CS101 Midterm Review

Linked List, Stack, Queue, Tree, Binary Tree

Midterm

→ Logistics

- → **Time:** 11/02 Wednesday 8:15 AM ~ 9:55 AM
- → **Exam Classroom:** check your EAMS

→ Content

- → 10 * True or False + 5 * Single Choice + 4 * Multiple Choices
- → 4 questions covering Complexity, Sort, Divide & Conquer, Heap, AVL...

1. Array & Linked List

Array/Singly Linked List/Doubly Linked List

Array vs. Linked List

- → Abstract List (List ADT)
 - \rightarrow **Find k-th** Array O(1) vs. Linked List O(n)
 - \rightarrow **Insert** Array O(n) vs. Linked List $O(1)^*$
 - \rightarrow **Delete** Array O(n) vs. Linked List $O(1)^*$

^{*}Assume doubly linked list and the k-th is already accessed

Singly vs. Doubly Linked List

	Front/1st node	<i>k</i> th node	Back/nth node
Find	$\Theta(1)$	O(n)	$\Theta(1)$
Insert Before	$\Theta(1)$	$\mathrm{O}(n)$	$\Theta(n)$
Insert After	$\Theta(1)$	$\Theta(1)^*$	$\Theta(1)$
Replace	$\Theta(1)$	$\Theta(1)^*$	$\Theta(1)$
Erase	$\Theta(1)$	$\mathrm{O}(n)$	$\Theta(n)$
Next	$\Theta(1)$	$\Theta(1)^*$	n/a
Previous	n/a	O(n)	$\Theta(n)$
		Novt	0(1)
		Next	$\Theta(1)$
		Previous	n/a

;	k th node	Back/nth node
	O(n)	$\Theta(1)$
	$\Theta(1)^*$	n/a
	$\Theta(1)^*$	Θ(1)

- (b) (2') Which of the following statements about arrays and linked-lists are true?
 - A. Gaining access to the k-th element in an array takes constant time.
 - B. Gaining access to the k-th element in a linked-list takes constant time \mathbf{x}
 - C. Erasing the k-th element in an array takes constant time. \times
 - D. With access to the k-th element, inserting an element after the k-th element in a linked-list takes constant time.
- (b) (2 pt) For a single linked array, erasing the element after the current pointer takes O(1), and erasing the element pointed by the current pointer also takes O(1)_×

2. Queue & Stack

Queue/Circular Queue/Stack

Queue vs. Stack

- → Linear Data Structure push/pop
 - → Queue First-In-First-Out
 - → **Stack** Last-In-First-Out

Stack

 \rightarrow Push(3)

Stack

3

5 2

3 5 2

 \rightarrow Push(3)

→ Pop()

Queue

 \rightarrow Push(3)

Queue

 \rightarrow Push(3)

3

→ Pop()

Two-ended vs. Circular Queue

Two-ended vs. Circular Queue

Two-ended vs. Circular Queue

Queue&Stack Implementation

- → Queue using Array
 - → maintaining *front* & *back*
 - → Two-ended(naïve) / Circular
- → Stack using Array
 - → maintaining *top*
- → Queue/Stack using Linked List
 - → (See your HW)

3. Hash Table

Open Addressing(Probing)/Chaining

Hash Table

→ Hash Function

 $\rightarrow h(key) = ... \mod M$ M: capacity of table

→ Load Factor

 $\rightarrow \lambda = n/M$ n: number of elements inserted

Resolving Conflicts in Hash Table

→ Open Addressing

- → Linear/Quadratic Probing
- → Double Hashing/... (See your HW)

→ Chaining

→ Using Linked Lists

Linear Probing

Quadratic Probing

Chaining

- (b) (3 pt) You are given an open-addressing hash table with m slots and we are using linear probing, the probability that the first two slots of the table are filled after the first two insertions is:

 - $\begin{array}{cc} \text{(A)} & \frac{1}{m^2} \\ \text{(B)} & \frac{2}{m^2} \\ \text{(\mathcal{O})} & \frac{3}{m^2} \\ \text{(D)} & \frac{4}{m^2} \end{array}$

3. Tree & Binary Tree

Tree concepts/Binary trees/Tree Traversal

Tree Concepts

height of tree = max{depth} = 2

Tree Concepts

parent of B: A
ancestors of B: A B
strict ancestors of B: A

Tree Concepts

children of B: C D
descendants of B: B C D
strict descendants of B: C D

Depth-First vs. Breath-First

→ Perfect Binary Tree 2^{h+1}-1 Nodes

- **→ Perfect vs. Complete Binary Tree**
 - \rightarrow **Perfect:** Only exists for N= 2^{h+1} -1 for every h = 0, 1, ...
 - \rightarrow Complete: exists for every N = 0, 1, ...

- **→ Full vs. Complete Binary Tree**
 - → Full: node is either full (2-children) or leaf (no child)
 - → **Complete:** filled at each depth from left to right
 - **Def1:** deepest: L to R; swallower: perfect
 - **Def2:** L complete + R perfect or L perfect + R complete
 - Height: O(log N) → heap

→ Full vs. Complete Binary Tree

Pre-Order Traversal Print ""

- (c) (1') If the pre-order traversal and in-order traversal of two binary trees are equal respectively, then the two binary trees are exactly the same.
- (h) (1') If the pre-order traversal and post-order traversal of two binary trees are equal respectively, then the two binary trees are exactly the same. ★
- → Pre-order: Root(L-R)
- → In-order: L-Root-R Can't determine tree structure!
- → Post-order: L-R-Root

- (a) (2') A full binary tree with n leaf nodes contains 2n-1 total nodes.
- B. A rooted binary tree has the property that the number of leaf nodes equals to the number of full nodes plus 1.

$$N=N_0+N_1+N_2$$
 $N_0:leaf N_2:full$

$$N-1=0\cdot N_0+1\cdot N_1+2\cdot N_2$$
 except root, each node is a child of its parent

$$N_1=0$$
 node in full binary tree is either full or leaf

- (a) (2') A full binary tree with n leaf nodes contains 2n-1 total nodes.
- B. A rooted binary tree has the property that the number of leaf nodes equals to the number of full nodes plus 1.

$$N = N_0 + N_1 + N_2$$

N₀:leaf N₂:full

$$N-1=0.N_0+1.N_1+2.N_2$$

except root, each node is a child of its parent

$$N_1 = 0$$

$$N_2 = N_0 - 1$$

node in full binary tree is either full or leaf

- (a) (2') A full binary tree with n leaf nodes contains 2n-1 total nodes.
- B. A rooted binary tree has the property that the number of leaf nodes equals to the number of full nodes plus 1.

$$N = N_0 + N_1 + N_2$$

N₀:leaf N₂:full

$$N-1=0\cdot N_0+1\cdot N_1+2\cdot N_2$$

except root, each node is a child of its parent

$$N_1 = 0$$
 $N_2 = N_0 - 1$

node in full binary tree is either full or leaf

$$N = 2 \cdot N_0 - 1$$

Thanks!

Any questions?

Good Luck!

Contact me via <u>lianyh@shanghaitech.edu.cn</u> if you have any doubt