Started on	Tuesday, 27 February 2024, 2:01 PM
State	Finished
Completed on	Tuesday, 27 February 2024, 3:13 PM
Time taken	1 hour 11 mins
Marks	20.00/20.00
Grade	10.00 out of 10.00 (100 %)

Question 1

Correct

Mark 10.00 out of 10.00

This challenge is part of a tutorial track

by $\underline{\mathsf{MyCodeSchool}}$ and is accompanied by a video lesson.

Given a pointer to the head of a singly-linked list, print each *data* value from the reversed list. If the given list is empty, do not print anything.

Example

head* refers to the linked list with data values $1 \rightarrow 2 \rightarrow 3 \rightarrow NULL$

Print the following:

3

2

1

Function Description

Complete the *reversePrint* function in the editor below.

reversePrint has the following parameters:

 SinglyLinkedListNode pointer head: a reference to the head of the list

Prints

The *data* values of each node in the reversed list.

Input Format

The first line of input contains \boldsymbol{t} , the number of test cases.

The input of each test case is as follows:

- The first line contains an integer n, the number of elements in the list.
- Each of the next *n* lines contains a data element for a list node.

Constraints

- $1 \le n \le 1000$
- $1 \leq list[i] \leq 1000$, where list[i] is the i^{th} element in the list.

Sample Input

```
3
5
16
12
4
2
5
3
7
3
9
5
5
1
18
3
13
```

Sample Output

```
5
2
4
12
16
9
3
7
13
3
18
1
```

Explanation

There are three test cases. There are no blank lines between test case output.

The first linked list has ${\bf 5}$ elements:

 $16 \to 12 \to 4 \to 2 \to 5.$ Printing this in reverse order produces:

The second linked list has 3 elements:

 $7 \rightarrow 3 \rightarrow 9 \rightarrow \textit{NULL}.$ Printing this in reverse order produces:

The third linked list has 5 elements:

$$5 \rightarrow 1 \rightarrow 18 \rightarrow 3 \rightarrow 13 \rightarrow \textit{NULL}.$$

Printing this in reverse order produces:

For example:

:13 PM				
Input	Result			
3	5			
5	2			
16	4			
12	12			
4	16			
2	9			
5	3			
3	7			
7	13			
3	3			
9	18			
5	1			
5	5			
1				
18				
3				
13				
3	17			
3	1			
11	11			
1	15			
17	11			
3	12			
12	14			
11	15			
15	7			
4	5			
5				
7				
15				
14				

Answer: (penalty regime: 0 %)

Reset answer

```
hclude <bits/stdc++.h>
 1
 2
 3
    ing namespace std;
 4
 5 🔻
   ass SinglyLinkedListNode {
 6
     public:
 7
         int data;
         SinglyLinkedListNode *n
 8
 9
10
         SinglyLinkedListNode(in
11
              this->data = node_d
              this->next = nullpt
12
13
          }
14
15
16 •
   ass SinglyLinkedList {
17
18
         SinglyLinkedListNode *h
19
         SinglyLinkedListNode *t
20
         SinglyLinkedList() {
21
22
              this->head = nullpt
              this->tail = nullpt
23
24
          }
25
         void insert_node(int no
26
27
              SinglyLinkedListNod
28
29
              if (!this->head) {
30
                  this->head = no
```

```
31 •
              } else {
                  this->tail->nex
32
33
34
              this->tail = node;
35
36
37
38
39 vid print_singly_linked_list(S
40 •
     while (node) {
41
         cout << node->data;
42
43
         node = node->next;
44
          if (node) {
45
46
              cout << sep;</pre>
47
48
49
50
51 vid free singly linked list(Si
```

	Input	Expected	Got	
~	3	5	5	~
	5	2	2	
	16	4	4	
	12	12	12	
	4	16	16	
	2	9	9	
	5	3	3	
	3	7	7	
	7	13	13	
	3	3	3	
	9	18	18	
	5	1	1	
	5	5	5	
	1			
	18			
	3			
	13			
/	3	17	17	~
	3	1	1	
	11	11	11	
	1	15	15	
	17	11	11	
	3	12	12	
	12	14	14	
	11	15	15	
	15	7	7	
	4	5	5	
	5			
	7			
	15			
	14			

Passed all tests! ✔

Marks for this submission: 10.00/10.00.

Question 2

Correct

Mark 10.00 out of 10.00

Alexa has two stacks of non-negative integers, stack $\boldsymbol{a}[\boldsymbol{n}]$ and stack $\boldsymbol{b}[\boldsymbol{m}]$ where index $\boldsymbol{0}$ denotes the top of the stack. Alexa challenges Nick to play the following game:

- In each move, Nick can remove one integer from the top of either stack a or stack b.
- Nick keeps a running sum of the integers he removes from the two stacks.
- Nick is disqualified from the game if, at any point, his running sum becomes greater than some integer maxSum given at the beginning of the game.
- Nick's final score is the total number of integers he has removed from the two stacks.

Given **a**, **b**, and **maxSum** for **g** games, find the maximum possible score Nick can achieve.

Example

$$a = [1, 2, 3, 4, 5]$$

 $b = [6, 7, 8, 9]$

The maximum number of values Nick can remove is **4**. There are two sets of choices with this result.

- 1. Remove **1**, **2**, **3**, **4** from **a** with a sum of **10**.
- Remove 1, 2, 3 from a and 6 from b with a sum of 12.

Function Description

Complete the *twoStacks* function in the editor below.

twoStacks has the following parameters:

- int maxSum: the maximum allowed sum
- int a[n]: the first stack
- int b[m]: the second stack

Returns

- *int*: the maximum number of selections Nick can make

Input Format

The first line contains an integer, g (the number of games). The $3 \cdot g$ subsequent lines describe each game in the following format:

- The first line contains three space-separated integers describing the respective values of n (the number of integers in stack a), m (the number of integers in stack b), and maxSum (the number that the sum of the integers removed from the two stacks cannot exceed).
- 2. The second line contains n space-separated integers, the respective values of a[i].
- 3. The third line contains m spaceseparated integers, the respective values of b[i].

Constraints

- $1 \le g \le 50$
- $1 \le n, m \le 10^5$
- $0 \leq a[i], b[i] \leq 10^6$
- $1 \leq maxSum \leq 10^9$

Subtasks

• $1 \le n, m, \le 100$ for 50% of the maximum score.

Sample Input 0

Sample Output 0

4

Explanation 0

The two stacks initially look like this:

The image below depicts the integers Nick should choose to remove from the stacks. We print ${f 4}$ as our answer, because that is the maximum number of integers that can be removed from the two stacks without the sum exceeding ${m x}={f 10}$.

(There can be multiple ways to remove the integers from the stack, the image shows just one of them.)

For example:

Input	Result
1	4
5 4 10	
4 2 4 6 1	
2 1 8 5	
3	9
7 2 668	11
12 54 75 66 99 22 66	11
93 32	
3 10 541	
34 60 55	
47 68 67 23 18 99 24 39 56	
12	
5 7 580	
29 21 75 81 73	
42 32 49 22 48 91 67	

Answer: (penalty regime: 0 %)

Reset answer

```
its/stdc++.h>
 2
3
    pace std;
 4
 5
    m(const string &);
 6
    m(const string &);
 7
    ng> split(const string &);
 8
 9
10
    the 'twoStacks' function bel
11
12
   tion is expected to return an
13
   tion accepts following parame
14
   GER maxSum
    GER_ARRAY a
15
    GER ARRAY b
16
17
18
19
    long long;
20
21 vks(int maxSum, vector<int> a,
22
   t newSize = a.size();
23
   t newM = b.size();
24
   wX = maxSum;
25
26
   newAns = 0;
27
   RightLoc = 0;
28
   um = 0;
```

```
30 →RightLoc < b.size()) {
31 ▼ (newSum + b[RightLoc] <= maxS
32
    newSum += b[RightLoc];
    RightLoc++;
33
   lse {
34 🔻
35
     break;
36
37
38
39
    = RightLoc;
40 vze_t i = 0; i < a.size(); i++
41
   Sum += a[i];
42 • le (RightLoc > 0 && newSum >
    newSum -= b[RightLoc - 1];
43
44
     RightLoc--;
45
46
47
    (newSum <= maxSum) {</pre>
     newAns = max(int(newAns), in
48
49
50
51
   int(newAns);
52
```

	Input	Expected	Got	
~	1	4	4	~
	5 4 10			
	4 2 4 6			
	1			
	2 1 8 5			
~	3	9	9	~
	7 2 668	11	11	
	12 54 75	11	11	
	66 99 22			
	66			
	93 32			
	3 10 541			
	34 60 55			
	47 68 67			
	23 18 99			
	24 39 56			
	12			
	5 7 580			
	29 21 75			
	81 73			
	42 32 49			· '
	22 48 91			
	67			

Passed all tests! 🗸

Marks for this submission: 10.00/10.00.