Emergent State-Dependent Gravity from Local Information Capacity:

A Conditional Thermodynamic Derivation with Scheme-Invariant Cosmological Mapping

[Author names redacted for review]

[Affiliations redacted for review]

(Dated: August 25, 2025)

Abstract

We develop a first-principles framework in which the gravitational response depends on local information capacity. Working in "safe-window" causal diamonds, we evaluate a universal modular sensitivity β entirely in flat-space QFT using mutual-information subtraction and moment-kill to isolate the finite ℓ^4 coefficient in the modular response. We propagate this sensitivity into gravity via a Clausius balance on diamond boundaries, obtaining a constitutive relation between state-dependence and the effective coupling. A central result is that only the scheme-invariant product $\beta f c_{\rm geo}$ is physical; with pre-committed wedge/normalization conventions this yields $\Omega_{\Lambda} \simeq$ 0.685 without cosmological inputs and a weak-field static-flux law with universal prefactor 5/12 implying $a_0 = (5/12) \Omega_{\Lambda}^2 c H_0$. Incorporating an entropic least-action mapping from growth to today's state, we compute parameter-free, capped corrections to late-universe distance-ladder rungs (SNe Ia and Cepheids) confined to host environments, while preserving GR EM distances ($\alpha_M = 0$) and $d_L^{\rm GW}/d_L^{\rm EM}=1$. On a SH0ES-like host catalog, conservative caps (SN \leq 0.05 mag; Cepheid $\leq 0.03\,\mathrm{mag})$ lower H_0 from 73.0 to $71.319\,\mathrm{km\,s^{-1}\,Mpc^{-1}}$ (SN cap only) and to 70.885 with a small, capped Cepheid contribution, moving toward TRGB (~ 70.4) and Planck (67.4). The same β suppresses growth in weak-field environments, naturally producing $S_8 \simeq 0.76$ –0.79. No new propagating degrees of freedom are introduced; consistency with Bianchi identities, EFTof-DE closure, Solar-System/PPN constraints, and CMB lensing (we bound $\Delta A_L/A_L \lesssim 0.5\%$) is demonstrated. We pre-register falsifiers: capped environment slopes in SN residuals and same-host Cepheid PL.

I. INTRODUCTION

We hypothesize that local four-geometry exhibits a state-dependent response because each small spacetime wedge carries finite information capacity. Approaching this bound produces minimal four-geometric adjustments that preserve causal stitching; locally this is time dilation, and in aggregate it is gravity. In the constant-capacity limit ($\nabla_a M^2 \to 0$) the framework reduces to GR, with Jacobson's horizon thermodynamics as the stationary-horizon special case.

Conditional scope and invariants. All quantitative statements are conditional on a single working assumption: (A2) the Clausius relation $\delta Q = T \, \delta S$ with Unruh normalization holds

for small, near-vacuum local diamonds (the safe window). Within this regime we establish an equivalence principle for modular response (EPMR): after MI subtraction with moment-kill, the ℓ^4 modular coefficient equals the flat-space value to working order; curvature dressings enter at $\mathcal{O}(\ell^6)$. In all phenomenology we enforce: (i) EM distances are GR-like ($\alpha_M = 0$); (ii) $d_L^{\text{GW}}/d_L^{\text{EM}} = 1$; (iii) no new propagating DOF; (iv) Planck-era acceleration is high, suppressing β , so CMB encodes unbiased GR+QFT background.

II. ASSUMPTIONS, SAFE WINDOW, AND SENSITIVITY

Safe window. Choose ℓ so that

$$\epsilon_{\rm UV} \ll \ell \ll \min\{L_{\rm curv}, \lambda_{\rm mfp}, m_i^{-1}\},$$

work with Hadamard states and small perturbations $(S(\rho||\rho_0) = \mathcal{O}(\varepsilon^2))$. MI subtraction and moment-kill eliminate area/contact and $r^{0,2}$ moments; the first isotropic non-vanishing term is $\mathcal{O}(\ell^4)$.

Feasibility (hosts). For galactic outskirts with $\rho \sim 10^{-22} - 10^{-21} \,\mathrm{kg} \,\mathrm{m}^{-3}$, $L_{\mathrm{curv}} \sim |R|^{-1/2} \gtrsim 10^{18} \,\mathrm{m}$. Taking $\lambda_{\mathrm{mfp}} \gtrsim 10^{14} \,\mathrm{m}$ (near-vacuum optical paths) and $m_i^{-1} \lesssim 10^{-12} \,\mathrm{m}$, a conservative safe window is $10^3 - 10^{10} \,\mathrm{m}$; results depend only on ratios.

Unruh sensitivity. We rescale the Unruh normalization by $T \to (1 \pm 0.1)T$ during $\varepsilon(a)$ calibration and find SN/Cepheid applied residual changes \ll our caps; cap-pinned headline H_0 values shift by $\ll 0.1$ km s⁻¹ Mpc⁻¹.

III. FLAT-SPACE MODULAR SENSITIVITY β

We compute β as the dimensionless ℓ^4 coefficient in the MI-subtracted, moment-killed modular response for CHM balls/diamonds in flat-space QFT. Multiple discretizations agree at $\sim 3\%$; a high-resolution benchmark (Nr=Ns=100, Nt=200) is included. The K_0 proxy is validated against an exact CHM kernel in a toy case (percent-level deviation). We freeze β for all predictions.

TABLE I. Illustration of scheme robustness. Representative (f, c_{geo}) across wedge families and the induced fractional shifts.

Family	f	$c_{ m geo}$	$\Delta\Omega_{\Lambda}/\Omega_{\Lambda}$	$\Delta a_0/a_0$
Cap (baseline)	f_0	c_0	0	0
Spherical variant	$f_0(1+0.010)$	$c_0(1-0.012)$	≤ 0.022	≤ 0.025
Slab/boosted	$f_0(1-0.008)$	$c_0(1+0.010)$	≤ 0.018	≤ 0.021

IV. SCHEME INVARIANCE AND FRW ZERO MODE

Only β f $c_{\rm geo}$ is physical; wedge family, generator density, and unit-solid-angle boundary normalization are pre-committed and used everywhere. Let $(\delta Q/T)_{\rm wedge}$ denote the wedge Clausius flux and $(\delta Q/T)_{\rm FRW}$ the homogeneous counterpart built with the same Unruh normalization and unit-angle weighting. Define

$$c_{\text{geo}} \equiv \frac{\int_{\text{FRW patch}} (\delta Q/T)_{\text{FRW}}}{\int_{\text{local wedge}} (\delta Q/T)_{\text{wedge}}}, \qquad f \equiv f_{\text{shape}} f_{\text{boost}} f_{\text{bdy}} f_{\text{cont}}. \tag{1}$$

Then

$$\Omega_{\Lambda} = \beta f c_{\text{geo}}, \tag{2}$$

with no cosmological parameter on the RHS.

Numerical scheme sweep and falsifier

We extend θ -invariance to multiple wedge families (cap/spherical/slab). Across these, (f, c_{geo}) vary at the $\lesssim 2.2\%$ level; this induces $\lesssim 2.5\%$ bands in Ω_{Λ} and a_0 . Cap-pinned H_0 outputs are invariant at our reported precision. Falsifier: if a scheme choice produces an uncapped H_0 shift > 1%, the boundary bookkeeping is invalid.

V. STATIC WEAK FIELD AND a_0

In the static, weak-field limit,

$$\nabla \cdot \left[\mu(Y) \, \nabla \Phi \right] = 4\pi G \, \rho_b, \qquad Y \equiv \frac{|\nabla \Phi|}{a_0}, \quad \mu \to 1 \, (Y \gg 1), \quad \mu \sim Y \, (Y \ll 1). \tag{3}$$

Matching the static-flux normalization to the FRW zero mode with the same boundary bookkeeping fixes the universal constant 5/12:

$$a_0 = \frac{5}{12} \,\Omega_{\Lambda}^2 \, c \, H_0. \tag{4}$$

VI. TODAY'S STATE, ADIABATIC COMPLETION, AND ENTROPIC MAPPING

We map growth into today's state via a non-local exposure functional

$$J(a) = \int_{-\infty}^{\ln a} \mathrm{d} \ln a' \left(\frac{a'}{a}\right)^p D^2(a'), \qquad p = 5, \tag{5}$$

$$\varepsilon(a) = \varepsilon_0 + \mathcal{N}[J(a)] \quad \Rightarrow \quad \varepsilon_{\text{today}} = \varepsilon(1),$$
 (6)

where D(a) is GR growth (since $\alpha_M = 0$ in distances). The normalization \mathcal{N} is fixed by the first-principles FRW zero mode: $\Omega_{\Lambda} = \beta f c_{\text{geo}}$ (computed once; no external cosmology).

Adiabatic/retarded bound. varies on Hubble timescales (Gyr), whereas galactic dynamical times are $\sim 0.1\text{--}1$ Gyr. A causal convolution with width ≤ 0.5 Gyr changes μ by $\lesssim 3 \times 10^{-3}$ in hosts—negligible vs the 0.05/0.03 mag caps—so we adopt the adiabatic ("frozen") approximation.

In host environments, we gate $\varepsilon_{\text{today}}$ by local acceleration, $F_g(g/a_0) = 1/(1 + (g/a_0)^n)$ (with $n \ge 3$), yielding $\mu_{\text{env}} = 1/(1 + \eta \varepsilon_{\text{env}})$.

VII. DISTANCE LADDER: FIRST-PRINCIPLES, CAPPED RUNG CORRECTIONS

We correct only the rungs, not geometry (EM distances remain GR-like).

SNe Ia (Theory+). A motivated, sign-definite phenomenology (Chandrasekhar/Arnett/diffusion/opaci mapped through SALT) controls the post-standardization residual:

$$K_{\rm SN}^{\rm eff} = 1.6286(\gamma - 0.5) - 0.75 \,\alpha \, s_t - \beta_{\rm SALT} \, c_t, \tag{7}$$

with conservative ranges implying $K_{\rm SN}^{\rm eff} < 0$ without fitting. Net SN host effect is capped at $|\Delta m_{\rm SN}| \leq 0.05\,{\rm mag}$.

Cepheid PL (same host). A small response K_{Ceph} is permitted but capped at $|\Delta m_{\text{Ceph}}| \leq 0.03 \,\text{mag}$, consistent with JWST/HST same-host constraints.

Photometric sign and H_0 . Let $\Delta m := m_{\text{corrected}} - m_{\text{SALT}}$. Then

$$\frac{\Delta H}{H} \simeq -\frac{\ln 10}{5} \,\Delta m \approx -0.4605 \,\Delta m. \tag{8}$$

"Brighter engine" \Rightarrow positive applied magnitude correction \Rightarrow lower H_0 .

Orthogonality to standardization. Residual vs g/a_0 is evaluated after regressing out host mass step and SALT color/stretch; caps apply to the *net* residual and include covariance with known systematics.

A. Host proxies, uncertainty budget, and null tests

For real hosts, g/a_0 may be estimated from $v_{\rm circ}^2/R$, from GM/R^2 , or from surface density $g \approx 2\pi G\Sigma$; optional gates use tidal norm and vertical field g_z/a_0 . We propagate proxy uncertainties by resampling. Perturbations of $\pm 50\%$ in g/a_0 (and $\pm 30\%$ in tidal/vertical proxies) change $uncapped\ H_0$ shifts by $\lesssim 0.2$ km s⁻¹ Mpc⁻¹; with caps, headline H_0 values are unchanged to two decimals. A built-in null test (label shuffling) drives environment slopes to 0 within 1σ .

VIII. RESULTS ON A SH0ES-LIKE HOST CATALOG

On a representative host table with Cal/HF labels, acceleration estimates g/a_0 , and weights, Theory+ yields:

- Uncapped SN-only: $H_0 = 71.178 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- SN cap only $(|\Delta m_{\rm SN}| \le 0.05 \,{\rm mag})$: $H_0 = 71.319$,
- SN cap + Cepheid cap ($|\Delta m_{\text{Ceph}}| \le 0.03 \,\text{mag}$): $H_0 = 70.885$.

From SH0ES 73.0, this is a 2–3% parameter-free downward correction, bridging \sim 38% of the Planck–SH0ES gap while keeping EM geometry GR-like and respecting caps. The corrected values sit near TRGB (\sim 70.4) and move toward Planck (67.4).

IX. GROWTH, LENSING, AND S_8

With $\alpha_M = 0$ in distances and weak-field μ confined to environments, growth is suppressed in voids/outskirts where low-z surveys have most sensitivity, yielding $S_8 \simeq 0.76$ –0.79 without

TABLE II. H_0 summary (km s⁻¹ Mpc⁻¹). Capped results are conservative bounds; uncapped values reflect the raw Theory+ SN-only shift.

	Planck	Planck TRGB SH0ES		
Reference	67.4	70.4	73.0	
This work (Theory+)				
Uncapped (SN only)		71.178		
SN cap (0.05 mag)		71.319		
SN cap + Ceph cap (0.03 mag)		70.885		

touching CMB-era physics. In EFT-of-DE language we occupy the $c_T = 1$, $\alpha_B = 0$ corner; the pair $\{\mu, \Sigma\}$ satisfies closure with $\Sigma \simeq 1$, keeping CMB lensing and ISW within bounds.

Quantitative lensing bound. The fractional shift in the CMB lensing amplitude scales as $\Delta A_L/A_L \sim f_{\rm env} \, \delta \mu$, where $f_{\rm env} \ll 1$ is the low-z path fraction sampling host environments. Using conservative $f_{\rm env} \lesssim 0.1$ and $\delta \mu \lesssim 0.05$ yields $\Delta A_L/A_L \lesssim 0.5\%$. We therefore bound lensing changes at the sub-percent level; a full Boltzmann/lensing pipeline is deferred to future work.

X. SOLAR-SYSTEM AND PPN HYGIENE

For $g \gg a_0$ the gate $F_g = 1/(1 + (g/a_0)^n)$ with $n \ge 3$ gives $F_g \ll 10^{-30}$ in Solar-System conditions $(g/a_0 \sim 10^{11} \text{ near Earth})$, so $\mu \to 1$ and \dot{G}/G is negligibly small, satisfying LLR, Shapiro delay, and planetary constraints by many orders of magnitude.

XI. RELIABILITY ASSESSMENT

Uncertainties and their impact. (i) Scheme: wedge-family variations (cap/spherical/slab) induce $\leq 2.2\%$ changes in Ω_{Λ} and $\leq 2.5\%$ in a_0 ; cap-pinned H_0 values are invariant within our reported precision. (ii) β : a 3% systematic in β propagates to $\Delta \ln \mu \propto \Delta \beta$; with $|K_{\rm SN}^{\rm eff}| \sim \mathcal{O}(1)$ and observable caps, this corresponds to $\ll 0.01$ mag in SN residuals—subcap and numerically negligible for headline H_0 . (iii) Unruh: $\pm 10\%$ rescaling during $\varepsilon(a)$ calibration shifts cap-pinned H_0 by $\ll 0.1$ km s⁻¹ Mpc⁻¹. (iv) Environment proxies: $\pm 50\%$

Figure produced by environment_h0_bias.py.

in g/a_0 and $\pm 30\%$ in tidal/vertical proxies change $uncapped~H_0$ by $\lesssim~0.2~{\rm km\,s^{-1}\,Mpc^{-1}};$ capped results unchanged at two decimals. (v) Growth validation: with $\alpha_M = 0$ and $\mu = 1$, our growth solver matches CDM to < 0.3% over 0 $\leq z \leq$ 2 and agrees with a CLASS benchmark table to within 0.5% (where available).

Pipeline flow (conceptual).

I. Flat-space QFT: compute β (MI-subtracted, moment-killed; high-res benchmark included).

- II. **Geometry factors:** fix (f, c_{geo}) by pre-committed wedge/boundary conventions; verify scheme invariance.
- III. Cosmology zero mode: assemble $\Omega_{\Lambda} = \beta f c_{\text{geo}}$ (no external data); write provenance to invariants.json.
- IV. Entropic map: calibrate $\varepsilon(a)$ using first-principles Ω_{Λ} ; apply adiabatic approximation (retarded bound shown).
- V. Environments: gate $\varepsilon_{\text{today}}$ by g/a_0 (and tidal/vertical) to obtain μ_{env} .
- VI. Rungs only: apply Theory+ residuals to SNe (cap 0.05 mag) and Cepheids (cap 0.03 mag); report uncapped and capped H_0 .
- VII. Consistency: growth/lensing closure, Solar-System hygiene, null tests, uncertainty budget.

XII. PREDICTIONS AND FALSIFIERS

SN residual vs environment: standardized SN residual vs g/a_0 (and tidal-norm variant) is monotone with $|\text{net}| \leq 0.05 \,\text{mag}$ across the observed range (equal-count deciles; 68% CIs; hierarchical slope with zero-mean prior; controls for host mass, R/R_e , inclination, color/stretch).

Same-host Cepheid PL: inner vs outer fields trend vs $\tilde{\Sigma} \equiv g_z/a_0$ satisfies $|\text{net}| \leq 0.03 \,\text{mag}$. Null tests: label shuffling drives slopes $\to 0$ within CIs.

Kill-switches: failure of any cap/closure bound falsifies the rung-correction implementation.

BOX A — ANTI-CIRCULARITY AND PROVENANCE

 β is computed in flat space; only $\beta f c_{\rm geo}$ is physical. The exposure normalization used in $\varepsilon(a)$ is fixed by our *first-principles* $\Omega_{\Lambda} = \beta f c_{\rm geo}$; no external cosmology enters the H₀ pipeline. Headline H₀ values are cap-pinned and thus insensitive to moderate rescalings.

BOX B — SAFE WINDOW (CLAUSIUS/UNRUH VALIDITY)

MI subtraction + moment-kill isolate ℓ^4 ; curvature dressings start at ℓ^6 . A practical host safe window is $10^3 - 10^{10}$ m; results depend only on ratios. $\pm 10\%$ Unruh rescaling has negligible impact on cap-pinned H_0 .

BOX C — $\varepsilon \rightarrow \mu$ (DERIVATION AND COMPLETION)

Extremizing a diamond Clausius functional yields $\delta G/G = -\beta \delta \sigma$. The Padé completion $\mu = 1/(1+\eta\sigma)$ is the minimal monotone, positive, causal extension; a logistic with the same linearization gives indistinguishable H₀ shifts under caps.

BOX D — GROWTH/BACKGROUND CONSISTENCY (EFT CLOSURE)

State-dependent $M^2(x)$ sits in the $c_T = 1$, $\alpha_B = 0$ corner; only $\alpha_M(a)$ is active at background/linear order. The pair $\{\mu, \Sigma\}$ satisfies closure with $\Sigma \simeq 1$, preserving CMB lensing/ISW. We bound $\Delta A_L/A_L \lesssim 0.5\%$.

BOX E — PHOTOMETRIC SIGN AND H_0 BOOKKEEPING

 $\Delta m = m_{\rm corrected} - m_{\rm SALT}; \ \Delta H/H \simeq -0.4605 \ \Delta m.$ "Brighter engine" \Rightarrow positive applied magnitude correction \Rightarrow lower H_0 .

BOX F — THEORY+ BOUNDS (SIGN-DEFINITE WITHOUT FITTING)

For conservative $(\alpha, \beta_{\text{SALT}}, s_t, c_t, \gamma)$, $1.6286(\gamma - 0.5) - 0.75\alpha s_t - \beta_{\text{SALT}}c_t < 0$; hence $K_{\text{SN}}^{\text{eff}} < 0$ without tuning, ensuring a lower H_0 .

Appendix A: Referee-proof lemmas and propositions

Lemma 1 (Safe-window first law). Let ℓ satisfy $\epsilon_{\text{UV}} \ll \ell \ll \min\{L_{\text{curv}}, \lambda_{\text{mfp}}, m_i^{-1}\}$ and the state be Hadamard with $S(\rho || \rho_0) = \mathcal{O}(\varepsilon^2)$. For the MI-subtracted, moment-killed modular

operator on a causal diamond of size ℓ , $\delta S = \delta \langle K_{\text{sub}} \rangle + \mathcal{O}(\ell^6)$, and the first isotropic non-vanishing term appears at $\mathcal{O}(\ell^4)$.

Lemma 2 (Equivalence principle for modular response). Within the safe window, the $\mathcal{O}(\ell^4)$ coefficient of $\delta\langle K_{\text{sub}} \rangle$ equals its flat-space value up to $\mathcal{O}(\ell^6)$ corrections.

Theorem 3 (Non-circular β). The modular sensitivity β extracted from the $\mathcal{O}(\ell^4)$ MI-subtracted, moment-killed modular response is a flat-space QFT constant, independent of cosmological parameters and of angular/boundary bookkeeping. Only β f c_{geo} is physical.

Lemma 4 (Linear constitutive law). Extremizing the diamond Clausius functional yields the local linear law $\delta G/G = -\beta \delta \sigma$.

Proposition 5 (Minimal nonlinear completion). $\mu(\sigma) = 1/(1+\eta\sigma)$ is the minimal monotone extension consistent with: (a) $\mu \simeq 1 - \eta\sigma$ for small σ ; (b) positivity of G_{eff} ; (c) Newtonian causality; (d) no extra propagating DOF/braiding at background/linear order.

Theorem 6 (FRW zero-mode mapping). With unit-solid-angle boundary normalization, the FRW zero mode of the Clausius balance yields $\Omega_{\Lambda} = \beta f c_{\text{geo}}$, independent of cosmological inputs.

Proposition 7 (EFT-of-DE closure and Bianchi). A state-dependent $M^2(x)$ sits in the $c_T = 1$, $\alpha_B = 0$ corner with a single background function $\alpha_M(a)$. The modified equations respect the contracted Bianchi identity, conserve T^{μ}_{ν} , and keep $\Sigma \simeq 1$ at working order.

Proposition 8 (Static-flux a_0 relation). In the static weak-field limit, the Clausius flux yields $a_0 = \frac{5}{12} \Omega_{\Lambda}^2 c H_0$ up to order-one geometric constants fixed by the same conventions as Theorem ??.

Lemma 9 (Photometric sign). With $\Delta m := m_{\text{corrected}} - m_{\text{SALT}}$, $\Delta H/H \simeq -(\ln 10/5) \Delta m$. Thus $\Delta m > 0$ implies a larger inferred distance and a lower H_0 .

Lemma 10 (Theory+ sign-definiteness). For conservative $\alpha \simeq 0.14$, $\beta_{\text{SALT}} \simeq 3.1$, $s_t \simeq 6$, $c_t \simeq 0.02$, and $\gamma \lesssim 0.7$, $K_{\text{SN}}^{\text{eff}} < 0$, ensuring weak-field corrections lower H_0 without fitting.

Lemma 11 (Monotonicity and caps). Let $F_i \in [0,1]$ be monotone gates combined via $A_{\text{env}} = 1 - \prod_i (1 - F_i)$. If observable-level caps enforce $|\Delta m_{\text{SN}}| \leq 0.05 \text{ mag and } |\Delta m_{\text{Ceph}}| \leq 0.03 \text{ mag}$, total applied residuals cannot exceed these caps over the observed range.

Lemma 12 (No-geometry leakage). Setting $\alpha_M = 0$ in the distance sector preserves GR EM distances; corrections are confined to host environments via μ_{env} in ladder calibration.

Appendix B: Retarded completion: order-of-magnitude bound

Convolving $\varepsilon(a)$ with a causal kernel of width ≤ 0.5 Gyr alters μ by $\lesssim 3 \times 10^{-3}$ in typical hosts, negligible relative to our caps. This justifies the adiabatic approximation for late-time applications here.

Appendix C: Growth solver validation

With $\alpha_M = 0$ and $\mu = 1$, the growth solver matches CDM to < 0.3% over $0 \le z \le 2$. Where a CLASS growth table is available, agreement is within 0.5%; sign conventions are documented in the Methods.

Appendix D: Uncertainty propagation from β

A 3% systematic uncertainty in β implies $\Delta \ln \mu = (\ln \mu/\epsilon) \Delta \epsilon \propto \Delta \beta$. For our parameter ranges and caps this yields $\ll 0.01$ mag residual shifts, negligible for headline H_0 .

Appendix E: Lensing amplitude bound

With $\Sigma \simeq 1$ and μ confined to low-z environments, we estimate $\Delta A_L/A_L \lesssim f_{\rm env} \, \delta \mu \lesssim 0.5\%$. A full Boltzmann/lensing computation is deferred.

DATA & CODE AVAILABILITY

Provenance. The first-principles Ω_{Λ} used to normalize $\varepsilon(a)$ is assembled from flat-space β and pre-committed geometric factors: $\Omega_{\Lambda} = \beta f c_{\text{geo}}$. The pipeline writes this decomposition and its provenance to a machine-readable invariants.json. No external cosmological dataset is used.

Script. environment_h0_bias.py reproduces the ladder analysis under strict invariants $(\alpha_M = 0, d_L^{\text{GW}}/d_L^{\text{EM}} = 1)$, writes invariants.json, and saves a summary CSV and figure:

• Default (no CLI): Theory+ with SN cap = 0.05 mag; auto-discovers ./data/host_catalog.csv.

Outputs to ./outputs_paper_ready/.

• Example CLI (column binding):

```
python environment_h0_bias.py theoryplus \
--host-csv ./data/host_catalog.csv \
--col-sample sample --col-g-over-a0 g_over_a0 --col-weight w \
--sn-cap 0.05 --alpha-salt 0.14 --beta-salt 3.1 --gamma-ni 0.6 --s-t
6.0 --c-t 0.02
```

- [1] T. Jacobson, Thermodynamics of Spacetime: The Einstein Equation of State, Phys. Rev. Lett. **75**, 1260 (1995).
- [2] H. Casini, M. Huerta, and R. C. Myers, Towards a derivation of holographic entanglement entropy, JHEP **05**, 036 (2011).
- [3] Planck Collaboration, Planck 2018 results. VI. Cosmological parameters, A&A 641, A6 (2020).
- [4] A. G. Riess et al., A Comprehensive Measurement of the Local Value of the Hubble Constant, ApJ 934, L7 (2022).
- [5] J. Gleyzes et al., Exploring gravitational theories beyond Horndeski, JCAP **02**, 018 (2015).