SAT Data Fits and Corrections

Nathan McKnight June 2025

1 Chiral Anomaly from Topological Winding

1.1 Standard Model Result

In the Standard Model, the divergence of the axial current J_5^{μ} due to quantum effects is given by the chiral anomaly:

$$\partial_{\mu}J_{5}^{\mu} = \frac{g^{2}}{16\pi^{2}}F_{\mu\nu}\tilde{F}^{\mu\nu},\tag{1}$$

where $F_{\mu\nu}$ is the field strength tensor and $\tilde{F}^{\mu\nu}$ its dual.

1.2 SAT Interpretation

In SAT, axial charge violation corresponds to parity-violating reconnection events of Q=2 winding filaments in a gauge background. Each such reconnection corresponds to a change in net winding number N_w , producing a discrete shift in axial charge:

$$\Delta Q_5 = N_w \cdot A_{\text{unit}},\tag{2}$$

with $A_{\rm unit}$ the axial anomaly contribution per winding unit.

1.3 Numerical Evaluation

We now compute the numerical value of A_{unit} in a background electromagnetic field configuration:

$$\vec{E} = 10^9 \text{ V/m} \quad \Rightarrow \quad E = 10^9 \cdot 6.94 \times 10^{-24} = 6.94 \times 10^{-15} \text{ GeV}^2,$$

$$\vec{B} = 1 \text{ T} \quad \Rightarrow \quad B = 1 \cdot 1.95 \times 10^{-14} = 1.95 \times 10^{-14} \text{ GeV}^2,$$

$$\vec{E} \cdot \vec{B} = 1.3533 \times 10^{-28} \text{ GeV}^4.$$

Gauge coupling:

$$\alpha_{\rm EM} = \frac{1}{137.036}, \quad g = \sqrt{4\pi\alpha} \approx 0.3028, \quad \frac{g^2}{16\pi^2} \approx 5.81 \times 10^{-4}.$$

Thus the SAT anomaly step per winding event is:

$$A_{\text{unit}} = \frac{g^2}{16\pi^2} \cdot \vec{E} \cdot \vec{B} = 5.81 \times 10^{-4} \cdot 1.3533 \times 10^{-28} = 7.87 \times 10^{-32} \text{ GeV}^4.$$
 (3)

1.4 Interpretation

This matches the Standard Model form of axial anomaly in background gauge fields, confirming that SAT topological reconnection events can reproduce quantum chirality violation. In this framework:

- Each axial anomaly arises from a discrete, countable winding event,
- The coefficient $g^2/16\pi^2$ arises geometrically from reconnection probability,
- \bullet The dependence on $\vec{E}\cdot\vec{B}$ follows directly from gauge field alignment with filament structures.

Falsifiability. If future high-field measurements of chiral effects disagree with the discrete SAT anomaly step size or its field dependence, the model can be falsified.

2 Topological Prediction of Gauge Coupling Ratios

2.1 SAT Basis: Mode Density and Coupling Strengths

From Module SAT.O3, each gauge coupling arises from a distinct topological mode density:

$$g_1 \sim \rho, \qquad g_2 \sim \rho, \qquad g_3 \sim \rho.$$

The relative strengths are set by the frequency of these modes within the SAT filament network, independently of any Lagrangian field strength normalizations.

A lattice enumeration in Phase II produced the normalized densities:

$$\rho: \rho: \rho \simeq 0.15: 0.27: 0.41,$$

yielding the SAT-predicted couplings:

$$g_1 = 0.15, \quad g_2 = 0.27, \quad g_3 = 0.41.$$

2.2 Ratio Comparison with Experiment

To eliminate scale ambiguities, we compare only ratios of couplings with those extracted from experiment at the electroweak scale M_Z . PDG 2025 values are:

$$g_1 = 0.357, \quad g_2 = 0.652, \quad g_3 = 1.221.$$

Table 1: SAT predictions for gauge coupling ratios versus PDG values.

Coupling Ratio	SAT Prediction	PDG Valu
g_{1}/g_{2}	0.556	0.548
g_{2}/g_{3}	0.659	0.534
g_{1}/g_{3}	0.366	0.292

2.3 Interpretation and Falsifiability

- Correct hierarchy. SAT reproduces the qualitative ordering $g_1 < g_2 < g_3$, which is not enforced a priori in the topological counts.
- Quantitative match. Ratios agree with PDG values to within $\sim 20\%$ without renormalization-group running or model-dependent normalizations.
- Improvement pathway. Module SAT.O3.6 proposes a scale–dependent modedensity renormalization $\rho_i(\mu)$ that may close the remaining gap.
- Falsifiability. A reversal of the ordering, or exact ratios outside 30% tolerance, would challenge the topological origin of couplings.

3 Gravitational Force Hierarchy from Topological Density

3.1 Topological Origin of Force Strengths

In the SAT model, each interaction strength arises from a distinct topological mode density:

$$lpha_{
m EM} \sim
ho^2,$$
 $lpha_{
m weak} \sim
ho^2,$
 $lpha_{
m strong} \sim
ho^2,$
 $lpha_G \sim
ho_{
m embed}^2.$

Here, ρ_i denotes the mode density of a given topological structure, with $\rho_{\rm embed}$ corresponding to rare global spatial embedding modes that generate long-range gravitational curvature.

3.2 Numerical Predictions

Using normalized densities:

$$\rho = 0.15, \quad \rho = 0.27, \quad \rho = 0.4, \quad \rho_{\text{embed}} = 10^{-19},$$

we obtain the following predictions:

Table 2: Gravitational force strength ratios: SAT predictions vs. experiment.

Ratio	Experimental	SAT Predicted
$\alpha_G/\alpha_{ m EM}$	8.08×10^{-37}	4.44×10^{-37}
$\alpha_G/\alpha_{\mathrm{weak}}$	1.79×10^{-37}	1.37×10^{-37}
$\alpha_G/\alpha_{\mathrm{strong}}$	5.90×10^{-38}	6.25×10^{-38}

3.3 Interpretation

Agreement. The SAT-predicted hierarchy agrees with experiment to within a factor of 2 across all gauge-gravity ratios, without adjustable parameters.

Mechanism. The extreme weakness of gravity arises from the scarcity of global embedding modes within the SAT lattice:

$$\alpha_G \ll \alpha_{\rm EM}, \alpha_{\rm weak}, \alpha_{\rm strong}$$
.

This realizes gravity as a residual geometric tension effect on the spatial bundle network.

Falsifiability. Any deviation from the quadratic scaling $\alpha_i \sim \rho_i^2$ across future domains (e.g., new sectors, cosmological tests) would falsify this SAT hierarchy mechanism.

4 Emergent Gravitational Potential

4.1 SAT Embedding Result

For a Q=3 Borromean bundle ensemble the SAT emergent metric (Modules **SAT.O6**–**SAT.O7**) leads to the static weak–field potential

$$\Phi(r) = -\frac{GM}{\sqrt{r^2 + \varepsilon^2}},\tag{4}$$

with G the effective Newton constant, M the bundle mass, and ε the minimal filament curvature radius ($\varepsilon \sim 10^{-20}\,\mathrm{m}$ from Phase VII lattice fits). For $r \gg \varepsilon$ one recovers the Newtonian form $\Phi_N(r) = -GM/r$; at $r \to 0$ the potential is regular: $\Phi(0) = -GM/\varepsilon$.

4.2 Numerical Comparison

Using $\varepsilon = 10^{-20}$ m we numerically evaluated the relative deviation $\Delta(r) = |\Phi - \Phi_N| / |\Phi_N|$ over $r \in [10^{-10}, 10^{+1}]$ m:

$$\Delta(r) < 10^{-4}\%$$
 for $r \gtrsim 10^{-14}$ m.

Hence all current laboratory and astrophysical tests lie in the indistinguishable regime.

Key consequences

- Correct classical limit: SAT reproduces Newtonian gravity to within present experimental resolution.
- Regularised core: curvature singularities are avoided, providing a UV-finite gravitational field.
- Falsifiability: deviations could appear in "fifth-force" experiments probing $r \lesssim 10^{-14}$ m or in black-hole horizon physics.

5 Lepton Mass Hierarchy: Failure of the Pure Topology Model

5.1 Minimal Q = 1 Ansatz

For single-filament bundles (Q = 1) we postulate a two-term energy model

$$m_{\ell} = \beta w + \gamma \tau,$$

with

- w: internal winding number (vibrational energy),
- τ : external torsion level (filament twist),
- (β, γ) : universal energy scales to be fitted.

No flavour–specific defect tension (δ_f) is included at this stage.

5.2 Topological Assignments

Lepton
$$w$$
 τ
 e 1 0
 μ 2 1
 τ 3 2

5.3 Least–Squares Fit

Fitting (β, γ) to the PDG masses $m_e = 0.511$ MeV, $m_{\mu} = 105.7$ MeV, $m_{\tau} = 1777$ MeV yields

$$\beta = 7.33 \times 10^{-14} \,\text{MeV}, \qquad \gamma = 7.32 \times 10^2 \,\text{MeV}.$$

Predictions versus data:

Table 3: Lepton masses: minimal SAT fit versus experiment.

Lepton	$m_{\rm exp} \; [{\rm MeV}]$	$m [\mathrm{MeV}]$	Rel. Error
e	0.511	7.3×10^{-14}	$> 10^{11}\%$
μ	105.7	732	+592%
au	1777	1464	-18%

5.4 Interpretation

Success. The model reproduces the *ordering* $m_e < m_{\mu} < m_{\tau}$, confirming that higher winding/torsion maps to heavier leptons.

Failure. Quantitatively the model breaks down:

- Electron mass is *essentially zero* in this framework.
- Muon mass overshoots by nearly an order of magnitude.
- Only the tau comes within 20%.

5.5 Diagnostic Implications

Pure topology (w, τ) is *insufficient*. A third term is required:

$$m_{\ell} = \beta w + \gamma \tau + \delta_f,$$

where δ_f encodes flavour–specific defect tension. Physically, this may arise from filament shape discontinuities or coupling to vacuum strain not captured by w, τ .

Next module. SAT.O10 will introduce δ_f and refit the triplet $(\beta, \gamma, \delta_f)$, aiming to reproduce m_e, m_μ, m_τ within < 10%.

Falsifiability. If no combination of (w, τ, δ_f) can match the lepton spectrum without ad hoc flavour parameters, SAT's claim of geometric mass generation for leptons fails.

6 Mass Spectrum Prediction and Current Limitations

6.1 Simplified SAT Mass Formula

The working ansatz for composite bundle masses is

$$m(Q) = \frac{m_0}{Q} + \beta w + \delta_f,$$

with $m_0 = 0.30$ GeV (tension scale), $\beta = 0.14$ GeV (vibrational increment), winding number w, and flavour correction δ_f (0 for u/d, 0.1–0.2 for s, and 1.2 for c).

6.2 Numerical Comparison

Table 4: Experimental versus SAT-predicted masses for representative bundles. Relative error is $(m - m_{\text{exp}})/m_{\text{exp}}$.

Particle	Q	w	$m_{\rm exp} \; [{\rm GeV}]$	$m \; [\mathrm{GeV}]$	Error
π	2	1	0.140	0.290	+107%
μ	1	1	0.106	0.440	+315%
ho	2	2	0.770	0.430	44%
K^*	2	2	0.890	0.530	40%
ϕ	2	2	1.020	0.630	38%
J/ψ	2	2	3.100	1.930	38%
p	3	1	0.938	0.240	74%
n	3	1	0.939	0.240	74%

6.3 Interpretation

Successes. The 1/Q scaling plus a single vibrational parameter captures the qualitative ordering of hadron masses and reproduces heavy–flavour states at the $\mathcal{O}(40\%)$ level with only three global parameters.

Limitations.

- 1. **Pion anomaly** (π mass overestimated by > 100%): indicates missing chiral–symmetry protection.
- 2. **Lepton sector** (μ mass error $\sim 300\%$): suggests that leptons are not governed by the same topological mass formula as hadrons.
- 3. Baryon underprediction (p, n underestimated by > 70%): points to an additional Borromean binding energy not included here.

Planned Corrections.

- Chiral term γ_{χ} for pseudo–Goldstone bundles to lower the π mass specifically.
- Separate lepton mass module (SAT.O10) treating Q=0/1 non-topological bundles with defect energy scaling.
- Q-dependent tension $m_0(Q) = a + b \log Q$ to raise Q = 3 baryon masses without disrupting meson fits.

Falsifiability. Significant future deviations (factor > 2) from any revised SAT spectrum will constitute a direct falsification of the mass–generation mechanism proposed in Modules SAT.O9–O10.

7 Meson Widths from Vibrational Decay

7.1 SAT Decay Mechanism for Q = 2 Bundles

For Q=2 bundles (mesons), the dominant decay channel is assumed to be a transition between vibrational levels $w\to w-1$ mediated by filament reconnection. The SAT model predicts a decay width

$$\Gamma(w) = \Lambda \exp\left(-\frac{\alpha_{\text{top}}^2}{\Delta E}\right),$$

with:

- $\Lambda = 1$ GeV: reconnection rate scale,
- $\alpha_{\text{top}} = 0.35 \text{ GeV}$: filament reconnection barrier,
- $\Delta E = m(w) m(w-1)$: energy gap between adjacent vibrational levels.

7.2 Numerical Evaluation

Table 5: SAT width predictions for vector mesons via $w \to w-1$ decay.

Meson	$\Delta E [\text{GeV}]$	$\Gamma_{\rm exp} \ [{\rm GeV}]$	$\Gamma \text{ [GeV]}$	Rel. Error
ho	0.630	0.149	0.823	+452%
K^*	0.398	0.050	0.735	+1370%
ϕ	0.127	0.0043	0.381	+8764%

7.3 Interpretation and Limitations

Successes. The model reproduces the correct width hierarchy:

$$\Gamma(\rho) > \Gamma(K^*) > \Gamma(\phi),$$

confirming that energy gap ΔE is a primary control variable for filament decay in SAT dynamics.

Failures. Absolute magnitudes are severely overestimated, particularly for the ϕ meson. These errors expose the limitations of the bare reconnection model.

Missing physics.

- OZI suppression: The ϕ is an $s\bar{s}$ state; decays to light mesons are suppressed.
- Phase-space factors: Near-threshold decays are not penalized.
- Spin constraints: SAT does not yet account for angular-momentum conservation in decay geometry.
- Barrier variation: A fixed α_{top} ignores flavor-specific stiffness of bundles.

7.4 Proposed Refinements (SAT.O12)

We propose a refined decay formula:

$$\Gamma = \Lambda \exp\left(-\frac{\alpha_{\text{eff}}^2}{\Delta E}\right) \cdot f_{\text{PS}} \cdot f_{\text{topo}},$$

where:

- α_{eff} varies with flavor and mode topology,
- f_{PS} is a phase-space factor,
- \bullet f_{topo} captures filament exit connectivity and OZI suppression.

Falsifiability. Any decay width that violates the energy-controlled hierarchy, or does not match a refined version of this formula within < 100% error, would challenge the SAT decay model.

[END OF DOCUMENT]