Linear regression

$$y_i \sim Normal(\mu_i, \sigma^2)$$

$$\mu_i = \beta_0 + \beta_1 * x_i$$

Where,

y_i: response variable at site i

 μ_i : mean of yi

 σ^2 : variance of yi

 β_0 : intercept

 β_1 : slope

 x_i : covariate value at site i

^{*}this document was adapted from a course led by Richard Chandler and Bill DeLuca

Logistic regression

$$y_i \sim Binomial(\pi_i, N_i)$$

$$logit(\pi_i) = \beta_0 + \beta_1 * x_i$$

Where,

y_i: response variable (0 or 1) at site i

 π_i : probability of observing a 1 at site i

 N_i : number of trials (eg, coin tosses [=1 in typical logistic reg.])

 β_0 : intercept – on logit scale

 β_1 : slope – on logit scale

 x_i : covariate value at site i

^{*}this document was adapted from a course led by Richard Chandler and Bill DeLuca

Poisson regression

$$y_i \sim Poisson(\lambda_i)$$

$$log(\lambda_i) = \beta_0 + \beta_1 * x_i$$

Where,

y_i: response variable (integer value) at site i

 λ_i : Poisson mean at site i

 β_0 : intercept – on log scale

 β_1 : slope – on log scale

 x_i : covariate value at site i

^{*}this document was adapted from a course led by Richard Chandler and Bill DeLuca

Single-season occupancy

$$y_{ij} \sim Binomial(p_{ij}, Z_i)$$
 $Z_i \sim Binomial(\psi_i, 1)$
 $logit(p_{ij}) = \beta_0 + \beta_1 * x_{ij}$
 $logit(\psi_i) = \alpha_0 + \alpha_1 * v_i$

Where,

y_{ij}: observed presence/absence at site i on occasion j

Z_i: state variable: actual presence/absence at site i

p_{ij}: detection probability at site i on occasion j

 ψ_i : probability of occurrence at site i

 β_0 : intercept – on logit scale

 β_1 : slope – on logit scale

 x_{ij} : covariate value at site i on occasion j

 α_0 : intercept – on logit scale

 α_1 : slope – on logit scale

 v_i : covariate value at site i

^{*}this document was adapted from a course led by Richard Chandler and Bill DeLuca

N-mixture model (aka Binomial mixture model)

$$y_{ij} \sim Binomial(p_{ij}, N_i)$$
 $N_i \sim Poisson(\lambda_i)$
 $logit(p_{ij}) = \beta_0 + \beta_1 * x_{ij}$
 $log(\lambda_i) = \alpha_0 + \alpha_1 * v_i$

Where,

y_{ij}: observed abundance at site i on occasion j

N_i: state variable: actual abundance at site i

p_{ij}: detection probability at site i on occasion j

 λ_i : mean abundance at site i

 β_0 : intercept – on logit scale

 β_I : slope – on logit scale

 x_{ij} : covariate value at site i on occasion j

 α_0 : intercept – on log scale

 α_1 : slope – on log scale

 v_i : covariate value at site i

^{*}this document was adapted from a course led by Richard Chandler and Bill DeLuca