Course tit	le: Machine Learning-1	Maximum Marks 30
Roll No.:	Name:	Registration No.:
a) Pa c) (nat does the Bayesian network provides Complete description of the domain artial description of the domain Complete description of the problem None of the mentioned	s?
b) l c) l	ormula for Bayes theorem is $P(A B) = P(B A), P(A) / P(B)$ $P(A B) = P(A)P(B)$ $P(A B) = P(B A) P(B)$ $P(A B) = 1P(B)$	
nev a) l b) c) l	ethod in which the previously calculated we probability is called Revision theorem Bayes theorem Dependent theorem Updation theorem	d probabilities are revised with values o
a) 1b) 1c) 1	rmula for conditional probability $P(A B)$ $P(A B) = P(A \cap B)/P(B)$ $P(A B) = P(A \cap B)P(A)$ P(A B) = P(A)P(B) P(A B) = P(B)P(A)	3) is
bef of t	fore reaching the inbox. It accuracy for	. There is a software that filters spam madetecting a spam mail is 99% and chancis 5%. If a certain mail is tagged as spanial.

a) 5.3% approx.b) 4.8% approx.c) 3.9% approx.d) 5.7% approx.

Course title: Machine Learning-1		Maximum Marks 30	
Roll N	No.: Name:	Registration No.:	
6.		model based on sample data, known as	
	A. Training Data		
	B. Transfer Data		
	C. Data Training		
	D. None of the above		
7.	a outcome. A. Linear, binary	ssion technique that is used to model data havin	
	B. Linear, numeric		
	C. Non-linear, binary		
	D. Non-linear, numeric		
	If the value of k is very large in the training data.	e KNN algorithm, the model will underfit the	
8.	If value of k is very small in KNN al	gorithm, model is	
	a) Underfittingb) Overfitting		
	c) Perfect fit		
	d) None of these		
0	A turining set is called ancilous source		
`	A training set is called epsilon-representations and training set is called epsilon-representations. For every h, Ls(h)-Ld(h)>=epsilon	sentative ii	
a) b)	For every h, Ls(h)-Ld(h)<=epsilon		
c)	For every h, Ls(h)-Ld(h) >=epsilon		
d)		n	
10	. What is used to measure the uniform	convergence?	
	a) Rademacher complexity		
	b) VC-dimension		
	c) Natarajan dimension		
	d) All of these		
11	. VC dimesion is used for		

- a) Finite hypothesis and multiclass classification problem
- b) Infinite hypothesis and multiclass classification problem
- c) Finite hypothesis and binary classification problem
- d) infinite hypothesis and binary classification problem.

ourse title: Ma	chine Learning-	1	Maximum Marks 30
oll No.:	Name:		Registration No.:
12. Natarajan	dimension is the	generalizati	on of
•	er complexity	0	
b) VC-dimer			
c) Non-unifo	rm learnability		
d) Consistence	ey Learnability		
_	to no free lunch		
			er without prior knowledge
b) All classif functions.	ier perform equal	lly if perform	nance is taken average overall objective
	e can be prefer o	ver another	without prior knowledge
/	•		if performance is taken average overall
objective	-	1 0	1
	e correct statemen		
a) As the hyp decreases.	oothesis class inc	reases, appro	eximation error increases and estimation error
		creases, app	proximation error decreases and estimati
error incr		rancac onnr	oximation error increases and estimation er
decreases.	oulesis class dec	reases, appr	oximation error increases and estimation er
	othesis class dec	reases annr	oximation error decreases and estimation en
increases.	omesis class acc	reases, appr	oximation error decreases and estimation er
15. Consider t	he following con	fusion matri	ix. What is the precision of the model?
predicted— real	Class_pos Class	ass_neg	
Class_po	s 114	86	
Class_ne	g 7	93	
a) 0.57			
b) 0.75			
c) 0.94			
d) 0.4			
<i>a)</i> 0			
16. Complete training th	_	ent of code s	nippet if the 70% of the data is given for
& *			
		st=train_tes	t_split(X,y,,random_state=0)
A. test_si			
B. test_si			
C. test_sh	•		
D. None of	at those		

Academic Task N	lumber: <u>3</u> Course code: <u>1</u>	<u>NT354</u> Section:
Course title: Mad	chine Learning-1	Maximum Marks 30
Roll No.:	Name:	Registration No.:

17. Consider the given dataset:

Swim	Wings	Green Color	Dangerous Teeth	Animal Typ
50/500	500/500	400/500	0	Parrot
450/500	0	0	500/500	Dog
500/500	0	100/500	50/500	Fish

How many total numbers of examples are present in the dataset?

- A. 1000
- B. 500
- C. 1500
- D. can't be determined
- 18. In Bayes theorem, the previous probabilities that are updated by using new available information is called as:
- a) prior probabilities
- b) independent probabilities
- c) dependent probabilities
- d) posterior probabilities
- 19. To predict the weather of upcoming week' is an example of which of the following?
- A. Supervised Machine Learning: classification
- B. Supervised Machine learning: regression
- C. Unsupervised Machine Learning
- D. Reinforcement learning
- 20. Choose the correct statement in terms of handling the overfitting?
- I. Increase the dimensionality of data
- II. Decrease the dimensionality of data
- III. Use regularization method
- IV. Use kernel approach
- A. I and III
- B. I and II
- C. II and IV
- D. II and III

Acade	mic Task Number: 3 Cou	ırse code: <u>INT354</u> S	Section:	
Course title: Machine Learning-1		.1	Maximum Marks 30	
Roll N	o.: Name	:R	egistration No.:	
S1: Re S2: Th to abso zero a) b) c)	_	h to tackle the problen and lasso regression is	n of overfitting that lasso tends to make coefficients the value of the coefficient to absolute	
22.	. Choose the correct stateme	ent out of the given sta	itements:	
depend S2: pobest fit a) b) c)	lent and independent variab	les. riant of the multiple li	ent a non-linear relationship between near regression model, except that the	
S1: Ev S2: A classiff S3: In Decision a) b)	Choose the correct statemerery very decision tree has he Random Forest is an ensertication tasks with the use of the case of a regression proon trees we use majority vot S1 is true and S2 is true and S1 is true and S2 is false at S1 is false and S2 is false at S1 is false and S2 is false at	nigh variance mble technique capab f multiple decision tre oblem, to calculate th ting. d S3 is true nd S3 is false and S3 is false		
a)b)c)	Which of the following reg Linear Regression Polynomial regression Multiple regression Logistic regression	gression model uses Si	igmoid activation function ?	
		ninistic iterative algori nm from a dataset that	thm that estimates the parameter of a contains outliers.	

Acade	mic Task Number: 3 Course code: INT35	54 Section:	
Course title: Machine Learning-1		Maximum Marks 30	
Roll N	o.: Name:	Registration No.:	
S1: RA signific S2: In a) b) c)	Choose the correct statement/statements: ANSAC model can estimate the parameters we cant number of outliers are present in the date RANSAC model number of iterations increated is true and S2 is true S1 is true and S2 is false S1 is false and S2 is true S1 is false and S2 is false	a set.	
S1: If them ra S2: La indepe a) b) c)	Choose the correct statement/statements: there are two or more highly collinear variation and only which is not good for the interpretarisso regression decreases the complexity of an undert variables since it never leads to a coeff S1 is true and S2 is true S1 is true and S2 is false S1 is false and S2 is true S1 is false and S2 is false	tion of our model. a model but does not reduce the number of	
a) b) c)	To plot the scatterplot matrix(for EDA), we library. Numpy Pandas Seaborn Matplotlib	will use the pairplot function from the	
A. B. C.	Train-Test split is available in which package preprocessing train-test model_selection metrics	ge of sklearn?	
I. II. III. IV.	Choose the correct statement in terms of har Increase the dimensionality of data Decrease the dimensionality of data Use regularization method Use kernel approach a) I and III b) I and II c) II and IV d) II and III	ndling the overfitting?	