Empirical Methods for Policy Evaluation Second Part

Matteo Bobba

Toulouse School of Economics (TSE)

TSE PhD Program (MRes) Fall 2024

Outline and Readings for this Section (3 Classes)

- Difference-in-Differences
 - Two-way fixed effect regressions (de Chaisemartin-D'Hautfœuille Book/Survey paper)
 - Heterogeneity-robust DID estimators (dCDH, Book/Survey paper)
- DID and empirical job search models
 - Bobba, Flabbi and Levy (IER, 2022)

Two-way fixed effect regressions

Groups and Time Periods

- ullet We consider observations that can be divided into G groups and T periods
- \bullet For every $(g,t) \in \{1,...,G\} \times \{1,...,T\} \colon = \mathsf{nb}$ of obs in group g at period t
- Panel/repeated cross-section data set where groups are, e.g., individuals, firms, counties, etc.
- Cross-section data set where cohort of birth plays the role of time
- One may have $N_{q,t}=1$, e.g. b/c group=individual or a firm
- For simplicity, we assume hereafter balanced panel of groups:

For all
$$(g,t) \in \{1,...,G\} \times \{1,...,T\}, N_{g,t} > 0$$

Treatment and Design

- ullet $D_{g,t}$: treatment of group g and at period t
- ullet $D_{g,t}$ may be non-binary and multivariate
- In some case the treatment may vary across individuals within a group: "fuzzy designs", not considered here
- When $D_{g,t} \in \mathbb{R}^+$ increases only once, constant otherwise: "staggered adoption design".

Potential Outcomes, SUTVA, and Covariates

- Let $(d_1,...,d_T)$ denote a treatment trajectory
- Corresponding potential outcomes: $Y_{g,t}(d_1,...,d_T)$
- \bullet Then observed outcome: $Y_{g,t} = Y_{g,t}(D_{g,1},...,D_{g,T})$
- We maintain the usual SUTVA assumption:

$$(Y_{g,1}(d_1,...,d_T),...,Y_{g,T}(d_1,...,d_T)) \amalg (D_{g',t'})_{g' \neq g,t'=1,...,T}, \forall (g,t,d_1,...,d_T)$$

ullet For any variable $X_{g,t}$, let $oldsymbol{X}_g=(X_{g,1},...,X_{g,T})$ and $oldsymbol{X}=(oldsymbol{X}_1,...,oldsymbol{X}_G).$

The Pervasiveness of Two-way Fixed Effect Regressions

• Researchers often consider two-way fixed effects (TWFE) models of the kind:

$$Y_{g,t} = \alpha_g + \gamma_t + \beta_{fe} D_{g,t} + \epsilon_{g,t}.$$

- ullet E.g.: employment in county g and year t regressed on county FEs, year FEs, and minimum wage in county g year t
- 26 out of the 100 most cited 2015-2019 AER papers estimate TWFE
- Also commonly used in other social sciences
- Other popular method: event-study regressions=dynamic version of TWFE

In the Simplest Set-up, TWFE = DID

- ullet $D_{g,t}$ binary, two groups & time periods
- ullet $Y_{g,t}$ is the outcome in location $g \in \{s,n\}$ at period $t = \{1,2\}$
- $\bullet \ Y_{g,t}(0), Y_{g,t}(1)$ are the counterfactual outcomes without and with treatment
 - ullet E.g., $Y_{g,t}(0)$ is the employment in location g at t with a low minimum wage
 - ullet $Y_{g,t}(1)$ is the employment in location ${f g}$ at t with a high minimum wage
- $\bullet \ \beta_{fe} := Y_{s,2} Y_{s,1} (Y_{n,2} Y_{n,1})$
- The before-after diff is combined with the treated-control diff

The Parallel (//) Trend Assumption

• In the absence of treatment, same average outcome evolution across groups

$$\mathbb{E}[Y_{s,2}(0) - Y_{s,1}(0)] = \mathbb{E}[Y_{n,2}(0) - Y_{n,1}(0)]$$

ullet Weaker than imposing that s and n have same untreated-outcome levels

$$\mathbb{E}[Y_{s,t}(0)] = \mathbb{E}[Y_{n,t}(0)]$$
 for all t

Also weaker than imposing no variation in average untreated outcomes

$$\mathbb{E}[Y_{g,2}(0)] = \mathbb{E}[Y_{g,1}(0)]$$
 for all g

Appeal of // trends: has testable implications (no pre-trends)

In General, TWFE \neq DID

ullet Under // trends, DID is unbiased for the ATE in location s at period 2

$$\mathbb{E}(DID) = \mathbb{E}[Y_{s,2} - Y_{s,1} - (Y_{n,2} - Y_{n,1})]$$

$$= \mathbb{E}[Y_{s,2}(1) - Y_{s,1}(0) - (Y_{n,2}(0) - Y_{n,1}(0))]$$

$$= \mathbb{E}[Y_{s,2}(1) - Y_{s,2}(0)] + \mathbb{E}[Y_{s,2}(0) - Y_{s,1}(0)] - \mathbb{E}[Y_{n,2}(0) - Y_{n,1}(0)]$$

$$= \mathbb{E}[Y_{s,2}(1) - Y_{s,2}(0)]$$

- Under // trends, TWFE does not identify the ATE parameter
- It also requires constant TE, which is often implausible
 - E.g., effect of minimum wage on employment likely differ across counties

Additive Separability of TWFE

• Static Case with a Single *D*:

$$D_{g,t} \in R^+ \text{and for all } (g,t,d_1,...,d_T), Y_{g,t}(d_1,...,d_T) = Y_{g,t}(d_t)$$

- Parallel trends: for all $t \geq 2$, $E[Y_{g,t}(0) Y_{g,t-1}(0)] = \gamma_t$
- It follows that: $E[Y_{g,t}(0)-Y_{g,1}(0)]=\gamma_t$, and let $\alpha_g=E[Y_{g,1}(0)]$. Then,

$$E[Y_{g,t}(0)] = E[Y_{g,1}(0)] + E[Y_{g,t}(0) - Y_{g,1}(0)] = \alpha_g + \gamma_t$$

Parameter of Interest

Average treatment response

$$\Delta^{TR} = \frac{1}{\sum_{g,t} D_{g,t}} \sum_{g,t} (Y_{g,t}(D_{g,t}) - Y_{g,t}(0))$$

- Then, let $\delta^{TR} = E[\Delta^{TR}]$. With a binary D, $\delta^{TR} = \mathsf{ATT}$
- Analogously, in (g, t):

$$\Delta_{g,t} = \frac{1}{D_{g,t}} \left[Y_{g,t}(D_{g,t}) - Y_{g,t}(0) \right] \text{ if } D_{g,t} \neq 0$$

• Then:

$$\delta^{TR} = E\left[\sum_{(g,t):D_{g,t}>0} W_{g,t} \Delta_{g,t}\right], \quad \text{with } W_{g,t} = \frac{D_{g,t}}{\sum_{(g,t):D_{g,t}>0} D_{g,t}}$$

TWFE Regression(s)

- \bullet $\widehat{\beta}_{fe} =$ OLS coeff. of $D_{g,t}$ in a reg. of $Y_{g,t}$ on group FEs, time FEs and $D_{g,t}$
- We then let $\beta_{fe} = E[\widehat{\beta}_{fe}]$
- Other popular estimator: $\widehat{\beta}_{fd} =$ OLS coeff. of $D_{g,t}-D_{g,t-1}$ in a regression of $Y_{g,t}-Y_{g,t-1}$ on time FEs and $D_{g,t}-D_{g,t-1}$
- \bullet We then let $\beta_{fd}=E[\widehat{\beta}_{fd}]$
- Oftentimes, we also include covariates $X_{g,t}$ in the regression. Let $\widehat{\beta}_{fe}^X$ denote the coeff. of $D_{g,t}$ in such a regression and $\beta_{fe}^X = E[\widehat{\beta}_{fe}^X]$
- \bullet We first focus on β_{fe} , but we will extend the results to β_{fd} and β_{fe}^{X}

13 / 71

β_{fe} = weighted sum of ATEs under // trends

de Chaisemartin-D'Hautfœuille (AER, 2020) show that:

$$\beta_{fe} = E \left[\sum_{(g,t):D_{g,t}>0} W_{fe,g,t} \Delta_{g,t} \right]$$

- $W_{fe,g,t} = \frac{D_{g,t}\epsilon_{fe,g,t}}{\sum_{(g,t):D_{g,t}>0} D_{g,t}\epsilon_{fe,g,t}}$
- \bullet $\epsilon_{fe,g,t} =$ residual of the reg. of $D_{g,t}$ on a constant, group FEs, and time FEs
- In general, $\beta_{fe} \neq \delta^{TR}$ because $W_{fe,g,t} \neq W_{g,t}$
- We may have $W_{fe,g,t} < 0$: if $\epsilon_{fe,g,t} < 0$ while $D_{g,t} > 0$
- Then, $\widehat{\beta}_{fe}$ does not satisfy "no-sign-reversal": $E\left[\widehat{\beta}_{fe}\right]$ may be, say, <0 even if $Y_{q,t}(d)>Y_{q,t}(0)$ for all (g,t) and d>0

What is Special about DID?

• In standard DIDs, $D_{g,t} = I_g \mathbb{1}\{t \geq t_0\}$ with $I_g = \mathbb{1}\{g \text{ belongs to treated groups}\}$

$$D_{g,t}\epsilon_{g,t} = D_{g,t}(I_g - \overline{I})(1\{t \ge t_0\} - (1 - (t_0 - 1)/T))$$
$$= D_{g,t}(1 - \overline{I})(1 - (1 - (t_0 - 1)/T))$$

- $\Rightarrow W_{fe,g,t} = W_{g,t} \text{ and } \beta_{fe} = \delta^{TR}$
 - But does not hold with missing data/unequally sized groups

Characterizing (g,t) cells weighted negatively by β_{fe}

- \bullet Let $D_{g,.}$ =average treat. rate of g and $D_{.,t}$ =average treat. rate at t
- ullet Under // trends, $W_{fe,g,t}$ is decreasing with $D_{g,.}$ and $D_{.,t}$
 - \Rightarrow β_{fe} more likely to assign negative weight to periods where a large fraction of observations treated, and to groups treated for many periods
- In staggered adoption designs $(D_{g,t} \ge D_{g,t-1})$, $W_{fe,g,t} < 0$ more likely in the last periods and for groups adopting the treatment earlier
 - \Rightarrow We can remove negative weights by removing always treated groups and/or the last periods

16 / 71

Forbidden Comparison 1: $\widehat{\beta}_{fe}$ may Compare Switchers to Always Treated

- When D binary and design staggered, Goodman-Bacon (JoE, 2021) show that $\widehat{\beta}_{fe} =$ weighted avg of two types of DIDs:
 - ullet DID_1 , comparing group s switching from untreated to treated to group n untreated at both dates
 - ullet DID_2 , comparing switching group s to group a treated at both dates.
- Negative weights in β_{fe} originate from the second type of DIDs

17 / 71

Forbidden Comparison 1: An Example

• Example: group e treated at t=2, group ℓ treated at t=3. Then:

$$\widehat{\beta}_{fe} = \frac{1}{2} \times \underbrace{DID_{e-\ell}^{1-2}}_{DID_1} + \frac{1}{2} \times \underbrace{DID_{\ell-e}^{2-3}}_{DID_2}$$

At periods 2 and 3, e's outcome = treated potential outcome, so

$$Y_{e,3} - Y_{e,2} = Y_{e,3}(1) - Y_{e,2}(1) = Y_{e,3}(0) + \Delta_{e,3} - (Y_{e,2}(0) + \Delta_{e,2}).$$

ullet On the other hand, group ℓ only treated at period 3, so

$$Y_{\ell,3} - Y_{\ell,2} = Y_{\ell,3}(0) + \Delta_{\ell,3} - Y_{\ell,2}(0)$$

Forbidden Comparison 1: An Example (continued)

- $E\left[DID_{\ell-e}^{2-3}\right] = E\left[Y_{\ell,3} Y_{\ell,2} (Y_{e,3} Y_{e,2})\right] = E\left[\Delta_{\ell,3} + \Delta_{e,2} \Delta_{e,3}\right]$ so $\Delta_{e,3}$ enters with negative weight in β_{fe}
- Note: if $\Delta_{e,2}=\Delta_{e,3}$, $E[DID_{\ell-e}^{2-3}]=E\left[\Delta_{\ell,3}\right]$
- More generally, if $\Delta_{g,t} = \Delta_{g,t'}$, $W_{fe,g,t} \geq 0$. But restrictive!
- Note:

$$Y_{g,t}(0) - Y_{g,t-1}(0) = Y_{g,t}(1) - Y_{g,t-1}(1) \iff \Delta_{g,t} = \Delta_{g,t-1}$$

• Seemingly mild assumption (trends on $Y_{g,t}(0)$ and $Y_{g,t}(1)$ are the same) is actually equivalent to time-invariant effects!

Forbidden Comparison 1: Graphical Illustration

Forbidden Comparison 2: Comparing "Switching More" to "Switching Less"

- ullet Suppose the treatment D is not binary
- Then, $\widehat{\beta}_{fe}$ may leverage DIDs comparing group m whose D increases more to group ℓ whose D increases less
- ullet In fact, with two groups m and ℓ and two periods,

$$\widehat{\beta}_{fe} = \frac{Y_{m,2} - Y_{m,1} - (Y_{\ell,2} - Y_{\ell,1})}{D_{m,2} - D_{m,1} - (D_{\ell,2} - D_{\ell,1})}$$

 de Chaisemartin-D'Hautfœuille (ReStud, 2018) show that this "Wald-DID" estimator may not estimate convex combination effects, even if TE constant over time

Forbidden Comparison 2: An Example

- \bullet Assume m goes from 0 to 2 units of treatment while ℓ goes from 0 to 1
- \Rightarrow Denominator of the Wald-DID is 2-0-(1-0)=1
 - Potential outcomes linear in treatment:

$$Y_{m,t}(d) = Y_{m,t}(0) + \delta_m d$$

$$Y_{\ell,t}(d) = Y_{m,t}(0) + \delta_\ell d,$$

Then, under // trends:

$$\begin{split} E\left[\widehat{\beta}_{fe}\right] = & E\left[Y_{m,2} - Y_{m,1} - (Y_{\ell,2} - Y_{\ell,1})\right] \\ = & E\left[Y_{m,2}(0) + 2\delta_m - Y_{m,1}(0) - (Y_{\ell,2}(0) + \delta_\ell - Y_{\ell,1}(0))\right] \\ = & E\left[Y_{m,2}(0) - Y_{m,1}(0)\right] - E\left[Y_{\ell,2}(0) - Y_{\ell,1}(0)\right] + 2\delta_m - \delta_\ell \\ = & 2\delta_m - \delta_\ell \end{split}$$

Forbidden Comparison 2: Graphical Illustration

Extensions

- ullet dCDH (2020) extends to eta_{fd} , but with different weights $W_{fd,g,t}$
- \Rightarrow If $\beta_{fd} \neq \beta_{fe}$, we reject homogeneous TE under // trends
 - ullet With covariates, we modify the // trends by assuming that for some λ ,

$$E[Y_{g,t}(0) - Y_{g,t-1}(0) - (X_{g,t} - X_{g,t-1})'\lambda | \mathbf{D}_g, \mathbf{X}_g]$$

= $E[Y_{g,t}(0) - Y_{g,t-1}(0) - (X_{g,t} - X_{g,t-1})'\lambda],$

which does not depend on g.

- Let $\epsilon^X_{fe,g,t}=$ residual of the reg. of $D_{g,t}$ on a constant, group FEs, time FEs and $X_{g,t}.$
- \bullet Then, same result as above but with $\epsilon^X_{fe,g,t}$ instead of $\epsilon_{fe,g,t}$ in $W_{fe,g,t}.$

Software Implementations

corresponding weights entering in \widehat{eta}_{fe}

bacondecomp Stata and R packages compute the DIDs and their

- The twowayfeweights Stata and R commands compute the weights $W_{fe,g,t}$ and $W_{fd,q,t}$, possibly with covariates
 - \bullet Worst-case scenario of std dev on $\Delta_{g,t}$ where the weights are maximally correlated with TEs
 - ullet Correlation between weights and proxies of $\Delta_{g,t}$

Example: What is the Effect of Newspapers on Electoral Turnout?

- Gentzkow et al. (AER, 2011) use US data on presidential elections
- ullet They regress change in turnout from t-1 to t in county g on change in # newspapers and state-year FE
- One could also estimate the FE regression

	\widehat{eta}	% of < 0	$Sum\;of<0$
Regression	(s.e.)	weights	weights
$\widehat{\beta}_{fe}$	-0.0011	40.1%	-0.53
\widehat{eta}_{fd}	$0.0011) \\ 0.0026 \\ (0.0009)$	45.7%	-1.43

 \Rightarrow Under // trends, we reject the null hypothesis that $\Delta_{q,t} = \Delta \ \forall (g,t)$

Example: Robustness measures in Gentzkow et al. (AER, 2011)

Reg.	\widehat{eta}	$\widehat{\underline{\sigma}}$	$\widehat{\underline{\underline{\sigma}}}$
\widehat{eta}_{fe}	-0.0011	3×10^{-4}	7×10^{-4}
$\widehat{\beta}_{fd}$	0.0026	4×10^{-4}	6×10^{-4}

- A std dev of 4×10^{-4} on $\Delta_{q,t}$ sufficient to rationalize $\delta^{TR}<0$
- A std dev of 6×10^{-4} on $\Delta_{g,t}$ sufficient to rationalize $E[\Delta_{g,t}|{\bf \it D}]<0~\forall (g,t)$
- Weights attached to $\widehat{\beta}_{fd}$ negatively correlated (corr=-0.06, t-stat=-3.28) with the election year
- \Rightarrow \widehat{eta}_{fd} biased if treatment effect changes over time

Heterogeneity-robust DID estimators

Robust DIDs

- Avoid making the forbidden comparisons leveraged by TWFE:
 - Never compare switcher to switcher: only compare switcher to stayer
 - Never compare a switcher to a stayer with a different baseline treatment (e.g.: group going from untreated to treated compared to always treated)
- The comparisons we use depend on whether we allow for dynamic effects
 - Is it plausible that groups' outcome at t only depends on treatment at t?
- If so, we can consider each pair of consecutive time periods independently, and compare t-1 to t outcome trends of:
 - ullet t-1 to t switchers: groups whose treatment changes from t-1 to t
 - t-1 to t stayers: groups whose treatment does not change from t-1 to t, with same t-1 treatment as switchers

Robust DIDs

- ullet If not, we need to control for groups' full treatment history, and compare t-1 to $t+\ell$ outcome trends of
 - \bullet t-1 to t first-time switchers: groups whose treatment changes for the first time from t-1 to t
 - 1 to $t+\ell$ stayers: groups whose treatment does not change from period 1 to $t+\ell$, with same t-1 treatment as switchers
- ⇒ Allowing for dynamic effects is appealing (not covered here), but may lead to less precise and interpretable effects, especially in complicated designs

Parameters of interest

- Suppose first that D is binary
- Let us define

$$\mathcal{S} = \{(g,t) : t \ge 2, \ D_{g,t} \ne D_{g,t-1}, \ \exists g' : \ D_{g',t} = D_{g',t-1} = D_{g,t-1}\}$$

 $\mathcal{S}=t-1$ -to-t switchers that can be matched with a t-1-to-t stayer with the same t-1 treatment

- $N_S = \operatorname{card}(\mathcal{S})$
- Then, ATE across "matchable switchers" is

$$\delta^{S} = E \left[\frac{1}{N_{S}} \sum_{(g,t) \in \mathcal{S}} Y_{g,t}(1) - Y_{g,t}(0) \right]$$

Assumptions for identifying δ^S

- ullet δ^S can be unbiasedly estimated under the following // trends conditions:

 - 2 $E[Y_{g,t}(1) Y_{g,t-1}(1)|\mathbf{D}_g] = E[Y_{g,t}(1) Y_{g,t-1}(1)] = \gamma_{1,t}$
- Usual // trends on $Y_{q,t}(0)$ sufficient if we focus on "switchers in":

$$S_+ = \{(g,t) : t \ge 2, D_{g,t} = 1 > D_{g,t-1} = 0, \exists g' : D_{g',t} = D_{g',t-1} = 0\}$$

ullet Weaker exogeneity assumption sufficient to consistently estimate δ^S :

$$E[Y_{g,t}(0)-Y_{g,t-1}(0)|D_{g,1},...,D_{g,t}]=E[Y_{g,t}(0)-Y_{g,t-1}(0)]$$

 \Rightarrow Allows for possibility that $Y_{q,t}(0) - Y_{q,t-1}(0)$ affects $D_{q,t+1}$ etc.

Weighted averages of DIDs identify δ^S

- ullet For all $t\in\{1,...,T\}$ and d=0,1, let
 - $N_{+,t} = \text{card } \{g: D_{g,t} > D_{g,t-1}\}$
 - $N_{-,t} = \text{card } \{g : D_{g,t} < D_{g,t-1}\}$
 - $\bullet \ N_{=d,t} = {\rm card} \ \{g: D_{g,t} = D_{g,t-1} = d\}$
- And let

$$\begin{split} DID_{+,t} &= \sum_{g:D_{g,t} > D_{g,t-1}} \frac{1}{N_{+,t}} \left(Y_{g,t} - Y_{g,t-1} \right) - \sum_{g:D_{g,t} = D_{g,t-1} = 0} \frac{1}{N_{=0,t}} \left(Y_{g,t} - Y_{g,t-1} \right) \\ DID_{-,t} &= \sum_{g:D_{g,t} = D_{g,t-1} = 1} \frac{1}{N_{=1,t}} \left(Y_{g,t} - Y_{g,t-1} \right) - \sum_{g:D_{g,t} < D_{g,t-1}} \frac{1}{N_{-,t}} \left(Y_{g,t} - Y_{g,t-1} \right) \end{split}$$

Then (dCDH, 2020)

$$E[DIDM] = E\left[\sum_{t=2}^{T} \frac{N_{+,t}}{N_S} DID_{+,t} + \frac{N_{-,t}}{N_S} DID_{-,t}\right] = \delta^S$$

←ロト→□ト→重ト→重ト 重 めなべ

Intuition for DIDM

- $DID_{+,t}$ compares evolution of Y between groups becoming treated between t-1 and t, and groups that remain untreated
- \bullet Under // trends on Y(0), it identifies TE in groups switching into treatment
- Similarly, under // trends on Y(1), $DID_{-,t}$ identifies TE in groups switching out of treatment
- ullet Finally, DIDM is a weighted average of those DID estimands

Placebo estimators

- Intuition: compare switchers' and stayers' outcome evolutions, one period before switchers switch
- Need to restrict attention to groups that are stayers one period before switchers switch
- We could also compare switchers' and stayers' outcome evolutions two, three periods etc. before switchers switch

Discrete Treatments

- If $D \in \mathcal{D}$, consider $DID_{d,d',t}$ $((d,d') \in \mathcal{D}^2)$, a DID comparing groups switching from d to d' from t-1 to t, with groups staying at d
- Then DIDM= weighted average of those $DID_{d,d',t}$ s, scaled by switchers' average treatment change
- ullet DIDM estimates an average outcome change produced by a one unit increase of treatment

Controlling for Time-varying Covariates

Rationale: // trends only hold if we account for covariates' change:

$$E(Y_{g,t}(d) - Y_{g,t-1}(d)|\boldsymbol{D}_g, \boldsymbol{X}_g) = \gamma_{d,t} + (X_{g,t} - X_{g,t-1})'\lambda_d \quad \forall d \in \mathcal{D}$$

- Special case: $X_{g,t} = (1\{g=2\} \times t,...,1\{g=G\} \times t)'$: group-specific linear trends
- Let $\epsilon_{g,t}(d)$ residual of the reg. of $Y_{g,t}-Y_{g,t-1}$ on period FEs and $X_{g,t}-X_{g,t-1}$ for (g,t) s.t. $D_{g,t}=D_{g,t-1}=d\in\mathcal{D}$
- \bullet Then define $DIDM^X$ as DIDM , but using $\epsilon_{g,t}(D_{g,t-1})$ instead of $Y_{g,t}-Y_{g,t-1}$
- Separate reg. for each $d \in \mathcal{D}$, estimated in sample of d-stayers

Controlling for Time-invariant Covariates

 With discrete time-invariant covariate, we propose estimator relying on conditional parallel trends assumption:

$$E(Y_{g,t}(d) - Y_{g,t-1}(d)|D_g, X_g = x) = \gamma_{d,t,x}$$

- \bullet Groups with the same value of X_g experience parallel trends, but trends may differ across values of X_g
- E.g.: state-specific trends with county-level data

Software Implementation

- R and Stata command: did_multiplegt
- Options to relax the standard // trends
 - Control for time-varying, time-invariant covariates, or linear time trends
- Flexibly specifies the number of placebos to be estimated
- When D takes many values, with D_c coarser than D: match stayers to switchers if they share same baseline value of D_c rather than D
 - But then, DIDM assumes that for $d \neq d': f(d) = f(d')$, trend affecting $Y_{g,t}(d)$ same as that affecting $Y_{g,t}(d')$, or equivalently that $Y_{g,t}(d) Y_{g,t}(d')$ constant over time

Example (continued): Gentzkov et al. (AER, 2011)

Table: Estimates of the effect of one additional newspaper on turnout

	Estimate	Standard error	N
$\widehat{\beta}_{fd}$	0.0026	0.0009	15,627
$rac{eta_{fd}}{\widehat{eta}_{fe}}$	-0.0011	0.0011	16,872
DIDM	0.0043	0.0014	16,872
DIDM Placebo	-0.0009	0.0016	13,221

 \Rightarrow DIDM is 66% larger and significantly different from $\widehat{\beta}_{fd}$ at the 10% level (t-stat=1.77) and has an opposite sign to $\widehat{\beta}_{fe}$

Extension to Continuous Treatments (de Chaisemartin et al., 2024)

- ullet DIDM compares outcome evolution of switchers and of stayers with the same baseline treatment
- Two challenges when extending this simple idea to continuous treatments:
 - There may not be stayers
 E.g., Deschênes and Greenstone (2007) use US-county level data and TWFE regs to estimate effect of temperatures on agricultural yields.
 - No stayer: no US county experiences exact same temperatures in two consecutive years
 - ② Switchers cannot be matched to stayers with same baseline treatment E.g.: Fajgelbaum et al. (2020), impact of 2018-2019 "Trump tariffs". Only changed tariffs for minority of varieties, so many stayers. However, tariffs ≃ continuous, so many varieties targeted by Trump cannot be matched to non-targeted variety with same tariffs before 2018

TSE MRes. Fall 2024

Notation and // Trends

- ullet We drop the g subscript: what follows holds for any group in the sample
- Group observed at two periods (generalization to more periods easy)
- ullet Let D_1 and D_2 denote group's treatments at periods 1 and 2
- For any $d \in \mathcal{D}_1 \cup \mathcal{D}_2$, let $Y_1(d)$ and $Y_2(d)$ denote group's potential outcomes at periods 1 and 2 with treatment d
- Let Y_1 and Y_2 denote observed outcomes
- Let $S = 1\{D_2 \neq D_1\}$ be indicator equal to 1 if the group's treatment changes from period one to two, i.e. if group is a switcher
- // trends with continuous treatment

$$\forall d_1 \in \mathcal{D}_1, \ E(Y_2(d_1) - Y_1(d_1)|D_1 = d_1, D_2) = E(Y_2(d_1) - Y_1(d_1)|D_1 = d_1)$$

Building-block Identification Result

Under // trends,

$$TE(d_1, d_2|d_1, d_2) := E\left(\frac{Y_2(d_2) - Y_2(d_1)}{d_2 - d_1} \mid D_1 = d_1, D_2 = d_2\right)$$
$$= E\left(\frac{\Delta Y_2 - E(\Delta Y \mid D_1 = d_1, S = 0)}{d_2 - d_1} \mid D_1 = d_1, D_2 = d_2\right)$$

- In a canonical DID design: $\mathcal{D}_1 = 0$ and $\mathcal{D}_2 \in \{0, 1\}$
- \Rightarrow $(d_1, d_2) = (0, 1)$ and so $TE(0, 1|0, 1) = \mathsf{ATT}$

Building-block Identification Result: Proof

$$E(Y_2(d_2) - Y_2(d_1) \mid D_1 = d_1, D_2 = d_2)$$

$$= E(\Delta Y \mid D_1 = d_1, D_2 = d_2) - E(\Delta Y(d_1) \mid D_1 = d_1, D_2 = d_2)$$

$$= E(\Delta Y \mid D_1 = d_1, D_2 = d_2) - E(\Delta Y(d_1) \mid D_1 = d_1, D_2 = d_1)$$

$$= E(\Delta Y \mid D_1 = d_1, D_2 = d_2) - E(\Delta Y(d_1) \mid D_1 = d_1, S = 0)$$

$$= E(\Delta Y - E(\Delta Y \mid D_1 = d_1, S = 0) \mid D_1 = d_1, D_2 = d_2)$$

- ⇒ The counterfactual outcome evolution switchers would have experienced if their treatment had not changed is identified by the outcome evolution of stayers with the same period-one treatment
 - E.g. If a unit's treatment changes from two to five, we can recover its
 counterfactual outcome evolution if its treatment had not changed, by using
 the average outcome evolution of all stayers with a baseline treatment of two

Target Parameter: the ASOS

• δ_1 : Average Slope of Switchers: ASOS

$$\delta_1 := E\left(\frac{Y_2(D_2) - Y_2(D_1)}{D_2 - D_1} \middle| S = 1\right)$$

- ullet Average effect across switchers of moving their D from period-one to period-two value, scaled by difference between these two values
- Local effect
 - Applies to switchers
 - Measures effect of moving their treatment from its period-one to period-two value, not of other manipulations of their treatment
- But ASOS can be used to identify (resp. bound) effect of other treatment changes if potential outcomes linear (resp. concave/convex)

Support Condition for ASOS Identification

 Standard support condition for matching estimators: no value of the period-one treatment such that only switchers have this value

$$0 < P(S = 1)$$
, and almost surely, $P(S = 1|D_1) < 1$

- Implies P(S=0) > 0: while we assume D_1 and D_2 continuous, we also assume that treatment persistent
- $\Rightarrow D_2 D_1$ has a mixed distribution with mass point at zero

No Quasi-stayers

ullet Switchers' treatment changes by at least c in absolute value

$$\exists c > 0 : P(|D_2 - D_1| > c|S = 1) = 1$$

 \Rightarrow Holds in Fajgelbaum et al. (2020): tariffs increases decided by Trump administration $\geq 1.5 \mathrm{pp}$:

ASOS Identification w/o Quasi-stayers

 Switchers' treatment effects identified by comparing their outcome evolution to that of stayers with same period-one treatment

$$\delta_1 = E\left(\frac{Y_2 - Y_1 - E(Y_2 - Y_1 | D_1, S = 0)}{D_2 - D_1} \middle| S = 1\right)$$

ASOS estimation w/o quasi-stayers

- With iid sample $(Y_{g,1},Y_{g,2},D_{g,1},D_{g,2})_{1\leq g\leq G}$, $E\left(\frac{\Delta Y-E(\Delta Y|D_1,S=0)}{\Delta D}\Big|S=1\right)$ can be estimated in three steps:
 - lacktriangledown Estimate non-parametric regression of ΔY_g on $D_{g,1}$ among stayers
 - ② Compute $\widehat{E}(\Delta Y|D_{g,1},S=0)$, predicted outcome evolution given baseline treatment according to non-parametric regression, for all switchers
 - Finally,

$$\widehat{\delta}_1 := \frac{1}{G_s} \sum_{g: |\Delta D_g| > 0} \frac{\Delta Y_g - \widehat{E}(\Delta Y | D_{g,1}, S = 0)}{\Delta D_g}.$$

• One can show that $\hat{\delta}_1$ is \sqrt{G} — consistent, and $\sqrt{G}(\hat{\delta}_1 - \delta_1)$ converges towards normal distribution whose variance can be consistently estimated

Bobba, Flabbi and Levy (IER, 2022)

Labor Market Search, Informality, and Schooling Investments

- An equilibrium search model where:
 - Search frictions generate mobility between formal and informal jobs
 - Match-specific productivity and bargaining generate overlapping wage distributions
 - 3 Both ingredients generates a mix of formal and informal jobs in equilibrium
- One important long-term "cost of informality": Under-investment in education
 - Same features that create informality may also distort returns to schooling
 - Hold-up ex-ante investments in human capital

Labor Markets in Latin America

- More than half of the labor force is in the informal sector
 - Workers not contributing to and not covered by the social security system
 - Informal employees and (most of the) self-employed
- Patterns in the data are not consistent with either a segmented or a competitive view of the labor market
 - Individuals transit back and forth between formal and informal jobs
 - Wage/productivity distributions overlap
 - Mix of formality status within the same firm
- Informal workers have started to gain access to non-contributory social security programs

The Costs of Informality

- Informality may well be an optimal choice to a given institutional setting
 - De facto flexibility for firms and workers to cope with adverse shocks
- Still, its pervasive diffusion may generate short- and long-term costs:
 - Hinders fiscal capacity and the provision of social insurance
 - Subsidy for smaller and often less productive firms
 - Worsen hold-up problems in investment decisions of firms and workers

The Model Environment

- Timing
 - Schooling decision
 - Searching status decision
 - Labor market dynamics
- Labor Market States
 - Unemployed
 - Self-employed
 - Informal Employee
 - Formal Employee

Schooling Decision

- ullet Irrevocable decision about schooling level h
- Discrete choice: $h \in \{0, 1\}$
- Individual-specific heterogeneity
 - costs $\kappa \sim T(\kappa)$
 - opportunity cost PDV of participating in LMK as h=0
- Schooling decision has reservation value rule: only agents with $\kappa < \kappa^\star(y)$ will acquire h=1
- All labor market parameters are allowed to be schooling-specific

Searching-status Decision

- Irrevocable decision about searching as:
 - Self-employed
 - Unemployed
- Individuals search for an employee job in both states but receive offers at different rates: $\gamma_h < \lambda_h$
- Self-employment income $y \sim R(y|h)$
- Searching status decision has (again) reservation rule property: only agents with $y \ge y^*(h)$ search for an employee job while also working as self-employed

Labor Market Dynamics

State	PDV	Shock	Flow Utility
Workers:			
Unemployed	U(h)	λ_h	$\xi_h + \beta_{0,h} B_0$
Self-Employed	S(y,h)	γ_h	$y+eta_{0,h}B_0$
Informal Employee	$E_0[w,y,h]$	η_h, χ_h	$w_0(x;y,h) + \beta_{0,h} B_0$
Formal Employee	$E_1[w,y,h]$	η_h, χ_h	$w_1(x; y, h) + \beta_{1,h} B_1[w_1(x; y, h)]$
Firms:			
Vacancy	V[h]	ζ_h	$ u_h$
Filled Informal Job	$F_0[x,y,h]$	η_h, χ_h	$x-w_0(x;y,h)$
Filled Formal Job	$F_1[x,y,h]$	η_h, χ_h	$x - (1+t)w_1(x;y,h)$

- Match-specific productivity: $x \sim G(x|h)$
- One-shot penalty for firms hiring illegally: $c_h w_0(x;y,h)$
- Matching function determines $\{\lambda_h, \gamma_h, \zeta_h\}$: $m_h = (u_h + \psi_h s_h)^{\iota_h} (v_h)^{1-\iota_h}$

Labor Market Institutions and Wage Determination

- Non-wage workers' flow value:
 - formal employee = $\beta_{1,h}B_1[w_1(x;y,h)] = \beta_{1,h}[\tau tw_1(x;y,h) + b_1]$
 - informal employee = $\beta_{0,h}B_0$
 - Notice: the endogenous b_1 introduces redistribution within and between schooling levels.
- Wage are determined by bargaining, conditioning on formality status endogenously posted by firms. Wage schedules (under free-entry of firms) are:

$$w_0(x; y, h) = \frac{\alpha_h}{1 + \chi_h c_h} x + (1 - \alpha_h) [\rho Q(y, h) - \beta_{0,h} B_0]$$

$$w_1(x; y, h) = \frac{\alpha_h}{1 + t} x + \frac{(1 - \alpha_h)}{1 + \beta_{1,h} \tau t} [\rho Q(y, h) - \beta_{1,h} b_1]$$

where: $Q(y,h) \equiv \max\{S(y,h),U(h)\}$

Equilibrium Representation

Empirical Implications

- Main stylized facts of informal labor markets are replicated in equilibrium:
 - A mixture of formal and informal jobs is realized
 - Formal employees have on average higher wages than informal employees. But their accepted wage distributions overlap
 - Informal employees and self-employed have markedly different labor market dynamics
 - Some firms hire formal or informal workers at different points in time just as workers transit over time between different formality status

Data Sources

- Mexico's Labor Force Survey (ENOE): Year 2005
 - Nonagricultural, full-time, male, private-sector, secondary-school workers between the ages of 25 and 55 who reside in urban areas
 - $\bullet \ w \equiv$ Hourly wages as employee, main job after labor contributions
 - $\bullet \ y \equiv$ Hourly labor income as self-employed, without paid employees
 - ullet f=1 if employee is contributing to the social-security fund; =0 otherwise
 - h = 1 if Upper secondary completed = 0 if Lower secondary completed
- Aggregate labor shares for Mexico in 2005
 - Total compensations per employee as percentage of GDP
- Vacancy rates for 2005
 - Good coverage of vacancy posting in urban areas
 - Detailed information on the schooling level required for the job

Identification: Informality Parameters

- Different transition rates out of formal jobs and informal jobs identify χ_h
- The identification of β_1 and c_h is derived from the location and extent of the overlap between formal and informal accepted wage distributions
 - While movement in β_1 and c_h can achieve the same extent of the overlap, they do so by moving its location in different directions
 - This generates different shape in the accepted wage distribution of formal and informal employees
- Repeating the same argument over the y distribution generates useful variation to separately identify the parameters

Identification: Informality Parameters (cont'd)

- The identification of β_0 requires the use of additional information
 - We exploit the roll-out of the Seguro Popular (SP) program in 2005-2006
 - In terms of our model, it can be seen as an exogenous increase in B_0
- Variation in B_0 across individuals identify β_0
 - As long as this variation is not correlated with changes in the primitive parameters of the model
 - Labor market outcomes pre-policy seem balanced

SP Roll-out and Labor Market Characteristics in 2001

	Hourly Wages (log)			Labor Market Proportions				
	(1)	(2)	(3)		(4)	(5)	(6)	(7)
	Formal	Informal	Self	F	ormal	Informal	Self	Unempl.
SP in 2005 (1=yes)	-0.041	0.048	-0.035	-(0.034	0.035	-0.004	0.003
	(0.036)	(0.055)	(0.062)	(0	0.026)	(0.019)	(0.014)	(0.006)
Complete Sec. (1=yes)	0.218	0.288	0.092	0	0.061	-0.036	-0.029	0.003
	(0.017)	(0.032)	(0.033)	(0	0.011)	(800.0)	(800.0)	(0.003)
Observations	7865	5474	2777	1	6458	16458	16458	16458

NOTE: OLS estimates. Standard errors clustered at the municipality level are reported in parenthesis. Data is drawn from the Mexican labor market survey (ENE, 2001) and matched at the municipality-level with the roll-out of the Seguro Popular program. State dummies and municipality-level controls (log(population), log(population²), and poverty index) are included in all specifications.

Estimation

- For each schooling and treatment group, we match the following moments
 - Proportions of individuals in each labor market state
 - Accepted wage distributions of formal and informal employees
 - Mean and SD: overall and by quintiles
 - Overlap, as measured by proportion of formal employees for each quintile of the informal accepted wage distribution
 - Accepted earnings distributions of self-employed
 - Mean and SD
 - Transitions between LMK states (yearly)
 - Hazard rates out of unemployment (at 3 and 6 months)
 - Labor Shares
- Back-out demand-side parameters using vacancy rates

Returns to Schooling

	Ability:	Low	High
		k = 1	k = 2
PDV of Labor Market Sear	ch:		
$\int_{y} Q(y,h) dR(y h)$		0.309	0.278
J			
Average Accepted Wages:			
$F: E_h [w_1 \mid \tilde{x}(y,h) \leq x]$		0.479	0.435
I: $E_h[w_0 \mid x_0^*(y,h) \le x <$	$\tilde{x}(y,h)]$	0.281	0.296
Average Offered Wages:			
$F: E_h \left[w_1 \mid y < y^*(h) \right]$		0.213	0.210
F: $E_h[w_1 \mid y \geq y^*(h)]$		0.213	0.204
I: $E_h[w_0 \mid y < y^*(h)]$		0.133	0.134
I: $E_h[w_0 \mid y \geq y^*(h)]$		0.142	0.136

Out-of-Sample Model Validation

Counterfactual: The Equilibrium Effects of Informality

Model:	Firms can only offer a formal contract				
Specifications:	Baseline	Exogenous	Exogenous	Hosios-like	
	Model	Schooling	Contact Rates	Condition $(\alpha = \iota)$	
Flow Welfare:					
Total	-0.0596	-0.0750	-0.0020	0.0478	
Workers	-0.0460	-0.0599	0.0166	0.0570	
Firms	-0.2821	-0.3219	-0.3055	-0.1589	
Labor Market Proporti	ons:				
Unemployed	0.0213	0.0636	0.0019	-0.0459	
Self-employed	0.3353	0.3526	0.3625	0.2329	
Formal Employees	0.0275	-0.0146	-0.0376	0.0076	
Schooling Outcomes:					
% HS Completed	0.1029	_	0.0781	0.1501	
% High Ability in HS	0.0538	_	0.0569	0.0628	

 ${
m Note:}$ Relative changes wrt the benchmark model. Hosios increases lpha from 0.56 to 0.73.

Counterfactual: Changes in Payroll Tax Rate (t)

Main Take-ways from Estimated Model

- Returns to schooling are substantial
- Informality is welfare improving but:
 - Significantly more so for firms than workers
 - Reduces human capital accumulation (hold-up problem)
- Payroll tax rate has a non-intuitive impact on equilibrium outcomes
 - Informality rate not a good indicator for policy
 - Redistributive components within the formal system are often ignored in the policy debate

Job Search Models and Diff-in-Diffs

- Relevant institutional features are included in the model in a tractable way
- But these extra parameters are hard to separately identify using standard labor market survey data
- The staggered roll-out of the welfare policy provides additional variation outside the model environment
 - Identify the (average) valuation of non-contributory benefits
 - ② Validate the model on a different time period by simulating one-step ahead