8. Constraints and Assumptions

8.1 Constraints

Timeline: The project will be implemented within 3 months, so the scope of functionality will focus on core features: face data registration, automatic attendance, and attendance reporting.

Tools and Technologies:

Back-end: Node.js for logic processing and APIs.

Front-end: HTML, CSS, JavaScript for the user interface.

Database: MongoDB Atlas to store facial data and attendance information.

Devices: Each student is required to use a smartphone with a front-facing camera to capture and upload their facial image to the system.

Data: The initial facial dataset is collected directly from students' smartphone cameras; the quality depends on the camera resolution and lighting conditions.

Human Resources: The development team consists of IT students with limited experience, so a simple and feasible facial recognition solution needs to be selected.

Cost: The system leverages open-source technologies and free cloud services (MongoDB Atlas free tier) to minimize development costs.

8.2 Assumptions

Students and lecturers both have stable internet connections when using the system.

Each student owns a smartphone with a front-facing camera capable of capturing clear images.

Students cooperate in capturing and providing accurate facial images for account registration.

Users have basic skills in using web/apps to log in and perform attendance actions.

The server is capable of handling multiple image upload requests simultaneously during class hours.

9. Target Users / Stakeholders

9.1 Target Users

Students (18–25 years old):

Use their personal smartphones to check in anytime, anywhere.

Can quickly review their attendance history.

Lecturers (25–50 years old):

No longer need to spend time calling names; the system automatically compiles the attendance list from students.

Receive fast and accurate reports immediately after the class session.

University/Training Department:

Collects and manages attendance data centrally.

Reduces fraud since each student must authenticate with their own facial recognition.

9.2 Stakeholders

End Users: Students (perform attendance via smartphones) and lecturers (manage classes).

Training Department/Management Board: Monitor attendance data, generate statistical reports, and integrate with the academic management system.

Development Team: Students carrying out the project, responsible for developing and testing the system.

University Technical Department: Support installation, deployment, and operation of the system in real-world application.

9.3 Advantages

Students: Take attendance proactively via smartphones; convenient, transparent, and easy to track their learning history.

Lecturers: Reduce the burden of manual attendance; receive automatic reports after each class session.

University: Centrally manage data in a modern and transparent way, minimizing fraudulent attendance.