Familienname:	Bs	sp.	1	2	3	4	$\sum /40$
Vorname:							
Matrikelnummer:							
Studienkennzahl(en):		Note:					

Einführung in die Analysis

Roland Steinbauer, Sommersemester 2012

2. Prüfungstermin (28.9.2012)

Gruppe B

1. Formulierungen.

- (a) Definiere die folgenden Begriffe (je 1 Punkt): Beschränkte Funktion, die Cosinusfunktion, charakteristische Funktion einer Menge, die allgemeine Potenz x^{α} (x > 0 $\alpha \in \mathbb{R}$)
- (b) Definiere die (reelle) Exponentialfunktion und gib drei ihrer grundlegenden Eigenschaften an. (2 Punkte)
- (c) Formuliere und beweise das Intervallschachtelungsprinzip. (6 Punkte)

2. Vermischtes.

- (a) Sei $f: \mathbb{R} \supseteq D \to \mathbb{R}$ und sei $a \in D$. Zeige, dass, wenn f stetig in a ist, für jede Folge $(x_n)_n \in D$ mit $x_n \to a$ gilt, dass $f(x_n) \to f(a)$. (3 Punkte)
- (b) Berechne $\lim_{x\to\infty}\frac{x^k}{e^x}$ $(k\in\mathbb{N})$ und interpretiere das Ergebnis. (2 Punkte)
- (c) Gib je ein Beispiel einer stetigen Funktion auf $\mathbb{R} \setminus \{2\}$ an, die stetig nach $x_0 = 2$ fortgesetzt, bzw. *nicht* stetig nach $x_0 = 2$ fortgesetzt werden kann. (2 Punkte)
- (d) Untersuche auf Konvergenz und berechne den Grenzwert, falls er existiert. (je 2 Punkte)

(i)
$$\sqrt{9n^2 + n + 3} - 3n$$
 (ii) $\sum_{k=2}^{\infty} \frac{1}{2^k}$

3. Ideen & Begriffe.

- (a) (Umkehrsatz) (2 Punkte)
 Formuliere den Umkehrsatz für streng monotone und stetige Funktionen. Für welche Aussagen im Satz ist die Stetigkeit notwendige Bedingung?
- (b) (Konvergenz vs. absolute Konvergenz) (3 Punkte)
 Für (reelle) Reihen definiere die Begriffe Konvergenz und absolute Konvergenz.
 Diskutiere das Verhältnis dieser Begriffe zueinander.
- (c) (Stetigkeit vs. gleichmäßige Stetigkeit) (5 Punkte) Für eine Funktion $g: \mathbb{R} \supseteq D \to \mathbb{R}$ definiere die Begriffe Setigkeit (auf D) und gleichmäßige Stetigkeit. Erkläre die Bedeutung dieser Begriffe und diskutiere das Verhältnis dieser Begriffe zueinander.

Bitte umblättern!

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel an. (Je 3 Punkte)

- (a) Jede Folge mit genau einem Häufungswert konvergiert.
- (b) Eine stetige Funktion kann man "ohne abzusetzen zeichnen".