#### Практическое занятие №34

# Построение графиков степенных, показательных, логарифмических функций

Степенная функция. Степенная функция — это функция вида  $y = x^{\alpha}$  где  $\alpha$  — действительное число. Она определена при всех значениях x, если  $\alpha$  — натуральное число; при всех x, не равных нулю, если  $\alpha$  — целое отрицательное число, и при всех x > 0, если  $\alpha$  — произвольное действительное число.



Остановимся на построении квадратичной функции. Графиком квадратичной функции является парабола.

Первое, что необходимо сделать – найти вершину параболы  $(x_0; y_0)$ 

Проводим ось симметрии параболы  $x=x_0$ 

Смотрим куда направлены ветви параболы (вверх или вниз)

Находим точки пересечения с осями координат. Не всегда можно найти рациональные координаты с осью ОХ. Если это невозможно (значение дискриминанта является иррациональным числом) используйте другие точки, например:

1. Построй график функции  $y = x^2 - 2x - 1$ .

$$x_0 = \frac{-b}{2a} = \frac{2}{2} = 1;$$
  
 $y_0 = 1^2 - 2 \cdot 1 - 1 = -2.$ 

Ветви параболы направлены вверх, т. к.

$$a = 1 > 0$$
.

Парабола пересекает ось Oy в точке (0; -1).

| $\boldsymbol{x}$ | 2  | 3 | 4 |
|------------------|----|---|---|
| $\boldsymbol{y}$ | -1 | 2 | 7 |

Симметрично строим левую сторону параболы



2. Построй график функции  $y = -2x^2 + 4x$ .

В данном случае легко вычислить корни:  $-2x^2 + 4x = 0$ ;

$$-2x^{2}+4x=0;$$

$$x(-2x+4)=0;$$

$$x = 0$$
, unu  $-2x + 4 = 0$ ;

$$x=2;$$

$$x_1 = 0; \quad x_2 = 2.$$

Координаты вершины параболы:

$$x_0 = \frac{-4}{2 \cdot (-2)} = 1;$$

$$y_0 = -2 \cdot 1^2 + 4 \cdot 1 = 2.$$

В таблице достаточно одного значения: если  $oldsymbol{x}=\mathbf{3}$ , то

$$y = -2 \cdot (3)^2 + 4 \cdot 3 = -18 + 12 = -6.$$

Симметрично, если  $oldsymbol{x} = -1$ , то  $oldsymbol{y} = -6$ 



График степенной функции зависит от показателя степени. Рассмотрим следующие графики



#### Показательная функция

Функция вида  $y = a^x$ , где a > 0,  $a \ne 1$   $y = a^x$ , где a > 1



$$y = \left(\frac{1}{a}\right)^x$$
, где  $0 < a < 1$ 



Сравните поведение этих двух функций на одном графике.



#### Логарифмическая функция

Логарифмической функцией нназывается функция вида  $y = log_a x$ , где a > 0,  $a \ne 1$ 

$$a>1, a=3$$



$$\log_3 \frac{1}{3} = \log_3 3^{-1} = -1;$$

$$\log_3 \frac{1}{9} = \log_3 3^{-2} = -2;$$

$$\log_3 1 = \log_3 3^0 = 0;$$

$$\log_3 3 = 1;$$

$$\log_3 9 = \log_3 3^2 = 2;$$

$$\log_3 27 = \log_3 3^3 = 3;$$

| 3 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 | $y = \log y$ | 3 X |
|-------------------------------------------|--------------|-----|
| -1 $-2$ $3$                               | 9            | 27  |

| х | $\frac{1}{3}$ | 1<br>9 | 1 | 3 | 9 | 27 |
|---|---------------|--------|---|---|---|----|
| у | -1            | -2     | 0 | 1 | 2 | 3  |

- 1.  $D(f)=(0;+\infty)$ .
- 2.  $E(f)=(-\infty; +\infty)$ .
- 3. Не является ни чётной, ни нечётной.
- 4. Возрастает на (0; +∞).
- 5. Не ограничена сверху, не ограничена снизу.
- 6. Не имеет ни наибольшего, ни наименьшего значений.
- 7. Непрерывна.
- 8. Выпукла вверх.

$$0 < a < 1, a = \frac{1}{3}$$

$$y = \log_{\frac{1}{3}} x$$



| Х | 9  | 3  | 1 | $\frac{1}{3}$ | 1<br>9 |
|---|----|----|---|---------------|--------|
| у | -2 | -1 | 0 | 1             | 2      |

- 1.  $D(f)=(0;+\infty)$ .
- 2.  $E(f)=(-\infty;+\infty)$ .
- 3. Не является ни чётной, ни нечётной.
- 4. Убывает на (0; +∞).
- 5. Не ограничена сверху, не ограничена снизу.
- 6. Не имеет ни наибольшего, ни наименьшего значений.
- 7. Непрерывна.
- 8. Выпукла вниз.

Показательная и логарифмические функции взаимнообратные. Рассмотрим симметрию графиков этих функций относительно оси симметрии у = x



### Использование графиков функций для решения уравнений

Пример 1. Решите уравнение  $3^x = 9$ .



Решением уравнения является точка пересечения графиков функций.

## Пример 2. Решите уравнение $5^x = \frac{1}{25}$ .

#### Решение.

$$T(-2;\frac{1}{25});$$

$$x = -2$$
;

**Ответ**: x = -2.



Задачи для самостоятельного решения:

Постройте график функции:  $y = 2^x$ 

$$y = \log_4 x$$

$$y = \left(\frac{1}{4}\right)^{X}$$

Решить графически уравнение:

$$4^{x} = 5 - x$$

$$3^{x} = 4 - x.$$

Глава 7 «Графики и функции», учебник Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учеб. для студ. учреждений сред.проф. образования/ М.И. Башмаков. — 4-е изд.,стер. — М. : ИЦ «Академия», 2017, - 256 с.

В случае отсутствия печатного издания, Вы можете обратиться к Электроннобиблиотечной системе «Академия»

Список использованных интернет-ресурсов:

- 1. https://life-prog.ru/
- 2. <a href="https://www.yaklass.ru/">https://www.yaklass.ru/</a>
- 3. <a href="https://23.edu-reg.ru/">https://23.edu-reg.ru/</a>