Physics 214 Common Formulae

SI Prefixes		
Power	Prefix	Symbol
10 ⁹	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{0}		
10 ⁻³	milli	m
10 ⁻⁶	micro	μ
10-9	nano	n
10 ⁻¹²	pico	p

Physical Data and Conversion Constants		
speed of light	$c = 2.998 \times 10^8 \text{ m/s}$	
Planck constant	$h = 6.626 \times 10^{-34} \text{J} \cdot \text{s}$	
	$= 4.135 \times 10^{-15} \mathrm{eV \cdot s}$	
Planck constant / 2π	$\hbar = 1.054 \times 10^{-34} \mathrm{J} \cdot \mathrm{s}$	
	$= 0.658 \times 10^{-15} \mathrm{eV \cdot s}$	
electron charge	$e = 1.602 \times 10^{-19} C$	
energy conversion	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	
conversion constant	$hc = 1240 \text{ eV} \cdot \text{nm} = 1.986 \times 10^{-25} \text{ J-m}$	
useful combination	$h^2/2m_e = 1.505 \text{ eV nm}^2$	
Bohr radius	$a_o = (4\pi\varepsilon_o) \hbar^2 / m_e e^2 = 0.05292 \text{ nm}$	
Rydberg energy	$hcR_{\infty} = m_e e^4 / 2(4\pi\varepsilon_o)^2 \hbar^2 = 13.606 \text{ eV}$	
Coulomb constant	$\kappa = 1/(4\pi\varepsilon_o) = 8.99 \times 10^9 \text{N} \cdot \text{m}^2 / \text{C}^2$	
Avagadro constant	$N_A = 6.022 \times 10^{23} / \text{mole}$	
electron mass	$m_e = 9.109 \times 10^{-31} \text{ kg} = 0.511 \text{ MeV/c}^2$	
proton mass	$m_p = 1.673 \times 10^{-27} \text{ kg} = 938.3 \text{ MeV/c}^2$	
neutron mass	$m_n = 1.675 \times 10^{-27} \text{ kg} = 939.6 \text{ MeV/c}^2$	
hydrogen atom mass	$m_H = 1.674 \times 10^{-27} \text{ kg}$	
Electron magnetic	$\mu_{\epsilon} = 9.2848 \times 10^{-24} \text{ J/T}$	
moment	$= 5.795 \times 10^{-5} \text{ eV/T}$	
Proton magnetic	$\mu_p = 1.4106 \times 10^{-26} \text{ J/T}$	
moment	$= 8.804 \times 10^{-8} \text{ eV/T}$	

Trigonometric identities		
$\sin^2\theta + \cos^2\theta = 1$		
$\cos\theta + \cos\phi = 2\cos\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right)$		
$\sin \theta + \sin \phi = 2 \sin \left(\frac{\theta + \phi}{2}\right) \cos \left(\frac{\theta - \phi}{2}\right)$		
$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$		
$\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$		
$A_1 \sin(\omega t + \phi_1) + A_2 \sin(\omega t + \phi_2) = A_3 \sin(\omega t + \phi_3)$		
$A^2 + B^2 + 2AB\cos\phi = C^2$ (ϕ here is the <i>external</i> angle)		

Waves, Superposition

$$k \equiv \frac{2\pi}{\lambda}$$
 $\omega \equiv 2\pi f$ $T \equiv \frac{1}{f}$ $v = \lambda f = \frac{\omega}{k}$

General relation for I and A: $I \propto A^2$, $A = A_I + A_2 + ...$ Two sources: $I_{max} = |A_1 + A_2|^2$, $I_{min} = |A_1 - A_2|^2$

Two sources, same I₁: $I = 4I_1 \cos^2(\phi/2)$ where $\phi = 2\pi\delta/\lambda$

Interference: Slits, holes, etc.

Far-field path-length difference: $\delta = r_1 - r_2 \approx d \sin \theta$

Phase difference:
$$\frac{\phi}{2\pi} = \frac{\delta}{\lambda} = \frac{d \sin \theta}{\lambda} \approx \frac{d \theta}{\lambda} \approx \frac{d y}{\lambda}$$
 if θ small

Principal maxima: $d \sin \theta_{\text{max}} = \pm m \lambda$ m = 0, 1, 2, ...

N slit:
$$I_N = I_1 \left\{ \frac{\sin(N\phi/2)}{\sin(\phi/2)} \right\}^2$$
 where $\phi = 2\pi d \sin \theta / \lambda$

Single slit: $\delta_a = a \sin \theta$ $a \sin \theta_{\min} = \pm m \lambda$ with m = 1, 2, 3...

$$\frac{\beta}{2\pi} \equiv \frac{\delta_a}{\lambda} = \frac{a\sin\theta}{\lambda} \approx \frac{a\theta}{\lambda} \approx \frac{a}{\lambda} \frac{y}{\lambda}$$

 $\frac{\beta}{2\pi} = \frac{\delta_a}{\lambda} = \frac{a\sin\theta}{\lambda} \approx \frac{a\theta}{\lambda} \approx \frac{a}{\lambda} \frac{y}{\lambda}$ Single slit: $I_1 = I_0 \left\{ \frac{\sin(\beta/2)}{\beta/2} \right\}^2$ with $\beta = 2\pi a \sin\theta/\lambda$

slit: $\theta_0 \approx \lambda / a$ or hole: $\theta_0 \approx 1.22 \lambda / D \approx \alpha_c$

Approx. grating resolution: $\frac{\Delta \lambda}{\lambda} \ge \frac{1}{Nm}$

Quantum laws, facts....

UNIVERSAL: $p = \hbar k = h/\lambda$ $E = hf = \hbar \omega$

Light: $E = hf = \hbar\omega = hc/\lambda = pc$

Slow particle: $KE = mv^2/2 = p^2/2m = h^2/2m\lambda^2$

Photoelectric effect: $KE_{\text{max}} = eV_{stop} = hf - \Phi$

UNIVERSAL: $\Delta x \, \Delta p_x \ge \hbar$ $\Delta E \, \Delta t \ge \hbar$

$$\psi^*(x)\psi(x) = \left|\psi(x)\right|^2$$

$$P_{ab} = \int_{a}^{b} |\psi(x)|^{2} dx, \quad a \le x \le b$$

(Slow) particle in fixed potential U:

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi(x,t)}{\partial x^2} + U(x)\psi(x) = i\hbar \frac{\partial \psi(x,t)}{\partial t}$$

1 2/5/2013

Physics 214 Common Formulae

Quantum stationary states (energy eigenstates):

$$\Psi(x,t) = \psi(x)e^{-i\omega t} \quad \text{where } E = \hbar\omega$$

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi(x)}{\partial x^2} + U(x)\psi(x) = \hbar\omega \psi(x) = E \psi(x)$$

In 1-D box: $n\lambda = 2L$ where n = 1, 2...

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right) \quad \text{for} \quad 0 \le x \le L$$

$$h^2 \left(n\pi\right)^2 \left(h^2\right) \quad \text{of} \quad 0 \le x \le L$$

$$E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L}\right)^2 = \left(\frac{h^2}{8mL^2}\right) n^2 = E_1 n^2 \quad (*last part*)$$

Box, 3-D:

$$\psi(x, y, z) = \sqrt{\frac{8}{abc}} \sin\left(\frac{n_1\pi}{a}x\right) \sin\left(\frac{n_2\pi}{b}y\right) \sin\left(\frac{n_3\pi}{c}z\right)$$

$$E(n_1, n_2, n_3) = \frac{h^2}{8m} \left(\frac{n_1^2}{a^2} + \frac{n_2^2}{b^2} + \frac{n_3^2}{c^2}\right)$$

Simple Harmonic Oscillator (SHO):

$$E_n = (n + \frac{1}{2})\hbar\omega$$
 where $n = 0, 1, 2...$

$$\omega = \sqrt{\frac{k}{m}}$$

Free slow particle with definite p:

$$\Psi(x,t) = Ae^{i(kx-\omega t)} \text{ with } \hbar\omega = \hbar^2 k^2 / 2m$$

H-like atom

potential
$$U(r) = -\frac{\kappa Z e^2}{r}$$

$$E_n = \frac{-1}{4\pi\varepsilon_o} \frac{(Ze)^2}{2a_o} \frac{1}{n^2} = -\frac{1}{(4\pi\varepsilon_o)^2} \frac{me^4 Z^2}{2\hbar^2 n^2}$$

$$= -13.606 \text{ eV} \frac{Z^2}{n^2}$$

Ground state: $\psi_{1s}(r,\theta,\phi) = \frac{1}{\sqrt{\pi a_o^3}} e^{-r/a_o}$

Radial density for s-state: $P(r) dr = 4\pi r^2 |\psi(r)|^2 dr$

Form of *n*, *l*, *m* eigenstate:

$$\psi_{n\ell m}(r,\theta,\phi) = R_{n\ell}(r) Y_{\ell m}(\theta,\phi)$$

$$Y_{00} = \frac{1}{\sqrt{4\pi}}, \quad Y_{10} = \sqrt{\frac{3}{4\pi}} \cos \theta,$$

 $Y_{1\pm 1} = \mp \sqrt{\frac{3}{8\pi}} \sin \theta e^{\pm i\varphi}$

Tunneling

$$T \approx Ge^{-2KL}$$
 where $G = 16\frac{E}{U_0} \left(1 - \frac{E}{U_0} \right)$

$$K = \sqrt{\frac{2m}{L^2} (U_0 - E)} = 2\pi \sqrt{\frac{2m}{L^2} (U_0 - E)}$$

Angular momentum and magnetism

Orbital: $L_z = m\hbar$ where $m = 0, \pm 1, \pm 2, ... \pm \ell$

$$L^2 = \ell(\ell+1)\hbar^2$$
 where $\ell = 0, 1, 2, ...$

Spin:
$$S_z = m_s \hbar$$
 where $m_s = \pm \frac{1}{2}$

Magnetic energy: $U = -\vec{\mu} \cdot \vec{B}$

Force: $F_z = \mu_z \frac{dB_z}{dz}$ where $\mu_z \approx -\frac{e}{m_e} S_z$

Atomic orbital filling

2 2/5/2013