Esame di Ricerca Operativa del 28/05/14

	(Cognome))	(Nome)		(Co	rso di laurea)
Esercizio 1	1. Completare l	a seguente tabel	la considerando il problema d	di progra	mmazione line	eare:	
			$\begin{cases} \max \ 4 \ x_1 - 7 \ x_2 \\ -x_2 \le 1 \\ -5 \ x_1 + x_2 \le 4 \\ 3 \ x_1 - x_2 \le 7 \\ x_1 + x_2 \le 5 \\ x_2 \le 4 \\ 3 \ x_1 \le 11 \end{cases}$				
	Base Soluzio	one di base			Ammissibile (si/no)	Degenere (si/no)	
	$\{1, 2\}$ $x = $ $\{2, 3\}$ $y = $						
		e iterazioni dell	algoritmo del simplesso prim	ale per il	problema del	l'esercizio 1	
	Base		y	Indice uscente	Ra	pporti	Indice
10:4	(9.5)			uscente	,		entran
1° iterazio 2° iterazio							
	ninor numero di ecisionali e mode		A 30 80 40 50 55 B 60 35 20 70 40 C 20 55 70 55 30 D 60 35 60 20 60 ali che ogni zona abbia almen		nzia a non più	ı di 50 minuti.	
C=	COI	MANDI DI MA	TLAB (DEL PROBLEMA C	DEL R	ILASSATO?)		
			,				
A= Aeq=			b= beq=				
lb=			ub=				
1							

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(1,4)$ $(2,4)$				
(3,5) (6,5) (6,7)	(4,6)	x =		
(1,2) (1,4) (3,5)				
(4,6) $(5,4)$ $(6,7)$	(2,4)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,4) (2,4) (3,5) (5,4) (5,7) (6,5)	
Archi di U	(4,6)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min & 12 \ x_1 + 7 \ x_2 \\ 12 \ x_1 + 8 \ x_2 \ge 57 \\ 9 \ x_1 + 16 \ x_2 \ge 56 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	9	67	68	32
2		24	52	52
3			8	9
4				22

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:	$v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 2.

ciclo: $v_S(P) =$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{13} , x_{34} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_2^2 + 3x_1$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 - 16 \le 0, \quad x_1 - x_2 - 4 \le 0\}.$$

Soluzioni	del sistema LK	Γ	Massimo		Minimo		Sella
x	λ	μ	globale	locale	globale	locale	
	$\left(\frac{3}{8},0\right)$						
	(0, -3)						
	$\left(-\frac{3}{8},0\right)$						
	$\left(-\frac{13}{8}, -16\right)$						

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min \ -2 \ x_1^2 - 4 \ x_1 x_2 - 2 \ x_2^2 + 5 \ x_1 + 5 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (5,0) , (3,-4) , (1,-0) e (3,3). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
(10)						
$\left(\frac{13}{2},1\right)$						
(3)						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max 4 x_1 - 7 x_2 \\ -x_2 \le 1 \\ -5 x_1 + x_2 \le 4 \\ 3 x_1 - x_2 \le 7 \\ x_1 + x_2 \le 5 \\ x_2 \le 4 \\ 3 x_1 \le 11 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (-1, -1)	SI	NO
{2, 3}	$y = \left(0, \ \frac{17}{2}, \ \frac{31}{2}, \ 0, \ 0, \ 0\right)$	SI	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	$\{2, 5\}$	(0, 4)	$\left(0, -\frac{4}{5}, 0, 0, -\frac{31}{5}, 0\right)$	2	$\frac{55}{3}$, 5, $\frac{55}{3}$	4
2° iterazione	$\{4, 5\}$	(1, 4)	(0, 0, 0, 4, -11, 0)	5	$5, 2, \frac{8}{3}$	3

Esercizio 3.

VEDI SOLUZIONI ALTRO COMPITO

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(1,4)$ $(2,4)$				
(3,5) (6,5) (6,7)	(4,6)	x = (0, -3, 6, 7, 1, 0, 10, 0, 0, 4, 4)	NO	$_{ m SI}$
(1,2) (1,4) (3,5)				
(4,6) (5,4) (6,7)	(2,4)	$\pi = (0, 7, -3, 9, 3, 12, 20)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione				
Archi di T	(1,4) (2,4) (3,5) (5,4) (5,7) (6,5)	(1,4) (2,4) (3,5) (4,6) (5,7) (6,5)				
Archi di U	(4,6)					
x	(0, 0, 3, 7, 4, 0, 10, 3, 4, 8, 0)	(0, 0, 3, 7, 4, 0, 7, 0, 4, 5, 0)				
π	(0, 5, -3, 9, 3, -1, 12)	(0, 5, 10, 9, 16, 12, 25)				
Arco entrante	(4,6)	(1,3)				
ϑ^+,ϑ^-	Inf, 3	8,3				
Arco uscente	(5,4)	(1,4)				

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter	· 2	iter	. 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		4 2		6		3		5		7			
nodo 2	9	1	9	1	9	1	9	1	9	1	9	1	9	1
nodo 3	19	1	19	1	19	1	19	1	19	1	19	1	19	1
nodo 4	8	1	8	1	8	1	8	1	8	1	8	1	8	1
nodo 5	$+\infty$	-1	$+\infty$	-1	23	2	23	2	22	3	22	3	22	3
nodo 6	$+\infty$	-1	17	4	17	4	17	4	17	4	17	4	17	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	29	6	29	6	27	5	27	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	2, 3	, 6	3, 5	, 6	3, 5	5, 7	5,	7	7	7	Q)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	9	(0, 9, 0, 0, 0, 0, 9, 0, 0, 0, 0)	9
1 - 2 - 3 - 7	7	(7, 9, 0, 7, 0, 0, 16, 0, 0, 0, 0)	16
1 - 2 - 5 - 7	6	(13,9,0,7,6,0,16,0,0,6,0)	22
1 - 4 - 6 - 7	10	(13, 9, 10, 7, 6, 0, 16, 0, 10, 6, 10)	32

Taglio di capacità minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min & 12 x_1 + 7 x_2 \\ 12 x_1 + 8 x_2 \ge 57 \\ 9 x_1 + 16 x_2 \ge 56 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, \frac{57}{8}\right)$$
 $v_I(P) = 50$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(0,8)$$

c) Calcolare un taglio di Gomory.

$$r = 2 11 x_1 + 7 x_2 \ge 50$$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	9	67	68	32
2		24	52	52
3			8	9
4				22

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

 $v_I(P) = 72$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 2.

ciclo:
$$2 - 1 - 5 - 3 - 4$$
 $v_S(P) = 110$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{13} , x_{34} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_2^2 + 3x_1$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 - 16 \le 0, \quad x_1 - x_2 - 4 \le 0\}.$$

Soluzioni del s	Massimo		Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
(-4, 0)	$\left(\frac{3}{8},0\right)$		NO	NO	SI	SI	NO
$\left(\frac{5}{2}, -\frac{3}{2}\right)$	(0, -3)		NO	NO	NO	NO	SI
(4, 0)	$\left(-\frac{3}{8},0\right)$		NO	NO	NO	NO	SI
(-4, -8)	$\left(-\frac{13}{8}, -16\right)$		NO	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -2 x_1^2 - 4 x_1 x_2 - 2 x_2^2 + 5 x_1 + 5 x_2 \\ x \in P \end{cases}$$

 ${\rm dove}\; P \; \grave{\rm e} \; {\rm il} \; {\rm poliedro} \; {\rm di} \; {\rm vertici} \; (5,0) \; , \; (3,-4) \; , \; (1,0) \; {\rm e} \; (3,3). \; \\ {\rm Fare} \; {\rm una} \; {\rm iterazione} \; {\rm del} \; {\rm metodo} \; {\rm del} \; {\rm gradiente} \; {\rm proiettato}. \; \\ {\rm del} \; {\rm respective} \; {\rm del} \; {\rm respective} \; {\rm del} \; {\rm respective} \; {\rm respective} \; {\rm del} \; {\rm respective} \; {\rm respective} \; {\rm del} \; {\rm respective} \; {\rm del} \; {\rm respective} \; {\rm r$

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$(\frac{13}{3}, 1)$	(3, 2)	(4/13 - 6/13)	$(-98 \ 49)$	26	26	(3,3)
(3,1)	(0 , 2)	(-6/13 9/13)	39'13/	49	49	(3 , 5)