Aufgabe 2

Übungsblatt 3 -

Eric Kunze — 10. November 2021

Dieses Werk ist lizenziert unter einer Creative Commons "Namensnennung – Nichtkommerziell – Weitergabe unter gleichen Bedingungen 4.0 International" Lizenz.

Keine Garantie auf Vollständigkeit und/oder Korrektheit!

Aufgabe. Sei L eine reguläre Sprache über einem mindestens zweielementigen Alphabet Σ . Zeigen Sie, dass die folgenden Sprachen regulär sind.

- (a) $L_1 = \{x \in L : \text{es gibt kein } y \in \Sigma^+, \text{ so dass } xy \in L\}$
- (b) $L_2 = \{x \in L : \text{kein echtes Präfix von } x \text{ liegt in } L\}$

Ausgangspunkt ist also in beiden Fällen eine reguläre Sprache L, für die wir einen DFA $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ finden können, sodass $L = L(\mathcal{M})$ (d.h. \mathcal{M} erkennt genau die Sprache L). Diesen Automaten haben wir gegeben und können ihn nun so verändern, dass er die Sprachen L_1 bzw. L_2 erkennt.

Teil (a): es gibt keine Verlängerung

In L_1 sollen nur noch die Wörter x aus L enthalten sein, die sich nicht in L verlängern lassen. Es soll also kein echtes Wort $y \in \Sigma^+$ geben, sodass das verlängerte Wort xy in L läge. Wann kann eine solche Verlängerung auftreten? Wir müssten in L sowohl das kurze Wort als auch das verlängerte Wort erkennen. Das können wir uns beispielhaft wie folgt vorstellen.

Beispiel. Der Automat \mathcal{M} für L sei wie folgt gegeben:

Damit ist $L = \{aa, aabb\}$. Für das Wort x = aa existiert folglich eine Verlängerung $y = bb \in \Sigma^+$, sodass $xy = aabb \in L$ gilt. Für x = aabb existiert eine solche Verlängerung jedoch nicht. Somit gilt für dieses Beispiel $L_1 = \{aabb\}$.

Anhand des Beispiels erkennen wir relativ gut, dass wir die Akzeptanz von Wörtern "auf dem Weg" unterbinden müssen. Im Beispiel muss also die Akzeptanz in q_2 verboten werden, d.h. q_2 darf kein Finalzustand mehr sein, weil wir ausgehend von q_2 noch einmal in einen Finalzustand gelangen können.

Deswegen definieren wir uns die Menge

$$F' := \{ q \in F : \text{ex. kein } y \in \Sigma^* : \delta(q, y) \in F \}.$$

Diese Menge besteht aus allen Finalzuständen $q \in F$ des Automaten \mathcal{M} für L, für die wir kein Wort $y \in \Sigma^+$ finden können, sodass der Wortübergang $\delta(q, y)$ wieder in einem Finalzustand landet.

Beispiel. Wir wollen diese Definition anhand des obigen Beispiels nachvollziehen. Es gilt auf jeden Fall $F' \subseteq F$, d.h. wir müssen nur Finalzustände des Originalautomaten betrachten. Für q_2 existiert $y = bb \in \Sigma^*$, sodass $\delta(q_2, y) = \delta(q_2, bb) = q_4 \in F$. Damit ist also $q_2 \notin F'$. Für q_4 finden wir aber offensichtlich keinen Wortübergang, der noch einmal in einem Finalzustand landet (da es überhaupt gar keinen Übergang mehr gibt), d.h. $q_4 \in F'$. Zusammengefasst ist also $F' = \{q_4\}$.

Ersetzen wir nun die Menge der Finalzustände F im Originalautomaten durch F', dann fallen alle unterwegs akzeptierenden Finalzustände weg und wir erreichen genau unser Ziel. Setze also

$$M' := \langle Q, \Sigma, \delta, q_0, F' \rangle$$

und übernehmen dabei alle anderen Komponenten (Zustandsmenge, Alphabet, Übergangsfunktion, Startzustand) des Originalautomaten.

Beispiel. Der Automat \mathcal{M}' für obigen Beispiel sieht dann wie folgt aus:

Man beachte, dass sich wirklich nur die Menge der Finalzustände geändert hat. Die erkannte Sprache ist nun $L(\mathcal{M}') = \{aabb\}$, was genau L_1 für das Beispiel entspricht.

Nun haben wir also einen DFA \mathcal{M}' konstruiert, von dem wir hoffen, dass er genau L_1 erkennt. Um das zu verifizieren, müssen wir noch $L(\mathcal{M}') = L_1$ zeigen.

$$x \in L(\mathcal{M}')$$
 \Leftrightarrow $\delta(q_0, x) \in F'$ (Def. Akzeptanz)
 \Leftrightarrow $\delta(q_0, x) \in F$ und ex. kein $y \in \Sigma^+ : \delta(q_0, xy) \in F$ (Def. F')
 \Leftrightarrow $x \in L_1$ (Def. von L_1)

Unsere Konstruktion ist folglich korrekt.

Teil (b): keinen Präfix

Die Sprache L_2 soll genau die Wörter von L enthalten, die keinen echten¹ Präfix in L haben. Es soll also das lange Wort xy in L liegen, nicht jedoch der Präfix x.

Beispiel. Wir arbeiten wieder mit unserem Beispielautomaten \mathcal{M} .

Nach wie vor gilt $L = L(\mathcal{M}) = \{aa, aabb\}$. Für xy = aa finden wir keinen Präfix, der auch in L liegt. Es gäbe nur die Möglichkeiten $x = \epsilon \notin L$ und $x = a \notin L$. Das ergibt $aa \in L_2$. Für xy = aabb finden wir jedoch einen solchen Präfix, nämlich mit $x = aa \in L$. Somit ist $aabb \notin L_2$

Am Beispiel machen wir uns wieder schnell klar, was wir verbieten müssen: erreichen wir einmal einen Finalzustand, dürfen wir nicht mehr weitergehen, da sonst ein längeres Wort enstehen kann, dessen Präfix wir mit Erreichen des ersten Finalzustands auch akzeptieren. Im Beispiel-automaten darf vom Finalzustand q_2 kein Übergang mehr erfolgen, weil wir sonst noch in den Finalzustand q_4 gelangen können. Dort wird das Wort aabb akzeptiert, bis q_2 haben wir aber schon dessen Präfix aa akzeptiert und das soll in L_2 nicht möglich sein. Wir definieren also für alle Symbole $a \in \Sigma$ die Übergänge

$$\delta''(q, a) := \begin{cases} q_{\perp} & \text{falls } q \in F \\ \delta(q, a) & \text{sonst} \end{cases}$$

Dabei soll $q_{\perp} \notin Q$ ein neu eingeführter Zustand sein, in dem wir anhalten ohne zu akzeptieren (es gibt keinen ausgehenden Übergang, aber q_{\perp} ist auch kein Finalzustand).

Damit können wir nun einen DFA

$$\mathcal{M}'' := \langle Q \cup \{q_{\perp}\}, \Sigma, \delta'', q_0, F \rangle$$

definieren, der obige Übergangsfunktion δ'' verwendet sowie den neu eingeführten Fangzustand q_{\perp} .

Beispiel. Für unser Beispiel fügen wir den Zustand q_{\perp} und Übergänge von den Finalzuständen q_2 und q_4 mit den Symbolen a und b aus Σ zum Fangzustand. Der Übergang $q_2 \xrightarrow{b} q_3$ wird dabei überschrieben durch den Übergang $q_2 \xrightarrow{a,b} q_{\perp}$.

Nun bleibt auch hier zu zeigen, dass unsere Konstruktion korrekt ist, d.h. dass $L(\mathcal{M}'') = L_2$

¹im folgenden steht Präfix immer für ein *echtes* Präfix

gilt.

$$x \in L(\mathcal{M}'')$$
 \Leftrightarrow $\delta''(q_0, x) \in F$ (Def. Akzeptanz)
 \Leftrightarrow $\delta(q_0, x) \in F$ und ex. kein echtes Präfix \overline{x} von x mit $\delta(q_0, \overline{x}) \in F$ (Def. δ'')
 \Leftrightarrow $x \in L_2$ (Def. von L_2)

Erkennt \mathcal{M}' auch L_2 ?

Wir verwenden wieder unser Beispiel und wollen $L_2 = \{aa\}$ mit dem Automat \mathcal{M}' erkennen.

Wir können zwar die Übergänge $q_0 \stackrel{a}{\longrightarrow} q_1 \stackrel{a}{\longrightarrow} q_2$ durchführen und das Wort aa zwischenzeitlich lesen, jedoch ist nach unserer Konstruktion q_2 kein Finalzustand mehr, sodass wir an dieser Stelle nicht akzeptieren und weitere Übergänge durchführen müssten. Dadurch verlängert sich das Wort aa zwangsweise zu aabb. Es gilt also $aa \notin L(\mathcal{M}')$ und somit schon $L_2 \neq L(\mathcal{M}')$. L_2 wird folglich nicht von \mathcal{M}' erkannt.

Erkennt \mathcal{M}'' auch L_1 ?

Wieder versuchen wir anhand des Beispiels die Sprache $L_1 = \{aabb\}$ mit dem Automaten \mathcal{M}'' zu erkennen.

Wir starten und können zumindest den Teil aa lesen und würden diesen auch schon akzeptieren. Es ist also $aa \in L(\mathcal{M}'')$ aber offensichtlich $aa \notin L_1$. Somit muss schon $L_1 \neq L(\mathcal{M}'')$ gelten, d.h. L_1 wird nicht von \mathcal{M}'' erkannt.