Techniki inteligencji obliczeniowej – zadanie 2

Mateusz Broncel 246999

Badanie wpływu wielkości elity dla selekcji elitarnej

Cel:

Celem badania będzie porównanie wpływu zmiany prawdopodobieństwa krzyżowania się osobników na uzyskiwane wyniki przystosowania dla operatora selekcji: ruletka.

Stałe:

Rozmiar populacji: 100

• Liczba pokoleń: 100

• Operator selekcji: elitarna + turniej

• Prawdopodobieństwo krzyżowania: 0.6

• Prawdopodobieństwo mutacji: 0.6

Zmienna:

Prawdopodobieństwo wielkość elity

Tabela porównująca uzyskane wyniki przystosowania:

Zmienna	Algorytm genetyczny		
Wielkość elity	best	worst	avg
0	10.25	116.8	12.33
10	10.2	101.3	12.21
25	12.89	111.6	15.7
50	13.92	116.8	16.2

Wnioski:

Analizując uzyskane wyniki, najlepsze wyniki funkcji przystosowania otrzymujemy dla wielkości elity równej 10 (10%), najlepsze wartości są coraz gorsze dla zwiększającej się wielkości elity.

Badanie porównujące operatory selekcji turniejowej oraz selekcji ruletki

Cel:

Celem badania będzie porównanie wyników funkcji przystosowania w zależności od zastosowanej funkcji selekcji

Stałe:

Rozmiar populacji: 100Liczba pokoleń: 100

Prawdopodobieństwo krzyżowania: 0.6Prawdopodobieństwo mutacji: 0.6

• Wielkość turnieju: 10

Zmienna:

• Operator selekcji

Tabela porównująca uzyskane wyniki przystosowania:

Zmienna	Algorytm genetyczny		
Metoda selekcji	best	worst	avg
turniej	8.95	113.3	11.104
ruletka	11.15	116.85	22.84

Wnioski:

Wyniki jasno ukazują, że selekcja turniejowa zapewnia lepsze wyniki od selekcji ruletki, zarówno te najlepsze, średnie jak i najgorsze.

Badanie wpływu liczby punktów krzyżowań

Cel:

Celem badania będzie porównanie wpływu zmiany punktów krzyżowań na uzyskiwane wyniki przystosowania

Stałe:

Rozmiar populacji: 100Liczba pokoleń: 100

• Operator selekcji: ruletka

• Prawdopodobieństwo krzyżowania: 0.6

• Prawdopodobieństwo mutacji: 0.6

Zmienna:

• Liczba punktów krzyżowania

Tabela porównująca uzyskane wyniki przystosowania:

Zmienna	Algorytm genetyczny		
Liczba punktów krzyżowań	best	worst	avg
2	26.4	110.3	37.37
3	24.05	117.85	34.35
4	20.65	127.2	32.30
5	18.4	120.4	29.44

Wnioski:

Z przeprowadzonych testów wynika, że liczba punktów krzyżowań ma wpływ na jakość rozwiązań, i stopniowo, najlepsze oraz średnie wyniki są coraz lepsze dla większej liczby krzyżowań.

Badanie wpływu rodzaju krzyżowania

Cel:

Celem badania będzie porównanie wpływu rodzaju krzyżowania na uzyskiwane wyniki przystosowania

Stałe:

Rozmiar populacji: 100Liczba pokoleń: 100

• Operator selekcji: ruletka

Prawdopodobieństwo krzyżowania: 0.6Prawdopodobieństwo mutacji: 0.6

Zmienna:

Rodzaj krzyżowania

Tabela porównująca uzyskane wyniki przystosowania:

Zmienna	Algorytm genetyczny		
Rodzaj krzyżowania	best	worst	avg
Równomierne	12.5	109.35	19.12
Jednopunktowe	19.7	115	30.26
Wielopunktowe (5)	18.4	120.4	29.44

Wnioski:

Analizując wyniki, można wyciągnąć wniosek, że krzyżowanie równomierne daje lepsze wyniki od jednopunktowego jak i wielopunktowego.

Badanie wpływu liczby rodziców

Cel:

Celem badania będzie porównanie wpływu liczby rodziców na uzyskiwane wyniki przystosowania

Stałe:

Rozmiar populacji: 100Liczba pokoleń: 100

• Operator selekcji: ruletka

Prawdopodobieństwo krzyżowania: 0.6Prawdopodobieństwo mutacji: 0.6

Zmienna:

• Liczba rodziców przy krzyżowaniu

Tabela porównująca uzyskane wyniki przystosowania:

Zmienna	Algorytm genetyczny		
Liczba rodziców	best	worst	avg
2	9.2	113.3	20.11
3	8.4	115.1	18.19
4	9.5	111.95	20.27

Wnioski:

Analizując wyniki, można wyciągnąć wniosek, że liczba rodziców nie ma statystycznie znaczącego wpływu na wyniki, jednak najlepsze wyniki uzyskano dla liczby rodziców równej 3.

Badanie wpływu prawdopodobieństwa krzyżowania

Cel:

Celem badania będzie porównanie wpływu zmiany prawdopodobieństwa krzyżowania się osobników na uzyskiwane wyniki przystosowania dla operatora selekcji: ruletka.

Stałe:

Rozmiar populacji: 100Liczba pokoleń: 100

• Operator selekcji: ruletka

• Prawdopodobieństwo mutacji: 0.6

Zmienna:

• Prawdopodobieństwo krzyżowania

Tabela porównująca uzyskane wyniki przystosowania:

Zmienna	Algorytm genetyczny		
Prawdopodobieństwo krzyżowania	best	worst	avg
0.2	11.65	101.1	19.1
0.5	14.65	110	24.89
0.7	10.9	102.1	19.94
0.9	8.75	119.55	18.61

Wnioski:

Analizując uzyskane wyniki, najlepsze wyniki funkcji przystosowania otrzymujemy dla największego prawdopodobieństwa krzyżowania, podobnie średnie, jednak najlepsze najgorsze osobniki trafiają się przy najniższym prawdopodobieństwie krzyżowania.

Badanie wpływu prawdopodobieństwa mutacji

Cel:

Celem badania będzie porównanie wpływu zmiany prawdopodobieństwa mutacji występującej u osobników populacji na uzyskiwane wyniki przystosowania dla operatora selekcji: ruletka.

Stałe:

Rozmiar populacji: 100Liczba pokoleń: 100

• Operator selekcji: ruletka

Prawdopodobieństwo krzyżowania: 0.6

Zmienna:

• Prawdopodobieństwo mutacji

Tabela porównująca uzyskane wyniki przystosowania:

Zmienna	Algorytm genetyczny		
Prawdopodobieństwo	best	worst	avg
mutacji			
0.2	9.89	114.35	21.69
0.5	7.8	119.95	18.49
0.7	10.35	107.55	22.32
0.9	10.72	114.35	21.92

Wnioski:

Analizując uzyskane wyniki, można zauważyć, że jakość naszych osobników jest niska dla małego prawdopodobieństwa mutacji (0.2). Wraz ze wzrostem tego prawdopodobieństwa, rośnie również jakość wyników, aż do osiągnięcia prawdopodobieństwa około 0.5. Po tej wartości, dla wyższych prawdopodobieństw krzyżowania, jakość osobników okazuje się niższa niż dla uzyskanego maksimum oraz gorsza od niskiego prawdopodobieństwa mutacji.