Solution du TD N° 2

Exercice N° 1

♦ $G_1=(\{a, *, +, (,)\}, \{E, T, F\}, E, \{E \rightarrow E+T/T, T \rightarrow T*F/F, F \rightarrow (E)/a\})$

 G_1 est récursive à gauche car $E \rightarrow E+T/T$ et $T \rightarrow T*F/F$ sont récursives à gauche.

$$E \rightarrow E+T/T \Leftrightarrow E \rightarrow TE', E' \rightarrow +TE'/\epsilon$$

$$T \rightarrow T^*F/F \Leftrightarrow T \rightarrow FT', T' \rightarrow *FT'/\epsilon$$

D'où G'1=({a, *, +, (,)}, {E, E', T, T', F}, E, {
$$E \rightarrow TE'$$
, $E' \rightarrow +TE'/\epsilon$, $T \rightarrow FT'$, $T' \rightarrow *FT'/\epsilon$, $F \rightarrow (E) / a$ })

 \bullet G₂=({0, 1}, {S}, S, {S \rightarrow S00 / S01 / S10 / S11 / 00 / 01 / 10 / 11 })

 G_2 est récursive à gauche car $S \rightarrow S00 / S01 / S10 / S11 / 00 / 01 / 10 / 11 est récursive à gauche.$

S
$$\rightarrow$$
 S00 / S01 / S10 / S11 / 00 / 01 / 10 / 11 \Leftrightarrow S \rightarrow 00S'/01S'/10S'/11S' , S' \rightarrow 00S'/01S'/11S'/ ϵ

Néanmoins la grammaire G1 est devient non factorisées à gauche

$$S \rightarrow 00S'/01S'/10S'/11S' \ , \ S' \rightarrow 00S'/01S'/10S'/11S'/\epsilon \\ \Leftrightarrow \ S \rightarrow 0S''/1S'' \ , \ S'' \rightarrow 0S'/1S'' \ , \ S' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S'' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S'' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S'' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S'' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S'' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S'' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S'' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S'' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S'' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S'' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S' \rightarrow 0S''/1S''/\epsilon \\ \Rightarrow \ S \rightarrow 0S''/1S'' \ , \ S' \rightarrow 0S''/1S'' \ ,$$

D'où
$$G'_2 = (\{0, 1\}, \{S, S', S''\}, S, \{S \rightarrow 0S''/1S'', S'' \rightarrow 0S'/1S', S' \rightarrow 0S''/1S''/\epsilon\})$$

Exercice N° 2

Soit la grammaire G=({a, b, c, d, e}, {S, T, U},S, {S \rightarrow Tacd / Uedd , T \rightarrow bTd / ϵ , U \rightarrow cUdd / ϵ })

1- Montrons que G est LL(1)

S → Tacd / Uedd	$T \rightarrow bTd/\epsilon$	U → cUdd /ε	
First(Tacd) = $\{a, b\}$ $\bigcirc = \emptyset$	First(bTd) = {b}	First(cUdd) = {c}	
First(Uedd) = { c, e}	Follow(T) = $\{a, d\}$	Follow(U) = {e, d}	

3- Analyse du mot bdacd

2- Construction de la TA LL(1)

	а	b	С	d	е
S	①	1	2		2
Т	4	3		4	
U			(5)	6	6

Pile	Entrée	Sortie
S#	bdacd#	
Tacd#	bdacd#	1
bTdacd#	bdacd#	3
Tdacd#	dacd#	
dacd#	dacd#	4
#	#	
		Succès

Exercice N° 3

Soit la grammaire G=({a, b}, {S, A},S, {S \rightarrow abA / ϵ , A \rightarrow Saa / b})

1- G n'est pas LL(1) car:

$$S \rightarrow abA/\epsilon$$

First(abA) =
$$\{a\}$$
 \cap = $\{a\}$ $\neq \emptyset$

- G est LL(2) car:

- G est LL(2) forte car:

$$S \rightarrow abA / \epsilon \qquad \qquad A \rightarrow Saa / b$$

$$First_2(abA.Follow_2(S)) = \{ab\} \qquad \qquad First_2(Saa.Follow_2(A)) = \{aa, ab\} \qquad \qquad \\ \bigcap = \varnothing$$

$$First_2(\epsilon.Follow_2(S)) = \{\#, aa\} \qquad \qquad First_2(b.Follow_2(A)) = \{b\#, ba\}$$

	b	aa	ab	ba	#
S		2	①		2
Α	4	3	3	4	

Pile	Entrée	Sortie
S#	abb#	
abA#	abb#	①
A#	b#	
b#	b#	2
#	#	succès

Exercice N° 4

Soit la grammaire G=({a, b}, {S, A, B},S, {S \rightarrow aAaB / bAbB $\,$, $\,$ A \rightarrow a / ab $\,$, $\,$ B \rightarrow Ba / a})

G n'est pas LL(1) car :

$$A \rightarrow a/ab$$

* G est LL(2) car:

$$S \rightarrow aAaB / bAbB$$

First₂(aAaB) = {aa}
First₂(bAbB) = {ba}
$$\cap = \emptyset$$

$$A \rightarrow a/ab$$

First₂(a) = {a}
First₂(ab) = {ab}
$$\cap$$
 = \emptyset

$$B \rightarrow Ba/a$$

First₂(Ba) = {aa}
First₂(a) = {a}
$$\cap$$
 = \emptyset

♦ G n'est pas LL(2) forte

$$A \rightarrow a / ab$$

* G est LL(2)
$$\Rightarrow$$
 G est LL(3)

♦ G n'est pas LL(3) forte

$$A \rightarrow a/ab$$