1 Integration

Definitions that our prof briefly mentioned but did not go over carefully:

Definition: Right-hand Riemann Sum

The right-hand Riemann Sum for f with respect to the partition P is the Riemann sum R obtained from P by choosing c_i to be t_i , the right-hand endpoint of $[t_{i-1}, t_i]$. That is

$$R = \sum_{i=1}^{n} f(t_i) \Delta t_i$$

If $P^{(n)}$ is the regular n-partition, we denote the right-hand Riemann sum by:

$$R_{n} = \sum_{i=1}^{n} f(t_{i}) \Delta t_{i} = \sum_{i=1}^{n} f(t_{i}) \frac{b-a}{n}$$
$$= \sum_{i=1}^{n} f(a+i(\frac{b-a}{n})) (\frac{b-a}{n})$$

Definition: Left-hand Riemann Sum

The right-hand Riemann Sum for f with respect to the partition P is the Riemann sum R obtained from P by choosing c_i to be t_i , the right-hand endpoint of $[t_{i-1}, t_i]$. That is

$$L = \sum_{i=1}^{n} f(t_{i-1}) \Delta t_i$$

If $P^{(n)}$ is the regular n-partition, we denote the right-hand Riemann sum by:

$$R_n = \sum_{i=1}^n f(t_{i-1}) \Delta t_i = \sum_{i=1}^n f(t_{i-1}) \frac{b-a}{n}$$
$$= \sum_{i=1}^n n f(a + (i-1)(\frac{b-a}{n}))(\frac{b-a}{n})$$

1.2 Riemann Sums and the Definite Integral

Definition

The definite integral of a function f from a to b is

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x; \quad \Delta x = \frac{b-a}{n}, x_i \in [x_{i-1}, x_i]$$

If this limit exists, then f is said to be integrable on the interval [a, b]

Compare to textbook definition:

Definition

We say that a bounded function f is *integrable* on [a,b] if there exists a unique number $I \in \mathbb{R}$ such that if whenever $\{P_n\}$ is a sequence of partitions with $\lim_{n\to\infty} ||P_n|| = 0$ and $\{S_n\}$ is any sequence of Riemann sums associated with the P_n 's, we have

$$\lim_{n\to\infty} S_n = I$$

In this case, we call the I the integral of f over [a, b] and denote it by:

$$\int_{a}^{b} f(t) dt$$

Important notes:

- the width Δx is not the same
- the sum $\sum_{i=1}^{n} f(x_i) \Delta x$ is called a Riemann sum
- the symbol \int is called an integral sign
- the definite integral represents a number, does not depend on x, called a <u>dummy variable</u> since it can be replaced by another variable
- if $f(x) \ge 0$ on [a, b], then $\int_a^b f(x) dx$ can be interprested as the area A

Theorem 1.1: Why does our prof not mention this?

Let f be continuous on [a, b]. Then f is integrable on [a, b]. Moreover

$$\int_{a}^{b} f(t) dt = \lim_{n \to \infty} S_n$$

where

$$S_n = \sum_{i=1}^n f(c_i) \Delta t_i$$

is any Riemann summ associated with the regular n-partitions. In particular:

$$\int_{a}^{b} f(t) dt = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_i) \frac{b-a}{n}$$

and

$$\int_{a}^{b} f(t) dt = \lim_{n \to \infty} L_n = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_{i-1}) \frac{b-a}{n}$$

Theorem 1.2: No name

If f is continuous on [a, b], then f is integrable, that is, the definite integral $\int_a^b f(x) dx$ exists.

<u>Note:</u> If f is discontinuous, then $\int_a^b f(x) dx$ may exist. For example if f has a jump discontinuity as shown, then $\int_a^b f(x) dx$ exists.

1.3 Properties of the Definite Integral

Theorem 1.3: Properties of Integrals

Assume that f and g are integrable on the interval [a,b]. Then:

1. For any
$$c \in \mathbb{R}$$
, $\int_a^b c \cdot f(t) dt = c \int_a^b f(t) dt$

2.
$$\int_a^b (f+g)(t) dt = \int_a^b f(t) dt + \int_a^b f(t) dt$$

3.
$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

4.
$$\int_{a}^{a} f(x) dx = 0$$

5.
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

6. If
$$f(x) \ge 0$$
 for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$

7. If
$$f(x) \ge g(x)$$
 for $a \le x \le b$, then $\int_a^b f(x) dx \ge g(x)$

8. If
$$m \le f(x) \le M$$
 for $a \le x \le b$, then $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$ (Integral Squeeze Theorem)

9.
$$|\int_a^b f(x) dx| \le \int_a^b |f(x)| dx$$
 (Integral Triangle Inequality)

10. If
$$f(x)$$
 is an odd function, that is, $f(-x) = -f(x)$, then

$$\int_{-a}^{a} f(x) \, dx$$

11. If f(x) is an even function, that is, f(-x) = f(x), then

$$\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx$$

1.4 Average Value of a Function

Recall

Recall that the average value of n real numbers, $\alpha_1, \alpha_2, \dots, \alpha_n$ is given by:

$$\frac{\alpha_1, \alpha_2, \cdots, \alpha_n}{n} = \frac{\sum_{i=1}^n \alpha_i}{n}$$

If we denote the average value of f(x) by \tilde{f} , then we expect that

$$\tilde{f} \approx \frac{\sum_{i=1}^{n} f(x_i)(\frac{b-a}{n})}{b-a}$$

We can prove this.

Proof. Suppose f(x) has a min value of m and a max value of M on [a,b]. Then we expect that $m \leq \tilde{f} \leq M$. We can show this as follows:

$$m \le f(x) \le M, a \le x \le b$$

$$m(b-a) \le \int_a^b f(x) \, dx \le M(b-a) \quad 1.3$$

$$m \le \frac{1}{b-a} \int_a^b f(x) \, dx \le M \quad \text{Integral MVT}$$

Since f(x) is continuous, then by IVT $\exists c \in [a, b]$ such that

$$\tilde{f} = f(c) = \frac{1}{b-a} \int_a^b f(x) dx$$

or

$$f(c)(b-a) = \int_a^b f(x) \, dx$$