

INSTITUTE FOR DEFENSE ANALYSES

DATAWorks 2020: Ballistic Miss Distance Poster

Rebecca M. Medlin, Project Leader

Thomas H. Johnson Breeana G. Anderson Heather M. Wojton John T. Haman

April 2020

Approved for Public Release. Distribution Unlimited.

IDA Document NS D-12075

Log: H 2020-000046

INSTITUTE FOR DEFENSE ANALYSES 4850 Mark Center Drive Alexandria, Virginia 22311-1882

The Institute for Defense Analyses is a nonprofit corporation that operates three Federally Funded Research and Development Centers. Its mission is to answer the most challenging U.S. security and science policy questions with objective analysis, leveraging extraordinary scientific, technical, and analytic expertise.

About This Publication

This work was conducted by the Institute for Defense Analyses (IDA) under contract HQ0034-19-D-0001, Task C9087, "DATAWorks," for the Office of the Director, Operational Test and Evaluation. The views, opinions, and findings should not be construed as representing the official position of either the Department of Defense or the sponsoring organization.

Acknowledgments

The IDA Technical Review Committee was chaired by Mr. Robert R. Soule and consisted of Kevin Kirshenbaum from the Operational Evaluation Division.

For more information: Rebecca M. Medlin, Project Leader rmedlin@ida.org • 703-845-6731

Robert R. Soule, Director, Operational Evaluation Division rsoule@ida.org • (703) 845-2482

Copyright Notice

© 2020 Institute for Defense Analyses 4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000

This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS 252.227-7013 [Feb. 2014].

INSTITUTE FOR DEFENSE ANALYSES

IDA Document NS D-12075

DATAWorks 2020: Ballistic Miss Distance Poster

Rebecca M. Medlin, Project Leader

Thomas H. Johnson Breeana G. Anderson Heather M. Wojton John T. Haman

Executive Summary

The attached poster was developed for the 2020 DATAWorks. It is now intended for DATAWorks 2021. This study compares two methods for creating CEP prediction intervals: a frequentist method using restricted maximum likelihood (REML) and a Kenward-Roger's statistic, and a Bayesian regression approach. It will be presented during the poster session.

Circular prediction regions are used in ballistic testing to express the uncertainty in shot accuracy. We compare two modeling approaches for estimating circular prediction regions for the miss distance of a ballistic projectile. The miss distance response variable is bivariate normal and has a mean and variance that can change with one or more experimental factors. The first approach fits a heteroscedastic linear model using restricted maximum likelihood, and uses the Kenward-Roger statistic to estimate circular prediction regions. The second approach fits an analogous Bayesian model with unrestricted likelihood modifications, and computes circular prediction regions by sampling from the posterior predictive distribution. The two approaches are applied to an example problem, and are compared using simulation.

Tom Johnson, John Haman, Heather Wojton, Breeana Anderson

Institute for Defense Analyses

PROBLEM STATEMENT

Circular Error Probable (CEP) is a common metric used to model two-dimensional miss distances. CEP is effective at modeling one group of data, but cannot be used to analyze the designed experiments common in DoD operational testing.

OBJECTIVE

To compare the ability of two statistical methods for creating circular prediction intervals:

- A frequentist method using restricted maximum likelihood (REML) and a Kenward-Roger's statistic
- · A Bayesian regression approach

These methods can be used to create models that make more efficient use of test data.

CEP MODELING CHOICES

The goal is to create a model that best describes the data and that can also be used to describe trends or predict future results:

More extensible Smaller residuals

By leveraging statistics, researchers can produce better models of ballistic miss distances than traditional CEP

Bayesian and frequentist techniques use data more efficiently than CEP, and unlike CEP, can be used to create inferential or predictive models

MOTIVATING EXAMPLE

To compare prediction interval methods, we used notional data from an experiment comparing the accuracy of handguns under varying conditions:

2 Weapon Types: Old and New 2 Firing Distances: Near and Far

COMPARING PREDICTION INTERVALS

Model similarities:	Frequentist	Bayesian
Circular Uncertainty Interval	Prediction	Prediction
Univariate or bivariate RV?	Bivariate	Bivariate
Centered at mean or origin?	Mean	Mean
Cartesian or polar coords?	Cartesian	Cartesian
Grouped or Un-grouped?	Grouped by factors	Grouped by factors
Bias or precision?	Fixed effects for mean	Fixed effects for mean
Constant size circles?	Fixed effects for variance	Fixed effects for variance
Unified Model?	Yes	Yes

Model differences:	Frequentist	Bayesian
Probabilities are:	Long-term frequencies	Degrees of belief
Inference based on:	Sampling distribution	Posterior distribution
Parameters are:	Fixed (but unknown)	Random
Intervals/Regions are:	Random	Fixed
Modeling Goal:	Maximize likelihood (typically)	Estimate <i>entire</i> posterior distribution

COMPARING MODEL OUTPUTS

Frequentist model

erm	$\widehat{ ho}$ (horiz.)	$\hat{\zeta}$ (vert.)	KR F-stat	Approx df	p-value
ntercept	1.95	-1.38			
lange	1.25	-3.42	7.11	47.76	~0
Veapon	4.20	0.97	9.95	47.76	~0
ange by weapon	3.10	1.02	5.70	47.76	0.01

- · Frequentist method allows for convenient ANOVA-like table
- Algorithm is ad-hoc to the model that is, it is difficult to change or extend the model
- · Computation is fast, especially with small sample sizes

Bayesian model

- · Typically slower computation
- Model is easily extended
- · Distributions for all model parameters
- · Model comparison more challenging

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

	RETURN YOUR FOR		E AUUKESS.					
1. REPORT DA	TE (DD-MM-YYYY)	2. REPOR	T TYPE			3. DATES COVERED (From - To)		
4. TITLE AND S	SUBTITLE				5a. C0	DNTRACT NUMBER		
			5b.		5b. GI	o. GRANT NUMBER		
					5c. PF	ROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PF	ROJECT NUMBER		
					5e. TA	ASK NUMBER		
					5f. WO	5f. WORK UNIT NUMBER		
7. PERFORMIN	G ORGANIZATIOI	NAME(S) ANI	O ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORIN	G/MONITORING A	GENCY NAME	(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)		
						11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUT	ION/AVAILABILIT	Y STATEMENT						
13. SUPPLEME	NTARY NOTES							
44 ADOTDAOT								
14. ABSTRACT								
15. SUBJECT T	ERMS							
	CLASSIFICATION		17. LIMITATION OF ABSTRACT	18. NUMBER OF	19a. NAME	OF RESPONSIBLE PERSON		
a. REPORT	b. ABSTRACT	c. THIS PAGE	7.50171701	PAGES	19b. TELEP	PHONE NUMBER (Include area code)		
					.00. 12227	TOTAL TRANSPORT (MORAGE AND COUC)		