

ccgcttcatt cccaggagaa catcatacat gggAACCTCA catccagcaa tgtgttgc 2100
gatgagaata caaatgtcaa aattgcagat tttgggtttt ctcggttgat gtcaactgt 2160
gctaattcca acgtgtatgc tacagctgga gcattggat accgggcacc tgtagctca 2220
aagctcaaga aagcaaacac taaaactgtat atctacagtct ttgggtttat ctgtttagaa 2280
ctcttaacga gggaaatcacc tgggggtgtct atgaatggac tagatttgcc tcagtgggtt 2340
gcctcagtt tcaaagagga gtggacaaat gaggtttttt atgcagactt gatgagagat 2400
gcatccacag ttggcgacga gttgtcaaacc acgttgaage tcgcgttgcac tgggtgttat 2460
cctcttcatt cagcacgacc agaaagtccat caagtttcc acgcagctgga agagattaga 2520
ccagagatcat cagtcacgacc cactcccccggg gacgatatacg tatacg 2565

<210>	39
<211>	2565
<212>	DNA
<213>	Glycine max

<223> Seq ID: rhg1_will_amplicon_cds_2

<400> 39

atggtagtag cagtggagaa aaccaaacctc acttcataat cacaatgtttt caaccgtttt 60
tctgacaaga agaaagaaaag atgcaagaca cacatgaaca acgttaaccc atgttgtttt 120
ttgtttctct tatgtgtgtg gagccctgtt gtgtccccct catgcgttag gccagtttg 180
tgtgaagatg aagggttggga tggagttgtt gtgcacagcat caaaccttgc agcaactgtaa 240
gcttcAACgc aagagtgggt tgatccagaa gggttcttc ggagctggaa tgacagtggc 300
tatggagctt gttccggagg ttgggttggaa atcaagttgtg ctaagggaca gtttattgtt 360
atccagcttc ctggaaagggttgggggt cgaatcaccc aaaaaattgg tcaacttcaa 420
ggccctcagga agcttagtct tcatgataac caaattgggtt gttcaatccc ttcaactttt 480
ggacttcttc ccaacccatgggggttccatg ttattcaaca ataggcttac aggttccatata 540
ctctttttttt taggtttctg cccttgcctt cagttcttgc acctcagcaaa ctaacttgc 600
acaggagcaa tcccttatacg tcttgctaatttccactaagc ttatggct taacttgagt 660
ttcaacttctt tcttgcgttcc ttaccagctt acgcttaactc actcattttc tctcaactttt 720
ctttcttc aaaaataacaa tctttcttgc tcccttcataactcttgggg tgggaattcc 780
aagaatggct tctttaggct tcaaaaatttgc atccatgatc ataactttttt cactgttgac 840
atcttcactt ctggggatgtt cttaaqaaqatcacttgcgttcccttgcgttccatataaag 900

ttagtgag ctataccaaa taaaatggg acccttcta ggcttaagac acttgacatt 960
tctataatcg ctttgcgtt gaaactgcct gtaccctat ctaatttac tcacttaca 1020
ctgctgaatcg cagagaacaa ctccttgac aatcaaattc ctcaaaaggtt aggttagattg 1080
cgtaatcttt ctgttctgtat ttggatgtaa aaccaattt gtggacatata tccttcaagt 1140
attgcaaaaca tttccctcgct taggcagctt gatggtcac tgaataattt cagtgagaa 1200
atcccgatct cctttgcacg tcagcgcgtt ctaaatcttca tcaatgtttc ctacaatagc 1260
cttcagggtt ctgtcccccc ttgttgcctt aagaaatttta actcaagtc atttgtggaa 1320
aatattcaac tatgtggata cagcccttca accccatgtc ttccccaagc tccatcacaa 1380
ggagtcatttgc ccccaccttca tgaagtgtca aaacatcacc atcatagggaa gctaaggcacc 1440
aaagacataa ttctcatgtt agcaggagtt ctccctcgtagt tcctgttata actttgttgt 1500
gtcctgcctt ttgttgcgtat cagaaagaga tcaacatctt aggccgggaa cggccaaaggcc 1560
accggggta gagcggccac tatgaggaca gaaaaaggag ttccctccagt tgctgggtt 1620
gatgttgcgggaa cggctggggaa aacttagtcc attttgcgtt accaatggct 1680
tttacagcttgc atgatctttt gtgtgcacaca gctgagatca tggaaagag cacctatggaa 1740
actgtttata aggctatccc ggaggatggaa agtcaagtttgc cagtaaagag attgaggggaa 1800
aagatcaactt aaggctcatatc agaatttgc tcaagaatgtca gtgttctagg aaaaatttgc 1860
cacccttcaatgc ttgttgccttctt gagggcttat tacttgggac ccaaggggaa aaagttcttgc 1920
gtttttgtt acatgtctaa aggaaatgttgc ttgttcttttgc tacatgggtt tggacttgc 1980
acatttcatttgc atggccaaac aagaatggaa atagcacaag acttggcccg tggcttgc 2040
tgccttcatttgc cccaggagaa catcatatcat gggaaatcttca catccagcaatgc tggcttgc 2100
gtgagaata caaatgttca aatttgcatttgc ttgttgcctt ctgggttgc tgcactgttgc 2160
gcttaatttca acgtgtatgc tacagcttca gcatggggat accggggcacc tgagctcttca 2220
aagctcaaga aagcaaacac taaaactgttgc atctacatgttgc ttgttgcatttgc tggacttgc 2280
ctcccttcaacgc ggaatccacc tgggggttgc tggatgttgc tagatttgc tcaatgttgc 2340
gccttcaggatgc tcaaaaggagaa gtggacaaat gagggttttttgc atgcagatgc tggatgttgc 2400
gcatccacatc cttggcgacgc gttgttgc tggatgttgc acgttgc tggatgttgc 2460
ccttctccat cagcacgacc agaagttcat caagtttcttca acgttgc tggatgttgc 2520
ccagagagat cagtcacagc cagtcacaggc gacgatatgc tata 2565

<210> 40
<211> 2565
<212> DNA
<213> Glycine max

<223> Seq ID: rhg1_a2704_amplicon_cds_2

<400> 40

atggtagtag cagtggagaa aaccaacctc acttcacaat cacaatgtttt caaccgtgtt 60
tctgacaaga agaaaagaag atgcaagaca cacatgaaca acgttaaccc atgttgtttt 120
ttgtttctct tatgtgtgtg gagcctgtt gtgtccccc catgcgtgag gccagttttt 180
tgtgaagatg aagggttggga tggagtgtt gtgcacgcat caaacctttt agcacattttt 240
gccttcaagc aagagtttgt tgatccagaa gggttcttc ggagctggaa tgacagtggc 300
tatggagctt gtccggagg ttgggttggaa atcaagtgtg ctaagggaca gggttattgtt 360
atccagcttc ctggaaagggtt cgtatccaccc aaaaaattttt tcaacttcaa 420
ggcctcagga agcttagtct tcatgataac caaatttgtt gtcaatcccc ttcaactttt 480
ggacttcttc ccaacacctt taggtttctt ccctttgtt cagttcttgc acctcagcaaa caacttgc 540
cctttttttt taggtttctt ccctttgtt cagttcttgc acctcagcaaa caacttgc 600
acaggagcaa tcccttatacg tcttgtaat tccactaagc ttatttgtt taacttgtt 660
ttcaacttctt tctctgttcc ttaccagct agccctaactc actcattttc tctcaattttt 720
ctttcttc aaaataacaa tctttcttggc tcccttccaa actcttgggg tggaaattcc 780
aagaatggct tctttaggtt tcaaaattttt atccttagatc ataactttttt cactgggttac 840
gttctgtttt ctttgggtt cttaagagag ctcaatgaga ttcccttgc tcataataag 900
tttagtggag ctataccaaa taaaatggaa acccttttca ggcttaagac acttggacattt 960
tcttataatg ctttggatgg gaaacttgcct gtcaccatctt cttttttttt cttttttttt 1020
ctgtctgtatc cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 1080
cgttaatctttt ctgtttctgtat ttttagttaga aaccaatttttta gtggacatat cttttttttt 1140
atggcaacaat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1200
atccctttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 1260
ctttttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 1320
aatattttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1380
ggagtctttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 1440

aaagacataa ttctcatagt agcaggagtt ctccctcgtag ttctgattat actttgttgc 1500
 gtccctgcttt tctggcctgat cagaagaagca tcaacatcta aggccgggaa cggccaagcc 1560
 accggggta gacggccac tatgaggaca gaaaaaggag tccctccagt tgctgctgg 1620
 gatgttgaag caggtgggaa ggctggaggg aaactagtc attttgatgg accaatggct 1680
 tttagctg atgatcttctt gtgtgcaaca gctgagatca tggaaaagag cacctatggc 1740
 actgtttata aggctatccc ggaggatggc agtcaagttc cgttaaagag attgaggaa 1800
 aagatcaacta aaggcatag agaatttgc tcagaagtc gtgttctagg aaaaatttgc 1860
 caccccaatg ttttggctct gagggccat tacattggac ccaaaggaa aaagcttctg 1920
 gtttttgcatt acatgtctaa aggaagtctt gcttcttcc tacatgggtt tggaactgaa 1980
 acatttcatgg attggccaa aaggatgaaa atagcacaag acttggcccg tggcttgc 2040
 tgcccttcatt cccaggagaa catcatatc gggAACCTCA catccagaa tggcttgc 2100
 gatgagaata caaatgttca aattgcagat tttggcttt ctccgggttgc gtcaactgt 2160
 gctaaatcca acgttatggc tacagctggc gcattggat accggccacc tgagcttca 2220
 aagctcaaga aagcaaacac taaaactgtt atctacatgc ttgggtttat cttgtttagaa 2280
 ctcttaacgc gggaaatcacc ttgggtgcct atgaatggac tagatttgc tcaatgggtt 2340
 gcctcgttgc tcaaagggaa gtggccaaat gagggttttgc atgcagactt gatgagatg 2400
 gcatccacag ttggcgacgc gttgttcaac acgttgcggc tccgtttgc ctgtgttgc 2460
 ccttctccat cagcacgacc agaagttcat caagtttcc acgagctggc agagatttgc 2520
 ccagagagat cagtcacagc cagtcggg gacgatatgc tata 2565

<210>	41
<211>	2565
<212>	DNA
<213>	Glycine max
<223>	Seq ID: rhgl_noir_amplicon_cds_2
<400>	41
atggtagtag	cagttggagaa aaccaacctc acttcacaaat cacaatgtt caaccgttt 60
tctgacaaga	agaaaagaaat atgcaagaca cacaatgtt acgtttaacc atgttgttt 120
ttgtttctct	tatgtgtgtt gagccctgtt gtgtccctt catgcgttag gcccgtttt 180
tgtgaatgtt	aagggtggaa tggagttgtt gtgacacat cttttttttt acgtttttttt 240
gttttcaaggc	aaggtttttt tttttttttt tttttttttt tttttttttt tttttttttt 300

tatggagctt gttccggagg ttgggttgg aatcaagtgtg ctcagggaca ggttatttgt 360
atccagcttc ctggaaaggg tttgagggggt cgaatcacgg acaaaaattgg ccaacttcaa 420
ggcctcagga agcttagtct tcataataac caaattgggt gttcaatccc ttcaactttg 480
ggacttcttc ccaacacctt taggggttcag ttatccaaca ataggcttac aggtttccata 540
cctctttctt taggtttctg cccttgcctt cagttcttgc acctcagcaaa caacttgctc 600
acaggagcaa tcccttatag tcttgcata tccactaagc ttatggct taacttgagt 660
ttcaacttct tctctgggcc ttaccagctt agcctaactc actcattttc tctactttt 720
ctttcttc aaaaataacaa tctttctggc tcccttcata actcttgggg tgaaattcc 780
aagaatggct tctttaggct taaaaatttg atccatagata ataactttttt cactgggtac 840
gttcttgctt ctttgggtag cttaagagag ctcaatagaga tttcccttag tcataataag 900
tttagtggag ctataccaaa tgaatagaga accctttctt ggcttaagac acttgacatt 960
tctaataatgg ctttgcataatgg gaacttgcctt gatccccctt ctaatttatac ctcacttaca 1020
ctgctgaatgg cagagaacaa ctccttgac aatcaaattcc ctcaaaagggtt aggttagattt 1080
cgtaatctt ctgttctgtat ttggatgata aaccaattta gtggacatat tcccttcaga 1140
attgaaaca tttcctcgctt taggcagctt gatgggtcac tgaataattt cagttggagaa 1200
atttccatgtt ctttcgcacag tcagcgcgtt ctaaatcttct tcaatgtttc ctacaatagc 1260
ctttcaggtt ctgttccccctt tctgtttgcc aagaaattta actcaagctc attttgtggaa 1320
aatattcaac tatgtgggtt cagcccttca accccatgtc tttcccaagc tccatcacaa 1380
ggagtcattt cccaccccttca tgaatgttca aaacataccat atcataggaa gctaaggacc 1440
aaagacataa ttctcatagt agcaggagtt ctccctcgtag ttctgattat actttgttgt 1500
gtcctgcttt tctgcctgtat cagaaagaga tcaacatctt aaggccggaa cggccaagcc 1560
accggggta gagcggccac tatgaggaca gaaaaaggag tccctccagt tgctgttgtt 1620
gatgttgaag caggtggggg ggctgggggaa aacttagtcc attttgatgg accaatggct 1680
tttacagctt atgatcttctt gtgtgcacaa gctgagatca tgggaaagag cacctatgg 1740
actgtttata aggcttattttt ggaggatgg aatcaagtgc cgttaaagag attgaggaa 1800
aagatcacta aaggctcatag agaatttgc tcaagaatgc gtgttctagg aaaaatttaga 1860
cacccttcaat ttttggctt gaggccat tacttggac cccaaaggggaa aaagcttctt 1920
gtttttgatt acatgtctaa aggaagtctt gttcttcc tacatgggg tggactgaa 1980
acattcatttggccaaac aaggatgaaa atagcacaag acttggcccg tggcttgc 2040

tgccattcatt cccaggagaa catcatacat gggacaccta catccagcaa tgtgttgc 2100
 gatgagaata caaatgctaa aattgcagat ttgggtctt ctgggtgtat gtcactgc 2160
 gctaattcca acgtgatagc tacagctgga gcattggat accgggcacc tgagctctca 2220
 aagctcaaga aagcaaacac taaaactgtat atctacagtc ttgggtttat cttgttagaa 2280
 ctcttaacga gggaaatcacc ttgggtgcct atgaatggac tagatttgc tcagtgggt 2340
 gcctcagttt tcaaagagga gtggacaaat gaggttttg atgcagactt gatgagat 2400
 gcatccacag ttggcgcga gttgtctaac acgttgcgc tgcgttgc ctgtgtgt 2460
 cttctccat cagcacgacc agaagttcat caagttctcc agcagctgga agagattaga 2520
 ccagagagat cagtcacagc cagtcacccgg gacgatatcg tatag 2565

<210> 42
 <211> 2565
 <212> DNA
 <213> Glycine max

<223> Seq ID: rhg1_lee_amplicon_cds_2

<400> 42

atggtagtag cagttggagaa aaccaacctc acttcacaat cacaatgtttt caaccgtgtt 60
 tctgacaaga agaaagaag atgcaagaca cacatgaaca acgttaaccc atgttgtttt 120
 ttgtttctct tatgtgtgtt gaggcttgc ttgtcttcatgtcgatgagttttt 180
 tgtgaatgtt aagggttggaa tggagttgtt ttgtcgatcataatgtttt 240
 gcttcaaggc aagagttgtt tgatccggaa gggttcttc ggagctggaa tgacagtggc 300
 tatggagctt gttccggagg ttgggttggaa atcaagtgtt ctcaggacat gtttattgtt 360
 atccagcttc ctgttggaggg tttgggggtt cgaatccaccc aaaaaattgg ccaacttcaa 420
 ggcttcaggaa agcttagtct tcatgataac caaatgggtt gttcaatccc ttcaactttt 480
 ggacttcttc ccaaccttag aggggtttagt ttatcaaca ataggcttac aggttccata 540
 cctttttttt tagttttctt cccttgcctt cagttcttgc acctcagccaa caacttgc 600
 acaggagccaa tcccttatag tcttgcataat tccactaagc ttatggct taacttgagt 660
 ttcaacttcct tctctggcc ttaccagctt acgcttactc actcatttt tctcaactttt 720
 ctctcttc taaaataacaa tctttctggc tcccttcataactcttgggg tggaaatcc 780
 aagaatggct tcttttaggtt tccaaatggatc atccttagata ataactttt cactggtgac 840
 gttctgtttt ctttgggttag cttaagagag ctcaatgaga ttcccttag tcataataag 900

ttagtggag ctataccaaa taaaaatgga accctttcta ggcttaagac acttgacatt 960
tetaataatg ccttgaatgg gaactgcct gtcaccctct ctaattttatc ctcactttaca 1020
ctgctgaatg cagagaacaa cctcccttgac aatcaaatcc ctcaaaggttt aggttagattt 1080
cgtaatcttt ctgttctgtat tttagtggata aaccaattta gtggacatat tccttcaagc 1140

attgcaaaaca tttccctcgct taggcagctt gatggtcac tgaataattt cagtgagaa 1200
attccagttt ccttgcacag tcagcgcagt ctaaatctct tcaatgtttc ctacaatagc 1260
cttcagggtt ctgttcccc tctgtttgc aagaattta actcaagctc atttggggaa 1320
aatattcaac tatgtgggta cagccctca accccatgtc tttccaagc tccatcacaa 1380
ggagtcattt ccccacctcc tgaagtgtca aaacatcacc atcataggaa gctaagcacc 1440
aaagacataa ttctcatagt agcaggagtt ctccctcgtag ttctgattat actttgtt 1500
gtcctgcttt tctgttgcgtat cagaagaga tcaacatcta aggccggaa cggccaagcc 1560
accgagggtt gagccggccat tatgaggaca gaaaaggag tccctccagt tgctgttgtt 1620
gatgttgaag caggtgggg a ggcgtgggg a aactagtcc attttgatgg accaatggct 1680
tttacagctg atgatctt tttgttgcaca gctgagatca tggaaagag cacatggaa 1740
actgtttata aggttatggg ggaggatgg agtcaagttt cagtaaagag attgaggaa 1800
aagatcaacta aaggcatag agaatttgc tcaagatca gtgttctagg aaaaatttgc 1860
caccccaatg ttttgcctt gggccat tttttttttt ccaaggggaa aaagttctt 1920
gttttgatt acatgttca aggaagtctt gttttttttt tttttttttt tttttttttt 1980
acatttcattttttggccaaac aaggatgaaa atagcacaag acttggcccg tggcttgc 2040
tgccttcattt cccaggagaa catcatacat gggAACCTCA catccagcaaa tttttttttt 2100
gatgttgcataa caaatgttca aatttgcattt tttttttttt tttttttttt tttttttttt 2160
gcttaatttca acgtgtatgc tacagcttgc gatgtttttt accggccacc tgactctca 2220
aagctcaaga aagcaaacac taaaactgtat atctacagtc ttgggtttat cttttttttt 2280
ctccttacacca gggggccctt atgatgttgc tagattttttt tttttttttt tttttttttt 2340
gcctcaggttt tcaaaaggaa gttttttttt atgcagactt gatgttgc 2400
gcacccacac tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2460
ccttctccat cagcacgacc agaagttcat caagttctcc agcagacttgc agagattttttt 2520
ccagagatg cagtcacacgc cttttttttt tttttttttt tttttttttt tttttttttt 2565

<210> 43
<211> 2565
<212> DNA
<213> Glycine max

<223> Seq ID: rhg1_pi200499_amplicon_cds_2

<400> 43

atggtagtag cagttggagaa aaccaaacctc acttcacaat cacaatgttt caaccgtgtt 60
tctgacaaga agaaagaaaag atgcaagaca cacatgaaca acgttaaccc atgttgtttt 120
ttgtttctct tatgtgtgtg gagccctgtt tggtccccct catgcgtgag gccagttttt 180
tgtgaagatg aagggtggaa tggagtggtt gtgcacgcat caaacctttt agcacttgaa 240
gcttccaaggc aagagttgtt tgatccagaa gggttcttgc ggagctggaa tgacagtggc 300
tatggagctt gttccggagg ttgggttggaa atcaagtgtg ctcaaggaca gggttattgtt 360
atccagcttc ctttggaaagggtt tttgaggggtt cgaatcacccg acaaaattgg ccaacttcaa 420
ggcctcagggc agcttagtct tcatgataac caaatttggt gttcaatccc ttcaactttt 480
ggacttcttc ccaacaccttgc aggggttcag ttattcaaca ataggcttac aggttccata 540
cctctttttt taggtttctg ccctttgtt cagttcttgc acctcagccaa caacttgc 600
acaggagccaa tccctttagt tcttgcataat tccactaaggc ttatttggct taacttgagt 660
ttcaactctt tctctggtcc tttaccagct agcctaactc actcattttc tctcaactttt 720
ctttctcttc aaaataacaa tctttctggc tccctttctca actcttgggg tggaaattcc 780
aagaatggct tcttttaggt tccaaatttg atccctagata ataactttt cactgggtac 840
gttccctgtt cttttgggtt cttaagagag ctcaatgaga ttcccttgc tcataataag 900
tttagtggag ctataccaaa tgaaaatggaa accctttctca ggcttaagac acttgcacatt 960
tctataataatg ccttggatgg gaacctgcct gctaccctct ctaatttatac tctcaacttaca 1020
ctgctgaatg cagagaacaa cctcccttgc acatcaaattc ctcaaaaggttt aggttagattt 1080
cgtaatctttt ctgttctgtt tttgagttttt aaccaatttta gtggacatata tcccttcaagc 1140
atttgcacaaa tttccctgtt cttttttttt tttttttttt cttttttttt tttttttttt 1200
atccctttttt cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1260
ctttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1320
aatattcaac tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1380
ggagtcatggc ccccacctcc tttttttttt tttttttttt tttttttttt tttttttttt 1440
aaagacataaa ttcttcataatg agcaggagtt cttccctgtt tttttttttt tttttttttt 1500

```

<210>      44
<211>      3480
<212>      DNA
<213>      Glycine max

```

<220>
<221> CDS
<222> (79) .. (2242) .. (2958) .. (3478)

<223> Seq ID: xba4_a3244_amplicon

5400> 44

atgtctctcc cccaaaacccct actttctctc ttcccttctcc tcacgatccc ccttagtaacc 60

ccccatggacc ccacccata atg tcg aat ttt ctc aaa tcc ctc ast cca ccg 111

Met Ser Asn Phe Leu Lys Ser Leu Thr Pro Pro
1 5 10

ccc tca ggc tgg tct gaa aca acc cca ttc tgc caa tgg aag ggt atc 159

Pro Ser Gly Trp Ser Glu Thr Thr Pro Phe Cys Gln Trp Lys Gly Ile			
15	20	25	
caa tgc gat tca tcc agc cac gtg acc agc ata agc ctc gct tcg cat			207
Gln Cys Asp Ser Ser His Val Thr Ser Ile Ser Leu Ala Ser His			
30	35	40	
tcc ctc acc gga aca ctc ccc tgc gat ctc aat tcc ctc tct caa ctc			255
Ser Leu Thr Gly Thr Leu Pro Ser Asp Leu Asn Ser Leu Ser Gln Leu			
45	50	55	
cgc act ctc tcc ctc caa gac aat tcc ctc acc ggc acc ctc cct tct			303
Arg Thr Leu Ser Leu Gln Asp Asn Ser Leu Thr Gly Thr Leu Pro Ser			
60	65	70	75
ctc tcc aac ctt tct ttc ctc caa acc gtc tac tta aac cgc aac aac			351
Leu Ser Asn Leu Ser Phe Leu Gln Thr Val Tyr Leu Asn Arg Asn Asn			
80	85	90	
ttc tcc tcc gtg tcc ccc acc gct ttc gcc tcc cta acc tcc ctc caa			399
Phe Ser Ser Val Ser Pro Thr Ala Phe Ala Ser Leu Thr Ser Leu Gln			
95	100	105	
acc ctc aac ctc ggc tcc aac cct gct ctc caa aac ccc tgg tcc ttc ccc			447
Thr Leu Ser Leu Gly Ser Asn Pro Ala Leu Gln Pro Trp Ser Phe Pro			
110	115	120	
acc gac ctc act tcc tcc tct aac cta atc gac ctc gac ctc gcc acc			495
Thr Asp Leu Thr Ser Ser Asn Leu Ile Asp Leu Asp Leu Ala Thr			
125	130	135	
gta tcc ctc acc ggt ccc ttg ccg gac att ttc gac aaa ttc cct tcc			543
Val Ser Leu Thr Gly Pro Leu Pro Asp Ile Phe Asp Lys Phe Pro Ser			
140	145	150	155
ctt caa cac ctt cgc ctc tct tac aac aac ctc acc ggc aat tta ccc			591
Leu Gln His Leu Arg Leu Ser Tyr Asn Asn Leu Thr Gly Asn Leu Pro			
160	165	170	
tcc tct ttc tcc gcc gac aat ctc gaa acg ctc tgg ctc aac aac			639
Ser Ser Phe Ser Ala Ala Asn Asn Leu Glu Thr Leu Trp Leu Asn Asn			
175	180	185	
cag gcc gcc ggc ttg tcc ggt acc ctc ctc gtc ctc tcc aac atg tct			687
Gln Ala Ala Gly Leu Ser Gly Thr Leu Leu Val Leu Ser Asn Met Ser			
190	195	200	
gca tta aac cag tcc tgg ctc aat aag aac cag ttc acc ggt tcc ata			735
Ala Leu Asn Gln Ser Trp Leu Asn Lys Asn Gln Phe Thr Gly Ser Ile			
205	210	215	
ccg gat tta tgc caa tgc acg gct ttg tct gag ttg cag ctc agg gat			783
Pro Asp Leu Ser Gln Cys Thr Ala Leu Ser Asp Leu Gln Leu Arg Asp			
220	225	230	235
aac cag tta act ggt gtg gtt ccc gct tca ttg aca agt ctt cct agt			831
Asn Gln Leu Thr Gly Val Val Pro Ala Ser Leu Thr Ser Leu Pro Ser			
240	245	250	

ttg aag aaa gtt tct ctg gat aat aat gag ctt cag ggg cct gtg ccc Leu Lys Lys Val Ser Leu Asp Asn Asn Glu Leu Gln Gly Pro Val Pro 255 260 265	879
gtg ttt ggg aaa ggt gtg aat gtt act ctc gat ggg att aat agt ttt Val Phe Gly Lys Gly Val Asn Val Thr Leu Asp Gly Ile Asn Ser Phe 270 275 280	927
tgt ctt gat act cct ggg aat tgt gat ccc agg gtg atg gtt ttg ctg Cys Leu Asp Thr Pro Gly Asn Cys Asp Pro Arg Val Met Val Leu Leu 285 290 295	975
cag att gcc gag gca ttc ggg tat cca att cgg ttg gca gag tcg tgg Gln Ile Ala Glu Ala Phe Gly Tyr Pro Ile Arg Leu Ala Glu Ser Trp 300 305 310 315	1023
aag ggg aat gat ccg tgt gat ggt tgg aac tat gtt gtg tgt gct gcc Lys Gly Asn Asp Pro Cys Asp Gly Trp Asn Tyr Val Val Cys Ala Ala 320 325 330	1071
gga aag att att act gtc aat ttc gag aaa cag ggt ttg cag ggt acc Gly Lys Ile Ile Thr Val Asn Phe Glu Lys Gln Gly Leu Gln Gly Thr 335 340 345	1119
atc tcc cct gca ttt gcc aat ttg act gac ttg agg act ttg ttt ctc Ile Ser Pro Ala Phe Ala Asn Leu Thr Asp Leu Arg Thr Leu Phe Leu 350 355 360	1167
aat ggc aat aat ttg atc ggt tct ata cct gat agt ttg atc act ttg Asn Gly Asn Asn Leu Ile Gly Ser Ile Pro Asp Ser Leu Ile Thr Leu 365 370 375	1215
cct cag ctt cag act ctt gat gtg tct gac aac aac ctc tct gga ttg Pro Gln Leu Gln Thr Leu Asp Val Ser Asp Asn Asn Leu Ser Gly Leu 380 385 390 395	1263
gtt cct aag ttc cca cca aag gtg aag ttg gtg act gcg gga aat gct Val Pro Lys Phe Pro Pro Lys Val Lys Leu Val Thr Ala Gly Asn Ala 400 405 410	1311
ttg ctt ggg aaa ccc ctt agt cct gga ggt gga cca agt gga act act Leu Leu Gly Lys Pro Leu Ser Pro Gly Gly Gly Pro Ser Gly Thr Thr 415 420 425	1359
cct tct ggg tct tcg acc ggt gga agt ggt ggt gaa tcc tca aag ggt Pro Ser Gly Ser Ser Thr Gly Gly Ser Gly Gly Glu Ser Ser Lys Gly 430 435 440	1407
aat tct tcg gtg tcg cca ggt tgg att gct ggt ata gtt gtt att gtg Asn Ser Ser Val Ser Pro Gly Trp Ile Ala Gly Ile Val Val Ile Val 445 450 455	1455
ttg ttt ttt att gca gtg gtg ttg ttt gtg tct tgg aag tgt ttt gtg Leu Phe Ile Ala Val Val Leu Phe Val Ser Trp Lys Cys Phe Val 460 465 470 475	1503
aac aag ctg cag ggg aag ttc agt agg gtt aaa ggt cat gaa aat ggg	1551

Asn Lys Leu Gln Gly Lys Phe Ser Arg Val Lys Gly His Asn Gly			
480	485	490	
aaa gga ggc ttt aaa ctt gat gct gtc cat gtt tct aat gga tat ggt			1599
Lys Gly Gly Phe Lys Leu Asp Ala Val His Val Ser Asn Gly Tyr Gly			
495	500	505	
ggg gtt cca gtt gag ttg caa agc cag agc aat ggt gat cgc aat gac			1647
Gly Val Pro Val Glu Leu Gln Ser Gln Ser Ser Gly Asp Arg Ser Asp			
510	515	520	
ctt cat gct tta gat ggt cca aca ttt tct atc caa gtt ctt cga caa			1695
Leu His Ala Leu Asp Gly Pro Thr Phe Ser Ile Gln Val Leu Arg Gln			
525	530	535	
gtg acg aat aat ttc agc gag gag aac att tta ggc agg gga ggg ttt			1743
Val Thr Asn Asn Phe Ser Glu Glu Asn Ile Leu Gly Arg Gly Gly Phe			
540	545	550	555
gga gta gtt tat aag ggg gtg ttg cat gat gga aca aaa att gct gtt			1791
Gly Val Val Tyr Lys Gly Val Leu His Asp Gly Thr Lys Ile Ala Val			
560	565	570	
aag agg atg gaa tct gtt gca atg ggg aac aaa ggt cag aca gag ttc			1839
Lys Arg Met Glu Ser Val Ala Met Gly Asn Lys Gly Gln Lys Glu Phe			
575	580	585	
gaa gca gag att gca ctt ctt aat gtt agg cat aca cat ttg gtt			1887
Glu Ala Glu Ile Ala Leu Leu Ser Lys Val Arg His Arg His Leu Val			
590	595	600	
gct ctt cta ggg tat tgc atc aat ggc aat gaa agg ctt ttg gtg tat			1935
Ala Leu Leu Gly Tyr Cys Ile Asn Gly Asn Glu Arg Leu Leu Val Tyr			
605	610	615	
gag tat atg cct caa ggt aca tta aca cag cac ctg ttt gag ttg cag			1983
Glu Tyr Met Pro Gln Gly Thr Leu Thr Gln His Leu Phe Glu Trp Gln			
620	625	630	635
gag cat ggg tat gct cct ttg act tgg aag caa agg gta gta ata gct			2031
Glu His Gly Tyr Ala Pro Leu Thr Trp Lys Gln Arg Val Val Ile Ala			
640	645	650	
ttg gat gta gcg cgg ggg gtg gaa tac ttg cac aat gtt gct cag caa			2079
Leu Asp Val Ala Arg Gly Val Glu Tyr Leu His Ser Leu Ala Gln Gln			
655	660	665	
agc ttc att cat aga gac tta aaa ccc tca aac ata cta cta ggc gat			2127
Ser Phe Ile His Arg Asp Leu Lys Pro Ser Asn Ile Leu Leu Gly Asp			
670	675	680	
gac atg aga gca aag gtt gct gat ttt ggg ttg gtt aaa aat gca cca			2175
Asp Met Arg Ala Lys Val Ala Asp Phe Gly Leu Val Lys Asn Ala Pro			
685	690	695	
gat ggg aag tat tct gtt gag aca cgg ttg gct gga aca ttt gga tat			2223
Asp Gly Lys Tyr Ser Val Glu Thr Arg Leu Ala Gly Thr Phe Gly Tyr			
700	705	710	715

ctt gca cct gag tat gca g gtacagaaaag cctttgattt tagttttgtat	2272		
Leu Ala Pro Glu Tyr Ala			
720			
 caatttgcc ttaatttga agttcatatt ttatatgctc gtatgggt gttatagctg	2332		
ttggttatta ctcaatac atgcttcggt gttcagaaaa tttaagtatg tcaccagagt	2392		
aatcgctcac atacaaaaaa aaagttagaaa gagttgaagg gaaaataatt gatactcaat	2452		
tcctagatac atggctactt caaaattctt tgtggctatt tctttgcaat gttatatttt	2512		
gctctttca cgtgtttgt tgagttgggt gggggttttg ctgcatagtt cttgggtgtt	2572		
gatgcctcaa aagatatgctc gagccatttt tagacagttt accagagttt gactctcaat	2632		
tatccattac gatgtatgatatactctgggt tgcattaaat ctttgatttc tgatattgt	2692		
catgggctta ggtggtagtt ctctgtcgca actaatact gttgtggaaat ttatcattct	2752		
atcccatttc cttgttggat cggtgcattt aaacatcttt tgtaaaaact gttatTTTGA	2812		
tccgtgttgtt ttttatccat tttagatcaa gacttttgc agcataaaaac ttccctaaaaat	2872		
gttgcatttga atgtgatttag atggcatttgc attagtgcata gtctatTTGTG ttgattatata	2932		
ttaatgttac tctgtttctt accag ct act gga aga gtg aca acc aaa gtg	2983		
Ala Thr Gly Arg Val Thr Thr Lys Val			
725	730		
 gat gtt tat gca ttt gga gta gtt ctg atg gaa ctt atc acc ggt aga	3031		
Asp Val Tyr Ala Phe Gly Val Val Met Glu Leu Ile Thr Gly Arg			
735	740	745	
 aag gca ttg gat gat act gtg cca gat gaa agg tct cac ttg gtg aca	3079		
Lys Ala Leu Asp Asp Thr Val Pro Asp Glu Arg Ser His Leu Val Thr			
750	755	760	
 tgg ttc cgt agg gta cta att aac aag gaa aac att cca aag gca att	3127		
Trp Phe Arg Arg Val Leu Ile Asn Lys Glu Asn Ile Pro Lys Ala Ile			
765	770	775	
 gat caa att ctc aat cca gat gag gaa acc atg gga agc ata tat aca	3175		
Asp Gln Ile Leu Asn Pro Asp Glu Glu Thr Met Gly Ser Ile Tyr Thr			
780	785	790	
 gtg gcc gag ctg gca ggc cat tgc act gct cgc gaa cca tac caa agg	3223		
Val Ala Glu Leu Ala Gly His Cys Thr Ala Arg Glu Pro Tyr Gln Arg			
795	800	805	810
 ccg gat atg ggt cat gca gtg aac gtc ttg gtt ctt gtg gag caa	3271		
Pro Asp Met Gly His Ala Val Asn Val Leu Val Pro Leu Val Glu Gln			
815	820	825	
 tgg aaa cct act agc cat gat gaa gaa gag gaa gac ggc tct ggc ggt	3319		
Trp Lys Pro Thr Ser His Asp Glu Glu Glu Asp Gly Ser Gly Gly			
830	835	840	

gac ctt cat atg agc ctt cct caa gct cta cga agg tgg caa gcc aac Asp Leu His Met Ser Leu Pro Gln Ala Leu Arg Arg Trp Gln Ala Asn 845	850	855	3367
gaa ggc act tcc tca ata ttt aat gac att tcc atc tca caa acc caa Glu Gly Thr Ser Ser Ile Phe Asn Asp Ile Ser Ile Ser Gln Thr Gln 860	865	870	3415
tca agc atc tcc tct aaa cct gca ggg ttt gca gac tcc ttt gat tca Ser Ser Ile Ser Ser Lys Pro Ala Gly Phe Ala Asp Ser Phe Asp Ser 875	880	885	3463
atg gat tgc cgt taa cc Met Asp Cys Arg			3480
<210> 45 <211> 3480 <212> DNA <213> Glycine max			
<220> <221> CDS <222> (79)..(2242), (2958)..(3478)			
<223> Seq ID: rhg4_Minsoy_amplicon			
<400> 45			
atgtctctcc cccaaaacctt acttttcttc ttcccttctcc tcacagatccc cctagtaacc			60
gcccgatgacg cccgggtg atg tcg aat ttt ctc aaa tcc ctc act cca ccg Met Ser Asn Phe Leu Lys Ser Leu Thr Pro Pro 1 5 10			111
ccc tcg ggc tgg tct gaa aca acc cca ttc tgc caa tgg aag ggt atc Pro Ser Gly Trp Ser Glu Thr Thr Pro Phe Cys Gln Trp Lys Gly Ile 15 20 25			159
caa tgc gat tca tcc agc cac gtg acc agc ata agc ctc gct tcg cat Gln Cys Asp Ser Ser His Val Thr Ser Ile Ser Leu Ala Ser His 30 35 40			207
tcc ctc acc gga aca ctc ccc tcg gat ctc aat tcc ctc tct caa ctc Ser Leu Thr Gly Thr Leu Pro Ser Asp Leu Asn Ser Leu Ser Gln Leu 45 50 55			255
cgc act ctc tcc ctc caa gac aat tcc ctc acc ggc acc ctc cct tct Arg Thr Leu Ser Leu Gln Asp Asn Ser Leu Thr Gly Thr Leu Pro Ser 60 65 70 75			303
ctc tcc aac ctt tct ttc ctc caa acc gtc tac tta aac cgc aac aac Leu Ser Asn Leu Ser Phe Leu Gln Thr Val Tyr Leu Asn Arg Asn Asn 80 85 90			351
ttc tcc tcc gtg tcc ccc acc gct ttc gcc tcc cta acc tcc ctc caa Phe Ser Ser Val Ser Pro Thr Ala Phe Ala Ser Leu Thr Ser Leu Gln			399

	95	100	105	
acc ctc agc ctc ggc tcc aac cct gct ctc caa ccc tgg tcc ttc ccc				447
Thr Leu Ser Leu Gly Ser Asn Pro Ala Leu Gln Pro Trp Ser Phe Pro				
110	115	120		
acc gag ctc act tcc tcc tct aac cta atc gac ctc gac ctc gcc acc				495
Thr Asp Leu Thr Ser Ser Asn Leu Ile Asp Leu Asp Leu Ala Thr				
125	130	135		
gta tcc ctc acc ggt ccc ttg ccg gac att ttc gac aaa ttc cct tcc				543
Val Ser Leu Thr Gly Pro Leu Pro Asp Ile Phe Asp Lys Phe Pro Ser				
140	145	150	155	
ctt caa cac ctt cgc ctc tct tac aac aac ctc acc ggc aat tta ccc				591
Leu Gln His Leu Arg Leu Ser Tyr Asn Asn Leu Thr Gly Asn Leu Pro				
160	165	170		
tcc tct ttc tcc gcc gcc aac aat ctc gaa acg ctc tgg ctc aac aac				639
Ser Ser Phe Ser Ala Ala Asn Asn Leu Glu Thr Leu Trp Leu Asn Asn				
175	180	185		
cag gcc gcc ggc ttg tcc ggt acc ctc ctc gtc ctc tcc aac atg tct				687
Gln Ala Ala Gly Leu Ser Gly Thr Leu Leu Val Leu Ser Asn Met Ser				
190	195	200		
gca tta aac cag tcc tgg ctc aat aag aac cag ttc acc ggt tcc ata				735
Ala Leu Asn Gln Ser Trp Leu Asn Lys Asn Gln Phe Thr Gly Ser Ile				
205	210	215		
ccg gat tta tcg caa tgc acg gct ttg tct gac ttg cag ctc agg gat				783
Pro Asp Leu Ser Gln Cys Thr Ala Leu Ser Asp Leu Gln Leu Arg Asp				
220	225	230	235	
aac cag tta act ggt gtg gtt ccc gct tca ttg aca agt ctt cct agt				831
Asn Gln Leu Thr Gly Val Val Pro Ala Ser Leu Thr Ser Leu Pro Ser				
240	245	250		
ttg aag aaa gtt tct ctg gat aat aat gag ctt cag ggg cct gtg ccc				879
Leu Lys Lys Val Ser Leu Asp Asn Asn Glu Leu Gln Gly Pro Val Pro				
255	260	265		
gtg ttt ggg aaa ggt gtg aat gtt act ctc gat ggg att aat agt ttt				927
Val Phe Gly Lys Gly Val Asn Val Thr Leu Asp Gly Ile Asn Ser Phe				
270	275	280		
tgt ctt gat act cct ggg aat tgt gat ccc agg gtg atg gtt ttg ctg				975
Cys Leu Asp Thr Pro Gly Asn Cys Asp Pro Arg Val Met Val Leu Leu				
285	290	295		
cag att gcc gag gca ttc ggg tat cca att cgg ttg gca gag tcg tgg				1023
Gln Ile Ala Glu Ala Phe Gly Tyr Pro Ile Arg Leu Ala Glu Ser Trp				
300	305	310	315	
aag ggg aat gat ccg tgt gat ggt tgg aac tat gtt gtg tgt gct gcc				1071
Lys Gly Asn Asp Pro Cys Asp Gly Trp Asn Tyr Val Val Cys Ala Ala				
320	325	330		

gga aag att att act gtc aat ttc gag aaa cag ggt ttg cag ggt acc Gly Lys Ile Ile Thr Val Asn Phe Glu Lys Gln Gly Leu Gln Gly Thr 335	340	345	1119
atc tcc cct gca ttt gcc aat ttg act gac ttg agg act ttg ttt ctc Ile Ser Pro Ala Phe Ala Asn Leu Thr Asp Leu Arg Thr Leu Phe Leu 350	355	360	1167
aat ggc aat aat ttg atc ggt tct ata cct gat agt ttg atc act ttg Asn Gly Asn Asn Leu Ile Gly Ser Ile Pro Asp Ser Leu Ile Thr Leu 365	370	375	1215
cct cag ctt cag act ctt gat gtg tct gac aac aac ctc tct gga ttg Pro Gln Leu Gln Thr Leu Asp Val Ser Asp Asn Asn Leu Ser Gly Leu 380	385	390	1263
gtt cct aag ttc cca cca aag gtg aag ttg gtg act gcg gga aat gct Val Pro Phe Pro Pro Lys Val Lys Leu Val Thr Ala Gly Asn Ala 400	405	410	1311
ttg ctt ggg aaa ccc ctt agt cct gga ggt gga cca agt gga act act Leu Leu Gly Lys Pro Leu Ser Pro Gly Gly Pro Ser Gly Thr Thr 415	420	425	1359
cct tct ggg ttt tcg acc ggt gga agt ggt ggt gaa tcc tca aag ggt Pro Ser Gly Ser Ser Thr Gly Ser Gly Gly Glu Ser Ser Lys Gly 430	435	440	1407
aat tct tcg gtg tcg cca ggt tgg att gct ggt ata gtt gtt att gtg Asn Ser Ser Val Ser Pro Gly Trp Ile Ala Gly Ile Val Val Ile Val 445	450	455	1455
ttg ttt ttt att gca gtg gtg ttg ttt gtg tct tgg aag tgg ttt gtc Leu Phe Phe Ile Ala Val Val Leu Phe Val Ser Trp Lys Cys Phe Val 460	465	470	1503
aac aag ctg cag ggg aag ttc agt agg gtt aaa ggt cat gaa aat ggg Asn Lys Leu Gln Gly Lys Phe Ser Arg Val Lys Gly His Glu Asn Gly 480	485	490	1551
aaa gga ggc ttt aaa ctt gat gct gtc cat gtt tct aat gga tat ggt Lys Gly Gly Phe Lys Leu Asp Ala Val His Val Ser Asn Gly Tyr Gly 495	500	505	1599
ggc gtt cca gtt gag ttg caa aca agc cag agc agt ggt gat cgc agt gac Gly Val Pro Val Glu Leu Gln Ser Gln Ser Ser Gly Asp Arg Ser Asp 510	515	520	1647
ctt cat gct tta gat ggt cca aca ttt tct atc caa gtt ctt cga caa Leu His Ala Leu Asp Gly Pro Thr Phe Ser Ile Gln Val Leu Arg Gln 525	530	535	1695
gtc acg aat aat ttc agc gag gag aac att tta ggc agg gga ggg ttt Val Thr Asn Asn Phe Ser Glu Glu Asn Ile Leu Gly Arg Gly Gly Phe 540	545	550	1743
gga gta gtt tat aag ggg gtg ttg cat gat gga aca aaa att gct gtt Gly Val Val Tyr Lys Gly Val Leu His Asp Gly Thr Lys Ile Ala Val 555			1791

560	565	570	
aag agg atg gaa tct gtt gca atg ggg aac aaa ggt cag aaa gag ttc Lys Arg Met Glu Ser Val Ala Met Gly Asn Lys Gly Gln Lys Glu Phe 575	580	585	1839
gaa gca gag att gca ctt ctt agt aaa gtt agg cat aga cat ttg gtt Glu Ala Glu Ile Ala Leu Leu Ser Lys Val Arg His Arg His Leu Val 590	595	600	1887
gct ctt cta ggg tat tgc atc aat ggc aat gaa agg ctt ttg gtg tat Ala Leu Leu Gly Tyr Cys Ile Asn Gly Asn Glu Arg Leu Leu Val Tyr 605	610	615	1935
gag tat atg cct caa ggt aca tta aca cag cac ctg ttt gag ttg cag Glu Tyr Met Pro Gln Gly Thr Leu Thr Gln His Leu Phe Glu Trp Gln 620	625	630	1983
gag cat ggg tat gct cct ttg act tgg aag caa agg gta gta ata gct Glu His Gly Tyr Ala Pro Leu Thr Trp Lys Gln Arg Val Val Ile Ala 640	645	650	2031
ttg gat gta gcg cgg ggg gtg gaa tac ttg cac agt tta gct cag caa Leu Asp Val Ala Arg Gly Val Glu Tyr Leu His Ser Leu Ala Gln Gln 655	660	665	2079
agc ttc att cat aga gac tta aaa ccc tca aac ata cta cta ggc gat Ser Phe Ile His Arg Asp Leu Lys Pro Ser Asn Ile Leu Leu Gly Asp 670	675	680	2127
gac atg aga gca aag gtt gct gat ttt ggg ttg gtt aaa aat gca cca Asp Met Arg Ala Lys Val Ala Asp Phe Gly Leu Val Lys Asn Ala Pro 685	690	695	2175
gat ggg aag tat tct gtt gag aca cgg ttg gct gga aca ttt gga tat Asp Gly Lys Tyr Ser Val Glu Thr Arg Leu Ala Gly Thr Phe Gly Tyr 700	705	710	2223
ctt gca cct gag tat gca g gtacagaaaag cctttgattt tagttttgt Leu Ala Pro Glu Tyr Ala 720			2272
caatgtgcc ttaatttga agttcatatt ttatatgctc gtatgggt gttatagctg ttgggttata cttcaatatac atgcttcggt gttcagaaaa tttaagttagt tcaccagagt aatcgctcac atacaaaaaaa aaagttagaaa gagttaaagg gaaaataatt gataactcaat tccttagatac atggctactt caaaattttt tggggctatt tctttgcaat gttatatttt gctctttca cgtgttttgt tgagttgggt ggggggtttt ctgcatagtt cttgggttgt gtgcctcaa aagatatgtc gagccatttt tagacagttt accagagttt gactctcaat tatcccttac gatgtgtatca atactctggt tgcattaaat ctttgatttc tttatattgt catgggctta ggtggtagtt ctctgtcgcactaataatcaact gttgtggaaat ttatcattct 2752			2332 2392 2452 2512 2572 2632 2692 2752

atcccatttc ctgttggat cgggcattt aaacatctt tgtaaaaact gttatttga 2812
tcgggttgtt ttttatccat ttagcatcaa gactttgcg agcataaaac ttctttaaat 2872
gttgcattga atgtgattag atggcatttg attagtgcg tgcattttgtt ttgattatat 2932
ttaatgttac tctgtttctt accag ct act gga aga gtg aca acc aaa ggt 2983
Ala Thr Gly Arg Val Thr Thr Lys Val
725 730
gat gtt tat gca ttt gga gta gtt ctg atg gaa ctt atc acc ggt aga 3031
Asp Val Tyr Ala Phe Gly Val Val Met Glu Leu Ile Thr Gly Arg
735 740 745
aag gca ttg gat gat act gtg cca gat gaa agg tct cac ttg gtg aca 3079
Lys Ala Leu Asp Asp Thr Val Pro Asp Glu Arg Ser His Leu Val Thr
750 755 760
tgg ttc cgt agg gta cta att aac aag gaa aac att cca aag gca att 3127
Trp Phe Arg Arg Val Leu Ile Asn Lys Glu Asn Ile Pro Lys Ala Ile
765 770 775
gat caa att ctc aat cca gat gag gaa acc atg gga agc ata tat aca 3175
Asp Gln Ile Leu Asn Pro Asp Glu Glu Thr Met Gly Ser Ile Tyr Thr
780 785 790
gtg gcc gag ctg gca ggc cat tgc act gct cgc gaa cca tac caa agg 3223
Val Ala Glu Leu Ala Gly His Cys Thr Ala Arg Glu Pro Tyr Gln Arg
795 800 805 810
ccg gat atg ggt cat gca gtg aac gtc ttg gtt cct ctt gtg gag caa 3271
Pro Asp Met Gly His Ala Val Asn Val Leu Val Pro Leu Val Glu Gln
815 820 825
tgg aaa cct act agc cat gat gaa gaa gag gaa gac ggc tct ggc ggt 3319
Trp Lys Pro Thr Ser His Asp Glu Glu Glu Asp Gly Ser Gly Gly
830 835 840
gac ctt cat atg agc ctt cct caa gct cta cga agg tgg caa gcc aac 3367
Asp Leu His Met Ser Leu Pro Gln Ala Leu Arg Arg Trp Gln Ala Asn
845 850 855
gaa ggc act tcc tca ata ttt aat gac att tcc atc tca caa acc caa 3415
Glu Gly Thr Ser Ser Ile Phe Asn Asp Ile Ser Gln Thr Gln
860 865 870
tca agc atc tcc tct aaa cct gca ggg ttt gca gac tcc ttt gat tca 3463
Ser Ser Ile Ser Ser Lys Pro Ala Gly Phe Ala Asp Ser Phe Asp Ser
875 880 885 890
atg gat tgc cgt taa cc 3480
Met Asp Cys Arg

<210> 46
<211> 3480
<212> DNA
<213> Glycine max

<220>
<221> CDS
<222> (79) .. (2242) , (2958) .. (3478)

<223> Seq ID: rhg4_Jack_amplicon

<400> 46

```

atgtctctcc ccaaaaacctt actttcttc ttccttctcc tcacgatccc cctagtaacc      60
gccgatgacg ccgcgggt atg tcg aat tt ttc aaa tcc ctc act cca ccg      111
          Met Ser Asn Phe Leu Lys Ser Leu Thr Pro Pro
          1           5           10

ccc tcg ggc tgg tct gaa aca acc cca ttc tgc caa tgg aag ggt atc      159
Pro Ser Gly Trp Ser Glu Thr Thr Pro Phe Cys Gln Trp Lys Gly Ile
          15           20           25

caa tgc gat tca tcc agc cac gtg acc agc ata agc ctc gct tcg cag      207
Gln Cys Asp Ser Ser His Val Thr Ser Ile Ser Ala Ser Gln
          30           35           40

tcc ctc acc gga aca ctc ccc tgg gat ctc aat tcc ctc tct caa ctc      255
Ser Leu Thr Gly Thr Leu Pro Ser Asp Leu Asn Ser Leu Ser Gln Leu
          45           50           55

cgc act ctc tcc ctc caa gac aat tcc ctc acc ggc acc ctc cct tct      303
Arg Thr Leu Ser Leu Gln Asp Asn Ser Leu Thr Gly Thr Leu Pro Ser
          60           65           70           75

ctc tcc aac ctt tct ttc ctc caa acc gtc tac tta aac cgcc aac aac      351
Leu Ser Asn Leu Ser Phe Leu Gln Thr Val Tyr Leu Asn Arg Asn Asn
          80           85           90

ttc tcc tcc gtg tcc ccc acc gct ttc gcc tcc cta acc tcc ctc caa      399
Phe Ser Ser Val Ser Pro Thr Ala Phe Ala Ser Leu Thr Ser Leu Gln
          95           100          105

acc ctc agc ctc ggc tcc aac cct gct ctc caa ccc tgg tcc ttc ccc      447
Thr Leu Ser Leu Gly Ser Asn Pro Ala Leu Gln Pro Trp Ser Phe Pro
          110          115          120

acc gac ctc act tcc tcc tct aac cta atc gac ctc gac ctc gcc acc      495
Thr Asp Leu Thr Ser Ser Asn Leu Ile Asp Leu Asp Leu Ala Thr
          125          130          135

gta tcc ctc acc ggt ccc ttg ccg gac att ttc gac aaa ttc cct tcc      543
Val Ser Leu Thr Gly Pro Leu Pro Asp Ile Phe Asp Lys Phe Pro Ser
          140          145          150          155

ctt caa cac ctt cgc ctc tct tac aac aac ctc acc ggc aat tta ccc      591
Leu Gln His Leu Arg Leu Ser Tyr Asn Asn Leu Thr Gly Asn Leu Pro
          160          165          170

tcc tct ttc tcc gcc gcc aac aat ctc gaa acg ctc tgg ctc aac aac      639
Ser Ser Phe Ser Ala Ala Asn Asn Leu Glu Thr Leu Trp Leu Asn Asn
          175          180          185

```

cag gcc ggc ttg tcc ggt acc ctc ctc gtc ctc tcc aac atg tct Gln Ala Ala Gly Leu Ser Gly Thr Leu Leu Val Leu Ser Asn Met Ser 190 195 200	687
gca tta aac cag tcc tgg ctc aat aag aac cag ttc acc ggt tcc ata Ala Leu Asn Gln Ser Trp Leu Asn Lys Asn Gln Phe Thr Gly Ser Ile 205 210 215	735
ccg gat tta tcg caa tgc acg gct ttg tct gac ttg cag ctc agg gat Pro Asp Leu Ser Gln Cys Thr Ala Leu Ser Asp Leu Gln Leu Arg Asp 220 225 230 235	783
aac cag tta act ggt gtg gtt ccc gct tca ttg aca agt ctt cct agt Asn Gln Leu Thr Gly Val Val Pro Ala Ser Leu Thr Ser Leu Pro Ser 240 245 250	831
ttg aag aaa gtt tct ctg gat aat aat gag ctt cag ggg cct gtg ccc Leu Lys Lys Val Ser Leu Asp Asn Asn Glu Leu Gln Gly Pro Val Pro 255 260 265	879
gtg ttt ggg aaa ggt gtg aat gtt act ctc gat ggg att aat agt ttt Val Phe Gly Lys Gly Val Asn Val Thr Leu Asp Gly Ile Asn Ser Phe 270 275 280	927
tgt ctt gat act cct ggg aat tgt gat ccc agg gtg atg gtt ttg ctg Cys Leu Asp Thr Pro Gly Asn Cys Asp Pro Arg Val Met Val Leu Leu 285 290 295	975
cag att gcc gag gca ttc ggg tat cca att cgg ttg gca gag tcg tgg Gln Ile Ala Glu Ala Phe Gly Tyr Pro Ile Arg Leu Ala Glu Ser Trp 300 305 310 315	1023
aag ggg aat gat ccg tgt gat ggt tgg aac tat gtt gtg tgt gct gcc Lys Gly Asn Asp Pro Cys Asp Gly Trp Asn Tyr Val Val Cys Ala Ala 320 325 330	1071
gga aag att att act gtc aat ttc gag aaa cag ggt ttg cag ggt acc Gly Lys Ile Ile Thr Val Asn Phe Glu Lys Gln Gly Leu Gln Gly Thr 335 340 345	1119
atc tcc cct gca ttt gcc aat ttg act gac ttg agg act ttg ttt ctc Ile Ser Pro Ala Phe Ala Asn Leu Thr Asp Leu Arg Thr Leu Phe Leu 350 355 360	1167
aat ggc aat aat ttg atc ggt tct ata cct gat agt ttg atc act ttg Asn Gly Asn Asn Leu Ile Gly Ser Ile Pro Asp Ser Leu Ile Thr Leu 365 370 375	1215
cct cag ctt cag act ctt gat gtg tct gac aac aac ctc tct gga ttg Pro Gln Leu Gln Thr Leu Asp Val Ser Asp Asn Asn Leu Ser Gly Leu 380 385 390 395	1263
gtt cct aag ttc cca cca aag gtg aag ttg gtg act gcg gga aat gct Val Pro Lys Phe Pro Pro Lys Val Lys Leu Val Thr Ala Gly Asn Ala 400 405 410	1311
ttg ctt ggg aaa ccc ctt agt cct gga ggt gga cca agt gga act act	1359

Leu Leu Gly Lys Pro Leu Ser Pro Gly Gly Gly Pro Ser Gly Thr Thr			
415	420	425	
cct tct ggg tct tcg acc ggt gga agt ggt ggt gaa tcc tca aag ggt			1407
Pro Ser Gly Ser Ser Thr Gly Gly Ser Gly Glu Ser Ser Lys Gly			
430	435	440	
aat tct tcg gtg tcg cca ggt tgg att gct ggt ata gtt gtt att gtg			1455
Asn Ser Ser Val Ser Pro Gly Trp Ile Ala Gly Ile Val Val Ile Val			
445	450	455	
ttg ttt ttt att gca gtg gtg ttg ttt gtg tct tgg aag tgt ttt gtc			1503
Leu Phe Phe Ile Ala Val Val Leu Phe Val Ser Trp Lys Cys Phe Val			
460	465	470	475
aac aag ctg cag ggg aag ttc agt agg gtt aaa ggt cat gaa aat ggg			1551
Asn Lys Leu Gln Gly Lys Phe Ser Arg Val Lys Gly His Glu Asn Gly			
480	485	490	
aaa gga ggc ttt aaa ctt gat gct gtc cat gtt tct aat gga tat ggt			1599
Lys Gly Gly Phe Lys Leu Asp Ala Val His Val Ser Asn Gly Tyr Gly			
495	500	505	
ggt gtt cca gtt gag ttg caa agc cag agc agt ggt gat cgc agt gac			1647
Gly Val Pro Val Glu Leu Gln Ser Gln Ser Ser Gly Asp Arg Ser Asp			
510	515	520	
ctt cat gct tta gat ggt cca aca ttt tct atc caa gtt ctt cga caa			1695
Leu His Ala Leu Asp Gly Pro Thr Phe Ser Ile Gln Val Leu Arg Gln			
525	530	535	
gtg acg aat aat ttc agc gag gag aac att tta ggc agg gga ggg ttt			1743
Val Thr Asn Asn Phe Ser Glu Glu Asn Ile Leu Gly Arg Gly Gly Phe			
540	545	550	555
gga gta gtt tat aag ggg gtg ttg cat gat gga aca aaa att gct gtt			1791
Gly Val Val Tyr Lys Gly Val Leu His Asp Gly Thr Lys Ile Ala Val			
560	565	570	
aag agg atg gaa tct gtt gca atg ggg aac aaa ggt cag aaa gag ttc			1839
Lys Arg Met Glu Ser Val Ala Met Gly Asn Lys Gly Gln Lys Glu Phe			
575	580	585	
gaa gca gag att gca ctt ctt agt aaa gtt agg cat aga cat ttg gtt			1887
Glu Ala Glu Ile Ala Leu Leu Ser Lys Val Arg His Arg His Leu Val			
590	595	600	
gct ctt cta ggg tat tgc atc aat ggc aat gaa agg ctt ttg gtg tat			1935
Ala Leu Leu Gly Tyr Cys Ile Asn Gly Asn Glu Arg Leu Leu Val Tyr			
605	610	615	
gag tat atg cct caa tta aca cag cac ctg ttt gag tgg cag			1983
Glu Tyr Met Pro Gln Gly Thr Leu Thr Gln His Leu Phe Glu Trp Gln			
620	625	630	635
gag cat ggg tat gct cct ttg act tgg aag caa agg gta gta ata gct			2031
Glu His Gly Tyr Ala Pro Leu Thr Trp Lys Gln Arg Val Val Ile Ala			
640	645	650	

ttg gat gta gcg cgg ggg gtg gaa tac ttg cac agt tta gct cag caa Leu Asp Val Ala Arg Gly Val Glu Tyr Leu His Ser Leu Ala Gln Gln 655	660	665	2079
agc ttc att cat aga gac tta aaa ccc tca aac ata cta cta ggc gat Ser Phe Ile His Arg Asp Leu Lys Pro Ser Asn Ile Leu Leu Gly Asp 670	675	680	2127
gac atg aga gca aag gtt gct gat ttt ggg ttg gtt aaa aat gca cca Asp Met Arg Ala Lys Val Ala Asp Phe Gly Leu Val Lys Asn Ala Pro 685	690	695	2175
gtt ggg aag tat tct gtt gag aca cgg ttg gct gga aca ttt gga tat Asp Gly Lys Tyr Ser Val Glu Thr Arg Leu Ala Gly Thr Phe Gly Tyr 700	705	710	715
ctt gca cct gag tat gca g gtacagaaaag cctttgattt tagttttgt Leu Ala Pro Glu Tyr Ala 720			2272
caatttgtgcc ttaatatttga agttcatattt ttatatgctc gtatgggtg gttatagctg ttgggttatta ctccaatatac atgctcggt gttcagaaaaa tttaagttagt tcaccagagt aatcgctcac atacaaaaaa aaagttagaaa gagttaaagg gaaaataatt gataactcaat tcctagatac atggctactt caaaattctt tggtggctatt tctttgcaat gttatatttt gctctttca cgtgttttg tgagttgggt ggggggttgc ctgcatagtt cttgggtgggt gatgcctcaa aagatatgtc gagccatttt tagacagttt accagagttt gactctcaat tatcccttacatgtgtatgtc atactctggt tgcattaaat ctttgatttc tgatatatgt catgggctta ggtggtagtt ctcttcgcacta actaaatactt gttgtggaaat ttatcattt atccccatttc cttgttggat cggtgcattt aacatcttt tgttaaaact gttatatttga tcgggtttgt ttttatccat tttagatcaa gacttttgc agcataaaaac ttccctaaaaat gttgcatttgc atgtgtttagt atggcatttg attagtgcta gtttattttgt ttgattatata ttaatgttac tctgtttctt accag ct act gga aga gtg aca acc aaa gtg Ala Thr Gly Arg Val Thr Thr Lys Val 725	730		2332
gat gtt tat gca ttt gga gta gtt ctg atg gaa ctt atc acc ggt aga Asp Val Tyr Ala Phe Gly Val Val Leu Met Glu Leu Ile Thr Gly Arg 735	740	745	2392
aag gca ttg gat act gtg cca gat gaa agg tct cac ttg gtg aca Lys Ala Leu Asp Asp Thr Val Pro Asp Glu Arg Ser His Leu Val Thr 750	755	760	2452
tgg ttc cgt agg gta cta att aac aag gaa aac att cca aag gca att Trp Phe Arg Arg Val Leu Ile Asn Lys Glu Asn Ile Pro Lys Ala Ile 765	770	775	2512
			2572
			2632
			2692
			2752
			2812
			2872
			2932
			2983
			3031
			3079
			3127

gat caa att ctc aat cca gat gag gaa acc atg gga agc ata tat aca Asp Gln Ile Leu Asn Pro Asp Glu Glu Thr Met Gly Ser Ile Tyr Thr 780 785 790	3175
gtg gcc gag ctg gca ggc cat tgc act gct cgc gaa cca tac caa agg Val Ala Glu Leu Ala Gly His Cys Thr Ala Arg Glu Pro Tyr Gln Arg 795 800 805 810	3223
ccg gat atg ggt cat gca gtg aac gtc ttg gtt cct ctt gtg gag caa Pro Asp Met Gly His Ala Val Asn Val Leu Val Pro Leu Val Glu Gln 815 820 825	3271
tgg aaa cct act agc cat gat gaa gaa gag gaa gac ggc tct ggc ggt Trp Lys Pro Thr Ser His Asp Glu Glu Glu Asp Gly Ser Gly Gly 830 835 840	3319
gac ctt cat atg agc ctt cct caa gct cta cga agg tgg caa gcc aac Asp Leu His Met Ser Leu Pro Gln Ala Leu Arg Arg Trp Gln Ala Asn 845 850 855	3367
gaa ggc act tcc tca ata ttt aat gac att tcc atc tca caa acc caa Glu Gly Thr Ser Ser Ile Phe Asn Asp Ile Ser Ile Ser Gln Thr Gln 860 865 870	3415
tca agc atc tcc tct aaa cct gca ggg ttt gca gac tcc ttt gat tca Ser Ser Ile Ser Ser Lys Pro Ala Gly Phe Ala Asp Ser Phe Asp Ser 875 880 885 890	3463
atg gat tgc cgt taa cc Met Asp Cys Arg	3480
 <210> 47	
<211> 3480	
<212> DNA	
<213> Glycine max	
 <220>	
<221> CDS	
<222> (79)..(2242),(2958)..(3478)	
 <223> Seq ID: rhg4_peking_amplicon	
 <400> 47	
atgtctctcc ccaaaaacctt actttctctc ttcccttctcc tcacgatccc cctagtaacc	60
ggcgatgacg ccgcgggtg atg tcg aat ttt ctc aaa tcc ctc act cca ccg Met Ser Asn Phe Leu Lys Ser Leu Thr Pro Pro 1 5 10	111
ccc tcg ggc tgg tct gaa aca acc cca ttc tgc caa tgg aag ggt atc Pro Ser Gly Trp Ser Glu Thr Pro Phe Cys Gln Trp Lys Gly Ile 15 20 25	159
caa tgc gat tca tcc agc cac gtg acc agc ata agc ctc gct tgc cag Gln Cys Asp Ser Ser His Val Thr Ser Ile Ser Leu Ala Ser Gln	207

	30	35	40	
tcc ctc acc gga aca ctc ccc tcg gat ctc aat tcc ctc tct caa ctc Ser Leu Thr Gly Thr Leu Pro Ser Asp Leu Asn Ser Leu Ser Gln Leu	45	50	55	255
cgc act ctc tcc ctc caa gac aat tcc ctc acc ggc acc ctc cct tct Arg Thr Leu Ser Leu Gln Asp Asn Ser Leu Thr Gly Thr Leu Pro Ser	60	65	70	303
ctc tcc aac ctt ttc ctc caa acc gtc tac ttc aac cgc aac aac Leu Ser Asn Leu Ser Phe Leu Gln Thr Val Tyr Phe Asn Arg Asn Asn	80	85	90	351
ttc tcc tcc gtg tcc ccc acc gcc ttc gcc tcc cta acc tcc ctc caa Phe Ser Ser Val Ser Pro Thr Ala Phe Ala Ser Leu Thr Ser Leu Gln	95	100	105	399
acc ctc agc ctc ggc tcc aac cct gct ctc caa ccc tgg tcc ttc ccc Thr Leu Ser Leu Gly Ser Asn Pro Ala Leu Gln Pro Trp Ser Phe Pro	110	115	120	447
acc gac ctc act tcc tcc tct aac cta atc gac ctc gac ctc gcc acc Thr Asp Leu Thr Ser Ser Asn Leu Ile Asp Leu Asp Leu Ala Thr	125	130	135	495
gta tcc ctc acc ggt ccc ttg ccg gac att ttc gac aaa ttc cct tcc Val Ser Leu Thr Gly Pro Leu Pro Asp Ile Phe Asp Lys Phe Pro Ser	140	145	150	543
ctt caa cac ctt ccg ctc tct tac aac aac ctc acc ggc aat tta ccc Leu Gln His Leu Arg Leu Ser Tyr Asn Asn Leu Thr Gly Asn Leu Pro	160	165	170	591
tcc tct ttc tcc gcc aac aat ctc gaa acg ctc tgg ctc aac aac Ser Ser Phe Ser Ala Ala Asn Asn Leu Glu Thr Leu Trp Leu Asn Asn	175	180	185	639
cag gcc gcc ggc ttg tcc ggt acc ctc ctc gtc ctc tcc aac atg tct Gln Ala Ala Gly Leu Ser Gly Thr Leu Leu Val Leu Ser Asn Met Ser	190	195	200	687
gca tta aac cag tcc tgg ctc aat aag aac cag ttc acc ggt tcc att Ala Leu Asn Gln Ser Trp Leu Asn Lys Asn Gln Phe Thr Gly Ser Ile	205	210	215	735
ccg gat tta tcg caa tgc acg gct ttg tct gac ttg cag ctc agg gat Pro Asp Leu Ser Gln Cys Thr Ala Leu Ser Asp Leu Gln Leu Arg Asp	220	225	230	783
aac cag tta act ggt gtg gtt ccc gct tca ttg aca agt ctt cct agt Asn Gln Leu Thr Gly Val Val Pro Ala Ser Leu Thr Ser Leu Pro Ser	240	245	250	831
ttg aag aaa gtt tct ctg gat aat aat gag ctt cag ggg cct gtg ccc Leu Lys Lys Val Ser Leu Asp Asn Asn Glu Leu Gln Gly Pro Val Pro	255	260	265	879

gtg ttt ggg aaa ggt gtg aat gtt act ctc gat ggg att aat agt att		927
Val Phe Gly Lys Gly Val Asn Val Thr Leu Asp Gly Ile Asn Ser Phe		
270	275	280
tgt ctt gat act cct ggg aat tgt gat ccc agg gtg atg gtt ttg ctg		975
Cys Leu Asp Thr Pro Gly Asn Cys Asp Pro Arg Val Met Val Leu Leu		
285	290	295
cag att gcc gag gca ttc ggg tat cca att cgg ttg gca gag tcg tgg		1023
Gln Ile Ala Glu Ala Phe Gly Tyr Pro Ile Arg Leu Ala Glu Ser Trp		
300	305	310
aag ggg aat gat ccg tgt gat ggt tgg aac tat gtt gtg tgt gct gcc		1071
Lys Gly Asn Asp Pro Cys Asp Gly Trp Asn Tyr Val Val Cys Ala Ala		
320	325	330
gga aag att att act gtc aat ttc gag aaa cag ggt ttg cag ggt acc		1119
Gly Lys Ile Ile Thr Val Asn Phe Glu Lys Gln Gly Leu Gln Gly Thr		
335	340	345
atc tcc cct gca ttt gcc aat ttg act gac ttg agg act ttg ttt ctc		1167
Ile Ser Pro Ala Phe Ala Asn Leu Thr Asp Leu Arg Thr Leu Phe Leu		
350	355	360
aat ggc aat aat ttg atc ggt tct ata cct gat agt ttg atc act ttg		1215
Asn Gly Asn Asn Leu Ile Gly Ser Ile Pro Asp Ser Leu Ile Thr Leu		
365	370	375
cct cag ctt cag act ctt gat gtg tct gac aac aac ctc tct gga ttg		1263
Pro Gln Leu Gln Thr Leu Asp Val Ser Asp Asn Asn Leu Ser Gly Leu		
380	385	390
gtt cct aag ttc cca cca aag gtg aag ttg gtg act gcg gga aat gct		1311
Val Pro Lys Phe Pro Pro Lys Val Lys Leu Val Thr Ala Gly Asn Ala		
400	405	410
ttg ctt ggg aaa ccc ctt agt cct gga ggt gga cca agt gga act act		1359
Leu Leu Gly Pro Leu Ser Pro Gly Gly Pro Ser Gly Thr Thr		
415	420	425
cct tct ggg acc ggt gga agt ggt ggt gaa tcc tca aag ggt		1407
Pro Ser Gly Ser Ser Thr Gly Gly Ser Gly Gly Glu Ser Ser Lys Gly		
430	435	440
aat tct tcg gtc tcg cca ggt tgg att gct ggt ata gtt gtt att gtc		1455
Asn Ser Ser Val Ser Pro Gly Trp Ile Ala Gly Ile Val Val Ile Val		
445	450	455
ttg ttt ttt att gca gtc gtg ttg ttt gtg tct ttg aag tgg ttt gtc		1503
Leu Phe Ile Ala Val Val Leu Phe Val Ser Trp Lys Cys Phe Val		
460	465	470
aac aag ctg cag ggg aag ttc agt agg gtt aaa ggt cat gaa aat ggg		1551
Asn Lys Leu Gln Gly Lys Phe Ser Arg Val Lys Gly His Glu Asn Gly		
480	485	490
aaa gga ggc ttt aaa ctt gat gct gtc cat gtt tct aat gga tat ggt		1599
Lys Gly Gly Phe Lys Leu Asp Ala Val His Val Ser Asn Gly Tyr Gly		

495	500	505	
ggt gtt cca gtt gag ttg caa agc cag agc agt ggt gat cgc agt gac Gly Val Pro Val Glu Leu Gln Ser Gln Ser Ser Gly Asp Arg Ser Asp	510	515	1647
		520	
ctt cat gct tta gat ggt cca aca ttt tct atc caa gtt ctt cga caa Leu His Ala Leu Asp Gly Pro Thr Phe Ser Ile Gln Val Leu Arg Gln	525	530	1695
		535	
gtg acg aat aat ttc agc gag gag aac att tta ggc agg gga ggg ttt Val Thr Asn Asn Phe Ser Glu Glu Asn Ile Leu Gly Arg Gly Gly Phe	540	545	1743
		550	
gga gta gtt tat aag ggg gtg ttg cat gat gga aca aaa att gct gtt Gly Val Val Tyr Lys Gly Val Leu His Asp Gly Thr Lys Ile Ala Val	560	565	1791
		570	
aag agg atg gaa tct gtt gca atg ggg aac aaa ggt cag aaa gag ttc Lys Arg Met Glu Ser Val Ala Met Gly Asn Lys Gly Gln Lys Glu Phe	575	580	1839
		585	
gaa gca gag att gca ctt ctt agt aaa gtt agg cat aga cat ttg gtt Glu Ala Glu Ile Ala Leu Leu Ser Lys Val Arg His Arg His Leu Val	590	595	1887
		600	
gct ctt cta ggg tat tgc atc aat ggc aat gaa agg ctt ttg gtg tat Ala Leu Leu Gly Tyr Cys Ile Asn Gly Asn Glu Arg Leu Leu Val Tyr	605	610	1935
		615	
gag tat atg cct caa ggt aca tta aca cag cac ctg ttt gag tgg cag Glu Tyr Met Pro Gln Gly Thr Leu Thr Gln His Leu Phe Glu Trp Gln	620	625	1983
		630	
gag cat ggg tat gct cct ttg act tgg aag caa agg gta gta ata gct Glu His Gly Tyr Ala Pro Leu Thr Trp Lys Gln Arg Val Val Ile Ala	640	645	2031
		650	
ttg gat gta gcg cgg ggg gtg gaa tac ttg cac agt tta gct cag caa Leu Asp Val Ala Arg Gly Val Glu Tyr Leu His Ser Leu Ala Gln Gln	655	660	2079
		665	
agc ttc att cat aga gac tta aaa ccc tca aac ata cta cta ggc gat Ser Phe Ile His Arg Asp Leu Lys Pro Ser Asn Ile Leu Leu Gly Asp	670	675	2127
		680	
gac atg aga gca aag gtt gct gat ttt ggg ttg gtt aaa aat gca cca Asp Met Arg Ala Lys Val Ala Asp Phe Gly Leu Val Lys Asn Ala Pro	685	690	2175
		695	
gat ggg aag tat tct gtt gag aca cgg ttg gct gga aca ttt gga tat Asp Gly Lys Tyr Ser Val Glu Thr Arg Leu Ala Gly Thr Phe Gly Tyr	700	705	2223
		710	
715			
ctt gca cct gag tat gca g gtacagaaaag cctttgattt tagttttgta Leu Ala Pro Glu Tyr Ala	720		2272

ttatgttgc	ttaatttga	agttcatatt	ttatatgctc	gtatttggt	gttatactg	2332
ttggtagta	cttcaatata	atgcctcggt	gttcagcaa	ttaagttagt	tcaccagagt	2392
aatcgctcac	ataaaaaaa	aaagtagaaa	gaggtaagg	aaaaataatt	gatactcaat	2452
tcctagatac	atggctactt	aaaaattctt	tgtggctatt	tcttgcatt	gttatatttt	2512
gctctttca	cgtttttgt	tgagttgggt	gggggttttg	ctgcatagtt	cttgggtggtt	2572
gatgcctcaa	aagatatgtc	gagccatttt	tagacagttt	accagagtt	gactctcaat	2632
tatccttac	gatgtgatga	atactcttgt	tgcatataat	ctttgattgc	tgtatattgt	2692
catgggctta	gggtgttagt	ctctgtcga	actaatact	gttggaaat	ttatcattct	2752
atccccatttc	cttgggtgat	cgggtcattt	aaacatctt	tgtaaaaact	gttattttga	2812
tcgggttgtt	ttttatccat	ttagcatca	gacttttgc	agcataaaac	ttcctaaaaat	2872
gttgcattga	atgtgattag	atggcattt	attagtgcta	gtctatttt	ttgattatat	2932
ttatgttac	tctgtttttt	accag	ct act gga aga	gtg aca acc	aaa gtt	2983
			Ala Thr Gly Arg	Val Thr Thr Lys	Val Val	
			725	730		
gat gtt tat gca ttt gga gta gtt ctg atg gaa ctt atc acc ggt aga						3031
Asp Val Tyr Ala Phe Gly Val Val Leu Met Gly Val Leu Ile Thr Gly Arg						
735	740	745				
aag gca ttg gat gat act gtg cca gat gaa agg tct cac ttg gtg aca						3079
Lys Ala Leu Asp Asp Thr Val Pro Asp Glu Arg Ser His Leu Val Thr						
750	755	760				
tgg ttc cgt agg gta cta att aac aag gaa aac att cca aag gca att						3127
Trp Phe Arg Arg Val Leu Ile Asn Lys Glu Asn Ile Pro Lys Ala Ile						
765	770	775				
gat caa att ctc aat cca gat gag gaa acc atg gga agc ata tat aca						3175
Asp Gln Ile Leu Asn Pro Asp Glu Glu Thr Met Gly Ser Ile Tyr Thr						
780	785	790				
gtt gcc gag ctg gca ggc cat tgc act gct cgc gaa cca tac caa agg						3223
Val Ala Glu Leu Ala Gly His Cys Thr Ala Arg Glu Pro Tyr Gln Arg						
795	800	805				
ccg gat atg ggt cat gca gtg aac gtc ttg gtt cct ctt gtg gag caa						3271
Pro Asp Met Gly His Ala Val Asn Val Leu Val Pro Leu Val Glu Gln						
815	820	825				
tgg aaa cct act agc cat gat gaa gaa gag gaa gac ggc tct ggc ggt						3319
Trp Lys Pro Thr Ser His Asp Glu Glu Asp Gly Ser Gly Gly						
830	835	840				
gac ctt cat atg agc ctt cct caa gct cta cga agg tgg caa gcc aac						3367
Asp Leu His Met Ser Leu Pro Gln Ala Leu Arg Arg Trp Gln Ala Asn						
845	850	855				

gaa ggc act tcc tca ata ttt aat gac att tcc atc tca caa acc caa 3415
 Glu Gly Thr Ser Ser Ile Phe Asn Asp Ile Ser Ile Ser Gln Thr Gln
 860 865 870

tca agc atc tcc tct aaa cct gca ggg ttt gca gac tcc ttt gat tca 3463
 Ser Ser Ile Ser Ser Lys Pro Ala Gly Phe Ala Asp Ser Phe Asp Ser
 875 880 885 890

atg gat tgc cgt taa cc 3480
 Met Asp Cys Arg

<210> 48
<211> 30
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_forward

<400> 48

atgtctctcc ccaaaaacctt actttcttc 30

<210> 49
<211> 30
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_reverse

<400> 49

ggtaaacggc aatccattga atcaaaggag 30

<210> 50
<211> 2685
<212> DNA
<213> Glycine max

<223> Seq ID: rhg4_A3244_amplicon_cds

<400> 50

atgtcaatt ttctcaaata cctcactcca cggccctcggt gctggctgtaa aacaacccca 60

ttctgcaat ggaagggtat ccaatgcgtat tcataccagcc acgtgaccagg cataagccctc 120

gcttcgcatt ccctcaccggg aacactcccc tcggatctca attccctctc tcaactccgc 180

actctctccc tccaaagacaa ttccctcacc ggcacccctcc ctctctctc caacccctttc 240

ttccctccaaa ccgtctactt aaacccgcaac aacttctccctt ccgtgtcccc caccggtttc 300

gcctccctaa cctccctcca aaccctcagc ctggctcca aacctgtctt ccaacccctgg 360

tccttccccca ccgacccctcac ttccctctt aacctaattcg acctcgacctt cgccacccgtt 420

tccctcaccc gtccttgcg ggacatttc gacaaatcc cttccctca acaccttcg 480
ctctcttaca acaacctc acggcaattta ccctcctt tctccgcgc caacaatctc 540
gaaacgcgtt ggctcaacaa ccaggccgc ggcttgtccg gtacccttcg ctgccttc 600
aacatgtctg cattaaacca gtccttgctc aataagaacc agttcaccgg ttccataccg 660
gatttatcgc aatgcacggc ttgtctgac ttgcagctca gggataacca gttacttgt 720
gtgttcccg cttcattgac aagtcttctt agtttgaaga aagtttctctt ggataataat 780
gagcttcagg ggcctgtgcc cggtttggg aaaggtgtga atgttactct cgtgggatt 840
aatagttttt gtcttgatac tcctggata tttgtatccc ggtgtatggg tttgtctcg 900
attggcaggc cattcggta tccaattcgg ttggcagagt cgtggaaaggg gaatgatccg 960
tgtgtatggg ggaactatgt tttgtgtgtc gcggaaaga ttattactgt caatttcgg 1020
aaacagggtt tgccagggtac catctccccct gcatttgcca atttgactga ctggaggact 1080
ttgtttctca atggcaataa ttgtatcggt tcttacatctt atatgttgcg cactttgcgt 1140
cagcttcaga ctcttgcgtgt gtctgcacac aacctctctg gattgggtcc taagttccca 1200
ccaaagggtga agttgggtac tgccggaaat gctttgcgtt ggaaaccctt tagtgcgttga 1260
ggtgtgaccaa gtggaaactac tccttctggg tcttcgaccg gtggaaagtgg tggtaatcc 1320
tcaaagggtta attttcggt gtgcgcagggt tggattgtct gtatagttgt tattgtgttg 1380
ttttttatgt cagttgtgtt gttttgtctt tggaagttgtt ttgtcaacaa gtcgcgggg 1440
aagttcagta gggttaaagg tcatgaaaat ggaaaggag gctttaaact tgatgtgtc 1500
catgtttctca atggatattgg tgggtttcca gttgagttgc aaaggccagag cagttgtgt 1560
cgcaagtgcacc ttcatgtt agatgttcca acattttcta tccaatgtct tcgacaatgg 1620
acgaaaataatt tcagcgcaggaa acatgttta ggcagggggg ggtttggagt agtttataag 1680
ggggtgttgc atgttggaaac aaaaattgtt gttaaaggag tgaaatctgt tgcaatgggg 1740
aacaagggtc agaaagaggat cgaaggcagag attgcacttc tttagtaaagt taggcataaga 1800
catttgggttgc ctcttcttagg gtattgtatc aatggcaatgg aaggctttt ggtgtatgg 1860
tatatgcctc aaggtacatt aacacagcac ctgtttgagt ggcaggagca tgggtatgtc 1920
cctttgactt ggaaggcaaa ggttagtaa gctttggatg tagcgcgggg ggtggaaatcc 1980
ttgcacagtt tagctcagca aagcttcatt catagagact taaaaccctc aaacatacta 2040
ctaggcgatg acatgagagc aaagggttgc gatgtttgggt tggttaaaaaa tgccaccatg 2100
ggggaggattt ctgttgagac acgggttgcg qaaacattt gatatcttgc acctgtatg 2160

gcagctactg gaagagtgc aaccaaagtg gatgtttatg cattggagt agttctatg 2220
 gaacttatca ccggtagaaa ggcattggat gatactgtgc cagatgaaag gtctcacttg 2280
 gtgacatggt tccgttaggt actaattaac aaggaaaaca ttccaaggc aattgtatca 2340
 atttcataatc cagatgagga aaccatggg agcatatata cagtggccg gctggcaggc 2400
 cattgactg ctgcgaacc ataccaaagg ccggatattg gtcatgcagt gaacgtctt 2460
 gttcctcttg tggagcaatg gaaacctact agccatgtg aagaagagga agacggctct 2520
 ggccgtgacc ttcatatgag ctttcctcaa gctctacaa ggtggcaagc caacgaaggc 2580
 acttcctcaa tatattaatg catttccatc tcacaaaccc aatcaagcat ctcctctaaa 2640
 cctgcagggt ttgcagactc ctggattca atggattcc gttaa 2685

<210> 51
 <211> 2685
 <212> DNA
 <213> Glycine max

 <223> Seq ID: rhg4_Minsoy_amplicon_cds

 <400> 51

atgtcgaatt ttctcaaatt cctactcca ccgcctcg gctggtctga aacaacccca 60
 ttctgcaat ggaagggtat ccaatgcgtat tcateccagcc acgtgaccag cataaggcctc 120
 gcttcgcatt ccctcacccg aacactcccc tcggatctca attccctctc tcaactccg 180
 acttcctccc tccaagacaa ttccctcacc ggcacccccc ttctctctc caacctttt 240
 ttccctccaa ccgtctactt aaaccgcac aacttcctt ccgtgtcccc caccgcattt 300
 gcctccctaa cttccctcca aaccctcagc ctggctcca accctgtct ccaaccctgg 360
 tccttccttcc cgcacctcactt ccctccctt aacctaatacg acctcgaccc cgccaccgtt 420
 tccttcaccc gtccttcggc ggacatttc gacaaatttc ctcccttca acaccccttc 480
 ctcttttaca acaacccatc cggcaattta ccctccctt ttcggccgc caacaatctc 540
 gaaacgctt ggctcaacaa ccaggccgcc ggcttgcgttcc gtaccctctt cgtctcttcc 600
 aacatgtctg cattaaacca gtcctggctc aataagaacc agttcacccg ttccataccg 660
 gatttatacgat aatgcacccg tttgtctgac ttgcagctca ggataacca gttactggt 720
 gtggttcccg cttcattgc aagtcttctt agtttgaaga aagtttctt ctggataataa 780
 gagcttcagg ggccctgtgc cgtgtttggg aaaggttgcgtt aatgttactct cgtgggatt 840
 aatagttttt gtcttgatc ttctggaaat tttgtatccca ggggtatggt tttgtctgcag 900

atggcggagg cattcggtta tccaaatccgg ttggcagagt cgtggaaagg gaatgatccg 960
tgtgtatggtt ggaactatgt tggtgtgtct gcggaaaga ttattactgt caatttcgag 1020
aaacagggtt tgcgggtac catctccccct gcatttgcctt atttgactga ctggaggact 1080
ttgtttctca atggcaataa ttgtatcggt tctatacctg atagtttgat cactttgcct 1140
cagcttcaga ctcttgatgt gtctgacaac aaccctctgt gattggttcc taagttccca 1200
ccaaagggtt gatgggtgac tgccggaaat gcttgcgtt ggaaacccct tagtccctgg 1260
ggtggaccaa gtggaaactac tccttctggg tcttcgaccg gtggaaagtgg tggtaatcc 1320
tcaaaagggtt attttcggt gtcccgagg tggattgtct gtatagttgt tattgttgg 1380
ttttttattt cagttgggtt gttttgttct tggaaagtgg ttgtcaacaa gctgcagggg 1440
aagttcagta gggttaaagg tcatgaaaat gggaaaggag gcttttaact tgatgtgtc 1500
catgtttctca atggatataatgg tgggtttcca gttgagttgc aaagccagag cagtgggtat 1560
cgcagtgcacc ttcatgtttt agatggtcca acattttctca tccaaatgtt tcgacaatgt 1620
acgaataatt tcaagcgagga aaacattttt ggcagggggg ggtttggagt agtttataag 1680
gggggtgtgc atgtggaaac aaaaatttgc gttaaagagga tggaaatctgt tgcaatgggg 1740
aacaaaagggtc agaaaagggtt cgaagcagag attgcacttc tttagtaaatg taggcata 1800
catttgggtt ctcttctagg stattgcatt aatggcaatg aaaggctttt ggtgtatgt 1860
tatatgcctc aagggtacatt aacacagcac ctgtttgagt ggcaggagca tgggtatgt 1920
cctttgactt ggaagcaag ggttagtaata gctttggatg tagcgcgggg ggtggaaatac 1980
ttgcacagtt tagtcgcata aagcttcatt catagagact taaaaccctca aaacatacta 2040
ctagggcgtatc acatgagagc aaaggttgc gatttttgggt tggtaaaaaa tgccacagat 2100
ggggaggatt ctgttgagac acggttggct ggaacatttg gatatcttgc acctgagttat 2160
gcagctactg gaagagtgc aaccaaaatgt gatgtttatg catttggagt agttctgtat 2220
gaacttataca ccggtagaaa ggcattggat gatactgtc cagatgaaag gtctcaactt 2280
gtgacatggt tccgttagggt actaattaac aaggaaaaca ttccaaaggc aattgtatca 2340
atttcataatc cagatgagga aaccatggga agcatatata cagtggccga gctggcaggc 2400
cattgcactg ctgcgcgaaacc ataccaaagg cggatattgg gtcatgcgt gaaacgttttgc 2460
gttcccttgc tggagcaatg gaaacctact agccatgtatc aagaagagga agacggctt 2520
ggccgtgtacc ttcatatgtatc ctttccttca gcttctacaa ggtggcaagc caacgaaggc 2580
actttccctcaat tatttaatgtatcattttccatc tcacaaacccca aatcaaaatcatc ctctctcaat 2640

cctgcagggt ttgcagactc ctttattca atggattgcc gttaa 2685
 <210> 52
 <211> 2685
 <212> DNA
 <213> Glycine max
 <223> Seq ID: rhg4_Jack_amplicon_cds
 <400> 52
 atgtcgatt ttctcaaatac ctcactcca ccgcctcgg gctggctga aacaacccca 60
 ttctgcaat ggaagggtat ccaatcgat tcatccagcc acgtgaccag cataagocct 120
 gcttcgact ccctcaccgg aacactcccc tcggatctca attccctctc tcaactccgc 180
 actcttcacc tccaaagacaa ttcccattcc accgcacctcc ctcttcctctc caaccccttc 240
 ttccctccaaa ccgtctactt aaaccgcAAC aacttcctct ccgtgtcccc caccgtttc 300
 gcctcccttaa cctccctcca aaccctcagc ctccgttcca accctgtct ccaaccctgg 360
 tccttccccca ccgacactca ttccttcctt aacctaattcg acctcgaccc cgccaccgtt 420
 tccttcaccgg gtcccttgcc ggacattttc gacaaatttcc ctcccttcca acacccctgg 480
 ctcttccata acaaaccctca cggcaattta ccctcccttct tcctccgcgc caacaatctc 540
 gaaaacgtctt ggctcaacaa ccaggccgccc ggcttgctcg gtaccctctt cgtccctctcc 600
 aacatgtctg cataaaaacca gtcctggctc aataagaacc agttcacccgg ttccataccg 660
 gatttatcgatc aatgcacccg tttgtctgac ttgcagctca gggataacca gttaaacttgt 720
 gtgggtccccgg cttcatttgac aagtttcttctt agtttgaaga aagttttctt ctggataataa 780
 gagcttcagg ggccctgtgcc cgtgtttggg aaaggtgtga atgttactct cgtatgggattt 840
 aatagtttttt gtcttgatac ccctggaaat tggatccccca gggtgatgggt tttgtctcg 900
 attggccgagg cattccggta tccaattccgg ttggcagagt cgtggaaaggg gaatgtcccg 960
 tggatgggtt ggaactatgt tggatgtgtt gcccggaaaga ttattactgtt caatttcggag 1020
 aaacagggtt tgccagggtac catccccctt gcatttgcaca atttgactga ctttggggactt 1080
 ttgtttctca atggcaataa tttgatcggt tctataccctt atagtttgat cactttgcctt 1140
 cagcttcaggat ctcttgcgtt gtctgacaac aacccctcttcc gattgggtcc taatggggat 1200
 cccaaagggtga agttgggtac tgccggaaat gctttgttcc gggaaaccctt tagtcccttgg 1260
 ggtggaccaa tggtggactac tccttctggg tcttcgaccg tggtggacttgg tggtggaaatcc 1320
 tcaaaagggtta atttttcgggt tgccggaggat tggatgtgtt gttatgttgcgtt 1380

ttttttattt cagttgggtt gtttttgtct tggaaagtgtt ttgtcaacaa gctgcagggg 1440
 aagttcagta gggtaaagg tcatgaaaat gggaaaggag gctttaaact tgatgctgtc 1500
 catgtttcta atggatattgg tgggttccca gttgagttgc aaagccagag cagttgtat 1560
 cgccatgtacc ttcatgtttt agatgttcca acattttcta tccaaggttct tcgacaagtg 1620
 acgaataatt tcagcgagga gaacatttta ggcagggggg gggttggagt agtttataag 1680
 ggggtgttgc atgatggaac aaaaattgtt gttaaaggaga tggaaatctgt tgcaatgggg 1740
 aacaaagggtt cagaaggatg cgaaggcagag attgcacttc ttagtaaagt taggcata 1800
 catttggttt ctcttctagg gtattgcatt aatggcaatg aaaggotttt ggtgtatgag 1860
 tatatgcctc aaggatcatt aacacagcac ctgtttgagt ggcaggagca tgggtatgtc 1920
 ccttgcattt ggaaccaag ggttagataata gctttggat tagcgcgggg ggtgaaatac 1980
 ttgcacagtt tagctcagca aagcttcatt catagagact taaaaccctc aaacatacta 2040
 ctaggcgtatc acatgagagc aaagggttgc gatttttgggt tggttaaaaaa tgccaccatg 2100
 gggaaagtatt ctgttgagac acgggtggct ggaacatttg gatatcttc acctgtatgt 2160
 gcagctactg gaagagtgac aaccaaagggt gatgtttatg catttggagt agttctgtatg 2220
 gaacttatca ccggtagaaa ggcattggat gatactgtc cagatgaaag gtctcaactt 2280
 gtgacatggt tccgttaggt actaattaac aaggaaaaaca ttccaaaggc aattgtatcaa 2340
 attctcaatc cagatgagga aaccatggga agcatatata cagttggcga gctggcaggc 2400
 cattgcactg ctgcgaacc ataccaaagg ccggatatgg gtcatgcagt gaacgtcttg 2460
 gttccttcttggcataatg gaaacctact agccatgtatg aagaagagga agacggcttc 2520
 ggcgggtgacc ttcatatgtatg ctttcttccaa gctctacgaa ggtggcaagc caacgaaggc 2580
 acttcctcaa tattttatgtatg cattttccatc tcacaaacccca aatcaagcat ctccctctaaa 2640
 cctgcagggt ttgcagactc ctttgattca atggattgcc gttaa 2685

<210> 53
 <211> 2685
 <212> DNA
 <213> Glycine max

<223> Seq ID: rhg4_peking_amplicon_cds

<400> 53

atgtcgaatt ttctcaaatac ctttgcacttcca ccggccctcg gctgggtctga aacaacccca 60

ttctgccaat ggaagggtat ccaatgcgtat tcatccagcc acgtgaccag cataaggcctc 120
gcttcgcaat ccctcacccgg aacactcccc tcggatctca attccctctc tcaactccgc 180
actctctccc tccaaagacaa ttcccctcacc ggcaccctcc cttctctctc caacctttc 240
ttctctccaaa cgcgtctactt caaccgcAAC aacttctctt ccgtgtcccc caccgccttc 300
gcctccctaa cctccctcca aaceccctcgc ctgcgcgtca accctgcgtct ccaaccctgg 360
tccttcctca ccgacccctac ttccctctt aacctaatacg acctcgaccc cgccaccgta 420
tcctcaccc gtcctccgtcc ggacattttc gacaaatttc cttccctcacc acacccctgc 480
ctctcttaca acaaccctcgc cggcaattta ccctcccttt tctccgcgc caacaatctc 540
gaaacgcgtt ggctcaacaa ccaggccgccc ggcttgccg gtaccctctt cgtccctctc 600
aacatgtctg cattaaacca gtcctggctc aataagaacc agttcacccgg ttccattccg 660
gatttatcgc aatgcacggc tttgtctgac ttgcagctca ggataacca gttactgtt 720
gtggttcccg cttcatttgc aagtcttctt agtttgaaga aagtttctctt ggataataat 780
gagcttcagg ggccctgtgcc cgtgtttggg aaagggtgtga atgttactctt cgtgggatt 840
aatagttttt gtcttgatac tcctggaaat tgtgatccca gggtgatgggt tttgctgcag 900
attggccgagg cattcgggta tccaaattccgg ttggcagagt cgtggaaaggga gaatgtatccg 960
tgtgatgggtt ggaactatgt tttgtgtgtt gcccggaaaga ttattactgtt caatttcgcag 1020
aaacagggtt tgccagggtac catctccctt gcatttgcctt atttgactgtt cttgaggactt 1080
ttttttctca atggcaataaa ttgtatcggt tttataactgtt atagtttgcgtt cactttgcctt 1140
cagcttcaggaa ctcttgcgtt gtctgacaac aacctctctt gattgggtcc taatggccca 1200
ccaaagggtt aatgggttgc tgcggaaat gctttgcgtt ggaaaccctt tagtccctgg 1260
gggtggccaaat gtggaaactac tccttgcgtt ttttcgcaccgtt gttggaaatgggg 1320
tcaaagggtt aatcttcgggtt gtcggccagggtt tggattgtgtt gtatgttgcgtt 1380
ttttttatgtt cagttgggtt gttttgtgtt tggaaatgtt tttgtcaacaaat gttggcaggggg 1440
aagttcaggta gggtaaaagg tcatgaaaat gggaaaggag gctttaaactt tgatgtgtt 1500
catgtttctca atggatatgg tgggtttcca gttgagggttgc aaagccagag cagttgggtat 1560
cgccgttgcacc ttcatgtttt agatggtcca acattttctca tccaaatgttcc tccacaatgg 1620
acgaaataattt tcagcgggaaat gacatttttta ggcagggggg gttttggagt agtttataaag 1680
gggggttgc atgtggaaac aaaaattgtt gttaaaggag tggaaatgttgcgtt tgcaatgggg 1740
aacaaagggttca agaaagggtt cgaaggcagag attgcacttc tttagttaaagt taggcataaga 1800

catttgggttgccttcttagg gtattgcata aatggcaatggaaaggc tttt ggttatgag 1860
 tatatgcctt aaggatcatt aacacagcac ctgttttgagt ggcaggagca tgggttatgct 1920
 cctttgactt ggaagcaaagg ggttagtaata gctttggatg tagcgcgggg ggtgaaatac 1980
 ttgcacagtt tagctcagca aagcttcatt catagagact taaaaccctc aaacatacta 2040
 cttaggcgtatc acatgagagc aaagggttgc gatTTTGGGTT tggttaaaaaa tgcaccatgat 2100
 gggaaagtatt ctgttgagac acgggtggct ggaacatggat gatatctgc acctgagat 2160
 gcagctactg gaagagtgc aaccaaaggatg gatgtttatg catttggagt agttctgtat 2220
 gaacttatca ccggtagaaa ggcattggat gatactgtgc cagatgaaag gtctcacttgc 2280
 gtgacatgtt tccgttaggtt actaattaac aaggaaaaaca ttccaaaggc aattgtatcaa 2340
 atctcaatc cagatgggg aaccatggga agcatatata cagtggccga gctggcaggc 2400
 cattgcactg ctgcgcaacc ataccaaagg ccggatatgg gtcatgcagt gaacgtcttgc 2460
 gttcctcttg tggagcaatg gaaacacttact agccatgtatg aagaagagga agacggctct 2520
 ggccgtgacc ttcatatgatg ctttccttcaa gctctacgaa ggtggcaagc caacgaaggc 2580
 acttcctcaa tatttaatgatg cattttccatc tcacaaaccc aatcaagcat ctcctcttcaa 2640
 cctgcagggtt ttgcagactc ctttgattca atggattgcc gttaa 2685

<210> 54
 <211> 120
 <212> DNA
 <213> Glycine max

 <223> Seq ID: 240017_region_G3_289711_11

 <400> 54

 aacaccttgac gttttttcat taataaaaaa atcatataag gtccacccat 60
 tccccacgaca caacatataat atataacttcc ttaattaccg ggtgatttgtt acaatattcc 120

<210> 55
 <211> 128
 <212> DNA
 <213> Glycine max

 <223> Seq ID: 240017_region_G3_236585_14

 <400> 55

 agtccggggag attatgttgc aaaaaaaaaatggcgttgcattt agatgtttaaag aatataatgtat 60
 aagatatatctt aataaaaaaca aaacaaaaaaa caaaaaaagt agatcaggca atcagatcca 120

gatcttca

128

<210> 56
<211> 129
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_168772_13

<400> 56

tttgcattgt ttcaatttat ttccatgggt tttctattaa taaaactgggt caaccttta 60
accccatgat gattataat acgttttgcg tttgtgtgtg tgatcactca atgtctgtg 120
gttggaaatt 129

<210> 57
<211> 131
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_332420_21

<400> 57

gagaatctgc aactgaacca aatgattaaa ctaaaaaaac aagctagaaa agaaaagtaa 60
agaaaaaaaaag agattgtttt actagtcccc tcctatgttag ttgaaaccag tctgctgttc 120
cattcctaag t 131

<210> 58
<211> 135
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_228126_18

<400> 58

atagctctgt tgcaaaggaa gatggtggag cttcaacatg atctggcaat tgcaaaggat 60
cgctttgcgc gtgtcaacgc tgctgctgtct gtcgtacta ctactatccc ttctccctgt 120
atcttgcatg ccaat 135

<210> 59
<211> 137
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_139723_11

<400> 59

ttgcattcaa attcatggaa ctaccatTTT ttcctagcT ccccTTTCAG gatacatcac 60
acacacacccg tgaaagttaa aaagttaaaa ggTTTgaaATT ttggacatAG cagttatgtt 120
tcatgcacac atggta 137

<210> 60
<211> 138
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_280585_14

<400> 60

tttacaaggT catcattaa ctttcataAT ATTATATAaaa aaaaGGGGggg taaaaggaaa 60
tttatCTTat ctttattgtac ataatttCTC atatatTTAA TCAAACGCTA CGTACAGGAT 120
ctttAAATTG aggccaaa 138

<210> 61
<211> 139
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_70509_14

<400> 61

ccttatgaaga atacacccac gttgaaatac atgttgttGT tggggacgc gcccAGCCGA 60
gagtgcCGGT ccacgagtAT ccccaacgtg catggcgcat gCGCTTgaaa CCTAGTATTC 120
atcttcctga tggaggctg 139

<210> 62
<211> 139
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_50537_17

<400> 62

aaACCCaaca taattccAAC ttcaAAattc actcaataAA aagttaACA tggAAattTA 60
cttgAAaca aaACTcataa ccaataataa taataataAA agaaATCAGT tttatAGCAT 120
taatttggGA tgctctgtCT 139

<210> 63

<211> 139
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_231556_17

<400> 63

agcccttcca caaactagag cgtatgaagt gaaatatcg caaactttc atatctgcc 60
atgctctcaa ttatTTaaa tttcattcaa gaagaagaag aagaaatact tcacattac 120
tggaaGTGTT tcggcagaa 139

<210> 64
<211> 141
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_117057_11

<400> 64

aaAGACGGAA cagcgtcaaa taaACGGGGA gagAGAGAGG gttaAGGGCA gATCAGGAAG 60
agACCCATCT tcgcTGAGGA tgccGTGAGG gaAGTTGCGA atGGGAGAAg agAGGGTGTa 120
atTTGAGAGC gtGTTTCCGT C 141

<210> 65
<211> 142
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_23092_13

<400> 65

tcaatAGGTa ctggcacaAG acacCTTAGTA atATGCGAA tctCTTATGT ttGTATCAC 60
aaaATGGACA atGAGAGGAC ataACAACAA caACACCACc AAAACCTTAT CCCACTAGGA 120
atGAGAGGAC atAAAGGGCT AA 142

<210> 66
<211> 144
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_297741_14

<400> 66

tttataaATC tGTCAGGCCA ccaAAATAAT gttccAGGTG tcaAAAActA tgctctaacc 60

tttttatattt attttttattt ttgcattttg aaaaaacaga ctctgttttg ctttttcgaa 120
 gcacgggcat accaatcttag ttct 144

<210> 67
 <211> 145
 <212> DNA
 <213> Glycine max

<223> Seq ID: 240017_region_G3_206502_14

<400> 67

agaagaagac gacgacatcg aagagccaga agacgaagac gaagaagagg aggaggagga 60
 cgacgacgac gacgacgtcg tttcgcagga gcaatccccca ttgtgcgcgc tgcgcgagca 120
 gcgttcgaag ctggaaaccc tgc 145

<210> 68
 <211> 145
 <212> DNA
 <213> Glycine max

<223> Seq ID: 240017_region_G3_221223_13

<400> 68

ccagagtctt gtaaaaaaagg catcaattac tgtcagttt acagcctaaa aaataagttaa 60
 aataaaaattt ctcttgtaac atgcgaggaa gagagagaga gattggcgcc aaagtttttt 120
 agaaaagaatg gacatgtgtc agctg 145

<210> 69
 <211> 146
 <212> DNA
 <213> Glycine max

<223> Seq ID: 240017_region_G3_169084_14

<400> 69

ttgcatttgc aataatgtgca cagaattaca tatttttgc ttgttttttc tactaacaag 60
 tagtgtactg tgagagagag tgcttataga tgttctctt tgacaatgtt cagagttaaa 120
 aaaaatttcag aaggagcaac ctttgc 146

<210> 70
 <211> 292
 <212> DNA
 <213> Glycine max

<223> Seq ID: 240017_region_G3_94891_14
<400> 70
catcaacaaa tcacacacac acacaaacac aaagtgatata tataatccgg agagaagaag 60
aaacaaagag attcattttt agttactattt attttttata taaattaaat aataataata 120
acaatgcctt ctcttcgttca gttggagggt ctgttagtgc tgaaacagtt gcatcgttt 180
gccttatgtt ctcttcgttca atatgggtgt taaaatgga ttttgccaca ttgatgaaga 240
ctgaaaagct ggccatcaact gttggatattt ctgtgttcgc atttacattt gt 292

<210> 71
<211> 147
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3_281852_61
<400> 71
aacagagga aacagggagt catttcagat aacataatgc agttcatatt tccaatata 60
tatatatata tatatatata tatatatata tatatatata tatatatata tatataccac 120
aaacgacgga ggattaatga aagactg 147

<210> 72
<211> 147
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3_46583_12
<400> 72
gttacaaattt ctgaaccctg catgttcattt ctctctctt caccgctgcac acccgccgc 60
gcacctacac ttctttatgt tcatcacgtt ctctttctca ctctccctctt ctctcaactac 120
aaaaaccattt cttcaacttg caacaca 147

<210> 73
<211> 148
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3_306835_13
<400> 73
agtctcccaag atgatcaattt ctgctcatag gcttttattt cttgcatttctt atgtccattt 60

caaatagtaa gtcactataat atgacgtgtt tggtttcacg tctttacagc gtgcgtgcgt 120
 gtttagttc acgtcttggaa tgtgattt 148

<210> 74
 <211> 149
 <212> DNA
 <213> Glycine max

<223> Seq ID: 240017_region_G3__85471_12

<400> 74

cgtggccact tgatctataa gagagttcta attgaccaat taatttagtga aaacatataa 60
 aaaggaaaagg aaacatttgtt ttcccttaaga atgaagaac caaaaagaag taaagaagaa 120
 gaagcaaggg aaagcaaaga agctaataat 149

<210> 75
 <211> 150
 <212> DNA
 <213> Glycine max

<223> Seq ID: 240017_region_G3__257208_12

<400> 75

ccatgaatga aactcaccaa actgaagaga ggcagagtca gtgacatgtt gagggagtat 60
 ttgtataggc actgcaaagg aagaagaaga atgatcactg cattgagccc agctgctgtt 120
 gccccatgtgc cagccagaat catagtaatt 150

<210> 76
 <211> 150
 <212> DNA
 <213> Glycine max

<223> Seq ID: 240017_region_G3__150390_17

<400> 76

ttacgcactc agatttgat ttgattacta ctgcattataat atataaataaa ttaattaattt 60
 gcttgcattgc atgcattgcatt ttgtatataac tagggcttggaa tagctatgtt aggccggctc 120
 tactatcatgtt gtgatataaac ttccacaccctt 150

<210> 77
 <211> 150
 <212> DNA
 <213> Glycine max

<223> Seq ID: 240017_region_G3_34697_75

<400> 77

gcatgctttt aggtgattgc agagcatttc ttggtttatat atatatataat atatatataat 60
 atatatataat atatatataat atatatataat atatatataat atatatataat ttgttagaaac 120
 atgaaggata cattcaactg ccttcattgaa 150

<210> 78

<211> 150

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_150374_13

<400> 78

ttacgcactc agatttggat ttgattacta ctgcattaat atataaataaa ttaattaatt 60
 gcttgcattgc atgcattgcatt ttgttattaaac tagggctgga tagcttagctt aggccggcctc 120
 tactatcatg gtgattaaac ttccacaccct 150

<210> 79

<211> 151

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_40513_22

<400> 79

attctgaaat tggtggaaagg ttctgaaatcc agcaaaaacac atcaagaaaag ttgttagcca 60
 tggatcgaaat gaagcaacctt aatataatata actctctctc tctctatctc tctaattcgg 120
 ttgcattcag gtgtggccttc acattttattt g 151

<210> 80

<211> 151

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_268602_14

<400> 80

aacacgtctc atctcaagaa gctcatgctt ttcaatctgc attccagata ataataataaa 60
 tctatcggtt tcctataattt aactgaaaaa tagtcaacat gaagaatgaa tgcagccaaac 120
 ctctatcggtt aggccttattt ggtcgaaagt a 151

<210> 81
<211> 152
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__25357_13

<400> 81

acttctccca cactttccct ttctcttcc ctatcgccaa cggttctct atcacccgtcg 60
cgtcgtaaat cctcgaagtt atcacttctt cctccttctt ctcttcggc ggctccctcc 120
gcttcggcgc cgaaggccaga ggagattccg ct 152

<210> 82
<211> 152
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__137548_13

<400> 82

gtatgaaccc taaagctggc ttcgaggcga gcaaaccctcc agcaagaaga agaagacaca 60
gaggttaagaa aaggaaata tcattttctc attcatcccc ttgcttgta tttacatgga 120
tatatatatagc attcctctta acaaatactgt gc 152

<210> 83
<211> 152
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__139131_13

<400> 83

gtatgaaccc taaagctggc ttcgaggcga gcaaaccctcc agcaagaaga agaagacaca 60
gaggttaagaa aaggaaata tcattttctc attcatcccc ttgcttgta tttacatgga 120
tatatatatagc attcctctta acaaatactgt gc 152

<210> 84
<211> 153
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__203855_12

<400> 84

ttgttgtcaa gagaaggaa gctcttaaa gacagaggcc tcctggaagc ttttgctcc 60
tgatgtgca ggagattcct ctctaaatttag ctaactgaat accactaaca acaacaacga 120
gatgcctaaa acaacacaga tgtgagcaca tga 153

<210> 85
<211> 153
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_199049_15

<400> 85

ggcaaatcac atgtacataa gggagataaa agaatgcgtat ttttctttt ctttcctgc 60
ggtgcttcgt ttggttatgg ttatgaaat tatactaaca aaaaaaagtt tcacatcagt 120
taatttcatt tgctcagtga gtttatgg tga 153

<210> 86
<211> 154
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_320907_12

<400> 86

gattcgccgg aaattcttc ctccggccgccc gccgtctcg tcaccaccgc cgaaaaagaa 60
ggggAACCTT cgccggcgct cggataagtt gcagaggaaa atcgccgggc cgcggggcgc 120
gagagggccgg aggatggcga gcttaataatc ggag 154

<210> 87
<211> 154
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_16407_17

<400> 87

cacactctca cagcaacttc tcgatctgat tactctgaac ttgtctcca aatgggcattc 60
cattttttca ggtaagtcaa accaaaccaa accatgcata aatacatatacacttgcacc 120
attttgctgg aaatccccacg tggatcagtat atat 154

<210> 88
<211> 154
<212> DNA

<213> Glycine max
<223> Seq ID: 240017_region_G3_206516_17
<400> 88
cagaagacga agacgaagaa gaggaggagg aggacgacga cgacgacac gtcgtttcgc 60
aggagacaatc cccattgtcg cggctgcgcg agcagcgttc gaagctggaa accctgtccc 120
ggcgattggc gtccggatctg gtcccaatcc gagt 154

<210> 89
<211> 155
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3_264495_13
<400> 89
agtggataaa agcaagaagt tcaccaaacg aatattttt attctacaga aaaaaattac 60
tattactaat actattatta ttatttgact ccattaaaga cccgagtcaa ataattccct 120
ccatctaaaa ttcagtatgc attcccttga atctc 155

<210> 90
<211> 156
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3_156785_13
<400> 90
atctagtgcc tccacgcata tctaccctca aatcttcacc acacaacact acctcaatta 60
ctcaactaaaa gtttcattca ttcatcggtg cgtgttgtgt tctttcaac catgcttctt 120
agaacagcgt cctctttctc tctcttcaac gccaac 156

<210> 91
<211> 156
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3_187129_12
<400> 91
tgattggaa ggaaagcttc attagatgtg ataagttaaa taatttaatt gagatttagtt 60
gtataataaa taaaatctt tagaaatgca gcttgcattt tggagggtgt gatggatgag 120

tttcggtacc ggggttggtc atgggtcaag ataaat 156

<210> 92
<211> 156
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_214106_13

<400> 92

ccatcttctt ctcatacttc atgttgcacat gtgtctcgaa tctccaccga gaccttggag 60
gtctcgccgc cgccgcctcc cgacttcaac ttccgcccgcg aaatcgccgcg cctcgccgac 120
ctccgcgaca ggctctege gtgetctact ttaaac 156

.

<210> 93
<211> 156
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_149013_12

<400> 93

aagctcaacg tggatgttg ttagacatac aattacaaac actcacgtga atacacacgt 60
taacattact ttctctttt gtatgtgtgc gcataactttg actcaattca acaatttat 120
atataataat caaaggaaaa taaaatgtcta gtgtgc 156

<210> 94
<211> 157
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_326352_16

<400> 94

gttgttacct tgttgttgc ctgtccaaac gttttcaatt acttttctt tcttttccctt 60
ttttttaaat cactccaaat accaaacacc ctctccaaat ttgggaccc tc ccctccataa 120
tacaattataa gtgatatgaa ctgtttcca caaccct 157

<210> 95
<211> 157
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_278962_12

<400> 95

tcgaatctat cgccgaatac tcaattcggg agagagagag aaaaaaaaca gaatcttagta 60
aagcatgata gttattatttc tactgtctact tatcacaaga tagcagggtt tgttttagtt 120
aagtagcgaa gtggagttgc aaatttgagct aaggaaa 157

<210> 96
<211> 157
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_256930_13

<400> 96

tgtgacctat ctttccctcg ttctcccttc atcctttcc accattaaag tcaacacctat 60
atcttcctgg ataatactac tatgtatgta tgtcactcat gaaaactgaa aaagagactc 120
gtgcaataaa aattggttt ctttatcaga ctgggaa 157

<210> 97
<211> 158
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_29646_14

<400> 97

acgcaactca gatgcattaa cacaaatata cacacacaca caaataaata gagagagaca 60
tacatacata cttaaataa atgcacagta tttattaaga gacatttgatt atcttacact 120
aatacataaac tatatcagtg gacgatgatc attattca 158

<210> 98
<211> 158
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_29618_13

<400> 98

acgcaactca gatgcattaa cacaaatata cacacacaca caaataaata gagagagaca 60
tacatacata cttaaataa atgcacagta tttattaaga gacatttgatt atcttacact 120
aatacataaac tatatcagtg gacgatgatc attattca 158

<210> 99

<211> 158
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__108561_14

<400> 99

aatgttgctt gccttcacag ctaagcgagc gaggaagatt gagaataata ataataactt 60
tccctgttca aataggatatac acattacatc aaataaaca aaaggtgtca acaaataatac 120
gtggctatatt ttctctgggt tatgaataag ggtttggaa 158

<210> 100
<211> 158
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__143975_14

<400> 100

cggtagctat agcgttattgc aacaagggg gtgatcatga aatgaaatga tgcataatgc 60
aattgtttgg tccttgcctt ttttggatga cctcgatag aagagaaaac gatcgatata 120
tggttatgac ctgtgaatgt gatactactg acgatggg 158

<210> 101
<211> 159
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__108431_20

<400> 101

ccgaatgaca gagagagaaga agaaaaaaat taatgatgaa aataatattt gtctttcag 60
tttatttagt attattatattt ttattattaa gaagtagtat atttccaagg ttgaaatgtt 120
tttggccctt tgagggtcag tggtgtggaa agttgaaat 159

<210> 102
<211> 159
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__281764_11

<400> 102

ttcctggtga gtaacaagtg tagggaaacctt tcctgcaagg ttttcacaac ataacaaaaat 60

taactaaagt tacaagaaaag aaacacacta taaaaattct ttcaaacaaa gcaatccact 120
atatatataat tccgtcgttt gaatagagca tgaaccaga 159

<210> 103
<211> 160
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__130058_15

<400> 103

agtctcgctc ctatttcgag tcctttcaact accctttcaa caaagcttct tcttcggtca 60
acaatttttc ttcttcgttc ttgccccaaa gcgcgcgatt gcttgcgtgc catgacatgg 120
ctggggggctca ctggatgat aagtggattc aagggtggcac 160

<210> 104
<211> 160
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__310590_52

<400> 104

ttccctaata atggtggaaag cagtttttat gtgatgttgtt taacctttca ttattttat 60
atatatataat atatatataat atatatataat atatatataac ctttcattt 120
ctttaaaata atgtcgtaga acaccatattt gggttttgggt 160

<210> 105
<211> 161
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__313405_14

<400> 105

cggatgtttaa atgatgggtt cgtttttcag tatcaatttgat cttgtatgtt attttatgtta 60
ttatattttt atttgcgtt aatttttgatc taattttcat gataatagca aatgtccgt 120
acataattta gagaatttc cagaaccagt ccaacataat t 161

<210> 106
<211> 161
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_302190_13
<400> 106
ttaaccacct accaaatata ctccaaaagg aaagcgaaca tgttttaat ttcattctct 60
taattaaaaat ggtaaagaca tgaaatcaa tcatgccaat aaataaataa ggttaactaga 120
aataatttat cccctgatcg tgttcatcct aaccgaactt g 161

<210> 107
<211> 161
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_225343_17
<400> 107
cccgcaattt gttagatgg gaaaaataa taaaataaaa taaaacgaaac taggcagttg 60
aattaaacaa gtggactctt tccaatgtag agttggaggc tgcattatct tctttgatac 120
ccttttcaat cttccaccat gcgttgaag tgacattac t 161

<210> 108
<211> 162
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_208823_14
<400> 108
tactttccaa attgatgcg accagaaatt ttaaatgaat ttatcgat aactatata 60
ttgtaattaa ttaattattt tggtaacttt aatttggagg atttgatgt gtatagatt 120
ttatttccaa atttatttcc ttgtaactcc ctatttggga ca 162

<210> 109
<211> 163
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_74285_11
<400> 109
tgatgacaat gatgacgatt tgtgataatt gttgcaaaaa aagtggaaaag aaaataaggg 60
gttaaagaga gagagaaaaat tggactctt caatattttt ttaaatttat taaaaggggaa 120
aaaaactttt atagctagct taccaggacg ttgcagatga att 163

<210> 110
<211> 163
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_109052_16

<400> 110

cacatttgat gattgattcc agttttgcac atacaatgca tacattactt tttttattat 60
tattattata tgctcggtct aatttggatt cggggaaagta gtacatgttt gttttagctc 120
gcacaaaata tattttatta gccagaaagc actgacattt a tgg 163

<210> 111
<211> 163
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_6395_12

<400> 111

tactactgaa ccgtgggcc tgatagcaaa aaaattttt ttttgtgacg gtcttatcct 60
tgagtcgtcc ctgtaatcta gctaaagtaa atgttgcgtg cgttcgctat tatatatata 120
taattgacaa tattaaaccat taaccacaat gcatttttat ggc 163

<210> 112
<211> 164
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_244905_16

<400> 112

tgaaatccaa gtgaaagatt gttaaaaatt ttataatttc taattaatta attaatgtga 60
cttacatattt atattataac atatagttt cattaattaa ttaagaatta caaaaattcat 120
aacattaaatg tctcaatcca tggacgttgg aggttaatacg cata 164

<210> 113
<211> 164
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_244956_13

<400> 113

tgaatccaa gtgaaagatt ttataattc taattaatta attaatgtga 60
cttacatat atattataac atatagttt cattaattaa ttaagaatta caaaattcat 120
aacattaatg tctcaatcca tggacgttgg aggttaatcg cata 164

<210> 114
<211> 165
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_117220_13

<400> 114

aagagaattt gcaaagtgc gtagcggtgg cgaaggtag gtgttgaaaa agaagaagcg 60
tgaagaaatg gacgatgtat atgcgtttag ccaccattgt cgtcattgtt tgaagggtga 120
aaacgcacgc ctattatttc atgctgagag tgaagaagat gggag 165

<210> 115
<211> 166
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_134707_14

<400> 115

tgtacatcaa actggcaagg aagaggtgaa caacacaaaa tctagctctg aaccccccata 60
gaagaaaataa tttctgcag gataacttaa aagcctaaac aagacccttag caatcttctt 120
caaaaataaa taaaataacct taacaatttc ccttctgtgc aatctc 166

<210> 116
<211> 168
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_35078_13

<400> 116

agcaagatca aaatgcgaa acacacgagc agagatggca gtggcaaaag cacgttcata 60
aaaaaaaaaa aatgcggta gagatggaa gagagagaga gttacagtga aaggaacgaa 120
tggcaggcgaa ggattccatg ggaagaaatg gaaatggaaag aatgggag 168

<210> 117
<211> 168
<212> DNA

<213> Glycine max
<223> Seq ID: 240017_region_G3_210506_16
<400> 117

tgcataattgt tgccaaatcac ctgaatataa ttttattttt tattttactc tttcaactat 60
gtactgataa taatataatt tagagaaaaca accagtgtg gttgttaagggt tggcaatgtt 120
tgacaaaatt atccaatctc tttctgtatg tggcacccatc ttgacccctc 168

<210> 118
<211> 169
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3_116961_26
<400> 118

atccggaaaa tgattctaaa catgaatcaa ggaagactga aatatgaaaa ttcaattat 60
aaacacaattt acagaaaatat atatataat atatataat atccataacaa tcaaaagggt 120
atggaaaaaca gagaacaacaa aagaaaaagac ggaacacggtt caaataaac 169

<210> 119
<211> 169
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3_51073_13
<400> 119

caaattggcca catttctcat gtcagttact cgtattctcc cataaaataaa taaggcttct 60
tctgtctcaa ttatattttac ttctaaagca acaatttttctt tctttctcat tttttttgtt 120
ccctctgtatc agatcgtagt ccgcattctca agccttagcc tctacacac 169

<210> 120
<211> 170
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3_55291_15
<400> 120

cccttagggac aacagggtac ctaattaattt ggtaccacaa cggggagaaa atcaacacgt 60
tttgttggata tacatacccta gaatttgaagg gctagctcaa tcaagctaaa cttgttattca 120

actatagaaa ttaaattaaa ttgaaatttg gttacacgag tcaggaccat 170

<210> 121
<211> 170
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_229651_18

<400> 121

acaatcaagg aatctaagcc acacattctt taacatttt tattattttt attaagtggaa 60
atttatgttt aagtgttact aaatgtatgtg actgttaatgg ttccactcta ttttagtaggt 120
ctcacagttt cacctaataa taaagaggtgc caacatttact gcaagaacag 170

<210> 122
<211> 171
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_303308_19

<400> 122

caactccctt ttcaatttcgc acacacccaa cccaaacccaa ccctttaaat caaaacccaa 60
aacttggtttc catttcatac ttccattatat atgtatatat acatacatat acacgaattt 120
aagcttagcct atcttagtata tatcttaccc ttagacaccaa caaattccac a 171

<210> 123
<211> 171
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_168373_20

<400> 123

gaacaggccta tcatggctga agaaggtagg ttagttttgt actttttaaag tgtgtactat 60
atatatgtct tacatgccccat atccctgttag tgaaaacttgg attatgtgtg ttgtgtgtgt 120
gtgtgtgtgt gtcttacacac aagcatttag catcatctga t 171

<210> 124
<211> 172
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_253333_17

<400> 124
gtcatcaccc atataaaacctt gtccaataac acttgatgt tactaaaattt ttacttaggtg 60
tttaaagtct tagtatggtt aggttaggtt aggttgcag gacaaaactt ctatccatc 120
atgtattgtat ttcatgattt ctagacgatt gatgttgatg gaagcgaatc tt 172

<210> 125
<211> 172
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__5791_13

<400> 125

aaagagagat taggAACCA ttggatgatt gattgattat gcaggcttt agctgtctg 60
aagtttcatt tcataacctt atgtatcctt acatTTAATG taacttttat tatgttaattt 120
tgttgacaga ttttATAATG taaaTTACTG acaCgAAATT tCTATTTGGA tt 172

<210> 126
<211> 173
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__206841_19

<400> 126

agctgcctca cacGGCCAA TGTCTCGCG AGCTCGTCGA GTCCGCCAAC AGAAATCTCCG 60
gcgatttCGG CGTTACACC AAACCCGCGG TACAATTTCG CTCTCTAGTG TGTGTTATGT 120
tgagattgca ctagattgaa ttCATTCAA GTGAGGGACAC GAGAGATGCT AGT 173

<210> 127
<211> 175
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__202827_12

<400> 127

agttggctca aacAAATCG ATTCTTGGA CTTCTTAGC AATTGGTG GTGGTGGAGG 60
tggaaCTTCT tagtccTGGGA GCTCATCATC AGCAAGGATT GAAAACCCAC CAATGTCATT 120
tccccCTTAATG CTCTGGTGGG CCTTCTCTG CTGGTGGTG GTTCTCTCC TAACA 175

<210> 128

<211> 177
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_322656_13

<400> 128

tgtcccaaata tccttaggtg agccatataaa tatcaacagt aaattacttc ctatattttc 60
aacacactta catttttagc aactataaat aaataaaaatt atctaatttat gttagaataa 120
tctcttatta tagtcaattt gtgttctcaa tgcgcacaa tgaatgtat caaaccg 177

<210> 129
<211> 178
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_111841_14

<400> 129

tgttttagct cagtaaccctg cttggaaaaa ttacaacagt aaataatagt tgtcttttgt 60
tttaaattca tatacccttc atattgtct ttgttttcaa cttttccaa gtcattgtt 120
gtattcttgg aggagagaga gagagaatga taggatgcc acaagataaa ctaacatg 178

<210> 130
<211> 179
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_192719_13

<400> 130

gtctacttctt ggcaagctct attcaatcg accatgaagt cttttaccaa gtcttgagag 60
agacttgata tattatatat catcatttag tctcgccatg ggtgcatgtt aggctccaaa 120
actcgctatt tcatcatcat cattttatac gaaaacattt accctaaagg cacaacaac 179

<210> 131
<211> 183
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_195630_17

<400> 131

ttggagttga gtgttctgtat ggaagagtag tggtcttgta agttctgatt ttgtgtat 60

tttcagaaac tgaatatatg tagatttctg ttcaatttaa tttatgtcca gaggcagaac 120
aaaaaaaaatga atgttttttc ttctttttt cattagggtc atcgtacgag 180
aga 183

<210> 132
<211> 183
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_69999_13

<400> 132

tttccacaaa gactctgcg cttttctatc agctaaaaatt atttatgtac aaataaaaaaa 60
ggtacaaaca caacatttat ttatgaacag ataaacgtt ttgtgagaca ttaactgaac 120
ctactctatc aagtttatta ttactactac tacttatctt cactccacca cactgtgtca 180
cta 183

<210> 133
<211> 184
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_11176_13

<400> 133

cgttctcgtc gaataataacc gattcgacaa ataaaaaatg aataaaattat attggcaaaa 60
aaaaaaaaatag aataaaattat actttatttt ccaactattt cttaactttt tagttttctc 120
tctctctcta taagttatat atttatatac aaaaagacga aattcgtaaag gcaatcttat 180
tgtt 184

<210> 134
<211> 185
<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_228643_13

<400> 134

gctatagcag cttaggaactg gtggaaaatg atgggtatct tggcctttt tttagttcac 60
ttttgtataa gcaaacttag caataggatt atttcggtt tgctgtctt ctcttgcctg 120
ccttcctata actttgcataa attttagctc cgaagtccat gctctgtatg 180

tcaat		185
<210>	135	
<211>	185	
<212>	DNA	
<213>	Glycine max	
<223>	Seq ID: 240017_region_G3_88478_19	
<400>	135	
aagataagat gaggtgctcg tcaaaaacttc tacaaaagaa ttggtcaaaa tattttgagt	60	
cagtgaatat gctagtccaca accctcttaa cttgatttta aaaataaaaat aaaataaaaa	120	
acctcttaac ttgcttcaaa atgaaacctc ttgcattaat ccaatcgatc attgaatgag	180	
tataa		185
<210>	136	
<211>	186	
<212>	DNA	
<213>	Glycine max	
<223>	Seq ID: 240017_region_G3_108950_13	
<400>	136	
agtgcgttagct ggacgcacaa aaaaaattaa aatcaaatac tgggccaact aaaaatgagt	60	
aaactaacaa tagtaatgac taatgagttg taatataataat ctccctcaaa agtaaataaa	120	
taaatgaggat gtaatagtc ttttgttat tgcttaattgt acacatttga tgattgattc	180	
cagttt		186
<210>	137	
<211>	186	
<212>	DNA	
<213>	Glycine max	
<223>	Seq ID: 240017_region_G3_121054_14	
<400>	137	
ctgcatggaa agatgaagca ggtatagttt tggccctttt ggatgttagc atttttctat	60	
atcgaagcat aatattctat aaatcagcat tgttttctt atttccatt attttgtagc	120	
tgtcttaccg tttacatatt tgattattta tttatgttc cttatagtc gccaggaga	180	
aagcac		186

<210> 138
<211> 187
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__188337_14

<400> 138

cacgtaagac caagacctaa caggaatctt tctttaaaaa tcaaaagtgt catgaacacg 60
agcaaaaaggc caacagctac gtacgtacat ggttagttcat attaacaata tatactacca 120
tcattctgtt ggaaaaataaa aataaaaaatg aaggaaaaata aatacgaaga agatgcacag 180
tccttgat 187

<210> 139
<211> 189
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__255944_21

<400> 139

taactttgcc ttaattgggt gcacaaaact aatatttcat gattttatct tcctaattgg 60
gaatctatat atatatatat atatattgaa aataaagcaa ataattgccc catactgcaa 120
tgaatagtgg ggaaaaaaat atttttgca ataataaaat tactgttaggc agtgagaagg 180
caagaagat 189

<210> 140
<211> 190
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__219518_14

<400> 140

acgaaatgct catgatcttc ttccacaatg tgatataaga cttccctgagg tatatatgt 60
ttctaatgtg ttttatgtat attgatttgt ttccatgtgg ttgggttggg ttcatttca 120
tattataacta gtttgcattt tcttaggtact ttcaatttatt ttatgttacg ctttctct 180
cctgcagatt 190

<210> 141
<211> 191
<212> DNA
<213> Glycine max

aaccattct tcaacttgc acacacgac acacacacac tcacacacac tgttttttg 60
ttccactaaa tcaaaacctc ttatcttta ctctcattac attcattttt ttgattttcg 120
ttatggtagt agcagtggag aaaacaacc tcacttcaca atcacaatgc ttcaaccgtg 180
tttctgacaa gaaga 195

<210> 145
<211> 200
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_59616_14

<400> 145

tcatggtaac atggaggcaa ctatctaaaa aagaattttagg attatttaaa aactataaag 60
tgatttgtat agtttgtattt aattaatttt tactatttggaa gcaaagagac aatataatata 120
gaaatttgtgg ttttctgttg tttaattttg cttttggacaa aagataaaac gttttaatgt 180
atgatggtga tgatttttaggg 200

<210> 146
<211> 206
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_296933_15

<400> 146

ttatgtggaaa caagcactct ctcccttttc ttttcttttc atcattggat caactttata 60
tttttgtgtat agtgctctag tgcactcttg ctacttttggaa tgacacttttgg tagtgttca 120
tattatagtt ctgttttggat attaaggatct cttttccctt agttattgtg cttgtttaaa 180
atacatttgg tggcaagagc atagaa 206

<210> 147
<211> 212
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_192428_17

<400> 147

ataacagcga agcaatccat taaccaatat atatatatat atagacacac acatttagca 60
catggccaaat actggggcaa tctcactcat qcggggactt caaacatgtca aacaatttgc 120

tttttgaaaa cctttggaa tcacgacata ttattacaag acaaatacat tataacttat 180
tagaagtgt acttcttgc aagctctatt cg 212

<210> 148
<211> 213
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_191490_14

<400> 148

gcataataca ttgtgtcttc atccattaat ttttcaact tactaaaagg ggagtcaatc 60
atattcatga cagatatttt ggcaaaataa aatgctattg cagaaaagac tatgcaagaa 120
gaaagtgata actaattttt ctctctaaga ctgttggaaa aataaaataa aatgaagga 180
aaataaatac gaagaagatg cacagtctt aat 213

<210> 149
<211> 221
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_201115_11

<400> 149

tctcattgtat ccttgtccat ccataataaa ttgattttac tgtttctact tttttaaata 60
tttaagtagt taaactcgac aaatattgg ttctgttagac attaatttgaa aaagacaaac 120
gatataatata tacataaaaaa acaatataattt ttgttgcata tcattttgt tgcattgtt 180
attttattttt cgaattggac gatggatttata gtatgttgc a 221

<210> 150
<211> 221
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_72882_15

<400> 150

tgtatcaccac agtaatatca atcacaatag tcaaaataat aataataatg accttgcgt 60
gaaaactgct aaagtgttattt ttatataagg aaatcattct catatagaaa tgataaaa 120
acttattatg agaatgaaaa caataaaattc ttatgttattt gtttagattt aaaaataaca 180
tcacttctta ttaagtggtc atgtgtgaac attaaattac c 221

```

<210>      151
<211>      222
<212>      DNA
<213>      Glycine max

<223>      Seq ID: 240017_region_G3_69514_13

<400>      151

aaaccttgca tcacattgtt aatctttac attaatttaa aatataattc acatattta  60
tttttattt attatgaatt ttaattataa tacatattca aaattttta ttttattataa 120
attttagtta aataaaataa acattttat ttcaattct acaagctaat aactagtat 180
tactaaatgc atagagtatg agcaaattcg tgttagtgtga tt                222

<210>      152
<211>      227
<212>      DNA
<213>      Glycine max

<223>      Seq ID: 240017_region_G3_37699_47

<400>      152

gtggaatcaa gtgaggaga aactcatttt tcaatttaac tttaaaaacc aaaactaaaa 60
aacttacaac tatacattgt attaatttagc atgtgttttataatatata tatatatata 120
tatatatata tatatatata tatattttag tatggaagga gtactctatt caatgagatg 180
aatatgtttt aacaaaaaga ttgatttaggc gattaagaaa gaagaga               227

<210>      153
<211>      228
<212>      DNA
<213>      Glycine max

<223>      Seq ID: 240017_region_G3_11301_29

<400>      153

ccatttatac acacacacac acacacatatacataatataatataatataatattttt 60
acttggtaaa taaaatcaga aaaaatgtgt aatcacttca aaaaactgttag ttaataaacc 120
ttaacttaaaat caagcaaaaa caatggataa gatggaaatgttatacataaaaatata 180
caggtatagt gagaataaaa aagttgagga agtgtgaaat ctacgtga                 228

<210>      154
<211>      236

```

<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__141875_12

<400> 154

gctcatgatt cggccatata tttaatttag aaaataaaa tatttttaa tataatctt 60
tttttcata aatttgtatg ttatcttt gagaaaaata ttaaaagcaac ttttaagt 120
tttgtttta attagaaaag catttaatta ttattattt taacatattt ttaattgaaa 180
aaatattttt gccatttgc tgattttcta cactactcaa cacaacaatt tgctca 236

<210> 155
<211> 238
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__98090_18

<400> 155

aaacacacac tgaacttgtt cctaaattat attgagtaat taactacca agtttatata 60
atatatatata aatattagtc atctttcaaa agtaaattat atatattgtat taaccattt 120
atattttctg agcgtggaaa tcggtaaac acgtggcagt ggctttaca agttgtctt 180
ttttgttata aaaatttgca agttgtctg aagcttctgc ggattgtact gcatatgt 238

<210> 156
<211> 244
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__43298_35

<400> 156

tggttccata agactctcg aaaaaattac ttccaataaa atatacatgt ggtttataaa 60
aaacaattcc atcaaaaattt tccaaaaata atacaaaaag gatacaaata ttttttttaa 120
aaaaataattt cattttttt gaatacatga cttttatata tatatatata tatatatata 180
tatatatatac aaccgggaca tagtaattca agactactta atgttgtca cccgtgatac 240
atgt 244

<210> 157
<211> 248
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__262094_11
<400> 157
ggatccaacc gactagatca gtcttaattc aataactatg gtcttggtta tttagaatcga 60
attcaaaaata ttttagttt ggaacaaaac tatataatata tatatgtgtg tgtgtgatta 120
tattactttt ttaactaaat ttaaattata gagatgattt ataattatac atacaaggta 180
tgttatatga agaaaaaata aaaatttagg gggacaattt ccccttcatt cacaaagtgt 240
cattagaa 248

<210> 158
<211> 248
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3__262079_15
<400> 158
ggatccaacc gactagatca gtcttaattc aataactatg gtcttggtta tttagaatcga 60
attcaaaaata ttttagttt ggaacaaaac tatataatata tatatgtgtg tgtgtgatta 120
tattactttt ttaactaaat ttaaattata gagatgattt ataattatac atacaaggta 180
tgttatatga agaaaaaata aaaatttagg gggacaattt ccccttcatt cacaaagtgt 240
cattagaa 248

<210> 159
<211> 263
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3__59090_12
<400> 159
tctcatttat ctatctccca aggtgtgtac attccattag aatgtaaaaa tgaaaaacat 60
tcacaaggcat aatgtaaaaa aaataatatt atttctcata acccttatata tatatacacg 120
ccacataata cgtacgaacg taagtgtatc tatcatgaaa gttcttgaat ggctttcttt 180
tcagggtgaa tacatataatt aatggatagt gttttttgtt ggtcattgtt tcttattatt 240
atgtcccttag gcacgggtt agg 263

<210> 160
<211> 265

<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__245723_13

<400> 160

aacgttgatg tctactgctc ccaatccaaac actttactct ttcttcctttt ttctttttct 60
cctcttcctttt ttattcttttgg aaaactactaa aattcaaaagg aaatcttaat tagaaaagcaa 120
aaaagaaaaga cataggttaa tgatattttt gctctctcaa tttcacact aaactttttta 180
gttccataat caatatctaa aaacacgatt aagaagaaga aaaataaataa aatagaacgc 240
aaacaaaacaa ttattatcca cgcgcc 265

<210> 161
<211> 266
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__194628_54

<400> 161

gattaggcac ccataatataa aatccctttt tcactatatg aaaaatttat atatatataat 60
atatatataat statataataa atatataatata atatataatata aattaatttt tacaataattt 120
attttaataa ttatacgtat tacaatatctt cattacttaa cattgtaaaaa cattttacaa 180
tggaaaaaaactt ccttagattctt ataaaatattt tcttttagag ttacaatttt attacacggc 240
aactgacgtg tcggagttgg taacat 266

<210> 162
<211> 268
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__4566_16

<400> 162

ccaaacacacctt cctcaattgtt agacctgtat ttcaaaatattt aactatatga aacttcaattt 60
ctaattgtaaa aataacaaaaa caatactttt gaattatatg taagtgtgtt cctaaactaa 120
actaaacccaa tcaacaaaaga aaataactca aattcttaattt gaaacaaaatg aaaagatcat 180
ttcactgttc tagataaaattt ttatgtatata taatgtaaaaa gtgaatttaat accttaatattt 240
agatagtaca caggcaactt tcaagaaaa 268

<210> 163
<211> 274
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_96209_14

<400> 163

ttgatgagct ggctggtag taaaatatat attttactt attttaatac aaatgcta 60
taacttgtt accaacata ttatthaaga aaaataaaat aaaaaatatt tttatttagaa 120
agaaaaaat tatgtttttg ttgatttttt atacccctttt aaaatttata taataaaat 180
ttttctcatt taatttttta acatgtgcta agaacattta tgagtaatat ttttatttg 240
catatttga agagggagcg aaagcctaca ttac 274

<210> 164
<211> 274
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_248715_17

<400> 164

acaaatgct ttaatttacgc tgaaaaagta tccttttctt tttttttgaa attattca 60
gaattaaata tcacagtcaa atttaaatta aattaaattt ataacatatg tattttat 120
ctaaatttaa aaaaactgtc aaaaaaaatt cttttttata taaggatgt gttaatttaa 180
tttatTTTG agtgtttaat cttacaataa cgagtagcta taatagacag cgatatcgag 240
ttgttaatac gagtagcaag caataccaca agaa 274

<210> 165
<211> 280
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_71410_40

<400> 165

gagtccctca aattggcgtc ttttttctcg ttttggttcc cagtaacttaa gtcataataa 60
taataataat aataataata ataataataa taaaagtttta ggaagaaaaa tgagaaaaact 120
aatttagtttgc gggTTTATT taagttttt ttagttttag aactaaat gacatataga 180
tacaatTTTA aagatTTAAT tcgtcattta ctcattttt attagacaaa atttagttt 240
aagcatgcat accTTTTGTT tcttgaatct agccaaactt 280

<210> 166
<211> 284
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_226519_13

<400> 166

ataatgccca cgatccaagt gtattaatat ttaataatga tatgatatgt cacttcttac 60
acacacttca tacaaacaaa atccctcacca ttctttttt cattttgtt ccctttaca 120
ccatatatct cacatttttt aggaggggaa ggataaggtt atatcactt atttgtgtaa 180
gttaactttt tggattaata attgattatt attattaaat aagacaaccc gaatataact 240
tttcattttt tgaggagca tgaaaggtagtgg agtacggaaa tgga 284

<210> 167
<211> 285
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_11282_19

<400> 167

cgaatttcgt aaggcaatct tattggatt ataattttct ctactgatta tgtctaacc 60
tttatacaca cacacacaca cacatataata tatatatata tatatatata tattattact 120
tgttaataaa aatcagaaaa atgttgaat cacttcaaa actgttagtta ataaaccta 180
actaaatcaa gcaaaaaacaa tgataagat ggaagtttag tgataaaaa atatatacag 240
gtatagttag aataaaaaag ttgaggaagt gtggaaatcta cgtga 285

<210> 168
<211> 286
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_170504_12

<400> 168

aaccaaacct ggggttgaact tgttttacta aataatttg ttaatatttt aaaataatgt 60
cttaattata ttgaacaaaa aataatatta tatattaata ataataaata aatttcactt 120
aaaagtgtca ttaattataa attttttttt accaaagcga tatcggtttg ataagttaaa 180
aaaaaaaaacg tttaatacaa gtttttaact gatthaacga tttaaatcg atgttaaggat 240

atatacatacata atatgtttttt taaaacaaaa cttaaacaaa cacactaaga 240
aatttttagaa gtgatTTTC atgaaaaaag ttgaaacaaa tggctctaa a 291

<210> 172
<211> 292
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_309211_13

<400> 172

aaagtgttaa ggtttgacag agataaaaatg agggggattt gaataaaaaa gttatggagg 60
tcattattaa ttccattatca attcatcaca tattttttt cacctattta tctatttctt 120
atttttttt tttcattatt ctcaaactaa ataactttgt ttctattcta ctttttatat 180
atttctatcc accttttttta atttctatgtt atcatatctt gtactttttt taattttctt 240
tccaaccaaa cataatttaga aactacttctt ggataatca gcagtagtgt tt 292

<210> 173
<211> 293
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_55568_26

<400> 173

aggcatagaa gcactaatgg tgacacacac tagtataaaa atactttta tatcaggatt 60
tttagatttt ttgttttgta taagtcaatc aattttaaa gttactttctt aatcaacttt 120
aacaaaaaac aatgttagaaa tggatcttagaa aactttttt ttaagttctt actcttttc 180
atcaatgtta tacatataata tatatatatac ccaaataac caatcaaata 240
aactacttag ttactttta tggtaatca tcgaccttta acaagagagg agg 293

<210> 174
<211> 300
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_73238_16

<400> 174

tggcatgtg tgaacattaa attacctta atctttatca taattactt tttcattttt 60
aaattaagat tttttttctt atttctatgtt atattaatc tttttttttt aaatattttt 120

acttaattat ttcttcatca aatattaatg agatgaatag agaaataaga aaagaataat 180
 ttttgaatga taatataatt aattaattaa taaatattat gtgattaatt aaattaatta 240
 ttttcttaa gacacataaa ttatgtaaa ggtaatgtt ataagggaca gacggagtga 300

<210> 175
 <211> 300
 <212> DNA
 <213> Glycine max

<223> Seq ID: 240017_region_G3_52488_19

<400> 175

atgtgcattt gatgttctac catagtagat tgctttatgt gaaagtcttt taattattca 60
 atattgacat gttcttatat atatatatat atatggggg ttgttattatc tctgaaaaaa 120
 gattttatca taaaatcata atgatttctc ataatgtatc tttacattt aaagtttagat 180
 aaataaaaatt gatTTTaat tgTTTatTTT aatTTTaaaata cataatTTat atgactttt 240
 acaaaatttggat atataaacac ttaaaaaaaaa gtttcatgac gtacgggtgtg tatttgttgg 300

<210> 176
 <211> 104
 <212> DNA
 <213> Glycine max

<223> Seq ID: 318013_region_A3_471518_14

<400> 176

ttgcaactac ctgcaacggag gatactcaca caatgtgttag ttatagccaa gagttttct 60
 ttctttttt ttcttattagg agaatctcgc gtaattacat aatt 104

<210> 177
 <211> 105
 <212> DNA
 <213> Glycine max

<223> Seq ID: 318013_region_A3_231599_23 -

<400> 177

ctcaaggct ttggagaaca aacatgacaa gggaggagga ggaggaggag gagggagcgt 60
 tgctgaatcc gacagcgact ccgaggagga ggagtgacag gacct 105

<210> 178
 <211> 110

<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_375912_13

<400> 178

gacgcatctg tcacgaacga cggccctgcag cgaggagttc tgcgcagagaa gacgaagctg 60
ctgtcgcgaa gaagaagaag gcgtcgcgag gaagaagaag gcgttagttt 110

<210> 179
<211> 110
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_180013_12

<400> 179

accagtactc ctggagggtc tcacccttcc aggcgaagac ggccgcactg tgcgggcaa 60
tagccggcgc ggcgtggtcc tgggtggaga agatgttgca ggagcacca 110

<210> 180
<211> 113
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_171606_14

<400> 180

gcaactcgcac atattctttg ggattttgat gcctatttt tacgaagtct atttaatata 60
gagtttagtt tagtttatcaa ttgcaggac ttcttcagtc ccacattgga aag 113

<210> 181
<211> 114
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_416256_13

<400> 181

aacaattgca tccggtcatt ctaatgatat attattttcat cccacatct cccccactaaa 60
caaccttcta tgggtatctc tctctctctg tctggctct tgagtgtgag aatt 114

<210> 182
<211> 123
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_231395_15
<400> 182
gtccttcccg cactaatcta tcgaaaatct cccttcccag aaatttagtt ttagtatttc 60
tttctttctt tatttatcatcg cgattcgtgg caattttcg aaggttagggt ttgatgggtg 120
atc 123

<210> 183
<211> 125
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_5502_47
<400> 183
cagcaagagt tgacgaatga tgaacatgct tcaaatggag ttatatatat atatatata 60
atatatataat atatatataat atatatatgg tcttgacacga ggtatgaggt tgcgggttt 120
aaagc 125

<210> 184
<211> 125
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_93061_14
<400> 184
acagcatcag aactcagaag cattggttgc atcagagttt tgttatggtg tatttagaaa 60
aacttttctt gaaaaataaa aataaaacgg tatttcgcac acaggtcagc aacaacgtta 120
gcctc 125

<210> 185
<211> 127
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_111684_19
<400> 185
cttctccata acacttccca ccaacccaag ttcacacact ctctctctct ctctctcaca 60
caaacacttc tcccaacacct aatgtctctc cccaaaaccc tactttctctt ctctcttc 120
ctcacgta 127

<210> 186
<211> 128
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_69328_14

<400> 186

ctcctcagcc aggttacgct tattgacccc cacgcgcgcc agggctctaa agttgtcccc 60
gttgcttga acaaggcttc tctctctctc ctctctgttt ccgttcttta tttctctctc 120
gcgtttgg 128

<210> 187
<211> 130
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_36529_17

<400> 187

tcagagactt ctttgcttgg atgaaaattgc aggttcaattt cctctctctc tctctctct 60
tacttcaatc ttgtgttgcg tagaatatgg tttggtttat aaaaattgtt tgcatcgtt 120
cctgttagttg 130

<210> 188
<211> 132
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_139128_12

<400> 188

cagttcgccg atatctgatt ctacccac tggtgtaaaga tactaaacag ccacttttgg 60
tttacttgc acgcatatgc gcatgcacac acacacataa caaacactga caaggttcaa 120
gaacctcaact gg 132

<210> 189
<211> 132
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_495674_13

<400> 189

aagaatccag gaccatgacc ctattaatga aaaaacctgg gaaaaataaa taatatataa 60
gaatatatgt aagctccagg tccaaacaaa caaaccaata ataagttaat aacatcagag 120
aatgaccgca aa 132

<210> 190
<211> 132
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_187577_13

<400> 190

aacacgaacac atacgcactc acatttccat tccacctcaa caaacacaac aacactctct 60
cttcctcgctc ttggctttc gctttcaact cactctcatt cattcattc caccgttcat 120
ggatccagta ag 132

<210> 191
<211> 134
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_453036_14

<400> 191

caacaatccg tggtgataag agcaaaatat ccttttatta ttatatttt tgatagtc当地 60
tatacatatt ttgcctcgca cccatcaaag agttggggct ataatgtaat ttcccggacta 120
gaagtgc当地 aggg 134

<210> 192
<211> 134
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_374041_13

<400> 192

aatgc当地 aacaaggcac cctgtcttaag tgcaatacga ttaactctta aggttaacgat 60
agcttcttga tagcatgtta ttatatttt gtaataataa catgctttt ggtcattatt 120
catggtgaa caaa 134

<210> 193
<211> 136

<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_3412_11

<400> 193

aaacactcca atgcccaccat ctcaacaccc ttttctgcgg ccatctccac aacgcaaaat 60
cagtcaggg attcaaaaaa aaaaaaaaa accagagaga gagaaaagtga aaaaggttt 120
ggctttgggtt aagggtt 136

<210> 194
<211> 137
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_276495_28

<400> 194

cttcaagcc gcagggttag atacgtgtct tagttattat tattattattt attattatta 60
tatgtcgaaat tcatacttag ttatgatagc tagctaactc ttttattaaac tataataatt 120
ggctacacgt tgcaact 137

<210> 195
<211> 139
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_151839_17

<400> 195

ccgcaatggt atctctctca gacttggaa caaacacagg ctccaccata gccactcccg 60
tatattccctc atcagagtca gtctcatact cagatccctc ctccctccctc ttttttttt 120
ccctcccttc ctcttcctg 139

<210> 196
<211> 140
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_292912_12

<400> 196

atatgtttgc gtttctgtgc ttgttgtttg tccgtaaata tatatatatac tcatttattat 60
tgtttagtgtt attgggtcatg tgtttctttt tctttatttt ttttctcaact ttctatgctc 120

ttctctctcta ttccctaaggg 140

<210> 197
<211> 141
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_104560_12

<400> 197

aagagacaaa tggaggaaat tgcacgtggg ttatttagatt gtggacgtcc atttttgtgg 60
gtcgtagat aaaaggtaat taatggaaaa aaagaagagg aggaggagct ttgttgttc 120
agagagaaat tggagaatg g 141

<210> 198
<211> 141
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_65193_11

<400> 198

tagtggaaatg gaagcagaac agagggaggg ttgggtgtatg tgtgtgtgtt agagtaagat 60
aaacagagaa gctcgagaga aagaagaggg taattacaat ggaagtggac tagtacactc 120
ctggtttgga agaacagcat a 141

<210> 199
<211> 284
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_110573_70

<400> 199

cacattgaaa taaacatgtc cgacacacat atatacatac atatatataat atatataat 60
atatatataat atatatataat atatatataat atatatataat tttggcagca 120
cacataaata ttatatccag cgtcagcgtt atcctttct tc当地aggat tgacttcccg 180
ctccctgcca cgcatcccata caccacttt gttcccccata ccacctgtac gtccaccacc 240
accaccatac ccaggacgt aatcatttct gggtgacgca taac 284

<210> 200
<211> 144

<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__65117_12

<400> 200

tgcagtgtga gttttcttt gatccgtt atccattgac aatgaaagag agtaagaaaa 60
tccacaactg gaaaaccca gaggaagaag aagaatggag aggccagaaa aaccaaaact 120
tttagtggaat ggaaggcagaa caga 144

<210> 201
<211> 144
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__490837_16

<400> 201

agagaacgaa cggttagcatt ctcaatcaa ggtgaggagt atggacgata cataaatgtt 60
agttgcgaac aactctctag tctatcttag tacatcatgt ttaggttggaa tttagtattta 120
gaaagtcac cacacaatgc atgt 144

<210> 202
<211> 145
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__107448_11

<400> 202

tcaaaaaattt tccctacttg attgagggtt gttttttttt aataactatgtt gatgtttttttt 60
aggatataataatccac cggcagattt gggtttttttt aatgttatgtt ttatattttttt 120
atccaaaccatg aaattttatgtt aatggaa 145

<210> 203
<211> 146
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__331_23

<400> 203

ccattgttcca tcctctctaa tgttttttt accctaaactt acatgtttttt accaaaaataa 60
aaaaataataaaataaaaaac tttttttttttt ttatgtttttttt ttatgtttttttt 120

ttaaatccaa cactggacat gtgaaa

146

<210> 204
<211> 146
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_193470_13

<400> 204

taggcatagc ttaaggcatg gtattaatta ttattattaa tatgtggcag actagagtgg 60

tagatatctt acttgggtta gtttatgtaa ttaaagacag cactaccatc agtaaaattg 120

atatgagaag caggaaggac atgagg 146

<210> 205
<211> 146
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_183305_14

<400> 205

ggagattaaat ttatgtatcaccc gacaaaaat attggtagac cataatcaca attattgaga 60

agatattttt attttatccc taccgaatcg tcgcacgact cggcgtgttg caaccgcatt 120

aaatctttgt gttgggtctca ccctgt 146

<210> 206
<211> 147
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_55050_14

<400> 206

tctgaccctt aataatcagg caacaaaaaa gtaaaataaa aaatagtgtt taaaaagaaa 60

aaaaaaaaatc aaaagacaaac aagtcaaata taggacgcat tatgcaaaac gcggttctaa 120

cttctaaccg ggcaagtaga agattct 147

<210> 207
<211> 148
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_224693_21

<400> 207
tggtgctaag aaagtgtaat ttgtggactc gttagaaaaaa taaaataata aataaatagt 60
aaataaaaagg gtaggtataa ctacaactat aaggaaaaag tcaaaaacagt ctactttagtt 120
atgcggtaca ccacatgttt gaaagaaaa 148

<210> 208
<211> 148
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_207216_12

<400> 208
ttaactttgt tagaggaggc ggagacagag gaaagagatg tttaaatcac tctttgtctt 60
tgtttctctc tctctcccg tgaagaccta gatgacattc gacagaggag agagggagaa 120
ggagaacatg aagaagacaa cgaggccag 148

<210> 209
<211> 149
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_4654_22

<400> 209
ctgaagaaaag cattgaccaa ggaaaacgga acgaggagct ggttatataata tatatatata 60
tatactgagt gctgacaagg taagtttttg tctactgata ttacacatcc acaaagaata 120
ttatctgtga ttgtgggtta agatgggtt 149

<210> 210
<211> 149
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_408959_13

<400> 210
cggttggaa aagaagttt tgtagggtt tgcagactgc tgccggccgc gcgggtgtcg 60
atagccgcgc cggaactgga aagggtggcc gtacattcgc gggaaaaata agaagcgaag 120
gcggcacaag cagaccacgc taactacac 149

<210> 211
<211> 149
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_132288_22

<400> 211

acaggtcatc taaccaattg catgtatact acggttatgc gatcagttac atgtatacta 60
cagatcatgt gacatataatg accaaaaagt accatatattt attattatta ttattattgt 120
catacaatgg tgtccaagac ataagcaac 149

<210> 212
<211> 149
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_292822_20

<400> 212

gttatttcaca aagaagagc cgttatttgt ctcttagattc tgggtttgt tgtttcttt 60
tgtttaccac tctgtttttt ttcttttgtt ctctctttt ctctatcagg 120
ttatgggtat atgttttgtt ttctgtgt 149

<210> 213
<211> 149
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_311076_12

<400> 213

tttgtacttc gcacacattt gaaggatgaa aagttaggtatg aatattttgtt cttttttttc 60
tatgggcgaa acttggaaac ttctaaaaat acaattttac cattaaattha aaatgggttg 120
cccatactca ctttgggtat gagaggaaa 149

<210> 214
<211> 149
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_509623_13

<400> 214

aatgagcata gcgaaagcctc ctaaacgtttt gggttttttcc accaccacca ccctttttt 60

tccctctctc ttctaaaaaa ccagaaaacaa caaacacaaa cggaaaaaggc gaaagggtt 120
ttccgagtga gatcttaggtt ttccatcg 149

<210> 215
<211> 149
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__190404_14

<400> 215

aatctggtcc ctcaaagaac aagtgttgca gcagtaaaac tgcatacacc ccacccacc 60
tttacacgag aaccataaga taaaaataag gaaacacccag ggcacgcac ttttcata 120
ctctcaccaa acttcttgca taagggaaa 149

<210> 216
<211> 150
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__164916_15

<400> 216

aggctacggt atagaccacg ttgaagtcaa acaaaaaccgc ttttctctc tctaaagtgc 60
atagcgtcag cgtatgtca aattccaggt ttcttttt tactcaattc tctctctctc 120
tctgagggttc tgaaaaagatc aattccattc 150

<210> 217
<211> 150
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__21028_13

<400> 217

gatggataat tagtcttggc catcattaaa caaacaaaaca cttggctatt caattccatc 60
aaaattctga caatctttt gtaacggta aacctcaac ttccggagtg gtgggggctt 120
ccgtatcaaa gttgttttgct caaaggaa 150

<210> 218
<211> 150
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_208012_17
<400> 218
gttacaacag ctacctccgc agactcaaca gcttcaaact ccttaagaca tccttcatcc 60
tcctcctctt cctctacacc ctctccaccc accacccctt cctctccccc gccttccacg 120
gccccgcatg ggagaatcg gtccggccact 150

<210> 219
<211> 150
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_484089_14
<400> 219
cgatcgcatg atagagttca ccaatcggtt accccgagtc aacccacgca gtgtcatcat 60
catcatccaa gttgactttg actgtatctga gcataaaacat gtcagaagaata acaaattgggg 120
cttctgaaac gtaggagagg ccatcgtagt 150

<210> 220
<211> 150
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_332780_17
<400> 220
gttacaacag ctacctccgc agactcaaca gcttcaaact ccttaagaca tccttcatcc 60
tcctcctctt cctctacacc ctctccaccc accacccctt cctctccccc gccttccacg 120
gccccgcatg ggagaatcg gtccggccact 150

<210> 221
<211> 150
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_480137_37
<400> 221
ttcaaggaa ggagaagaat agatTTTT tataagagat gaaaaaacgt gaagaatgaa 60
gttttagagag tgagatacg t tagtttagta gtttagttt tagtttagta gtttaggaat 120
tgagatggat taaaaggaaac ttaataggga 150

<210> 222
<211> 151
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_441056_14

<400> 222

ctaatttgcg aacaggccac aagtaagtag taataaacaa aaaataataa ataaataaac 60
agttcgcttc taattcattt tcatgataaa tgcagtatca ttcatctccc ctccccaaatt 120
ccatttccctt ccggccaagaaa atttgcataat c 151

<210> 223
<211> 151
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_77486_11

<400> 223

atacccaaat cccatcttcc atttctctct ttttcacaca tatatatata ccccttttt 60
gaacacatcc cctcacatca tcacaagaag cacaattttt ctttctctct ttttttgtt 120
gtccaaaaat gtcctcttagtt ctgctcacaa c 151

<210> 224
<211> 151
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_272468_11

<400> 224

atggatcca tcctataagg caggataact ttaaattcga gtaaaatata tatatactca 60
caagttcaca attaattttc gtgtatatac ccagcttgca tagctgaata cggggaaaca 120
tgcacgttcg tgttactgtat gcaacgtaca a 151

<210> 225
<211> 151
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_425319_17

<400> 225

taccagtcaa ggatgagggtg actgtcatgg actagaagtt tgtaaagggtg ttcctacaat 60
atcacatgtt tcactcgcaa tgattgtttt attttatattt attaggctt gatattggaa 120
gtttgtatgg atacgcctt agtatgcttc a 151

<210> 226
<211> 151
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_413879_31

<400> 226

gatccctcagc ctttagttgc tgagagatgt ttgtgtgtgt atattatata tatatatata 60
tatatatata tatatagagaa ttgacagata gtacaaaaaa tagttcatga tgaaggctac 120
gccttagcct atggtgacag attacaggac a 151

<210> 227
<211> 152
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_80477_64

<400> 227

ggttggcctg aataatttgc aatagttcca ttctgtacata tatatatata tatatatata 60
tatatatata tatatatata tatatatata tatatatata ttatataaat gctatTTGA 120
accatcttctt gctatcaact atcccacttc cc 152

<210> 228
<211> 152
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_277272_50

<400> 228

cctgtatggta ctgcgttctc tctctctctc tctctctctc tctctctctc tctctctcta 60
tatatatata tatatatata tatatatata tatatatata tatatatattt gtctgtataat 120
aaaaaaaaat gtttgtcatg ttcaatgaca ga 152

<210> 229
<211> 152

<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_509642_13

<400> 229

ctaaacgctt tggtttcttc accaccacca cccttccttc ttctctctc tttctaaaaa 60
ccagaaaacaa caaacacaaa cggaaaaggc gaaagggtt ttccgagtga gatcttaggt 120
ttccatcgat tcggagagag gatattgatc ga 152

<210> 230
<211> 153
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_321771_14

<400> 230

atcaaactct ggaaacagggt tgggggggg ggatagagat acgataagat aatttttgtt 60
gtgttccaca tgcgtatata agtcaacgtat ctagatcaa ccattatcat aataataata 120
atcaaaccctt attaattcca aggtgttgc gac 153

<210> 231
<211> 153
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_26788_12

<400> 231

gaagagacaa ttgtgaggca aatcatcatg tgaacaccta gtgaaataag gcttttgtt 60
ttgttgaaca aatcacatga acaaaatgaa cacaaaactgg aggattaatc tatatgttc 120
atgtgtcata agcagagaac catgatttgtt ctg 153

<210> 232
<211> 154
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_262706_16

<400> 232

tcccttatca cccaaacatcc aaactggcc atctataaaaa actataagct gaactgagtg 60
tgtgtgtgtg tggttttatac attaactagg tgtgtttttatc tatctttatc aagtgtacta 120

<400> 236

cttatggcca tgctatacac atgctaggat tataagtata aatagtgtac tttcaggaac 60
aaagaagcca ttctacagca aaatcgctct ctctctctct ttcagcttag agttttacct 120
tattttctat aatggatcat ggaaagcaact tcagt 155

<210> 237

<211> 156

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_46754_12

<400> 237

aatccaaagt tgtcaagatg gttccagatt tatcatgttc gttccattha tttttttact 60
atttattgtg gtttatgaat atgatggtaa tggtgtatgat gatgaagttc caacatttag 120
aaacaagagg ttcaaatct aacgatccga caatga 156

<210> 238

<211> 156

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_381116_15

<400> 238

aaagggtgggt gtgtttccca tttatatata tatatacata catacataca ttctttctca 60
aaactttct ttaatgtcta aaagggtgtc cttttatgtt ttccagagga aagataactt 120
tgaatctgtta gtaatggagc atctgagaat gaatgg 156

<210> 239

<211> 156

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_350369_11

<400> 239

aaagggttcaa gaagatgtcg cgtaattcca attccagagg aggattttggaa tcaggaatgg 60
tagtggcagt ggtatgttgatgtcg tagtagcaat ggagttatggaa gtaagatgtaa 120
cgagggggaa agagtatttc aaaccgttca acgtgtaa 156

<210> 240
<211> 156
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_138841_13

<400> 240

ggtcagctt aaacaatttc tgtcaaaacg tgcgtttgg tgatttata tatatatatt 60
ggtgatgaat atccaaatca atgcaggaac aggaaggat aagcctgact ttctggccac 120
agtggatgtg gatccaagct ctccaaacgtt ttcaaaa 156

<210> 241
<211> 156
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_12158_14

<400> 241

cataccctt cagagtccct gtcactgcaa tccaaagaaaa caaaataaaa taaaaaaaa 60
tacatgtaga agagtttatt tgcattttaa ttatggaaacg taactccca tcgagttactt 120
gcaattcaaa acggaaacgaa ttccatactt cctcca 156

<210> 242
<211> 156
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_315368_13

<400> 242

cagtcagaga aagaaagcat gcactgcatt taccttaatc tacctaccca cactttctta 60
tatatatata tccacccttc caaggccattt tgcaacatcc atccaaacctt ttttttttgt 120
agatagctac tacttcactt tcatcccttg ctcccg 156

<210> 243
<211> 156
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_307549_13

<400> 243

ctggagcaaa ggatggaaatg gaagtagtag ctatctacga aagaaaaggc ttggatggat 60

gttgcaaaagt ggcttggaaag ggtggatata tatatataga aaagtgtggg tagtagatt 120
 aaggtagatg cagtgcattc ttcccttctc tgactg 156

<210> 244
 <211> 157
 <212> DNA
 <213> Glycine max

<223> Seq ID: 318013_region_A3_159857_14

<400> 244

tcctccctct agtttgctt ctctttctc tttaatgaat ttccctctat gtaaaaagca 60
 atagaaaaaa aaaaccagg taaaaaaaaat aaaataaaag aactaatttc aggtacatcc 120
 ttccattttg caatttagatt gcggtcagca ttcctt 157

<210> 245
 <211> 157
 <212> DNA
 <213> Glycine max

<223> Seq ID: 318013_region_A3_140551_15

<400> 245

gattccctggc tcttggaaatt tcctttttaa ttttcttac cttttctata tattgtatct 60
 gtgctcatat gaaataatag agatgatata attttctatc tctactctac tcatacatat 120
 ccatactcat ttgttattgt catctggat gcgtttt 157

<210> 246
 <211> 157
 <212> DNA
 <213> Glycine max

<223> Seq ID: 318013_region_A3_279869_11

<400> 246

taatgtgcca acttcttagca aggatggggc gtcattttt gtgagggacc gaaccatgtt 60
 cttttttttt atttatata tatccatgaa atatattttt ttgccttctt aattaaattt 120
 tctacttcttca tcataaaattt ggccataagc ccagact 157

<210> 247
 <211> 158
 <212> DNA
 <213> Glycine max

<223> Seq ID: 318013_region_A3__78292_35
<400> 247
caaattgatt agtttcttc cttctccata tatatatata tataatattat atatataat 60
atagagctaaa acagtaatac tgtagagttt ttgtatgtgt gtgtatgtt gttttcttt 120
taggtatgtt tagcattgat tcttgatgaa agaacatg 158

<210> 248
<211> 159
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__185019_12
<400> 248
accttctcg cgtagacttga gtagatctta aaattggata tttgctcaat taatacgctt 60
ataatatagt agtagtagcc tagatctaga tgcagttgtt cccgcgttgt aattaaataa 120
aatatcacgg aattattatg agagcattgg tgagcatga 159

<210> 249
<211> 159
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__409164_13
<400> 249
aggagaaaaca tcagcatcat tacggggttt tgtttagtac taatgttaatt gtaaattttg 60
tcatggcgcg gttcggcttt tcataaataa ataaaaataa agtcctcttg aaacacaact 120
aaaaacacat ggagattttt ctcatgcac ccacccctt 159

<210> 250
<211> 159
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__75392_14
<400> 250
gaaggagcct catcattgac ctaagggat gaaatcacac tcttttatg atctatccctt 60
tgctttcac gaaggctgcc attgtatgag gaataatgtatg ttttggatcaa ttaatataat 120
gacctataca tgtagcatac tcaaccatca atgtcatcg 159

<210> 251
<211> 161
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_231320_12

<400> 251

cccttaacaat catttcaacg ccttttctct ctaatcttc aaatcttgg aattattattt 60
attgtatgg gtccttcccg cactaattt tcgaaaatct cccttcccag aaatttagtt 120
tttagtatttc tttcttctt tatttatcag cgattcgtgg c 161

<210> 252
<211> 161
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_381102_14

<400> 252

ggccactgag aaacatgttc gatatatatt atcagtgaa aagggtgggt tgcttccat 60
ttatataatata atatacatac atacatatacat tctttctcaa aactcttctt taatgcttaa 120
aagggttgtcc ttttatggtt tccagaggaa agataacttt g 161

<210> 253
<211> 162
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_491826_15

<400> 253

cttgcgtggcga tggcctctt taataaatgt gttgcagttc atgggtcaaa ccaacccaac 60
tttgaaggca aaggagagag agagagaggt caagggtttt ctttttccg atttgttcat 120
cgcagaaaaat atcatccctt tgtgggattt tgaagatttt tc 162

<210> 254
<211> 162
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_56365_21

<400> 254

catgttctcc acaagggaaac agagaaaaaa gagagagaga gagagagaga agaaaacaac 60
 gatgcagaga agactatacc gaaccaaactt caaaatggg gaaacatcg cagggcaaa 120
 aaaaaaaaaa cttaaagggt gtgcctgaaa ctgttagtcat gg 162

<210> 255
 <211> 162
 <212> DNA
 <213> Glycine max

<223> Seq ID: 318013_region_A3_372628_15

<400> 255

aaaggaaatc tgaatttcgt tggaatttagc tctacaaatg catattgtat cacatcgcaa 60
 tcacaaaaaa ttaaaaaaata aaataaaatt agataaaaaa aacaaataaa gaaagaactt 120
 aagaaataact agaagctcca tctatcagcc aagtaacaac cc 162

<210> 256
 <211> 163
 <212> DNA
 <213> Glycine max

<223> Seq ID: 318013_region_A3_302609_11

<400> 256

cctaccact tcaagttcaa ctgttatct attcatatat atataccac ccttccaaac 60
 cactttgcaa catccatcca agcctttct ttcctagcta ctacacttc attctttgtt 120
 tcagaaaaatt aactagtagt gatggtcagt gttgaagaga tcc 163

<210> 257
 <211> 163
 <212> DNA
 <213> Glycine max

<223> Seq ID: 318013_region_A3_341804_11

<400> 257

ggatcttcc aacactgacc atcctagcta gttaatttc tgaagcaaag aatgaaagt 60
 tagtagctag gaaaagaaaag gcttggatgg atgttgcaaa gtgggttggg aggggtgggt 120
 tataatatatg aatagataga cagttgaact tgaagtgggt agg 163

<210> 258
 <211> 163

<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_217037_11

<400> 258

ggatctcttc aacactgacc atcctagcta gtaatttc tgaagcaaag aatgaaaatg 60
tagtagctag gaaagaaaag gcttggatgg atgttgc当地 gtgggttggagggttggata 120
tatatatatg aatagataga cagttgaact tgaagtgggt agg 163

<210> 259
<211> 163
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_264929_68

<400> 259

actaaagca aaggtgggtt tgtaaaatgt caatttgggg tggaaagcaa ttatgtcc 60
ttttataata tatatatata tatatatata tatatatata tatatatata 120
tatatatata tatatgataa caatgcataa agaacaatca cgc 163

<210> 260
<211> 164
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_55499_12

<400> 260

ttgctgcaag gtttcaactt aattgccccca aaacggggcg caagtactac caccctccat 60
ccctctccga caaccacggc caccactacc acgctgggtgc caccaccacc agcgccggcg 120
gagtc当地 aaga ggccgtggcg gctaggagca ttgacataat tctt 164

<210> 261
<211> 165
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_295634_14

<400> 261

taagttcggtt ggttgcctt gattgaacc acaaattttt taagtataat agtaattgtat 60
tttttaattt ttaaaaattt atttatatg tcatgtataa taataataat ttaatataaa 120

tgaatagatg aacatgttta aataaattga gtcggatttg aaaaa 165

<210> 262
<211> 165
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_269358_15

<400> 262

ttcatatgtgg ttaggttcttgcagccctca ctatcaaaga agtacaccac tctaaggtag 60
tgaagcttca tgcccaagtc caagccaccc gggttggaa atacgtccga cccgggtggcc 120
cgccccggcc caactgagga tagccctaca tcatgcacta cactc 165

<210> 263
<211> 165
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_457009_24

<400> 263

tgtgtccatt ggagaaaattt gtttatattga gggagtttgc tagctatagc tgtgatttt 60
ttgttttgttgc ttgttggtaa aggttggagag agagagagag agagagagaa gtgttttagag 120
aaaaaatgga aaatttatattt atggtgagtt gagggaaatag aagcc 165

<210> 264
<211> 165
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_176598_14

<400> 264

ttcacataa agatccgtt cagcaaacac cgctataatt aatggcaatg caatgcaaga 60
ctaaacatcg aagatgagtg acacaataaa aatagttgc ccaaaaagag cacctatgtt 120
ctagtgaaga atacgacttt ttcttggcactctttac caaca 165

<210> 265
<211> 167
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_278266_12

<400> 265

tcttaatggc caattgctga aagtttgaat caataattaa aagtacatac attcaaaaata 60
ataataatta aaattacata tgcataatgtgcattctg aattctaagg tgcaaaaaga 120
aaaaaaaaata ctttaagct ccatgttgac tttgttatataat taatggg 167

<210> 266
<211> 169
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_391810_12

<400> 266

aaggagggtt gaggaaatca tcaagggaa tcttaggcta aacaatattt ctAAAACCTT 60
ggTTTTAAC cgtgtcgaaat ggcatacgat gatccatgtat gctgacctaa cttgttagga 120
taaagcttttggattgagaatc aaattgtca cagtaagt 169

<210> 267
<211> 169
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_269485_15

<400> 267

agcctcacat catgactac actcttttctt aagaccattttttgttgc tccttagaaat 60
taaaagagag agatatacaca aggtcaagag ggTTTGTGTTG TGTGTTGTTG TTGTTGAAG 120
aaagtgaatg catatatataa gaatgtatggatgtgtcata agtgaggga 169

<210> 268
<211> 169
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_359247_17

<400> 268

ggttggaaag gagatgtttaa gggttgaagg gaggaggagg aggaggggga gaggtcggtt 60
gtttaaatcc tcccaactaacattctaaacaa aaactagccatcaaattgtc tgacaaaaaaa 120
aatagcactt gtgtatctatg atatgttttgc tatgacaattt gggagtggaa 169

<210> 269
<211> 170
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_315094_13

<400> 269

tccatataa ggacaggata tctgaattgc aaaaaaatca tgaatcttctt gtttaaaaac 60
agttttat tt aaacattta ttttttattt gaatgttttc aagatgataa atgagacaaa 120
tcaatcaatc agacttggta tttaaaaacaa ataatttctt cgtgacattt 170

<210> 270
<211> 170
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_307823_13

<400> 270

aatgtc acg agggaaattat ttgttttaa taccaagtctt gattgattga tttgtctcat 60
ttatcatctt gaaaacattc caataaaaaaa taaatgtttt aaataaaaact gtttttaaac 120
aagagattca tgattttttt gcaattcaga tatccgtcc attatatggaa 170

<210> 271
<211> 170
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_248588_15

<400> 271

gtctgcaagc taacagtgtc agaggatgtt aatatttagta ttattaacaa taataataat 60
aatgatgaaa cgtgtctgtc aatgagatgtt agtgtgtatctt taatttatttc tttgttcata 120
tactactgtt cggcattttt ttatcgtgg taatgactaa gtgggatcc 170

<210> 272
<211> 171
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_252426_85

<400> 272

tcaattcaat gataaaaggcc tttggataat atatataatat atatataatat atatataatat 60

atatatataat atatatataat atatatataat atatatataat ataagaaaaac 120
acatttcaa gaatttttcc actttatttc ttgttctacc taagcaaacc a 171

<210> 273
<211> 171
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_513314_16

<400> 273

cttaaagtgc gttatcgta gcgttattact attctgaggg gaaatcatga aagtgcggcag 60
gtctgttctt ttttaatca tgacccttctt gtttagttagt gattatagat tagatttagat 120
ttaaaaatcct attttggtaa tcggaggcat ggtcatttgg tcagtatccag t 171

<210> 274
<211> 172
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_68183_14

<400> 274

caccgtgaag atgatcaaga gagagttcga gtatgttagt gcctactaaa taaaacaagg 60
ggacaatatt ttctatgggt tgggttgggg ttgttctcca taaagaggaa ttgttgttgc 120
gggtgggtgg gatttaggtt tatagggtaa tccttgggtt gggctatcc ta 172

<210> 275
<211> 173
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_471191_13

<400> 275

cgtcacctga cctcaacaat gtgtatgttctt taaataatcc tctgctagca tctgctaggg 60
ccttctatcc acacttggta ttatgttaatt ggttaggttcg atgttgacat ctttacagt 120
ataataagtgt tcatttattt atttagtcgtt accataatga gattaatttg gca 173

<210> 276
<211> 174
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__163547_18
<400> 276
tttgc当地 atgc当地 cctc agt当地 ttaa gtaaaataat aattaatataa taat当地 ttcc 60
agtaat当地 ttaa acat当地 gaatc attaacttta tatataatata tatatagatt atacaatataa 120
gactt当地 taca aatgatgtaa aagat当地 ttac tctgcaata cactt当地 gtgc ttca 174

<210> 277
<211> 176
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__417867_15
<400> 277
gtt当地 ggg当地 tct gaatctgaag aaacgctgcg tttcg当地 ttcc agt当地 gagata 60
gaat当地 ggaa gtagt当地 cgtag agt当地 taagag aggat当地 taagg aaat当地 gaat当地 gagaaaaaaag 120
caacaaaac tccg当地 tccagg gggatcagg aattt当地 cacca actacgctag attcgc 176

<210> 278
<211> 178
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__332465_14
<400> 278
taacgctgca tgat当地 ttgagt tctg当地 tttgtt cggc当地 ggggac tagggacaaa tatat当地 tttt 60
gttagt当地 taat ttgat当地 attggtgata tgtctgaaatgta taat当地 ttattt ggccatgcat 120
gtgtgtgtgt gtggtagtga gaagaattga gaaaaaaaatgta gtggtctcca aagtccaa 178

<210> 279
<211> 178
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__207697_14
<400> 279
taacgctgca tgat当地 ttgagt tctg当地 tttgtt cggc当地 ggggac tagggacaaa tatat当地 tttt 60
gttagt当地 taat ttgat当地 attggtgata tgtctgaaatgta taat当地 ttattt ggccatgcat 120
gtgtgtgtgt gtggtagtga gaagaattga gaaaaaaaatgta gtggtctcca aagtccaa 178

<210> 280
<211> 179
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_277229_43

<400> 280

caagccaaca tacacagtgg ttctggccct gatggtaactc gtttctcttc ctctctctct 60
ctctctcttc ctctctcttc ctctctatata tataatataat atatataatata atatataatata 120
atataatataat atatattgtc tgataataaaa aaaaaatgtt gtgcatttc aatgacaga 179

<210> 281
<211> 179
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_36366_11

<400> 281

aattgtacgg cagacacgtc ctgcggcg 60
ttaagaaaatg gcgcctcttc tctcagagag
tcgacggcga ctacgacatg aggatggta tggcttcgtt tggggcaag ctcagctta 120
aggagatgtc ctgttgctc aaggacaga aggggtggag gcaagtcaga gacttctt 179

<210> 282
<211> 179
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_91970_12

<400> 282

tctttggaca ctgtgagagg tgttataaa tcgagagaga gagaatatt aaagaaaaaa 60
aagctaataa acgtttaaa gagatataa tggtgaggta attttgattt tgattttgtt 120
tgtaccttag gtttttattt gaattaaata atattgttaa ggtcgaatag aatcatgga 179

<210> 283
<211> 180
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_211533_11

<400> 283

```

ggtgtgttgg gagagtcaac agtctactta gacatgcgg acatacacca tatatttcaa 60
aaaaaaaaaa gcgttagtcag aggaagcatg cgccatcta cttaccacc ctttcaatt 120
atgcatgtat atatatatct gagccacttt gccacattca ttcccaccc cataccctt 180

<210>      284
<211>      180
<212>      DNA
<213>      Glycine max

<223>      Seq ID: 318013_region_A3_336301_11

<400>      284

ggtgtgttgg gagagtcaac agtctactta gacatgcgg acatacacca tatatttcaa 60
aaaaaaaaaa gcgttagtcag aggaagcatg cgccatcta cttaccacc ctttcaatt 120
atgcatgtat atatatatct gagccacttt gccacattca ttcccaccc cataccctt 180

<210>      285
<211>      180
<212>      DNA
<213>      Glycine max

<223>      Seq ID: 318013_region_A3_441603_14

<400>      285

gtggtagtcc gcaatgagac aatctggctt ggtgggtcca tcacggatcg aactcatgt 60
cttcgagtga gtgagtgact gatcagggtc tcaagtctt catcgacccc tcttctgatt 120
ttctcggaa aatgacggaa gagaaggaaa atcgcgactt ggtttcgag aatggatgtt 180

<210>      286
<211>      180
<212>      DNA
<213>      Glycine max

<223>      Seq ID: 318013_region_A3_468354_15

<400>      286

tttcttactg caccttagtcc acgaccgtgt ctaaacgatt aaaagtgcaa aaaaaaaaaa 60
aaatggcct tatcaaattt aaactatcat aatttattta ttatttacca ctaacactt 120
atttattata ttatttacaa acttaaatac atttacggta cttaaccga ttattcaggc 180

<210>      287
<211>      181

```


<400> 290

tgaagtggag taaggtcttg tttgaaatta tttttaatt tcaaaaacttgc tttcaatatt 60
 aatttttagc ttgttatat tttaaaaata aaataaaaag aaaaaatatt tgtaaaaatt 120
 caaaaataga ttttttttaa aaaaatgttc ataaaatatac agcatctgtc aattgcatgt 180
 tta 183

<210> 291
 <211> 183
 <212> DNA
 <213> Glycine max

<223> Seq ID: 318013_region_A3_491126_11

<400> 291

cctctctacc aaacacaaggc agaaaatggt aggaactcga gttggcaat cgaacctttt 60
 atacaacacac acacaaaaag ctgcaactaa gaaatggaga aaaagttata cgattcaaaa 120
 gagagaaaaaa aaactattat gctgataaaa aaattggagt gaattggact taccagtgg 180
 gct 183

<210> 292
 <211> 184
 <212> DNA
 <213> Glycine max

<223> Seq ID: 318013_region_A3_99512_21

<400> 292

tatatcgatgc atgtttgttg gtcctcccttgc acaagcataat ctatataatt tatacaagttt 60
 gtaaaaataaa tgataagact aaatgtatgg ttcacatata ctttatttgtt actcatatata 120
 atatataatataatattctt tggatggaaa ggaccccgaa gatacttcctt tgggtgggtgt 180
 cttg 184

<210> 293
 <211> 185
 <212> DNA
 <213> Glycine max

<223> Seq ID: 318013_region_A3_280291_17

<400> 293

tggaaatccccca actatagttt gacacctggc cccctacttag gctcaaaacaa cccccctgaaa 60

tacccaaaaa caggatcagc aatgaaaacat gaaggaagga aggaagggtta gaacttatac 120
gactaagggtc agacaaaata aagggtggga gaaaatccca aaatgaaatg ttgggagaaa 180
gtccc 185

<210> 294
<211> 185
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_138443_19

<400> 294

tgataaagcc aaagaagttaa ctttcgttct tattttcatg tgacttgtaa caagttacaa 60
gtcagtaata taacctataa cttactcttc atcatctgtc tcttcgttgc atcataatat 120
ctgttaagtgc atcttcata gagagagaga gagagagatg gagaggtgtc acaagggtat 180
gaacc 185

<210> 295
<211> 185
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_115973_14

<400> 295

ttaagcaatt gagttggatg aggtggtagt atatgtttta tgtaaatact agtagttcca 60
atatTTAAAT ccttaacatg gttggtaaag tctagataag gttttataacc tccatTTTGG 120
aactaaaatc aaggctttta tccttacctt acctttcggtt gaggaagcac cacttgaaca 180
atcat 185

<210> 296
<211> 187
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_329977_14

<400> 296

cagagagtgc tgtttaagca tttggaaatat taaaataaaaa tgtttcaag aatagtataat 60
tattataattt tcgttttgac ttatgaaataa tgottcaaaa cagagagtgc tgtttattat 120
tattattctt tctatTTGGA aatatctact aatggatcag aatagaatag atgtcccttcg 180

gctttcc

187

<210> 297
<211> 187
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__205203_14

<400> 297

cagagagtgc tgtttaagca tttgaaaatataaaataaaaaa tgtttcaaag aatagtataat 60

tatataattat tcgttttgac ttatgaataa tgcttcaaaa cagagaggta tgttttatata 120

tattattttttt ctatattggaa aatatctact aatggatcatg aatagaatag atgtccttcg 180

gctttcc 187

<210> 298
<211> 188
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__153114_12

<400> 298

agttacaact ttgcgtatcg ttacatTTTA aaggTTTATATATATATATATATATATAT 60

atATATATATATATATATAA TAATAATAAT TTATGAATAAA AAAAATTATAA CAGCAACTAG 120

ttgtcattat taataaaatAT agatgataat aataatTTG tagTTGTC CTAACCCCTC 180

tcctgaca 188

<210> 299
<211> 190
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__34581_13

<400> 299

gtacttgatc ccagacacca cttgcgcactg cgccTCCacc acttccTcgA acgtcacTc 60

ctccTccTcc ctctgcgcct gcctcagcat cgggttatgc tcctccaccc agaaccgcCc 120

tagatccTgc accaccgcCa tcgctcaatt gagattgatt tagaacaatg gagttacgtA 180

tacggTgtcg 190

<210> 300
<211> 191
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_292577_19

<400> 300

ccattgttagg aggacaagaa tcacaagatc tctctctctc tctcttttc acatgaataa 60
atagaagaaa gagagaacaa caatctaat atacacaaaa ctatgtatat cttatgtac 120
ataataatata taatatatga ttttggggga agtactttt ttttgttg ttctgtgtt 180
ttgttgttgc t 191

<210> 301
<211> 192
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_445391_20

<400> 301

tgcattttatc attgaatttag agggattttt taccctataataataataa taatatggta 60
gccccgtttgtt tggcatctgc attttctacc cgagaaagca aaaagccaa gcagtcgtct 120
tggtgcgtcc gattggtcaa aatataaaaa tccattttttt gaaattttttt actgttattgc 180
attgcgttttgc t 192

<210> 302
<211> 192
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_350540_17

<400> 302

ggaaagatgtt tttcaaaaccgttcaacgtgttcaacgttca ccgcgccttc atcctcaacg 60
gcaaacgcggcccttccttcattcccgccggaa tccactatcc acgcgcggact cccgagggtt 120
atattaattttttaattttactca tcatcagtca tcaactaaaa taacactaac atgcaaccac 180
atattaactca aa 192

<210> 303
<211> 194
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_453879_15
<400> 303
gcagcactga acatgataag agatcaaatt gttaactttt agactccata aagtactaac 60
tataatttaa gttatcaatg aaaagcattc ccatggctta acacaaaaat cagttccaa 120
aaactagtgt ctccactga aaaacttta tttaaaaata aaataaaaattt gtcctttctt 180
gttcttcaat tgca 194

<210> 304
<211> 194
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_201246_13
<400> 304
tgtgtggaat gcacatttag agaagagaat aaacaaaata ttgagaatat ctaattaaga 60
gaatgaaaaa aaaaagaata tcactctcta agttgtctat tctaatttat attataggaa 120
taaataaata ataaaaaaagt ccaatataat taattcctaa taaaatttag cataatcaatc 180
aacatcatct tgcg 194

<210> 305
<211> 194
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_326020_13
<400> 305
tgtgtggaat gcacatttag agaagagaat aaacaaaata ttgagaatat ctaattaaga 60
gaatgaaaaa aaaaagaata tcactctcta agttgtctat tctaatttat attataggaa 120
taaataaata ataaaaaaagt ccaatataat taattcctaa taaaatttag cataatcaatc 180
aacatcatct tgcg 194

<210> 306
<211> 194
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_503801_14
<400> 306

```

attgcatte agtgtgaaca ttgttttgc tttgtttgtt aaattnaac cccttctaa 60
ctttcatcg ttcaagaataa tggttgccc aaaattgtt gtttcagtt ataccctccc 120
ctccaatgtc ttacatTTT cgctgatTTT atTTTatTTT caattttgtct ttccctcagat 180
tatgttaagt cccca 194

<210> 307
<211> 199
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__302400_52

<400> 307

tacataaaa accatgtgg gaaggcaggg aaaaaggcaa aatagagttt accttaattt 60
caacctgaat aggtttaaaa aataaaaaagg atttgggtt ttgcacaata 120
tatatatata tatatatata tatatatata tatatatata tatatatatgtt gattcaacaa 180
ggctatcaat caacagtca 199

<210> 308
<211> 200
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__448857_15

<400> 308

atgaactgtt gttcctgtca tgggtttagt ttaggtttagt taacagttat ggattacccc 60
atctgttat tagtatattt ttgaaatttggaa gtttacgttta ttaaatgtt aaataaaaata 120
aaatttctagg ctgtttaaaaat tttttggaa agtgtttttt gtttcttttca taaattgttat 180
ccaagggtgtt ttgagggttt 200

<210> 309
<211> 204
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__48364_14

<400> 309

aacaaggtcac caaggcacaa ctttaccgct gcaccaggac tggccctccg aagaaacata 60
tatattgtt taaaataattt cagaaataaaa atacccgcaaa aattttttt gtccaaaaat 120

```

acagaaaaaaaaaaa aaaagaagaa gaagaaatca cttcttttc ttaagttgtt taacattttt 180
ggaattggct tggctctgg tctt 204

<210> 310
<211> 205
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_251804_48

<400> 310

tgttatcaat cgacgcata atcaagaaaa tcaaacatgg tatcagtaat taattttaaa 60
taaaggattata tatatatata tatatatata tatatatata tatatataata tatagacacc 120
ccaaaaaaa tcataattaaa acaattataa ttccataatata tcagaataaaa taaaaatatt 180
gaaataaaatg gcaacacaccc atcg 205

<210> 311
<211> 205
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_382583_13

<400> 311

ccctctatca agtgtatcatcg cccttataaa taccatgaat gaatgaaata aagcaaggaa 60
aaagtttatac agtatattct tatagcagta gcagtagaat tagctaagta tagaagtta 120
ccctatcatgt agctatgtaa ccttagtactt acttacatta tccaattact tggtagttt 180
cctgatagaa atgggttact ttcc 205

<210> 312
<211> 206
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_124737_14

<400> 312

tccaaattagt tgcaagaaaca agcaaggcctt ccaatttagt acaacaacaa ccaaacattt 60
tcctactaag tgggtcaac tgcataatgtt ttccacaata aataaataaa aaataacttac 120
caatataattt atttattttctt acattttaaa tttaaaatata ggacattgc tcaacacaaa 180
ttgtgttatttgcacccaaaga ggacta 206

<210> 313
<211> 206
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_124766_13

<400> 313

tccaaattagt tgcaagaaaca agcaaggcctt ccaatttagtt acaacaacaa ccaaacattt 60
tcctactaag tgggtcaac tgcataatgtta tttcacaaata aataaataaaa aaatacttac 120
caatatattt atttattttct acatTTTaaa tttaaaatTTT ggacatTTGc tcaacacaaa 180
tttgttatttg gcacccaaga ggacta 206

<210> 314
<211> 209
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_461351_16

<400> 314

gaatgggttggaaag caactgccac cgggttgaat tgccctgcag tcagctccat 60
gtgagcatgc aaaggccaaac cctgacttca gtgcggcgta gccagcggtt ctcccttgccc 120
cgaccaccaa tggcatcatcatcatg ctcccaacta ctattaacac tagagaaacc 180
acttttgctg cccttcaaca aatttactat 209

<210> 315
<211> 214
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_64953_19

<400> 315

caccccttggaa aacctgaaac acttggaaag aaaaaacaca gacacaactt cccaaaccag 60
acacccccaga aagacaaaaaa cttttcataa gaaaaggcacc aaagtaacaa aataatataa 120
taacataata atggaaatatg gaaaggaaaa gagagagaag aagaggaaga agaaaaggggg 180
gaaaagagga tgagggcagt gaccctttaa agag 214

<210> 316
<211> 215

<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_366586_13

<400> 316

tgtccatgca ttaaagcaaa catctagaat tagaacttca tgcaatttat ctatcaaattc 60
tttgcggaaa tagatggggat atagatagat aagatagggt tgctgtgatt ttcaggggaca 120
agtattccaa tagatgtcggt tagaaaaaaaa tcataaattt gataaagaaa aatctaaaat 180
catacatctt agacaataaa cgcacatgtttt cattc 215

<210> 317
<211> 217
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_46190_15

<400> 317

caaacctcca atcactaaat tgatcctaat caattttca gcaaagaaca atattactt 60
tttcatcttg tttaaatctta gtatctatca gcataaagaa ttttataatg tcattcaatt 120
aaaaatctt ctataaaaaaa atcaataattt cacctctaaa aaaaaacaaa agtgaatcat 180
gaatgaatgt atgtgtaccc tggccctagcc tgaactt 217

<210> 318
<211> 220
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_81016_11

<400> 318

cctcggccaa acataacttag tctaaacagtt ttgttttgtt ctataatttat tggtaatgt 60
attgtactta gagatccctc ttcatgaaaa gagagagaga tgcccgact cctaaaaata 120
tctaaaaatgc aataaaaaatgc attgtttgtt gtttgcatttt aaaaaacagc aaaaccttcc 180
gtgctaaaaat aaacttacca aacaagatgg aatcaaggct 220

<210> 319
<211> 222
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_134426_14

<400> 319
ttacactatg ggtccgttcg gttataactt tttaattctt atattaaata tattatctt 60
aaaagactac tgatgaggat aaatacataa aaaaaaataat ttatTTacc atctaaaaac 120
atgttccat tgagtacact tcaaatttag agaaaggaaa attgagtga aataatgaaa 180
tgaaatggat cataatccat catcatcttc cattatgttt ca 222

<210> 320
<211> 223
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_292724_14

<400> 320
ccattgttagg aggacaagaa tcacaagatc tctctctctc tctctcttcc acatgaataa 60
ataagaagaaa gagagaacaa caatctcaat atacacaaaa ctatgtatat ctatatgtac 120
atataatata taatataatga ttttggggga agtactttt tctttgtgtg ttctgtgttg 180
tttgttgc tatggtatgc tattcacaaa gcaagagccg tta 223

<210> 321
<211> 225
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_187096_17

<400> 321
gtcccgccaa atgcgtAACAA tttattctga tgtaaaaaat tattattattt attatAGATA 60
ataaaaatctt gttcctGAAC aataaccatc aatgtAATTA taaaattGAA tcttagactc 120
aaaactAGTT attaatCTGG aacaatgttt actcaaaACT agtttataat agtattttta 180
agttaatTTG aaattttttt ttCGGCGTTA aacaaatact agatg 225

<210> 322
<211> 228
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_381693_13

<400> 322
ttgatgttat gattcaatgg ttgtatgtt ttcttagaaa gaaagaaaaa attgttgtaa 60

attttagtac agtttgatac taaaaactata atagtaaaaat ttataataaa ctagaaaaata 120
tactggatct tgtgtttct tactatttat gtcagacatt gtcagcctgc aaaatgaaga 180
tggatccccc tcaggggata tgtgggtga agttgatacg cggtattt 228

<210> 323
<211> 229
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_361286_33

<400> 323

actccagttt cattctcttc gtaaataaac cagtgttagtt agtataaata ttgtaagtac 60
ttaagccaaa catttgtgtat ttttcattca ataggctctc tcattctctc tattgtgt 120
gtgtgtgtgt gtgtgtgtgt tgatatggat tcttattttct ggtatttgg 180
ctctttaacc tttaaaaataa tttaggtaag caacaagaa cacatttc 229

<210> 324
<211> 230
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_482668_14

<400> 324

cgttgttac ttcacacgcac acataaaaaa aaaagtgtga ttattttttt gttaaaaattt 60
atctaaaaggc attcaataaa tttaaattaa caatcatttt tcttaatata gcagcaatct 120
tagtatagaa ttgaagttaa aaaaagtccc ttaataaggg aaaatacaat tgacacaacaa 180
ataattctt accaaatcaa attttatggc acacattgtac gtaagtctga 230

<210> 325
<211> 231
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_128002_12

<400> 325

ctggccagggtt atccaaatcat aaagaaaatat ttaccaggatca aaaaagtctcg aaatggagat 60
gcataacaat gttaaagtta gacaagttaa taccccatat aaaatattta ctagaattct 120
agagagagag aggtgtatc tgttttctgt tattgtgtatc tgaatcaatc attactatct 180

gatggaaat gagtttata taatagaggta accttgtctt gcaagcttac a 231

<210> 326
<211> 239
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_499270_14

<400> 326

cactgtgtaa gtgtcccttg catctccctg ctttatTTT actgtaatgt gttgaattgt 60
ttatAGTTTC ttactttca atGCCAATAT atATATATAT gCTTATAATC ttCTGTCAAA 120
atGTTCTAA atCTATGTTT tttatGACTT tgTTAACTAT atAAAACATT tCTAATTATT 180
atCATGAATC tgACAATTAA ttATACAGAT cAGAAAACGTA gtCTTCTGTAT tCAAATCCC 239

<210> 327
<211> 242
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_231650_12

<400> 327

cttcaaggct ttggagaaca aacatgacaa gggaggagga ggaggaggag gaggggagcgt 60
tgcTGaatCC gacAGCGACT ccGAGGAGGA ggAGTACGAG gACCTGGCC aCAAGCCAT 120
tggccccctg gaccCCTCCA agtgcACCGC CGCCGGACC gggATCgCCG GCGGAACCGC 180
gtgcgcTCCG tcTCCCTTG tggtggTggc caaggACGCC gATGAGAGGA aggtttCCGG 240
tg 242

<210> 328
<211> 251
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_199851_13

<400> 328

cgGCCatAGT catATTTATG ctTCCAAAAG GCCACTACTT ggATGAAAAC CTCCACTTAA 60
tttaaAGACC aATTTCTAA aACCATGCGT ttATTTATTt atAAAACCCC TACGCGGTAA 120
aaATAAATAAA aAATTGCTAG ATTTGATTC TGCCCTCTGA AAAAGGAAGT GCACATTAGC 180
atATTAATTA aATATTTCTT TCCTTCTATT ttATTTGATA tTAAACTCAC TAATAGCGTG 240

atggaaaccc t	251
<210>	329
<211>	251
<212>	DNA
<213>	Glycine max
<223>	Seq ID: 318013_region_A3_324629_13
<400>	329
cgccccatagt catatttatg cttccaaaag gccactactt ggatgaaaac ctccacttaa	60
ttaaagacc aattttctaa aaccatgcgt ttatTTTttaataaaacccc tacgcggtaa	120
aaataaataa aaatttgcgt attttgattc tgccTTCTGA aaaaggaaagt gcacatttagc	180
atattaatta aatatTTTCT tccttctatt ttatTTGATA ttaaaactcac taatAGCGTG	240
atggaaaccc t	251
<210>	330
<211>	266
<212>	DNA
<213>	Glycine max
<223>	Seq ID: 318013_region_A3_374190_19
<400>	330
agccaaggta aggcacacaa acttgcccc aggcttaaa actctcttca cctgaaaataa	60
aaaaataaaaaa taaaataaaa aataaaaaag ccaagttaacc aaaaatacaa aatagtcaat	120
ccatataaac attcattatt tagatTTGT ttgtataaac ttcttatataa aaacttttag	180
ggggaaagtaa aaagtaaaat acattgagct tctcttataa gttaaaagca ggctagacag	240
atttcttataa tcacccggatt ggatga	266
<210>	331
<211>	266
<212>	DNA
<213>	Glycine max
<223>	Seq ID: 318013_region_A3_460603_13
<400>	331
cacgcaacca ttcatgttac aaagtgttt ttataatcga aagagggaaac taagaaaaat	60
tactttcatg taagtataaa gtttagttca taaaactgtat taatgagggtt attataatta	120
ataaaactgac aacagagtat aaattaaaaat atctttattt atttatagaa attctctcaa	180

tacaaaatgtt ttgtatcataa aataaacataa caggttagatc attccctctga tgttatttgag 240
attagcttgg gcagtttca atcctc 266

<210> 332
<211> 268
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_108681_14

<400> 332

aagagtgtga aattggtagc acagtttata agtcatgtgg ataatgaaat taagagtaac 60
atttatgaaa atattatatt gagcaagtta taaacataat cactaaaact catcataaga 120
aaaaaaacat gattgtctt gacacataag ataaacatta atttaattta aaaaacaag 180
aaaaaaagtgt agaggggaga catatatttgc acatttttta ttccaaaga ataagagaaa 240
tatatatgtt gcttgcattt tgatgaaac 268

<210> 333
<211> 269
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_459791_47

<400> 333

tgcttatgtc agctacggtc aatctttgat ttttttata gagaacatt ttttttacat 60
cttattttaa gtgaacctta taataattt ttctttgaca ttttatttttgc agtgaactaa 120
atgttaatgt cataaaagagt tactgaataa gaatataat atatataat atatataat 180
atataatataat atataatataa tatacatttgc taacatttaa tgttcaacaa gtttaactgaa 240
taataataga ggtacctact cgcctcgga 269

<210> 334
<211> 279
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_4257_20

<400> 334

tcccaacgc aacatgttgc aaatatttgc agtgaacta tacttttttca tcaaattgtac 60
tagtaactgt cacaaaattt aattcatata tatataatata tatatgcata ataataattt 120

```

ctctcatgca taagtttat tcttaattat ttttttcat aaattactt atgttcact 180
atataaaaaat gaaaaaaatg atataaaaaa agttaaatc taaaataaaa taagacttc 240
taaataaaaaa gattagggag tggttacatt caagttca 279

<210>      335
<211>      288
<212>      DNA
<213>      Glycine max

<223>      Seq ID: 318013_region_A3_238810_14

<400>      335

caggtgttaa tactcccttc atttccaaat attgatcggt ctagatttt tttaactgga 60
gttgttctag atattttat ccaaactaag aaaatataat aaatagataa aagaaaacag 120
taatttgata aaatcaattt tattatttt ttacaagcaa aaaaataagt aatgttatgt 180
taaaaaatta aaacaataat tattttgaaa cttattttg ttttacacga taatataatg 240
agagaattat atatataatat aaacgtcatc attggataga aacgatgt 288

<210>      336
<211>      289
<212>      DNA
<213>      Glycine max

<223>      Seq ID: 318013_region_A3_245817_14

<400>      336

atcataaaatt cattcaaaca catgctaaaa taaaagttt aataactttt agtccttaat 60
tttagttttt tgttttgtt ttgttttcg ttcttataaa catttttgtt ttgttttaa 120
tctttttaaa ttttttttat ttattttttc acctcaaaa tgattttagat aacaaagaaa 180
aaaatattaa attacaagaa aaaaaaaaaat atataaacct aaaataataa taagagtaaa 240
agatattttat ttatTTTGTCTTAAACACGCGAATGGTAGT 289

<210>      337
<211>      289
<212>      DNA
<213>      Glycine max

<223>      Seq ID: 318013_region_A3_245956_14

<400>      337

atcataaaatt cattcaaaca catgctaaaa taaaagttt aataactttt agtccttaat 60

```

ttagctttt tgttttgtt tttgttttcg ttcttataaa catttttgtt tttgttttaa 120
tctttttaaa tttttttat ttattttc atccctcaaaa tgatttagat aacaaagaaa 180
aaaatattaa attacaagaa acaaaaaat atataaacct aaaataaata taagagtaaa 240
agatatttat ttattnagct aaatttgatct aaacacgcag aatggtagt 289

<210> 338
<211> 289
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_74148_14

<400> 338

tgcatgcatg taaccagaaa taataataac aattaacaac atgcatgcac gcataccggc 60
tttttcata aaaaaaaaaatg ttttacgtc cgtccaaattt attttattttt atatccggc 120
cttttagttt gtgattgatt ttgattaact ataaaataaa ttaatttcaa caccttattca 180
gtgtactttg tacactttagt ttaattttt ttagagattt tcttttctta caatttctta 240
agtgagttaa aaaaatgttg attatttctt catacaactct tgcaagtgtg 289

<210> 339
<211> 289
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_74089_15

<400> 339

tgcatgcatg taaccagaaa taataataac aattaacaac atgcatgcac gcataccggc 60
tttttcata aaaaaaaaaatg ttttacgtc cgtccaaattt attttattttt atatccggc 120
cttttagttt gtgattgatt ttgattaact ataaaataaa ttaatttcaa caccttattca 180
gtgtactttg tacactttagt ttaattttt ttagagattt tcttttctta caatttctta 240
agtgagttaa aaaaatgttg attatttctt catacaactct tgcaagtgtg 289

<210> 340
<211> 296
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_241686_12

<400> 340

tggatcaaat ggtaacttgc aactgttttc ttttttaaaa aaataggcagg tatttgtc当地 60
cagtagaaag tatatagtct acatgtcaaa aagagttac atataaagga tttaggtataa 120
caactttaa gaataataaa agatgttaact tatagaaatg gttttctat aactattaa 180
aacaaactttt taaatagttt taaaaaagtg gacttaatta ttattttt aaggagaact 240
ctttttttta ccaatthaag gaggacttaa ctgtatgttaa taatgtggc aaatgg 296

<210> 341
<211> 298
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_47476_12

<400> 341

tttcagcaa catatctgga ctttctttt taccggtaga aaaatttcac atgtttttaa 60
tttaacttaag atataactttt aatcttccta ttttgttaat tcactatttt ttatctaatt 120
taaaatttagac acgttttagtt ttcaggtttc gaaaatctct aattttagtt cgatcttcaa 180
ttttgtcttc atttaatattt attattataa gagacaaaaa cacaataat atatgtattt 240
aaaccccttat tttatgtca aaatatatgt ttgcaaacctt gggcacataa tggaacac 298

<210> 342
<211> 299
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_164550_12

<400> 342

caacataatc ctaatctccc atgcttaaat ttacccctat attcttataa gaaaaaaaaatc 60
accggcatat tttttccca ggtcatagat caatgtataa ctatggttgg tgaaaaaaaaag 120
ttttataactt gatgaaaata tcaaataatttt ccggctac atatttttat ttacctgaac 180
tcaacaaaaac aaaaaccttac gtatgtttt aatgtacta atcgactaga gagagagagg 240
aaaaaaaaaag ataaaaatag aaataaatag acatttttat ccggaggg ccatatgtc 299

<210> 343
<211> 300
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_101255_15

```

<400>      343

gcacttaatta agcctgttcc aacctgtaaa aaaaagtctg tttcaaaatt atttttatg   60
cattttactt aaaaaaattta gacctaataa atttttaata ttgatttgat ttttttaaga 120
gaatatatttt tttaggttata tatataatata ttagtagtcc tacctcggtt taatatttt 180
tattttttta ataaaatata caaatttta aacaattttt tattaaggaa aaattaatca 240
tttttttttttta ataattttatc aaaaattttgc tttagatgac cacattttaat tagtccatg 300

<210>      344
<211>      101
<212>      DNA
<213>      Glycine max

<223>      Seq ID: 515002_region_G2_16189_11

<400>      344

ttccacaaaat ccaaattcca aattcatgtt ctaacctcta acaactatata atatatttc 60
tgtcatttga tgagttatgtct ttgatttcct atggaaatctc a               101

<210>      345
<211>      108
<212>      DNA
<213>      Glycine max

<223>      Seq ID: 515002_region_G2_71925_13

<400>      345

tccgacttttggctatata tgggtgtgtt ttgtttcatg ttgtatattct ttctttctgc 60
aaaccatata gcaatataag tgggtttgtaa tggatcatcg gcacaact               108

<210>      346
<211>      110
<212>      DNA
<213>      Glycine max

<223>      Seq ID: 515002_region_G2_4707_12

<400>      346

caagatcaag cacccttgg tctctttttt ggattttattt gcagggttttgg ttttttttga 60
atcgatatttc tgggtgcata tttttacac gttttttttt gttttttttt gttttttttt 110

<210>      347
<211>      111

```

<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_118904_18

<400> 347

tagctgcata acctctcagt ttctgttagt ttagccaaat gcatgttatat aggacaaaata 60
tatatatata tatattagct aaattgaaat cagggtaca tttaaggaca a 111

<210> 348
<211> 132
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_13655_17

<400> 348

gagtcattt ccttaaaccc atcacataca atcaaattca aaatgtgtgt tgtaactca 60
ttggcaagtg gactaaattt tcacaagttt taaaataaaa taaaagtctg agtatcaagt 120
ccacaggagc tt 132

<210> 349
<211> 143
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_53900_13

<400> 349

attttttcac atcgcatcc caaacccaaa atctatagtt cttaactttc tacaatcaca 60
aacaacaaa agcaattttaa aaccatagaa tagaacacaa caccaataaa agagcataaa 120
tcotttacatt ccaccaagca cat 143

<210> 350
<211> 145
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_8079_14

<400> 350

gtgagagttt agctggaaac ctggcaac tcttgcaac tgtctcgaa aagaataata 60
aataataaaa gccatcaaag agaccagaaa attctaccaa ttagggaaatc atgcaccaac 120
gcaagaggaa agagagacag agatc 145

<210> 351
<211> 146
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_9969_28

<400> 351

tcaccagaga cgcattatca gattcaaacc gaagaaaagg gagcaatttag ggattattat 60
tattattattt attattattta ccagccgaag tcgttgcgca gcgcacatgt tttgctaccg 120
tgagaaggaa acagtagctg gtagcg 146

<210> 352
<211> 147
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_72308_77

<400> 352

tttcttaaac agatcactgg tatgaaaaat ccatactata tatatatata tatatatata 60
tatatatata tatatatata tatatatata tatatatata tatatatata tatgataaga 120
acctcctccc ttactactcc ctagtca 147

<210> 353
<211> 147
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_99475_19

<400> 353

tgcacaatga gattgaagt catgtAACGA tcaacAAATA acaAGAATAA tataatcaat 60
catgtAAAAT aataataata ataatagAAA tcaAGAACAA gtatgtccaa aaaattttagg 120
gagggtataatc gaagattcct gactcaa 147

<210> 354
<211> 147
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_118615_18

<400> 354

atcatggatc tgattccacc tgaaaacaca attcagcacata actgagaatt ctgtattgcc 60
 acaaacttaa ttttagttta gaacttattt ttacttagat ctttatatat atatatata 120
 acaacttagc gcccatacat acaatca 147

<210> 355
 <211> 149
 <212> DNA
 <213> Glycine max

<223> Seq ID: 515002_region_G2_119001_46

<400> 355

tgaaatcagg gctacattta aggacaaata tatatatata tatatatata tatatatata 60
 tatatatata gatagataga tagatagata gatagataga tagatagata gatagacatg 120
 tacagcataa tcaagttgac caaatgcct 149

<210> 356
 <211> 149
 <212> DNA
 <213> Glycine max

<223> Seq ID: 515002_region_G2_118958_43

<400> 356

tgaaatcagg gctacattta aggacaaata tatatatata tatatatata tatatatata 60
 tatatatata gatagataga tagatagata gatagataga tagatagata gatagacatg 120
 tacagcataa tcaagttgac caaatgcct 149

<210> 357
 <211> 149
 <212> DNA
 <213> Glycine max

<223> Seq ID: 515002_region_G2_17197_13

<400> 357

cggagtccga gtagtcgagt agacatagtg gggggcgata tcgcgatagg atttatcctc 60
 tgggaggaat aattaattaa ttggtatatt atttttttt ttataatatt aattttat 120
 ataaaggttt catcgactc ggtattatg 149

<210> 358
 <211> 150

<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_105163_29

<400> 358

ttccaaatcc tttagcctata aaacatctaa tcttaacatag agacgtaagg atctgccat 60
tctgtatcata acaatcaacg caagtattcg atttcaataa taataataat aataataata 120
ataagatggg aatgcatagg tacaatgtt 150

<210> 359
<211> 151
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_111335_13

<400> 359

ataacttacaa tccgtcaggc agctcgatgc ttgcttgctt tgggggaata tttccaacgc 60
ctgaggggctt tgagctact gtggctaat agacctcggt aacctgctta gtctcacaaac 120
aaggttacaa gagcgc当地 a ctaataacatg a 151

<210> 360
<211> 152
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_106396_13

<400> 360

ctgtcaaggg aggaaaattgg tacagatcaa agtttgggt tacatggcca actaaatatt 60
atgacatcaa tagatactta gatagataga tgccttatt tatctttgtt ttgaactact 120
atgattactg gtactttctt ctggcagttt tt 152

<210> 361
<211> 152
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_59229_17

<400> 361

gcttgtcagg agagaaaatgt tgctaaaaaa gaaaagaaaa gaatgaacga cgctaaaact 60
agattgtatg tgaatgatag acagaagaat attaatattg taaaattgac ctctttaaga 120

ttgacccact cccatgttcc atttgtgaa tt 152

<210> 362
<211> 153
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_73795_20

<400> 362

tggcaacact taatttgac agataactct ctctctctct ctctctgaat tacccaatgt 60
cttcaacata tttatagtag tactatatag taaaaacaaa accacctaatt tattttttct 120
tttttagaaaa gggtttaatt tgttattctt ccc 153

<210> 363
<211> 153
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_85664_20

<400> 363

tgtcaatcaa taaccattga tctccattacc tattcttaat tttagtttta taatatacg 60
catttctaat tgtatcgcta tatatatata tatatataaa taattgtatc gctataattt 120
attcttaatt tggtaccctgtaaaatgaaac caa 153

<210> 364
<211> 154
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_36921_17

<400> 364

ccgagaccca ctgttattttt ccctcacggaa acggaacaaa aggcgcacac 60
aatcgccaaa gagaaaaaga accctcaacc aaacaacaac aacaacaaaa aaaaaggccct 120
agaaaaagatt ttggagaagc aattttctcac tcct 154

<210> 365
<211> 155
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_124150_19

<400> 365
aagtggttgc acacagcatc tagaaaaaaa gtcaaaaaagc aacgctggat tagaacaaaa 60
tataattattt gtttattttt ctttttttct ttctttttca ttttttaatg acatctttt 120
ccattgttgt aatggcagaa atcagtggtc agtga 155

<210> 366
<211> 158
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_5089_14

<400> 366

tcatacctga aatatgggtg tcttcaaatt attagctaatttattttttttttaatcaag 60
tagttgaaaa aaaaatttcag tttcatttttta ttattttattt atttttcatc aagtggtaat 120
atgacatacg gagtgttgcc tcaaacatgtc ttgttatg 158

<210> 367
<211> 158
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_58221_15

<400> 367

catttcaaag ggagagccat catcatttttta tttttttttt tgatatacgag agccatcatt 60
atggttgaaaa ctaaaagatttt ctcataacat aaaggttgtat actaagaaaaa tgattgtat 120
tcacttttag cattttttttt gttttctcca tttccatg 158

<210> 368
<211> 161
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_96139_14

<400> 368

ccctcaagcc aatgatagta actccaaagt caaaaaggttc agtattttttttttttttca 60
ttttttcgtc agcttgaatg acacttggat ttagacaaaag gttttttcat aataattata 120
ataataataa ttttcacgta aggtttagca taggacgagt t 161

<210> 369
<211> 163
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__70595_13

<400> 369

ttgggaactg tacacatgcc ttaatataat attattttat tatattatat atgagtattt 60
atatttttt aatgtgatgg aaaaaagaag ataagaagaa aaatcagggt agatgataca 120
agaatataata tatataataaa ttccaaatga aataccacaa aca 163

<210> 370
<211> 166
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__4340_15

<400> 370

aaatatgggt acatcatccg atacaattac taaaactaac taagggaga attattctca 60
cttttatatt ttttattttaa actatcaattt ctgaaatttc tttttggcc actaaccaaa 120
ttcctccacc ccctctcttt tccctccct ctttctcata tccaaa 166

<210> 371
<211> 169
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__90417_11

<400> 371

aaactgc当地 cacaattgc ctaaataaa attgacaacat atgtaaactc ttttcatcac 60
cgaatagggt aatgggttagc caagagagag agataactga aggtaagaa tcagcagaaa 120
tcatcagaaa ggatatgaaa tgttaccaag tcaagtacag gctaccagg 169

<210> 372
<211> 169
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__49711_17

<400> 372

caaagagagg cagaggagggt gattagatta gtgtcaacctt gttgctatgc caacaatgac 60

aacccaaccc aaccatcta gactacaaaa caaaggcaag acttttatgc cagctttcc 120
tataatctaga gtagtactcc tacaatcaa tgacaagcag ctacaacca 169

<210> 373
<211> 169
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_63053_13

<400> 373

tgtgcataac tcgatctttt gatgattctt accaattggc ctggcctta tatatatata 60
tttcattctt catatatata tatatgtgcg tttttttttt atgaatttt caggtgatta 120
ttatggaaa gcaattttt ttatgtgtt agtaaagatt gcagcaaga 169

<210> 374
<211> 169
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_63076_14

<400> 374

tgtgcataac tcgatctttt gatgattctt accaattggc ctggcctta tatatatata 60
tttcattctt catatatata tatatgtgcg tttttttttt atgaatttt caggtgatta 120
ttatggaaa gcaattttt ttatgtgtt agtaaagatt gcagcaaga 169

<210> 375
<211> 171
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_44442_12

<400> 375

aacgcgtttt tttttttttt tcaactaattt tttttttttt gttttttttt gttttttttt 60
aagcaatcaa gaaagaagc ttcttgtattt cattttttttt ttctttttttt ttctttttttt 120
gactacaaaa ttatgtgtt gttttttttt gttttttttt gttttttttt gttttttttt 171

<210> 376
<211> 171
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__44422_19
<400> 376
aacgcgttct tctttttct tcactaatt tgcattaaaa gtatcctcaa gtaactaaga 60
aagcaatcaa gaaaagaagc ttcttgatt cattcattca ttcattatgt gtgtgtgac 120
gagtagacaaa tttatccatc gaatctgagg tgtttcatat agccatgttgc 171

<210> 377
<211> 178
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__44158_19
<400> 377
tttcattacg tgcgtttgtt caactactat gaaacaaaca tgaaaaatgc acaatttact 60
cgtagaaata ataataataaa taaaataaaa taaataaata aaataaagta ttttttgaaa 120
aataaaagat tgtagtact agttactacg gagtatcgta ttctatcat ccaccctg 178

<210> 378
<211> 178
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__44141_17
<400> 378
tttcattacg tgcgtttgtt caactactat gaaacaaaca tgaaaaatgc acaatttact 60
cgtagaaata ataataataaa taaaataaaa taaataaata aaataaagta ttttttgaaa 120
aataaaagat tgtagtact agttactacg gagtatcgta ttctatcat ccaccctg 178

<210> 379
<211> 178
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__90762_17
<400> 379
ccagagat gattcaatac aaaggaaatt aagttaaacac taactcaaca ttctaaattt 60
tctttacttt tctctattaa tatttttta aaaagaaaat tcttctcaca tatacaaaga 120
gtcttggagg ggcaatgccc ccccttgaat cgcttaccac agggtaat 178

<210> 380
<211> 182
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_106241_14

<400> 380

tagatagcta gccatgttgg catgaagatt tgagcggaa aataataaga caacatacat 60
aacgtttctt ccaaagtggtt ttttttattt atttttttta tcataagggtt tggctttta 120
gttttttattt ttcagtttt tggataat tctattaact gtcaaggag gaaatttgta 180
ca 182

<210> 381
<211> 185
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_109676_12

<400> 381

tcatgttctt tgaggacttt ctcatattttt ttggattttt atcaataact tcttctactg 60
tcttcttgag agagagagat gggggaaattt tgaaactgca ttcatattttt acagttttaa 120
tacattatgc aagatttact caaatgcttt ttgtacttaa aatggctatc actcagtg 180
agtga 185

<210> 382
<211> 185
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_86242_14

<400> 382

ccacaactcc gatttatccc ataacaataa gtaaaaata agtaaaatgg acatgagttt 60
tagcaaaaaaa aaatagaaaaa actaaggcata ctaaaacattt atcattttaa gaaagaaaa 120
aaaaagacta tcataactga tttaggatcat aaaattctt gaaactccaa atttcttctt 180
tgtgc 185

<210> 383
<211> 186

<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_83109_12

<400> 383

tcacccctta ggagatccta gacactttag gaaaagtata aagacaactt atcaattttc 60
aaaagtctga aatctttttg agttcgatta ttcaacaaca acaaagacac aaaatcttt 120
ccttaggtgtc actaaaagca ttggatccaa caaatatttta ggacttcctt caatcattgg 180
caagag 186

<210> 384
<211> 192
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_10461_15

<400> 384

ggctgtgtgt gagttagagt gagagtgaga gtgagggtgg ataaaaacaaa caaacaaaac 60
tagcgcattt tgttgcgggt ggaatttagac tgttactaa tgcttaatta atggggaaag 120
gaaagtggta tgatttagtgt ttgttaacagt aagtgttatt tgtaaatgtat gatttagggg 180
aataagggtg ca 192

<210> 385
<211> 194
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_67608_15

<400> 385

ggtggttaga tccaaattca tgttgaattt aatattgtgg aacaaaaagg cggtgttata 60
tatatatata tgatggtcga tggtgcaaga ggggatcggg agattatact taaagaagca 120
gaagcatact tgtaactccaa tctaataaaaa atgttctata tataatagaa aatacggata 180
cgtgctgtac agga 194

<210> 386
<211> 200
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_63275_46

<400> 386

tgcgtttagt aaagattgca gcaagatttt gccataatta aaaatctact ttaaccccat 60
tgcctgcata gtacattta ttattagttt gtttgatgtat ttggaaattt tgtggtttaa 120
tttataata tatatatata tatatatata tatatatata tatatgtata tattttgaag 180
gaattgagga gcggaggata 200

<210> 387

<211> 203

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_62405_14

<400> 387

tgcatacgaga gaaatagacg aggaaaaata taaaagaaaa gaaaaaaatt ataaataaaa 60
caaacacat aataaaaaat gaaaagaaga atagaaggaa aaatagactc aaaatgagat 120
tttggaaatta tataattaat aatccaatta atctcatgag atattattct ataactataa 180
cttatggacc gtttggaga gat 203

<210> 388

<211> 211

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_33563_12

<400> 388

ccttaggtgc tcatacatcc aaacacttac acacttgttt tagtaataa tgttatattc 60
tatctcaaat aaatccaatg tttagaataa atccttgatt gacttattat tattaatatg 120
ctcatttata aattattgtc aaagataatt ttgttgaaca aatttttaa atatttacaa 180
aatatacgtt tcttgcgttg tatatgaaatc a 211

<210> 389

<211> 243

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_33146_14

<400> 389

cgaaccctaa acatttcaaa ccaaatttact cacagatata gttttttca aaaattgatt 60

gagagatcgt gtagaaaaag taaattcaa gaaaaactca tcctcaatat cctttttgtc 120
ttggtttata aacatgagag aattggaaa acgctttgtt ttttgatcc attctcacat 180
ctgcgatccc gcttctttt ctttcttct ccatgtatg tgtttccaac ctttcttcgt 240
aaa 243

<210> 390
<211> 251
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_102179_29

<400> 390

aatctcgatt gtcttcgtc gaaattgttccatcgatt tctctctatt ttttcttttc 60
taaattatata tacaactat atatatataat atatataat atatattatg taacaaattt 120
tatgtgcgtt tagataaca agaatcaaac aataaaaaataataaaaaata agcttaagt 180
attaatatcc ctAAAattaa atcagataaa ttAAAatggtttgtatatttgcattgtt 240
gacttgttgg a 251

<210> 391
<211> 257
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_2646_15

<400> 391

ccaaaggctt agtttcattt gcattaaacat attaataata attcacaaga gaagaaatat 60
aaaataagat aaatcaattt ttccacaagt taaattttat ttatTTTTT ggaattttta 120
caagaataaa aaaaattcat aactaaaaat taactcatgt atgataactt tttaatagtt 180
ttttgttta atttcccaa aagataaggc gtataaatta attttagttt acgagagaaag 240
ttggatttgtt ttatTC 257

<210> 392
<211> 269
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_76652_24

<400> 392

actaactctt gcgtgctctt tgtttcaaac aatcaaatta atataagggt atttgttagt 60
 gtttagata ttgggtaaga aatcaataata tatatatata tatatatattt gtataaaatta 120
 taagagaata taaaaaaattt atgaatagta taattttttgg ttttcaattt tttaaaattt 180
 taattaaagg aaaattgggtt atattaaaa ttattctta tggaaagaa aaattgataa 240
 atgattttga tccagtatat gtcccaggg 269

<210> 393
 <211> 283
 <212> DNA
 <213> Glycine max

<223> Seq ID: 515002_region_G2_66280_14
 <400> 393

gtgttagatt gattaaagtt cgctgatata acttttattt aatgaaaattt aaattgttagt 60
 tacaaatattt gcaagtctttt attaataata caatacatca tactaacata tccaaatattt 120
 ttatactaataat taacagttca atcctgctag ataaatgcattt ttcttatataat acactgacag 180
 aacagtttttta atgcgtttttt aattttttcc tggggtaataat aatgattttt tgtttggtttt 240
 ttagaaatttgc acatttttt cacttaatac atggggctaaa tct 283

<210> 394
 <211> 284
 <212> DNA
 <213> Glycine max

<223> Seq ID: 515002_region_G2_54768_13
 <400> 394

aaatttccaa tcatgtatgg agtgagaaaa cctcgagcat atgagaagg ggtatataatgaa 60
 tatactacta ttctgtattat tatcaaataat taatatgttc catagaaattt tacaattttt 120
 ttatattttca ttattttttat tttagtaatag tagtataatgatgatgatgatgatgatgatg 180
 taaatgtaaa ttaaatattat tatcattatgtt atttgttagga atgtaaaattt taattttaaat 240
 gaaaaatattt atatgacaaa agttatgggtt caatattgtt cctgtt 284

<210> 395
 <211> 289
 <212> DNA
 <213> Glycine max

<223> Seq ID: 515002_region_G2_62580_14

<400> 395
aacttattgga ccgtttggaa gagataaaaa aagaaaagaa aatattgatt acaatatatt 60
tttctttgtt taattgaaga aaaataaaga aacaattgc ttctagaat aaaaattcaa 120
aacatccat atgttttaac tttttttaa ttccaaattt tccttttctt gattttctt 180
tccactaca attgacttag tcagactgaa cgtgatactt agatacatac atgcaactct 240
cagttactact cctcacctct atataatctt cactcttgc ttctctt 289

<210> 396
<211> 293
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_34598_55

<400> 396
aaagtctggc ctgaactgac ccattaattt aagaggtag gttcaagctt ttttaaaaag 60
cttattaaat taaatagatc agacttaggc ttgttaaaaa gccttataag tctgataggt 120
cggcctatata atatataatata atatatgtat atgttatataat atatataatata 180
ttatattattt tggtgatacc aatttataact tatattattt ttgggtaca attaattttt 240
tttggaaacc agcagactttt gattatacat tactgctcca taactccat tcc 293

<210> 397
<211> 298
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_77680_13

<400> 397
tgacatgaac tatctcaaacc aatgcaaaaa ttgtccccctt aaaggcaata ccccccattcc 60
cccccttaaa atttggcttt caaaaagtac ttttttcaaa atacattaat tttaacatcg 120
gctagaaaatg atttttgaaa tttttttttttaacacttc cagaaaaatat ttctgaaat 180
gtgttgaat tttttatctt gtgttggaaa gtagttcca aaaaagagat acttgtagaa 240
gaagaagaat atatataatata agtatttagta aatctgggg gtgtaaataa cagttgtt 298

<210> 398
<211> 298
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_77693_12
<400> 398

tgacatgaac tatctcaaac aatgaaaaaa ttgtccctt aaaggcaata cccccttcc 60
cccccttaaa atttggctt caaaaagtc ttttttcaa atacattaat ttttaacatg 120
gcttagaaat atttttgaaa tattaaaat ttaacacttc cagaaaatat tttctgaaaat 180
gtgtgaaat ttttaatct gtttgaaaa gtagttcca aaaaagagat acttgtagaa 240
gaagaagaat atatataat agtatttagta aatctggggat gtgtaaataa cagttgtt 298

<210> 399
<211> 300
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_97392_14
<400> 399

tttgatgtat ttgattttatg cactcgattt tacaaatata attgtttta aatattgtgc 60
aaatgggttt tggggatttc acttacttaa tatgatttag aaacattattt attattttt 120
ctgtaaaaaaaaaa aaagaaatatt tattattttt acaattttt catcctttt atatactttt 180
ttaaaaacga aaaaaaaaaaa tattgagttt cgtttatgtat taagaaaaat gtttcataat 240
taaaaaattaa aaactagtgt ctgcatcatc acattactaa acttaggttgc ctgatgtcac 300

<210> 400
<211> 300
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_97359_15
<400> 400

tttgatgtat ttgattttatg cactcgattt tacaaatata attgtttta aatattgtgc 60
aaatgggttt tggggatttc acttacttaa tatgatttag aaacattattt attattttt 120
ctgtaaaaaaaaaa aaagaaatatt tattattttt acaattttt catcctttt atatactttt 180
ttaaaaacga aaaaaaaaaaa tattgagttt cgtttatgtat taagaaaaat gtttcataat 240
taaaaaattaa aaactagtgt ctgcatcatc acattactaa acttaggttgc ctgatgtcac 300

<210> 401
<211> 25

<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_289711_11_Forward_Primer

<400> 401

aaacccttgac gttgttgct ttgtt

25

<210> 402

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_289711_11_Reverse_Primer

<400> 402

ggaatattgt accaatcacc cggta

25

<210> 403

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_236585_14_Forward_Primer

<400> 403

agtccgggag attagttgca gtaaa

25

<210> 404

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_236585_14_Reverse_Primer

<400> 404

tgaagatctg aatctgattt cctga

25

<210> 405

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_168772_13_Forward_Primer

<400> 405

tttgcattgt ttcaatttat ttcca

25

<210> 406
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_168772_13_Reverse_Primer

<400> 406

aatttcaacc aacagacatt gagtga 26

<210> 407
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_332420_21_Forward_Primer

<400> 407

gagaatctgc aactgaacca aatga 25

<210> 408
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_332420_21_Reverse_Primer

<400> 408

acttaggaat ggaacacgcg actgg 25

<210> 409
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_228126_18_Forward_Primer

<400> 409

atagctctgt tgcaaaggaa gatgg 25

<210> 410
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_228126_18_Reverse_Primer

<400> 410

atggccatgc aagatatacg gagaa 25

<210> 411
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_139723_11_Forward_Primer

<400> 411

ttgcattcaa attcatggaa ctacc

25

<210> 412
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_139723_11_Reverse_Primer

<400> 412

tccacatgtg tgcatgaaac ataac

25

<210> 413
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_280585_14_Forward_Primer

<400> 413

tttacaaggtg catcatttaa cttctca

27

<210> 414
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_280585_14_Reverse_Primer

<400> 414

tttggcctca atttaagat cctgt

25

<210> 415
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_70509_14_Forward_Primer

<400> 415

cctatgaaga atacacccac gttga

25

<210> 416
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_70509_14_Reverse_Primer

<400> 416

cagcctccat caggaagatg aatac 25

<210> 417
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_50537_17_Forward_Primer

<400> 417

aaacccaaaca taattccaaac ttcaa 25

<210> 418
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_50537_17_Reverse_Primer

<400> 418

agcagagcat cccaaattaa tgctta 25

<210> 419
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_231556_17_Forward_Primer

<400> 419

agcccttcca caaactagag cgtat 25

<210> 420
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_231556_17_Reverse_Primer

<400> 420
ttctgccgaa acacttccag taaat 25

<210> 421
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__117057_11_Forward_Primer

<400> 421
aaagacggaa cagcgtcaaa taaac 25

<210> 422
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__117057_11_Reverse_Primer

<400> 422
gacggaaaca cgctctacaa ttaca 25

<210> 423
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__23092_13_Forward_Primer

<400> 423
tcaataaggta ctggcacaag acacc 25

<210> 424
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__23092_13_Reverse_Primer

<400> 424
ttagcccttt atgcctctc attcc 25

<210> 425
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_297741_14_Forward_Primer

<400> 425

tttataaaatc tgtccagcca ccaaa

25

<210> 426

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_297741_14_Reverse_Primer

<400> 426

agaactagat tggtatgccc gtgct

25

<210> 427

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_206502_14_Forward_Primer

<400> 427

agaagaagac gacgacatcg aagag

25

<210> 428

<211> 20

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_206502_14_Reverse_Primer

<400> 428

ggacagggtt tccagcttcg

20

<210> 429

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_221223_13_Forward_Primer

<400> 429

ccagagtctt gtaagaaaagc catca

25

<210> 430

<211> 25

<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_221223_13_Reverse_Primer

<400> 430

cagctgacac atgtccattc tttct

25

<210> 431
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_169084_14_Forward_Primer

<400> 431

tttgcttcaa taaatgtgca cagaa

25

<210> 432
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_169084_14_Reverse_Primer

<400> 432

gc当地gggttg ctcccttctga attt

24

<210> 433
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_94891_14_Forward_Primer

<400> 433

catcaacaaa tcacacacac acaca

25

<210> 434
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_94891_14_Reverse_Primer

<400> 434

tccaaactgaa gagaagaagg cattg

25

<210> 435
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_7439_12_Forward_Primer

<400> 435

ggtgctgttag tgcttgaac agttg

25

<210> 436
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_7439_12_Reverse_Primer

<400> 436

accaatgtaa atgcgaacac agaaa

25

<210> 437
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_281852_61_Forward_Primer

<400> 437

aaccagagga aacagggagt cattt

25

<210> 438
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_281852_61_Reverse_Primer

<400> 438

cagtctttca ttaatcctcc gtctgt

25

<210> 439
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_46583_12_Forward_Primer

<400> 439

gttaacaaatt ctgaaccctg catgt

25

<210> 440
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_46583_12_Reverse_Primer

<400> 440

tgttgtgcaa gttgaagaat gtttt

25

<210> 441
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_306835_13_Forward_Primer

<400> 441

agtctccca agtgcattt ctgtct

25

<210> 442
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_306835_13_Reverse_Primer

<400> 442

aaatcacatc caagacgtga aactaa

26

<210> 443
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_85471_12_Forward_Primer

<400> 443

cgtggccact tgatctataa gagag

25

<210> 444
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_85471_12_Reverse_Primer

<400> 444

atatttagctt ctttgcttcc ccttg 25

<210> 445
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_257208_12_Forward_Primer

<400> 445

ccatgaatga aactcaccaa actga 25

<210> 446
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_257208_12_Reverse_Primer

<400> 446

aattactatag attctggctg gcaca 25

<210> 447
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_150390_17_Forward_Primer

<400> 447

ttacgcactc agatttggat ttgat 25

<210> 448
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_150390_17_Reverse_Primer

<400> 448

agggtgtgaa gtttaatcac catga 25

<210> 449
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_34697_75_Forward_Primer

<400> 449
gcatgcttta aggtgattgc agag 24

<210> 450
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_34697_75_Reverse_Primer

<400> 450
ttcatgaagg cagttgaatg tatcc 25

<210> 451
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_150374_13_Forward_Primer

<400> 451
ttacgcactc agatttggat ttgat 25

<210> 452
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_150374_13_Reverse_Primer

<400> 452
agggtgtgaa gtttaatcac catga 25

<210> 453
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_40513_22_Forward_Primer

<400> 453
attctgaaat tggtaagg ttctcg 25

<210> 454
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_40513_22_Reverse_Primer

<400> 454

caaataaatg tgaaggcaca cctga

25

<210> 455

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_268602_14_Forward_Primer

<400> 455

aacacgtctc atctcaagaa gctca

25

<210> 456

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_268602_14_Reverse_Primer

<400> 456

taacttcgac caaataggcc tagca

25

<210> 457

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_25357_13_Forward_Primer

<400> 457

acttctcccc caactttccct ttctc

25

<210> 458

<211> 21

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_25357_13_Reverse_Primer

<400> 458

agcggatatct cctctggctt c

21

<210> 459

<211> 24

<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__137548_13_Forward_Primer

<400> 459

gtatgaaccc taaagctggc ttcg 24

<210> 460
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__137548_13_Reverse_Primer

<400> 460

gcacagattt gttaagagga atgct 25

<210> 461
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__139131_13_Forward_Primer

<400> 461

gtatgaaccc taaagctggc ttcg 24

<210> 462
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__139131_13_Reverse_Primer

<400> 462

gcacagattt gttaagagga atgct 25

<210> 463
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__203855_12_Forward_Primer

<400> 463

tttgtgtcaa gagaaggaa gctct 25

<210> 464
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_203855_12_Reverse_Primer

<400> 464

tcatgtgctc acatctgtgt tgttt

25

<210> 465
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_199049_15_Forward_Primer

<400> 465

ggcaaaatcac atgtacataaa gggaga

26

<210> 466
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_199049_15_Reverse_Primer

<400> 466

tcacccaaata aactcactga gcaaa

25

<210> 467
<211> 22
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_320907_12_Forward_Primer

<400> 467

gattcgccgg aaattctctc ct

22

<210> 468
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_320907_12_Reverse_Primer

<400> 468

ctccgatatt aagctcgcca tcct

24

<210> 469
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_16407_17_Forward_Primer

<400> 469

cacactctca cagcaacttc tcgat

25

<210> 470
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_16407_17_Reverse_Primer

<400> 470

atatcaactga tccacgtggg atttc

25

<210> 471
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_206516_17_Forward_Primer

<400> 471

cagaagacga agacgaagaa gagga

25

<210> 472
<211> 20
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_206516_17_Reverse_Primer

<400> 472

actcgattg ggaccagctc

20

<210> 473
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_264495_13_Forward_Primer

<400> 473

agtggataa agcaagaagt tcacc

25

<210> 474
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_264495_13_Reverse_Primer

<400> 474

gagattcaag ggaatgcata ctgaa

25

<210> 475
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_156785_13_Forward_Primer

<400> 475

atcttagtgcc tccacgcata tctac

25

<210> 476
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_156785_13_Reverse_Primer

<400> 476

gttggcgttg aagagagaga aagag

25

<210> 477
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_187129_12_Forward_Primer

<400> 477

tgattggaa ggaaaagcttc attag

25

<210> 478
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_187129_12_Reverse_Primer

<400> 478

atttatcttg caccatgacc aaacc

25

<210> 479

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_214106_13_Forward_Primer

<400> 479

ccatcttctt ctcacatcctc atgtttg

26

<210> 480

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_214106_13_Reverse_Primer

<400> 480

gtttaaagta gagcacgcgg agagc

25

<210> 481

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_149013_12_Forward_Primer

<400> 481

aagctcaacg tggatgttg ttaga

25

<210> 482

<211> 27

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_149013_12_Reverse_Primer

<400> 482

gcacactaga catttatttc gctttga

27

<210> 483

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_326352_16_Forward_Primer

<400> 483

gttgttacct tgtgtgttcg ctttg

25

<210> 484

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_326352_16_Reverse_Primer

<400> 484

agggttgtgg aagcaagaatc atatac

25

<210> 485

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_278962_12_Forward_Primer

<400> 485

tcgaaatctat cgccgaaatac tcaat

25

<210> 486

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_278962_12_Reverse_Primer

<400> 486

tttccttagc tcaatttgca actcc

25

<210> 487

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_256930_13_Forward_Primer

<400> 487

tgtgacctat ctttcctccg ttctc

25

<210> 488

<211> 25

<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_256930_13_Reverse_Primer

<400> 488

tcccaagtct gataaggtaa accaa

25

<210> 489
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_29646_14_Forward_Primer

<400> 489

acgcaactca gatgcattaa caca

25

<210> 490
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_29646_14_Reverse_Primer

<400> 490

tgaataatga tcatcggtcca ctgata

26

<210> 491
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_29618_13_Forward_Primer

<400> 491

acgcaactca gatgcattaa caca

25

<210> 492
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_29618_13_Reverse_Primer

<400> 492

tgaataatga tcatcggtcca ctgata

26

<210> 493
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_108561_14_Forward_Primer

<400> 493

aatgttgctt gccttcacag ctaag 25

<210> 494
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_108561_14_Reverse_Primer

<400> 494

tccaaacctt tattcataac ccaga 25

<210> 495
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_143975_14_Forward_Primer

<400> 495

cggtagctat agcgattgc aacaaa 26

<210> 496
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_143975_14_Reverse_Primer

<400> 496

cccatcgatca gtagtatcac attca 25

<210> 497
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_108431_20_Forward_Primer

<400> 497

ccgaatgaca gagaggaaga agaaa 25

<210> 498
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_108431_20_Reverse_Primer

<400> 498

atttcaactt cccacaccac tgac 24

<210> 499
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_281764_11_Forward_Primer

<400> 499

tccctggta gtaacaagtg taggg 25

<210> 500
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_281764_11_Reverse_Primer

<400> 500

tctggttcat gctctattca aacga 25

<210> 501
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_130058_15_Forward_Primer

<400> 501

agtctcgctc ctatttcgag tcctt 25

<210> 502
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_130058_15_Reverse_Primer

<400> 502

gtgccaccc ttatccactt atcat

25

<210> 503
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_310590_52_Forward_Primer

<400> 503

tccctata atggtaag cagtt

25

<210> 504
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_310590_52_Reverse_Primer

<400> 504

acccaaaccc aatatggtgt tctac

25

<210> 505
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_313405_14_Forward_Primer

<400> 505

cggatgttaa atgattgggtt cgttt

25

<210> 506
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_313405_14_Reverse_Primer

<400> 506

aattatgttg gactgggtct ggaaa

25

<210> 507
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_302190_13_Forward_Primer

<400> 507
ttaaccctt accaaatata ctccaaa 27

<210> 508
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_302190_13_Reverse_Primer

<400> 508

caagttcggt taggatgaac acgat 25

<210> 509
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_225343_17_Forward_Primer

<400> 509

cccgcaattt gttatagtgaa 24

<210> 510
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_225343_17_Reverse_Primer

<400> 510

agtaaatgtc acttcaaacg catgg 25

<210> 511
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_208823_14_Forward_Primer

<400> 511

tactttccaa attgatgcag accag 25

<210> 512
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_208823_14_Reverse_Primer

<400> 512

tgtcccaaat agggagttac aaggaa

25

<210> 513

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_74285_11_Forward_Primer

<400> 513

tgatgacaat gatgacgatt tgtga

25

<210> 514

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_74285_11_Reverse_Primer

<400> 514

aattcatctg caacgtcctg gtaag

25

<210> 515

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_109052_16_Forward_Primer

<400> 515

cacatttgat gattgattcc agttt

25

<210> 516

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_109052_16_Reverse_Primer

<400> 516

ccataatgtc agtgcttct ggcta

25

<210> 517

<211> 25

<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_6395_12_Forward_Primer

<400> 517

tactactgaa ccgtggtgcc tgata

25

<210> 518
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_6395_12_Reverse_Primer

<400> 518

gccatacataa tcattgtgg ttat

25

<210> 519
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_244905_16_Forward_Primer

<400> 519

tgaatccaa gtgaaagatt gttaaa

26

<210> 520
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_244905_16_Reverse_Primer

<400> 520

tatgcgtatt acctccaacg tccat

25

<210> 521
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_244956_13_Forward_Primer

<400> 521

tgaatccaa gtgaaagatt gttaaa

26

<210> 522
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_244956_13_Reverse_Primer

<400> 522

tatgcgtatt acctccaacg tccat 25

<210> 523
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_117220_13_Forward_Primer

<400> 523

aagagaattt gcaaaagtgcg gttagc 25

<210> 524
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_117220_13_Reverse_Primer

<400> 524

ctccccatctt cttcaactctc agcat 25

<210> 525
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_134707_14_Forward_Primer

<400> 525

tgtacatcaa actggcaagg aagag 25

<210> 526
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_134707_14_Reverse_Primer

<400> 526

gagattgcac agaaggaaaa ttgttt 25

<210> 527
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_35078_13_Forward_Primer

<400> 527

agcaagatca gaagtgcgcaa acac 24

<210> 528
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_35078_13_Reverse_Primer

<400> 528

ctccccattctt tccattttcca ttcttc 25

<210> 529
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_210506_16_Forward_Primer

<400> 529

tgtatatttgt tgccaaatcac ctgaa 25

<210> 530
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_210506_16_Reverse_Primer

<400> 530

gagggtcaagt aagtggccaca tcaga 25

<210> 531
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_116961_26_Forward_Primer

<400> 531

atccgggaaa tgattctaaa catga 25

<210> 532
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_116961_26_Reverse_Primer

<400> 532

gtttatggta cgctgttccg tcttt 25

<210> 533
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_51073_13_Forward_Primer

<400> 533

caaattggca catttctcat gtcag 25

<210> 534
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_51073_13_Reverse_Primer

<400> 534

gtgtgttagag gctaaggctt gagga 25

<210> 535
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_55291_15_Forward_Primer

<400> 535

ccctaggac aacagggtac ctaat 25

<210> 536
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_55291_15_Reverse_Primer

<400> 536
atggtcctga ctcgtgtaac caaat 25

<210> 537
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_229651_18_Forward_Primer

<400> 537
acaatcaagg aatctaagcc acaca 25

<210> 538
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_229651_18_Reverse_Primer

<400> 538
ctgttcttgc agtaatgttg gcact 25
,

<210> 539
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_303308_19_Forward_Primer

<400> 539
caactccctct ttcaattcgc acac 24

<210> 540
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_303308_19_Reverse_Primer

<400> 540
tgtggaaattt gttgtgtcta agggtta 26

<210> 541
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_168373_20_Forward_Primer

<400> 541

gaacaggcta tcatggctga agaag

25

<210> 542

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_168373_20_Reverse_Primer

<400> 542

atcagatgat gctgaatgct tgtgt

25

<210> 543

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_253333_17_Forward_Primer

<400> 543

gtcatcaccc atataaactt gtcca

25

<210> 544

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_253333_17_Reverse_Primer

<400> 544

aagatttcgct tccatcaaca tcaat

25

<210> 545

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_5791_13_Forward_Primer

<400> 545

aaagagagat taggaaacca ttgga

25

<210> 546

<211> 26

<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_5791_13_Reverse_Primer

<400> 546

aatccaaata gaatttcggt gtcagt 26

<210> 547
<211> 20
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_206841_19_Forward_Primer

<400> 547

agctgcctca caccgcaat 20

<210> 548
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_206841_19_Reverse_Primer

<400> 548

actagcatct ctcggccct cactt 25

<210> 549
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_202827_12_Forward_Primer

<400> 549

agttggctca aacaaatcag attcc 25

<210> 550
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_202827_12_Reverse_Primer

<400> 550

tgttaggaga agaaccacca ccaag 25

<210> 551
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_322656_13_Forward_Primer

<400> 551

tgtcccaata tccttaggtag agccata

27

<210> 552
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_322656_13_Reverse_Primer

<400> 552

cggtttgatc acattcaattt gtcat

25

<210> 553
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_111841_14_Forward_Primer

<400> 553

tgcttttagct cagtaaacctg cttga

25

<210> 554
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_111841_14_Reverse_Primer

<400> 554

catgttagtt tatcttgctg gcatcc

26

<210> 555
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_192719_13_Forward_Primer

<400> 555

gctacttctt ggcaagctct attcg

25

<210> 556
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_192719_13_Reverse_Primer

<400> 556

gttgttgtgc cttagggtc aatgt

25

<210> 557
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_195630_17_Forward_Primer

<400> 557

tggagttga gtgttctgat ggaag

25

<210> 558
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_195630_17_Reverse_Primer

<400> 558

tctctcgta c gatgacccta atgaa

25

<210> 559
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_69999_13_Forward_Primer

<400> 559

tttccacaaa gactcctgcc cttt

24

<210> 560
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_69999_13_Reverse_Primer

<400> 560

tagtgacaca gtgtgggtgga gtgaa 25

<210> 561
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_11176_13_Forward_Primer

<400> 561

cgttctcgtc gaataataacc gatcc 25

<210> 562
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_11176_13_Reverse_Primer

<400> 562

accaataaga ttgccttacg aattt 25

<210> 563
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_228643_13_Forward_Primer

<400> 563

gctatagcag ctaggaactg gtgga 25

<210> 564
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_228643_13_Reverse_Primer

<400> 564

attgatcatc agagcatgaa cttcg 25

<210> 565
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_88478_19_Forward_Primer

<400> 565
aagataagat gaggtgctcg tcaaa 25

<210> 566
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__88478_19_Reverse_Primer

<400> 566
ttatactcat tcaatgcacg attgg 25

<210> 567
<211> 21
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__108950_13_Forward_Primer

<400> 567
agtgcttagct ggacgcacaa a 21

<210> 568
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__108950_13_Reverse_Primer

<400> 568
aaactggaat caatcatcaa atgtgt 26

<210> 569
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__121054_14_Forward_Primer

<400> 569
ctgcatggaa agatgaagca ggtat 25

<210> 570
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_121054_14_Reverse_Primer

<400> 570

gtgctttc cctggcagac tataa

25

<210> 571

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_188337_14_Forward_Primer

<400> 571

cacgtaagac caagaccta a cagga

25

<210> 572

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_188337_14_Reverse_Primer

<400> 572

attcaagact gtgcatttc ttctgt

25

<210> 573

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_255944_21_Forward_Primer

<400> 573

ttaacttgc ttaattgggt gcaca

25

<210> 574

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_255944_21_Reverse_Primer

<400> 574

attcttcttg ccttctca ct gctca

25

<210> 575

<211> 25

<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_219518_14_Forward_Primer

<400> 575

acgaaatgct catgatcttc tttca

25

<210> 576
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_219518_14_Reverse_Primer

<400> 576

aatctgcagg agagagaaaag cgtaa

25

<210> 577
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_235601_15_Forward_Primer

<400> 577

acactcagtc atagccaagc ctacc

25

<210> 578
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_235601_15_Reverse_Primer

<400> 578

tgagttggac gaggacaagg taagt

25

<210> 579
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_301529_13_Forward_Primer

<400> 579

ttagtttaca ctgcggatc acgtt

25

<210> 580
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_301529_13_Reverse_Primer

<400> 580

gagcagtctta atccatttga aatca

25

<210> 581
<211> 22
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_94795_14_Forward_Primer

<400> 581

ccgtctccaa caccctctca ta

22

<210> 582
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_94795_14_Reverse_Primer

<400> 582

tccaaactgaa gagaagaagg cattg

25

<210> 583
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_46703_23_Forward_Primer

<400> 583

aaaccattct tcaaacttgca acaca

25

<210> 584
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_46703_23_Reverse_Primer

<400> 584

tcttcggc agaaaacacgg ttgaa 25

<210> 585
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_59616_14_Forward_Primer

<400> 585

tcatggtaac atggaggcaa ctatac 25

<210> 586
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_59616_14_Reverse_Primer

<400> 586

ccctaaatca tcaccatcat cactt 25

<210> 587
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_296933_15_Forward_Primer

<400> 587

ttagtgaaaa caagcactct ctctt 25

<210> 588
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_296933_15_Reverse_Primer

<400> 588

ttctatgctc ttgccaccaa atgtt 25

<210> 589
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_192428_17_Forward_Primer

<400> 589

ataaacagcga agcaatccat taacc

25

<210> 590

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_192428_17_Reverse_Primer

<400> 590

cgaatagac ttgccaagaa gtagc

25

<210> 591

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_191490_14_Forward_Primer

<400> 591

gcataataaca ttgtgttcc atccca

25

<210> 592

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_191490_14_Reverse_Primer

<400> 592

attcaagact gtgcatacttc ttctgt

25

<210> 593

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_201115_11_Forward_Primer

<400> 593

tctcattgat ccttgtccat ccata

25

<210> 594

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_201115_11_Reverse_Primer

<400> 594

tgcacaacta ctaataccat cgtcca

26

<210> 595

<211> 27

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_72882_15_Forward_Primer

<400> 595

tgatcacacc agtaatatca atcacaa

27

<210> 596

<211> 27

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_72882_15_Reverse_Primer

<400> 596

ggtaatttaa tgttcacaca tgaccac

27

<210> 597

<211> 27

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_69514_13_Forward_Primer

<400> 597

aaaccttgca tcacatttgtt aatcttt

27

<210> 598

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_69514_13_Reverse_Primer

<400> 598

aatccaccta cacgaatttg ctcat

25

<210> 599

<211> 25

<212> DNA

<213> Glycine max
<223> Seq ID: 240017_region_G3_37699_47_Forward_Primer
<400> 599
gttggaaatcaa gtgaggggaga aactc

25

<210> 600
<211> 26
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3_37699_47_Reverse_Primer
<400> 600
tctctttttt cttaatcgcc taatca

26

<210> 601
<211> 27
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3_11301_29_Forward_Primer
<400> 601
ccattttatac acacacacac acacaca

27

<210> 602
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3_11301_29_Reverse_Primer
<400> 602
tcacgtagat ttcacacttc ctcaa

25

<210> 603
<211> 22
<212> DNA
<213> Glycine max
<223> Seq ID: 240017_region_G3_141875_12_Forward_Primer
<400> 603
gctcatgatt cgggccatat tt

22

<210> 604

<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__141875_12_Reverse_Primer

<400> 604

tgagcaaatt gttgttgta gtagtg 26

<210> 605
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__98090_18_Forward_Primer

<400> 605

aaacacacac tgaacttgtt cctaaa 26

<210> 606
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__98090_18_Reverse_Primer

<400> 606

acatatgcag tacaatccgc agaag 25

<210> 607
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__43298_35_Forward_Primer

<400> 607

tggttccata agactctcgta caca 25

<210> 608
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__43298_35_Reverse_Primer

<400> 608

acatgtatca cgggtgaaca acatt 25

<210> 609
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_262094_11_Forward_Primer

<400> 609

ggatccaacc gactagatca gtctaa

26

<210> 610
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_262094_11_Reverse_Primer

<400> 610

ttctaatgac actttgtgaa tgaagg

26

<210> 611
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_262079_15_Forward_Primer

<400> 611

ggatccaacc gactagatca gtctaa

26

<210> 612
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_262079_15_Reverse_Primer

<400> 612

ttctaatgac actttgtgaa tgaagg

26

<210> 613
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_59090_12_Forward_Primer

<400> 613

ttcatttat ctagccccca aggttgtg 27

<210> 614
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_59090_12_Reverse_Primer

<400> 614

cctaacacccg tgccctaagga cataa 25

<210> 615
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_245723_13_Forward_Primer

<400> 615

aacgttgatg tctactgctc ccaa 25

<210> 616
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_245723_13_Reverse_Primer

<400> 616

gcgcgtggat aataattgtt tttttt 25

<210> 617
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_194628_54_Forward_Primer

<400> 617

gattaggcac ccataatata aatcctt 27

<210> 618
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_194628_54_Reverse_Primer

<400> 618
atgttaccaa ctccgacacg tcagt 25

<210> 619
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__4566_16_Forward_Primer

<400> 619

ccaaacacct cctcaattgt agacc 25

<210> 620
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__4566_16_Reverse_Primer

<400> 620

tttcttgaag tttgcctgt tactatc 27

<210> 621
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__96209_14_Forward_Primer

<400> 621

ttgatgagct ggctggtag ttaaa 25

<210> 622
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3__96209_14_Reverse_Primer

<400> 622

gtaatgtagg ctttcgctcc ctctt 25

<210> 623
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_248715_17_Forward_Primer

<400> 623

agcaaatgct ttaattacgc tgaaa

25

<210> 624

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_248715_17_Reverse_Primer

<400> 624

ttcttggtt attgcttgct actcg

25

<210> 625

<211> 23

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_71410_40_Forward_Primer

<400> 625

gagtccttca aattggcgctc ttt

23

<210> 626

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_71410_40_Reverse_Primer

<400> 626

aagtttggct agattcaaga aacaaa

26

<210> 627

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_226519_13_Forward_Primer

<400> 627

ataatgccca cgatccaagt gtatt

25

<210> 628

<211> 25

<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_226519_13_Reverse_Primer

<400> 628

tccatatttcgt tactccaact ttcat

25

<210> 629
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_11282_19_Forward_Primer

<400> 629

cgaaattcgt aaggcaatc tattgg

26

<210> 630
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_11282_19_Reverse_Primer

<400> 630

tcacgttagat ttcacacttc ctcaa

25

<210> 631
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_170504_12_Forward_Primer

<400> 631

aaccCAAACCT gggttgaact tgttt 25

<210> 632
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_170504_12_Reverse_Primer

<400> 632

aatgaaatc caaatcgccc cagt 24

<210> 633
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_40864_14_Forward_Primer

<400> 633

ggactgattt g tacgaccat tagttta

27

<210> 634
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_40864_14_Reverse_Primer

<400> 634

gcacatgaca aatcacatta ctctcaa

27

<210> 635
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_13529_14_Forward_Primer

<400> 635

cgtgccaatc atcgatacag tacaa

25

<210> 636
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_13529_14_Reverse_Primer

<400> 636

cacaccacca gagtgtaaggc tgttt

25

<210> 637
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_22858_14_Forward_Primer

<400> 637

tcaattaaag ggataaggac ccatt

25

<210> 638
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_22858_14_Reverse_Primer

<400> 638

ttagagcccc atttgtttca acttt 25

<210> 639
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_309211_13_Forward_Primer

<400> 639

aagggttaat gtttgacag agataaa 27

<210> 640
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_309211_13_Reverse_Primer

<400> 640

aaacactact gctgatttac ccaaga 26

<210> 641
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_55568_26_Forward_Primer

<400> 641

aggcatagaa gcactaatgg tgaca 25

<210> 642
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_55568_26_Reverse_Primer

<400> 642

cctcctctct tgtaataggt ccatgta

26

<210> 643
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_73238_16_Forward_Primer

<400> 643

tggtcatgtg tgaacattaa attacct

27

<210> 644
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_73238_16_Reverse_Primer

<400> 644

tcactccgtc tgtcccttat tacaa

25

<210> 645
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_52488_19_Forward_Primer

<400> 645

atgtgcattt gatgttctac catacg

25

<210> 646
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 240017_region_G3_52488_19_Reverse_Primer

<400> 646

accaacaata cacaccgtac gtcat

25

<210> 647
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_471518_14_Forward_Primer_Seq

<400> 647

ttgcaactac ctgcaacgag gatac

25

<210> 648

<211> 27

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_471518_14_Reverse_Primer_Seq

<400> 648

aattatgtaa ttacgcgaga ttctcct

27

<210> 649

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_231599_23_Forward_Primer_Seq

<400> 649

ttcaaggct ttggagaaca aacat

25

<210> 650

<211> 22

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_231599_23_Reverse_Primer_Seq

<400> 650

aggtcctcgta ctcccttcctc ct

22

<210> 651

<211> 21

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_375912_13_Forward_Primer_Seq

<400> 651

gacgcatctg tcacgaacga c

21

<210> 652

<211> 23

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_375912_13_Reverse_Primer_Seq

<400> 652

aaacctacgc ctttttcttc ctc

23

<210> 653

<211> 24

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_180013_12_Forward_Primer_Seq

<400> 653

accagtagtc ctggagggtc tcac

24

<210> 654

<211> 23

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_180013_12_Reverse_Primer_Seq

<400> 654

ctgggtgtcc tgcaacatct tct

23

<210> 655

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_171606_14_Forward_Primer_Seq

<400> 655

gcaactcgac atattcttg ggatt

25

<210> 656

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_171606_14_Reverse_Primer_Seq

<400> 656

ctttccaatg tgggactgaa gaagt

25

<210> 657

<211> 24

<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_416256_13_Forward_Primer_Seq

<400> 657

aacaaattgca tccggtcatt ctcaa

24

<210> 658
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_416256_13_Reverse_Primer_Seq

<400> 658

aatttctcaca ctcaagaggc cagac

25

<210> 659
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_231395_15_Forward_Primer_Seq

<400> 659

gtcctttcccg cactaattta tcgaa

25

<210> 660
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_231395_15_Reverse_Primer_Seq

<400> 660

gatcaccccat caaaaccctac cttc

24

<210> 661
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_5502_47Forward_Primer_Seq

<400> 661

cagcaagagt tgacgaatga tgaac

25

<210> 662
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_5502_47_Reverse_Primer_Seq

<400> 662

gctttaacac cgacaaccc tc atacc

25

<210> 663
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_93061_14_Forward_Primer_Seq

<400> 663

acagcatcag aactcagaag cattg

25

<210> 664
<211> 23
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_93061_14_Reverse_Primer_Seq

<400> 664

gaggctaacg ttgttgctga cct

23

<210> 665
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_111684_19_Forward_Primer_Seq

<400> 665

cttctccata acacttcccc caaac

25

<210> 666
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_111684_19_Reverse_Primer_Seq

<400> 666

tcgtgaggag aaggaagaga gaaag

25

<210> 667
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_69328_14_Forward_Primer_Seq

<400> 667

ctccctcagcc aggttacgct tatt

24

<210> 668
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_69328_14_Reverse_Primer_Seq

<400> 668

ccaaaacgcga gagagaaaata aagaa

25

<210> 669
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_36529_17_Forward_Primer_Seq

<400> 669

tcaagagactt ctttgcttgg atgaa

25

<210> 670
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_36529_17_Reverse_Primer_Seq

<400> 670

caactacagg aaacgatgca aacaa

25

<210> 671
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_139128_12_Forward_Primer_Seq

<400> 671

cagttcgccg statatctgatt ctacc

25

<210> 672
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_139128_12_Reverse_Primer_Seq
<400> 672

ccagtgaagt tcttggacct tgtca

25

<210> 673
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_495674_13_Forward_Primer_Seq
<400> 673

aagaatccag gaccatgacc ctatt

25

<210> 674
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_495674_13_Reverse_Primer_Seq
<400> 674

tttgccgtca ttctctgtat ttatt

25

<210> 675
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_187577_13_Forward_Primer_Seq
<400> 675

aaacgaaacac atacgcactc acatt

25

<210> 676
<211> 24
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_187577_13_Reverse_Primer_Seq

<400> 676

cttactggat ccatgaacgg tggaa

24

<210> 677

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_453036_14_Forward_Primer_Seq

<400> 677

caacaatccg tggataag agcaa

25

<210> 678

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_453036_14_Reverse_Primer_Seq

<400> 678

cccttaaagca cttcttagtcc cgaaa

25

<210> 679

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_374041_13_Forward_Primer_Seq

<400> 679

aatgc当地 aacaaaggcac cctgt

25

<210> 680

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_374041_13_Reverse_Primer_Seq

<400> 680

tttgttccac catgataat gacca

25

<210> 681

<211> 23

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_3412_11_Forward_Primer_Seq

<400> 681

aaacactcca atgccaccat ctc

23

<210> 682

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_3412_11_Reverse_Primer_Seq

<400> 682

aaccttaacc aaagccaaca ccttt

25

<210> 683

<211> 24

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_276495_28_Forward_Primer_Seq

<400> 683

cttcaagcc gcagggttag atac

24

<210> 684

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_276495_28_Reverse_Primer_Seq

<400> 684

agctgcaacg ttagccaat tatta

25

<210> 685

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_151839_17_Forward_Primer_Seq

<400> 685

ccgcaatggt atctctctca gactt

25

<210> 686

<211> 25

<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__151839_17_Reverse_Primer_Seq

<400> 686

caggaagagg aagaggagga agaag 25

<210> 687
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__292912_12_Forward_Primer_Seq

<400> 687

atatgtttgc gtttctgtgc ttgtg 25

<210> 688
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__292912_12_Reverse_Primer_Seq

<400> 688

cccttagaa tagagagaaa gagca 25

<210> 689
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__104560_12_Forward_Primer_Seq

<400> 689

aagagacaaa tggagggaaaat tgcac 25

<210> 690
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__104560_12_Reverse_Primer_Seq

<400> 690

ccacttctcc aatttcctctc tgaaa 25

<210> 691
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_65193_11_Forward_Primer_Seq

<400> 691

tagtggaaatg gaagcagaac agagg

25

<210> 692
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_65193_11_Reverse_Primer_Seq

<400> 692

tatgtctgttc ttccaaacca ggagt

25

<210> 693
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_110573_70_Forward_Primer_Seq

<400> 693

cacattgaaa taaacatgtt cgacaca

27

<210> 694
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_110573_70_Reverse_Primer_Seq

<400> 694

cgctggatat aatattttatg tgtgtct

27

<210> 695
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_65117_12_Forward_Primer_Seq

<400> 695

tgcatgtgtga gttttttttt gatcc

25

<210> 696
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_65117_12_Reverse_Primer_Seq

<400> 696

tctgttctgc ttccattcca ctaaa

25

<210> 697
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_490837_16_Forward_Primer_Seq

<400> 697

agagaacgaa cggttagcatt ctca

25

<210> 698
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_490837_16_Reverse_Primer_Seq

<400> 698

acatgcattg ttgtttgact ttcc

25

<210> 699
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_107448_11_Forward_Primer_Seq

<400> 699

tcagaaaattt tccctacttg attgagg

27

<210> 700
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_107448_11_Reverse_Primer_Seq

<400> 700

tcccttcgatc aatttctgggt ttgat 25

<210> 701
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_331_23_Forward_Primer_Seq

<400> 701

ccattgtcca tcctctctaa tgtttc 26

<210> 702
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_331_23_Reverse_Primer_Seq

<400> 702

tttcacatgt ccagtgttgg attta 25

<210> 703
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_193470_13_Forward_Primer_Seq

<400> 703

taggcatagc ttaaggcatg gtatt 25

<210> 704
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_193470_13_Reverse_Primer_Seq

<400> 704

cctcatgtcc ttctctgttc tcata 25

<210> 705
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_183305_14_Forward_Primer_Seq

<400> 705
ggagattaat ttgatgaacc gacca 25

<210> 706
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__183305_14_Reverse_Primer_Seq

<400> 706
acagggtgag accaacacaa agatt 25

<210> 707
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__55050_14_Forward_Primer_Seq

<400> 707
tctgaccctt aataatcagg caaca 25

<210> 708
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__55050_14_Reverse_Primer_Seq

<400> 708
agaatcttct acttgcccg ttaga 25

<210> 709
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__224693_21_Forward_Primer_Seq

<400> 709
tggtgctaag aaagtgtaat ttgtgga 27

<210> 710
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__224693_21_Reverse_Primer_Seq

<400> 710

tttctttcaa acatgtggtg taccg

25

<210> 711

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3__207216_12_Forward_Primer_Seq

<400> 711

ttaacttgt tagaggaggc ggaga

25

<210> 712

<211> 24

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3__207216_12_Reverse_Primer_Seq

<400> 712

ctggctcggtt gtcttcttca tgtt

24

<210> 713

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3__4654_22_Forward_Primer_Seq

<400> 713

ctgaagaaag cattgaccaa ggaaa

25

<210> 714

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3__4654_22_Reverse_Primer_Seq

<400> 714

aaccatctt aaccacaat cacag

25

<210> 715

<211> 25

<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_408959_13_Forward_Primer_Seq

<400> 715

cggttgttgg aagaaggatgt tttta

<210> 716
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_408959_13_Reverse_Primer_Seq

<400> 716

gtgttagtttag cgtggcttcgc ttgtg

<210> 717
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_132288_22_Forward_Primer_Seq

<400> 717

acaggtcata taaccaatttg catgt

<210> 718
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_132288_22_Reverse_Primer_Seq

<400> 718

gttgcttatg tcttggacac cattg

<210> 719
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_292822_20_Forward_Primer_Seq

<400> 719

gctattcaca aagcaagacgc cgta

<210> 720
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_292822_20_Reverse_Primer_Seq

<400> 720

agcacagaaa cgcaaacata taccc

25

<210> 721

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_311076_12_Forward_Primer_Seq

<400> 721

tttgtacttc gcacacattt gaagg

25

<210> 722

<211> 24

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_311076_12_Reverse_Primer_Seq

<400> 722

tttccctctcc tacccaaagg gagt

24

<210> 723

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_509623_13_Forward_Primer_Seq

<400> 723

aatgagcata gcgaaggctc ctaaa

25

<210> 724

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_509623_13_Reverse_Primer_Seq

<400> 724

tcgatggaaa ccctagatct cactc

25

<210> 725
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_190404_14_Forward_Primer_Seq

<400> 725

aatctggtcc cteaaagaac aagtg

25

<210> 726
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_190404_14_Reverse_Primer_Seq

<400> 726

tttcccttat gcaagaagtt tggtg

25

<210> 727
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_164916_15_Forward_Primer_Seq

<400> 727

aggctacggt atagaccacg ttgaa

25

<210> 728
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_164916_15_Reverse_Primer_Seq

<400> 728

gaatgaaatt gatctttcca gaacc

25

<210> 729
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_21028_13_Forward_Primer_Seq

<400> 729

gatggataat tagtcttggc catcat

26

<210> 730
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_21028_13_Reverse_Primer_Seq

<400> 730

tatccctttg agcaagcaac tttag

25

<210> 731
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_208012_17_Forward_Primer_Seq

<400> 731

gttacaacag ctacctccgc agact

25

<210> 732
<211> 20
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_208012_17_Reverse_Primer_Seq

<400> 732

agtggcgac ctgattctcc

20

<210> 733
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_484089_14_Forward_Primer_Seq

<400> 733

cgatcgcatg atagaggta ccaat

25

<210> 734
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_484089_14_Reverse_Primer_Seq

<400>	734	
actacgatgg cctctctac gtttc		25
<210>	735	
<211>	25	
<212>	DNA	
<213>	Glycine max	
<223>	Seq ID: 318013_region_A3_332780_17_Forward_Primer_Seq	
<400>	735	
gttacaacag ctacacctcgcc agact		25
<210>	736	
<211>	20	
<212>	DNA	
<213>	Glycine max	
<223>	Seq ID: 318013_region_A3_332780_17_Reverse_Primer_Seq	
<400>	736	
agtggcggcac ctgatttctcc		20
<210>	737	
<211>	26	
<212>	DNA	
<213>	Glycine max	
<223>	Seq ID: 318013_region_A3_480137_37_Forward_Primer_Seq	
<400>	737	
ttcaaggaa ggagaagaat agattt		26
<210>	738	
<211>	27	
<212>	DNA	
<213>	Glycine max	
<223>	Seq ID: 318013_region_A3_480137_37_Reverse_Primer_Seq	
<400>	738	
tccctattaa gtttccctta atccatc		27
<210>	739	
<211>	25	
<212>	DNA	
<213>	Glycine max	

<223> Seq ID: 318013_region_A3_441056_14_Forward_Primer_Seq

<400> 739

ctaatttgcg aacaggccac aagta

25

<210> 740

<211> 24

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_441056_14_Reverse_Primer_Seq

<400> 740

gattacgaaa ttcttggcg gaag

24

<210> 741

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_77486_11_Forward_Primer_Seq

<400> 741

atacccaaata cccatcttcc atttc

25

<210> 742

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_77486_11_Reverse_Primer_Seq

<400> 742

gttgtgagca gaactaggag ccatt

25

<210> 743

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_272468_11_Forward_Primer_Seq

<400> 743

attggatcca tcctataagg caggt

25

<210> 744

<211> 25

<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_272468_11_Reverse_Primer_Seq

<400> 744

ttgtacgttg catcagtaac acgaa

25

<210> 745

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_425319_17_Forward_Primer_Seq

<400> 745

taccagtcaa ggatgagggtg acttgt

25

<210> 746

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_425319_17_Reverse_Primer_Seq

<400> 746

tgaagcatac taagggcgta tccat

25

<210> 747

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_413879_31_Forward_Primer_Seq

<400> 747

gatcctcagc ctttagttgc tgaga

25

<210> 748

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_413879_31_Reverse_Primer_Seq

<400> 748

tgtcctgtaa tctgtcacca taggc

25

<210> 749
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__80477_64_Forward_Primer_Seq

<400> 749

ggttggcctg aataatttgc aatag

25

<210> 750
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__80477_64_Reverse_Primer_Seq

<400> 750

ggaaagtggg atagttgata gcaga

25

<210> 751
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__277272_50_Forward_Primer_Seq

<400> 751

cctgatggta ctcgtttctc tctct

25

<210> 752
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__277272_50_Reverse_Primer_Seq

<400> 752

tctgtcattg aacatgcaca acatt

25

<210> 753
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__509642_13_Forward_Primer_Seq

<400> 753

ctaaacgcctt tggtttcttc accac

25

<210> 754
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_509642_13_Reverse_Primer_Seq

<400> 754

tcgatcaata tcctctctcc gaatc

25

<210> 755
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_321771_14_Forward_Primer_Seq

<400> 755

atcaaactct gggaaacagggt tggtg

25

<210> 756
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_321771_14_Reverse_Primer_Seq

<400> 756

gtcagcaaca ctttggatt aatgg

25

<210> 757
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_26788_12_Forward_Primer_Seq

<400> 757

gaagagacaa ttgtgaggca aatca

25

<210> 758
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_26788_12_Reverse_Primer_Seq

<400> 758

cagaccaatc atggttctct gctta

25

<210> 759
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__262706_16_Forward_Primer_Seq

<400> 759

ttctttatca cccaaacatcc aaact

25

<210> 760
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__262706_16_Reverse_Primer_Seq

<400> 760

acactaggag tgcgggaaat aaatg

25

<210> 761
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__243928_16_Forward_Primer_Seq

<400> 761

tggcatgtga aacctaaata aacaa

25

<210> 762
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__243928_16_Reverse_Primer_Seq

<400> 762

tatcagggtta tgccctggaa gataa

25

<210> 763
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__23246_148_Forward_Primer_Seq

<400> 763
aatcacctt ctctgtccac ctctg 25

<210> 764
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_23246_148_Reverse_Primer_Seq

<400> 764
aaggctcaaa tttgttaagcc aatca 25

<210> 765
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_165406_12_Forward_Primer_Seq

<400> 765
ggcactgagc tgaatttgtaa tgttg 25

<210> 766
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_165406_12_Reverse_Primer_Seq

<400> 766
ccttgcgtcat ctctttaacc ctaag 25

<210> 767
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_486294_14_Forward_Primer_Seq

<400> 767
cttatggcca tgctatacac atgct 25

<210> 768
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_486294_14_Reverse_Primer_Seq

<400> 768

actgaagtgc ttccatgtat ccatt

25

<210> 769

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_46754_12_Forward_Primer_Seq

<400> 769

aatccaaagt tgtcaagatg gttcc

25

<210> 770

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_46754_12_Reverse_Primer_Seq

<400> 770

tcattgtcgg atcgtagatg ttgaa

25

<210> 771

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_381116_15_Forward_Primer_Seq

<400> 771

aaagggtgggt gtgcgttcca tttat

25

<210> 772

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_381116_15_Reverse_Primer_Seq

<400> 772

ccattcattc tcagatgctc cattaa

25

<210> 773

<211> 25

<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_350369_11_Forward_Primer_Seq

<400> 773

aaagggtgaa gaagatgctg cgtaa

25

<210> 774
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_350369_11_Reverse_Primer_Seq

<400> 774

tcacgttcaa cggtttgaaa tactc

25

<210> 775
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_138841_13_Forward_Primer_Seq

<400> 775

ggtcagctt aaacaatttc tgtca

25

<210> 776
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_138841_13_Reverse_Primer_Seq

<400> 776

tttgaatacg ttggagagct tggat

25

<210> 777
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_12158_142_Forward_Primer_Seq

<400> 777

cataccctt cagagtccct gtcac

25

<210> 778
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_12158_142_Reverse_Primer_Seq

<400> 778

tggaggaaagt atgaaaattcg tttcg

25

<210> 779
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_315368_13_Forward_Primer_Seq

<400> 779

cagtcagaga aaggaagcat gcact

25

<210> 780
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_315368_13_Reverse_Primer_Seq

<400> 780

ctggagcaaa ggatgaaagt gaagt

25

<210> 781
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_307549_13_Forward_Primer_Seq

<400> 781

ctggagcaaa ggatgaaagt gaagt

25

<210> 782
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_307549_13_Reverse_Primer_Seq

<400> 782

cagtcagaga aaggaagcat gcact

25

<210> 783
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_159857_14_Forward_Primer_Seq

<400> 783

tccctcctcct agtttgctt ctctt

25

<210> 784
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_159857_14_Reverse_Primer_Seq

<400> 784

aaggatatgc tgaccgcaat ctaat

25

<210> 785
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_140551_15_Forward_Primer_Seq

<400> 785

gattcttgtt tcttggatt tcctt

25

<210> 786
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_140551_15_Reverse_Primer_Seq

<400> 786

caaacgcata ccagatgaca ataca

25

<210> 787
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_279869_11_Forward_Primer_Seq

<400> 787

taatgtgccaa acttcttagca aggat

25

<210> 788
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_279869_11_Reverse_Primer_Seq

<400> 788

agtctgggct tatggccaaa tttat

25

<210> 789
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_78292_35_Forward_Primer_Seq

<400> 789

caaatttgatt agtttcttc cttttcc

27

<210> 790
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_78292_35_Reverse_Primer_Seq

<400> 790

catgttcttt catcaagaat caatgc

26

<210> 791
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_185019_12_Forward_Primer_Seq

<400> 791

aaccttctcg cgtagcttga gtaga

25

<210> 792
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_185019_12_Reverse_Primer_Seq

<400> 792

tcatgctcac caatgctctc ataat

25

<210> 793

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_409164_13_Forward_Primer_Seq

<400> 793

aggagaaaaca tcagccatcat tacgg

25

<210> 794

<211> 22

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_409164_13_Reverse_Primer_Seq

<400> 794

aaagggtggg tgcataaga aa

22

<210> 795

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_75392_14_Forward_Primer_Seq

<400> 795

gaaggaggcc tcatcattgac ctaag

25

<210> 796

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_75392_14_Reverse_Primer_Seq

<400> 796

cgtgacatt gatggttgtat atcgat

25

<210> 797

<211> 25

<212> DNA

<213> Glycine max
<223> Seq ID: 318013_region_A3_231320_12_Forward_Primer_Seq
<400> 797
ccctaacaat catttcaacg ccttt

25

<210> 798
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_231320_12_Reverse_Primer_Seq
<400> 798
gcacacgttc gctgataaat aaaga

25

<210> 799
<211> 24
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_381102_14_Forward_Primer_Seq
<400> 799
ggccacttagt aaacatgttc gata

24

<210> 800
<211> 26
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_381102_14_Reverse_Primer_Seq
<400> 800
caaagttatc tttcctctgg aaacca

26

<210> 801
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_491826_15_Forward_Primer_Seq
<400> 801
cttgtggcga tggcctctt taata

25

<210> 802

<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_491826_15_Reverse_Primer_Seq

<400> 802

gaccaatctt cacaatccca caaaa

24

<210> 803
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_56365_21_Forward_Primer_Seq

<400> 803

catgttctcc acaaggaaac agaga

25

<210> 804
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_56365_21_Reverse_Primer_Seq

<400> 804

ccatgactac agtttcaggc acaac

25

<210> 805
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_372628_15_Forward_Primer_Seq

<400> 805

aaaggaaatc taaaaatcctg tggaa

25

<210> 806
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_372628_15_Reverse_Primer_Seq

<400> 806

gggttgttac ttggctgata gatgg

25

<210> 807
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_217037_11_Forward_Primer_Seq

<400> 807

ggatctttt aacactgacc atccct

25

<210> 808
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_217037_11_Reverse_Primer_Seq

<400> 808

cctaccctt tcaagttcaa ctgttc

25

<210> 809
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_302609_11_Forward_Primer_Seq

<400> 809

cctaccctt tcaagttcaa ctgttc

25

<210> 810
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_302609_11_Reverse_Primer_Seq

<400> 810

ggatctttt aacactgacc atccct

25

<210> 811
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_341804_11_Forward_Primer_Seq

<400> 811

ggatcttc aacactgacc atcct

25

<210> 812
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_341804_11_Reverse_Primer_Seq

<400> 812

cctaccact tcaagttcaa ctgtc

25

<210> 813
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_264929_68_Forward_Primer_Seq

<400> 813

agctaaagca aagggtgggtt tgtaa

25

<210> 814
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_264929_68_Reverse_Primer_Seq

<400> 814

gcgtgattgt tccttatgca ttgtt

25

<210> 815
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_55499_12_Forward_Primer_Seq

<400> 815

ttgctgcaag gtttcactct aattg

25

<210> 816
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_55499_12_Reverse_Primer_Seq

<400> 816

aagaattatg tcaatgtcc tagcc

25

<210> 817
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_295634_14_Forward_Primer_Seq

<400> 817

taagttcggtt ggtttgccctt gattt

25

<210> 818
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_295634_14_Reverse_Primer_Seq

<400> 818

tttgtcaaat ccgactcaat ttattt

26

<210> 819
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_269358_15_Forward_Primer_Seq

<400> 819

ttcatgtatgg ttaggtcttg tgcat

25

<210> 820
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_269358_15_Reverse_Primer_Seq

<400> 820

gagtgtagtg catgtatgtga ggcta

25

<210> 821
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_457009_24_Forward_Primer_Seq

<400> 821

tgctgccatt ggagaaaagg ttat

25

<210> 822

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_457009_24_Reverse_Primer_Seq

<400> 822

ggcttctatt ccctcaactc accat

25

<210> 823

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_176598_14_Forward_Primer_Seq

<400> 823

ttcactataaa aggatccgtt cagca

25

<210> 824

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_176598_14_Reverse_Primer_Seq

<400> 824

tgttgttaaa gagtgttcaac aagaa

25

<210> 825

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_278266_12_Forward_Primer_Seq

<400> 825

tcttaatggc caattgtga aagtt

25

<210> 826

<211> 27

<212> DNA

<213> Glycine max
<223> Seq ID: 318013_region_A3_278266_12_Reverse_Primer_Seq
<400> 826
cccattaata taacaaaagtc aacatgg 27

<210> 827
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_391810_12_Forward_Primer_Seq
<400> 827
aaggagggttg gagggaaatca tcaag 25

<210> 828
<211> 26
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_391810_12_Reverse_Primer_Seq
<400> 828
cacttactgt gcacaatttg attctc 26

<210> 829
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_269485_15_Forward_Primer_Seq
<400> 829
agcctcacat catgcactac actct 25

<210> 830
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_269485_15_Reverse_Primer_Seq
<400> 830
tccctcactt atgacacccac tcatc 25

<210> 831

<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_359247_17_Forward_Primer_Seq

<400> 831

ggttgagaag gagagtttaa gggttt 26

<210> 832
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_359247_17_Reverse_Primer_Seq

<400> 832

ttcaactccca attgtcatac aaaca 25

<210> 833
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_315094_13_Forward_Primer_Seq

<400> 833

tccatataat ggacaggata tctgaat 27

<210> 834
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_315094_13_Reverse_Primer_Seq

<400> 834

aaatgtcacg agggaaattat ttgttt 26

<210> 835
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_307823_13_Forward_Primer_Seq

<400> 835

aaatgtcacg agggaaattat ttgttt 26

<210> 836
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_307823_13_Reverse_Primer_Seq

<400> 836

tccatataat ggacaggata tctgaat

27

<210> 837
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_248588_15_Forward_Primer_Seq

<400> 837

gtctgcaagc taacagtgtc agagg

25

<210> 838
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_248588_15_Reverse_Primer_Seq

<400> 838

gaattcccac tttagtcatta ccacga

26

<210> 839
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_252426_85_Forward_Primer_Seq

<400> 839

tcaattcaat gataaaagtcc tttgga

26

<210> 840
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_252426_85_Reverse_Primer_Seq

<400> 840

tggtttgctt aggtagaaca agaaat

26

<210> 841
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_513314_16_Forward_Primer_Seq

<400> 841

cttaaagtgc gttatcgta gcgta

25

<210> 842
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_513314_16_Reverse_Primer_Seq

<400> 842

actgatactg accaaatgac catgc

25

<210> 843
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_68183_14_Forward_Primer_Seq

<400> 843

caccgtgaag atgatcaaga gagag

25

<210> 844
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_68183_14_Reverse_Primer_Seq

<400> 844

taggatagcc caccacaacag gataa

25

<210> 845
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_471191_13_Forward_Primer_Seq

<400> 845

cgtcaacttga cctcaacaat gtgta

25

<210> 846

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_471191_13_Reverse_Primer_Seq

<400> 846

tgccaaatta atctcattat ggtacg

26

<210> 847

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_163547_18_Forward_Primer_Seq

<400> 847

tttgcaaaatc atgcatccta agttt

25

<210> 848

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_163547_18_Reverse_Primer_Seq

<400> 848

tgaatgcaca agtgttatttg cagag

25

<210> 849

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_417867_15_Forward_Primer_Seq

<400> 849

gtttgggtct gaatctgaag aaacg

25

<210> 850

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_417867_15_Reverse_Primer_Seq
<400> 850
gcgaatcttag cgtagtttgt gaaat 25

<210> 851
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_332465_14_Forward_Primer_Seq
<400> 851
taacgctgca tgatttgagt tcttgt 25

<210> 852
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_332465_14_Reverse_Primer_Seq
<400> 852
ttggactttg gagaccacat tcttt 25

<210> 853
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_207697_14_Forward_Primer_Seq
<400> 853
taacgctgca tgatttgagt tcttgt 25

<210> 854
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_207697_14_Reverse_Primer_Seq
<400> 854
ttggactttg gagaccacat tcttt 25

<210> 855
<211> 25
<212> DNA

<213> Glycine max
<223> Seq ID: 318013_region_A3_277229_43_Forward_Primer_Seq
<400> 855
caagccaaca tacacagtgg ttctg

25

<210> 856
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_277229_43_Reverse_Primer_Seq
<400> 856
tctgtcattg aacatgcaca acatt

25

<210> 857
<211> 23
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_36366_11_Forward_Primer_Seq
<400> 857
aattgtacgg cagacacgtc ctc

23

<210> 858
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_36366_11_Reverse_Primer_Seq
<400> 858

aaagaagtct ctgacttgcc tccac

25

<210> 859
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_91970_12_Forward_Primer_Seq
<400> 859
tctttggaca ctgtgagagg tgttt

25

<210> 860

<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__91970_12_Reverse_Primer_Seq

<400> 860

tccatgattc tattcgacct taacaa

26

<210> 861
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__211533_11_Forward_Primer_Seq

<400> 861

ggtgtgttgg gagagtcaac agtct

25

<210> 862
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__211533_11_Reverse_Primer_Seq

<400> 862

aaagggtatg agggtggaa tgaat

25

<210> 863
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__336301_11_Forward_Primer_Seq

<400> 863

ggtgtgttgg gagagtcaac agtct

25

<210> 864
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__336301_11_Reverse_Primer_Seq

<400> 864

aaagggtatg agggtggaa tgaat

25

<210> 865
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_441603_14_Forward_Primer_Seq

<400> 865

gtggtagtcc gcaatgagac aatct 25

<210> 866
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_441603_14_Reverse_Primer_Seq

<400> 866

aacatccatt ctgcgaagacc aagtc 25

<210> 867
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_468354_15_Forward_Primer_Seq

<400> 867

tttcttaactg caccttagtcc acgac 25

<210> 868
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_468354_15_Reverse_Primer_Seq

<400> 868

gcctgaataa tcgggttaaag taccg 25

<210> 869
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_188983_18_Forward_Primer_Seq

<400> 869

tgcgaaattgg taacgatctt acttc

25

<210> 870
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_188983_18_Reverse_Primer_Seq

<400> 870

aattcatcta agttctgcga tgataaa

27

<210> 871
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_115502_17_Forward_Primer_Seq

<400> 871

gttattggc ggtgtacctg atcgt

25

<210> 872
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_115502_17_Reverse_Primer_Seq

<400> 872

ggagagttga cacagatgca taacg

25

<210> 873
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_163006_13_Forward_Primer_Seq

<400> 873

tgatggtaat gaatcagatc aacga

25

<210> 874
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_163006_13_Reverse_Primer_Seq

<400> 874

taaccacacg agattgcaac aaagt

25

<210> 875

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_119283_14_Forward_Primer_Seq

<400> 875

tgaagtggag taaggcttgc ttgtaa

26

<210> 876

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_119283_14_Reverse_Primer_Seq

<400> 876

taaacatgca attgacagat gctgaa

25

.

<210> 877

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_491126_11_Forward_Primer_Seq

<400> 877

cctctctacc aaacacaagg agaaaa

25

.

<210> 878

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_491126_11_Reverse_Primer_Seq

<400> 878

agctccactg gtaagtccaa ttcac

25

.

<210> 879

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_99512_21_Forward_Primer_Seq

<400> 879

tatatacggtgc atgtttgttg gctct

25

<210> 880

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_99512_21_Reverse_Primer_Seq

<400> 880

caagtcacca cccaaaggaaag tatct

25

<210> 881

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_280291_17_Forward_Primer_Seq

<400> 881

tgaaatcccc actatacggtt gacacc

26

<210> 882

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_280291_17_Reverse_Primer_Seq

<400> 882

gggactttct cccaaacattt cattt

25

<210> 883

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_138443_19_Forward_Primer_Seq

<400> 883

tgataaaagcc aaagaagtaa ctttcg

26

<210> 884

<211> 24

<212> DNA

<213> Glycine max
<223> Seq ID: 318013_region_A3_138443_19_Reverse_Primer_Seq
<400> 884

ggttcatcac cttgtcacac ctct 24

<210> 885
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_115973_14_Forward_Primer_Seq
<400> 885

ttaagcaatt gagttggatg aggttg 25

<210> 886
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_115973_14_Reverse_Primer_Seq
<400> 886

atgatttgttc aagtgggtgc ttctc 25

<210> 887
<211> 26
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_329977_14_Forward_Primer_Seq
<400> 887

cagagagtcg tggtaagca tttgaa 26

<210> 888
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_329977_14_Reverse_Primer_Seq
<400> 888

ggaaaggccga aggacatcta ttctc 25

<210> 889

<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_205203_14_Forward_Primer_Seq

<400> 889

cagagagtcg tgtttaagca ttggaa

26

<210> 890
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_205203_14_Reverse_Primer_Seq

<400> 890

ggaaaggccga aggacatcta ttctta

25

<210> 891
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_153114_12_Forward_Primer_Seq

<400> 891

agttacaact ttccgcattcg ttaca

25

<210> 892
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_153114_12_Reverse_Primer_Seq

<400> 892

tgtcaggaga gggtttagga acaag

25

<210> 893
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_34581_13_Forward_Primer_Seq

<400> 893

gtacttgatc ccagacaccca ctggc

25

<210> 894
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_34581_13_Reverse_Primer_Seq

<400> 894

cgacaccgta tacgttaactc cattg

25

<210> 895
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_292577_19_Forward_Primer_Seq

<400> 895

ccattgttagg aggacaagaa tcaca

25

<210> 896
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_292577_19_Reverse_Primer_Seq

<400> 896

agcaacaaca acaacacaga acaca

25

<210> 897
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_445391_20_Forward_Primer_Seq

<400> 897

tgcattttatc attgaatttag agggatt

27

<210> 898
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_445391_20_Reverse_Primer_Seq

<400> 898

agcaaacgca atgcaataca gtaac

25

<210> 899
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_350540_17_Forward_Primer_Seq

<400> 899

gggaagagta tttcaaaccg ttcaa

25

<210> 900
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_350540_17_Reverse_Primer_Seq

<400> 900

ttgagttaaa ttgtggttgc atgtt

25

<210> 901
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_453879_15_Forward_Primer_Seq

<400> 901

gcagcactga acatgataag agatca

26

<210> 902
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_453879_15_Reverse_Primer_Seq

<400> 902

tgcaattgaa gaacaagaaa ggaca

25

<210> 903
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_201246_13_Forward_Primer_Seq

<400> 903

tgtgtggaat gcacatttag agaaga

26

<210> 904

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3__201246_13_Reverse_Primer_Seq

<400> 904

cgcgaagatga tggatttgc tatgc

25

<210> 905

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3__326020_13_Forward_Primer_Seq

<400> 905

tgtgtggaat gcacatttag agaaga

26

<210> 906

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3__326020_13_Reverse_Primer_Seq

<400> 906

cgcgaagatga tggatttgc tatgc

25

<210> 907

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3__503801_14_Forward_Primer_Seq

<400> 907

atttgcatttc agtgtgaaca ttgct

25

<210> 908

<211> 27

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_503801_14_Reverse_Primer_Seq

<400> 908

tgggacttaa cataatctga ggaaaga

27

<210> 909

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_302400_52_Forward_Primer_Seq

<400> 909

tacataaaaga accatgtgag gaagg

25

<210> 910

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_302400_52_Reverse_Primer_Seq

<400> 910

tgactgttga ttgatagcct tgttga

26

<210> 911

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_448857_15_Forward_Primer_Seq

<400> 911

atgaactgtt gttcctgtca tgtgg

25

<210> 912

<211> 24

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_448857_15_Reverse_Primer_Seq

<400> 912

aaaccctcaa accacacctgg atac

24

<210> 913

<211> 25

<212> DNA

<213> Glycine max
<223> Seq ID: 318013_region_A3_48364_14_Forward_Primer_Seq
<400> 913

aacaagtcaac caaggcacaa cttta 25

<210> 914
<211> 24
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_48364_14_Reverse_Primer_Seq
<400> 914

aagaccagag aacaagccaa ttcc 24

<210> 915
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_251804_48_Forward_Primer_Seq
<400> 915

tgttatcaat cgacgcaata atcaa 25

<210> 916
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_251804_48_Reverse_Primer_Seq
<400> 916

acgatgaggt gttgccattt atttc 25

<210> 917
<211> 26
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_382583_13_Forward_Primer_Seq
<400> 917

ccctctatca agtgtatcg ccctta 26

<210> 918

<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_382583_13_Reverse_Primer_Seq

<400> 918

aggaaaagtac accatttctta tcagga

26

<210> 919
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_124737_14_Forward_Primer_Seq

<400> 919

tccaaattgt tgcagaaaaca agcaa

25

<210> 920
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_124737_14_Reverse_Primer_Seq

<400> 920

tagtcctttt tggtgccaat acaca

25

<210> 921
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_124766_13_Forward_Primer_Seq

<400> 921

tccaaattgt tgcagaaaaca agcaa

25

<210> 922
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_124766_13_Reverse_Primer_Seq

<400> 922

tagtcctttt tggtgccaat acaca

25

<210> 923
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__461351_16_Forward_Primer_Seq

<400> 923

gaatgggttt agggttgaag caact 25

<210> 924
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__461351_16_Reverse_Primer_Seq

<400> 924

atagtaattt gttgaaggc agcaa 25

<210> 925
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__64953_19_Forward_Primer_Seq

<400> 925

cacccttgaga aacttggaaac acttga 26

<210> 926
<211> 25
<212> DNA
<213> Glycine max
.

<223> Seq ID: 318013_region_A3__64953_19_Reverse_Primer_Seq

<400> 926

ctctttaaag ggtcaactgcc ctcata 25

<210> 927
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3__366586_13_Forward_Primer_Seq

<400> 927

tgtccatgca ttaaagcaaa catct

25

<210> 928
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_366586_13_Reverse_Primer_Seq

<400> 928

gaatgcaaac atgcgttatt tgtct

25

<210> 929
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_46190_15_Forward_Primer_Seq

<400> 929

caaacctcca atcactaaat tgatcc

26

<210> 930
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_46190_15_Reverse_Primer_Seq

<400> 930

aagttcaggc taggccaagg taca

24

<210> 931
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_81016_11_Forward_Primer_Seq

<400> 931

cctcgcccaa acataactag tctaacc

26

<210> 932
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_81016_11_Reverse_Primer_Seq

<400> 932

aggccttgatt ccatcttgggtt tggta

25

<210> 933
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_134426_14_Forward_Primer_Seq

<400> 933

ttacactatg ggtccgttcg gttat

25

<210> 934
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_134426_14_Reverse_Primer_Seq

<400> 934

tgaaacataa tggaagatga tgatgg

26

<210> 935
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_292724_14_Forward_Primer_Seq

<400> 935

ccattgttagg aggacaagaa tcaca

25

<210> 936
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_292724_14_Reverse_Primer_Seq

<400> 936

taacggctct tgctttgtga atagc

25

<210> 937
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_187096_17_Forward_Primer_Seq

<400> 937

gtccagccaa atgcgttaaca tttat

25

<210> 938

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_187096_17_Reverse_Primer_Seq

<400> 938

catctagtagtat ttgtttaacg ccgaaaa

26

<210> 939

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_381693_13_Forward_Primer_Seq

<400> 939

ttgatgttat gattcaatgg ttgtat

26

<210> 940

<211> 23

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_381693_13_Reverse_Primer_Seq

<400> 940

aaataccgcg tatcaacttc acc

23

<210> 941

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_361286_33_Forward_Primer_Seq

<400> 941

atcccagttg cattcttcc gtaaa

25

<210> 942

<211> 26

<212> DNA

<213> Glycine max
<223> Seq ID: 318013_region_A3_361286_33_Reverse_Primer_Seq

<400> 942

tgaaatgtgt tctttgttgc ttaccc

26

<210> 943
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_482668_14_Forward_Primer_Seq

<400> 943

cgtttgttac ttcacacacgca cacat

25

<210> 944
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_482668_14_Reverse_Primer_Seq

<400> 944

tcagacttac gtacaagtgt gccata

26

<210> 945
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_128002_12_Forward_Primer_Seq

<400> 945

cttgccaggg atcaaatcat aaaga

25

<210> 946
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_128002_12_Reverse_Primer_Seq

<400> 946

tgtaagcttg caggacaagg taactc

26

<210> 947

<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_499270_14_Forward_Primer_Seq

<400> 947

cactgtgtaa gtgtcccttg catct

25

<210> 948
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_499270_14_Reverse_Primer_Seq

<400> 948

gggatttcaa tcagaagact cgttt

25

<210> 949
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_231650_12_Forward_Primer_Seq

<400> 949

cttcaaggct ttggagaaca aacat

25

<210> 950
<211> 22
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_231650_12_Reverse_Primer_Seq

<400> 950

caccggaaac cttcctctca tc

22

<210> 951
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_199851_13_Forward_Primer_Seq

<400> 951

cggccatagt catattttatg ctgcc

25

<210> 952
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_199851_13_Reverse_Primer_Seq

<400> 952

agggttccaa tcacgctatt agtga

25

<210> 953
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_324629_13_Forward_Primer_Seq

<400> 953

cggccatagt catatttatg ctgcc

25

<210> 954
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_324629_13_Reverse_Primer_Seq

<400> 954

agggttccaa tcacgctatt agtga

25

<210> 955
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_374190_19_Forward_Primer_Seq

<400> 955

agccaaggta aggcacacaa actt

24

<210> 956
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_374190_19_Reverse_Primer_Seq

<400> 956

tcatccaatc cggtgataat agaaa

25

<210> 957
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_460603_13_Forward_Primer_Seq

<400> 957

cacgcgaaccttcatgtttac aaagt

25

<210> 958
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_460603_13_Reverse_Primer_Seq

<400> 958

gaggatttcaa tactgcccaa gctaa

25

<210> 959
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_108681_14_Forward_Primer_Seq

<400> 959

aagagtgtga aatttgttacg acagt

25

<210> 960
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_108681_14_Reverse_Primer_Seq

<400> 960

gttcatcaag atgcggcac cata

24

<210> 961
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_459791_47_Forward_Primer_Seq

<400> 961

tgc~~tatgtc~~ agctacggtc aatct

25

<210> 962
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_459791_47_Reverse_Primer_Seq

<400> 962

tccgaggcga gtaggtacct ctatt

25

<210> 963
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_4257_20_Forward_Primer_Seq

<400> 963

tcccaacgc~~a~~ acagtaacgt aaata

25

<210> 964
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_4257_20_Reverse_Primer_Seq

<400> 964

t~~gaaacttga~~ atgt~~aaccac~~ tcccta

26

<210> 965
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_238810_14_Forward_Primer_Seq

<400> 965

cagg~~tgttaa~~ tactc~~tttc~~ attcaa

27

<210> 966
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_238810_14_Reverse_Primer_Seq

<400> 966

acatcgtttc tatccaatga tgacg

25

<210> 967

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_245817_14_Forward_Primer_Seq

<400> 967

atcataaaatt cattcaaaca catgct

26

<210> 968

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_245817_14_Reverse_Primer_Seq

<400> 968

actaccattc tgcgtgttta gatca

25

<210> 969

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_245956_14_Forward_Primer_Seq

<400> 969

atcataaaatt cattcaaaca catgct

26

<210> 970

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 318013_region_A3_245956_14_Reverse_Primer_Seq

<400> 970

actaccattc tgcgtgttta gatca

25

<210> 971

<211> 26

<212> DNA

<213> Glycine max
<223> Seq ID: 318013_region_A3_74148_14_Forward_Primer_Seq
<400> 971
tgcatgcatg taaccagaaa taataaa

26

<210> 972
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_74148_14_Reverse_Primer_Seq
<400> 972
cacactgcaa gagtttatga agaaaa

25

<210> 973
<211> 26
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_74089_15_Forward_Primer_Seq
<400> 973
tgcatgcatg taaccagaaa taataaa

26

<210> 974
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_74089_15_Reverse_Primer_Seq
<400> 974
cacactgcaa gagtttatga agaaaa

25

<210> 975
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 318013_region_A3_241686_12_Forward_Primer_Seq
<400> 975
tggatcaaat ggtacttgtc aactg

25

<210> 976

<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_241686_12_Reverse_Primer_Seq

<400> 976

ccatttgcac acattattaa catca

25

<210> 977
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_47476_12_FForward_Primer_Seq

<400> 977

tttgccatcatctggatcttc

25

<210> 978
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_47476_127_Reverse_Primer_Seq

<400> 978

gtgttccattatgtgccaggttt

24

<210> 979
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_164550_12_FForward_Primer_Seq

<400> 979

caacataataatccataatctccc atgct

25

<210> 980
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_164550_12_Reverse_Primer_Seq

<400> 980

gacatatggtcctccggaaataaa

24

<210> 981
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_101255_15_Forward_Primer_Seq

<400> 981

gcactaatta agcctgttcc aacctg

26

<210> 982
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 318013_region_A3_101255_15_Reverse_Primer_Seq

<400> 982

tcatggacta attaaatgtg gtcattc

27

<210> 983
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_16189_11_Forward_Primer

<400> 983

ttccacacaat ccaaattcca aattc

25

<210> 984
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_16189_11_Reverse_Primer

<400> 984

tgagattcca taggaatca aagca

25

<210> 985
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_71925_13_Forward_Primer

<400> 985

tccgactttt tggcttatata tgtgtg

26

<210> 986
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_71925_13_Reverse_Primer

<400> 986

agtttgtgcc gatgtacatt acaaaa

25

<210> 987
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_4707_12_Forward_Primer

<400> 987

caagatcaag cacccttgg tctct

25

<210> 988
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_4707_12Reverse_Primer

<400> 988

tttccattac agacagttagc gtgtaaa

27

<210> 989
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_118904_18_Forward_Primer

<400> 989

tagctgcata acctctcagt ttctcg

25

<210> 990
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_118904_18_Reverse_Primer

<400> 990
ttgccttaa atgttagccct gatttc 26

<210> 991
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__13655_17_Forward_Primer

<400> 991
gagtcattt ccttaaaccc atcaca 26

<210> 992
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__13655_17_Reverse_Primer

<400> 992
aagctcttgt ggacttgata ctcaga 26

<210> 993
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__53900_13_Forward_Primer

<400> 993
atttcttcac atcgcatcc caaac 25

<210> 994
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__53900_13_Reverse_Primer

<400> 994
atgtgcttgg tggaatgtaa ggatt 25

<210> 995
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_8079_14_Forward_Primer

<400> 995

gtgagagttt agctggaaac ctttg

25

<210> 996

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_8079_14_Reverse_Primer

<400> 996

gatctctgtc tctcttcctt cttgc

25

<210> 997

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_9969_28_Forward_Primer

<400> 997

tcaccagaga cgcattatca gattc

25

<210> 998

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_9969_28_Reverse_Primer

<400> 998

cgttaccaggc tactgtttcc ttctc

25

<210> 999

<211> 27

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_72308_77_Forward_Primer

<400> 999

tttcttaaac agatcactgg tatgcaa

27

<210> 1000

<211> 25

<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__72308_77_Reverse_Primer

<400> 1000

cgctaccagg tactgtttcc ttctc

25

<210> 1001
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__99475_19_Forward_Primer

<400> 1001

tgcacaaatga gatttgaagt catgtta

26

<210> 1002
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__99475_19_Reverse_Primer

<400> 1002

ttgagtcagg aatcttcgat taccc

25

<210> 1003
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__118615_18_Forward_Primer

<400> 1003

atcatggatc tgattccacc tgaaa

24

<210> 1004
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__118615_18_Reverse_Primer

<400> 1004

tgattgtatg tatgggcgct aagtt

25

<210> 1005
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_119001_46_Forward_Primer

<400> 1005

tgaaatcagg gctacatTTTA aggaca

26

<210> 1006
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_119001_46_Reverse_Primer

<400> 1006

aggcatttgg tcaacttgat tatgc

25

<210> 1007
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_118958_43_Forward_Primer

<400> 1007

tgaaatcagg gctacatTTTA aggaca

26

<210> 1008
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_118958_43_Reverse_Primer

<400> 1008

aggcatttgg tcaacttgat tatgc

25

<210> 1009
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_17197_13_Forward_Primer

<400> 1009

cgagtcgggatgtcgagt agaca

25

<210> 1010
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__17197_13_Reverse_Primer

<400> 1010

cataataccg agtccgatga aacct

25

<210> 1011
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__105163_29_Forward_Primer

<400> 1011

ttccaattcc ttagcctatc aaaca

25

<210> 1012
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__105163_29_Reverse_Primer

<400> 1012

aacatttgtta cctatgcatt cccatc

26

<210> 1013
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__111335_13_Forward_Primer

<400> 1013

atacttacaa tccgtcaggc agctc

25

<210> 1014
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__111335_13_Reverse_Primer

<400> 1014

tcatgttata gttttgcgtt ctttgt 25

<210> 1015
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_106396_13_Forward_Primer

<400> 1015

ctgtcaagg agggaaattgg tacag 25

<210> 1016
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_106396_13_Reverse_Primer

<400> 1016

aacaactgcc agaagaaaagt accag 25

<210> 1017
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_59229_17_Forward_Primer

<400> 1017

gcttgcagg agagaaaatgt tgctt 25

<210> 1018
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_59229_17_Reverse_Primer

<400> 1018

aattcagcaa atgaaaacatg ggagt 25

<210> 1019
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_73795_20_Forward_Primer

<400> 1019

tggcaacact taatggcac agata

25

<210> 1020

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_73795_20_Reverse_Primer

<400> 1020

ggagaagaata acaaattaaa cccttt

26

<210> 1021

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_85664_20_Forward_Primer

<400> 1021

tgtcaatcaa taaccattga tctcct

26

<210> 1022

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_85664_20_Reverse_Primer

<400> 1022

ttggtttcta ttacgggta ccaaa

25

<210> 1023

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_36921_17_Forward_Primer

<400> 1023

ccgagaccca ctgggttata cttca

25

<210> 1024

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_36921_17_Reverse_Primer

<400> 1024

aggagtgaga aattgcttct ccaaa

25

<210> 1025

<211> 24

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_124150_19_Forward_Primer

<400> 1025

aagtggttgc acacagcatc tagg

24

<210> 1026

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_124150_19_Reverse_Primer

<400> 1026

tcaactgaaca ctgtatccctg ccatt

25

<210> 1027

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_5089_14_Forward_Primer

<400> 1027

tcatatccctga aatatgggtg tcttca

26

<210> 1028

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_5089_14_Reverse_Primer

<400> 1028

cataacaaga caggttgagg caaca

25

<210> 1029

<211> 24

<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__58221_15_Forward_Primer

<400> 1029

catttcaaaag ggagagccat catc

24

<210> 1030
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__58221_15_Reverse_Primer

<400> 1030

catggaaaatg gagaaaagcaa agaaa

25

<210> 1031
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__96139_14_Forward_Primer

<400> 1031

ccctcaagcc aatgatagta actcc

25

<210> 1032
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__96139_14_Reverse_Primer

<400> 1032

aactcggtctt atgctcaacc ttacg

25

<210> 1033
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__70595_13_Forward_Primer

<400> 1033

ttgggaactg tacacatgcc ttaat

25

<210> 1034
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_70595_13_Reverse_Primer

<400> 1034

tgggtttgtt atttccatgg gaattat

27

<210> 1035
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_4340_15_Forward_Primer

<400> 1035

aaatatgggt acatcatccg atacaa

26

<210> 1036
<211> 24
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_4340_15_Reverse_Primer

<400> 1036

tttggatatg agaaggaggg aagg

24

<210> 1037
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_90417_11_Forward_Primer

<400> 1037

aaactgc当地 cacaattgc ct当地

25

<210> 1038
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_90417_11_Reverse_Primer

<400> 1038

ccctggtagcc tggtaatggc ttgggt

25

<210> 1039
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_49711_17_Forward_Primer

<400> 1039

caaagagagg cagaggaggat gatta

25

<210> 1040
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_49711_17_Reverse_Primer

<400> 1040

tggttttagc tgcttgtcat ttgat

25

<210> 1041
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_63053_13_Forward_Primer

<400> 1041

tgtgcataaac tcggatcttctt gatga

25

<210> 1042
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_63053_13_Reverse_Primer

<400> 1042

tcttgctgca atctttacta acagaca

26

<210> 1043
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2_63076_14_Forward_Primer

<400> 1043

tgtgcataac tcgatcttctt gatga

25

<210> 1044
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__63076_14_Reverse_Primer

<400> 1044

tcttgctgca atctttacta acagaca

26

<210> 1045
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__44442_12_Forward_Primer

<400> 1045

aacgcgtctt tctttttctt tcaac

25

<210> 1046
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__44442_12_Reverse_Primer

<400> 1046

gcaacatggc tatatgaaac acctc

25

<210> 1047
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__44422_19_Forward_Primer

<400> 1047

aacgcgtctt tctttttctt tcaac

25

<210> 1048
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__44422_19_Reverse_Primer

<400> 1048

gcaacatggc tataatgaaac acctc

25

<210> 1049

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_44158_19_Forward_Primer

<400> 1049

tttcatttacg tgcggttgta caacta

26

<210> 1050

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_44158_19_Reverse_Primer

<400> 1050

cagggtggat gatacgaata cgatac

26

<210> 1051

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_44141_17_Forward_Primer

<400> 1051

tttcatttacg tgcggttgta caacta

26

<210> 1052

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_44141_17_Reverse_Primer

<400> 1052

cagggtggat gatacgaata cgatac

26

<210> 1053

<211> 27

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2__90762_17_Forward_Primer

<400> 1053

ccagagatat gattcaatac aaaggaa

27

<210> 1054

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2__90762_17_Reverse_Primer

<400> 1054

attaccctgt ggtaacggat tcaag

25

<210> 1055

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2__106241_14_Forward_Primer

<400> 1055

tagatagcta gccatgttgg catga

25

<210> 1056

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2__106241_14_Reverse_Primer

<400> 1056

tgtaccaatt tcctcccttg acagt

25

<210> 1057

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2__109676_12_Forward_Primer

<400> 1057

tcattgtctt tgaggacttt ctcatt

26

<210> 1058

<211> 26

<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__109676_12_Reverse_Primer

<400> 1058

tcactgacac tgagtatag ccattt

26

<210> 1059
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__86242_14_Forward_Primer

<400> 1059

ccacaactcc gatttatccc ataac

25

<210> 1060
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__86242_14_Reverse_Primer

<400> 1060

gcacaaaagaa gaaatttgga gtttca

26

<210> 1061
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__83109_12_Forward_Primer

<400> 1061

tcacccttta ggagatccta gacac

25

<210> 1062
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__83109_12_Reverse_Primer

<400> 1062

ctttggccaa tgattgaagg aagtc

25

<210> 1063
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__10461_15_Forward_Primer

<400> 1063

ggctgtgtgat gagtgagagt gagag

25

<210> 1064
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__10461_15_Reverse_Primer

<400> 1064

tgcaccccta ttccctctaa tcatac

25

<210> 1065
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__67608_15_Forward_Primer

<400> 1065

ggtggtaga tccaatttca tgttga

26

<210> 1066
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__67608_15_Reverse_Primer

<400> 1066

tcctgtacag cacgtatccg tattt

25

<210> 1067
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__63275_46_Forward_Primer

<400> 1067

tgctgttagt aaagattgca gcaaga

26

<210> 1068
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__63275_46_Reverse_Primer

<400> 1068

tatactccgc tcctcaattc cttca

25

<210> 1069
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__62405_14_Forward_Primer

<400> 1069

tgcatacgaga gaaatagacg agggaaa

26

<210> 1070
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__62405_14_Reverse_Primer

<400> 1070

atctcttcca aacggtccat aagtt

25

<210> 1071
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__33563_12_Forward_Primer

<400> 1071

ccttaggtgc tcatacatcc aaaca

25

<210> 1072
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__33563_12_Reverse_Primer

<400> 1072

tgattccatata cacaacgcaag aaacgc

25

<210> 1073

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_33146_14_Forward_Primer

<400> 1073

cgaaccctaa acatttcaaa ccaaa

25

<210> 1074

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_33146_14_Reverse_Primer

<400> 1074

tttcagaaga aagggtggaa acaca

25

<210> 1075

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_102179_29_Forward_Primer

<400> 1075

aatctcgatt gtcttcttgc gaaat

25

<210> 1076

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_102179_29_Reverse_Primer

<400> 1076

tccacaacaagt caacaatcaa gcaata

26

<210> 1077

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_2646_15_Forward_Primer

<400> 1077

ccaaaggctt agtttcattt gcatt

25

<210> 1078

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_2646_15_Reverse_Primer

<400> 1078

gaaataaaaca aatccaaactt ctctcg

26

<210> 1079

<211> 25

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_76652_24_Forward_Primer

<400> 1079

actaactctt gcgtgctctt tgttt

25

<210> 1080

<211> 24

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_76652_24_Reverse_Primer

<400> 1080

ccctgggaca tatactggat caaa

24

<210> 1081

<211> 26

<212> DNA

<213> Glycine max

<223> Seq ID: 515002_region_G2_66280_14_Forward_Primer

<400> 1081

gtgttagatt gataaaaagt cgctga

26

<210> 1082

<211> 26

<212> DNA

<213> Glycine max
<223> Seq ID: 515002_region_G2__66280_14_Reverse_Primer
<400> 1082
agatttagcc catgattaaa gtgaaa

26

<210> 1083
<211> 27
<212> DNA
<213> Glycine max
<223> Seq ID: 515002_region_G2__54768_13_Forward_Primer
<400> 1083
aaattaccaa tcatgtatgg agtgaga

27

<210> 1084
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 515002_region_G2__54768_13_Reverse_Primer
<400> 1084
caggcacaat attgcaccat aacctt

25

<210> 1085
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 515002_region_G2__62580_14_Forward_Primer
<400> 1085
aacttatgga ccgtttggaa gagat

25

<210> 1086
<211> 25
<212> DNA
<213> Glycine max
<223> Seq ID: 515002_region_G2__62580_14_Reverse_Primer
<400> 1086
aaaggaggag caaagagtga agatt

25

<210> 1087

<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__34598_55_Forward_Primer

<400> 1087

aaagtctggc ctgaactgac ccatt

25

<210> 1088
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__34598_55_Reverse_Primer

<400> 1088

ggaatggaaat ttatggagca gtaatgt

27

<210> 1089
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__77680_13_Forward_Primer

<400> 1089

tgacatgaac tatctcaaacc aatgcaa

27

<210> 1090
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__77680_13_Reverse_Primer

<400> 1090

aacaactgtt atttacacctt cccaga

26

<210> 1091
<211> 27
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__77693_12_Forward_Primer

<400> 1091

tgacatgaac tatctcaaacc aatgcaa

27

<210> 1092
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__77693_12_Reverse_Primer

<400> 1092

aacaactgtt atttacacct cccaga

26

<210> 1093
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__97392_14_Forward_Primer

<400> 1093

tttgatgttag ttgattttatg cactcg

26

<210> 1094
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__97392_14_Reverse_Primer

<400> 1094

gtgacatcg gcaacctagt tttagt

25

<210> 1095
<211> 26
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__97359_15_Forward_Primer

<400> 1095

tttgatgttag ttgattttatg cactcg

26

<210> 1096
<211> 25
<212> DNA
<213> Glycine max

<223> Seq ID: 515002_region_G2__97359_15_Reverse_Primer

<400> 1096

gtgacatcag gcaacctagt tttagt

25

<210> 1097
<211> 877
<212> PRT
<213> Glycine max

<223> Seq ID: 240017_region_G3

<400> 1097

Met	Asp	Ala	Cys	Gly	Met	Ser	Ser	Ser	Asn	Ser	Lys	His	Val	Val	Asp
1					5						10			15	

Gln	Lys	Arg	Ser	Thr	Met	Asn	Met	Met	Ile	Thr	Thr	Ile	Leu	Leu	Arg
					20				25			30			

Phe	Trp	Asp	Arg	Tyr	Asp	Met	Asn	Cys	Asp	Tyr	Thr	Thr	Asn	Ser	Tyr
					35			40		45					

Glu	Pro	Gly	Thr	Gln	Leu	Ala	Pro	Ser	Ser	Pro	Arg	Asp	Thr	Ser	Val
					50			55		60					

Lys	Leu	Gly	Asp	Ala	Ser	Ser	Leu	Val	Val	Leu	Pro	Ser	Cys	Val	Arg
					65			70		75		80			

Pro	Val	Leu	Cys	Glu	Asp	Glu	Gly	Trp	Asp	Gly	Val	Val	Val	Thr	Ala
					85				90		95				

Ser	Asn	Leu	Leu	Ala	Leu	Glu	Ala	Phe	Lys	Gln	Glu	Leu	Val	Asp	Pro
					100				105		110				

Glu	Gly	Phe	Leu	Arg	Ser	Trp	Asn	Asp	Ser	Gly	Tyr	Gly	Ala	Cys	Ser
					115			120		125					

Gly	Gly	Trp	Val	Gly	Ile	Lys	Cys	Ala	Lys	Gly	Gln	Val	Ile	Val	Ile
					130			135		140					

Gln	Leu	Pro	Trp	Lys	Gly	Leu	Arg	Gly	Ile	Thr	Asp	Lys	Ile	Gly
					145			150		155		160		

Gln	Leu	Gln	Gly	Leu	Arg	Lys	Leu	Ser	Leu	His	Asp	Asn	Gln	Ile	Gly
					165			170		175					

Gly	Ser	Ile	Pro	Ser	Thr	Leu	Gly	Leu	Leu	Pro	Asn	Leu	Arg	Gly	Val
					180			185		190					

Gln	Leu	Phe	Asn	Asn	Arg	Leu	Thr	Gly	Ser	Ile	Pro	Leu	Ser	Leu	Gly
					195			200		205					

Phe	Cys	Pro	Leu	Leu	Gln	Ser	Leu	Asp	Leu	Ser	Asn	Asn	Leu	Leu	Thr
					210			215		220					

Gly	Ala	Ile	Pro	Tyr	Ser	Leu	Ala	Asn	Ser	Thr	Lys	Leu	Tyr	Trp	Leu
					225			230		235		240			

Asn	Leu	Ser	Phe	Asn	Ser	Phe	Ser	Gly	Pro	Leu	Pro	Ala	Ser	Leu	Thr
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

	245	250	255
His Ser Phe Ser Leu Thr Phe Leu Ser Leu Gln Asn Asn Asn Leu Ser			
260	265	270	
Gly Ser Leu Pro Asn Ser Trp Gly Gly Asn Ser Lys Asn Gly Phe Phe			
275	280	285	
Arg Leu Gln Asn Leu Ile Leu Asp His Asn Phe Phe Thr Gly Asp Val			
290	295	300	
Pro Ala Ser Leu Gly Ser Leu Arg Glu Leu Asn Glu Ile Ser Leu Ser			
305	310	315	320
His Asn Lys Phe Ser Gly Ala Ile Pro Asn Glu Ile Gly Thr Leu Ser			
325	330	335	
Arg Leu Lys Thr Leu Asp Ile Ser Asn Asn Ala Leu Asn Gly Asn Leu			
340	345	350	
Pro Ala Thr Leu Ser Asn Leu Ser Ser Leu Thr Leu Leu Asn Ala Glu			
355	360	365	
Asn Asn Leu Leu Asp Asn Gln Ile Pro Gln Ser Leu Gly Arg Leu Arg			
370	375	380	
Asn Leu Ser Val Leu Ile Leu Ser Arg Asn Gln Phe Ser Gly His Ile			
385	390	395	400
Pro Ser Ser Ile Ala Asn Ile Ser Ser Leu Arg Gln Leu Asp Leu Ser			
405	410	415	
Leu Asn Asn Phe Ser Gly Glu Ile Pro Val Ser Phe Asp Ser Gln Arg			
420	425	430	
Ser Leu Asn Leu Phe Asn Val Ser Tyr Asn Ser Leu Ser Gly Ser Val			
435	440	445	
Pro Pro Leu Leu Ala Lys Lys Phe Asn Ser Ser Ser Phe Val Gly Asn			
450	455	460	
Ile Gln Leu Cys Gly Tyr Ser Pro Ser Thr Pro Cys Leu Ser Gln Ala			
465	470	475	480
Pro Ser Gln Gly Val Ile Ala Pro Pro Pro Glu Val Ser Lys His His			
485	490	495	
His His Arg Lys Leu Ser Thr Lys Asp Ile Ile Leu Ile Val Ala Gly			
500	505	510	
Val Leu Leu Val Val Leu Ile Ile Leu Cys Cys Val Leu Leu Phe Cys			
515	520	525	
Leu Ile Arg Lys Arg Ser Thr Ser Lys Ala Gly Asn Gly Gln Ala Thr			
530	535	540	
Glu Gly Arg Ala Ala Thr Met Arg Thr Glu Lys Gly Val Pro Pro Val			
545	550	555	560

Ala	Gly	Gly	Asp	Val	Glu	Ala	Gly	Gly	Glu	Ala	Gly	Gly	Lys	Leu	Val	
						565				570				575		
His	Phe	Asp	Gly	Pro	Met	Ala	Phe	Thr	Ala	Asp	Asp	Asp	Leu	Leu	Cys	Ala
						580				585				590		
Thr	Ala	Glu	Ile	Met	Gly	Lys	Ser	Thr	Tyr	Gly	Thr	Val	Tyr	Lys	Ala	
						595				600				605		
Ile	Leu	Glu	Asp	Gly	Ser	Gln	Val	Ala	Val	Lys	Arg	Leu	Arg	Glu	Lys	
						610				615				620		
Ile	Thr	Lys	Gly	His	Arg	Glu	Phe	Glu	Ser	Glu	Val	Ser	Val	Leu	Gly	
						625				630				635		
Lys	Ile	Arg	His	Pro	Asn	Val	Leu	Ala	Leu	Arg	Ala	Tyr	Tyr	Leu	Gly	
						645				650				655		
Pro	Lys	Gly	Glu	Lys	Leu	Leu	Val	Phe	Asp	Tyr	Met	Ser	Lys	Gly	Ser	
						660				665				670		
Leu	Ala	Ser	Phe	Leu	His	Gly	Gly	Gly	Thr	Glu	Thr	Phe	Ile	Asp	Trp	
						675				680				685		
Pro	Thr	Arg	Met	Lys	Ile	Ala	Gln	Asp	Leu	Ala	Arg	Gly	Leu	Phe	Cys	
						690				695				700		
Leu	His	Ser	Gln	Glu	Asn	Ile	Ile	His	Gly	Asn	Leu	Thr	Ser	Ser	Asn	
						705				710				715		
Val	Leu	Leu	Asp	Glu	Asn	Thr	Asn	Ala	Lys	Ile	Ala	Asp	Phe	Gly	Leu	
						725				730				735		
Ser	Arg	Leu	Met	Ser	Thr	Ala	Ala	Asn	Ser	Asn	Val	Ile	Ala	Thr	Ala	
						740				745				750		
Gly	Ala	Leu	Gly	Tyx	Arg	Ala	Pro	Glu	Leu	Ser	Lys	Leu	Lys	Lys	Ala	
						755				760				765		
Asn	Thr	Lys	Thr	Asp	Ile	Tyr	Ser	Leu	Gly	Val	Ile	Leu	Leu	Glu	Leu	
						770				775				780		
Leu	Thr	Arg	Lys	Ser	Pro	Gly	Val	Ser	Met	Asn	Gly	Leu	Asp	Leu	Pro	
						785				790				795		
Gln	Trp	Val	Ala	Ser	Val	Val	Lys	Glu	Glu	Trp	Thr	Asn	Glu	Val	Phe	
						805				810				815		
Asp	Ala	Asp	Leu	Met	Arg	Asp	Ala	Ser	Thr	Val	Gly	Asp	Glu	Leu	Leu	
						820				825				830		
Asn	Thr	Leu	Lys	Leu	Ala	Leu	His	Cys	Val	Asp	Pro	Ser	Pro	Ser	Ala	
						835				840				845		
Arg	Pro	Glu	Val	His	Gln	Val	Gln	Gln	Leu	Glu	Glu	Ile	Arg	Pro		
						850				855				860		

Glu Arg Ser Val Thr Ala Ser Pro Gly Asp Asp Ile Val		
865	870	875

<210>	1098
<211>	854
<212>	PRT
<213>	Glycine max

<223> Seq ID: 240017_region_G3

<400> 1098

Met Val Val Ala Val Glu Lys Thr Asn Leu Thr Ser Gln Ser Gln Cys			
1	5	10	15

Phe Asn Arg Val Ser Asp Lys Lys Lys Glu Arg Cys Lys Thr His Met		
20	25	30

Asn Asn Val Asn Pro Cys Cys Phe Leu Phe Leu Leu Cys Val Trp Ser		
35	40	45

Leu Val Val Leu Pro Ser Cys Val Arg Pro Val Leu Cys Glu Asp Glu		
50	55	60

Gly Trp Asp Gly Val Val Val Thr Ala Ser Asn Leu Leu Ala Leu Glu			
65	70	75	80

Ala Phe Lys Gln Glu Leu Val Asp Pro Glu Gly Phe Leu Arg Ser Trp		
85	90	95

Asn Asp Ser Gly Tyr Gly Ala Cys Ser Gly Gly Trp Val Gly Ile Lys		
100	105	110

Cys Ala Lys Gly Gln Val Ile Val Ile Gln Leu Pro Trp Lys Gly Leu		
115	120	125

Arg Gly Arg Ile Thr Asp Lys Ile Gly Gln Leu Gln Gly Leu Arg Lys		
130	135	140

Leu Ser Leu His Asp Asn Gln Ile Gly Gly Ser Ile Pro Ser Thr Leu			
145	150	155	160

Gly Leu Leu Pro Asn Leu Arg Gly Val Gln Leu Phe Asn Asn Arg Leu		
165	170	175

Thr Gly Ser Ile Pro Leu Ser Leu Gly Phe Cys Pro Leu Leu Gln Ser		
180	185	190

Leu Asp Leu Ser Asn Asn Leu Leu Thr Gly Ala Ile Pro Tyr Ser Leu		
195	200	205

Ala Asn Ser Thr Lys Leu Tyr Trp Leu Asn Leu Ser Phe Asn Ser Phe		
210	215	220

Ser Gly Pro Leu Pro Ala Ser Leu Thr His Ser Phe Ser Leu Thr Phe			
225	230	235	240

Leu Ser Leu Gln Asn Asn Asn Leu Ser Gly Ser Leu Pro Asn Ser Trp
 245 250 255
 Gly Gly Asn Ser Lys Asn Gly Phe Phe Arg Leu Gln Asn Leu Ile Leu
 260 265 270
 Asp His Asn Phe Phe Thr Gly Asp Val Pro Ala Ser Leu Gly Ser Leu
 275 280 285
 Arg Glu Leu Asn Glu Ile Ser Leu Ser His Asn Lys Phe Ser Gly Ala
 290 295 300
 Ile Pro Asn Glu Ile Gly Thr Leu Ser Arg Leu Lys Thr Leu Asp Ile
 305 310 315 320
 Ser Asn Asn Ala Leu Asn Gly Asn Leu Pro Ala Thr Leu Ser Asn Leu
 325 330 335
 Ser Ser Leu Thr Leu Leu Asn Ala Glu Asn Asn Leu Leu Asp Asn Gln
 340 345 350
 Ile Pro Gln Ser Leu Gly Arg Leu Arg Asn Leu Ser Val Leu Ile Leu
 355 360 365
 Ser Arg Asn Gln Phe Ser Gly His Ile Pro Ser Ser Ile Ala Asn Ile
 370 375 380
 Ser Ser Leu Arg Gln Leu Asp Leu Ser Leu Asn Asn Phe Ser Gly Glu
 385 390 395 400
 Ile Pro Val Ser Phe Asp Ser Gln Arg Ser Leu Asn Leu Phe Asn Val
 405 410 415
 Ser Tyr Asn Ser Leu Ser Gly Ser Val Pro Pro Leu Leu Ala Lys Lys
 420 425 430
 Phe Asn Ser Ser Ser Phe Val Gly Asn Ile Gln Leu Cys Gly Tyr Ser
 435 440 445
 Pro Ser Thr Pro Cys Leu Ser Gln Ala Pro Ser Gln Gly Val Ile Ala
 450 455 460
 Pro Pro Pro Glu Val Ser Lys His His His Arg Lys Leu Ser Thr
 465 470 475 480
 Lys Asp Ile Ile Leu Ile Val Ala Gly Val Leu Leu Val Val Leu Ile
 485 490 495
 Ile Leu Cys Cys Val Leu Leu Phe Cys Leu Ile Arg Lys Arg Ser Thr
 500 505 510
 Ser Lys Ala Gly Asn Gly Gln Ala Thr Glu Gly Arg Ala Ala Thr Met
 515 520 525
 Arg Thr Glu Lys Gly Val Pro Pro Val Ala Gly Gly Asp Val Glu Ala
 530 535 540
 Gly Gly Glu Ala Gly Gly Lys Leu Val His Phe Asp Gly Pro Met Ala

545	550	555	560
Phe Thr Ala Asp Asp Leu Leu Cys Ala Thr Ala Glu Ile Met Gly Lys			
565	570	575	
Ser Thr Tyr Gly Thr Val Tyr Lys Ala Ile Leu Glu Asp Gly Ser Gln			
580	585	590	
Val Ala Val Lys Arg Leu Arg Glu Lys Ile Thr Lys Gly His Arg Glu			
595	600	605	
Phe Glu Ser Glu Val Ser Val Leu Gly Lys Ile Arg His Pro Asn Val			
610	615	620	
Leu Ala Leu Arg Ala Tyr Tyr Leu Gly Pro Lys Gly Glu Lys Leu Leu			
625	630	635	640
Val Phe Asp Tyr Met Ser Lys Gly Ser Leu Ala Ser Phe Leu His Gly			
645	650	655	
Gly Gly Thr Glu Thr Phe Ile Asp Trp Pro Thr Arg Met Lys Ile Ala			
660	665	670	
Gln Asp Leu Ala Arg Gly Leu Phe Cys Leu His Ser Gln Glu Asn Ile			
675	680	685	
Ile His Gly Asn Leu Thr Ser Ser Asn Val Leu Leu Asp Glu Asn Thr			
690	695	700	
Asn Ala Lys Ile Ala Asp Phe Gly Leu Ser Arg Leu Met Ser Thr Ala			
705	710	715	720
Ala Asn Ser Asn Val Ile Ala Thr Ala Gly Ala Leu Gly Tyr Arg Ala			
725	730	735	
Pro Glu Leu Ser Lys Leu Lys Lys Ala Asn Thr Lys Thr Asp Ile Tyr			
740	745	750	
Ser Leu Gly Val Ile Leu Leu Glu Leu Leu Thr Arg Lys Ser Pro Gly			
755	760	765	
Val Ser Met Asn Gly Leu Asp Leu Pro Gln Trp Val Ala Ser Val Val			
770	775	780	
Lys Glu Glu Trp Thr Asn Glu Val Phe Asp Ala Asp Leu Met Arg Asp			
785	790	795	800
Ala Ser Thr Val Gly Asp Glu Leu Leu Asn Thr Leu Lys Leu Ala Leu			
805	810	815	
His Cys Val Asp Pro Ser Pro Ser Ala Arg Pro Glu Val His Gln Val			
820	825	830	
Leu Gln Gln Leu Glu Glu Ile Arg Pro Glu Arg Ser Val Thr Ala Ser			
835	840	845	
Pro Gly Asp Asp Ile Val			
850			

<210> 1099
<211> 894
<212> PRT
<213> Glycine max

<223> Seq ID: 318013_region_A3

<400> 1099

Met Ser Asn Phe Leu Lys Ser Leu Thr Pro Pro Pro Ser Gly Trp Ser
1 5 10 15

Glu Thr Thr Pro Phe Cys Gln Trp Lys Gly Ile Gln Cys Asp Ser Ser
20 25 30

Ser His Val Thr Ser Ile Ser Leu Ala Ser His Ser Leu Thr Gly Thr
35 40 45

Leu Pro Ser Asp Leu Asn Ser Leu Ser Gln Leu Arg Thr Leu Ser Leu
50 55 60

Gln Asp Asn Ser Leu Thr Gly Thr Leu Pro Ser Leu Ser Asn Leu Ser
65 70 75 80

Phe Leu Gln Thr Val Tyr Leu Asn Arg Asn Asn Phe Ser Ser Val Ser
85 90 95

Pro Thr Ala Phe Ala Ser Leu Thr Ser Leu Gln Thr Leu Ser Leu Gly
100 105 110

Ser Asn Pro Ala Leu Gln Pro Trp Ser Phe Pro Thr Asp Leu Thr Ser
115 120 125

Ser Ser Asn Leu Ile Asp Leu Asp Leu Ala Thr Val Ser Leu Thr Gly
130 135 140

Pro Leu Pro Asp Ile Phe Asp Lys Phe Pro Ser Leu Gln His Leu Arg
145 150 155 160

Leu Ser Tyr Asn Asn Leu Thr Gly Asn Leu Pro Ser Ser Phe Ser Ala
165 170 175

Ala Asn Asn Leu Glu Thr Leu Trp Leu Asn Asn Gln Ala Ala Gly Leu
180 185 190

Ser Gly Thr Leu Leu Val Leu Ser Asn Met Ser Ala Leu Asn Gln Ser
195 200 205

Trp Leu Asn Lys Asn Gln Phe Thr Gly Ser Ile Pro Asp Leu Ser Gln
210 215 220

Cys Thr Ala Leu Ser Asp Leu Gln Leu Arg Asp Asn Gln Leu Thr Gly
225 230 235 240

Val Val Pro Ala Ser Leu Thr Ser Leu Pro Ser Leu Lys Lys Val Ser
245 250 255

Leu Asp Asn Asn Glu Leu Gln Gly Pro Val Pro Val Phe Gly Lys Gly
 260 265 270
 Val Asn Val Thr Leu Asp Gly Ile Asn Ser Phe Cys Leu Asp Thr Pro
 275 280 285
 Gly Asn Cys Asp Pro Arg Val Met Val Leu Leu Gln Ile Ala Glu Ala
 290 295 300
 Phe Gly Tyr Pro Ile Arg Leu Ala Glu Ser Trp Lys Gly Asn Asp Pro
 305 310 315 320
 Cys Asp Gly Trp Asn Tyr Val Val Cys Ala Ala Gly Lys Ile Ile Thr
 325 330 335
 Val Asn Phe Glu Lys Gln Gly Leu Gln Gly Thr Ile Ser Pro Ala Phe
 340 345 350
 Ala Asn Leu Thr Asp Leu Arg Thr Leu Phe Leu Asn Gly Asn Asn Leu
 355 360 365
 Ile Gly Ser Ile Pro Asp Ser Leu Ile Thr Leu Pro Gln Leu Gln Thr
 370 375 380
 Leu Asp Val Ser Asp Asn Asn Leu Ser Gly Leu Val Pro Lys Phe Pro
 385 390 395 400
 Pro Lys Val Lys Leu Val Thr Ala Gly Asn Ala Leu Leu Gly Lys Pro
 405 410 415
 Leu Ser Pro Gly Gly Pro Ser Gly Thr Thr Pro Ser Gly Ser Ser
 420 425 430
 Thr Gly Gly Ser Gly Gly Glu Ser Ser Lys Gly Asn Ser Ser Val Ser
 435 440 445
 Pro Gly Trp Ile Ala Gly Ile Val Val Ile Val Leu Phe Phe Ile Ala
 450 455 460
 Val Val Leu Phe Val Ser Trp Lys Cys Phe Val Asn Lys Leu Gln Gly
 465 470 475 480
 Lys Phe Ser Arg Val Lys Gly His Glu Asn Gly Lys Gly Phe Lys
 485 490 495
 Leu Asp Ala Val His Val Ser Asn Gly Tyr Gly Gly Val Pro Val Glu
 500 505 510
 Leu Gln Ser Gln Ser Ser Gly Asp Arg Ser Asp Leu His Ala Leu Asp
 515 520 525
 Gly Pro Thr Phe Ser Ile Gln Val Leu Arg Gln Val Thr Asn Asn Phe
 530 535 540
 Ser Glu Glu Asn Ile Leu Gly Arg Gly Phe Gly Val Val Tyr Lys
 545 550 555 560

Gly Val Leu His Asp Gly Thr Lys Ile Ala Val Lys Arg Met Glu Ser
 565 570 575

Val Ala Met Gly Asn Lys Gly Gln Lys Glu Phe Glu Ala Glu Ile Ala
 580 585 590

Leu Leu Ser Lys Val Arg His Arg His Leu Val Ala Leu Leu Gly Tyr
 595 600 605

Cys Ile Asn Gly Asn Glu Arg Leu Leu Val Tyr Glu Tyr Met Pro Gln
 610 615 620

Gly Thr Leu Thr Gln His Leu Phe Glu Trp Gln Glu His Gly Tyr Ala
 625 630 635 640

Pro Leu Thr Trp Lys Gln Arg Val Val Ile Ala Leu Asp Val Ala Arg
 645 650 655

Gly Val Glu Tyr Leu His Ser Leu Ala Gln Gln Ser Phe Ile His Arg
 660 665 670

Asp Leu Lys Pro Ser Asn Ile Leu Leu Gly Asp Asp Met Arg Ala Lys
 675 680 685

Val Ala Asp Phe Gly Leu Val Lys Asn Ala Pro Asp Gly Lys Tyr Ser
 690 695 700

Val Glu Thr Arg Leu Ala Gly Thr Phe Gly Tyr Leu Ala Pro Glu Tyr
 705 710 715 720

Ala Ala Thr Gly Arg Val Thr Thr Lys Val Asp Val Tyr Ala Phe Gly
 725 730 735

Val Val Leu Met Glu Leu Ile Thr Gly Arg Lys Ala Leu Asp Asp Thr
 740 745 750

Val Pro Asp Glu Arg Ser His Leu Val Thr Trp Phe Arg Arg Val Leu
 755 760 765

Ile Asn Lys Glu Asn Ile Pro Lys Ala Ile Asp Gln Ile Leu Asn Pro
 770 775 780

Asp Glu Glu Thr Met Gly Ser Ile Tyr Thr Val Ala Glu Leu Ala Gly
 785 790 795 800

His Cys Thr Ala Arg Glu Pro Tyr Gln Arg Pro Asp Met Gly His Ala
 805 810 815

Val Asn Val Leu Val Pro Leu Val Glu Gln Trp Lys Pro Thr Ser His
 820 825 830

Asp Glu Glu Glu Asp Gly Ser Gly Asp Leu His Met Ser Leu
 835 840 845

Pro Gln Ala Leu Arg Arg Trp Gln Ala Asn Glu Gly Thr Ser Ser Ile
 850 855 860

Phe Asn Asp Ile Ser Ile Ser Gln Thr Gln Ser Ser Ile Ser Ser Lys

865	870	875	880
Pro Ala Gly Phe Ala Asp Ser Phe Asp Ser Met Asp Cys Arg			
885	890		
<210>	1100		
<211>	877		
<212>	PRT		
<213>	Glycine max		
<223>	Seq ID: rhg1_A3244_amplicon		
<400>	1100		
Met Asp Ala Cys Gly Met Ser Ser Ser Asn Ser Lys His Val Val Asp			
1	5	10	15
Gln Lys Arg Ser Thr Met Asn Met Met Ile Thr Thr Ile Leu Leu Arg			
20	25	30	
Phe Trp Asp Arg Tyr Asp Met Asn Cys Asp Tyr Thr Thr Asn Ser Tyr			
35	40	45	
Glu Pro Gly Thr Gln Leu Ala Pro Ser Ser Pro Arg Asp Thr Ser Val			
50	55	60	
Lys Leu Gly Asp Ala Ser Ser Leu Val Val Leu Pro Ser Cys Val Arg			
65	70	75	80
Pro Val Leu Cys Glu Asp Glu Gly Trp Asp Gly Val Val Val Thr Ala			
85	90	95	
Ser Asn Leu Leu Ala Leu Glu Ala Phe Lys Gln Glu Leu Val Asp Pro			
100	105	110	
Glu Gly Phe Leu Arg Ser Trp Asn Asp Ser Gly Tyr Gly Ala Cys Ser			
115	120	125	
Gly Gly Trp Val Gly Ile Lys Cys Ala Lys Gly Gln Val Ile Val Ile			
130	135	140	
Gln Leu Pro Trp Lys Gly Leu Arg Gly Arg Ile Thr Asp Lys Ile Gly			
145	150	155	160
Gln Leu Gln Gly Leu Arg Lys Leu Ser Leu His Asp Asn Gln Ile Gly			
165	170	175	
Gly Ser Ile Pro Ser Thr Leu Gly Leu Leu Pro Asn Leu Arg Gly Val			
180	185	190	
Gln Leu Phe Asn Asn Arg Leu Thr Gly Ser Ile Pro Leu Ser Leu Gly			
195	200	205	
Phe Cys Pro Leu Leu Gln Ser Leu Asp Leu Ser Asn Asn Leu Leu Thr			
210	215	220	
Gly Ala Ile Pro Tyr Ser Leu Ala Asn Ser Thr Lys Leu Tyr Trp Leu			

225	230	235	240
Asn Leu Ser Phe Asn Ser Phe Ser Gly Pro Leu Pro Ala Ser Leu Thr			
245	250	255	
His Ser Phe Ser Leu Thr Phe Leu Ser Leu Gln Asn Asn Asn Leu Ser			
260	265	270	
Gly Ser Leu Pro Asn Ser Trp Gly Gly Asn Ser Lys Asn Gly Phe Phe			
275	280	285	
Arg Leu Gln Asn Leu Ile Leu Asp His Asn Phe Phe Thr Gly Asp Val			
290	295	300	
Pro Ala Ser Leu Gly Ser Leu Arg Glu Leu Asn Glu Ile Ser Leu Ser			
305	310	315	320
His Asn Lys Phe Ser Gly Ala Ile Pro Asn Glu Ile Gly Thr Leu Ser			
325	330	335	
Arg Leu Lys Thr Leu Asp Ile Ser Asn Asn Ala Leu Asn Gly Asn Leu			
340	345	350	
Pro Ala Thr Leu Ser Asn Leu Ser Ser Leu Thr Leu Leu Asn Ala Glu			
355	360	365	
Asn Asn Leu Leu Asp Asn Gln Ile Pro Gln Ser Leu Gly Arg Leu Arg			
370	375	380	
Asn Leu Ser Val Leu Ile Leu Ser Arg Asn Gln Phe Ser Gly His Ile			
385	390	395	400
Pro Ser Ser Ile Ala Asn Ile Ser Ser Leu Arg Gln Leu Asp Leu Ser			
405	410	415	
Leu Asn Asn Phe Ser Gly Glu Ile Pro Val Ser Phe Asp Ser Gln Arg			
420	425	430	
Ser Leu Asn Leu Phe Asn Val Ser Tyr Asn Ser Leu Ser Gly Ser Val			
435	440	445	
Pro Pro Leu Leu Ala Lys Lys Phe Asn Ser Ser Ser Phe Val Gly Asn			
450	455	460	
Ile Gln Leu Cys Gly Tyx Ser Pro Ser Thr Pro Cys Leu Ser Gln Ala			
465	470	475	480
Pro Ser Gln Gly Val Ile Ala Pro Pro Glu Val Ser Lys His His			
485	490	495	
His His Arg Lys Leu Ser Thr Lys Asp Ile Ile Leu Ile Val Ala Gly			
500	505	510	
Val Leu Leu Val Val Leu Ile Ile Leu Cys Cys Val Leu Leu Phe Cys			
515	520	525	
Leu Ile Arg Lys Arg Ser Thr Ser Lys Ala Gly Asn Gly Gln Ala Thr			
530	535	540	

Glu Gly Arg Ala Ala Thr Met Arg Thr Glu Lys Gly Val Pro Pro Val
545 550 555 560

Ala Gly Gly Asp Val Glu Ala Gly Gly Glu Ala Gly Gly Lys Leu Val
565 570 575

His Phe Asp Gly Pro Met Ala Phe Thr Ala Asp Asp Leu Leu Cys Ala
580 585 590

Thr Ala Glu Ile Met Gly Lys Ser Thr Tyr Gly Thr Val Tyr Lys Ala
595 600 605

Ile Leu Glu Asp Gly Ser Gln Val Ala Val Lys Arg Leu Arg Glu Lys
610 615 620

Ile Thr Lys Gly His Arg Glu Phe Glu Ser Glu Val Ser Val Leu Gly
625 630 635 640

Lys Ile Arg His Pro Asn Val Leu Ala Leu Arg Ala Tyr Tyr Leu Gly
645 650 655

Pro Lys Gly Glu Lys Leu Leu Val Phe Asp Tyr Met Ser Lys Gly Ser
660 665 670

Leu Ala Ser Phe Leu His Gly Gly Gly Thr Glu Thr Phe Ile Asp Trp
675 680 685

Pro Thr Arg Met Lys Ile Ala Gln Asp Leu Ala Arg Gly Leu Phe Cys
690 695 700

Leu His Ser Gln Glu Asn Ile Ile His Gly Asn Leu Thr Ser Ser Asn
705 710 715 720

Val Leu Leu Asp Glu Asn Thr Asn Ala Lys Ile Ala Asp Phe Gly Leu
725 730 735

Ser Arg Leu Met Ser Thr Ala Ala Asn Ser Asn Val Ile Ala Thr Ala
740 745 750

Gly Ala Leu Gly Tyr Arg Ala Pro Glu Leu Ser Lys Leu Lys Lys Ala
755 760 765

Asn Thr Lys Thr Asp Ile Tyr Ser Leu Gly Val Ile Leu Leu Glu Leu
 . 770 775 780

Leu Thr Arg Lys Ser Pro Gly Val Ser Met Asn Gly Leu Asp Leu Pro
785 790 795 800

Gln Trp Val Ala Ser Val Val Lys Glu Glu Trp Thr Asn Glu Val Phe
805 810 815

Asp Ala Asp Leu Met Arg Asp Ala Ser Thr Val Gly Asp Glu Leu Leu
820 825 830

Asn Thr Leu Lys Leu Ala Leu His Cys Val Asp Pro Ser Pro Ser Ala
835 840 845

Arg Pro Glu Val His Gln Val Leu Gln Gln Leu Glu Glu Ile Arg Pro		
850	855	860

Glu Arg Ser Val Thr Ala Ser Pro Gly Asp Asp Ile Val		
865	870	875

<210>	1101
<211>	854
<212>	PRT
<213>	Glycine max

<223> Seq ID: rhg1_A3244_amplicon

<400> 1101

Met Val Val Ala Val Glu Lys Thr Asn Leu Thr Ser Gln Ser Gln Cys			
1	5	10	15

Phe Asn Arg Val Ser Asp Lys Lys Lys Glu Arg Cys Lys Thr His Met		
20	25	30

Asn Asn Val Asn Pro Cys Cys Phe Leu Phe Leu Leu Cys Val Trp Ser		
35	40	45

Leu Val Val Leu Pro Ser Cys Val Arg Pro Val Leu Cys Glu Asp Glu		
50	55	60

Gly Trp Asp Gly Val Val Val Thr Ala Ser Asn Leu Leu Ala Leu Glu			
65	70	75	80

Ala Phe Lys Gln Glu Leu Val Asp Pro Glu Gly Phe Leu Arg Ser Trp		
85	90	95

Asn Asp Ser Gly Tyr Gly Ala Cys Ser Gly Gly Trp Val Gly Ile Lys		
100	105	110

Cys Ala Lys Gly Gln Val Ile Val Ile Gln Leu Pro Trp Lys Gly Leu		
115	120	125

Arg Gly Arg Ile Thr Asp Lys Ile Gly Gln Leu Gln Gly Leu Arg Lys		
130	135	140

Leu Ser Leu His Asp Asn Gln Ile Gly Gly Ser Ile Pro Ser Thr Leu			
145	150	155	160

Gly Leu Leu Pro Asn Leu Arg Gly Val Gln Leu Phe Asn Asn Arg Leu		
165	170	175

Thr Gly Ser Ile Pro Leu Ser Leu Gly Phe Cys Pro Leu Leu Gln Ser		
180	185	190

Leu Asp Leu Ser Asn Asn Leu Leu Thr Gly Ala Ile Pro Tyr Ser Leu		
195	200	205

Ala Asn Ser Thr Lys Leu Tyr Trp Leu Asn Leu Ser Phe Asn Ser Phe		
210	215	220

Ser Gly Pro Leu Pro Ala Ser Leu Thr His Ser Phe Ser Leu Thr Phe
 225 230 235 240
 Leu Ser Leu Gln Asn Asn Asn Leu Ser Gly Ser Leu Pro Asn Ser Trp
 245 250 255
 Gly Gly Asn Ser Lys Asn Gly Phe Phe Arg Leu Gln Asn Leu Ile Leu
 260 265 270
 Asp His Asn Phe Phe Thr Gly Asp Val Pro Ala Ser Leu Gly Ser Leu
 275 280 285
 Arg Glu Leu Asn Glu Ile Ser Leu Ser His Asn Lys Phe Ser Gly Ala
 290 295 300
 Ile Pro Asn Glu Ile Gly Thr Leu Ser Arg Leu Lys Thr Leu Asp Ile
 305 310 315 320
 Ser Asn Asn Ala Leu Asn Gly Asn Leu Pro Ala Thr Leu Ser Asn Leu
 325 330 335
 Ser Ser Leu Thr Leu Leu Asn Ala Glu Asn Asn Leu Leu Asp Asn Gln
 340 345 350
 Ile Pro Gln Ser Leu Gly Arg Leu Arg Asn Leu Ser Val Leu Ile Leu
 355 360 365
 Ser Arg Asn Gln Phe Ser Gly His Ile Pro Ser Ser Ile Ala Asn Ile
 370 375 380
 Ser Ser Leu Arg Gln Leu Asp Leu Ser Leu Asn Asn Phe Ser Gly Glu
 385 390 395 400
 Ile Pro Val Ser Phe Asp Ser Gln Arg Ser Leu Asn Leu Phe Asn Val
 405 410 415
 Ser Tyr Asn Ser Leu Ser Gly Ser Val Pro Pro Leu Leu Ala Lys Lys
 420 425 430
 Phe Asn Ser Ser Ser Phe Val Gly Asn Ile Gln Leu Cys Gly Tyr Ser
 435 440 445
 Pro Ser Thr Pro Cys Leu Ser Gln Ala Pro Ser Gln Gly Val Ile Ala
 450 455 460
 Pro Pro Pro Glu Val Ser Lys His His His His Arg Lys Leu Ser Thr
 465 470 475 480
 Lys Asp Ile Ile Leu Ile Val Ala Gly Val Leu Leu Val Val Leu Ile
 485 490 495
 Ile Leu Cys Cys Val Leu Leu Phe Cys Leu Ile Arg Lys Arg Ser Thr
 500 505 510
 Ser Lys Ala Gly Asn Gly Gln Ala Thr Glu Gly Arg Ala Ala Thr Met
 515 520 525
 Arg Thr Glu Lys Gly Val Pro Pro Val Ala Gly Asp Val Glu Ala

530	535	540
Gly Gly Glu Ala Gly Gly Lys Leu Val His Phe Asp Gly Pro Met Ala		
545	550	555
Phe Thr Ala Asp Asp Leu Leu Cys Ala Thr Ala Glu Ile Met Gly Lys		
565	570	575
Ser Thr Tyr Gly Thr Val Tyr Lys Ala Ile Leu Glu Asp Gly Ser Gln		
580	585	590
Val Ala Val Lys Arg Leu Arg Glu Lys Ile Thr Lys Gly His Arg Glu		
595	600	605
Phe Glu Ser Glu Val Ser Val Leu Gly Lys Ile Arg His Pro Asn Val		
610	615	620
Leu Ala Leu Arg Ala Tyr Tyr Leu Gly Pro Lys Gly Glu Lys Leu Leu		
625	630	635
640		
Val Phe Asp Tyr Met Ser Lys Gly Ser Leu Ala Ser Phe Leu His Gly		
645	650	655
Gly Gly Thr Glu Thr Phe Ile Asp Trp Pro Thr Arg Met Lys Ile Ala		
660	665	670
Gln Asp Leu Ala Arg Gly Leu Phe Cys Leu His Ser Gln Glu Asn Ile		
675	680	685
Ile His Gly Asn Leu Thr Ser Ser Asn Val Leu Leu Asp Glu Asn Thr		
690	695	700
Asn Ala Lys Ile Ala Asp Phe Gly Leu Ser Arg Leu Met Ser Thr Ala		
705	710	715
720		
Ala Asn Ser Asn Val Ile Ala Thr Ala Gly Ala Leu Gly Tyr Arg Ala		
725	730	735
Pro Glu Leu Ser Lys Leu Lys Lys Ala Asn Thr Lys Thr Asp Ile Tyr		
740	745	750
Ser Leu Gly Val Ile Leu Leu Glu Leu Leu Thr Arg Lys Ser Pro Gly		
755	760	765
Val Ser Met Asn Gly Leu Asp Leu Pro Gln Trp Val Ala Ser Val Val		
770	775	780
Lys Glu Glu Trp Thr Asn Glu Val Phe Asp Ala Asp Leu Met Arg Asp		
785	790	795
800		
Ala Ser Thr Val Gly Asp Glu Leu Leu Asn Thr Leu Lys Leu Ala Leu		
805	810	815
His Cys Val Asp Pro Ser Pro Ser Ala Arg Pro Glu Val His Gln Val		
820	825	830
Ley Gln Gln Ley Glu Glu Ile Arg Pro Glu Arg Ser Val Thr Ala Ser		
835	840	845

Pro Gly Asp Asp Ile Val
850

<210>	1102		
<211>	877		
<212>	PRT		
<213>	Glycine max		
<223>	Seq ID: rhg1_peking_amplicon		
<400>	1102		
Met Asp Ala Cys Gly Met Ser Ser Ser Asn Ser Lys His Val Val Asp			
1	5	10	15
Gln Lys Arg Ser Thr Met Asn Met Met Ile Thr Thr Ile Leu Leu Arg			
20	25	30	
Phe Trp Asp Arg Tyr Asp Met Asn Cys Asp Tyr Thr Thr Asn Ser Tyr			
35	40	45	
Glu Pro Gly Thr Gln Leu Ala Pro Ser Ser Pro Arg Asp Thr Ser Val			
50	55	60	
Lys Leu Gly Asp Ala Ser Ser Leu Val Val Leu Pro Ser Cys Val Arg			
65	70	75	80
Pro Val Leu Cys Glu Asp Glu Gly Trp Asp Gly Val Val Val Thr Ala			
85	90	95	
Ser Asn Leu Leu Ala Leu Glu Ala Phe Lys Gln Glu Leu Ala Asp Pro			
100	. 105	110	
Glu Gly Phe Leu Arg Ser Trp Asn Asp Ser Gly Tyr Gly Ala Cys Ser			
115	120	125	
Gly Gly Trp Val Gly Ile Lys Cys Ala Gln Gly Gln Val Ile Val Ile			
130	135	140	
Gln Leu Pro Trp Lys Gly Leu Arg Gly Arg Ile Thr Asp Lys Ile Gly			
145	150	155	160
Gln Leu Gln Gly Leu Arg Lys Leu Ser Leu His Asp Asn Gln Ile Gly			
165	170	175	
Gly Ser Ile Pro Ser Thr Leu Gly Leu Leu Pro Asn Leu Arg Gly Val			
180	185	190	
Gln Leu Phe Asn Asn Arg Leu Thr Gly Ser Ile Pro Leu Ser Leu Gly			
195	200	205	
Phe Cys Pro Leu Leu Gln Ser Leu Asp Leu Ser Asn Asn Leu Leu Thr			
210	215	220	
Gly Ala Ile Pro Tyr Ser Leu Ala Asn Ser Thr Lys Leu Tyr Trp Leu			
225	230	235	240

Asn Leu Ser Phe Asn Ser Phe Ser Gly Pro Leu Pro Ala Ser Leu Thr			
245	250	255	
His Ser Phe Ser Leu Thr Phe Leu Ser Leu Gln Asn Asn Asn Leu Ser			
260	265	270	
Gly Ser Leu Pro Asn Ser Trp Gly Gly Asn Ser Lys Asn Gly Phe Phe			
275	280	285	
Arg Leu Gln Asn Leu Ile Leu Asp His Asn Phe Phe Thr Gly Asp Val			
290	295	300	
Pro Ala Ser Leu Gly Ser Leu Arg Glu Leu Asn Glu Ile Ser Leu Ser			
305	310	315	320
His Asn Lys Phe Ser Gly Ala Ile Pro Asn Glu Ile Gly Thr Leu Ser			
325	330	335	
Arg Leu Lys Thr Leu Asp Ile Ser Asn Asn Ala Leu Asn Gly Asn Leu			
340	345	350	
Pro Ala Thr Leu Ser Asn Leu Ser Ser Leu Thr Leu Leu Asn Ala Glu			
355	360	365	
Asn Asn Leu Leu Asp Asn Gln Ile Pro Gln Ser Leu Gly Arg Leu Arg			
370	375	380	
Asn Leu Ser Val Leu Ile Leu Ser Arg Asn Gln Phe Ser Gly His Ile			
385	390	395	400
Pro Ser Ser Ile Ala Asn Ile Ser Ser Leu Arg Gln Leu Asp Leu Ser			
405	410	415	
Leu Asn Asn Phe Ser Gly Glu Ile Pro Val Ser Phe Asp Ser Gln Arg			
420	425	430	
Ser Leu Asn Leu Phe Asn Val Ser Tyr Asn Ser Leu Ser Gly Ser Val			
435	440	445	
Pro Pro Leu Leu Ala Lys Lys Phe Asn Ser Ser Ser Phe Val Gly Asn			
450	455	460	
Ile Gln Leu Cys Gly Tyr Ser Pro Ser Thr Pro Cys Leu Ser Gln Ala			
465	470	475	480
Pro Ser Gln Gly Val Ile Ala Pro Pro Pro Glu Val Ser Lys His His			
485	490	495	
His His Arg Lys Leu Ser Thr Lys Asp Ile Ile Leu Ile Val Ala Gly			
500	505	510	
Val Leu Leu Val Val Leu Ile Ile Leu Cys Cys Val Leu Leu Phe Cys			
515	520	525	
Leu Ile Arg Lys Arg Ser Thr Ser Lys Ala Gly Asn Gly Gln Ala Thr			
530	535	540	

Glu	Gly	Arg	Ala	Ala	Thr	Met	Arg	Thr	Glu	Lys	Gly	Val	Pro	Pro	Val
545					550				555				560		
Ala Gly Gly Asp Val Glu Ala Gly Gly Glu Ala Gly Gly Lys Leu Val															
					565				570				575		
His Phe Asp Gly Pro Met Ala Phe Thr Ala Asp Asp Leu Leu Cys Ala															
					580				585				590		
Thr Ala Glu Ile Met Gly Lys Ser Thr Tyr Gly Thr Val Tyr Lys Ala															
					595				600				605		
Ile Leu Glu Asp Gly Ser Gln Val Ala Val Lys Arg Leu Arg Glu Lys															
					610				615				620		
Ile Thr Lys Gly His Arg Glu Phe Glu Ser Glu Val Ser Val Leu Gly															
					625				630				635		
Lys Ile Arg His Pro Asn Val Leu Ala Leu Arg Ala Tyr Tyr Leu Gly															
					645				650				655		
Pro Lys Gly Glu Lys Leu Leu Val Phe Asp Tyr Met Ser Lys Gly Ser															
					660				665				670		
Leu Ala Ser Phe Leu His Gly Gly Thr Glu Thr Phe Ile Asp Trp															
					675				680				685		
Pro Thr Arg Met Lys Ile Ala Gln Asp Leu Ala Arg Gly Leu Phe Cys															
					690				695				700		
Leu His Ser Gln Glu Asn Ile Ile His Gly Asn Leu Thr Ser Ser Asn															
					705				710				715		
720															
Val Leu Leu Asp Glu Asn Thr Asn Ala Lys Ile Ala Asp Phe Gly Leu															
					725				730				735		
Ser Arg Leu Met Ser Thr Ala Ala Asn Ser Asn Val Ile Ala Thr Ala															
					740				745				750		
Gly Ala Leu Gly Tyr Arg Ala Pro Glu Leu Ser Lys Leu Lys Lys Ala															
					755				760				765		
Asn Thr Lys Thr Asp Ile Tyr Ser Leu Gly Val Ile Leu Leu Glu Leu															
					770				775				780		
Leu Thr Arg Lys Ser Pro Gly Val Ser Met Asn Gly Leu Asp Leu Pro															
					785				790				795		
800															
Gln Trp Val Ala Ser Val Val Lys Glu Glu Trp Thr Asn Glu Val Phe															
					805				810				815		
Asp Ala Asp Leu Met Arg Asp Ala Ser Thr Val Gly Asp Glu Leu Leu															
					820				825				830		
Asn Thr Leu Lys Leu Ala Leu His Cys Val Asp Pro Ser Pro Ser Ala															
					835				840				845		
Arg Pro Glu Val His Gln Val Leu Gln Gln Leu Glu Glu Ile Arg Pro															

850 855 860

Glu Arg Ser Val Thr Ala Ser Pro Gly Asp Asp Ile Val		
865	870	875

<210> 1103
<211> 854
<212> PRT
<213> Glycine max

<223> Seq ID: rhg1_peking_amplicon

<400> 1103

Met Val Val Ala Val Glu Lys Thr Asn Leu Thr Ser Gln Ser Gln Cys			
1	5	10	15

Phe Asn Arg Val Ser Asp Lys Lys Glu Arg Cys Lys Thr His Met		
20	25	30

Asn Asn Val Asn Pro Cys Cys Phe Leu Phe Leu Leu Cys Val Trp Ser		
35	40	45

Leu Val Val Leu Pro Ser Cys Val Arg Pro Val Leu Cys Glu Asp Glu		
50	55	60

Gly Trp Asp Gly Val Val Val Thr Ala Ser Asn Leu Leu Ala Leu Glu			
65	70	75	80

Ala Phe Lys Gln Glu Leu Ala Asp Pro Glu Gly Phe Leu Arg Ser Trp		
85	90	95

Asn Asp Ser Gly Tyr Gly Ala Cys Ser Gly Gly Trp Val Gly Ile Lys		
100	105	110

Cys Ala Gln Gly Gln Val Ile Val Ile Gln Leu Pro Trp Lys Gly Leu		
115	120	125

Arg Gly Arg Ile Thr Asp Lys Ile Gly Gln Leu Gln Gly Leu Arg Lys		
130	135	140

Leu Ser Leu His Asp Asn Gln Ile Gly Gly Ser Ile Pro Ser Thr Leu			
145	150	155	160

Gly Leu Leu Pro Asn Leu Arg Gly Val Gln Leu Phe Asn Asn Arg Leu		
165	170	175

Thr Gly Ser Ile Pro Leu Ser Leu Gly Phe Cys Pro Leu Leu Gln Ser		
180	185	190

Leu Asp Leu Ser Asn Asn Leu Leu Thr Gly Ala Ile Pro Tyr Ser Leu		
195	200	205

Ala Asn Ser Thr Lys Leu Tyr Trp Leu Asn Leu Ser Phe Asn Ser Phe		
210	215	220

Ser Gly Pro Leu Pro Ala Ser Leu Thr His Ser Phe Ser Leu Thr Phe

225	230	235	240
Leu Ser Leu Gln Asn Asn Asn Leu Ser Gly Ser Leu Pro Asn Ser Trp			
245	250	255	
Gly Gly Asn Ser Lys Asn Gly Phe Phe Arg Leu Gln Asn Leu Ile Leu			
260	265	270	
Asp His Asn Phe Phe Thr Gly Asp Val Pro Ala Ser Leu Gly Ser Leu			
275	280	285	
Arg Glu Leu Asn Glu Ile Ser Leu Ser His Asn Lys Phe Ser Gly Ala			
290	295	300	
Ile Pro Asn Glu Ile Gly Thr Leu Ser Arg Leu Lys Thr Leu Asp Ile			
305	310	315	320
Ser Asn Asn Ala Leu Asn Gly Asn Leu Pro Ala Thr Leu Ser Asn Leu			
325	330	335	
Ser Ser Leu Thr Leu Leu Asn Ala Glu Asn Asn Leu Leu Asp Asn Gln			
340	345	350	
Ile Pro Gln Ser Leu Gly Arg Leu Arg Asn Leu Ser Val Leu Ile Leu			
355	360	365	
Ser Arg Asn Gln Phe Ser Gly His Ile Pro Ser Ser Ile Ala Asn Ile			
370	375	380	
Ser Ser Leu Arg Gln Leu Asp Leu Ser Leu Asn Asn Phe Ser Gly Glu			
385	390	395	400
Ile Pro Val Ser Phe Asp Ser Gln Arg Ser Leu Asn Leu Phe Asn Val			
405	410	415	
Ser Tyr Asn Ser Leu Ser Gly Ser Val Pro Pro Leu Leu Ala Lys Lys			
420	425	430	
Phe Asn Ser Ser Ser Phe Val Gly Asn Ile Gln Leu Cys Gly Tyr Ser			
435	440	445	
Pro Ser Thr Pro Cys Leu Ser Gln Ala Pro Ser Gln Gly Val Ile Ala			
450	455	460	
Pro Pro Pro Glu Val Ser Lys His His His Arg Lys Leu Ser Thr			
465	470	475	480
Lys Asp Ile Ile Leu Ile Val Ala Gly Val Leu Leu Val Val Leu Ile			
485	490	495	
Ile Leu Cys Cys Val Leu Leu Phe Cys Leu Ile Arg Lys Arg Ser Thr			
500	505	510	
Ser Lys Ala Gly Asn Gly Gln Ala Thr Glu Gly Arg Ala Ala Thr Met			
515	520	525	
Arg Thr Glu Lys Gly Val Pro Pro Val Ala Gly Gly Asp Val Glu Ala			
530	535	540	

Gly Gly Glu Ala Gly Gly Lys Leu Val His Phe Asp Gly Pro Met Ala
 545 550 555 560
 Phe Thr Ala Asp Asp Leu Leu Cys Ala Thr Ala Glu Ile Met Gly Lys
 565 570 575
 Ser Thr Tyr Gly Thr Val Tyr Lys Ala Ile Leu Glu Asp Gly Ser Gln
 580 585 590
 Val Ala Val Lys Arg Leu Arg Glu Lys Ile Thr Lys Gly His Arg Glu
 595 600 605
 Phe Glu Ser Glu Val Ser Val Leu Gly Lys Ile Arg His Pro Asn Val
 610 615 620
 Leu Ala Leu Arg Ala Tyr Tyr Leu Gly Pro Lys Gly Glu Lys Leu Leu
 625 630 635 640
 Val Phe Asp Tyr Met Ser Lys Gly Ser Leu Ala Ser Phe Leu His Gly
 645 650 655
 Gly Gly Thr Glu Thr Phe Ile Asp Trp Pro Thr Arg Met Lys Ile Ala
 660 665 670
 Gln Asp Leu Ala Arg Gly Leu Phe Cys Leu His Ser Gln Glu Asn Ile
 675 680 685
 Ile His Gly Asn Leu Thr Ser Ser Asn Val Leu Leu Asp Glu Asn Thr
 690 695 700
 Asn Ala Lys Ile Ala Asp Phe Gly Leu Ser Arg Leu Met Ser Thr Ala
 705 710 715 720
 Ala Asn Ser Asn Val Ile Ala Thr Ala Gly Ala Leu Gly Tyr Arg Ala
 725 730 735
 Pro Glu Leu Ser Lys Leu Lys Ala Asn Thr Lys Thr Asp Ile Tyr
 740 745 750
 Ser Leu Gly Val Ile Leu Leu Glu Leu Leu Thr Arg Lys Ser Pro Gly
 755 760 765
 Val Ser Met Asn Gly Leu Asp Leu Pro Gln Trp Val Ala Ser Val Val
 770 775 780
 Lys Glu Glu Trp Thr Asn Glu Val Phe Asp Ala Asp Leu Met Arg Asp
 785 790 795 800
 Ala Ser Thr Val Gly Asp Glu Leu Leu Asn Thr Leu Lys Leu Ala Leu
 805 810 815
 His Cys Val Asp Pro Ser Pro Ala Arg Pro Glu Val His Gln Val
 820 825 830
 Leu Gln Gln Leu Glu Glu Ile Arg Pro Glu Arg Ser Val Thr Ala Ser
 835 840 845

Pro Gly Asp Asp Ile Val
850

<210> 1104
<211> 877
<212> PRT
<213> Glycine max

<223> Seq ID: rhg1_toyosuzu_amplicon

<400> 1104

Met Asp Ala Cys Gly Met Ser Ser Ser Asn Ser Lys His Val Val Asp
1 5 10 15

Gln Lys Arg Ser Thr Met Asn Met Met Ile Thr Thr Ile Leu Leu Arg
20 25 30

Phe Trp Asp Arg Tyr Asp Met Asn Cys Asp Tyr Thr Thr Asn Ser Tyr
35 40 45

Glu Pro Gly Thr Gln Leu Ala Pro Ser Ser Pro Arg Asp Thr Ser Val
50 55 60

Lys Leu Gly Asp Ala Ser Ser Leu Val Val Leu Pro Ser Cys Val Arg
65 70 75 80

Pro Val Leu Cys Glu Asp Glu Gly Trp Asp Gly Val Val Val Thr Ala
85 90 95

Ser Asn Leu Leu Ala Leu Glu Ala Phe Lys Gln Glu Leu Val Asp Pro
100 105 110

Glu Gly Phe Leu Arg Ser Trp Asn Asp Ser Gly Tyr Gly Ala Cys Ser
115 120 125

Gly Gly Trp Val Gly Ile Lys Cys Ala Gln Gly Gln Val Ile Val Ile
130 135 140

Gln Leu Pro Trp Lys Gly Leu Arg Gly Arg Ile Thr Asp Lys Ile Gly
145 150 155 160

Gln Leu Gln Gly Leu Arg Lys Leu Ser Leu His Asp Asn Gln Ile Gly
165 170 175

Gly Ser Ile Pro Ser Thr Leu Gly Leu Leu Pro Asn Leu Arg Gly Val
180 185 190

Gln Leu Phe Asn Asn Arg Leu Thr Gly Ser Ile Pro Leu Ser Leu Gly
195 200 205

Phe Cys Pro Leu Leu Gln Ser Leu Asp Leu Ser Asn Asn Leu Leu Thr
210 215 220

Gly Ala Ile Pro Tyr Ser Leu Ala Asn Ser Thr Lys Leu Tyr Trp Leu
225 230 235 240

Asn	Leu	Ser	Phe	Asn	Ser	Phe	Ser	Gly	Pro	Leu	Pro	Ala	Ser	Leu	Thr
						245				250				255	
His	Ser	Phe	Ser	Leu	Thr	Phe	Leu	Ser	Leu	Gln	Asn	Asn	Asn	Leu	Ser
				260				265						270	
Gly	Ser	Leu	Pro	Asn	Ser	Trp	Gly	Gly	Asn	Ser	Lys	Asn	Gly	Phe	Phe
				275				280						285	
Arg	Leu	Gln	Asn	Leu	Ile	Leu	Asp	His	Asn	Phe	Phe	Thr	Gly	Asp	Val
				290				295						300	
Pro	Ala	Ser	Leu	Gly	Ser	Leu	Arg	Glu	Leu	Asn	Glu	Ile	Ser	Leu	Ser
	305					310				315				320	
His	Asn	Lys	Phe	Ser	Gly	Ala	Ile	Pro	Asn	Glu	Ile	Gly	Thr	Leu	Ser
				325					330					335	
Arg	Leu	Lys	Thr	Leu	Asp	Ile	Ser	Asn	Asn	Ala	Leu	Asn	Gly	Asn	Leu
				340					345					350	
Pro	Ala	Thr	Leu	Ser	Asn	Leu	Ser	Ser	Leu	Thr	Leu	Leu	Asn	Ala	Glu
				355				360				365			
Asn	Asn	Leu	Leu	Asp	Asn	Gln	Ile	Pro	Gln	Ser	Leu	Gly	Arg	Leu	Arg
				370					375					380	
Asn	Leu	Ser	Val	Leu	Ile	Leu	Ser	Arg	Asn	Gln	Phe	Ser	Gly	His	Ile
				385				390			395			400	
Pro	Ser	Ser	Ile	Ala	Asn	Ile	Ser	Ser	Leu	Arg	Gln	Leu	Asp	Leu	Ser
					405					410				415	
Leu	Asn	Asn	Phe	Ser	Gly	Glu	Ile	Pro	Val	Ser	Phe	Asp	Ser	Gln	Arg
				420					425					430	
Ser	Leu	Asn	Leu	Phe	Asn	Val	Ser	Tyr	Asn	Ser	Leu	Ser	Gly	Ser	Val
				435					440					445	
Pro	Pro	Leu	Leu	Ala	Lys	Lys	Phe	Asn	Ser	Ser	Ser	Phe	Val	Gly	Asn
				450					455					460	
Ile	Gln	Leu	Cys	Gly	Tyr	Ser	Pro	Ser	Thr	Pro	Cys	Leu	Ser	Gln	Ala
				465					470			475			480
Pro	Ser	Gln	Gly	Val	Ile	Ala	Pro	Pro	Glu	Val	Ser	Lys	His	His	
					485					490				495	
His	His	Arg	Lys	Leu	Ser	Thr	Lys	Asp	Ile	Ile	Leu	Ile	Val	Ala	Gly
				500					505					510	
Val	Leu	Leu	Val	Val	Leu	Ile	Ile	Leu	Cys	Cys	Val	Leu	Leu	Phe	Cys
				515					520					525	
Leu	Ile	Arg	Lys	Arg	Ser	Thr	Ser	Lys	Ala	Gly	Asn	Gly	Gln	Ala	Thr
				530					535					540	
Glu	Gly	Arg	Ala	Ala	Thr	Met	Arg	Thr	Glu	Lys	Gly	Val	Pro	Pro	Val

545	550	555	560
Ala Gly Gly Asp Val Glu Ala Gly Gly Glu Ala Gly Gly Lys Leu Val			
565	570	575	
His Phe Asp Gly Pro Met Ala Phe Thr Ala Asp Asp Leu Leu Cys Ala			
580	585	590	
Thr Ala Glu Ile Met Gly Lys Ser Thr Tyr Gly Thr Val Tyr Lys Ala			
595	600	605	
Ile Leu Glu Asp Gly Ser Gln Val Ala Val Lys Arg Leu Arg Glu Lys			
610	615	620	
Ile Thr Lys Gly His Arg Glu Phe Glu Ser Glu Val Ser Val Leu Gly			
625	630	635	640
Lys Ile Arg His Pro Asn Val Leu Ala Leu Arg Ala Tyr Tyr Leu Gly			
645	650	655	
Pro Lys Gly Glu Lys Leu Leu Val Phe Asp Tyr Met Ser Lys Gly Ser			
660	665	670	
Leu Ala Ser Phe Leu His Gly Gly Thr Glu Thr Phe Ile Asp Trp			
675	680	685	
Pro Thr Arg Met Lys Ile Ala Gln Asp Leu Ala Arg Gly Leu Phe Cys			
690	695	700	
Leu His Ser Gln Glu Asn Ile Ile His Gly Asn Leu Thr Ser Ser Asn			
705	710	715	720
Val Leu Leu Asp Glu Asn Thr Asn Ala Lys Ile Ala Asp Phe Gly Leu			
725	730	735	
Ser Arg Leu Met Ser Thr Ala Ala Asn Ser Asn Val Ile Ala Thr Ala			
740	745	750	
Gly Ala Leu Gly Tyr Arg Ala Pro Glu Leu Ser Lys Leu Lys Lys Ala			
755	760	765	
Asn Thr Lys Thr Asp Ile Tyr Ser Leu Gly Val Ile Leu Leu Glu Leu			
770	775	780	
Leu Thr Arg Lys Ser Pro Gly Val Ser Met Asn Gly Leu Asp Leu Pro			
785	790	795	800
Gln Trp Val Ala Ser Val Val Lys Glu Glu Trp Thr Asn Glu Val Phe			
805	810	815	
Asp Ala Asp Leu Met Arg Asp Ala Ser Thr Val Gly Asp Glu Leu Leu			
820	825	830	
Asn Thr Leu Lys Leu Ala Leu His Cys Val Asp Pro Ser Pro Ser Ala			
835	840	845	
Arg Pro Glu Val His Gln Val Leu Gln Gln Leu Glu Glu Ile Arg Pro			
850	855	860	

Glu Arg Ser Val Thr Ala Ser Pro Gly Asp Asp Ile Val		
865	870	875

<210>	1105
<211>	854
<212>	PRT
<213>	Glycine max

<223> Seq ID: rhg1_toyosuzu_amplicon

<400> 1105

Met Val Val Ala Val Glu Lys Thr Asn Leu Thr Ser Gln Ser Gln Cys			
1	5	10	15

Phe Asn Arg Val Ser Asp Lys Lys Lys Glu Arg Cys Lys Thr His Met		
20	25	30

Asn Asn Val Asn Pro Cys Cys Phe Leu Phe Leu Leu Cys Val Trp Ser		
35	40	45

Leu Val Val Leu Pro Ser Cys Val Arg Pro Val Leu Cys Glu Asp Glu		
50	55	60

Gly Trp Asp Gly Val Val Val Thr Ala Ser Asn Leu Leu Ala Leu Glu			
65	70	75	80

Ala Phe Lys Gln Glu Leu Val Asp Pro Glu Gly Phe Leu Arg Ser Trp		
85	90	95

Asn Asp Ser Gly Tyr Gly Ala Cys Ser Gly Gly Trp Val Gly Ile Lys		
100	105	110

Cys Ala Gln Gly Gln Val Ile Val Ile Gln Leu Pro Trp Lys Gly Leu		
115	120	125

Arg Gly Arg Ile Thr Asp Lys Ile Gly Gln Leu Gln Gly Leu Arg Lys		
130	135	140

Leu Ser Leu His Asp Asn Gln Ile Gly Gly Ser Ile Pro Ser Thr Leu			
145	150	155	160

Gly Leu Leu Pro Asn Leu Arg Gly Val Gln Leu Phe Asn Asn Arg Leu		
165	170	175

Thr Gly Ser Ile Pro Leu Ser Leu Gly Phe Cys Pro Leu Leu Gln Ser		
180	185	190

Leu Asp Leu Ser Asn Asn Leu Leu Thr Gly Ala Ile Pro Tyr Ser Leu		
195	200	205

Ala Asn Ser Thr Lys Leu Tyr Trp Leu Asn Leu Ser Phe Asn Ser Phe		
210	215	220

Ser Gly Pro Leu Pro Ala Ser Leu Thr His Ser Phe Ser Leu Thr Phe

225	230	235	240
Leu Ser Leu Gln Asn Asn Asn Leu Ser Gly Ser Leu Pro Asn Ser Trp			
245	250	255	
Gly Gly Asn Ser Lys Asn Gly Phe Phe Arg Leu Gln Asn Leu Ile Leu			
260	265	270	
Asp His Asn Phe Phe Thr Gly Asp Val Pro Ala Ser Leu Gly Ser Leu			
275	280	285	
Arg Glu Leu Asn Glu Ile Ser Leu Ser His Asn Lys Phe Ser Gly Ala			
290	295	300	
Ile Pro Asn Glu Ile Gly Thr Leu Ser Arg Leu Lys Thr Leu Asp Ile			
305	310	315	320
Ser Asn Asn Ala Leu Asn Gly Asn Leu Pro Ala Thr Leu Ser Asn Leu			
325	330	335	
Ser Ser Leu Thr Leu Leu Asn Ala Glu Asn Asn Leu Leu Asp Asn Gln			
340	345	350	
Ile Pro Gln Ser Leu Gly Arg Leu Arg Asn Leu Ser Val Leu Ile Leu			
355	360	365	
Ser Arg Asn Gln Phe Ser Gly His Ile Pro Ser Ser Ile Ala Asn Ile			
370	375	380	
Ser Ser Leu Arg Gln Leu Asp Leu Ser Leu Asn Asn Phe Ser Gly Glu			
385	390	395	400
Ile Pro Val Ser Phe Asp Ser Gln Arg Ser Leu Asn Leu Phe Asn Val			
405	410	415	
Ser Tyr Asn Ser Leu Ser Gly Ser Val Pro Pro Leu Leu Ala Lys Lys			
420	425	430	
Phe Asn Ser Ser Ser Phe Val Gly Asn Ile Gln Leu Cys Gly Tyr Ser			
435	440	445	
Pro Ser Thr Pro Cys Leu Ser Gln Ala Pro Ser Gln Gly Val Ile Ala			
450	455	460	
Pro Pro Pro Glu Val Ser Lys His His His His Arg Lys Leu Ser Thr			
465	470	475	480
Lys Asp Ile Ile Leu Ile Val Ala Gly Val Leu Leu Val Val Leu Ile			
485	490	495	
Ile Leu Cys Cys Val Leu Leu Phe Cys Leu Ile Arg Lys Arg Ser Thr			
500	505	510	
Ser Lys Ala Gly Asn Gly Gln Ala Thr Glu Gly Arg Ala Ala Thr Met			
515	520	525	
Arg Thr Glu Lys Gly Val Pro Pro Val Ala Gly Gly Asp Val Glu Ala			
530	535	540	

Gly Gly Glu Ala Gly Gly Lys Leu Val His Phe Asp Gly Pro Met Ala
 545 550 555 560
 Phe Thr Ala Asp Asp Leu Leu Cys Ala Thr Ala Glu Ile Met Gly Lys
 565 570 575
 Ser Thr Tyr Gly Thr Val Tyr Lys Ala Ile Leu Glu Asp Gly Ser Gln
 580 585 590
 Val Ala Val Lys Arg Leu Arg Glu Lys Ile Thr Lys Gly His Arg Glu
 595 600 605
 Phe Glu Ser Glu Val Ser Val Leu Gly Lys Ile Arg His Pro Asn Val
 610 615 620
 Leu Ala Leu Arg Ala Tyr Tyr Leu Gly Pro Lys Gly Glu Lys Leu Leu
 625 630 635 640
 Val Phe Asp Tyr Met Ser Lys Gly Ser Leu Ala Ser Phe Leu His Gly
 645 650 655
 Gly Gly Thr Glu Thr Phe Ile Asp Trp Pro Thr Arg Met Lys Ile Ala
 660 665 670
 Gln Asp Leu Ala Arg Gly Leu Phe Cys Leu His Ser Gln Glu Asn Ile
 675 680 685
 Ile His Gly Asn Leu Thr Ser Ser Asn Val Leu Asp Glu Asn Thr
 690 695 700
 Asn Ala Lys Ile Ala Asp Phe Gly Leu Ser Arg Leu Met Ser Thr Ala
 705 710 715 720
 Ala Asn Ser Asn Val Ile Ala Thr Ala Gly Ala Leu Gly Tyr Arg Ala
 725 730 735
 Pro Glu Leu Ser Lys Leu Lys Lys Ala Asn Thr Lys Thr Asp Ile Tyr
 740 745 750
 Ser Leu Gly Val Ile Leu Leu Glu Leu Leu Thr Arg Lys Ser Pro Gly
 755 760 765
 Val Ser Met Asn Gly Leu Asp Leu Pro Gln Trp Val Ala Ser Val Val
 770 775 780
 Lys Glu Glu Trp Thr Asn Glu Val Phe Asp Ala Asp Leu Met Arg Asp
 785 790 795 800
 Ala Ser Thr Val Gly Asp Glu Leu Leu Asn Thr Leu Lys Leu Ala Leu
 805 810 815
 His Cys Val Asp Pro Ser Pro Ser Ala Arg Pro Glu Val His Gln Val
 820 825 830
 Leu Gln Gln Leu Glu Glu Ile Arg Pro Glu Arg Ser Val Thr Ala Ser
 835 840 845

Pro Gly Asp Asp Ile Val
850

<210> 1106
<211> 877
<212> PRT
<213> Glycine max

<223> Seq ID: rhg1_will_amplicon

<400> 1106

Met Asp Ala Cys Gly Met Ser Ser Ser Asn Ser Lys His Val Val Asp
1 5 10 15

Gln Lys Arg Ser Thr Met Asn Met Met Ile Thr Thr Ile Leu Leu Arg
20 25 30

Phe Trp Asp Arg Tyr Asp Met Asn Cys Asp Tyr Thr Thr Asn Ser Tyr
35 40 45

Glu Pro Gly Thr Gln Leu Ala Pro Ser Ser Pro Arg Asp Thr Ser Val
50 55 60

Lys Leu Gly Asp Ala Ser Ser Leu Val Val Leu Pro Ser Cys Val Arg
65 70 75 80

Pro Val Leu Cys Glu Asp Glu Gly Trp Asp Gly Val Val Val Thr Ala
85 90 95

Ser Asn Leu Ala Leu Glu Ala Phe Lys Gln Glu Leu Val Asp Pro
100 105 110

Glu Gly Phe Leu Arg Ser Trp Asn Asp Ser Gly Tyr Gly Ala Cys Ser
115 120 125

Gly Gly Trp Val Gly Ile Lys Cys Ala Lys Gly Gln Val Ile Val Ile
130 135 140

Gln Leu Pro Trp Lys Gly Leu Arg Gly Arg Ile Thr Asp Lys Ile Gly
145 150 155 160

Gln Leu Gln Gly Leu Arg Lys Leu Ser Leu His Asp Asn Gln Ile Gly
165 170 175

Gly Ser Ile Pro Ser Thr Leu Gly Leu Leu Pro Asn Leu Arg Gly Val
180 185 190

Gln Leu Phe Asn Asn Arg Leu Thr Gly Ser Ile Pro Leu Ser Leu Gly
195 200 205

Phe Cys Pro Leu Leu Gln Ser Leu Asp Leu Ser Asn Asn Leu Leu Thr
210 215 220

Gly Ala Ile Pro Tyr Ser Leu Ala Asn Ser Thr Lys Leu Tyr Trp Leu
225 230 235 240

Asn	Leu	Ser	Phe	Asn	Ser	Phe	Ser	Gly	Pro	Leu	Pro	Ala	Ser	Leu	Thr
						245				250					255
His Ser Phe Ser Leu Thr Phe Leu Ser Leu Gln Asn Asn Asn Leu Ser															
						260		265							270
Gly Ser Leu Pro Asn Ser Trp Gly Gly Asn Ser Lys Asn Gly Phe Phe															
						275		280							285
Arg Leu Gln Asn Leu Ile Leu Asp His Asn Phe Phe Thr Gly Asp Val															
						290		295							300
Pro Ala Ser Leu Gly Ser Leu Arg Glu Leu Asn Glu Ile Ser Leu Ser															
						305		310		315					320
His Asn Lys Phe Ser Gly Ala Ile Pro Asn Glu Ile Gly Thr Leu Ser															
						325		330		335					335
Arg Leu Lys Thr Leu Asp Ile Ser Asn Asn Ala Leu Asn Gly Asn Leu															
						340		345							350
Pro Ala Thr Leu Ser Asn Leu Ser Ser Leu Thr Leu Leu Asn Ala Glu															
						355		360		365					
Asn Asn Leu Leu Asp Asn Gln Ile Pro Gln Ser Leu Gly Arg Leu Arg															
						370		375		380					
Asn Leu Ser Val Leu Ile Leu Ser Arg Asn Gln Phe Ser Gly His Ile															
						385		390		395					400
Pro Ser Ser Ile Ala Asn Ile Ser Ser Leu Arg Gln Leu Asp Leu Ser															
						405		410		415					
Leu Asn Asn Phe Ser Gly Glu Ile Pro Val Ser Phe Asp Ser Gln Arg															
						420		425		430					
Ser Leu Asn Leu Phe Asn Val Ser Tyr Asn Ser Leu Ser Gly Ser Val															
						435		440		445					
Pro Pro Leu Leu Ala Lys Lys Phe Asn Ser Ser Ser Phe Val Gly Asn															
						450		455		460					
Ile Gln Leu Cys Gly Tyr Ser Pro Ser Thr Pro Cys Leu Ser Gln Ala															
						465		470		475					480
Pro Ser Gln Gly Val Ile Ala Pro Pro Pro Glu Val Ser Lys His His															
						485		490		495					
His His Arg Lys Leu Ser Thr Lys Asp Ile Ile Leu Ile Val Ala Gly															
						500		505		510					
Val Leu Leu Val Val Leu Ile Ile Leu Cys Cys Val Leu Leu Phe Cys															
						515		520		525					
Leu Ile Arg Lys Arg Ser Thr Ser Lys Ala Gly Asn Gly Gln Ala Thr															
						530		535		540					
Glu Gly Arg Ala Ala Thr Met Arg Thr Glu Lys Gly Val Pro Pro Val															

545	550	555	560
Ala Gly Gly Asp Val Glu Ala Gly Gly Glu Ala Gly Gly Lys Leu Val			
565	570	575	
His Phe Asp Gly Pro Met Ala Phe Thr Ala Asp Asp Leu Leu Cys Ala			
580	585	590	
Thr Ala Glu Ile Met Gly Lys Ser Thr Tyr Gly Thr Val Tyr Lys Ala			
595	600	605	
Ile Leu Glu Asp Gly Ser Gln Val Ala Val Lys Arg Leu Arg Glu Lys			
610	615	620	
Ile Thr Lys Gly His Arg Glu Phe Glu Ser Glu Val Ser Val Leu Gly			
625	630	635	640
Lys Ile Arg His Pro Asn Val Leu Ala Leu Arg Ala Tyr Tyr Leu Gly			
645	650	655	
Pro Lys Gly Glu Lys Leu Leu Val Phe Asp Tyr Met Ser Lys Gly Ser			
660	665	670	
Leu Ala Ser Phe Leu His Gly Gly Thr Glu Thr Phe Ile Asp Trp			
675	680	685	
Pro Thr Arg Met Lys Ile Ala Gln Asp Leu Ala Arg Gly Leu Phe Cys			
690	695	700	
Leu His Ser Gln Glu Asn Ile Ile His Gly Asn Leu Thr Ser Ser Asn			
705	710	715	720
Val Leu Leu Asp Glu Asn Thr Asn Ala Lys Ile Ala Asp Phe Gly Leu			
725	730	735	
Ser Arg Leu Met Ser Thr Ala Ala Asn Ser Asn Val Ile Ala Thr Ala			
740	745	750	
Gly Ala Leu Gly Tyr Arg Ala Pro Glu Leu Ser Lys Leu Lys Lys Ala			
755	760	765	
Asn Thr Lys Thr Asp Ile Tyr Ser Leu Gly Val Ile Leu Leu Glu Leu			
770	775	780	
Leu Thr Arg Lys Ser Pro Gly Val Ser Met Asn Gly Leu Asp Leu Pro			
785	790	795	800
Gln Trp Val Ala Ser Val Val Lys Glu Glu Trp Thr Asn Glu Val Phe			
805	810	815	
Asp Ala Asp Leu Met Arg Asp Ala Ser Thr Val Gly Asp Glu Leu Leu			
820	825	830	
Asn Thr Leu Lys Leu Ala Leu His Cys Val Asp Pro Ser Pro Ser Ala			
835	840	845	
Arg Pro Glu Val His Gln Val Leu Gln Gln Leu Glu Glu Ile Arg Pro			
850	855	860	

Glu Arg Ser Val Thr Ala Ser Pro Gly Asp Asp Ile Val		
865	870	875

<210>	1107
<211>	854
<212>	PRT
<213>	Glycine max

<223> Seq ID: rhg1_will_amplicon

<400> 1107

Met Val Val Ala Val Glu Lys Thr Asn Leu Thr Ser Gln Ser Gln Cys			
1	5	10	15

Phe Asn Arg Val Ser Asp Lys Lys Lys Glu Arg Cys Lys Thr His Met		
20	25	30

Asn Asn Val Asn Pro Cys Cys Phe Leu Phe Leu Leu Cys Val Trp Ser		
35	40	45

Leu Val Val Leu Pro Ser Cys Val Arg Pro Val Leu Cys Glu Asp Glu		
50	55	60

Gly Trp Asp Gly Val Val Val Thr Ala Ser Asn Leu Leu Ala Leu Glu			
65	70	75	80

Ala Phe Lys Gln Glu Leu Val Asp Pro Glu Gly Phe Leu Arg Ser Trp		
85	90	95

Asn Asp Ser Gly Tyr Gly Ala Cys Ser Gly Gly Trp Val Gly Ile Lys		
100	105	110

Cys Ala Lys Gly Gln Val Ile Val Ile Gln Leu Pro Trp Lys Gly Leu		
115	120	125

Arg Gly Arg Ile Thr Asp Lys Ile Gly Gln Leu Gln Gly Leu Arg Lys		
130	135	140

Leu Ser Leu His Asp Asn Gln Ile Gly Gly Ser Ile Pro Ser Thr Leu			
145	150	155	160

Gly Leu Leu Pro Asn Leu Arg Gly Val Gln Leu Phe Asn Asn Arg Leu		
165	170	175

Thr Gly Ser Ile Pro Leu Ser Leu Gly Phe Cys Pro Leu Leu Gln Ser		
180	185	190

Leu Asp Leu Ser Asn Asn Leu Leu Thr Gly Ala Ile Pro Tyr Ser Leu		
195	200	205

Ala Asn Ser Thr Lys Leu Tyr Trp Leu Asn Leu Ser Phe Asn Ser Phe		
210	215	220

Ser Gly Pro Leu Pro Ala Ser Leu Thr His Ser Phe Ser Leu Thr Phe			
225	230	235	240

Leu	Ser	Leu	Gln	Asn	Asn	Asn	Leu	Ser	Gly	Ser	Leu	Pro	Asn	Ser	Trp
245							250					255			
Gly Gly Asn Ser Lys Asn Gly Phe Phe Arg Leu Gln Asn Leu Ile Leu															
260				265			270								
Asp	His	Asn	Phe	Phe	Thr	Gly	Asp	Val	Pro	Ala	Ser	Leu	Gly	Ser	Leu
275					280							285			
Arg	Glu	Leu	Asn	Glu	Ile	Ser	Leu	Ser	His	Asn	Lys	Phe	Ser	Gly	Ala
290					295						300				
Ile	Pro	Asn	Glu	Ile	Gly	Thr	Leu	Ser	Arg	Leu	Lys	Thr	Leu	Asp	Ile
305					310				315					320	
Ser	Asn	Asn	Ala	Leu	Asn	Gly	Asn	Leu	Pro	Ala	Thr	Leu	Ser	Asn	Leu
					325				330				335		
Ser	Ser	Leu	Thr	Leu	Leu	Asn	Ala	Glu	Asn	Asn	Leu	Leu	Asp	Asn	Gln
					340			345					350		
Ile	Pro	Gln	Ser	Leu	Gly	Arg	Leu	Arg	Asn	Leu	Ser	Val	Leu	Ile	Leu
					355			360				365			
Ser	Arg	Asn	Gln	Phe	Ser	Gly	His	Ile	Pro	Ser	Ser	Ile	Ala	Asn	Ile
					370			375			380				
Ser	Ser	Leu	Arg	Gln	Leu	Asp	Leu	Ser	Leu	Asn	Asn	Phe	Ser	Gly	Glu
					385			390			395				400
Ile	Pro	Val	Ser	Phe	Asp	Ser	Gln	Arg	Ser	Leu	Asn	Leu	Phe	Asn	Val
					405				410				415		
Ser	Tyr	Asn	Ser	Leu	Ser	Gly	Ser	Val	Pro	Pro	Leu	Leu	Ala	Lys	Lys
					420				425				430		
Phe	Asn	Ser	Ser	Ser	Phe	Val	Gly	Asn	Ile	Gln	Leu	Cys	Gly	Tyr	Ser
					435			440				445			
Pro	Ser	Thr	Pro	Cys	Leu	Ser	Gln	Ala	Pro	Ser	Gln	Gly	Val	Ile	Ala
					450			455				460			
Pro	Pro	Pro	Glu	Val	Ser	Lys	His	His	His	His	Arg	Lys	Leu	Ser	Thr
					465			470			475			480	
Lys	Asp	Ile	Ile	Leu	Ile	Val	Ala	Gly	Val	Leu	Leu	Val	Val	Leu	Ile
					485				490				495		
Ile	Leu	Cys	Cys	Val	Leu	Leu	Phe	Cys	Leu	Ile	Arg	Lys	Arg	Ser	Thr
					500				505				510		
Ser	Lys	Ala	Gly	Asn	Gly	Gln	Ala	Thr	Glu	Gly	Arg	Ala	Ala	Thr	Met
					515				520				525		
Arg	Thr	Glu	Lys	Gly	Val	Pro	Pro	Val	Ala	Gly	Gly	Asp	Val	Glu	Ala
					530				535				540		

Gly Gly Glu Ala Gly Gly Lys Leu Val His Phe Asp Gly Pro Met Ala
 545 550 555 560

Phe Thr Ala Asp Asp Leu Leu Cys Ala Thr Ala Glu Ile Met Gly Lys
 565 570 575

Ser Thr Tyr Gly Thr Val Tyr Lys Ala Ile Leu Glu Asp Gly Ser Gln
 580 585 590

Val Ala Val Lys Arg Leu Arg Glu Lys Ile Thr Lys Gly His Arg Glu
 595 600 605

Phe Glu Ser Glu Val Ser Val Leu Gly Lys Ile Arg His Pro Asn Val
 610 615 620

Leu Ala Leu Arg Ala Tyr Tyr Leu Gly Pro Lys Gly Glu Lys Leu Leu
 625 630 635 640

Val Phe Asp Tyr Met Ser Lys Gly Ser Leu Ala Ser Phe Leu His Gly
 645 650 655

Gly Gly Thr Glu Thr Phe Ile Asp Trp Pro Thr Arg Met Lys Ile Ala
 660 665 670

Gln Asp Leu Ala Arg Gly Leu Phe Cys Leu His Ser Gln Glu Asn Ile
 675 680 685

Ile His Gly Asn Leu Thr Ser Ser Asn Val Leu Leu Asp Glu Asn Thr
 690 695 700

Asn Ala Lys Ile Ala Asp Phe Gly Leu Ser Arg Leu Met Ser Thr Ala
 705 710 715 720

Ala Asn Ser Asn Val Ile Ala Thr Ala Gly Ala Leu Gly Tyr Arg Ala
 725 730 735

Pro Glu Leu Ser Lys Leu Lys Lys Ala Asn Thr Lys Thr Asp Ile Tyr
 740 745 750

Ser Leu Gly Val Ile Leu Leu Glu Leu Leu Thr Arg Lys Ser Pro Gly
 755 760 765

Val Ser Met Asn Gly Leu Asp Leu Pro Gln Trp Val Ala Ser Val Val
 770 775 780

Lys Glu Glu Trp Thr Asn Glu Val Phe Asp Ala Asp Leu Met Arg Asp
 785 790 795 800

Ala Ser Thr Val Gly Asp Glu Leu Leu Asn Thr Leu Lys Leu Ala Leu
 805 810 815

His Cys Val Asp Pro Ser Pro Ser Ala Arg Pro Glu Val His Gln Val
 820 825 830

Leu Gln Gln Leu Glu Glu Ile Arg Pro Glu Arg Ser Val Thr Ala Ser
 835 840 845

Pro Gly Asp Asp Ile Val

850

<210>	1108														
<211>	877														
<212>	PRT														
<213>	Glycine max														
<223>	Seq ID: rhg1_a2704_amplicon														
<400>	1108														
Met	Asp	Ala	Cys	Gly	Met	Ser	Ser	Ser	Asn	Ser	Lys	His	Val	Val	Asp
1					5						10				15
Gln	Lys	Arg	Ser	Thr	Met	Asn	Met	Met	Ile	Thr	Thr	Ile	Leu	Leu	Arg
					20				25				30		
Phe	Trp	Asp	Arg	Tyr	Asp	Met	Asn	Cys	Asp	Tyr	Thr	Thr	Asn	Ser	Tyr
					35				40			45			
Glu	Pro	Gly	Thr	Gln	Leu	Ala	Pro	Ser	Ser	Pro	Arg	Asp	Thr	Ser	Val
					50			55			60				
Lys	Leu	Gly	Asp	Ala	Ser	Ser	Leu	Val	Val	Leu	Pro	Ser	Cys	Val	Arg
					65			70		75			80		
Pro	Val	Leu	Cys	Glu	Asp	Glu	Gly	Trp	Asp	Gly	Val	Val	Val	Thr	Ala
					85				90			95			
Ser	Asn	Leu	Leu	Ala	Leu	Glu	Ala	Phe	Lys	Gln	Glu	Leu	Val	Asp	Pro
					100				105			110			
Glu	Gly	Phe	Leu	Arg	Ser	Trp	Asn	Asp	Ser	Gly	Tyr	Gly	Ala	Cys	Ser
					115				120			125			
Gly	Gly	Trp	Val	Gly	Ile	Lys	Cys	Ala	Lys	Gly	Gln	Val	Ile	Val	Ile
					130			135			140				
Gln	Leu	Pro	Trp	Lys	Gly	Leu	Arg	Gly	Arg	Ile	Thr	Asp	Lys	Ile	Gly
					145			150		155			160		
Gln	Leu	Gln	Gly	Leu	Arg	Lys	Leu	Ser	Leu	His	Asp	Asn	Gln	Ile	Gly
					165				170			175			
Gly	Ser	Ile	Pro	Ser	Thr	Leu	Gly	Leu	Leu	Pro	Asn	Leu	Arg	Gly	Val
					180				185			190			
Gln	Leu	Phe	Asn	Asn	Arg	Leu	Thr	Gly	Ser	Ile	Pro	Leu	Ser	Leu	Gly
					195			200			205				
Phe	Cys	Pro	Leu	Leu	Gln	Ser	Leu	Asp	Leu	Ser	Asn	Asn	Leu	Leu	Thr
					210			215			220				
Gly	Ala	Ile	Pro	Tyr	Ser	Leu	Ala	Asn	Ser	Thr	Lys	Leu	Tyr	Trp	Leu
					225			230		235			240		
Asn	Leu	Ser	Phe	Asn	Ser	Phe	Ser	Gly	Pro	Leu	Pro	Ala	Ser	Leu	Thr

245	250	255
His Ser Phe Ser Leu Thr Phe Leu Ser Leu Gln Asn Asn Asn Leu Ser		
260	265	270
Gly Ser Leu Pro Asn Ser Trp Gly Gly Asn Ser Lys Asn Gly Phe Phe		
275	280	285
Arg Leu Gln Asn Leu Ile Leu Asp His Asn Phe Phe Thr Gly Asp Val		
290	295	300
Pro Ala Ser Leu Gly Ser Leu Arg Glu Leu Asn Glu Ile Ser Leu Ser		
305	310	315
His Asn Lys Phe Ser Gly Ala Ile Pro Asn Glu Ile Gly Thr Leu Ser		
325	330	335
Arg Leu Lys Thr Leu Asp Ile Ser Asn Asn Ala Leu Asn Gly Asn Leu		
340	345	350
Pro Ala Thr Leu Ser Asn Leu Ser Ser Leu Thr Leu Leu Asn Ala Glu		
355	360	365
Asn Asn Leu Leu Asp Asn Gln Ile Pro Gln Ser Leu Gly Arg Leu Arg		
370	375	380
Asn Leu Ser Val Leu Ile Leu Ser Arg Asn Gln Phe Ser Gly His Ile		
385	390	395
400		
Pro Ser Ser Ile Ala Asn Ile Ser Ser Leu Arg Gln Leu Asp Leu Ser		
405	410	415
Leu Asn Asn Phe Ser Gly Glu Ile Pro Val Ser Phe Asp Ser Gln Arg		
420	425	430
Ser Leu Asn Leu Phe Asn Val Ser Tyr Asn Ser Leu Ser Gly Ser Val		
435	440	445
450		
Pro Pro Leu Leu Ala Lys Lys Phe Asn Ser Ser Ser Phe Val Gly Asn		
455	460	
Ile Gln Leu Cys Gly Tyr Ser Pro Ser Thr Pro Cys Leu Ser Gln Ala		
465	470	475
480		
Pro Ser Gln Gly Val Ile Ala Pro Pro Pro Glu Val Ser Lys His His		
485	490	495
His His Arg Lys Leu Ser Thr Lys Asp Ile Ile Leu Ile Val Ala Gly		
500	505	510
515		
Val Leu Leu Val Val Leu Ile Ile Leu Cys Cys Val Leu Leu Phe Cys		
520	525	
Leu Ile Arg Lys Arg Ser Thr Ser Lys Ala Gly Asn Gly Gln Ala Thr		
530	535	540
Glu Gly Arg Ala Ala Thr Met Arg Thr Glu Lys Gly Val Pro Pro Val		
545	550	555
560		

Ala	Ala	Gly	Asp	Val	Glu	Ala	Gly	Gly	Glu	Ala	Gly	Gly	Lys	Leu	Val
			565						570				575		
His	Phe	Asp	Gly	Pro	Met	Ala	Phe	Thr	Ala	Asp	Asp	Leu	Leu	Cys	Ala
	580							585					590		
Thr	Ala	Glu	Ile	Met	Gly	Lys	Ser	Thr	Tyr	Gly	Thr	Val	Tyr	Lys	Ala
	595							600				605			
Ile	Leu	Glu	Asp	Gly	Ser	Gln	Val	Ala	Val	Lys	Arg	Leu	Arg	Glu	Lys
	610							615				620			
Ile	Thr	Lys	Gly	His	Arg	Glu	Phe	Glu	Ser	Glu	Val	Ser	Val	Leu	Gly
	625							630				635			640
Lys	Ile	Arg	His	Pro	Asn	Val	Leu	Ala	Leu	Arg	Ala	Tyr	Tyr	Leu	Gly
								645				650			655
Pro	Lys	Gly	Glu	Lys	Leu	Leu	Val	Phe	Asp	Tyr	Met	Ser	Lys	Gly	Ser
								660				665			670
Leu	Ala	Ser	Phe	Leu	His	Gly	Gly	Gly	Thr	Glu	Thr	Phe	Ile	Asp	Trp
								675				680			685
Pro	Thr	Arg	Met	Lys	Ile	Ala	Gln	Asp	Leu	Ala	Arg	Gly	Leu	Phe	Cys
								690				695			700
Leu	His	Ser	Gln	Glu	Asn	Ile	Ile	His	Gly	Asn	Leu	Thr	Ser	Ser	Asn
								705				710			720
Val	Leu	Leu	Asp	Glu	Asn	Thr	Asn	Ala	Lys	Ile	Ala	Asp	Phe	Gly	Leu
								725				730			735
Ser	Arg	Leu	Met	Ser	Thr	Ala	Ala	Asn	Ser	Asn	Val	Ile	Ala	Thr	Ala
								740				745			750
Gly	Ala	Leu	Gly	Tyr	Arg	Ala	Pro	Glu	Leu	Ser	Lys	Leu	Lys	Lys	Ala
								755				760			765
Asn	Thr	Lys	Thr	Asp	Ile	Tyr	Ser	Leu	Gly	Val	Ile	Leu	Leu	Glu	Leu
								770				775			780
Leu	Thr	Arg	Lys	Ser	Pro	Gly	Val	Pro	Met	Asn	Gly	Leu	Asp	Leu	Pro
								785				790			800
Gln	Trp	Val	Ala	Ser	Val	Val	Lys	Glu	Glu	Trp	Thr	Asn	Glu	Val	Phe
								805				810			815
Asp	Ala	Asp	Leu	Met	Arg	Asp	Ala	Ser	Thr	Val	Gly	Asp	Glu	Leu	Leu
								820				825			830
Asn	Thr	Leu	Lys	Leu	Ala	Leu	His	Cys	Val	Asp	Pro	Ser	Pro	Ser	Ala
								835				840			845
Arg	Pro	Glu	Val	His	Gln	Val	Leu	Gln	Gln	Leu	Glu	Glu	Ile	Arg	Pro
								850				855			860

Glu Arg Ser Val Thr Ala Ser Pro Gly Asp Asp Ile Val		
865	870	875
<210>	1109	
<211>	854	
<212>	PRT	
<213>	Glycine max	
<223>	Seq ID: rhg1_a2704_amplicon	
<400>	1109	
Met Val Val Ala Val Glu Lys Thr Asn Leu Thr Ser Gln Ser Gln Cys		
1	5	10
		15
Phe Asn Arg Val Ser Asp Lys Lys Lys Glu Arg Cys Lys Thr His Met		
20	25	30
Asn Asn Val Asn Pro Cys Cys Phe Leu Phe Leu Leu Cys Val Trp Ser		
35	40	45
Leu Val Val Leu Pro Ser Cys Val Arg Pro Val Leu Cys Glu Asp Glu		
50	55	60
Gly Trp Asp Gly Val Val Val Thr Ala Ser Asn Leu Leu Ala Leu Glu		
65	70	75
		80
Ala Phe Lys Gln Glu Leu Val Asp Pro Glu Gly Phe Leu Arg Ser Trp		
85	90	95
Asn Asp Ser Gly Tyr Gly Ala Cys Ser Gly Gly Trp Val Gly Ile Lys		
100	105	110
Cys Ala Lys Gly Gln Val Ile Val Ile Gln Leu Pro Trp Lys Gly Leu		
115	120	125
Arg Gly Arg Ile Thr Asp Lys Ile Gly Gln Leu Gln Gly Leu Arg Lys		
130	135	140
Leu Ser Leu His Asp Asn Gln Ile Gly Gly Ser Ile Pro Ser Thr Leu		
145	150	155
		160
Gly Leu Leu Pro Asn Leu Arg Gly Val Gln Leu Phe Asn Asn Arg Leu		
165	170	175
Thr Gly Ser Ile Pro Leu Ser Leu Gly Phe Cys Pro Leu Leu Gln Ser		
180	185	190
Leu Asp Leu Ser Asn Asn Leu Leu Thr Gly Ala Ile Pro Tyr Ser Leu		
195	200	205
Ala Asn Ser Thr Lys Leu Tyr Trp Leu Asn Leu Ser Phe Asn Ser Phe		
210	215	220
Ser Gly Pro Leu Pro Ala Ser Leu Thr His Ser Phe Ser Leu Thr Phe		
225	230	235
		240

Leu	Ser	Leu	Gln	Asn	Asn	Asn	Leu	Ser	Gly	Ser	Leu	Pro	Asn	Ser	Trp
							245				250				255
Gly	Gly	Asn	Ser	Lys	Asn	Gly	Phe	Phe	Arg	Leu	Gln	Asn	Leu	Ile	Leu
							260				265				270
Asp	His	Asn	Phe	Phe	Thr	Gly	Asp	Val	Pro	Ala	Ser	Leu	Gly	Ser	Leu
							275				280				285
Arg	Glu	Leu	Asn	Glu	Ile	Ser	Leu	Ser	His	Asn	Lys	Phe	Ser	Gly	Ala
							290				295				300
Ile	Pro	Asn	Glu	Ile	Gly	Thr	Leu	Ser	Arg	Leu	Lys	Thr	Leu	Asp	Ile
							305				310				315
Ser	Asn	Asn	Ala	Leu	Asn	Gly	Asn	Leu	Pro	Ala	Thr	Leu	Ser	Asn	Leu
							325				330				335
Ser	Ser	Leu	Thr	Leu	Leu	Asn	Ala	Glu	Asn	Asn	Leu	Leu	Asp	Asn	Gln
							340				345				350
Ile	Pro	Gln	Ser	Leu	Gly	Arg	Leu	Arg	Asn	Leu	Ser	Val	Leu	Ile	Leu
							355				360				365
Ser	Arg	Asn	Gln	Phe	Ser	Gly	His	Ile	Pro	Ser	Ser	Ile	Ala	Asn	Ile
							370				375				380
Ser	Ser	Leu	Arg	Gln	Leu	Asp	Leu	Ser	Leu	Asn	Asn	Phe	Ser	Gly	Glu
							385				390				400
Ile	Pro	Val	Ser	Phe	Asp	Ser	Gln	Arg	Ser	Leu	Asn	Leu	Phe	Asn	Val
							405				410				415
Ser	Tyr	Asn	Ser	Leu	Ser	Gly	Ser	Val	Pro	Pro	Leu	Leu	Ala	Lys	Lys
							420				425				430
Phe	Asn	Ser	Ser	Ser	Phe	Val	Gly	Asn	Ile	Gln	Leu	Cys	Gly	Tyr	Ser
							435				440				445
Pro	Ser	Thr	Pro	Cys	Leu	Ser	Gln	Ala	Pro	Ser	Gln	Gly	Val	Ile	Ala
							450				455				460
Pro	Pro	Pro	Glu	Val	Ser	Lys	His	His	His	Arg	Lys	Leu	Ser	Thr	
							465				470				480
Lys	Asp	Ile	Ile	Leu	Ile	Val	Ala	Gly	Val	Leu	Leu	Val	Val	Ile	
							485				490				495
Ile	Leu	Cys	Cys	Val	Leu	Leu	Phe	Cys	Leu	Ile	Arg	Lys	Arg	Ser	Thr
							500				505				510
Ser	Lys	Ala	Gly	Asn	Gly	Gln	Ala	Thr	Glu	Gly	Arg	Ala	Ala	Thr	Met
							515				520				525
Arg	Thr	Glu	Lys	Gly	Val	Pro	Pro	Val	Ala	Ala	Gly	Asp	Val	Glu	Ala
							530				535				540
Gly	Gly	Glu	Ala	Gly	Gly	Lys	Leu	Val	His	Phe	Asp	Gly	Pro	Met	Ala

545	550	555	560
Phe Thr Ala Asp Asp Leu Leu Cys Ala Thr Ala Glu Ile Met Gly Lys			
565	570	575	
Ser Thr Tyr Gly Thr Val Tyr Lys Ala Ile Leu Glu Asp Gly Ser Gln			
580	585	590	
Val Ala Val Lys Arg Leu Arg Glu Lys Ile Thr Lys Gly His Arg Glu			
595	600	605	
Phe Glu Ser Glu Val Ser Val Leu Gly Lys Ile Arg His Pro Asn Val			
610	615	620	
Leu Ala Leu Arg Ala Tyr Tyr Leu Gly Pro Lys Gly Glu Lys Leu Leu			
625	630	635	640
Val Phe Asp Tyr Met Ser Lys Gly Ser Leu Ala Ser Phe Leu His Gly			
645	650	655	
Gly Gly Thr Glu Thr Phe Ile Asp Trp Pro Thr Arg Met Lys Ile Ala			
660	665	670	
Gln Asp Leu Ala Arg Gly Leu Phe Cys Leu His Ser Gln Glu Asn Ile			
675	680	685	
Ile His Gly Asn Leu Thr Ser Ser Asn Val Leu Leu Asp Glu Asn Thr			
690	695	700	
Asn Ala Lys Ile Ala Asp Phe Gly Leu Ser Arg Leu Met Ser Thr Ala			
705	710	715	720
Ala Asn Ser Asn Val Ile Ala Thr Ala Gly Ala Leu Gly Tyr Arg Ala			
725	730	735	
Pro Glu Leu Ser Lys Leu Lys Lys Ala Asn Thr Lys Thr Asp Ile Tyr			
740	745	750	
Ser Leu Gly Val Ile Leu Leu Glu Leu Leu Thr Arg Lys Ser Pro Gly			
755	760	765	
Val Pro Met Asn Gly Leu Asp Leu Pro Gln Trp Val Ala Ser Val Val			
770	775	780	
Lys Glu Glu Trp Thr Asn Glu Val Phe Asp Ala Asp Leu Met Arg Asp			
785	790	795	800
Ala Ser Thr Val Gly Asp Glu Leu Leu Asn Thr Leu Lys Leu Ala Leu			
805	810	815	
His Cys Val Asp Pro Ser Pro Ala Arg Pro Glu Val His Gln Val			
820	825	830	
Leu Gln Gln Leu Glu Glu Ile Arg Pro Glu Arg Ser Val Thr Ala Ser			
835	840	845	
Pro Gly Asp Asp Ile Val			
850			

<210>	1110		
<211>	877		
<212>	PRT		
<213>	Glycine max		
<223>	Seq ID: rhg1_noir_amplicon		
<400>	1110		
Met Asp Ala Tyr Gly Met Ser Ser Ser Asn Ser Lys His Val Val Asp			
1	5	10	15
Gln Lys Arg Ser Thr Met Asn Met Ile Thr Thr Ile Leu Leu Arg			
20	25	30	
Phe Trp Asp Arg Tyr Asp Met Asn Cys Asp Tyr Thr Thr Asn Ser Tyr			
35	40	45	
Glu Pro Gly Thr Gln Leu Ala Pro Ser Ser Pro Arg Asp Thr Ser Val			
50	55	60	
Lys Leu Gly Asp Ala Ser Ser Leu Val Val Leu Pro Ser Cys Val Arg			
65	70	75	80
Pro Val Leu Cys Glu Asp Glu Gly Trp Asp Gly Val Val Val Thr Ala			
85	90	95	
Ser Asn Leu Ala Leu Glu Ala Phe Lys Gln Glu Leu Val Asp Pro			
100	105	110	
Glu Gly Phe Leu Arg Ser Trp Asn Asp Ser Gly Tyr Gly Ala Cys Ser			
115	120	125	
Gly Gly Trp Val Gly Ile Lys Cys Ala Gln Gly Gln Val Ile Val Ile			
130	135	140	
Gln Leu Pro Trp Lys Gly Leu Arg Gly Arg Ile Thr Asp Lys Ile Gly			
145	150	155	160
Gln Leu Gln Gly Leu Arg Lys Leu Ser Leu His Asp Asn Gln Ile Gly			
165	170	175	
Gly Ser Ile Pro Ser Thr Leu Gly Leu Leu Pro Asn Leu Arg Gly Val			
180	185	190	
Gln Leu Phe Asn Asn Arg Leu Thr Gly Ser Ile Pro Leu Ser Leu Gly			
195	200	205	
Phe Cys Pro Leu Leu Gln Ser Leu Asp Leu Ser Asn Asn Leu Leu Thr			
210	215	220	
Gly Ala Ile Pro Tyr Ser Leu Ala Asn Ser Thr Lys Leu Tyr Trp Leu			
225	230	235	240
Asn Leu Ser Phe Asn Ser Phe Ser Gly Pro Leu Pro Ala Ser Leu Thr			
245	250	255	

His Ser Phe Ser Leu Thr Phe Leu Ser Leu Gln Asn Asn Asn Leu Ser		
260	265	270
Gly Ser Leu Pro Asn Ser Trp Gly Gly Asn Ser Lys Asn Gly Phe Phe		
275	280	285
Arg Leu Gln Asn Leu Ile Leu Asp Asn Asn Phe Phe Thr Gly Asp Val		
290	295	300
Pro Ala Ser Leu Gly Ser Leu Arg Glu Leu Asn Glu Ile Ser Leu Ser		
305	310	315
His Asn Lys Phe Ser Gly Ala Ile Pro Asn Glu Ile Gly Thr Leu Ser		
325	330	335
Arg Leu Lys Thr Leu Asp Ile Ser Asn Asn Ala Leu Asn Gly Asn Leu		
340	345	350
Pro Ala Thr Leu Ser Asn Leu Ser Ser Leu Thr Leu Leu Asn Ala Glu		
355	360	365
Asn Asn Leu Leu Asp Asn Gln Ile Pro Gln Ser Leu Gly Arg Leu Arg		
370	375	380
Asn Leu Ser Val Leu Ile Leu Ser Arg Asn Gln Phe Ser Gly His Ile		
385	390	395
400		
Pro Ser Ser Ile Ala Asn Ile Ser Ser Leu Arg Gln Leu Asp Leu Ser		
405	410	415
Leu Asn Asn Phe Ser Gly Glu Ile Pro Val Ser Phe Asp Ser Gln Arg		
420	425	430
Ser Leu Asn Leu Phe Asn Val Ser Tyr Asn Ser Leu Ser Gly Ser Val		
435	440	445
Pro Pro Leu Leu Ala Lys Lys Phe Asn Ser Ser Phe Val Gly Asn		
450	455	460
Ile Gln Leu Cys Gly Tyr Ser Pro Ser Thr Pro Cys Leu Ser Gln Ala		
465	470	475
480		
Pro Ser Gln Gly Val Ile Ala Pro Pro Pro Glu Val Ser Lys His His		
485	490	495
His His Arg Lys Leu Ser Thr Lys Asp Ile Ile Leu Ile Val Ala Gly		
500	505	510
Val Leu Leu Val Val Leu Ile Ile Leu Cys Cys Val Leu Leu Phe Cys		
515	520	525
Leu Ile Arg Lys Arg Ser Thr Ser Lys Ala Gly Asn Gly Gln Ala Thr		
530	535	540
Glu Gly Arg Ala Ala Thr Met Arg Thr Glu Lys Gly Val Pro Pro Val		
545	550	555
560		

Ala Ala Gly Asp Val Glu Ala Gly Gly Glu Ala Gly Gly Lys Leu Val
 565 570 575
 His Phe Asp Gly Pro Met Ala Phe Thr Ala Asp Asp Leu Leu Cys Ala
 580 585 590
 Thr Ala Glu Ile Met Gly Lys Ser Thr Tyr Gly Thr Val Tyr Lys Ala
 595 600 605
 Ile Leu Glu Asp Gly Ser Gln Val Ala Val Lys Arg Leu Arg Glu Lys
 610 615 620
 Ile Thr Lys Gly His Arg Glu Phe Glu Ser Glu Val Ser Val Leu Gly
 625 630 635 640
 Lys Ile Arg His Pro Asn Val Leu Ala Leu Arg Ala Tyr Tyr Leu Gly
 645 650 655
 Pro Lys Gly Glu Lys Leu Leu Val Phe Asp Tyr Met Ser Lys Gly Ser
 660 665 670
 Leu Ala Ser Phe Leu His Gly Gly Thr Glu Thr Phe Ile Asp Trp
 675 680 685
 Pro Thr Arg Met Lys Ile Ala Gln Asp Leu Ala Arg Gly Leu Phe Cys
 690 695 700
 Leu His Ser Gln Glu Asn Ile Ile His Gly Asn Leu Thr Ser Ser Asn
 705 710 715 720
 Val Leu Leu Asp Glu Asn Thr Asn Ala Lys Ile Ala Asp Phe Gly Leu
 725 730 735
 Ser Arg Leu Met Ser Thr Ala Ala Asn Ser Asn Val Ile Ala Thr Ala
 740 745 750
 Gly Ala Leu Gly Tyr Arg Ala Pro Glu Leu Ser Lys Leu Lys Lys Ala
 755 760 765
 Asn Thr Lys Thr Asp Ile Tyr Ser Leu Gly Val Ile Leu Leu Glu Leu
 770 775 780
 Leu Thr Arg Lys Ser Pro Gly Val Pro Met Asn Gly Leu Asp Leu Pro
 785 790 795 800
 Gln Trp Val Ala Ser Val Val Lys Glu Glu Trp Thr Asn Glu Val Phe
 805 810 815
 Asp Ala Asp Leu Met Arg Asp Ala Ser Thr Val Gly Asp Glu Leu Leu
 820 825 830
 Asn Thr Leu Lys Leu Ala Leu His Cys Val Asp Pro Ser Pro Ser Ala
 835 840 845
 Arg Pro Glu Val His Gln Val Leu Gln Gln Leu Glu Glu Ile Arg Pro
 850 855 860
 Glu Arg Ser Val Thr Ala Ser Pro Gly Asp Asp Ile Val

865 870

875

<210> 1111
<211> 854
<212> PRT
<213> Glycine max

<223> Seq ID: rhg1_noir_amplicon

<400> 1111

Met Val Val Ala Val Glu Lys Thr Asn Leu Thr Ser Gln Ser Gln Cys			
1	5	10	15

Phe Asn Arg Val Ser Asp Lys Lys Glu Arg Cys Lys Thr His Met			
20	25	30	

Asn Asn Val Asn Pro Cys Cys Phe Leu Phe Leu Leu Cys Val Trp Ser			
35	40	45	

Leu Val Val Leu Pro Ser Cys Val Arg Pro Val Leu Cys Glu Asp Glu			
50	55	60	

Gly Trp Asp Gly Val Val Val Thr Ala Ser Asn Leu Leu Ala Leu Glu			
65	70	75	80

Ala Phe Lys Gln Glu Leu Val Asp Pro Glu Gly Phe Leu Arg Ser Trp			
85	90	95	

Asn Asp Ser Gly Tyr Gly Ala Cys Ser Gly Gly Trp Val Gly Ile Lys			
100	105	110	

Cys Ala Gln Gly Gln Val Ile Val Ile Gln Leu Pro Trp Lys Gly Leu			
115	120	125	

Arg Gly Arg Ile Thr Asp Lys Ile Gly Gln Leu Gln Gly Leu Arg Lys			
130	135	140	

Leu Ser Leu His Asp Asn Gln Ile Gly Gly Ser Ile Pro Ser Thr Leu			
145	150	155	160

Gly Leu Leu Pro Asn Leu Arg Gly Val Gln Leu Phe Asn Asn Arg Leu			
165	170	175	

Thr Gly Ser Ile Pro Leu Ser Leu Gly Phe Cys Pro Leu Leu Gln Ser			
180	185	190	

Leu Asp Leu Ser Asn Asn Leu Leu Thr Gly Ala Ile Pro Tyr Ser Leu			
195	200	205	

Ala Asn Ser Thr Lys Leu Tyr Trp Leu Asn Leu Ser Phe Asn Ser Phe			
210	215	220	

Ser Gly Pro Leu Pro Ala Ser Leu Thr His Ser Phe Ser Leu Thr Phe			
225	230	235	240

Leu Ser Leu Gln Asn Asn Leu Ser Gly Ser Leu Pro Asn Ser Trp

245	250	255
Gly Gly Asn Ser Lys Asn Gly Phe Phe Arg Leu Gln Asn Leu Ile Leu		
260	265	270
Asp Asn Asn Phe Phe Thr Gly Asp Val Pro Ala Ser Leu Gly Ser Leu		
275	280	285
Arg Glu Leu Asn Glu Ile Ser Leu Ser His Asn Lys Phe Ser Gly Ala		
290	295	300
Ile Pro Asn Glu Ile Gly Thr Leu Ser Arg Leu Lys Thr Leu Asp Ile		
305	310	315
Ser Asn Asn Ala Leu Asn Gly Asn Leu Pro Ala Thr Leu Ser Asn Leu		
325	330	335
Ser Ser Leu Thr Leu Leu Asn Ala Glu Asn Asn Leu Leu Asp Asn Gln		
340	345	350
Ile Pro Gln Ser Leu Gly Arg Leu Arg Asn Leu Ser Val Leu Ile Leu		
355	360	365
Ser Arg Asn Gln Phe Ser Gly His Ile Pro Ser Ser Ile Ala Asn Ile		
370	375	380
Ser Ser Leu Arg Gln Leu Asp Leu Ser Leu Asn Asn Phe Ser Gly Glu		
385	390	395
Ile Pro Val Ser Phe Asp Ser Gln Arg Ser Leu Asn Leu Phe Asn Val		
405	410	415
Ser Tyr Asn Ser Leu Ser Gly Ser Val Pro Pro Leu Leu Ala Lys Lys		
420	425	430
Phe Asn Ser Ser Ser Phe Val Gly Asn Ile Gln Leu Cys Gly Tyr Ser		
435	440	445
Pro Ser Thr Pro Cys Leu Ser Gln Ala Pro Ser Gln Gly Val Ile Ala		
450	455	460
Pro Pro Pro Glu Val Ser Lys His His His His Arg Lys Leu Ser Thr		
465	470	475
480		
Lys Asp Ile Ile Leu Ile Val Ala Gly Val Leu Leu Val Val Leu Ile		
485	490	495
Ile Leu Cys Cys Val Leu Leu Phe Cys Leu Ile Arg Lys Arg Ser Thr		
500	505	510
Ser Lys Ala Gly Asn Gly Gln Ala Thr Glu Gly Arg Ala Ala Thr Met		
515	520	525
Arg Thr Glu Lys Gly Val Pro Pro Val Ala Ala Gly Asp Val Glu Ala		
530	535	540
Gly Gly Glu Ala Gly Gly Lys Leu Val His Phe Asp Gly Pro Met Ala		
545	550	555
560		

Phe	Thr	Ala	Asp	Asp	Leu	Leu	Cys	Ala	Thr	Ala	Glu	Ile	Met	Gly	Lys
		565							570				575		
Ser	Thr	Tyr	Gly	Thr	Val	Tyr	Lys	Ala	Ile	Leu	Glu	Asp	Gly	Ser	Gln
		580					585					590			
Val	Ala	Val	Lys	Arg	Leu	Arg	Glu	Lys	Ile	Thr	Lys	Gly	His	Arg	Glu
	595					600					605				
Phe	Glu	Ser	Glu	Val	Ser	Val	Leu	Gly	Lys	Ile	Arg	His	Pro	Asn	Val
	610				615					620					
Leu	Ala	Leu	Arg	Ala	Tyr	Tyr	Leu	Gly	Pro	Lys	Gly	Glu	Lys	Leu	Leu
	625					630			635				640		
Val	Phe	Asp	Tyr	Met	Ser	Lys	Gly	Ser	Leu	Ala	Ser	Phe	Leu	His	Gly
	645					650					655				
Gly	Gly	Thr	Glu	Thr	Phe	Ile	Asp	Trp	Pro	Thr	Arg	Met	Lys	Ile	Ala
	660					665					670				
Gln	Asp	Leu	Ala	Arg	Gly	Leu	Phe	Cys	Leu	His	Ser	Gln	Glu	Asn	Ile
	675					680			685						
Ile	His	Gly	Asn	Leu	Thr	Ser	Ser	Asn	Val	Leu	Asp	Glu	Asn	Thr	
	690					695			700						
Asn	Ala	Lys	Ile	Ala	Asp	Phe	Gly	Leu	Ser	Arg	Leu	Met	Ser	Thr	Ala
	705					710			715			720			
Ala	Asn	Ser	Asn	Val	Ile	Ala	Thr	Ala	Gly	Ala	Leu	Gly	Tyr	Arg	Ala
					725				730			735			
Pro	Glu	Leu	Ser	Lys	Leu	Lys	Lys	Ala	Asn	Thr	Lys	Thr	Asp	Ile	Tyr
		740				745				750					
Ser	Leu	Gly	Val	Ile	Leu	Leu	Glu	Leu	Leu	Thr	Arg	Lys	Ser	Pro	Gly
		755				760			765						
Val	Pro	Met	Asn	Gly	Leu	Asp	Leu	Pro	Gln	Trp	Val	Ala	Ser	Val	Val
		770				775			780						
Lys	Glu	Glu	Trp	Thr	Asn	Glu	Val	Phe	Asp	Ala	Asp	Leu	Met	Arg	Asp
	785					790			795			800			
Ala	Ser	Thr	Val	Gly	Asp	Glu	Leu	Leu	Asn	Thr	Leu	Lys	Leu	Ala	Leu
					805				810			815			
His	Cys	Val	Asp	Pro	Ser	Pro	Ser	Ala	Arg	Pro	Glu	Val	His	Gln	Val
					820				825			830			
Leu	Gln	Gln	Leu	Glu	Glu	Ile	Arg	Pro	Glu	Arg	Ser	Val	Thr	Ala	Ser
					835			840			845				
Pro	Gly	Asp	Asp	Ile	Val										
		850													

<210> 1112
<211> 877
<212> PRT
<213> Glycine max

<223> Seq ID: rhg1_lee_amplicon

<400> 1112

Met	Asp	Ala	Tyr	Gly	Met	Ser	Ser	Ser	Asn	Ser	Lys	His	Val	Val	Asp
1					5				10			15			

Gln	Lys	Arg	Ser	Thr	Met	Asn	Met	Met	Ile	Thr	Thr	Ile	Leu	Leu	Arg
					20				25			30			

Phe	Trp	Asp	Arg	Tyr	Asp	Met	Asn	Cys	Asp	Tyr	Thr	Thr	Asn	Ser	Tyr
					35			40				45			

Glu	Pro	Gly	Thr	Gln	Leu	Ala	Pro	Ser	Ser	Pro	Arg	Asp	Thr	Ser	Val
					50			55			60				

Lys	Leu	Gly	Asp	Ala	Ser	Ser	Leu	Val	Val	Leu	Pro	Ser	Cys	Val	Arg
					65			70			75			80	

Pro	Val	Leu	Cys	Glu	Asp	Glu	Gly	Trp	Asp	Gly	Val	Val	Val	Thr	Ala
					85				90			95			

Ser	Asn	Leu	Leu	Ala	Leu	Glu	Ala	Phe	Lys	Gln	Glu	Leu	Val	Asp	Pro
					100				105			110			

Glu	Gly	Phe	Leu	Arg	Ser	Trp	Asn	Asp	Ser	Gly	Tyr	Gly	Ala	Cys	Ser
					115				120			125			

Gly	Gly	Trp	Val	Gly	Ile	Lys	Cys	Ala	Gln	Gly	Gln	Val	Ile	Val	Ile
					130			135				140			

Gln	Leu	Pro	Trp	Lys	Gly	Leu	Arg	Gly	Arg	Ile	Thr	Asp	Lys	Ile	Gly
					145			150			155			160	

Gln	Leu	Gln	Gly	Leu	Arg	Lys	Leu	Ser	Leu	His	Asp	Asn	Gln	Ile	Gly
						165			170			175			

Gly	Ser	Ile	Pro	Ser	Thr	Leu	Gly	Leu	Leu	Pro	Asn	Leu	Arg	Gly	Val
						180			185			190			

Gln	Leu	Phe	Asn	Asn	Arg	Leu	Thr	Gly	Ser	Ile	Pro	Leu	Ser	Leu	Gly
						195			200			205			

Phe	Cys	Pro	Leu	Leu	Gln	Ser	Leu	Asp	Leu	Ser	Asn	Asn	Leu	Leu	Thr
					210				215			220			

Gly	Ala	Ile	Pro	Tyr	Ser	Leu	Ala	Asn	Ser	Thr	Lys	Leu	Tyr	Trp	Leu
					225			230			235			240	

Asn	Leu	Ser	Phe	Asn	Ser	Phe	Ser	Gly	Pro	Leu	Pro	Ala	Ser	Leu	Thr
						245			250			255			

His Ser Phe Ser Leu Thr Phe Leu Ser Leu Gln Asn Asn Asn Leu Ser		
260	265	270
Gly Ser Leu Pro Asn Ser Trp Gly Gly Asn Ser Lys Asn Gly Phe Phe		
275	280	285
Arg Leu Gln Asn Leu Ile Leu Asp Asn Asn Phe Phe Thr Gly Asp Val		
290	295	300
Pro Ala Ser Leu Gly Ser Leu Arg Glu Leu Asn Glu Ile Ser Leu Ser		
305	310	315
320		
His Asn Lys Phe Ser Gly Ala Ile Pro Asn Glu Ile Gly Thr Leu Ser		
325	330	335
Arg Leu Lys Thr Leu Asp Ile Ser Asn Asn Ala Leu Asn Gly Asn Leu		
340	345	350
Pro Ala Thr Leu Ser Asn Leu Ser Ser Leu Thr Leu Leu Asn Ala Glu		
355	360	365
Asn Asn Leu Leu Asp Asn Gln Ile Pro Gln Ser Leu Gly Arg Leu Arg		
370	375	380
Asn Leu Ser Val Leu Ile Leu Ser Arg Asn Gln Phe Ser Gly His Ile		
385	390	395
400		
Pro Ser Ser Ile Ala Asn Ile Ser Ser Leu Arg Gln Leu Asp Leu Ser		
405	410	415
Leu Asn Asn Phe Ser Gly Glu Ile Pro Val Ser Phe Asp Ser Gln Arg		
420	425	430
Ser Leu Asn Leu Phe Asn Val Ser Tyr Asn Ser Leu Ser Gly Ser Val		
435	440	445
Pro Pro Leu Leu Ala Lys Lys Phe Asn Ser Ser Ser Phe Val Gly Asn		
450	455	460
Ile Gln Leu Cys Gly Tyr Ser Pro Ser Thr Pro Cys Leu Ser Gln Ala		
465	470	475
480		
Pro Ser Gln Gly Val Ile Ala Pro Pro Pro Glu Val Ser Lys His His		
485	490	495
His His Arg Lys Leu Ser Thr Lys Asp Ile Ile Leu Ile Val Ala Gly		
500	505	510
Val Leu Leu Val Val Leu Ile Ile Leu Cys Cys Val Leu Leu Phe Cys		
515	520	525
Leu Ile Arg Lys Arg Ser Thr Ser Lys Ala Gly Asn Gly Gln Ala Thr		
530	535	540
Glu Gly Arg Ala Ala Thr Met Arg Thr Glu Lys Gly Val Pro Pro Val		
545	550	555
560		
Ala Ala Gly Asp Val Glu Ala Gly Glu Ala Gly Gly Lys Leu Val		

565	570	575
His Phe Asp Gly Pro Met Ala Phe Thr Ala Asp Asp Leu Leu Cys Ala		
580	585	590
Thr Ala Glu Ile Met Gly Lys Ser Thr Tyr Gly Thr Val Tyr Lys Ala		
595	600	605
Ile Leu Glu Asp Gly Ser Gln Val Ala Val Lys Arg Leu Arg Glu Lys		
610	615	620
Ile Thr Lys Gly His Arg Glu Phe Glu Ser Glu Val Ser Val Leu Gly		
625	630	635
Lys Ile Arg His Pro Asn Val Leu Ala Leu Arg Ala Tyr Tyr Leu Gly		
645	650	655
Pro Lys Gly Glu Lys Leu Leu Val Phe Asp Tyr Met Ser Lys Gly Ser		
660	665	670
Leu Ala Ser Phe Leu His Gly Gly Thr Glu Thr Phe Ile Asp Trp		
675	680	685
Pro Thr Arg Met Lys Ile Ala Gln Asp Leu Ala Arg Gly Leu Phe Cys		
690	695	700
Leu His Ser Gln Glu Asn Ile Ile His Gly Asn Leu Thr Ser Ser Asn		
705	710	715
720		
Val Leu Leu Asp Glu Asn Thr Asn Ala Lys Ile Ala Asp Phe Gly Leu		
725	730	735
Ser Arg Leu Met Ser Thr Ala Ala Asn Ser Asn Val Ile Ala Thr Ala		
740	745	750
Gly Ala Leu Gly Tyr Arg Ala Pro Glu Leu Ser Lys Leu Lys Lys Ala		
755	760	765
Asn Thr Lys Thr Asp Ile Tyr Ser Leu Gly Val Ile Leu Leu Glu Leu		
770	775	780
Leu Thr Arg Lys Ser Pro Gly Val Pro Met Asn Gly Leu Asp Leu Pro		
785	790	795
800		
Gln Trp Val Ala Ser Val Val Lys Glu Glu Trp Thr Asn Glu Val Phe		
805	810	815
Asp Ala Asp Leu Met Arg Asp Ala Ser Thr Val Gly Asp Glu Leu Leu		
820	825	830
Asn Thr Leu Lys Leu Ala Leu His Cys Val Asp Pro Ser Pro Ser Ala		
835	840	845
Arg Pro Glu Val His Gln Val Leu Gln Gln Leu Glu Glu Ile Arg Pro		
850	855	860
Glu Arg Ser Val Thr Ala Ser Pro Gly Asp Asp Ile Val		
865	870	875

<210>	1113		
<211>	854		
<212>	PRT		
<213>	Glycine max		
<223>	Seq ID: rhg1_lee_amplicon		
<400>	1113		
Met Val Val Ala Val Glu Lys Thr Asn Leu Thr Ser Gln Ser Gln Cys			
1	5	10	15
Phe Asn Arg Val Ser Asp Lys Lys Lys Glu Arg Cys Lys Thr His Met			
20	25	30	
Asn Asn Val Asn Pro Cys Cys Phe Leu Phe Leu Leu Cys Val Trp Ser			
35	40	45	
Leu Val Val Leu Pro Ser Cys Val Arg Pro Val Leu Cys Glu Asp Glu			
50	55	60	
Gly Trp Asp Gly Val Val Val Thr Ala Ser Asn Leu Leu Ala Leu Glu			
65	70	75	80
Ala Phe Lys Gln Glu Leu Val Asp Pro Glu Gly Phe Leu Arg Ser Trp			
85	90	95	
Asn Asp Ser Gly Tyr Gly Ala Cys Ser Gly Gly Trp Val Gly Ile Lys			
100	105	110	
Cys Ala Gln Gly Gln Val Ile Val Ile Gln Leu Pro Trp Lys Gly Leu			
115	120	125	
Arg Gly Arg Ile Thr Asp Lys Ile Gly Gln Leu Gln Gly Leu Arg Lys			
130	135	140	
Leu Ser Leu His Asp Asn Gln Ile Gly Gly Ser Ile Pro Ser Thr Leu			
145	150	155	160
Gly Leu Leu Pro Asn Leu Arg Gly Val Gln Leu Phe Asn Asn Arg Leu			
165	170	175	
Thr Gly Ser Ile Pro Leu Ser Leu Gly Phe Cys Pro Leu Leu Gln Ser			
180	185	190	
Leu Asp Leu Ser Asn Asn Leu Leu Thr Gly Ala Ile Pro Tyr Ser Leu			
195	200	205	
Ala Asn Ser Thr Lys Leu Tyr Trp Leu Asn Leu Ser Phe Asn Ser Phe			
210	215	220	
Ser Gly Pro Leu Pro Ala Ser Leu Thr His Ser Phe Ser Leu Thr Phe			
225	230	235	240
Leu Ser Leu Gln Asn Asn Leu Ser Gly Ser Leu Pro Asn Ser Trp			
245	250	255	

Gly Gly Asn Ser Lys Asn Gly Phe Phe Arg Leu Gln Asn Leu Ile Leu
 260 265 270

Asp Asn Asn Phe Phe Thr Gly Asp Val Pro Ala Ser Leu Gly Ser Leu
 275 280 285

Arg Glu Leu Asn Glu Ile Ser Leu Ser His Asn Lys Phe Ser Gly Ala
 290 295 300

Ile Pro Asn Glu Ile Gly Thr Leu Ser Arg Leu Lys Thr Leu Asp Ile
 305 310 315 320

Ser Asn Asn Ala Leu Asn Gly Asn Leu Pro Ala Thr Leu Ser Asn Leu
 325 330 335

Ser Ser Leu Thr Leu Leu Asn Ala Glu Asn Asn Leu Leu Asp Asn Gln
 340 345 350

Ile Pro Gln Ser Leu Gly Arg Leu Arg Asn Leu Ser Val Leu Ile Leu
 355 360 365

Ser Arg Asn Gln Phe Ser Gly His Ile Pro Ser Ser Ile Ala Asn Ile
 370 375 380

Ser Ser Leu Arg Gln Leu Asp Leu Ser Leu Asn Asn Phe Ser Gly Glu
 385 390 395 400

Ile Pro Val Ser Phe Asp Ser Gln Arg Ser Leu Asn Leu Phe Asn Val
 405 410 415

Ser Tyr Asn Ser Leu Ser Gly Ser Val Pro Pro Leu Leu Ala Lys Lys
 420 425 430

Phe Asn Ser Ser Ser Phe Val Gly Asn Ile Gln Leu Cys Gly Tyr Ser
 435 440 445

Pro Ser Thr Pro Cys Leu Ser Gln Ala Pro Ser Gln Gly Val Ile Ala
 450 455 460

Pro Pro Pro Glu Val Ser Lys His His His His Arg Lys Leu Ser Thr
 465 470 475 480

Lys Asp Ile Ile Leu Ile Val Ala Gly Val Leu Leu Val Val Leu Ile
 485 490 495

Ile Leu Cys Cys Val Leu Leu Phe Cys Leu Ile Arg Lys Arg Ser Thr
 500 505 510

Ser Lys Ala Gly Asn Gly Gln Ala Thr Glu Gly Arg Ala Ala Thr Met
 515 520 525

Arg Thr Glu Lys Gly Val Pro Pro Val Ala Ala Gly Asp Val Glu Ala
 530 535 540

Gly Gly Glu Ala Gly Gly Lys Leu Val His Phe Asp Gly Pro Met Ala
 545 550 555 560

Phe Thr Ala Asp Asp Leu Leu Cys Ala Thr Ala Glu Ile Met Gly Lys
 565 570 575

Ser Thr Tyr Gly Thr Val Tyr Lys Ala Ile Leu Glu Asp Gly Ser Gln
 580 585 590

Val Ala Val Lys Arg Leu Arg Glu Lys Ile Thr Lys Gly His Arg Glu
 595 600 605

Phe Glu Ser Glu Val Ser Val Leu Gly Lys Ile Arg His Pro Asn Val
 610 615 620

Leu Ala Leu Arg Ala Tyr Tyr Leu Gly Pro Lys Gly Glu Lys Leu Leu
 625 630 635 640

Val Phe Asp Tyr Met Ser Lys Gly Ser Leu Ala Ser Phe Leu His Gly
 645 650 655

Gly Gly Thr Glu Thr Phe Ile Asp Trp Pro Thr Arg Met Lys Ile Ala
 660 665 670

Gln Asp Leu Ala Arg Gly Leu Phe Cys Leu His Ser Gln Glu Asn Ile
 675 680 685

Ile His Gly Asn Leu Thr Ser Ser Asn Val Leu Leu Asp Glu Asn Thr
 690 695 700

Asn Ala Lys Ile Ala Asp Phe Gly Leu Ser Arg Leu Met Ser Thr Ala
 705 710 715 720

Ala Asn Ser Asn Val Ile Ala Thr Ala Gly Ala Leu Gly Tyr Arg Ala
 725 730 735

Pro Glu Leu Ser Lys Leu Lys Lys Ala Asn Thr Lys Thr Asp Ile Tyr
 740 745 750

Ser Leu Gly Val Ile Leu Leu Glu Leu Leu Thr Arg Lys Ser Pro Gly
 755 760 765

Val Pro Met Asn Gly Leu Asp Leu Pro Gln Trp Val Ala Ser Val Val
 770 775 780

Lys Glu Glu Trp Thr Asn Glu Val Phe Asp Ala Asp Leu Met Arg Asp
 785 790 795 800

Ala Ser Thr Val Gly Asp Glu Leu Leu Asn Thr Leu Lys Leu Ala Leu
 805 810 815

His Cys Val Asp Pro Ser Pro Ser Ala Arg Pro Glu Val His Gln Val
 820 825 830

Leu Gln Gln Leu Glu Glu Ile Arg Pro Glu Arg Ser Val Thr Ala Ser
 835 840 845

Pro Gly Asp Asp Ile Val
 850

<210> 1114
<211> 877
<212> PRT
<213> Glycine max

<223> Seq ID: rhg1_pi200499_amplicon

<400> 1114

Met	Asp	Ala	Cys	Gly	Met	Ser	Ser	Ser	Asn	Ser	Lys	His	Val	Val	Asp
1					5							10			15

Gln	Lys	Arg	Ser	Thr	Met	Asn	Met	Ile	Thr	Thr	Ile	Leu	Leu	Arg
	20							25						30

Phe	Trp	Asp	Arg	Tyr	Asp	Met	Asn	Cys	Asp	Tyr	Thr	Thr	Asn	Ser	Tyr
	35					40				45					

Glu	Pro	Gly	Thr	Gln	Leu	Ala	Pro	Ser	Ser	Pro	Arg	Asp	Thr	Ser	Val
	50						55			60					

Lys	Leu	Gly	Asp	Ala	Ser	Ser	Leu	Val	Val	Leu	Pro	Ser	Cys	Val	Arg
65					70				75				80		

Pro	Val	Leu	Cys	Glu	Asp	Glu	Gly	Trp	Asp	Gly	Val	Val	Val	Thr	Ala
	85							90					95		

Ser	Asn	Leu	Leu	Ala	Leu	Glu	Ala	Phe	Lys	Gln	Glu	Leu	Val	Asp	Pro
		100						105				110			

Glu	Gly	Phe	Leu	Arg	Ser	Trp	Asn	Asp	Ser	Gly	Tyr	Gly	Ala	Cys	Ser
		115					120			125					

Gly	Gly	Trp	Val	Gly	Ile	Lys	Cys	Ala	Gln	Gly	Gln	Val	Ile	Val	Ile
		130				135				140					

Gln	Leu	Pro	Trp	Lys	Gly	Leu	Arg	Gly	Arg	Ile	Thr	Asp	Lys	Ile	Gly
145					150				155			160			

Gln	Leu	Gln	Gly	Leu	Arg	Lys	Leu	Ser	Leu	His	Asp	Asn	Gln	Ile	Gly
		165					170				175				

Gly	Ser	Ile	Pro	Ser	Thr	Leu	Gly	Leu	Leu	Pro	Asn	Leu	Arg	Gly	Val
		180					185				190				

Gln	Leu	Phe	Asn	Asn	Arg	Leu	Thr	Gly	Ser	Ile	Pro	Leu	Ser	Leu	Gly
		195					200			205					

Phe	Cys	Pro	Leu	Leu	Gln	Ser	Leu	Asp	Leu	Ser	Asn	Asn	Leu	Leu	Thr
	210						215			220					

Gly	Ala	Ile	Pro	Tyr	Ser	Leu	Ala	Asn	Ser	Thr	Lys	Leu	Tyr	Trp	Leu
225						230				235			240		

Asn	Leu	Ser	Phe	Asn	Ser	Phe	Ser	Gly	Pro	Leu	Pro	Ala	Ser	Leu	Thr
		245						250				255			

His Ser Phe Ser Leu Thr Phe Leu Ser Leu Gln Asn Asn Asn Leu Ser		
260	265	270
Gly Ser Leu Pro Asn Ser Trp Gly Gly Asn Ser Lys Asn Gly Phe Phe		
275	280	285
Arg Leu Gln Asn Leu Ile Leu Asp Asn Asn Phe Phe Thr Gly Asp Val		
290	295	300
Pro Ala Ser Leu Gly Ser Leu Arg Glu Leu Asn Glu Ile Ser Leu Ser		
305	310	315
His Asn Lys Phe Ser Gly Ala Ile Pro Asn Glu Ile Gly Thr Leu Ser		
325	330	335
Arg Leu Lys Thr Leu Asp Ile Ser Asn Asn Ala Leu Asn Gly Asn Leu		
340	345	350
Pro Ala Thr Leu Ser Asn Leu Ser Ser Leu Thr Leu Leu Asn Ala Glu		
355	360	365
Asn Asn Leu Leu Asp Asn Gln Ile Pro Gln Ser Leu Gly Arg Leu Arg		
370	375	380
Asn Leu Ser Val Leu Ile Leu Ser Arg Asn Gln Phe Ser Gly His Ile		
385	390	395
400		
Pro Ser Ser Ile Ala Asn Ile Ser Ser Leu Arg Gln Leu Asp Leu Ser		
405	410	415
Leu Asn Asn Phe Ser Gly Glu Ile Pro Val Ser Phe Asp Ser Gln Arg		
420	425	430
Ser Leu Asn Leu Phe Asn Val Ser Tyr Asn Ser Leu Ser Gly Ser Val		
435	440	445
450		
Pro Pro Leu Leu Ala Lys Lys Phe Asn Ser Ser Ser Phe Val Gly Asn		
455	460	
Ile Gln Leu Cys Gly Tyr Ser Pro Ser Thr Pro Cys Leu Ser Gln Ala		
465	470	475
480		
Pro Ser Gln Gly Val Ile Ala Pro Pro Glu Val Ser Lys His His		
485	490	495
His His Arg Lys Leu Ser Thr Lys Asp Ile Ile Leu Ile Val Ala Gly		
500	505	510
Val Leu Leu Val Val Leu Ile Ile Leu Cys Cys Val Leu Leu Phe Cys		
515	520	525
Leu Ile Arg Lys Arg Ser Thr Ser Lys Ala Gly Asn Gly Gln Ala Thr		
530	535	540
Glu Gly Arg Ala Ala Thr Met Arg Thr Glu Lys Gly Val Pro Pro Val		
545	550	555
560		
Ala Ala Gly Asp Val Glu Ala Gly Glu Ala Gly Gly Lys Leu Val		

565	570	575
His Phe Asp Gly Pro Met Ala Phe Thr Ala Asp Asp Leu Leu Cys Ala		
580	585	590
Thr Ala Glu Ile Met Gly Lys Ser Thr Tyr Gly Thr Val Tyr Lys Ala		
595	600	605
Ile Leu Glu Asp Gly Ser Gln Val Ala Val Lys Arg Leu Arg Glu Lys		
610	615	620
Ile Thr Lys Gly His Arg Glu Phe Glu Ser Glu Val Ser Val Leu Gly		
625	630	635
Lys Ile Arg His Pro Asn Val Leu Ala Leu Arg Ala Tyr Tyr Leu Gly		
645	650	655
Pro Lys Gly Glu Lys Leu Leu Val Phe Asp Tyr Met Ser Lys Gly Ser		
660	665	670
Leu Ala Ser Phe Leu His Gly Gly Thr Glu Thr Phe Ile Asp Trp		
675	680	685
Pro Thr Arg Met Lys Ile Ala Gln Asp Leu Ala Arg Gly Leu Phe Cys		
690	695	700
Leu His Ser Gln Glu Asn Ile Ile His Gly Asn Leu Thr Ser Ser Asn		
705	710	715
Val Leu Leu Asp Glu Asn Thr Asn Ala Lys Ile Ala Asp Phe Gly Leu		
725	730	735
Ser Arg Leu Met Ser Thr Ala Ala Asn Ser Asn Val Ile Ala Thr Ala		
740	745	750
Gly Ala Leu Gly Tyr Arg Ala Pro Glu Leu Ser Lys Leu Lys Lys Ala		
755	760	765
Asn Thr Lys Thr Asp Ile Tyr Ser Leu Gly Val Ile Leu Leu Glu Leu		
770	775	780
Leu Thr Arg Lys Ser Pro Gly Val Pro Met Asn Gly Leu Asp Leu Pro		
785	790	795
Gln Trp Val Ala Ser Val Val Lys Glu Glu Trp Thr Asn Glu Val Phe		
805	810	815
Asp Ala Asp Leu Met Arg Asp Ala Ser Thr Val Gly Asp Glu Leu Leu		
820	825	830
Asn Thr Leu Lys Leu Ala Leu His Cys Val Asp Pro Ser Pro Ser Ala		
835	840	845
Arg Pro Glu Val His Gln Val Leu Gln Gln Leu Glu Glu Ile Arg Pro		
850	855	860
Glu Arg Ser Val Thr Ala Ser Pro Gly Asp Asp Ile Val		
865	870	875

<210> 1115
 <211> 854
 <212> PRT
 <213> Glycine max

<223> Seq ID: rhg1_pi200499_amplicon

<400> 1115

Met Val Val Ala Val Glu Lys Thr Asn Leu Thr Ser Gln Ser Gln Cys			
1	5	10	15

Phe Asn Arg Val Ser Asp Lys Lys Glu Arg Cys Lys Thr His Met			
20	25	30	

Asn Asn Val Asn Pro Cys Cys Phe Leu Phe Leu Leu Cys Val Trp Ser			
35	40	45	

Leu Val Val Leu Pro Ser Cys Val Arg Pro Val Leu Cys Glu Asp Glu			
50	55	60	

Gly Trp Asp Gly Val Val Val Thr Ala Ser Asn Leu Leu Ala Leu Glu			
65	70	75	80

Ala Phe Lys Gln Glu Leu Val Asp Pro Glu Gly Phe Leu Arg Ser Trp			
85	90	95	

Asn Asp Ser Gly Tyr Gly Ala Cys Ser Gly Gly Trp Val Gly Ile Lys			
100	105	110	

Cys Ala Gln Gly Gln Val Ile Val Ile Gln Leu Pro Trp Lys Gly Leu			
115	120	125	

Arg Gly Arg Ile Thr Asp Lys Ile Gly Gln Leu Gln Gly Leu Arg Lys			
130	135	140	

Leu Ser Leu His Asp Asn Gln Ile Gly Gly Ser Ile Pro Ser Thr Leu			
145	150	155	160

Gly Leu Leu Pro Asn Leu Arg Gly Val Gln Leu Phe Asn Asn Arg Leu			
165	170	175	

Thr Gly Ser Ile Pro Leu Ser Leu Gly Phe Cys Pro Leu Leu Gln Ser			
180	185	190	

Leu Asp Leu Ser Asn Asn Leu Leu Thr Gly Ala Ile Pro Tyr Ser Leu			
195	200	205	

Ala Asn Ser Thr Lys Leu Tyr Trp Leu Asn Leu Ser Phe Asn Ser Phe			
210	215	220	

Ser Gly Pro Leu Pro Ala Ser Leu Thr His Ser Phe Ser Leu Thr Phe			
225	230	235	240

Leu Ser Leu Gln Asn Asn Leu Ser Gly Ser Leu Pro Asn Ser Trp			
245	250	255	

Gly Gly Asn Ser Lys Asn Gly Phe Phe Arg Leu Gln Asn Leu Ile Leu
 260 265 270
 Asp Asn Asn Phe Phe Thr Gly Asp Val Pro Ala Ser Leu Gly Ser Leu
 275 280 285
 Arg Glu Leu Asn Glu Ile Ser Leu Ser His Asn Lys Phe Ser Gly Ala
 290 295 300
 Ile Pro Asn Glu Ile Gly Thr Leu Ser Arg Leu Lys Thr Leu Asp Ile
 305 310 315 320
 Ser Asn Asn Ala Leu Asn Gly Asn Leu Pro Ala Thr Leu Ser Asn Leu
 325 330 335
 Ser Ser Leu Thr Leu Leu Asn Ala .Glu Asn Asn Leu Leu Asp Asn Gln
 340 345 350
 Ile Pro Gln Ser Leu Gly Arg Leu Arg Asn Leu Ser Val Leu Ile Leu
 355 360 365
 Ser Arg Asn Gln Phe Ser Gly His Ile Pro Ser Ser Ile Ala Asn Ile
 370 375 380
 Ser Ser Leu Arg Gln Leu Asp Leu Ser Leu Asn Asn Phe Ser Gly Glu
 385 390 395 400
 Ile Pro Val Ser Phe Asp Ser Gln Arg Ser Leu Asn Leu Phe Asn Val
 405 410 415
 Ser Tyr Asn Ser Leu Ser Gly Ser Val Pro Pro Leu Leu Ala Lys Lys
 420 425 430
 Phe Asn Ser Ser Phe Val Gly Asn Ile Gln Leu Cys Gly Tyr Ser
 435 440 445
 Pro Ser Thr Pro Cys Leu Ser Gln Ala Pro Ser Gln Gly Val Ile Ala
 450 455 460
 Pro Pro Pro Glu Val Ser Lys His His His His Arg Lys Leu Ser Thr
 465 470 475 480
 Lys Asp Ile Ile Leu Ile Val Ala Gly Val Leu Leu Val Val Leu Ile
 485 490 495
 Ile Leu Cys Cys Val Leu Leu Phe Cys Leu Ile Arg Lys Arg Ser Thr
 500 505 510
 Ser Lys Ala Gly Asn Gly Gln Ala Thr Glu Gly Arg Ala Ala Thr Met
 515 520 525
 Arg Thr Glu Lys Gly Val Pro Pro Val Ala Ala Gly Asp Val Glu Ala
 530 535 540
 Gly Gly Glu Ala Gly Gly Lys Leu Val His Phe Asp Gly Pro Met Ala
 545 550 555 560

Phe	Thr	Ala	Asp	Asp	Leu	Leu	Cys	Ala	Thr	Ala	Glu	Ile	Met	Gly	Lys
					565					570				575	
Ser	Thr	Tyr	Gly	Thr	Val	Tyr	Lys	Ala	Ile	Leu	Glu	Asp	Gly	Ser	Gln
					580				585				590		
Val	Ala	Val	Lys	Arg	Leu	Arg	Glu	Lys	Ile	Thr	Lys	Gly	His	Arg	Glu
					595				600				605		
Phe	Glu	Ser	Glu	Val	Ser	Val	Leu	Gly	Lys	Ile	Arg	His	Pro	Asn	Val
					610				615				620		
Leu	Ala	Leu	Arg	Ala	Tyr	Tyr	Leu	Gly	Pro	Lys	Gly	Glu	Lys	Leu	Leu
					625				630			635			640
Val	Phe	Asp	Tyr	Met	Ser	Lys	Gly	Ser	Leu	Ala	Ser	Phe	Leu	His	Gly
					645				650			655			
Gly	Gly	Thr	Glu	Thr	Phe	Ile	Asp	Trp	Pro	Thr	Arg	Met	Lys	Ile	Ala
					660				665			670			
Gln	Asp	Leu	Ala	Arg	Gly	Leu	Phe	Cys	Leu	His	Ser	Gln	Glu	Asn	Ile
					675				680			685			
Ile	His	Gly	Asn	Leu	Thr	Ser	Ser	Asn	Val	Leu	Leu	Asp	Glu	Asn	Thr
					690				695			700			
Asn	Ala	Lys	Ile	Ala	Asp	Phe	Gly	Leu	Ser	Arg	Leu	Met	Ser	Thr	Ala
					705				710			715			720
Ala	Asn	Ser	Asn	Val	Ile	Ala	Thr	Ala	Gly	Ala	Leu	Gly	Tyr	Arg	Ala
					725				730			735			
Pro	Glu	Leu	Ser	Lys	Leu	Lys	Lys	Ala	Asn	Thr	Lys	Thr	Asp	Ile	Tyr
					740				745			750			
Ser	Leu	Gly	Val	Ile	Leu	Leu	Glu	Leu	Leu	Thr	Arg	Lys	Ser	Pro	Gly
					755				760			765			
Val	Pro	Met	Asn	Gly	Leu	Asp	Leu	Pro	Gln	Trp	Val	Ala	Ser	Val	Val
					770				775			780			
Lys	Glu	Glu	Trp	Thr	Asn	Glu	Val	Phe	Asp	Ala	Asp	Leu	Met	Arg	Asp
					785				790			795			800
Ala	Ser	Thr	Val	Gly	Asp	Glu	Leu	Leu	Asn	Thr	Leu	Lys	Leu	Ala	Leu
					805				810			815			
His	Cys	Val	Asp	Pro	Ser	Pro	Ser	Ala	Arg	Pro	Glu	Val	His	Gln	Val
					820				825			830			
Leu	Gln	Gln	Leu	Glu	Glu	Ile	Arg	Pro	Glu	Arg	Ser	Val	Thr	Ala	Ser
					835				840			845			
Pro	Gly	Asp	Asp	Ile	Val										
					850										

<210> 1116
 <211> 894
 <212> PRT
 <213> Glycine max

 <223> Seq ID: rhg4_a3244_amplicon

 <400> 1116

 Met Ser Asn Phe Leu Lys Ser Leu Thr Pro Pro Pro Pro Ser Gly Trp Ser
 1 5 10 15

 Glu Thr Thr Pro Phe Cys Gln Trp Lys Gly Ile Gln Cys Asp Ser Ser
 20 25 30

 Ser His Val Thr Ser Ile Ser Leu Ala Ser His Ser Leu Thr Gly Thr
 35 40 45

 Leu Pro Ser Asp Leu Asn Ser Leu Ser Gln Leu Arg Thr Leu Ser Leu
 50 55 60

 Gln Asp Asn Ser Leu Thr Gly Thr Leu Pro Ser Leu Ser Asn Leu Ser
 65 70 75 80

 Phe Leu Gln Thr Val Tyr Leu Asn Arg Asn Asn Phe Ser Ser Val Ser
 85 90 95

 Pro Thr Ala Phe Ala Ser Leu Thr Ser Leu Gln Thr Leu Ser Leu Gly
 100 105 110

 Ser Asn Pro Ala Leu Gln Pro Trp Ser Phe Pro Thr Asp Leu Thr Ser
 115 120 125

 Ser Ser Asn Leu Ile Asp Leu Asp Leu Ala Thr Val Ser Leu Thr Gly
 130 135 140

 Pro Leu Pro Asp Ile Phe Asp Lys Phe Pro Ser Leu Gln His Leu Arg
 145 150 155 160

 Leu Ser Tyr Asn Asn Leu Thr Gly Asn Leu Pro Ser Ser Phe Ser Ala
 165 170 175

 Ala Asn Asn Leu Glu Thr Leu Trp Leu Asn Asn Gln Ala Ala Gly Leu
 180 185 190

 Ser Gly Thr Leu Leu Val Leu Ser Asn Met Ser Ala Leu Asn Gln Ser
 195 200 205

 Trp Leu Asn Lys Asn Gln Phe Thr Gly Ser Ile Pro Asp Leu Ser Gln
 210 215 220

 Cys Thr Ala Leu Ser Asp Leu Gln Leu Arg Asp Asn Gln Leu Thr Gly
 225 230 235 240

 Val Val Pro Ala Ser Leu Thr Ser Leu Pro Ser Leu Lys Lys Val Ser
 245 250 255

 Leu Asp Asn Asn Glu Leu Gln Gly Pro Val Pro Val Phe Gly Lys Gly

260	265	270
Val Asn Val Thr Leu Asp Gly Ile Asn Ser Phe Cys Leu Asp Thr Pro		
275	280	285
Gly Asn Cys Asp Pro Arg Val Met Val Leu Leu Gln Ile Ala Glu Ala		
290	295	300
Phe Gly Tyr Pro Ile Arg Leu Ala Glu Ser Trp Lys Gly Asn Asp Pro		
305	310	315
Cys Asp Gly Trp Asn Tyr Val Val Cys Ala Ala Gly Lys Ile Ile Thr		
325	330	335
Val Asn Phe Glu Lys Gln Gly Leu Gln Gly Thr Ile Ser Pro Ala Phe		
340	345	350
Ala Asn Leu Thr Asp Leu Arg Thr Leu Phe Leu Asn Gly Asn Asn Leu		
355	360	365
Ile Gly Ser Ile Pro Asp Ser Leu Ile Thr Leu Pro Gln Leu Gln Thr		
370	375	380
Leu Asp Val Ser Asp Asn Asn Leu Ser Gly Leu Val Pro Lys Phe Pro		
385	390	395
Pro Lys Val Lys Leu Val Thr Ala Gly Asn Ala Leu Leu Gly Lys Pro		
405	410	415
Leu Ser Pro Gly Gly Pro Ser Gly Thr Thr Pro Ser Gly Ser Ser		
420	425	430
Thr Gly Gly Ser Gly Gly Glu Ser Ser Lys Gly Asn Ser Ser Val Ser		
435	440	445
Pro Gly Trp Ile Ala Gly Ile Val Val Ile Val Phe Phe Ile Ala		
450	455	460
Val Val Leu Phe Val Ser Trp Lys Cys Phe Val Asn Lys Leu Gln Gly		
465	470	475
Lys Phe Ser Arg Val Lys Gly His Glu Asn Gly Lys Gly Gly Phe Lys		
485	490	495
Leu Asp Ala Val His Val Ser Asn Gly Tyr Gly Gly Val Pro Val Glu		
500	505	510
Leu Gln Ser Gln Ser Ser Gly Asp Arg Ser Asp Leu His Ala Leu Asp		
515	520	525
Gly Pro Thr Phe Ser Ile Gln Val Leu Arg Gln Val Thr Asn Asn Phe		
530	535	540
Ser Glu Glu Asn Ile Leu Gly Arg Gly Gly Phe Gly Val Val Tyr Lys		
545	550	555
Gly Val Leu His Asp Gly Thr Lys Ile Ala Val Lys Arg Met Glu Ser		
565	570	575

Val	Ala	Met	Gly	Asn	Lys	Gly	Gln	Lys	Glu	Phe	Glu	Ala	Glu	Ile	Ala
		580					585					590			
Leu	Leu	Ser	Lys	Val	Arg	His	Arg	His	Leu	Val	Ala	Leu	Leu	Gly	Tyr
		595					600					605			
Cys	Ile	Asn	Gly	Asn	Glu	Arg	Leu	Leu	Val	Tyr	Glu	Tyr	Met	Pro	Gln
		610					615					620			
Gly	Thr	Leu	Thr	Gln	His	Leu	Phe	Glu	Trp	Gln	Glu	His	Gly	Tyr	Ala
		625					630					635			640
Pro	Leu	Thr	Trp	Lys	Gln	Arg	Val	Val	Ile	Ala	Leu	Asp	Val	Ala	Arg
		645					650					655			
Gly	Val	Glu	Tyr	Leu	His	Ser	Leu	Ala	Gln	Gln	Ser	Phe	Ile	His	Arg
		660					665					670			
Asp	Leu	Lys	Pro	Ser	Asn	Ile	Leu	Leu	Gly	Asp	Asp	Met	Arg	Ala	Lys
		675					680					685			
Val	Ala	Asp	Phe	Gly	Leu	Val	Lys	Asn	Ala	Pro	Asp	Gly	Lys	Tyr	Ser
		690					695					700			
Val	Glu	Thr	Arg	Leu	Ala	Gly	Thr	Phe	Gly	Tyr	Leu	Ala	Pro	Glu	Tyr
		705					710					715			720
Ala	Ala	Thr	Gly	Arg	Val	Thr	Thr	Lys	Val	Asp	Val	Tyr	Ala	Phe	Gly
		725					730					735			
Val	Val	Leu	Met	Glu	Leu	Ile	Thr	Gly	Arg	Lys	Ala	Leu	Asp	Asp	Thr
		740					745					750			
Val	Pro	Asp	Glu	Arg	Ser	His	Leu	Val	Thr	Trp	Phe	Arg	Arg	Val	Leu
		755					760					765			
Ile	Asn	Lys	Glu	Asn	Ile	Pro	Lys	Ala	Ile	Asp	Gln	Ile	Leu	Asn	Pro
		770					775					780			
Asp	Glu	Glu	Thr	Met	Gly	Ser	Ile	Tyr	Thr	Val	Ala	Glu	Leu	Ala	Gly
		785					790					795			800
His	Cys	Thr	Ala	Arg	Glu	Pro	Tyr	Gln	Arg	Pro	Asp	Met	Gly	His	Ala
		805					810					815			
Val	Asn	Val	Leu	Val	Pro	Leu	Val	Glu	Gln	Trp	Lys	Pro	Thr	Ser	His
		820					825					830			
Asp	Glu	Glu	Glu	Asp	Gly	Ser	Gly	Gly	Asp	Leu	His	Met	Ser	Leu	
		835					840					845			
Pro	Gln	Ala	Leu	Arg	Arg	Trp	Gln	Ala	Asn	Glu	Gly	Thr	Ser	Ser	Ile
		850					855					860			
Phen	Asn	Asp	Ile	Ser	Ile	Ser	Gln	Thr	Gln	Ser	Ser	Ile	Ser	Ser	Lys
		865					870					875			880

Pro Ala Gly Phe Ala Asp Ser Phe Asp Ser Met Asp Cys Arg
885 890

<210> 1117
<211> 894
<212> PRT
<213> Glycine max

<223> Seq ID: rhg4_Minsoy_amplicon

<400> 1117

Met Ser Asn Phe Leu Lys Ser Leu Thr Pro Pro Pro Ser Gly Trp Ser
1 5 10 15

Glu Thr Thr Pro Phe Cys Gln Trp Lys Gly Ile Gln Cys Asp Ser Ser
20 25 30

Ser His Val Thr Ser Ile Ser Leu Ala Ser His Ser Leu Thr Gly Thr
35 40 45

Leu Pro Ser Asp Leu Asn Ser Leu Ser Gln Leu Arg Thr Leu Ser Leu
50 55 60

Gln Asp Asn Ser Leu Thr Gly Thr Leu Pro Ser Leu Ser Asn Leu Ser
65 70 75 80

Phe Leu Gln Thr Val Tyr Leu Asn Arg Asn Asn Phe Ser Ser Val Ser
85 90 95

Pro Thr Ala Phe Ala Ser Leu Thr Ser Leu Gln Thr Leu Ser Leu Gly
100 105 110

Ser Asn Pro Ala Leu Gln Pro Trp Ser Phe Pro Thr Asp Leu Thr Ser
115 120 125

Ser Ser Asn Leu Ile Asp Leu Asp Leu Ala Thr Val Ser Leu Thr Gly
130 135 140

Pro Leu Pro Asp Ile Phe Asp Lys Phe Pro Ser Leu Gln His Leu Arg
145 150 155 160

Leu Ser Tyr Asn Asn Leu Thr Gly Asn Leu Pro Ser Ser Phe Ser Ala
165 170 175

Ala Asn Asn Leu Glu Thr Leu Trp Leu Asn Asn Gln Ala Ala Gly Leu
180 185 190

Ser Gly Thr Leu Leu Val Leu Ser Asn Met Ser Ala Leu Asn Gln Ser
195 200 205

Trp Leu Asn Lys Asn Gln Phe Thr Gly Ser Ile Pro Asp Leu Ser Gln
210 215 220

Cys Thr Ala Leu Ser Asp Leu Gln Leu Arg Asp Asn Gln Leu Thr Gly
225 230 235 240

Val	Val	Pro	Ala	Ser	Leu	Thr	Ser	Leu	Pro	Ser	Leu	Lys	Lys	Val	Ser
					245				250					255	
Leu	Asp	Asn	Asn	Glu	Leu	Gln	Gly	Pro	Val	Pro	Val	Phe	Gly	Lys	Gly
					260			265					270		
Val	Asn	Val	Thr	Leu	Asp	Gly	Ile	Asn	Ser	Phe	Cys	Leu	Asp	Thr	Pro
					275			280					285		
Gly	Asn	Cys	Asp	Pro	Arg	Val	Met	Val	Leu	Leu	Gln	Ile	Ala	Glu	Ala
					290			295			300				
Phe	Gly	Tyr	Pro	Ile	Arg	Leu	Ala	Glu	Ser	Trp	Lys	Gly	Asn	Asp	Pro
					305			310			315			320	
Cys	Asp	Gly	Trp	Asn	Tyr	Val	Val	Cys	Ala	Ala	Gly	Lys	Ile	Ile	Thr
					325			330			335				
Val	Asn	Phe	Glu	Lys	Gln	Gly	Leu	Gln	Gly	Thr	Ile	Ser	Pro	Ala	Phe
					340			345			350				
Ala	Asn	Leu	Thr	Asp	Leu	Arg	Thr	Leu	Phe	Leu	Asn	Gly	Asn	Asn	Leu
					355			360			365				
Ile	Gly	Ser	Ile	Pro	Asp	Ser	Leu	Ile	Thr	Leu	Pro	Gln	Leu	Gln	Thr
					370			375			380				
Leu	Asp	Val	Ser	Asp	Asn	Asn	Leu	Ser	Gly	Leu	Val	Pro	Lys	Phe	Pro
					385			390			395			400	
Pro	Lys	Val	Lys	Leu	Val	Thr	Ala	Gly	Asn	Ala	Leu	Leu	Gly	Lys	Pro
					405			410			415				
Leu	Ser	Pro	Gly	Gly	Pro	Ser	Gly	Thr	Thr	Pro	Ser	Gly	Ser	Ser	
					420			425			430				
Thr	Gly	Gly	Ser	Gly	Gly	Glu	Ser	Ser	Lys	Gly	Asn	Ser	Ser	Val	Ser
					435			440			445				
Pro	Gly	Trp	Ile	Ala	Gly	Ile	Val	Val	Ile	Val	Leu	Phe	Phe	Ile	Ala
					450			455			460				
Val	Val	Leu	Phe	Val	Ser	Trp	Lys	Cys	Phe	Val	Asn	Lys	Leu	Gln	Gly
					465			470			475			480	
Lys	Phe	Ser	Arg	Val	Lys	Gly	His	Glu	Asn	Gly	Lys	Gly	Gly	Phe	Lys
					485			490			495				
Leu	Asp	Ala	Val	His	Val	Ser	Asn	Gly	Tyr	Gly	Gly	Val	Pro	Val	Glu
					500			505			510				
Leu	Gln	Ser	Gln	Ser	Ser	Gly	Asp	Arg	Ser	Asp	Leu	His	Ala	Leu	Asp
					515			520			525				
Gly	Pro	Thr	Phe	Ser	Ile	Gln	Val	Leu	Arg	Gln	Val	Thr	Asn	Asn	Phe
					530			535			540				
Ser	Glu	Glu	Asn	Ile	Leu	Gly	Arg	Gly	Gly	Phe	Gly	Val	Val	Tyr	Lys

545	550	555	560
Gly Val Leu His Asp Gly Thr Lys Ile Ala Val Lys Arg Met Glu Ser			
565	570	575	
Val Ala Met Gly Asn Lys Gly Gln Lys Glu Phe Glu Ala Glu Ile Ala			
580	585	590	
Leu Leu Ser Lys Val Arg His Arg His Leu Val Ala Leu Leu Gly Tyr			
595	600	605	
Cys Ile Asn Gly Asn Glu Arg Leu Leu Val Tyr Glu Tyr Met Pro Gln			
610	615	620	
Gly Thr Leu Thr Gln His Leu Phe Glu Trp Gln Glu His Gly Tyr Ala			
625	630	635	640
Pro Leu Thr Trp Lys Gln Arg Val Val Ile Ala Leu Asp Val Ala Arg			
645	650	655	
Gly Val Glu Tyr Leu His Ser Leu Ala Gln Gln Ser Phe Ile His Arg			
660	665	670	
Asp Leu Lys Pro Ser Asn Ile Leu Leu Gly Asp Asp Met Arg Ala Lys			
675	680	685	
Val Ala Asp Phe Gly Leu Val Lys Asn Ala Pro Asp Gly Lys Tyr Ser			
690	695	700	
Val Glu Thr Arg Leu Ala Gly Thr Phe Gly Tyr Leu Ala Pro Glu Tyr			
705	710	715	720
Ala Ala Thr Gly Arg Val Thr Thr Lys Val Asp Val Tyr Ala Phe Gly			
725	730	735	
Val Val Leu Met Glu Leu Ile Thr Gly Arg Lys Ala Leu Asp Asp Thr			
740	745	750	
Val Pro Asp Glu Arg Ser His Leu Val Thr Trp Phe Arg Arg Val Leu			
755	760	765	
Ile Asn Lys Glu Asn Ile Pro Lys Ala Ile Asp Gln Ile Leu Asn Pro			
770	775	780	
Asp Glu Glu Thr Met Gly Ser Ile Tyr Thr Val Ala Glu Leu Ala Gly			
785	790	795	800
His Cys Thr Ala Arg Glu Pro Tyr Gln Arg Pro Asp Met Gly His Ala			
805	810	815	
Val Asn Val Leu Val Pro Leu Val Glu Gln Trp Lys Pro Thr Ser His			
820	825	830	
Asp Glu Glu Glu Asp Gly Ser Gly Asp Leu His Met Ser Leu			
835	840	845	
Pro Gln Ala Leu Arg Arg Trp Gln Ala Asn Glu Gly Thr Ser Ser Ile			
850	855	860	

Phe Asn Asp Ile Ser Ile Ser Gln Thr Gln Ser Ser Ile Ser Ser Lys
 865 870 875 880

Pro Ala Gly Phe Ala Asp Ser Phe Asp Ser Met Asp Cys Arg
 885 890

<210> 1118
 <211> 894
 <212> PRT
 <213> Glycine max

<223> Seq ID: rhg4_Jack_amplicon

<400> 1118

Met Ser Asn Phe Leu Lys Ser Leu Thr Pro Pro Pro Ser Gly Trp Ser
 1 5 10 15

Glu Thr Thr Pro Phe Cys Gln Trp Lys Gly Ile Gln Cys Asp Ser Ser
 20 25 30

Ser His Val Thr Ser Ile Ser Leu Ala Ser Gln Ser Leu Thr Gly Thr
 35 40 45

Leu Pro Ser Asp Leu Asn Ser Leu Ser Gln Leu Arg Thr Leu Ser Leu
 50 55 60

Gln Asp Asn Ser Leu Thr Gly Thr Leu Pro Ser Leu Ser Asn Leu Ser
 65 70 75 80

Phe Leu Gln Thr Val Tyr Leu Asn Arg Asn Asn Phe Ser Ser Val Ser
 85 90 95

Pro Thr Ala Phe Ala Ser Leu Thr Ser Leu Gln Thr Leu Ser Leu Gly
 100 105 110

Ser Asn Pro Ala Leu Gln Pro Trp Ser Phe Pro Thr Asp Leu Thr Ser
 115 120 125

Ser Ser Asn Leu Ile Asp Leu Asp Leu Ala Thr Val Ser Leu Thr Gly
 130 135 140

Pro Leu Pro Asp Ile Phe Asp Lys Phe Pro Ser Leu Gln His Leu Arg
 145 150 155 160

Leu Ser Tyr Asn Asn Leu Thr Gly Asn Leu Pro Ser Ser Phe Ser Ala
 165 170 175

Ala Asn Asn Leu Glu Thr Leu Trp Leu Asn Asn Gln Ala Ala Gly Leu
 180 185 190

Ser Gly Thr Leu Leu Val Leu Ser Asn Met Ser Ala Leu Asn Gln Ser
 195 200 205

Trp Leu Asn Lys Asn Gln Phe Thr Gly Ser Ile Pro Asp Leu Ser Gln
 210 215 220

Cys Thr Ala Leu Ser Asp Leu Gln Leu Arg Asp Asn Gln Leu Thr Gly		
225	230	235
240	245	250
255	260	265
270	275	280
285	290	295
290	295	300
Phe Gly Tyr Pro Ile Arg Leu Ala Glu Ser Trp Lys Gly Asn Asp Pro		
305	310	315
320	325	330
335	340	345
350	355	360
365	370	375
380	385	390
395	395	400
Pro Lys Val Lys Leu Val Thr Ala Gly Asn Ala Leu Leu Gly Lys Pro		
405	410	415
Leu Ser Pro Gly Gly Pro Ser Gly Thr Thr Pro Ser Gly Ser Ser		
420	425	430
445	435	440
445	450	455
460	465	470
475	475	480
Lys Phe Ser Arg Val Lys Gly His Glu Asn Gln Gly Lys Gly Phe Lys		
485	490	495
Leu Asp Ala Val His Val Ser Asn Gly Tyr Gly Val Pro Val Glu		
500	505	510
515	515	520
525	525	

Gly Pro Thr Phe Ser Ile Gln Val Leu Arg Gln Val Thr Asn Asn Phe
 530 535 540

Ser Glu Glu Asn Ile Leu Gly Arg Gly Gly Phe Gly Val Val Tyr Lys
 545 550 555 560

Gly Val Leu His Asp Gly Thr Lys Ile Ala Val Lys Arg Met Glu Ser
 565 570 575

Val Ala Met Gly Asn Lys Gly Gln Lys Glu Phe Glu Ala Glu Ile Ala
 580 585 590

Leu Leu Ser Lys Val Arg His Arg His Leu Val Ala Leu Leu Gly Tyr
 595 600 605

Cys Ile Asn Gly Asn Glu Arg Leu Leu Val Tyr Glu Tyr Met Pro Gln
 610 615 620

Gly Thr Leu Thr Gln His Leu Phe Glu Trp Gln Glu His Gly Tyr Ala
 625 630 635 640

Pro Leu Thr Trp Lys Gln Arg Val Val Ile Ala Leu Asp Val Ala Arg
 645 650 655

Gly Val Glu Tyr Leu His Ser Leu Ala Gln Gln Ser Phe Ile His Arg
 660 665 670

Asp Leu Lys Pro Ser Asn Ile Leu Leu Gly Asp Asp Met Arg Ala Lys
 675 680 685

Val Ala Asp Phe Gly Leu Val Lys Asn Ala Pro Asp Gly Lys Tyr Ser
 690 695 700

Val Glu Thr Arg Leu Ala Gly Thr Phe Gly Tyr Leu Ala Pro Glu Tyr
 705 710 715 720

Ala Ala Thr Gly Arg Val Thr Thr Lys Val Asp Val Tyr Ala Phe Gly
 725 730 735

Val Val Leu Met Glu Leu Ile Thr Gly Arg Lys Ala Leu Asp Asp Thr
 740 745 750

Val Pro Asp Glu Arg Ser His Leu Val Thr Trp Phe Arg Arg Val Leu
 755 760 765

Ile Asn Lys Glu Asn Ile Pro Lys Ala Ile Asp Gln Ile Leu Asn Pro
 770 775 780

Asp Glu Glu Thr Met Gly Ser Ile Tyr Thr Val Ala Glu Leu Ala Gly
 785 790 795 800

His Cys Thr Ala Arg Glu Pro Tyr Gln Arg Pro Asp Met Gly His Ala
 805 810 815

Val Asn Val Leu Val Pro Leu Val Glu Gln Trp Lys Pro Thr Ser His
 820 825 830

Asp Glu Glu Glu Asp Gly Ser Gly Asp Leu His Met Ser Leu

835

840

845

Pro Gln Ala Leu Arg Arg Trp Gln Ala Asn Glu Gly Thr Ser Ser Ile
 850 855 860

Phe Asn Asp Ile Ser Ile Ser Gln Thr Gln Ser Ser Ile Ser Ser Lys
 865 870 875 880

Pro Ala Gly Phe Ala Asp Ser Phe Asp Ser Met Asp Cys Arg
 885 890

<210> 1119

<211> 894

<212> PRT

<213> Glycine max

<223> Seq ID: rhg4_peking_amplicon

<400> 1119

Met Ser Asn Phe Leu Lys Ser Leu Thr Pro Pro Pro Ser Gly Trp Ser
 1 5 10 15

Glu Thr Thr Pro Phe Cys Gln Trp Lys Gly Ile Gln Cys Asp Ser Ser
 20 25 30

Ser His Val Thr Ser Ile Ser Leu Ala Ser Gln Ser Leu Thr Gly Thr
 35 40 45

Leu Pro Ser Asp Leu Asn Ser Leu Ser Gln Leu Arg Thr Leu Ser Leu
 50 55 60

Gln Asp Asn Ser Leu Thr Gly Thr Leu Pro Ser Leu Ser Asn Leu Ser
 65 70 75 80

Phe Leu Gln Thr Val Tyr Phe Asn Arg Asn Asn Phe Ser Ser Val Ser
 85 90 95

Pro Thr Ala Phe Ala Ser Leu Thr Ser Leu Gln Thr Leu Ser Leu Gly
 100 105 110

Ser Asn Pro Ala Leu Gln Pro Trp Ser Phe Pro Thr Asp Leu Thr Ser
 115 120 125

Ser Ser Asn Leu Ile Asp Leu Asp Leu Ala Thr Val Ser Leu Thr Gly
 130 135 140

Pro Leu Pro Asp Ile Phe Asp Lys Phe Pro Ser Leu Gln His Leu Arg
 145 150 155 160

Leu Ser Tyr Asn Asn Leu Thr Gly Asn Leu Pro Ser Ser Phe Ser Ala
 165 170 175

Ala Asn Asn Leu Glu Thr Leu Trp Leu Asn Asn Gln Ala Ala Gly Leu
 180 185 190

Ser Gly Thr Leu Leu Val Leu Ser Asn Met Ser Ala Leu Asn Gln Ser

195	200	205
Trp Leu Asn Lys Asn Gln Phe Thr Gly Ser Ile Pro Asp Leu Ser Gln 210	215	220
Cys Thr Ala Leu Ser Asp Leu Gln Leu Arg Asp Asn Gln Leu Thr Gly 225	230	235
Val Val Pro Ala Ser Leu Thr Ser Leu Pro Ser Leu Lys Lys Val Ser 245	250	255
Leu Asp Asn Asn Glu Leu Gln Gly Pro Val Pro Val Phe Gly Lys Gly 260	265	270
Val Asn Val Thr Leu Asp Gly Ile Asn Ser Phe Cys Leu Asp Thr Pro 275	280	285
Gly Asn Cys Asp Pro Arg Val Met Val Leu Leu Gln Ile Ala Glu Ala 290	295	300
Phe Gly Tyr Pro Ile Arg Leu Ala Glu Ser Trp Lys Gly Asn Asp Pro 305	310	315
Cys Asp Gly Trp Asn Tyr Val Val Cys Ala Ala Gly Lys Ile Ile Thr 325	330	335
Val Asn Phe Glu Lys Gln Gly Leu Gln Gly Thr Ile Ser Pro Ala Phe 340	345	350
Ala Asn Leu Thr Asp Leu Arg Thr Leu Phe Leu Asn Gly Asn Asn Leu 355	360	365
Ile Gly Ser Ile Pro Asp Ser Leu Ile Thr Leu Pro Gln Leu Gln Thr 370	375	380
Leu Asp Val Ser Asp Asn Asn Leu Ser Gly Leu Val Pro Lys Phe Pro 385	390	395
Pro Lys Val Lys Leu Val Thr Ala Gly Asn Ala Leu Leu Gly Lys Pro 405	410	415
Leu Ser Pro Gly Gly Pro Ser Gly Thr Thr Pro Ser Gly Ser Ser 420	425	430
Thr Gly Gly Ser Gly Gly Glu Ser Ser Lys Gly Asn Ser Ser Val Ser 435	440	445
Pro Gly Trp Ile Ala Gly Ile Val Val Ile Val Leu Phe Phe Ile Ala 450	455	460
Val Val Leu Phe Val Ser Trp Lys Cys Phe Val Asn Lys Leu Gln Gly 465	470	475
Lys Phe Ser Arg Val Lys Gly His Glu Asn Gly Lys Gly Phe Lys 485	490	495
Leu Asp Ala Val His Val Ser Asn Gly Tyr Gly Gly Val Pro Val Glu 500	505	510

Leu Gln Ser Gln Ser Ser Gly Asp Arg Ser Asp Asp Leu His Ala Leu Asp
 515 520 525
 Gly Pro Thr Phe Ser Ile Gln Val Leu Arg Gln Val Thr Asn Asn Phe
 530 535 540
 Ser Glu Glu Asn Ile Leu Gly Arg Gly Gly Phe Gly Val Val Tyr Lys
 545 550 555 560
 Gly Val Leu His Asp Gly Thr Lys Ile Ala Val Lys Arg Met Glu Ser
 565 570 575
 Val Ala Met Gly Asn Lys Gly Gln Lys Glu Phe Glu Ala Glu Ile Ala
 580 585 590
 Leu Leu Ser Lys Val Arg His Arg His Leu Val Ala Leu Leu Gly Tyr
 595 600 605
 Cys Ile Asn Gly Asn Glu Arg Leu Leu Val Tyr Glu Tyr Met Pro Gln
 610 615 620
 Gly Thr Leu Thr Gln His Leu Phe Glu Trp Gln Glu His Gly Tyr Ala
 625 630 635 640
 Pro Leu Thr Trp Lys Gln Arg Val Val Ile Ala Leu Asp Val Ala Arg
 645 650 655
 Gly Val Glu Tyr Leu His Ser Leu Ala Gln Gln Ser Phe Ile His Arg
 660 665 670
 Asp Leu Lys Pro Ser Asn Ile Leu Leu Gly Asp Asp Met Arg Ala Lys
 675 680 685
 Val Ala Asp Phe Gly Leu Val Lys Asn Ala Pro Asp Gly Lys Tyr Ser
 690 695 700
 Val Glu Thr Arg Leu Ala Gly Thr Phe Gly Tyr Leu Ala Pro Glu Tyr
 705 710 715 720
 Ala Ala Thr Gly Arg Val Thr Thr Lys Val Asp Val Tyr Ala Phe Gly
 725 730 735
 Val Val Leu Met Glu Leu Ile Thr Gly Arg Lys Ala Leu Asp Asp Thr
 740 745 750
 Val Pro Asp Glu Arg Ser His Leu Val Thr Trp Phe Arg Arg Val Leu
 755 760 765
 Ile Asn Lys Glu Asn Ile Pro Lys Ala Ile Asp Gln Ile Leu Asn Pro
 770 775 780
 Asp Glu Glu Thr Met Gly Ser Ile Tyr Thr Val Ala Glu Leu Ala Gly
 785 790 795 800
 His Cys Thr Ala Arg Glu Pro Tyr Gln Arg Pro Asp Met Gly His Ala
 805 810 815

Val Asn Val Leu Val Pro Leu Val Glu Gln Trp Lys Pro Thr Ser His
820 825 830

Asp Glu Glu Glu Glu Asp Gly Ser Gly Gly Asp Leu His Met Ser Leu
835 840 845

Pro Gln Ala Leu Arg Arg Trp Gln Ala Asn Glu Gly Thr Ser Ser Ile
850 855 860

Phe Asn Asp Ile Ser Ile Ser Gln Thr Gln Ser Ser Ile Ser Ser Lys
865 870 875 880

Pro Ala Gly Phe Ala Asp Ser Phe Asp Ser Met Asp Cys Arg
885 890

<210> 1120

<211> 23

<212> PRT

<213> Artificial

<223> Seq ID: consensusLRR

<400> 1120

Leu Phe Ser Asn Leu Pro Asn Leu Glu Glu Leu Asp Leu Ser Asn Asn
1 5 10 15

Leu Thr Ser Leu Pro Pro Gly
20

<210> 1121

<211> 289

<212> PRT

<213> Artificial

<223> Seq ID: rhg1LRR

<400> 1121

Thr Leu Gly Leu Leu Pro Gly Leu Arg Lys Leu Ser Leu His Asp Asn
1 5 10 15

Gln Ile Gly Gly Ser Ile Pro Ser Ser Leu Gly Phe Cys Pro Asn Leu
20 25 30

Arg Gly Val Gln Leu Phe Asn Asn Arg Leu Thr Gly Ser Ile Pro Leu
35 40 45

Leu Ala Asn Ser Thr Leu Leu Gln Ser Leu Asp Leu Ser Asn Asn Leu
 50 55 60
 Leu Thr Gly Ala Ile Pro Tyr Ser Leu Thr His Ser Phe Lys Leu Tyr
 65 70 75 80
 Trp Leu Asn Leu Ser Phe Asn Ser Phe Ser Gly Pro Leu Pro Ala Ser
 85 90 95
 Trp Gly Gly Asn Ser Lys Ser Leu Thr Phe Leu Ser Leu Gln Asn Asn
 100 105 110
 Asn Leu Ser Gly Ser Leu Pro Asn Ser Leu Gly Ser Leu Arg Arg Leu
 115 120 125
 Gln Asn Leu Ile Leu Asp His Asn Phe Phe Thr Gly Asp Val Pro Ala
 130 135 140
 Ser Ile Gly Thr Leu Ser Glu Leu Asn Glu Leu Ser Leu Ser His Asn
 145 150 155 160
 Lys Phe Ser Gly Ala Ile Pro Asn Glu Thr Leu Ser Asn Leu Ser Arg
 165 170 175
 Leu Lys Thr Leu Asp Ile Ser Asn Asn Ala Leu Asn Gly Asn Leu Pro
 180 185 190
 Ala Ser Leu Gly Arg Leu Arg Ser Leu Thr Leu Leu Asn Ala Glu Asn
 195 200 205
 Asn Leu Leu Asp Asn Gln Ile Pro Gln Ser Ile Ala Asn Ile Ser Asn
 210 215 220
 Leu Ser Val Leu Ile Leu Ser Arg Asn Gln Phe Ser Gly His Ile Pro
 225 230 235 240
 Ser Ser Phe Asp Ser Gln Arg Ser Leu Arg Gln Leu Asp Leu Ser Leu
 245 250 255
 Asn Asn Phe Ser Gly Glu Ile Pro Val Leu Leu Ala Lys Lys Phe Asn
 260 265 270
 Ser Leu Asn Leu Phe Asn Val Ser Asn Ser Leu Ser Gly Ser Val Pro
 275 280 285
 Pro
 <210> 1122
 <211> 281
 <212> PRT
 <213> Artificial

<223> Seq ID: Rhg4LRR

<400> 1122

His Val Thr Ser Ile Ser Leu Ala Ser His Ser Leu Thr Gly Thr Leu			
1	5	10	15

Pro Ser Asp Leu Asn Ser Leu Ser Gln Leu Arg Thr Leu Ser Leu Gln		
20	25	30

Asp Asn Ser Leu Gly Thr Leu Pro Ser Leu Ser Asn Leu Ser Phe Leu		
35	40	45

Gln Thr Val Tyr Leu Asn Arg Asn Asn Phe Ser Ser Val Pro Thr Ala		
50	55	60

Phe Ala Ser Leu Thr Ser Leu Gln Thr Leu Ser Leu Gly Ser Asn Pro			
65	70	75	80

Ala Leu Gln Pro Trp Ser Phe Pro Thr Asp Leu Thr Ser Ser Ser Asn		
85	90	95

Leu Ile Asp Leu Asp Leu Ala Thr Val Ser Leu Thr Gly Pro Leu Pro		
100	105	110

Asp Ile Phe Asp Lys Phe Pro Ser Leu Gln His Leu Arg Leu Ser Tyr		
115	120	125

Asn Asn Leu Thr Gly Asn Leu Pro Ser Ser Phe Ser Ala Ala Asn Asn		
130	135	140

Leu Glu Thr Leu Trp Leu Asn Asn Gln Ala Ala Gly Leu Ser Gly Thr			
145	150	155	160

Leu Leu Leu Ser Asn Met Ser Ala Leu Ser Asp Leu Gln Leu Arg Asp		
165	170	175

, Asn Gln Leu Thr Gly Val Val Pro Ala Ser Leu Thr Ser Leu Pro Ser		
180	185	190

Leu Lys Lys Val Ser Leu Asp Asn Asn Glu Leu Gln Gly Pro Val Pro		
195	200	205

Val Phe Gly Lys Gly Val Asn Lys Ile Ile Thr Val Asn Phe Glu Lys		
210	215	220

Gln Gly Leu Gln Gly Thr Ile Ser Pro Ala Phe Ala Asn Leu Thr Asp			
225	230	235	240

Leu Arg Thr Leu Phe Leu Asn Gly Asn Asn Leu Ile Gly Ser Ile Pro		
245	250	255

Asp Ser Leu Ile Thr Leu Pro Gln Leu Gln Thr Leu Asp Val Ser Asp		
260	265	270

Asn Asn Leu Ser Gly Leu Val Pro Lys		
275	280	

<210> 1123

<211> 27

<212> DNA

<213> Glycine max

<223> Seq ID: 240017_region_G3_forward_1_b

<400> 1123

gttgttatgga tggtaaaaat tc当地aac

27