UNIVERSITY OF OSLO

Introduction to long-read metabarcoding

BIO9905MERG1 Spring 2025

Embla Stokke, UiO

emblaes@student.matnat.uio.no

Topics

 Long read metabarcoding versus short read/regular metabarcoding

Advantages of LRM

Challenges with LRM

Long read metabarcoding of soil eukaryotes

Background

MSc in Biodiversity & Systematics (NABiS/UiO)

 MSc project with OMG (Håvard Kauserud) – Long read metabarcoding of soil Eukaryotes

PhD (ongoing) with OMG – Long read
 metabarcoding of Arbuscular Mycorrhizal Fungi

Long read vs short read

- Generally > 500 bp, 20 000 bp <
- Typically: singular marker vs multimarker
- Pacific Biosciences (PacBio)
- Oxford Nanopore
- Both provide
 - Continuous reads
 - Low sequencing error rate*
 - High yield

You can think of the current as water flowing through a pipe. When an object enters the pipe, the flow of water is disrupted, just as DNA disrupts the current as it passes through the nanopore.

Advantages of LRM

- Longer reads
 - Better lineage resolution
- Consistent quality
- Less noise*
- Cross-database referencing
- Increased multiplex specificity with tagged libraries*

Taxa with tricky barcode gaps

Broad diversity of taxa with differing barcode optima

Phylogenetically informed studies

Challenges with LRM

- Not just longer «short» amplicons
- Lab protocols
 - DNA extraction
 - PCR set-up
- Different artefacts/issues to regular amplicons
- Bioinformatics
 - Modified short-read approaches
 - Clustering/OTU synthesis
- Cost

Long read metabarcoding of soil eukaryotes An example of applied LRM*

Long-read sequencing of soil eukaryote eDNA indicates vegetation as driver of soil community structure

MSc thesis by Embla Stokke

Supervised by Ella Thoen
Co-Supervised by Inger Skrede, Anders K. Krabberød & Håvard Kauserud

Methods

Sample collection

- Archaeorhizomycetes Project
- Norway & Svalbard
- Diverse ecological landscapes
- 90 sample sites

Geographic distribution of sample sites

	200 110
Variable	Description
SITE	Short-name for site
TYPE	Substrate; Litter or Soil
forest_type	Dominant vegetation or forest type at sample site
N	% Nitrogen i sample
C_N	Carbon-to-Nitrogen ratio, calculated from raw percentages
С	% Carbon in sample
Р	% Phosphorus in sample
рН	pH measured in sample
lat	Latitude
long	Longitude
plant_richness	Plant richness per site
MAS	Metres above sea level
bio_1	Annual mean temperature
bio_2	Mean diurnal ranges (mean of monthly (max temp - min temp))
bio_3	Isothermality (BIO2/BIO7)(x100)
bio_4	Temperature Seasonality (standard deviation x 100)
bio_8	Mean Temperature of Wettest Quarter
bio_9	Mean Temperature of Driest Quarter
bio_10	Mean Temperature of Warmest Quarter
bio_11	Mean Temperature of Coldest Quarter
bio_12	Annual Precipitation
bio_15	Precipitation Seasonality (coefficient of Variation)
Ö	5 10 15 20

cutadapt – linked adapter approach

Demultiplexing

VSEARCH – denovo chimera checking with conservative approach

Chimera checking

 PR^2

UNITE

NCBI

Taxonomic annotation

dada2 – filtering, denoising and sample inference Clustering

VSEARCH – clustering at 97% similarity

Coherence between database annotations & phylogenetic groupings

Phylogenetic annotation check

Phylogenetic inference

SILVA concatenated reference sequences

MAFFT – sequence alignment

Geneious - 50% gaps & ITS removal

FastTree v.2 - tree building

Statistical analysis

R v. 4.2.2 – various packages

Beta diversity

Thank you for listening!

Questions?

