BASES DE DATOS

TEMA 6: ALGEBRA RELACIONAL

ALGEBRA RELACIONAL

Pertenece a la componente dinámica del modelo relacional, nos permite acceder a la información de un esquema relacional de datos. El lenguaje de programación utilizado para ello es SQL. (Tema posterior de estudio)

El aspecto dinámico del modelo relacional en lo que al álgebra se refiere, lo constituye una colección de operadores que, aplicados a las relaciones –tablas–, dan como resultado nuevas relaciones (propiedad de cierre).

El **álgebra relacional**, por lo tanto es un conjunto de operaciones que describen paso a paso cómo computar una respuesta sobre las relaciones, tal y como éstas son definidas en el modelo relacional. Es denominada de tipo procedimental, a diferencia del Cálculo relacional que es de tipo declarativo. Describe el aspecto de la manipulación de datos. Estas operaciones se usan como una representación intermedia de una consulta a una base de datos y, debido a sus propiedades algebraicas, sirven para obtener una versión más optimizada y eficiente de dicha consulta.

Los **operandos** del álgebra son las relaciones –tablas–, y los **operadores** se aplican a las relaciones –tablas–, a fin de formular consultas a la BD.

Son cinco los operadores que podríamos llamar *primitivos*, los operadores tradicionales de la teoría de conjuntos **unión**, **diferencia** y **producto cartesiano**, y los especialmente introducidos por Codd, **selección** y **proyección**; además, existen otros operadores que se pueden considerar *derivados*, ya que se pueden deducir de los primitivos.

BASES DE DATOS

TEMA 6: ALGEBRA RELACIONAL

CLASIFICACIÓN DE OPERADORES:

- Operadores básicos o primitivos
 - **Binarios:** Son todos aquellos operadores que utilizan 2 operandos para poder ser utilizados.
 - Unión
 - Diferencia
 - Producto cartesiano
 - **Unarios:** Son los operadores que solo necesitan un operando para utilizarse.
 - o Proyección
 - Selección
- Operadores derivados (Se obtienen a partir de los operadores básicos)
 - Intersección
 - Cociente
 - Combinación
 - Join

BASES DE DATOS

TEMA 6: ALGEBRA RELACIONAL

DESARROLLO DE LOS OPERADORES

Operadores básicos

- **Binarios:** Son todos aquellos operadores que utilizan 2 operandos para poder ser utilizados.
 - O Unión: Se representa por R∪S. La unión de dos relaciones, compatibles en su esquema, es otra relación definida sobre el mismo esquema de relación, cuya extensión estará constituida por todas las tuplas de las tablas R y S (sin las que sean iguales).

Ejemplo:

AUTOR:

Nombre	Nacionalidad	Institución
John	EEUU	I 1
Juan	España	12
Pedro	España	13
Luigi	Italia	14

EDITOR:

Nombre	Nacionalidad	Institución
Juan	España	12
Chen	EEUU	15
Smith	EEUU	16
Pedro	España	I3

AUTOR U EDITOR:

Nombre	Nacionalidad	Institución
John	EEUU	I 1
Juan	España	12
Pedro	España	I3
Luigi	Italia	14
Chen	EEUU	15
Smith	EEUU	16

BASES DE DATOS

TEMA 6: ALGEBRA RELACIONAL

o **Diferencia:** Se representa por R-S. Su resultado genera una tabla con las tuplas de R que no estén en S, las tablas debe ser semánticamente compatibles.

Ejemplo:

AUTOR

Nombre	Nacionalidad	Institución
John	EEUU	I 1
Juan	España	12
Pedro	España	13
Luigi	Italia	14

EDITOR

Nombre	Nacionalidad	Institución
Juan	España	12
Chen	EEUU	15
Smith	EEUU	16
Pedro	España	I3

AUTOR — EDITOR

Nombre	Nacionalidad	Institución
John	EEUU	I 1
Luigi	Italia	14

BASES DE DATOS

TEMA 6: ALGEBRA RELACIONAL

Producto cartesiano: Se representa por R × S. Su resultado genera una tabla que contendrá todas las tuplas de R unidas con cada una de las tuplas de S. Producto cartesiano de dos relaciones de cardinalidades m y n es una relación cuyo esquema estará definido sobre la unión de los atributos de ambas relaciones, y cuya extensión estará constituida por las m x n tuplas formadas concatenando cada tupla de la primera relación con cada una de las tuplas de la segunda.

Ejemplo:

SOCIO

Codigo	Nombre	Direccion
1	Elena	Madrid
2	Manuel	Bilbao

LIBRO

Libro	Autor	Editorial
BD	Gardarin	McGraw
INFORMIX	Zeroual	Ra-Ma

SOCIO X LIBRO

Codigo	Nombre	Direccion	Libro	Autor	Editorial
1	Elena	Madrid	BD	Gardarin	McGraw
1	Elena	Madrid	INFORMIX	Zeroual	Ra-Ma
2	Manuel	Bilbao	BD	Gardarin	McGraw
2	Manuel	Bilbao	INFORMIX	Zeroual	Ra-Ma

BASES DE DATOS

TEMA 6: ALGEBRA RELACIONAL

- Unarios: Son los operadores que solo necesitan un operador para utilizarse.
 - o **Proyección:** Se representa por $\Pi_{A_1,A_2,\dots,A_n}(R)$. Su resultado genera una tabla formada por el subconjunto de atributos de R que se especifican en A1, A2...An., eliminando las tuplas duplicadas que hubieran podido resultar.

Ejemplo: Proyección sobre AUTOR de nacionalidad e institución.

AUTOR:

Nombre	Nacionalidad	Institución
John	EEUU	O.M.S.
Juan	España	O.N.U.
Pedro	España	I.N.I.
Luigi	Italia	N.A.S.A.

TNacionalidad, Institución (AUTOR):

Nacionalidad	Institución
EE.UU.	O.M.S.
España	O.N.U.
España	I.N.I.
Italia	N.A.S.A.

BASES DE DATOS

TEMA 6: ALGEBRA RELACIONAL

 \circ **Selección:** Se representa por $\sigma_P(R)$ (Letra griega Sigma). Su resultado genera una tabla con todas las tuplas de la tabla R que cumplan el patrón de la condición P.

Condición simple: formada por dos operandos y un operador relacional (>,<,>=,<=,=); los operandos deben ser columnas de la tabla R. Condición compuesta: formada por al menos 2 condiciones simples unidas a través de un operador lógico (AND, OR).

Ejemplo: Seleccionar autores españoles.

AUTOR

Nombre	Nacionalidad	Institución
Pepe	España	O.N.U.
John	EE.UU.	O.M.S.
Pérez	España	I.N.I.
Suárez	España	I.N.E.
Pierre	Francia	N.A.S.A.

ONacionalidad="España" (AUTOR)

Nombre	Nacionalidad	Institución
Pepe	España	O.N.U.
Pérez	España	I.N.I.
Suárez	España	I.N.E.

BASES DE DATOS

TEMA 6: ALGEBRA RELACIONAL

Operadores derivados

Los operadores derivados son aquellos que se pueden expresar siempre en función de operadores básicos o primitivos, pero su introducción permitió la simplificación de las consultas.

- **Intersección:** Se representa por **R** \(\Omega\) S. Es el conjunto de tuplas que están definidas en ambas relaciones, debe tener los mismos atributos. Ejemplo:

R : A B C	S : A B C	=>	R∩S : A B C
4 5 2	4 5 2		4 5 2
4 6 8	4 6 8		4 6 8
3 2 1	9 5 6		

La intersección de dos relaciones está basada en operadores básicos, su **fórmula básica** es: ??????

- **Cociente o división:** Se representa por *R / S*. Es un conjunto de tuplas, tales que, al concatenarse con todas las tuplas de S se obtienen tuplas de R.

R : <u>A B C D</u>	S : <u>C</u> D	=>	R/S : <u>A B</u>
1 2 3 5	3 5		1 2
4 3 5 9	2 7		
1 2 2 7			
1 3 2 7			

Su fórmula básica es: ??????

BASES DE DATOS

TEMA 6: ALGEBRA RELACIONAL

VINO

Tipo	Cosecha	Calidad
Albariño	1977	Bueno
Ulla	1978	Malo
Condado	1977	Bueno
Condado	1978	Bueno
Amandi	1978	Bueno

Es un operador muy útil para simplificar consultas como en el siguiente ejemplo: "Se desea obtener los vinos con buena calidad en *todas* las cosechas".

R: CALIDAD BUENA

Tipo	Cosecha
Albariño	1977
Condado	1977
Condado	1978
Amandi	1978

S: COSECHAS

Cosecha
1977
1978

CALIDAD BUENA / COSECHAS

Tipo Condado

R: Proyección de Tipo y Cosecha sobre VINO (Selección Calidad="Bueno" de VINO)

S: Todas las cosechas→ Proyección de Cosecha (VINO)

BASES DE DATOS

TEMA 6: ALGEBRA RELACIONAL

- **Combinación:** Se representa por **R** α **S**. Siendo F una fórmula simple o compuesta.

Fórmula simple: (k op l) un operador k que pertenece a la tabla R operado con un operador lógico con otro atributo l, que pertenece a la tabla S.

Fórmula compuesta: varias simples unidas por operadores lógicos.

El resultado de la **combinación** R α S, es una tabla con las tuplas de R y S que cumplen la fórmula F.

R : <u>A B C</u>	S : <u>S H I</u>	=>	R α S : <u>A E</u>	3 C	<u>S H I</u>
3 2 8	6 3 4		C>H 3 2	2 8	634
5 2 4	5 1 5		3 2	2 8	515
3 1 2	0 3 9		3 2	2 8	039
			5 2	2 4	634
			5 2	2 4	515
			5 2	2 4	039
			3 ′	1 2	515

Su fórmula básica es: ??????

BASES DE DATOS

TEMA 6: ALGEBRA RELACIONAL

Unión natural o Join (Equi-Join): Se representa por R⋈S. Es una alfaunión de igualdad, donde se elimina uno de los atributos idénticos que compartan R y S. Permite relacionar la información de las tablas a través de atributos comunes (ambas tablas R y S deben tener al menos un atributo común para poder realizar el Join).

R: <u>ABC D</u>	S: <u>A C E</u>	=>	$R\bowtie S: \underline{ABCDE}$
1 3 5 7	1 5 2		13 57 2
3 2 9 1	1 5 9		13 57 9
2 3 5 4	3 9 2		32912
	2 3 7		

Su fórmula básica es: ??????