Homework 3

Submission format: submit one .pdf file as the report for all tasks (like the solution I provided) and submit it separately on Canvas (2 points bonus). For the code files, you can upload them separately or pack them in .zip file to upload.

1. Homomorphic Encryption (50 points)

Alice holds a private matrix A (nonnegative integer entries) with size 5×8 while Bob holds a private matrix B (nonnegative integer entries) with size 8×4 . Design and implement a two-party protocol to securely compute the product $A \times B$. Hint: Homomorphic Encryption (e.g., Paillier Cryptosystem which is asymmetric) can be used to design the protocol.

- Paillier in Python:
 - https://python-paillier.readthedocs.io/en/develop/ https://github.com/mikeivanov/paillier
- Paillier in Java: https://www.csee.umbc.edu/kunliu1/research/Paillier.html

Tasks:

- (a) Alice generates random nonnegative integer entries for A while Bob generates random nonnegative integer entries for B. (5 points)
- (b) Design the cryptographic protocol between Alice and Bob to perform secure computation. (20 points)
- (c) Write the programs for Alice and Bob: computation and communication. Note that communication should be established to exchange encrypted messages, e.g., using Socket programming. (10 points)
 - Socket Programming in Python: https://realpython.com/python-sockets/
 - Socket Programming in Java: https://www.tutorialspoint.com/java/java_networking.htm
- (d) Report the input matrices, the last ciphertext (right before the decryption) and the decrypted product $A \times B$ using two different key sizes 512-bit and 1024-bit. (5 points)
- (e) Discuss the following two cases (ideally theoretically justify the conditions for two cases) and verify them using the source code: (1) multiplicative homomorphic property of Paillier holds, and (2) multiplicative homomorphic property of Paillier does not hold. Submit the screenshot of results and discuss your conclusion. (10 points)

2. Secure Multiparty Computation (50 points)

Alice holds a private Boolean vector \vec{A} with 10 Boolean entries $(\{0,1\}^{10})$ while Bob holds another private Boolean vector \vec{B} with another 10 Boolean entries $(\{0,1\}^{10})$. Design and implement a protocol using the *Fairplay* to securely compute the scalar product $\vec{A} \cdot \vec{B}$ without sharing their inputs to each other.

- The scalar product computation should be converted to garbled circuits using SFDL.
- Fairplay secure function evaluation: https://www.cs.huji.ac.il/project/Fairplay/.
- Readme file for running Fairplay SFE: https://www.cs.huji.ac.il/project/Fairplay/Fairplay/Readme.txt

Tasks:

- (a) Alice generates random Boolean entries for \vec{A} while Bob generates random Boolean entries for \vec{B} . (5 points)
- (b) Write the SFDL program for Alice and Bob. (20 points)
- (c) Compile it for Alice and Bob, and run the protocol (communication is integrated in Fairplay). (15 points)
- (d) Report the input Boolean vectors, the SFDL program, SHDL circuit, and output results $\vec{A} \cdot \vec{B}$ (for two parties). (10 points)