

Exercice 1 - Mouvement RT - RSG ***

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ tel que $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{B}_1}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}$.

On donne $\overrightarrow{V(B,2/0)} = \dot{\lambda} \overrightarrow{i_1} + \dot{\theta} \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right)$ et $\overrightarrow{\Gamma(B,2/0)} = \ddot{\lambda}(t) \overrightarrow{i_1} + \ddot{\theta}(t) \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) + \dot{\theta}(t) \left(2\dot{\lambda}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta} \overrightarrow{i_1} \right)$.

Question 1 Déterminer $\overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}$

Question 2 Déterminer $\overrightarrow{\delta(I, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 2.

Exercice 2 - Mouvement RT - RSG **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Question 1 Déterminer $R_d(2/0)$.

Par définition, $\overrightarrow{R_d(2/0)} = m_2 \overrightarrow{\Gamma(G_2, 2/0)} = m_2 \overrightarrow{\Gamma(B, 2/0)}$.

Calcul de $\overrightarrow{V(B,2/0)}$:

 $\overrightarrow{V(B,2/0)} = \overrightarrow{V(B,2/1)} + \overrightarrow{V(B,1/0)}.$

D'une part, $\overrightarrow{V(B,2/1)} = \dot{\lambda} \overrightarrow{i_1}$.

D'autre part, en utilisant le roulement sans glissement en I, $\overrightarrow{V(B,1/0)} = \overrightarrow{V(I,1/0)} + \overrightarrow{BI} \wedge \overrightarrow{\Omega(1/0)} = \overrightarrow{0} + \left(-\lambda(t)\overrightarrow{i_1} - R\overrightarrow{j_0}\right) \wedge \overrightarrow{b} + \overrightarrow{k_0} = -\dot{\theta} \left(\lambda(t)\overrightarrow{i_1} \wedge \overrightarrow{k_0} + R\overrightarrow{j_0} \wedge \overrightarrow{k_0}\right) = \dot{\theta} \left(\lambda(t)\overrightarrow{j_1} - R\overrightarrow{i_0}\right).$ Au final, $\overrightarrow{V(B,2/0)} = \dot{\lambda} \overrightarrow{i_1} + \dot{\theta} \left(\lambda(t)\overrightarrow{j_1} - R\overrightarrow{i_0}\right).$

Calcul de $\overrightarrow{\Gamma(B,2/0)}$:

 $\frac{d}{\Gamma(B,2/0)} = \frac{d}{dt} \left[\overrightarrow{V(B,2/0)} \right]_{\Re_0} = \ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} + \ddot{\theta}(t) \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) + \dot{\theta}(t) \left(\dot{\lambda}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta} \overrightarrow{i_1} \right).$ Au final, $\overrightarrow{R_d(2/0)} = m_2 \left(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} + \ddot{\theta}(t) \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) + \dot{\theta}(t) \left(\dot{\lambda}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta} \overrightarrow{i_1} \right) \right)$

Question 2 Déterminer $\delta(I, 1+2/0) \cdot \overrightarrow{k_0}$

On a $\overline{\delta(I,1+2/0)} = \overline{\delta(I,1/0)} + \overline{\delta(I,2/0)}$.

Calcul $\delta(I, 1/0)$

Par déplacement du moment dynamique, on a $\overline{\delta(I,1/0)} = \overline{\delta(G_1,1/0)} + \overline{IG_1} \wedge \overline{R_d(1/0)}$

- $\overrightarrow{\delta}(G_1, 1/0)$ · $\overrightarrow{k_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\sigma}(G_1, 1/0) \right]_{\mathscr{R}_0} \cdot \overrightarrow{k_0} = C_1 \ddot{\theta}$. $\overrightarrow{R_d}(1/0) = m_1 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V}(G_1, 1/0) \right]_{\mathscr{R}_0} \text{ et } \overrightarrow{V}(G_1, 1/0) = \overrightarrow{V}(I, 1/0) + \overrightarrow{G_1} \overrightarrow{I} \wedge \overrightarrow{\Omega}(1/0) = \overrightarrow{0} + \left(\ell \overrightarrow{i_1} R \overrightarrow{j_0} \right) \wedge \dot{\theta} \overrightarrow{k_0} = \dot{\theta} \left(-\ell \overrightarrow{j_1} + R \overrightarrow{i_0} \right)$. On a donc $\overrightarrow{R_d}(1/0) = m_1 \ddot{\theta} \left(-\ell \overrightarrow{j_1} + R \overrightarrow{i_0} \right) + m_1 \ell \dot{\theta}^2 \overrightarrow{i_1}$.
- $(\overrightarrow{IG_1} \wedge \overrightarrow{R_d(1/0)}) \cdot \overrightarrow{k_0} = ((\overrightarrow{R}\overrightarrow{j_0} \ell \overrightarrow{i_1}) \wedge (m_1 \ddot{\theta} (-\ell \overrightarrow{j_1} + R \overrightarrow{i_0}) + m_1 \ell \dot{\theta}^2 \overrightarrow{i_1})) \cdot \overrightarrow{k_0}$ $= (R \overrightarrow{j_0} \wedge (m_1 \ddot{\theta} (-\ell \overrightarrow{j_1} + R \overrightarrow{i_0}) + m_1 \ell \dot{\theta}^2 \overrightarrow{i_1}) \ell \overrightarrow{i_1} \wedge (m_1 \ddot{\theta} (-\ell \overrightarrow{j_1} + R \overrightarrow{i_0}) + m_1 \ell \dot{\theta}^2 \overrightarrow{i_1})) \cdot \overrightarrow{k_0}$ $= \overrightarrow{m_1} \left(R \overrightarrow{j_0} \wedge \left(\overrightarrow{\theta} \left(-\ell \overrightarrow{j_1} + R \overrightarrow{i_0} \right) + \ell \overrightarrow{\theta}^2 \overrightarrow{i_1} \right) - \ell \overrightarrow{\theta} \overrightarrow{i_1} \wedge \left(-\ell \overrightarrow{j_1} + R \overrightarrow{i_0} \right) \right) \cdot \overrightarrow{k_0}$ $= m_1 \left(R \left(\ddot{\theta} \left(-\ell \overrightarrow{j_0} \wedge \overrightarrow{j_1} + R \overrightarrow{j_0} \wedge \overrightarrow{i_0} \right) + \ell \dot{\theta}^2 \overrightarrow{j_0} \wedge \overrightarrow{i_1} \right) - \ell \ddot{\theta} \left(-\ell \overrightarrow{i_1} \wedge \overleftarrow{j_1} + R \overrightarrow{i_1} \wedge \overrightarrow{i_0} \right) \right) \cdot \overrightarrow{k_0}$ $= m_1 \left(R \left(\ddot{\theta} \left(-\ell \sin \theta - R \right) - \ell \dot{\theta}^2 \cos \theta \right) - \ell \ddot{\theta} \left(-\ell - R \sin \theta \right) \right)$ $= m_1 \left(-R \left(\ddot{\theta} \left(\ell \sin \theta + R \right) + \ell \dot{\theta}^2 \cos \theta \right) + \ell \ddot{\theta} \left(\ell + R \sin \theta \right) \right)$
- Au final, $\overrightarrow{\delta(I,1/0)} = C_1 \ddot{\theta} + m_1 \left(-R \left(\ddot{\theta} \left(\ell \sin \theta + R \right) + \ell \dot{\theta}^2 \cos \theta \right) + \ell \ddot{\theta} \left(\ell + R \sin \theta \right) \right).$

Exercice 3 - Mouvement RT - RSG ***

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I.

Question 1 Déterminer $\overline{V(B,2/0)}$.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B.

Question 3 *Déterminer* $\Gamma(B, 2/0)$.

Indications:
1.
$$V(B,2/0) = \lambda \overrightarrow{i_1} + \dot{\theta} \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right).$$

2. $\{ \mathcal{V}(2/0) \} = \begin{cases} \dot{\theta} \overrightarrow{k_0} \\ \dot{\lambda} \overrightarrow{i_1} + \dot{\theta} \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) \end{cases}$
3. $\overrightarrow{\Gamma(B,2/0)} = \ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} + \ddot{\theta}(t) \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) + \dot{\theta}(t) \left(\dot{\lambda}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta} \overrightarrow{i_1} \right).$

Corrigé voir 4.

Exercice 4 - Mouvement RT - RSG **

B2-13

Question 1 Déterminer $\overrightarrow{V(B,2/0)}$.

$$\overrightarrow{V(B,2/0)} = \overrightarrow{V(B,2/1)} + \overrightarrow{V(B,1/0)}.$$

D'une part, $\overrightarrow{V(B,2/1)} = \dot{\lambda} \overrightarrow{i_1}$.

D'autre part, en utilisant le roulement sans glissement en I, $\overrightarrow{V(B,1/0)} = \overrightarrow{V(I,1/0)} + \overrightarrow{BI} \wedge \overrightarrow{\Omega(1/0)} = \overrightarrow{0} + \left(-\lambda(t)\overrightarrow{i_1} - R\overrightarrow{j_0}\right) \wedge \overrightarrow{\theta} \overrightarrow{k_0} = -\dot{\theta} \left(\lambda(t)\overrightarrow{i_1} \wedge \overrightarrow{k_0} + R\overrightarrow{j_0} \wedge \overrightarrow{k_0}\right) = \dot{\theta} \left(\lambda(t)\overrightarrow{j_1} - R\overrightarrow{i_0}\right).$ Au final, $\overrightarrow{V(B,2/0)} = \dot{\lambda}\overrightarrow{i_1} + \dot{\theta} \left(\lambda(t)\overrightarrow{j_1} - R\overrightarrow{i_0}\right).$

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B.

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{c} \dot{\theta} \overrightarrow{k_0} \\ \dot{\lambda} \overrightarrow{i_1} + \dot{\theta} \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) \end{array} \right\}_{R}.$$

Question 3 Déterminer $\Gamma(B,2/0)$.

$$\overrightarrow{\Gamma(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(B,2/0)} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} + \ddot{\theta}(t) \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) + \dot{\theta}(t) \left(\dot{\lambda}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta} \overrightarrow{i_1} \right).$$

Exercice 5 - Mouvement RT - RSG **

B2-14

C1-05

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de 1;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un ressort exerce une action mécanique entre les points A et B.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir 6.

Exercice 6 - Mouvement RT - RSG **
B2-14
C1-05

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à \mathcal{R}_0 . Le système posède deux mobilités :

- translation de 1 par rapport à 2 (λ);
- rotation de l'ensemble $\{1+2\}$ autour du point I (le roulement sans glissement permet d'écrire une relation entre la rotation de paramètre θ et le déplacement suivant $\overrightarrow{i_0}$.

On en déduit la stratégie suivante :

- on isole 2 et on réalise un théorème de la résultante dynamique en projection suivant $\overrightarrow{i_1}$. BAME : $\{\mathscr{T}(1 \to 2)\}$, $\{\mathscr{T}(1_{\text{ressort}} \to 2)\}$ $(\overrightarrow{R(1 \to 2)} \cdot \overrightarrow{i_1} = 0)$ et $\overrightarrow{R(1_{\text{ressort}} \to 2)} \cdot \overrightarrow{i_1} = 0$) $\{\mathscr{T}(\text{Pesanteur} \to 2)\}$.
 on isole $\{1+2\}$ et on réalise un théorème du moment dynamique en I en projection suivant $\overrightarrow{k_0}$. BAME : $\{\mathscr{T}(0 \to 1)\}$
- $(\overrightarrow{\mathcal{M}(I,0\to 1)}\cdot\overrightarrow{k_0}=0), \{\mathscr{T}(\text{Pesanteur}\to 1)\} \text{ et } \{\mathscr{T}(\text{Pesanteur}\to 2)\}.$