Package 'deltatest'

March 3, 2025

Type Package
Title Statistical Hypothesis Testing Using the Delta Method
Version 0.1.0
Description Statistical hypothesis testing using the Delta method as proposed by Deng et al. (2018) <doi:10.1145 3219819.3219919="">. This method replaces the standard variance estimation formula in the Z-test with an approximate formula derived via the Delta method, which can account for within-user correlation.</doi:10.1145>
License MIT + file LICENSE
<pre>URL https://github.com/hoxo-m/deltatest</pre>
<pre>BugReports https://github.com/hoxo-m/deltatest/issues</pre>
Depends R (>= 4.1.0)
Imports glue, R6, rlang, stats
Suggests dplyr, ggplot2, knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
Encoding UTF-8
Language en-US
RoxygenNote 7.3.2
NeedsCompilation no
Author Koji Makiyama [aut, cre, cph], Shinichi Takayanagi [med]
Maintainer Koji Makiyama <hoxo.smile@gmail.com></hoxo.smile@gmail.com>
Repository CRAN
Date/Publication 2025-03-03 12:10:15 UTC
Contents
DeltaMethodForRatio

2 DeltaMethodForRatio

Index 9

DeltaMethodForRatio The Delta Method for Ratio

Description

Applies the Delta method to the ratio of two random variables, f(X,Y) = X/Y, to estimate the expected value, variance, standard error, and confidence interval.

Methods

Public methods:

- DeltaMethodForRatio\$new()
- DeltaMethodForRatio\$get_expected_value()
- DeltaMethodForRatio\$get_variance()
- DeltaMethodForRatio\$get_squared_standard_error()
- DeltaMethodForRatio\$get_standard_error()
- DeltaMethodForRatio\$get_confidence_interval()
- DeltaMethodForRatio\$get_info()
- DeltaMethodForRatio\$compute_expected_value()
- DeltaMethodForRatio\$compute_variance()
- DeltaMethodForRatio\$compute_confidence_interval()
- DeltaMethodForRatio\$clone()

Method new(): Initialize a new DeltaMethodForRatio object.

Usage:

DeltaMethodForRatio\$new(numerator, denominator, bias_correction = FALSE)

Arguments:

numerator, denominator numeric vectors sampled from the distributions of the random variables in the numerator and denominator of the ratio.

bias_correction logical value indicating whether correction to the mean of the metric is performed using the second-order term of the Taylor expansion. The default is FALSE.

Method get_expected_value(): Get the expected value.

Usage:

DeltaMethodForRatio\$get_expected_value()

Returns: numeric estimate of the expected value of the ratio.

Method get_variance(): Get the variance.

Usage:

DeltaMethodForRatio\$get_variance()

Returns: numeric estimate of the variance of the ratio.

DeltaMethodForRatio 3

```
Method get_squared_standard_error(): Get the squared standard error.
 DeltaMethodForRatio$get_squared_standard_error()
 Returns: numeric estimate of the squared standard error of the ratio.
Method get_standard_error(): Get the standard error.
 Usage:
 DeltaMethodForRatio$get_standard_error()
 Returns: numeric estimate of the standard error of the ratio.
Method get_confidence_interval(): Get the confidence interval.
 DeltaMethodForRatio$get_confidence_interval(
    alternative = c("two.sided", "less", "greater"),
    conf_level = 0.95
 )
 Arguments:
 alternative character string specifying the alternative hypothesis, must be one of "two.sided"
     (default), "greater", or "less". You can specify just the initial letter.
 conf_level numeric value specifying the confidence level of the interval. The default is 0.95.
 Returns: numeric estimates of the lower and upper bounds of the confidence interval of the
 ratio.
Method get_info(): Get statistical information.
 DeltaMethodForRatio$get_info(
    alternative = c("two.sided", "less", "greater"),
    conf_level = 0.95
 )
 Arguments:
 alternative character string specifying the alternative hypothesis, must be one of "two.sided"
     (default), "greater", or "less". You can specify just the initial letter.
 conf_level numeric value specifying the confidence level of the interval. The default is 0.95.
 Returns: numeric estimates include the expected value, variance, standard error, and confidence
 interval.
Method compute_expected_value(): Class method to compute the expected value of the ratio
using the Delta method.
 Usage:
 DeltaMethodForRatio$compute_expected_value(
   mean1,
   mean2,
    var2,
    cov = 0,
    bias_correction = FALSE
 )
```

4 DeltaMethodForRatio

```
Arguments:
```

mean1 numeric value of the mean numerator of the ratio.

mean2 numeric value of the mean denominator of the ratio.

var2 numeric value of the variance of the denominator of the ratio.

cov numeric value of the covariance between the numerator and denominator of the ratio. The default is 0.

bias_correction logical value indicating whether correction to the mean of the metric is performed using the second-order term of the Taylor expansion. The default is FALSE.

Returns: numeric estimate of the expected value of the ratio.

Method compute_variance(): Class method to compute the variance of the ratio using the Delta method.

Usage:

```
DeltaMethodForRatio$compute_variance(mean1, mean2, var1, var2, cov = 0)
```

Arguments:

mean1 numeric value of the mean numerator of the ratio.

mean2 numeric value of the mean denominator of the ratio.

var1 numeric value of the variance of the numerator of the ratio.

var2 numeric value of the variance of the denominator of the ratio.

cov numeric value of the covariance between the numerator and denominator of the ratio. The default is 0.

Returns: numeric estimate of the variance of the ratio

Method compute_confidence_interval(): Class method to compute the confidence interval of the ratio using the Delta method.

Usage:

```
DeltaMethodForRatio$compute_confidence_interval(
   mean,
   standard_error,
   alternative = c("two.sided", "less", "greater"),
   conf_level = 0.95
)
```

Arguments:

mean numeric value of the estimated mean of the ratio.

standard error numeric value of the estimated standard error of the mean of the ratio.

alternative character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater", or "less". You can specify just the initial letter.

conf_level numeric value specifying the confidence level of the interval. The default is 0.95.

Returns: numeric estimates of the lower and upper bounds of the confidence interval of the

Method clone(): The objects of this class are cloneable with this method.

Usage.

```
DeltaMethodForRatio$clone(deep = FALSE)
```

Arguments:

deep Whether to make a deep clone.

deltatest 5

References

• id:sz_dr (2018). Calculating the mean and variance of the ratio of random variables using the Delta method [in Japanese]. *If you are human, think more now.* https://www.szdrblog.info/entry/2018/11/18/154952

deltatest

Two Sample Z-Test for Ratio Metrics Using the Delta Method

Description

Performs two sample Z-test to compare the ratio metrics between two groups using the delta method. The Delta method is used to estimate the variance by accounting for the correlation between the numerator and denominator of ratio metrics.

Usage

```
deltatest(
  data,
  formula,
  by,
  group_names = "auto",
  type = c("difference", "relative_change"),
  bias_correction = FALSE,
  alternative = c("two.sided", "less", "greater"),
  conf.level = 0.95,
  na.rm = FALSE,
  quiet = FALSE
)
```

Arguments

data

data.frame containing the numerator and denominator columns of the ratio metric, aggregated by randomization unit. It also includes a column indicating the assigned group (control or treatment). For example, if randomizing by user while the metric is click-through rate (CTR) per page-view, the numerator is the number of clicks per user, and the denominator is the number of page views per user.

formula

expression representing the ratio metric. It can be written in three styles: standard formula $x/y \sim \text{group}$, lambda formula $\sim x/y$, or NSE expression x/y.

by

character string or symbol that indicates the group column. If the group column is specified in the formula argument, it is not required.

group_names

character vector of length 2 or "auto". It specifies which of the two strings contained in the group column is the control group and which is the treatment group. The first string is considered the control group, and the second string is considered the treatment group. If "auto" is specified, it is interpreted as specifying the strings in the group column sorted in lexicographical order. The default is "auto".

6 deltatest

type character string specifying the test type. If "difference" (default), the hypothesis test evaluates the difference in means of the ratio metric between two

groups. If "relative_change", it evaluates the relative change $(\mu_2-\mu_1)/\mu_1$

instead. You can specify just the initial letter.

bias_correction

logical value indicating whether correction to the mean of the metric is performed using the second-order term of the Taylor expansion. The default is

FALSE.

alternative character string specifying the alternative hypothesis, must be one of "two.sided"

(default), "greater", or "less". You can specify just the initial letter.

conf.level numeric value specifying the confidence level of the interval. The default is

0.95.

na.rm logical value. If TRUE, rows containing NA values in the data will be excluded

from the analysis. The default is FALSE.

quiet logical value indicating whether messages should be displayed during the exe-

cution of the function. The default is FALSE.

Value

A list with class "htest" containing following components:

statistic the value of the Z-statistic.
p.value the p-value for the test.

conf.int a confidence interval for the difference or relative change appropriate to the

specified alternative hypothesis.

estimate the estimated means of the two groups, and the difference or relative change.

null.value the hypothesized value of the difference or relative change in means under the

null hypothesis.

stderr the standard error of the difference or relative change.

alternative a character string describing the alternative hypothesis.

method a character string describing the method used.

data.name the name of the data.

References

 Deng, A., Knoblich, U., & Lu, J. (2018). Applying the Delta Method in Metric Analytics: A Practical Guide with Novel Ideas. *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. doi:10.1145/3219819.3219919

Examples

```
library(dplyr)
library(deltatest)
```

n_user <- 2000

generate_dummy_data 7

```
set.seed(314)
df <- deltatest::generate_dummy_data(n_user) |>
   group_by(user_id, group) |>
   summarise(click = sum(metric), pageview = n(), .groups = "drop")
deltatest(df, click / pageview, by = group)
```

generate_dummy_data

Generate Dummy Data

Description

Generate random dummy data for simulation studies. For details, see Section 4.3 in Deng et al. (2017).

Usage

```
generate_dummy_data(
   n_user,
   model = c("Bernoulli", "normal"),
   xi = 0,
   sigma = 0,
   random_unit = c("user", "session", "pageview"),
   treatment_ratio = 0.5
)
```

Arguments

n user

random_unit

character string specifying the randomization unit. It must be one of "user" (default), "session", or "pageview". You can specify just the initial letter. The default is 0.

integer value specifying the number of users included in the generated data.

treatment_ratio

numeric value specifying the ratio assigned to treatment. The default value is 0.5.

Value

data.frame with the columns user_id, group, and metric, where each row represents a metric value for a page-view.

References

• Deng, A., Lu, J., & Litz, J. (2017). Trustworthy Analysis of Online A/B Tests: Pitfalls, challenges and solutions. *Proceedings of the Tenth ACM International Conference on Web Search and Data Mining*. doi:10.1145/3018661.3018677

Examples

```
library(deltatest)
set.seed(314)
generate_dummy_data(n_user = 2000)
```

Index

```
\begin{array}{c} {\tt DeltaMethodForRatio,\,2}\\ {\tt deltatest,\,5} \end{array}
```

 ${\tt generate_dummy_data}, \textcolor{red}{7}$