Package 'ProgModule'

May 16, 2024

Type Package
Title Identification of Prognosis-Related Mutually Exclusive Modules
Version 0.1.0
Maintainer Junwei Han <hanjunwei1981@163.com></hanjunwei1981@163.com>
Description A novel tool to identify candidate driver modules for predicting the prognosis of patients by integrating exclusive coverage of mutations with clinical characteristics in cancer.
License GPL (>= 2)
Encoding UTF-8
LazyData true
Depends R (>= $4.2.0$)
RoxygenNote 7.2.3
biocViews
Imports igraph, infotheo, maftools, patchwork, pathwayTMB, stats, survival, survminer, utils
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Junwei Han [aut, cre, cph], Xiangmei Li [aut], Bingyue Pan [aut]
Repository CRAN
Date/Publication 2024-05-16 14:40:05 UTC
R topics documented:
candidate_module

2 candidate_module

	get_lollipopPlot	6
	get_mutual_module	7
	get_mut_status	8
	get_mut_survivalresult	9
	get_oncoplots	10
	get_plotMutInteract	12
	get_Pvalue_S	13
	get_univarCox_result	14
	local_network	14
	maf_data	15
	MI	15
	module	16
	mut_status	16
	net	16
	plotMutInteract_moduledata	17
	plotMutInteract_mutdata	17
	subnet	17
	univarCox_result	18
Index		19
Huex		17

Description

candidate_module, Is the gene set from each local network by greedy algorithm,generated by 'get_candidate_module'.

 $candidate_module,\ candidate\ module$

Usage

candidate_module

candidate_module

Format

An object of class list of length 4.

```
final_candidate_module
```

final_candidate_module, Final candidate modules

Description

final_candidate_module, Is the final candidate module by intersecting modules from three protein networks in pairs,generated by 'get_final_candidate_module'.

Usage

```
final_candidate_module
```

Format

An object of class list of length 4.

```
get_candidate_module Get candidate module.
```

Description

The function 'get_candidate_module' is used to search candidate module of each local network using greedy algorithm.

Usage

```
get_candidate_module(
  local_network,
  network,
  freq_matrix,
  sur,
  seed,
  max.size,
  rate
)
```

Arguments

local_network The local networks,generated by 'get_local_network'.

network The maximum connected subnet, extracted by mapping all mutated genes to the

PPI network.

freq_matrix The mutations matrix,generated by 'get_mut_status'.

sur A nx2 data frame of samples' survival data, the first line is samples' survival

event and the second line is samples' overall survival.

4 get_final_module

seed The canonical drivers from NCG database, which use as the starting node of the

greedy algorithm.

max.size The maximum size of the module, default is 200.

rate The rate of increase in score, default is 0.05.

Value

candidate module.

Examples

```
#load the data
data(local_network)
data(mut_status)
data(subnet)
canonical_drivers<-system.file("extdata","canonical_drivers.txt",package = "ProgModule")
seed_gene<-read.table(canonical_drivers,header=FALSE)
sur<-system.file("extdata","sur.csv",package = "ProgModule")
sur<-read.delim(sur,sep=",",header=TRUE,row.names=1)
#perform the function `get_candidate_module`.
candidatemodule.example<-get_candidate_module(local_network=local_network,network=subnet,freq_matrix=mut_status,sur=sur,seed=seed_gene[,1],max.size=200,rate=0.05)</pre>
```

get_final_module

Get final module.

Description

The function 'get_final_module' is used to identify the final module.

```
get_final_module(
  index,
  edge,
  mut_status,
  sur,
  seed,
  cutoff = 0.05,
  max.size.local = 500,
  max.size.candidate = 200,
  rate = 0.05,
  perm = 1000
)
```

get_local_network 5

Arguments

index A index file of PPI networks,downloaded from http://compbio-research.cs.brown.edu/pancancer/hotnet2/.

edge The edge lists of PPI networks,downloaded from http://compbio-research.cs.brown.edu/pancancer/hotnet2/.

mut_status The mutations matrix,generated by 'get_mut_status'.

sur A nx2 data frame of samples' survival data, the first line is samples' survival

event and the second line is samples' overall survival.

seed The canonical drivers from NCG database, which use as the starting node of the

greedy algorithm.

cutoff The perturbed p-value cutoff point, default is 0.05.

max.size.local The size of maximum connected local network, default is 500.

max.size.candidate

The maximum size of the candidate module, default is 200.

rate The rate of increase in score, default is 0.05.

perm The perturbation number, default is 1000.

Value

The final module.

Examples

```
#load the data
indexdata<-system.file("extdata","hint+hi2012_index_file.txt",package="ProgModule")
index<-read.table(indexdata,sep="\t",header=FALSE)
edgedata<-system.file("extdata","hint+hi2012_edge_file.txt",package="ProgModule")
edge<-read.table(edgedata,sep="\t",header=FALSE)
data(mut_status)
sur<-system.file("extdata","sur.csv",package ="ProgModule")
sur<-read.delim(sur,sep=",",header=TRUE,row.names=1)
canonical_drivers<-system.file("extdata","canonical_drivers.txt",package="ProgModule")
seed_gene<-read.table(canonical_drivers,header=FALSE)
#perform the function `get_final_module`.
finalmodule.example<-get_final_module(index,edge,mut_status,sur,seed=seed_gene,
cutoff=0.05,max.size.local=500,max.size.candidate=200,rate=0.05,perm=100)</pre>
```

get_local_network

Extract the local networks from the PPI network.

Description

The function 'get_local_network' is used to search local network of each gene by breadth-first algorithm.

```
get_local_network(network, freq_matrix, max.size = 500)
```

6 get_lollipopPlot

Arguments

network The PPI network.

freq_matrix The mutations matrix,gener

freq_matrix The mutations matrix,generated by 'get_mut_status'.

max.size

The size of maximum connected local network, default is 500.

Value

local nerwork.

Examples

```
#load the data
data(mut_status)
data(subnet)
#perform the function `get_local_network`.
localnetwork.example<-get_local_network(network=subnet,freq_matrix=mut_status,max.size=500)</pre>
```

get_lollipopPlot

Draw an lollipopPlot for module genes

Description

Load the data in MAF format and draws an lollipopPlot.

```
get_lollipopPlot(
  maf,
  gene,
  AACol = NULL,
  labelPos = NULL,
  labPosSize = 0.9,
  showMutationRate = TRUE,
  showDomainLabel = TRUE,
  cBioPortal = FALSE,
  refSeqID = NULL,
  proteinID = NULL,
  roundedRect = TRUE,
  repel = FALSE,
  collapsePosLabel = TRUE,
  showLegend = TRUE,
  legendTxtSize = 0.8,
  labPosAngle = 0,
  domainLabelSize = 0.8,
  axisTextSize = c(1, 1),
  printCount = FALSE,
  colors = NULL,
```

get_mutual_module 7

```
domainAlpha = 1,
  domainBorderCol = "black",
  bgBorderCol = "black",
  labelOnlyUniqueDoamins = TRUE,
  defaultYaxis = FALSE,
  titleSize = c(1.2, 1),
  pointSize = 1.5
)
```

Arguments

maf The patients' somatic mutation data, which in MAF format.

gene Modular gene from final_candidate_module,generated by 'get_final_candidate_module'.

AACol, labelPos, labPosSize, showMutationRate, showDomainLabel, cBioPortal, refSeqID, proteinID, rounde see lollipopPlot

Value

No return value

Examples

```
#load the data.
maffile<-system.file("extdata","maffile.maf",package="ProgModule")
#draw an lollipopPlot
get_lollipopPlot(maf=maffile,gene="TP53")</pre>
```

get_mutual_module

Extract the mutually exclusive module.

Description

The function 'get_mutual_module' is used to determine if neighbor genes should be added to the module by calculating the score.

```
get_mutual_module(
  module,
  net,
  freq_matrix,
  sur,
  module_sig,
  univarCox_result,
  rate
)
```

get_mut_status

Arguments

module The Original modular gene set.

net The local network extracted from PPI network.

freq_matrix The mutations matrix, generated by 'get_mut_status'.

sur A nx2 data frame of samples' survival data, the first line is samples' survival

event and the second line is samples' overall survival.

module_sig A label for whether the module is a risk factor or a protective factor for survival.

univarCox_result

The result of Cox univariate analysis, generated by 'get_univarCox_result'.

rate The rate of increase in score, default is 0.05.

Value

The mutually exclusive module.

Examples

```
#load the data
data(mut_status)
sur<-system.file("extdata","sur.csv",package = "ProgModule")
sur<-read.delim(sur,sep=",",header=TRUE,row.names = 1)
data(net)
data(module)
data(univarCox_result)
#perform the function `get_mutual_module`.
mutuallyexclusivemodule.example<-get_mutual_module(module,net,freq_matrix=mut_status,sur,module_sig="risk",univarCox_result,rate=0.05)</pre>
```

get_mut_status

Converts MAF file into mutation matrix.

Description

The function 'get mut status' uses to convert MAF file into mutation matrix.

Usage

```
get_mut_status(mutvariant, nonsynonymous = TRUE)
```

Arguments

mutvariant A nx3 data frame of patients' somatic mutation data, the first line is gene sym-

bol, the second line is sample ID and the third line is mutation classification.

nonsynonymous Logical, tell if extract the non-synonymous somatic mutations (nonsense muta-

tion, missense mutation, frame-shif indels, splice site, nonstop mutation, trans-

lation start site, inframe indels).

get_mut_survivalresult 9

Value

A binary mutations matrix, in which 1 represents that a particular gene has mutated in a particular sample, and 0 represents that gene has no mutation in a particular sample.

Examples

```
maf<-system.file("extdata","maffile.maf",package = "ProgModule")
maf_data<-read.delim(maf)
mutvariant<-maf_data[,c("Hugo_Symbol","Tumor_Sample_Barcode","Variant_Classification")]
#perform the function `get_mut_status`.
mut_status.example<-get_mut_status(mutvariant,nonsynonymous = TRUE)</pre>
```

```
get_mut_survivalresult
```

Plot Kaplan-Meier survival curve.

Description

The function 'get_mut_survivalresult' uses to draw the Kaplan-Meier survival curve based on the mutated status of candidate module.

Usage

```
get_mut_survivalresult(module, freq_matrix, sur)
```

Arguments

module The gene module, generated by 'get_final_candidate_module'.

freq_matrix The mutations matrix,generated by 'get_mut_status'.

sur A nx2 data frame of samples' survival data, the first line is samples' survival

event and the second line is samples' overall survival.

Value

No return value

```
#load the data.
data(mut_status)
sur<-system.file("extdata","sur.csv",package="ProgModule")
sur<-read.delim(sur,sep=",",header=TRUE,row.names=1)
data(final_candidate_module)
#perform the function `get_mut_survivalresult`.
get_mut_survivalresult(module=final_candidate_module,freq_matrix=mut_status,sur)</pre>
```

10 get_oncoplots

get_oncoplots

Draw a waterfall plot of mutated genes involved in the module

Description

Load the data in MAF format and draws a waterfall plot of mutated genes involved in the module.

```
get_oncoplots(
  maf,
  genes,
  removeNonMutated = TRUE,
  top = 20,
  minMut = NULL,
  altered = FALSE,
  drawRowBar = TRUE,
  drawColBar = TRUE,
  leftBarData = NULL,
  leftBarLims = NULL,
  rightBarData = NULL,
  rightBarLims = NULL,
  topBarData = NULL,
  logColBar = FALSE,
  includeColBarCN = TRUE,
  clinicalFeatures = NULL,
  annotationColor = NULL,
  annotationDat = NULL,
  pathways = NULL,
  path_order = NULL,
  selectedPathways = NULL,
  pwLineCol = "#535c68",
  pwLineWd = 1,
  draw_titv = FALSE,
  titv_col = NULL,
  showTumorSampleBarcodes = FALSE,
  barcode_mar = 4,
  barcodeSrt = 90,
  gene_mar = 5,
  anno_height = 1,
  legend_height = 4,
  sortByAnnotation = FALSE,
  groupAnnotationBySize = TRUE,
  annotationOrder = NULL,
  sortByMutation = FALSE,
  keepGeneOrder = FALSE,
  GeneOrderSort = TRUE,
```

get_oncoplots 11

```
sampleOrder = NULL,
  additionalFeature = NULL,
  additionalFeaturePch = 20,
  additionalFeatureCol = "gray70",
  additionalFeatureCex = 0.9,
  genesToIgnore = NULL,
  fill = TRUE,
  cohortSize = NULL,
  colors = NULL,
  cBioPortal = FALSE,
  bgCol = "#CCCCCC",
  borderCol = "white",
  annoBorderCol = NA,
  numericAnnoCol = NULL,
  drawBox = FALSE,
  fontSize = 0.8,
  SampleNamefontSize = 1,
  titleFontSize = 1.5,
  legendFontSize = 1.2,
  annotationFontSize = 1.2,
  sepwd_genes = 0.5,
  sepwd_samples = 0.25,
 writeMatrix = FALSE,
  colbar_pathway = FALSE,
  showTitle = TRUE,
  titleText = NULL,
  showPct = TRUE
)
```

Arguments

The patients' somatic mutation data, which in MAF format.

genes Modular gene set from final_candidate_module,generated by 'get_final_candidate_module'.

removeNonMutated, top, minMut, altered, drawRowBar, drawColBar, leftBarData, leftBarLims, rightBarData, see oncoplot

Value

No return value

```
#load the data.
maffile<-system.file("extdata","maffile.maf",package="ProgModule")
data(final_candidate_module)
#draw an oncoplot
get_oncoplots(maf=maffile,genes=final_candidate_module[[1]])</pre>
```

12 get_plotMutInteract

Description

Performs Pair-wise Fisher's Exact test to detect mutually exclusive or co-occuring events.

Usage

```
get_plotMutInteract(
 module = NULL,
  genes = NULL,
  freq_matrix,
  pvalue = c(0.05, 0.01),
  returnAll = TRUE,
  fontSize = 0.8,
  showSigSymbols = TRUE,
  showCounts = FALSE,
  countStats = "all",
  countType = "all",
  countsFontSize = 0.8,
  countsFontColor = "black",
  colPal = "BrBG",
  nShiftSymbols = 5,
  sigSymbolsSize = 2,
  sigSymbolsFontSize = 0.9,
 pvSymbols = c(46, 42),
  limitColorBreaks = TRUE
)
```

Arguments

```
module The gene module,generated by 'get_final_candidate_module'.

genes The modular gene,generated by 'get_final_candidate_module'.

freq_matrix The mutations matrix,generated by 'get_mut_status'.

pvalue, returnAll, fontSize, showSigSymbols, showCounts, countStats, countType, countsFontSize, countsF
```

Value

No return value

get_Pvalue_S

Examples

```
#load the data.
data(plotMutInteract_moduledata,plotMutInteract_mutdata)
#draw an plotMutInteract of genes
get_plotMutInteract(genes=unique(unlist(plotMutInteract_moduledata)),
freq_matrix=plotMutInteract_mutdata)
#draw an plotMutInteract of modules
get_plotMutInteract(module=plotMutInteract_moduledata,
freq_matrix=plotMutInteract_mutdata)
```

get_Pvalue_S

Get perturbed p-value.

Description

The function 'get_Pvalue_S' is used to calculate the perturbed p-value.

Usage

```
get_Pvalue_S(module, freq_matrix, sur, perms = 1000, local_network)
```

Arguments

module The candidate module, generated by 'get candidate module'.

freq_matrix The mutations matrix,generated by 'get_mut_status'.

sur A nx2 data frame of samples' survival data, the first line is samples' survival

event and the second line is samples' overall survival.

perms The perturbation number, default is 1000.

local_network The local network gene sets,generated by 'get_local_network'.

Value

Perturbed p-value.

```
#load the data
data(local_network)
data(mut_status)
data(candidate_module)
sur<-system.file("extdata","sur.csv",package = "ProgModule")
sur<-read.delim(sur,sep=",",header=TRUE,row.names = 1)
#perform the function `get_Pvalue_S`.
turbulence.example<-get_Pvalue_S(module=candidate_module,freq_matrix=mut_status,sur=sur,perms=100,local_network)</pre>
```

14 local_network

```
get_univarCox_result Get univarCox result.
```

Description

The function 'get_univarCox_result' is used to calculate the result of Cox univariate analysis.

Usage

```
get_univarCox_result(freq_matrix, sur)
```

Arguments

freq_matrix The mutations matrix,generated by 'get_mut_status'.

sur A nx2 data frame of samples' survival data, the first line is samples' survival

event and the second line is samples' overall survival.

Value

The result of Cox univariate analysis.

Examples

```
#load the data
data(mut_status)
sur<-system.file("extdata","sur.csv",package ="ProgModule")
sur<-read.delim(sur,sep=",",header=TRUE,row.names=1)
#perform the function `get_univarCox_result`.
univarCoxresult.example<-get_univarCox_result(freq_matrix=mut_status,sur)</pre>
```

local_network

local_network, local network gene set

Description

local_network, the local network gene set of each gene by breadth-first algorithm,,generated by 'get_local_network'.

Usage

```
local_network
```

Format

An object of class list of length 4.

maf_data 15

maf_data

maf_data, MAF file

Description

maf_data, The patients' somatic mutation data, which in MAF format.

Usage

maf_data

Format

An object of class data. frame with 3745 rows and 10 columns.

ΜI

Calculate mutual information.

Description

The function 'MI' is used to calculate the mutual information score between samples' survival status and mutation status.

Usage

```
MI(mylist1, mylist2)
```

Arguments

mylist1 Is input a list of samples' survival status.
mylist2 Is input a list of samples' mutation status.

Value

The mutual information score

```
#load the data
data(mut_status)
sur<-system.file("extdata","sur.csv",package = "ProgModule")
sur<-read.delim(sur,sep=",",header=TRUE,row.names = 1)
#perform the function 'MI'
mut_matrix<-MI(mylist1 = as.numeric(mut_status[1,]),mylist2 = sur[,1])</pre>
```

16 net

module

module, gene set

Description

module, Original modular gene set.

Usage

module

Format

An object of class character of length 1.

 mut_status

mut_status, mutations matrix

Description

mut_status, the mutations matrix,generated by 'get_mut_status'.

Usage

mut_status

Format

An object of class matrix (inherits from array) with 338 rows and 331 columns.

net

net, network

Description

net, Is a local network extracted from the ppi network.

Usage

net

Format

An object of class igraph of length 76.

plotMutInteract_moduledata

plotMutInteract_moduledata

Description

The data use for drawing mutually exclusive and co-occurrence plots.

Usage

plotMutInteract_moduledata

Format

An object of class list of length 7.

plotMutInteract_mutdata

plotMutInteract_mutdata

Description

The data use for drawing mutually exclusive and co-occurrence plots.

Usage

plotMutInteract_mutdata

Format

An object of class matrix (inherits from array) with 89 rows and 430 columns.

subnet

subnet, network

Description

subnet, Is a maximum connected subnet, extracted by mapping all genes to the ppi network.

Usage

subnet

Format

An object of class igraph of length 1624.

18 univarCox_result

univarCox_result

univarCox_result

Description

The result of Cox univariate analysis, generated by 'get_univarCox_result'.

Usage

univarCox_result

Format

An object of class numeric of length 8103.

Index

```
* datasets
    candidate_module, 2
    final_candidate_module, 3
    local_network, 14
                                                 subnet, 17
    maf_data, 15
    module, 16
    mut_status, 16
    net, 16
    plotMutInteract_moduledata, 17
    plotMutInteract_mutdata, 17
    subnet, 17
    univarCox_result, 18
candidate_module, 2
final_candidate_module, 3
get_candidate_module, 3
get_final_module, 4
{\tt get\_local\_network, 5}
get_lollipopPlot, 6
get_mut_status, 8
get_mut_survivalresult, 9
get_mutual_module, 7
get\_oncoplots, 10
get_plotMutInteract, 12
get_Pvalue_S, 13
get_univarCox_result, 14
local_network, 14
lollipopPlot, 7
maf_data, 15
MI, 15
module, 16
mut_status, 16
net, 16
oncoplot, 11
```

```
plotMutInteract, 12
plotMutInteract_moduledata, 17
plotMutInteract_mutdata, 17
subnet, 17
univarCox_result, 18
```