Intro to Computer Science & Computer Programming

CS195 - Lecture 1

Instructor: Dr. V

Rules for Class Interaction

- 1. © Please be on time.
- 2. Q Jump in with comments/questions.
- 3. 📥 Pay attention to your email.
- 4. Email me if you have any questions.
- 5.

 Bring your laptop to every class, unless explicitly told otherwise.
- 6. 😁 PLEASE wear a mask if you have
 - sore throat or cough
 - sneezing or runny nose(ask me for a mask if you do not have one)

Personal laptops

- You must have a personal laptop for CS courses
 - though there may be a way to use a phone/tablet instead
- If you cannot afford a laptop, you can borrow one from the library
- If you need laptop recommendations (specific to your budget), just ask
- If you have a laptop, but it's old/slow, I may be able to help you set it up for max functionality

About the Instructor

Dr. Veksler
WER218; vveksler@caldwell.edu

Engineer, Research Scientist, Professor

- worked in industry, government, academia, self-employed
- web development, AI and robotics, HCI, cyber-security, data analytics, research on human behavior

I'd love to get to know each of you, but...

- I am bad at remembering names, so please just keep reminding me what your name is
- If I mess up your name, just correct me as many times as it takes
- Keep your name-plate in front of you

CS195

Blackboard

https://caldwell.blackboard.com/

Grading (5-15-40-20-20)

- attendance/participation
- quizzes
- assignments
- midterm
- final

Code Evaluation

- Submitted code will be evaluated for
 - Correctness
 - Does it work?
 - Does it do what is intended?
 - Are there bugs?
 - Readability
 - Make sure your code indented properly
 - Name variables/functions/classes in a meaningful way
 - Add comments and signature descriptions
 - Keep your code clean

Late submissions

- late assignments will lose 10pts (out of 100) for each week they are late, but will not go lower than 70 (out of 100)
 - 1-7 days late: highest grade = 90
 - 0 8-14 days late: highest grade = 80
 - > >14 days late: highest grade = 70

Cheating

- don't do it. not worth.
- what is considered cheating in this class?
 - it's complicated (if you're not sure, just ask)
 - you're encouraged to look up answers online, but...
 - on quizzes/exams
 - don't look at classmates' answers
 - may have other requirement
 - on assignments
 - don't submit someone else's code
 - if a part of your code was copied, give credit to the source
 - i will have your code checked for plagiarism

Class Structure

- 14 weeks of classes
- each week:
 - lecture
 - quiz based on lecture
 - practicum
 - technical tips, interactive time to work on your assignments, ask questions, and get feedback

Inclement weather or other class cancellations

- If the school is open, I will be here
- Use your best judgment
- Check school site
- Sign up for notifications
- Check your email

Questions? Comments? Concerns?

Computer Programming (aka coding)

- Who is it for?
 - Anyone can benefit from basic coding skills
- Career focused on coding (e.g., software engineering)
 - If you enjoy solving puzzles, you will love programming
- A lot of CS focuses on coding, but
 - coding is not just for CS or related disciplines
 - coding is not the entirety of CS

What is your coding experience level?

Zero coding experience 0. Some drag-and-drop coding, like Scratch Been exposed to text-based coding; i can guess what this does: s='lo wor' print('hel'+s+'ld') 3. Some text-based coding; i can guess what this does: for i in range(10): print(i) if i==5: break 4. A lot of coding; i can guess what this does: for x,y in enumerate(map(lambda x:x*2,range(5))): print(f'{x} => {y}')

Your prior coding experience

- If you have zero or little experience
 - don't be intimidated you can do this, it just takes time
 - you will NOT be left behind
 - ask lots of questions!
 - you will need to put in a lot more time into your assignments
- You have some coding experience
 - o ask lots of questions!
 - challenge yourself
 - help your classmates
- You have lots of coding experience
 - I will give you alternate assignments
 - you still have to take the exams, but you may be excused from the quizzes on a case-by-case basis
 - help your classmates

Let's start at the beginning...

Computer hardware

- main memory (RAM; Random Access Memory)
 - fast
 - lost when machine is turned off
 - expensive (so you probably only have 4GB-32GB)
- secondary memory
 - permanent storage
 - usually SSD or HD

How does your computer store information?

- the smallest unit of information in your computer's memory is called a bit
- it is a switch
 - it can be switched to ON position, or
 - o it can be switched to OFF position
- one bit can represent any binary information
 - ON or OFF; True or False; 1 or 0
- all info on your machine is just 1's and 0's

...001010100101010101001011110101101111...

Other numbers

- if a computer can only store 1's and 0's, how does it represent a 2? or 3? or any other number?
 - o well, arabic numerals only offer digits 0..9, and yet we can represent number >=10 just fine
 - all we do is add more digits to represent 10s, 100s, 1000s, 10000s...
 - i.e., 10^1 , 10^2 , 10^3 , 10^4 ...
 - so we do the same in binary add more digits to represent 2s, 4s, 8s, 16s...
 - i.e., 2^1 , 2^2 , 2^3 , 2^4 ...)

Decimal vs Binary

0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	?

120	1111000
121	1111001
122	1111010
123	1111011
124	1111100
125	1111101
126	1111110
127	1111111
128	?

There are 10
kinds of people
in the world:
those who
understand
binary code; and
those who don't.

Bits and Bytes

- Most often we measure memory size in bytes, not bits
- Each byte is 8 bits
- Most modern computers are byte-addressable
- Each address identifies a single byte of storage

```
1B (1 byte) = 8b (8 bits)
1KB (1 kilobyte) = 1000B (1000 bytes)
1MB (1 megabyte) = 1000KB (1000000 bytes)

1KiB (1 kibibyte) = 1024B
1MiB (1 mebibyte) = 1024KiB
```

Bits and Bytes

• what's the largest positive integer you can represent in a single byte of memory?

• what's the largest positive integer you can represent using two bytes of memory?

What about negative numbers?

- You can use 1 byte to
 - store any positive integer 0-255

• What if you wanted to represent integers that can be either positive or negative?

Signed vs Unsigned Integers

 You can use 1 bit to signify whether the number is negative, and other 7 bits for 128 possible patterns

What about floating point numbers?

- S Sign
- E Exponent
- M Mantissa

What about text?

• How would you represent letters using binary?

- You want to save the text "Hello" on computer
 - your only storage option is on/off switches (bits)
 - o how would you store this text?

ASCII (American Standard Code for Information Interchange)

Letter	ASCII Code	Binary	Letter	ASCII Code	Binary
а	097	01100001	A	065	01000001
b	098	01100010	В	066	01000010
C	099	01100011	С	067	01000011
d	100	01100100	D	068	01000100
е	101	01100101	E	069	01000101
f	102	01100110	F	070	01000110
g	103	01100111	G	071	01000111
h	104	01101000	Н	072	01001000
i	105	01101001	I	073	01001001
j	106	01101010	J	074	01001010
k	107	01101011	K	075	01001011
 1	108	01101100	L	076	01001100

How does your computer store text?

- ASCII
 - Each text character is represented by a number between 0 and 127
 - Each character requires 7 bits
- But we need way more than 128 unique characters for
 - o non-English characters βγξΨ HCφ□
 - o symbols ® III % ∑ ♥ ♥ ≡ ⊭ ⊞ : \ ←
 - emojis
 ♀
 ♦
 ♦
 ♦
- Unicode format (UTF-8, UTF-16, UTF-32)
 - allows for more bits per character

How would your machine represent an image?

- each pixel in an image is represented by a mix of reds, greens, and blues
 - o an 100x100 image where there may be 256 shades of red, 256 shades of green, and 256 shades of blue
 - 3 bytes per pixel
 - 1 byte for red, 1 byte for green, 1 byte for blue
 - a total of 100x100x3 bytes needed to store image

How does your computer know?

• How does your computer know whether the next 3 bytes represent a number, a unicode character, 3 ASCII characters, a pixel, sound frequencies, executable code, or something else entirely?

Big Endian vs Little Endian

- there's no reason for data to flow left-to-right on a computer
- Big Endian systems read data left-to-right
- Intel processors (among others) are Little Endian
 - Little Endian systems are weird (to humans)
 - the least significant byte is written first

Big Endian

Little Endian

Algorithms & Pseudocode

Let's consider a sample search

- Task:
 - Find a person in a contact
 list to call them

- open contact list
- 2. magic happens
- 3. call the person

- A Adb
 - A AGINES
 - A ALARN
 - A Aleen
 - A Ammazi
 - Anduro
 - ASHIFA
 - A Aski
- B BAEBA
 - B Balance Enq
 - Bogybogy

Searching a contact list...

go to first contact
 if the name matches:
 call the person; quit
 else:
 go to next contact
 repeat step 2

Searching a contact list...

8.

```
    go to first contact
    if the name matches:
    call the person; quit
    else, if we are not at the end of the contact list:
    go to next contact
    repeat step 2
    else:
```

say "Contact not found"; quit

Can we make this algorithm faster?

Searching a contact list...

repeat step 1

go to middle of list
 if the name matches:
 call the person; quit
 else, if the name comes after current contact:
 throw out current contact and all those before it
 repeat step 1
 else, if the name comes before current contact:
 throw out current contact and all those after it

Searching a contact list...

- 1. go to middle of list
- 2. if the name matches:
- 3. call the person; quit
- 4. else, if name is after current contact & this isn't last contact:
- 5. throw out current contact and all those before it
- 6. repeat step 1
- 7. else, if name is before current contact & this isn't 1st contact:
- 8. throw out current contact and all those after it
- 9. repeat step 1
- 10. else:
- 11. say "Contact not found"
- 12. quit

Size of Problem (n)

Programming Languages

There are many many programming languages

- general purpose vs domain-specific
- programming style
 - imperative, declarative, functional, object-oriented, hybrid
- compiled, interpreted
- ease of use
 - higher-level programming languages
 - untyped (e.g., python, javascript)
 - typed (e.g., C#, Kotlin, Swift, Objective-C, Go)
 - lower-level programming languages (e.g., assembly)

Python

- general purpose
- interpreted
- untyped
- hybrid programming style
- optimized for being
 - easy to read
 - easy to write
 - fast development
- NOT optimized for
 - runtime speed

Python

- Very popular
 - quick scripts
 - arithmetic
 - file and string manipulation
 - web apps, web services
 - statistics and data analytics
 - AI/ML and scientific computing
- Probably not the best for
 - native GUI application development
 - game development

Questions? Comments? Concerns?

Assignment 1

- install python 3
- install Visual Studio Code (VSCode)
- create folder "Assignment 1"
- create file hello.py
- in hello.py
 - add comments (your name, course number)
 - add code to print "hello world"
 - run hello.py
- submit hello.py file on blackboard

Introduction to Python

Let's try out python

- REPL
 - open terminal
 - o type (and then hit enter)
 - python
 - print('hello world')
 - print(3+5)

Try out python

- .py file
 - o create a folder "hello"
 - open folder in VSCode
 - o create file "hello.py"
 - o type in that file:
 - print('hello world')
 - save file
 - o open terminal
 - in terminal type (and then hit enter)
 - python hello.py

- comments
 - a comment is text that Python will ignore
 - it is there for documentation purposes
- a comment in python begin with #

```
# this is a python comment
```

- in hello.py
 - add comment indicating your name
 - add comment indicating course number

- white-space usage
 - carriage returns at the end of each line signify end of operation
 - do not add tabs or spaces at start of lines unnecessarily these are special in python (more on this later)

- function calls
 - a function call is instruction to do some action
 - function name is the verb
 - what action to do
 - function arguments (enclosed in parentheses immediately following the function name) are the nouns/adjectives
 - how & with what to do the action
 - o Example: print("hello")
 - verb: **print**
 - noun: "hello" string
 - what does it do?
 - outputs the text hello to display

- What happens when your syntax is incorrect?
- Try it out:
 - \circ print("hello") \leftarrow this is the correct way
 - print "hello"
 - o print("hello")
 - o Print("hello")
 - o "print"("hello")

- What happens when your syntax is incorrect?
- Try it out:
 - o print "hello"
 - Syntax Error
 - python function arguments should be in parentheses
 - o print("hello")
 - Indentation Error
 - python indentation is special (more on this later)
 - o Print("hello")
 - Name Error
 - python doesn't know what Print means (it's case-sensitive - print is not the same as Print)
 - o "print"("hello")
 - Type Error
 - "print" is a string, print is a function

Visual Studio Code

- file management
- extensions
- autocomplete
- running code
- terminal
- output