物理实验报告 数学系 张冬梅 PB03001104

实验数据处理:

1.测量半导体激光器的偏振度

I 最大值: (1470+1541)/2=1505.5 μA

Ι最小值: (92+92)/2=92 μΑ

$$p = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

=[1505.5-92]/[1505.5+92]

=0.8848

2、验证马吕斯定律

 P_2 偏振方向的绝对角度值 ϕ 、相对角度值 θ 和光强值I,以后每隔 10° 记录一次,直到 P_1 与 P_2 偏振方向的夹角为 -90° , I_0 为 P_1 与 P_2 偏振方向的夹角为 0° 时的光强值,作出 $I/I_0\sim\cos^2\theta$ 的关系曲线($0^\circ\sim90^\circ$, $0^\circ\sim-90^\circ$ 各一条,用最小二乘法求出斜率和截距,根据马吕斯定律斜率应为 1,截距应为 0,分析实验的误差)。

$$I_0 = 548 \mu A$$

验证马吕斯定律数据表格 1

ф	136.7	146.7	156.7	166.7	176.7	186.7	196.7	206.7	216.7
θ	10	20	30	40	50	60	70	80	90
$\cos^2\theta$	0.970	0.833	0.75	0.587	0.413	0.25	0.117	0.030	0
ΙμΑ	525	475	403	311	217	139	61	15	0
I/I_0	0.958	0.867	0.735	0.568	0.400	0.254	0.111	0.027	0

验证马吕斯定律数据表格 2

ф	226.7	236.7	246.7	256.7	266.7	276.7	286.7	296.7	306.7
θ	80	70	60	50	40	30	20	10	0
$\cos^2\theta$	0.030	0.117	0.250	0.413	0.587	0.75	0.833	0.970	1
ΙμΑ	15	58	123	202	287	368	434	479	495
I/I_0	0.027	0.106	0.224	0.369	0.524	0.672	0.792	0.874	0.903

用 Origin 软件处理上述数据并作图得:

(作图见本实验报告文件夹附带的 Origin 文档)

其中,x为 $Cos^2\theta$, y为 I/I_0

B为斜率以及斜率的标准差 SB

由表一数据得:

Linear Regression for Data1_B:

$$Y = A + B * X$$

Parameter	Value	Error	
A	-0.00428	0.00918	
В	1.00216	0.01649	

R SD N P

0.99905 0.01695 9 <0.0001

故斜率的 A 类不确定度为: (SB/9)^(1/2)=0.0428

故斜率为: 1.00216 + 0.0428

即I/I₀ 与Cos²0成线性关系,基本符合马吕思定律

由表二中数据得:

Linear Regression for Data2_B:

$$Y = A + B * X$$

Parameter Value Error

A -0.00288 0.00927 B 0.91251 0.01429

R SD N P
-----0.99914 0.01476 9 <0.0001

故斜率的 A 类不确定度为: (SB/9)^(1/2)=0.0398

故斜率为: 0.91251 + 0.0398

即I/I₀ 与Cos²θ成线性关系,基本符合马吕思定律

综上,两曲线较为接近,验证了马吕思定律。 误差分析:

- (1) 激光器发生的光有波动,从数据可看出。
- (2)从图中可看出线性关系基本成立,从试验数据看电流小, 光强过弱,指针偏左,读数偏小,且存在一定的读数误差。 故相对误差较大。
- (3) 由于操作者的操作,使得光源的 IO 变化过大,从而使实验误差过大。同时实验仪器本身也不精细,也给试验带来误差。
- (4) 实验中三棱镜不能完全消光, 使得角度为 90 度时仍有

少量电流存在。

3. 根据布儒斯特定律测定介质的折射率:

实验所测得的布儒斯特角为:

$$\theta$$
= (146.28+150.08) /2-90=148.18-90=58.18 度

其A类不确定度为: 1.58

介质折射率为:

$$tag\theta 1 = 1.61787$$
 $tag\theta 2 = 1.73765$

$$n=(1.61787+1.73765)/2=1.67776$$

根据不确定度公式:

$$\frac{\Delta n}{n} = \frac{\Delta \theta}{\cos^2 \theta}$$

$$\Delta n = \frac{\Delta \theta}{\cos^2 \theta}$$

$$\exists l : \quad u_A = \frac{u_\theta}{\cos^2 \theta} * n$$

$$= 6.02754*1.67776*\pi/(180^2)$$

$$= 0.00098$$

故 1.67776 + 0.00098 为所求折射率