Fundamentos teóricos sobre procesadores

Teoría

Historia

Pentium's

- Computador de Von Newmann.
- Pipeline
- Segmentación
- SuperEscalar
- Buffering y Cache

- Orígenes de la informática hasta 1980.
- Familia de x86: 8086, 286, 386 y 486.

- Pentium (P5).
- Pentium II y III (P6)
- Pentium IV
- Pentium M

ÍNDICE

- Teoría
 - Computador de Von Newmann.
 - Pipeline
 - Segmentación
 - SuperEscalar
 - Buffering y Cache

INTRODUCCIÓN

- El computador de Von Newman se basa en unas partes básicas que compondrán el núcleo del procesador.
- Las partes básicas que necesitaba este procesador eran:
 - Unidades de entrada y salida
 - Unidad de memoria
 - Unidad aritmética lógica
 - Unidad de control

Buses

VON NEW

VON NEWMANN Ciclo de instrucción

```
Instrucción 1 > L D E G F

Instrucción 2 > L D E G F

L D E G F

L D E G F
```

- Tras la ejecución de todas las fases de una instrucción empieza la ejecución de la siguiente instrucción.
 - Lectura, decodificación, ejecución, guardado, finalización

 Tras finalizar cada fase de la instrucción la fase de la siguiente puede comenzar a ejecutarse.

PIPELINE

Instrucción > L D E G F

 Pipeline presenta problemas cuando hay fases más largas que otras.

PROBLEMAS PIPELINE

- Se segmenta cada instrucción en varias partes, con la única condición de que se ejecuten en un tiempo fijo.
- Si es necesario se dividen las fases del ciclo de instrucción en varias partes.
- Se sincroniza cada fase con un único reloj.
- De esta manera se optimiza el uso de los recursos del procesador.

SEGMENTACIÓN

- Se dividen las fases en partes de tamaño fijo.
- Se llegan a generar más 100 divisiones, para ejecutar una instrucción.

SEGMENTACIÓN

Instrucción 1	>	L	L	D	Е	Е	Е	Е	G	G	F
Instrucción 2	>		ш	L	Δ				Е	Е	Е
Instrucción 3	>			ш	ш				Δ		
Instrucción 4	>				ш				ш		
Instrucción 5	>										

- Hay partes de la instrucción indivisibles
- Esto provoca estados de espera en el resto
- Perdida de rendimiento

PROBLEMAS SEGMENTACIÓN

- Estos procesadores tienen varias unidades funcionales independientes de cada tipo. De forma que eliminan las esperas por unidad ocupada:
 - Unidad aritmético lógica (ALU)
 - Unidad de lectura / escritura en memoria
 - Unidad de coma flotante (Floating Point Unit)
 - Unidad de salto (Branch unit)

SUPERESCALAR

Instrucción 1	>	L1	L1	D	ALU1				G1	G1	F			
Instrucción 2	>		L2	L2	D	ALU2			G2	G2	F			
Instrucción 3	>			L1	L1	D	D ALU3				G1	G1	F	
Instrucción 4	>				L2	L2	D	ALU4			G2	G2	F	
Instrucción 5	>					L1	L1	D ALU1			U1		G1	G1

 Las unidades están replicadas, por lo que puede ejecutar más instrucciones por ciclo.

SUPERESCALAR

- Tienen estructuras complejas y mal aprovechadas.
- Desde 1998 las CPU son superescalares.
- Encuentra difícilmente instrucciones que pueda procesar juntas.
- Dependencias de datos

```
programa {
    A = 2 + 4;
    B = A + 5;
}
```

SUPERESCALAR → **HT**

- Ejecución de hilos diferentes en un mismo procesador.
- Simulación de dos procesadores lógicos.
- Reaprovechamiento de los recursos del procesador.
- Aumento de rendimiento en aproximadamente un 30%. Aunque el usuario solo percibe el 20%.
- Los problemas que surgían en el pipeline se solventaban en parte con esta técnica.
 - No hay dependencia de datos entre datos de programas diferentes

HT: HYPERTHREADING

- SIMD: (Simple Instruction Multiple Data).
 - MMX
 - 3DNow
 - SSE
 - °SSE2
 - °SSE3
- CoolQuiet
 - Ajusta frecuencia de CPU a necesidad de proceso
 - Disminuye consumo eléctrico
 - Reduce energía disipado
 - Reduce zumbido del ventilador

SIMD, CoolQuiet

Historia

Orígenes de la informática hasta 1980.

Familia de x86: 8086, 286, 386 y 486.

INTRODUCCIÓN

- Cálculos mecánicos
- Relés y contractotes
- Transistores, resistencias y condensadores.
- En la 2º Guerra Mundial
- Años 60 → Las grandes empresas tienen ordenadores
- Años 80 → Ordenadores para todos
- Años 90 → Llega internet

HISTORIA

- El 8088 es el primer microprocesador de Intel → equivalente al MSX88
- Características 8086/8088:
 - El bus de datos interior a 16 bits
 - El bus de datos externo a 8 bits
 - Bus de direcciones 20 bits (1MB de memoria)
 - Frecuencia de reloj es de 4.77Mhz
 - [20K a 500K] instrucciones por segundo

8086/8088

- Características:
 - Frecuencia de reloj a 6Mhz hasta 20Mhz
 - Espacio de 16Mb (24 bits de direcciones)
 - Trabaja con 16 bits
 - Capacidad para realizar funcionamiento en modo real y protegido
 - Frecuencia de trabajo: 12 a 20 Mhz
 - Optimizaciones diversas:
 - [500K a 4M] instrucciones por segundo

80286

- Modifica modo protegido
- Modo virtual (multitarea)
- Direcciones de 32bits (4GB)
- Posee memoria caché de superior a la del 80286
- Frecuencia de reloj de hasta 40 Mhz
- Modelos diferentes 80386SX y 80386DX

- Los 80486 presentan nuevas características:
 - Reloj de frecuencia superior
 - Procesador matemático (igual que el 80386 pero integro en el CPU)
 - 8kbyte interior en el cache
 - Versiones de 80486
 - 80486DX 486DX2 486DX4
 - 80486SX
 - 80486SL (para computadoras portátiles)

80486

- Pentium's
 - Pentium (P5).
 - Pentium II y III (P6)
 - Pentium IV
 - Pentium M

INTRODUCCIÓN

- Velocidad del primer Pentium P5, 60-66Mhz
- Caché 16 KB.
- Unidad de punto flotante (FPU) mejorada
- Ejecución de dos instrucciones a la vez.
- Pipeline
- APIC
- Error de división.

PENTIUM P5 PIPELINE

- Tercera generación de Pentiums, con juego de instrucciones MMX.
- Velocidades 66/166 MHz, 66/200 MHz y 66/233 MHz (velocidad FSB, y Micro)
- 57 instrucciones adicionales
- Una nueva unidad MMX
- El doble de Caché
- 4.500.000 transistores
- CMOS-silicio de 0,35 micrones, seguimos bajando las temperaturas de los procesadores con nuevas tecnologías
- FPU, 8 etapas de vía.

- Grandes avances en el diseño
- Las primeras versiones eran de 16 bits
- Velocidades entre 133 y 200 Mhz
- FSB entre 60 y 66 Mhz
- No tiene unidad MMX.
- Caché L1 de 8KB + 8KB
- Cache L2 misma velocidad que la CPU.
- Cache L2: 256KB, 512KB, 1MB.
- Puede direccionar hasta 64 GB. de RAM.

PENTIUM PRO PIPELINED

- Velocidades de 166 a 450 Mhz
- FSB de 66/166Mhz,100/333Mhz
- Se unen ventajas de P.Pro y Pentium MMX
 - Instrucciones MMX
 - 32 KB memoria Cache primer nivel
 - Cache de segundo nivel fuera del núcleo
 □Abarata costes
 - 512 KB memoria Cache segundo nivel
 - Trabaja a la mitad de la frecuencia del procesador. (en P.Pro iva a la misma velocidad).

PENTIUM II PIPELINE

- SSE, 70 nuevas instrucciones y 8 nuevos registros
- Velocidades de 450 Mhz hasta 1.4 Ghz.
- FSB de 100 Mhz hasta 133 Mhz
- Xbox

PENTIUM III SUPER ESCALAR

- Velocidad desde 1.3 Ghz hasta 4 Ghz
- FSB de 400 MT/s a 1066 MT/s
- SSE 3 Instrucciones SIMD que mejoran:
 - Calculos, transacciones, media processing, 3D graphics y juegos
- El branch predictor
- Cahe L1 es de solo 8KB y su velocidad de 256 bits
- Caché L2 256 Kb y a 64 bits, igual que en el Pentium III. Pero hasta 512 KB.
- Cache L3 en las versiones D y extreme
- Supersegmentado.
- Superescalar
- HT HyperThreading
- FPU peor que la de P3 en algunas ocasiones

PENTIUM IV

- Son procesadores creados para ordenadores portátiles, es decir una tecnología que gasta menos energía para que consuma menos batería en los portátiles y a su vez también se calientan menos. Arquitectura x86.
- Basada en tecnología PIII y a su vez en PPro.
- Velocidades de 900 Mhz a 2.26 Ghz
- FSB 400 MT/s a 533 MT/s.
- Tecnología CoolQuiet.

PENTIUM MOBILE CENTRINO