A family of algorithms for approximate Bayesian inference

Thomas P. Minka

MIT Media Lab

tpminka@media.mit.edu

www.media.mit.edu/~tpminka/

Supervised by Rosalind Picard, Affective Computing Group

Low-level language

Optimize free parameters

Minimize training set error

Regularize

Occam's razor

Cross-validation

Maximize margins

Boosting

- •
- •
- ullet

High-level language

Model the domain with a stochastic process

Condition on data

Sum over possibilities

Automatic regularization, margins, voting, complexity control

Exposes logic behind inferences

Bayesian quantities

Unnormalized posterior

Evidence (normalizing term)

$$p(Data) = \int_{x} p(x, Data) dx$$

Posterior

$$E[x|Data] = \int_{x} x \ p(x|Data) \ dx$$

Posterior mean

$$E[x|Data] = \int_{x} x \ p(x|Data) \ dx$$

Predictive density

$$p(y|Data) = \int_{x} p(y|x) \ p(x|Data) \ dx$$

Approximating posterior distributions

Sampling

good for complex, multimodal posteriors

slow, predictable

Deterministic approximation

good for simple, smooth posteriors

fast, unpredictable

Deterministic approximation

Laplace's method

Variational bound

Minimize KL-divergence

- Assumed–density filtering
- Belief propagation
- Expectation propagation

Outline

- Assumed–density filtering (ADF)
 - = Sequential KL-projection

(Boyen&Koller, Opper&Winther, Barber&Sollich, Lauritzen, ...)

- Expectation propagation (EP)
 - = ADF + iterative refinement
- Belief propagation
 - = EP for factorized posterior
- Application of EP: Bayes point machine
 - Voting all linear classifiers
 - Choosing feature space (kernel)

Recursive estimation

$$p(x|y_1, ..., y_4) = p(x)p(y_1|x)p(y_2|x)p(y_3|x)p(y_4|x)$$

If x,y are jointly Gaussian (or in exp family), use recursive estimation (Kalman filter):

$$p(x|y_1, ..., y_t) \propto p(y_t|x)p(x|y_1, ..., y_{t-1})$$

$$q^{new}(x) \propto p(y_t|x)q^{old}(x)$$

q(x) is Gaussian each time — only propagate mean, var of x (Kalman updates)

Sequential, but independent of ordering

What if p(y|x) is not linear or not Gaussian?

Extended Kalman filtering

p(y|x) is Gaussian in y but not linear in x, e.g.

$$p(y|x) = \frac{1}{\sqrt{2\pi v}} \exp(-\frac{(y - f(x))^2}{2v})$$

Approximate p(y|x) with a linearization:

$$\tilde{p}(y|x) = \frac{1}{\sqrt{2\pi v}} \exp\left(-\frac{(y - \tilde{f}(x))^2}{2v}\right)$$

$$\tilde{f}(x) = f(x_0) + f'(x_0)(x - x_0)$$

$$x_0 = E_q[x] \text{ (based on current } q(x))$$

This makes the posterior Gaussian:

$$q^{new}(x) \propto \tilde{p}(y_t|x)q^{old}(x)$$

yields the EKF updates

Sequential, but sensitive to ordering

Batch relinearization: Change all approximations to new x0

Assumed-density filtering

Works for any p(y|x):

$$p(x,D) = p(x)p(y_1|x)p(y_2|x)p(y_3|x)p(y_4|x)$$

= $p(x)t_1(x)t_2(x)t_3(x)t_4(x)$

- 1. Initialize q(x) = p(x)
- 2. Loop i:

$$\hat{p}(x) = \frac{t_i(x)q^{old}(x)}{\int t_i(x)q^{old}(x)dx}$$
$$q^{new}(x) = \operatorname{argmin}_q D(\hat{p} \mid\mid q)$$

where q(x) has constrained parametric form

Gaussian filtering

At each step, assume posterior is Gaussian:

$$\arg\min_{q} D(\hat{p} \mid\mid q) \qquad q(x) \sim \mathcal{N}(x; m, v)$$

$$E_{q}[x] = E_{\hat{p}}[x]$$

$$m = \int x \hat{p}(x) dx$$

$$E_{q}[x^{2}] = E_{\hat{p}}[x^{2}]$$

$$v + m^{2} = \int x^{2} \hat{p}(x) dx$$

$$\mathcal{N}(x; m^{old}, v^{old}) p(y_i|x) \Rightarrow \mathcal{N}(x; m^{new}, v^{new})$$

q preserves certain expectations of p

true for any assumed density in exponential family (Gamma, Dirichlet, multinomial, ...)

Example

Data model

$$p(y|x) = \frac{1}{2}\mathcal{N}(y; x, 1) + \frac{1}{2}\mathcal{N}(y; 0, 10)$$

ADF posterior for three orderings of same data:

True x = 220 data points

ADF is sensitive to ordering

Can we make ADF independent of ordering?

Another view of ADF

ADF can interpreted as making an EKF-type update:

$$q^{new}(x) \propto \tilde{t}_i(x)q^{old}(x)$$

as long as we define

$$\tilde{t}_3(x) = \frac{q^{new}(x)}{q^{old}(x)}$$

q in exp family $\Rightarrow \tilde{t}$ has same form

Approximate each term as Gaussian, then multiply

Now we can repeat and refine the Gaussians

Expectation Propagation

Use the approximations to refine each term:

To refine a term:

1. Remove \tilde{t}_i :

$$q_i^{old}(x) \propto \frac{q^{new}(x)}{\tilde{t}_i(x)}$$

2. Recompute $q^{new}(x)$ as in ADF:

$$\hat{p}(x) \propto t_i(x)q_i^{old}(x)$$
 $q^{new}(x) = \operatorname{argmin}_q D(\hat{p} \mid\mid q)$

3.
$$\tilde{t}_i(x) = \frac{q^{new}(x)}{q_i^{old}(x)}$$

Example continued

Data model

$$p(y|x) = \frac{1}{2}\mathcal{N}(y; x, 1) + \frac{1}{2}\mathcal{N}(y; 0, 10)$$

EP posterior at convergence

O 0.5 1 1.5 2 2.5 3 3.5

Other methods

All independent of data ordering

Performance

Data size n=20

n=200

ADF = first 'x' of EP

VB = variational bound

Deterministic methods improve with more data (posterior is more Gaussian)

Sampling methods do not care

Mixture weights example

$$p(w, D) = p(w) \prod_{i} p(y_{i}|w)$$

$$p(y|w) = w\mathcal{N}(y; 0, 3) + (1 - w)\mathcal{N}(y; 1, 3)$$

$$p(w) = 1$$

$$q(w) \sim \text{Dirichlet}(a_{1}, a_{2})$$

KL-minimization preserves the expectations $E[\log(w)]$, $E[\log(1-w)]$

Typical result

EP2 preserves the expectations E[w], $E[w^2]$ instead

Factorized approximation of belief networks

$$p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2,x_3)$$

$$q_1(x_1)q_2(x_2)q_3(x_3)q_4(x_4)$$

$$\underset{k}{\operatorname{argmin}_{q}}D(\hat{p} \mid\mid q) \qquad \Rightarrow q_{k}(x_{k}) = \hat{p}(x_{k})$$
where $q(x) = \prod_{k} q_{k}(x_{k})$ (marginals)

Factorized ADF (Boyen&Koller):

$$p(\mathbf{x}) = \prod_{i} p(x_i | pa(x_i))$$

- 1. Init $q(\mathbf{x}) = 1$
- 2. Loop i:

$$\hat{p}(\mathbf{x}) \propto p(x_i|pa(x_i))q^{old}(\mathbf{x})$$
 $q_k^{new}(x_k) = \hat{p}(x_k)$

Factorized EP

$$\tilde{t}_{i}(\mathbf{x}) = \prod_{k} \tilde{t}_{ik}(x_{k}) \quad \text{(messages)}$$

$$q^{new}(\mathbf{x}) \propto \prod_{j} \tilde{t}_{j}(\mathbf{x}) \quad \text{(belief state)}$$

$$q_{i}^{old}(\mathbf{x}) \propto \prod_{j \neq i} \tilde{t}_{j}(\mathbf{x}) \quad \text{(partial belief state)}$$

$$\tilde{t}_{ik}(x_{k}) = \frac{q^{new}(x_{k})}{q_{i}^{old}(x_{k})}$$

$$= \sum_{\mathbf{x} \setminus x_{k}} p(x_{i}|pa(x_{i})) \prod_{j \neq k} q_{i}^{old}(x_{j}) d\mathbf{x}$$

$$\text{(message } i \to k)$$

Child to parent:

$$\tilde{t}_{ik}(x_k) = \int_{x_i, x_j} p(x_i | x_k, x_j) q_i^{old}(x_i) q_i^{old}(x_j)$$

Factorized EP cont'd

Parents to child:

$$\tilde{t}_{ii}(x_i) = \int_{x_k, x_j} p(x_i | x_k, x_j) q_i^{old}(x_k) q_i^{old}(x_j)$$

Loopy belief propagation is factorized EP

EP can use structured approximations too, e.g. Markov chain

-> more accurate posteriors

EP can restrict parametric form, e.g. Gaussian

-> simpler messages

Bayes point machine

Bayesian approach to linear classification

Use w to classify x:

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} > 0$$
 (class 1)
 $\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} < 0$ (class 2)

$$p(\mathbf{w}, D) = p(\mathbf{w}) \prod_{i} p(y_i | \mathbf{x}_i, \mathbf{w})$$

p(w) is uniform

$$p(y|\mathbf{x}, \mathbf{w}) = \Theta(y\mathbf{w}^{\mathrm{T}}\mathbf{x})$$

$$= \begin{cases} 1 & \text{if } \mathbf{w} \text{ is a perfect separator} \\ 0 & \text{otherwise} \end{cases}$$

Classify a new data point by voting:

$$p(y|\mathbf{x}, D) = \int_{\mathbf{w}} p(y|\mathbf{x}, \mathbf{w}) p(\mathbf{w}|D) d\mathbf{w}$$
$$y = E[\operatorname{sign}(\mathbf{w}^{\mathrm{T}}\mathbf{x})|D]$$
$$\approx \operatorname{sign}(E[\mathbf{w}|D]^{\mathrm{T}}\mathbf{x})$$

E[w|D] is the Bayes Point

Bayes point machine example

SVM — Maximize margin

(distance to closest data point)

Bayes — Vote all perfect separators

Performance of EP

Billiard = Monte Carlo

Opper&Winther's algs:

MF = mean-field theory

TAP = cavity method (equiv to Gaussian EP)

Gaussian kernels

Map data into high dimensional space so that

$$\phi(\mathbf{x}_i)^{\mathrm{T}}\phi(\mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

narrow width 0.2

wide width 0.5

SVM boundaries are more contrived, sensitive to kernel

Kernel selection

Gaussian kernel, width 0.08 (SVM choice)

Gaussian kernel, width 0.6 (Bayes choice among Gaussians)

Quadratic kernel (Bayes choice)

Kernel	R^2/ρ^2	$\log(p(D))$
$\sigma = 0.08$	18	-39
$\sigma = 0.6$	108	-19
quadratic	656	-16

SVM and EP have similar boundaries, but prefer different kernels

Summary

- Expectation propagation = assumed-density filtering plus iterative refinement
- Batch operation, more accurate
- Generalizes belief propagation to hybrid nets and non-factorized approximations
- Generalizes TAP method for Bayes point machine
- Like belief propagation, may not converge, local minima
- No error estimate available