Спектральный анализ электрических сигналов

Шилов Артем Б01-306

29 октября 2024 г.

1 Ход работы

1.1 Исследование спектра периодической последовательности прямоугольных импульсов и проверка соотношений неопределённости

- 1. Настраиваем генератор на прямоугольные импульсы с частотой повторения $\nu_{\text{повт}}=1~\text{к}\Gamma$ ц (период T=1~мc) и длительностью импульса $\tau=T/20=50~\text{мкc}$.
- 2. Получаем на экране спектр (Преобразование Фурье) сигнала.
 - **а.** Изменяем $\nu_{\text{повт}}$ при фиксированном $\tau = 50$ мкс и получаем:

Рис. 1

Как видно из графиков, при увеличении частоты повторения сигнала увеличивается расстояние между компонентами спектра.

б. Изменяем au при фиксированном $u_{\text{повт}} = 1$ к Γ ц и получаем:

 $au=200~{
m mkc}$

Рис. 2

Как видно из графиков, при увеличении длительности сигнала уменьшается ширина спектра.

3. Измерим амплитуды a_n и частоты ν_n спектральных гармоник при фиксированных $\nu_{\text{повт}} = 3$ к Γ ц и $\tau = 50$ мкс.

п гармоники	1	2	3	4	5	6
$\nu_n^{\text{эксп}}$, к Γ ц	3.0	6.0	9.0	12.0	15.0	18.8
ν_n^{reop} , к Γ ц	3.	6.0	9.0	12.0	15.0	18.0
$ a_n ^{\mathfrak{S}KC\Pi}$, мВ	791	699	607	414	240	174
$ a_n/a_1 _{\mathfrak{S}KC\Pi}$	1	0.884	0.767	0.523	0.303	0.220
$ a_n/a_1 _{\text{reop}}$	1	0.891	0.725	0.524	0.312	0.114

Здесь $a_1 = 143.8$ мВ.

$$\nu_n^{\text{reop}} = \frac{n}{T}$$
$$|a_n|_{\text{reop}} = \frac{|\sin \frac{\pi n \tau}{T}|}{\pi n}$$

4. Зафиксируем период повторения прямоугольного сигнала T=1мс, $\nu_{\text{повт}}=1$ к Γ ц. Изменяя длительность импульса τ в диапазоне от $\tau=T/50$ до $\tau=T/5$, измерим полную ширину спектра сигнала $\Delta\nu$ — от центра спектра ($\nu=0$) до гармоники с нулевой амплитудой $a_n\approx 0$ и установим зависимость между $\Delta\nu$ и τ , полученную из формулы ??.

Построим график $\Delta\nu\left(\frac{1}{\tau}\right)$. Используя МНК, получим $k=1.0229\pm0,0223$, откуда с хорошей точностью можем заключить, что $\Delta\nu_{\tau}^{1}=1$, что экспериментально доказывает соотношение неопределённостей. График приведён на рис.12

τ , MKC	20	40	60	80	100	120	140
$\Delta \nu$, к Γ ц	50	25	17	12.5	10	7.5	5
$1/\tau \cdot 10^3$, c ⁻¹	50.0	25.0	16.7	12.5	10	8.3	7.1

Таблица 1: Исследование зависимости $\Delta \nu$ и τ

Рис. 3: Зависимость $\Delta \nu$ от 1/ au

5. Зафиксируем длительность импульса прямоугольного сигнала $\tau=100$ мкс. Изменяя период повторения T в диапазоне от 2τ до 50τ измерим расстояния $\delta\nu=\nu_{n+1}-\nu_n$ между соседними гармониками спектра.

T, MKC	200	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
$\delta \nu$, к Γ ц	5	2	1	0.688	0.459	0.400	0.330	0.287	0.250	0.220	0.200

Таблица 2: Зависимость $\delta \nu$ от T

Рис. 4: Зависимость $\delta \nu$ от 1/T

Построим график $\delta \nu \left(\frac{1}{T}\right)$. Используя МНК, получим $k=1.001\pm0.003$, что экспериментально доказывает соотношение неопределённостей. График приведён на рис.13.

1.2 Наблюдение спектра амплитудно-модулированного сигнала

- 1. Настраиваем генератор в режим модулированного по амплитуде синусоидального сигнала с несущей частотой $\nu_0=50$ к Γ ц, частотой модуляции $\nu_{\rm мод}=2$ к Γ ц и глубиной модуляции m=0.5.
- **2.** Получаем на экране спектр (Преобразование Фурье) сигнала. Из графика получим $A_{max} = 1.489 \text{мB}$ и $A_{min} = 0.489 \text{мB}$ и убедимся в справедливости соотношения

$$m = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}} = \frac{1}{1.978} \approx 0.5$$

Поскольку мы установили глубину модуляции на 0,5, а из теории у нас получилась 0,503, то мы видим, что формула ?? верна.

3. Изменяя на генераторе глубину модуляции m в диапазоне от 10 % до 100 % (всего 6-8 точек), измерим отношение амплитуд боковой и основной спектральных линий $a_{\rm 60k}/a_{\rm осн}$. Построим график зависимости $a_{\rm 60k}/a_{\rm осн}$ от m и проверим, совпадает ли результат с теоретическим.

m, %	10	25	40	55	70	85	100		
$a_{\text{бок}}, \text{мB}$	33.72	84.0	135.0	186.0	235.0	285.0	334.0		
$a_{ m och}=672~{ m mB}$									
$a_{\rm 6ok}/a_{\rm och}$	0.050	0.125	0.200	0.277	0.350	0.425	0.498		

Таблица 3. Исследование зависимости $a_{\text{бок}}/a_{\text{осн}}$ от m.

Рис. 5: Зависимость $a_{\text{бок}}/a_{\text{осн}}$ от m

Построим график $\frac{a_{6\text{oK}}}{a_{\text{осн}}}(m)$. Используя МНК, получим $k=0.499x\pm0,001$, что подтверждает $\frac{a_{6\text{oK}}}{a_{\text{осн}}}=\frac{m}{2}$, т.е. совпадает с теоретическим предсказанием. График приведён на рис.5.

1.3 Наблюдение спектра сигнала, модулированного по фазе

- 1. Настраиваем генератор в режим модулированного по фазе синусоидального сигнала с несущей частотой $\nu_0=50$ кГц, частотой модуляции $\nu_{\rm mog}=2$ кГц и максимальным отклонением (глубиной модуляцией) $\varphi=10$.
- 2. Получаем на экране спектр (Преобразование Фурье) сигнала.

$$\nu_0=50$$
к
Гц, $\nu_{\text{мод}}=2$ к
Гц, $\varphi=60$

$$u_0 = 50$$
 к Γ ц, $u_{\text{мод}} = 4$ к Γ ц, $\varphi = 10$

Рис. 6

$$\nu_0=25$$
к
Гц, $\nu_{\text{мод}}=2$ к
Гц, $\varphi=10$

0

1.4 Изучение фильтрации сигналов

Подадим на вход RC-цепочки последовательность прямоугольных импульсов с периодом повторения T=3 мкс и длительностью $\tau=150$ нс. Получим спектр, представленный на рис. 7. При том же фиксированном периоде T проведем измерения отношения амплитуд соответствующих спектральных гармоник фильтрованного и исходного сигналов $K_n=\frac{|a_n^\phi|}{a_n^0}$. Полученные данные представлены в таблице 3. Частоту можно почитать по формуле $\nu=\nu_0 n=n/T$. При больших значениях частот K линейна. Построим её и по углу наклона определим τ_{RC}

$$K(1/\nu) = \frac{1}{2\pi\tau_{RC}} \left(\frac{1}{\nu}\right)$$

Построим график $K(1\nu)$.

$1/, \ \kappa \Gamma \mu^{-1}$	1.000	0.500	0.333	0.250	0.200	0.167
K_n	0.380	0.190	0.120	0.071	0.078	0.042

Таблица 3: Отношение амплитуд спектральных гармоник фильтрованного и исходного сигналов

Из коэффициента наклона получаем

$$\tau_{RC} = (3.3 \pm 0.2)$$

Рис. 7: Зависимость K от $\frac{1}{\nu}$

2 Вывод к лабораторной работе

В ходе работы исследованы спектральные характеристики электрических сигналов и их соответствие теоретическим расчетам. При увеличении частоты повторения прямоугольных импульсов увеличилось расстояние между спектральными гармониками, как и предсказывалось теорией. Изменение длительности импульса привело к ожидаемому сужению ширины спектра. Экспериментально подтвердилось соотношение неопределенности: коэффициент $k=1.0229\pm0.0223$ практически совпал с теоретическим значением k=1. Также проверено соотношение амплитуд боковых и основной линий амплитудно-модулированного сигнала; измеренные значения соответствовали $\frac{m}{2}$ с отклонением менее 1%. При фильтрации через RC-цепочку наблюдалось снижение амплитуд гармоник с ростом частоты, и определенное значение $\tau_{RC}=3.3\pm0.2$ мс также совпало с теоретическим расчетом.