

Estimation

Hypothesis Testing

"Is the mean return greater than 0?"

"Is the population standard deviation greater than 10%?"

Specify
SIGNIFICANCE
LEVEL

State
DECISION
RULE

COLLECT & TEST

Data

Make
STATISTICAL
DECISION

Make
ECONOMIC
DECISION

Null Hypothesis, H₀

hypothesis to be tested

Alternative Hypothesis, HA

hypothesis accepted when Ho is rejected

Population parameter, 0

Possible value, θ_0

Specify SIGNIFICANCE LEVEL

State DECISION RULE

COLLECT & TEST Data

Make STATISTICAL DECISION

Make **ECONOMIC** DECISION

	Stat	e tn	e
HY	POT	ГНЕ	ESIS

Null Hypothesis, H ₀	Alternative Hypothesis, H			
$\theta = \theta_0$	$\theta \neq \theta_0$			
$\theta \leq \theta_0$	$\theta > \theta_0$			
$\theta \geq \theta_0$	$\theta < \theta_0$			

$$\theta = R_f - R_b$$

H₀: θ≤0

 $H_A: \theta > 0$

Specify SIGNIFICANCE LEVEL

State DECISION RULE

COLLECT & **TEST** Data

Make STATISTICAL DECISION

Make **ECONOMIC DECISION**

$\theta = R_f - R_b$

H₀: θ≤0

 $H_A: \theta > 0$

t-statistic =
$$\frac{\bar{X}\% - 0\%}{s_x / \sqrt{30}}$$
 (df=29)

Test Statistic

value that is the basis for rejecting Ho

Test statistic =
$$\frac{\bar{X}\% - 0\%}{s_x / \sqrt{30}} \leftarrow \text{CLT}$$

z-distribution t-distribution chi-square distribution F-distribution

Sample n=30 **X**=?% **s**x=?%

COLLECT & **TEST** Data

Make STATISTICAL DECISION

Make **ECONOMIC** DECISION

$$\theta = R_f - R_b$$

$$H_A: \theta > 0$$

t-statistic =
$$\frac{\bar{X}\% - 0\%}{s_x / \sqrt{30}}$$
 (df=29) Type II Error failure to reject

Type I Error

rejection of the null hypothesis when it is actually true

failure to reject the null hypothesis when it is actually false

Specify SIGNIFICANCE LEVEL

State DECISION RULE

COLLECT & **TEST** Data

Make STATISTICAL DECISION

Make **ECONOMIC** DECISION

$$\theta = R_f - R_b$$

H₀: θ≤0

 $H_A: \theta > 0$

t-statistic =
$$\frac{\bar{X}\% - 0\%}{s_x / \sqrt{30}}$$
 (df=29)

P(Type I Error) = α

Correct **Decision** Difficult to quantify

Power of a test

State the
HYPOTHESIS S1

Identify
TEST
STATISTIC

Specify
SIGNIFICANCE
LEVEL

State
DECISION
RULE

COLLECT & TEST

Data

Make STATISTICAL DECISION

State the TEST
HYPOTHESIS STATISTIC

Specify
SIGNIFICANCE
LEVEL

State
DECISION
RULE

COLLECT & TEST

Data

Make STATISTICAL DECISION

State
DECISION
RULE

COLLECT & TEST

Data

Make
STATISTICAL
DECISION

$$\theta = R_f - R_b$$

$$H_A: \theta > 0$$

t-statistic =
$$\frac{\bar{X}\% - 0\%}{s_x / \sqrt{30}}$$
 (df=29)

$$\alpha = 5\%$$

State the HYPOTHESIS

nuggets

Identify
TEST
STATISTIC

Specify
SIGNIFICANCE
LEVEL

State
DECISION
RULE

COLLECT & TEST

Data

Make
STATISTICAL
DECISION

State the HYPOTHESIS

Identify
TEST
STATISTIC

Specify
SIGNIFICANCE
LEVEL

State
DECISION
RULE

COLLECT & TEST
Data

Make
STATISTICAL
DECISION

State the HYPOTHESIS

Identify
TEST
STATISTIC

Specify
SIGNIFICANCE
LEVEL

State
DECISION
RULE

COLLECT & TEST

Data

Make
STATISTICAL
DECISION

Make
ECONOMIC
DECISION

$\theta = R_f - R_b$

$$H_A: \theta > 0$$

t-statistic =
$$\frac{\bar{X}\% - 0\%}{s_x / \sqrt{30}}$$
 (df=29)

$$\alpha = 5\%$$

cum. prob	t .50	t.75	t _{.80}	t .85	t .90	t 95	t.975	t .99	t .995	t .999	t .9995
one-tail	l	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails		0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df	•										
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19		0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21		0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22		0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23		0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	1	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26		0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27		0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28		0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29		0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30		0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40		A 681	0.851	1.050	1 202	1 69/	2 021	2 423	2 704	2 207	2 551

Hypothesis Testing Procedu

COLLECT & TEST
Data

Make
STATISTICAL
DECISION

Make
ECONOMIC
DECISION

$$\theta = R_f - R_b$$

$$H_A: \theta > 0$$

t-statistic =
$$\frac{\bar{X}\% - 0\%}{s_x / \sqrt{30}}$$
 (df=29)

$$\alpha = 5\%$$

Reject H_0 if t > 1.699

$\theta = R_f - R_b$

$$H_A: \theta > 0$$

t-statistic =
$$\frac{\bar{X}\% - 0\%}{s_x / \sqrt{30}}$$
 (df=29)

$$\alpha = 5\%$$

Reject H_0 if t > 1.699

Ensuring the Quality of the Sample

- Check for measurement errors
- Avoid sample selection bias
 - Especially survivorship bias
- Be aware of time period bias

Hypothesis Testing Prod

Specify
SIGNIFICANCE
LEVEL

State
DECISION
RULE

COLLECT & TEST

Data

Make
STATISTICAL
DECISION

Make
ECONOMIC
DECISION

$$\theta = R_f - R_b$$

H₀: θ≤0

 $H_A: \theta > 0$

t-statistic =
$$\frac{\bar{X}\% - 0\%}{s_x / \sqrt{30}}$$
 (df=29)

 $\alpha = 5\%$

Reject H_0 if t > 1.699

Conclusion: The mutual fund outperforms the benchmark at 5% significance level.

Hypothesis Testing Procedure

$$\theta = R_f - R_b$$

H₀: θ≤0

 $H_A: \theta > 0$

t-statistic =
$$\frac{\bar{X}\% - 0\%}{s_x / \sqrt{30}}$$
 (df=29)

 $\alpha = 5\%$

Reject H_0 if t > 1.699

Statistical significance

Conclusion: The mutual fund outperforms the benchmark at 5% significance level.

Economic significanceConsider:

COST	TAXES	RISK				
Manager fees	Additional	Is the risk level				
Advisory fees	taxes?	appropriate for				
Transaction fees		the investor?				
Brokerage fees						

p-value Approach

p-value Approach

t Table)										
cum. prob	t _{.50}	t.75	t _{.80}	t .85	t .90	t .95	t 975	t .99	t .995	t .999	t .9995
one-tail		0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails		0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df								****			
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19		0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20		0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21		0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22		0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23		0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24		0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25		0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26		0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27		0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28		0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29		0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30		0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
⊿∩l	n nnn	0 6R1	Λ <u>8</u> 51	1 050	1 303	1 69/	2 021	J 173	2 704	2 207	2 551

Hypothesis Testing Procedure

p-value Approach

Just the p-value is reported without selecting a significance level

Allows reader to make own conclusions on the significance of the results

