Chapitre 6

Fonctions de classe C^1

Soient E et F deux $\mathbb R$ espaces vectoriels de dimension finie munis des normes $\|\cdot\|$ et $\|\cdot\|'$ respectivement.

6.1 Définition et propriétés

6.1.1 Définition

Soit \mathcal{U} un ouvert d'un \mathbb{R} espace vectoriel E de dimension finie.

Définition 6.1.1 (Fonction de classe \mathcal{C}^1 **).** Une fonction $\mathcal{U} \to F$ est dite de classe \mathcal{C}^1 si et seulement si pour tout $i = 1, \dots, n$ la fonction $\frac{\partial f}{\partial x_i}$ est bien définie et est continue sur \mathcal{U} .

Exemple 6.1.1. La fonction
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{si } (x,y) \neq (0,0) \\ 0, & \text{si } (x,y) = (0,0) \end{cases}$$
 est \mathcal{C}^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$.

28	CHAPITRE 6. FONCTION	ONS DE CLASSE \mathcal{C}^1
6.1.2 R	Relation entre les fonctions C^1 et les fonctions di	ifférentiables
Théorèn classe \mathcal{C}^1	eme 6.1.1. Soit $f: E \to F$ définie sur un ouvert $\mathcal{U} \subset E$. On \mathcal{C}^1 sur \mathcal{U} . Alors f est différentiable sur \mathcal{U} .	suppose que f est de
Démonstra	ation.	

Remarque 10. La réciproque est fausse : la fonction $g : \mathbb{R} \to \mathbb{R}$ définie par $g(x) = x^2 \sin\left(\frac{1}{|x|}\right)$ si $x \neq 0$ et g(0) = 0 n'est pas \mathcal{C}^1 mais est différentiable sur \mathbb{R} .

6.2 Composition des fonctions de classe C^1

Soient E, F, G trois espaces vectoriels normés de dimension finie.

Théorème 6.2.1 (Règle de la chaine). Soient $f: E \to F$ une application de classe \mathcal{C}^1 sur l'ouvert $\mathcal{U} \subset E$ et $g: F \to G$ une application de classe \mathcal{C}^1 sur l'ouvert $\mathcal{V} \supset f(\mathcal{U})$. Alors $g \circ f: E \to G$ est de classe \mathcal{C}^1 sur \mathcal{U} avec, pour tout $x \in \mathcal{U}$:

$$d_x(g \circ f) = d_{f(x)}g \circ d_x f$$

Démonstration.

Ainsi
$$g \circ f(a+b) = g\left(f(a+b)\right) = g\left(f(a) + d_a f(b) + a(b)\right)$$

$$= g\left(f(a)\right) + d_{f(a)} g\left(d_a f(b) + a(b)\right)$$

$$= g \circ f(a) + d_{f(a)} g \circ d_a f(b)$$

$$+ d_{f(a)} g \circ d_a f(b)$$

$$+ d_{f(a)} (d(b)) + \beta (d_a f(b) + a(b))$$

$$= o\left(||b|||\right)$$

$$e) varific que l'optication
$$a \mapsto d_a (g \circ f) \quad \text{st fie } e^{\circ} \cdot (cupos d'apt' cantine).$$$$

Remarque 11. Il s'agit de la généralisation de la formule de dérivation d'une composée pour $f,g:\mathbb{R}\to\mathbb{R}$. On a alors pour $x\in\mathbb{R}$ $(g\circ f)'(x)=g'(f(x))f'(x)$.

Proposition 6.2.1. Soient $f: E \to F$ une application de classe \mathcal{C}^1 sur l'ouvert $\mathcal{U} \subset E$ et $g: F \to G$ une application de classe \mathcal{C}^1 sur l'ouvert $\mathcal{V} \supset f(\mathcal{U})$. La matrice jacobienne de $q \circ f$ en $x \in \mathcal{U}$ est donnée par

$$J_{g\circ f}(x)=J_g(f(x))\cdot J_f(x)$$
, par dut not nicel $=$ converse d'appli li l'aix n matricielle du théorème précédent.

Démonstration. C'est la traduction matricielle du théorème précédent.

On note $\mathcal{B}=(e_1,\cdots,e_n)$ une base de E et $\mathcal{B}'=(e_1',\cdots,e_p')$ une base de F. Soit une application $f: E \to F$, on note $f_1, \dots, f_p: E \to \mathbb{R}$ les fonctions coordonnées de f dans la base \mathcal{B}' . Autrement dit, on a $f(x) = f_1(x)e'_1 + \cdots + f_p(x)e'_p \in F$ pour tout $x \in E$.

Proposition 6.2.2. Soient $f: E \to F$ une application de classe \mathcal{C}^1 sur l'ouvert $\mathcal{U} \subset E$ et $g: F \to \mathbb{R}$ une application de classe \mathcal{C}^1 sur l'ouvert $\mathcal{V} \supset f(\mathcal{U})$. Alors en tout point $(x_1, \dots, x_n) \in \mathcal{U}$, on a pour tout $j = 1, \dots, n$

$$\frac{\partial g \circ f}{\partial x_j}(x_1, \cdots, x_n) = \sum_{i=1}^p \frac{\partial g}{\partial f_i}(f_1(x), \cdots, f_p(x)) \frac{\partial f_i}{\partial x_j}(x_1, \cdots, x_n).$$

où on a noté $\frac{\partial g}{\partial f_i}(f_1(x), \dots, f_p(x))$ la *i*-ème dérivée partielle de g en $f(x) \in \mathcal{V}$.

Démonstration. C'est la consequence dient de l'égalité matricielle.

Jac
$$(x) = J_{3}(4(x))$$
 $J_{4}(x) = \begin{bmatrix} \frac{3}{3} & 4(x) \\ \frac{3}{3} & 4(x) \end{bmatrix} \in \mathbb{R}^{1/3}$

$$I \propto : E = \mathbb{R}^{1/3}$$

$$F = \mathbb{R}^{1/3}$$

$$G = \mathbb{R}$$

$$J_{4}(4(x)) = \begin{bmatrix} \frac{3}{3} & 4(x) \\ \frac{3}{3} & 4(x) \end{bmatrix} = \begin{bmatrix} \frac{3}{3} & 4(x) \\ \frac{3}{3} & 4(x) \end{bmatrix} \in \mathbb{R}^{1/3}$$

$$J_{4}(x) = \begin{bmatrix} \frac{3}{3} & 4(x) \\ \frac{3}{3} & 4(x) \end{bmatrix} = \begin{bmatrix} \frac{3}{3} & 4(x) \\ \frac{3}{3} & 4(x) \end{bmatrix} \in \mathbb{R}^{1/3}$$

o Jac
$$f(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_3}{\partial x_2}(x) \end{bmatrix} \in \mathbb{R}^{p \times n}$$

remagne: Pangus & non negative (Chain's rule)

$$\frac{\partial f_2}{\partial x_1}(x) = \frac{\partial g}{\partial x_1} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_2} \begin{pmatrix} f_1(x) \\ \vdots \\ f_2(x) \end{pmatrix} \cdot \frac{\partial f_3}{\partial x_$$

Remarque 12. On a la notation plus condensée suivante :

s condensée suivante :

$$\frac{\partial g \circ f}{\partial x_j} = \sum_{i=1}^p \frac{\partial g}{\partial f_i} \frac{\partial f_i}{\partial x_j}$$
que l'an nationle de tour d'acconissement.

La formule est concise mais les abus de notations peuvent être trompeurs pour le néophyte...

Exemple 6.2.1. Coordonnées cylindriques : $\psi(r,\theta) = (r\cos(\theta), r\sin(\theta))$ et $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 sur \mathbb{R}^2 . Calcul de $\frac{\partial f \circ \psi}{\partial x_i}$.

4) on point
$$\tilde{I} = low$$
: $R^2 \xrightarrow{\omega} R$ $d \to R$ set bell l^4 comes

composed the function l^4 :

1) on interval l^4 :

2) on interval l^4 :

3) on interval l^4 :

4) on l^4 :

3) on interval l^4 :

4) on l^4 :

3) on l^4 :

4) on l^4 :

4) on l^4 :

4) on l^4 :

Soient E et F deux $\mathbb R$ espaces vectoriels normés de dimension finie et $\mathcal U$ et $\mathcal V$ deux ouverts de E et F respectivement.

Définition 6.3.1 (Difféomorphismes). On dit que f est un \mathcal{C}^1 -difféomorphisme de \mathcal{U} vers \mathcal{V} si f est une bijection de classe \mathcal{C}^1 de \mathcal{U} sur \mathcal{V} dont la réciproque f^{-1} est de classe \mathcal{C}^1 sur \mathcal{V} .

Exemple 6.3.1. L'application $(x,y)\mapsto (x+y,x-y)$ est un \mathcal{C}^1 -difféomorphisme de \mathbb{R}^2 dans \mathbb{R}^2 .

Exemple 6.3.2. L'application $\phi: x \mapsto \operatorname{Sign}(x)\sqrt{|x|}$ est une bijection de \mathbb{R} dans \mathbb{R} d'inverse $\phi^{-1}: x \mapsto \operatorname{Sign}(x)x^2$. L'application ϕ^{-1} est \mathcal{C}^1 sur \mathbb{R} mais ϕ n'est pas \mathcal{C}^1 .

le appli hisais inversibles sont de diffic

Example: 6.5.1
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 $(\frac{y}{y}) \mapsto (\frac{x-y}{x-y}) = (\frac{1-1}{1-1}) (\frac{x}{y})$

If investible? one, an left $(\frac{1-1}{1-1}) = 2 \neq 0$

If $f^{-1}: \mathbb{R}^2 \longrightarrow \mathbb{R}$
 $(\frac{x}{y}) \mapsto \frac{1}{2} (\frac{-1-1}{1-1}) (\frac{x}{y}) = \frac{1}{2} (\frac{1-1}{1-1}) (\frac{x}{y})$
 $= (\frac{(x-y)/x}{(x-y)/x}) = \frac{1}{2} f(\frac{y}{y})$

If $f \neq 0$ one is the apple license! If one as

 $\frac{3f_1}{3y_1} (\frac{y}{y}) = 1$
 $\frac{3f_2}{3y_1} (\frac{y}{y}) = 1$
 $\frac{3f_3}{3y_1} (\frac{y}{y}) = 1$
 $\frac{3f_4}{3y_1} (\frac{y}$

Example déjà me des dop
$$T$$
. I dée : verifie que $\phi'(a) = \frac{1}{2\sqrt{1/4}}$ m'et pas défine en O .

à relier au fait que $(\phi^{-1})'$ s'année e O .

Proposition 6.3.1. Soit $f: E \to F$ un \mathcal{C}^1 difféomorphisme de \mathcal{U} sur \mathcal{V} . Alors pour tout $a \in \mathcal{U}, d_a f$ est un isomorphisme de E sur F tel que iso norphisme

$$(d_af)^{-1}=d_{f(a)}(f^{-1}).$$
 appli live at

Démonstration.
$$U \subset E \xrightarrow{f} V \subset F$$

inverse à gande de de f
 $f^{-1} \circ f = Idu$ donne $f_{(a)}(f^{-1}) \circ da f = Idu$
 $f \circ f^{-1} = Idv$ donne $f \circ da f \circ da f \circ da f$

inversible.

cf: Remarque 2 du chap. I (P10)

Remarque 13. On a donc dim $E = \dim F$.

On dispose de la caractérisation suivante des difféomorphismes

Théorème 6.3.1 (Inversion globale). Soit \mathcal{U} un ouvert de E et $f: \mathcal{U} \to F$ une application injective de classe \mathcal{C}^1 . Alors f définit un \mathcal{C}^1 difféomorphisme du \mathcal{U} sur $f(\mathcal{U})$ si et seulement si $d_a f$ est un isomorphisme pour tout $a \in \mathcal{U}$.

Démonstration. Admis.

Remarque 14.

1) isomorphisme: appli hiéare inversible (injective et surjective)

=> Il suffit de miifie que det (Jac f) #0 e) on a bessin de l'injection té dans le con genéral.

(Si E=F= IR, cette cardition et "instile" ear la) global Carditia 1) dome direct event einjectin (1)

Exemple 6.3.3. Coordonnées polaires : $\psi(r,\theta) = (r\cos(\theta), r\sin(\theta))$ est un \mathcal{C}^1 -difféomorphisme de $]0, +\infty[\times] - \pi, \pi[$ dans $\mathbb{R}^2 \setminus (\mathbb{R}^- \times \{0\})$ (\mathbb{R}^2 privé de la demi-droite des réels négatif).

6.4 Fonctions implicites

Dans \mathbb{R}^2 , la droite \mathcal{D} d'équation

$$ax + by + c = 0$$

est la ligne de niveau 0 de la fonction $(x,y) \mapsto ax + by + c$. Si $b \neq 0$ (*i.e.* si la droite n'est pas verticale) on peut définir la fonction $\varphi(x) = -\frac{ax+c}{b}$ de sorte que $(x,\varphi(x)) \in \mathcal{D}$ pour tout $x \in \mathbb{R}$. De la même manière, si $a \neq 0$ les points $(\phi(y), y)$ où $\phi(y) = -\frac{by+c}{a}$ sont sur \mathcal{D} .

Remarque 15. En physique, on utilise très souvent cette formulation implicite. Par exemple, la loi d'Ohm, souvent énoncée par U = RI, devrait plutôt être comprise comme la formulation implicite de la courbe de niveau 0 de l'application f(U, R, I) = U - RI. En effet, on peut, suivant les besoins, exprimer U en fonction de R et de I, ou I en fonction de U et de R, etc...

Question : étant donnée une équation f(x,y)=0. À quelles conditions sur f peut-on faire le même procédé ?

Définition 6.4.1. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ et $T = \{(x,y) \in \mathbb{R}^2 | f(x,y) = 0\}$. Si T peut être représenté au voisinage de $(x_0, y_0) \in T$ par le graphe d'une fonction $\varphi :]a, b[\to \mathbb{R}$ où $x_0 \in]a, b[$ (i.e.

 $(x,\varphi(x))\in T$ pour tout $x\in]a,b[)$, alors on dit que φ est une fonction implicite de l'équation f(x,y) = 0.

Exemple 6.4.1. Soit $f(x,y) = x^2 + y^2 - 1$.

Théorème 6.4.1 (Fonction implicite sur \mathbb{R}^2). Soit $f: \mathcal{U} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 sur \mathcal{U} ouvert de \mathbb{R}^2 et $(x_0, y_0) \in \mathcal{U}$. Si $f(x_0, y_0) = 0$ et $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$ alors il existe un intervalle ouvert I contentant x_0 et une unique fonction $\varphi: I \to \mathbb{R}$ déclasse \mathcal{C}^1 telle que :

- 1. $\varphi(x_0) = y_0$.
- 2. $f(x, \varphi(x)) = 0$ pour tout $x \in I$. 3. $\varphi'(x) = -\frac{\frac{\partial f}{\partial x}(x, \varphi(x))}{\frac{\partial f}{\partial y}(x, \varphi(x))}$ pour tout $x \in I$.

le tagent à 7 en (40) m'st pa venticale

4. la droite tangente à la courbe $y = \varphi(x)$ en $x = x_0$ a pour équation $y = \varphi'(x_0)(x - x_0) + y_0$.

Démonstration. Admis. Mais on trouvera une preuve dans [1] page 204.

Exemple 6.4.2. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x, y) = y^2 - y - 3x$ et le point $(x_0, y_0) = (2, -2)$. On a f(2,-2)=0 et on considère la courbe de niveau 0.

$$T = \{ (x) \in \mathbb{R}^2 \mid \pm (x, y) = 0 \} = \{ (x) \in \mathbb{R}^2 \mid y^2 - y - 3 \times = 0 \}$$

$$(x_{0}, y_{0}) = (2, -2) \quad \text{satisfait bis} \quad f(z, -c) = 0$$

$$y^{2} - y - 3x = 0 \iff y = \frac{1 - \sqrt{1 + 12x}}{2} \quad \text{on} \quad y = \frac{1 + \sqrt{1 + 12x}}{2}$$
et le point de coordonnée (2, -2) appartient au graphe de la fanction (décirient le branche bleve son le decirie) d'équatre
$$(f(x)) = \frac{1 - \sqrt{1 + 12x}}{2} = \frac{1}{2} - \frac{1}{2} \frac{(1 + 12x)^{2}}{2}$$
La tangent au graphe du $f(x) = \frac{1}{2} - \frac{1}{2} \frac{(1 + 12x)^{2}}{2}$
La tangent au graphe du $f(x) = \frac{1}{2} - \frac{3}{2} \frac{(1 + 12x)^{2}}{2} = -\frac{3}{2} \frac{(1 + 12x)^{2}}{2}$
Mans d'égès le part 3. du th:

was days & part s. du th.
$$\varphi'(x) = -\frac{-3}{2y-1} = \frac{-3}{2\varphi(x)-1} = \frac{-3}{\sqrt{1+12x}}$$

A is is le distite
$$y = 4(2)(2-2)-2$$

$$= -\frac{3}{5}(2-2)-2 = -\frac{3}{5} \times +\frac{6}{5}-2$$

$$= -\frac{3}{5} \times -\frac{4}{5}$$