

Art of Problem Solving

1995 Balkan MO

Balkan MO 1995

_	May	9th
	TVI CLY	9011

1 For all real numbers x, y define $x \star y = \frac{x+y}{1+xy}$. Evaluate the expression

$$(\cdots(((2\star3)\star4)\star5)\star\cdots)\star1995.$$

Macedonia

The circles $C_1(O_1, r_1)$ and $C_2(O_2, r_2)$, $r_2 > r_1$, intersect at A and B such that $\angle O_1AO_2 = 90^\circ$. The line O_1O_2 meets C_1 at C and D, and C_2 at E and F (in the order C, E, D, F). The line BE meets C_1 at K and AC at M, and the line BD meets C_2 at L and AF at N. Prove that

$$\frac{r_2}{r_1} = \frac{KE}{KM} \cdot \frac{LN}{LD}.$$

Greece

3 Let a and b be natural numbers with a > b and having the same parity. Prove that the solutions of the equation

$$x^{2} - (a^{2} - a + 1)(x - b^{2} - 1) - (b^{2} + 1)^{2} = 0$$

are natural numbers, none of which is a perfect square.

Albania

Let n be a positive integer and S be the set of points (x, y) with $x, y \in \{1, 2, ..., n\}$. Let T be the set of all squares with vertices in the set S. We denote by a_k $(k \ge 0)$ the number of (unordered) pairs of points for which there are exactly k squares in T having these two points as vertices. Prove that $a_0 = a_2 + 2a_3$.

Yuqoslavia

Contributors: Valentin Vornicu