DSP_HW3

msh

March 2024

Exercise 1

已知 x(n) 为 N 点序列, $n=0,1,\cdots,N-1$, 而 N 为偶数,其 DFT 为 X(k)。 (1)

$$\diamondsuit y_1(n) = \begin{cases} x\left(\frac{n}{2}\right) & n \text{ 为偶数} \\ 0 & n \text{ 为奇数} \end{cases}$$

所以 $y_1(n)$ 为 2N 点序列。试用 X(k) 表示 $Y_1(k)$.

(2)

令 $y_2(n) = x(N-1-n), y_3(n) = (-1)^n x(n)$, 且 $y_2(n), y_3(n)$ 都是 N 点序列,N 为偶数,试用 X(k) 表示 $Y_2(k), Y_3(k)$

取 (1)
$$X(k) = \frac{N-1}{n-0} \times (n) W_{N}^{nk}$$
 , $W_{N} = e^{-j2\pi N}$.

|HW!|

 $Y_{1}(k) = \frac{2N^{-1}}{2} \times (n) Y_{2N}^{nk}$, $= \frac{2N^{-1}}{n-0} \times \frac{n}{2} W_{2N}^{nk}$, $= \frac{N^{-1}}{2} \times (n) W_{N}^{mk}$, $= \frac{N^{-1}}{2} \times (m) W_{N}^{mk}$, $= \frac$

(2). $Y_{2}(k) = \sum_{r=0}^{N-1} Y_{2}(n) W_{N}^{nk} = \sum_{r=0}^{N-1} \times (N-1-n) W_{N}^{nk}$ $= \sum_{m=0}^{N-1} \times (m) W_{N}^{(N-1-m)k}$ $= \sum_{m=0}^{N-1} \times (m) W_{N}^{nk} = \sum_{m=0}^{N-1} \times (m) [W_{N}^{mk}]^{*} = W_{N}^{-k} \times (k)$ $Y_{1}(k) = \sum_{n=0}^{N-1} Y_{1}(n) W_{N}^{nk} = \sum_{n=0}^{N-1} (-1)^{n} \times (n) W_{N}^{nk} = \sum_{n=0}^{N-1} \times (n) [-W_{N}^{k}]^{n}$ $= \sum_{n=0}^{N-1} (-1)^{n} \times (n) W_{N}^{nk} = \sum_{n=0}^{N-1} \times (n) [-W_{N}^{k}]^{n}$ $= \sum_{n=0}^{N-1} (-1)^{n} \times (n) W_{N}^{nk} = \sum_{n=0}^{N-1} \times (n) [-W_{N}^{k}]^{n}$ $= \sum_{n=0}^{N-1} (-1)^{n} \times (n) W_{N}^{nk} = \sum_{n=0}^{N-1} \times (n) W_{N}^{nk} = \sum_{n=0}^{N-1} \times (n) W_{N}^{nk} = \sum_{n=0}^{N-1} \times (k+\frac{N}{2})$ $= \sum_{n=0}^{N-1} (-1)^{n} \times (n) W_{N}^{nk} = \sum_{n=0}^{N-1} \times (n) W_{$

票。 扫描全能王 创建

Exercise 2

对离散傅里叶变换, 试证明 Parseval 定理。

$$\sum_{n=0}^{N-1} |x(n)|^{2} = \frac{1}{N} \sum_{k=0}^{N-1} |X(k)|^{2}$$

$$(1)$$

$$\sum_{n=0}^{N-1} |x(n)|^{2} = \frac{1}{N} \sum_{k=0}^{N-1} |X(k)|^{2}$$

$$(1)$$

$$\sum_{n=0}^{N-1} |x(n)|^{2} = \frac{1}{N} \sum_{k=0}^{N-1} |x(k)|^{2}$$

$$(1)$$

$$\sum_{n=0}^{N-1} |x(n)|^{2} = \sum_{n=0}^{N-1} |x(n)| = \sum_{n=0}^{N-1} |x(n)| \cdot \left[\frac{1}{N} \sum_{k=0}^{N-1} |x(k)|^{N} \right]$$

$$= \sum_{n=0}^{N-1} |x(n)|^{2} = \sum_{n=0}^{N-1} |x(n)| \cdot x(n) = \sum_{n=0}^{N-1} |x(n)| \cdot \left[\frac{1}{N} \sum_{k=0}^{N-1} |x(k)|^{N} \right]$$

$$= \sum_{n=0}^{N-1} |x(n)|^{2} = \sum_{n=0}^{N-1} |x(n)| \cdot x(n) = \sum_{n=0}^{$$

別 類 開 村描全能王 创建

Exercise 3

设 x(n),y(n) 的 DTFT 分别是 $X(e^{j\omega})$ 和 $Y(e^{j\omega})$,试证明

$$\sum_{n=-\infty}^{\infty} x(n)y^*(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$$
 (2)

这一关系被称为两个序列的 Parseval 定理。若 x(n),y(n) 都是 N 点序列,其 DFT 分别是 X(k) 和 Y(k),试导出类似的关系。

$$|W| = \frac{1}{2} \times (n) \frac{1}{\sqrt{n}} = \frac{1}{2} \times (n) \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} Y(e^{jw}) e^{jwn} dw \right]^{\frac{1}{2}}$$

$$= \frac{1}{2\pi} \times (n) \frac{1}{2\pi} \int_{-\pi}^{\pi} Y(e^{jw}) e^{-jwn} dw$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[\frac{1}{2\pi} \times (n) e^{-jwn} \right] Y(e^{jw}) dw$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[\frac{1}{2\pi} \times (n) e^{-jwn} \right] Y(e^{jw}) dw$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[\frac{1}{2\pi} \times (n) e^{-jwn} \right] Y(e^{jw}) dw$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[\frac{1}{2\pi} \times (n) e^{-jwn} \right] Y(e^{jw}) dw$$

$$= \frac{1}{2\pi} \int_{\pi=-w}^{\pi} \times (n) \left(\frac{1}{N} \sum_{k=-w}^{N} Y(k) W_{N}^{-nk} \right)^{\frac{1}{2}}$$

$$= \frac{1}{N} \sum_{k=-w}^{N} Y(k) \cdot \sum_{n=-w}^{\infty} X(n) W_{N}^{-nk}$$

$$= \frac{1}{N} \sum_{k=-w}^{N} Y(k) \cdot Y(k)$$

扫描全能王 创建