Note del corso di Analisi Matematica 1

Gabriel Antonio Videtta

31 marzo 2023

Teoria sulle derivate

Definizione. Sia $f: X \subseteq \mathbb{R} \to \mathbb{R}$. Si definisce allora **derivata** di f in $\overline{x} \in X$ punto di accumulazione, se esiste, il seguente limite:

$$f'(\overline{x}) = \lim_{h \to 0} \frac{f(\overline{x} + h) - f(\overline{x})}{h} = \lim_{x \to \overline{x}} \frac{f(x) - f(\overline{x})}{x - \overline{x}}.$$

Si definisce anche $f':D\subseteq X\to\mathbb{R}$ come la funzione derivata, la quale associa ogni punto in cui la derivata di f esiste a tale derivata, dove D è proprio l'insieme dei punti in cui questa esiste.

Definizione. $\overline{x} \in X$ si dice **derivabile** se e solo se $f'(\overline{x})$ esiste ed è finito.

Osservazione.

- ightharpoonup L'insieme D può essere vuoto.
- ▶ Si definisce $f^{(n)}(\overline{x})$ come la derivata n-esima di f in \overline{x} .
- ▶ Si definisce $f^{(0)}(x) = f(x)$.
- ▶ L'operazione di derivata è un operatore lineare.
- ▶ Si può definire la derivata sinistra e destra.

Definizione. Si dice che $f: X \to \mathbb{R}$ è derivabile se è derivabile in ogni suo punto.

Definizione. Si dice che $f \in \mathcal{C}^1$ se è derivabile e la sua funzione derivata è continua. In generale, si dice che $f \in \mathcal{C}^n$ se è derivabile n volte e ogni sua derivata, fino alla n-esima, è continua. Si pone $f \in \mathcal{C}^{\infty}$ se f è derivabile per un numero arbitrario di volte e ogni sua derivata è continua.

Proposizione. Sia $f: X \to \mathbb{R}$ e sia $\overline{x} \in X$ un punto di accumulazione di X. Allora:

(i)
$$f$$
 derivabile in $\overline{x} \implies f(\overline{x} + h) = f(\overline{x}) + f'(\overline{x})h + o(h)$.

(ii) Se esiste a tale che $f(\overline{x} + h) = f(\overline{x}) + ah + o(h)$, allora f è derivabile in \overline{x} e $f'(\overline{x}) = a$.

Dimostrazione. Se f è derivabile in \overline{x} , allora $\lim_{h\to 0} \frac{f(\overline{x}+h)-f(\overline{x})-f'(\overline{x})h}{h} = \lim_{h\to 0} \frac{f(\overline{x}+h)-f(\overline{x})}{h} - f'(\overline{x}) = 0$, da cui la prima tesi.

Inoltre, se esiste a come nelle ipotesi, $\lim_{h\to 0} \frac{f(\overline{x}+h)-f(\overline{x})}{h} = \lim_{h\to 0} \frac{ah+o(h)}{h} = 0$, quindi f è derivabile in \overline{x} e $f'(\overline{x}) = a$.

Corollario. Se f è derivabile in \overline{x} , allora è anche continua in \overline{x} .

Dimostrazione. Infatti, poiché $f(x) = f(\overline{x}) + f'(\overline{x})(x - \overline{x}) + o(x - \overline{x})$, $\lim_{x \to \overline{x}} f(x) = f(\overline{x})$, e quindi f è continua in \overline{x} .

Proposizione. Siano $f_1, f_2: X \to \mathbb{R}$ entrambe derivabili in \overline{x} . Allora:

- (i) $(f_1 + f_2)'(\overline{x}) = f_1'(\overline{x}) + f_2'(\overline{x}),$
- (ii) $(f_1f_2)'(\overline{x})f_1(\overline{x})f_2'(\overline{x}) + f_1'(\overline{x})f_2(\overline{x})$.

 $\begin{array}{ll} Dimostrazione. & \text{(i) } \lim_{h \to 0} \frac{(f_1 + f_2)'(\overline{x} + h) - (f_1 + f_2)'(\overline{x})(\overline{x})}{h} \\ \lim_{h \to 0} \frac{f_1(x + h) - f_1(x)}{h} + \lim_{h \to 0} \frac{f_2(x + h) - f_2(x)}{h} = f_1'(\overline{x}) + f_2'(\overline{x}). \end{array}$

(ii) Poiché f_1 ed f_2 sono derivabili in \overline{x} , $f_1(\overline{x}+h) = f_1(\overline{x}) + f'_1(\overline{x})h + o(h)$ e $f_2(\overline{x}+h) = f_2(\overline{x}) + f'_2(\overline{x})h + o(h)$, da cui $(f_1f_2)(\overline{x}+h) = (f_1f_2)(\overline{x}) + (f_1f'_2(\overline{x}) + f'_1(\overline{x})f_2(\overline{x}))h + o(h) \implies (f_1f_2)'(\overline{x}) = (f_1f'_2(\overline{x}) + f'_1(\overline{x})f_2(\overline{x}).$

Proposizione. Siano $f: X \to Y \in g: Y \to \mathbb{R}$, con f derivabile in \overline{x} e g tale che sia derivabile in $\overline{y} = f(\overline{x})$. Allora $g \circ f$ è derivabile in \overline{x} e $(g \circ f)'(\overline{x}) = f'(\overline{x})g'(\overline{y})$.

Dimostrazione. Vale che $f(\overline{x}+h) = \overline{y} + f'(\overline{x})h + o(h)$, e quindi che $g(f(\overline{x}+h)) = g(\overline{y}+f'(\overline{x})h+o(h))$. In particolare, $g(\overline{y}+h) = g(\overline{y})+g'(\overline{y})h+o(h)$, e quindi $g(f(\overline{x}+h)) = g(\overline{y})+g'(\overline{y})(f'(\overline{x})h+o(h))+o(f'(\overline{x})h+o(h)) = g(\overline{y})+g'(\overline{y})+g'(\overline{y})f'(\overline{x})h+o(h) \implies (g\circ f)'(\overline{x}) = g'(\overline{y})f'(\overline{x})$.

Proposizione. Sia $f: X \to Y$ con inversa $g: Y \to X$. Sia f derivabile in \overline{x} con $f'(\overline{x}) \neq 0$. Sia g continua in $\overline{y} = f(\overline{x})$. Allora:

- (i) \overline{y} è un punto di accumulazione di Y,
- (ii) g è derivabile in \overline{y} ,

(iii)
$$g'(\overline{y}) = \frac{1}{f'(\overline{x})}$$
.

Dimostrazione.

- (i) Poichè f è derivabile in \overline{x} , f è continua in \overline{x} . Quindi per ogni intorno I di \overline{y} , esiste un intorno J di \overline{x} tale per cui $f(I \cap X \setminus \{\overline{x}\}) \subseteq J$, e poiché $I \cap X \setminus \{\overline{x}\}$ non è mai vuoto perché \overline{x} è un punto di accumulazione di X a causa della derivabilità di f in \overline{x} , J contiene in particolare un immagine di f in esso, e quindi un punto di Y; inoltre, tale punto è diverso da \overline{y} dacché f è iniettiva. Quindi \overline{y} è un punto di accumulazione.
- (ii) e (iii) Vale¹ che $\overline{y} + k = f(g(\overline{y} + k)) = f(g(\overline{y}) + (\underbrace{g(\overline{y} + k) g(\overline{y})}_h)) = f(\overline{x} + h) = f(\overline{x}) + f'(\overline{x})h + o(h) = \overline{y} + f'(\overline{x})h + o(h)$. Quindi $k = f'(\overline{x})h + o(h)$. Dal momento che $f'(\overline{x}) \neq 0$ per ipotesi, $h \sim \frac{k}{f'(\overline{x})}$. Quindi $\lim_{k \to 0} \frac{g(\overline{y} + k) g(\overline{y})}{k} = \lim_{k \to 0} \frac{h}{k} = \frac{1}{f'(\overline{x})}$. Quindi la derivata esiste ed è proprio come desiderata nella tesi.

Esempio. La continuità è necessaria nelle scorse ipotesi. Si può costruire infatti una funzione del tipo:

$$f(x) = \begin{cases} x & \text{se } x \ge 0, \\ -(x+2) & \text{se } -2 < x \le -1. \end{cases}$$

dove f'(0) = 1, f è invertibile, ma la derivata di g in 0 non esiste $(D_+g(0) = 1)$, ma $D_-g(0) = +\infty$).

Teorema. (di Fermat) Sia I intervallo, $f: I \to \mathbb{R}$, \overline{x} interno a I punto di massimo o minimo locale con f derivabile in \overline{x} , allora $f'(\overline{x}) = 0$.

¹Nel dire che $h \to 0$, si è usato che g è continua in \overline{y} .