Valeurs propres, vecteurs propres, diagonalisation

I Valeurs propres, vecteurs propres

Définition 1:

Soient $A \in M_n(\mathbb{R})$ une matrice carée d'ordre n et $\lambda \in \mathbb{R}$.

S'il existe $x \in \mathbb{R}^n$ non nul tel que $Ax = \lambda x$ alors

- λ est une valeur propre de A.
- x est un vecteur propre de A associé à λ .

L'égalité $Ax = \lambda x$ est équivalente à $Ax - \lambda I_n x = 0_{\mathbb{R}^n}$ où I_n est la matrice identité de $M_n(\mathbb{R})$.

c'est à dire :
$$Ax = \lambda x \Leftrightarrow (A - \lambda I_n)x = 0_{\mathbb{R}^n}$$
.

Pour que ce système ait une solutions non nulle, il faut et il suffit que $det(A - \lambda I_n) = 0$

Théorème 1:

 λ est une valeur propre de A si et seulement si $det(A - \lambda I_n) = 0$

Exemple 1:

Soit la matrice
$$A = \begin{pmatrix} 0 & -2 \\ -4 & 2 \end{pmatrix}$$

- 1. Déterminer les valeurs propres de la matrice A
- 2. Déterminer les vecteurs propres associés aux valeurs propres.

Remarque 1:

Si v est un vecteur propre de A associé à λ , alors $\forall k \in \mathbb{R}$, kv est aussi un vecteur propre de A associé à λ .

Proposition 1:

 $det(A - \lambda I_n)$ est un polynôme en fonction de λ , on le note $P_A(\lambda)$ et on l'appelle polynôme caractéristique de A.

L'équation $det(A - \lambda I_n) = 0$ est appelée équation caractéristique de A.

Exemple 2:

Soit la matrice
$$A = \begin{pmatrix} 5 & -3 \\ 6 & -4 \end{pmatrix}$$

Alors
$$P_A(\lambda) = det(A - \lambda I_n) = det \begin{pmatrix} 5 - \lambda & -3 \\ 6 & -4 - \lambda \end{pmatrix} = (5 - \lambda)(-4 - \lambda) + 18 = \lambda^2 - \lambda - 2$$

$\underline{M\acute{e}thode\ 1}:$

Pour trouver les valeurs propres et les vecteurs propres de la matrice A:

- Former la matrice $(A \lambda I_n)$ et calculer $P_A(\lambda) = det(A \lambda I_n)$.
- Trouver les racines du polynôme caractéristique $P_A(\lambda)$ pour obtenir les valeurs propres de A.
- Pour chaque valeur propre λ trouvée à la deuxième étape, résoudre $(A-\lambda I_n)X$ pour trouver les vecteurs propres X correspondants.

Exercice 1:

Soit la matrice
$$A = \begin{pmatrix} 5 & -3 \\ 6 & -4 \end{pmatrix}$$

- 1. Déterminer les valeurs propres de la matrice A
- 2. Déterminer les vecteurs propres associés aux valeurs propres.

Définition 2:

L'ensemble des valeurs propres d'une matrice carrée A est appelé le spectre de A et est noté Spec(A).

Corollaire 1:

Une matrice carrée d'ordre n a au plus n valeurs propres.

Soient $\lambda_1, \lambda_2, \ldots, \lambda_r$ les valeurs propres de A, alors le polynôme caractéristique de A est $P_A(X) = (X - \lambda_1)^{m_1}(X - \lambda_2)^{m_2}....(X - \lambda_r)^{m_r}Q(X)$ où Q est un polynôme qui n'a pas de racines dans \mathbb{R} ; m_i est la multiplicité de λ_i .

Remarque 2:

- Il est possible que $P_A(X)$ possède une racine de multiplicité supérieure à 1. Dans ce cas, il est possible que plusieurs vecteurs propres soient associés à cette valeur propre.
- Le polynôme caractéristique d'une matrice carrée A d'ordre n s'écrit sous la forme $P_A(X)=(-1)^nX+(-1)^{n-1}tr(A)X^{n-1}+.....+det(A)$

Proposition 2:

Soit λ une valeur propre de A, le sous ensemble des vecteurs propres de A associé à λ est un sous-espace vectoriel appelé sous-espace propre de A associé à λ et noté E_{λ} .

Exemple 3:

Soit la matrice
$$A = \begin{pmatrix} 5 & -3 \\ 6 & -4 \end{pmatrix}$$
 de l'exemple 2 précédent

2 est une valeure propre de A, déterminons les vecteurs propres associés à 2.

Soit $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ le vecteur propre associé à 2,

alors
$$(A - 2I_n) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 3 & -3 \\ 6 & -6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Le système est équivalent à $3x_1 - 3x_2 = 0$ c'est à dire $x_1 - x_2 = 0$.

Donc le sous ensemble des vecteurs propres de A associé à $\lambda=2$ est

 $E_2 = \{(x,y) \in \mathbb{R}^2 / x = y\}$. E_2 est un sous-espace vectoriel de \mathbb{R}^2 engendré par le vecteur (1,1).

Proposition 3:

Soit λ une valeur propre de A, et m_{λ} l'ordre de multiplicité de λ . On a alors : $1 \leq dim E_{\lambda} \leq m_{\lambda}$.

Théorème 2:

Si v_1 ; v_2 ;.....; v_r sont des vecteurs propres associés à des valeurs propres disctinctes λ_1 ; λ_2 ;; λ_r d'une matrice carée A de taille $n \times n$, alors les vecteurs v_1 ; v_2 ;.....; v_r sont linéairement indépendants.

II Diagonalisation d'une matrice

$D\'{e}finition 3:$

Soient A et B deux matrices carrées d'ordre n sur \mathbb{R} .

On dit que A est semblable à B s'il existe une matrice P d'ordre n inversible telle que $A = P^{-1}BP$.

Proposition 4:

Deux matrices semblables ont même spectre

Remarque 3:

Deux matrices semblables n'ont pas en général les même vecteurs propres.

Définition 4:

Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$. On dit que A est diagonalisable si elle est semblable à une matrice diagonale, c 'est-à- dire s'il existe une matrice inversible P d'ordre n sur \mathbb{R} , et s'il existe une matrice diagonale D d'ordre n sur \mathbb{R} , telles que $D = P^{-1}AP$. Diagonaliser A, c'est trouver D.

Exemple 4:

Soit la matrice carrée $A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$

- 1. Vérifier que 1 et 4 sont les valeurs propres de la matrice A
- 2. Vérifier que $v_1 = (1; -2)$ et $v_2 = (1; 1)$ sont les vecteurs propres associés respectivement aux valeurs propres 1 et 4.

3. Vérifier que
$$D = P^{-1}AP$$
 avec $D = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}$

Caractérisation de la diagonalisation en dimension finie :

Proposition 5:

Soient A une matrice carée de $\mathcal{M}_n(\mathbb{R})$,

 λ_1 ; λ_2 ;; λ_r les valeurs propres distinctes de A,

 E_{λ_1} ; E_{λ_2} ;; E_{λ_r} les sous-espaces propres correspondants.

Une condition nécessaire et suffisante pour que A soit diagonalisable est que $dimE_{\lambda_1}+dimE_{\lambda_2}+.....+dimE_{\lambda_r}=n$

Exercice 2:

Soient la matrice carrée A appartenant à $\mathcal{M}_3(\mathbb{R})$ et les trois vecteurs colonnes U_1 , U_2

et U_3 appartenant à $\mathcal{M}_{3,1}(\mathbb{R})$) suivants :

$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \quad U_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad U_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \quad U_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

- 1. Vérifier que U_1 , U_2 et U_3 sont les vecteurs propres de A en déterminant les valeurs propres associées.
- 2. Déterminer les dimensions de $vect\Big(U_1\Big)$ et $vect\Big(U_2,U_3\Big)$
- 3. En déduire que la matrice A est diagonalisable.
- 4. Déterminer D telle que $D = P^{-1}AP$ avec $P = \begin{pmatrix} | & | & | \\ U_1 & U_2 & U_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix}$
- 5. Déterminer D telle que $D = Q^{-1}AQ$ avec $Q = \begin{pmatrix} | & | & | \\ U_2 & U_1 & U_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \end{pmatrix}$

Proposition 6:

Soient A une matrice carée de $\mathcal{M}_n(\mathbb{R})$,

 λ_1 ; λ_2 ;; λ_r les valeurs propres de A distinctes deux à deux et de multiplicités respectives h_1 ; h_2 ;; h_r

Une condition nécessaire et suffisante pour que A soit diagonalisable est que $h_1 + h_2 + \dots + h_r = n$ et $h_i = E_{\lambda_i}$ $\forall i \in \{1; 2; \dots; r\}$

 $\underline{Corollaire~2}$: (condition suffisante (mais non nécessaire) pour qu'une matrice soit diagonalisable)

Soient A une matrice carée de $\mathcal{M}_n(\mathbb{R})$,

Si A possède exactement n valeurs propres distinctes deux à deux, alors A est diagonalisable.

Exercice 3:

Soit la matrice carrée A appartenant à $\mathcal{M}_3(\mathbb{R})$) telle que :

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{pmatrix}$$

- 1. Déterminer les valeurs propres de A.
- 2. Déterminer les dimensions des sous espaces propres.
- 3. En déduire la diagonalisation de A.

Exercice 4:

On considère dans $\mathcal{M}_3(\mathbb{R})$) les deux matrices carrées suivantes

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \mathbf{et} \quad B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

- 1. Déterminer les valeurs propres et les sous-espaces propres associés des matrices A et B.
- 2. Les matrices A et B sont-elles diagonalisables?

<u>Méthode 2</u>: Toute matrice est-elle diagonalisable?

On se convainc facilement que la réponse à cette question est « non ». En effet, d'après la proposition 6, pour qu'une matrice d'ordre n soit diagonalisable, il faut et il suffit que les deux conditions suivantes soient satisfaites :

- 1. le nombre de ses valeurs propres (comptées avec leurs multiplicités) est égal à n
- 2. la dimension de chacun des sous-espaces propres est égale à l'ordre de multiplicité de la valeur propre correspondante.

III Application de la diagonalisation d'une matrice

III.1 Calcul des puissances d'une matrice

Une application classique est le calcul des puissances d'une matrice A. Supposons que A soit diagonalisable. C'est-à-dire qu'il existe P et D

On a
$$D^k=P^{-1}A^kP$$
 et $A^k=PD^kP^{-1}$ C'est à dire $A=P\left(\begin{array}{cccccc} \lambda_1^k & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_2^k & \ddots & & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \lambda_n^k \end{array}\right)P^{-1}$

Ceci permet de calculer, par exemple, les suites linéaires récurrentes :

$$U_k = AU_{k-1} \text{ alors } U_k = A^kU_0 \quad \text{ avec } \quad U_k = \begin{pmatrix} u_{1,k} \\ u_{2,k} \\ \vdots \\ \vdots \\ u_{n,k} \end{pmatrix}$$

$$\mathbf{Donc}\ U_{k} = P \begin{pmatrix} \lambda_{1}^{k} & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_{2}^{k} & \ddots & & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & \lambda_{n}^{k} \end{pmatrix} P^{-1} \begin{pmatrix} u_{1,0} \\ u_{2,0} \\ \vdots \\ u_{n,0} \end{pmatrix}$$

III.2 Calcul de déterminant d'une matrice

Proposition 7:

Soient A une matrice carée de $\mathcal{M}_n(\mathbb{R})$, Si A est diagonalisable, c'est à dire $A = PDP^{-1}$ alors det(A) = det(D)

Proposition 8:

Soient A une matrice carée de $\mathcal{M}_n(\mathbb{R})$, Si A est diagonalisable, c'est à dire $A=PDP^{-1}$ alors $A^k=PD^kP^{-1}$ $\forall k\in\mathbb{N}$ et $det(A^k)=det(D^k)=\lambda_1^k\times\lambda_2^k\times.....\times\lambda_n^k$ avec λ_1 ; λ_2 ;; λ_n sont les valeurs propres de A (comptées avec leurs multiplicités).