CURSO 1 CUATRIMESTRE 1 -2021

Autovalores y Autovectores. Segunda Reunión

Comentarios sobre matrices no diagonalizables en $\mathbb{C}^{n\times n}$.

Empecemos por recordar la definición de semejanza que dimos en la reunión anterior:

Definición: Si A y $B \in \mathbb{K}^{n \times n}$, se dice que B es **semejante** a A si existe $Q \in \mathbb{K}^{n \times n}$

inversible, tal que $B = Q A Q^{-1}$.

Se nota: $B \sim A$.

Vimos un resultado muy importante que nos permite saber cuando dos matrices son semejantes sin tener que calcular la matriz Q de la definición:

 $B \sim A \Leftrightarrow A$ y B tienen los mismos autovalores con la misma multiplicidad algebraica y geométrica.

Si una matriz $A \in \mathbb{C}^{n \times n}$ no es diagonalizable es porque existe algún autovalor cuya multiplicidad algebraica no coincide con la multiplicidad geométrica. En ese caso, no podemos encontrar una matriz diagonal D semejante a A. Pero se prueba que sí podemos encontrar una matriz más sencilla, diagonal por bloques, semejante a esa matriz A.

Son las llamadas matrices de Jordan que vamos a aprender a construir sólo en el caso de matrices de 2×2 y 3×3 .

Vamos a ver concretamente el caso en $\mathbb{C}^{3\times 3}$.

Si A es una matriz de $\mathbb{C}^{3\times 3}$ no diagonalizable, se cumple alguno de los siguientes casos: Caso 1:

A tiene un autovalor de multiplicidad algebraica 2 y multiplicidad geométrica 1.

Llamemos λ_1 al autovalor de multiplicidad algebraica 2 y multiplicidad geométrica 1 y λ_2 al otro autovalor de A de multiplicidad algebraica y geométrica 1.

En este caso, podemos probar que $A\sim J_1=egin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}$.

Es fácil ver que la matriz J_1 tiene como autovalores a λ_1 y λ_2 y que λ_1 es un autovalor de multiplicidad algebraica 2 con $\dim(S_{\lambda_1})=1$ y λ_2 es un autovalor simple de J_1 .

Entonces, se prueba que existe Q, tal que $A = Q J_1 Q^{-1}$

Buscamos Q tal como la buscamos en el caso en el que A es diagonalizable:

$$A = Q J_1 Q^{-1} \Longleftrightarrow A Q = Q J_1$$

Si explicitamos las columnas de $Q = [V_1|V_2|V_3]$:

$$A[V_1|V_2|V_3] = [V_1|V_2|V_3] \begin{bmatrix} \lambda_1 & 1 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_2 \end{bmatrix}$$

Entonces, igualando columna a columna:

 $AV_1 = \lambda_1 V_1 \Rightarrow V_1$ es autovector de A asociado a λ_1 .

$$AV_2 = [V_1|V_2|V_3] \begin{bmatrix} 1\\ \lambda_1\\ 0 \end{bmatrix} = V_1 + \lambda_1 V_2 \Rightarrow (A - \lambda_1 \mathbb{I})V_2 = V_1$$

 $AV_3 = \lambda_2 V_3 \Rightarrow V_3$ es autovector de A asociado a λ_2 .

Entonces, construimos la matriz $Q = [V_1|V_2|V_3]$, de la siguiente forma:

Buscamos un generador de S_{λ_1} , V_1 , y luego buscamos V_2 , resolviendo el sistema no homogéneo $(A - \lambda_1 \mathbb{I})V_2 = V_1$.

También podemos, multiplicar la igualdad anterior m. a m. por $(A - \lambda_1 \mathbb{I})$ y obtenemos la igualdad:

$$(A - \lambda_1 \mathbb{I})^2 V_2 = (A - \lambda_1 \mathbb{I}) V_1 = 0_{\mathbb{C}^3}$$
, porque V_1 es autovector de A asociado a λ_1 .

Entonces V_2 es un elemento de Nul $(A - \lambda_1 \mathbb{I})^2$ l.i. con V_1 .

Asociado al autovalor simple λ_2 buscaremos su correspondiente autoespacio S_{λ_2} y obtendremos un generador, V_3 .

Caso 2:

 \overline{A} tiene un autovalor, λ , de multiplicidad algebraica 3 y multiplicidad geométrica 1.

En este caso, podemos probar que
$$A \sim J_2 = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$$
 .

Otra vez buscamos Q tal que A Q = Q J_2 .

Si
$$Q = [V_1|V_2|V_3]$$
:

$$A[V_1|V_2|V_3] = [V_1|V_2|V_3] \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$$

Igualando columna a columna como antes:

 $AV_1 = \lambda V_1 \Leftrightarrow V_1$ es autovector de A asociado a λ , o sea $V_1 \in Nul(A - \lambda \mathbb{I})$.

 $AV_2 = V_1 + \lambda V_2 \Leftrightarrow (A - \lambda \mathbb{I})V_2 = V_1 \Rightarrow (A - \lambda \mathbb{I})^2 V_2 = 0_{\mathbb{C}^3}$, entonces necesito encontrar $V_2 \in \mathsf{Nul}(A - \lambda \mathbb{I})^2/V_2 \notin \mathsf{Nul}(A - \lambda \mathbb{I})$ (Así nos aseguramos de obtener un vector li con V_1).

Finalmente, de la tercera columna obtenemos la igualdad:

 $AV_3 = V_2 + \lambda V_3 \Leftrightarrow (A - \lambda \mathbb{I})V_3 = V_2 \text{, si multiplicamos m. a m. por } (A - \lambda I)^2 \text{ esta última igualdad measure} = V_2 + \lambda V_3 \Leftrightarrow (A - \lambda \mathbb{I})V_3 = V_2 + \lambda V_3 \Leftrightarrow (A - \lambda \mathbb{I})V_3 = V_3 + \lambda V_3 + \lambda V_3 + \lambda V_3 + \lambda$

$$(A - \lambda \mathbb{I})^3 V_3 = (A - \lambda I)^2 V_2 = 0_{\mathbb{C}^3}.$$

Entonces, buscamos V_3 tal que $V_3 \in \mathsf{Nul}(A - \lambda \mathbb{I})^3$ y $V_3 \not\in \mathsf{Nul}(A - \lambda \mathbb{I})^2$ (Así nos aseguramos de obtener un vector V_3 , tal que $\{V_1, V_2, V_3\}$ l.i.)

Entonces, en este caso también obtuvimos un algoritmo para construir la matriz Q:

Si calculamos primero V_3 , podemos encontrar V_2 y V_1 a través de la relación:

$$(A - \lambda \mathbb{I})V_3 = V_2, (A - \lambda \mathbb{I})V_2 = (A - \lambda \mathbb{I})^2 V_2 = V_1.$$

A V_3 se lo denomina vector propio generalizado.

Caso 3:

A tiene un autovalor, λ , de multiplicidad algebraica 3 y multiplicidad geométrica 2.

En este caso, podemos probar que $A \sim J_3 = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$. Otra vez necesitamos encontrar $Q = [V_1|V_2|V_3]$ tal que :

$$A[V_1|V_2|V_3] = [V_1|V_2|V_3] \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$$

Tarea para el hogar

Ejemplos

Supongamos que nos piden encontrar la descomposición de Jordan de la matriz:

$$A = \begin{bmatrix} 14 & 5 & 3 \\ -2 & 11 & 1 \\ 2 & 1 & 11 \end{bmatrix}.$$

Empezamos por calcular sus autovalores. Planteamos entonces el polinomio característico:

$$p_A(\lambda) = |\lambda I - A| = \begin{vmatrix} (\lambda - 14) & -5 & -3 \\ 2 & (\lambda - 11) & -1 \\ -2 & -1 & (\lambda - 11) \end{vmatrix} = \begin{vmatrix} (\lambda - 14) & -5 & -3 \\ 2 & (\lambda - 11) & -1 \\ 0 & (\lambda - 12) & (\lambda - 12) \end{vmatrix}$$

Desarrollando el determinante por la tercera fila obtenemos:

$$p_A(\lambda) = (-1)(\lambda - 12) \begin{vmatrix} (\lambda - 14) & -3 \\ 2 & -1 \end{vmatrix} + (\lambda - 12) \begin{vmatrix} (\lambda - 14) & -5 \\ 2 & (\lambda - 11) \end{vmatrix}$$
$$p_A(\lambda) = (-1)(\lambda - 12)[-\lambda + 20] + (\lambda - 12)[\lambda^2 - 25\lambda + 154 + 10]$$

$$p_A(\lambda) = (\lambda - 12)\{\lambda - 20 + \lambda^2 - 25\lambda + 164\} = (\lambda - 12)\{\lambda^2 - 24\lambda + 144\} = (\lambda - 12)^3$$

Luego $\lambda = 12$ es autovalor de A con multiplicidad algebraica 3.

Veamos entonces la dimensión del subespacio asociado $S_{\lambda=3}$.

Buscamos entonces Nul(12I - A), que queda definido por la matriz del sistema homogéneo:

$$\begin{bmatrix} -2 & -5 & -3 \\ 2 & 1 & -1 \\ -2 & -1 & 1 \end{bmatrix} \xrightarrow{F_2+F_1} \begin{bmatrix} -2 & -5 & -3 \\ 0 & -4 & -4 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow x_2 = -x_3 \ \mathbf{y} \ -2x_1 + 5x_3 - 3x_3 = 0 \Rightarrow x_1 = x_3.$$

$$S_{\lambda=12} = \operatorname{gen} \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}$$

Averiguamos entonces que $\dim(S_{\lambda=12})=1\neq 3=$ multip. algebraica. Por lo tanto A no es diagonalizable y es semejante a la matriz de Jordan:

$$J = \begin{bmatrix} 12 & 1 & 0 \\ 0 & 12 & 1 \\ 0 & 0 & 12 \end{bmatrix}$$

Para buscar la matriz de semejanza, vamos a empezar por buscar V_3 . Por lo que vimos en el Caso 2, debe cumplir $V_3 \in \text{Nul}(A-12I)^3$.

$$A - 12I = \begin{bmatrix} 2 & 5 & 3 \\ -2 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix}, (A - 12I)^2 = \begin{bmatrix} 0 & 8 & 8 \\ 0 & -8 & -8 \\ 0 & 8 & 8 \end{bmatrix}, (A - 12I)^3 = 0_{\mathbb{R}^{3\times 3}}.$$

Como $\operatorname{Nul}(A-12I)^3=\mathbb{R}^3$, en principio tengo como candidatos para V_3 cualquier vector de \mathbb{R}^3 . Si tomamos la base canónica, $E=\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}\right\}$, tenemos tres candidatos para V_3 .

Probemos con $v = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$:

Si queremos aplicar el algoritmo visto, tendremos $V_2 = (A - 12I)v = \begin{bmatrix} 2 & 5 & 3 \\ -2 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} 2 \\ -2 \\ 2 \end{bmatrix}$$

Si seguimos y calculamos $(A - 12I)V_2 = \begin{bmatrix} 2 & 5 & 3 \\ -2 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Entonces el vector $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ no es un vector propio generalizado. (No sirve como V_3) Probemos con $v = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \in \operatorname{Nul}(A - \lambda I)^3$.

Calculemos primero : $V_2 = (A - 12I)v = \begin{bmatrix} 2 & 5 & 3 \\ -2 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \\ 1 \end{bmatrix}$.

Ahora calculamos:

$$V_1 = (A - 12I)^2 V_3 = (A - 12I) V_2 = \begin{bmatrix} 2 & 5 & 3 \\ -2 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ -8 \\ 8 \end{bmatrix}$$
 (VICTORIA!!!)

Entonces el vector $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ es un vector propio y con él puedo construir la matriz Q.

Tomando:
$$V_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ V_2 = \begin{bmatrix} 5 \\ -1 \\ 1 \end{bmatrix}, \ V_1 = \begin{bmatrix} 8 \\ -8 \\ 8 \end{bmatrix}$$

$$Q = [V_1|V_2|V_3] = \begin{bmatrix} 8 & 5 & 0 \\ -8 & -1 & 1 \\ 8 & 1 & 0 \end{bmatrix}$$

$$A = QJQ^{-1}$$

$$A = \begin{bmatrix} 8 & 5 & 0 \\ -8 & -1 & 1 \\ 8 & 1 & 0 \end{bmatrix} \begin{bmatrix} 12 & 1 & 0 \\ 0 & 12 & 1 \\ 0 & 0 & 12 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 8 & 5 & 0 \\ -8 & -1 & 1 \\ 8 & 1 & 0 \end{bmatrix} \end{pmatrix}^{-1}$$

Definición: Dados $\mathbb{V} - \mathbb{K}$ espacio vectorial y $T \in \mathcal{L}(\mathbb{V})$, un **autovalor** de T es un escalar $\lambda \in \mathbb{K}$ tal que existe $v \in \mathbb{K}^n, \ v \neq 0$, que cumple $T(v) = \lambda v$.

Se dice que v es **autovector** de T asociado a λ .

Llamamos autoespacio de T asociado a λ al subespacio $S_{\lambda} = \{v \in \mathbb{V}, T(v) = \lambda v\}$

- La definición no tiene , obviamente, ninguna novedad con respecto a la definición dada para matrices en $\mathbb{K}^{n\times n}$. Más aún todo lo visto para matrices, puede entenderse como un caso particular de esta definición: el espacio vectorial considerado es \mathbb{K}^n y la transformación lineal T(X) = AX.
- Si λ_0 es autovalor de $T \Rightarrow T \lambda_0 I$ es una transformación lineal no inyectiva.
- Si $\lambda_1, \ldots, \lambda_k$ son autovalores distintos de T asociados respectivamente a los autovectores $\{v_1, \ldots, v_k\}$

Entonces $\{v_1, \ldots, v_k\}$ es l.i.

A autovalores distintos corresponden autovectores I.i.

■ Como consecuencia de la observación anterior: Si $S_{\lambda_1}, \ldots, S_{\lambda_k}$ son autoespacios de T correspondientes a autovalores distintos \Rightarrow $S_{\lambda_1}, \ldots, S_{\lambda_k}$ están en suma directa.

$$S_{\lambda_1} \oplus \cdots \oplus S_{\lambda_k} \subseteq \mathbb{V}.$$

Ejemplos

- Sea $\mathbb V$ es un espacio vectorial con Producto Interno y $S\subseteq \mathbb V$ un subespacio de $\mathbb V$, si consideramos $T(v)=proy_S(v)\Rightarrow \lambda=1$ es autovalor de T asociado al autoespacio S y $\lambda=0$ es autovalor de T asociado a S^\perp .
- Si T es una t.l. no inyectiva, o sea dim(Nu(T))> 0, $\lambda = 0$ es autovalor de T y $S_{\lambda=0} = \text{Nu}(T)$.
- Si consideramos $(D \lambda I) : \mathbb{C}^{\infty} \to \mathbb{C}^{\infty}$ por lo visto en la práctica de t.l. que Nu($(D \lambda I)$)=gen $\{e^{\lambda x}\}$ \Rightarrow 0 es autovalor de $(D \lambda I)$ y su autoespacio asociado es $S = gen\{e^{\lambda x}\}$.
- Entonces, si analizamos el operador $D: \mathbb{C}^{\infty} \to \mathbb{C}^{\infty}$ y buscamos sus autovalores y autovectores, queremos encontrar $\lambda \in \mathbb{R}/\exists y \not\equiv 0, D(y) = \lambda y \Leftrightarrow y' = \lambda y \Leftrightarrow y = ke^{\lambda x}$, para $\lambda \in \mathbb{R}$. Entonces todo $\lambda \in \mathbb{R}$ es autovalor de D y para cada λ la función $ke^{\lambda x}$ es autovector de D.

Si $\mathbb V$ es un espacio de dimensión finita y $T\in\mathcal L(\mathbb V)$ encontrar los autovalores y autovectores de T es muy sencillo.

Sea $B = \{v_1, v_2, \dots, v_n\}$ base de \mathbb{V} , por definición v es un autovector de T asociado al autovalor λ si:

$$T(v) = \lambda v.$$
$$[T(v)]^B = [\lambda v]^B = \lambda [v]^B$$
$$[T]_B^B [v]^B = \lambda [v]^B$$

Entonces:

v es un autovector de T asociado al autovalor $\lambda \Longleftrightarrow [v]^B$ es autovector de $[T]^B_B$ asociado al autovalor λ .

Observación:

■ Si B y B' son bases de \mathbb{V} :

$$[T]_{B}^{B} = M_{B'}^{B}[T]_{B'}^{B'}M_{B'}^{B'}$$

Como ya dijimos, $[T]_B^B \sim [T]_{B'}^{B'}$

Entonces los polinomios característicos de estas matrices son iguales y por lo tanto tiene sentido hablar de **polinomio característico de** T.

Definición: Sea $\mathbb V$ un espacio vectorial de dimensión finita y $T: \mathbb V \to \mathbb V$ transformación lineal se llama **polinomio característico de** T a $P_T(\lambda) = det(\lambda \mathbb I - [T]_B^B)$ donde B es cualquier base de $\mathbb V$.

Definición: Si $T \in \mathcal{L}(\mathbb{V})$ se dice que T es diagonalizable si existe una base de V formada por autovectores de T.

Observaciones:

a. Si $B' = \{w_1, w_2, \dots, w_n\}$ es una base de \mathbb{V} formada por autovectores de $T \in \mathcal{L}(\mathbb{V})$, $T(w_i) = \lambda_i w_i, \ \lambda_i \in \mathbb{K}$.

$$[T]_{B'}^{B'} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Si T es diagonalizable su representación matricial con respecto a una base de V formada por sus autovectores es una matriz diagonal.

b. Como todas las representaciones matriciales de T con respecto a una base B de $\mathbb V$ son semejantes, entonces T es diagonalizable \Leftrightarrow su representación matricial, $[T]_B^B$, con respecto a cualquier base B de $\mathbb V$ es diagonalizable.

Para calcular autovalores y autovectores de T, usando su representación matricial, la base de entrada y de salida de esa representación matricial debe ser la misma.