1 Definition of Representable Functor

An object X in a category C is a representation of a functor $F: C^{op} \to Set$ if there is a natural isomorphism

$$\operatorname{Hom}(-,X) \cong F \tag{1}$$

Precisely what this means is that for any object Y in C there is an isomorphism ϕ_Y between the set Hom(X,Y) and the set F(Y) and that this isomorphism satisfies the following equations.

For any Y and Z in C, and any $f \in \text{Hom}(Z,Y)$ and g in Hom(Y,X), we have

$$\phi_Z(f;g) = F(f)(\phi_Y(g)) \tag{2}$$

This can also be expressed as the commutativity of the following square

$$\begin{array}{ccc} \operatorname{Hom}(Y,X) & \stackrel{\phi_Y}{\longrightarrow} & F(Y) \\ & f; \downarrow & & \downarrow^{F(f)} \\ \operatorname{Hom}(Z,X) & \stackrel{\phi_Z}{\longrightarrow} & F(Z) \end{array}$$

This above equation is equivalent to assuming naturality of ϕ^{-1} which is For any Y and Z in C, and any $f \in \text{Hom}(Z,Y)$ and $y \in F(Y)$, we have

$$\phi_Z^{-1}(F(f)(y)) = f; \phi_Y^{-1}(y) \tag{3}$$

This can be expressed as the commutativity of the following square

$$F(Y) \xrightarrow{\phi_Y^{-1}} \operatorname{Hom}(Y, X)$$

$$F(f) \downarrow \qquad \qquad \downarrow f;$$

$$F(X) \xrightarrow{\phi_Z^{-1}} \operatorname{Hom}(Z, X)$$

One useful characterisation of a representation of a functor is the following. X is a representation of whenever there is the following

- An element c of F(X)
- For every object Y of \mathcal{X} , a map $r_Y: F(X) \to \mathcal{X}(Y,X)$
- For any object Y of \mathcal{X} , and every element $y \in F(Y)$, $F(r_Y(y))(c) = f$
- For any two morphisms $f, g: \mathcal{X}(Y, X)$, if F(f)(c) = F(g)(c) then f = g

2 EXAMPLES OF EQUALITY PROOFS USING UMP

The above functions are enough to define a natural isomorphism between $\operatorname{Hom}(-,X)$ and F. With $f \in \operatorname{Hom}(Y,X)$, we can define $\phi_Y(f)$ to be F(f)(c) and for any $y \in F(Y)$, we can define $\phi_Y^{-1}(y)$ to be $r_Y(y)$.

A corepresentation of a functor $F: C \to Set$ is defined in a similar way. An object X is a corepresentation of F if there is a natural isomorphism

$$\operatorname{Hom}(X, -) \cong F \tag{4}$$

This can be characterised by the following data about F

- An element u of F(X)
- For every object Y of C, a map $e_Y: F(Y) \to C(X,Y)$
- For any object Y of C, and every element $f: F(Y), F(e_Y(f))(u) = f$
- For any two morphisms $f, g : \mathcal{C}(X, Y)$, if F(f)(u) = F(g)(u) then f = g

There are many examples of representations or corepresentations of functors in mathematics.

If C is a category, and X and Y are objects of C, then the product, $X \times Y$ is a representation of the functor $Hom(-,X) \times Hom(-,Y)$, meaning for any object Z of C, the set $Hom(Z,X\times Y)$ is isomorphic to the set $Hom(Z,X) \times Hom(Z,Y)$.

In the category of sets, the set with one element, 1, is the terminal object. This means it is a representation of the constant functor $1: Set \to Set$, i.e. the set of morphisms from any set X into 1 has exactly one element.

In the category of sets, the empty set, \emptyset , is the initial object. This means it is a corepresentation of the constant functor $1: Set \to Set$, i.e. the set of morphisms from \emptyset into any set X has exactly one element.

In the category of commutative rings, the polynomial ring R[X] is a representation of the functor $\operatorname{Hom}(R,-)\times\operatorname{Forget}$, where Forget is the forgetful functor from commutative rings to sets. This means that for any commutative ring S a ring homomorphism $R[X] \to S$ can be constructed by taking a ring homomorphism $R \to S$ and an element of S.

In the category

2 Examples of Equality Proofs Using UMP

Using universal properties provides a convenient way of defining and proving equalities of morphisms in categories.

- 6 THE ISOMORPHISM PROBLEM TRANSFERRING ACROSS ISOMORPHISMS
- 3 Examples of Isomorphisms made easier with UMP
- 4 Inheritance of UMP
- 4.1 Grothendieck Construction, Categories of Elements and Pi Categories
- 4.2 Monoidal Closed Categories
- 4.3 Maybe Something about Adjoints Preserving (co)limits
- 4.4 Something About Parametricity
- 5 Comparison with UMP of Inductive Types
- 6 The Isomorphism Problem Transferring across Isomorphisms