sombra de Agujeros Negros

Gustavo Gutierrez-Cano

MEXICOPAS 2023

Primera evidencia directa

R. Abbott, et. al. (2015)

Mas evidencias...

Las primeras simulaciones

J. Luminet, (1979)

0. James, et. al. (2015)

Event Horizon Telescope

Resolución: 25 µas.

Observaciones: 5, 6, 10 y 11 de abril de 2017.

Credit: NRAO/AUI/NSF

Folografia de M87*. Abril 10, 2019

Masa: 6.5 miles de millones de masas solares.

Radio de la sombra: 19 mil millones de kilómetros.

Distancia: 53 millones de años luz.

Folografia de Sgr Ax. Mayo 12, 2022

Masa: 4.15 millones de masas solares.

Radio de la sombra: 12.3 millones de kilómetros.

Distancia: 25900 años luz.

iqué es la sombra?

Credit: Nicolle R./NSF

icómo se determina la sombra?

Solución de Agujero Negro Parametro de Impacto

Mov. de Particulas de Prueba (Fotones) Coordenadas Celestiales

Movimiento de Partículas de Prueba

Consideremos una solución estática con simetría esférica

$$ds^{2} = -\frac{K(r)}{r^{2}}dt^{2} + \frac{r^{2}}{K(r)}dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}$$

Plano ecuatorial $\theta=\pi/2$, planteamos el lagrangiano de la partícula de prueba $\mathcal{L}=\frac{1}{2}g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu},$

$$\dot{t} = \mathcal{E}\frac{r^2}{K(r)}, \qquad \dot{\phi} = \frac{l}{r^2}$$

La ecuación geodésica se escribe como

$$\dot{r}^2 = \mathscr{E}^2 - \left(\frac{l^2}{r^2} - \delta\right) \frac{K(r)}{r^2} = \mathscr{E}^2 - V_{eff}^2(r)$$

Polencial Efectivo de fotones, $\delta = 0$

$$V_{eff}^2(r) = \frac{l^2}{r^4}K(r)$$

Parámetro de Impacto

El un punto de retorno se tienen las condiciones

$$\dot{r}^2 = \mathcal{E}^2 - \frac{l^2}{r_c^4} K(r_c) = 0,$$

$$b_c^2 = \frac{l^2}{8^2} = \frac{r^4}{K(r_c)}.$$

Se obtiene una sección eficaz $\sigma=\pi b_c^2$.

Radio de la folo-esfera

$$\frac{d}{dr}V_{eff}^2(r_c) = 0$$

G. S. Bisnovatyi-Kogan y O. Y. Tsupko (2017)

Coordenadas Celestiales

$$\alpha = \lim_{r_0 \to \infty} \left(-r_0^2 \sin \theta_0 \frac{d\phi}{dr} \bigg|_{\theta = \theta_0} \right), \text{ Observer}$$

$$\beta = \lim_{r_0 \to \infty} \left(r_0^2 \frac{d\theta}{dr} \Big|_{\theta = \theta_0} \right).$$

A. Das, et. al. (2022)

Forma de la sombra

Se encuentra la siguiente relación

$$\alpha^2 + \beta^2 = R_s^2 = b_c^2.$$

G. S. Bisnovatyi-Dogan, et. al. (2019)

helps://colab.research.google.com

helps://github.com/GurssGC/MEXICOPAS2023