Exame de qualificação : Álgebra Linear 14 / 07 / 2004

Todas respostas devem ser justificadas. A nota vai ser calculada usando-se as 5 melhor respostas

1. (2 pontos) Seja $T: \mathbb{C}^4 \to \mathbb{C}^4$ um operador linear

$$T((x, y, z, t)) = (x + 2y + 3z + 4t, y + 2z + 3t, z + 2t, t)$$

- a) Escrever a matriz do operador T.
- b) Achar os autovalores de T.
- c) Achar a forma de Jordan de T.
- 2. (2 pontos) Seja $T: \mathbb{C}^n \to \mathbb{C}^n$ um operador linear tal que $T^2 = T$.
- a) Demonstrar que $\mathbb{C}^n = Ker(T) \oplus Im(T)$.
- b) Demonstrar que o operador T é normal se e somente se Ker(T) é ortogonal a Im(T).
- 3. (2 pontos) Seja $4x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$ uma forma quadrática em \mathbb{R}^3 . Encontrar uma transformação ortogonal das variaveis que leva f a eixos principais.
- 4. (2 pontos) Seja $T:V\to V$ um operador linear e V um espaço linear de dimensão finita.
 - a) Demonstrar que dim(Ker(T)) + dim(Im(T)) = dim(V).
 - b) Se dim(V) é impar e $T^2 = 0$ então dim(T(V)) < dim(Ker(T)).
- 5. (2 pontos) Sejam T₁, T₂ : ℝⁿ → ℝⁿ dois operadores autoadjuntos tais que T₁T₂ = T₂T₁.
 Demonstra que existe uma base ortonormal de ℝⁿ cujos elementos são autovetores de ambos T₁ e T₂.
- (2.0 pontos) Responda falsa ou verdadeira a cada uma das afirmações abaixo.
 Justifique as suas respostas.
 - a) Todo operador linear em \mathbb{R}^6 possui um autovetor.
- b) Seja V um espaço vetorial de dimensão finita. Então $V\otimes V^*$ tem dimensão finita que é um número par.
- c) Seja A um bloco de Jordan. Então A^t pode ter dois blocos de Jordan na sua forma de Jordan.
 - d) Dada a matriz $A=\begin{pmatrix}1&1&1&0\\1&2&1&0\\1&2&1&1\end{pmatrix}$ existem matrizes invertíveis B e C tais que

$$BAC = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Boa Sorte!

DM-IMECC-UNICAMP, EXAME DE QUALIFICAÇÃO DE MESTRADO Análise no Rⁿ, 08/07/2004

Aluno: _____ RA: ____

FAÇA NO MÍNIMO 04 (QUATRO) QUESTÕES.

- 1. Considere o 2-cubo singular em $I\!\!R^3,\ c:[0,1]^2\to I\!\!R^3,\ {\rm dado\ por}\ c(u,v)=(2u,v,1-v^2).$
 - (a) Integre a forma ω = dx ∧ dy em c;
 - (b) Faça um esboço mostrando as imagens de c e ∂c ;
 - (c) Encontre uma 1-forma ϕ no $I\!\!R^3$ tal que $d\phi = \omega$ e faça uma verificação direta do Teorema de Stokes, mostrando que a integral de ϕ em ∂c coincide com aquela calculada em (a).
- 2. Faça a prova rigorosa da igualdade $\int_{-\infty}^{\infty} \exp(-x^2) dx = \sqrt{\pi}$.
- 3. Considere a aplicação de classe C^1 , $f: \mathbb{R}^2 \to \mathbb{R}^2$ dada por f(x,y) = (u(x,y),v(x,y)), tal que $u_x = v_y$, $u_y = -v_x$ e $\nabla u(x,y) \neq 0$ para qualquer $(x,y) \in \mathbb{R}^2$. Mostre que f leva curvas regulares que se cruzam em curvas regulares que se cruzam formando um mesmo ângulo.
- 4. Considere a 2-forma diferenciável em IR3,

$$\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{\left(x^2 {+} y^2 {+} z^2\right)^{3/2}}.$$

Mostre que ela é fechada mas não é exata

- 5. Seja A uma matriz simétrica real de ordem n. Mostre que os pontos de mínimo da função f(x) = Ax · x restrita à esfera unitária Sⁿ⁻¹ (||x|| = 1) são autovetores de A, i.e. em qualquer um desses pontos temos a equação Ax = λx satisfeita para algum escalar λ.
- 6. Prove que a aplicação $f(x,y) = e^x(\cos y, \sin y), (x,y) \in \mathbb{R}^2$, é um difeomorfismo local de classe C^{∞} . É global?

Exame de Qualificação ao Mestrado, Topologia Geral, Semestre I de 2004, 12/07/2004 Nome: R.A.:

Assinatura:

Responder se cada uma das seguintes afirmações é **Verdadeira** ou **Falsa**, com uma curta justificativa.

- 1. A topologia produto Cartesiano em $\Pi_{\alpha}Y_{\alpha}$ é a menor topologia tal que $p_{\beta}:\Pi_{\alpha}Y_{\alpha}\to Y_{\beta}$ são todas contínuas.
 - 2. Os racionais ℚ ⊂ ℝ, com a topologia de subespaço da reta euclideana, são conexos.
- 3. Existe espaço topológico X, tal que a componente conexa de cada ponto $C(x) = \{x\}$, $\forall x \in X$, mas X não tem a topologia discreta.
- 4. Seja $f: X \to Y$ a aplicação $f(n) = \frac{1}{n}$, f(0) = 0, onde $X = \{0, 1, 2, ...\}$ com a topologia discreta e $Y = \{0\} \cup \{\frac{1}{n} \mid n = 1, 2, ...\}$ subespaço da reta euclideana, então X é localmente conexo e f é uma bijeção contínua que fornece um exemplo de que conexidade local não é invariante sob aplicações contínuas.
 - 5. Uma aplicação contínua $f: X \to Y$ com Y Hausdorff e X compacto é sempre aberta.
- 6. Uma aplicação injetora e contínua $f: X \to Y$ com Y Hausdorff e X compacto é aberta.
- 7. A interseção de qualquer família de conjuntos abertos e densos de um espaço topológico localmente compacto é densa.
- A interseção de qualquer família enumerável de conjuntos densos de um espaço topológico localmente compacto é densa.
- 9. Considere a seguinte distância na reta real: d(x,y) = |x-y|. Seja $f: (\mathbb{R};d) \to ((-1,1);d)$ definida por $f(x) = \frac{x}{1+|x|}$. Esse exemplo mostra que a imagem de um espaço métrico completo através de um homeomorfismo não é necessariamente completa.
- O cilíndro circular reto e a faixa de Möbius sem fronteira tem o mesmo grupo fundamental.

Exame de Qualificação ao Mestrado, Topologia Geral, Semestre I de 2004, 12/07/2004 Nome: R.A.:

Assinatura:

Responder se cada uma das seguintes afirmações é **Verdadeira** ou **Falsa**, com uma curta justificativa.

- 1. A topologia produto Cartesiano em $\Pi_{\alpha}Y_{\alpha}$ é a menor topologia tal que $p_{\beta}:\Pi_{\alpha}Y_{\alpha}\to Y_{\beta}$ são todas contínuas.
 - Os racionais Q ⊂ R, com a topologia de subespaço da reta euclideana, são conexos.
- 3. Existe espaço topológico X, tal que a componente conexa de cada ponto $C(x) = \{x\}$, $\forall x \in X$, mas X não tem a topologia discreta.
- 4. Seja $f: X \to Y$ a aplicação $f(n) = \frac{1}{n}$, f(0) = 0, onde $X = \{0, 1, 2, ...\}$ com a topologia discreta e $Y = \{0\} \cup \{\frac{1}{n} \mid n = 1, 2, ...\}$ subespaço da reta euclideana, então X é localmente conexo e f é uma bijeção contínua que fornece um exemplo de que conexidade local não é invariante sob aplicações contínuas.
 - 5. Uma aplicação contínua $f: X \to Y \mod Y$ Hausdorff e X compacto é sempre aberta.
- Uma aplicação injetora e contínua f : X → Y com Y Hausdorff e X compacto é aberta.
- A interseção de qualquer família de conjuntos abertos e densos de um espaço topológico localmente compacto é densa.
- A interseção de qualquer família enumerável de conjuntos densos de um espaço topológico localmente compacto é densa.
- 9. Considere a seguinte distância na reta real: d(x,y) = |x-y|. Seja $f: (\mathbb{R};d) \to ((-1,1);d)$ definida por $f(x) = \frac{x}{1+|x|}$. Esse exemplo mostra que a imagem de um espaço métrico completo através de um homeomorfismo não é necessariamente completa.
- O cilíndro circular reto e a faixa de Möbius sem fronteira tem o mesmo grupo fundamental.