Plan du cours

I.	Introduction	1
П.	Définition de la symétrie axiale	2
Ш.	Symétrique d'un point par rapport à une droite 1. Définition 2. Première méthode de construction à l'aide de l'équerre 3. Deuxième méthode de construction à l'aide du compas	3
IV.	Symétrique de figures usuelles 1. Symétrique d'une droite	5 5
V.	Propriétés de la symétrie axiale	8

I. Introduction

<u>Activité</u>

Voici plusieurs maisons paisibles au bord d'un lac très calme mais aux reflets étranges. Barrer les reflets qui ne sont pas réalistes et expliquer pourquoi ils ne conviennent pas.

Mes objectifs:

- \hookrightarrow Associer la symétrie axiale à la notion de pliage
- → Construire l'image d'une droite par une symétrie axiale
- → Connaître / utiliser les propriétés de conservation de la symétrie axiale.
- → Construire et compléter une figure symétrique par symétrie axiale ou possédant un axe de symétrie
- → Connaître et utiliser la définition de la médiatrice d'un segment

II. Définition de la symétrie axiale

→ Dans quelle figure observe-t-on une symétrie axiale? La figure 2

Définition

Lorsque **deux figures se superposent** par pliage suivant une droite, on dit que les deux figures sont symétriques par rapport à cette droite.

Cette droite est alors appelée un axe de symétrie.

Exemples:

La figure B_2 est le symétrique de la figure B_1 par rapport à la droite (d).

La figure F_2 est le symétrique de la figure F_1 par rapport à la droite (d).

III. Symétrique d'un point par rapport à une droite

1. Définition

<u>|||llustration</u>:

On remarque que E' est le symétrique du point E par rapport à la droite (d).

On remarque aussi que la droite (d) passe par le milieu du segment [EE'] et lui est perpendiculaire.

Définition

Deux points E et E' sont symétriques par rapport à une droite (d) si la droite (d) est la médiatrice du segment [EE'].

2. Première méthode de construction à l'aide de l'équerre

On trace la droite perpendiculaire à la droite (d) passant par A grâce à l'équerre et on y reporte la distance séparant A de (d) soit en utilisant la règle, soit le compas.

A vous de jouer! Tracer le symétrique des points M et S par rapport à la droite (d).

3. Deuxième méthode de construction à l'aide du compas

On reporte deux distances prises entre n'importe quel point de l'axe de symétrie et le point A.

A vous de jouer! Tracer le symétrique des points J et O par rapport à la droite (d).

Remarque : Lorsqu'un point est situé sur l'axe de symétrie, son symétrique est un point qui appartient à l'axe de symétrie.

Construire A' et B', les symétriques respectifs des points A et B par rapport à la droite (d). (d) A B (d) B (d)

IV. Symétrique de figures usuelles

1. Symétrique d'une droite

Propriété

Le symétrique d'une **droite** (d) par rapport à une droite (Δ) est une droite.

2. Symétrique d'un segment

Propriété

Le symétrique d'un **segment** par rapport à une droite (Δ) est un segment de même longueur.

3. Symétrique d'un cercle

Propriété

Le symétrique d'un **cercle** par rapport à une droite (Δ) est un cercle de même rayon.

En résumé :

En pratique, pour construire l'image d'une figure géométrique par une symétrie axiale, on construit l'image de ses points caractéristiques :

- pour un segment, ses extrémités,
- pour une droite, l'image de deux de ses points,
- pour un cercle, son centre et son rayons,
- pour un triangle, ses trois sommets,
- pour un polygone, ses sommets.

V. Propriétés de la symétrie axiale

Activité d'introduction

Dans la figure ci-dessous, les parties du haut et du bas sont symétriques par rapport à la droite (d). Les longueurs sont exprimées en cm.

- 1. Par rapport à la droite (d), les symétriques de chacun des points A, C, S et M sont, dans l'ordre, P, T, D et E.
- 2. Par rapport à la droite (d), les symétriques de chacun des segments [TP], [AE] et [EC] sont, dans l'ordre, [AC], [PM] et [MT]
- 3. Par rapport à la droite (d), les symétriques de chacun des angles $\widehat{TPM},\widehat{PMT}$ et \widehat{MTP} sont, dans l'ordre, \widehat{CAE} , \widehat{AEC} et \widehat{ECA}
- 4. Les angles \widehat{EAC} et \widehat{TPM} sont symétriques par rapport à la droite (d).

Or : $\widehat{TPM} = 60^{\circ}$.

Donc : $\widehat{EAC} = \widehat{TPM} = 60^{\circ}$.

5. Les angles \widehat{MTP} et \widehat{ECA} sont symétriques par rapport à la droite (d).

Or : $\widehat{ECA} = 30$ °

Donc : $\widehat{MTP} = \widehat{ECA} = 30^{\circ}$.

6. Les segments [MT] et EC sont symétriques par rapport à la droite (d).

Or : EC = 4

Donc: MT = EC = 4

7. Les segments [AE] et PM sont symétriques par rapport à la droite (d).

Or : PM = 2,3

Donc : AE = PM = 2.3

→ Construire l'image d'une figure par une symétrie axiale revient à "décalquer plier" cette figure par rapport à une droite donnée. Une telle construction n'entraîne pas de déformation ni de changement de mesure quel-quelle soit.

Propriété

Dans une symétrie axiale, les longueurs, les angles, l'alignement des points, le parallélisme, et les aires sont conservés.