Departamento de Sistemas e Computação — FURB Curso de Ciência da Computação Disciplina de Teoria dos Grafos

Representação de grafos

Bibliografia

Márcia A. Rabuske. **Introdução à Teoria dos Grafos**. Editora da UFSC. 1992

Joan M. Aldous, Robin J. Wilson. **Graphs and Applications**: as introductory approach. Springer. 2001

Thomas Cormen et al. Algoritmos: teoria e prática. Ed. Campus. 2004.

Motivação

Até agora, vimos duas formas de representação de grafos:

- definição dos conjuntos de vértices e arestas;
- representação gráfica.

E se quisermos armazenar um grafo em um computador?

A matriz de adjacência de um grafo simples G = (V, E) é uma matriz quadrada, denotada por [A], de tamanho n x n, com elementos definidos da seguinte forma:

$$a_{i,j} = \begin{cases} 1, \text{ se } (v_i, v_j) \in E \\ 0, \text{ se } (v_i, v_j) \notin E \end{cases}$$

Grafos não dirigidos:

$$a_{i,j} = \begin{cases} 1, & \text{se } (v_i, v_j) \in E \\ 0, & \text{se } (v_i, v_j) \notin E \end{cases}$$

[A]	0	1 0 1 0	1	1
	1	0	1	0
	1	1	0	1 0
	1	0	1	0

Em um grafo K₄, como seria a matriz de adjacência?

E em um grafo nulo N₄?

Vantagem?

Acesso

Desvantagem?

Memória

Grafos dirigidos:

$$a_{i,j} = \begin{cases} 1, & \text{se } (v_i, v_j) \in E \\ 0, & \text{se } (v_i, v_j) \notin E \end{cases}$$

Multigrafos (laço): podemos considerar a matriz de adjacência como uma extensão da definição para grafos simples, onde cada elemento $a_{i,j}$ representa o número de arestas entre os vértices v_i e v_j

[A]	0	1	1	1
	1	0	1	0
	1	1	1	1
	1	0	1	0

Multigrafos (arestas paralelas)

[A]	0	1	1	2
	1 1	0	0 1	
	1	1	0	1
	2	0	1	0
				ı

Multigrafos dirigidos:

[A]	0	0	1	0
	1	0	2	0
	0	0	0	1
	1	0	1	1

Um grafo simples valorado pode ser representado por sua matriz de custo $W = [w_{ij}]$, onde

$$w_{i,j} = \begin{cases} custo da aresta, se (v_i, v_j) \in E \\ 0 ou \infty, caso contrário \end{cases}$$

Arestas valoradas:

$$w_{i,j} = \begin{cases} custo da aresta, se (v_i, v_j) \in E \\ 0 ou \infty, caso contrário \end{cases}$$

Arestas valoradas e com arestas paralelas:

$$w_{i,j} = \begin{cases} custo da aresta, se (v_i, v_j) \in E \\ 0 ou \infty, caso contrário \end{cases}$$

Não é possível sem utilizar estruturas auxiliares

A matriz de incidência possui a seguinte dimensão:

Suponha a matriz $M_{|V| \times |A|}$

M_{i,j} =
$$\begin{cases}
1, \text{ se a aresta j incide no vértice i} \\
0, \text{ em caso contrário}
\end{cases}$$

$$M_{i,j} = \begin{cases} 1, \text{ se a aresta j incide no vértice i} \\ 0, \text{ em caso contrário} \end{cases}$$

$$egin{array}{c|cccc} & e_1 & e_2 \\ \hline a & 1 & 0 \\ b & 1 & 1 \\ c & 0 & 1 \\ \hline \end{array}$$

Multigrafos (laço)

	e_1	e_2	e_3	e_4	e_5	e_6	e ₇
a	1	1	0	0	1	0	0
b	1	0	1	0	0	1	2
С	0	1	0	1	0	1	0
d	e ₁ 1 1 0 0	0	1	1	1	0	0

Multigrafos (arestas paralelas)

$$e_1$$
 e_2 e_3
 $a \mid -1$ -1 $+1$
 $b \mid +1$ $+1$ 0
 $c \mid 0$ 0 -1

Arestas valoradas

$$M_{i,j} = \begin{cases} c_j, \text{ se a aresta j incide no vértice i} \\ \infty, \text{ em caso contrário} \end{cases}$$

A estrutura de listas de adjacência de um grafo G = (V, E) consiste em um arranjo de n listas de adjacência, denotadas por Adj[v], uma para cada vértice v do grafo.

Cada lista *Adj[v]* é composta por referências aos vértices adjacentes a *v*, representando individualmente as arestas do grafo.

As listas Adj[v] podem ser armazenadas em vetores, listas encadeadas ou estruturas de conjuntos de vértices.

Grafos não dirigidos

Grafos dirigidos

Vantagem?

Memória

Desvantagem?

Acesso

Próxima aula...

ALGORITMOS DE BUSCA