Institut Eurécom Digital Communications

Final Examination

Date: Feb. 15, 2006

Duration: 2 hours

Answer any 3 out of 5 questions. All questions will be graded equally, All documents are allowed.

1 Pulse-Position Modulation

Consider the set of 4 signals in Figure 1. This is an example of 4-ary pulse-position modulation where a basic signaling pulse p(t) is shifted in time by $mT_s/4$, m=0,1,2,3 where T_s is parameter to be chosen. The value of m indicates the information that is transmitted. The signaling pulse p(t) is time-limited to T_p seconds, in the sense that $p(t)=0,t\notin [0,T_p)$. The transmitted signal is sent across a finite-duration time-invariant linear channel h(t) with duration T_c seconds. At the receiver we have

$$r(t) = \sqrt{\alpha E_s} p(t - mT_s/4) * h(t) + z(t)$$

where z(t) is additive white Gaussian noise with power-spectral density N_0 . We assume that the receiver has perfect knowledge of both p(t) and h(t) (i.e. they are not random). Note that due to time-dispersion the received signal has a duration

- 1. What is the value of α which guarantees that the average signal energy per symbol is E_s ?
- 2. What is the relationship between T_p , T_c and T_s that makes the 4 signals orthogonal for any channel h(t)?
- 3. For an orthogonal configuration, what is the maximum bit rate that this signal set can achieve. This should be expressed in bits/s as a function of T_p and T_c .

- 4. What is the maximum-likelihood receiver for this signal set?
- 5. What is the minimum Euclidean distance between the signals as a function of the auto-correlation function of h(t) * p(t), denoted by $\rho(t)$ and what is the resulting upper-bound (i.e. union-bound) on the probability of symbol error.

Figure 1: Signal Set for Problem 1

2 Generalized Non-Coherent Detection

Consider the following N-dimensional detection problem

$$\mathbf{y} = \sqrt{2E_s}\mathbf{h}x + \mathbf{z}$$

where y is an N-dimensional observation column vector, h is an N-dimensional zeromean real Gaussian column vector with covariance matrix $\mathbf{K}_h = \mathrm{E}\mathbf{h}\mathbf{h}^t$, x is an equallylikely information bit which takes on the value 0 when the bit to be transmitted is zero and 1 when the bit to be transmitted is one, and z is an N-dimensional zero-mean white Gaussian column vector (i.e. diagonal covariance matrix) with variance N_0 in each component. The value of h is assumed to be unknown to the receiver which observes y and thus this is a form of non-coherent detection, although more than just phases are unknown to the receiver!

- 1. What are the likelihood functions under the two hypotheses (i.e. 0 and 1) as a function of K_h .
- 2. What is the maximum-likelihood detection rule?
- 3. Since K_h is a covariance matrix, it admits the following diagonalization $K_h = U\Lambda U^t$, where U is an N-dimensional unitary matrix, and Λ is an N-dimensional

diagonal matrix with positive entries (eigenvalues). Suppose we create the transformed observation $\mathbf{y}' = U^t \mathbf{y}$ (this is known as a Karhunen-Loève Transform, or decorrelating transform). Show first that the transformed problem is

$$\mathbf{y}' = \sqrt{2E_s}\mathbf{h}'x + \mathbf{z}'$$

where \mathbf{h}' has $Eh_ih_j = \lambda_i\delta_{ij}$, where $\delta_{ij} = 1$, if i = j, and $\delta_{ij} = 0$, $i \neq j$. In other words, the covariance matrix of \mathbf{h}' is $K_{h'} = \Lambda$. Next show that the ML detection rule in terms of \mathbf{y}' is

choose 1 if:
$$\sum_{i=1}^{N} \frac{\lambda_i}{\lambda_i + \frac{N_0}{2E\lambda_i}} {y'}_i^2 \ge \sum_{i=1}^{N} \ln\left(1 + \frac{2E}{N_0}\lambda_i\right)$$
 (1)

3 OFDM

Consider a generic OFDM system to be designed on a wireless channel with maximum channel duration of 1μ s. The sampling rate of the system is 30.72 Ms/s and occupied channel bandwidth is 20 MHz. The number of carriers per OFDM symbol is denoted N_c , the length of the cyclic-prefix is N_p and the number of useful carriers (i.e. those that are non-zero) is N_u .

- 1. Assuming the system should have an efficiency of 90%, where the efficiency is the ratio of information samples (N_c) to total samples per symbol $(N_s + N_p)$, what should the number of carriers be to the closest power of 2.
- 2. What should the number of useful carriers be to occupy the channel bandwidth?
- 3. Assuming we use 16-QAM modulation what is the raw bit rate of the system?

4 Trellis Diagrams and the Viterbi Algorithm

A BPSK (2-AM) signal with symbol energy E_s is generated using a square-pulse of duration T seconds,

$$p_T(t) = \begin{cases} \sqrt{\frac{1}{T}}, t \in [0, T) \\ 0, t \notin [0, T). \end{cases}$$

It is transmitted across a dispersive channel $h(t) = h_0 \delta(t) + h_1 \delta(t - .25T)$ yielding the received signal

$$r(t) = \sqrt{E_s} \sum_{n} a_n p(t - nT) * h(t) + z(t)$$

where a_n is the BPSK information sequence (i.e. $a_n \in \{-1, 1\}$).

- 1. What is the autocorrelation sequence (g_n) of the cascaded channel $p_T(t) * h(t)$.
- 2. How many states does the correspoding state-space representation (Ungerboeck form) have?
- 3. Draw the trellis
- 4. What is the maximum-likelihood update rule in the Viterbi algorithm for this example?

5 BCJR Algorithm

Suppose we have a 2-state trellis representation for a BPSK signal transmitted over a dispersive channel. Recall the following forward and backward recursions in the Ungerboeck formation of the BCJR algoritm (sum-product algorithm)

$$\alpha(\sigma_{n+1}) = \sum_{\{\sigma_{n+1}\}} \alpha(\sigma_n) T_n(a_n, \sigma_n, \sigma_{n+1}) G_n(a_n, \sigma_n) P(a_n)$$
$$\beta(\sigma_n) = \sum_{\{\sigma_n\}} \beta(\sigma_{n+1}) T_n(a_n, \sigma_n, \sigma_{n+1}) G_n(a_n, \sigma_n) P(a_n)$$

with $G_n(a_n,\sigma_n)=\exp\left\{\frac{1}{N_0}\mathrm{Re}\left[y_na_n^*-.5|a_n|^2g_0-a_n^*a_{n-1}g_1\right]\right\}$ for a two-state trellis, and $a_n\in -1,+1$. $T_n(a_n,\sigma_n,\sigma_{n+1})$ is the trellis indicator function. Under the assumption that the information symbols are equally-likely (i.e. $\Pr(a_n=-1)=\Pr(a_n=1)=.5$), show that the forward-backward recursions amounts to

$$\alpha_{n+1} = \mathbf{G}_n \alpha_n$$
$$\beta_n = \mathbf{G}_n^t \beta_{n+1}$$

where
$$\alpha_n = \begin{pmatrix} \alpha(\sigma_n = -1) \\ \alpha(\sigma_n = 1) \end{pmatrix}$$
, $\beta_n = \begin{pmatrix} \beta(\sigma_n = -1) \\ \beta(\sigma_n = 1) \end{pmatrix}$, and \mathbf{G}_n is a 2×2 matrix. Find \mathbf{G}_n .