Targeted Minimum Loss-based Estimation (TMLE) for Causal Inference

Helene Charlotte Wiese Rytgaard (hely@sund.ku.dk)

Thomas Alexander Gerds (tag@biostat.ku.dk)

Anders Munch (a.munch@sund.ku.dk)

Ann-Sophie Buchardt (asbu@sund.ku.dk)

Day 1, Lecture 1

Introduction: The roadmap of targeted learning

Overview: The roadmap of targeted learning

Theoretical angle The roadmap of targeted learning

data as a random variable having a probability distribution, scientific knowledge represented by a large statistical model, a statistical target parameter representing an answer to the question of interest.

Applied angle The roadmap of targeted learning / causal inference

- translation from real-world data applications to a mathematical and statistical formulation of the relevant estimation problem.
- statistical analysis tailored towards answering that question.

Opposed to choosing a model for the data-generating process and using that model to answer all questions.

- 1. Data is a random variable O with a probability distribution P_0
- 2. P_0 belongs to a statistical model \mathcal{M}
- 3. Our target is a parameter $\Psi : \mathcal{M} \to \mathbb{R}$
- 4. Construct estimator \hat{P}_n for (relevant part of) P_0 and estimate the target parameter by $\hat{\psi}_n = \Psi(\hat{P}_n)$
- 5. Quantify uncertainty for the estimator $\hat{\psi}_n = \Psi(\hat{P}_n)$

1. Data is a random variable O with a probability distribution P_0

$$O_1,\ldots,O_n\stackrel{iid}{\sim} P_0$$

 O_i is the observation for individual i of the dataset

For example, O consists of

- ▶ Covariates: $X \in \mathcal{X} \subseteq \mathbb{R}^d$
- ▶ Exposure/treatment: $A \in \{0, 1\}$
- ▶ Outcome: $Y \in \{0,1\}$ or $Y \in \mathbb{R}$

1. Data is a random variable O with a probability distribution P_0

$$O_1,\ldots,O_n\stackrel{iid}{\sim} P_0$$

 O_i is the observation for individual i of the dataset

For example, O consists of

- ▶ Covariates: $X \in \mathcal{X} \subseteq \mathbb{R}^d$
- Exposure/treatment: $A \in \{0, 1\}$
- ▶ Outcome: $Y \in \{0,1\}$ or $Y \in \mathbb{R}$

This is the data structure we stick to for now.

2. P_0 belongs to a statistical model \mathcal{M}

What do we know about the probability distribution of the data?

The statistical model \mathcal{M} is the set of all probability distributions that we believe are possible for our observed data.

Limited statistical knowledge? $\Rightarrow \mathcal{M}$ should be large to reflect that.

Consider a parametric¹ model for the distribution of $Y \in \{0,1\}$ given $X \in \mathbb{R}^d$ and $A \in \{0,1\}$:

¹i.e., distribution can be characterized by a finite number of parameters.

Consider a parametric¹ model for the distribution of $Y \in \{0, 1\}$ given $X \in \mathbb{R}^d$ and $A \in \{0, 1\}$:

$$logit \mathbb{E}[Y \mid A, X] = \alpha_0 + \alpha_A A + \alpha_X^{\mathsf{T}} X$$
 (M1)

assumption of convenience?

¹i.e., distribution can be characterized by a finite number of parameters.

Consider a parametric¹ model for the distribution of $Y \in \{0, 1\}$ given $X \in \mathbb{R}^d$ and $A \in \{0, 1\}$:

$$logit \mathbb{E}[Y \mid A, X] = \alpha_0 + \alpha_A A + \alpha_X^{\mathsf{T}} X$$
 (M1)

assumption of convenience?

Another parametric model could be

$$\operatorname{logit} \mathbb{E}[Y \mid A, X] = \gamma_0 + \gamma_A A + \gamma_X^{\mathsf{T}} X + \gamma_{A, X}^{\mathsf{T}} A X$$
 (M2)

• (M1) and (M2) cannot be true at the same time (except if $\gamma_{A,X} = 0$).

¹i.e., distribution can be characterized by a finite number of parameters.

EXAMPLE:

- $O = (X, A, Y) \in [-2, 2] \times \{0, 1\} \times \{0, 1\}$
- ▶ True model is

$$\operatorname{logit} \mathbb{E}[Y \mid A, X] = \beta_0 + \beta_A A + \beta_X X^2$$

EXAMPLE:

- $O = (X, A, Y) \in [-2, 2] \times \{0, 1\} \times \{0, 1\}$
- True model is

$$\operatorname{logit} \mathbb{E}[Y \mid A, X] = \beta_0 + \beta_A A + \beta_X X^2$$

[Truth shown with solid lines]

EXAMPLE:

- $O = (X, A, Y) \in [-2, 2] \times \{0, 1\} \times \{0, 1\}$
- True model is

$$\operatorname{logit} \mathbb{E}[Y \mid A, X] = \beta_0 + \beta_A A + \beta_X X^2$$

[Truth shown with solid lines]

GLM: logit $\mathbb{E}[Y \mid A, X] = \alpha_0 + \alpha_A A + \alpha_X X$

RF: Random forest (untuned)

EXAMPLE:

- $O = (X, A, Y) \in [-2, 2] \times \{0, 1\} \times \{0, 1\}$
- True model is

$$\operatorname{logit} \mathbb{E}[Y \mid A, X] = \beta_0 + \beta_A A + \beta_X X^2$$

[Truth shown with solid lines]

GLM: logit $\mathbb{E}[Y \mid A, X] = \alpha_0 + \alpha_A A + \alpha_X X$

RF: Random forest (untuned)

3. Our target is a parameter (a functional) $\Psi: \mathcal{M} \to \mathbb{R}$

What are we trying to learn from the data?

3. Our target is a parameter (a functional) $\Psi: \mathcal{M} \to \mathbb{R}$

What are we trying to learn from the data?

EXAMPLE: Average treatment effect (ATE)

- $O = (X, A, Y) \in \mathbb{R}^d \times \{0, 1\} \times \{0, 1\}$
- ▶ The ATE is defined for $P \in \mathcal{M}$ as

$$\Psi(P) = \mathbb{E}_P[\mathbb{E}_P[Y \mid A=1,X] - \mathbb{E}_P[Y \mid A=0,X]]$$

EXAMPLE: Average treatment effect (ATE)

- $O = (X, A, Y) \in \mathbb{R}^d \times \{0, 1\} \times \{0, 1\}$
- ▶ The ATE is defined for $P \in \mathcal{M}$ as

$$\Psi(P) = \mathbb{E}_{P}[\mathbb{E}_{P}[Y \mid A = 1, X] - \mathbb{E}_{P}[Y \mid A = 0, X]]$$

The ATE can also be written, for $P \in \mathcal{M}$:

$$\Psi(P) = \tilde{\Psi}(\mu_X, f) = \int_{\mathbb{R}} (f(1, x) - f(0, x)) d\mu_X(x),$$

where $f(a,x) := \mathbb{E}_P[Y \mid A = a, X = x]$ and μ_X is the marginal distribution of X

 f, μ_X are called *nuisance parameters*

This suggests a straightforward two-step estimation strategy:

- 1. estimate the nuisance parameters
- 2. plug estimates into the expression for the target parameter

A straightforward estimate of the ATE would be

$$\hat{\psi}_n^{\text{ATE}} = \frac{1}{n} \sum_{i=1}^n \left\{ \hat{f}_n(1, X_i) - \hat{f}_n(0, X_i) \right\}$$

where \hat{f}_n denotes some estimator for $f(a,x) = \mathbb{E}_P[Y \mid A = a, X = x]$

 \rightarrow logistic regression, random forest, neural network, lasso, ...

In the previous example we had two different estimators for $f(a,x) = \mathbb{E}_P[Y \mid A = a, X = x]$

$$\hat{\psi}_{n}^{\text{ATE,GLM}} = \frac{1}{n} \sum_{i=1}^{n} \left\{ \hat{f}_{n}^{\text{GLM}}(1, X_{i}) - \hat{f}_{n}^{\text{GLM}}(0, X_{i}) \right\} = 0.0975$$

$$\hat{\psi}_{n}^{\text{ATE,RF}} = \frac{1}{n} \sum_{i=1}^{n} \left\{ \hat{f}_{n}^{\text{RF}}(1, X_{i}) - \hat{f}_{n}^{\text{RF}}(0, X_{i}) \right\} = 0.0551$$

Contrast this to fitting a logistic regression model

$$\operatorname{logit} \mathbb{E}[Y \mid A, X] = \beta_0 + \beta_A A + \beta_X^{\mathsf{T}} X \tag{1}$$

to estimate the conditional odds ratio $\exp(\beta_A)$

- valid interpretation when model is correct
- statistical inference when model is correct.
- conditional interpretation (crude and adjusted models target different parameters)

Contrast this to fitting a logistic regression model

$$\operatorname{logit} \mathbb{E}[Y \mid A, X] = \beta_0 + \beta_A A + \beta_X^{\mathsf{T}} X \tag{1}$$

to estimate the conditional odds ratio $\exp(\beta_A)$

- valid interpretation when model is correct
- statistical inference when model is correct
- conditional interpretation (crude and adjusted models target different parameters)

... and: (1) must be a priori specified (the same data cannot be used for testing and for fitting the final model).

4. Construct estimator \hat{P}_n for (relevant part of) P_0 and estimate the target parameter by $\hat{\psi}_n = \Psi(\hat{P}_n)$

A priori specified algorithm that maps the data to an estimate in the parameter space for the target parameter

- a pre-specified logistic regression model
- a random forest
- cross-validated selection between a pre-specified library of different models ("super learning")

4. Construct estimator \hat{P}_n for (relevant part of) P_0 and estimate the target parameter by $\hat{\psi}_n = \Psi(\hat{P}_n)$

A priori specified algorithm that maps the data to an estimate in the parameter space for the target parameter

- a pre-specified logistic regression model
- a random forest
- cross-validated selection between a pre-specified library of different models ("super learning")
- + "targeting" to yield the an estimator with improved properties

4. Construct estimator \hat{P}_n for (relevant part of) P_0 and estimate the target parameter by $\hat{\psi}_n = \Psi(\hat{P}_n)$

A priori specified algorithm that maps the data to an estimate in the parameter space for the target parameter

"Initial estimation":

- a pre-specified logistic regression model
- a random forest
- cross-validated selection between a pre-specified library of different models ("super learning")
- + "targeting" to yield the an estimator with improved properties

Estimation paradigm

- 1. P_0 is assumed to belong to a nonparametric model ${\cal M}$
- 2. Construction of \sqrt{n} -consistent and asymptotically linear estimation of $\psi_0 = \Psi(P_0)$ based the efficient influence function.

Estimation paradigm

- 1. P_0 is assumed to belong to a nonparametric model ${\cal M}$
- 2. Construction of \sqrt{n} -consistent and asymptotically linear estimation of $\psi_0 = \Psi(P_0)$ based the efficient influence function.

Estimation paradigm

- 1. P_0 is assumed to belong to a nonparametric model ${\cal M}$
- 2. Construction of \sqrt{n} -consistent and asymptotically linear estimation of $\psi_0 = \Psi(P_0)$ based the efficient influence function.

Estimation paradigm

- 1. P_0 is assumed to belong to a nonparametric model $\mathcal M$
- 2. Construction of \sqrt{n} -consistent and asymptotically linear estimation of $\psi_0 = \Psi(P_0)$ based the efficient influence function.

Tools from semiparametric efficiency theory and empirical process theory tell us how to conditions required for 2.

5. Quantify uncertainty for the estimator $\hat{\psi}_n = \Psi(\hat{P}_n)$

If we repeat the experiment of drawing n observations we would every time end up with a different realization of our estimator.

Across the repetitions, the estimator has a sampling distribution that we wish to quantify.

Under some conditions, we may use the asymptotic distribution

$$\hat{\psi}_n \stackrel{\text{as}}{\sim} N(\psi_0, \sigma^2/n)$$

to provide statistical inference.

Overview

Theoretical angle The roadmap of targeted learning

data as a random variable having a probability distribution, scientific knowledge represented by a large statistical model, a statistical target parameter representing an answer to the question of interest.

Applied angle The roadmap of targeted learning / causal inference

- translation from real-world data applications to a mathematical and statistical formulation of the relevant estimation problem.
- statistical analysis tailored towards answering that question.

Opposed to choosing a model for the data-generating process and using that model to answer all questions.

- Observed data
- 2. Causal model
- 3. Causal question and target causal estimand
- 4. Identifiability
- 5. Stating the statistical estimation problem
- 6. Estimate
- 7. Interpret results

- Observed data
- 2. Causal model
- 3. Causal question and target causal estimand
- 4. Identifiability
- 5. Stating the statistical estimation problem
- 6. Estimate
- 7. Interpret results
- ... putting things into the right boxes.
- ... make the statistical analysis about the targeted scientific question (and not the other way around).
- ... focus on statistical parameters that have a meaningful interpretation.

A formal causal framework can help us²

- by designing a statistical analysis that come as close as possible to answering scientific/causal questions.
- > understand how far away from a causal conclusion we may be.

²The output of the analysis is not causal just because we use causal inference methods.

A formal causal framework can help us²

- ▷ designing a statistical analysis that come as close as possible to answering scientific/causal questions.
- b understand how far away from a causal conclusion we may be.

Clearly defining what an EFFECT is and WHAT effect we are interested in

²The output of the analysis is not causal just because we use causal inference methods.

A formal causal framework can help us²

- ▶ designing a statistical analysis that come as close as possible to answering scientific/causal questions.
- > understand how far away from a causal conclusion we may be.

Clearly defining what an EFFECT is and WHAT effect we are interested in

this gets even more relevant when we deal with time-varying settings.

²The output of the analysis is not causal just because we use causal inference methods.

At the consultation service at the Section of Biostatistics:

" I need help to choose the right statistical method to analyze my data ... I have a binary outcome and a lot of covariates ... I tried to run a logistic regression ... "

No mentioning of what scientific question is actually of interest.

At the consultation service at the Section of Biostatistics:

" I need help to choose the right statistical method to analyze my data ... I have a binary outcome and a lot of covariates ... I tried to run a logistic regression ... "

No mentioning of what scientific question is actually of interest.

No clear distinction between "the statistical estimation part" and the "scientific question part".

- 1. Observed data O = (X, A, Y)
- Causal model what we know/believe/assume about directions of effects
- Causal question and target causal estimand formulating the scientific question as a contrast between counterfactual outcomes (e.g., in terms of ideal hypothetical experiment)
- 4. Identifiability is data sufficient to estimate the causal effect?

- 1. Observed data O = (X, A, Y)
- Causal model what we know/believe/assume about directions of effects
- Causal question and target causal estimand formulating the scientific question as a contrast between counterfactual outcomes (e.g., in terms of ideal hypothetical experiment)
- 4. Identifiability is data sufficient to estimate the causal effect?

... the rest is purely statistics.

Summary — roadmap of targeted learning

Statistical theory for parametric models

- meant for settings where the model is known a priori
 - the model is rarely known a priori
 - theory does not reflect how data are in fact analyzed (e.g., due to use of model selection strategies)
- the model is chosen for its simplicity and convenience
 - simple summary measures of associations

Targeted learning

- translating scientific question into predefined model-free target parameter
- machine learning based estimators can be constructed and still combined with valid/honest inference (allowing full prespecification of the statistical analysis)