Reinforcement learning Episode 4

Approximate reinforcement learning

Reality check: videogames

• Trivia: What are the states and actions?

Recap: Q-learning

Action value Q(s,a) is the expected total reward **R** agent gets from state **s** by taking action **a** and following policy π from next state.

$$\pi(s)$$
: $argmax_a Q(s,a)$

Recap: Q-learning

$$Q(s_t, a_t) \leftarrow \alpha \cdot (r_t + \gamma \cdot max_{a'} Q(s_{t+1}, a')) + (1 - \alpha) Q(s_t, a_t)$$

 $\pi(s)$: $argmax_a Q(s,a)$

Given <**s**,**a**,**r**,**s**'> minimize

$$L = [Q(s_t, a_t) - Q^{true}(s_t, a_t)]^2$$

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]^2$$

How to optimize?

Given <**s**,**a**,**r**,**s**'> minimize

$$L = [Q(s_t, a_t) - Q^{true}(s_t, a_t)]^2$$

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]^2$$

For tabular Q(s,a)

$$\nabla L = 2 \cdot [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]$$

Given <**s**,**a**,**r**,**s**'> minimize

$$L = [Q(s_t, a_t) - Q^{true}(s_t, a_t)]^2$$

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]^2$$

For tabular Q(s,a)

$$\nabla L \approx 2 \cdot [Q(s_t, a_t) - (r_t + \gamma \cdot max_a, Q(s_{t+1}, a'))]$$

Something's sooo wrong!

Given <**s**,**a**,**r**,**s**'> minimize

$$L = [Q(s_t, a_t) - Q^{true}(s_t, a_t)]^2$$
 const

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]^2$$

const

For tabular Q(s,a)

$$\nabla L \approx 2 \cdot [Q(s_t, a_t) - (r_t + \gamma \cdot max_a, Q(s_{t+1}, a'))]$$

For tabular Q(s,a)

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'} Q(s_{t+1}, a'))]^2$$

$$\nabla L \approx 2 \cdot [Q(s_t, a_t) - (r_t + \gamma \cdot max_a, Q(s_{t+1}, a'))]$$

Gradient descent step:

$$Q(s,a) := Q(s,a) - \alpha \cdot 2[Q(s_t,a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1},a'))]$$

For tabular Q(s,a)

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]^2$$

$$\nabla L \approx 2 \cdot [Q(s_t, a_t) - (r_t + \gamma \cdot max_a, Q(s_{t+1}, a'))]$$

Gradient descent step:

$$Q(s,a) := Q(s,a)(1-2\alpha)+2\alpha(r_t+\gamma \cdot max_{a'}Q(s_{t+1},a'))$$

For tabular Q(s,a)

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_a, Q(s_{t+1}, a'))]^2$$

$$\nabla L \approx 2 \cdot [Q(s_t, a_t) - (r_t + \gamma \cdot max_a, Q(s_{t+1}, a'))]$$

Gradient descent step:

$$Q(s,a) := Q(s,a)(1-2\alpha) + 2\alpha(r_t + \gamma \cdot max_{a'}Q(s_{t+1},a'))$$

= moving average formula (define alpha' = 2*alpha)

Real world

Problem:

State space is usually large, sometimes continuous.

And so is action space;

However, states do have a structure, similar states have similar action outcomes.

Problem:

State space is usually large, sometimes continuous.

And so is action space;

Two solutions:

- Binarize state space
- Approximate agent with a function

Problem:

State space is usually large, sometimes continuous.

And so is action space;

Two solutions:

- Approximate agent with a function

From tables to approximations

- Before:
 - For all states, for all actions, remember Q(s,a)
- Now:
 - Approximate Q(s,a) with some function
 - e.g. linear model over state features

$$argmin_{w,b}(Q(s_t,a_t)-[r_t+\gamma\cdot max_{a'}Q(s_{t+1},a')])^2$$

Trivia: should we use **classification** or **regression** model? (e.g. logistic regression Vs linear regression)

From tables to approximations

- Before:
 - For all states, for all actions, remember Q(s,a)
- Now:
 - Approximate Q(s,a) with some function
 - e.g. linear model over state features

$$argmin_{w,b}(Q(s_t,a_t)-[r_t+\gamma\cdot max_{a'}Q(s_{t+1},a')])^2$$

Solve it as a regression problem!

MDP again

Approximate Q-learning

Q-values:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot max_{a'} \hat{Q}(s_{t+1}, a')$$

Objective:

$$L = (Q(s_t, a_t) - [r + \gamma \cdot max_{a'} Q(s_{t+1}, a')])^2$$

Gradient step:

$$W_{t+1} = W_t - \alpha \cdot \frac{\delta L}{\delta w}$$

Approximate Q-learning

Q-values:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot max_{a'} \hat{Q}(s_{t+1}, a')$$

Objective:

$$L = (Q(s_t, a_t) - [r + \gamma \cdot \max_{a'} Q(s_{t+1}, a')])^2$$

consider const

Gradient step:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \cdot \frac{\partial L}{\partial \mathbf{w}_t}$$

Approximate SARSA

Objective:

$$L = (Q(s_t, a_t) - \hat{Q}(s_t, a_t))^2$$
consider const

Q-learning:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot max_{a'} Q(s_{t+1}, a')$$

SARSA:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot Q(s_{t+1}, a_{t+1})$$

Expected Value SARSA:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot E_{a' \sim \pi(a|s)} Q(s_{t+1}, a')$$

Approximate n-step methods

Objective:

$$L = (Q(s_t, a_t) - \hat{Q}(s_t, a_t))^2$$
consider const

Q-learning:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot \max_{a'} Q(s_{t+1}, a')$$

Q-learning n-step:

$$\hat{Q}(s_t, a_t) = r(s_t, a_t) + \gamma r(s_{t+1}, a_{t+1}) + \gamma^2 Q(s_{t+2}, a_{t+2})$$

$$\hat{Q}(s_t, a_t) = \left[\sum_{\tau=t}^{\tau < t+n} \gamma^{\tau} r(s_{t+\tau}, a_{t+\tau})\right] + \gamma^{n} \cdot \max_{a} Q(s_{t+n}, a)$$

Approximate Q-learning apply Qvalues action action Qvalues is a dense layer with Dense **no** nonlinearity **∈-greedy** rule (tune ϵ or use probabilistic rule) Dense Dense Whatever you found in Obseryour favorite vation deep learning toolkit

Architectures

Given **(s,a)** Predict Q(s,a) Given **s** predict all q-values Q(s,a0), Q(s,a1), Q(s,a2)

Architectures

Given (s,a) Predict Q(s,a) Given **s** predict all q-values Q(s,a0), Q(s,a1), Q(s,a2)

Trivia: in which situation does **left** model work better? ₂₅ And right?

Architectures

Needs one forward pass for **each action**

Works if action space is large / continuous

Needs one forward pass for **all actions** (faster)

What kind of network digests images well?

Deep learning approach: DQN

TSNE makes every slide 40% better

- Embedding of pre-last layer activations
- Color = $V(s) = max_a Q(s,a)$

How bad it is if agent spends next 1000 ticks under the left rock? (while training)

Problem

- Training samples are not "i.i.d",
- Model forgets parts of environment it hasn't visited for some time
- Drops on learning curve
- Any ideas?

Multiple agent trick

Idea: Throw in several agents with shared **W**.

Multiple agent trick

Idea: Throw in several agents with shared **W**.

- Chances are, they will be exploring different parts of the environment,
- More stable training,
- Requires a lot of interaction

Trivia: your agent is a real robot car. Any problems?

Experience replay

Idea: store several past interactions <s,a,r,s'>
Train on random subsamples

Any +/- ?

Replay buffer

Experience replay

Idea: store several past interactions <s,a,r,s'>
Train on random subsamples

- Atari DQN: >10^5 interactions
- Closer to i.i.d pool contains several sessions
- Older interactions were obtained under weaker policy

Better versions coming next week

Replay buffer

Summary so far

to make data closer to i.i.d.

Use one or several of

- experience replay
- multiple agents
- Infinitely small learning rate:)

An important question

- You approximate Q(s,a) with a neural network
- You use experience replay when training

Trivia: would CEM train well with experience replay?

When training with on-policy methods,

- use no (or small) experience replay
- compensate with parallel game sessions

Deep learning meets MDP

- Dropout, noize
 - Used in experience replay only: like the usual dropout
 - Used when interacting: a special kind of exploration
 - You may want to decrease p over time.
- Batchnorm
 - Faster training but may break moving average
 - Experience replay: may break down if buffer is too small
 - Parallel agents: may break down under too few agents
 <same problem of being non i.i.d.>

Autocorrelation

Reference is based on predictions

$$r + \gamma \cdot max_{a'}Q(s_{t+1}, a')$$

- Any error in Q approximation is propagated to neighbors
- If some Q(s,a) is mistakenly over-exaggerated,
 neighboring qvalues will also be increased in a cascade
- Worst case: divergence
- Any ideas?

Target networks

Idea: use older network snapshot to compute reference

$$L = (Q(s_t, a_t) - [r + \gamma \cdot max_a' Q^{old}(s_{t+1}, a')])^2$$

- Update Q old periodically
 - Slows down training

Target networks

Idea: use older network snapshot to compute reference

$$L = (Q(s_t, a_t) - [r + \gamma \cdot max_a' Q^{old}(s_{t+1}, a')])^2$$

- Update Q old periodically
 - Slows down training
- Smooth version:
 - use moving average

$$\theta^{old} := (1 - \alpha) \cdot \theta^{old} + \alpha \cdot \theta^{new}$$

• Θ = weights

Final problem

Left or right?

Problem:

Most practical cases are partially observable:

Agent observation does not hold all information about process state (e.g. human field of view).

Any ideas?

Problem:

Most practical cases are partially observable:

Agent observation does not hold all information about process state (e.g. human field of view).

 However, we can try to infer hidden states from sequences of observations.

$$s_t \simeq m_t : P(m_t | o_t, m_{t-1})$$

Intuitively that's agent memory state.

Partially observable MDP

N-gram heuristic

Idea:

$$s_t \neq o(s_t)$$

$$s_t \approx (o(s_{t-n}), a_{t-n}, ..., o(s_{t-1}), a_{t-1}, o(s_t))$$

e.g. ball movement in breakout

· One frame

· Several frames 50

N-gram heuristic

Idea:

$$s_t \neq o(s_t)$$

$$s_t \approx (o(s_{t-n}), a_{t-n}, ..., o(s_{t-1}), a_{t-1}, o(s_t))$$

e.g. ball movement in breakout

· One frame

· Several frames 52

Alternatives

Ngrams:

- Nth-order markov assumption
- Works for velocity/timers
- Fails for anything longer that N frames
- Impractical for large N

Alternative approach:

- Infer hidden variables given observation sequence
- · Kalman Filters, Recurrent Neural Networks
- · More on that in a few lectures

Seminar

