پیش گزارش پنجم درس آزمایشگاه اپتیک _ دکتر مهدوی موضوع آزمایش: بررسی عدسی های ضخیم نوری

حسین محمدی ۹۶۱۰۱۰۳۵

۱۷ فروردین ۱۴۰۰

۱ کمیاتی که در روابط مربوط به عدسی ها با علامت مثبت و منفی جایگذاری می شوند و بررسی آن ها

ابتدا پارامترهای موجود در یک مسئله را بایستی بشناسیم و سپس معین کنیم که هر کدام بسته به شرایط دارای چه علامتی هستند، ابتدا پارامترها را ببینید: حالا بسته به این که تصویر یا شی مجازی یا حقیقی

جدول ۱: پارامترهای موجودر در یک مسئله ی شامل عدسی

	•
معنا	کمیت
فاصله جسم تا عدسي	s_0
فاصله تصوير تا عدسي	s_i
فاصله كانوني عدسي	f
طول عمودي جسم	y_0
طول عمودي تصوير	y_i
فاصله شي تا يک کانون	x_0
فاصله تصوير تا همان كانون	x_i
بزرگنمایی عمودی عدسی	M_T

باشند ، مي توان علامت هاي كميت هاي بالا را معين كرد كه در جدول زير اين علامت ها آمده اند:

جدول ۲: علامت پارامترهای موجودر در یک مسئله ی شامل عدسی

_	+	كميت
جسم مجازي	جسم حقیقی	s_0
تصوير مجازي	تصوير حقيقي	s_i
عدسي واگرا	عدسی همگرا	f
تصوير وارونه	تصوير مستقيم	y_0
تصوير وارونه	تصوير مستقيم	y_i
تصوير وارونه	تصوير مستقيم	M_T

توجه کنید که منظور از «جسم مجازی» همان تصویر آینه یا عدسی های دیگر است.

۲ صفحه اصلی یا Principal Plane چیست و از آن چه استفاده ای می شود؟

هرگاه دسته ای از پرتوهای موازی را به یک عدسی بتابانیم، یک دسته پرتو خروجی خواهیم داشت. حال پرتوهای خروجی و ورودی را امتداد دهیم تا یکدیگر را در نقاطی قطع کنند، مکان هندسی این نقاط تشکیل یک خم می دهد که برای عدسی های نازک این نقاط تشکیل یک صفحه در فضای سه بعدی می دهند، حال اگر مکان هندسی مذکور را برای عدسی های ضخیم رسم کنیم، خمی تشکیل می دهد که می توان آن را تقریبا یک صفحه در نظر گرفت. به این صفحه Pirst Principal Plane می گوییم. در شکل ۱ شیوه به دست آوردن این محور را می بینید.

شكل ١: بدست آوردن محور اصلى اول با كمك شكل

حال پرتوهای ورودی را به گونه ای بتابانیم که پرتوهای خروجی موازی شوند؛ سپس مکان هندسی ذکر شده در بالا را به دست بیاوریم، به یک صفحه جدید می رسیم که به آن Second Principal Plane می گویند. در شکل ۲ شیوه به دست آوردن این محور را می بینید.

در حقیقت هدف از امتداد دادن پرتوها در بالا این است: «می توان به طور موثر در نظر گرفت که پرتوها در روی این صفحه ها شکسته یا بازتاب شده اند.» و می توان محاسبات و روابط مربوط به عدسی های ضخیم را به کمک بازتاب یا شکست از روی این صفحات انجام داد. کاربرد بسیار جالب دیگری که در کتاب اپتیک هخت ذکر شده بود، دنبال کردن رد یک پرتو نور تابیده شده به یک عدسی ضخیم است. کافی است قوانین شکست نور را در این نقاط بنویسیم و رد یک پرتو نور را بررسی کنیم.

در شکل ۳ محور اصلی را برای عدسی های ضخیم مختلف می بینیند:

شکل ۲: بدست آوردن محور اصلی دوم با کمک شکل

شکل ۳: محورهای اصلی برای عدسی های ضخیم متفاوت