MI 201 Groupe A1 TD 2 : Continuité printemps 2014

Exercice 1: Question de cours

- 1. Définition avec ε de $\lim_{x\to a} f(x) = l$ où $a \in \mathbb{R}, l \in \mathbb{R}$. Idem avec $a = +\infty, l \in \mathbb{R}$ et $a \in \mathbb{R}, l = -\infty$.
- 2. Définition de la continuité de f en un point a.
- 3. Caractérisation séquentielle de la continuité et démontrer l'équivalence avec la définition précédente.
- 4. Énoncer le théorème dse valeurs intermédiaires.
- 5. Définition de l'injectivité d'une fonction.
- 6. Énoncer le théorème des extréma d'une fonction continue sur un segment.
- 7. Définition de la continuité uniforme et énoncé du théorème de Heine.

Exercice 2: Relation fonctionnelle

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue sur \mathbb{R} et telle que $\forall x \in \mathbb{R}$, f(2x) = f(x). Montrer que f est constante sur \mathbb{R} .

Exercice 3: Fonction indicatrice

- 1. Montrer que la fonction indicatrice $\chi_{\mathbb{Q}}$ définie sur \mathbb{R} par $\chi_{\mathbb{Q}}(x) = \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ sinon} \end{cases}$ est discontinue en tout point de \mathbb{R} .
- 2. Déterminer la nature des points de discontinuité de la fonction f définie sur \mathbb{R} par $f(x) = x \chi_{\mathbb{Q}}(x)$.

Exercice 4 : Continuité d'une fonction

Étudier la continuité de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par : $f(x) = \begin{cases} 2x - x \ln(|x|) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

Exercice 5 : Continuité et densité

Montrer que deux fonctions réelles continues sur \mathbb{R} qui coïncident sur \mathbb{Q} coïncident sur \mathbb{R} .

Exercice 6 : Limites d'une fonction réelle

Déterminer les limites suivantes :

$$\lim_{x \to -\infty} \sqrt{x^2 + x + 1}, \quad \lim_{x \to -\infty} \frac{\sqrt{x^2 + x + 1}}{x}, \quad \lim_{x \to -\infty} (\sqrt{x^2 + x + 1}) + x), \quad \lim_{x \to 1} \frac{x - 1}{x - 5\sqrt{x} + 4};$$

$$\lim_{x \to 0} x \sin(\frac{1}{x}), \quad \lim_{x \to 0} \frac{\sin(x)}{\ln(x)}, \quad \lim_{x \to 0} \frac{1 - \cos(x)}{x^2}, \quad \lim_{x \to \frac{\pi}{4}} \frac{\sin(3(x - \frac{\pi}{4}))}{\cos(x) - \sin(x)}, \quad \lim_{x \to +\infty} \sqrt{x^2 + 5} - x.$$

Exercice 7: Point fixe avec monotonie

Soit $f:[0;1] \to [0;1]$ une fonction croissante. Montrer que f admet un point fixe. (On considérera $A:=\{x\in[0,1];f(x)\leq x\}$)

Exercice 8 : Continuité et voisinage [DM 2, 2012-2013]

1. Soient I un intervalle ouvert de \mathbb{R} et $f: I \to \mathbb{R}$. On suppose que f est continue en $x_0 \in I$ et que $f(x_0)$ est strictement positif. Montrer qu'il existe un intervalle ouvert J contenant x_0 tel que

$$\forall x \in I \cap J, \quad f(x) > 0.$$

2. En déduire que si g et h sont deux fonctions réelles sur I, continues en x_0 , telles que $g(x_0) \neq h(x_0)$, alors il existe un voisinage V de x_0 tel que

$$\forall x \in V, \quad g(x) \neq h(x).$$

Exercice 9 : continuité d'une restriction

Soit f à valeurs réelles définie sur le segment [a,b] (non réduit à un singleton) et J=[c,d] avec a < c < d < b. Les deux assertions suivantes sont elles équivalentes ?

- -(i): la restriction $f_{|J}$ de f au segment J est continue (en tant que fonction de J dans \mathbb{R});
- -(ii): la fonction $f:I\to\mathbb{R}$ est continue sur le segment J (si ce n'est pas le cas, donner un contre-exemple).

Exercice 10: Relation fonctionnelle

Pour commencer, soit f une fonction définie sur \mathbb{R} et à valeurs réelles telle que

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ f(x+y) = f(x) + f(y).$$

- 1. Calculer f(0).
- 2. Pour $p \in \mathbb{N}^*$ et pour $r \in \mathbb{Q}$, calculer f(p), f(1/p), f(r) en fonction de f(1).
- 3. On suppose de plus que f est continue sur \mathbb{R} . Montrer qu'il existe alors $a \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}, \ f(x) = ax.$$

4. En utilisant ce qui précède, déterminer toutes les fonctions $f:]0, \infty[\to \mathbb{R}$, continues sur $]0, +\infty[$ et telles que

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ f(xy) = f(x) + f(y)$$

(on pourra considérer pour ce faire la fonction $x \in \mathbb{R} \mapsto f(e^x)$).

5. Soit $q: \mathbb{R} \to \mathbb{R}$ une fonction continue sur \mathbb{R} telle que

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ q(xy) = x \ q(y) + y \ q(x).$$

- (a) Calculer g(1), puis g(-1), et en déduire que g est impaire (c'est-à-dire que g(x) = -g(-x) pour tout $x \in \mathbb{R}$).
- (b) Pour x > 0, on pose h(x) = g(x)/x.
 - Exprimer h(xy) en fonction de h(x) et de h(y);
 - en déduire l'expression de la fonction q.

Exercice 11 : Équation (1)

Montrer que l'équation $x^{17} = x^{11} + 1$ d'inconnue $x \in \mathbb{R}^+$ admet au moins une solution.

Exercice 12 : Racines carrées dans une équation de fonctions

Soient $f,g:I\to\mathbb{R}$ continues sur l'intervalle I et telles que $\forall x\in I, f(x)^2=g(x)^2\neq 0$. Montrer que f=g ou f=-g.

Exercice 13: Point fixe avec la continuité

Soient $a < b \in \mathbb{R}$, $f : [a; b] \to [a; b]$ continue. Montrer $\exists x_0 \in [a; b]$, $f(x_0) = x_0$.

Exercice 14 : Équation (2)

Soient p et q strictement positifs et $f:[a;b]\to\mathbb{R}$ continue sur [a,b]. En considérant la fonction réelle g définie sur [a,b] par

$$\forall x \in [a, b], \ g(x) = p f(a) + q f(b) - (p + q) f(x),$$

montrer qu'il existe au moins un point $c \in [a, b]$ tel que pf(a) + qf(b) = (p + q)f(c).

Exercice 15 : Équation avec la réciproque f^{-1}

On considère $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^5 + x - 1$.

- 1) Montrer que f est bijective.
- 2) Résoudre l'équation $f(x) = f^{-1}(x)$ d'inconnue $x \in \mathbb{R}$.

Exercice 16 : Continuité, injectivité et monotonie

On considère la fonction $g:\mathbb{R}\to\mathbb{R}$ définie par $g(x)=egin{cases} x ext{ si } x\in\mathbb{Q} \\ 1-x ext{ si } x\notin\mathbb{Q} \end{cases}$.

- 1. Montrer que $g([0,1]) \subset [0,1]$.
- 2. Montrer que $g:[0,1] \to [0,1)$ est une application bijective.
- 3. Montrer que g n'est pas monotone sur [0,1] et que g n'est pas non plus continue sur [0,1].

Exercice 17 : Suite $u_{n+1} = f(u_n)$

On considère la fonction $f:[0,\infty]\to\mathbb{R}$ définie par

$$\forall x \ge 0, \ f(x) = \frac{x^2 + x}{x^2 + 1}.$$

- 1. Montrer que $f(]0,1[) \subset]0,1[$ et que $f(]1,+\infty[) \subset]1,+\infty[$.
- 2. Montrer que l'on peut bien définir une suite $(x_n)_{n\geq 0}$ de points de]0,1[par la condition initiale $x_0\in]0,1[$ et la relation de récurrence

$$x_{n+1} = f(x_n) \quad \forall \, n \ge 0.$$

3. Montrer que la suite $(x_n)_{n\geq 0}$ ainsi définie est une suite croissante. En déduire qu'elle est convergente et trouver sa limite.

Exercice 18: Uniforme continuité [DM 1, 2011-2012]

- 1. Soit $f(x) = \sqrt{x}$ pour $x \in \mathbb{R}_+ = [0, +\infty[$. En utilisant la définition, démontrer la continuité de la fonction f sur le segment [0, a], a > 0. *Indication*: étudier la continuité de f au voisinage de chaque point x_0 de I_a (considérer les deux cas $x_0 = 0$ et $x_0 > 0$).
- 2. La fonction f est-elle uniformément continue sur le segment I_a ? Énoncer le résultat du cours correspondant.
- 3. La fonction f est-elle uniformément continue sur \mathbb{R}_+ ?
- 4. Donner un exemple d'une fonction g, continue sur \mathbb{R}_+ , uniformément continue sur tout segment I_a , a > 0, mais qui ne soit pas uniformément continue sur \mathbb{R}_+ tout entier.

3

Exercice 19 : Continuité et limites infinies. Application aux polynômes

Soit f une fonction continue sur \mathbb{R} et à valeurs réelles. Montrer que si $\lim_{x\to -\infty} f(x) = -\infty$ et $\lim_{x\to +\infty} f(x) = +\infty$, alors il existe au moins un point $x_0 \in \mathbb{R}$ tel que $f(x_0) = 0$.

Soit P un polynôme à coefficients réels de degré impair; montrer que P admet au moins une racine réelle.

Exercice 20 : Continuité et limites infinies (2)

Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = +\infty$. Montrer qu'il existe $x_0 \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}, f(x) \geq f(x_0)$.

Exercice 21 : Extréma de fonctions continues

Montrer qu'une fonction $f:[0,\infty[\to [0,\infty[$, continue sur $[0,+\infty[$ telle que $\lim_{x\to +\infty}=0$ est bornée sur $[0,+\infty[$ et atteint sa borne supérieure $\sup_{[0,\infty[}f.$ Atteint-elle sa borne inférieure sur $[0,\infty[$? Si ce n'est pas le cas, exhiber un contre-exemple.

Exercice 22 : Extréma de fonctions continues périodiques

Montrer qu'une fonction $f: \mathbb{R} \to \mathbb{R}$, continue sur \mathbb{R} et périodique (c'est-à-dire telle qu'il existe T > 0 avec f(x+T) = f(x) pour tout $x \in \mathbb{R}$) est bornée sur \mathbb{R} et atteint ses bornes.

Exercice 23: Extréma de fonctions continues

Soit $f:[0,\infty[\to[0,+\infty[$ une fonction continue sur $]0,+\infty[$ telle que $\forall\,x\in]0,+\infty[,\ f(x)< x.$

- 1. Montrer que f(0) = 0.
- 2. Montrer que, quelque soient les réels a et b tels que 0 < a < b, il existe $M_{a,b} \in [0,1[$ tel que, pour tout $x \in [a,b], f(x) \le M_{a,b} x$.

Exercice 24 : Extréma de fonctions continues réelles

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = \frac{\cos x}{1 + x^2}$.

- 1. Montrer que f est une fonction continue majorée et minorée.
- 2. Déterminer $\sup_{x \in \mathbb{R}} f(x)$. Ces bornes sont-elles atteintes ?

Vrai-Faux

Soit f continue sur \mathbb{R} . Dites si les assertions suivantes sont vraies ou fausses (contre-exemple)?

- 1. l'image par f d'un intervalle ouvert de \mathbb{R} est encore un intervalle ouvert de \mathbb{R} ;
- 2. l'image par f d'un segment de \mathbb{R} est encore un segment de \mathbb{R} ;
- 3. l'image par f d'un sous-ensemble borné de \mathbb{R} est encore un sous-ensemble borné de \mathbb{R} ;
- 4. l'image <u>réciproque</u> par f d'un intervalle de \mathbb{R} est encore un intervalle de \mathbb{R} .

Exemples et contre-exemples

Donner un exemple de fonction vérifiant les énoncés suivants :

- 1. définie sur]0; 1[et bornée.
- 2. continue, croissante et non bijective.
- 3. continue telle que $\lim_{x\to +\infty} f(x)=0, \lim_{x\to -\infty} f(x)=-\infty$ et non majorée.