SPACE SHUTTLE PLUME/SIMULATION **APPLICATION**

FINAL SUMMARY REPORT

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER Science and Engineering Directorate Under Contract NAS8-32524

Prepared by: -

NORTHROP SERVICES, INC.

P. O. Box 1484 Huntsville, Alabama 35807 (205) 837-0580

SPACE SHUTTLE PLUME SIMULATION APPLICATION FINAL SUMMARY REPORT

15 May 1979

by

1

W. Boyle

B. Conine

G. Bell

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER SCIENCE AND ENGINEERING DIRECTORATE

Under Contract NAS8-32524

Reviewed and Approved by:

M.A. Sloan, Jr., Manager

Technology

NORTHROP SERVICES, INC. ENGINEERING AND TECHNOLOGY CENTER P.O. BOX 1484 HUNTSVILLE, ALABAMA 35807 (205)837-0580

FOREWORD

This document summarizes the results of data and data analysis of two wind tunnel test programs to define the plume induced environments on the Space Shuttle vehicle. The work was performed for the NASA Marshall Space Flight Center, Huntsville, Alabama. The NASA technical monitors for this study was Mssrs. Kenneth L. Blackwell and Joseph L. Simms of the Systems Dynamics Laboratory.

TABLE OF CONTENTS

Section	<u>Title</u>	Page
	FOREWORD	ii
	LIST OF ILLUSTRATIONS	iv
	LIST OF TABLES	v .
	GENERAL NOMENCLATURE	vi
•	TEST NOMENCLATURE	vii
,	GAS DYNAMIC NOMENCLATURE	ix
•	REVISIONS	хi
· I	INTRODUCTION	1-1
II	WIND TUNNEL MODELS	2-1
III .	TEST CONDITIONS	3-1
IV	WIND TUNNEL MODEL NOZZLE CALIBRATION ANALYSIS	4-1
v	PLUME SIMULATION	5-1
VI	DATA ANALYSIS	6-1
VII	TEST RESULTS	7-1
VIII	BASE MATH MODEL	8-1
IX	FOREBODY PLUME INDUCED MATH MODEL	9-1
. X	CONCLUSIONS	10-1
XI	RECOMMENDATIONS	11-1
XTT	REFERENCES	12-1

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>	Page
2-1	IA119 MODEL INSTALLATION	2-3
2-2	FLOW THROUGH NOZZLE AIR SUPPLY STRUTS - IA119 MODEL	2-4
3-1	SCHEDULE 6 ELEVON DEFLECTIONS	
3-2	ELEVON SCHEDULE	3-3
3-3	ELEVON SCHEDULE	3-4
3-4	ELEVON SCHEDULE	3-5
3-5	ELEVON SCHEDULE	3-6
3-6	ELEVON SCHEDULE	3-7
3-7	ELEVON DEFLECTION MATRIX $(M_{\infty} = 1.55)$	3–8
3-8	ELEVON DEFLECTION MATRIX $(M_{\infty} = 1.80)$	3-9
3-9	ELEVON DEFLECTION MATRIX $(M_{\infty} = 2.20)$	3-10
3-10	ELEVON DEFLECTION MATRIX $(M_{\infty} = 2.50)$	3-11
4-1	SSME NOZZLE CHAMBER TO EXIT PRESSURE RATIO - 1A119	4-2
4-2	SRB NOZZLE CHAMBER TO EXIT PRESSURE RATIO - 1A119	4-3
4-3	SSME NOZZLE CHAMBER TO EXIT PRESSURE RATIO — 1A138	4-4
4-4	SRB NOZZLE CHAMBER TO EXIT PRESSURE RATIO $-$ 1A138	4-5
5-1	PROTOTYPE POSSIBILITY CURVE	5-3
5-2	SIMILARITY PARAMETER EXPONENT	5-4
5-3	PLUME FLOW FIELD AREAS	5-5
6-1	PLUME FLOW FIELD AREAS	6-4

LIST OF TABLES

<u>Tab I e</u>	<u>Title</u>		Page
5–1	CORRELATION PARAMETERS		5-6
8-1	BASE AXIAL FORCE COEFFICIENT		8-5
8-2	BASE NORMAL FORCE COEFFICIENT		8-6
8-3	BASE PITCHING MOMENT COEFFICIENT		8-7
8-4	BASE COEFFICIENT PARTIALS	•	8-8
8-5	BASE AXIAL FORCE (LBS)		8-9
8–6	BASE NORMAL FORCE (LBS)	•	8-10
8–7 .	BASE PITCHING MOMENT (FT. LBS)		8-11
8-8	BASE AXIAL FORCE PARTIALS	•	8-12
8~9	IA-119 BASE COEFFICIENT TOLERANCES		8-13
8-10	BASE MOMENT INCREMENTS		8 - 14
9-1	SSLV AND ORBITER POWER DELTA - NORMAL FORCE COEFFICIENT FOREBODY		9–5
9–2	VERTICAL TAIL SIDE FORCE POWER DELTA		9-6
9-3	FOREBODY FORCE COEFFICIENT TOLERANCES - SSLV AND ELEMENTS		9-7
9-4	FOREBODY MOMENT INCREMENT EQUATIONS - SSLV AND ELEMENTS		9-8
9–5	FOREBODY FORCE TOLERANCES - COMPONENTS		9-9
9–6	FOREBODY MOMENT EQUATIONS - COMPONENTS		9-10

GENERAL NOMENCLATURE

SYMBOL	DEFINITION
ET	Space Shuttle external tank
o	Space Shuttle Orbiter
SRB	Space Shuttle Solid Rocket Booster
SSLV	Space Shuttle Launch Vehicle
Base .	Locations on the Space Shuttle where the nozzle exhaust plumes are the primary influence in determining the local pressure environment
Components	Portions of the Orbiter; wing, body flap, etc.
Elements	Primary elements of the SSLV, Orbiter, ET, SRB's
Forebody	Locations on the Space Shuttle where the nozzle exhaust plumes are the secondary influence in determining the local pressure environments

TEST NOMENCLATURE

Symbol	
General:	<u>Definition</u>
C _A	Axial force coefficient
$c_{B_{\mathbf{V}}}$	Vertical tail bending moment coefficient
$c_{B_{\widetilde{W}}}$	Wing-root bending-moment coefficient
C ^H	Hinge moment coefficient
$c_{ m H_{ m E_{ m I}}}$	Hinge-moment coefficient for inboard elevon.
c_{HEO}	Hinge-moment coefficient for outboard elevon.
C _L	Rolling moment coefficient
C _M	Pitching moment coefficient
C _N	Normal force coefficient
C _{NW}	Wing normal-force coefficient
$c_{TV}^{}$	Vertical tail torsion moment coefficient
$c_{\mathrm{T}_{\mathrm{W}}}$	Wing-root torsion-moment coefficient
C _Y	Side force coefficient
c_{Y_N}	Yawing moment coefficient
C _{YV} .	Vertical tail shear force coefficient
L ·	Reference length, in. or ft. defined in Table 6-10
S	Reference area, ft ² defined in Table 6-10
•	SUBSCRIPTS
В	Base .
F	Forebody - fuselage
C _P	Determined using power on pressure coefficient
DEL	Determined using power-on minus power-off delta pressure coefficient
0	Orbiter

Engineering	æ	Technology	Group	· TR-1964
			TEST	NOMENCLATURE

ET ET

SRB SRB

PON Power On

POF Power Off

GAS DYNAMIC NOMENCLATURE

Symbol	<u>Definition</u>
P	Pressure (absolute) at model surface tap i, psia
$c_{\mathbf{p}_{\mathbf{i}}}^{-}$	Pressure coefficient for model surface tap i.
$^{\Delta c}_{_{\mathbf{P_{i}}}}$	CPPower On CPPower Off
P _c j	Chamber pressure (absolute) for nozzle j, psia
J P e j	Exit pressure (absolute) for nozzle j. psia
CPR j	Chamber-pressure ratio for nozzle j
Υ _j .	Ratio of specific heats for nozzle J
P _c /P _∞ ORB	SSME chamber to freestream pressure ratio
P _C /P _∞ SRB	SRB chamber to freestream pressure ratio
P _c /P _e	Chamber to exit nozzle pressure ratio
P _c /P _{wall}	Chamber to nozzle wall pressure ratio
м j	Plume boundary Mach number at nozzle lip
ME	Nozzle exit Mach number at nozzle wall (inviscid)
N	Exponent of ratio of specific heats and in similarity parameters
δ _j	Initial plume expansion angle
<u>Deflections</u> :	
$^{\delta}{}_{\mathrm{E}}{}_{\mathrm{I}}$	Left inboard elevon setting, corrected for load deflection, deg.
δ _E o	Left outboard elevon setting, corrected for load deflection, deg.
YиJ	Pitch-angle of nozzle-j axis in a plane parallel to the Orbiter plane-of-symmetry, deg.
Y _N j	Pitch-angle of nozzle-j axis in a plane which yaws with the nozzle, deg.
^ψ Ν j	Yaw-angle of nozzle-j axis in an Orbiter waterplane, deg.

Test Operations:

M	Freestream Mach number.
Re/ft	Freestream unit Reynolds number, ft-1.
q	Freestream dynamic pressure, psf.
P	Freestream static pressure, psia.
PŢ	Freestream total pressure, psia.
T	Freestream static temperature, OR.
· 17p	Freestream total temperature, OR.
α	Model angle-of-attack, deg.
β	Model angle-of-sideslip, deg.
TT _{SRB}	SRB supply total temperature, OR.
TTMPS	MPS supply total temperature, OR.
Pc MPS	MPS supply total pressure, psia
° c	SRB supply total pressure, psia.

REVISIONS					
REV SYM	DESCRIPTION	· DATE-	APPROVAL		
			-		
•					
-	•				
+			,		
			-		
	,				
			,		
		_			
[, ,		į			
	•				
,					
		[

Section I

INTRODUCTION

An analysis of pressure and strain-gage data from Space Shuttle wind tunnel test IA119 and IA138 was performed to define the influence on aerodynamic characteristics resulting from the main propulsion system (MPS) and solid rocket booster (SRB) plumes. Aerodynamic characteristics of each of the elements, the components and total vehicle of the Space Shuttle vehicle during ascent flight was to be considered.

Test IA119 was a transonic wind tunnel test of a 0.02 scale model of the Space Shuttle launch vehicle. The test was conducted in the 11 x 11-foot section of the NASA/AMES Research Center Unitary Plan Wind Tunnel. Pressure data were obtained over the aft portions of the space shuttle wind tunnel model in addition to wing and elevon gage data.

Test IA138 was a supersonic wind tunnel test of a 0.01-scale model of the Space Shuttle launch vehicle. The test was conducted in the 9 \times 7-foot section of the NASA/AMES Research Center Unitary Plan Wind Tunnel. Pressuré data were obtained over the aft portions of the space shuttle wind tunnel model. Wing and elevon gage data were also obtained.

The simulant gas used to develop the model exhaust plumes was air. A portion of the tests were devoted to testing at various power levels. Data from the power level portion was used in conjunction with prototype possibility curves to evaluate nominal power levels. The nominal power levels were used during the investigation of changes in model attitude, elevon deflections and nozzle gimbal angles on the aerodynamic characteristics. The simulation parameter used to develop nominal power levels was $\begin{bmatrix} \delta, \gamma, \end{bmatrix}$ where N varies with Mach number.

Aerodynamic loads induced by the plumes were developed for the Space Shuttle base areas and forebody areas. The base areas are, the orbiter base including nozzles, the ET base and the SRB base. The forebody includes those areas of the orbiter forward of the base. The forebody includes the body flap, the wings and elevons, and the ET and SRB areas forward of the base.

A math model of the plume induced aerodynamic characteristics designed to match the forebody aerodynamic math model was developed for a range of Mach numbers. The aerodynamic characteristics of the base are presented in terms of forces and moments versus attitude. The aerodynamic characteristics of the total vehicle base and forebody are presented in terms of aerodynamic coefficients for the range of Mach numbers from 0.6 to 2.5. Aerodynamic characteristics of the elements component base and vehicle forebody are presented for Mach numbers from 0.6 to 2.5. Aerodynamic characteristics are presented vs Mach numbers compatible with Mach numbers used in defining forebody aerodynamic characteristics.

Tolerance values were developed for all plume induced aerodynamic characteristics. The tolerance values were developed in terms of a math model and include simulation parameter uncertainties, model instrumentation uncertainties, model configuration uncertainties (including tunnel-model support interference uncertainties and Reynolds number effects).

The results of the above analysis and math model of the IA119 transonic data are presented in detail in reference 1. The result of the base pressure integration computer program, gage data, and plotted data are presented in the appendix to reference 1.

The results of the analysis and math model of the IA138 supersonic data are presented in reference 2. The results of the IA138 base pressure integration computer program, gage data, and plotted data are presented in the appendix to reference 2.

Brief discussions of the wind tunnel test programs, data analysis tasks and analysis procedures are presented in the following sections. Examples of the results and math models of the results are also presented.

.

Section II

WIND TUNNEL MODELS

The wind tunnel model used for the TA119 test was a .02 scale Space Shuttle Launch Vehicle configuration. The wind tunnel model is designated - 88 OTS Configuration 140C (modified) Jet - Plume Integrated Space Shuttle Vehicle. The wind tunnel model is essentially the same as was used for an earlier Space Shuttle plume test IA19, conducted in 1974. The major difference being that the contoured SSME flow through nozzles were used during the IA119 test and conical SSME nozzles were used during the IA19 test. The orbiter model was the 140C model configuration which generally represents the OV101 orbiter mold lines. The OV102 mold lines have significant differences in the canopy contour, the wing section near the glove-wing fairing, and the elevon contour. Details of the model configuration can be obtained from the pretest report (reference 3).

The model was strut mounted as shown in Figure 2-1. Cold air was supplied through the strut to the SSME and SRB nozzles. An air supply strut was mounted between the ET and orbiter to supply air to the simulated SSME nozzles as shown in Figure 2-2. The SSME nozzles were contoured with an exit plane lip angle of 5 degrees. The SRB nozzles were conical with a lip angle of 27.5 degrees.

The left orbiter wing was strain-gage instrumented to obtain wing shear forces, root bending moments and torsion moments. The inboard and outboard elevons on the left wing were separately strain-gage instrumented to obtain hinge moments. The vertical tail was also strain-gage instrumented to obtain shear, bending moments, and torsion moments. The right orbiter wing and elevons were pressure instrumented. All base, nozzle, and portions of each element forebody area were pressure instrumented.

The flow through MPS nozzles and SRB nozzles were capable of being set at various gimbal-angle positions and several gimbal patterns were investigated. The inboard and outboard elevons were also capable of being set at various deflection angles and data were obtained for a series of elevon deflection combinations.

The wind tunnel model used for the IA138 test was a 0.01 scale space shuttle launch vehicle configuration. The wind tunnel model is designated - 75 OTS Configuration 140C (modified) Jet - Plume Integrated Space Shuttle Vehicle. The orbiter model was the 140C model configuration which generally represents the OV101 orbiter mold lines. The OV102 mold lines have significant differences in the canopy contour, the wing section near the glove-wing fairing, and the elevon contour. Details of the model configuration can be obtained from the pretest report (reference 4).

The model was strut mounted similar to the IAl19 model as shown in Figure 2-1. Cold air was supplied through the strut to the SSME and SRB nozzles. An air supply strut was mounted between the ET and orbiter to supply air to the simulated SSME nozzles as shown in Figure 2-2. The SSME nozzles were conical with an exit plane lip angle of 11.0 degrees. The SRB nozzles were conical with a lip angle of 27.5 degrees.

A partial right orbiter wing was strain-gage instrumented to obtain wing shear forces, root bending moments and torsion moments. The inboard and outboard elevons on the left wing were also separately strain-gage instrumented to obtain hinge moments. All base, nozzle, and portions of each element forebody were pressure instrumented.

Figure 2-1. IA119 MODEL INSTALLATION

TURNEL FLOOR

Figure 2-2. FLOW THROUGH NOZZLE AIR SUPPLY STRUTS - IA119 MODEL .

Section III

TEST CONDITIONS

The IA119 and the IA138 wind tunnel test program was essentially conducted in two parts. Part one was a power variation test at zero attitude, where chamber pressure of the MPS and SRB model nozzles was varied. Part two was a test program at a nominal power level that included various elevon deflections, nozzle gimbal patterns, and attitudes.

Base pressure data, from the power variation tests (Part 1), was evaluated at the test site along with prototype plume characteristics to evaluate the nominal model nozzle plume characteristics and model chamber pressures. (See Section V for plume simulation discussion). These tests were conducted at zero angle of attack and zero angle of sideslip. Tests were conducted for a series of Mach numbers from 0.6 to 2.5.

Part 2 of the test programs consisted of testing the model using the nominal power levels developed in Parts 1 over a range of attitudes and configurations (elevon deflections, gimbal angles, etc.). Data were obtained at nominal angles of attack of -8, -6, -4, 0, and +4 degrees.—The angles of sideslip were nominally 0, and +6 or +4 degrees.

Tests were conducted at various elevon deflections corresponding to Schedule 6 and probable variations about schedule 6. Schedule 6 elevon deflections are presented in Figure 3-1. Plots of the various inboard and outboard elevon deflection angles evaluated during the test along with the nominal schedule 6 value are presented in Figures 3-2 through 3-10. The elevon deflection closest to schedule 6 that was used to develop the plume induced aerodynamic data base is shown in each figure.

Figure 3-1. SCHEDULE 6 ELEVON DEFLECTIONS

Figure 3-2. ELEVON SCHEDULE

- O NOMINAL SCHEDULE 6
- ___ MATH MODEL

Figure 3-3. ELEVON SCHEDULE

Figure 3-4. ELEVON SCHEDULE

Figure 3-5. **ELEVON SCHEDULE**

-2

0

-5

⁶E_{OUTBOARD}

9 .

x - TESTED ELEVON DEFLECTION
O - NOMINAL SCHEDULE 6
O - MATH MODEL

М_∞ = :1.4

Figure 3-6. ELEVON SCHEDULE

X - TESTED ELEVON DEFLECTION

O - SCHEDULE 6

□ - MATH MODEL
10,-2

 $M_{\odot} = 1.55$

Figure 3-7. ELEVON DEFLECTION MATRIX ($M_{\infty} = 1.55$)

★ TESTED ELEVON DEFLECTION
 ★ SCHEDULÉ 6
 ★ MATH MODEL
 10,-5

 $M_{\infty} = 1.8$

Figure 3-8. ELEVON DEFLECTION MATRIX ($M_{\infty} = 1.80$)

TESTED ELEVON DEFLECTION

C - SCHEDULE 6

MATH MODEL
4,-5

 $M_{\infty} = 2.2$

Figure 3-9. ELEVON DEFLECTION MATRIX ($M_{\infty} = 2.20$)

 ★─ TESTED ELEVON DEFLECTION

O- SCHEDULE 6

MATH MODEL 0,-2

 $M_{m} = 2.5$

Figure 3-10. ELEVON DEFLECTION MATRIX (M_{∞} = 2.50)

Section IV

WIND TUNNEL MODEL NOZZLE CALIBRATION ANALYSIS

An analysis of the model nozzle calibration data was performed to determine nozzle flow characteristics for the evaluation of model power levels. A range of model power levels were required for the power level variation portion of the test. Model nozzle wall pressures and exit plane pressures were plotted and compared with MOC results to evaluate the nozzle flow characteristics and to evaluate chamber to exit pressure ratios. The chamber to exit pressure ratios were required to evaluate the model plume characteristics.

Initially it was anticipated that several model nozzle configurations would be used during the IA119 test program and thus a considerable amount of calibration data were evaluated. The IA119 test program ultimately used only the 2% contoured SSME nozzle configuration and the 2% conical SRB nozzle configuration. The nozzle calibration tests were conducted for the IA19 Space Shuttle plume test (reference 5). This test (IA19) used essentially the same model hardware as the IA119 test. The IA138 test program used a 1% conical SSME nozzle configuration and a 1% conical SRB nozzle configuration.

Summary IA119 model nozzle performance data are presented in Figures 4-1 and 4-2 for the SSME model nozzles and the SRB model nozzles respectively. The average chamber to exit plane pressure used for the model SSME nozzle was 49.5. The average chamber to exit plane pressure used for the SRB nozzle was 66.0. These values were used to develop pretest pressure ratios for each Mach number.

Summary IA138 nozzle performance data are presented in Figures 4-3 and 4-4 for the SSME nozzles and the SRB nozzles respectively. The post-test SRB nozzle performance was slightly different from the pre test nozzle performance developed from the nozzle calibration data.

Figure 4-1. SSME NOZZLE CHAMBER TO EXIT PRESSURE RATIO — IA119

Figure 4-2. SRB NOZZLE CHAMBER TO EXIT PRESSURE RATIO — IA119

Figure 4-3. SSME NOZZLE CHAMBER TO EXIT PRESSURE RATIO — IA138

Figure 4-4. SRB NOZZLE CHAMBER TO EXIT PRESSURE RATIO — IA138

Section V

PLUME SIMULATION

The Space Shuttle plumes were simulated using cold air flowing through model nozzles. The model plume characteristics required to develop base and forebody pressure environments were determined using an iteration procedure requiring the development of "PROTOTYPE POSSIBILITY CURVES". Prototype possibility curves are curves of base pressure or base pressure coefficient versus prototype plume characteristics. An example prototype possibility curve is shown in Figure 5-1. The curve is called possibility curve since it is developed for a range of possible prototype base pressure environments. curves were developed prior to the wind tunnel test for both the SSME and SRB prototype nozzles. The SSME possibility curves were developed using possible orbiter base pressure coefficients and the SRB possibility curves were developed using SRB possible base pressure environments. During the power level portion of the test, model base pressure data are plotted on the prototype possibility curves as shown in Figure 5-1. The model power level is determined where the model pressure curve crosses the prototype pressure curve. An iteration procedure is used when there are two variables involved that influence the base pressure, i.e. SSME power level and SRB power level. The possibility curves and the model pressure data used to determine the nominal power levels at each Mach number are presented in the Appendix of references 1 and 2.

The form of the plume simulation equation used during the IA119 and IA138 test program was the following (reference 6)

$$\delta_{j}\gamma_{j}^{N}_{PROT} = \delta_{j}\gamma_{j}^{N}_{MODEL}$$

where N is a function of Mach number. A plot of N versus Mach number is shown in Figure 5-2 and was obtained from reference 7. This curve was developed by correlating the base pressure in the near field and the far field developed from cold gas air and CF, plumes. The plume induced near field and far field areas considered are shown in Figure 5-3. The model configurations used were single body single nozzle, single body triple nozzle and triple body configurations. The triple body configuration was similar to the ET-SRB space shuttle

configuration. The band on the curve represents the range of N for the various models used in the plume technology test (i.e., single body, triple body, etc.). The criteria used for correlation of the plume technology data was that the same base pressure occur for a five percent or less change in similarity parameter. The band represents the total spread of N for the various model and nozzle configurations considered in the plume technology program.

Recent analysis (Reference 8) has identified a new similarity parameter that has the functional form

$$\frac{M_{j}\delta_{j}}{f(M_{EX}) g(\gamma_{j})}$$

where f, g appear to depend weakly upon ${\tt M}_{\!_{\!\infty}}$ and configuration.

The functions f and g have been defined for several model configurations and Mach numbers. The form of the various base pressure correlation parameters is presented in Table 5-1. These new similarity parameters, namely

$$\frac{\text{M}_{i} \delta_{j}}{\text{M}_{E} (.25)_{\gamma_{j}}}$$
, $\frac{\text{M}_{i} \delta_{j}}{\text{M}_{E} (.25)_{\gamma_{j}} (.5)}$, and $\frac{\text{M}_{i} \delta_{j}}{\gamma_{j}}$ have been tabulated on the data pages

for the IA138 test results along with the value of $\delta_{j} \gamma_{j}^{N}$ (see Section VII).

Figure 5-1. PROTOTYPE POSSIBILITY CURVE

Figure 5-2. SIMILARITY PARAMETER EXPONENT

Figure 5-3. PLUME FLOW FIELD AREAS

Table 5-1 CORRELATION PARAMETERS

м		CONFIGURATION	
M _∞	SINGLE BODY SINGLE NOZZLE	SINGLE BODY TRIPLE NOZZLE	TRIPLE BODY
0.9	Mj ⁶ j MO.25 Yj	M _j o _j MO.25 MEX Yj	Mj ^δ j M ^{0.25} Yj
1.2	M _j δ _j M <mark>0.25,0.5</mark> EX 'j	M _j δ _j M ^{0.25} γ _j	
1.46	M _j 8 _j M0.25 0.5 MEX Yj	Mj ^δ j M ^{0.25} MEX ^Y j	
3.48	M _. δ j_j ^Υ j	Μ _δ jj ^Υ j	,

Section VI

DATA ANALYSIS

Five computer codes were used to analyze the test data. These programs are: 1. SORT program, 2. Power Delta program, 3. Sigma V Punch, 4. Wind Tunnel Pressure Data Analysis and 5. Plume Integration. A brief discussion of each of these programs is presented below.

SORT PROGRAM

The SORT Program was used to sort the run and sequence data sets into basic groups of four. The four run groups consist of +\$\beta\$ power-on, +\$\beta\$ power-off, $-\beta$ power-on and $-\beta$ power-off. The four run data sets were arranged in angle of attack sets of -8, -4, 0, 4. Flags were set to note α , β , Mach, gimbal and configuration incompatibility of the four run sets.

The following tolerances were put on the data sets to check compatibility.

VARIABLE	TOLERANCE
MACH	.03
æ	.25
β	.25
β	Sign
Gimbal	≠ 0

CONFIGURATION NO. DO NOT AGREE

RUN NUMBER/SEQUENCE OUT OF PLACE

$$\delta_{\text{INB}}$$
 $\pm .25$ δ_{OUT} $\pm .25$

The SORT program proved very useful in identifying errors in the post test run schedule and differences between the power-on and power-off model attitude.

POWER DELTA PROGRAM

The Power Delta program was used to evaluate the change in the pressure data due to power. The program lists all data from the power on run and all data from the power off run and then subtracts the two data sets and lists the power delta's. This allows a rapid survey of the power delta's for abnormal numbers and a reference to the power on run and power off run to determine the error source.

SIGMA V PUNCH

The Sigma V Punch program was used in conjunction with the Power Delta program to sort the forebody power delta data into various elements and components and punch cards of the power delta in a format compatible with the "Wind Tunnel Pressure Data Analysis Program - WTPDA". WTPDA is an interactive graphic pressure data integration computer program which operates on the Sigma V Graphics System.

WIND TUNNEL PRESSURE DATA ANALYSIS (WTPDA)

WTPDA is an interactive computer graphics program which allows an engineer to apply his judgement to the smoothing of wind tunnel pressure data in a real time environment. The purpose of the program is to produce airloads which are compatible with vehicle stability data and which reflect engineering judgement. WTPDA employs interactive computer techniques so that an engineer can develop balanced airloads in a timely manner.

WTPDA can integrate pressure data on wings, vertical stabilizers, fins, cylinders, and arbitrary cross-section fuselages. Although WTPDA was developed specifically to handle the Space Shuttle launch vehicle, it is capable of handling almost any arbitrary cross-section body.

The WTPDA program was used to plot and smooth the power delta CP's on the forebody. Only limited integration of pressures were performed to check the main pressure integration computer program which is discussed below.

PLUME INDUCED PRESSURE INTEGRATION

The Plume Integration computer program was the main tool used to analyze the IA119 and IA135 pressure data. This computer program was developed

specifically to analyze the IA119 pressure data and was used to integrate the pressure data to obtain base and forebody plume induced aerodynamic loads and moments. The computer program was developed to analyze four run sequences of positive and negative β sets. This operation is required since portions of the model have pressure data on only one side. Thus, to analyze the effects of sideslip required the evaluation of + and - β runs. Both power-on and power-off data sets are required since a portion of the plume induced data uses power on pressure coefficients while other portions require only the change in pressure coefficient due to power.

The analysis of the plume induced aerodynamic characteristics was performed using different pressure data over different portions of the vehicle. This type of analysis was required because of the unique configuration of the Space Shuttle and the model configurations used to obtain the forebody aerodynamic characteristics. The two types of pressure data used for analysis are: 1) The power on C_p 's for nominal SSME and SRB model power settings; and 2) The power delta C_p 's where $\Delta C_p = C_p - C_p$

The power on C_p 's were used to evaluate the power-on base forces and moments. The power delta C_p 's were used to evaluate the change-in forebody aerodynamic characteristics. The location on the Space Shuttle vehicle where the different types of pressure data were used is shown in Figure 6-1. The results of integration of the base pressure and the forebody power delta pressures have been listed in a special format which is discussed in Section VII.

Figure 6-1. PLUME FLOW FIELD AREAS

MSH

Section VII

TEST RESULTS

The results of the integration of the base pressure and forebody power delta's are presented in table form in the Appendix of references 1 and 2. The output of the Plume Integration computer program contains all the results of the pressure integration including base coefficients, forces and moments and forebody coefficient data from pressure integration along with the gage data.

An example of the printout of a data set from test IA119 is presented below. The data are arranged in 9 sections. Section 1 presents the run numbers, Mach number, vehicle configuration, and attitude. Section 2 presents the nozzle gas dynamic properties. Section 3 presents the nozzle gas dynamic similarity parameter. Section 4 presents the results of the pressure integration over the base elements and components. Section 5 presents the average base pressure coefficient for each element. Section 6 presents the nozzle average base pressure coefficients. Section 7 presents the nozzle hinge moment data. Section 8 presents the forebody data from the gages. Section 9 presents the forebody data from pressure integration.

ORIGINAL PAGE IS POOR IA119 TEST DATA FORMAT 0 HOTZLE CONSTITUES STATLARTTY PARAMETERS _ GAGE **MTA** 9CTEE --10 CH-PONT --0167 CH-POIT --0191 PC42.574.11. PC52.577.58 4r_-.50_____ APPRINCE _ALPHANN -7.05 _BCTAGH _ 2.1Q SELJZGAMMAJN: 7.62 GELJZSAMMAJN: 7.63 . .. ALPEROF -4.63 BTT40# -.10 _.CD14 . CONTROLATION 1 CUTTO-17 CLOT 5.00 SEFFICE GIPBAL .OD TURNEL TOTAL 2553.79 Lecatal seet cottateltege C4 , EN ... CH 0×15 /001 .0103.- 1010. 2004 2340 B415. _ .__.34437___ 2097___.0013. CHE 170N: - . C124 CHE 17CF : - . C124 CHE 17CF : - . C124 4872453 #16 1 -- 1018 #16 1 -- 1011 #16 2 -- 1011 #17 2 -- 1018 FEREBODY PRESSURE INTEGRATION 0000 CT## -.10 (130: -.10 (140: -.10 -.10 1000. CAA* .0000 ****** BIL .5016 19 -- 2037 816 1 -- 2016 1000- 1010-1000- 1000 __.0003 -001 car . 10 10 CH1 . 8200 CA2 - 2006 CT2 . 0015 CTH2 - COO1 CE2 . 000 *270510. 472 * 43100. pair *ifetalle. 484 99(35252610 42. 242 -311763, nc2 30336. enities ern erster batuebt feltenete" ...

Printouts of each run sequence set is presented in the Appendix of reference 1. The data sets are grouped for a constant Mach number. data set within a Mach group is the power-off runs. The second group contains the variable power runs. The third group are the various elevon deflections. The fourth group contains the various gimbal angle runs and the fifth group is a 90° roll run sets.

An example of the printout of a data set from test IA138 is presented below. The data are arranged in 9 sections. Section 1 presents the run numbers, Mach number, vehicle configuration and attitude. Section 2 presents the nozzle gas dynamic properties. Section 3 presents the plume gas dynamic similarity parameters. Section 4 presents the values of parameters used to determine the similarity parameters. Section 5 presents the results of the pressure integration over the base of the elements and components. Section 6 presents the average base pressure coefficient for each element. Section 7 presents the nozzle average base pressure coefficients. Section 8 presents the forebody data from the gages. Section 9 presents the forebody data from pressure integration. REPRODUCIBILITY OF THE

1A138 TEST DATA FORMAT ORIGINAL PAGE IS POOR

Printouts of each run sequence set is presented in the appendix of reference 2. The data sets are grouped for a constant Mach number. The first data set within a Mach group is the power-off runs. The second group contains the variable power runs and the third group contains the various elevon deflections.

The base and forebody plume induced data tabulated on the printout sheets were analyzed and developed into math models. The math model is a description of the nominal aerodynamic data and a tolerance model. The math model of the base plume induced aerodynamic characteristics is presented in Section VIII. The math model of the forebody plume induced aerodynamic characteristics is presented in Section IX.

Section VIII

BASE MATH MODEL

A math model of the base plume induced aerodynamic characteristics was developed which can be used in conjunction with the forebody aerodynamic characteristics to evaluate the aerodynamic characteristics of the total space shuttle launch vehicle and each element. Three types of base aerodynamic characteristics were developed. These include 1. SSLV and element base aerodynamic coefficients for Mach numbers from 0.6 to 2.5, 2. SSLV base forces and moments versus altitude up to 160,000 ft. and 3. SSLV and element base coefficient tolerances for Mach numbers from 0.6 to 2.5. The math model consists of a description of the base aerodynamic coefficients at a given Mach number and elevon deflection for various α , β values. Gradients are provided giving the change in the aerodynamic characteristics with the two primary variables that influence the base flow (inboard elevon deflection and SSME power level).

The base aerodynamic math model is limited to the base axial force, normal force and pitching moment. Lateral-directional forces and moments exist on some base components, but no consistent trend could be identified and thus they are included in the base tolerance model. Base coefficients and tolerances for each element are provided for Mach numbers from 0.6 to 2.5. The base aerodynamic coefficient math model is described by the following equation,

$$C_{x_{i}} = [C_{x_{i}}] + [\partial C_{x_{i}}/\partial \delta_{EI}] \times \Delta \delta_{EI} + [\partial C_{x_{i}}/\partial X \text{ SSME POWER}] \times (\Delta X \text{ SSME POWER})$$

where [C is a 4x7 matrix for
$$\alpha$$
 = +4,0,-4,-8
$$\beta$$
 = -6,-4,-2,0,2,4,6 elevon deflection corresponds to close schedule 6 i = SSLV, ORBITER, ET, LEFT SRB, RIGHT SRB

 $\frac{\partial C}{X_i} / \frac{\partial \delta_{EI}}{\partial E_I}$ Gradient for inboard elevon deflection function of Mach number only i = SSLV, ORBITER, ET

ac /assme Power Gradient for percent change in ssme power level - function of Mach number only i = SSLV.ORBITER

 $\Delta \delta_{EI}$ - Change in inboard elevon deflection from math model value to inboard elevon deflection of interest.

Δ%SSME POWER LEVEL - Change in percent SSME power level from math model value to SSME power level of interest

8-3 for each element and the total SSLV vehicle. Typical values of the coefficient gradients are presented in Table 8-4.

Base forces and moments have been determined versus altitude using the base coefficient math model. The base force math model is for the total vehicle and uses the following model,

where:

F $\Big|_{\alpha=0}$ SSLV base force or moment – function of altitude only

 $[\partial F/\partial \alpha]$ Gradient for angle of attack - function of only altitude

 $[\partial F/\partial \delta_{EI}]$ Gradient for inboard elevon deflection - function of altitude only

[3F/3%SSME POWER] Gradient for percent change in SSME power level

α angle of attack

 $\Delta \delta_{\hbox{\footnotesize EI}}$ Change in inboard elevon deflection from math model value to inboard elevon deflection of interest

Δ%SSME POWER level Change in percent SSME power level from math model value to SSME power level of interest.

Typical values of the base axial force, normal force and pitching moment are presented in Tables 8-5, 8-6, and 8-7. Typical values of the base force partials are presented in Table 8-8.

BASE COEFFICIENT TOLERANCES

Examples of the base coefficient tolerances are presented in Tables 8-9 and 8-10. The coefficient tolerances cover all attitudes and configurations from the base coefficients presented in the math model to flight data and are to a +3σ level. The moment tolerances are considered to be only due to force tolerances. The moment tolerance due to the aerodynamic center location uncertainty being a smaller order of magnitude. Examples of the base moment coefficient increment equations are presented in Table 8-10.

The base tolerances include contributions due to 1. test instrumentation uncertainty, 2. simulation parameter uncertainty, 3. Reynolds number characteristics, 4. Model-tunnel testing uncertainties, 5. Pressure integration uncertainties and 6. Math model uncertainties. Each tolerance contribution is assumed independent and therefore the contributions are_combined using the RSS technique. The tolerances thus cover the uncertainty from the math model to flight data and are to a +3o level with a Gaussian distribution.

The model instrumentation contribution included the accuracy of the Scanivalve R calculations. The general accuracy is estimated to be $^{C}_{p}=+.013$ for values of C_p in the range of $\pm .5$. The general uncertainty of the measured pressure coefficients was assumed to be 3%.

The simulation parameter uncertainty was assumed to be due to an uncertainty in the exponent. The estimated uncertainty in the exponent is shown in Figure 5-2. The exponent uncertainty was converted to an error in simulation that generally represented a 10 percent uncertainty in base force coefficients. The Reynolds number-scale uncertainty was obtained using past flight test to wind-tunnel test results. This factor is a judgement factor and includes the differences between the Saturn V and Titan 3C flight and wind tunnel data,

reduced to account for the plume technology program learning curve. This factor also includes a hot flow simulation uncertainty factor. The Reynolds number-scale uncertainty was generally 10% of the nominal base coefficient.

Model configuration uncertainties includes the effect of the support stings that will influence the flow field at angles of sideslip along with uncertainties due to other model configuration inaccuracies that potentially influence the local flow fields. Uncertainties due to model configuration similitude were approximately 7% of the nominal force coefficients.

Integration uncertainties included the potential error involved in the integration technique and represent approximately 3 percent of the nominal force coefficients.

The math model uncertainty included the errors of independent variables in the math model of the base forces and moments. Independent variables not included in the math model of the base forces and moments include nozzle gimbal angle and outboard elevon position.

The technique that was used to develop the SSLV base tolerances was to correlate the SRB and ET base tolerances and RSS those to the orbiter base coefficient tolerance. This procedure was used for the base axial force and normal force coefficients. The SSLV base side force coefficient was obtained by using the RSS technique for each element.

The forebody plume induced aerodynamic characteristics were developed in conjunction with the base plume induced aerodynamic characteristics to allow a complete description of the plume induced characteristics of the Space Shuttle Launch Vehicle. The forebody plume induced aerodynamic characteristics are presented in Section IX.

Table 8-1.	$M_{\infty} = 1.55 \delta_{e_{10}} = 10/-2$
BASE AXIAL FORCE COEFFICIENT	ω ^e I0
BASE PATRE FORCE COLLIFICIENT	% SSME POWER = 109%

								,,	• • • • • • • • • • • • • • • • • • • •	
						β				
ELEMENT	•	α	-6	-4	-2	0	2	4	6	
CA-IOL	1.55	- 6•	.0685	•0663	. 0642	.0625	• 0642	• 0663	.0685	
CATIOL	1.55	-4.	•0646	•0632	.0616	.0605	•0616	•0632	.0646	
CA-10L	1.55	-2 •	0629.	•0616	.0601	.0591	•0601	.0616	•0629	
CA-10L	1.55	ំប•	.0614	•0602	•0588	•0579	• 0568	•0602	.0614	
CATIOL	1.55	. 2.	0595	_ •0583	•0571	• 0561	•0571	• 0583	.0595	
CATIOL	1.55	4.	• 0575	• 0563	.0553	•0543	• 0553	• 05 63	.0575	
CATIOL	1.55	6.	0557	•0546	•0534	.0525	• 0534	• 0546	.0557	
CA-URB	1.55	-6.	.0191	•0194	•0198	.0202	•0198	.0194	.0191	
CA-URB	1.55	-4.	0194	•0197	•0200	•0204	•0200	· •0197	.0194	
CAFURB	1.55	-2.	.0195	•0197	•0198	.0200	•0198	.0197	.0195	
CA-ORB	1.55	0.	0190	•0196	.0196	.0196	•0196	•0196	.0196	
CA-CR3	1.55	2.	•0194	•0193	.0192	•0191	•0192	•0193	.0194	
CA-0KB	1.55	4.	.0191	•0189	.0187	.0185	•0187	•0189	.0191	
CA-URB	1.55	6.	•0189	•0186	.0182	.0179	•0182	•0186	.0189	
CA-LT	1.55_	- 6•_	0386_	<u>,_</u> •0368 j	. •0349	.0331	0349	•0368	•0386	
CA-LT	1.55	-4•	.0365	•0346	•0326	.0307	•0326	• 0346	.0365	,
CA-LT		-2•	00363	•0342	.0321	.0301	. •0321	•0342	•0363	
CA-LT	1.55	U •	.0361	• 0340	.0318	.0297	• 031.8	•0340	.0361	0 번
CA-LI	1.55	2.	.0357	•0336	.0315	•0294	•0315	•0336	•0357	REPRODUC ORIGINAL
CA-LT	1.55	4.	.0351	.0331	.0312	.0292	•0312	•0331	.0351	띪꽁
CA-LT	1.55	_ 6•	00346	.0327	•0309	.0290	•0309	.0327	•0346	X 33
CA-K	1.55	-6 •	•0078	•0067	•0056	•0046	•0039	•0034	.0030	F G
CA-R	1.55	-4.	•0072	•0064	•0055	•0047	•0035	•0025	.0015	日かり
CV-ペ	1.55	-5.	•0004	•0058	•0051	•0045	•0031	•0019	•0007	S E
CA-K	1.55	U•	•0057	•0052	•0047	•0043	•ü027	•0014	•0000	REPRODUCIBILITY ORIGINAL PAGE I
CA-K	1.55	2.	•0050	•0046	.0042	•0038	•0022	.0008	0006	S [™]
CAHN	1.55	4•_	0044	.0040	.0037	.0033	-0017	•0003	0011	OF THE
CA-k	1.55	6.	•U038	•0035	.0031	•0028	•0012	 0002	0016	, Š.
CA-L	1.55	~ნ•	•0030	•0034	•0039	•0046	•0056	•006 7	.0078	田城
CA-L	1.55	-4.	.0015	•0025	•0035	•0047	•U055	•0064	•0072	স
CA-L	1.55	-2.	.0007	•0019	•0031	•0045	• d051	•0058	.0064	
CA-L	i.55	0.	•0000	.0014	.0027	•0043	• U047	•ü052	• U0 57	
CA-L	1.55	ے۔	_ 0006	•000B	.0022	.0038	-0042	•0046	.0050	
CY-L	1.55	4.	0011	•0003	.0017	•0033	•u037	•6040	• 6044	
CA-L	1.55	6.	0016	0002	.0012	.0028	-0031	•0035	.0038	

				Table 8-2.				· M _{&} =	: 1.55 δ _{e_{το}}	= 10/-2
				BASE ·	NORMAL FOR	RCE COEFFIC	CIENT	% SSME POWER = 109%		109%
						β			•	
ELEMENT .		α	-6	-4	-2	0	2	. 4	6	
CN-IOL -		6•∷			.0135	.0135	•0135	•0135	-0135	
CH-TOL	1.55	-4.	•0139	•0138	•01 <i>3</i> 8	.0136	•0138	•0138	0139	
CH-IOL _		2•_		•0138		0136			.0141	
CN-IOL	1.55	0.	0141	•0139	.0135	.0133	•0135	•0139	.0141	
CN-10L			0140	•0138	.0137		•0137	•0138	.0140	
	1.55	4.	•0138		.0138	.0138	•0138	•0138	•0138	
CIV-10L	1.55	_ 6			.0139		.0139	•0138	•0137	
CM-ck3	1.55		•U131	•0132	.0132	.0133	•0132	•0132	.0131	
CM-649 _			0138	•0137,,	•0136	0134_	•0136		•0138	
CH-CRB	1.55		•014 ₁	•0138	.0136	.0134	•0136		.0141	
CN-CRB	1.55		0143		.0136		•0136		.0143	
のさして込む	1.55		.0140		.0135			•0137	.0140	
の之上で式み	1.55				.0134	0132	•0134	•0135	•0137	
CI1-CKB	1.55		.0154	•0133	.0132	.0132	•0132	•0133	.0134	
ŒN−E T	1.55			•0000			0000	•0000	•0000	
CN-L(1.55		•0000	4•000u	•0000	•0000		•0000	•0000	
CN-LT	1.55	2	•0000		.0000	.0000	. •0000	•0000,	-	
	1.55	0.	•0000	•0000	.0000	•0000	•0000	•0000	•0000	
CH-LT .	1.55	2	•0000		.0000		0000	•0000	•0000	
CIV-LI	1.55	4.	•0000	•0000	•0000		•0000	•0000	•0000	
CN-ET	1.55	6•	. 0000	•unoo_	.0000	0000	•0000	•0000	•0000	
CM-K	1.55	−6.	.0001	•0001	•0001	.0001	•0002	•0002	,.0003	
CN-K	1.55	-4.	0001	. •0001	.0001	•000 <u>1</u>	. •0001	•0000	0000	
CH-r	1.55	-2.	0001	•0000	.0000	.0001	•0000	0000	0000	
CHTK	1.55	_ 0 •_		0001	0001	0000 .	•0000	0000	0000	
C11-14	1.55,	2.	.0001	.0001	.0001	.0001	•0001	0000	0001	
CH-K	1.55	4.		•0003	.0003	0003	0001	0000	0002	
Cii-K	1.55	6.	•0006	•0005	•0005	.0004	•0002	0000	0003	
CN-L	1.55	−6 •_		•0002	.0002	.0001	-0001	-0001	.0001	
CHIL	1.55	-4.	0000	•0000	.0001	.000i	•0001	.0001	.0001	
CII-L	1.55	-2.	0000	0000	•0000	.0001	•0000	•0000	-•0000 .	
CII-L	1.55		0000	-•0000	.0000	0000	0001	0001	0002	
C:1-r	1.55	_ 2•_	0001	~• 0000	.0001	.0001	•0001	•0001	•0001	
CII-L	1.50	4.	0002	0000	.0001	.0003	•0003	•0003	.0003	
Cit-r	1.55	6.	0003	-•0000	•0002	.0004	•0005	•0005	•000 6	

Table 8-3.	$M_{\infty} = 1.55 \delta_{e_{10}} = 10/-2$
BASE PITCHING MOMENT COEFFICIENT	% SSME POWER = 109%
β	

						β			
ELEMENT	•	α	-6	-4	-2	0	2	4	6
CH-IOL .	1.55	-6.	0063	0063	0063	0062	0063	-•0063	0063
CM-IOL	1.55	-4.	0067	0065	0064	0062	0064	0065	0067
CM-10L	1.55	-2.	0067	0065	0064	0062	0064	0065	0067
CH-IOL	1.55	U.	0064	0063	0061	0060	0061	 0063	0064
CM-TOL	1.55	2.	0065	0065	0064	0063	0064	0065	0065
CM-IOL	1.55	4.	0065	0066	0067	0068	-∙ ∪067	0066	0065
CM-10L	1.55	6.	0065	0068	0070	0071	0070	0068	0065
CHITURE	1.55	-0.	0058	0059	0059	0060	0059	0059	0058
CM-OKB	1.55	-4.	0063	0062	0061	0060	0061	0062	0063
CM-CKR	1.55	-2.	0065	~.0063	0062	0060	0062		0065
CM-088	1.55	0•	006ö	0064	0062	0060	0062	0064	0066
CM-64R	1.55	2.	0064·	0063	0062	0061	0062	0063	 0064
CMーCKB	1.55	4.	0062	0062	0062	0062	0062	0062	0062
CM-URB	1.55	6•	0060	0061	0062	0063	- ∙u062	0061	0060
CM-ET	1.55	~ 6•	.0000	.0000	.0000	•0000	•0000	•0000	•0000
CM-ET	1.55	-4.	.0000	 0000	•0000	•0000	0000	•0000	•0000
CM-LT	1.55	-2.	.0000	•0000	•0000	.0000	•0000	•0000	•0000
CM-LT	1.55		•0000	•0000	•0000		•0000	•0000	•0000
CM=⊏T	1.55	2.	0000	•0000	.0000	•0000	•0000	•0000	•0000
CHITET	1.55	4.	.0000	•0000	•0000	•0000	•0000	•0000	•0000
CHET	1.55	6•_	0000	•0000	•0000	•0000	•0000	•0000	•0000
CH-K	1.55	~ 6•	0002	0002	0002	0001	0002	0002	-0003
Cia-K	1.55	LL .	0003	0002	0002	0001	0001	0001	0001
CM-K	1.55	-2.	0001	0001	0001	0001	0001	0001	0001
C'4-K	1.55	0•	.0002	•0001	.0001	•0000	0000	0000	•0000
CM-N	1.55	2.	0002	0002	0001	0001	0001	•0000	.0001
CM-K	1.55	4.	0005	0004	0004	0003	0001	•0000	2000
CM-K	1.55	ნ∙	0008	0007	0006	0004	0002	•0000	•0003
CHEL	1.55	-6 •	0003	0002	0002	0001	0002	0002	0002
CH-L	1.55	-4.	0001	0001	0001	0001	0002	0002	0003
CMTL	1.55	-2.	0001	0001	0001	0001	0001	0001	0001
Cincle	1.55	0 •	•0000	0000	0000	•0000	•0001	•0001	•0002
CM-L	1.55	. 2.	.0001	•0000	0001	0001	0001	0002	0002
CM-L	1.55	.4•	.0002	.0000	0001	0003	0004	0004	0005
CM-L	1.55	b •	.0003	•0000	0002	0004	-•0006	0007	0008

Table 8-4|
BASE COEFFICIENT PARTIALS

		aC _{Xi} ∕a&	EI	[aC _{xi} /a?	x 10	
MACH CA 600	SSLV •0025	ORBITER 0003	ET •0028	SSLV •0007	ORBITER	
CÁ 1050 CA 1100	•0040 •0018	•0002 •0003	•0038 •0015	•0010	•0010 •0008	
CA 1250 CA 1400	• 9000 ·	•0001 •0001	0001	•0008 •0010	•0010	
CH onn	• 00 00	• 0000	• 0000 • 0000	-0006 -0002	-•000¢ • • • • • • • • • • • • • • • • • • •	
CM 1100	•0001 •0001	•0001 •0001	•0000	•0005 •0004	-0005_ •0004	
Cii 1400	-0001	•0001 •0001	•0000 •0000	•0004 -•0003	•0004_ •0003_	
ርህ ተሰ2ስ ርዛ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡	•0000 •0001	-0001	•0000 •0000	-•0001 -•0002	-•0001 -•0002	
CW 1520 CW 1100		-•0001 -•0001	•0000 •0000	-•0002 -•0002	-•0002 •0002	•
CM 1400	•ากกับ_ี	2.0007	•0000	•0001	•0001	

Table 8-5 BASE AXIAL FORCE (LBS)

ALTITUDE (ft)	TOTAL	NOMINAL % SSME POWER LEVEL	ALTITUDE (ft)	TOTAL	NOMINAL % SSME POWER LEVEL
0	0	109	52500	46240	109
4000	41295	109	55000	33015	
6000	112146	109	57500	27690	
8000	148363	109	60000	19389	
10000	162595	107	62500	12579	
12000	178724	101	65000	7039	
14000 -	193983	95	67500	2504	,
16000	209734	88.4	70000	-2022	
18000	226100		72500	-5026	
19000	240776		75000	-7416	
20000	257649		77500	-9434	
21000	309484		80000	-10837	
22000	341482		85000	-12161	
23000	354185		90000	-12341	
24000	357716		95000	-12191	
25000	338036	ĺ	100000	-11700	
26000	294479		110000	-10812	
28000	256747	₩ .	120000	-9258	
30000	230650	88.4	130000	-7641	
34000	193188	93	140000	-7074	
38000	157365	105	145000	-6554	\bigvee
42000	107143	· 109	160000	-6334	109
44000	91278.				
46000	78961				
48000	67757	\downarrow			
50000	56630	109			

Table 8-6 BASE NORMAL FORCE (LBS)

ALTITUDE (ft)	TOTAL	NOMINAL % SSME POWER LEVEL	ALTITUDE (ft)	TOTAL	NOMINAL % SSME POWER LEVEL
0	0	109	47500	15315	109
5000	18500	109	50000	12685	
10000	24966	107	52500	10322	
12000	26867	101	55000	8303	
14000	28381	95	57500	6785	•
16000	30163	88.4	60000	5476	
18000	32278		62500	4500	
19000	33678		65000	3900	
20000	36009		67500	2700	
21000	41054		70000	2090	
22000	48096		75000	1175	
23000	50853		80000	391	
24000	51688		85000 ⁻	-193	
25000	50621	•	90000	-565	-
26000	45343		95000	-791	,
28000	40842	-₩	100000	-1023	
30000	39239	88.4	110000	-1221	
34000	35678	93	120000	-1380	
·38000	28850	105	130000	-1384	
40000	25704	109	140000	-1451	
42500	21982	109	150000	-1500	\downarrow
450000	18546	109	160000	-1400	109

'Table 8-7: BASE PITCHING MOMENT (FT. LBS)

ALTITUDE (ft)	PITCHING MOMENT (ft-lbs)	NOMINAL % SSME POWER LEVEL	ALTITUDE (ft)	PITCHING MOMENT (ft-1bs)	NOMINAL % SSM POWER LEVEL
. 0	0 .	109	47500	-995473	109
5000	-1220000	109	50000	-828630	•
10000	-1296826	107 .	52500	-684740	
12000	-1374159	101	55000	-563750	
14000	-1441528	95	57500	-462600	
16000	-1484908	. 88.4	60000	-385320	•
18000	-1535100		62500	-320000	
19000	-1589046		65000	-250000	
20000	-1701877		67500	-200000	
21000	-1937440		70000	-159200	
22000	-2206003		75000	- 38110	
23000	-2218121		80000	-39080	
24000	-2187319		85000	-4825	·
25000	-2101904		90000	14130	ŗ
26000	-1942585		95000	41395	
28000	-1785366	1	100000	55800 ·	
30000	-1713072	88.4	110000	72303	
34000	-1515453	93	120000	82300	
. 38000	-1202968	105	130000	- 84635	
40000	-1750000	109	140000	88920	
42500	-1458720	109	150000	95000	\downarrow
45000	-1232990	109	160000	95000	109

Table 8-8 BASE AXIAL FORCE PARTIALS

ALTITUDE '	∂AF/∂α	aaf/aδ _{ei}	aaf/a% ssme power
· (ft)	(LB/DEG),	(LB/DEG)	(LB/%)
10000	-1331.0	2623.0	73.0
12000	-1361.0	2959.0	71.0
14000	-1536.0	3255.0	62.0
16000	-1823.0	3665.0	43.0
18000	-2454.0	5653.0	26.0
19000	-2667.0	6400.0	23.0
20000	-2716.0	7761.0	31.0
21000	-2021.0	8842.0	107.0
22000	-705.0	9138.0	138.0
23000	1040.0	9098.0	159.0
24000	2461.0	8533.0	167.0
25000	3148.0	6959.0	169.0
26000	2911.0	4350.0	167.0
28000	1627.0	1864.0	142.0
30000	514.0	171.0	158.0
34000	-583.0	87.0	96.0
38000	-1014.0	21.0	-112.0

Table 8-9 IA-119 BASE COEFFICIENT TOLERANCES

	1	<u>·</u> ∆C _A			
MACH NO.	SSLV	ORB	· ET	SRB(1')	
.6 .8 .9 .95 1.05 1.10 1.15 1.25 1.40 1.55 1.80 2.20 2.50	.0104 .0107 .0156 .0359 .0239 .0169 .0133 .0086 .0062 .0069 .0082 .0078	.0031 .0046 .0088 .0080 .0057 .0046 .0033 .0024 .0032 .0054	.0065 .0072 .0107 .0270 .0161 .0115 .0091 .0060 .0045 .0050 .0050	.0017 .0015 .0021 .0039 .0032 .0022 .0017 .0010 .0006 .0006	
	4	-∆C <mark>*</mark>		•	$*\Delta C_{N_0} = 0.6 \Delta C_{A_0}$
.6 .8 .9 .95 1.05 1.15 1.25 1.40 1.55 1.80 2.20 2.50	.0029 .0028 .0037 .0065 .0051 .0047 .0037 .0032 .0027 .0030 .0039 .0037	.0020 .0018 .0026 .0049 .0045 .0033 .0027 .0019 .0014 .0019 .0032 .0030	.0010 .0009 .0013 .0025 .0022 .0016 .0013 .0009 .0007 .0007 .0009 .0010	.0006 .0006 .0006 .0005 .0008 .0008 .0008 .0008 .0008 .0007	
	-	-∆C _γ			
.6 .8 .9 .95 1.05 1.10 1.15 1.25 1.40 1.55 1.80 2.20 2.50	.0027 .0022 .0017 .0017 .0018 .0019 .0017 .0016 .0015 .0015 .0017	.0025 .0020 .0015 .0015 .0015 .0015 .0015 .0014 .0012 .0010 .0008	.0005 .0005 .0006 .0007 .0009 .0010 .0007 .0006 .0005 .0006 .0008	.0006 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0005 .0008	

_

Table 8-10

BASE MOMENT INCREMENTS

The general equations for the element moment increments are

$$\Delta C_{M} = \Delta C_{N} \left(\frac{X_{N}}{L} \right) + \Delta C_{A} \left(\frac{Z_{A}}{L} \right)$$

$$\Delta C_{YN} = \Delta C_{Y} \left(\frac{X_{YN}}{L} \right)$$

$$\Delta C_{g} = \Delta C_{Y} \left(\frac{Z_{L}}{L} \right) + \Delta C_{N} \left(\frac{Y_{L}}{L} \right)$$

The ${\sf SSLV}$ moment increment is determined by the following equations

	Δ	c _{MSSLV} =	$\sqrt{(\Delta C_{M_O})^2 + (\Delta C_{MET} + \Delta C_{MRSRB} + \Delta C_{MLSRB})^2}$		
	Δ(C _{YN} sslv	$= \sqrt{\left(\Delta C_{YN}\right)^2 + \left(\Delta C_{YN}\right)^2 + $	· (ΔC _{YN} ι	SRB .
		ORBITER	EŢ	SRB	RIGHT LEFT
$\frac{X_{N}}{L}$	=	.99	.87	٦.	17
$\frac{Z_{A}}{L}$	=	.31	0.0	0.	0
X _{YN} L	· =	1.06	0.87	0.	195
Y L	=	0.0	0.0	1.	17
Z _L	=	.27	0.03	0.	0

NOTE; L = 1290 INCHES

Section IX

FOREBODY PLUME INDUCED MATH MODEL

The nominal forebody plume induced aerodynamic characteristics were small except on the Orbiter fuselage, inboard elevon and the vertical tail. Math models were thus developed for the SSLV, Orbiter, the inboard elevon hinge moment and the vertical tail. The SSLV and Orbiter normal force, pitching moment and inboard elevon hinge moment was formulated into the following math model.

$$C_{N} = C_{N\alpha-\beta_{MATRIX}} + \begin{bmatrix} \frac{1}{2}C_{N}/3\delta_{EI} & & \\ & \alpha-\beta_{MATRIX} \\ & & MATRIX \\ & & &$$

where

is a 4x7 matrix for $\alpha = +4,0,-4,-8$ $\beta = -6,-4,-2,0,2,4,6$ $C^{\overline{N}}$

elevon deflection corresponds to close schedule 6

$$\partial C_{N}/\partial \delta_{EI}$$
 is a 4x7 matrix for α = +4,0,-4,-8 β = -6,-4,-2,0,2,4,6

> gradient for inboard elevon deflections > nominal

< gradient for inboard elevon deflections < nominal

$$\partial C_{N}/\partial \delta_{EO}$$
 is a 4.7 matrix for $\alpha = +4,0,-4,-8$ $\beta = -6,-4,-2,0,2,4,6$

> gradient for outboard elevon deflections > nominal

< gradient for outboard elevon deflections < nominal

- change in inboard elevon deflection from nominal value to invoard elevon deflection of interest.

- change in outboard elevon deflection from nominal value to outboard elevon deflection of interest.

Typical values of SSLV and Orbiter plume induced forebody normal force coefficients are presented in Table 9-1.

The orbiter normal force and pitching moment math models were derived from the results of the pressure integration of the power-delta pressure coefficients. The orbiter data used to derive the math model is presented in the tabulated date in the Appendix - Section 9 (Forebody Pressure Integration) of the printout sheet (see Section VII). The SSLV and Orbiter math models are identical since only the orbiter plume effects are included in the math model.

The hinge moment math model was derived from the left wing gage data, although the data is presented for the right wing. A comparison of the left wing gage data and the right wing pressure integration data was made to evaluate the best data to use and the gage data had the most consistent trend with changes in attitude and configuration. The left wing gage data used to develop the hinge moment math model is presented in the tabulated data in the appendix in Section 8 (GAGE DATA) of the printout sheet (see Section VII).

The vertical tail shear force, bending moment and torsion moment coefficient were formulated into the following math model

$$C_{v} = [C_{v_{\alpha-\beta_{Matrix}}}]$$

where

[C] is a 4 x 7 matrix for
$$\alpha$$
 = +4,0,-4,-8 β = -6,-4,-2,0,2,4,6

for elevon deflections noted on the table.

 $\mathbf{C}_{\mathbf{Y}_{\mathbf{V}}}$, vertical tail power delta shear force coefficient

 C_{Bv} , vertical tail power delta bending moment coefficient

 $C_{T_{T_{\mathbf{v}}}}$, vertical tail power delta torsion moment coefficient

The vertical tail shear force math model includes only the α - β matrix at the nominal elevon deflection. No influence of elevon deflections are included. The vertical tail power induced shear force, bending moment, and torsion moment coefficients were developed into table format. A typical example is presented in Table 9-2.

The vertical tail math model was derived from the integration of the vertical tail pressure data presented in the tabulated data in the appendix in Section 9 (Forebody Pressure Integration) of the printout sheet (see Section VII).

FOREBODY COEFFICIENT TOLERANCES

Forebody tolerances have been developed for all forebody elements and components. As mentioned above, only the Orbiter, inboard elevon hinge moment and the vertical tail had measurable plume induced aerodynamic changes that could be effectively modeled. The other elements and components have zero nominal math model plume induced aerodynamic characteristics. Tolerances have been developed for all element and components, however, to account for all possible variations in plume induced aerodynamic characteristics. The forebody element and component force coefficient tolerances are presented as tabled values that are the $\pm 3\sigma$ variation of the nominal coefficient. The $\pm 3\sigma$ variation covers the potential variation of the coefficient from the math model results to expected flight data values.

Examples of the SSLV and element force coefficient tolerances are presented in Table 9-3. The moment increment equations are presented in Table 9-4. Examples of the component force coefficient tolerances and moment equations are presented in Tables 9-5 and 9-6. The moment tolerances require using equations that include the force coefficient tolerances along with the nominal aerodynamic center in conjunction with the nominal forebody power delta (when $\neq 0$) times the aerodynamic center tolerance.

The forebody tolerances include contributions due to 1. test instrumentation uncertainty, 2. simulation parameter uncertainty, 3. Reynolds number characteristics, 4. Model-tunnel testing uncertainties. 5. Pressure integration uncertainties and 6. Math model uncertainties. Each tolerance contribution is assumed independent and therefore the contributions are combined using the RSS technique. The tolerances thus cover the uncertainty from the math model to flight data and are to a $+3\sigma$ level with a Gaussian distribution.

The forebody coefficients are determined using power delta's. Thus the instrumentation accuracy includes two independent measurements that are combined

by the RSS techniques. The instrumentation accuracy for a single measurement is estimated to be 3 percent. Thus two measurements would be 4.3 percent. The general uncertainty in the nominal forebody force coefficient due to instrumentation uncertainty was estimated at 50 percent of the calculated nominal forebody coefficient. The similarity parameter uncertainty was estimated to be 30 percent of the nominal, Reynolds number and scale effect was estimated to be 100 percent of the nominal, model uncertainties were estimated to be 30 percent of the nominal, integration uncertainties at 30 percent of the nominal and math model uncertainties were estimated at 20 percent of the nominal value. The net RSS tolerance value for the forebody coefficients are large compared to the nominal math model values. This is because the nominal math model force coefficients are small. If the math model is not used the tolerance would be approximately double the values presented and it was determined that forebody tolerances approach double the values would be excessive.

Portions of the forebody have zero nominal plume induced aerodynamic force coefficients in the math model although specific computed values have been determined and are listed in the tabulated data in the appendix (see Section VII). The tolerance analysis discussed above considered the nominal values calculated although the math model nominal force coefficients—are zero.

Table 9-1. SSLV AND ORBITER POWER DELTA - NORMAL FORCE COEFFICIENT - FOREBODY

						В			
MACH	e ⁱ⁰	α	· - 6	-4	- 2	. 0	+2	+4	+6
		Δ	+•0063	+•0061	+.0058	+.0056	+•0058	+.0061	+.0063
1.10	10/9	Õ	+•0085	+•0080	+.0070	+.0053	+.0070	+.0080	+.0085
		-4	++0090	++0085	+.0080	+.0075	+•0080	+.0085	+.0090
		-8	+•0096	+•0093	+•0090	+•0088 T	+•0090	+•0093	+.0096
1.15	10/5	4	+•0080	+•0077	+•0057	+.0053	+•0057	+•0077	+.0080
		0	*++0079 ***	+•0075	++0057	+•0052	+•0057	+•0075	+.0079
		-4	+•७७८0	+•U077	+•0072	+.0070	+•0072	+.0077	+.0080
		- 8	+•0095	+•0092	+.0081	+•0075	+•0081	+•0092	+.0095
1.25	10/-2	4	+•0043	+•0048	֥0053	+•0058	+•0053	+•0048	+.0043
•		0	+•0055	+•0059	+•0063	+.0067	++0063	+•0059	+.0055
		-4	+•0070	+•0070	+•0071	+.0071	+•0071	+•0070	+.0070
		-8	+•0092	+•0096	+•0099	+•0102	+•0099 ***	+•0096	+•0093
1.40	10/-2	4	+•0060	+•0056	+.0051	+•0047	+•0051	+•0056	0.0060
		0	+.0060	+•0056	+.0051	++0047	+•0051	+.0056	+•0060
		-4	+•0068	+.0070 -	+.0073	+•0075	+.0073	+.0070	+.0068
		-8	+.0090	+.0101	+.0105	+.0108	+.0105	+-0101	+,0096

Table 9-2. VERTICAL TAIL SIDE FORCE POWER DELTA

MACH	δ				•	β	•		
riach.	δe _{IO}	α	- 6	· _4	· -2	0	+2	+4	+6
.6	10/9	4	+•0339	++0226	+.0113	+•0000	0113	0226	0339
• • • • • • • • • • • • • • • • • • • •	10/5	Ó	++0278	++0185	+.0093	++0000	0093	0185	0278
		4	++0302	+•0201	+.0100	+.0000	-•0100	0201	0302
		-8	+•0249	+•0166	+•0083	+•0000	-• 0083	0166	0249
			•				•		
.8	10/9	4	++0129	+•0086	+.0043	+•0000	0043	0086	0129
	•	0	+•0060	+•0053	+.0026	+•0000	0026	0053	0080
		-4	+•0014	+•0010 .	+ • 0005	+• 0000	-•0005	0010	0014
		-8	++0015	+.0010	+•0005	++0000	0005	0010	0015
,		,						-	•
9 . 9	10/9	4_	+•01/0	++0113	+•0057	+•0000	 ∙0057	-•0113	0170
9		0	++0170	++0113	+.0057	+.0000	- ∙0057	0113	0170
		-4	++0210	<u>+</u> •0140	+•0U70	00000_	0070	0140	0210
•		-8	+•0158	+•0105	+•0053	+•0000	-•0053	- •0105	0158
						•	T		
.95	10/9	4	+•0689	+•0459	*• 0230	+.0000	- •0230	-•0459	0689
		0	+ • 0054	++0436	+.0218	+•0000	-•0218	0436	- •0654
		-4	++0615	+•0410-	<u>+•0205_/</u>	<u>+•0000</u>	<u>-</u> •0205	<u>0410</u>	<u></u> 0615
		-8	+•0566	+•0377	+•0188	+•08Un ·	0188	-• 0377	0,566
					•				π
1.05	10/9	4	++0369	+•0246	++0123	+•0000	0123	0246	0369
		0	++0340	+•0227	+.0113	+•0000	0113	0227	0340
		-4	+ 02/9	<u>+•</u> 0186 <u> </u>	+,•0093	+•0000 <u>-</u>	<u>-•0093</u>	-•0186	 0279
		-8	+•0315	+•0210	+.0105	+•0000	0105	0210	0315

Table 9-3 FOREBODY FORCE COEFFICIENT TOLERANCES - SSLV AND ELEMENTS

<u>+</u> ∆ ^C A										
MACH NO.	SSLV	ORB	ET	SRB(1)						
.6 .8 .9 .95 1.05 1.1 1.15 1.25 1.40	.0038 .0038 .0038 .0052 .0037 .0035 .0035 .0045	.0010 .0010 .0010 .0012 .0017 .0015 .0015	.0010 .0010 .0010 .0012 .0017 .0015 .0015 .0014	.0025 .0025 .0025 .0035 .0020 .0020 .0025 .0025						
	:	±∆C _N		•						
.6 .8 .95 1.05 1.1 1.15 1.25 1.40	.0068 .0077 .0094 .0101 .0099 .0089 .0067 .0055	.0060 .0070 .0080 .0080 .0080 .0070 .0050 .0030	.0030 .0030 .0040 .0050 .0055 .0050 .0040 .0030	.0010 .0010 .0020 .0025 .0015 .0015 .0015						
	•	<u>+</u> ΔC _γ								
.6 .8 .9 .95 1.05 1.10 1.15 1.25	.0083 .0083 .0093 .0109 .0098 .0093 .0082 .0064	.0080 .0080 .0090 .0100 .0080 .0060 .0040 .0030	.0005 .0005 .0006 .0007 .0010 .0010 .0008 .0006	.0015 .0015 .0015 .0030 .0040 .0050 .0050						

Table 9-4

FOREBODY MOMENT INCREMENT EQUATIONS - SSLV AND ELEMENTS

$$\Delta C_{M} = \sqrt{\left[\Delta C_{N} \left(\frac{X_{N}}{L}\right)^{2} + \left[C_{N} \left(\frac{\Delta X_{N}}{L}\right)\right]^{2} + \left[\Delta C_{A} \left(\frac{Z_{A}}{L}\right)\right]^{2}} + \left[\Delta C_{N} \left(\frac{X_{N}}{L}\right)\right]^{2} + \left[\Delta C_{N} \left(\frac{X_{N}}{L}\right)\right]^{2}}$$

$$\Delta C_{YN} = \sqrt{\left[\Delta C_{Y} \left(\frac{X_{YN}}{L}\right)^{2} + \left[\Delta C_{N} \left(\frac{Y_{L}}{L}\right)\right]^{2}} + \left[\Delta C_{N} \left(\frac{Y_{L}}{L}\right)\right]^{2}}$$

$$\frac{\text{SSLV } \Delta C_{\text{MSSLV}}}{\text{TYPICAL}} = \sqrt{(\Delta C_{\text{Mo}})^2 + (\Delta C_{\text{MET}})^2 + (\Delta C_{\text{MRSRB}})^2 + (\Delta C_{\text{MLSRB}})^2}$$

			OR	В -	.,		,		ET					
MACH	X _N L	$\frac{\Delta X_{N}}{L}$	X _{YN} L	Z _L L	Y _{ZL}	Υ _L L	$\frac{Z_A}{L}$	X _N L	$\frac{\Delta X_{N}}{L}$	X _{YN} L	Z _L	Y _{ZL}	Y _L	Z _A L
.6	.92	.03	.98	.42	0	0	.26	.7	0	.7	.03	.03	.03	.03
.8 .9	.93	.03	.94	.42	0	0	.26	.7	0	.7	.03	.03	.03	.03
.9	.96	.03	1.02	.43	0	0	.26	8.	0	.8	.03	.03	.03	.03
.95	1.01	.03	1.03	.44	0	0	.26	.8	0	.8	.03	.03	.03	.03
1.05	.95	.04	1.02	.45	0	0	.26	.8	0	.8	.03	.03	.03	.03
1.10	.96	.03	1.01	.45	0	0	.26	.8	0	.8	.03	.03	.03	.03
1.15	.97	.02	1.0	.44	0	0	.26	.8	0	.8	:03	.03	.03	.03
1.25	.98	.02	1.0	.44	0	0	.26	.8	0	.8	.03	.03	.03	.03
1.40	.99	.02	1.0	.44	0	0	.26	.8	0	.8	.03	.03	.03	.03

MACH	X _N	ΔX _N	X _{YN} L	Z _L L	Y _{ZL}	Υ <u>ι</u>	Z _A
.6	1.15	0	1.15	0	.194	.194	.02
.8	1.15	0	1.15	0	.194	.194	.02
9	1.15	0	1.15	0	.194	.194	.02
.95	1.14	0	1.14	0	.194	.194	.02
1.05	1.14	0	1.14	0	.194	.194	.02
1.10	1.13	0	1.13	0	.194	.194	.02
1.15	1.10	0	1.10	. 0	.194	.194	.02
1.25	1.10	0	1.10	0	.194	.194	.02
1.40	1.10	0	1.10	0	.194	.194	.02

NOTE: L = 1290 INCHES

Table 9-5 FOREBODY FORCE TOLERANCES — COMPONENTS

WING TO	OLERANCES	VERTICAL TAIL TOLERANCES
MACH	±∆CNW	<u>+</u> acyv
.6	.0050	.010
.8	.0050	.010
.9	.0050	.0 30
.95	.0050	.030
1.05	.0060	.030
1.10	.0065	. 010 ·
1.15	.0060	.008
1.25	.0040	.010
1.40	.0040	.006

Table 9-6

FOREBODY MOMENT EQUATIONS — COMPONENTS

WING

$$\nabla C^{LM} = \nabla C^{UM} \left(\frac{c}{x^{M}} \right)$$

$$\nabla C^{BM} = \nabla C^{UM} \left(\frac{c}{x^{M}} \right)$$

VERTICAL TAIL

$$\Delta C_{BV} = \left[\Delta C_{YV} \left(\frac{Z_{V}}{L} \right) \right]^{2} \cdot \left[C_{YV} \left(\frac{\Delta Z_{V}}{L} \right) \right]^{2}$$

$$\Delta C_{TV} = \left[\Delta C_{YV} \left(\frac{X_{V}}{L} \right) \right]^{2} + \left[C_{YV} \left(\frac{\Delta X_{V}}{L} \right) \right]^{2}$$

HINGE MOMENT

$$\triangle CHEI = \triangle CHEI$$

 $\triangle CHEO = \triangle CHEO$

	WING 1			VERT 1	CAL ²				
MACH	y _W	X _W c	Z _V L	$\frac{\Delta Z_{V}}{L}$	X _V	ΔX _V	<u>+</u> ΔCHEI	<u>+</u> ΔCHE0	
.6 .8 .9 .95 1.05 1.10 1.15 1.25	.091 .095 .098 .105 .110 .100 .110	22 20 27 26 28 32 33 32	.60 .75 .42 1.10 .72 .91 .63 .34	.20 .20 .20 .25 .30 .30 .20 .15	.34 .33 .59 .84 .51 .81 .87 .78 .40	.10 .10 .17 .20 .25 .20 .20	.0050 .0050 .0100 .0130 .0100 .0080 .0070 .0050	.0020 .0015 .0040 .0100 .0030 .0010 .0010	

1 For Wing

$$b = 936.68$$
"
 $c = 474.81$ "

2 Vertical

L = 199.8 in.

Section X

CONCLUSIONS

The data from tests IA119 and IA138 resulted in an appreciable amount of good plume induced aerodynamic data. Problems with the data were very limited and the power off data compares very good with other tests.

The major independent variables that change the plume induced aerodynamic characteristics are angle of attack, angle of sideslip, inboard elevon deflection and SRB and SSME power level. Plume induced aerodynamic characteristics and their tolerances for the base and forebody have been developed into math models compatible with the forebody math models.

A math model of the plume induced aerodynamic coefficients for the base was developed for the Mach number range from 0.6 to 2.5. Data tables of these coefficients have been provided in G.E. mass format for computer simulation. A math model of the forces and moments for the base was also developed covering the portion of ascent flight up to 160,000 ft. The data tables for the base force math model was also provided in G.E. mass format. A math model of the forebody plume induced aerodynamic coefficients was also developed and the data tables provided in G.E. mass format. The tolerances for the plume induced aerodynamic coefficients and the tolerance math models for the base and forebody were developed and data tables provided in G.E. mass format.

The plume induced aerodynamic characteristics of the orbiter base are the result of a complicated integration of pressure coefficients and power delta pressure coefficients. These aerodynamic characteristics were developed such that when combined with the forebody data they produce the proper total vehicle aerodynamic characteristics.

The ET base plume induced axial force is larger than previous analyses have predicted, however, it is felt that the present results are consistent and representative of the ET base pressure environment.

The plume induced near field (base environment) and far field (orbiter forebody wing and hinge moment data) had good consistent trends when plotted versus the plume similarity parameter. The consistency of the data for both the near field and far field added confidence in the similarity parameter used.

Section XI

RECOMMENDATIONS

A computer program was developed to integrate the pressure data for. all elements and components and tabulate the results and the results of the gage data. The tabulated results and plotted power variation data represent approximately 2000 computer printout pages. Time did not permit an extensive analysis of all the data. It is recommended that additional analyses be conducted of the vertical tail data, wing data, inboard hinge moment data and orbiter fuselage data.

It is also recommended that the IA119 and IA138 test results be reevaluated using the new similarity parameters.

Section XII

REFERENCES

- Boyle, W. W. and Conine, B. H., "Space Shuttle Plume Simulation/Application -Final Report Results and Math Model, NSI Report TR-230-1962, dated 15 July 1978.
- 2. Boyle, W. W., Conine, B. H., and Bell, G., "Space Shuttle Plume Simulation/Application Final Report Results and Math Model Supersonic Data", NSI Report TR-230-1963, dated 15 May 1979.
- 3. Dziubala, T. J. and Marroquin, J., "Pretest Information for Test IA119 of the 0.020-Scale 88-OTS Configuration 140 C (Modified) Integrated Space Shuttle Vehicle Test-Plume Model in the NASA/ARC UP WT 11 by 11 Foot Leg for Determination of Aspiration-Induced Effects", Document SD-77-SH-0196, Rockwell International, Space Division, September 20, 1977.
- 4. Marroquin, J., "Pretest Information for Test IA138 of the 0.010-Scale 75-OTS Jet Plume Space Shuttle Model in the 9x7-Foot Leg of the NASA/ARC Unitary Plan Wind Tunnel", Document SD78-SH-0133, Rockwell International, Space Division, 12 June 1978.
- 5. Harden, R. B. and Campbell, J. R. II, "Pretest Information for Test IA19 of the 0.02 Scale 88-OTS Jet Plume Space Shuttle Model in the 11x11 Foot Leg of the NASA/ARC Unitary Plan Wind Tunnel", Document 5074-SH-0276, Rockwell International Space Division, dated 9 March 1974.
- 6. Andrews, C. D., "MSFC Input for RI/SD SSLV Wind Tunnel Tests IA119/IA138 NASA Memo ED32-77-13, dated 23 February 1977.
- 7. Boyle, W. W., "Plume Technology Program Base Pressure Similarity Parameters", NSI Memo M-9230-76-45, dated July 1976.
- 8. Sims, Joseph L., "Plume Simulation Technology", MSFC Systems Dynamics Laboratory Viewgraph Presentation, January 1979.