Exam M2 Datascience 2019 : Convex analysis and advanced optimization

Course book and written notes are authorized. All electronic devices are prohibited. Questions can be answered either in French or in English. Duration: 3h00

The sets \mathcal{X} and \mathcal{Y} respectively represent the Euclidean spaces \mathbb{R}^d and \mathbb{R}^m respectively, where d, m are positive integers. The set $\Gamma_0(\mathcal{X})$ represents the set of proper, lower semi-continuous and convex functions on $\mathcal{X} \to (-\infty, +\infty]$. If $t \in \mathbb{R}$, then $\lfloor t \rfloor$ is the largest integer less or equal to t and $\lceil t \rceil$ is the smallest integer greater or equal to t.

If $\| \cdot \|$ is an arbitrary norm (not necessarily the Euclidean norm), the corresponding dual norm is the norm

$$||y||_* = \sup_{x \in \mathcal{X}: ||x|| \le 1} \langle x, y \rangle.$$

In particular, for every x, y, it holds that $\langle x, y \rangle \leq ||x|| \, ||y||_*$.

Exercise 1. Let C be a non-empty compact convex subset of \mathcal{X} . A regularizer on C is a mapping $h: \mathcal{X} \to (-\infty, +\infty]$ such that dom(h) = C and the restriction of h to C is strictly convex and continuous. The aim of the exercise is to show the following theorem:

Theorem 1. If h is a regularizer on C, then h^* is differentiable and for every $y \in \mathcal{X}$, $\nabla h^*(y) = \arg\max_{x \in C} (\langle x, y \rangle - h(x))$.

1. Prove that for every $y \in \mathcal{X}$, there exists a unique point $x_y \in C$ such that

$$h^*(y) = \langle x_y, y \rangle - h(x_y).$$

2. Show that $\partial h^*(y) = \{x_y\}.$

Exercise 2. Let h be a regularizer on a nonempty compact convex set $C \subset \mathcal{X}$ (see previous exercise). We set $h_{\min} = \inf\{h(x) : x \in C\}$ and $h_{\max} = \sup\{h(x) : x \in C\}$. Consider an arbitrary locally integrable function $t \mapsto u(t)$ defined on $\mathbb{R}_+ \to \mathcal{X}$, and a positive, nonincreasing, piecewise continuous function $t \mapsto \eta(t)$. Consider the function defined for every $t \geq 0$ by:

$$x(t) = \nabla h^* \left(\eta(t) \int_0^t u(s) ds \right) \,.$$

The aim of this exercise is to prove the following Lemma.

Lemma 1. For every $x \in C$,

$$\int_0^t \langle u(s), x \rangle ds - \int_0^t \langle u(s), x(s) \rangle ds \le \frac{h_{\max} - h_{\min}}{\eta(t)}.$$

In the following, we simplify the problem by assuming that $t \mapsto \eta(t)$ is **continuously** differentiable, although this assumption is in fact not needed.

1. We set $y(t) = \eta(t) \int_0^t u(s) ds$. Show that for every $x \in C$, one has:

$$h^*(y(t)) + h(x) \ge \eta_t \int_0^t \langle u(s), x \rangle ds$$
.

- 2. Show that $h^*(y(t)) + h(x(t)) = \eta_t \int_0^t \langle u(s), x(t) \rangle ds$.
- 3. Using the chain rule of derivation, prove that :

$$\frac{d}{dt}\frac{h^*(y(t))}{\eta(t)} = \langle u(t), x(t) \rangle + \frac{\eta'(t)}{\eta(t)^2}h(x(t)),$$

where $\eta'(t)$ is the derivative of $\eta(t)$.

4. Prove that:

$$\frac{h^*(y(t))}{\eta(t)} - \frac{h^*(0)}{\eta_0} \leq \int_0^t \langle u(s), x(s) \rangle ds - \frac{h_{\min}}{\eta(t)} + \frac{h_{\min}}{\eta_0} \,.$$

5. Deduce that:

$$\frac{h^*(y(t))}{\eta(t)} \le \int_0^t \langle u(s), x(s) \rangle ds - \frac{h_{\min}}{\eta(t)}.$$

6. Prove Lemma 1.

Exercise 3. Let h be a regularizer on the non-empty compact convex set C. We assume that ∇h^* is $\frac{1}{n}$ -Lipschitz continuous w.r.t. some arbitrary norm $\|\cdot\|$, which reads :

$$\forall x, y \in \mathcal{X}, \ \|\nabla h^*(x) - \nabla h^*(y)\| \le \frac{1}{\mu} \|x - y\|_*$$

where $\| \cdot \|_*$ is the dual norm. An algorithm called *Follow the Regularized Leader* (FtRL) works as follows. At every iteration $n \in \mathbb{N}^*$, the *environment* generates a vector $u_n \in \mathcal{X}$. Observing the past sequence of observations u_1, \ldots, u_n , the *agent* generates an action $x_{n+1} \in C$ given the following rule :

$$U_n = U_{n-1} + u_n$$
$$x_{n+1} = \nabla h^*(\eta_n U_n),$$

where $(\eta_n)_{n\in\mathbb{N}^*}$ is a sequence of positive and non-increasing step sizes. By definition, the reward obtained by the agent at time n is $\langle u_n, x_n \rangle$. Hence the cumulated reward up to time n is $\sum_{k=1}^n \langle u_k, x_k \rangle$. We compare this to a fixed strategy: if an agent had played the same fixed action $x \in C$ at each iteration n, the cumulated reward would have been $\sum_{k=1}^n \langle u_k, x \rangle$. The regret of the algorithm with respect to $x \in C$ is defined by:

$$\operatorname{Reg}_n(x) = \sum_{k=1}^n \langle u_k, x \rangle - \sum_{k=1}^n \langle u_k, x_k \rangle.$$

The aim is to bound the regret uniformly in x. To that end, we define the following piecewise constant mappings on \mathbb{R}_+ by :

$$\bar{u}(t) = u_{\lceil t \rceil}$$
$$\bar{\eta}(t) = \eta_{|t|}$$

where we set $\eta_0 := \eta_1$. We define $y(t) = \bar{\eta}(t) \int_0^t \bar{u}(s) ds$ and finally, $\bar{x}(t) = \nabla h^*(y(t))$.

- 1. What does $\sup_{x \in C} \operatorname{Reg}_n(x)$ represent, and why are we trying to upper-bound this quantity? (Short answer in 1 or 2 lines)
- 2. Prove that for every $k \in \mathbb{N}^*$ and every $t \in (k-1, k)$,

$$|\langle \bar{u}(t), \bar{x}(t) \rangle - \langle u_k, x_k \rangle| \le \frac{1}{\mu} ||u_k||_* ||y(t) - y_{k-1}||_*.$$

Hint: Note that for every $k \ge 1$, $x_k = \bar{x}(k-1)$.

3. Prove that for every $k \in \mathbb{N}^*$ and every $t \in (k-1,k)$,

$$||y(t) - y_{k-1}||_* \le \eta_{k-1} ||u_k||_* (t - k + 1).$$

4. Prove that for every $n \in \mathbb{N}^*$,

$$\left| \int_0^n \langle \bar{u}(t), \bar{x}(t) \rangle dt - \sum_{k=1}^n \langle u_k, x_k \rangle \right| \le \sum_{k=1}^n \beta_k \|u_k\|_*^2,$$

where β_k is a constant to be expressed as a function of μ and η_{k-1} .

- 5. Using Lemma 1, find a relevant bound \mathcal{B}_n depending on μ and the sequences (η_1, \ldots, η_n) , (u_1, \ldots, u_n) , h_{\min} , h_{\max} , such that $\text{Reg}_n(x) \leq \mathcal{B}_n$ for every $x \in C$ and every $n \in \mathbb{N}^*$.
- 6. Assume that $||u_k||_* \le 1$ for every k. Assume that the agent uses a constant step $\eta_k = \eta$ for all k. If the number n of iteration is known in advance, what value of η would you suggest to choose, in order to ensure a low regret after n iterations? Express η as a function of n, h_{\min} , h_{\max} and μ .

Exercise 4. Let $f: \mathbb{R} \to (-\infty, +\infty]$ be the function defined by

$$f(x) = \begin{cases} x \ln x & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ +\infty & \text{otherwise.} \end{cases}$$

- 1. Prove that $f \in \Gamma_0(\mathbb{R})$.
- 2. Compute $\partial f(x)$ for every $x \in \mathbb{R}$.

Exercise 5. Define $\Delta = \left\{ x \in \mathcal{X} : \sum_{i=1}^{d} x_i = 1 \text{ and } \forall i, x_i \geq 0 \right\}$ and set

$$h(x) = \begin{cases} \sum_{i=1}^{d} x_i \ln(x_i) & \text{if } x \in \Delta \\ +\infty & \text{otherwise} \end{cases}$$

with the convention that $(0 \times \ln 0) = 0$. For a fixed $y \in \mathcal{X}$, we consider the constrained optimization problem

$$\min_{x \in \Delta} h(x) - \langle x, y \rangle$$

- 1. How equality constraints has this problem? How many inequality constraints?
- 2. Write the Lagrangian function.
- 3. By solving the KKT conditions, provide the primal solution.
- 4. Using Theorem 1, compute ∇h^* and provide the explicit expression of the FtRL algorithm.

Exercise 6. Let C be a non-empty compact convex set of \mathcal{X} . We define

$$h(x) = \begin{cases} ||x||^2/2 & \text{if } x \in C \\ +\infty & \text{otherwise,} \end{cases}$$

where $\| \cdot \|$ is the Euclidean norm. Let $(f_n)_{n \in \mathbb{N}^*}$ be a sequence of convex functions on $\mathcal{X} \to \mathbb{R}$. We consider the sequence (x_n) generated by the FtRL algorithm. We assume that for each $n \in \mathbb{N}^*$,

$$u_n \in \partial f_n(x_n)$$
.

- 1. Using Theorem 1, compute ∇h^* and provide the explicit expression of the sequence (x_n) generated by the FtRL algorithm.
- 2. Find which of the following inequalities holds true for every $x \in C$:

$$\operatorname{Reg}_{n}(x) \leq \sum_{k=1}^{n} f_{k}(x_{k}) - \sum_{k=1}^{n} f_{k}(x)$$
or
$$\operatorname{Reg}_{n}(x) \geq \sum_{k=1}^{n} f_{k}(x_{k}) - \sum_{k=1}^{n} f_{k}(x).$$

Exercise 7. We consider the elastic net regression problem defined as

$$\min_{x \in \mathcal{X}} \frac{1}{2} \|Ax - b\|_{2}^{2} + \lambda_{1} \|x\|_{1} + \frac{\lambda_{2}}{2} \|x\|_{2}^{2}$$
(7.1)

where $A: \mathcal{X} \to \mathcal{Y}$ is a linear operator, $b \in \mathcal{Y}$, $\lambda_1 > 0$ and $\lambda_2 > 0$.

- 1. Define $g: x \mapsto \lambda_1 \|x\|_1 + \frac{\lambda_2}{2} \|x\|_2^2$. Show that g is convex and compute its Fenchel conjugate.
- 2. Give a dual problem to the elastic net regression problem (7.1).
- 3. Propose an algorithm for the resolution of (7.1). What are the advantages and draw-back of your solution?