INDIAN STATISTICAL INSTITUTE

Semestral Assignment: Second Semester 2019-20

Course : B Stat

Subject : Measure Theoretic Probability

Date: 2nd July 2020 Marks:60 Duration: Submit by 11 a.m 15th July 2020

Before using any result clearly state that.

1. Let $\mathcal{C}=\{A\subseteq\mathbb{R}:A \text{ is countable or }\mathbb{R}\setminus A \text{ is countable}\}$ be the countable-cocountable σ -field on \mathbb{R} . Let $f:\mathbb{R}\to\mathbb{R}$ be a function. Show that $\forall B\in\mathbb{R}, f^{-1}(B)\in\mathcal{C}$ iff there exists a countable set $A\subseteq\mathbb{R}$ and $c\in\mathbb{R}$ such that $f(x)=c, \forall x\notin A$. [10]

2. Let $a_0, a_n, b_n, n \ge 1$ be real numbers such that the series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$

converges absolutely on a set of positive Lebesgue measure. In other words Lebesgue measure of $E=\{x\in[-\pi,\pi]:\sum_{n=1}^\infty|a_n||\cos nx|+\sum_{n=1}^\infty|b_n||\sin nx|<\infty\}$ is positive. Show that $\sum_{n=1}^\infty(|a_n|+|b_n|)<\infty$. (You would need the following fact: If $f:[-\pi,\pi]\to\mathbb{R}$ is a bounded measurable function then both $\int_{-\pi}^\pi f(x)\cos nx d\lambda(x)$ and $\int_{-\pi}^\pi f(x)\sin nx d\lambda(x)$ converge to zero as n goes to infinity. [15]

- 3. Let X be a random variable having distribution function F. Show that $\mathbb{E}(F(X) \ge 1/2)$ with equality iff F is continuous. [6+2+2=10]
- 4. Let X be a random variable such that $\mathbb{E}(X^2) < \infty$. Show that the characteristic function of X is twice differentiable. [10]
- 5. Let S_n be the group of permutations of n symbols and σ_n be a randomly chosen element. This means all elements of S_n are equally likely. Consider random variables $X_{j,n}$ for $j=1,\ldots,n$ defined as $X_{j,n}=\#\{i:1\leq i< j:\sigma_n(i)>\sigma_n(j)\}$ and $L_n=\sum_{j=1}^n X_{j,n}$. Show that
 - (a) $X_{1,n}, \ldots, X_{n,n}$ are independent.
 - (b) $\mathbb{E}(X_{j,n}) = \frac{j-1}{2}, \mathbb{V}(X_{j,n}) = \frac{j^2-1}{12}.$
 - (c) $\frac{L_n n^2/4}{n^{3/2}/6}$ converges in distribution to N(0, 1). [5+5+5=15]