the rule in war, if ten times the enemy's strength, surround them; if five times, attack them; if double, be able to divide them; if equal, engage them; if fewer, be able to evade them; if weaker, be able to avoid them."

--- `Chapter III Strategic Attack "500BC

Long Multiplication: The "Grade School" Multiplication

456 x 123 t[0] 1368 t[1] 912 t[2] 456 56088

LongMultiplicatoin(x, y):

- 1. Start with multiplying x by the least significant digit of y to produce a partial product t[0].
- 2. Then continue this process for all higher order digits in y to produce partial product t[i]. Each partial product t[i] is right-aligned with the corresponding digit in y.
- 3. Finally sum up all the partial products t[i]

Long Multiplication: The "Grade School" Multiplication

```
456

x 123

t[0] 1368

t[1] 9120

t[2] 45600

56088
```

```
LongMultiplicatoin(x, y):

Assume x,y are Strings with length m,n, respectively create a String z="0" for i=m-1 to 0 do create a String t[i]="0..0" (length m-i-1) c=0 for j=n-1 to 0 do a=(y[j]*x[i]+c)*610 c=(y[j]*x[i]+c)*10 t[i]=a+t[i] (concatenate two Strings) if(c>0) t[i]=c+t[i] z=Add(z,t[i]) (add two Strings) return z
```

Complexity: What is the running time?

Long Multiplication: The "Grade School" Multiplication

```
456

x 123

t[0] 1368

t[1] 9120

t[2] 45600

56088
```

```
LongMultiplicatoin(x, y):

Assume x,y are Strings with length m,n,respectively create a String z="0" for i=m-1 to 0 do

create a String t[i]="0..0" (length m-i-I)

c=0 for j=n-1 to 0 do

a=(y[j]*x[i]+c)\%10

c=(y[j]*x[i]+c)/10

t[i]=a+t[i] (concatenate two Strings)

if(c>0) t[i]=c+t[i]

z=Add(z,t[i]) (add two Strings)

return z
```

Complexity: What is the running time? $O(n^2)$

Kolmogorov's Conjecture

A.Kolmogrov (1960):

Dean at Moscow State Univesity

Prove that there is no more efficient algorithm for integer multiplication "

A. Karatsuba:

23 year old grad student

"There is a more efficient algorithm — divide and conquer "

•
$$(2x + 3)(5x + 7) = 2 \times 5x^2 + (2 \times 7 + 3 \times 5)x + 3 \times 7$$

- $(2x + 3)(5x + 7) = 2 \times 5x^2 + (2 \times 7 + 3 \times 5)x + 3 \times 7$
 - 4 multiplications, 3 additions

- $(2x + 3)(5x + 7) = 2 \times 5x^2 + (2 \times 7 + 3 \times 5)x + 3 \times 7$
 - 4 multiplications, 3 additions
- $(2+3)(5+7) = 2 \times 5 + 3 \times 7 + 2 \times 7 + 3 \times 5$

- $(2x+3)(5x+7) = 2 \times 5x^2 + (2 \times 7 + 3 \times 5)x + 3 \times 7$
 - 4 multiplications, 3 additions
- $(2+3)(5+7) = 2 \times 5 + 3 \times 7 + 2 \times 7 + 3 \times 5$ $\Rightarrow 2 \times 7 + 3 \times 5 = (2+3) \times (5+7) - 2 \times 5 - 3 \times 7$

•
$$(2x + 3)(5x + 7) = 2 \times 5x^2 + (2 \times 7 + 3 \times 5)x + 3 \times 7$$

4 multiplications, 3 additions

•
$$(2+3)(5+7) = 2 \times 5 + 3 \times 7 + 2 \times 7 + 3 \times 5$$

 $\Rightarrow 2 \times 7 + 3 \times 5 = (2+3) \times (5+7) - 2 \times 5 - 3 \times 7$
 $\Rightarrow (2x+3)(5x+7) =$
 $2 \times 5x^2 + 3 \times 7 + ((2+3) \times (5+7) - 2 \times 5 - 3 \times 7)x$

Observation

- $(2x+3)(5x+7) = 2 \times 5x^2 + (2 \times 7 + 3 \times 5)x + 3 \times 7$
 - 4 multiplications, 3 additions

•
$$(2+3)(5+7) = 2 \times 5 + 3 \times 7 + 2 \times 7 + 3 \times 5$$

 $\Rightarrow 2 \times 7 + 3 \times 5 = (2+3) \times (5+7) - 2 \times 5 - 3 \times 7$
 $\Rightarrow (2x+3)(5x+7) =$
 $2 \times 5x^2 + 3 \times 7 + ((2+3) \times (5+7) - 2 \times 5 - 3 \times 7)x$

3 multiplications, 6 additions

Observation

- $(2x+3)(5x+7) = 2 \times 5x^2 + (2 \times 7 + 3 \times 5)x + 3 \times 7$
 - 4 multiplications, 3 additions

•
$$(2+3)(5+7) = 2 \times 5 + 3 \times 7 + 2 \times 7 + 3 \times 5$$

 $\Rightarrow 2 \times 7 + 3 \times 5 = (2+3) \times (5+7) - 2 \times 5 - 3 \times 7$
 $\Rightarrow (2x+3)(5x+7) =$
 $2 \times 5x^2 + 3 \times 7 + ((2+3) \times (5+7) - 2 \times 5 - 3 \times 7)x$

3 multiplications, 6 additions

General Version

$$(ax + b)(cx + d) = acx^2 + bd + ((a + b)(c + d) - ac - bd)x$$

Example:

Example:

$$a = 12345$$
 $b = 67891$
 $c = 25618$
 $d = 31629$

$$p \times q = (a \times 10^5 + b) \times (c \times 10^5 + d)$$
$$= ac \times 10^{10} + bd + ((a + b)(c + d) - ac - bd) \times 10^5$$

Algorithm multiply(x, y)

INPUT: *x*, *y* are length-*n* (string representations of) integers **OUTPUT**: The (string representation of) product of *x*, *y*

- ① if n = 1 return xy
- 2 $a = leftmost \lceil n/2 \rceil$ bits of x, $b = rightmost \lfloor n/2 \rfloor$ bits of x
- 3 $c = leftmost \lceil n/2 \rceil$ bits of y, $d = rightmost \lfloor n/2 \rfloor$ bits of y
- **4** p_1 ← multiply(a, c)
- ⑤ $p_2 \leftarrow multiply(b, d)$
- **6** p_3 ← multiply(a + b, c + d)
- $p_3 \leftarrow p_3 p_1 p_2$
- 8 Shift p_1 to the left by n-bits, p_3 to the left by $\lfloor n/2 \rfloor$ -bits
- 9 return $p_1 + p_2 + p_3$

Time Complexity

Let T(n) be the time complexity of multiplying two length-n integers.

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 3T(\lceil n/2 \rceil) + cn & \text{otherwise} \end{cases}$$

where c is a constant.

Tree of Recursive Calls

Time Complexity

$$T(n) = nc(1 + \frac{3}{2} + \frac{3^2}{2^2} + \dots + \frac{3^{k-1}}{2^{k-1}} + \frac{3^k}{2^k})$$

Geometric Series

Time Complexity

$$T(n) = nc(1 + \frac{3}{2} + \frac{3^2}{2^2} + \ldots + \frac{3^{k-1}}{2^{k-1}} + \frac{3^k}{2^k})$$

Geometric Series

Let $m = 1 + a + a^2 + a^3 + ... + a^k$, where $a > 0, a \ne 1$, be a geometric series.

Time Complexity

$$T(n) = nc(1 + \frac{3}{2} + \frac{3^2}{2^2} + \dots + \frac{3^{k-1}}{2^{k-1}} + \frac{3^k}{2^k})$$

Geometric Series

Let $m = 1 + a + a^2 + a^3 + ... + a^k$, where $a > 0, a \ne 1$, be a geometric series.

$$\Rightarrow am = a + a^2 + a^3 + \ldots + a^{k+1}$$

$$\Rightarrow am - m = a^{k+1} - 1$$

$$\Rightarrow m(a-1) = a^{k+1} - 1$$

$$\Rightarrow m = \frac{a^{k+1}-1}{a-1}$$

Time Complexity

$$T(n) = nc(1 + \frac{3}{2} + \frac{3^2}{2^2} + \dots + \frac{3^{k-1}}{2^{k-1}} + \frac{3^k}{2^k})$$

Geometric Series

Let $m = 1 + a + a^2 + a^3 + ... + a^k$, where $a > 0, a \ne 1$, be a geometric series.

$$\Rightarrow am = a + a^2 + a^3 + ... + a^{k+1}$$

$$\Rightarrow am - m = a^{k+1} - 1$$

$$\Rightarrow m(a-1) = a^{k+1} - 1$$

$$\Rightarrow m = \frac{a^{k+1}-1}{a-1}$$

Therefore

$$T(n) = nc \frac{(3/2)^{k+1} - 1}{3/2 - 1} \le 3nc \frac{3^k}{2^k}$$

Time Complexity

Recall $n = 2^k$. Therefore $k = \log_2 n$. We have

Time Complexity

Recall $n = 2^k$. Therefore $k = \log_2 n$. We have

$$T(n) \le 3nc \frac{3^{\log_2 n}}{2^{\log_2 n}} = 3nc \frac{3^{\log_2 n}}{n} = 3c \times 3^{\log_2 n}$$

Time Complexity

Recall $n = 2^k$. Therefore $k = \log_2 n$. We have

$$T(n) \le 3nc \frac{3^{\log_2 n}}{2^{\log_2 n}} = 3nc \frac{3^{\log_2 n}}{n} = 3c \times 3^{\log_2 n}$$

Note that $3 = 2^{\log_2 3}$. So

$$T(n) \leq 3c \times (2^{\log_2 3})^{\log_2 n}$$

$$= 3c \times 2^{\log_2 3 \times \log_2 n}$$

$$= 3c \times 2^{\log_2 n \times \log_2 3}$$

$$= 3c \times (2^{\log_2 n})^{\log_2 3}$$

$$= 3c \times n^{\log_2 3}$$

$$\leq 3c \times n^{1.59}$$

Time Complexity

Recall $n = 2^k$. Therefore $k = \log_2 n$. We have

$$T(n) \le 3nc \frac{3^{\log_2 n}}{2^{\log_2 n}} = 3nc \frac{3^{\log_2 n}}{n} = 3c \times 3^{\log_2 n}$$

Note that $3 = 2^{\log_2 3}$. So

$$T(n) \leq 3c \times (2^{\log_2 3})^{\log_2 n}$$

$$= 3c \times 2^{\log_2 3 \times \log_2 n}$$

$$= 3c \times 2^{\log_2 n \times \log_2 3}$$

$$= 3c \times (2^{\log_2 n})^{\log_2 3}$$

$$= 3c \times n^{\log_2 3}$$

$$\leq 3c \times n^{1.59}$$

Therefore T(n) is $O(n^{1.59})$, a big improvement from $O(n^2)$!!

- Karatsuba's algorithm solves integer multiplication in time $O(n^{1.59})$.
- The technique used is called divide-and-conquer

- Karatsuba's algorithm solves integer multiplication in time $O(n^{1.59})$.
- The technique used is called divide-and-conquer

Divide-and-Conquer as an algorithm design technique

The divide-and-conquer technique solves a computational problem by dividing it into one or more subprograms of smaller size, conquering each of them by solving them recursively, and then combining their solutions into a solution for the original problem.

General Divide-and-Conquer Strategy

```
if n \le n_0 then directly solve problem without dividing else divide problem into a subproblems of size n/b each for i \leftarrow 0 to a-1 do recursively solve the ith subproblem combine the a solutions into a solution of the original problem
```

General Divide-and-Conquer Strategy

```
if n \le n_0 then directly solve problem without dividing else divide problem into a subproblems of size n/b each for i \leftarrow 0 to a-1 do recursively solve the ith subproblem combine the a solutions into a solution of the original problem
```

Running Time Analysis

Come up with a recurrence: T(n) = aT(n/b) + f(n)

Example 1: Karatsuba's Algorithm

Karatsuba's algorithm

Given two input numbers *x*, *y*:

if x, y both have length 1 then directly multiply x, y

else

divide each *x* and *y* into two numbers and obtain 3 subproblems of size *n*/2 each for each subprogram do recursively solve the *i*th subproblem add the 3 solutions

Time complexity: T(n) = 3T(n/2) + cn.

Day 3: Divide and Conquer

Part II: Sorting

The Sorting Problem

The Sorting Problem

Arrange an array of integers so that every adjacent pair of values is in the correct order.

Merge Sort

Merge Sort Algorithm

- ① To sort an array, partition it into two parts; and give each part to a different machine
- ② Each machine sorts its part recursively
- Merge the two solutions

Day 3 Divide and Conquer

Merge Sort

Merge Sort

Divide

The Partition Procedures

```
private static void mergeSortRecursive(int data[], int temp[],
                                        int low, int high)
// pre: 0 <= low <= high < data.length
// post: values in data[low..high] are in ascending order
    int n = high-low+1;
    int middle = low + n/2:
    int i:
    if (n < 2) return:
    // move lower half of data into temporary storage
    for (i = low; i < middle; i++)
        temp[i] = data[i];
    // sort lower half of array
    mergeSortRecursive(temp,data,low,middle-1);
    // sort upper half of array
    mergeSortRecursive(data,temp,middle,high);
    // merge halves together
    merge(data, temp, low, middle, high);
```

The Merge Procedures

- temp[low..middle 1] are ascending
- data[middle..high] are ascending

The Merge Procedures

- temp[low..middle 1] are ascending
- data[middle..high] are ascending

The Merge Procedures

- temp[low..middle 1] are ascending
- data[middle..high] are ascending

The Merge Procedures

- temp[low..middle 1] are ascending
- data[middle..high] are ascending

The Merge Procedures

- temp[low..middle 1] are ascending
- data[middle..high] are ascending

The Merge Procedures

- temp[low..middle 1] are ascending
- data[middle..high] are ascending

The Merge Procedures

- temp[low..middle 1] are ascending
- data[middle..high] are ascending

The Merge Procedures

- temp[low..middle 1] are ascending
- data[middle..high] are ascending

The Merge Procedures

Suppose

- temp[low..middle 1] are ascending
- data[middle..high] are ascending

result

The Merge Procedures

```
private static void merge(int data[], int temp[],
                        int low, int middle, int high){
    int ri=0; //result index
    int ti=low;//temp index
    int di=middle://data index
    int[] result = new int[high-low+1];
    while (ti<middle && di<=high){
        if (data[di]<temp[ti]){</pre>
            result[ri++] = data[di++];//smaller is in data
        } else{
            result[ri++] = temp[ti++];//smaller is in temp
         while(ti<middle) result[ri++]=temp[ti++];</pre>
    while(di<=high) result[ri++]=data[di++];</pre>
    for(int i=0;i<high;i++) data[low+i]=result[i];</pre>
```

```
public static void mergeSort(int data[], int n)
//pre: 0<=n <=data.length
//post: values in data[0..n-1] are in ascending order
{
    mergeSortRecursive(data, new int[n], 0, n-1);
}</pre>
```

Merge Sort: Complexity

- The Partitioning Stage
 - The number of partitioning is n-1.
- The Merging Stage
 - The number of operations is $O(n \log n)$.

The overall complexity of the algorithm: $O(n \log n)$

Merge Sort: Complexity

Optimality

Instead of asking "Is merge sort the most efficient algorithm for sorting?",

we ask "What is the shortest time must any sorting algorithms run in?"

Comparison-Based Sorting

Merge sort is a comparison-based sorting algorithm, i.e., it sorts numbers based on a sequence of comparisons between elements from the input arrays.

Comparison Tree

- The depth or height of the tree is the number of comparisons on the longest path from the root to a leaf.
- For n > 0, let h(n) be the height of the comparison tree for n numbers.

Fact

Any comparison-based sorting algorithm uses at least h(n) comparisons in the worst case.

Why? Otherwise there must be some sequence on which the algorithm fails.

A Lower Bound on Times of Comparison

What is h(n) for any n > 0?

- The comparison tree for *n* numbers is a binary tree
- A binary tree with k leaves has at least height log k
- \Rightarrow $h(n) \ge \log k$ where k is the number of leaves.

Observation 1

- The comparison tree for *n* numbers is a binary tree
- A binary tree with k leaves has at least height log k
- \Rightarrow $h(n) \ge \log k$ where k is the number of leaves.

- Every leaf in the comparison tree is a permutation of *n* numbers
- There are n! number of permutations with n numbers

$$\Rightarrow k = n!$$

Observation 1

- The comparison tree for *n* numbers is a binary tree
- A binary tree with k leaves has at least height log k
- \Rightarrow $h(n) \ge \log k$ where k is the number of leaves.

- Every leaf in the comparison tree is a permutation of *n* numbers
- There are n! number of permutations with n numbers

$$\Rightarrow k = n!$$

$$\Rightarrow h(n) \ge \log n!$$

$$n! = 1 \times 2 \times 3 \times ... \times n - 1 \times n$$

$$> \lfloor n/2 \rfloor \times ... \times n - 1 \times n$$

$$> (n/2)^{n/2}$$

- $\Rightarrow \log n! > \log(n/2)^{n/2} = n/2(\log n 1)$
- $\Rightarrow h(n)$ is $\Omega(n \log n)$

Observation 3

$$n! = 1 \times 2 \times 3 \times ... \times n - 1 \times n$$

$$> \lfloor n/2 \rfloor \times ... \times n - 1 \times n$$

$$> (n/2)^{n/2}$$

- $\Rightarrow \log n! > \log(n/2)^{n/2} = n/2(\log n 1)$
- $\Rightarrow h(n)$ is $\Omega(n \log n)$

Conclusion

Any comparison-based sorting algorithm must use $\Omega(n \log n)$ number of comparisons in the worst case.

- \Rightarrow The best time complexity for any comparison-based sorting algorithm is $\Theta(n \log n)$.
- \Rightarrow Merge sort is optimal.

Just like merge sort, quick sort is also a divide-and-conquer algorithm.

Idea

- ① Divide: If S has 0 or 1 element, do nothing. Otherwise, pick a pivot/partitionElement from the array (first element). Rearrange the other elements into two parts, those ≤ the pivot and those > the pivot.
- Recur: Recursively sort these two parts
- 3 Conquer: Put the two resulting sorted arrays and the pivot in order.

Example:

Example:

Example:

	36	25	78	15	98	35	7	56
м,								

- The most straight-forward implementation of quick sort requires creating two new arrays at each recursion step (otherwise we may need a lot of shiftings)
 - \Rightarrow Takes too much memory.
- We would like to work only on the input array (without creating new arrays), just like selection, insertion and bubble sort.

- The most straight-forward implementation of quick sort requires creating two new arrays at each recursion step (otherwise we may need a lot of shiftings)
 - \Rightarrow Takes too much memory.
- We would like to work only on the input array (without creating new arrays), just like selection, insertion and bubble sort.
- In-place quick sort is a way of implementing quick sort so that it only works on the input array.

The Partition Procedures

- Given the data[] array, and left, right pointers.
- Set data[left] as the pivot
- We want to arrange all elements ≤ pivot to its left; all elements > pivot to its right

The Partition Procedures

- Given the data[] array, and left, right pointers.
- Set data[left] as the pivot
- We want to arrange all elements ≤ pivot to its left; all elements > pivot to its right

The Partition Procedures

- Given the data[] array, and left, right pointers.
- Set data[left] as the pivot
- We want to arrange all elements ≤ pivot to its left; all elements > pivot to its right

The Partition Procedures

- Given the data[] array, and left, right pointers.
- Set data[left] as the pivot
- We want to arrange all elements ≤ pivot to its left; all elements > pivot to its right

The Partition Procedures

- Given the data[] array, and left, right pointers.
- Set data[left] as the pivot
- We want to arrange all elements ≤ pivot to its left; all elements > pivot to its right

The Partition Procedures

- Given the data[] array, and left, right pointers.
- Set data[left] as the pivot
- We want to arrange all elements ≤ pivot to its left; all elements > pivot to its right

The Partition Procedures

- Given the data[] array, and left, right pointers.
- Set data[left] as the pivot
- We want to arrange all elements ≤ pivot to its left; all elements > pivot to its right

The Partition Procedures

- Given the data[] array, and left, right pointers.
- Set data[left] as the pivot
- We want to arrange all elements ≤ pivot to its left; all elements > pivot to its right

The Partition Procedures

- Given the data[] array, and left, right pointers.
- Set data[left] as the pivot
- We want to arrange all elements ≤ pivot to its left; all elements > pivot to its right

The Partition Procedures

- Given the data[] array, and left, right pointers.
- Set data[left] as the pivot
- We want to arrange all elements ≤ pivot to its left; all elements > pivot to its right

The Partition Procedures

- Given the data[] array, and left, right pointers.
- Set data[left] as the pivot
- We want to arrange all elements ≤ pivot to its left; all elements > pivot to its right

The Partition Procedures

- Given the data[] array, and left, right pointers.
- Set data[left] as the pivot
- We want to arrange all elements ≤ pivot to its left; all elements > pivot to its right

Pivot on left and right

The Partition Procedures

- Given the data[] array, and left, right pointers.
- Set data[left] as the pivot
- We want to arrange all elements ≤ pivot to its left; all elements > pivot to its right

Return right

The Partition Procedures

```
private static int partition(int data[], int left, int
right)
//pre: left<= right</pre>
//post: data[left] placed in the correct location
    while(true){
        //move right "pointer" towards left
        while(left<right && data[left] <data[right])</pre>
            right--;
        if (left<right) swap(data,left++,right);</pre>
        //move left pointer towards right
        while(left<right && data[left]<data[right])</pre>
            left++;
        if(left<right) swap(data,left,right--);</pre>
        else return right;
```

The Combine Procedures

```
private static void quickSortRecursive(int data[], int
left, int right)
//pre: left<=right
//post: data[left..right] in ascending order
{
   int pivot;
   if (left>=right) return;
   pivot=partition(data,left,right); //Partition
   quickSortRecursive(data,left,pivot-1); //Sort small
   quickSortRecursive(data,pivot+1,right); //Sort large
}
```

```
public static void quickSort(int data[], int n){
   quickSortRecursive(data,0,n-1);
}
```

Worst Case

- If the input array is already sorted, one side of the pivot is always empty, and the other side is n-1
- There are *n* levels of recursion.
- Therefore $O(n^2)$.

Worst Case

- If the input array is already sorted, one side of the pivot is always empty, and the other side is n-1
- There are *n* levels of recursion.
- Therefore $O(n^2)$.

In the average case, quick sort runs very fast

- Fix an input *list* of size *n*.
- Let $T_{list}(n)$ denote the running time for sorting *list*.
- The *pivot* is chosen as the first element in *list*.

- Fix an input *list* of size *n*.
- Let $T_{list}(n)$ denote the running time for sorting *list*.
- The *pivot* is chosen as the first element in *list*.

A Recurrence for $T_{list}(n)$

- Let n_{small} be the number of elements smaller than pivot.
- Let n_{big} be the number of elements bigger than pivot.
- Then we have

$$T_{list}(n) = T_{list}(n_{small}) + T_{list}(n_{big}) + cn$$

Average-case analysis

Average-case analysis

• T(n): the average-case running time of quick sort.

Average-case analysis

- T(n): the average-case running time of quick sort.
- Then $T(n) = T(n_{small}) + T(n_{big}) + cn$.
- n_{small} may take any value in 0, 1, 2, ..., n-1.
- $\bullet \ n_{big} = n n_{small} 1.$

Average-case analysis

- T(n): the average-case running time of quick sort.
- Then $T(n) = T(n_{small}) + T(n_{big}) + cn$.
- n_{small} may take any value in 0, 1, 2, ..., n-1.
- $\bullet \ n_{big} = n n_{small} 1.$

Equi-probability assumption

Assume that all initial orderings appear with equal probability.

⇒ For any
$$i, j \in \{0, 1, 2, ..., n-1\}$$
, $Pr[n_{small} = i] = Pr[n_{big} = j]$

Average-case analysis

- T(n): the average-case running time of quick sort.
- Then $T(n) = T(n_{small}) + T(n_{big}) + cn$.
- n_{small} may take any value in 0, 1, 2, ..., n-1.
- $n_{big} = n n_{small} 1$.

Equi-probability assumption

Assume that all initial orderings appear with equal probability.

$$\Rightarrow$$
 For any $i, j \in \{0, 1, 2, ..., n-1\}, Pr[n_{small} = i] = Pr[n_{big} = j]$

Therefore on average,

$$T(n_{small}) = [T(0) + T(1) + \dots + T(n-1)] \div n$$

$$T(n_{big}) = [T(n-1) + T(n-2) + \dots + T(0)] \div n$$

Average-case Analysis (continued.)

$$T(n) = 2([T(0) + \cdots + T(n-1)]) \div n + cn$$

Average-case Analysis (continued.)

$$T(n) = 2([T(0) + \dots + T(n-1)]) \div n + cn$$

$$nT(n) = 2([T(0) + \dots + T(n-1)]) + cn^{2}$$

Average-case Analysis (continued.)

$$T(n) = 2([T(0) + \dots + T(n-1)]) \div n + cn$$

$$nT(n) = 2([T(0) + \dots + T(n-1)]) + cn^{2}$$

$$(n-1)T(n-1) = 2([T(0) + \dots + T(n-2)]) + c(n-1)^{2}$$

Average-case Analysis (continued.)

$$T(n) = 2([T(0) + \dots + T(n-1)]) \div n + cn$$

$$nT(n) = 2([T(0) + \dots + T(n-1)]) + cn^{2}$$

$$(n-1)T(n-1) = 2([T(0) + \dots + T(n-2)]) + c(n-1)^{2}$$

$$nT(n) - (n-1)T(n-1) = 2T(n-1) - 2cn + c$$

Average-case Analysis (continued.)

$$T(n) = 2([T(0) + \dots + T(n-1)]) \div n + cn$$

$$nT(n) = 2([T(0) + \dots + T(n-1)]) + cn^{2}$$

$$(n-1)T(n-1) = 2([T(0) + \dots + T(n-2)]) + c(n-1)^{2}$$

$$nT(n) - (n-1)T(n-1) = 2T(n-1) - 2cn + c$$

$$nT(n) = (n+1)T(n-1) - c(2n-1)$$

Average-case Analysis (continued.)

$$T(n) = 2([T(0) + \dots + T(n-1)]) \div n + cn$$

$$nT(n) = 2([T(0) + \dots + T(n-1)]) + cn^{2}$$

$$(n-1)T(n-1) = 2([T(0) + \dots + T(n-2)]) + c(n-1)^{2}$$

$$nT(n) - (n-1)T(n-1) = 2T(n-1) - 2cn + c$$

$$nT(n) = (n+1)T(n-1) - c(2n-1)$$

$$\frac{T(n)}{(n+1)} = \frac{T(n-1)}{n} - \frac{c(2n-1)}{n(n+1)}$$

Average-case Analysis (continued.)

$$T(n) = 2([T(0) + \dots + T(n-1)]) \div n + cn$$

$$nT(n) = 2([T(0) + \dots + T(n-1)]) + cn^{2}$$

$$(n-1)T(n-1) = 2([T(0) + \dots + T(n-2)]) + c(n-1)^{2}$$

$$nT(n) - (n-1)T(n-1) = 2T(n-1) - 2cn + c$$

$$nT(n) = (n+1)T(n-1) - c(2n-1)$$

$$\frac{T(n)}{(n+1)} = \frac{T(n-1)}{n} - \frac{c(2n-1)}{n(n+1)}$$

$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{3c}{n+1} - \frac{c}{n}$$

Telescoping on
$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{3c}{n+1} - \frac{c}{n}$$

Telescoping on
$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{3c}{n+1} - \frac{c}{n}$$

$$\frac{T(n)}{n+1} = \frac{T(n-1)}{T(n-2)} + \frac{3c}{n+1} - \frac{c}{n}$$

$$\frac{T(n-1)}{n-1} = \frac{T(n-2)}{n-1} + \frac{3c}{n} - \frac{c}{n-1}$$

$$\frac{T(n-2)}{n-1} = \frac{T(n-3)}{n-2} + \frac{3c}{n-1} - \frac{c}{n-2}$$

$$\cdots = \cdots \cdots \cdots$$

$$\frac{T(1)}{2} = \frac{T(0)}{1} + \frac{3c}{2} - \frac{c}{1}$$

Average-case Analysis (continued.)

Telescoping on
$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{3c}{n+1} - \frac{c}{n}$$

$$\frac{\frac{T(n)}{n+1}}{\frac{T(n-1)}{n}} = \frac{T(n-1)}{\frac{T(n-2)}{n-1}} + \frac{3c}{n+1} - \frac{c}{n}$$

$$\frac{\frac{T(n-2)}{n}}{\frac{T(n-2)}{n-1}} = \frac{\frac{T(n-3)}{n-2}}{\frac{T(n-3)}{n-2}} + \frac{3c}{n-1} - \frac{c}{n-2}$$

$$\cdots = \cdots \cdots$$

$$\frac{T(1)}{2} = \frac{T(0)}{1} + \frac{3c}{2} - \frac{c}{1}$$

Cancel out the common terms, we have:

$$\frac{T(n)}{n+1} = 3c(\frac{1}{n+1} + \frac{1}{n} + \dots + \frac{1}{2}) - c(\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2} + \frac{1}{1})$$

Harmonic number

The *n*-th harmonic number is $H_n = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Fact: H_n is $O(\log n)$.

Harmonic number

The *n*-th harmonic number is $H_n = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Fact: H_n is $O(\log n)$.

$$\frac{T(n)}{n+1} = 3c(\frac{1}{n+1} + \frac{1}{n} + \dots + \frac{1}{2}) - c(\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2} + \frac{1}{1})$$

Harmonic number

The *n*-th harmonic number is $H_n = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Fact: H_n is $O(\log n)$.

$$\frac{T(n)}{n+1} = 3c(\frac{1}{n+1} + \frac{1}{n} + \dots + \frac{1}{2}) - c(\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2} + \frac{1}{1})$$
$$= 3c(H_{n+1} - 1) + c(H_n)$$

Harmonic number

The *n*-th harmonic number is $H_n = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Fact: H_n is $O(\log n)$.

$$\frac{T(n)}{n+1} = 3c(\frac{1}{n+1} + \frac{1}{n} + \dots + \frac{1}{2}) - c(\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2} + \frac{1}{1})$$

$$= 3c(H_{n+1} - 1) + c(H_n)$$

$$= 4cH_{n+1} - 3c - \frac{c}{n+1}$$

Harmonic number

The *n*-th harmonic number is $H_n = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Fact: H_n is $O(\log n)$.

$$\frac{T(n)}{n+1} = 3c(\frac{1}{n+1} + \frac{1}{n} + \dots + \frac{1}{2}) - c(\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2} + \frac{1}{1})$$

$$= 3c(H_{n+1} - 1) + c(H_n)$$

$$= 4cH_{n+1} - 3c - \frac{c}{n+1}$$

$$T(n) = 4c(n+1)H_{n+1} - 3c(n+1) - c$$

Harmonic number

The *n*-th harmonic number is $H_n = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Fact: H_n is $O(\log n)$.

Average-case Analysis (continued.)

$$\begin{split} \frac{T(n)}{n+1} &= 3c(\frac{1}{n+1} + \frac{1}{n} + \ldots + \frac{1}{2}) - c(\frac{1}{n} + \frac{1}{n-1} + \ldots + \frac{1}{2} + \frac{1}{1}) \\ &= 3c(H_{n+1} - 1) + c(H_n) \\ &= 4cH_{n+1} - 3c - \frac{c}{n+1} \\ T(n) &= 4c(n+1)H_{n+1} - 3c(n+1) - c \end{split}$$

Therefore T(n) is $\Theta(n \log n)$.

Sorting Algorithms

Algorithms	Worst Case Time	Average Case Time
Merge Sort	$O(n \log n)$	$O(n \log n)$
Quick Sort	$O(n^2)$	$O(n \log n)$

Lower bound for comparison-base sorting: $O(n \log n) \Rightarrow$

- MergeSort has optimal worst case complexity
- QuickSort has optimal average case complexity

Day 3: Divide and Conquer

Part III: Analysis of Divide and Conquer Algorithms

Runtime Analysis

Divide and Conquer

The *running time* T(n) of a Divide-and-Conquer algorithm can normally be specified by

$$T(n) = aT(n/b) + f(n).$$

The problem is entirely mathematical: Solve the above recursion.

What is the master theorem?

The master theorem provides a direct way to solve recurrence of the form

$$T(n) = aT(n/b) + f(n)$$

where $a \ge 1$, b > 1 are constants and f(n) is a positive function.

What is the master theorem?

The master theorem provides a direct way to solve recurrence of the form

$$T(n) = aT(n/b) + f(n)$$

where $a \ge 1$, b > 1 are constants and f(n) is a positive function.

- $T(n) = 3T(n/2) + n^2$
- $T(n) = 16T(n/2) + 3n \log n$
- T(n) = T(n/2) + 3
- $T(n) = \sqrt{2}T(n/4) + n^{0.51}$

Intuitive Version

The master theorem allows us to solve the recurrence

$$T(n) = aT(n/b) + f(n)$$

by comparing the function f(n) with $n^{\log_b a}$. There are three cases:

Intuitive Version

The master theorem allows us to solve the recurrence

$$T(n) = aT(n/b) + f(n)$$

by comparing the function f(n) with $n^{\log_b a}$. There are three cases:

• Case 1: f(n) is much smaller than $n^{\log_b a}$. Then T(n) has complexity $n^{\log_b a}$.

Intuitive Version

The master theorem allows us to solve the recurrence

$$T(n) = aT(n/b) + f(n)$$

by comparing the function f(n) with $n^{\log_b a}$. There are three cases:

- Case 1: f(n) is much smaller than $n^{\log_b a}$. Then T(n) has complexity $n^{\log_b a}$.
- Case 2: f(n) is the same with $n^{\log_b a}$. Then T(n) has complexity $n^{\log_b a} \log n$.

Intuitive Version

The master theorem allows us to solve the recurrence

$$T(n) = aT(n/b) + f(n)$$

by comparing the function f(n) with $n^{\log_b a}$. There are three cases:

- Case 1: f(n) is much smaller than $n^{\log_b a}$. Then T(n) has complexity $n^{\log_b a}$.
- Case 2: f(n) is the same with $n^{\log_b a}$. Then T(n) has complexity $n^{\log_b a} \log n$.
- Case 3: f(n) is much bigger than $n^{\log_b a}$. Then T(n) has complexity f(n).

Master theorem

Let $\alpha \ge 1$ and b > 1, let f(n) be a positive function, and let T(n) be defined as:

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then there are three cases:

Master theorem

Let $\alpha \ge 1$ and b > 1, let f(n) be a positive function, and let T(n) be defined as:

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then there are three cases:

① If f(n) is $O(n^{\log_b a - e})$ for some constant e > 0, then

$$T(n) = \Theta(n^{\log_b a}).$$

Master theorem

Let $\alpha \ge 1$ and b > 1, let f(n) be a positive function, and let T(n) be defined as:

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then there are three cases:

① If f(n) is $O(n^{\log_b a - e})$ for some constant e > 0, then

$$T(n) = \Theta(n^{\log_b a}).$$

2 If f(n) is $\Theta(n^{\log_b a})$, then

$$T(n) = \Theta(n^{\log_b a} \log n).$$

Master theorem

Let $\alpha \ge 1$ and b > 1, let f(n) be a positive function, and let T(n) be defined as:

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then there are three cases:

① If f(n) is $O(n^{\log_b a - e})$ for some constant e > 0, then

$$T(n) = \Theta(n^{\log_b a}).$$

2 If f(n) is $\Theta(n^{\log_b a})$, then

$$T(n) = \Theta(n^{\log_b a} \log n).$$

③ If f(n) is $\Omega(n^{\log_b a + e})$ for some constant e > 0, and the regularity condition $af(n/b) \le rf(n)$ for some r < 1 holds, then

$$T(n) = \Theta(f(n)).$$

Note: Most of the functions we see satisfy the regularity condition.

$$T(n) = 9T(n/3) + n.$$

$$T(n) = 4T(n/2) + n^2$$
.

$$T(n) = 3T(n/3) + n^2$$
.

```
• T(n) = 9T(n/3) + n.

a = 9, b = 3, f(n) = n, n^{\log_b a} = n^2.

f(n) is O(n^{2-e}) for some e (say e = 0.5).

Hence we apply case 1.

T(n) is \Theta(n^2).
```

$$T(n) = 4T(n/2) + n^2$$
.

$$T(n) = 3T(n/3) + n^2$$
.

- T(n) = 9T(n/3) + n. $a = 9, b = 3, f(n) = n, n^{\log_b a} = n^2$. f(n) is $O(n^{2-e})$ for some e (say e = 0.5). Hence we apply case 1. T(n) is $\Theta(n^2)$.
- $T(n) = 4T(n/2) + n^2$. $a = 4, b = 2, f(n) = n^2, n^{\log_b a} = n^2$. f(n) is $\Theta(n^2)$. Hence we apply case 2. T(n) is $\Theta(n^2 \log n)$.
- $T(n) = 3T(n/3) + n^2$.

Examples

- T(n) = 9T(n/3) + n. $a = 9, b = 3, f(n) = n, n^{\log_b a} = n^2$. f(n) is $O(n^{2-e})$ for some e (say e = 0.5). Hence we apply case 1. T(n) is $\Theta(n^2)$.
- $T(n) = 4T(n/2) + n^2$. $a = 4, b = 2, f(n) = n^2, n^{\log_b a} = n^2$. f(n) is $\Theta(n^2)$. Hence we apply case 2. T(n) is $\Theta(n^2 \log n)$.
- $T(n) = 3T(n/3) + n^2$. $a = 3, b = 3, f(n) = n^2, n^{\log_b a} = n^{\log_3 3} = n$. f(n) is $\Omega(n^e)$ for some e (say e = 0.5). Hence we apply case 3. T(n) is $\Theta(n^2)$.

Examples

```
• T(n) = 9T(n/3) + n.

a = 9, b = 3, f(n) = n, n^{\log_b a} = n^2.

f(n) is O(n^{2-e}) for some e (say e = 0.5).

Hence we apply case 1.

T(n) is \Theta(n^2).
```

- $T(n) = 4T(n/2) + n^2$. $a = 4, b = 2, f(n) = n^2, n^{\log_b a} = n^2$. f(n) is $\Theta(n^2)$. Hence we apply case 2. T(n) is $\Theta(n^2 \log n)$.
- $T(n) = 3T(n/3) + n^2$. $a = 3, b = 3, f(n) = n^2, n^{\log_b a} = n^{\log_3 3} = n$. f(n) is $\Omega(n^e)$ for some e (say e = 0.5). Hence we apply case 3. T(n) is $\Theta(n^2)$.

Note: Master theorem holds without assuming *n* is a power of *b*.

Cases where master theorem doesn't work

• When a < 1. e.g. T(n) = 0.5T(n/2) + n.

Cases where master theorem doesn't work

- When a < 1. e.g. T(n) = 0.5T(n/2) + n.
- When f(n) is negative. e.g. $T(n) = 2T(n/2) - \log n$.

Cases where master theorem doesn't work

- When a < 1. e.g. T(n) = 0.5T(n/2) + n.
- When f(n) is negative. e.g. $T(n) = 2T(n/2) - \log n$.
- When f(n) is smaller than $n^{\log_b a}$ but is not small enough: $(f(n) \text{ is } O(n^{\log_b a}) \text{ but } f(n) \text{ is not } O(n^{\log_b a e}) \text{ for any } e > 0)$ e.g. $T(n) = 2T(n/2) + n/\log n$.

Cases where master theorem doesn't work

- When a < 1. e.g. T(n) = 0.5T(n/2) + n.
- When f(n) is negative. e.g. $T(n) = 2T(n/2) - \log n$.
- When f(n) is smaller than $n^{\log_b a}$ but is not small enough: $(f(n) \text{ is } O(n^{\log_b a}) \text{ but } f(n) \text{ is not } O(n^{\log_b a e}) \text{ for any } e > 0)$ e.g. $T(n) = 2T(n/2) + n/\log n$.
- When f(n) is bigger than $n^{\log_b a}$ but is not big enough: $(f(n) \text{ is } \Omega(n^{\log_b a}) \text{ but } f(n) \text{ is not } \Omega(n^{\log_b a + e}) \text{ for any } e > 0)$ e.g. $T(n) = 2T(n/2) + n \log n$.

Running time: T(n) = 3T(n/2) + cn

Running time:
$$T(n) = 3T(n/2) + cn$$

- $n^{\log_b a} = n^{\log_2 3} \approx n^{1.59}$
- f(n) = cn

Running time:
$$T(n) = 3T(n/2) + cn$$

- $n^{\log_b a} = n^{\log_2 3} \approx n^{1.59}$
- f(n) = cn
- cn is $O(n^{1.59-0.1})$

Running time:
$$T(n) = 3T(n/2) + cn$$

$$n^{\log_b a} = n^{\log_2 3} \approx n^{1.59}$$

•
$$f(n) = cn$$

•
$$cn$$
 is $O(n^{1.59-0.1})$

Case 1: cn is much smaller than $n^{\log_2 3}$.

$$\Rightarrow T(n)$$
 is $\Theta(n^{\log_2 3})$

Running time:
$$T(n) = 2T(n/2) + cn$$

Running time:
$$T(n) = 2T(n/2) + cn$$

- $n^{\log_2 2} = n$
- f(n) = cn

Running time: T(n) = 2T(n/2) + cn

- $n^{\log_2 2} = n$
- f(n) = cn
- cn is $\Theta(n)$

Running time: T(n) = 2T(n/2) + cn

- $n^{\log_2 2} = n$
- f(n) = cn
- cn is $\Theta(n)$

Case 2: *cn* has the same asymptotic growth as *n*.

 \Rightarrow T(n) is $\Theta(n \log n)$

Day 3: Divide and Conquer

Part III: Matrix Multiplication and Strassen's Algorithm

Problem

INPUT: Two $n \times n$ matrices A, BOUTPUT: Their product matrix $A \times B$.

This is a crucial process in

- computer graphics
- Linear programming
- Linear dynamical systems
- etc.

Standard Multiplication Algorithm

The (i, j)-entry of $A \times B$ is $\sum_{k=1}^{n} A[i, k]B[k, j]$, i.e.,

$$\left(\begin{array}{ccc} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \\ g_1 & h_1 & i_1 \end{array} \right) \times \left(\begin{array}{ccc} a_2 & b_2 & c_2 \\ d_2 & e_2 & f_2 \\ g_2 & h_2 & i_2 \end{array} \right) =$$

$$\left(\begin{array}{lll} a_1a_2 + b_1d_2 + c_1g_2 & a_1b_2 + b_1e_2 + c_1h_2 & a_1c_2 + b_1f_2 + c_1i_2 \\ d_1a_2 + e_1d_2 + f_1g_2 & d_1b_2 + e_1e_2 + f_1h_2 & d_1c_2 + e_1f_2 + f_1i_2 \\ g_1a_2 + h_1d_2 + i_1g_2 & g_1b_2 + h_1e_2 + i_1h_2 & g_1c_2 + h_1f_2 + i_1i_2 \end{array} \right)$$

Standard Multiplication Algorithm

The (i, j)-entry of $A \times B$ is $\sum_{k=1}^{n} A[i, k]B[k, j]$, i.e.,

$$\begin{pmatrix} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \\ g_1 & h_1 & i_1 \end{pmatrix} \times \begin{pmatrix} a_2 & b_2 & c_2 \\ d_2 & e_2 & f_2 \\ g_2 & h_2 & i_2 \end{pmatrix} =$$

$$\left(\begin{array}{lll} a_1a_2 + b_1d_2 + c_1g_2 & a_1b_2 + b_1e_2 + c_1h_2 & a_1c_2 + b_1f_2 + c_1i_2 \\ d_1a_2 + e_1d_2 + f_1g_2 & d_1b_2 + e_1e_2 + f_1h_2 & d_1c_2 + e_1f_2 + f_1i_2 \\ g_1a_2 + h_1d_2 + i_1g_2 & g_1b_2 + h_1e_2 + i_1h_2 & g_1c_2 + h_1f_2 + i_1i_2 \end{array} \right)$$

Standard algorithm: a three-nested loop.

- Inner-most loop: Compute value for an entry
- Middle loop: Compute values in a row
- Outer-most loop: Compute values in all rows

Standard Multiplication Algorithm

The (i, j)-entry of $A \times B$ is $\sum_{k=1}^{n} A[i, k]B[k, j]$, i.e.,

$$\left(\begin{array}{cccc} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \\ g_1 & h_1 & i_1 \end{array} \right) \times \left(\begin{array}{cccc} a_2 & b_2 & c_2 \\ d_2 & e_2 & f_2 \\ g_2 & h_2 & i_2 \end{array} \right) =$$

$$\left(\begin{array}{lll} a_1a_2 + b_1d_2 + c_1g_2 & a_1b_2 + b_1e_2 + c_1h_2 & a_1c_2 + b_1f_2 + c_1i_2 \\ d_1a_2 + e_1d_2 + f_1g_2 & d_1b_2 + e_1e_2 + f_1h_2 & d_1c_2 + e_1f_2 + f_1i_2 \\ g_1a_2 + h_1d_2 + i_1g_2 & g_1b_2 + h_1e_2 + i_1h_2 & g_1c_2 + h_1f_2 + i_1i_2 \end{array} \right)$$

Standard algorithm: a three-nested loop.

- Inner-most loop: Compute value for an entry
- Middle loop: Compute values in a row
- Outer-most loop: Compute values in all rows

Time complexity $\Theta(n^3)$

Let's try *Divide-and-Conquer*on this problem

Volker Strassen (1969)
Professor of Math and Stats
University of Konstanz, Germany
Knuth Prize Winner 2008

Let's try *Divide-and-Conquer*on this problem

Volker Strassen (1969) Professor of Math and Stats University of Konstanz, Germany Knuth Prize Winner 2008

Observations

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \\ a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4} \end{pmatrix} \times \begin{pmatrix} b_{1,1} & b_{1,2} & b_{1,3} & b_{1,4} \\ b_{2,1} & b_{2,2} & b_{2,3} & b_{2,4} \\ b_{3,1} & b_{3,2} & b_{3,3} & b_{3,4} \\ b_{4,1} & b_{4,2} & b_{4,3} & b_{4,4} \end{pmatrix} =$$

Let's try *Divide-and-Conquer*on this problem

Volker Strassen (1969) Professor of Math and Stats University of Konstanz, Germany Knuth Prize Winner 2008

Observations

$$\begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \\ a_{4,1} & a_{4,2} \end{pmatrix} \xrightarrow{ a_{1,3} & a_{1,4} \\ a_{2,3} & a_{2,4} \\ a_{4,3} & a_{4,4} \end{pmatrix} \times \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ b_{3,1} & b_{3,2} \\ b_{4,1} & b_{4,2} \end{pmatrix} \xrightarrow{ b_{1,3} & b_{1,4} \\ b_{2,3} & b_{2,4} \\ b_{3,3} & b_{3,4} \\ b_{4,3} & b_{4,4} \end{pmatrix} =$$

Let's try *Divide-and-Conquer*on this problem

Volker Strassen (1969) Professor of Math and Stats University of Konstanz, Germany Knuth Prize Winner 2008

Observations

$$\begin{pmatrix} \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \\ a_{4,1} & A^3 & a_{4,2} \end{bmatrix} & \begin{bmatrix} a_{1,3} & a_{2,4} \\ a_{2,3} & a_{2,4} \\ a_{4,3} & A^4 & a_{4,4} \end{bmatrix} \times \begin{pmatrix} \begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ b_{3,1} & b_{3,2} \\ b_{4,1} & b_{3,2} \end{bmatrix} & \begin{bmatrix} b_{1,3} & b_{1,4} \\ b_{2,3} & b_{2,4} \\ b_{3,3} & b_{3,4} \\ b_{4,3} & b_{4,4} \end{bmatrix} =$$

$$\begin{pmatrix} \begin{bmatrix} c_{1,1} & c_{1,2} & c_{1,3} & c_{1,4} \\ c_{2,1} & c_{2,2} & c_{2,3} & c_{2,4} \\ c_{3,1} & c_{3,2} & c_{3,3} & c_{3,4} \\ c_{4,1} & c_{4,2} & c_{4,3} & c_{4,4} \end{pmatrix}$$

Let's try *Divide-and-Conquer*on this problem

Volker Strassen (1969) Professor of Math and Stats University of Konstanz, Germany Knuth Prize Winner 2008

Observations

$$\begin{pmatrix} \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \\ a_{4,1} & a_{3} & a_{4,2} \end{bmatrix} & \begin{bmatrix} a_{1,3} & a_{2,4} & a_{2,4} \\ a_{2,3} & a_{2,4} & a_{2,4} \\ a_{3,3} & a_{3,4} & a_{3,4} \\ a_{4,3} & a_{4,4} \end{bmatrix} \times \begin{pmatrix} \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} & b_{1,4} \\ b_{2,1} & b_{2,2} & b_{2,4} \\ b_{3,1} & b_{3,2} & b_{3,4} \\ b_{4,3} & b_{4,2} \end{bmatrix} \\ & \begin{bmatrix} C_{1,1} & C_{1,2} & C_{1,3} & C_{1,4} \\ C_{2,1} & C_{2,2} & C_{2,3} & C_{2,4} \\ C_{3,1} & C_{3,2} & C_{3,3} & C_{3,4} \\ C_{4,1} & C_{4,2} & C_{4,3} & C_{4,4} \end{pmatrix}$$

Let's try *Divide-and-Conquer*on this problem

Volker Strassen (1969) Professor of Math and Stats University of Konstanz, Germany Knuth Prize Winner 2008

Observations

Example:

$$\begin{pmatrix}
1 & 4 & 3 & -1 \\
0 & 2 & -2 & 4 \\
-1 & 0 & 1 & 0 \\
5 & 2 & 1 & -2
\end{pmatrix}
\times
\begin{pmatrix}
3 & 1 & -1 & 1 \\
1 & 0 & -2 & 3 \\
2 & 3 & 1 & -3 \\
-1 & -2 & 0 & 1
\end{pmatrix}$$

Result:

$$\begin{pmatrix}
14 & 12 & -6 & 3 \\
-6 & -14 & -6 & 16 \\
-1 & 2 & 2 & -4 \\
21 & 12 & -8 & 8
\end{pmatrix}$$

First Attempt

Recursively solve the 8 sub-matrices multiplications:

$$A_1B_1$$
, A_2B_3 , A_1B_2 , A_2B_4 , A_3B_1 , A_4B_3 , A_3B_2 , A_4B_4

Then some additions ($\Theta(n^2)$ -time).

Thus $T(n) = 8T(n/2) + cn^2$.

First Attempt

Recursively solve the 8 sub-matrices multiplications:

$$A_1B_1$$
, A_2B_3 , A_1B_2 , A_2B_4 , A_3B_1 , A_4B_3 , A_3B_2 , A_4B_4

Then some additions ($\Theta(n^2)$ -time).

Thus $T(n) = 8T(n/2) + cn^2$.

By Master theorem, T(n) is $\Theta(n^3)$.

No improvement from the standard way.

First attempt fails.

First Attempt

Recursively solve the 8 sub-matrices multiplications:

$$A_1B_1, A_2B_3, A_1B_2, A_2B_4, A_3B_1, A_4B_3, A_3B_2, A_4B_4$$

Then some additions ($\Theta(n^2)$ -time).

Thus $T(n) = 8T(n/2) + cn^2$.

By Master theorem, T(n) is $\Theta(n^3)$.

No improvement from the standard way.

First attempt fails.

Goal: "Group" some of the multiplications together so we need < 8 sub-matrix multiplication.

Strassen's Algorithm

$$P_1 = A_1(B_2 - B_4)$$

$$P_2 = (A_1 + A_2)B_4$$

$$P_3 = (A_3 + A_4)B_1$$

$$P_4 = A_4(B_3 - B_1)$$

$$P_5 = (A_1 + A_4)(B_1 + B_4)$$

$$P_6 = (A_2 - A_4)(B_3 + B_4)$$

$$P_7 = (A_1 - A_3)(B_1 + B_2)$$

$$\left(\begin{array}{c|c}
A_1B_1 + A_2B_3 & A_1B_2 + A_2B_4 \\
\hline
A_3B_1 + A_4B_3 & A_3B_2 + A_4B_4
\end{array}\right) = \\
\left(\begin{array}{c|c}
P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\
\hline
P_3 + P_4 & P_5 + P_1 - P_3 - P_7
\end{array}\right)$$

Thus we only need 7 multiplications of sub-matrices.

Strassen's Algorithm

Strassen's Algorithm

Given two input $n \times n$ matrices A, B, do the following:

- If *A*, *B* have very small dimensions, directly multiply them
- Otherwise divide A,B into $A_1, \ldots, A_4, B_1, \ldots, B_4$.
- Compute P_1, \ldots, P_7 , each use one recursive call.
- Then add and subtract P_i 's to get the output matrix $A \times B$

Strassen's Algorithm

Strassen's Algorithm

Given two input $n \times n$ matrices A, B, do the following:

- If *A*, *B* have very small dimensions, directly multiply them
- Otherwise divide A,B into $A_1, \ldots, A_4, B_1, \ldots, B_4$.
- Compute P_1, \ldots, P_7 , each use one recursive call.
- Then add and subtract P_i 's to get the output matrix $A \times B$

Complexity

Let T(n) be the time it takes to multiples two $n \times n$ matrices.

We have $T(n) = 7T(n/2) + cn^2$

By Master theorem, T(n) is $\Theta(n^{\log 7}) \approx \Theta(n^{2.808})$

This is asymptotically better than $O(n^3)$!

Divide and Conquer Summary

- Algorithm design technique: Divide and Conquer
 - Partition the problems into subproblems
 - Combine sub-solutions to overall solution
- Analysis Technique for Divide and Conquer: Master Theorem
- Karatsuba's algorithm (Integer multiplication): $O(n^{1.59})$
- Strassen's algorithm (Matrix multiplication): $O(n^{2.808})$