Bài 11. Tích vô hướng của hai vectơ

A. Lý thuyết

1. Góc giữa hai vectơ

Cho hai vecto \vec{u} và \vec{v} khác $\vec{0}$. Từ một điểm A tùy ý, vẽ các vecto $\overrightarrow{AB} = \vec{u}$ và $\overrightarrow{AC} = \vec{v}$. Khi đó, số đo của góc BAC được gọi là số đo góc giữa hai vecto \vec{u} và \vec{v} hay đơn giản là góc giữa hai vecto \vec{u} , \vec{v} , kí hiệu là (\vec{u}, \vec{v}) .

Chú ý:

+ Quy ước rằng góc giữa hai vecto \vec{u} và $\vec{0}$ có thể nhận một giá trị tùy ý từ 0° đến 180° .

+ Nếu $(\vec{u}, \vec{v}) = 90^{\circ}$ thì ta nói rằng \vec{u} và \vec{v} vuông góc với nhau. Kí hiệu $\vec{u} \perp \vec{v}$ hoặc $\vec{v} \perp \vec{u}$. Đặc biệt $\vec{0}$ được coi là vuông góc với mọi vecto.

Ví dụ: Cho tam giác ABC vuông tại A và $B = 30^{\circ}$. Tính $(\overrightarrow{AB}, \overrightarrow{AC})$, $(\overrightarrow{CA}, \overrightarrow{CB})$, $(\overrightarrow{AB}, \overrightarrow{BC})$.

Hướng dẫn giải

Ta có
$$(\overrightarrow{AB}, \overrightarrow{AC}) = BAC = 90^{\circ}$$
.

Tam giác ABC vuông tại A nên ta có

$$ACB + ABC = 90^{\circ} \Rightarrow ACB = 90^{\circ} - ABC = 90^{\circ} - 30^{\circ} = 60^{\circ}$$
.

Suy ra:
$$(\overrightarrow{CA}, \overrightarrow{CB}) = ACB = 60^{\circ}$$
.

Vẽ
$$\overrightarrow{BD}$$
 sao cho $\overrightarrow{BD} = \overrightarrow{AB}$. Khi đó $(\overrightarrow{AB}, \overrightarrow{BC}) = (\overrightarrow{BD}, \overrightarrow{BC}) = CBD$.

Mặt khác ABC+CBD=180° (hai góc kề bù)

Suy ra CBD=
$$180^{\circ}$$
 - ABC= 180° - 30° = 150° .

Do đó,
$$(\overrightarrow{AB}, \overrightarrow{BC}) = CBD = 150^{\circ}$$
.

$$\overrightarrow{Vay}$$
 $(\overrightarrow{AB}, \overrightarrow{AC}) = 90^{\circ}, (\overrightarrow{CA}, \overrightarrow{CB}) = 60^{\circ}, (\overrightarrow{AB}, \overrightarrow{BC}) = 150^{\circ}.$

2. Tích vô hướng của hai vectơ

Tích vô hướng của hai vectơ khác vectơ-không \vec{u} và \vec{v} là một số, kí hiệu là \vec{u} . \vec{v} , được xác định bởi công thức sau:

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = |\vec{\mathbf{u}}| \cdot |\vec{\mathbf{v}}| \cdot \cos(\vec{\mathbf{u}}, \vec{\mathbf{v}}).$$

Chú ý:

+)
$$\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$$
.

+) \vec{u} . \vec{u} còn được viết là \vec{u}^2 và được gọi là bình phương vô hướng của vecto \vec{u} .

Ta có
$$\vec{u}^2 = |\vec{u}| \cdot |\vec{u}| \cdot \cos 0^\circ = |\vec{u}|^2$$
.

(Bình phương vô hướng của một vectơ bằng bình phương độ dài của vectơ đó.)

Ví dụ: Cho tam giác đều ABC có cạnh bằng 2 và có đường cao AH. Tính các tích vô hướng:

- a) $\overrightarrow{AB}.\overrightarrow{AC}$;
- b) $\overrightarrow{AH}.\overrightarrow{BC}$.

Hướng dẫn giải

a) Vì tam giác ABC đều nên $(\overrightarrow{AB}, \overrightarrow{AC}) = BAC = 60^{\circ}$.

Suy ra: $\overrightarrow{AB}.\overrightarrow{AC} = |\overrightarrow{AB}|.|\overrightarrow{AC}|\cos(\overrightarrow{AB},\overrightarrow{AC}) = 2.2.\cos 60^{\circ} = 2.2.\frac{1}{2} = 2.$

 $\overrightarrow{AB}.\overrightarrow{AC} = 2.$

b) Vì AH là đường cao của tam giác ABC nên AH ⊥ BC.

Do đó $(\overrightarrow{AH}, \overrightarrow{BC}) = 90^{\circ}$.

Ta có:

 $\overrightarrow{AH}.\overrightarrow{BC} = |\overrightarrow{AH}|.|\overrightarrow{BC}|\cos(\overrightarrow{AH},\overrightarrow{BC}) = |\overrightarrow{AH}|.|\overrightarrow{BC}|\cos 90^{\circ} = |\overrightarrow{AH}|.|\overrightarrow{BC}|.0 = 0.$

Vậy $\overrightarrow{AH}.\overrightarrow{BC} = 0$.

3. Biểu thức tọa độ và tính chất của tích vô hướng

• Tích vô hướng của hai vector $\vec{u}=(x;y)$ và $\vec{v}=(x';y')$ được tính theo công thức :

$$\vec{u} \cdot \vec{v} = x \cdot x' + y \cdot y'$$
.

Nhận xét:

+ Hai vecto \vec{u} và \vec{v} vuông góc với nhau khi và chỉ khi x.x' + y.y' = 0.

+ Bình phương vô hướng của $\vec{u} = (x; y)$ là $\vec{u}^2 = x^2 + y^2$.

$$+ \ N \hat{e} \ \vec{u} \ \vec{v} \neq \vec{0} \ \ \vec{v} \ \vec{v} \neq \vec{0} \ \ t \\ \hat{v} \ \vec{v} \ \vec{v} \) = \frac{\vec{u}.\vec{v}}{|\vec{u}|.|\vec{v}|} = \frac{xx' + yy'}{\sqrt{x^2 + y^2}.\sqrt{x'^2 + y'^2}} \, .$$

Ví dụ: Trong mặt phẳng tọa độ cho hai vecto $\vec{u} = (0; -5)$ và $\vec{v} = (\sqrt{3}; 1)$.

- a) Tính tích vô hướng của hai vectơ trên.
- b) Tìm góc giữa của hai vecto trên.

Hướng dẫn giải

a) Ta có:
$$\vec{u} \cdot \vec{v} = 0.\sqrt{3} + (-5).1 = -5.;$$

$$\vec{v}$$
 $\vec{u} \cdot \vec{v} = -5$.

b) Ta có
$$|\overrightarrow{u}| = \sqrt{0^2 + (-5)^2} = 5$$
; $|\overrightarrow{v}| = \sqrt{(\sqrt{3})^2 + 1^2} = 2$

Suy ra:
$$\cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} = \frac{-5}{5.2} = \frac{-5}{10} = \frac{-1}{2}$$
.

Suy ra $(\vec{u}, \vec{v}) = 120^{\circ}$.

Vậy
$$(\vec{u}, \vec{v}) = 120^{\circ}$$
.

• Tính chất của tích vô hướng:

Với ba vecto \vec{u} , \vec{v} , \vec{w} bất kì và mọi số thực k, ta có:

+)
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$
 (tính chất giao hoán);

+) $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ (tính chất phân phối đối với phép cộng);

+)
$$(\vec{ku}) \cdot \vec{v} = \vec{k} (\vec{u} \cdot \vec{v}) = \vec{u} \cdot (\vec{kv}).$$

Chú ý: Từ tính trên, ta có thể chứng minh được:

 $\vec{u} \cdot (\vec{v} - \vec{w}) = \vec{u} \cdot \vec{v} - \vec{u} \cdot \vec{w}$ (tính chất phân phối đối với phép trừ);

$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u}.\vec{v} + \vec{v}^2; (\vec{u} - \vec{v})^2 = \vec{u}^2 - 2\vec{u}.\vec{v} + \vec{v}^2;$$

$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u}^2 - \vec{v}^2$$
.

Ví dụ: Cho tam giác ABC. Chứng minh rằng với điểm M tùy ý ta có:

$$\overrightarrow{MA}.\overrightarrow{BC} + \overrightarrow{MB}.\overrightarrow{CA} + \overrightarrow{MC}.\overrightarrow{AB} = 0$$
.

Hướng dẫn giải

Ta có $\overrightarrow{MA}.\overrightarrow{BC} = \overrightarrow{MA}.(\overrightarrow{MC} - \overrightarrow{MB}) = \overrightarrow{MA}.\overrightarrow{MC} - \overrightarrow{MA}.\overrightarrow{MB};$ (1)

$$\overrightarrow{MB}.\overrightarrow{CA} = \overrightarrow{MB}.(\overrightarrow{MA} - \overrightarrow{MC}) = \overrightarrow{MB}.\overrightarrow{MA} - \overrightarrow{MB}.\overrightarrow{MC};$$
 (2)

$$\overrightarrow{MC}.\overrightarrow{AB} = \overrightarrow{MC}.(\overrightarrow{MB} - \overrightarrow{MA}) = \overrightarrow{MC}.\overrightarrow{MB} - \overrightarrow{MC}.\overrightarrow{MA}.$$
 (3)

Cộng các kết quả từ (1), (2), (3), ta được: $\overrightarrow{MA}.\overrightarrow{BC} + \overrightarrow{MB}.\overrightarrow{CA} + \overrightarrow{MC}.\overrightarrow{AB} = 0$

$$\overrightarrow{Vay} \overrightarrow{MA}.\overrightarrow{BC} + \overrightarrow{MB}.\overrightarrow{CA} + \overrightarrow{MC}.\overrightarrow{AB} = 0.$$

B. Bài tập tự luyện

B1. Bài tập trắc nghiệm

Câu 1. Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau?

A.
$$\vec{a}$$
 1;-1 và \vec{b} -1;1.

B.
$$\vec{n}$$
 1;1 và \vec{k} 2;0.

C.
$$\vec{u}$$
 2;3 và \vec{v} 4;6.

D. z a; b và \vec{t} -b; a.

Hướng dẫn giải

Đáp án đúng là D

Ta có: $\vec{a}.\vec{b}=1$. -1+-1. $1=-1+-1=-2\neq 0$. Suy ra hai vecto \vec{a},\vec{b} không vuông góc với nhau. Do đó A sai.

Ta có: $\vec{n}.\vec{k} = 1.2 + 1.0 = 2 + 0 = 2 \neq 0$. Suy ra hai vecto \vec{n}, \vec{k} không vuông góc. Do đó B sai.

Ta có: $\vec{u}.\vec{v} = 2.4 + 3.6 = 8 + 18 = 26 \neq 0$. Suy ra hai vecto \vec{u}, \vec{v} không vuông góc. Do đó C sai.

Ta có: $\vec{z} \cdot \vec{t} = a$. $-b + b \cdot a = -ab + ab = 0$. Suy ra hai vecto \vec{z} , \vec{t} vuông góc với nhau. Do đó D đúng.

Câu 2. Góc giữa vecto \vec{a} -1; -1 và vecto \vec{b} -1; 0 có số đo bằng:

A. 90°.

B. 0°.

C. 135°.

D. 45°.

Hướng dẫn giải

Đáp án đúng là D

Ta có:

$$\vec{a}.\vec{b} = -1 \cdot -1 + -1 \cdot 0 = 1, |\vec{a}| = \sqrt{-1^2 + -1^2} = \sqrt{2}, |\vec{b}| = \sqrt{-1^2 + 0^2} = 1.$$

$$\Rightarrow$$
 cos $\vec{a}.\vec{b} = \frac{\vec{a}.\vec{b}}{|\vec{a}|.|\vec{b}|} = \frac{1}{\sqrt{2}} \Rightarrow \vec{a}.\vec{b} = 45^{\circ}.$

Vậy góc giữa hai vec tơ a và b là 45°.

Câu 3. Cho hình vuông ABCD có độ dài cạnh là a và A(0; 0), B(a; 0), C(a; a), D(0; a). Khẳng định nào sau đây là đúng?

A.
$$\overrightarrow{AB}, \overrightarrow{BD} = 45^{\circ}$$
.

B.
$$\overrightarrow{AC}$$
, $\overrightarrow{BC} = 45^{\circ}$ và \overrightarrow{AC} . $\overrightarrow{BC} = a^{2}$.

C.
$$\overrightarrow{AC}.\overrightarrow{BD} = a^2\sqrt{2}$$
.

D.
$$\overrightarrow{BA}.\overrightarrow{BD} = -a^2$$
.

Hướng dẫn giải

Đáp án đúng là B

Vì ABCD là hình vuông cạnh a nên AB = BC = a, BD = AC = a $\sqrt{2}$.

Ta có
$$\overrightarrow{AB}(a; 0)$$
, $\overrightarrow{BD}(-a; a)$, $\overrightarrow{AC}(a; a)$, $\overrightarrow{BC}(0; a)$, $\overrightarrow{BA}(-a; 0)$.

Khi đó:

+)
$$\overrightarrow{AB}.\overrightarrow{BD} = a.(-a) + 0.a = -a^2$$

$$\Rightarrow$$
 cos \overrightarrow{AB} , \overrightarrow{BD} = $\frac{\overrightarrow{AB}$. $\overrightarrow{BD}}{\left|\overrightarrow{AB}\right|$. $\left|\overrightarrow{BD}\right|}$ = $\frac{-a^2}{a.a\sqrt{2}}$ = $\frac{-1}{\sqrt{2}}$ \Rightarrow \overrightarrow{AB} , \overrightarrow{BD} = 135°. Do đó A sai.

+)
$$\overrightarrow{AC}.\overrightarrow{BC} = a.0 + a.a = a^2$$

$$\Rightarrow \cos \overrightarrow{AC}, \overrightarrow{BC} = \frac{\overrightarrow{AC}.\overrightarrow{BC}}{|\overrightarrow{AC}|.|\overrightarrow{BC}|} = \frac{a^2}{a.a\sqrt{2}} = \frac{1}{\sqrt{2}} \Rightarrow \overrightarrow{AC}, \overrightarrow{BC} = 45^{\circ}. \text{ Do d\'o B d\'ung}$$

+) $\overrightarrow{AC}.\overrightarrow{BD} = a.(-a) + a.a = 0$. Do đó C sai.

+)
$$\overrightarrow{BA}.\overrightarrow{BD} = -a.(-a) + 0.a = a^2$$
. Do đó D sai.

B2. Bài tập tự luận

Câu 4. Cho hai vector $\vec{a} = (1; -2); \vec{b} = (-1; -3)$.

- a) Tính tích vô hướng của \vec{a} và \vec{b} .
- b) Tính góc giữa hai vecto \vec{a} và \vec{b} .

Hướng dẫn giải

a) Ta có
$$\vec{a}$$
 . $\vec{b} = 1.(-1) + (-2).(-3) = 5$.

$$V\hat{a}y \vec{a} \cdot \vec{b} = 5.$$

b) Ta có
$$|\vec{a}| = \sqrt{1^2 + (-2)^2} = \sqrt{5}$$
; $|\vec{b}| = \sqrt{(-1)^2 + (-3)^2} = \sqrt{10}$.

Khi đó
$$\cos(\vec{a}, \vec{b}) = \frac{\vec{a}.\vec{b}}{|\vec{a}|.|\vec{b}|} = \frac{5}{\sqrt{5}.\sqrt{10}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

Suy ra $(\vec{a}, \vec{b}) = 45^{\circ}$.

Vậy góc giữa hai vector a và b là 45°.

Câu 5. Trong mặt phẳng tọa độ Oxy cho hai điểm A(2; 4) và B(1; 1). Tìm tọa độ của điểm C sao cho tam giác ABC là tam giác vuông cân tại B.

Hướng dẫn giải

Giả sử điểm C cần tìm có tọa độ (x; y). Để tam giác ABC vuông cân tại B ta phải có:

$$\begin{cases} \overrightarrow{BA}.\overrightarrow{BC} = 0 \\ |\overrightarrow{BA}| = |\overrightarrow{BC}| \end{cases}$$

Ta có
$$\overrightarrow{BA} = (1;3)$$
 và $\overrightarrow{BC} = (x-1;y-1)$.

Khi đó
$$\overrightarrow{BA}.\overrightarrow{BC} = 1.(x-1) + 3(y-1) = x + 3y - 4$$
.

$$\overrightarrow{BA} = \sqrt{1^2 + 3^2} = \sqrt{10}$$
; $|\overrightarrow{BC}| = \sqrt{(x-1)^2 + (y-1)^2}$

Ta có :
$$\begin{cases} \overrightarrow{BA}.\overrightarrow{BC} = 0 \\ |\overrightarrow{BA}| = |\overrightarrow{BC}| \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 3y - 4 = 0 \\ \sqrt{10} = \sqrt{(x-1)^2 + (y-1)^2} \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 3y - 4 = 0 \\ 10 = (x - 1)^2 + (y - 1)^2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 4 - 3y \\ (3 - 3y)^2 + (y - 1)^2 = 10 \end{cases} \Leftrightarrow \begin{cases} x = 4 - 3y \\ 10y^2 - 20y = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 4 - 3y \\ y = 0 \\ y = 2 \end{cases} \Leftrightarrow \begin{cases} \begin{cases} x = 4 \\ y = 0 \\ x = -2 \\ y = 2 \end{cases} \end{cases}$$

Vậy có hai điểm C và C' thỏa mãn điều kiện của bài toán: C(4; 0) và C'(-2; 2).