MA571 Homework 9

Carlos Salinas

November 10, 2015

CARLOS SALINAS PROBLEM 8

Problem 1. Let X be a Hausdorff space and let A be a compact subset of X. Prove from the definitions that A is closed.

Proof. This is Theorem 26.3 from Munkres, p. 165.

We shall prove that X - A is open, so that A is closed. Let $x_0 \in X - A$. We show there is a neighborhood of x_0 disjoint from A. For each point $a \in A$, let us choose disjoint neighborhoods U_a and V_a of the points x_0 and a, respectively (using the Hausdorff condition). The collection

$$\{V_a \mid a \in A\}$$

is a covering of Y by sets open in X; therefore, finitely many of them $V_{a_1}, ..., V_{a_n}$ cover A. The open set $V = V_{a_1} \cup \cdots \cup V_{a_n}$ contains Y, and is disjoint from the open set $U = U_{a_1} \cap \cdots \cap U_{a_n}$ formed by taking the intersection of the corresponding neighborhoods of x_0 . For if z a point of V, then $z \in V_{a_i}$ for some i, hence $z \notin U_{a_i}$ so $z \notin U$. Then U is a neighborhood of x_0 disjoint from Y, as desired.

Problem 2. Let X be a Hausdorff space and let A and B be disjoint compact subsets of X. Prove that there are open sets U and V such that U and V are disjoint, $A \subset U$ and $B \subset V$.

Proof. Suppose that A and B are disjoint compact subsets of X. By Theorem 26.4 for every $x \in B$ there exists disjoint open sets $U_x \supset A$ and V_x a neighborhood of x.

Problem 3. Prove the Tube Lemma: Let X and Y be topological spaces with Y compact, let $x_0 \in X$, and let N be an open set of $X \times Y$ containing $x_0 \times Y$, then there is an open set W of X containing x_0 with $W \times Y \subset N$.

Problem 4. Show that if Y is compact, then the projection map $X \times X \to X$ is a closed map.

Problem 5. Let X be a compact space and suppose we are given a nested sequence of subsets $C_1 \supset C_2 \supset \cdots$ with all C_i closed. Let U be an open set containing $\bigcap C_i$. Prove that there is an i_0 with $C_{i_0} \subset U$.

Problem 6. Let X be a compact space, and suppose there is a finite family of continuous functions $f_i \colon X \to \mathbf{R}, \ i = 1, ..., n$ with the following property: given $x \neq y$ in X there is an i such that $f_i(x) \neq f_i(y)$. Prove that X is homeomorphic to a subspace of \mathbf{R}^n .

Problem 7. Let X be a compact metric space and let \mathcal{U} be a covering of X by open sets. Prove that there is an $\varepsilon > 0$ such that, for each set $S \subset X$ with diameter $< \varepsilon$, there is a $U \in \mathcal{U}$ with $S \subset U$. (This fact is known as the "Lebesgue number lemma.")

 $MA571\ Homework\ 9$

CARLOS SALINAS PROBLEM 16

Problem 8. Let S^1 denote the circle $\{x^2 + y^2 = 1\}$ in \mathbf{R}^2 . Define an equivalence relation on S^1 by

$$(x,y) \sim (x',y') \iff (x,y) = (x',y') \text{ or } (x,y) = (-x',-y')$$

(you do not have to prove that this is an equivalence relation). Prove that the quotient space S^1/\sim is homeomorphic to S^1 .

One way to do this is by using complex numbers.

Problem 9. Let X be a nonempty compact Hausdorff space and let $f: X \to X$ be a continuous function. Suppose f is 1-1. Prove that there is a nonempty closed set A with f(A) = A. (The hypothesis that f is 1-1 is not actually needed, but it makes the proof a little easier.)

Problem 10. Let \sim be the equivalence relation on \mathbf{R}^2 defined by $(x,y) \sim (x',y')$ if and only if there is a nonzero t with (x,y)=(tx',ty'). Prove that the quotient space \mathbf{R}^2/\sim is compact but not Hausdorff.

Problem 11. Let X be a locally compact Hausdorff space. Explain how to construct the one-point compactification of X and prove that the space you construct is really compact (you do not have to prove anything else for this problem.)

Problem 12. Show that if $\prod_{n=1}^{\infty} X_n$ is locally compact (and each X_n is nonempty), then each X_n is locally compact and X_n is compact for all but finitely many n.

Problem 13. Let X be a locally compact Hausdorff space, let Y be any space, and let the function space $\mathcal{C}(X,Y)$ have the compact-open topology. Prove that the map

$$e: X \times \mathcal{C}(X,Y) \to Y$$

define by the equation e(x, f) = f(x) is continuous.

Problem 14. Let I be the unit interval, and let Y be a path-connected space. Prove that any two maps from I to Y are homotopic.

Problem 15. Let X be a topological space and $f: [0,1] \to X$ any continuous function. Define \bar{f} by $\bar{f}(t) = f(1-t)$. Prove that $f * \bar{f}$ is path-homotopic to the constant path at f(0).

MA571 Homework 9

CARLOS SALINAS PROBLEM 16

Problem 16. LEt X be a path-connected topological space and let $x_0, x_1 \in X$. Recall that any path α from x_0 to x_1 gives an isomorphism $\hat{\alpha}$ from $\pi_1(X, x_0)$ to $\pi_1(X, x_1)$ (you do not have to prove this.)

Suppose that for every pair of paths α and β from x_0 to x_1 the isomorphisms $\hat{\alpha}$ and $\hat{\beta}$ are the same. Prove that $\pi_1(X, x_0)$ is Abelian.

Proof.

MA571 Homework 9