ON THE NON-NEGATIVITY OF THE DIRICHLET ENERGY OF A WEIGHTED GRAPH

KYLE BRODER

ABSTRACT. In this short note, we address the question of when a weighted graph (with possibly negative weights) has non-negative Dirichlet energy.

Let G be a finite weighted graph, with vertices $V(G) = \{x_1, ..., x_n\}$, and weighting specified by its adjacency matrix $A \in \mathbb{R}^{n \times n}$. The Dirichlet energy for a weighted graph is defined

$$\mathcal{E}(f) := \sum_{i,j=1}^{n} A_{ij} (f(x_i) - f(x_j))^2,$$

where $f: V(G) \to \mathbb{R}$ is a function defined on the vertices of G. The following elementary result is well-known:

Theorem 1. Suppose $A \in \mathbb{R}^{n \times n}$ is a non-negative matrix, i.e., the entries A_{ij} are non-negative real numbers, for each i, j = 1, ..., n. Then $\mathcal{E}(f) \geq 0$ for all $f : V(G) \to \mathbb{R}$.

It is natural to ask the following (apparently unknown) question:

Question. Given a finite weighted graph (G, A), where $A \in \mathbb{R}^{n \times n}$ is a real matrix, what conditions on A are necessary or sufficient for the inequality $\mathcal{E}(f) \geq 0$ to hold for all $f: V(G) \to \mathbb{R}$?

The main theorem of this note is to give an answer to this problem. To this end, let us recall some terminology arising from distance geometry:

Definition 2. Let $A=(A_{ij})\in\mathbb{R}^{n\times n}$ be a real symmetric matrix. We say that A is a Euclidean distance matrix if there is a vector $x=(x_1,...,x_n)\in\mathbb{R}^n$ such that $A_{ij}=(x_i-x_j)^2$ for each i,j=1,...,n.

The set of all $n \times n$ Euclidean distance matrices forms a convex cone which we denote by \mathbb{EDM}^n . Recall that the Frobenius inner product of two matrices $A, B \in \mathbb{R}^{n \times n}$ is defined by

$$(A,B)_{\mathrm{F}} := \mathrm{tr}(AB^t).$$

This dual pairing allows us to define the dual EDM cone \mathbb{EDM}^* :

Definition 3. The dual EDM cone \mathbb{EDM}^* is given by

$$\mathbb{EDM}^* := \{ A \in \mathbb{R}^{n \times n} : (A, B)_{\mathcal{F}} \ge 0 \quad \forall B \in \mathbb{EDM} \}.$$

Theorem 4. Let (G, A) be a weighted finite graph. Then the Dirichlet energy \mathcal{E} is non-negative if and only if A lies in the dual EDM cone.

Proof. If $V(G) = \{x_1, ..., x_n\}$ is the vertex set of some graph, then we may construct a Euclidean distance matrix B(f) from a graph function $f: V(G) \to \mathbb{R}$ by setting $B(f)_{ij} = (f(x_i) - f(x_j))^2$. In particular, since

$$tr(AB(f)) = \sum_{i,j=1}^{n} A_{ij}B(f)_{ij} = \sum_{i,j=1}^{n} A_{ij}(f(x_i) - f(x_j))^2,$$

we see that the Dirichlet energy \mathcal{E} of a weighted graph (G, A) is non-negative if and only if $tr(AB) \geq 0$ for all Euclidean distance matrices $B \in \mathbb{EDM}$.

Remark 5. It is natural to ask what the relation is (if any) between the EDM cone (and its dual) and the PSD cone, i.e., the cone of (symmetric) positive semi-definite matrices. Dattorro [2] has shown that

$$\mathbb{EDM}^n = \mathbb{S}^n_{\mathrm{H}} \cap \left((\mathbb{S}^n_{\mathrm{C}})^{\perp} - \mathbb{PSD}^n \right) \subset \mathbb{R}^{n \times n}_{\geq 0}.$$

Here, $\mathbb{S}^n_{\mathrm{H}}$ denotes the space of symmetric $n \times n$ hollow matrices, i.e., symmetric matrices with no non-zero entries on its diagonal; $\mathbb{S}^n_{\mathrm{C}}$ denotes the geometric centering subspace:¹

$$\mathbb{S}^n_{\mathcal{C}} := \{ A \in \mathbb{S}^n : A\mathbf{e} = 0 \},$$

where $\mathbf{e} = (1, ..., 1)^t$. The orthogonal complement of $\mathbb{S}_{\mathbb{C}}^n$ is then

$$(\mathbb{S}^n_{\mathbf{C}})^{\perp} = \{ u\mathbf{e}^t + \mathbf{e}u^t : u \in \mathbb{R}^n \}.$$

In particular, from standard properties of cones, we observe that

$$(\mathbb{EDM}^n)^* = \mathbb{S}^n - \mathbb{S}^n \cap \mathbb{PSD}^n,$$

where $\mathbb{S}^n_{\mathrm{D}}$ is the cone of diagonal matrices.

By appealing to the eigenvalue characterization of the dual EDM cone given in [1], we have the following corollary:

¹It is more natural to refer to $\mathbb{S}^n_{\mathbb{C}}$ as the annihilator of $\mathbf{e}=(1,...,1)^t\in\mathbb{R}^n$.

Corollary 6. Let $A \in \mathbb{R}^{n \times n}$ be a real symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then $A \in \mathbb{EDM}_n^*$ if and only if

$$\lambda_1 \geq \sum_{k=2}^n r_k \lambda_k,$$

for all Perron-weights $0 \le r_k \le 1$.

Remark 7. The meaning of the non-standard terminology Perron-weights is the following: The well-known Schoenberg criterion [3] states that a symmetric hollow matrix Σ is a Euclidean distance matrix if and only if it is negative semi-definite on the hyperplane $H = \{x \in \mathbb{R} : x^t \mathbf{e} = 0\}$, where $\mathbf{e} = (1, ..., 1)^t$. The Perron-Frobenius theorem asserts that the largest eigenvalue (the Perron root) of the EDM Σ is positive and occurs with eigenvector in the non-negative orthant $\mathbb{R}^n_{\geq 0}$. Therefore, if $\delta_1 \geq \delta_2 \geq \cdots \geq \delta_n$ denote the eigenvalues of a non-trivial Euclidean distance matrix Σ , then Σ 0 and Σ 1. We then define the Perron weights, for each Σ 2 is Σ 3.

$$r_k := -\frac{\delta_k}{\delta_1} \in [0, 1].$$

References

- [1] Broder, K., An eigenvalue characterization of the dual EDM cone, to appear in the Bulletin of the Australian Mathematical Society.
- [2] Dattorro, Jon. Equality relating Euclidean distance cone to positive semidefinite cone. Linear Algebra Appl. 428 (2008), no. 11-12, 2597–2600. MR2416574
- [3] Schoenberg., I. J., Remarks to Maurice Fréchet's article "Sur la définition axiomatique d'une classe déspace distanciés vectoriellement applicable sur l'espace de Hilbert". Annals of Mathematics, 36(3):724–732, July 1935.

MATHEMATICAL SCIENCES INSTITUTE, AUSTRALIAN NATIONAL UNIVERSITY, ACTON, ACT 2601, AUSTRALIA

BICMR, Peking University, Beijing, 100871, People's republic of china $E\text{-}mail\ address$: kyle.broder@anu.edu.au

²That is, a matrix with non-zero entries on its diagonal.

³That is, a Euclidean distance matrix with $\delta_1 > 0$.