

P. Richard Hahn
Econometrics and Statistics Group
University of Chicago Booth School of Business
Harper Center 368, Chicago, IL 80637
richard.hahn@chicagoboooth.edu

Statistical Formula Notation in R

R functions, notably lm() for fitting linear regressions and glm() for fitting logistic regressions, use a convenient formula syntax to specify the form of the statistical model to be fit. The basic format of such a formula is

response variable \sim predictor variables

The tilde is read as "is modeled as a function of." A basic regression analysis would be formulated as

Therefore we might fit a linear model regressing Y on X as

fit
$$<-lm(Y \sim X)$$

where X is the predictor variable and Y is the response variable. In the usual mathematical notation this corresponds to the linear regression model denoted

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i.$$

Additional explanatory variables can be included using the "+" symbol. To add another predictor variable Z, the formula becomes

$$Y \sim X + Z$$

and the linear regression call becomes

fit
$$<-lm(Y \sim X + Z)$$

yielding a multiple regression with two predictors. The corresponding mathematical notation would be

$$Y_i = \beta_0 + X_i \beta_1 + Z_i \beta_2 + \epsilon_i.$$

Importantly, the use of the "+" symbol in this context is different than its usual meaning; the R formula notation is just a short-hand for which variable to include in the statistical model

and how. The following table lists the meaning of these symbols when used in an \mathbb{R} modeling formula.

Symbol	Example	Meaning
+	+X	include this variable
_	-X	delete this variable
:	X:Z	include the interaction between these variables
*	X*Y	include these variables and the interactions between them
	$X \mid Z$	conditioning: include x given z
^	$(X + Z + W)^3$	include these variables and all interactions up to three way
I	I(X*Z)	as is: include a new variable consisting of these variables multiplied
1	X - 1	intercept: delete the intercept (regress through the origin)

There is usually more than one way to specify the same model; the notation is not unique. For example the following three formulae are all equivalent:

$$Y \sim X + Z + W + X:Z + X:W + Z:W + X:Z:W$$

 $Y \sim X * Z * W$
 $Y \sim (X + Z + W)^3$

each corresponding to the model

$$Y_{i} = \beta_{0} + X_{i}\beta_{1} + Z_{i}\beta_{2} + W_{i}\beta_{3} + X_{i}Z_{i}\beta_{4} + X_{i}W_{i}\beta_{5} + Z_{i}W_{i}\beta_{6} + X_{i}Z_{i}W_{i}\beta_{7} + \epsilon_{i}.$$

Likewise, each of these models

$$Y \sim X + Z + W + X:Z + X:W + Z:W$$

 $Y \sim X * Z * W - X:Z:W$
 $Y \sim (X + Z + W)^2$

corresponds to

$$Y_{i} = \beta_{0} + X_{i}\beta_{1} + Z_{i}\beta_{2} + W_{i}\beta_{3} + X_{i}Z_{i}\beta_{4} + X_{i}W_{i}\beta_{5} + Z_{i}W_{i}\beta_{6} + \epsilon_{i},$$

which differs from the previous model in that the three-way interaction has been omitted.

Finally, when using a data frame an additional time-saver is to use "." to indicate "include all variables". This is especially convenient when used in conjunction with the other symbols. Consider a data frame $\mathbb D$ which has columns $\mathbb Y$, $\mathbb X$, $\mathbb Z$, and $\mathbb W$. Then the function call

fit
$$<-lm(Y \sim ., data = D)$$

is equivalent to

fit
$$\leftarrow$$
 lm(Y \sim X + Z + W, data = D)

Similarly,

fit <-
$$lm(Y \sim .-W, data = D)$$

is equivalent to

fit
$$<-lm(Y \sim X + Z)$$

and

fit <-
$$lm(Y \sim .*W, data = D)$$

is equivalent to

fit <-
$$lm(Y \sim X + Z + W + X:W + Z:W)$$

Using this notation permits a data analyst to run a spate of regression specifications without having to reconfigure the columns of a spreadsheet each time.