```
In [1]:
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
%matplotlib inline
import statsmodels.api as sm
In [2]:
pd.set option('display.max columns', None)
pd.set option('display.max rows', None)
In [3]:
df = pd.read csv('/Users/hamadwaheed/Desktop/churn clean.csv')
df copy1 = df
df copy2 = df copy1
df copy3 = df copy2
df copy4 = df copy3
df copy5 = df copy4
df_copy6 = df_copy5
df copy7 = df copy6
In [ ]:
In [4]:
df.head()
Out[4]:
```

	CaseOrder	Customer_id	Interaction	UID	City	State	County	Zip	Lat
0	1	K409198	aa90260b- 4141-4a24- 8e36- b04ce1f4f77b	e885b299883d4f9fb18e39c75155d990	Point Baker	AK	Prince of Wales- Hyder	99927	56.25100
1	2	S120509	fb76459f- c047-4a9d- 8af9- e0f7d4ac2524	f2de8bef964785f41a2959829830fb8a	West Branch	МІ	Ogemaw	48661	44.32893
2	3	K191035	344d114c- 3736-4be5- 98f7- c72c281e2d35	f1784cfa9f6d92ae816197eb175d3c71	Yamhill	OR	Yamhill	97148	45.35589
3	4	D90850	abfa2b40- 2d43-4994- b15a- 989b8c79e311	dc8a365077241bb5cd5ccd305136b05e	Del Mar	CA	San Diego	92014	32.96687
4	5	K662701	68a861fd- 0d20-4e51- a587- 8a90407ee574	aabb64a116e83fdc4befc1fbab1663f9	Needville	тх	Fort Bend	77461	29.38012
4									Þ

Part I: Research Question

A Describe the nurnose of this data analysis by doing the following:

a possibe the purpose or the data analysis by doing the following.

- 1. A common pattern in modern day internet and phone companies is high Customer churn. Which means the turnover rate. Consumers move to compaies with better packages and more reliable services. In this highly competitive industry, we want to increase tenure rate and decrese churn rate. The reason we are talking about Churn is because our reserach question emanates from the idea of churn. We want to know what variables contribute most to tenure, because a longer tenure equates to a smaller churn rate. Our research question is, just like how light, water, and clean air in different combinations contribute to plant growth, what combination of variables within this dataset contribute to a longer tenure?
- 2. The objectives or goals of this project:
 - estimate an increased life expectancy of costumer's contract with the company: i.e predict whether a
 certain combination of variables can increase the length of tenure, because this will in turn decrease
 churn.

Part II: Method Justification

- 1. Mulitple linear regression is a machine learning algorithm capable of outputting predictor values from input variables. It works by using explanatory or input variables, which can be continious or categorical, to determine a relationship to the output value. It used in predicting continuous variable (Tenure in our case). The key assumptions of Muliptle Linear Regression are:
 - A linear relationship between indicator and output variables
 - No correlation between input variables
 - · Variance when it comes to residuals
 - Multivariate Normality
- 2. Our analysis is carried out using python because of its;
 - Faster Development and Processing
 - Powerful Packages
 - Better Data Visualisation
- 3. Multiple linear regession is an appropriate technique to use because we can see the effect of multiple x variables and how they impact the dependent Y variable. We also want to see the strength of the relationship between the variables. A company can take into consideration whether there is a strong relationship between variables when predicting what type of packages or products to offer. There will be stronger relationships with certain variables, and we want to find out which ones those are.

To prepare the data we will start by checking if it is clean and if it has any null points. We will also encode catergorical variables as dummy variables an standardize them to use them in the model. we will also normalize our data and use labelencoder for our pre-processing. we will do this to create an OLS model after our regression model. From there we will utilize the output p-values as selection criteria for reduction.

```
In [5]:
```

5

State

```
print('Dimensionality of the data is {}'.format(df.shape)) # .shape returns a tupel
print('The data set has {} cases.'.format(df.shape[0])) # we can also index the elemen
ts of that tupel
print('The total number of elements is {}.'.format(df.size))
df copy1.info()
Dimensionality of the data is (10000, 50)
The data set has 10000 cases.
The total number of elements is 500000.
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 50 columns):
                          Non-Null Count Dtype
   Column
#
                          10000 non-null int64
0
   CaseOrder
                          10000 non-null object
1
    Customer id
                          10000 non-null object
2
    Interaction
3
    UID
                          10000 non-null object
 4
    City
                          10000 non-null
                                          object
```

obiect

10000 non-null

-							
6	County	10000	non-null	object			
7	Zip	10000	non-null	int64			
8	Lat	10000	non-null	float64			
9	Lng	10000	non-null	float64			
10	Population	10000	non-null	int64			
11	Area	10000	non-null	object			
12	TimeZone	10000	non-null	object			
13	Job	10000	non-null	object			
14	Children	10000	non-null	int64			
15	Age	10000	non-null	int64			
16	Income	10000	non-null	float64			
17	Marital	10000	non-null	object			
18	Gender		non-null	object			
19	Churn		non-null	object			
20	Outage sec perweek	10000		float64			
21	Email		non-null	int64			
22	Contacts		non-null				
23	Yearly equip failure		non-null	int64			
24	Techie		non-null	object			
25	Contract		non-null	object			
26	Port modem		non-null	object			
27	Tablet		non-null	object			
28	InternetService		non-null	object			
29	Phone		non-null	object			
30			non-null				
31	Multiple OnlineSecurity		non-null	object object			
32							
	OnlineBackup		non-null	object			
33	DeviceProtection	10000		object			
34	TechSupport	10000		object			
35	StreamingTV	10000		object			
36	StreamingMovies	10000		object			
37	PaperlessBilling	10000		object			
38	PaymentMethod		non-null	object			
39	Tenure		non-null	float64			
40	MonthlyCharge		non-null	float64			
41	Bandwidth_GB_Year		non-null	float64			
42	Item1		non-null	int64			
43	Item2		non-null				
	Item3		non-null				
	Item4		non-null				
	Item5	10000	non-null	int64			
	Item6	10000	non-null				
48	Item7		non-null				
	Item8		non-null	int64			
dty	dtypes: float64(7), int64(16), object(27)						
memo	ory usage: 3.8+ MB						

In [6]:

df_copy1.describe()

Out[6]:

	CaseOrder	Zip	Lat	Lng	Population	Children	Age	Income	Outag
count	10000.00000	10000.000000	10000.000000	10000.000000	10000.000000	10000.0000	10000.000000	10000.000000	
mean	5000.50000	49153.319600	38.757567	-90.782536	9756.562400	2.0877	53.078400	39806.926771	
std	2886.89568	27532.196108	5.437389	15.156142	14432.698671	2.1472	20.698882	28199.916702	
min	1.00000	601.000000	17.966120	-171.688150	0.000000	0.0000	18.000000	348.670000	
25%	2500.75000	26292.500000	35.341828	-97.082813	738.000000	0.0000	35.000000	19224.717500	
50%	5000.50000	48869.500000	39.395800	-87.918800	2910.500000	1.0000	53.000000	33170.605000	
75%	7500.25000	71866.500000	42.106908	-80.088745	13168.000000	3.0000	71.000000	53246.170000	
max	10000.00000	99929.000000	70.640660	-65.667850	111850.000000	10.0000	89.000000	258900.700000	
4									···· Þ

In [7]:

ar_copy1_null =ar.isnull().sum(); pr=ar.isnull().sum()/ar_copy1.snape[0]
Nan=pd.concat([df_copy1_null,round(pr, 2)], axis=1, keys=["Total of missing values" ,"pour centage (%)"]); Nan

Out[7]:

	Total of missing values	pourcentage (%)
CaseOrder	0	0.0
Customer_id	0	0.0
Interaction	0	0.0
UID	0	0.0
City	0	0.0
State	0	0.0
County	0	0.0
Zip	0	0.0
Lat	0	0.0
Lng	0	0.0
Population	0	0.0
Area	0	0.0
TimeZone	0	0.0
Job	0	0.0
Children	0	0.0
Age	0	0.0
Income	0	0.0
Marital	0	0.0
Gender	0	0.0
Churn	0	0.0
Outage_sec_perweek	0	0.0
Email	0	0.0
Contacts	0	0.0
Yearly_equip_failure	0	0.0
Techie	0	0.0
Contract	0	0.0
Port_modem	0	0.0
Tablet	0	0.0
InternetService	0	0.0
Phone	0	0.0
Multiple	0	0.0
OnlineSecurity	0	0.0
OnlineBackup	0	0.0
DeviceProtection	0	0.0
TechSupport	0	0.0
StreamingTV	0	0.0
StreamingMovies	0	0.0
PaperlessBilling	0	0.0
PaymentMethod	0	0.0
Tenure	0	0.0

MonthlyCharge Bandwidth GB Year	0 Total of missing values 0	pourcentage (%)
Item1	0	0.0
Item2	0	0.0
Item3	0	0.0
Item4	0	0.0
Item5	0	0.0
Item6	0	0.0
Item7	0	0.0
Item8	0	0.0

The data is clean and does not have any missing rows or values, we can proceed with our univariate and bivariate trends

The Target Variable

```
In [8]:
```

```
plt.figure(figsize=(12, 9))
plt.xlabel("Tenure", fontsize=16)
plt.ylabel("Count", fontsize=16)
p=plt.hist(df_copy1.Tenure.values , color="#3F5D7D", bins=100, )
p.index
```

Out[8]:

<function tuple.index(value, start=0, stop=9223372036854775807, /)>

In [9]:

```
ax=sns.boxplot(x='Churn', y='Tenure', data=df_copy1)
```

```
ax.set_title("Average Tenure by 'Churn'")
ax.set_ylabel('Tenure')
plt.show()

ax=sns.boxplot(x='Gender', y='Tenure', data=df_copy1)
ax.set_title("Average Tenure by 'Gender'")
ax.set_ylabel('Tenure')
plt.show()

ax=sns.boxplot(x='Marital', y='Tenure', data=df_copy1)
ax.set_title("Average Tenure by 'Marital'")
ax.set_ylabel('Tenure')
plt.show()
```


In [10]:

```
f=df_copy1[['Tenure','Churn']]
f.head()
sns.pairplot(f, hue='Churn')
```

<seaborn.axisgrid.PairGrid at 0x7fb5ff954c10> 10 0.8 0.6 0.4 0.2 Chum No Yes

Tenure

In []:

0.0

Out[10]:

In []:

In []:

Visualization Preperation End

In []:

In [11]:

df_copy1.head()

Out[11]:

	CaseOrder	Customer_id	Interaction	UID	City	State	County	Zip	Lat
0	1	K409198	aa90260b- 4141-4a24- 8e36- b04ce1f4f77b	e885b299883d4f9fb18e39c75155d990	Point Baker	AK	Prince of Wales- Hyder	99927	56.25100
1	2	S120509	fb76459f- c047-4a9d- 8af9- e0f7d4ac2524	f2de8bef964785f41a2959829830fb8a	West Branch	МІ	Ogemaw	48661	44.32893
2	3	K191035	344d114c- 3736-4be5- 98f7- c72c281e2d35	f1784cfa9f6d92ae816197eb175d3c71	Yamhill	OR	Yamhill	97148	45.35589
3	4	D90850	abfa2b40- 2d43-4994- b15a- 989b8c79e311	dc8a365077241bb5cd5ccd305136b05e	Del Mar	CA	San Diego	92014	32.96687
4	5	K662701	68a861fd- 0d20-4e51- a587- 8a90407ee574	aabb64a116e83fdc4befc1fbab1663f9	Needville	тх	Fort Bend	77461	29.38012
4									<u> </u>

In [12]:

df_copy1.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 50 columns):
   Column
                          Non-Null Count Dtype
 0
   CaseOrder
                          10000 non-null int64
    Customer id
                          10000 non-null object
 1
 2
   Interaction
                          10000 non-null object
                           10000 non-null object
 3
    UID
                           10000 non-null object
 4
    City
                           10000 non-null object
 5
    State
 6
                           10000 non-null
    County
                                           object
 7
                           10000 non-null
    Zip
                                           int64
 8
    Lat
                           10000 non-null
                                           float64
 9
                           10000 non-null float64
    Lng
 10 Population
                           10000 non-null int64
 11 Area
                           10000 non-null object
 12 TimeZone
                           10000 non-null object
 13 Job
                           10000 non-null object
 14 Children
                          10000 non-null int64
 15 Age
                          10000 non-null int64
 16 Income
                          10000 non-null float64
 17 Marital
                          10000 non-null object
18 Gender 10000 non-null object
19 Churn 10000 non-null object
20 Outage_sec_perweek 10000 non-null float64
21 Email 10000 non-null int64
22 Contacts 10000 non-null int64
 18 Gender
                          10000 non-null object
                                           int64
 22
                           10000 non-null
    Contacts
                                           int64
    Yearly equip failure 10000 non-null
 23
 24 Techie
                           10000 non-null object
 25
    Contract
                           10000 non-null object
 26
    Port modem
                           10000 non-null object
 27
    Tablet
                           10000 non-null object
                           10000 non-null object
 28
    InternetService
 29
    Phone
                           10000 non-null object
 30 Multiple
                          10000 non-null object
                         10000 non-null object
10000 non-null object
 31 OnlineSecurity
 32 OnlineBackup
 33 DeviceProtection 10000 non-null object
 34 TechSupport
                          10000 non-null object
 35 StreamingTV
                          10000 non-null object
 36 StreamingMovies 10000 non-null object 37 PaperlessBilling 10000 non-null object
                          10000 non-null object
 38 PaymentMethod
                          10000 non-null float64
 39 Tenure
 40 MonthlyCharge
                          10000 non-null float64
41 Bandwidth_GB_Year
                           10000 non-null float64
                           10000 non-null int64
    Item1
 42
 43 Item2
                           10000 non-null
 44
    Item3
                           10000 non-null
                                           int64
 4.5
    Item4
                           10000 non-null
                                           int64
                           10000 non-null int64
 46
    Item5
                           10000 non-null int64
 47
    Item6
 48 Item7
                           10000 non-null int64
 49 Item8
                           10000 non-null int64
dtypes: float64(7), int64(16), object(27)
```

Initial Model

memory usage: 3.8+ MB

```
In [13]:
```

```
#### Pre-Processing: Creating Dummy Variables
```

We will exlude city, county, state, and timezone because the dummy variables are 400 pages long and it will dilute our data

```
In [14]:
```

```
df copy2 = pd.get dummies(df, columns=['StreamingTV','StreamingMovies','Gender','PaymentM
ethod', 'InternetService', 'Contract', 'Area', 'Techie', 'Port modem', 'Tablet', 'Phone', 'Multipl
e','OnlineSecurity','OnlineBackup','DeviceProtection','TechSupport','PaperlessBilling','Ma
rital'], drop first=True) .head(5)
In [15]:
from sklearn.linear model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
from sklearn.model selection import train test split #to create validation data set
from sklearn import metrics
X=df copy2.drop(["Tenure", "Interaction", "Customer id", "UID", "Churn", "County", "Job", "State"
,"City", "TimeZone"], axis=1)
Y=df copy2["Tenure"]
X.fillna(0, inplace=True)
Y.fillna(0, inplace=True)
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=4)
lm = LinearRegression()
lm.fit(X_train,y_train)
predictions = lm.predict(X test)
def regression_results(y_true, y_pred):
    # Regression metrics
    explained variance=metrics.explained variance score(y true, y pred)
    mean absolute error=metrics.mean absolute error(y true, y pred)
   mse=metrics.mean squared error(y true, y pred)
   # mean squared log error=metrics.mean squared log error(y true, y pred)
   median absolute error=metrics.median absolute error(y true, y pred)
    r2=metrics.r2_score(y_true, y_pred)
    print('explained variance: ', round(explained variance, 4))
    #print('mean_squared_log_error: ', round(mean_squared_log_error,4))
    print('r2: ', round(r2,4))
    print('MAE: ', round(mean_absolute_error,4))
    print('MSE: ', round(mse,\frac{1}{4}))
    print('RMSE: ', round(np.sqrt(mse), 4))
regression results(y test, predictions)
explained variance: -0.004
r2: -0.0411
MAE: 5.156
MSE: 27.5681
RMSE: 5.2505
In [16]:
X = sm.add constant(X) # adding a constant
In [17]:
model = sm.OLS(Y, X).fit()
predictions = model.predict(X)
In [18]:
print model = model.summary()
print(print model)
```

OLS Regression Results

Dep. Variable: R-squared: Tenure 1.000 Adj. R-squared: Model: OLS nan F-statistic: Method: Least Squares nan Prob (F-statistic): Date: Mon, 30 Aug 2021 00:08:21 Log-Likelihood: 152.20 Time: No. Observations: AIC: -294.4 Df Residuals: 0 BIC: -296.4

Df Model: 4
Covariance Type: nonrobust

0.025	0.9751	COGI	std err	C	17 0	
const		-6.746e-05	inf	-0	nan	
nan CaseOrder	nan	-0.0001	inf	-0	nan	
nan	nan		1111	O	nan	
Zip nan	nan	9.261e-05	inf	0	nan	
Lat	iiaii	-0.0035	inf	-0	nan	
nan Lng	nan	0.0023	inf	0	nan	
nan	nan					
Population nan	nan	8.331e-05	inf	0	nan	
Children		-0.0006	inf	-0	nan	
nan Age	nan	-0.0001	inf	-0	nan	
nan	nan	-9.014e-05	inf	-0	222	
Income nan	nan		T11T	-0	nan	
Outage_sec_ nan	perweek nan	-0.0003	inf	-0	nan	
Email	11411	-0.0001	inf	-0	nan	
nan Contacts	nan	0.0003	inf	0	nan	
nan	nan					
Yearly_equi nan	p_failure nan	-0.0002	inf	-0	nan	
MonthlyChar	ge	-0.0273	inf	-0	nan	
nan Bandwidth_G	nan B_Year	0.0059	inf	0	nan	
nan Item1	nan	-4.578e-05	inf	-0	nan	
nan	nan					
Item2 nan	nan	-0.0002	inf	-0	nan	
Item3		0.0003	inf	0	nan	
nan Item4	nan	-0.0005	inf	-0	nan	
nan	nan	-9.795e-05	inf	-0	nan	
Item5 nan	nan				nan	
Item6 nan	nan	2.547e-05	inf	0	nan	
Item7		-0.0004	inf	-0	nan	
nan Item8	nan	-0.0003	inf	-0	nan	
nan	nan					
StreamingTV nan	_Yes nan	3.794e-06	inf	0	nan	
StreamingMo nan	_	-0.0002	inf	-0	nan	
Gender_Male		0.0002	inf	0	nan	
nan Gender_Nonb	nan inary	0	nan	nan	nan	
nan	nan					
PaymentMeth nan	<pre>.od_Credit Card (automat nan</pre>	cic) -7.126e-05	inf	-0	nan	
PaymentMeth	od_Electronic Check	0	nan	nan	nan	
nan PaymentMeth	nan od_Mailed Check	0.0001	inf	0	nan	
nan	nan	-7.871e-05	inf	-0	nan	
nan	vice_Fiber Optic nan	-/.o/ie-05	TIIT	-0	nan	
InternetSer	vice_None nan	0	nan	nan	nan	

Contract_One year		8.939e-05	inf	0	nan
nan nan					
Contract_Two Year		1.125e-05	inf	0	nan
nan nan					
Area_Suburban		0.0001	inf	0	nan
nan nan					
Area_Urban		-0.0002	inf	-0	nan
nan nan					
Techie_Yes		-0.0001	inf	-0	nan
nan nan					
Port_modem_Yes		-0.0001	inf	-0	nan
nan nan					
Tablet_Yes		-4.528e-05	inf	-0	nan
nan nan					
Phone_Yes		-3.403e-05	inf	-0	nan
nan nan					
Multiple_Yes		-0.0003	inf	-0	nan
nan nan					
OnlineSecurity_Yes		0.0001	inf	0	nan
nan nan					
OnlineBackup_Yes		8.939e-05	inf	0	nan
nan nan					
DeviceProtection_Yes		0	nan	nan	nan
nan nan					
TechSupport_Yes		-3.343e-05	inf	-0	nan
nan nan					
PaperlessBilling_Yes		-3.403e-05	inf	-0	nan
nan nan					
Marital_Married		3.723e-05	inf	0	nan
nan nan					
Marital_Never Married		0	nan	nan	nan
nan nan					
Marital_Separated		-3.343e-05	inf	-0	nan
nan nan					
Marital Widowed		-7.126e-05	inf	-0	nan
nan nan					
					=====
Omnibus:	nan	Durbin-Wats	son:		0.832
Prob(Omnibus):	nan	Jarque-Bera	a (JB):		1.757
Skew:	-1.449	Prob(JB):			0.415
Kurtosis:	3.178	Cond. No.		2.1	1e+03
=======================================		========			=====

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified
- [2] The input rank is higher than the number of observations.
- [3] The condition number is large, 2.11e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
/opt/anaconda3/lib/python3.7/site-packages/statsmodels/stats/stattools.py:71: ValueWarning
: omni normtest is not valid with less than 8 observations; 5 samples were given.
  "samples were given." % int(n), ValueWarning)
/opt/anaconda3/lib/python3.7/site-packages/statsmodels/regression/linear model.py:1698: Ru
ntimeWarning: divide by zero encountered in true divide
  return 1 - (np.divide(self.nobs - self.k constant, self.df resid)
/opt/anaconda3/lib/python3.7/site-packages/statsmodels/regression/linear model.py:1699: Ru
ntimeWarning: invalid value encountered in double scalars
  * (1 - self.rsquared))
/opt/anaconda3/lib/python3.7/site-packages/statsmodels/regression/linear model.py:1620: Ru
ntimeWarning: divide by zero encountered in double_scalars
  return np.dot(wresid, wresid) / self.df resid
/opt/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:1446: RuntimeWarning:
invalid value encountered in multiply
  cov_p = self.normalized_cov_params * scale
/opt/anaconda3/lib/python3.7/site-packages/scipy/stats/_distn_infrastructure.py:903: Runti
meWarning: invalid value encountered in greater
  return (a < x) & (x < b)
/opt/anaconda3/lib/python3.7/site-packages/scipy/stats/ distn infrastructure.py:903: Runti
meWarning: invalid value encountered in less
  return (a < x) & (x < b)
/opt/anaconda3/lib/python3.7/site-packages/scipy/stats/ distn infrastructure.py:1912: Runt
imoWarning. invalid value encountered in loss own
```

```
IMEWAITHING: INVALIA VALUE ENCOUNCELEA IN 1855_equal
  cond2 = cond0 & (x <= _a)
In [19]:
print(lm.coef , lm.intercept )
-9.13278229e-05 4.60358031e-08 -1.12593636e-07 -3.00544496e-04
 1.40600665e-08 -5.53792930e-08 -1.72449904e-08 0.00000000e+00
 -4.07651611e-07 2.34636907e-05 2.75498127e-09 0.00000000e+00
 -2.01739974e-08 1.53384513e-08 0.00000000e+00 -4.49389727e-09
 -1.53384513e-08 -2.01739974e-08 -1.32725517e-08 7.24629588e-09
 -8.62249518e - 09 \qquad 0.00000000e + 00 \qquad 1.18947517e - 08 \qquad 0.00000000e + 00
 -8.62249518e - 09 - 1.32725517e - 08 \quad 0.00000000e + 00 \quad 0.00000000e + 00
 1.18947517e-08 -8.62249518e-09 7.24629588e-09 7.24629588e-09
 4.30440600e-09 -5.68140564e-09 7.24629588e-09 7.24629588e-09
 -5.68140564e - 09 \quad 0.00000000e + 00 \quad 0.00000000e + 00 \quad -8.62249518e - 09
  7.24629588e-09 -5.68140564e-09 0.0000000e+00 -8.62249518e-09
 1.18947517e-08] -1.7419618437752042
In [20]:
print("Intercept: ", lm.intercept)
print("Coefficients:")
list(zip(X, lm.coef))
Intercept: -1.7419618437752042
Coefficients:
Out[20]:
[('const', 0.00019531360578751959),
 ('CaseOrder', 0.00021283567463616296),
 ('Zip', 9.69350624186941e-08),
 ('Lat', -2.2923002378480747e-07),
 ('Lng', -9.132782287327869e-05),
 ('Population', 4.6035803148689556e-08),
 ('Children', -1.1259363629390848e-07),
 ('Age', -0.00030054449625991335),
 ('Income', 1.4060066471657157e-08),
 ('Outage sec perweek', -5.537929299361105e-08),
 ('Email', -1.7244990362663512e-08),
 ('Contacts', 0.0),
 ('Yearly equip failure', -4.0765161139922134e-07),
 ('MonthlyCharge', 2.3463690671619955e-05),
 ('Bandwidth GB Year', 2.75498127334581e-09),
 ('Item1', 0.0),
 ('Item2', -2.0173997397269452e-08), ('Item3', 1.5338451315157345e-08),
 ('Item4', 0.0),
 ('Item5', -4.493897274746188e-09),
 ('Item6', -1.5338451315157345e-08),
 ('Item7', -2.0173997397269452e-08),
 ('Item8', -1.3272551683075974e-08),
 ('StreamingTV Yes', 7.246295879136567e-09),
 ('StreamingMovies Yes', -8.622495181331756e-09),
 ('Gender Male', 0.0),
 ('Gender Nonbinary', 1.1894751702092201e-08),
 ('PaymentMethod Credit Card (automatic)', 0.0),
 ('PaymentMethod Electronic Check', -8.622495181331756e-09),
 ('PaymentMethod Mailed Check', -1.3272551683075974e-08),
 ('InternetService Fiber Optic', 0.0),
 ('InternetService_None', 0.0),
 ('Contract_One year', 1.1894751702092201e-08),
 ('Contract_Two Year', -8.622495181331756e-09),
 ('Area_Suburban', 7.246295879136567e-09),
 ('Area_Urban', 7.246295879136567e-09),
 ('Techie_Yes', 4.3044059974068355e-09),
 ('Port_modem_Yes', -5.681405638996317e-09),
 ('Tablet_Yes', 7.246295879136567e-09), ('Phone_Yes', 7.246295879136567e-09),
 ('Multiple Yes', -5.681405638996317e-09),
 /!Online Security Vec! 0 01
```

```
('OnlineBackup_Yes', 0.0),

('DeviceProtection_Yes', -8.622495181331756e-09),

('TechSupport_Yes', 7.246295879136567e-09),

('PaperlessBilling_Yes', -5.681405638996317e-09),

('Marital_Married', 0.0),

('Marital_Never Married', -8.622495181331756e-09),

('Marital_Separated', 1.1894751702092201e-08)]
```

We are having Difficulties retreiving the P-Values from the OLS Model. The cause could be our method of obtaining dummy variables. We needed to encode categorical variables into dummy variables for them to be formatted for our Mulitple Linear Regresssion Model. We cannot perform backwards selection without P-values. Therefore we will try another method of creating dummy variables and obtaining p-values. We also cannot address interpretation of coefficients until appropriate structure and organization/accuracy is achieved.

We can however gain some insight from our initial model. As we can see our dummy variables are adding significantly more variables to our data, for an efficient model we will drop the dummy variables that will be more detrimental than beneficial. This will include variables like county, which is creating a new variable for every single county. We will also drop our target variable Tenure. Additionally we will drop Interaction, Customer_id, UID, and Churn. These will not continue to our models prediction of Tenure.

Variables Dropped in 2nd Model - Tenure, Interaction, Customer_id, UID, Area, Job, City, County, TimeZone, State, Churn

Second Model- New Strategy for OLS and P-value for Feature Reduction

```
In [21]:
```

df_copy3.head()

Out[21]:

	CaseOrder	Customer_id	Interaction	UID	City	State	County	Zip	Lat
0	1	K409198	aa90260b- 4141-4a24- 8e36- b04ce1f4f77b	e885b299883d4f9fb18e39c75155d990	Point Baker	AK	Prince of Wales- Hyder	99927	56.25100
1	2	S120509	fb76459f- c047-4a9d- 8af9- e0f7d4ac2524	f2de8bef964785f41a2959829830fb8a	West Branch	МІ	Ogemaw	48661	44.32893
2	3	K191035	344d114c- 3736-4be5- 98f7- c72c281e2d35	f1784cfa9f6d92ae816197eb175d3c71	Yamhill	OR	Yamhill	97148	45.35589
3	4	D90850	abfa2b40- 2d43-4994- b15a- 989b8c79e311	dc8a365077241bb5cd5ccd305136b05e	Del Mar	CA	San Diego	92014	32.96687
4	5	K662701	68a861fd- 0d20-4e51- a587- 8a90407ee574	aabb64a116e83fdc4befc1fbab1663f9	Needville	тх	Fort Bend	77461	29.38012
4									<u> </u>

Pre-processing and creating Dummy variables method 2. We are using sklearn's LabelEncoder to pre-process the variables. We will fit them using the lambdha function before we fit them to the model after the test train split

```
In [22]:
```

```
# Categorical boolean mask
categorical_feature_mask = df_copy3.dtypes==object
# filter categorical columns using mask and turn it into a list
```

```
categorical cols = df copy3.columns[categorical feature mask].tolist()
In [23]:
# import labelencoder
from sklearn.preprocessing import LabelEncoder
# instantiate labelencoder object
le = LabelEncoder()
In [24]:
# apply le on categorical feature columns
df copy3[categorical cols] = df copy3[categorical cols].apply(lambda col: le.fit transform
(col))
In [25]:
X=df copy3.drop(["Tenure","Interaction","Customer id","UID","Area","Job","City","County","
TimeZone", "State", "Churn"], axis=1)
Y=df["Tenure"]
In [26]:
X train, X test, y train, y test = train test split(X, Y, test size=0.2, random state=4)
In [27]:
lm = LinearRegression()
lm.fit(X_train,y_train)
print(lm.score(X_test,y_test))
0.9986063818158079
In [28]:
predictions = lm.predict(X test)
def regression results(y true, y pred):
    # Regression metrics
    explained variance=metrics.explained variance score(y true, y pred)
    mean_absolute_error=metrics.mean_absolute_error(y_true, y_pred)
    mse=metrics.mean squared error(y true, y pred)
   # mean squared log error=metrics.mean squared log error(y true, y pred)
    median absolute error=metrics.median absolute error(y true, y pred)
    r2=metrics.r2_score(y_true, y_pred)
    print('explained_variance: ', round(explained_variance, 4))
    #print('mean_squared_log_error: ', round(mean_squared_log_error,4))
    print('r2: ', round(r2,4))
    print('MAE: ', round(mean absolute error, 4))
    print('MSE: ', round(mse, 4))
    print('RMSE: ', round(np.sqrt(mse),4))
regression results (y test, predictions)
explained variance: 0.9986
r2: 0.9986
MAE: 0.8007
MSE: 0.9659
RMSE: 0.9828
In [29]:
residuals = y test - predictions
In [30]:
sns.regplot(x=y test, y=predictions, ci=None, color="m")
Out[30]:
<matplotlib.axes. subplots.AxesSubplot at 0x7fb5ffbb1b90>
```


In [31]:

```
plt.scatter(residuals, predictions)
plt.show()
```


In [32]:

```
X_{train} = np.append (arr=np.ones([X_{train.shape[0],1]}).astype(int), values = X_{train, axis = 1})
```

In [33]:

X.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 39 columns):

#	Column	Non-Nu	ıll Count	Dtype
0	CaseOrder	10000	non-null	int64
1	Zip	10000	non-null	int64
2	Lat	10000	non-null	float64
3	Lng	10000	non-null	float64
4	Population	10000	non-null	int64
5	Children	10000	non-null	int64
6	Age	10000	non-null	int64
7	Income	10000	non-null	float64
8	Marital	10000	non-null	int64
9	Gender	10000	non-null	int64
10	Outage_sec_perweek	10000	non-null	float64
11	Email	10000	non-null	int64
12	Contacts	10000	non-null	int64
13	Yearly_equip_failure	10000	non-null	int64
14	Techie	10000	non-null	int64
15	Contract	10000	non-null	int64
16	Port_modem	10000	non-null	int64
17	Tablet	10000	non-null	int64
18	InternetService	10000	non-null	int64

19	Phone	10000	non-null	int64
20	Multiple	10000	non-null	int64
21	OnlineSecurity	10000	non-null	int64
22	OnlineBackup	10000	non-null	int64
23	DeviceProtection	10000	non-null	int64
24	TechSupport	10000	non-null	int64
25	StreamingTV	10000	non-null	int64
26	StreamingMovies	10000	non-null	int64
27	PaperlessBilling	10000	non-null	int64
28	PaymentMethod	10000	non-null	int64
29	MonthlyCharge	10000	non-null	float64
30	Bandwidth_GB_Year	10000	non-null	float64
31	Item1	10000	non-null	int64
32	Item2	10000	non-null	int64
33	Item3	10000	non-null	int64
34	Item4	10000	non-null	int64
35	Item5	10000	non-null	int64
36	Item6	10000	non-null	int64
37	Item7	10000	non-null	int64
38	Item8	10000	non-null	int64

dtypes: float64(6), int64(33)

memory usage: 3.0 MB

In [34]:

import statsmodels.api as sm

In [35]:

```
X_opt = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29
,30,31,32,33,34,35,36,37,38]
regressor = sm.OLS(y_train, X_train[:,X_opt]).fit()
print(regressor.summary())
```

OLS Regression Results

Dep. Variable:	Tenure	R-squared:	0.999
Model:	OLS	Adj. R-squared:	0.999
Method:	Least Squares	F-statistic:	1.486e+05
Date:	Mon, 30 Aug 2021	Prob (F-statistic):	0.00
Time:	00:08:22	Log-Likelihood:	-11297.
No. Observations:	8000	AIC:	2.267e+04
Df Residuals:	7961	BIC:	2.294e+04
Df Model:	38		

Covariance Type: nonrobust

======	=========	========	-=======	========	========	=======
	coef	std err	t 	P> t	[0.025	0.975]
const	-11.1339	0.193	-57.695	0.000	-11.512	-10.756
x1	3.005e-05	6.98e-06	4.307	0.000	1.64e-05	4.37e-05
x2	8.641e-08	9.78e-07	0.088	0.930	-1.83e-06	2e-06
x3	0.0027	0.002	1.209	0.227	-0.002	0.007
x4	0.0007	0.002	0.366	0.715	-0.003	0.004
x5	-4.695e-07	7.94e-07	-0.591	0.554	-2.03e-06	1.09e-06
x6	-0.3761	0.005	-72.537	0.000	-0.386	-0.366
x7	0.0393	0.001	72.966	0.000	0.038	0.040
x8	-3.346e-07	4e-07	-0.836	0.403	-1.12e-06	4.5e-07
x9	0.0033	0.008	0.425	0.671	-0.012	0.019
x10	-0.5757	0.021	-28.061	0.000	-0.616	-0.535
x11	0.0029	0.004	0.775	0.438	-0.004	0.010
x12	0.0007	0.004	0.202	0.840	-0.007	0.008
x13	0.0032	0.011	0.285	0.776	-0.019	0.025
x14	0.0134	0.017	0.766	0.443	-0.021	0.048
x15	-0.0351	0.030	-1.181	0.238	-0.093	0.023
x16	-0.0048	0.013	-0.360	0.719	-0.031	0.021
x17	0.0259	0.022	1.159	0.246	-0.018	0.070
x18	0.0171	0.024	0.703	0.482	-0.031	0.065
x19	2.9843	0.016	191.773	0.000	2.954	3.015
x20	0.0423	0.038	1.111	0.267	-0.032	0.117
x21	-2.6318	0.032	-81.117	0.000	-2.695	-2.568
x22	-1.0755	0.023	-46.023	0.000	-1.121	-1.030
x23	-2.3376	0.028	-84.290	0.000	-2.392	-2.283
₹ ₹ 🔿 🖊	_1 7120	0 001	_70 016	0 000	_1 761	_1

XZ4	-1.1109	U.U∠4	- / U . O ± O	0.000	-1.101	-1.00/
x25	-0.7639	0.025	-31.129	0.000	-0.812	-0.716
x26	-5.0641	0.038	-134.341	0.000	-5.138	-4.990
x27	-5.3881	0.044	-122.609	0.000	-5.474	-5.302
x28	0.0023	0.023	0.101	0.919	-0.042	0.047
x29	0.0049	0.010	0.469	0.639	-0.016	0.025
x30	0.0542	0.001	75.462	0.000	0.053	0.056
x31	0.0122	9.27e-06	1310.622	0.000	0.012	0.012
x32	0.0502	0.016	3.148	0.002	0.019	0.082
x33	-0.0316	0.015	-2.118	0.034	-0.061	-0.002
x34	-0.0186	0.014	-1.357	0.175	-0.046	0.008
x35	0.0034	0.012	0.277	0.782	-0.021	0.027
x36	-0.0049	0.013	-0.384	0.701	-0.030	0.020
x37	0.0098	0.013	0.752	0.452	-0.016	0.035
x38	-0.0069	0.012	-0.559	0.576	-0.031	0.017
Omnibus:		612	.667 Durbi	 n-Watson:		1.960
Prob(Omnibus	s):	0	.000 Jarque	e-Bera (JB):		218.508
Skew:		0	.122 Prob(JB):		3.56e-48
Kurtosis:		2	.228 Cond.	No.		1.22e+06

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified
- [2] The condition number is large, 1.22e+06. This might indicate that there are strong multicollinearity or other numerical problems.

Our OLS Model is successful in showing our P-values with our new method of creating dummy variables. We will consider this our new Initial Model. We can observe that our model is giving us and output r2 of 0.9986. This tells us that our model is accurate, the regplot shows us the residuals are falling along the prediciton line, this is good affirmation of the model as well. However when we look at the residual scatter plot we can see a discernable pattern. The residuals are grouped in 6 distinct groups, this could mean that the data is skewed or biased in some way, some of the input variables could be impacting each other. We will remedy this by checking for Multicollinearity. We will continue with a Correlation Matrix Heatmap, then Backwards Selection

```
In [36]:
```

```
plt.figure(figsize=(16, 6))
ax = sns.heatmap(df_copy4.corr(), annot=True, fmt='.2f') # Plot of the correlation matrix
bottom, top = ax.get_ylim() # Figure limits
ax.set_ylim(bottom+0.3, top-0.3) # Setting figure limits
plt.title('Correlation Matrix') # Figure title
plt.show()
```



```
In [37]:
```


We will drop Item7, Item1, Outages_sec_perweek,and StreamingMovies because they could cause possible Multicollinearity

Backward Selection

We will Take all the variables with a P-Value above our significance level, .05,out of our dataframe. We will repeat this Process until there are only statistically significant variables left to optimize our Model

x37, x10, x26 dropped first

```
In [38]:
```

```
X_opt = [0,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,29,30,31
,32,33,34,35,36,38]
regressor = sm.OLS(y_train, X_train[:,X_opt]).fit()
print(regressor.summary())
```

OLS Regression Results ______

	Mervations:	Least Squa Ion, 30 Aug 2 00:08	ares F-stat 2021 Prob 3:34 Log-Li 3000 AIC:	ared: R-squared: tistic: (F-statisti	ic):	0.995 0.995 4.744e+04 0.00 -16181. 3.243e+04
Df Residuals:		•	7964 BIC:			3.269e+04
Df Model		,	35			
	nce Type: 	nonrol				
======	coef		t	P> t	[0.025	0.975]
const	-5.1297	0.340	-15.093	0.000	-5.796	-4.463
x1	0.0001	1.28e-05	8.474	0.000	8.34e-05	0.000
x2	-1.318e-06	1.8e-06	-0.732	0.464	-4.85e-06	2.21e-06
x3	-0.0010	0.004	-0.238	0.812	-0.009	0.007
x4	-0.0005	0.003	-0.167	0.867	-0.007	0.006
x5	-1.42e-06	1.46e-06	-0.972	0.331	-4.29e-06	1.44e-06
x6	-0.3701	0.010	-38.771	0.000	-0.389	-0.351
x7	0.0393	0.001	39.649	0.000	0.037	0.041
x8	-2.852e-08	7.37e-07	-0.039	0.969	-1.47e-06	1.42e-06
x9	0.0033	0.014	0.231	0.817	-0.025	0.031
x10	0.0035	0.007	0.503	0.615	-0.010	0.017
x11	-0.0019	0.007	-0.274	0.784	-0.015	0.012
x12	0.0319	0.021	1.541	0.123	-0.009	0.073
x13	-0.0364	0.032	-1.131	0.258	-0.099	0.027
x14	0.0093	0.055	0.171	0.864	-0.098	0.117
x15	0.0028	0.025	0.113	0.910	-0.045	0.051
x16	0.0054	0.041	0.133	0.894	-0.075	0.086
x17	-0.0474	0.045	-1.058	0.290	-0.135	0.040
x18	2.6758	0.028	94.446	0.000	2.620	2.731
x19	-0.0095	0.070	-0.135	0.892	-0.147	0.128
x20	-0.1097	0.049	-2.252	0.024	-0.205	-0.014
x21	-0.8320	0.043	-19.405	0.000	-0.916	-0.748
x22	-0.5539	0.045	-12.365	0.000	-0.642	-0.466
x23	-0.7546	0.043	-17.735	0.000	-0.838	-0.671
x24	0.1652	0.043	3.809	0.000	0.080	0.250
x25	-1.2846	0.058	-22.118	0.000	-1.399	-1.171
x26	0.1020	0.042	2.443	0.015	0.020	0.184
x27	0.0146	0.019	0.762	0.446	-0.023	0.052
x28	-0.0234	0.001	-29.715	0.000	-0.025	-0.022
x29	0.0120	1.7e-05	707.992	0.000	0.012	0.012
~ 3∩	0 0791	0 020	2 702	0 007	0 021	0 135

Warnings	:

Kurtosis:

Omnibus:

Skew:

Prob(Omnibus):

x30

x31

x32

x33

x34 x35

2180.714 Durbin-Watson: 0.000 Jarque-Bera (JB):

0.133 Prob(JB):

1.969 Cond. No.

2.702

-0.268

-1.512

 0.0115
 0.022
 0.513
 0.608

 0.0167
 0.023
 0.724
 0.469

 -0.0115
 0.022
 -0.515
 0.607

0.007

0.788

0.021

-0.061

-0.087

-0.032

-0.028 -0.055

0.135

0.046

0.011

0.055

0.062

0.032

377.751

9.38e-83

1.16e+06

0.029 0.027

0.025

Final Backward Selection Model

0.0781

-0.0073 -0.0380

In [39]:

```
X \text{ opt} = [0,1,6,7,19,22,23,24,25,27,28,30,31,32]
regressor = sm.OLS(y_train, X_train[:,X_opt]).fit()
print(regressor.summary())
```

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified

^[2] The condition number is large, 1.16e+06. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

Dep. Variable:	Tenure	R-squared:	0.995
Model:	OLS	Adj. R-squared:	0.995
Method:	Least Squares	F-statistic:	1.278e+05
Date:	Mon, 30 Aug 2021	Prob (F-statistic):	0.00
Time:	00:08:34	Log-Likelihood:	-16190.
No. Observations:	8000	AIC:	3.241e+04
Df Residuals:	7986	BIC:	3.251e+04
Df Model:	13		

nonrobust

=========	 :========		:========	========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	-5.0853	0.139	-36 . 565	0.000	-5.358	-4.813
x1	0.0001	1.28e-05	8.460	0.000	8.31e-05	0.000
x2	-0.3697	0.010	-38.781	0.000	-0.388	-0.351
x3	0.0393	0.001	39.727	0.000	0.037	0.041
x4	2.6733	0.028	94.568	0.000	2.618	2.729
x5	-0.8266	0.043	-19.328	0.000	-0.910	-0.743
x6	-0.5314	0.044	-12.149	0.000	-0.617	-0.446
x7	-0.7402	0.042	-17.552	0.000	-0.823	-0.658
x8	0.1749	0.043	4.068	0.000	0.091	0.259
x9	-1.2385	0.054	-22.967	0.000	-1.344	-1.133
x10	0.1011	0.042	2.426	0.015	0.019	0.183
x11	-0.0242	0.001	-36.539	0.000	-0.026	-0.023
x12	0.0120	1.7e-05	708.981	0.000	0.012	0.012
x13	0.0470	0.020	2.376	0.018	0.008	0.086
========					========	=======
Omnibus:		2437.	416 Durbir	n-Watson:		2.008
Prob(Omnibus	;):	0.	000 Jarque	e-Bera (JB)	:	393.187
Skew:		0.	138 Prob (3	JB):		4.17e-86
Kurtosis:		1.	950 Cond.	No.		4.79e+04

Warnings:

Covariance Type:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified
- [2] The condition number is large, 4.79e+04. This might indicate that there are strong multicollinearity or other numerical problems.

In [40]:

X=df_copy4.drop(["Tenure","Lat","Lng","Population","Children","Marital","Gender","Outage_s
ec_perweek","Email","Contacts","Yearly_equip_failure","Techie","Contract","Port_modem","Ta
blet","InternetService","Multiple","OnlineSecurity","StreamingMovies","MonthlyCharge","Ite
m3","Item4","Item5","Item6","Item7","Item8"], axis=1)
Y=df["Tenure"]

In [41]:

X.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 24 columns):

#	Column	Non-Null Count	Dtype
0	CaseOrder	10000 non-null	int64
1	Customer_id	10000 non-null	int64
2	Interaction	10000 non-null	int64
3	UID	10000 non-null	int64
4	City	10000 non-null	int64
5	State	10000 non-null	int64
6	County	10000 non-null	int64
7	Zip	10000 non-null	int64
8	Area	10000 non-null	int64
9	TimeZone	10000 non-null	int64
10	Job	10000 non-null	int64
11	Age	10000 non-null	int64
12	Income	10000 non-null	float64
13	Churn	10000 non-null	int64
1 /	Dhana	10000 11	: ~ _ _ / /

```
17 TechSupport
                         10000 non-null int64
 18 StreamingTV
 19 PaperlessBilling
                         10000 non-null int64
 20 PaymentMethod 10000 non-null int64
21 Bandwidth_GB_Year 10000 non-null float64
                         10000 non-null int64
 22 Item1
 23 Item2
                         10000 non-null int64
dtypes: float64(2), int64(22)
memory usage: 1.8 MB
After dropping the variables with a p-value above the 0.05 threshold we are left with the above 24 variables, they
are a mixture of categorical and continious variabes. These will comprise our final model, this model should
theoretically be the most accurate
In [42]:
X train, X test, y train, y test = train test split(X, Y, test size=0.2, random state=4)
In [43]:
lm = LinearRegression()
lm.fit(X train, y train)
print(lm.score(X test, y test))
0.9891169893383468
In [44]:
predictions = lm.predict(X test)
def regression_results(y_true, y_pred):
    # Regression metrics
    explained variance=metrics.explained variance score(y true, y pred)
    mean absolute error=metrics.mean absolute error(y true, y pred)
    mse=metrics.mean squared error(y true, y pred)
   # mean squared log error=metrics.mean squared log error(y true, y pred)
    median absolute error=metrics.median absolute error(y true, y pred)
    r2=metrics.r2 score(y true, y pred)
    print('explained variance: ', round(explained variance, 4))
    #print('mean_squared_log_error: ', round(mean_squared_log_error,4))
    print('r2: ', round(r2,4))
    print('MAE: ', round(mean_absolute_error,4))
    print('MSE: ', round(mse, \overline{4}))
    print('RMSE: ', round(np.sqrt(mse),4))
regression results (y test, predictions)
explained variance: 0.9891
r2: 0.9891
MAE: 2.2869
MSE: 7.5425
RMSE: 2.7464
In [45]:
residuals = y_test - predictions
In [46]:
sns.regplot(x=y test, y=predictions, ci=None, color="m")
Out[46]:
```

<matplotlib.axes. subplots.AxesSubplot at 0x7fb5e7eb5950>

80 70 10000 non-null int64

10000 non-null int64

16 DeviceProtection 10000 non-null int64

14 Flloue

15 OnlineBackup


```
In [47]:
```

```
plt.scatter(residuals, predictions)
plt.show()
```


In []:

Forward Selection

We will start by dropping the same base variables as the backward selection models and the begin by only including the demographic variables. We will then determine which demographic variable should be included in our final reduced model.

```
In [48]:
```

```
X=df_copy5.drop(["Tenure","CaseOrder","Customer_id","Interaction","UID","Income","Churn","
Outage_sec_perweek","Email","Contacts","Yearly_equip_failure","Techie","Port_modem","Contr
act","Tablet","InternetService","Phone","Multiple","OnlineSecurity","OnlineBackup","Device
Protection","TechSupport","StreamingTV","StreamingMovies","PaperlessBilling","PaymentMetho
d","MonthlyCharge","Bandwidth_GB_Year","Item1","Item2","Item3","Item4","Item5","Item6","I
tem7","Item8"], axis=1)
Y=df["Tenure"]
```

```
In [49]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=4)
```

In [50]:

```
lm = LinearRegression()
lm.fit(X_train,y_train)
print(lm.score(X_test,y_test))
```

-0.002513173792250356

We've Observed a negative R2 by exluding performance and technology metrics and only inculding demographic variables

```
X.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
 # Column Non-Null Count Dtype
 0
   City
                 10000 non-null int64
   State
                10000 non-null int64
 1
   County
                10000 non-null int64
 2
                  10000 non-null int64
   Zip
 3
    Lat 10000 non-null float64
Lng 10000 non-null float64
Population 10000 non-null int64
 5
 6
   Area 10000 non-null int64
TimeZone 10000 non-null int64
 7
 8
 9
    Job
                10000 non-null int64
 10 Children 10000 non-null int64
 11 Age
                 10000 non-null int64
12 Marital 10000 non-null int64
13 Gender 10000 non-null int64
dtypes: float64(2), int64(12)
memory usage: 1.1 MB
```

We will check to see which of these demographic variables is most important and retain only those for our final model. We must keep in mind that the dummy variables that wil drastically increase the number of variables wil not be beneficial to our model and we will not try to incorporate them. We wil intuitively choose the variables that we think are most beneficial and integral. From the above remaining variables we will test Income, Gender, Marital, and Population to see how they impact the model's R2

```
In [52]:
#### Dropping Income
```

```
In [53]:
```

In [51]:

```
X=df_copy5.drop(["Income", "Tenure", "CaseOrder", "Customer_id", "Interaction", "UID", "Income",
    "Churn", "Outage_sec_perweek", "Email", "Contacts", "Yearly_equip_failure", "Techie", "Port_mode
    m", "Contract", "Tablet", "InternetService", "Phone", "Multiple", "OnlineSecurity", "OnlineBackup
    ","DeviceProtection", "TechSupport", "StreamingTV", "StreamingMovies", "PaperlessBilling", "Pay
    mentMethod", "MonthlyCharge", "Bandwidth_GB_Year", "Item1", "Item2", "Item3", "Item4", "Item5", "
    Item6", "Item7", "Item8"], axis=1)
    Y=df["Tenure"]
```

```
In [54]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=4)
```

```
In [55]:
```

```
lm = LinearRegression()
lm.fit(X_train,y_train)
print(lm.score(X_test,y_test))
```

-0.002513173792250356

No impact

```
In [ ]:
```

```
X=df copy5.drop(["Gender","Income","Tenure","CaseOrder","Customer id","Interaction","UID",
"Income", "Churn", "Outage sec perweek", "Email", "Contacts", "Yearly equip failure", "Techie", "
Port_modem", "Contract", "Tablet", "InternetService", "Phone", "Multiple", "OnlineSecurity", "OnlineBackup", "DeviceProtection", "TechSupport", "StreamingTV", "StreamingMovies", "PaperlessBill
ing", "PaymentMethod", "MonthlyCharge", "Bandwidth GB Year", "Item1", "Item2", "Item3", "Item4",
"Item5", "Item6", "Item7", "Item8"], axis=1)
Y=df["Tenure"]
In [57]:
X train, X test, y train, y test = train test split(X, Y, test size=0.2, random state=4)
In [58]:
lm = LinearRegression()
lm.fit(X train, y train)
print(lm.score(X test, y test))
-0.0029906807478796704
Dropping Gender decreased our score by .0004, we will consider it significant
In [ ]:
In [59]:
#### Dropping Marital and Population
In [60]:
X=df copy5.drop(["Marital", "Population", "Gender", "Income", "Tenure", "CaseOrder", "Customer i
d", "Interaction", "UID", "Income", "Churn", "Outage sec perweek", "Email", "Contacts", "Yearly eq
uip_failure", "Techie", "Port_modem", "Contract", "Tablet", "InternetService", "Phone", "Multiple
", "OnlineSecurity", "OnlineBackup", "DeviceProtection", "TechSupport", "StreamingTV", "StreamingTV", "StreamingTV", "OnlineBackup", "DeviceProtection", "TechSupport", "StreamingTV", "St
gMovies", "PaperlessBilling", "PaymentMethod", "MonthlyCharge", "Bandwidth GB Year", "Item1", "I
tem2", "Item3", "Item4", "Item5", "Item6", "Item7", "Item8"], axis=1)
Y=df["Tenure"]
In [61]:
X train, X test, y train, y test = train test split(X, Y, test size=0.2, random state=4)
In [62]:
lm = LinearRegression()
lm.fit(X train,y_train)
print(lm.score(X test, y test))
-0.002294580726309059
```

Dropping these variables increased our R2, we will exlude them from the Final Model

In [56]:

We have concluded that out of all the Demographic variables We will include Gender, there is a possibility that Income can tie into other predictor variables and another combination of variables in the final model. We will intuitively decide to keep income in our final model

```
In []:
```

We will now toot the norfermence metrics in femulard calcution feebien to

we will now test the performance metrics in forward selection rashion to determine which of these variables are significant enough to include in our Final Model. We will start with our base drop statement from our backwards selection and move forward from there.

We will intuitively choose performance metric variables and test them for impact in our regression model. We will choose InternetService,Multiple,OnlineSecurit, OnlineBackup, DeviceProtection, StreamingTV, StreamingMovies, MonthlyCharge, Bandwidth_GB_Year, and the Items. We will exclude a few of the items to decrease possibilty of multicollinearity that we observed could be possible from our Correlation Matrix Heatmap

```
In [ ]:
```

Dropping InternetService

```
In [63]:

X=df_copy6.drop(["InternetService", "Tenure", "Interaction", "Customer_id", "UID", "Area", "Job"
    ,"City", "County", "TimeZone", "State", "Churn"], axis=1)
Y=df["Tenure"]
```

```
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=4)
```

```
In [65]:

lm = LinearRegression()
lm.fit(X_train, y_train)
print(lm.score(X_test, y_test))
```

0.9920579404425306

In [64]:

has negative impact when not included in model when compared to initial backward selection model, has a difference of .005, we will include in our final model

```
In [ ]:
```

Dropping Mulitple

In [66]:

```
X=df_copy6.drop(["Multiple","InternetService","Tenure","Interaction","Customer_id","UID","
Area","Job","City","County","TimeZone","State","Churn"], axis=1)
Y=df["Tenure"]
In [67]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=4)
```

```
In [68]:

lm = LinearRegression()
lm.fit(X_train,y_train)
print(lm.score(X_test,y_test))
```

0.9914289068373454

Has an impact, we will include in final model

```
In [ ]:
```

```
Droppoing Online Security
In [69]:
X=df copy6.drop(["OnlineSecurity", "Multiple", "InternetService", "Tenure", "Interaction", "Cus
tomer id", "UID", "Area", "Job", "City", "County", "TimeZone", "State", "Churn"], axis=1)
Y=df["Tenure"]
In [70]:
X_train, X_test, y_train, y_test = train_test_split(X, Y, test size=0.2, random state=4)
In [71]:
lm = LinearRegression()
lm.fit(X train, y train)
print(lm.score(X test, y test))
0.9912530574260171
Has an impact, we will include in final model
In [ ]:
Dropping OnlineBackup
In [72]:
X=df copy6.drop(["OnlineBackup","OnlineSecurity","Multiple","InternetService","Tenure","In
teraction", "Customer id", "UID", "Area", "Job", "City", "County", "TimeZone", "State", "Churn"],
axis=1)
Y=df["Tenure"]
In [73]:
X train, X test, y train, y test = train test split(X, Y, test size=0.2, random state=4)
In [74]:
```

```
lm = LinearRegression()
lm.fit(X_train,y_train)
print(lm.score(X_test,y_test))
```

0.9908223077207488

Has an impact, we will include in final model

```
In [ ]:
```

Dropping DeviceProtection

```
In [75]:
```

```
X=df_copy6.drop(["DeviceProtection","OnlineBackup","OnlineSecurity","Multiple","InternetSe
rvice","Tenure","Interaction","Customer_id","UID","Area","Job","City","County","TimeZone",
"State","Churn"], axis=1)
Y=df["Tenure"]
```

In [76]:

```
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=4)
In [77]:
lm = LinearRegression()
lm.fit(X_train,y_train)
print(lm.score(X test, y test))
0.9905373494469566
Has an impact, we will include in final model
In [ ]:
Dropping StreamingTV and StreamingMovies
In [78]:
X=df_copy6.drop(["StreamingTV", "StreamingMovies", "DeviceProtection", "OnlineBackup", "Online
Security", "Multiple", "InternetService", "Tenure", "Interaction", "Customer id", "UID", "Area", "
Job", "City", "County", "TimeZone", "State", "Churn"], axis=1)
Y=df["Tenure"]
In [79]:
X train, X test, y train, y test = train test split(X, Y, test size=0.2, random state=4)
In [80]:
lm = LinearRegression()
lm.fit(X train, y train)
print(lm.score(X test, y test))
0.9894164863525595
Has an impact, we will include in final model
In [ ]:
Dropping MonthlyCharge
In [81]:
X=df copy6.drop(["MonthlyCharge", "StreamingTV", "StreamingMovies", "DeviceProtection", "Onlin
eBackup", "OnlineSecurity", "Multiple", "InternetService", "Tenure", "Interaction", "Customer id
","UID", "Area", "Job", "City", "County", "TimeZone", "State", "Churn"], axis=1)
Y=df["Tenure"]
In [82]:
X train, X test, y train, y test = train test split(X, Y, test size=0.2, random state=4)
In [83]:
lm = LinearRegression()
lm.fit(X train, y train)
print(lm.score(X_test,y_test))
```

Has an impact, we will include in final model

0.9855446518038253

```
In [ ]:
Dropping Bandwidth_GB_Year
In [84]:
X=df copy6.drop(["Bandwidth GB Year", "MonthlyCharge", "StreamingTV", "StreamingMovies", "Devi
ceProtection", "OnlineBackup", "OnlineSecurity", "Multiple", "InternetService", "Tenure", "Inter
action", "Customer id", "UID", "Area", "Job", "City", "County", "TimeZone", "State", "Churn"], axi
s = 1)
Y=df["Tenure"]
In [85]:
X train, X test, y train, y test = train test split(X, Y, test size=0.2, random state=4)
In [86]:
lm = LinearRegression()
lm.fit(X train, y train)
print(lm.score(X test, y test))
0.6900707021439811
Has the most significant impact out of all variables in our Model Feature selection. We will definitely include in our
final model
In [ ]:
Dropping Item2-5 and Item7, We believe Items1 and Item7 can cause Multicollinearity
In [87]:
X=df copy6.drop(["Item2","Item3","Item4","Item5","Bandwidth GB Year","MonthlyCharge","Str
eamingTV", "StreamingMovies", "DeviceProtection", "OnlineBackup", "OnlineSecurity", "Multiple",
"InternetService", "Tenure", "Interaction", "Customer id", "UID", "Area", "Job", "City", "County",
"TimeZone", "State", "Churn"], axis=1)
Y=df["Tenure"]
In [88]:
X train, X test, y train, y test = train test split(X, Y, test size=0.2, random state=4)
In [89]:
lm = LinearRegression()
lm.fit(X_train,y_train)
print(lm.score(X test, y test))
0.6900279546048143
```

Has an impact, we will include in final model

In []:

Final Model with Forward Selected Variables

```
X=df.drop(["Tenure","Interaction","Customer id","UID","Area","Job","City","County","TimeZo
ne", "State", "Churn", "CaseOrder", "Zip", "Lng", "Lat", "Population", "Children", "Age", "CaseOrde
r", "Zip", "Lat", "Lng", "Population", "Children", "Age", "Marital", "Outage_sec_perweek", "Email"
, "Contacts", "Yearly equip failure", "Techie", "Port modem", "Tablet", "Phone", "TechSupport", "P
aperlessBilling", "PaymentMethod", "Item1", "Item6", "Item8"], axis=1)
Y=df["Tenure"]
In [91]:
X.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 17 columns):
 # Column
                       Non-Null Count Dtype
___
    _____
                        _____
 0
   Income
                       10000 non-null float64
                       10000 non-null int64
 1 Gender
   Contract
                       10000 non-null int64
   InternetService 10000 non-null int64
                       10000 non-null int64
 4 Multiple
   Multiple
OnlineSecurity 10000 non-null int64
 5
   DeviceProtection 10000 non-null int64
 7
8 StreamingTV
9 StreamingMovies
10 MonthlyCharge
                        10000 non-null int64
                       10000 non-null int64
 10 MonthlyCharge 10000 non-null float64
11 Bandwidth_GB_Year 10000 non-null float64
 12 Item2
                        10000 non-null int64
13 Item3
                        10000 non-null int64
 14 Item4
                        10000 non-null int64
15 Item5
                        10000 non-null int64
16 Item7
                        10000 non-null int64
dtypes: float64(3), int64(14)
memory usage: 1.3 MB
In [92]:
X train, X test, y train, y test = train test split(X, Y, test size=0.2, random state=4)
In [931:
lm = LinearRegression()
lm.fit(X train, y train)
print(lm.score(X test, y test))
0.9965911011759179
In [94]:
predictions = lm.predict(X test)
def regression_results(y_true, y_pred):
    # Regression metrics
    explained variance=metrics.explained variance score(y true, y pred)
    mean absolute error=metrics.mean absolute error(y true, y pred)
   mse=metrics.mean squared error(y true, y pred)
   # mean squared log error=metrics.mean squared log error(y true, y pred)
   median absolute error=metrics.median absolute error(y true, y pred)
    r2=metrics.r2_score(y_true, y_pred)
    print('explained variance: ', round(explained variance, 4))
    #print('mean_squared_log_error: ', round(mean_squared_log_error,4))
    print('r2: ', round(r2, 4))
    print('MAE: ', round(mean_absolute_error,4))
    print('MSE: ', round(mse,\frac{1}{4}))
    print('RMSE: ', round(np.sqrt(mse),4))
regression results(y_test, predictions)
explained variance: 0.9966
```

r2: 0.9966
MAE: 1.2319
MSE: 2.3625
RMSE: 1.5371

In [95]:
residuals = y_test - predictions

```
In [96]:
```

```
sns.regplot(x=y_test, y=predictions, ci=None, color="m")
```

Out[96]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fb5e885b610>

In [97]:

```
plt.scatter(residuals, predictions)
plt.show()
```


Final Backward and Forward Selection Model Comparison

Initial Backward Model

```
In [98]:
```

```
X=df_copy3.drop(["Tenure","Interaction","Customer_id","UID","Area","Job","City","County","
TimeZone","State","Churn"], axis=1)
Y=df["Tenure"]
```

```
In [99]:
```

```
X train, X test, y train, y test = train test split(X, Y, test size=0.2, random state=4)
```

```
In [100]:
lm = LinearRegression()
lm.fit(X train, y train)
print(lm.score(X test, y test))
0.9986063818158079
In [101]:
predictions = lm.predict(X test)
def regression_results(y_true, y_pred):
    # Regression metrics
    explained variance=metrics.explained variance score(y true, y pred)
    mean_absolute_error=metrics.mean_absolute_error(y_true, y_pred)
   mse=metrics.mean_squared_error(y_true, y_pred)
   # mean_squared_log_error=metrics.mean_squared_log_error(y_true, y_pred)
   median absolute error=metrics.median absolute error(y true, y pred)
   r2=metrics.r2 score(y true, y pred)
   print('explained_variance: ', round(explained variance, 4))
    #print('mean_squared_log_error: ', round(mean_squared_log_error,4))
    print('r2: ', round(r2,4))
   print('MAE: ', round(mean_absolute_error, 4))
    print('MSE: ', round(mse, 4))
    print('RMSE: ', round(np.sqrt(mse),4))
regression_results(y_test, predictions)
explained variance: 0.9986
r2: 0.9986
MAE: 0.8007
MSE: 0.9659
RMSE: 0.9828
In [102]:
residuals = y test - predictions
In [103]:
sns.regplot(x=y test, y=predictions, ci=None, color="m")
Out[103]:
<matplotlib.axes. subplots.AxesSubplot at 0x7fb5e86a2310>
 70
 60
 50
 40
 30
 20
```

```
10
 0
                       20
                                        40
                                                           60
                                                                    70
                                   Tenure
```

```
In [104]:
```

```
plt.scatter(residuals, predictions)
plt.show()
```

```
60 - 50 - 40 - 30 - 20 - 10 - 2 - 1 0 1 2 3
```

```
In [ ]:
```

```
In [ ]:
```

In []:

Final Backward Model

In [105]:

X=df_copy4.drop(["Tenure","Lat","Lng","Population","Children","Marital","Gender","Outage_s
ec_perweek","Email","Contacts","Yearly_equip_failure","Techie","Contract","Port_modem","Ta
blet","InternetService","Multiple","OnlineSecurity","StreamingMovies","MonthlyCharge","Ite
m3","Item4","Item5","Item6","Item7","Item8"], axis=1)
Y=df["Tenure"]

In [106]:

X.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 24 columns):

•	Dtype
1000011	
10000 non-null	int64
10000 non-null	float64
10000 non-null	int64
10000 non-null	float64
10000 non-null	int64
10000 non-null	int64
t64(22)	
	10000 non-null

```
In [107]:
X train, X test, y train, y test = train test split(X, Y, test size=0.2, random state=4)
In [108]:
lm = LinearRegression()
lm.fit(X_train,y_train)
print(lm.score(X_test,y_test))
0.9891169893383468
In [109]:
predictions = lm.predict(X test)
def regression results(y true, y pred):
    # Regression metrics
    explained variance=metrics.explained variance score(y true, y pred)
    mean absolute error=metrics.mean absolute error(y true, y pred)
    mse=metrics.mean squared error(y true, y pred)
   # mean squared log error=metrics.mean squared log error(y true, y pred)
    median absolute error=metrics.median absolute error(y true, y pred)
    r2=metrics.r2 score(y true, y pred)
    print('explained variance: ', round(explained variance, 4))
    #print('mean_squared_log_error: ', round(mean_squared_log_error,4))
    print('r2: ', round(r2,4))
    print('MAE: ', round(mean_absolute_error, 4))
    print('MSE: ', round(mse, 4))
    print('RMSE: ', round(np.sqrt(mse),4))
regression results (y test, predictions)
explained variance: 0.9891
r2: 0.9891
MAE:
     2.2869
MSE: 7.5425
RMSE: 2.7464
In [110]:
residuals = y test - predictions
In [111]:
sns.regplot(x=y test, y=predictions, ci=None, color="m")
Out[111]:
<matplotlib.axes. subplots.AxesSubplot at 0x7fb5e93ed910>
 80
 70
 60
 50
 40
 30
 20
10
 0
        10
              20
                                       70
```

plt.scatter(residuals, predictions)

In [112]:

Tenure

```
plt.show()
```


In []:

Forward Model

In [113]:

```
X=df_copy7.drop(["Tenure","Interaction","Customer_id","UID","Area","Job","City","County","
TimeZone","State","Churn","CaseOrder","Zip","Lng","Lat","Population","Children","Age","Ca
seOrder","Zip","Lat","Lng","Population","Children","Age","Marital","Outage_sec_perweek","E
mail","Contacts","Yearly_equip_failure","Techie","Port_modem","Tablet","Phone","TechSuppor
t","PaperlessBilling","PaymentMethod","Item1","Item6","Item8"], axis=1)
Y=df["Tenure"]
```

In [114]:

```
X.info()
```

10000 non-null int64 1 Gender 10000 non-null int64 Contract 10000 non-null 3 InternetService int64 10000 non-null int64 Multiple 5 OnlineSecurity 10000 non-null int64 6 10000 non-null int64 OnlineBackup 7 10000 non-null int64 DeviceProtection 8 10000 non-null int64 StreamingTV 9 StreamingMovies 10000 non-null int64 10 MonthlyCharge 10000 non-null float64 11 Bandwidth GB Year 10000 non-null float64 12 Item2 10000 non-null int64 13 Item3 10000 non-null int64 14 Item4 10000 non-null int64 15 Item5 10000 non-null int64 16 Item7 10000 non-null int64

dtypes: float64(3), int64(14)

memory usage: 1.3 MB

In [115]:

```
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=4)
```

In [116]:

```
lm = LinearRegression()
```

```
lm.fit(X_train,y_train)
print(lm.score(X_test,y_test))
0.9965911011759179
In [117]:
predictions = lm.predict(X test)
def regression results(y true, y pred):
    # Regression metrics
    explained_variance=metrics.explained_variance_score(y_true, y_pred)
    mean_absolute_error=metrics.mean_absolute_error(y_true, y_pred)
   mse=metrics.mean squared error(y true, y pred)
   # mean squared log error=metrics.mean squared log error(y true, y pred)
   median absolute error=metrics.median absolute error(y true, y pred)
    r2=metrics.r2 score(y true, y pred)
    print('explained variance: ', round(explained variance, 4))
    #print('mean_squared_log_error: ', round(mean_squared_log_error,4))
    print('r2: ', round(r2,4))
    print('MAE: ', round(mean_absolute_error,4))
    print('MSE: ', round(mse, 4))
    print('RMSE: ', round(np.sqrt(mse),4))
regression results (y test, predictions)
explained variance: 0.9966
r2: 0.9966
MAE: 1.2319
MSE: 2.3625
RMSE: 1.5371
In [118]:
residuals = y test - predictions
In [119]:
sns.regplot(x=y test, y=predictions, ci=None, color="m")
Out[119]:
<matplotlib.axes. subplots.AxesSubplot at 0x7fb5e89a0090>
 70
60
 50
 40
 30
 20
10
 0
    0
        10
              20
                   30
                        40
                             50
                                  60
                                        70
                     Tenure
In [120]:
plt.scatter(residuals, predictions)
plt.show()
 70
 60
 50
```

```
40 -

30 -

20 -

10 -

-6 -4 -2 0 2 4
```

```
In [121]:
print(lm.coef , lm.intercept )
[-7.17686697e-07 -5.82600576e-01 -2.45889687e-02 2.97045812e+00
 -2.35260583e+00 -1.09786603e+00 -2.17154894e+00 -1.60262016e+00
 -4.74865031e+00 -4.99956239e+00 4.71027134e-02 1.21764063e-02
 -3.55432067e-04 -6.62759677e-03 2.44849274e-02 -3.60619790e-03
 -2.38043125e-031 -9.246391167714258
In [122]:
print("Intercept: ", lm.intercept )
print("Coefficients:")
list(zip(X, lm.coef ))
Intercept: -9.246391167714258
Coefficients:
Out[122]:
[('Income', -7.176866971400995e-07),
 ('Gender', -0.582600576431083),
 ('Contract', -0.024588968737316752),
 ('InternetService', 2.9704581221687603),
 ('Multiple', -2.352605828379221),
 ('OnlineSecurity', -1.0978660256712438),
 ('OnlineBackup', -2.1715489405226625),
 ('DeviceProtection', -1.6026201642220461),
 ('StreamingTV', -4.748650312242773),
 ('StreamingMovies', -4.999562393357259),
 ('MonthlyCharge', 0.04710271336936262),
 ('Bandwidth GB Year', 0.01217640634538193),
 ('Item2', -0.00035543206676477603),
 ('Item3', -0.00662759676793848),
 ('Item4', 0.02448492736723005),
 ('Item5', -0.0036061979040460193),
 ('Item7', -0.002380431245633076)]
```

We write the Multiple Linear Regression Equation as follows

Tenure = -9.2464 - (-7.1768e07 *Income)-(-0.5826* Gender)-(-0.0245 *Contract)- (2.9704* InternetService)-(-2.3526 *Mulitple)-(-1.0978* OnlineSecurity)-(-2.1715 *OnlineBackup)- (-1.6026* DeviceProtection)-(-4.7486 *StreamingTV)-(-4.7486* StreamingMovies)- (0.0471 *MonthlyCharge)-(0.0121* Bandwidth_GB_Year)-(-0.0003 *Item2)- (-0.0066* Item3)-(0.0244 *Item4)-(-0.0036* Item5)- (-0.0023 * Item7)

Comparison of Initial Backward Selection Model, Final Backward Selection Model, and Final Forward Selection Model

Our initial backward selection model had a higher R2 and lower MAE, MSE, and RMSE. Taking this consideration it also had some discernable patterns in the residual scatterplot, taking away from the integrity of the model, as the predictor variables might bet correlated. The points however did fall tighter on the prediction line in the reg plot when compared to our final backward selection model. The Final forward selection model was created to remedy these issues and gain greater insight. In our final forward model we can observe a higher R2 at .9966, when compared to the final backward model. This model also has a tighter fit on the reg plot prediction line than the previous models, and also has no discernable patterns within the residual scatterplot. The Final Forward Model is the most Accurate and Reliable Model

In linear regression, coefficients are the values that multiply the predictor values. The sign of each coefficient indicates the direction of the relationship between a predictor variable and the response variable. A positive sign indicates that as the predictor variable increases, the response variable also increases. This is significant because we can see what variables have the strongest correlation. In this case we can observe that InternetService, MonthlyCharge, and Bandwidth have the highest values. Our forward selection process revealed that Bandwidth_GB_Year had the most significant impact on Tenure, we can also see that pattern reveal itself in Correlation Matrix. We also see now that even though backward selection was successful for feature selection it did not necessarily give us the insight about the input variables, only the desired result, that is one drawback about utilizing only one selection method.

The aformentioned variables can be taken into consideration when creating future packages, or when determining where to allocate resources for the company to make a return on investment. If the Y value, Tenure, is responsive to these variables. We can increase Tenure by working with and around these variables.

A limitation of Multiple Linear Regression is the quality of the data and the uniqueness of it. We reduced our data with a correlation matrix but it is still hard to determine with certainty whether the independent variables are connected in some way. We are equiped with our understanding of the uniqueness of the data, and further investigation is required to determine if the data in correlated in ways that we did not quite frame for the question at hand. Another limitation is that the quality of the input variables determine the quality of the results. Our most significant variable is Bandwidth_GB_Year, other performance metrics are impactful but do not come close. The model relies heavily on this one metric and that takes away from the integrity of the model.

```
In [ ]:
```

Final Dataset

```
In [123]:
```

```
df.drop(["Tenure","Interaction","Customer_id","UID","Area","Job","City","County","TimeZone
","State","Churn","CaseOrder","Zip","Lat","Population","Children","Age","CaseOrder"
,"Zip","Lat","Lng","Population","Children","Age","Marital","Outage_sec_perweek","Email","
Contacts","Yearly_equip_failure","Techie","Port_modem","Tablet","Phone","TechSupport","Pap
erlessBilling","PaymentMethod","Item1","Item6","Item8"],axis=1, inplace=True)
```

Final Dataset df

```
In [124]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 17 columns):
                       Non-Null Count Dtype
    Column
 #
    -----
                        -----
                        10000 non-null float64
 0
    Income
                        10000 non-null int64
 1
     Gender
                        10000 non-null int64
 2
    Contract
    InternetService 10000 non-null int64
Multiple 10000 non-null int64
OnlineSecurity 10000 non-null int64
 3
 4
    OnlineSecurity
 5
                       10000 non-null int64
    OnlineBackup
 6
 7
    DeviceProtection 10000 non-null int64
    StreamingTV 10000 non-null int64
 8
 9
    StreamingMovies 10000 non-null int64
 10 MonthlyCharge 10000 non-null float64
 11 Bandwidth GB Year 10000 non-null float64
 12 Item2
                        10000 non-null int64
 13 Item3
                        10000 non-null int64
                        10000 non-null int64
 14 Item4
 15 Item5
                        10000 non-null int64
 16 Item7
                        10000 non-null int64
dtypes: float64(3), int64(14)
```

```
In [ ]:
```

memory usage: 1.3 MB

In []:		
In []:		
- ()		
In []:		