где E_{ω} (z) — амплитуда поля, γ — обратное время жизни возбужденного электронно-колебательного состояния. Положим $\gamma{\approx}0.5\cdot10^{10}$ сек. $^{-1}$ и найдем максимально допустимое поле из условия

$$\frac{d^2E_{\rm cr}(z)_{\rm max}^2}{\hbar^2\gamma\Gamma} = 0.1. \tag{9}$$

Тогда, например, при коэффициенте усиления $|a_1|=1$ см⁻¹ (при этом $\omega=\omega_0-\varepsilon$, гогда, например, при коэффициенте усиления $|a_1|=1$ см $^-$ (при этом $\omega=\omega_0=\varepsilon$, $\varepsilon\ll\Gamma$) и длине образца z=10 см интенсивность падающей волны I_ω (0) не должна превышать $5\cdot 10^{-3}$ вт/см². В этом случае интенсивность волны утроенной частоты, согласно формуле (3), оказывается порядка 10^{-7} вт/см². Если же мы примем $\omega=\omega_0$, т. е. $\alpha_1=0$, то на выходе получим ничтожно малую величину $\sim 10^{-31}$ вт/см². При $\alpha_1=0$ и при интенсивности I_ω (0)= I_ω (z) $\approx 10^6$ вт/см² получается для z=10 см $I_{3\omega}$ (z) $\approx 10^{-3}$ вт/см².

Из этих оценок видно, что при наличии усиления падающей волны условие соглаиз этих оценов видно, что при наличи усиления падаощей вольы условие согласования фазовых скоростей является менее существенным; не имеет смысла добиваться лучшего выполнения этого условия, чем $|\Delta k| \approx |\Delta \alpha|$. Заметим также, что величина δn_1 (ω) мало меняется в окрестности частоты ω_0 , тогда как для коэффициента усиления уже весьма малый сдвиг частоты ω является существенным (см. рисунок). Авторы благодарят Л. И. Альперовича, П. Н. Занадворова, В. М. Рысакова и

Д. Ф. Смирнова за весьма полезное обсуждение работы.

Литература

[1] Н. Бломберген. Нелинейная оптика. Изд. «Мир», М., 1966.

- [1] Н. Бломберген. Нелинейная оптика. Изд. «Мир», М., 1966.
 [2] С. А. Ахманов, Р. В. Хохлов. Проблемы нелинейной оптики. Изд. ВИНИТИ, М., 1964.
 [3] Р. D. Maker, R. W. Terhune. Phys. Rev., 137, A801, 1965.
 [4] Р. D. Maker, R. W. Terhune, C. M. Savage. Quant. Electron. Proc. of the Third Intern. Congress, Paris, vol. 2, p. 1559. N. Y., 1964 (перев. в сб. «Оптические квантовые генераторы». Изд. «Мир», М., 1966).
 [5] Р. Р. Веу, J. F. Giuliani, H. Rabin. Phys. Rev. Lett., 19, 819, 1967.
 [6] Р. Р. Веу, J. F. Giuliani, H. Rabin. IEEE J. Quant. Elektr., QE-4, № 11, 932, 1968.
 [7] R. K. Chang, L. K. Galbraith. Phys. Rev., 171, 993, 1968.
 [8] К. К. Ребане. Элементарная теория колебательной структуры спектров примесных центров кристаллов. Изд. «Наука», М., 1968.

примесных центров кристаллов. Изд. «Наука», М., 1968.

[9] В. И. Пермогоров, Л. А. Сердюкова, М. Д. Франк-Каменецкий. Опт. и спектр., 25, 77, 1968.

[10] Е. Д. Трифонов, А. С. Трошин, Э. Е. Фрадкин. ФТТ, 9, 2061, 1967.

[11] E. D. Trifonov, A. S. Troshin. Phys. Stat. Solidi, 26, 519, 1968.

Поступило в Редакцию 7 июля 1969 г.

УЛК 621.375.9: 535

ИССЛЕДОВАНИЕ СУБМИЛЛИМЕТРОВОГО ЛАЗЕРА НА D₂O+D₂

А. Ф. Крупнов

В предыдущих работах [1, 2] нами было получено увеличение мощности субмиллиметровых лазеров на H₂O и D₂O при добавлении в разряд соответственно водорода и дейтерия. На $\ddot{\rm H}_2{\rm O}+{\rm H}_2$ при этом был получен отпаянный режим. Ввиду отсутствия в то время в нашем распоряжении газообразного дейтерия в опытах использовалось лишь незначительное обогащение паров D_2O дейтерием за счет реакции Лавуазье [2]. В настоящей заметке описывается работа лазера на D_2O с достаточно большой

добавкой ${\rm D_2}$ (на той же экспериментальной установке). При этом получено следующее.

1. Увеличение мощности генерации в несколько десятков раз, так что порядки мощности лазеров на H_2O+H_2 ($\lambda=0.1186$ мм) и D_2O+D_2 ($\lambda=0.1716$ мм) сравнялись. 2. Отпаянный режим работы лазера на D_2O+D_2 в течение 3 час. 3. Генерация линии 0.1077 мм (ранее полученная в [³]), которая наблюдалась при замене одного из стеклянных покрытых золотом зеркал лазера на матовое медное;

13 Оптика и спектроскопия, т. XXIX, вып. 2

это свидетельствует, по-видимому, о конкуренции этой линии с другой, намного более коротковолновой. На рисунке приведена запись генерации лазера на $\lambda = 0.1716$ п $\lambda = 0.1077$ мм, полученная при перемеще-

нии одного из зеркал лазера.
Автор благодарит Б. В. Громова,
Е. Н. Карякина, С. А. Зарубина за помощь в эксперименте.

Литература

[1] А.Ф. Крупнов, В.А. Сквор-пов, Л.А. Синегубко. Изв. вузов, радиофизика, 11, 778, 1968.
 [2] А.Ф. Крупнов, В.А. Сквор-пов, Л.А. Синегубко. Ра-диотехн. и электрон., 14, 1345, 1969.
 [3] W. W. Muller, G. T. Flesher. Appl. Phys. Lett., 8, 217, 1966.

Поступило в Редакцию 1 октября 1969 г.

УДК 621.375.9:535

ДИФРАКЦИОННОЕ РАСЩЕПЛЕНИЕ ЧАСТОТ в лазере с длиной волны 3.39 MKM

А. Д. Валуев, С. А. Савранский, А. Ф. Савушкин и Б. А. Шокин

Исследуется расщепление встречных волн, возникающее при внесении длафрагмы в резонатор лазера. Делается попытка связать наблюдаемое расщепление частот с нелинейной деформацией встречных волн.

Среди причин, вызывающих невзаимные эффекты в неон-гелиевом лазере бегущей волны, работающем на длине волны 3.39 мкм, особое место занимает дифракчто подтверждается приводимыми ниже экспериментальными результатами.

Установка представляла собой лазер работающий в режиме генерации одной продольной моды, трехзеркальный резонатор которого имел периметр 80 см.

Вначале лазер юстировался образом, чтобы расщепление частот встречных волн отсутствовало. Мощность генерации при этом оказывалась максималь-

Введение в резонатор диафрагм приводило к появлению расщепления частот Δv ,

дало к польдению расцепления частот Δv , которое было максимально, если диафрагма располагалась вблизи кюветы с активной средой. При удалении диафрагмы от кюветы (вдоль луча) Δv монотонно убывало и в точке, приблизительно равноудаленной от концов кюветы, обращалось в нуль. Переход через эту точку сопровождался изменением знака Δv , а его величина вновь нарастила и постигала максимима ости прафилуально понбличувание и постигала максимима ости прафилуального и понбличуванием нарастала и достигала максимума, если диафрагма приближалась к другому концу

Введение двух диафрагм симметрично с разных сторон активной среды приво-

дило к компенсации дифракционных явлений. С увеличением кривизны зеркал резонатора расщепление частот возрастает (рис. 1, а).