SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, RAMAPURAM CAMPUS DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ANSWER KEY SUBMISSION

Date of Exam & Session	29/03/2023 & AN	Category of Exam	CLA2
Course Name	Compiler Design	Course Code	18CSC304J
Name of the Faculty submitting	Ms. Jayalakshmi Ms.P.Vidyasri	Date of submission of Answer Key	31/03/2022
Department to which the faculty belongs to	CSE	Total Marks	50

PART - A (10x1 = 10)ANSWER ALL THE OUESTIONS

Q.No	Questions	Marks
1	Which of the following function is called the canonical collection of LR(0) item? a) FIRST() b) GOTO() c) COMPUTE() d) FOLLOW() Answer: b	1
2	Identify which of the following tree is the pictorial identification of the derivation? a) The oct tree b) The parse tree c) The binary tree d) The derivation tree Answer: b	1
3	Identify which of the following derivations does a top-down parser use while parsing an input string? a) Leftmost derivation b) Leftmost derivation in reverse c) Rightmost derivation d) Rightmost derivation in reverse Answer: a	1
4	What is the TRAILING(S) for the following grammar? $S \rightarrow S-B B$ $B \rightarrow B*A A$ $A \rightarrow (S) id$ a) TRAILING(S)= $\{-,*,,,id\}$ b) TRAILING(S)= $\{-,*,(,id)\}$ c) TRAILING(S)= $\{-,*,(,id)\}$ TRAILING(S)= $\{-,*,(,id)\}$ TRAILING(S)= $\{-,*,(,id)\}$ Answer: a	1
5	Reverse of a right most derivation is called a) reduction b) production c) handle d) base Answer: c	1
6	Which of the following derivations does a top-down parser use while parsing an input string? a) Leftmost derivation b) Leftmost derivation in reverse c) Rightmost derivation d) Rightmost derivation in reverse Answer: a	1

Course Code: 18CSE304J

Page 1 of 7

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, RAMAPURAM CAMPUS SIDEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

	DEI ARTIMERT	
7	Which one of the following is a top-down parser? a) Recursive descent parser b) Operator precedence parser c) An LR(k) parser d) An LALR(k) parser	1
8	Answer: a Identify why the grammar A→AA (A) ∈ is not suitable for predictive-parsing? a) Ambiguous b) Left recursive c) Right recursive a) d) An operator grammar Answer:b	1
9	LEADING(S) for the following grammar? S \rightarrow S-B B B \rightarrow B*A A A \rightarrow (S) id a) LEADING(S)={-,*,,id} b) LEADING(S)={-,*,(,)} c) LEADING(S)={-,*,(id}} d) LEADING(S)={-,*,(id}} Answer: c	1
10	b) which of the following grammar rules violate the requirements of an operator grammar? P, Q, R are nonterminal and s, r, s, t are terminals. 1.P→QR 2. P→QsR 3. P→ε 4. P→QtRr a)1 only b)1 and 3 only c)3 and 4 only d)2 and 4 only Answer: b	1

PART - B (4x4 = 16)

Q.No	ANSWER ALL THE QUESTIONS	
2.110	Questions	Marks
11	Define a context free grammar. Answer: Context free grammar is a formal grammar which is used to generate all possible strings in a given formal language. Context free grammar G can be defined by four tuples as: G= (V, T, P, S) where, G describes the grammar T describes a finite set of terminal symbols. Non-terminal -> (V U T)*	4
12	Identify the grammar by eliminating Left Recursion: $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid id$ Answer: $Comparing E \rightarrow E + T \mid T \text{ with } A \rightarrow A \alpha \mid \beta$ $A = E, \alpha = +T, \beta = T$ $A \rightarrow A \alpha \mid \beta \text{ is changed to}$ $A \rightarrow \beta A' \text{ and}$ $A' \rightarrow \alpha A' \mid \epsilon$ $A \rightarrow \beta A' \text{ means } E \rightarrow TE'$ $A' \rightarrow \alpha A' \mid \epsilon \text{ means } E' \rightarrow +TE' \mid \epsilon$	4
13	Perform Shift Reduce Parsing for the following S->(L) a L->L,S S for the input string: $(a,(a,a))$. Stack Input Buffer Parsing Action	4

Course Code: 18CSE304J

Page 2 of 7

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, RAMAPURAM CAMPUS DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

	\$	(a,(a,a))\$		Shift		
	\$(a,(a,a)\$		Shift		
		(a,a)		Reduce $S \rightarrow a$		
	\$ (a	(a,a)\$		Reduce $L \rightarrow S$		
	\$(S	(a,a)\$		Shift		
	\$(L			Shift		
	\$(L,	(a,a))\$		Shift		
	\$(L,(a,a))\$		Reduce $S \rightarrow a$		
	\$(L,(a	,a))\$				
	\$(L,(S	,a))\$		Reduce $L \rightarrow S$		
	\$(L,(L	,a))\$		Shift		
	\$(L,(L,	a))\$		Shift		
	\$(L,(L,a))\$		Reduce $S \rightarrow a$		
	\$(L,(L,S))\$		Reduce $L \rightarrow L$, S		
	\$(L,(L))\$		Shift		
	Ψ(2,(2	77				
	\$(L,(L))\$		Reduce $S \rightarrow (L)$		
	\$(L, S))\$		Reduce $L \rightarrow L$, S		
)\$		Shift		
	\$(L	\$		Reduce $S \rightarrow (L)$		
	\$(L)	\$		Accept		
	\$ S	Ψ		Посер		
		Top-down and Bottom-up parser.				
	Answer:	Ton down norser	Bot	tom-up parser		
		Top-down parser	Dorgo trop co	in be built from leaves		
		Parse tree can be built from root	to root.	in oc built from reas		
		to leaves.	This is comr	olex to implement.		
		This is simple to implement.	It is applicab	ole to a broad class of		4
14		It is applicable to small class of	languages.	of to a broad comme		
		languages. Various parsing techniques are:	Various pars	ing techniques are:		
		Recursive descent parser	• Shi	ft reduce parser		
		 Recursive descent purser Predictive parser 	• Ope	erator precedence		
		1 Tedletive parser	pars			
				parser		
	F	epts of Operator Precedence parser v	vith an examp	le.	AND STATES	
	0 D James	marging is a type of shiff-reduce bal	Sing mai uses	a set of fules to determ	ine the order of	
		The following are the conce	nis of Chefait	n riccedence barsing.		
		ral amount or in the grammar is as	gioned a brech	enence level, which uct	ermines its priority	
1.5	in the order of operat	tions. Operators with higher precede	ince levels are	evaluated first, and ope	erators with equal	4
15	precedence levels are	e evaluated based on their associativ	ity.			
	Shift Operat					
	Reduce Ope					
	Conflict Res					
	Error Handl	ing				
	Elaborate the comput	ration rules of FOLLOW I as the collection of terminal symbol	ols that occur	directly to the right of A		
	FOLLOW(A) is defined	\Rightarrow * αAaβ where α, β can be any stri	ings}	,		
	Rules to find FOLLO	W				
	1 If S is the start sy	mbol, FOLLOW (S) ={\$}				
	1. If S is the start sy	() ()				
	2. If production is o	of form $A \rightarrow \alpha B \beta$, $\beta \neq \epsilon$.				4
16	(a) If FIRST (B) does	not contain ε then, FOLLOW (B) =	{FIRST (β)}			4
	Or	, , , ,			Ð	
		ains ε (i. e., $\beta \Rightarrow * \varepsilon$), then			,	
	FOLLOW (B) =	FIRST (β) – { ϵ } U FOLLOW (A)				*
	· when β derives ε, th	nen terminal after A will follow B.			, j	
	3. If production is of	form A $\rightarrow \alpha B$, then Follow (B) ={I	FOLLOW (A)) }.	a	

PART - C(2x12 = 24)

Course Code: 18CSE304J Pa

Page 3 of 7

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, RAMAPURAM CAMPUS DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Q.No	ANSWER THE QUESTIONS	Marks
	Questions Define Recursive Descent Parser. And Construct Recursive Descent Parser for the following grammar:	
	E → i E' E'→ + i E' ε Answer: Recursive Descent Parser is a technique which may or may not require backtracking process. It uses procedures for every non-terminal entity to parse strings. It is a type of top-down parsing built from a set of mutually recursive procedures where each procedure implements one of non-terminal of grammar. It contains several small functions one for each non-terminals in grammar and accepts all kinds of grammars.	4
17(a)	int main () {E();	
	E'();}} E'();} E'()// Definition of E' as per the given production {if (1 == '+') { match('+'); match('i');	
	E'();} //The second condition of E' else return ();} match (char t)// Match function {if (l == t)	8
	{1 = getchar(); } //Lookahead points to next token else printf("Error"); }	
	Construct a Predictive Parsing Table for the following grammar: $E \to TE'$ $E' \to +TE' \mid \epsilon$ $T \to FT'$ $T' \to FT' \mid \epsilon$ $F \to (E) \mid id$ Answer:	
	Step 1: Elimination of Left Recursion & perform Left Factoring There is no left recursion and left factoring in Grammar. Step 2: Computation of FIRST	1
17(b)	FIRST(E) = FIRST(T) = FIRST(F) = $\{(, id)\}$ FIRST (E') = $\{+, \varepsilon\}$ FIRST (T') = $\{*, \varepsilon\}$	3
17(b)	Step 3: Computation of FOLLOW FOLLOW (E) = FOLLOW(E') = {}, \$} FOLLOW (T) = FOLLOW(T') = {+, }, \$} FOLLOW (F) = {+, *, }, \$} Step 4: Construction of Predictive Parsing Table Create the table, i.e., write all non-terminals row-wise & all terminal column-wise.	4
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Course Code: 18CSE304J Page 4 of 7

RM INSTITUTE OF SCIENCE AND TECHNOLOGY, RAMAPURAM CAMPUS DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

	$F \mid F \rightarrow id$	
	$F \rightarrow (E)$	Ti)
	Construct the parsing table for SLR parser for the following S->I =R	
	o b K	
	S-> R	
	L->*R	
=	L->id	
	R->L	
	Show the parsing action for "id=id"	
	show the parsing action for "Id=Id"	
	Sten 1: Compute the LD(0) is a second of the computer ore:	
	Step 1: Compute the LR(0) items for the grammar The LR(0) items for the given grammar are: S'->.S	
	S -> .L = R	
	S -> .R	
	L->.* R	
	L-> .id	
	R -> .L	
	I0: S'→•S	
	$S \rightarrow \bullet L = R$	
	S → •R	6
	L -> •*R	
	L -> •id	
	R → •L	
	11: $S' \rightarrow S^{\bullet}$	
	$I2: \qquad S \rightarrow L \bullet = R$	~
	$R \rightarrow L^{\bullet}$	
	I3: S→ R•	
(a)	I4: L→*•R R→•L	
	L→•*R	
	$L \rightarrow \bullet id I5: L \rightarrow id\bullet$	
	I6: S→L=•R	
	$R \rightarrow \bullet L$	
	$L \rightarrow *R$	
	$L \rightarrow \bullet id$	
	L -> •Iu	
	I7: L→*R•	
	18: R -> L•	
	19: $S \rightarrow L = R^{\bullet}$	
	Step 2: Compute the FOLLOW sets for each non-terminal The FOLLOW sets for the given grammar are:	
	$FOLLOW(S) = \{\$, =\}$	
	$FOLLOW(L) = \{\$, =, *\}$	
	$FOLLOW(R) = \{\$, =, *\}$	
	Step 3: Construct the SLR parsing table	
	oreh or community and common	
	고리한 성격 보다 보다 전 레이트 보다	

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, RAMAPURAM CAMPUDEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

	+		CLIVILLIAI	OF CO	MPUI	EK SCI	ENCE AND ENGINEERS	V
	State	id	* *	 =	L	R		
	0 1	s4		+ 	2	3	4	
	2 3 4	s4 r2	s5		2	6 7		
	5 6	r4 r5 r3	r4 r5 s5	s8 		 7		
		r1 s4	r1			9		
	Input String ic 0 id=id\$ Shift 04 id=id\$ Red 03 id=id\$ Shift 035 id=id\$ Re 037 id=id\$ Re 036 id=id\$ Shi 0368 id=id\$ Shi 03683 id=id\$ 036835 id=id\$ 036837 id=id\$ 036 id=id\$ Shi 0364 id=id\$ Shi 0364 id=id\$ Shi 0364 id=id\$	4 luce L -> io th 5 luce R -> duce S -> lift 8 luce L - Shift 4 Reduce L - Shift 5 Reduce R Reduce Stift 4	L R > id -> L -> L = R		2	6	2	
	Consider the gr S -> CC C -> aC C -> d Construct a CL Iteration:				gramma	r	6	
18(b)	$\begin{array}{c} S_{\bullet} \\ S \rightarrow \bullet S, S \\ S \rightarrow \bullet C, S \\ C \rightarrow \bullet a C, a/d \\ C \rightarrow \bullet d, a/d \end{array}$	$\begin{array}{c} S_1 \\ S' \rightarrow S \\ \hline S \Rightarrow C \bullet C \\ C \rightarrow \bullet \ d, \vdots \\ \hline C \rightarrow c \bullet C, \\ C \rightarrow c \bullet C, \\ C \rightarrow c \bullet C, \\ C \rightarrow c \bullet d, \underline{g} \\ \hline C \rightarrow c \bullet d, \underline{g} \\ \hline C \rightarrow c \bullet d, \underline{g} \\ \hline \end{array}$	C, \$\ a \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$S \rightarrow CC \bullet, \$$ $C \rightarrow a \bullet C, \$$ $C \rightarrow a \bullet C, \$$ $C \rightarrow a \circ C, \$$ $C \rightarrow d \bullet, \$$	§ → (c.) §)	S ₀		
	Find the Follow	values:				•		
	$S' \rightarrow S$ \$		ow (S) = {					
	$S \rightarrow C \underline{C}$ (m		low (C) = {	\$,a,d }				
	$\begin{array}{c} C \rightarrow a C & \text{(12)} \\ C \rightarrow d & \text{(2)} \end{array}$							
	$\underline{\mathbf{C}} \to \mathbf{d}$ (13) Constructing the		ıhle					
		Ponig to						

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

States			Actor.	Assessment of the second	ROLLING RESERVE
					1-34
	C	d	S	S	C
0	S3	S4		1	2
1			Acc		
2	S6	S 7			5
3	\$3	.\$4			8
4	r3	r3			
5			rl		
6	S6	S7			9
7			r3		
8	r2	r2			
9			r2		

HODIESE