MAT02034 - Métodos bayesianos para análise de dados

Introdução a computação bayesiana (continuação)

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2022

Introdução

Introdução

Introdução

- Nos exemplos das aulas anteriores, fomos capazes de produzir amostras simuladas diretamente da distribuição a posteriori, uma vez que as distribuições possuíam formas funcionais familiares.
- Poderíamos obter estimativas de Monte Carlo da média a posteriori para qualquer função dos parâmetros de interesse.
- Mas em muitas situações, a distribuição a posteriori não tem uma forma familiar e precisamos usar um algoritmo alternativo para produzir uma amostra simulada.

Amostragem por rejeição

- Um algoritmo geral para simular realizações (aleatórias) de uma dada distribuição de probabilidade é a amostragem de rejeição¹.
- Suponha que desejamos produzir uma amostra independente de uma densidade a posteriori $g(\theta|y)$ em que a constante de normalização pode não ser conhecida.
- ▶ O primeiro passo na amostragem de rejeição é encontrar outra densidade de probabilidade $p(\theta)$ tal que:
 - \blacktriangleright É fácil simular realizações de $p(\theta)$.
 - ▶ A densidade $p(\theta)$ assemelha-se à densidade *a posteriori* de interesse $g(\theta|y)$ em termos de localização e dispersão.
 - Para todo θ e uma constante c, $g(\theta|y) \leq cp(\theta)$.

¹Ou método da rejeição, ou ainda, método da aceitação/rejeição.

Suponha que sejamos capazes de encontrar uma densidade $p(\theta)$ com essas propriedades.

Em seguida, obtém-se as realizações de $g(\theta|y)$ usando o seguinte algoritmo de aceitação/rejeição:

- 1. Simule independentemente θ de $p(\theta)$ e uma variável aleatória uniforme U no intervalo unitário.
- 2. Se $U \leq \frac{g(\theta|y)}{cp(\theta)}$, então **aceite** θ como uma realização da densidade $g(\theta|y)$; caso contrário, **rejeite** θ .
- 3. Continue os passos 1 e 2 do algoritmo até que tenha coletado um número suficiente de θ "aceitos".

Por que esse método funciona? Um cálculo de probabilidade simples mostra que função distribuição acumulada (fda) da variável aleatória aceita, $\Pr\left(\theta_c \leq x \middle| U \leq \frac{g(\theta \mid y)}{cp(\theta)}\right)$, é exatamente o fda de θ .

- A amostragem por rejeição é um dos métodos mais úteis para simular realizações de uma variedade de distribuições.
- A principal tarefa no planejamento de um algoritmo de amostragem por rejeição é encontrar uma **densidade proposta** adequada $p(\theta)$ e uma constante c.
- Na etapa 2 do algoritmo, a probabilidade de aceitar um candidato é dada por $\frac{g(\theta|y)}{co(\theta)}$.
 - Pode-se monitorar o algoritmo calculando a proporção de candidatos que são aceitos; um algoritmo de amostragem por rejeição eficiente tem uma alta taxa de aceitação.
- A escolha ótima para c é $\sup_{\theta} \{g(\theta|y)/p(\theta)\}$, mas mesmo essa escolha pode resultar em um número indesejavelmente grande de rejeições².

 $^{^2 \}text{Um}$ algoritmo que rejeita muitos candidatos é pouco eficiente, e pode resultar em custo de tempo.

- Suponha que estamos estudando a distribuição do número de defeituosos X na produção diária de um produto.
- Considere o modelo $(X|Y,\theta) \sim binomial(Y,\theta)$, em que Y, a produção de um dia, é uma **variável aleatória** com uma distribuição de Poisson com média conhecida λ , e θ é a probabilidade de que qualquer produto seja defeituoso.
- A dificuldade, no entanto, é que Y não é observável, e a inferência deve ser feita apenas com base em X.
- A distribuição a priori é tal que $(\theta|Y=y)\sim Beta(\alpha,\gamma)$, com α e γ conhecidos independentes de Y.

- A análise bayesiana aqui não é um problema particularmente difícil porque a distribuição a posteriori $\theta | X = x$ pode ser obtida da seguinte forma.
- Primeiro, observe que $X|\theta \sim Poisson(\lambda \theta)^3$. Em seguida, $\theta \sim Beta(\alpha, \gamma)$. Portanto,

$$g(\theta|X=x) \propto \exp(-\lambda\theta)\theta^{x+\alpha-1}(1-\theta)^{\gamma-1}, \ 0 \le \theta \le 1.$$

A única dificuldade é que esta não é uma **distribuição padrão** e, portanto, as quantidades *a posteriori* não podem ser obtidas de forma fechada.

³Lembre que
$$\Pr(X = x | \theta, \lambda) = \sum_{y=0}^{\infty} \Pr(X = x, Y = y | \theta, \lambda) = \sum_{y=0}^{\infty} \Pr(X = x | Y = y, \theta, \lambda) \times \Pr(Y = y | \theta, \lambda).$$

- ▶ Observando $g(\theta|X=x)$, uma boa escolha para a distribuição proposta p(theta) deve ser a densidade de $Beta(x+\alpha,\gamma)$.
- ▶ Em nosso exemplo, suponha X=1, $\alpha=1$, $\gamma=49$ e $\lambda=100$.
- ► Note que $c = \sup_{\theta \in [0,1]} \{ \exp(-100\theta) \} = 1$.
- Ainda, $\frac{g(\theta|X=x)}{cp(\theta)} = \exp(-100\theta)$.

```
metodo_rejeicao <- function(x, alpha, gamma, lambda, j = 0){
    repeat{
        j <- j + 1
# 1. Gerar de theta candidado de p e u de U(0,1)
        u <- runif(n = 1, 0, 1)
        theta_cand <- rbeta(
        n = 1, shape1 = x + alpha, shape2 = gamma)
# 2. Aceita theta candidato se u menor ou igual g/cp
        if (u <= exp(-lambda * theta_cand))
            return(c(theta_cand, j))
    }
}</pre>
```

[1] 0.1100461

```
M_alvo <- 10000 # Número de amostras
theta <- c()
M_gerados <- c()
# Loop
for (i in 1:M_alvo){
  aux \leftarrow metodo_rejeicao(x = 1, alpha = 1,
                            gamma = 49, lambda = 100)
  theta[i] <- aux[1]</pre>
  M_gerados[i] <- aux[2]</pre>
taxa_aceita <- M_alvo/sum(M_gerados)</pre>
taxa aceita
```

Amostra da dist. a posteriori

- A partir desta amostra podemos obter estimar a média a posteriori de θ , intervalos de credibilidade, e probabilidades a posteriori.
- O método da rejeição pode ser utilizado para obter amostras de distribuições de qualquer dimensão (desde que p seja uma densidade no mesmo espaço que g).

Amostragem por importância

- Voltemos ao problema básico de calcular uma integral na inferência bayesiana.
- Em muitas situações, a constante de normalização da densidade a posteriori $g(\theta|y)$ será desconhecida, então a média posterior da função $h(\theta)$ será dada pela razão de integrais

$$\mathsf{E}\left[h(\theta)|y\right] = \frac{\int h(\theta)g(\theta|y)d\theta}{\int g(\theta|y)d\theta}.$$

- Se pudéssemos simular uma amostra $\{\theta^j\}$ diretamente da densidade *a posteriori* $g(\theta|y)$, poderíamos aproximar esse valor esperado por uma estimativa de Monte Carlo.
- No caso em que não podemos gerar uma amostra diretamente de $g(\theta|y)$, suponha que podemos construir uma densidade de probabilidade $p(\theta)$ que podemos simular e que se aproxime da densidade a posteriori $g(\theta|y)$.
- Reescrevemos a média a posteriori como

$$\mathsf{E}\left[h(\theta)|y\right] = \frac{\int h(\theta) \frac{\mathsf{g}(\theta|y)}{p(\theta)} p(\theta) d\theta}{\int \frac{\mathsf{g}(\theta|y)}{p(\theta)} p(\theta) d\theta} = \frac{\int h(\theta) w(\theta) p(\theta) d\theta}{\int w(\theta) p(\theta) d\theta},$$

em que $w(\theta) = g(\theta|y)/p(\theta)$ é a função peso.

Se $\theta^1, \ldots, \theta^M$ são uma amostra simulada da densidade de aproximação $p(\theta)$, então a **estimativa de amostragem por importância** da média *a posteriori* é

$$\overline{h}_{AI} = \frac{\sum_{j=1}^{M} h(\theta^j) w(\theta^j)}{\sum_{j=1}^{M} w(\theta^j)}.$$

Esta é chamada de **estimativa de amostragem por importância** porque estamos amostrando valores de θ que são importantes no cálculo das integrais no numerador e no denominador.

- Como na amostragem por rejeição, a principal questão ao planejar uma boa estimativa de amostragem por importância é encontrar uma densidade de amostragem adequada $p(\theta)$.
- Essa densidade deve ser de uma forma funcional familiar para que as realizações simuladas estejam disponíveis.
- A densidade deve imitar a densidade *a posteriori* $g(\theta|y)$ e ter caudas relativamente planas (*flat*) para que a função peso $w(\theta)$ seja limitada por cima.
- Pode-se monitorar a escolha de $p(\theta)$ inspecionando os valores dos pesos simulados $w(\theta^j)$.
 - Se não houver pesos muito grandes, é provável que a função de peso seja limitada e o amostrador de importância esteja fornecendo uma estimativa adequada.

Retornando ao exemplo:

```
## [1] 0.01352942
```

- Na amostragem por rejeição, simulamos realizações a partir de uma proposta de densidade $p(\theta)$ e aceitamos um subconjunto desses valores para serem distribuídos de acordo com a densidade *a posteriori* de interesse $g(\theta|y)$.
- Existe um método alternativo de obtenção de uma amostra simulada a partir da densidade a posteriori $g(\theta|y)$ motivada pelo algoritmo de amostragem por importância.

- Como antes, simulamos M realizações de θ a partir da densidade proposta $p(\theta)$ denotada por $\theta^1, \dots, \theta^M$ e calculamos os pesos $\{w(\theta^j) = g(\theta^j|y)/p(\theta^j)\}.$
- Agora, convertemos os pesos em probabilidades usando a fórmula

$$p^{j} = \frac{w(\theta^{j})}{\sum_{j=1}^{M} w(\theta^{j})}.$$

- Suponha que tomemos uma nova amostra $\theta^{*1}, \dots, \theta^{*M}$ da distribuição discreta sobre $\theta^1, \dots, \theta^M$ com respectivas probabilidades p^1, \dots, p^m .
- ► Então os $\{\theta^{*j}\}$ serão aproximadamente distribuídos de acordo com a distribuição *a posteriori* $g(\theta|y)$.
- Este método, chamado de sampling importance resampling (SIR)⁴, é um procedimento de bootstrap ponderado em que amostramos com reposição da amostra $\{\theta^j\}$ com probabilidades de amostragem desiguais.

⁴Alguns autores traduziram o termo para o português como **reamostragem ponderada**.

Retornando ao exemplo:

```
amostragem sir <- function(x, alpha, gamma, lambda, M = 1000){
  # 1. Gerar de theta de p(theta)
  theta \leftarrow rbeta(n = M, shape1 = x + alpha, shape2 = gamma)
  # 2. Calcula pesos de importância
  w.theta <- exp(-lambda * theta)
  # 3. Converte pesos em probabilidades
  p <- w.theta/sum(w.theta)</pre>
  # 4. Reamostra theta de acordo com p
  ind <- sample(x = 1:M, size = M, replace = TRUE, prob = p)
  theta s <- theta[ind]
  return(theta s)
theta_estrela <- amostragem_sir(x = 1, alpha = 1,
                      gamma = 49, lambda = 100, M = 10000)
```

Amostra da dist. a posteriori

Para casa

- Rodar os códigos dos exemplos de aula.
 - Trazer as dúvidas para o Fórum Geral do Moodle e para a próxima aula.
- Exercício (Moodle).

Próxima aula

Métodos de Monte Carlo via Cadeias de Markov.

Por hoje é só!

Bons estudos!

