<u>Раздел 2.</u> Архитектура и стандартизация сетей передачи данных. Модель открытых систем **OSI**

Тема 2-03.

Аппаратное обеспечение сетей.

Сетевые адаптеры. Межсетевые соединительные средства. Концентратор, повторитель.

Курс Лекций: «Аппаратное и программное обеспечение ЭВМ и сетей Тема 2-03. Аппаратное обеспечение сетей. Сетевые адаптеры

Сетевой адаптер (Network Interface Card, NIC), сетевая карта (интерфейс) - это устройство компьютера (внешнее или интегрированное в материнскую плату), непосредственно взаимодействующее со средой передачи данных, которая прямо или через другое коммуникационное оборудование связывает его с другими компьютерами. Сетевой адаптер работает под управлением драйвера операционной системы и обычно выполняет следующие функции:

- Формирование кадра определенного формата из потока передаваемой информации. Кадр включает служебные поля: адрес компьютера назначения, собственный адрес, длина кадра, полезные данные и контрольную сумму кадра, по которой сетевой адаптер станции назначения делает вывод о корректности доставленной по сети информации.
- Получение доступа к физической среде передачи данных: каналы или линии связи, которые подразделяются на разделяемую среду (общая шина, кольцо), доступ к которым предоставляется по специальному алгоритму или индивидуальный канал (линия связи) компьютера с коммуникационным устройством сети. В этом случае в функции сетевого адаптера часто входит установление соединения с коммутатором сети.
- Кодирование последовательности бит кадра последовательностью электрических сигналов при передаче данных и декодирование при их приеме. Кодирование должно обеспечить передачу исходной информацию по линиям связи с определенной полосой пропускания и определенным уровнем помех таким образом, чтобы принимающая сторона смогла распознать с высокой степенью вероятности посланную информацию.

Курс Лекций: «Аппаратное и программное обеспечение ЭВМ и сетей Тема 2-03. Аппаратное обеспечение сетей. Сетевые адаптеры

- Преобразование информации из параллельной формы в последовательную и обратно. В вычислительных сетях информация передается по линиям связи в последовательной форме, бит за битом, а не побайтно, как внутри компьютера.
- Синхронизация битов, байтов и кадров. Для устойчивого приема передаваемой информации необходимо поддержание постоянного синхронизма приемника и передатчика информации. Сетевой адаптер использует для решения этой задачи специальные методы кодирования.

Сетевой адаптер (сетевая карта) применяется в локальных сетях и в зависимости от технологий локальных сетей подразделяется на:

- Сетевая карта Ethernet, Fast Ethernet, Gigabit Ethernet, 10Gigabit Ethernet (10GE). Самая распространенная сетевая карта. Использование протокола первого базового Ethernet позволяет карте работать на скорости 10 Мбит/с, протокола стандарта Fast Ethernet 100 Мбит/с, а протоколов Gigabit Ethernet 1,0 Gbit/s, 10Gigabit Ethrnet на 10 Gbit/s.
- Сетевая карта Token Ring (High Speed Token Ring). Использование протокола Token Ring позволяет карте работать на скоростях 4 и 16 Мбит/с. а протокола High Speed Token Ring на скоростях 100 и 155 Мбит/с.
- Сетевая карта FDDI (Fiber Distributed Data Interface) Используется в оптоволоконных сетях. Протокол FDDI работает на скорости 100 Мбит/с со времен исторически, когда скорости других протоколов ограничивались 10-16 Мбит с.

<u>Курс Лекций: «Аппаратное и программное обеспечение ЭВМ и сетей</u> Тема 2-03. Аппаратное обеспечение сетей. Сетевые адаптеры

Компоненты сетевого адаптера

Традиционно сетевой адаптер в основном состоит из контроллера, гнезда загрузочного ROM, одного или нескольких портов NIC, интерфейса подключения материнской платы, светодиодных индикаторов, некоторых других электронных компонентов. Каждый компонент сетевой карты имеет свою уникальную функцию:

- Контроллер: контроллер похож на мини-процессор, обрабатывает полученные данные. Будучи основной частью сетевого адаптера, контроллер напрямую определяет производительность сетевого адаптера.
- Разъем загрузочного ROM: этот разъем на плате обеспечивает возможность загрузки ROM. Загрузочное ПЗУ позволяет бездисковым рабочим станциям подключаться к сети, что повышает безопасность и снижает стоимость оборудования.
- Порт NIC для кабеля/модуля: Обычно этот порт соединяется непосредственно с кабелем Ethernet или модулем, который может генерировать и принимать электронные сигналы, которые накладываются на сетевой кабель или оптоволоконный кабель.
- Интерфейс шины: этот интерфейс находится на боковой стороне печатной платы, которая служит для соединения между сетевой картой и компьютером или сервером через подключение к их слоту расширения.
- Светодиодные индикаторы: Индикаторы помогают пользователям определить рабочее состояние сетевого адаптера, подключена ли сеть и переданы ли данные.
- Кронштейн для профиля: На рынке существует два типа кронштейнов для профиля. Один называется кронштейном полной высоты длиной 12см, а другой низкопрофильным кронштейном длиной 8см. Эта скобка может помочь пользователям закрепить сетевой адаптер в слоте расширения компьютера или сервера.

Тема 2-03. Аппаратное обеспечение сетей. Сетевые адаптеры Классификация адаптеров

На основе интерфейсов подключения к физической среде.

В зависимости от способа доступа сетевого адаптера к сети, существуют проводной сетевой адаптер и беспроводной сетевой адаптер подключает узел к сети с помощью кабеля, такого как медный кабель UTP—(Ethernet или оптоволоконный кабель. Беспроводной сетевой адаптер часто поставляется с небольшой антенной, которая использует радиоволны для связи с точкой доступа для подключения к беспроводной сети.

Классификация на основе шин интерфейсов материнской плать Сетевой адаптер ISA (Industry Standard Architecture: шина ISA была разработан 1981 году и представляла собой стандартную архитектуру шины для IBM-совместим истройств. Из-за низкой скорости передачи карт (9 Мбит/с) интерфейс шины

Сетевой адаптер PCI (Peripheral Component Interconnect: шина PCI бола в 1990 году, чтобы заменить предыдущий стандарт ISA. Он им риксированную ширину 32 бита (133 МБ/с передачи данных) и 64 бита (266 М

передачи данных). Сегодня многие РС не имеют шин РСІ.

ольше не является общепризнанным типом.

Сетевой адаптер PCI-X (Peripheral Component Interconnect eXtended): PCI-X - усовершенствованная технология шины PCI. Она работает на 64-битной скорост способна развивать скорость до 1064 МБ/с. Во многих случаях PCI-X обрасовместим с картами PCI NIC.

Курс Лекций: «Аппаратное и программное обеспечение ЭВМ и сетей Тема 2-03. Аппаратное обеспечение сетей. Сетевые адаптеры

Классификация на основе шин интерфейсов материнской платы

Сетевой адаптер PCIe (Peripheral Component Interconnect Express): шина **PCIe** является новейшим стандартом и сейчас популярна на материнских платах компьютеров и серверов. Адаптер PCIe NIC доступен в пяти версиях, в соответствии с пятью версиями шины PCIe x1, x4, x8, x16 и x32.

Классификация портов на основе кабельного подключения

Согласно различным типам подключаемых кабелей, можно найти четыре типа портов NIC. Порт RJ-45 используется для подключения с помощью кабеля витой пары (например, Cat5 и Cat6), порт AUI используется для толстого коаксиального кабеля (например, кабель AUI для модулей), порт BNC для тонкого коаксиального кабеля (например, кабель BNC) и оптический порт для модуля (например, 10G/25G модуль)

Классификация на основе скорости передачи

Основываясь на различных скоростях, на рынке представлены адаптивные карты 10 Мбит/с, 100 Мбит/с, 10/100 Мбит/с, 1000 Мбит/с, 10 Гбит/с, 25 Гбит/с или даже более высокоскоростные. Адаптивные сетевые карты NIC 10 Мбит/с, 100 Мбит/с и 10/100 Мбит/с подходят для небольших локальных сетей, домашнего использования или повседневных офисов. Сетевой адаптер 1000 Мбит/с обеспечивает более высокую пропускную способность в гигабитной сети. Что касается сетевых адаптеров 10 Гбит/с и 25 Гбит/с NIC или даже более высокоскоростных, они применяются в крупных предприятиях или центрах обработки данных.

Курс Лекций: «Аппаратное и программное обеспечение ЭВМ и сетей Тема 2-03. Аппаратное обеспечение сетей. Сетевые адаптеры

Классификации по областям применения

Сетевой адаптер NIC компьютера: В настоящее время большинство компьютеров имеют встроенную сетевую плату, поэтому во многих случаях сетевой адаптер не требуется. Обычно он поставляется со скоростью 10/100 Мбит/с и скоростью 1 Гбит/с и позволяет одному компьютеру обмениваться данными с другими компьютерами или сетями.

Сетевой адаптер сервера: Основная функция сетевого адаптера сервера заключается в управлении и обработке сетевого трафика. По сравнению с обычным сетевым адаптером для компьютера, серверным адаптерам обычно требуется более высокая скорость передачи данных, например 1Гбит/с 10G, 25G, 40G и даже 100G. Кроме того, серверные адаптеры имеют низкую загрузку СРU, поскольку у них есть специальный сетевой контроллер, который может выполнять многие задачи не нагружая центральный процессор компьютера - СРU. В настоящее время адаптеры РСІе, созданные на основе контроллера Intel, поддерживают многоядерные процессоры и оптимизируют виртуализацию серверов и сетей.

Тема 2-03. Аппаратное обеспечение сетей. Сетевые <mark>адаптеры</mark>

Учитывая старые стандарты особенности и характеристики сетевых карт можно представить в виде следующего короткого слайда:

Характеристики сетевых карт:

- **1. Разрядность.** 8 бит (самые старые), 16, 32 и 64 бита.
- **2.** <u>Шина данных</u>, по которой идет обмен информацией между материнской платой и сетевой картой: ISA, EISA, PCI PCI-X, PCIe.
- **3.** Микросхема контроллера или чип (Chip, chipset) определяет тип используемого совместимого оборудования.
- 4. Поддерживаемая сетевая среда передачи (network media) установленные на карте разъемы для подключения к определенному сетевому кабелю (витая пара, оптоволокно).
- **5.** <u>Скорость работы:</u> Ethernet 10Mbit и/или Fast Ethernet 100Mbit, Gigabit Ethernet 1000Base-T.
- **6. MAC-адрес.**

Тема 2-03. Аппаратное обеспечение сетей. Сетевые адаптеры.

Сетевая карта комбинированная RJ45, шина ISA

- 1 Разъем под витую пару (RJ-45)
- 2 Разъем для
- коаксиального
- провода (BNC)
- 3 Шина данных ISA
- 4 Панелька под
- микросхему BootrOM
- 5 Микросхема
- контроллера платы
- (Chip или Chipset)

Тема 2-03. Аппаратное обеспечение сетей. Сетевые адаптеры.

Сетевые карты PCI UTP rJ-45

- 1 Разъем под витую пару (RJ-45)
- 3 Шина данных РСІ
- 4 Панелька под микросхему BootrOM
- 5 Микросхемаконтроллера платы(Chiр или Chipset)

Тема 2-03. Аппаратное обеспечение сетей. Сетевые адаптеры.

Сетевые карты PCI UTP rJ-45

Тема 2-03. Аппаратное обеспечение сетей. Межсетевые соединительные средства.

Сетевые кабели бывают трех основных типов:

- 1. Витая пара (экранированная и не экранированная)
- 2. Коаксиальный кабель (тонкий и толстый)
- 3. Оптоволоконный кабель (одномодовый, многомодовый).

Неэкранированная витая пара Экранированная витая пара

Тема 2-03. *Межсетевые соединительные средс<mark>тва.</mark>*

Категория	X	арактеристика кабеля UTP cat. X		
	1- 2	Устаревшие стандарты кабелей. Передача голоса и низкоскоростных данных (до 20 Кбит/с).		
	3	Наиболее широко распространенный на западе кабель телефонной проводки. Передача голоса и данных.		
	4	Улучшенный вариант категории 3. Повышенная помехоустойчивость и низкие потери сигнала. На практике используются редко.		
	5	Основной тип кабеля, используемый в современных компьютерных системах. Большинство новых высокоскоростных протоколов ориентируются именно на витую пару пятой категории.		
	6- 7	Выпускаются сравнительно недавно. Основное назначение — поддержка высокоскоростных протоколов на отрезках кабеля большей длины, чем кабель категории 5. Кабель категории 7 по стоимости соизмерим с волоконно-оптическим кабелем, хотя характеристики волоконно-оптического кабеля выше. Поэтому ставится под сомнение целесообразность его применения.		

Тема 2-03. *Аппаратное обеспечение сетей.*

Межсетевые соединительные средства.

Экран

Тонкий коаксиальный кабель

Коаксиальный кабель (схема): Тонкий коаксиальный кабель RG-58 (иногда называется CheaperNet или ThinNet) представляет собой медный провод, экранированный при помощи оплетки. Толщина кабеля 6 мм.

Волновое сопротивление 50 Ом.

Толстый коаксиальный кабель

Толстый коаксиальный кабель (RG-8 и RG-11) имеет толщину 12 мм и бывает двух разновидностей: гибкий и жесткий. Он имеет большую степень помехозащищенности, большую механическую прочность, а также позволяет подключать новый компьютер к кабелю, не останавливая работу сети. Однако он сложен при прокладке, а для подключения к нему требуется специальное устройство (трансивер).

Тема 2-03. Аппаратное обеспечение сетей. Межсетевые соединительные средства.

Оптоволоконный кабель

состоит из центральной стеклянной или пластиковой нити толщиной в несколько микрон (световода), покрытой сплошной стеклянной оболочкой,

обладающей меньшим показателем преломления, чем световод. Отражаясь от покрывающего слоя оболочки лучи света не выходят за его пределы. Все это в свою очередь спрятано во внешнюю защитную оболочку. В качестве источников света в таких кабелях применяются светодиоды (длина волны 850 нм и 1300 нм) или полупроводниковые лазеры (длина волны 1300 нм и 1500 нм), а информация кодируется путем изменения интенсивности света.

Тема 2-03. *Межсетевые соединительные средс<mark>тва.</mark>*

Типы оптоволоконных кабелей

Тема 2-03. Аппаратное обеспечение сетей. Концентратор, повторитель

Повторитель (концентратор, hub) стал применяться ещё в начале 80-х гг. с целью расширения сегментов сети на коаксиальном кабеле с шинной топологией. Для сети Ethernet с "толстым" коаксиальным кабелем> 500м, а с "тонким" >-185 м.

Тема 2-03. Аппаратное обеспечение сетей. Концентратор, повторитель

Повторители бывают 2-х и многопортовыми. Двухпортовые повторители используются в сетях с шинной топологией, построенных на коаксиальном кабеле. Многопортовые повторители используются в сетях с топологией типа "звезда" (кабель "витая пара"). Двух и многопортовые повторители, получив пакет на одни из своих портов, просто передает его во все остальные порты.

Многопортовые повторители (концентраторы/hubs), в сетях построенных на кабеле "витая пара"- необходимое сетевое оборудование, чтобы соединить в сеть три и более компьютеров (физически топология "звезда", логически и функционально – "шина").

Многопортовый (концентратор/Hub)

повторитель

Сетевой концентратор (также хаб от англ. hub — центр) — устройство для объединения компьютеров в сеть Ethernet с применением кабельной инфраструктуры типа витая пара. В настоящее время вытеснены сетевыми коммутаторами. Концентраторы часто имели разъёмы для подключения к существующим сетям на базе толстого или тонкого коаксиального кабеля.

Концентратор работает на первом (физическом) уровне сетевой модели OSI, ретранслируя входящий сигнал с одного из портов в сигнал на все остальные (подключённые) порты, реализуя, таким образом, свойственную Ethernet топологию общая шина, с разделением пропускной способности сети между всеми устройствами и работой в режиме полудуплекса. Концентраторы Ethernet выполняют все стандартные функции 1-го уровня модели OSI (физического уровня) в том числе обнаружение и обработку коллизий. Коллизии (т.е. попытка двух и более устройств начать передачу одновременно) обрабатываются согласно протокола CSMA/CD Ethernet: абоненты сети самостоятельно прекращают передачу и возобновляют попытку через случайный промежуток времени.

Таким образом концентратор объединяет устройства в одном домене коллизий.

Тема 2-03. Аппаратное обеспечение сетей. Концентратор, повторитель

Многопортовый повторитель (концентратор/Hub)

На рисунке показан типичный концентратор Ethernet, рассчитанный на образование небольших сегментов разделяемой среды. Он имеет 16 портов стандарта 10Base-T с разъемами RJ-45, а также один порт AUI для подключения внешнего трансивера. Такой концентратор состоит из 16-ти (N-го) кол-ва портов MDI-X и одного гнездами MDI, для подключения компьютеров с обычными сетевыми картами (RJ-45), порта MDI и порта AUI.

Тема 2-03. Аппаратное обеспечение сетей. Концентратор, повторитель

Назначение портов:

- 1. Порт AUI (Attachment Unit Interface) служит для подключения трансивера магистрального «толстого Ethernet» кабеля, или оптического;
- 2. Порт MDI-X (Medium Dependent Interface) с перекрещиванием подключение компьютеров сети витой парой с прямой разводкой;
- 3. Порт MDI обычно- параллельный первому порту MDI-X, предназначен для подключение второго концентратора, при расширении сети.

Тема 2-03. *Аппаратное обеспечение сетей. Концентратор, повторитель* Различные модели концентраторов могут реализовывать и дополнительные функции:

- 1. <u>Использование резервных связей</u> определено в стандарте только в концентраторах FDDI. В концентраторах Ethernet/Fast Ethernet резервные связи всегда должны соединять отключенные порты, чтобы не нарушать логику работы сети.
- 2. Концентраторы способны <u>отключать некорректно работающие порты,</u> изолируя тем самым остальную часть сети от возникших в узле проблем. Эту функцию называют автосегментацией (autopartitioning).

3. Зашита от несанкционированного доступа:

- способ зашиты заключается в том, что администратор вручную связывает с каждым портом концентратора МАС-адрес сетевой карты ПК;
- шифрование. В концентраторах применяется простой метод случайного искажения поля данных в пакетах, передаваемых портам с адресом, отличным от адреса назначения пакета.

Тема 2-03. *Аппаратное обеспечение сетей. Концентратор, повторитель*

Изоляция портов: передача кадров только от станции с фиксированными адресами

Тема 2-03. Аппаратное обеспечение сетей. Концентратор, повторитель

Конструктивное исполнение

концентраторов

В зависимости от области применения концентраторы имеют то или иное конструктивное исполнение.

- 1. Концентраторы рабочих групп чаще всего выпускаются как устройства с фиксированным количеством портов это наиболее простое конструктивное исполнение.
- 2. корпоративные концентраторы как модульные устройства на основе шасси.
- 3. концентраторы отделов могут иметь стековую конструкцию, выполнен в виде отдельного корпуса без возможности замены отдельных его модулей.

Стековые концентраторы Ethernet

Объединение стековых

концентраторов в единое устройство

Тема 2-03. Аппаратное обеспечение сетей. Мост (Bridge)

Мосты позволяют преодолеть ограничение "не более четырех повторителей между любыми двумя компьютерами" за счет того, что работают не на физическом, а на канальном уровне модели OSI. Т.е. мост ретранслирует кадр не по битам, а полностью принимает кадр в свой буфер, и заново получает доступ к разделяемой среде и ретранслирует кадр в сеть. Помимо увеличения протяженности сети, мост также позволяет разбить ее на сегменты с независимыми разделяемыми средами, увеличив общую пропускную способность сети. Мост технологии Ethernet работает по «Алгоритму прозрачного моста». В процессе обращения компьютеров в сеть, через порты моста, последний запоминает МАС- адрес компьютера в таблице «адрес –порт» и далее, во время дальнейшей работы, мост направляет пакеты (кадры) только в нужный порт. Мост, используя данный алгоритм, позволяет снизить общую нагрузку в сети, разделяя сеть на сегменты. (Подробно в разделе 4). Мост также позволяет соединить между собой сегменты сети различных стандартов.

Тема 2-03. Аппаратное обеспечение сетей. Мост (Bridge)

Курс Лекций: «Аппаратное и программное обеспечение ЭВМ и сетей Тема 2-03. Аппаратное обеспечение сетей. Коммутатор

Коммутатор (switch) -работают на канальном уровне, поддерживают «алгоритм прозрачного моста», на каждый порт свой процессор EPP (Ethernet Packet Processor) и общий системный модуль, который координирует работу всех процессоров EPP. Switch (коммутатор) позволяет организовать сразу несколько параллельных соединений между различными парами портов, что повышает пропускную способность сети в несколько раз, но не может соединить несколько портов - к одному порту. Для повышения производительности Switch начинает ретрансляцию кадра, сразу после получения МАС адреса узла назначения, т.е. не дожидаясь полного получения кадра (режим Cut-Through или on-the-fly – «на лету»).

Поэтому коммутаторы в отличие от мостов обладают на порядок (как минимум) большей производительностью, зачастую наделяются дополнительными интеллектуальными функциями, такими как: поддержка VLAN (виртуальные локальные сети), поддержка «Алгоритма покрывающего дерева» -STA.

Курс Лекций: «Аппаратное и программное обеспечение ЭВМ и сетей Тема 2-03. Аппаратное обеспечение сетей. Коммутатор

Коммутаторы (switch's) - характеризуются двумя показателями производительности:

- Максимальная скорость ретрансляции пакетов измеряется при передаче пакетов из одного порта в другой, когда все остальные порты отключены.
- Совокупная скорость ретрансляции пакетов измеряется при активной работе всех имеющихся портов. Совокупная скорость больше максимальной, но максимальная скорость, как правило, не может быть обеспечена на всех портах одновременно.

Существует два класса коммутаторов:

- 1) Коммутаторы со сквозной передачей (Cut-Through); применяют конвейерную обработку пакетов коммутацию «на лету» (on-the-fly).;
- 2) Коммутаторы Store-and-Forward (SAF) полностью буферируют все кадры во буферной памяти FIFO. Размер каждого буфера должен быть не меньше максимальной длины кадра. Значительно возрастает задержка коммутации- не менее 12000 бит интервалов. Коммутаторы (SAF) способны отфильтровывать (не пересылать) ошибочные пакеты (меньше 512 бит и с неправильной контрольной суммой), могут поддерживать одновременно разные скорости передачи (10 Мбит/с,100 и 1000 Мбит/с).

Курс Лекций: «Аппаратное и программное обеспечение ЭВМ и сетей Тема 2-03. Аппаратное обеспечение сетей. Коммутатор

Функция	Налету	С буферизацией
Защита от плохих кадров	Нет	Да
Трансляция протоколов	Нет	Да
разнородных сетей		
(Ethernet Token Ring,		
FDDI, ATM)		
Задержка передачи	Низкая (5-40 мкс) при	Средняя при
пакетов	низкой нагрузке,	любой нагрузке
	средняя при высокой	
	нагрузке	
Поддержка резервных	Нет	Да
связей		
Функция анализа	Нет	Да
трафика		

Тема 2-03. *Аппаратное обеспечение сетей. Комму<mark>татор</mark>*

Типы коммутаторов

По конструктивному исполнению:

- •коммутаторы с фиксированным количеством портов
- •модульные коммутаторы на основе шасси
- •стековые коммутаторы
- •модульно-стековые коммутаторы.

Различия между НИМИ аналогичны различиям между соответствующими типами концентраторов

По способу коммутации портов в коммутаторе :

- коммутаторы на основе коммутационной матрицы;
- коммутаторы с общей шиной;
- коммутаторы с разделяемой памятью;
- комбинированные коммутаторы.

Тема 2-03. *Аппаратное обеспечение сетей. Комму<mark>татор</mark>*

Коммутаторы на основе коммутационной матрицы

Тема 2-03. *Аппаратное обеспечение сетей. Комму<mark>татор</mark>*

Коммутаторы с общей шиной

Тема 2-03. *Аппаратное обеспечение сетей. Комму<mark>татор</mark>*

Коммутаторы с разделяемой памятью

Тема 2-03. *Аппаратное обеспечение сетей. Комму<mark>татор</mark>*

Комбинированные коммутаторы

Тема 2-03. Аппаратное обеспечение сетей. Маршрутизатор (Router)

Маршрутизатор (router).

Маршрутизаторы работают на сетевом уровне (3-й уровень OSI), используя при этом ІР адреса. Маршрутизатор необходим для объединения разнородных сетей, построенных на различных технологиях канального уровня Fast Ethernet и FDDI, Token Ring и т.п., также сегментов Ethernet, построенных на концентраторах, мостах и коммутаторах. Маршрутизаторы не накладывают ограничений на топологию сети. Топология сети с маршрутизаторами может быть произвольной, отличии от коммутаторов, мостов и концентраторов Ethernet, которые поддерживают древовидную топологию. Основная задача маршрутизатора 1) проложить оптимальный маршрут по сети с любой топологией и любого размера, продвинуть пакеты по проложенному маршруту. Маршрутизаторы продвигают пакеты на основании таблиц маршрутизации, которые могут быть администратором сети или построены с помощью в ручную динамических протоколов таких как RIP, OSPF, IS-IS, NLSP и др. Кроме того, использование маршрутизаторов позволяет структурировать сеть (подсеть отдела бухгалтерии и т.п.) и легче реализовывать политику кадров, подсеть безопасности, за счет использования межсетевых экранов.

Литература:

1) В.Т. Олифер. Н.А. Олифер "Компьютерные сети", с.274