Package 'abc.n'

April 12, 2013

Version 1.0-0

Index

Date 2013/02/15

Title abc.n
Author {Oliver Ratmann, Anton Camacho}
Maintainer Oliver Ratmann <o.ratmann@imperial.ac.uk></o.ratmann@imperial.ac.uk>
Depends R (>= 2.10)
Description tools for ABC based on n summary values
License GPL (>=2)
LazyLoad yes
Collate 'nabc_functions.R'
R topics documented:
nabc.acf.equivalence 2 nabc.acf.equivalence.abctol 3 nabc.acf.equivalence.cor 3 nabc.acf.equivalence.pow 4 nabc.acf.equivalence.tau.lowup 5 nabc.chisqstretch 6 nabc.chisqstretch.nof.y 7 nabc.chisqstretch.pow 8 nabc.chisqstretch.tau.low 9 nabc.chisqstretch.tau.lowup 9 NABC.DEFAULT.ANS 10 nabc.exprho.at.theta 11 nabc.generic.tost 11 nabc.get.pfam.pval 12 nabc.mutost.onesample 12 nabc.mutost.onesample.n.of.y 13

18

2 nabc.acf.equivalence

nabc.acf.equivalence Perform the asymptotic equivalence test for autocorrelations at lag 1

Description

Perform the asymptotic equivalence test for autocorrelations at lag 1

Usage

```
nabc.acf.equivalence(sim, obs, args = NA,
  verbose = FALSE, alpha = 0, leave.out = 0,
  normal.test = "sf.test")
```

Arguments

sim simulated summary values
obs observed summary values
args argument that contains the equiva

argument that contains the equivalence region and the level of the test (see Examples). This is the preferred method for specifying arguments and overwrites

the dummy default values

verbose flag if detailed information on the computations should be printed to standard

out

alpha level of the equivalence test

leave.out thinning, how many values in the pair sequence (x_i, x_i-1) should be left out.

Defaults to zero.

normal.test name of function with which normality of the summary values is tested

Value

vector containing

error test statistic. Here, instead of T we return the p-value of the TOST.

cil lower ABC tolerance. Here, instead of c^- we return 0.

cir upper ABC tolerance. Here, instead of c^+ we return 'alpha'.

al free entry. Here set to c^- . ar free entry. Here set to c^+ .

mx.pw Maximum power at the point of equality

rho.mc sample estimate of 'rho'

```
leave.out<- 2
tau.u<- 0.09
alpha<- 0.01
n<- 5e3
sigma<- 1
a<- 0.1
args<- paste("acfequiv",leave.out,tau.u,alpha,sep='/')
x<-rnorm(n+1,0,sigma)</pre>
```

```
x<- x[-1] + x[-(n+1)]*a
y<-rnorm(n+1,0,sigma)
y<- y[-1] + y[-(n+1)]*a
nabc.acf.equivalence(y,x,args)</pre>
```

```
nabc.acf.equivalence.abctol
```

Compute the ABC tolerances of the asymptotic equivalence test for autocorrelations at lag 1

Description

Compute the ABC tolerances of the asymptotic equivalence test for autocorrelations at lag 1

Usage

```
nabc.acf.equivalence.abctol(tau.l, tau.u, n, alpha)
```

Arguments

tau.l	lower tolerance of the equivalence region
tau.u	upper tolerance of the equivalence region
n	number of pairs (x_i, x_i-1) after thinning of the time series $x_1, x_2,$
alpha	level of the equivalence test

Value

vector of length 2, first entry is lower ABC tolerance, second entry is upper ABC tolerance

Examples

```
tau.u<- 0.09
tau.l<- -tau.u
sim.n<-5e3
leave.out<- 2
nabc.acf.equivalence.abctol(tau.l, tau.u, floor(sim.n / (1+leave.out)), 0.01)</pre>
```

```
nabc.acf.equivalence.cor
```

Compute the autocorrelation in a time series along with some other info

Description

Compute the autocorrelation in a time series along with some other info

Usage

```
nabc.acf.equivalence.cor(x, leave.out = 0)
```

Arguments

x time series (simply vector)

leave.out thinning, how many values in the pair sequence (x_i,x_i-1) should be left out.

Defaults to zero.

Value

cor autocorrelation in the thinned sequence

z Z-transformation of the autocorrelation (this is atanh of "cor")

n Number of pairs (x_i,x_i-1) after thinning

Examples

```
nabc.acf.equivalence.cor(rnorm(100,0,1), leave.out=2)
```

```
nabc.acf.equivalence.pow
```

Compute power of the asymptotic equivalence test for autocorrelations at lag 1

Description

Compute power of the asymptotic equivalence test for autocorrelations at lag 1

Usage

```
nabc.acf.equivalence.pow(rho, tau.u, alpha, s)
```

Arguments

rho true difference in simulated and observed autocorrelation at lag 1

tau.u upper tolerance of the equivalence region

alpha level of the equivalence test

s standard deviation of the test statistic

Value

power of the asymptotic test. this is approximate because the test is asymptotic

```
tau.u<- 0.09
tau.l<- -tau.u
sim.n<-5e3
rho<- seq(tau.l,tau.u,0.001)
pw<- nabc.acf.equivalence.pow(rho, tau.u, alpha, 1/sqrt(floor(sim.n/3)-3))</pre>
```

```
nabc.acf.equivalence.tau.lowup
```

Calibrate the equivalence region of the asymptotic equivalence test for autocorrelations at lag 1 for given maximum power

Description

Calibrate the equivalence region of the asymptotic equivalence test for autocorrelations at lag 1 for given maximum power

Usage

```
nabc.acf.equivalence.tau.lowup(mx.pw, tau.up.ub, n,
   alpha, rho.star = 0, tol = 1e-05, max.it = 100)
```

Arguments

mx.pw	maximum power at the point of reference (rho.star).
tau.up.ub	guess on an upper bound on the upper tolerance of the equivalence region
n	number of pairs (x_i, x_i-1) after thinning of the time series $x_1, x_2,$
alpha	level of the equivalence test
rho.star	point of reference. Defaults to the point of equality rho.star=0.
tol	this algorithm stops when the actual maximum power is less than 'tol' from 'mx.pw'
max.it	this algorithm stops prematurely when the number of iterations to find the equivalence region exceeds 'max.it'

Value

vector of length 4

1	lower tolerance of the equivalence region
2	upper tolerance of the equivalence region
3	actual maximum power associated with the equivalence region
4	error ie abs(actual power - mx.pw)

```
tau.u<- 0.09
tau.l<- -tau.u
sim.n<-5e3
leave.out<- 2
nabc.acf.equivalence.tau.lowup(0.9, 2, floor(sim.n / (1+leave.out)), 0.01)</pre>
```

6 nabc.chisqstretch

nabc.chisqstretch	
-------------------	--

Description

Perform the exact test for dispersion equivalence when the summary values are normally distributed

Usage

```
nabc.chisqstretch(sim, obs.mc, args = NA,
  verbose = FALSE, tau.l = 1, tau.u = 1, guess.tau.l = 0,
  alpha = 0, normal.test = "sf.test", for.mle = 0)
```

Arguments

sim	simulated summary values
obs.mc	variance of the observed summary values
args	argument that contains the equivalence region and the level of the test (see Examples). This is the preferred method for specifying arguments and overwrites the dummy default values
verbose	flag if detailed information on the computations should be printed to standard out
tau.l	lower tolerance of the equivalence region
tau.u	upper tolerance of the equivalence region
guess.tau.l	guess on the lower tolerance of the equivalence region. Used when the tolerances are annealed and calibration is numerically unstable.
alpha	level of the equivalence test
leave.out	thinning, how many values in the pair sequence (x_i,x_i-1) should be left out. Defaults to zero.
normal.test	name of function with which normality of the summary values is tested
for.mle	calibrate so that the mode of the power is at the MLE

Value

vector containing

error	test statistic, here var(sim)/obs.mc
cil	lower ABC tolerance c^-
cir	upper ABC tolerance c^+
mx.pw	Maximum power at the point of equality
rho.mc	log(var(sim) / obs.mc)

nabc.chisqstretch.n.of.y

Examples

```
alpha<- 0.01; xn<- yn<- 60; xsigma2<- 1; tau.u<- 2.2
tau.l<- nabc.chisqstretch.tau.low(tau.u, yn-1, alpha)
args<- paste("chisqstretch",tau.l,tau.u,alpha,sep='/')
x<- rnorm(xn,0,sd=sqrt(xsigma2))
y<- rnorm(yn,0,sd=sqrt(xsigma2))
nabc.chisqstretch(y, var(x), args=args, verbose= 0)</pre>
```

```
nabc.chisqstretch.n.of.y
```

Calibrate the number of simulated summary values and the equivalence region for the test of dispersion equivalence

7

Description

Calibrate the number of simulated summary values and the equivalence region for the test of dispersion equivalence

Usage

```
nabc.chisqstretch.n.of.y(n.of.x, s.of.Sx, mx.pw, alpha,
tau.u.ub = 2, tol = 1e-05, max.it = 100, for.mle = 0)
```

Arguments

n.of.x	number of observed summary values
s.of.Sx	standard deviation in the observed summary likelihood
mx.pw	maximum power at the point of reference (rho.star).
alpha	level of the equivalence test
tau.up.ub	guess on an upper bound on the upper tolerance of the equivalence region
tol	this algorithm stops when the actual variation in the ABC approximation to the summary likelihood is less than 'tol' from 's.of. $Sx*s.of.Sx$ '
max.it	this algorithm stops prematurely when the number of iterations to calibrate the number of simulated data points exceeds 'max.it'
for.mle	calibrate so that the mode of the power is at the MLE

Value

vector of length 8

1	number of simulated summary values
2	lower tolerance of the equivalence region
3	upper tolerance of the equivalence region
4	lower ABC tolerance c^-
5	upper ABC tolerance c^+
6	actual variation of the power
7	actual maximum power associated with the equivalence region
8	error ie abs(actual variation - variation in the observed summary likelihood)

8 nabc.chisqstretch.pow

Examples

```
xn<-60; alpha <- 0.01; prior.u <- 3; prior.l <- 1/3; tau.u<- 2.5; xsig2 <- 1
#summary likelihood of sigma2 given sample mean and sum of squares
th <- seq(prior.1,prior.u,length.out=1e3)</pre>
shape <- (xn-2)/2
scale <- xsig2*xn*xn/(xn-1)/2</pre>
y <- densigamma(th, shape, scale)
var.Sx <- scale*scale/((shape-1)*(shape-1)*(shape-2))</pre>
#abc approximation to summary likelihood
nabc.chisqstretch.n.of.y(xn, sqrt(var.Sx), 0.9, alpha, tau.u.ub=tau.u)
yn <- tmp[1]</pre>
tau.1 \leftarrow tmp[2]
tau.u <- tmp[3]
c.1 <- tmp[4]
c.u \leftarrow tmp[5]
y2 <- nabc.chisqstretch.pow(th, yn-1, yn-1, c.l, c.u)
#plot the summary likelihood and the abc approximation
plot(th,y/mean(y),ylim=range(c(y/mean(y),y2/mean(y2))),type='1')
lines(th,y2/mean(y2),col="blue")
```

nabc.chisqstretch.pow Compute power of the exact equivalence test for dispersion

Description

Compute power of the exact equivalence test for dispersion

Usage

```
nabc.chisqstretch.pow(rho, scale, df, cl, cu)
```

Arguments

rho	true ratio in simulated variance / observed variance
scale	scaling of T apart from rho, either n-1 for unbiased ABC or n for exact MAP
df	degrees of freedom
cl	lower ABC tolerance
cu	upper ABC tolerance

Value

power of the exact test. this is exact.

```
alpha<- 0.01
tau.up<- 1.09
yn<- 5e3
tau.low<- nabc.chisqstretch.tau.low(tau.up, yn-1, alpha)
rej<- .Call("abcScaledChiSq",c(yn-1,yn-1,tau.low,tau.up,alpha,1e-10,100,0.05) )
rho<- seq(tau.low,tau.up,by=0.001)
nabc.chisqstretch.pow(rho,yn-1,yn-1,rej[1],rej[2])</pre>
```

```
nabc.chisqstretch.tau.low
```

Calibrate the lower tolerance interval of the equivalence region for the test of dispersion equivalence

Description

Calibrate the lower tolerance interval of the equivalence region for the test of dispersion equivalence

Usage

```
nabc.chisqstretch.tau.low(tau.up, df, alpha,
  rho.star = 1, tol = 1e-05, max.it = 100, for.mle = 0)
```

Arguments

tau.up	upper tolerance of the equivalence region
df	degrees of freedom
alpha	level of the equivalence test
rho.star	point of reference. Defaults to the point of equality rho.star=1
tol	this algorithm stops when the actual point of reference is less than 'tol' from 'rho.star' $$
max.it	this algorithm stops prematurely when the number of iterations to find the equivalence region exceeds 'max.it'
for.mle	calibrate so that the mode of the power is at the MLE

Value

tau.low, lower tolerance of the equivalence region

Examples

```
tau.u<- 2.2
yn<- 60
tau.l<- nabc.chisqstretch.tau.low(tau.u, yn-1, 0.01)</pre>
```

```
nabc.chisqstretch.tau.lowup
```

Calibrate the equivalence region for the test of dispersion equivalence for given maximum power

Description

Calibrate the equivalence region for the test of dispersion equivalence for given maximum power

Usage

```
nabc.chisqstretch.tau.lowup(mx.pw, tau.up.ub, df, alpha,
  rho.star = 1, tol = 1e-05, max.it = 100, for.mle = 0)
```

10 NABC.DEFAULT.ANS

Arguments

mx.pw maximum power at the point of reference (rho.star).

tau.up.ub guess on an upper bound on the upper tolerance of the equivalence region

df degrees of freedom

alpha level of the equivalence test

rho.star point of reference. Defaults to the point of equality rho.star=1.

this algorithm stops when the actual maximum power is less than 'tol' from

'mx.pw'

max.it this algorithm stops prematurely when the number of iterations to find the equiv-

alence region exceeds 'max.it'

for.mle calibrate so that the mode of the power is at the MLE

Value

vector of length 6

•	1	lower tolerance of the equivalence region
	2	upper tolerance of the equivalence region
	3	actual maximum power associated with the equivalence region
4	4	error ie abs(actual power - mx.pw)
ļ	5	lower point of critical region
(õ	upper point of critical region

Examples

```
yn<- 60
nabc.chisqstretch.tau.lowup(0.9, 2.5, yn-1, 0.01)</pre>
```

NABC.DEFAULT.ANS

this file contains all R functions of the abc-n package

Description

this file contains all R functions of the abc-n package

Usage

```
NABC.DEFAULT.ANS
```

Format

```
Named num [1:16] 0 50 1 NA NA NA 0 0 0 0 ... - attr(*, "names")= chr [1:16] "lkl" "error" "pval" "link.mc.obs" ...
```

nabc.exprho.at.theta

nabc.exprho.at.theta	Estimate summary parameter errors rho from unbiased Monte Carlo
	estimates rho.mc for all proposed theta including rejections

Description

Estimate summary parameter errors rho from unbiased Monte Carlo estimates rho.mc for all proposed theta including rejections

Usage

```
nabc.exprho.at.theta(df, theta.names, rho.names,
thin = 1)
```

Arguments

df data frame with all proposed theta and corresponding rho.mc for each summary

of interest

theta.names vector of theta names (columns in df) vector of rho names (columns in df)

thin thinning factor in case there are many rows in df

Value

matrix containing the estimated rho (per column). The ith row corresponds to the ith theta in df.

nabc.generic.tost

Perform a generic two one sided test. This is an internal function.

Description

Perform a generic two one sided test. This is an internal function.

Usage

```
nabc.generic.tost(tost.args, tau.l, tau.u, alpha,
  tost.distr = "t")
```

Arguments

tost.args vector of arguments for generic TOST
tau.1 lower tolerance of equivalence region
tau.u upper tolerance of equivalence region

alpha level of equivalence test tost.distr name of distribution of tost

Value

vector of length 7

nabc.get.pfam.pval

Test if summary values are normally distributed

Description

Test if summary values are normally distributed

Usage

```
nabc.get.pfam.pval(x, normal.test)
```

Arguments

x summary values

norma.test name of function with which normality of the summary values is tested

Value

p value of the test

Examples

```
nabc.get.pfam.pval(rnorm(1e4), "shapiro.test")
```

 ${\it nabc.mutost.onesample} \begin{tabular}{ll} \textit{Perform the exact TOST for location equivalence when the summary}\\ \textit{values are normally distributed} \end{tabular}$

Description

Perform the exact TOST for location equivalence when the summary values are normally distributed

Usage

```
nabc.mutost.onesample(sim, obs, obs.n = NA, obs.sd = NA,
   args = NA, verbose = FALSE, tau.u = 0, tau.l = -tau.u,
   alpha = 0, mx.pw = 0.9, annealing = 1,
   normal.test = "sf.test", plot = 0, legend.txt = "")
```

Arguments

sim	simulated summary values
obs	observed summary values
args	argument that contains the equivalence region and the level of the test (see Examples). This is the preferred method for specifying arguments and overwrites the dummy default values
verbose	flag if detailed information on the computations should be printed to standard out
s.of.x	standard deviation of the observed summary values

tau.u	upper tolerance of the equivalence region
tau.l	lower tolerance of the equivalence region

alpha level of the equivalence test

mx.pw maximum power at the point of equality

annealing inflation factor of tolerances of the equivalence region

normal.test name of function with which normality of the summary values is tested

Value

vector containing

error test statistic, here p-value of TOST

cil lower ABC tolerance, here 0

cir upper ABC tolerance, here alpha

mx.pw Maximum power at the point of equality

rho.mc mean(sim) - obs.mean

Examples

```
tau.u<- 0.5; tau.l<- -tau.u; alpha<- 0.01; xn<- yn<- 60; xmu<- ymu<- 0.5; xsigma2<- 2
args<- paste("mutost",1,tau.u,alpha,sep='/')
x<- rnorm(xn,xmu,sd=sqrt(xsigma2))
y<- rnorm(yn,ymu,sd=sqrt(ysigma2))
nabc.mutost.onesample(y, x, args= args, verbose= 0)</pre>
```

```
nabc.mutost.onesample.n.of.y
```

Calibrate the number of simulated summary values and the equivalence region for the test of location equivalence

Description

Calibrate the number of simulated summary values and the equivalence region for the test of location equivalence

Usage

```
nabc.mutost.onesample.n.of.y(n.of.x, s.of.Sx, mx.pw,
    s.of.y, alpha, tau.u.ub = 2, tol = 1e-05, max.it = 100,
    debug = 0)
```

Arguments

n.of.x	number of observed summary values
s.of.Sx	standard deviation in the observed summary likelihood
mx.pw	maximum power at the point of reference (rho.star).
s.of.y	standard deviation in the simulated summary values
alpha	level of the equivalence test

tau.up.ub	guess on an upper bound on the upper tolerance of the equivalence region
tol	this algorithm stops when the actual variation in the ABC approximation to the summary likelihood is less than 'tol' from 's.of.Sx*s.of.Sx'
max.it	this algorithm stops prematurely when the number of iterations to calibrate the number of simulated data points exceeds 'max.it'
debug	Flag if C implementation is used.

Value

vector of length 6

1	number of simulated summary values
2	lower tolerance of the equivalence region
3	upper tolerance of the equivalence region
4	actual variation of the power
5	actual maximum power associated with the equivalence region
6	error ie abs(actual variation - variation in the observed summary likelihood)

Examples

```
prior.u<- 2; prior.l<- -prior.u; tau.u<- 0.75; xn<- yn<- 60; xmu<- 0.5; xsigma2<- ysigma2<- 2; alpha<- 0.0
rho<- seq(prior.1,prior.u,length.out=1e3)</pre>
#summary likelihood
y<-dnorm(rho,0,sqrt(xsigma2/xn))
y<- y / diff(pnorm(c(prior.l,prior.u),0,sqrt(xsigma2/xn)))</pre>
#abc approximation to summary likelihood based on equivalence test
tmp <- nabc.mutost.onesample.n.of.y(xn, sqrt(xsigma2/xn), 0.9, sqrt(ysigma2), alpha, tau.u.ub=2*tau.u )</pre>
yn <- tmp[1]</pre>
tau.u \leftarrow tmp[3]
y2<- nabc.mutost.pow(rho, yn-1, tau.u, sqrt(ysigma2/yn), alpha)
rho2<- rho[which(y2!=0)]</pre>
y2 < - y2[which(y2!=0)]
y2 <- y2/sum(diff(rho2)*y2[-1])
\mbox{\tt\#plot} summary likelihood and abc approximation thereof
plot(1,1,type='n',xlim=range(rho),ylim=range(c(y,y2)),xlab=expression(rho))
lines(rho,y,col="red")
lines(rho2,y2,col="blue")
abline(v=0,col="red")
```

```
nabc.mutost.onesample.tau.lowup.pw
```

Calibrate the equivalence region for the test of location equivalence for given maximum power

Description

Calibrate the equivalence region for the test of location equivalence for given maximum power

Usage

```
nabc.mutost.onesample.tau.lowup.pw(mx.pw, df, s.of.T,
  tau.up.ub, alpha, rho.star = 0, tol = 1e-05,
  max.it = 100, debug = 0)
```

Arguments

mx.pw	maximum power at the point of reference (rho.star).
df	degrees of freedom
s.of.T	standard deviation of the test statistic
tau.up.ub	guess on an upper bound on the upper tolerance of the equivalence region
alpha	level of the equivalence test
rho.star	point of reference. Defaults to the point of equality rho.star=0.
tol	this algorithm stops when the actual maximum power is less than 'tol' from ' $mx.pw$ '
max.it	this algorithm stops prematurely when the number of iterations to find the equivalence region exceeds 'max.it'
debug	Flag if C implementation is used.

Value

vector of length 4

1	lower tolerance of the equivalence region
2	upper tolerance of the equivalence region
3	actual maximum power associated with the equivalence region
4	error ie abs(actual power - mx.pw)

Examples

```
yn<- 60; ysigma2<- 1; alpha<- 0.01
nabc.mutost.onesample.tau.lowup.pw(0.9, yn-1, sqrt(ysigma2/yn), 2, alpha )</pre>
```

```
nabc.mutost.onesample.tau.lowup.var
```

Calibrate the equivalence region for the test of location equivalence for given variance of the summary likelihood

Description

Calibrate the equivalence region for the test of location equivalence for given variance of the summary likelihood

Usage

```
nabc.mutost.onesample.tau.lowup.var(s.of.Sx, df, s.of.T,
  tau.up.ub, alpha, rho.star = 0, tol = 1e-05,
  max.it = 100, debug = 0)
```

nabc.mutost.pow

Arguments

s.of.Sx	standard deviation of the summary likelihood
df	degrees of freedom
s.of.T	standard deviation of the test statistic
tau.up.ub	guess on an upper bound on the upper tolerance of the equivalence region
alpha	level of the equivalence test
rho.star	point of reference. Defaults to the point of equality rho.star=0.
tol	this algorithm stops when the actual maximum power is less than 'tol' from ' $mx.pw$ '
max.it	this algorithm stops prematurely when the number of iterations to find the equivalence region exceeds 'max.it'
debug	Flag if C implementation is used.

Value

vector of length 4

1	lower tolerance of the equivalence region
2	upper tolerance of the equivalence region
3	actual variance associated with the power
4	error ie abs(actual var(power) - var(summary likelihood))

Examples

```
yn<- 60; ysigma2<- 1; alpha<- 0.01 nabc.mutost.onesample.tau.lowup.var(0.002, yn-1, sqrt(ysigma2/yn), 2, alpha )
```

nabc.mutost.pow

Compute power of the equivalence test for population means of normal summary values

Description

Compute power of the equivalence test for population means of normal summary values

Usage

```
nabc.mutost.pow(rho, df, tau.u, s.of.T, alpha,
  rtn.fun = FALSE)
```

Arguments

rho	true difference in simulated and observed population means
df	degrees of freedom of the simulated summary values
tau.u	upper tolerance of the equivalence region
s.of.T	standard deviation of the test statistic
alpha	level of the equivalence test
rtn.fun	indicator if a function to compute the power should be returned. Defaults to 0.

nabc.mutost.pow 17

Value

approximate power of the exact test. this is approximate because the standard deviation of the normal model for the simulated summary values is not known.

```
prior.u<- 5; prior.l<- -prior.u; tau.u <- 0.75; yn<- 60; ysigma2<- 1; alpha<- 0.01
rho <- seq(prior.l,prior.u,length.out=1e3)
nabc.mutost.pow(rho, yn-1, tau.u, sqrt(ysigma2/yn), alpha)</pre>
```

Index

```
*Topic datasets
    NABC. DEFAULT. ANS, 10
nabc.acf.equivalence, 2
nabc.acf.equivalence.abctol, 3
nabc.acf.equivalence.cor, 3
nabc.acf.equivalence.pow, 4
nabc.acf.equivalence.tau.lowup, 5
\verb|nabc.chisqstretch|, 6
nabc.chisqstretch.n.of.y, 7
nabc.chisqstretch.pow, 8
\verb|nabc.chisqstretch.tau.low|, 9
\verb+nabc.chisqstretch.tau.lowup, 9
NABC. DEFAULT. ANS, 10
nabc.exprho.at.theta, 11
nabc.generic.tost,11
nabc.get.pfam.pval, 12
nabc.mutost.onesample, 12
nabc.mutost.onesample.n.of.y, 13
\verb+nabc.mutost.onesample.tau.lowup.pw+, 14
nabc.mutost.onesample.tau.lowup.var,
        15
nabc.mutost.pow, 16
```