PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-017267

(43)Date of publication of application: 17.01.2003

(51)Int.CI.

H05B 33/14

H05B 33/10

(21)Application number: 2001-204607

(71)Applicant:

TOPPAN PRINTING CO LTD

(22)Date of filing:

05.07.2001

(72)Inventor:

KAI TERUHIKO

KOMAKI HATSUMI SEKINE NORIMASA **MINATO TAKAO**

(54) ORGANIC ELECTROLUMINESCENT DISPLAY ELEMENT AND ITS MANUFACTURING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an organic EL element that is improved in utilization efficiency of light by emitting polarized light and is of low cost by improving productivity, and its manufacturing method.

SOLUTION: In an organic electroluminescent element which has an electrode, a luminous layer, and a counter electrode on a substrate, the luminous layer is formed by a coating method or a printing method using a luminous layer forming solution made of at least a polymer material and a solvent, and has a polarization of 0.3 or more of the degree of polarization. Further, the luminous layer is made of a polymer material having a molecular weight of 10,000 or more and the luminous layer is formed on the substrate and the electrode by applying shearing.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-17267 (P2003-17267A)

(43)公開日 平成15年1月17日(2003.1.17)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

H05B 33/14

33/10

H05B 33/14

B 3K007

33/10

審査請求 未請求 請求項の数4 OL (全 4 頁)

(21)出願番号 特願2001-204607(P2001-204607) (71)出顧人 000003193 凸版印刷株式会社 (22)出顧日 平成13年7月5日(2001.7.5) 東京都台東区台東1丁目5番1号 (72)発明者 甲斐 輝彦 東京都台東区台東1丁目5番1号 凸版印 剧株式会社内 (72)発明者 古牧 初美 東京都台東区台東1丁目5番1号 凸版印 刷株式会社内 (72)発明者 関根 徳政 東京都台東区台東1丁目5番1号 凸版印 刷株式会社内

最終質に続く

(54) 【発明の名称】 有機エレクトロルミネセンス表示素子および製造方法

(57)【要約】

【課題】偏光を発光させ光の利用効率が改善された、か つ生産性を向上して、より安価な有機EL素子およびそ の製造方法を提供する。

【解決手段】基板上に電極と発光層と対向電極とを設け た有機エレクトロルミネッセンス素子において、前記発 光層が少なくとも高分子材料と溶媒からなる発光層形成 用溶液を用いる塗工法または印刷法にて形成されてな り、かつ、偏光度0.3以上の偏光性を有する。更に、 発光層が分子量1万以上の高分子材料からなること、及 び、基板上及び電極上に発光層をせん断をかけながら形 成することも含まれる。

【特許請求の範囲】

【請求項1】基板上に電極と発光層と対向電極とを設け た有機エレクトロルミネッセンス素子において、前記発 光層が少なくとも高分子材料と溶媒からなる発光層形成 用溶液を用いる塗工法または印刷法にて形成されてな り、かつ、偏光度0.3以上の偏光性を有する事を特徴 とする有機エレクトロルミネセンス表示素子。

【請求項2】請求項1に記載の有機エレクトロルミネセ ンス表示素子において、前記発光層が分子量1万以上の 高分子材料からなることを特徴とする有機エレクトロル 10 ミネセンス表示素子。

【請求項3】基板上及び電極上に発光層をせん断をかけ ながら形成することを特徴とする請求項1から請求項3 に記載の有機エレクトロルミネセンス表示素子の製造方 法。

【請求項4】請求項3に記載の有機エレクトロルミネセ ンス表示素子の製造方法において、発光層を形成するの に必要な発光層形成用溶液が少なくとも前記高分子材料 と溶媒からなり、溶媒中に50℃~160℃の沸点を有 有機エレクトロルミネセンス表示素子の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は有機エレクトロルミ ネセンス表示素子に関し、より詳細には、偏光を発する 有機エレクトロルミネセンス表示素子に関する。

[0002]

の利用効率が悪い。

【従来の技術】有機エレクトロルミネセンス表示素子 (以下有機EL素子)は、陽極層、発光層、陰極層の積 層体であり、陽極、陰極からそれぞれ注入された正孔、 電子が発光層で再結合して蛍光を発する。

【0003】一般に有機EL素子は、基板上に予め設け られた陽極上に、単層または複数層の低分子の発光層、 次いで金属からなる陰極を真空成膜して作られる。近 年、発光層を構成する物質が髙分子材料であるものも報 告されており、この場合、発光層の形成方法として、乾 式成膜法である真空成膜に代わり、湿式成膜法である塗 布法、印刷法を採用することができる。

【0004】有機EL素子は面状発光か可能であるた め、液晶表示素子のバックライトとしても使用できる。 従来、液晶表示素子のバックライトとして有機EL素子 を使用する場合には、有機EL素子が発光する自然光 (無偏光)を偏光板により偏光させる必要があった。 し かし、偏光板の透過率が入射光の50%であるため、光

【0005】そこで、例えば、特開平4-40413号 公報には、一軸方向に配向した分子からなる発光層が開 示されている。有機EL素子の発光層を発光面に対して 一定方向に配向した場合、偏光の発光が得られ、偏光板

すことが可能となる。しかしながら、該発光層は水平展 開法やLB法を用いて形成しており、素子の生産性が悪 いという問題があった。

[0006]

【発明が解決しようとする課題】本発明は、以上の事柄 を鑑みてなされたものであり、その目的は、偏光を発光 させ光の利用効率が改善された、かつ生産性を向上し て、より安価な有機EL素子およびその製造方法を提供 、 することである。

[0007]

【課題を解決するための手段】本発明は、上記の課題を 鑑みてなされたものであり、請求項1は、基板上に電極 と発光層と対向電極とを設けた有機エレクトロルミネッ センス素子において、前記発光層が少なくとも高分子材 料と溶媒からなる発光層形成用溶液を用いる塗工法また は印刷法にて形成されてなり、かつ、偏光度0.3以上 の偏光性を有する事を特徴とする有機エレクトロルミネ センス表示素子である。請求項2は、請求項1に記載の 有機エレクトロルミネセンス表示素子において、前記発 する溶媒を少なくとも1種類以上含むことを特徴とする(20)光層が分子量1万以上の高分子材料からなることを特徴) とする有機エレクトロルミネセンス表示素子である。請 求項3は、基板上及び電極上に発光層をせん断をかけな がら形成することを特徴とする請求項1から請求項3に 記載の有機エレクトロルミネセンス表示素子の製造方法 である。請求項4は、請求項3に記載の有機エレクトロ ルミネセンス表示素子の製造方法において、発光層を形 成するのに必要な発光層形成用溶液が少なくとも前記高 分子材料と溶媒からなり、溶媒中に50℃~160℃の 沸点を有する溶媒を少なくとも1種類以上含むことを特 30 徴とする有機エレクトロルミネセンス表示素子の製造方 法である。

[0008]

【発明の実施の形態】以下、本発明の有機EL表示素子 の一例を詳細に説明する。先ず、透光性絶縁の基板上に スパッタリング法等により透明導電膜を形成し、フォト リソグラフィー法で透明導電膜をパターニングし、陽極 層を形成する。

【0009】本発明における基板としては、石英基板、 ガラス基板、プラスチック基板等が使用できる。プラス 40 ティク基板を使用すれば、巻き取りによる有機EL表示 素子の製造が可能になり、より安価に有機EL表示素子 を提供でき、好ましい。プラスティク基板の材料として は、ポリエチレンテレフタレート、ポリエチレンナフタ レート、ポリプロピレン、シクロオレフィンポリマー、 ポリアミド、ポリエーテルサンフォン、ポリメチルメタ クリレート、ポリカーボネートなどを用いることができ る。また、セラミック蒸着フィルム、ポリ塩化ビニレ ン、ポリ塩化ビニル、エチレン-酢酸ビニル共重合体鹸 化物などのバリア性フィルムを積層しても良い。さらに

が不要となり、偏光板による約50%の光の損失をなく 50 は、カラーフィルター層を設けても良い。

【0010】本発明における陽極層の材料としては、I TO(インジウムスズ複合酸化物)やインジウム亜鉛複 合酸化物、亜鉛アルミニウム複合酸化物等の透明電極材 料が使用できる。

【0011】なお、抵抗を下げるために透明導電膜には 銅、クロム、アルミニウム、チタン等の金属もしくはこ れらの積層物を補助電極として部分的に併設させること ができる。また、陽極上に短絡防止用絶縁層を形成して

【0012】本発明における発光層は、高分子発光材料 の単層であっても、正孔輸送層、高分子発光層、電子輸 送層などからなる多層膜で形成することができる。発光 層の材料は公知の高分子材料を使用することができる。 発光層を形成する高分子材料は、それぞれ単独で使用し ても良く、混合して使用しても良い。

【0013】正孔輸送層を設ける場合は、ポリアニリ ン、ポリチオフェン、ポリピニルカルバゾール、ポリ (3, 4-エチレンジオキシチオフェン) とポリスチレ ンスルホン酸との混合物を用いることができる。

【0014】発光層としては、ポリアリールビニレン系 20 やポリフルオレン系などの高分子蛍光体があげられる。 また、クマリン系、ペリレン系、ピラン系、アンスロン 系、ポリフィレン系、キナクリドン系、N.N'-ジアル キル置換キナクリドン系、ナフタルイミド系、N,N'-ジアリール置換ビロロビロール系などの蛍光性色素をポ リスチレン、ポリメチルメタクリレート、ポリピニルカ ルバゾールなどの髙分子材料中に溶解させたものを用い ることもできる。

【0015】上述の高分子材料は、トルエン、キシレ ン、アセトン、メチルエチルケトン、メチルイソブチル 30 ケトン、シクロヘキサン、アニソール、メタノール、エ タノール、イソプロピルアルコール、酢酸エチル、酢酸 ブチルなど有機溶剤や水などの単独または混合溶液に溶 解または分散液としてインク化することができる。この 時、乾燥速度を上げる為に、溶媒中に50℃~160℃ の沸点を有する溶媒を少なくとも1種類以上含んでいる ことが好ましい。インク化する際には、界面活性剤、粘 度調整剤、酸化防止剤などを添加しても良い。

【0016】発光層は、マイクログラビア法、ダイコー ト法、スロットコート法、カーテンコート法、グラビア 40 る。ポリエチレンテレフタレートからなる透光性基板 1 法、フレキソ法、オフセット法、凸版法、凹版オフセッ ト法、スクリーン法などのコーティング方法または印刷 方法により形成することができる。発光層の膜厚は、単 層または積層により形成する場合においても1μm以下 であり、好ましくは50nm~150nmである。

【0017】上記の塗工方法や印刷方法では、基材と塗 布ヘッドの間で高速せん断場を発生させることが可能で ある。上述した発光層を形成する髙分子は剛直な主鎖を 有する為、高速せん断場では、基材の搬送方向に平行に 主鎖が配向し、偏光性を有するEL発光が得られた。

【0018】偏光度(V)は、定義より、下記式: $\Lambda = [I (0,) - I (0,)] / [I (0,) + I (0,)]$ 0.)]

である。式中、【(0°)はせん断方向に平行な偏光の EL強度、I(90°)はせん断方向に垂直な偏光のE L強度である。偏光度は0.3以上、好ましくは0.5 以上でないと、従来の技術であるバックライトと偏向板 の組み合わせと比較して、実際上利点がない。

【0019】この時、高分子材料の分子量が1万以上、 好ましくは10万以上、さらに好ましくは100万以上 では、配向性が向上することが見出された。

【0020】また、配向状態を固定化する為に、乾燥速 度は早い方が望ましい。そこで、前述の発光層形成用イ ンクが、溶媒中に50℃~160℃の沸点を有する溶媒 を少なくとも1種類以上含んでいることが好ましい。

【0021】また、塗工工程または印刷工程は、発光特 性の低下を防ぐ為に窒素ガスやアルゴンなどの不活性ガ ス下で行うのが好ましい。また、黄色灯、赤色灯、暗室 などの遮光下で行うことがいっそう好ましい。

【0022】陰極層の材料としては電子注入効率の高い 物質を用いる。具体的にはMg, Al, Yb等の金属単 体を用いたり、発光媒体と接する界面にLiや酸化L i,LiF等の化合物を1nm程度挟んで、安定性・導 電性の高いAlやCuを積層して用いる。

【0023】または電子注入効率と安定性を両立させる ため、低仕事関数なLi, Mg, Ca, Sr, La, C e, Er, Eu, Sc, Y, Yb等の金属1種以上と、 安定なAg, Al, Cu等の金属元素との合金系が用い られる。具体的にはMgAg, AlLi, CuLi等の 合金が使用できる。

【0024】陰極層の形成方法は、材料に応じて、抵抗 加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオン プレーティング法、スパッタリング法を用いることがで きる。陰極の厚さは、10nm~1 µm程度が望まし 63

[0025]

【実施例】以下、本発明の実施例を説明するが、本発明 はこれに限定されるものではない。

【0026】<実施例1>以下、図1を用いて説明す 上にスパッタリング法で陽極層としてITO膜2を形成 した。次に、フォトリソグラフィー法およびウェットエ ッチング法によってITO膜2を所定のパターンにパタ ーンニングし、陽極層2を形成した。次に、陽極層表面 をUVオゾン装置で洗浄した。次に、発光層3として、 ポリ(3,4) エチレンジオキシチオフェンとポリスチ レンスルフォネートとの混合物層、ポリ(2-メトキ シ, 5-(2'-エチル-ヘキシロキシ)-1, 4-フ ェニレンピニレン層を順に、マイクログラビア法によ 50 り、それぞれ30nm、100nmの膜厚で形成した。

この時、基材の搬送速度は20m/min、マイクログ ラビアロールの回転速度は20m/minとした。次 に、陰極層4としてCa層、A1層を順に、真空蒸着法によ り、それぞれ20nm、200nmの膜厚で形成した。 【0027】得られた有機EL表示素子に5Vの電圧を 印加したところ、輝度700cd/m²の発光が得られ た。さらに上記EL発光の偏光度(V)を求めたとこ ろ、V=0.6であり、偏光フィルムの偏光度0.7~ 0.9と比較して遜色ない偏光性が確認された。 【0028】<実施例2>発光層をダイコート法により 10 示す説明図である。 形成する以外は、実施例と同様の方法で有機EL表示素 子を作製した。基材の搬送速度は20m/minであ り、基材とダイヘッド間の間隔は10μmであった。得 られた有機EL表示素子に5Vの電圧を印加したとこ ろ、輝度700cd/m²の発光が得られた。さらに上 記EL発光の偏光度V=0.7であり、偏光フィルムの*

*偏光度0.7~0.9と比較して遜色ない偏光性が確認 された。

[0029]

【発明の効果】本発明によれば、偏光光を発光させ光の 利用効率が改善された、かつ生産性を向上して、より安 価な有機EL素子を製造することが可能となった。

[0030]

【図面の簡単な説明】

【図1】本発明の有機EL表示素子の製造方法の一例を

【符号の説明】

- 1 透光性基板
- 陽極層
- 3 発光層
- 陰極層

【図1】

フロントページの続き

(72)発明者 湊 孝夫

東京都台東区台東1丁目5番1号 凸版印 刷株式会社内

Fターム(参考) 3K007 AB01 AB18 CA06 CB01 DA01 DB03 EB00 FA01