TD n°1

Langages et expressions rationnelles

Les exercices marqués d'un symbole (*) sont facultatifs.

Exercice 1 Soient A, B et C les langages dénotés respectivement par les expressions rationnelles (bb | aba)*, (b | aba)* et (ab | abb)*. Donner les trois mots les plus courts de $A \cup B$, de $A \cap B$, de $A \cap C$, et finalement de $B \cap C$.

Exercice 2 Pour chacune des expressions rationnelles suivantes, donner une description en français du langage dénoté :

1.
$$((1 \mid 0)0)^*(\epsilon \mid 0 \mid 1)$$
;

2.
$$(1 \mid 01 \mid 001)^* (\epsilon \mid 0 \mid 00)$$
;

3.0*(10*10*10*)*.

Exercice 3 Pour chacun des langages sur l'alphabet $\{0,1\}$ suivants, écrire une expression rationnelle le dénotant et construire un automate déterministe le reconnaissant :

- 1. tous les mots de longueur paire;
- 2. tous les mots contenant 0;
- 3. tous les mots avec un nombre impair de 1;
- 4. tous les mots qui n'ont pas plus de deux 0 consécutifs;
- 5. tous les mots qui représentent un entier binaire (non-signé) pair.
- 6. (*) tous les mots ne contenant pas le facteur 010;

Exercice 4 On considère l'expression rationnelle $\mathcal{E}_1 = (a \mid \epsilon)(b \mid \epsilon)ab(a \mid \epsilon)(b \mid \epsilon)$.

- 1. Construire un automate A_1 qui reconnaît le langage dénoté par \mathcal{E}_1 .
- 2. Déterminiser et éliminer les ε -transitions de l'automate \mathcal{A}_1 selon la méthode ci-dessous :

Déterminiser et éliminer les ϵ -transitions

Soit $A = (\Sigma, Q, \delta, I, F)$ un automate non-déterministe avec ϵ -transitions. Pour $P \subseteq Q$, on définit :

$$\epsilon$$
-clôture $(P) = \{ q \in Q \mid \exists p \in P, q \in \delta^*(p, \epsilon) \}.$

On construit l'automate déterministe $\mathcal{A}' = (\Sigma, 2^Q, \delta', I', F')$ avec

- $-I' = \epsilon$ -clôture(I),
- $-\delta'(P,a) = \bigcup_{p \in P} \epsilon\text{-clôture}(\delta(p,a)),$
- $-F' = \{ P \subseteq Q \mid P \cap F \neq \emptyset \}.$

Il convient de construire les états de A' au fur et à mesure.

3. (*) Faire de même avec l'expression rationnelle $\mathcal{E}_2 = (a \mid ba)^*(b \mid ba)$.

Exercice 5 On considère maintenant l'alphabet Σ constitué de tous les caractères ASCII :

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^_'abcdefghijklmnopqrstuvwxyz{|}~
```

On pourra utiliser la syntaxe [a-z] pour reconnaître un caractère parmi un sous-ensemble de Σ . Écrire une expression rationnelle reconnaissant chacun des langages suivants :

- 1. Les adresses e-mail de la forme <prénom>.<nom>@u-paris.fr
- 2. Pareil que la question précédente, mais en acceptant aussi les adresses en « @etu.u-paris.fr ».
- 3. Les noms de variables Java : ils peuvent contenir des lettres (majuscules ou minuscules), des chiffres, et le symbole underscore « » ; mais le premier caractère doit être une lettre.

Exercice 6 (*) On rappelle quelques propriétés des langages rationnels :

Propriétés de clôture des langages rationnels

- Si \mathcal{L}_1 et \mathcal{L}_2 sont deux languages rationnels, alors $\mathcal{L}_1 \cup \mathcal{L}_2$ et $\mathcal{L}_1 \cap \mathcal{L}_2$ sont aussi des languages rationnels.
- Si \mathcal{L} est un langage rationnel sur Σ , alors $\Sigma^* \setminus \mathcal{L}$ est aussi un langage rationnel.

On rappelle aussi le lemme de l'étoile (Pumping Lemma) :

Lemme de l'étoile

Soit \mathcal{L} un language rationnel sur Σ . Alors : il existe un entier $N \geq 1$ tel que pour tout mot $u \in \mathcal{L}$ avec $|u| \geq N$ il existe des mots $x, y, z \in \Sigma^*$ avec $|xy| \leq N$, $|y| \geq 1$, u = xyz tel que pour tout entier $k \geq 0$: $xy^kz \in \mathcal{L}$.

Pour chacun des langages suivants, dire s'il est rationnel ou pas.

```
1. \{a^mb^n \mid m, n \in \mathbb{N}\} 2. \{a^nba^n \mid n \in \mathbb{N}\} 3. \{a^nb^nc^n \mid n \le 2025\}
4. \{u^2 \mid u \in \{a,b\}^*\} 5. \{a^mb^n \mid m \ne n\} 6. \{u \in \{a,b\}^* \mid u \text{ est un palindrome}\}
```