Busca Adaptativa em Grandes Vizinhanças Aplicada à Determinação de Leiautes de Circuitos Eletrônicos

Vinicius Gandra Martins Santos

Universidade Federal de Ouro Preto gandra.vinicius@gmail.com

31 de Julho de 2017

Sumário

- Introdução
- 2 Fundamentação Teórica
- 3 Desenvolvimento
- 4 Experimentos
- Conclusão

Circuitos Integrados

- Interconexão de componentes (diodos, transistores, capacitores, etc);
- Componentes ligados por fios condutores;
- Componentes dispostos sobre um substrato fino de material semicondutor;
- Diferentes disposições dos componentes geram diferentes leiautes.

Circuitos Integrados de Larga Escala

- Circuitos compostos por milhares de componentes;
- Disposição dos componentes influenciam no tamanho do circuito;
- Circuitos menores, com leiaute mais compactos, são mais rápidos e baratos.

Representação

Figura: Matriz de portas programáveis (a) original, permutada (b), e compactada (c).

Determinação de Leiautes de Matrizes de Portas

O Problema de Determinação de Leiaute de Matrizes de Portas (GMLP, do inglês *Gate Matrix Layout Problem*) consiste em determinar a permutação ótima de portas de modo a minimizar a quantidade de trilhas necessárias para implementar o circuito integrado correspondente e consequentemente minimizar a área e custo de produção do mesmo.

Motivação e Objetivos

Motivação

- O problema possui aplicações práticas na engenharia e indústria;
- Este problema tem equivalência com outros problemas na literatura;
- O GMLP é um problema NP-Difícil.

Objetivos

- Realizar pesquisa para geração de embasamento teórico e revisão bibliográfica sobre o GMLP e o ALNS;
- Implementar o ALNS e avaliar os resultados obtidos com os melhores resultados da literatura.

Instância

Matriz
$$m \times n$$
 $M = m_{ij} \rightarrow \{1, 0\}$
$$m_{ij} = \begin{cases} 1 & \text{se somente se, a rede } i \text{ incluir a porta } j, \\ 0 & \text{caso contrário.} \end{cases}$$
 (1)

	P1	P2	Р3	P4	P5
R1	0	0	0	1	1
R2	1	0	0	0	1
R3	0	0	1	0	1
R4	0	0	1	1	0
<i>R5</i>	1	0	0	0	0
R6	0	1	0	0	0

Propriedade dos 1s Consecutivos

	P1	P2	P3	P4	P5			
R1	0	0	0	1	1			
R2	1	0	0	0	1			
R3	0	0	1	0	1			
R4	0	0	1	1	0			
R5	1	0	0	0	0			
R6	0	1	0	0	0			
(a)								

	P1	P2	РЗ	P4	P5
R1	0	0	0	1	1
R2	1	1	1	1	1
R3	0	0	1	1	1
R4	0	0	1	1	0
R5	1	0	0	0	0
R6	0	1	0	0	0

(b)

Função de Avaliação

$$Z_{GMLP}(M^{\pi}) = \max_{j \in \{1, \dots, n\}} \sum_{i=1}^{m} m_{ij}^{\pi}$$
 (2)

	P6	P1	P2	P5	P4	P3
R1	0	0	0	0	1	1
R2	1	1	1	0	0	0
R3	1	1	1	1	0	0
R4	0	1	1	1	1	0
R5	1	1	1	0	0	0
R6	0	1	1	1	1	0

	P6	P1	P2	P5	P3	P4
R1	0	0	0	0	1	1
R2	1	1	1	0	0	0
R3	1	1	1	1	0	0
R4	0	1	1	1	1	1
R5	1	1	1	0	0	0
R6	0	1	1	1	1	1

 M^{π_1} M^{π_2}

Função de Avaliação

Gonçalves et. al (2016)

$$Z_{MGMLP}(M^{\pi}) = Z_{GMLP}(M) + \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} m_{ij}^{\pi}}{Z_{GMLP}(M) \times n}$$
(3)

$$Z_{MGMLP}(M^{\pi_1}) = 5 + \frac{3+5+5+3+3+1}{5\times 6} = 5,66$$

$$Z_{MGMLP}(M^{\pi_2}) = 5 + \frac{3+5+5+3+3+3}{5\times6} = 5,73$$

Função Objetivo

$$\min_{\pi \in \Pi} Z_{MGMLP}(M) \tag{4}$$

Busca Adaptativa em Grandes Vizinhanças

Ropke e Pisinger (2006) propuseram a metaheurística Busca Adaptativa em Grandes Vizinhanças (Adaptive Large Neighborhood Search, ALNS). O ALNS utiliza buscas locais e perturbações para explorar uma porção ampla das possíveis soluções para problemas combinatórios.

Vizinhanças

Vizinhanças

Conjunto de soluções similares obtidas através de simples movimentos.

Vizinhanças de Remoção

- Recebe solução representada por uma sequência de portas π ;
- Remove q portas da solução.

Vizinhanças de Inserção

- Recebe solução parcial e um conjunto γ de portas para inserção;
- Cada porta de γ é selecionada aleatoriamente e inserida na solução.

Vizinhanças de Remoção

- Remoção de Colunas Críticas;
- Remoção de Uns Consecutivos em Colunas Críticas;
- Remoção de Uns Consecutivos em Linhas;
- Remoção Aleatória;
- Remoção de Portas Relacionadas.

Vizinhanças de Inserção

- Inserção Aleatória;
- Inserção Limitada por Coluna;
- Inserção na Melhor Posição;
- Inserção por Arrependimento.

Roleta

- Roleta é representada no intervalo $R = [0...1] \in \mathbb{R}$;
- Cada vizinhança i recebe uma fatia proporcional à sua probabilidade de ser selecionada;
- v1 = 60, v2 = 125, v3 = 115, v4 = 200.

Pontuação

- σ_1 , quando as heurísticas (remoção e inserção) resultaram na melhor solução até o momento;
- σ₂, quando as heurísticas resultaram em uma solução cujo custo seja menor que o da solução corrente; e
- σ₃, quando as heurísticas resultaram em uma solução que é aceita por um critério de aceitação, porém com o custo maior que o da solução corrente.

Critério de aceitação

Uma solução π' gerada a partir de outra solução π é aceita com probabilidade calculada de acordo com a Equação:

$$e^{-(f(\pi')-f(\pi))/T} \tag{5}$$

- T Temperatura;
- $T_{start} = 0.41 f(\pi_0) / \ln 2$ Temperatura inicial;
- $T = T \times c$ Expressão de resfriamento;
- c = 0,995 Taxa de resfriamento (Pereira et al., 2015).

Suavização

- r_{i,j} são os pontos observados da heurística i no segmento j;
- a_i é o número de vezes que a heurística i foi chamada durante o segmento j;
- $\rho \in (0,1)$ é o fator de reação.

$$r_{i,j+1} = \rho \frac{\overline{r}_{i,j}}{a_i} + (1 - \rho)r_{i,j}$$
 (6)

$$r_j = [29.48, 3.28, 1.50, 2.69]$$

 $r_{j+1} = [2.56, 1.28, 0.62, 1.17]$

Condição de Parada

- **●** Temperatura *T* igual ou menor a 0,01;
- Solução igual a um limite inferior;
- Limite de 100 iterações ininterruptas sem que haja melhora na solução.

Ambiente Computacional

- Processador Intel Core i7 3.6 GHz;
- 16 GB RAM;
- Ubuntu 14.04 LTS;
- Código escrito em C++, compilado com g++ 4.8.4 e opções
 -O3 e -march=native.

Parâmetros Utilizados

Parâmetros	Valor Escolhido	Intervalo
σ_1	15	[5, 10,, 45, 50]
σ_2	25	[5, 10,, 45, 50]
σ_3	5	[5, 10,, 45, 50]
Percentual de piora ψ	0,41	[0,05 0,50]
Fator de Reação $ ho$	0,66	[0,00 1,00]
Número de Iterações	800	[300, 400,, 900, 1000]
Tamanho de cada Segmento	60	[30, 40,, 90, 100]
Número de iterações sem melhora	100	[40, 60, 80, 100]

Conjuntos de Instâncias

- VLSI 25 instâncias reais;
- SCOOP Consortium 24 instâncias MOSP reais de duas empresas moveleiras europeias;
- Faggioli & Bentivoglio (F&B) 300 instâncias artificiais;
- First Constraint Modeling Challenge (C) 46 instâncias artificiais;
- Instâncias MOSP (CS) 200 instâncias MOSP de maiores dimensões geradas aleatoriamente por Chu e Stuckey (2009);
- Larger & Harder (L&H) 150 instâncias com dimensões de 150 \times 150, 175 \times 175 e 200 \times 200 geradas por Carvalho e Soma (2015).

10 testes foram executados para cada conjunto de instâncias.

Resultados Médios

Conjunto	OPT	<i>S</i> *	S_0	T	σ	gap	Р
VLSI	7,12	7,12	9,84	4,12	0,00	0,00	100,00
SCOOP	7,75	7,75	10,16	0,41	0,05	0,00	100,00
F&B	9,30	9,30	11,86	0,67	0,01	0,00	100,00
Challenge	24,35	24,35	26,90	29,00	0,04	0,00	100,00
MOSP	41,15	41,29	48,11	36,20	0,20	0,21	87,50
L&H	96,77	97,56	117,02	493,18	0,62	0,98	33,33

Tabela: gap – $100 \times (S^* - OPT)/OPT$, P – porcentagem de soluções ótimas

Pontuação das Heurísticas

Conjunto	RCC	RFCC	RFL	RRand	RShaw	<i>IRand</i>	ILC	<i>IBest</i>	IReg
VLSI	31,65	37,58	37,20	32,07	37,36	57,70	21,86	77,68	71,56
SCOOP	57,99	58,24	57,79	54,68	57,51	84,55	34,55	133,08	115,50
F & B	64,05	60,03	61,95	57,47	65,01	99,81	29,77	141,84	129,29
Challenge	67,14	61,21	64,35	63,52	67,96	100,46	29,57	152,71	137,41
Chu Stuckey	70,20	63,23	69,59	65,61	80,10	115,24	31,04	157,76	146,46
Larger & Harder	74,31	62,18	69,60	61,88	84,74	117,01	30,05	159,15	148,24
Média	60,89	57,07	60,08	55,87	65,45	95,80	29,47	137,04	124,74

Análise de Convergência

Conclusão

- Este trabalho propôs pela primeira vez a utilização do método ALNS para solução do GMLP. Os resultados foram satisfatórios e demonstraram a eficiência e robustez do método proposto;
- Os experimentos computacionais envolvem 745 instâncias de 6 diferentes conjuntos da literatura, em que o método proposto encontrou aproximadamente 84% (620) das soluções ótimas;
- Os trabalhos futuros incluem a análise de novas heurísticas de inserção e remoção na ALNS, de maneira a aprimorar os resultados para o último conjunto de instâncias.

Introdução Fundamentação Teórica Desenvolvimento Experimentos

Fim

	Мо	no 1	Mo	ono 2
Conjunto	gap	T	gap	T
VLSI	9,16	40,62	0,00	4,12
SCOOP	3,70	4,24	0,00	0,41
F&B	6,97	4,02	0,00	0,67
Challenge	5,35	391,62	0,00	29,00
MOSP	11,89	513,86	0,21	36,20
L&H	_	_	0,98	493,18