Optimizing Music Recommendation for User Engagement

Presented by Group 7: James Nwizu, Jyneasha Johnson, Marvin Lomo, and Quentin Daniel

11/29/23 ISM 645 | University of North Carolina at Greensboro

Agenda

- Introduction and Motivation
- Research Questions
- Dataset
- Model
- Results and Discussion
- Conclusion

Introduction

- ■Spotify, a leading music streaming platform, aims to enhance user engagement and retention by delivering personalized music recommendations.
- ☐ The challenge lies in creating a recommendation system that not only suggests music that users are likely to enjoy but also keeps them engaged with the platform for longer periods.

Motivation

- □ Exploring a topic related to Spotify allows us to work on something that we all enjoy, which is music. And it helps that Spotify is one of the largest and most popular music streaming platforms globally.
- □ Using Spotify for the development of our project will be beneficial because it is something that we are genuinely intrigued by and there is a plethora of data to help in our project.

Research Questions

- 1. How can Spotify implement advanced **machine learning algorithms** (unsupervised) to improve its recommendation engine leading to reduced Churn rate, improved music discovery, and heightened user engagement?
- 2. What are the **key features** in determining the **similarity of recommended music**?
- 3. What features are most/least useful for predicting a track's popularity?

Research Questions Cont.

To answer the first two questions, we implement a clustering algorithm. We aim to discover subgroups in the data that span the traditional grouping according to genre and popularity, valence, key, and other variables.

- To perform clustering, we will utilize:
 - K-means Clustering: Here, we will seek to partition the observations into a prespecified number of clusters. To find the optimal number of clusters in our music data set we utilize 'the elbow' technique
- To answer the third question, we utilize two (2) supervised learning models (chosen to enhance explainability):
 - A **logistic regression model** to show the statistically significant features that predict track popularity.
 - A decision tree model to validate features that predict track popularity

Dataset

Link to the Dataset: spotify-tracks-dataset

```
spotify_df <- read_csv('spotify_data.csv', show_col_types = FALSE)

# Set Seed and Select 50_000 records
set.seed(123)

# Load the dataset
spotify_df <- sample_n(spotify_df, 50000)

# Preview the dataset
head(spotify_df)</pre>
```

				le:				
$\overline{}$	u	$\mathbf{\nu}$	v	ıc.	U	\sim	\leq	U

track_id	artists	album_name	track_name	popularity	duration_ms	explicit	danceability	energy	key	loudness	mode	speechiness	acousticness	instrumentalness	liv
<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<lgl></lgl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
PDj0uocOvtSJCdOt65qy	Yo Yo Honey Singh	Bhaag Johnny	Aankhon Aankhon	59	244831	FALSE	0.746	0.988	10	-4.565	0	0.0637	0.290000	2.18e-03	
nDL5VREpThmMOa1pta	Shakti Sivamani	Ailesa	Ailesa	42	250601	FALSE	0.628	0.790	5	-7.159	0	0.0655	0.270000	6.83e-04	
L8He4J2hrTWl9rxbE3DY	Babasónicos	Desde Adentro - Impuesto de Fe (En Vivo)	El Maestro - En Vivo	44	170866	FALSE	0.650	0.915	4	-5.761	0	0.0368	0.446000	0.00e+00	
VgwcEKnjPCcSEsJ5fWY2	Control Freak	Sable Valley Summer Vol. 2	No Chill	39	178285	FALSE	0.593	0.937	1	-6.703	0	0.0566	0.000397	6.28e-01	
VjreSYeix5YZRbwsbPv6T	LA INDIA	The Greatest Salsa Ever	Nunca Voy A Olvidarte	34	299613	FALSE	0.546	0.628	6	-10.289	1	0.0441	0.625000	1.10e-02	

Dataset

- track_id:
- artists:
- album_name:
- track_name:
- popularity:
- duration_ms:
- explicit:
- danceability:
- energy:
- key:
- loudness:

- mode:
- speechiness:
- acousticness:
- instrumentalness:
- liveness:
- valence:
- tempo:
- time_signature:
- track_genre:

Thanks for being a Spotify user! Click here to share your card on Facebook.

TOTAL NUMBER OF STREAMS

•

7,956

TOTAL MINUTES STREAMING

28,467

STDEAMS OF FAVORITE TRA

62

Sophie Madeleine 515 Streams

TOP ALBUM

Yearbook 324 Streams

calm 2,254 Streams

TOP TEN TRACKS

.....

Perfect Kiss

Marie Hines

- 3. THE LUCKY ONE JESS PENNE
- 4. SCAR THAT ... JEREMY FISHER
- 5. STARS SOPHIE MAD ...
- POLTERGEIST SOPHIE MAD.
- NOT WORTH ... SOPHIE MAD
- 8. ONE KISS T... SOPHIE MAD.
- 9. THE KNITTI... SOPHIE MAD.
- 10. I JUST CAN ... SOPHIE MAD ...

Glimpse of the Dataset

```
# Taking a glimpse of the Dataset
glimpse(spotify_df)
```

```
Rows: 50,000
Columns: 20
$ track id
                  <chr> "78PDj0uocOvtSJCdOt65qy", "1hP0hDL5VREpThmMOa1pta", "...
$ artists
                  <chr> "Yo Yo Honey Singh", "Shakti Sivamani", "Babasónicos"...
$ album name
                  <chr> "Bhaag Johnny", "Ailesa", "Desde Adentro - Impuesto d...
$ track name
                  <chr> "Aankhon Aankhon", "Ailesa", "El Maestro - En Vivo", ...
$ popularity
                  <dbl> 59, 42, 44, 39, 34, 4, 0, 55, 35, 57, 21, 29, 46, 5, ...
$ duration ms
                  <dbl> 244831, 250601, 170866, 178285, 299613, 168828, 19401...
$ explicit
                  <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALS...
$ danceability
                  <dbl> 0.746, 0.628, 0.650, 0.593, 0.546, 0.676, 0.787, 0.60...
                  <dbl> 0.9880, 0.7900, 0.9150, 0.9370, 0.6280, 0.3380, 0.872...
$ energy
$ key
                  <dbl> 10, 5, 4, 1, 6, 9, 9, 2, 0, 7, 5, 2, 11, 11, 0, 0, 0,...
$ loudness
                  <dbl> -4.565, -7.159, -5.761, -6.703, -10.289, -7.960, -2.1...
$ mode
                  <dbl> 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, ...
$ speechiness
                  <dbl> 0.0637, 0.0655, 0.0368, 0.0566, 0.0441, 0.0284, 0.143...
$ acousticness
                  <dbl> 2.90e-01, 2.70e-01, 4.46e-01, 3.97e-04, 6.25e-01, 3.7...
$ instrumentalness <dbl> 2.18e-03, 6.83e-04, 0.00e+00, 6.28e-01, 1.10e-02, 5.5...
$ liveness
                  <dbl> 0.1310, 0.6060, 0.9100, 0.3020, 0.0801, 0.4680, 0.136...
$ valence
                  <dbl> 0.6100, 0.4700, 0.8850, 0.0333, 0.7080, 0.3210, 0.696...
                  <dbl> 130.042, 132.983, 112.028, 139.933, 173.872, 92.029, ...
$ tempo
$ time signature
                  $ track genre
                  <chr> "hip-hop", "indie", "alt-rock", "dubstep", "salsa", "...
```

Research Strategy

- We followed the CRISP-DM Framework in conducting this research.
 - Data Understanding: We explored the data to understand each feature, removed duplicates, null-values and prepared the data for modeling with tidymodel recipes by using normalization and dummying categorical features.
 - Modeling: We modeled our data using the k-means clustering algorithm. To ensure the generalizability of our model, we utilized k-fold cross-validation to select the right number of clusters.
 - **Evaluation:** To evaluate our model, we previewed the clusters predicted/assigned and checked for similarity among the tracks/music records. For our supervised learning models, we used the accuracy of a dummy classifier as a baseline for comparing the accuracy of the predictive models.

Data Understanding

Modeling

```
# Preparing the dataset pipeline
clust rec <- recipe(~ ., data = spotify df) |>
                    # Update the roles of variables - These are not used in the Clustering Procedure
                    update role(track id, new role = 'ID') |>
                    update role(track name, new role = 'track name') |>
                    update role(artists, new role = 'artist name') >
                    update role(album name, new role = 'album name') |>
                    # Mutate the Logical column - explicit
                    step mutate(explicit = as.numeric(explicit)) |>
                    # Creating dummy variables with the track genre
                    step other(track genre, threshold = 0.009) |>
                    # Here, we dummy all the predictors
                    step dummy(all nominal predictors()) |>
                    # kmeans is sensitive to distances so we normalize the data
                    step normalize(all numeric predictors()) |>
                    # Remove null values from the predictors
                    step naomit(all predictors())
```

```
Rows: 49,910
Columns: 46
$ track id
                           <fct> 78PDj0uocOvtSJCdOt65qy, 1hP0hDL5VREpThmMOa1pta...
$ artists
                           <fct> "Yo Yo Honey Singh", "Shakti Sivamani", "Babas...
                           <fct> "Bhaag Johnny", "Ailesa", "Desde Adentro - Imp...
$ album name
$ track name
                           <fct> "Aankhon Aankhon", "Ailesa", "El Maestro - En ...
                           <dbl> 1.15220769, 0.38983418, 0.47952518, 0.25529768...
$ popularity
$ duration ms
                           <dbl> 0.15064399, 0.20293212, -0.51963180, -0.452400...
$ explicit
                           <dbl> -0.3051644, -0.3051644, -0.3051644, -0.3051644...
$ danceability
                           <dbl> 1.0313247, 0.3490043, 0.4762166, 0.1466212, -0...
$ energy
                           <dbl> 1.375316404, 0.587560326, 1.084881082, 1.17240...
$ key
                           <dbl> 1.32401277, -0.08085819, -0.36183238, -1.20475...
$ loudness
                           <dbl> 0.73460869, 0.21448138, 0.49479671, 0.30591470...
$ mode
                           <dbl> -1.3235551, -1.3235551, -1.3235551, -1.3235551...
$ speechiness
                           <dbl> -0.200261451, -0.183081236, -0.457010215, -0.2...
$ acousticness
                           <dbl> -0.07265370, -0.13292259, 0.39744366, -0.94535...
$ instrumentalness
                           <dbl> -0.4964816, -0.5013259, -0.5035361, 1.5286675,...
$ liveness
                           <dbl> -0.43395559, 2.07332135, 3.67797859, 0.4686641...
$ valence
                           <dbl> 0.52282835, -0.01721733, 1.58363236, -1.701774...
$ tempo
                           <dbl> 0.27001075, 0.36847284, -0.33308213, 0.6011527...
$ time_signature
                           <dbl> 0.2228434, 0.2228434, 0.2228434, 0.2228434, 0....
$ track genre bluegrass
                           <dbl> -0.09729053, -0.09729053, -0.09729053, -0.0972...
$ track genre breakbeat
                           <dbl> -0.09570417, -0.09570417, -0.09570417, -0.0957...
$ track genre british
                           <dbl> -0.0973954, -0.0973954, -0.0973954, -0.0973954...
$ track genre club
                           <dbl> -0.09538385, -0.09538385, -0.09538385, -0.0953...
```

Modeling

```
# Specifying 5 fold Cross Validation
clust_cv <- vfold_cv(spotify_df, v = 5)</pre>
# Specifying the model and the tuning parameter
model kmeans <- k means(num clusters = tune()) |>
                    # Set the Engine
                    set_engine('stats')
set.seed(123)
# Set the Pipeline
kmeans_wflow <- workflow() |>
                    # Add the model
                    add_model(model_kmeans) |>
                    # Add the pipeline
                    add_recipe(clust_rec)
# Number of clusters
clust_num_grid <- grid_regular(</pre>
                        # Setting the number of clusters
                        num clusters(c(1L, 150L)),
                        # Levels
                        levels = 10
# Lets tune the cluster
res <- tune_cluster(</pre>
                        kmeans_wflow,
                        resamples = clust cv,
                        grid = clust num grid,
                        control = control_grid(save_pred = TRUE, extract = identity),
```

metrics = cluster_metric_set(sse_within_total, sse_total, sse_ratio)

Evaluation

pred_cluster	count	Cluster_16	1510
<fct></fct>	<int></int>	Cluster_17	1313
Cluster_1	1510	Cluster_18	471
Cluster_2	1464	Cluster_19	468
Cluster_3	1063	Cluster_20	1017
Cluster_4	1353	Cluster_21	455
Cluster 5	459	Cluster_22	1042
_		Cluster_23	1130
Cluster_6	1332	Cluster_24	476
Cluster_7	1295	Cluster_25	1200
Cluster_8	460	Cluster_26	989
Cluster_9	275	Cluster_27	903
Cluster_10	453	Cluster_28	1283
Cluster_11	844	Cluster_29	461
Cluster_12	1266	Cluster_30	1586
Cluster_13	460	:	:
_	,,,,	Cluster_38	457
Cluster_14	1084	Cluster_39	806
Cluster_15	1002	Cluster_40	1323

Cluster_50	144
Cluster_51	453
Cluster_52	666
Cluster_53	166
Cluster_54	1025
Cluster_55	535
Cluster_56	83
Cluster_57	464
Cluster_58	839
Cluster_59	773
Cluster_60	358
Cluster_61	469
Cluster_62	308
Cluster_63	147
Cluster_64	263
Cluster_65	183
Cluster_66	234
Cluster_67	14

pred_cluster	artists	album_name	track_name
<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>
Cluster_2	Shakti Sivamani	Ailesa	Ailesa
Cluster_2	Babasónicos	Desde Adentro - Impuesto de Fe (En Vivo)	El Maestro - En Vivo
Cluster_2	Afrojack;R3HAB;Au/Ra	Electro sounds	Worlds On Fire
Cluster_2	Barão Vermelho	Balada MTV	Puro êxtase
Cluster_2	Bobby Rydell	The Best Of Bobby Rydell	Sway
Cluster_2	Official HIGE DANdism	One-Man Tour 2021-2022 -Editorial-@Saitama Super Arena (LIVE)	Bedroom Talk - LIVE
Cluster_2	Ritviz	Mimmi	Pukaar
Cluster_2	Sonu Nigam	Devi Bhajan - Sonu Nigam	Nanhe Nanhe Paon Mere (From "Meri Maa")
Cluster_2	Biquini Cavadão	Ao Vivo	Múmias
Cluster_2	Tobee	Après Ski Fussball Party 2022 - Wir feiern auf den Hütten	Weltmeister werden wir in diesem Jahr
Cluster_2	Dorgival Dantas;Flávio José	Minha Música, Nossa História	Passei a Noite no Forró - Ao Vivo
Cluster_2	KSHMR;Bassjackers;Sirah	Memories (feat. Sirah) [Radio Edit]	Memories (feat. Sirah) - Radio Edit
Cluster_2	Turma do Pagode	Turma no Quintal EP 3 (Ao Vivo)	Bebida com Carência (Ao Vivo)
Cluster_2	Sorriso Maroto	Escondido dos seus Pais (Ao Vivo)	Escondido dos seus Pais - Ao Vivo
Cluster_2	Juan D'Arienzo;Mario Bustos;Jorge Valdez	Tango Classics 084: Milonga del recuerdo	Baldosa floja
Cluster_2	Charlie Brown Jr.	Acústico (Ao Vivo)	Só Por Uma Noite - Ao Vivo

Results and Discussion

• RQ1: From the model above, a **cluster number of 67** optimizes the WSS/TSS ratio.

- RQ2: What are the most key features in determining similarity of recommended music?
 - The features are:
 - Popularity, duration_ms, explicit, danceability, energy, key, loudness, mode, speechiness, acousticness, instrumentalness, liveness, valence, tempo, time_signature, track_genre

Modeling Popularity

```
spotify df |>
      ggplot(
           aes(x=popularity)
      geom_histogram()
 `stat bin()` using `bins = 30`. Pick better value with `binw
 8000 -
 6000 ·
4000 ·
 2000
                     25
                                                75
                                popularity
```

From the above when we always predict the majority class (not popular) we will have an accuracy of 74.14%

We convert the popularity to a categorical variable due to the high percentage of low popularity (0) tracks in the dataset.

Modeling Popularity

```
# Preparing Data for prediction
pred rec <- recipe( popularity ~ ., data = pred spotify df) |>
                    # Update the roles of variables - These are not used in the Predictive Pipeline
                    update role(track id, new role = 'ID') |>
                    update role(track name, new role = 'track name') |>
                    update role(artists, new role = 'artist name') |>
                    update role(album name, new role = 'album name') |>
                    # logistic regression optimizer is sensitive to distances so we normalize the data
                    step normalize(all numeric predictors()) |>
                    # Mutate the logical column - explicit
                    step mutate(explicit = as.numeric(explicit)) |>
                    # Create dummy variables for the track genre
                    step other(track genre, threshold = 0.009) |>
                    # Here, we dummy all the predictors
                    step dummy(all nominal predictors()) |>
                    # Remove null values from the predictors
                    step naomit(all predictors())
```

```
Rows: 49,910
Columns: 46
$ track id
                       <fct> 78PDj0uocOvtSJCdOt65qy, 1hP0hDL5VREpThmMOa1pta...
                       <fct> "Yo Yo Honey Singh", "Shakti Sivamani", "Babas...
$ artists
$ album name
                       <fct> "Bhaag Johnny", "Ailesa", "Desde Adentro - Imp...
$ track name
                       <fct> "Aankhon Aankhon", "Ailesa", "El Maestro - En ...
                       <dbl> 0.15064399, 0.20293212, -0.51963180, -0.452400...
$ duration ms
$ explicit
                       $ danceability
                       <dbl> 1.0313247, 0.3490043, 0.4762166, 0.1466212, -0...
$ energy
                       <dbl> 1.375316404, 0.587560326, 1.084881082, 1.17240...
                       <dbl> 1.32401277, -0.08085819, -0.36183238, -1.20475...
$ key
$ loudness
                       <dbl> 0.73460869, 0.21448138, 0.49479671, 0.30591470...
$ mode
                       <dbl> -1.3235551, -1.3235551, -1.3235551, -1.3235551...
$ speechiness
                       <dbl> -0.200261451, -0.183081236, -0.457010215, -0.2...
$ acousticness
                       <dbl> -0.07265370, -0.13292259, 0.39744366, -0.94535...
$ instrumentalness
                       <dbl> -0.4964816, -0.5013259, -0.5035361, 1.5286675,...
$ liveness
                       <dbl> -0.43395559, 2.07332135, 3.67797859, 0.4686641...
$ valence
                       <dbl> 0.52282835, -0.01721733, 1.58363236, -1.701774...
$ tempo
                       <dbl> 0.27001075, 0.36847284, -0.33308213, 0.6011527...
$ time signature
                       <dbl> 0.2228434, 0.2228434, 0.2228434, 0.2228434, 0....
$ popularity
                       <fct> 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0...
$ track genre bluegrass
                       $ track genre breakbeat
                      $ track genre british
```


summary()

Call:

Evaluating Popularity

```
Call:
stats::glm(formula = ..v ~ ., family = stats::binomial, data = data)
Coefficients:
                         Estimate Std. Error z value Pr(>|z|)
                        -3.193701 0.247969 -12.879 < 2e-16 ***
(Intercept)
duration ms
                                   0.015792 -11.275 < 2e-16 ***
                        -0.178054
explicit
                         0.375297
                                   0.039157 9.584 < 2e-16 ***
danceability
                         0.101158
                                   0.013745
                                            7.360 1.84e-13 ***
                        -0.094715
                                   0.022889 -4.138 3.50e-05 ***
energy
                         0.006451
                                   0.010811
                                              0.597 0.550690
key
loudness
                         0.083083
                                   0.020675
                                              4.019 5.85e-05 ***
                                   0.010915 -4.162 3.16e-05 ***
mode
                        -0.045424
speechiness
                                   0.015365 -14.102 < 2e-16 ***
                        -0.216678
acousticness
                                   0.017246 -8.293 < 2e-16 ***
                        -0.143021
instrumentalness
                        -0.164494
                                   0.014265 -11.532 < 2e-16 ***
liveness
                                   0.013004 -14.473 < 2e-16 ***
                        -0.188205
valence
                        -0.209797
                                   0.013975 -15.012 < 2e-16 ***
                        -0.011766
                                   0.011420 -1.030 0.302871
tempo
                                              4.205 2.61e-05 ***
time_signature
                         0.051115
                                   0.012155
                                   0.368159 -0.575 0.565502
track_genre_bluegrass
                        -0.211577
track genre breakbeat
                                   0.341864
                         0.093327
                                              0.273 0.784857
track genre british
                         3.318223
                                   0.265492 12.498 < 2e-16 ***
track genre club
                         0.827568
                                   0.294444
                                              2.811 0.004945 **
track genre dance
                         2.003899
                                   0.268429
                                              7.465 8.31e-14 ***
                                              6.881 5.95e-12 ***
track genre dub
                         1.856843
                                   0.269861
                                              8.889 < 2e-16 ***
track_genre_folk
                         2.387911
                                   0.268644
                                   0.267180
                                              9.346 < 2e-16 ***
track genre french
                         2.497011
track genre grindcore
                       -13.340850 111.040779
                                            -0.120 0.904369
                                              9.531 < 2e-16 ***
track genre groove
                         2.540818
                                   0.266576
                                              0.735 0.462483
track genre guitar
                         0.248411
                                   0.338082
track genre happy
                                              0.797 0.425296
                         0.259953
                                   0.326055
track genre hardcore
                         1.988236
                                   0.271609
                                              7.320 2.48e-13 ***
track genre iranian
                       -13.095675 108.905306
                                            -0.120 0.904286
track_genre_j.idol
                        -0.427222
                                   0.383872 -1.113 0.265739
track_genre_k.pop
                         3.998687
                                   0.269274 14.850 < 2e-16 ***
                         2.828614   0.265966   10.635   < 2e-16 ***
track_genre_mandopop
thack gonno motal
```

```
# Confusion Matrix
 conf mat(final df, truth = popularity, estimate = log reg pred)
          Truth
Prediction
               0
         0 36232 11688
        1 771 1219
# Accuracy of the Prediction
 accuracy(final df, truth = popularity, estimate = log reg pred)
        A tibble: 1 \times 3
 .metric .estimator .estimate
 <chr>
            <chr>
                       <dbl>
            binary 0.7503707
accuracy
```

Evaluating Popularity

Results and Discussion II

- RQ3: What features are most/least useful for predicting a track's popularity?
 - Our analysis show that the ff features are most useful in predicting a tracks popularity:
 - duration_ms, explicit, danceability, energy, loudness, mode, speechiness, acousticness, instrumentalness, liveness, valence, time_signature, track_genre

Conclusion

From our analysis, we can conclude the ff:

- 1. K-means clustering can be utilized to produce sub-groups/clusters of similar music that can be recommended to listeners based on the listener's playlist history.
- 2. To determine similarity between songs, going beyond traditional track genres and including other features like *popularity, duration_ms, explicit, danceability, energy, key, loudness, mode, speechiness, acousticness, instrumentalness, liveness, valence, tempo, time_signature* will improve the similarity in recommended music.
- 3. From our analysis, we reveal that songs that are explicit, danceable, and loud increase the probability of popularity.

Thank you

Presented by Group 7:

James Nwizu,

Jyneasha Johnson,

Marvin Lomo,

Quentin Daniel

11/29/23 ISM 645 | University

of North Carolina at Greensboro