Real Time Control of a Quadcopter

Simon Kick, Philipp Fröhlich, Benedikt König, Annika Stegie

Technische Universität München

11 July 2015

Motivation

Optimal Control Formulation

```
\min_{x,u} J(x,u) \quad \text{s.t.} \quad \begin{array}{c} \tilde{h}(x,u) = 0 \\ \dot{x}(t) = f(x(t),u(t)) \end{array}
```

x: state

u: control

Forces

Torques

Torques

Torques

Obtain ODE

$$\left. egin{aligned} F_{res} &= F_{ext} + F_g + \sum_{i=1}^4 F_i \ au_{res} &= au_{ext} + au_\psi + au_\varphi + au_ heta \end{aligned}
ight. \Rightarrow \quad \dot{x}(t) = f(x(t), u(t))$$

Obtain ODE

$$\left. egin{aligned} F_{res} &= F_{ext} + F_g + \sum_{i=1}^4 F_i \ au_{res} &= au_{ext} + au_\psi + au_\varphi + au_ heta \end{aligned}
ight. \Rightarrow \quad \dot{x}(t) = f(x(t), u(t))$$

$$\tilde{h}(x, u) = 0$$
 $\dot{x}(t) = f(x(t), u(t))$
 $\Rightarrow h(x, u) = 0$

Copter Rotation

Quaternions

$$q = a + ib + jc + kd$$
 $a, b, c, d \in \mathbb{R}$ \Leftrightarrow $q = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \in \mathbb{R}^4$

Quaternions

$$q = a + ib + jc + kd$$
 $a, b, c, d \in \mathbb{R}$ \Leftrightarrow $q = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \in \mathbb{R}^4$

represent rotation \Leftrightarrow $\|q\|=1$ \Leftrightarrow $q\in\mathcal{S}^3$

Drift Correction

Drift Correction

$$\dot{q}(t) = ilde{f}(q(t)) - \lambda(q(t))$$

Discrete Problem

$$\min_{x,u} \sum_{i=t}^{t+N} J_i(x_i, u_i)$$
 s.t. $h_i(x_i, u_i) = 0$ $i = t, ..., t + N$

 $J_i(x_i, u_i)$ discretized goal function $h_i(x_i, u_i)$ equality constraints at time i

The Lagrangian

$$L(y) = \sum_{i=t}^{t+N} J_i(x_i, u_i) + \sum_{i=t}^{t+N} \lambda_i^T h_i(x_i, u_i)$$

$$y := (\lambda, x, u)$$
 y^* optimal $\Leftrightarrow \nabla_y L(y^*) = 0$

The SQP Method

Find y^* :

$$\begin{aligned} y_1 &= y_0 + s \\ \min_s \frac{1}{2} s^T \nabla^2 L(y_0) s + \nabla L(y_0)^T s \end{aligned}$$

Quasi Newton-Method

Find s with:

$$\nabla L(y_0) + \nabla^2 L(y_0)s = 0$$

Approximate $\nabla^2 L(y_0)$ and solve:

$$H(y_0)s = -\nabla L(y_0)$$

What happens in interval [t-1,t] ?

What happens in interval [t-1, t] ?

lacktriangledown calculate control u_{t-1} (Riccati Part II)

What happens in interval [t-1,t] ?

- calculate control u_{t-1} (Riccati Part II)
- calculate y (Riccati Part II)

What happens in interval [t-1,t] ?

- calculate control u_{t-1} (Riccati Part II)
- calculate y (Riccati Part II)
- prepare u_t (Newton & Riccati Part I)

What happens in interval [t-1, t]?

- calculate control u_{t-1} (Riccati Part II)
- calculate y (Riccati Part II)
- \bullet prepare u_t (Newton & Riccati Part I)
- \Rightarrow with horizon 18 this is 28% faster

Finite Horizon

Finite Horizon

Following a Skier

Following a Skier

Following a Skier

References I

Stephen Boyd.

Solving the lqr problem by block elimination.

Lecture notes, 2009.

James Diebel.
Representing attitude: Euler angles, unit quaternions, and rotation vectors.
10 2006.

Moritz Diehl, Hans Georg Bock, and Johannes P. Schlöder. A real-time iteration scheme for nonlinear optimization in optimal feedback control.

SIAM J. Control Optim., 2005.

References II

- Moritz Diehl, Bock H. Georg, Johannes P. Schlöder, Rolf Findeisen, Zoltan Nagy, and Frank Allgöwer.
 Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations.

 Journal of Process Control, 2002.
 - Moritz Mathias Diehl.

 Real-Time Optimization for Large Scale Nonlinear Processes.

 PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2001.
- Luis Rodolfo Garcia Carrillo, Alejandro Enrique Dzul Lopez, Rogelio Lozano, and Claude Pegard.

 Quad Rotorcraft Control.

 Springer-Verlag London, 2013.

References III

- D. Hartmann, K. Landis, M. Mehrer, S. Moreno, and J. Kim. Quadcopter dynamic modeling and simulation (quad-sim) v1.00. Git, 2014.
- Elias Reyes-Valeria, Rogerio Enriquez-Caldera, Sergio Camacho-Lara, and Jose Guichard. Lqr control for a quadrotor using unit quaternions: Modeling and simulation.

IEEE Xplore, 2013.

Jürgen Richter-Gebert and Thorsten Orendt. *Geometriekalküle*.

Springer: Berlin, Heidelberg, 2009.

What we have learned from the Project:

- you have to know your plan to ignore it
- MATLAB[®] is special
- tests are helpful or drive you crazy
- loopings can be cheap, too
- keep your colorscheme
- keep calm and do case studies

Any Questions?

