ICLR 2018

1. Intro

Graph Attention Networks

1. Intro

Graph Neural Network

그래프 데이터에서의 Neural Network

입력 데이터 표현 방법

Neural Network

행렬의 형태로 표현

Graph Neural Network

입력 데이터 표현 방법 – Adjacency Matrix

[Adjacency Matrix]

0	1	0	1	0
1	0	1	0	1
0	1	0	1	1
1	0	1	0	1
0	1	1	1	0

Ν

Ν

입력 데이터 표현 방법 – Adjacency Matrix

[Adjacency Matrix]

a ₁₁	a ₁₂	0	a ₁₄	0
0	a ₂₂	0	0	a ₂₅
0	a ₃₂	a ₃₃	0	0
a ₄₁	0	a ₄₃	a ₄₄	a ₄₅
0	0	a ₅₃	a ₅₄	a ₅₅

Weight

Ν

입력 데이터 표현 방법 – Node Feature

Node Level Task 업데이트 과정

- 1. Aggregate / Message Passing
- 2. Combine / Update
- 3. Readout

3. Attention

Dictionary

(일치하는지, 0,1)

Q: 오렌지

Key (K)	Similarity Sim(K, Q)	Value (V)	Sim(K, Q) * V
레몬	0	새콤한맛	0
오렌지	1	달콤한맛	달콤한맛
아보카도	0	크레파스맛	0

-> 달콤한맛!

3. Attention

Dictionary -> Attention

(유사한 정도의 Softmax)

Q: 귤

Key (K)	Similarity Sim(K, Q)	Value (V)	Sim(K, Q) * V
레몬	0.35	새콤한맛	0.35 * 새콤한맛
오렌지	0.64	달콤한맛	0.64 * 달콤한맛
아보카도	0.01	크레파스맛	0.01 * 크레파스맛

Attention Score

-> 새콤달콤한맛!

Overview

Overview

Sim(I,J)	V_2	$Sim(1,2) * V_2$
	• /.	

Key (K)	Similarity Sim(K, Q)	Value (V)	Sim(K, Q) * V
레몬	0.35	새콤한맛	0.35 * 새콤한맛
오렌지	0.64	달콤한맛	0.64 * 달콤한맛
아보카도	0.01	크레파스맛	0.01 * 크레파스맛

Aggregate

유사도 e_{ij} 계산 어텐션 스코어 a_{ij} 계산

Combine

이웃들의 정보 $a_{ij}Wh_j$ 집계

Multi-head attention

Aggregate

유사도 e_{ij} 계산

어텐션 스코어 a_{ij} 계산

Combine

이웃들의 정보 $a_{ij}Wh_j$ 집계

Multi-head attention

Readout

아까의 Sim(I,J) 와 유사

Aggregate

유사도 e_{ij} 계산

어텐션 스코어 a_{ij} 계산

Combine

이웃들의 정보 $a_{ij}Wh_j$ 집계

Multi-head attention

Readout

아까의 Sim(I,J) 와 유사

모든 노드들간의 유사도 계산

e ₁₁	e ₁₂	e ₁₃	e ₁₄	e ₁₅
e ₂₁	e ₂₂	e ₂₃	e ₂₄	e ₂₅
e ₃₁	e ₃₂	e ₃₃	e ₃₄	e ₃₅
e ₄₁	e ₄₂	e ₄₃	e ₄₄	e ₄₅
e ₅₁	e ₅₂	e ₅₃	e ₅₄	e ₅₅

병렬적으로 계산 가능

3. Attention

Dictionary -> Attention

(유사한 정도의 Softmax)

Q: 귤

Key (K)	Similarity Sim(K, Q)	Value (V)	Sim(K, Q) * V
레몬	0.35	새콤한맛	0.35 * 새콤한맛
오렌지	0.64	달콤한맛	0.64 * 달콤한맛
아보카도	0.01	크레파스맛	0.01 * 크레파스맛

Attention Score

-> 새콤달콤한맛!

Aggregate

유사도 e_{ij} 계산 어텐션 스코어 a_{ij} 계산

Combine

이웃들의 정보 $a_{ij}Wh_j$ 집계

Multi-head attention

Aggregate

유사도 e_{ij} 계산

어텐션 스코어 a_{ij} 계산

Combine

이웃들의 정보 $a_{ij}Wh_j$ 집계

Multi-head attention

Aggregate

유사도 e_{ij} 계산 어텐션 스코어 a_{ij} 계산

Combine

이웃들의 정보 $a_{ij}Wh_j$ 집계

Multi-head attention

Key (K)	Score(K, Q)	Value (V)	Score(K, Q) * V
레몬	0.35	새콤한맛	0.35 * 새콤한맛
오렌지	0.64	달콤한맛	0.64 * 달콤한맛
아보카도	0.01	크레파스맛	0.01 * 크레파스맛

Aggregate

유사도 e_{ij} 계산 어텐션 스코어 a_{ij} 계산

Combine

이웃들의 정보 $a_{ij}Wh_j$ 집계

Multi-head attention

Key (K)	Score(K, Q)	Value (V)	Score(K, Q) * V
레몬	0.35	새콤한맛	0.35 * 새콤한맛
오렌지	0.64	달콤한맛	0.64 * 달콤한맛
아보카도	0.01	크레파스맛	0.01 * 크레파스맛

Aggregate

유사도 e_{ij} 계산 어텐션 스코어 a_{ij} 계산

Combine

이웃들의 정보 $a_{ij}Wh_j$ 집계

Multi-head attention

Readout

여러 개의 W를 사용 -> 여러 의미에서의 유사도

-> 여러 의미에서의 어텐션

여러 어텐션으로 계산된 값을 평균/concat하여 성능 향상

4. Evaluation

Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%
MoNet (Monti et al., 2016)	$81.7 \pm 0.5\%$	_	$78.8 \pm 0.3\%$
GCN-64*	$81.4 \pm 0.5\%$	$70.9 \pm 0.5\%$	79.0 \pm 0.3%
GAT (ours)	$\textbf{83.0} \pm 0.7\%$	$\textbf{72.5} \pm 0.7\%$	$\textbf{79.0} \pm 0.3\%$

Node Classification Task (Transductive)

출처, 참고

https://arxiv.org/abs/1710.10903

http://dmqm.korea.ac.kr/activity/seminar/296