

iterated forcing and composition

 ${\bf Canonical\ name} \quad {\bf Iterated Forcing And Composition}$

Date of creation 2013-03-22 12:54:51 Last modified on 2013-03-22 12:54:51

Owner Henry (455) Last modified by Henry (455)

Numerical id 6

Author Henry (455)

Entry type Result

Classification msc 03E35 Classification msc 03E40 There is a function satisfying forcings are equivalent if one is dense in the other $f: P_{\alpha} * Q_{\alpha} \to P_{\alpha+1}$.

Proof

Let $f(\langle g, \hat{q} \rangle) = g \cup \{\langle \alpha, \hat{q} \rangle\}$. This is obviously a member of $P_{\alpha+1}$, since it is a partial function from $\alpha + 1$ (and if the domain of g is less than α then so is the domain of $f(\langle g, \hat{q} \rangle)$), if $i < \alpha$ then obviously $f(\langle g, \hat{q} \rangle)$ applied to i satisfies the definition of iterated forcing (since g does), and if $i = \alpha$ then the definition is satisfied since \hat{q} is a name in P_i for a member of Q_i .

f is order preserving, since if $\langle g_1, \hat{q}_1 \rangle \leq \langle g_2, \hat{q}_2 \rangle$, all the appropriate characteristics of a function carry over to the image, and $g_1 \upharpoonright \alpha \Vdash_{P_i} \hat{q}_1 \leq \hat{q}_2$ (by the definition of \leq in *).

If $\langle g_1, \hat{q}_1 \rangle$ and $\langle g_2, \hat{q}_2 \rangle$ are incomparable then either g_1 and g_2 are incomparable, in which case whatever prevents them from being compared applies to their images as well, or \hat{q}_1 and \hat{q}_2 aren't compared appropriately, in which case again this prevents the images from being compared.

Finally, let g be any element of $P_{\alpha+1}$. Then $g \upharpoonright \alpha \in P_{\alpha}$. If $\alpha \notin \text{dom}(g)$ then this is just g, and $f(\langle g, \hat{q} \rangle) \leq g$ for any \hat{q} . If $\alpha \in \text{dom}(g)$ then $f(\langle g \upharpoonright \alpha, g(\alpha) \rangle) = g$. Hence $f[P_{\alpha} * Q_{\alpha}]$ is dense in $P_{\alpha+1}$, and so these are equivalent.