理论力学

吴 佰 建

土木工程学院工程力学系

Email: <u>bawu@seu.edu.cn</u>

静力学

§ 2.3 约束与约束反力

自由体与非自由体

约束: 阻碍物体运动的限制物体

约束力:约束施加于被约束物体的力 约束力是被动力

主动力:荷载 如:重力、水压力、风力

确定约束力的原则: 约束力的方向总是与约束所能阻止物体的运动或运动趋势方向相反。

1、柔索约束

方向:沿着柔索的中心线且背离被约束物体

作用点:接触点

方向已知,大小未知,只有一个未知量

方向:接触面的公法线并指向被约束物体

作用点:接触点 方向已知,大小未知,只有一个未知量

3、铰链约束

约束力的大小和方向都随主动力而改变 大小、方向都未知,两个未知量

表示为两个互相垂直的未知力,其指向可以假定

4、固定铰链支座

约束力的大小和方向都随主动力而改变 大小、方向都未知,两个未知量

表示为两个互相垂直的未知力,其指向可以假定

5、辊轴约束

方向:垂直于支承面,指向可假定

作用点:通过销钉中心

方向已知,大小未知,只有一个未知量

例简支梁:

6、链杆约束

链杆: 两端各以铰链与不同物体分别连接而且自重不计的直杆。

方向: 沿着链杆中心线, 指向可以假定

作用点: 铰链处

方向已知,大小未知,只有一个未知量

7、固定端约束

沿x、y坐标轴的两个分力、和一个约束力偶。

未知量个数: 3

8、球铰

三个相互正交的分力来表示 未知量个数: 3

9、轴承

(1)普通轴承

(2)止推轴承

§ 2.4 物体的受力分析与受力图

受力分析:分析物体所受的所有主动力和约束力。

分离体:

将物体系统中某个物体解除所受约束从系统中分离出来。 受力图:

画出受力分析对象上所有的主动力和约束力称为该物体的 受力图

受力分析步骤:

- 1. 取研究对象
- 2. 照画主动力
- 3. 按约束性质画约束力
- 4. 满足公理条件,按公理及推论简化力

[例] 试分析杆AB的受力(不计杆重)。

画物体受力图主要步骤为:

- ① 选研究对象;

② 先画主动力; 解: 1) [杆 AB] ③ 后画约束反力。

主动力P

- 3) B点的约束反力 F_R
- 4) A点的约束力可表示为两个分力 \bar{F}_{Ax} , \bar{F}_{Av} 。
- 5) A点的约束力可以进行简化 $\overrightarrow{F_A}$

根据三力平衡汇交原理确定A的反力

分别画出图中球体和杆AB 的受力图。

解: [球体]

画物体受力图主要步骤为:

- ① 选研究对象;
- ② 先画主动力;
- ③ 后画约束反力;
- ④ 根据公理简化力。

例: 受力分析和受力图(各杆均不计自重)

注意二力构件

例: A、B处是固定支座,C处为铰链,ABC是三鉸拱

结构,作各杆受力图。

20

分别画出图中整 体、杆AB和BC的受力 图(各杆不计自重)。

注意分布力处理

例: 支架由杆AB, CD, AO组成, AB杆内 光滑槽作用E销钉,作各杆受力图。

例: 画出滑轮、杆CD、杆AB和整体受力图

Ø

分别画出图中滑轮B、杆AC和DC、物体H的受力图。

画物体受力图主要步骤为:

- ① 选研究对象;
- ② 先画上主动力;
- ③ 根据约束类型,画出约束反力;
- ④ 根据公理简化力。

注意:

- 1、分离研究对象——不带约束;
- 2、给出力矢量方位、名称;
- 3、相连两分离体的相互作用力必须满足作用与反作用力定理;
- 4、善于判别"二力构件";
- 5、只画分离体的外力,不画内力。

TAKE-HOME MESSAGE

- 1、约束及约束力的概念、主动力与约束力;
- 2、受力分析要严谨。

附录: 其他受力分析举例

例: 做各杆受力图

例: 作水管支架受力图。

例: 重为G = 980 N的重物悬挂在滑轮支架系统上,如图所示。设滑轮的中心B与支架ABC相连接,AB为直杆,BC为曲杆,B为销钉。若不计滑轮与支架的自重,画出各构件的受力图。

例:构件如图所示,画出AC、CB以及整体受力图。

解题的关键及重点:物体的受力图!

1.不计自重 画各构件受力图

盟圍協図 不计杆与滑轮自重, 画各构件受力图。

练习:不计杆与滑轮重量,画各构件受力图。

第8 B处绳拉力可附任一构件上,宜附销钉上。

恩昂 若销钉附在轮B上,受力图有何变化?

多 此时B处受力形式变化如图

实质不变