

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/54, 15/82, A01H 5/00		A1	(11) International Publication Number: WO 99/37789 (43) International Publication Date: 29 July 1999 (29.07.99)
(21) International Application Number: PCT/US99/01591		(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 26 January 1999 (26.01.99)		Published	
(30) Priority Data: 60/072,785 27 January 1998 (27.01.98) US		With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.	
(71) Applicant (for all designated States except US): PIONEER HI-BRED INTERNATIONAL, INC. [US/US]; 800 Capital Square, 400 Locust Street, Des Moines, IA 50319 (US).			
(72) Inventors; and			
(75) Inventors/Applicants (for US only): MAHAJAN, Pramod [IN/US]; 8029 Brookview Drive, Urbandale, IA 50322 (US). ZUO, Zhuang [CN/US]; 4728 – 80th Place, Urbandale, IA 50322 (US).			
(74) Agents: SPRUILL, W., Murray et al.; Alston & Bird LLP, P.O. Drawer 34009, Charlotte, NC 28234–4009 (US).			

(54) Title: POLY ADP-RIBOSE POLYMERASE GENE AND ITS USES

(57) Abstract

Compositions and methods for influencing the metabolic state of plant cells are provided. The compositions comprise poly ADP-ribose polymerase genes and portions thereof, particularly the maize poly ADP-ribose polymerase gene as well as antisense nucleotide sequences for poly ADP-ribose polymerase genes. The nucleotide sequences find use in transforming plant cells to alter the metabolic state of the transformed plants and plant cells.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

POLY ADP-RIBOSE POLYMERASE GENE AND ITS USES

CROSS-REFERENCE

5 This application claims the benefit of U.S. Provisional Application No. 60/072,785, filed January 27, 1998.

FIELD OF THE INVENTION

The invention is drawn to the genetic manipulation of plants.

10

BACKGROUND OF THE INVENTION

The physiological and metabolic state of plant cells directly influences the plant response to external stimuli. The plant response to disease includes a host of cellular processes to enable plants to defend themselves from pathogenic agents.

15 These processes apparently form an integrated set of resistance mechanisms that is activated by initial infection and then limits further spread of the invading pathogenic microorganism.

The transformation of plants is a complex process. The process involves contacting cells with a DNA to be integrated into the plant cell genome. Generally, 20 genetic transformation of eukaryotic cells is a random event. That is, the foreign DNA is integrated into the genome at random positions. Often several copies, or parts of copies, of the transforming DNA are integrated in a single position, and/or at different positions, resulting in a transformed cell containing multiple copies of the foreign DNA.

25 Because the metabolic state of the plant cell is instrumental in various processes, it would be beneficial to be able to influence the state of the cells. Accordingly, there is a need for genes and methods for altering the metabolic state of plant cells.

SUMMARY OF THE INVENTION

Compositions and methods for influencing the metabolic state of plant cells are provided. The compositions comprise poly ADP-ribose polymerase genes and fragments thereof, particularly the maize poly ADP-ribose polymerase gene. The 5 genes or antisense constructions of the genes can be used to transform plant cells and alter the metabolic state of the transformed cell.

In this manner, transformed plants can be obtained having altered metabolic states. The invention has implications in enhancing disease resistance in plants and for methods of genetic transformation of plants.

10

DETAILED DESCRIPTION OF THE INVENTION

Poly ADP-Ribose Polymerase genes and methods for their use are provided. In particular, the amino acid and nucleotide sequences for the maize poly ADP-ribose polymerase (PARP) are provided as SEQ ID NOs. 2 and 1, respectively. Also of 15 interest are portions of the sequences of the invention. The nucleotide and amino acid sequences of the C-terminal domain of the maize poly ADP-ribose polymerase is provided in SEQ ID NOs. 3 and 4, respectively. The nucleotide sequence of the Zinc fingers is provided in SEQ ID NO. 5.

PARP is generally described as a nuclear enzyme found in most eukaryotes. 20 Structure-function studies have shown that animal PARPs may be divided into at least three subdomains. The N-terminal part contains two zinc fingers and has a high affinity for nicked V-shaped DNA. Interaction of PARP with nicked DNA strongly enhances the activity of the catalytic domain, which is very well conserved among PARPs and located in the carboxyl-terminus of the protein. (Ueda *et al.* (1985) *Ann. Rev. Biochem.* 54:73-100; Sdhah *et al.* (1995) *Anal. Biochem.* 227:1-13).

25 PARP catalyzes both the transfer of ADP-ribose from NAD⁺, mainly to the carboxyl group of a glutamic acid residue on target proteins, and subsequent ADP-ribose polymerization. (Ueda *et al.* (1985) *Ann. Rev. Biochem.* 54:73-100; Sdhah *et al.* (1995) *Anal. Biochem.* 227:1-13)

PARP is generally required in most cases where DNA is cleaved and rejoined, such as in DNA repair, DNA recombination, gene rearrangements and transposition. PARP has been shown to modify PARP itself, histones, high mobility group chromosomal proteins, topoisomerase, endonucleases and DNA polymerases. (Ueda 5 *et al.* (1985) *Ann. Rev. Biochem.* 54:73-100; Sdhah *et al.* (1995) *Anal. Biochem.* 227:1-13)

Initially, the enzyme synthesizes an ester linkage preferentially between the glutamyl(-) or sometimes the C-terminal(-)carboxyl group on the acceptor protein and the 1'-OH of the ribosylyl group of ADP-ribose. Subsequently, up to 45-50 ADP units are added via a 2'-1'phosphodiester bond. Branching of the poly (ADP)-ribosyl chains via the 2'-1'phosphodiester linkages is also observed. See, for example, Ueda 10 *et al.* (1985) *Ann. Rev. Biochem.* 54: 73-100; and Shah *et al.* (1995) *Anal. Biochem.* 227:1-13.

Compositions of the invention include isolated nucleic acid molecules 15 encoding the PARP proteins of the invention, as well as fragments and variants thereof. The term "isolated" refers to material, such as a nucleic acid or a protein, which is: (1) substantially or essentially free from components that normally accompany or interact with it as found in its naturally occurring environment. Thus, for a nucleic acid, the sequence is lacking a flanking sequence either 3' or 5' or both. 20 The isolated material optionally comprises material not found with the material in its natural environment; or (2) if the material is in its natural environment, the material has been synthetically (non-naturally) altered by deliberate human intervention to a composition and/or placed at a locus in the cell (e.g., genome or subcellular organelle) not native to a material found in that environment. The alteration to yield the 25 synthetic material can be performed on the material within or removed from its natural state. For example, a naturally occurring nucleic acid becomes an isolated nucleic acid if it is altered, or if it is transcribed from DNA which has been altered, by non-natural, synthetic (i.e., "man-made") methods performed within the cell from which it originates. See, e.g., Compounds and Methods for Site Directed Mutagenesis in 30 Eukaryotic Cells, Kmiec, U.S. Patent No. 5,565,350; *In Vivo Homologous Sequence*

Targeting in Eukaryotic Cells; Zarling *et al.*, PCT/US93/03868. Likewise, a naturally occurring nucleic acid (e.g., a promoter) becomes isolated if it is introduced by non-naturally occurring means to a locus of the genome not native to that nucleic acid.

Nucleic acids which are "isolated" as defined herein, are also referred to as

5 "heterologous" nucleic acids.

As used herein, "localized within the chromosomal region defined by and including" with respect to particular markers includes reference to a contiguous length of a chromosome delimited by and including the stated markers.

As used herein, "marker" includes reference to a locus on a chromosome that
10 serves to identify a unique position on the chromosome. A "polymorphic marker"
includes reference to a marker which appears in multiple forms (alleles) such that
different forms of the marker, when they are present in a homologous pair, allow
transmission of each of the chromosomes in that pair to be followed. A genotype may
be defined by use of one or a plurality of markers.

15 As used herein "operably linked" includes reference to a functional linkage
between a promoter and a second sequence, wherein the promoter sequence initiates
and mediates transcription of the DNA sequence corresponding to the second
sequence. Generally, operably linked means that the nucleic acid sequences being
linked are contiguous and, where necessary to join two protein coding regions,
20 contiguous and in the same reading frame.

The nucleotide sequences of the invention can be used to isolate other
homologous sequences in other plant species. Methods are readily available in the art
for the hybridization of nucleic acid sequences. Coding sequences from other plants
may be isolated according to well known techniques based on their sequence
25 homology to the coding sequences set forth herein. In these techniques all or part of
the maize coding sequence is used as a probe which selectively hybridizes to other
PARP coding sequences present in a population of cloned genomic DNA fragments or
cDNA fragments (i.e. genomic or cDNA libraries) from a chosen organism. For
example, the entire maize PARP sequence or portions thereof may be used as probes
30 capable of specifically hybridizing to corresponding coding sequences and messenger

RNAs. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique and are preferably at least about 10 nucleotides in length, and most preferably at least about 20 nucleotides in length. Such probes may be used to amplify the PARP coding sequences of interest from a chosen organism by 5 the well-known process of polymerase chain reaction (PCR). This technique may be used to isolate additional coding sequences from a desired organism or as a diagnostic assay to determine the presence of coding sequences in an organism.

Such techniques include hybridization screening of plated DNA libraries (either plaques or colonies; see, e.g., Sambrook *et al.*, *Molecular Cloning*, eds., Cold 10 Spring Harbor Laboratory Press (1989)) and amplification by PCR using oligonucleotide primers corresponding to sequence domains conserved among the amino acid sequences (see, e.g. Innis *et al.*, *PCR Protocols, a Guide to Methods and Applications*, eds., Academic Press (1990)). For example, hybridization of such sequences may be carried out under conditions of reduced stringency, medium 15 stringency or even stringent conditions (e.g., conditions represented by a wash stringency of 35-40% Formamide with 5x Denhardt's solution, 0.5% SDS and 1x SSPE at 37 C; conditions represented by a wash stringency of 40-45% Formamide with 5x Denhardt's solution, 0.5% SDS, and 1x SSPE at 42 C; and conditions represented by a wash stringency of 50% Formamide with 5x Denhardt's solution, 20 0.5% SDS and 1x SSPE at 42 C, respectively), to DNA encoding the PARP genes disclosed herein in a standard hybridization assay. See J. Sambrook *et al.*, *Molecular Cloning, A Laboratory Manual 2d ed.* (1989) Cold Spring Harbor Laboratory. In general, sequences which code for the defense activators and other activator proteins of the invention and hybridize to the sequences disclosed herein will be at least 50% 25 homologous, 70% homologous, and even 85% homologous or more with the disclosed sequence. That is, the sequence similarity of sequences may range, sharing at least about 50%, about 70%, and even about 85% sequence similarity.

The following terms are used to describe the sequence relationships between two or more nucleic acids or polynucleotides: (a) "reference sequence", (b)

"comparison window", (c) "sequence identity", (d) "percentage of sequence identity", and (e) "substantial identity".

(a) As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.

(b) As used herein, "comparison window" means includes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (*i.e.*, gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.

Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith *et al.* (1981) *Adv. Appl. Math.* 2:482; by the homology alignment algorithm of Needleman *et al.* (1970) *J. Mol. Biol.* 48:443; by the search for similarity method of Pearson *et al.* (1988) *Proc. Natl. Acad. Sci.* 85:2444; by computerized implementations of these algorithms, including, but not limited to: CLUSTAL in the PC/Gene program by Intelligenetics, Mountain View, California, GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wisconsin, USA; the CLUSTAL program is well described by Higgins *et al.* (1988) *Gene* 73:237-244; Higgins *et al.* (1989) *CABIOS* 5:151-153; Corpet *et al.* (1988) *Nucleic Acids Research* 16:10881-90; Huang *et al.* (1992) *Computer Applications in the Biosciences* 8:155-65, and Person *et al.* (1994) *Methods of Molecular Biology* 24:307-331; preferred computer alignment methods also include the BLASTP, BLASTN, and

BLASTX algorithms. Altschul *et al.* (1990) *J. Mol. Biol.* 215:403-410. Alignment is also often performed by inspection and manual alignment.

(c) As used herein, "sequence identity" or "identity" in the context of two nucleic acid or polypeptide sequences includes reference to the residues in the two sequences which are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g. charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences which differ by such conservative substitutions are said to have "sequence similarity" or "similarity". Means for making this adjustment are well-known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, California, USA).

(d) As used herein, "percentage of sequence identity" means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched

positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.

(e) (i) The term "substantial identity" of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 70% sequence identity, 5 preferably at least 80%, more preferably at least 90% and most preferably at least 95%, compared to a reference sequence using one of the alignment programs described using standard parameters. One of skill will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid 10 sequences for these purposes normally means sequence identity of at least 60%, more preferably at least 70%, 80%, 90%, and most preferably at least 95%. Polypeptides which are "substantially similar" share sequences as noted above except that residue positions which are not identical may differ by conservative amino acid changes.

Another indication that nucleotide sequences are substantially identical is if 15 two molecules hybridize to each other under stringent conditions. Generally, stringent conditions are selected to be about 5 C to about 20 C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically, stringent wash 20 conditions are those in which the salt concentration is about 0.02 molar at pH 7 and the temperature is at least about 50, 55, or 60 C. However, nucleic acids which do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This may occur, e.g., 25 when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. One indication that two nucleic acid sequences are substantially identical is that the polypeptide which the first nucleic acid encodes is immunologically cross reactive with the polypeptide encoded by the second nucleic acid.

(e) (ii) The terms "substantial identity" in the context of peptide indicates 30 that a peptide comprises a sequence with at least 70% sequence identity to a reference

sequence, preferably 80%, more preferably 85%, most preferably at least 90% or 95% sequence identity to the reference sequence over a specified comparison window. Preferably, optimal alignment is conducted using the homology alignment algorithm of Needleman *et al.* (1970) *J. Mol. Biol.* 48:443. An indication that two peptide 5 sequences are substantially identical is that one peptide is immunologically reactive with antibodies raised against the second peptide. Thus, a peptide is substantially identical to a second peptide, for example, where the two peptides differ only by a conservative substitution.

Fragments and variants of the disclosed nucleotide sequences and proteins 10 encoded thereby are also encompassed by the present invention. By "fragment" is intended a portion of the nucleotide sequence or a portion of the amino acid sequence and hence protein encoded thereby. Fragments of a nucleotide sequence may encode protein fragments that retain the biological activity of the native protein and hence confer resistance to nematodes. Alternatively, fragments of a nucleotide sequence that 15 are useful as hybridization probes generally do not encode fragment proteins retaining biological activity. Thus, fragments of a nucleotide sequence may range from at least about 20 nucleotides, about 50 nucleotides, about 100 nucleotides, and up to the entire nucleotide sequence encoding the proteins of the invention.

By "variants" is intended substantially similar sequences. For nucleotide 20 sequences, conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence of one of the proteins conferring resistance to nematodes. Generally, nucleotide sequence variants of the invention will have at least 70%, generally, 80%, preferably up to 90% sequence identity to its respective native nucleotide sequence.

By "variant" protein is intended a protein derived from the native protein by 25 deletion (so-called truncation) or addition of one or more amino acids to the N-terminal and/or C-terminal end of the native protein; deletion or addition of one or more amino acids at one or more sites in the native protein; or substitution of one or more amino acids at one or more sites in the native protein. Such variants may result 30 from, for example, genetic polymorphism or from human manipulation. Methods for

such manipulations are generally known in the art.

The proteins of the invention may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants of the activator proteins can be prepared by mutations in the DNA. Methods for mutagenesis and nucleotide sequence alterations are well known in the art. See, for example, Kunkel *et al.* (1985) *Proc. Natl. Acad. Sci. USA* 82:488-492; Kunkel *et al.* (1987) *Methods in Enzymol.* 154:367-382; U.S. Patent No. 4,873,192; Walker and Gaastra (eds.) *Techniques in Molecular Biology*, MacMillan Publishing Company, NY (1983) and the references cited therein. Thus, the genes and nucleotide sequences of the invention include both the naturally occurring sequences as well as variant and mutant forms. Likewise, the proteins of the invention encompass both naturally occurring proteins as well as variants and modified forms thereof. Such variants will continue to possess the desired PARP activity. Obviously, the mutations that will be made in the DNA encoding the variant must not place the sequence out of reading frame and preferably will not create complementary regions that could produce secondary mRNA structure. See, EP Patent Application Publication No. 75,444.

PARP is present in all higher eukaryotes. Therefore, it is recognized that the nucleotide sequence encoding the PARP may be utilized from any eukaryotic source, including vertebrates, arthropods, mollusks, slime moulds, dinoflagellates, fungi, mammals, chicken, Xenopus and insects. See, for example, Heller *et al.* (1995) *J. Biol. Chem.* 270:11178-11180; Schreiber *et al.* (1995) *Proc. Natl. Acad. Sci. USA* 92:4753-4757; Ueda *et al.* (1985) *Ann. Rev. Biochem.* 54:73-100; Brightwell *et al.* (1975) *Biochem. J.* 147:119-129; Kofler *et al.* (1993) *ibid* 293:275-281; Collinge *et al.* (1994) *Mol. Gen. Genet.* 245:686-693; Scovassi *et al.* (1986) *Eur. J. Biochem.* 159:77-84; Simonin *et al.* (1991) *Anal. Biochem.* 195:226-231; Masutani *et al.* (1994) *Eur. J. Biochem.* 220:607-614; herein incorporated by reference.

It is recognized that the plant cell can be transformed with a nucleotide sequence encoding PARP, a nucleotide sequence encoding a portion of PARP, preferably the C-terminal portion of PARP, as well as with a nucleotide sequence

encoding the antisense sequence for the PARP gene, or portions thereof. In this manner, the level of expression of the PARP in the plant cell can be modulated, i.e., increased or decreased, respectively. Levels of expression of the sense or antisense sequence can be regulated by the promoter utilized to express the gene.

5 Promoters for the expression of genes in plant cells are known in the art. Promoters are available for constitutive, tissue specific, inducible, etc. Such promoters include, for example, 35S promoter, Meyer *et al.* (1997) *J. Gen. Virol.* 78:3147-3151; biotin carboxylase, Bas *et al.* (1997) *Plant Mol. Biol.* 35:539-550; oxidase, Lasserre *et al.* (1997) *Mol. Gen. Genet.* 256:211-222; cab, Shiina *et al.* (1997) 10 *Plant Physiol.* 115:477-483; phospholipase, Xu *et al.* (1997) *Plant Physiol.* 115:387-395; farnesyltransferase, Zhou *et al.* (1997) *Plant J.* 12:921-930; plastocyanin, Helliwell *et al.* (1997) *Plant J.* 12:499-506; CVMV promoter, Verdaquer *et al.* (1996) *Plant Mol. Biol.* 31:1129-1139; actin, An *et al.* (1996) *Plant J.* 10:107-121; heat shock, Prandl *et al.* (1996) *Plant Mol. Biol.* 31:157-162; ubiquitin, thionin, 35S, 15 Holtorf *et al.* (1995) *Plant Mol. Biol.* 29:637-646; Callis *et al.* (1990) *J. Biol. Chem.* 265:12486-12493; histone, Atanossova *et al.* (1992) *Plant J.* 2:291-300; rol C, Fladung *et al.* (1993) *Plant Mol. Biol.* 23:749-757; histone, Brignon *et al.* (1993) *Plant J.* 4:445-457; Lepetit *et al.* (1992) *Mol. Gen. Genet.* 231:276-285.

As indicated, recent studies on the mechanism of PARP suggests involvement 20 of the enzyme in regulation of DNA repair, recombination and replication. The enzyme is rapidly activated by DNA and exhibits a high affinity for naked single-stranded or double-stranded DNA. Any perturbation in the cellular morphology and/or physiology that causes a change in chromatin conformation generally results in a rapid increase in PARP activity. PARP is an important modulator of the fate of 25 DNA introduced into a plant cell. Accordingly, plants transformed with either a sense or antisense PARP nucleotide sequence may be utilized to increase transformation frequency in plant cells. Therefore, the present invention provides for the regulation of the levels of PARP in the plant cell to determine its effect on plant transformation and gene targeting.

It is further recognized that because the enzyme plays a role in cellular stress, it may be beneficial to increase the levels of the enzyme to prevent plant disease or pathogen attack. In this manner, constitutive or inducible promoters may be utilized.

Constitutive promoters include, for example, those disclosed in U.S. Patent Nos.

5 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142, herein incorporated by reference. Inducible promoters are known in the art and include, for example, pathogen inducible promoters, such as promoters from pathogenesis-related proteins (PR proteins) which are induced following infection by a pathogen; e.g., PR proteins, SAR proteins, beta-1,3-glucanase, chitinase, etc. See, 10 for example, Redolfi *et al.* (1983) *Neth. J. Plant Pathol.* 89:245-254; Uknos *et al.* (1992) *The Plant Cell* 4:645-656; and Van Loon (1985) *Plant Mol. Virol.* 4:111-116. Of interest are promoters that are expressed locally at or near the site of pathogen infection. See, for example, Marineau *et al.* (1987) *Plant Mol. Biol.* 9:335-342; Matton *et al.* (1989) *Molecular Plant-Microbe Interactions* 2:325-331; Somsisch *et 15 al.* (1986) *Proc. Natl. Acad. Sci. USA* 83:2427-2430; Somsisch *et al.* (1988) *Molecular and General Genetics* 2:93-98; and Yang, Y (1996) *Proc. Natl. Acad. Sci. USA* 93:14972-14977. See also, Chen *et al.* (1996) *Plant J.* 10:955-966; Zhang *et al.* (1994) *Proc. Natl. Acad. Sci. USA* 91:2507-2511; Warner *et al.* (1993) *Plant J.* 3:191-201; Siebertz *et al.* (1989) *Plant Cell* 1:961-968; and the references cited therein. Of 20 particular interest is the inducible promoter for the maize PRms gene, whose expression is induced by the pathogen *Fusarium moniliforme* (see, for example, Cordero *et al.* (1992) *Physiological and Molecular Plant Pathology* 41:189-200).

The PARP genes or antisense nucleotides of the invention can be introduced into any plant. The genes or nucleotide sequences to be introduced will be used in 25 expression cassettes for expression in any plant of interest.

Such expression cassettes will comprise a transcriptional initiation region linked to the gene encoding the PARP gene or antisense nucleotide of interest. Such an expression cassette is provided with a plurality of restriction sites for insertion of the gene of interest to be under the transcriptional regulation of the regulatory regions. 30 The expression cassette may additionally contain selectable marker genes.

The transcriptional initiation region, the promoter, may be native or analogous or foreign or heterologous to the plant host. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence. By foreign is intended that the transcriptional initiation region is not found in the native plant into which the 5 transcriptional initiation region is introduced. As used herein a chimeric gene comprises a coding sequence operably linked to a transcription initiation region that is heterologous to the coding sequence.

The transcriptional cassette will include in the 5'-3' direction of transcription, a transcriptional and translational initiation region, a DNA sequence of interest, and a 10 transcriptional and translational termination region functional in plants. The termination region may be native with the transcriptional initiation region, may be native with the DNA sequence of interest, or may be derived from another source. Convenient termination regions are available from the Ti-plasmid of *A. tumefaciens*, such as the octopine synthase and nopaline synthase termination regions. See also, 15 Guerineau *et al.* (1991) *Mol. Gen. Genet.* 262:141-144; Proudfoot (1991) *Cell* 64:671-674; Sanfacon *et al.* (1991) *Genes Dev.* 5:141-149; Mogen *et al.* (1990) *Plant Cell* 2:1261-1272; Munroe *et al.* (1990) *Gene* 91:151-158; Ballas *et al.* (1989) *Nucleic Acids Res.* 17:7891-7903; Joshi *et al.* (1987) *Nucleic Acid Res.* 15:9627-9639.

The genes of the invention are provided in expression cassettes for expression 20 in the plant of interest. The cassette will include 5' and 3' regulatory sequences operably linked to the gene of interest. The cassette may additionally contain at least one additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on another expression cassette. Where appropriate, the gene(s) may be optimized for increased expression in the transformed plant. That 25 is, the genes can be synthesized using plant preferred codons for improved expression. Methods are available in the art for synthesizing plant preferred genes. See, for example, U.S. Patent Nos. 5,380,831, 5,436, 391, and Murray *et al.* (1989) *Nucleic Acids Res.* 17:477-498, herein incorporated by reference.

Additional sequence modifications are known to enhance gene expression in a 30 cellular host. These include elimination of sequences encoding spurious

polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-characterized sequences which may be deleterious to gene expression.

The G-C content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell.

5 When possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures.

The expression cassettes may additionally contain 5' leader sequences in the expression cassette construct. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for

10 example, EMCV leader (Encephalomyocarditis 5' noncoding region) (Elroy-Stein *et al.* (1989) *PNAS USA* 86:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Allison *et al.* (1986); MDMV leader (Maize Dwarf Mosaic Virus); *Virology* 154:9-20), and human immunoglobulin heavy-chain binding protein (BiP), (Macejak *et al.* (1991) *Nature* 353:90-94; untranslated leader from the coat

15 protein mRNA of alfalfa mosaic virus (AMV RNA 4), (Jobling *et al.* (1987) *Nature* 325:622-625; tobacco mosaic virus leader (TMV), (Gallie, D.R. *et al.* (1989) *Molecular Biology of RNA*, pages 237-256; and maize chlorotic mottle virus leader (MCMV) (Lommel, S.A. *et al.* (1991) *Virology* 81:382-385). See also, Della-Cioppa *et al.* (1987) *Plant Physiology* 84:965-968. Other methods known to enhance

20 translation can also be utilized, for example, introns, and the like.

In preparing the expression cassette, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Towards this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to

25 provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this purpose, *in vitro* mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g. transitions and transversions, may be involved.

The genes of the present invention can be used to transform any plant. In this manner, genetically modified plants, plant cells, plant tissue, seed, and the like can be

obtained. Transformation protocols may vary depending on the type of plant or plant cell, *i.e.* monocot or dicot, targeted for transformation. Suitable methods of transforming plant cells include microinjection (Crossway *et al.* (1986) *Biotechniques* 4:320-334), electroporation (Riggs *et al.* (1986) *Proc. Natl. Acad. Sci. USA* 83:5602-5606, *Agrobacterium* mediated transformation (Hinchee *et al.* (1988) *Biotechnology* 6:915-921), direct gene transfer (Paszkowski *et al.* (1984) *EMBO J.* 3:2717-2722), and ballistic particle acceleration (see, for example, Sanford *et al.*, U.S. Patent 4,945,050; Tomes *et al.* Direct DNA Transfer into Intact Plant Cells via Microprojectile Bombardment In Gamborg and Phillips (eds.) *Plant Cell, Tissue and Organ Culture: Fundamental Methods*, Springer-Verlag, Berlin (1995); and McCabe *et al.* (1988) *Biotechnology* 6:923-926). Also see, Weissinger *et al.* (1988) *Ann. Rev. Genet.* 22:421-477; Sanford *et al.* (1987) *Particulate Science and Technology* 5:27-37 (onion); Christou *et al.* (1988) *Plant Physiol.* 87:671-674 (soybean); McCabe *et al.* (1988) *Bio/Technology* 6:923-926 (soybean); Datta *et al.* (1990) *Biotechnology* 8:736-740 (rice); Klein *et al.* (1988) *Proc. Natl. Acad. Sci. USA* 85:4305-4309 (maize); Klein *et al.* (1988) *Biotechnology* 6:559-563 (maize); Tomes *et al.* Direct DNA Transfer into Intact Plant Cells via Microprojectile Bombardment in Gamborg and Phillips (eds.) *Plant Cell, Tissue and Organ Culture: Fundamental Methods*, Springer-Verlag, Berlin (1995) (maize); Klein *et al.* (1988) *Plant Physiol.* 91:440-444 (maize); Fromm *et al.* (1990) *Biotechnology* 8:833-839 (maize); Hooydaas-Van Slogteren & Hooykaas (1984) *Nature (London)* 311:763-764; Bytebier *et al.* (1987) *Proc. Natl. Acad. Sci. USA* 84:5345-5349 (Liliaceae); De Wet *et al.* (1985) in *The Experimental Manipulation of Ovule Tissues* ed. G.P. Chapman *et al.*, pp. 197-209. Longman, NY (pollen); Kaepller *et al.* (1990) *Plant Cell Reports* 9:415-418; and Kaepller *et al.* (1992) *Theor. Appl. Genet.* 84:560-566 (whisker-mediated transformation); D Halluin *et al.* (1992) *Plant Cell* 4:1495-1505 (electroporation); Li *et al.* (1993) *Plant Cell Reports* 12:250-255 and Christou and Ford (1995) *Annals of Botany* 75:407-413 (rice); Osjoda *et al.* (1996) *Nature Biotechnology* 14:745-750 (maize via *Agrobacterium tumefaciens*); all of which are herein incorporated by reference.

The cells which have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick *et al.* (1986) *Plant Cell Reports* 5:81-84. These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having the 5 desired phenotypic characteristic identified. Two or more generations may be grown to ensure that the subject phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure the desired phenotype or other property has been achieved.

The present invention also provides isolated nucleic acid comprising 10 polynucleotides of sufficient length and complementarity to a gene to use as probes or amplification primers in the detection, quantitation, or isolation of gene transcripts. For example, isolated nucleic acids of the present invention can be used as probes in detecting deficiencies in the level of mRNA in screenings for desired transgenic plants, for detecting mutations in the gene (e.g., substitutions, deletions, or additions), 15 for monitoring upregulation of expression or changes in enzyme activity in screening assays of compounds, for detection of any number of allelic variants (polymorphisms) of the gene, or for use as molecular markers in plant breeding programs. The isolated nucleic acids of the present invention can also be employed for use in sense or antisense suppression of a PARP gene in a host cell, tissue, or plant. See, *Tools to* 20 *Determine the Function of Genes*. 1995 Proceedings of the Fiftieth Annual Corn and Sorghum Industry Research Conference, American Seed Trade Association, Washington, D.C., 1995. Additionally, non-translated 5' or 3' regions of the polynucleotides of the present invention can be used to modulate turnover of heterologous mRNAs and/or protein synthesis.

25 The present invention provides a method of genotyping a plant comprising a polynucleotide of the present invention. Preferably, the plant is a monocot, such as maize or sorghum. Genotyping provides a means of distinguishing homologs of a chromosome pair and can be used to differentiate segregants in a plant population. Molecular marker methods can be used for phylogenetic studies, characterizing 30 genetic relationships among crop varieties, identifying crosses or somatic hybrids,

localizing chromosomal segments affecting monogenic traits, map based cloning, and the study of quantitative inheritance. See, e.g., *Plant Molecular Biology: A Laboratory Manual*, Chapter 7, Clark, Ed., Springer-Verlag, Berlin (1997). For molecular marker methods, see generally, *The DNA Revolution* by Andrew H. Paterson 1996 (Chapter 2) in: *Genome Mapping in Plants* (ed. Andrew H. Paterson) by Academic Press/R. G. Landis Company, Austin, Texas, pp.7-21.

The particular method of genotyping in the present invention may employ any number of molecular marker analytic techniques such as, but not limited to, restriction fragment length polymorphisms (RFLPs). RFLPs are the product of allelic differences between DNA restriction fragments caused by nucleotide sequence variability. As is well known to those of skill in the art, RFLPs are typically detected by extraction of genomic DNA and digestion with a restriction enzyme. Generally, the resulting fragments are separated according to size and hybridized with a probe; single copy probes are preferred. Restriction fragments from homologous chromosomes are revealed. Differences in fragment size among alleles represent an RFLP. Thus, the present invention further provides a means to follow segregation of a PARP gene or nucleic acid of the present invention as well as chromosomal sequences genetically linked to these genes or nucleic acids using such techniques as RFLP analysis. Linked chromosomal sequences are within 50 centiMorgans (cM), often within 40 or 30 cM, preferably within 20 or 10 cM, more preferably within 5, 3, 2, or 1 cM of a PARP gene.

In the present invention, the nucleic acid probes employed for molecular marker mapping of plant nuclear genomes selectively hybridize, under selective hybridization conditions, to a gene encoding a polynucleotide of the present invention. In preferred embodiments, the probes are selected from polynucleotides of the present invention. Typically, these probes are cDNA probes or *Pst I* genomic clones. The length of the probes is discussed in greater detail, *supra*, but are typically at least 15 bases in length, more preferably at least 20, 25, 30, 35, 40, or 50 bases in length. Generally, however, the probes are less than about 1 kilobase in length. Preferably, the probes are single copy probes that hybridize to a unique locus in a haploid

chromosome complement.

The method of detecting an RFLP comprises the steps of (a) digesting genomic DNA of a plant with a restriction enzyme; (b) hybridizing a nucleic acid probe, under selective hybridization conditions, to a sequence of a polynucleotide of the present of said genomic DNA; (c) detecting therefrom a RFLP. Other methods of differentiating polymorphic (allelic) variants of polynucleotides of the present invention can be had by utilizing molecular marker techniques well known to those of skill in the art including such techniques as: 1) single stranded conformation analysis (SSCP); 2) denaturing gradient gel electrophoresis (DGGE); 3) RNase protection assays; 4) allele-specific oligonucleotides (ASOs); 5) the use of proteins which recognize nucleotide mismatches, such as the *E. coli* mutS protein; and 6) allele-specific PCR. Other approaches based on the detection of mismatches between the two complementary DNA strands include clamped denaturing gel electrophoresis (CDGE); heteroduplex analysis (HA); and chemical mismatch cleavage (CMC).

Thus, the present invention further provides a method of genotyping comprising the steps of contacting, under stringent hybridization conditions, a sample suspected of comprising a polynucleotide of the present invention with a nucleic acid probe. Generally, the sample is a plant sample; preferably, a sample suspected of comprising a maize polynucleotide of the present invention (e.g., gene, mRNA). The nucleic acid probe selectively hybridizes, under stringent conditions, to a subsequence of a polynucleotide of the present invention comprising a polymorphic marker. Selective hybridization of the nucleic acid probe to the polymorphic marker nucleic acid sequence yields a hybridization complex. Detection of the hybridization complex indicates the presence of that polymorphic marker in the sample. In preferred embodiments, the nucleic acid probe comprises a polynucleotide of the present invention.

EXPERIMENTALMaterials and MethodsChemicals and Reagents

5 All chemicals used in this study were of molecular biology grade. Trizma base (Tris (hydroxymethyl) aminomethane; abbreviated hereafter as Tris), N-2 hydroxy-ethyl-piperazine-N'-2-ethane sulfonic acid (Hepes), Ethylenediaminetetraacetic acid, sodium salt (EDTA), Magnesium chloride, Urea, were procured from Sigma Chemical Co. Analytical grade glycerol was obtained
10 from Baxter. Dithiothreitol (DTT), PefablocSC, Pepstatin, Bestatin, all restriction enzymes, DNA and RNA purification kits as well as markers were purchased from Boehringer Mannheim. Immunodetection kits for Western blots, silver staining and Colloidal Coomassie Blue staining were from Novex. All radioactive chemicals were purchased from NEN-Dupont and NEN. Chromotopographic resins were purchased
15 either from Sigma, BioRad or Pharmacia.

Cell Culture

The enzyme is isolated from a Hi II embryogenic callus cell line.
Exponentially growing cultures of 612B4 cells were maintained in dark at 28°C.
20 (Armstrong *et al.* (1992) *Theor. Appl. Genet.* 84:755-762). The cell suspensions are in MS medium supplemented with 2-4-dichlorophenoxyacetic acid (2.5 mg/l). Cultures are grown for a week on a gyratory shaker at 150 rpm and harvested by decantation. Routinely, 60-80 g of cells are obtained from 800-900 ml cultures grown in 12-14 flasks.
25 Cells are harvested by filtration and used to prepare whole cell extracts (WCE) from 612B4 cells using the Biobulizer (Glas-Col, Terre Haute, Indiana). The process for WCE preparation is outlined in Schema 1. All operations were carried out at 4°C or on ice unless mentioned otherwise.

Chromatography on Heparin-agarose: About 300 ml of Heparin -agarose 30 (Sigma) was washed extensively with 20 mM Hepes-KOH pH 7.9, 0.1 mM EDTA,

20% glycerol (HGED buffer), packed into a 5.0 x 30 cm Econo column (Biorad) and connected to the Econo System (Biorad). The matrix was equilibrated with HGED + 100 mM KCl. Three batches of crude WCE extract (approx. 1.8-2.0 g of total pooled protein in 60-80 ml) were loaded on the column at a flow rate of 15-20 ml/hr. The 5 column was washed extensively with equilibration buffer till the A_{280} of the effluent was < 0.1 unit (approx. 900 ml).

Small aliquots of peak fractions were saved for PARP assays and all fractions (7-8 ml each) showing $A_{280} > 0.1$ unit were pooled. Protein was precipitated by adding solid ammonium sulfate (0.4 g/ml). The mixture was centrifuged at 40,000 x g 10 for 30 min., dissolved in minimum amount HGED and dialyzed against HGED+100 mM KCl containing Pefabloc and DTT. This fraction is designated HA-1. The column was further washed with 900 ml each HGED + 400 mM KCl followed by HGED + 1 M KCl. Fractions from both washes were processed as above and designated as HA-2 and HA-3. PARP assays were performed on HA-1, 2 and 3 and 15 the active fraction (HA-2) was used for further purification.

Chromatography on DNA-cellulose: DNA-cellulose (Sigma) was washed extensively with HGED and packed in the Econo column (2.5 x 30 cm). The column was connected to the Econo System and equilibrated with HGED+100mM KCl. 20 Partially pure PARP from three Heparin-agarose column was loaded on the DNA-cellulose column. Unbound protein was removed by washing with HGED + 100 mM KCl (200 ml; designated as DC-1). The bound protein was eluted with HGED + 1M KCl (designated DC-2). All fractions was processed as described above for activity and protein.

25

Chromatography on Histone-agarose: Histone-agarose (Sigma) was washed extensively with HGED and packed into an Econo column (1.5 x 15 cm). The column was equilibrated in HGED + 100 mM KCl. Active fraction from DNA-cellulose (DC-2) was further fractionated on Histone-agarose by washing the column successively 30 with HGED containing 100 mM, 400 mM and 1 M KCl. All fractions were processed

as above and dialyzed against 20 mM Tris-HCl buffer pH 7.9 containing 100 mM KCl.

Chromatography on Mini-Q column: Mini-Q column (Pharmacia) was connected to Smart-LC (Pharmacia) and equilibrated by washing with five bed volumes of HGED followed by five bed volumes of Tris-HCl buffer + 100 mM KCl. Active PARP from the Histone-agarose step was loaded on the column. The column was washed with three bed volumes of equilibration buffer and 400 µl fractions were collected. Column was further developed using a step gradient of KCl at 400 mM, 600 mM and 1M in Tris-HCl, pH 8.0. All fractions were tested for PARP activity as described below.

Enzyme Assays

Catalytic activity of PARP is assayed following published protocols (Shah *et al.* (1995) *Anal. Biochem* 227:1-13) with modifications suitable for the plant enzyme. Briefly, the enzyme (in a total volume of 25 µl of 20 mM Hepes pH 7.9, 100 mM KCl) is incubated with 2.5-5 µCi of α -³²P-NAD+, 2 µl/ml final concentration of bovine histone (fraction IV), 2 µg of activated calf thymus DNA and 0.5 mM DTT. The reactions are carried out at 6°C unless otherwise mentioned. At the end of the appropriate time intervals, the labeled protein is precipitated with 25% TCA. The precipitate is collected by centrifugation at 16,000 x g for 10 min., washed 2 x with 5% TCA and counted in a LSC. Protein heated at 65°C for 5 min. is used as a negative control.

Microsequencing

Protein samples obtained from the Mini-Q column purification step was electrophoresed in duplicate on a 10% polyacrylamide gels using 0.1% SDS in the running buffer (Shah *et al.* (1995) *Anal. Biochem* 227:1-13). One half of the gel was used to detect protein bands with a Colloidal Coomassie staining kit (Novex) following manufacturer's instructions. The other half was used in the activity blot assay to confirm position of the active PARP on the gel. Stained protein band

corresponding to active PARP was cut out from the gel and used microsequencing carried out at the W.M. Keck Foundation Biotechnology Resource Laboratory if Yale University. *In gel* tryptic digestion of the protein, Matrix Assisted Laser Desorption Mass Spectrometry (MALDI-MS) of the isolated peptides, and amino sequencing of representative peptides was carried out following protocols detailed elsewhere (Stone *et al.* (1990) *In: Methods in Enzymology* 193:389-412); (Stone *et al.* (1991) *In: Methods in Protein Sequence Analysis* 133-141); Williams *et al.* (1995) *In: Techniques in Protein Chemistry* 6:143-152); Williams *et al.* (1995) *In: Protein Protocol Handbook* 365-378).

10

Antipeptide Antibodies

Synthesis of the peptide antigens and antibody generation was carried out at Research Genetics, Inc. Two peptides (P-1 and P-2) were used as for antibody generation using two different protocols. In the first protocol, peptide P-1 was synthesized as a multiple antigenic peptide (MAP) following published protocols (Tam, J.P. (1988) *Proc. Natl. Acad. Sci. USA* 85:5409-5413). Antiserum was collected and analyzed for cross-reactivity to PARP using Western blots (Shah *et al.* (1995) *Anal. Biochem* 227:1-13). In the second protocol, P-2 was synthesized as MAP (Tam, J.P. (1988) *Proc. Natl. Acad. Sci. USA* 85:5409-5413) as well as a linear peptide (Barany *et al.* (1980) *In: The Peptides* 2:1-284). The linear peptide was conjugated to hemocyanin using published methods (Walter *et al.* (1980) *Proc. Natl. Acad. Sci. USA* 77:5197-5200) and used for immunization. The immunization protocol for both types of antigens was essentially the same and is detailed below.

Two New Zealand rabbits (4-6 months old) were used for immunization with each type of antigen. The antigens were prepared by dissolving 500 µg MAP peptide in 500 µl of saline and mixed with equal 500 µl of complete Freund's adjuvant and injected subcutaneously at three to four dorsal sites. Same concentration of each antigen (in saline) was mixed with equal volume of incomplete Freund's adjuvant and injected as before at two, four and six weeks after the first immunization. Animals were bled from the auricular artery to collect 30-50 ml blood on days 0, 27, 57 and 69.

Blood samples were allowed to clot at room temperature for 15 min. and serum was isolated from each sample by centrifugation at 5,000 x g for 10 min. Cell-free serum was decanted gently into a clean tube and stored at -20°C till further use.

5 cDNA Cloning

Total RNA was isolated from corn tissues with TRIzol Reagent (Life Technology, Inc. Gaithersburg, MD) using a modification of the guanidine isothiocyanate/acid-phenol procedure described by Chomczynski and Sacchi (Chomczynski *et al.* (1987) *Anal. Biochem* 162:156). In brief, plant tissue samples 10 were pulverized in liquid nitrogen before the addition of the TRIzol Reagent, and then were further homogenized with a mortar and pestle. Addition of chloroform by centrifugation was conducted for separation of an aqueous phase and an organic phase. The total RNA was recovered by precipitation with isopropyl alcohol from the aqueous phase.

15 The selection of poly(A) + RNA from total RNA was performed using PolyATract system (Promega Corporation, Madison, WI). In brief, biotinylated oligo (dT) primers were used to hybridize to the 3' poly(A) tails on mRNA. The hybrids were captured using streptavidin coupled to paramagnetic particles and a magnetic separation stand. The mRNA was washed at high stringent condition and eluted by 20 RNase-free deionized water.

Synthesis of the cDNA was performed and unidirectional cDNA libraries were constructed using the SuperScript Plasmid System (Life Technology, Inc., Gaithersburg, MD). First strand of cDNA was synthesized by priming an oligo(dT) primer containing a Not I site. The reaction was catalyzed by SuperScript Reverse Transcriptase II at 45°C. The second strand of cDNA was labeled with alpha-³²P-dCTP and portions of the molecules smaller than 500 base pairs and unligated adapters were removed by Sephadryl-S400 chromatography. The selected cDNA 25 molecules were ligated into pSPORT1 reference vector between the Not I and Sal I sites.

Individual colonies were picked and DNA was prepared either by PCR with M13 forward primers and M13 reverse primers, or by plasmid miniprep isolation. All the cDNA clones were sequenced using M13 reverse primers.

5 *Analytical*

Protein was estimated by the Bradford method (Bradford, M. (1976) *ibid* 72:248-254) using bovine γ -globulin as standard. Activity blots, Western blots and product analysis were performed essentially following published protocols (10, 20-22), except that all assays were carried out at 6°C.

10

Identification of Zinc Fingers

Two PCR primers were designed to encompass both the Zinc fingers of the maize PARP sequence. These primers were used for reverse transcriptase assisted PCR using the Titan 1 tube RT-PCR kit from Boehringer Mannheim. Maize callus and leaf mRNA was used as template. The PCR product was purified using Qia Quick PCR product purification columns (Qiagen) and sequenced using an ABI sequencer. Sequenced data is shown in SEQ ID NO. 5.

Isolation of PARP from maize cells

Scheme I

20 All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

25 Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

THAT WHICH IS CLAIMED:

1. An isolated DNA molecule comprising a nucleotide sequence selected
5 from the group consisting of:
 - a) a sequence encoding a poly ADP-ribose polymerase having the amino acid sequence set forth in SEQ ID NO. 2,
 - b) the nucleotide sequence set forth in SEQ ID NO. 1,
 - 10 c) a nucleotide sequence that corresponds to an antisense sequence for the nucleotide sequence set forth in SEQ ID NO. 1,
 - d) a nucleotide sequence encoding the C-terminal domain of a poly ADP-ribose polymerase having the amino acid sequence set forth in SEQ ID NO. 2,
 - e) a nucleotide sequence encoding the C-terminal domain of a poly ADP-ribose polymerase having the amino acid sequence set forth in SEQ ID NO. 4,
 - f) the nucleotide sequence set forth in SEQ ID NO. 3,
 - 15 g) a nucleotide sequence that hybridizes to any one of the nucleotide sequence of a) - f) under stringent conditions.
2. A chimeric gene comprising a promoter capable of driving expression of a gene in a plant cell operably linked to a nucleotide sequence of claim 1.
3. The chimeric gene of claim 2, wherein the nucleotide sequence encodes a poly ADP-ribose polymerase having the amino acid sequence set forth in
20 SEQ ID NO. 2.
4. The chimeric gene of claim 3, wherein said coding sequence is the nucleotide sequence set forth in SEQ ID NO. 1.
5. A vector comprising the chimeric gene of claim 4.
6. A plant cell transformed with the chimeric gene of claim 5.
- 30 7. A plant comprising the chimeric gene of claim 4.

8. The chimeric gene of claim 2, wherein the nucleotide sequence is an antisense sequence for a plant poly ADP-ribose polymerase.
9. A vector comprising the chimeric gene of claim 8.
10. A plant cell transformed with the vector of claim 9.
- 5 11. A plant comprising the chimeric gene of claim 8.
12. A transformed plant having incorporated into its genome a DNA molecule, said molecule comprising a promoter capable of driving expression of a gene in a plant cell operably linked to a nucleotide sequence selected from the group consisting of:

10

- a) a sequence encoding a poly ADP-ribose polymerase having the amino acid sequence set forth in SEQ ID NO. 2,
- b) the nucleotide sequence set forth in SEQ ID NO. 1,
- c) a nucleotide sequence that corresponds to an antisense sequence for the nucleotide sequence set forth in SEQ ID NO. 1,
- 15 d) a nucleotide sequence encoding the C-terminal domain of a poly ADP-ribose polymerase having the amino acid sequence set forth in SEQ ID NO. 2,
- e) a nucleotide sequence encoding the C-terminal domain of a poly ADP-ribose polymerase having the amino acid sequence set forth in SEQ ID NO. 4,
- 20 f) the nucleotide sequence set forth in SEQ ID NO. 3,
- g) a nucleotide sequence that hybridizes to the nucleotide sequence of a) - f) under stringent conditions.

25 13. The transformed plant of claim 12, wherein the nucleotide sequence encodes a poly ADP-ribose polymerase having the amino acid sequence set forth in SEQ ID NO. 2.

14. The transformed plant of claim 13, wherein said coding sequence is the nucleotide sequence set forth in SEQ ID NO. 1.

15. The transformed plant of claim 12, wherein the nucleotide sequence is an antisense sequence for a plant poly ADP-ribose polymerase.

16. The transformed plant of claim 12, wherein said coding sequence encodes a plant poly ADP-ribose polymerase having the amino acid sequence set forth
5 in SEQ ID NO. 2.

17. The transformed plant of claim 12, wherein said plant is a dicot.

18. The transformed plant of claim 13, wherein said plant is a monocot.

19. The transformed plant of claim 18, wherein said plant is maize.

20. Seed of the plant of any one of claims 17-19.

10 21. A method for modulating the metabolic state of a plant cell, said method comprising transforming said plant with a DNA construct, said construct comprising a promoter that drives expression in a plant cell operably linked with a nucleotide sequence selected from the group consisting of:

15 a) a sequence encoding a poly ADP-ribose polymerase having the amino acid sequence set forth in SEQ ID NO. 2,

b) the nucleotide sequence set forth in SEQ ID NO. 1,

c) a nucleotide sequence that corresponds to an antisense sequence for the nucleotide sequence set forth in SEQ ID NO. 1,

d) a nucleotide sequence encoding the C-terminal domain of a poly ADP-ribose polymerase having the amino acid sequence set forth in SEQ ID NO. 2,

20 e) a nucleotide sequence encoding the C-terminal domain of a poly ADP-ribose polymerase having the amino acid sequence set forth in SEQ ID NO. 4,

f) the nucleotide sequence set forth in SEQ ID NO. 3,

25 g) a nucleotide sequence that hybridizes to the nucleotide sequence of a) - f) under stringent conditions.

22. The method of claim 21, wherein the nucleotide sequence encodes a poly ADP-ribose polymerase having the amino acid sequence set forth in SEQ ID NO. 2.

23. The method of claim 22, wherein said coding sequence is the 5 nucleotide sequence set forth in SEQ ID NO. 1.

SEQUENCE LISTING

<110> Mahajan, Pramod B.
Zuo, Zhuang

<120> Poly ADP-Ribose Polymerase Gene and Its Uses

<130> 5718-34, 035718-174234

<140>
<141>

<150> 60/072,785
<151> 1998-01-27

<160> 5

<170> PatentIn Ver. 2.0

<210> 1
<211> 2949
<212> DNA
<213> Zea mays

<220>
<221> CDS
<222> (1)..(2949)

<400> 1
atg gcg gcg ccg cca aag gcg tgg aag gcg gag tat gcc aag tct ggg 48
Met Ala Ala Pro Pro Lys Ala Trp Lys Aia Glu Tyr Ala Lys Ser Gly
1 5 10 15

cgg gcc tcg tgc aag tca tgc cgg tcc cct atc gcc aag gac cag ctc 96
Arg Ala Ser Cys Lys Ser Cys Arg Ser Pro Ile Ala Lys Asp Gln Leu
20 25 30

cgt ctt ggc aag atg gtt cag gcg tca cag ttc gac ggc ttc atg ccg 144
Arg Leu Gly Lys Met Val Gln Ala Ser Gln Phe Asp Gly Phe Met Pro
35 40 45

atg tgg aac cat gcc agg tgc atc ttc agc aag aac cag ata aaa 192
Met Trp Asn His Ala Arg Cys Ile Phe Ser Lys Lys Asn Gln Ile Lys
50 55 60

tcc gtt gac gat gtt gaa ggg ata gat gca ctt aga tgg gat gat caa 240
Ser Val Asp Asp Val Glu Gly Ile Asp Ala Leu Arg Trp Asp Asp Gln
65 70 75 80

gag aag ata cga aac tac gtt ggg agt gcc tca gct ggt aca agt tct 288
 Glu Lys Ile Arg Asn Tyr Val Gly Ser Ala Ser Ala Gly Thr Ser Ser
 85 90 95

aca gct gct cct cct gag aaa tgt aca att gag att gct cca tct gcc 336
 Thr Ala Ala Pro Pro Glu Lys Cys Thr Ile Glu Ile Ala Pro Ser Ala
 100 105 110

cgt act tca tgt aga cga tgc agt gaa aag att aca aaa gga tcg gtc 384
 Arg Thr Ser Cys Arg Arg Cys Ser Glu Lys Ile Thr Lys Gly Ser Val
 115 120 125

cgt ctt tca gct aag ctt gag agt gaa ggt ccc aag ggt ata cca tgg 432
 Arg Leu Ser Ala Lys Leu Glu Ser Glu Gly Pro Lys Gly Ile Pro Trp
 130 135 140

tat cat gcc aac tgt ttc ttt gag gta tcc ccg tct gca act gtt gag 480
 Tyr His Ala Asn Cys Phe Phe Glu Val Ser Pro Ser Ala Thr Val Glu
 145 150 155 160

aag ttc tca ggc tgg gat act ttg tcc gat gag gat aag aga acc atg 528
 Lys Phe Ser Gly Trp Asp Thr Leu Ser Asp Glu Asp Lys Arg Thr Met
 165 170 175

ctc gat ctt gtt aaa aaa gat gtt ggc aac aat gaa caa aat aag ggt 576
 Leu Asp Leu Val Lys Lys Asp Val Gly Asn Asn Glu Gln Asn Lys Gly
 180 185 190

tcc aag cgc aag aaa agt gaa aat gat att gat agc tac aaa tcc gcc 624
 Ser Lys Arg Lys Ser Glu Asn Asp Ser Tyr Lys Ser Ala
 195 200 205

agg tta gat gaa agt aca tct gaa ggt aca gtg cga aac aaa ggg caa 672
 Arg Leu Asp Glu Ser Thr Ser Glu Gly Thr Val Arg Asn Lys Gly Gln
 210 215 220

ctt gta gac cca cgt ggt tcc aat act agt tca gct gat atc caa cta 720
 Leu Val Asp Pro Arg Gly Ser Asn Thr Ser Ser Ala Asp Ile Gln Leu
 225 230 235 240

aag ctt aag gag caa agt gac aca ctt tgg aag tta aag gat gga ctt 768
 Lys Leu Lys Glu Gln Ser Asp Thr Leu Trp Lys Leu Lys Asp Gly Leu
 245 250 255

aag act cat gta tcg gct gct gaa tta agg gat atg ctt gag gct aat 816
 Lys Thr His Val Ser Ala Ala Glu Leu Arg Asp Met Leu Glu Ala Asn
 260 265 270

ggg cag gat aca tca gga cca gaa agg cac cta ttg gat cgc tgt gcg 864
 Gly Gln Asp Thr Ser Gly Pro Glu Arg His Leu Leu Asp Arg Cys Ala
 275 280 285

 gat gga atg cta ttt gga gcg ctg ggt cct tgc cca gtc tgt gct aat 912
 Asp Gly Met Leu Phe Gly Ala Leu Gly Pro Cys Pro Val Cys Ala Asn
 290 295 300

 ggc atg tac tat tat aat ggt cag tac caa tgc agt ggt aat gtg tca 960
 Gly Met Tyr Tyr Tyr Asn Gly Gln Tyr Gln Cys Ser Gly Asn Val Ser
 305 310 315 320

 gag tgg tcc aag tgt aca tac tct gcc aca gaa cct gtc cgc gtt aag 1008
 Glu Trp Ser Lys Cys Thr Tyr Ser Ala Thr Glu Pro Val Arg Val Lys
 325 330 335

 aag aag tgg caa att cca cat gga aca aag aat gat tac ctt atg aag 1056
 Lys Lys Trp Gln Ile Pro His Gly Thr Lys Asn Asp Tyr Leu Met Lys
 340 345 350

 tgg ttc aaa tct caa aag gtt aag aaa cca gag agg gtt ctt cca cca 1104
 Trp Phe Lys Ser Gln Lys Val Lys Lys Pro Glu Arg Val Leu Pro Pro
 355 360 365

 atg tca cct gag aaa tct gga agt aaa gca act cag aga aca tca ttg 1152
 Met Ser Pro Glu Lys Ser Gly Ser Lys Ala Thr Gln Arg Thr Ser Leu
 370 375 380

 ctg tct tct aaa ggg ttg gat aaa tta agg ttt tct gtt gta gga caa 1200
 Leu Ser Ser Lys Gly Leu Asp Lys Leu Arg Phe Ser Val Val Gly Gln
 385 390 395 400

 tca aaa gaa gca gca aat gag tgg att gag aag ctc aaa ctt gct ggt 1248
 Ser Lys Glu Ala Ala Asn Glu Trp Ile Glu Lys Leu Lys Leu Ala Gly
 405 410 415

 gcc aac ttc tat gcc agg gtt gtc aaa gat att gat tgt tta att gca 1296
 Ala Asn Phe Tyr Ala Arg Val Val Lys Asp Ile Asp Cys Leu Ile Ala
 420 425 430

 tgt ggt gag ctc gac aat gaa aat gct gaa gtc agg aaa gca agg agg 1344
 Cys Gly Glu Leu Asp Asn Glu Asn Ala Glu Val Arg Lys Ala Arg Arg
 435 440 445

 ctg aag ata cca att gta agg gag ggt tac att gga gaa tgt gtt aaa 1392
 Leu Lys Ile Pro Ile Val Arg Glu Gly Tyr Ile Gly Glu Cys Val Lys
 450 455 460

aga aca aaa tgc tgc cat ttg att tgt ata aac tgg aat gcc tta gag			1440
Arg Thr Lys Cys Cys His Leu Ile Cys Ile Asn Trp Asn Ala Leu Glu			
465	470	475	480
tcc tca aaa ggc mgt act gtc act gtt aaa gtt aag ggc cga agt gct			1488
Ser Ser Lys Gly Xaa Thr Val Thr Val Lys Val Lys Gly Arg Ser Ala			
485	490	495	
tgt tca tyd agt cct cyg gtt tgc aag aat act gct cac att cct tra			1536
Cys Ser Xaa Ser Pro Xaa Val Cys Lys Asn Thr Ala His Ile Pro Xaa			
500	505	510	
gra tgg gaa aag cat ata caa tgc amc ctt aaa cat gtt ctg acc tgn			1584
Xaa Trp Glu Lys His Ile Gln Cys Xaa Leu Lys His Val Leu Thr Xaa			
515	520	525	
cac nag gtg tgy aca ggc tac tat gta ctc cag atc att gaa cag gat			1632
His Xaa Val Xaa Thr Gly Tyr Tyr Val Leu Gln Ile Ile Glu Gln Asp			
530	535	540	
gat ggg tct gag tgc tac gta ttt cgt aag tgg gga cgg gtt ggg agt			1680
Asp Gly Ser Glu Cys Tyr Val Phe Arg Lys Trp Gly Arg Val Gly Ser			
545	550	555	560
gag aaa att gga ggg caa aaa ctg gag gag atg tca aaa act gag gca			1728
Glu Lys Ile Gly Gly Gln Lys Leu Glu Glu Met Ser Lys Thr Glu Ala			
565	570	575	
atc aag gaa ttc aaa aga tta ttt ctt gag aag act gga aac tca tgg			1776
Ile Lys Glu Phe Lys Arg Leu Phe Leu Glu Lys Thr Gly Asn Ser Trp			
580	585	590	
gaa gct tgg gaa tgt aaa acc aat ttt cgg aag cag cct ggg aga ttt			1824
Glu Ala Trp Glu Cys Lys Thr Asn Phe Arg Lys Gln Pro Gly Arg Phe			
595	600	605	
tac cca ctt gat gtt gat tat ggt gtt aag aaa gca cca aaa cgg aaa			1872
Tyr Pro Leu Asp Val Asp Tyr Gly Val Lys Lys Ala Pro Lys Arg Lys			
610	615	620	
gat atc agt gaa atg aaa agt tct ctt gct cct caa ttg cta gaa ctc			1920
Asp Ile Ser Glu Met Lys Ser Ser Leu Ala Pro Gln Leu Leu Glu Leu			
625	630	635	640
atg aag atg ctt ttc aat gtg gag aca tat aga gct gct atg atg gaa			1968
Met Lys Met Leu Phe Asn Val Glu Thr Tyr Arg Ala Ala Met Met Glu			
645	650	655	

ttt gaa awt aat atg tca gaa atg cct ctt ggg aag cta agc mag gra 2016
 Phe Glu Xaa Asn Met Ser Glu Met Pro Leu Gly Lys Leu Ser Xaa Xaa
 660 665 670

 aat att gag raa gga ttt gaa gca tta act krg rta cmg rat tta ttt 2064
 Asn Ile Glu Xaa Gly Phe Glu Ala Leu Thr Xaa Xaa Xaa Leu Phe
 675 680 685

 gaa gga cac cgc tna tca agc act ggc ttg ttr gag aaa gct naa ttg 2112
 Glu Gly His Arg Xaa Ser Ser Thr Gly Leu Xaa Glu Lys Ala Xaa Leu
 690 695 700

 ttg ytg sga gcm ats syt ttt tca ctc tta tcc ctt cta ttc atc ctc 2160
 Leu Xaa Xaa Xaa Xaa Phe Ser Leu Leu Ser Leu Leu Phe Ile Leu
 705 710 715 720

 ata tta tac ggg atg agg atg att tca tat tca aag gcg aaa atg ctt 2208
 Ile Leu Tyr Gly Met Arg Met Ile Ser Tyr Ser Lys Ala Lys Met Leu
 725 730 735

 gaa gct ctg cag gat att gaa att gct tca aag ata gtt ggc ttc gat 2256
 Glu Ala Leu Gln Asp Ile Glu Ile Ala Ser Lys Ile Val Gly Phe Asp
 740 745 750

 agc gac agt gat gaa tct ctt gat gat aaa tat atg aaa ctt cac tgt 2304
 Ser Asp Ser Asp Glu Ser Leu Asp Asp Lys Tyr Met Lys Leu His Cys
 755 760 765

 gac atc acc ccg ctg gct cac gat agt gaa gat tac aag tta att gag 2352
 Asp Ile Thr Pro Leu Ala His Asp Ser Glu Asp Tyr Lys Leu Ile Glu
 770 775 780

 cag tat ctc ctc aac aca cat gct cct act cac aag gac tgg tcg ctg 2400
 Gln Tyr Leu Leu Asn Thr His Ala Pro Thr His Lys Asp Trp Ser Leu
 785 790 795 800

 gaa ctg gag gaa gtt ttt tca ctt gat cga gat gga gaa ctt aat aag 2448
 Glu Leu Glu Glu Val Phe Ser Leu Asp Arg Asp Gly Glu Leu Asn Lys
 805 810 815

 tac tca aga tat aaa aat aat ctg cat aac aag atg cta tta tgg cac 2496
 Tyr Ser Arg Tyr Lys Asn Asn Leu His Asn Lys Met Leu Leu Trp His
 820 825 830

 ggt tca agg ttg acg aat ttt gtg gga att ctt agt caa ggg cta aga 2544
 Gly Ser Arg Leu Thr Asn Phe Val Gly Ile Leu Ser Gln Gly Leu Arg
 835 840 845

att gca cct cct gag gca cct gtt act ggc tat atg ttc ggc aaa ggc 2592
 Ile Ala Pro Pro Glu Ala Pro Val Thr Gly Tyr Met Phe Gly Lys Gly
 850 855 860

ctc tac ttt gca gat cta gta agc aag agc gca caa tac tgt tat gtg 2640
 Leu Tyr Phe Ala Asp Leu Val Ser Lys Ser Ala Gln Tyr Cys Tyr Val
 865 870 875 880

gat agg aat aat cct gta ggt ttg atg ctt ctt tct gag gtt gct tta 2688
 Asp Arg Asn Asn Pro Val Gly Leu Met Leu Leu Ser Glu Val Ala Leu
 885 890 895

gga gac atg tat gaa cta aag aaa gcc acg tcc atg gac aaa cct cca 2736
 Gly Asp Met Tyr Glu Leu Lys Lys Ala Thr Ser Met Asp Lys Pro Pro
 900 905 910

aga ggg aag cat tcg acc aag gga tta ggc aaa acc gtg cca ctg qag 2784
 Arg Gly Lys His Ser Thr Lys Gly Leu Gly Lys Thr Val Pro Leu Glu
 915 920 925

tca gag ttt gtg aag tgg agg gat gat gtc gta gtt ccc tgc ggc aag 2832
 Ser Glu Phe Val Lys Trp Arg Asp Asp Val Val Val Pro Cys Gly Lys
 930 935 940

ccg gtg cca tca tca att agg agc tct gaa ctc atg tac aat gag tac 2880
 Pro Val Pro Ser Ser Ile Arg Ser Ser Glu Leu Met Tyr Asn Glu Tyr
 945 950 955 960

atc gtc tac aac aca tcc cag gtg aag atg cag ttc ttg ctg aag gtg 2928
 Ile Val Tyr Asn Thr Ser Gln Val Lys Met Gln Phe Leu Leu Lys Val
 965 970 975

cgt ttc cat cac aag agg tag 2949
 Arg Phe His His Lys Arg
 980

<210> 2
 <211> 982
 <212> PRT
 <213> Zea mays

<400> 2
 Met Ala Ala Pro Pro Lys Ala Trp Lys Ala Glu Tyr Ala Lys Ser Gly
 1 5 10 15

Arg Ala Ser Cys Lys Ser Cys Arg Ser Pro Ile Ala Lys Asp Gln Leu

	20	25	30
-			
Arg Leu Gly Lys Met Val Gln Ala Ser Gln Phe Asp Gly Phe Met Pro			
35	40	45	
Met Trp Asn His Ala Arg Cys Ile Phe Ser Lys Lys Asn Gln Ile Lys			
50	55	60	
Ser Val Asp Asp Val Glu Gly Ile Asp Ala Leu Arg Trp Asp Asp Gln			
65	70	75	80
Glu Lys Ile Arg Asn Tyr Val Gly Ser Ala Ser Ala Gly Thr Ser Ser			
85	90	95	
Thr Ala Ala Pro Pro Glu Lys Cys Thr Ile Glu Ile Ala Pro Ser Ala			
100	105	110	
Arg Thr Ser Cys Arg Arg Cys Ser Glu Lys Ile Thr Lys Gly Ser Val			
115	120	125	
Arg Leu Ser Ala Lys Leu Glu Ser Glu Gly Pro Lys Gly Ile Pro Trp			
130	135	140	
Tyr His Ala Asn Cys Phe Phe Glu Val Ser Pro Ser Ala Thr Val Glu			
145	150	155	160
Lys Phe Ser Gly Trp Asp Thr Leu Ser Asp Glu Asp Lys Arg Thr Met			
165	170	175	
Leu Asp Leu Val Lys Lys Asp Val Gly Asn Asn Glu Gln Asn Lys Gly			
180	185	190	
Ser Lys Arg Lys Lys Ser Glu Asn Asp Ile Asp Ser Tyr Lys Ser Ala			
195	200	205	
Arg Leu Asp Glu Ser Thr Ser Glu Gly Thr Val Arg Asn Lys Gly Gin			
210	215	220	
Leu Val Asp Pro Arg Gly Ser Asn Thr Ser Ser Ala Asp Ile Gln Leu			
225	230	235	240
Lys Leu Lys Glu Gln Ser Asp Thr Leu Trp Lys Leu Lys Asp Gly Leu			
245	250	255	
Lys Thr His Val Ser Ala Ala Glu Leu Arg Asp Met Leu Glu Ala Asn			
260	265	270	
Gly Gln Asp Thr Ser Gly Pro Glu Arg His Leu Leu Asp Arg Cys Ala			

-	275	280	285
Asp Gly Met Leu Phe Gly Ala Leu Gly Pro Cys Pro Val Cys Ala Asn			
	290	295	300
Gly Met Tyr Tyr Tyr Asn Gly Gln Tyr Gln Cys Ser Gly Asn Val Ser			
	305	310	315
320			
Glu Trp Ser Lys Cys Thr Tyr Ser Ala Thr Glu Pro Val Arg Val Lys			
	325	330	335
Lys Lys Trp Gln Ile Pro His Gly Thr Lys Asn Asp Tyr Leu Met Lys			
	340	345	350
350			
Trp Phe Lys Ser Gln Lys Val Lys Lys Pro Glu Arg Val Leu Pro Pro			
	355	360	365
Met Ser Pro Glu Lys Ser Gly Ser Lys Ala Thr Gln Arg Thr Ser Leu			
	370	375	380
380			
Leu Ser Ser Lys Gly Leu Asp Lys Leu Arg Phe Ser Val Val Gly Gln			
	385	390	395
400			
Ser Lys Glu Ala Ala Asn Glu Trp Ile Glu Lys Leu Lys Leu Ala Gly			
	405	410	415
415			
Ala Asn Phe Tyr Ala Arg Val Val Lys Asp Ile Asp Cys Leu Ile Ala			
	420	425	430
430			
Cys Gly Glu Leu Asp Asn Glu Asn Ala Glu Val Arg Lys Ala Arg Arg			
	435	440	445
445			
Leu Lys Ile Pro Ile Val Arg Glu Gly Tyr Ile Gly Glu Cys Val Lys			
	450	455	460
460			
Arg Thr Lys Cys Cys His Leu Ile Cys Ile Asn Trp Asn Ala Leu Glu			
	465	470	475
480			
Ser Ser Lys Gly Xaa Thr Val Thr Val Lys Val Lys Gly Arg Ser Ala			
	485	490	495
495			
Cys Ser Xaa Ser Pro Xaa Val Cys Lys Asn Thr Ala His Ile Pro Xaa			
	500	505	510
510			
Xaa Trp Glu Lys His Ile Gln Cys Xaa Leu Lys His Val Leu Thr Xaa			
	515	520	525
525			
His Xaa Val Xaa Thr Gly Tyr Tyr Val Leu Gln Ile Ile Glu Gln Asp			

530

535

540

Asp Gly Ser Glu Cys Tyr Val Phe Arg Lys Trp Gly Arg Val Gly Ser
 545 550 555 560

Glu Lys Ile Gly Gly Gln Lys Leu Glu Glu Met Ser Lys Thr Glu Ala
 565 570 575

Ile Lys Glu Phe Lys Arg Leu Phe Leu Glu Lys Thr Gly Asn Ser Trp
 580 585 590

Glu Ala Trp Glu Cys Lys Thr Asn Phe Arg Lys Gln Pro Gly Arg Phe
 595 600 605

Tyr Pro Leu Asp Val Asp Tyr Gly Val Lys Lys Ala Pro Lys Arg Lys
 610 615 620

Asp Ile Ser Glu Met Lys Ser Ser Leu Ala Pro Gln Leu Leu Glu Leu
 625 630 635 640

Met Lys Met Leu Phe Asn Val Glu Thr Tyr Arg Ala Ala Met Met Glu
 645 650 655

Phe Glu Xaa Asn Met Ser Glu Met Pro Leu Gly Lys Leu Ser Xaa Xaa
 660 665 670

Asn Ile Glu Xaa Gly Phe Glu Ala Leu Thr Xaa Xaa Xaa Xaa Leu Phe
 675 680 685

Glu Gly His Arg Xaa Ser Ser Thr Gly Leu Xaa Glu Lys Ala Xaa Leu
 690 695 700

Leu Xaa Xaa Xaa Xaa Xaa Phe Ser Leu Leu Ser Leu Leu Phe Ile Leu
 705 710 715 720

Ile Leu Tyr Gly Met Arg Met Ile Ser Tyr Ser Lys Ala Lys Met Leu
 725 730 735

Glu Ala Leu Gln Asp Ile Glu Ile Ala Ser Lys Ile Val Gly Phe Asp
 740 745 750

Ser Asp Ser Asp Glu Ser Leu Asp Asp Lys Tyr Met Lys Leu His Cys
 755 760 765

Asp Ile Thr Pro Leu Ala His Asp Ser Glu Asp Tyr Lys Leu Ile Glu
 770 775 780

Gln Tyr Leu Leu Asn Thr His Ala Pro Thr His Lys Asp Trp Ser Leu

785	-	790	795	800
Glu Leu Glu Glu Val Phe Ser Leu Asp Arg Asp Gly Glu Leu Asn Lys				
805		810		815
Tyr Ser Arg Tyr Lys Asn Asn Leu His Asn Lys Met Leu Leu Trp His				
820		825		830
Gly Ser Arg Leu Thr Asn Phe Val Gly Ile Leu Ser Gln Gly Leu Arg				
835		840		845
Ile Ala Pro Pro Glu Ala Pro Val Thr Gly Tyr Met Phe Gly Lys Gly				
850		855		860
Leu Tyr Phe Ala Asp Leu Val Ser Lys Ser Ala Gln Tyr Cys Tyr Val				
865		870		875
Asp Arg Asn Asn Pro Val Gly Leu Met Leu Leu Ser Glu Val Ala Leu				
885		890		895
Gly Asp Met Tyr Glu Leu Lys Lys Ala Thr Ser Met Asp Lys Pro Pro				
900		905		910
Arg Gly Lys His Ser Thr Lys Gly Leu Gly Lys Thr Val Pro Leu Glu				
915		920		925
Ser Glu Phe Val Lys Trp Arg Asp Asp Val Val Val Pro Cys Gly Lys				
930		935		940
Pro Val Pro Ser Ser Ile Arg Ser Ser Glu Leu Met Tyr Asn Glu Tyr				
945		950		955
Ile Val Tyr Asn Thr Ser Gln Val Lys Met Gln Phe Leu Leu Lys Val				
965		970		975
Arg Phe His His Lys Arg				
980				

<210> 3
<211> 474
<212> DNA
<213> Zea mays

<220>
<221> CDS
<222> (1)..(474)

<400> 3
aac aag atg cta tta tgg cac ggt tca agg ttg acg aat ttt gtg gga 48
Asn Lys Met Leu Leu Trp His Gly Ser Arg Leu Thr Asn Phe Val Gly
1 5 10 15

att ctt agtcaa ggg cta aga att gca cct cct gag gca cct gtt act 96
Ile Leu Ser Gln Gly Leu Arg Ile Ala Pro Pro Glu Ala Pro Val Thr
20 25 30

ggc tat atg ttc ggc aaa ggc ctc tac ttt gca gat cta gta agc aag 144
Gly Tyr Met Phe Gly Lys Gly Leu Tyr Phe Ala Asp Leu Val Ser Lys
35 40 45

agc gca caa tac tgt tat gtg gat agg aat aat cct gta ggt ttg atg 192
Ser Ala Gln Tyr Cys Tyr Val Asp Arg Asn Asn Pro Val Gly Leu Met
50 55 60

ctt ctt tct gag gtt gct tta gga gac atg tat gaa cta aag aaa gcc 240
Leu Leu Ser Glu Val Ala Leu Gly Asp Met Tyr Glu Leu Lys Lys Ala
65 70 75 80

acg tcc atg gac aaa cct cca aga ggg aag cat tcg acc aag gga tta 288
Thr Ser Met Asp Lys Pro Pro Arg Gly Lys His Ser Thr Lys Gly Leu
85 90 95

ggc aaa acc gtg cca ctg gag tca gag ttt gtg aag tgg agg gat gat 336
Gly Lys Thr Val Pro Leu Glu Ser Glu Phe Val Lys Trp Arg Asp Asp
100 105 110

gtc gta gtt ccc tgc ggc aag ccg gtg cca tca tca att agg agc tct 384
Val Val Val Pro Cys Gly Lys Pro Val Pro Ser Ser Ile Arg Ser Ser
115 120 125

gaa ctc atg tac aat gag tac atc gtc tac aac aca tcc cag gtg aag 432
Glu Leu Met Tyr Asn Glu Tyr Ile Val Tyr Asn Thr Ser Gln Val Lys
130 135 140

atg cag ttc ttg ctg aag gtg cgt ttc cat cac aag agg tag 474
Met Gln Phe Leu Leu Lys Val Arg Phe His His Lys Arg
145 150 155

<210> 4
<211> 157
<212> PRT
<213> Zea mays

<400> 4

Asn Lys Met Leu Leu Trp His Gly Ser Arg Leu Thr Asn Phe Val Gly
 1 5 10 15

Ile Leu Ser Gln Gly Leu Arg Ile Ala Pro Pro Glu Ala Pro Val Thr
 20 25 30

Gly Tyr Met Phe Gly Lys Gly Leu Tyr Phe Ala Asp Leu Val Ser Lys
 35 40 45

Ser Ala Gln Tyr Cys Tyr Val Asp Arg Asn Asn Pro Val Gly Leu Met
 50 55 60

Leu Leu Ser Glu Val Ala Leu Gly Asp Met Tyr Glu Leu Lys Lys Ala
 65 70 75 80

Thr Ser Met Asp Lys Pro Pro Arg Gly Lys His Ser Thr Lys Gly Leu
 85 90 95

Gly Lys Thr Val Pro Leu Glu Ser Glu Phe Val Lys Trp Arg Asp Asp
 100 105 110

Val Val Val Pro Cys Gly Lys Pro Val Pro Ser Ser Ile Arg Ser Ser
 115 120 125

Glu Leu Met Tyr Asn Glu Tyr Ile Val Tyr Asn Thr Ser Gln Val Lys
 130 135 140

Met Gln Phe Leu Leu Lys Val Arg Phe His His Lys Arg
 145 150 155

<210> 5
 <211> 530
 <212> DNA
 <213> Zea mays

<400> 5
 ctcgtgcaag tcatgccgt cccctatcgcaaggaccag ctccgtcttg gcaagatgg 60
 tcaggcgtca cagttcgacg gttcatgcc gatgtggAAC catgccaggt gcatttcag 120
 caagaagaac cagataaaat ccgttgacga tggtaaggAA atagatgcAC tttagatgg 180
 tgatcaagAG aagatacgAA actacgttgg gagtgccTCA gctggtaacaA gttctacAGC 240
 tgctcctcCT gagaaatgtA caattgagat tgctccatct gcccgtactt catgtagacg 300
 atgcagtGAA aagattacAA aaggatcgGT ccgtcttca gctaagcttg agagtgaagg 360

tcccaagggt ataccatggt atcatgccaa ctgtttcttt gaggtatccc cgtctgcaac 420

tgttgagaag ttctcaggct gggataactt gtccgatgag gataagagaa ccatgctcga 480

tcttgttaaa aaagatgttgc aacaacaatga acaaaataaag ggttccaagc 530

INTERNATIONAL SEARCH REPORT

In. National Application No

PCT/US 99/01591

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 C12N15/54 C12N15/82 A01H5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N A01H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	BABIYCHUK, E., ET AL.: "Zea mays mRNA for poly(ADP-ribose) polymerase 3211bp" EMBL ACCESSION NO. AJ222589, 19 November 1997, XP002102931 see the whole document	1
Y P, X	-& BABIYCHUK, E., ET AL.: "Higher plants possess two structurally different poly(ADP-ribose) polymerases" THE PLANT JOURNAL, vol. 15, no. 5, September 1998, pages 635-645, XP002102932 see the whole document	2-20 1
	---	-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"S" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

18 May 1999

01/06/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo n.
Fax: (+31-70) 340-3016

Authorized officer

Maddox, A

INTERNATIONAL SEARCH REPORT

Int. Application No.

PCT/US 99/01591

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	LEPINIEC, L., ET AL.: "Characterization of an <i>Arabidopsis thaliana</i> cDNA homologue to animal poly(ADP-ribose) polymerase" FEBS LETTERS, vol. 364, 1995, pages 103-108, XP002102933 see page 107, right-hand column, last paragraph	2-20
A	-& LEPINIEC, L., ET AL.: "A. <i>thaliana</i> PARP mRNA for PARP protein" EMBL ACCESSION NO. Z48243, 31 May 1995, XP002102946 see the whole document ---	1
P,X	MAHAJAN, P.B., ET AL.: "Purification and cDNA cloning of maize poly(ADP)-ribose polymerase" PLANT PHYSIOLOGY, vol. 118, November 1998, pages 895-905, XP002102934 see figure 6	1
P,X	-& MAHAJAN, P.B., ET AL.: "Zea mays poly(ADP)-ribose polymerase (PARP1) mRNA, complete cds." EMBL ACCESSION NO. AF093627, 30 November 1998, XP002102935 see the whole document ---	1
P,Y	AMOR, Y., ET AL.: "The involvement of poly(ADP-ribose) polymerase in the oxidative stress responses in plants" FEBS LETTERS, vol. 440, November 1998, pages 1-7, XP002102936 see the whole document ---	2-20
A	KÜPPER, J.H., ET AL.: "Molecular genetic systems to study the role of poly(ADP-ribosylation) in the cellular response to DNA damage" BIOCHIMIE, vol. 77, 1995, pages 450-455, XP000789938 see the whole document ---	2-20
A	SIMBULAN-ROSENTHAL, C.M., ET AL.: "The expression of poly(ADP-ribose) polymerase during differentiation-linked DNA replicaton reveals that it is a component of the multiprotien DNA replication complex" BIOCHEMISTRY, vol. 35, 1996, pages 11622-11633, XP002102937 see the whole document ---	2,12,15
		-/-

INTERNATIONAL SEARCH REPORT

Int'l. Application No

PCT/US 99/01591

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>CHEMICAL ABSTRACTS, vol. 125, no. 21, 1996 Columbus, Ohio, US; abstract no. 266669, SIMBULAN-ROSENTHAL, C.M., ET AL.: "Depletion of nuclear poly(ADP-ribose) polymerase by antisense RNA expression: influence on genomic stability, chromatin organization, DNA repair, and DNA replication." XP002102939 see abstract & PROG. NUCLEIC ACID RES. MOL. BIOL., vol. 55, 1996, pages 135-156,</p> <p>---</p>	2,12,15
A	<p>WO 97 06267 A (PLANT GENETIC SYSTEMS NV ;BLOCK MARC DE (BE)) 20 February 1997 see the whole document</p> <p>---</p>	21
A	<p>BIOLOGICAL ABSTRACTS, vol. 92, 1991 Philadelphia, PA, US; abstract no. 16692, GIROD, P.-A., ET AL.: "Secondary metabolism in culture red beet (<i>Beta vulgaris L.</i>) cells: Differential regulation of betaxanthin and betacyanin biosynthesis" XP002102938 see abstract & PLANT CELL TISSUE ORGAN CULT, vol. 25, no. 1, 1991, pages 1-12,</p> <p>-----</p>	21

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l. Application No.

PCT/US 99/01591

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9706267	A 20-02-1997	EP	0757102 A	05-02-1997
		AU	6739896 A	05-03-1997
		CA	2200496 A	20-02-1997
		EP	0795019 A	17-09-1997
		JP	11500627 T	19-01-1999