CE 397 - Railway Project Design and Construction

Final Report on Cement Plant Connection Track Project

Group 1

- Brennan Groh
- Debojjal Bagchi
- Wali Latifi

Contents

Sl No.	Topic	Page Number
1	Introduction	3
2	Track Geometry	3
2.1	- Horizontal Geometry	3
2.2	 Vertical Geometry 	6
3	Earthwork	10
4	Alternative Route Selection	12
4.1	 Average Railroad Operating Costs 	12
4.2	 Operating Cost Calculation 	12
4.3	 Capital Cost Estimating 	14
4.4	 Economic Justification of the Project 	17
4.5	- Alternative Analysis	17
5	Route Operations Analysis	18
5.1	 Ruling Grade and Train Resistance 	18
5.2	 Locomotive Drawbar Pull Calculation 	19
5.3	 Number of Locomotives Required per Train 	20
5.4	- Fuel Consumption	21
5.5	- Train Acceleration	23
6	Appendix	25

Appendix Details

Topic	Page Number
Appendix A: Horizontal Geometry Option S & L	25
Appendix B: Vertical Geometry for Alternative S	26
Appendix C: Vertical Geometry for Alternative L	31
Appendix D: Earthwork Calculation for Alternative S	36
Appendix E: Earthwork Calculation for Alternative L	39
Appendix F: Operating Cost Calculation for Alternative S	43
Appendix G: Operating Cost Calculation for Alternative L	45
Appendix H: Acceleration from STA 00+00	47
•	

1. Introduction

This project analyses two alternatives for connection between two connection points on the South Railroad create two possible alternative alignments to consider for the build-out:

- 1. West Alignment (a.k.a. Alignment L), a longer but relatively flat alignment skirting the Ellis town limits to the west and connecting to the west end of the South Railroad passing siding (a.k.a. Ellis Siding)
- 2. East Alignment (a.k.a. Alignment S), a shorter alignment that passes east of the Ellis town limits and crosses the Cottonwood River before connecting to the east end of Ellis Siding.

This report includes Preliminary track alignment design and earthwork calculations followed by economic justification and alternative analysis for both the alternatives. After which a final alternative is proposed. A Route operations analysis for the selected alternative is discussed thereafter.

2. Track Geometry

For clarity various curves are labelled in Figure 1 and shall be addressed by the labelled name hereafter.

2.1 Horizontal Alignment

The following processes were used to determine the deflection angle, minimum allowable degree of curvature based on site geometry, and the stationing for the TS, SC, CS, and ST for all nine horizontal curves. Of the two alternatives, curves C1 & C2 are shared between both while curve numbers followed by "-S" or "-L" correspond to their respective alternatives.

Deflection angles were found using the bearings written on the site plan, displayed in degree, minute, second notation below in *Table 3: Horizontal Curve Measurements & Stationing*. Standards for determining minimum degree of curve can be seen in the table below followed by a table of possible degree of curve sizes.

Figure 1: Curve notation

Table 1: Standards for Determining Minimum Deg. of Curve

Limit	Limiting Distance	Min or Max	Value (ft)
All Curves	PT to PS between curves	Min	0.00
Turnout (No.11)	PT to PI of Turnout	Min	93.31
Reverse Curves	PT to PS between RCs	Min	150.00

Table 2: Possible Degree of Curve Sizes & Measurements

Degree of Curve	Radius (ft)	Superelevation (in)	Max Speed (mph)	Spiral Length (ft)
3°	1910.08	1	30	50
5°	1146.28	2.25	20	100
7.5°	764.49	1	20	50

Final degree of curves was found by first calculating all stationing under the smallest possible curve, 3°, checking the limiting measurements, and increasing the curvature as needed. Stationing was found by first establishing all PI-to-PI distances from the site layout, calculating the curve tangent distances based on curve radius and deflection angle (see *Equation 1* below), and the curve length from the degree of curvature and deflection angle (see *Equation 2* below). Those variables were then used to find each curve's PC and PT in relation to track tangents, spiral length values were used to find each curve's TS, SC, CS, & ST in relation to track tangents, and finally all values were converted to station values with 0+00 starting at Tie-In A as per the site layout.

Equation 1: Curve Tangent Distances
$$T = R \tan(I/2)$$

Equation 2: Length of Curve
$$Lc = (I/D) * 100$$

These steps were followed to create the final horizontal curve measurement and stationing guidelines for both alternatives as shown in the table below.

Table 3: Horizontal Curve Measurements & Stationing (1 STA = 100' has been assumed, for 500' stationing divide each value by 5)

Curve Number	Degree of Curve	Deflection Angle	TS STA	SC STA	CS STA	ST STA
C1	3°	112°00'00"	6+29.19	6+79.19	43+62.52	44+12.52
C2	3°	22°00'00"	52+43.62	52+93.62	59+76.95	60+26.95
C3-S	5°	48°00'00"	116+59.32	117+59.32	126+19.32	127+19.32
C4-S	3°	48°00'00"	131+57.41	132+07.41	147+57.41	148+07.41
C5-S	3°	84°47'42"	238+88.00	239+38.00	267+14.50	267+64.50
C3-L	3°	47°00'00"	113+64.15	114+14.15	129+30.81	129+80.81
C4-L	3°	43°00'00"	152+87.79	153+37.79	167+21.12	167+71.12
C5-L	3°	90°00'00"	250+64.18	251+14.18	280+64.18	281+14.18
C6-L	5°	84°47'42"	354+66.40	355+66.40	371+62.30	372+62.30

2.2 Vertical Alignment

The following process was used to get the elevation of 500 feet stations. First, the contour lines on the site layout were used along with the scale (1" approximated 2000') to get the elevations of each 500-foot station. To do so, the horizontal geometry stationing is used. Starting from STA 0+00, the elevation of the first TS station is computed. Next going along the length of the curve, the elevation of station ST needs to be computed. For this purpose, the PI-ST distance is used. Since, the PI can be found on the site layout, the distance from PI-ST on the site layout provides the elevation at ST which is computed using the following equation:

Equation 3: PI to ST distance
$$E_S = E_0 + d \frac{E_1 - E_0}{l}$$

Where E_0 and E_1 are the elevations of contours before and after the point S. d is the length between the contour before S up to S and l is the length between the contours. The same process is repeated to get the ground elevation at all the contours and stations of horizontal geometry along the stationing. This gives a crude idea of Top of Rail (TOR) elevations. The results are tabulated in Appendix Sheets "Vertical_Option S_pre" and "Vertical_Option L_pre". To proceed further starting from STA 0+00, the elevations at every 500 feet station are computed using a similar logic. The results are summarized in Appendix Sheets "Vertical_Option S" and "Vertical_Option L".

Next, locations with constraints are identified along the direction of stationing. Further, the ground elevation plus 4.5 feet is plotted, so that 4.5 feet of drainage can be left wherever the TOR follows the ground slope. The projected ground elevations for alternatives L and S and the constraints are shown below.

The final step is to identify the PVI such that the curves fit between the minimum and maximum points and use minimum cut and fill. To do so, the tangent should follow the ground elevations as much as possible. However, the number of PVIs should be practical and limited. Keeping the tradeoff in mind the following PVIs are proposed.

In our proposed vertical alignment, the constraint location either falls on a tangent or when it's a curve, its low (resp. high) point is above (resp. below) the constraint at that location. For instance, at the first constraint, the elevation at PVC is 337.27'. Using the grade equation (Equation 4) the elevation at the grade separation is 334.21' which falls inside the +/- 10' limit. Further, the maximum allowed grade is kept at 1%.

Equation 4: Grade Equation
$$Z = Z_{PVC} + G_1 X/100 + RX^2/20000$$

With the PVIs pointed and given R for crest (-0.2) and sag (+0.12) curves, the PVC, PVI, and PVT tables are computed. The curve number in the tables follows stationing. The following equation is used for calculating the length of the curve.

Equation 5: Length of curve
$$L = (G_2 - G_1) / R$$

Table 4: Alternative S (1 STA = 100' has been assumed, for 500' stationing divide each value by 5)

Vertical Curve No.	PVC	PVI	PVT	Length
1	27+39.58	30+00.00	32+60.42	520.8
2	46+66.67	55+00.00	63+33.33	1666.7
3	85+37.50	90+00.00	94+62.50	925
4	174+37.50	190+00.00	205+62.50	3125

Table 5: Alternative L (1 STA = 100' has been assumed, for 500' stationing divide each value by 5)

Vertical Curve No.	PVC	PVI	PVT	Length
1	28+05.00	30+00.00	31+95.00	390
2	46+66.67	55+00.00	63+33.33	1666.7
3	85+57.50	90+00.00	94+42.50	885
4	172+20.83	175+00.00	177+79.17	558.3
5	263+54.17	265+00.00	266+45.83	291.7

3. Earthwork

The vertical geometry is further used to develop preliminary earthwork quantity estimates for each alignment. The first step was determining the excavation and embankment end area quantities at each 500' station. The relationship between the proposed preliminary vertical alignment TOR elevations and the existing ground elevations was used to classify each end area as All-Cut, All-Fill, or Cut & Fill based on the required geometry provided in the BNSF "Single Track - Curves" typical cross-section. The most notable requirements from this typical section are a 14' subgrade shoulder width, 2:1 side/back slopes, and a minimum 2' elevation between the subgrade shoulder and the ditch bottom. The equations to determine the trapezoidal end areas can be found below.

Equation 6: End Area of an ALL-FILL Section
$$A = h_{fill} \left(\frac{a_{fill} + b_{fill}}{2}\right)$$
Equation 7: End Area of an ALL-CUT Section
$$A = h_{total} \left(\frac{a_{total} + b_{total}}{2}\right) - h_{subgrade} \left(\frac{a_{subgrade} + b_{subgrade}}{2}\right)$$
Equation 8: End Areas of a CUT & FILL Section
$$A_{cut} = 2 \times h_{ditch} \left(\frac{a_{ditch} + b_{ditch}}{2}\right)$$

The area for an All-Fill section is simply the trapezoidal area formed between the top of subgrade and the existing ground. The area for an All-Cut section is calculated using the total trapezoidal area formed between the existing ground and the ditch bottom elevations and then subtracting the area formed by the subgrade. The cut area for a Cut & Fill section is the area of the two trapezoidal ditches formed around the subgrade. The fill area for this type of section is the same as before.

 $A_{fill} = h_{fill} \left(\frac{a_{fill} + b_{fill}}{2} \right)$ (Same as before)

The top of subgrade elevation was determined by using a 3.25' track structure depth. This depth is composed of a 7" rail, 1" tie plate, 7" crosstie, 12" ballast, and 12" subballast. The depths of the ballast and subballast were provided in the notes of the provided BNSF track section sheet. The total volumetric quantities of cut and fill for each route were determined using the average end-area approach (see *Equation 9* below). The complete results can be found in the appendix with cut and fill volumes shown over each 500' length between stations and the total volumes for each alignment. A 10% shrinkage factor was also applied to the earthwork embankment quantities. Alignment S has a cut volume of 111,699 yd³ and a fill volume of 189,894 yd³. This results in 78,195 yd³ of extra material required to construct embankments. Alignment L has a cut volume of 112,333 yd³ and a fill volume of 149,327 yd³. This results in 36,995 yd³ of extra material required to construct embankments.

Equation 9: Average End-Area Earthwork Volume
$$V_{12} = L \times (A_1 + A_2)/2$$

The summary of each of the earthwork elements are provided below. Further details are provided in Appendix G and H.

Table 6: Earthwork Quantities

	Option S	Option L	Units
Fill	189,893.84	149,327.30	CY
Cut	111,698.60	112,332.61	CY
Sub ballast	28,669.93	39,587.85	CY
Topsoil (2" depth)	11,073.45	12,133.11	CY
Seeding	41.182234	45.123143	AC

4. Alternative Route Selection

4.1 Average Railroad Operating Costs

The average values are summarized below in Table 7.

LINE ITEM	U.S.
Total Operating Expense (\$000)	40980029
Gross Ton-Miles (Excluding Loc) (000)	3257605196
Train-Miles	562607133
Revenue (Ton-Miles of Freight (000))	1771896504
Operating cost per million gross ton-miles	12579.8022
Operating cost per million revenue ton-miles	23127.778
Operating cost per train-mile	72.839512

Table 7: Average Railroad operating cost

4.2 Cement Spur Operating Cost Calculation

To find the operating cost of the two alignment options, a hypothetical straight line that is 4 miles long with no curves or grade changes was used to create a base line for operating costs. It was found that the cement plant would generate **2.36 MGT/year** of traffic, which mapped onto the hypothetical "SL" track of 4 miles equates to **9.43 MGTM/year** of traffic. Using the operating cost per MGTM value found in section 4.1, this traffic equates to roughly **\$127,000** in operating costs per year.

To find an operational cost estimation for the two alignments, we will add onto this base SL cost with the additional cost expected due to additional distance, curve, and grade on the alternatives. Curvature will be converted to equivalent curve miles and grade to equivalent grade miles and then treated as additional miles to be added onto the straight-line track. The table below shows the additional operating cost for added distance, curvature, and grade as well as the equivalent curve miles and grade miles for alternatives S and L.

The summary of operating cost analysis is given in Table 8. More details are provided in Appendix.

Calculation	Value	Units		
Traffic	2.36	MGT/year		
SL Traffic	9.43	MGTM/year		
SL Operating Cost	\$127,364	per year		
Calculation	Value (S)	Units	Value (L)	Units
Additional Operating Cost - Distance	\$20,790	per year	\$59,517	per year
Equivalent Curve Miles	0.954	miles	1.21	miles
Additional Operating Cost - Curve	\$7,773	per year	\$9,847	per year
Equivalent Grade Miles	18.13	miles	14.30	miles
Additional Operating Cost - Grade	\$110,204	per year	\$86,935	per year
Operating Cost	\$266,130	per year	\$283,663	per year

Table 8: Operating Cost Analysis

4.3 Capital Cost Estimation

The Capital costs for each alternative is summarized below. The following specifics are used:

Alignment L (Long) Specifics:

- Three county road highway-rail grade crossings require flashing lights and gates.
- One proposed two-lane state highway grade separation
 - o Low-steel elevation is set by track designer (i.e. not a fixed constraint)
 - \circ Grade separation road/bridge construction estimate is \$3 million + \$150,000 \times (Z 283) where Z is the proposed top of rail at the grade separation location
- Alignment crosses a wetland area near the tie-in at the west end of the passing siding that must be mitigated at project expense using an approved means.

Alignment S (Short) Specifics:

- Two county road highway-rail grade crossings require flashing lights and gates.
- One four-lane US highway grade separation
 - Low steel elevation constrained to Elev 318.50' by nearby development (sets maximum top of rail elevation under overpass) Roadway and bridge engineer's construction estimate is \$7 million.
- One Cottonwood River railroad bridge (minimum top of rail elev. = 260.00')
 - O Bridge engineer's construction estimate is $1.5 \text{ million} + 100,000 \times (D 260)$ where D is the proposed top of rail elevation low point on the bridge

Additionally, the following assumption has been made:

- The mobilization of both alternatives is assumed to be same
- For Wetland mitigation USACE mitigation plan¹ has been used. The wetland is assumed to be of "good" quality and the area is assumed to be 6,480,000 sq estimated as a circle.

¹ https://www.swf-wc.usace.army.mil/lewisville/pdf/H_Appnd_AppendixLMitigationCosts.pdf

Table 9: Capital Costs for Alternative S:

Description	Quantity	Unit	Cost/Unit	TOTAL
Sitework				\$3,037,442.7
Mobilization	1	EA	\$500,000.00	\$500,000.00
Embankment	189,893.84	CY	\$5.00	\$949,469.18
Excavation	111,698.60	CY	\$4.00	\$446,794.41
Subballast	28,669.93	CY	\$35.00	\$1,003,447.41
Topsoil (2" Depth)	11,073.45	CY	\$5.00	\$55,367.23
Seeding	41.182234	AC	\$2,000.00	\$82,364.47
Structures				\$2,175,000.00
Cottonwood River railroad bridge @ 266.75 feet	1	EA	\$2,175,000	\$2,175,000.00
Drainage				\$52,120.0
2' x 2' Box Culvert - Extend	38	LF	\$210.00	\$7,980.00
3' x 2' Box Culvert - Extend	38	LF	\$250.00	\$9,500.00
4' x 4' Box Culvert - Extend	38	LF	\$280.00	\$10,640.00
Headwalls & Wingwalls	3	EA	\$8,000.00	\$24,000.00
Roadway and Grade Crossings				\$7,300,000.00.
Grade Crossing (four-lane US highway grade separation)	1	EA	\$7,000,000	\$7,000,000.00
Protection - Lights and Gates (county road)	2	EA	\$150,000.00	\$300,000.00
Track - 136# CWR New - Wood Ties & Ballast				\$6,919,510.00
Install Siding Track	27646	TF	\$185.00	\$5,114,510.00
No. 11, RBM Turnout - Powered	1	EA	\$305,000.00	\$305,000.00
Signal Control Points (before & after bridge)	2	EA	\$750,000.00	\$1,500,000.00
Stabilization				\$5,16,058.67
Geotextile Fabric	86009.7778	SY	\$2.00	\$172,019.56
Subgrade Lime Stabilization (6")	86009.7778	SY	\$4.00	\$344,039.11
Subtotal				\$20,000,131.3
ROW Acquisition	63.466483	Acres	\$10,000.00	\$634,664.83
Subtotal				\$20,634,796.1
Contingency % of Total	20	%		\$4,126,959.24
Total				\$24,761,755.4

Table 10: Capital Costs for Alternative L:

Description	Quantity	Unit	Cost/Unit	TOTAL
Sitework				\$3,232,453.60.
Mobilization	1	EA	\$500,000.00	\$500,000.00
Embankment	149,327.30	CY	\$5.00	\$746,636.50
Excavation	112,332.61	CY	\$4.00	\$449,330.44
Subballast	39,587.85	CY	\$35.00	\$1,385,574.81
Topsoil (2" Depth)	12,133.11	CY	\$5.00	\$60,665.56
Seeding	45.123143	AC	\$2,000.00	\$90,246.29
Structures				\$0.00
None				\$0.00
Drainage				\$70,760.00.
2' x 2' Box Culvert - Extend	38	LF	\$210.00	\$7,980.00
3' x 2' Box Culvert - Extend	38	LF	\$250.00	\$9,500.00
4' x 4' Box Culvert - Extend	38	LF	\$280.00	\$10,640.00
4' x 4' Box Culvert - Extend	38	LF	\$280.00	\$10,640.00
Headwalls & Wingwalls	4	EA	\$8,000.00	\$32,000.00
Roadway and Grade Crossings				\$3,645,000.00
proposed two-lane state highway grade separation @ 284.3'	1	EA	\$3,195,000	\$3,195,000.00
Protection - Lights and Gates (county road)	3	EA	\$150,000.00	\$450,000.00
Track - 136# CWR New - Wood Ties & Ballast				\$8,867,190.0
Install Siding Track	38174	TF	\$185.00	\$7,062,190.00
No. 11, RBM Turnout - Powered	1	EA	\$305,000.00	\$305,000.00
Signal Control Points (before & after bridge)	2	EA	\$750,000.00	\$1,500,000.00
Wetland	1	EA	\$1,555,200.00	\$1,555,200.00
Stabilization				\$712,581.33
Geotextile Fabric	118763.556	SY	\$2.00	\$237,527.11
Subgrade Lime Stabilization (6")	118763.556	SY	\$4.00	\$475,054.22
Subtotal				\$18,083,184.9
ROW Acquisition	87.6354454	Acres	\$10,000.00	\$876,354.45
Subtotal				\$18,959,539.39
Contingency % of Total	20	%		\$3,791,907.88
Subtotal				\$22,751,447.2

4.4 Economic Justification of the Project:

- a) The rate of return method was used to calculate the revenue required to provide a 20% return for each route. Using the previously calculated capital costs and annual operating expenses, Alignment S requires an annual revenue of \$5,218,451 while Alignment L requires an annual revenue of \$4,833,989.
- b) The annual revenue ton-miles generated by traffic from the cement plant on the South Railroad was calculated for each route. This was calculated by multiplying the distance traveled on each route, the weight of the railcar contents, and the annual cars. Alignment S generates 1,342,546,712 revenue ton-miles while Alignment L generates 1,345,676,792 revenue ton-miles.
- c) The revenue benefit of the project to the plant is in the form of savings from reduced shipping rates on the South Railroad due to competitive access with the Northern Railway. To justify the construction of each route, the cement plant must obtain a benefit of \$0.0039 per revenue ton-mile for Route S and \$0.0036 per revenue ton-mile for Route L.
- d) If the plant is currently paying the Northern Railway a rate of \$0.050 per revenue ton-mile to ship cement, the South Railroad must quote the plant \$0.0461 per revenue ton-mile for Route S and \$0.0464 per revenue ton-mile for Route L to justify each project. This represents 7.77% and 7.74% discounts for Route S and Route L, respectively, from the current shipping rate.

4.5 Alternative Analysis:

After comparing the two alternatives, Alternative L is recommended as the final route. The main reason is that its construction cost is \$2 million less than Alternative S. This route also avoids the construction and maintenance costs that would arise from the Cottonwood River Bridge. Alternative L has a \$384k lower annual required revenue to obtain a 20% (or 5-year) rate of return. Another benefit of Alternative L is that it crosses a state highway while Alternative S crosses a US highway. This results in a lower risk of construction delays as a state highway requires less coordination with highway departments compared to crossing a US highway.

Alternative L is chosen for further analysis and is proposed to be built.

5. Route Operations Analysis (Alternative L)

5.1 Ruling Grade and Train Resistance for Selected Alignment

Suppose we have an alignment with g grade and d degree of curve, the train has N cars each weighing W and having n axles, V is the velocity of the train then,

Curve resistance =
$$20g$$
 pounds per ton

$$Grade\ resistance\ =\ 0.8d\ pounds\ per\ ton$$

Modified Davis air resistance =
$$0.6 + \frac{20n}{W} + 0.01V + \frac{KV^2}{W}$$
 pounds / ton

Total Resistance hence is,

$$R = \left(20g + 0.8d + 0.6 + \frac{20n}{W} + 0.01V + \frac{KV^2}{W}\right) * W * N \text{ pounds}$$

The parameter values are summarized below.

The parameters are summarized below:

Table 11: Parameter Values

Parameter	Symbol	Values	Units	Converted Values	Converted Units
Number of Axles	n	4			
Air Resistance	k	0.07			
Grade Resistance Coefficient		20	pounds/ton/percent grade		
Curve Resistance Coefficient		0.8	pounds/ton/degree of curvature		
Gross railcar load		286,000	pounds per car	143	tons/car
Empty tare weight		57,300	pounds per car	28.65	tons/car
Design speed		30	mph		
Yard speed		20	mph		
Hoppers		44	cars		

The resistance of each section is summarized below. The section highlighted in orange has maximum positive resistance and section in green has the maximum negative resistance.

Begin STA End STA Curvature 0+00.00 6+29.19 Tangent 629.189945263185 20 -0.22 -17899.2 0.22 11307.12 6+29.19 2370.810054736810 30 -0.22 -629.2 0.22 15998.62 30+00.00 44+12.52 52+43 62 Tangent 831 098004385412 30 -113885.2 32638 54 52+43.62 55+00.00 256.378717018069 30 -98784.4 35663.98 526.954616315264 152895.6 -14760.02 30 60+26.95 90+00.00 2973.045383684740 137794.8 -17785.46 Tangent -0.77 90+00.00 113+64.15 Tangent 2364.146254272110 30 -84942 0.77 26839.78 113+64.15 1616.66666666670 -0.77 0.77 29865.22 30 -69841.2 26839.78 Tangent 152+87.79 1483 333333333333 30 -0.77 -69841.2 0.77 29865.22 0.77 167+71.12 175+00.00 Tangent 728.880688155859 30 -0.77 -84942 26839.78 175+00.00 250+64.18 7564.178790581550 -0.1 -629.2 0.1 Tangent 250+64.18 1435.821209418450 -0.1 14471.6 0.1 12973.18 265+00.00 281+14.18 Curve 1614.178790581550 30 0.25 58515.6 -0.25 4148.98 43414.8 -0.25 1123.54 281+14.18 354+66.40 Tangent 7352.224239861170 30 0.25 -0.25 1795.900000000000 68582.8 372+62.30 381+74.22 911.916180738939 20 0.25 41245.6 -0.25 -542.52 Tangent MINIMUM (MAX NEGATIVE) -113885.:

Table 12: Train Resistance

5.2 Locomotive Drawbar Pull Calculation

The maximum tractive effort was calculated using the following equation:

$$F_T = 308(P/V) < \mu W_L$$

Sample calculation using the given locomotive characteristics and the maximum design speed for the first section:

$$F_T = 308(4400/20) < 0.33 * 429,000$$

$$F_T = 67,760 \ pounds < 141,570 \ pounds$$

The locomotive resistance was calculated using the Modified Davis equation while considering grade and curve resistances. The locomotive drawbar pull was calculated by taking the difference between maximum tractive effort and drawbar pull for each direction. A summary of the results is provided below.

Maximum Grade Grade Locomotive Drawbar Pull Locomotive Drawbar Pull Tractive Resistance Resistance Curve Resistance SB SB Resistance NB NB Maximum Effort SB NB Resistance (pounds/loc (pounds/loco (pounds/loc Speed Begin STA End STA Grade Curvature (pounds) (pounds) (pounds) (pounds) omotive) motive) motive) omotive) 68384.2 0+00.00 6+29.19 20 -0.22 67760.0 -943.8 943.8 0 -624.2 1263.4 -0.22 30+00.00 30 45173.3 -943.8 943.8 514.8 -52.9 45226.3 1834.7 43338.7 6+29.19 30+00.00 30 45173.3 -4290 4290 514.8 -3399.2 48572.5 5180.9 39992.5 44+12.52 52+43.62 45173.3 -4290 4290 -3914.0 49087.3 4666.1 40507.3 30 -1 0 52+43.62 55+00.00 30 -1 45173.3 -4290 4290 514.8 -3399.2 48572.5 5180.9 39992.5 55+00.00 60+26.95 30 1 45173.3 4290 -4290 514.8 5180.9 39992.5 -3399.2 48572.5 60+26.95 90+00.00 30 1 45173.3 4290 -4290 0 4666.1 40507.3 -3914.0 49087.3 90+00.00 113+64.15 -0.77 45173.3 -3303.3 3303.3 0 -2927.3 48100.6 3679.4 41494.0 30 113+64.15 129+80.81 30 -0.77 45173.3 -3303.3 3303.3 514.8 -2412.5 47585.8 4194.2 40979.2 129+80.81 152+87.79 30 -0.77 45173.3 -3303.3 3303.3 0 -2927.3 48100.6 3679.4 41494.0 40979.2 152+87.79 167+71.12 30 -0.77 45173.3 -3303.3 3303.3 514.8 -2412.5 47585.8 4194.2 167+71.12 45173.3 -3303.3 3303.3 48100.6 3679.4 41494.0 175+00.00 -0.77-2927.3 175+00.00 250+64.18 30 -0.1 0 45173.3 -429 429 0 -53.0 45226.3 805.1 44368.3 250+64.18 30 -0.1 45173.3 -429 429 514.8 461.9 44711.5 1319.9 43853.5 265+00.00 281+14.18 30 0.25 45173.3 1072.5 -1072.5 514.8 1963.4 43210.0 -181.7 45355.0 281+14.18 354+66.40 30 0.25 45173.3 1072.5 -1072.5 0 1448.6 43724.8 -696.5 45869.8 354+66.40 30 0.25 45173.3 1072.5 -1072.5 858 2306.6 42866.8 161.6 45011.8 372+62.30 372+62.30 381+74.22 20 0.25 0 67760.0 1072.5 -1072.5 0 1392.1 66367.9 -752.9 68512.9

Table 13: Locomotive Drawbar Pull Results

5.3 Number of Locomotives Required per Train

a) The number of locomotives required was found by dividing the calculated train resistance by the drawbar pull in each direction. The largest positive value is highlighted below, and it is for a loaded southbound train. From this, we can conclude that 4 locomotives are required to power the train on a round trip.

		# locomotives	# locomotives
Begin STA	End STA	SB	NB
0+00.00	6+29.19	-0.26	0.17
6+29.19	30+00.00	-0.01	0.37
30+00.00	44+12.52	-2.03	0.89
44+12.52	52+43.62	-2.32	0.81
52+43.62	55+00.00	-2.03	0.89
55+00.00	60+26.95	3.82	-0.30
60+26.95	90+00.00	3.40	-0.36
90+00.00	113+64.15	-1.77	0.65
113+64.15	129+80.81	-1.47	0.73
129+80.81	152+87.79	-1.77	0.65
152+87.79	167+71.12	-1.47	0.73
167+71.12	175+00.00	-1.77	0.65
175+00.00	250+64.18	-0.01	0.22
250+64.18	265+00.00	0.32	0.30
265+00.00	281+14.18	1.35	0.09
281+14.18	354+66.40	0.99	0.02
354+66.40	372+62.30	1.60	0.14
372+62.30	381+74.22	0.62	-0.01

Table 14: Locomotives Required per Train

b) The largest negative value for train resistance was found to be -113,885 pounds in the southbound direction. Adding the locomotive resistance of -3,914 pounds/locomotive for this section with a total of 4 locomotives, we find the total resistance to be -129,541 pounds. The dynamic braking force is found using the equation below.

$$F_{Bd} = 616(P/V) < F_{Bdmax}$$

 $F_{Bd} = 616(4400/30) < 105,000 \ pounds$
 $F_{Bd} = 90,347 \ pounds < 105,000 \ pounds$

Each locomotive provides 90,347 pounds of braking force for a total of 361,388 pounds of dynamic braking force. Therefore, the locomotives provide sufficient dynamic braking force to control the speed of the train.

5.4 Fuel Consumption

Fuel consumption for the given alignment can be calculated using the following steps. First, we must find the power provided by each of the four locomotives determined necessary to traverse the alignment. Assuming the total horsepower is divided equally amongst all locomotives, we divide the train resistance by the four locomotives and then convert to horsepower using the maximum speed allowed on the given segment as shown in the sample calculation for our critical segment in the southbound, loaded direction:

$$Train\,Resistance = 152,896\,lbs \; \div \; 4\,locomotives = 38,224 \frac{lbs}{locomotive} \\ \frac{FV}{308} = P\,(hp) \\ 38,224*30\,mph \; \div \; 308 = 3723 \frac{horsepower}{locomotive}$$

Next, we must determine the throttle notch required on each locomotive to achieve the required power output. Use the rated power of 4,400 hp and the required power for each segment to find the notch number, round up any decimals as half notches are not possible. Tractive effort provided under a given notch "n" is also limited by adhesion. This limit is found by multiplying the adhesion limit by (n/8) and was not a factor in any calculations. See the sample calculation below from the same critical segment:

$$P_n = P\left(\frac{n^2}{64}\right) \to n = \sqrt{\frac{P_n}{P} * 64}$$

$$n = \sqrt{\frac{3723}{4400} * 64} = 7.36 = 8$$

After, we must find the required time to travel the segment in hours, found by dividing length of segment by maximum speed, to calculate horsepower-hours required to traverse the segment. These values are divided by fuel efficiency for a given notch (shown in the table below) to find the gallons of fuel consumed during the traversal of a given segment.

These steps were conducted for both the southbound, loaded direction and the northbound, empty direction to create the figures below. Segments that yielded a negative traction demand were assumed to require a negligible fuel consumption and ignored.

		Power per Locomotive	Required	Time to Travel	Hp-hrs required to	Fuel Consumed to
Begin STA	End STA	(hp/loco)	Throttle Notch	Segment (hr)	Travel Seqment	Travel Segment (gal)
55+00.00	60+26.95	3,723.1	8	0.003	14.64	0.684
60+26.95	90+00.00	3,355.4	7	0.019	63.23	2.624
250+64.18	265+00.00	352.4	3	0.009	5.61	0.305
265+00.00	281+14.18	1,424.9	5	0.010	17.51	0.818
281+14.18	354+66.40	1,057.2	4	0.046	51.06	2.659
354+66.40	372+62.30	1,670.0	5	0.011	19.49	0.911
372+62.30	381+74.22	669.6	4	0.009	9.50	0.495

Table 15: Fuel Consumption of Southbound, Loaded Direction

		Power per Locomotive	Required Throttle	Time to Travel	Hp-hrs required to	Fuel Consumed to
Begin STA	End STA	(hp/loco)	Notch	Segment (hr)	Travel Seqment	Travel Segment (gal)
0+00.00	6+29.19	3.5	1	0.006	0.41	0.037
6+29.19	30+00.00	119.4	2	0.015	4.12	0.329
55+00.00	60+26.95	868.4	4	0.003	3.66	0.191
60+26.95	90+00.00	794.8	4	0.019	20.65	1.075
175+00.00	250+64.18	119.4	2	0.048	13.13	1.051
250+64.18	265+00.00	193.1	2	0.009	2.49	0.199
265+00.00	281+14.18	408.0	3	0.010	6.31	0.343
281+14.18	354+66.40	334.3	3	0.046	28.72	1.561
354+66.40	372+62.30	457.1	3	0.011	7.02	0.381
372+62.30	381+74.22	195.8	2	0.009	2.37	0.190

Table 16: Fuel Consumption of Northbound, Empty Direction

The total fuel consumed, and time required to complete a full round trip was found and summarized below. Times and fuel required to accelerate, brake, and load/unload the cars were ignored. It was found that to complete a round trip, it would require 13.9 gallons of fuel and will take 0.49 hours, or roughly 30 minutes.

		Fuel Consumed
	Time (hrs)	(gal)
Southbound	0.246	8.495
Northbound	0.246	5.357
TOTAL	0.492	13.852

Table 17: Time and Fuel Consumption Summaries

Assuming this round trip is completed once a day, six days a week for a full year, the annual diesel fuel consumption on this alignment would be **4,321.8 gallons/year**. Taking the previously found value of 1.13 million revenue ton-miles per year gained by operating this service (7.2 miles, 44 cars of 114.35 tons for 312 days a year), we can find that roughly **2,615 revenue ton-miles are achieved per gallon of fuel** while operating this service.

5.5 Train Acceleration

An incremental time-based approach with step size of 5 seconds was used to find the time and distance required to get the train up to 30 mph using the following steps. Starting at a time of 0 seconds, resistance generated by the 4 locomotives was found by the sum of grade, curve, and rolling/aerodynamic (Modified Davis Equation) resistances using the same equations outlined before. The resistance generated by the 44 hopper cars was found using the same methodology. Tractive effort was calculated using the same equations as before with the assumption that notch 8 was used the entire time, and accelerating force was found by subtracting the resistances from the drawbar pull. The following equations were used to find the incremental gain in speed and distance over the 5 seconds of assumed continuous accelerating force:

$$1 = \frac{95.6 (V_2 - V_1)W}{F_{a1}}$$
$$S_2 = \frac{70 (V_2^2 - V_1^2)W}{F_{a1}}$$

As the time increments increased and the train (under a point mass assumption) traveled down the proposed alignment, the grade and curve values changed to reflect the sections defined in Section 5.1 of this document. A full table of the calculations including every time step can be found in the Appendix. It was found that it would take the train 865 seconds and 4093.22 feet to reach 30 mph, or in other words, 14 minutes and 25 seconds to reach 30 mph, traveling to STA 40+93.22 in the process.

In the original calculation of fuel consumption, it was assumed that the train travels at full speed from the instant it starts its journey from STA 00+00. Under these conditions, the train would reach STA 40+93.22 after 100 seconds or **1 minute 40 seconds**. This is a significant decrease in expected travel time given that the total time to travel the was roughly 30 minutes. Including acceleration time to the estimate would increase the time to travel by **12 minutes 45 seconds**. Looking at fuel consumed from the same previous estimations, it was said that fuel consumed during times of negative traction demand (times of braking) would be negligible. Since the entire span from STA 00+00 to STA 40+93 has a negative traction demand (see section 5.2), there was assumed to be no fuel consumed during this time of acceleration. We can calculate how much fuel would be consumed during our time of acceleration by converting the 865 seconds at 4400 horsepower (constant notch 8) to horsepower-hours and dividing by the fuel efficiency at this notch (21.4 hp-hr/gal) to find that it requires **1057 horsepower-hours or 49 gallons of fuel** to accelerate from 0 to 30 mph on this alignment. Comparing that to the 13.8 calculated gallons required to traverse the entire segment, this is quite shocking. Both the additional time and fuel required to accelerate the train are substantial and should not be considered negligible.

CE 397 - Design Project Final Report Group 1 - D. Bagchi, B. Groh, W. Latifi

Appendix A: Horizontal Geometry for Alternative S and L

Э	iral igth	50	0	100	20	0		0	20	20	100			+					-					-			
	x Spiral ed Length	30 5		H	30 5		_	⊦			_			H	ŀ	L	L	L	L	L	ŀ		H		H	H	
	Super- Max elevation Speed	. 90	m	H	m	m	_	3(m	30	20	_	+	H	H	L	ŀ	ŀ	ŀ	ŀ	ŀ	H	ŀ	H	H	H	
S	Super- elevation	1	1	2.25	1	1	•	1	1	1	2.25	•											L				
æ	Radius	1910.08	1910.08	1146.28	1910.08	1910.08		1910.08	1910.08	1910.08	1146.28																
Q	E	1505.70	35.75	108.48	180.76	676.41	0.00	172.75	142.85	791.18	405.93																
а	PCSTA	654.19	5268.62	11709.32	13182.41	23913.00		11389.15	15312.79	25089.18	35516.40																
0	Newbase STA (PT)	4387.52	6001.95	12669.32	14782.41	26739.50	27647.23	12955.81	16746.12	28089.18	37212.30	37802.94							882.730111					540.63424			
z	Curve	3733.33	733.33	960.00	1600.00	2826.50		1566.67	1433.33	3000.00	1695.90			reverse dist	831.098004	5632.36132	438.090855	9080.5977			306.97306	293.05948	7352.22424				
M	PT-PC	654.19	881.10	5707.36	513.09	9130.60	907.73	5387.19	2356.97	8343.06	7427.22	590.63		ST from PI r		96.281941 5			768.98989		355.526421 2	77.400521 8	1935.08 7	92509.960			
7	Id-Id	3486.00	4084.19	6589.00	1873.87	11725.01	2651.72	6889	3939.90	11005.54	10383.91	1637.24		TS from PI	629.189945 2856.81005	3687.90806 396.281941	6028.64326 560.356737	998.447593 875.422407	9956.02011 1768.98989		5733.47358 855.526421 2306.97306	3162.49948 777.400521 8293.05948	9070.46	9287.30424 1096.60576			
×	1	2831.81	371.28	510.36	850.42	1743.99		830.53	752.40	1910.08	1046.61				1	2	3	4	25		m	4	S	9			
7	D (deg)	3.000	3.000	5.000	3.000	3.000		3.000	3.000	3.000	5.000																
-	(gap) I	112.000	22.000	48.000	48.000	84.795		47.000	43.000	90.000	84.795			Ī	30409.79												
н	STSTA	44+12.52	60+26.95	127+19.32	148+07.41	267+64.50		129+80.81	167+71.12	281+14.18	372+62.30				267+64.50	5.069034943	41125.78	7.788973485									
9	CS STA	43+62.52	59+76.95	126+19.32	147+57.41	267+14.50		129+30.81	167+21.12	280+64.18	371+62.30						Ì										
ч	SCSTA	6+79.19	52+93.62	117+59.32	132+07.41	239+38.00		114+14.15	153+37.79	251+14.18	355+66.40								831.10	5632.36	438.09	9080.60		5337.19	2306.97	8293.06	7352.22
3	TS STA	0+00.00 6+29.19	52+43.62	116+59.32	131+57.41	238+88.00		113+64.15	152+87.79	250+64.18	354+66.40								TRUE	TRUE	TRUE	TRUE		TRUE	TRUE	TRUE	TRUE
Q	Deflection Angle	112°00'00"	22°00'00"	48*00'00"	48*00'00"	84°47'42"		47°00'00"	43.00,00"	,,00,00,06	84°47'42"																
O	Curve Number Degree of Curve Deflection Angle	°°°	ů	5°	3°	3°		3°	3°	3°	5°	,			93.31		150										
8	Curve Number	POB C-1	C-2	C-3S	C-4S	C-5S	POE	C-3L	C-4L	C-SL	C-6L	POE		turnout length	No. 11	reverse curve T	<39 mph										
A	Span	L&S	L & S	s	s	s	S	-	7 0	1 1	7 7	3 -	E# 10	10	7	00	0	0	-	2		et	10	10	7	m	0

Appendix B: Vertical Geometry for Alternative S

Sp an	Туре	Stati oning	Cont our Elev ation	Project ed Groun d Elevati on	CONST RAINT (FROM BELO W)	CONST RAINT (FROM TOP) - 23' Cleara nce	Groun d Elevat ion + 4.5 feet for draina ge	Com ment	Gr ad e	Vertic al Sectio ns	Lengt h of curve in 100'
L & S	500 FEET STATION	0	NA	346.25			350.7 5			350.7 5	
L & S	500 FEET STATION	500	NA	345.20 83333			349.7 08333		- 0.2 2	349.6 5	
L & S	500 FEET STATION	1000	NA	344.16 66667			348.6 66667		- 0.2 2	348.5 5	
L & S	500 FEET STATION	1500	NA	343.12 5			347.6 25		- 0.2 2	347.4 5	
L & S	500 FEET STATION	2000	NA	342.08 33333			346.5 83333		- 0.2 2	346.3 5	
L & S	500 FEET STATION	2500	NA	341.04 16667			345.5 41667		- 0.2 2	345.2 5	
L & S	500 FEET STATION	3000	NA	340			344.5		-1	340.2 5	5.208 33333
L & S	GRADE XING	3181	336. 5	336.5	323.6	346.6	341	Shoul d be betw een 323.6 to 346.6	-1	338.4 42868	
L & S	500 FEET STATION	3500	NA	332.34 92719			336.8 49272		-1	335.2 5	
L & S	500 FEET STATION	4000	NA	324.89 14116			329.3 91412		-1	330.2 5	

L	500 FEET	4500	NA	319.86			324.3		-1	325.2	
&	STATION			17041			61704			5	
S											
L	500 FEET	5000	NA	316.29			320.7		-1	320.2	
&	STATION			06672			90667			5	
S											
L	500 FEET	5500	NA	316.66			321.1		1	325.2	16.66
&	STATION			4686			64686			5	66667
S											
L	500 FEET	6000	NA	319.27			323.7		1	330.2	
&	STATION			15682			71568			5	
S L	500 FEET	6500	NA	323.60			328.1		1	335.2	
& &	STATION	0300	INA	28678			02868		1	5	
S	STATION			28078			02808]	
L	500 FEET	7000	NA	328.60			333.1		1	340.2	
&	STATION			28678			02868		_	5	
S											
L	500 FEET	7500	NA	336.78			341.2		1	345.2	
&	STATION			18687			81869			5	
S											
L	500 FEET	8000	NA	342.19			346.6		1	350.2	
&	STATION			35785			93579			5	
S											
S	500 FEET	8500	NA	344.77			349.2		1	355.2	
	STATION			41806			74181			5	
S	500 FEET	9000	NA	343.34			347.8		-	351	9.25
	STATION			56092			45609		0.8		
S	500 FEET	9500	NA	341.91			346.4		5	346.7	
3	STATION	9300	INA	70378			17038		0.8	5	
	STATION			70370			17030		5		
S	500 FEET	1000	NA	340.48			344.9		-	342.5	
	STATION	0		84664			88466		0.8	00	
									5		
S	500 FEET	1050	NA	338.35			342.8		-	338.2	
	STATION	0		48161			54816		0.8	5	
									5		
L	GRADE	1067	337.	337.5	327.5	347.5	342	Shoul	-	336.7	
&	XING	1	5					d be	0.8	96813	
S								betw	5		
								een			
								327.5			
								- 347.5			
<u> </u>		l				<u> </u>		347.3]		

	1	1	T		T	1			1
L	500 FEET	1100	NA	333.55		338.0	-	334	
&	STATION	0		15587		51559	8.0		
S							5		
_		4450		207.71		222.2	<u> </u>	222 =	
L	500 FEET	1150	NA	327.71		332.2	-	329.7	
&	STATION	0		60558		16056	0.8	5	
S							5		
S	FOO FEET	1200	NIA	222.11		226.6	<u> </u>	225.5	
3	500 FEET	1200	NA	322.11		326.6		325.5	
	STATION	0		91623		19162	8.0		
							5		
S	500 FEET	1250	NA	318.31		322.8	_	321.2	
		0	1 1 1	57499		1575	0.8	5	
	STATION	U		37499		13/3		5	
							5		
S	500 FEET	1300	NA	315.60		320.1	-	317	
	STATION	0		51987		05199	0.8		
	317111011			31307		03133			
<u> </u>							5		
S	500 FEET	1350	NA	312.89		317.3	-	312.7	
	STATION	0		46475		94647	8.0	5	
				1			5		
	E00 FFFT	1400	NIA	210.10		2116		200 5	
S	500 FEET	1400	NA	310.18		314.6	-	308.5	
	STATION	0		40963		84096	8.0		
							5		
S	500 FEET	1450	NA	305.94		310.4	_	304.2	
٦			IVA						
	STATION	0		05002		405	0.8	5	
							5		
S	500 FEET	1500	NA	301.58		306.0	-	300	
	STATION	0		51951		85195	0.8		
	STATION			31331		03133			
							5		
S	500 FEET	1550	NA	296.81		301.3	-	295.7	
	STATION	0		98439		19844	8.0	5	
							5		
	E00 EEET	1600	NI A	201.01		206.2		201 5	
S	500 FEET	1600	NA	291.81		296.3	-	291.5	
	STATION	0		98439		19844	8.0		
							5		
S	500 FEET	1650	NA	286.36		290.8	_	287.2	
			. 4/ (
	STATION	0		55358		65536	8.0	5	
							5		
S	500 FEET	1700	NA	280.65		285.1	-	283	
	STATION	0		12501		5125	0.8		
						3123			
<u> </u>		. = -					5		
S	500 FEET	1750	NA	271.13		275.6	-	278.7	
	STATION	0		96877		39688	8.0	5	
							5		
	E00 FFFT	1000	NIA	250.40		262.6		274 5	
S	500 FEET	1800	NA	258.18		262.6	-	274.5	
	STATION	0		62503		8625	8.0		
							5		
	I.		1	·	L	·		1	1

S	500 FEET	1850	NA	242.27	260		246.7	Shoul	-	270.2	
	STATION	0		93754			79375	d be	0.8	5	
								abov	5		
								e 260			
S	500 FEET	1900	NA	242.72	260		247.2	Shoul	0.7	274	31.25
	STATION	0		06246			20625	d be	5		
								abov			
								e 260			
S	500 FEET	1950	NA	258.48			262.9		0.7	277.7	
	STATION	0		04164			80416		5	5	
S	500 FEET	2000	NA	276.59			281.0		0.7	281.5	
	STATION	0		88244			98824		5		
S	500 FEET	2050	NA	282.91			287.4		0.7	285.2	
	STATION	0		28408			12841		5	5	
S	500 FEET	2100	NA	286.54			291.0		0.7	289	
	STATION	0		92045			49204		5		
S	500 FEET	2150	NA	290.22			294.7		0.7	292.7	
	STATION	0		68055			26805		5	5	
S	500 FEET	2200	NA	294.67			299.1		0.7	296.5	
	STATION	0		12499			7125		5		
S	500 FEET	2250	NA	299.11			303.6		0.7	300.2	
	STATION	0		56943			15694		5	5	
S	500 FEET	2300	NA	303.56			308.0		0.7	304	
	STATION	0		01388			60139		5		
S	OVERBRI	2328		306.11		295.5	310.6	Shoul	0.7	306.1	
	DGE	7		11111			11111	d be	5	52383	
								belo			
								w			
								295.5			
S	500 FEET	2350	NA	308.00			312.5		0.7	307.7	
	STATION	0		45832			04583		5	5	
S	500 FEET	2400	NA	311.97			316.4		0.7	311.5	
	STATION	0		35648			73565		5		
S	500 FEET	2450	NA	315.55			320.0		0.7	315.2	
	STATION	0		51492			55149		5	5	
S	500 FEET	2500	NA	319.13			323.6		0.7	319	
	STATION	0		67335			36734		5	005 =	
S	500 FEET	2550	NA	321.01			325.5		0.7	322.7	
<u></u>	STATION	0		1961			11961		5	5	
S	500 FEET	2600	NA	322.34			326.8		0.7	326.5	
	STATION	0		52944			45294		5	005.5	
S	500 FEET	2650	NA	323.67			328.1		0.7	330.2	
	STATION	0		86277			78628		5	5	
S	500 FEET	2700	NA	325.00			329.5		0.7	334	
	STATION	0		51755			05175		5		
S	500 FEET	2750	NA	325.58			330.0		0.7	337.7	
	STATION	0		20985			82099		5	5	1

S	TIE-IN B	2764	325.	325.75		330.2	0.7	329.3	
		6	75			5	5	30098	

Appendix C: Vertical Geometry for Alternative L

Sp an	Type	Stati oning	Cont our Elev ation	Project ed Groun d Elevati on	CONST RAINT (FROM BELO W)	CONST RAINT (FROM TOP) - 23' Cleara nce	Groun d Elevat ion + 4.5 feet for draina ge	Com ment	Gr ad e	Vertic al Sectio ns	Lengt h of curve in 100'
L & S	500 FEET STATION	0	NA	346.25						350.7 5	
L & S	500 FEET STATION	500	NA	345.20 83333			350.7 5		- 0.2 2	349.6 5	
L & S	500 FEET STATION	1000	NA	344.16 66667			349.7 08333		- 0.2 2	348.5 5	
L & S	500 FEET STATION	1500	NA	343.12 5			348.6 66667		- 0.2 2	347.4 5	
L & S	500 FEET STATION	2000	NA	342.08 33333			347.6 25		- 0.2 2	346.3 5	
L & S	500 FEET STATION	2500	NA	341.04 16667			346.5 83333		- 0.2 2	345.2 5	
L & S	500 FEET STATION	3000	NA	340			345.5 41667		-1	340.2 5	3.9
L & S	GRADE XING	3181	336. 5	336.5	323.6	346.6	341	Shoul d be betw een 323.6 to 346.6	-1	338.4 42868	
L & S	500 FEET STATION	3500	NA	332.34 92719			344.5		-1	335.2 5	
L & S	500 FEET STATION	4000	NA	324.89 14116			336.8 49272		-1	330.2 5	

			ı	1	1	1	1			ı	I
L	500 FEET	4500	NA	318.88			329.3		-1	325.2	
&	STATION			97899			91412			5	
S											
				046.00			222.2			2222	
L	500 FEET	5000	NA	316.03			323.3		-1	320.2	
&	STATION			2647			8979			5	
S											
	500 FFFT	5500		246.66			220 5		_	245.2	46.66
L	500 FEET	5500	NA	316.66			320.5		-1	315.2	16.66
&	STATION			4686			32647			5	66667
S											
L	500 FEET	6000	NA	319.27			321.1		1	320.2	
		0000	INA						1		
&	STATION			15682			64686			5	
S											
L	500 FEET	6500	NA	323.60			323.7		1	325.2	
		0500	14/1						-		
&	STATION			28678			71568			5	
S					<u> </u>		<u> </u>				
L	500 FEET	7000	NA	328.60]		328.1		1	330.2	
&	STATION			28678			02868		_	5	
	STATION			20078			02868			5	
S											
L	500 FEET	7500	NA	336.78			333.1		1	335.2	
&	STATION			18687			02868			5	
	STATION			10007			02808			٦	
S											
L	500 FEET	8000	NA	342.19			341.2		1	340.2	
&	STATION			35785			81869			5	
	317111011			33703			01003				
S											
L	500 FEET	8500	NA	344.77			346.6		1	345.2	
	STATION			41806			93579			5	
L	500 FEET	9000	NA	343.34			349.2		1	350.2	8.85
-		3000	INA								0.03
	STATION			56092			74181			5	
L	500 FEET	9500	NA	341.91			347.8		-	346.4	
	STATION			70378			45609		0.7		
	017111011			, , , ,			10000		7		
<u> </u>											
L	500 FEET	1000	NA	340.48			346.4		-	342.5	
	STATION	0		84664			17038		0.7	5	
	_						1		7		
<u>-</u>	500 FFFT	4050		220.25	1		244.0			226 7	
L	500 FEET	1050	NA	338.35			344.9		-	338.7	
	STATION	0		48161			88466		0.7		
									7		
L	GRADE	1067	337.	337.5	327.5	347.5	342	Shoul	-	337.3	
				337.3	327.3	347.3	342				
&	XING	1	5					d be	0.7	83583	
S								betw	7		
								een			
								327.5			
]			-			
								347.5			
L	500 FEET	1100	NA	222 EE			342.8	•		334.8	
-			INA	333.55							
	STATION	0		15587			54816		0.7	5	
									7		
L		1		1	1	·		1		1	·

L	500 FEET	1150	NA	328.46	338.0	-	331	
L			IVA				221	
	STATION	0		08029	51559	0.7		
-		1000		224.52	222.2	7	227.4	
L	500 FEET	1200	NA	324.68	332.9	-	327.1	
	STATION	0		89408	60803	0.7	5	
						7		
L	500 FEET	1250	NA	320.91	329.1	-	323.3	
	STATION	0		70788	88941	0.7		
						7		
L	500 FEET	1300	NA	317.77	325.4	-	319.4	
	STATION	0		3932	17079	0.7	5	
						7		
L	500 FEET	1350	NA	314.83	322.2	1	315.6	
	STATION	0		27555	73932	0.7		
						7		
L	500 FEET	1400	NA	311.89	319.3		311.7	
	STATION	0		15791	32756	0.7	5	
						7		
L	500 FEET	1450	NA	307.62	316.3	-	307.9	
	STATION	0		09125	91579	0.7		
						7		
L	500 FEET	1500	NA	300.95	312.1	-	304.0	
-	STATION	0		42459	20913	0.7	5	
	317411014			12 133	20313	7		
L	500 FEET	1550	NA	296.19	305.4	-	300.2	
-	STATION	0		17195	54246	0.7	000.2	
				1,133	3 12 10	7		
L	500 FEET	1600	NA	291.74	300.6	-	296.3	
	STATION	0		7275	91719	0.7	5	
						7		
L	500 FEET	1650	NA	286.64	296.2	-	292.5	
-	STATION	0	10,	1347	47275	0.7	232.3	
	SIATION			1547	4/2/3	7		
L	500 FEET	1700	NA	281.10	291.1	-	288.6	
-	STATION	0	IVA	68979	41347	0.7	5	
	SIATION			00373	41347	7		
L	500 FEET	1750	NA	282.13	285.6	-	288.1	5.583
-	STATION		IVA	44678	06898	0.1		33333
-	•	1900	NIA	ł			5	33333
L	500 FEET	1800	NA	284.80	286.6	- 0 1	287.6	
<u> </u>	STATION	0	NIA	25575	34468	0.1	5	
L	500 FEET	1850	NA	284.02	289.3	-	287.1	
<u> </u>	STATION	0		52647	02557	0.1	5	
L	500 FEET	1900	NA	282.97	288.5	-	286.6	
	STATION	0		26331	25265	0.1	5	
L	500 FEET	1950	NA	281.92	287.4	-	286.1	
	STATION	0		00015	72633	0.1	5	

L SOFFET 2000 NA 280.86		500 FFFT	2000	l NI A	200.06	1	1	206.4	l		205.6	
L SOO FEET 2050	L			NA								
STATION O	-			NI A								
L SOO FEET 2100 NA 278.76 284.3 14738 0.1 5	L			NA								
L STATION 0 21068 14738 0.1 5 L SOO FEET 2150 NA 277.70 283.2	_		_	NIA				!				
L SOO FEET 2150	L			INA								
STATION O	-			NIA								
L SOO FEET 2200	L			INA								
STATION O 68436 09475 0.1 5	-		-	NΙΛ						0.1		
L S00 FEET S7ATION O NA 275.60 42121 56844 O.1 5	L			INA						0 1		
STATION O	<u> </u>			NΙΛ				1				
L S00 FEET 2300	-			INA								
STATION O 15805 04212 0.1 5	1			ΝΔ				1				
Color Colo	-			1473								
STATION O 89489 S158 O.1 S	1			NA				+				
L S00 FEET 2400	_			' ' '								
STATION O G3173 98949 O.1 5	L			NA	1			1				
L S00 FEET 2500 NA 271.39 36858 276.9 46317 0.1 5										0.1		
STATION O 36858 46317 O.1 5	L		2450	NA	1							
STATION O 10542 93686 O.1 5		STATION	0		36858			46317		0.1	5	
L 500 FEET STATION 0 2550 NA 05848 271.59 05848 274.8 41054 - 280.1 5 L 500 FEET STATION 0 2600 NA 273.94 3526 276.0 90585 - 279.6 0.1 5 L 500 FEET 2650 STATION 0 NA 276.29 64671 278.4 43526 0.2 280.9 2.916 66667 L 500 FEET 2700 NA 278.64 94083 280.7 96467 5 5 5 STATION 0 94083 9407 283.1 96467 5 5 5 L 500 FEET 2750 STATION 0 89407 89407 49408 5 5 5 L 500 FEET 2800 NA 284.10 STATION 0 89407 288.6 0.2 288.6 0.2 284.6 5 STATION 0 94408 5 288.6 0.2 284.6 5 STATION 0 0 8941 5 5 5 L 500 FEET 2850 STATION 0 84968 285.72 293.3 0.2 285.9 5 L 500 FEET 2850 STATION 0 84968 282.64 290.2 293.3 5 L 500 FEET 2950 NA 280.83 STATION 0 84968 287.1 55 L 500 FEET 2950 NA 280.83 STATION 0 84968 287.1 55 L GRADE STATION 0 84968 284.5 274.5 294.5 289 L GRADE STATION 0 84968 284.5 274.5 294.5 289 L GRADE STATION 0 84968 284.5 274.5 294.5 289	L	500 FEET	2500	NA	270.34			275.8		-	280.6	
STATION O O5848 41054 O.1 5		STATION	0		10542			93686		0.1	5	
L 500 FEET STATION 2600 NA 273.94 3526 276.0 90585 - 279.6 0.1 5 L 500 FEET STATION 2650 NA 276.29 64671 278.4 43526 0.2 280.9 2.916 66667 L 500 FEET STATION 0 STATION	L	500 FEET	2550	NA	271.59			274.8		-	280.1	
STATION O 3526 90585 0.1 5		STATION	0		05848			41054		0.1	5	
L 500 FEET STATION 2650 NA 276.29 64671 278.4 43526 0.2 280.9 2.916 66667 L 500 FEET STATION 0 NA 278.64 94083 280.7 96467 0.2 282.1 55 L 500 FEET STATION 0 NA 284.10 283.1 49408 0.2 283.4 55 L 500 FEET STATION 2800 NA 288.80 288.6 08941 0.2 284.6 55 STATION 0 285.72 293.3 02343 0.2 285.9 55 STATION 0 84968 290.2 2343 0.2 287.1 55 L 500 FEET STATION 2900 NA 282.64 290.2 2542 0.2 287.1 55 5 L 500 FEET STATION 2950 NA 280.83 54312 287.1 48497 0.2 288.4 55 5 L GRADE STATION 2987 284. 284.5 274.5 294.5 294.5 289 Shoul 0.2 289.3 dbetween 274.5 5. L GRADE STATION 5 5 5 5 5 L GRADE STATION 288.6 2987 284. 284.5 274.5 294.5 289 Shoul 0.2 289.3 dbetween 274.5 5.	L	500 FEET	2600	NA	273.94			276.0		-	279.6	
STATION O 64671 43526 5 66667		STATION	0		3526			90585		0.1	5	
L 500 FEET STATION 0 278.64 94083 280.7 96467 0.2 282.1 L 500 FEET 2750 NA 284.10 STATION 0 89407 283.1 49408 0.2 283.4 55 L 500 FEET 2800 STATION 0 NA 288.80 288.6 STATION 0 288.6 293.3 0.2 285.9 STATION 0 0.2 285.9 STATION 0 L 500 FEET 2850 NA 285.72 STATION 0 54199 290.2 293.3 STATION 0 0.2 287.1 STATION 0 0.2 287.1 STATION 0 L 500 FEET 2900 NA 282.64 STATION 0 84968 2542 55 5 5 L 500 FEET 2950 NA 280.83 STATION 0 54312 574.5 294.5 289 5houl 0.2 288.4 55 274.5 294.5 289 L GRADE XING 5 5 5 274.5 294.5 289 5houl 0.2 289.3 375 289.3 274.5 274.5 294.5 289	L	500 FEET	2650	NA	276.29			278.4		0.2	280.9	2.916
STATION 0 94083 96467 5 5 L 500 FEET 500 FEET 5750 NA 544.10 STATION 284.10 89407 283.1 49408 0.2 283.4 55 L 500 FEET 2800 NA 288.80 STATION 0 2343 288.6 08941 5 5 L 500 FEET 2850 NA 285.72 STATION 0 54199 293.3 022 285.9 55 02343 5 L 500 FEET 2900 NA 282.64 STATION 0 84968 290.2 2542 5 5 L 500 FEET 2950 NA 280.83 STATION 0		STATION	0		64671			43526		5		66667
L 500 FEET 2750 NA 284.10 89407 49408 5 L 500 FEET 2800 NA 288.80 288.6 0.2 284.6 STATION 0 2343 08941 5 5 L 500 FEET 2850 NA 285.72 293.3 0.2 285.9 STATION 0 0 54199 02343 5 L 500 FEET 2900 NA 282.64 290.2 0.2 287.1 STATION 0 84968 2542 5 5 L 500 FEET 2950 NA 280.83 287.1 0.2 288.4 STATION 0 54312 48497 5 5 L GRADE 2987 284. 284.5 274.5 294.5 289 Shoul 0.2 289.3 375 between 274.5 -	L		2700	NA	278.64							
STATION 0 89407 49408 5 L 500 FEET 2800 NA 288.80 288.6 0.2 284.6 STATION 0 2343 08941 5 5 L 500 FEET 2850 NA 285.72 293.3 0.2 285.9 STATION 0 NA 282.64 290.2 0.2 287.1 STATION 0 84968 2542 5 5 L 500 FEET 2950 NA 280.83 287.1 0.2 288.4 STATION 0 54312 294.5 289 Shoul deen 0.2 289.3 L GRADE XING 5 5 274.5 294.5 289 Shoul deen 0.2 289.3 L 6 6 6 6 6 6 6 6 6 L 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 <td></td>												
L 500 FEET STATION 2800 NA 288.80 2343 288.6 08941 0.2 284.6 5 L 500 FEET 2850 NA 285.72 STATION 285.72 24199 293.3 02343 5 L 500 FEET 2900 NA 282.64 STATION 290.2 2542 0.2 287.1 5 L 500 FEET 2950 NA 280.83 STATION 280.83 287.1 48497 0.2 288.4 5 L GRADE XING 2987 284. 284.5 5 274.5 294.5 289 Shoul d be betw een 274.5 274.5 5	L			NA							283.4	
STATION 0 2343 08941 5 5 L 500 FEET 2850 STATION 0 NA 285.72 STATION 0 293.3 STATION 0 0.2 285.9 STATION 0 L 500 FEET 2900 STATION 0 NA 282.64 STATION 0 290.2 STATION 0 0.2 287.1 STATION 0 L 500 FEET 2950 STATION 0 NA 280.83 STATION 0 287.1 STATION 0 0.2 288.4 STATION 0 L GRADE XING 2987 284. STATION 0 284.5 STATION 0 294.5 STATION 0 289 Shoul 0.2 289.3 Shoul 0 0.2 289.3 Shoul 0 0.2 274.5 Station 0 L 274.5 STATION 0 274.5 STATION 0 274.5 STATION 0 274.5 STATION 0 289 Shoul 0 0.2 289.3 STATION 0								!				
L 500 FEET STATION 285.72 54199 293.3 02343 0.2 285.9 5 L 500 FEET 2900 STATION NA 282.64 84968 290.2 2542 0.2 287.1 55 L 500 FEET 2950 STATION NA 280.83 54312 287.1 48497 0.2 288.4 55 L GRADE STATION 2987 284. 284.5 55 274.5 294.5 289 Shoul doe betw een 274.5 55 L 375 274.5 2	L			NA								
STATION 0 54199 02343 5 L 500 FEET 2900 NA 282.64 290.2 0.2 287.1 STATION 0 84968 2542 5 5 L 500 FEET 2950 NA 280.83 287.1 0.2 288.4 STATION 0 54312 48497 5 5 5 L GRADE 2987 284. 284.5 274.5 294.5 289 Shoul dee 5 375 KING 5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 </td <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					1							
L 500 FEET 2900 NA 282.64 84968 2542 5 5 L 500 FEET 2950 NA 280.83 287.1 0.2 288.4 5 5 L GRADE XING 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	L			NA							285.9	
STATION 0 84968 2542 5 5 L 500 FEET 2950 STATION NA 280.83 54312 287.1 48497 0.2 288.4 5 L GRADE XING 2987 284. 5 274.5 294.5 289 Shoul dbe betw een 274.5 - 274.5			_	NIA							207.4	
L 500 FEET 2950 NA 280.83 54312 287.1 48497 5 L GRADE 2987 284. 284.5 5 5 S Shoul d be betw een 274.5 - 274.5 -	L			INA								
STATION 0 54312 48497 5 5 L GRADE XING 2987 284. 284.5 274.5 294.5 289 Shoul doe to be betw een 274.5 375	-			NIA	1							
L GRADE 2987 284. 284.5 274.5 294.5 289 Shoul 0.2 289.3 375 betw een 274.5 -	-			INA							200.4	
XING 5 5 5 d betw een 274.5 -	1		-	28/1		27/15	29/15		Shoul		280 3	
betw een 274.5	_				207.5	2,4.5	254.5	203				
een 274.5 -		All VO										
274.5												
									-			
									294.5			

L	500 FEET	3000	NA	284.84		285.3	0.2	289.6	
	STATION	0		25299		35431	5	5	
L	500 FEET	3050	NA	285.72		289.3	0.2	290.9	
	STATION	0		25299		4253	5		
L	500 FEET	3100	NA	286.60		290.2	0.2	292.1	
	STATION	0		25299		2253	5	5	
L	500 FEET	3150	NA	287.48		291.1	0.2	293.4	
	STATION	0		25299		0253	5		
L	500 FEET	3200	NA	288.36		291.9	0.2	294.6	
	STATION	0		25299		8253	5	5	
L	500 FEET	3250	NA	289.24		292.8	0.2	295.9	
	STATION	0		25299		6253	5		
L	500 FEET	3300	NA	290.58		293.7	0.2	297.1	
	STATION	0		13718		4253	5	5	
L	500 FEET	3350	NA	294.75		295.0	0.2	298.4	
	STATION	0		67371		81372	5		
L	500 FEET	3400	NA	298.93		299.2	0.2	299.6	
	STATION	0		21025		56737	5	5	
L	500 FEET	3450	NA	300		303.4	0.2	300.9	
	STATION	0				32102	5		
L	500 FEET	3500	NA	298.80		304.5	0.2	302.1	
	STATION	0		76146			5	5	
L	500 FEET	3550	NA	290		303.3	0.2	303.4	
	STATION	0				07615	5		
L	500 FEET	3600	NA	290		294.5	0.2	304.6	
	STATION	0					5	5	
L	500 FEET	3650	NA	290		294.5	0.2	305.9	
	STATION	0					5		
L	500 FEET	3700	NA	290		294.5	0.2	307.1	
	STATION	0					5	5	
L	500 FEET	3750	NA	292.82		294.5	0.2	308.4	
	STATION	0		11017			5		
L	500 FEET	3800	NA	299.44		297.3	0.2	309.6	
	STATION	0		27599		21102	5	5	
L	TIE-IN B	3817	301.	301.75		303.9	0.2	310.0	
		4	75			4276	5	85548	

Appendix D: Earthwork Calculations for Alternative S

Span	Stationing	Cut Volume (yd^3)	Fill Volume (yd^3)	
L & S	0	276	688	
L & S	500	300	653	
L & S	1000	325	618	
L & S	1500	350	583	
L & S	2000	376	548	
L & S	2500	2472	265	
L & S	3000	1258	0	
L & S	3181	1177	0	
L & S	3500	641	629	
L & S	4000	0	1268	
L & S	4500	253	832	
L & S	5000	253	2104	
L & S	5500	0	5020	
L & S	6000	0	6593	
L & S	6500	0	6966	
L & S	7000	0	5340	
L & S	7500	0	3531	
L & S	8000	0	4514	
S	8500	0	4341	
S	9000	68	1958	
S	9500	1229	457	
S	10000	3678	0	
S	10500	1862	0	
L & S	10671	3341	0	
L & S	11000	3294	0	

L & S	11500	1554	34
S	12000	1028	34
S	12500	2161	0
S	13000	4083	0
S	13500	6180	0
S	14000	7278	0
S	14500	7205	0
S	15000	6754	0
S	15500	5854	0
S	16000	4526	0
S	16500	2822	0
S	17000	960	1483
S	17500	0	8030
S	18000	0	24273
S	18500	0	39542
S	19000	0	30721
S	19500	56	9384
S	20000	1023	479
S	20500	1867	0
S	21000	1758	0
S	21500	2129	0
S	22000	2974	0
S	22500	3855	0
S	23000	2623	0
S	23287	2146	0
S	23500	5389	0
S	24000	5423	0
S	24500	5192	0
S	25000	3865	0
S	25500	1533	250

S	26000	207	1315
S	26500	0	3166
S	27000	0	5885
S	27500	102	1127
S	27646	0	0
TOTAL CUT & VOLUMES	≿ FILL	111699	189894
EXTRA MATI CONSTRUCT	78195		

Appendix E: Earthwork Calculations for Alternative L

Span	Stationing	Cut Volume (yd^3)	Fill Volume (yd^3)
L & S	0	276	688
L & S	500	300	653
L & S	1000	325	618
L & S	1500	350	583
L & S	2000	376	548
L & S	2500	2472	265
L & S	3000	1258	0
L & S	3181	1177	0
L & S	3500	641	629
L & S	4000	0	1615
L & S	4500	192	1254
L & S	5000	3631	268
L & S	5500	5241	0
L & S	6000	3184	0
L & S	6500	2765	0
L & S	7000	4907	0
L & S	7500	7354	0
L & S	8000	5957	0
L	8500	2128	1195
L	9000	135	1543
L	9500	1266	348
L	10000	3345	0
L	10500	1620	0
L & S	10671	2714	0
L	11000	2448	0
L	11500	1743	0

L	12000	1834	0	
L	12500	2305	0	
L	13000	3303	0	
L	13500	4480	0	
L	14000	4800	0	
L	14500	2789	0	
L	15000	772	207	
L	15500	352	592	
L	16000	111	1187	
L	16500	0	2257	
L	17000	0	2313	
L	17500	671	859	
L	18000	1185	0	
L	18500	839	114	
L	19000	514	386	
L	19500	267	713	
L	20000	77	1062	
L	20500	0	1434	
L	21000	0	1828	
L	21500	0	2246	
L	22000	0	2685	
L	22500	0	3148	
L	23000	0	3633	
L	23500	0	4140	
L L L L L	24000	0	4671	
L	24500	0	5224	
L	25000	0	4651	
L	25500	0	2647	
L	26000	111	1133	
L	26500	484	451	
·	·			

L	27000	3307		66	
L	27500	8506		0	
L	28000	7900		0	
L	28500	2460		353	
L	29000	132		1817	
L	29500	51		1441	
L	29875	35		227	
L	30000	84		1017	
L	30500	11		1262	
L	31000	0		1517	
L	31500	0		1782	
L	32000	0		2057	
L	32500	0		2163	
L	33000	334		1169	
L	33500	2304		105	
L	34000	3822		0	
L	34500	2270		24	
L	35000	417		4563	
L	35500	0		9902	
L	36000	0		11605	
L	36500	0		13425	
L	37000	0		13193	
L	37500	0		8711	
L	38000	0		1567	
L	38174	0		0	
TOTAL CUT & VOLUMES	& FILL		112333		149327
EXTRA MATE	ERIAL REQ FO)R			36995

Appendix F: Operating Cost for Alternative S

Item	Quantity	Units	Source
Gross Railcar			
Load	286000	lb/car	Project Spec
Empty Tare			
Weight	57300	lb/car	Project Spec
Number of Cars	44	cars	Project Spec
Operating Days	6	days/week	Project Spec
Operating			
Weeks	52	weeks/year	Project Spec
	0.007553	MGT/day	Calculation
	2.356411	MGT/year	Calculation
Hypothetical			
Length	4	miles	Project Spec
Alt S Length	5.75943	miles	Geometry
delta d	1.75943	miles	Calculation
Hypothetical			
MGTM	9.425645	MGTM	Calculation
FROM A1.a	13512.47		A1.a
Annual			
operating cost			
straight-line	0.127364	\$M/year	Calculation
Distance Factor			
(1-10 miles)	37.11	%	Project Spec
ED	0.02079	\$M/year	Calculation
Curve		lb/ton/deg	
Resistance	0.8	of curve	Assummtion
Average	_		
Resistance	5	lb/ton	Assummtion
Equivalent curve	6.25	degrees	Calculation
Equivalent			
central angle	330	degrees	Calculation
Sum of central			
angles	314.795	degrees	Geometry
Equivalent curve			
miles	0.953924	miles	Calculation
Curve Factor	25.59	%	Project Spec
EC	0.007773	\$M/year	Calculation
Grade		lb/ton/%	
Resistance	20	grade	Assummtion
Equivalent grade	0.25	% grade	Calculation

Equivalent grade			
mile	13.2	feet	Calculation
Rise and Fall	239.32	feet	Geometry
Equivalent grade			
miles	18.1303	miles	Calculation
Grade Factor			
(Class C)	19.09	%	Project Spec
ER&F	0.110204		Calculation
Additional			
operating cost	0.138766	\$M/year	Calculation
Annual			
operating cost			
Route S	0.26613	\$M/year	Calculation

Appendix G: Operating Cost for Alternative L

Item	Quantity	Units	Source
Gross Railcar			
Load	286000	lb/car	Project Spec
Empty Tare			
Weight	57300	lb/car	Project Spec
Number of Cars	44	cars	Project Spec
Operating Days	6	days/week	Project Spec
Operating			
Weeks	52	weeks/year	Project Spec
	0.007553	MGT/day	Calculation
	2.356411	MGT/year	Calculation
Hypothetical			
Length	4	miles	Project Spec
Alt S Length	9.03689	miles	Geometry
delta d	5.03689	miles	Calculation
Hypothetical			
MGTM	9.425645	MGTM	Calculation
FROM A1.a	13512.47		A1.a
Annual			
operating cost			
straight-line	0.127364	\$M/year	Calculation
Distance Factor			
(1-10 miles)	37.11	%	Project Spec
ED	0.059517	\$M/year	Calculation
Curve		lb/ton/deg	
Resistance	0.8	of curve	Assummtion
Average			
Resistance	5	lb/ton	Assummtion
Equivalent curve	6.25	degrees	Calculation
Equivalent			
central angle	330	degrees	Calculation
Sum of central			
angles	398.795	degrees	Geometry
Equivalent curve			
miles	1.20847	miles	Calculation
Curve Factor	25.59	%	Project Spec
EC	0.009847	\$M/year	Calculation
Grade		lb/ton/%	
Resistance	20	grade	Assummtion
Equivalent grade	0.25	% grade	Calculation

Equivalent grade			
mile	13.2	feet	Calculation
Rise and Fall	188.79	feet	Geometry
Equivalent grade			
miles	14.30227	miles	Calculation
Grade Factor			
(Class C)	19.09	%	Project Spec
ER&F	0.086935		Calculation
Additional			
operating cost	0.156299	\$M/year	Calculation
Annual			
operating cost			
Route L	0.283663	\$M/year	Calculation

Appendix H: Acceleration from STA 00+00 (Alternative L)

Time	Position	Speed	Tractive Effort			Loco Resistance	Car Resistance	Drawbar	Accel Force
(s)	(ft)	(mph)	(lbs)	Grade	Curve	(lbs)	(lbs)	Pull (lbs)	(lbs)
0	0.00	0.00	141570	-0.22	0	-3140	-20390	144710	165100
5	0.18	0.24	141570	-0.22	0	-3138	-20374	144708	165083
10	0.71	0.48	141570	-0.22	0	-3136	-20359	144706	165065
15	1.59	0.72	141570	-0.22	0	-3134	-20344	144704	165048
20	2.83	0.97	141570	-0.22	0	-3132	-20329	144702	165031
25	4.42	1.21	141570	-0.22	0	-3130	-20314	144700	165013
30	6.37	1.45	141570	-0.22	0	-3128	-20298	144698	164996
35	8.66	1.69	141570	-0.22	0	-3126	-20283	144696	164979
40	11.32	1.93	141570	-0.22	0	-3124	-20268	144694	164961
45	14.32	2.17	141570	-0.22	0	-3121	-20253	144691	164944
50	17.68	2.41	141570	-0.22	0	-3119	-20237	144689	164927
55	21.39	2.66	141570	-0.22	0	-3117	-20222	144687	164909
60	25.46	2.90	141570	-0.22	0	-3115	-20207	144685	164892
65	29.88	3.14	141570	-0.22	0	-3113	-20191	144683	164874
70	34.65	3.38	141570	-0.22	0	-3111	-20176	144681	164857
75	39.77	3.62	141570	-0.22	0	-3108	-20161	144678	164839
80	45.25	3.86	141570	-0.22	0	-3106	-20146	144676	164822
85	51.08	4.10	141570	-0.22	0	-3104	-20130	144674	164804
90	57.27	4.34	141570	-0.22	0	-3102	-20115	144672	164787
95	63.81	4.58	141570	-0.22	0	-3100	-20100	144670	164769
100	70.70	4.83	141570	-0.22	0	-3097	-20084	144667	164752
105	77.94	5.07	141570	-0.22	0	-3095	-20069	144665	164734
110	85.54	5.31	141570	-0.22	0	-3093	-20054	144663	164717
115	93.49	5.55	141570	-0.22	0	-3091	-20038	144661	164699
120	101.79	5.79	141570	-0.22	0	-3088	-20023	144658	164681
125	110.44	6.03	141570	-0.22	0	-3086	-20008	144656	164664
130	119.45	6.27	141570	-0.22	0	-3084	-19992	144654	164646
135	128.81	6.51	141570	-0.22	0	-3082	-19977	144652	164628
140	138.53	6.75	141570	-0.22	0	-3079	-19961	144649	164611
145	148.59	6.99	141570	-0.22	0	-3077	-19946	144647	164593
150	159.01	7.24	141570	-0.22	0	-3075	-19931	144645	164575
155	169.78	7.48	141570	-0.22	0	-3072	-19915	144642	164558
160	180.91	7.72	141570	-0.22	0	-3070	-19900	144640	164540
165	192.38	7.96	141570	-0.22	0	-3068	-19884	144638	164522
170	204.21	8.20	141570	-0.22	0	-3065	-19869	144635	164504
175	216.40	8.44	141570	-0.22	0	-3063	-19854	144633	164487
180	228.93	8.68	141570	-0.22	0	-3061	-19838	144631	164469
185	241.82	8.92	141570	-0.22	0	-3058	-19823	144628	164451
190	255.05	9.16	141570	-0.22	0	-3056	-19807	144626	164433
195	268.65	9.40	141570	-0.22	0	-3054	-19792	144624	164415
200	282.59	9.64	140558.42	-0.22	0	-3051	-19776	143610	163386
205	296.88	9.88	137158.05	-0.22	0	-3049	-19761	140207	159968
210	311.52	10.11	133984.53	-0.22	0	-3046	-19746	137031	156777
215	326.50	10.34	131013.64	-0.22	0	-3044	-19731	134058	153789
220	341.82	10.57	128224.65	-0.22	0	-3042	-19717	131267	150983
225	357.46	10.79	125599.7	-0.22	0	-3040	-19703	128639	148342
230	373.42	11.01	123123.27	-0.22	0	-3037	-19689	126161	145849
235	389.69	11.22	120781.86	-0.22	0	-3035	-19675	123817	143492
240	406.28	11.43	118563.59	-0.22	0	-3033	-19661	121597	141258
245	423.17	11.64	116458.04	-0.22	0	-3031	-19648	119489	139137

250	440.00	44.04	444455.05	0.00	0	2020	10525	447405	407400
250	440.36	11.84	114455.95	-0.22	0	-3029	-19635	117485	137120
255	457.84	12.04	112549.11	-0.22	0	-3027	-19622	115576	135198
260	475.62	12.24	110730.2	-0.22	0	-3025	-19609	113755	133364
265	493.69	12.43	108992.66	-0.22	0	-3023	-19596	112016	131612
270	512.04	12.63	107330.59	-0.22	0	-3021	-19584	110352	129935
275	530.67	12.82	105738.69	-0.22	0	-3019	-19572	108758	128329
280	549.57	13.00	104212.14	-0.22	0	-3017	-19560	107229	126789
285	568.75	13.19	102746.59	-0.22	0	-3015	-19548	105762	125309
290	588.20	13.37	101338.1	-0.22	0	-3013	-19536	104351	123887
295	607.92	13.55	99983.042	-0.22	0	-3011	-19524	102994	122518 121200
300	627.90	13.73	98678.132	-0.22	3	-3009	-19512	101687	
305 310	648.14	13.91	97420.351	-0.22 -0.22	3	-948 -947	-4400 -4390	98369	102769
	668.62	14.06	96378.696					97325	101716
315	689.32	14.21	95369.418	-0.22	3	-945	-4381	96315	100695
320 325	710.24	14.36 14.50	94390.874	-0.22 -0.22	3	-944 -942	-4371	95334	99705 98745
	731.37		93441.535				-4362	94384	
330	752.72	14.65 14.79	92519.974	-0.22	3	-941	-4352	93460	97813
335 340	774.27		91624.864 90754.963	-0.22	3	-939 -937	-4343	92564	96907
	796.04	14.93		-0.22			-4334	91692	96026
345	818.01	15.07	89909.108	-0.22	3	-936	-4325	90845	95170
350	840.18	15.21	89086.212	-0.22	3	-934 -933	-4315	90021	94336 93525
355	862.56	15.35	88285.254	-0.22			-4306	89218	
360	885.14	15.49 15.62	87505.278	-0.22 -0.22	3	-932 -930	-4298 4290	88437	92734
365 370	907.92 930.90	15.76	86745.382 86004.72	-0.22	3	-930	-4289 -4280	87675 86933	91964 91213
375 380	954.07	15.89 16.02	85282.494	-0.22 -0.22	3	-927 -926	-4271	86210	90481
385	977.44 1001.00	16.02	84577.952 83890.384	-0.22	3	-924	-4263 -4254	85504 84815	89766 89069
390	1024.75				3	-923	-4234	84142	88388
395	1024.73	16.28 16.41	83219.12 82563.525	-0.22 -0.22	3	-923	-4240	83485	87722
400	1072.83	16.54	81922.999	-0.22	3	-920	-4229	82843	87072
405	1097.14	16.67	81296.975	-0.22	3	-919	-4220	82216	86436
410	1121.65	16.80	80684.914	-0.22	3	-917	-4212	81602	85814
415	1146.34	16.92	80086.304	-0.22	3	-916	-4204	81002	85206
420	1171.21	17.05	79500.66	-0.22	3	-915	-4196	80415	84611
425	1196.26	17.17	78927.522	-0.22	3	-913	-4188	79841	84029
430	1221.50	17.29	78366.45	-0.22	3	-912	-4180	79278	83458
435	1246.91	17.42	77817.028	-0.22	3	-911	-4172	78728	82899
440	1272.50	17.54	77278.859	-0.22	3	-909	-4164	78188	82352
445	1298.27	17.66	76751.563	-0.22	3	-908	-4156	77659	81815
450	1324.22	17.78	76234.779	-0.22	3	-907	-4148	77141	81290
455	1350.34	17.90	75728.165	-0.22	3	-905	-4140	76633	80774
460	1376.63	18.01	75231.39	-0.22	3	-904	-4133	76135	80268
465	1403.10	18.13	74744.141	-0.22	3	-903	-4125	75647	79772
470	1429.73	18.25	74266.117	-0.22	3	-901	-4117	75167	79285
475	1456.54	18.36	73797.031	-0.22	3	-900	-4110	74697	78807
480	1483.52	18.48	73336.609	-0.22	3	-899	-4102	74235	78338
485	1510.67	18.59	72884.588	-0.22	3	-897	-4095	73782	77877
490	1537.98	18.71	72440.714	-0.22	3	-896	-4087	73337	77424
495	1565.46	18.82	72004.748	-0.22	3	-895	-4080	72900	76979
500	1593.10	18.93	71576.457	-0.22	3	-894	-4072	72470	76543
505	1620.91	19.05	71155.62	-0.22	3	-892	-4065	72048	76113
510	1648.88	19.16	70742.021	-0.22	3	-891	-4058	71633	75691
515	1677.02	19.27	70335.458	-0.22	3	-890	-4050	71225	75276
520	1705.32	19.38	69935.733	-0.22	3	-889	-4043	70824	74868
525	1733.77	19.49	69542.656	-0.22	3	-887	-4036	70430	74466
530	1762.39	19.60	69156.046	-0.22	3	-886	-4029	70042	74071
535	1791.17	19.70	68775.728	-0.22	3	-885	-4022	69661	73682
333	1/31.1/	13.70	30773.728	0.22	J	-003	-4022	05001	73002

540	1820.10	19.81	68401.533	-0.22	3	-884	-4015	69285	73300
545	1849.20	19.92	68033.299	-0.22	3	-883	-4008	68916	72923
550	1878.44	20.03	67670.869	-0.22	3	-881	-4001	68552	72553
555	1907.85	20.13	67314.094	-0.22	3	-880	-3994	68194	72188
560	1937.41	20.24	66962.827	-0.22	3	-879	-3987	67842	71828
565	1967.12	20.34	66616.93	-0.22	3	-878	-3980	67495	71474
570	1996.99	20.45	66276.266	-0.22	3	-876	-3973	67153	71126
575	2027.01	20.55	65940.705	-0.22	3	-875	-3966	66816	70782
580	2057.18	20.66	65610.122	-0.22	3	-874	-3959	66484	70444
585	2087.51	20.76	65284.395	-0.22	3	-873	-3953	66157	70110
590	2117.98	20.86	64963.406	-0.22	3	-872	-3946	65835	69781
595	2148.61	20.96	64647.042	-0.22	3	-871	-3939	65518	69457
600	2179.38	21.06	64335.194	-0.22	3	-869	-3932	65205	69137
605	2210.30	21.17	64027.754	-0.22	3	-868	-3926	64896	68822
610	2241.37	21.27	63724.621	-0.22	3	-867	-3919	64592	68511
615	2272.59	21.37	63425.695	-0.22	3	-866	-3912	64292	68204
620	2303.95	21.47	63130.88	-0.22	3	-865	-3906	63996	67902
625	2335.46	21.57	62840.082	-0.22	3	-864	-3899	63704	67603
630	2367.12	21.66	62553.212	-0.22	3	-862	-3893	63416	67308
635	2398.91	21.76	62270.182	-0.22	3	-861	-3886	63131	67018
640	2430.86	21.86	61990.908	-0.22	3	-860	-3880	62851	66731
645	2462.94	21.96	61715.307	-0.22	3	-859	-3873	62574	66448
650	2495.17	22.06	61443.3	-0.22	3	-858	-3867	62301	66168
655	2527.54	22.15	61174.809	-0.22	3	-857	-3861	62032	65892
660	2560.05	22.25	60909.76	-0.22	3	-856	-3854	61765	65620
665	2592.71	22.35	60648.081	-0.22	3	-855	-3848	61503	65350
670	2625.50	22.44	60389.699	-0.22	3	-853	-3842	61243	65085
675	2658.43	22.54	60134.547	-0.22	3	-852	-3835	60987	64822
680	2691.51	22.63	59882.559	-0.22	3	-851	-3829	60734	64563
685	2724.72	22.73	59633.67	-0.22	3	-850	-3823	60484	64307
690	2758.07	22.82	59387.816	-0.22	3	-849	-3817	60237	64053
695	2791.55	22.91	59144.938	-0.22	3	-848	-3810	59993	63803
700	2825.17	23.01	58904.975	-0.22	3	-847	-3804	59752	63556
705	2858.93	23.10	58667.869	-0.22	3	-846	-3798	59514	63312
710	2892.83	23.19	58433.566	-0.22	3	-845	-3792	59278	63070
715	2926.86	23.28	58202.01	-0.22	3	-843	-3786	59045	62831
720	2961.03	23.38	57973.148	-0.22	3	-842	-3780	58816	62595
725	2995.33	23.47	57746.929	-0.22	3	-841	-3774	58588	62362
730	3029.76	23.56	57523.302	-1	3	-14225	-101923	71748	173671
735	3064.45	23.81	56909.555	-1	3	-14222	-101906	71132	173038
740	3099.51	24.07	56310.936	-1	3	-14219	-101889	70530	172419
745	3134.93	24.32	55726.852	-1	3	-14216	-101872	69943	171815
750	3170.73	24.57	55156.743	-1	3	-14213	-101856	69370	171225
755	3206.90	24.82	54600.079	-1	3	-14210	-101839	68810	170649
760	3243.43	25.07	54056.357	-1	3	-14207	-101823	68263	170086
765	3280.32	25.32	53525.1	-1	3	-14204	-101806	67729	169535
770	3317.58	25.57	53005.853	-1	3	-14201	-101790	67207	168996
775	3355.20	25.81	52498.187	-1	3	-14198	-101773	66696	168469
780	3393.19	26.06	52001.692	-1	3	-14195	-101757	66197	167953
785	3431.53	26.31	51515.978	-1	3	-14192	-101740	65708	167448
790	3470.24	26.55	51040.674	-1	3	-14189	-101724	65230	166954
795	3509.30	26.80	50575.427	-1	3	-14186	-101708	64761	166469
800	3548.72	27.04	50119.898	-1	3	-14183	-101692	64303	165994
805	3588.49	27.28	49673.766	-1	3	-14180	-101675	63854	165529
810	3628.62	27.52	49236.725	-1	3	-14177	-101659	63414	165073
815	3669.11	27.77	48808.48	-1	3	-14174	-101643	62982	164625
820	3709.94	28.01	48388.751	-1	3	-14171	-101627	62560	164186
825	3751.13	28.25	47977.269	-1	3	-14168	-101611	62145	163756

830	3792.67	28.49	47573.779	-1	3	-14165	-101595	61739	163333
835	3834.56	28.73	47178.035	-1	3	-14162	-101579	61340	162919
840	3876.81	28.96	46789.8	-1	3	-14159	-101563	60949	162511
845	3919.39	29.20	46408.849	-1	3	-14156	-101547	60565	162112
850	3962.33	29.44	46034.967	-1	3	-14153	-101531	60188	161719
855	4005.62	29.68	45667.944	-1	3	-14150	-101515	59818	161333
860	4049.25	29.91	45307.583	-1	3	-14147	-101499	59454	160954
865	4093.22	30.15	44953.692	-1	3	-14144	-101484	59097	160581