RESUMEN ALGEBRA 1

FINAL

COMBINATORIA DE CONJUNTOS, RELACIONES Y FUNCIONES

Capítulo 3

Combinatoria de conjuntos, relaciones y funciones.

3.1 Cardinal de conjuntos y cantidad de relaciones.

Definición 3.1.1. (Cardinal de un conjunto.)

Sea A un conjunto, se llama cardinal de A a la cantidad de elementos distintos que tiene A, y se nota #A. Cuando el conjunto no tiene un

- Si A y B son conjuntos disjuntos, entonces $\#(A \cup B) = \#A + \#B$.
- En general $\#(A \cup B) = \#A + \#B \#(A \cap B)$.
- Si U es un conjunto finito, entonces $\#(A^c) = \#U \#A$.

$$\#(A - B) = \#A - \#(A \cap B)$$
 y $\#(A \triangle B) = \#A + \#B - 2\#(A \cap B)$.

Proposición 3.1.4. (Cardinal del producto cartesiano y del conjunto de partes.)

- 1. Sean A y B conjuntos finitos. Entonces $\#(A \times B) = \#A \cdot \#B$.
- 2. Sean A_1, \ldots, A_n, A conjuntos finitos. Entonces

$$\#(A_1 \times \dots \times A_n) = \#A_1 \dots \#A_n = \prod_{i=1}^n \#A_i,$$

 $\#(A^n) = (\#A)^n.$

3. Sea A un conjunto finito, entonces $\#(\mathcal{P}(A)) = 2^{\#A}$.

Proposición 3.1.5. (Cantidad de relaciones.)

Sean A_m y B_n conjuntos finitos, con m y n elementos respectivamente. Entonces la cantidad de relaciones que hay de A_m en B_n es igual a $2^{m \cdot n}$.

Proposición 3.1.6. (Cantidad de funciones.)

Sean A_m y B_n conjuntos finitos, con m y n elementos respectivamente. Entonces la cantidad de funciones f que hay de A_m en B_n es igual a n^m .

3.2 El factorial.

Definición 3.2.1. (El factorial, o la cantidad de funciones biyectivas.)

Sea $n \in \mathbb{N}$. El factorial de n, que se nota n!, es el número natural definido como

$$n! = n \cdot (n-1) \cdot \cdot \cdot 2 \cdot 1 = \prod_{i=1}^{n} (i, i)$$

que coincide con la cantidad de funciones biyectivas que hay entre dos conjuntos con n elementos, o con la cantidad de permutaciones de elementos en un conjunto de n elementos.

Proposición 3.2.2. (Cantidad de funciones inyectivas.)

Sean A_m y B_n conjunts finites, con m y n elementes respectivamente, donde $m \le n$. Entonces la cantidad de funciones inyectivas $f: A_m \to B_n$ que hay es

$$(n \cdot (n-1) \cdots (n-m+1) = \frac{n!}{(n-m)!}.$$

3.3 El número combinatorio.

Notación 3.3.1. (El número combinatorio $\binom{n}{k}$.)

Sea $A_n = \{a_1, \ldots, a_n\}$ un conjunto con n elementos. Para $0 \le k \le n$, se nota con el símbolo $\binom{n}{k}$, que se llama el número combinatorio $\binom{n}{k}$, la cantidad de subconjuntos con k elementos que tiene A_n (o lo que es lo mismo, la cantidad de formas que tenemos de elegir k elementos en un conjunto A_n con n elementos).

3.3.1 El triángulo de Pascal: una fórmula recursiva para $\binom{n}{k}$.

Proposición 3.3.3. (Una fórmula recursiva para el número combinatorio.)

Se tiene

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1, \ \begin{pmatrix} n+1 \\ 0 \end{pmatrix} = \begin{pmatrix} n+1 \\ n+1 \end{pmatrix} = 1 \qquad y$$

$$\begin{pmatrix} n+1 \\ k \end{pmatrix} = \begin{pmatrix} n \\ k-1 \end{pmatrix} + \begin{pmatrix} n \\ k \end{pmatrix} \ para \ 1 \le k \le n, \forall \ n \in \mathbb{N}.$$

Teorema 3.3.4. (Número combinatorio.)

Sea $n \in \mathbb{N}_0$ y sea A_n un conjunto con n elementos. Para $0 \le k \le n$, la cantidad de subconjuntos con k elementos del conjunto A_n (o equivalentemente, la cantidad de maneras que hay de elegir k elementos en el conjunto A_n) es igual a

 $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Teorema 3.3.5. (El binomio de Newton).

$$(x+y)^{n} = x^{n} + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^{2} + \dots + \binom{n}{n-1} x y^{n-1} + y^{n}$$
$$= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k}, \ \forall n \in \mathbb{N}_{0},$$

o lo que es lo mismo, ya que los números combinatorios son simétricos $\binom{n}{k} = \binom{n}{n-k}$:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}, \ \forall \ n \in \mathbb{N}_0.$$

Observación 3.3.6. • Con la fórmula del Binomio de Newton, se recupera fácilmente la expresión

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} \cdot 1^{n-k} = \sum_{k=0}^{n} \binom{n}{k},$$

que habíamos notado al definir el número combinatorio.

EJERCICIOS DE FINAL: (hay ejercicios que se pueden resolver solo con lo visto en la unidad 1)

13/9/22

2. ¿Cuántos anagramas de la palabra ELECTROCARDIOGRAMA pueden formarse con la condición de que las letras A no estén todas juntas?

3/8/22

20/7/22

- 1. Sean $A=\{1,2,3,4,5,6,7,8,9,10,11,12\}$ y $B=\{a,b,c,d,e\}$. Calcular cuántas funciones $f:A\to B$ verifican simultáneamente:
 - hay exactamente 3 elementos $m \in A$ tales que f(m) = a,
 - hay exactamente 2 elementos $n \in A$ tales que f(n) = b.

1. Calcule cuantas funciones sobreyectivas f hay, de $\{1,2,3,4,5,6,7,8,9,10,11,12,13,14\}$ en $\{1,2,3,4,5,6,7,8,9\}$, tales que $\#f^{-1}(\{1,2\}) = 7$.

29/4/22

1. Calcule cuantas funciones sobreyectivas f hay, de $\{1,2,3,4,5,6,7,8,9,10\}$ en $\{a,b,c,d,e,f,g\}$, tales que $f(i)\in\{a,b\}$ para $1\leq i\leq 5$.

4/3/22

1. Sea $f:\mathbb{N}\to\mathbb{N}$ una función inyectiva. Se define la relación \Re siguiente en $\mathbb{N}:$

$$m\Re n \iff f(m) \mid f(n).$$

- (a) Probar que R es una relación de orden.
- (b) Para la función $f: \mathbb{N} \to \mathbb{N}$ definida como f(n) = 12n + 20, caracterizar todos los $n \in \mathbb{N}$ tales que $1 \Re n$.

18/2/22

1. Sea \Re la relación en $A:=\{\,2,3,4,5,\ldots,9999,10000\,\}$ definida por

$$n \Re m \iff (n:m) \neq 1.$$

- (a) Estudiar si ℜ es reflexiva, simétrica, antisimétrica y/o transitiva.
- (b) Determinar la cantidad de $m \in A$ que satisfacen que 12 \Re m.

22/12/21

Ejercicio 1

Sea $A = \{0, 1, 2, 3, 4, 5, 6, 7\}$ y sea \mathcal{F} el conjunto de funciones f de A en A. Se define la relación siguiente en \mathcal{F} :

$$f \mathcal{R} g \iff f(2) \leq g(2).$$

- (a) Estudiar si ${\mathcal R}$ es reflexiva, simétrica, antisimétrica y transitiva.
- (b) Sea $f \in \mathcal{F}$ la función definida por $f(m) = r_8(7m)$ para $m \in A$. Calcular la cantidad de funciones $g \in \mathcal{F}$ que satisfacen que $f \mathcal{R} g$, y también la cantidad de funciones **inyectivas** $h \in \mathcal{F}$ que satisfacen que $f \mathcal{R} h$.

10/12/21

1. Sea $V=\{1,2,\ldots,499,500\}.$ Se define en $\mathcal{P}(V)\setminus\emptyset$ la relación \mathcal{R} :

$$A \mathcal{R} B \iff \min(A) = \min(B) \text{ y } \max(A) = \max(B),$$

(donde si X es un subconjunto no vacío de V, $\min(X)$ denota el menor elemento de X y $\max(X)$ denota el mayor elemento de X. Por ejemplo para $X = \{2, 5, 8\}$, $\min(X) = 2$ y $\max(X) = 8$ mientras que para $X = \{5\}$, $\min(X) = \max(X) = 5$).

- (a) Probar que \mathcal{R} es una relación de equivalencia en $\mathcal{P}(V)\setminus\emptyset$ y calcular el cardinal de las clases de $X=\{1,100\}$ y de $Y=\{50\}$.
- (b) ¿Cuántas clases de equivalencia tiene la relación R?