Fiscal Policy and Inequality

8. Introduction to Regression

Elliott Ash (ashe@ethz.ch)

ETH Zurich

October 8, 2018

Outline

Introduction

Conditional Independence Assumption

Regression Analysis

Motivation

- ► RCTs solve the selection problem
 - But with most datasets and research questions, it is not possible to run a controlled experiment
 - ► Have to rely on observational data

Causality without experiments

- ➤ The identification strategy or empirical strategy is the approach used with observational data (i.e. data not generated by a randomized trial) to approximate a real experiment:
 - Selection based on observables
 - Differences-in-differences
 - Instrumental variables
 - Regression discontinuity design
 - Synthetic control
 - Bunching

Outline

Introduction

Conditional Independence Assumption

Regression Analysis

Selection on observables

- We usually do not have a controlled experiment:
 - but maybe the treated group and the non-treated group differ only by a set of observable characteristics.

Selection on observables

- We usually do not have a controlled experiment:
 - but maybe the treated group and the non-treated group differ only by a set of observable characteristics.
- ► This is the Conditional Independence Assumption (CIA) assumption:
 - also called" selection on observables"
 - justifies causal interpretation of regression estimates

CIA Example

- ▶ Effect of going to school $D_i \in \{0,1\}$ on lifetime income $Y_i \ge 0$.
 - Potential outcomes Y_{0i} , Y_{1i}

CIA Example

- ▶ Effect of going to school $D_i \in \{0,1\}$ on lifetime income $Y_i \ge 0$.
 - \triangleright Potential outcomes Y_{0i} , Y_{1i}
- ▶ Recall that the difference in observed outcomes is

$$\begin{split} \mathbb{E}[Y_{1i}|D_i = 1] - \mathbb{E}[Y_{0i}|D_i = 0] \\ = \underbrace{\mathbb{E}[Y_{1i} - Y_{0i}|D_i = 1]}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_{0i}|D_i = 1] - \mathbb{E}[Y_{0i}|D_i = 0]}_{\text{Selection Bias}} \end{split}$$

Observable characteristics

Say that we observe an IQ test, X_i , for each individual.

Observable characteristics

- Say that we observe an IQ test, X_i , for each individual.
- ▶ The difference in outcomes, conditional on characteristics, is

$$\begin{split} &\mathbb{E}[Y_{1i}|X_i,D_i=1] - \mathbb{E}[Y_{0i}|X_i,D_i=0] \\ = &\underbrace{\mathbb{E}[Y_{1i} - Y_{0i}|X_i,D_i=1]}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_{0i}|X_i,D_i=1] - \mathbb{E}[Y_{0i}|X_i,D_i=0]}_{\text{Selection Bias}} \end{split}$$

Observable characteristics

- Say that we observe an IQ test, X_i , for each individual.
- ▶ The diference in outcomes, conditional on characteristics, is

$$\begin{split} & \mathbb{E}[Y_{1i}|X_i,D_i=1] - \mathbb{E}[Y_{0i}|X_i,D_i=0] \\ = & \underbrace{\mathbb{E}[Y_{1i} - Y_{0i}|X_i,D_i=1]}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_{0i}|X_i,D_i=1] - \mathbb{E}[Y_{0i}|X_i,D_i=0]}_{\text{Selection Bias}} \end{split}$$

▶ The Conditional Independence Assumption (CIA) holds when

$$\mathbb{E}[Y_{0i}|X_i, D_i = 1] = \mathbb{E}[Y_{0i}|X_i, D_i = 0]$$

that is, selection bias is zero conditional on observables.

- ► Three possible types of factors that affect the outcome variable:
 - 1. observable factors
 - not a problem

- ▶ Three possible types of factors that affect the outcome variable:
 - 1. observable factors
 - not a problem
 - 2. unobservable factors not correlated with treatment
 - also not a problem

- ► Three possible types of factors that affect the outcome variable:
 - 1. observable factors
 - not a problem
 - 2. unobservable factors not correlated with treatment
 - also not a problem
 - 3. unobservable factors correlated with treatment
 - this is the problem

- ▶ Three possible types of factors that affect the outcome variable:
 - 1. observable factors
 - not a problem
 - 2. unobservable factors not correlated with treatment
 - also not a problem
 - 3. unobservable factors correlated with treatment
 - this is the problem
- Questions:
 - what might drive selection in the education/income example?
 - why is this not a problem in an RCT?

Outline

Introduction

Conditional Independence Assumption

Regression Analysis

- ► How does schooling affect income?
- Assume a linear model

$$Y_i = \alpha + \beta s_i + \epsilon_i$$

 $ightharpoonup Y_i$ is income as a function of s_i , years of education

- How does schooling affect income?
- Assume a linear model

$$Y_i = \alpha + \beta s_i + \epsilon_i$$

- \triangleright Y_i is income as a function of s_i , years of education
- ho α , the "intercept" or "constant", gives the expected income with no schooling ($s_i = 0$)
 - ightharpoonup assume $\alpha = 0$ going forward.

- How does schooling affect income?
- Assume a linear model

$$Y_i = \alpha + \beta s_i + \epsilon_i$$

- \triangleright Y_i is income as a function of s_i , years of education
- ho α , the "intercept" or "constant", gives the expected income with no schooling ($s_i = 0$)
 - ightharpoonup assume $\alpha = 0$ going forward.
- $ightharpoonup \epsilon_i$ includes all other factors affecting income besides schooling, including randomness

- How does schooling affect income?
- Assume a linear model

$$Y_i = \alpha + \beta s_i + \epsilon_i$$

- \triangleright Y_i is income as a function of s_i , years of education
- ho α , the "intercept" or "constant", gives the expected income with no schooling ($s_i = 0$)
 - ightharpoonup assume $\alpha = 0$ going forward.
- ϵ_i includes all other factors affecting income besides schooling, including randomness
- \triangleright β is the slope parameter summarizing how wages vary with schooling.

OLS Estimator

$$Y_i = \alpha + \beta s_i + \epsilon_i$$

► The Ordinary Least Squares (OLS) Estimator is the workhorse of applied microeconometrics.

OLS Estimator

$$Y_i = \alpha + \beta s_i + \epsilon_i$$

- ► The Ordinary Least Squares (OLS) Estimator is the workhorse of applied microeconometrics.
- Assume that s_i is de-meaned and there are n observations. Then the OLS estimator is given by

$$\hat{\beta} = \frac{\sum_{i=1}^{n} s_i Y_i}{\sum_{i=1}^{n} s_i^2} = \frac{\text{Cov}[Y_i, s_i]}{\text{Var}[s_i]}$$

Interpreting OLS Coefficients

- ▶ The OLS estimate for β , denoted by $\hat{\beta}$, gives the predicted change in the outcome variable Y_i in response to increasing the explanatory variable s_i by 1.
 - In this case, the average increase in income for taking one more year of school.

OLS for prediction

▶ Using the estimated constant $\hat{\alpha}$ and estimated slope coefficient $\hat{\beta}$, we obtain a predicted income \hat{Y}_i for any level of schooling s_i :

$$\hat{Y}_i = \hat{\alpha} + \hat{\beta} s_i$$

OLS in Python

Statistical Significance

- The value for β is interesting because it provides a prediction for the effect of the explanatory variable on the outcome.
 - ▶ But if this prediction is very noisy, then it might not be useful for policy analysis.

Statistical Significance

- The value for β is interesting because it provides a prediction for the effect of the explanatory variable on the outcome.
 - But if this prediction is very noisy, then it might not be useful for policy analysis.
- ► The second half of OLS regression is determining statistical significance.
 - This is generally achieved by computing a standard error for each coefficient, and then using the standard error to compute a p-value for statistical significance.

Residuals

▶ The **residuals** or **errors** from an OLS regression are defined as

$$\tilde{\epsilon}_i = Y_i - \hat{Y}_i$$

$$= Y_i - \hat{\alpha} - \hat{\beta} s_i$$

In statsmodels, provided by results.resid

histogram of residuals
results.resid.hist()

Standard Errors

▶ The **standard error** for the OLS estimate $\hat{\beta}$ is

$$\hat{\sigma}_{eta} = \sqrt{rac{1}{n} \sum_{i=1}^{n} \widetilde{\epsilon}_{i}^{2}},$$

the square root of the average of the squared residuals.

▶ In statsmodels, contained in results.bse.

Standard Errors

▶ The **standard error** for the OLS estimate $\hat{\beta}$ is

$$\hat{\sigma}_{\beta} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \tilde{\epsilon}_{i}^{2}},$$

the square root of the average of the squared residuals.

- ▶ In statsmodels, contained in results.bse.
- ► This standard error provides information about the precision of the estimate: a lower standard error is a more precise estimate.
- On regression tables, usually reported in parentheses right beneath the point estimate.

t-statistics and *p*-values

► A rule of thumb for statistical significance is to compute the *t*-statistic:

$$t=rac{\hat{eta}}{\hat{\sigma}_{eta}}$$

- ightharpoonup t > 2: there is a statistically significant positive effect
 - ightharpoonup t < 2: there is a statistically significant negative effect
 - ▶ $t \in [-2, 2]$, no effect

t-statistics and *p*-values

► A rule of thumb for statistical significance is to compute the *t*-statistic:

$$t=rac{\hat{eta}}{\hat{\sigma}_{eta}}$$

- ightharpoonup t > 2: there is a statistically significant positive effect
 - ightharpoonup t < 2: there is a statistically significant negative effect
 - $t \in [-2, 2]$, no effect
- A high t (in absolute value) is associated with a small p-value (e.g., $t = 1.96 \rightarrow p = .05$).
 - Small p-values are often indicated on regression tables with stars to indicate statistical significance.

t-statistics and *p*-values

► A rule of thumb for statistical significance is to compute the *t*-statistic:

$$t=rac{\hat{eta}}{\hat{\sigma}_{eta}}$$

- ightharpoonup t > 2: there is a statistically significant positive effect
 - ightharpoonup t < 2: there is a statistically significant negative effect
 - $t \in [-2, 2]$, no effect
- A high t (in absolute value) is associated with a small p-value (e.g., $t = 1.96 \rightarrow p = .05$).
 - Small p-values are often indicated on regression tables with stars to indicate statistical significance.
- ► Statistical significance ≠ economic significance.

Multivariate Regression

ightharpoonup Assume we have n observations and k explanatory variables.

Multivariate Regression

- Assume we have *n* observations and *k* explanatory variables.
- Let Y be the $n \times 1$ vector for the outcome variable (also called dependent variable or label).

Multivariate Regression

- ightharpoonup Assume we have *n* observations and *k* explanatory variables.
- Let Y be the $n \times 1$ vector for the outcome variable (also called dependent variable or label).
- Let X be the $n \times k$ matrix of explanatory variables (also called independent variables or predictors)

Multivariate Regression

- ightharpoonup Assume we have *n* observations and *k* explanatory variables.
- Let Y be the $n \times 1$ vector for the outcome variable (also called dependent variable or label).
- ▶ Let X be the n × k matrix of explanatory variables (also called independent variables or predictors)
- ▶ The $k \times 1$ vector of OLS coefficients (one for reach explanatory variable) is

$$\hat{\beta} = (X'X)^{-1}X'Y$$

with standard errors given by the diagonal entries of

$$\hat{\sigma}\sqrt{(X'X)^{-1}}$$

Multivariate Regression: Python Code

OLS Estimator is unbiased under exogeneity (1)

Take the OLS estimator

$$\hat{\beta} = \frac{\sum_{i=1}^{n} s_{i} Y_{i}}{\sum_{i=1}^{n} s_{i}^{2}}$$

and plug in the equation definition for Y_i (setting $\alpha = 0$)

$$\hat{\beta} = \frac{\sum_{i=1}^{n} s_{i}(\beta s_{i} + \epsilon_{i})}{\sum_{i=1}^{n} s_{i}^{2}}$$

$$= (\frac{\sum_{i=1}^{n} s_{i}^{2}}{\sum_{i=1}^{n} s_{i}^{2}})\beta + \frac{\sum_{i=1}^{n} s_{i}(\epsilon_{i})}{\sum_{i=1}^{n} s_{i}^{2}}$$

$$= \beta + \frac{\sum_{i=1}^{n} s_{i}\epsilon_{i}}{\sum_{i=1}^{n} s_{i}^{2}}$$

OLS Estimator is unbiased under exogeneity (2)

► Taking expectations gives

$$\mathbb{E}[\hat{\beta}] = \beta + \mathbb{E}\left[\frac{\sum_{i=1}^{n} s_{i} \epsilon_{i}}{\sum_{i=1}^{n} s_{i}^{2}}\right]$$
$$= \beta + \frac{\mathsf{Cov}[s_{i}, \epsilon_{i}]}{\mathsf{Var}[s_{i}]}$$
$$= \beta$$

The last line follows from the exogeneity assumption $\mathbb{E}[\epsilon_i|s_i]=0$, which implies $\text{Cov}[s_i,\epsilon_i]=0$.

Endogeneity

- ▶ When the conditional independence assumption is not satisfied, we say that "s is endogenous":
 - ► That is, an explanatory variable s_i is said to be endogenous if it is correlated with unobservable factors that are also correlated with the outcome variable.

Endogeneity

- ▶ When the conditional independence assumption is not satisfied, we say that "s is endogenous":
 - ► That is, an explanatory variable s_i is said to be endogenous if it is correlated with unobservable factors that are also correlated with the outcome variable.
 - this is why it is called "omitted variable bias"

Endogeneity

- ▶ When the conditional independence assumption is not satisfied, we say that "s is endogenous":
 - ► That is, an explanatory variable s_i is said to be endogenous if it is correlated with unobservable factors that are also correlated with the outcome variable.
 - this is why it is called "omitted variable bias"
- Since the error term ϵ_i includes all unobserved factors affecting the outcome, we can define endogeneity as correlation between an explanatory variable and the error term:

$$\mathsf{Cov}[s_i,\epsilon_i] \neq 0$$

Omitted variable bias

Assume that the "true" model states that income is affected by schooling and ability

$$Y_i = \beta s_i + \gamma a_i + \eta_i \tag{1}$$

where η_i is random (exogenous), but we cannot measure ability a_i .

Omitted variable bias

Assume that the "true" model states that income is affected by schooling and ability

$$Y_i = \beta s_i + \gamma a_i + \eta_i \tag{1}$$

where η_i is random (exogenous), but we cannot measure ability a_i .

► We can only estimate

$$Y_i = \beta s_i + \epsilon_i \tag{2}$$

Omitted variable bias

 Assume that the "true" model states that income is affected by schooling and ability

$$Y_i = \beta s_i + \gamma a_i + \eta_i \tag{1}$$

where η_i is random (exogenous), but we cannot measure ability a_i .

► We can only estimate

$$Y_i = \beta s_i + \epsilon_i \tag{2}$$

The OLS estimates for β from (1) and (2) will be different unless: (1) $\gamma = 0$, or (2) $Cov(s_i, a_i) = 0$.

Understanding omitted variable bias

Recall the formula for the OLS estimator

$$\hat{\beta} = \frac{\sum_{i=1}^{n} s_i Y_i}{\sum_{i=1}^{n} s_i^2}$$

and plug in the new equation definition for Y_i

$$\hat{\beta} = \frac{\sum_{i=1}^{n} s_i (\beta s_i + \gamma a_i + \eta_i)}{\sum_{i=1}^{n} s_i^2}$$

$$= \beta + \frac{\sum_{i=1}^{n} s_i (\gamma a_i)}{\sum_{i=1}^{n} s_i^2} + \frac{\sum_{i=1}^{n} s_i \epsilon_i}{\sum_{i=1}^{n} s_i^2}$$

Understanding omitted variable bias

Recall the formula for the OLS estimator

$$\hat{\beta} = \frac{\sum_{i=1}^{n} s_i Y_i}{\sum_{i=1}^{n} s_i^2}$$

and plug in the new equation definition for Y_i

$$\hat{\beta} = \frac{\sum_{i=1}^{n} s_i (\beta s_i + \gamma a_i + \eta_i)}{\sum_{i=1}^{n} s_i^2}$$

$$= \beta + \frac{\sum_{i=1}^{n} s_i (\gamma a_i)}{\sum_{i=1}^{n} s_i^2} + \frac{\sum_{i=1}^{n} s_i \epsilon_i}{\sum_{i=1}^{n} s_i^2}$$

Taking expectations gives

$$\mathbb{E}[\hat{\beta}] = \beta + \underbrace{\gamma \frac{\mathsf{Cov}[s_i, \epsilon_i]}{\mathsf{Var}[s_i]}}_{\mathsf{Omitted \ variable \ bias}} + \underbrace{\frac{\mathsf{Cov}[s_i, \epsilon_i]}{\mathsf{Var}[s_i]}}_{\mathsf{obs} \ \mathsf{assumption}}$$

What happens if we omit a variable

		Correlation of omitted variable	
		with explanatory variable	
		Corr[s,a]>0	Corr[s, a] < 0
Correlation of omitted	$\gamma > 0$	$\hat{\beta} > \beta$	$\hat{\beta} < \beta$
variable with outcome	$\gamma < 0$	$\hat{\beta} < \beta$	$\hat{\beta} > \beta$

► How does the example of ability/schooling/income fit in this table?

Is adding controls always a good idea?

- The short answer is no.
 - ▶ With a good identification strategy, you don't need controls.

Is adding controls always a good idea?

- The short answer is no.
 - With a good identification strategy, you don't need controls.
 - "Bad controls" are variables that are jointly determined along with the outcome.
 - for example, controlling for occupation in the effect of education on income: education affects both occupation and income
 - these variables could add bias to your estimates.

Russia Elections Paper: Regression Estimates

Table 1. Spillovers

			Vote share of	
Sample	United Russia	Just Russia	LDPR	
Observers present	-0.130*** (0.013)	0.029*** (0.004)	0.027*** (0.003)	
Observers present in a neighboring polling station	-0.052*** (0.014)	0.014*** (0.004)	0.022*** (0.004)	
Constant	0.452*** (0.010)	0.125*** (0.003)	0.097*** (0.002)	
Observations	3,164	3,164	3,164	
r ²	0.03	0.02	0.03	

SEs clustered by electoral district are in parentheses. *P < 0.1, **P < 0.05, ***P < 0.01.