

planetmath.org

Math for the people, by the people.

$C_{mn} \cong C_m \times C_n$ when m, n are relatively prime

 ${\bf Canonical\ name} \quad {\bf CmncongCmtimesCnWhenMNAreRelativelyPrime}$

Date of creation 2013-03-22 17:59:46 Last modified on 2013-03-22 17:59:46

Owner yesitis (13730) Last modified by yesitis (13730)

Numerical id 8

Author yesitis (13730)

Entry type Proof

Classification msc 20A05

We show that C_{mn} , gcd(m, n) = 1, is isomorphic to $C_m \times C_n$, where C_r denotes the cyclic group of order r for any positive integer r.

Let $C_m = \langle x \rangle$ and $C_n = \langle y \rangle$. Then the external direct product $C_m \times C_n$ consists of elements (x^i, y^j) , where $0 \le i \le m-1$ and $0 \le j \le n-1$.

Next, we show that the group $C_m \times C_n$ is cyclic. We do so by showing that it is generated by an element, namely (x, y): if (x, y) generates $C_m \times C_n$, then for each $(x^i, y^j) \in C_m \times C_n$, we must have $(x^i, y^j) = (x, y)^k$ for some $k \in \{0, 1, 2, ..., mn - 1\}$. Such k, if exists, would satisfy

$$k \equiv i \pmod{m}$$
$$k \equiv j \pmod{n}.$$

Indeed, by the Chinese Remainder Theorem, such k exists and is unique modulo mn. (Here is where the relative primality of m, n comes into play.) Thus, $C_m \times C_n$ is generated by (x, y), so it is cyclic.

The order of $C_m \times C_n$ is mn, so is the order of C_{mn} . Since cyclic groups of the same order are isomorphic, we finally have $C_{mn} \cong C_m \times C_n$.