Lexical alignment: feature-rich models EM for logistic CPDs

Wilker Aziz

April 11, 2017

Content

Representation

EIV

ECG

Feature-rich IBM 1-2

Remarks

Independence assumptions

ightharpoonup P(A|M,N) does not depend on lexical choices a_1 cute $_2$ house $_3 \leftrightarrow \mathsf{uma}_1$ bela $_2$ casa $_3$

Independence assumptions

 $\begin{array}{l} \blacktriangleright \ P(A|M,N) \ \mathsf{does} \ \mathsf{not} \ \mathsf{depend} \ \mathsf{on} \ \mathsf{lexical} \ \mathsf{choices} \\ \mathsf{a}_1 \ \mathsf{cute}_2 \ \mathsf{house}_3 \ \leftrightarrow \ \mathsf{uma}_1 \ \mathsf{bela}_2 \ \mathsf{casa}_3 \\ \mathsf{a}_1 \ \mathsf{cosy}_2 \ \mathsf{house}_3 \ \leftrightarrow \ \mathsf{uma}_1 \ \mathsf{casa}_3 \ \mathsf{aconchegante}_2 \end{array}$

Independence assumptions

- ▶ P(A|M,N) does not depend on lexical choices a_1 cute $_2$ house $_3 \leftrightarrow \mathsf{uma}_1$ bela $_2$ casa $_3$ a_1 cosy $_2$ house $_3 \leftrightarrow \mathsf{uma}_1$ casa $_3$ aconchegante $_2$
- ▶ P(F|E) can only reasonably explain one-to-one alignments I will be leaving soon \leftrightarrow vou embora em breve

Independence assumptions

- ▶ P(A|M,N) does not depend on lexical choices a_1 cute $_2$ house $_3 \leftrightarrow \mathsf{uma}_1$ bela $_2$ casa $_3$ a_1 cosy $_2$ house $_3 \leftrightarrow \mathsf{uma}_1$ casa $_3$ aconchegante $_2$
- ▶ P(F|E) can only reasonably explain one-to-one alignments I will be leaving soon \leftrightarrow vou embora em breve

Parameterisation

categorical events are unrelated prefixes/suffixes: normal, normally, abnormally, ... verb inflections: comer, comi, comia, comeu, ... gender/number: gato, gatos, gata, gatas, ...

Conditional probability distributions

CPD: condition $c \in \mathcal{C}$, outcome $o \in \mathcal{O}$, and $\theta_c \in \mathbb{R}^{|\mathcal{O}|}$

$$P(O|C=c) = \operatorname{Cat}(\theta_c) \tag{1}$$

- $P(O = o|C = c) = \theta_{c,o}$
- ▶ $0 \le \theta_{c,o} \le 1$
- $\triangleright \sum_{o} \theta_{c,o} = 1$
- ▶ $O(|\mathcal{C}| \times |\mathcal{O}|)$ parameters

How bad is it for IBM model 1?

Probability tables

P(F|E)

English ↓	French \rightarrow					
	anormal	normal	normalmente			
abnormal	0.7	0.1	0.01			
normal	0.01	0.6	0.2			
normally	0.001	0.25	0.65			

- grows with size of vocabularies
- no parameter sharing

Logistic CPDs

CPD: condition $c \in \mathcal{C}$ and outcome $o \in \mathcal{O}$

$$P(O = o|C = c) = \frac{\exp(w^{\top}h(c, o))}{\sum_{o'} \exp(w^{\top}h(c, o'))}$$
(2)

- $w \in \mathbb{R}^d$ is a weight vector
- ▶ $h: \mathcal{C} \times \mathcal{O} \to \mathbb{R}^d$ is a feature function
- d parameters
- ▶ computing CPD requires $O(|\mathcal{C}| \times |\mathcal{O}| \times d)$ operations

How bad is it for IBM model 1?

CPDs as functions

$$h: \mathcal{E} \times \mathcal{F} \to \mathbb{R}^d$$

Events ↓		Features \rightarrow					
English	FRENCH	normal	normal-	-normal	ab-	-ly	
		normal	normal-	-normal	a-	-mente	
abnormal	<u>anormal</u>	0	0	1	1	0	
	normal	0	0	1	0	0	
	<i>normal</i> mente	0	1	0	0	0	
normal	a <u>normal</u>	0	0	1	0	0	
	normal	1	0	0	0	0	
	<i>normal</i> mente	0	1	0	0	0	
normally	a <u>normal</u>	0	0	1	0	0	
	normal	0	1	0	0	0	
	normalmente	0	1	0	0	1	
Weights \rightarrow		1.5	0.3	0.3	8.0	1.1	

- computation still grows with size of vocabularies
- but far less parameters to estimate

Content

Representation

EM

ECG

Feature-rich IBM 1-2

Remarks

Expectation Maximisation

Coordinate ascent in F

[Neal and Hinton, 1998]

$$\log P(X|\theta) \ge \mathbb{E}_{P(Z|X,\psi)} \left[\log P(X,Z|\theta)\right] + H(\psi) \tag{3}$$

$$\equiv F(\psi, \theta) \tag{4}$$

Expectation Maximisation

Coordinate ascent in F

[Neal and Hinton, 1998]

$$\log P(X|\theta) \ge \mathbb{E}_{P(Z|X,\psi)} \left[\log P(X,Z|\theta) \right] + H(\psi) \tag{3}$$

$$\equiv F(\psi, \theta) \tag{4}$$

E-step: choose $\psi^{(t+1)}$ that maximises F for fixed $\theta^{(t)}$ problem $\psi^{(t+1)} = \arg\max_{\psi} F(\psi, \theta^{(t)})$ solution $P(Z|X, \psi^{(t+1)}) = P(Z|X, \theta^{(t)})$

Expectation Maximisation

Coordinate ascent in F

[Neal and Hinton, 1998]

$$\log P(X|\theta) \ge \mathbb{E}_{P(Z|X,\psi)} \left[\log P(X,Z|\theta) \right] + H(\psi) \tag{3}$$

$$\equiv F(\psi, \theta) \tag{4}$$

E-step: choose $\psi^{(t+1)}$ that maximises F for fixed $\theta^{(t)}$ problem $\psi^{(t+1)} = \arg\max_{\psi} F(\psi, \theta^{(t)})$ solution $P(Z|X, \psi^{(t+1)}) = P(Z|X, \theta^{(t)})$ M-step: choose $\theta^{(t+1)}$ that maximises F for fixed $\psi^{(t+1)}$ problem $\theta^{(t+1)} = \arg\max_{\theta} F(\psi^{(t+1)}, \theta)$

For each distribution t, with context c and outcome o

$$\theta_{t,c,o}(w) = \frac{\exp(w^{\top} h(t,c,o))}{\sum_{o'} \exp(w^{\top} h(t,c,o'))}$$
 (5)

For each distribution t, with context c and outcome o

$$\theta_{t,c,o}(w) = \frac{\exp(w^{\top}h(t,c,o))}{\sum_{o'} \exp(w^{\top}h(t,c,o'))}$$
 (5)

Expected counts

$$\mu_{t,c,o} = \mathbb{E}\left[n(t:c \to o|Z)\right] \tag{6}$$

For each distribution t, with context c and outcome o

$$\theta_{t,c,o}(w) = \frac{\exp(w^{\top}h(t,c,o))}{\sum_{o'} \exp(w^{\top}h(t,c,o'))}$$
 (5)

Expected counts

$$\mu_{t,c,o} = \mathbb{E}\left[n(t:c \to o|Z)\right] \tag{6}$$

Expected complete log likelihood

$$l(w|\mu) = \sum_{t,c,o} \mu_{t,c,o} \log \theta_{t,c,o}(w)$$
(7)

For each distribution t, with context c and outcome o

$$\theta_{t,c,o}(w) = \frac{\exp(w^{\top}h(t,c,o))}{\sum_{o'} \exp(w^{\top}h(t,c,o'))}$$
 (5)

Expected counts

$$\mu_{t,c,o} = \mathbb{E}\left[n(t:c \to o|Z)\right] \tag{6}$$

Expected complete log likelihood

$$l(w|\mu) = \sum_{t,c,o} \mu_{t,c,o} \log \theta_{t,c,o}(w)$$
(7)

Gradient wrt w (for fixed μ)

$$\nabla_w l(w|\mu) = \sum_{t,d,o} \mu_{t,d,o} \Delta_{t,c,o}(w) \tag{8}$$

$$\Delta_{t,c,o}(w) = h(t,c,o) - \sum_{c'} \theta_{t,c,o'}(w)h(t,c,o')$$
 (9)

Content

Representation

EIV

ECG

Feature-rich IBM 1-2

Remarks

Expectation Conjugate Gradient (ECG)

Direct marginal likelihood optimisation [Salakhutdinov et al., 2003]

$$\nabla_{\theta} \log P(X|\theta) = \mathbb{E}_{P(Z|X,\theta)} \left[\nabla_{\theta} \log P(X,Z|\theta) \right] \tag{10}$$

Gradient ascent

Content

Representation

EIV

ECG

Feature-rich IBM 1-2

Remarks

Berg-Kirkpatrick et al. [2010]

Lexical distribution in IBM model 1

$$P(F = f | E = e) = \frac{\exp(w_{\mathsf{lex}}^\top h_{\mathsf{lex}}(e, f))}{\sum_{f'} \exp(w_{\mathsf{lex}}^\top h_{\mathsf{lex}}(e, f'))}$$
(11)

Berg-Kirkpatrick et al. [2010]

Lexical distribution in IBM model 1

$$P(F = f | E = e) = \frac{\exp(w_{\mathsf{lex}}^{\top} h_{\mathsf{lex}}(e, f))}{\sum_{f'} \exp(w_{\mathsf{lex}}^{\top} h_{\mathsf{lex}}(e, f'))}$$
(11)

Extension: lexicalised alignment distributions

$$P(\Delta = \delta | E = e) = \frac{\exp(w_{\mathsf{dist}}^{\top} h_{\mathsf{dist}}(e, \delta))}{\sum_{\delta'} \exp(w_{\mathsf{dist}}^{\top} h_{\mathsf{dist}}(e, \delta'))}$$
(12)

Content

Representation

EIV

ECG

Feature-rich IBM 1-2

Remarks

Limitations

Local normalisation may be expensive

- ► EM: required in E-step
- ▶ ECG: require at beginning of every iteration

but see [Gutmann and Hyvärinen, 2012]

Nonlinear models

Nothing prevents us from using more expressive functions

$$P(O|C=c) = \operatorname{softmax}(f_{\theta}(c))$$

►
$$P(O = o|C = c) = \frac{\exp(f_{\theta}(c,o))}{\sum_{o'} \exp(f_{\theta}(c,o'))}$$

where $f_{\theta}(\cdot)$ is a neural network with parameters θ

References I

- L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state Markov chains. *Annals of Mathematical Statistics*, 37:1554–1563, 1966.
- Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan Klein. Painless unsupervised learning with features. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 582–590, Los Angeles, California, June 2010. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/N10-1083.
- Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. The mathematics of statistical machine translation: parameter estimation. *Computational Linguistics*, 19 (2):263–311, June 1993. ISSN 0891-2017. URL http://dl.acm.org/citation.cfm?id=972470.972474.

References II

Chris Dyer, Victor Chahuneau, and Noah A. Smith. A simple, fast, and effective reparameterization of ibm model 2. In *Proceedings* of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 644–648, Atlanta, Georgia, June 2013. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/N13-1073.

Michael U. Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. *J. Mach. Learn. Res.*, 13(1): 307–361, February 2012. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=2503308.2188396.

References III

Coskun Mermer and Murat Saraclar. Bayesian word alignment for statistical machine translation. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies*, pages 182–187, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-2032.

Radford M. Neal and Geoffrey E. Hinton. *A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants,* pages 355–368. Springer Netherlands, Dordrecht, 1998. ISBN 978-94-011-5014-9. doi: 10.1007/978-94-011-5014-9_12. URL http://dx.doi.org/10.1007/978-94-011-5014-9_12.

References IV

Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahramani.
Optimization with em and expectation-conjugate-gradient. In Proceedings of the Twentieth International Conference on International Conference on Machine Learning, ICML'03, pages 672–679. AAAI Press, 2003. ISBN 1-57735-189-4. URL http://dl.acm.org/citation.cfm?id=3041838.3041923.

Philip Schulz and Wilker Aziz. Fast collocation-based bayesian hmm word alignment. In *Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers*, pages 3146–3155, Osaka, Japan, December 2016. The COLING 2016 Organizing Committee. URL http://aclweb.org/anthology/C16-1296.

References V

Philip Schulz, Wilker Aziz, and Khalil Sima'an. Word alignment without null words. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 169–174, Berlin, Germany, August 2016. Association for Computational Linguistics. URL http://anthology.aclweb.org/P16-2028.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
HMM-based word alignment in statistical translation. In
Proceedings of the 16th Conference on Computational
Linguistics - Volume 2, COLING '96, pages 836–841,
Stroudsburg, PA, USA, 1996. Association for Computational
Linguistics. doi: 10.3115/993268.993313. URL
http://dx.doi.org/10.3115/993268.993313.