

Finite state automaton

Finite state automaton

Deterministic pushdown automaton

Finite state automaton

Deterministic pushdown automaton

Finite state automaton

Deterministic context-free languages: DCFL Language L_3 : { $w2w^R \mid w \in (0+1)^* i \mid w \mid >1$ } $L_3 \in DCFL i L_3 \notin RL$

Non-deterministic pushdown automaton

Deterministic pushdown automaton

Finite state automaton

Deterministic context-free languages: DCFL Language L_3 : { $w2w^R \mid w \in (0+1)^* i \mid w \mid >1$ } $L_3 \in DCFL i L_3 \notin RL$

Non-deterministic pushdown automaton

Deterministic pushdown automaton

Finite state automaton

```
Non-deterministic context-free languages: NDCFL Language L_2: { ww^R \mid w \in (0+1)^* i \mid w \mid >1 }
L_2 \in NDCFL \ i \ L_2 \notin DCFL
```

Deterministic context-free languages: DCFL Language L_3 : { $w2w^R \mid w \in (0+1)^* i \mid w \mid >1$ } $L_3 \in DCFL i L_3 \notin RL$

Turing machine

Non-deterministic pushdown automaton

Deterministic pushdown automaton

Finite state automaton

Non-deterministic context-free languages: NDCFL Language L_2 : { $ww^R \mid w \in (0+1)^* i \mid w \mid >1$ } $L_2 \in NDCFL \ i \ L_2 \notin DCFL$

Deterministic context-free languages: DCFL Language L_3 : { $w2w^R \mid w \in (0+1)^* i \mid w \mid >1$ } $L_3 \in DCFL i L_3 \notin RL$

Turing machine

Non-deterministic pushdown automaton

Deterministic pushdown automaton

Finite state automaton

Recursively enumerable languages

Non-deterministic context-free languages: NDCFL

Language L_2 : { $ww^R \mid w \in (0+1)^* i \mid w \mid >1$ }

<u>L∝∈ NDCFL i L∝∉ DCFL</u>

Deterministic context-free languages: DCFL

Language L_3 : { $w2w^R \mid w \in (0+1)^* i \mid w \mid >1$ }

 $L_3 \in DCFL i L_3 \notin RL$

Lecture 11.

4 RECURSIVELY ENUMERABLE LANGUAGES	126
4.1 TURING MACHINE (TM)	126
4.1.1 Simple Turing machine	126
4.1.2 Programming techniques for Turing machines	133

Lecture outline

4 RECURSIVELY ENUMERABLE LANGUAGES	126
4.1 TURING MACHINE (TM)	126
4.1.1 Simple Turing machine	126
4.1.2 Programming techniques for Turing machines	133

Recursively enumerable language

- Recursively enumerable language
 - Turing machine

- Recursively enumerable language
 - Turing machine
 - Most general computational model

Alan Turing

- Born on 23 June 1912 in London
- Studied computer science, mathematics, philosophy, physics and biology
- As a student, in 1936, he published the work "On Computable Numbers" in which he presented the concept of the so-called Turing machine

Alan Turing

- During the Second World War he worked as a cryptanalyst in the UK
- After the war, Turing worked at the National Physical Laboratory in London on the ACE (Automatic Computing Engine) project
- He later worked at the University of Manchester on the MADM (Manchester Automatic Digital Machine) project

Alan Turing

- In 1951 he became a member of the Royal Society
- Died on 7 June 1954 in Wilmslow as a result of cyanide poisoning (alleged suicide)

Lecture outline

4 RECURSIVELY ENUMERABLE LANGUAGES	126
4.1 TURING MACHINE (TM)	126
4.1.1 Simple Turing machine	126
4.1.2 Programming techniques for Turing machines	133

Finite automaton

Finite automaton

Finite control

Finite automaton

Finite control

State q₀

Finite automaton

Tape

Finite control

State q₀

Finite automaton

Finite automaton

Decision

- Decision
 - Input

- Decision
 - Input
 - 1. State

- Decision
 - Input
 - 1. State
 - 2. Tape symbol

- Decision
 - Input
 - 1. State
 - 2. Tape symbol
 - Output

- Decision
 - Input
 - 1. State
 - 2. Tape symbol
 - Output
 - 1. New state

- Decision
 - Input
 - 1. State
 - 2. Tape symbol
 - Output
 - 1. New state
 - 2. Symbol written on the tape

Decision

- Input
 - 1. State
 - 2. Tape symbol
- Output
 - 1. New state
 - 2. Symbol written on the tape
 - 3. Head movement direction (left or right)

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

Q

- the finite set of states

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

Q

Γ

- the finite set of states
- the complete set of tape symbols

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

Q

Γ

B∈Γ

- the finite set of states
- the complete set of tape symbols
- the *blank* tape symbol

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

 $egin{aligned} oldsymbol{Q} \ \Gamma \ oldsymbol{B} \in \Gamma \ \Sigma \subseteq (\Gamma - \{\ B\ \}) \end{aligned}$

- the finite set of states
- the complete set of tape symbols
- the *blank* tape symbol
- the finite set of input symbols

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

```
egin{aligned} oldsymbol{Q} \ \Gamma \ oldsymbol{B} \in \Gamma \ \Sigma \subseteq (\Gamma - \{\ B\ \}) \ \delta \end{aligned}
```

- the finite set of states
- the complete set of tape symbols
- the blank tape symbol
- the finite set of input symbols
- the transition function

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

```
egin{aligned} oldsymbol{Q} \ \Gamma \ oldsymbol{B} \in \Gamma \ \Sigma \subseteq (\Gamma - \{B\}) \ \delta \end{aligned}
```

- the finite set of states
- the complete set of tape symbols
- the blank tape symbol
- the finite set of input symbols
- the transition function

$$\delta: \mathbf{Q} \times \Gamma \rightarrow \mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\}\$$

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

$$egin{aligned} oldsymbol{Q} \ \Gamma \ oldsymbol{B} \in \Gamma \ \Sigma \subseteq (\Gamma - \{B\}) \ \delta \end{aligned}$$

$$q_0 \in Q$$

- the finite set of states
- the complete set of tape symbols
- the blank tape symbol
- the finite set of input symbols
- the transition function

$$\delta: \mathbf{Q} \times \Gamma \to \mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\}\$$

- the start state

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

$$egin{aligned} oldsymbol{Q} \ \Gamma \ oldsymbol{B} \in \Gamma \ \Sigma \subseteq (\Gamma - \{B\}) \ \delta \end{aligned}$$

$$q_0 \in Q$$
 $F \subset Q$

- the finite set of states
- the complete set of tape symbols
- the *blank* tape symbol
- the finite set of input symbols
- the transition function

$$\delta: \mathbf{Q} \times \Gamma \to \mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\}\$$

- the start state
- the set of accepting states

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

$$egin{aligned} oldsymbol{Q} \ \Gamma \ oldsymbol{B} \in \Gamma \ \Sigma \subseteq (\Gamma - \{B\}) \ \delta \end{aligned}$$

$$q_0 \in Q$$
 $F \subseteq Q$

- the finite set of states
- the complete set of tape symbols
- the *blank* tape symbol
- the finite set of input symbols
- the transition function

$$\delta: \mathbf{Q} \times \Gamma \to \mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\}$$

- the start state
- the set of accepting states

$$\delta(q, V) = (p, Z, W)$$

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

$$oldsymbol{Q}$$
 Γ
 $oldsymbol{B} \in \Gamma$
 $\Sigma \subseteq (\Gamma - \{B\})$
 δ

$$q_0 \in Q$$
 $F \subseteq Q$

- the finite set of states
- the complete set of tape symbols
- the *blank* tape symbol
- the finite set of input symbols
- the transition function

$$\delta: \mathbf{Q} \times \Gamma \to \mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\}\$$

- the start state
- the set of accepting states

$$\delta(q, V) = (p, Z, W)$$

$$q \in Q$$

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

$$Q$$
 Γ
 $B \in \Gamma$
 $\Sigma \subseteq (\Gamma - \{B\})$

$$q_0 \in Q$$
 $F \subset Q$

- the finite set of states
- the complete set of tape symbols
- the blank tape symbol
- the finite set of input symbols
- the transition function

$$\delta: \mathbf{Q} \times \Gamma \to \mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\}\$$

- the start state
- the set of accepting states

$$\delta(q, V) = (p, Z, W)$$
$$V \in \Gamma$$

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

$$Q$$
 Γ
 $B \in \Gamma$
 $\Sigma \subseteq (\Gamma - \{B\})$

$$q_0 \in Q$$
 $F \subseteq Q$

- the finite set of states
- the complete set of tape symbols
- the blank tape symbol
- the finite set of input symbols
- the transition function

$$\delta: \mathbf{Q} \times \Gamma \to \mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\}\$$

- the start state
- the set of accepting states

$$\delta(q, V) = (p, Z, W)$$

$$p \in Q$$

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

$$Q$$
 Γ
 $B \in \Gamma$
 $\Sigma \subseteq (\Gamma - \{B\})$

$$q_0 \in Q$$
 $F \subseteq Q$

- the finite set of states
- the complete set of tape symbols
- the blank tape symbol
- the finite set of input symbols
- the transition function

$$\delta: \mathbf{Q} \times \Gamma \to \mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\}\$$

- the start state
- the set of accepting states

$$\delta(q, V) = (p, Z, W)$$
$$Z \in \Gamma$$

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

$$Q$$
 Γ
 $B \in \Gamma$
 $\Sigma \subseteq (\Gamma - \{B\})$

$$q_0 \in Q$$
 $F \subseteq Q$

- the finite set of states
- the complete set of tape symbols
- the blank tape symbol
- the finite set of input symbols
- the transition function

$$\delta: \mathbf{Q} \times \Gamma \to \mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\}\$$

- the start state
- the set of accepting states

$$\delta(q, V) = (p, Z, W)$$

$$W \in \{L, R\}$$

$$tm = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

$$oldsymbol{Q}$$
 Γ
 $oldsymbol{B} \in \Gamma$
 $\Sigma \subseteq (\Gamma - \{B\})$
 δ

$$q_0 \in Q$$
 $F \subseteq Q$

- the finite set of states
- the complete set of tape symbols
- the *blank* tape symbol
- the finite set of input symbols
- the transition function

$$\delta: \mathbf{Q} \times \Gamma \to \mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\}\$$

- the start state
- the set of accepting states

$$\delta(q, V) = (p, Z, W)$$

TM
$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$$

TM
$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

TM $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

TM $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

TM $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

8.
$$\delta(q_2, Y) = (q_2, Y, L)$$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

$$5 \delta(q_2, X) = (q_0, X, R)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

TM
$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

$$7. \delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

TM $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

TM $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

$$(\alpha, X) = (\alpha, X, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

6. $\delta(q_0, Y) = (q_3, Y, R)$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

TM
$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7. $\delta(q_0, Y) = (q_0, Y, R)$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

TM
$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

5
$$\delta(q_2, X) = (q_0, X, R)$$
 8 $\delta(q_2, Y) = (q_2, Y, L)$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

8.
$$\delta(q_2, Y) = (q_2, Y, L)$$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

TM
$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

TM
$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

8.
$$\delta(q_2, Y) = (q_2, Y, L)$$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

TM
$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

$$6 \delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

8.
$$\delta(q_2, Y) = (q_2, Y, L)$$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

TM
$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

$$5 \delta(q_0,X)=(q_0,X,R)$$

$$6 \frac{\delta(q_0, Y) = (q_3, Y, R)}{\delta(q_0, Y)}$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

TM
$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

$$5 \delta(q_0, X) = (q_0, X, R)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$q_0 \mid \mathbf{0}$$

0

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$q_0$$
 0

0

1

1

В

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$q_0 \mid \mathbf{0}$$

0

1

1

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

71

1

1

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$X q_1$$

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

 q_1

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

 q_1

•

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$X q_2$$

 γ_2

1

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$X q_2$$

1₂

1

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$\mathbf{q}_{2} \mid \mathbf{X}$$

0

1

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

5
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

8.
$$\delta(q_2, Y) = (q_2, Y, L)$$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$q_2 X$$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$X q_0$$

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$X q_0$$

70

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

 q_1

1

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

71

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

 q_1

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

 q_1

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$ 3. $\delta(q_2,0)=(q_2,0,L)$ 5. $\delta(q_2,X)=(q_0,X,R)$ 8. $\delta(q_2,Y)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

8.
$$\delta(q_2, Y) = (q_2, Y, L)$$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$X q_2$$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

70

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

$$6 \delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

70 \

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

 q_3

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

 q_3

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$q_4$$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$q_0 \mid \mathbf{0}$$

0

B

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

 q_1

1

B

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

71

В

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$X q_2$$

 γ_2

B

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$q_2 X$$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$X q_0$$

0

B

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

71

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

 $q_1 \mid B$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$q_0 \mid \mathbf{0}$$

1

1

B

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

B

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

$$q_2 X$$

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$ 7. $\delta(q_1,Y)=(q_1,Y,R)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

B

B

B

1.
$$\delta(q_0,0)=(q_1,X,R)$$

2.
$$\delta(q_1,0)=(q_1,0,R)$$
 4. $\delta(q_1,1)=(q_2,Y,L)$

3.
$$\delta(q_2,0)=(q_2,0,L)$$

6.
$$\delta(q_0, Y) = (q_3, Y, R)$$

7.
$$\delta(q_1, Y) = (q_1, Y, R)$$

5.
$$\delta(q_2, X) = (q_0, X, R)$$
 8. $\delta(q_2, Y) = (q_2, Y, L)$

9.
$$\delta(q_3, Y) = (q_3, Y, R)$$
 10. $\delta(q_3, B) = (q_4, B, R)$

73

B

B

B

TM configuration:

 α_1

$$\alpha_1$$

$$\alpha_2$$

$$\delta(q, X_i) = (p, Y, L):$$

TM configuration:

$$\alpha_1$$

$$\alpha_2$$

$$\delta(q, X_i) = (p, Y, L):$$

TM configuration:

$$\alpha_1$$

$$\alpha_2$$

$$\delta(q, X_i) = (p, Y, L):$$

TM configuration:

$$\alpha_1$$

$$\alpha_2$$

$$\delta(q, X_i) = (p, Y, L):$$

$$X_1 X_2 - - - X_{i-2}$$

TM configuration:

$$\alpha_1$$

$$\alpha_2$$

$$\delta(q, X_i) = (p, Y, L):$$

$$X_1 X_2 - - - X_{i-2} p X_{i-1}$$

TM configuration:

$$\alpha_1$$

$$\alpha_2$$

$$\delta(q, X_i) = (p, Y, L):$$

$$X_1 X_2 - - - X_{i-2} p X_{i-1}$$

$$\delta(q, X_i) = (p, Y, R):$$

TM configuration:

$$\alpha_1$$

$$\alpha_2$$

$$\delta(q, X_i) = (p, Y, L):$$

$$X_1 X_2 - - - X_{i-2} p X_{i-1}$$

$$\delta(q, X_i) = (p, Y, R):$$

TM configuration:

$$\alpha_1$$

$$\alpha_2$$

$$\delta(q, X_i) = (p, Y, L):$$

$$X_1 X_2 - - - X_{i-2} p X_{i-1}$$

$$\delta(q, X_i) = (p, Y, R):$$

TM configuration:

$$\alpha_1$$

$$\alpha_2$$

$$\delta(q, X_i) = (p, Y, L):$$

$$X_1 X_2 - - - X_{i-2} p X_{i-1}$$

$$\delta(q, X_i) = (p, Y, R):$$

$$X_1 X_2 - - - X_{i-2} X_{i-1} q X_i X_{i+1} - - - X_n \rightarrow X_1 X_2 - - - X_{i-2} X_{i-1} q X_i X_{i+1} - - - X_n$$

$$X_{i+1} - - - X_n$$

TM configuration:

$$\alpha_1$$

$$\alpha_2$$

$$\delta(q, X_i) = (p, Y, L):$$

$$X_1 X_2 - - - X_{i-2} p X_{i-1}$$

$$\delta(q, X_i) = (p, Y, R):$$

$$X_1 X_2 - - - X_{i-2} X_{i-1} q X_i X_{i+1} - - - X_n \rightarrow X_1 X_2 - - - X_{i-2} X_{i-1} \mid Y \mid_{\mathcal{D}} X_{i+1} - - - X_n$$

$$X_1 X_2 - - - X_{i-2} X_{i-1}$$


```
q_0 \ 0 \ 0 \ 1 \ 1 \rightarrow X \ q_1 \ 0 \ 1 \ 1 \rightarrow X \ 0 \ q_1 \ 1 \ 1 \rightarrow X \ q_2 \ 0 \ Y \ 1 \rightarrow q_2 \ X \ 0 \ Y \ 1 \rightarrow X \ Q_0 \ 0 \ Y \ 1 \rightarrow X \ X \ Y \ Q_1 \ 1 \rightarrow X \ X \ Q_2 \ Y \ Y \rightarrow X \ X \ Y \ Q_3 \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \rightarrow X \ X \ Y \ Y \ Q_4 \ Y \ Y \ Y \ Q_4 \ Y \ Y \ Q_5 \ Y \ Y \ Y \ Q_6 \ Y \ Y \ Y \ Q_7 \ Q_7 \ Y \ Q_
```

 $q_0 0 0 1 1$


```
q_0 \ 0 \ 0 \ 1 \ 1 \rightarrow X \ q_1 \ 0 \ 1 \ 1 \rightarrow X \ 0 \ q_1 \ 1 \ 1 \rightarrow X \ q_2 \ 0 \ Y \ 1 \rightarrow q_2 \ X \ 0 \ Y \ 1 \rightarrow X \ Q_0 \ 0 \ Y \ 1 \rightarrow X \ X \ Y \ Q_1 \ 1 \rightarrow X \ X \ Q_2 \ Y \ Y \rightarrow X \ X \ Y \ Q_3 \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \rightarrow X \ X \ Y \ Y \ Q_4 \ Y \ Y \ Y \ Q_4 \ Y \ Y \ Q_5 \ Y \ Y \ Y \ Q_6 \ Y \ Y \ Y \ Q_7 \ Q_7 \ Y \ Q_
```

$$q_0 0 0 1 1$$
 *


```
q_0 \ 0 \ 0 \ 1 \ 1 \rightarrow X \ q_1 \ 0 \ 1 \ 1 \rightarrow X \ 0 \ q_1 \ 1 \ 1 \rightarrow X \ q_2 \ 0 \ Y \ 1 \rightarrow q_2 \ X \ 0 \ Y \ 1 \rightarrow X \ Q_0 \ 0 \ Y \ 1 \rightarrow X \ X \ Y \ Q_1 \ 1 \rightarrow X \ X \ Q_2 \ Y \ Y \rightarrow X \ X \ Y \ Q_3 \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \ P \ Q_4
```

$$q_0 0 0 1 1 \qquad \stackrel{*}{\succ} \quad X X Y Y B q_4$$


```
q_0 \ 0 \ 0 \ 1 \ 1 \rightarrow X \ q_1 \ 0 \ 1 \ 1 \rightarrow X \ 0 \ q_1 \ 1 \ 1 \rightarrow X \ q_2 \ 0 \ Y \ 1 \rightarrow q_2 \ X \ 0 \ Y \ 1 \rightarrow X \ Q_0 \ 0 \ Y \ 1 \rightarrow X \ X \ Y \ Q_1 \ 1 \rightarrow X \ X \ Q_2 \ Y \ Y \rightarrow X \ X \ Y \ Q_3 \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \ P \ Q_4
```

```
q_0 \ 0 \ 0 \ 1 \ 1 
x \ x \ x \ y \ y \ B \ q_4
q_0 \ 0 \ 0 \ 1 \ 1
```



```
q_0 \ 0 \ 0 \ 1 \ 1 \rightarrow X \ q_1 \ 0 \ 1 \ 1 \rightarrow X \ 0 \ q_1 \ 1 \ 1 \rightarrow X \ q_2 \ 0 \ Y \ 1 \rightarrow q_2 \ X \ 0 \ Y \ 1 \rightarrow X \ Q_0 \ 0 \ Y \ 1 \rightarrow X \ X \ Y \ Q_1 \ 1 \rightarrow X \ X \ Q_2 \ Y \ Y \rightarrow X \ X \ Y \ Q_3 \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \ P \ Q_4
```

```
q_0 \ 0 \ 0 \ 1 \ 1 \ \stackrel{*}{\succ} \ X X Y Y B q_4
q_0 \ 0 \ 0 \ 1 \ 1 \ \stackrel{13}{\succ}
```



```
q_0 \ 0 \ 0 \ 1 \ 1 \rightarrow X \ q_1 \ 0 \ 1 \ 1 \rightarrow X \ 0 \ q_1 \ 1 \ 1 \rightarrow X \ q_2 \ 0 \ Y \ 1 \rightarrow q_2 \ X \ 0 \ Y \ 1 \rightarrow X \ Q_0 \ 0 \ Y \ 1 \rightarrow X \ X \ Y \ Q_1 \ 1 \rightarrow X \ X \ Q_2 \ Y \ Y \rightarrow X \ X \ Y \ Q_3 \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \ P \ Q_4
```



```
q_0 \ 0 \ 0 \ 1 \ 1 \rightarrow X \ q_1 \ 0 \ 1 \ 1 \rightarrow X \ 0 \ q_1 \ 1 \ 1 \rightarrow X \ q_2 \ 0 \ Y \ 1 \rightarrow q_2 \ X \ 0 \ Y \ 1 \rightarrow X \ Q_0 \ 0 \ Y \ 1 \rightarrow X \ X \ Y \ Q_1 \ 1 \rightarrow X \ X \ Q_2 \ Y \ Y \rightarrow X \ X \ Y \ Q_3 \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \ Y \ Q_4 \ Y \ Y \ Q_4 \ Y \ Y \ Q_5 \ Y \ Y \ Q_6 \ Y \ Y \ Q_7 \ Y
```

```
q_0 \ 0 \ 0 \ 1 \ 1 \ \stackrel{*}{\succ} \ XXYYB \ q_4
q_0 \ 0 \ 0 \ 1 \ 1 \ \stackrel{13}{\succ} \ XXYYB \ q_4
q_0 \ 0 \ 0 \ 1 \ 1
```



```
q_0 \ 0 \ 0 \ 1 \ 1 \rightarrow X \ q_1 \ 0 \ 1 \ 1 \rightarrow X \ 0 \ q_1 \ 1 \ 1 \rightarrow X \ q_2 \ 0 \ Y \ 1 \rightarrow q_2 \ X \ 0 \ Y \ 1 \rightarrow X \ Q_0 \ 0 \ Y \ 1 \rightarrow X \ X \ Y \ Q_1 \ 1 \rightarrow X \ X \ Q_2 \ Y \ Y \rightarrow X \ X \ Y \ Q_3 \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \ Y \ Q_4 \ Y \ Y \ Q_4 \ Y \ Y \ Q_5 \ Y \ Y \ Q_6 \ Y \ Y \ Q_7 \ Y
```

$$q_0 \ 0 \ 0 \ 1 \ 1 \ X \ X \ Y \ Y \ B \ q_4$$

$$q_0 \ 0 \ 0 \ 1 \ 1 \ X \ X \ Y \ Y \ B \ q_4$$

$$q_0 \ 0 \ 0 \ 1 \ 1 \ X \ X \ Y \ Y \ B \ q_4$$


```
q_0 \ 0 \ 0 \ 1 \ 1 \rightarrow X \ q_1 \ 0 \ 1 \ 1 \rightarrow X \ 0 \ q_1 \ 1 \ 1 \rightarrow X \ q_2 \ 0 \ Y \ 1 \rightarrow q_2 \ X \ 0 \ Y \ 1 \rightarrow X \ Q_0 \ 0 \ Y \ 1 \rightarrow X \ X \ Y \ Q_1 \ 1 \rightarrow X \ X \ Q_2 \ Y \ Y \rightarrow X \ X \ Y \ Q_3 \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \rightarrow X \ X \ Y \ Y \ Q_3 \ Y \ Y \ P \ Q_4
```


$$L(M) = \{ w \mid w \in \Sigma^*$$

$$L(M) = \{ w \mid w \in \Sigma^* \}$$
and $q_0 w$

$$L(M) = \{ w \mid w \in \Sigma^* \}$$
and $q_0 w \stackrel{*}{\succ}$

$$L(M) = \{ w \mid w \in \Sigma^*$$
 and $q_0 w \not\succeq \alpha_1 p \alpha_2$,


```
L(M) = \{ w \mid w \in \Sigma^* \}
and q_0 w \not\succeq \alpha_1 p \alpha_2,
p \in F, \quad \alpha_1 \text{ and } \alpha_2 \in \Gamma^* \}
```


Recursively enumerable languages

- Recursively enumerable languages
 - Enumerable
 - —It is possible to construct a TM that outputs (enumerates) all strings from the language

- Recursively enumerable languages
 - Enumerable
 - —It is possible to construct a TM that outputs (enumerates) all strings from the language
 - String $w \in L(M)$
 - —TM *M* stops and accepts a string *w*

- Recursively enumerable languages
 - Enumerable
 - —It is possible to construct a TM that outputs (enumerates) all strings from the language
 - String w∈ L(M)
 - —TM *M* stops and accepts a string *w*
 - String w is not in the language L(M)
 - —It is possible that TM M never stops

- Recursively enumerable languages
 - Enumerable
 - —It is possible to construct a TM that outputs (enumerates) all strings from the language
 - String w∈ L(M)
 - —TM *M* stops and accepts a string *w*
 - String w is not in the language L(M)
 - —It is possible that TM M never stops
- Recursive languages
 - —There exists a TM that halts on every given input

• Integer $i \ge 0$

- Integer $i \ge 0$
 - coded with a string 0ⁱ

- Integer $i \ge 0$
 - coded with a string 0ⁱ
- Integer function over k arguments i1, i2, ..., ik

- Integer $i \ge 0$
 - coded with a string 0ⁱ
- Integer function over k arguments i1, i2, ..., ik
 - coded with a string 0ⁱ¹ 1 0ⁱ² 1 --- 1 0^{ik}

- Integer $i \ge 0$
 - coded with a string 0ⁱ
- Integer function over k arguments i1, i2, ..., ik
 - coded with a string 0ⁱ¹ 1 0ⁱ² 1 --- 1 0^{ik}
- TM halts and the tape contains 0^m

- Integer $i \ge 0$
 - coded with a string 0ⁱ
- Integer function over k arguments i1, i2, ..., ik
 - coded with a string 0ⁱ¹ 1 0ⁱ² 1 --- 1 0^{ik}
- TM halts and the tape contains 0^m
 - function result $f(i_1, i_2, ..., i_k) = m$

- Partially recursive functions
 - —TM might not halt

- Partially recursive functions
 - —TM might not halt
- Total recursive functions
 - —TM always halts for every input

Function m÷n

- Function m÷n
 - $m \ge n$
 - —Result of the function $m \div n$ is subtraction m-n

- Function m÷n
 - $m \ge n$
 - —Result of the function $m \div n$ is subtraction m-n
 - m < n
 - —Result of the function $m \div n$ is 0

 $m \div n$

 $m \div n$

 $m \div n$

0^m 1 0ⁿ

$$m \div n$$

0^m 1 0ⁿ

$$\delta(q_0, 0) = (q_1, B, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \div n$$

BB 0^{m-2} 11 0ⁿ⁻¹

0^m 1 0ⁿ

$$\delta(q_0, 0) = (q_1, B, R)$$

B 0^{m-1} 1 0ⁿ

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

B 0^{m-1} 1 1 0ⁿ⁻¹

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

B 0^{m-1} 1 1 0ⁿ⁻¹

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$B^{n+1} 0^{m-n-1} 1^{n+1}$$

$$\delta(\mathbf{q_2},\,\mathbf{B})=(\mathbf{q_4},\,\mathbf{B},\,\mathbf{L})$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$B^{n+1} 0^{m-n-1} 1^{n+1}$$

$$\delta(\mathbf{q}_2, \mathbf{B}) = (\mathbf{q}_4, \mathbf{B}, \mathbf{L})$$

$$\delta(q_4, 1) = (q_4, B, L)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$\delta(\mathbf{q}_2, \mathbf{B}) = (\mathbf{q}_4, \mathbf{B}, \mathbf{L})$$

$$\delta(q_{\scriptscriptstyle A},\,1)=(q_{\scriptscriptstyle A},\,B,\,L)$$

$$\delta(q_4, 0) = (q_4, 0, L)$$

$$m \div n$$

0^m 1 0ⁿ

$$\delta(q_0, 0) = (q_1, B, R)$$

B 0^{m-1} 1 0ⁿ

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

B 0^{m-1} 1 1 0ⁿ⁻¹

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$B^{n+1}$$
 0^{m-n-1} 1^{n+1}

$$\delta(\mathbf{q}_2, \mathbf{B}) = (\mathbf{q}_4, \mathbf{B}, \mathbf{L})$$

$$\delta(q_4, 1) = (q_4, B, L)$$

$$\delta(q_{\scriptscriptstyle A},\,0)=(q_{\scriptscriptstyle A},\,0,\,L)$$

$$\delta(q_4, B) = (q_6, 0, R)$$

$$m \div n$$

0^m 1 0ⁿ

$$\delta(q_0, 0) = (q_1, B, R)$$

B 0^{m-1} 1 0ⁿ

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

B 0^{m-1} 1 1 0ⁿ⁻¹

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$\delta(q_2, B) = (q_4, B, L)$$

$$\delta(q_4, 1) = (q_4, B, L)$$

$$\delta(q_4, 0) = (q_4, 0, L)$$

$$\delta(q_4, B) = (q_6, 0, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \le n$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \le n$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \le n$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \le n$$

$$\delta(q_0, 1) = (q_5, B, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \le n$$

$$\delta(q_0, 1) = (q_5, B, R)$$

$$\delta(q_5, 1) = (q_5, B, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \le n$$

$$\delta(q_0, 1) = (q_5, B, R)$$

$$\delta(q_5, 1) = (q_5, B, R)$$

$$\delta(q_5, 0) = (q_5, B, R)$$

$$m \div n$$

$$\delta(q_0, 0) = (q_1, B, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \le n$$

$$\delta(q_0, 1) = (q_5, B, R)$$

$$\delta(q_5, 1) = (q_5, B, R)$$

$$\delta(q_5, 0) = (q_5, B, R)$$

$$\delta(q_5, B) = (q_6, B, R)$$

$$m \div n$$

0^m 1 0ⁿ

$$\delta(q_0, 0) = (q_1, B, R)$$

B 0^{m-1} 1 0ⁿ

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_2, 1, R)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_2, 0) = (q_3, 1, L)$$

B 0^{m-1} 1 1 0ⁿ⁻¹

$$\delta(q_3, 1) = (q_3, 1, L)$$

$$\delta(q_3, 0) = (q_3, 0, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$m \le n$$

$$\delta(q_0, 1) = (q_5, B, R)$$

$$\delta(q_5, 1) = (q_5, B, R)$$

$$\delta(q_5, 0) = (q_5, B, R)$$

$$\delta(q_5, B) = (q_6, B, R)$$


```
q_00010 \succ Bq_1010 \succ B0q_110 \succ B01q_20 \succ B0q_311 \succ Bq_3011 \succ Paq_3011 \sim Paq_3011
```



```
q_00010 \rightarrow Bq_1010 \rightarrow B0q_110 \rightarrow B01q_20 \rightarrow B0q_311 \rightarrow Bq_3011 \rightarrow Bq_3011 \rightarrow Bq_0011 \rightarrow Bq_111 \rightarrow Bq_111 \rightarrow Bq_21 \rightarrow Bq_11q_2 \rightarrow Bq_11 \rightarrow Bq_21 \rightarrow Bq_3 \rightarrow Bq_4 \rightarrow Bq_5
```

$$2 \div 1 = 1$$

$$q_00010$$
 \succ Bq_1010 \succ $B0q_110$ \succ $B01q_20$ \succ $B0q_311$ \succ Bq_3011 \succ Paq_3011 \sim Paq_3011

$$2 \div 1 = 1$$

$$2 \div 1$$
 $q_00010 \qquad \succ \qquad Bq_1010 \qquad \succ \qquad B0q_110 \qquad \succ \qquad B01q_20 \qquad \succ \\ B0q_311 \qquad \succ \qquad Bq_3011 \qquad \succ \qquad q_3B011 \qquad \succ \qquad Bq_0011 \qquad \succ$

$$BBq_111 \rightarrow BB1q_21 \rightarrow BB11q_2 \rightarrow BB1q_41 \rightarrow$$

$$BBq_41 \rightarrow Bq_4 \rightarrow B0q_6$$

$$2 \div 1 = 1$$

$$q_00100 \rightarrow Bq_1100 \rightarrow B1q_200 \rightarrow Bq_3110 \rightarrow q_3B110 \rightarrow Bq_0110 \rightarrow BBBq_50 \rightarrow BBBBq_6$$

Computing functions with Turing machines

 $1 \div 2 = 0$

Lecture outline

4 RECURSIVELY ENUMERABLE LANGUAGES	126
4.1 TURING MACHINE (TM)	126
4.1.1 Simple Turing machine	126
4.1.2 Programming techniques for Turing machines	133

States with multiple components

- States with multiple components
 - $[q_1, q_2, ..., q_n]$

- States with multiple components
 - $[q_1, q_2, ..., q_n]$
 - Control components
 - —Define state/position of TM

- States with multiple components
 - $[q_1, q_2, ..., q_n]$
 - Control components
 - —Define state/position of TM
 - Storage components
 - -Hold a finite amount of data

- States with multiple components
 - $[q_1, q_2, ..., q_n]$
 - Control components
 - —Define state/position of TM
 - Storage components
 - -Hold a finite amount of data

- Tape symbols with multiple components
 - $[a_1, a_2, ..., a_n]$

- States with multiple components
 - $[q_1, q_2, ..., q_n]$
 - Control components
 - —Define state/position of TM
 - Storage components
 - -Hold a finite amount of data

- Tape symbols with multiple components
 - $[a_1, a_2, ..., a_n]$
 - Multiple tracks on the tape

- States with multiple components
 - $[q_1, q_2, ..., q_n]$
 - Control components
 - —Define state/position of TM
 - Storage components
 - —Hold a finite amount of data

- Tape symbols with multiple components
 - $[a_1, a_2, ..., a_n]$
 - Multiple tracks on the tape

- States with multiple components
 - $[q_1, q_2, ..., q_n]$
 - Control components
 - —Define state/position of TM
 - Storage components
 - —Hold a finite amount of data

- Tape symbols with multiple components
 - $[a_1, a_2, ..., a_n]$
 - Multiple tracks on the tape

A_1	A_2	A_3	
a_1	a_1	a_1	
a_2	a_2	a_2	
a_3	a_3	a_3	
			N
a _n	a_n	a _n	

Language L

- Language L
 - Set of strings where leftmost symbol does not appear elsewhere in the string

- Language L
 - Set of strings where leftmost symbol does not appear elsewhere in the string
- Composite states of the TM M

- Language L
 - Set of strings where leftmost symbol does not appear elsewhere in the string
- Composite states of the TM M
 - Two components [q, a]

- Language L
 - Set of strings where leftmost symbol does not appear elsewhere in the string
- Composite states of the TM M
 - Two components [q, a]
 - Storage component a

- Language L
 - Set of strings where leftmost symbol does not appear elsewhere in the string
- Composite states of the TM M
 - Two components [q, a]
 - Storage component a
 - —Holds leftmost symbol on the tape

- Language L
 - Set of strings where leftmost symbol does not appear elsewhere in the string
- Composite states of the TM M
 - Two components [q, a]
 - Storage component a
 - —Holds leftmost symbol on the tape
 - Control component q

- Language L
 - Set of strings where leftmost symbol does not appear elsewhere in the string
- Composite states of the TM M
 - Two components [q, a]
 - Storage component a
 - —Holds leftmost symbol on the tape
 - Control component q
 - —Two values: q_0 and q_1

- Language L
 - Set of strings where leftmost symbol does not appear elsewhere in the string
- Composite states of the TM M
 - Two components [q, a]
 - Storage component a
 - —Holds leftmost symbol on the tape
 - Control component q
 - —Two values: q_0 and q_1
 - —State q_0 : TM M reads leftmost symbol and stores it in the storage component

- Language L
 - Set of strings where leftmost symbol does not appear elsewhere in the string
- Composite states of the TM M
 - Two components [q, a]
 - Storage component a
 - —Holds leftmost symbol on the tape
 - Control component q
 - —Two values: q_0 and q_1
 - —State q_0 : TM M reads leftmost symbol and stores it in the storage component
 - —State q_1 : TM M reads rest of the string and compares symbols with the symbol stored in the storage component

• Control component: q_0 and q_1

- Control component: q₀ and q₁
- Storage component: 0, 1 and B

- Control component: q₀ and q₁
- Storage component: 0, 1 and B
 - Set of composite states

- Control component: q₀ and q₁
- Storage component: 0, 1 and B
 - Set of composite states

```
Q = \{[q_0, B], [q_0, 0], [q_0, 1], [q_1, B], [q_1, 0], [q_1, 1]\}
```


- Control component: q₀ and q₁
- Storage component: 0, 1 and B
 - Set of composite states $Q = \{[q_0, B], [q_0, 0], [q_0, 1], [q_1, B], [q_1, 0], [q_1, 1]\}$
- $TMM = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0,B], B, \{[q_1,B]\})$

- Control component: q₀ and q₁
- Storage component: 0, 1 and B
 - Set of composite states $Q = \{[q_0, B], [q_0, 0], [q_0, 1], [q_1, B], [q_1, 0], [q_1, 1]\}$
- $TMM = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0,B], B, \{[q_1,B]\})$

$$\delta([q_0, B], 0) =$$

- Control component: q₀ and q₁
- Storage component: 0, 1 and B
 - Set of composite states $Q = \{[q_0, B], [q_0, 0], [q_0, 1], [q_1, B], [q_1, 0], [q_1, 1]\}$

•
$$TMM = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0,B], B, \{[q_1,B]\})$$

$$\delta([q_0, B], 0) = ([q_1,], 0, R)$$

- Control component: q₀ and q₁
- Storage component: 0, 1 and B
 - Set of composite states $Q = \{[q_0, B], [q_0, 0], [q_0, 1], [q_1, B], [q_1, 0], [q_1, 1]\}$

•
$$TMM = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0,B], B, \{[q_1,B]\})$$

$$\delta([q_0, B], 0) = ([q_1, 0], 0, R)$$

- Control component: q₀ and q₁
- Storage component: 0, 1 and B
 - Set of composite states $Q = \{[q_0, B], [q_0, 0], [q_0, 1], [q_1, B], [q_1, 0], [q_1, 1]\}$
- $TMM = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0,B], B, \{[q_1,B]\})$

$$\delta([q_0, B], 0) = ([q_1, 0], 0, R)$$

 $\delta([q_0, B], 1) = ([q_1, 0], 1, R)$

- Control component: q₀ and q₁
- Storage component: 0, 1 and B
 - Set of composite states $Q = \{[q_0, B], [q_0, 0], [q_0, 1], [q_1, B], [q_1, 0], [q_1, 1]\}$
- $TMM = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0,B], B, \{[q_1,B]\})$

$$\delta([q_0, B], 0) = ([q_1, 0], 0, R)$$

 $\delta([q_0, B], 1) = ([q_1, 1], 1, R)$

- Control component: q₀ and q₁
- Storage component: 0, 1 and B
 - Set of composite states $Q = \{[q_0, B], [q_0, 0], [q_0, 1], [q_1, B], [q_1, 0], [q_1, 1]\}$
- $TMM = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0,B], B, \{[q_1,B]\})$

$$\delta([q_0, B], 0) = ([q_1, 0], 0, R)$$

 $\delta([q_0, B], 1) = ([q_1, 1], 1, R)$

$$\delta([q_1, 0], 1) = ([q_1, 0], 1, R)$$

 $\delta([q_1, 1], 0) = ([q_1, 1], 0, R)$

- Control component: q₀ and q₁
- Storage component: 0, 1 and B
 - Set of composite states $Q = \{[q_0, B], [q_0, 0], [q_0, 1], [q_1, B], [q_1, 0], [q_1, 1]\}$
- $TMM = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0,B], B, \{[q_1,B]\})$

$$\delta([q_0, B], 0) = ([q_1, 0], 0, R)$$

 $\delta([q_0, B], 1) = ([q_1, 1], 1, R)$

$$\delta([q_1, 0], 1) = ([q_1, 0], 1, R)$$

 $\delta([q_1, 1], 0) = ([q_1, 1], 0, R)$

- Control component: q₀ and q₁
- Storage component: 0, 1 and B
 - Set of composite states $Q = \{[q_0, B], [q_0, 0], [q_0, 1], [q_1, B], [q_1, 0], [q_1, 1]\}$
- $TMM = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0,B], B, \{[q_1,B]\})$

$$\delta([q_0, B], 0) = ([q_1, 0], 0, R)$$

 $\delta([q_0, B], 1) = ([q_1, 1], 1, R)$

$$\delta([q_1, 0], 1) = ([q_1, 0], 1, R)$$

 $\delta([q_1, 1], 0) = ([q_1, 1], 0, R)$

- Control component: q₀ and q₁
- Storage component: 0, 1 and B
 - Set of composite states $Q = \{[q_0, B], [q_0, 0], [q_0, 1], [q_1, B], [q_1, 0], [q_1, 1]\}$
- $TMM = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0,B], B, \{[q_1,B]\})$

$$\delta([q_0, B], 0) = ([q_1, 0], 0, R)$$

 $\delta([q_0, B], 1) = ([q_1, 1], 1, R)$

$$\delta([q_1, 0], 1) = ([q_1, 0], 1, R)$$

 $\delta([q_1, 1], 0) = ([q_1, 1], 0, R)$

- Control component: q₀ and q₁
- Storage component: 0, 1 and B
 - Set of composite states $Q = \{[q_0, B], [q_0, 0], [q_0, 1], [q_1, B], [q_1, 0], [q_1, 1]\}$
- $TMM = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0,B], B, \{[q_1,B]\})$

$$\delta([q_0, B], 0) = ([q_1, 0], 0, R)$$

 $\delta([q_0, B], 1) = ([q_1, 1], 1, R)$

$$\delta([q_1, 0], 1) = ([q_1, 0], 1, R)$$

 $\delta([q_1, 1], 0) = ([q_1, 1], 0, R)$

- Control component: q₀ and q₁
- Storage component: 0, 1 and B
 - Set of composite states $Q = \{[q_0, B], [q_0, 0], [q_0, 1], [q_1, B], [q_1, 0], [q_1, 1]\}$
- $TMM = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0,B], B, \{[q_1,B]\})$

$$\delta([q_0, B], 0) = ([q_1, 0], 0, R)$$

 $\delta([q_0, B], 1) = ([q_1, 1], 1, R)$ $\delta([q_1, 0], B) = ([q_1, B], B, L)$
 $\delta([q_1, 1], B) = ([q_1, B], B, L)$

$$\delta([q_1, 0], 1) = ([q_1, 0], 1, R)$$

 $\delta([q_1, 1], 0) = ([q_1, 1], 0, R)$

• TM M

- TM M
 - Shift symbols over n cells using n storage components

- TM M
 - Shift symbols over n cells using n storage components
- 2-cell shift

- TM M
 - Shift symbols over n cells using n storage components
- 2-cell shift
 - Composite states: [q, R₁, R₂]

- TM M
 - Shift symbols over n cells using n storage components
- 2-cell shift
 - Composite states: [q, R₁, R₂]
 - —Control component q is q_1 or q_2

- TM M
 - Shift symbols over n cells using n storage components
- 2-cell shift
 - Composite states: [q, R₁, R₂]
 - —Control component q is q_1 or q_2
 - —Storage components R_1 and R_2 hold tape symbols Γ

$$\delta([q_1, B, B], A_1) = ([q_1, B, B], B, R)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_1], B, R)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, A_1, A_2], A_3) = ([q_1, A_1, A_2], A_3, R)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, A_1, A_2], A_3) = ([q_1, A_1, A_2], A_1, R)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, A_1, A_2], A_3) = ([q_1, A_2, A_2], A_1, R)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, A_1, A_2], A_3) = ([q_1, A_2, A_3], A_1, R)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, A_1, A_2], A_3) = ([q_1, A_2, A_3], A_1, R)$$

$$\delta([q_1, A_1, A_2], B) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, A_1, A_2], A_3) = ([q_1, A_2, A_3], A_1, R)$$

$$\delta([q_1, A_1, A_2], B) = ([q_1, A_1, A_2], A_1, R)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, A_1, A_2], A_3) = ([q_1, A_2, A_3], A_1, R)$$

$$\delta([q_1, A_1, A_2], B) = ([q_1, A_2, A_2], A_1, R)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, A_1, A_2], A_3) = ([q_1, A_2, A_3], A_1, R)$$

$$\delta([q_1, A_1, A_2], B) = ([q_1, A_2, B], A_1, R)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, A_1, A_2], A_3) = ([q_1, A_2, A_3], A_1, R)$$

$$\delta([q_1, A_1, A_2], B) = ([q_1, A_2, B], A_1, R)$$

$$\delta([q_1, A_1, B], B) = ([q_2, B, B], B, L)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, A_1, A_2], A_3) = ([q_1, A_2, A_3], A_1, R)$$

$$\delta([q_1, A_1, A_2], B) = ([q_1, A_2, B], A_1, R)$$

$$\delta([q_1, A_1, B], B) = ([q_2, B, B], A_1, L)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, A_1, A_2], A_3) = ([q_1, A_2, A_3], A_1, R)$$

$$\delta([q_1, A_1, A_2], B) = ([q_1, A_2, B], A_1, R)$$

$$\delta([q_1, A_1, B], B) = ([q_2, B, B], A_1, L)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, A_1, A_2], A_3) = ([q_1, A_2, A_3], A_1, R)$$

$$\delta([q_1, A_1, A_2], B) = ([q_1, A_2, B], A_1, R)$$

$$\delta([q_1, A_1, B], B) = ([q_2, B, B], A_1, L)$$

$$\delta([q_1, B, B], A_1) = ([q_1, B, A_1], B, R)$$

$$\delta([q_1, B, A_1], A_2) = ([q_1, A_1, A_2], B, R)$$

$$\delta([q_1, A_1, A_2], A_3) = ([q_1, A_2, A_3], A_1, R)$$

$$\delta([q_1, A_1, A_2], B) = ([q_1, A_2, B], A_1, R)$$

$$\delta([q_1, A_1, B], B) = ([q_2, B, B], A_1, L)$$

$$\delta([q_2, B, B], A) = ([q_2, B, B], A, L)$$

Language L

- Language L
 - Set of all prime numbers

- Language L
 - Set of all prime numbers

- Language L
 - Set of all prime numbers

Tape

- Language L
 - Set of all prime numbers

- Language L
 - Set of all prime numbers

Track 1 Track 2 The state Track 1 Control State

- Language L
 - Set of all prime numbers

- Language L
 - Set of all prime numbers

- Language L
 - Set of all prime numbers

- Language L
 - Set of all prime numbers

- Language L
 - Set of all prime numbers

- Language L
 - Set of all prime numbers

- Language L
 - Set of all prime numbers

- Language L
 - Set of all prime numbers

- Language L
 - Set of all prime numbers

- Language L
 - Set of all prime numbers

- Language L
 - Set of all prime numbers

- Language L
 - Set of all prime numbers

Repeating substrings

Repeating substrings

 $\{wcw \mid w \in \Sigma^*\}, \{wcy \mid w, y \in \Sigma^*, w \neq y\}, \{ww^R \mid w \in \Sigma^*\}, w \in (a+b)^+$

Repeating substrings

 $\{wcw \mid w \in \Sigma^*\}, \{wcy \mid w, y \in \Sigma^*, w \neq y\}, \{ww^R \mid w \in \Sigma^*\}, w \in (a+b)^+$

Repeating substrings

 $\{wcw \mid w \in \Sigma^*\}, \{wcy \mid w, y \in \Sigma^*, w \neq y\}, \{ww^R \mid w \in \Sigma^*\}, w \in (a+b)^+$

Comparing substrings

 $\{a^ib^i \mid i\geq 1\}, \{a^ib^jc^k \mid i\neq j \text{ ill } j\neq k\}$

Repeating substrings

Comparing substrings

 $\{a^ib^i\mid i\geq 1\}, \{a^ib^jc^k\mid i\neq j \text{ ill } j\neq k\}$

Repeating substrings

$$\{a^ib^i \mid i\geq 1\}, \{a^ib^jc^k \mid i\neq j \text{ ill } j\neq k\}$$

$$Q = [q, d]$$

Repeating substrings

$$\{a^ib^i \mid i\geq 1\}, \{a^ib^jc^k \mid i\neq j \text{ ill } j\neq k\}$$

$$Q = [q, d]$$

 $q \text{ is } q_1, q_2, ... q_9$

Repeating substrings

```
\{a^ib^i\mid i\geq 1\}, \{a^ib^jc^k\mid i\neq j \text{ ill } j\neq k\}
```

```
Q = [q, d]

q \text{ is } q_1, q_2, \dots q_9

d \text{ is symbol } a, b \text{ or blank } B
```


Repeating substrings

```
\{a^ib^i \mid i\geq 1\}, \{a^ib^jc^k \mid i\neq j \text{ ill } j\neq k\}
```

```
Q = [q, d]

q \text{ is } q_1, q_2, \dots q_9

d \text{ is symbol } a, b \text{ or blank } B
```

$$\Gamma = [X, d]$$

Repeating substrings

```
\{a^ib^i \mid i\geq 1\}, \{a^ib^jc^k \mid i\neq j \text{ ill } j\neq k\}
```

```
Q = [q, d]

q \text{ is } q_1, q_2, \dots q_9

d \text{ is symbol } a, b \text{ or blank } B
```

```
\Gamma = [X, d]
X is B or \sqrt{\phantom{a}}
```


Repeating substrings

```
\{a^ib^i \mid i\geq 1\}, \{a^ib^jc^k \mid i\neq j \text{ ill } j\neq k\}
```

```
Q = [q, d]

q \text{ is } q_1, q_2, \dots q_9

d \text{ is symbol } a, b \text{ or blank } B
```

```
\Gamma = [X, d]
X is B or \sqrt{d}
d is a, b, c or blank B
```


В	В	B	В	В	B	B	В	B	В	В	B	B	В	В	B	B	В	B	
a	a	b	a	a	a	b	b	С	а	а	b	а	а	а	b	b	В	B	

$$\{wcw \mid w \in \Sigma^*\}$$

В	В	В	В	В	В	В	В	В	В	В	B	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, B], [\sqrt{d}, R))$$

$$\{wcw \mid w \in \Sigma^*\}$$

В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	С	а	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, B], [\sqrt{d}, R))$$

$$\{wcw \mid w \in \Sigma^*\}$$

В	В	В	В	В	В	В	В	В	В	В	B	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, B], [\sqrt{d}, R])$$

$$\{wcw \mid w \in \Sigma^*\}$$

В	В	В	В	В	В	В	В	В	В	В	B	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\{wcw \mid w \in \Sigma^*\}$$

В	В	В	В	В	В	В	В	В	В	В	B	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], \sqrt{d}, R)$$

$$\{wcw \mid w \in \Sigma^*\}$$

1	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	B	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\{wcw \mid w \in \Sigma^*\}$$

1	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	B	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

7	B	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	B	В

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\{wcw \mid w \in \Sigma^*\}$$

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

√	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	C	a	a	b	a	a	а	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

1	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	B	В

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2,\,d],\,[B,\,c])=([q_3,\,d],\,[B,\,c],\,R)$$

√	B	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

1	В	В	В	В	В	В	В	В	В	В	B	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

√	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
a	a	b	a	a	a	b	b	C	a	a	b	a	а	a	b	b	В	В

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\{wcw \mid w \in \Sigma^*\}$$

1	В	B	B	B	B	B	B	B	B	B	B	B	B	В	B	B	B	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	B	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

1	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	B	В

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [B, d], L)$$

1	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	B	В

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [B, d], L)$$

√	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

√	В	В	В	В	В	В	В	В	1	В	В	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	C	а	a	b	a	а	а	b	b	B	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

√	B	В	В	В	В	В	В	В	1	В	B	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	С	a	а	b	а	a	а	b	b	B	В

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

√	В	В	В	В	В	В	В	В	1	В	В	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	C	а	a	b	a	а	а	b	b	B	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

	В	B	В	B	B	B	B	B	V	В	B	В	B	В	B	B	B	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	B	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

1	В	В	В	В	В	В	В	В	1	В	В	В	В	В	В	В	В	В
a	a	b	a	a	a	b	b	С	а	a	b	а	a	а	b	b	B	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

7		В	В	В	В	В	В	В	В	1	В	В	В	В	В	В	В	В	В
a	2	a	b	a	a	a	b	b	С	a	a	b	a	а	a	b	b	B	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

1	В	В	В	В	В	В	В	В	1	В	В	В	В	В	В	В	В	В
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	В	В

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

7		В	В	В	В	В	В	В	В	1	В	В	В	В	В	В	В	В	В
a	2	a	b	a	a	a	b	b	С	a	a	b	a	а	a	b	b	B	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

1	В	В	В	В	В	В	В	В	1	В	В	В	В	В	В	В	В	В
a	a	b	a	a	a	b	b	С	a	a	b	а	a	а	b	b	B	В

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

1	В	В	В	В	В	В	В	В	1	В	В	В	В	В	В	В	В	В
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	B	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

1	В	В	В	В	В	В	В	В	1	В	В	В	В	В	В	В	В	В
a	a	b	a	a	a	b	b	С	a	a	b	а	a	a	b	b	В	В

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

1	В	В	В	В	В	В	В	В	1	В	B	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

1	В	B	B	B	B	B	В	В	1	В	B	B	В	В	В	В	B	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	B	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

1	В	В	В	В	В	В	В	В	1	В	B	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

1	В	В	В	В	В	В	В	В	1	В	В	В	В	В	В	В	В	В
a	a	b	a	a	a	b	b	С	а	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt, d]) = ([q_1, B], [\sqrt, d], R)$$

1	В	В	В	В	В	В	В	В	1	В	В	В	В	В	В	В	В	В
a	a	b	a	a	a	b	b	С	а	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt{, d}]) = ([q_1, B], [\sqrt{, d}], R)$$

√																		
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt, d]) = ([q_1, B], [\sqrt, d], R)$$

1	В	В	В	В	В	В	В	В	1	В	B	В	В	В	В	В	В	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt, d]) = ([q_1, B], [\sqrt, d], R)$$

1	1	1	1	1	1	1	1	В	1	1	1	1	1	1	1	1	В	B
a	a	b	a	a	a	b	b	С	a	а	b	а	a	а	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{d}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt, d]) = ([q_1, B], [\sqrt, d], R)$$

1	1	1	1	1	1	1	1	В	1	1	1	1	1	1	1	1	В	B
a	a	b	а	a	а	b	b	С	a	a	b	a	a	а	b	b	B	В

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{d}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt, d]) = ([q_1, B], [\sqrt, d], R)$$

1	1	1	1	1	1	1	1	В	1	1	1	1	1	1	1	1	В	B
a	a	b	a	a	a	b	b	C	а	a	b	a	a	a	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{d}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt, d]) = ([q_1, B], [\sqrt, d], R)$$

1	1	1	1	1	1	1	1	В	1	1	1	1	1	1	1	1	В	B
a	a	b	a	a	a	b	b	С	а	a	b	a	a	а	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{d}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt, d]) = ([q_1, B], [\sqrt, d], R)$$

1	1	1	1	1	1	1	1	В	1	1	1	1	1	1	1	1	В	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	а	b	b	B	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{d}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt, d]) = ([q_1, B], [\sqrt, d], R)$$

$$\delta([q_5, B], [\sqrt, d]) = ([q_7, B], [\sqrt, d], R)$$

1	1	1	1	1	1	1	1	В	1	1	1	1	1	1	1	1	В	B
a	a	b	a	a	a	b	b	С	a	a	b	a	а	а	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{d}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt, d]) = ([q_1, B], [\sqrt, d], R)$$

$$\delta([q_5, B], [\sqrt{, d}]) = ([q_7, B], [\sqrt{, d}], R)$$

1	1	1	1	1	1	1	1	В	1	1	1	1	1	1	1	1	В	B
a	a	b	a	a	a	b	b	С	a	a	b	a	а	а	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{d}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt, d]) = ([q_1, B], [\sqrt, d], R)$$

$$\delta([q_5, B], [\sqrt, d]) = ([q_7, B], [\sqrt, d], R)$$

1	1	1	1	1	1	1	1	В	1	1	1	1	1	1	1	1	В	B
a	a	b	a	a	a	b	b	С	a	а	b	а	a	а	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{d}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt, d]) = ([q_1, B], [\sqrt, d], R)$$

$$\delta([q_5, B], [\sqrt, d]) = ([q_7, B], [\sqrt, d], R)$$

1	1	1	1	1	1	1	1	В	1	1	1	1	1	1	1	1	В	B
a	a	b	a	a	a	b	b	С	a	а	b	а	a	а	b	b	В	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{d}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt, d]) = ([q_1, B], [\sqrt, d], R)$$

$$\delta([q_5, B], [\sqrt, d]) = ([q_7, B], [\sqrt, d], R)$$

$$\delta([q_7, B], [B, c]) = ([q_8, B], [B, c], R)$$

$$\delta([q_8, B], [\sqrt, d]) = ([q_8, B], [\sqrt, d], R)$$

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{d}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt, d]) = ([q_1, B], [\sqrt, d], R)$$

$$\delta([q_5, B], [\sqrt, d]) = ([q_7, B], [\sqrt, d], R)$$

$$\delta([q_7, B], [B, c]) = ([q_8, B], [B, c], R)$$

$$\delta([q_8, B], [\sqrt, d]) = ([q_8, B], [\sqrt, d], R)$$

1	1	1	1	1	1	1	1	В	1	1	1	1	1	1	1	1	В	B
a	a	b	a	a	a	b	b	С	a	a	b	a	a	а	b	b	B	B

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\sqrt{d}, R])$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2, d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3, d], [\sqrt{e}]) = ([q_3, d], [\sqrt{e}], R)$$

$$\delta([q_3, d], [B, d]) = ([q_4, B], [\sqrt{d}, d], L)$$

$$\delta([q_4, B], [\sqrt, d]) = ([q_4, B], [\sqrt, d], L)$$

$$\delta([q_4, B], [B, c]) = ([q_5, B], [B, c], L)$$

$$\delta([q_5, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [B, d]) = ([q_6, B], [B, d], L)$$

$$\delta([q_6, B], [\sqrt, d]) = ([q_1, B], [\sqrt, d], R)$$

$$\delta([q_5, B], [\sqrt, d]) = ([q_7, B], [\sqrt, d], R)$$

$$\delta([q_7, B], [B, c]) = ([q_8, B], [B, c], R)$$

$$\delta([q_8, B], [\sqrt, d]) = ([q_8, B], [\sqrt, d], R)$$

$$\delta([q_8, B], [B, B]) = ([q_9, B], [B, B], L)$$

