บทที่ 1 ไฟฟ้าสถิต

General Physics II

01420112

รองศาสตราจารย์ ดร.ธณิศร์ ตั้งเจริญ

ไฟฟ้าสถิต

- 🗖 เป็นการศึกษาเกี่ยวกับอันตรกิริยาระหว่างประจุไฟฟ้า (electric charge) ที่หยุดนิ่ง
 - 🔲 สมบัติของประจุไฟฟ้า
 - 🗖 กฎของคูลอมบ์
 - สนามไฟฟ้า
- ปรากฏการณ์ที่เกี่ยวข้องกับไฟฟ้าสถิตที่พบเห็นในชีวิตประจำวัน เช่น เมื่อหวีผมแล้ว
 นำหวีนั้นไปเข้าใกล้เศษกระดาษแผ่นเล็กๆ เศษกระดาษจะถูกดูดให้ติดกับหวีได้

ประจุไฟฟ้า

ประจุบวก

(Positive charge)

โปรตอน

(Proton)

ประจุลบ (Negative charge)

อิเล็กตรอน

(Electron)

ประจุไฟฟ้า

lacktriangle สัญลักษณ์ของประจุคือ $oldsymbol{Q}$

$$q = \pm Ne$$

N คือ จำนวนเต็ม

 $m{e}$ คือ หน่วยพื้นฐานที่เล็กที่สุดของประจุ 1 ตัว (1.6 imes 10 $^{ imes19}$ C)

Electron \rightarrow -e Proton \rightarrow +e

สมบัติของประจุไฟฟ้า

- ประจุที่มีเครื่องหมายเหมือนกันจะ<mark>ผลักออก</mark>จากกัน
- ประจุที่มีเครื่องหมายต่างกันจะ<mark>ดึงดูด</mark>เข้าหากัน

A negatively charged rubber rod suspended by a string is attracted to a positively charged glass rod. A negatively charged rubber rod is repelled by another negatively charged rubber rod.

สมบัติของประจุไฟฟ้า

Because of conservation of charge, each electron adds negative charge to the silk and an equal positive charge is left on the glass rod.

- ประจุเป็นปริมาณอนุรักษ์ คือ "ประจุไม่มี การสูญเสียหรือถูกสร้างขึ้นมาใหม่ได้"
 เรียกว่า กฎการอนุรักษ์ของประจุ
 (charge conservative law)
- เมื่อนำแท่งแก้วถูกับผ้าไหม อิเล็กตรอนจะ
 เกิดการเคลื่อนย้ายจากแท่งแก้วไปยังผ้า
 ไหม เสมือนว่าผ้าไหมได้รับการเติมประจุ
 ลบเข้าไปมากขึ้น และส่งผลทำให้ประจุบวก
 ในปริมาณที่เท่ากันเหลืออยู่บนแท่งแก้ว

การชาร์จประจุไฟฟ้าด้วยการเหนี่ยวนำ

The neutral sphere has equal numbers of positive and negative charges.

- เป็นวิธีการที่ไม่จำเป็นต้องใช้การ
 สัมผัสกับวัตถุที่ต้องการชาร์จ
- พิจารณาทรงกลมโลหะที่มีความ
 เป็นกลางทางไฟฟ้าดังรูป ซึ่งมี
 จำนวนประจุบวกและประจุลบ
 กระจายตัวสม่ำเสมอเท่ากัน

การชาร์จประจุไฟฟ้าด้วยการเหนี่ยวนำ

- นำแท่งยางที่มีความเป็นประจุลบ เคลื่อนเข้ามาจริง (โดยไม่มีการสัมผัส กับทรงกลม)
- ประจุบวกภายในทรงกลมจะถูกดึงดูด
 มายังบริเวณที่ใกล้กับแท่งยาง ในขณะ
 ที่ประจุลบภายในทรงกลมจะถูกผลัก
 ออกไปยังอีกด้านของทรงกลม
- เมื่อต่อสายกราวน์ให้กับทรงกลมดังรูป
 ประจุลบบางส่วนจะเกิดการเคลื่อนที่
 ออกจากทรงกลมผ่านสายกราวน์นั้น

การชาร์จประจุไฟฟ้า

The excess positive charge is nonuniformly distributed.

The remaining electrons redistribute uniformly, and there is a net uniform distribution of positive charge on the sphere.

- เมื่อนำสายกราวน์และแท่งยางออก ประจุทั้งหมดที่อยู่ภายในทรงกลมจะ เกิดการจัดเรียงและกระจายตัวให้ สม่ำเสมอกันใหม่อีกครั้ง
- ทรงกลมโลหะดังกล่าวจะเหลือประจุ
 บวกอยู่ภายในมากกว่าประจุลบ จึง
 แสดงความเป็นประจุบวกออกมาอย่าง
 ชัดเจนต่อไป
- แท่งยางจะไม่สูญเสียประจุลบใดๆ เลย เนื่องจากไม่มีการสัมผัสโดยตรงกับทรง กลมโลหะ

กฎของคูลอมบ์

Charles Coulomb (1736 – 1806)

ชาร์ล-โอกุสแต็ง เดอ กูลง

 เป็นนักฟิสิกส์ชาวฝรั่งเศสที่ได้ทำการศึกษาและ ทดลองหาอันตรกิริยาระหว่างประจุ 2 ประจุที่ อยู่นิ่งจนพบว่า

"แรงไฟฟ้าที่กระทำระหว่างประจุ
จุด 2 ตัวมีขนาดแปรผันตามผลคูณ
ของขนาดของประจุแต่ละตัว และ
แปรผกผันกับระยะห่างระหว่าง
ประจุจุดทั้งสองยกกำลังสอง"

$$F_e = k_e \frac{|q_1||q_2|}{r^2}$$

กฎของคูลอมบ์

$$F_e = k_e \frac{|q_1||q_2|}{r^2}$$

 $F_{_{e}}$ แรงไฟฟ้าระหว่างประจุจุด (หน่วย คูลอมบ์ C)

 k_e ค่าคงที่คูลอมบ์ (8.9876 imes $10^9\,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$)

$$k_{e} = \frac{1}{4\pi \in_{0}}$$

สภาพยอมในสุญญากาศ (Permittivity of Free Space) มีค่าเท่ากับ $8.8542 \times 10^{-12} \, \text{C}^2/\text{N} \cdot \text{m}^2$

กฎของคูลอมบ์

TABLE 23.1 Charge and Mass of the Electron, Proton, and Neutron

Particle	Charge (C)	Mass (kg)	
Electron (e)	$-1.602\ 176\ 5 \times 10^{-19}$	$9.109 \ 4 \times 10^{-31}$	
Proton (p)	$+1.602\ 176\ 5 \times 10^{-19}$	$1.672 62 \times 10^{-27}$	
Neutron (n)	0	$1.674 \ 93 \times 10^{-27}$	

- อิเล็กตรอนและโปรตอนมี "ขนาด" ของประจุที่เท่ากัน แต่มี "มวล" ที่ต่างกันมหาศาล
- โปรตอนและนิวตรอนมี "มวล" ที่เท่ากัน แต่สภาพของความเป็นประจุแตกต่างกัน

แรงไฟฟ้า

When the charges are of the same sign, the force is repulsive.

 เมื่อวางประจุชนิดเดียวกันไว้ใกล้กันจะมีแรงผลักกระทำซึ่ง กันและกันดังสมการ

$$\vec{F}_{12} = k_e \frac{q_1 q_2}{r^2} \hat{r}_{12}$$

 $\hat{\emph{r}}_{\!\scriptscriptstyle 12}$ คือเวกเตอร์หนึ่งหน่วยที่มีทิศชี้จากประจุ ${f q}_{\!\scriptscriptstyle 1}$ ไปยังประจุ ${f q}_{\!\scriptscriptstyle 2}$

• จากกฎข้อที่สามของนิวตันจะได้ว่า

"แรงไฟฟ้าที่กระทำต่อประจุ Q_1 จะมีขนาดที่เท่ากับ แรงที่กระทำต่อประจุ Q_2 แต่มีทิศทางที่ตรงข้ามกัน"

$$\overrightarrow{F}_{21} = -\overrightarrow{F}_{12}$$

ประจุที่เครื่องหมายเหมือนกัน ผลคูณ q_1q_2 จะเป็นบวกและเกิดแรงผลัก

ประจุที่เครื่องหมายตรงข้ามกัน ผลคูณ q_1q_2 จะเป็นลบและเกิดแรงดูด

แรงไฟฟ้า

When the charges are of the same sign, the force is repulsive.

When the charges are of opposite signs, the force is attractive.

a

แรงไฟฟ้า

ในกรณีที่มีประจุมากกว่า 2 ตัว แรงที่กระทำบนประจุใดๆ สามารถหาได้
 จากผลรวมแบบเวกเตอร์ของแรงที่เกิดจากประจุอื่นๆ ที่เหลือ

$$\overrightarrow{F} = \sum\limits_{j=1}^{N} F_{ij}$$

$$\vec{F}_1 = \vec{F}_{12} + \vec{F}_{13} + \vec{F}_{14} + \dots + \vec{F}_{16}$$

ตัวอย่างที่ 1.1 วางวัตถุสองก้อนห่างกันเป็นระยะทาง 3 เมตร ถ้าแต่ละก้อนมี อิเล็กตรอนอิสระอยู่ 5 x 10¹⁴ ตัว จงหาขนาดของแรงไฟฟ้าที่เกิดขึ้น **ตัวอย่างที่ 1.2** กำหนดให้ประจุ $q_1 = 4 \; \mu$ C อยู่ ณ พิกัด (3,0) เมตร ประจุ $q_2 = 2 \; \mu$ C อยู่ ณ พิกัด (0,0) เมตร และประจุ $q_3 = 4 \; \mu$ C ณ พิกัด (0,4) จงหาแรงไฟฟ้าสุทธิที่กระทำต่อประจุ q_2

 สนามไฟฟ้า (Electric Field; E) คือแรงไฟฟ้าที่กระทำต่อประจุ ทดสอบ (q_o) ขนาดหนึ่งหน่วย ซึ่งวางอยู่ ณ ตำแหน่งใดๆ ดังสมการ

$$\overrightarrow{E} = \frac{\overrightarrow{F}}{q_0}$$

- สนามไฟฟ้าเป็นปริมาณเวกเตอร์ มีหน่วย นิวตันต่อคูลอมบ์ (N/C)
- สนามไฟฟ้าถูกพบบริเวณที่อยู่รอบๆ วัตถุที่มีประจุไฟฟ้า
- ทิศทางของสนามไฟฟ้า E จะมีทิศทางเดียวกับแรงที่กระทำกับประจุ
 ทดสอบที่เป็นบวก แต่จะมีทิศตรงข้ามกันเมื่อประจุทดสอบเป็นลบ

 แรงไฟฟ้าระหว่างประจุต้นกำเนิด q และประจุทดสอบ q₀ จากกฎ ของคูลอมบ์แสดงได้ดังสมการ

$$\overline{F}_e = k_e \frac{qq_0}{r^2} \hat{r}$$

ดังนั้นสนามไฟฟ้าจึงมีค่าเท่ากับ

$$\overrightarrow{E} = \frac{\overrightarrow{F}_e}{q_0} = k_e \frac{q}{r^2} \hat{r}$$

 ถ้าประจุตันกำเนิดสนามไฟฟ้าเป็นประจุบวก และประจุที่นำมาวางใน สนามไฟฟ้าเป็นประจุบวก ทิศของแรงไฟฟ้า F จะอยู่ในทิศเดียวกันกับทิศ ของสนามไฟฟ้า E

 ถ้าประจุตันกำเนิดสนามไฟฟ้าเป็นประจุบวก และประจุที่นำมาวางใน สนามไฟฟ้าเป็นประจุลบ ทิศของแรงไฟฟ้า F จะอยู่ในทิศตรงข้ามกับ สนามไฟฟ้า E

 ถ้าประจุตันกำเนิดสนามไฟฟ้าเป็นประจุลบ และประจุที่นำมาวางใน สนามไฟฟ้าเป็นประจุบวก ทิศของแรงไฟฟ้า F จะอยู่ในทิศเดียวกันกับทิศ ของสนามไฟฟ้า E

 ถ้าประจุตันกำเนิดสนามไฟฟ้าเป็นประจุลบ และประจุที่นำมาวางใน สนามไฟฟ้าเป็นประจุลบ ทิศของแรงไฟฟ้า F จะอยู่ในทิศตรงข้ามกับทิศ ของสนามไฟฟ้า E **ตัวอย่างที่ 1.3** โปรตอนตัวหนึ่งวางอยู่ในสนามไฟฟ้าขนาด 2.0 x 10⁴ N/c ซึ่งมีทิศทางใน แนวแกน +x จงหาแรงไฟฟ้าที่เกิดขึ้นบนโปรตอนตัวนี้

 ถ้ามีประจุตันกำเนิดมากกว่า 1 ประจุ สนามไฟฟ้ารวมจะสามารถหาได้ จากผลรวมแบบเวกเตอร์ของสนามไฟฟ้าที่เกิดจากประจุตันกำเนิดแต่ละ ประจุ

$$\overline{E}_{total} = k_e \sum_{i} \frac{q_i}{r_i^2} \hat{r}_1$$

$$\overrightarrow{E}_{total} = \overrightarrow{E}_1 + \overrightarrow{E}_2 + \overrightarrow{E}_3 + \dots + \overrightarrow{E}_i$$

ตัวอย่างที่ 1.4 ประจุ q_1 ขนาด 7 μ C วางอยู่ที่จุดกำเนิดและประจุ q_2 ขนาด -5 μ C วางอยู่ บนแกน x ห่างจากจุดกำเนิด 0.3 m จงหาสนามไฟฟ้าที่จุด P ซึ่งอยู่ที่ตำแหน่ง (0,0.40)

สนามไฟฟ้าที่เกิดจากแต่ละส่วนย่อยมีค่าเท่ากับ

$$\Delta \vec{E} = k_e \frac{\Delta q}{r^2} \hat{r}$$

เนื่องจากประจุมีการกระจายอย่างสม่ำเสมอดังนั้น

$$\overline{E} = k_e \lim_{\Delta q_i \to 0} \sum_{i} \frac{\Delta q_i}{r_i^2} \hat{r}_i = k_e \int \frac{dq}{r^2} \hat{r}$$

ความหนาแน่นประจุ (Charge density)

1. $\,$ ความหนาแน่นประจุเชิงปริมาตร (Volume charge density; ho)

$$\rho = \frac{Q}{V}$$

2. ความหนาแน่นประจุเชิงพื้นที่ผิว (Surface charge density; σ)

$$\sigma = \frac{Q}{A}$$

3. ความหนาแน่นประจุเชิงเส้น (Linear charge density; λ)

$$\lambda = \frac{Q}{l}$$

สนามไฟฟ้าของแท่งประจุ

$$E = \frac{k_{e}Q}{a(l+a)}$$

สนามไฟฟ้าของวงแหวนประจุ

$$E = \frac{k_e x}{(a^2 + x^2)^{3/2}} Q$$

สนามไฟฟ้าของจานประจุ

เส้นแรงไฟฟ้า

- เส้นแรงไฟฟ้า (Electric Field Line) คือ เส้นที่ลากขึ้นเพื่อแสดงทิศทางของ
 สนามไฟฟ้าที่จุดนั้น (ของประจุทดสอบ +1C)
- จำนวนเส้นแรงที่ผ่านพื้นที่หน้าตัดจะแปรผันตรงกับความเข้มของสนามไฟฟ้า (จำนวนเส้นแรงที่ผ่านพื้นที่หน้าตัดมาก สนามไฟฟ้าก็จะยิ่งมีค่ามาก)

ความเข้มของสนามไฟฟ้า ณ ตำแหน่ง A มีค่ามากกว่าที่ตำแหน่ง B

เส้นแรงไฟฟ้า

For a positive point charge, the field lines are directed radially outward.

ประจุบวกพุ่งออก

ประจุลบพุ่งเข้า

เส้นแรงไฟฟ้า

The number of field lines leaving the positive charge equals the number terminating at the negative charge.

Two field lines leave +2q for every one that terminates on -q.

- (ซ้าย) เส้นแรงที่เกิดจากประจุชนิดเดียวกันที่มีขนาดเท่ากัน
- จุด c คือจุดที่สนามไฟฟ้ามีการหักล้างกันเรียกว่าจุดสะเทิน
- (กลาง) เส้นแรงที่เกิดจากประจุตรงข้ามที่มีขนาดเท่ากัน
- เส้นแรงไฟฟ้าจะไม่ตัดผ่านกัน
- (ขวา) ขนาดของประจุมีผลต่อจำนวนเส้นแรงไฟฟ้า

การบ้านครั้งที่ 1

ข้อที่ 1 โปรตอน 2 ตัวอยู่ห่างกันเป็นระยะทาง 3.8 x 10⁻¹⁰ m จงหาขนาดของแรงไฟฟ้าที่โปรตอนตัวหนึ่ง กระทำต่อโปรตอนอีกตัวหนึ่ง

ข้อที่ 2 อนุภาคมีประจุ 3 ตัวตั้งอยู่ที่ตำแหน่งมุมของสามเหลี่ยมแต่ละด้านดังรูป จงหาแรงไฟฟ้าสุทธิที่ กระทำต่อประจุขนาด 7 μ C (กำหนดให้ sin 60 $^{\circ}$ = 0.866 และ cos 60 $^{\circ}$ = 0.5)

ข้อที่ 3 อนุภาคมีประจุ 3 ตัวตั้งอยู่ที่ตำแหน่งมุมของสามเหลี่ยมแต่ละ ด้านดังรูป จงหาสนามไฟฟ้า ณ ตำแหน่งของประจุขนาด 7 μ C และ 4 μ C (กำหนดให้ sin 60° = 0.866 และ cos 60° = 0.5)

ข้อที่ 4 แท่งประจุยาว 14 cm มีประจุขนาด -22 **µ**C กระจายตัวอยู่ ภายในอย่างสม่ำเสมอดังรูป จงหาขนาดและทิศทางของสนามไฟฟ้า ณ จุดที่อยู่ห่างจากจุดศูนย์กลางของแท่งประจุดังกล่าวตามแนวแกนเป็น ระยะทาง 36 cm

