NN

Yiru Gong, yg2832

2022-05-09

```
library(tidyverse)
library(summarytools)
library(corrplot)
library(caret)
library(MASS)
library(mlbench)
library(pROC) #ROCR
library(pdp)
library(vip)
library(AppliedPredictiveModeling) #for transparentTheme function
library(ISLR)
library(caret)
library(e1071)
library(kernlab)
library(keras)
library(tfruns)
```

Data Input

```
data = read.csv('Covid19_vacc_predict_handout.csv')
data = data %>%
    na.omit() %>%
    dplyr::select(-id) %>%
    mutate(
        atlas_type_2015_mining_no = factor(atlas_type_2015_mining_no),
        covid_vaccination = factor(covid_vaccination),
        hum_region = factor(hum_region),
        sex_cd = factor(sex_cd),
        race_cd = factor(race_cd),
        lang_spoken_cd = factor(lang_spoken_cd),
        atlas_low_education_2015_update = factor(atlas_low_education_2015_update)
    )
# summary(data)
# by(data[,c(5,7,8,10,11,17,18)], data$covid_vaccination, summary)
dfSummary(data[,c(5,7,8,10,11,17,18)])
```

Data Frame Summary Dimensions: 8308 x 7 Duplicates: 7802

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Valid	Missing
1	atlas_type_2015_min	<u> </u>	8177 (98.4%)			0
	[factor]	0	131 (1.6%)		(100.0%)	(0.0%)
2	covid_vaccination	1. no_vacc 2. vacc	6682 (80.4%)	IIIIIIIIIIIIIII	8308	Ò
	[factor]		$1626 \ (19.6\%)$	III	(100.0%)	(0.0%)
3	hum_region [factor]	1. CALIFOR-	299 (3.6%)	Ι	8308	0
		NIA/NEVADA 2.	551~(~6.6%)		(100.0%)	(0.0%)
		CENTRAL 3.	238 (2.9%)			
		CENTRAL WEST	491 (5.9%)			
		4. EAST 5. EAST	1370 (16.5%)			
		CENTRAL 6.	607 (7.3%)			
		FLORIDA 7. GREAT	1111 (13.4%) 454 (5.5%)			
		LAKES/CENTRAL	220 (2.6%)			
		NORTH 8. GULF	845 (10.2%)			
		STATES 9.	2122 (25.5%)			
		INTERMOUNTAIN	(,,0)			
		10. MID-				
		ATLANTIC/NORTH				
		CAROLI [5 others]				
4	sex_cd [factor]	1. F 2. M	4527~(54.5%)	IIIIIIIII	8308	0
			$3781 \ (45.5\%)$	IIIIIIII	(100.0%)	(0.0%)
5	lang_spoken_cd	1. * 2. CHI 3. CRE	10 (0.1%) 13		8308	0
	[factor]	4. ENG 5. KOR 6.	(0.2%) 4 ((100.0%)	(0.0%)
		OTH 7. SPA 8. VIE	0.0%) 7957			
			(95.8%) 7 (
			0.1%) 34 (0.4%) 276 (
			3.3%) 7 (
			0.1%)			
6	atlas low education 2015 0update		7769 (93.5%)	IIIIIIIIIIIIIIIIII	8308	0
Ü	[factor]		539 (6.5%)	I	(100.0%)	
7	race_cd [factor]	1. 0 2. 1 3. 2 4. 3 5.	160 (1.9%)		` ′	0
	— r 1	4 6. 5 7. 6	7317 (88.1%)	I	(100.0%)	(0.0%)
			558 (6.7%)		,	,
			80 (1.0%) 56			
			(0.7%) 129 $($			
			1.6%) 8 (
			0.1%)			

```
\# cat\_sum = NULL
# for (n in c(5,8,10,11,17,18)){
\# cat = data[,c(n,7)]
#
  name = colnames(cat)[1]
#
   cat2 = cat %>%
    group_by(covid_vaccination,cat[,1]) %>%
#
     count() %>%
     rename(cat=`cat[, 1]`) %>%
#
#
     pivot_wider(
       names_from = covid_vaccination,
#
       values\_from = n
# ) %>%
```

```
mutate(variable = name) %>%
#
      relocate(variable, everything())
#
  cat\_sum = rbind(cat\_sum, cat2)
# }
# knitr::kable(cat_sum)
# cat_sum %>%
# pivot_longer(
     c("no_vacc", "vacc"),
#
#
     names_to = 'covid_vaccination',
#
     values_to = 'count'
  ) %>%
#
  ggplot(aes(variable,count,group=covid_vaccination,fill=cat))+geom_bar(stat = 'identity')
data2 = model.matrix(covid_vaccination ~ ., data)[ ,-1]
```

Data split

Neural Network

```
## 729 total combinations of flags
## (sampled to 8 combinations)
```

```
## Training run 1/8 (flags = list(64, 128, 64, 0.3, 0.4, 0.4))
## Using run directory runs/2022-05-10T00-55-54Z
## Loaded Tensorflow version 2.8.0
##
## Run completed: runs/2022-05-10T00-55-54Z
## Training run 2/8 (flags = list(256, 64, 256, 0.3, 0.3, 0.2))
## Using run directory runs/2022-05-10T00-56-08Z
##
## Run completed: runs/2022-05-10T00-56-08Z
## Training run 3/8 (flags = list(128, 128, 256, 0.2, 0.2, 0.4))
## Using run directory runs/2022-05-10T00-56-14Z
## Run completed: runs/2022-05-10T00-56-14Z
## Training run 4/8 (flags = list(256, 64, 128, 0.4, 0.4, 0.3))
## Using run directory runs/2022-05-10T00-56-18Z
##
## Run completed: runs/2022-05-10T00-56-18Z
## Training run 5/8 (flags = list(128, 64, 64, 0.4, 0.2, 0.3))
## Using run directory runs/2022-05-10T00-56-26Z
##
## Run completed: runs/2022-05-10T00-56-26Z
## Training run 6/8 (flags = list(256, 256, 256, 0.2, 0.2, 0.3))
## Using run directory runs/2022-05-10T00-56-32Z
##
## Run completed: runs/2022-05-10T00-56-32Z
## Training run 7/8 (flags = list(64, 256, 256, 0.2, 0.4, 0.2))
## Using run directory runs/2022-05-10T00-56-42Z
```

```
##
## Run completed: runs/2022-05-10T00-56-42Z
## Training run 8/8 (flags = list(64, 64, 128, 0.4, 0.2, 0.3))
## Using run directory runs/2022-05-10T00-56-48Z
##
## Run completed: runs/2022-05-10T00-56-48Z
best = runs[which.max(runs$metric_val_accuracy),]
y_c = ifelse(y=="vacc",1,0)
y_c <- to_categorical(y_c, 2)</pre>
y2_c = ifelse(y2 == "vacc", 1, 0)
y2_c <- to_categorical(y2_c, 2)</pre>
model.nn <- keras_model_sequential() %>%
  layer_dense(units = best$flag_nodes_layer1, activation = "relu", input_shape = ncol(x)) %>%
  layer_batch_normalization() %>%
  layer_dropout(rate = best$flag_dropout_layer1) %>%
  layer_dense(units = best$flag_nodes_layer2, activation = "relu") %>%
  layer_batch_normalization() %>%
  layer_dropout(rate = best$flag_dropout_layer2) %>%
  layer_dense(units = best$flag_nodes_layer3, activation = "relu") %>%
  layer_batch_normalization() %>%
  layer dropout(rate = best$flag dropout layer3) %>%
  layer_dense(units = 2, activation = "sigmoid") %>%
  compile(loss = "categorical_crossentropy",
          optimizer = optimizer_rmsprop(),
          metrics = "accuracy")
fit.nn = model.nn %>%
  fit(x = x,
      y = y_c,
      epochs = 30,
      batch_size = 256,
      validation_split = 0.2,
      callbacks = list(callback_early_stopping(patience = 5),
                       callback_reduce_lr_on_plateau()),
      verbose = 2)
plot(fit.nn)
## 'geom_smooth()' using formula 'y ~ x'
```



```
## testing and evaluation
score <- model.nn %>% evaluate(x2, y2_c)
score
```

loss accuracy ## 0.5063494 0.8044962