ECEN 468 – Lab Report

Lab Number: 1

 ${\bf Lab\ Title:\ SystemC\ and\ Simulator}$

Section Number: 503

Student's Name: Quy Truong Van

Student's UIN: 132005189

Lab Date: 01/24/2023

TA: Hailiang Hu

1. Screenshots of the waveform with analysis

From 0 ns to 5 ns, the testbench is in initialization state with bCE is 1 indicate that all address bins are disabled.

From 5 ns to 10ns, bCE and bWE are 0 which indicate the Write Operation, so 3D is written to address 3D

From 10 ns to 15ns, bCE and bWE are 0 which indicate the Write Operation, so 3F is written to address 3F

From 15 ns to 20ns, bCE and bWE are 0 which indicate the Write Operation, so 3E is written to address 3E

From 20 ns to 25 ns, bCE is 1, so all addresses bin are disabled, so InData = 0 does not take any action.

From 25 ns to 30 ns, bCE = 0 and bWE = 1 operate Read. OutData read data from address 3D then return 3D which was stored in that address from 5 ns \rightarrow 10 ns

From 30 ns to 35 ns, bCE = 0 and bWE = 1 operate Read. OutData read data from address 3E then return 3E which was stored in that address from 10 ns \rightarrow 15 ns

2. Screenshots of your code in this design with reasonable comments

- 3. What are the differences between asynchronous and synchronous SRAM?
- Synchronous SRAM has clock while asynchronous does not.
- Synchronous SRAM will only read or write as a designated clock (usually positive edge clock or negative edge clock).
- Asynchronous SRAM does not have clock, so it can read or write as soon as control signal for write or read is enabled.
- Synchronous SRAM also has additional registers to store the previous signal every clock edge.