Convolutional Networks

Lecture 03

Yann Le Cun

Facebook Al Research,
Center for Data Science, NYU
Courant Institute of Mathematical Sciences, NYU
http://yann.lecun.com

Word-level training with weak supervision [Matan et al 1992]

Structured Prediction on top of Deep Learning

This example shows the structured perceptron loss.

In practice, we used negative log-likelihood loss.

Deployed in 1996 in check reading machines.

Check Reader (Bell Labs, 1995)

Graph transformer network trained to read check amounts

Trained globally with Negative Log-Likelihood loss.

50% percent correct, 49% reject, 1% error (detectable later in the process).

Fielded in 1996, used in many banks in the US and Europe.

Processed an estimated 10% to 20% of all the checks written in the US in the early 2000s.

[LeCun, Bottou, Bengio, Haffner 1998]

Face Detection [Vaillant et al. 93

- ConvNet applied to large images
- Heatmaps at multiple scales
- Non-maximum suppression for candidates
- 6 second on a Sparcstation for 256x256

Scale 3

Scale 4

Scale 5

Scale 6

Scale 7

Scale 8

Scale 9

Data Set->	TILTED		PROFILE		MIT+CMU	
False positives per image->	4.42	26.9	0.47	3.36	0.5	1.28
Our Detector	90%	97%	67%	83%	83%	88%
Jones & Viola (tilted)	90%	95%	X		X	
Jones & Viola (profile)	X		70%	83%		X

[Garcia & Delakis 2003][Osadchy et al. 2004] [Osadchy et al, JMLR 200

Simultaneous face detection and pose estimation

ConvNets for Biological Image Segmentation

Y LeCun

- Biological Image Segmentation
 - ▶ [Ning et al. IEEE-TIP 2005]
- Pixel labeling with large context using a convnet
- ConvNet takes a window of pixels and produces a label for the central pixel
- Cleanup using a kind of conditional random field (CRF)
 - Similar to a field of expert, but conditional.
- 3D version for connectomics
 - [Jain et al. 2007]

ConvNet for Long Range Adaptive Robot Vision (DARPA LAGR program 2005-2008)

Pre-processing (125 ms)

- Ground plane estimation
- Horizon leveling
- Conversion to YUV + local contrast normalization
- Scale invariant pyramid of distance-normalized image "bands"

Convolutional Net Architecture

100 features per3x12x25 input window

100@25x121

CONVOLUTIONS (6x5)

VIDEO: LAGR

20@30x125

MAX SUBSAMPLING (1x4)

20@30x484

CONVOLUTIONS (7x6)

YUV image band 20-36 pixels tall, 36-500 pixels wide 3@36x484

YUV input

Scene Parsing/Labeling

Scene Parsing/Labeling: Multiscale ConvNet Architecture Y LeCun

Each output sees a large input context:

- 46x46 window at full rez; 92x92 at ½ rez; 184x184 at ¼ rez
- [7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->
- Trained supervised on fully-labeled images

Method 1: majority over super-pixel regions

[Farabet et al. IEEE T. PAMI 2013]

Our results

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

Scene Parsing/Labeling

- No post-processing
- Frame-by-frame
- ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware
 - But communicating the features over ethernet limits system performance

[Farabet et al. ICML 2012, PAMI 2013]

VIDEO: SCENE PARSING

Scene Parsing/Labeling: Performance

Stanford Background Dataset [Gould 1009]: 8 categories

	Pixel Acc.	Class Acc.	CT (sec.)
Gould et al. 2009 [14]	76.4%	-	10 to 600s
Munoz et al. 2010 [32]	76.9%	66.2%	12s
Tighe <i>et al.</i> 2010 [46]	77.5%	-	10 to 300s
Socher <i>et al.</i> 2011 [45]	78.1%	-	?
Kumar et al. 2010 [22]	79.4%	-	< 600s
Lempitzky et al. 2011 [28]	81.9%	72.4%	>60s
singlescale convnet	66.0 %	56.5 %	0.35s
multiscale convnet	78.8 %	72.4%	0.6s
multiscale net + superpixels	80.4%	74.56%	0.7s
multiscale net + gPb + cover	80.4%	75.24%	61s
multiscale net + CRF on gPb	81.4%	76.0%	60.5s

[Rejected from CVPR 2012]

[Farabet et al. ICML 2012][Farabet et al. IEEE T. PAMI 2013]

Scene Parsing/Labeling: Performance

	Pixel Acc.	Class Acc.
Liu et al. 2009 [31]	74.75%	-
Tighe <i>et al.</i> 2010 [44]	76.9%	29.4%
raw multiscale net ¹	67.9%	45.9%
multiscale net + superpixels ¹	71.9%	50.8%
multiscale net + cover ¹	72.3%	50.8%
multiscale net + cover ²	78.5%	29.6%

- SIFT Flow Dataset
- **[Liu 2009]**:
- **33** categories

Barcel	lona
datase	et

- **I** [Tighe 2010]:
- 170 categories.

	Pixel Acc.	Class Acc.
Tighe <i>et al.</i> 2010 [44]	66.9%	7.6%
raw multiscale net ¹	37.8%	12.1 %
multiscale net + superpixels ¹	44.1%	12.4%
multiscale net + cover ¹	46.4%	12.5%
multiscale net + cover ²	67.8%	9.5%

[Farabet et al. IEEE T. PAMI 2012]