

FORD 5R110W ("TorqShift") PRELIMINARY INFORMATION

Figure 1

The new Ford 5R110W, referred to by Ford Motor Company as the "TorqShift" transmission, is a redesign of the 4R100 transmission with some previous strategy applied. This unit was introduced in model year 2003 in the F Series Trucks and the Excursion vehicles that are equipped with the new 6.0L diesel engine. The "TorqShift" (5R110W) is a 5 speed, rear wheel drive unit that actually has six forward speeds available, depending on hot or cold mode operation. The gear ratio for 1st gear was lowered from 2.71 to 3.09. For 2nd gear the overdrive clutch is applied to provide a ratio of 2.20. 3rd gear provides a ratio of 1.54, which is the same ratio as the previous second gear. All sound familiar? When in cold mode operation, below -15°C (5°F), determined by the TFT sensor, the overdrive clutch is engaged in 3rd gear to provide a ratio of 1.09 for 4th gear, and the transmission will shift directly into 6th gear (overdrive), which is a ratio of 0.71. In cold mode the transmission shifts 1st gear, 2nd gear, 3rd gear, 4th gear, 6th gear. When in hot mode the transmission will shift 1st gear, 3rd gear, 5th gear (ratio 1.00), 6th gear. Either way it is still a five speed unit with six forward gear ratios available, depending on cold mode or hot mode of operation.

Continued on next Page

Copyright © 2004 ATSG

04-02 Page 1 of 26

The component application chart for each gear is provided for you in Figure 5, and the identification tag location and description is provided in Figure 4. Notice also in the component application chart that there are two freewheel diodes, one for overdrive and one for first gear, These are actually built into the coast clutch pressure plate and the low/reverse clutch pressure plate. Hopefully Ford has found a way to make this type of freewheel device more durable. They have been on the road for 1 year now and so far, no calls.

ATSG's perception of the 2003 Super Duty vehicle that we test drove was, the shift performance has been greatly improved over the 4R100 transmission. There were no lags between the shifts and every shift was very positive. This was accomplished with a total redesign of the control valve body. There is a solenoid and a pressure switch dedicated to the function of each clutch pack, except the forward clutch, which is controlled by the manual valve. There are no other shuttle valves in the solenoid body. All shifts are controlled by five solenoids. Line pressure and the torque converter clutch each have their own dedicated solenoid. Four of the solenoids, TCC, OD Clutch, Intermediate Clutch and the Low/Reverse Clutch, are *directly proportional* which means the pressure output is directly proportional to the applied DC amps. The current is varied between 0 and 1 amp from the PCM, and 1 amp equals maximum pressure in the oil circuit. Three of the solenoids, Line Pressure, Coast Clutch and Direct Clutch, are *inversely proportional* which means the pressure output is inversely proportional to the applied DC amps. The current is varied between 0 and 1 amp from the PCM, and 0 amp equals maximum pressure in the oil circuit. Refer to Figure 6 for solenoid and switch locations in the solenoid body.

There has also been added to the instrument cluster, a transmission temperature gauge that we think is long over-due. There is also another new feature on this unit called the Tow/Haul Mode (See Figure 3). The Tow/Haul feature was designed to assist the driver when towing a trailer or a heavy load. All transmission gear ranges, including all five forward gears, are available when using the Tow/Haul feature. The Tow/Haul Switch is located on the end of the manual shift lever and is a momentary contact switch. The Tow/Haul Switch provides a signal to the PCM when pressed by the operator, resulting in a change in shift and TCC scheduling. When the Tow/Haul Switch has been turned on, the indicator lamp that is located at the end of the manual shift lever will illuminate "Tow/Haul - ON". When Tow/Haul is activated, upshifts will now occur at a higher vehicle speed, and when decelerating, the downshifts will also occur at a higher vehicle speed, providing some added engine braking. When the switch is pressed again, Tow/Haul will be canceled and the Transmission Control Indicator Lamp (TCIL) will turn off. The PCM controls the operation of the TCIL. The PCM may also flash the TCIL on and off, to alert the driver that a transmission operational error has occured, when certain faults in monitored sensors, solenoids or other transmission components are detected.

The new Ford 5R110W "TorqShift" transmission also uses a new transmission fluid called Mercon®SP, and *is not interchangeable* with Mercon® or Mercon®V. The use of any other transmission fluid than Mercon®SP, can result in the transmission failing to operate in a normal manner and/or transmission failure. Ford recommends the transmission fluid and bottom pan filter be changed every 48,000 km (30,000 miles) regardless of normal or special operating conditions.

This transmission is also equipped with a new remote transmission fluid filter, as shown in Figure 18. This filter passes ten percent of the transmission fluid from the transmission through a small orifice into a servicable screw-on filter element. The filtered fluid is then directed back into the rear lube circuit through the large opening in the remote filter manifold. The remote filter in the cooler lines should also be changed at all service intervals. Notice also in Figure 18 that this unit is equipped with an Oil-To-Air (OTA) in front of the radiator. Fords recommends replacing the OTA transmission fluid cooler as part of any overhaul or exchange. Do Not attempt to backflush and clean the OTA transmission fluid cooler.

Everything considered, this writer feels that Ford Motor Company is on to something with this new design 5R110W "TorqShift" transmission along with the very sophisticated electronics.

We have provided you with 26 pages of operational and preliminary diagnostic information to assist you in the diagnostic process, when one of these vehicles comes into your shop.

Copyright © 2004 ATSG

Copyright @ 20

04-02 Page 2 of 26

Refer to Figure 2 for transmission temperature gage location.

Refer to Figure 3 for Tow/Haul button Location.

Refer to Figure 4 for identification tag location and information.

Refer to Figure 5 for Internal Component Application Chart.

Refer to Figure 6 for internal electronic component locations and identification.

Refer to Figure 7 for illustration of the pressure switches.

Refer to Figure 8 for differences and identification of the seven solenoids.

Refer to Figure 9 for TSS/ISS sensor illustrations and connector information.

Refer to Figure 10 for OSS sensor illustrations and connector information.

Refer to Figure 11 for Transmission Range Sensor duty cycle and connector information.

Refer to Figure 12 for Transmission Fluid Temperature sensor information.

Refer to Figure 13 for transmission case connector pin identification and functions.

Refer to Figure 14 for PCM location, connector pin identification and functions.

Refer to Figure 15 for internal wiring schematic from transmission to PCM.

Refer to Figure 16 for internal electronic component resistance chart.

Refer to Figure 17 for transmission line pressure tests and procedures.

Refer to Figure 18 for remote transmission filter location and cooler information.

Refer to Figure 19 for abbreviation descriptions.

Refer to Figure 20 through 25 for Diagnostic Trouble Code (DTC) description.

Copyright © 2004 ATSG

04-02 Page 3 of 26

GENERAL TRANSMISSION DESCRIPTION AND OPERATION

The Ford 5R110W "TorqShift" transmission has seven range positions that can be selected with the manual shift lever, P, R, N, (D), 3, 2, 1. Following is a description of each range.

P When the Park position is selected, there is no powerflow through the transmission. The parking pawl is engaged which locks the output shaft to the transmission case. The engine can be started and the ignition key can be removed.

R When the Reverse position is selected, the vehicle can be operated in a rearward direction at a reduced gear ratio.

When the Neutral position is selected, there is no powerflow through the transmission. The output shaft is not held and is free to turn and the engine can be started. This position can also be selected while vehicle is moving, to restart the engine if that becomes necessary.

(D) The Overdrive position is the normal position for most forward gear operations. The Overdrive position provides automatic upshifts and downshifts, apply and release of the converter clutch, and maximum fuel economy during normal operation.

3 The 3rd Gear position provides third gear start and hold, for improved traction on slippery roads. This position can also be selected at any vehicle speed for improved engine braking. Transmission will not downshift if it will cause an engine overspeed condition.

2 The 2nd Gear position provides second gear start and hold, for improved traction on slippery roads. This position can also be selected at any vehicle speed for improved engine braking. If this position is selected at higher speeds, the transmission will downshift to the next lower gear, and will downshift into second gear after the vehicle decelerates to a vehicle speed that will not create an engine overspeed condition.

The Manual Low Gear position provides 1st gear operation only. This position can also be selected at any vehicle speed to provide improved engine braking for descending steep grades. If this position is selected at higher speeds, the transmission will downshift to the next lower gear, and will downshift into first gear after the vehicle decelerates to a vehicle speed that will not create an engine overspeed condition.

Transmission Temperature Gage

There has also been added to the instrument cluster, a transmission temperature gauge that we think is long over-due, and should be on all vehicles.

Figure 2

ATSG

Technical Service Information

Tow/Haul Feature

The Tow/Haul feature was designed to assist the driver when towing a trailer or a heavy load. All transmission gear ranges, including all five forward gears, are available when using the Tow/Haul feature. The Tow/Haul Switch is located on the end of the manual shift lever, (See Figure 3) and is a momentary contact switch. The Tow/Haul Switch provides a signal to the PCM when pressed by the operator, resulting in a change in shift and TCC scheduling. When the Tow/Haul Switch has been turned on, the indicator lamp that is located at the end of the manual shift lever will illuminate "Tow/Haul - ON". When Tow/Haul is activated, upshifts will now occur at a higher vehicle speed, and when decelerating, the downshifts will also occur at a higher vehicle speed, providing some added engine braking. When the switch is pressed again, Tow/Haul will be cancelled and the Transmission Control Indicator Lamp (TCIL) will turn off. The PCM controls the operation of the TCIL. The PCM may also flash the TCIL on and off, to alert the driver that a transmission operational error has occured, when certain faults in monitored sensors, solenoids or other transmission components are detected.

Figure 3

Battery Disconnect, Dead Battery

Any time the battery is disconnected for any reason, a new PCM has been installed, or the calibration has been reflashed, the adaptive strategy for the "Engagement Schedule" must be updated.

This procedure will prevent the customer from returning with firm or harsh engagement complaints.

Procedure is as follows:

Note: All of the following engagements **must** be performed, in order for engagement pressures to correctly adapt with the new calibration.

- 1. Install diagnostic equipment and monitor TFT.
- 2. Warm the transmission fluid to 54°C (130°F) as indicated by the TFT.
- 3. Perform 5 engagements from *Park to Reverse*. Each engagement must be five seconds apart.
- 4. Perform 5 engagements from *Drive to Reverse*. Each engagement must be five seconds apart.
- 5. Perform 5 engagements from *Reverse to Drive*. Each engagement must be five seconds apart.
- 6. Perform 5 engagements from *Neutral to Drive*. Each engagement must be five seconds apart.

Copyright © 2004 ATSG

04-02 Page 5 of 26

Copyright © 2004 ATSG

	COMPO	ONENT A	APPLICA	ATION C	HART V	VITH TO	W/HAUL	"OFF"		
Range/Gear	Fwd. Clutch	Int. Clutch	Direct Clutch	O.D. Clutch	Coast Clutch	Lo/Rev Clutch	O.D. Diode	Low Diode	Gear Ratio	Eng Brake
Park/Neut						ON (a) (c)				
Reverse			ON(d)		ON	ON (a)			2.88	
O.D 1st	ON					ON (a) (c)	HOLD	HOLD	3.09	
O.D 2nd	ON			ON			O/R	HOLD	2.20	
O.D 3rd	ON	ON					HOLD	O/R	1.54	
O.D 4th (b)	ON	ON		ON			O/R	O/R	1.09	
O.D 5th	ON		ON				HOLD	O/R	1.00	
O.D 6th	ON		ON	ON			O/R	O/R	0.71	
Man- 3rd	ON	ON			ON		HOLD	O/R	1.54	YES
Man- 2nd	ON			ON		ON (a)	O/R	HOLD	2.20	YES
Man- 1st	ON				ON	ON (a)	HOLD	HOLD	3.09	YES

- (a) PCM Calibration Controlled
- (b) Cold Strategy
- (c) 30 psi Until 5 kmh (3 mph)
- $(d) \ Clutch \ Applied \ Through \ Manual \ Valve \ Position$

Copyright © 2004 ATSG

Figure 6

ELECTRICAL COMPONENT DESCRIPTION AND OPERATION

The following provides a brief description of each of the sensors and actuators used by the PCM for proper transmission operation

Powertrain Control Module (PCM)

The operation of the transmission is controlled by the Powertrain Control Module (PCM). Many input sensors provide information to the PCM. The PCM then uses this information to control actuators which determine transmission operation. Refer to Figure 14 for PCM location and connector terminal information and identification.

Engine Coolant Temperature (ECT) Sensor

The engine coolant temperature (ECT) sensor is a thermistor in which resistance changes when the temperature changes. The resistance of the sensor increases as engine temperature decreases and the voltage sent to the PCM increases. The PCM uses this information to help determine TCC operation.

Intake Air Temperature (IAT) Sensor

The intake air temparature (IAT) sensor is a thermistor in which the resistance changes with temperature. The resistance decreases as the intake air temperature increases. The IAT provides air temperature information to the PCM, which is used to help determine transmission line pressure and shift scheduling.

Accelerator Pedal Position (APP) Sensor

The accelerator pedal position (APP) sensor is mounted on the accelerator pedal on 6.0L diesel applications. The APP sensor detects the position of the accelerator pedal and inputs this information, as a voltage to the PCM. The PCM uses APP sensor information to help in determining line pressure, shift scheduling and TCC operation.

Failure of the APP sensor will cause transmission to operate at a higher than normal line pressure to help avoid damage to the transmission. This will result in harsh upshifts and harsh engagements.

Brake Pedal Position (BPP) Switch

The brake pedal position (BPP) switch supplies battery voltage to the PCM, that the brake pedal is applied. The PCM uses this information to release the torque converter clutch, speed control, and auxiliary idle (if equipped).

Tow/Haul Switch

The Tow/Haul Switch is located on the end of the manual shift lever and is a momentary contact switch. The Tow/Haul Switch provides a signal to the PCM when pressed by the operator, resulting in a change in shift and TCC scheduling. When the Tow/Haul Switch has been pressed, the indicator lamp that is located at the end of the manual shift lever will illuminate "Tow/Haul - ON". When the switch is pressed again, Tow/Haul will be cancelled and the TCIL will turn off (See Figure 3).

Transmission Control Indicator Lamp (TCIL)

The TCIL is used along with the Tow/Haul Switch. The TCIL is located near the end of the manual shift lever and will illuminate "Tow/Haul - ON" when the Tow/Haul switch has been pressed. The PCM controls the operation of the TCIL. The PCM may also flash the TCIL on and off, to alert the driver that a transmission operational error has occured, when certain faults in monitored sensors, solenoids or other transmission components are detected (See Figure 3).

4 X 4 Low Switch

The 4X4 Low Switch, located on the dash on the right hand side of the driver, sends a ground signal to the instrument cluster when the vehicle is in 4X4 Low. The PCM then recieves 4X4 Low status from the instrument cluster and adjusts the transmission shift schedule accordingly. Four wheel "High" can be selected while moving at any speed up to 55 MPH.

Copyright © 2004 ATSG

04-02 Page 9 of 26

ELECTRICAL COMPONENT DESCRIPTION AND OPERATION (Cont'd)

Transmission Solenoid Body Assembly

The Solenoid Body Assembly is bolted to the transmission case inside the bottom pan and looks similar to what we have previously referred to as a valve body. The Solenoid Body Assembly contains the following:

- Seven Variable Force Solenoids
- Five Normally Closed Pressure Switches
- Transmission Fluid Temperature Sensor
- Manual Shift Valve
- Over-Pressurization Relief Ball

There is a solenoid and a pressure switch dedicated to the function of each clutch pack, except the forward clutch, as it is controlled by the manual valve. There are no other valves in the solenoid body except for the pressure relief ball and spring. All shifts are controlled by five solenoids. Line pressure and the torque converter clutch each have their own solenoid. Four of the solenoids, TCC, OD Clutch, Intermediate Clutch and the Low/Reverse Clutch, are directly proportional which means the pressure output is directly proportional to the applied DC amps. The current is varied between 0 and 1 amp from the PCM, and 1 amp equals maximum pressure in the oil circuit. Three of the solenoids, Line Pressure, Coast Clutch and Direct Clutch, are inversely proportional which means the pressure output is inversely proportional to the applied DC amps. The current is varied between 0 and 1 amp from the PCM, and 0 amp equals maximum pressure in the oil circuit.

The different design solenoids are keyed differently to prevent mis-assembly in the solenoid body and all are retained with a large "E" clip. The "Natural" colored wire connectors connect to the solenoids. The "Black" colored connectors connect to the pressure switches. There are separate connectors for the TFT sensor and for the TR-P sensor. All of the solenoids except the line pressure solenoid can be serviced without removing the solenoid body from the case. Refer to Figure 6 for location and identification of the solenoids and switches on the solenoid body. Refer to Figure 8 for the differences and how to identify between the direct and inversely proportional solenoids.

Line Pressure Control Solenoid (PC-A)

The Line Pressure Control Solenoid (PC-A) is an *inversley proportional* three port solenoid. The pressure output is inversely proportional to the applied DC current supplied through an electronically controlled driver. The current is varied between 0 amp and 1 amp from the PCM, and 0 amp equals maximum pressure in the oil circuit. The PC-A Solenoid controls the line pressure oil circuits (See Figure 8)

Torque Converter Clutch (TCC) Solenoid

The Torque Converter Clutch (TCC) Solenoid is a *directly proportional* three port solenoid. The pressure output is directly proportional to the applied DC current supplied through an electronically controlled driver. The current is varied between 0 amp and 1 amp from the PCM, and 1 amp equals maximum pressure in the oil circuit. The TCC Solenoid controls the apply and release rates of the converter clutch (See Figure 8).

Shift Solenoid Pressure Control Solenoids (SSPC-B, SSPC-C, SSPC-E)

The overdrive (SSPC-B), intermediate (SSPC-C), and low/reverse (SSPC-E) clutches are each controlled by a *directly proportional* three port solenoid. The pressure output is directly proportional to the applied DC current supplied through an electronically controlled driver. The current is varied between 0 amp and 1 amp from the PCM, and 1 amp equals maximum pressure in the particular clutch oil circuit. The Shift Solenoid controls the apply and release rates of the particular clutch pack (See Figure 8).

Shift Solenoid Pressure Control Solenoids (SSPC-A, SSPC-D)

The coast (SSPC-A), and low/reverse (SSPC-E) clutch packs are each controlled by an *inversely proportional* three port solenoid. The pressure output is inversely proportional to the applied DC current supplied through an electronically controlled driver. The current is varied between 0 amp and 1 amp from the PCM, and 0 amp equals maximum pressure in the particular clutch oil circuit. The Shift Solenoid controls the apply and release rates of the particular clutch pack. Refer to Figure 8.

ELECTRICAL COMPONENT DESCRIPTION AND OPERATION (Cont'd)

Pressure Switches (PS-A, PS-B, PS-C, PS-D, PS-E)

Each of the five shift pressure control solenoids has a corresponding pressure switch, which is normally closed. The pressure switch is designed to open when shift solenoid control pressure exceeds 40 psi. All five of the pressure switches are identical and will interchange in the solenoid body, as shown in Figure 7. Their particular functions are as follows:

PS-A = Coast Clutch

PS-B = Overdrive Clutch

PS-C = Intermediate Clutch

PS-D = Direct Clutch

PS-E = Low/Reverse Clutch

Refer to Figure 6 for their particular locations in the solenoid body.

Figure 7

Figure 8
AUTOMATIC TRANSMISSION SERVICE GROUP

Figure 9

ELECTRICAL COMPONENT DESCRIPTION AND OPERATION (Cont'd)

Turbine Shaft Speed (TSS) Sensor and Intermediate Shaft Speed (ISS) Sensor

The turbine shaft speed (TSS) and intermediate shaft speed (ISS) sensors are hall effect sensors requiring a 12-volt supply and a ground. In this unit both sensors are incorporated into one housing. The other two terminals at the sensor are for TSS and ISS signals to the PCM. The sensor detects teeth on the coast clutch input hub for TSS signal, and the adjacent overdrive ring gear teeth for the ISS signal. Both sensors read 30 teeth per revolution. The TSS/ISS sensor's are mounted externally on the transmission case (See Figure 6). The TSS/ISS sensors imput to the PCM is digital and used to determine line pressure, shift timing and TCC operation. Refer to Figure 9 for TSS/ISS sensor illustrations and connector information.

Output Shaft Speed (OSS) Sensor

The transmission output shaft speed (OSS) sensor is located on the extension housing (See Figure 6). The OSS is a hall effect type sensor. The OSS reads a set of gear teeth on the park gear, that are different than the teeth used for the park function. The OSS signal to the PCM is used for vehicle speed signal, shift scheduling and TCC operation. The OSS has bi-directional capability and uses a digital output. Refer to Figure 10 for OSS sensor illustrations and connector information.

Cold Mode/Hot Mode Operation

When the transmission is in cold mode operation, below -15°C (5°F), *determined by the TFT sensor*, the transmission shifts 1st gear, 2nd gear, 3rd gear, 4th gear (ratio 1.09), 6th gear. When in hot mode the transmission will shift 1st gear, 2nd gear, 3rd gear, 5th gear (ratio 1.00), 6th gear. Either way it is still a five speed unit with six forward gear ratios available, depending on cold mode or hot mode of operation.

Copyright © 2004 ATSG

04-02 Page 12 of 26

TR-P Duty Cycle Chart		
Position	Min % Duty Cycle	Max % Duty Cycle
P	7.13	22.93
R	22.94	36.64
N	36.65	48.55
D	48.56	58.82
3	58.83	68.08
2	68.09	77.96
1	77.97	90.34
	C	opyright © 2004 ATSG

ELECTRICAL COMPONENT DESCRIPTION AND OPERATION (Cont'd)

Transmission Range (TR-P) Sensor Assembly

The transmission range (TR-P) sensor assembly, shown in Figure 11, is an internally mounted sensor that includes the detent spring, rooster comb lever and bracket, located next to the solenoid body and bolted to the transmission case. The transmission range sensor is non-adjustable and is not serviced independently. The TR-P sensor contains electronic circuitry that provides the PCM a fixed frequency, at a duty cycle, for each of the seven positions of the manual shift lever. Refer to Figure 11 for the duty cycle specifications for the various positions. The PCM uses the TR-P sensor signal for starting in Park and Neutral only, reverse lamp operation, and for line pressure control, shift scheduling and TCC operation.

Transmission Fluid Temperature (TFT) Sensor

The transmission fluid temperature (TFT) sensor twist-locks into the solenoid body and is a temperature sensitive device called a thermistor. As the fluid temperature increases, the TFT resistance decreases, as shown in the chart in Figure 12. The PCM uses the TFT signal as an input to determine *cold and hot temperature shift scheduling* and for TCC apply and release scheduling.

Transmiss	Transmission Fluid Temperature (TOT)		
Degrees C	Degrees F	Resistance (Ohms)	
-40 to -20	-40 to -4	967k to 284k	
-19 to -2	-3 to 31	284k to 100k	
0 to 20	32 to 68	100k to 37k	
21 to 40	69 to 104	37k to 16k	
41 to 70	105 to 158	16k to 5k	
71 to 90	159 to 194	5k to 2.7k	
91 to110	195 to 230	2.7k to 1.5k	
111 to130	231 to 266	1.5k to 0.8k	
131 to150	267 to 302	0.8k to 0.54k	

Figure 11 Figure 12

04-02 Page 13 of 26

	5R110W TRANSMISSION CASE CONNECTOR PIN FUNCTIONS
Pin Number	Description
1	Ground signal to Shift Solenoid Pressure Control "E" (SSPC-E)
3	Ground signal to Shift Solenoid Pressure Control "B" (SSPC-B)
4	Ground signal to Shift Solenoid Pressure Control "D" (SSPC-D)
5	Ground signal to Shift Solenoid Pressure Control "C" (SSPC-C)
7	VPWR to Pressure Control (PC-A) Solenoid and TCC Solenoid
8	Ground signal to Torque Converter Clutch (TCC) Solenoid
9	Pressure Switch "C" (PS-C), Intermediate Clutch Signal to PCM
10	Ground signal to Pressure Control (PC-A) Solenoid (Line Pressure)
11	Pressure Switch "D" (PS-D), Direct Clutch Signal to PCM
12	Ground signal to Shift Solenoid Pressure Control "A" (SSPC-A)
13	Pressure Switch "E" (PS-E), Low/Reverse Clutch Signal to PCM
14	Pressure Switch "A" (PS-A), Coast Clutch Signal to PCM
15	Transmission Range - Park (TR-P) Sensor, Signal to PCM
16	Pressure Switch "B" (PS-B), Overdrive Clutch Signal to PCM
17	Transmission Range - Park (TR-P) Sensor, Ground
18	Transmission Fluid Temperature (TFT) Sensor signal to PCM
20	VPWR to SSPC-A and SSPC-B Solenoids
21	VPWR to Transmission Range - Park (TR-P) Sensor Only
22	Ground for All Pressure Switches and TFT
24	VPWR to SSPC-C, SSPC-D and SSPC-E Solenoids

Special Note: Pin Numbers 2, 6, 19, and 23 are not used.

Figure 14

04-02 Page 15 of 26

Figure 15
AUTOMATIC TRANSMISSION SERVICE GROUP

IN	TERNAL COMPONENT I	RESISTANCE CHAR	T
INTERNAL COMPONENT	CASE CONNECTOR PIN NUMBERS	OHMS RESISTANCE	** Internal Wire Colors At Component Connector
SSPC-A Soleniod	12 and 20	4.1 to 4.7 @ 72° F	Purple and Orange
SSPC-B Soleniod	3 and 20	4.1 to 4.7 @ 72° F	Red and Tan
SSPC-C Soleniod	5 and 24	4.1 to 4.7 @ 72° F	Orange and Purple
SSPC-D Soleniod	4 and 24	4.1 to 4.7 @ 72° F	Tan and Pink
SSPC-E Soleniod	1 and 24	4.1 to 4.7 @ 72° F	Tan and Purple
PC-A Solenoid (Early)	7 and 10	4.1 to 4.7 @ 72° F	Gray and Purple
PC-A Solenoid (Late)	7 and 10	5.1 to 5.8 @ 72° F	Gray and Purple
TCC Solenoid	7 and 8	4.1 to 4.7 @ 72° F	Purple and Orange
PS-A	14 and 22	0.5 Ohms @ 72° F	Black and Pink
PS-B	16 and 22	0.5 Ohms @ 72° F	Tan and Pink
PS-C	9 and 22	0.5 Ohms @ 72* F	Pink and Black
PS-D	11 and 22	0.5 Ohms @ 72* F	Red and Gray
PS-E	13 and 22	0.5 Ohms @ 72* F	Gray and Orange
TFT	18 and 22	See Chart Below	Orange and Pink
TR-P Sensor		See Figure 11	
TSS/ISS Sensor		See Figure 9	
OSS Sensor		See Figure 10	

^{**} Wire colors may vary.

Transmiss	Transmission Fluid Temperature (TOT)		
Degrees C	Degrees F	Resistance (Ohms)	
-40 to -20	-40 to -4	967k to 284k	
-19 to -2	-3 to 31	284k to 100k	
0 to 20	32 to 68	100k to 37k	
21 to 40	69 to 104	37k to 16k	
41 to 70	105 to 158	16k to 5k	
71 to 90	159 to 194	5k to 2.7k	
91 to110	195 to 230	2.7k to 1.5k	
111 to130	231 to 266	1.5k to 0.8k	
131 to150	267 to 302	0.8k to 0.54k	

Copyright © 2004 ATSG

LINE	LINE PRESSURE CHART			
Range	Idle Speed	Stall Speed		
P/N	50 psi			
R	100 psi	320 psi		
(D)	70 psi	320 psi		
3	80 psi	260 psi		
2	80 psi	215 psi		
1	80 psi	270 psi		

All Pressures Listed Are Approximate

PRECAUTIONS:

- (1) Certain sensor failures may cause high line pressure and Failure Mode Effect Management (FMEM) actions. Ensure that on-board diagnostic and electrical repairs have been carried out first, or test results may be incorrect.
- (2) Perform the line pressure test in all ranges prior to performing the Stall Speed Test. If line pressure is low at idle, "Do Not" carry out the Stall Speed Test or additional transmission damage will occur. Do not maintain wide open throttle (WOT) in any range for more than 5 seconds or transmission damage may occur.
- (3) Apply the parking brake and block wheels during the line pressure test. Vehicle movement during the test may cause personal injury or damage to the vehicle and equipment.

Copyright © 2004 ATSG

Figure 18

Remote Transmission Filter

This transmission is equipped with a remote fluid filter, as shown in Figure 18. This filter passes ten percent of the transmission fluid from the transmission through a small orifice into a servicable screw-on filter element. The filtered fluid is then directed back into the rear lube circuit through the large opening in the remote filter manifold.

CAUTION: The transmission cooler lines must be disconnected prior to flushing out the cooler lines. Do Not attempt to flush the remote filter housing because of the internal orifice.

Copyright © 2004 ATSG

04-02 Page 19 of 26

FORD 5R110W Abbreviation Description			
Abbreviation	Description	Abbreviation	Description
4X4L	4X4 Low Switch	PC-A	Pressure Control Solenoid "A"
ABS	Antilock Brake System	PCM	Powertrain Control Module
A/C	Air Conditioning	PS-A	Pressure Switch "A"
ACCS	Air Conditioning Clutch Status	PS-B	Pressure Switch "B"
APGND	Accelerator Pedal Sensor Ground	PS-C	Pressure Switch "C"
APP	Accelerator Pedal Position Sensor	PS-D	Pressure Switch "D"
BARO	Barometric Pressure Sensor	PS-E	Pressure Switch "E"
BPP	Brake Pedal Position	ROM	Read Only Memory
BUS +	Data Link Connector	RPM	Engine Speed
BUS -	Data Link Connector	SCCS	Speed Control Command Switch
CASE GND	Case Ground	SSPC-A	Shift Solenoid Pressure Control A
CID	Cylinder Identification	SSPC-B	Shift Solenoid Pressure Control B
CMP	Camshaft Position Sensor	SSPC-C	Shift Solenoid Pressure Control C
DLC	Data Link Connector	SSPC-D	Shift Solenoid Pressure Control D
DTC	Diagnostic Trouble Code	SSPC-E	Shift Solenoid Pressure Control E
DTC CNT	Diagnostic Trouble Code Count	TAC	Tachometer Signal
ECT	Engine Coolant Temperature	TCC	Torque Converter Clutch
EOT	Engine Oil Temperature	TCIL	Trans Control Indicator Lamp
FEPS	Flash EPROM Power Supply	TCS	Transmission Control Switch
FUEL PW	Fuel Pulse Width	TFT	Transmission Fluid Temperature
GP	Glow Plug	TR-P	Transmission Range Sensor
GPC	Glow Plug Control Duty Cycle	TP	Throttle Position Sensor
GPL	Glow Plug Lamp	TSS	Turbine Shaft Speed Sensor
IAT	Intake Air Temperature	VPWR	Vehicle Power Supply
ICP	Injector Control Pressure Sensor	VREF	Vehicle Reference Voltage
IPR	Injector Pressure Regulator	VSS	Vehicle Speed Sensor
ISS	Interm. Shaft Speed Sensor	WOT	Wide Open Throttle
IVS	Idle Validation Switch		
KAM	Keep Alive Memory		
KAPWR	Keep Alive Power		
КОЕО	Key On Engine Off		
KOER	Key On Engine Running		
MAF	Mass Air Flow Sensor		
OSS	Output Shaft Speed Sensor		Copyright © 2004 ATSG

	5R110W Diagn	ostic Trouble Code Chart
Diagnostic Code	Symptom	Description
P0102 P0103 P1100 P1101	Mass Air Flow (MAF) sensor	MAF sensor system fails to operate in a norma manner, which may cause a transmission concern.
P0112	Intake Air Temperature (IAT) sensor	IAT sensor exceeds the scale set for temperature of 254°F.
P0113	Intake Air Temperature (IAT) sensor	IAT sensor exceeds the scale set for temperature of minus 40°F.
P0114	Intake Air Temperature (IAT) sensor	IAT sensor higher or lower than expected during KOEO and KOER test.
P0116	Engine Coolant Temp (ECT) sensor	ECT sensor temperature higher or lower than expected during KOEO or KOER
P0117	Engine Coolant Temp (ECT) sensor	ECT sensor exceeds the scale set for temperature of 254°F.
P0118	Engine Coolant Temp (ECT) sensor	ECT sensor exceeds the scale set for temperature of minus 40°F.
P0121 P0122 P0123 P1120 P1121 P1124 P1125	Throttle Position (TP) or (APP) sensor	(TP) Throttle Position sensor or (APP) Accelerato Pedal Position sensor above or below normal specifications during normal operation.
P0300 P0308 P0320 P0340 P1351-1364	(EI) Systems	(DI) Distributor Ignition circuit concern or (CKP Crankshaft Position sensor failure.
P0500	Antilock Brake Systems (ABS)	PCM detected a loss of VSS signal through SCP link from ABS.
P0503	Antilock Brake Systems (ABS)	PCM detected an intermittent loss of VSS signathrough SCP link from ABS.
P0706	Transmission Range (TR-P) Sensor	Transmission Range sensor signal frequency is out on normal range
		Copyright © 2004 ATSG

D: (C 1	G 4	ostic Trouble Code Chart
Diagnostic Code	Symptom	Description
P0707	Transmission Range (TR-P) Sensor	Transmission Range sensor signal duty cycle is below threshold, sensor/circuit elect. malfunction.
P0708	Transmission Range (TR-P) Sensor	Transmission Range sensor signal duty cycle is above threshold, sensor/circuit elect. malfunction.
P1705	Transmission Range (TR-P) Sensor	Transmission Range sensor circuit failure, or KOEO or KOER not run in P or N positions.
P0711	Trans Fluid Temp (TFT) Sensor	PCM has detected no TFT change during operation. Stuck at some normal reading.
P0712	Trans Fluid Temp (TFT) Sensor	Voltage drop across TFT sensor exceeds scale set for temperature of 315°F.
P0713	Trans Fluid Temp (TFT) Sensor	Voltage drop across TFT sensor exceeds scale set for temperature of minus 40°F.
P1711	Trans Fluid Temp (TFT) Sensor	Transmission not operating at normal temperature during On-Board diagnostics.
P1783	Trans Fluid Temp (TFT) Sensor	Transmission over temp condition indicated.
P0715	Turbine Shaft Speed (TSS) Sensor	PCM detected a loss of TSS signal during normal operation.
P0717	Turbine Shaft Speed (TSS) Sensor	PCM has not detected a TSS signal.
P0718	Turbine Shaft Speed (TSS) Sensor	PCM has detected a noisy TSS signal.
P0720	Output Shaft Speed (OSS) Sensor	PCM detected a loss of OSS signal during normal operation.
P0721	Output Shaft Speed (OSS) Sensor	PCM has detected a noisy OSS signal.
P0722	Output Shaft Speed (OSS) Sensor	PCM has detected no OSS signal.
P0730	Clutch Control Solenoid or Internal Problem	PCM has detected a gear ratio error.
P0740	TCC Solenoid	TCC Solenoid, Electrical, Open Circuit.
P0741	TCC Solenoid	TCC slippage detected during engagement. Mechanical or Hydraulic concern.

D:		nostic Trouble Code Chart
Diagnostic Code	Symptom	Description TCC Salaraid singuit shorted to ground
P0742	TCC Solenoid	TCC Solenoid circuit, shorted to ground.
P0743	TCC Solenoid	TCC Solenoid circuit failure.
P0744	TCC Solenoid	TCC Solenoid circuit, shorted to power.
P1744	TCC Solenoid	TCC slippage detected during engagement. Mechanical or Hydraulic concern.
P0748	Line Pressure Control (PC-A) Solenoid	PC-A Solenoid circuit failure.
P0960	Line Pressure Control (PC-A) Solenoid	PC-A Solenoid circuit open failure.
P0962	Line Pressure Control (PC-A) Solenoid	PC-A Solenoid circuit, shorted to ground.
P0963	Line Pressure Control (PC-A) Solenoid	PC-A Solenoid circuit, shorted to power.
P0750	SSPC-A Solenoid (Coast Clutch)	SSPC-A Solenoid circuit open failure.
P0751	SSPC-A Solenoid (Coast Clutch)	SSPC-A Solenoid circuit, or solenoid failure OFF.
P0752	SSPC-A Solenoid (Coast Clutch)	SSPC-A Solenoid circuit, or solenoid failure ON.
P0753	SSPC-A Solenoid (Coast Clutch)	SSPC-A Solenoid circuit failure.
P0972	SSPC-A Solenoid (Coast Clutch)	SSPC-A Solenoid circuit, or solenoid failure OFF.
P0973	SSPC-A Solenoid (Coast Clutch)	SSPC-A Solenoid circuit, shorted to ground.
P0974	SSPC-A Solenoid (Coast Clutch)	SSPC-A Solenoid circuit, shorted to power.
P0755	SSPC-B Solenoid (Overdrive Clutch)	SSPC-B Solenoid circuit open failure.
P0756	SSPC-B Solenoid (Overdrive Clutch)	SSPC-B Solenoid circuit, or solenoid failure OFF.
P0757	SSPC-B Solenoid (Overdrive Clutch)	SSPC-B Solenoid circuit, or solenoid failure ON.
		Copyright © 2004 ATSO

	5R110W Diagn	nostic Trouble Code Chart
Diagnostic Code	Symptom	Description
P0758	SSPC-B Solenoid (Overdrive Clutch)	SSPC-B Solenoid circuit failure.
P0975	SSPC-B Solenoid (Overdrive Clutch)	SSPC-B Solenoid circuit, or solenoid failure OFF.
P0976	SSPC-B Solenoid (Overdrive Clutch)	SSPC-B Solenoid, or shorted to ground.
P0977	SSPC-B Solenoid (Overdrive Clutch)	SSPC-B Solenoid, or shorted to power.
P0760	SSPC-C Solenoid (Intermediate Clutch)	SSPC-C Solenoid circuit open failure.
P0761	SSPC-C Solenoid (Intermediate Clutch)	SSPC-C Solenoid circuit, or solenoid failure OFF.
P0762	SSPC-C Solenoid (Intermediate Clutch)	SSPC-C Solenoid circuit, or solenoid failure ON.
P0978	SSPC-C Solenoid (Intermediate Clutch)	SSPC-C Solenoid circuit, or solenoid failure OFF.
P0979	SSPC-C Solenoid (Intermediate Clutch)	SSPC-C Solenoid, or circuit shorted to ground.
P0980	SSPC-C Solenoid (Intermediate Clutch)	SSPC-C Solenoid, or circuit shorted to power.
P0765	SSPC-D Solenoid (Direct Clutch)	SSPC-D Solenoid circuit open failure.
P0766	SSPC-D Solenoid (Direct Clutch)	SSPC-D Solenoid circuit, or solenoid failure OFF.
P0767	SSPC-D Solenoid (Direct Clutch)	SSPC-D Solenoid circuit, or solenoid failure ON.
P0768	SSPC-D Solenoid (Direct Clutch)	SSPC-D Solenoid circuit failure.
P0981	SSPC-D Solenoid (Direct Clutch)	SSPC-D Solenoid circuit, or solenoid failure OFF.
P0982	SSPC-D Solenoid (Direct Clutch)	SSPC-D Solenoid, or circuit shorted to ground.
P0983	SSPC-D Solenoid (Direct Clutch)	SSPC-D Solenoid, or circuit shorted to power.
		Copyright © 2004 ATSO

Figure 23

Diagnostic Code	Symptom	Description
P0770	SSPC-E Solenoid (Low/Reverse Clutch)	SSPC-E Solenoid circuit open failure.
P0771	SSPC-E Solenoid (Low/Reverse Clutch)	SSPC-E Solenoid circuit, or solenoid failure OFF.
P0772	SSPC-E Solenoid (Low/Reverse Clutch)	SSPC-E Solenoid circuit, or solenoid failure ON.
P0773	SSPC-E Solenoid (Low/Reverse Clutch)	SSPC-E Solenoid circuit failure.
P0984	SSPC-E Solenoid (Low/Reverse Clutch)	SSPC-E Solenoid circuit, or solenoid failure OFF.
P0985	SSPC-E Solenoid (Low/Reverse Clutch)	SSPC-E Solenoid, or circuit shorted to ground.
P0986	SSPC-E Solenoid (Low/Reverse Clutch)	SSPC-E Solenoid, or circuit shorted to power.
P0791	Intermediate Shaft Speed Sensor (ISS)	Insufficient input from ISS.
P0793	Intermediate Shaft Speed Sensor (ISS)	No input from ISS.
P0794	Intermediate Shaft Speed Sensor (ISS)	ISS signal intermittent.
P0840	Pressure Switch A (PS-A)	Pressure Switch A circuit error, stuck open or closed shorted to power or ground.
P0841	Pressure Switch A (PS-A)	Pressure Switch A circuit error, stuck open or closed shorted to power or ground.
P0845	Pressure Switch B (PS-B)	Pressure Switch B circuit error, stuck open or closed shorted to power or ground.
P0846	Pressure Switch B (PS-B)	Pressure Switch B circuit error, stuck open or closed shorted to power or ground.
P0870	Pressure Switch C (PS-C)	Pressure Switch C circuit error, stuck open or closed shorted to power or ground.
P0871	Pressure Switch C (PS-C)	Pressure Switch C circuit error, stuck open or closed shorted to power or ground.

Diagnostic Code	Symptom	Description
P0875	Pressure Switch D (PS-D)	Pressure Switch D circuit error, stuck open or closed shorted to power or ground.
P0876	Pressure Switch D (PS-D)	Pressure Switch D circuit error, stuck open or closed shorted to power or ground.
P0987	Pressure Switch E (PS-E)	Pressure Switch E circuit error, stuck open or closed shorted to power or ground.
P0988	Pressure Switch E (PS-E)	Pressure Switch E circuit error, stuck open or closed shorted to power or ground.
P1124	Throttle Position (TP) or (APP) sensor	Throttle position was not in the proper position for the On-Board diagnostics.
P1460	A/C Switch	A/C pressure cycling switch error.
P1572	Brake Pedal Position (BPP) Switch	Brake Pedal Position Switch, circuit failure.
P1636	SSx ISIG	PCM detected an error with the Inductive Signature Communication chip.
P1703	Brake Pedal Position (BPP) Switch	Brake Pedal not cycled during KOER test, or brake ON circuit failure during KOEO.
P1780	Transmission Control Switch (TCS)	Transmission Control Switch voltage incorrect.
P1729	4X4 Low Switch	4X4 Low Switch circuit or switch failure.
P1781	4X4 Low Switch	4X4 Low Switch or circuit, out of self test range.
P2700	Coast Clutch System Error	Friction element apply time, range, or functional error detected.
P2701	Overdrive Clutch System Error	Friction element apply time, range, or functional error detected.
P2702	Intermediate Clutch System Error	Friction element apply time, range, or functional error detected.
P2703	Direct Clutch System Error	Friction element apply time, range, or functional error detected.
P2704	Low/Reverse Clutch System Error	Friction element apply time, range, or functional error detected.