Álgebra

3 de julio de 2015

1. Matrices

Teorema 1.1. Sean A, B y C matrices de $m \times n y$ sea α un escalar. Entonces:

1. A + 0 = A

2. 0A = 0

3. A + B = B + A

4. (A+B)+C=A+(B+C)

5. $\alpha(A+B) = \alpha A + \alpha B$

6. 1A = A

Teorema 1.2. Sean \mathbf{a} , \mathbf{b} y \mathbf{c} n-vectores y sea α un escalar.

1. $\mathbf{a} \cdot \mathbf{0} = 0$

 $2 \cdot \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$

3. $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$

4. $(\alpha \mathbf{a}) \cdot \mathbf{b} = \alpha (\mathbf{a} \cdot \mathbf{b})$

Teorema 1.3 (Ley asociativa para multiplicación de matrices). Sea $A_{n\times m}$, $B_{m\times p}$ y $C_{p\times q}$ matrices. Entonces:

$$A(BC) = (AB)C$$

Teorema 1.4 (Leyes distibutivas para la multiplicación de matrices). Si todas las sumas y productos están definidos, entonces:

$$A(B+C) = AB + AC$$

$$(A+B)C = AC + BC$$

Operaciones elementales entre filas.

- 1. Multiplicar (o dividir) una fila por un número distinto de cero.
- 2. Sumar un múltiplo de una fila a otra.
- 3. Intercambiar dos filas.

Notación:

- 1. $M_i(c)$ indica: multiplicar la i-ésima fila de una matriz por el número c.
- 2. $A_{i,j}(C)$ indica: multiplicar la i-ésima fila opr c y sumársela a la j.
- 3. $P_{i,j}$ indoca: permutar las filas $i \neq j$.

Definición 1.1 (Forma escalonada reducida). *Una matriz está en forma escalonada reducida si se cumplen:*

1. Todas las filas que consisten en únicamente ceros (si existen) aparecen en la parte de abajo de la matriz.