Relación de problemas. Tema 1. EL ANILLO DE POLINOMIOS.

1. (Diciembre 2009) Dado el polinomio

$$p(x) = 6x^3 + 15x^2 + 12x + 3$$

factorizarlo y calcular sus raíces en $\mathbb{Z}[x]$, $\mathbb{Z}_5[x]$ y $\mathbb{R}[x]$.

¿Es 3 + 3x un m.c.d. de p(x) y $q(x) = x^2 + 4x + 3$, en $\mathbb{Z}[x]$?; y en $\mathbb{Z}_5[x]$?

2. (Febrero 2010) Dado el polinomio

$$p(x) = -3x^4 + 2x^3 + 4x^2 + 7x + 2$$

factorizarlo y calcular sus raíces en $\mathbb{Z}[x]$, $\mathbb{Z}_2[x]$, $\mathbb{Z}_3[x]$, $\mathbb{R}[x]$ y $\mathbb{C}[x]$.

 ${\bf 3.}$ (Julio 2010) Factorizar para calcular el máximo común divisor y mínimo común múltiplo de los polinomios

$$p(x) = x^4 - 3x^2 - 4$$
 $q(x) = x^3 - 2x^2 + 1$

en $\mathbb{Z}[x]$ y $\mathbb{Z}_5[x]$.

4. Factorizar para calcular el máximo común divisor y mínimo común múltiplo de los polinomios

$$p(x) = 18x^4 - 54x^2 - 72$$
 $q(x) = 12x^3 - 24x^2 + 12$

en $\mathbb{Z}[x]$ y $\mathbb{Z}_5[x]$.

5. (Junio 2010. ITIG.) Dados los polinomios

$$p(x) = x^4 - 4x^2 + 1$$
 $y \quad q(x) = 8x^5 - 3x^3 + x^2 - 5x + 1$

usar el algoritmo de Euclides para calcular el máximo común divisor de p(x) y q(x) en $\mathbb{Z}_3[x]$. ¿Quién es un mínimo común múltiplo de ambos en este anillo?

6. (Junio 11-12) Dados los polinomios

$$p(x) = x^7 + 2x^3 - x^2 - 5x$$
 y $q(x) = x^2 + 8$

usar el algoritmo de Euclides para calcular el máximo común divisor de p(x) y q(x) en $\mathbb{Z}_7[x]$. ¿Es 1 un máximo común divisor de p(x) y q(x) en $\mathbb{Z}_7[x]$?

7. (Preliminar 11-12) Dados los polinomios:

$$p(x) = 1 - 2x - x^3 + 2x^4$$
 $y q(x) = -1 + 2x - x^2 + 2x^3$

Se pide:

Factorizarlos y calcular sus raíces, máximo común divisor y mínimo común múltiplo en $\mathbb{Z}[x]$, $\mathbb{Z}_3[x]$, $\mathbb{R}[x]$ y $\mathbb{C}[x]$.

8. (Junio 11-12). Aplicar, si es posible, el algoritmo de Euclides en $\mathbb{Z}[x]$ y calcular el máximo común divisor y el mínimo común múltiplo de:

$$p(x) = x^4 - 1$$
 y $q(x) = x^3 - x$

9. (Septiembre 11-12) Factorizar, calcular sus raíces y multiplicidades del polinomio $p(x)=3\ x^4-7\ x^3+8x^2-5x+1$

en
$$\mathbb{Z}[x]$$
, $\mathbb{Z}_2[x]$, $\mathbb{R}[x]$ y $\mathbb{C}[x]$.

10. (Ordinaria 112-13) Factorizar, calcular las raíces y sus multiplicidades algebraicas de $p(x) = 6x^3 - 8x^2 + 8x - 2$ en $\mathbb{Z}_3[x]$, $\mathbb{Z}_5[x]$, $\mathbb{Z}[x]$ y $\mathbb{R}[x]$.