ä	ائي	ىنثن	الاه	2004	سنة	ة	دور
---	-----	------	------	------	-----	---	-----

امتحانات الشهادة الثانوية العامة فرعا الآداب والإنسانيات والاقتصاد والاجتماع وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

	1. * .: 11 = 2 7 2 1	
الإشم	مسابقة في الفيزياء	
- 1	٠ ٠ .	
· * .11	:	
الرقم .	المدة : ساعة واحدة	

Cette épreuve, formée de trois exercices obligatoires, est constituée de deux pages. L'usage des calculatrices non programmables est autorisé.

Premier exercice (6 pts) **Découverte des planètes**

Lire attentivement cet extrait puis répondre aux questions.

Le 18 février 1930, le jeune astronome C. W. Tourbagh, âgé de 24 ans, observe à travers sa lunette une planète très recherchée : Pluton. L'astre était trouvé très proche de la position prédite par les calculs.

Deux découvertes de grande importance avaient précédé cet événement.

Le 13 mars 1781, F.W. Herschel avait mis le doigt sur Uranus. Une découverte de grande importance puisque, depuis l'antiquité, tout le monde se figurait que Saturne, avec ses anneaux, marquait l'ultime frontière du système solaire.

Le 23 septembre 1846, J.J. Le Verrier identifiait Neptune par le calcul, laquelle, le jour même, fut vue par J. G. Galle, de l'observatoire de Berlin. Mais les deux nouvelles planètes paraissaient perturbées. Les spécialistes attribuaient une telle perturbation à une neuvième planète encore invisible qui, jouant de son attraction gravitationnelle, rend ses deux voisines instables sur leur orbite.

Ouestions

- 1. Citer quatre planètes du système solaire non mentionnées dans le texte.
- 2. L'astronomie est une science basée sur l'accord calcul observation. Relever les deux phrases du texte qui justifient cette affirmation.
- 3. Préciser l'instrument mentionné dans le texte et utilisé dans la détection des planètes.
- 4. a. Nommer les planètes, mentionnées dans le texte, dont le mouvement est perturbé.
 - b. Préciser le phénomène qui est la cause de cette perturbation.
 - c. Donner le nom du savant qui a énoncé la loi relative à ce phénomène.
- 5. Nommer le plan qui contient la plupart des trajectoires des planètes.

Deuxième exercice (7 pts)

L'énergie éolienne

Lire attentivement cet extrait puis répondre aux questions.

Depuis l'antiquité, l'énergie éolienne est convertie, par les moulins à vent, en énergie cinétique de rotation pour moudre le grain. Elle a servi à faire monter l'eau d'un puits.

De nos jours, cette énergie éolienne est aussi convertie en énergie électrique par des aérogénérateurs.

Un aérogénérateur reçoit une énergie éolienne de 28800 J en une seconde. Il convertit 30 % de cette énergie en énergie électrique.

- 1. Citer deux conversions d'énergie évoquées dans le texte.
- 2. Déterminer l'énergie électrique produite par l'aérogénérateur en une seconde.
- 3. En admettant qu'une habitation consomme en moyenne une énergie électrique de 1080 J en chaque seconde, calculer le nombre d'habitations que peut un tel aérogénérateur assurer leur besoin en énergie électrique.
- 4. a. Quand la vitesse de l'air diminue, l'aérogénérateur précédent ne peut plus assurer le même besoin en énergie électrique. Pourquoi ?
 - b. Quel est alors l'inconvénient de l'énergie éolienne ?
- 5. Citer deux avantages de l'énergie éolienne.

La fusion nucléaire **Troisième exercice** (7 pts)

On considère la réaction nucléaire suivante : ${}_{1}^{3}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He + {}_{7}^{A}X$

Données:

- masse d'un noyau ${}_{1}^{3}H = 3{,}015 \text{ u}$;
- masse d'un noyau ${}_{1}^{2}H = 2{,}013 \text{ u}$;
- masse d'un noyau ${}_{2}^{4}He = 4{,}002 \text{ u}$;
- masse de la particule ${}_Z^AX = 1,009 u$;
- $1 \text{ u} = 1,661 \times 10^{-27} \text{ kg}$; $c = 3 \times 10^8 \text{ m/s}$.
- 1. Cette réaction est une réaction de fusion nucléaire. Pourquoi ?
- 2. Nommer une source d'énergie naturelle au sein de laquelle se produit la fusion nucléaire.
- 3. Pour se rapprocher suffisamment et fusionner, chacun des noyaux ²₁H et ³₁H doit être animé d'une grande vitesse. Donner l'ordre de grandeur de l'énergie cinétique de chacun de ces noyaux.
- 4. a. En précisant les lois utilisées, déterminer A et Z.
 - b. Identifier alors la particule X.
- 5. a. Calculer, en kg, le défaut de masse dû à la réaction précédente.
 - b. Déduire l'énergie libérée par cette réaction.