In [1]: import pandas as pd
 import numpy as np
 import seaborn as sns
 import matplotlib.pyplot as plt

In [2]: employee = pd.read_csv("Employee.csv")

In [3]: employee

Out[3]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Ε
0	41	Yes	Travel_Rarely	1102	Sales	1	2	
1	49	No	Travel_Frequently	279	Research & Development	8	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	
4	27	No	Travel_Rarely	591	Research & Development	2	1	
1465	36	No	Travel_Frequently	884	Research & Development	23	2	
1466	39	No	Travel_Rarely	613	Research & Development	6	1	
1467	27	No	Travel_Rarely	155	Research & Development	4	3	
1468	49	No	Travel_Frequently	1023	Sales	2	3	
1469	34	No	Travel_Rarely	628	Research & Development	8	3	

1470 rows × 35 columns

In [4]: pd.set_option('display.max_columns', None)
employee.head(5)

Out[4]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Educ
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Lif
1	49	No	Travel_Frequently	279	Research & Development	8	1	Lif
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Lif
4	27	No	Travel_Rarely	591	Research & Development	2	1	
4 (•

In [5]: employee.tail(5)

Out[5]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Ε
1465	36	No	Travel_Frequently	884	Research & Development	23	2	
1466	39	No	Travel_Rarely	613	Research & Development	6	1	
1467	27	No	Travel_Rarely	155	Research & Development	4	3	
1468	49	No	Travel_Frequently	1023	Sales	2	3	
1469	34	No	Travel_Rarely	628	Research & Development	8	3	
1	-							•

In [6]: employee.describe().T

Out[6]:

	count	mean	std	min	25%	50%	75%
Age	1470.0	36.923810	9.135373	18.0	30.00	36.0	43.00
DailyRate	1470.0	802.485714	403.509100	102.0	465.00	802.0	1157.00
DistanceFromHome	1470.0	9.192517	8.106864	1.0	2.00	7.0	14.00
Education	1470.0	2.912925	1.024165	1.0	2.00	3.0	4.00
EmployeeCount	1470.0	1.000000	0.000000	1.0	1.00	1.0	1.00
EmployeeNumber	1470.0	1024.865306	602.024335	1.0	491.25	1020.5	1555.75
EnvironmentSatisfaction	1470.0	2.721769	1.093082	1.0	2.00	3.0	4.00
HourlyRate	1470.0	65.891156	20.329428	30.0	48.00	66.0	83.75
Jobinvolvement	1470.0	2.729932	0.711561	1.0	2.00	3.0	3.00
JobLevel	1470.0	2.063946	1.106940	1.0	1.00	2.0	3.00
JobSatisfaction	1470.0	2.728571	1.102846	1.0	2.00	3.0	4.00
MonthlyIncome	1470.0	6502.931293	4707.956783	1009.0	2911.00	4919.0	8379.00
MonthlyRate	1470.0	14313.103401	7117.786044	2094.0	8047.00	14235.5	20461.50
NumCompaniesWorked	1470.0	2.693197	2.498009	0.0	1.00	2.0	4.00
PercentSalaryHike	1470.0	15.209524	3.659938	11.0	12.00	14.0	18.00
PerformanceRating	1470.0	3.153741	0.360824	3.0	3.00	3.0	3.00
RelationshipSatisfaction	1470.0	2.712245	1.081209	1.0	2.00	3.0	4.00
StandardHours	1470.0	80.000000	0.000000	80.0	80.00	80.0	80.00
StockOptionLevel	1470.0	0.793878	0.852077	0.0	0.00	1.0	1.00
TotalWorkingYears	1470.0	11.279592	7.780782	0.0	6.00	10.0	15.00
TrainingTimesLastYear	1470.0	2.799320	1.289271	0.0	2.00	3.0	3.00
WorkLifeBalance	1470.0	2.761224	0.706476	1.0	2.00	3.0	3.00
YearsAtCompany	1470.0	7.008163	6.126525	0.0	3.00	5.0	9.00
YearsInCurrentRole	1470.0	4.229252	3.623137	0.0	2.00	3.0	7.00
YearsSinceLastPromotion	1470.0	2.187755	3.222430	0.0	0.00	1.0	3.00
YearsWithCurrManager	1470.0	4.123129	3.568136	0.0	2.00	3.0	7.00
4							

```
In [7]: employee.info
                                                       utner
                               3
                                                                            1
         3
                                              Life Sciences
                               2
         4
                                           1
                                                     Medical
                                                                            1
         1465
                              23
                                           2
                                                     Medical
                                                                           1
                                                     Medical
                                                                            1
         1466
                               6
                                           1
                                           3
                                              Life Sciences
                                                                            1
         1467
                               4
                               2
                                                                            1
         1468
                                           3
                                                     Medical
                                           3
         1469
                               8
                                                     Medical
                                                                            1
               EmployeeNumber
                                EnvironmentSatisfaction
                                                           Gender
                                                                    HourlyRate
                                                           Female
         0
                             2
         1
                                                        3
                                                                            61
                                                             Male
                             4
         2
                                                        4
                                                             Male
                                                                            92
         3
                             5
                                                        4
                                                           Female
                                                                            56
                             7
                                                                            40
         4
                                                        1
                                                             Male
                                                               . . .
         1465
                          2061
                                                        3
                                                             Male
                                                                            41
         1466
                          2062
                                                        4
                                                             Male
                                                                            42
         1467
                          2064
                                                                            87
                                                        2
                                                             Male
In [8]:
        employee['Attrition'] = employee['Attrition'].apply(lambda x:1 if x == 'Yes' e
         employee['OverTime'] = employee['OverTime'].apply(lambda x:1 if x == 'Yes' els
        employee['Over18'] = employee['Over18'].apply(lambda x:1 if x == 'Yes' else 0)
In [9]: employee['Attrition']
Out[9]: 0
                 1
         1
                 0
         2
                 1
         3
                 0
                 0
         4
         1465
                 0
         1466
                 0
         1467
                 0
         1468
                 0
         1469
         Name: Attrition, Length: 1470, dtype: int64
```

```
sns.heatmap(employee.isnull(), yticklabels = False, cbar = False, cmap = 'Blue
Out[10]: <AxesSubplot:>
                                                                                   JobSatisfaction -
                                          Department -
                                                                                           MonthlyIncome -
                                                                                                                                                   YearsWithCurrManager -
                                   BusinessTravel -
                                                        EmployeeCount -
                                                                                                                             TotalWorkingYears -
                                                                EnvironmentSatisfaction -
                                                                      HourlyRate -
                                                                             obLevel -
                                                                                                  NumCompaniesWorked -
                                                                                                                PerformanceRating -
                                                                                                                       StandardHours -
                                                 Education .
                                                                                                                                     WorkLifeBalance
                                                                                                                                            YearsInCurrentRole .
                                                                                                         OverTime
```

```
In [11]: employee.hist(bins = 30, figsize = (20,20), color = 'r')
Out[11]: array([[<AxesSubplot:title={'center':'Age'}>,
                  <AxesSubplot:title={'center':'Attrition'}>,
                  <AxesSubplot:title={'center':'DailyRate'}>,
                  <AxesSubplot:title={'center':'DistanceFromHome'}>,
                  <AxesSubplot:title={'center':'Education'}>],
                 [<AxesSubplot:title={'center':'EmployeeCount'}>,
                  <AxesSubplot:title={'center':'EmployeeNumber'}>,
                  <AxesSubplot:title={'center':'EnvironmentSatisfaction'}>,
                  <AxesSubplot:title={'center':'HourlyRate'}>,
                  <AxesSubplot:title={'center':'JobInvolvement'}>],
                 [<AxesSubplot:title={'center':'JobLevel'}>,
                  <AxesSubplot:title={'center':'JobSatisfaction'}>,
                  <AxesSubplot:title={'center':'MonthlyIncome'}>,
                  <AxesSubplot:title={'center':'MonthlyRate'}>,
                  <AxesSubplot:title={'center':'NumCompaniesWorked'}>],
                 [<AxesSubplot:title={'center':'0ver18'}>,
                  <AxesSubplot:title={'center':'OverTime'}>,
                  <AxesSubplot:title={'center':'PercentSalaryHike'}>,
                  <AxesSubplot:title={'center':'PerformanceRating'}>,
                  <AxesSubplot:title={'center':'RelationshipSatisfaction'}>],
                 [<AxesSubplot:title={'center':'StandardHours'}>,
                  <AxesSubplot:title={'center':'StockOptionLevel'}>,
                  <AxesSubplot:title={'center':'TotalWorkingYears'}>,
                  <AxesSubplot:title={'center':'TrainingTimesLastYear'}>,
                  <AxesSubplot:title={'center':'WorkLifeBalance'}>],
                 [<AxesSubplot:title={'center':'YearsAtCompany'}>,
                  <AxesSubplot:title={'center':'YearsInCurrentRole'}>,
                  <AxesSubplot:title={'center':'YearsSinceLastPromotion'}>,
                  <AxesSubplot:title={'center':'YearsWithCurrManager'}>,
                  <AxesSubplot:>]], dtype=object)
```



```
In [12]: employee.drop(['EmployeeCount', 'StandardHours', 'Over18', 'EmployeeNumber'],
```

```
In [13]: left = employee[employee['Attrition'] == 1]
stayed = employee[employee['Attrition'] == 0]
```

```
In [14]: print("Number of employee left", len(left))
    print("Number of employee who stayed", len(stayed))
    print("Number of emmployee who did not leave company", len(stayed))
    print("Percentage of employees who did not leave the company", 1.*len(stayed)/
```

```
Number of employee left 237
```

Number of employee who stayed 1233

Number of emmployee who did not leave company 1233

Percentage of employees who did not leave the company 83.87755102040816 %

In [15]: left.describe()

Out[15]:

	Age	Attrition	DailyRate	DistanceFromHome	Education	EnvironmentSatisfactic
count	237.000000	237.0	237.000000	237.000000	237.000000	237.00000
mean	33.607595	1.0	750.362869	10.632911	2.839662	2.46413
std	9.689350	0.0	401.899519	8.452525	1.008244	1.16979
min	18.000000	1.0	103.000000	1.000000	1.000000	1.00000
25%	28.000000	1.0	408.000000	3.000000	2.000000	1.00000
50%	32.000000	1.0	699.000000	9.000000	3.000000	3.00000
75%	39.000000	1.0	1092.000000	17.000000	4.000000	4.00000
max	58.000000	1.0	1496.000000	29.000000	5.000000	4.00000
4						•

In [16]: stayed.describe()

Out[16]:

	Age	Attrition	DailyRate	DistanceFromHome	Education	EnvironmentSatisfac
count	1233.000000	1233.0	1233.000000	1233.000000	1233.000000	1233.000
mean	37.561233	0.0	812.504461	8.915653	2.927007	2.771
std	8.888360	0.0	403.208379	8.012633	1.027002	1.07
min	18.000000	0.0	102.000000	1.000000	1.000000	1.000
25%	31.000000	0.0	477.000000	2.000000	2.000000	2.000
50%	36.000000	0.0	817.000000	7.000000	3.000000	3.000
75%	43.000000	0.0	1176.000000	13.000000	4.000000	4.000
max	60.000000	0.0	1499.000000	29.000000	5.000000	4.000
4						•

```
In [17]: correlations = employee.corr()
f, ax = plt.subplots(figsize = (20,20))
sns.heatmap(correlations, annot = True)
```

Out[17]: <AxesSubplot:>


```
In [18]: plt.figure(figsize = [25,12])
sns.countplot(x = 'Age', hue = 'Attrition', data = employee)
```

Out[18]: <AxesSubplot:xlabel='Age', ylabel='count'>


```
In [19]: plt.figure(figsize = [20,20])
   plt.subplot(411)
   sns.countplot(x = 'JobRole', hue = "Attrition", data = employee)
   plt.subplot(412)
   sns.countplot(x = 'MaritalStatus', hue = 'Attrition', data = employee)
   plt.subplot(413)
   sns.countplot(x = 'JobInvolvement', hue = 'Attrition', data = employee)
   plt.subplot(414)
   sns.countplot(x = 'JobLevel', hue = 'Attrition', data = employee)
```

Out[19]: <AxesSubplot:xlabel='JobLevel', ylabel='count'>


```
In [20]: plt.figure(figsize = (12,7))
    sns.kdeplot(left['DistanceFromHome'], label = "Employee who Left", shade = Tru
    sns.kdeplot(stayed['DistanceFromHome'], label = "Employee who Left", shade = T
    plt.xlabel("Distance from Home")
```

Out[20]: Text(0.5, 0, 'Distance from Home')

In [21]: plt.figure(figsize = (12,7))
 sns.kdeplot(left["YearsWithCurrManager"], label = 'Employee who Left', shade =
 sns.kdeplot(stayed["YearsWithCurrManager"], label = 'Employee who stayed', sha
 plt.xlabel('Years Eith Current Manager')

Out[21]: Text(0.5, 0, 'Years Eith Current Manager')


```
In [22]: plt.figure(figsize = [20,20])
   plt.subplot(411)
   sns.boxplot(x = 'MonthlyIncome', y = "Gender", data = employee)
   plt.subplot(412)
   sns.countplot(x = 'Gender', hue = 'Attrition', data = employee)
```

Out[22]: <AxesSubplot:xlabel='Gender', ylabel='count'>


```
In [23]: plt.figure(figsize = (15,10))
sns.boxplot(x = 'MonthlyIncome', y = 'JobRole', data = employee)
```

Out[23]: <AxesSubplot:xlabel='MonthlyIncome', ylabel='JobRole'>

In [27]: employee.head()

Out[27]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Educ
0	41	1	Travel_Rarely	1102	Sales	1	2	Lif
1	49	0	Travel_Frequently	279	Research & Development	8	1	Lif
2	37	1	Travel_Rarely	1373	Research & Development	2	2	
3	33	0	Travel_Frequently	1392	Research & Development	3	4	Lif
4	27	0	Travel_Rarely	591	Research & Development	2	1	
4 (•

In [28]: X_cat = employee.select_dtypes(exclude = ["number"])
X_cat

Out[28]:

	BusinessTravel	Department	EducationField	Gender	JobRole	MaritalStatus
0	Travel_Rarely	Sales	Life Sciences	Female	Sales Executive	Single
1	Travel_Frequently	Research & Development	Life Sciences	Male	Research Scientist	Married
2	Travel_Rarely	Research & Development	Other	Male	Laboratory Technician	Single
3	Travel_Frequently	Research & Development	Life Sciences	Female	Research Scientist	Married
4	Travel_Rarely	Research & Development	Medical	Male	Laboratory Technician	Married
1465	Travel_Frequently	Research & Development	Medical	Male	Laboratory Technician	Married
1466	Travel_Rarely	Research & Development	Medical	Male	Healthcare Representative	Married
1467	Travel_Rarely	Research & Development	Life Sciences	Male	Manufacturing Director	Married
1468	Travel_Frequently	Sales	Medical	Male	Sales Executive	Married
1469	Travel_Rarely	Research & Development	Medical	Male	Laboratory Technician	Married

1470 rows × 6 columns

```
In [29]: from sklearn.preprocessing import OneHotEncoder
    ohc = OneHotEncoder()
    X_cat = ohc.fit_transform(X_cat).toarray()
```

Out[30]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1
0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
1	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.
2	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.
3	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
4	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.
1465	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.
1466	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.
1467	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.
1468	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.
1469	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.

1470 rows × 26 columns

In [31]: X_numeric = employee.select_dtypes(include = "number").drop(columns = ["Attrit
X_numeric

Out[31]:

	Age	DailyRate	DistanceFromHome	Education	EnvironmentSatisfaction	HourlyRate	Jobir
0	41	1102	1	2	2	94	
1	49	279	8	1	3	61	
2	37	1373	2	2	4	92	
3	33	1392	3	4	4	56	
4	27	591	2	1	1	40	
1465	36	884	23	2	3	41	
1466	39	613	6	1	4	42	
1467	27	155	4	3	2	87	
1468	49	1023	2	3	4	63	
1469	34	628	8	3	2	82	

1470 rows × 21 columns

In [32]: X_complete = pd.concat([X_cat, X_numeric], axis = 1)
X_complete

Out[32]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1
0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
1	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.
2	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.
3	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
4	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.
1465	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.
1466	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.
1467	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.
1468	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.
1469	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.

1470 rows × 47 columns

```
In [33]: X_complete_copy = X_complete.copy()
         X_complete_copy.columns = X_complete_copy.columns.astype(str)
In [34]: from sklearn.preprocessing import MinMaxScaler
         scaler = MinMaxScaler()
         X = scaler.fit_transform(X_complete_copy)
In [35]: X
Out[35]: array([[0.
                            , 0.
                                         , 1.
                                                                        , 0.15
                  0.
                            ],
                 [0.
                            , 1.
                                         , 0.
                                                      , ..., 0.66666667, 0.25
                  0.06666667],
                 [0.
                            , 0.
                                         , 1.
                                                      , ..., 0.66666667, 0.
                  0.
                             ],
                 . . . ,
                 [0.
                            , 0.
                                         , 1.
                                                      , ..., 0.66666667, 0.15
                  0.
                            ],
                 [0.
                            , 1.
                                                      , ..., 0.33333333, 0.225
                                         , 0.
                  0.
                            ],
                            , 0.
                 [0.
                                         , 1.
                                                      , ..., 1.
                                                                        , 0.1
                  0.06666667]])
In [36]: y = employee["Attrition"]
In [37]: X.dtype
Out[37]: dtype('float64')
```

```
In [47]: import numpy as np
         def sigmoid(x):
             return 1/(1+np.exp(-x))
         class LogisticRegression():
             def __init__(self, lr = 0.01, n_iters = 1000):
                 self.lr = lr
                 self.n iters = n iters
                 self.weights = None
                 self.bias = Nonefit
             def fit(self, X, y):
                 n_samples, n_features = X.shape
                 self.weights = np.zeros(n_features)
                 self.bias = 0
                 for in range(self.n iters):
                     linear_pred = np.dit(X, self.weights) + self.bias
                     predictions = sigmoid(linear pred)
                     dw = (1/n_samples) * np.dot(X.T, (predictions - y))
                     db = (1/n samples) * np.sum(predictions-y)
                      self.weights = self.weights - self.lr * dw
                      self.bias = self.bias - self.lr*db
             def predict(self, X):
                 linear_pred = np.dot(X, self.weights) + self.bias
                 y pred = sigmoid(linear pred)
                 class pred = [0 if y<=0.5 else 1 for y in y pred]</pre>
                 return class_pred
```

```
In [ ]:
```