SOLUTIONS FOR HOMEWORK 3

11.5. (a) s is a limit of a subsequence of (q_n) iff $s \in [0,1]$. Indeed, any subsequence of (q_n) is contained in [0,1], so possible limits are in this interval as well. It remains to show that, for any $s \in [0,1]$ and $\varepsilon > 0$, $|\{n : |q_n - s| < \varepsilon\}| = \infty$.

We can assume that $\varepsilon < \max\{s, 1 - s\}$. Thus, one of the intervals $(s - \varepsilon, s)$, $(s, s + \varepsilon)$ lies entirely in [0, 1]. As shown in class, this interval contains infinitely many q_n 's.

(b) We claim that $\limsup q_n = 1$ and $\liminf q_n = 0$. We shall prove the equality for $\limsup q_n$ as \liminf is handled similarly.

By definition, $\limsup q_n = \lim u_N$, with $u_N = \sup_{n>N} q_n$. It suffices to show that $u_N = 1$ for any N. Indeed, 1 is clearly an upper bound for (q_n) , hence $u_N \leq 1$. Suppose, for the sake of contradiction, that $u_N < 1$. Then $(u_N, 1] \cap \mathbb{Q} \subset \{q_1, \dots, q_N\}$, so there are finitely many rationals in $(u_N, 1]$. This is impossible!

ALTERNATIVELY, one can use the fact that $\limsup q_n$ ($\liminf q_n$) is the supremum (resp. infimum) of the set of subsequential limits of (q_n) . As shown in (a), the latter set is [0,1].

11.11. We have three cases: (1) S is not bounded above – that is, $\sup S = +\infty$; (2) $\sup S \in \mathbb{R}$, $\sup S \in S$; (3) $\sup S \in \mathbb{R}$, $\sup S \notin S$.

Case 1: We find a sequence (s_n) which is increasing, and not bounded above. Pick $s_1 \in S \cap (1,\infty)$, $s_2 \in S \cap (\max\{s_1,2\},\infty)$, $s_3 \in S \cap (\max\{s_2,3\},\infty)$. This way we obtain a strictly increasing sequence (s_n) s.t. $s_n > n$ for any n. Clearly $\lim s_n = +\infty$.

Case 2: As the book suggests, take $s_n = \sup S$ for any n. Then (s_n) is increasing, converging to s.

Case 3: We find a sequence (s_n) which strictly increases, and converges to $s = \sup S$. Note first that $(u,s) \cap S \neq \emptyset$ (otherwise u would be an upper bound for S). Pick $s_1 \in S \cap (s-1,s)$, $s_2 \in S \cap (\max\{s_1,s-\frac{1}{2}\},\infty)$, $s_3 \in S \cap (\max\{s_2,s-\frac{1}{3}\},\infty)$, etc.. This way we obtain a strictly increasing sequence (s_n) s.t. $s_n > s - \frac{1}{n}$ for any n. By Squeeze Theorem, $\lim s_n = s$.

- **12.3.** (d) Let $r_n = s_n + t_n$, then $(r_n) = (2, 2, 3, 1, 2, 2, 3, 1, \ldots)$. For any k, $\sup_{n \ge k} r_n = 2$, hence $\limsup_n r_n = \lim_k (\sup_{n \ge k} r_n) = 3$.
- (e) For any k, $\sup_{n\geq k} s_n = 2$, hence $\limsup_n s_n = \lim_k (\sup_{n\geq k} s_n) = 2$. Similarly, $\limsup_n t_n = 2$. Thus, $\limsup_n s_n + \limsup_n t_n = 4$.
- **12.4.** For a fixed N, let $a_N = \sup_{n>N} s_n$ and $b_N = \sup_{n>N} t_n$. For n>N, $s_n+t_n \le a_N+b_N$, hence, for $M \ge N$, $\sup_{n>M} (s_n+t_n) \le \sup_{n>N} (s_n+t_n) \le a_N+b_N$. Passing to the limit as M grows, we get:

$$\lim \sup(s_n + t_n) = \lim_{M} \sup_{n > M} (s_n + t_n) \le a_N + b_N.$$

Now pass to the limit as N grows to obtain

$$\lim \sup(s_n + t_n) \le \lim_N (a_N + b_N) = \lim_N a_N + \lim_N b_N = \lim \sup s_n + \lim \sup t_n.$$

12.12. [Bonus problem – very little partial credit given.] (a) We shall show that $\limsup \sigma_n \leq \limsup s_n$. The inequality $\liminf \sigma_n \geq \liminf s_n$ would follow by replacing s_n by $-s_n$, while $\liminf \sigma_n \leq \limsup \sigma_n$ is always true.

From the definition of $\limsup \sigma_n$, it suffices to show: if $\varepsilon > 0$, then there exists $N \in \mathbb{N}$ so that $\sigma_n \leq \varepsilon + \limsup s_n$ for any $n \geq N$.

Let $u_k = \sup_{n>k} s_n$, then the sequence (u_k) is decreasing, with $\lim_k u_k = \limsup s_n$. Thus, there exists K so that $u_k < \limsup s_n + \varepsilon/2$ for $k \ge K$. Thus, $s_n < \limsup s_n + \varepsilon/2$ for n > K.

Now let $A = \sum_{k=1}^{K} s_k - K\left(\limsup s_n + \frac{\varepsilon}{2}\right)$. Find M > K so that $A/M < \varepsilon/2$. Them for n > M, we can write

$$\sigma_n = \frac{1}{n} \left(\sum_{k=1}^K s_k - K \left(\limsup s_n + \frac{\varepsilon}{2} \right) + \frac{1}{n} \left(K \left(\limsup s_n + \frac{\varepsilon}{2} \right) \right) + \sum_{k=K+1}^n s_k \right)$$

As n > M, we have $\frac{1}{n} \Big(\sum_{k=1}^{K} s_k - K \Big(\limsup s_n + \frac{\varepsilon}{2} \Big) \Big) \leq \frac{A}{M} < \frac{\varepsilon}{2}$. On the other hand, we

can view $K\left(\limsup s_n + \frac{\varepsilon}{2}\right) + \sum_{k=K+1}^n s_k$ as a sum of n terms, each of them not exceeding

 $\limsup s_n + \frac{\varepsilon}{2}$; the same must also be true for their average. Thus, $\sigma_n < \frac{\varepsilon}{2} + \left(\limsup s_n + \frac{\varepsilon}{2}\right) = \limsup s_n + \varepsilon$, as desired.

- (b) If $\lim s_n$ exists, then $\lim \inf s_n = \lim \sup s_n$, hence, by (a), $\lim \inf \sigma_n = \lim \sup \sigma_n$, which implies the existence of $\lim \sigma_n$.
- (c) Take $s_n = (-1)^{n-1}$ for $n \in \mathbb{N}$. Then clearly (s_n) diverges. However, $\sigma_n = 0$ if n is even, and $\sigma_n = 1/n$ if n is odd. Either way, $0 \le \sigma_n \le 1/n$, hence $\lim_n \sigma_n = 0$, by Squeeze Theorem.
- **12.13.** We shall show that $\inf B = s$, where $s = \limsup s_n$; the other statement is established similarly.
- (1) Prove first that any b > s actually belongs to B; this would imply inf $B \le s$.

Consider b > s. Recall that $s = \lim u_j$, where $u_j = \sup_{n > j} s_n$ form a decreasing sequence. There exists N s.t. $|u_j - s| < b - s$ for $j \ge N$. By the triangle inequality, $u_N \le s + |u_N - s| < s + (b - s) = b$, hence $\sup_{n > N} s_n < b$. Therefore, if $s_n > b$, then $n \le N$; there are only finitely many such n's.

(2) In the other direction, show that no number t < s can belong to B; this would imply that s is a lower bound for B, hence, from part (1), s must be the greatest lower bound.

Suppose, for the sake of contradiction, that $\{n: s_n > t\}$ is finite. This set can be listed as $\{n_1, \ldots, n_M\}$. Let $N = \max\{n_1, \ldots, n_M\}$; for n > N, $s_n \le t$, and consequently, for $j \ge N$, $u_j = \sup_{n > j} s_n \le t$. Then $\limsup s_n = \lim u_j \le t < s$, a contradiction!

ALTERNATIVELY, one can also use the fact that $s = \limsup s_n$ is a subsequential limit of (s_n) , hence, for every $\varepsilon > 0$, the set $\{n : |s_n - s| < \varepsilon\}$ is infinite. Taking $\varepsilon = s - t$, we conclude that $s_n > s - \varepsilon = t$ for infinitely many values of n, hence $t \notin B$.