Predicting The Perfect March Madness Bracket

Matthew Zaback

Overview

- 1. Background
- 2. What Others Have Done
- 3. My Approach
- 4. Results
- 5. Conclusion

Background

What is Machine Learning?

Subfield of artificial intelligence that gives the computer the ability to learn without explicitly being programmed

Allows the user to feed it immense amount of data and have the computer analyze it and make data driven recommendations

What is March Madness?

March Madness

Time when NCAA college basketball tournament is held

Single elimination featuring 68 teams

"Upset" = when a higher seeded team beats a lower seeded team

МСДД

2023 NCAA DIVISION I MEN'S BASKETBALL CHAMPIONSHIP

The Odds Of Guessing Every Winner

1 in 9,223,372,036,854,775,808

263

Competitions

Warren Buffett's Berkshire Hathaway offers \$1 billion to whoever gets a perfect bracket

ESPN holds their own NCAA Bracket Tournament challenge that is free to play, top brackets share \$50,000

Kaggle awards \$50,000 to the top 8 best brackets made with machine learning

Why do it?

According to the American Gaming Association, roughly 80 million brackets are filled out each year with 40 million americans participating.

Most do it for a chance to win something. The AGA estimates the average entry fee for an office pool is \$29, with \$2 billion wagered on pools alone.

80_M

Tournament brackets completed each year

<u>/S.</u> 156м

Ballots cast in the 2020 presidential election

78%
Of employees say celebrating March Madness at work boosts morale

29%
Of March Madness fans
participate in office pools

39%

Of workers say they became closer with a coworker after participating in an office pool

Closest to Perfect

Year	Games Lasted
2023	24 games
2022	27 games
2021	27 games
2019	49 games
2018	25 games
2017	39 games
2016	25 games
1977-2015	36 games

What Others Have Done

What Others Have Done

Machine Learning

Machine Learning Algorithms

Neural Net

XGBoost

Random Forest

Naive Bayes

Logistic Regression

KNN

Support Vector Machine

AdaBoost

Will Geoghegan (2021)

	Α	В	C	D	E	F	G	H	1	J	K	L	M
49	Team	Conf	WL	Rank	Mean	Trimmed	Median	StDev	ATP	BBT	BIH	BWE	COL
50													
51	Kansas	B12	34-6	1	2.02	1.88	1	1.43	8	3	2	1	1
52	Gonzaga	WCC	28-4	2	2.45	2.33	2	1.81	1	1	3	2	7
53	Arizona	P12	33-4	3	3.54	3.45	3	1.89	4	2	1	4	2
54	Houston	AAC	32-6	4	5.07	4.95	4	3.02	2	4	13	3	5
55	Baylor	B12	27-7	5	5.95	5.8	5	2.5	6	5	4	5	8
56	Villanova	BE	30-8	6	7.36	7.08	6	3.92	23	11	5	6	3
57	Duke	ACC	32-7	7	7.82	7.75	8	2.02	14	6	8	9	9
58	Tennessee	SEC	27-8	8	7.95	7.8	7	2.74	3	9	7	7	10
59	Texas Tec	B12	27-10	9	10.25	10.15	10.5	3.35	7	12	12	8	19
60	Kentucky	SEC	26-8	10	10.63	10.43	10	4.12	9	7	9	10	16
61	Auburn	SEC	28-6	11	11.19	11.15	11	3.36	5	8	6	12	6
62	UCLA	P12	27-8	12	12.02	12	12	1.87	13	10	14	11	11
63	Purdue	B10	29-8	13	12.43	11.97	12	3.93	35	13	11	14	12
64	North Car	ACC	29-10	14	15.46	14.78	15.5	8.02	55	15	21	13	14
65	Arkansas	SEC	28-9	15	16.17	16.02	16	4.15	30	16	15	16	15

Screenshot of Massey Ratings Data

Top 0.2% of ESPN brackets in 2021

He used rankings from many different websites and sports analysts

AdaBoost machine learning algorithm

Lotan Weininger (2019)

1. Variable List

Variable	Description	Team
X_1	Pomeroy Ranking	Team1
X_2	Pomeroy Ranking	Team2
X_3	Offensive Rating	Team1
X_4	Offensive Rating	Team2
X_5	Defensive Rating	Team1
X_6	Defensive Rating	Team2
X_7	Net Rating	Team1
X_8	Net Rating	Team2
X_9	Tempo	Team1
X_{10}	Tempo	Team2
X_{11}	Possession Time Per Game (sec.)	Team1
X_{12}	Possession Time Per Game (sec.)	Team2
X_{13}	Adjusted Pomeroy Ranking	Team1
X_{14}^{13}	Adjusted Pomeroy Ranking	Team2

2. Model Selection

Model	Variable Composition	Error
1	$X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, X_{10}$	0.55346
2	$X_3, X_4, X_5, X_6, X_7, X_8, X_9, X_{10}$	0.58481
3	$X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8$	0.55322
4	X_1, X_2, X_7, X_8	0.55342
5	$(X_1 - X_2), X_7, X_8$	0.55345
6	$(X_1 - X_2), (X_7 - X_8)$	0.55291
7	$(X_1 - X_2), (X_3 - X_4), (X_5 - X_6), (X_7 - X_8)$	0.55257
8	$(X_1$ - X_2)3, $(X_3$ - X_4)3, $(X_5$ - X_6)3, $(X_7$ - X_8)3	0.58617
9	$(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)^2$	0.56862
10	$(X_1 - X_2), (X_3 - X_4), (X_5 - X_6)$	0.58856
11	X_3, X_4, X_5, X_6	0.58472
12	$X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_{11}, X_{12}$	0.55551
13	$(X_3 - X_4), (X_5 - X_6), (X_7 - X_8)$	0.58462
14	$(X_3 - X_4), (X_5 - X_6), (X_7 - X_8), (X_{11} - X_{12})$	0.58793
15	$(X_3 - X_4), (X_5 - X_6), (X_7 - X_8), X_{13}, X_{14}$	0.54982
16	$(X_3 - X_4), (X_5 - X_6), (X_7 - X_8), (X_{13} - X_{14})$	0.54966
17	$(X_1 - X_2), (X_3 - X_4), (X_5 - X_6), (X_7 - X_8), (X_{11} - X_{12})$	0.55587
18	$X_1, X_2, (X_3 - X_4), (X_5 - X_6), (X_7 - X_8)$	0.55329

Logistic regression model

Simulated the performance of the variables by testing the predictions on previous years data

Top 10% in Kaggle competition

My Approach

Data Available (Since 2003)

	Seed	Wins	Losses	Win Percentage
	1	78	2	97.5%
	2	73	7	91.3%
	3	71	9	88.8%
	4	63	17	78.8%
	5	50	30	62.5%
	6	45	35	56.3%
First Round	7	50	30	62.5%
Results Since	8	44	36	55%
	9	36	44	45%
2003	10	30	50	37.5%
	11	35	45	43.8%
	12	30	50	37.5%
	13	17	63	21.3%
	14	9	71	11.3%
	15	7	73	8.8%
	16	2	78	2.5%

Number of Upsets per Year Since 2003

Logistic Regression

Binary classification model (upset or not)

Gives probability, then classifies it based on the threshold value

Unlike linear regression, it cannot predict an actual value, just the probability

XGBoost (Extreme Gradient Boosting)

Trains a number of decision trees on subsets of the data, then combines the prediction from each tree into the final prediction

Has become popular because it is new and outperforms other ML models

Support Vector Machine (SVM)

Finds a plane that most accurately separates the data into classes (upset or not)

Picks plane that maximizes the margin

Used 19 features to create a plane

Results

21/63 games correctly classified (33%)

(30.1%)

0/19 upsets predicted

Conclusion

Conclusion

The bracket did not do as well as I hoped

It's important to make multiple brackets because going out on a limb for one upset can destroy the rest

It seems like there is a uniquely human element

It will be interesting to see if AI in the future will be able to predict a perfect bracket

Thank you Any questions?