Question 18 (15 marks)

In an experiment, two neutrally-charged subatomic particles, A and B, each of mass m, are fired directly toward each other. Both have a speed of 0.600 c, as seen by the observer O shown in Figure 1. The particles collide and become one particle, C, which O observes to be stationary. No energy is lost due to interactions with the environment and no other particles, e.g. photons, are emitted.

Figure 1: Two particles of equal mass and opposite velocities collide

(a)	Using conservation of relativistic energy, calculate the mass of the combined	particle $m_{\rm C}$.
	Give your answer in terms of m , the mass of each of the original particles.	(4 marks)

	Answer	m
(b)	Explain why the velocity of the combined particle has to be 0 m s ⁻¹ .	(2 marks)
	8	
	r	

For parts (c) and (d) consider the same collision viewed by an observer X, who is moving with a velocity of -0.600 c (i.e. the same velocity that Particle B had before the collision). X maintains this velocity after the collision.

Figure 2: Observer X is now shown.

(c)	Using the formulas for relativistic velocity addition and relativistic mor	nentum, determine
	the momentum of the system before the collision, as determined by X	. Express your
	answer in terms of m and c , the speed of light.	(5 marks)

Angueor	1044404
Answer	ma

(d) With the use of a calculation, show that your answer in part (c) is the same as the momentum of the system after the collision, as determined by X. (4 marks)