UNIT 1: INTRODUCTION TO THE COMPUTER SYSTEM ADMINISTRATION

Introduction to the computer system administration

Topic 01: Fundamentals about the *system administrator*

Relevant Bibliography:

UNIX and Linux system administration handbook [Chapters 1, 31]

https://www.bsc.es

Course outline

- Unit 1: Introduction to computer system administration
 - Fundamentals about the SYSTEM ADMINISTRATION (the sysadmin)
- Unit 2: <u>Integration</u> of global services in enterprise environments I:
 The INTRANET
 - Computer systems for deploying INFORMATION and VALIDATION services
 - Computer systems for deploying "stub" 3party NETWORKING services
 - Computer systems for deploying STORAGE and RESOURCES sharing services
- Unit 3: <u>Integration</u> of global services in enterprise environments II:
 The INTERNET
 - Computer systems for WEB hosting service management
 - Computer systems for **MAIL service** management
- Unit 4: Configuration & Monitoring:
 - Server and service CONFIGURATION managers
 - Server and service MONITORING systems
- Unit 5: Introduction to the Data Centers
 - Fundamentals about DATA CENTER design and operation

Human organization around the "Data Center"

- A "Data Center" is NOT only a real place which harbors computer systems
 - There are people too (work teams)
 - It's the "office" for system administrators
 - Although it can (fortunately) remotely work
 - Remote tools for on-promise IT infrastructure
 - Private cloud platforms (Google, Amazon, Microsoft ...)
 - A good human organization is essential for a proper operation
- Its structure is usually strongly coupled to its aims and purposes:
 - In terms of organizational aspects specially:
 - Infrastructure level
 - Staff level
 - Types of DC, according to its aims and purposes:
 - DC for cloud service and hyperscale computing:
 - Google, Amazon, Microsoft, Facebook ...
 - DC for **basic internet service and hosting** providers (ISPs):
 - OVH, Telefónica, Arsys, CIC ...
 - DC for supercomputing HPC/HTC services (I+D+i):
 - BSC, CESGA, IFCA (UC), 3Mares (UC)
 - DC for specialized services:
 - Santander Bank "bunker", "small" DC for local/small businesses

Human organization around the "Data Center"

- Organic schema (hierarchy) for the "data center"
 - Board of Trustees
 - Appointing the Director
 - Setting the general criteria for the operation
 - Executive Commission
 - Submitting the proposal for the annual action plan and budget to the Board of Governors

- Management Boards
 - General and associate director
 - Scientific Advisory Board
 - Computer resources access committee
 - Main task: defining the user profiles (clients) for the DC
 - Area/department directors/leaders
- DC departments and work areas:
 - DC Operations area:
 - Infrastructure department:
 - » Cooling, power, security, building maintenance, etc.
 - System engineering department
 - » System administrators
 - System management
 - Monitor everything (computers, networks, infrastructure) → NOC
 - Security experts
 - » Hardware & software engineers
 - Hosting, storage, networking, cloud, etc.
 - User support department:
 - » User support (front line)
 - » Reception and redirection of incidents

Human organization around the "Data Center"

DC Development/operation areas:

- Development departments & groups (Projects & apps → software)
 - » App analysts
 - » Project managers
 - » HPC

- According to each area of knowledge
 - » Computer science, Earth sciences, biology, engineering, human sciences

DC Administration area:

- Training and Learning:
 - » Technical training for users and DC staff
 - » e-learning
- Communications and disclosure
- Marketing and Sales
- **–** ..
- Human Resources:
 - » Staff management, purchases, agreements, etc.
- Finances and Accounting

Human organization in the BSC: case of use

The system administrator (sysadmin)

- Definition: This is the worker responsible for the deployment, start up,
 administration and proper operation of a computer or computer environment (IT)
 - The system administrators must be able to <u>deploy</u> policies, take actions and define rules for making sure that systems are:
 - Usable
 - Reliable
 - Safe
 - Efficient
 - Use technology to accelerate and support (help) the enterprise's mission.
 - Remember ...: Enterprise needs drive IT activities, not the other way around.
- There is not really a "super sysadmin" or unique system administrator
 - The admin usually <u>becomes</u> specialized as part of **work team**
 - It is more than a group of technical folks
 - System administrators' roles:
 - **Computer system** administrator (*system manager*):
 - Operating systems (UNIX, Linux, MS ...)
 - Virtualization and "Cloud Computing"
 - Computing systems:
 - » by and large
 - » specialized
 - Banking, Heavy Industry, Robotic, Research (HPC) ...
 - Database administrator
 - Networking administrator
 - Security systems administrator

Essential tasks, duties and responsibilities (sysadmins team)

- Facility infrastructure support
 - Monitor facility equipment:
 - Cooling systems, power feeds and power distribution systems, security devices, etc.
 - Deploy control mechanisms for a good operation
 - **DCIM** systems
- Monitoring the use and state of the computer systems:
 - Know what is happening (at all times) with systems:
 - Hardware:
 - Networking + Storage + Computers
 - Middleware:
 - Virtualization infrastructures ("cloud computing")
 - Software:
 - OS, services, user apps
 - System accounting:
 - Servers(hw), OS and services
 - Perform periodic performance reporting to support capacity planning

Essential tasks, duties and responsibilities (sysadmins team)

Hardware support

- Administrators who work with physical hardware (on-site staff)
 - Not cloud or hosted systems
- Installation and configuration of:
 - Racks, servers, store devices, backup systems (drivers and robots)
 - Networking drivers and devices (routers, switches, computer network devices)
- Apply patches and update firmwares
- Deploy control mechanisms for a good operation

Software support

- Installation and configuration of operating systems
- Installation and configuration of "cloud" (virtualization) environments
- Installation and management of storage systems (logical structures, file systems ...)
- Installation and management of services and user apps
- Customization (and tuning) of systems to requirements
- **Updating** all the software
- System Accounting

Security support

- Deploy security polices
- Design and development of **contingency actions** and well-defined protocols
- Deploy and use security control tools
 - Physical security, security in networking, premises security (servers and services)
- Deploy and oversee "backups"
- Tuning performance

Essential tasks, duties and responsibilities (sysadmins team)

- Access control
 - User/group account provisioning
 - Define user/group profiles
 - Help users in their daily tasks with computers
 - User support
 - Elaboration of user manuals and tutorials
- Incident management (detection and resolution)
 - By themselves or third-party maintenance tools/companies
 - · Hardware, software and services
- Documentation management and maintenance
 - About operating systems, services, DC infrastructure, protocols, user manuals, etc.
- And ... :
 - Planning of maintenance contracts and new equipment purchases, according to each moment ...
 - Working side by side with vendors & manufacturers
- Actually ... "fire fighting":

Troubleshooting!!

"...although most of the time they spend their time creating scripts to automate tasks"

Evi Nemeth.

Good practices

Do not improvise:

- Everything you are going to do in the system must be planned.
 - Always **plan** ahead.

Reversible actions:

- Every action in our system must be reversible.
- You must provide "undo" procedures.

Incremental actions:

You should apply the changes gradually, step by step.

"First test then do":

- Test, test and test before making any changes to the system
 - Especially if it's a system running in a critical operation environment
- Very useful and <u>necessary</u>:
 - Use lab environments (develop and test)
 - Virtualization/container environments

More job descriptions ... from USENIX

- Management-Level Job descriptions (individual)
 - Level I: Novice System Administrator
 - Level II: Junior System Administrator
 - Level III: Intermediate/Advanced System Administrator
 - Level IV: Senior System Administrator
- Management-Level Job descriptions (teams)
 - Management Level I: Technical Lead
 - Management Level II: System Administration Manager
 - Management Level III: IT Director
 - Management Level IV: Chief Information Officer

https://www.usenix.org/system/files/lisa/books/usenix_22_jobs3rd_core.pdf

Good practices

- Have knowledge about what is going to be done:
 - Foresee the consequences of your changes (as far as possible)
 - Get ready (studying) before any action is taken
- Automate tasks:
 - Backups
 - Regular monitoring
 - User account maintenance
 - Disk space maintenance
 - Routine tasks...
- Document everything:
 - Policies, process, changes, incidents...
- Report (to users) whenever possible:
 - System power off, application of patches and updates, etc.

The DevOps philosophy

- The development, delivery and evolution (life cycle) of IT apps and services depends on the IT work teams
- IT organization = developers + operators (systems administrators)
 - **Dev**: Programmers, app analysts, app owners, project managers
 - Specialists to push software products forward with new features and enhancements.
 - **Ops**: System and network administrators, security experts and monitors, data center staff, databases admins ...
 - Change-resistant engineers to provide 24X7 management of a production env.

- DevOps is a work philosophy to mingle everyone (operation/development engineer) in the belief that working together as a collaborative team is more efficient
- DevOps (from early 2000s) comes to improve this relationship.

The DevOps philosophy

DevOps is a mindset, a cultural shift, where IT teams adopt new ways of working:

- Collaborative work and shared development
- Automation
- Continuous Improvement
- Customer-centric action
- Create with the end in mind
- Target:
 - Improve the software qualty
 - Accelerate the software delivery
- DevOps in Not a:
 - tool
 - person
 - tittle
 - team
- It is C.L.A.M.S:
 - Culture
 - Lean
 - Automation
 - Measurement
 - Sharing

See chapter 31 of Bibliography ref. 2

The DevOps tools (some of them)

- Ticketing and task management tools
 - Mantis, OSTicket, ServiceDesk
- Version Control tools
 - GitHub, GitLab, Bitbucket
- Container Management tools
 - **Docker**, Kubernetes, Mesos
- Application Performance Monitoring tools
 - Prometheus, Dynatrace
- Deployment & Server Monitoring tools
 - Splunk, Datadog, Sensu

- Configuration Management tools
 - Ansible, Chef, puppet
- CI/Deployment Automation tools
 - Bamboo, Jenkins
- Test Automation tools
 - Test.ai, Ranorex, Selenium
- Codeless Test Automation tools
 - AccelQ, Appvance, Testim.io

https://www.qentelli.com/thought-leadership/insights/devops-tools

Ticketing and Task management systems

- It lies at the heart of every functioning IT group:
 - Enhancement requests
 - Issues management
 - Bug control & documentation
- It helps staff avoid two common pitfalls:
 - Tasks unsolved because everyone thinks they are taken care of by someone else
 - **Duplication** of effort when many people work on the same problem
- Common function:
 - Accept requests and <u>track</u> them (using several interfaces)
 - Managers:
 - They can assign tickets to groups o individual staff members and manage a lot of information about request resolutions:
 - Open/close tickets
 - Average time to close
 - Productivity
 - Workload resolution
 - Technical staff:
 - They can query the system to see the pending issues
 - Use and manage issue resolution documentation
 - End users:
 - Notify an issue through a request ... (no phone, no mail ...)
 - They can find out the **status** of their requests

Ticketing and Task management systems

Ticket ownership

- Every task (ticket) should have a single, well-defined owner
- Responsibility for taking sure tasks get done.

User acceptance of ticketing systems

- Users willing to wait a reasonable time to revolve a request, but nor willing to be ignored
- Sysadmin must take a time to make sure the understand users are requesting and keep users informed

Sample ticketing systems

- Open source:
 - Double choco Latte
 - Mantis
 - OSTicket
 - Bugzilla
- Commercial:
 - EMC Ionix
 - HEAT
 - ServiceDesk

Ticketing and Task management systems

When a request is assigned by the ticket system by manager(s), the sysadmin asigned gets down to work:

Procedure:

- **Step 1:** Thoroughly **analyze** the issue *reproduce*
 - Run daemons/process in debug level (foreground)
 - READ outputs carefully from console and system log files

Step 2: Documentation:

- First level of information:
 - Have a look at system reference manuals (\$ man)
 - Check the latest bug list published about it.
- Second level of information:
 - Massive "online" sources:
 - » Google
 - » Blogs and Forums
 - https://stackoverflow.com
 - https://serverfault.com
- Third level of information:
 - Specialized: (manuals and tutorials)
 - » RFCs (Request for Comments documents)
 - » Linux Documentation Project (tldp.org)
 - Technical manuals and developer "howto's"
 - Generic: essential books
 - » Bibliography of this course
 - » O'Reilly series
 - From "Unix in a Nut-shell" to ...

Step 3: Elaborate a solution plan and run it

Keep daemons/process in debug level (foreground)

Step 4: If it fails, go to step 2


```
User-level general <u>commands</u> and apps
<u>System calls</u> and kernel error codes
<u>Library</u> functions and calls
Device <u>drivers</u> and network protocols
<u>Standard file formats</u> and conventions
<u>Games</u> and demostrations
Miscellanea
System administration <u>commands</u> and <u>daemons</u>
```

```
$ man [-options] [command]
    -a: display all the manual pages
    that match "command", not just the
    first.
    -K: search for the specified string
    in all man pages.
    <n>: secction

$ man ls
$ man 3 gethostbyname
```

"When stuck, Google!!!"

Apply filters in searches (distributions, versions ...)

Documentation resources maintenance

- An important "transversal" task for sysadmin is to maintain a "good" local documentation
 - Doc. reduces the likelihood of a single point of failure
 - Doc. aids reproducibility
 - Doc. save time (*)
 - Doc. enhances the intelligibility and understanding of the systems
- Documentation should be kept in a well-defined spot
 - Simple knowledge management systems:
 - Wikis
 - Blogs (CMS)
 - Infrastructure as a code:
 - Use new configuration managers
 - Ansible, puppet ...
 - Kept in the form of configuration definitions
 - Stored and tracked using version control system as GIT
- With a single location
- Easier search function
- If you must doc. elements **manually** \rightarrow on short and light weight documents
 - If you need more details somewhere \rightarrow additional one-page document
- A good documentation is:
 - Concise, relevant and unpolished.
 - Cut to the chase!
 - No redundant
- Integrate documentation into processes:
 - **Comments** in configuration files
 - Infrastructure as code (Puppet, Ansible ...)
- Try to keep documentation updated

Documentation samples

- System administrator on-line bibliography:
 - Webs about system administration
 - √ http://systemadmin.es/
 - √ http://www.linuxfoundation.org/
 - √ https://www.usenix.org
 - √ https://linux.slashdot.org
 - Webs about computer system security
 - ✓ http://www.securityfocus.com/archive
 - Webs about "data centers"
 - √ http://www.datacentremanagement.com/
 - √ http://whitepapers.datacenterknowledge.com/
 - √ http://www.datacenterjournal.com/category/facilities/
 - Press and research papers & conferences
 - ✓ http://www.admin-magazine.com
 - ✓ http://www.linuxpromagazine.com

Documentation samples

- System administrator on-line bibliography:
 - Webs about system administration
 - √ http://systemadmin.es/
 - ✓ http://www.linuxfoundation.org/
 - ✓ https://www.usenix.org
 - √ https://linux.slashdot.org
 - Webs about computer system security
 More details in: Unix and Linux System Administration Handbook, chapters 1, 31 and
 A Brief History of System Administration.
 - Webs about "data centers
 - √ http://www.datacentremanagement.com/
 - √ http://whitepapers.datacenterknowledge.com/
 - √ http://www.datacenterjournal.com/category/facilities/
 - Press and research papers & conferences
 - ✓ http://www.admin-magazine.com
 - ✓ http://www.linuxpromagazine.com