Lecture 24: Neyman-Pearson and Likelihood ratio tests

Recap: Neyman-Pearson test

Let X_1, \ldots, X_n be a sample from a distribution with probability function f, and parameter θ . To test

$$H_0: \theta = \theta_0 \qquad H_A: \theta = \theta_1,$$

the Neyman-Pearson test rejects H_0 when

$$\frac{L(\theta_1|\mathbf{X})}{L(\theta_0|\mathbf{X})} > k,$$

where k is chosen so that $\beta(\theta_0) = \alpha$.

Warm-up

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Poisson(\lambda)$. We wish to test $H_0: \lambda = \lambda_0$ vs. $H_A: \lambda = \lambda_1$, where $\lambda_1 > \lambda_0$. Find a most powerful test for these hypotheses (that is, determine a rejection region such that the test has a desired type I error rate α).

$$L(\lambda | X) = \int_{C_{-1}}^{C_{-1}} \frac{e^{-\lambda} \lambda^{x_{i}}}{x_{i}!} = \frac{e^{-\lambda} \lambda^{x_{i}}}{|I_{i}|} =$$

Recap: Neyman-Pearson lemma

The Neyman-Pearson test is a *uniformly most power* level α test of $H_0: \theta = \theta_0$ vs. $H_A: \theta = \theta_1$.

Proof: N-P rejects when
$$f(X|\theta)$$
 > K

Let BNP benote power function of NP test. BNP (θ_0) = X

Let B* denote power of another level x test of these hypotheses,

B*(θ_0) \subseteq X ... UTS BNP (θ_1) \geq B*(θ_1)

Let θ_0 benote N-P ejection function: θ_0 p(X) = θ_0 in N-P test rejects

Similarly, let θ_0 * knote rejection function for the other (θ_0 in N-P test test)

BNP (θ_0) = P θ_0 (reject H θ_0) = P θ_0 (θ_0) (θ_0) = θ_0 (θ_0) = P θ

rejects when f(x10,) > Kf(x100) . N-P Wnow: <=> F(x10) - Kf(x100) >0 · BNP(00) = x , B*(00) & x => BNP(00) - B*(00) =0 => $\beta_{NP}(\theta_0) - \beta^*(\theta_0) = \int_{\mathcal{X}} (\theta_{NP}(x) - \theta^*(x)) f(x|\theta_0) dx \geq 0$ S (ONP(x) - 0*(x)) (f(x10)) - Kf(x10)) dx Now lets look at = 0 if tests agree >0 if QNP(x)=/ = | N-P Estrejects? LO if ONP (x)=0 other fails =- (N-P fails)
oner test-eject) (QND(X) - Q*(X))(f(X|Q)) - Nf(X|Q))if tests agree SO: if NP test rejects) x (ONP (x) - O*(x)) (F(x16)) - KF(x16)) ZO > 0 other fails ≥ 0 if NP fails, other test rejects $\chi \left(\otimes_{NP} (x) - \otimes_{N} (x) \right) f(\chi(x))$) x (Onp (x) - O*(x)) F(x(0))
BNP(0) - B*(0) ニフ $= U(B_{NP}(\Theta_0) - B^*(\Theta^0)) \ge 0$

Another question

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Poisson(\lambda)$. We wish to test $H_0: \lambda = \lambda_0$ vs. $H_A: \lambda \neq \lambda_0$.

Likelihood ratio tests

Back to the Poisson example

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Poisson(\lambda)$. We wish to test $H_0: \lambda = \lambda_0$ vs. $H_A: \lambda \neq \lambda_0$.

Asymptotics of the LRT