Machine Learning

Lecture 3: Logistic Regression

Feng Li

fli@sdu.edu.cn
https://funglee.github.io

School of Computer Science and Technology Shandong University

Fall 2018

Logistic Regression

- Classification problem
 - Similar to regression problem, but we would like to predict only a small number of discrete values (instead of continuous values)
 - Binary classification problem: $y \in \{0,1\}$ where 0 represents negative class, while 1 denotes positive class
 - $y^{(i)} \in \{0,1\}$ is also called the **label** for the training example
- Logistic regression
 - Use a logistic function (or sigmoid function) $g(z)=1/(1+e^{-z})$ to continuously approximate discrete classification

Logistic Regression (Contd.)

- Properties of the sigmoid function
 - Bound

$$g(z) \in (0,1)$$

Symmetric

$$1 - g(z) = g(-z)$$

Gradient

$$g'(z) = g(z)(1 - g(z))$$

Logistic Regression (Contd.)

• Logistic regression defines $h_{\theta}(x)$ using the sigmoid function

$$h_{\theta}(x) = g(\theta^T x) = 1/(1 + e^{-\theta^T x})$$

- First compute a real-valued "score" $(\theta^T x)$ for input x and then "squash" it between (0,1) to turn this score into a probability (of x's label being 1)
- Thus, we have

$$Pr(y = 1 \mid x; \theta) = h_{\theta}(x) = 1/(1 + \exp(-\theta^{T} x))$$

$$Pr(y = 0 \mid x; \theta) = 1 - h_{\theta}(x) = 1/(1 + \exp(\theta^{T} x))$$

Logistic Regression: A Closer Look ...

- What's the underlying decision rule in logistic regression?
- At the decision boundary, both classes are equiprobable; thus, we have

$$\begin{aligned} & \Pr(y = 1 \mid x; \theta) = \Pr(y = 0 \mid x; \theta) \\ \Rightarrow & \frac{1}{1 + \exp(-\theta^T x)} = \frac{1}{1 + \exp(\theta^T x)} \\ \Rightarrow & \exp(\theta^T x) = 1 \\ \Rightarrow & \theta^T x = 0 \end{aligned}$$

- Therefore, the decision boundary of logistic regression is nothing but a linear hyperplane
- Hence, y = 1 if $\theta^T x \ge 0$; otherwise, y = 0

Interpreting The Probabilities ...

Recall that

$$\Pr(y = 1 \mid x; \theta) = \frac{1}{1 + \exp(-\theta^T x)}$$

• The "score" $\theta^T x$ is also a measure of distance of x from the hyperplane (the score is positive for pos. examples, and negative for neg. examples)

- High positive score: High probability of label 1
- High negative score: Low probability of label 1 (high prob. of label 0)

Logistic Regression Formulation

- Logistic regression model $h_{\theta}(x) = g(\theta^T x) = 1/(1 + e^{-\theta^T x})$
- Assume $\Pr(y=1\mid x;\theta)=h_{\theta}(x)$ and $\Pr(y=0\mid x;\theta)=1-h_{\theta}(x)$, then we have

$$\Pr(y \mid x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$$

• If we assume $y \in \{-1, 1\}$ instead of $y \in \{0, 1\}$, then

$$\Pr(y \mid x; \theta) = \frac{1}{1 + \exp(-y\theta^T x)}$$

 Assuming the training examples were generated independently, we define the likelihood of the parameters as

$$L(\theta) = \Pr(Y \mid X; \theta)$$

$$= \prod_{i} \Pr(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i} (h_{\theta}(x^{(i)}))^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}}$$

Logistic Regression Formulation (Contd.)

Maximize the log likelihood

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{m} \left(y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log(1 - h(x^{(i)}) \right)$$

- Gradient ascent algorithm
 - $\theta_j \leftarrow \theta_j + \alpha \nabla_{\theta_j} \ell(\theta)$ for $\forall j$, where

$$\frac{\partial}{\partial \theta_j} \ell(\theta) = \sum_{i=1}^m \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

Newton's Method

- Given a differentiable real-valued $f:\mathbb{R} \to \mathbb{R}$, how can we find x such that f(x)=0 ?
- The following iteration is performed until a sufficiently accurate value is achieved

$$x \leftarrow x - \frac{f(x)}{f'(x)}$$

Newton's Method (Contd.)

- To maximize f(x), we have to find the stationary point of f(x) such that f'(x) = 0.
- According to Newton's method, we have the following update

$$x \leftarrow x - \frac{f'(x)}{f''(x)}$$

• Newton-Raphson method: For $\ell: \mathbb{R}^n \to \mathbb{R}$, we generalization Newton's method to the multidimensional setting

$$\theta \leftarrow \theta - H^{-1} \nabla_{\theta} \ell(\theta)$$

where H is the Hessian matrix

$$H_{i,j} = \frac{\partial^2 \ell(\theta)}{\partial \theta_i \partial \theta_j}$$

Newton's Method (Contd.)

- Higher convergence speed than (batch) gradient descent
- Fewer iterations to approach the minimum
- However, each iteration is more expensive than the one of gradient descent
 - Finding and inverting an $n \times n$ Hessian

More details about Newton's method can be found at https://en.wikipedia.org/wiki/Newton%27s_method

Generalized Linear Models (GLMs)

- So far,
 - Regression problem $y \mid x; \theta \sim \mathcal{N}(\mu, \sigma^2)$
 - Classification problem $y \mid x; \theta \sim Bernoulli(\phi)$
- In fact, both of these methods are special cases of a broader family of models, so-called generalized linear models (GLMs)

The Exponential Family

 An exponential family is a set of probability distributions of the following form

$$p(y; \eta) = b(y) \exp(\eta^T \Phi(y) - a(\eta))$$

- ullet η is called the natural parameter (also called the canonical parameter)
- $\Phi(y)$ is the sufficient statistic (we usually take $\Phi(y) = y$)
- b(y) is the underlying measure (e.g., counting measure or Lebesgue measure)
- $a(\eta)$ is the log partition (or cumulant) function

 An exponential family is a set of probability distributions of the following form

$$p(y;\eta) = b(y) \exp(\eta^T \Phi(y) - a(\eta))$$
$$= \frac{b(y) \exp(\eta^T \Phi(y))}{\exp(a(\eta))}$$

• $\exp{(a(\eta))}$ is a constant for normalization purpose, such that $a(\eta)$ is not a degree of freedom in the specification of an exponential family density

Lebesgue integral :
$$\exp(a(\eta)) = \int_{y} b(y) \exp(\eta^{T} \Phi(y)) dy$$

• $\Phi(\cdot)$, $a(\cdot)$ and $b(\cdot)$ define a family of distributions parameterized by η

• For exponential family, we have

$$\int_{y} p(y; \eta) dy = \int_{y} b(y) \exp(\eta^{T} \Phi(y) - a(\eta)) dy = 1$$

• Calculate derivative w.r.t. η

$$a'(\eta) = \int_{y} b(y) \exp(\eta^{T} \Phi(y) - a(\eta)) \Phi(y) dy$$

• The log-likelihood function

$$\ell(\eta) = \log \prod_{i=1}^{m} p(y^{(i)}; \eta)$$

$$= \sum_{i=1}^{m} \log p(y^{(i)}; \eta)$$

$$= \sum_{i=1}^{m} \log b(y^{(i)}) - ma(\eta) + \eta^{T} \sum_{i=1}^{m} \Phi(y^{(i)})$$

• Maximizing $\ell(\eta)$

$$a'(\eta) = \frac{1}{m} \sum_{i=1}^{m} \Phi(y^{(i)})$$

- Sufficiency: The likelihood for η only depends on y through $\Phi(y)$
- When $m \to \infty$, $a'(\eta) \to E(\Phi(y))$

Bernoulli distribution

$$p(y; \psi) = \psi^{y} (1 - \psi)^{1 - y}$$

$$= \exp(y \log \psi + (1 - y) \log(1 - \psi))$$

$$= \exp(y \log \psi + \log(1 - \psi) - y \log(1 - \psi))$$

$$= \exp\left(y \log \frac{\psi}{1 - \psi} + \log(1 - \psi)\right)$$

- $\eta = \log(\psi/(1-\psi))$ (and thus $\psi = 1/(1+e^{-\eta})$)
- $\Phi(y) = y$
- $a(\eta) = -\log(1 \psi) = \log(1 + e^{\eta})$
- b(y) = 1

• Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$

$$\begin{split} p(y;\mu,\sigma^2) &= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y-\mu)^2\right) \\ &= \frac{1}{\sqrt{2\pi}} \exp\left(\frac{\mu}{\sigma^2}y - \frac{1}{2\sigma^2}y^2 - \frac{1}{2\sigma^2}\mu^2 - \log\sigma\right) \end{split}$$

•
$$\eta = \begin{bmatrix} \mu/\sigma^2 \\ -1/2\sigma^2 \end{bmatrix}$$

•
$$\Phi(y) = \begin{bmatrix} y \\ y^2 \end{bmatrix}$$

•
$$a(\eta) = \frac{\mu^2}{2\sigma^2} + \log \sigma = -\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\log(-2\eta_2)$$

•
$$b(y) = 1/\sqrt{2\pi}$$

• Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$ where σ^2 is a constant (e.g. $\sigma=1$)

$$p(y; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(y - \mu)^2\right)$$
$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y^2\right) \cdot \exp\left(\mu y - \frac{1}{2}\mu^2\right)$$

- $\eta = \mu$
- $\Phi(y) = y$
- $a(\eta) = \mu^2/2 = \eta^2/2$
- $b(y) = 1/\sqrt{2\pi} \exp(-1y^2 2)$

Piosson distribution

$$p(y;\lambda) = \frac{\lambda^y e^{-\lambda}}{y!}$$
$$= \frac{1}{y!} \exp(y \log \lambda - \lambda)$$

- $\eta = \log \lambda$
- $\Phi(y) = y$
- $a(\eta) = \lambda = e^{\eta}$
- b(y) = 1/y!

• Multinomial distribution $(\sum_{i=1}^k y_i = 1)$

$$\begin{split} p(y;\psi) &= \psi_1^{y_1} \psi_2^{y_2} \cdots \psi_k^{y_k} \\ &= \exp\left(\sum_{i=1}^k y_i \log \psi_i\right) \\ &= \exp\left(\sum_{i=1}^{k-1} y_i \log \psi_i + (1 - \sum_{i=1}^{k-1} y_i) \log(1 - \sum_{i=1}^{k-1} \psi_i)\right) \\ &= \exp\left(\sum_{i=1}^{k-1} \log(\frac{\psi_i}{1 - \sum_{i=1}^{k-1} \psi_i}) y_i + \log(1 - \sum_{i=1}^{k-1} \psi_i)\right) \end{split}$$

- Multinomial distribution $(\sum_{i=1}^k y_i = 1)$
 - $\eta_k = \log(\frac{\psi_k}{1 \sum_{i=1}^{K-1} \psi_i}) = \log \frac{\pi_k}{\pi_K}$
 - $\Phi(y) = y$
 - $a(\eta) = -\log(1 \sum_{i=1}^{K-1} \psi_i)$
 - b(y) = 1

Constructing GLMs

- Assumptions
 - $y \mid x; \theta \sim \text{ExponentialFamily}(\eta)$
 - $\Phi(y) = y$ which means $h_{\theta}(x) = \mathrm{E}[y|x;\theta]$
 - $\bullet \ \eta = \theta^T x$

Constructing GLMs (Contd.)

- Ordinary least square
 - $y \mid x \sim \mathcal{N}(\mu, \sigma^2)$
 - Since $\eta = \mu$, we have

$$h_{\theta}(x) = E[y \mid x; \theta] = \mu = \eta = \theta^{T} x$$

Constructing GLMs (Contd.)

- Logistic regression
 - For Bernoulli distribution, $\psi = 1/(1 + e^{-\eta})$
 - Therefore, we have

$$h_{\theta}(x) = E[y \mid x; \theta] = \psi = 1/(1 + e^{-\eta}) = 1/(1 + e^{-\theta^T x})$$

Multiclass Classification

- Multiclass (or multinomial) classification is the problem of classifying instances into one of the more than two classes
- The existing multiclass classification techniques can be categorized into
 - Transformation to binary
 - Extension from binary
 - Hierarchical classification

Transformation to Binary

- One-vs.-rest (one-vs.-all, OvA or OvR, one-against-all, OAA) strategy is to train a single classifier per class, with the samples of that class as positive samples and all other samples as negative ones
 - Inputs: A learning algorithm L, training data $\{(x^{(i)},y^{(i)})\}_{i=1,\cdots,m}$ where $y^{(i)}\in\{1,...,K\}$ is the label for the sample $x^{(i)}$
 - Output: A list of classifier f_k for $k \in \{1, \dots, K\}$
 - Procedure: For $\forall k \in \{1,\cdots.K\}$, construct a new label $z^{(i)}$ for $x^{(i)}$ such that $z^{(i)}=1$ if $y^{(i)}=k$ and $z^{(i)}=0$ otherwise, and then apply L to $\{(x^{(i)},z^{(i)})\}_{i=1,\cdots,m}$ to obtain f_k . Higher $f_k(x)$ implies hight probability that x is in class k
 - Making decision: $y^* = \arg\min_k f_k(x)$
 - Example: Using SVM to train each binary classifier

Transformation to Binary

- One-vs.-One (OvO) reduction is to train K(K-1)/2 binary classifiers
 - For the (s, t)-th classifier:
 - Positive samples: all the points in class s
 - Negative samples: all the points in class t
 - $f_{s,t}(x)$ is the decision value for this classifier such that larger $f_{s,t}(x)$ implies that label s has higher probability than label t
 - $f_{s,t}(x) = -f_{t,s}(x)$
 - Prediction:

$$f(x) = \arg\max_{s} \left(\sum_{t} f_{s,t}(x) \right)$$

• Example: using SVM to train each binary classifier

- A classification problem where $y \in \{1, 2, \cdots, k\}$
- Multinomial distribution
 - A generalization of the binomial distribution
 - A trial has k outcomes and we perform the trial n times independently, the multinomial distribution gives the probability of any particular combination of numbers of successes for the various categories
 - Assuming $\psi_i = p(y=i;\psi)$ $(i=1,\cdots,k)$ denote the probability of i-th outcomes, since $\sum_i \psi_i = 1$, the multinomial distribution can be parameterized by only k-1 parameters $\{\psi_1,\psi_2,\cdots,\psi_{k-1}\}$
- Question: Can we express the multinomial as an exponential family distribution?

• Defining $\Phi(y) \in \mathbb{R}^{k-1}$

$$\Phi(1) = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Phi(2) = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \cdots \Phi(k-1) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \Phi(k) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

• Assuming $\mathbf{1}\{True\} = 1$ and $\mathbf{1}\{False\} = 0$, we have

$$p(y;\psi) = \psi_1^{\mathbf{1}\{y=1\}} \psi_2^{\mathbf{1}\{y=2\}} \cdots \psi_k^{\mathbf{1}\{y=k\}}$$

$$\begin{split} p(y;\psi) &= \psi_1^{\mathbf{1}\{y=1\}} \psi_2^{\mathbf{1}\{y=2\}} \cdots \psi_k^{\mathbf{1}\{y=k\}} \\ &= \psi_1^{\mathbf{1}\{y=1\}} \psi_2^{\mathbf{1}\{y=2\}} \cdots \psi_k^{\mathbf{1} - \sum_{i=1}^{k-1} \mathbf{1}\{y=i\}} \\ &= \psi_1^{(\Phi(y))_1} \psi_2^{(\Phi(y))_2} \cdots \psi_k^{\mathbf{1} - \sum_{i=1}^{k-1} (\Phi(y))_i} \\ &= \exp \left[\log \left(\psi_1^{(\Phi(y))_1} \psi_2^{(\Phi(y))_2} \cdots \psi_k^{\mathbf{1} - \sum_{i=1}^{k-1} (\Phi(y))_i} \right) \right] \\ &= \exp \left[\sum_{i=1}^{k-1} (\Phi(y))_i \log \psi_i + \left(1 - \sum_{i=1}^{k-1} (\Phi(y))_i \right) \log \psi_k \right] \\ &= \exp \left[\sum_{i=1}^{k-1} (\Phi(y))_i \log (\psi_i/\psi_k) + \log \psi_k \right] \end{split}$$

We have

$$p(y; \psi) = \exp\left(\sum_{i=1}^{k-1} (\Phi(y))_i \log(\psi_i/\psi_k) + \log \psi_k\right)$$
$$= b(y) \exp(\eta^T \Phi(y) - a(\eta))$$

•
$$\eta = \begin{bmatrix} \log(\psi_1/\phi_k) \\ \log(\psi_2/\phi_k) \\ \dots \\ \log(\psi_{k-1}/\phi_k) \end{bmatrix}$$
• $a(\eta) = -\log(\psi_k)$
• $b(y) = 1$

The link function is

$$\eta_i = \log \frac{\psi_i}{\psi_k}, \text{ for } \forall i = 1, 2, \cdots, k$$

Then, we have

$$e^{\eta_i} = \psi_i/\psi_k, \quad \psi_i = \psi_k e^{\eta_i}, \quad \psi_k \sum_{i=1}^k e^{\eta_i} = \sum_{i=1}^k \psi_i = 1$$

Therefore, the response function is derived as follows

$$\psi_k = 1/\sum_{i=1}^k e^{\eta_i}, \quad \psi_i = \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}}$$

• The function mapping from η 's to the ψ 's is so-called the softmax function

• Since $\eta_i = \theta_i^T x$ (for $i=1,2,\cdots,k-1$), we have the following softmax model

$$p(y = i|x, w) = \psi_i = \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}} = \frac{e^{\theta_i^T x}}{\sum_{j=1}^k e^{\theta_j^T x}}$$

Our hypothesis outputs

$$h_{\theta}(x) = E[\Phi(y)|x;\theta] = \begin{bmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_{k-1} \end{bmatrix} = \begin{bmatrix} \frac{\exp(\theta_1^T x)}{\sum_{j=1}^k \exp(\theta_j^T x)} \\ \frac{\exp(\theta_2^T x)}{\sum_{j=1}^k \exp(\theta_j^T x)} \\ \vdots \\ \frac{\exp(\theta_{k-1}^T x)}{\sum_{j=1}^k \exp(\theta_j^T x)} \end{bmatrix}$$

- Training data set $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})\}$
- Log-likelihood function

$$\ell(\theta) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)};\theta) = \sum_{i=1}^{m} \log \prod_{r=1}^{k} \left(\frac{e^{\theta_r^T x^{(i)}}}{\sum_{j=1}^{k} e^{\theta_j^T x^{(i)}}} \right)^{\mathbf{1}\{y^{(i)}=r\}}$$

• Maximizing $\ell(\theta)$ through gradient ascent or Newton's method

Thanks!

Q & A