Last lecture:

- Completed discussion of quadrotor dynamics. Obtained nonlinear dynamics: $\dot{\bar{x}} = f(\bar{x}, \bar{u})$.
- Discussed how to linearize dynamics about a "nominal" (i.e., reference) state \bar{x}_0 and control input \bar{u}_0 to obtain:

$$\dot{\bar{x}} = A(\bar{x} - \bar{x}_0) + B(\bar{u} - \bar{u}_0). \tag{1}$$

- Started discussion of feedback control:
 - Said that we want to find a function that maps states to control inputs in order to achieve some desired behavior (e.g., hovering). Such a function is called a controller (or "control law"). One option is:

$$\bar{u}(\bar{x}) \triangleq \bar{u}_0 + K(\bar{x} - \bar{x}_0). \tag{2}$$

 Ended lecture with discussion of ways in which feedback control allows us to deal with different kinds of uncertainty.

Plan for today: Continue discussion of feedback control. We will introduce some important definitions and then discuss particular ways to design feedback controllers.

1. FIXED POINT (EQUILIBRIUM POINT)

A fixed point (a.k.a. equilibrium point) for a system $\dot{\bar{x}} = f(\bar{x}, \bar{u})$ is a state \bar{x}_0 such that:

$$\dot{\bar{x}} = f(\bar{x}_0, \bar{u}_0) = 0 \text{ for some choice of } u_0.$$
 (3)

Recall that the hovering configuration for the quadrotor satisfied this. Intuitively, a fixed point \bar{x}_0 is a state that you remain at when you apply \bar{u}_0 .

For the planar quadrotor, the fixed point associated with hover was given by:

$$\bar{x}_0 = \begin{bmatrix} x_0 \\ y_0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \text{ and } \bar{u}_0 = \begin{bmatrix} mg \\ 0 \end{bmatrix}. \tag{4}$$

Question: Is it possible to have a fixed point of the form:

$$\bar{x}_{0} = \begin{bmatrix} x_{0} \\ y_{0} \\ 0 \\ \dot{x}_{0} \\ \dot{y}_{0} \\ \dot{\theta}_{0} \end{bmatrix}$$
 with $\dot{x}_{0}, \dot{y}_{0}, \text{ or } \dot{\theta}_{0} \text{ being non-zero?}$ (5)

[Answer: **No!**. Convince yourself of this by writing down the equations of motion for the planar quadrotor.]

2. Stability

What are we trying to achieve with feedback? Suppose we come up with some feedback controller $\bar{u}(\bar{x})$. The **closed-loop system** is the system we obtain when we run this controller. The dynamics are then given by:

$$\dot{\bar{x}} = f(\bar{x}, \bar{u}(\bar{x})) \triangleq f_{\text{cl}}(\bar{x}). \tag{6}$$

These are known as the **closed-loop dynamics**. What properties would we like f_{cl} to have?

 \rightarrow We would like the closed-loop system to be "stable". But what does this mean?

There are actually many different definitions/flavors of stability. Here is a reasonable one.

Stability in the sense of Lyapunov: A system is said to be stable in the sense of Lyapunov (with respect to a fixed point \bar{x}_0) if for every $\epsilon > 0$, there exists a $\delta = \delta(\epsilon)$ such that:

$$\|\bar{x}(0) - \bar{x}_0\| < \delta \implies \|\bar{x}(t) - \bar{x}_0\| < \epsilon, \ \forall t \ge 0. \tag{7}$$

Asymptotic stability: A system is asymptotically stable if (i) it is stable in the sense of Lyapunov and (ii) for every initial condition (i.e., initial state) $\bar{x}(0)$, the following holds:

$$\lim_{t \to \infty} \|\bar{x}(t) - \bar{x}_0\| = 0, \tag{8}$$

where $\bar{x}(t)$ is the state at time t when the system starts off at $\bar{x}(0)$ and \bar{x}_0 is the reference state (which is a fixed point). If this condition holds, we say that the system is asymptotically stable at \bar{x}_0 .

The picture below illustrates this when the state is two-dimensional: $\bar{x} = [x_1, x_2]^T$.

What we have describe above is really **global** asymptotic stability. This is a very strong condition (and may be impossible to achieve in practice). For a quadrotor, this is asking for it to go to \bar{x}_0 no matter what the initial state is, e.g., $0.99 \times$ the speed of light!

Here is another (more reasonable) flavor of stability.

Local asymptotic stability: A system is locally asymptotically stable if (i) it is stable in the sense of Lyapunov, and (ii) for every initial condition $\bar{x}(0)$ with $\|\bar{x}(0) - \bar{x}_0\| \le R$ for some R (i.e., every initial condition in some ball of radius R around \bar{x}_0), we have:

$$\lim_{t \to \infty} \|\bar{x}(t) - \bar{x}_0\| = 0. \tag{9}$$

Note: Global asymptotic stability \implies local asymptotic stability.

There are other reasonable flavors of stability too. For example, you could ask that trajectories remain bounded in some region (this is known as *invariance*).

We won't prove this here, but it turns out that for **linear** systems $\dot{\bar{x}} = A(\bar{x} - \bar{x}_0) + B(\bar{u} - \bar{u}_0)$, local asymptotic stability implies global asymptotic stability! So these two notions are the same for linear systems. This is *not* true for nonlinear systems.

3. Stabilizability

We have described what we want to achieve with feedback (i.e., stability). But can we actually achieve it?

Consider the following system:

$$\dot{\bar{x}} = \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 + u \end{bmatrix}. \tag{10}$$

Here, the control input u can only affect x_2 . Moreover, the dynamics of x_1 and x_2 are completely decoupled. So the control input has no effect on x_1 . The dynamics of x_1 are unstable; hence, no matter what controller you choose, this system cannot be stabilized.

Stabilizability (w.r.t. a fixed point \bar{x}_0): Any initial state can be asymptotically driven to \bar{x}_0 by choosing the control inputs \bar{u} appropriately, i.e., for any initial state $\bar{x}(0)$,

$$\lim_{t \to \infty} \|\bar{x}(t) - \bar{x}_0\| = 0. \tag{11}$$

by choosing appropriate control inputs.

As the example above shows, not every system is stabilizable (not even all linear systems). But, it turns out that we can *check* stabilizability of linear systems $\dot{\bar{x}} = A(\bar{x} - \bar{x}_0) + B(\bar{u} - \bar{u}_0)$ by

checking eigenvalue conditions on A, B. [We won't describe these conditions here, but I'll say a little bit more about this in the next lecture.; see MAE 433/434 for a thorough treatment.]

The question now is how to actually design a controller that achieves (asymptotic) stability (for linear systems), assuming the system is stabilizable.

4. Proportional-Derivative (PD) Control

Consider the planar quadrotor constrained to move only in the y direction (as we did in Lecture 2).

The dynamics are given by:

$$\ddot{y} = \frac{u_1}{m} - g. \tag{12}$$

The state is:

$$\bar{x} = \begin{bmatrix} y \\ \dot{y} \end{bmatrix} \tag{13}$$

and recall that the control input u_1 is the total thrust produced by the propellers.

Suppose we want to stabilize the system to:

$$\bar{x}_0 = \begin{bmatrix} y_0 \\ 0 \end{bmatrix}. \tag{14}$$

With $u_0 = mg$, this is a fixed point (since $\ddot{y} = mg/m - g = 0$).

How should we choose $u(\bar{x})$ to stabilize the system to \bar{x}_0 ? Here is one possibility: choose

$$u(\bar{x}) \triangleq u_0 + k_p(y - y_0). \tag{15}$$

The closed-loop system is then:

$$\ddot{y} = \frac{mg}{m} - g + \frac{k_p}{m}(y - y_0) = \frac{k_p(y - y_0)}{m},\tag{16}$$

where $k_p < 0$ is a constant that we choose.

Now define $\tilde{y} \triangleq y - y_0$. Then $\dot{\tilde{y}} = \dot{y}$ and $\ddot{\tilde{y}} = \ddot{y}$. Thus:

$$\ddot{\tilde{y}} = \frac{k_p}{m}(y - y_0) = \frac{k_p}{m}\tilde{y}.$$
(17)

What does this system remind you of?

 \rightarrow Spring-mass system!

Would this controller work (i.e., stabilize the system)? (Not quite)

Here is another option:

$$u(\bar{x}) = u_0 + \frac{k_p}{m}(y - y_0) + k_d \dot{y}, \tag{18}$$

where $k_d < 0$ is another constant that we can choose.

We then have:

$$\ddot{\tilde{y}} = \frac{k_p}{m}\tilde{y} + \frac{k_d}{m}\dot{\tilde{y}}.\tag{19}$$

Now what does this system remind you of?

 \rightarrow Spring-mass-damper!

This is an example of **proportional-derivative** (PD) control. Such controllers are extremely popular and effective in practice.

Some terminology:

 k_p : "proportional gain", k_d : "derivative gain".

Note that the controller is of the form:

$$\bar{u}(\bar{x}) = \bar{u}_0 + K(\bar{x} - \bar{x}_0)$$
 (20)

$$= \bar{u}_0 + [k_p, k_d] \begin{bmatrix} y - y_0 \\ \dot{y} \end{bmatrix}. \tag{21}$$

The matrix K is referred to as the **gain matrix**.

Also notice that for this example, any choice of k_p , $k_d < 0$ leads to (global) asymptotic stability. In general, things will not be so easy!

How can we choose K in general? Maybe we want to ensure asymptotic stability while also optimizing some performance metric?

 \rightarrow We will do this in the next lecture!