

From RSA to Camenisch-Lysyanskaya in 5 minutes

Maja Reißner

October 18, 2022

Privacy - Selective Disclosure And Unlinkability

Coronavirus pass

Maja Reißner has a vaccination proof which expires 30.10.2022.

Privacy - Selective Disclosure And Unlinkability

Coronavirus pass

Maja Reißner has a vaccination proof which expires 30.10.2022.

sign

Coronavirus pass

Maja Reißner has a xxxxxxxx proof which expires 30.10.2022.

sign

$\mathsf{RSA} \Rightarrow \mathsf{Camenisch-Lysyanskaya}$

Textbook RSA:

$$A = M^d \mod n$$

Verify with:

$$A^e = M \mod n$$

Coronavirus pass

Maja Reißner has a vaccination proof which expires 30.10.2022.

RSA ⇒ Camenisch-Lysyanskaya

Textbook RSA:

$$A = M^d \mod n$$

Verify with:

$$A^e = M \mod n$$

Camenisch-Lysyanskaya signature scheme:

$$M = \frac{Z}{S^{\nu} R_1^{a_1} R_2^{a_2} R_3^{a_3}}$$

Coronavirus pass

Maja Reißner has a vaccination proof which expires 30.10.2022.

sign

Coronavirus pass

name: Maja Reißner, type: vaccination,

expiration: **30.10.2022**

A, e, v

RSA ⇒ Camenisch-Lysyanskaya

Textbook RSA:

$$A = M^d \mod n$$

Verify with:

$$A^e = M \mod n$$

Camenisch-Lysyanskaya signature scheme:

$$M = \frac{Z}{S^{\nu} R_1^{a_1} R_2^{a_2} R_3^{a_3}}$$

$$A^e = \frac{Z}{S^v R_1^{a_1} R_2^{a_2} R_3^{a_3}} \bmod n$$

Coronavirus pass

Maja Reißner has a vaccination proof which expires 30.10.2022.

sign

Coronavirus pass

name: Maja Reißner,

type: vaccination,

expiration: **30.10.2022**

A, e, v

Selective Disclosure

$$A^e = rac{Z}{S^v R_1^{a_1} R_2^{a_2} R_3^{a_3}} \mod n$$
 $H = R_2^{a_2}$

Coronavirus pass

name: Maja Reißner,

type: xxxxxxxx,

expiration: 30.10.2022

3

Selective Disclosure

$$A^e = \frac{Z}{S^v R_1^{a_1} R_2^{a_2} R_3^{a_3}} \mod n$$

$$H = R_2^{a_2}$$

$$A^e = \frac{Z}{S^{\mathsf{v}} R_1^{\mathsf{a}_1} H R_3^{\mathsf{a}_3}} \bmod n$$

Coronavirus pass

name: Maja Reißner,

Type: xxxxxxxx, expiration: 30.10.2022

3

Unlinkability

$$A^e = \frac{Z}{S^v R_1^{a_1} H R_3^{a_3}} \bmod n$$

Coronavirus pass

name: Maja Reißner,

type: xxxxxxxx,

expiration: 30.10.2022

4

Unlinkability

$$\tilde{A}^e = \frac{Z}{S^{\tilde{v}} R_1^{a_1} H R_3^{a_3}} \bmod n$$

Modify equation:

$$\tilde{A} = AS^r \mod n$$
 $\tilde{v} = v - er$

Coronavirus pass

name: Maja Reißner,

Lype: xxxxxxx, expiration: 30.10.2022 \tilde{A}, x, x

RSA ⇒ Camenisch-Lysyanskaya

$$A^e = M \mod n$$

$$\downarrow$$

$$A^e = \frac{Z}{S^v R_1^{a_1} R_2^{a_2} R_3^{a_3}} \bmod n$$

Coronavirus pass

Maja Reißner has a vaccination proof which expires 30.10.2022.

sigr

Coronavirus pass

name: Maja Reißner,

type: xxxxxxxx,

expiration: 30.10.2022

The end.