# Survey on Sparse Matrix-Vector Multiplication

r13943052 黃秉璿 陳靖雯

#### Contents

- Introduction of Sparse Matrix-Vector Multiplication (SpMV)
- Formats for SpMV
- Structure of Streaming Data Engine for SpMV
- Performance Model
- Algorithms
- Environment Setup and Experiment Results
- HiSparse: High-Performance Sparse Linear Algebra on HBM-Equipped FPGAs

#### Introduction of SpMV

#### What SpMV is

- Computes  $y = A \cdot x$ , where A is sparse (  $\ll$  n<sup>2</sup> non-zeros )
- Memory-bound: arithmetic intensity is typically ≤ 1 FLOP / 12 B
- Core of graph analytics, iterative solvers, recommendation engines

#### Why it is hard to accelerate

- Irregular memory access non-zeros arrive with random column indices → cache/TLB misses on CPUs/GPUs
- Bandwidth limited moving the values & indices dominates run time; extra FLOPs don't help if DDR is the bottleneck
- Load imbalance row lengths vary widely; SIMD lanes idle on short rows

#### Formats for SpMV

- Various type of formats
  - o CSR (Compressed Sparse Row)
  - COO (Coordinate list)
  - ELLPACK
  - BCSR (Block CSR)



- Choosing a format
  - CPU / FPGA streaming → CSR / BCSR (row-major access, dataflow friendly)
  - GPU kernels → ELL, HYB, JDS (warp-coalesced, uniform row length)
  - Stencil / banded PDE → DIA (few diagonals, minimal index storage)
  - Dynamic insertion → COO (simple append—later convert to CSR/ELL)
- Rule of thumb: balance indexing load vs. padding waste.
  - High hardware parallelism benefits from regular row length (ELL), while small FPGAs prefer minimal index traffic (CSR/DIA)

#### Structure of Streaming Data Engine for SpMV

```
void spvm kernel(
    DATA TYPE
               *values,
    u32
               *cols.
    u32
               *rows.
    DATA TYPE
               *x local,
    DATA TYPE
                row size.
    u32
    u32
                col size,
    u32
                data size
#pragma HLS DATAFLOW
    // Declare local streams/FIFOs
    hls::stream<u32>
                           rows fifo("rows fifo");
    hls::stream<DATA_TYPE> values_fifo("values fifo");
                           cols fifo("cols fifo");
    hls::stream<u32>
    hls::stream<DATA TYPE> results fifo("results fifo"):
    // Optionally set a custom depth to avoid deadlock warnings:
    #pragma HLS STREAM variable=rows fifo
                                             depth=64
    #pragma HLS STREAM variable=values fifo depth=64
    #pragma HLS STREAM variable=cols fifo
                                             depth=64
    #pragma HLS STREAM variable=results fifo depth=64
    // (1) Read from memory into streams
    read_data(values, cols, rows,
              values fifo.
              cols fifo.
              rows fifo.
              row size,
              data size):
    // (2) Do the actual spmv multiply-accumulate
    compute(values fifo, cols fifo, rows fifo,
            results fifo.
            x local.
            row size.
            data_size);
```

```
Pl for (i = 0; i < row size; i++)
       rows fifo.write(row length[i])
                    P2 for (i = 0; i < cols_size; i++)
                            cols fifo.write(col index[i])
                                   P3 for (i = 0; i < data size; i++)
                                         values_fifo.write(value[i])
                           cols_fifo
                                                      values fifo
      rows_fifo =
              1 for (r = 0; r < data size; r++) {
                    if (col left == 0) {
                         col left=rows fifo.read()
                         sum=0:
                    value = values fifo.read()
                    col = cols fifo.read();
                    int k=h(col);
                    term = value*x local[k]
                    sum += term
            11
                    col left--:
            12
                    if (col left == 0)
                         results fifo << sum;
             13
                               results_fifo
                                                                  Output stage
                   P5 for (i = 0; i < row_size; i++)
                          Y[i]=results_fifo.read()
```

#### Structure of Streaming Data Engine for SpMV

```
Function to read from global memory (only one
static void read data(
    DATA TYPE *values.
    u32
               *cols.
    u32
               *rows,
    hls::stream<DATA TYPE> &values fifo,
    hls::stream<u32>
                            &cols fifo.
                            &rows fifo,
    hls::stream<u32>
    u32 row size,
    u32 data size
    // Read rows
    for (u32 i = 0; i < row_size; i++) {</pre>
    #pragma HLS PIPELINE II=1
        rows fifo << rows[i];
      Read values and cols
    for (u32 i = 0; i < data size; i++) {</pre>
    #pragma HLS PIPELINE II=1
        values fifo << values[i];</pre>
        cols fifo << cols[i];</pre>
```

```
.
// Function that does the SPMV multiply-accumulate
static void compute(
    hls::stream<DATA TYPE> &values fifo.
   hls::stream<u32>
                           &cols fifo,
    hls::stream<u32>
                           &rows fifo.
   hls::stream<DATA TYPE> &results fifo,
   DATA TYPE *x local,
   u32 row size.
   u32 data size
    u32 col left = 0;
   DATA TYPE sum = 0:
    // For each nonzero element
    for (u32 r = 0; r < data_size; r++) {</pre>
    #pragma HLS PIPELINE II=1
        if (col left == 0) {
            // read how many columns in the next row
            col left = rows fifo.read();
            sum = 0;
        DATA TYPE value = values fifo.read();
                 col = cols fifo.read():
        u32
        sum += value * x local[col];
        col left--;
        if (col left == 0) {
            // end of this row => push sum out
            results fifo << sum;
```

#### Structure of Streaming Data Engine for SpMV

```
int spmv accel(
               DATA TYPE
                               values[DATA LENGTH],
                                        cols[DATA LENGTH].
               u32
                                       rows[ROWS],
               u32
                                                                        Function to write results back to global memory (only one process w
               DATA TYPE
                                        x[COLS],
                                        v[ROWS].
               DATA TYPE
                                                                     static void write data(
               u32
                                        row size,
                                                                         hls::stream<DATA TYPE> &results fifo,
               u32
                                        col_size,
                                                                         DATA TYPE *y,
               u32
                                         data size
                                                                         u32 row size
       ) [
                                                                         for (u32 i = 0; i < row_size; i++) {</pre>
                              x local[MAX COL SIZE];
        DATA TYPE
                                                                         #pragma HLS PIPELINE II=1
                                                                             y[i] = results_fifo.read();
       for (u32 i = 0; i < col size; i++) {</pre>
#pragma HLS PIPELINE
               x_{local[i]} = *(x+i);
        spvm kernel(values, cols, rows, x local, y, row size, col size, data size);
        return 0;
```

#### Performance Model & input matrix generation

- T = time required by algorithm + platform overhead
- $t^{alg} = (m + nnz) / f$
- $t^{plat} = (II 1) nnz / f$
- T = (m + II \* nnz) / f

$$T = t^{\text{alg}} + t^{\text{plat}} = \left(t_{\text{ideal}}^{\text{alg}} + t_{\text{over}}^{\text{alg}}\right) + \left(t_{\text{lib}}^{\text{plat}} + t_{\text{hard}}^{\text{plat}}\right).$$



(c) Pipelined streaming computation with II > I

```
%%MatrixMarket mat
% A tiny 5x5 spars
5 5 10
1 1 1.5
1 3 2.3
2 2 3.7
2 4 1.2
3 1 0.8
3 3 4.5
4 4 5.6
4 5 1.9
5 2 0.7
5 5 3.2
```

#### Algorithm 1: Direct CSR SpMV

- Use software code as hls code
- The inner loop bounds are variables

```
void SpMV_Ref(int n, float *value, int *col_index, int *
      row_index, float *x, float *y) {
  int rowStart = 0, rowEnd = n;
  for (int i = rowStart; i < rowEnd; ++i) {
    float y0 = 0.0;
    for (int j=row_index[i]; j<row_index[i+1]; j++) {
      int k = col_index[j];
      y0 += value[i] * x[k];
    y[i] = y0;
```

#### Algorithm 1: Naïve Stream Computing

- Problems for running csim
  - 1. Dataflow unavailable due to the potential deadlock
  - 2. SDS derepcated
- Problems for running cosim
  - 1. Segmentation Fault (buffer overflow)
- Solutions:
  - modulize the functions into load, compute and write
  - o use cstdlib instead of sds lib
  - When it comes to segmentation fault, situation becomes a bit tricky

#### Algorithm 2: Naïve Stream Computing

- data in rows\_fifo need to be preprocessed to MCSR if input matrix is in CSR format
- Read after write hazard in sum and col\_left -> II != 1
- Bug in the code: pure 0 row will cause error

```
4 clock cycles

term Sum add Store
Sum Load Sum Load Store

II=4

TI=4

A clock cycles RAW dependency

RAW dependency

add Store
Sum add Store
```

```
Function that does the SPMV multiply-accumulate
static void compute(
    hls::stream<DATA TYPE> &values fifo,
                            &cols fifo.
    hls::stream<u32>
                            &rows fifo.
    hls::stream<u32>
    hls::stream<DATA TYPE> &results fifo,
    DATA TYPE *x local.
    u32 row size,
    u32 data size
    u32 col left = 0:
    DATA TYPE sum = 0;
    // For each nonzero element
    for (u32 r = 0; r < data size; r++) {</pre>
    #pragma HLS PIPELINE II=1
        if (col left == 0) {
            // read how many columns in the next row
            col left = rows fifo.read();
            sum = 0:
        DATA TYPE value = values fifo.read();
                  col = cols fifo.read();
        sum += value * x local\lceil col \rceil:
        col left--:
        if (col left == 0) {
            // end of this row => push sum out
            results fifo << sum;
```

#### Algorithm 3: Fast Stream Computing

- Fast streaming : uroll the loop by II
   (need to pad each row to be a multiple of II)
- Process II terms in one iteration ~ II = 1
   (Cons: II times of MAC circuit)

```
4 clock cycles

term | Load | Store | Sum | Load | Store | Sum |

(a) Naïve implementation

term[0] term[1] term[2] term[3] | add all terms | Sum | Sum | Sum |

II=4 | term[0] term[1] term[2] term[3] | add all terms | Sum | Sum
```

```
for (r=0; r<data_size; r+=II_{com}) { //pipelined
     if (col_left == 0) {
       col left=rows fifo.read()
       sum=0:
     for (int i = 0; i < II_{com}; i++) {//unrolled
       value = values fifo.read();
       col = col fifo.read();
       int k = h(col);
       y[i] = y0;
       term[i] = value * x[k];
     DATA_TYPE sum_tmp=0;
     for (int i = 0; i < II_{com}; i++) {//unrolled
       sum_tmp += term[i];
     sum += sum tmp;
     col left-=II_{com};
     if (col left == 0) {
       results_fifo << sum;
21
```

# Algorithm 3: Fast Stream Computing

- What if uroll factor (UR) > II ?
  - The bottleneck will become fifo since only one element can be read/write in one cycle.
  - Using stream<vector> can solve the above issue, but large UR still cause timing violation or increas II. In conclusion, speeding up computation by increasing UR is not scalable

```
for (r=0; r<data_size; r+=II_{com}) { //pipelined
     if (col_left == 0) {
       col left=rows fifo.read()
       sum=0:
     for (int i = 0; i < II_{com}; i++) {//unrolled
       value = values fifo.read();
       col = col fifo.read();
       int k = h(col);
       y[i] = y0;
       term[i] = value * x[k];
11
12
     DATA_TYPE sum_tmp=0;
     for (int i = 0; i < II_{com}; i++) {//unrolled
       sum_tmp += term[i];
     sum += sum\_tmp;
     col_left-=IIcom;
     if (col left == 0) {
       results_fifo << sum;
21
```

#### Reduced-Port Stream Computing

- Technique involved: combine the row and column into one array
- Cons: Time complexity = O(nnz + m) if data is processed on chip

```
while (processed < PAD TOTAL) {</pre>
#pragma HLS PIPELINE II=1
        if (row fifo.empty() && col left == 0)
                                                                   continue:
        if (col fifo.size() < II || val fifo.size() < II)</pre>
                                                                   continue:
        if (col left == 0) {
            col left = row fifo.read();
                      = 0;
READ II:
        for (int i = 0; i < II; ++i) {</pre>
#pragma HLS UNROLL
             DATA TYPE v = val fifo.read();
                       c = col fifo.read();
             term[i] = v * x local[c];
        DATA TYPE sum tmp = 0;
        for (int i = 0; i < II; ++i) {</pre>
#pragma HLS UNROLL
             sum tmp += term[i];
                  += sum tmp;
        col left -= II;
        processed += II:
        if (col left == 0) res fifo << sum;</pre>
```



Fig. 7: Two-port streaming CSR

# Multiport Stream Computing

- Suppose FPGA has P memory ports, each having B bits and value & indices have g and h bits
- The rows to be process at the same time p <= P \* B / (g + h)</li>

# Algorithm 4: Load Balancing

- eup : non-zero elements after padding
- Ideal partition : equally loaded to P computing unit
- Greedy partition: loaded rows to P computing units with same eup as equal as possible

#### Algorithm 1: Load balancing algorithm

```
Data: no_part: number of partition
   Data: eup: number of total eup
   Data: R = \langle r_0, r_1, ... r_{N-1} \rangle:
   Result: < P_0, P_1, P_{p-1} >:
1 ideal_part_size = eup/no_part;
P_0 = r_0
i = 0;
4 for i \leftarrow 1 to N-1 do
      if |P_i| + |r_i| < ideal\_part\_size then
          P_i = P_i + r_i
6
       else
           if j + 1 < no\_part then
               i + +;
           end
10
           P_i = P_i + r_i
11
       end
13 end
```

```
(note: The interface of Case 2,3,4 are changed to hls::stream , MAX_SZ=20000)
```

Two Dataset:

- 1. Sparse Test Dataset (97.5% sparsity in 256 x 256 matrix, nnz = 1638)
- 2. Denser Test case (70% sparsity in 256 x 256 matrix, nnz = 19661)

```
T = 10ns
```

II = 4 in case 2

| Case          | 1                | 2                  | 3 (II=4)          | 3.1 (II=8)        | 4 (II=4, P=2)                   |
|---------------|------------------|--------------------|-------------------|-------------------|---------------------------------|
| Configuration | Initial<br>(CSR) | Naive<br>Streaming | Fast<br>Streaming | Fast<br>Streaming | Load Balancing + Fast Streaming |
| BRAM          | 8                | 10                 | 10                | 14                | 74                              |
| Latency 1     | 15445            | 8359               | 2297              | 2552              | 1277                            |
| Latency 2     | 136532(X)        | 98574              | 20582             | 21112             | 10490                           |
| DSP48E        | 5                | 5                  | 7                 | 7                 | 14                              |
| FF            | 3353             | 1202               | 3628              | 3830              | 7056                            |
| LUT           | 4462             | 1878               | 4140              | 4791              | 7967                            |

- Case 1 co-sim mismatched at last row in larger dataset
- Array as his function parameter
  - Hard to meet dataflow requirement : need to bind each port to different memory port
  - Use ap\_fifo as interface

```
Compiling apatb_spmv_optl.cpp
Compiling tb.cpp_pre.cpp.tb.cpp
Compiling spmv_balance_opt4.cpp_pre.cpp.tb.cpp
Compiling spmv_csr_optl.cpp_pre.cpp.tb.cpp
Compiling apatb_spmv_optl_ir.ll
Generating cosim.tv.exe
INFO: [COSIM 212-302] Starting C TB testing ...
[mismatch] row 255 gold=1356.13 hw=0
x FAIL - 1 mismatches.
ERROR: [COSIM 212-359] Aborting co-simulation: C TERROR: [COSIM 212-320] C TB testing failed, stop generation file
ERROR: [COSIM 212-4] *** C/RTL co-simulation file
ERROR: [COSIM 212-4] *** C/RTL co-simulation finis
```

# Hardware Emulation Result for simple SpMV

| iming Information (MHz)<br>compute Unit Kernel Name Module Name                                                                             |                                  |            | Freque  | ncy  | Estim                                                | ated Fr | equency      |                |                 |           | targe per cumo, mestuan partitumo, mestuan partitumo mentuan tertuan partitumo. Lest puer cumo l'esta puer como chapagnético per 1935-1986-1976-1976 (and 1936-1986) (m. 1936-1976) (m. 1937-1976) (m. 19 |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------|---------|------|------------------------------------------------------|---------|--------------|----------------|-----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| :pmv_accel_1 spmv_accel :pmv_accel_1 spmv_accel :pmv_accel_1 spmv_accel :pmv_accel_1 spmv_accel :pmv_accel_1 spmv_accel :atency Information | spmv_accel_Pipeline_compute_loop | 300.300293 |         |      | 551.572021<br>265.111328<br>411.353363<br>265.111328 |         |              |                |                 |           | Processed for streen 2: row 2,5 steel 55, volume 3,5 steel 54 Processed for streen 1: row 3,5 steel 54, volume 3,5 steel 54 Processed for streen 4: row 4,5 steel 55, volume 4,5 steel 54 Col., steel 550, corpact, positions 5,1 steel 55, volume 5,4 steel 54 Found Faction Nate: All 100 Faction Nate: All 100 Faction Sport, ship but Acid bin Faction Sport, ship S |  |  |
| Compute Unit Kernel Name                                                                                                                    | Module Name                      | Start      | Interva | l Be | est (c                                               | ycles)  | Avg (cycles) | Worst (cycles) | Best (absolute) | Avg (abso |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| :e) Worst (absolute)                                                                                                                        |                                  |            |         |      | ,                                                    |         |              |                |                 |           | server socket name is /tmp/chingwen/device0_0_118165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                             |                                  |            |         |      |                                                      |         |              |                |                 |           | _ , INFO: [HH-PM 01] Hardware emulation runs simulation underneath. Using a large data set will result in la<br>. The flow uses approximate models for Clobal memories and interconnect and hence the performance data gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| pmv_accel_1 spmv_accel<br>3.417 us                                                                                                          |                                  |            | 1026    |      |                                                      |         | 1026         | 1026           | 3.417 us        | 3.417 us  | configuring dataflow node with ert pollting<br>scheduler config ert(1), dataflow(1), slots(16), cubw(0), cuisr(0), cohe(0), cus(1)<br>Launding SBM/ kernel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| pmv_accel_1 spmv_accel<br>undef                                                                                                             | spmv_accel_Pipeline_compute_loop | undef      |         | ur   | ndef                                                 |         | undef        | undef          | undef           | undef     | === 2-WWY PAPALLEL SPWN PERFORMANCE ===<br>Metrix:/deta/large_metrix.mtx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| pmv_accel_1 spmv_accel<br>3.420 us                                                                                                          | spmv_accel_Pipeline_wb_loop      |            |         | 16   | 1027<br>undef                                        |         | 1027         | 1027           | 3.420 us        | 3.420 us  | Obversions: 590x500 , Non-zeros: 2500<br>Execution time: 10001 ns<br>Performance: 4.99551e-87 GFLOPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| pmv_accel_1 spmv_accel<br>undef                                                                                                             | spmv_accel                       |            |         | ur   |                                                      |         | undef        | undef          | undef           | undef     | Memory Bandwidth: 2.39916-66 GB/s<br>Result werification: PMSSED<br>Maximum error: 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| rea Information                                                                                                                             |                                  |            |         |      |                                                      |         |              |                |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Compute Unit Kernel Name                                                                                                                    | Module Name                      | FF         | LUT     | DSP  | BRAM                                                 | URAM    |              |                |                 |           | SpW/ result (first 10 elements or all if fewer): $y[\theta] = 1.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| pmv_accel_1 spmv_accel                                                                                                                      | spmv_accel_Pipeline_init_loop    | 13         | 57      | 0    | 0                                                    | 0       |              |                |                 |           | y[1] = 1.8<br>y[2] = 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                             | spmv_accel_ripeline_compute_loop |            | 4359    | 0    | 0                                                    | 0       |              |                |                 |           | 102 = 2.7<br>103 = 2.7<br>103 = 2.7<br>103 = 2<br>103 = 2.3<br>103 = 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| pmv_accel_1 spmv_accel                                                                                                                      |                                  | 567        | 195     | 0    | Ö                                                    | ō       |              |                |                 |           | y[5] = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| pmv_accel_1 spmv_accel                                                                                                                      |                                  | 30716      | 50478   | 0    | 16                                                   | 0       |              |                |                 |           | y[0] = 1.3<br>y[7] = 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                             |                                  |            |         |      |                                                      |         |              |                | 48 1            |           | ý[8] = 2.1<br>★ y[9] = 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

- Configurations:
- Challenges:
- Results:

| Numbers of cycles | Cycle time | Resource utilization |  |  |  |
|-------------------|------------|----------------------|--|--|--|
|                   |            |                      |  |  |  |
|                   |            |                      |  |  |  |
|                   |            |                      |  |  |  |
|                   |            |                      |  |  |  |
|                   |            |                      |  |  |  |

# HiSparse: High-Performance Sparse Linear Algebra on HBM-Equipped FPGAs

- Challenges desired to solve
  - Timing closure on a multi-die FPGA
  - Irregularity in the compute pattern of SpMV causes bank conflicts and carried data dependencie
  - Multi-cycle for floating-point number in addition stage complicates the case of RAW hazard

#### Proposed solutions

- Split kernel + relay unit
- load-store forwarding mechanism
- Row interleaving + stall unit

#### HiSparse: Shared Vector Buffer with Shuffle Unit

#### HiSparse: Pipelined PE with Load-Store Forwarding

- In-flight write queue (IFWQ)
- Dependence resolution logic



(a) Using registers.



**(b)** Using load-store forwarding — Red arrows indicate the RAW dependencies. Blue arrows indicate the data forwarding to resolve dependencies.

#### HiSparse: Pipelined PE with Load-Store Forwarding

- Stage 1: Get address from the playload
- Stage 2: Check the RAW hazard
- Stage 3: Update the IFWQ
- Usable scenario: when number of cycle of the addition logic is equal to one

```
1 while (!exit) {
2 #pragma HLS pipeline
3 #pragma HLS dependence variable=out_buffer inter RAW false
       // fetch input and get bank address
      pld = in.read();
      addr = get_addr(pld.row_idx);
      // multiplication and read
      update = pld.mat_value * pld.vec_value;
      mem_value = out_buffer[addr];
      // dependence resolution logic
      fwd_value = 0;
      has RAW = false:
      for (int i = 0; i < IFWQ_DEPTH; i++) {
   pragma HLS unroll
          if (addr == IFWQ[i].addr && IFWQ[i].valid)
              has_RAW = true;
              fwd_value = IFWQ[i].data;
      base = has_RAW ? fwd_value : mem_value;
      // addition and write
      new_value = base + update:
      out_buffer[addr] = new_value;
      // update IFWQ
      // IFWQ[0] stores the latest in-fligh
      for (i = IFWO_DEPTH - 1; i > 0; i--) {
  #pragma HLS unroll
          IFWQ[i] = IFWQ[i - 1];
      IFWO[0].addr = addr:
      IFWO[0].data = new_value;
      IFWQ[0].valid = true;
```

#### HiSparse: Floating-Point Implementation

- Inter-iteration carried dependencies
- Naive way: duplicate the output buffer to multiple partial buffer
- Suggested way: Row interleaving



**Figure 10: PE with row interleaving** — Blue and red arrows indicate the dependencies resolved by row interleaving and stalling, respectively. "Addr" indicates the output buffer bank address.

#### HiSparse: Timing Closure on Multi-Die FPGAS

- Concepts of die and SLR (Super logic regions)
- Split kernel vs monolithic kernel
- Relay Unit
- create\_pblock <k0>; resize\_pblock ... -add\_slrs {SLR0}



Figure 1: Comparison between Xilinx Alveo U250 and U280.

```
#include <hls stream.h>
#include <ap int.h>
#include "common.h"
extern "C" {
 void k2k relav(
     hls::stream<VEC AXIS T> &in.
     hls::stream<VEC AXIS T> &out
) {
     #pragma HLS interface ap ctrl none port=return
     #pragma HLS interface axis register both port=in
     #pragma HLS interface axis register both port=out
#ifndef __SYNTHESIS__
     bool exit = false:
     while (!exit) {
         VEC_AXIS_T pkt = in.read();
         out.write(pkt):
         exit = (pkt.user == EOS):
#else
     while (1) {
        #pragma HLS pipeline II=1
        VEC_AXIS_T pkt = in.read();
         out.write(pkt);
 #endif
   // kernel
```

# Reports for Hardware emulation and Synthesis

| DSP<br>Expression<br>FIFO         |                   | -              | - <br>0 <br>108          | - <br> 44<br> 12528    | -               |                                        | +-              | +        | +              | +                    | +-   |
|-----------------------------------|-------------------|----------------|--------------------------|------------------------|-----------------|----------------------------------------|-----------------|----------|----------------|----------------------|------|
| Instance<br>Memory<br>Multiplexer | 0<br>  - <br>  -  | 210<br>- <br>- | 200763 <br> -<br> <br> - | 366578<br> -<br>  63   | 192<br>-<br>-   | * Loop:<br>N/A                         |                 |          |                |                      |      |
| Register                          | - <br>-           | -              | 13                       | -<br>::                | -               |                                        |                 |          |                |                      |      |
| Total<br>                         | 0 <br>++          | 210<br>+       | 200884                   | 379213<br>+            | 192             | ====================================== | es              | ======   | =======        | =======              | ==== |
| Available SLR                     | 1344              | 3008           | 869120                   | 434560                 |                 | ====================================== | =======         | ======   | =======        | =======              | ==== |
| Utilization SLR (%)               |                   | 6              | 23                       | 87                     |                 | +                                      |                 |          |                |                      |      |
| Available                         | +<br>  4032       |                |                          |                        |                 | Name<br>+                              | BRAM_18K <br>++ | DSP<br>+ | FF             | LUT                  | URA  |
| Utilization (%)                   | 0                 | 2              |                          |                        |                 | DSP<br> Expression<br> FIFO            |                 | -        | - <br>0 <br>72 | - <br>  36<br>  8352 |      |
| + Detail:                         |                   |                |                          |                        |                 | Instance<br> Memorv                    | j 0j            | 140      | 134600         | 244675               | 128  |
| reports/spmv_sk2/hls_r            | eports/spmv       | sk2_cs         |                          | 77,                    | _               | Multiplexer                            | -               |          |                | 45                   |      |
| Name                              | ++<br>  BRAM_18K  | DSP            | FF                       | LUT                    | URAM            | Register<br>+                          | - <br>++        | -<br>+   | 11             | -<br>+               |      |
| DSP                               |                   |                | i                        |                        |                 | Total                                  | 0               | 140      | 134683         | 253108               | 128  |
| Expression                        |                   |                | 0                        | 44                     |                 | Available SLR                          | 1344            |          | 869120         | 434560               |      |
| FIFO<br>Instance<br>Memory        | - <br>  0 <br>  - | 210<br>-       | 108 <br> 200763<br> -    | 12528<br> 366578<br> - | - <br>192 <br>- | + <br> Utilization SLR (%)<br>+        | 0               | 4        | 15             | 58                   | 40   |
| Multiplexer                       | j -j              | -              | - j<br>13 j              | 63  <br>-              | - [             | Available                              | 4032            | 9024     | 2607360        |                      | 960  |
| Register                          | - <br>++          | -              | +                        |                        |                 | Utilization (%)                        | 0               |          | 5              | 19                   | 13   |
| Total                             | 0 <br>++          | 210<br>+       | 200884                   | 379213<br>+            | 192             | +                                      | ++              | +        |                | +                    |      |
| Available SLR                     | 1344              |                | 869120                   | 434560                 |                 | + Detail:<br>* Instance:               |                 |          |                |                      |      |
| Utilization SLR (%)               | 0                 | 6              | 23                       | 87                     | 60              | +                                      | +               |          | +              |                      |      |
| Available                         | 4032              | 9024           | 2607360                  |                        | 960             | +<br>  Instance<br>LUT   URAM          |                 | Modu     | le             | BRAM_18K             | DSP  |
|                                   | l 01              | 2              | 7                        |                        | +               | LOT   UKAM                             |                 |          |                |                      |      |