

8Mbit Asynchronous Fast Static RAM

Features

 Fast Access Time: 8, 10, 12, 15ns
 CMOS Low Power Dissipation Standby (TTL): 25mA (Max.) (CMOS): 15mA (Max.) Operating: 80mA (8ns, Max.)

70mA (10ns, Max.)

• 5.0V,3.3V or 1.8V Power Supply

TTL Compatible Inputs and Outputs

· Fully Static Operation, No Clock or Refresh required

· Three State Outputs

Data Byte Control(x16 Mode)
 LB: I/O0~ I/O7, UB: I/O8~ I/O15

• Standard 48FBGA and 44TSOP2 Package type

ROHS compliant

· Industrial Temperature

Description

The VTI508(H/N/L)16T(L) and VTI508(H/N/L)08T(L) is a 8,388,608-bit high-speed Static Random Access Memory organized as 512K(1M) words by 16(8) bits.

The device uses 16(8) common input and out-put lines and have an output enable pin which operates faster than address access time at read cycle.

The device is fabricated using advanced CMOS process,6-TR based cell technology and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications.

Ordering Information

Density	Org.	Part Number	Vcc (V)	tAA(ns)	Package	Temp.
		VTI508HF16VM-10I	5.0	10	44 TSOP2	
		VTI508NF16VM-10I	3.3	10	44 TSOP2	
	512Kb x 16bit	VTI508LF16VM-10I	1.8	15	44 TSOP2	
	STEND X TODIL	VTI508HF16LM-10I	5.0	10	48 FBGA	
		VTI508NF16LM-10I	3.3	10	48 FBGA	
8Mbit		VTI508LF16LM-10I	1.8	15	48 FBGA	-40°C to 85°C
OWDIL		VTI508HF08VM-10I	5.0	10	44 TSOP2	-40 C 10 83 C
		VTI508NF08VM-10I	3.3	10	44 TSOP2	
	1Mb x 8bit	VTI508LF08VM-10I	1.8	15	44 TSOP2	
	TIND X ODIC	VTI508HF08LM-10I	5.0	10	48 FBGA	
		VTI508NF08LM-10I	3.3	10	48 FBGA	
		VTI508LF08LM-10I	1.8	15	48 FBGA	

Logic Block Diagram - 512K x 16

PKG Pin Configurations - 512K x 16

48FBGA

	1	2	3	4	5	6
Α	LB	OE	A ₀	A ₁	A ₂	NC
В	I/O ₈	UB	A ₃	A ₄	CS	I/O ₀
С	I/O ₉	I/O ₁₀	A ₅	A ₆	I/O ₁	I/O ₂
D	Vss	I/O ₁₁	A ₁₇	A ₇	I/O ₃	Vcc
E	Vcc	I/O ₁₂	NC	A ₁₆	I/O ₄	Vss
F	I/O ₁₄	I/O ₁₃	A ₁₄	A ₁₅	I/O ₅	I/O ₆
G	I/O ₁₅	NC	A ₁₂	A ₁₃	WE	I/O ₇
Н	A ₁₈	A ₈	A ₉	A ₁₀	A ₁₁	NC

Pin Name	Pin Function
FIII Naille	Fili Fullction
A0 - A18	Address Inputs
WE	Write Enable
CS	Chip Select
ŌĒ	Output Enable
LB	Lower-byte Control(I/O ₀ ~I/O ₇)
ŪB	Upper-byte Control(I/O8~I/O15)
I/O ₀ ~ I/O ₁₅	Data Inputs/Outputs
Vcc	Power
Vss	Ground
N.C	No Connection

Logic Block Diagram - 1M x 8

PKG Pin Configurations - 1M x 8

2 1 3 4 5 6 OE NC NC Α A_0 A_1 A_2 В NC NC CS I/O_0 A_3 A_4 1/02 С NC NC I/O₁ A_5 A_6 D Vss NC I/O₃ Vcc A₁₇ A_7 Е $A_{1\underline{6}}$ Vcc NC NC I/O₄ Vss I/O₅ F NC NC I/O₆ A₁₄ A₁₅ A₁₂ A₁₃ I/O₇ G NC NC WE

 A_9

 A_{10}

A₁₁

 A_{19}

48FBGA

Pin Name	Pin Function
A0 - A19	Address Inputs
WE	Write Enable
CS	Chip Select
ŌE	Output Enable
I/O ₀ ~ I/O ₇	Data Inputs/Outputs
Vcc	Power
Vss	Ground
N.C	No Connection

Н

 A_{18}

 A_8

Absolute Maximum Ratings*

P	arameter	Symbol	Rating	Unit
Voltage on Any Pin	1.8V Product			
Relative to VSS	3.3V Product	Vin, Vout	-0.5 to Vcc+0.5V	V
	5.0V Product			
Voltage on Vcc Supply	1.8V Product			
Relative to VSS	3.3V Product	VIN, VOUT	-0.5 to 4.6	V
	5.0V Product		-0.5 to 7.0	
Power Dissipation		PD	1.0	W
Storage Temperature	Storage Temperature		-65 to 150	°C
Operating Temperature	Industrial	Та	-40 to 85	°C

^{*} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended DC Operating Conditions* (TA=0 to 70°C)

Parameter	Operating Vcc(V)	Symbol	Min	Тур	Max	Unit	
	5.0	Vcc	4.5	5.0	5.5		
Supply Voltage	3.3	Vcc	2.4	3.3	3.6	V	
	1.8	Vcc	1.65	1.8	2.2		
Ground		Vss	0	0 0		V	
	5.0	ViH	2.2	-	Vcc+0.5	V	
Input High Voltage	3.3	VIH	2.0	-	Vcc+0.3		
	1.8	ViH	1.4	-	Vcc+0.2		
	5.0	VIL	-0.3	-	0.8		
Input Low Voltage	3.3	VIL	-0.3	-	0.7	V	
	1.8	VIL	-0.2	-	0.4		

^{*} The above parameters are also guaranteed for industrial temperature range.

DC and Operating Characteristics*(TA=0 to 70°C)

Parameter	Symbol	Test Conditions	Min	Max	Unit	
Input Leakage Current	lu	VIN=Vss to Vcc	-2	2	μΑ	
Output Leakage Current	llo	CS=VIH or OE=VIH or WE=VIL Vout=Vss to Vcc			2	μΑ
Operating Current**	I _{CC}	Min. Cycle, 100% Duty	8ns	-	80	mA
		CS=VIL, VIN=VIH or VIL, IOUT=0mA	10ns	-	70	
		12ns	-	65		
			15ns	-	60	
Standby Current	Isb	Min. Cycle, CS=VIH		-	25	mA
	ISB1	f=0MHz, CS ≥Vcc-0.2V, Vin≥Vcc-0.2V or Vin≤0.2V			15	
Output Low Voltage Level	Vol	Vcc=4.5V, IoL=8mA, 5.0V Product	-	0.4	٧	
		Vcc=3.0V, IOL=8mA, 3.3V & Wide Vcc** P	-	0.4		
		Vcc=1.65V, IoL=0.1mA, Wide Vcc** Produ	-	0.2		
Output High Voltage Level	Vон	Vcc=4.5V, IoH=-4mA, 5.0V Product	2.4	-	٧	
		Vcc=3.0V, Iон=-4mA, 3.3V & Wide Vcc**	2.4	-		
		Vcc=1.65V, Iон=-0.1mA, Wide Vcc** Prod	1.4	-		

 $[\]ensuremath{^{\star}}$ The above parameters are also guaranteed for industrial temperature range.

Capacitance*(TA=25°C, f=1.0MHz)

Item	Symbol	Test Conditions	TYP	Max	Unit
Input/Output Capacitance	CI/O	V1/0=0V	-	8	pF
Input Capacitance	Cin	V _{IN} =0V	1	6	pF

^{*} Capacitance is sampled and not 100% tested.

Test Conditions*

Parameter	Value
Input Pulse Level	0 to 3.0V (Vcc=3.3V or 5.0V)
input i dise Level	0 to 3.0V (Vcc=3.3V or 5.0V) 0 to 1.8V (Vcc=1.8V) 1V/1ns 1.5V (Vcc=3.3V or 5.0V) 1/2Vcc (Vcc= 1.8V)
Input Rise and Fall Time	1V/1ns
put and Output Timing Reference Levels	1.5V (Vcc=3.3V or 5.0V)
anpatana saspat mining national 20000	1/2Vcc (Vcc= 1.8V)
Output Load	See Fig. 1

^{*} The above parameters are also guaranteed at industrial temperature range.

^{*} Including Scope and Jig Capacitance

Fig. 1

Overshoot Timing

Undershoot Timing

Fig. 2

Functional Description (x8 Mode)

		. ,	,		
cs	WE	ŌE	Mode	I/O Pin	Supply Current
Н	X	X*	Not Select	High-Z	ISB, ISB1
L	Н	Н	Output Disable	High-Z	Icc
L	Н	L	Read	Dout	Icc
L	L	Х	Write	DIN	Icc

^{*} X means Don't Care.

Functional Description (x16 Mode)

cs	WE	ŌĒ	LB	UB	Mode	I/O	Pin	Supply Current
CS	VV E	OE	LB	ОВ	I/O0~I/O7 I/O8~I/O15		Supply Current	
Н	Х	X*	X	Х	Not Select	High-Z	High-Z	ISB, ISB1
L	Н	Н	X	Х	Output Disable	High-Z	High-Z	Icc
L	Х	Х	Н	Н				
			L	Н		D оит	High-Z	
L	Н	L	Н	L	Read	High-Z	Dout	Icc
			L	L		Dout	Dout	
			L	Н		DIN	High-Z	
L	L	X	Н	L	Write	High-Z	Din	Icc
			L	L		DIN	Din	

^{*} X means Don't Care.

Data Retention Characteristics* (TA=0 to 70°C)

Parameter	Product	Operating Vcc(V)	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Vcc for Data Retention	5.0V Product	5.0		CS ≥Vcc - 0.2V	2.0	-	5.5	
Data Retention	3.3V Product	3.3	VdR		2.0	-	3.6	V
	1.8V Product	1.8			1.5	-	3.6	
Data Retention	5.0V Product	5.0		Vcc=2.0V CS≥Vcc - 0.2V	-	-	15	
Current	3.3V Product	3.3	IDR	Vin≥Vcc - 0.2V or Vin≤0.2V	-	-	15	mA
	1.8V Product	1.8		Vcc=1.5V CS≥Vcc - 0.2V Vin≥Vcc - 0.2V or Vin≤0.2V	-	-	15	
Data Retention	Set-Up Time	•	tsdr	See Data Retention	0	-	-	ns
Recovery Time			trdr	Wave form(below)	5	-	-	ms

 $^{^{\}star}$ The above parameters are also guaranteed at industrial temperature range.

Data Retention Wave Form

Read Cycle

Parameter	Symbol	8ns		10ns		12ns		15ns		Unit
, 513111555		Min	Max	Min	Max	Min	Max	Min	Max	
Read Cycle Time	trc	8	-	10	-	12	-	15	-	ns
Address Access Time	taa	-	8	-	10	-	12	-	15	ns
Chip Select to Output	tco	-	8	-	10	-	12	-	15	ns
Output Enable to Valid Output	toe	-	4	-	5	-	6	-	7	ns
UB, LB Access Time **	tва	-	4	-	5	-	6	-	7	ns
Chip Enable to Low-Z Output	tız	3	-	3	-	3	-	3	-	ns
Output Enable to Low-Z Output	toLZ	0	-	0	-	0	-	0	-	ns
UB, LB Enable to Low-Z Output **	tBLZ	0	-	0	-	0	-	0	-	ns
Chip Disable to High-Z Output	tHZ	0	4	0	5	0	6	0	7	ns
Output Disable to High-Z Output	tonz	0	4	0	5	0	6	0	7	ns
UB, LB Disable to High-Z Output **	tвнz	0	4	0	5	0	6	0	7	ns
Output Hold from Address Change	tон	3	-	3	-	3	-	3	-	ns
Chip Selection to Power Up Time	tpu	0	-	0	-	0	-	0	-	ns
Chip Selection to Power DownTime	tPD	-	8	-	10	-	12	-	15	ns

Write Cycle

Parameter	Symbol	8ns		10ns		12ns		15ns		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Write Cycle Time	twc	8	-	10	-	12	-	15	-	ns
Chip Select to End of Write	tcw	6	-	7	-	9	-	12	-	ns
Address Set-up Time	tas	0	-	0	-	0	-	0	-	ns
Address Valid to End of Write	taw	6	-	7	-	9	-	12	-	ns
Write Pulse Width(OE High)	twp	6	-	7	-	9	-	12	-	ns
Write Pulse Width(OE Low)	twP1	8	-	10	-	12	-	15	-	ns
UB, LB Valid to End of Write **	tвw	6	-	7	-	9	-	12	-	ns
Write Recovery Time	twr	0	-	0	-	0	-	0	-	ns
Write to Output High-Z	twnz	0	4	0	5	0	6	0	7	ns
Data to Write Time Overlap	tow	4	-	5	-	7		8	-	ns
Data Hold from Write Time	tон	0	-	0	-	0	-	0	-	ns
End of Write to Output Low-Z	tow	3	_	3	-	3	-	3	-	ns

Timing Diagrams

Timing Waveform Of Read Cycle(1) (Address Controlled, CS=OE=VIL, WE=VIH, UB, LB=VIL**)

^{**} Those parameters are applied for x16 mode only.

Timing Waveform Of Read Cycle(2) (WE=VIH)

NOTES(Read Cycle)

- 1. WE is high for read cycle.
 2. All read cycle timing is referenced from the last valid address to the first transition address.
 3. tHz and tOHz are defined as the time at which the outputs achieve the open circuit condition and are not referenced to VOH or VOL levels.
- 4. At any given temperature and voltage condition, thz(Max.) is less than ttz(Min.) both for a given device and from device to device.
- 5. Transition is measured ±200mV from steady state voltage with Load(B). This parameter is sampled and not 100% tested. 6. Device is continuously selected with CS=ViL.
- 7. Address valid prior to coincident with $\overline{\text{CS}}$ transition low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- ** Those parameters are applied for x16 mode only.

Timing Waveform Of Write Cycle(1) (OE Clock)

^{**} Those parameters are applied for x16 mode only.

Timing Waveform Of Write Cycle(2) (OE=Low fixed)

^{**} Those parameters are applied for x16 mode only.

Timing Waveform Of Write Cycle(3) (CS=Controlled)

^{**} Those parameters are applied for x16 mode only.

Timing Waveform Of Write Cycle(4) (UB, LB Controlled)

NOTES(Write Cycle)

- 1. All write cycle timing is referenced from the last valid address to the first transition address.
 2. A write occurs during the overlap of a low CS, WE, LB and UB. A write begins at the latest transition CS going low and WE going low; A write ends at the earliest transition $\overline{\text{CS}}$ going high or $\overline{\text{WE}}$ going high. twp is measured from the beginning of write to the end of write.
- 3. tcw is measured from the later of $\overline{\text{CS}}$ going low to end of write.
- 4. tas is measured from the address valid to the beginning of write.
- 5. two is $\underline{\text{me}}$ as $\underline{\text{$
- 6. If $\overline{\text{OE}}$, $\overline{\text{CS}}$ and $\overline{\text{WE}}$ are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not . be applied because bus contention can occur.

 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.

 8. If CS goes low simultaneously with WE going or after WE going low, the outputs remain high impedance state.

- 9. Dout is the read data of the new address.
- 10. When $\overline{\text{CS}}$ is low: I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.
- ** Those parameters are applied for x16 mode only.

Package Dimensions

48-FBGA

6mm x 8mm Body, 0.75mm Bump Pitch, 6 x 8 Ball Grid Array

Symbol	Value	Units	Note	Symbol	Value	Units	Note
Α	6 ± 0.1	mm		E	0.75	mm	
В	8 ± 0.1	mm		F	5.25	mm	
С	1.1 ± 0.1	mm		G	3.75	mm	
D	0.25 ± 0.05	mm		Н	0.35 ± 0.05	mm	

Package Dimensions

44-TSOP2-400BF

Code Informations

Digit-No.	Digit-No. Remark			
1,2,3	Vilsion Technology Inc. Product	VTI		
4	Asynchronous SRAM		5	
5,6	Density	1Mb	01	
		2Mb	02	
		4Mb	04	
		8Mb	08	
		16Mb	16	
		32Mb	32	
7	Vcc	1.8V	L	
		3.3V	N	
		5.0V	Н	
		1.65V~3.6V	W	
8	Product type	Low Power(1 C/S)	L	
		Low Power(2C/S)	В	
		Fast	F	
9 10	Organization	8bit	08	
		16bit	16	
11	Package	36 BGA	N	
	-	48 BGA	L	
		48 TSOP1	Т	
		44 TSOPII	V	
		32 TSOP1	S	
		32 sTSOP1	W	
		32 TSOPII	Y	
		32 SOP	Р	
12	Die Version	Monther Die	M	
		2nd Generation	A	
		3rd Generation	В	
13,14	Speed	8ns	08	
	·	10ns	10	
		12ns	12	
		45ns	45	
		55ns	55	
15	Temperature range	-40℃ to 85℃	1	
		-40℃ to 105℃	A	
16	Packing type	Tray	Blank	
		Tape and Reel	Т	
17, 18	Special function	TBD	TBD	

Document History

Rev.	Date	Description of Change
0	Oct. 2015	Initial Advanced Information Release
1	Jan. 2016	Final