Real Analysis II Homework 6

Submission is **NOT** mandatory

Solve the following problems.

Problem 1 Prove that for $1 \le p < \infty$ and a measurable function f(x, y),

$$\left(\int \left(\int |f(x,y)|dx\right)^p dy\right)^{\frac{1}{p}} \le \int \left(\int |f(x,y)|^p dy\right)^{\frac{1}{p}} dx$$

Problem 2 Suppose that the sequence $\{f_k\}$ converges weakly in L^2 to f. If $||f_k||_2 \to ||f||_2$, show that $f_k \to f$ in L^2 norm.

Problem 3 Let $\{\phi_k\}$ be a complete orthonormal system in L^2 and let $m = \{m_k\}$ be a fixed bounded sequence of numbers.

If
$$f \in L^2$$
 and $f \sim \sum c_k \phi_k$, define $T(f)$ by $T(f) \sim \sum m_k c_k \phi_k$.

Such an operator is called a Fourier multiplier operator. Show that

$$||T|| = \sup_{f \in L^2} \frac{||T(f)||_2}{||f||_2} \le ||m||_{l^{\infty}}$$

Problem 4 Let f be a continuous real-valued function on \mathbb{R} that has derivatives of all orders. Suppose that for every real number x, there is an index n = n(x) for which $f^{(n)}(x) = 0$. Show that f is a polynomial. (Hint: Apply the Baire Category Theorem twice.)