

Ministerul Educației și Cercetării

Olimpiada Națională de Fizică

Craiova, 16-21 aprilie 2006 Proba teoretică - barem

Oricare altă variantă corectă de rezolvare se va puncta în mod corespunzător

Subiect	Soluție	Punctaj	
		parțial	total
1.a	- vitezele electronilor care intră prin ochiurile grilei A în momentul când tensiunea dintre grile este nulă, nu se modifică; electronii vor ieși prin ochiurile grilei B cu viteza v ₀	0,50p	3p
	- electronii care au intrat prin ochiurile grilei A când potențialele celor două grile sunt $V_{\scriptscriptstyle A}>0$ și respectiv $V_{\scriptscriptstyle B}<0$, vor realiza o scădere Δv , foarte mică a vitezei când vor ajunge să iasă prin ochiurile grilei B, după care vor continua să se deplaseze uniform cu viteza $v_0-\Delta v$	0,50p	
	- electronii care au intrat prin ochiurile grilei A când potențialele celor două grile sunt $V_A < 0$ și respectiv $V_B > 0$, vor realiza o creștere Δv , foarte mică a vitezei, când vor ajunge să iasă prin ochiurile grilei B, după care vor continua să se deplaseze uniform cu viteza $v_0 + \Delta v$.	0,50p	
	- cele trei grupe de electroni, având vitezele $v_0 - \Delta v$, v_0 și respectiv $v_0 + \Delta v$, se vor putea concentra într-un singur punct	0,50p	
	- principiul fundamental al dinamicii $m\frac{\Delta v}{\Delta t} = qE$; sau teorema de variație a energiei cinetice $\frac{m(v_0 + \Delta v)^2}{2} - \frac{mv_o^2}{2} = qEd$	0,25p	
	$\Delta v = \frac{qu}{mv_0}$ - condiția ca la ieșirea din ochiurile grilei B electronii cu vitezele		
	v ₀ şi respectiv $v_0 + \Delta v$, să ajungă într-un același punct, la distanța L față de grila B , : $v_0 \tau = (v_0 + \Delta v)(\tau - \Delta t)$	0,50p	
	$\tau = \frac{mv_0^2}{q\omega U_0} \; ; \; L = v_0 \; \tau = \frac{mv_0^3}{q\omega U_0}$	0,25p	

1.b	- accelerația imprimată electronului de câmpul electric alternativ		3 p
	dintre plăcile condensatorului $a = \frac{F}{m} = \frac{qU_0}{md} \sin \omega t$	0,25p	
	m mdviteza electronului la momentul de timp t		
	$v(t) = \int_{0}^{t} a(t)dt = \frac{qU_{0}}{m\omega d} - \frac{qU_{0}}{m\omega d}\cos \omega t$	0,25p	
	$v(t) = v_0 - v_0 \cos \omega t = 2v_0 \sin^2 \frac{\omega t}{2}$, unde $v_0 = \frac{qU_0}{m\omega d}$;	0,25p	
	- Viteza electronului are o componentă constantă, v_0 ,		
	(viteză de "drift") și o componentă alternativă, $v_0 \cos \omega t$. Viteza		
	rezultantă, variabilă în timp, este permanent pozitivă;deci sensul mișcării electronului este mereu același și coincide cu cel		
	dobândit în prima semiperioadă.	0,50p	
	- viteza medie a electronului, pe durata unei perioade a tensiunii alternative		
	$\overline{v} = \frac{1}{T} \int_{0}^{T} v(t)dt = \frac{v_0}{T} \int_{0}^{T} (1 - \cos \omega t)dt = v_0$	0,25p	
	- intervalul de timp după care electronul va ajunge pe una dintre plăcile condensatorului :		
	$\Delta t = \frac{m\omega d^2}{2qU_0}.$	0,25p	
	În cazul $u = U_0 \cos \omega t$:		
	- accelerația electronului $a = \frac{qU_0}{md} \cos \omega t;$	0,25p	
	- viteza electronului $v(t) = \frac{qU_0}{md} \int_0^t \cos \omega t dt = v_0 \sin \omega t$.	0,25p	
	- legea de mişcare $y(t) = y_0(1 - \cos \omega t)$ - mişcarea electronului este oscilatorie armonică	0,25p	
	$Y(t) = -y_0 \cos \omega t,$ unde	0,25p	
	$y(t) - y_0 = Y(t);$	0,25p	

1.c	- diagrama fazorială	1p	3 p
	\overline{U}_{L} \overline{U}_{R} \overline{U}_{R} \overline{U}_{R}		
	$U_{ab} = I\sqrt{R^2 + \left(\frac{1}{2\pi vC}\right)^2} \; ;$	0,50p	
	$\cos \varphi = \frac{U_L^2 + U_{ab}^2 - U^2}{2U_L U_{ab}};$	0,50p	
	$U_C = U_{ab} \cos \varphi = \frac{I}{2\pi vC};$	0,25p	
	$C = \frac{I}{2\pi v U_{ab} \cos \varphi};$	0,25p	
		0,25p	
	$U_{R} = U_{ab} \sin \varphi = IR;$ $U_{A} \sin \varphi$		
	$R = \frac{U_{ab} \sin \varphi}{I}.$	0,25p	
Oficiu			1p
Total su		1	10p
2.A.a	Legea refractiei in punctul I $n \sin \alpha = \sin \beta$.	0,25p 0,25p	1,5p
	Relația dintre unghiurile α, β si γ $\beta = 90^{\circ} - (\gamma - \alpha)$,	,-op	
	$\tan \gamma = (d+f)/h$	0,25p	
	$\sin \beta = \frac{h}{R} \frac{\sqrt{R^2 - h^2} + f + d}{\sqrt{(f + d)^2 + h^2}}.$	0,25p	
	$d = R - \sqrt{R^2 - h^2}$	0,25p	

	$f(h,n,R) = R \frac{nR - n\sqrt{R^2 - h^2} + \sqrt{R^2 - n^2 h^2}}{n\sqrt{R^2 - h^2} - \sqrt{R^2 - n^2 h^2}}$	0,25p	
2.A.b	Pentru raza paraxiala : $f(0,n,R) = \frac{R}{n-1}$	0,25p	1p
	Pentru raza marginala: $f(h_{\text{max}}, n, R) = \frac{n}{n^2 - 1} \left[n \sqrt{R^2 - h_{\text{max}}^2} + \sqrt{R^2 - n^2 h_{\text{max}}^2} \right] - R$ In functie de grosimea g a lentilei, in cazul razei marginale	0,25p	
	$: h_{\max}^2 = 2gR - g^2,$	0,25p	
	$f(h_{\max}, n, R) = \frac{n}{n^2 - 1} \left[n(R - g) + \sqrt{R^2 + n^2 g^2 - 2n^2 gR} \right] - R.$	0,25p	
2.A.c	Pentru $\beta = 90^{\circ}$, $\sin \alpha = 1/n$ si corespunzator	0,25p	0,5p
	$h_{\text{lim}} = R \sin \alpha = R / n$. Raza se refracta pentru $h < h_{\text{lim}}$	0,25	
2.A.d	Dreapta IF are ecuatia $y = Ax + B$ unde $B = -Af(h, n, R)$, iar	0,5p	1,5p
	$A = \frac{h}{\sqrt{R^2 - h^2} - R - f(h, n, R)} = -\frac{h(n^2 - 1)}{\sqrt{R^2 - h^2} + n\sqrt{R^2 - n^2h^2}}.$	0,5p	
	Considerand x ca un parametru, din anularea derivatei dy/dh se poate afla valoarea lui h pentru care y este maxim si apoi valoarea maxima a lui y (adica a punctelor de pe caustica, la nivelul fiecarei valori a parametrului x in lungul focalei longitudinale).	0,5p	
2.B	$x = v_0 t \cos \theta_0; y = v_0 t \sin \theta_0 - \frac{gt^2}{2},$	0,50p	3,5p
	distanța origine-sursa este: $ OS = r(t) = \left(x^2 + y^2\right)^{1/2} = t \left[v_0^2 + \left(\frac{gt}{2}\right)^2 - gtv_0 \sin \theta_0\right]^{1/2};$	0,50p	
	Distanța $r(t)$ este maximă cand se anulează viteza radială $v_r = dr/dt$;	0,25p	
	$g^{2}t^{2} - 3gv_{0}t\sin\theta_{0} + 2v_{0}^{2} = 0.$ Solutiile ecuatiei sunt:	0,25p	
	$t_{1,2} = \frac{3v_0}{2g} \left[\sin \theta_0 \pm \sqrt{\sin^2 \theta_0 - 8/9} \right].$	0,25p	

		1	, ,
	In cazul lansării sub unghiul precizat in enunț:		
	$t_1 = t_2 = \frac{3v_0}{2g}\sin\theta_0 = \sqrt{2}\left(\frac{v_0}{g}\right)$	0,25p	
	distanta maxima $r_{\text{max}} = v_0^2 / (g\sqrt{3})$	0,50p	
	Iluminarea in O pe suprafata orizontala $E = \frac{I \cos \alpha_m}{r_{\text{max}}^2}$,	0,25p	
	$I = \Phi/4\pi$ (sursa este izotropa)	0,25p	
	$\cos \alpha_m = y_m / r_{\text{max}} = 1/\sqrt{3}$, deoarece $y_m = v_0^2 / (3g)$	0,25p	
	Rezultat final este $E = \frac{\Phi}{4\pi} \frac{\sqrt{3}g^2}{v_0^4}$	0,25p	
Oficiu			1n
Total su	hiect 2		1p 10p
3.a	71001 2		3p
	$\vec{r}' = \vec{r}'_{//} + \vec{r}'_{\perp}$ unde $\vec{r}'_{//}$ și \vec{r}'_{\perp} sunt componentele lui \vec{r}' , paralelă și respectiv perpendiculară pe direcția mișcării (direcția al cărui versor este \vec{j});	0,25p	
	$ec{r}ec{j}=ec{r}'_{//}ec{j}+ec{r}'_{\perp}ec{j}$	0,25p	
	$\begin{cases} \vec{r} \cdot \vec{j} = r'_{//} = y' \\ (\vec{r} \cdot \vec{j}) \vec{j} = r'_{//} \vec{j} = \vec{r}'_{//} \end{cases}$	0,25p	
	$ \vec{r}'_{\perp} = \vec{r}' - \vec{r}''_{\parallel} = \vec{r}' - (\vec{r}'\vec{j})\vec{j};$	0,25p	
	$\begin{cases} \vec{r}'_{\perp} = (\vec{j} \ \vec{j}) \ \vec{r}' - (\vec{r}' \ \vec{j}) \ \vec{j} \\ \vec{r}'_{\perp} = \vec{j} \times (\vec{r}' \times \vec{j}) \end{cases}$	0,25p	

analog $\vec{r}_{\perp} = \vec{j} \times (\vec{r} \times \vec{j})$	0,25p 0,25p	
$\vec{r}'_{\perp} = \vec{r}_{\perp}$ $(\vec{i} \times (\vec{r} \times \vec{i}) = \vec{i} \times (\vec{r} \times \vec{i})$	0,25p	
$\begin{cases} \vec{r} - (\vec{r} \cdot \vec{j}) \vec{j} = \vec{r} - (\vec{r} \cdot \vec{j}) \vec{j} \end{cases}$		
Relațiile scalare dn grupul ransformărilor Lorentz speciale:		
x'=x	0,25p	
$\begin{cases} \vec{r} \cdot \vec{j} = \frac{\vec{r}\vec{j} - v_0 t}{\sqrt{1 - \frac{v_0^2}{c^2}}} \\ (\vec{r} \cdot \vec{j}) \vec{j} = \frac{(\vec{r}\vec{j})\vec{j} - \vec{v}_0 t}{\sqrt{1 - \frac{v_0^2}{c^2}}} \end{cases}$	0,25p	
Forma vectorială generală a tansformărilor Lorentz		
$\begin{cases} \vec{j} = \frac{\vec{v}_0}{\vec{v}_0} \\ \vec{r}' = \vec{r} - \frac{(\vec{r}\vec{v}_0)\vec{v}_0}{\vec{v}_0^2} \left(1 - \frac{1}{\sqrt{1 - \frac{\vec{v}_0^2}{c^2}}} \right) - \frac{\vec{v}_0 t}{\sqrt{1 - \frac{\vec{v}_0^2}{c^2}}} \end{cases}$	0,25p	
	$\vec{r}'_{\perp} = \vec{r}_{\perp}$ $\begin{cases} \vec{j} \times (\vec{r}' \times \vec{j}) = \vec{j} \times (\vec{r} \times \vec{j}) \\ \vec{r}' - (\vec{r}' \cdot \vec{j}) \vec{j} = \vec{r} - (\vec{r} \cdot \vec{j}) \vec{j} \end{cases}$ Relațiile scalare dn grupul ransformărilor Lorentz speciale: $\begin{cases} x' = x \\ y' = \frac{y - v_0 t}{\sqrt{1 - \frac{v_0^2}{c^2}}} \\ z' = z \end{cases}$ $\begin{cases} \vec{r}' \cdot \vec{j} = \frac{\vec{r} \cdot \vec{j} - v_0 t}{\sqrt{1 - \frac{v_0^2}{c^2}}} \\ (\vec{r}' \cdot \vec{j}) \vec{j} = \frac{(\vec{r} \cdot \vec{j}) \vec{j} - \vec{v}_0 t}{\sqrt{1 - \frac{v_0^2}{c^2}}} \end{cases}$ Forma vectorială generală a tansformărilor Lorentz $\begin{cases} \vec{j} = \frac{\vec{v}_0}{\sqrt{1 - \frac{v_0^2}{c^2}}} \end{cases}$	$\vec{r}_{\perp} = \vec{j} \times (\vec{r} \times \vec{j})$ $\vec{r}_{\perp}' = \vec{r}_{\perp}$ $(\vec{j} \times (\vec{r} \times \vec{j}) = \vec{j} \times (\vec{r} \times \vec{j})$ $(\vec{r}' - (\vec{r}' \cdot \vec{j})) = \vec{r} - (\vec{r} \cdot \vec{j}) \vec{j}$ Relațiile scalare dn grupul ransformărilor Lorentz speciale: $\begin{cases} x' = x \\ y' = \frac{y - v_0 t}{\sqrt{1 - \frac{v_0^2}{c^2}}} \\ z' = z \end{cases}$ $(\vec{r}' \cdot \vec{j}) = \frac{\vec{r} \cdot \vec{j} - v_0 t}{\sqrt{1 - \frac{v_0^2}{c^2}}}$ $(\vec{r}' \cdot \vec{j}) \vec{j} = \frac{(\vec{r} \cdot \vec{j}) \cdot \vec{j} - \vec{v}_0 t}{\sqrt{1 - \frac{v_0^2}{c^2}}}$ Forma vectorială generală a tansformărilor Lorentz $(\vec{j} = \frac{\vec{v}_0}{\sqrt{1 - \frac{v_0^2}{c^2}}})$ 0,25p

		I	
	$\begin{cases} t' = \frac{t - \frac{V_0}{c^2} y}{\sqrt{1 - \frac{V_0^2}{c^2}}} \\ V_0 y = V_0 r_{//} = V_0 (\vec{r} \ \vec{j}) = \vec{r} (V_0 \ \vec{j}) = \vec{r} \vec{V}_0 \\ t' = \frac{t - \frac{\vec{r} \vec{V}_0}{c^2}}{\sqrt{1 - \frac{V_0^2}{c^2}}} \end{cases}$	0,25p	
3.b	Notând:		3p
	$\begin{cases} \frac{1}{\sqrt{1 - \frac{\mathbf{v}_0^2}{c^2}}} = \alpha \\ \vec{r}' = \vec{r} - \frac{(\vec{r}\vec{\mathbf{v}}_0)\vec{\mathbf{v}}_0}{\mathbf{v}_0^2} (1 - \alpha) - \alpha \cdot \vec{\mathbf{v}}_0 \cdot t \\ t' = \alpha \left(t - \frac{\vec{r}\vec{\mathbf{v}}_0}{c^2} \right) \end{cases}$ $\begin{cases} d\vec{r}' = d\vec{r} - \frac{(d\vec{r} \cdot \vec{\mathbf{v}}_0)\vec{\mathbf{v}}_0}{c^2} (1 - \alpha) - \alpha \cdot \vec{\mathbf{v}}_0 \cdot dt \\ dt' = \alpha \left(dt - \frac{d\vec{r} \cdot \vec{\mathbf{v}}_0}{c^2} \right) = \alpha \left(1 - \frac{\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}_0}{c^2} \right) dt \end{cases}$ unde $\vec{\mathbf{v}} = \frac{d\vec{r}}{dt}$ este viteza punctului material în raport cu sistemul	0,25p	
	inerțial fix		
	$\begin{cases} \frac{d\vec{r}'}{dt'} = \vec{v}' \\ \frac{\vec{v} + \frac{\alpha - 1}{v_0^2} (\vec{v}\vec{v}_0)\vec{v}_0 - \alpha \vec{v}_0}{\vec{v}' = \frac{\vec{v}\vec{v}_0}{\alpha \left(1 - \frac{\vec{v}\vec{v}_0}{c^2}\right)} \end{cases}$	0,25p	
	reprezentând viteza aceluiași punct material în raport cu sistemul inerțial mobil;		
	Pentru un punct material M, care se deplasează așa cum indică figura de ai jos		

	(n, -n, 200 0)	0,5p	
	$\begin{cases} v_x = v \cdot \cos \theta \\ v_y = v \cdot \sin \theta \end{cases}$		
	$\begin{cases} v_y = v \cdot \sin \theta \\ v_y = v \cdot \cos \theta \end{cases}$		
	$\begin{cases} v_y = v \cdot \sin \theta \\ v'_{x'} = v' \cdot \cos \theta' \\ v'_{y'} = v' \cdot \sin \theta' \end{cases}$		
	\[\(\nu_y \cdot - \nu \) \(\sin \nu \)		
	V_{v_0} V_{v_1} V_{v_2} V_{v_3} V_{v_4} V_{v_5} V_{v_6} V_{v_7} V_{v_8}	0,5p	
	$\begin{cases} v'\cos\theta' = \frac{v\cos\theta}{1 - \frac{v_0v\sin\theta}{c^2}} \sqrt{1 - \frac{v_0^2}{c^2}} \\ v'\cdot\sin\theta' = \frac{v\sin\theta - v_0}{1 - \frac{v_0v\sin\theta}{c^2}} \end{cases};$	1p	
	$\tan \theta' = \frac{v \cdot \sin \theta - v_0}{v \cdot \cos \theta \sqrt{1 - \frac{v_0^2}{c^2}}}$	0,25p	
	În particular, dacă punctul material M este un foton, pentru care $v = c$, rezultă:		
	$\tan \theta' = \frac{c \sin \theta - v_0}{c \cos \theta \sqrt{1 - \frac{v_0^2}{c^2}}}.$	0,25p	
3.c	Mobilul M are, în raport cu observatorul O' din S', la momentul t' , accelerația instantanee \vec{a}' , cu componentele:		3 p
	$\begin{cases} a'_{x'} = \frac{dv'_{x'}}{dt'} ; a'_{y'} = \frac{dv'_{y'}}{dt'} ; a'_{z'} = \frac{dv'_{z'}}{dt'} \\ \vec{a}' = a'_{x'} \cdot \vec{i}' + a'_{y'} \cdot \vec{j}' + a'_{z'} \cdot \vec{k}' \end{cases}$	0,25p	
	atunci, în raport cu observatorul O din S, la momentul t , accelerația instantanee \vec{a} are componentele:		

		T	ı
$\begin{cases} a_x = \frac{\mathrm{d} \mathbf{v}_x}{\mathrm{d} t} \; ; \; a_y \\ \vec{a} = a_x \cdot \vec{i} + a_y \end{cases}$	$a_{y} = \frac{dv_{y}}{dt}; a_{z} = \frac{dv_{z}}{dt}$ $a_{z} \cdot \vec{j} + a_{z} \cdot \vec{k}$	0,25p	
cele două sist transformările	dintre componenetele vitezelor mobilului raportate la eme de referință, precum și din relațiile din e Lorentz care corelează coordonatele temporale din eme de referință, rezultă:		
$\begin{cases} \mathbf{v'}_{x'} = \frac{\mathbf{v}_x}{1 - \frac{\mathbf{v}_0 \mathbf{v}}{c^2}} \end{cases}$	$\frac{1}{v_0^2} \sqrt{1 - \frac{v_0^2}{c^2}}$ $\frac{1}{v_0^2}$;	0,25p	
$d\mathbf{v'}_{x'} = \frac{\sqrt{1-v_{x'}}}{\left(1-\frac{v_{x'}}{v_{x'}}\right)}$	$\frac{\frac{v_0^2}{c^2}}{\left(\frac{v_0^2}{c^2}\right)^2} \left[\left(1 - \frac{v_0 v_y}{c^2}\right) dv_x + \frac{v_0 v_x}{c^2} dv_y \right];$		
$\begin{cases} \mathbf{v'}_{y'} = \frac{\mathbf{v}_y - \mathbf{v}_0}{1 - \frac{\mathbf{v}_0 \mathbf{v}_1}{c^2}} \\ \mathbf{d}\mathbf{v'}_{y'} = \frac{1 - \frac{\mathbf{v}_0}{1 - \frac{\mathbf{v}_0}{c^2}}}{1 - \frac{\mathbf{v}_0}{1 - \frac{\mathbf{v}_0}{c^2}}} \end{cases}$		0,25p	
	$\frac{\overline{v_0^2}}{c^2} \frac{\overline{v_0^2}}{c^2} dv_y$		
$v'_{z'} = \frac{v_z}{1 - \frac{v_0 v_0}{c^2}}$		0,25p	
$dv'_{z'} = \frac{\sqrt{1-\frac{v_0}{a}}}{\left(1-\frac{v_0}{a}\right)}$	$\frac{\overline{\left(\frac{\mathbf{v}_{0}^{2}}{c^{2}}\right)^{2}}}{\left(\frac{\mathbf{v}_{0}\mathbf{v}_{y}}{c^{2}}\right)^{2}}\left[\left(1-\frac{\mathbf{v}_{0}\mathbf{v}_{y}}{c^{2}}\right)d\mathbf{v}_{z}+\frac{\mathbf{v}_{0}\mathbf{v}_{z}}{c^{2}}d\mathbf{v}_{y}\right]$		
$t' = \frac{t - \frac{\mathbf{v}_0}{c^2} y}{\sqrt{1 - \frac{\mathbf{v}_0^2}{c^2}}} ;$	$dt' = \frac{dt - \frac{V_0}{c^2} dy}{\sqrt{1 - \frac{V_0^2}{c^2}}}$	0,50p	

		, , , , , , , , , , , , , , , , , , , ,
$\begin{cases} a'_{x'} = \frac{dv'_{x'}}{dt'} \\ a'_{x'} = \frac{1 - \frac{v_0^2}{c^2}}{\left(1 - \frac{v_0 v_y}{c^2}\right)^2} \left(a_x + \frac{\frac{v_0 v_x}{c^2} a_y}{1 - \frac{v_0 v_y}{c^2}}\right); \end{cases}$	0,25p	
$\begin{cases} a'_{y'} = \frac{dv'_{y'}}{dt'} \\ a'_{y'} = \frac{\left(1 - \frac{v_0^2}{c^2}\right)^{3/2}}{\left(1 - \frac{v_0 v_y}{c^2}\right)^3} a_y \end{cases}$	0,50p	
$\begin{cases} a'_{z'} = \frac{dv'_{z'}}{dt'} \\ a'_{z'} = \frac{1 - \frac{v_0^2}{c^2}}{\left(1 - \frac{v_0 v_y}{c^2}\right)^2} \left(a_z + \frac{\frac{v_0 v_z}{c^2} a_y}{1 - \frac{v_0 v_y}{c^2}}\right) \end{cases}$	0,25p	
toate aceste expresii evidențiind că în relațiile dintre coponentele accelerațiilor raportate la cele două sisteme inerțiale sunt implicate și componentele vitezelor.		
Concluzie: spre deosebire de teoria relativității clasice (TRC), unde accelerația unui mobil este aceeași în raport cu orice SRI (fiind deci invariantă la transformările Galilei), în TRR accelerația mobilului nu este invariantă la transformările Lorentz.	0 25p	
Oficiu		1p
Total subject 3		10p
TOTAL GENERAL		30p

Subiect propus de:

prof.dr. Florea ULIU- Facultatea de Fizică - Universitatea din Craiova prof.dr. Mihail SANDU- Facultatea de Științe - Universitatea Sibiu prof. Delia DAVIDESCU – inspector - Serviciul Național de Evaluare și Examinare -București