

By the power of forking termina

It has $(m_1, v_1, \dots, v_m, h_1, \dots, h_m, s)$ such that $h_1 \neq h_1$ $(m_1, v_1, \dots, v_m, h_1, \dots, h_m, s')$ (one pour) $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_s^{h_1} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_m^{h_m} \cdots y_m^{h_m}$ $g^s = v_1 \cdots v_m \cdot y_1^{h_1} \cdots y_m^{h_m} \cdots y_m$

3. Amornimity

Re [0 < RSign (m, Y, X;) D(Y, 0) -> ? [=i] < medigible + \frac{1}{m}

Scheme is anonymous if with mon-negligible probability distinguished is mot able to tell which signer signed a message

?

Proof of comonism. Let $Sig = (m, N_1, ..., N_m, h_1, ..., h_m, S)$ is a valid signature of a message m. Let v_j be a member of aing. Now we find the probability that v_j computes exactly the SiG. The probability shout v_j computes pairwise different M; and $v_i \neq 1$ where $i \neq j$ is $\frac{1}{q-1} \cdot \frac{1}{q-2} \cdot \frac{1}{q-m+1} = f_i$. Then the prob. that v_j computes $a_i \in \mathcal{A}q$ that leads to v_j such that $v_j \neq v_i$ for all $i \in \mathcal{A}1 \cdot my$ $i \neq j$ is $\frac{1}{q-m} = f_2$. Summing $P_1 \cdot P_2 = \frac{1}{q-1} \cdot \frac{1}{q-m}$ and this prob. doesn't depend on so it is the same for all member of ring

1...
$$Q_{i}^{i} = Q_{ai}^{i}$$
 $Q_{i}^{j} = Q_{ai}^{j}$ $Q_{i}^{j} = Q_{i}^{j}$ $Q_{i}^{j} = Q_{i}^{j}$