Stat 571B Experimental Design

Topic 4: Introduction to ANOVA Montgomery: chapter 3

Prof. Lingling An University of Arizona

Motivation

- We discussed method for comparing two conditions or treatments.
- But how about compare more than two conditions or levels of a factor?

What if there are more than two levels of a single factor?

- There are lots of practical situations where there are either more than two levels of interest, or there are several factors of simultaneous interest
- The t-test does not directly apply
- The analysis of variance (ANOVA) is the appropriate analysis "engine" for these types of experiments

ANOVA - Analysis of Variance

- Extends independent-samples t test
- Compares the means of groups of independent observations
 - Don't be fooled by the name
 - ANOVA does not compare variances
 - The name "analysis of variance" stems from a partitioning of the total variability in the response variable into components
 - Can compare more than two groups
- The ANOVA was developed by Fisher in the early 1920s, and initially applied to agricultural experiments. Now it's used widely.

ANOVA – Null and Alternative hypotheses

Say the sample contains **a** independent groups

ANOVA tests the null hypothesis

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_a$

- That is, "the group means are all equal"
- The alternative hypothesis is

$$H_1$$
: $\mu_i \neq \mu_j$ for some i, j

– or, "the group means are not all equal"

Example: Accuracy of Implant Placement

Implants were placed in a manikin using placement guides of various widths.

15 implants were placed using each guide.

Error (discrepancies with a reference implant) was measured for each implant.

- Does changing the guide change the mean height error?
- Is there an optimum level for guide?
- We would like to have an objective way to answer these questions
- The t-test really doesn't apply here more than two factor levels
 - Pairwise comparisons will inflate type I error

Why pairwise comparisons inflates type I error?

- Each time a hypothesis test is performed at significance level α , there is probability α of rejecting in error.
- Performing multiple tests increases the chances of rejecting in error at least once.
- For example:
 - if you did 3 independent hypothesis tests at the α = 0.05
 - If, in truth, H₀ were true for all three.
 - The probability that at least one test rejects H₀ is 14.3%
 - P(at least one rejection) = $1-P(\text{no rejections}) = 1-.95^3 = 0.143$

Example: Accuracy of Implant Placement -2

The overall mean of the entire sample was 0.248 mm.

This is called the "grand" mean, and is often denoted by $\overline{\overline{\chi}}$ or \overline{X} ..

If H₀ were true then we'd expect the group means to be close to the grand mean.

Example: Accuracy of Implant Placement -3

The ANOVA test is based on the combined distances from $\frac{1}{X}$.

If the combined distances are large, that indicates we should reject H₀.

The ANOVA Statistic

To combine the differences from the grand mean we

- Square the differences
- Multiply by the numbers of observations in the groups
- Sum over the groups

$$SS_{B} = 15\left(\overline{X}_{4mm} - \overline{\overline{X}}\right)^{2} + 15\left(\overline{X}_{6mm} - \overline{\overline{X}}\right)^{2} + 15\left(\overline{X}_{8mm} - \overline{\overline{X}}\right)^{2}$$

where the \overline{X}_* are the group means.

" SS_B " = **S**um of **S**quares **B**etween groups Note: This looks a bit like a variance.

How big is big?

- For the Implant Accuracy Data, $SS_B = 0.0047$
- Is that big enough to reject H₀?
- As with the *t* test, we compare the statistic to the variability of the individual observations.
- In ANOVA the variability is estimated by the Mean Square Error, or MSE

MSE: Mean Square Error

The Mean Square Error is a measure of the variability after the group effects have been taken into account.

$$MSE = \frac{1}{N-a} \sum_{j} \sum_{i} (x_{ij} - \overline{X}_{j})^{2}$$

where x_{ij} is the i^{th} observation in the j^{th} group.

Implant Height Error by Guide Width

MSE: Mean Square Error - 2

The Mean Square Error is a measure of the variability after the group effects have been taken into account.

$$MSE = \frac{1}{N-a} \sum_{j} \sum_{i} (x_{ij} - \overline{X}_{j})^{2}$$

where x_{ij} is the i^{th} observation in the j^{th} group.

Implant Height Error by Guide Width

MSE: Mean Square Error - 3

The Mean Square Error is a measure of the variability after the group effects have been taken into account.

$$MSE = \frac{1}{N-a} \sum_{j} \sum_{i} (x_{ij} - \overline{X}_{j})^{2}$$

Note that the variation of the means seems quite small compared to the variance of observations within groups

Implant Height Error by Guide Width

Notes on MSE

- If there are only two groups, the *MSE* is equal to the pooled estimate of variance used in the equal-variance *t* test.
- ANOVA assumes that all the group variances are equal.
- Other options should be considered if group variances differ by a factor of 2 or more.

ANOVA F Test

The ANOVA F test is based on the F statistic

$$F = \frac{SS_B/(a-1)}{MSE}$$

where a is the number of groups.

- Under H₀ the F statistic has an "F" distribution, with a-1 and N-a degrees of freedom (N is the total number of observations)
 - In this case N=45

Implant Data: F test p-value

To get a p-value we compare our *F* statistic to an F(2, 42) distribution.

Implant Data: F test p-value - 2

To get a p-value we compare our *F* statistic to an F(2, 42) distribution.

In our example

$$F = \frac{.0047/2}{.0467/42} = .211$$

Implant Data: F test p-value - 3

To get a p-value we compare our *F* statistic to an F(2, 42) distribution.

In our example

$$F = \frac{.0047/2}{.0467/42} = .211$$

The p-value is

$$P(F(2,42) > .211) = 0.81$$

ANOVA Table

Results are often displayed using an ANOVA Table

Source of Variation	Sum of Squares	df	Mean Square	F	P-value
Between Groups	.005	2	.002	.211	.811
Within Groups	.466	42	.011		
Total	.470	44			

Pop Quiz!: Where are the following quantities presented in this table?

Sum of Squares Between (SS_B)

Mean Square Error (*MSE*)

F Statistic p value

ANOVA Table - 2

Results are often displayed using an ANOVA Table

Source of Variation	Sum of Squares	df	Mean Square		F P-value
Between Groups	.005	2	.002	.2	.811
Within Groups	.466	42	.011		
Total	.470	44	1		
Sum of Squares Betweer		Mean So Error (<i>M</i>	· 'C_\	F Statistic	p value

Statistic model: ANOVA

- The name "analysis of variance" stems from a partitioning of the total variability in the response variable into components that are consistent with a model for the experiment
- The basic single-factor ANOVA model is

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}, \begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., n \end{cases}$$
 Balanced design

 μ = an overall mean, τ_i = ith treatment effect, ε_{ij} = experimental error, $NID(0, \sigma^2)$

 τ_i is constant and $\sum \tau_i = 0$ => Fixed effect model

Models for the Data

There are two ways to write a model for the data:

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$
 is called the effects model

Let
$$\mu_i = \mu + \tau_i$$
, then

$$y_{ij} = \mu_i + \varepsilon_{ij}$$
 is called the means model

Regression models can also be employed

Notations for ANOVA

 Total variability is measured by the total sum of squares:

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{..})^2$$

The basic ANOVA partitioning is:

$$\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{..})^{2} = \sum_{i=1}^{a} \sum_{j=1}^{n} [(\overline{y}_{i.} - \overline{y}_{..}) + (y_{ij} - \overline{y}_{i.})]^{2}$$

$$= n \sum_{i=1}^{a} (\overline{y}_{i.} - \overline{y}_{..})^{2} + \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{i.})^{2}$$

$$SS_{T} = SS_{Treatments} + SS_{E}$$

Notations for ANOVA - 2

$$SS_T = SS_{Treatments} + SS_E$$

or
$$SS_T = SS_B + SS_E$$

- A large value of SS_{Treatments} reflects large differences in treatment means
- A small value of SS_{Treatments} likely indicates no differences in treatment means
- Formal statistical hypotheses are:

$$H_0: \mu_1 = \mu_2 = \dots = \mu_a$$

 H_1 : at least one "="does not hold

for means model

$$H_0: \tau_1 = \tau_2 = ... = \tau_a = 0$$

 H_1 : at least one is not 0

for effect model

Notations for ANOVA -3

- While sums of squares cannot be directly compared to test the hypothesis of equal means, mean squares can be compared.
- A mean square is a sum of squares divided by its degrees of freedom:

$$df_{Total} = df_{Treatments} + df_{Error}$$

$$an - 1 = a - 1 + a(n - 1)$$

$$MS_{Treatments} = \frac{SS_{Treatments}}{a - 1}, MS_E = \frac{SS_E}{a(n - 1)}$$

If the treatment means are equal, MS_{Teatments} =0.

The Analysis of Variance is Summarized in a Table

■ TABLE 3.3

The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
	$SS_{\text{Treatments}}$			
Between treatments	$= n \sum_{i=1}^{a} (\overline{y}_{i.} - \overline{y}_{})^2$	a-1	$MS_{\mathrm{Treatments}}$	$F_0 = \frac{MS_{\text{Treatments}}}{MS_E}$
Error (within treatments)	$SS_E = SS_T - SS_{\text{Treatments}}$	N - a	MS_E	_
Total	$SS_{\rm T} = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \overline{y})^2$	<i>N</i> -1		

- Computing...see text, p74
- The reference distribution for F_0 is the $F_{a-1, a(n-1)}$ distribution
- Reject the null hypothesis (equal treatment means) if

$$F_0 > F_{\alpha, a-1, a(n-1)}$$

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij}^2 - \frac{y_{..}^2}{N}$$
 (3.8)

$$SS_{\text{Treatments}} = \frac{1}{n} \sum_{i=1}^{a} y_{i.}^2 - \frac{y_{..}^2}{N}$$
 (3.9)

$$SS_E = SS_T - SS_{\text{Treatments}} \tag{3.10}$$

Some words for coding the observations

• If every observation *subtracts* the same constant, then sums of squares do not change, so we can get the same conclusion.

• If we *multiply* each observation by the same constant, then the sums of squares change. But the F ratio is equal to the F ratio for the original data. It implies that we can still get the same conclusion.

Parameter estimation

Estimates for parameters:

$$\hat{\mu}=\overline{y}_{..}$$

$$\hat{\tau_i}=(\overline{y}_{i.}-\overline{y}_{..})$$

$$\hat{\epsilon}_{ij}=y_{ij}-\overline{y}_{i.} \qquad (\text{ residual })$$
 So $y_{ij}=\hat{\mu}+\hat{\tau}_i+\hat{\epsilon}_{ij}.$

So estimator of mean of the ith treatment is:

$$\hat{\mu}_i = \hat{\mu} + \hat{\tau}_i = \bar{y}_{i.}$$

 And the 100(1-α)% confidence interval for the ith treatment mean:

$$\overline{y}_{i.} - t_{\alpha/2, N-a} \sqrt{\frac{MS_E}{n}} \le \mu_i \le \overline{y}_{i.} + t_{\alpha/2, N-a} \sqrt{\frac{MS_E}{n}}$$

C.I. For the difference of two treatment means:

$$\overline{y}_{i.} - \overline{y}_{j.} - t_{\alpha/2, N-a} \sqrt{\frac{2MS_E}{n}} \leq \mu_i - \mu_j \leq \overline{y}_{i.} - \overline{y}_{j.} + t_{\alpha/2, N-a} \sqrt{\frac{2MS_E}{n}}$$

Model for unbalanced experiment

 More general model for unbalanced experiment :

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}, i = 1, 2, ..., a$$

 $j = 1, 2, ..., n_i$

- Notation
 - $y_{i.} = \sum_{j=1}^{n_i} y_{ij} \rightarrow \overline{y}_{i.} = y_{i.}/n_i$ (treatment sample mean, or row mean)
 - $y_{..} = \sum \sum y_{ij} \rightarrow \overline{y}_{..} = y_{..}/N$ (grand sample mean)
- Decomposition of y_{ij} : $y_{ij} = \overline{y}_{..} + (\overline{y}_{i.} \overline{y}_{..}) + (y_{ij} \overline{y}_{i.})$

Estimates for parameters:

$$\hat{\mu}=\overline{y}_{..}$$

$$\hat{\tau_i}=(\overline{y}_{i.}-\overline{y}_{..})$$

$$\hat{\epsilon}_{ij}=y_{ij}-\overline{y}_{i.} \qquad (\text{ residual })$$
 So $y_{ij}=\hat{\mu}+\hat{\tau}_i+\hat{\epsilon}_{ij}.$

- For stat students
 - It can be verified that

$$\sum_{i=1}^{a} n_i \hat{\tau}_i = 0; \qquad \sum_{j=1}^{n_i} \hat{\epsilon}_{ij} = 0 \text{ for all } i.$$

Another example: Tensile Strength

 Investigate the tensile strength of a new synthetic fiber. The factor is the weight percent of cotton used in the blend of the materials for the fiber and it has five levels.

tensile strength						
1	2	3	4	5	total	average
7	7	11	15	9	49	9.8
12	17	12	18	18	77	15.4
14	18	18	19	19	88	17.6
19	25	22	19	23	108	21.6
7	10	11	15	11	54	10.8
	7 12 14 19	1 2 7 7 12 17 14 18 19 25	1 2 3 7 7 11 12 17 12 14 18 18 19 25 22	1 2 3 4 7 7 11 15 12 17 12 18 14 18 18 19 19 25 22 19	1 2 3 4 5 7 7 11 15 9 12 17 12 18 18 14 18 18 19 19 19 25 22 19 23	1 2 3 4 5 total 7 7 11 15 9 49 12 17 12 18 18 77 14 18 18 19 19 88 19 25 22 19 23 108

SAS code

```
options ls=75 ps=60 nocenter;

data one;
infile 'D:\TEACHING\T_stat571B\lab\sas_data
\tensile.dat';
input percent strength time;
run;

title1 'Tensile Strength example';
proc print data=one;
run;
```

Tensile Strength example

Obs	percent	strength	time
1	15	7	15
2	15	7	19
3	15	15	25
4	15	11	12
5	15	9	6
6	20	12	8
7	20	17	14
8	20	12	1
9	20	18	11
10	20	18	3
11	25	14	18
12	25	18	13
13	25	18	20
14	25	19	7
15	25	19	9
16	30	19	22
17	30	25	5
18	30	22	2
19	30	19	24
20	30	23	10
21	35	7	17
22	35	10	21
23	35	11	4
24	35	15	16
25	35	11	23

```
symbol1 v=circle;
title1 'Plot of Strength vs Percent Blend';
proc sgplot data=one;
scatter x=percent y=strength;
run;
title1 'boxplot';
proc sgplot data=one;
vbox strength/category=percent;
run;
proc boxplot;
plot strength*percent/boxstyle=skeletal pctldef=4;
run;
```

Scatter plot

Side-by-Side boxPlot


```
proc glm;
class percent;
model strength=percent;
output out=oneres p=pred r=res;
run;
```

The GLM Procedure Dependent Variable: strength

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	475.760000	118.9400000	14.76	<.0001
Error	20	161.200000	8.0600000		
Corrected Total	24	636.960000			

R-Square	Coeff Var	Root MSE	strength Mean
0.746923	18.87642	2.839014	15.04000

Last slide

• Read Sections: 3.1-3.3

