MSDS 422-57 Assignment 4- Prerak, Mehta

Introduction / Summary

This assignment is focues on data collected to determine whether an early diagnosis of Parkinson's disease can be made using machine learning methods (Random Forest Regression and Lasso primarily in this assignment). It is a degenerative movement disorder disease for which no known cause is found. Based on serveral observations made at home on 42 people with early-stage Parkinson's disease during a 6 month trial period using a telemonitoring device, the dataset for this assignment is generated. The goal of the assignment is to predict at least one of the two target variables motor_UPDRS or total_UPDRS; a rating scale used to follow the longitudinal course of Parkinson's disease.

```
In [300]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   import pickle
   import sys
   import os
   from sklearn import preprocessing
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
   from sklearn.metrics import mean_squared_error
```

```
In [301]: #open the pickle file that contains the data
with open('parkTrain.pickle','rb') as inFile:
    parkData=pickle.load(inFile)
```

```
In [302]: #Should be true if the bankData is a pd DataFrame.
    print(isinstance(parkData,pd.DataFrame))
    #information on the shape of the dataset
    print(parkData.shape)
    #Columns in the dataset that provide feature information that will be us
    eful in modeling
    print(parkData.columns)
    #data types of the columns
    print(parkData.dtypes)
print(parkData.isnull().sum())
```

```
True
(4993, 23)
Index(['obsID', 'subjNo', 'age', 'sex', 'test_time', 'motor_UPDRS',
        'total_UPDRS', 'Jitter(%)', 'Jitter(Abs)', 'Jitter:RAP', 'Jitte
r:PPQ5',
        'Jitter:DDP', 'Shimmer', 'Shimmer(dB)', 'Shimmer:APQ3', 'Shimme
r:APQ5',
       'Shimmer:APQ11', 'Shimmer:DDA', 'NHR', 'HNR', 'RPDE', 'DFA', 'PP
E'],
      dtype='object')
obsID
                    int64
subjNo
                    int64
                    int64
age
sex
                    int64
test time
                  float64
motor_UPDRS
                  float64
total UPDRS
                  float64
Jitter(%)
                  float64
Jitter(Abs)
                  float64
Jitter:RAP
                  float64
Jitter:PPQ5
                  float64
Jitter:DDP
                  float64
Shimmer
                  float64
Shimmer(dB)
                  float64
Shimmer: APQ3
                  float64
Shimmer: APQ5
                  float64
Shimmer: APQ11
                  float64
Shimmer:DDA
                  float64
NHR
                  float64
HNR
                  float64
RPDE
                  float64
DFA
                  float64
PPE
                  float64
dtype: object
obsID
                  0
                  0
subjNo
age
                  0
sex
                  0
                  0
test time
motor UPDRS
                  0
total UPDRS
                  0
Jitter(%)
                  0
Jitter(Abs)
                  0
Jitter:RAP
                  0
                  0
Jitter:PPQ5
Jitter:DDP
                  0
Shimmer
                  0
Shimmer(dB)
                  0
Shimmer: APQ3
                  0
Shimmer: APQ5
                  0
Shimmer: APQ11
                  0
Shimmer:DDA
                  0
NHR
                  0
HNR
                  0
RPDE
                  0
                  0
DFA
```

PPE 0

dtype: int64

The above output shows us that 1) the data has no 'funny' datatypes and 2) there are no null values that we need to take care of by imputing or deleting in any of the columns of this dataset.

In [303]: print(parkData.describe())

\	obsID	subjNo	age	sex	test_time
\ count	4993.000000	4993.000000	4993.000000	4993.000000	4993.000000
mean	2930.522532	21.447226	64.829161	0.322251	92.437859
std	1698.025741	12.384291	8.822902	0.467385	53.188345
min	0.000000	1.000000	36.000000	0.000000	-4.262500
25%	1464.000000	10.000000	58.000000	0.000000	46.847000
50%	2927.000000	21.000000	65.000000	0.000000	91.302000
75%	4396.000000	33.000000	72.000000	1.000000	137.830000
max	5874.000000	42.000000	85.000000	1.000000	215.490000
\	motor_UPDRS	total_UPDRS	Jitter(%)	Jitter(Abs)	Jitter:RAP
count	4993.000000	4993.000000	4993.000000	4993.000000	4993.000000
mean	21.253019	28.941679	0.006164	0.000044	0.002992
std	8.121940	10.665892	0.005729	0.000036	0.003187
min	5.037700	7.000000	0.000830	0.000002	0.000330
25%	14.890000	21.362000	0.003580	0.000022	0.001580
50%	20.839000	27.489000	0.004900	0.000034	0.002250
75%	27.594000	36.029000	0.006800	0.000054	0.003280
max	39.511000	54.992000	0.099990	0.000446	0.057540
•••					
	Shimmer(dB)	Shimmer:APQ3	Shimmer:APQ	5 Shimmer:AP	Q11 Shimmer:
DDA \	4993.000000	4993.000000	4993.000000	0 4993.000	000 4993.000
000 mean	0.311203	0.017183	0.020165	5 0.027	514 0.051
550 std	0.231748	0.013370	0.016800	0.020	112 0.040
111 min 840	0.026000	0.001610	0.001940	0.002	490 0.004
25% 010	0.177000	0.009340	0.010850	0.015	750 0.028
50% 910	0.253000	0.013640	0.015860	0.022	730 0.040
75% 520	0.364000	0.020510	0.023620	0.032	720 0.061
max 020	2.107000	0.162670	0.167020	0.275	460 0.488
-	NHR	HNR	RPDE	DFA	PPE
count	4993.000000	4993.000000	4993.000000	4993.000000	4993.000000
mean std	0.032226	21.682367	0.541345 0.100371	0.652921 0.071188	0.219677 0.091156
	0 060700				
min	0.060788	4.314524 1.659000			
min 25%	0.000286	1.659000	0.151020	0.514680	0.021983
min 25% 50%					

max 0.748260 37.875000 0.947920 0.865600 0.731730

[8 rows x 23 columns]

```
In [304]: print(parkData.head())
```

ob ter(%)	sID \	subjNo	age	sex	test	_time	motor_	UPDRS	total_	_UPDRS	Jit
	386	32	36	1	5	2.422	1	1.087		13.087	
	647	41	68	1	3	5.480	3	2.012	•	40.012	
	3537	26	49	0	15	1.930	2	3.461	:	29.102	
	2375	17	66	1	5	55.309	2	7.594	;	33.594	
	930	22	57	1	2	6.772	1	0.529	:	11.941	
	tter	(Abs) J	itter	:RAP		Shimm	er(dB)	Shim	mer:APQ	3 Shim	mer:
APQ5 \ 4386 0643	0.0	00016	0.0	0192	• • •		0.125		0.0051	5	0.0
5647 2370	0.0	00056	0.0	0492	•••		0.425		0.0205	5	0.0
3537 1871	0.0	00051	0.0	0273	•••		0.259		0.0157	0	0.0
2375 0957	0.0	00020	0.0	0266	•••		0.164		0.00862	2	0.0
2930 0777	0.0	00012	0.0	0115	•••		0.164		0.00683	3	0.0
Sh PPE	imme	r:APQ11	Shim	mer:D	DA	NH	R H	NR	RPDE	DF	'A
4386 0.12017		0.00922		0.015	46 0	.01279	8 22.2	23 0	.48404	0.5165	5
5647 0.28993		0.04187		0.061	66 0	.03416	0 17.2	04 0	.59668	0.6998	4
3537 0.22683		0.02340		0.047	09 0	.01840	1 21.4	91 0	.60605	0.7246	7
2375 0.12938		0.01183		0.025	85 0	.00871	1 24.9	20 0	.48785	0.5937	5
2930 0.11653		0.01141		0.020	48 0	.00396	1 27.7	90 0	.28686	0.6574	8

[5 rows x 23 columns]

```
In [305]: X = parkData.iloc[:, [2,3,4,7,8,9,10,11,12,13,14,15,16,17,18,18,20,21,22
]].values
    y_motor = parkData.iloc[:, 5].values
    y_total = parkData.iloc[:,6].values

from sklearn.model_selection import train_test_split
    X_train, X_test, y_train_motor, y_test_motor = train_test_split(X, y_motor, test size = 0.15, random state = 0)
```

Important notes

- The assignment allows us to choose 1 target variable from motor_UPDRS and total_UPDRS. We will work with motor UPDRS as the target variable from here on.
- We will evaluate the random forest regression model in two ways using k-fold cross validation (since that
 provides us the the best idea of how accurate our model is) i.e. 1) with max_features limit and 2) without
 max_features limit. We will use GridSearchCV to attain the hyperparameter max_depth for each of the two
 ways.
- Other method we will use in the assignment is the Lasso method. We will use GridSearchCv to attain the value for hyperparameter alpha that will yield us the best accuracy. We will use K-fold to evaluate this model as well.
- We will not be scaling either of our our models since Random Forest Regression and Lasso models don't require any scaling.
- We will evaluate our RF regression model using R^2, MSE, OOB score (for RF regression), accuracy scoring (Lasso) and response variance on both training and test sets

Random Forest Regression

Above, two different models were trained 1) with max features and 2) without max features. Notice that the max_depth parameter is missing here since we will determine it below (for both models) using GridSearchCV.

```
In [307]: from sklearn.model selection import GridSearchCV
          parameters = [{'max depth': [2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32
          1 } 1
          search = GridSearchCV(estimator = regressor, param_grid = parameters, cv
          = 5)
          search.fit(X_train,y_train_motor)
          parametersmf = [{'max depth':[2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,3
          2]}]
          searchmf = GridSearchCV(estimator = regressormf, param_grid = parameters
          mf, cv = 5)
          searchmf.fit(X_train,y_train_motor)
          best accuracy = search.best score
          best parameters = search.best params
          print('Best Accuracy of RF regression without max features: ', best_accu
          print('Best max depth parameter for RF regression model without max feat
          ure: ', best_parameters)
          best_accuracymf = searchmf.best_score_
          best_parametersmf = searchmf.best_params_
          print('Best Accuracy of RF regression with max features: ', best accurac
          ymf)
          print('Best max depth parameter for RF regression model with max featur
          e: ', best_parametersmf)
```

Best Accuracy of RF regression without max_features: 0.966059384407590 1

Best max_depth parameter for RF regression model without max_feature: {'max_depth': 28}

Best Accuracy of RF regression with max_features: 0.7308733755417113

Best max_depth parameter for RF regression model with max_feature: {'m ax depth': 18}

We will re-train the models using the appropriate hyper parameter value attained from above

```
In [309]: #Using K-Fold Cross Validation to evaluate the Random Forest Regression
           Model without max features limit
          from sklearn.model_selection import KFold
          kf=KFold(n_splits=20,random_state=99,shuffle=True)
          X = parkData.iloc[:, [2,3,4,7,8,9,10,11,12,13,14,15,16,17,18,18,20,21,22]
          ]].to_numpy()
          y motor = parkData.iloc[:, 5].to numpy()
          cvres=[] # Holder list for fold results
          for traindx, testdx in kf.split(X): # loop over folds
              resDict={}
                                                # Dictionary to hold fold results
              XTrain = X[traindx]
              yTrain motor=y motor[traindx]
              XTest = X[testdx]
              yTest_motor=y_motor[testdx]
              regModel=regressor.fit(XTrain,yTrain motor)
              trainPred=regModel.predict(XTrain)
              trainR2=r2 score(yTrain motor,trainPred)
              trainMSE=mean squared error(yTrain motor,trainPred)
              testPred=regModel.predict(XTest)
              testR2=r2_score(yTest_motor,testPred)
              testMSE=mean squared error(yTest motor,testPred)
              ModelScore = regressor.oob score
              df1 = pd.DataFrame(regressor.predict(XTest),columns = ['predict'])
              df2 = pd.DataFrame(yTest motor, columns =['test'])
              RV_test = round(np.power(df2['test'].corr(df1['predict']),2),3)
              df3 = pd.DataFrame(regressor.predict(XTrain),columns = ['predict'])
              df4 = pd.DataFrame(yTrain motor, columns =['train'])
              RV train = round(np.power(df4['train'].corr(df3['predict']),2),3)
              resDict.update({'trainR2':trainR2,
                               'testR2':testR2,
                               'trainMSE':trainMSE,
                               'testMSE':testMSE,
                               'OOB Score': ModelScore,
                               'Response Variance Train': RV train,
                               'Response Variance Test': RV test
                              })
              cvres.append(resDict)
          cvresDF=pd.DataFrame(cvres)[['trainMSE','testMSE','trainR2','testR2','00
          B Score', 'Response Variance Train'
                                        , 'Response Variance Test']]
          print('Result description of Random Forest Regression model without max
          features limit:\n' , cvresDF.describe())
```

7/20/2020 Mehta_Assignment_4

Result description of Random Forest Regression model without max_featur es limit:

	trainMSE	testMSE	trainR2	testR2	OOB_Score	\
count	20.000000	20.000000	20.000000	20.000000	20.000000	
mean	0.234762	1.695369	0.996441	0.974391	0.973695	
std	0.010380	0.731705	0.000155	0.010186	0.001093	
min	0.216796	0.874165	0.996016	0.943498	0.970804	
25%	0.229850	1.236870	0.996369	0.969850	0.973274	
50%	0.234141	1.498599	0.996436	0.977298	0.973458	
75%	0.239678	1.968465	0.996521	0.981044	0.974116	
max	0.262849	3.942558	0.996709	0.987338	0.975628	

	Response_Variance_Train	Response_Variance_Test
count	20.000000	20.000000
mean	0.996950	0.975400
std	0.000224	0.010298
min	0.996000	0.944000
25%	0.997000	0.971000
50%	0.997000	0.978000
75%	0.997000	0.982000
max	0.997000	0.988000

```
In [310]: #Using K-Fold Cross Validation to evaluate the Random Forest Regression
           Model with max features limit
          from sklearn.model_selection import KFold
          kf=KFold(n_splits=20,random_state=99,shuffle=True)
          X = parkData.iloc[:, [2,3,4,7,8,9,10,11,12,13,14,15,16,17,18,18,20,21,22]
          ]].to_numpy()
          y motor = parkData.iloc[:, 5].to numpy()
          cvres=[] # Holder list for fold results
          for traindx, testdx in kf.split(X): # loop over folds
              resDict={}
                                                # Dictionary to hold fold results
              XTrain = X[traindx]
              yTrain motor=y motor[traindx]
              XTest = X[testdx]
              yTest_motor=y_motor[testdx]
              regModelmf=regressormf.fit(XTrain,yTrain motor)
              trainPred=regModelmf.predict(XTrain)
              trainR2=r2 score(yTrain motor,trainPred)
              trainMSE=mean squared error(yTrain motor,trainPred)
              testPred=regModelmf.predict(XTest)
              testR2=r2_score(yTest_motor,testPred)
              testMSE=mean squared error(yTest motor,testPred)
              ModelScore = regressormf.oob score
              df1 = pd.DataFrame(regressormf.predict(XTest),columns = ['predict'])
              df2 = pd.DataFrame(yTest motor, columns =['test'])
              RV test = round(np.power(df2['test'].corr(df1['predict']),2),3)
              df3 = pd.DataFrame(regressormf.predict(XTrain),columns = ['predict'
          ])
              df4 = pd.DataFrame(yTrain motor, columns =['train'])
              RV train = round(np.power(df4['train'].corr(df3['predict']),2),3)
              resDict.update({'trainR2':trainR2,
                               'testR2':testR2,
                               'trainMSE':trainMSE,
                               'testMSE':testMSE,
                               'OOB Score': ModelScore,
                               'Response Variance Train': RV train,
                               'Response Variance_Test':RV_test
              cvres.append(resDict)
          cvresDF=pd.DataFrame(cvres)[['trainMSE','testMSE','trainR2','testR2','00
          B Score', 'Response Variance Train'
                                        , 'Response Variance Test']]
          print('Result description of Random Forest Regression model with max fea
          tures limit:\n' , cvresDF.describe())
```

Result description of Random Forest Regression model with max_features limit:

	trainMSE	testMSE	trainR2	testR2	00B_Score	\
count	20.000000	20.000000	20.000000	20.000000	20.000000	
mean	2.465113	15.518490	0.962622	0.763571	0.760468	
std	0.039920	1.563782	0.000606	0.021696	0.003394	
min	2.389185	12.720774	0.961620	0.730628	0.755131	
25%	2.442349	14.710855	0.962152	0.750149	0.757713	
50%	2.467291	15.340689	0.962624	0.759437	0.759593	
75%	2.496482	16.703956	0.962940	0.778270	0.762659	
max	2.528838	18.294845	0.963740	0.806908	0.767753	

	Response_Variance_Train	Response_Variance_Test
count	20.000000	20.000000
mean	0.980850	0.817750
std	0.000489	0.019889
min	0.980000	0.786000
25%	0.981000	0.811000
50%	0.981000	0.815000
75%	0.981000	0.829500
max	0.982000	0.853000

From the above analysis we can see that we're better off with all sorts of accuracy and error tests if we don't account for the max_features parameter in the random forest regression model. This is a little contradicting to the fact that having max_features limit (less than the number of features used to train the model) will not lead to any overfitting. However from the R^2 and variance test we can conclude that in this case more features means more information the model has to train on and provide a better result.

Lasso Method

```
In [311]: from sklearn.linear_model import Lasso
    from sklearn.preprocessing import StandardScaler, MinMaxScaler
    lasso = Lasso(max_iter=100000)

sc = MinMaxScaler()
    X_trainS = sc.fit_transform(X_train)
    X_testS = sc.transform(X_test)
```

```
In [312]: parametersla = [{'alpha':[0.0001,0.005,0.001,0.01,0.02,0.03,0.04,0.0
5,0.06,0.002,0.003,0.004,0.005,0.006,5]}]
searchla = GridSearchCV(estimator = lasso, param_grid = parametersla, cv
= 5)
searchla.fit(X_trainS,y_train_motor)

best_accuracy = searchla.best_score_
best_parameters = searchla.best_params_
print('Best Accuracy of lasso: ', best_accuracy)
print('Best alpha parameter for lasso model: ', best_parameters)
```

```
Best Accuracy of lasso: 0.141044277438628
Best alpha parameter for lasso model: {'alpha': 0.004}
```

The accuracy seems way too low. Let's retrain the model and evaluate further

Hence we can confirm the the Random Forest Regression model 'regModel' without the usage of max_features parameters is the best way to go to get the highest accuracy and least errors out of both the models we used. Next we will train our best model on the entire data set and see what result we get.

```
In [315]: from sklearn.metrics import mean squared error, r2 score
          trainR2=r2_score(y_motor,y_motor_predict_final)
          trainMSE=mean_squared_error(y_motor,y_motor_predict_final)
          df1 = pd.DataFrame(regModel.predict(X),columns = ['predict'])
          df2 = pd.DataFrame(y motor, columns =['test'])
          full_rf_test_result = round(np.power(df2['test'].corr(df1['predict']),2
          ),3)
          print('trainR2: ', trainR2)
          print('trainMSE: ', trainMSE)
          print('\nFull Random Forest Prop of Entire Set Variance Accounted for: '
          , full_rf_test_result)
          trainR2: 0.9958991819766205
```

trainMSE: 0.27046001121804686

Full Random Forest Prop of Entire Set Variance Accounted for: 0.996

We received very positive results from applying our model to the entire data set. Now we will apply this model to our test pickle file to receive the final output.

```
In [316]: with open('parkTest.pickle','rb') as inFile:
              parkDataTest=pickle.load(inFile)
          X testfinal = parkDataTest.iloc[:, [2,3,4,7,8,9,10,11,12,13,14,15,16,17,
In [317]:
          18,18,20,21,22]].to numpy()
          y pred motor = regModelfinal.predict(X testfinal)
In [318]: | obsID = parkDataTest.iloc[:, 0].values
          ar = np.concatenate((obsID.reshape(len(obsID),1), y pred motor.reshape(l
          en(y pred motor), 1), 1)
          FinalDf = pd.DataFrame(data=ar, columns = ['obsID', 'motor UPDRS'])
          FinalDf.rename(columns = {"0":"obsID","1":"motor UPDRS"})
          FinalDf.astype({'obsID': 'int32', 'motor UPDRS': 'float64'}).dtypes
Out[318]: obsID
                            int32
          motor UPDRS
                          float64
          dtype: object
```

Export to CSV

```
In [319]: FinalDf.to csv('prerakmehta-assign-4-motor UPDRS.csv')
```

Assignment Discussion, Conclusion and recommendations

We received an extremely good accuracy via R^2 for our Random Forest Regression model. The main purposes of this assignment were to prepare a machine learning model to predict the target values in the test set as accurately as possible and avoid data leakage. We achieved these goals by using a Random Forest Regression model and other techniques such as GridSearchCV to find the most optimal hyper parameters in the RF model. We avoided the possibility of data leakage by using k-fold cross validation method and attaining mean of accuracies, MSE, variance, Out of Bag score and Response variance scores for both test and train sets. Afterwards we applied our best model on the entire data set and saw that we received very positive results. We can conclude that this isn't a case of overfitting because we saw the test accuracies and errors being very promising in the k-fold cross validation method. To my surprise the lasso method provided extremely poor results even after standardization. Regardless it would have been really challenging to beat the accuracy of the Random Forest Regression model. It provided an easiness in assigning relative importance to input features and also uses ensemble learning method for regression (and classification). Also it can handle numerous input variables without the need of variable deletion.