AutoTIR: Autonomous Tools Integrated Reasoning via Reinforcement Learning

AutoTIR: 通过三阶段RL训练具备多工具自主选择的能力

Yifan Wei^{1,2}, Xiaoyan Yu³, Yixuan Weng⁴, Tengfei Pan², Angsheng Li^{1†}, Li Du^{2†}

¹Beihang University ²BAAI ³Beijing Institute of Technology ⁴Westlake University weiyifan@buaa.edu.cn, angsheng@buaa.edu.cn, duli@baai.ac.cn

代码: https://github.com/weiyifan1023/AutoTIR

简介

本文提出AutoTIR,即用RLVR范式训练multi-tool TIR,作者的目标是让Irm学会自主选择工具的同时,尽量保留其原有的指令追随能力。我个人认为本文的训练流程最能体现出作者的意图,将GRPO训练分为三个阶段,每个阶段对应一种工具明确的数据集: 1) MuSiQue数据集,强化Irm在知识密集型任务中调用Wiki search工具; 2)ToRL和Math-DAPO数据集,引导Irm在数学推理任务中使用Python解释器; 3) NQ和指令跟随数据,训练Irm识别哪些问题可以直接用语言能力解决,避免滥用工具。通过这种按任务类型分阶段训练的方式,让Irm逐步具备"用或不用工具、用哪种工具"的能力。

背景

本文属于TIR(tool-integrated reasoning) with RLVR领域的工作,更确切地说是multi-tool TIR,因为要让Irm学会Wikipedia search和Python解释器两个工具,但需要注意的是,训练数据中的每个query最多只需要使用一种工具,因此虽然经过GRPO训练后的Irm具备使用两种工具的能力,但在推理过程中,对于单个query,它的reasoning trajectory 中仍然只会调用一种工具(或完全不调用工具),并不会出现两种工具组合调用。

实验设置

- 两个工具: Wikipedia search和Python解释器
- 三类训练集: 学会调用Wiki search的MuSiQue、学会调用Python解释器的ToRL和Math-DAPO、保持语言模型能力防止滥用工具的NQ和指令跟随数据集
- RL算法: GRPO reward: $r = 0.1 \times r_{\rm act} + 0.9 \times r_{\rm out}$

Model	Knowledge-Intensive Domain				Mathematical Domain				Open Domain		
	HotpotQA EM	2Wiki EM	MuSiQ EM	Bamb EM	AIME24 EM	AIME25 EM	MATH500 EM	GSM8K EM	LogiQA Acc	IFEval SAcc	AVG
Qwen2.5-7B-Instruct	19.27	25.49	3.60	10.40	0.00	0.00	20.40	18.57	52.99	67.65	21.84
Naive RAG Iter-RetGen IRCoT	32.18 34.65 30.52	25.62 27.81 21.29	6.41 8.23 7.16	19.20 20.00 22.40	0.00 3.33 0.00	0.00 0.00 0.00	17.40 17.18 11.80	17.13 16.83 31.46	48.54 48.69 35.79	71.35 71.53 28.84	23.78 24.83 18.93
SimpleRL-Zero Eurus-2-7B-PRIME	4.42 11.52	12.03 22.53	1.37 1.82	14.40 12.00	26.67 16.67	16.67 13.33	60.00 <u>62.00</u>	84.76 90.07	35.48 43.78	7.76 20.52	26.36 29.42
ToRL Search-R1 IKEA ReSearch	1.12 35.41 26.75 42.17	0.49 31.23 23.51 44.79	0.37 15.18 14.23 21.27	4.00 40.00 23.20 41.60	33.30 13.33 13.33 0.00	10.00 3.33 3.33 0.00	58.40 36.00 42.40 32.00	81.96 56.18 48.14 47.54	39.02 47.31 50.23 37.94	13.12 14.60 28.65 19.22	24.18 29.26 27.38 28.65
AutoTIR	43.15	44.47	23.58	43.20	33.33	16.67	62.60	88.48	53.56	51.02	46.01

AutoTIR框架

思考

说实话读完论文后,我一开始并没有看出本文与其他TIR工作在"创新"上的区别,花了不少时间思考AutoTIR中的"Auto"究竟体现在哪,直到在实验章节才逐渐理清思路:作者通过精心设计的三阶段训练流程,分别用不同类型的数据教会模型在特定任务中调用搜索工具、代码工具,以及不调用工具推理回答。使得训练后的Irm能够根据query自主判断是否需要工具、以及该调用哪一种工具,体现出了Autonomous