Swissmetro

• A MagLev underground system operating in partial vacuum to connect the major urban centers in Switzerland

MNL Model of Swissmetro Data

- SP data only business and commuting trips
- Choice between car, train, and Swissmetro (SM)
- Considered variables:
 - Cost [sFr]
 - Travel time [min]
 - Headway [min] (Time between two vehicles at station for train and SM)
 - Annual Season Ticket (1: if individual has, 0: otherwise)
 - Senior (age > 65)

MNL Model of Swissmetro Data

- Estimation of Multinomial Logit Models (MNL)
 - Start by considering **generic** attributes

Example code:

Ch05_Logit/Swissmetro/logit_SM_generic.ipynb

• Test alternative-specific attributes

Example code:

Ch05_Logit/Swissmetro/logit_SM_specific.ipynb Note the change in B_COST changes

• Add and test socio-economic characteristics

Example code:

Ch05_Logit/Swissmetro/logit_SM_socioec.ipynb Note the new coefficients

Variable	Description	Parameters to be Estimated		
variable		Car	Train	SM
	Constant	ASC _{Car}		ASC_{SM}
TT	Travel Time	eta_{Time}	β_{Time}	eta_{Time}
COST	Travel Cost	$\beta_{Cost-Car}$	β _{Cost-Train}	$\beta_{\text{Cost-SM}}$
НЕ	Headway		$eta_{ m HE}$	$\beta_{ m HE}$
GA	Annual Season Ticket		$oldsymbol{eta_{GA}}$	$eta_{ m GA}$
SENIOR	Age > 65	$oldsymbol{eta_{Age}}$		$oldsymbol{eta_{Age}}$

$$\begin{split} V_{Car} &= ASC_{Car} + \beta_{Time}TT_{Car} + \beta_{Cost-Car}COST_{Car} + \beta_{Age}SENIOR \\ V_{Train} &= 0 + \beta_{Time}TT_{Train} + \beta_{Cost-Train}COST_{Train} + \beta_{HE}HE_{Train} + \beta_{GA}GA \\ V_{SM} &= ASC_{SM} + \beta_{Time}TT_{SM} + \beta_{Cost-SM}COST_{SM} + \beta_{HE}HE_{SM} + \beta_{Age}SENIOR + \beta_{GA}GA \end{split}$$

$$\begin{split} V_{Car} &= ASC_{Car} + \beta_{Time}TT_{Car} + \beta_{Cost-Car}COST_{Car} + \beta_{Age}SENIOR \\ V_{Train} &= 0 + \beta_{Time}TT_{Train} + \beta_{Cost-Train}COST_{Train} + \beta_{HE}HE_{Train} + \beta_{GA}GA \\ V_{SM} &= ASC_{SM} + \beta_{Time}TT_{SM} + \beta_{Cost-SM}COST_{SM} + \beta_{HE}HE_{SM} + \beta_{Age}SENIOR + \beta_{GA}GA \end{split}$$

• Generic Time Coefficient

$$\begin{split} V_{Car} &= ASC_{Car} + \beta_{Time}TT_{Car} + \beta_{Cost-Car}COST_{Car} + \beta_{Age}SENIOR \\ V_{Train} &= 0 + \beta_{Time}TT_{Train} + \beta_{Cost-Train}COST_{Train} + \beta_{HE}HE_{Train} + \beta_{GA}GA \\ V_{SM} &= ASC_{SM} + \beta_{Time}TT_{SM} + \beta_{Cost-SM}COST_{SM} + \beta_{HE}HE_{SM} + \beta_{Age}SENIOR + \beta_{GA}GA \end{split}$$

- Generic Time Coefficient
- Alternative Specific Cost Coefficient

• Initial log-likelihood: -6958.42

•	Final log-likelihood:
	-4927.17

• $\bar{\rho}^2$: 0.291

Number of observations: 6759

Parameter	Estimate	Rob. t-stat	
ASC _{Car}	-0.608	-4.24	
$\overline{\mathrm{ASC}_{\mathrm{SM}}}$	-0.135	-1.26	
β_{Time}	-1.11	-9.19	
$\beta_{Car-Cost}$	-0.936	-8.02	
$\beta_{Train-Cost}$	-2.68	-15.2	
$\beta_{SM\text{-}Cost}$	-1.04	-14.0	
$oldsymbol{eta_{ ext{HE}}}$	-0.586	-5.55	
$oldsymbol{eta_{GA}}$	0.557	2.91	
$oldsymbol{eta_{Age}}$	-1.88	-17.3	

- Initial log-likelihood:-6958.42
 - Initial LL vs. L(0)
- Final log-likelihood: -4927.17

• $\bar{\rho}^2$: 0.291

• Number of observations: 6759

Parameter	Estimate	Rob. t-stat
ASC _{Car}	-0.608	-4.24
$\overline{\mathrm{ASC}_{\mathrm{SM}}}$	-0.135	-1.26
$oldsymbol{eta_{Time}}$	-1.11	-9.19
$\beta_{\text{Car-Cost}}$	-0.936	-8.02
$\beta_{Train-Cost}$	-2.68	-15.2
$eta_{ ext{SM-Cost}}$	-1.04	-14.0
$oldsymbol{eta_{ ext{HE}}}$	-0.586	-5.55
$oldsymbol{eta_{GA}}$	0.557	2.91
$eta_{ m Age}$	-1.88	-17.3

- What are the preferences over the three alternatives, all else being the same?
- What do the time and cost parameters show?
- How does frequency affect the train utility?
- Socio-economic characteristics?

	Parameter	Estimate	Rob. t-stat
-	ASC _{Car}	-0.608	-4.24
- -)	ASC_{SM}	-0.135	-1.26
	β_{Time}	-1.11	-9.19
	$\beta_{Car\text{-}Cost}$	-0.936	-8.02
-	$\beta_{Train-Cost}$	-2.68	-15.2
-	$\beta_{SM ext{-}Cost}$	-1.04	-14.0
	$eta_{ ext{HE}}$	-0.586	-5.55
	$eta_{ ext{GA}}$	0.557	2.91
	β_{Age}	-1.88	-17.3

- Train is preferred over Car and SM
- Time and cost coefficients are negative and significant
- Sensitivity to cost is the highest for train
- If rail-based modes are more frequent they have higher utility
- Having a season ticket increases the utility towards rail-based modes
- Seniors prefer train

Parameter	Estimate	Rob. t-stat	
ASC _{Car}	-0.608	-4.24	
$\overline{\mathrm{ASC}_{\mathrm{SM}}}$	-0.135	-1.26	
β_{Time}	-1.11	-9.19	
$\beta_{Car-Cost}$	-0.936	-8.02	
$\beta_{Train\text{-}Cost}$	-2.68	-15.2	
$\beta_{SM-Cost}$	-1.04	-14.0	
$\beta_{ m HE}$	-0.586	-5.55	
$oldsymbol{eta_{ ext{GA}}}$	0.557	2.91	
$oldsymbol{eta_{Age}}$	-1.88	-17.3	

- How can we justify the model specification with alternative specific cost coefficients as opposed to a generic specification?
- Likelihood ratio test
- Restricted model: Generic

$$\begin{split} V_{Car} &= ASC_{Car} + \beta_{Time}TT_{Car} + \beta_{Cost}COST_{Car} + \beta_{Age}SENIOR \\ V_{Train} &= 0 + \beta_{Time}TT_{Train} + \beta_{Cost}COST_{Train} + \beta_{HE}HE_{Train} + \beta_{GA}GA \\ V_{SM} &= ASC_{SM} + \beta_{Time}TT_{SM} + \beta_{Cost}COST_{SM} + \beta_{HE}HE_{SM} + \beta_{Age}SENIOR + \beta_{GA}GA \end{split}$$

• Unrestricted model: Alternative-Specific

$$\begin{split} V_{Car} &= ASC_{Car} + \beta_{Time}TT_{Car} + \beta_{Cost-Car}COST_{Car} + \beta_{Age}SENIOR \\ V_{Train} &= 0 + \beta_{Time}TT_{Train} + \beta_{Cost-Train}COST_{Train} + \beta_{HE}HE_{Train} + \beta_{GA}GA \\ V_{SM} &= ASC_{SM} + \beta_{Time}TT_{SM} + \beta_{Cost-SM}COST_{SM} + \beta_{HE}HE_{SM} + \beta_{Age}SENIOR + \beta_{GA}GA \end{split}$$

- H_0 : $\beta_{Cost-Car} = \beta_{Cost-Train} = \beta_{Cost-SM}$
- Reject H₀ if $-2(L_R L_U) > \mathcal{X}^2_{((1-\alpha),df)}$

Restricted Model

Unrestricted Model

Model: Multinomial Logit Number of estimated parameters: 5 Number of observations: 6768 Number of individuals: 6768 Null log-likelihood: -6964.663 Init log-likelihood: -6964.663 Final log-likelihood: -5315.386 Likelihood ratio test: 3298.553 Rho-square: 0.237 Adjusted rho-square: 0.236 Final gradient norm: +2.161e-002 Diagnostic: Convergence reached... Iterations: 69

> Run time: 00:05 Variance-covariance: from analytical hessian Sample file: swissmetro.dat

Model: Multinomial Logit Number of estimated parameters: 7 Number of observations: 6768 Number of individuals: 6768 Null log-likelihood: -6964.663 Init log-likelihood: -6964.663 Final log-likelihood: -5068.559 Likelihood ratio test: 3792.209 Rho-square: 0.272 Adjusted rho-square: 0.271 Final gradient norm: +1.262e-002 Diagnostic: Convergence reached... Iterations: 81 Run time: 00:05

> Variance-covariance: from analytical hessian Sample file: swissmetro.dat

```
• H_0: \beta_{Cost-Car} = \beta_{Cost-Train} = \beta_{Cost-SM}
• Reject H<sub>0</sub> if -2(L_R - L_U) > \mathcal{X}^2_{((1-\alpha),df)}
           Restricted Model
                                                             Inrestricted Model
                                                                             Model: Multinomial Logit
                          Model: Multinomial Logit
                                                     Number of estimated parameters: 7
    Number of estimated parameters: 5
           Number of observations: 6768
                                                             Number of observations: 6768
            Number of individuals: 6768
                                                              lumber of individuals: 6768
              Null log-likelihood: -6964.663
                                                               Null log-likelihood: -6964.663
             Init log-likelihood: -6964.663
                                                               Init log-likelihood: -6964.663
            Final log-likelihood: -5315.386
                                                              Final log-likelihood: -5068.559
            Likelihood ratio test: 3298.553
                                                              Likelihood ratio test: 3792.209
                      Rho-square: 0.237
                                                                        Rho-square: 0.272
             Adjusted rho-square: 0.236
                                                               Adjusted rho-square: 0.271
              Final gradient norm: +2.161e-002
                                                               Final gradient norm: +1.262e-002
                      Diagnostic: Convergence reached...
                                                                        Diagnostic: Convergence reached...
                      Iterations: 69
                                                                        Iterations: 81
```

Run time: 00:05

Variance-covariance: from analytical hessian

Sample file: swissmetro.dat

Run time: 00:05

Variance-covariance: from analytical hessian

Sample file: swissmetro.dat

- H_0 : $\beta_{Cost-Car} = \beta_{Cost-Train} = \beta_{Cost-SM}$
- Reject H₀ if $-2(L_R L_U) > \mathcal{X}^2_{((1-\alpha),df)}$

Restricted Model

Unrestricted Model

```
Model: Multinomial Logit
                          Model: Multinomial Logit
                                                         Number of estimated parameters:
Number of estimated parameters: 5
        Number of observations: 6768
                                                                  Number of observations: 6768
         Number of individuals: 6768
                                                                   Number of individuals: 1768
           Null log-likelihood: -6964.663
                                                                     Null log-likelihood: -6964.663
           Init log-likelihood: -6964.663
                                                                      Init log-likelihood: - 964.663
          Final log-likelihood: -5315.386
                                                                     Final log-likelihood: -9068.559
         Likelihood ratio test: 3298.553
                                                                   Likelihood ratio test: 3792.209
                     Rho-square: 0.237
                                                                               Rho-square: 0.272
                                                                      Adjusted rho-square: 0.271
           Adjusted rho-square: 0.236
                                                                      Final gradient norm: +1.262e-002
           Final gradient norm: +2.161e-002
                     Diagnostic: Convergence reached...
                                                                               Diagnostic: Convergence reached...
                     Iterations: 69
                                                                                Iterations: 81
                       Run time: 00:05
                                                                                  Run time: 00:05
                                                                      Variance-covariance: from malytical hessian
           Variance-covariance: from analytical hessian
                    Sample file: swissmetro.dat
                                                                              Sample file: swissmetrs dat
```

• The degrees of freedom is $df = K_U - K_R$

- H_0 : $\beta_{Cost-Car} = \beta_{Cost-Train} = \beta_{Cost-SM}$
- Reject H₀ if $-2(L_R L_U) > \mathcal{X}^2_{((1+\alpha),df)}$

Restricted Model

Unrestricted Model

```
Model: Multinomial Logit
Number of estimated parameters: 5
        Number of observations: 6768
         Number of individuals: 6768
           Null log-likelihood: -6964.663
           Init log-likelihood: -6964.663
          Final log-likelihood: -5315.386
          Likelihood ratio test: 3298.553
                     Rho-square: 0.237
           Adjusted rho-square: 0.236
           Final gradient norm: +2.161e-002
                     Diagnostic: Convergence reached...
                     Iterations: 69
                       Run time: 00:05
           Variance-covariance: from analytical hessian
                    Sample file: swissmetro.dat
```

```
Model: Multinomial Logit
Number of estimated parameters: 7
Number of observations: 6768
Number of individuals: 6768
Null log-likelihood: -6964.663
Init log-likelihood: -5068.559
Likelihood ratio test: 3792.209
Rho-square: 0.272
Adjusted rho-square: 0.271
Final gradient norm: +1.262e-002
Diagnostic: Convergence reached...
Iterations: 81
Run time: 00:05
Variance-covariance: from analytical hessian
Sample file: swissmetro.dat
```

- The degrees of freedom is $df = K_U K_R$
- A typical threshold is $\alpha = 0.05$

- H_0 : $\beta_{Cost-Car} = \beta_{Cost-Train} = \beta_{Cost-SM}$
- Reject H₀ if $-2(L_R L_U) > \mathcal{X}_{((1-\alpha),df)}^2$ $-2(L_R - L_U) = -2(-5315.386 + 5068.559) = 493.654$ $\mathcal{X}_{((1-0.05),2)}^2 = 5.991$
- We reject H₀. There exists sufficient statistical evidence that our model should include alternative specific cost coefficients

Specification Testing: Market Segmentation Test

- Is there variation across different market segments?
 - E.g. education levels, income categories, etc.,
- Estimate model on the full data set. Then estimate the same model on each group separately

```
Example code:
Ch06_SpecTesting/Swissmetro/
SpecTest_SM_segmentation.ipynb
Note how the database is duplicated and restricted into Male and Female observations
```


Specification Testing: Market Segmentation Test

• H_0 : $\boldsymbol{\beta_{Male}} = \boldsymbol{\beta_{Female}}$

• Reject H₀ if
$$-2(L_R - L_U) > \mathcal{X}^2_{((1-\alpha),df)}$$

Model	Log likelihood	Number of coefficients
Male	-3680.002	9
Female	-1110.618	9
Restricted model	-4927.167	9

$$-2(L_R - L_U) = -2(-4927.167 + 3680.002 + 1110.618)$$

$$= 273.094$$

$$\mathcal{X}^2_{((1-0.05),9)} = 16.919$$

• The log likelihood of the unrestricted model is the sum of the log likelihoods of the models estimated on each of the 2 segments