Particle spectrograph

Wave operator and propagator

	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}_{+}$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1^{}}^{\#1}\alpha$	$\tau_{1}^{\#2}{}_{\alpha}$
$\sigma_{1}^{\#1} + \alpha \beta$	0		$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_1^{\#2} + \alpha \beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_1 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\tau_1^{\#1} + \alpha \beta$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1} +^{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
$\sigma_{1}^{\#2} + ^{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} + \alpha$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$

_	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_2^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

 $\frac{2}{3} r_1 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha \theta_l} + 4 \, \partial_\beta \omega_{l \theta \alpha} + \partial_l \omega_{\alpha \beta \theta} - \partial_\theta \omega_{\alpha \beta_l} - \partial_\theta \omega_{\alpha l \beta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_1 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\theta \omega_{\alpha l \beta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_1 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\theta \omega_{\alpha l \beta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_1 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\theta \omega_{\alpha l \beta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_2 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\theta \omega_{\alpha l \beta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_2 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_2 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_2 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_2 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_2 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_2 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_2 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_2 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_2 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha \beta l} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta} - \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha l \theta} + \frac{2}{3} r_3 \left(2 \, \partial_\beta \omega_{\alpha l \theta}\right) \, \partial^\theta \omega^{\alpha$

1 .	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_{0}^{#1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{#1}$ †	$-i\sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$-t_1$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2^- lpha eta \chi}^{\# 1}$
$\omega_{2}^{\sharp 1} \dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{#1}\dagger^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

	Source constraints/gauge generators							
	SO(3) i	rreps	Multiplicities					
	$\tau_{0^{+}}^{\#2} == 0$		1					
k,)))[$\tau_{0}^{\#1} - 2i$	$k \sigma_{0}^{\#1} == 0$	1					
$\partial_{\kappa}\omega_{_{m{ heta}}}$	$\tau_1^{\#2\alpha}$ +	3		_				
, e ,	$\tau_1^{\#_1\alpha} ==$		3					
$(\partial_{\kappa} a)$	$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0 3$							
$\mathcal{E}_{\alpha'}^{\alpha_{I}}$	$\tau_{2^{+}}^{\#1\alpha\beta} - 2ik\sigma_{2^{+}}^{\#1\alpha\beta} == 0$							
- 2 0 ⁰	Total constraints: 16							
$_{\alpha}\omega_{\alpha^{\prime} heta}$		$\omega_{1^{+}lphaeta}^{\#1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$				
$r_{5}\left(\partial_{i}\omega_{eta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\omega_{1}^{\sharp 1}\dagger^{lphaeta}$	$\omega_{1}^{\#_{1}^{+}} \alpha \beta$ $k^{2} (2 r_{1} + r_{5}) - \frac{t_{1}}{2}$ $- \frac{t_{1}}{\sqrt{2}}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$				
	$\omega_{1}^{\#2}\dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0				
	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\frac{i kt_1}{\sqrt{2}}$	0	0				
$\omega^{\alpha'}_{\alpha}$	$\omega_{1}^{#1}\dagger^{\alpha}$	0	0	0	k ²			
θθ, dz								
× 6 Z	$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0				
$r_{5} \left(\partial_{i} \omega_{\theta}^{ \kappa} \partial^{\theta} \omega^{lpha_{i}} - \partial_{\theta} \omega_{i} \right)$	$\omega_1^{#1} \dagger^{\alpha}$ $\omega_1^{#2} \dagger^{\alpha}$ $f_1^{#1} \dagger^{\alpha}$	0	0	0				

_	$\sigma_{0}^{\sharp 1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

	$\omega_{1}^{\sharp 1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_1^{\sharp 1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1}^{\#1}{}_{\alpha}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 (2r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}$ † lpha	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	- i k t ₁	0	0	0

Massive and massless spectra

(No massless particles)

Quadratic (free) action

Unitarity conditions