

Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes

Nature Genetics 47, 106-114 (2015) doi:10.1038/ng.3168

Max Leiserson RECOMB 2015 April 14, 2015

Identifying cancer driver genes

Cancer Genome Landscapes ">99.9% of mutations are passengers"

Vogelstein et al. (2013)

"3-8 drivers per tumor"

Identifying cancer driver genes

Cancer Genome Landscapes ">99.9% of mutations are passengers" Vogelstein *et al.* (2013) "3-8 drivers per tumor"

Compare variation across tumors

•

- Single nucleotide variants
- Copy number aberrations
- Gene expression
- ...

Identifying cancer driver genes

Cancer Genome Landscapes ">99.9% of mutations are passengers" Vogelstein et al. (2013) "3-8 drivers per tumor"

Compare variation across tumors

- Single nucleotide variants
- Copy number aberrations
- Gene expression
-

Identify cancer driver genes

Mutations weighted by:

- Recurrence
- Gene length
- Mutation context
- Expression level
- Replication timing

• ..

Driver mutations confer a growth advantage to the tumor

→ driver genes are members of cancer signaling pathways

Driver mutations confer a growth advantage to the tumor → driver genes are members of cancer signaling pathways

Vogelstein et al. (Science 2013)

Driver mutations confer a growth advantage to the tumor → driver genes are members of cancer signaling pathways

Vogelstein et al. (Science 2013)

Driver mutations confer a growth advantage to the tumor → driver genes are members of cancer signaling pathways

Vogelstein et al. (Science 2013)

Input data

Mutation data

(e.g. most mutated genes: EGFR, KRAS, BRAF)

Gene set database

Input data

Mutation data

(e.g. most mutated genes:

EGFR, KRAS, BRAF)

Gene set database

Enrichment tests

GSEA [1,2]

DAVID [3,4]

^[1] Mootha et al. Nat. Genet. (2003). [3] Huang et al. Nat. Protoc. (2009).

^[2] Subramanian et al. PNAS (2005). [4] Huang et al. Nucleic Acids Res. (2009)

Gene set database

Selective growth

^[2] Subramanian et al. PNAS (2005). [4] Huang et al. Nucleic Acids Res. (2009)

Gene set database

Key drawbacks

- Novel pathways and crosstalk?
- Topology of interactions?
- Handling large and/or overlapping pathways?

Significantly mutated subnetworks of a protein-protein interaction network

Protein-protein interaction networks

- Nodes: genes/protein
- Edges: connect genes if the proteins they encode physically interact.

Unweighted, undirected.

Goal: identify connected subnetworks with more mutations than expected by chance.

Significantly mutated subnetworks of a protein-protein interaction network

Goal: identify connected

Protein-protein interaction networks

- Nodes: genes/protein
- Edges: connect genes if the

subnetworks with more mutations than expected by proteins they encode physically chance. interact.

Significantly mutated subnetworks of a protein-protein interaction network

Protein-protein interaction networks

Network	Nodes	Edges	Diameter	ASP
HPRD	9,205	36,720	14	4.22
HINT+HI2012	9,859	40,705	14	4.08
iRefIndex	12,129	91,809	12	3.64
MultiNet	14,399	109,570	9	3.39

Low diameter → Most genes have a high-scoring neighbor

Goal: identify connected subnetworks with more mutations than expected by chance.

~10¹⁸ subnetworks of size k=5

Significantly mutated subnetworks of a protein-protein interaction network

Protein-protein interaction networks

Network	Nodes	Edges	Diameter	ASP
HPRD	9,205	36,720	14	4.22
HINT+HI2012	9,859	40,705	14	4.08
iRefIndex	12,129	91,809	12	3.64
MultiNet	14,399	109,570	9	3.39

Low diameter → Most genes have a high-scoring neighbor

Goal: identify connected subnetworks with more mutations than expected by chance.

Must analyze mutations and *local topology* simultaneously!

Outline

1. A new algorithm, HotNet2.

2. Application to TCGA Pan-Cancer data.

3. Comparison of HotNet2 to other methods.

Encoding mutations and graph topology with heat diffusion

Encoding mutations and graph topology with heat diffusion

HotNet (Vandin et al. JCB & RECOMB 2010)

HotNet applied to TCGA data

TCGA Papers

(~300 samples)

- · Leukemia (NEJM 2013)
- Kidney (Nature 2011)
- Ovarian (Nature 2011)

HotNet (Vandin et al. JCB & RECOMB 2010)

HotNet applied to TCGA data

TCGA Pan-Cancer (>3000 samples)

TCGA Papers (~300 samples)

- · Leukemia (NEJM 2013)
- Kidney (Nature 2011)
- Ovarian (Nature 2011)

HotNet finds many "star" subnetworks with one central, hot node

HotNet (Vandin et al. JCB & RECOMB 2010)

HotNet Algorithm

Input

$$\begin{pmatrix} h_1 \\ \cdot \\ \cdot \\ \cdot \\ h_n \end{pmatrix}$$

A = adjacency matrix

Output

Connected components

Threshold at δ

 s_{ij} = heat on vertex i at time t given initial heat h_i on vertex *j* at time 0.

Direction of heat is important → HotNet can fail

HotNet's heat is symmetric

Potential artifacts

u sends the sameheat to v eventhough u has muchhigher degree

Hot nodes with high degree often form large "star" subnetworks with many cold nodes

 s_{ij} = heat on vertex i at time t given initial heat h_j on vertex j at time 0.

HotNet2 algorithm

(HotNet diffusion oriented subnetworks)

Need to consider the source of heat

Encode directionality with asymmetric heat diffusion.

- Hot genes do not necessarily implicate their neighbors.
- Hot subnetworks have a directed path between each pair of nodes.

Leiserson, Vandin *et al. Nat. Genet.* (2015). http://compbio.cs.brown.edu/projects/hotnet2

HotNet2 algorithm

(HotNet diffusion oriented subnetworks)

Need to consider the source of heat

Encode directionality with asymmetric heat diffusion.

- Hot genes do not necessarily implicate their neighbors.
- Hot subnetworks have a directed path between each pair of nodes.

Identify strongly connected components

TCGA Papers

Gastric, *Nature* (2014) Thyroid, *Cell* (2014)

. .

Leiserson, Vandin *et al. Nat. Genet.* (2015). http://compbio.cs.brown.edu/projects/hotnet2

HotNet2 vs. HotNet

Input

$$\begin{pmatrix} h_1 \\ \cdot \\ \cdot \\ \cdot \\ h_n \end{pmatrix}$$

A = adjacency matrix

h = gene scores

HotNet:

diffusion

 h_1 hn

$$\begin{pmatrix} S_{11} & \cdot & \cdot & S_{1n} \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ S_{n1} & \cdot & \cdot & S_{nn} \end{pmatrix}$$

Similarity matrix (asymmetric)

Heat kernel f(A, t) HotNet2: Insulated heat

Diffusion matrix (HotNet: symmetric

HotNet2: asymmetric)

Statistical test

Evaluate graph partition with rigorously bounded False Discovery Rate (FDR)

 $\mathbf{X}_{\mathbf{k}}$: number of subnetworks of size $\geq \mathbf{k}$

 $Pr(X_k \ge x_k \mid h, \delta)$

Outline

1. A new algorithm, HotNet2.

2. Application to TCGA Pan-Cancer data.

3. Comparison of HotNet2 to other methods.

TCGA Pan-Cancer

Tumor samples

Cancer	Samples	Color
BLCA	99	
BRCA	772	
COAD/READ	224	
GBM	291	
HNSC	306	
KIRC	417	
LAML	196	
LUAD	230	
LUSC	178	
OV	316	
UCEC	248	

3,110 tumors of 12 cancer types

Mutations

SNVs and CNAs in 3,110 samples among 11,565 *expressed* genes

HotNet2 runs on TCGA Pan-Cancer dataset

HotNet2 runs on TCGA Pan-Cancer dataset

HINT+HI2012 (P < 0.01)

40,704 interactions 9,858 proteins

iRefIndex 9.0 (P < 0.01)

91,808 interactions 12,128 proteins

Multinet (P < 0.01)

109,569 interactions 14,398 proteins

HotNet2 runs on TCGA Pan-Cancer dataset

HINT+HI2012 (P < 0.01)

40,704 interactions 9,858 proteins

iRefIndex 9.0 (P < 0.01)

91,808 interactions 12,128 proteins

Multinet (P < 0.01)

109,569 interactions 14,398 proteins

Consensus subnetworks

16 consensus subnetworks with \geq 4 genes (P=0.004)

13 "linkers" between consensus subnetworks

TPR = Sensitivity

HotNet2 Consensus

HotNet2 Runs

HINT+HI2012 (*P* < 0.01) iRefIndex 9.0 (*P* < 0.01) Multinet (*P* < 0.01)

Interaction networks

FPR = 1-Specificity

HotNet2 Consensus

HotNet2 Runs

HINT+HI2012 (*P* < 0.01) iRefIndex 9.0 (*P* < 0.01) Multinet (*P* < 0.01)

Interaction networks

FPR = 1-Specificity

HotNet2 Consensus

HotNet2 Runs

HINT+HI2012 (*P* < 0.01) iRefIndex 9.0 (*P* < 0.01) Multinet (*P* < 0.01)

Consensus

16 consensus subnetworks13 "linkers" between subnetworks

Interaction networks

Multinet (110K edges)

Main Idea: Incorporate lowconfidence edges but give highconfidence edges more weight.

Consensus

• ? HINT+HI2012 (40K edges) Consensus 2

2
3
2
1

FPR = 1-Specificity

Consensus Graph
Edges connect genes identified by
HotNet2 in the same subnetwork.

HotNet2 Consensus Subnetworks

Frequently and rarely mutated cancer genes

Frequently and rarely mutated cancer genes

Well-known cancer pathways

- PI(3)K signaling
- p53 signaling
- NOTCH signaling
- ErbB signaling
- Linkers: HRAS, STK11, ATM

Frequently and rarely mutated cancer genes

Well-known cancer pathways

- PI(3)K signaling
- p53 signaling
- NOTCH signaling
- ErbB signaling
- Linkers: HRAS, STK11, ATM

Recently characterized complexes:

- SWI/SNF complex
- ASCOM complex
- BAP1 complex

Frequently and rarely mutated cancer genes

Well-known cancer pathways

- PI(3)K signaling
- p53 signaling
- NOTCH signaling
- ErbB signaling
- Linkers: HRAS, STK11, ATM

Recently characterized complexes:

- SWI/SNF complex
- ASCOM complex
- BAP1 complex

Potentially novel complexes:

- Cohesin complex
- Condensin complex
- MHC Class I proteins

Frequently and rarely mutated cancer genes

Well-known cancer pathways

- PI(3)K signaling
- p53 signaling
- NOTCH signaling
- ErbB signaling
- Linkers: HRAS, STK11, ATM

Recently characterized complexes:

- SWI/SNF complex
- ASCOM complex
- BAP1 complex

Potentially novel complexes;

- Cohesin complex
- Condensin complex
- MHC Class I proteins

SWI/SNF complex

SWI/SNF complex

SWI/SNF complex

Cohesin and condensin complexes

Cohesin complex

- 4/5 members of complex
- Involved in sister chromatid cohesion and gene regulation.
- Mutated in >4% of samples in each cancer type.

SMC1

SMC3

RAD2

(Scc1)

SA1/2 (Scc3)

Cohesin and condensin complexes

Cohesin complex

- 4/5 members of complex
- Involved in sister chromatid cohesion and gene regulation.
- Mutated in >4% of samples in each cancer type.

RAD2

(Scc1)

SA1/2 (Scc3)

SMC₁

SMC3

Condensin complex

- 6/8 members of complex
- Involved in sister chromatid condensation and gene regulation.
- Somatic mutations and expression validated using whole-genome sequencing and RNA-Seq

SMC4

NCAPD3

NCAPG2

■ LUSC: 0.015

Outline

1. A new algorithm, HotNet2.

2. Application to TCGA Pan-Cancer data.

3. Comparison of HotNet2 to similar methods.

HotNet2 outperforms other methods on real data

No gold standard dataset → compare methods at identifying putative cancer genes

Dataset of putative cancer genes

Cancer genes have:

- 1. \geq 20% truncating mutations; or,
- 2. ≥ 20% mutations clustered at a locus.

Vogelstein et al. (Science, 2013)

Summary

- HotNet2: Novel algorithm that analyzes topology and mutations simultaneously with asymmetric heat diffusion.
- Identifies known and novel pathways and complexes with frequently and rarely mutated genes on TCGA Pan-Cancer data.
- Future work:
 - Alternate graph partitioning algorithms?
 - Other applications: gene expression, GWAS, social networks, etc.

Summary

 HotNet2: Novel algorithm that analyzes topology and mutations simultaneously with asymmetric heat diffusion.

- Identifies known and novel pathways and complexes with frequently and rarely mutated genes on TCGA Pan-Cancer data.
- Future work:
 - Alternate graph partitioning algorithms?
 - Other applications: gene expression, GWAS, social networks, etc.

Acknowledgements

Research Group

Ben Raphael

Fabio Vandin
Hsin-Ta Wu
Jason R. Dobson
Matt Reyna
Jonathan Eldridge
Alexandra Papoutsaki
Jacob Thomas
Younhun Kim

CCMB

Collaborators

Beifang Niu Michael McLellan Li Ding

Michael Lawrence Gad Getz

Nuria Lopez-Bigas Abel Gonzalez-Perez David Tamborero

Yuwei Chang Greg Ryslik

Funding & Data NSF Travel Fellowship to RECOMB 2015

