日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2003年 5月13日

出願番号

Application Number:

特願2003-133874

[ST.10/C]:

[JP2003-133874]

出 願 人 Applicant(s):

日亜化学工業株式会社

2003年 6月 2日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

12002094K1

【あて先】

特許庁長官 殿

【国際特許分類】

H01L 33/00

【発明者】

【住所又は居所】

徳島県阿南市上中町岡491番地100

日亜化学工業株式会社内

【氏名】

朝川 英夫

【特許出願人】

【識別番号】 000226057

【氏名又は名称】 日亜化学工業株式会社

【代表者】

小川 英治

【先の出願に基づく優先権主張】

【出願番号】

特願2002-259482

【出願日】

平成14年 9月 5日

【手数料の表示】

【予納台帳番号】 010526

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

• • • • •

【発明の名称】 半導体装置およびそれを用いた光学装置

【特許請求の範囲】

【請求項1】 半導体素子と、該半導体素子を収納する凹部を有し、前記半導体素子と接続するリード電極の端部主面が前記凹部の底面から露出されてなる 支持体と、を備えた半導体装置であって、

前記支持体の主面は、前記凹部の側から少なくとも第一の主面および第二の主面を有することを特徴とする半導体装置。

【請求項2】 前記第二の主面は、凹凸を有することを特徴とする請求項1 記載の半導体装置。

【請求項3】 前記凹凸は、内部が空洞の外周壁を成していることを特徴とする請求項2記載の半導体装置。

【請求項4】 前記第一の主面は、切欠部を有することを特徴とする請求項 1 乃至3 に記載の半導体装置。

【請求項5】 前記半導体素子が発光素子であり、該発光素子は、A1とY、Lu、Sc、La、Gd、Tb、Eu、Ga、In及びSmから選択された少なくとも一つの元素とを含み、かつ希土類元素から選択された少なくとも一つの元素で付活された蛍光物質を備える1乃至4に記載の半導体装置。

【請求項6】 前記半導体素子が発光素子であり、該発光素子は、Nを含み、かつBe、Mg、Ca、Sr、Ba、及びZnから選択された少なくとも一つの元素と、C、Si、Ge、Sn、Ti、Zr、及びHfから選択された少なくとも一つの元素とを含み、希土類元素から選択された少なくとも一つの元素で付活された蛍光物質を備える1乃至5に記載の半導体装置。

【請求項7】 前記半導体素子が発光素子であり、該発光素子は、n側電極を有する窒化物半導体からなるn型コンタクト層とp側電極を有する窒化物半導体からなるp型コンタクト層との間に、窒化物半導体からなる活性層を有する半導体積層構造を備え、

前記n型コンタクト層は、電極形成面側からみて、p側電極を有する半導体積 層構造が設けられた第1の領域と、複数の凸部を有する第2の領域からなり、 前記凸部の頂部は、前記発光素子断面において、前記活性層よりもp型コンタクト層側に位置する請求項1万至6に記載の半導体装置。

【請求項8】 前記凸部の断面は、前記n型コンタクト層側から前記p型コンタクト層側に向かって、徐々に細くなるように傾斜している請求項7に記載の半導体装置。

【請求項9】 請求項1乃至8に記載された半導体装置と、該半導体装置からの光あるいは該半導体装置への光を導光する透光性部材とを有し、

前記透光性部材は、前記半導体装置の主面と嵌合する光入出部を備えていることを特徴とする光学装置。

【発明の詳細な説明】

• • • • •

[0001]

【発明の属する技術分野】

本発明は、液晶ディスプレイのバックライト、パネルメーター、表示灯や面発 光スイッチなどに用いられる発光装置、および光学センサなどに用いられる受光 装置並びにそれらを用いた光学装置に関する。

[0002]

【従来の技術】

今日、発光素子や受光素子に代表される半導体素子と、該発光素子や受光素子 を外部環境から保護し、それらの電極と接続するリード電極を備えた支持体とを 有する半導体装置が提供されている。

[0003]

特に発光装置として、発光素子と該発光素子からの光を吸収して異なる波長を有する光を発光する蛍光体とを組み合わせて白色系の混色光を高輝度に発光可能な発光ダイオードが開発された。その結果、これらの複数の発光ダイオードを配列して構成される光源が種々の分野にて利用されている。このような発光ダイオードは、発光素子がパッケージと呼ばれる支持体に固定され、発光装置とされている。例えば、発光装置の発光面が発光装置の実装面にほぼ垂直な方向に設けられ、発光装置の実装面にほぼ平行な方向に光を照射可能な表面実装型発光装置(例えば、特許文献 1 参照。)が挙げられる。

[0004]

また、発光ダイオード等の発光装置が固定された透光性部材の光入射面から発 光ダイオードの光を入射させ、透光性部材内を導光させた後、該透光性部材の光 出射面側から光を取り出す光源が知られている。このような光源として例えば、 液晶ディスプレイ用バックライト等の面状光源が挙げられる。

[0005]

【特許文献1】

特開2000-196153号公報。

[0006]

【発明が解決しようとする課題】

しかしながら、上記特許文献1に開示されるパッケージは、薄膜電極を絶縁性 基板に設けて成り、該絶縁性基板のみにてパッケージの外形が決定する。ここで 、絶縁性基板は高温下にて収縮が激しく一定形状がえられにくい。また、絶縁性 基板を使用すればパッケージの小型化に限界がある。さらに、薄膜電極を利用し ているため、小型化になるほど放熱性が乏しくなる。

[0007]

そこで、樹脂の射出成型により形成される成型体をパッケージとすることにより、発光装置の薄型化および小型化を図るとともに放熱性を向上させることとしている。このようなパッケージは、リード電極がパッケージ内に挿入されるように一体成型され、パッケージ成型後リード電極は、パッケージ側面から突出している部分を折り曲げられ、実装基板に対して実装しやすい形状とされる。ここで、半導体素子が載置されるリード電極は、パッケージ全体の大きさに対して比較的大きくすることが容易にできるため、半導体装置の放熱性を向上させることができる。しかしながら、樹脂の射出成型により形成されるパッケージは、リード電極を折り曲げる(フォーミング)強度により公差が生じ、一定形状を量産性良く得ることが困難である。そのため、複数の半導体装置を外部支持体や光学部材等に精度良く嵌め込む際、それぞれ異なるパッケージの外形に対応する外形を外部支持体や光学部材等にそれぞれ設けることが必要となり、効率よく装置を組み立てることが困難であった。

そこで本発明は、上記問題点を解決し、量産性および実装性に優れた半導体装置 およびそれを利用した光学装置を提供する。

[0008]

【課題を解決するための手段】

本願発明の半導体装置は、半導体素子と、該半導体素子を収納する凹部を有し、前記半導体素子と接続するリード電極の端部主面が前記凹部の底面から露出されてなる支持体と、を備えた半導体装置であって、前記支持体の主面は、前記凹部の側から少なくとも第一の主面および第二の主面を有することを特徴とする半導体装置である。これにより半導体装置は、半導体装置の主面側に一定形状の位置決め部を備え、信頼性高く他の光学部材や外部支持体と装着することができる

[0009]

また、第二の主面は、凹凸を有することが好ましく、これにより、発光面側に接着剤等を利用して他部材を装着する場合、接着剤が第二の主面側に留まり易くなることで凹部内に流入する恐れがなくなるため、光学特性に影響を与えることなく、かつ強度に固着することができる。

[0010]

また、第二の主面上の凹凸形状は、内部が空洞の外周壁を成していることが好ましく、これにより接着剤の流出を防ぐことができるため、発光装置は、他部材とさらに強固に密着することができる。

[0011]

また、第一の主面は、切欠部を有していることが好ましく、これにより、該切 欠部と嵌合可能な形状を設けた他部材との位置決め精度をさらに高めることがで きる。

[0012]

また、前記半導体素子が発光素子であり、該発光素子は、A1とY、Lu、Sc、La、Gd、Tb、Eu、Ga、In及びSmから選択された少なくとも一つの元素とを含み、かつ希土類元素から選択された少なくとも一つの元素で付活された蛍光物質を備えることができる。これにより、発光素子からの光と蛍光物

質により波長変換された光との混色光を得ることができる。

[0013]

また、前記半導体素子が発光素子であり、該発光素子は、Nを含み、かつBe、Mg、Ca、Sr、Ba、及びZnから選択された少なくとも一つの元素と、C、Si、Ge、Sn、Ti、Zr、及びHfから選択された少なくとも一つの元素とを含み、希土類元素から選択された少なくとも一つの元素で付活された蛍光物質を備えることができる。これにより、発光素子からの光と蛍光物質により波長変換された光との混色光を得ることができ、さらに混色光の演色性を向上させることもできる。

[0014]

また、本発明は、半導体素子が発光素子であり、該発光素子は、n側電極を有する窒化物半導体からなるn型コンタクト層とp側電極を有する窒化物半導体かなるp型コンタクト層との間に、窒化物半導体からなる活性層を有する半導体積層構造を備え、前記n型コンタクト層は、電極形成面側からみて、p側電極を有する半導体積層構造が設けられた第1の領域と、前記第1の領域と異なる第2の領域からなり、前記第2の領域には、複数の凸部が設けられ、前記凸部の頂部は、前記発光素子断面において、前記活性層よりもp型コンタクト層側に位置する発光素子を備えた半導体装置とすることができる。

[0015]

このような発光素子の長手方向とパッケージ凹部底面の長手方向とが沿うよう に凹部底面に載置することにより、発光装置を薄型化することができ、また光取 り出し効率向上させ、信頼性の高い発光装置とすることができる。また、前記凸 部断面において、前記n型コンタクト層側から前記p型コンタクト層側に向かっ て、前記凸部が徐々に細くなるように傾斜していることがより好ましい。

[0016]

さらに本願発明の光学装置は、上記半導体装置と、該半導体装置からの光あるいは該半導体装置への光を導光する透光性部材とを有し、前記透光性部材は、前記半導体装置の主面と嵌合する光入出部を備えていることを特徴とする光学装置である。

[0017]

これにより、複数の発光装置や受光装置を精度よく透光性部材に装着することが容易にでき、半導体装置と透光性部材との接合部分で光が漏れるのを防ぐこともできるため、信頼性、量産性および光学特性に優れた光学装置が得られる。

[0018]

【発明の実施の形態】

本発明者は、種々の実験の結果、インサート型パッケージを利用した半導体装置において、熱作用により形状が変化しにくい部分に、他部材との位置決めが可能となる外形を設けることにより実装性を高めることが可能となることを見出し本発明を成すに至った。

[0019]

以下、図面を参照しながら本願発明に係る実施の形態について、特に発光装置を例にとり説明する。図1から図5は、本願発明にかかる発光装置の模式的な斜視図(a)、および該発光装置を発光面に対して垂直な方向に切断した際の模式的な断面図(b)を示す。また、図16(a)~(d)は、本実施の形態におけるパッケージの成型工程を示す模式的な断面図である。

[0020]

本実施の形態の発光装置において、例えば図1に示すように、パッケージ1は、正負両リード電極2の一端部がパッケージ1に挿入されるように一体成型される。詳細に説明すると、パッケージ1は、主面側に発光素子4を収納することが可能な凹部を有し、その凹部の底面には、正のリード電極の一端部と負のリード電極の一端部とが互いに分離されてそれぞれの主面が露出するように設けられ、正のリード電極と負のリード電極の間には絶縁性の成型材料が充填されている。ここで本明細書中において「主面」とは、パッケージ、リード電極等の発光装置の各構成部材の表面について、発光素子の光が取り出される発光面側の面のことをいう。また、本発明において、発光装置主面に形成される発光面の形状は、図1に示されるような四角形状に限定されるものではなく、図6に示されるような楕円状としてもよい。このような形状とすることにより、凹部を形成するパッケージ側壁部の機械的強度を保持しながら発光面をできるだけ大きくすることがで

き、薄型化しても広い範囲に照射可能な発光装置とすることができる。

[0021]

本実施の形態の発光装置において正のリード電極および負のリード電極2は、 他端部がパッケージ側面より突出するように挿入されている。該リード電極の突 出した部分は、上記パッケージの主面に対向する裏面側に向かって、または上記 主面と垂直を成す実装面側に向かって折り曲げられている。ここで、本実施の形 態の発光装置は、主面と垂直を成し且つ凹部の長手方向と平行を成す面を実装面 とし、該実装面に対してほぼ平行な方向へ光を発光する側面発光型発光装置であ る。

[0022]

本実施の形態の発光装置に用いられるパッケージ1は、主面側にパッケージ内 壁面8により凹部が形成され、該凹部に隣接するパッケージ主面の側壁部に段差 を有している。具体的には、凹部に隣接する第一の主面1 a と、該第一の主面1 aより一段低い第二の主面 1 b とを少なくとも有している。なお、第一の主面 1 a および第二の主面1 b を有する形状に限定されず、さらに第三の主面、第四の 主面、…と、3つ以上の主面を設けても構わない。このように構成されることに より、第一の主面1a、第二の主面1b、さらに第一の主面1aと第二の主面1 bの間に設けることができる段差構造の側壁により、光学部材と位置決め可能な 外形が一定形状で形成される。即ち、本願発明の発光装置の輝度を向上させるた め、あるいは所望の光学特性を持たせるため、特定形状のレンズ等の光学部材を 設けたり、本願発明の発光装置と導光板等を組み合わせ面状光源とする場合があ る。その際、発光装置の第一の主面laと第二の主面lbを少なくとも有する主 面側形状と隙間無く填め込むことが可能な形状を光学部材等に設けることにより 、容易に精度良く組み立てることができ、量産性および光学特性に優れた光源が 得られる。なお、本実施の形態においては、第一の主面1aと第二の主面1bと の間に段差を有する主面としたが、本発明は、段差を有する形状に限られず、第 二の主面1bが第一の主面1aに連続している主面としてもよい。連続した第一 の主面1 a と第二の主面1 b に隙間無く填め込むことが可能な形状に他の光学部 材の装着面を加工することにより、本発明は、特に段差を有さなくても他の光学 部材との装着性に優れる発光装置である。

[0023]

•

図16(a)~(d)は、本実施の形態におけるパッケージ1の成型工程を示 す模式的な断面図である。以下、本発明にかるパッケージの成型方法を(a)~ (d)として順に説明する。まず、(a)金属平板に打ち抜き加工を施して形成 されたリードフレーム24を凸型27と凹型28にて挟持し、凸型27と凹型2 8の内壁面によって形成される封止空間内にリードフレーム24を配置する。こ のとき、後工程で正負一対のリード電極として形成されるリードフレーム24の 先端部が所定の間隔をおいて互いに対向するように配置する。なお、凸型27は 、貫通孔に嵌め込まれた棒状の突き出し部材25(例えば、ピン等)を少なくと も一つ以上有し、上記封止空間および凹型28方向に可動である。次に、(b) 凹型28に対し上記封止空間方向に設けられたゲートへパッケージ成型材料26 を注入し、上記封止空間内をパッケージ成型材料26で満たす。なお、パッケー ジ成型材料の注入方向は、図16(b)にパッケージ成型材料注入方向29の矢 印として示される。また、パッケージ成型材料26の注入時、図16(b)に示 されるように、突き出し部材25の下面が凸型27の内壁面(第二の主面を形成 する面)とほぼ同一平面となるように配置してもよいが、第二の主面に凹凸を形 成する場合は、突き出し部材25の下面が凹型28方向にある程度突出するよう に配置する。(c)上記封止空間内へ充填されたパッケージ成型材料を硬化させ る。(d)最初に凹型28を取り外し、パッケージ主面の第二の主面1bをピン ノック面とし、該第二の主面1bに突き出し部材25の下面を圧し当て、突き出 し部材25を凹型28の方向に移動させることにより、パッケージ1を凸型27 内から取り外す。なお、突き出し部材25の移動方向は、図16(d)に突き出 し方向30の矢印として示される。

[0024]

以上説明したように、本実施の形態の発光装置で用いられるパッケージ1の如く、成形型を用いた射出成形にて形成させるパッケージ1は、成形型内にて形成された後、型内部に備えられたピン等の突き出し部材25にて押し出されて型から取り外される。

[0025]

• • • • •

しかしながら、取り外し作業を行う際、パッケージの成形部材部分はまだ熱を有しており、外圧により変形しやすい状態となっている。例えば、凹部内のリード電極2主面をピンノック面とした場合、成形部材の機械的強度が弱いため、内部に挿入されたリード電極2の保持力が弱く、リード電極2の位置ずれやリード電極2自体に歪みが生じたりする場合があり、リード電極2上に載置される発光素子4は傾いた状態にて配置され、各発光装置間に指向特性のずれが生じる。そこで、パッケージ1の表面にピンノック面を設ける必要があるが、この場合、発光装置を小型化しようとすると、パッケージ1の端部をノック面としなければならなくなる。しかしながら、パッケージ1は型から取り外される際、まだ軟弱であり、ピンにてノックすると成形部材の一部が型の内部へ押し戻されてしまう。このピンノック面が凹部を形成する側壁の上面である場合、押し戻された成型部材は側壁にて形成される光反射面側へ向かうため光反射面の形状が変形し、発光装置の光学特性に悪影響を及ぼす危険性がある。

[0026]

一方、本実施の形態の発光装置は、開口部が発光面となる凹部から発光装置の外側に向かって第一の主面1 a と第二の主面1 b を順に有しており、この第二の主面1 b をピンノック面としてパッケージを成形型から取り出すことで、パッケージ1を小型化した際にも、凹部の形状に変形を加えてしまうことがなくなるため、発光特性に影響を与えることなく量産性良く形成することができる。

[0027]

本実施の形態において、第二の主面1bの形状は特に限定されないが、第二の主面1b上に凸部1cを有していることが好ましく、凸部1cの高さは第一の主面までの高さよりも低いことが好ましい。これにより、本願発明の発光装置を他の部材に固定する際、第二の主面1b上に接着剤等との接触面積が増大し、接着強度を高めることができる。さらに、図2から図4に示されるように、凸部1cにより内部が空洞である外周壁が形成されていることが好ましい。これにより、内部の空洞に接着剤を充填させ光学部材等に固着させると、接着剤がリード電極や第一の主面1a側にまで流出することは外周壁により防止されるため、信頼お

よび光学特性に優れた発光装置を形成することができる。なお、第二の主面1b上に凸部1cを有する形状は、凸型27の内壁面に凸部1cを成形する形状を設けるだけでなく、突き出し部材25を第二の主面1bに圧し当てることにより、パッケージ1を取り出す工程(図16(d))と同時に形成することもできる。

[0028]

٠.

本実施の形態のパッケージ1は、発光素子4や受光素子を収納することが可能な凹部を有している。凹部を形成する内壁面の形状は、特に限定されないが、発光素子4を載置する場合、開口側へ内径が徐々に大きくなるようなテーパー形状とすることが好ましい。これにより、発光素子4の端面から発光される光を効率よく発光観測面方向へ取り出すことができる。また、光の反射を高めるため、凹部の内壁面に銀等の金属メッキを施すなど、光反射機能を有するようにしてもよい。

[0029]

本実施の形態の発光装置は、以上のように構成されたパッケージ1の凹部内に、発光素子4が載置され、凹部内の発光素子4を被覆するように透光性樹脂が充填され、封止部材3が形成される。

[0030]

次に、本実施の形態にかかる発光装置の製造工程および各構成部材について詳述する。

[0031]

【工程1:リード電極形成】

本実施の形態では、まず第一の工程として、金属板に対し打ち抜き加工を施し 正負一対のリード電極を複数対有するリードフレームを形成し、該リードフレー ム表面に金属メッキを施す。なお、リード電極のカットフォーミング工程から発 光装置の分離工程までパッケージを支持するハンガーリードをリードフレームの 一部に対して設けることができる。

[0032]

(リード電極2)

本実施の形態におけるリード電極2は、発光素子に電力を供給するとともに、

該発光素子を載置可能な導電体である。特に、本実施の形態にかかるリード電極 2 は、一方の端部がパッケージ側面からパッケージ内部に挿入され、他方の端部 がパッケージ側面から突出するようにパッケージ成型時に一体成型される。また、パッケージ内部に挿入されたリード電極 2 の端部の主面は、パッケージの凹部 底面から露出している。

[0033]

リード電極2の材料は、導電性であれば特に限定されないが、半導体素子と電気的に接続する部材である導電性ワイヤ5や導電性バンプ6等との接着性及び電気伝導性が良いことが求められる。具体的な電気抵抗としては、 $300\mu\Omega-c$ m以下が好ましく、より好ましくは $3\mu\Omega-c$ m以下である。これらの条件を満たす材料としては、鉄、銅、鉄入り銅、錫入り銅及び銅、金、銀をメッキしたアルミニウム、鉄、銅等が好適に挙げられる。

[0034]

プレス加工後の長尺金属板の各パッケージに対応する部分において、正のリード電極は、成形後の凹部の底面においてその一端面が負のリード電極の一端面と対向するように負のリード電極とは分離されている。本実施形態では、端部主面が凹部底面で露出されるリード電極2に特別な加工を施していないが、凹部の長手方向を軸とし左右に貫通孔を少なくとも1対設けるなどして成形樹脂との結合強度を強めることも可能である。

[0035]

[工程2:パッケージ形成]

本実施の形態におけるパッケージ1は、発光素子4が載置可能で、発光素子4が載置されるリード電極2を固定保持する支持体として働き、発光素子4や導電性ワイヤ5を外部環境から保護する機能も有する。

[0036]

次に、上記長尺金属板を成形型である凸型および凹型の間に配置させてこれらの型を閉じる。これらの型を閉じることにより得られる空洞部に、凹型背面に設けられたゲートより成形材料を注入する。上記空洞部は、パッケージの外形に対応している。本実施の形態において、成形樹脂部を成形するための成形型は、凹

部に隣接するパッケージ主面に段差を有し、第一の主面1 a と、該第一の主面1 a から一段低く且つ該第一の主面1 a よりも凹部から外側に配置された第二の主面1 b と、を備えたパッケージ1が得られるような形状を有している。また、成形型において、プレス加工された長尺金属板は、プレスの打ち抜き方向と成形型内に樹脂を注入する方向とが一致するように凸型と凹型の間に挿入配置することが好ましい。このように長尺金属板の配置方向を決定すると、正及び負のリード電極の端部により形成される空間に隙間なく樹脂を充填することができ、注入される成形樹脂の一方の主面上への流出を阻止することができる。

[0037]

• • • • •

また、上述したハンガーリードをリードフレームに設けると、図3 (a) に示されるように、ハンガーリード先端部の形状によりパッケージ側面に凹部を有するパッケージ1が成型され、フォーミング工程終了までハンガーリードは該凹部を利用してパッケージを支えることができる。

[0038]

(成形材料)

本発明で用いられるパッケージの成形材料は特に限定されず、液晶ポリマー、ポリフタルアミド樹脂、ポリブチレンテレフタレート(PBT)等、従来から知られているあらゆる熱可塑性樹脂を用いることができる。特に、ポリフタルアミド樹脂のように高融点結晶が含有されてなる半結晶性ポリマー樹脂を用いると、表面エネルギーが大きく、開口内部に設けることができる封止樹脂や後付することができる導光板等との密着性が良好なパッケージが得られる。これにより、封止樹脂を充填し硬化する工程において、冷却過程でのパッケージと封止樹脂との界面に剥離が発生することを抑制することができる。また、発光素子チップからの光を効率よく反射させるために、パッケージ成形部材中に酸化チタンなどの白色顔料などを混合させることができる。

[0039]

このようにして形成された成形部材を型から取り外す。具体的には、まず凹型 を開き、次に凸型内部に備えられたピンをパッケージの第二の主面へ向かって突 きだす。この際、第二の主面上にピンの径を内壁とする円柱外壁が形成される。 このような円柱外壁を有することにより、発光装置を接着剤等にて他部材と固着させる際、接着剤の流れを防止することができ、他部材との固着力が向上する。

[0040]

•

[工程3:半導体素子載置]

次に、パッケージ1に設けた凹部の底面に露出されたリード電極2に対し、半 導体素子を固定する。本実施の形態では、半導体素子として特に発光素子につい て説明するが、本発明に使用することができる半導体素子は、発光素子に限られ ず、受光素子、静電保護素子(ツェナーダイオード)、あるいはそれらを少なく とも二種以上組み合わせたものを使用することができる。

[0041]

(発光素子4)

本発明における半導体素子として、発光素子、受光素子等の半導体素子が考えられるが、本実施の形態において使用される半導体素子は、発光素子として使用されるLEDチップである。本実施の形態におけるLEDチップは、凹部底面の大きさに合わせて複数用いてもよいし、凹部底面の形状に合わせて種々の形状とすることができる。

[0042]

ここで、本発明において発光素子4は特に限定されないが、蛍光物質7を共に用いた場合、該蛍光物質を励起可能な波長を発光できる活性層を有する半導体発光素子が好ましい。このような半導体発光素子として、ZnSeやGaNなど種々の半導体を挙げることができるが、蛍光物質を効率良く励起できる短波長が発光可能な窒化物半導体($In_XA1_YGa_{1-X-Y}N$ 、 $0 \le X$ 、 $0 \le Y$ 、 $X+Y \le 1$)が好適に挙げられる。前記窒化物半導体は、所望に応じてボロンやリンを含有させることもできる。半導体の構造としては、MIS接合、PIN接合やPn接合などを有するホモ構造、ヘテロ構造あるいはダブルヘテロ構成のものが挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。また、活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。

[0043]

窒化物半導体を使用した場合、半導体用基板にはサファイア、スピネル、SiС、Si、ZnO、GaN等の材料が好適に用いられる。結晶性の良い窒化物半導体を量産性よく形成させるためにはサファイア基板を用いることが好ましい。このサファイア基板上にMOCVD法などを用いて窒化物半導体を形成させることができる。例えば、サファイア基板上にGaN、A1N、GaAIN等のバッファ層を形成しその上にpn接合を有する窒化物半導体を形成させる。また基板は、半導層を積層した後、取り除くことも可能である。

[0044]

• • • • •

窒化物半導体を使用したpn接合を有する発光素子例として、バッファ層上に 、n型窒化ガリウムで形成した第1のコンタクト層、n型窒化アルミニウム・ガ リウムで形成させた第1のクラッド層、窒化インジウム・ガリウムで形成した活 性層、p型窒化アルミニウム・ガリウムで形成した第2のクラッド層、p型窒化 ガリウムで形成した第2のコンタクト層を順に積層させたダブルヘテロ構成など が挙げられる。窒化物半導体は、不純物をドープしない状態でn型導電性を示す 。発光効率を向上させるなど所望のn型窒化物半導体を形成させる場合は、n型 ドーパントとしてSi、Ge、Se、Te、C等を適宜導入することが好ましい 。一方、p型窒化物半導体を形成させる場合は、p型ドーパントであるZn、M g、Be、Ca、Sr、Ba等をドープさせる。窒化物半導体は、p型ドーパン トをドープしただけではp型化しにくいためp型ドーパント導入後に、炉による 加熱やプラズマ照射等により低抵抗化させることが好ましい。電極形成後、半導 体ウエハーからチップ状にカットさせることで窒化物半導体からなる発光素子を 形成させることができる。また、パターニングにより、各電極のボンディング部 のみを露出させ素子全体を覆うようにSi〇っ等からなる絶縁性保護膜を形成す ると、小型化発光装置を信頼性高く形成することができる。本発明の発光ダイオ ードにおいて白色系を発光させる場合は、蛍光物質からの発光波長との補色関係 や透光性樹脂の劣化等を考慮して発光素子の発光波長は400nm以上530n m以下が好ましく、420nm以上490nm以下がより好ましい。発光素子と 蛍光物質との励起、発光効率をそれぞれより向上させるためには、450nm以 上475nm以下がさらに好ましい。なお、比較的紫外線により劣化されにくい

部材との組み合わせにより400nmより短い紫外線領域或いは可視光の短波長 領域を主発光波長とする発光素子を用いることもできる。

[0045]

•

(バンプ6)

本実施の形態において発光素子4は、同一面側に設けられた一対の電極をパッ ケージ凹部より露出された一対のリード電極と対向させてなるフリップチップ方 式にて実装すると、発光面側に光を遮るものが存在せず、均一な発光を得ること ができる。バンプの材料は、導電性であれば特に限定されないが、発光素子の正 負両電極および正負のリード電極のメッキ材料に含まれる材料の少なくとも一種 を含有することが好ましい。例えばAg、Au、共晶ハンダ(Au-Sn)、P b-Sn、鉛フリーハンダ等が挙げられる。本実施の形態では、各リード電極2 上にそれぞれAuからなるバンプ6を形成し、各バンプ上に発光素子4の各電極 を対向させ、熱、超音波および荷重を印加することによりバンプと電極とを接合 する。あるいは別の実施の形態では、まず、発光素子の各電極上にそれぞれバン プ6を形成した後、各バンプ6と各リード電極2を対向させ、同様に超音波にて 接合する。それぞれ形成方法の異なるバンプの種類としては、導電性ワイヤの端 部をボンディングした後、該端部を残すようにワイヤを切断して得られるスタッ ドバンプや、所望のマスクパターンを施した後の金属蒸着により得られるバンプ 等がある。また、このようなバンプは、リード電極の側に先に設けることもでき るし、発光素子の電極の側に先に設けることもできるし、リード電極と発光素子 の電極の側にそれぞれ分けて設けることもできる。

[0046]

また、フリップチップ方式にて実装する場合、サブマウントを介して実装することが好ましい。図7は、サブマウントを介して実装する実施例の模式的な斜視図を示す。フリップチップ方式では、パッケージの熱応力によりリード電極がズレ動くため、パンプを介して接合されている発光素子とリード電極との間が剥離しやすい。また、対向する正負両リード電極の先端部の間隔を発光素子の正負両電極の間隔程度まで狭めることが困難であり、発光素子をリード電極に対して安定に接続することが難しい。パッケージ材料の最適化により上記問題はある程度

解消するが、サブマウントを介してフリップチップ実装することにより、発光装置の更なる信頼性の向上を図ることが容易にできる。

[0047]

サブマウント基板11の表面には、発光素子4に対向する面からリード電極2 に対向する面にかけて導電性部材12により導電性パターンが配されている。導 電性パターンの間隔は、エッチング等の方法により発光素子4の正負両電極の間 隔程度まで狭めて設けることも可能である。サブマウント基板11の材料は、発 光素子4と熱膨張係数がほぼ等しいもの、例えば窒化物半導体発光素子に対して 窒化アルミニウムが好ましい。このような材料を使用することにより、サブマウ ント基板11と発光素子4との間に発生する熱応力の影響を緩和することができ る。あるいは、サブマウント基板11の材料は、静電保護素子の機能を内部に持 たせることもでき安価でもあるシリコンが好ましい。また、導電性部材は、反射 率の高い銀や金とすることが好ましい。さらに、サブマウント基板11に対し、 発光素子4の実装に悪影響を与えない箇所に、孔や凹凸形状を設けることが好ま しい。このような形状を設けることにより、発光素子4からの熱はサブマウント から効率よく放熱することができる。サブマウント基板11の厚さ方向に少なく とも一つ以上の貫通孔を設け、貫通孔の内壁面に上記導電性部材12が延材する ように形成すると、放熱性がさらに向上するため、好ましい。なお、本実施の形 態におけるサブマウントは、導電性パターンをリード電極と直接接続しているが 、導電性ワイヤを介してリード電極と接続する構成としても構わない。

[0048]

発光装置の信頼性を向上させるため、発光素子の正負両電極間とサブマウントの間、あるいは発光素子の正負両電極間とパッケージの凹部底面に露出されたリード電極2との間に生じた隙間にはアンダフィルが充填されてもよい。アンダフィルの材料は、例えばエポキシ樹脂等の熱硬化性樹脂である。アンダフィルの熱応力を緩和させるため、さらに窒化アルミニウム、酸化アルミニウム及びそれらの複合混合物等がエポキシ樹脂に混入されてもよい。アンダフィルの量は、発光素子の正負両電極とサブマウントとの間に生じた隙間を埋めることができる量である。

[0049]

サブマウントに設けた導電性パターンと発光素子4の電極との接続は、例えば Au、共晶ハンダ (Au-Sn、Pb-Sn)、鉛フリーハンダ等の接合部材1 0によって超音波接合を行う。また、サブマウントに設けた導電性パターンとリード電極2との接続は、例えばAuペースト、Agペースト等の接合部材10によって行う。

[0050]

(導電性ワイヤ5)

一方、発光素子4を一方のリード電極上にダイボンド固定した後、発光素子の各電極とリード電極2とをそれぞれ導電性ワイヤ5にて接続してもよい。ここで、ダイボンドに用いられる接合部材は特に限定されず、エポキシ樹脂等の絶縁性接着剤、Au-Sn合金、導電性材料が含有された樹脂やガラス等を用いることができる。含有される導電性材料はAgが好ましく、Agの含有量が80%~90%であるAgペーストを用いると放熱性に優れて且つ接合後の応力が小さい発光装置が得られる。

[0051]

導電性ワイヤ5としては、発光素子4の電極とのオーミック性、機械的接続性、電気伝導性及び熱伝導性がよいものが求められる。熱伝導度としては0.01 cal/(s)(cm²)(℃/cm)以上が好ましく、より好ましくは0.5 cal/(s)(cm²)(℃/cm)以上である。また、作業性などを考慮して導電性ワイヤの直径は、好ましくは、Φ10μm以上、Φ45μm以下である。特に、蛍光物質が含有されたコーティング部と蛍光物質が含有されていないモールド部材との界面で導電性ワイヤが断線しやすい。それぞれ同一材料を用いたとしても蛍光物質が入ることにより実質的な熱膨張量が異なるため断線しやすいと考えられる。そのため、導電性ワイヤの直径は、25μm以上がより好ましく、発光面積や扱い易さの観点から35μm以下がより好ましい。このような導電性ワイヤとして具体的には、金、銅、白金、アルミニウム等の金属及びそれらの合金を用いた導電性ワイヤーが挙げられる。

[0052]

[工程4:封止]

次に、発光素子4を外部環境から保護するため封止部材3を設ける。発光素子4あるいは導電性ワイヤ5等を覆うようにパッケージ1の凹部内に、封止部材3の材料を充填し、硬化させることにより発光素子4等を封止する。

[0053]

(封止部材3)

封止部材3の材料は透光性であれば特に限定されず、シリコーン樹脂、エポキ シ樹脂、ユリア樹脂、フッ素樹脂、および、それらの樹脂を少なくとも一種以上 含むハイブリッド樹脂等、耐候性に優れた透光性樹脂を用いることができる。ま た、封止部材は有機物に限られず、ガラス、シリカゲルなどの耐光性に優れた無 機物を用いることもできる。また、本実施の形態において封止部材は、粘度増量 剤、光拡散剤、顔料、蛍光物質等、使用用途に応じてあらゆる部材を添加するこ とができる。光拡散剤として例えば、チタン酸バリウム、酸化チタン、酸化アル ミニウム、酸化珪素、二酸化珪素、重質炭酸カルシウム、軽質炭酸カルシウム、 および、それらを少なくとも一種以上含む混合物等を挙げることができる。更に また、封止部材の発光面側を所望の形状にすることによってレンズ効果を持たせ ることができ、発光素子チップからの発光を集束させたりすることができる。ま た、半導体素子として受光素子を使用した場合は、封止部材を透過して受光素子 に入射する光が、受光素子の方向に集光するようにすると、受光装置の感度を向 上させることが可能である。具体的には、凸レンズ形状、凹レンズ形状さらには 、発光観測面から見て楕円形状やそれらを複数組み合わせた形状にすることがで きる。

[0054]

(蛍光物質7)

本発明では、半導体素子として発光素子を使用した場合、該発光素子、封止部材、ダイボンド材、アンダーフィルおよびパッケージ等の各構成部材中および/またはその周辺に無機蛍光物質や有機蛍光物質のような種々の蛍光物質を配置させることができる。このような蛍光物質の一例として、無機蛍光物質である希土類元素を含有する蛍光物質がある。

[0055]

•

希土類元素含有蛍光物質として、具体的には、Y、Lu, Sc、La, Gd、Tb およびS m o m p

[0056]

[0057]

以下、それぞれの蛍光体について詳細に説明する。

[0058]

(イットリウム・アルミニウム酸化物系蛍光体)

本実施の形態の発光装置に用いた蛍光物質は、窒化物系半導体を活性層とする半導体発光素子から発光された光により励起されて、異なる波長の光を発光できるセリウムで付活されたイットリウム・アルミニウム酸化物系蛍光物質をベースとしたものである。具体的なイットリウム・アルミニウム酸化物系蛍光物質としては、YA1O3:Ce、Y3A15O12:Ce(YAG:Ce)やY4A12O3:Ce、更にはこれらの混合物などが挙げられる。イットリウム・アルミニウム酸化物系蛍光物質にBa、Sr、Mg、Ca、Znの少なくとも一種が含有されていてもよい。また、Siを含有させることによって、結晶成長の反応を抑制し蛍光物質の粒子を揃えることができる。本明細書において、Ceで付活されたイットリウム・アルミニウム酸化物系蛍光物質は特に広義に解釈するものとし、イットリウムの一部あるいは全体を、Lu、Sc、La、Gd及びSmからなる群から選ばれる少なくとも1つの元素に置換され、あるいは、アルミニウムの一部あるいは全体をBa、T1、Ga、Inの何れか又は両方で置換され蛍光作用を有する蛍光物質を含む広い意味に使用する。

[0059]

更に詳しくは、一般式(Y_Z Gd $_{1-Z}$) $_3$ A $_{15}$ O $_{12}$:Ce($_{1-a}$ Sm $_{2}$ a)で示されるフォトルミネッセンス蛍光物質や一般式($_{1-a}$ Sm}a) $_3$ Re' $_5$ O $_{12}$:Ce($_{1-a}$ Ce($_{1-a}$ Ce)の $_{12}$:Ce($_{1-a}$ Ce)は、 $_{1}$ A1、Reは、 $_{1}$ A1、Gd、La、Scから選択される少なくとも一種、Re'は、A1、Ga、Inから選択される少なくとも一種である。)で示されるフォトルミネッセンス蛍光物質である。この蛍光物質は、ガーネット(ざくろ石型)構造のため、熱、光及び水分に強く、励起スペクトルのピークを450nm付近にさせることができる。また、発光ピークも、580nm付近にあり700nmまですそを引くブロードな発光スペクトルを持つ。

[0060]

またフォトルミネッセンス蛍光物質は、結晶中にGd (ガドリニウム)を含有することにより、460nm以上の長波長域の励起発光効率を高くすることができる。Gdの含有量の増加により、発光ピーク波長が長波長に移動し全体の発光

波長も長波長側にシフトする。すなわち、赤みの強い発光色が必要な場合、Gdの置換量を多くすることで達成できる。一方、Gdが増加すると共に、青色光によるフォトルミネッセンスの発光輝度は低下する傾向にある。さらに、所望に応じてCeに加えTb、Cu、Ag、Au、Fe、Cr、Nd、Dy、Co、Ni、Ti、Eu、およびPr等を含有させることもできる。

[0061]

• • • •

また、ガーネット構造を持ったイットリウム・アルミニウム・ガーネット系蛍光物質の組成のうち、A1の一部をGaで置換すると、発光波長は短波長側にシフトすることができる。一方、組成のYの一部をGdで置換すると、発光波長が長波長側にシフトすることができる。Yの一部をGdで置換する場合、Gdへの置換を1割未満にし、且つCeの含有(置換)を0.03から1.0にすることが好ましい。Gdへの置換が2割未満では緑色成分が大きく赤色成分が少なくなるが、Ceの含有量を増やすことで赤色成分を補え、輝度を低下させることなく所望の色調を得ることができる。このような組成にすると蛍光物質自体の温度特性が良好となり発光ダイオードの信頼性を向上させることができる。また、赤色成分を多く有するように調整されたフォトルミネッセンス蛍光物質を使用すると、ピンク等の中間色を発光することが可能となり、演色性に優れた発光装置を形成することができる。

[0062]

このようなフォトルミネッセンス蛍光物質は、Y、Gd、A1、及びCeの原料として酸化物、又は高温で容易に酸化物になる化合物を使用し、それらを化学量論比で十分に混合して原料を得る。又は、Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウムとを混合して混合原料を得る。これにフラックスとしてフッ化バリウムやフッ化アンモニウム等のフッ化物を適量混合して坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成して焼成品を得、つぎに焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通すことで得ることができる。

[0063]

また、上記焼成は、蛍光物質の原料を混合した混合原料とフラックスからなる混合物を、大気中又は弱還元雰囲気中にて行う第一焼成工程と、還元雰囲気中にて行う第二焼成工程とからなる、二段階で焼成することが好ましい。ここで、弱還元雰囲気とは、混合原料から所望の蛍光物質を形成する反応過程において必要な酸素量は少なくとも含むように設定された弱い還元雰囲気のことをいい、この弱還元雰囲気中において所望とする蛍光物質の構造形成が完了するまで第一焼成工程を行うことにより、蛍光物質の黒変を防止し、かつ光の吸収効率の低下を防止できる。また、第二焼成工程における還元雰囲気とは、弱還元雰囲気より強い還元雰囲気をいう。このように二段階で焼成すると、励起波長の吸収効率の高い蛍光物質が得られる。従って、このように形成された蛍光物質にて発光装置を形成した場合に、所望とする色調を得るために必要な蛍光物質量を減らすことができ、光取り出し効率の高い発光装置を形成することができる。

[0064]

(シリコンナイトライド系蛍光物質)

[0065]

より具体的には、基本構成元素は、Mnが添加された(Sr_XCa_{1-X}) $2Si_5N_8:Eu$ 、 $Sr_2Si_5N_8:Eu$ 、 $Ca_2Si_5N_8:Eu$ 、 $Sr_XCa_{1-X}Si_7N_10:Eu$ 、 $Sr_XCa_{1-X}Si_7N_10:Eu$ 、 $Sr_XCa_{1-X}Si_7N_10:Eu$ 、 $Sr_XCa_{1-X}Si_7N_10:Eu$ 、 $Sr_XCa_{1-X}Si_7N_10:Eu$

は、Mg、Sr、Ca、Ba、Zn、B、Al、Cu、Mn、Cr及びNiからなる群より選ばれる少なくとも1種以上が含有されていてもよい。Lは、Sr、Ca、SrとCaのいずれかである。SrとCaは、所望により配合比を変えることができる。また、組成にSiを用いることにより安価で結晶性の良好な蛍光物質を提供することができる。

[0066]

•

母体のアルカリ土類金属系窒化ケイ素に対して、Eu²⁺を付活剤として用いる場合、Eu₂O₃からOを、系外へ除去したものを使用することが好ましい。たとえば、ユウロピウム単体、窒化ユウロピウムを用いることが好ましい。但し、Mnを添加した場合は、その限りではない。Mnを添加すると、Eu²⁺の拡散が促進され、発光輝度、エネルギー効率、量子効率等の発光効率が向上することができる。Mnは原料中に含有させるか、又は、製造工程中にMn単体若しくはMn化合物を含有させ、原料と共に焼成する。但し、Mnは、焼成後の基本構成元素中に含有されていないか、含有されていても当初含有量と比べて少量しか残存していない。これは、焼成工程において、Mnが飛散したためであると思われる。

また、Mg、Sr、Ca、Ba、Zn、B、Al、Cu、Mn、Cr、O及びNiからなる群より選ばれる少なくとも1種以上を有していることにより、容易に大きな粒径を有する蛍光物質を形成できる他、発光輝度を高めたりすることができる。また、B、Al、Mg、Cr及びNiは、残光を抑えることができるという作用を有している。

[0067]

上記室化物系蛍光物質は、青色光の一部を吸収して黄から赤色領域の光を発光する。このような窒化物系蛍光物質と、黄色発光の蛍光物質、例えばYAG系蛍光物質と、青色の光を発光する発光素子とを組み合わせると、黄色から赤色光とが混色により暖色系の白色に発光する発光装置が得られる。この白色系の混色光を発光する発光装置は、色温度Tcp=4600K付近において特殊演色評価数R9を40付近まで高めることができる。

[0068]

次に、本発明に係る蛍光物質((Sr_XCa_{1-X}) $2^{Si}_5N_8$: Eu)の製造方法を説明するが、本製造方法に限定されない。上記蛍光物質には、Mn、 Oが含有されている。

[0069]

原料のSr、Caを粉砕する。原料のSr、Caは、単体を使用することが好ましいが、イミド化合物、アミド化合物などの化合物を使用することもできる。また原料Sr、Caには、B、A1、Cu、Mg、Mn、A1₂〇₃などを含有するものでもよい。原料のSr、Caは、アルゴン雰囲気中、グローブボックス内で粉砕を行う。粉砕により得られたSr、Caは、平均粒径が約0.1μmから15μmであることが好ましいが、この範囲に限定されない。Sr、Caの純度は、2N以上であることが好ましいが、これに限定されない。より混合状態を良くするため、金属Ca、金属Sr、金属Euのうち少なくとも1以上を合金状態としたのち、窒化し、粉砕後、原料として用いることもできる。

[0070]

原料のSiを粉砕する。原料のSiは、単体を使用することが好ましいが、窒化物化合物、イミド化合物、アミド化合物などを使用することもできる。例えば、 Si_3N_4 、 $Si(NH_2)_2$ 、 Mg_2Si などである。原料のSiの純度は、 $3N以上のものが好ましいが、<math>Al_2O_3$ 、Mg、金属ホウ化物(Co_3B 、 Ni_3B 、CrB)、酸化マンガン、 H_3BO_3 、 B_2O_3 、 Cu_2O 、CuOなどの化合物が含有されていてもよい。Siも、原料のSr、Caと同様に、アルゴン雰囲気中、若しくは、窒素雰囲気中、グローブボックス内で粉砕を行う。Si化合物の平均粒径は、約0.1 μ mから15 μ mであることが好ましい。

[0071]

次に、原料のSr、Caを、窒素雰囲気中で窒化する。この反応式を、以下の式1および式2にそれぞれ示す。

[0072]

 $3 \text{ Sr} + \text{ N}_2 \rightarrow \text{ Sr}_3 \text{ N}_2 \cdots (\sharp 1)$

 $3 \text{ Ca} + \text{ N}_2 \rightarrow \text{ Ca}_3 \text{ N}_2 \cdot \cdot \cdot \cdot (\stackrel{\cdot}{\text{\tiny α}} 2)$

Sr、Caを、窒素雰囲気中、600~900℃、約5時間、窒化する。Sr

、Caは、混合して窒化しても良いし、それぞれ個々に窒化しても良い。これにより、Sr、Caの窒化物を得ることができる。Sr、Caの窒化物は、高純度のものが好ましいが、市販のものも使用することができる。

[0073]

•

次に、原料のSiを、窒素雰囲気中で窒化する。この反応式を、以下の式3に示す。

[0074]

 $3 \text{Si} + 2 \text{N}_2 \rightarrow \text{Si}_3 \text{N}_4 \cdots$ (式3)

ケイ素Siも、窒素雰囲気中、800~1200℃、約5時間、窒化する。これにより、窒化ケイ素を得る。本発明で使用する窒化ケイ素は、高純度のものが好ましいが、市販のものも使用することができる。

[0075]

Sr、Ca若しくはSr-Caの窒化物を粉砕する。Sr、Ca、Sr-Caの窒化物を、アルゴン雰囲気中、若しくは、窒素雰囲気中、グローブボックス内で粉砕を行う。

同様に、Siの窒化物を粉砕する。また、同様に、Euの化合物 Eu_2O_3 を粉砕する。Euの化合物として、酸化ユウロピウムを使用するが、金属ユウロピウム、窒化ユウロピウムなども使用可能である。このほか、Nの原料は、イミド化合物、Pミド化合物を用いることもできる。酸化ユウロピウムは、高純度のものが好ましいが、市販のものも使用することができる。粉砕後のPルカリ土類金属の窒化物、窒化ケイ素及び酸化ユウロピウムの平均粒径は、約0.1 μ mから15 μ mであることが好ましい。

[0076]

上記原料中には、Mg、Sr、Ca、Ba、Zn、B、A1、Cu、Mn、Cr、O及びNiからなる群より選ばれる少なくとも1種以上が含有されていてもよい。また、Mg、Zn、B等の上記元素を以下の混合工程において、配合量を調節して混合することもできる。これらの元素は、単独で原料中に添加することもできるが、通常、化合物の形態で添加される。この種の化合物には、 H_3 BO3、 Cu_2O_3 、 $MgCl_2$ 、 $MgO\cdot CaO$ 、 Al_2O_3 、金属ホウ化物(C

rB、Mg $_3$ B $_2$ 、A $_1$ B $_2$ 、MnB)、B $_2$ O $_3$ 、Cu $_2$ O、CuOなどがある。

[0077]

• • • • • •

上記粉砕を行った後、Sr、Ca、Sr-Caの窒化物、Siの窒化物、Eu の化合物 Eu_2O_3 を混合し、Mnを添加する。これらの混合物は、酸化されやすいため、Ar雰囲気中、又は、窒素雰囲気中、グローブボックス内で、混合を行う。

[0078]

最後に、Sr、Ca、Sr-Caの窒化物、Siの窒化物、Euの化合物 Eu 2 O_3 の混合物をアンモニア雰囲気中で、焼成する。焼成により、Mn が添加された(Sr_X Ca_{1-X}) 2 Si_5 N_8 : Eu で表される蛍光物質を得ることができる。ただし、各原料の配合比率を変更することにより、目的とする蛍光物質の組成を変更することができる。

[0079]

焼成は、管状炉、小型炉、高周波炉、メタル炉などを使用することができる。 焼成温度は、1200から1700℃の範囲で焼成を行うことができるが、14 00から1700℃の焼成温度が好ましい。焼成は、徐々に昇温を行い1200 から1500℃で数時間焼成を行う一段階焼成を使用することが好ましいが、8 00から1000℃で一段階目の焼成を行い、徐々に加熱して1200から15 00℃で二段階目の焼成を行う二段階焼成(多段階焼成)を使用することもできる。蛍光物質の原料は、窒化ホウ素(BN)材質のるつぼ、ボートを用いて焼成を行うことが好ましい。窒化ホウ素材質のるつぼの他に、アルミナ(A12O3)材質のるつぼを使用することもできる。

[0080]

以上の製造方法を使用することにより、目的とする蛍光物質を得ることが可能 である。

[0081]

また、本実施の形態に用いることが可能な赤味を帯びた光を発光する蛍光物質は特に限定されず、例えば、 $Y_2O_2S:Eu$ 、 $La_2O_2S:Eu$ 、CaS:

Eu、SrS: Eu、ZnS: Mn、ZnCdS: Ag, Al、ZnCdS: Cu, Al等が挙げられる。

[0082]

• • • • •

以上のようにして形成されるアルミニウム・ガーネット系蛍光体、および窒化 物系蛍光体に代表される赤色系の光を発光可能な蛍光体は、発光素子の周辺にお いて一層からなる蛍光体層中に二種類以上存在してもよいし、二層からなる蛍光 体層中にそれぞれ一種類あるいは二種類以上存在してもよい。蛍光体層の形成は 、透光性樹脂やガラス等の透光性無機部材を結着剤としてポッティングや孔版印 刷等により行う。また、半導体発光素子が支持体に固定された後形成する方法、 半導体ウェハ状態で形成した後チップ化する方法、あるいはこれらの方法を併用 する方法が採られる。このような構成にすると、異なる種類の蛍光体からの光の 混色による混色光が得られる。この場合、各蛍光物質から発光される光をより良 く混色しかつ色ムラを減少させるために、各蛍光体の平均粇径及び形状は類似し ていることが好ましい。また、窒化物系蛍光体は、YAG蛍光体により波長変換 された光の一部を吸収してしまうことを考慮して、窒化系蛍光体がYAG系蛍光 体より発光素子に近い位置に配置されるようにすることが好ましい。このように 構成することによって、YAG蛍光体により波長変換された光の一部が窒化物系 蛍光体に吸収されてしまうことがなくなり、YAG系蛍光体と窒化物系蛍光体と を混合して含有させた場合と比較して、混色光の演色性を更に向上させることが できる。

[0083]

(アルカリ土類金属ハロゲンアパタイト系蛍光物質)

また、少なくともMg、Ca、Ba、Sr、Znから選択される1種を含むMで代表される元素と、少なくともMn、Fe、Cr、Snから選択される1種を含むM'で代表される元素とを有するEuで附活されたアルカリ土類金属ハロゲンアパタイト蛍光物質を用いることができ、白色系の混色光を高輝度に発光可能な発光装置が量産性良く得られる。特に、少なくともMn及び/又はC1を含むEuで附活されたアルカリ土類金属ハロゲンアパタイト蛍光物質は、耐光性や、耐環境性に優れている。また、窒化物半導体から放出された発光スペクトルを効

率よく吸収することができる。さらに、白色領域を発光可能であると共に組成に よってその領域を調整することができる。また、長波長の紫外領域を吸収して黄 色や赤色を高輝度に発光可能である。そのため、演色性に優れた発光装置とする ことができる。なお、アルカリ土類金属ハロゲンアパタイト蛍光物質例としてア ルカリ土類金属クロルアパタイト蛍光物質が含まれることは言うまでもない。前 記アルカリ土類金属ハロゲンアパタイト蛍光物質において、一般式が(M_{1-x} $_{-v}$ E u $_{x}$ M' $_{v}$) $_{10}$ (PO₄) $_{6}$ Q $_{2}$ などで表される場合(ただし、MはM g、Ca、Ba、Sr、Znから選択される少なくとも1種、M'はMn、Fe 、Cr、Snから選択される少なくとも1種、Qはハロゲン元素のF、C1、B r、および I から選択される少なくとも 1 種、である。 0. 0 0 0 $1 \le x \le 0$. 5、0.0001≦y≦0.5である。)、量産性よく混色光が発光可能な発光 装置が得られる。

[0084]

また、前記アルカリ土類金属ハロゲンアパタイト蛍光物質に加えて、BaMg $_2$ A $_1$ $_6$ O $_2$ $_7$: E u, (Sr, Ca, Ba) $_5$ (PO $_4$) $_3$ C $_1$: E u, S r A l $_2$ O $_4$: E u 、 Z n S : C u 、 Z n $_2$ G e O $_4$: M n 、 B a M g $_2$ A l $_1$ 6027: Eu, Mn, Zn2GeO4: Mn, Y2O2S: Eu, La2O2 $S: Eu、Gd_2O_2S: Euから選択される少なくとも 1種の蛍光物質を含有$ させると、より詳細な色調を調整可能であると共に比較的簡単な構成で演色性の 高い白色光を得ることができる。さらに、上述の蛍光物質は所望に応じてEuに 加えTb、Cu、Ag、Au、Cr、Nd、Dy、Co、Ni、Ti、およびP r等を含有させることもできる。

[0085]

また、本発明で用いられる蛍光物質の粒径は1μm~100μmの範囲が好ま しく、より好ましくは 10μ m~ 50μ mの範囲が好ましく、さらに好ましくは 15μm~30μmである。15μmより小さい粒径を有する蛍光物質は、比較 的凝集体を形成しやすく、液状樹脂中において密になって沈降されるため、光の 透過効率を減少させてしまう。本発明では、このような蛍光物質を有しない蛍光 物質を用いることにより蛍光物質による光の隠蔽を抑制し発光装置の出力を向上

28

させる。また本発明の粒径範囲である蛍光物質は光の吸収率及び変換効率が高く 且つ励起波長の幅が広い。このように、光学的に優れた特徴を有する大粒径蛍光 物質を含有させることにより、発光素子の主波長周辺の光をも良好に変換し発光 することができ、発光装置の量産性が向上される。

[0086]

•

ここで本発明において、粒径とは、体積基準粒度分布曲線により得られる値で ある。前記体積基準粒度分布曲線は、レーザ回折・散乱法により粒度分布を測定 し得られるもので、具体的には、気温25℃、湿度70%の環境下において、濃 度が0.05%であるヘキサメタリン酸ナトリウム水溶液に各物質を分散させ、 レーザ回折式粒度分布測定装置(SALD-2000A;島津(株)製)により 、粒径範囲 0.03μm~700μmにて測定し得られたものである。本明細書 において、この体積基準粒度分布曲線において積算値が50%のときの粒径値を 中心粒径といい、本発明で用いられる蛍光物質の中心粒径は15μm~50μm の範囲であることが好ましい。また、この中心粒径値を有する蛍光物質が頻度高 く含有されていることが好ましく、頻度値は20%~50%が好ましい。このよ うに粒径のバラツキが小さい蛍光物質を用いることにより色ムラが抑制され良好 な色調を有する発光装置が得られる。また、蛍光物質は、本発明で用いられる拡 散剤と類似の形状を有することが好ましい。本明細書において、類似の形状とは 、各粒径の真円との近似程度を表す円形度(円形度=粒子の投影面積に等しい真 円の周囲長さ/粒子の投影の周囲長さ)の値の差が20%未満の場合をいう。こ れにより、拡散剤による光の拡散と励起された蛍光物質からの光が、理想的な状 態で混ざり合い、より均一な発光が得られる。

[0087]

[工程5:発光装置毎に分離]

次に、リードフレームから各リード電極への接続部分を切断して個々の発光装置に分離する。なお、パッケージ側面に設けられたパッケージ側面凹部9にてパッケージを支持するハンガーリードを利用して、図3(a)あるいは図6に示されるようなパッケージ1を成型する場合、以下に述べるフォーミングを行った後、ハンガーリードによる支持を取り除き個々の発光装置とする。ハンガーリード

を利用することにより、フォーミング工程が各一対のリード電極に対してまとめ て行えるため、発光装置の形成工程数を減らし作業性を向上させることができる

[0088]

• • • • •

[工程6:リード電極2のフォーミング]

次に、パッケージ1の端面から突出した正負両リード電極を、パッケージ1の側面にそって折り曲げ、J-ベンド(Bend)型の接続端子部を形成する。ここで、リード電極2の接続端子部とは、リード電極のうち実装基板の導電性パターンと接触し、電気的に接続することができる部分をいう。

[0089]

本実施の形態において、正のリード電極と負のリード電極がパッケージ主面の 短軸側端面から突出している場合、突出部はパッケージの主面に対向する裏面側 に向かって折り曲げる(例えば、図1(a))ことが好ましく、これにより発光 面側に実装ハンダ等が悪影響を及ぼすことなく発光装置を配線基板に実装するこ とができる。また、正負一対のリード電極2はパッケージ1主面の長軸側端面か ら突出するように挿入されており、リード電極2の突出部を発光面と垂直を成す 面に向かって折り曲げる(例えば、図4(a))と、リード電極の接続端子部と 実装基板に設けた導電性パターンとの接触面積を大きくして電気的接続を確実に することができ、実装精度を高めることができる。また、発光装置を実装基板に 仮実装しリフロー工程を施す際に、発光装置が仮実装面から立ち上がってしまう ことを防止することもできる。このようにリード電極を折り曲げ接続端子部を形 成する場合、成形部材の実装面側の壁面とリード電極の露出面とは略同一面上に 位置していることが好ましい。発光装置を実装基板に対し安定に実装できるから である。尚、本発明の接続端子部の構造は、J-ベンド(Bend)型に限られ るものではなく、ガルウィング型等の他の構造であってもよい。本実施の形態に おいて、パッケージの側面のうちリード電極が突出している側面周辺は、図3お よび図6に示されるように予め所定の角度を付けてテーパー形状に成型されるこ とが好ましい。これにより、リード電極2の弾性の影響を加味して該側面ぎりぎ りまでリード電極2を折り曲げることにより、発光装置の安定な実装を考慮した

所望の角度にリード電極2の接続端子部を形成させることが容易にできる。

[0090]

٠.

以上のような工程で本実施の形態の発光装置は作製される。さらに、以上のようにして作成される実施の形態の発光装置を、基板上に外部電極が配線されてなる配線基板上に所定間隔を設けて配列し電気的導通を取る。配線基板の基板部材は、熱伝導性に優れていることが好ましく、アルミベース基板、セラミクスベース基板等を用いることができる。また、熱伝導性の悪い、ガラスエポキシ基板や紙フェノール基板上を用いる場合は、サーマルパッド、サーマルビア等の放熱対策を施すと好ましい。また、発光ダイオードと配線基板は、半田等の導電性部材にて導通を取ることができる。放熱性を考慮すると、銀ペーストを用いることが好ましい。

[0091]

(透光性部材)

本願発明の半導体装置は、レンズや導光板等、剛性の透光性樹脂やガラスからなる透光性部材の光入射部と精度良く嵌合する形状を発光面側あるいは入光側に設けることができる。ここで、本明細書中において、「光入出部」とは、半導体装置からの光あるいは半導体装置への光を所望の方向へ導く透光性部材に対し設けられるものであり、半導体装置からの光が入射する部分(特に「光入射部」と呼ぶことがある。)あるいは半導体装置への光が出射する部分(特に「光出射部」と呼ぶことがある。)である。

[0092]

本実施の形態における透光性部材とは、光の反射や屈折を利用して、部材内に入射された発光装置からの光を所定の方向に導き、所定の配光性を持たせて部材外部へ出射させる部材である。また、別の実施の形態における透光性部材とは、部材に入射する受光装置外部からの光を受光素子の方向に集光させるものである

[0093]

特に本実施の形態において、発光装置に使用される透光性部材は、発光装置からの光をそれぞれ個別に導入する光入射部を有している。光入射部の内壁は、本

実施の形態にかかる発光装置の第一の主面と接する第一の装着面と、第二の主面と接する第二の装着面を少なくとも有している。また、光入射部には、発光装置主面に設けた切欠部13と嵌合可能な形状を設けることができる。

[0094]

• • • • •

このように、本願発明は、常にほぼ一定形状となり得る成形部材を有し、該成型部材に他の透光性部材との位置決め可能な形状を設けることにより、歩留まり良く所望の光学特性を有する光源を形成することができる。

[0095]

(面状光源)

導光板と発光装置からなる光源は、導光板の側面に設けられた光入射部から入射された光を他の側面から出射させる面状光源とすることができる。

[0096]

本実施の形態における導光板とは、部材内壁における光の反射を利用して、部 材内に入射された発光装置からの光を所定の方向に導き、所定の面から部材外部 へ出射させる板状の透光性部材である。特に、本実施の形態における導光板とは 、例えば液晶用バックライト等の面状光源として利用できる光出射面を有する板 状の導光体をいう。

[0097]

導光板の材料は、光透過性、成形性に優れていることが好ましく、アクリル樹脂、ポリカーボネート樹脂、非結晶性ポリオレフィン樹脂、ポリスチレン樹脂等の有機部材や、ガラス等の無機部材を用いることができる。また、導光板の表面は、透過率・全反射光率を向上させるため、面精度Raが25μm(JIS規格参照)以下が望ましい。

[0098]

このような導光板は、光入射部に設けられた装着面と発光装置の主面とが対向するように装着される。導光板の装着方法は、ねじ止め、接着、溶着等、位置決めが容易で接合強度が確実に得られる方法を用いることができ、仕様や要求に応じて選定することができる。本実施例の形態では、パッケージの第二の主面と導光板の端面とを接着剤にて固着する。また、本願発明の面状発光光源は、上方

に拡散シートを設けることができる。このように本願発明の面状発光光源は、上方に配置された拡散シート等の他の部材を照射する直下型バックライト光源として利用することもできる。拡散シートの選定は、導光板の膜厚、性能を左右する。そのため、仕様・要求に応じてその都度、検証を行い選定することが好ましい。本実施例では、耐熱性に優れたポリカーボネート製で膜厚が20mmの導光板に対し、ヘーズ値88%~90%(JIS規格参照)で膜厚100μm程度の拡散シートを使用する。これにより、各光源のドット間がより緩和され、均一な発光が得られる。このような拡散シートは、導光板に直接接着または溶着等により装着することが可能である。また上方にカバーレンズを設ける場合、該カバーレンズと導光板の間に挟み込むことにより固定することもできる。拡散シートと導光板との距離は、0mm~10mmが好ましく、これらの界面は密着していることが最も好ましい。拡散シートの材質は、主にPETが用いられるが、発光ダイオードの発熱に対して変形や変質しない材料であれば特に限定されない。

[0099]

このようにして得られらた面状発光光源は、発光面一面において均一性で且つ 高輝度な発光が得ることができる。

[0100]

【実施例】

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施 例のみに限定されないことは言うまでもない。

[0101]

(実施例1)

図1に示すような表面実装(SMD)型の発光装置を形成する。発光素子4は、活性層として単色性発光ピークが可視光である $475\,\mathrm{n}\,\mathrm{m}\,\mathrm{oI}\,\mathrm{n}_{0.2}\,\mathrm{G}\,\mathrm{a}_{0.8}$ N 半導体を有する窒化物半導体素子を用いる。より詳細に説明すると、発光素子4であるLEDチップは、洗浄させたサファイア基板上にTMG(トリメチルガリウム)ガス、TMI(トリメチルインジウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化物半導体を成膜させることにより形成させることができる。ドーパントガスとしてSiH $_4$ とCP $_2$ M

gを切り替えることによって n 型窒化物半導体や p 型窒化物半導体となる層を形成させる。

[0102]

•

図8は、本実施例におけるLEDチップの平面図を示し、図9は、図8の破線 AA 'における断面図を示す。本実施例のLEDチップの素子構造としてはサフ ァイア基板14上に、アンドープの窒化物半導体であるGaN層、Siドープの n型電極が形成されたn型コンタクト層16となるn型GaN層、アンドープの 窒化物半導体であるGaN層、次に、バリア層となるGaN層、井戸層となるI nGaN層を1セットとして5セット積層して最後にバリア層となるGaN層を 積層して活性層17を構成し多重量子井戸構造としてある。活性層17上にはM gがドープされたp型クラッド層18としてA1GaN層、Mgがドープされた p型コンタクト層19であるp型GaN層を順次積層させた構成としてある。(なお、サファイア基板14上には低温でGaN層を形成させバッファ層15とさ せてある。また、 p 型半導体は、成膜後 4 0 0 ℃以上でアニールさせてある。) エッチングによりサファイア基板上の窒化物半導体に同一面側で、p型コンタ クト層19およびn型コンタクト層16の各表面を露出させる。次に、p型コン タクト層上にRh、Zrを材料とするスパッタリングを行い、図8に示されるよ うなパターンを有する拡散電極20を設ける。拡散電極20は、p側台座電極2 1が形成される位置からLEDチップの外縁方向に延伸するストライブと、該ス トライプの途中で枝分かれしLEDチップの外縁方向に延伸するストライプと、 によってなる。より詳細に説明すると本実施例における拡散電極20は、p側台 座電極21の形成位置近傍において互いに隣接しLEDチップの外縁を形成する 二辺に対し、それぞれほぼ平行に該形成位置から延伸する二対のストライプと、 LEDチップの対角線方向(AA '方向)に沿うように上記形成位置から延伸す る部分と、該延伸する部分の途中で枝分かれして上記二辺に対しほぼ平行となる 方向に延伸する部分とを有するストライプと、によってなる。このような拡散電 極20とすることにより、拡散電極20を流れる電流がp型コンタクト層19上 の広範囲に広がるようにし、LEDチップの発光効率を向上させることができる

[0103]

•

さらに、W、Pt、Auを材料とするスパッタリングを行い、拡散電極20およびn型コンタクト層16の一部に対し、それぞれW/Pt/Auの順に積層させp側台座電極21とn側台座電極22を同時に形成させる。ここで、p側台座電極21とn側台座電極22を同時に形成させることで、電極を形成するための工程数を減らすことができる。

[0104]

なお、拡散電極20の代わりとして、p型窒化物半導体上の全面にITO(インジウム(In)とスズ(Sn)の複合酸化物)や、Ni/Au等の金属薄膜を透光性電極として形成させた後、該透光性電極上の一部にp側台座電極21を形成しても構わない。

[0105]

出来上がった半導体ウエハーにスクライブラインを引いた後、外力により分割 させ半導体発光素子であるLEDチップ(光屈折率2.5)を形成させる。

[0106]

0.15mm厚の鉄入り銅からなる長尺金属板に対し打ち抜き加工を施し、各パッケージに挿入される正負一対のリード電極2を複数有するリードフレームを 形成する。また、光反射率を向上させるため、リードフレーム表面にAgメッキ を施す。

[0107]

次に、正負一対のリード電極2が挿入されて閉じられた金型内に、パッケージ 1の下面側に相当するゲートから溶融されたポリフタルアミド樹脂を流し込み硬 化させ、図1に示すパッケージを形成する。パッケージ1は、発光素子を収納可 能な凹部を有し、該凹部底面から正及び負のリード電極が一方の主面が露出され るように一体成形されている。さらに、パッケージ1の主面側は、側壁部の主面 に段差を有し、パッケージの内壁面8によって形成される凹部側から第一の主面 1 a および第二の主面1 b を有している。また、発光面の短手側であるパッケー ジ側面から突出されたリード電極2のそれぞれは、パッケージ主面に対向する裏 面側で発光装置の内側方向に折り曲げられて接続端子部を形成している。

[0108]

• • • • •

このように形成されたパッケージ1の凹部の底面に露出されたリード電極2の 端部主面に対して、エポキシ樹脂をダイボンド材としてLEDチップを接着し固 定する。次に、固定されたLEDチップの電極と、パッケージ1の凹部底面から 露出された各リード電極2とをそれぞれAuを主な材料とする導電性ワイヤ5に て接続する。

[0109]

次に、封止部材3を形成する。まず、フェニルメチル系シリコーン樹脂組成物 100wt%(屈折率1.53)に対して、拡散剤として平均粒径1.0μm、吸油量70ml/100gである軽質炭酸カルシウム(屈折率1.62)を3wt%含有させ、自転公転ミキサーにて5分間攪拌を行う。次に攪拌処理により生じた熱を冷ますため、30分間放置し樹脂を室温に戻し安定化させる。

[0110]

こうして得られた硬化性組成物をパッケージ1の凹部内に、凹部の両端部上面と同一平面ラインまで充填させる。最後に、70℃×3時間、及び150℃×1時間熱処理を施す。これにより、凹部の両端部上面から中央部にかけてほぼ左右対称の放物線状に凹みを有する発光面が得られる。また、硬化性組成物の硬化物からなる封止部材3は、拡散剤の含有量の多い第一の層と、該第一の層より拡散剤の含有量が少ないか、若しくは含有していない第二の層との2層に分離しており、LEDチップの表面は第一の層にて被覆されている。これにより、LEDチップから発光される光を効率良く外部へ取り出すことができると共に良好な光の均一性が得られる。第一の層は、凹部の底面からLEDチップの表面にかけて連続して形成されていることが好ましく、これにより、発光面の形状を滑らかな凹部とすることができる。

[0111]

このようにして得られた半導体装置は、発光面側であるパッケージの主面において、第一の主面と第二の主面とが一定形状で設けられているため、パッケージ 主面に対して支持体や光学部材等あらゆる部材を精度良く装着することができる [0112]

• • • • •

(実施例2)

図2(a)、図3(a)、図4(a)に本実施例にかかる半導体装置を示す。 実施例1において、パッケージ1の第二の主面1b上に円周の外壁を備える以外 は同様にして半導体装置を形成する。

[0113]

本実施例にかかる半導体装置は、外周壁の内部に接着剤を配置し他部材と接着すると、接着剤は外周壁外部(特に、凹部内)へ流出することがなくなるため、 固着力に優れ、信頼性の高い半導体装置である。

[0114]

(実施例3)

図2(b)、図3(b)、図4(b)に本実施例にかかる半導体装置を示す。 LEDチップの各電極上にAuバンプを形成し、超音波接合にてパッケージ凹部 底面から露出された各リード電極とそれぞれ対向させて電気的導通を取るフリッ プチップ実装を行う以外は他の実施例と同様にして半導体装置を形成する。

[0115]

本実施例による半導体装置は、上記実施例と同様の効果が得られるだけでなく、半導体発光素子の電極形成面をリード電極に対する実装面とし素子の基板側から光が取り出されるため、素子の基板側を実装面とした発光装置と比較して放熱性および光の取り出し効率が向上する発光装置である。

[0116]

(実施例4)

図2(a)、図3(a)、図4(a)に本実施例にかかる発光装置を示す。実施例3において、封止部材中に蛍光物質を含有させる以外は、同様にして発光装置を形成する。

[0117]

蛍光物質は、Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液 を蓚酸で共沈させ、これを焼成して得られる共沈酸化物と、酸化アルミニウムと を混合して混合原料を得る。さらにフラックスとしてフッ化バリウムを混合した 後坩堝に詰め、空気中1400 $\mathbb C$ の温度で3 時間焼成することにより焼成品が得られる。焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通して中心粒径が $8\,\mu$ mである $(Y_0,995^{\mathrm{Gd}}0.005)$ $2.750^{\mathrm{Al}}5^{\mathrm{O}}1$ $2:\mathbb{C}_{0,250}$ 蛍光物質を形成する。

[0118]

上記シリコーン樹脂組成物(屈折率1.53)に、上記蛍光物質(屈折率1.84)5.5 w t %含有させ、自転公転ミキサーにて5分間攪拌を行う。こうして得られた硬化性組成物を前記パッケージ凹部内に、前記凹部の両端部上面と同一平面ラインまで充填させる。最後に、70℃×2時間、及び150℃×1時間熱処理を施す。

[0119]

これにより、発光素子からの発光と、該発光を吸収し異なる波長を有する光を 出光する蛍光物質による蛍光との混色光が発光可能な発光装置とすることができ る。また、凹部の両端部上面から中央部にかけてほぼ左右対称の放物線状に凹み を有する発光面が得られ、導光板と組み合わせると、該導光板に効率よく光を入 射させることができる。

[0120]

(実施例5)

発光面の長軸側であるパッケージ側面から正及び負のリード電極を露出させ、 その露出部を発光面と垂直を成す面側に折り曲げる(例えば、図4(a)に示される。)以外は他の実施例と同様にして発光装置を形成する。

[0121]

本実施例にかかる発光装置は、安定性よく実装基板に実装することができる。

[0122]

(実施例6)

図5に示されるように、第一の主面の対向する一端部に切欠部13を設ける以外は他の実施例と同様にして発光装置を形成する。さらに、本実施例にかかる発光装置の主面と対向する透光性部材の装着面に対し、発光装置主面に設けた切欠部13と嵌合可能な形状を設ける。

[0123]

本実施例にかかる発光装置は、更に透光性部材等の他部材との固着力および装着精度を高めることができる。

[0124]

(実施例7)

図10は、本実施例における面状光源の一実施例を示す模式的な斜視図であり、図11は断面図である。なお、図10において見えない部分は点線で示す。

[0125]

本実施例における面状光源は、他の実施例と同様にして形成される発光装置3 2と、アクリル樹脂を材料とする透光性部材である導光板31とからなる。

[0126]

本実施例における導光板31は、複数の発光装置32からの光をそれぞれ個別に導光板内部に導入する光入射部34を一側面に有し、導光板の内壁面における反射を利用して他の一側面に設けられた光出射面35から面状に光を照射する。 導光板内部に光を導入する一側面は、光入射部34の壁面と、該光入射部34の壁面に隣接し発光装置32の第一の主面1aと接する第一の装着面33aと、第二の主面1bと接する第二の装着面33bとを有している。なお、光入射部34の壁面には、発光装置からの光が導光板内へ広範囲に入射するようにプリズム形状(図示せず)を設けることもできる。

[0127]

このように、本実施例にかかる面状光源は、発光装置のパッケージが常にほぼ 一定形状となり得る成形部材であり、該成型部材に導光板との位置決め可能な形 状を設けることにより、信頼性および装着性に優れた面状光源である。

[0128]

(実施例8)

図12、図13に基づいて本実施例における半導体発光素子について説明する。図12は本実施例における半導体発光素子を電極形成面側からみた平面図である。また、図13は、図12の破線X-Xにおけるp側台座電極21近傍の断面図であり、p側台座電極21が設けられた第1の領域の半導体積層構造と、第2

の領域に設けられた凸部23との位置関係を示している。

[0129]

本実施例における半導体発光素子は、p側台座電極21及びn側台座電極22 が同一面側に設けられており、これらの電極が形成された面側から光を取り出す 構成である。半導体発光素子を構成する半導体積層構造は、他の実施例と同様に 、サファイア基板14上にGaNバッファ層15、ノンドープGaN層、n型コ ンタクト層16となるSiドープGaN層、n型クラッド層となるSiドープG aN層、活性層17となるInGaN層、p型クラッド層18となるMgドープ A1GaN層、p型コンタクト層19となるMgドープGaN層が、順次積層さ れた層構造を有する。さらに、MgドープGaN層、MgドープA1GaN層、 InGaN層、SiドープGaN層、SiドープGaN層が部分的にエッチング 等により除去され、SiドープGaN層の露出面にn側台座電極22が形成され 、MgドープGaN層にはp側台座電極21が設けられている。n側台座電極2 2は、n型コンタクト層側から順にW、Pt、Auが積層されてなる。p側台座 電極21が形成される拡散電極20はp型コンタクト層のほぼ全面に形成される と共にp型コンタクト層側から順にNi、Auが積層されてなり(又は、Niと Auの合金)、p側台座電極21はn側電極と同様にW、Pt、Auが積層され てなる。また、発光領域を確保するために、拡散電極20はn側台座電極22を 部分的に囲んでいる。

[0130]

ここで、n型コンタクト層16は、電極形成面側からみて、p側台座電極21を有する半導体積層構造が設けられた第1の領域と、該第1の領域と異なる第2の領域から構成され、該第2の領域にはn側台座電極22および複数の凸部23が設けられている。図13に示すように、第2の領域に設けられた各凸部23の頂部は、半導体発光素子の断面において、活性層17よりもp型コンタクト層19側に位置する。すなわち、凸部23の頂部が活性層17よりも高くなるように形成されている。本実施例の半導体発光素子はDH構造であるので、凸部23の頂部は、少なくとも活性層17とそれに隣接するn型半導体層との界面より高ければよいが、活性層17とそれに隣接するp型半導体層との界面より高いことが

より好ましい。

[0131]

このように構成することにより、活性層17から端面(側面)方向に出射された光が、凸部23に当たり光の進行方向を、例えば、電極形成面側となる観測面側に変更することができる。また、端面から側面外部に出射された光が複数の凸部23により散乱を起こし、その結果光の取り出し、光の指向性制御を効果的に行うことができる。さらに、n型コンタクト層16内を導波する光が凸部23の根本(n型コンタクト層16と凸部23の接続部分)にて乱反射され、光を効果的に取り出すことができる。また、n型コンタクト層16から凸部23内部に光が取り込まれ、凸部23の頂部又はその途中部分から再度光が外部に出射され得る。特に、本実施例における半導体発光素子は、凸部23により、活性層17から端面(側面)方向に直接出射された光の進行方向を発光観測面側に変更させることができるので、光の指向性制御を効果的に行うことができる。

[0132]

さらに、上記効果は、凸部断面において、半導体積層方向つまりn型コンタクト層16側からp型コンタクト層19側に向かって、凸部23の幅が徐々に細くなるように傾斜させることで、より大きなものとなる。すなわち、凸部23の側面に故意に角度を付けることにより、活性層17からの光を凸部23の側面にて全反射させて、或いは、n型コンタクト層16を導波した光を散乱させ、結果として発光観測面側への光取り出しを効果的に行うことができる。凸部23の傾斜角は、40°~80°が好ましく、次に50°~75°、さらには60°~65°がより好ましい。凸部断面が台形である場合も同様である。

[0133]

また、凸部23は、第1の領域に近い側の傾斜角と遠い側の傾斜角とが略同じであることが好ましい。この理由は明らかでないが、各傾斜角が同一であることにより、全体として均一な光取り出し(光指向性の制御)が可能になっているものと考えられる。傾斜角は前に記載した範囲に形成することが好ましい。

[0134]

さらに、凸部断面の形状が台形、すなわち凸部自体が円錐台形状であることが

好ましい。このように構成することにより、光の指向性制御がより容易になると共に、全体としてより均一な光取り出しが可能となる。p型コンタクト層19側から光を取り出し、p側コンタクト層19を観測面とする場合に、凸部23の観測面側が頂点を含まずに平面を含むことにより、この効果が得られるものと考えられる。

[0135]

また、凸部断面の形状が台形である場合、台形の上辺(p側)において、さらに凹部を備えることもできる。これにより、n型コンタクト層内を導波してきた 光が凸部内部に侵入した際に、凸部の頂部に形成された凹部により、観測面側に 光が出射されやすくなるので好ましい。

[0136]

さらに、本実施例における半導体素子は、n型コンタクト層16の第1の領域に形成された半導体積層構造の出射端面とほぼ垂直をなす方向において、2以上、好ましくは3以上の凸部が少なくとも部分的に重複して配置されていることが好ましい。これにより、第1の領域から出射された光が高確率で凸部23を介することになるので、上記効果をより容易に得ることができる。

[0137]

本実施例における凸部23は、n側台座電極22の形成に際し、n型コンタクト層16を露出する工程と同時に形成することが好ましい。すなわち、本実施例における半導体発光素子は、同一面側に、p側およびn側電極を備える構造であるため、基板上にp型コンタクト層までを積層した後に、半導体積層構造のp側から少なくともn側電極に対応する領域をn型コンタクト層が露出するように除去することが必要となる。詳細には、例えば、p型コンタクト層19を積層した後に、レジスト膜を塗布して所望のパターンに露光し、残存するレジスト膜をマスクとして用い、後にp側電極を設ける部位(第1の領域)、および凸部23を形成すべき部位(第2の領域の一部分)以外をn型コンタクト層22が露出するまでエッチング等により除去する。これにより、n側電極を形成する露出面を形成すると共に凸部23を同時に形成することができるので、工程を簡略化することが可能となる。

[0138]

· . . · .

以上のように形成された凸部23は、第1の領域における半導体積層構造と同じ積層構造を備える。しかしながら、第1の領域に含まれる活性層17は発光層として機能して機能するが、第2の領域の凸部に含まれる活性層17は発光層として機能しない。これは、第1の領域がp側電極を有するのに対して、第2の領域(凸部23)にはp側電極が形成されていないことによる。すなわち、第1の領域の活性層17は通電によりキャリア(正孔及び電子)が供給され得るのに対し、第2の領域に設けられた凸部23の活性層17には通電によりキャリアは供給されない。このように、本願発明の凸部23はそれ自体で発光しうるものではない。仮に、凸部23にp側電極を形成し凸部内部に電流を流し凸部に含まれる活性層を発光させると、電流経路が狭くなることにより駆動電圧が上昇してしまい好ましくない。さらに、凸部23における活性層自体の面積も小さいために発光には殆ど関与しないので、発光に直接関与する第1の領域と、発光に直接関与しない第2の領域とに分割して凸部を形成することが好ましい。

[0139]

ここまで説明した通り、本実施例における半導体発光素子は、横方向(LEDの側面方向)に出射する光を減少させ、上方向(観測面側)へ選択的に出射させるものである。従って、有機物からなる支持体に半導体発光素子を配置した際に、その支持体自体の寿命を長くすることができる。すなわち、本実施例における半導体発光素子を用いることにより、半導体発光素子側面から出射される光により支持体が劣化するのを大幅に軽減することができる。このような効果は、支持体の表面(特に、半導体発光素子が載置される凹部を形成する内壁面)が半導体発光素子の側面に近いものほどより顕著なものとなる。

[0140]

また、本実施例における半導体発光素子は、n側台座電極22と拡散電極20 との間の領域に凸部23を形成していないが、該領域に凸部23を形成しても良い。n側台座電極22周辺部は比較的発光が強いので、n側台座電極22と拡散電極20との間に凸部23を設けることにより、上記の効果をさらに向上させることができる。

[0141]

以上説明したような長手方向と短手方向を有する形状の半導体発光素子を他の 実施例と同様にパッケージの凹部底面に載置する。このとき、凹部底面の長手方 向と半導体発光素子の長手方向および凹部底面の短手方向と半導体発光素子の短 手方向とがそれぞれほぼ平行となるように位置決めして載置する。即ち、長手方 向と短手方向を有する形状の半導体発光素子と、該半導体発光素子の大きさおよ び形状に対応する凹部底面を有するパッケージとを備える発光装置とする。これ により、パッケージを薄型化することにより凹部底面が長手方向と短手方向を有 する形状となっても、該凹部底面全体にわたって半導体発光素子が載置される領 域とすることができ、さらに発光装置の光取り出し効率を向上させることができ る。また、半導体発光素子の大きさがパッケージの凹部底面の全体にわたる大き さとなると、半導体発光素子の側面と凹部の内壁面とが近接して対向することと なるが、半導体発光素子に設けた上記凸部により、半導体積層構造端面からの出 光を観測面方向に向かわせることができる。そのため、本実施例にかかる発光装置は、半導体発光素子側面から出射される光により生じていた有機材料使用の支 持体の劣化を大幅に軽減することができる。

[0142]

(実施例9)

図14に基づいて、本実施例における半導体発光素子について説明する。本実施例における半導体発光素子は、第1の領域における半導体積層構造の形状と、それに伴う拡散電極20の形状と、凸部23の形成領域が異なる他は、上述した実施例8における半導体発光素子と同様の構成である。すなわち、本実施例における半導体発光素子は、pn電極配置面側からみて、n側台座電極22とp側台座電極21との間に位置する第1の領域がくびれ部分を有しており、さらにそのくびれ部分内に複数の凸部23が形成されている。これにより、発光および観測面側への光取り出しを効果的に行うことができる。

[0143]

詳細には、本実施例における半導体発光素子は、p側台座電極21とn側台座電極22が破線X-X上に配置されている。そして、図14に示すように、電極

形成面側からみて、p側の拡散電極20が破線X-Xに沿った長手形状をしており、それに伴い半導体発光素子自体の形状も破線X-Xに沿った長手形状としている。また、p側台座電極21からn側台座電極22に流れる電流は、その経路が最短になるように主に破線X-Xの方向に流れる。しかしながら、p側台座電極21とn側台座電極22間の拡散電極20のうち、破線X-X、p側台座電極21、n側台座電極22間の拡散電極20のうち、破線X-X、p側台座電極21、n側台座電極22の3箇所から離れた領域には、電流が供給されにくく、その結果、他の領域に比較して発光が弱い。本実施例における半導体発光素子は、上記事情を考慮して、n側台座電極22とp側台座電極21との間に位置する第1の領域にくびれ部分を設け、本来発光すべき該くびれ部分に対応する領域の半導体積層構造を除去し、さらにそのくびれ部分に複数の凸部23を形成することにより、結果として良好な光取り出しが実現可能となる。これは、くびれ部分に相当する発光の弱い領域をあえて除去し、その除去した領域に凸部を設けることにより、強い発光がそのまま側面外部に放出され、その放出された強い発光が凸部を介して観測面側に方向転換するために、光の取り出し、光の指向制御性が向上するものと考えられる。

[0144]

• • • • • •

(実施例10)

図15に基づいて、本実施例における半導体発光素子について説明する。本実施例における半導体発光素子は、第1の領域における半導体積層構造の形状と、それに伴う拡散電極20の形状と、凸部23の形成領域が異なる他は、上記実施例における半導体発光素子と同様の構成である。

[0145]

すなわち、本実施例における半導体発光素子は、凸部23が設けられた第2の 領域が第1の領域に囲まれることにより、光の取り出し、光の指向制御性をより 向上させることができる。さらに第1の領域に囲まれる凸部23を有する第2の 領域は、少なくともその一部が破線X-X付近に重複して設けられることが好ま しい。上述したように、電流は破線X-X方向に沿って主に流れるが、第1の領 域における破線X-X付近の一部をあえて除去し、その除去領域に複数の凸部2 3を設けることにより、結果的に、光の取り出し効率、光の指向性制御を効果的 に向上させることができる。これは、破線X-X上の一部をあえて除去することにより、電流を半導体積層構造のより広い領域に広げることが可能となると共に、破線X-X上から除去した領域における活性層を含む半導体積層構造端面から出射される比較的強い光りが、複数の凸部23を介して観測面側に方向転換するために、光の取り出し、光の指向制御性が向上するものと考えられる。

[0146]

また、本実施例における半導体発光素子における構成は、上述した実施例9における半導体発光素子の構成と併用することがより好ましい。すなわち、本実施例における半導体発光素子に対して、上記実施例9で説明したくびれ部分を備えることにより、上記の効果をより向上させることができる。

[0147]

なお、上述した各実施例における半導体発光素子における半導体積層構造は、限定されない。各半導体層における混晶材料や混晶比、積層数、積層順等は、種々の材料および数値とすることができる。また、p側電極、n側電極についても同様であり、その積層順、構成材料、膜厚等は任意に設定できる。

[0148]

(実施例11)

本実施例にかかる受光装置は、実施例1と同様に形成したパッケージと、半導体素子として受光素子とを用い、装置外部から入射する光を受光素子へ集光させるレンズ形状の透光性部材を備えた光検出器とする。

[0149]

本実施例にかかる受光装置は、光入射側であるパッケージの主面において、第一の主面と第二の主面とを設けることにより、該第一の主面および第二の主面に対応する装着面を有する透光性部材への装着精度および接着強度の高い受光装置とすることができる。

[0150]

【発明の効果】

以上詳述したごとく、本発明の発光装置は、発光面側であるパッケージの主面 において、第一の主面と第二の主面とを設けることにより、他部材への装着精度 および接着強度の高い発光装置である。

[0151]

長手方向と短手方向を有する半導体発光素子と、本願発明にかかるパッケージとを有する発光装置とすることにより、発光装置を薄型化しても凹部底面全体にわたって半導体発光素子が載置される領域とすることができ、さらに発光装置の光取り出し効率を向上させ、有機材料使用の支持体の劣化を防止することができる。

[0152]

【図面の簡単な説明】

- 【図1】 図1は、本発明にかかる発光装置の一実施例を示す模式的な斜視図(a)および断面図(b)である。
- 【図2】 図2は、本発明にかかる発光装置の他の実施例を示す模式的な斜視図(a)および断面図(b)である。
- 【図3】 図3は、本発明にかかる発光装置の他の実施例を示す模式的な斜視図(a)および断面図(b)である。
- 【図4】 図4は、本発明にかかる発光装置の他の実施例を示す模式的な斜視図(a)および断面図(b)である。
- 【図5】 図5は、本発明にかかる発光装置の他の実施例を示す模式的な斜 視図である。
- 【図6】 図6は、本発明にかかる発光装置の他の実施例を示す模式的な斜 視図である。
- 【図7】 図7は、本発明にかかる発光装置の他の実施例を示す模式的な斜 視図である。
- 【図8】 図8は、本発明の一実施例における半導体発光素子を示す模式的な平面図である。
- 【図9】 図9は、本発明の一実施例における半導体発光素子を示す模式的な断面図である。
- 【図10】 図10は、本発明にかかる光源の一実施例を示す模式的な斜視 図である。

- 【図11】 図11は、本発明にかかる光源の一実施例を示す模式的な断面 図である。
- 【図12】 図12は、本発明の一実施例における半導体発光素子を示す模式的な正面図である。
- 【図13】 図13は、本発明の一実施例における半導体発光素子を示す模式的な断面図である。
- 【図14】 図14は、本発明の一実施例における半導体発光素子を示す模式的な正面図である。
- 【図15】 図15は、本発明の一実施例における半導体発光素子を示す模式的な正面図である。
- 【図16】 図16は、本発明の一実施例における半導体装置の形成工程を 示す模式的な断面図である。

【符号の説明】

- 1・・・パッケージ
- 1a・・・第一の主面
- 1 b・・・第二の主面
- 1 c・・・凸部
- 2・・・リード電極
- 3・・・封止部材
- 4・・・発光素子
- 5・・・ワイヤ
- 6・・・バンプ
- 7・・・蛍光物質
- 8・・・凹部を形成するパッケージの内壁面
- 9・・・パッケージ側面凹部
- 10・・・接合部材
- 11・・・サブマウント基板
- 12・・・導電性部材
- 13・・・切欠部

特2003-133874

- 14・・・サファイア基板
- 15・・・バッファ層
- 16···n型コンタクト層
- 17・・・活性層
- 18・・・p型クラッド層
- 19・・・p型コンタクト層
- 20・・・拡散電極
- 21・・・p側台座電極
- 22・・・ n 側台座電極
- 23・・・第2の半導体領域に設けられた凸部
- 24・・・リードフレーム
- 25・・・突き出し部材
- 26・・・パッケージ成型材料
- 27・・・凸型
- 28 · · · 凹型
- 29・・・パッケージ成型材料注入方向
- 30・・・パッケージ突き出し方向
- 31・・・導光板
- 32・・・発光装置
- 33a・・・第一の装着面
- 33b・・・第二の装着面
- 34・・・光入射部
- 35・・・光出射面

【書類名】

図面

【図1】

(a)

(b)

【図2】

【図3】

(b)

【図4】

(a)

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【書類名】 要約書

【要約】

【課題】 他部材への装着精度の高い発光装置を提供する。

【解決手段】 発光素子と、該発光素子を収納する開口部を備え前記開口部底面から前記発光素子が載置されるリード電極の端部主面が露出されてなるパッケージ成形体と、を備えた発光装置において、前記開口部の側壁部主面は段差を有し、開口部近傍側から少なくとも第一の主面および第二の主面を有することを特徴とし、第二の主面は、中央に凹凸を有するように構成されることが好ましく、さらに凹凸は、内部が空洞の外周壁を成していることが好ましい。このように構成されることにより、他の部材との位置決め精度および固着力に優れた発光装置を歩留まり良く得ることができる。

【選択図】図1

認定・付加情報

特許出願の番号

特願2003-133874

受付番号

50300784069

書類名

特許願

担当官

第五担当上席

0094

作成日

平成15年 5月16日

<認定情報・付加情報>

【提出日】

平成15年 5月13日

出願人履歴情報

識別番号

[000226057]

1. 変更年月日

1990年 8月18日

[変更理由]

新規登録

住 所

徳島県阿南市上中町岡491番地100

氏 名

日亜化学工業株式会社