SOLVENT TYPE WATER-, OIL-REPELLENT COMPOSITION AND ITS **PRODUCTION**

Patent Number:

JP9118876

Publication date:

1997-05-06

Inventor(s):

SHIMADA TOYOMICHI; MAEKAWA TAKASHIGE

Applicant(s)::

ASAHI GLASS CO LTD

Requested Patent:

■ JP9118876

Application Number: JP19960222893 19960823

Priority Number(s):

IPC Classification:

C09K3/18; C08L33/16; D06M15/256

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To obtain a novel solvent type composition having an excellent water- and oil-repellent performance, comprising fine particles which contain a mixed solvent of a hydrocarbon solvent with a polar solvent and two kinds of specific polymers in the each particle. SOLUTION: This composition comprises fine particles containing, in the each particle, (A) a solvent mixture of a hydrocarbon, preferably n-heptane with a polar solvent, preferably acetone, (B) a polymer dissolving singly in the mixed solvent (A), and (C) a polymer which does not dissolve singly in the mixed solvent (A) and contains the polymer units of a acrylic ester and/or methacrylic polyfluoroalkyl (addreviated to R group)-containing ester and the polymer units of alkyl (meth)acrylate. The component B is preferably a polymer containing 5-65wt.% of (meth)acrylic R group-containing ester and 35-95wt.% of (meth)acrylic alkyl ester.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

庁内整理番号

(11)特許山廟公開番号

特開平9-118876

(43)公開日 平成9年(1997)5月6日

(51) Int. Cl. 6

識別記号

FΙ

技術表示箇所

C09K 3/18

102

C09K 3/18

102

CO8L 33/16

LJD

: CO8L 33/16

LJD

D06M 15/256

D06M 15/256

(71)出願人

審査請求 未請求 請求項の数9 〇L (全8頁)

(21)出願番号

特願平8-222893

000000044

旭硝子株式会社

(22)出願日

平成8年(1996)8月23日

東京都千代田区丸の内2丁目1番2号

(31) 優先権主張番号 特願平7-215072

日本 (JP)

(72)発明者 島田 豊通

(32) 優先日

(33)優先権主張国

平7 (1995) 8月23日

神奈川県横浜市神奈川区羽沢町1150番

地 旭硝子株式会社中央研究所内

(72)発明者 前川 隆茂

神奈川県横浜市神奈川区羽沢町1150番

地 旭硝子株式会社中央研究所内

(74)代理人 弁理士 泉名 謙治

(54) 【発明の名称】溶剤型撥水撥油剤組成物およびその製造方法

(57) 【要約】

【課題】ハロゲン系の溶剤を用いずに、高撥水撥油性能 を有する溶剤型撥水撥油剤を得る。

【解決手段】炭化水素系溶剤および極性溶剤を含む混合溶剤、および、混合溶剤に溶解する第1の重合体および単独では混合溶剤に溶解しない第2の重合体を同一粒子内に含む微粒子、を含む。第2の重合体:R'基を含有する(メタ)アクリル酸エステルの重合した単位、および、(メタ)アクリル酸アルキルエステルの重合した単位を含む重合体。

【特許請求の範囲】

【請求項1】炭化水素系溶剤および極性溶剤を含む混合 溶剤、および、下配第1の重合体および第2の重合体を 同一粒子内に含む微粒子、を含むことを特徴とする溶剤 型撥水撥油剤組成物。

第1の重合体:単独で上記混合溶剤に溶解する重合体。 第2の重合体:単独で上記混合溶剤に溶解しない重合体 であり、かつ、ポリフルオロアルキル基を含有するアク リル酸エステルおよび/またはメタクリル酸エステルの **重合した単位、および、アクリル酸アルキルエステルお 10** よび/またはメタクリル酸アルキルエステルの重合した 単位を含む重合体。

【請求項2】第1の重合体が、ポリフルオロアルキル基 を含有するアクリル酸エステルおよび/またはメタクリ ル酸エステルの重合した単位、および、アクリル酸アル キルエステルおよび/またはメタクリル酸アルキルエス テルの重合した単位を含む重合体である請求項1の溶剤 型撥水撥油剤組成物。一些沒有了

【請求項3】第1の重合体が、ポリフルオロアルキル基 を含有するアクリル酸エステルおよび/またはメタクリ ル酸エステルの重合した単位を5~65重量%、アクリ ル酸アルキルエステルおよび/またはメタクリル酸アル キルエステルの重合した単位を35~95重量%含む重 合体である請求項2の溶剤型撥水撥油剤組成物。

【請求項4】第2の重合体が、ポリフルオロアルキル基。 を含有するアクリル酸エステルおよび/またはメタクリ ル酸エステルの重合した単位を70~99重量%、アク リル酸アルキルエステルおよび/またはメタクリル酸ア ルキルエステルの重合した単位を1~30重量%含む重 合体である請求項1~3のいずれかの溶剤型撥水撥油剤 組成物。

【請求項5】第2の重合体が、アルキル基の炭素数が6 ~22のアクリル酸アルキルエステルおよび/またはア ルキル基の炭素数が6~22のメタクリル酸アルキルエ ステルの重合した単位を含む重合体である請求項1~4 のいずれかの溶剤型撥水撥油剤組成物。

【請求項6】極性溶剤が、アルコール系溶剤、グリコー ル系溶剤、エステル系溶剤、またはケトン系溶剤である 請求項1~5のいずれかの溶剤型撥水撥油剤組成物。

【請求項7】組成物が、ポリイソシアネート化合物、ま 40 たは、ポリイソシアネート化合物の変性体を含む請求項 1~6のいずれかの溶剤型撥水撥油剤組成物。

【請求項8】請求項1~7のいずれかの溶剤型撥水撥油 剤組成物を表面に付着させ、つぎに、乾燥させて得られ た繊維体。

【請求項9】炭化水素系溶剤および極性溶剤を含む混合 溶剤、および、該混合溶剤に溶解させた第1の重合体の 存在下に、ポリフルオロアルキル基を含有するアクリル 酸エステルおよび/またはメタクリル酸エステル、およ び、アクリル酸アルキルエステルおよび/またはメタク 50

リル酸アルキルエステルを含む重合性単量体を重合させ て微粒子を形成させることを特徴とする溶剤型撥水撥油 剤組成物の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、新規な溶剤型撥水 撥油剤組成物、該撥水撥油剤組成物を処理した繊維、お よび該撥水撥油剤組成物の製造方法に関する。

【従来の技術】従来より、含フッ素の溶剤型撥水撥油剤 を製造する場合には、ポリフルオロアルキル基を有する 重合性化合物の溶解性に優れた塩素化フッ素化炭化水素 類、トリクロロエタン等の塩素化炭化水素類、フッ素化 炭化水素類等のハロゲン系溶剤が重合媒体として用いら れてきた。しかし、ハロゲン系溶剤は、環境に悪影響を 与える問題があるため、近年使用が規制されつつある。 非ハロゲン系溶剤を重合媒体として溶剤型撥水撥油剤を 製造する方法としては、特開平5-214198、特開 平5-214676にトルエンを重合媒体とする方法、 特開平6-507438にメチルイソプチルケトンを重 合媒体とする方法が提案されている。

[0003]

【発明が解決しようとする課題】しかし、上記従来の重 合媒体は、人体に対する影響、悪臭の問題がある。ま た、ポリフルオロアルキル基を有する重合体の溶解性が 低いため、撥水撥油性能を高めるためにポリフルオロア ルキル基の量を多くすると、重合がうまく進まない問題 がある。

【0004】溶解性を改善しようとして、ポリフルオロ アルキル基含有の重合体に長鎖のアルキル基を有する重 合性化合物を共重合させることも試みられている。しか し、長鎖のアルキル基を多く含む共重合体は、低温(0 ℃付近)で固化またはゲル化する問題が生じ、低温での 貯蔵安定性は低い問題がある。また、目的とする撥水撥 油性能が得られない問題もある。

【0005】以上のように、ハロゲン系の有機溶剤を用 いた溶剤型撥水撥油剤に代わる溶剤型撥水撥油剤として 満足な性能を発揮するものは未だ得られていない。

[0006]

【課題を解決するための手段】本発明は、従来技術が有 する前述の欠点を解消する目的でなされたものであり、 新規な溶剤型の撥水撥油剤組成物を提供する。本発明者 らは、非ハロゲン系の溶剤を重合媒体として用いて、高 いフッ素含量を有する高撥水撥油性能の撥水撥油剤を得 るために種々の検討を行った。

【0007】すなわち本発明は、炭化水素系溶剤および 極性溶剤を含む混合溶剤、および、下記第1の重合体お よび第2の重合体を同一粒子内に含む微粒子、を含むこ とを特徴とする溶剤型撥水撥油剤組成物を提供する。

第1の重合体:単独で上記混合溶剤に溶解する重合体。

30

第2の重合体:単独で上記混合溶剤に溶解しない重合体であり、かつ、ポリフルオロアルキル基を含有するアクリル酸エステルおよび/またはメタクリル酸エステルの重合した単位、および、アクリル酸アルキルエステルおよび/またはメタクリル酸アルキルエステルの重合した単位を含む重合体。

【0008】本発明においては、第1の重合体の存在下に第2の重合体を形成させることが特徴である。すなわち、単独では混合溶剤には可溶性であるが、それ自身では、充分な撥水撥油性能を発揮できない第1の重合体を形成させるための重合性単量体を重合させると、第1の重合体が存在しない場合には沈殿となってしまう第2の重合体が安定に分散することがわかった。また、得られた微粒子を含む撥水撥油剤組成物がきわめて高い撥水撥油性能を発揮することを見いだした。さらに、混合溶剤としては、環境上の影響が少なく、規制も受けない実用的なものを採用できた。

【0009】本発明の混合溶剤は、炭化水素系溶剤および極性溶剤を含む。炭化水素系溶剤としては、炭素と水 20素のみからなる公知ないしは周知の溶剤が採用されうる。これらのうち、脂肪族炭化水素化合物からなる溶剤、または、脂肪族炭化水素化合物が主成分である溶剤が好ましく、特に、nーヘブタン、nーヘキサン、nーオクタン、シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、メチルペンタン、2ーエチルペンタン、イソパラフィン系炭化水素溶剤、流動パラフィン、デカン、ウンデカン、ドデカン、ミネラルスピリット、ミネラルターペン等が好ましい。さらに、炭化水素系溶剤は、引火点が室温よりも高いも 30のから選ぶのが好ましい。

【0010】また、混合溶剤は、上記の炭化水素系溶剤とともに極性溶剤を含む。極性溶剤とは、分子構造中に極性基を有する溶剤を意味し、水酸基、カルボキシル基、エステル基、アシル基、およびアルコキシル基等の極性基、またはエーテル結合等の極性部分を1個以上有する溶剤が好ましい。極性基または極性部分の数は、1分子中に1個または2個以上のいずれであってもよく、2個以上の場合には、1分子中に異なる極性基または極性部分が存在していてもよい。

【0011】極性溶剤としては、公知の溶剤のうち、アルコール系溶剤、グリコール系溶剤、エステル系溶剤、またはケトン系溶剤が好ましい。

【0012】アルコール系溶剤としては、エチルアルコール、ブチルアルコール、イソプロピルアルコール等が挙げられる。グリコール系溶剤としては、プロピレングリコールモノエチルエーテル、およびそれらのアセテート、ジブロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル

等が挙げられる。

【0013】エステル系溶剤としては、酢酸メチル、酢酸エチル、酢酸ブチル、コハク酸ジエチル、アジピン酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル等の二塩基酸エステル等が挙げられる。ケトン系溶剤としては、メチルイソブチルケトン、メチルエチルケトン、アセトン等が挙げられる。

【0014】 これらのうち、本発明における極性溶剤としては、アセトン、コハク酸ジエチル、アジピン酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルのアセテート、プロピレングリコールモノエチルエーテルのアセテートが好ましい。

【0015】混合溶剤には、必要に応じて他の有機溶剤を含ませてもよいが、他の有機溶剤はできるだけ少量であるのが好ましい。また、混合溶剤は、本質的に水を含まない混合溶剤であるのが好ましい。水を多く含むと、撥水撥油剤組成物が二層に分離するおそれがある。

【0016】炭化水素系溶剤と極性溶剤との比は、炭化水素系溶剤と極性溶剤の合計量の100重量部に対して、炭化水素系溶剤が70~99重量部であるのが好ましい。炭化水素系溶剤の比が70重量部より少ないと、安定な撥水撥油剤組成物が得られないおそれがある。一方、炭化水素系溶剤の比が99重量部より多いと、組成物が低温でゲル化するおそれがある。

【0017】本発明においては、上記の混合溶剤に可溶性の第1の重合体の存在下、第2の重合体を形成させる。第1の重合体は、上記の混合溶剤に可溶性の重合体であれば特に限定されないが、撥水撥油性能を示す重合体が好ましい。たとえば、含フッ素の重合体や長鎖アルギル基を有する公知ないしは周知の重合体のうち、上記の混合溶剤に可溶性の重合体が好ましく、特に含フッ素の重合体が好ましく、ポリフルオロアルキル基を含有する重合体が好ましい。

【0018】さらに第1の重合体は、ポリフルオロアルキル基を含有するアクリル酸エステルおよび/またはメタクリル酸エステルの重合した単位、および、アクリル酸アルキルエステルおよび/またはメタクリル酸アルキルエステルの重合した単位を含む重合体であるのが好ましい。

【0019】なお、以下においてポリフルオロアルキル基を「R'基」、アクリル酸エステルおよび/またはメタクリル酸エステルをまとめて「(メタ)アクリル酸エステル」、アクリル酸アルキルエステルおよび/またはメタクリル酸アルキルエステルをまとめて「(メタ)アクリル酸アルキルエステル」と記す。他の化合物についても同様に記載する。

ピレングリコール、ジプロピレングリコールモノメチル 【0020】R'基を含有する(メタ)アクリル酸エスエーテル、ジプロピレングリコールモノエチルエーテル 50 テルにおけるR'基は、アルキル基の水素原子の2個以

上がフッ素原子に置換された基をいう。R'基の炭素数は2~20が好ましく、特に4~14が好ましい。また、R'基は、直鎖または分岐の基が好ましい。分岐の基である場合には、分岐部分がR'基の末端に存在し、かつ、炭素数1~3程度の短鎖であるのが好ましい。R'基は、フッ素原子以外の他のハロゲン原子を含んでいてもよい。他のハロゲン原子としては、塩素原子が好ましい。また、R'基中の炭素-炭素結合の間には、エーテル性の酸素原子が挿入されていてもよい。

【0021】R'基中のフッ素原子の数は、R'基と同一炭素数の対応するアルキル基中に含まれる水素原子の数に対する割合で表現した場合に、60%以上が好ましく、特に80%以上が好ましい。さらにR'基は、アルキル基の水素原子の全てがフッ素原子に置換された基、またはそのような基を末端部分に有する基が好ましい。なお、以下において、アルキル基の水素原子の全てがフッ素原子に置換されたR'基を、「パーフルオロアルキル基」と記す。

【0022】パーフルオロアルキル基の炭素数は、2~20が好ましく、特に4~14が好ましい。R'基は、以下の具体例および実施例中に記載される基が好ましい。R'基を含有する(メタ)アクリル酸エステルは、上記のR'基が(メタ)アクリル酸エステルのアルコール残基に存在する化合物であり、下記一般式(1)で表される化合物が好ましい。ただし、一般式(1)においてRは、水素原子またはメチル基を示す。Qは2価の有機基を示し、以下の具体例中に示される基が好ましい。R'は、R'基を示し、Qと結合する炭素原子には、フッ素原子が結合しているのが好ましい。

 $R' - Q - OCOCR = CH_{2}$ (1)

【0023】R'基を含有する(メタ)アクリル酸エステルの具体例を以下に挙げるが、これらに限定されない。ただし、Rは、水素原子またはメチル基を示す。

[0 0 2 4] CF, (CF,), CH, OCOCR=CH,

CF₃ (CF₂)₈ CH₂ CH₂ OCOCR=CH₂,

CF₃ (CF₂), CII₂ CH₂ OCOCR=CH₂,

(CF₃), CF (CF₂), CH₂ CH₂ OCOCR=CH₂,

CF₃ (CF₂), SO₂ N (C₃ H₇) CH₂ CH₃ OCOCR=CH₂,

CF, (CF,), (CH,), OCOCR=CH,

CF₃ (CF₂), SO₂ N (CH₃) CH₂ CH₂ OCOCR=CH₂ ,

CF, (CF,), SO, N (C, H,) CH, CH, OCOCR=CH, .

CF, (CF,), CONHCH, CH, OCOCR=CH,

 $(CF_3)_2 CF (CF_2)_6 (CH_2)_3 OCOCR = CH_2$

(CF₃)₂ CF (CF₂)₄ CH₂ CH (OCOCH₃) OCOCR=CH₂,

(CF₂)₂ CF (CF₂)₄ CH₂ CH (OH) CH₂ OCOCR=CH₂ ,

CF, (CF,), CONHCH, OCOCR=CH,

CF, (CF,) CONHCH, CH, OCOCR=CH,

CF₂ (CF₂), CH₂ CH (OH) CH₂ CH₂ OCOCR=CH₂ .

【0025】第1の重合体が上記のR'基を含有する (メタ)アクリル酸エステルの重合した単位を含む場 合、該重合した単位を1種または2種以上含んでいてもよい。2種以上含む場合には、R'基の炭素数のみが異なるR'基を含有する(メタ)アクリル酸エステルの重合した単位であるのが好ましい。

【0026】第1の重合体は、R'基を含有する(メタ)アクリル酸エステルの重合した単位とともに(メタ)アクリル酸アルキルエステルの重合した単位を含むのが好ましい。(メタ)アクリル酸アルキルエステルにおけるアルキル基は、炭素原子と水素原子とのみからなる基であり、上記のR'基とは区別される。アルキル基の炭素数は6~22が好ましい。また、アルキル基は、直鎖、分岐、環のいずれの構造であってもよく、環構造の場合には、置換基を有していてもよい。

【0027】 (メタ) アクリル酸アルキルエステルの具体例としては、プロピル (メタ) アクリレート、n-ブチル (メタ) アクリレート、t-ブチル (メタ) アクリレート、ヘキシル (メタ) アクリレート、シクロヘキシル (メタ) アクリレート、2-エチルヘキシル (メタ) アクリレート、ラウリル (メタ) アクリレート、カテアリル (メタ) アクリレート、ステアリル (メタ) アクリレート、ステアリル (メタ) アクリレート、ベヘニル (メタ) アクリレート等が挙げられる。 (メタ) アクリル酸アルキルエステルの重合した単位

【0028】また、上記の第1の重合体は、上記のR'基を含有する(メタ)アクリル酸エステルの重合した単位、および(メタ)アクリル酸アルキルエステルの重合した単位以外に、他の重合性単量体の重合した単位を含んでいてもよい。他の重合性単量体の重合した単位を含ませて共重合体とすることによって、該共重合体の混合 溶剤への溶解性、基材への接着性、架橋性、造膜性、柔軟性、防汚性、または汚れ落ち性を調節したり改善したりできる。

は、1種あるいは2種以上を含ませてもよい。

【0029】他の重合性単量体の具体例としては、以下の例が挙げられるがこれらに限定されない。

【0030】エチレン、酢酸ビニル、塩化ビニル、フッ 化ビニル、ハロゲン化ビニリデン、スチレン、αーメチ ルスチレン、p-メチルスチレン、ポリ (オキシアルキ レン) (メタ) アクリレート、(メタ) アクリルアミ ド、ジアセトン(メタ)アクリルアミド、メチロール化 40 ジアセトン (メタ) アクリルアミド、N-メチロール (メタ) アクリルアミド、ピニルアルキルエーテル、 (ハロゲン化アルキル) ピニルエーテル、ピニルアルキ ルケトン、ブタジエン、イソプレン、クロロブレン。 【0031】グリシジル (メタ) アクリレート、アジリ ジニルエチル (メタ) アクリレート、ベンジル (メタ) アクリレート、イソシアネートエチル (メタ) アクリレ ート、アジリジニル(メタ)アクリレート、ヒドロキシ エチル(メタ)アクリレート、ポリシロキサン基を有す る(メタ)アクリレート、トリアリルシアヌレート、ア リルグリシジルエーテル、酢酸アリル、N-ビニルカル

8

バソール、マレイミド、N-メチルマレイミド、アクリル酸(2-ジメチルアミノ)エチル、ブロックドイソシアネート基を含有する(メタ)アクリレート、水酸基を有する(メタ)アクリレートとポリイソシアネート化合物とをイソシアネート基が残るように反応させたウレタン(オリゴマー、アリル(メタ)アクリレート等。

【0032】第1の重合体と第2の重合体は別々の分子として存在していてもよく、化学的に結合していてもよい。化学的に結合している場合には、撥水撥油剤中での 微粒子の分散安定性が増加する傾向があり好ましい。第1の重合体と第2の重合体を化学的に結合させる場合には、第1の重合体中に、第2の重合体との結合部位として、水酸基、アミノ基、グリシジル基、アジリジニル基、イソシアネート基等の結合基を含ませるのが好ましい。

【0033】第1の重合体がR'基を含有する(メタ) アクリル酸エステルの重合した単位およびR'基を含有 する(メタ)アクリル酸エステルの重合した単位を含む 重合体である場合には、R'基を含有する(メタ)アク リル酸エステルの重合した単位の割合は、混合溶剤に対 20 する溶解性に応じて適宜調節するのが好ましい。

【0034】R'基を含有する(メタ)アクリル酸エステルの重合した単位は、第1の重合体中に65重量%以下、特に5~65重量%であるのが好ましく、(メタ)アクリル酸アルキルエステルの重合した単位は、重合体中に35重量%以上、特に35~95重量%であるのが好ましい。R'基を含有する(メタ)アクリル酸エステルの重合した単位の割合が65重量%より多いと、混合溶剤に対する充分な溶解度が得られないおそれがある。また、該重合体が他の重合性単量体を含む場合には、重30合体中に30重量%以下であるのが好ましい。

【0035】第1の重合体の入手方法については、特に限定されず、いずれの方法で合成された重合体であってもよく、市販の重合体を用いてもよい。また、第1の重合体がR'基を含有する(メタ)アクリル酸エステルの重合した単位、および、(メタ)アクリル酸アルキルエステルの重合した単位を含む重合体である場合の入手方法についても限定されないが、第1の重合体を合成する場合には、本発明の混合溶剤を重合媒体とする溶液重合法で合成するのが効率的であり好ましい。第1の重合体40の平均分子量は1000~10000が好ましい。平均分子量が該範囲をはずれると、撥水撥油剤組成物の安定性が低下するおそれがある。

【0036】すなわち、R¹ 基を含有する(メタ)アクリル酸エステル、(メタ)アクリル酸アルキルエステル、および必要に応じて他の重合性単量体を、本発明の混合溶剤に含ませ、有機過酸化物、アゾ化合物、過硫酸塩のような重合開始剤やγ線のような電離性放射線等の作用により重合させる方法で合成するのが好ましい。

【0037】一方、第2の重合体は、R'基を含有する 50

(メタ) アクリル酸エステルの重合した単位、および、 (メタ) アクリル酸アルキルエステルの重合した単位を 含む重合体である。

【0038】第2の重合体は、第1の重合体が存在しない場合には、混合溶剤に溶解せず沈殿する重合体であるが、第1の重合体が混合溶剤中に存在することによって混合溶剤中に分散、または、みかけ上可溶化し、安定に存在する重合体である。みかけ上可溶化している状態とは、組成物が透明であり重合体が可溶化しているように見えるが、光を当てると分散光が認められる状態である。

【0039】第2の重合体におけるR'基を含有する (メタ)アクリル酸エステルは、第1の重合体において 記載したR'基を含有する (メタ)アクリル酸エステル と同様であり、好ましい態様も同様である。また、第2の重合体におけるR'基を含有する (メタ)アクリル酸エステルの重合した単位も1種または2種以上含んでいてもよい。2種以上含む場合には、R'基の炭素数のみが異なるR'基を含有する (メタ)アクリル酸エステルの重合した単位であるのが好ましい。

【0040】さらに、第2の重合体は、(メタ)アクリル酸アルキルエステルの重合した単位を含む。第2の重合体における(メタ)アクリル酸アルキルエステルも第1の重合体における(メタ)アクリル酸アルキルエステルと同じ意味のR'基を含有しない(メタ)アクリル酸アルキルエステルであり、好ましい態様も同様である。第2の重合体における(メタ)アクリル酸アルキルエステルの重合した単位も、1種または2種以上含んでいてもよい。

【0041】さらに、第2の重合体は、上記のR'基を含有する(メタ)アクリル酸エステルの重合した単位、および(メタ)アクリル酸アルキルエステルの重合した単位以外に、他の重合性単量体の重合した単位を含んでいてもよい。他の重合性単量体を含ませることによって、共重合体の基材への接着性、または架橋性や造膜性、あるいは柔軟性、防汚性、SR性等を改良できる。他の重合性単量体の具体例としては、第1の重合体における他の重合性単量体と同様の例が挙げられる。

【0042】本発明の第2の重合体中の上記の重合した単位の割合は、第2の重合体中にR'基を含有する(メタ)アクリル酸エステルの重合した単位を70~99重量%、および(メタ)アクリル酸アルキルエステルの重合した単位を1~30重量%含ませるのが好ましい。また、他の重合性単量体を含ませる場合には、重合体中に10重量%以下であるのが好ましい。第2の重合体中のR'基を含有する(メタ)アクリル酸エステルの重合した単位の割合が70重量%より少ないと、充分な低温安定性が得られないおそれがある。

【0043】第2の重合体中にも第1の重合体との化学 的な結合部位を存在させるのが好ましく、たとえば、水

酸基、アミノ基、グリシジル基、アジリジニル基、イソシアネート基等を含ませるのが好ましい。これらの基は、第1の重合体中の対応する基の種類に応じて組み合わせればよい。さらに第2に重合体の分子量は特に限定されず、1000~10000が好ましい。

【0044】第1の重合体と第2の重合体との比は、第1の重合体と第2の重合体の合計量の100重量部に対して、第1の重合体が10~40重量部であるのが好ましい。第1の重合体が10重量部より少ないと安定な撥水撥油性能が得られないおそれがある。一方、第1の重合体の量が40重量部より多いと、充分な撥水撥油性能が得られなくなるおそれがある。

【0045】混合溶剤に対する第1の重合体と第2の重合体からなる微粒子の濃度は、20~40重量%が好ましく、特に25~35重量%が好ましい。該濃度は、使用目的や用途に応じて適宜変更されうる値であり、通常は、使用時に0.3~1重量%、好ましくは0.5~0.6重量%の濃度となるように混合溶剤で希釈して用いられる。

【0046】本発明の撥水撥油剤組成物は、上記混合溶 20 剤、および、該混合溶剤に溶解させた第1の重合体の存在下に、R'基を含有する(メタ)アクリル酸エステル、および、(メタ)アクリル酸アルキルエステル、および必要に応じて他の重合性単量体を重合させて微粒子を形成せしめることにより得られる。重合は、有機過酸化物、アゾ化合物、過硫酸塩のような重合開始剤やγ線のような電離性放射線等の作用させることにより実施できる。

【0047】第1の重合体と第2の重合体を含む微粒子を含む撥水撥油剤組成物は、該微粒子が分散して存在していてもよく、みかけ上可溶化してもよい。撥水撥油剤組成物中の微粒子は、2つの重合体がからみあった構造、第1の重合体が外側に存在し第2の重合体が内側に存在する構造、または第2の重合体が外側に存在し第1の重合体が内側に存在する構造をとっていると考えられ、第2の重合体が外側に存在するのが好ましい。いずれの構造においても、第1の重合体と第2の重合体は別々の分子として存在していても、化学的に結合していてもよい。微粒子径は、0.01~1μm程度が好ましい。

【0048】さらに本発明の溶剤型撥水撥油剤組成物には、上記の化合物以外の他の化合物を含ませてもよい。他の化合物としては、ボリイソシアネート化合物、または、それらの変性体が好ましい。ボリイソシアネート化合物としては、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート等が好ましく、変性体としては、ボリイソシアネート化合物のピュレット変性体、ボリイソシアネート化合物のカルボジイミド変性体等が好ましい。これらの化合物を含ませることによって、洗

湿、ドライクリーニング、摩擦等に対する耐久性を向上 できる。

【0049】また、他の撥水剤や撥油剤、あるいは他の 重合体プレンダー、架橋剤、防虫剤、難燃剤、帯電防止 剤、防しわ剤等の添加剤等を含ませてもよい。他の化合 物は、撥水撥油剤の処理目的や被処理物等に応じて適宜 変更されうる。

【0050】本発明の溶剤型撥水撥油剤組成物は任意の方法で被処理物品に適用できる。たとえば、浸漬塗布等のような被覆加工の既知の方法により、被処理物の表面に付着させ乾燥する方法が採用される。

【0051】本発明の組成物により処理される被処理物は、特に限定なく種々の例が挙げられる。たとえば、繊維、繊維織物、繊維編物、不織布、ガラス、紙、木、皮革、毛皮、石綿、レンガ、セメント、セラミックス、金属および金属酸化物、窯業製品、ブラスチックス、金面などがある。繊維の例としては、綿、麻、羊毛、絹等の動植物性天然繊維、ボリアミド、ボリエステル、ボリビニルアルコール、ボリアクリロニトリル、ボリガロピレン等の合成繊維、レーヨン、アセテート等の半合成繊維、ガラス繊維、アスベスト繊維等の無機繊維、あるいはこれらの混合繊維が挙げられる。

【0052】これらのうち、被処理物としては、繊維、繊維織物、繊維編物、または不織布等の繊維体が好ましい。

[0053]

【実施例】以下に、本発明を合成例(例 $1\sim4$)、実施例(例 $5\sim1$ 1)、および比較例(例 $12\sim1$ 7)を挙げて説明する。

【0054】なお、以下において、撥水性能の評価は、 JIS L1092のスプレー試験により行い、表1に 示す撥水性ナンバーで表した。撥油性能については、表 2に示す試験液を試験布上におき、30秒後の浸透状態 により判定した(AATCC-TM118)。ただし、 ナンバーに+(-)を記したものは、それぞれの性能が そのナンバーの表す程度よりわずかに良い(悪い)こと を示す。

[0055]

【表1】

40

撥水性	状態					
100	表面に付着温潤のないもの					
90	表面にわずかに付着温潤を示すもの					
80	表面に部分的に湿潤を示すもの					
7 0	表面に湿潤を示すもの					
50	表面全体に温潤を示すもの					
0	表裏両面が完全に温潤を示すもの					

	. De
撥油性	試験溶液
8	nーヘプタン
7	n-オクタン
6	nーデカン
5	nードデカン
4	n – テトラデカン
3	nーヘキサデカン
2	ヌジョール/n - ヘキサデカン
1	=65/35 (重量比) (21℃)
1	ヌジョール

【0057】 [低温安定性の評価] 低温での保存安定性 を判定するために、得られた組成物を0℃で1か月間保存し、固化するか否かを評価した。

【0058】 [湿摩耗後のブンデスマン撥水性評価] 2 枚の試験片を直径15mmの円形に切り取り、4ccの水で濡らし、荷重750gで、350回こすり合わせた。つぎにJ1S L1092に記載されるブンデスマン法にしたがって雨試験を行った。シャワー部から600mm/hrで30分間降雨させた。得られた試験片について、撥水性を評価した。

【0059】 [例1:第1の重合体の合成例 100 c c のガラス製重合アンプルに、CF, (CF,)。CH, CH, OCOCH=CH, (nの平均=8) (以下FAと記す) 3.60g(30重量部)、シクロヘキシルメタクリレート(以下CHMAと記す) 7.20g(60重量部)、グリシジルメタクリレート(以下GMAと30記す) 1.20g(10重量部)、重合開始剤として2,2'ーアゾピス(2ーメチルブチロニトリル)(和光純薬工業製/V-59)0.22g、連鎖移動剤としてnードデシルメルカプタン0.22g、ミネラルターペン41.0g、アセトン4.6gを加えて、窒素雰囲気下で振とうしつつ、60℃で18時間重合させて、第1の重合体の溶液を得た。

【0060】溶液中の固形分濃度は21重量%であり、 ガスクロマトグラフ (GC) 分析の結果、重合性化合物 は検出されなかった。分散液中に含まれる第1の重合体 40 の分子量 (ゲルパーミエーションクロマトグラフによる 測定、ポリスチレン換算) は1万であった。

【0061】 [例2~4:第1の重合体の合成例] 重合性化合物として表3に示すもの(重量部)を用いる以外は、例1と同様の方法で重合させ、第1の重合体の溶液を得た。溶液をGC分析した結果、いずれの溶液においても、重合性化合物は検出されなかった。

[0062]

【表3】

•		1	2		
	重合性化合物	例2 (何3	例4	¥13,
	FA CHMA	4 0 5 0	3 0	50	
t-B			(60	(4 Õ)	
Q41.	GMA	10	10	(40)	

10 【0063】ただし、表中の略号は、以下の意味を示 す。

【0064】 [例5] 100ccのガラス製重合アンプルに、FA9.84g ×82重量部)、ステアリルメタクリレート(以下StMAと記す)1.92g (16重量部)、トリアリルシアヌレート(以下TACと記す)の.24g (2重量部)、2,2'-アゾビス(2ーメチルプチロニトリル)(和光純薬工業製V-59)0.22g × ミネラルターペン22.7g、アセトン2.5g、さらに、第1の重合体として、例1で得られた第1の重合体の溶液20gを加えて、窒素雰囲気下で振とうしつつ、60℃で18時間重合させ、固形分27重量%の分散液を得た。分散液をGC分析した結果、重合性化合物は検出されなかった。

【0065】この分散液に、イソホロンジイソシアネートのイソシアヌレート変性体およびミネラルターペンを加えて、ボリマー固形分0.6 重量%、イソホロンジイソシアネートのイソシアヌレート変性体固形分0.06 重量%の処理浴を調製した。水分散型の撥水剤(旭硝子社製商品名:AG-710、固形分1.2 重量%の処理浴)で加工済みのナイロン布を処理浴に浸漬後、マングルで絞りピックアップを80%とした。次に、恒温恒湿室(25℃、湿度60%)で処理布を3時間乾燥後、乾燥(120℃、90秒)、キュア(160℃、60秒)を行った。

【0066】上記の処理を行った試験布について、洗濯20回後の撥水および撥油性能、および湿摩耗後のブンデスマン撥水性能の評価を行った。結果を低温安定性とともに表6に示す。

[0067] [例6~11] 重合性化合物、および第1の重合体として表4に示すものを表4の量(重量部)を用いること以外は、例5と同様の方法で重合させ分散液を得た。分散液をGC分析した結果、いずれの分散液においても重合性化合物は検出されなかった。さらに分散液を例5と同様に、試験布に処理した。試験布の評価結果を低温安定性とともに表6に示す。

[0068]

50 【表4】

				`\			
例	6	7	8	9)1 0/	1)	
FA	8 2	8 2	8 2	8 2	8 2	8 1	
StMA	-	16	-	-	-	_	1
ВеМА	16	-	16	16	16	16	伸
TAC	2	2	· 2	2	2	1	
HEA	-	-	_	_		2	
第1の 重合体	例2	例3	例3	M 4	阿5	614)

【0069】ただし、表中の略号は、以下の意味を示 す。...

BeMA:ベヘニルメタクリレート [CH,=C(CH,)C00C,, H.s-n],

HEA: 2-ヒドロキシエチルアクリレート。

【0070】 [例12~17] 重合性化合物として表5 に示すものを表5の量(重量部)用いて例1と同様の方 法で重合を行った。例12~13では、重合体の溶液が 20 得られ、例14~16では、重合体の沈殿が重合アンプ

ルの底部に認められ、4例17では、多量の沈殿物が生成 し重合が進まなかった。例12~16で得た組成物につ いて、例5と同様の評価を行った。結果を表6に示す。 [0071]

【表5】

例	1 2	1 3	14	1 5	1 6	1 7
FA	45	45	70	70	70	8 2
CHMA	5 3		ļ			
ТВМА		5 5				
StMA			28			16
BeMA				28	20	
TAC	2		2	2		2
GMA		10			10	·

612/19

[0072] 【表6】

洗濯20回 低温安定性 洗濯20回 温摩耗後のプン 後撥水性 後撥油性 デスマン撥水性 3 -例 5 8 0 70 固化しない 例6 +08 3 — 8 0 固化しない 例7 8 0 2+ 70 固化しない 例8 9.0 -3 — 8 0 固化しない 例9 90-3 -8 0 固化しない 例10 8 0 2 8 0 固化しない 例11 90-3 -8 0 固化しない 1 + 例12 8 0 5 O 固化しない 例13 70 +1+ 5 0 固化しない 例14 70 +2 50 +固化する 例15 8 0 2 + 70 +固化する 例16 8 0 2+ 70 +固化する

[0073]

ハロゲン系の有機溶剤を用いることなく、高い撥水撥油 性能を有する溶剤型の撥水撥油剤組成物が得られる。得

られた溶剤型撥水撥油剤は、湿摩耗後においても優れた 【発明の効果】本発明によれば、使用に制限や問題ある 40 ブンデスマン撥水性能を物品に付与でき、かつ、低温貯 蔵安定性にも優れる。