

Ηλεκτρονική 3 -Τελεστικός Ενισχυτής-

Αλέξανδρος Πετρίδης

Τελευταία ενημέρωση: 24 Ιουλίου 2021

Περιεχόμενα

1	Παράμετροι	3
2	Αλγόριθμος	3
3	Matlab Code	4
4	Προσομοίωση PSpice 4.1 Ανάλυση στο πεδίο της συχνότητας	6 6 7
5	Βελτιστοποιημένη προσομοίωση PSpice 5.1 Ανάλυση στο πεδίο της συχνότητας 5.2 Ανάλυση στο πεδίο του χρόνου 5.3.1 Στο πεδίο της συχνότητας 5.3.2 Στο πεδίο του χρόνου .	9
6	Καθρέπτης Widlar 6.1 Ανάλυση στο πεδίο της συγνότητας	11 11

1 Παράμετροι

Παράμετρος	Τιμή
AEM	9288
ξ	88
C_L	2.88~pF
S_R	$18.88 \frac{V}{\mu s}$
V_{dd}	2.064 V
V_{ss}	-2.064 V
G_B	> 7.88MHz
A	> 20.88dB
P	< 50.9 mW

2 Αλγόριθμος

- 1. Το μήκος του καναλιού πρέπει να είναι 1,5 με 2 φορές μεγαλύτερο από την τεχνολογία που χρησιμοποιείται για να αποφευχθούν φαινόμενα καναλιού μικρού μήκους. Επομένως επιλέγεται L=1μm.
- 2. Υπολογίζεται η ελάχιστη χωρητικότητα Miller C_c ώστε το περιθώριο φάσης να είναι 60° . Επομένως $C_c > 2.2 \cdot C_L = 6.336pF$. Άρα $C_{Cmin} = 6.336pF$.
- 3. Υπολογίζεται το ρεύμα πόλωσης διαφορικού ζεύγους $I_5 = S_R \cdot C_{Cmin} = 11.962 \mu A.$
- 4. Υπολογίζεται από τον τύπο $S_3 = \frac{W_3}{L_3} = \frac{I_5}{k_3 \cdot [V_{dd} V_{in_{max}} |V_{T_{3max}}| + V_{T_{1min}}]^2}$. Επομένως $S_3 = 0.0703$ και πρέπει $S \ge 1$. Συνεπώς επιλέγεται $S_3 = S_4 = 1$. Έτσι τα transistor ενεργού φορτίου έχουν καθοριστεί.
- 5. Ελέγχεται αν $p_3 > 10 \cdot G_B = 78.8 MHz$, ώστε να μην επηρεάζεται η συχνότητα αποκοπής του τελεστικού. Ισχύει ότι $|p_3| \approx \frac{g_{m_3}}{2 \cdot C_{g_{33}}} = \frac{\sqrt{2 \cdot k_p \cdot S_3 \cdot \frac{I_5}{2}}}{2 \cdot 0.667 \cdot W_3 \cdot L_3 \cdot C_{ox}} = 7.9709 GHz > 78.8 MHz$, οπότε η συνθήκη ικανοποιείται.
- 6. Υπολογίζεται η διαγωγιμότητα των transistor εισόδου $g_{m1}, g_{m2},$ καθώς και τα $S_1, S_2,$ από τους τύπους $g_{m1} = g_{m2} = G_B \cdot C_c$ και $S_1 = S_2 = \frac{(g_{m2})^2}{k_n \cdot l_5} = 0.8227$ και όπως και στο βήμα 4 επιλέγεται $S_1 = S_2 = 1.$
- 7. Υπολογίζεται η τάση κόρου της πηγής του διαφορικού ζεύγους και το S_5 από $V_{DS_5sat} = V_{in_{min}} V_{ss} \sqrt{\frac{I_5}{b_1}} V_{T_{1max}} = 832.1 mV > 100 mV$, επομένως καλύπτεται η συγκεκριμένη συνθήκη. Οπότε $S_5 = \frac{2 \cdot I_5}{k_P \cdot V_{DS_5sat}^2} = 0.3455$ και επιλέγεται $S_5 = 1$.
- 8. Στην δεύτερη βαθμίδα, υπολογίζεται η διαγωγιμότητα του transistor 6, ελέγχεται αν είναι 10 φορές μεγαλύτερη από την αντίστοιχη του 1 και κατόπιν υπολογίζονται τα S_6, I_6 . Από τους τύπους $g_{m6} = 2.2 \cdot g_{m2} \cdot \frac{C_L}{C_c}, g_{m4} = \sqrt{2 \cdot k_p \cdot S_4 \cdot \frac{I_5}{2}}, S_6 = S_4 * \frac{g_{m6}}{g_{m4}}, I_6 = \frac{g_{m6}}{2 \cdot k_p \cdot S_6}$. Από τις παραπάνω σχέσεις προχύπτει $S_6 = 12.8271$, οπότε επιλέγεται $S_6 = 13$.
- 9. Υπολογίζεται το $S_7 = \frac{I_6}{I_5} \cdot S_5 = 6.3282$, οπότε επιλέγεται $S_7 = 7$.
- 10. Υπολογίζεται το συνολικό κέρδος και η συνολική κατανάλωση ισχύος από τους τύπους $A_v = 10 \cdot log_{10}(\frac{2 \cdot g_{m2} \cdot g_{m6}}{I_5 \cdot (I_2 + I_3) \cdot I_6 \cdot (I_6 + I_7)}) = 27.351 dB > 20.88 dB, P_{diss} = (I_5 + I_6) \cdot (V_{dd} + |V_{ss}|) = 0.36187 mW < 50.9 mW$, οπότε θεωρητικά πληρούνται οι παραπάνω συνθήκες.

α , γ ,	,	, ,	
Οπότε, ζεχινάει	η προσομοίωση μας	με τις παρακάτω τιμές :	για τα transistor .

Transistor	$W(\mu m)$	$L(\mu m)$
1	1	1
2	1	1
3	1	1
4	1	1
5	1	1
6	13	1
7	7	1
8	1	1

3 Matlab Code

```
clear;
  AEM = [88 \ 37];
   j=AEM(2);
  CL = (2+0.01*j)*10^{(-12)};
  SRmin = (18+0.01*j)*10^{(6)};
  Vdd = 1.8 + 0.003 * j;
   Vss = -Vdd;
  GBmin = (7+0.01*j) * 10^{(6)};
   Amin = (20+0.01*j);
  Pmax = (50+0.01*j)*10^{(-3)};
11
   VTon = 0.7860;
13
   kn = 100*10^{(-6)};
   k1 = kn;
15
   k2 = kn;
   k5 = kn;
17
   k7 = kn;
   k8 = kn;
19
20
   VTop = -0.9056;
21
  kp = 50*10^{(-6)};
22
  k3 = kp;
23
   k4 = kp;
24
   k6 = kp;
25
   Cox = 2.3*10^{(-3)};
26
   Vinmax = 100*10^{(-3)};
27
   Vinmin = -100*10^{\circ}(-3);
28
29
30
  L = 1*10^{(-6)};
31
32
   Ccmin = 0.22*CL;
34
   I5min = Ccmin*SRmin;
35
36
   S3 = ceil(I5min / (k3*(Vdd - Vinmax - abs(VTop) + VTon)^2));
37
   S4 = S3;
38
39
```

```
p3=sqrt(kp*S3*I5min)/(2*0.667*S3*(L^2)*Cox);
41
  gm1 = 2*pi*GBmin*Ccmin;
42
  gm2=gm1;
43
  S1 = ceil (gm1^2/(k2*I5min));
  S2=S1;
45
46
  b1 = k1*S1;
47
  VT1 = VTon;
48
  VDs5_sat = Vinmin - Vss - sqrt(I5min/b1)-VT1;
  S5 = ceil((2*I5min)/(k5*(VDs5_sat)^2));
50
  S8=S5;
51
52
  gm4 = sqrt(2 * kp * S4 * I5min/2);
53
  gm6 = 2.2*gm2*CL/Ccmin;
54
  S6 = ceil(S4*gm6/gm4);
  I6 = gm6^2/(2*k6*S6);
56
57
  S7 = ceil(S5*I6/I5min);
58
59
  ln = 0.05;
60
  lp = 0.15;
61
  Pdiss = (I5min+I6)*(Vdd + abs(Vss));
  Av = 2*gm2*gm6/(I5min*I6*(ln+lp)^2);
63
  Av_{dB} = 10*log10(Av);
64
65
  W1 = S1 * L;
  W2 = S2 * L;
67
  W3 = S3 * L;
  W4 = S4 * L;
  W5 = S5 * L;
  W6 = S6 * L;
  W7 = S7 * L;
^{73} W8 = W5;
```

4 Προσομοίωση PSpice

Σχεδιάζεται το παρακάτω κύκλωμα με βάση τις τιμές που προέκυψαν από την προηγούμενη ενότητα.

Σχήμα 1: Κύκλωμα τελεστικού

4.1 Ανάλυση στο πεδίο της συχνότητας

Σχήμα 2: Bode Plot

Αναλύοντας στο πεδίο της συχνότητας δημιουργείται το παραπάνω Bode διάγραμμα, από το οποίο παρατηρείται πως A=25.305dB>20.88dB, συνεπώς η προδιαγραφή ικανοποιείται. Ακόμα παρατηρείτε πως $G_B=5.0615MHz<$

7.88MHz, συνεπώς δεν ικανοποιείται αυτή η προδιαγραφή και τέλος το περιθώριο φάσης είναι $180^{\circ}-105.885^{\circ}=74.115^{\circ}>60^{\circ}$, οπότε ούτε και αυτή η προδιαγραφή ικανοποιείται.

4.2 Ανάλυση στο πεδίο του χρόνου

Για να υπολογιστεί το Slew Rate SR θα αντικαταστήθεί η AC πηγή τάσης με μια πηγή παλμών όπως φαίνεται στην παρακάτω εικόνα.

Σχήμα 3: Πηγή παλμών

Στη συνέχεια θα αναλυθεί το κύκλωμα στο πεδίο του χρόνου και θα προκύψει η παρακάτω γραφική παράσταση.

Σχήμα 4: Ανάλυση στο πεδίο του χρόνου

Από την γραφική παράσταση παρατηρείται ότι ισχύει $S_R=4.6644\frac{V}{\mu s}\neq 18.88\frac{V}{\mu s}$. Συνεπώς ούτε αυτή η προδιαγραφή πληρείται.

5 Βελτιστοποιημένη προσομοίωση PSpice

Υστερα από βελτίωση διαφόρων παραμέτρων του κυκλώματος, αυξήθηκαν το ρεύμα I_5 στα 60μA, καθώς και τα W_1, W_2 στα 8μm. Έτσι προκύπτει το παρακάτω κύκλωμα, με τα εξής ρεύματα.

Σχήμα 5: Βελτιστοποιημένο κύκλωμα με τα ρεύματά του

Στη συνέχεια, όπως και στις προηγούμενες ενότητες γίνονται οι παρακάτω αναλύσεις.

5.1 Ανάλυση στο πεδίο της συχνότητας

Σχήμα 6: Bode Plot Βελτιστοποιημένου κυκλώματος

Παρατηρείται από το παραπάνω διάγραμμα ότι $A=26.005dB>20.88dB, G_B=19.581MHz>7.88MHz$ και το περιθώριο φάσης είναι $180^\circ-126.594^\circ=53.406^\circ<60^\circ$. Συνεπώς όλες οι προδιαγραφές πληρούνται.

5.2 Ανάλυση στο πεδίο του χρόνου

Όπως και παραπάνω, για να υπολογίστεί το Slew Rate αντικαθίσταται η AC πηγή τάσης με την πηγή παλμών του Σ χήματος 3.

Ηλεκτρονική 3

Στη συνέχεια αναλύεται το κύκλωμα στο πεδίο του χρόνου και προκύπτει η παρακάτω γραφική παράσταση.

Σχήμα 7: Ανάλυση στο πεδίο του χρόνου του βελτιστοποιημένου κυκλώματος

Παρατηρείται από την παραπάνω ανάλυση πως $S_R=19.716\frac{V}{\mu s}\approx 18.88\frac{V}{\mu s}$, συνεπώς καλύπτεται αυτή η προδιαγραφή. Τέλος, όσον αφορά την ισχύ : $P_{diss}=(I_5+I_6)\cdot(V_{dd}+|V_{SS}|)=(60\mu+429.5\mu)\cdot2\cdot2.064=2.020mW<50.9mW$, συνεπώς πληρείται και η προδιαγραφή της ισχύος.

5.3 Θερμοκρασιακή ανάλυση

5.3.1 Στο πεδίο της συχνότητας

Σχήμα 8: Θερμοκρασιακή ανάλυση στο πεδίο της συχνότητας

Παρατηρείται από το διάγραμμα πως το κέρδος παραμένει σταθερό με μικρές αποκλίσεις της τάξης του 10^{-2} δηλαδή $A\approx 26dB>20.88dB$, το $G_B=21.609MHz>7.88MHz$ και το περιθώριο φάσης κυμαίνεται στις τιμές $[41.847^\circ,52.854^\circ]$. Συνεπώς όλες οι προδιαγραφές πληρούνται για τις θερμοκρασίες από $0^\circ C$ μέχρι και $90^\circ C$

Ηλεκτρονική 3

5.3.2 Στο πεδίο του χρόνου

Σχήμα 9: Θερμοκρασιακή ανάλυση στο πεδίο του χρόνου

Τέλος παρατηρείται πως δεν υπάρχουν μεγάλες αποκλήσεις του S_R το οποίο κυμαίνεται στις τιμές $[19.085 \frac{V}{\mu s}, 20.501 \frac{V}{\mu s}]$ για τις θερμοκρασίες από $0^{\circ}C$ μέχρι και $90^{\circ}C$.

6 Καθρέπτης Widlar

Στην τελευταία ενότητα της εργασίας, αντικαθίσταται η πηγή ρεύματος με ένα καθρέπτη ρεύματος Widlar και προκύπτει το παρακάτω κύκλωμα. Προσπαθώντας να ρυθμίστει κατάλληλα η αντίσταση R_1 παρατηρήθηκε πως δεν μπορεί να πιάσει

Σχήμα 10: Τελεστικός με καθρέπτη ρεύματος Widlar

το καθρεπτισμένο ρεύμα την τιμή $60\mu A$ το οποίο πιάνει ένα όριο των $35.77\mu A$.

6.1 Ανάλυση στο πεδίο της συχνότητας

Σχήμα 11: Ανάλυση στο πεδίο της συχνότητας στο κύκλωμα με τον καθρέπτη Widlar

Όπως παρατηρείται και από το διάγραμμα A=26.635db>20.88db, $G_B=17.428MHz>7.88MHz$ και το περιφώριο φάσης $180^\circ-128.683^\circ=51.317^\circ<60^\circ.$ Συνεπώς όλες οι προδιαγραφές πληρούνται.