Figure 1: Fine-Tuning Stage

Remark: solid line stands for forward process, dashed line stands for backward process.

Figure 2: Prediction Stage with XGBoost

Architecture Description

We propose a two-stage architecture for the regression task of predicting a one-dimensional vector (logval+12) from text and a one-dimensional vector (logval-12) as input features.

Stage 1: Fine-Tuning BERT with MLP

In the first stage, we focus on fine-tuning a BERT model to learn taskspecific representations. The process is outlined as follows:

1. Input:

- **Text:** A sequence of tokens.
- \circ **Vector (logval-12), written as** a **below):** A one-dimensional vector.

2. output:

 \circ Vector (logval+12 , written as b below): A one-dimensional vector.

3. Processing:

- \circ The text is processed by a pre-trained BERT model to extract the hidden state corresponding to the <code>[CLS]</code> token, denoted as ($h_{\rm [CLS]}$).
- \circ The one-dimensional vector (a) is concatenated with ($\mathbf{h}_{[\mathrm{CLS}]}$) to form a combined feature vector ($[\mathbf{h}_{[\mathrm{CLS}]}; a]$).
- $\circ~$ This feature vector ($[\mathbf{h}_{\rm [CLS]};a]$) is fed into a multi-layer perceptron (MLP) to predict the target value (\hat{b}).

4. Training:

 \circ The BERT model and the MLP are fine-tuned end-to-end using a regression loss function, such as mean squared error (MSE), to minimize the difference between the predicted (\hat{b}) and the ground-truth (b).

This stage ensures that the BERT model adapts its representations to the specific regression task by leveraging both the text and the additional vector (logval-12).

Stage 2: Feature Extraction and XGBoost Regression

In the second stage, we utilize the fine-tuned BERT model as a feature extractor and employ XGBoost for the final regression task. The steps are outlined below:

1. Feature Extraction:

- $\circ~$ The fine-tuned BERT model from Stage 1 processes the input text to extract the <code>[CLS]</code> token's hidden state, ($h_{\rm [CLS]}$).
- \circ This (${f h}_{
 m [CLS]}$) is concatenated with the input vector (a) to produce the feature vector (${f h}_{
 m [CLS]};a$).

2. XGBoost Training:

- \circ The feature vector ($[\mathbf{h}_{\mathrm{[CLS]}};a]$) serves as input to train an XGBoost regression model, which predicts the target (\hat{b}).
- The XGBoost model is trained on the same dataset used for fine-tuning or a specific subset, depending on the application's requirements.

3. Prediction:

- \circ For a new input pair (text and (<code>logval-12</code>)), the fine-tuned BERT model computes the feature vector ($[\mathbf{h}_{[\mathrm{CLS}]};a]$).
- \circ The trained XGBoost model then uses ($[\mathbf{h}_{ ext{[CLS]}};a]$) to predict (\hat{b}).

This two-stage approach combines BERT's powerful representation learning, fine-tuned for the specific task, with XGBoost's efficiency and potential interpretability, offering a hybrid solution that leverages the strengths of both deep learning and gradient boosting techniques.