Network Systems Capstone @CS.NYCU

Lab. 6: Handoff Simulation over ns3

Instructor: Kate Lin

Deadline: 2021.06.21

Objectives

In this lab, we are going to write ns-3 program to conduct simulations and evaluate the performance of two handoff mechanisms

- 1. Learn how to use ns-3
- 2. Learn how to do handoff between two APs
- 3. Learn how to parse pcap files and analyze simulation results

TODO

- Handoff: Implement threshold-based handoff for linear movement
- 2. <u>Random Walk</u>: Import the trajectory file to enable random walk
- 3. <u>Tracing</u>: Write a parser to analyze the simulation results
- **4.** <u>**Discussion**</u>: Compare two algorithms according to your simulation results

Overview

NS-3 Introduction

- NS-3 is a discrete event network simulator
 - Overview of NS-3 https://nsnam.org
 - Tutorial: https://www.nsnam.org/docs/tutorial/
- Node: electronic device which can connect to the network
- Net Device: NIC
- <u>Tracing</u>: packet logs of the simulation
 - Pcap
 - PcapHelperDevice::EnablePcap(filename, deviceContainer);

Example-1-0.pcap Example-2-3.pcap

Pcap file of 0th device on 1st node Pcap file of 3rd device on 2nd node

Building Tool & Logger

- waf: python-based building tool
- Logging module: monitor or debug the progress of simulation programs

\$ NS_LOG=ClassName ./waf --run YourSimulationProgram

```
taWifiMac:~StaWifiMac(0x5591ace41990)
 s3@ns3-VirtualBox:~/workspace/ns-allinone-3.32/ns-3.32$ NS_LOG=StaWifiMac ./waf --run part1
+0.000000000s -1 StaWifiMac:StaWifiMac(0x55d1953c5990)
+0.000000000s -1 StaWifiMac:SetActiveProbing(0x55d1953c5990, 1)
+0.000000000s -1 StaWifiMac:SetWifiRemoteStationManager(0x55d1953c5990, 0x55d1954900c0)
+0.000000000s -1 StaWifiMac:SetWifiPhy(0x55d1953c5990, 0x55d1954f1db0)
+0.000000000s 0 StaWifiMac:DoInitialize(0x55d1953c5990)
+0.0000000000 0 StaWifiMac:GetSupportedRates(): [DEBUG] Adding supported rate of 1000000
+0.000000000s 0 StaWifiMac:GetSupportedRates(): [DEBUG] Adding supported rate of 2000000
+0.000000000 O StaWifiMac:GetSupportedRates(): [DEBUG] Adding supported rate of 5500000
+0.0000000000 O StaWifiMac:GetSupportedRates(): [DEBUG] Adding supported rate of 11000000
+0.001612068s 0 StaWifiMac:Receive(0x55d1953c5990, size=35, to=00:00:00:00:00:04, seqN=0, l
+0.001612068s 0 StaWifiMac:Receive(): [DEBUG] Probe response received while scanning from 00
+0.001612068s 0 StaWifiMac:UpdateCandidateApList(0x55d1953c5990, 00:00:00:00:00:06, 00:00:00
Operation=0|0|0|0 , HE Capabilities=0|0|0|0|0 , HE Operation=0|0, ssid=wifi-default, rates=[
|0 , HE Capabilities=0|0|0|0|0 , HE Operation=0|0)
+0.002792400s 0 StaWifiMac:Receive(0x55d1953c5990, size=35, to=00:00:00:00:00:04, seqN=0, li
+0.002792400s 0 StaWifiMac:Receive(): [DEBUG] Probe response received while scanning from 00
```

Using "waf" to build project

Logged message would be written to stderr

Simulator

Schedule events during the simulation period

Wi-Fi Connection Process

- Scanning: locate visible access point
- <u>Authentication</u>: check identification, compatibility before connection
- Association: establish the connection

Scanning Methods

- Passive scanning: station passively waits for beacon message
- Active Scanning: station actively sends requests to APs

Reference: https://community.nxp.com/t5/Wireless-Connectivity-Knowledge/802-11-Wi-Fi-Connection-Disconnection-process/ta-p/1121148

State Diagram

- Header of beacon messages (passive scanning) and probe responses (active scanning) includes signal power
 - See sta-wifi-mac.cc for more details

PCAP File

- Packet capture
 - Collect packet data and store in .pcap files
 - Parse file content to analyze network performance
- Tools that can import PCAP files
 - Wireshark
 - Tcpdump
 - Python module: dpkt, scapy, pyshark...

Tasks

Tasks

0. Environment Setup

- Handoff Simulation
 Modify sta-wifi-mac.cc / simulation.cc
- 2. Random Walk Model

 Modify HandoffSimulation.cc
- Parse pcap filePython dpkt module
- 4. Conclude your simulation

Env Setup

Link of VM OVA file:

 https://drive.google.com/drive/folders/1PVOB3w8EKSfs1 EB1SXC_-N9s6hzDhull?usp=sharing

Password is same as user name

Env Testing

\$ cp task1/linear-move.cc ns-allinone-3.32/ns-3.32/scratch

Expected result

```
nscap@nscap-VirtualBox:~/workspace/ns-allinone-3.32/ns-3.32$ ./waf --run linear-move
[2706/2759] Compiling scratch/linear-move.cc
[2708/2759] Linking build/scratch/subdir/subdir
[2717/2759] Linking build/scratch/linear-move
+1s Client connects to AP 00:00:00:00:00:06
+2s Client connects to AP 00:00:00:00:00:06
+3s Client connects to AP 00:00:00:00:00:06
+4s Client connects to AP 00:00:00:00:00:06
+5s Client connects to AP 00:00:00:00:00:06
+6s Client connects to AP 00:00:00:00:00:06
+7s Client connects to AP 00:00:00:00:00:06
+8s Client connects to AP 00:00:00:00:00:06
+9s Client connects to AP 00:00:00:00:00:06
+10s Client connects to AP 00:00:00:00:00:06
+11s Client connects to AP 00:00:00:00:00:06
+12s Client connects to AP 00:00:00:00:00:06
+13s Client connects to AP 00:00:00:00:00:06
+14s Client connects to AP 00:00:00:00:00:06
+15s Client connects to AP 00:00:00:00:00:06
+16s Client connects to AP 00:00:00:00:00:06
+17s Client connects to AP 00:00:00:00:00:06
+18s Client connects to AP 00:00:00:00:00:06
+19s Client connects to AP 00:00:00:00:00:06
+20s Client connects to AP 00:00:00:00:00:06
+21s Client connects to AP 00:00:00:00:00:06
+22s Client connects to AP 00:00:00:00:00:06
+23s Client connects to AP 00:00:00:00:00:06
+24s Client connects to AP 00:00:00:00:00:06
+25s Client connects to AP 00:00:00:00:00:06
+26s Client connects to AP 00:00:00:00:00:06
+27s Client connects to AP 00:00:00:00:00:06
+28s Client connects to AP 00:00:00:00:00:06
+29s Client connects to AP 00:00:00:00:00:06
    Client connects to AP 00:00:00:00:00:06
```

Tasks

- 0. Environment Setup
- 1. Handoff

Modify sta-wifi-mac.cc / linear-move.cc

- 2. Random Walk

 Modify random-walk.cc
- Parse pcap filePython dpkt module
- 4. Discuss the observations from your results

Scenario

- Simulation scenario
 - Two APs with fixed location
 - Echo client continuously sends packets to the echo server upon connecting to an AP

Movable Client

- Step 1: Add a function called "movement" in echo client to enable linear movement
 - A client moves with a constant speed and direction

Mobility Example

- Step 1: Add a function called "movement" in echo client to enable linear movement
 - Modify [TODO] part in part1/linear-move.cc

Reference

- Task 0:
 - https://www.nsnam.org/docs/tutorial/html/getting-started.html (Env setup)
 - https://www.nsnam.org/docs/tutorial/html/conceptual-overview.html#building-your-script (Build your program)
- Task1:
 - https://www.nsnam.org/docs/doxygen/wifi-rateadaptation-distance_8cc.html (Update position)
 - https://mrncciew.com/2014/10/11/802-11-mgmt-deauth-disassociation-frames/ (Disassociation frame)
- Task3:
 - https://dpkt.readthedocs.io/en/latest/api/index.html
 (dpkt api reference)
 - http://www.radiotap.org/fields/defined
 (radiotap packet header)

Simple Simulation

- Step 2: Run the simulation program
 - Client connects to AP1 in the beginning
 - Connection corrupts at (80, 0, 0)
 - Client establishes a new connection with AP2

Threshold-based Handoff

- Step 3: Implement threshold-based handoff algorithm
 - If (quality < threshold):
 - connection corrupts
 - Quality measurement: SNR

Detail of Implementation

- Step 3: Implement threshold-based handoff algorithm
 - Modify [TODO] part in sta-wifi-mac.cc
 - 1. Check SNR info. in the beacon packet received from each candidate AP
 - 2. Print the association message to stdout
 - Hint: packet -> RemovePacketTag(SnrTag)
 - Note: please replace original files with yours

\$ cp task1/sta-wifi-mac.cc ns-allinone-3.32/ns-3.32/src/wifi/model/\$ cp task1/sta-wifi-mac.h ns-allinone-3.32/ns-3.32/src/wifi/model/

Example Output

Expected result

```
+17s Client connects to AP 00:00:00:00:00:06
Current position: ( 36, 0, 0 )
+18s Client connects to AP 00:00:00:00:00:06
Current position: ( 38, 0, 0 )
+19s Client connects to AP 00:00:00:00:00:06
Current position: ( 40, 0, 0 )
+20s Client does not connect to AP
Current position: ( 42, 0, 0 )
+21s Client connects to AP 00:00:00:00:00:05
Current position: ( 44, 0, 0 )
+22s Client connects to AP 00:00:00:00:00:05
Current position: (46,0,0)
+23s Client connects to AP 00:00:00:00:00:05
Current position: (48, 0, 0)
```

Association message

Disassociation Issue

Client does handoff without notifying AP1

AP1 sends packets to its "served" client → Incorrect!

Disassociation Message

- [TODO]: Send a disassociation packet to AP upon handoff
 - Disassociation frame format

 Create a well-formed packet and transmit to the AP

```
> Frame 463: 54 bytes on wire (432 bits), 54 bytes captured (432 bits)
> Radiotap Header v0, Length 22
> 802.11 radio information
> IEEE 802.11 Disassociate, Flags: .......C
> IEEE 802.11 Wireless Management
> [Malformed Packet: IEEE 802.11: length of contained item exceeds length of containing item]
```

Malformed packet example

Tasks

- 0. Environment Setup
- Handoff Simulation
 Modify sta-wifi-mac.cc / linear-move.cc
- 2. Random Walk

 Modify random-walk.cc
- Parse pcap filePython dpkt module
- 4. Discuss the observations from your results

Visualize Simulation

Load Movement Data

- Step 1: Read user trajectory from "testcase_n"
 - Boundary: first 2 lines
 - 1st: Max_X, Max_Y; 2nd: Min_X, Min_Y
 - Movement: index, direction(rad), speed(m/s)

Range $0 \le \text{boundary} \le 500$ $0 \le \text{index} \le 100$ $0 \le \text{direction} \le 2\pi$ $0 \le \text{speed} \le 1000$

Boundary Check

- Step 2: Check whether the client would reach the boundary
 - 1. Print error message
 - [ERROR]: n-th movement is illegal
 - Write to stderr
 - 2. Skip this movement

```
[ERROR]: 5-th movement is illegal [ERROR]: 10-th movement is illegal [ERROR]: 17-th movement is illegal [ERROR]: 18-th movement is illegal [ERROR]: 19-th movement is illegal [ERROR]: 24-th movement is illegal [ERROR]: 29-th movement is illegal
```

Example of illegal message

Random Walk

- Echo client walks continuously toward a specific direction
- SNR changes more smoothly than discrete movement

```
12.025299 -59dBm signal -94dBm noise
                                           12.025299 -59dBm signal -94dBm noise BSSID:00:00:00:00:00:05
12.127699 -5<mark>9</mark>dBm signal -94dBm noise
                                           12.127699 -58dBm signal -94dBm noise BSSID:00:00:00:00:00:05
12.230099 -5<mark>9</mark>dBm signal -94dBm noise
                                           12.230099 -58dBm signal -94dBm noise BSSID:00:00:00:00:05
12.332499 -59dBm signal -94dBm noise
                                           12.332499 -58dBm signal -94dBm noise BSSID:00:00:00:00:00:05
12.434899 -5<mark>9</mark>dBm signal -94dBm noise
                                           12.434899 -58dBm signal -94dBm noise BSSID:00:00:00:00:00:05
12.537299 -5<mark>9</mark>dBm signal -94dBm noise
                                           12.537299 -57dBm signal -94dBm noise BSSID:00:00:00:00:00:05
                                           12.639699 -57dBm signal -94dBm noise BSSID:00:00:00:00:00:05
12.639699 -5<mark>9</mark>dBm signal -94dBm noise
12.742099 -5<mark>9</mark>dBm signal -94dBm noise
                                           12.742099 -57dBm signal -94dBm noise BSSID:00:00:00:00:00:05
12.844499 -5<mark>9</mark>dBm signal -94dBm noise
                                           12.844499 -57dBm signal -94dBm noise BSSID:00:00:00:00:00:05
12.946899 -5<mark>9</mark>dBm signal -94dBm noise
                                           12.946899 -56dBm signal -94dBm noise BSSID:00:00:00:00:05
13.049299 -56dBm signal -94dBm noise
                                           13.049299 -56dBm signal -94dBm noise BSSID:00:00:00:00:00:05
13.151699 -56dBm signal -94dBm noise
                                           13.151699 -56dBm signal -94dBm noise BSSID:00:00:00:00:00:05
13.254099 -5<mark>6</mark>dBm signal -94dBm noise
                                           13.254099 -55dBm signal -94dBm noise BSSID:00:00:00:00:00:05
13.356499 -5<mark>6</mark>dBm signal -94dBm noise
                                           13.356499 -55dBm signal -94dBm noise BSSID:00:00:00:00:00:05
13.458899 -5<mark>6</mark>dBm signal -94dBm noise
                                           13.458899 -55dBm signal -94dBm noise BSSID:00:00:00:00:00:05
13.561299 -5<mark>6</mark>dBm signal -94dBm noise
                                           13.561299 -55dBm signal -94dBm noise BSSID:00:00:00:00:00:05
13.663699 -5<mark>6</mark>dBm signal -94dBm noise
                                           13.663699 -54dBm signal -94dBm noise BSSID:00:00:00:00:00:05
13.766099 -5<mark>6</mark>dBm signal -94dBm noise
                                           13.766099 -54dBm signal -94dBm noise BSSID:00:00:00:00:00:05
13.868499 -5<mark>6</mark>dBm signal -94dBm noise
                                           13.868499 -54dBm signal -94dBm noise BSSID:00:00:00:00:00:05
13.970899 -5<mark>6</mark>dBm signal -94dBm noise
                                           13.970899 -53dBm signal -94dBm noise BSSID:00:00:00:00:00:05
```

Discrete

Continuous

Tasks

- 0. Environment Setup
- Handoff Simulation
 Modify sta-wifi-mac.cc / linear-move.cc
- 2. Random Walk Model Modify random-walk.cc
- Parse pcap filePython dpkt module
- 4. Discuss the observations from your results

dpkt

- <u>dpkt</u> a packet parsing module
- Write a parser to analyze simulation output
- 802.11: 3 Frame types, many subtypes

Distillation from pcap

• [TODO]

- 1. MGMT:
 - a) Record AP's mac addr
 - b) Calculate connection duration / number of handoff events
 - c) SNR in beacon packet
- 2. DATA:
 - a) Calculate total transmitted bytes
 - b) Record packets' SNR

Note: As for SNR information, you only need to count downlink packets (but for all APs)

Theoretical Sum-Rate

Sum-rate

- = Σ C(effective channel duration)/simulation duration Capacity (Effective channel)
- = beacon interval * SNR of beacon from associated AP

Sum-Rate Example

Beacon Interval (BI): 0.3 sec Simulation duration: 60 sec

Capacity = Bandwidth * $log_2(1+10^{15/10})$

Hint: ant_sig.db / ant_noise.db in dpkt.radiotap

Output Format

• Usage: \$ python3 parser.py <file_name>.pcap

```
• Format: [Connection statistics]
- AP1
- MAC addr: 00:00:00:00:00:06
- Total connection duration: 18.9697s
- Total transmitted bytes: 37872 bytes
- AP2
- MAC addr: 00:00:00:00:00:05
- Total connection duration: 13.9599s
- Total transmitted bytes: 29456 bytes

[Other statistics]
- Number of handoff events: 1
- Theoretical sum-rate: 106 mbps
```

- You can output results to a new file if you need
- You CANNOT import any other module

Tasks

- 0. Environment Setup
- Handoff Simulation
 Modify sta-wifi-mac.cc / linear-move.cc
- 2. Random Walk Model Modify random-walk.cc
- Parse pcap filePython dpkt module
- 4. Discuss the observations from your results

Visualize Result

- CDF of packet's SNR
 - 5 testcases, 5 figures

- Bar chart: comparison of
 - Connection duration
 - Number of handoff events
 - Theoretical sum-rate

Questions

- Write a short discuss to answer the following questions
 - Compare the advantages and disadvantages of the two handoff algorithms
 - In task2, how do you make a client walk continuously? (Hint: beacon interval is the smallest period of observation in the simulation)
 - In task3, how do you know the occurrence of handoff event? And how do you get connection duration? (Which types of management packets did you use?)

Questions

 Please put all of your figures and answers in your report

File name: <student_ID>_report.pdf

Grading Policy

- Grade
 - Task 1: linear mobility (10%) / handoff (25%)
 - Task 2: Random walk (20%)
 - Task 3: Trace analysis (20%)
 - Task 4: Report
 - Figure (10%) (pre-requisite: task1~3)
 - Question (15%)
- Cheat policy
 - Cheaters equally share the score

File Structure

- Folder name: lab6_<student ID>
- Folder structure:

```
lab6_0716000/
task1
linear-move.cc
sta-wifi-mac.cc
task2
random-walk.cc
task3
parser.py
task4
0716000_report.pdf
```

- Compress your folder: lab6_<studentID>.zip
- No score if filenames or the folder structure is wrong

Submission

- Deadline: Jun. 22(Tue.) 23:59
- Submit to new E3
- Late penalty
 - 20% off within 1 week of the deadline
 - You can't submit after 06/29 23:59

Note

- We will grade by running a test script. Please follow the output format.
- Please do not modify any setting without the [TODO] mark in the example code

Reference

Task 0:

- https://www.nsnam.org/docs/tutorial/html/gettingstarted.html (Env setup)
- https://www.nsnam.org/docs/tutorial/html/conceptualoverview.html#building-your-script (Build your program)

• Task1:

- https://www.nsnam.org/docs/doxygen/wifi-rateadaptation-distance_8cc.html (Update position)
- https://mrncciew.com/2014/10/11/802-11-mgmt-deauth-disassociation-frames/ (Disassociation frame)

Task3:

- https://dpkt.readthedocs.io/en/latest/api/index.html
 (dpkt api reference)
- http://www.radiotap.org/fields/defined
 (radiotap packet header)

Q&A