Tutorial 2

Dirac notation and Bra-Ket algebra

Which of the following sets of vectors in \mathbb{R}^3 are linearly independent?

(a)
$$\left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} 8\\4\\8 \end{bmatrix} \right\}$$

(b)
$$\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}$$

(c)
$$\left\{ \begin{bmatrix} 1\\3\\2 \end{bmatrix}, \begin{bmatrix} 1\\-7\\-8 \end{bmatrix}, \begin{bmatrix} 2\\1\\-1 \end{bmatrix} \right\}$$

$$(d) \left\{ \begin{bmatrix} -2\\0\\1 \end{bmatrix}, \begin{bmatrix} 3\\2\\5 \end{bmatrix}, \begin{bmatrix} 6\\-1\\1 \end{bmatrix}, \begin{bmatrix} 7\\0\\-2 \end{bmatrix} \right\}$$

2.

Consider two different wave-functions $\Psi_m(x)$ and $\Psi_n(x)$. The condition for the wavefunctions to be orthonormal is

a)
$$\int_{-\infty}^{+\infty} \Psi_m^*(x) \Psi_n(x) dx = \delta_{mn}$$

b)
$$\int_{-\infty}^{+\infty} \Psi_m^*(x) \Psi_n(x) dx = 0$$

c)
$$\int_{-\infty}^{+\infty} \Psi_m^*(x) \Psi_n(x) dx = 1$$
 d) $\Psi_m^*(x) \Psi_n(x) = \delta_{mn}$

d)
$$\Psi_m^*(x)\Psi_n(x) = \delta_{mn}$$

3.

The non-zero commutator brackets are

a)
$$[z^2, p_x]$$

b)
$$[x, p_x^3]$$

c)
$$[y^2, p_y]$$

d)
$$[p_x^2, p_z]$$

4.

The pairs that must obey Heisenberg's uncertainty principle are

- a) position and energy
- b) position and momentum

c) energy and time

d) mass and energy

- Consider the following eigenvalue equation: $\hat{O}g(x) = \lambda \ g(x)$, where the operator $\hat{O} = \left(-\frac{\partial^2}{\partial x^2} + x^2\right)$ and its eigenfunction is $g(x) = A \, x \, e^{-x^2/2}$. The eigenvalue λ is _____.
- Consider the two kets, $|\psi\rangle=\begin{pmatrix}2i\\3+i\\3\end{pmatrix},\ |\phi\rangle=\begin{pmatrix}4\\-3i\\2-i\end{pmatrix}$. Then $\langle\phi|\psi\rangle$ will be ai+b. i) a= _____ (Answer should be an integer)
- 8. Consider the states $|\psi\rangle=3i|\phi_1\rangle-7i|\phi_2\rangle$ and $|\chi\rangle=-|\phi_1\rangle+2i|\phi_2\rangle$, where $|\phi_1\rangle$ and $|\phi_2\rangle$ are orthonormal. Then $\langle\psi+\chi|\psi+\chi\rangle$ is _____. (Answer should be an integer)
- 9. Verify Schwarz inequality and triangular inequality in the above numerical.

Consider a three-dimensional vector space spanned by an orthonormal basis $|1\rangle, |2\rangle, |3\rangle$. Kets $|\alpha\rangle$ and $|\beta\rangle$ are given by

$$|\alpha\rangle = i|1\rangle - 2|2\rangle - i|3\rangle, \quad |\beta\rangle = i|1\rangle + 2|3\rangle$$

Then the inner product $\langle \alpha | \beta \rangle = a + bi$, where

ii) b = (Answer should be an integer)

i) a = (Answer should be an integer)

10.

ii) b =____(Answer should be an integer)