

Содержание

Введение	3
1 Быстрый старт	4
1.1 Установка Scratch 2 Offline Editor	4
1.2 Установка Arduino IDE	4
1.3 Установка драйверов платы Arduino	4
1.4 Установка "Scratch2 to ROBO translator"	4
1.5 Загрузка программы в Arduino	5
1.6 Установка дополнения в Scratch 2	6
1.7 Запуск проекта на выполнение	8
2 Вариант исполнения роботизированной платформы	1
3 Роборука	2
3.1 Вариант исполнения роборуки	2
3.2 3-D модели	2
3.3 Электроника	2
4 Среда разработки программы "Scratch2 to ROBO translator" Qt Creator	4
5 Липензия	5

Введение

Данный проект является очередной реализацией идеи соединить роботизированную платформу с визуальным языком программирования. Подобные проекты: 'ScratchDuino', 'S2A', 'S4A'.

Особенностью является - полностью открытый исходный код всех составных частей проекта, что позволяет добавлять новые функции, совершенствовать проект, не быть привязанным к конкретной аппаратной платформе. Программа - посредник "Scratch2 to ROBO translator" отображает возникающие в процессе обмена ошибки, что упрощает отладку программного обеспечения на стороне робота.

Визуальным языком программирования является Scratch. Scratch - стильная, простая и удобная платформа, которая предназначена для простого освоения принципов программирования. Scratch изначально планировался и был разработан для школьников. Scratch позволяет учиться программированию не обладая знаниями английского языка.

Роботизированная платформа в общем случае может быть произвольной. На текущей стадии развития проекта это Arduino. В дальнейшем проект будет развиваться в сторону STM32F + FreeRTOS.

Arduino — это электронный конструктор и удобная платформа быстрой разработки электронных устройств для новичков и профессионалов. Платформа пользуется огромной популярностью во всем мире благодаря удобству и простоте языка программирования, а также открытой архитектуре и программному коду. Устройство программируется через USB без использования программаторов. Arduino позволяет компьютеру выйти за рамки виртуального мира в физический и взаимодействовать с ним. Устройства на базе Arduino могут получать информацию об окружающей среде посредством различных датчиков, а также могут управлять различными исполнительными устройствами.

Данный проект может быть полезен в школьных кружках робототехники. Старт не требует значительных капиталловложений. Для старта нужна плата Arduino UNO (китайская), платформа с электродвигателями, платка драйверов электродвигателей, ультразвуковой дальномер, проводки. На www.ebay.com цена за всё это не превышает 25\$.

1 Быстрый старт

1.1 Установка Scratch 2 Offline Editor

Зайдите на сайт "https://scratch.mit.edu/scratch2download/" и следуйте инструкциям инсталлятора.

1.2 Установка Arduino IDE

Зайдите на сайт "https://www.arduino.cc/en/Main/Software" и следуйте инструкциям инсталлятора.

1.3 Установка драйверов платы Arduino

На платах Arduino стоит преобразователь USB -> RS232 четез который осуществляется перепрограммирование и далее, либо связь с персональным компьютером, либо вывод отладочной информации.

Для установки драйверов для оригинальных Arduino, воспользуйтесь информацией "http://arduino.ru/Guide/Windows#4".

Для китайского варианта Arduino с микросхемой CH340G, воспользуйтесь информацией "http://arduino-project.net/driver-ch340g".

1.4 Установка "Scratch2 to ROBO translator"

Скачайте архив с проектом с адреса "https://github.com/yrasik/Scratch2_and_ROBO" согласно рисунку 1.

Рисунок 1 – Скачивание архива с GitHub

Скачанный архив называется "Scratch2_and_ROBO-master.zip". Распакуйте архив в папку.

ВНИМАНИЕ: в путях к папке не должно быть пробелов и русских букв.

Программа "Scratch2 to ROBO translator" не требует установки. Исполняемый файл находится по адресу "\Scratch2_and_ROBO-master\for_win\Scratch2_to_ROBO_translator\bin\serv.exe'

1.5 Загрузка программы в Arduino

Программа для робота (в терминологии Arduino - скетч) лежит в папке "\Scratch2_and_ROBO-master\for_arduino\ROBO_program\".

Откройте этот проект средой Arduino IDE. Убедитесь, что настройки проекта соответствуют рисунку 2.

Убедитесь, что активные пины платы соответствуют схеме.

Рисунок 2 – Загрузка проекта в Arduino

Убедитесь, что плата Arduino подключена к компьютеру. Выберите в меню "Инструменты" соответствующий тип платы, и нужный порт СОМ.

Нажмите кнопку "Загрузка", ждите сообщения об успешной загрузке платы.

Плата Arduino готова к использованию.

1.6 Установка дополнения в Scratch 2

Запустите Scratch 2. Нажмите и удерживайте клавишу "Shift", мышкой кликните по меню "Файл". В открывшемся списке мышкой выберите "Импортировать экспериментальное расширение HTTP" (рисунок 3).

Рисунок 3 – Установка дополнения в Scratch 2

Расширение лежит по адресу

"\Scratch2_and_ROBO-master\for_scratch2\Scratch2_extension_ROBO\ROBO.s2e".

В результате, во вкладке "Другие блоки" появятся новые блоки (рисунок 4).

Рисунок 4 – Scratch 2 с установленным дополнением ROBO

1.7 Запуск проекта на выполнение

В меню "Файл->Открыть" откройте тестовый проект, лежащий по адресу "\Scratch2_and_ROBO-master\for_scratch2\project_ROBO_1.sb2".

Запустите программу

"\Scratch2_and_ROBO-master\for_win\Scratch2_to_ROBO_translator\bin\serv.exe". Рабочий стол должен выглядеть как показано на рисунке 5.

Рисунок 5 – Подготовка к запуску робота

В программе "Scratch2 to ROBO translator" выберите порт Arduino и нажмите кнопку "Запуск". Связь с роботом должна установиться (рисунок 6): в Scratch 2 индикатор связи должен позеленеть, программа "Scratch2 to ROBO translator" должна написать соответствующее сообщение.

Рисунок 6 – Загрузка проекта в Arduino

2 Вариант исполнения роботизированной платформы

Мой вариант исполнения робота на 21.06.2016 показан на рисунке 7.

Рисунок 7 – Мой вариант исполнения робота

Как видно из рисунка, у платы Arduino UNO закончились входы/выходы, электромонтаж оставляет желать лучшего, что пагубно повлияло на связь робота с компьютером через радиоинтерфейс nRF24. Потребляет робот, когда находится без движения - 150 мА по 6,5 В, в движении - 600 мА, так что батарейки только успевай менять...

У робота не хватает клешни на сервоприводах (заявленных в интерфейсе), пьезоизлучателя, светодиодиков... В общем, буду двигаться по пути: Arduino UNO -> Arduino MEGA 2560 -> STM32F minimal board + FreeRTOS -> Orange PI.

3 Роборука

3.1 Вариант исполнения роборуки

Мой вариант исполнения роборуки на 04.10.2016 показан на рисунке 7.

Рисунок 8 – Мой вариант исполнения робота

3.2 3-D модели

3-D модели для печати и STEP-моделив находятся в папке ./3D/RoboHand.

Роборука адаптирована под серврмоторы 'Tower Pro 9g SG90' и шаговый двигатель '28BYJ-48 – 5V Stepper Motor' (даташиты в папке с 3-D моделями). Как показала практика, данные сервомоторы хлипковаты, но продемонстрировать принцип работы можно.

3.3 Электроника

Как видно из рисунка, электроника состоит из двух плат Arduino UNO R3 драйвера шагового двигателя (идёт в комплекте с шаговым двигателем) и блока питания '+5 В 500 мА' (за кадром).

Первая плата Arduino общается с компьютером (с программой 'Scratch2 to ROBO translator') по штатному встроенному интерфейсу (USB-COM). Плата расшифровывает команду и форми-

рует управляющую последовательность по SPI - интерфейсу (SPI-мастер). Скетч лежит в папке './for_arduino/RoboHand_program/spi_master'.

Вторая плата Arduino выступает в роли SPI-slave - исполнителя. Предназначена для приёма команд и преобразованию этих команд в последовательность команд для исполнительных механизмов. Скетч лежит в папке './for arduino/RoboHand program/spi slave servo'.

В пронципе (в других проектах), таких плат-исполнителей может быть несколько, причем навешенных на одни и те же провода (SCK, MOSI, MISO). Проект 'Scratch2 to ROBO translator' не предполагает большое количество однотипных исполнительных механизмов (можно ребёнка окончательно запутать...).

4 Среда разработки программы "Scratch2 to ROBO translator" Qt Creator

Программа "Scratch2 to ROBO translator" собрана в среде "Qt Creator (open source)". Это интегрированная среда для разработки прикладных программ с графическим интерфейсом для платформ IBM PC и не только... Язык программирования C++. Окошко "О программе" показано на рисунке 9. Оффлайн инсталлятор: "qt-opensource-windows-x86-mingw492-5.6.0.exe".

Рисунок 9 – Среда QT Creator

5 Лицензия

Программное обеспечение, исходные коды, документация распространяются "как есть" согласно "УНИВЕРСАЛЬНОЙ ОБЩЕСТВЕННОЙ ЛИЦЕНЗИИ GNU Версии 3" в надежде быть полезными другим людям.

Разработчик не требует за использование плату, и ответственности не несёт в случае утери или повреждения данных и материальных ценностей.

Используйте стилевые файлы на свой страх и риск. Подробности изложены в файле "License.gpl" и по адресам:

[&]quot;http://rusgpl.ru/rusgpl.html",

[&]quot;http://www.gnu.org/licenses/gpl-3.0.html".