Threat Intelligence & IOC

1. Identificazione e analisi degli IOC (Indicator of Compromise)

Ho aperto e analizzato il file **Cattura_U3_W1_L5.pcapng** tramite **Wireshark** l'analisi evidenzia tentativi di connessione da una macchina compromessa verso una macchina vulnerabile, osservando il traffico tra due host interni alla rete:

• Sorgente: 192.168.200.100

• Destinazione: 192.168.200.150

I pacchetti sono tutti basati sul **protocollo TCP**, ma con un comportamento anomalo:

Comportamenti sospetti rilevati:

- Sono presenti molte connessioni fallite con pacchetti di tipo SYN-ACK, che indicano che la macchina destinataria sta rifiutando le richieste.
- Le connessioni sono dirette verso **porte insolite**, come:

4443 (simile alla 443, ma spesso usata da malware per nascondersi)

63686, **52358**, **56120** → porte molto alte, non utilizzate da servizi comuni

 Alcune connessioni avvengono anche sulla porta 80 (HTTP), ma non sembra esserci traffico HTTP effettivo. È possibile che la porta venga usata per nascondere altro tipo di comunicazione.

Questo tipo di traffico è tipico di una reverse shell, cioè un attaccante che tenta di prendere controllo del sistema remoto attraverso una porta personalizzata.

Inoltre, la frequenza dei pacchetti e la varietà delle porte usate suggeriscono un tentativo automatico di connessione, tipico di un malware attivo in esecuzione.

2. Ipotesi sui vettori di attacco utilizzati

Una volta identificati gli IOC, possiamo formulare un'ipotesi su come è avvenuta la compromissione.

Vettori di attacco possibili:

- Il traffico parte dalla macchina 192.168.200.100, quindi è quella il probabile punto di "infezione".
- Il tipo di comunicazione fa pensare a un **file eseguibile malevolo (.exe)** scaricato o eseguito su quella macchina. Questo file può aver avviato:

Una **reverse shell**, che cerca di connettersi a **192.168.200.150** (possibile macchina dell'attaccante nella LAN).

Un **client malware** che tenta di comunicare con un server C2 per ricevere comandi.

Questo scenario si verifica spesso quando un utente:

- Apre un allegato e-mail infetto
- Scarica un programma da un sito compromesso

Il fatto che le connessioni siano tutte **interne alla LAN** potrebbe indicare un **movimento laterale**, cioè un malware che, una volta installato, cerca di propagarsi all'interno della rete aziendale.

3. Azioni consigliate per ridurre l'impatto dell'attacco attuale e prevenire futuri attacchi

Una volta individuata la macchina compromessa, è fondamentale agire subito per **contenere il danno**, ma anche per **prevenire futuri attacchi simili**.

Contromisure immediate (incident response):

- 1. **Isolare il dispositivo 192.168.200.100 dalla rete**: in questo modo si interrompe ogni possibile comunicazione con l'attaccante o con altri dispositivi.
- 2. Bloccare le porte sospette a livello di firewall:

4443, 63686, 52358, 56120 \rightarrow porte alte non utilizzate da servizi legittimi.

3. Analizzare il sistema sospetto:

Eseguire una scansione con antivirus/antimalware aggiornati.

Controllare se sono presenti eseguibili anomali o processi attivi non riconosciuti.

4. Raccolta dei log e delle prove per un'analisi forense e per eventuale report all'azienda o agli enti preposti.

Azioni preventive:

- 1. **Implementare un sistema IDS/IPS** (Intrusion Detection/Prevention System), per rilevare comportamenti sospetti in tempo reale.
- 2. **Segmentare la rete** in VLAN per isolare server, client e dispositivi critici.
- 3. Aggiornare regolarmente antivirus e software su tutte le macchine della rete.
- 4. **Formazione agli utenti finali**: insegnare a riconoscere e-mail sospette, siti non sicuri e file infetti.

5.	 Attivare logging centralizzato e alerting su tentativi di access comuni. 	so su porte non