FCA

ale-cci

June 8, 2019

1 Lezione 8 - Stabilitá dei sistemi dinamici

Un sistema lineare \sum si dice:

- 1. STABILE se per ogni perturbazione $y_{lib}(t)$ é limitata su $[0, +\infty)$ \sum é stabile \Leftrightarrow tutti i poli hanno parte reale non positiva e gli eventuali poli puramente immaginari sono semplici
- 2. ASINTOTICAMENTE STABILE, se stabile e $\lim_{t\to +\infty} y_{lib}(t)=0$ A per ogni perturbazione introdotta.
- 3. SEMPLICEMENTE STABILE é stabile ed esiste una perturbazione per cui

$$\lim_{t\to+\infty} y_{lib}(t) = y_{\infty} \neq 0 \vee \{\text{Non esiste } \lim_{t\to\infty} y_{lib}(t)\}$$

4. INSTABILE non é stabile

2 Criterio di Juri

Sia dato il polinomio $a(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_n$ con $a_n > 0$. Condizione necessaria affiché a(z) abbia tutte le radici di modulo minore di 1 é che le seguenti disuguaglianze siano soddisfatte:

- 1. a(1) > 0
- 2. $(-1)^n a(-1) > 0$
- 3. $|a_0| < a_n$

Perndendo come esempio il caso n-1:

$$a(z) = a_1 z + a_0 = 0$$

$$z = -\frac{a_0}{a_1}$$
 $|z| < 1$ \Leftrightarrow $\frac{|a_o|}{a_1} < 1$ \Leftrightarrow $[a_o| < a_1]$

Otteniamo che:

- $a(1) = a_1 + a_0 > 0$
- $a(-1) = -a_1 + a_0 < 0$

di queste tre disuguaglianze solo 2 sono indipendenti: la terza é l'insieme della prima e della seconda Per il caso n = 2: 3 condizioni distinte (page 14 di Lez. 21)

Anche nel criterio di Jury é necessario costruire una trabella: (slide 15 Lez 21)

- iniziamo a scrivere le prime due righe: con la prima riga iniziamo a scrivere a partire da a_0
- Per la seconda riga partiamo da a_n e terminiamo la riga a a_0
- \bullet Per costruire le right successive calcoliamo il determinante della matrice 2×2 sopra e riportiamo la stessa riga sotto al contrario

Per calcolare il termine di una determinata riga si utilizza la formula:

$$b_k = \det \begin{pmatrix} a_0 & a_{n-k} \\ a_n & a_k \end{pmatrix} \quad k = 0, 1 \dots n - 1$$

3 Teorema (criterio di Jury)

Il polinomio $a(z) = \dots$ ha tutte le radici di modulo minore di 1 se e solo se le seguenti n+1 disuguaglianze sono soddisfatte:

- 1. a(1) > 0
- 2. $(-1)^n a(-1) > 0$
- 3. ... slide 16

4 Scelta del periodo di campionamento (Slide 18 Lez 21)

Per il teorema di campionamento

$$w_s > 2w_b$$

con $w_s = \frac{2\pi}{T}$ pulsazione di campionamento, T il corrispondente periodo

Una volta realizzato il progetto in tempo continuo é necessario implementare una $C_d(z)$

Alla funzione C(s) é associata un'equazine differenziale in tempo continuo, a $C_d(z)$ un equazione di differenze

Metodo di eulero: $Dx(T) \Rightarrow \mathcal{L}[Dx(t)] = s \cdot \mathcal{L}[x(t)]$ (condizione iniziale nulla)

$$Dx(kT) \approx \frac{x((k+1)T) - x(kT)}{T}$$

$$\mathcal{Z}[Dx(kT)] \approx \frac{z-1}{T} \mathcal{Z}[x(kT)]$$

$$s = \frac{z-1}{Tz}$$

4.0.1 Alla lavagna

Immaginando di avere la funzione differenziale $a_1Dy + a_0y = b_1Du + b_0u$ corrisponde una funzione di trasferimento. Trasformandola secondo laplace con, condizioni iniziali nulle si ottiene:

$$a_1 s Y + a_0 Y = b_1 s U + b_0 U$$

Immaginandola in tempo discreto, imponendo t = kT

$$a_1 Dy(kT) + a_0 y(kT = b_1 Du(kT) + b_0 u(kT)$$

NOTA: Fino ad adesso Non é una approssimazione

Ora per calcolare la derivata utilizzo l'euqazione di eulero

$$a_1 \frac{y((k+1)T) - y(kT)}{T} + a_0 y(kT) = b_1 \frac{u((k+1)T) - u(kT)}{T} + b_0 u(kT)$$

Trasformanso:

$$\mathcal{Z}\left\{a_1 \frac{y((k+1)T) - y(kT)}{T} + a_0 y(kT) = b_1 \frac{u((k+1)T) - u(kT)}{T} + b_0 u(kT)\right\}$$

. . .

$$a_1\frac{z-1}{T}\mathcal{Z}[y(kT)] + a_0\mathcal{Z}[y(kT)] = b_1\frac{z-1}{T}\mathcal{Z}[u(kT)] + b_0\mathcal{Z}[u(kT)]$$

Trovo così che:

$$Y(z) = \frac{b_1 \frac{z-1}{T} + b_0}{a_1 \frac{z-1}{T} + a_0} U(z) = C(s)|_{s = \frac{z-1}{T}} U(z) := H(z)U(z)$$

Metodo di Euolero all'indietro: Stimo la derivata guardando il campione precedente

$$Dx(kT) \approx \frac{x(kT) - x((k-1)T)}{T}$$

4.0.2 Metodo di Tustin (slide 21)

Viene utilizzata l' 'approssimazione col metodo del trapezio'

(x: Approssimare due punti con trapezio)

Da slide 24: $C_d(z)$ è asintoticamente stabile siccome tutti i poli sono contenuti nella circonferenza unitaria

5 Esercizi

5.0.1 1

1.
$$a(1) > 0$$
 $1 - 1 + 1 + 0.4 = 1.5 > 0$ OK
2. $(-1)^3 a(-1) > 0, a(-1) < 0$
 $-a(-1) > 0$ $-1 - 1 - 1 + 0.5 = -2.5 < 0$ OK
3. $|a_0| < a_3$ $|0.5| < 1$ OK!

 $a(z) = z^3 - z^2 + z0.5$

|-0.75| > |-1.5| Not OK!

5.0.2 Secondo esercizio (slide 27)

$$a(z) = z^4 - z^3 + 0.25z^2 + 0.25z - 0.125$$

Per calcolare se il sistema é asintoticamente stabile

1.
$$a(1) > 0!$$
 $a(1) = 1 - 1 + 0.25 + 0.25 - 0.125 = 0.357 > 0$ OK
2. $(-1)^4 a(-1) > 0$ OK
 $a(-1) > 0$ $a(-1) = 1 + 1 + 0.25 - 0.25 - 0.125 = 1.875 > 0$ OK
3. $|a_0| < a_4 | -o.125| < 1$ OK
4. $|b_0| > |b_1| | -0.9875| > |-0.125|$ OK

OK

5. $|c_0| > |c_2|$ |0.9534| > |0.3979|

6 Esercitazione Wed 29 May 2019 01:46:34 PM CEST

(... copiare parte prima da appunti)

$$P_d(s) = s^3 + (4+c)s^2 + (5+4c)s + 5c$$

$$\begin{cases} 2+4b_2=4+c \\ 5+4c=9+4b_1 \\ 90=5c \end{cases} \Rightarrow \begin{cases} b_2=5 \\ b_1=17 \\ c=18 \end{cases}$$
 Accetto come soluzione siccome $\gg 2$
$$C(s) = \frac{5s^2+17s+18}{s^2+9}$$

$$e_r = \lim t \to \infty r(t) - y(t) = 0 \Leftrightarrow \lim_{t \to \infty} r(t) = \lim_{t \to \infty} t(t)$$

(Grafico)

$$T_{ry} = \frac{FL(s)}{1 + L(s)} \Rightarrow T_{ry}(0) = 1$$

$$T_{ry}(0) = \frac{FL(0)}{1 + L(0)} = \boxed{\frac{F4}{1+4} = 1}$$

$$F = \frac{5}{4} = 1.25$$

7 Esercizio 4

 $\exists K \in \mathcal{R} \text{ t.c. } e_r = 0.05 , r(t) = 1(t)$

$$e_r = \frac{1}{1 + K_P}$$
 , $0.05 = \frac{1}{K_P} \Leftrightarrow 0.05 + 0.05K_P = 1$

$$K_P = 19$$

$$K_P = \lim_{s \to 0} C(s)P(s) = \lim_{s \to 0} K \frac{10}{(s+2)(s+5)(s+10)} = \frac{K}{10}$$
$$19 = \frac{K}{10} \Leftrightarrow \boxed{K = 190}$$

Verifichiamo che il sistema sia asintoticamente stabile:

Poli del sistema retroazionato

$$1 + C(s)P(s) = 0 \Leftrightarrow 1 + \frac{1900}{(s+2)(s+5)(s+10)} = 0$$
$$\Leftrightarrow (s+2)(s+5)(s+10) \neq 0$$
$$s^3 + 17s^2 + 80s + 2000 = 0$$

 $\underline{\mathbf{b}}$

Per la presenza di due variazioni, vi sono 2 poli retroazionati a parte reale positiva \Rightarrow <u>Sistema Instabile</u> $\Rightarrow \nexists k$ che garantisce $e_r = 0.005$

$$C(s) = K \frac{1 + \tau s}{1 + \alpha \tau s}$$

$$e_r = \frac{1}{1 + K_P} = 0.05 \Leftrightarrow K_P = 19$$

$$K_p = \lim_{s \to 0} C(s)P(s) = \lim_{s \to 0} \frac{1 + \tau s}{1 + \alpha \tau s} \frac{10}{(s+2)(s+5)(s+10)} = \frac{K10}{100} = \frac{K}{10}$$

$$19 - \frac{K}{10} \Leftrightarrow \boxed{K = 190}$$

$$C(s) = 190 \frac{1 + \tau s}{1 = \alpha \tau s}$$

Modo 1 (Con Routh):

$$1 + K \frac{1 + \tau s}{1 + \alpha \tau s} \frac{10}{(s+2)(s+5)(s+10)} = 0$$

Sfrutto lo zero della rete anticipatrice per realizzare una cancellazione polo-zero ammissibile

$$1 + \frac{f(s + \frac{1}{\tau})}{f(\alpha s + \frac{1}{\tau})} \frac{1900}{(s + 2)(s + 5)(s + 10)} = 0$$

$$L(jw) = \frac{1900}{(2 + \alpha jw)(jw + 5)(jw + 10)}$$

$$|L(jw)| = \frac{1900}{\sqrt{4 + \alpha^2 w^2} \sqrt{25 + w^5} \sqrt{100 + w^2}}$$

$$\arg(L(jw)) = -\arctan(\left(\frac{\alpha w}{2}\right) - \arctan(\left(\frac{w}{5}\right) - \arctan(\left(\frac{w}{10}\right))\right)$$

$$L(s, \alpha) = -\frac{1}{2} \left[\text{se } \exists s = jw_P : L(s, \alpha) + \frac{1}{2} = 0 \right]$$

$$\frac{1}{2} + \frac{1900}{\alpha s + 2)(s + 5)(s + 10)} = 0 \Leftrightarrow \alpha s^3 + (15\alpha + 2)s^2 + (50\alpha + 30)s + 3900 = 0$$

$$\frac{3}{2} \begin{vmatrix} \alpha & 50\alpha + 30 & 0 \\ 15\alpha + 2 & 3900 & 0 \end{vmatrix} f(\alpha) = (15\alpha + 2)(50\alpha + 30) - 3900\alpha = 750\alpha^2 - 3350\alpha + 60$$

$$1 \begin{vmatrix} f(\alpha) & 0 \end{vmatrix}$$

$$f(\alpha) = 0 \rightarrow \frac{\alpha_1 - 44487}{\alpha_2 = 0.0180} \text{ OK}$$

Verifico se ho radici immaginarie poli ausiliari $(15\alpha + 2)s^2 + 3900 = 0 \Rightarrow$ Ho radici immaginarie

$$C(s) = 190 \frac{1 + \frac{1}{2}s}{1 + 0.0180 \frac{1}{2}s}$$

Modo 2: Uso delle formul di inversione:

$$C(s) = 190 \frac{1 + \tau s}{1 + \alpha \tau s}$$

$$P(jw) = \frac{1900}{(jw + 2)(jw + 5)} \quad , \quad |P(jw)| = \frac{1900}{\sqrt{4 + w^2} frac25 + w^2 \sqrt{w^2 + 100}}$$

$$\arg(P(jw)) = -\arctan\left(\frac{w}{2}\right) - \arctan\left(\frac{w}{5}\right) - \arctan\left(\frac{w}{10}\right)$$

Cerchiamo w_0 all'interno della circonferenza di raggio $\frac{1}{2}$

$$\arg(P(jw)) + \pi\phi_0 = 0 \Leftrightarrow \phi_0 = -\arg(P(jw)) - \pi$$

$$M = \frac{1}{2|P(jw)|}$$

Per potere applicare le formule di inversione abbiamo il vincolo:

$$\cos \phi_0 > \frac{1}{M} \Leftrightarrow \cos \phi_0 > 2|P(jw)|$$

$$w_0 = 10 \frac{rad}{s} \qquad |P(jw)| = 1.17$$

$$w_0 = 13 \frac{rad}{s} \qquad |P(jw)| = 0.6323$$

$$w_0 = 15 \frac{rad}{s} \qquad |P(jw)| = 0.4405 \rightarrow \text{Potrebbe essere OK}$$

$$\arg(P(jw)) == -3.67 \Rightarrow \phi_0 - \arg(P(jw)) - \pi = 0.5285$$

$$\cos(\phi_0) = 0.8636 >^{?} 2(0.4405) = 0.811 \rightarrow \text{NO}$$

$$w_0 = 16 \frac{rad}{s} \qquad |P(jw)| = 0.3726$$

$$\arg(P(jw)) = -2.726$$

$$\phi_0 = -\arg(P(jw)) - \pi = 0.5849$$

Verifica: $\cos \phi_0 = 0.8338 \ge^? 2(0.3726) = 0.742 \to \text{OK}$ Possiamo applicare le Formule di inversione

$$\begin{cases} \phi_0 = 0.5849 \\ M = \frac{1}{2|P(jw)|} = 1.2419 \\ \tau = \frac{M - \cos\phi_0}{w_0 \sin\phi_0} = 0.0575 \\ \alpha = \frac{M \cos\phi_0 - 1}{M(M - \cos\phi_0)} = -0.174 \end{cases}$$

$$\tau = \frac{M - \cos \phi_0}{w_0 \sin \phi_0} = 0.0575
\alpha = \frac{M \cos \phi_0 - 1}{M M \cos \phi_0} = -0.174$$

8 Esercizio 1

$$P(s) = \frac{5}{(s+1)^3}$$

Controllore PID: $C(s) = K \left(1 + T_d s + \frac{1}{T_i s}\right)$

$$T_{i} = 4T_{d}$$

$$M_{F} = 45$$

$$C(s) = \frac{K}{T_{i}} \left(\frac{1 + \frac{25}{w_{j}}s + \frac{s^{2}}{w_{n}^{2}}}{s} \right)$$

$$w_{n} = \frac{1}{\sqrt{T_{i}T_{d}}} \qquad \delta = \frac{1}{2}\sqrt{\frac{T_{i}}{T_{d}}}$$

$$C(jw_{n}) = K_{P}$$

$$P(jw) = \frac{5}{(jw+1)^{3}}$$

$$|P(jw)| = \frac{5}{(1+w^{2})^{\frac{3}{2}}}$$

$$\arg(P(jw_{0})) = -3\operatorname{atan}(2)$$

(X: Grafico)
$$\arg(P(jw_0)) + \pi = M_F = 45$$

$$\arg(P(jw_0)) = M_F - \pi \Leftrightarrow -3\operatorname{aran}(w) = \frac{\pi}{4} - \pi = -\frac{3}{4}\pi \Leftrightarrow \operatorname{atan}(w) = \frac{\pi}{4} \Leftrightarrow \boxed{w_0 = 1\frac{rad}{s}}$$

$$|P(jw)| = \frac{5}{(1+w_0^2)^{\frac{3}{2}}} = 1.7678$$

$$K_P := \frac{1}{|P(jw)|} = \frac{1}{1.7678} = \boxed{0.5657}$$

$$\delta = \frac{1}{2}\sqrt{\frac{T_i}{T_d}} = \frac{1}{2}\frac{4}{2}1$$

$$T_i = \frac{2\delta}{w_n} = 2$$

$$T_d = \frac{1}{T_2 w_1^2} = \frac{1}{2}sec$$

9 esercizio 2

$$y_{lib}(2) = \frac{1}{(z - \frac{1}{2})^2 (z^2 + 1)} = \frac{1}{(z - \frac{1}{2})^2 (z - j)(z + j)}$$
$$\mathcal{Z}^{-1}[y_{lib}(z)] = y_{lib}(K) \quad , \quad K \ge 0$$

 $C(s) = 0.5657 \left(1 + \frac{1}{2}s + \frac{1}{2s}\right)$

Antitrasformazione per fratti semplici

$$y_{lib}(z) = \frac{C_{1,1}}{\left(z - \frac{1}{2}\right)^2} + \frac{C_{1,2}}{z - 1\frac{1}{2}} + \frac{C_2}{z - j} - \frac{\bar{C}_2}{z + j}$$
$$C_{i,j} = \frac{1}{(j - 1)!} D^{j-1} \left[(z - P_i)^{r_i} F(z) \right] \Big|_{z = P_i}$$

 r_i é la molt di P_i

$$\operatorname{Res}(F, P) = \frac{1}{(n-1)!} D^{n-1} [(z-p)^n F(z)] \Big|_{z=p}$$

né la molt di P

Prop (Per funzioni razionali Strettamente proprie)

$$\sum_{i} \operatorname{Res}(F, P_{i}) = \begin{cases} 0 & \text{se} \quad n - m > 1 \\ \frac{b_{m}}{a_{n}} & \text{se} \quad n - m = 1 \end{cases}$$

$$C_{1,1} = \underbrace{(z - \frac{1}{2})^{2}}_{2} \underbrace{\frac{1}{(z - \frac{1}{2})^{2}(z^{2} + 1)}|_{z = \frac{1}{2}}}_{z = \frac{1}{\frac{1}{4} + 1}} = \underbrace{\frac{1}{\frac{4}{5}}}_{\overline{5}}$$

$$C_{2} = \underbrace{(z - \frac{1}{2})^{4}}_{\overline{5}}$$

10 Esercitazione 12

10.1 Esercizio 3

Viene assegnato il sistema in retroazione

$$P(s) = \frac{1}{s(s+10)}$$

Traovare i valori di $K \in \mathbb{R}$ tale che il sistema é asintoticamente stabile Prima cosa da fare discretizzare l'impianto

$$P_{d}(z) = \frac{z-1}{z} \mathcal{Z} \left[\frac{P(s)}{s}, T \right]$$

$$\frac{P(s)}{s} = \frac{10}{s^{2}(s+10)} = \frac{C_{1,1}}{s^{2}} + \frac{C_{1,2}}{s} + \frac{C_{2,1}}{(s+10)}$$

$$\left\{ C_{1,1} = \mathcal{S}^{\mathbb{Z}} \frac{10}{\mathcal{S}^{2}(s+10)} \Big|_{s=0} = 1 \right.$$

$$\left\{ C_{2,1} = \left(s + 10 \right)^{\frac{10}{s^{2}(s+10)}} \Big|_{s=10} = \frac{1}{10} \right.$$

$$\left(C_{1,2} + C_{2,1} = 0 \Leftrightarrow C_{1,2} = -\frac{1}{10} \right)$$

$$\mathcal{L}^{-1} \left[\frac{P(s)}{s} \right] = 1t - \frac{1}{10} + \frac{1}{10}e^{-10t} \qquad t \geq 0$$

$$\mathcal{L}^{-1} \left[\frac{P(s)}{s} \right]_{t=0.05K} = 0.05K - 0.1 + 0.1e^{-0.5K} \qquad K \geq 0$$

$$P_{d}z = \mathcal{Z} \left[0.05K - 0.1 + 0.1e^{-0.5K} \right]$$

$$\mathcal{Z}[a^{k}] = \frac{z}{z-a}$$

$$\mathcal{Z}[K1(K)] = \frac{z}{z-1} \right\} \Rightarrow P_{s}(z) = 0.05 \frac{z}{(z-1)^{2}} - 0.1 \frac{z}{z-1} + 0.1 \frac{z}{z-06065}$$

$$P_{d}(z) = \frac{z-1}{z} P_{s}(z) = \frac{z-1}{z} \left(0.05 \frac{z}{(z-1)^{2}} - 0.1 \frac{z}{z-1} + 0.1 \frac{z}{z-0.6065} \right) = P_{d}(z) = \frac{0.01065z + 0.009025}{(z-1)(z-0.6065)}$$

$$T_{\tilde{r}\tilde{y}} = \frac{L(z)}{1 + L(z)} , \quad L(z) = KP_{d}(z)$$

$$1 + L(z) = 0 \Leftrightarrow \boxed{1 + KP_{d}(z) = 0}$$

$$z^2 + (0.01065K - 1.6065)z + 0.09002K + 0.6065 = 0$$

Il sistema é asintoticamente stabile se e solo se

1.
$$a(1) > 0$$

2.
$$(-1)^n a(-1) > 0$$

3.
$$|a_D| < a_n$$

1.

$$1 + (0.0165K - 1.6065 + 0.09025K + 0.6065) > 0 \Leftrightarrow K > 0$$

2.
$$1 + (-0.01065K + 1.6 - 65 + 0.09025K + 0.6065) > 0 \Leftrightarrow K > -\frac{3.213}{0.0796} = -40.3643$$

3.

$$\begin{aligned} |0.09025K+0.6065| < 1 \\ \begin{cases} 0.09025K+0.6065 < 1, & \text{se} \quad 0.09025K+0.6065 \geq 0 \\ -0.09025K-0.6065 < 1, & \text{se} \quad 0.09025K+0.6065 < 0 \end{cases} \\ \begin{cases} 0.09025K+0.6065 < 1 & \text{se} \quad K \geq -6.72022 \\ -0.09025K-0.065 < 1 & \text{se} \quad K < -6.72022 \end{cases} \end{aligned}$$

- (a) $K < 4.360 \Rightarrow -6.72022 \le K < 4.360$
- (b) $K > -17.80 \Rightarrow -17.80 < K < -6.72022$

$$\left. \begin{array}{l} K > 0 \\ K > -40.3643 \\ -6.72022 \leq K < 4.360V - 17.90 < K < -6.72022 \end{array} \right\} \Rightarrow \boxed{0 < K < 4.360}$$

10.2 Es 4

$$C(s) = 20 \frac{s+1}{1+0.1s}$$

$$T = 0.01s$$

$$s = \frac{2}{T} \frac{z-1}{z+1} = 200 \frac{z-1}{z+1}$$

$$C(z) = 20 \frac{200 \frac{z-1}{z+1} + 1}{1+20 \frac{z-1}{z+1}} = 20 \frac{\frac{200z-200+z+1}{z+1}}{\frac{z+1+20z-20}{z+1}} = 20 \frac{201z-199}{21-19} = \frac{4020z-3880}{21z-19} = C_d(z)$$

$$21\tilde{y}(K) - 19\tilde{y}(K-1) = 4020\tilde{u}(K) - 3989\tilde{u}(K-1) \quad , \quad K \in \mathbb{Z}$$