Chapter 9

D. Zack Garza

Monday 21st September, 2020

Contents

1	Background from Chapter 8	1
2	9.1 and Review 2.1 Review Last Time	4
3	9.2 3.1 Three steps to gluing theorem	6
4	9.3: Pre-gluing	7
5	9.4: Construction of ψ .	8
Im	aportant Theorems:	
Im	portant ideas:	

- Compactness of $\mathcal{L}(x,y)$.
- $\partial^2 = 0$.
- Using broken trajectories to compactify
- Gluing

Background from Chapter 8

- (M, ω) with $\omega \in \Omega^2(M)$ is a symplectic manifold with an almost complex structure J.
- $H \in C^{\infty}(M;\mathbb{R})$ a Hamiltonian with X_H the corresponding symplectic gradient.
 - Defined by how it acts on tangent vectors in T_xM :

$$\omega_x(\cdot, X_H(x)) = (dH)_x(\cdot).$$

- Zeros of vector field X_H correspond to critical points of H:

$$X_H(x) = 0 \iff (dH)_x = 0.$$

– Take the associated flow $\psi^t: M \to M$, assumed 1-periodic so $\psi^1(x) = x$: critical points of H are periodic trajectories.

- $u \in C^{\infty}(\mathbb{R} \times S^1; M)$ is a solution to the Floer equation.
- The Floer equation and its linearization:

$$\mathcal{F}(u) = \frac{\partial u}{\partial s} + J \frac{\partial u}{\partial t} + \text{grad } u(H) = 0$$
$$(d\mathcal{F})_u(Y) = \frac{\partial Y}{\partial s} + J_0 \frac{\partial Y}{\partial t} + S \cdot Y$$

$$Y \in u^*TW, \ S \in C^{\infty}(\mathbb{R} \times S^1; \operatorname{End}(\mathbb{R}^{2n})).$$

- $\mathcal{L}M$ is the free loop space of M, i.e. space of contractible loops on M, i.e. $C^{\infty}(S^1; M)$ with the C^{∞} topology
 - Loops in $\mathcal{L}M$ can be viewed as maps $S^2 \to M$, since they're maps $I \times S^1 \to M$ with the boundaries pinched:

Figure 1: Loops in $\mathcal{L}M$

- Elements $x \in \mathcal{L}M$ can be viewed as maps $S^1 \to M$.
- Can extend to maps from a closed disc, $u: \overline{\mathbb{D}}^2 \to M$.
- The action functional is given by

$$\mathcal{A}_H: \mathcal{L}W \to \mathbb{R}$$

$$x \mapsto -\int_{\mathbb{D}} u^*\omega + \int_0^1 H_t(x(t)) \ dt$$

$$- \text{ Example: } W = \mathbb{R}^{2n} \implies A_H(x) = \int_0^1 \left(H_t \ dt - p \ dq\right).$$

- Correspondence between trajectories of the gradient of \mathcal{A}_H and solutions to Floer equations.
- Assumption of symplectic asphericity, i.e. the symplectic form is zero on spheres. Statement: for every $u \in C^{\infty}(S^2, M)$,

$$\int_{S^2} u^* \omega = 0 \quad \text{or equivalently} \quad \langle \omega, \ \pi_2 M \rangle = 0.$$

• Assumption of symplectic trivialization: for every $u \in C^{\infty}(S^2; M)$ there exists a symplectic trivialization of the fiber bundle u^*TM , equivalently

$$\langle c_1 TM, \ \pi_2 M \rangle = 0.$$

Locally a product of base and fiber, transition functions are symplectomorphisms.

- x, y periodic orbits of H (nondegenerate, contractible), equivalently critical points of A_H .
- Maslov index: used the fact that
 - $\operatorname{Sp}(2n,\mathbb{R})$ retracts onto U(n): use a polar decomposition S=PQ as a PSD times orthogonal, then homotope P to I.
 - $-\pi_1 U_n = \mathbb{Z}$: use $U(n,\mathbb{C}) \simeq SU(n,\mathbb{C}) \times S^1$ by the determinant, and $\pi_1 SU(n,\mathbb{C}) = 0$.
 - Thus every path in $\gamma: I \to \operatorname{Sp}(2n,\mathbb{R})$ can be assigned an integer by getting a map $\tilde{\gamma}: I \to S^1$ and taking (approximately) its winding number.
- $\mathcal{M}(x,y)$, the moduli space of contractible finite-energy solutions to the Floer equation connecting x,y.
 - Showed that after perturbing H to get transversality, get a manifold of dimension $\mu(x) \mu(y)$.
 - How did we do it: describe as zeros of a section of a vector bundle over $\mathcal{P}^{1,p}(x,y)$ (Banach manifold modeled on the Sobolev spaces $W^{1,p}$), apply Sard-Smale to show $\mathcal{M}(x,y)$ is the inverse image of a regular value of some map.
 - Needed tangent maps to be Fredholm operators, proved in Ch. 8 and used to show transversality. Followed from showing $(d\mathcal{F})_u$ is a Fredholm operator of index $\mu(x) \mu(y)$.

Goals

• Construct Floer homology and prove the Arnold Conjecture ("Symplectic Morse Inequalities?"):

$$\# \{1\text{-Periodic trajectories of } X_H \} \ge \sum_{k \in \mathbb{Z}} HM_k(w; \mathbb{Z}/2\mathbb{Z}).$$

Steps

- 1. Define the action functional A_H .
- 2. Construct the chain complex (graded vector space) CF_* .
- 3. Define X_H , which will be used to define ∂ later.
- 4. Count trajectories.

- 5. Show finite-energy trajectories connect critical points of \mathcal{A}_H .
- 6. Show compactness property for space of trajectories of finite energy.
- 7. Define ∂ (uses a compactness property in 9.1c)
- 8. Show space of trajectories is a manifold (plus genericity, "Smale property")
- 9. Show that $\partial^2 = 0$.
- 10. Show that HF_* doesn't depend on \mathcal{A}_H or X_H
- 11. Show $HF_* \cong HM_*$, and compare dimensions of the vector spaces CM_* and CF_* .

$\mathbf{2}$ \mid 9.1 and Review

• Defined moduli space of (parameterized) solutions:

 $\mathcal{M}(x,y) = \{\text{Contractible finite-energy solutions connecting } x,y\}$

 $\mathcal{M} = \{\text{All contractible finite-energy solutions to the Floer equation}\} = \bigcup_{x,y} \mathcal{M}(x,y).$

• Defined the moduli space of (unparameterized) **trajectories** connecting x to y:

$$\mathcal{L}(x,y) := \mathcal{M}(x,y)/\mathbb{R}.$$

- Use the quotient topology, define sequentially:

$$\tilde{u}_n \stackrel{n \to \infty}{\longrightarrow} \tilde{u} \iff \exists \{s_n\} \subset \mathbb{R} \text{ such that } u_n(s_n + s, \cdot) \stackrel{n \to \infty}{\longrightarrow} u(s, \cdot).$$

- Compactify by adding in broken trajectories to get $\overline{\mathcal{L}}(x,y)$.
- Want to show $\mathcal{L}(x,y)$ is a compact 0-manifold.
- $C_k(H) := \mathbb{Z}/2\mathbb{Z}[S]$ where S is the set of periodic orbits of X_H of Maslov index k.
 - Finitely many since they are nondegeneracy implies they are isolated.
- Defined a differential

$$\partial: C_k(H) \to C_{k-1}(H)$$

$$x \mapsto \sum_{\mu(y)=k-1} n(x,y)y$$

 $n(x,y) := \# \{ \text{Trajectories of grad } \mathcal{A}_H \text{ connecting } x,y \} \mod 2$ = dim $\mathcal{L}(x,y) \mod 2$,

• Three important theorems:

Theorem 2.1(9.1.7).

Let $\{u_n\}$ be a sequence in $\mathcal{M}(x,y)$, then there exist

- A subsequence $\{u_{n_j}\}$
- Critical points $\{x_0, x_1, \cdots, x_{\ell+1}\}$ with $x_0 = x$ and $x_{\ell+1} = y$ For $0 \le k \le \ell$, sequences $\{s_n^k\}$.
- Elements $u^k \in \mathcal{M}(x_k, x_{k+1} \text{ such that for every } 0 \le k \le \ell$,

$$u_n \cdot s_n^k \stackrel{n \to \infty}{\longrightarrow} u^k.$$

Theorem 2.2(9.2.1).

Let (H, J) be a regular pair with H nondegenerate and x, z be two periodic trajectories of H such that

$$\mu(x) = \mu(z) + 2.$$

Then $\overline{\mathcal{L}}(x,z)$ is a compact 1-manifold with boundary with

$$\partial \overline{\mathcal{L}}(x,z) = \bigcup_{y \in \mathcal{I}(x,z)} \mathcal{L}(x,y) \times \mathcal{L}(y,z) \quad \text{where} \quad \mathcal{I}(x,z) = \left\{ y \mid \mu(x) < \mu(y) < \mu(z) \right\}.$$

Note: possibly a typo in the book?

Remark 1.

Note that as a corollary, $\partial^2 = 0$.

Remark 2.

Some notation:

$$\mathbb{R} \longrightarrow \mathcal{M}(x,z)$$

$$\downarrow^{\pi}$$

$$\mathcal{L}(x,z)$$

Theorem 2.3(9.2.3).

Let x, y, z be three critical points of A_H with three consecutive indices

$$\mu(x) = \mu(y) + 1 = \mu(z) + 2.$$

and let

$$(u,v) \in \mathcal{M}(x,y) \times \mathcal{M}(y,z) \quad \leadsto \quad (\widehat{u},\widehat{v}) \in \mathcal{L}(x,y) \times \mathcal{L}(y,z).$$

Then

• There exists a $\rho_0 > 0$ and a differentiable map

$$\psi: [\rho_0, \infty) \to \mathcal{M}(x, z)$$

such that the induced map on the quotient

$$\widehat{\psi}: [\rho_0, \infty) \to \mathcal{L}(x, z)$$

$$\rho \mapsto (\pi \circ \psi)(\rho)$$

is an embedding that satisfies

$$\widehat{\psi}(\rho) \stackrel{\rho \to \infty}{\longrightarrow} (\widehat{u}, \widehat{v}) \in \overline{\mathcal{L}}(x, z).$$

2.1 Review Last Time

- $\mathbb{R} \curvearrowright \mathcal{M}_{x,y}$, so we quotient to define $\mathcal{L}(x,y) := \mathcal{M}_{x,y}/\mathbb{R}$ with the quotient topology.
- Topology defined by when sequences converge:

$$\tilde{u}_n \overset{n \to \infty}{\to} \tilde{u} \iff \exists \{s_n\} \subseteq \mathbb{R} \text{ such that } u_n(s_n + s, \cdot) \overset{n \to \infty}{\to} u(s, \cdot).$$

Proposition 2.4(?).

 $\mathcal{L}(x,y)$ is Hausdorff.

- Want to show $\mathcal{L}(x,y)$ is a compact 0-dimensional manifold.
- Have a differential

$$\partial: C_k(H) \longrightarrow C_{k-1}(H)$$

$$\partial(x) = \sum_{\operatorname{Ind}(y)=k-1} n(x,y)y.$$

with n(x,y) the number (mod 2) of trajectories of grad A_H connecting x,y, i.e solutions to the Floer equation.

• Want to prove that the following is a 1-dimensional manifold:

$$M := \overline{\mathcal{L}}(x, z) = \mathcal{L}(x, z) \cup_{\mu(y) = \mu(x) + 1} \mathcal{L}(x, y) \times \mathcal{L}(y, z).$$

and show that M is compact with ∂M equal to the last union.

- Last time: closure of space of trajectories connecting x, y contains "broken" trajectories.
- Last time: toward proving that M is compact

3 | 9.2

- Wanted to compactify $\mathcal{L}(x,y)$, needed to go to space of broken trajectories.
- Main theorem of chapter 9: 9.2.1.

3 9.2

Theorem 3.1(9.2.1).

Let (H, J) be a regular pair with H nondegenerate.

Let x, z be two periodic trajectories of H such that $\mu(x) = \mu(z) + 2$.

Then $\overline{\mathcal{L}}(x,y)$ is a compact 1-manifold with boundary satisfying

$$\partial \overline{\mathcal{L}}(x,y) = \bigcup_{\mu(x) < \mu(y) < \mu(z)} \mathcal{L}(x,y) \times \mathcal{L}(y,z).$$

As a corollary, $\partial^2 = 0$.

- Know $\overline{\mathcal{L}}(x,y)$ is compact and $\mathcal{L}(x,y)$ is a 1-manifold
- Now suffices to study in a neighborhood of boundary points ("gluing theorem")

3.1 Three steps to gluing theorem

- 1. Pre-gluing: Get a function w_p which interpolates between u and v (not exactly a solution itself, but will be approximated by one later).
- 2. Constructing ψ a "true solution" from w_p using the Newton-Picard method. We'll have

$$\psi(p) = \exp_{w_n}(\gamma(p)) \qquad \gamma(p) \in W^{1,p}(w_p^* TW) = T_{w_p} \mathcal{P}(x, z).$$

where $\mathcal{P} = ?$.

- 3. Get a lift $\hat{\psi} = \pi \circ \psi$ where $\pi = ?$ satisfying
- $\widehat{\psi}(p) \stackrel{n \to \infty}{\to} (\widehat{u}, \widehat{v})$
- $\widehat{\varphi}$ is an embedding
- $\widehat{\psi}$ is unique in the following sense (the last point)

Theorem 3.2(9.2.3 (Gluing Theorem)).

Let x, y, z be critical points of the action functional A_H such that $\mu(x) = \mu(y) + 1 = \mu(z) + 2$. Let $(u, v) \in \mathcal{M}(x, y) \times \mathcal{M}(y, z)$ be trajectories, inducing $(\bar{u}, \bar{v}) \in \mathcal{L}(x, y) \times \mathcal{L}(y, z)$.

- There exist a differentiable map $\psi:(\rho_0,\infty)\to\mathcal{M}(x,z)$ for some $\rho>0$ such that
- $\pi \circ \psi : (\rho_0, \infty) \to \mathcal{L}(x, z)$ is an embedding $\hat{\psi} \stackrel{\rho \to \infty}{\to} (\bar{u}, \bar{v}) \in \overline{\mathcal{L}(x, z)}$.
- If $\ell_n \in \mathcal{L}(x,z)$ with $\ell_n \stackrel{n \to \infty}{\to} (\bar{u},\bar{v})$, then for $n \gg 1$ we have $\ell \in \Im(\widehat{\psi})$.

9.3: Pre-gluing

- Choose a bump function β on $\{0\}^c \subset \mathbb{R} \to [0,1]$ which is 1 on $|x| \geq 1$ and 0 on $|x| < \varepsilon$
- Split into positive and negative parts β^{\pm} :

Figure 2: Figure 9.3

• Define the interpolation w_{ρ} from u to v in the following way:

$$w_{\rho}(s,t) = \begin{cases} u(s+\rho,t) & \text{if } s \leq -1\\ \exp_{y(t)} \left(\beta^{-}(s) \exp_{y(t)}^{-1} (u(s+\rho,t)) + \beta^{+}(s) \exp_{y(t)}^{-1} (v(s-\rho,t))\right) & \text{if } s \in [-1,1]\\ v(s-\rho,t) & \text{if } s \geq 1 \end{cases}$$

• Why does this make sense?

$$|s| \le 1 \implies u(s \pm \rho, t) \in \left\{ \exp_{y(t)} Y(t) \mid \sup_{t \in S^1} ||Y(t)|| \le r_0 \right\}.$$

$\mathbf{5} \mid$ 9.4: Construction of ψ .

- Have constructed $w_{\rho} \in C_{\searrow}^{\infty}(x,z)C^{\infty}(x,z)$ for every $\rho \geq \rho_0$, since there is exponential decay.
- Yields $\psi_{\rho} \in \mathcal{M}(x,z)$ a true solution (to be defined).
- Need to check that $\mathcal{F}(\psi_{\rho}) = 0$ where

$$\mathcal{F} = \frac{\partial}{\partial s} + J \frac{\partial}{\partial t} + \text{grad } Hx$$

in the weak sense.

- ψ_{ρ} already continuous, and by elliptic regularity, makes it a strong solution.
- Trivialization
- Defining \mathcal{F}_{ρ} .

$$W^{1,p}\left(\mathbf{R}\times S^{1};\mathbf{R}^{2n}\right) \xrightarrow{\mathcal{F}_{\rho}} L^{p}\left(\mathbf{R}\times S^{1};\mathbf{R}^{2n}\right)$$
$$(y_{1},\ldots,y_{2n})\longmapsto \left[\left(\frac{\partial}{\partial s}+J\frac{\partial}{\partial t}+\operatorname{grad}H_{t}\right)\left(\exp_{w_{\rho}}\sum y_{i}Z_{i}^{\rho}\right)\right]_{\mathcal{Z}}$$

where $\mathcal{F}_{\rho} := \mathcal{F} \circ \exp_{w_{\rho}}$ written in the bases Z_i . sd - Newton-Picard method, general idea

• Original method and variant: find the limit of a sequence

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}.$$

- Allows finding zeros of f given an approximate zero x_0 .
- Linearize \mathcal{F}_{ρ} .