01 Mama sa chystá piecť koláče. Ostatní členovia rodiny vyslovili tieto želania:

Otec: "Upeč makovník alebo orechovník."

Syn: "Ak upečieš orechovník, tak upeč aj makovník alebo buchty."

Dcéra: "Ak upečieš buchty aj makovník, tak nepeč orechovník."

Mama napokon upiekla len orechovník. Komu splnila želanie?

(A) Len otcovi a dcére.

(B) Len otcovi a synovi.

(C) Len synovi a dcére.

(D) Otcovi, synovi aj dcére.

(E) Ani otcovi, ani synovi, ani dcére.

02 Ktoré z nasledujúcich tvrdení je pravdivé?

Ak a > 1, b > 1 sú dve rôzne prirodzené čísla, tak ich najmenší spoločný násobok

- (A) je vždy menší ako väčšie z čísel a, b.
- (B) je vždy väčší ako menšie z čísel a, b.
- (C) sa vždy rovná menšiemu z čísel a, b.
- (D) sa vždy rovná väčšiemu z čísel a, b.
- (E) sa vždy rovná súčinu čísel a, b.
- Z nasledujúcich výrokov vyberte negáciu výroku "V tomto školskom roku každý maturant na Slovensku píše maturitné testy aspoň z 3 predmetov".
 - (A) V tomto školskom roku každý maturant na Slovensku píše maturitné testy najviac z 2 predmetov.
 - **(B)** V tomto školskom roku každý maturant na Slovensku píše maturitné testy najviac z 3 predmetov.
 - **(C)** V tomto školskom roku existuje na Slovensku aspoň jeden maturant, ktorý nepíše maturitné testy.
 - **(D)** V tomto školskom roku existuje na Slovensku aspoň jeden maturant, ktorý píše maturitné testy najviac z 2 predmetov.
 - **(E)** V minulom školskom roku existoval na Slovensku aspoň jeden maturant, ktorý písal maturitné testy najviac z 3 predmetov.
- Rozhodnite, ktorý z nasledujúcich výrokov je negácia výroku: "Každé párne číslo je deliteľné štyrmi."
 - (A) Neexistuje párne číslo, ktoré je deliteľné štyrmi.
 - **(B)** Existuje nepárne číslo, ktoré nie je deliteľné štyrmi.
 - **(C)** Existuje nepárne číslo, ktoré je deliteľné štyrmi.
 - **(D)** Existuje párne číslo, ktoré nie je deliteľné štyrmi.
 - (E) Každé nepárne číslo je deliteľné štyrmi.

- 05 V novinách si Marián prečítal: "Každý, kto má maturitu a žije na Slovensku, musel počuť o Matejovi Belovi." Ak chce Marián dokázať, že uvedené tvrdenie je nepravdivé, tak musí ukázať, že existuje aspoň jeden človek, ktorý
 - (A) žije na Slovensku, nemá maturitu a nepočul o Matejovi Belovi.
 - (B) nežije na Slovensku, nemá maturitu a nepočul o Matejovi Belovi.
 - (C) žije na Slovensku, nemá maturitu a počul o Matejovi Belovi.
 - (D) žije na Slovensku, má maturitu a nepočul o Matejovi Belovi.
 - (E) nežije na Slovensku, má maturitu a nepočul o Matejovi Belovi.
- 06 4036/ 29

Nech výroky A, B sú pravdivé a výrok C je nepravdivý. Ktorý z nasledujúcich zložených výrokov je pravdivý?

(A) $(A \wedge B) \Rightarrow C$

(B) $(B \land C) \Rightarrow A$

(C) $(A \lor B) \Rightarrow C$

(D) $A \Rightarrow (B \land C)$

- (E) $A \Rightarrow C$
- Akú pravdivostnú hodnotu majú výroky A, B, C, ak viete, že implikácia $C \Rightarrow A$ je 07 nepravdivá a implikácia $C \Rightarrow B$ pravdivá?
 - (A) A je pravdivý, B a C sú nepravdivé.
- **(B)** *B* je pravdivý, *A* a *C* sú nepravdivé.
- (C) C je pravdivý, A a B sú nepravdivé. (D) A je nepravdivý, B a C sú pravdivé.
- **(E)** *B* je nepravdivý, *A* a *C* sú pravdivé.
- 80 Mama, otec a ich dve deti si plánovali letnú dovolenku. Každý člen rodiny vyslovil svoje želanie:

Mama: "Ak pôjdeme k moru, tak chcem bývať v penzióne alebo chcem, aby sme mali polpenziu."

- Otec: "Ak nepôjdeme k moru, tak chcem bývať v hoteli." 6903/
- 27 Syn: "Chcem ísť k moru a bývať v penzióne."

Dcéra: "Chcem ísť k moru alebo bývať v hoteli."

Nakoniec všetci išli v lete k moru, bývali v hoteli a mali polpenziu.

Určte všetkých členov rodiny, ktorým sa splnilo želanie.

- (A) mama, otec a syn
- (B) syn a dcéra
- (C) dcéra
- (D) mama a dcéra
- (E) mama, otec a dcéra

8706/ 25	Ak výrok $B \wedge C$ je pravdivý a výrok $B \Longrightarrow A$ je nepravdivý, potom pre pravdivostnú hodnotu výrokov A, B, C paltí:		
	 (A) výrok A je pravdivý, výrok B je pravdivý, výrok C je pravdivý (B) výrok A je pravdivý, výrok B je pravdivý, výrok C je nepravdivý (C) výrok A je pravdivý, výrok B je nepravdivý, výrok C je pravdivý (D) výrok A je nepravdivý, výrok B je pravdivý, výrok C je pravdivý 		
3306/ 26	 (E) výrok A je nepravdivý, výrok B je nepravdivý, výrok C je pravdivý Určte, koľko z nasledujúcich tvrdení je pravdivých. Ak x∈B a x∉A, tak x ∈ B − A. Ak x∈B a x∉A, tak x ∈ A ∪ B. Ak x∈ A ∪ B, tak x∈A a súčasne x∈B. Ak x∉A ∩ B, tak x∉A a súčasne x∉B. Ak x∈A ∩ B, tak x∈A alebo x∈B. 		
	(A) 1 (B) 2 (C) 3 (D) 4 (E) 5		
3504/ 24	Dané sú dva výroky: Prvý výrok: "Ak je štvoruholník rovnobežník, tak sa jeho uhlopriečky navzájom rozpoľujú." Druhý výrok: "Ak sa uhlopriečky štvoruholníka navzájom rozpoľujú, tak štvoruholník je rovnobežník." Koľko z nasledovných tvrdení o daných výrokoch je pravdivých? • Prvý výrok je pravdivý • Druhý výrok je nepravdivý. • Druhý výrok je ekvivalencia. • Druhý výrok je negáciou prvého. (A) 4 (B) 3 (C) 2 (D) 1 (E) 0		
8912/ 25	Výroky A, B sú pravdivé, výrok C je nepravdivý. Koľko z nasledujúcich piatich výrokov je pravdivých: $(A \land B') \Rightarrow C$, $(B \land C') \Rightarrow A$, $(C \land A') \Rightarrow B$, $(A \land B) \Rightarrow C'$, $(A \land C) \Rightarrow B'$ (A) 1 (B) 2 (C) 3 (D) 4 (E) 5		
13	Prienikom množín $A = \{x \in R; -6 \le x < 1\}$ a $B = \{x \in R; -2 < x < 2\}$ je množina $A \cap B =$ (A) $\langle -6, 2 \rangle$. (B) $(-2, 1)$. (C) $(-6, 1)$. (D) $\langle 0, 2 \rangle$. (E) $\langle -6, -2 \rangle$.		

Logika a množiny

- V matematickej súťaži riešili jej účastníci dve úlohy. Každý vyriešil aspoň jednu úlohu, pritom prvú úlohu vyriešilo 80 % účastníkov, druhú úlohu 50 %. Obidve úlohy vyriešilo 60 účastníkov. Koľko účastníkov mala súťaž?
 - **(A)** 100
- **(B)** 250
- **(C)** 360
- **(D)** 300
- **(E)** 200

- 15 Ktorá z nasledujúcich množín je vyznačená na diagrame na obrázku?
 - (A) $(A \cap C) \cup B$
 - (B) $(A \cap B) \cup C$
 - (C) $(A \cup B) \cap C$
 - (D) $(A \cup C) \cap B$
 - (E) $(B \cup C) \cap A$

Nájdite najmenšie celé číslo, ktoré je z množiny $(A-B) \cap C$, kde A, B, C sú intervaly $A = \langle 2; 6 \rangle$, $B = \langle 1; 4 \rangle$, $C = \langle 3; 5 \rangle$.

Poznámka: Symbol A – B označuje rozdiel množín A a B.

- Sú dané intervaly A = (-2; 5) a B = (2x + 7; 7). Nájdite najväčšiu hodnotu x, pre ktorú je prienik $A \cap B$ neprázdna množina.
- 18 Na obrázku je znázornený Vennov diagram pre 4 množiny *A, B, C, D* (sivo vyznačená je množina *A*). V každej zo 16 častí, z ktorých tento diagram pozostáva, je napísaný počet prvkov, ktorý v tejto časti leží (teda napríklad počet prvkov množiny *A* je 1 + 3 + 10 + 12 + 11 + 9 + 8 + 13).

Zistite počet prvkov množiny $(C \cap D) \cup (B-A)$.

Symbol A – B označuje rozdiel množín A a B.

- Jazyková škola prijala 120 poslucháčov na kurzy z nemčiny a angličtiny. 24 poslucháčov bude študovať obidva jazyky. Angličtinu bude študovať trikrát viac poslucháčov ako nemčinu. Koľko študentov bude študovať iba angličtinu?
 - **(A)** 72

Poznámka:

- **(B)** 84
- **(C)** 96
- **(D)** 108
- **(E)** 42

20 3306/ 23	Dané sú množiny A = { $x \in Z$; $x^2 > 17$ } a B = { -16; -5; -3; 0; 8; 18 }. Koľko prvkov má množina B – A ?		
	(A) 0 (B) 1 (C) 2 (D) 3 (E) 4		
21	Označme K_5 množinu všetkých mocnín čísla 5 a K_{25} množinu všetkých mocnín čísla 25.		
exam			
A15			
	(A) $K_5 \subset K_{25}$ (B) $K_{25} \subset K_5$ (C) $K_5 = K_{25}$ (D) $K_5 \cap K_{25} = \emptyset$ (E) $K_5 \cup K_{25} = \emptyset$		
22	Nech P, Q, R, S sú štyri neprázdne množiny, pre ktoré platí $P \subset Q \subset R, \ Q \cap S \neq \emptyset$.		
exam A09	Potom určite musí platiť		
	(A) $Q \subset S$ (B) $S \subset R$ (C) $P \cap S \neq \emptyset$ (D) $R \cap S \neq \emptyset$ (E) $Q \cap S = \emptyset$		
23	Na obrázku sú Vennovým diagramom znázornené množiny K, L, M,P.		
	Ktorá z uvedených rovností <u>neplatí</u> ?		
exam A01	M		
	(A) $P = (K \cap L) - (K \cap L \cap M)$ (B) $P = (K \cap L) - M$ (C) $P = (K - M) \cap L$ (D) $P = (K \cup L) - M$		
24	Ktorý z nasledujúcich vzťahov <u>neplatí</u> pre ľubovosľné dve neprázdne množiny K, L? (A) $K \cup L = L \cup K$ (B) $K \cup (K \cap L) = K$ (C) $(K \cup L) \subset (K \cap L)$ (D) $K \cup \emptyset = K$		
exam A07			
25	Nech A = { $x \in Z$; x je deliteľné deviatimi}, B = { $x \in Z$; ciferný súčet čísla x je 18}. V akom		
exam A22	vzájomnom vzťahu sú množiny A, B?		
	(A) A je podmnožinou B, pričom A \neq B (B) B je podmnožinou A, pričom A \neq B		
	(C) $A \neq B$ a neplatí ani $A \subset B$, ani $B \subset A$ (D) $A = B$		
	(E) $A \cap B = \emptyset$		
26	Svedok pri výsluchu uviedol: "Dôrazne popieram,tvrdenie obžalovaného, že som sa s ním		
exam			
B04	stretol aspoň päťkrát." Zo svedkovej výpovede vyplýva, že sa s obžalovaným		
	(A) nikdy nestretol. (B) stretol najviac raz.		
	(C) stretol najviac štyrikrát. (D) stretol štyrikrát.		
	(E) najmenej päťkrát.		

Logika a množiny

27 Negáciou výroku "Každé prvočíslo má párny počet deliteľov." je výrok:

(A) Každé prvočíslo má nepárny počet deliteľov.

exam B07

- (B) Každé zložené číslo má nepárny počet deliteľov.
- (C) Žiadne prvočíslo nemá párny počet deliteľov.
- (D) Existuje prvočíslo, ktoré má nepárny počet deliteľov.
- (E) Existuje prvočíslo, ktoré má párny počet deliteľov.

Pani Nováková sa chváli susedke: "Všetky moje deti ovládajú aspoň tri cudzie jazyky!" Neskôr susedka zistila, že pani Nováková nehovorila pravdu. Z toho možno usúdiť, že

exam B10

- (A) žiadne dieťa pani Novákovej neovláda viac ako dva cudzie jazyky.
- (B) všetky deti pani Novákovej ovládajú menej ako tri cudzie jazyky.
- (C) niektoré dieťa pani Novákovej ovláda iba dva cudzie jazyky.
- (D) niektoré dieťa pani Novákovej ovláda najviac dva cudzie jazyky.
- (E) niektoré dieťa pani Novákovej ovláda viac ako dva cudzie jazyky.

Logika a množiny

Riešenia

01	A
02	В
03	D
04	D
05	D
06	В
07	D
08	Е
09	D
10	С
11	D
12	Е
13	В
14	Е
15	С
16	4
17	-1
18	64
19	В
20	С
21	В
22	D
23	D
24	С
25	В
26	С
27	D
28	D