Лабораторная работа №2.1.6 Эффект Джоуля-Томсона Мещеряков Всеволод, Б02-001, 22.04.2021

Введение

Цель работы заключается в определении изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры. После определения зависимости вычисляются коэффициенты Ван-дер-Ваальса "a"и "b".

Для этого в работе используются трубка с пористой перегородкой, труба Дьюара, термостат, термометры, дифференциальная термопара, микровольтметр, балластный баллон, манометр.

Теоретическая справка

В работе рассматривается дифференциальный эффект Джоуля-Томсона, то есть когда изменения давления и температуры малы. В этом случае коэффициент Джоуля-Томсона $\mu_{\mathsf{Д}-\mathsf{T}}$, равный отношению перепада температур к перепаду давления, приблизительно равен производной температуры по давлению при постоянной энтальпии. С учетом постоянства энтальпии и ее зависимости только от температуры и давления получаем:

$$\mu_{\text{A-T}} = \frac{\Delta T}{\Delta P} \approx \left(\frac{\partial T}{\partial P}\right)_H = -\frac{\left(\frac{\partial H}{\partial P}\right)_T}{\left(\frac{\partial H}{\partial T}\right)_P}.$$
 (1)

Пользуясь соотношениями для полных дифференциалов термодинамических потенциалов, окончательно получаем выражение для коэффициента Джоуля-Томсона:

$$\mu_{\text{A}-\text{T}} = \frac{T(\frac{\partial V}{\partial T})_P - V}{C_n}.$$
 (2)

Для газа Ван-дер-Ваальса выражение принимает вид:

$$\mu_{\rm д-T} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_p}.$$
 (3)

Ход работы

При фиксированной температуре термостата будем менять величину перепада давления и снимать зависимость перепада температур газа. Результаты отразим в таблице 1 приложения. Так же построим графики перепада давления температуры от перепада давления - рисунки 2, 4, 5 приложения.

Из графиков получим значения коэффициентов наклона, которые в свою очередь равны коэффициентам Джоуля-Томсона при данных температурах:

$$\mu_{\text{д-T}|293} = k_{293} = (911 \pm 46) \cdot 10^{-3} (\text{K/atm}),$$

$$\mu_{\text{д-T}|303} = k_{303} = (906 \pm 58) \cdot 10^{-3} (\text{K/atm}),$$

$$\mu_{\text{д-T}|313} = k_{313} = (803 \pm 45) \cdot 10^{-3} (\text{K/atm})$$

Отсюда получаем значения коэффициентов из уравнения Ван-дер-Ваальса для исследуемого газа CO_2 :

$$a = \frac{(\mu_{\text{д-т}|293} - \mu_{\text{д-т}|303}) \cdot C_p \cdot T_{293} T_{303}}{2R \cdot (T_{303} - T_{293})} = 0,055 (\text{H} \cdot \text{м}^4/\text{моль}^2)$$
$$b = \frac{2 \cdot a}{RT_{203}} - \mu_{\text{д-т}|293} \cdot C_p = 0,018 (\text{м}^3/\text{моль})$$

Приложение

Таблица 1 — Показания установки при разных температурах термостата

$\mathrm{T}=293~\mathrm{K}$					
ΔP , atm	4,3	4	3,5	3	2,5
$\sigma_{\Delta P}, ext{atm}$	0,1	0,1	0,1	0,1	0,1
ΔU , мк ${ m B}$	135	125	107	84	72
$\sigma_{\Delta U}$, мк ${ m B}$	2	2	2	2	2
ΔT , k	3,39	3,14	2,67	2,11	1,81
$\sigma_{\Delta T}, { m K}$	0,05	0,05	0,05	0,05	0,05
$\mathrm{T}=303~\mathrm{K}$					
ΔP , atm	4,2	4	3,5	3	2,5
$\sigma_{\Delta P}, ext{atm}$	0,1	0,1	0,1	0,1	0,1
ΔU , мк B	131	121	101	85	67
$\sigma_{\Delta U}$, мк ${ m B}$	2	2	2	2	2
ΔT , k	3,22	2,98	2,48	2,09	1,65
$\sigma_{\Delta T}, { m K}$	0,05	0,05	0,05	0,05	0,05
$T=313~\mathrm{K}$					
ΔP , atm	4,3	4	3,5	3	2,6
$\sigma_{\Delta P}, ext{atm}$	0,1	0,1	0,1	0,1	0,1
ΔU , мк ${ m B}$	129	116	100	83	72
$\sigma_{\Delta U}$, мк ${ m B}$	2	2	2	2	2
ΔT , k	3,11	2,79	2,41	1,99	1,73
$\sigma_{\Delta T}, { m K}$	0,05	0,05	0,05	0,05	0,05

Рис. 1 — Зависимость перепада температуры от перепада давления при 293K

Рис. 2 — Зависимость перепада температуры от перепада давления при 303K

Рис. 3 — Зависимость перепада температуры от перепада давления при 313K