

Computer Science & Applied Mathematics

MAA205 - Algorithms for Discrete Mathematics - Fall 2022

Part A - Graphs and Matrices

Yubo Cai 蔡宇博

版权所属 蔡宇博

Preface

Instructors:

- 1. Lucas Gerin
- 2. Amanda Bigel

Prerequisites:

- 1. MAA106 Introduction to Numerical Analysis
- 2. MAA104 Algebra
- 3. MAA103 Discrete Mathematics
- 4. CSE101 Computer Programming

Mathematical Toolbox:

- 1. Graphs and Matrices
- 2. Probabilistic graphs

Python Notebooks:

- 1. Enumeration in graphs
- 2. Probabilistic graphs

Evaluation and Final Grade:

- 1. 50% Graded Labs (1 for every topic)
- 2. 50% Individual final project (report due at the end of the last Lab, no oral defense)

Contents

1	Adjacency matrices 邻接矩阵 (review of CSE101)		4
	1.1	Definition	4
	1.2	Proposition	4
	1.3	(A glimpse of) spectral graph theory 谱系图理论	5
2 Probabilistic Graphs 概率图谱 (Partly review of MAA103)		babilistic Graphs 概率图谱 (Partly review of MAA103)	6
	2.1	Definition of Probabilistic Graphs	6
	2.2	Definition of Markov Chain 马尔可夫链	6
	2.3	Proposition of Markov Chain	7
	2.4	Absorbing Probability (on an example)	7

1 Adjacency matrices 邻接矩阵 (review of CSE101)

Let G be a finite graph on a vertex set (V 是顶点, E 是边) $V=\{v_1,...,v_n\}$

1.1 Definition

The adjacency matrix A_G of G is the n matrix $(A_G) = (a_{ij})_{i,j \leq n}$ where $a_{ij} = Number$ of edges going from v_i to v_j . 从点 v_i 到 v_j 的边的个数

What does $(A_G)^2$ represent?

1.2 Proposition

Fot all $k \ge 1$, $(A_G)_{i,j}^k$ is the number of paths from V_i to V_j of length k. A^{100} 是 A 经过 100 次方以后实际的运算结果.

$$Ex: A = \begin{bmatrix} 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow A^{100} = \begin{bmatrix} 0 & 0 & 99 & 2 \\ 0 & 1 & 50 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 50 & 1 \end{bmatrix}$$

1.3 (A glimpse of) spectral graph theory 谱系图理论

The maximal out-degree $\Delta \atop \rightarrow$ of G is

$$\Delta_{\rightarrow} = \max_{i} \sum_{j} a_{ij}$$

Theorem: Let G be a graph with adjacency matrix A. Then

- 1. If $0 < \varepsilon < \frac{1}{\Delta}$ then $(Id_n \varepsilon A)$ is invertible.
- 2. G is connected (*) 在一个无向图 G 中,若从顶点 v_iv_i 到顶点 v_jv_j 有路径相连(从 v_jv_j 到 v_iv_i 也一定有路径),则称 v_iv_i 和 v_jv_j 是连通的。如果 G 是有向图,那么连接 v_iv_i 和 v_jv_j 的路径中所有的边都必须同向。如果图中任意两点都是连通的,那么图被称作连通图。

 \Leftrightarrow For all $\varepsilon < \frac{1}{\Delta}$, even coefficient of $(I_d - \varepsilon A)^{-1} > 0$.

 $\Leftrightarrow \exists \varepsilon < \frac{1}{\Delta} \text{ such that every coeff. of } (Id - \varepsilon A)^{-1} \text{ is } > 0$

 $\forall i, j, \quad \exists k \text{ s.t. } \left(A_G^h\right)_{i,j} \text{ is } > 0.$

Proof:

1. Let ϵ be such that $(Id - \varepsilon A)$ is not invertible

$$\Rightarrow$$
 There exists $\vec{x} = (x_1, \dots, x_n) \neq \overrightarrow{0} \cdot (0, 0, \dots, 0)$ st. $(Id - \varepsilon A)\vec{x} = 0$.

$$A\vec{x} = \frac{1}{6}\vec{x}$$

$$\forall i, \sum_{j} a_{ij} x_j = \frac{1}{\varepsilon} x_i \ (1)$$

Let i^* be such $x_{i*} = \max_{1 \leq i \leq n} x_i$, we can assume $x_i^* > 0$

Apply (1) to i* we have

$$x_{i*} \underset{\rightarrow}{\Delta} \ge x_{i*} \sum_{j} a_{i*,j} = \sum_{j} a_{i*,j} \cdot a_{i*} \ge \sum_{j} a_{i*,j} \cdot a_{j} = \frac{1}{\varepsilon} x_{i*}$$

We prove that $\Rightarrow \underline{\Lambda} \geq \frac{1}{\varepsilon}$

2. $(1-x)(1+x+x^2+\ldots+x^k)=1-x^{k+1}$

Let x be real. $(Id - \varepsilon A)(Id + \varepsilon A + \varepsilon^2 +)^2 + \dots + \varepsilon^k A^k) = Id - \varepsilon^{k+1} A^{k+1}$ (every coefficient is $\leq (\varepsilon \Delta)^{k+1}$)

Let
$$k \to +\infty$$
 $(Id - \varepsilon A)(Id + \varepsilon A + \varepsilon^2 A^2 + \ldots) = Id$.

$$(Id - \varepsilon A)^{-1} = Id + \varepsilon A + \varepsilon^2 A^2 + \dots + \varepsilon^k A^k + \dots$$

If G is connected, the every coefficient on $RHS > 0 \quad \forall \varepsilon \text{ Fix } \varepsilon$, Assume every coefficient on RHS > 0.

5

2 Probabilistic Graphs 概率图谱 (Partly review of MAA103)

$$V = \{v_1, ..., v_n\}$$

2.1 Definition of Probabilistic Graphs

A transition matrix on V is an $n \times n$ matrix $P = (Pi)_{ij \le n}$ such that

- 1. $\forall i, j, 0 \leq p_{i,j} \leq 1$ 个体概率小于 1
- 2. $\forall i \leq n, \sum_{i} p_{i,j} = 1$ 每行概率总和等于 1

 P_{ij} is interpreted as the probability of going from v_i to v_j in one-time step. For example:

$$P = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0\\ 0 & 1 & 0 & 0\\ 0 & \frac{1}{6} & \frac{1}{6} & \frac{2}{3}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2.2 Definition of Markov Chain 马尔可夫链

- 1. V be a vertex set $\{v_1, \ldots, v_m\}$
- 2. P be a transition matrix on V.
- $3. \ S \in V$

A Markov Chain with transition matrix P and starting point S. is a sequence of random variables $X_0, X_1, X_2 \dots$ with value in V such that $X_0 = S$ and $\forall k \ge 1$

$$\mathbb{P}(X_1 = x_1, X_2 = x_2 \dots X_n = x_n) = p_{s \cdot x_1} \times p_{x_1 x_2} \times \dots \times p_{x_n - 1x_n}$$

.

2.3 Proposition of Markov Chain

The coeff $(P^k)_{i,j}$ is the probability of going from v_i to v_j Th exactly k times steps.

2.4 Absorbing Probability (on an example)

In the mathematical theory of probability, an **absorbing Markov chain** is a Markov chain in which every state can reach an absorbing state. An absorbing state is a state that, once entered, cannot be left.

Figure 1: Sample of absorbing Markov chain

Put $\Pi_{v'}^v = \mathbb{P}\left(\text{ starting from } v, \text{ I am eventually stuck at } v'\right)$

 $\Pi_{v_1}^{v_2} = \mathbb{P}\left(\text{ stuck at } v_2 | \text{ 1st step is } v_1\right) \times \mathbb{P}(1\text{st step is } v_1) + \mathbb{P}\left(\text{ stuck at } v_2 | \text{ 1st step is } v_2\right) \times \mathbb{P}(1\text{st step is } v_3) + \mathbb{P}\left(\text{ stuck at } v_2 | \text{ 1st step is } v_3\right) \times \mathbb{P}(1\text{st step is } v_3) = \Pi_{v_1}^{v_2} \times \frac{1}{4} + 1 \times \frac{1}{2} + \Pi_{v_3}^{v_2} \times \frac{1}{4}$