Data visualization

SPSS, 3/14/2025

Objectives

- Make a scatterplot based on a dataset
- Modify the scatterplot for better visualization
 - Makers: change size, color, shape based on a third factor
 - Title / axis labels: change font size, font family, etc.

The save file you prepared... right?

Information for a sample of 100 low birth weight infants born in two teaching hospitals in Bostons. Indicators of a maternal diagnosis of toxemia during the pregnancy – a condition characterized by high blood pressure and other potentially serious complications – are saved under the variable name **tox**.

● ● ■ Iowbwt.sav [DataSet1] - IBM SPSS Statistics Data Editor														
					- L	M	1		Q Search	application				
		. •	:	· · · · · · · · · · · · · · · · · · ·		: : E			<u>'</u>					
Visible: 8 of 8 Variable														
		გ sex	💑 tox	💑 grmhem	🥓 gestage	🚜 apgar5			var	var	var	var	var	,
1	43	1	0	0	29	7		43.00						
2	51	1	0	0	31	8		51.00						
3	42	0	0	0	33	0	42.00							
4	39	0	0	0	31	8	39.00							
5	48	0	1	0	30	7	48.00							
6	31	1	0	1	25	0		31.00						
7	31	1	1	0	27	7		31.00						

sbp: Systolic Blood Pressure (in mmHg)

tox: whether toxemia was experienced or not

grmhem: whether an infant experienced a germinal matrix hemorrhage or not

apgar5: infants' five-minute apgar scores [max score 10; 7, 8, 9 is normal & 10 is rare for blue hands?]

We will replicate what we've done with MATLAB

 Task 1: Using systolic blood pressure as the response and gestational age as the explanatory variable, <u>construct a scatter</u> <u>plot of systolic blood pressure versus gestational age</u>.

• Does the graph suggest anything about the nature of the relationship between these variables?

• Task 2: Let's change the labels. Change the Y-label to "Systolic Blood Pressure (mmHg)" and X-label to "Gestational Age (weeks)".

Inside the Chart Editor, click labels to modify

• Task 3: Let's make data points (markers) to be distinguished by sex. First, close the Chart Editor and go back to the output screen.

• Task 4: Let's change properties of the markers.

Right click the scatterplot to edit and select **Edit**. This is an alternative method to open the Chart Editor

Repeat the process to create the scatterplot below.

• Task 5: Let's change the text in the legend

Do It Yourself

• Goal:

• Task 6: Let's distinguish markers by sex, but with different symbols.

• Similar to how you changed the edge colors, change the Type of a marker to a different symbol.

- Task 7: Let's add trend lines (LOESS):
 - 1) for the entire data
 - 2) per each level of sex

LOESS: **LO**cally **E**stimated **S**catterplot **S**moothing.

