PROVA 3

ANÁLISE MULTIVARIADA 1

Tailine J. S. Nonato (190038144)

2023 - 12 - 14

Lista 7

Exercício 12.11

Dada a matriz, os centroides dos clusters (AB) e (CD) são dados por:

x1 x2 [1,] 3 1 [2,] 1 1

Utilizando a função kmeans tem-se que o cluster final é:

[1] 1 2 2 1

Ou seja, 1:(AD) e 2:(BC). E os novos centroides são dados por:

x1 x2 1 4 2.5 2 0 -0.5

Exercício 12.12

Dada a matriz, os centroides dos clusters (AC) e (BD) são dados por:

[2,] 3 1

O cluster final é:

[1] 1 2 2 1

Ou seja, 1:(AD) e 2:(BC). E os centroides são dados por:

x1x2

1 4 2.5

2 0 -0.5

Resultado similar ao do item anterior.

Exercíco 12.13

Dada a matriz, os centroides dos clusters (AB) e (CD) são dados por:

O cluster final é:

Ou seja, 1:(ABC) e 2:(D). E os centroides são dados por:

Exercício 12.14

Item A

Verificando as 5 primeiras linhas e 5 primeiras colunas da matriz de distâncias é dada por:

	1	2	3	4	5
1	0.000000	116.03663	15.50806	6.363961	103.20126
2	116.036632	0.00000	121.65114	117.894020	61.62792
3	15.508062	121.65114	0.00000	10.000000	100.62306
4	6.363961	117.89402	10.00000	0.000000	102.10289
5	103.201260	61.62792	100.62306	102.102889	0.00000

Por questões de tamanho, o output completo pode ser verificado no arquivo em R.

Item B

Ligação Simples

Ligação Completa

Comparando os dendogramas, pode-se dizer que os resultados são similares.

Exercício 12.15

	V2	V3
[1,]	-0.1348700	-0.077856667
[2,]	-0.3079467	-0.005991111

	V1	V2	V3	km15_2\$cluster	km15_3\$cluster	km15_4\$cluster
1	1	-0.0056	-0.1657	2	2	2
2	1	-0.1698	-0.1585	2	2	2
3	1	-0.3469	-0.1879	1	3	1
4	1	-0.0894	0.0064	2	2	4
5	1	-0.1679	0.0713	2	1	3
6	1	-0.0836	0.0106	2	2	4

K-means, G=2

K-means, G=3

K-means, G=4

Lista 8

Exercício 11.32

Item A

Para investigar a suposição de Normal Bivariada, tem-se como hipóteses:

 $\begin{cases} H_0: \text{Os dados seguem distribuição Normal} \\ H_1: \text{Os dados não seguem distribuição Normal} \end{cases}$

Realiza-se análise gráfica:

Pela análise gráfica, observa-se que os grupos têm formatos que lembram formatos eliptícos, tornando a suposição de Normal Bivariada algo razoável a se dizer. Além disso, não há evidências para rejeitar H_0 .

Shapiro-Wilk normality test

data: df32\$V2

W = 0.98496, p-value = 0.5185

Shapiro-Wilk normality test

```
data: df32$V3
W = 0.99255, p-value = 0.9428
```

Realizando o teste de Shapiro-Wilk para normalidade nas marginais,
também não há evidências para rejietar H_0 .

Chi-Square Q-Q Plot

Anderson-Darling test for Multivariate Normality

data : df32[, 2:3]

AD : 0.7583493 p-value : 0.2261774

Result : Data are multivariate normal (sig.level = 0.05)

O teste de Anderson-Darling para normalidade multivariada também não rejeitou H_0 . Observa-se também pelo QQPlot mais uma indicação de normalidade. Assim, pode-se dizer que os dados sguem distribuição Normal Multivariada, especificamente para o caso, Bivariada.

Item B ao D

Uma tentativa de solucionar a questão está no arquivo R. Tive problemas ao gerar a função cov_pooled e não fui capaz de gerar os outputs que gostaria, mas deixzei a estrutura.