Weld Design

The thinnest section is 6mm thick, and calculations show that the weld should be no smaller than 2/3 the thickness of the beam material, in this case 4mm.

The minimum required weld leg length is 5.46mm, hence, a weld leg length of between 10mm to 15mm is suitable.

The weld on the base plate to the beam is larger due to the larger bending component involved. The weld profile for the selected system is to be recommended a **tee joint** with double bevel. To prioritise cost, a **butt weld** can also be utilized for the system.

The following section highlights all calculations and data around the weld design
the beam to baseplate.

the beam to baseplate.					
		G	iven Data		
Description	Property	Value	Unit	Symbol	Expression
End Plate Size	End Plate Height	350.00	mm	ep h	
	End Plate Width	400.00	mm	ep w	
	End Plate Thickness	16.00	mm	ep t	•
Base Plate Size	Base Plate Height	500.00	mm	bp_h	
	Base Plate Width	500.00	mm	bp_w	
	Base Plate Thickness	16.00	mm	bp_t	
	Length of Beam	1500.00	mm	1	
Specified FOS	Factor of Safety	2.00	-	FOS	
Force Y-Direction	Hole B Force	-5000.00	N	FЬ	F1
Holes (A&B)	Offset Distance	159.00	mm	0	Offset
	Diametre	16.00	mm	d	Diametre of A & B Holes
		Cor	mpiled Data		
Rectangular	Beam Height	100.00	mm	b h	
Hollow Section	Beam Width	50.00	mm	b w	
	Beam Thickness	6.00	mm	b_t	•
	Allowable Shear Stress	96.60	Pa	t all	Given from Datasheet
			ions - Basep		
Beam to Base Plate	Moment	-80000.00	Nmm	M	F_b*bp_t
Bending	Moment of Inertia	5833.33	Nmm	Z w	(b w*b h)+((b w)^2/3)

	Allowable Shear Stress	96.60	Pa	t all	Given from Datasheet
		Calculat	ions - Base	plate	
Beam to Base Plate	Moment	-80000.00	Nmm	М	F_b*bp_t
Bending	Moment of Inertia	5833.33	Nmm	Z w	(b w*b h)+((b w)^2/3)
	Component due to Bending	-13.71	N/mm	f bnd	M/Z w
Shear	Assumption of Width	1.00	mm	w	Acting upon each mm.
	Perimetre of Beam	300.00	mm	p	(b h*2)+(b w*2)
	Area of Weld	300.00	mm^2	A w	w*p
	Force	-5000.00	N	v	F b
	Force due to Shear	-16.67	N/mm	f_s	V/A_w
Torsian	Torque	-2000000.00	Pa	т	F b*bp w
	Radius of Beam	55.90	mm	r b	SQRT((b w/2)^2+(b h/2)^2)
	Twisting Moment of Intertia	562500.00	Pa	J w	((b w+b h)^3)/6
Beam	theta	1.11	radians	theta rads	ATAN(b t/(b t/2))
Angles	theta	63.43	degrees	theta degs	ATAN(b w/(b w/2))*180/PI()
Force Components	Force due to Torsion	-198.76	N/mm	fj	(T*r b)/J w
Torsian	Force due to Torsion y -axis	-177.78	N/mm	f jy	f j*SIN(theta rads)
	Force due to Torsion z -axis	-88.89	N/mm	fjz	f j*COS(theta rads)
iumming Vectorial Components	Force acting on Component	214.24	N/mm	f	$SQRT(((f bnd)^2+(f s+f y ^2+(f z ^2)))$
Weld	Weld Leg Length	4.44	mm	w I	(f*FOS)/t all
	Advisable Weld Factor	0.67		w_fac	Researched Value
	Advisable Weld Length	4.00	mm	w ad	b t*w fac
		Calculat	ions - End I	Plate	
Beam to End Plate	Moment	-80000.00	Nmm	M ep	F b*ep t
Bending	Component due to Bending	-13.71	N/mm	f bnd ep	M ep/Z w
Shear	Assumption of Width	1.00	mm	w ep	Acting upon each mm.
Torsion	Torque	-2000000.00	Pa	T ep	F b*ep w
Force Components	Force due to Torsion	-198.76	N/mm	f j ep	(T ep*r b)/J w
Torsian	Force due to Torsion y -axis	-177.78	N/mm	f jy ep	f ep*SIN(theta rads)
	Force due to Torsion z-axis	-88.89	N/mm	f jz ep	f ep*COS(theta rads)
iumming Vectorial	Force acting on Component	214 24	N/mm	f ep	SORT(((f bnd ep)^2+(f s+f iv ep)^2+(f iz ep)^2))

 Weld
 Weld Leg Length
 4.44
 mm
 w | ep
 {f ep*FOS}/t all
 "
 Results & Comments

The factor of safety for the end plate to beam weld has denoted an appropriate value with the thinnest section of

the beam at 6mm.

Generally it is visible to use a weld that is no smaller than 0.67 the thickness of the beam material and therefore, in this investigation the result would be 4mm.

The minimum required weld leg length is 5.46mm for the beam to baseplate and therefore, the weld leg length recommended for suitability to this weld is approximately 10mm to 15mm.

As expected the weld of the beam to end plate is a lower value then that of the weld of the beam to the baseplate. The results show the weld of the beam to the end plate to have a minimum required weld log length of 4.44mm, therefore, the weld log length recommended for suitability to this weld is approximately 6mm to 8mm.

The other governing factor is the size of the weld on the base plate to the beam which should be larger due to a larger bending component involved.

The weld profile suitable therefore, for this system would be a tee joint or even potentially a corner joint with double benet, I or fillet. For this investigation and prioritisation of labour and cost, it would be recommended that a double benet buillied for a blance of support and welding process. To save further on the weld cost a butt weld can also be used as illustrated in floure 6.

Note: Force F1 acts in opposite direction (specified with negative force F1 in Given Data section.

[7]

