

Classification

University of St. Gallen

School of Management, Economics, Law, Social Sciences, International Affairs and Computer Science

Assignment 4

Data Analytics I: Predictive Econometrics Prof. Jana Mareckova

submitted by

Cyril Janak, 16-611-287 Jonas Husmann, 16-610-917 Niklas Kampe, 16-611-618 Robin Scherrer, 18-617-969

Contents

Requirements	1
Exercise 1	1
Exercise 2	1
Exercise 3	2
Exercise 4	2

Requirements

To solve the following tasks, the required libraries and the data sets are loaded first.

```
library(rpart)
library(rpart.plot)
library(dplyr)

load("GHA/drugs.RData")
```

Exercise 1

The share of males who consume soft drugs is ~29.18%

```
(m_s_drug <- (nrow(drugs[drugs$Gender=="male" & drugs$Soft_Drug==T,]) /
    nrow(drugs[drugs$Gender=="male",]) * 100) %>%
    round(., digits = 2) %>%
    paste0(., "%"))
```

```
## [1] "29.18%"
```

Exercise 2

The difference between the share of male and female hard drug consumers is ~2.74%

```
m_h_drug <- nrow(drugs[drugs$Gender=="male" & drugs$Hard_Drug==T,]) /
    nrow(drugs[drugs$Gender=="male",])

f_h_drug <- nrow(drugs[drugs$Gender=="female" & drugs$Hard_Drug==T,]) /
    nrow(drugs[drugs$Gender=="female",])

(diff_h_drug <- ((m_h_drug - f_h_drug) * 100) %>%
    round(., digits = 2) %>%
    paste0(., "%"))
```

```
## [1] "2.74%"
```

Exercise 3

From the shares of soft drug consumption for each age group, one can observe that only 16-17 year-olds consume soft drugs. Therefore, the consumption of soft drugs is decreasing in age, but not strictly as the groups of 18-19 and 20-24 year-olds are not consuming any soft drugs at all.

```
## age share
## 1 16-17 Years 48.5
## 2 18-19 Years 0.0
## 3 20-24 Years 0.0
```

Exercise 4

[1] 0.02440394

The chi-squared test results in a X-squared statistic of 9.40 at a p-value of 0.025. Hence, the hypothesis of independence is rejected (0.025 < 0.05) and the earnings range and soft drug consumption are indeed dependent at a condifence interval of 5%.

```
drugs_table <- table(drugs$Earning, drugs$Soft_Drug)
chi_squared <- chisq.test(drugs_table)
(statistics <- chi_squared$statistic)

## X-squared
## 9.401385

(p_value <- chi_squared$p.value)</pre>
```