From "Numerical Mathematics And Computing", by W. Cheney and D. Kincaid pages 113-115. Note that the indexing of the ordinates starts at 1 and there are n data values.

THEOREM ON RECURSIVE PROPERTY OF DIVIDED DIFFERENCES

The divided differences obey the formula

(9)
$$f[x_1, x_2, ..., x_n] = \frac{f[x_2, x_3, ..., x_n] - f[x_1, x_2, ..., x_{n-1}]}{x_n - x_1}$$

Proof Since $f[x_1, x_2, ..., x_n]$ was defined to be equal to the coefficient a_n in the Newton interpolating polynomial p_{n-1} of equation (2), we can say that $f[x_1, x_2, ..., x_n]$ is Likewise, $f[x_1, x_2, ..., x_{n-1}]$ is the coefficient of x^{n-2} in the polynomial p_{n-2} of degree $\leq n-2$, which interpolates f at $x_1, x_2, ..., x_{n-1}$. The three polynomials p_{n-1} , q, and p_{n-2} are intimately related. In fact,

(10)
$$p_{n-1}(x) = q(x) + \frac{x - x_n}{x_n - x_1} [q(x) - p_{n-2}(x)]$$

In order to establish (10), observe that the right side is a polynomial of degree $\leq n-1$. Evaluating it at x_1 gives $f(x_1)$:

$$q(x_1) + \frac{x_1 - x_n}{x_n - x_1} [q(x_1) - p_{n-2}(x_1)] = q(x_1) - [q(x_1) - p_{n-2}(x_1)]$$
$$= p_{n-2}(x_1) = f(x_1)$$

Evaluating it at x_i $(2 \le i \le n-1)$ results in $f(x_i)$:

$$q(x_i) + \frac{x_i - x_n}{x_n - x_1} [q(x_i) - p_{n-2}(x_i)] = f(x_i) + \frac{x_i - x_n}{x_n - x_1} [f(x_i) - f(x_i)]$$
$$= f(x_i)$$

Similarly, at x_n we get $f(x_n)$:

$$q(x_n) + \frac{x_n - x_n}{x_n - x_1} [q(x_n) - p_{n-2}(x_n)] = q(x_n) = f(x_n)$$

By the uniqueness of interpolating polynomials, the right side of (10) must be $p_{n-1}(x)$, and equation (10) is established.

Completing the argument to justify (9), take the coefficient of x^{n-1} on both sides of equation (10). The result is equation (9). Indeed, $f[x_2, x_3, ..., x_n]$ is the coefficient of x^{n-2} in q, and $f[x_1, x_2, ..., x_{n-1}]$ is the coefficient of x^{n-2} in p_{n-2} .

Notice that $f[x_1, x_2, ..., x_k]$ is not changed if the nodes $x_1, x_2, ..., x_k$ are permuted; thus, for example, $f[x_1, x_2, x_3] = f[x_2, x_3, x_1]$. The reason is that $f[x_1, x_2, x_3]$ is the coefficient of x^2 in the quadratic polynomial interpolating f at x_1, x_2, x_3 , whereas $f[x_2, x_3, x_1]$ is the coefficient of x^2 in the quadratic polynomial interpolating f at x_2, x_3, x_1 . These two polynomials are, of course, the same. A formal statement in mathematical language is as follows:

INVARIANCE THEOREM

The divided difference $f[x_1, x_2, ..., x_k]$ is invariant under all permutations of the arguments $x_1, x_2, ..., x_k$.

Since the variables $x_1, x_2, ..., x_k$ and k are arbitrary, the recursive formula (9) can also be written

(11)
$$f[x_i, x_{i+1}, \dots, x_{j-1}, x_j] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_j] - f[x_i, x_{i+1}, \dots, x_{j-1}]}{x_j - x_i}$$

The first three divided differences are thus

$$f[x_i] = f(x_i)$$

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$

Using formula (11), it is possible to construct a divided-difference table for a function f. It is customary to arrange it as follows (here n = 4):

х	f[]	f[,]	f[,,]	f[,,,]
x_1	$f[x_1]$	f[r, r, 1]		
x_2	$f[x_2]$	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$	$(f[x_1, x_2, x_3, x_4])$
x_3	$f[x_3]$		$f[x_2, x_3, x_4]$	$(f(x_1, x_2, x_3, x_4))$
x_4	$f[x_4]$	$f[x_3, x_4]$	1	

The coefficients encircled in the top diagonal are the ones needed to form the Newton interpolating polynomial (6).