National University of Computer and Emerging Sciences, Lahore Campus

WAL UNIVE
STUMAL UNIVERSITY
S EMERGINES

Course: Program: **Duration:** Date Section:

DLD Lab **BS** (Computer Science) 50 minutes

26-03-18 D2 (A)

Course Code: **EL227** Semester: **Total Marks:** 50 Weight

Pages:

Spring 2018

25% 2

Mid Term Exam

NAME:	 Roll #:

READ THE INSTRUCTIONS CAREFULLY.

- 1. Final Submissions should be done in your respective section folder on sandata/xeon/Spring2018/AbdulKhaliq/DLDSectionD2/MidSubmission.
- 2. LogicWorks File must be renamed after your roll number e.g., "17L-4125". Multiple submissions are not allowed (if done, only first one will be considered).
- 3. For your ease, Pin Configurations of all ICs is given in word file named "ICs Info" in folder sandata/xeon/Spring2018/AbdulKhalig/DLDSectionD2.

Problem Statement: Implement the following Boolean function using 4x1 multiplexer and external logic gates.

$F(A,B,C,D) = \sum (5,6,8,9,10,15)$

a. Draw the truth table for above problem statement.

[2 Point]

A	В	C	D	Z
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

b.	b. Draw the complete circuit diagram using 2-input logic gates only.				
c.	Implement the circuit of part (b) on LogicWorks Tool and verify the results. [15				
	Points]				
d.	Implement the circuit of part (b) on the trainer board and verify the outputs.				
	(Note: Use as minimum no. of logic gates as possible) [25 Points]				