

EPC 8

Data de Entrega: 10/12/2020

De acordo com Coello et al. (2007), um *Problema de Otimização Multiobjetivo (PMO)* consiste em procurar um vetor de variáveis de decisão que satisfaz certas restrições e otimiza um vetor, cujos elementos são funções objetivo. Tais funções fornecem uma descrição matemática dos critérios de desempenho que usualmente são conflitantes.

Um PMO pode ser definido como (Deb 2001):

$$\begin{array}{lll} maximizar/minimizar & f_m(x) & m=1,2,\ldots,M\\ restrita~a & g_j(x)\geq 0 & j=1,2,\ldots,J\\ & h_k(x)=0 & k=1,2,\ldots,K\\ & x_i^{(L)}\leq x_i\leq x_i^{(U)} & i=1,2,\ldots,n \end{array}$$

onde $f_m(x)$ é a m-ésima função objetivo do vetor de funções objetivo, $f(x) = [f_1(x), f_2(x), ..., f_m(x)]^T$, x é o vetor das variáveis de decisão, $x = [x_1, x_2, ..., x_n]^T$. Os valores de $x_i^{(L)}$ e $x_i^{(U)}$ representam os limites inferior e superior, respectivamente, para a variável x_i . Esses limites definem o espaço de variáveis ou espaço de decisão. As funções $g_j(x)$ e $h_k(x)$ são chamadas de funções de restrição. Uma solução x factível satisfaz as restrições de desigualdades $(g_j(x))$ e igualdades $(h_k(x))$, e os limites inferiores e superiores. Caso contrário, a solução não será factível. O conjunto de todas as soluções factíveis formam a região factível ou espaço de busca.

Neste EPC, você irá aplicar o NSGA-II para a resolução de um problema de otimização multiobjetivo bem conhecido, o ZDT, mais precisamente para o ZDT1, ZDT2 e ZDT3. Para cada problema, será considerado apenas duas variáveis: x1 e x2. Deve-se minimizar f_1 e f_2 .

ZDT1	ZDT2	ZDT3
$f_1(x) = x_1$	$f_1(x) = x_1$	$f_1(x) = x_1$
$f_2(x) = g(x).h(f_1(x), g(x))$	$f_2(x) = g(x).h(f_1(x),g(x))$	$f_2(x) = g(x).h(f_1(x), g(x))$
$g(x) = 1 + \frac{9}{m-1} \sum_{i=2}^{m} x_i$	$g(x) = 1 + \frac{9}{m-1} \sum_{i=2}^{m} x_i$	$g(x) = 1 + \frac{9}{m-1} \sum_{i=2}^{m} x_i$
$h(f_1,g)=1-\sqrt{\frac{f_1}{g}}$	$h(f_1, g) = 1 - \left(\frac{f_1}{g}\right)^2$	$h(f_1,g) = 1 - \sqrt{\frac{f_1}{g}} - \left(\frac{f_1}{g}\right) sen(10\pi f_1)$
$0 \le x_1 \le 1$	$0 \le x_1 \le 1$	$0 \le x_1 \le 1$

Parâmetros do NSGA-II

Tamanho da população	100
Número de gerações	250
Cruzamento	Simulated Binary Crossover (SBX)
Mutação	Polynomial Mutation
Taxa de cruzamento	0,9
Taxa de mutação	0,5

Universidade Estadual de Feira de Santana PGCC – Programa de Pós-Graduação em Ciência da Computação PGCC015 Inteligência Computacional Prof. Matheus Giovanni Pires

Para analisar a qualidade das soluções encontradas pelo NSGA-II, deve-se imprimir a Fronteira Pareto-Ótima do problema e a Fronteira Pareto-Ótima do algoritmo genético, lado a lado, para permitir uma comparação visual. Além disso, deve-se calcular duas medidas: *Inverted Generational Distance* (IGD) e *Hypervolume* (HV), e preencher a seguinte tabela:

Problema	IGD	HV
ZDT1		
ZDT2		
ZDT3		

REFERÊNCIAS

COELLO et al. (2007). Carlos A. Coello Coello, Gary B. Lamont, David A. Van Veldhuizen. **Evolutionary Algorithms for Solving Multi-Objective Problems**, 2nd Edition, Springer, 2007.

DEB (2001). Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algorithms, 1st Edition, John Wiley, 2001.

OBSERVAÇÕES

- 1. O EPC deve ser realizado individualmente.
- 2. Pode ser utilizado bibliotecas para a implementação dos algoritmos genéticos.
- 3. **ATENÇÃO**: Este EPC será enviado somente via CLASSROOM, portanto, o código-fonte e o relatório devem estar em somente UM ARQUIVO ZIPADO, com o seguinte nome: **EPC08-SeuNome.zip**