

PONTFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

ICEI - Belo Horizonte - Minas Gerais

Disciplina Otimização de Sistemas	Curso Ciência da Computação	Turno Manhã	Semestre 1º/2019
Professor	Tipo do Documento	Data	Valor
Dorirley Rodrigo Alves	Avaliação Formal	00/00/2019	23 pontos
Nome do Aluno		·	Matrícula

Questão 1 - Avalie o problema. (valor: 3,00 pontos cada)

1. Em uma fábrica de cimentos especiais são produzidos dois produtos, A e B. O Clínquer é o principal item na composição desses dois produtos e há no estoque uma disponibilidade de 1.200 kgs sendo que para o preparo dos dois produtos o A consome 1,20 kgs e o B 2,00 kgs . Todavia, sabe-se que para produzí-los, juntos, consomem no mínimo 600 kgs de Gesso. Além disso, há uma demanda mínima de mercado para o produto B de 200 kgs. Uma vez que seus custos de produção são de R\$12,00 por kgs para o produto A e o dobro dessa valor para o produto B, realize as seguintes tarefas: (a) modele matematicamente o referido problema; (b) elabore a tabela inicial do Método Simplex e (c) construa seu respectivo modelo dual.

Questão 2 - As tabelas a seguir apresentam um resultado parcial do problema da questão anterior. Para cada uma das tabelas existe uma solução parcial ou final. Portanto, faça: (a) Escreva abaixo de cada tabela o tipo da solução (passível de solução, impossível, múltiplas soluções ou ilimitada); (b) Para a tabela passível de solução, dê continuidade a resolução utilizando o método simplex até chegar ao resultado final e (c) apresente a resposta gerencial. (valor: 3,00 pontos cada)

		ML	x_1	x_5
	f(x)	4.800	-12	24
	x_3	800	1,2	2
1.				
	x_4	-400	1	1
	x_2	200	0	-1

			_	
	f(x)	4.800	-12	-24
	x_3	800	1,2	2
2.				
	x_4	-400	-1	-1
	x_2	200	0	-1

 $ML \quad x_1 \quad x_5$

		ML	x_1	x_5
	f(x)	4.800	-12	24
	x_3	800	1,2	-2
3.				
	x_4	400	1	-1
	x_2	200	0	-1

Questão 3 - A tabela a seguir representa o resultado ótimo de um problema gerencial qualquer. Realize a Análise de Sensibilidade dos coeficientes das restrições a fim de responder as seguintes perguntas: (a) Analisando os parâmetros da Função Objetivo, qual seria o seu intervalo de declividade? (b) Analisando o resultado final apresentado na tabela, qual variável artificial promove o maior ganho financeiro? (valor: 3,00 pontos cada)

		ML	x_1	x_2
	f(x)	0	1	2
1.	x_3	16	8	2
	x_4	28	2	7

f(x)	ML -8,46	x_3 $-3/52$	x_4 -7/26
x_1	1,07	7/52	-1/26
x_2	3,69	-1/26	2/13

Answer Key for Exam A

Questão 1 - Avalie o problema. (valor: 3,00 pontos cada)

1. Em uma fábrica de cimentos especiais são produzidos dois produtos, A e B. O Clínquer é o principal item na composição desses dois produtos e há no estoque uma disponibilidade de 1.200 kgs sendo que para o preparo dos dois produtos o A consome 1,20 kgs e o B 2,00 kgs . Todavia, sabe-se que para produzí-los, juntos, consomem no mínimo 600 kgs de Gesso. Além disso, há uma demanda mínima de mercado para o produto B de 200 kgs. Uma vez que seus custos de produção são de R\$12,00 por kgs para o produto A e o dobro dessa valor para o produto B, realize as seguintes tarefas: (a) modele matematicamente o referido problema; (b) elabore a tabela inicial do Método Simplex e (c) construa seu respectivo modelo dual.

Resposta:

• Forma de correção

- (a) Modelo matemático: 3,00 pts;

- (b) Tabela inicial: 3,00 pts;

- (c) Modelo Dual: 3,00 pts;

MODELO PRIMAL

 $x_1 = \text{Produto A}$

 $x_2 = \text{Produto B}$

$$F.O \mapsto \text{Min } \mathbb{Z} = 12x_1 + 24x_2$$

 $1, 2x_1 + 2x_2 \le 1200$ (Disp

(Disponibilidade de Clínquer)

 $x_1 + x_2 \geqslant 600$

(Necessidade de Gesso)

(Demanda do Produto B)

 $x_2 \geqslant 200$ $x1 \geqslant 0$

 $x2 \geqslant 0$

TABELA INICIAL DO METODO SIMPLEX

	ML	x_1	x_2
f(x)	0	12	24
x_3	1200	1,2	2
x_4	-600	-1	-1
x_5	-200	0	-1

TRANSFORMAÇÃO PARA O FORMATO CANÔNICO

 $x_1 =$ Produto A $x_2 =$ Produto B

$$F.O\mapsto {f Min}~{\Bbb Z}~=~12x_1+24x_2$$

$$-1,2x_1-2x_2\geqslant -1200 \qquad \hbox{(Disponibilidade de Clínquer)}$$

$$x_1+x_2\geqslant 600 \qquad \hbox{(Necessidade de Gesso)}$$

$$x_2\geqslant 200 \qquad \hbox{(Demanda do Produto B)}$$

$$x1\geqslant 0$$

$$x2\geqslant 0$$

MODELO DUAL

 y_1 = Disponibilidade de Clínquer

 y_2 = Necessidade de Gesso

 y_3 = Demanda do Produto B

$$F.O \mapsto \mathbf{Max} \ \mathbb{Z} = -1200y_1 + 600y_2 + 200y_3$$

 $-2y_1 + y_2 + y_3 \leqslant 24$ (Produto A)
 $-1, 2y_1 + y_2 \leqslant 12$ (Produto B)
 $x1 \geqslant 0$
 $x2 \geqslant 0$

Questão 2 - As tabelas a seguir apresentam um resultado parcial do problema da questão anterior. Para cada uma das tabelas existe uma solução parcial ou final. Portanto, faça: (a) Escreva abaixo de cada tabela o tipo da solução (passível de solução, impossível, múltiplas soluções ou ilimitada); (b) Para a tabela passível de solução, dê continuidade a resolução utilizando o método simplex até chegar ao resultado final e (c) apresente a resposta gerencial. (valor: 3,00 pontos cada)

		ML	x_1	x_5
	f(x)	4.800	-12	24
	x_3	800	1,2	2
1.				
	x_4	-400	1	1
	x_2	200	0	-1

Resposta:

Solução Impossível (valor: 3,00 pts)

		$_{ m ML}$	x_1	x_5
	f(x)	4.800	-12	-24
	x_3	800	1,2	2
2.				
	x_4	-400	-1	-1
	x_2	200	0	-1

Resposta:

Passível de solução

	ML	x_1	x_5
f(x)	4.800	-12	-24
	4.800	-12	12
x_3	800	1,2	2
	-480	1,2	-1,2
x_4	-400	-1	-1
	400	-1	1
x_2	200	0	-1
	0	0	0
	MI	I	
	ML	x_4	x_5
f(x)	ML 9.600	-12	x_5 -12
f(x)			_
f(x)			
	9.600	-12	-12
	9.600	-12	-12
x_3	9.600	-12 1,2	0,8
x_3	9.600	-12 1,2	0,8

Resposta gerencial: O custo mínimo obtido foi no valor de R\$9.600,00 onde serão produzidos 400 kgs do produto A, 200 kgs do Produto B. Haverá uma sobra de 320 kgs de Clínquer e a necesidade mínima de gesso será respeitada além de atender toda a demanda. (valor: 3,00 pts)

		ML	x_1	x_5
	f(x)	4.800	-12	24
	x_3	800	1,2	-2
3.				
	x_4	400	1	-1
	x_2	200	0	-1

Resposta:

Solução Ilimitada (valor: 3,00 pts)

Questão 3 - A tabela a seguir representa o resultado ótimo de um problema gerencial qualquer. Realize a Análise de Sensibilidade dos coeficientes das restrições a fim de responder as seguintes

perguntas: (a) Analisando os parâmetros da Função Objetivo, qual seria o seu intervalo de declividade? (b) Analisando o resultado final apresentado na tabela, qual variável artificial promove o maior ganho financeiro? (valor: 3,00 pontos cada)

		ML	x_1	x_2
	f(x)	0	1	2
1.	x_3	16	8	2
	x_4	28	2	7

	$_{ m ML}$	x_3	x_4
f(x)	-8,46	-3/52	-7/26
x_1	1,07	7/52	-1/26
x_2	3,69	-1/26	2/13

Resposta:

(a) Para a declividade da Função Objetivo, temos: (valor: 3,00 pts)

$$\frac{2}{7}\leqslant\frac{1}{2}\leqslant4:0,285\leqslant0,5\leqslant4$$

(b) Neste caso, devido aos valores da linha da Função Objetivo possuirem os valores $(x_3=-3/52)$ e $(x_4=-7/26)$ significa a variável x_4 promove o maior ganho, uma vez que $(x_3=-3/52 : 8,46+3/52=8,517)$ produz uma valo final menor que $(x_4=-7/26 : 8,46+7/26=8,729)$. (valor: 3,00 pts)