முழுப் பதிப்புரிமை உடையது / All Rights Reserved

MORA E-TAMILS | Tamil Students Faculty of Engineering, University of Moratuwa | MORA E-TAMILS | Students Faculty of Engineering University of Moratuwa வற்றும் அற்று பான்று பிருவரும் பலக்கைக்கும் பாறும் பா

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2020

General Certificate of Education (Adv.Level) Pilot Examination - 2020

இணைந்த கணிதம் Combined Mathematics

10		T
TO	1	1

ឃ្មាញ ២១៣៩៩៣០១៤ Three hours

சுட்டெண்:	
-----------	--

அறிவுறுத்தல்கள்:

- \divideontimes இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் 1-10) **பகுதி B** (வினாக்கள் 11-17) என்னும் இரு பகுதிகளைக் கொண்டது.
- **∗ பகுதி A:**

எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமாயின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.

- ₩ பகுதி B:
 - ஐந்து விணக்களுக்கு மாத்திரம் விடை எழுதுக.
- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** யின் விடைத்தாள் ஆனது **பகுதி B** யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- st வினாத்தாளின் **பகுதி B** ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதந்கு அனுமதிக்கப்படும்.

(10) §	இணைந்த கன	னிதம் I
பகுதி	ഖിത്ന எண்	புள்ளிகள்
	1	
	2	
	3	
	4	
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	
	சத வீ தம்	

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப்புள்ளி	

இறுதிப் புள்ளிகள்

		300-F
1	இலக்கத்தில்	
	எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர் 1	`
விடைத்தாள் பரீட்சகர் 2	
புள்ளிகளை பரீட்சித்தவர்	
மேற்பார்வை செய்தவர்	

பகுதி А

	கணிதத்தொகுத்தநிவுக் கோ				r=1	,	വ്വ്വാധ്യാവ്
		•••••					
	•••••	• • • • • • • • • • • • • • • • • • • •					
•		•••••	•••••			• • • • • • • • • • • • • • • • • • • •	••••••
٠		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••				•••••		
	ஒரு வரிப்படத்தில் $y = x $ $y = x - 1$ இன் வரைபை வ இரண்டாவது வரிப்படத்தில் இன் எல்லா மெய்ப் பெறுமா	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right\ - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	y = x - 1 இன் வரைபை வ இரண்டாவது வரிப்படத்தில்	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right\ - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right\ - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right\ - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right\ - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right\ - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right\ - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right\ - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right\ - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right\ - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right\ - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right\ - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right\ - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			
	$y = \left\ x\right\ - 1$ இன் வரைபை வ	பரைக. y=1 இன்	ഖரைபையும்	் வரைந்து, இத			

3.	$Arg\left(Z-2 ight) = -rac{\pi}{3}$ ஐ திருப்தியாக்கும் சிக்கல் எண்கள் Z ஐ வகைகுறிக்கும் புள்ளிகளின் ஒழுக்கை ஒரு
	ஆகண் வரிப்படத்தில் பரும்படியாக வரைக. இதிலிருந்து அல்லது வேறுவிதமாக $Arg\left(\overline{Z}-2\right)=rac{\pi}{3}$ ஆகுமாறு
	$\left Z-6 ight $ இழிவாக உள்ள Z ஐக் காண்க.
4.	$a(>0)$ மாநிலியாக இருக்க $\left(ax^2+rac{3}{x^3} ight)^{10}$ இன் ஈருறுப்பு விரிவில் x ஐ சாராத உறுப்பு $rac{70}{3}$ எனின் a இன்
4.	$a(>0)$ மாநிலியாக இருக்க $\left(ax^2+rac{3}{x^3} ight)^{10}$ இன் ஈருநுப்பு விரிவில் x ஐ சாராத உறுப்பு $rac{70}{3}$ எனின் a இன் பெறுமானத்தைக் காண்க.
4.	
4.	
4.	
4.	
4.	
4.	
4.	
4.	
4.	
4.	
4.	
4.	

$\sin x \left(1 - \sqrt{1 - x}\right)$	$\left(\frac{x^2}{\cos x}\right) = 4$ sign						
	• • • • • • • • • • • • • • • • • • • •		••••••		••••••	• • • • • • • • • • • • • • • • • • • •	
••••••		•••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
			• • • • • • • • • • • • • • • • • • • •				
			• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
	••••						• • • • • • • • • • • • • • • • • • • •
		••••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
••••••		•••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
$v = \sqrt{\cos x}, x$	$=0, x=\frac{\pi}{3}, y=$	0 எனும் வ	ണെധിക്ങിൽ	ளால் உள்ள	ைக்கப்படும்	பிரதேசம்,	<i>x</i> – அச்சைப்ட
	$=0,x=rac{\pi}{3},y=$ ாணங்களினூடா						

7.	$t (eq 0)$ ஆகவுள்ள மெய்ப்பரமானத்திற்கு $x^3 - y^2 = 0$ எனும் வளையி C இல் யாதுமொரு புள்ளி
	$Pig(4t^2,8t^3ig)$ இல் வரையப்பட்ட தொடலியின் சமன்பாடு $3tx-y-4t^3=0$ எனக் காட்டுக.
	P இல் உள்ள தொடலி, வளையி C இற்கு புள்ளி $\mathcal{Q}(4T^2,8T^3)$ இல் செவ்வனாக அமையின் $T=-rac{1}{9t}$
	எனக் காட்டுக.
•	(2.2)
8.	$(2,3)$ எனும் புள்ளிக்கூடாக செல்வதும் படித்திறன் $\frac{3}{4}$ ஐ உடையதுமான கோட்டின் சமன்பாடு
	3x - 4y + 6 = 0 எனக் காட்டுக. இக்கோட்டிற்கு சமாந்தரமாக 3 அலகுகள் தூரத்தில் உள்ள கோடுகளின்
	சமன்பாடுகளைக் காண்க.

9.	S=0 என்னு	b ഖ ட்ட	த்திற்கு	(வெளி	ய உ	ள்ள ட	ள்ளி	P(2,3)	இல்	இருந்து	S =	ர்இ 0	3கு மிச	ந அரு	தில்,
	அதிதொலைவி	ിல் உ	ர்ள பு	ள்ளிகள்	ന്നയ്	3Сш	$A \equiv (a$	(,5), <i>B</i> =	$\equiv (5,b)$) என்ப	or P .	A:PB	2 = 2 : 3	ஆகுட	மாறு
	அமைந்துள்ள	a = 4	4, b = 6	் எனக்க	எட்டி, இ	S=0	இன் சு	மன்பாட்	டைக்	காண்க.					
			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • •			• • • • • • • • •						••••
									• • • • • • • • • • • • • • • • • • • •						
									• • • • • • • • • • • • • • • • • • • •						••••
		• • • • • • • • • • • • • • • • • • • •											• • • • • • • • • • • • • • • • • • • •		
		• • • • • • • • • • • • • • • • • • • •											• • • • • • • • • • • • • • • • • • • •		
				• • • • • • • • • • • • • • • • • • • •					• • • • • • • •						
				• • • • • • • • • • • • • • • • • • • •					• • • • • • • •						
	π		(θ)	$\sqrt{1+ts}$	$\frac{1}{\ln^2 \theta}$	1			$(\pi$	```	_				
10.	$0 < \theta < \frac{\pi}{2}$ 9.	ந்கு tan	$\left(\frac{\theta}{2}\right) =$	$=\frac{\sqrt{1+ta}}{ta}$	$\frac{1}{\sin^2 \theta} - 1$	<u>1</u> – என	க் கோட்	_டுக. t a	$an\left(\frac{\pi}{12}\right)$	=2-	$\sqrt{3}$ 6	என்பை	த உய்	ு ந்தறிக	
10.	$0 < \theta < \frac{\pi}{2}$	ந்கு tan	$\left(\frac{\theta}{2}\right) =$	$=\frac{\sqrt{1+ta}}{ta}$	$\frac{\ln^2 \theta}{\ln \theta}$	<u>1</u> – என	க் கோட்	_டுக. ta	$ an\left(\frac{\pi}{12}\right) $	$\left(\frac{1}{2} \right) = 2 - \frac{1}{2}$	$\sqrt{3}$ 6	என்பன	த உய்	ந்தறிக 	
10.	$0 < \theta < \frac{\pi}{2}$ (9)									= 2-					
10.	$0 < \theta < \frac{\pi}{2}$ (9)														
10.	$0 < \theta < \frac{\pi}{2} \ \mathfrak{A}$														
10.	$0 < \theta < \frac{\pi}{2} \ \mathfrak{B}$														
10.	$0 < \theta < \frac{\pi}{2} \ \mathfrak{B}$														
10.	$0 < \theta < \frac{\pi}{2} \ \mathfrak{D}$														
10.	$0 < \theta < \frac{\pi}{2} \ \mathfrak{B}$														
10.	$0 < \theta < \frac{\pi}{2} \ \mathfrak{B}$														
10.	$0 < \theta < \frac{\pi}{2} \ \mathfrak{B}$														
10.	$0 < \theta < \frac{\pi}{2} \ \mathfrak{B}$														
10.	$0 < \theta < \frac{\pi}{2} \ \mathfrak{B}$														
10.	$0 < \theta < \frac{\pi}{2} \ \mathfrak{B}$														
10.	$0 < \theta < \frac{\pi}{2} \ \mathfrak{B}$														
10.	$0 < \theta < \frac{\pi}{2} \ \mathfrak{B}$														
10.	$0 < \theta < \frac{\pi}{2} \ \mathfrak{B}$														
10.	$0 < \theta < \frac{\pi}{2} \ \mathfrak{D}$														

முழுப் பதிப்புரிமை உடையது/All Rights Reserved

MORA E-TAMILS Tamil Students, Faculty of Engineering, University of Moratuwa IMORA E-TAMILS Taril Students Sculty of Engineering University of Moratuwa summb_அமைய் மக்கலைக் பெயர் பட்டு இடும் பான் பிருந்து பிரு

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2020

General Certificate of Education (Adv.Level) Pilot Examination - 2020

இணைந்த கணிதம் I Combined Mathematics I

பகுதி B

- 💥 ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- **11.** (a) $b,c \ne 0$ மெய்யெண்களாக இருக்க $x^2-bx+c=0$ எனும் சமன்பாட்டிற்கு பூச்சியம் மூலமன்று எனக்காட்டுக.

 $b^2 > 4c$ ஆக இருக்க $x^2 - bx + c = 0$ இன் மூலங்கள் α, β எனக் கொள்வோம். α, β என்பன வேறு வேறான மெய் மூலங்கள் எனக்காட்டுக.

lpha+eta,lphaeta ஐ b,c இன் உறுப்புக்களில் எழுதி, $\left|lpha\right|+\left|eta\right|=\sqrt{b^2-2c+2|c|}$ எனக்காட்டுக.

 $\left(rac{1}{|lpha|}+1,rac{1}{|eta|}+1
ight)$ ஆகியவற்றை மூலங்களாக கொண்ட சமன்பாடு

 $|c|x^2 - \left(\sqrt{b^2 - 2c + 2|c|} + 2|c|\right)x + \left(\sqrt{b^2 - 2c + 2|c|} + |c| + 1\right) = 0$ எனக் காட்டுக.

lpha, eta இரண்டும் நேர் அல்லது மறை எனின் $\left(rac{1}{|lpha|}+1,rac{1}{|eta|}+1
ight)$ ஐ மூலங்களாக கொண்ட சமன்பாடு $cx^2-(|b|+2c)x+(|b|+c+1)=0$ என உய்த்தறிக.

- (b) ஒரு பல்லுறுப்பிச்சார்பு f(x) ஆனது $f(x)=ax^3+15x^2+6x-b$ என்பதால் தரப்படுகிறது. இங்கு a,b மாறிலிகள். f(x) இற்கு (x+1) ஒரு காரணியாகவும், f(x) ஐ (x-1) ஆல் வகுக்க பெறப்படும் மீதி 16 ஆகவும் இருப்பின்
 - (i) a = 2, b = 7 எனக் காட்டுக.
 - (ii) f(x) ஐ ஏகபரிமானக்காரணிகளின் பெருக்கமாகத் தருக.

இதிலிருந்து $8ax^3 + 60x^2 = b - 12x$ ஐ முற்றாகத்தீர்க்க.

- 12. (a) A,B எனும் இரு வேறு பிரதேச செயலகங்களில் இருந்து 8 பேர் கொண்ட கலாச்சாரக்குழுவொன்று தெரிவு செய்யப்பட வேண்டியுள்ளது. பிரதேச செயலகம் A இல் 4 ஆண்களும் 5 பெண்களும், பிரதேச செயலகம் B இல் 5 ஆண்களும் 4 பெண்களும் உள்ளனர். கலாச்சாரக்குழு தெரிவு செய்யும் போது ஆண், பெண் உறுப்பினர்களின் எண்ணிக்கை சமனாகவும், ஒவ்வொரு பிரதேச செயலகத்தில் இருந்தும் சம எண்ணிக்கையிலும் இருத்தல் வேண்டும் எனின்,
 - (i) கலாச்சாரக்குழு தெரிவு செய்யப்படும் வழிகளின் எண்ணிக்கை யாது?
 - (ii) அமைக்கப்பட்ட கலாச்சாரக்குழுக்களில் ஒவ்வொரு பிரதேச செயலகத்திலும் ஆண், பெண் உறுப்பினர்கள் சமமாக இருக்கும் குழுக்களில் உள்ளவர்களை வரிசை ஒன்றில் ஒழுங்குபடுத்தக் கூடிய வழிகளின் எண்ணிக்கையைக் காண்க.
 - (b) $r\in\mathbb{Z}^+$ இந்கு $u_r=rac{1}{r(r+1)(r+2)}$ எனவும் $f(r)=rac{\lambda}{r(r+1)}$ எனவும் கொள்வொம். இங்கு λ மெய்மாறிலி $u_r=f(r)-f(r+1)$ ஆகுமாறு $\lambda=rac{1}{2}$ எனக் காட்டுக. இதிலிருந்து $\sum_{r=1}^n u_r=rac{1}{4}-rac{1}{2(n+1)(n+2)}$ எனக் காட்டுக. $r\in\mathbb{Z}^+$ இந்கு $v_r=rac{1}{(r+1)(r+2)(r+3)}$ எனத்தரப்படின், $\sum_{r=1}^n v_r=rac{1}{12}-rac{1}{2(n+2)(n+3)}$ என உய்த்தறிக. u_r+v_r ஐக் கருதுவதன் மூலம் $\sum_{r=1}^n w_r=rac{1}{3}-rac{1}{2(n+1)(n+2)}-rac{1}{2(n+2)(n+3)}$ என உய்த்தறிக. இங்கு $w_r=rac{2r+3}{r(r+1)(r+2)(r+3)}$ ஆகும். $\sum_{r=1}^\infty w_r$ ஒருங்குகின்றது எனக்காட்டி, அதன் கூட்டுத்தொகையைக் காண்க.
- 13. (a) $a,b\in\mathbb{R}$ ஆயிருக்க $A=egin{pmatrix} 4 & b \ 3 & a \end{pmatrix}$ எனக்கொள்வோம். தாயம் A இன் நேர்மாறு A^{-1} இருப்பதில்லை எனின் 4a=3b எனக் காட்டுக. $4a\neq 3b$ ஆக உள்ள போது A^{-1} ஐ எழுதி $A=A^{-1}$ எனின் a=-4,b=-5 எனக் காட்டுக. இதிலிருந்து, BC=O ஆகுமாறு பூச்சியமற்ற, வரிசை 2 ஐ உடைய தாயங்கள் B,C ஐக் காண்க. இங்கு O ஆனது வரிசை 2 ஐ உடைய பூச்சியத்தாயமாகும்.
 - $(b)\ z,z'$ ஆகியன இரு சிக்கலெண்கள் எனின் z-z' ஐ ஆகண் வரிப்படத்தில் குறித்துக்காட்டுக. ஆகண் வரிப்படத்தில் z_1,z_2,z_3,z_4 ஆகிய வேறுவேறான சிக்கலெண்கள் வகைக்குறிக்கும் புள்ளிகள் முறையே P_1,P_2,P_3,P_4 ஆகும். இங்கு P_1,P_2,P_3,P_4 என்பன ஒரே நேர்கோட்டில் இல்லை. $z_1-z_2=z_4-z_3$ ஆக இருந்தால் இருந்தால் மாத்திரம் $P_1P_2P_3P_4$ ஒரு இணைகரம் எனக்காட்டுக. இம்முடிவைப்பயன்படுத்தி இணைகரத்தின் மூலைவிட்டங்கள் ஒன்றையொன்று இருசமகூறிடும் என நிறுவுக.
 - (c) $-\pi < heta \leq \pi$ இந்கு $z = \cos heta + i \sin heta$ எனக் கொள்வோம். த மோய்வரின் தேந்றத்தைப் பயன்படுத்தி $n \in \mathbb{Z}$ இந்கு $z^n + \frac{1}{z^n} = 2\cos(n heta)$ எனக்காட்டுக.

இதிலிருந்து $3z^4-z^3+2z^2-z+3=0$ ஆகுமாறு θ இன் பெறுமானங்களைக் காண்க.

14. (*a*)
$$x \ne 1$$
 இற்கு $f(x) = \frac{(2x-1)^2}{(x-1)^2}$ எனக் கொள்வோம்.

 $x \neq 1$ இற்கு f(x) இன் பெறுதி f'(x) ஆனது $f'(x) = -\frac{2(2x-1)}{\left(x-1\right)^3}$ இனால் தரப்படுமெனக் காட்டுக.

y = f(x) இன் வரைபை அணுகுகோடுகள், y -வெட்டுத்துண்டு, திரும்பற் புள்ளிகள் ஆகியவற்றைக் காட்டிப் பரும்படியாக வரைக.

 $x \neq 1$ இற்கு $f''(x) = \frac{8\left(x - \frac{1}{4}\right)}{\left(x - 1\right)^4}$ எனத்தரப்பட்டுள்ளது. y = f(x) இன் வரைபின் விபத்திப் புள்ளியின் x ஆள்கூறைக் காண்க.

 $(b)\ 10m$ உயரமும் $2m,\ 1m$ வட்ட ஆரைகளையும் கொண்ட நேரான மரக்குற்றி, கூம்பின் அடித்துண்டு வடிவத்தில் உள்ளது. இக்குற்றியில் இருந்து வெட்டப்பட்ட உருளைக்கம்பத்தின் ஆரை xm ஆகவும் உயரம் ym ஆகவும் உள்ளது. y=10ig(2-xig) எனக் காட்டுக.

இவ்வுருளையின் கனவளவு Vm^3 எனின்

$$V = 10\pi \ x^2(2-x)$$
 எனக்காட்டுக.

இதிலிருந்து இவ்வாறு வெட்டப்படக்கூடிய உயர் கனவளவுடைய

உருளைக் கம்பத்தின் ஆரை $\frac{4}{3}m$ எனக்காட்டுக.

15.
$$(a)$$
 $0 \le \theta \le \frac{\pi}{4}$ இந்கு $x = 4 \tan^2 \theta - 2$ எனும் பிரதியீட்டைப் பயன்படுத்தி $\int_{-2}^2 \frac{\sqrt{x+2}}{x+6} dx$ இன்

பெறுமானத்தைக் காண்க.

$$(b)$$
 $\frac{3}{(x+1)(x+4)}$ இனை பகுதிப்பின்னங்களாக்கி, $\frac{3}{(x^2+1)(x^2+4)}$ இன் பகுதிப்பின்னங்களை உய்த்தறிக.

இதிலிருந்து $\int \frac{3}{(x^2+1)(x^2+4)} dx$ ஐக் காண்க.

$$f(t) = \int_0^t \frac{3}{(x^2+1)(x^2+4)} dx$$
 எனக்கொள்வோம். $f(t) = an^{-1}(t) - rac{1}{2} an^{-1} \left(rac{t}{2}
ight)$ என உய்த்தறிக.

பகுதிகளாக தொகையிடலைப் பயன்படுத்தி $\int \tan^{-1} \left(kx\right) dx$ ஐக் காண்க. இங்கு $k \neq 0$ மெய்மாறிலி. இதிலிருந்து $\int f(t) dt$ ஐக் காண்க.

(c) a,b ஆகியன மாறிலிகளாக இருக்க, a+b-x=t எனும் பிரதியீட்டைப்பயன்படுத்தி

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$
 எனக் காட்டுக.

இதிலிருந்து
$$\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{5 - x}} dx = \frac{1}{2}$$
 எனக்காட்டுக.

- 16. $l_1:2x+y+3=0,\ l_2:11x+2y+6=0$ ஆகிய கோடுகளிற்கு இடையில் உள்ள கோணங்களின் இருகூறாக்கிகளின் சமன்பாடுகளைக் கண்டு, அவற்றில் கூர்ங்கோண இருகூறாக்கி 3x+y+3=0 எனக்காட்டுக. 3x+y+3=0 எனும் கோட்டில் உள்ள புள்ளி P இல் இருந்து l_1,l_2 ஆகிய கோடுகளிற்கு வரையும் செங்குத்து நீளம் $\sqrt{5}$ அலகுகள் எனின் a,b இன் பெறுமானங்களைக் காண்க. இங்கு a>0 ஆகும்.
 - P ஐ மையமாகவும் கோடுகள் l_1, l_2 ஆகியவற்றை தொடுகின்றதுமான வட்டம் S=0 எனின் $S\equiv x^2+y^2-10x+36y+344$ எனக் காட்டுக.

l:4x+3y+24=0 என்ற கோடு S=0 ஐ வெட்டும் எனக்காட்டுக.

 $S=0\,,\;l=0$ என்பவற்றின் வெட்டுப்புள்ளிகளினூடு செல்லும் எல்லா வட்டங்களின் பொதுச்சமன்பாட்டைக் கண்டு, அதன் மையத்தின் ஒழுக்கு, கோடு l இற்கு செங்குத்தான நேர்கோடாகும் எனக்காட்டுக.

 $17. (a) \sin(A-B), \cos(A-B)$ ஆகியவற்றை $\sin A, \cos A, \sin B, \cos B$ ஆகியவற்றில் எழுதி

$$\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$
 என உய்த்தறிக.

இதிலிருந்து $\tan 5\theta \tan \theta \neq -1, \tan 2\theta \tan \theta \neq -1$ எனக் கொண்டு,

 $(1 + \tan 2\theta \tan \theta)(\tan 5\theta - \tan \theta) = (1 + \tan 5\theta \tan \theta)(\tan 2\theta - \tan \theta)$ ஐ $0 \le \theta \le \pi$ எனும் வீச்சில் தீர்க்க.

(b) முக்கோணி ABC இல் பக்கம் AC இன் நடுப்புள்ளி D ஆனது BC=BD ஆகுமாறுள்ளது. உரிய முக்கோணிகளிற்கு வழக்கமான குறியீடுகளுடன் கோசைன் விதியை உபயோகிப்பதன் மூலம் $\sin A = \frac{1}{2c} \sqrt{\frac{9a^2-c^2}{2}}$ எனக்காட்டுக.

$$a:c=1:\sqrt{3}$$
 எனின் $A=\frac{\pi}{6}$ என உய்த்தறிக.

(c) $\tan^{-1}(3x) + \tan^{-1}(2x) = \frac{\pi}{4}$ ஐத் தீர்க்க.

இதிலிருந்து
$$\sin\left[\frac{\pi}{4} - \tan^{-1}\left(\frac{1}{2}\right)\right] = \frac{1}{\sqrt{10}}$$
 எனக்காட்டுக.

முழுப் பதிப்புரிமை உடையது / All Rights Reserved

MORA E-TAMILS Tamil Students Faculty of Engineering University of Moratuwa MORA E-TAMILS Tamil Students Scullary Scullary Scullary of Engineering University of Moratuwa MORA E-TAMILS Tamil Students Faculty of Engineering University of Moratuwa MORA E-TAMILS Tamil Students Faculty of Engineering University of Moratuwa MORA E-TAMILS Tamil Students Faculty of Engineering University of Moratuwa MORA E-TAMILS Tamil Students Faculty of Engineering University of Moratuwa MORA E-TAMILS Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2020

General Certificate of Education (Adv.Level) Pilot Examination - 2020

டுணைந்த கணிதம் II Combined Mathematics II 10 T II

យាធាញ យធាជាត្រៃគ្នាឃាធាយ់ Three hours

சுட்டெண்:	
-----------	--

அறிவுறுத்தல்கள்:

- \divideontimes இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் $1{-}10$) **பகுதி B** (வினாக்கள் $11{-}17$) என்னும் இரு பகுதிகளைக் கொண்டது.
- **₩ பகுதி A:**

எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமாயின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.

₩ பகுதி B:

ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** யின் விடைத்தாள் ஆனது **பகுதி B** யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- lpha வினாத்தாளின் **பகுதி B** ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

(10) 🛭	இணைந்த கல	னிதம் II
பகுதி	ഖിത്ന ഒൽ	புள்ளிகள்
	1	
	2	
	3	
	4	
	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	
	ச தவீத ம்	

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப்புள்ளி	

இறுதிப் புள்ளிகள்

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர் 1	
விடைத்தாள் பரீட்சகர் 2	
புள்ளிகளை பரீட்சித்தவர்	
மேற்பார்வை செய்தவர்	

பகுதி А

	யிற்கு	B щь	ன் மோ									_யிலா	ຑ ഥീണം	
குணகம்	<i>e</i> எனி	ன் மோத	துகையி	ിன் பி6	ன்னர் _	A ധിര്	ர் கதி	$\frac{1}{5}(4-6)$	e)u 6	னக் காட்டு	3க. மே	றும் (மோதுை	கயில்
பின்னர்	B யின்	கதி A	யின்	கதியி6	ன் இருเ	மடங்கு	எனின்	$e = \frac{2}{3}$	/ 3 என	க்காட்டுக.				
				• • • • • • • • •		•••••		•••••	•••••		• • • • • • • •	• • • • • • • •		
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••		•••••		•••••			•••••			• • • • • • • • •	• • • • • •
•••••		••••••	•••••	•••••	•••••	• • • • • • • •	•••••	• • • • • • • • • •		•••••	•••••	••••••	•••••	
ஒரு நேர் இரு க	 ர் வீதி வ நார்கள் நலுடனும்	വழിயേ 1 ഗ്രത്മെധേ	l 20 <i>m</i> ⊔ 10	இடை _? 0 <i>ms</i> ⁻¹ ,	த்தூரத்த <i>5ms</i> −1 ——	நில் உ எனு	ள்ள இ நம் ஆ	இரு புள் பூரம்ப	ளிகளி! கதிகஞ	கள் <i>P,Ç</i> நடனும்	Q ଭୁରୀ f ms	ருந்து 5 ⁻² , 2 <i>n</i>	A, B ns^{-2}	ഒത്വ ഒത്വ
ஒரு நேற் இரு க ஆர்முடுக இயக்கத்	ர் வீதி வ எர்கள்	பழியே 1 முறைபே ஒரே வேக-சே	120 <i>m</i> ப 10 நேரத்த நர வ	இடைத 0 <i>ms</i> ⁻¹ , தில் ரைபை	த்தூரத்த <i>5ms</i> ⁻¹ PQ வரைக	ളിல் உ எனு வழியே	்ள்ள இ பும் அ இயா	இரு புள் பூரம்ப ங்க ஆ	ளிகளிக கதிகஞ ரம்பிக்க	கள் <i>P,Q</i> நடனும் கின்றன.	Q	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச	A, B ns^{-2} A	எனு எனு ധിര
ஒரு நேற் இரு க ஆர்முடுக இயக்கத் கடக்கின்	ர் வீதி வ எர்கள் எலுடனும் திற்கான	பழியே 1 முறையே ஒரே வேக-9ே ன் <i>f</i> இ	120 <i>m</i> ப 10 நேரத்த நர வஞ இனைக்	இடைத O <i>ms</i> ⁻¹ , தில் ரைபை காண்	த்தூரத்த 5ms ⁻¹ PQ வரைக க.	நில் உ எனு வழியே க. இத்	்ள்ள இ பும் ஆ இயா நிலிருந்த	இரு புள் பூரம்ப ங்க ஆ நு 6 <i>s</i>	ளிகளிக் கதிகஞ ரம்பிக்க களின்	கள் P, \mathcal{Q} நடனும் நின்றன. பின்னர்) ඉහ f ms B A	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச ஆனது	A, B ms^{-2} B B	எனு! எனு! ധിദ இகை
ஒரு நேற் இரு க ஆர்முடுக இயக்கத் கடக்கின்	ர் வீதி வ எர்கள் எலுடனும் திற்கான எறது எனி	பழியே 1 முறையே ஒரே வேக-9ே ன் <i>f</i> இ	120 <i>m</i> ப 10 நேரத்த நர வஞ இனைக்	இடைத O <i>ms</i> ⁻¹ , தில் ரைபை காண்	த்தூரத்த 5ms ⁻¹ PQ வரைக க.	நில் உ எனு வழியே க. இத்	்ள்ள இ பும் ஆ இயா நிலிருந்த	இரு புள் பூரம்ப ங்க ஆ நு 6 <i>s</i>	ளிகளிக் கதிகஞ ரம்பிக்க களின்	கள் P, \mathcal{Q} நடனும் நின்றன. பின்னர்) ඉහ f ms B A	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச ஆனது	A, B ms^{-2} B B	எனு! எனு! ധിദ இദൈ
ஒரு நேற் இரு க ஆர்முடுக இயக்கத் கடக்கின்	ர் வீதி வ எர்கள் எலுடனும் திற்கான எறது எனி	பழியே 1 முறையே ஒரே வேக-9ே ன் <i>f</i> இ	120 <i>m</i> ப 10 நேரத்த நர வஞ இனைக்	இடைத O <i>ms</i> ⁻¹ , தில் ரைபை காண்	த்தூரத்த 5ms ⁻¹ PQ வரைக க.	நில் உ எனு வழியே க. இத்	்ள்ள இ பும் ஆ இயா நிலிருந்த	இரு புள் பூரம்ப ங்க ஆ நு 6 <i>s</i>	ளிகளிக் கதிகஞ ரம்பிக்க களின்	கள் P, \mathcal{Q} நடனும் நின்றன. பின்னர்) ඉහ f ms B A	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச ஆனது	A, B ms^{-2} B B	எனு! எனு! ധിദ இദൈ
ஒரு நேற் இரு க ஆர்முடுக இயக்கத் கடக்கின்	ர் வீதி வ எர்கள் எலுடனும் திற்கான எறது எனி	பழியே 1 முறையே ஒரே வேக-9ே ன் <i>f</i> இ	120 <i>m</i> ப 10 நேரத்த நர வஞ இனைக்	இடைத O <i>ms</i> ⁻¹ , தில் ரைபை காண்	த்தூரத்த 5ms ⁻¹ PQ வரைக க.	நில் உ எனு வழியே க. இத்	்ள்ள இ பும் ஆ இயா நிலிருந்த	இரு புள் பூரம்ப ங்க ஆ நு 6 <i>s</i>	ளிகளிக் கதிகஞ ரம்பிக்க களின்	கள் P, \mathcal{Q} நடனும் நின்றன. பின்னர்) ඉහ f ms B A	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச ஆனது	A, B ms^{-2} B B	எனு! எனு! ധിദ இகை
ஒரு நேற் இரு க ஆர்முடுக இயக்கத் கடக்கின்	ர் வீதி வ எர்கள் எலுடனும் திற்கான எறது எனி	பழியே 1 முறையே ஒரே வேக-9ே ன் f இ	120 <i>m</i> ப 10 நேரத்த நர வஞ இனைக்	இடைத O <i>ms</i> ⁻¹ , தில் ரைபை காண்	த்தூரத்த 5ms ⁻¹ PQ வரைக க.	நில் உ எனு வழியே க. இத்	்ள்ள இ பும் ஆ இயா நிலிருந்த	இரு புள் பூரம்ப ங்க ஆ நு 6 <i>s</i>	ளிகளிக் கதிகஞ ரம்பிக்க களின்	கள் P, \mathcal{Q} நடனும் நின்றன. பின்னர்) ඉහ f ms B A	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச ஆனது	A, B ms^{-2} B B	எனு! எனு! ധിദ இகை
ஒரு நேற் இரு க ஆர்முடுக இயக்கத் கடக்கின்	ர் வீதி வ எர்கள் எலுடனும் திற்கான எறது எனி	பழியே 1 முறையே ஒரே வேக-9ே ன் f இ	120 <i>m</i> ப 10 நேரத்த நர வஞ இனைக்	இடைத O <i>ms</i> ⁻¹ , தில் ரைபை காண்	த்தூரத்த 5ms ⁻¹ PQ வரைக க.	நில் உ எனு வழியே க. இத்	்ள்ள இ பும் ஆ இயா நிலிருந்த	இரு புள் பூரம்ப ங்க ஆ நு 6 <i>s</i>	ளிகளிக் கதிகஞ ரம்பிக்க களின்	கள் P, \mathcal{Q} நடனும் நின்றன. பின்னர்) ඉහ f ms B A	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச ஆனது	A, B ms^{-2} B B	எனு! எனு! ധിദ இகை
ஒரு நேற் இரு க ஆர்முடுக இயக்கத் கடக்கின்	ர் வீதி வ எர்கள் எலுடனும் திற்கான எறது எனி	பழியே 1 முறையே ஒரே வேக-9ே ன் f இ	120 <i>m</i> ப 10 நேரத்த நர வஞ இனைக்	இடைத O <i>ms</i> ⁻¹ , தில் ரைபை காண்	த்தூரத்த 5ms ⁻¹ PQ வரைக க.	நில் உ எனு வழியே க. இத்	்ள்ள இ பும் ஆ இயா நிலிருந்த	இரு புள் பூரம்ப ங்க ஆ நு 6 <i>s</i>	ளிகளிக் கதிகஞ ரம்பிக்க களின்	கள் P, \mathcal{Q} நடனும் நின்றன. பின்னர்) ඉහ f ms B A	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச ஆனது	A, B ms^{-2} B B	எனு! எனு! ധിദ இகை
ஒரு நேற் இரு க ஆர்முடுக இயக்கத் கடக்கின்	ர் வீதி வ எர்கள் எலுடனும் திற்கான எறது எனி	பழியே 1 முறையே ஒரே வேக-9ே ன் f இ	120 <i>m</i> ப 10 நேரத்த நர வஞ இனைக்	இடைத O <i>ms</i> ⁻¹ , தில் ரைபை காண்	த்தூரத்த 5ms ⁻¹ PQ வரைக க.	நில் உ எனு வழியே க. இத்	்ள்ள இ பும் ஆ இயா நிலிருந்த	இரு புள் பூரம்ப ங்க ஆ நு 6 <i>s</i>	ளிகளிக் கதிகஞ ரம்பிக்க களின்	கள் P, \mathcal{Q} நடனும் நின்றன. பின்னர்) ඉහ f ms B A	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச ஆனது	A, B ms^{-2} B B	எனு! எனு! ധിദ இദൈ
ஒரு நேற் இரு க ஆர்முடுக இயக்கத் கடக்கின்	ர் வீதி வ எர்கள் எலுடனும் திற்கான எறது எனி	பழியே 1 முறையே ஒரே வேக-9ே ன் f இ	120 <i>m</i> ப 10 நேரத்த நர வஞ இனைக்	இடைத O <i>ms</i> ⁻¹ , தில் ரைபை காண்	த்தூரத்த 5ms ⁻¹ PQ வரைக க.	நில் உ எனு வழியே க. இத்	்ள்ள இ பும் ஆ இயா நிலிருந்த	இரு புள் பூரம்ப ங்க ஆ நு 6 <i>s</i>	ளிகளிக் கதிகஞ ரம்பிக்க களின்	கள் P, \mathcal{Q} நடனும் நின்றன. பின்னர்) ඉහ f ms B A	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச ஆனது	A, B ms^{-2} B B	எனு! எனு! ധിദ இദൈ
ஒரு நேற் இரு க ஆர்முடுக இயக்கத் கடக்கின்	ர் வீதி வ எர்கள் எலுடனும் திற்கான எறது எனி	பழியே 1 முறையே ஒரே வேக-9ே ன் f இ	120 <i>m</i> ப 10 நேரத்த நர வஞ இனைக்	இடைத O <i>ms</i> ⁻¹ , தில் ரைபை காண்	த்தூரத்த 5ms ⁻¹ PQ வரைக க.	நில் உ எனு வழியே க. இத்	்ள்ள இ பும் ஆ இயா நிலிருந்த	இரு புள் பூரம்ப ங்க ஆ நு 6 <i>s</i>	ளிகளிக் கதிகஞ ரம்பிக்க களின்	கள் P, \mathcal{Q} நடனும் நின்றன. பின்னர்) ඉහ f ms B A	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச ஆனது	A, B ms^{-2} B B	எனு! எனு! ധിദ இദൈ
ஒரு நேற் இரு க ஆர்முடுக இயக்கத் கடக்கின்	ர் வீதி வ எர்கள் எலுடனும் திற்கான எறது எனி	பழியே 1 முறையே ஒரே வேக-9ே ன் f இ	120 <i>m</i> ப 10 நேரத்த நர வஞ இனைக்	இடைத O <i>ms</i> ⁻¹ , தில் ரைபை காண்	த்தூரத்த 5ms ⁻¹ PQ வரைக க.	நில் உ எனு வழியே க. இத்	்ள்ள இ பும் ஆ இயா நிலிருந்த	இரு புள் பூரம்ப ங்க ஆ நு 6 <i>s</i>	ளிகளிக் கதிகஞ ரம்பிக்க களின்	கள் P, \mathcal{Q} நடனும் நின்றன. பின்னர்) ඉහ f ms B A	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச ஆனது	A, B ms^{-2} B B	எனு! எனு! ധിദ இகை
ஒரு நேற் இரு க ஆர்முடுக இயக்கத் கடக்கின்	ர் வீதி வ எர்கள் எலுடனும் திற்கான எறது எனி	பழியே 1 முறையே ஒரே வேக-9ே ன் f இ	120 <i>m</i> ப 10 நேரத்த நர வஞ இனைக்	இடைத O <i>ms</i> ⁻¹ , தில் ரைபை காண்	த்தூரத்த 5ms ⁻¹ PQ வரைக க.	நில் உ எனு வழியே க. இத்	்ள்ள இ பும் ஆ இயா நிலிருந்த	இரு புள் பூரம்ப ங்க ஆ நு 6 <i>s</i>	ளிகளிக் கதிகஞ ரம்பிக்க களின்	கள் P, \mathcal{Q} நடனும் நின்றன. பின்னர்) ඉහ f ms B A	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச ஆனது	A, B ms^{-2} B B	எனு! எனு! ധിദ இகை
ஒரு நேற் இரு க ஆர்முடுக இயக்கத் கடக்கின்	ர் வீதி வ எர்கள் எலுடனும் திற்கான எறது எனி	பழியே 1 முறையே ஒரே வேக-9ே ன் f இ	120 <i>m</i> ப 10 நேரத்த நர வஞ இனைக்	இடைத O <i>ms</i> ⁻¹ , தில் ரைபை காண்	த்தூரத்த 5ms ⁻¹ PQ வரைக க.	நில் உ எனு வழியே க. இத்	்ள்ள இ பும் ஆ இயா நிலிருந்த	இரு புள் பூரம்ப ங்க ஆ நு 6 <i>s</i>	ளிகளிக் கதிகஞ ரம்பிக்க களின்	கள் P, \mathcal{Q} நடனும் நின்றன. பின்னர்) ඉහ f ms B A	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச ஆனது	A, B ms^{-2} B B	எனு! எனு! ധിദ இகை
ஒரு நேற் இரு க ஆர்முடுக இயக்கத் கடக்கின்	ர் வீதி வ எர்கள் எலுடனும் திற்கான எறது எனி	பழியே 1 முறையே ஒரே வேக-9ே ன் f இ	120 <i>m</i> ப 10 நேரத்த நர வஞ இனைக்	இடைத O <i>ms</i> ⁻¹ , தில் ரைபை காண்	த்தூரத்த 5ms ⁻¹ PQ வரைக க.	நில் உ எனு வழியே க. இத்	்ள்ள இ பும் ஆ இயா நிலிருந்த	இரு புள் பூரம்ப ங்க ஆ நு 6 <i>s</i>	ளிகளிக் கதிகஞ ரம்பிக்க களின்	கள் P, \mathcal{Q} நடனும் நின்றன. பின்னர்) ඉහ f ms B A	ிருந்து s ⁻² , 2 <i>n</i> சார்பாச ஆனது	A, B ms^{-2} B B	எனு எனு ധിം இരை

AL	/2020/10/T-II-NEW -3-
3.	தரையிலிருந்து h உயரத்தில் u கதியுடன் கிடையாக பறந்து செல்லும் விமானம்
	ஒன்றிலிருந்து பந்து ஒன்று விழவிடப்படுகின்றது. அதேகணத்தில் விமானத்திற்கு
	நிலைக்குத்தாக கீழே தரைமீதுள்ள புள்ளியிலிருந்து கிடையுடன் $lpha$ சாய்வில்
	இன்னோர் பந்து எறியப்படுகின்றது. t நேரத்தின் பின்னர் இரு பந்துகளும் தரைக்கு h
	மேல் உள்ள ஒரு புள்ளியில் மோதுகின்றன எனின் $t=rac{h}{u}\cotlpha$ எனக்காட்டுக.
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உருந்நி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உருந்நும் அதி உயர் வலுவிற்கான கோவையை எமுதுக.
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உருந்நி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உருந்நும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாநாதிருக்க இவ்வாகனம் $\sin^{-1}\left(\frac{1}{1000}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உருந்நி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உருந்நும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாநாதிருக்க இவ்வாகனம் $\sin^{-1}\left(\frac{1}{1000}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள
4.	W நிறையுடைய வாகனம் ஒன்று kW எனும் விசையை உஞற்றி ஒரு கிடைத்தரைமீது u எனும் அதிஉயர் கதியில் இயங்குகின்றது எனின் அதன் எஞ்சின் உஞற்றும் அதி உயர் வலுவிற்கான கோவையை எழுதுக. மேலும் வாகனத்தின் இயக்கத்திற்கு எதிரான தடைவிசை மாறாதிருக்க இவ்வாகனம் $\sin^{-1}\!\left(\frac{1}{10}\right)$ சாய்வுள்ள

5.	λm திணிவும் $lpha$ சாய்வுமுள்ள ஆப்பு ஒன்று ஒப்பமான கிடைத்தரைமீது
	வைக்கப்பட்டுள்ளது. m திணிவுள்ள இரு துணிக்கைகள் ஆப்பின் ஒப்பமான
	மேற்பரப்புகளில் படத்தில் காட்டப்பட்டவாறு வைக்கப்பட்டு ஒரு இலேசான
	நீட்டமுடியாத இழையின் முனைகளுக்கு இணைக்கப்பட்டுள்ளன. $\lambda m \alpha$
	தொகுதியானது இழைகள் இறுக்கமாக இருக்கப் பிடிக்கப்பட்டு ஓய்விலிருந்து
	இயங்கவிடப்படும்போது இழையில் உள்ள இழுவையை காண்பதந்குத் தேவையான சமன்பாடுகளை எழுதுக.
,	
0.	உற்பத்தி O குறித்து A,B,C ஆகிய புள்ளிகளின் தானக்காவிகள் முறையே $3\mathbf{i}+4\mathbf{j},2\mathbf{j},-(a+1)\mathbf{i}+a\mathbf{j}$
	ஆகும். இங்கு $a>0$ ஆகும். $\measuredangle AOB=\cos^{-1}\left(\frac{4}{5}\right)$ எனக்காட்டுக மேலும் $\measuredangle AOC=\frac{\pi}{2}$ எனின் a
	இனைக் காண்க.

7.	2a நீளமுள்ள m திணிவுள்ள சீரான கோலொன்று A யில் ஒப்பமாக 1
	பிணைக்கப்பட்டுள்ளது. $\frac{m}{2}$ திணிவுள்ள சீரான வட்ட அடர் ஒன்று கோலின்மீது C யில்
	வக்கப்பட்டு தொகுதியானது படத்தில் காட்டியவாறு இரு ஒப்பமான சுவர்களுக்கிடையில்
	சமனிலையில் உள்ளது. AB கிடையுடன் 60° அமைக்கின்றது எனவும் $AC=\frac{3a}{2}$
	எனவும் தரப்படின் B யில் கோலின்மீது உள்ள மறுதாக்கத்தைக் காண்க.
	ымын элиний D шис чанын шуулгаармуа анчиг. $A = A = A = A = A$
8.	4a பக்க நீளமுடைய சதுர அடர் ஒன்று படத்தில் காட்டியவாறு உச்சி B ஒரு D
0.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ
о.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது.
ο.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது. AB தரைக்கும் அடருக்கும் இடையிலான உராய்வுக் குணகம் μ எனின் சமனிலைக்கு
0.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது.
0.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது. AB தரைக்கும் அடருக்கும் இடையிலான உராய்வுக் குணகம் μ எனின் சமனிலைக்கு
0.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது. AB தரைக்கும் அடருக்கும் இடையிலான உராய்வுக் குணகம் μ எனின் சமனிலைக்கு
0.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது. AB தரைக்கும் அடருக்கும் இடையிலான உராய்வுக் குணகம் μ எனின் சமனிலைக்கு
ο.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது. AB தரைக்கும் அடருக்கும் இடையிலான உராய்வுக் குணகம் μ எனின் சமனிலைக்கு
ο.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது. AB தரைக்கும் அடருக்கும் இடையிலான உராய்வுக் குணகம் μ எனின் சமனிலைக்கு
ο.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது. AB தரைக்கும் அடருக்கும் இடையிலான உராய்வுக் குணகம் μ எனின் சமனிலைக்கு
0.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது. AB தரைக்கும் அடருக்கும் இடையிலான உராய்வுக் குணகம் μ எனின் சமனிலைக்கு
0.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது. AB தரைக்கும் அடருக்கும் இடையிலான உராய்வுக் குணகம் μ எனின் சமனிலைக்கு
0.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது. AB தரைக்கும் அடருக்கும் இடையிலான உராய்வுக் குணகம் μ எனின் சமனிலைக்கு
0.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது. AB தரைக்கும் அடருக்கும் இடையிலான உராய்வுக் குணகம் μ எனின் சமனிலைக்கு
0.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது. AB தரைக்கும் அடருக்கும் இடையிலான உராய்வுக் குணகம் μ எனின் சமனிலைக்கு
0.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது. AB தரைக்கும் அடருக்கும் இடையிலான உராய்வுக் குணகம் μ எனின் சமனிலைக்கு
0.	கரடான கிடைத்தரைமீது இருக்குமாறும் AB ஆனது E எனும் ஒப்பமான முளையை தொட்டுக் கொண்டும் சமனிலையில் உள்ளது. AB கிடையுடன் θ சாய்வில் இருக்கின்றது. $BE=3a$ எனவும் $\tan\theta=\frac{1}{3}$ எனவும் தரப்பட்டுள்ளது. AB தரைக்கும் அடருக்கும் இடையிலான உராய்வுக் குணகம் μ எனின் சமனிலைக்கு

A, B	ஆமாபல	. 25.11	Onlyn	நிகழிகள	, , 35011	отоотодш	$\Gamma(A)$ -	=0.2, I	$P(A \cup B)$) – 0.0	எனவும்	தரபபட(nomonion.
P(B)	இனைக்	கண்டு	P(A	B'), P	(B' A	4') ஆகி	ധഖ ന്റ്ന്റെ	க் கான	ன்க.				
											• • • • • • • • • • • • • • • • • • • •		
									• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • •	•••••
	மாக குறி	ித்த இ	ரு தின	ங்களில்	45,	26 என	பதியப்ப	ட்டிருந்த	த தொற்		பதுவுகளால் ின் எண்க		ட வழ 35,36
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்க ள்	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்க ள்		ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்க ள்	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்க ள்	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்க ள்	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்க ள்	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்களி	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்களி	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்களி	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்களி	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்களி	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்களி	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்களி	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்களி	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்களி	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்களி	ின் எண்	ணிக்கை	
என தி	மாக கு <u>ற</u> ருத்தப்பட	ித்த இ ட்டது. தி	ர தின இருத்தப்	ங்களில் பட்ட <i>டி</i>	$45,$ ι , σ^2	26 என ஆகியவ	பதியப்ப ந்நைக் எ	ட்டிருந்த காண்க.	த தொ <u>ந</u> ்	றாளர்களி	ின் எண்	ணிக்கை	

முழுப் பதிப்புரிமை உடையது / All Rights Reserved

MORA E-TAMILS Tamil Students Faculty of Finding ring. University of Moratuwa MORA E-TAMILS Tamil Students Faculty of Findingerian University of Moratuwa வாற்ட்டுவைம் மக்கைக்கியாற்பட்டுக்கும் நிறு மான் வழக்கியாற்பட்டுக்கும் நிறு மான் வழக்கும் நிறு மான் வரக்கும் நிறு மான் வரக்கும் நிறும் நிறு

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை -- 2020

General Certificate of Education (Adv.Level) Pilot Examination - 2020

இணைந்த கணிதம் II Combined Mathematics II

பகுதி B

- 🔻 ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- $11. (a) \ t = 0$ இல் ஓய்விலிருந்து இயங்க ஆரம்பிக்கும் பலூன் ஒன்று தரையிலிருந்து மேல்நோக்கி $f\left(<rac{g}{2}
 ight)$ எனும் ஆர்முடுகலுடன் பயணிக்கின்றது. நேரம் t = T இல் பலூனிலிருந்து பந்து ஒன்று மெதுவாக விழவிடப்படுகின்றது. பந்து விழவிடப்பட்ட கணத்திலிருந்து பலூனானது 2f எனும் அமர்முடுகலுடன் இயங்கி ஓய்வுக்கு வந்து வளியில் நிலையாக மிதக்கின்றது. பந்தானது புவியீர்ப்பின்கீழ் இயங்கி பலூன் ஓய்வடைந்து சிறிது நேரத்தின் பின்னர் மீண்டும் பலூனை அடைகின்றது. பந்து, பலூன் ஆகியவற்றின் இயக்கங்களுக்கான வேக-நேர வரைபுகளை ஒரே படத்தில் வரைக.
 - (i) பந்தானது தரைக்கு மேல் அடையும் அதிஉயர் உயரம் $\dfrac{fT^2}{2g}(f+g)$ எனக்காட்டுக.
 - (ii) பந்தானது அதி உயர் புள்ளியை அடையும்போது பந்திற்கும் பலூனிற்கும் இடையிலான தூரம் $rac{fT^2}{4g}(2f-g)$ எனக்காட்டுக.
 - (iii) நேரம் $t=T\left(1+rac{f}{g}+rac{\sqrt{2f(2f-g)}}{2g}
 ight)$ இல் பந்து மீண்டும் பலூனை அடைகின்றது எனக்காட்டுக.
 - $(b)\ S$ எனும் கப்பலானது மேற்கு நோக்கி v கதியுடன் செல்கின்றது. kv(k>1) எனும் கதியுடன் பயணிக்கவல்ல B எனும் படகானது S இலிருந்து புறப்பட்டு எப்பொழுதும் S இற்கு வடமேற்காக இருக்குமாறு S இலிலிருந்து d தூரத்திற்கு சென்று பின்னர் மீண்டும் S இனை அடைகின்றது. B யினது S இலிலிருந்து வெளிநோக்கிய, S இனை நோக்கிய பயணங்களின்போது S சார்பாக B யின் இயக்கத்திற்கான வேக முக்கோணிகளை ஒரே படத்தில் வரைக. இதிலிருந்து B ஆனது S இலிருந்து வெளிநோக்கி செல்லும் போது S சார்பாக B யின் கதி $\frac{v}{\sqrt{2}}\Big(\sqrt{2k^2-1}-1\Big)$ எனக்காட்டி B யின் S இனை நோக்கிய பயணத்தின்போது S சார்பாக B யின் கதியை காண்க. B யானது S இலிருந்து வெளிநோக்கி, S இனை நோக்கி பயணித்த நேரங்கள் முறையே T_1,T_2 எனின் $\frac{T_1}{T_2}=\frac{k^2+\sqrt{2k^2-1}}{k^2-1}$ எனக்காட்டுக. மேலும் B இனது மொத்த பிரயாண நேரம் T எனின் $d=\frac{(k^2-1)vT}{\sqrt{2(2k^2-1)}}$ எனக்காட்டுக.

 $12. \ (a) \ ABCD$ ஆனது 2m திணிவுள்ள ஆப்பு ஒன்றின் அதி உயர் சாய்வு கோட்டின் வழியேயான குறுக்குவெட்டுமுகமாகும். dநீளமான இலேசான மெல்லிய பலகை CE ஆனது ஆப்புடன் DCEஒப்பமான இணைக்கப்பட்டு ஆப்பானது ஒரு கிடைத்தரைமீது இருக்குமாறு வைக்கப்பட்டுள்ளது. கிடையுடன் 30° அமைக்கும் ஆப்பின் ஒப்பமான முகம் AB மீது Aயில் m திணிவுள்ள துணிக்கை ஓய்வில் பிடிக்கப்பட்டு $\frac{1}{27777}$

மேலும் AB=3a, $BC=rac{3a}{2}$ எனவும் தொடரும் இயக்கத்தில் துணிக்கையானது பலகை CE மீது விழுகின்றது எனவும் தரப்படின் ஆப்பு சார்பாக துணிக்கையின் இயக்கத்தை கருதுவதன் $d \ge \sqrt{3}a$ எனக்காட்டுக.

 $\frac{2g}{3}$ எனவும் ஆப்பினால் துணிக்கைக்கு வழங்கப்படும் மறுதாக்கம் $\frac{4\sqrt{3}}{9}mg$ எனவும் காட்டுக.

(b) $\frac{3a}{2}$ நீளமுள்ள நீளா இழை ஒன்றின் ஒரு முனை கிடைத்தரை மீது உள்ள ஒரு புள்ளி இந்கு இணைக்கப்பட்டு இழையின் மறுமுனைக்கு m திணிவுள்ள துணிக்கை Pஇணைக்கப்பட்டுள்ளது. இழையானது படத்தில் காட்டியவாறு $\it O$ இற்கு நிலைக்குத்தாக மேலே a தூரத்தில் உள்ள A எனும் ஒப்பமான முளையின் மேலாக செல்கின்றது. Pஆனது இழையின் பகுதிகள் இறுக்கமாகவும் நிலைக்குத்தாகவும் இருக்க சமனிலையில் உள்ளபோது துணிக்கைக்கு கிடையாக u வேகம் வழங்கப்படுகின்றது. AP கீழ்முக

நிலைக்குத்துடன் heta கோணம் அமைக்கும்போது இழையில் உள்ள இழுவை $\frac{m}{a} (2u^2 - ag(2-3\cos\theta))$ எனக்காட்டுக. தொடரும் இயக்கத்தில் இழை நிலைக்குத்தாக உள்ளபோது இழைக்கும் முளைக்கும் Pஆனது இடையிலான தொடுகை இல்லாது போனபின் Oஇனை மையமாகக் வட்டப்பாதையில் இயங்குகின்றது. இழைக்கும் முளைக்கும் இடையிலான தொடுகை நீங்குவதற்கு சற்று முன்னரும் சந்றுப் பின்னரும் இழையில் உள்ள இழுவைகளுக்கு இடையிலான விகிதம் 5:1 எனின் $u^2 = 5ag$ எனக்காட்டுக.

சீலிங்கிற்கும் மறுமுனை m திணிவுள்ள துணிக்கை P இற்கும் இணைக்கப்பட்டுள்ளது. aஇயற்கை நீளமும் mg மீள்தன்மை மட்டும் உடைய இன்னோர் இழை BP இன் ஒரு முனை B கிடைத்தரைக்கும் மறுமுனை P இற்கும் இணைக்கப்பட்டு APB நிலைக்குத்தாக ஒரு நேர்கோட்டிலிருக்குமாறும் AB=5a ஆகுமாறும் உள்ளது. சமனிலையில் AP=3a எனின் $\lambda = 4$ எனக்காட்டுக.

P ஆனது AP=2a ஆகுமாறு பிடிக்கப்பட்டு கீழ்நோக்கி $3\sqrt{ag}$ கதியுடன் எறியப்படுகின்றது. $\frac{1}{2\pi i \pi R}$

AP=x ஆக இருக்கும்போது $\ddot{x}=-rac{3g}{a}(x-3a)$ எனக்காட்டுக. இங்கு $2a\leq x\leq 4a$ ஆகும். இச்சமன்பாடு

 $\ddot{X}=-\omega^2 X$ எனும் வடிவில் எடுத்துரைக்கப்படலாம் எனக்காட்டுக. இங்கு $X=x-3a,\ \omega^2=rac{3g}{a}$ ஆகும்.

 $\dot{X}^2 = \omega^2 (A^2 - X^2)$ எனும் சமன்பாட்டை பிரயோகித்து $5a \le X \le 7a$ இல் துணிக்கையின் வீச்சத்தைக் காண்க. மேலும் துணிக்கை எறியப்பட்டதிலிருந்து $\frac{\pi}{9} \sqrt{\frac{3a}{g}}$ நேரத்தின் பின்னர் இழை BP தொய்வடையும் எனக்காட்டுக.

இழை BP தொய்யும்போது அவ் இழையானது வெட்டப்படுகின்றது. தொடரும் இயக்கத்தில் x ஆனது $\ddot{x}=-rac{2g}{a}ig(x-rac{5a}{2}ig)$ இனைத் திருப்தி செய்யும் எனக்காட்டுக. மேலும் துணிக்கையானது \sqrt{ag} எனும் கதியுடன் தரையை அடிக்கும் எனக்காட்டுக. தரையுடனான மோதுகையால் துணிக்கை P கணநிலை ஓய்வுக்கு வருகின்றது எனின் தரையை மோதி $rac{\pi}{2}\sqrt{rac{2g}{a}}$ நேரத்தின் பின்னர் P மட்டுமட்டாக சீலிங்கை அடையும் எனக்காட்டுக.

- 14. (a) OACB ஆனது ஓர் இணைகரம் ஆகும். D ஆனது OA மீது OD:DA=2:1 ஆகுமாறு உள்ளது. E ஆனது OB இன் நடுப்புள்ளி ஆகும். CE, BD ஆகியன F இல் சந்திக்கின்றன. $\overrightarrow{OA}=\mathbf{a}$, $\overrightarrow{OB}=\mathbf{b}$ எனத்தரப்படின் \overrightarrow{BD} , \overrightarrow{CE} ஆகியவற்றைக் காண்க. $\overrightarrow{FE}=\lambda\overrightarrow{CE}$, $\overrightarrow{BF}=\mu\overrightarrow{BD}$ எனத்தரப்படின் λ , μ ஆகியவற்றைக் காண்க. \overrightarrow{BD} , \overrightarrow{CE} ஆகியன ஒன்றுக்கொன்று செங்குத்தானவை எனின் $4|\mathbf{a}|^2-4(\mathbf{a}.\mathbf{b})-3|\mathbf{b}|^2=0$ எனக்காட்டுக. இதிலிருந்து
 - (i) OACB ஓர் சாய்சதுரம் எனின் \mathbf{a},\mathbf{b} ஆகியவற்றுக்கு இடையிலான கோணத்தைக் காண்க.
 - (ii) OACB ஓர் செவ்வகம் எனின் $|\mathbf{a}| = \frac{\sqrt{3}}{2} |\mathbf{b}|$ எனக்காட்டுக.
 - (b) Oxy தளத்தில் உள்ள A,B,C,D எனும் நான்கு புள்ளிகளில் தாக்கும் நான்கு விசைகள் F_1,F_2,F_3,F_4 தொடர்பான தகவல்கள் அட்டவணையில் தரப்பட்டுள்ளன. இங்கு a,P ஆகியன முறையே மீற்றர், நியூட்டனில் அளக்கப்படும் நேர் கணியங்கள் ஆகும்.

தாக்கும் புள்ளி	ഖിசെ
A(2a, a)	$F_1 = 3P\mathbf{i} + 5P\mathbf{j}$
B (-a, 2a)	$F_2 = -2P\mathbf{i} + 6P\mathbf{j}$
C(-a,-a)	$F_3 = 4P\mathbf{i} - P\mathbf{j}$
D(2a,-3a)	$F_4 = P\mathbf{i} - 2P\mathbf{j}$

தொகுதியின் விளையுளின் பருமன் 10P நியூட்டன் எனக்காட்டி விளையுளின் திசையைக் காண்க. உந்பத்தி O குறித்து தொகுதியின் திருப்பம் இடஞ்சுழிப்போக்கில் 9aP நியூட்டன் மீற்றர் ஆகும் எனக்காட்டுக. மேலும் விளையுளின் தாக்கக்கோட்டின் சமன்பாடு 8x-6y-9a=0 எனக்காட்டுக.

- (i) தொகுதிக்கு $E \equiv (3a, \lambda a)$ எனும் புள்ளியில் F எனும் விசையை சேர்க்க தொகுதி F சமனிலையில் இருக்கும் எனின் λ, F ஆகியவற்றைக் காண்க.
- (ii) தொகுதிக்கு y-அச்சு மீது உள்ள ஒரு புள்ளி H இல் F' எனும் விசையைச் சேர்க்க தொகுதியானது இடஞ்சுழியாக 24aP நியூட்டன் மீற்றர் எனும் இணைக்கு ஒடுங்குகின்றது எனின் H இன் ஆள்கூறுகளைக் காண்க.

15. (a) AB, BC என்பன முறையே 2a, 4a நீளமும் w, 2w நிறையும் உடைய இரு சீரான கோல்கள் ஆகும். இவை B யில் ஒப்பமாக மூட்டப்பட்டுள்ளன. கோல் AB யின் ஒரு முனை A ஆனது படத்தில் காட்டியவாறு ஓர் நிலைக்குத்து சுவருக்கு ஒப்பமாகப் பிணைக்கப்பட்டுள்ளது. கோல் BC யின் முனை C யிற்கு ஓர் இலேசான சிறிய வளையம் இணைக்கப்பட்டு அவ்வளையமானது OP

எனும் கரடான கிடைக்கம்பி மீது சுயாதீனமாக வழுக்கக் கூடியவாறு கோர்க்கப்பட்டுள்ளது. சமனிலையில் AB கிடையுடன் heta கோணம் அமைப்பதுடன் $A\hat{B}C=rac{\pi}{2}$ ஆக இருக்கின்றது. $an heta=rac{3}{4}$

எனத்தரப்படின் மூட்டு B யில் உள்ள மறுதாக்கத்தின் கிடை, நிலைக்குத்துக் கூறுகளின் பருமன்கள் முறையே $\dfrac{18w}{25},\dfrac{w}{25}$ எனக்காட்டுக. மேலும் வளையத்திற்கும் கம்பிக்கும் இடையிலான உராய்வுக்

குணகம் μ எனின் $\mu\!\geq\!rac{18}{49}$ எனக்காட்டுக.

(*b*) *AB*, *BC*, *AC*, *AD*, *CD* எனும் ஐந்து இலேசான கோல்களால் ஆக்கப்பட்ட சட்டப்படல் ഉത്തന്ദ படம் Aகாட்டுகின்றது. சட்டப்படலானது யில் ஒப்பமாகப் பிணைக்கப்பட்டு $B,\,C$ யில் முறையே $120\,kN,\,40\,kN$ நிரைகள் தொங்கவிடப்பட்டு D யில் கிடையுடன் சாய்வில் தாக்கும் Pஎனும் விசையால் சமனிலையில்

பேணப்படுகின்றது. இங்கு $\angle ACD = \alpha$ ஆக இருப்பதுடன் $\tan \alpha = \frac{4}{3}$ ஆகும். போவின் குறியீட்டைப் பயன்படுத்தி கோல்களில் உள்ள தகைப்புகளைக் காண்பதற்கான தகைப்பு வரிப்படத்தை வரைந்து P = 560~kN எனக்காட்டுக. மேலும் கோல்களில் உள்ள தகைப்புகளைக் கண்டு அவை இழுவையா உதைப்பா என வேறுபடுத்துக.

- **16.** a ஆரையும் σ மேற்பரப்படர்த்தியும் உடைய சீரான பொள் அரைக்கோளம் ஒன்றின் புவியீர்ப்பு மையம் அதன் மையத்திலிருந்து சமச்சீர் அச்சு வழியே $\frac{a}{2}$ தூரத்தில் இருக்கும் எனக்காட்டுக.
 - O இனை மையமாகவும் $k\sigma$ மேற்பரப்படர்த்தியும் 2a ஆரையும் உடைய வட்ட தட்டு ஒன்றின் மையத்திலிருந்து a ஆரையுடைய வட்டப்பகுதி அகற்றப்பட்டு மூடி ஒன்று பெறப்படுகின்றது. a,2a ஆரையும் σ மேற்படர்த்தியும் உடைய இரு சீரான பொள் அரைக்கோளங்களும் மேலே கூறப்பட்ட மூடியும் அவற்றின் விளிம்புகள் வழியே ஒட்டப்பட்டு படத்தில் காட்டப்பட்ட சேர்த்திப்பொருள் உருவாக்கப்படுகின்றது. சேர்த்திப் பொருளின்

புவியீர்ப்பு மையம் G எனின் $OG = \frac{9a}{3k+10}$ எனக்காட்டுக. மேலும் $k \geq \frac{8}{3}$ எனின் $OG \leq \frac{a}{2}$ எனக்காட்டுக.

இச்சேர்த்திப்பொருளானது அதன் வெளி வளைமேற்பரப்பு ஒரு கடரான கிடைத்தரையையும் சமகரடான நிலைக்குத்து சுவரையும் தொட்டுக்கொண்டிருக்குமாறு சமனிலையில் உள்ளது. பொருளுக்கும் தொடுகை மேற்பரப்பிற்கும் இடையிலான உராய்வுக் குணகம் μ எனின் வழுக்கும் தறுவாயில் சேர்த்திப் பொருளின் வட்ட

அடி கிடையுடன் அமைக்கும் கோணம்
$$\sin^{-1}\!\left(rac{\mu(1+\mu)(3k+10)}{9(1+\mu^2)}
ight)$$
 எனக்காட்டுக.

- 17. (a) 'COPYRIGHT' எனும் சொல்லில் இருந்து 5 எழுத்துக்கள் எழுமாற்றாக தெரியப்படுகின்றன. தெரியப்படும் எழுத்துக்களில் 'P' இல்லாது இருப்பதற்கான நிகழ்தகவைக் காண்க. பெட்டி ஒன்றினுள் 3,4,5 என இலக்கமிடப்பட்ட ஒரே அளவிலான மூன்று பந்துகள் உள்ளன. பந்து ஒன்று எழுமாற்றாக தெரியப்பட்டு பந்தில் உள்ள எண்ணிக்கையான எழுத்துக்கள் 'COPYRIGHT' எனும் சொல்லில் இருந்து எழுமாற்றாக எடுக்கப்படுகின்றன.
 - (i) எடுக்கப்பட்ட எழுத்துக்களினுள் 'P' இல்லாதிருப்பதற்கான நிகழ்தகவை மொத்த நிகழ்தகவு தேற்றத்தை பயன்படுத்தி காண்க.
 - (ii) எடுக்கப்பட்ட எழுத்துக்களினுள் 'P' இல்லை எனின் 5 எழுத்துக்கள் எடுக்கப்பட்டிருப்பதற்கான நிகழ்தகவைக் காண்க.
 - (b) பாடசாலை ஒன்றில் உள்ள 200 மாணவர்களின் உயரங்கள் $h\left(cm\right)$ ஆனது அளக்கப்பட்டது. பெறப்பட்ட தரவு $y=rac{h-160}{5}$ எனும் உருமாற்றத்திற்கு உட்படுத்தப்பட்டு பின்வரும் அட்டவணை பெறப்பட்டது.

У	மீடிறன்
(-4) - (-2)	15
(-2) - 0	50
0 - 2	65
2 – 4	60
4 – 6	10

மாணவர்களின் உயரங்களின் இடை $\mu,$ மாறற்றிறன் σ^2 ஆகியவற்றைக் காண்க.

மேலும் மாணவர்களின் உயரங்களினது ஆகாரம் M இனைக் கண்டு $\kappa = \frac{\mu - M}{\sigma}$ இனால் வரையறுக்கப்படும் ஓராயக் குணகத்தை மதிப்பிடுக.

* * *