点集拓扑作业 (15)

Problem 1 设 (Xi, di), $\forall i \in \mathbb{N}_+$ 为一列紧致度量空间, 证明乘积空间 $\prod X_i$ 紧致. 提示: 证明 $\prod X_i$ 在诱导乘积拓扑的度量下列紧.

首先, 度量 $d(x,y)=\sum\limits_{n=1}^{+\infty}\dfrac{\overline{d_n}(x_n,y_n)}{2^n}$ 诱导乘积拓扑, 其中 $\overline{d_n}(x_n,y_n)=\min\{d_n(x_n,y_n),1\}.$

取序列 $(x^{(n)})_{n=1}^{\infty}$,其中 $x^{(n)}=(x_1^{(n)},x_2^{(n)},\ldots)\in\prod X_i$. 因为 X_1 紧致,所以存在子序列下标为 $n_k^{(1)}$,使得 $x_k^{(n_k^{(1)})}$ 收敛于 $a_1\in X_1$. 归纳地, $\forall i\geq 2$,从子序列 $n_k^{(i-1)}$ 选子序列 $n_k^{(i)}$,使得 $x_k^{(n_k^{(i)})}$ 收敛于 $a_i\in X_i$.

取对角线子序列 $n_k=n_k^{(k)}, orall i\in\mathbb{N}_+, k\geq i, n_k\in n_m^{(i)},$ 故 $\lim_{k\to\infty}x_i^{(n_k)}=a_i.$

令 $a=(a_i)\in\prod X_i$. orall arepsilon>0,取 N 满足 $\sum_{i=N+1}^\infty rac{1}{2^i}<rac{arepsilon}{2}$. 对每个 $i\leq N$,取 K_i 使 $k>K_i$, $d_i(x_i^{(n_k)},a_i)<rac{arepsilon}{2N}$. 令 $K=\max_{1\leq i\leq N}K_i$,则当 k>K 时:

$$egin{aligned} \sum_{n=1}^{+\infty} d(x^{(n_k)},a) &= \sum_{i=N+1}^{\infty} rac{1}{2^i} \min(d_i(x_i^{(n_k)},a_i),1) + \sum_{i=1}^{N} rac{1}{2^i} \min(d_i(x_i^{(n_k)},a_i),1) \ &\leq \sum_{i=1}^{N} rac{arepsilon}{2N} + \sum_{i=N+1}^{\infty} rac{1}{2^i} < arepsilon. \end{aligned}$$

因此 $\prod X_i$ 列紧, 进而紧致.

Problem 2 记 X 至少 2 个元素, 赋予平凡拓扑, Y 为任意拓扑空间. 证明 $X \times Y$ 中任意非空子集 A 的极限点集非空.

假设 A 无极限点, 则 A 为闭集. 记 $B = \pi_Y(A) \subseteq Y$. 分情况讨论:

若 |B|=1, 则设 $B=\{y_0\}, A\subseteq X\times\{y_a\}$. 子空间 $X\times\{y_0\}$ 同胚于 X, 故 $A=X\times\{y_0\}$, 因为 A 闭且非空. 但 $|X|\geq 2$, 取 $p=(x_1,y_0)\in A$, $\forall p$ 的开邻域 $X\times V$, 都有 $p\neq (x_2,y_0)\in A$, 于是 $A\cap (X\times V)-\{p\}\neq \phi, p\in A'$, 矛盾!

若 $|B| \geq 2$,任取 $y_1, y_2 \in B, y_1 \neq y_2$.若 $\exists y \in B$ 使 $A_y = \{x \in X \mid (x,y) \in A\} \neq X$,则取 $x' \notin A_y, p = (x',y) \notin A$.取 $a \in A$ 使 $\pi_Y(a) = y$,则 $x_a \neq x'$,故 $a \neq p$.对 p 的任意开邻域 $X \times V$,有 $a \in X \times V$ 且 $a \in A - \{p\}$,故 p 为 A 的极限点,矛盾!若 $\forall y \in B, A_y = X$,则 $A = X \times B$.取 $q = (x_q, y_q) \in A$.我们知道, $\exists V_{y_q} \subseteq Y$,是开集且 $V_{y_q} \cap B = \{y_q\}$.则 $X \times V_{y_q}$ 为 q 的开邻域,且 $(X \times V_{y_q}) \cap A = X \times \{y_q\}$.由于 $|X| \geq 2$, $\exists x' \neq x_q, (x', y_q) \in A - \{q\}$.故 q 为极限点,矛盾!因此命题成立.

Problem 3 记 S_{Ω} 是最小的不可数良序集, 证明在序拓扑下它列紧.