B. Tech. Degree V Semester Regular/Supplementary Examination January 2023

CS 19-202-0507 MACHINE LEARNING

(2019 Scheme)

Time: 3 Hours

Maximum Marks: 60

Course Outcome

On successful completion of the course, the students will be able to:

- CO1: Explain various learning approaches and concepts of supervised learning.
- CO2: Compare the different dimensionality reduction techniques.
- CO3: Make use of theoretical foundations of decision trees to identify best split and Bayesian classifier.
- CO4: Make use of clustering algorithms.
- CO5: Identification of classifier models for typical machine learning applications.
- CO6: Combine algorithms and analyze different algorithms.

Bloom's Taxonomy Levels (BL): L1 - Remember, L2 - Understand, L3 - Apply, L4 - Analyze, L5 - Evaluate,

L6 - Create

PO - Programme Outcome

PART A	
(Answer ALL que	stions)

		$(8 \times 3 = 24)$	Marks	BL	CO	PO
I.	(a)	Define Vapnik-Chervonenkis (VC) dimension. Show that VC dimension of a line hypothesis is three.	3	L3	1	1, 2
	(b)	Compute the Maximum Likelihood estimate for the parameter λ in the Poisson distribution whose probability function is $f(x) = \frac{e^{-\lambda} \lambda^x}{x!} x = 0,1,2,\dots$	3	L3	1	1, 2
	(c)	Describe the basic concepts of Expectation Maximization Algorithm.	3	L1	2	1, 2
	(d)	Justify the statement "clustering in unsupervised learing"	3	L2	5	1,2
	(e)	What is meant by k-fold cross validation. Given a data set with 1200 instances, how k-fold cross validation is done with k = 1200.	3	L4	5 6	1,2 1, 2
	(f)	Briefly explain Kernel Trick in the context of Support Vector Machine.	3	L2	1	1, 2
	(g)	Compare and contrast the Model based learning and Temporal difference learning.	3	L3	5	1, 2
	(h)	Distinguish between Bagging and Boosting.	3	L2	2	1, 2
		PART B				
		$(4\times12=48)$				
II.	(a)	Explain the concept of PAC learning. Derive an expression for PAC learning in such a way that the selected function will have low generalized error.	7	L2	1	1, 2
	(b)	Is regression a supervised learning technique? Justify your answer. Compare regression with classification using suitable examples. OR	5	L2	1	1, 2
III.	(a)	Explain Bayesian decision theory and discuss the two-category classification.	9	L2	1, 3, 1	1, 2
	(b)	Distinguish between Bias and Variance.	3	L4	1	1, 2
		THE WORLD			(P.	T.O.)

BTS-V(R/S)-01-23-1399

	Marks	BL	CO	PO
IV. (a) Illustrate the idea of Principal Components Analysis for a two- dimensional data using suitable diagrams.	6	L3	2	1, 2
(b) Explain in detail the algorithm of (DIANA) DI visive ANA lysis of hierarchical clustering technique.	6	L2	2	1, 2
OR				
V. What are the basic steps of K-means clustering? Explain in detail how the optimal value of "K" in the K-means	12	L2	4	1, 2
algorithm is determined.				
VI. (a) Describe the significance of soft margin hyperplane and optimal separating hyperplane and explain how they are computed.	. 7	L1	5	1, 2
(b) State the mathematical formulation of the SVM problem. Give an outline of the method for solving the problem	5	L1	5	1, 2
OR	. 10	т 2	2	1 2
VII. Why do we require pruning in Decision Trees? Explain in detail any one method used for deriving a decision tree.	12	L3, L2	3	1, 2
VIII. What do you understand by graphical models in machine learning? Explain any two graphical model in detail with suitable diagram. OR	12	L2	6	1, 2
IX. Explain the Multilayer Perceptron Network with a neat sketch	12	L2	6	1, 2

Blooms's Taxonomy Levels L1 - 14.28%, L2 - 52.38%, L3 - 23.80%, L4 - 9.52%.