Fundamental groups in Topology

Reza Sadoughian

University of British Columbia

January 2014

Contents

A morphism between two spaces $p_i: Y_i \to X$ (i=1,2) over X is given by a continuous map $f: Y_1 \to Y_2$ making the following diagram commutes :

A morphism between two spaces $p_i: Y_i \to X$ (i=1,2) over X is given by a continuous map $f: Y_1 \to Y_2$ making the following diagram commutes :

A morphism between two spaces $p_i: Y_i \to X$ (i=1,2) over X is given by a continuous map $f: Y_1 \to Y_2$ making the following diagram commutes :

A morphism between two spaces $p_i: Y_i \to X$ (i=1,2) over X is given by a continuous map $f: Y_1 \to Y_2$ making the following diagram commutes :

$$X \times I \rightarrow X$$

- **Proposition 2.1.3**: A space Y over X is a cover iff each point of X has an open neighbourhood V such that the restriction of the projection $p: Y \to X$ to $p^{-1}(V)$ is isomorphic as a space ver V to a trivial cover.
- The points of X over which the fibre of p equals I form an open subset of X.
- **Corollary 2.1.4**: It *X* is connected, the fires of *p* are all homeomorphic to the same discrete space *I*.
- Let G be a group acting continuously from the left on a topological space Y. The action of G is even (or properly discontuonus) if each point y ∈ Y has some open neighbourhood U such that g₁U ∩ g₂U = Ø if g₁ ≠ g₂.

$$X \times I \rightarrow X$$

- **Proposition 2.1.3**: A space Y over X is a cover iff each point of X has an open neighbourhood V such that the restriction of the projection $p: Y \to X$ to $p^{-1}(V)$ is isomorphic as a space ver V to a trivial cover.
- The points of X over which the fibre of p equals I form an open subset of X.
- **Corollary 2.1.4**: It *X* is connected, the fires of *p* are all homeomorphic to the same discrete space *l*.
- Let G be a group acting continuously from the left on a topological space Y. The action of G is **even** (or **properly discontuonus**) if each point $y \in Y$ has some open neighbourhood U such that $g_1U \cap g_2U = \emptyset$ if $g_1 \neq g_2$.

$$X \times I \rightarrow X$$

- **Proposition 2.1.3**: A space Y over X is a cover iff each point of X has an open neighbourhood V such that the restriction of the projection $p: Y \to X$ to $p^{-1}(V)$ is isomorphic as a space ver V to a trivial cover.
- The points of X over which the fibre of p equals I form an open subset of X.
- **Corollary 2.1.4**: It *X* is connected, the fires of *p* are all homeomorphic to the same discrete space *l*.
- Let G be a group acting continuously from the left on a topological space Y. The action of G is **even** (or **properly discontuonus**) if each point $y \in Y$ has some open neighbourhood U such that $g_1U \cap g_2U = \emptyset$ if $g_1 \neq g_2$.

$$X \times I \rightarrow X$$

- **Proposition 2.1.3**: A space Y over X is a cover iff each point of X has an open neighbourhood V such that the restriction of the projection $p: Y \to X$ to $p^{-1}(V)$ is isomorphic as a space ver V to a trivial cover.
- The points of X over which the fibre of p equals I form an open subset of X.
- **Corollary 2.1.4**: It *X* is connected, the fires of *p* are all homeomorphic to the same discrete space *I*.
- Let G be a group acting continuously from the left on a topological space Y. The action of G is **even** (or **properly discontuonus**) if each point $y \in Y$ has some open neighbourhood U such that $g_1U \cap g_2U = \emptyset$ if $g_1 \neq g_2$.

$$X \times I \rightarrow X$$

- **Proposition 2.1.3**: A space Y over X is a cover iff each point of X has an open neighbourhood V such that the restriction of the projection $p: Y \to X$ to $p^{-1}(V)$ is isomorphic as a space ver V to a trivial cover.
- The points of X over which the fibre of p equals I form an open subset of X.
- **Corollary 2.1.4**: It *X* is connected, the fires of *p* are all homeomorphic to the same discrete space *I*.
- Let G be a group acting continuously from the left on a topological space Y. The action of G is **even** (or **properly discontuonus**) if each point $y \in Y$ has some open neighbourhood U such that $g_1U \cap g_2U = \emptyset$ if $g_1 \neq g_2$.

$$X \times I \rightarrow X$$

- **Proposition 2.1.3**: A space Y over X is a cover iff each point of X has an open neighbourhood V such that the restriction of the projection $p: Y \to X$ to $p^{-1}(V)$ is isomorphic as a space ver V to a trivial cover.
- The points of X over which the fibre of p equals I form an open subset of X.
- **Corollary 2.1.4**: It *X* is connected, the fires of *p* are all homeomorphic to the same discrete space *I*.
- Let G be a group acting continuously from the left on a topological space Y. The action of G is **even** (or **properly discontuonus**) if each point $y \in Y$ has some open neighbourhood U such that $g_1U \cap g_2U = \emptyset$ if $g_1 \neq g_2$.

- Lemma 2.1.7: If G is a group acting evenly on a connected space Y, the projection p_G: Y → G\Y turns Y into a cover a G\Y.
- Example 2.1.8 : 1. Let Z act on R by translations. We obtain a cover R → R/Z ≃ S¹.
 2. For an integer n > 1, we get an even action of μ_n on C* from that a cover p_n : C* → C*/μ_n. The map z ↦ zⁿ defines a natural homeomorphism (isomorphism) of C*/μ_n onto C*. So this induces a cover C* → C*.
- For now on, assume that *X* is locally connected.
- Aut $(Y/X) := \{ \phi : Y \to Y : p \circ \phi = p \}.$
- For each point $x \in X$, $p^{-1}(x)$ is equipped with a natural action of Aut(Y/X).

- Lemma 2.1.7: If G is a group acting evenly on a connected space Y, the projection p_G: Y → G\Y turns Y into a cover a G\Y.
- Example 2.1.8 : 1. Let $\mathbb Z$ act on $\mathbb R$ by translations. We obtain a cover $\mathbb R \to \mathbb R/\mathbb Z \simeq S^1$.
 - 2. For an integer n > 1, we get an even action of μ_n on \mathbb{C}^* from that a cover $p_n : \mathbb{C}^* \to \mathbb{C}^*/\mu_n$. The map $z \mapsto z^n$ defines a natural homeomorphism (isomorphism) of \mathbb{C}^*/μ_n onto \mathbb{C}^* . So this induces a cover $\mathbb{C}^* \to \mathbb{C}^*$.
- For now on, assume that X is locally connected.
- Aut $(Y/X) := \{ \phi : Y \to Y : p \circ \phi = p \}.$
- For each point $x \in X$, $p^{-1}(x)$ is equipped with a natural action of Aut(Y/X).

- Lemma 2.1.7: If G is a group acting evenly on a connected space Y, the projection p_G: Y → G\Y turns Y into a cover a G\Y.
- Example 2.1.8 : 1. Let $\mathbb Z$ act on $\mathbb R$ by translations. We obtain a cover $\mathbb R \to \mathbb R/\mathbb Z \simeq S^1$.
 - 2. For an integer n > 1, we get an even action of μ_n on \mathbb{C}^* from that a cover $p_n : \mathbb{C}^* \to \mathbb{C}^*/\mu_n$. The map $z \mapsto z^n$ defines a natural homeomorphism (isomorphism) of \mathbb{C}^*/μ_n onto \mathbb{C}^* . So this induces a cover $\mathbb{C}^* \to \mathbb{C}^*$.
- For now on, assume that *X* is locally connected.
- Aut $(Y/X) := \{ \phi : Y \to Y : p \circ \phi = p \}.$
- For each point $x \in X$, $p^{-1}(x)$ is equipped with a natural action of Aut(Y/X).

- Lemma 2.1.7: If G is a group acting evenly on a connected space Y, the projection p_G: Y → G\Y turns Y into a cover a G\Y.
- Example 2.1.8 : 1. Let $\mathbb Z$ act on $\mathbb R$ by translations. We obtain a cover $\mathbb R \to \mathbb R/\mathbb Z \simeq S^1$.
 - 2. For an integer n > 1, we get an even action of μ_n on \mathbb{C}^* from that a cover $p_n : \mathbb{C}^* \to \mathbb{C}^*/\mu_n$. The map $z \mapsto z^n$ defines a natural homeomorphism (isomorphism) of \mathbb{C}^*/μ_n onto \mathbb{C}^* . So this induces a cover $\mathbb{C}^* \to \mathbb{C}^*$.
- For now on, assume that X is locally connected.
- Aut $(Y/X) := \{ \phi : Y \to Y : p \circ \phi = p \}.$
- For each point $x \in X$, $p^{-1}(x)$ is equipped with a natural action of Aut(Y/X).

- Lemma 2.1.7: If G is a group acting evenly on a connected space Y, the projection p_G: Y → G\Y turns Y into a cover a G\Y.
- Example 2.1.8 : 1. Let $\mathbb Z$ act on $\mathbb R$ by translations. We obtain a cover $\mathbb R \to \mathbb R/\mathbb Z \simeq \mathcal S^1$.
 - 2. For an integer n > 1, we get an even action of μ_n on \mathbb{C}^* from that a cover $p_n : \mathbb{C}^* \to \mathbb{C}^*/\mu_n$. The map $z \mapsto z^n$ defines a natural homeomorphism (isomorphism) of \mathbb{C}^*/μ_n onto \mathbb{C}^* . So this induces a cover $\mathbb{C}^* \to \mathbb{C}^*$.
- For now on, assume that *X* is locally connected.
- Aut(Y/X) := { $\phi : Y \to Y : p \circ \phi = p$ }.
- For each point $x \in X$, $p^{-1}(x)$ is equipped with a natural action of Aut(Y/X).

- Lemma 2.1.7: If G is a group acting evenly on a connected space Y, the projection p_G: Y → G\Y turns Y into a cover a G\Y.
- Example 2.1.8 : 1. Let $\mathbb Z$ act on $\mathbb R$ by translations. We obtain a cover $\mathbb R \to \mathbb R/\mathbb Z \simeq \mathcal S^1$.
 - 2. For an integer n > 1, we get an even action of μ_n on \mathbb{C}^* from that a cover $p_n : \mathbb{C}^* \to \mathbb{C}^*/\mu_n$. The map $z \mapsto z^n$ defines a natural homeomorphism (isomorphism) of \mathbb{C}^*/μ_n onto \mathbb{C}^* . So this induces a cover $\mathbb{C}^* \to \mathbb{C}^*$.
- For now on, assume that X is locally connected.
- Aut(Y/X) := { $\phi : Y \to Y : p \circ \phi = p$ }.
- For each point $x \in X$, $p^{-1}(x)$ is equipped with a natural action of Aut(Y/X).

- Lemma 2.1.7: If G is a group acting evenly on a connected space Y, the projection p_G: Y → G\Y turns Y into a cover a G\Y.
- Example 2.1.8 : 1. Let $\mathbb Z$ act on $\mathbb R$ by translations. We obtain a cover $\mathbb R \to \mathbb R/\mathbb Z \simeq S^1$.
 - 2. For an integer n > 1, we get an even action of μ_n on \mathbb{C}^* from that a cover $p_n : \mathbb{C}^* \to \mathbb{C}^*/\mu_n$. The map $z \mapsto z^n$ defines a natural homeomorphism (isomorphism) of \mathbb{C}^*/μ_n onto \mathbb{C}^* . So this induces a cover $\mathbb{C}^* \to \mathbb{C}^*$.
- For now on, assume that *X* is locally connected.
- Aut(Y/X) := { $\phi : Y \to Y : p \circ \phi = p$ }.
- For each point $x \in X$, $p^{-1}(x)$ is equipped with a natural action of Aut(Y/X).

- **Proposition 2.2.2 :** Let $p: X \to Y$ be a cover, Z a connected topological space, $f, g: Z \to Y$ two continuous maps satisfying $p \circ f = p \circ g$. If there is a point $z \in Z$ with f(z) = g(z), then $f \equiv g$.
- Apply the above proposition to $Z=Y,\ f=id$ and $g=\phi$ to get :
 - **Lemma 2.2.1** An automorphism ϕ of a connected cover $p: Y \to X$ having a fixed point must be trivial.
- If p: Y → X is a connected cover, the action of Aut(Y/X) on Y is even.
- Conversely:
 Proposition 2.2.4: If G is a group acting evenly on a connected space Y, the automorphism group of the cover p_G: Y → G\Y is precisely G.

$$Y \to \operatorname{Aut}(Y/X) \backslash Y \to^{\overline{p}} X$$
.

- **Proposition 2.2.2 :** Let $p: X \to Y$ be a cover, Z a connected topological space, $f, g: Z \to Y$ two continuous maps satisfying $p \circ f = p \circ g$. If there is a point $z \in Z$ with f(z) = g(z), then $f \equiv g$.
- Apply the above proposition to $Z=Y,\ f=id$ and $g=\phi$ to get :
 - **Lemma 2.2.1** An automorphism ϕ of a connected cover $p: Y \to X$ having a fixed point must be trivial.
- If p: Y → X is a connected cover, the action of Aut(Y/X) on Y is even.
- Conversely:
 Proposition 2.2.4: If G is a group acting evenly on a connected space Y, the automorphism group of the cover p_G: Y → G\Y is precisely G.

$$Y \to \operatorname{Aut}(Y/X) \backslash Y \to^{\overline{p}} X$$
.

- **Proposition 2.2.2 :** Let $p: X \to Y$ be a cover, Z a connected topological space, $f, g: Z \to Y$ two continuous maps satisfying $p \circ f = p \circ g$. If there is a point $z \in Z$ with f(z) = g(z), then $f \equiv g$.
- Apply the above proposition to $Z=Y,\ f=id$ and $g=\phi$ to get :
 - **Lemma 2.2.1** An automorphism ϕ of a connected cover $p: Y \to X$ having a fixed point must be trivial.
- If p: Y → X is a connected cover, the action of Aut(Y/X) on Y is even.
- Conversely:
 Proposition 2.2.4: If G is a group acting evenly on a connected space Y, the automorphism group of the cover p_G: Y → G\Y is precisely G.

$$Y \to \operatorname{Aut}(Y/X) \backslash Y \to^{\overline{p}} X.$$

- **Proposition 2.2.2 :** Let $p: X \to Y$ be a cover, Z a connected topological space, $f, g: Z \to Y$ two continuous maps satisfying $p \circ f = p \circ g$. If there is a point $z \in Z$ with f(z) = g(z), then $f \equiv g$.
- Apply the above proposition to $Z=Y,\ f=id$ and $g=\phi$ to get :
 - **Lemma 2.2.1** An automorphism ϕ of a connected cover $p: Y \to X$ having a fixed point must be trivial.
- If p: Y → X is a connected cover, the action of Aut(Y/X) on Y is even.
- Conversely:
 Proposition 2.2.4: If G is a group acting evenly on a connected space Y, the automorphism group of the cover p_G: Y → G\Y is precisely G.

$$Y \to \operatorname{Aut}(Y/X) \backslash Y \to^{\overline{p}} X.$$

- **Proposition 2.2.2 :** Let $p: X \to Y$ be a cover, Z a connected topological space, $f, g: Z \to Y$ two continuous maps satisfying $p \circ f = p \circ g$. If there is a point $z \in Z$ with f(z) = g(z), then $f \equiv g$.
- Apply the above proposition to $Z=Y,\;f=id$ and $g=\phi$ to get :
 - **Lemma 2.2.1** An automorphism ϕ of a connected cover $p: Y \to X$ having a fixed point must be trivial.
- If p: Y → X is a connected cover, the action of Aut(Y/X) on Y is even.
- Conversely:

Proposition 2.2.4 : If *G* is a group acting evenly on a connected space *Y*, the automorphism group of the cover $p_G: Y \to G \setminus Y$ is precisely *G*.

$$Y \to \operatorname{Aut}(Y/X) \backslash Y \to^{\overline{p}} X.$$

- **Proposition 2.2.2 :** Let $p: X \to Y$ be a cover, Z a connected topological space, $f, g: Z \to Y$ two continuous maps satisfying $p \circ f = p \circ g$. If there is a point $z \in Z$ with f(z) = g(z), then $f \equiv g$.
- Apply the above proposition to $Z=Y,\ f=id$ and $g=\phi$ to get :
 - **Lemma 2.2.1** An automorphism ϕ of a connected cover $p: Y \to X$ having a fixed point must be trivial.
- If p: Y → X is a connected cover, the action of Aut(Y/X) on Y is even.
- Conversely:
 Proposition 2.2.4: If G is a group acting evenly on a connected space Y, the automorphism group of the cover p_G: Y → G\Y is precisely G.

$$Y o \operatorname{\mathsf{Aut}}(Y/X) \backslash Y o^{\overline{p}} X.$$

$$Y \longrightarrow \operatorname{Aut}(Y/X) \backslash Y \stackrel{\overline{\rho}}{\longrightarrow} X$$

- A cover $p: Y \to X$ is said to be **Galois** if Y is connected and the induved map \overline{p} above is a homeomorphism.
- Proposition 2.2.7 A connected cover p: Y → X is Galois iff Aut(Y/X) acts transitively on each fibre of p.
- We will need the following lemma:
 Lemma 2.2.11 Let q: Z → X be a connected cover and f: Y → Z a continuous map. If the composite q ∘ f: Y → X is a cover, then so is f: Y → Z.

$$Y \longrightarrow \operatorname{Aut}(Y/X) \backslash Y \stackrel{\overline{p}}{\longrightarrow} X$$

- A cover p: Y → X is said to be Galois if Y is connected and the induved map p

 above is a homeomorphism.
- Proposition 2.2.7 A connected cover p: Y → X is Galois iff Aut(Y/X) acts transitively on each fibre of p.
- We will need the following lemma:
 Lemma 2.2.11 Let q: Z → X be a connected cover and f: Y → Z a continuous map. If the composite q ∘ f: Y → X is a cover, then so is f: Y → Z.

$$Y \longrightarrow \operatorname{Aut}(Y/X) \backslash Y \stackrel{\overline{p}}{\longrightarrow} X$$

- A cover p: Y → X is said to be Galois if Y is connected and the induved map p

 above is a homeomorphism.
- **Proposition 2.2.7** A connected cover $p: Y \to X$ is Galois iff Aut(Y/X) acts transitively on each fibre of p.
- We will need the following lemma:
 Lemma 2.2.11 Let q: Z → X be a connected cover and f: Y → Z a continuous map. If the composite q ∘ f: Y → X is a cover, then so is f: Y → Z.

$$Y \longrightarrow \operatorname{Aut}(Y/X) \backslash Y \xrightarrow{\overline{p}} X$$

- A cover p: Y → X is said to be Galois if Y is connected and the induved map p

 above is a homeomorphism.
- **Proposition 2.2.7** A connected cover $p: Y \to X$ is Galois iff Aut(Y/X) acts transitively on each fibre of p.
- We will need the following lemma:
 Lemma 2.2.11 Let q: Z → X be a connected cover and f: Y → Z a continuous map. If the composite q ∘ f: Y → X is a cover, then so is f: Y → Z.

$$Y \longrightarrow \operatorname{Aut}(Y/X) \backslash Y \xrightarrow{\overline{p}} X$$

- A cover p: Y → X is said to be Galois if Y is connected and the induved map p

 above is a homeomorphism.
- **Proposition 2.2.7** A connected cover $p: Y \to X$ is Galois iff Aut(Y/X) acts transitively on each fibre of p.
- We will need the following lemma:
 Lemma 2.2.11 Let q: Z → X be a connected cover and f: Y → Z a continuous map. If the composite q ∘ f: Y → X is a cover, then so is f: Y → Z.

 Let p: Y → X be a Galois cover and G = Aut(Y|X). The map H → H\Y, Z → Aut(Y|Z) induce a bijection between subgroups of G and intermediate covers Z as above.

The cover $q: Z \to X$ is Galois iff H is a normal subgroup of G, in which case $\operatorname{Aut}(Z|X) \cong G/H$.

 Let p: Y → X be a Galois cover and G = Aut(Y|X). The map H → H\Y, Z → Aut(Y|Z) induce a bijection between subgroups of G and intermediate covers Z as above.

The cover $q: Z \to X$ is Galois iff H is a normal subgroup of G, in which case $\operatorname{Aut}(Z|X) \cong G/H$.

- Lemma 2.3.2 Let $p: Y \to X$ be a cover, $y \in Y$ and x = p(y).
 - 1. Given a path $f:[0,1] \to X$ with f(0)=x, there is a unique path $\tilde{f}:[0,1] \to Y$ with $p \circ \tilde{f}=f$.
 - 2. Assume moreover given a second path $g:[0,1]\to X$ homotopic to f. Then the unique $\tilde{g}:[0,1]\to Y$ with $\tilde{g}(0)=y$ and $p\circ \tilde{g}=g$ has the same endpoint as \tilde{f} , i.e. $\tilde{f}(1)=\tilde{g}(1)$.
- Monodromy Action on the fibre $p^{-1}(x)$: Given $y \in p^{-1}(x)$ and $\alpha \in \pi_1(X, x)$ represented by a path $f : [0, 1] \to X$ with f(0) = f(1) = x. We define

$$\alpha y := \tilde{f}(1),$$

- Lemma 2.3.2 Let $p: Y \to X$ be a cover, $y \in Y$ and x = p(y).
 - 1. Given a path $f:[0,1] \to X$ with f(0) = x, there is a unique path $\tilde{f}:[0,1] \to Y$ with $p \circ \tilde{f} = f$.
 - 2. Assume moreover given a second path $g:[0,1] \to X$ homotopic to f. Then the unique $\tilde{g}:[0,1] \to Y$ with $\tilde{g}(0)=y$ and $p\circ \tilde{g}=g$ has the same endpoint as \tilde{f} , i.e. $\tilde{f}(1)=\tilde{g}(1)$.
- Monodromy Action on the fibre $p^{-1}(x)$: Given $y \in p^{-1}(x)$ and $\alpha \in \pi_1(X, x)$ represented by a path $f : [0, 1] \to X$ with f(0) = f(1) = x. We define

$$\alpha y := \tilde{f}(1),$$

- Lemma 2.3.2 Let $p: Y \to X$ be a cover, $y \in Y$ and x = p(y).
 - 1. Given a path $f:[0,1] \to X$ with f(0) = x, there is a unique path $\tilde{f}:[0,1] \to Y$ with $p \circ \tilde{f} = f$.
 - 2. Assume moreover given a second path $g:[0,1] \to X$ homotopic to f. Then the unique $\tilde{g}:[0,1] \to Y$ with $\tilde{g}(0) = y$ and $p \circ \tilde{g} = g$ has the same endpoint as \tilde{f} , i.e. $\tilde{f}(1) = \tilde{g}(1)$.
- Monodromy Action on the fibre $p^{-1}(x)$: Given $y \in p^{-1}(x)$ and $\alpha \in \pi_1(X, x)$ represented by a path $f : [0, 1] \to X$ with f(0) = f(1) = x. We define

$$\alpha y := \tilde{f}(1),$$

- Lemma 2.3.2 Let $p: Y \to X$ be a cover, $y \in Y$ and x = p(y).
 - 1. Given a path $f:[0,1] \to X$ with f(0) = x, there is a unique path $\tilde{f}:[0,1] \to Y$ with $p \circ \tilde{f} = f$.
 - 2. Assume moreover given a second path $g:[0,1]\to X$ homotopic to f. Then the unique $\tilde{g}:[0,1]\to Y$ with $\tilde{g}(0)=y$ and $p\circ \tilde{g}=g$ has the same endpoint as \tilde{f} , i.e. $\tilde{f}(1)=\tilde{g}(1)$.
- *Monodromy* Action on the fibre $p^{-1}(x)$: Given $y \in p^{-1}(x)$ and $\alpha \in \pi_1(X, x)$ represented by a path $f : [0, 1] \to X$ with f(0) = f(1) = x. We define

$$\alpha y := \tilde{f}(1),$$

The Monodromy Action

- Lemma 2.3.2 Let $p: Y \to X$ be a cover, $y \in Y$ and x = p(y).
 - 1. Given a path $f:[0,1] \to X$ with f(0) = x, there is a unique path $\tilde{f}:[0,1] \to Y$ with $p \circ \tilde{f} = f$.
 - 2. Assume moreover given a second path $g:[0,1] \to X$ homotopic to f. Then the unique $\tilde{g}:[0,1] \to Y$ with $\tilde{g}(0)=y$ and $p\circ \tilde{g}=g$ has the same endpoint as \tilde{f} , i.e. $\tilde{f}(1)=\tilde{g}(1)$.
- Monodromy Action on the fibre $p^{-1}(x)$: Given $y \in p^{-1}(x)$ and $\alpha \in \pi_1(X, x)$ represented by a path $f : [0, 1] \to X$ with f(0) = f(1) = x. We define

$$\alpha y := \tilde{f}(1),$$

where \tilde{f} is the unique lifting \tilde{f} to Y with $\tilde{f}(0) = y$. This gives a left action of $\pi_1(X, x)$ on $p^{-1}(x)$

- Fix a space X and $x \in X$. We define a functor Fib_x from the category of covers of X to the category of sets equipped with a left $\pi_1(X, x)$ -action by sending a cover $p: Y \to X$ to the fibre $p^{-1}(x)$.
- Theorem 2.3.4 Let X be connected and locally simply connected top. space and x ∈ X a base point. The functor Fib_x induces an equivalence of the category of covers of X with the category of left π₁(X, x)-sets.
 Connected covers correspond to π₁(X, x)-sets with transitive action and Gaois covers to coset spaces of normal subgroups.

- Fix a space X and $x \in X$. We define a functor Fib_x from the category of covers of X to the category of sets equipped with a left $\pi_1(X, x)$ -action by sending a cover $p: Y \to X$ to the fibre $p^{-1}(x)$.
- Theorem 2.3.4 Let X be connected and locally simply connected top. space and x ∈ X a base point. The functor Fib_x induces an equivalence of the category of covers of X with the category of left π₁(X, x)-sets.
 Connected covers correspond to π₁(X, x)-sets with transitive action and Gaois covers to coset spaces of normal subgroups.

- Fix a space X and $x \in X$. We define a functor Fib_x from the category of covers of X to the category of sets equipped with a left $\pi_1(X, x)$ -action by sending a cover $p: Y \to X$ to the fibre $p^{-1}(x)$.
- Theorem 2.3.4 Let X be connected and locally simply connected top. space and x ∈ X a base point. The functor Fib_x induces an equivalence of the category of covers of X with the category of left π₁(X, x)-sets. Connected covers correspond to π₁(X, x)-sets with transitive action and Gaois covers to coset spaces of normal subgroups.

- The proof the Theorem 2.3.4 relies on two facts :
- For a connected and locally simply connected topological space X and a base point $x \in X$ the functor Fib_X is representable by a cover $\widetilde{X}_X \to X$, i.e. $Fib_X(.) \cong Hom(\widetilde{X}_X, .)$.
- The cover X_x depends on the choice of the base point x.
- It comes equipped with a canonical point in the fibre $\pi^{-1}(x)$ called the *universal element, denotes* \widetilde{x} .
- For an arbitrary cover $p: Y \to X$ and element $y \in \pi^{-1}(x)$, the cover map $\pi^{-1}(y): \widetilde{X}_X \to Y$ corresponding to y via the isomorphism $Fib_X(Y) \cong Hom(\widetilde{X}_X, Y)$ maps \widetilde{x} to y.

- The proof the Theorem 2.3.4 relies on two facts :
- For a connected and locally simply connected topological space X and a base point $x \in X$ the functor Fib_X is representable by a cover $\widetilde{X}_X \to X$, i.e. $Fib_X(.) \cong Hom(\widetilde{X}_X, .)$.
- The cover X_x depends on the choice of the base point x.
- It comes equipped with a canonical point in the fibre $\pi^{-1}(x)$ called the *universal element, denotes* \widetilde{x} .
- For an arbitrary cover $p: Y \to X$ and element $y \in \pi^{-1}(x)$, the cover map $\pi^{-1}(y): \widetilde{X}_X \to Y$ corresponding to y via the isomorphism $Fib_X(Y) \cong Hom(\widetilde{X}_X, Y)$ maps \widetilde{x} to y.

- The proof the Theorem 2.3.4 relies on two facts :
- For a connected and locally simply connected topological space X and a base point $x \in X$ the functor Fib_x is representable by a cover $\widetilde{X}_x \to X$, i.e. $Fib_x(.) \cong Hom(\widetilde{X}_x, .)$.
- The cover X_x depends on the choice of the base point x.
- It comes equipped with a canonical point in the fibre $\pi^{-1}(x)$ called the *universal element, denotes* \widetilde{x} .
- For an arbitrary cover $p: Y \to X$ and element $y \in \pi^{-1}(x)$, the cover map $\pi^{-1}(y): \widetilde{X}_X \to Y$ corresponding to y via the isomorphism $Fib_X(Y) \cong Hom(\widetilde{X}_X, Y)$ maps \widetilde{x} to y.

- The proof the Theorem 2.3.4 relies on two facts :
- For a connected and locally simply connected topological space X and a base point $x \in X$ the functor Fib_X is representable by a cover $\widetilde{X}_X \to X$, i.e. $\operatorname{Fib}_X(.) \cong \operatorname{Hom}(\widetilde{X}_X, .)$.
- The cover X_x depends on the choice of the base point x.
- It comes equipped with a canonical point in the fibre $\pi^{-1}(x)$ called the *universal element, denotes* \widetilde{x} .
- For an arbitrary cover $p: Y \to X$ and element $y \in \pi^{-1}(x)$, the cover map $\pi^{-1}(y): \widetilde{X}_X \to Y$ corresponding to y via the isomorphism $Fib_X(Y) \cong Hom(\widetilde{X}_X, Y)$ maps \widetilde{x} to y.

- The proof the Theorem 2.3.4 relies on two facts :
- For a connected and locally simply connected topological space X and a base point $x \in X$ the functor Fib_x is representable by a cover $\widetilde{X}_x \to X$, i.e. $Fib_x(.) \cong Hom(\widetilde{X}_x, .)$.
- The cover X_x depends on the choice of the base point x.
- It comes equipped with a canonical point in the fibre $\pi^{-1}(x)$ called the *universal element, denotes* \widetilde{x} .
- For an arbitrary cover $p: Y \to X$ and element $y \in \pi^{-1}(x)$, the cover map $\pi^{-1}(y): \widetilde{X}_X \to Y$ corresponding to y via the isomorphism $Fib_X(Y) \cong Hom(\widetilde{X}_X, Y)$ maps \widetilde{x} to y.

- The proof the Theorem 2.3.4 relies on two facts :
- For a connected and locally simply connected topological space X and a base point $x \in X$ the functor Fib_X is representable by a cover $\widetilde{X}_X \to X$, i.e. $\operatorname{Fib}_X(.) \cong \operatorname{Hom}(\widetilde{X}_X, .)$.
- The cover X_x depends on the choice of the base point x.
- It comes equipped with a canonical point in the fibre $\pi^{-1}(x)$ called the *universal element*, *denotes* \widetilde{x} .
- For an arbitrary cover $p: Y \to X$ and element $y \in \pi^{-1}(x)$, the cover map $\pi^{-1}(y): \widetilde{X}_X \to Y$ corresponding to y via the isomorphism $Fib_X(Y) \cong Hom(\widetilde{X}_X, Y)$ maps \widetilde{x} to y.

- Recovering the monodromy action : We can obtain a right action on $\operatorname{Fib}_X(Y) \cong \operatorname{Hom}(\widetilde{X}_X, Y)$ from the left action of $\operatorname{Aut}(\widetilde{X}_X|X)$ on \widetilde{X}_X .
- How is this action related to the monodromy action?
- **Theorem 2.3.7**: The cover X_X is a connected Galois cover of X, with automorphism group isomorphic to $\pi_1(X, x)$, i.e. $\operatorname{Aut}(\widetilde{X}_X|X) \cong \pi_1(X, x)$. Moreover, for each cover $Y \to X$ the left action of $\operatorname{Aut}(\widetilde{X}_X|X)^{\operatorname{op}}$ on $\operatorname{Fib}_X(Y)$ is exactly the monodromy action of $\pi_1(X, x)$.
- **Remark**: The cover \widetilde{X}_x plays the role of a separable closure k_s . In other words, the choice of x corresponds to the choice of the separable closure.

The fundamental group is the counterpart of the absolute Galois group:

in the case of fields: $A \mapsto \operatorname{Hom}(A, K_s)$, in the topological case: $Y \mapsto \operatorname{Hom}_X(\widetilde{X}_x, Y)$.

- Recovering the monodromy action : We can obtain a right action on $\mathrm{Fib}_X(Y) \cong \mathrm{Hom}(\widetilde{X}_x, Y)$ from the left action of $\mathrm{Aut}(\widetilde{X}_x|X)$ on \widetilde{X}_x .
- How is this action related to the monodromy action?
- **Theorem 2.3.7**: The cover X_X is a connected Galois cover of X, with automorphism group isomorphic to $\pi_1(X, X)$, i.e. $\operatorname{Aut}(\widetilde{X}_X|X) \cong \pi_1(X, X)$. Moreover, for each cover $Y \to X$ the left action of $\operatorname{Aut}(\widetilde{X}_X|X)^{\operatorname{op}}$ on $\operatorname{Fib}_X(Y)$ is exactly the monodromy action of $\pi_1(X, X)$.
- Remark: The cover X_x plays the role of a separable closure k_s. In other words, the choice of x corresponds to the choice of the separable closure.
 - The fundamental group is the counterpart of the absolute Galois group:

In the case of fields : $A \mapsto \operatorname{Hom}(A, k_s)$, in the topological case : $Y \mapsto \operatorname{Hom}_X(\widetilde{X}_x, Y)$.

- Recovering the monodromy action : We can obtain a right action on $\operatorname{Fib}_{x}(Y) \cong \operatorname{Hom}(\widetilde{X}_{x}, Y)$ from the left action of $\operatorname{Aut}(\widetilde{X}_{x}|X)$ on \widetilde{X}_{x} .
- How is this action related to the monodromy action?
- **Theorem 2.3.7**: The cover X_X is a connected Galois cover of X, with automorphism group isomorphic to $\pi_1(X, x)$, i.e. $\operatorname{Aut}(\widetilde{X}_X|X) \cong \pi_1(X, x)$. Moreover, for each cover $Y \to X$ the left action of $\operatorname{Aut}(\widetilde{X}_X|X)^{\operatorname{op}}$ on $\operatorname{Fib}_X(Y)$ is exactly the monodromy action of $\pi_1(X, x)$.
- **Remark**: The cover X_x plays the role of a separable closure k_s . In other words, the choice of x corresponds to the choice of the separable closure.
 - The fundamental group is the counterpart of the absolute Galois group:

In the case of fields : $A \mapsto \operatorname{Hom}(A, k_s)$, in the topological case : $Y \mapsto \operatorname{Hom}_X(\widetilde{X}_x, Y)$.

- Recovering the monodromy action : We can obtain a right action on $\operatorname{Fib}_X(Y) \cong \operatorname{Hom}(\widetilde{X}_x, Y)$ from the left action of $\operatorname{Aut}(\widetilde{X}_x|X)$ on \widetilde{X}_x .
- How is this action related to the monodromy action?
- Theorem 2.3.7: The cover \widetilde{X}_X is a connected Galois cover of X, with automorphism group isomorphic to $\pi_1(X,x)$, i.e. Aut $(\widetilde{X}_X|X)\cong\pi_1(X,x)$. Moreover, for each cover $Y\to X$ the left action of Aut $(\widetilde{X}_X|X)^{\operatorname{op}}$ on $\operatorname{Fib}_X(Y)$ is exactly the monodromy action of $\pi_1(X,x)$.
- Remark: The cover X_x plays the role of a separable closure k_s. In other words, the choice of x corresponds to the choice of the separable closure.
 The fundamental group is the counterpart of the absolute

In the case of fields : $A \mapsto \text{Hom}(A, k_s)$, in the topological case : $Y \mapsto \text{Hom}_X(\widetilde{X}_X, Y)$

- Recovering the monodromy action : We can obtain a right action on $\operatorname{Fib}_X(Y) \cong \operatorname{Hom}(\widetilde{X}_x, Y)$ from the left action of $\operatorname{Aut}(\widetilde{X}_x|X)$ on \widetilde{X}_x .
- How is this action related to the monodromy action?
- Theorem 2.3.7: The cover X_X is a connected Galois cover of X, with automorphism group isomorphic to $\pi_1(X, X)$, i.e. $\operatorname{Aut}(\widetilde{X}_X|X) \cong \pi_1(X, X)$. Moreover, for each cover $Y \to X$ the left action of $\operatorname{Aut}(\widetilde{X}_X|X)^{\operatorname{op}}$ on $\operatorname{Fib}_X(Y)$ is exactly the monodromy action of $\pi_1(X, X)$.
- Remark: The cover X_x plays the role of a separable closure k_s. In other words, the choice of x corresponds to the choice of the separable closure.

The fundamental group is the counterpart of the absolute Galois group:

In the case of fields : $A \mapsto \text{Hom}(A, k_s)$, in the topological case : $Y \mapsto \text{Hom}_X(\widetilde{X}_x, Y)$.

- Recovering the monodromy action : We can obtain a right action on $\operatorname{Fib}_{X}(Y) \cong \operatorname{Hom}(\widetilde{X}_{X}, Y)$ from the left action of $\operatorname{Aut}(\widetilde{X}_{X}|X)$ on \widetilde{X}_{X} .
- How is this action related to the monodromy action?
- Theorem 2.3.7: The cover \widetilde{X}_X is a connected Galois cover of X, with automorphism group isomorphic to $\pi_1(X, X)$, i.e. Aut $(\widetilde{X}_X|X)\cong\pi_1(X,X)$. Moreover, for each cover $Y\to X$ the left action of Aut $(\widetilde{X}_X|X)^{\mathrm{op}}$ on $\mathrm{Fib}_X(Y)$ is exactly the monodromy action of $\pi_1(X,X)$.
- Remark: The cover X_x plays the role of a separable closure k_s. In other words, the choice of x corresponds to the choice of the separable closure.

The fundamental group is the counterpart of the absolute Galois group :

In the case of fields : $A \mapsto \operatorname{Hom}(A, k_s)$, in the topological case : $Y \mapsto \operatorname{Hom}_X(\widetilde{X}_x, Y)$.

- A cover Y → X is finite if it has finite fibres. For connected X, these have the same cardinality, called the *degree of X*.
- Corollary 2.3.9: For X and x as before, the functor Fib_X induces an equivalence of the category of finite covers of X with the category of finite continuous left $\pi_1(X,x)$ -sets. Connected covers correspond to finite $\pi_1(X,x)$ -sets with transitive action and Galois covers to coset spaces of open normal subgroups.
- Here $\pi_1(X,x)$ denotes the profinite completion of $\pi_1(X,x)$:

$$\widehat{\pi_1(X,x)} = \varprojlim_U \pi_1(X,x)/U ,$$

- A cover Y → X is finite if it has finite fibres. For connected X, these have the same cardinality, called the degree of X.
- Corollary 2.3.9: For X and x as before, the functor Fib_x induces an equivalence of the category of finite covers of X with the category of finite continuous left π₁(X, x)-sets. Connected covers correspond to finite π₁(X, x)-sets with transitive action and Galois covers to coset spaces of open normal subgroups.
- Here $\pi_1(X,x)$ denotes the profinite completion of $\pi_1(X,x)$:

$$\widehat{\pi_1(X,x)} = \varprojlim_U \pi_1(X,x)/U ,$$

- A cover Y → X is finite if it has finite fibres. For connected X, these have the same cardinality, called the degree of X.
- Corollary 2.3.9: For X and x as before, the functor Fib_X induces an equivalence of the category of finite covers of X with the category of finite continuous left $\widehat{\pi_1(X,x)}$ -sets. Connected covers correspond to finite $\widehat{\pi_1(X,x)}$ -sets with transitive action and Galois covers to coset spaces of open normal subgroups.
- Here $\pi_1(X,x)$ denotes the profinite completion of $\pi_1(X,x)$:

$$\widehat{\pi_1(X,x)} = \varprojlim_U \pi_1(X,x)/U ,$$

- A cover Y → X is finite if it has finite fibres. For connected X, these have the same cardinality, called the degree of X.
- Corollary 2.3.9: For X and x as before, the functor Fib_x induces an equivalence of the category of finite covers of X with the category of finite continuous left $\pi_1(X,x)$ -sets. Connected covers correspond to finite $\pi_1(X,x)$ -sets with transitive action and Galois covers to coset spaces of open normal subgroups.
- Here $\widehat{\pi_1(X,x)}$ denotes the profinite completion of $\pi_1(X,x)$:

$$\widehat{\pi_1(X,x)} = \varprojlim_U \pi_1(X,x)/U ,$$

