- 1. 이미지 데이터: 디지털 이미지의 값을 2차원 수치로 표현
- 2. CNN: 이미지 분류를 위한 딥러닝 기법으로 합성곱 신경망이라고도 하며 이미지 분류에 잘 활용됨
- 3. CNN 과정: 필터를 스트라이드하는 Convolution과정과, 이 결과에서 Feature값을 줄이는 Pooling 과정을 거쳐 이미지를 인공신경망에 적용
- 4. CNN 단계별 절차: CNN은 입력 이미지의 공간정보를 유지한 상태에서 Convolution과 Pooling을 반복한 후 인공신경망을 통해 분류하는 과정을 거침
- 5. 주요 하이퍼 파라미터: Convolution의 필터의 수, 필터의 크기, Padding, Stride 등이 CNN의 주요 하이퍼 파라미터임.
- 6. Convolution과 Pooling의 과정: Convolution과정을 통해서는 필터의 수 만큼 Feature Map이 생성되고, Pooling을 통해서는 주요 Feature들이 강화 됨.

딥러닝, *얼굴 인식? 영상 분석? 의료 이미지?*

- Olivetti Faces Data set
- Face images from 1992~1994 at AT&T Lab

<#>

이미지 예시

9화소(3X3) 디지털카메라!

MNIST Hand written digits

0	254	0
0	254	0
0	254	0

Convolution Neural Network 합성곱 신경망이미지 인식을 위한 인공신경망

CNN은 ...

- Convolution과 Pooling을 반복하여 적용해서 Feature를 추출하고,
- 발견된 Feature로 인공신경망을 적용하는 기법
- 이미지의 공간 정보를 유지한(=1차원으로 평면화 하지 않은) 딥러닝!

CNN의 주요 단계

CNN 주요 하이퍼 파라미터

Convolution Filter의 수

Filter의 크기

Padding 여부

Stride

인공신경망의

기본적인

하이퍼 파라미터

CNN 주요 하이퍼 파라미터

- Filter: 원래 입력 이미지에서 주요 Feature를 탐지하는 역할, Feature Map이 나오게 됨
- Convolution Filter의 수: 원래 이미지로 부터 Filter의 수 만큼 다른 방식으로 Feature Map을 탐지
- Padding 여부: Padding은 입력 데이터보다 출력이 작아지는 것을 방지, 주로 원래 이미지 주변을 0으로 채워 Filter가 이미지 첫 시작점부터 작동할 수 있도록 함.
- Stride: Filter가 움직이는 간격

멀티채널과 단일채널

멀티채널(칼라): R+G+B

단일채널(흑백)

- 생성되는 Convolution결과의 수
- 흑백: Filter의 수와 같은 Feature Map
- 칼라(R,G,B인 경우): Filter의 수와 같은 Feature Map X 3

Convolution과 Pooling

- Convolution:
 - 이미지의 주요 Feature를 다양한 관점의 Filter에 따라 추출 하이퍼파 라미터를 지정

- Pooling:
 - Feature Map에서 특정 Feature를 강조
 - Pooling은 하이퍼파라미터 없음
 - Pooling을 해도 채널의 수는 동일하지만, 행렬 크기는 감소

Filter의 적용

Pooling은 Convolution된 값을 평균, 최대값 등으로 줄여주는 역할, 최대값을 사용하는 max pooling은 값을 강화!

Convolution은 필터를 통해 이미지 일부를 새로운 값으로 계산

Stride Output Fully Connected Pooling Pooling Convolution Convolution

Convolution 과정

1 _{×1}	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Convolution!

4	

4	3	4
2	4	3
2	3	4

4

Convolution 과정

정형데이터화: 한 줄에 하나의 이미지! v1,v2,v3, v4,v5,v6, v7,v8,v9 -1, 2, 3, 2, 3, 1, 1, 0, 1 Fully Connected Convolution Convolution Fully Connected Pooling Pooling 14

CNN의 특징은!

- 입력 데이터의 공간 정보를 유지= 2차원(또는 3차원)입력데이터를 사용
- Feature Map을 사용 = Feature Map은 입력데이터, 은닉층으로 전달되고, 은닉층 에서 계산되는 값을 의미

• 합성곱(Convolution) 연산을 수행!

Convolution

흐릿한 해의 모습

검게 나타나는 해의 모습

시력에 안좋습니다!

Convolution

어떤 필터로 보느냐에 따라 대상이 다르게 처리됨 Convolution: 이미지 처리의 필터(=Kernel) 연산을 의미

1	2	3
0	2	1
2	0	3

 1
 1

 0
 3

이미지

필터

Convolution

한 칸씩 움직임=Stride의 크기

패딩: 이미지 주위를 특정값(예: 0)으로 둘러쌓기

3차원 데이터의 합성곱

어떤 필터로 보느냐에 따라 대상이 다르게 처리됨 Convolution: 이미지 처리의 필터(=Kernel) 연산을 의미

채널별로 합성곱 연산

3차원 데이터의 합성곱: 여러 필터!

Pooling: 2차원 공간을 줄여주는 연산

- Pooling 절차: Convolution의 결과들의 공간을 줄여주며 주요 값을 더 강조할 수 있음
- Pooling의 여러 방법: Max Pooling과 Average Pooling등이 있으며, 이미지 처리에서는 Max Pooling을 많이 사용함
- Pooling의 특징: 하이퍼파라미터 학습이 없고, 입력값의 변화에 강건한 특징이 있음

1	2	3
0	2	1
2	0	3

이 피쳐맵을 줄여보기!

Pooling: 2차원 공간을 줄여주는 연산: 2X2 영역별로 최대값을 구하기

1	2	3	1
0	2	1	
2	0	3	

2			
<u></u>	1	2	3
	0	2	1
	2	0	3

1	2	3	3
0	2	1	
2	0	3	

Pooling: 2차원 공간을 줄여주는 연산: 2X2 영역별로 최대값을 구하기

7			
~	1	2	3
	0	2	1
	2	0	3

1	2	3	3
0	2	1	
2	0	3	

2X2 Max Pooling

Pooling: 2차원 공간을 줄여주는 연산: 2X2 영역별로 최대값을 구하기

1	1	2	3
	0	2	1
	2	0	3

1	2	3	1.5
0	2	1	
2	0	3	

2X2 Average Pooling

Pooling

- 학습할 하이퍼 파라미터 없음
- 채널수 고정
- 입력의 변화에 영향을 적게 받음(Robust)

Pooling의 강건함: 입력값의 변화를 Pooling이 흡수, Robust한 결과를 제공

2X2 Max Pooling

이미지 처리에서는 주로 Max Pooling 사용!

https://www.youtube.com/watch?v=f0t-OCG79-U 28