Cours Microcontrôleur - 3 Le Convertisseur Analogique Numérique

1 Le convertisseur Analogique Numérique

Beaucoup de gens croient que l'époque de l'analogique est révolue. La vérité est que le domaine analogique n'a jamais été aussi répandu qu'aujourd'hui : avec l'arrivée des objets connectés qui mesurent et rapportent inlassablement le monde, des milliards de lectures analogiques de toutes sortes sont effectuées chaque seconde. Les objets informatisés qui ne prennent aucune mesure sont devenus tellement rares que les producteurs de microcontrôleurs intègrent systématiquement un périphérique CAN directement sur la puce.

1.1 Usage

Quelle que soit la grandeur analogique à mesurer, du moment qu'on veut la traiter dans un programme il faut qu'elle soit préalablement transformée en tension. C'est le rôle du capteur et de son montage conditionneur.

Grandeur physique	Capteur	Sortie	Exemple
Masse	Jauge de contrainte	Tension	Volt = f(Kg)
Lumière	Phototransistor	Tension	Volt = f(Lumen)
Accélération	Piézodétecteur	Tension	$Volts = f(metres/secondes^2)$
Température	CTN	Tension	$Volt = f(^{\circ}C)$

Le convertisseur Analogique Numérique effectue la conversion Tension vers Valeur numérique.

Tension d'entrée →	Vin=0.0V	Vin=2.5V	Vin=5.0V
		C.A.N.	
Mesure numérisée →	0	512	1024

La valeur numérique produite "représente" la tension sous la forme du nombre de petits pas nécessaires pour l'atteindre. Dans notre exemple, il faut 1024 pas pour atteindre le maximum qui est 5.0 Volts. Il n'en faut que 512 pour atteindre 2,5 Volts. Chaque pas, ou quantum, vaut ici 4,89 mV.

L'approximation d'une courbe par une suite de conversions analogiques numériques :

* Note: En anglais, un C.A.N (Convertisseur Analogique Numérique) se dit ADC (Analog to Digital Converter)

1.2 Les étapes d'une conversion analogique

Le signal analogique est échantillonné, puis l'échantillon est bloqué, puis il est mesuré. Il reste bloqué jusqu'à la fin de la mesure même si le signal d'entrée varie pendant ce temps.

1.3 Les caractéristiques importantes pour choisir un C.A.N.

- La résolution (qui affecte la précision de la mesure) et le quantum (la valeur du pas).
- La vitesse de conversion (qui affecte la fréquence maximale du signal à convertir)
- La linéarité (qui affecte l'erreur de mesure)
 De plus :
- Tous les CAN ont un échantillonneur bloqueur entre la broche d'entrée et leur entrée interne. Ce petit circuit sert à figer la tension d'entrée temporairement, pour le temps nécessaire à la conversion.
- La plupart des CAN utilisent en interne, un CNA afin d'approcher de plus en plus la grandeur analogique avec la valeur calculée.

1.4 Les différents types de C.A.N.

1.4.1 Convertisseur à approximations successives par dichotomie

C'est le principe le plus répandu.

Un comparateur compare le signal d'entrée à la sortie d'un CNA (Convertisseur Numérique vers Analogique, ou DAC en anglais).

La première fois, le CNA propose la moitié de la tension de référence (2.5V)

Si l'entrée est plus grande, le bit de poids fort est 1.

Si l'entrée est plus petite, le bit de poids fort est zéro.

Ensuite le CNA ajoute ou retranche la moitié de la moitié de la tension de référence $(2.5V \pm 5V/4)$.

On compare donc soit à 1,25V soit à 3,75V, et le résultat détermine le bit de poids suivant.

Ensuite le CNA ajoute ou retranche la moitié de la moitié de la moitié de la moitié (5V/8=0,625V).

On compare, et on trouve le bit de poids suivant.

Et ainsi de suite....

1.4.2 Convertisseur à simple rampe

Ce type de convertisseur est simple, rustique, bon marché, mais très lent et donc peu utilisé. On compare la valeur d'entrée à une tension qui augmente avec le temps (par exemple la charge d'un condensateur). Le temps nécessaire pour atteindre l'égalité représente le résultat de la conversion.

1.4.3 Convertisseur Sigma Delta

C'est une technique très utilisée dans les télécommunications et la musique haute-fidélité. Ces convertisseurs analogique-numérique sigma-delta peuvent atteindre des résolutions très importantes (jusqu'à 24 bits) en contrepartie d'une bande passante utile inférieure au MHz.

Un DAC à un seul bit suffit. Après chaque comparaison on trouve 1 bit, puis on retranche la différence au signal d'entrée lui-même, ce qui fonctionne au final comme une intégrale. On continue le processus jusqu'à la résolution désirée.

1.4.4 Convertisseur flash

Dans ce convertisseur il y a autant de comparateurs que de combinaisons binaires possibles.

Par exemple, il faudra 256 convertisseurs pour réaliser un CAN 8 bits.

La vitesse de conversion est fantastique, tout comme la consommation électrique, et le prix !

Mais ce convertisseur peut échantillonner un signal de 1GHz sur 8 bits.

Une astuce consiste à utiliser des demi-convertisseurs flash: la sortie du premier fabrique (grâce à un CNA) une référence pour le comparateur du deuxième. On peut pousser l'astuce avec des tiers flash, des quarts flash...

2 Le Convertisseur Analogique Numérique de l'ATmega328

Le microcontrôleur ATmega328 comporte un seul CAN. C'est un CAN de type Approximations successives par dichotomie. Un multiplexeur permet d'orienter l'une des 6 broches d'entrées possible vers ce CAN.

2.1 Caractéristiques principales

- Fréquence maximale 76900 échantillons par secondes (mais 15000 eps pour la résolution maximale).
- Temps de conversion paramétrable de 13 à 260 μs
- Tensions de référence possibles : Vcc, 1.1V ou entrée AREF.
- Plage de mesure entre 0 et Vcc
- Résolution maximale de 10 bits

ADC0

2.3 Les registres

2.3.1 ADMUX (ADC Multiplexer Selection Register)

Bit	7	6	5	4	3	2	1	0
	REFS1	REFS0	ADLAR		MUX3	MUX2	MUX1	MUX0
Access	R/W	R/W	R/W		R/W	R/W	R/W	R/W
Reset	0	0	0		0	0	0	0

Bits 7 et 6 REFS = Sélection de la tension de référence.

00 Broche AREF

01 Vcc

10 Réservé

11 Référence interne 1.1V

Bit 5 ADLAR = Ajustement à gauche du résultat

1 ADCH contient les 8 bits de poids fort et ADCL contient les deux bits de poids faible (dans b7 b6).

0 ADCH contient les 2 bits de poids fort (dans b1 b0) et ADCL contient les 8 bits de poids faible.

Très pratique si une résolution de 8 bits est suffisante.

Bits 3 à 0 MUX = Sélection de l'entrée

0000 ADC0	0100 ADC4	1000 Capteur de température
0001 ADC1	0101 ADC5	1110 Tension 1.1 Volt
0010 ADC2	0110 ADC6	1111 tension de 0 Volts

0011 ADC3 0111 ADC7 Tous les autres codes sont réservés

2.3.2 ADCSRA (ADC Control and Status Register A)

Bit	7	6	5	4	3	2	1	0
	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 - ADEN (ADC Enable)

O Le CAN est désactivé

1 Le CAN peut fonctionner

Bit 6 – ADSC (ADC Start Conversion)

Écrire un 1 fait démarrer la conversion. Le bit retournera automatiquement à zéro à la fin de la conversion.

Bit 5 – ADATE (ADC Auto Trigger Enable)

Lorsque ce bit est écrit à 1, le déclenchement automatique est autorisé.

Bits 4 à 3 : Fonctionnement en mode interruption.

Laissez à zéro.

Bits 2 à 0 : Sélection de la fréquence de fonctionnement

001 Sysclock / 2 100 Sysclock / 16 111 Sysclock / 128

010 Sysclock / 4
 011 Sysclock / 32
 011 Sysclock / 64

2.3.3 ADCSRB (ADC Control and Status Register B)

Bit	7	6	5	4	3	2	1	0
		ACME				ADTS2	ADTS1	ADTS0
Access		R/W	•			R/W	R/W	R/W
Reset		0				0	0	0

Bit 6 – ACME (Analog Comparator Multiplexer Enable)

relatif à un mode de fonctionnement que nous ne verrons pas cette année.

Bits 2 à 0 ADTS (ADC Auto Trigger Source

Ces bits sélectionnent quelle source déclenchera automatiquement une conversion

000 Fonctionne en continue 011 Timer0 comparaison 110 Timer1 débordement

001 Comparateur analogique 100 Timer0 débordement 111 Timer1 capture

010 Interruption externe 0 101 Timer1 comparaison

2.3.4 ADCH et ADCL (ADC Data Register High et Low)

ADC0

Ces deux registres contiennent le résultat de la conversion.

Comme la conversion s'effectue sur 10 bits, un seul octet ne suffit pas à contenir le résultat.

Avec ADLAR = 0

ADCL =

ADCH =							ADC9	ADC8
ADCL =	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0
ADCL -								
Avec ADLAR = 1								
ADCH -	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2
ADCH =	ADC9	ADCo	ADCI	ADCO	ADC5	ADC4	ADCS	ADGZ