Data Structures and Algorithms

Lecture 21: Binary Trees (cont.)

Nopadon Juneam
Department of Computer Science
Kasetsart university

Outlines

- Data structures for representing binary trees
 - Linked structure
 - Array-based structure
- Operations on binary trees

Linked Structure for Binary Trees

 In a linked structure for a binary tree T, we represent each node of T by an object p with the following fields:

- A reference to the node's element.
- A link to the node's parent.
- A link to the node's two children.

Create a Binary Tree (1)

```
#include<stdlib.h>
struct node
  int key;
  struct node* parent;
  struct node* left;
  struct node* right;
};
struct node* createNode(int key)
 // New node
  struct node* node = (struct node*)malloc(sizeof(struct node));
// Assign key to this node
node->key = key;
// Initialize parent, left child, and right child as NULL
node->parent = NULL;
node->left = NULL;
node->right = NULL;
return(node);
```

Create a Binary Tree (2)

```
struct node* createLeft(int key, struct node* parent)
{
    // Insert new node as a left child of parent
    struct node* node = createNode(key);
    parent->left = node;
    node->parent = parent;
    return(node);
}

struct node* createRight(int key, struct node* parent)
{
    // Insert new node as a right child of parent
    struct node* node = createNode(key);
    parent->right = node;
    node->parent = parent;
    return(node);
}
```

Create a Binary Tree (3)

```
int main()
/*create root*/
struct node *root = createNode(1);
 /* following is the tree after above statement
  NULL NULL
 createLeft(2, root);
 createRight(3, root);
 /* 2 and 3 become children of 1
 createLeft(4, root->left);
 /* 4 becomes left child of 2
    NULL NULL NULL
NULL NULL
return 0;
```

Operations on Binary Trees

- Basic operations performed on a binary tree *T* includes
- createNode(u, T): create a new node u to be later inserted into Tcrestelett
- insertLeft(u, p, T): create a new node u as a left child of existing node p in T• insertRight(u, p, T): create a new node u as a left child of existing node p in T

 - getParent(u, T): return the parent of u in $T \leq rotate$
 - getLeft(u, T): return the left child of u in T return $nule \rightarrow leff$;
 - getRight(u, T): return the right child of u in T

Operations on Binary Trees

- \<u>\</u>
- More basic operations performed on a binary tree T includes
 - isRoot(u, T): check whether a given node u is the root of $T \le$
 - isExternal(*u*, *T*): check whether a given node *u* is an external node (leaf) of *T*
 - depth(u, T): return the depth of node u in T
 - preorder(r, T): perform a preorder traversal of T, starting with the root r of T
 - postorder(r, T): perform a postorder traversal of T, starting with the root r of T
 - inorder(r, T): perform a postorder traversal of T, starting with the root r of T
 - $\$ height(r,T): return the height of T that is rooted at r

Preorder Traversal: Pseudocode (Root, Left, Right)

In preorder traversal of a binary tree T, we visit the root of T first and then recursively traverse the left subtree and the right subtree, respectively

preorder(r,T):

visit node r

(if r.left is not empty: preorder(r.left,T)

if r.right is not empty: preorder(r.right,T)

Postorder Traversal: Pseudocode (Left, Right, Root)

 In post traversal of a binary tree T, we recursively traverse the *left* subtree and the *right subtree*, respectively, and then visit the *root*

```
postorder(r,T):

if r.left is not empty:

postorder(r.left,T)

if r.giht is not empty:

postorder(r.right,T)

visit node r
```


ln

Inorder Traversal: Pseudocode (Left, Root, Right)

 In inorder traversal of a binary tree T, we recursively traverse the *left subtree* first, then visit the *root* of T, and finally recursively traverse the *right* subtree

```
inorder(r,T):
    if r.left is not empty:
        inorder(r.left,T)
    visit node r
    if r.right is not empty:
        inorder(r.right,T)
```


More Operations on Binary Trees

 expandExternal(u) T): transform node u from being external into internal by creating two new external nodes and making them left and right children of u

with its parent v, replacing v with the sibling of u

Operation: expandExternal

 expandExternal(u, T): transform node u from being external into internal by creating two new external nodes and making them left and right children of u

```
void expandExternal(struct node* node, int leftKey, int rightKey)
{
   createLeft(leftKey, node);
   createLeft(rightKey, node);
}
```

Operation: removeAboveExternal

 removeAboveExternal(w, T): remove the external node w with its parent v, replacing v with the sibling of w

```
struct node* removeAboveExternal(struct node* node)
 struct node* parent = node->parent;
 struct node* sibling = (rode != parent->left ? parent->left :
parent-> right);
 if(parent->parent == NULL) { wort & prent sols
   sibling->parent = NULL; silling as the root have
  else {
   struct node* grandParent = parent->parent;
   if(parent == grandParent->left)
      grandParent->left = sibling;
    else
      grandParent->right = sibling;
    sibling->parent = grandParent;
  free(parent);
  ree(node);
  return(sibling);
```


Complexity of Operations on Binary Trees Using Linked Structure

Operations	Complexity
createRoot/createLeft/CreateRight	O(1)
getParent	O(1)
getLeft/getRight	O(1) /
isRoot	O(1) /
isExternal	O(1)
depth	O(n), where n is the number of nodes of binary tree
preorder/postorder/inorder	O(n)
expandExternal	O(1)
removeAboveExternal	O(1)
height	O(n) molly Postorder
space to store tree	O(n)

Array-Based Structure for Binary Trees (1)

 An array-based structure for representing a binary tree T is based on a way of numbering the nodes of T

juris isuni Note V

For every node v of T, let f(v) be the integer defined as follows:

• If v is the root of T, then f(v)=1

• If v is the left child of node u, then f(v) = 2f(u)

- If v is the right child of node u, then f(v) = 2f(u)+1
- Note: The numbering function f is known as a level numbering of the nodes in a binary tree, because it numbers the nodes on each level of T in increasing order from left to right, though it may skip some numbers

Array-Based Structure for Binary Trees (2)

- The level numbering function f suggests a representation of a binary tree T by means of a vector S, such that node v of T is associated with the element of S at position (index) f(v)
- Typically, we realize the vector S by means of an extendable array
- Most basic operations can be performed with simple arithmetic operations on the numbering function f

Array-Based Structure for Binary Trees (3)

• Let n be the number of nodes of T, and let f_M be the maximum value of f(v) over all the nodes of T. The vector S has size $N = f_M + 1$, since the element of S at index 0 is not associated with any node of T

 Additionally, S may have empty elements that do not refer to any existing node of T

NS2 N+1

Pener allanis et prosonie n= n+1

• For a binary tree of height h, $N \neq 2$. Since $\log_2(n+1)-1 \leq h \leq n-1$, it follows that $(n+1) \neq N \leq 2^n$. So, at worst, the number of the elements of S grows exponentially in the number of the nodes of T

Basic Operations on Binary Trees Based on Array-Based Structure

- Examples of basic operations performed on a binary tree T:
 - insertLeftKey(k, r, T): S[2*f(r)] = k
 - getParentKey(u, T): return S[f(u)/2] i=4, Parent? $urent = 4/2 = 2\sqrt{munt}$
 - getLeftKey(u', T): return S[2*f(u)]
 - isRoot(u): return (f(u) == 1)
 - isExternal(ψ): return !((getLeft(u)!= NULL) || (getRight(u)!= NULL))
 - depth(u): return floor($\log_2(f(u))$)

Complexity of Operations on Binary Trees Using Array-Based Structure

Operations	Complexity
insertLeftKey/insertRightKey	O(1)
getParentKey	O(1)
getLeftKey/getRightKey	O(1)
isRoot	O(1)
isExternal	O(1)
depth**	O(1)
preorder/postorder/inorder	O(n) where n is the number of nodes of binary tree
expandExternal	$O(2^h)$ where h is the height of binary tree
removeAboveExternal	Q(1) O(2h)
height	O(n)
space to store tree	O(2 ^h)

20