Page 24, Exercise 16, 20

Exercise 16

Determine $7^{1000} \mod 6$.

Let a, b, k, $n \in \mathbb{Z}$ such that k > 0 and n > 0.

If $a \equiv b \mod n$, then $a^k \equiv b^k \mod n$

Base Case:

k = 1

 $a^1 \equiv b^1 \text{ holds true}$

Inductive Step:

Suppose: $a^k \equiv b^k \mod n$

 $\mathbf{a}^{k+1} \equiv \mathbf{a}^1 \mathbf{a}^k$

 $\mathbf{a}^1 \mathbf{a}^k \equiv \mathbf{a}^1 \mathbf{b}^k \mod \mathbf{n}$ by inductive hypothesis

 $\mathbf{a}^{k+1} \equiv \mathbf{b}^k \mathbf{b} \mod \mathbf{n}$ by base case

 $\mathbf{a}^{k+1} \equiv \mathbf{b}^{k+1} \mod \mathbf{n}$

Thus, $a^k = b^k \mod n$

Since $7 \equiv 1 \mod 6$

 $7^{1000} \ \equiv 1^{1000} \ \equiv 1 \bmod 6$

Determine $6^{1001} \mod 7$.

 $6^{1001} \mod 7 \equiv 6 * 6^{1000} \mod 7$

$$6^{1001} \mod 7 \equiv 6 * 6^{1000} \mod 7$$

 $\equiv 6 * (6^2)^{500} \mod 7$
 $\equiv 6 * (36)^{500} \mod 7$
 $\equiv 6 * (1)^{500} \mod 7$
 $\equiv 6 \mod 7$

Exercise 20

Let $p_1, p_2, ... p_n$, be prime numbers. Show that $p_1 * p_2 * ... p_n * p_{n+1}$ is not divisible by any of the n+1 primes.

We will prove this by contradiction.

Suppose there are finitely many primes which are the ones listed.

Then, consider $p_1 * p_2 * \dots p_n * p_{n+1}$.

This number is either composite or prime.

If it's prime, we just created a new prime, a contradiction.

If it's composite, that means it must be divisible by some prime.

By the Fundamental Theorem of Arithmetic, $\exists t \in \mathbb{Z}$ such that

 $p_1t = q = p_1 * p_2 * ... p_n * p_{n+1}$, which implies that $p_i \mid 1$ for $i \in \{1, 2, ... n\}$

This holds if and only if $p_i = 1$, a contradiction of the definition of a prime number.

Hence, there are infinitely many primes.