

Problem R-09J. You are asked to determine which of two possible isomers of a dibromo anhydride is the correct one, and assign the protons . The complete spectrum is shown on the next page.

(a) Assign the protons, draw appropriate coupling trees on the spectrum below, and label each one with a proton assignment (H_A, H_B, etc). It is not necessary to report couplings, although you might wish to measure them to aid in your analysis.

or

30 20 10 0 Hz

- (b) Which isomer ____ (1 or 2) is correct? Explain briefly how you decided which was correct.
- (c) Explain why the proton at δ 2.95 shows such a simple multiplet.

Problem R-09J. You are asked to determine which of two possible isomers of a dibromo anhydride is the correct one, and assign the protons . The complete spectrum is shown on the next page.

(a) Assign the protons, draw appropriate coupling trees on the spectrum below, and label each one with a proton assignment (H_A, H_B, etc). It is not necessary to report couplings, although you might wish to measure them to aid in your analysis.

(b) Which isomer __2_ (1 or 2) is correct? Explain briefly how you decided which was correct.

Isomer 1 has an axis of symmetry, $H_C = H_D$, $H_A = H_F$ and $H_B = H_E$, so spectrum would be much simpler (only 3 chemical shifts, rather than 6)

Can also make arguments based on the individual coupling constants: in isomer 1, H_C should be coupled to H_A and H_D with large couplings (aa), and H_A with a small one (ae), we see only two medium sized couplings. On the other hand, for isomer 2, H_C might be coupled to H_A by only a very small J, since the ee coupling should be near 0 for a flattened ring like this.

(c) Explain why the proton at δ 2.95 shows such a simple multiplet.

