Ejercicio 4.e

e) Utilice análisis dimensional y el teorema Pi de Vaschy-Buckingham para hallar los exponentes teóricos a y b de las leyes de potencias del punto c), y compárelos con los obtenidos computacionalmente.

7 máx

Variable de interés y parámetros relacionados:

Ymax, v, m, K >>

Matriz dimensional:

	γ_{max}	v	m	K						
М	1	0	1	1						
L	2	1	0	- 1/2	2,	det	=	1/2 +	2	
T	- 2	-1	0	- 2			=	3/2	†	0

Rango de la matria dimensional:

grupos = n - r = 4 - 3 = 1adimensionales

Grupo adimensional: NO hoy más grupos adimensionales

Trus = Trus v m K = cte

 $[\Pi_1] = [\gamma_{\text{max}}][\nu]^{\alpha}[m]^{b}[k]^{c} = M^{\alpha}l^{\alpha}T^{\alpha}$

= MLT-2 LaT-a MM 1-c/2 T-2c = M° L° T°

= M2+b+c L1+a-c/2 T-2-a-2c = M010 T0

Expresión para Ymax:

7mox V -615 m-315 K -2/5 = cte

~ max ~ v 615 m 315 K 215

X K 0.4

Computacional mente hallomos que 7 max x K 3.39645-076998789 mediante análisis dimensional. , lo oval concuerda con lo obtenido

-> t máx

Variable de interés y parámetros relacionados:

tmax, U, m, K 3

Matriz dimensional:

	М	t max	0	m K			Ala .	1					
	T	-1	-1	0 -1/2	. 4	det =	1/2 +	<i>‡</i> 0					
•	v		la mal	nis gimen	nsional:								
		= 3											
# adir	draboz Jraboz	= "	-r	_ 4	- 3 =	1							
			ensional a L	:	NO hay	os adimensio	anales						
[m] ^b [K]'									
				N° L ^{c/2} T									
				c/2 T 1 - a									
	→	ь а	t c = - c/2 = - 1 c =	0	a b	= 1/5 = -215 = 215							
•						13							
				t _{max} :									
	'C mo	X 0	,,,			15 m	L-2/5						
				T Max	d K		N						
C	1.	1 1 .	1 11				-0.3999	314440182036	٥. ١		\	11 .1	
medi	utaciona ante ai	nálisis	dimensio	nal.	jue -	c max ~		,	70 Cra	l concuerda	Cou 10	obtenico	