Teaching Computers to Play Chess Through Deep Reinforcement Learning

Dorian Van den Heede

UGent

August 28, 2017

Outline

Introduction

(Deep) Reinforcement Learning Model

TD-Stem vs TD-Leaf

Demo

Future Work

State of the Art

• static evaluation function V(s)

State of the Art

- ightharpoonup static evaluation function V(s)
- ▶ Tree search: minimax, $\alpha\beta$ -pruning
- Parallel Computing
- Databases

State of the Art

Rank	Name	Elo		_
	kfich 8 6/Lhit /CDI I			
1 Stoo	Klisii o o4-bit 4CFO	3390	+17	-17
2 Hou	dini 5.01 64-bit 4CPU	3386	+20	-20
3 Kon	nodo 10.3 64-bit 4CPU	3380	+21	-21
4 Dee	p Shredder 13 64-bit 4CPU	3287	+21	-21
5 Fire	5 64-bit 4CPU	3273	+23	-23
6 Fizb	o 1.9 64-bit 4CPU	3253	+26	-26
7 And	scacs 0.89 64-bit 4CPU	3243	+25	-25
8 Chir	on 4 64-bit 4CPU	3207	+26	-26
9 Gull	3 64-bit 4CPU	3196	+11	-11
10 Equ	inox 3.20 64-bit 4CPU	3186	+12	-12

GM Magnus Carlsen (World Champion): 2822

Issues with Conventional Engines

- Humanly biased
 - hand selected positional features
 - opening books
 - databases of grandmaster games
- Brute Force depth-first calculation
 - play based more on calculation than intuition
- Manual tuning and expert knowledge

Can we teach a computer to play chess in the endgame by just giving the rules of the game?

Reinforcement Learning

Goal: Maximize future rewards

RL Framework for Chess

- agents: white and black
 - \rightarrow self play
- states: board positions
- actions: moves
- episodical

$$reward(state, move) = \left\{ egin{array}{ll} 1 & \textit{win} \\ -1 & \textit{loss} \\ 0 & \textit{else} \end{array} \right.$$

- \triangleright value function V(s): static evaluation
 - = what we try to approximate

Temporal Difference Learning

- optimizes MSE cost function
- use future for estimate
- ▶ TD: $\delta_t = V(s_{t+1}) V(s_t)$
- ▶ TD(λ): $\sum_t \lambda^{n-t} \delta_t$

- bad to spot tactics
- works best if opponent plays well

(Deep) Reinforcement Learning Model

Supervised Learning

piece	piece map	mobility map	piece	piece map	mobility map
	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$		$\begin{smallmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	$\begin{array}{c} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$
罝	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{array}$	Ī	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

TD-Leaf(λ)

- update leaf states from PV
- ▶ TD: $\delta_t = I(V(s_{t+1})) I(V(s_t))$

- + decorrelates obtained samples
- + use of minimax
- can update unseen states

TD-Stem(λ)

- update encountered states
- ▶ TD: $\delta_t = I(V(s_{t+1})) I(V(s_t))$

- + includes depth in value function
- no decorrelation samples
- error surface less smooth

Self-play Algorithm

- 1. initialization
- 2. self-play \rightarrow replay memory
- 3. replay memory \rightarrow mini batch SGD
- 4. go back to step 2 until satisfying convergence

Optimal Opponent Evaluation

- ▶ win draw loss (WDL)
- ▶ depth to mate (DTM)

Metrics

$$\text{WCR} = \frac{\text{games model won}}{\text{games model should win}}$$

$$WE = \frac{average\ DTM\ of\ won\ games}{average\ length\ of\ won\ games}$$

$$LHS = \frac{average \ length \ of \ lost \ games}{average \ DTM \ of \ lost \ games}$$

TD-Stem vs TD-Leaf

TD-Stem vs TD-Leaf: krk learning curve

TD-Stem vs TD-Leaf: krk performance

	$TD-Leaf(\lambda)$	$\mathbf{TD}\text{-}\mathbf{Stem}(\lambda)$
WCR	0.48	0.85
WE	0.87	0.86
LHS	0.80	0.91
MPS	228	205
\mathbf{N}	353 500	304 500

 \rightarrow TD-Stem better?

TD-Stem vs TD-Leaf: kqk learning curve

TD-Stem vs TD-Leaf: kqk performance

	3 st	ages	5 stages		
	$\mathbf{TD}\text{-}\mathbf{Leaf}(\lambda)$	$\mathbf{TD\text{-}Stem}(\lambda)$	$TD-Leaf(\lambda)$	$\mathbf{TD\text{-}Stem}(\lambda)$	
WCR	0.65	0.77	0.90	0.90	
WE	0.67	0.64	0.89	0.89	
LHS	0.89	0.89	0.95	0.97	
MPS	346	359	180	188	
\mathbf{N}	26000	27000	43500	44500	

 \rightarrow TD-Stem learns faster

TD-Stem vs TD-Leaf: conclusions

- Why is TD-Stem faster?
 - depth propagation
 - updates seen states

TD-Stem vs TD-Leaf: conclusions

- Experiment limitations
 - specific problems
 - initialization
 - available CPUs
 - time
 - opponent in self play
 - choice hyper-parameters

TD-Stem Demo

Future Work

- generalization
- initialization network
- policy networks
- search tree bootstrapping
- more bitboards
- different network architectures
- tree search optimizations

Experiments: architecture

Experiments: hyper-parameters

- λ trace decay parameter for TD-learning methods
- d_r Depth at which final results are examined in search
- d_V Depth at which the value network is called
 - Decay function for exploration parameter $\epsilon = f(i)$.
 - i increments every iteration.
 - I Number of iterations
- i_0 First iteration number, to initialize ϵ with the f_{ϵ}
- K The number of states that are used to calculate the λ-return from an episode
- M The maximal amount of moves made in an episode
- N How many games are played during an iteration
- R The number of additional random moves played on the board position extracted from the dataset

TD-Stem vs TD-Leaf: krk (stages)

Stage	N	I	d_V	λ	i_0
1	5000	20	1	0.5	1
2	5000	20	1	0.5	2
3	5000	20	1	0.7	2
4	500	20	3	0.8	2
5	250	30	3	0.8	2
6	250	30	3	0.8	2
7	250	50	3	0.8	2

TD-Stem vs TD-Leaf: krk (performance)

TD-Stem vs TD-Leaf: kqk (stages)

Stage	N	I	d_V	λ	i_0	K
1	500	20	1	0.5	0	10
2	250	20	3	0.6	20	20
3	250	20	3	0.7	40	30
4	250	50	3	0.8	40	30
5	500 250 250 250 250	20	3	0.8	45	30

TD-Stem vs TD-Leaf: kqk (performance)

