Лабораторная работа №5.1.1

Экспериментальная проверка уравнения Эйнштейна для фотоэффекта и определение постоянной Планка

Автор работы: Хоружий Кирилл

От: 15 сентября 2021 г.

Цель работы

- 1. Ознакомиться с работой призменного монохроматора, произвести его градуировку.
- 2. Исследовать зависимость фототока от величины запирающего потенциала.
- 3. Определить постоянную Планка, красную границу и работу выхода материала.

Оборудование

Призменный монохроматор-спектрометр УМ-2 (380-1000 нм), фотоэлемент, покрытый $Na_2 K Sb(Cs)$, неоновая лампа, усилитель постоянного тока, линза, два вольтметра.

Основные формулы

Уравнение Эйнштейна для фотоэффекта:

$$eV_0 = \hbar\omega - W, \quad \Rightarrow \quad V_0(\omega) = \frac{\hbar\omega - W}{e}, \quad \frac{dV_0}{d\omega} = \frac{\hbar}{e}.$$
 (1)

где V_0 – потенциал запирания, W – работа выхода электрона из катода.

Примерная зависимость фототока от запирающего напряжения:

$$\sqrt{I} \sim V_0 - V,\tag{2}$$

что поможет правильно определить величину V_0 .

Экспериментальная установка

Свет от источника S с помощью линзы фокусируется на входную щель призменного монохроматора УМ-2, выделяющего узкий спектральный интервал, и попадает на катод фотоэлемента Φ Э. Фотоэлемент представля-

Рис. 1: Схема экспериментальной установки

ет собой откаченный до высокого вакуума стеклянный баллон, внутри которого расположены два электрода: фотокатод и анод. Фотоэлемент обладает спектральной чувствительностью в области длин волн от 300 до 850 нм, наибольшая чувствительность $\Phi \Theta$ в области от 400 до 500 нм.

Фототок, протекающий в ФЭ, мал, так что для его измерения используется усилитель постоянного тока. Тормозящий потенциал регулируется, измерения осуществляются с помощью цифрового вольтметра.

Измерения

Градуировка. Для начала была произведена градуировка барабана монохроматора УМ-2 по спектру неоновой лампы. Прокрутка барабана допускала приводила к погрешности измерений $\Delta n \sim 15$ у.е. Таким образом былы получены данные таблицы № 2, где n – показания на барабане УМ-2 в условных единицах.

Рис. 2: Спектр неоновой лампы, фото на выходе из УМ-2

Для удобства было построено приближение функции $\lambda(n)$ (рис. 3). Погрешность в λ была оценена, как $\lambda'(n)\Delta n$, что позволило оценить $\chi^2\approx 3.3$ для полинома второй степени, что является адекватной величиной.

$$\lambda(n) = (1.5 \pm 0.1)10^{-4}n^2 + (-4.7 \pm 0.6)10^{-1}n + (8.7 \pm 0.6)10^2,$$

что упростило дальнейшую работу с обородованием.

Рис. 3: Приближение зависимости $\lambda(n)$ полиномом

Подобная зависимость была снята на трёх различных длинах волн с максимальным разбросом по диапазону.

Рис. 4: Зависимость фототока от катодного потенциала при различных длинах волн

Погрешность данных была принята равной 2% от результата +10 мВ (визуальные флуктуации). Длины волн получены, на основе предыдущего пункта (1900 у.е. \rightarrow 539 нм, 2250 у.е. \rightarrow 598 нм, 2500 у.е. \rightarrow 663 нм). Темновой фототок проверялся при закрытой крышке УМ-2.

Обработка данных

Стоит заметить, что определение запирающий потенциал «на глаз» достаточно проблематично, и, как будет показано далее, несодержательно. Поэтому запирающий потенциал находился из экстраполяции данных, считая $\sqrt{I} \sim \sqrt{U_1} \sim U_2$ (см. рис. 5).

Рис. 5: Экстраполяция данных, для нахождения запирающего потенциала V_0

Оценка χ^2 лежит в диапазоне $\in [1,2]$, что позволяет говорить об адекватности аппроксимации прямой на выбранном диапазоне и достаточности данных.

Зная $\sqrt{U_1}=aU_2+b$, можем найти

$$V_0 = -\frac{b}{a}, \quad \Delta V_0 = -\frac{b}{a} \left(\left| \frac{\Delta a}{a} \right| + \left| \frac{\Delta b}{b} \right| \right).$$

Из диагональных элементов ковариационной матрицы были оценены погрешности a, b и, соответственно, погрешности значений для V_0 , результаты приведены в таблице \mathbb{N} 1.

Таблица 1: Определенные значения запирающего потенциала V_0

λ , HM	V_0 , мВ	ΔV_0 , мВ
539	643	23
598	429	35
663	223	17

На рис. 6 построена зависимость $V_0(\omega)$. Чтобы убедиться в несостоятельности измерений «на глаз», построим значения V_0 , измеренные на глаз.

Рис. 6: Зависимость $V_0(\omega)$

Низкое значение χ^2 намекает на несостоятельность всего трёх измерений, но, с учётом разброса по ω и тому, что прямые всё же достаточно хорошо ложатся на прямую, $\xi^2 = 0.4$ не должно быть критической проблемой.

Результаты

Итак, была приближена зависимость $V_0(\omega)$:

$$V_0 = a_{\mathrm{fin}} \omega_0 + b_{\mathrm{fin}},$$
 $a_{\mathrm{fin}} = (6.4 \pm 2) 10^{-16} \; \mathrm{B/\Gamma u};$ $b_{\mathrm{fin}} = (-1.59 \pm 0.04) 10^{-16} \; \mathrm{B}.$

Красная граница может быть оценена, как

$$\omega_{\mathrm{border}} = -rac{b_{\mathrm{fin}}}{a_{\mathrm{fin}}} = (2.5 \pm 0.1) \times 10^{15} \Gamma$$
ц.

Также можем найти \hbar , по формуле (1):

$$\hbar_{\text{measured}} = e \frac{dV_0}{d\omega} = e \cdot a_{\text{fin}} = (1.02 \pm 0.03) \times 10^{-34} \text{Дж} \cdot \text{c},$$
$$\hbar_{\text{table}} = 1.05 \times 10^{-34} \text{ Дж} \cdot \text{c},$$

что подтверждает состоятельность измерений и оценки погрешности.

Выводы

Произведена градуировка спектрометра по спектру неона. Для различных длин волн измерена зависимость фототока от катодного потенциала. Показана несостоятельность измерений запирающего потенциала на глаз.

Оценены значения красной границы и постоянной планка. Значение постоянной планка \hbar совпало в пределах погрешности с табличным:

$$h_{\text{measured}} = (1.02 \pm 0.03) \times 10^{-34} Дж \cdot c.$$

Данным методом возможно достаточно точное измерение постоянной планка.

Приложение

Таблица 2: Градуировка УМ-2

n, y.e.	2618	2586	2522	2496	2472	2422	2388	2374	2352	2326	2292	2246	2228	2196	2185	1920
$N_{\overline{0}}$	1	2	4	5	6	9	10	12	13	14	16	19	20	21	22	23
λ , hm	703	692	667	659	653	638	633	626	621	616	609	597	594	588	585	540

Таблица 3: Зависимость фототока от катодного потенциала

U_2^{I} , мВ	U_1^{I} , мВ	$U_2^{\rm II}$, мВ	$U_1^{\rm II}$, мВ	$U_2^{ m III}$, мВ	$U_1^{ m III}$, мВ
7440	550	7444	479	7444	529
7028	545	7231	475	6547	515
6531	540	6040	437	6007	511
6006	535	5399	410	5054	493
5822	530	4737	366	4412	480
5339	527	4357	337	3650	438
4596	513	4057	326	3067	336
3542	482	3803	300	2804	311
3332	471	3569	272	2568	296
3102	460	3095	220	2028	236
2772	436	2642	164	1500	136
2621	416	2204	135	1000	75
2392	383	1421	75	545	39
2148	335	1081	58	-104	3
1991	302	740	40	-157	3
1650	220	8	11	-208	1
1434	180	-50	10	-212	1
1206	148	-109	8	-224	1
1075	125	-130	9	-228	1
777	78	-160	8	-234	0
575	54	-199	8	-245	0
329	40	-219	7		
144	22	-238	7		
116	18	-257	6		
66	14	-282	6		
8	8	-311	5		
-8	6	-340	5		
-34	5	-366	5		
-50	4	-388	5		
-89	2	-394	5		
-106	2	-406	4		
-124	2				
-146	1				
-157	0				