

Winter - 2012 Examination

Model Answer Page No: 1/19 Subject & Code: Basic Maths (12003)

Que.	Sub.	Model answers	Marks	Total
No. 1)	Que.	$\log_3 243 = \log_3 (3^5)$	1/2	Marks
ŕ	,	$=5\log_3(3)$	1/2	_
		$=5 \log_3(3)$ $=5$	1	2
		OR		
		$Put \log_3 243 = x$		
		$\therefore 3^x = 243$	1/2	
		$\therefore 3^x = 3^5$	1/2	
		$\therefore x = 5$	1/2	
		$\therefore \log_3 243 = 5$	1/2	2
	b)	$\frac{x+4}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}$	1/	
		x(x+1) x $x+1$	1/2	
		$\therefore x + 4 = (x+1)A + xB$		
		$Put \ x = 0$		
		$\therefore 0 + 4 = (1) A$	1/2	
		$\therefore \boxed{A=4}$	/2	
		$Put \ x = -1$		
		$\therefore -1 + 4 = 0 + (-1)B$	1/2	
		$\therefore \boxed{B = -3}$	72	
		$\therefore \boxed{\frac{x+4}{6} = \frac{4}{6} + \frac{-3}{6}}$	1/2	2
		$\therefore \boxed{\frac{x+4}{x(x+1)} = \frac{4}{x} + \frac{-3}{x+1}}$		
	c)			
	()	$\begin{vmatrix} 6 & x & 2 \end{vmatrix} = 0$		
		$\begin{vmatrix} 2 & 3 & 1 \\ 6 & x & 2 \\ 4 & x & -2 \end{vmatrix} = 0$		
		$\therefore 2(-2x-2x)-3(-12-8)+1(6x-4x)=0$	1	
		$\therefore -8x + 60 + 2x = 0$		
		$\therefore -6x + 60 = 0$		
		$\therefore \boxed{x=10}$	1	2
	d)	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 6 & 3 \end{bmatrix} \begin{bmatrix} 0 & -1 \end{bmatrix}$		
	(a)	$A - 3B = \begin{bmatrix} 6 & 3 \\ 2 & 1 \end{bmatrix} - 3 \begin{bmatrix} 0 & -1 \\ 3 & -2 \end{bmatrix}$		
		$\begin{bmatrix} 6 & 3 \end{bmatrix} \begin{bmatrix} 0 & -3 \end{bmatrix}$	1	
		$= \begin{bmatrix} 6 & 3 \\ 2 & 1 \end{bmatrix} - \begin{bmatrix} 0 & -3 \\ 9 & -6 \end{bmatrix}$		
		$= \begin{bmatrix} 6 & 6 \\ -7 & 7 \end{bmatrix}$	1	2
		[-7 7]		

Subject & Code: Basic Maths (12003) **Page No:** 2/19

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
1)		\mathbf{OR} $3B = 3 \begin{bmatrix} 0 & -1 \\ 3 & -2 \end{bmatrix} = \begin{bmatrix} 0 & -3 \\ 9 & -6 \end{bmatrix}$	1	
		$\therefore A - 3B = \begin{bmatrix} 6 & 3 \\ 2 & 1 \end{bmatrix} - \begin{bmatrix} 0 & -3 \\ 9 & -6 \end{bmatrix}$ $= \begin{bmatrix} 6 & 6 \\ -7 & 7 \end{bmatrix}$	1	2
	e)	$ \frac{1}{1-\cos\theta} + \frac{1}{1+\cos\theta} $ $ = \frac{1+\cos\theta + 1 - \cos\theta}{(1-\cos\theta)(1+\cos\theta)} or \frac{1+\cos\theta + 1 - \cos\theta}{1-\cos^2\theta} $		
		$= \frac{2}{\sin^2 \theta}$ $= 2\cos ec^2 \theta$	1	2
	f)	$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$	1/2	
		$=\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}}$	1/2	
		=1	1	2
	g)	$\sin 3A = 3\sin A - 4\sin^3 A$	1/2	
		$=3(0.6)-4(0.6)^3$	1/2	
		= 0.936	1	2
	h)	$\cos\left[\frac{\pi}{2} - \sin^{-1}\left(\frac{1}{2}\right)\right] = \cos\left[\frac{\pi}{2} - \frac{\pi}{6}\right]$	1/2	
		$=\cos\left[\frac{\pi}{3}\right]$	1/2	2
		$=\frac{1}{2} or 0.5$ OR		
		$\left \cos\left[\frac{\pi}{2} - \sin^{-1}\left(\frac{1}{2}\right)\right]\right = \cos\left[90^{\circ} - 30^{\circ}\right]$	1/2	
		$= \cos[60^{\circ}]$	1/2	
		$=\frac{1}{2} \ or \ 0.5$	1	2

Subject & Code: Basic Maths (12003)

Page No: 3/19

Que.	Sub.	Model engrees	Marks	Total
No.	Que.	Model answers	Marks	Marks
1)		$\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$	1/2	
		$\therefore \cos\left[\frac{\pi}{2} - \sin^{-1}\left(\frac{1}{2}\right)\right] = \cos\left[\frac{\pi}{2} - \frac{\pi}{6}\right]$	1/2	
		$= \cos\left[\frac{\pi}{3}\right]$ $= \frac{1}{2} or 0.5$	1	2
	i)	Let $A = (4, 3)$, $B = (-1, 1)$ $\therefore d(AB) \text{ or } AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		
		$= \sqrt{(-1-4)^2 + (1-3)^2}$ $= \sqrt{29} or 5.385$ OR	1	2
		The distance between (4, 3), $(-1, 1) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(-1 - 4)^2 + (1 - 3)^2}$ $= \sqrt{29} or 5.385$	1 1	2
	j)	$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ $\therefore \frac{y + 3}{6 + 3} = \frac{x - 2}{-4 - 2}$ $y + 3 x - 2$	1/2	
		$\therefore \frac{y+3}{9} = \frac{x-2}{-6}$ $\therefore -6(y+3) = 9(x-2)$ $\therefore 9x+6y=0 or 3x+2y=0$ OR	1/ ₂ 1	2
		$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6+3}{-4-2}$ $\therefore m = \frac{9}{-6} = -\frac{3}{2}$ $\therefore \text{ the equation is,}$	1/2	
		$y - y_1 = m(x - x_1)$ $\therefore y + 3 = -\frac{3}{2}(x - 2)$	1/2	
		$\therefore 3x + 2y = 0$	1	2

Subject & Code: Basic Maths (12003) **Page No:** 4/19

Que.	Sub.	Model answers	Marks	Total
No.	Que.		IVIAINS	Marks
1)	k)	Here $a = 5$, $b = -2\sqrt{6}$, $c_1 = 1$, $c_2 = -10$ $p = \left \frac{c_2 - c_1}{\sqrt{a^2 + b^2}} \right $ $= \left \frac{-10 - 1}{\sqrt{5^2 + \left(-2\sqrt{6}\right)^2}} \right $ $= \frac{11}{7} \text{or} 1.571$	1	2
		$2g = 0, 2f = -12, c = 5$ ∴ $g = 0, f = -6, c = 5$ ∴ Center = $(-g, -f) = (0, 6)$ Radius = $\sqrt{g^2 + f^2 - c}$ $= \sqrt{0^2 + 6^2 - 5}$ $= \sqrt{31} or 5.568$	1	2
2)	a)	$ \frac{1}{\log_{ab} abc} + \frac{1}{\log_{bc} abc} + \frac{1}{\log_{ca} abc} $ $ = \log_{abc} ab + \log_{abc} bc + \log_{abc} ca $ $ = \log_{abc} (ab \times bc \times ca) $ $ = \log_{abc} (abc)^{2} $ $ = 2\log_{abc} (abc) $ $ = 0$ OR	1 1 1	4
		$ \frac{1}{\log_{ab} abc} + \frac{1}{\log_{bc} abc} + \frac{1}{\log_{ca} abc} $ $ = \frac{\log ab}{\log abc} + \frac{\log bc}{\log abc} + \frac{\log ca}{\log abc} $ $ = \log_{abc} ab + \log_{abc} bc + \log_{abc} ca $ $ = \log_{abc} (ab \times bc \times ca) $ $ = \log_{abc} (abc)^{2} $ $ = 2\log_{abc} (abc) $ $ = 2 $ OR	1 1 1	4

Subject & Code: Basic Maths (12003)

Page No: 5/19

Que.	Sub.	Model answers	Marks	Total
No.	Que.		IVICINO	Marks
2)		$\frac{1}{\log_{ab} abc} + \frac{1}{\log_{bc} abc} + \frac{1}{\log_{ca} abc}$		
		$= \frac{1}{\log abc} + \frac{1}{\log abc} + \frac{1}{\log abc}$		
		$\frac{\log abc}{\log ab} \frac{\log abc}{\log bc} \frac{\log abc}{\log ca}$		
			1	
		$= \frac{\log ab}{\log abc} + \frac{\log bc}{\log abc} + \frac{\log ca}{\log abc}$	1	
		$= \frac{\log ab + \log bc + \log ca}{\log ab + \log bc + \log bc}$		
		$={\log abc}$		
		$= \frac{\log(ab \times bc \times ca)}{\log abc}$	1	
		$-\frac{1}{\log abc}$	1	
		$=\frac{\log(abc)^2}{}$		
		$=\frac{1}{\log abc}$		
		$=\frac{2\log(abc)}{abc}$	1	
		$-\frac{1}{\log abc}$	1	4
		= 2	1	4
	b)	$Ar^2 + r = 1$ $Ar^2 + r = 1$		
	0)	$\frac{4x^2 + x - 1}{x^3 - x} = \frac{4x^2 + x - 1}{x(x+1)(x-1)}$	1/2	
		$=\frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1}$		
		$\therefore 4x^2 + x - 1 = (x+1)(x-1)A + x(x-1)B + x(x+1)C$		
		Put x = 0		
		$\therefore 0 + 0 - 1 = (0 + 1)(0 - 1)A + 0 + 0$		
		$\therefore -1 = -A$	1	
		A = 1		
		Put x = -1		
		$\therefore 4(-1)^2 - 1 - 1 = 0 - 1(-1 - 1)B + 0$		
		$\therefore 2 = 2B$	1	
		$\therefore B = 1$	1	
		Put x = 1		
		$\therefore 4(1)^2 + 1 - 1 = 0 + 0 + 1(1+1)C$		
		$\therefore 4 = 2C$		
		$\therefore C = 2$	1	
			1/	4
		$\therefore \frac{4x^2 + x - 1}{x^3 - x} = \frac{1}{x} + \frac{1}{x + 1} + \frac{2}{x - 1}$	1/2	1
		$\begin{bmatrix} x-x & x & x+1 & x-1 \end{bmatrix}$		

Page No: 6/19 Subject & Code: Basic Maths (12003)

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
2)	c)	$\frac{x-2}{x^3+1} = \frac{x-2}{(x+1)(x^2-x+1)}$	1/2	
		$=\frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}$		
		$\therefore x - 2 = \left(x^2 - x + 1\right)A + \left(x + 1\right)\left(Bx + C\right)$		
		Put x = -1		
		$\therefore -1 - 2 = \left(\left(-1 \right)^2 + 1 + 1 \right) A + 0$		
		$\therefore -3 = 3A$ $\therefore \boxed{A = -1}$	1	
		$ \begin{array}{l} \therefore [A = -1] \\ Put \ x = 0 \end{array} $		
		$\therefore 0 - 2 = (0^2 - 0 + 1)A + (0 + 1)(0 + C)$		
		$\therefore -2 = A + C$		
		$\therefore -2 = -1 + C$		
		$\therefore \boxed{C = -1}$	1	
		$Put \ x = 1$		
		$\therefore 1 - 2 = (1^2 - 1 + 1)A + (1 + 1)(B + C)$ $\therefore -1 = A + 2B + 2C$		
		$\therefore -1 = -1 + 2B - 2$ $\therefore -1 = -1 + 2B - 2$	4	
		$\therefore B=1$	1	
		$\therefore \frac{x-2}{x^3+1} = \frac{-1}{x+1} + \frac{x-1}{x^2-x+1}$	1/2	4
		Note for Partial Fraction Methods: The above problems of partial fractions could be solved by the method of "equating equal power coefficients" also. This method is also applicable. Give appropriate marks in accordance with the scheme of marking. As this method is very tedious and complicated, hardly someone use this method in such cases. So such solution methods for partial fraction problems are not illustrated herein.		
	d)	$D = \begin{vmatrix} 2 & 3 & 1 \\ 1 & 1 & 1 \\ 4 & 4 & 1 \end{vmatrix} = 2(1-4)-3(1-4)+1(4-4)$ $= 3$	1	

Subject & Code: Basic Maths (12003)

Page No: 7/19

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
2)	~	$D_{x} = \begin{vmatrix} 4 & 3 & 1 \\ 1 & 1 & 1 \\ 16 & 4 & 1 \end{vmatrix} = 4(1-4)-3(1-16)+1(4-16)$ $= 21$	1/2	
		$D_{y} = \begin{vmatrix} 2 & 4 & 1 \\ 1 & 1 & 1 \\ 4 & 16 & 1 \end{vmatrix} = 2(1-16)-4(1-4)+1(16-4)$ $= -6$ $\begin{vmatrix} 2 & 3 & 4 \end{vmatrix}$	1/2	
		$D_z = \begin{vmatrix} 2 & 3 & 4 \\ 1 & 1 & 1 \\ 4 & 4 & 16 \end{vmatrix} = 2(16-4)-3(16-4)+4(4-4)$ $= -12$	1/2	
		$\therefore x = \frac{D_x}{D} = \frac{21}{3} = 7$	1/2	
		$y = \frac{D_{y}}{D} = \frac{-6}{3} = -2$	1/2	
		$z = \frac{D}{D} = \frac{-12}{3} = -4$	1/2	
	e)	$\frac{1}{1-x} = (1-x)^{-1}$ $= 1 - (-1)x + \frac{(-1)(-2)}{2!}x^2 - \frac{(-1)(-2)(-3)}{3!}x^3 + \dots$ $= 1 + x + x^2 + x^3 + \dots$	2	4
	f)	$T_{r+1} = {}^{n}C_{r}a^{r}b^{n-r}$ $Here \ n = 10, \ a = \frac{x}{y}, b = -\frac{y}{x}, r = 6$ $\therefore T_{7} = T_{6+1}$		
		$= {}^{10}C_6 \left(\frac{x}{y}\right)^6 \left(-\frac{y}{x}\right)^{10-6}$	1	
		$= 210 \cdot \frac{x^6}{y^6} \cdot \frac{y^4}{x^4}$ $= 210 \cdot \frac{x^2}{y^2}$	1+1	4
		y^2 Note: As the use of non-programmable scientific calculator is allowed, the value of nC_r can be calculated directly using calculator, so students are not supposed to use the corresponding formula.		

Subject & Code: Basic Maths (12003)

Page No: 8/19

	C 1		1	Tr . 1
Que. No.	Sub. Que.	Model answers	Marks	Total Marks
3)	a)	$A^{2} - 9A + 14I = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix} - 9 \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix} + 14 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 22 & 27 \\ 18 & 31 \end{bmatrix} - \begin{bmatrix} 36 & 27 \\ 18 & 45 \end{bmatrix} + \begin{bmatrix} 14 & 0 \\ 0 & 14 \end{bmatrix}$	1+1+1	WILLIAM
		$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	1	
		OR		
		$A^{2} = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$ $= \begin{bmatrix} 22 & 27 \\ 18 & 31 \end{bmatrix}$ $9A = 9 \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$ $= \begin{bmatrix} 36 & 27 \\ 18 & 45 \end{bmatrix}$ $14I = 14 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 14 & 0 \\ 0 & 14 \end{bmatrix}$	1 1 1	
	b)	$\therefore A^2 - 9A + 14I = \begin{bmatrix} 22 & 27 \\ 18 & 31 \end{bmatrix} - \begin{bmatrix} 36 & 27 \\ 18 & 45 \end{bmatrix} + \begin{bmatrix} 14 & 0 \\ 0 & 14 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ The cofactor matrix of A is,	1	4
		$C(A) = \begin{bmatrix} \begin{vmatrix} -3 & 0 \\ 0 & -1 \end{vmatrix} & -\begin{vmatrix} 2 & 0 \\ 6 & -1 \end{vmatrix} & \begin{vmatrix} 2 & -3 \\ 6 & 0 \end{vmatrix} \\ -\begin{vmatrix} 4 & 1 \\ 0 & -1 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 6 & -1 \end{vmatrix} & -\begin{vmatrix} 1 & 4 \\ 6 & 0 \end{vmatrix} \\ \begin{vmatrix} 4 & 1 \\ -3 & 0 \end{vmatrix} & -\begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 4 \\ 2 & -3 \end{vmatrix} \end{bmatrix}$	1	
		$= \begin{bmatrix} 3 & 2 & 18 \\ 4 & -7 & 24 \\ 3 & 2 & -11 \end{bmatrix}(*)$	2*	
		$\therefore adj(A) = \begin{bmatrix} 3 & 4 & 3 \\ 2 & -7 & 2 \\ 18 & 24 & -11 \end{bmatrix}$	1	4

Subject & Code: Basic Maths (12003) **Page No:** 9/19

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
3)		(*) Note: In the matrix <i>C</i> (<i>A</i>), if 1 to 3 elements are wrong (either in sign or value), deduct ½ mark, if 4 to 6 elements are wrong, deduct 1½ marks, if 7 to 9 are wrong, deduct all the 2 marks. Further, if all the elements in the last i.e., <i>adj</i> (<i>A</i>) are correct, then only give 1 mark.		
		OR		
		The matrix of minors is,		
		$M(A) = \begin{bmatrix} \begin{vmatrix} -3 & 0 \\ 0 & -1 \end{vmatrix} & \begin{vmatrix} 2 & 0 \\ 6 & -1 \end{vmatrix} & \begin{vmatrix} 2 & -3 \\ 6 & 0 \end{vmatrix} \\ \begin{vmatrix} 4 & 1 \\ 0 & -1 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 6 & -1 \end{vmatrix} & \begin{vmatrix} 1 & 4 \\ 6 & 0 \end{vmatrix} \\ \begin{vmatrix} 4 & 1 \\ -3 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 4 \\ 2 & -3 \end{vmatrix} \end{bmatrix}$		
		$M(A) = \begin{vmatrix} 4 & 1 \\ 0 & -1 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 6 & -1 \end{vmatrix} \begin{vmatrix} 1 & 4 \\ 6 & 0 \end{vmatrix}$	1	
		$\begin{bmatrix} \begin{vmatrix} 4 & 1 \\ -3 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 4 \\ 2 & -3 \end{vmatrix} \end{bmatrix}$		
		$= \begin{bmatrix} 3 & -2 & 18 \\ -4 & -7 & -24 \\ 3 & -2 & -11 \end{bmatrix}$	1	
		∴ the matrix of cofactors is,		
		$C(A) = \begin{vmatrix} 3 & 2 & 18 \\ 4 & -7 & 24 \\ 3 & 2 & -11 \end{vmatrix}$	1	
		$\therefore adj(A) = \begin{bmatrix} 3 & 4 & 3 \\ 2 & -7 & 2 \end{bmatrix}$	1	4
		[18 24 -11]		
		OR		
		$\begin{vmatrix} A_{11} = \begin{vmatrix} -3 & 0 \\ 0 & -1 \end{vmatrix} \qquad A_{12} = -\begin{vmatrix} 2 & 0 \\ 6 & -1 \end{vmatrix} \qquad A_{13} = \begin{vmatrix} 2 & -3 \\ 6 & 0 \end{vmatrix}$		
		$\begin{vmatrix} A_{21} = -\begin{vmatrix} 4 & 1 \\ 0 & -1 \end{vmatrix} \qquad A_{22} = \begin{vmatrix} 1 & 1 \\ 6 & -1 \end{vmatrix} \qquad A_{23} = -\begin{vmatrix} 1 & 4 \\ 6 & 0 \end{vmatrix}$	2	
		$\begin{vmatrix} A_{31} = \begin{vmatrix} 4 & 1 \\ -3 & 0 \end{vmatrix} \qquad A_{32} = -\begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} \qquad A_{33} = \begin{vmatrix} 1 & 4 \\ 2 & -3 \end{vmatrix}$		
		Note: In the above, if 1 to 3 elements are wrong, deduct ½ mark, if 4 to 6 elements are wrong, deduct 1½ marks, and if 7 to 9 are wrong, deduct all the marks. Further, if all the elements in the following matrices C(A) and adj (A) are correct, then only give the marks.		

Page No: 10/19 Subject & Code: Basic Maths (12003)

Que.	Sub.	Model answers	Marks	Total
No.	Que.		iviaiks	Marks
3)		$C(A) = \begin{bmatrix} 3 & 2 & 18 \\ 4 & -7 & 24 \\ 3 & 2 & -11 \end{bmatrix}$	1	
		$\therefore adj(A) = \begin{bmatrix} 3 & 4 & 3 \\ 2 & -7 & 2 \\ 18 & 24 & -11 \end{bmatrix}$	1	4
	c)	$ A = \begin{vmatrix} 2 & -1 & 0 \\ 1 & 0 & 4 \\ 1 & -1 & 1 \end{vmatrix} = 2(0+4)+1(1-4)+0$ $= 5$ Note: To find the adj (A), students may follow any of methods as shown in the question 3 (b). Please give appropriate marks, as per scheme of marking discussed in the question 3 (b).	1	
		$adj(A) = \begin{bmatrix} 4 & 1 & -4 \\ 3 & 2 & -8 \\ -1 & 1 & 1 \end{bmatrix}$ $\therefore A^{-1} = \frac{1}{2} adi(A)$	2	
		$\therefore A^{-1} = \frac{1}{ A } adj(A)$ $= \frac{1}{5} \begin{bmatrix} 4 & 1 & -4 \\ 3 & 2 & -8 \\ -1 & 1 & 1 \end{bmatrix}$	1	4
	d)	$x + y + z = 6$ $x - y + 2z = 5$ $2x + y - z = 1$ $\therefore A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 2 & 1 & -1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B = \begin{bmatrix} 6 \\ 5 \\ 1 \end{bmatrix}$ $\therefore A = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 2 & 1 & -1 \end{vmatrix} = 1(1-2) - 1(-1-4) + 1(1+2)$		
		= 7 Note: To find the adj (A), students may follow any of methods as shown in the question 3 (b). Please give appropriate marks, as per scheme of marking discussed in the question 3 (b).	1/2	

Subject & Code: Basic Maths (12003) **Page No:** 11/19

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
3)	Que.	$\therefore adj(A) = \begin{bmatrix} -1 & 2 & 3 \\ 5 & -3 & -1 \\ 3 & 1 & -2 \end{bmatrix}$	1	WIGHES
		$\therefore A^{-1} = \frac{1}{ A } adj(A)$ $= \frac{1}{7} \begin{bmatrix} -1 & 2 & 3 \\ 5 & -3 & -1 \\ 3 & 1 & -2 \end{bmatrix}$	1	
		$\therefore \text{ the solution is,}$		
		$X = A^{-1}B$		
		$= \frac{1}{7} \begin{bmatrix} -1 & 2 & 3 \\ 5 & -3 & -1 \\ 3 & 1 & -2 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \\ 1 \end{bmatrix}$		
		$=\frac{1}{7} \begin{bmatrix} 7\\14\\21 \end{bmatrix}$		
		$=\begin{bmatrix}1\\2\end{bmatrix}$	1	
		$\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ $\therefore x = 1, y = 2, z = 3$	1/2	4
	e)	$\sin(75^{\circ} + A)\sin(75^{\circ} - A) - \cos(15^{\circ} + A)\cos(15^{\circ} - A)$		
		$= -\frac{1}{2} \left[\cos(150^{\circ}) - \cos(2A) \right] - \frac{1}{2} \left[\cos(30^{\circ}) + \cos(2A) \right]$	1	
		$= \frac{1}{2} \left[-\cos(150^{\circ}) - \cos(30^{\circ}) \right]$	1	
		$ = \frac{1}{2} \left[-\cos(180^{\circ} - 30^{\circ}) - \cos(30^{\circ}) \right] or = \frac{1}{2} \left[-\cos(90^{\circ} + 60^{\circ}) - \cos(30^{\circ}) \right] $		
		$= \frac{1}{2} \left[+\cos(30^{\circ}) - \cos(30^{\circ}) \right] = \frac{1}{2} \left[+\sin(60^{\circ}) - \cos(30^{\circ}) \right]$	1	
		$=0$ $=\frac{1}{2}\left[\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}\right] = 0$	1	4
		OR $\sin(75^{\circ} + A)\sin(75^{\circ} - A) - \cos(15^{\circ} + A)\cos(15^{\circ} - A)$		
		$= \sin(75^{\circ} + A)\sin(75^{\circ} - A) - \cos[90^{\circ} - (75^{\circ} - A)]\cos[90^{\circ} - (75^{\circ} + A)]$	1	
		$= \sin(75^{\circ} + A)\sin(75^{\circ} - A) - \sin(75^{\circ} - A)\sin(75^{\circ} + A)$	1+1	
		=0	1	4

Subject & Code: Basic Maths (12003)

Page No: 12/19

Marks	3 6 1
1	Marks
1	
•	
1	
•	
1	
1	4
1	
•	
1	
1	
1	4
1	4
2	
	4
_	2 2

Subject & Code: Basic Maths (12003) **Page No:** 13/19

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
4)	c)	$\sin A \sin (60-A) \sin (60+A)$		IVIAIR
		$= \sin A \left(\sin 60 \cos A - \cos 60 \sin A\right) \left(\sin 60 \cos A + \cos 60 \sin A\right)$	1	
		$= \sin A \left(\sin^2 60 \cos^2 A - \cos^2 60 \sin^2 A\right)$	1	
		$= \sin A \left(\frac{3}{4} \cos^2 A - \frac{1}{4} \sin^2 A \right)$	1	
		$= \frac{1}{4}\sin A \left(3\cos^2 A - \sin^2 A\right)$		
		$= \frac{1}{4}\sin A \left[3(1-\sin^2 A)-\sin^2 A\right]$		
		$= \frac{1}{4}\sin A \left[3 - 4\sin^2 A \right]$	1	
		$=\frac{1}{4}\Big[3\sin A - 4\sin^3 A\Big]$		
		$=\frac{1}{4}\sin 3A$	1	4
		OR		
		$\sin A \sin \left(60 - A\right) \sin \left(60 + A\right) = \sin A \left(\sin^2 60 - \sin^2 A\right)$	1	
		$= \sin A \left(\frac{3}{4} - \sin^2 A \right)$	1	
		$= \frac{1}{4}\sin A \left[3 - 4\sin^2 A \right]$		
		$=\frac{1}{4}\Big[3\sin A - 4\sin^3 A\Big]$	1	
		$=\frac{1}{4}\sin 3A$	1	4
		OR	1	
		$\sin A \sin (60 - A) \sin (60 + A) = \sin A \cdot \frac{1}{-2} (\cos 120 - \cos 2A)$	1	
		$= -\frac{1}{2}\sin A \cdot \left[\cos(90+30) - \cos 2A\right]$		
		$= -\frac{1}{2}\sin A \cdot \left[-\sin 30 - \cos 2A\right]$	1	
		$=\frac{1}{2}\sin A \cdot \left[\frac{1}{2} + 1 - 2\sin^2 A\right]$		
		$=\frac{1}{2}\sin A\cdot\left(\frac{3}{2}-2\sin^2 A\right)$		
		$= \frac{1}{4}\sin A \left[3 - 4\sin^2 A \right]$		
		$=\frac{1}{4}\Big[3\sin A - 4\sin^3 A\Big]$	1	
		$=\frac{1}{4}\sin 3A$	1	4

Subject & Code: Basic Maths (12003)

Page No: 14/19

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
4)	d)	$\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 2\theta + \cos 4\theta} = \frac{\sin 2(2\theta) + \sin 2\theta}{1 + \cos 2(2\theta) + \cos 2\theta}$		112012110
		$= \frac{2\sin 2\theta \cos 2\theta + \sin 2\theta}{2\cos^2 2\theta + \cos 2\theta}$	1	
		$= \frac{\sin 2\theta (2\cos 2\theta + 1)}{\cos 2\theta (2\cos 2\theta + 1)}$	1	
		$= \frac{\sin 2\theta}{\cos 2\theta}$ $= \tan 2\theta$	1	4
	e)	$\frac{1+\sin x - \cos x}{1+\sin x + \cos x} = \frac{1-\cos x + \sin x}{1+\cos x + \sin x}$		
		$= \frac{2\sin^2\left(\frac{x}{2}\right) + 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}{2\cos^2\left(\frac{x}{2}\right) + 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}$	1	
		$= \frac{2\sin\left(\frac{x}{2}\right)\left[1+\cos\left(\frac{x}{2}\right)\right]}{2\cos\left(\frac{x}{2}\right)\left[1+\cos\left(\frac{x}{2}\right)\right]}$	1	
		$= \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)}$	1	
		$=\tan\left(\frac{x}{2}\right)$	1	4
	f)	$\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) = \tan^{-1}\left(\frac{\frac{1}{7} + \frac{1}{13}}{1 - \frac{1}{7} \cdot \frac{1}{13}}\right)$	1	
		$=\tan^{-1}\left(\frac{20}{90}\right)$	1	
		$= \tan^{-1}\left(\frac{2}{9}\right)$	1	
		$=\cot^{-1}\left(\frac{9}{2}\right)$	1	4

Page No: 15/19 Subject & Code: Basic Maths (12003)

Que.	Sub.	N. 1.1) / 1	Total
No.	Que.	Model answers	Marks	Marks
5)	a)	Let $A = (-1, -4)$, $B = (4, 6)$, $C = (-4, 10)$		
		$\therefore AB = \sqrt{(4+1)^2 + (6+4)^2} = \sqrt{125}$	1	
		$BC = \sqrt{(-4-4)^2 + (10-6)^2} = \sqrt{80}$	1	
		$CA = \sqrt{(-4+1)^2 + (10+4)^2} = \sqrt{205}$	1	
		$\therefore \left(\sqrt{125}\right)^2 + \left(\sqrt{80}\right)^2 = \left(\sqrt{205}\right)^2$		
		$\therefore AB^2 + BC^2 = CA^2$	1	
		∴ the triangle is right angled triangle.	1	4
		-8 -2 1		
	b)	Area is, $\Delta = \frac{1}{2} \begin{bmatrix} -8 & -2 & 1 \\ -4 & -6 & 1 \\ 1 & 5 & 1 \end{bmatrix}$	1 ½	
		1	41/	
		$= \frac{1}{2} \left[-8(-6-5) + 2(-4+1) + 1(-20-6) \right]$	$\begin{vmatrix} 1\frac{1}{2} \\ 1 \end{vmatrix}$	
		= 28		4
	c)	Given $P = (1, 2), Q = (3, 4), R = (1, 0)$		
		M = Midpoint of QR		
		$=\left(\frac{3+1}{2},\frac{4+0}{2}\right)$		
		=(2,2)	1+1	
		$Slope of PM = \frac{2-2}{2-1} = 0$	1	
		∴ PM is parallel to x-axis.		
		∴ equation of PM is		
		y = y-coordinate of P or M or $y-2=0(x-1)$		
		$\therefore y = 2$	1	4
	d)	2x + 3y = 1		
		3x - 4y = 4		
		$\therefore 8x + 12y = 4$		
		9x-12y=12		
		$\therefore 17x = 16$		
		$\therefore x = \frac{16}{17}$	1/2	
		$y = -\frac{5}{}$	1/2	
		17		

Subject & Code: Basic Maths (12003)

Page No: 16/19

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
5)	Que.	$\therefore \text{ Point of intersection} = \left(\frac{16}{17}, -\frac{5}{17}\right)$	1	WIGHT
		∴ equation is,		
		$\frac{y-y_1}{y-y_1} = \frac{x-x_1}{y-y_1}$		
		$y_2 - y_1 \qquad x_2 - x_1$		
		$\therefore \frac{y-2}{-\frac{5}{17}-2} = \frac{x-3}{\frac{16}{17}-3}$	1	
		$\therefore 39x - 35y - 47 = 0$	1	4
		OR	1	
		$\therefore \text{ Point of intersection} = \left(\frac{16}{17}, -\frac{5}{17}\right)$		
		$\therefore Slope m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-\frac{5}{17} - 2}{\frac{16}{17} - 3} = \frac{39}{35}$	1	
		∴ equation is,		
		$y - y_1 = m(x - x_1)$		
		$\therefore y-2=\frac{39}{35}(x-3)$		
		$\therefore 39x - 35y - 47 = 0$	1	4
	e)	Given $4(x+2) = 3(y-4)$		
		$\therefore 4x - 3y + 20 = 0$	1	
		∴ the length of perpendicular is, $P = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $		
		$= \frac{\left \frac{4(-3) - 3(-4) + 20}{\sqrt{4^2 + (-3)^2}} \right }{\sqrt{4^2 + (-3)^2}}$	2	
		$\begin{vmatrix} \sqrt{4^2 + (-3)} \\ = 4 \end{vmatrix}$	1	4
	f)	For $2x + x = 1$ i.e. $3x = 1$, the slope is		
	,	$m_1 = \infty$	1	
		<i>OR</i> the line is parallel to y-axis. ∴ its angle is $\theta_1 = 90^\circ$		
		For line $x + 3y = 6$, the slope is		
		$m_2 = \tan \theta_2 = -\frac{1}{3}$	1	

Subject & Code: Basic Maths (12003)

Page No: 17/19

No. Que. $ \begin{array}{c} \text{No. Que.} \\ \text{Oye.} \\ \text{Oye.} \\ \text{Oye.} \\ \vdots \text{ the acute angle is,} \\ \theta = \theta_1 + \theta_2 = 90^\circ + \tan^{-1} \left(-\frac{1}{3} \right) = 90^\circ - 18.435^\circ = 71.565^\circ $ 6) a) $ \begin{array}{c} \text{Let } A = (5, 4), B = (2, 3), C = (1, 0), D = (6, 1) \\ AB = \sqrt{(2-5)^2 + (3-4)^2} = \sqrt{10} \\ BC = \sqrt{(1-2)^2 + (0-3)^2} = \sqrt{10} \\ CD = \sqrt{(4-1)^2 + (1-0)^2} = \sqrt{10} \\ AD = \sqrt{(4-5)^2 + (1-4)^2} = \sqrt{10} \\ \therefore AB = BC = CD = AD \\ \therefore ABCD \text{ is a rhombus.} \\ \text{b)} $ $ \begin{array}{c} \text{Let center } C = (4, 5), \text{ and } P = (-2, -3) \\ \therefore radius \text{ is } r = CP = \sqrt{(-2-4)^2 + (-3-5)^2} = 10 \\ \therefore \text{ the equation is,} (x-4)^2 + (y-5)^2 = 10^2 \\ \therefore x^2 + y^2 - 8x - 10y - 59 = 0 \end{array} $		Marks
$\therefore \text{ the acute angle is,}$ $\theta = \theta_1 + \theta_2 = 90^\circ + \tan^{-1} \left(-\frac{1}{3} \right) = 90^\circ - 18.435^\circ = 71.565^\circ$ a) $Let A = (5, 4), B = (2, 3), C = (1, 0), D = (6, 1)$ $AB = \sqrt{(2-5)^2 + (3-4)^2} = \sqrt{10}$ $BC = \sqrt{(1-2)^2 + (0-3)^2} = \sqrt{10}$ $CD = \sqrt{(4-1)^2 + (1-0)^2} = \sqrt{10}$ $AD = \sqrt{(4-5)^2 + (1-4)^2} = \sqrt{10}$ $AB = BC = CD = AD$ $ABCD \text{ is a rhombus.}$ b) $Let \ center \ C = (4, 5), \ and \ P = (-2, -3)$ $ABCD = \sqrt{(-2-4)^2 + (-3-5)^2} = 10$ $the \ equation is, (x-4)^2 + (y-5)^2 = 10^2$	1	
6) a) $\theta = \theta_1 + \theta_2 = 90^\circ + \tan^{-1}\left(-\frac{1}{3}\right) = 90^\circ - 18.435^\circ = 71.565^\circ$ $AB = \sqrt{(2-5)^2 + (3-4)^2} = \sqrt{10}$ $BC = \sqrt{(1-2)^2 + (0-3)^2} = \sqrt{10}$ $CD = \sqrt{(4-1)^2 + (1-0)^2} = \sqrt{10}$ $AD = \sqrt{(4-5)^2 + (1-4)^2} = \sqrt{10}$ $AB = BC = CD = AD$ $ABCD \text{ is a rhombus.}$ b) $Let \ center \ C = (4, 5), \ and \ P = (-2, -3)$ $ABCD = \sqrt{(2-4)^2 + (-3-5)^2} = 10$ $ABCD = \sqrt{(2-4)^2 + (-3-5)^2} = 10$ $ABCD = \sqrt{(2-4)^2 + (2-3-5)^2} = 10$	1	
6) a) Let $A = (5, 4)$, $B = (2, 3)$, $C = (1, 0)$, $D = (6, 1)$ $AB = \sqrt{(2-5)^2 + (3-4)^2} = \sqrt{10}$ $BC = \sqrt{(1-2)^2 + (0-3)^2} = \sqrt{10}$ $CD = \sqrt{(4-1)^2 + (1-0)^2} = \sqrt{10}$ $AD = \sqrt{(4-5)^2 + (1-4)^2} = \sqrt{10}$ $AB = BC = CD = AD$ $ABCD \text{ is a rhombus.}$ b) Let center $C = (4, 5)$, and $P = (-2, -3)$ $ABCD = \sqrt{(-2-4)^2 + (-3-5)^2} = 10$	1	4
$AB = \sqrt{(2-5)^2 + (3-4)^2} = \sqrt{10}$ $BC = \sqrt{(1-2)^2 + (0-3)^2} = \sqrt{10}$ $CD = \sqrt{(4-1)^2 + (1-0)^2} = \sqrt{10}$ $AD = \sqrt{(4-5)^2 + (1-4)^2} = \sqrt{10}$ $AB = BC = CD = AD$ $ABCD \text{ is a rhombus.}$ b) $Let \ center \ C = (4, 5), \ and \ P = (-2, -3)$ $radius \ is \ r = CP = \sqrt{(-2-4)^2 + (-3-5)^2} = 10$ $the \ equation \ is, (x-4)^2 + (y-5)^2 = 10^2$		_
$BC = \sqrt{(1-2)^2 + (0-3)^2} = \sqrt{10}$ $CD = \sqrt{(4-1)^2 + (1-0)^2} = \sqrt{10}$ $AD = \sqrt{(4-5)^2 + (1-4)^2} = \sqrt{10}$ $AB = BC = CD = AD$ $ABCD \text{ is a rhombus.}$ b) $Let \ center \ C = (4, 5), \ and \ P = (-2, -3)$ $radius \ is \ r = CP = \sqrt{(-2-4)^2 + (-3-5)^2} = 10$ $the \ equation \ is, (x-4)^2 + (y-5)^2 = 10^2$		
$CD = \sqrt{(4-1)^2 + (1-0)^2} = \sqrt{10}$ $AD = \sqrt{(4-5)^2 + (1-4)^2} = \sqrt{10}$ $AB = BC = CD = AD$ $ABCD \text{ is a rhombus.}$ b) $Let \ center \ C = (4, 5), \ and \ P = (-2, -3)$ $radius \ is \ r = CP = \sqrt{(-2-4)^2 + (-3-5)^2} = 10$ $the \ equation \ is, \qquad (x-4)^2 + (y-5)^2 = 10^2$	1/2	
$CD = \sqrt{(4-1)^2 + (1-0)^2} = \sqrt{10}$ $AD = \sqrt{(4-5)^2 + (1-4)^2} = \sqrt{10}$ $AB = BC = CD = AD$ $ABCD \text{ is a rhombus.}$ b) $Let \ center \ C = (4, 5), \ and \ P = (-2, -3)$ $radius \ is \ r = CP = \sqrt{(-2-4)^2 + (-3-5)^2} = 10$ $the \ equation \ is, \qquad (x-4)^2 + (y-5)^2 = 10^2$	1/2	
$AD = \sqrt{(4-5)^2 + (1-4)^2} = \sqrt{10}$ $\therefore AB = BC = CD = AD$ $\therefore ABCD \text{ is a rhombus.}$ b) $Let \ center \ C = (4, 5), \ and \ P = (-2, -3)$ $\therefore radius \ is \ r = CP = \sqrt{(-2-4)^2 + (-3-5)^2} = 10$ $\therefore the \ equation \ is, \qquad (x-4)^2 + (y-5)^2 = 10^2$	1/2	
$\therefore AB = BC = CD = AD$ $\therefore ABCD \text{ is a rhombus.}$ b) Let center $C = (4, 5)$, and $P = (-2, -3)$ $\therefore radius \text{ is } r = CP = \sqrt{(-2-4)^2 + (-3-5)^2} = 10$ $\therefore the equation is, \qquad (x-4)^2 + (y-5)^2 = 10^2$	1/2	
$\therefore ABCD \text{ is a rhombus.}$ $Let \ center \ C = (4, 5), \ and \ P = (-2, -3)$ $\therefore radius \ is \ r = CP = \sqrt{(-2-4)^2 + (-3-5)^2} = 10$ $\therefore the \ equation \ is, (x-4)^2 + (y-5)^2 = 10^2$	1	
$\therefore radius \ is \ r = CP = \sqrt{(-2-4)^2 + (-3-5)^2} = 10$ $\therefore the \ equation \ is, (x-4)^2 + (y-5)^2 = 10^2$	1	4
$\therefore radius is \ r = CP = \sqrt{(-2-4)^2 + (-3-5)^2} = 10$ $\therefore the equation is, (x-4)^2 + (y-5)^2 = 10^2$		
$\therefore \text{ the equation is,} (x-4)^2 + (y-5)^2 = 10^2$	1	
	2	
	1	4
The equation of concentric circle is,		
$x^2 + y^2 + 6x - 4y + c = 0$	1	
But the circle is passing through (2, 3)		
$\therefore 2^2 + 3^2 + 6(2) - 4(3) + c = 0$	1	
$\therefore c = -13$	1	
$\therefore x^2 + y^2 + 6x - 4y - 13 = 0$	1	4
OR $x^2 + y^2 + 6x - 4y + c = 0$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\therefore g = 3, f = -2, c = -12$		
$\therefore centre \ C = (-g, -f) = (-3, 2)$	1	
But the circle is passing through $P = (2, 3)$		
:. radius $r = CP = \sqrt{(2+3)^2 + (3-2)^2} = \sqrt{26}$	1	
$\therefore \text{ the equation is } (x+3)^2 + (y-2)^2 = (\sqrt{26})^2$	1	
$\therefore x^2 + y^2 + 6x - 4y - 13 = 0$	1	4

Subject & Code: Basic Maths (12003)

Page No: 18/19

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
6)	d)	$ \overline{a} \times \overline{b} = \begin{vmatrix} i & j & k \\ 2 & -1 & 2 \\ 2 & -2 & 1 \end{vmatrix} $	1	IVIAIRS
		=3i+2j-2k	1	
		$\left \therefore \left \overline{a} \times \overline{b} \right = \sqrt{3^2 + 2^2 + \left(-2\right)^2} = \sqrt{17}$	1	
		Unit Vector = $\frac{\overline{a} \times \overline{b}}{\left \overline{a} \times \overline{b}\right } = \frac{3i + 2j - 2k}{\sqrt{17}}$	1	4
	e)	The resultant force is,		
		$\overline{F} = (3\overline{i} + \overline{j} + 7\overline{k}) + (-2\overline{i} - 2\overline{j} + \overline{k}) + (4\overline{i} + \overline{j} - 5\overline{k})$		
		$=5\overline{i}+3\overline{k}$	1	
		Let $A = (1, -1, 3), B = (4, 2, -2)$		
		$\therefore \overline{AB} = \overline{b} - \overline{a}$		
		$= (4-1)\overline{i} + (2+1)\overline{j} + (-2-3)\overline{k}$		
		$=3\overline{i}+3\overline{j}-5\overline{k}$	1	
		$\therefore \text{ Work done } W = \overline{F} \cdot \overline{AB}$	1	
		$= (5\overline{i} + 3\overline{k}) \cdot (3\overline{i} + 3\overline{j} - 5\overline{k})$ $= 0$	1	4
	f)	$\overline{AP} = \overline{p} - \overline{a}$		
		= (1-1)i + (-1-2)j + (2-3)k		
		$= -3\overline{j} - \overline{k}$	1	
		$\therefore Moment of force = \overline{AP} \times \overline{F}$		
		$= \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 0 & -3 & -1 \\ 2 & 3 & 1 \end{vmatrix}$	1	
		$= (-3+3)\overline{i} - (0+2)\overline{j} + (0+6)\overline{k}$		
		$=-2\overline{j}+6\overline{k}$	1	
		:. Moment of force about the line		
		= Re solved part of the moment of \overline{F} about A along the line		
		$= \left(-2\overline{j} + 6\overline{k}\right) \cdot \left(\frac{\overline{i} + 3\overline{j} + \overline{k}}{\sqrt{1^2 + 3^2 + 1^2}}\right)$ $= \frac{1}{\sqrt{11}} \left(0 \times 1 + \left(-2\right) 3 + 6 \times 1\right)$		
		$= \frac{1}{\sqrt{11}} (0 \times 1 + (-2)3 + 6 \times 1)$ $= 0$	1	4

Subject & Code: Basic Maths (12003) **Page No:** 19/19

Que.	Sub.	Model answers	Marks	Total
No	Que.			Mark
,				
		Important Note		
		In the solution of the question paper, wherever possible		
		all the possible alternative methods of solution are given for		
		the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the		
		method falls within the scope of the curriculum, and then		
		only give appropriate marks in accordance with the scheme of		
		marking.		