Question-4: Inverse of a Matrix (24 points)

Solution Approach

Was told to use the Row Reduction Method (Gaussian Inversion -¿ Identity Matrix Augmentation) in the document, for Matrix Inversion.

- 1. Preprocess the matrix. If the ith element in ith row is 0, find a row somewhere below it where this element is not 0, and swap with it.
- 2. Split up chunk of rows and spread the tasks out across the processors. Each processor has to process a certain number of rows depending on the number of elements in the matrix. Note that some processors may have to process at most 1 row less than the others.
- 3. While making identity matrix as a whole, you just need to make one for the current row only. Put a 1 in the (i+1)th position (1-indexed) for row i (where i is the index of the row in the ORIGINAL matrix), and the rest are zeros.
- 4. Now, iterating over the rows, pivot row i, and get the process that owns this row to normalize it and broadcast just this 1 row to all the other processes so that they can subtract it from their own rows (except pivot row) after multiplying it with some factor.
- 5. Combine the rows of the initial identity matrix (augmented matrix) which is now A^{-1} itself into root process, and return the answer.

Highlights of Program

If N is not divisible by p, then the first few processes take up 1 extra row until all the remaining rows are used up. Thus, every process computes matrix inversion of at most 1 row more than others. This is a nearly equal distribution of data amongst different processors.

Furthermore, in my testing, MPI_Scatterv was found to be severely bad, and thus, since I had already used MPI_Scatter in Question-3 and demonstrated its inefficacy, I have decided to go for the alternative approach instead, and instead, broadcast the ENTIRE matrix to all the elements so that they can store it with themselves, and create a smaller local_row vector, which contains only the rows that they need to compute. This way, I save time on scattering, as broadcast is just so much faster.

Total Time Complexity of Approach

 $O(N^3 / p)$, since every process has to subtract N rows from each of its N/p rows of N elements each.

Total Message Complexity of Approach

For broadcasting number of elements, it is O(log p) using MPI_Bcast.

For broadcasting initial data, it is O(3 * log p) using MPI_Bcast, since I broadcast a matrix of size n*n, a row_swap_tracker of size n and a row_owner_tracker of size n. So, $N^2 * sizeof(float) + 2*N * sizeof(int)$ data is received by each process.

For broadcasting pivot row in each row iteration, it is O(N * log p) using MPI_Bcast, as there are N broadcasts made in total.

For gathering all the final rows, there are N rows with N elements each and thus, using MPI_Gatherv, it comes out to be $O(N^2 * \log p)$.

All things considered, it comes out to be $O(\log p + N * \log p + N^2 * \log p)$.

Space Requirements of Solution

Since each process has to store the entire matrix, it is $O(N^2)$ for the matrix per processor. Additionally, there are a couple of O(N/p * N) row vectors, and O(N) vectors to determine row ownership, and O(p) vectors to determine displacements (offsets).

Overall, it comes out to be $O(N^2 + N^2/p + N + p)$.

Performance Scaling from 1 to 12 processes

Size of testcase: 1000x1000 matrix

Number of Processors	Time Elapsed
1	7.6162s
2	6.5852s
3	4.6765s
4	3.63247 s
5	2.86221s
6	2.44543s
7	2.28356s
8	1.86037s
9	1.65244s
10	1.48994s
11	1.41684s
12	1.29692s