Lesson 16: Practice Problems - Variation of Constants

ODE 1 - Prof. Adi Ditkowski

Tel Aviv University

Part A: Basic Variation of Constants (5 Problems)

Problem 1. Solve $y' - 2y = e^{4t}$ using variation of constants.

Problem 2. Solve $y' + y = \sin(2t)$ using variation of constants.

Problem 3. Solve $y' + 3y = t^2$ using variation of constants.

Problem 4. Solve $y' - \frac{1}{t}y = t^3$ for t > 0 using variation of constants.

Problem 5. Solve $y' + 4y = e^{-4t}$ using variation of constants. Note the resonance!

Part B: Non-Standard Forcing Functions (6 Problems)

Problem 6. Solve $y' - y = e^t \ln(t)$ for t > 0.

Problem 7. Solve $y' + 2y = \frac{\sin(t)}{t}$ for t > 0.

Problem 8. Solve $y' + \frac{1}{t}y = \cos(\ln(t))$ for t > 0.

Problem 9. Solve $y' - 3y = e^{3t}t^2$ (resonance with polynomial).

Problem 10. Solve $y' + y = \frac{1}{1 + e^t}$.

Problem 11. Solve $y' + ty = te^{-t^2/2}$.

Part C: Initial Value Problems (5 Problems)

Problem 12. Solve $y' - 2y = e^t$, y(0) = 3.

Problem 13. Solve $y' + \frac{2}{t}y = t^2$, y(1) = 2 for t > 0.

Problem 14. Solve $y' + 3y = e^{-3t}\cos(t)$, y(0) = 0.

Problem 15. Solve $y' - y = \frac{1}{1 + e^{-t}}$, y(0) = 1.

Problem 16. Solve $y' + (\tan t)y = \sec t$, y(0) = 1 for $-\pi/2 < t < \pi/2$.

Part D: Comparison with Other Methods (5 Problems)

Problem 17. Solve $y' + 2y = 3e^{-2t}$ using: a) Integrating factor method b) Variation of constants c) Show the solutions are identical

Problem 18. For $y' - y = e^t$: a) Explain why undetermined coefficients fails b) Solve using variation of constants c) Interpret the resonance physically

Problem 19. Solve y' + p(t)y = g(t) where:

$$p(t) = \begin{cases} 1 & 0 \le t < 1 \\ 2 & t \ge 1 \end{cases}, \quad g(t) = 1$$

Use variation of constants on each interval.

Problem 20. Show that for y' + p(t)y = g(t), the variation of constants formula and integrating factor formula give the same result.

Problem 21. Solve $ty' - y = t^2e^t$ for t > 0: a) First convert to standard form b) Apply variation of constants c) Verify the solution

Part E: Theoretical Problems (4 Problems)

Problem 22. Prove that if y_1 and y_2 are solutions to $y' + p(t)y = g_1(t)$ and $y' + p(t)y = g_2(t)$ respectively, then $y_1 + y_2$ solves $y' + p(t)y = g_1(t) + g_2(t)$.

Problem 23. Show that the variation of constants formula:

$$y_p = y_h(t) \int \frac{g(t)}{y_h(t)} dt$$

can be written as:

$$y_p(t) = \int_{t_0}^t \frac{y_h(t)}{y_h(s)} g(s) ds$$

Interpret this as a Green's function representation.

Problem 24. Prove that for the equation y' + p(t)y = g(t), if p(t) and g(t) are continuous on [a, b], then the solution exists and is unique on the entire interval.

Problem 25. Derive the variation of constants formula starting from the integrating factor approach. Show all steps.

Part F: Exam-Style Problems (5 Problems)

Problem 26 (15 points). Consider the equation $y' + \frac{2t}{1+t^2}y = \frac{1}{1+t^2}$.

- 1. Find the homogeneous solution
- 2. Use variation of constants to find the general solution
- 3. Find the solution satisfying y(0) = 1
- 4. Determine the behavior as $t \to \infty$

Problem 27 (20 points). The current i(t) in an RL circuit satisfies:

$$L\frac{di}{dt} + Ri = V(t)$$

where $L = 1 \, H$, $R = 2 \, \Omega$, and $V(t) = 10e^{-2t} \sin(3t) \, V$.

- 1. Convert to standard form
- 2. Find the steady-state current using variation of constants
- 3. If i(0) = 0, find the complete solution
- 4. Identify transient and steady-state components

Problem 28 (15 points). For the equation $y' - \frac{n}{t}y = t^m$ where n, m are constants and t > 0:

- 1. Find the general solution using variation of constants
- 2. For what values of n and m does the solution remain bounded as $t \to \infty$?
- 3. Find the particular solution that remains finite at t=0 when possible

Problem 29 (20 points). Consider y' + y = f(t) where:

$$f(t) = \begin{cases} 1 & 0 \le t < \pi \\ \sin(t) & t \ge \pi \end{cases}$$

- 1. Solve on $[0, \pi)$ with y(0) = 0
- 2. Use continuity at $t = \pi$ to find initial condition for $t \geq \pi$
- 3. Solve on $[\pi, \infty)$
- 4. Sketch the solution

Problem 30 (15 points - Theoretical). 1. State the variation of constants formula for y' + p(t)y = g(t)

- 2. Prove that this formula gives a particular solution
- 3. Show that if $g(t) = g_1(t) + g_2(t)$, then $y_p = y_{p1} + y_{p2}$
- 4. Explain why variation of constants works for any continuous g(t)

Solution Hints:

- Problem 5: Resonance occurs when forcing matches natural frequency
- Problem 10: Use substitution $u = 1 + e^t$
- Problem 11: The coefficient t suggests $y_h = Ce^{-t^2/2}$
- Problem 20: Convert using $p(t)=2t/(1+t^2)$, notice $\int p(t)dt=\ln(1+t^2)$
- Problem 24: Use piecewise approach with continuity condition