# Viscosity of Aqueous NaCl Solutions with Dissolved CO<sub>2</sub> at (30 to 60) °C and (10 to 20) MPa

# Shigeru Bando,† Fumio Takemura,\*,‡ Masahiro Nishio,‡ Eiji Hihara,† and Makoto Akai‡

Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan, and Institute for Energy Utilization Research, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan

The viscosity of aqueous NaCl solutions with dissolved  $CO_2$  was measured at conditions representing an underground aquifer at a depth of (1000 to 2000) m for the geological storage of  $CO_2$  (i.e., (30 to 60) °C and (10 to 20) MPa at a mass fraction of NaCl between 0 and 0.03 by using a sedimenting solid particle type viscometer with an estimated uncertainty of  $\pm 2\%$ ). On the basis of this experimental data, an empirical equation for predicting this viscosity as a function of the temperature and mole fraction of  $CO_2$  for these conditions was derived.

#### Introduction

The geological storage of CO2 has been investigated as an option for reducing the concentration of CO2 in the atmosphere.1 The storage of CO2 in deep saline aquifers is technically feasible, as demonstrated at the Sleipner gas field in the Norwegian North Sea. Since 1996, 1 million metric tons of CO<sub>2</sub> have been injected annually into saltwater-saturated sands at depths below 800 m1. In Japan, the Research Institute of Innovative Technology for the Earth (RITE) and the Engineering Advancement Association of Japan (ENAA) will begin geological sequestration field experiments in 2003 in which CO2 will be injected into an aquifer.2 When a large amount of CO2 is injected into an aquifer, a prediction of the dynamic action of CO<sub>2</sub> in an aquifer is necessary. However, clarifying the diffusion action of the injected CO<sub>2</sub> first requires quantitative data pertaining to the dissolution and diffusion action of CO2. The viscosity of aqueous NaCl solutions containing CO<sub>2</sub> has been measured<sup>3,4</sup> at pressure and temperature conditions of the deep ocean, but the viscosity of such solutions saturated with CO<sub>2</sub> at underground conditions has not.

In this study, such data was obtained by measuring the viscosity of aqueous NaCl solutions (NaCl mass fraction between 0 and 0.03) saturated with  $CO_2$  at pressure and temperature conditions of an underground aquifer, namely, (30 to 60) °C and (10 to 20) MPa. Because a falling capillary tube viscometer that uses mercury cannot remain in contact with an electrolyte solution for the long time required to produce solutions saturated with  $CO_2$ , we used a sedimenting solid particle-type viscometer. On the basis of the results, a prediction equation for the viscosity as a function of temperature and  $CO_2$  mole fraction was derived.

#### **Materials and Methods**

Figure 1 shows a schematic of the experimental apparatus used to measure the viscosity of the saturated solution. A detailed description of the apparatus and



**Figure 1.** Schematic of the apparatus for determining the viscosity of aqueous NaCl solutions saturated with  $CO_2$ .

experimental procedure to produce homogeneous aqueous NaCl solutions containing CO<sub>2</sub> is described elsewhere.<sup>5</sup> The apparatus to measure viscosity consisted of a high-pressure vessel with a thermostatic chamber, a pressure transducer for the range of (0 to 25) MPa (TEAC, TP-AP 20 MPa) with an accuracy of  $\pm 0.2$ MPa, an amplifier (TEAC, SA-59), a temperature bath, a pump for pressurizing water (GL Science, PU610-0X), a pump for pressurizing CO<sub>2</sub> (Nippon Seimitsu Kagaku, NP-S-701), a CO<sub>2</sub> gas cylinder, a circulating pump (AKICO Co.), a CCD color video camera (SONY, DXC-LS1), four input duplex color multiplexer cameras (SONY, YS-DX504), a monitor (SONY, KV-21SF1), and a DVCAM compact half-rack digital VTR (SONY, DSR-45). The test section's temperature was measured with platinum resistance thermometers (SHI-MADEN, RD-11S) within an accuracy of  $\pm 0.2$  °C. The mass of CO2 and water was measured by using a gravimetric balance (Sartorius, LP1200S).

The high-pressure vessel (28-mm inner diameter and 650 mm long) could be pressurized to a maximum of 70 MPa. A total of three pairs of windows at 200-mm intervals along the test section of the vessel were used to view the particle sedimenting through the solution by using the CCD

<sup>\*</sup> Corresponding author. E-mail: takemura.f@aist.go.jp. Tel: +81-298-61-7207. Fax: +81-298-51-7523.

The University of Tokyo.

<sup>&</sup>lt;sup>‡</sup> National Institute of Advanced Industrial Science and Technology.

cameras. The vessel and all of the tubes were made of stainless steel. The pure water used in the NaCl solution was filtered by using a water purification system (Milli-Q, Millipore). The purity of CO<sub>2</sub> was 99.99%. Ruby particles (moritex, D-0862), and BK-7 particles (moritex, D-0855) with densities of  $\rho_b = (3979.90 \text{ and } 2509.94) \text{ kg/m}^3$ , respectively, were used. The particles were  $0.5\ mm$  in diameter with a standard deviation of less than 2.5  $\mu$ m, and their sphericity was less than 0.64  $\mu$ m.

The viscosity of aqueous NaCl solutions saturated with  $CO_2$ ,  $\eta_{CS}$ , was measured at temperatures t of 30 °C, 40 °C, 50 °C, and 60 °C, at pressures P of 10 MPa and 20 MPa, and at NaCl mass fractions S of 0, 0.01, and 0.03. The CO<sub>2</sub> mole fraction of the solutions saturated with CO2, xCS, is calculated by using the following empirical equation<sup>5</sup>

 $x_{\rm CS} =$ 

$$\frac{P/\text{MPa}}{36.1P/\text{MPa} + 3.87(t/^{\circ}\text{C} + 273.15) - 1097.1 + \{196P/\text{MPa} + 26.9(t/^{\circ}\text{C} + 273.15) - 8810\}S}}{(1)}$$

where *P*, *t* and *S* denote pressure, temperature, and mass fraction of NaCl, respectively.

First, the test section was filled with the aqueous solution, and then valve 1 was closed. Then, a particle was placed in the test section between the pump and valve 1. At 30 °C and 40 °C, ruby and BK-7 particles were used. At 50 °C and 60 °C, only BK-7 particles were used. The solution was then pressurized, and valve 1 was opened. The velocity of the sedimenting particle was measured by using the CCD cameras. The measurements were repeated for each set of experimental conditions, and then the average viscosity was calculated.

The viscosity of aqueous NaCl solutions containing CO<sub>2</sub>,  $\eta_C$ , was also measured at the desaturated concentrations

The viscosity of the liquid,  $\eta_1$ , was calculated from the force balance between the buoyancy and drag force acting on sedimenting particles. At steady state, the drag coefficient of the sedimenting particle, CD, can be expressed  $as^6$ 

$$C_{\rm D} = \frac{8(\rho_{\rm b} - \rho_{\rm l})gR}{3\rho_{\rm l} U^2} \tag{2}$$

where U is the velocity of the sedimenting particle, R is the radius of the particle, and  $\rho$  is the density and subscripts b and l denote the particle and liquid, respectively.

There are many correlation of drag coefficients. The viscosity of water at 0.1 MPa was measured to determine the best correlation of drag coefficient. By using the empirical equation for the drag coefficient of a rigid sphere,6

$$C_{\rm D} = \frac{24}{Re} (1 + 0.1935 Re^{0.6305})$$
 
$$\left(20 \le Re = \frac{2\rho_1 UR}{\eta_1} \le 260\right) (3)$$

and eq 2 with measured values of U, we determined  $\eta_1$ .

The density of the aqueous  $CO_2$  solution,  $\rho_C$ , was estimated using the following empirical equation:<sup>7</sup>

$$\rho_{\rm C}/({\rm kg \cdot m}^{-3}) = \rho_{\rm W}/({\rm kg \cdot m}^{-3}) + 1.96 \times 10^2 x_{\rm C} + 1.54 \times 10^4 x_{\rm C}^2$$
(4)

where  $\rho$  and x are the density and  $CO_2$  mole fraction,

Table 1. Accuracy of Measurements and Responsible **Error for Viscosity** 

|                                                       | measurement<br>accuracy | responsible<br>error for<br>viscosity/% |
|-------------------------------------------------------|-------------------------|-----------------------------------------|
| temperature/°C                                        | $\pm 0.2$               | 0.5                                     |
| pressure/MPa                                          | $\pm 0.2$               | < 0.01                                  |
| sedimenting particle's velocity/(mm·s <sup>-1</sup> ) | $\pm 0.01$              | < 0.01                                  |
| ball diameter/mm                                      | $\pm 0.0025$            | 1.5                                     |
| ball density/(kg·m <sup>-3</sup> )                    | $\pm 0.1$               | < 0.01                                  |
| liquid density/%                                      | $\pm 0.15$              | 0.03                                    |
| drag coefficient/%                                    | $\pm 0.6$               | 1.1                                     |

Table 2. Viscosity of Pure Water,  $\eta_W/(mPa\cdot s)$ , at 0.1 MPa

| t/°C                                      | 27.2                                                          | 47.2                                                          | 60                                                            |
|-------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| current study<br>literature <sup>12</sup> | $\begin{array}{c} 0.85 \pm 0.02 \\ 0.85 \pm 0.01 \end{array}$ | $\begin{array}{c} 0.56 \pm 0.02 \\ 0.58 \pm 0.01 \end{array}$ | $\begin{array}{c} 0.47 \pm 0.02 \\ 0.47 \pm 0.01 \end{array}$ |

respectively. Subscripts C and W denote the aqueous solution containing CO<sub>2</sub> and pure water, respectively. This equation is valid for solutions at (278 to 293) K and (6.44 to 29.49) MPa. To estimate the density of an aqueous electrolyte solution containing CO<sub>2</sub>, we used the following modified equation.

$$\rho_{\rm C}/({\rm kg \cdot m}^{-3}) = \rho_{\rm S}/({\rm kg \cdot m}^{-3}) + 1.96 \times 10^2 x_{\rm C} + 1.54 \times 10^4 x_{\rm C}^2$$
 (5)

where the subscript S denotes the aqueous NaCl solution.

By comparing with the experimental data obtained by Song et al., 8 eq 5 can be used to estimate the density data of an aqueous solution containing electrolytes and  $CO_2$ ,  $\rho_C$ , with an uncertainty of  $\pm 0.15\%$ .

Therefore we estimated the density of an aqueous NaCl solution containing  $CO_2$ ,  $\rho_C$ , using this equation and the values of  $\rho_{\rm S}^9$  and  $x_{\rm C}$ .

The accuracies of the measurements together with the responsible error for viscosity are listed in Table 1. The viscosity measurements have an uncertainty of 2% when using a standard technique. 10

## **Results and Discussion**

Tables 2 and 3 list the measured viscosity of water,  $\eta_W$ , and of an aqueous NaCl solution,  $\eta_S$ . The measured values agreed well with reference values, indicating good reliability for the results obtained by the experimental method used here.

Figure 2 shows the measured viscosity of the aqueous solution saturated with  $CO_2$ ,  $\eta_{CS}$ , and Table 4 lists the data. The results show that (a) for the same values of pressure and mass fraction of NaCl the viscosity of the aqueous solution saturated with CO<sub>2</sub> decreased as temperature increased, (b) the viscosity of the aqueous solution saturated with CO<sub>2</sub> was relatively independent of pressure, and (c) the viscosity of the aqueous solution saturated with CO<sub>2</sub> increased with increasing mass fraction of NaCl.

Table 5 lists the measured viscosities for aqueous NaCl solutions containing CO<sub>2</sub>. The results show that the viscosity was proportional to the mole fraction of CO<sub>2</sub>.

By regressing the experimental data in Tables 4 and 5, a prediction equation was derived for the viscosity of aqueous NaCl solutions containing CO<sub>2</sub>,  $\eta$ <sub>C</sub>, at P from (10 to 20) MPa, t from (30 to 60) °C, and S from (0 to 0.03).

Table 3. Viscosity of Pure Water,  $\eta_W/(mPa \cdot s)$ , and an Aqueous NaCl Solution,  $\eta_S/(mPa \cdot s)$ 

| t/°C           |                                                  | 30              |                 | 40              |                 | 50              |                   | 60              |               |
|----------------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|-----------------|---------------|
| P/MPa          |                                                  | 10              | 20              | 10              | 20              | 10              | 20                | 10              | 20            |
| $\overline{S}$ |                                                  |                 |                 |                 | η/mPa·s         |                 |                   |                 |               |
| 0              | current<br>study                                 | $0.80\pm0.02$   |                 | $0.66\pm0.02$   |                 | $0.56\pm0.02$   |                   | $0.47\pm0.02$   |               |
|                | literature <sup>12</sup>                         | $0.80 \pm 0.02$ |                 | $0.65 \pm 0.02$ |                 | $0.55\pm0.01$   |                   | $0.47 \pm 0.01$ |               |
| 0.03           | current<br>study                                 | $0.84\pm0.02$   | $0.83\pm0.02$   | $0.68 \pm 0.02$ | $0.69\pm0.02$   | $0.59\pm0.02$   | $0.59 {\pm}~0.02$ | $0.49\pm0.02$   | $0.50\pm0.02$ |
|                | literature<br>calculation<br>value <sup>11</sup> | $0.83 \pm 0.02$ | $0.83 \pm 0.02$ | $0.68 \pm 0.02$ | $0.69 \pm 0.02$ | $0.58 \pm 0.02$ | $0.58 {\pm}~0.02$ | $0.50\pm0.02$   | $0.50\pm0.02$ |

Table 4. Viscosity of an Aqueous NaCl Solution Saturated with CO<sub>2</sub>,  $\eta_{CS}$ , at NaCl Mass Fractions S = 0, 0.01, and 0.03

| t/°C           | 30              |                 | 4             | 40              |                 | 50              |                 | 60              |  |
|----------------|-----------------|-----------------|---------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| P/MPa          | 10              | 20              | 10            | 20              | 10              | 20              | 10              | 20              |  |
| $\overline{S}$ | η/mPa·s         |                 |               |                 |                 |                 |                 |                 |  |
| 0              | $0.89 \pm 0.03$ | $0.88 \pm 0.03$ | $0.70\pm0.03$ | $0.71 \pm 0.03$ | $0.57 \pm 0.02$ | $0.57 \pm 0.02$ | $0.47 \pm 0.02$ | $0.48 \pm 0.02$ |  |
| 0.01           | $0.90 \pm 0.03$ | $0.90\pm0.02$   | $0.72\pm0.02$ | $0.72\pm0.02$   | $0.58 \pm 0.02$ | $0.58 \pm 0.02$ | $0.49 \pm 0.02$ | $0.48 \pm 0.02$ |  |
| 0.03           | $0.93\pm0.03$   | $0.95\pm0.02$   | $0.75\pm0.02$ | $0.75\pm0.02$   | $0.61\pm0.02$   | $0.60\pm0.02$   | $0.51 \pm 0.02$ | $0.51\pm0.02$   |  |

Table 5. Viscosity of an Aqueous NaCl Solution Containing CO<sub>2</sub>,  $\eta_{\rm C}$ , at 10 MPa for NaCl Mass Fractions of S=0,0.01, and 0.03

| t/°C                    |                                   |                    |                 |                     |                      |                    |                 |                     |
|-------------------------|-----------------------------------|--------------------|-----------------|---------------------|----------------------|--------------------|-----------------|---------------------|
| $\frac{t/^{\circ}C}{S}$ |                                   |                    |                 | 30                  | 40                   |                    |                 |                     |
| 0                       | $10^2 x_{\rm C}$                  | 0                  | $0.73 \pm 0.01$ | $1.48 \pm 0.02$     | $2.38\pm0.07^5$      | 0                  | $1.07\pm0.01$   | $2.07 \pm 0.02^{5}$ |
|                         | $\eta_{\rm C}/({\rm mPa\cdot s})$ | $0.80^{12}\pm0.02$ | $0.81 \pm 0.02$ | $0.86 \pm 0.02$     | $0.89 \pm 0.03$      | $0.65^{12}\pm0.02$ | $0.68 \pm 0.02$ | $0.70\pm0.03$       |
| 0.01                    | $10^{2}x_{\rm C}$                 | 0                  | $0.73 \pm 0.01$ | $1.48 \pm 0.02$     | $2.27\pm0.07$ $^{5}$ | 0                  | $1.06\pm0.01$   | $2.03 \pm 0.02^{5}$ |
|                         | $\eta_{\rm C}/({\rm mPa\cdot s})$ | $0.81^{12}\pm0.02$ | $0.85\pm0.02$   | $0.86 \pm 0.02$     | $0.90 \pm 0.02$      | $0.68^{12}\pm0.02$ | $0.70 \pm 0.02$ | $0.72\pm0.02$       |
| 0.03                    | $10^{2}x_{\rm C}$                 | 0                  | $1.08\pm0.01$   | $2.09 \pm 0.04^{5}$ |                      |                    |                 |                     |
|                         | $\eta_{\rm C}/({\rm mPa\cdot s})$ | $0.83^{12}\pm0.02$ | $0.86\pm0.02$   | $0.93 \pm 0.02$     |                      |                    |                 |                     |



**Figure 2.** Viscosity of an aqueous NaCl solution saturated with CO<sub>2</sub>,  $\eta_{CS}$ , vs temperature, t, for various pressures and NaCl mass fractions:  $\bullet$ , 0% NaCl, 10 MPa;  $\Box$ , 0% NaCl, 20 MPa;  $\diamond$ , 1% NaCl, 10 MPa;  $\times$ , 1% NaCl, 20 MPa; +, 3% NaCl, 10 MPa;  $\triangle$ , 3% NaCl, 20 MPa.

Figure 3 shows the relative ratio of viscosity,  $\gamma = \eta_{CS} - \eta_S/\eta_S$ , as a function temperature, t. As temperature increased,  $\gamma$  decreased, indicating that  $CO_2$  molecules have little effect on the viscosity of the solution at high temperature. This Figure also shows that the relative ratio,  $\gamma$ , can be expressed as a linear function of temperature, t, by regression of the data:

$$\gamma(t) = \frac{\eta_{\rm CS} - \eta_{\rm S}}{\eta_{\rm S}} = -4.069 \times 10^{-3} t / {\rm ^{\circ}C} + 0.2531 \quad (6)$$

 $\gamma(t)$  values are large at low temperature, so the viscosity of the solution containing CO<sub>2</sub>,  $\eta_{\rm C}$ , is measured only at 30 °C and 40 °C. Figure 4 shows  $\eta_{\rm C}$  as a function of  $x_{\rm C}$ .



**Figure 3.** Relative ratio between the viscosity of an aqueous NaCl solution saturated with CO<sub>2</sub>,  $\eta_{CS}$ , and that of an NaCl solution without CO<sub>2</sub>,  $\eta_{S}$ , vs temperature, t, for various pressures and mass fractions of NaCl:  $\bullet$ , 0% NaCl, 10 MPa;  $\Box$ , 0% NaCl, 20 MPa;  $\diamond$ , 1% NaCl, 10 MPa;  $\times$ , 1% NaCl, 20 MPa; +, 3% NaCl, 10 MPa;  $\triangle$ , 3% NaCl, 20 MPa.

Regression of the data in this Figure yields  $\eta_{\rm C}$  expressed as a linear function of  $x_{\rm C}$ :

$$\frac{\eta_{\rm C}}{\eta_{\rm S}} = 1 + \gamma(t) \frac{x_{\rm C}}{x_{\rm CS}} \tag{7}$$

where g(t) is a function of temperature. Here,  $\eta_S$  is determined from the empirical equations (eqs 8–18) proposed by Kestin et al.<sup>11</sup>

$$\eta_{\rm S}(P, t, c) = \eta^0(t, c)[1 + \beta(t, c)P/\text{MPa}]$$
 (8)

where c,  $\eta^0$ , and  $\beta$  denote the concentration of NaCl, the



**Figure 4.** Viscosity of aqueous NaCl solution containing  $CO_2$ ,  $\eta_C$ , vs CO<sub>2</sub> mole fraction,  $x_C$  at 10 MPa:  $\bullet$ , 0% NaCl, 30 °C;  $\square$ , 0% NaCl, 40 °C; ♦, 1% NaCl, 30 °C; ×, 1% NaCl, 40 °C; +, 3% NaCl,

viscosity of the solution at 0.1 MPa, and the pressure coefficient, respectively.

$$\log\left[\frac{\eta^{0}(t, c)}{\eta^{0}_{W}(t)}\right] = A(c) + B(c) \log\left[\frac{\eta^{0}_{W}(t)}{\eta^{0}_{W}(20 \text{ °C})}\right]$$
(9)

$$\log \left[ \frac{\eta_{\rm W}^0(t)}{\eta_{\rm W}^0(20~{\rm ^{\circ}C})} \right]$$

$$= \frac{20 - t/^{\circ}C}{96 + t/^{\circ}C} \begin{bmatrix} 1.2378 - 1.303 \times 10^{-3}(20 - t/^{\circ}C) + 3.06 \times \\ 10^{-6}(20 - t/^{\circ}C)^{2} \\ + 2.55 \times 10^{-8}(20 - t/^{\circ}C)^{3} \end{bmatrix}$$
(10)

with

$$\eta_{\rm W}^0(20\,{}^{\circ}{\rm C}) = 1.002({\rm mPa\cdot s})$$

Subscript W denotes pure water, and c is expressed as a molality (M = mol of NaCl/kg of  $H_2O$ ):

$$d[M] = \frac{1000S}{58.44(1-S)}$$
 (11)

$$A(c) = 0.3324 \times 10^{-1} (c/M) + 0.3624 \times 10^{-2} (c/M)^2 - 0.1879 \times 10^{-3} (c/M)^3$$
 (12)

$$B(c) = -0.396 \times 10^{-1} (c/M) + 0.102 \times 10^{-1} (c/M)^{2} - 0.702 \times 10^{-3} (c/M)^{3}$$
(13)

$$\beta(t, c)/\text{MPa}^{-1} = (\beta_{\text{S}}^{\text{E}}(t)/\text{MPa}^{-1})\beta^* \left(\frac{c}{c_{\text{S}}}\right) + \beta_{\text{W}}(t)/\text{MPa}^{-1}$$
(14)

where  $\beta^{E}$  and  $\beta^{*}$  denote the excess pressure coefficient and the reduced coefficient, respectively. Subscripts S and SS denote aqueous the NaCl solution and the aqueous solution saturated with NaCl, respectively.

$$\begin{split} \beta_{\rm W}(t)/{\rm MPa}^{-1} &= -1.297 \times 10^{-3} + 0.574 \times 10^{-4} (t/^{\circ}{\rm C}) - \\ & 0.697 \times 10^{-6} (t/^{\circ}{\rm C})^2 \\ &+ 0.447 \times 10^{-8} (t/^{\circ}{\rm C})^3 - 0.105 \times \\ & 10^{-10} (t/^{\circ}{\rm C})^4 \ \ (15) \end{split}$$



**Figure 5.** Deviation of measured viscosity  $\eta_{\rm C}(\exp)$  from  $\eta_{\rm C}({\rm cal})$ calculated using the prediction equation.

$$\beta_S^E(t)/\text{MPa}^{-1} = 0.545 \times 10^{-3} + 0.28 \times 10^{-5}(t'^\circ\text{C}) - \beta_W(t)/\text{MPa}^{-1}$$
 (16)

$$c_S(t)/[M] = 6.044 + 0.28 \times 10^{-2} (t^{\circ}C) + 0.36 \times 10^{-4} (t^{\circ}C)^2$$
 (17)

$$\beta^* \left(\frac{c}{c_{\rm S}}\right) = 2.5 \times 10^{-3} \left(\frac{c}{c_{\rm S}}\right) - 2.0 \times 10^{-3} \left(\frac{c}{c_{\rm S}}\right)^2 + 0.5 \times 10^{-3} \left(\frac{c}{c_{\rm S}}\right)^3$$
 (18)

In the above equations, all viscosities are expressed in mPa·s, pressure is expressed in MPa, and temperature is expressed in °C

By combining eqs 6 and 7, the viscosity of the solution containing  $CO_2$ ,  $\eta_C$ , can be expressed as

$$\eta_{\rm C} = \eta_{\rm S} \left\{ 1 + (-4.069 \times 10^{-3} t/^{\circ} \text{C} + 0.2531) \frac{x_{\rm C}}{x_{\rm CS}} \right\} (19)$$

Figure 5 shows the viscosity of the aqueous solution saturated with  $CO_2$ ,  $\eta_{CS}$ , calculated from this prediction equation normalized by the corresponding measured  $\eta_{CS}$ . These results show that  $\eta_{CS}$  can be predicted within 2% of the measured  $\eta_{CS}$ .

### **Literature Cited**

- IEA Greenhouse Gas R&D Programme: Putting Carbon Back In The Ground; IEA Greenhouse Gas R&D Programme: 2001.
- Koide, H.; Ohsumi, T.; Uno, M.; Matsuo, S.; Watanabe, T.; Hongo, S. Japanese R&D Project for Geological Sequestration. 6th International Conference on Greenhouse Gas Control Technology, 2001; pp 317-320.
- Kumagai, A.; Yokoyama, C. Viscosity of aqueous solutions of CO<sub>2</sub> at high pressures. Int. J. Thermophys. 1998, 19, 1315-
- Kumagai, A.; Yokoyama, C. Viscosity of Aqueous NaCl Solutions Containing CO<sub>2</sub> at High Pressures. J. Chem. Eng. Data 1999,
- (5) Bando, S.; Takemura, F.; Nishio, M.; Hihara, E.; Akai, M. Solubility of CO<sub>2</sub> in Aqueous Solutions of NaCl at (30 to 60) °C and (10 to 20) MPa. J. Chem. Eng. Data 2003, 48, 576-579.
- Clift, R.; Grace, J. R.; Weber, M. E. Bubbles, Drops, and Particles; Academic Press: New York, 1978.
- Teng, H.; Yamasaki, A.; Chun, M.; Lee, H. Solubility of liquid CO2 in water at temperatures from 278 K to 293 K and pressures from 6.44 MPa to 29.49 MPa and densities of the corresponding aqueous solutions. J. Chem. Thermodyn. 1997, 29, 1301-1310.

- (8) Song, Y.; Nishio, M.; Chen, B.; Akai, M.; Ohsumi, T. Measurement of CO<sub>2</sub> saltwater solution density at states of aquifer. *Mech. Eng. Congr. 2003 Japan* **2003**, 329–330 (in Japanese).
  (9) Pitzer, K. S.; Peiper, J. C.; Busey, R. H. Thermodynamic properties of aqueous sodium chloride solutions. *J. Phys. Chem. Ref. Data* **1994**, *13*, 1–102.

- (10) Measurement Uncertainty; ASME: New York, ANSI/ASME PTC 19-1, 1985.
  (11) Kestin, J.; Khalifa, H. E.; Abe, Y.; Grimes, C. E.; Shookiazian, H.; Wakeham, W. A. Effect of Pressure on the Viscosity of
- Aqueous NaCl Solutions in the Temperature Range 20–150  $^{\circ}\text{C}.$
- J. Chem. Eng. Data 1978, 23, 328-336.
  (12) Nagashima, A. Viscosity of water substance-new international formulation and its background. J. Phys. Chem. Ref. Data 1977, *6*, 1133–1166.

Received for review February 5, 2004. Accepted June 22, 2004.

JE049940F