CS & IT

Graph Theory

Discrete Mathematics

DPP 03 Discussion Notes

TOPICS TO BE COVERED

01 Question

02 Discussion

Consider a graph with order 7. The degree sequence of the graph is 4, 3, 3, 3, 2, 2, 1. Assume x is the number of edges and y is the degree sequence of the complement graph of the given graph.

Find x and y?

x = 10 and y = 5, 3, 3, 3, 2, 2, 2 $(3 \rightarrow 4 3 3 3 2 2 1)$

- 5 2333445 x = 12 and y = 5, 4, 4, 3, 3, 3, 2/
- x = 14 and y = 5, 5, 4, 4, 4, 4, 2
- x = 16 and y = 6, 5, 5, 5, 5, 3, 3

What is the maximum number of edges in an complemented graph with 7 vertices?

Which of the following is the number of vertices that form the self-complementary graph?

In a self-complementary graph G of size 18, then find the number of vertices in the graph G?

[NAT]

$$e = n(n-1)$$
 $= n(n-1)$
 $(n=1)$

Consider a graph with 4 vertices and 3 edges then which of the following statement is True?

 S_1 : It may or may not be self-complementary graph.

 S_2 : It must be self-complementary graph. $(f_a \mid se)$

D. None of these.

Which of the following options is/are correct for isomorphic

graphs?

- G₁ and G₂ are isomorphic graph.
- B. G₃ and G₄ are isomorphic graph.✓
- G₁ and G₂ are not isomorphic graph.
- G_3 and G_4 are not isomorphic graph.

Consider the following statements:

 S_1 : If two graphs are self – complementary graph then they have equal number of vertices and edges $\left(\frac{1}{2} \right)$

S₂: If two graphs G₁ and G₂ have same number of edges, vertices and same degree sequence then they are self-complement graphs.

[MCQ]

D. Neither S₁ nor S₂

