

Swetha D S

Department of Science and Humanities

CLASS-3

THE GRAM-SCHMIDT ORTHOGONALIZATION

The Gram-Schmidt process:

- It is a process of converting linearly independent vectors into orthonormal vectors.
- Consider any 3 independent vectors a, b, c.
 Then the first orthonormal q₁= a/norm(a).
- If 'b' is perpendicular to the vector 'a' then $q_2=b/norm(b)$ otherwise $B=b-(q_1^Tb)q_1$ and $q_2=B/norm(B)$.

The Gram-Schmidt process (Continued.....)

• If 'c' is perpendicular to the plane spanned by the vectors a and b then $q_3=c/norm(c)$ otherwise $C=c-(q_1^Tc)q_1-(q_2^Tc)q_2$ and $q_3=C/norm(C)$.

This is the one idea of the whole Gram-Schmidt process, to subtract from every new vector its components in the directions that are already settled. That idea is used over and over again. When there is a fourth vector, we subtract away its components in the directions of q_1 , q_2 , q_3 .

THANK YOU

SWETHA D S

Department of Science and Humanities