ACH2053 - Introdução à Estatística

Aula 09b: Estimadores

Valdinei Freire

valdinei.freire@usp.br

http://www.each.usp.br/valdinei

Escola de Artes, Ciências e Humanidades - USP

2025

Exemplo

Considere uma caixa com 10 dados seguindo a seguinte distribuição: 5 dados com faces (111223), 3 dados com faces (112233), e 2 dados com faces (122333). Considere o seguinte experimento:

- 1. um dado foi retirado aleatoriamente da caixa;
- 2. o dado foi jogado 6 vezes e os seguintes valores foram obtidos: 3, 2, 1, 2, 3, 2.

Responda:

- 1. Como são as faces do dado retirado?
- 2. Repita o exercício considerando que na caixa exista apenas um dado de cada um dos 3 tipos.
- 3. Repita o exercício considerando que você não tem nenhuma informação sobre os dados na caixa.

2/11

Estimadores Bayesianos

Considere que o parâmetro $\theta_0 \in \Omega$ é uma variável aleatória e é distribuida de acordo com a p.d.f. (p.m.f.) $f(\theta)$ sobre o espaço de parâmetros $\Omega \in \mathbb{R}^d$.

Considere que as n variáveis aleatórias X_1,\ldots,X_n observadas são independentes e identicamente distribuidas de acordo com a p.d.f (p.m.f.) condicional $f(x|\theta)$.

Então, seguindo o teorema de Bayes, temos que:

$$\Pr(\theta_0 = \theta | X_1 = x_1, \dots, X_n = x_n) = \frac{f(x_1 | \theta) \cdots f(x_n | \theta) f(\theta)}{\Pr(X_1 = x_1, \dots, X_n = x_n)}$$
$$= \frac{\prod_{i=1}^n f(x_i | \theta) f(\theta)}{\int_{\theta'} \prod_{i=1}^n f(x_i | \theta') f(\theta') d\theta'}$$

Estimadores Bayesianos

Considere a p.d.f. (p.m.f.) condicional dada por:

$$f_n(\theta|x_1,...,x_n) = \Pr(\theta_0 = \theta|X_1 = x_1,...,X_n = x_n).$$

O estimador bayesiano:

$$\hat{\theta} = \arg\max_{\theta \in \Omega} f_n(\theta|x_1, \dots, x_n)$$

é chamado de estimador bayesiano Maximum a Posteriori (MAP).

O estimador bayesiano:

$$\hat{\theta} = \int_{\theta} \theta f_n(\theta|x_1,\dots,x_n) d\theta = \mathsf{E}_{\theta_0|X_1,\dots,X_n}(\theta_0)$$

é chamado de estimador bayesiano Expectation a Posteriori (EAP).

Estimador de Máxima Verossimilhança

Considere a p.d.f (p.m.f) conjunta $f_n(\mathbf{x}|\theta)$. Se essa função é interpretada como uma função de θ com parâmetros $\mathbf{x} = (x_1, \dots, x_n)$, então ela é chamada de função de Verossimilhança (likelihood) e é denotada por $L(\theta; \mathbf{x}).$

Suponha que as n variáveis aleatórias X_1, \ldots, X_n formam uma amostra aleatória de uma distribuição para qual a p.d.f. (p.m.f.) condicional é $f(X|\theta)$. Então:

$$L(\theta; \mathbf{x}) = f(x_1 | \theta) \cdots f(x_n | \theta).$$

Para cada possível vetor de observação $\mathbf{x} = (x_1, \dots, x_n)$, defina $\hat{\theta} = \arg \max_{\theta \in \Omega} L(\theta; \mathbf{x})$. A estimativa $\hat{\theta}$ é a estimativa de máxima verossimilhança (M.L.E. - maximum likelihood estimator).

Estimador de Máxima Verossimilhança

Definition (Divergência de Kullback-Leibler)

Seja p(x) e q(x) duas p.d.f. sobre $\mathbb R$. A divergência (distância) de Kullback-Leibler, de q(x) com respeito a p(x) é definida como:

$$KL(p||q) = \int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} dx.$$

Teorema

Uma estimativa $\hat{\theta}$ baseada nas amostras $\mathbf{x}=(x_1,\ldots,x_n)$ é um M.L.E. se e somente se para todo $\theta\in\Omega$:

$$KL[\widehat{f}_n(x)||f(x;\widehat{\theta})] \le KL[\widehat{f}_n(x))||f(x;\theta)],$$

onde $\widehat{f}_n(x)$ é a distribuição discreta com base na amostra.

V. Freire (EACH-USP)

Função Log-likelihood

Seja $\hat{\theta}$ o M.L.E. de θ , se $g:\mathbb{R}\to\mathbb{R}$ é uma função estritamente crescente, então $\hat{\theta}=\arg\max_{\theta\in\Omega}g[L(\theta;\mathbf{x})].$

Para encontrar o M.L.E. usualmente considera-se a transformação $\ell(\theta;\mathbf{x}) = \log L(\theta;\mathbf{x})$ e resolve-se a seguinte equação:

$$\nabla_{\theta} \log L(\theta) = 0.$$

O estimador M.L.E. não necessariamente é único e também pode não existir dependendo da classe de distribuição.

Exercício: encontre o estimador M.L.E. para uma amostrada obtida de uma distribuição de Bernoulli.

Estimador de Máxima Verossimilhança

Considere um exame com 3 questões. Cada questão i é modelada por uma dificuldade $b_i \in \mathbb{R}$ e cada aluno é modelado por uma habilidade $\theta \in (-\infty, +\infty)$. Considere então o seguinte experimento: sorteie uma habilidade θ da distribuição $f(\theta) = \frac{e^{\theta}}{(1+e^{\theta})^2}$ e aplique o exame.

Considere as variáveis aleatórias binárias independentes X_i que indica se o aluno acertou ou não a questão i com distribuição condicional:

$$f(x_i = 1 | \theta) = \left\{ \begin{array}{ll} 0 & \text{, se } \theta < b_i - 2 \\ 0.5 + 0.25(\theta - b_i) & \text{, se } \theta \in [b_i - 2, b_i + 2] \\ 1 & \text{, se } \theta > b_i + 2 \end{array} \right..$$

Considere que o exame é formado por questões com as seguintes dificuldades: $b_1=-0.7$, $b_2=0.1$ e $b_3=0.5$ e que T é a variável aleatória representando a habilidade do aluno.

Seja $s(\theta) = \Pr(X_1 = 1, X_2 = 1, X_3 = 0 | T = \theta)$, encontre θ que maximize $s(\theta)$

Lei dos Números Grandes

Inequação de Markov

Suponha que X é uma variável aleatória tal que Pr(X > 0) = 1. Então para todo número real t > 0,

$$\Pr(X \ge t) \le \frac{\mathsf{E}(X)}{t}.$$

Inequação de Chebyshev

Suponha que X é uma variável aleatória tal que exista Var(X). Então para todo número real t > 0.

$$\Pr(|X - \mathsf{E}(X)| \ge t) \le \frac{\mathsf{Var}(X)}{t^2}.$$

Lei dos Números Grandes

Teorema

Seja X_1,\ldots,X_n amostras aleatórias de uma distribuição com média μ e desvio padrão σ . Seja $\overline{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$ a média das amostras. Então:

$$\mathsf{E}(\overline{X}_n) = \mu \; \mathsf{e} \; \mathsf{Var}(\overline{X}_n) = \frac{\sigma^2}{n}.$$

Teorema (Lei dos Números Grandes)

Suponha que X_1,\dots,X_n forme uma amostra aleatória de uma distribuição com média μ e variância finita. Seja \overline{X}_n a média das amostras e g(z) uma função contínua em $z=\mu$. Então:

$$\overline{X}_n \xrightarrow{p} \mu \ \mathrm{e} \ g(\overline{X}_n) \xrightarrow{p} g(\mu).$$

Método dos Momentos

Seja \mathcal{F}_{θ} um espaço de c.d.f., encontre funções $U:\mathbb{R}\to\mathbb{R}^d$ e $V:\Omega\to\mathbb{R}^d$ inversível, tal que $\mathsf{E}[U(X)]=V(\theta)$. Então construa o estimador:

$$\hat{\theta} = V^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} U(x_i) \right).$$

Teorema

O Método dos Momentos produz um estimador consistente.

Exercício: considerando o Métodos dos Momentos encontre um estimador para a distribuição uniforme contínua entre a e b.

2025

11/11