b. exothermic; The energy of the reactants is greater than the energy of the products.

2. a.

b. $\Delta E_{forward} = 39 \text{ kJ/mol}$ $\Delta E_{reverse} = -39 \text{ kJ/mol}$ **c.** endothermic; The energy of the products is greater that the energy of the products

3. a.

b. E_a (reverse) = 18 kJ/mol

Practice Problems B

- **1.** rate = $k[A]^2$
- **2.** 27

Practice Problems E

- **1.** $R = k[L][M]^2$
- **2.** $R = k[NO_2]^2$

Math Tutor Practice

- **1.** $R = k[O_2][NO]_2$
- 2. R = k[H₂]; Students should observe that changing the concentration of C₂H₂ has no effect on the rate. The rate depends on only the concentration of hydrogen.

Chemical Equilibrium

Practice Problems A

- **1.** 0.286
- 2. 4.9×10^{-3}
- **3.** 4.36

Practice Problems B

- 1. 1.9×10^{-4}
- 2. 1.6×10^{-5}

Practice Problems C

- **1.** $8.9 \times 10^{-14} \text{ mol/L}$
- **2.** $5.7 \times 10^{-4} \text{ mol/L}$

Practice Problems D

- 1. AgBr precipitates.
- 2. PbCl₂ does not precipitate.

Math Tutor Practice

1. a.
$$K = \frac{[AB_2]}{[A][B]^2}$$

b.
$$K = \frac{[D_2][E_2]^2}{[DE_2]^2}$$

2.
$$K = 2.6 \times 10^{-9}$$

Oxidation-Reduction Reactions

Practice Problems A

- 1. $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 + 2H_2O$
- 2. $8HNO_3 + 6KI \longrightarrow 6KNO_3 + 3I_2 + 2NO + 4H_2O$

Math Tutor Practice

- 1. $2MnO_2 + NaClO_3 + 2NaOH$ $\longrightarrow 2NaMnO_4 + NaCl + H_2O$
- 2. $N_2O + 2KCIO + 2KOH \longrightarrow 2KCI + 2KNO_2 + H_2O$

Electrochemistry

Practice Problems A

1. a.
$$Cr_2O_7^{2-} + 14H^+ + 3Ni \longrightarrow$$

 $2Cr^{3+} + 3Ni^{2+} + 7H_2O;$
 $E^0 = 1.33 - (-0.23) = 1.56 \text{ V}$
b. $2Fe^{3+} + H_2 \longrightarrow 2Fe^{2+} + 2H^+;$
 $E^0 = 0.77 - 0.0 = 0.77 \text{ V}$

Math Tutor Practice

- **1.** $E^0 = 1.82 \text{ V}$
- **2.** $E^0 = 1.20 \text{ V}$

Nuclear Chemistry

Practice Problems A

- 1. ${}^{253}_{99}\text{Es} + {}^{4}_{2}\text{He} \longrightarrow {}^{1}_{0}n + {}^{256}_{101}\text{Md}$
- **2.** $^{142}_{61}$ Pm + $^{0}_{-1}e \longrightarrow ^{142}_{60}$ Nd

Practice Problems B

- **1.** 0.25 mg
- 2. 6396 years
- 3. 7.648 days
- **4.** 0.00977 mg
- **5.** 4.46×10^9 years

Math Tutor Practice

- **1.** 1.4×10^{-6} g chromium-51
- 2. 8 half-lives or 420 000 years (expressed with 2 significant figures)

Organic Chemistry

Practice Problems A

- 1. methylbutane
- 2. 3-ethyl-4-methylhexane