Fast SVD

- Suppose we want a rank-*k* approximation.
- Best we can get $||A U\Sigma V^T|| = \sigma_{k+1}$
- Approximate algorithm: with high probability

$$||A - U\Sigma V^T|| \le 10\sqrt{I \cdot n} \sigma_{k+1}, \quad U \in \mathbb{R}^{m \times k}, \ V \in \mathbb{R}^{n \times k}, \ \Sigma \in \mathbb{R}^{k \times k}$$

- *U*, *V* have orthogonal columns.
- I is a parameter. For example, set I = k + 20.
- Complexity $C_{SVD} = I \cdot C_A + k \cdot C_{A^T} + O(I^2m + k^2n + k^2m)$.
- C_A , C_{A^T} cost of applying A and A^T to a vector.
- Complexity for dense matrices and I = O(k): O(mnk) (compare to $O(m^2n)$).
- Much faster in many cases.

Fast SVD – algorithm

Input: $A \in \mathbb{R}^{m \times n}$ and $k \leq m$. Output: Matrices U, V, Σ s.t. $||A - U\Sigma V^T|| \leq 10\sqrt{\ln \sigma_{k+1}}(A)$, with probability at least $1 - 10^{-17}$.

- 1. Set I = k + 20, $G \in \mathbb{R}^{n \times l}$ with $G_{ij} \sim N(0, 1)$ i.i.d.
- 2. Compute B = AG ($B \in \mathbb{R}^{m \times l}$).
- 3. Compute the SVD of B, $B = X\Lambda Y^T$.
- 4. Set Q = X(:, 1:k) $(Q \in \mathbb{R}^{m \times k})$.
- 5. Compute $T = Q^T A$ $(T \in \mathbb{R}^{k \times n})$.
- 6. Compute the T, $T = W \Sigma V^T$.
- 7. Compte U = QW.

Fast SVD – idea

- 1. Find $Q = \{q_1, q_2, ..., q_k\} \in \mathbb{R}^{m \times k}$ that span most of A's columns. That is, QQ^TA is very close to A.
- 2. Compute the SVD of $Q^T A$

$$Q^T A = W \Sigma V^T, \quad W \in \mathbb{R}^{k \times k}, \quad \Sigma \in \mathbb{R}^{k \times k}, \quad V \in \mathbb{R}^{n \times k}.$$

3. Compute the $m \times k$ matrix U = QW and note that

$$U\Sigma V^T = QW\Sigma V^T = QQ^T A \approx A$$
,

that is, $U\Sigma V^T$ is a rank-k approximation of A.

How to chose Q whose columns span "most" of the range of A.

Fast SVD - randomization

- Take $G \in \mathbb{R}^{n \times l}$ be a matrix of i.i.d. N(0,1).
- There exists a matrix $F \in \mathbb{R}^{I \times n}$ such that $||AGF A|| \lesssim \sigma_{k+1}(A)$, that is, $AGF \approx A$.
- The range of A is approximately the same as the range of AG. However, $AG \in \mathbb{R}^{m \times l}$ is much smaller than $A \in \mathbb{R}^{m \times n}$.
- Choose Q to be a matrix whose columns form an orthonormal basis for the range of AG. E.g, compute $AG = X\Lambda Y^T$ and take Q = X.

Fast SVD – advantages

- Much faster for big data O(mnk) vs $O(m^2n)$.
- Only requires applying A to I vectors and A^T to k vectors.
- Explicit access to the entries of A is not required!
- A and A^T are not required explicitly can be provided as functions for applying them to vectors.