ASTR 5550: HW4

Jasmine Kobayashi

```
# Libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import random
import os,sys

# import helper script file
## change working directory
os.chdir("C:/Users/rokka/GH-repos/GitHubPages/Code-Reference-Notebook/CU-Boulder/AstroPhys/H
## import my own code
import hw_helper_func2 as hf  # this is my own code I made (for probability/distribution fu
```

(**JK note:** To view the code with the functions I made myself to (hopefully) help with all assignments click here)

1. Combining Poisson Distributions

Given two Poisson distributions:

$$P(x, \mu_A) = \frac{\mu_A^x}{x!} e^{-\mu_A}$$
 and $P(x, \mu_B) = \frac{\mu_B^x}{x!} e^{-\mu_B}$

Show that they combine to a Poisson distribution:

$$P(x, \mu_C)$$
 where $\mu_C = \mu_A + \mu_B$

Hint: For any given integer x, the one must sum all possibilities of $P(i, \mu_A)P(x-i, \mu_B)$.

2. Supernova Light Curve

After a supernova reaches its maximum brightness, the light curve exponentially decays as do the radioactive materials. The decay time can tell us its type. Examine the light curve below.

```
I = [0.921, 0.704, 0.623, 0.550, 0.426, 0.332, 0.258, 0.208, 0.143, 0.130, 0.137, 0.103, 0.058, 0.070, 0.042, 0.060, 0.022, \\ \sigma = [0.026, 0.048, 0.026, 0.027, 0.068, 0.046, 0.034, 0.017, 0.020, 0.014, 0.015, 0.009, 0.019, 0.010, 0.012, 0.018, 0.007, \\ I = np.array([0.921, 0.704, 0.623, 0.550, 0.426, 0.332, 0.258, 0.208, 0.143, 0.130, 0.137, 0.103, 0.058, 0.070, 0.042, 0.060, 0.022, 0.022, 0.011, 0.015])\\ sigma = np.array([0.026, 0.048, 0.026, 0.027, 0.068, 0.046, 0.034, 0.017, 0.020, 0.014, 0.015, 0.009, 0.019, 0.010, 0.012, 0.018, 0.007, 0.008, 0.005, 0.005])
```

Part (a)

Assuming that σ represents a 1-sigma Gaussian uncertainty, find the most likely parameters under the hypothesis that the intensity undergoes an exponential decay:

$$I = I_0 e^{-t/\tau}$$

Here, τ is the decay time. As one can see, I_0 should be nearly unity but, for this problem, do not fix $I_0 = 1$. Calculate the uncertainty in τ . Plot the observations and the fit.

Hint: One way is to perform a linear fit to ln(I). Be careful how you treat the uncertainty σ ; Taylor expand $ln(I \pm \sigma)$ to calculate the uncertainties of ln(I).

```
# Linear fit of ln(I)
## x-axis (time)
t = np.linspace(0,100,len(I))  # the x-axis (time) appears to go from 0 to 100 sec
## linear fit
coef = np.polyfit(t,np.log(I),deg=1)  # obtain coefficients for a linear fit ("polyfit" of
lin_fit = np.poly1d(coef)  # linear fit function

# plot linear fit
plt.plot(t,np.log(I),'o',label = 'log(I)')
plt.plot(t,lin_fit(t),'--',label='linear fit: y = {0:.3f}x + {1:.3f}'.format(coef[0],coef[1]
plt.xlabel('Time (sec)')
plt.ylabel('ln(I)')
plt.legend()
```


Part (b)

Calculate χ^2_{ν} and compare it to the expected PDF/CDF of χ^2_{ν} . Plot your results. Is the hypothesis justified? What is the probability for χ^2_{ν} to be above the calculated value?

3. Extra-Solar Planet

The Kepler mission used the transit method in which one examines a time series of a star's intensity for a negative excursion. Under this method, the parent distribution of a star's intensity can be well established. In this example, the star's intensity is measured at a 30 sec cadence and found to be $I_0 + 0.001I_0$ (1-sigma) with a Gaussian parent distribution.

Finding a transit often involves several steps. The first step is to identify intervals that may have a transiting planet. One way is to examine one hour (120-point) stretches (sliding every half an hour, 60 points) for a non-constant distribution.

Read in the text file, HW4_data_A, from Canvas. It contains 120 points of intensity in units of I_0 , one every 30 seconds. Create a corresponding time array going from 0 to 3570 seconds. Assume the uncertainty in time is negligible.


```
# load data
data_array = np.loadtxt('hw4/HW4_data.txt')
data_array
```

```
array([0.998088, 1.00058 , 1.00007 , 1.00085 , 0.999086, 1.00013 ,
      1.00114, 0.999925, 1.00042, 1.00063, 1.00064, 0.999636,
      1.00013 , 0.999742, 1.00007 , 1.00132 , 0.999664, 0.999608,
      0.999392, 0.999136, 1.00104 , 1.00014 , 0.99976 , 1.0011
      0.999397, 0.99961, 0.998294, 0.998431, 0.998846, 0.99919,
      0.998581, 1.00151, 0.999167, 1.00092, 1.00044, 0.999879,
      1.00071 , 0.998279, 1.00031 , 0.999818, 0.998973, 1.00086 ,
      0.994858, 0.997352, 0.99644, 0.994283, 0.994575, 0.995698,
      0.994824, 0.994713, 0.995482, 0.994736, 0.996792, 0.995706,
      0.994752, 0.993211, 0.994558, 0.993956, 0.995004, 0.993613,
      0.993948, 0.995872, 0.996478, 0.994574, 0.995362, 0.99529 ,
      0.996243, 0.993112, 1.00004, 0.99792, 0.999602, 1.00021,
      1.00079 , 0.999311, 1.00047 , 0.999404, 0.999304, 1.00148 ,
      1.00072 , 1.00014 , 1.00301 , 1.00228 , 0.998727 , 1.00173 ,
      0.998629, 1.00067 , 1.00009 , 0.999671, 1.00097 , 1.0004
      1.00117 , 1.00081 , 0.999229, 0.998998, 0.999459, 1.00084 ,
      0.999723, 1.00293 , 1.00184 , 0.998846, 1.00044 , 1.00008
      0.999624, 0.999991, 1.00027, 0.99914, 1.00034, 1.00097
      1.00092, 0.998008, 1.00049, 0.999557, 0.998361, 0.997969,
      0.999991, 1.00061, 0.998795, 1.00178, 0.999991, 1.00003])
```

length of time_array: 120

```
# plot (with error bars)
plt.figure(figsize=(10,4))
plt.errorbar(time_array,data_array,yerr=0.0005*data_array[0],fmt='.')
plt.xlabel('time_array')
plt.ylabel('data_array')
```

Text(0, 0.5, 'data_array')

Part (a)

Start by eliminating the possibility that the negative excursion is a random fluctuation. Plot the PDF of the expected χ^2_{ν} under the hypothesis that the intensity is constant. Calculate χ^2_{ν} and compare to show that this event is **not** consistent with a constant intensity. What is the mean of the intensity (I_{μ}) and the uncertainty of the mean $(\sigma_{I\mu})$? Is I_{μ} less than 1 by more than the $\sigma_{I\mu}$?

Hint: σ of the parent distribution is known $(0.001I_0)$

Part (b)

Now that the interval is identified as significant and negative, let's examine and fit the negative excursion. Keeping it simple, use a three-parameter $(I_0, t_{start}, t_{end})$ fit:

$$I = \begin{cases} I_0 - \Delta I & t_{start} \le t \le t_{end} \\ I_0 & \text{otherwise} \end{cases}$$
 (1)

Do a least-squares fit with a method of choose. My method is to guess t_{start} and t_{end} then calculate χ^2_{ν} along with ΔI . Increment t_{start} and t_{end} and recalculate ΔI until χ^2_{ν} is minimum. Plot the data (with error bars if you can) and overplot your fit. What are I_0, t_{start} , and t_{end} ?

Part (c)

Estimate the uncertainties of I_0, t_{start} , and t_{end} . Explain how you arrive at your values.

Hint: The uncertainty of ΔI is straight-forward. Recall that you can calculate σ_I , but $\partial t/\partial I$ can only be estimated. Can one have an uncertainty in time that is less than δt (30 seconds)?

4. Kolmogorov-Smirnov Test

Using a random number generator, create two distributions:

$$f_1(x) = P(x, \mu_1, n); \mu_1 = 8, n = 100$$

$$f_2(x) = P(x,\mu_2,n); \mu_2 = 5, n = 100$$

```
n_points = 100

# distribution 1

mu1 = 8
fx1 = np.random.normal(mu1, size=n_points)

# distribution 2

mu2 = 5
fx2 = np.random.normal(mu2, size=n_points)
```

```
# histogram of two distributions
plt.hist(fx1)
plt.hist(fx2)
plt.show()
```


Part (a)

Calculated and plot the two CDFs for n=100. Compare the two distributions using the Kolmogorov-Smirnov Test with $\alpha=0.1$. The more exact formula for the threshold is:

$$D>\sqrt{-\frac{1}{2}\ln\left(\frac{\alpha}{2}\right)}\sqrt{\frac{n+m}{nm}};n,m$$
 are number of points

Part (b)

Repeat the test several (5 to 10) times recreating the distributions. Do f_1 and f_2 consistently pass or fail the test?

Part (c)

Repeat the test for higher n, say 1000 (for both f_1 and f_2) several times. Does the test at n=1000 reveal that the two distributions are not from the same parent? What does this exercise tell us about the Kolmogorov-Smirnov Test?