Department Of Computer Science, CUI Lahore Campus

CSC102 - Discrete Structures

By

Muhammad Zuhair Qadir

Course Outline

- Sets
 - Set Terminologies
 - Sets of sets
 - Power Set
 - Cartesian Product
 - Set notation with Quantifier

Application of Sets

- Databases
- Data-type or type in computer programming
- Constructing discrete structures
- Finite state machine
- Modeling computing machine
- Representing computational complexity of algorithms

Set

- A set is an unordered collection of objects.
- The objects in a set are called the elements, or members, of the set.
- A set is said to contain its elements.

Example:

- **Z** is the set of integers.
- Cities in the Pakistan: {Lahore, Karachi, Islamabad, ... }
- Sets can contain non-related elements: {3, a, red, Gilgit }

Properties:

- Order does not matter
 - {1, 2, 3, 4, 5} is equivalent to {3, 5, 2, 4, 1}
- Sets do not have duplicate elements
 - Consider the list of students in this class
 - It does not make sense to list somebody twice

Set Membership

• a is an element of the set A, denoted by $a \in A$.

a is not an element of the set A, denoted by a ∉
A.

Sets (example)

- Example:
- Set D: Students taking Discrete Mathematics course.
- Assume Ali is taking Discrete Mathematics course and Saad is not taking Discrete Mathematics course.

- Ali ∈ D
- Saad ∉ D

Sets (example)

• Example:

```
V: {a,e,i,o,u}
  a \in V
  b ∉ V
I: {0,1,2,...,99}
  50 ∈ I
  100 ∉ I
S: {a,2,class}
  2 ∈ S
  room ∉ S
```

Specifying a Set

- Capital letters (A, B, S...) for sets
- Italic lower-case letter for elements (a, x, y...)
- Easiest way: list all the elements
 - A = {1, 2, 3, 4, 5}, Not always feasible!
- May use ellipsis (...): B = {0, 1, 2, 3, ...}
- May cause confusion. C = {3, 5, 7, ...}. What's next?
- If the set is all odd integers greater than 2, it is 9
- If the set is all prime numbers greater than 2, it is 11

Set Builder

Set builder:

Characterize all elements in the set by stating properties they must have.

• Example:

 $O= \{x \mid x \text{ is an odd positive integer less than 10} \}$

 $O = \{x \in \mathbb{Z}^+ \mid x \text{ is odd and } x < 10\}$

 $O = \{1,3,5,7,9\}$

The vertical bar means "such that"

Important Sets

- Set of natural numbers
 - $N = \{1, 2, 3, ...\}$
- Set of integers
 - $\mathbf{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- Set of positive integers
 - $\mathbf{Z}^+ = \{1, 2, 3, ...\}$
- Set of rational numbers
 - $\mathbf{Q} = \{ p/q \mid p \in \mathbf{Z}, q \in \mathbf{Z}, \text{ and } q \neq 0 \}$
- Set of real numbers
 - R

- $S_1 = \{ N, Z, Q, R \}$
 - S₁ has 4 elements, each of which is a set.
- $S_2 = \{x \mid x \in \mathbb{N} \text{ and } \exists k \ k \in \mathbb{N}, x = k^2\}$
 - Set of squares of natural numbers

Equality of Sets

- Let A and B be two sets.
 - A and B are equal if and only if they have the same elements, denoted by A = B.
 - A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$.

Equality of Sets (examples)

• $\{1,2,3\}$ and $\{3,2,1\}$ $\{1,2,3\} = \{3,2,1\}$

• \mathbf{Z}^+ and $\{0,1,2,...\}$ $\mathbf{Z}^+ \neq \{0,1,2,...\}$

The Universal Set

- U is the universal set the set containing all objects or elements (or the "universe"), and of which all other sets are subsets
- For the set {-2, 0.4, 2}, U would be the real numbers
- For the set {0, 1, 2}, U could be the N, Z, Q, R depending on the context
- For the set of the vowels of the alphabet, U would be all the letters of the alphabet

Venn Diagrams

Sets can be represented graphically using Venn diagram.

- The box represents the universal set
- Circles represent the set(s)
- Consider set S, which is the set of all vowels in the alphabet
- The individual elements are usually not written in a Venn diagram

Empty Set (example)

• Example:

•
$$S = \{x \mid x \in Z^+ \text{ and } x < 0 \}$$

 $S = \{\} = \emptyset$

A set that has no elements called empty set, or null set.

Ø and {Ø}
 Ø ≠ {Ø}

Sets Of Sets

- Sets can contain other sets
- $S = \{ \{1\}, \{2\}, \{3\} \}$
- $T = \{ \{1\}, \{\{2\}\}, \{\{\{3\}\}\} \} \}$
- V = { {1}, {{2}} }, { {{3}}} }, { {1}, {{2}}}, {{{3}}} } }V has only 3 elements!
- Note that $1 \neq \{1\} \neq \{\{1\}\} \neq \{\{\{1\}\}\}$
- They are all different

Subset

- Let A and B be sets.
- A is a subset of B if and only if every element of A is also an element of B, denoted by A ⊆ B.
- $A \subseteq B$ if and only if $\forall x (x \in A \rightarrow x \in B)$.
- ∀ set S,

$$\emptyset \subseteq S$$

$$S \subseteq S$$

Subset and Equality

- $A \subseteq B$, $\forall x (x \in A \rightarrow x \in B)$ and
- $B \subseteq A$, $\forall x (x \in B \rightarrow x \in A)$ then
- $A = B, \forall x (x \in A \leftrightarrow x \in B)$

Subset (example)

Q and R

$$Q \subseteq R$$

N and Z

$$N \subseteq Z$$

A = {x | x ∈ Z⁺ and x<10}
 B = {x | x ∈ Z⁺, x is even and x<10}
 B ⊆ A

Subset

• Show \forall set S, $\emptyset \subseteq S$.

Proof:

We want to show $\forall x \ (x \in \emptyset \rightarrow x \in S)$.

- \emptyset contains no element, so $x \in \emptyset$ is false.
- Hypothesis of conditional statement is false, so $x \in \emptyset \rightarrow x \in S$ is true.
- Thus, $\forall x \ (x \in \emptyset \rightarrow x \in S)$ is true.

Subset

- Show \forall set S, $S \subseteq S$.
- Proof:

We want to show $\forall x \ (x \in S \rightarrow x \in S)$.

- If x ∈ S is true, then hypothesis and conclusion of conditional statement are both true and (x ∈ S → x ∈ S) is true.
- If $x \in S$ is false, then hypothesis and conclusion of conditional statement are both false and $(x \in S \rightarrow x \in S)$ is true.
- Thus, $\forall x (x \in S \rightarrow x \in S)$ is true.

Proper Subset

Let A and B be sets.

- A is a proper subset of B if and only if A ⊆ B but A ≠B, denoted A ⊂ B.
- A \subset B if and only if $\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$.

 If S is a subset of T, and S is not equal to T, then S is a proper subset of T

Let
$$T = \{0, 1, 2, 3, 4, 5\}$$
 and $S = \{1, 2, 3\}$

- S is not equal to T, and S is a subset of T
- Let Q = {4, 5, 6}. Q is neither a subset of T nor a proper subset of T
- The difference between "subset" and "proper subset" is like the difference between "less than or equal to" and "less than" for numbers

- Is $\emptyset \subseteq \{1,2,3\}$
- Is $\emptyset \in \{1,2,3\}$
- Is $\emptyset \subseteq \{\emptyset, 1, 2, 3\}$
- Is $\emptyset \in \{\emptyset, 1, 2, 3\}$

• Is
$$\emptyset \subseteq \{1,2,3\}$$
 Yes

• Is
$$\emptyset \in \{1,2,3\}$$
 No

• Is
$$\emptyset \subseteq \{\emptyset,1,2,3\}$$
 Yes

• Is
$$\emptyset \in \{\emptyset, 1, 2, 3\}$$
 Yes

- Is $x \in \{x\}$
- Is $\{x\} \subseteq \{x\}$
- Is $\{x\} \in \{x, \{x\}\}$
- Is $\{x\} \subseteq \{x,\{x\}\}$
- Is $\{x\} \in \{x\}$

• Is
$$x \in \{x\}$$
 Yes

• Is
$$\{x\} \subseteq \{x\}$$
 Yes

• Is
$$\{x\} \in \{x, \{x\}\}\$$
 Yes

• Is
$$\{x\} \subseteq \{x,\{x\}\}$$
 Yes

• Is
$$\{x\} \in \{x\}$$
 No

Size of Sets

- Let S be a set.
- The cardinality of a set is the number of elements in a set
- cardinality of S, denoted by |S|.

- Find cardinality of following sets.
- A = $\{x \mid x \in \mathbb{Z}^+, x \text{ is odd and } x<10\}$ A = $\{1,3,5,7,9\}$ |A| = 5
- $B = \emptyset$ |B| = 0
- C = {Ø} |C| = 1
- RR is infinite.

The Power Set

- Let S be a set.
- The power set of S is the set of all subsets of S, denoted by P(S).
- Example:

$$P(\{a,b\}) = \{\emptyset,\{a\},\{b\},\{a,b\}\}\$$

The Power Set (example)

- What is P({1,2,3})?
- Solution:

$$P(\{1,2,3\}) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\} \}$$

• $P(\emptyset) = ?$

• $P(\{\emptyset\}) = ?$

The Cardinality of the Power Set

- Assume A is finite.
- |P(A)| = ?

Solution:

```
• A = {a} P(A) = {\emptyset, \{a\}} |P(A)| = 2
• A = {a,b} P(A) = {\emptyset, \{a\}, \{b\}, \{a,b\}} |P(A)| = 4
```

• A = $\{a,b,c\}$ P(A)= $\{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}$ |P(A)| = 8

•
$$|P(A)| = 2^{|A|}$$

Cartesian Product

Let A and B be sets.

- The Cartesian product of A and B, denoted by A x B, is the set of all ordered pairs (a,b), where $a \in A$ and $b \in B$.
- $A \times B = \{(a,b) \mid a \in A \land b \in B\}$

Cartesian Product (example)

```
A = \{0,1,2\}

B = \{a,b\}

Are A x B and B x A equal?
```

Solution:

A x B =
$$\{(0,a),(0,b),(1,a),(1,b),(2,a),(2,b)\}$$

B x A = $\{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)\}$
So, A x B \neq B x A.

The Cardinality of Cartesian Product

Assume A and B are finite.

$$|AxB| = ?$$

Solution:

```
• A = {a} B={0}
AxB = {(a,0)} |AxB| = 1
```

• $A = \{a,b\}$ $B=\{0\}$ $AxB = \{(a,0),(b,0)\}$ |AxB| = 2

• A = {a,b} B={0,1} $AxB={(a,0),(a,1),(b,0),(b,1)}$ |AxB| = 4

|AxB| = |A|.|B|

Cartesian Product

- Let A₁, A₂, ..., A_n be sets.
- The Cartesian product of A₁, A₂, ..., A_n, denoted by A₁ x A₂ x ...x A_n, is the set of all ordered n-tuples (a₁, a₂, ..., a_n), where a_i ∈ A_i for i = 1,2,...,n.
- $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i, \forall i \in \{1, 2, ..., n\}\}$

Cartesian Product

$$A = \{a, b\}$$
 $B = \{1\}$
 $C = \{x, y, z\}$
 $A \times B \times C = ?$

A x B x C =
$$\{(a,1,x), (a,1,y), (a,1,z), (b,1,x), (b,1,y), (b,1,z)\}$$

The Cardinality of Cartesian product

Assume A, B and C are finite.

|AxBxC| = ?

- A = {a} B={0} C={x} AxBxC = {(a,0,x)} |AxBxC| = 1
- A = {a,b} B={0} C={x} $AxBxC = \{(a,0,x),(b,0,x)\}$ |AxB| = 2
- A = {a,b} B={0,1} C={x} AxB={(a,0,x),(a,1,x),(b,0,x),(b,1,x)} |AxBxC| = 4
- |AxBxC| = |A|.|B|.|C|

Ordered n-tuple

• The **ordered n-tuple** $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its nth element.

Example:

(a,b) is an ordered 2-tuple (ordered pair).

Ordered n-tuple (example)

- Assume $c \neq b$.
- Are ordered 3-tuples (a,b,c) and (a,c,b) equal?

- a = a but $b \neq c$ and $c \neq b$.
- So, (a,b,c) and (a,c,b) are not equal.

Using Set Notation with Quantifiers

• $\forall x P(x)$ domain: S

• $\forall x \in S (P(x))$

• $\forall x (x \in S \rightarrow P(x))$

Using Set Notation with Quantifiers

• $\exists x P(x)$ domain: S

• $\exists x \in S (P(x))$

• $\exists x (x \in S \land P(x))$

What does the following statement mean?

$$\forall x \in \mathbf{R} \ (x^2 \ge 0)$$

- For every real number x, $(x^2 \ge 0)$.
- The square of every real number is nonnegative.

What does the following statement mean?

$$\exists x \in \mathbf{Z} \ (x^2 = 1)$$

- There is an integer x such that $x^2 = 1$.
- There is an integer whose square is 1.

Truth Sets of Predicates

- Let P be a predicate and D is a domain.
- The truth set of P is the set of elements x in D for which P(x) is true.
- The truth set of P(x) is $\{x \in D \mid P(x)\}$.

• Let P(x) be |x| = 1 where the domain is the set of integers. What is the truth set of P(x)?

Solution:

The truth set of P(x) is $\{-1,1\}$.

• Let R(x) be |x| = x where the domain is the set of integers. What is the truth set of R(x)?

Solution:

The truth set of R(x) is $x \ge 0$.

• Let Q(x) be $x^2 = 2$ where the domain is the set of integers. What is the truth set of Q(x)?

Solution:

The truth set of Q(x) is \emptyset .

Truth Set of Quantifiers

 ∀x P(x) is true over the domain D if and only if the truth set of P is the set D.

 ∃x P(x) is true over the domain D if and only if the truth set of P is nonempty.

Chapter Reading and Exercise Questions

Chapter # 2

Topic # 2.1

Question # 1,3,5,6,7,9,12,19,20,23,32,43,44