In [198... '''You are employed as a data scientist by the American Census Agency. the agency is interested in building a predictive model to estimate the death rate among cancer patients. Your task is to clean the data in readines for the next stage of the process. Please complete the following: 1. import the data into your jupyter notebook and analyze it in detail 2. Identify and report on the structure and any problems you find in the data 3. Identify and report missing values and duplicate samples in the data 4. Clean the data of missing values and also of duplicate values. (Explain your choices and give justifications for any method you use to clean the data of missing values) 5. Report the structure of the final data after cleaning (number of samples and number of features)''' 'You are employed as a data scientist by the American Census Agency. \nthe agency is interested in building a p Out [198... redictive model to estimate the death rate among cancer patients. \nYour task is to clean the data in readines for the next stage of the process.\n\nPlease complete the following:\n\n1. import the data into your jupyter no tebook and analyze it in detail\n\n2. Identify and report on the structure and any problems you find in the dat a\n\n3. Identify and report missing values and duplicate samples in the data \n\n4. Clean the data of missing v alues and also of duplicate values. \n(Explain your choices and give justifications for any method you use to c lean the data of missing values)\n\n5. Report the structure of the final data after cleaning (number of samples and number of features)' In []: In [334... #Ouestion 1 #import the data into your jupyter notebook and analyze it in detail fileName = 'cancerdata.csv' filePath = '/Users/tomisin/Dropbox/My Mac (Tomisins-MacBook-Pro.local)/Documents/MY WORKSPACE/' import pandas as pd

In [335... pd.set_option('display.max_columns', 40)

df = pd.read csv(filePath +fileName)

fileName = 'cancerdata.csv'

pd.set_option('display.max_rows', 100)

In [336...

df

Out[336		Unnamed: 0	avgAnnCount	avgDeathsPerYear	TARGET_deathRate	incidenceRate	medIncome	popEst2015	povertyPercent	study
	0	0	1397.000000	469.0	164.9	489.800000	61898.0	260131.0	11.2	499.
	1	1	173.000000	70.0	161.3	411.600000	48127.0	NaN	18.6	23
	2	2	NaN	50.0	174.7	349.700000	49348.0	21026.0	14.6	47.
	3	3	427.000000	NaN	194.8	430.400000	44243.0	75882.0	NaN	342.
	4	4	57.000000	NaN	144.4	350.100000	49955.0	10321.0	12.5	0.
	•••									
	3042	3042	1962.667684	15.0	NaN	453.549422	46961.0	6343.0	12.4	0.
:	3043	3043	1962.667684	43.0	150.1	453.549422	48609.0	37118.0	NaN	377
;	3044	3044	NaN	46.0	153.9	453.549422	NaN	NaN	15.0	1968.
:	3045	3045	1962.667684	52.0	175.0	453.549422	50745.0	25609.0	13.3	0.
:	3046	3046	1962.667684	48.0	213.6	453.549422	41193.0	37030.0	13.9	0.

In []:

In [337...

#Ouestion 2

#Identify and report on the structure and any problems you find in the data

''' 1. The structure of the data is such that has 3074 samples and 35 features (two of which are object and the rest float data types)'''

''' 2. Here, judging from the difference between the mean and the 50% percentile,

- the data distribution is generally skewed except for a few features with near perfect normalization (having the so called gaussian type density curves) like TARGET_deathRate, medianAgemale, medianAgefemale, PctHS18_24, PctSomeColl8_24, PctPrivateCoverageAlone, and the rest of them with some form of negative or positive skewness in data distribution'''
- ''' 3. There are lots of missing data in all the features, each having at least 401 missing values. On the average, this amounts to about 13% of missing data which is very huge Each row having at least one missing value except one row (Sample #2012). The highest number of missing value in a row is 13 and the lowest 0. There are neither duplicate rows nor columns'''
- ''' 4.We also observe anormalous duplicate values in features 'avgAnncount' and 'incidenceRate' with 2096 and 1579 duplicate values (1962.667684, 453.549422) respectively. Not replacing them with NaN will affect our model'''
- ''' 5. With the skewness in the data distribution of the majority of the features, it will be difficult to clean this data by any of the available methods (padding, backfill or linear extrapolation method).

 Not even the default dropna method (that deletes rows having at least one non-null) can be implemented because just at a glance (from data in the first 50 rows), nearly or all the rows in this data have at least 1 missing value (1 True). However, we can use the dropna method to remove rows based on certain conditions (For example, dropping rows with at least 10 missing values).

 This data is super flawed, too much missing information.'''

Out[337... '5. With the skewness in the data distribution of the majority of the features, \n it will be difficult to clean this data by any of the available methods (padding, \n backfill or linear extrapolation method). \n

Not even the default dropna method (that deletes rows having at least one non-null) \n can be implemented be cause just at a glance (from data in the first 50 rows), \n nearly or all the rows in this data have at leas t 1 missing value (1 True). \n However, we can use the dropna method to remove rows based on certain conditions \n (For example, dropping rows with at least 10 missing values). \n This data is super flawed, too much missing information.'

```
In [338...
df.isnull().any(axis = 1).sum()
```

Out[338... 3046

In [339...

Out[339...

Unnamed: avgAnnCount avgDeathsPerYear TARGET_deathRate incidenceRate medIncome popEst2015 povertyPercent studyl

2012 2012 181.0 70.0 188.8 517.2 42088.0 28880.0 18.0

In [340...

df.describe()

Out [340...

	Unnamed: 0	avgAnnCount	avgDeathsPerYear	TARGET_deathRate	incidenceRate	medIncome	popEst2015	povertyPercer
count	3047.000000	2637.000000	2638.000000	2629.000000	2640.000000	2633.000000	2.630000e+03	2633.00000
mean	1523.000000	616.813493	190.055724	178.748840	447.960586	47024.274592	1.023032e+05	16.93820
std	879.737461	1467.543751	527.267114	27.803006	55.406582	11921.226519	3.389258e+05	6.46466
min	0.000000	7.000000	3.000000	59.700000	201.300000	22640.000000	8.290000e+02	3.20000
25%	761.500000	77.000000	27.000000	161.300000	419.500000	38989.000000	1.155525e+04	12.20000
50%	1523.000000	173.000000	60.000000	178.100000	453.549422	45235.000000	2.697150e+04	15.90000

	Unnamed: 0	avgAnnCount	avgDeathsPerYear	TARGET_deathRate	incidenceRate	medIncome	popEst2015	povertyPercer
75%	2284.500000	526.000000	148.000000	195.200000	480.900000	52513.000000	6.860925e+04	20.50000
max	3046.000000	38150.000000	14010.000000	362.800000	1206.900000	125635.000000	1.017029e+07	47.40000

In [341...

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3047 entries, 0 to 3046
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	3047 non-null	int64
1	avgAnnCount	2637 non-null	float64
2	avgDeathsPerYear	2638 non-null	float64
3	TARGET_deathRate	2629 non-null	float64
4	incidenceRate	2640 non-null	float64
5	medIncome	2633 non-null	float64
6	popEst2015	2630 non-null	float64
7	povertyPercent	2633 non-null	float64
8	studyPerCap	2644 non-null	float64
9	binnedInc	2632 non-null	object
10	MedianAge	2634 non-null	float64
11	MedianAgeMale	2636 non-null	float64
12	MedianAgeFemale	2631 non-null	float64
13	Geography	2641 non-null	object
14	AvgHouseholdSize	2638 non-null	float64
15	PercentMarried	2639 non-null	float64
16	PctNoHS18_24	2640 non-null	float64
17	PctHS18_24	2634 non-null	float64
18	PctSomeCol18_24	653 non-null	float64
19	PctBachDeg18_24	2634 non-null	float64
20	PctHS25_Over	2631 non-null	float64
21	PctBachDeg25_Over	2638 non-null	float64
22	PctEmployed16_Over	2497 non-null	float64
23	PctUnemployed16_Over	2641 non-null	float64
24	PctPrivateCoverage	2639 non-null	float64
25	PctPrivateCoverageAlone	2118 non-null	float64
26	PctEmpPrivCoverage	2636 non-null	float64
27	PctPublicCoverage	2639 non-null	float64
28	PctPublicCoverageAlone	2646 non-null	float64
29	PctWhite	2637 non-null	float64
30	PctBlack	2632 non-null	float64

```
31 PctAsian
                                                    2634 non-null
                                                                          float64
              32
                  PctOtherRace
                                                    2630 non-null
                                                                          float64
                                                                          float64
                  PctMarriedHouseholds
                                                    2637 non-null
              34 BirthRate
                                                    2634 non-null
                                                                          float64
            dtypes: float64(32), int64(1), object(2)
            memory usage: 833.3+ KB
In [342...
             df.isnull().sum(axis=1).max()
            13
Out [342...
In [343...
             df.isnull().sum(axis=1).min()
Out [343...
In [344...
             from matplotlib import pyplot
             df.hist()
             pyplot.gcf().set_size_inches(20,20)
             pyplot.show()
                     Unnamed: 0
                                              avgAnnCount
                                                                     avgDeathsPerYear
                                                                                                                        incidenceRate
                                                                                                                                                  medIncome
                                                                                             TARGET deathRate
             300
                                     2500 -
                                                              2500
                                                                                       1000
                                                                                                                                          800
             250
                                                                                                                1500
                                     2000
                                                              2000
                                                                                        800
             200
                                                                                                                                          600
                                     1500
                                                              1500
                                                                                        600
                                                                                                                1000
             150
                                                                                                                                          400
                                     1000
                                                              1000
                                                                                        400
             100
                                                                                                                 500
                                      500
                                                               500
                                                                                                                                          200
                                                                                        200
              50
                                                                             10000
                                                                                                                                                         100000
                     1000
                           2000
                                 3000
                                                 20000
                                                           40000
                                                                        5000
                                                                                             100
                                                                                                   200
                                                                                                                         500
                                                                                                                                 1000
                                                                                                                                                50000
                     popEst2015
                                             povertyPercent
                                                                       studyPerCap
                                                                                                 MedianAge
                                                                                                                        MedianAgeMale
                                                                                                                                                MedianAgeFemale
                                                              2500 -
            2500
                                                                                       2500
                                                                                                                                          800
                                                                                                                 800
                                      600
                                                              2000
            2000
                                                                                       2000
                                                                                                                                          600
                                                                                                                 600
                                                              1500
            1500
                                                                                       1500
                                      400
                                                                                                                 400
                                                                                                                                          400
            1000
                                                              1000
                                                                                       1000
                                      200
                                                                                                                 200
                                                                                                                                          200
                                                               500
             500
                                                                                        500
                                                                           5000
                                                                                                      400
                                                                                                            600
                0.0
                   AvgHouseholdSize 1e7
                                                                                                                                                PctBachDeg18_24
                                             PercentMarried
                                                                      PctNoHS18 24
                                                                                                PctHS18 24
                                                                                                                       PctSomeCol18 24
                                      800
            1500
                                                                                                                 200
                                                                                                                                         1200
```


In []:

In [345...

#Question 3

Identify and report missing values and duplicate samples in the data

''' 1. In each of these columns, there are at least 401 missing values'''

''' 2. We also notice duplicate values with abnormal decimal places.

```
Features 'avgAnncount' and 'incidenceRate'
with 2096 and 1579 duplicate values (1962.667684, 453.549422) respectively.'''

''' 3. There are neither duplicate rows nor columns'''
```

Out[345...

' 3. There are neither duplicate rows nor columns'

417

410

```
In [346...
          df.isna().sum()
                                          0
          Unnamed: 0
Out [346...
          avgAnnCount
                                        410
          avgDeathsPerYear
                                        409
          TARGET deathRate
                                        418
          incidenceRate
                                        407
          medIncome
                                        414
          popEst2015
                                        417
                                        414
          povertyPercent
          studyPerCap
                                        403
          binnedInc
                                        415
          MedianAge
                                        413
          MedianAgeMale
                                        411
          MedianAgeFemale
                                        416
          Geography
                                        406
          AvgHouseholdSize
                                        409
          PercentMarried
                                        408
          PctNoHS18_24
                                        407
          PctHS18 24
                                        413
          PctSomeCol18 24
                                       2394
          PctBachDeg18_24
                                        413
          PctHS25_Over
                                        416
          PctBachDeg25 Over
                                        409
          PctEmployed16_Over
                                        550
          PctUnemployed16 Over
                                        406
          PctPrivateCoverage
                                        408
          PctPrivateCoverageAlone
                                        929
          PctEmpPrivCoverage
                                        411
          PctPublicCoverage
                                        408
          PctPublicCoverageAlone
                                        401
          PctWhite
                                        410
          PctBlack
                                        415
          PctAsian
                                        413
```

PctOtherRace

PctMarriedHouseholds

413

BirthRate dtype: int64

In []:

In [347...

#Ouestion 4

#Clean the data of missing values and also of duplicate values. #(Explain your choices and give justifications for any method you use to clean the data of missing values)

''' 1. First off, we need to drop rows that have all values missing. since we do not have any of such, we can then proceed to dropping rows with at least "n" number of missing values. In this data file, the highest number of missing data in a row is 13 and the lowest is 0 Furthermore, if we do not have information about the (AvgAnnCount and AvgDeathsPerYear), (TARGET DeathRate and incidenceRate) (which are one of the most important features in this data) then the other information in the columns can as well be rendered useless and can be dropped. Dropping such rows using the "dropna" method will be very usefull here. A total of 125 rows were removed which amounts to a removal of about 4.1% of the whole data.

These features appear highly dependent on each other, so I then derive a dividing/multiplying factor which can be useful in replacing missing values in these columns.

We also observe anormalous duplicate values in features 'avgAnncount' and 'incidenceRate' with 2096 and 1579 duplicate values (1962.667684, 453.549422) respectively. Not replacing them with NaN will affect our model (Please NOTE: For some reason unknown to me, I am unable to replace the latter values in column 5 ('incidenceRate') with NaN).

By replacing 1962.667684 with NaN and the finding the mean in column 2 ('avgAnncount') and in column 3 ('AvgDeathsPerYear'), .

A dividing/multiplying factor is derived by which we use to replace missing values in these 4 columns mentioned above'''

''' 2. Furthermore, If the highest number of missing values in a row is 13, I think it is unreasonable to Drop rows with at least 10 missing values (dropping a total of another 92 rows (dropping about 7.1% of our data)).

It is unreasonable because we have a meagre amount of samples(a few thousands compared to millions)'''

''' 3. For features in 'AvgAnnCount' and AvgDeathsPerYear, we can remove the rows that have missing values (on the same row) in these two features since they are dependent on each other.

If we have missing values for both features, then the study in question can be considered useless. '''

```
''' 4. There are neither duplicate columns nor rows. However, in the last few rows of two features namely:
   AvgAnnCount and incidenceRate both happen to contain duplicate anomalous float values
   which appear different from the rest of the values respectively.
   The 'AvgDeathsPerYear' features have a relationship with features of the 'AvgAnnCount' column
   likewise for 'TARGET deathRate' and 'incidenceRate'.
   We only need to calculate the factor with a simple mathematical expression as shown below'''
''' 5. For the following features below, we can replace missing values by using the median of the values
       'medIncome', 'popEst2015', 'povertyPercent', 'binnedInc',
       'MedianAge', 'MedianAgeMale', 'MedianAgeFemale', 'Geography',
       'PercentMarried', 'PctNoHS18 24', 'PctHS18 24',
       'PctSomeColl8 24', 'PctBachDeg18 24', 'PctHS25 Over',
       'PctBachDeg25 Over', 'PctEmployed16 Over', 'PctUnemployed16 Over',
       'PctPrivateCoverageAlone', 'PctEmpPrivCoverage', 'PctBlack',
       'PctAsian', 'PctOtherRace', 'PctMarriedHouseholds', 'BirthRate'.
   The decision to fill up missing values is based on the fact that
   the minimum and maximum values are so wide apart
   and also because the average standard deviation of the values
   from the mean in these features is also very high. The density curves are non-gaussian (skewed)'''
''' 6. For features in studyPerCap, (2074(mode) - 401(number of missing values)
   number of rows have a value of 0.000000 which amounts to about 63% of the whole data in this feature.
   I really think it's best to replace this 401 missing values with the mode (0.0000000).
   Additionally, if we choose to use the median, this also gives us a value of 0.000000 '''
''' 7. For the rest of the features like 'avgHouseholdsize', 'pctPrivateCoverage',
   we replace the missing values with the mean because
   the values have a lower standard deviation from the mean
   and because the density curve is normalized though not very perfect (density curve is gaussian)'''
''' 8. For features of object type like the 'binnedInc' and 'Geography',
   we replace missing values by mode and padding method respectively. For the former,
   there is a mode while for the latter,
   there is neither a mode, mean nor median and padding is the best method
   for replacing missing values of this data type'''
```

Out [347...

" 8. For features of object type like the 'binnedInc' and 'Geography', \n we replace missing values by mode and padding method respectively. For the former, \n there is a mode while for the latter, \n there is nei ther a mode, mean nor median and padding is the best method \n for replacing missing values of this data type"

```
import numpy as np
df.replace(to_replace = 1962.667684, value = np.nan, inplace = True)
```

In [349... df.dropna(subset=['avgAnnCount', 'avgDeathsPerYear'], how = 'all', inplace = True)

In [350...

df

	df									
Out[350		Unnamed: 0	avgAnnCount	avgDeathsPerYear	TARGET_deathRate	incidenceRate	medIncome	popEst2015	povertyPercent	study
	0	0	1397.0	469.0	164.9	489.800000	61898.0	260131.0	11.2	499.
	1	1	173.0	70.0	161.3	411.600000	48127.0	NaN	18.6	23
	2	2	NaN	50.0	174.7	349.700000	49348.0	21026.0	14.6	47.
	3	3	427.0	NaN	194.8	430.400000	44243.0	75882.0	NaN	342.
	4	4	57.0	NaN	144.4	350.100000	49955.0	10321.0	12.5	0.
	•••									
	3042	3042	NaN	15.0	NaN	453.549422	46961.0	6343.0	12.4	0.
	3043	3043	NaN	43.0	150.1	453.549422	48609.0	37118.0	NaN	377
	3044	3044	NaN	46.0	153.9	453.549422	NaN	NaN	15.0	1968.
	3045	3045	NaN	52.0	175.0	453.549422	50745.0	25609.0	13.3	0.
	3046	3046	NaN	48.0	213.6	453.549422	41193.0	37030.0	13.9	0.

```
2976 rows × 35 columns
```

In [351... df.dropna(subset=['TARGET_deathRate', 'incidenceRate'], how = 'all', inplace = True)

In [352...

df

Out[352		Unnamed: 0	avgAnnCount	avgDeathsPerYear	TARGET_deathRate	incidenceRate	medIncome	popEst2015	povertyPercent	study
	0	0	1397.0	469.0	164.9	489.800000	61898.0	260131.0	11.2	499.
	1	1	173.0	70.0	161.3	411.600000	48127.0	NaN	18.6	23
	2	2	NaN	50.0	174.7	349.700000	49348.0	21026.0	14.6	47.
	3	3	427.0	NaN	194.8	430.400000	44243.0	75882.0	NaN	342.
	4	4	57.0	NaN	144.4	350.100000	49955.0	10321.0	12.5	0.
	•••									
	3042	3042	NaN	15.0	NaN	453.549422	46961.0	6343.0	12.4	0.
	3043	3043	NaN	43.0	150.1	453.549422	48609.0	37118.0	NaN	377
	3044	3044	NaN	46.0	153.9	453.549422	NaN	NaN	15.0	1968.
	3045	3045	NaN	52.0	175.0	453.549422	50745.0	25609.0	13.3	0.

Unnamed:

```
avgAnnCount avgDeathsPerYear TARGET deathRate incidenceRate medIncome popEst2015 povertyPercent study
         3046
                    3046
                                 NaN
                                                 48.0
                                                                 213.6
                                                                         453.549422
                                                                                        41193.0
                                                                                                   37030.0
                                                                                                                    13.9
                                                                                                                            0.
         2922 rows × 35 columns
In [353...
          df.columns
         Index(['Unnamed: 0', 'avgAnnCount', 'avgDeathsPerYear', 'TARGET deathRate',
Out [353...
                 'incidenceRate', 'medIncome', 'popEst2015', 'povertyPercent',
                 'studyPerCap', 'binnedInc', 'MedianAge', 'MedianAgeMale',
                 'MedianAgeFemale', 'Geography', 'AvgHouseholdSize', 'PercentMarried',
                 'PctNoHS18 24', 'PctHS18_24', 'PctSomeCol18_24', 'PctBachDeg18_24',
                 'PctHS25 Over', 'PctBachDeg25 Over', 'PctEmployed16 Over',
                 'PctUnemployed16_Over', 'PctPrivateCoverage', 'PctPrivateCoverageAlone',
                 'PctEmpPrivCoverage', 'PctPublicCoverage', 'PctPublicCoverageAlone',
                 'PctWhite', 'PctBlack', 'PctAsian', 'PctOtherRace',
                 'PctMarriedHouseholds', 'BirthRate'],
               dtype='object')
In [354...
          data35 = df['BirthRate']
          data34 = df['PctMarriedHouseholds']
          data33 = df['PctOtherRace']
          data32 = df['PctAsian']
          data31 = df['PctBlack']
          data30 = df['PctWhite']
          data29 = df['PctPublicCoverageAlone']
          data28 = df['PctPublicCoverage']
          data27 = df['PctEmpPrivCoverage']
          data26 = df['PctPrivateCoverageAlone']
          data25 = df['PctPrivateCoverage']
          data24 = df['PctUnemployed16 Over']
          data23 = df['PctEmployed16 Over']
          data22 = df['PctBachDeg25 Over']
          data21 = df['PctHS25 Over']
          data20 = df['PctBachDeg18 24']
```

data19 = df['PctSomeCol18_24']
data18 = df['PctHS18_24']
data17 = df['PctNoHS18_24']
data16= df['PercentMarried']

```
data15= df['AvgHouseholdSize']
          data14= df['Geography']
          data13= df['MedianAgeFemale']
          data12 = df['MedianAgeMale']
          data10 =df['binnedInc']
          data11= df['MedianAge']
          data9= df['studyPerCap']
          data8= df['povertyPercent']
          data7= df['popEst2015']
          data6= df['medIncome']
          data5= df['incidenceRate']
          data4= df['TARGET_deathRate']
          data3= df['avgDeathsPerYear']
          data2= df['avgAnnCount']
In [355...
          import numpy as np
          data2.replace(to replace = 1962.667684, value = np.nan).mean()
          522.7756622516556
Out [355...
In [356...
          data3.mean()
          191.11978361669242
Out[356...
In [357...
          data4.mean()
          178.84869395711513
Out [357...
In [358...
          data5.mean()
          447.87964326605726
Out [358...
In [359...
          factorofD2AndD3 =522.78/191.12
          factorofD2AndD3
          2.7353495186270402
Out[359...
```

14/23

file:///Users/tomisin/Downloads/miniproject_1 (4).html

```
In [360...
```

```
relOfIRAndTargetDR = 447.88/178.85
R = relOfIRAndTargetDR
```

factor2 = data2/2.74
factor3 = data3 *2.74
factor4 = data5/R

factor5 = data4*R

df

data2.fillna(factor3, inplace = True)
data3.fillna(factor2, inplace = True)
data4.fillna(factor4, inplace = True)
data5.fillna(factor5, inplace = True)

Out[360		Unnamed: 0	avgAnnCount	avgDeathsPerYear	TARGET_deathRate	incidenceRate	medIncome	popEst2015	povertyPercent	study
	0	0	1397.00	469.000000	164.900000	489.800000	61898.0	260131.0	11.2	499.
	1	1	173.00	70.000000	161.300000	411.600000	48127.0	NaN	18.6	23
	2	2	137.00	50.000000	174.700000	349.700000	49348.0	21026.0	14.6	47.
	3	3	427.00	155.839416	194.800000	430.400000	44243.0	75882.0	NaN	342.
	4	4	57.00	20.802920	144.400000	350.100000	49955.0	10321.0	12.5	0.
	•••									
	3042	3042	41.10	15.000000	181.113946	453.549422	46961.0	6343.0	12.4	0.
	3043	3043	117.82	43.000000	150.100000	453.549422	48609.0	37118.0	NaN	377
	3044	3044	126.04	46.000000	153.900000	453.549422	NaN	NaN	15.0	1968.

	Unnamed: 0	avgAnnCount	avgDeathsPerYear	TARGET_deathRate	incidenceRate	medIncome	popEst2015	povertyPercent	study
3045	3045	142.48	52.000000	175.000000	453.549422	50745.0	25609.0	13.3	0.
3046	3046	131.52	48.000000	213.600000	453.549422	41193.0	37030.0	13.9	0.

2922 rows × 35 columns

In [361...

```
df x35 = data35.median()
data35.fillna(df_x35, inplace = True)
df_x34 = data34.median()
data34.fillna(df_x34, inplace = True)
df_x33 = data33.median()
data33.fillna(df_x33, inplace = True)
df_x32 = data32.median()
data32.fillna(df_x32, inplace = True)
df_x31 = data31.median()
data31.fillna(df_x31, inplace = True)
df_x30 = data30.mean()
data30.fillna(df_x30, inplace = True)
df x29 = data29.median()
data29.fillna(df_x29, inplace = True)
df_x28 = data28.median()
data28.fillna(df_x28, inplace = True)
df x27 = data27.median()
data27.fillna(df x27, inplace = True)
df x26 = data26.median()
data26.fillna(df x26, inplace = True)
df x25 = data25.median()
data25.fillna(df x25, inplace = True)
```

```
df_x24 = data24.median()
data24.fillna(df_x24, inplace = True)
df x23 = data23.median()
data23.fillna(df_x35, inplace = True)
df x22 = data22.median()
data22.fillna(df_x22, inplace = True)
df x21 = data21.median()
data21.fillna(df_x21, inplace = True)
df_x20 = data20.median()
data20.fillna(df_x20, inplace = True)
df_x19 = data19.median()
data19.fillna(df_x19, inplace = True)
df_x18 = data18.mean()
data18.fillna(df_x18, inplace = True)
df_x17 = data17.median()
data17.fillna(df_x17, inplace = True)
df_x16 = data16.median()
data16.fillna(df_x16, inplace = True)
df x15 = data15.median()
data15.fillna(df_x15, inplace = True)
data14.fillna(method = 'pad', inplace = True)
df_x13 = data13.median()
data13.fillna(df_x13, inplace = True)
df_x12 = data12.median()
data12.fillna(df_x12, inplace = True)
df x11 = data11.median()
data11.fillna(df_x11, inplace = True)
df x10 = data10.mode()[0]
data10.fillna(df_x10, inplace = True)
```

```
df_x9 = data9.median()
data9.fillna(df_x9, inplace = True)

df_x8 = data8.median()
data8.fillna(df_x8, inplace = True)

df_x7 = data7.median()
data7.fillna(df_x7, inplace = True)

df_x6 = data6.median()
data6.fillna(df_x6, inplace = True)
```

In [362...

#Ouestion5

#Report the structure of the final data after cleaning (number of samples and number of features)

'''1. At the end of the data cleaning process, I report a total of 2,922 samples with 35 features'''

Out[362... '1. At the end of the data cleaning process, I report a total of 2,922 samples with 35 features'

In [363... newDf = df

In [365... newDf

Out [365... Unnamed: avgAnnCount avgDeathsPerYear TARGET_deathRate incidenceRate medIncome popEst2015 povertyPercent study

	0	avgAnnCount	avgDeathsPerfear	TARGET_deathRate	incidencerate	meaincome	popesizors	povertyPercent	Study
0	0	1397.00	469.000000	164.900000	489.800000	61898.0	260131.0	11.2	499.
1	1	173.00	70.000000	161.300000	411.600000	48127.0	27157.0	18.6	23
2	2	137.00	50.000000	174.700000	349.700000	49348.0	21026.0	14.6	47.
3	3	427.00	155.839416	194.800000	430.400000	44243.0	75882.0	15.9	342.

	Unnamed: 0	avgAnnCount	avgDeathsPerYear	TARGET_deathRate	incidenceRate	medIncome	popEst2015	povertyPercent	study
4	4	57.00	20.802920	144.400000	350.100000	49955.0	10321.0	12.5	0.
•••									
3042	3042	41.10	15.000000	181.113946	453.549422	46961.0	6343.0	12.4	0.
3043	3043	117.82	43.000000	150.100000	453.549422	48609.0	37118.0	15.9	377
3044	3044	126.04	46.000000	153.900000	453.549422	45209.0	27157.0	15.0	1968.
3045	3045	142.48	52.000000	175.000000	453.549422	50745.0	25609.0	13.3	0.
3046	3046	131.52	48.000000	213.600000	453.549422	41193.0	37030.0	13.9	0.

2922 rows × 35 columns

In [366...

newDf.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2922 entries, 0 to 3046
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	2922 non-null	int64
1	avgAnnCount	2922 non-null	float64
2	avgDeathsPerYear	2922 non-null	float64
3	TARGET_deathRate	2922 non-null	float64
4	incidenceRate	2922 non-null	float64
5	medIncome	2922 non-null	float64
6	popEst2015	2922 non-null	float64
7	povertyPercent	2922 non-null	float64

```
8
    studyPerCap
                              2922 non-null
                                              float64
9
   binnedInc
                              2922 non-null
                                              object
10
   MedianAge
                              2922 non-null
                                              float64
11
   MedianAgeMale
                              2922 non-null
                                              float64
12
   MedianAgeFemale
                              2922 non-null
                                              float64
13
   Geography
                              2922 non-null
                                              object
14
   AvgHouseholdSize
                              2922 non-null
                                              float64
15
   PercentMarried
                              2922 non-null
                                              float64
16
   PctNoHS18 24
                              2922 non-null
                                              float64
   PctHS18 24
                              2922 non-null
                                              float64
17
18
   PctSomeCol18 24
                              2922 non-null
                                              float64
19
   PctBachDeg18 24
                              2922 non-null
                                              float64
20
   PctHS25 Over
                              2922 non-null
                                              float64
21
   PctBachDeg25 Over
                              2922 non-null
                                              float64
   PctEmployed16 Over
                                              float64
22
                              2922 non-null
23
   PctUnemployed16 Over
                              2922 non-null
                                              float64
24
   PctPrivateCoverage
                              2922 non-null
                                              float64
25
  PctPrivateCoverageAlone
                              2922 non-null
                                              float64
26
   PctEmpPrivCoverage
                              2922 non-null
                                              float64
27
   PctPublicCoverage
                              2922 non-null
                                              float64
28
   PctPublicCoverageAlone
                              2922 non-null
                                              float64
29 PctWhite
                              2922 non-null
                                              float64
30 PctBlack
                                              float64
                              2922 non-null
31 PctAsian
                              2922 non-null
                                              float64
32 PctOtherRace
                              2922 non-null
                                              float64
33 PctMarriedHouseholds
                              2922 non-null
                                              float64
34 BirthRate
                              2922 non-null
                                              float64
```

dtypes: float64(32), int64(1), object(2)

memory usage: 821.8+ KB

In [367...

newDf.describe()

Out [367...

	Unnamed: 0	avgAnnCount	avgDeathsPerYear	TARGET_deathRate	incidenceRate	medIncome	popEst2015	povertyPercer
count	2922.000000	2922.000000	2922.000000	2922.000000	2922.000000	2922.000000	2.922000e+03	2922.00000
mean	1517.783710	499.596516	187.075186	178.577147	447.972800	46804.337782	9.328785e+04	16.78617
std	878.262247	1403.330397	511.705197	27.176822	57.903664	11162.234501	3.210949e+05	6.01070
min	0.000000	7.000000	2.919708	59.700000	149.502018	22640.000000	8.290000e+02	3.20000
25%	756.250000	69.000000	28.000000	161.900000	416.925000	40122.000000	1.370300e+04	12.80000
50%	1517.500000	150.000000	60.583942	178.600000	453.549422	45209.000000	2.715700e+04	15.90000

		Unnamed: 0	avgAnnCount	avgDeathsPerYear	TARGET_deathRate	incidenceRate	medIncome	popEst2015	povertyPercer
	75%	2277.750000	383.000000	148.000000	194.600000	482.547600	51342.250000	5.765750e+04	19.60000
	max	3046.000000	38150.000000	14010.000000	362.800000	1206.900000	125635.000000	1.017029e+07	47.40000
In [368	newDf.isna().sum()								
Out [368	Unname		0						
04 - [500	_	nCount	0						
	avgDea	athsPerYear	0						
		r_deathRate	0						
	incidenceRate		0						
	medIncome		0						
	popEst2015		0						
	povert	tyPercent	0						
		PerCap	0						
	binned		0						
	Mediar	-	0						
		nAgeMale	0						
	Mediar	nAgeFemale	0						
	Geogra		0						
	AvgHou	ıseholdSize	0						
	Percer	ntMarried	0						
	PctNoF	HS18_24	0						
	PctHS1	18_24	0						
	PctSon	meCol18_24	0						
	PctBac	chDeg18_24	0						
	PctHS2	25_Over	0						
	PctBac	chDeg25_Over	0						
	PctEmp	ployed16_Ove	er 0						
	PctUne	employed16_0	ver 0						
	PctPri	ivateCoverag	re 0						
	PctPri	ivateCoverag	geAlone 0						
	PctEmp	PrivCoverag	re 0						
	PctPub	olicCoverage	9 0						
	PctPub	olicCoverage	Alone 0						
	PctWhi	ite	0						
	PctBla	ack	0						
	PctAsi	ian	0						
	PctOth	nerRace	0						
	PctMar	rriedHouseho	olds 0						
	BirthF	Rate	0						
	dtype	: int64							

In [369...

```
from matplotlib import pyplot
```

```
newDf.hist()
pyplot.gcf().set_size_inches(20,20)
pyplot.show()
```


In [376... newDf.to_csv('/Users/tomisin/Dropbox/My Mac (Tomisins-MacBook-Pro.local)/Documents/MY WORKSPACE/Database/cancer

In []: