PATENT COOPERATION TREATY

From the INTERN

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT

(PCT Administrative Instructions, Section 411)

METSUGI, Makoto Nishimura Bldg., 6-5, Tanimachi 1chome, Chuo-ku, Osaka-shi, Osaka 5400012 Japan

Date of mailing (day/month/year) 31 March 2004 (31.03.2004)	
Applicant's or agent's file reference F-532PCT	IMPORTANT NOTIFICATION
International application No. PCT/JP2004/000358	International filing date (day/month/year) 19 January 2004 (19.01.2004)
International publication date (day/month/year) Not yet published	Priority date (day/month/year) 03 February 2003 (03.02.2003)

SANYO ELECTRIC CO., LTD. et al

- By means of this Form, which replaces any previously issued notification concerning submission or transmittal of priority documents, the applicant is hereby notified of the date of receipt by the International Bureau of the priority document(s) relating to all earlier application(s) whose priority is claimed. Unless otherwise indicated by the letters "NR", in the right-hand column or by an asterisk appearing next to a date of receipt, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- (If applicable) The letters "NR" appearing in the right-hand column denote a priority document which, on the date of mailing of this Form, had not yet been received by the International Bureau under Rule 17.1(a) or (b). Where, under Rule 17.1(a), the priority document must be submitted by the applicant to the receiving Office or the International Bureau, but the applicant fails to submit the priority document within the applicable time limit under that Rule, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- (If applicable) An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b) (the priority document was received after the time limit prescribed in Rule 17.1(a) or the request to prepare and transmit the priority document was submitted to the receiving Office after the applicable time limit under Rule 17.1(b)). Even though the priority document was not furnished in compliance with Rule 17.1(a) or (b), the International Bureau will nevertheless transmit a copy of the document to the designated Offices, for their consideration. In case such a copy is not accepted by the designated Office as priority document, Rule 17.1(c) provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority date	Priority application No.	Country or regional Office Date of receipt of PCT receiving Office of priority-document
03 Febr 2003 (03.02.2003)	2003-025761	JP 05 Marc 2004 (05.03.2004)
11 July 2003 (11.07.2003)	2003-195652	JP 05 Marc 2004 (05.03.2004)
21 Nove 2003 (21.11.2003)	2003-392395,	JP 05 Marc 2004 (05.03.2004)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

Virendra SINGH GAUTAM

Facsimile No. (41-22) 338,70,10

Telephone No. (41-22) 338 8036

Rec'd PET/PTO 02 AUG 2008

101244510

日本国特許庁 JAPAN PATENT OFFICE

19. 1. 2004

RECEIVED 05 MAR 2884

PCT

WIPO

报文

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 2月 3日

出 願 番 号 Application Number:

特願2003-025761

[ST. 10/C]:

[JP2003-025761]

出 願 人
Applicant(s):

三洋電機株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年 2月20日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願

【整理番号】 LCA1020067

【提出日】 平成15年 2月 3日

【あて先】 特許庁長官殿

【国際特許分類】 H01M 10/40

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会

社内

【氏名】 高橋 康文

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会

社内

【氏名】 藤本 洋行

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会

社内

【氏名】 木下 晃

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会

社内

【氏名】 藤原 豊樹

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会

社内

【氏名】 戸出 晋吾

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会

社内

【氏名】 中根 育朗

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会

社内

【氏名】

藤谷 伸

【特許出願人】

【識別番号】

000001889

【氏名又は名称】 三洋電機株式会社

【代理人】

【識別番号】

100095382

【弁理士】

【氏名又は名称】 目次 誠

【選任した代理人】

【識別番号】

100086597

【弁理士】

【氏名又は名称】 宮▼崎▲ 主税

【手数料の表示】

【予納台帳番号】 026402

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

要

【物件名】

要約書 1

【プルーフの要否】

【発明の名称】 非水電解質二次電池

【特許請求の範囲】

【請求項1】 正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備える非水電解質二次電池において、

前記正極活物質が、LiとCoを含有し、層状構造を有するリチウム遷移金属酸化物であって、周期律表IVA族元素とIIA族元素をさらに含有することを特徴とする非水電解質二次電池。

【請求項2】 前記IVA族元素がZrであり、前記IIA族元素がMgであることを特徴とする請求項1に記載の非水電解質二次電池。

【請求項3】 前記IVA族元素と前記IIA族元素が実質的に等モル量含まれていることを特徴とする請求項1または2に記載の非水電解質二次電池。

【請求項4】 前記正極活物質が、コバルト酸リチウムに前記IVA族元素と前記IIA族元素を含有させたものであることを特徴とする請求項1~3のいずれか1項に記載の非水電解質二次電池。

【請求項5】 前記正極活物質における前記IVA族元素と前記IIA族元素の合計の含有量が、これらの元素と、リチウム遷移金属酸化物中の遷移金属との合計に対して3モル%以下であることを特徴とする請求項1~4のいずれか1項に記載の非水電解質二次電池。

【請求項6】 前記正極活物質の比表面積が1.0 m²/g以下であることを特徴とする請求項1~5のいずれか1項に記載の非水電解質二次電池。

【請求項7】 充電終止電圧を4.4 Vとした場合の正極と負極の充電容量 比が1.0~1.2 となるように前記正極活物質及び金属リチウム以外の負極活 物質が含まれていることを特徴とする請求項1~6 のいずれか1項に記載の非水 電解質二次電池。

【請求項8】 前記非水電解質に、溶媒として環状カーボネート及び鎖状カーボネートが含まれており、溶媒における環状カーボネートの含有割合が10~30体積%であることを特徴とする請求項1~7のいずれか1項に記載の非水電解質二次電池。

【請求項10】 正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備え、前記正極活物質が、LiとCoを含有し、層状構造を有するリチウム遷移金属酸化物であって、周期律表IVA族元素とIIA族元素をさらに含有する化合物である非水電解質二次電池を、充電終止電圧4.3 V以上で充電することを特徴とする非水電解質二次電池の使用方法。

【請求項11】 前記IVA族元素がZrであり、前記IIA族元素がMgであることを特徴とする請求項10に記載の非水電解質二次電池の使用方法。

【請求項12】 前記IVA族元素と前記IIA族元素が実質的に等モル量含まれていることを特徴とする請求項10または11に記載の非水電解質の使用方法

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、非水電解質二次電池及びその使用方法に関するものである。

[0002]

【従来の技術】

近年、金属リチウム、もしくはリチウムイオンを吸蔵・放出し得る合金、または炭素材料などを負極活物質とし、化学式LiMO2(Mは遷移金属)で表されるリチウム遷移金属複合酸化物を正極活物質とした非水電解質二次電池が、高エネルギー密度を有する電池として注目されている。

[0003]

上記リチウム遷移金属複合酸化物の代表的な例としては、コバルト酸リチウム (LiCoO₂)が挙げられ、これは非水電解質二次電池の正極活物質として既に実用化されている。しかしながら、上記のコバルト酸リチウムを単独で用いた場合には、充放電サイクルに伴う容量低下が認められた。

[0004]

[0005]

【特許文献1】

特許第2855877号公報

[0006]

【発明が解決しようとする課題】

コバルト酸リチウムなどのリチウム遷移金属酸化物を正極活物質として用い、 炭素材料などを負極活物質として用いた非水電解質二次電池においては、一般に 充電終止電圧を4.1~4.2Vとしている。この場合、正極活物質は、その理 論容量に対して50~60%しか利用されていない。従って、充電終止電圧をよ り高くすれば、正極の容量(利用率)を向上させることができ、容量及びエネル ギー密度を高めることができる。しかしながら、電池の充電終止電圧を高めて、 正極の充電深度を深くすると、正極活物質の構造劣化及び正極表面における電解 液の分解等が生じやすくなる。このため、充放電サイクルによる劣化は、従来の 4.1~4.2 Vを充電終止電圧とする場合よりも顕著になった。

[0007]

本発明の目的は、充放電サイクル特性の低下を伴うことなく、充電終止電圧を 4. 3 V以上にすることができ、これによって充放電容量を高めることができる 非水電解質二次電池及びその使用方法を提供することにある。

[0008]

【課題を解決するための手段】

本発明は、正極活物質を含む正極と、負極活物質を負極と、非水電解質とを備 える非水電解質二次電池であり、正極活物質が、LiとCoを含有し、層状構造 を有するリチウム遷移金属酸化物であって、周期律表IVA族元素とIIA族元素を さらに含有することを特徴としている。

[0009]

本発明に従い上記正極活物質を用いることにより、充電終止電圧を4.3 V以

[0010]

従来のコバルト酸リチウムなどを正極活物質として用い、充電終止電圧を4.3 V以上に高めた場合に、充放電サイクル特性が低下する理由について、現時点では明らかではない。しかしながら、電池が充電されて正極活物質が酸化された際に、酸化状態が高くなった遷移金属元素(Co)が活物質表面で触媒的に作用して電解液の分解を引き起こし、また正極活物質の結晶構造の破壊を引き起こすものと推測される。本発明に従い、正極活物質に、周期律表IVA族元素とIIA族元素をさらに含有することにより、遷移金属元素の酸化状態が変化し、電解液の分解あるいは正極活物質の結晶構造の破壊が低減されるものと推測される。

[0011]

[0012]

本発明において、LiとCoを含有し、層状構造を有するリチウム遷移金属酸化物としては、コバルト酸リチウムが好ましい。従って、本発明において用いる正極活物質としては、コバルト酸リチウムに周期律表IVA族元素とIIA族元素を含有させたものが好ましく用いられる。

[0013]

また、本発明において、正極活物質中の周期律表IVA族元素とIIA族元素の合計の含有量は、これらの元素と、リチウム遷移金属酸化物中の遷移金属との合計に対して、3モル%以下であることが好ましい。IVA族元素及びIIA族元素が多くなりすぎると、充放電特性が低下する場合がある。また、IVA族元素とIIA族元素の合計の含有量の下限値としては、0.5モル%以上であることが好ましい。これらの元素の合計の含有量が少なくなりすぎると、充放電サイクル特性の低下を伴うことなく、充電終止電圧を4.3 V以上にすることができるという本発

[0014]

本発明における正極活物質が、コバルト酸リチウムにIVA族元素とIIA族元素を含有させたものである場合、本発明の正極活物質として、例えば、一般式Lia $M_xN_yCo_zO_2$ (0 < a ≤ 1 . 1, x>0, y>0, 0 . 9 7 $\leq z \leq 1$. 0, 0 < $x+y\leq 0$. 0 3)で表される化合物を挙げることができる。ここで、IVA族元素とIIA族元素の合計の含有量は、3 モル%以下とされている。上述のように、この含有量が好ましい範囲である0 . 5 ~ 3 モル%である場合、x+yは、0 . 0 0 5 $\leq x+y\leq 0$. 0 3 の式を満足する。

[0015]

また、本発明においては、正極活物質中に、IVA族元素とIIA族元素が実質的に等モル量含まれていることが好ましい。実質的に等モル量とは、上記の一般式において、x及びyが、以下の式を満足するという意味である。

- 0. $4.5 \le x / (x + y) \le 0.55$
- 0. $4.5 \le y / (x + y) \le 0.55$

[0016]

すなわち、x/yは、以下の式を満足する。

 $(0. 45/0. 55=) 0. 82 \le x/y \le 1. 2 (=0. 55/0. 45)$

[0017]

IVA族元素とIIA族元素が実質的に等モル量含まれることにより、本発明の効果をより十分に得ることができる。

[0018]

本発明において正極活物質の比表面積は、 $1.0 \, \mathrm{m}^2/\mathrm{g}$ 以下であることが好ましい。正極活物質の比表面積が $1.0 \, \mathrm{m}^2/\mathrm{g}$ 以下であることにより、電解液と接触する面積が少なくなるので、電解液の分解を、さらに低減することができる。

[0019]

本発明において、充電終止電圧を4.4 Vとした場合の正極と負極の対向する

[0020]

本発明において用いる非水電解質の溶媒としては、従来よりリチウム二次電池の電解質の溶媒として用いられているものを用いることができる。これらの中でも、環状カーボネートと鎖状カーボネートの混合溶媒が特に好ましく用いられる。環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどが挙げられる。鎖状カーボネートとしては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどが挙げられる。

[0021]

一般に、環状カーボネートは、高い電位において分解を生じやすいので、4.3 V以上の高い電圧で電池を充電する場合、溶媒中の環状カーボネートの含有割合は10~30体積%の範囲内であることが好ましい。負極活物質として黒鉛材料を用いる場合、環状カーボネートとしてはエチレンカーボネート(EC)を用いることが好ましい。しかしながら、エチレンカーボネートは、高い電位で分解を生じやすいので、高い電位における分解を抑制するためには、エチレンカーボネートの代わりに、より酸化分解しにくいプロピレンカーボネート及び/またはブチレンカーボネートを用いてもよい。また、エチレンカーボネートなどの環状カーボネートの混合割合を低くしてもよい。

[0022]

本発明における非水電解質の溶質としては、リチウム二次電池において一般に溶質として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、 $LiPF_6$ 、 $LiBF_4$ 、 $LiCF_3SO_3$ 、 $LiN(CF_3SO_2)_2$ 、 $LiN(CF_3SO_2)(C_4F_9SO_2)$ 、 $LiC(CF_3SO_2)_3$ 、 $LiC(C_2F_5SO_2)_3$ 、 $LiC(C_2F_5SO_2)_3$ 、 $LiAsF_6$ 、 $LiClO_4$ 、 $Li_2B_{10}Cl_{10}$ 、

[0023]

また、本発明においては、正極に導電剤を含有させることができる。導電剤として炭素材料が含有される場合、該炭素材料の含有量は、正極活物質と導電剤と結着剤の合計に対して5重量%以下であることが好ましい。これは、特に高い充電終止電圧で充電する際、炭素材料の表面上で電解液の分解反応がしやすいからである。

[0024]

本発明の非水電解質二次電池の使用方法は、上記本発明の非水電解質二次電池 を使用する方法であり、充電終止電圧4.3 V以上で充電することを特徴として いる。

[0025]

すなわち、本発明の使用方法は、正極電解質を含む正極と、負極電解質を含む 負極と、非水電解質とを備え、正極活物質がLiとCoを含有し、層状構造を有 するリチウム遷移金属酸化物であって、周期律表IVA族元素とIIA族元素をさら に含有する化合物である非水電解質二次電池を、充電終止電圧4.3 V以上で充 電することを特徴としている。

[0026]

本発明の非水電解質二次電池は、充電終止電圧 4.3 V以上で充電しても、充 放電サイクル特性の低下を伴うことがない。従って、本発明の使用方法に従うこ とにより、良好な充放電サイクル特性で、充電終止電圧を 4.3 V以上にして充 放電を行うことができる。従って、従来よりも、高い充放電容量を得ることがで きる。

[0027]

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。

[0028]

<実験1>

(実施例1)

〔正極活物質の作製〕

Li₂CO₃、Co₃O₄、ZrO₂及びMgOを、Li:Co:Zr:Mgのモル比が1:0.99:0.005:0.005となるように石川式らいかい乳鉢にて混合した後、空気雰囲気中にて850℃で24時間熱処理し、その後粉砕することにより、平均粒子径が13.9 μ m、BET比表面積が0.4m²/gであるリチウム遷移金属酸化物を得た。

[0029]

〔正極の作製〕

以上のようにして得た正極活物質と、導電剤としての炭素と、結着剤としてのポリフッ化ビニリデンとを、重量比で90:5:5となるように、Nーメチルー2ーピロリドンに添加して混練し、正極スラリーを作製した。作製したスラリーを集電体としてのアルミニウム箔の上に塗布した後乾燥し、その後圧延ロールを用いて圧延し、集電タブを取り付けて正極を作製した。

[0030]

〔負極の作製〕

増粘剤であるカルボキシメチルセルロースを水に溶かした水溶液中に、負極活物質としての人造黒鉛と、結着剤としてのスチレンーブタジエンゴムとを、負極活物質:結着剤:増粘剤の重量比が95:3:2となるように添加した後混練し、負極スラリーを作製した。作製したスラリーを集電体としての銅箔の上に塗布した後、乾燥し、その後圧延ローラーを用いて圧延し、集電タブを取り付けて負極を作製した。

[0031]

エチレンカーポネート (EC) とジエチルカーボネート (DEC) とを体積比 3:7となるように混合した溶媒に、ヘキサフルオロリン酸リチウム (LiPF6) を、その濃度が1モル/リットルとなるように溶解して、電解液を作製した。

[0032]

[電池の作製]

上記の正極及び負極を、セパレータを介して対向するように配置し、これを巻き取って電極の巻取り体を作製した。アルゴン雰囲気下のグローブボックス中で、この電極の巻取り体を電解液とともに、アルミニウムラミネートからなる外層体に封入して、電池規格サイズとして、厚み3.6 mm×幅3.5 cm×長さ6.2 cmの非水電解質二次電池A1を作製した。

[0033]

なお、使用した正極活物質及び負極活物質の量は、充電終止電圧を4.4 V とした場合の正極と負極の充電容量比(負極の充電容量/正極の充電容量)が、1.15となるようにしている。なお、この正極と負極の充電容量比は、以下の実施例及び比較例においても同様である。

[0034]

(実施例2)

正極活物質の作製において、 Li_2CO_3 、 Co_3O_4 、 ZrO_2 、及びMgOを、Li:Co:Zr:Mgのモル比が1:0.99:0.0075:0.0025となるように混合したこと以外は、実施例1と同様にして正極活物質を作製し、この正極活物質を用いて非水電解質二次電池A2を作製した。なお、得られた正極活物質の平均粒子径は 14.0μ mであり、BET比表面積は $0.39m^2/g$ であった。

[0035]

(比較例1)

正極活物質の作製において、 Li_2CO_3 と Co_3O_4 を、Li:Coのモル比が 1:1となるようにこれらを混合したこと以外は、実施例 1と同様にして正極活

[0036]

(比較例2)

正極活物質の作製において、 Li_2CO_3 、 Co_3O_4 、及び ZrO_2 を、Li:Co:Zrのモル比が1:0.99:0.01となるように混合したこと以外は、実施例1と同様にして正極活物質を作製し、この正極活物質を用いて非水電解質二次電池X2を作製した。なお、得られた正極活物質の平均粒子径は13.8μ mであり、BET比表面積は0.43 m 2 /gであった。

[0037]

(比較例3)

正極活物質の作製において、 Li_2CO_3 、 Co_3O_4 、及びMgOを、Li:Co:MgOモル比が1:0.99:0.01となるように混合したこと以外は、実施例1と同様にして正極活物質を作製し、この正極活物質を用いて非水電解質二次電池X3を作製した。得られた正極活物質の平均粒子径は 11.3μ mであり、BET比表面積は $0.28m^2/g$ であった。

[0038]

実施例1及び2並びに比較例1~3の各電池における正極活物質中のZrの含有量及びMgの含有量、正極活物質のBET比表面積、及び平均粒子径を表1に示す。

[0039]

【表1】

	電池	正極活物質中 の 2r の含有量 (モル%)	正極活物質中 の Mg の含有量 (モル%)	BET 比表面積 (m²/g)	平均粒子径 (μm)
実施例1	A 1	0.5	0.5	0.40	13.9
実施例2	A 2	0.75	0.25	0.39	14 0
比較例1	X 1	0	0	0.33	111
比較例2	X 2	1. 0	0	0.43	13.8
比較例3	Х3	0	1. 0	0. 28	11.3

[サイクル特性の評価]

上記のようにして作製した実施例 $1 \sim 2$ 及び比較例 $1 \sim 3$ の各電池について、 充放電サイクル特性を以下のようにして評価した。

[0041]

各電池を、650 mAの定電流で、電圧が4.4 Vに達するまで充電し、さらに4.4 Vの定電圧で電流値が32 mAになるまで充電した後、650 mAの定電流で、電圧が2.75 Vに達するまで放電することにより、電池の充放電容量(mAh)を測定した。

[0042]

上記のようにして充放電を行い、100サイクル後の容量維持率及び250サイクル後の容量維持率を測定した。なお、100サイクル後の容量維持率及び250サイクル後の容量維持率は、以下のようにして計算した。

[0043]

100 サイクル後の容量維持率(%)= (100 サイクル目の放電容量)/ (1サイクル目の放電容量)×100

250サイクル後の容量維持率(%) = (250サイクル目の放電容量)/(1サイクル目の放電容量)×100

比較例1及び3については、充放電サイクルによる容量劣化が著しいため、100サイクルで試験を中止した。

[0044]

各電池の100サイクル後の容量維持率及び250サイクル後の容量維持率を表2に示す。また、図1には、各電池の各サイクルにおける容量維持率を示す。

[0045]

【表2】

	電池	正極活物質中 の 2r の含有量 (モル%)	正極活物質中 の Mg の含有量 (モル%)	100 サイクル後の 容量維持率 (%)	250 サイクル後の 容量維持率 (%)
実施例1	A 1	0.5	0.5	95.9	94.0
実施例2	A 2	0.75	0.25	93.0	65.7
比較例1	X 1	0	0	32.5	
比較例2	X 2	1. 0	0	92.4	40.5
比較例3	Х3	0	1. 0	28.5	-

[0046]

表2及び図1から明らかなように、本発明に従う電池A1及びA2においては、比較の電池X1~X3に比べ、容量維持率が高くなっており、本発明に従うことにより優れた充放電サイクル特性が得られることがわかる。また、電池A1と電池A2の比較から、ZrとMgを実質的に等しくなるように含有させることにより、充放電特性がより良好になることがわかる。

[0047]

<実験2>

実験1において作製した電池A1(実施例1)、電池X1(比較例1)、及び電池X2(比較例2)の各電池について、充電終止電圧を4.4 Vに代えて、4.2 Vとして上記実験1と同様に充放電サイクル特性を評価した。評価結果を表3に示す。

[0048]

【表3】

	電池	正極活物質中 の Zr の含有量 (モル%)	正極活物質中 のMgの含有量 (モル%)	100 サイクル後の 容量維持率 (%)
実施例1	A 1	0.5	0.5	96.6
比較例1	X 1	0	0	95.1
比較例2	X 2	1. 0	0	96.1

[0049]

表3に示す結果から明らかなように、本実験では、充電終止電圧を4.2 Vとしているため、充電終止電圧を4.4 Vとした実験1の場合に比べ、本発明に従

[0050]

【発明の効果】

本発明によれば、充放電サイクル特性の低下を伴うことなく、充電終止電圧を 4.3 V以上にすることができ、これによって充放電容量を高めることができる

【図面の簡単な説明】

【図1】

本発明に従う電池の充放電サイクル特性を示す図。

【書類名】

図面

【図1】

【書類名】

要約書

【要約】

【課題】 正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備える非水電解質二次電池において、充放電サイクル特性の低下を伴うことなく、充電終止電圧を4.3 V以上にすることができ、これによって充放電容量を高めることができる非水電解質二次電池を得る。

【解決手段】 正極活物質が、LiとCoを含有し、層状構造を有するリチウム遷移金属酸化物であって、周期律表IVA族元素とIIA族元素をさらに含有することを特徴としている。

【選択図】 図1

♥ 特願2003-025761

出願人履歴情報

識別番号

[000001889]

1. 変更年月日 [変更理由]

1993年10月20日

(多类性田)

住所変更

住 所

大阪府守口市京阪本通2丁目5番5号

氏 名 三洋電機株式会社