15.1 Sieve of Eratosthenes

challenge

Print all the prime numbers in a given range:

- · To print prime numbers till 50
 - · Make an array of 1-50 numbers (remove 1)
 - · Mark the multiples of prime numbers at Last , the unmarked numbers will be the prime numbers.

		2	3	A	5	6	7	18	8	16	* stort with
1	11	12	13	10	ys	16	17	18	19	20	square of
2	N	22	23	24	85	26	2/	28	29	36	number
3	31	3/2	3/3	3/4	35	36	37	38	75	36	for i stort with 12
14	+1	1/2	43	44.	45	36	47	48	49	30	2-74, 411 50

2,3,5,7,11,13,17,10,23,29,31,37,41,43,47

Code!

uoid prime Sieve (intn) {
 int prime [100] = {0};

}
for (int i=2; {<=n; i++) {
 if (prime [i] == 0) {
 cout <<i << "";

} cout exendl;

```
15.L
```

Prime Factorisation using Sieve:

spf[i] > smallest prime factor of i

while (n!=1) {

primt spf[n]

n=n/spf[n]

3

Code:

troid primetactor (int n) ξ mt spf (100] = ξ 03;

for (int i=2; i<=n; i++) ξ spf (i]=1;

while (n!=1) {

cout << spf [n] << "";

n = n/spf [n];

3 cout << endl;

18.2 Inclusion - Exclusion Principle

How many numbers between 1 and 1000 are divisible by 5 or 7?

Code:

int divisible (int n, int a, int b) {

int c1 = n/a;int c2 = n/b;

int c3 = n/(a*b);

return c1 + c2 - C3;

the CrCD

42 % 24 = 18 $24 \% 18 = 6 \le CrcD$ 18 % 6 = 0

int gcd (inta, int b) {

while (b!=0) {
 int rem = a y.b;
 a = b;
 b = rem;
}
return a;