Algorithm Design and Analysis

Linear Programming (Part I)

Roadmap for today (and beyond)

- Definition of linear programming and examples
- Linear programs for flows
- Linear programs for two-player zero-sum games
- Overview of algorithms for linear programming
- LP Part II (Tuesday): Duality
- LP Part III (next Thursday): Simplex and integrality

Formal definition

Definition (Linear program): A linear program consists of

- n real-valued variables $x_1, x_2, ..., x_n$
- A linear *objective function*, e.g., minimize/maximize $2x_1 + 3x_2 + x_3$
- m linear inequalities, e.g., $3x_1 + 4x_2 \le 6$, or $0 \le x_1 \le 3$

Goal: Find values for x's that satisfy the constraints and minimize/maximize the objective

Example: Plant production problem

Example Problem (Plant production): You run 4 production plants for making cars. Each is different and requires a certain amount of labor per car produced, materials per car produced, and pollution caused per car produced.

• N	eed to p	oroduce at	least 400 d	cars at i	plant 3 ((contract)	
-----	----------	------------	-------------	-----------	-----------	------------	--

- We have 3300 hours of labor available
- We have 4000 units of materials available
- We are allowed to produce 12000 units of pollution
- Goal is to maximize the number of cars produced

plant 1 plant 2 plant 3	labor 2 3 4	materials 3 4 5	pollution 15 10 9
plant 3	4	5	9
plant 4	5	6	7

Variables:
$$\times_1 \times_2 \times_3 \times_4$$

 $\star_i = \# cars made ar i$

Constraints:
$$\times i \gg 0 \quad \forall i \\ \times_3 \gg 400$$

$$2x_1 + 3x_2 + 4x_3 + 5x_4 \le 330$$
 solution might be to produce 213.5 cars at a plant.
 $3x_1 + 4x_2 + 5x_3 + 6x_4 \le 4000$

Note: We are not guaranteed to get an integer solution! The optimal cars at a plant.

Important notes

- Linear programs *can not* contain strict inequalities, e.g., $x_1 < 3$
- Linear equalities are okay, e.g., $x_1 + x_2 = 3$
- Super Important: Linear programs can not guarantee integer-valued solutions! Variables can be assigned fractional values.
- Objective and inequalities *must be linear*, e.g., can't have $x_1x_2 \leq 3$
- Sometimes you don't need an objective function. Any solution that satisfies the constraints is good. This is called the "feasibility problem"

Classification of solutions

There are three possible outcomes:

• Infeasible: There is no solution that satisfies the constraints

• Feasible and bounded: There is a solution of maximum objective value

Feasible and unbounded: There are solutions of arbitrarily large value

Linear programming in practice

- Linear programming is the basis of tremendously many real-world optimization problems
- Business schools teach entire courses on linear programming, and have entire departments dedicated to optimization / OR.
- Linear programming underpins more general tools like *integer* programming, constraint programming

Linear programming in practice

- Commercial tools for linear/integer/constraint programming cost 10s of thousands of \$\$\$
 - Cplex, Gurobi, Xpress
- Lots of open-source tools exist, but they are substantially slower than the commercial alternatives
 - SCIP, MIPCL, Coin-OR Branch-and-Cut (CBC), Google OR-Tools
- Commercial solvers are 5x faster than open source...

Example: Max flow

How would we model the maximum flow problem as an LP?

Variables:
$$\int uv \int v each (u,v)$$

Objective: $\sum_{n} \int su - \sum_{n} \int us (maximize)$

Constraints: $\sum_{n} \int uv = \sum_{n} \int vu \quad \forall v \notin \{s,t\}$
 $0 \in \int uv \leq C(u,v) \quad \forall (u,v)$

Example: Minimum-cost Max flow

- Sounds tricky, there's two objectives! (Min cost, and max flow)
- Solution #1: Maximize flow first

Variables:
$$\int uv$$

Objective: $\sum \sharp (u_1v) \int uv \quad (minimize)$

Constraints: $\sum_{n} \int s_n - \sum_{u} \int us = F \leftarrow Solve \quad max \quad flow \quad (same as before)$

Example: Minimum-cost Max flow

- Sounds tricky, there's two objectives! (Min cost, and max flow)
- Solution #2: Reduce to "minimum-cost circulation"

Constraints:
$$0 \le \int u \le C(u, \tau)$$

Example: 2-player zero-sum games

m	column player			
	20	-10	5	
row player	5	10	-10	
	-5	0	10	
'		i	_	

$$\frac{\max \min_{p} V_{R}(p,q)}{\sum_{q} P_{i} M_{ij}} > V$$

$$\forall j \quad columns$$

Standard form

- The same LP can be written in many ways
- It is convenient to have a "standard way" to write an LP

Definition (Standard Form): An LP with n variables $x_1, ..., x_n$ and m constraints in **standard** form can be written with constants $c_1, ..., c_n, b_1, ..., b_m, a_{11}, ..., a_{mn}$

Objective must be max, not min

 \rightarrow maximize $c_1x_1 + \cdots + c_nx_n$

subject to $a_{11}x_1 + \dots + a_{1n}x_n \le b_1$

→

$$a_{21}x_1 + \dots + a_{2n}x_n \le b_2$$

 $a_{m1}x_1 + \cdots + a_{mn}x_n \leq b_m$

maximize $c^T x$ subject to $Ax \le b$ $x \ge 0$

Constraints are all \leq constant

All variables are nonnegative. (These do not count towards the m number of constraints!)

 $\rightarrow x_i \ge 0$ for all i

Converting to standard form

Claim: Every LP that is not written in standard form can be converted to an equivalent LP in standard form

- How to convert minimization to maximization?
- How to convert a ≥ constraint?
- How to convert an = constraint?

$$\in \mathcal{L}$$

• How to convert a variable x_i which could negative?

$$\times i = \times_{\bar{i}}^{+} - \times_{\bar{i}}^{-}$$

Objective must be max, not min

Constraints are $all \leq constant$

All variables are nonnegative.

The geometry of linear programming

What does a linear program look like geometrically?

The geometry of linear programming

- Each constraint is a *halfspace*: It cuts \mathbb{R}^n into two halves
- The intersection of all the halfspaces is the *feasible region*
- If the feasible region is empty, the LP is *infeasible*
- The feasible region can be unbounded
- Maximizing c^Tx moves a hyperplane with normal vector c until it is tangent to the feasible region

Convexity

- The feasible region $Ax \le b$, $x \ge 0$ is a convex set
 - (If p and q are feasible, then so is any point on the line segment pq)
 - Why? A halfspace is convex, and the intersection of convex sets is convex

Algorithms for Linear Programming

- The simplex algorithm
 - The first, most famous, and very practical. Exponential worst-case time.
- Ellipsoid algorithm
 - First discovered polynomial time algorithm. Slow in practice.
- Karmarkar's Algorithm (interior-point method)
 - More efficient polynomial-time algorithm

The Simplex Algorithm

- The feasible region is a polytope in \mathbb{R}^n
- Pick a starting vertex of the polytope
- Move to highest-cost neighbouring vertex
- Repeat until maximum
- Worst-case complexity is exponential.

Fun fact: The typical simplex implementation doesn't use standard form. It uses so-called "equational form", where you write maximize c^Tx subject to Ax = b, where $x \ge 0$

The Ellipsoid Algorithm

- Determines whether an LP is feasible (doesn't solve for optimal)
- Find an ellipse that contains the feasible region
- Check if the center is a feasible point
- If not, shrink the ellipse and repeat
- Complexity is $O(n^6 w)$

Exercise (Optimizing): Given an algorithm that can determine if an LP is feasible (but does not find an optimal solution), how can we use it as a black box to find an optimal solution of an LP?

Karmarkar's Algorithm

- Works with feasible points but doesn't go corner to corner
- Moves in interior of the feasible region "interior point method"
- Complexity is $O(n^{3.5}w)$

Take-home messages

- LPs have tremendously many applications, many theoretically interesting, and many lucrative.
- Many interesting problems we learned about earlier in the course can be expressed/solved using LPs (flows, games)