$$\frac{1}{2} \int_{-\infty}^{\infty} d^{2} w d$$

Midterm 3 Lecture Review Activity, Math 1554

1. Indicate **true** if the statement is true, otherwise, indicate **false**.

 $(0, y_1), (1, y_2), (2, y_3)$ is unique for any values y_1, y_2, y_3 .

	true	false	
a) If S is a two-dimensional subspace of \mathbb{R}^{50} , then the dimension of S^{\perp} is 48.	\bigotimes	0	
 b) An eigenspace is a subspace spanned by a single eigenvector. c) The n × n zero matrix can be diagonalized. 	0	a single	
c) The $n \times n$ zero matrix can be diagonalized.	\otimes	O eigenobe	,
d) A least-squares line that best fits the data points	Ø	\circ	•

- 2. If possible, give an example of the following.
 - 2.1) A matrix, A, that is in echelon form, and dim $((RowA)^{\perp}) = 2$, dim $((Col A)^{\perp}) = 1$
 - 2.2) A singular 2×2 matrix whose eigenspace corresponding to eigenvalue $\lambda = 2$ is the line $x_1 = 2x_2$. The other eigenspace of the matrix is the x_2 axis.
 - 2.3) A subspace S, of \mathbb{R}^4 , that satisfies $\dim(S) = \dim(S^{\perp}) = 3$.
 - 2.4) A 2×3 matrix, A, that is in RREF. $(\operatorname{Row} A)^{\perp}$ is spanned by $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$.

Model: $y = \beta_0 + \beta_1 \chi$ Data: (0, y1) (1, y2) (2, y3) $\begin{cases} y_1 = \beta_0 + \beta_1 - 0 \\ y_2 = \beta_0 + \beta_1 - 2 \\ y_3 = \beta_0 + \beta_1 - 2 \end{cases}$ $R_{\text{aw}}(A) = Col(A^{T})^{\perp} = Nul(A^{T})^{\top} = Nul(A)$ din (Row (A) 1) = 2 = dAn (NullAI) pivot Nonpivot = # of Non-pivot $\int_{A} \int_{A} \int_{A$

- 3. Circle **possible** if the set of conditions are create a situation that is possible, otherwise, circle **impossible**. For the situations that are possible give an example.
 - 3.1) A is $n \times n$, $A\vec{x} = A\vec{y}$ for a particular $\vec{x} \neq \vec{y}$, \vec{x} and \vec{y} are in \mathbb{R}^n , and dim((Row A) $^{\perp}$) $\neq 0$.

possible impossible

3.2) A is $n \times n$, $\lambda \in \mathbb{R}$ is an eigenvalue of A, and $\dim((\operatorname{Col}(A - \lambda I))^{\perp}) = 0$.

possible

impossible

3.3) $\operatorname{proj}_{\vec{v}}\vec{u} = \operatorname{proj}_{\vec{u}}\vec{v}, \ \vec{v} \neq \vec{u}, \ \text{and} \ \vec{u} \neq \vec{0}, \ \vec{v} \neq \vec{0}.$

possible

impossible

4. Consider the matrix A.

$$A = \begin{pmatrix} 1 & -3 & 0 & 2 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Construct a basis for the following subspaces and state the dimension of each space.

- $4.1) (\operatorname{Row} A)^{\perp}$
- 4.2) Col A
- $4.3) (\operatorname{Col} A)^{\perp}$

AE Rmxn

 $Col(A)^{\perp} = Nul(A^{\dagger})$ $Nul(A)^{\perp} = Col(A^{\dagger})$ $Row(A) = Col(A^{\dagger})$ dim(Row(A)) = dim(Col(A)) dim(Nul(A)) + dm(Col(A)) = M

 $din(w) + din(w^{\perp}) = n$ with \mathbb{R}^n