Лабораторная работа № 2

Количество экспериментальных серий при различных температурных режимах термостата

 $N_{i} := 4$ i := 1..20

(серии объединены в массиы первичных данных Ut,Uk, E, Тцифр, Тртут)

Платиновый термометр сопротивления: напряжения на термометре Ut и катушке Uk, мВ					Термо-ЭДС термопары Е, мВ		тутный ермомет _і Гргут, °С	Цифровой термометр Тцифр, °С	
Ut :=	(10.9087)	087 089 086 077 073 753 752 764 764 773 068 067 070 072 075 056 057 060	(9.5381)	E :=	(1.3382)	Тртут :=	(33.7)	Тцифр :=	(33.9)
	10.9089		9.5384		1.3380		33.7		33.9
	10.9086		9.5390		1.3378		33.7		33.9
	10.9077		9.5391		1.3381		33.7		33.9
	10.9073		9.5383		1.3380		33.7		33.9
	11.0753		9.5608		1.4951		37.6		37.6
	11.0752		9.5609		1.4959		37.6		37.6
	11.0764		9.5607		1.4953		37.6		37.6
	11.0764		9.5610		1.4956		37.6		37.6
	11.0773		9.5613		1.4954		37.6		37.6
	11.2068		9.5717		1.6200		40.6		40.7
	11.2067		9.5718		1.6201		40.6		40.7
	11.2070		9.5719		1.6199		40.6		40.7
	11.2072		9.5724		1.6198		40.6		40.7
	11.2075		9.5723		1.6197		40.6		40.7
	11.3056		9.5876		1.7010		42.6		42.9
	11.3057		9.5878		1.7012		42.6		42.9
	11.3060		9.5870		1.7013		42.6		42.9
	11.3058		9.5880		1.7011		42.6		42.9
	(11.3062)		9.5882		(1.7009)		42.6		(42.9)

Обработка результатов измерений	(11.427)						
Средство измерения температуры: терморезистор - платиновый	$\begin{pmatrix} 11.437 \\ 11.437 \end{pmatrix}$						
термометр сопротивления							
1) II	11.436						
1) Нахождение сопротивления термометра Rt, Ом							
Задание встроенной переменной, определяющей							
<u>номер первого элемента массива</u>							
ORIGIN ≡ 1 Сопротивление образцовой катушки, Ом Rk := 10.000							
						Ut;∙Rk	11.585 11.586 11.708
						$Rt_{i} := \frac{Ut_{i} \cdot Rk}{Uk_{i}}$ $Rt =$	
2) Вычисление платиновой температуры t _i							
(вспомогательный параметр градуировочной зависимости							
терморезистора) Задача: решить квадратное уравнение относительно t _i							
							константы $\alpha := 3.9141 \cdot 10^{-3}$ $\delta := 1.49187$ Ro := 10.0923
	11.792						
параметр $W_i := \frac{Rt_i}{Ro}$	11.792						
Решение квадратного уравнения осуществляем с помощью							
стандартной встроенной функции Mathcad root(F(x),x):							
Задаем начальное приближение по температуре, ℃							
tt := 50	(11./92)						

$$t_i := \text{root} \Bigg[\frac{1}{\alpha} \cdot \Big(W_i - 1 \Big) + \delta \cdot \frac{tt}{100} \cdot \left(\frac{tt}{100} - 1 \right) - tt, tt \Bigg]$$

3) Вычисление температуры Т, терморезистора по расчетному уравнению T(R)

$$\text{Ti} := t_i + 0.015 \cdot \left[\frac{t_i}{100} \cdot \left(\frac{t_i}{100} - 1 \right) \right] \cdot \left[\left(\frac{t_i}{419.58} - 1 \right) \cdot \left(\frac{t_i}{630.74} - 1 \right) \right]$$

4) Оценка погрешности измерений температуры ПТС. Средние значения, Tsr, и случайные погрешности

$$j:=1..5$$
 m -число элементов
$$\sum_{m} T_{j}$$
 $Tsr:=\frac{j}{m}$ $Ts_{1}:=Tsr$

СКО индивидуального измерения

$$\Delta T := \sqrt{\frac{\displaystyle\sum_{j} \left(T_{j} - Tsr\right)^{2}}{(m-1)}}$$
 СКО среднего результата $T = \begin{pmatrix} 37.444 \\ 37.435 \\ 37.449 \\ 40.545 \end{pmatrix}$

$$Tsr = 33.6775$$
 $\Delta T = 0.025$ $\Delta Tsr = 0.011$ °C

$$j := 6..10 \qquad m := 5$$

$$\sum_{j} T_{j}$$

$$Tsr := \frac{j}{m} \quad \Delta T := \sqrt{\frac{\sum_{j} (T_{j} - Tsr)^{2}}{(m-1)}} \quad \Delta Tsr := \frac{\Delta T}{\sqrt{m}}$$

$$40.545$$

$$42.654$$

$$42.686$$

Tsr = 37.429
$$\Delta$$
T = 0.019 Δ Tsr = 0.011 °C

$$Ts_2 := Tsr$$

33.7

42.65

42.654

33.707053

Средние значения температуры ПТС

$$i := 1..4$$
 $Ts = \begin{pmatrix} 33.677 \\ 37.429 \\ 40.542 \\ 42.66 \end{pmatrix}$ $^{\circ}C$

Анализ значений Δ Tsr показывает, что все экспериментальные серии являются подобными. Случайная погрешность серии Δ Tsr \sim 0.05 °C.

$$\Delta Tsr := 0.05$$
 $\Delta T := \Delta Tsr$

Оценка систематической погрешности измерения температуры ПТС (на примере измерений в первом температурном режиме без учета корреляции Ut и Uk)

Относительная погрешность:

$$\delta$$
Тsis:= δ tsis δ tsis \sim δ W/(1-1/W) δ W:= δ Rt δ Rt := $\sqrt{\delta U t^2 + \delta R k^2 + \delta U k^2}$ Относительные приборные погрешности измерения δ Ut, δ Uk и

 δRk $\delta U = \pm (0.02 + 0.02*(Umax/U-1)), \%$

$$\begin{split} &Ut := 10.8640 \quad \text{MB} \quad Uk := 9.1923 \quad \text{MB} \quad Umax := 10.000 \quad \text{MB} \\ &\delta Ut := \left[0.02 + 0.02 \cdot \left(\frac{Umax}{Ut} - 1\right)\right] \quad \delta Ut = 0.018 \ \% \\ &\delta Uk := \left[0.02 + 0.02 \cdot \left(\frac{Umax}{Uk} - 1\right)\right] \quad \delta Uk = 0.022 \ \% \end{split}$$

$$\delta Rk := \frac{5 \cdot 10^{-4} \cdot 100}{10.000} \qquad \qquad \delta Rk = 5 \times 10^{-3} \%$$

$$\delta Rt := \sqrt{\left(\delta Ut^2 + \delta Rk^2 + \delta Uk^2\right)}$$
 $\delta Rt = 0.029$ %

Приблизительная оценка косвенной погрешности T (Rt), резистор

$$tc := \left[\frac{1}{\alpha} \cdot (Wt - 1)\right]$$

$$tc := \left[\frac{1}{\alpha} \cdot (Wt - 1) + \delta \cdot \frac{tc}{100} \cdot \left(\frac{tc}{100} - 1\right)\right]$$

$$\delta Tsis := \frac{\delta Rt}{1 - \frac{Ro}{Rt_1}}$$

$$\delta Tsis = 0.246 \%$$

Рассчитаем систематическую погрешность оценки $R_{\scriptscriptstyle T}$ в предположении коррелированности погрешностей измерения $U_{\scriptscriptstyle T}$ и $U_{\scriptscriptstyle K}$. Принять коэффициент корреляции между $\Delta U_{\scriptscriptstyle T}$ и $\Delta U_{\scriptscriptstyle K}$ как положительный и равный 1.

$$\delta R_T = \sqrt{\left(\delta U_T\right)^2 - 2\delta U_T \delta U_K + \left(\delta U_K\right)^2 + \left(\delta R_K\right)^2} \;,$$

В этом случае случайная погрешность косвенного результата записывается в виде

$$\delta Rt := \sqrt{(\delta Ut - \delta Uk)^2 + \delta Rk^2}$$
$$\delta Rt = 6.017 \times 10^{-3} \quad \frac{0}{9}$$

Относительная систематическая погрешность T (Rt), резистор, режим 1 $T_1 = 33.704$ Rt $_1 = 11.437$ Ro $_2 = 10.092$

$$T_1 = 33.704$$
 $Rt_1 = 11.437$ $Ro = 10.092$

$$\delta Tsis := \frac{\delta Rt}{1 - \frac{Ro}{Rt_1}} \qquad \delta Tsis = 0.051 \%$$

Абсолютная систематическая погрешность

$$\Delta T sis := \frac{\delta T sis}{100} \cdot T_1$$
 $\Delta T sis = 0.0172$ °C

Полная систематическая погрешность с учетом погрешности градуировочной зависимости Δ Tapr

$$\Delta$$
Tapr := 0.005 °C

$$\Delta T_SIS := \sqrt{\Delta T sis^2 + \Delta T apr^2} \Delta T_SIS = 0.018$$
 °C

Допустимая погрешность Δ Тптс определения температуры ПТС

$$\Delta T \Pi T C := \sqrt{\Delta T s r^2 + \Delta T_S I S^2}$$
 $\Delta T \Pi T C = 0.053 \text{ }^{\circ} C$ $\Delta T s r = 0.05 \text{ }^{\circ} C$

Доверительный интервал для допустимой погрешности Δ Тптс при коэффициенте доверия α=0.95 при 5 измерениях (коэффициент Стьюдента принят $\gamma := 2.57$)

$$\Delta(\Delta Tsr) := \gamma \cdot \Delta Tsr \quad \Delta(\Delta Tsr) = 0.129 \text{ }^{\circ}C$$

Датчик: хромель-алюмелевая(ХА) термопара

i := 2..21

Выполнение градуировки и поиск градуировочной зависимости Т(Е)

Температура ПТС Термо-ЭДС 0 1.3382 33.704 1.338 33.7 1.3378 33.674 1.3381 33.648 1.338 33.661 1.4951 37.412 1.4959 37.406 1.4953 37.444 1.4956 37.435 1.4954 Etp =Ttp =37.449 1.62 40.545 1.6201 40.54 1.6199 40.545 1.6198 40.534 1.6197 40.545 1.701 42.657 1.7012 42.654 1.7013 42.686 1.7011 42.65 1.7009 (42.654)

$$Ttp_1 := 0.0$$
 $Etp_1 := 0.0$

Добавляем в исходный массив точку (0,0.)

$$\mathsf{Ttp}_j \coloneqq \mathsf{T}_{j-1} \quad \mathsf{Etp}_j \coloneqq \mathsf{E}_{j-1}$$

Построение градуировочной зависимости T(E) методом наименьших квадратов

степень полинома n=2: форма: $T=a1*E+a2*E^2$ число эксп. точек n:=21

Задача: найти (a_i) путем минимизации функционала S

$$\mathbf{S}(\mathbf{a}) := \sum_{\mathbf{j}} \left[\mathbf{a}_1 \cdot \mathbf{Etp_j} + \mathbf{a}_2 \cdot \left(\mathbf{Etp_j} \right)^2 - \mathbf{Ttp_j} \right]^2$$

Построим матрицу частных производных функционала S по параметрам (a_i)

$$\begin{split} \frac{d}{da_1} \frac{S}{2} &:= a_1 \cdot \left[\sum_j \left(Etp_j \right)^2 \right] + a_2 \cdot \sum_j \left(Etp_j \right)^3 - \sum_j \left(Ttp_j \cdot Etp_j \right) \\ \frac{d}{da_2} \frac{S}{2} &:= a_1 \cdot \left[\sum_j \left(Etp_j \right)^3 \right] + a_2 \cdot \sum_j \left(Etp_j \right)^4 - \sum_j \left[Ttp_j \cdot \left(E1tp_j \right)^2 \right] \end{split}$$

Система нормальных уравнений

А - конструкционная матрица, В - столбец (правая часть системы) а - искомые коэффициенты

$$\mathbf{A} \cdot \mathbf{a} := \mathbf{B}$$

$$\begin{split} & \underset{j}{\mathbb{A}_{1,1}} \coloneqq \sum_{j} \left(\mathsf{Etp}_{j} \right)^{2} \quad A_{1,2} \coloneqq \sum_{j} \left(\mathsf{Etp}_{j} \right)^{3} \quad B_{1} \coloneqq \sum_{j} \left(\mathsf{Ttp}_{j} \cdot \mathsf{Etp}_{j} \right) \\ & A_{2,1} \coloneqq A_{1,2} \qquad \quad A_{2,2} \coloneqq \sum_{j} \left(\mathsf{Etp}_{j} \right)^{4} \quad B_{2} \coloneqq \sum_{j} \left[\mathsf{Ttp}_{j} \cdot \left(\mathsf{Etp}_{j} \right)^{2} \right] \end{split}$$

Решение системы уравнений:

$$a := A^{-1} \cdot B$$

Искомые коэффициенты

$$\mathbf{a} = \begin{pmatrix} 25.421 \\ -0.225 \end{pmatrix}$$

Оценка среднеквадратически отклонения СКО

СКО индивидуального измерения (не смещенное)

$$CKO := \sqrt{\frac{\sum_{j} \left[a_1 \cdot Etp_j + a_2 \cdot \left(Etp_j \right)^2 - Ttp_j \right]^2}{(n-1)}}$$

$$CKO = 0.069 \text{ °C}$$

СКО среднего результата (без учета объема выборки)

$$CKOcpeд := \sqrt{\frac{\displaystyle\sum_{j} \left[a_{1} \cdot Etp_{j} + a_{2} \cdot \left(Etp_{j}\right)^{2} - Ttp_{j}\right]^{2}}{n \cdot (n-1)}} \quad CKOcpeд = 0.015 \, ^{\circ}\!C$$

Расчет СКО, Δ Таv, для среднего результата (учет объема выборки) с включением коэффициента Стьюдента $t_{p \ st}$ при доверительной вероятности P=0.68 и n=21

tpst := 2.09
$$\Delta$$
Tav := tpst·СКОсред Δ Tav = 0.03167 °C

Построение градуировочной зависимости $T_{T\Pi}(E_{T\Pi})$ $TT\Pi(ET\Pi) := a_1 \cdot ET\Pi + a_2 \cdot ET\Pi^2$

Рис. 2. График отклонений экспериментальных точек $T_{tp\,j}$ от аппроксимирующей зависимости $T_{ttt}(E_{ttt})$, °C

Построение функции преобразования Е(Т)

 ${
m E_{craнд}}$ - значения Термо-ЭДС для стандартной хромель-алюмелевой термопары

i := 0..4

$$E_{\text{средH}}$$
 $T_{\text{станд}}$ $E_{\text{станд}}$ E_{ctang} $E_{$

Температура индивидуальной хромель-алюмелевой термопары

$$TT\Pi(Es) = \begin{pmatrix} 0\\21.145\\45.448\\62.609\\72.65 \end{pmatrix} \quad {}^{\circ}C$$

Поправка C, ${}^{\circ}$ C, есть абсолютное отклонение T_{cT} (температура стандартной термопары) от $T(E)_{cT}$ (температура индивидуальной термопары)

i := 1...5

$$C := TT\Pi(Es) - TcT$$
 °C $C = \begin{pmatrix} 0 \\ 0.1449 \\ 0.4478 \\ 0.609 \\ 0.6499 \end{pmatrix}$

Относительное значение поправки dC(T)

$$dC := \overline{\left(C \cdot \frac{100}{T_{T\Pi}(Es) + 0.00001}\right)} \% \qquad dC = \begin{pmatrix} 0\\ 0.685\\ 0.985\\ 0.973\\ 0.895 \end{pmatrix} \%$$

Рис. 3. Графики функции преобразования E(T); стандартной зависимости Es(T); поправки $C, ^{\infty}$; относительного отклонения $dC, ^{\infty}$

Оценка погрешности термодагчиков (цифровой и ртурный термометры)

$$Ts = \begin{pmatrix} 33.677 \\ 37.429 \\ 40.542 \\ 42.66 \end{pmatrix} \quad \text{OC} \qquad Tцифр := \begin{pmatrix} 35.4 \\ 40.3 \\ 45.5 \\ 50.3 \end{pmatrix} \qquad Tртут := \begin{pmatrix} 35.3 \\ 40.3 \\ 45.2 \\ 50.2 \end{pmatrix} \quad \text{OC}$$

СКО индивидуального измерения (смещенное) Δ Тцифр

$$\Delta$$
Тцифр := $\sqrt{\sum_{i=1}^4 \frac{\left(\mathrm{Tци} \varphi p_i - \mathrm{Ts}_i\right)^2}{4}}$ Δ Тцифр = 4.85 °C

СКО индивидуального измерения (смещенное) Δ Тртут

$$\Delta T$$
ртут := $\sqrt{\sum_{i=1}^{4} \frac{\left(T$ ртут $_{i} - T$ s $_{i}\right)^{2}}{4}}$ ΔT ртут = 4.728 °C