CLAIMS

What is claimed is:

1	1. An automatic power control system for simultaneously adjusting an output power
2	and an extinction ration of a laser diode comprising:
3	bias current determination logic including
4	logic for determining an average power difference between a current
. 5	measurement of an output power of the laser diode and a reference average output
6	power, and
7	a first integrator communicatively coupled to receive the determined
8	average power difference from the logic, the first integrator summing the
9	determined average power difference with a determined average power difference
10	based on at least one previous measurement resulting in a bias current output
11	signal; and
12	modulation current determination logic including
13	a nonlinear processing block including logic for determining an absolute
14	value of the current measurement adjusted by a nonlinear estimation reference constant,
15	logic, communicatively coupled to the nonlinear processing block for
16	determining a power variance difference between the determined absolute value and a
17	reference power output variance proportional to an extinction ratio P_1/P_0 for reference
18	power levels P_1 and P_0 wherein P_1 represents a digital one value and P_0 represents a
19	digital zero value, and

- a second integrator, communicatively coupled to receive the variance
- 21 difference from the logic, the second integrator summing the determined variance
- 22 difference with a determined power variance difference for at least one previous
- 23 measurement resulting in a modulation current output signal.
- 1 2. The system of claim 1 wherein the bias current determination logic further
 - 2 comprises a low pass filter for filtering high frequency noise from a current measurement
 - 3 value, the low pass filter being communicatively coupled for receiving the current
 - 4 measurement value and for sending a filtered measurement value to the logic for
 - 5 determining an average power difference.
 - 1 3. The system of claim 1 wherein the modulation current determination logic further
 - 2 comprises a low pass filter for filtering high frequency noise from the absolute value
 - difference, the low pass filter being communicatively coupled for receiving the absolute
 - 4 value difference and sending a filtered signal to the logic for determining a power
 - 5 variance difference.
 - 1 4. The system of claim 1 wherein the system is implemented in a digital signal
 - 2 processor chip.
 - 1 5. A method for maintaining a laser output signal about a reference average output
 - 2 power and about a reference extinction ratio comprising:
 - determining a bias current and a modulation current of a laser diode drive current
 - 4 for a reference P_1 power level and for a reference P_0 power level;
 - 5 determining a reference average power and a reference power variance based
 - 6 upon the reference power levels P_1 and P_0 ; and

,	adjusting the dias current and the modulation current simultaneously for
8	maintaining about the reference average power and about the reference extinction ratio.
1	6. The method of claim 5 wherein determining a bias current and a modulation
2	current of a laser diode drive current for the reference P ₁ power level and for the
3	reference P ₀ power level further comprises:
4	determining the bias current corresponding to the reference P ₀ power
5	level;
6	determining the bias current corresponding to the reference P ₁ power
7	level; and
8	determining the modulation current corresponding to the reference P ₁
9	power level as the difference between the bias current for the reference P ₁ power
10	level and the bias current for the reference P ₀ power level.
1	7. The method of claim 5 wherein determining a reference average power and a
2	reference power variance based upon the reference power levels P ₁ and P ₀ further
3	comprises:
4	producing an optical power swing from reference P ₀ to reference P ₁ over a
5	parameter estimation time period;
6	integrating measurement output power values received during the parameter
7	estimation time period resulting in a bias reference current representing the reference
8	average power; and
9	integrating absolute power values of the received measurement output power
10	values adjusted for nonlinear estimation during the parameter estimation time period
11	resulting in a modulation reference current representing the reference power variance.

- 1 8. The method of claim 7 wherein integrating measurement output power values
- 2 received during the parameter estimation time period resulting in a bias reference current
- 3 representing the reference average power further comprises
- 4 responsive to being within the parameter estimation time period, summing
- 5 the current measurement with a feedback component including at least one previous
- 6 measurement value.
- 1 9. The method of claim 8 wherein integrating absolute power values of the received
- 2 measurement output power values adjusted for nonlinear estimation during the parameter
- 3 estimation time period resulting in a modulation reference current representing the
- 4 reference power variance further comprises
- 5 responsive to being within the parameter estimation time period, summing
- 6 the absolute value of the current measurement adjusted for nonlinear estimation with a
- 7 feedback component including at least one absolute value of a previous measurement
- 8 value adjusted for nonlinear estimation.
- 1 10. The method of claim 5 wherein adjusting the bias current and the modulation
- 2 current simultaneously for maintaining about the reference average power and about the
- 3 reference extinction ratio further comprises
- 4 receiving a current measured output value;
- determining a variation of the measured output power from the reference
- 6 average output power;
- 7 integrating the variation of the measured output power value with a first
- 8 feedback component comprising at previously determined variation based on a previously
- 9 measured output power:

10	setting the bias current output based on the result of the integration of the
11	variation of the measured output power with a first feedback component;
. 12	adjusting for nonlinear estimation of the measured output power value;
13	determining a variation in an extinction ratio based upon the measured
14	output power value from a reference extinction ratio;
15	integrating the variation in the extinction ratio based upon the measured
16	output power value with a second feedback component comprising at least one
17	previously determined variation in the extinction ratio based on a previously
18	measured output power value; and
19	setting the modulation current output based on the result of the integration
20	of the variation in the extinction ratio based upon the measured output power
21	value with a second feedback component.
1	11. A system for maintaining a laser output signal about a reference average output
2	power and about a reference extinction ratio comprising:
3	means for determining a bias current and a modulation current of a laser diode
4	drive current for a reference P ₁ power level and for a reference P ₀ power level;
5	means for determining a reference average power and a reference power variance
6	based upon the reference power levels P_1 and P_0 ; and
7	means for adjusting the bias current and the modulation current simultaneously
8	for maintaining about the reference average power and about the reference extinction
9	ratio.

1	12. The system of claim 11 wherein the means for determining a bias current and a
2	modulation current of a laser diode drive current for the reference P ₁ power level and for
3	the reference P ₀ power level further comprises:
4	means for determining the bias current corresponding to the reference P_0
5	power level;
6	means for determining the bias current corresponding to the reference P ₁
7	power level; and
8	means for determining the modulation current corresponding to the
9	reference P ₁ power level as the difference between the bias current for the
10	reference P ₁ power level and the bias current for the reference P ₀ power level.
1	13. The system of claim 11 wherein the means for determining a reference average
2	power and a reference power variance based upon the reference power levels P ₁ and P ₀
3	further comprises:
4	means for producing an optical power swing from reference P_0 to reference P_1
5	over a parameter estimation time period;
6	means for integrating measurement output power values received during the
7	parameter estimation time period resulting in a bias reference current representing the
8	reference average power; and
9	means for integrating absolute power values of the received measurement output
10	power values adjusted for nonlinear estimation during the parameter estimation time
11	period resulting in a modulation reference current representing the reference power
12	variance

- 1 14. The system of claim 13 wherein the means for integrating measurement output
- 2 power values received during the parameter estimation time period resulting in a bias
- 3 reference current representing the reference average power further comprises
- 4 responsive to being within the parameter estimation time period, means
- 5 for summing the current measurement with a feedback component including at least one
- 6 previous measurement value.
- 1 15. The system of claim 14 wherein the means for integrating absolute power values
- 2 of the received measurement output power values adjusted for nonlinear estimation
- during the parameter estimation time period resulting in a modulation reference current
- 4 representing the reference power variance further comprises
- 5 responsive to being within the parameter estimation time period, means
- 6 for summing the absolute value of the current measurement adjusted for nonlinear
- 7 estimation with a feedback component including at least one absolute value of a previous
- 8 measurement value adjusted for nonlinear estimation.
- 1 16. The system of claim 11 wherein the means for adjusting the bias current and the
- 2 modulation current simultaneously for maintaining about the reference average power
- 3 and about the reference extinction ratio further comprises
- 4 means for receiving a current measured output value;
- 5 means for determining a variation of the measured output power from the
- 6 reference average output power;
- means for integrating the variation of the measured output power value
- 8 with a first feedback component comprising at previously determined variation based on
- 9 a previously measured output power;

U	means for setting the bias current output based on the result of the
1	integration of the variation of the measured output power with a first feedback
12	component;
13	means for adjusting for nonlinear estimation of the measured output power
14	value;
15	means for determining a variation in an extinction ratio based upon the
16	measured output power value from a reference extinction ratio;
17	means for integrating the variation in the extinction ratio based upon the
8	measured output power value with a second feedback component comprising at
9	least one previously determined variation in the extinction ratio based on a
20	previously measured output power value; and
21	means for setting the modulation current output based on the result of the
22	integration of the variation in the extinction ratio based upon the measured output
23	power value with a second feedback component.
1	17. A computer-usable medium comprising instructions for causing a processor to
2	execute a method for maintaining a laser output signal about a reference average output
3	power and about a reference extinction ratio, the method comprising:
4	determining a bias current and a modulation current of a laser diode drive current
5	for a reference P ₁ power level and for a reference P ₀ power level;
6	determining a reference average power and a reference power variance based
7	, upon the reference power levels P_1 and P_0 , and
8	adjusting the bias current and the modulation current simultaneously for
9	maintaining about the reference average power and about the reference extinction ratio.