Arquitetura de Computadores I

António de Brito Ferrari ferrari@ua.pt

1. Organização da disciplina

ABF - AC I Intro

Objetivos da disciplina

- Compreender a organização dos computadores digitais
- Adquirir familiaridade com a arquitetura de microprocessadores através da programação em assembly
- Compreender a estrutura interna dos processadores
- Conhecer as formas de representação da informação nos computadores digitais, com relevo para a representação da informação numérica (inteiros e vírgula flutuante) e as operações aritméticas básicas.

ABF - AC I Intro

Pré-requesitos: AC 1 e Sistemas Digitais 2011/2012 - comparação entre alunos com ou sem aprovação a SD 200 60.0% 50.0% 160 140 40.0% 120 30.0% 80 20.0% 60 4Π 10.0% 20 2011-12 s/SD 2011-12 c/ SD ABF - AC I Intro

Programa (ver Guião no Moodle)

- 1. Introdução: sistemas de computação de uso geral. O modelo de Von Neumann.
- 2. A arquitetura MIPS
- 3. O assembler e o processo de "assemblagem"
- 4. Aritmética computacional
- Outras arquiteturas do conjunto de instruções. RISC e CISC
- 6. Organização interna do processador: unidades operativas e unidade de controlo
- 7. Organização do sistema de memória
- 8. Pipelining

ABF - AC I Intro

5

Bibliografia

Livros de texto:

- D.M. Harris, S.L. Harris, *Digital Design and Computer Architecture*, 2nd edition, Morgan Kaufmann, 2013
 - Capítulos 5, 6, 7, Apêndices B e C
 - Existem na biblioteca 2 exemplares
- David Patterson, John Hennessy, Computer
 Organization and Design the Hardware / Software
 Interface (P&H book), Morgan Kaufmann

4th edition, Capítulos 1, 2, 3 e 4 e Apêndice D 2nd e 3rd editions, Capítulos 1, 2, 3, 4, 5, 6 e Apêndice C

• Existem na biblioteca vários exemplares da 3ª e da 2ª edições

ABF - AC I Intro

Volume de trabalho necessário

Área científica: Arquitetura de Sistemas Computacionais

Cursos: Mestrado Integrado em Engenharia de Computadores e Telemática, Mestrado Integrado em Engenharia Eletrónica e de Telecomunicações

Escolaridade semanal: 3 horas de aulas teórico-práticas; 2 horas de aulas práticas

Código: 40334

Créditos ECTS: 8 216 horas de trabalho do aluno (8 * 27h)

Horas de aulas $\approx 14 * 5 = 70h$

Preparação para exame ≈ 20h

Horas de trabalho extra-aulas ≈ 120h correspondentes a

8h de trabalho semanal para além das aulas

ABF - AC I Intro

7

Avaliação (ver Guião no Moodle)

Nota final = 0.6 × Nota Teórica + 0.4 × Nota Prática

Nota Teórica = Nota obtida no exame escrito realizado na época de exames

Nota Prática = $0.3 \times T1 + 0.5 \times T2 + 0.2 \times AC$

T1 e T2 – testes práticos

AC = (i) a resolução de problemas sobre a matéria teórica colocados no Moodle (ii) participação nas aulas práticas

(iii) análise da preparação e execução do trabalho das aulas práticas.

A aprovação à disciplina implica uma avaliação global superior ou igual a 9,5 valores sendo que <u>em nenhuma</u> das componentes (teórica e prática) a nota correspondente pode ser inferior a 8,0 valores.

Quem tenha obtido avaliação positiva na componente prática no ano letivo de 2014/2015 pode conservar a respectiva nota a menos que se tenha inscrito numa das turmas práticas. Neste caso perde automaticamente a nota prática obtida anteriormente se não anular a inscrição até <u>24.9.2015</u>

ABF - AC I Intro

Avaliação Trabalhadores-Estudantes (ver Moodle)

Os alunos com o estatuto de trabalhador-estudante que pretendam usufruir do mesmo modelo de avaliação dos estudantes em regime ordinário, deverão declará-lo por escrito, entregando a respectiva declaração, o mais tardar até à segunda aula prática, ficando obrigados a assistir e participar em, pelo menos, 80% das aulas práticas.

ABF - AC I Intro

Docentes

Regente e aulas TP:

António Ferrari <u>ferrari@ua.pt</u> Gabinete: no IEETA

Aulas práticas:

António Adrego da Rocha
António Nunes da Cruz

José Alberto Fonseca
Pedro Lavrador

António Adrego da Rocha
(cruz@ua.pt)
(cruz@ua.pt)
(jaf@ua.pt)
(plavrador@ua.pt)
P1e, P3c, P4b, P5a
P1a, P2a, P3a, P4a, P6a
P1b, P3b, P5c
P1c, P2b

OTs: Quarta-Feira 9h30-10h30 – dúvidas sobre a prática Quinta-Feira 15h-16h – dúvidas sobre a matéria teórica

Nota: os alunos devem enviar um email aos docentes das aulas téoricas ou das aulas práticas com o mínimo de 24h de antecedência quando pretendam esclarecer dúvidas

ABE - ACTIntro 10

2. Estrutura dos computadores digitais
O MODELO DE VON NEUMANN

ABF - AC I Intro

11

Modelo de Computação

Processador + Memória

- Memória armazena dados e instruções
- Processador realiza as operações especificadas nas instruções sobre os operandos contidos na memória
- Dados e Instruções representados em binário

ABF - AC I Intro

ENIAC - Electronic Numerical Integrator And Computer, U. of Pennsylvania, 1946

O Modelo de Von Neumann

• No ENIAC, programado externamente com cablagens, demorava vários dias para programar uma tarefa que era executada pela máquina em poucos minutos

Solução: armazenar o programa em memória

• Von Neumann – programa armazenado em memória -"Stored-Program Digital Computer"

(Preliminary Discussion of the Logical Design of an Electronic Computing Instrument,

Burks, Goldstine, von Neumann, 1946)

ABF - IAC Modelo Von Neumann

Estrutura dos Computadores

Processador

- Opera sobre informação contida em memória sob o controle de um programa
- Programa: sequência de instruções armazenadas na memória

Memória

- Dados e Instruções (programa)

• Dispositivos de entrada de dados

- Fornecem a informação que é armazenada na memória

Dispositivos de saída de dados

- Fornecem os resultados do processamento ao utilizador

ABF - AC I Intro

Input e Output

Dispositivos para fornecer dados ao computador e receber dados do computador

Cada dispositivo tem o seu interface, usualmente um conjunto de registos

INPUT
Keyboard
Mouse
Scanner
Disk

OUTPUT
Monitor
Printer
LED
Disk

- teclado: data register (KBDR) e status register (KBSR)
- monitor: data register (DDR) e status register (DSR)
- Acesso aos periféricos é protegido utilizadores não programam diretamente a entrada e a saída de dados, invocam o sistema de operação através de system calls
 - > MARS System Calls: print_int, read_int, ...
- Programa (do sistema de operação) que controla o acesso a um periférico é designado device driver

Alguns dispositivos (periféricos) são de input e output

• discos, interface de rede

ABF - IAC_Modelo Von Neumann

2:

Unidade de Processamento Unidades Funcionais

- ALU = Arithmetic and Logic Unit
- Executa ADD, SUB, AND, OR, NOT, ...

Registos (TEMP)

- armazenamento temporário de dados
- Operandos e resultados das unidades funcionais
- MIPS tem 32 registos (R0, ..., R31), de 32 bits

Comprimento de Palavra

- numero de bits normalmente processado pela ALU numa instrução
- Tambem numero de bits dos registos
- MIPS: comprimento de palavra = 32 bits

ABF - IAC_Modelo Von Neumann

Unidade de Controle

Controla a execução do programa

Instruction Register (IR)

· contem a instrução que está a ser executada.

Program Counter (PC)

• Contem o endereço da próxima instrução a ser executada

Unidade de Controle

- Lê uma instrução da memória (Instruction Fetch)
 - > Endereço da instrução no PC
- interpreta a instrução, gerando os sinais que indicam à <u>Unidade de</u> <u>Processamento</u> o que fazer (*Instruction Decode*)
 - uma instrução pode exigir vários ciclos de relógio para completar a sua execução

ABF - IAC_Modelo Von Neumann

23

Ciclo básico de operação de um processador

- 1. Processador lê da memória código da instrução seguinte a executar
- 2. Processador executa a operação especificada no código da instrução

Fetch – Execute cycle

ABF - AC I Intro

Arquitetura de Computadores

 Qual o conjunto de instruções (*Instruction Set*) que o processador executa?

> ISA - Instruction Set Architecture

 Que estrutura do processador definir para executar o conjunto de instruções?

> Microarchitecture

Uma arquitetura, multiplas microarquiteturas: Intel – uma nova microarquitetura cada 2 anos, a mesma arquitetura (ISA) há dezenas de anos

ABF - AC I Intro

25

Como se resolve um problema utilizando o computador?

 Através de uma sequência de transformações entre diferentes níveis de abstração:

Arquitetura de Computadores

ISA: "the Hardware/Software Interface" (P&H book)

Microarquitetura: a organização do processador, incluindo as principais unidades funcionais e as respetivas ligações e controlo

ABF - AC I Intro

Realização de uma arquitetura Instr Set Architecture Processor Design: Escolher a estrutura para implementar ISA Logic/Circuit Design: gates e circuitos para implementar os componentes Circuits Process Engineering & Fabrication: desenvolver e fabricar os componentes ao nível mais baixo

Instrução

A instrução é a unidade fundamental de trabalho Especifica duas coisas:

- opcode: operação a ser executada
- operandos: dado/localização a ser usada para a operação

Uma instrução é codificada como um conjunto de bits (tal como os dados!)

- MIPS: Instruções têm um comprimento fixo, 32 bits
- Control Unit traduz o *opcode* numa sequência de sinais de controlo para a unidade de processamento (*datapath*) executar a operação.

O Conjunto (o reportório) de Instruções do computador e os respetivos formatos é designado

Instruction Set Architecture (ISA)

ABF - IAC Modelo Von Neumann

29

Instruction Set Architecture (ISA)

- ISA os atributos de um sistema de computação tal como vistos por um programador:
 - Estrutura conceptual e o comportamento funcional
 - – ≠ da organização do fluxo de dados e da unidade de controle
 (Sistemas Digitais) e da implementação física (Microeletrónica)

Amdahl, Blaauw, and Brooks, 1964 (IBM S/360)

- · Organização da memória
- Tipos e estruturas de dados: codificação e representação
- Formatos de instrução
- Códigos de operação
- Modos de endereçamento e de acesso a dados e instruções
- Condições de exceção

ABF - AC I Intro

30

OFTWARE

Fatores que influenciam a definição de uma Arquitetura (ISA)

- Aplicações
- Linguagens de programação
- Sistemas de Operação
- Tecnologia
- História

ABF - AC I Intro

31

Arquiteturas atuais

- Intel x86
 - Computadores Pessoais
 - Servidores
- ARM
 - Tablets
 - Telemóveis
- MIPS
 - Equipamentos de Rede (Routers, ...), Embedded Systems
- IBM
 - Mainframes
- Embedded Systems: automóveis, aviões, televisores, máquinas de lavar. ...
 - ARM, MIPS, x86, ...

ABF - AC I Intro

Uma Arquitetura Múltiplas Microarquiteturas

- Uma mesma arquitetura permite múltiplas implementações:
 - Contemporâneas no tempo com níveis de desempenho e custos muito diversos
 - IBM S/360 modelos com desempenho relativo 1:25 anunciados no mesmo dia
 - Manter o mesmo interface com o software de sistema ao longo do tempo
 - IBM mantem ainda a arquitetura definida em 1964 (embora com extensões)
 - A arquitetura da mais recente geração de processadores Intel tem ainda como base a x86 de 1978

ABF - AC I Intro

Organização – visão do projeto de um sistema digital

- Capacidade e desempenho das unidades funcionais (Registos, ALU, Shifters, ...)
- Interligações entre os componentes
- Fluxos de informação entre os componentes
- Modo como os fluxos de informação são controlados

HARDWARE

ABE - AC I Intro

60 anos de progresso

DOWNSIZING AND UPGRADING

The inception of computing inspired a remarkable race for faster, smaller, lighter, cheaper hardware.

	ENIAC	Intel Core Duo chip
Debut	1946	2006
Performance	5,000 addition problems/sec	21.6 billion ops/sec
Power use	170,000 watts	31 watts max
Weight	28 tons	negligible
Size	80' w x 8' h	90.3 sq. mm.
What's inside	17,840 vacuum tubes	151.6 M transistors
Cost	\$487,000	\$637

ABF - AC I Intro