

Curso de Ingreso Ciclo Lectivo 2024 Primera instancia

Materia: MATEMÁTICA	Departamento: INGENIERÍA	Tema 1
A completar por el estudiante:		Fecha de examen:
Carrera:		
Nombre y apellido:		
DNI:	. AULA	A del examen:

EJERCICIOS	1a)	1b)	2a)	2b)	3a)	3b)	4	5	6
Puntaje del Ej.	1.5	0.5	1.5	0.5	1	1 (0.25 c/u)	1	1.5	1.5
Calificación c/u									
Nota final	Nota final Firma docente								

En cada ejercicio escribe todos los razonamientos que justifican la respuesta en forma clara y precisa. No necesariamente se debe respetar el orden de los ejercicios. Todos los cálculos auxiliares deben figurar en la hoja de manera prolija y clara. Se puede usar calculadora.

- $2.Z (4+i)^2 = 2-i^{43}$ 1. a) Hallar el complejo Z:
- b) Representar a Z obtenido en el ítem a) y a su complejo conjugado.
- 2. a) El rango de temperaturas, en grados Celcius (°C), a la que se somete una colonia de bacterias para hacer un experimento verifica |2t-4|-8 < 12. Indicar cuál es el rango de temperaturas, expresarlo como intervalo y graficarlo en la recta numérica.
- **b)** Si a dicho intervalo lo llamamos T responder V ó F: $-8,1^{\circ}C \in T$. Justificar la respuesta.
- **3.a**) Graficar la siguiente función: $g(x) = \begin{cases} 3x + 2 & x > -3 \\ x 5 & x \leq -3 \end{cases}$ **b**) Teniendo en cuenta la función del ítem **a**) responder V ó F justificando cada respuesta.
- - **b-1**) g(-3) = -7 **b-2**) La única raíz de la función g, es $x = -\frac{2}{3}$
 - **b-3**) La intersección con el eje de ordenada ("y") es el punto (0;-5)
 - **b-4**) El punto $(-4;-10) \in g(x)$
- 4- Un objeto es lanzado verticalmente hacia arriba desde lo alto de una pared, con una velocidad inicial de 4 m/seg. Su distancia s(t) en metros sobre el suelo después de t segundos está dada por la siguiente función $s(t) = -t^2 + 4t + 32$. Determina la altura máxima respecto del piso, que alcanza el objeto y en qué instante la alcanza.
- **5-** Resolver la siguiente ecuación $4.5^{x+1} 5 = 35$
- 6- Simplificar la siguiente fracción indicando cuáles son los valores para los que está

definida:
$$\frac{3x^2 + 6x - 24}{x^3 - 2x^2 - 6x + 12} =$$

A completar por el estudiante:

Curso de Ingreso Ciclo Lectivo 2024 Primera instancia

Fecha de examen:

Materia: MATEMATICA	Departamento: INGENIERIA	Tema	2

Nombre y apellido:

DNI: AULA del examen:

EJERCICIOS	1a)	1b)	2a)	2b)	3a)	3b)	4	5	6
Puntaje del Ej.	1.5	0.5	1.5	0.5	1	1 (0.25 c/u)	1	1.5	1.5
Calificación c/u									
Nota final	Firma docente								

En cada ejercicio escribe todos los razonamientos que justifican la respuesta en forma clara y precisa. No necesariamente se debe respetar el orden de los ejercicios. Todos los cálculos auxiliares deben figurar en la hoja de manera prolija y clara. Se puede usar calculadora.

- **1. a)** Hallar el complejo Z: $3.Z (3+i)^2 = 6 i^{41}$
- b) Representar a Z obtenido en el ítem a) y a su complejo conjugado.
- 2. a) El rango de temperaturas, en grados Celcius (°C), a la que se somete una colonia de bacterias para hacer un experimento verifica |3t-6|-9 < 15. Indicar cuál es el rango de temperaturas, expresarlo como intervalo y graficarlo en la recta numérica.
- **b)** Si a dicho intervalo lo llamamos T responder V \(\delta \) F: $-6.2^{\circ}C \in T$. Justificar la respuesta.
- **3.a**) Graficar la siguiente función: $f(x) = \begin{cases} 2x + 3 & x > -2 \\ x 1 & x \le -2 \end{cases}$ **b**) Teniendo en cuenta la función del ítem **a**) responder V ó F justificando cada respuesta.
- - **b-1**) f(-2) = -1 **b-2**) La única raíz de la función f, es $x = -\frac{3}{2}$
 - **b-3**) La intersección con el eje de ordenada ("y") es el punto (0;-1)
 - **b-4**) El punto $(-5,-7) \in f(x)$
- 4- Un objeto es lanzado verticalmente hacia arriba desde lo alto de una pared, con una velocidad inicial de 6 m/seg. Su distancia s(t) en metros sobre el suelo después de t segundos está dada por la siguiente función $s(t) = -t^2 + 6t + 27$. Determina la altura máxima respecto del piso, que alcanza el objeto y en qué instante la alcanza.
- 5- Resolver la siguiente ecuación $3.2^{x+4} 6 = 24$
- 6- Simplificar la siguiente fracción indicando cuáles son los valores para los que está

definida:
$$\frac{4x^2 + 16x - 20}{x^3 - x^2 - 5x + 5} =$$

SOLUCIONES del examen de MATEMÁTICA

TEMA 1	Puntaje
1a) $Z = \frac{17}{2} + \frac{9}{2}i$	1.5
1b) Z y su conjugado	0.5
2 a) Solución -8 < t < 12 Recta numérica -10 -5 0 5 10 notación de intervalo	1.5 +0.5
(-8, 12) 3) a) (-8, 12)	3 a) 1
3b) b-1) F g(-3)=-8	3 b)
b-2) V b-3) F ∩ eje "y" es (0;2) b-4) F (-4;-9) ε g	0.25 c/u Total 1
4) La altura máxima es de 36 m a los 2 segundo (Vértice)	1
5) $x = log_5 10 - 1 = \frac{1}{\log 5} - 1 \cong 0.4306$	1.5
6) $\frac{3(x-2)(x+4)}{(x-2)(x^2-6)} = \frac{3(x+4)}{x^2-6} \land x \neq 2 \land x \neq \pm \sqrt{6}$	1.5

		TEMA 2	Puntaje
1 a) Z=	$\frac{14}{3} + \frac{5}{3}i$		1.5
1b) Z y	su conjugado	2 1 Z 1 0 1 2 3 4 5 6	0.5
2 a)	Solución $-6 < t < 10$ Recta numérica -5 notación de intervalo	2 b) Falso	1.5 +0.5
3) a)	(-6, 10) 4 (0, (-1.5, 0) 1 (-1.5, 0) -1 -2 -3 -4 -5	3b) b-1) F f(-2)=-3 b-2) V b-3) F \cap eje "y" es (0;3) b-4) F (-5;-6) \mathcal{E} f	3 a) 1 3 b) 0.25 c/u Total 1
4) La altura máxima es de 36 m a los 3 segundos (Vértice)			1
5) <i>x</i> =	$log_2 10 - 4 = 1$	$\frac{1}{\log 2} - 4 \cong -0.678$	1.5
$6) \frac{4(x-1)}{(x-1)}$	$\frac{-1)(x+5)}{1)(x^2-5)} = \frac{4(x+5)}{x^2}$	$\frac{+5)}{-5} \land x \neq 1 \land x \neq \pm \sqrt{5}$	1.5