adames as Decision - Tree

Training data set: Who buys computer?

				•
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

1.
$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$
 class

$$Inf_0(0) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14})$$
= 0.940

2.
$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$
 Feature

1. In
$$\int_{\partial g_{\epsilon}}(0) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}(3,2)$$

$$= \frac{5}{14}\left[-\frac{9}{5}\log_{2}(\frac{9}{5}) - \frac{3}{5}\log_{2}(\frac{3}{5})\right] + \frac{4}{14}\left[-\frac{4}{4}\log_{2}(\frac{4}{4})\right] + \frac{5}{14}\left[-\frac{3}{5}\log_{2}(\frac{3}{5}) - \frac{9}{5}\log_{2}(\frac{9}{5})\right]$$

$$= 0.694$$

2. In
$$f_0$$
 income (0) = $\frac{4}{14}$ I (2,2) + $\frac{6}{14}$ I (4,2) + $\frac{4}{14}$ I (3,1)

= $\frac{4}{14} \left[-\frac{2}{4} \log_2 \left(\frac{2}{4} \right) - \frac{2}{4} \log_2 \left(\frac{2}{4} \right) \right] + \frac{6}{14} \left[-\frac{4}{6} \log_2 \left(\frac{4}{6} \right) - \frac{2}{6} \log_2 \left(\frac{2}{6} \right) \right] + \frac{4}{14} \left[-\frac{3}{4} \log_2 \left(\frac{3}{4} \right) - \frac{1}{4} \log_2 \left(\frac{4}{4} \right) \right]$

= 0.911

3. Info student (0) =
$$\frac{7}{14}$$
 [(6,1) + $\frac{7}{14}$ [(3,4)
= $\frac{7}{14}$ $\left(-\frac{3}{7}\log_2\left(\frac{3}{7}\right) - \frac{4}{7}\log_2\left(\frac{4}{7}\right)\right] + \frac{7}{14}$ $\left[-\frac{6}{7}\log_2\left(\frac{6}{7}\right) - \frac{1}{7}\log_2\left(\frac{1}{7}\right)\right]$
= 0.389

4. Info credit_nating (0) =
$$\frac{8}{14}I(6,2) + \frac{6}{14}I(3,3)$$

= $\frac{8}{14}\left[-\frac{6}{8}\log_2\left(\frac{6}{9}\right) - \frac{2}{8}\log_2\left(\frac{2}{8}\right)\right] + \frac{6}{14}\left[-\frac{3}{6}\log_2\left(\frac{3}{6}\right) - \frac{3}{6}\log_2\left(\frac{3}{6}\right)\right]$
= 0.892

$$Gain(A) = Info(D) - Info_A(D)$$

3. คำนวณ Information Grain ใจบที่ค่า Grain ที่มีค่าสูงที่สุดจะเป็นรถก (root node)

4. แลกกลุ่มของ Feature อกมลาในรกก (root node)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
<=30	medium	ves	excellent	ves

$$Inf_0(0) = I(2,3) = 0.971$$

Info mome =
$$\frac{9}{5}$$
 I (0,2) + $\frac{9}{5}$ I (1,1) + $\frac{1}{5}$ I (1,0)

In student =
$$\frac{2}{5}I(2,0) + \frac{3}{5}I(0,3)$$

Info credit_rating =
$$\frac{3}{5}(1,2) + \frac{2}{5}I(1,1)$$

= 0.951

4.2 31...40

age	income	student	credit_rating	buys_computer
3140	high	no	fair	yes
3140	low	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes

Annand Information Grain

4.3 > 40

age	income	student	credit_rating	buys_computer
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
>40	medium	yes	fair	yes
>40	medium	no	excellent	no

Info (0) =
$$I(3,2) = \frac{-3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5})$$

= 0.971

Info
$$=$$
 $\frac{3}{5}I(\eta,\eta)+\frac{9}{5}I(\eta,\eta)$

$$= 0.950$$

Info =
$$\frac{3}{5}I(1,1) + \frac{1}{5}I(1,1)$$
 = 0.961

Info (credit_rating) =
$$\frac{3}{6}$$
 I (3,0) + $\frac{3}{5}$ I (0,2) = 0

finance Information Grain

Grain (income) = 0.971 - 0.951 = 0.02

Grain (Student) = 0.971 - 0.951 = 0.02

Grain (Credit_rating) = 0.971 - 0 = 0.971

Credit_rating) = 0.971 - 0 = 0.971

6. aransnasia Decision Tree Vana

