Some Reminders for a Seamless Online Class...

- Please turn on your video
- Mute yourself (press and hold spacebar when you'd like to talk)
- Don't do anything you wouldn't do in an in-person class
- I will occasionally check the chat for messages if you'd like to share there instead
- Please say your name before you speak

Recap

- Data-savviness is the future!
- "Classical" relational databases
 - Notion of a DBMS
 - The relational data model and algebra: bags and sets
 - SQL Queries, Modifications, DDL
 - Database Design
 - Views, constraints, triggers, and indexes
 - Query processing & optimization
 - Transactions
- Non-classical data systems
 - Semi-structured data and document stores
 - Unstructured data and search engines
 - Cell-structured data and spreadsheets
 - Dataframes and dataframe systems
 - OLAP, summarization, and visual analytics

Let's start with OLAP

- OLAP = OnLine Analytical Processing
- Also known as decision support or business intelligence (BI)
 - But now BI has grown to include more (e.g., ML)
- What is OLAP?
 - A specialization of relational databases that prioritizes the reading and summarizing large volumes (TB, PB) of relational data to understand high-level trends and patterns
 - E.g., the total sales figures of each type of Honda car over time for each county
 - "Read-only" queries
- Contrast this to OLTP: OnLine Transaction Processing
 - "Read-write" queries
 - Usually touch a small amount of data, e.g., append a new car sale into the sales table

Where and How is OLAP Performed?

- Usually, OLAP is performed on a separate data warehouse database away from the critical path of OLTP transactions (a live or transactional database).
- This data warehouse is periodically updated from data from various sources (e.g., once an hour or once a day)
 - For example, sales data from various regional sales databases gets periodically consolidated in a central data warehouse
 - This is through a process of ETL
 - Extract, Transform, Load
 - Extract useful business that needs to be summarized, transform it (e.g., canonicalize values, clean it up), load it in the data warehouse
 - By doing it periodically, this data warehouse can become stale

Where and How is OLAP Performed?

- Usually, OLAP is performed on a separate data warehouse database away from the critical path of OLTP transactions (a live or transactional database).
- Why?
 - Because OLAP queries end up reading most of the data, and will prevent OLTP queries from taking precedence
 - it is more important to ensure that sales are not prevented than to make sure that a report for a manager is generated promptly
 - the latter will anyway take a long time, so might as well have them wait a bit longer
 - It's OK if the warehouse data is a bit stale.

Schemas in Data Warehouses

- Known as a star (or sometimes snowflake) schema
- One fact table and many dimension tables
- Fact tables contain dimension attributes and measure attributes

- Let's take a canonical example for a data warehouse:
 - Fact table: Sales (itemid, storeid, customerid, date, number, price)
 - Dim table: Iteminfo (itemid, itemname, color, size, category)
 - Dim table: Store (storeid, city, state, country)
 - Dim table: Customer (customerid, name, street, city, state)

- Let's take a canonical example for a data warehouse:
 - Fact table: Sales (itemid, storeid, customerid, date, number, price)
 - Dim table: Iteminfo (itemid, itemname, color, size, category)
 - Dim table: Store (storeid, city, state, country)
 - Dim table: Customer (customerid, name, street, city, state)

- Let's take a canonical example for a data warehouse:
 - Fact table: Sales (itemid, storeid, customerid, date, number, price)
 - Dim table: Iteminfo (itemid, itemname, color, size, category, manfname)
 - Dim table: Manf (name, address, owner)
 - Dim table: Store (storeid, city, state, country)
 - Dim table: Customer (customerid, name, street, city, state)

Store
Iteminfo
Sales

er, price)

Customer

- Let's take a canonical example for a data warehouse:
 - Fact table: Sales (itemid, storeid, customerid, date, number, price)
 - Dim table: Iteminfo (itemid, itemname, color, size, category)
 - Dim table: Store (storeid, city, state, country)
 - Dim table: Customer (customerid, name, street, city, state)
- Typical "report" queries GROUP BY some dimension attribs, aggregate some measure attributes
 - SELECT category, country, COUNT(number)
 - FROM Sales NATURAL JOIN Iteminfo NATURAL JOIN Store
 - GROUP BY category, country
- Q:What does this query return?

Store Iteminfo
Sales

Customer

- Let's take a canonical example for a data warehouse:
 - Fact table: Sales (itemid, storeid, customerid, date, number, price)
 - Dim table: Iteminfo (itemid, itemname, color, size, category)
 - Dim table: Store (storeid, city, state, country)
 - Dim table: Customer (customerid, name, street, city, state)
- Typical "report" queries GROUP BY some dimension attribs, aggregate some measure attributes
- Not very useful to "aggregate" date; better to treat date as an implicit dimension!
 - Fact table: Sales (itemid, storeid, customerid, date, number, price)
 - Implicit Dim table: Dateinfo (date, month, quarter, year)
- Allows us to look at trends across dates

Store

Iteminfo

Sales

ber, price)

Date

Customer

- Let's take a canonical example for a data warehouse:
 - Fact table: Sales (itemid, storeid, customerid, date, number, price)
 - Dim table: Iteminfo (itemid, itemname, color, size, category)
 - Dim table: Store (storeid, city, state, country)
 - Dim table: Customer (customerid, name, street, city, state)
 - Dim table: Dateinfo (date, month, quarter, year)
- Query:
 - SELECT category, country, month, COUNT(number)
 - FROM Sales NATURAL JOIN Iteminfo NATURAL JOIN Store
 - GROUP BY category, country, month

Introducing Data Cubes

- More convenient to describe these concepts on a "denormalized view", where all the fact and dimension tables are joined together, but same considerations apply across the star or snowflake schema
- Consider a simpler relation: (itemname, color, size, number)

Itemname	Color	Size	Number
Jacket	Blue	Small	I
Jacket	Red	Medium	I
Jeans	Black	Large	2
•••	•••	•••	•••

Vanilla GROUP BY across all groups

 Q: If there are n item names, m colors, and k sizes, what are the number of rows?

Itemname	Color	Size	Number
Jacket	Blue	Small	23
Jacket	Blue	Medium	17
Jacket	Blue	Large	34
Jacket	Red	Small	18
•••	•••	•••	•••
Jeans	Blue	Small	14
•••	•••	•••	13

Say I was interested in only the color and itemnames...

- I might want to see
 what is known as a
 cross-tabulation of the
 aggregates
 corresponding to
 Itemname and Color
- Q:What does this remind you of?
- Q: How could you get this via a GROUP BY?

	Blue	Red	•••	Total
Jacket	23	45	•••	234
Jeans	24	28	•••	462
•••		•••	•••	•••
Total	89	132	•••	2384

Itemname

Another way to view this...

 Crosstab of item name and color = vertical plane closest to us

	Blue	Red	•••	Total
Jacket	23	45	•••	234
Jeans	24	28	•••	462
•••	•••	•••	•••	•••
Total	89	132	•••	2384

Itemname

Another way to view this...

- This is a data cube
- This data cube has 3 dimensions (hence the name dimensions for those sum attributes!)
- This cube can be sliced and diced in various ways

Itemname

Another way to view this...

- Slicing is equivalent to adding a conditions to one/more of the dimensions
 - e.g., green color
- Dicing is a partitioning of the dimension
 - Here, we partitioned based on the distinct values, but we can partition in more coarse grained ways
 - e.g., lights and darks for color
- This is especially useful for the date dimension:
 - Can group by months, days, years, weeks, etc.

Hierarchies for Setting the Partitioning Granularity

- The partitioning granularity can be set based on user needs...
- Different
 partitioning may
 be useful for
 different
 applications

Hierarchies for Setting the Partitioning Granularity

- Different partitioning may be useful for different applications
- Q: I want the aggregates per month. What if I set my partitioning based on Full Date and computed the data cube? Can I avoid recomputing the cube (or cross-tab)
- Q:What about if I had set my partitioning based on Year?

Moves in the Hierarchy and Corresponding Cube

- Moving from a finer granularity to a coarser granularity is called a rollup
- Moving from a coarser granularity to a finer granularity is called a drill-down
- Two unit steps from coarse to fine or vice versa:
 - Move down (or up) the hierarchy for one of the dimensions, OR
 - Move from
 - the origin to an edge, or
 - an edge to a plane, or
 - a plane to the cube

OLAP in SQL: CUBE

• "NULL" is used to indicate "ALL"

- SELECT itemname, color, SUM(number)
- FROM Sales
- GROUP BY CUBE (itemname, color)
- Any attribute may be replaced with an ALL.

Itemname	Color	Number
Jacket	Blue	23
•••	•••	•••
Jacket	Green	34
Jeans	Blue	28
•••	•••	•••
Jeans	Green	17
Jacket	NULL	185
Jeans	NULL	200
•••	•••	•••
. NULL	Blue	94
NULL	Red	74
• • •	•••	
NULL	NULL	984

ROLLUP is an alternative to CUBE

- SELECT itemname, color, SUM(number)
- FROM Sales
- GROUP BY ROLLUP (itemname), ROLLUP (color, size)
- Every combination of:
 - specific itemname or ALL for the first rollup
 - for the second rollup
 - specific color and specific size
 - specific color and ALL sizes
 - ALL colors and ALL sizes
- Thus, combinations include {(itemname, color, size), (itemname, color), (itemname), (color, size), (color), ()}

How do we pick the right CUBE/ROLLUP query?

- First off, why does this matter?
 - If this query is being run once on a petabyte sized warehouse, it is important to get it right!
- Think about all the ways you want to slice and dice your data
- Pick as fine a granularity of partitioning so that you can recreate all the aggregates, but not so fine as to blow up the query result
 - Remember, the query result size grows exponentially in the attributes; this can be quite bad in large snowflake schemas
 - This is known as the curse of dimensionality

So, why did we learn OLAP?

- OLAP is a specialization of relational databases to support analytical processing and report generation
 - Typically done in large "batch" operations on the entire database
 - Rule of thumb: pick as "coarse-grained" materialized views or query results as will allow you to construct all the cross-tabs that may be necessary
- The concepts of OLAP data cubes, hierarchies, slicing/dicing, and rollup/drilldown are valuable to describe what you're doing when you are exploring your data
- Conveniences that come in SQL: ROLLUP and CUBE operators

How does this relate to visualizations?

- Most visualizations are groupby queries
- SELECT AGG(M), D
- FROM R
- WHERE ...
- GROUP BY D
- SELECT COUNT(*), Country
- FROM R
- GROUP BY Country

Why Visualizations?

- Analyze
 - Discover trends
 - Stock price is going up/down
 - Develop hypotheses
 - House prices are down due to the downturn
 - Check hypotheses
 - Detect errors
 - Null values in a column
- Share, record & communicate
- Our focus will primarily be on basic visualization types, how they relate to the data types, and the data processing aspects: Marti Hearst's classes are highly recommended for a deep-dive into visualization.

Types of Data: A Visualization-Oriented Perspective

- Nominal
 - =, ≠
- Ordinal

- Quantitative Interval
 - =, ≠, <, >, -
 - Arbitrary zero
- Quantitative Ratio
 - =, ≠, <, >, -, %
 - Physical quantities

Airlines, Genre

Film ratings, Batteries

Year, Location

Sales, Profit, Temperature

Types of Data: A Visualization-Oriented Perspective

Nominal

Ordinal

Quantitative Interval

Arbitrary zero

Quantitative Ratio

• Physical quantities

Hot, cold

Temperature

Grade

Good, OK, Bad

Score

A Very Quick Primer on Visualization Types

The most basic visualization is a table!

- Bar Charts
- Line Charts
- Scatter Plot
- Choropleth

Bar Charts

Penicilin

Neamycin

Streptomycin

Q: What SQL query generates a multiple bar chart?

When are bar charts appropriate?

- When plotting a Q-R vs. either an N, O, Q-I, or Q-R
- Emphasizes the differences in height than differences in X axis
- Most fundamental chart
- From a SQL standpoint, simple aggregation of some Y axis measure, grouped by one or more dimensions
 - can generate results in the appropriate order in the X axis by doing an ORDER BY following the GROUP BY

Line Charts

When are line charts appropriate?

- When plotting a Q-R vs. a Q-I or a Q-R
- Mainly makes sense when the X axis is ordered in some way and distances between X axis points matter
 - e.g., is the rate of change in this interval the same as the other interval
- Want to be able to see "trends"
 - There is an assumption of interpolation between points and dependence of the Y-axis on the X-axis
- From a SQL standpoint, the query for generation is similar to bar charts, grouping by the X-axis

Scatterplots

Old Faithful Eruptions Eruption Duration (Min):

When are scatterplots appropriate?

- When plotting a Q-R vs. a Q-R
- No assumption of interpolation unlike line charts
- Care more about "density", understanding of "correlation"
- From a SQL query standpoint, one way to plot a scatterplot is to simply perform a SELECT X,Y FROM R with no grouping.
 - Additional aspects (e.g., color) can also be selected if needed
- However, there is a danger of too many rows being returned.
 - Imagine a relation of size IB: IB pairs returned
 - A safer option in that case is to bin the scatterplot into grid cells
 - Q: How would we do this?
 - A: CTE to add new "binned" columns corresponding to a CASE statement, followed by a GROUP BY on the new columns

Choropleths

When are choropleths appropriate?

• Choropleths map a Q-R vs. a two-dimensional Q-I variable

• From a SQL query standpoint, grouping can be done on a pergeographical region basis followed by overlaying on a map.

What type of visualization would you use?

- A plot of rainfall by location on a map
- A plot of average age by department
- A plot of total sales by year
- A plot of rainfall by average temperature for various locations

Visualization Tools

- Many good visualization packages: these help you generate a visualization on your data from within a programming language
 - Matplotlib (you'll try this out in your homework!)
 - D3/Vega/Vega-lite
 - ggplot2
 - Gnuplot
 - Google Charts
- Plus visual analytics tools: these are tools that provide an interactive environment to explore your data visually without writing code
 - Looker
 - PowerBI
 - Spotfire
 - Tableau

What do Visual Analytics tools support?

- At a high level, you specify what you want to see in the x axis (the aggregated measure) and the y axis (the grouping variable)
 - And the system automatically picks the "right" visualization
- You could also encode other additional attributes as "layers" via color, shape
 — these could be either part of the grouping or the aggregated measure
 attributes
- Some tools allow users to specify the mapping between attributes to the axes in a bit more expressive manner; we will spend a little bit of time talking about the algebra underlying this

Composing Attributes

- The Polaris table algebra allows us to compose attributes prior to visualization in more sophisticated ways.
 - This algebra is the basis behind Tableau, a popular visual analytics platform

• The table algebra treats Q-R and Q-I as "Q-R" and N and O into "O" (imposing an arbitrary order if needed).

Table Algebra: Basic Operands

- Ordinal fields: interpret domain as a set that partitions table into rows and columns
 - Quarter = $\{(QtrI),(Qtr2),(Qtr3),(Qtr4)\}$

Qtr1	Qtr2	Qtr3	Qtr4
95892	101760	105282	98225

- Quantitative fields: treat domain as a single element set and encode spatially as axes
 - Profit = {(Profit[-410,650])}

Concatenation Operator (+)

- Ordered union of set interpretation
 - Quarter + ProductType
 - = $\{(QtrI), (Qtr2), (Qtr3), (Qtr4)\} + \{(Coffee), (Espresso)\}$
 - = $\{(QtrI), (Qtr2), (Qtr3), (Qtr4), (Coffee), (Espresso)\}$

Qtr1	Qtr2	Qtr3	Qtr4	Coffee	Espresso
48	59	57	53	151	21

• Profit + Sales = $\{(Profit[-310,620]),(Sales[0,1000])\}$

Cross operator (X)

- Cross-product of set interpretation
- Quarter x ProductType =
- {(Qtr1,Coffee), (Qtr1,Tea), (Qtr2, Coffee), (Qtr2,Tea), (Qtr3, Tea), (Qtr4, Coffee), (Qtr4,Tea)}

Qt	r1	Qt	г2	Qt	г3	Qt	г 4
Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	Coffee	Espresso
131	19	160	20	178	12	134	39

ProductType x Profit =

Coffee		Espresso
	• •	•••••
0 100 200	300 400	0 100 200 300 400
Profit		Profit

And then what?

- With this algebra, users can declaratively specify what combination of attributes goes in each of the "shelves" the X,Y, and Z shelves
 - And the visualization is automatically generated

Takeaways

- Visualization is an essential means for data exploration hypothesis generation and confirmation, spotting of outliers and trends, among others.
- A lot can be accomplished with a small number of visualization types: often these suffice during data exploration
 - Others may be helpful when presenting results to others
- Visual analytics tools provide interactive visualization capabilities via simple interactions
 - The Polaris table algebra forms the basis for how the data attributes are mapped to visualization axes and panes (shelves)

