Preparação para exame

12.º Ano de Escolaridade | Turma G-K

Números Complexos

Na resolução dos itens não é permitido a utilização de calculadora gráfica

1. Seja C, conjunto dos números complexos

Mostra que $\frac{(-1-i)(2-2i)+i^5-2i^3}{\overline{3-4i}}$ é um imaginário puro e representa o seu afixo no plano complexo

2. Em \mathbb{C} , conjunto dos números complexos, considera os números complexos, $z_1=2+3i$ e $z_2=1-2i$

Determina, na forma algébrica, $\frac{z_1-3i^{41}}{\overline{-z_2}}$

3. Em \mathbb{C} , conjunto dos números complexos, considera w=2-2i

- 3.1. Calcula $\frac{(w-1)^2}{2+i}+1$ e apresenta o resultado na forma a+bi, com $a\in\mathbb{R}$ e $b\in\mathbb{R}$ e constata que o seu afixo pertence à bissetriz dos quadrantes ímpares
- 3.2. Resolve, em \mathbb{C} , as equações seguintes:

3.2.1.
$$zw = i\overline{w}$$

3.2.2.
$$z^3 + |\overline{w}|^2 z = 0$$

3.2.3.
$$z^3 - 2z^2 + z - |w|^2 + 6 = 0$$
, sabendo que 2 é raiz de $z^3 - 2z^2 + z - 2$

4. Em \mathbb{C} , conjunto dos números complexos, considera $z_1 = \sqrt{2}e^{i\frac{3\pi}{4}}$ e $z_2 = 2 + 3i$

Determina, na forma algébrica, $z_1 + z_2^2$

- 5. Em \mathbb{C} , conjunto dos números complexos, considera os números complexos $w_1 = \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}i$, $w_2 = e^{i\frac{\pi}{4}}$ e $w_3 = 3i$
 - 5.1. Escreve na forma a + bi, com $a \in \mathbb{R}$ e $b \in \mathbb{R}$, o complexo $w_1 + w_2$
 - 5.2. Calcula $x, y \in \mathbb{R}$, tais que $\frac{\overline{x+yi}}{i^{29}} = \sqrt{2}w_1 \overline{w_3}$
 - 5.3. Escreve, na forma trigonométrica:

5.3.1.
$$w_1$$

5.3.2.
$$w_1 \times \overline{w_2} - iw_3^2$$

5.3.3.
$$\frac{-w_2}{w_3}$$

6. Em \mathbb{C} , conjunto dos números complexos, considera os complexos unitários $z_1 = e^{i(-\alpha)}$ e $z_2 = e^{i\left(\frac{\pi}{2} + \alpha\right)}$, com $\alpha \in \mathbb{R}$

Mostra que o afixo, no plano complexo, de z_1-z_2 pertence à bissetriz dos quadrantes pares

7. Seja \mathbb{C} , conjunto dos números complexos e $z = \cos(2\theta) + i\sin(2\theta)$, com $\theta \in \mathbb{R}$, um complexo

Mostra que $|z+1| = 2|\cos(\theta)|$

Sugestão de resolução:

Começa por provar que $1 + \cos(2\theta) = 2\cos^2(\theta)$