Exploratory_analysis

Biswajit Chowdhury

28/07/2022

• Here, I used the Heart disease data set from UCI machine learning repository. The dataset contains 14 variables and 303 observations.

Load library

```
library(tidyverse)
## -- Attaching packages
                                                               -- tidyverse 1.3.2 --
## v ggplot2 3.3.6
                       v purrr
                                 0.3.4
## v tibble 3.1.8
                       v dplyr
                                 1.0.9
## v tidyr
             1.2.0
                       v stringr 1.4.0
## v readr
             2.1.2
                       v forcats 0.5.1
                                                 ----- tidyverse_conflicts() --
## -- Conflicts ----
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                     masks stats::lag()
```

Reading data file

6

```
heart_data<-read.csv("heart.csv")
# see the data set
head(heart_data) # first 6 rows of the data set
     age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
## 1
      63
            1
               3
                      145
                            233
                                  1
                                           0
                                                  150
                                                                 2.3
                                                                          0
                                                                             0
                                                                                  1
               2
                                                                                  2
## 2
      37
            1
                      130
                            250
                                  0
                                                  187
                                                          0
                                                                 3.5
                                                                         0
                                                                             0
                                           1
                                                                          2
                                                                            0
                                                                                  2
## 3
      41
           0
               1
                      130
                            204
                                  0
                                           0
                                                  172
                                                          0
                                                                 1.4
                                                                 0.8
                                                                          2 0
                                                                                  2
## 4
      56
            1
                      120
                            236
                                                  178
                                                          0
                                                                                  2
## 5
      57
           0
               0
                      120
                            354
                                  0
                                                  163
                                                                 0.6
                                                                          2 0
                                           1
                                                          1
      57
            1
                      140
                            192
                                                  148
                                                                 0.4
                                                                                  1
##
     target
## 1
## 2
## 3
## 4
          1
## 5
```

```
tail(heart_data) # last 6 rows of the data set
##
       age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
## 298 59
                                                 90
            1 0
                       164 176
                                  1
                                          Ω
                                                        0
                                                              1.0
                                                                      1
## 299
       57
             0 0
                       140 241
                                          1
                                                123
                                                        1
                                                              0.2
                                                                      1
                                                                        0
                                                                              3
## 300
       45
                       110 264
                                  0
                                                132
                                                        0
                                                              1.2
                                                                      1 0
                                                                              3
            1
               3
                                          1
## 301
       68
               0
                       144 193
                                  1
                                          1
                                                141
                                                        0
                                                              3.4
                                                                      1 2
                                                                              3
            1
## 302 57
             1 0
                       130 131
                                  0
                                          1
                                                115
                                                        1
                                                              1.2
                                                                      1 1
                                                                              3
## 303 57
                       130 236
                                                174
                                                                      1 1
                                                                              2
            0 1
                                  0
                                                              0.0
##
       target
## 298
## 299
            0
## 300
            0
## 301
            0
## 302
            0
## 303
            0
dim(heart_data) # no. of rows and columns
## [1] 303 14
colnames(heart_data) # variable names
                                         "trestbps" "chol"
##
   [1] "age"
                   "sex"
                              "ср"
                                                                "fbs"
   [7] "restecg"
                   "thalach"
                              "exang"
                                         "oldpeak" "slope"
                                                               "ca"
## [13] "thal"
                   "target"
# change the column names
names(heart_data) <- c("age", "sex", "chest_pain", "resting_bp", "cholestrol",</pre>
                       "fasting_sugar", "resting_ECG", "max_heart_rate",
                       "exercise_agina", "oldpeak", "slope", "number_major_vessels",
                       "thal", "disease status")
```

preprocessing data for the exploratory analysis

```
heart_data$fasting_sugar <- factor(heart_data$fasting_sugar,</pre>
      levels = c(0,1),
      labels = c("Low", "High"))
# Change resting_ECG into normal, mild and severe
heart_data$resting_ECG <- factor(heart_data$resting_ECG,</pre>
      levels = c(0,1,2),
      labels = c("Normal", "Mild", "Severe"))
# Change excercise_angina into "yes" and "no"
heart_data$exercise_agina <- factor(heart_data$exercise_agina,
      levels = c(0,1),
      labels = c("No", "Yes"))
# Similary we also change the labels for number of major vessels and thal
heart_data$number_major_vessels <- factor(heart_data$number_major_vessels,
      levels = c(0,1,2,3,4),
      labels = c("None", "One", "Two", "Three", "Four"))
heart_data$thal <- factor(heart_data$thal,</pre>
      levels = c(1, 2,3),
      labels = c("Normal", "Fixed defect", "Reversible defect"))
# Finally change the angiographic disease status to normal and disease
heart_data$disease_status <- factor(heart_data$disease_status,
      levels = c(0,1),
      labels = c("Normal", "Disease"))
write.csv(heart_data, "UCI_heart_data.csv")
head(heart_data,3)
                  chest_pain resting_bp cholestrol fasting_sugar resting_ECG
     age sex
```

```
## 1 63
          M Nonanginal_pain
                                    145
                                               233
                                                            High
                                                                      Normal
## 2 37
          M Atypical angina
                                    130
                                               250
                                                            Low
                                                                        Mild
                                               204
## 3 41
          F Typical_angina
                                    130
                                                             Low
                                                                      Normal
   max_heart_rate exercise_agina oldpeak slope number_major_vessels
##
                                                                              thal
## 1
               150
                               No
                                       2.3
                                              0
                                                                 None
                                                                            Normal
## 2
                                       3.5
                                               0
                187
                               No
                                                                 None Fixed_defect
## 3
                172
                                       1.4
                                               2
                                                                 None Fixed_defect
                               Nο
## disease_status
## 1
           Disease
## 2
           Disease
## 3
           Disease
```

Explore the quantitative variables

Histogram and density plot for the quantitative variables

```
par(mfrow=c(3,2))
hist(heart_data$age,
     col="white",
     border="black",
     prob = TRUE,
     xlab = "age",
     main = "distribution of age")
  lines(density(heart_data$age),
      lwd = 2,
      col = "red")
hist(log(heart_data$age),
     col="white",
     border="black",
     prob = TRUE,
     xlab = "age",
     main = "distribution of log(age)")
  lines(density(log(heart data$age)),
      lwd = 2,
      col = "red")
hist(heart_data$resting_bp,
     col="white",
     border="black",
     prob = TRUE,
     xlab = "resting_bp (mmHg)",
     main = "distribution of resting_bp")
  lines(density(heart_data$resting_bp),
      lwd = 2,
      col = "red")
hist(log(heart_data$resting_bp),
     col="white",
     border="black",
     prob = TRUE,
     xlab = "resting_bp (mmHg)",
     main = "distribution of log(resting_bp)")
  lines(density(log(heart_data$resting_bp)),
      lwd = 2,
      col = "red")
hist(heart_data$cholestrol,
     col="white",
     border="black",
     prob = TRUE,
     xlab = "cholestrol levels (mg/dl)",
     main = "distribution of cholestrol levels")
  lines(density(heart_data$cholestrol),
```

```
lwd = 2,
    col = "red")

hist(log(heart_data$cholestrol),
    col="white",
    border="black",
    prob = TRUE,
    xlab = "cholestrol levels (mg/dl)",
    main = "distribution of log(cholestrol levels)")

lines(density(log(heart_data$cholestrol)),
    lwd = 2,
    col = "red")
```

distribution of age

30 40 50 60 70 80 age

distribution of log(age)

distribution of resting_bp

distribution of log(resting_bp)

distribution of cholestrol levels

distribution of log(cholestrol levels)


```
hist(heart_data$max_heart_rate,
    col="white",
    border="black",
    prob = TRUE,
    xlab = "max_heart_rate ",
    main = "distribution of max_heart_rate")
lines(density(heart_data$max_heart_rate),
    lwd = 2,
    col = "red")

hist(log(heart_data$max_heart_rate),
    col="white",
```

```
border="black",
prob = TRUE,
xlab = "max_heart_rate ",
main = "distribution of max_heart_rate")
lines(density(log(heart_data$max_heart_rate)),
    lwd = 2,
    col = "red")
```

distribution of max_heart_rate

distribution of max_heart_rate

Shapiro-Wilk test for checking the normal distribution

- null hypothesis: the data are normally distributed
- alternative hypothesis: the data are not normally distributed

```
# normality test for cholestrol
shapiro.test(heart_data$cholestrol)
```

```
##
## Shapiro-Wilk normality test
##
## data: heart_data$cholestrol
## W = 0.94688, p-value = 5.365e-09
```

```
# normality test for heart ratel
shapiro.test(heart_data$max_heart_rate)
```

```
##
## Shapiro-Wilk normality test
##
## data: heart_data$max_heart_rate
## W = 0.97632, p-value = 6.621e-05
```

• from the above p-value, we can say the data are not normally distributed.

Visual inspection of the data normality using Q-Q plots (quantile-quantile plots). Q-Q plot draws the correlation between a given sample and the normal distribution.

```
library(ggpubr)
ggqqplot(heart_data$cholestrol, ylab="Cholestrol")
```


ggqqplot(heart_data\$max_heart_rate, ylab="Maximum heart rate")

Pearson correlation test

• Correlation between cholestrol and heart_rate

```
# we can use three different methods: pearson, kendal, spearman
correlation<-cor.test(heart_data$cholestrol, heart_data$max_heart_rate, method="pearson")
correlation</pre>
```

```
##
## Pearson's product-moment correlation
##
## data: heart_data$cholestrol and heart_data$max_heart_rate
## t = -0.17246, df = 301, p-value = 0.8632
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1224807 0.1028534
## sample estimates:
## cor
## -0.009939839
```

p-value is greater than the significance level alpha =0.05. Therefore, we can conclude that above two variables are not significantly correlated with a correlation coefficient of -0.009 and the p-value of 0.8632.

disease_status with age and sex

Resting blood pressue and angiographic disease status

Relationship between angiographic disease status and serum choles

Relationship between angiographic disease status and heart rate

Explore the categorical variables

• Calculate the frequency of categorical variables

```
# Counts for the sex categories

table(heart_data$sex)

##
## F M
## 96 207

# cross classification for sex with angiographic disease status
table(heart_data$disease_status, heart_data$sex)

##
## F M
## Normal 24 114
## Disease 72 93
```

• Assess subjects by disease type, gender, fasting sugar and chest pain

```
# Multidimensional tables based on three or more categorical variables
table1 <- table(heart_data$disease_status, heart_data$sex,</pre>
                 heart_data$fasting_sugar)
ftable(table1) # print the results with more attractively
##
              Low High
##
## Normal F
               18
                     6
               98
##
          Μ
                    16
## Disease F
               66
                     6
##
          Μ
                    17
table2 <- table(heart_data$disease_status, heart_data$sex,</pre>
                 heart_data$chest_pain)
ftable(table2)
##
              Typical_angina Atypical_angina Nonanginal_pain Assymptomatic
##
## Normal F
                           2
                                            1
                                                                          21
##
                           7
                                           17
                                                             7
                                                                          83
## Disease F
                          16
                                           34
                                                                          18
                                                             4
                                           35
##
                          25
                                                            12
                                                                          21
```

Visualization of the categorical variables

• To easy to digest of the above image, we can make it in desending order. For this we will make a functions that sort the variables crosponding their total counts

```
# re-order levels
reorder_size <- function(x) {
        factor(x, levels = names(sort(table(x), decreasing = TRUE)))
}

ggplot(heart_data, aes(x = reorder_size(chest_pain), fill=chest_pain)) +
        geom_bar() +
        xlab('Level of chest pain') + ylab("Count")</pre>
```


Changes of chest pain with sex and disease status

Number of major vessels with gender and heart disease

Proportion/Percentage

```
# percentages of gender categories
table1<- table(heart_data$sex)
prop.table(table1)

##
## F M
## 0.3168317 0.6831683

# percentage of cross classication counts for gender by disease types
table2<- table(heart_data$disease_status, heart_data$sex)
prop.table(table2)

##
## F M
## Normal 0.07920792 0.37623762
## Disease 0.237623760 0.30693069</pre>
```

```
round(prop.table(table2), 3)*100
##
##
##
F M
##
Normal 7.9 37.6
```

Disease 23.8 30.7

##

co-relation plot between quantitative variables

```
library(corrplot)

## corrplot 0.92 loaded

corrplot(cor(heart_data[, c(1,4,5,8,10)]), type="upper")
```

