AaBbCc OoXxYy IiLlMmNn 1234567890+>< (){}[]@-#%!/\

图 9. 等宽字体 Roboto Mono Light

表 6. 数学中字母样式

Bk1_Ch3_03.ipynb

LaTeX	样式	说明
\$ {AaBbCc} \$	AaBbCc	斜体,大部分数学符号、表达式
<pre>\$ \mathrm {AaBbCc} \$</pre>	AaBbCc	正体,公式中的单位或文字
<pre>\$ \mathbf {AaBbCc} \$</pre>	AaBbCc	粗体,向量、矩阵
<pre>\$ \boldsymbol {AaBbCc} \$</pre>	AaBbCc	粗体、斜体,向量、矩阵
<pre>\$ \mathtt {AaBbCc} \$</pre>	AaBbCc	等宽字体,常用于代码
<pre>\$ \mathcal {ABCDEF} \$</pre>	ABCDEF	花体,用于表示数学中的集合、代数结构、算子
<pre>\$ \mathbb {CRQZN} \$</pre>	CRQZN	黑板粗体 (blackboard bold),常用来表达各种集合
<pre>\$\text {Aa Bb Cc}\$</pre>	Aa Bb Cc	用来写公式中的文字
<pre>\$\mathrm{d}x\$</pre>	dx	ISO 规定导数符号 d 为正体
<pre>\$\operatorname{T}\$</pre>	T	运算符

表 7. 各种字母英文读法

英文字母	英文表达
A	capital a, cap a, upper case a
a	small a, lower case a
A	italic capital a, italic cap a
а	italic a
A	boldface capital a, bold cap a
a	boldface a, bold small a
A	bold italic cap a
а	bold italic small a
A	Gothic capital a

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

a	Gothic a
A	script capital a
a	script a

标记

数学符号、表达式中还常用各种特殊标记 (accent),表 8 总结常用特殊标记。

表 8. 数学中字母标记 | ⁽²⁾ Bk1_Ch3_03.ipynb

LaTex	数学表达	英文读法
<pre>\$x'\$ \$x^{\prime}\$</pre>	x'	x prime
\$x''\$	x"	x double prime
<pre>\$\overrightarrow{AB}\$</pre>	\overrightarrow{AB}	a vector pointing from A to B
$\displaystyle \frac{x}{x}$	<u>x</u>	x underline
\$\hat{x}\$	\hat{x}	x hat
\$\bar{x}\$	\overline{x}	x bar
\$\dot{x}\$	ż	x dot
<pre>\$\tilde{x}\$</pre>	\tilde{x}	x tilde
\$x_i\$	x_i	x subscript i, x sub i
\$x^i\$	x^{i}	x to the n, x to the nth, x to the n-th power x raised to the n-th power
<pre>\$\ddot{x}\$</pre>	\ddot{x}	x double dot
\$x^*\$	<i>x</i> *	x star, x super asterisk
\$x\dagger\$	x†	x dagger
\$x\ddagger\$	x‡	x double dagger
<pre>\${\color{red}x}\$</pre>	x	red x

希腊字母

表 9 总结常用大小写希腊字母,表 10 给出常用作变量的希腊字母。比如,鸢尾花书《统计至简》就会用到 9 。

表 9. 希腊字母,大小写

小写	LaTeX	大写	LaTeX	英文拼写	英文发音
α	\$\alpha\$	A	\$A\$	alpha	/ˈælfə/
β	\$\beta\$	В	\$B\$	beta	/'beɪtə/
γ	\$\gamma\$	Γ	\$\Gamma\$	gamma	/ˈgæmə/
δ	\$\delta\$	Δ	\$\Delta\$	delta	/'deltə/
3	<pre>\$\epsilon\$</pre>	Е	\$E\$	epsilon	/'epsɪlɑ:n/

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

ζ	\$\zeta\$	Z	\$Z\$	zeta	/ˈziːtə/
η	\$\eta\$	Н	\$H\$	eta	/ˈiːtə/
θ	\$\theta\$	Θ	\$\Theta\$	theta	/ˈθiːtə/
ı	\$\iota\$	I	\$1\$	iota	/aɪˈoʊtə/
κ	\$\kappa\$	K	\$K\$	kappa	/ˈkæpə/
λ	\$\lambda\$	Λ	\$\Lambda\$	lambda	/ˈlæmdə/
μ	\$\mu\$	M	\$M\$	mu	/mju:/
v	\$\nu\$	N	\$N\$	nu	/nju:/
ξ	\$\xi\$	Ξ	\$\Xi\$	xi	/ksaɪ/ 或 /zaɪ/ 或 /gzaɪ/
0	\$\omicron\$	0	\$0\$	omicron	/ˈaːməkraːn/
π	\$\pi\$	П	\$\Pi\$	pi	/paɪ/
ρ	\$\rho\$	P	\$P\$	rho	/rou/
σ	\$\sigma\$	Σ	\$\Sigma\$	sigma	/ˈsɪgmə/
τ	\$\tau\$	T	\$T\$	tau	/taʊ/
υ	\$\upsilon\$	Y	\$Y\$	upsilon	/ˈʊpsɪlɑːn/
φ	\$\phi\$	Φ	\$\Phi\$	phi	/faɪ/
χ	\$\chi\$	X	\$X\$	chi	/kaɪ/
Ψ	\$\psi\$	Ψ	\$\Psi\$	psi	/saɪ/
ω	\$\omega\$	Ω	\$\Omega\$	omega	/oʊˈmegə/

表 10. 希腊字母, 变量

LaTeX	样式	LaTeX	样式
\$\vartheta\$	9	\$\varrho\$	Q
\$\varkappa\$	×	\$\varphi\$	φ
\$\varpi\$	σ	<pre>\$\varepsilon\$</pre>	ε
\$\varsigma\$	S		

常用符号

表11总结常用符号。

此外,请大家注意区分: - **不间断连字符** (nonbreaking hyphen)、- **减号** (minus sign)、- **短破折号** (en dash)、- **长破折号** (em dash)、_ **下划线** (underscore)、/ **前斜线** (forward slash)、\ **反斜线** (backward slash, backslash, reverse slash)、| 竖线 (vertical bar, pipe)。

表 11. 常用符号

LaTex	数学符号	英文读法	中文表达
<pre>\$\times\$</pre>	×	multiplies, times	乘
\$\div\$	÷	divided by	除以
<pre>\$\otimes\$</pre>	\otimes	tensor product	张量积
\$(\$	(open parenthesis, left parenthesis, open round bracket,	左圆括号

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

		left round bracket	
\$)\$		close parenthesis, right	 右圆括号
,)	parenthesis, close round	
		bracket, right round bracket	
\$[\$	[open square bracket, left square bracket	左方括号
\$]\$]	close square bracket, right square bracket	右方括号
\$\{\$	{	open brace, left brace, open curly bracket, left curly bracket	左大括号
\$\}\$	}	close brace, right brace, close curly bracket, right curly bracket	右大括号
\$\pm\$	<u>±</u>	plus or minus	正负号
\$\mp\$	Ŧ	minus or plus	负正号
\$<\$	<	less than	小于
\$\leq\$	≤	less than or equal to	小于等于
\$\11\$	«	much less than	远小于
\$>\$	>	greater than	大于号
\$\geq\$	≥	greater than or equal to	大于等于
\$\gg\$	>>	much greater than	远大于
\$=\$	=	equals, is equal to	等于
\$\equiv\$	≡	is identical to	完全相等
<pre>\$\approx\$</pre>	≈	is approximately equal to	约等于
<pre>\$\propto\$</pre>	œ	proportional to	正比于
<pre>\$\partial\$</pre>	∂	partial derivative	偏导
\$\nabla\$	∇	del, nabla	梯度算子
<pre>\$\infty\$</pre>	∞	infinity	无穷
\$\neq\$	≠	does not equal, is not equal to	不等于
<pre>\$\parallel\$</pre>	II	parallel	平行
\$\perp\$		perpendicular to	垂直
\$\angle\$		angle	角度
\$\triangle\$	Δ	triangle	三角形
\$\square\$		square	正方形
\$\sim\$	~	similar	相似
<pre>\$\exists\$</pre>	3	there exists	存在
\$\forall\$	A	for all	任意
\$\subset\$	_	is proper subset of	真子集
\$\subseteq\$	⊆	is subset of	子集
<pre>\$\varnothing\$</pre>	Ø	empty set	空集
\$\supset\$	\supset	is proper superset of	真超集
<pre>\$\supseteq\$</pre>	⊇	is superset of	超集

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

成队归用于人子由版社所有,唱勿耐用,引用谓注明由火。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

	T		1
\$\cap\$	\cap	intersection	交集
\$\cup\$	U	union	并集
\$\in\$	€	is member of	属于
<pre>\$\notin\$</pre>	∉	is not member of	不属于
\$ \N\$	N	set of natural numbers	自然数集合
\$\Z\$	\mathbb{Z}	set of integers	整数集合
<pre>\$\rightarrow\$</pre>	\rightarrow	arrow to the right	向右箭头
\$\leftarrow\$	←	arrow to the left	向左箭头
\$\mapsto\$	\mapsto	maps to	映射
<pre>\$\implies\$</pre>	\Rightarrow	implies	推出
\$\uparrow\$	↑	arrow pointing up, upward arrow	向上箭头
\$\Uparrow\$	\uparrow	arrow pointing up, upward arrow	向上箭头
\$\downarrow\$	\	arrow pointing down, downward arrow	向下箭头
\$\Downarrow\$	\downarrow	arrow pointing down, downward arrow	向下箭头
<pre>\$\therefore\$</pre>	:.	therefore sign	所以
\$\because\$::	because sign	因为
\$\star\$	*	asterisk, star, pointer	星号
\$!\$!	exclamation mark, factorial	叹号, 阶乘
\$ x \$	x	absolute value of x	绝对值
<pre>\$\lfloor x \rfloor\$</pre>		the floor of x	向下取整
<pre>\$\lceil x \rceil\$</pre>	$\lceil x \rceil$	the ceiling of x	向上取整
\$x!\$	<i>x</i> !	x factorial	阶乘
-	•		

3.6 用 LaTex 写公式

代数

表 12~表 17 总结了一些常用的 LaTeX 代数表达式,请大家自行学习。

表 12. 几个有关多项式的数学表达 | Bk1_Ch3_03.ipynb

LaTeX	数学表达
$x^{2}-y^{2} = \left(x+y\right)\left(x-y\right)$	$x^{2}-y^{2}=(x+y)(x-y)$
$a_{n}x^{n}+a_{n-1}x^{n-1}+\dotsb + a_{2}x^{2} + a_{1}x + a_{0}$	$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$
\$\sum_{k=0}^{n}a_{k}x^{k}\$	$\sum_{k=0}^{n} a_k x^k$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

\$ ax^{2}+bx+c=0\ (a\neq 0) \$	$ax^2 + bx + c = 0 \ (a \neq 0)$

LaTeX	数学表达	
\${\sqrt[{n}]{a^{m}}}=(a^{m})^{1/n}=a^{m/n}=(a^{1/n})^{m}=({\sqrt[{n}]{a}})^{m}\$	$\sqrt[n]{a^m} = (a^m)^{1/n} = a^{m/n} = (a^{1/n})^m = (a^{1/n})^m$	$\sqrt[n]{a}$) ^m
<pre>\$\left({\sqrt {1-x^{2}}}\right)^{2}\$</pre>	$\left(\sqrt{1-x^2}\right)^2$	

表 14. 几个有关分式的数学表达 | Bk1_Ch3_03.ipynb

LaTeX	数学表达
\$\frac {1}{x+1}+{\frac {1}{x-1}}={\frac {2x}{x^{2}-1}}\$	$\frac{1}{x+1} + \frac{1}{x-1} = \frac{2x}{x^2 - 1}$
$x_{1,2}={\frac{-b\pm {\left\{b^{2}-4ac\right\}}}{2a}}$	$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

表 15. 几个有关函数的数学表达 | 号 Bk1_Ch3_03.ipynb

LaTeX	数学表达
	$f(x) = ax^2 + bx + c$ with $a, b, c \in \mathbb{R}, a \neq 0$
$f(x_1, x_2) = x_1^2 + x_2^2 + 2x_1x_2$	$f(x_1, x_2) = x_1^2 + x_2^2 + 2x_1x_2$
\$\log_{b}(xy)=\log_{b}x+\log_{b}y\$	$\log_b(xy) = \log_b x + \log_b y$
<pre>\$\ln(xy)=\ln x+\ln y{\text{ for }} x>0 {\text{ and }} y>0\$</pre>	ln(xy) = ln x + ln y for x > 0 and y > 0
<pre>\$f(x)=a\exp \left(-{\frac {(x- b)^{2}}{2c^{2}}}\right)\$</pre>	$f(x) = a \exp\left(-\frac{(x-b)^2}{2c^2}\right)$

表 16. 几个三角恒等式 | Bk1_Ch3_03.ipynb

LaTeX	数学表达
<pre>\$\sin ^{2}\theta +\cos ^{2}\theta =1\$</pre>	$\sin^2\theta + \cos^2\theta = 1$
<pre>\$\sin 2\theta =2\sin \theta \cos \theta\$</pre>	$\sin 2\theta = 2\sin\theta\cos\theta$
<pre>\$\sin(\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta\$</pre>	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

成队归用于人子由版社所有,唱勿耐用,引用谓注明由火。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

表 17. 几个有关微积分数学表达 | Bk1_Ch3_03.ipynb

LaTeX	数学表达
	$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \cdots$
<pre>\$ \left(\sum _{i=0}^{n}a_{i}\right)\left(\sum _{j=0}^{n}b_{j}\right)=\sum _{i=0}^{n}\sum _{j=0}^{n}a_{i}b_{j}\$</pre>	$\left(\sum_{i=0}^{n} a_i\right) \left(\sum_{j=0}^{n} b_j\right) = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i b_j$
	$\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$
$\frac{mathrm{d}}{mathrm{d}x} \exp(f(x)) = f'(x) \exp(f(x))$	$\frac{\mathrm{d}}{\mathrm{d}x}\exp(f(x)) = f'(x)\exp(f(x))$
$\int_{a}^{a}^{b}f(x) \mathrm {d} x$	$\int_{a}^{b} f(x) \mathrm{d}x$
<pre>\$\int _{-\infty }^{\infty }\exp(- x^{2})\mathrm{d}x={\sqrt {\mathrm{\pi} }}\$</pre>	$\int_{-\infty}^{\infty} \exp(-x^2) \mathrm{d}x = \sqrt{\pi}$
<pre>\$\int _{-\infty }^{\infty }\int _{- \infty }^{\infty } \exp \left({- \left(x^{2}+y^{2}\right)} \right) {\mathrm{d}x} {\mathrm{d}y} = \pi\$</pre>	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(-(x^2 + y^2)) dxdy = \pi$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{\partial^2 f}{\partial x^2} = f_{xx}'' = \partial_{xx} f = \partial_x^2 f$
<pre>\${\frac {\partial ^{2}f}{\partial y \partial x}}={\frac {\partial }{\partial y}}\left({\frac {\partial f}{\partial x}}\right)=f''_{xy}\$</pre>	$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = f''_{xy}$

线性代数

表 18 和表 19 总结了一些常用的 LaTeX 线性代数相关表达式, 请大家自行学习。

表 18. 几个有关向量的表达 | 号 Bk1_Ch3_03.ipynb

LaTeX	数学表达
	$\begin{bmatrix} \mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = [a_1 \ a_2 \ a_3]^{\mathrm{T}}$
$\alpha_{1}^{2}+a_{2}^{2}+a_{3}^{2}$	$\ \boldsymbol{a}\ = \sqrt{a_1^2 + a_2^2 + a_3^2}$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$\ \$ \mathbf {a} \cdot \mathbf {b} = a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3}\$	$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$
<pre>\$\mathbf {a} \cdot \mathbf {b} =\left\ \mathbf {a} \right\ \left\ \mathbf {b} \right\ \cos \theta \$</pre>	$\mathbf{a} \cdot \mathbf{b} = \ \mathbf{a}\ \ \mathbf{b}\ \cos \theta$
	$\parallel \boldsymbol{x} \parallel_{p} = \left(\sum_{i=1}^{n} \left \boldsymbol{x}_{i} \right ^{p}\right)^{1/p}$

表 19. 几个有关矩阵的表达 | Bk1_Ch3_03.ipynb

LaTeX	数学表达
<pre>\$\mathbf {A} = {\begin{bmatrix} 1 & 2\\ 3 & 4 \\ 5 & 6 \end{bmatrix}}\$</pre>	$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$
<pre>\$\mathbf {A} ={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{bmatrix}}\$</pre>	$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$
<pre>\$\left(\mathbf {A} +\mathbf {B} \right)^{\operatorname {T} }=\mathbf {A} ^{\operatorname {T} }+\mathbf {B} ^{\operatorname {T} }\$</pre>	$(A+B)^{T} = A^{T} + B^{T}$
<pre>\$\left(\mathbf {AB} \right)^{\operatorname {T} }=\mathbf {B} ^{\operatorname {T} }\mathbf {A} ^{\operatorname {T} }\$</pre>	$(AB)^{T} = B^{T}A^{T}$
<pre>\$ \left(\mathbf {A} ^{\operatorname} {T} }\right)^{-1}=\left(\mathbf {A} ^{-1}\right)^{\operatorname} {T} }\$</pre>	$\left(\boldsymbol{A}^{\mathrm{T}}\right)^{-1} = \left(\boldsymbol{A}^{-1}\right)^{\mathrm{T}}$
<pre>\$\mathbf {u} \otimes \mathbf {v} = \mathbf {u} \mathbf {v} ^ {\operatorname} {T}} = {\begin{bmatrix}u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{bmatrix}} {\begin{bmatrix} v_{1}&v_{2}&v_{3}\\ end{bmatrix} = {\begin{bmatrix} u_{1}v_{1} & u_{1}v_{2} & u_{1}v_{3} \\ u_{2}v_{1} & u_{2}v_{2} & u_{2}v_{3} \\ u_{3}v_{1} & u_{4}v_{2} & u_{3}v_{3} \\ u_{4}v_{1} & u_{4}v_{2} & u_{4}v_{3} \\ end{bmatrix}} \]</pre>	$\boldsymbol{u} \otimes \boldsymbol{v} = \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}} = \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{bmatrix} \begin{bmatrix} v_{1} & v_{2} & v_{3} \end{bmatrix} = \begin{bmatrix} u_{1}v_{1} & u_{1}v_{2} & u_{1}v_{3} \\ u_{2}v_{1} & u_{2}v_{2} & u_{2}v_{3} \\ u_{3}v_{1} & u_{3}v_{2} & u_{3}v_{3} \\ u_{4}v_{1} & u_{4}v_{2} & u_{4}v_{3} \end{bmatrix}$
<pre>\$\det {\begin{bmatrix} a & b \\ c & d \end{bmatrix}} = ad-bc\$</pre>	$\det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$

概率统计

表 20 总结了一些常用的 LaTeX 概率统计相关表达式,请大家自行学习。

表 20. 几个有关概率统计的表达

LaTeX	数学表达
<pre>\$\Pr(A\vert B)={\frac {\Pr(B\vert A)\Pr(A)}{\Pr(B)}}\$</pre>	$Pr(A \mid B) = \frac{Pr(B \mid A)Pr(A)}{Pr(B)}$
<pre>\$ f_{X\vert Y=y}(x)={\frac {f_{X,Y}(x,y)}{f_{Y}(y)}}\$</pre>	$f_{X Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
	$\operatorname{var}(X) = \operatorname{E}[X^2] - \operatorname{E}[X]^2$
	$\operatorname{var}(aX + bY) = a^{2} \operatorname{var}(X) + b^{2} \operatorname{var}(Y) + 2ab \operatorname{cov}(X, Y)$
	$E[X] = \int_{-\infty}^{\infty} x f_X(x) \mathrm{d} x$
\$ X\sim N(\mu ,\sigma ^{2})\$	$X \sim N(\mu, \sigma^2)$
<pre>\$\frac {\exp \left(-{\frac {1}{2}}\left({\mathbf {x} }-{\boldsymbol {\mu }}\right)^{\mathrm {T} }{\boldsymbol {\Sigma }}^{-1}\left({\mathbf {x} }- {\boldsymbol {\mu }}\right)\right)}{\sqrt {(2\pi)^{k} {\boldsymbol {\Sigma }} }}\$</pre>	$\frac{\exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T}\boldsymbol{\varSigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)}{\sqrt{(2\pi)^{k} \boldsymbol{\varSigma} }}$

请大家完成如下题目。

- Q1. 请大家从零开始复刻 Bk1_Ch3_01.ipynb,并在创建 Jupyter Notebook 文档的过程使用快捷键。
- Q2. 请大家在 JupyterLab 中复刻本章介绍的各种 LaTeX 公式。
- * 这道题目很基础,本书不给答案。

JupyterLab 是鸢尾花书自主探究学习的利器,请大家务必熟练掌握。可以这样理解,JupyterLab 相当于"实验室",可以做实验,也可以写图文并茂、可运行、可交互的报告,可以和其他人交流自己的成果。

JupyterLab 特别适合探索性分析、快速原型设计、实验;但是,对于项目开发、测试、维度,则需要用 Spyder、PyCharm、Visual Studio 等 IDE。

本书第 34 章将专门介绍 Spyder,第 35、36 两章用 Spyder 和 Streamlit 搭建机器学习应用 App。本书 其余章节则都使用 JupyterLab 作为编程 IDE。

下面,我们进入本书下一版块,开始 Python 语法学习。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com