Capstone Project

Customer Behaviour Segmentation

Sakina Sakdun

What is customer segmentation?

Homogeneous groups

Helps marketers better understand similar traits within each group

Customise marketing campaigns on each target group

Business Value

Efficient resource allocation thus maximising profits

RFM Framework

The freshness of customer's activity
(i.e. days from last purchase)

Why is RFM important?

Why segment customers using RFM?

Business Problem

Which of our customers that are worth retaining?

- Head of Marketing Team of an E-commerce site (stakeholder)

Data Question

Can we use unsupervised clustering algorithm to identify high value & high risk customers, better than a manual RFM calculation?

Process Workflow

E-commerce User Behaviour Dataset

from multi-category store [Kaggle]

Raw Data

167 million rows, 8 columns Event time: Jan-Mar 2020

Raw Data Columns event_time event_type
(i.e. view, cart, purchase) product_id category_id category_code brand price user id user_session

RFM Framework

Recency

'days_from_last_purchase'

Frequency

'purchase_total'

Monetary

'purchase_amount_total'

Feature Engineering on User-Id Level

Scope:

Repeat Customers

(more than 1 purchasing day)

Processed Data

338,000+ rows, 4 columns

DataFrame Columns user_id recency

frequency

monetary

Unsupervised Clustering

RFM

Exploratory Data Analysis (EDA)

'recency'

Exploratory Data Analysis (EDA)

'frequency'

| | Extremely right-skewed

Exploratory Data Analysis (EDA)

'monetary'

| Extremely right-skewed

Manual RFM Calculation

Using quartiles,

- Assign a score from 1 to 4 to R, F, M
 - o 4 most ideal
 - o 1 least ideal
- Final RFM score is calculated simply by combining individual R, F, M value numbers

(best customer = '444')

user	recency	frequency	monetary	R	F	М	RFM_score
А	34.0	2.0	117.84	2	1	1	211
В	11.0	11.0	6429.41	4	4	4	444
С	55.0	11.0	12028.97	1	4	4	144

Low value, Mid risk

High value, Low risk

High value, High risk

RFM + Mini Batch KMeans

duster labels

Cluster Labels	Risk Level	
0	High	
1		
2	High	
3		
4		
5	High	
6	High	

Cluster Labels	Risk Level	
0	High	
1	Mid	
2	High	
3	Mid	
4	Low	
5	High	
6	High	

Cluster Labels	Risk Level	
0	High	
1	Mid	
2	High	
3	Mid	
4	Low	
5	High	
6	High	

Cluster Labels	Risk Level	Value Level
0	High	
1	High	
2	Mid	
3	Low	High
4	Low	
5	High	High
6	High	

Cluster Labels	Risk Level	Value Level	
0	High	Mid	
1	High	Low	
2	Mid	Mid	
3	Low	High	
4	Low	Mid	
5	High	High	\
6	High	Low	

RFM with Mini Batch KMeans

True: High Value, High Risk

(low recency, high frequency, high monetary)

(low recency, high f

Predicted: High Value, High Risk
(low recency, high frequency, high monetary)

RFM '144' '134' '143'

Accuracy Score: 0.67

Cluster Label: '5'

RFM Manual Calculations

RFM with Mini Batch KMeans

64 groups totalDifficult to optimally split or combine the groups

Conclusion

Can we use unsupervised clustering algorithm to identify high value & high risk customers, better than a manual RFM calculation?

Yes, better, in terms less subjectivity in splitting and the revenue amount saved

Next Steps

Recency Frequency Engagement (RFE)

To measure users' engagement level such as visit duration, pages per visit (not related to purchases)

Product Display

To predict which items that customers are likely to buy, based on their search history

A/B Testing on UX Improvements

To analyse if there is improvement in engagement after new releases