

A Virtual Bootcamp for Astronomy Graduate Students

WEEK 3 EXERCISES

Exercise 1 (Optional)

- 1. Plot the PDF for the χ^2 distribution, for different values of the degrees of freedom (N) of that distribution.
- 2. Compare this to the normal distribution.
- 3. What do you notice about the two distributions?
- 4. Now compare the normal distribution to the log normal distribution for a range of values of the mean and variance. How do the mean and variance of the log normal distribution map onto the mean, variance of the normal distribution?

Exercise 2

- 1. Use the accept-reject approach to transform numbers generated from a uniform distribution into those following the distribution P(x) = (1/(e-1))exp(x) for 0 < x < 1 and 0 elsewhere
 - a. Draw two random samples x^* , y^* from the U(0,1) distribution
 - b. If $y^* < c f(x^*)$, keep x^* [remember the normalization c here]
 - c. If not, draw another two random samples from the distribution
 - d. Continue until you have 100 samples
 - e. Histogram the samples and over plot the PDF
- 2. Use CDF sampling to do the same thing above.
 - a. To do this, compute the CDF F(X) by integrating the PDF P(x) from $-\infty$ to X
 - b. Then find the inverse $F^{-1}(X)$ of the CDF.

[HINT: Remember an inverse function $F^{-1}(x)$ is such that $F(F^{-1}(x)) = x$]

- c. Draw a random samples x_1 from the U(0,1) distribution
- d. Then the variable $y = F^{-1}(x_1)$ will have the probability distribution you seek
- e. Continue until you have 100 samples
- f. Histogram the samples and over plot the PDF