BAYESIAN COMPUTATIONS

PHD COURSE IN STATISTICAL INFERENCE

MATTIAS VILLANI

DEPARTMENT OF STATISTICS
STOCKHOLM UNIVERSITY
AND
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
LINKÖPING UNIVERSITY

OVERVIEW OF THE LECTURE

- **Gibbs sampling**
- **Data augmentation**
 - Mixture models
 - Probit regression
- Markov Chain Monte Carlo

■ Metropolis-Hastings

■ MCMC - efficiency, burn-in and convergence

MONTE CARLO SAMPLING

■ If $\theta^{(1)}$, ..., $\theta^{(N)}$ is an **iid sequence** from $p(\theta)$, then

$$\frac{1}{N} \sum_{t=1}^{N} \theta^{(t)} \rightarrow E(\theta)$$

$$\frac{1}{N} \sum_{t=1}^{N} g(\theta^{(t)}) \rightarrow E[g(\theta)]$$

for some function $g(\theta)$ of interest.

Easy to compute tail probabilities $Pr(\theta \leq c)$ by letting

$$g(\theta) = I(\theta \le c)$$

and

$$\frac{1}{N} \sum_{t=1}^{N} g(\theta^{(t)}) = \frac{\# \theta\text{-draws smaller than } c}{N}.$$

DIRECT SAMPLING BY THE INVERSE CDF METHOD

- Let F(x) be the CDF of X. Inverse CDF method:
 - 1. Generate u from the uniform distribution on [0, 1].
 - 2. Compute $x = F^{-1}(u)$.

■ Exponential distribution:

$$u = F(x) = 1 - \exp(-\lambda x)$$

Inverting gives

$$x = -\ln(1-u)/\lambda$$

■ So:

$$u \sim U(0,1)$$
 and $x = -\ln(1-u)/\lambda \Rightarrow x \sim Expon(\lambda)$

Inverse CDF method, discrete case

DIRECT SAMPLING BY THE INVERSE CDF METHOD

■ Cauchy distribution:

$$f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$$

$$u = F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan(x)$$

Inverting ...

$$x = \tan[\pi(u - 1/2)].$$

■ Use relations:

$$y, z$$
 are indep $N(0, 1) \Rightarrow \frac{y}{z} \sim \text{Cauchy}(0, 1)$

■ Chi-square. If $x_1, ..., x_v \stackrel{iid}{\sim} N(0, 1)$, then $\sum_{i=1}^{v} X_i^2 \sim \chi_v^2$.

GIBBS SAMPLING

- Easily implemented methods for sampling from multivariate distributions, $p(\theta_1, ..., \theta_k)$.
- Requirements: Easily sampled full conditional distributions:
 - $p(\theta_1|\theta_2, \theta_3..., \theta_k)$ • $p(\theta_2|\theta_1, \theta_3, ..., \theta_k)$
 - . :
 - $p(\theta_k|\theta_1,\theta_2,...,\theta_{k-1})$
- Gibbs sampling is a special case of **Metropolis-Hastings** (see Lecture 8).
- Metropolis-Hastings is a Markov Chain Monte Carlo (MCMC) algorithm.

THE GIBBS SAMPLING ALGORITHM

- Choose initial values $\theta_2^{(o)}$, $\theta_3^{(o)}$, ..., $\theta_k^{(o)}$.
- Repeat for j = 1, ..., N:
 - Draw $\theta_1^{(j)}$ from $p(\theta_1|\theta_2^{(j-1)},\theta_3^{(j-1)},...,\theta_k^{(j-1)})$ • Draw $\theta_2^{(j)}$ from $p(\theta_2|\theta_1^{(j)},\theta_3^{(j-1)},...,\theta_k^{(j-1)})$:
 - Draw $\theta_k^{(j)}$ from $p(\theta_k|\theta_1^{(j)},\theta_2^{(j)},...,\theta_{k-1}^{(j)})$
- Return draws: $\theta^{(1)}$, ..., $\theta^{(N)}$, where $\theta^{(j)} = (\theta_1^{(j)}, ..., \theta_k^{(j)})$.

GIBBS SAMPLING, CONT.

■ Gibbs draws $\theta^{(1)}, ..., \theta^{(N)}$ are **dependent**, but

$$\bar{\theta} = \frac{1}{N} \sum_{t=1}^{N} \theta_j^{(t)} \rightarrow E(\theta_j)$$

$$\frac{1}{N} \sum_{t=1}^{N} g(\theta^{(t)}) \rightarrow E[g(\theta)]$$

- \blacksquare $\theta^{(1)},, \theta^{(N)}$ converges in distribution to the target $p(\theta)$.
- $\theta_j^{(1)}, ..., \theta_j^{(N)}$ converges to the marginal distribution of θ_j , $p(\theta_j)$.
- lacktriangle Dependent draws ightarrow less efficient than iid sampling.
- IID samples: $\theta^{(1)}$,, $\theta^{(N)}$: $Var(\bar{\theta}) = \frac{\sigma^2}{N}$.
- Autocorrelated samples: $Var(\bar{\theta}) = \frac{\sigma^2}{N} (1 + 2 \sum_{k=1}^{\infty} \rho_k)$, where ρ_k is the autocorrelation at lag k.
- Inefficiency factor: $1 + 2 \sum_{k=1}^{\infty} \rho_k$.

GIBBS SAMPLING BIVARIATE NORMAL

Joint distribution

$$\left(\begin{array}{c}\theta_1\\\theta_2\end{array}\right) \sim N_2 \left[\left(\begin{array}{c}\mu_1\\\mu_2\end{array}\right), \left(\begin{array}{cc}1&\rho\\\rho&1\end{array}\right)\right]$$

■ Full conditional posteriors

$$\begin{array}{lll} \theta_{1}|\theta_{2} & \sim & N[\mu_{1}+\rho(\theta_{2}-\mu_{2}),1-\rho^{2}] \\ \theta_{2}|\theta_{1} & \sim & N[\mu_{2}+\rho(\theta_{1}-\mu_{1}),1-\rho^{2}] \end{array}$$

GIBBS SAMPLING - BIVARIATE NORMAL

GIBBS SAMPLING - BIVARIATE NORMAL

GIBBS SAMPLING - BIVARIATE NORMAL

DIRECT SAMPLING VS GIBBS SAMPLING

ESTIMATING $Pr(\theta_1 > 0, \theta_2 > 0)$

■ Joint probability by counting:

$$Pr(\theta_1 > 0, \theta_2 > 0) \approx N^{-1} \sum_{i=1}^{N} 1(\theta_1^{(i)} > 0, \theta_2^{(i)} > 0)$$

GIBBS SAMPLING FOR NORMAL MODEL WITH NON-CONJUGATION

■ Normal model with semi-conjugate prior

$$\mu \sim N(\mu_0, \tau_0^2)$$
 $\sigma^2 \sim Inv - \chi^2(\nu_0, \sigma_0^2)$

■ Full conditional posteriors

$$\begin{split} \mu|\sigma^2, \mathbf{X} &\sim N\left(\mu_n, \tau_n^2\right) \\ \sigma^2|\mu, \mathbf{X} &\sim In\mathbf{V} - \chi^2\left(\nu_n, \frac{\nu_0\sigma_0^2 + \sum_{i=1}^n \left(\mathbf{X}_i - \mu\right)^2}{n + \nu_0}\right) \end{split}$$

with μ_n and τ_n^2 defined the same as when σ^2 is known (Lecture 2).

GIBBS SAMPLING FOR AR PROCESSES

\blacksquare AR(p) process

$$X_t = \mu + \phi_1(X_{t-1} - \mu) + \dots + \phi_p(X_{t-p} - \mu) + \varepsilon_t, \quad \varepsilon_t \stackrel{iid}{\sim} N(O, \sigma^2).$$

- Let $\phi = (\phi_1, ..., \phi_p)'$.
- **■** Prior:
 - $\mu \sim Normal$
 - $\phi \sim$ Multivariate Normal
 - σ^2 ~Scaled Inverse χ^2 .
- The **posterior** can be simulated by **Gibbs sampling**¹:
 - $\mu | \phi, \sigma^2, x \sim \text{Normal}$
 - $\phi | \mu, \sigma^2, x \sim \text{Multivariate Normal}$
 - $\sigma^2 | \mu, \phi, x \sim \text{Scaled Inverse } \chi^2$

¹Villani (2009). Steady State Priors for Vector Autoregressions. *Journal of Applied Econometrics*.

DATA AUGMENTATION - MIXTURE DISTRIBUTIONS

- Let $\phi(x|\mu, \sigma^2)$ denotes the **PDF** of $x \sim N(\mu, \sigma^2)$.
- Two-component mixture of normals [MN(2)]

$$p(x) = \pi \cdot \phi(x|\mu_1, \sigma_1^2) + (1 - \pi) \cdot \phi(x|\mu_2, \sigma_2^2)$$

- Simulate from a MN(2):
 - Simulate a **membership indicator** $I \in \{1, 2\}$: $I \sim Bern(\pi)$.
 - If I = 1, simulate x from $N(\mu_1, \sigma_1^2)$
 - If I = 2, simulate x from $N(\mu_2, \sigma_2^2)$.

17 | 3

ILLUSTRATION OF MIXTURE DISTRIBUTIONS

MIXTURE DISTRIBUTIONS, CONT.

- The **likelihood** is a product of sums. **Messy** to work with.
- Assume that we know where each observation comes from

$$I_i = \begin{cases} 1 \text{ if } x_i \text{ came from Density 1} \\ 2 \text{ if } x_i \text{ came from Density 2} \end{cases}$$

- Given $I_1, ..., I_n$ it is easy to estimate π , $\mu_1, \sigma_1^2, \mu_2, \sigma_2^2$ by separating the sample according to the I's.
- But we do **not** know $I_1, ..., I_n!$
- Data augmentation: add $I_1, ..., I_n$ as unknown parameters.
- **Gibbs sampling:**
 - Sample π , μ_1 , σ_1^2 , μ_2 , σ_2^2 given I_1 , ..., I_n
 - Sample $I_1, ..., I_n$ given $\pi, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2$

GIBBS SAMPLING FOR MIXTURE DISTRIBUTIONS

- Prior: $\pi \sim Beta(\alpha_1, \alpha_2)$. Conjugate prior for (μ_j, σ_j^2) , see L5.
- Define: $n_1 = \sum_{i=1}^{n} (I_i = 1)$ and $n_2 = n n_1$.

■ Gibbs sampling:

- $\pi \mid \mathbf{I}, \mathbf{x} \sim Beta(\alpha_1 + n_1, \alpha_2 + n_2)$
- $\sigma_1^2 \mid \mathbf{I}, \mathbf{x} \sim \mathit{Inv}$ - $\chi^2(\nu_{n_1}, \sigma_{n_1}^2)$ and $\mu_1 \mid \mathbf{I}, \sigma_1^2, \mathbf{x} \sim \mathit{N}\left(\mu_{n_1}, \frac{\sigma_1^2}{\kappa_{n_1}}\right)$
- $\sigma_2^2 \mid \mathbf{I}, \mathbf{x} \sim \mathit{Inv}$ - $\chi^2(\nu_{n_2}, \sigma_{n_2}^2)$ and $\mu_2 \mid \mathbf{I}, \sigma_2^2, \mathbf{x} \sim \mathit{N}\left(\mu_{n_2}, \frac{\sigma_2^2}{\kappa_{n_2}}\right)$
- $I_i \mid \pi, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \mathbf{x} \sim Bern(\theta_i), i = 1, ..., n,$

$$\theta_i = \frac{(1-\pi)\phi(x_i; \mu_2, \sigma_2^2)}{\pi\phi(x_i; \mu_1, \sigma_1^2) + (1-\pi)\phi(x_i; \mu_2, \sigma_2^2)}.$$

GIBBS SAMPLING FOR MIXTURE DISTRIBUTIONS

K-component mixture of normals

$$p(x) = \sum_{k=1}^{K} \pi_k \phi(x; \mu_k, \sigma_k^2)$$

- Multi-class indicators: $I_i = k$ if x_i comes from component k.
- **■** Gibbs sampling
 - $(\pi_1, ..., \pi_K) \mid \mathbf{I}, \mathbf{x} \sim Dirichlet(\alpha_1 + n_1, \alpha_2 + n_2, ..., \alpha_K + n_K)$
 - $\sigma_k^2 \mid \mathbf{I}, \mathbf{x} \sim \text{Inv-}\chi^2 \text{ and } \mu_k \mid \mathbf{I}, \sigma_k^2, \mathbf{x} \sim \text{Normal, for } k = 1, ..., K,$
 - $I_i \cap \pi, \mu, \sigma^2, \mathbf{x} \sim \text{Multinomial}(\theta_{i1}, ..., \theta_{iK}), \text{ for } i = 1, ..., n,$

$$\theta_{ij} = \frac{\pi_j \phi(x_i; \mu_j, \sigma_j^2)}{\sum_{r=1}^k \pi_r \phi(x_i; \mu_r, \sigma_r^2)}.$$

- Gibbs sampling is very powerful for **missing data** problems.
- Semi-supervised learning.

DATA AUGMENTATION - PROBIT REGRESSION

■ Probit regression:

$$Pr(y_i = 1 \mid x_i) = \Phi(x_i^T \beta)$$

Random utility formulation:

$$u_i \sim N(x_i^T \beta, 1)$$

 $y_i = \begin{cases} 1 & \text{if } u_i > 0 \\ 0 & \text{if } u_i \leq 0 \end{cases}$

- Check: $\Pr(y_i = 1 \mid x_i) = \Pr(u_i > 0) = 1 \Pr(u_i \le 0) = 1 \Pr(u_i x_i^T \beta < -x_i^T \beta) = 1 \Phi(-x_i^T \beta) = \Phi(x_i^T \beta).$
- Given $u = (u_1, ..., u_n)$, β can be analyzed by linear regression.
- \blacksquare *u* is **not observed**. Gibbs sampling to the rescue!²

² Albert and Chib (1993). Bayesian Analysis of Binary and Polychotomous Response Data. *JASA*.

GIBBS SAMPLING FOR THE PROBIT REGRESSION

- Simulate from **joint posterior** $p(u, \beta|y)$ by iterating between
 - $p(\beta|u,y)$ is multivariate normal (linear regression)
 - $p(u_i|\beta, y)$, i = 1, ..., n.
- The full conditional posterior distribution of u_i

$$\begin{split} p(u_i|\beta,y) &\propto p(y_i|\beta,u_i)p(u_i|\beta) \\ &= \begin{cases} N(u_i|x_i'\beta,1) & \text{truncated to } u_i \in (-\infty,0] \text{ if } y_i = 0 \\ N(u_i|x_i'\beta,1) & \text{truncated to } u_i \in (0,\infty) \text{ if } y_i = 1 \end{cases} \end{split}$$

■ A histogram of β -draws approximates $p(\beta|y) = \int p(u, \beta|y) du$.

MARKOV CHAINS

- Let $S = \{s_1, s_2, ..., s_k\}$ be a finite set of **states**.
 - Weather: $S = \{\text{sunny, rain}\}.$
 - School grades: $S = \{A, B, C, D, E, F\}$
- Markov chain is a stochastic process $\{X_t\}_{t=1}^T$ with random state transitions

$$p_{ij} = \Pr(X_{t+1} = s_j | X_t = s_i)$$

- School grades: $X_1 = C, X_2 = C, X_3 = B, X_4 = A, X_5 = B$.
- Transition matrix for weather example

$$P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} 0.9 & 0.1 \\ 0.7 & 0.3 \end{pmatrix}$$

STATIONARY DISTRIBUTION

■ *h*-step transition probabilities

$$P_{ij}^{(h)} = \Pr(X_{t+h} = s_j | X_t = s_i)$$

■ *h*-step transition matrix by matrix power

$$P^{(h)} = P^h$$

- Unique equilbrium distribution $\pi = (\pi_1, ..., \pi_k)$ if chain is
 - irreducible (possible to get to any state from any state)
 - aperiodic (does not get stuck in predictable cycles)
 - positive recurrent (expected time of returning is finite)
- Limiting long-run distribution

$$P^{t} \to \begin{pmatrix} \pi \\ \pi \\ \vdots \\ \pi \end{pmatrix} = \begin{pmatrix} \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \vdots & \vdots & & \vdots \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \end{pmatrix} \text{ as } t \to \infty$$

STATIONARY DISTRIBUTION, CONT.

Limiting long-run distribution

$$P^{t} \to \begin{pmatrix} \pi \\ \pi \\ \vdots \\ \pi \end{pmatrix} = \begin{pmatrix} \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \vdots & \vdots & & \vdots \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \end{pmatrix} \text{ as } t \to \infty$$

■ Stationary distribution

$$\pi = \pi P$$

■ Example:

$$P = \left(\begin{array}{cccc} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{array}\right)$$

$$\pi = ($$
0.545, 0.272, 0.181 $)$

THE BASIC MCMC IDEA

- Simulate from discrete distribution p(x) when $x \in \{s_1, ..., s_k\}$.
- MCMC: simulate a Markov Chain with a stationary distribution that is exactly p(x).
- How to set up the transition matrix P? Metropolis-Hastings!

REJECTION SAMPLING

RANDOM WALK METROPOLIS ALGORITHM

- Initialize $\theta^{(0)}$ and iterate for i = 1, 2, ...
 - 1. Sample proposal: $\theta_p | \theta^{(i-1)} \sim N\left(\theta^{(i-1)}, c \cdot \Sigma\right)$
 - 2. Compute the acceptance probability

$$lpha = \min\left(1, rac{p(heta_p|\mathbf{y})}{p(heta^{(i-1)}|\mathbf{y})}
ight)$$

3. With probability α set $\theta^{(i)} = \theta_p$ and $\theta^{(i)} = \theta^{(i-1)}$ otherwise.

RANDOM WALK METROPOLIS, CONT.

- Assumption: we can compute $p(\theta_p|\mathbf{y})$ for any θ .
- Proportionality constants in posterior cancel out in

$$\alpha = \min\left(1, \frac{p(\theta_p|\mathbf{y})}{p(\theta^{(i-1)}|\mathbf{y})}\right).$$

■ In particular:

$$\frac{p(\theta_p|\mathbf{y})}{p(\theta^{(i-1)}|\mathbf{y})} = \frac{p(\mathbf{y}|\theta_p)p(\theta_p)/p(y)}{p(\mathbf{y}|\theta^{(i-1)})p(\theta^{(i-1)})/p(y)} = \frac{p(\mathbf{y}|\theta_p)p(\theta_p)}{p(\mathbf{y}|\theta^{(i-1)})p(\theta^{(i-1)})}$$

■ Proportional form is enough

$$\alpha = \min \left(1, \frac{p(\mathbf{y}|\theta_p) p(\theta_p)}{p(\mathbf{y}|\theta^{(i-1)}) p(\theta^{(i-1)})} \right)$$

RANDOM WALK METROPOLIS, CONT.

- Common choices of Σ in proposal $N\left(\theta^{(i-1)}, c \cdot \Sigma\right)$:
 - $\Sigma = I$ (proposes 'off the cigar')
 - $\Sigma = J_{\hat{\theta}, \mathbf{v}}^{-1}$ (propose 'along the cigar')
 - **Adaptive**. Start with $\Sigma = I$. Update Σ from initial run.
- Set *c* so average acceptance probability is 25-30%.
- **Good proposal**:
 - · Easy to sample
 - Easy to compute α
 - Proposals should take reasonably **large steps** in θ -space
 - Proposals should not be reject too often.

THE METROPOLIS-HASTINGS ALGORITHM

- Generalization when the proposal density is not symmetric.
- Initialize $\theta^{(0)}$ and iterate for i = 1, 2, ...
 - 1. Sample proposal: $heta_p \sim q\left(\cdot| heta^{(i-1)}
 ight)$
 - 2. Compute the acceptance probability

$$\alpha = \min \left(1, \frac{p(\mathbf{y}|\theta_p)p(\theta_p)}{p(\mathbf{y}|\theta^{(i-1)})p(\theta^{(i-1)})} \frac{q\left(\theta^{(i-1)}|\theta_p\right)}{q\left(\theta_p|\theta^{(i-1)}\right)} \right)$$

3. With probability α set $\theta^{(i)} = \theta_p$ and $\theta^{(i)} = \theta^{(i-1)}$ otherwise.

THE INDEPENDENCE SAMPLER

- Independence sampler: $q\left(\theta_p|\theta^{(i-1)}\right) = q\left(\theta_p\right)$.
- Proposal is independent of previous draw.
- Example:

$$heta_p \sim t_{\mathsf{V}}\left(\hat{ heta}, J_{\hat{ heta}, \mathbf{V}}^{-1}\right)$$
 ,

where $\hat{\theta}$ and $J_{\hat{\theta} \mathbf{v}}$ are computed by numerical optimization.

- Can be very efficient, but has a tendency to get stuck.
- Make sure that $q(\theta_p)$ has **heavier tails** than $p(\theta|\mathbf{y})$.

METROPOLIS-HASTINGS WITHIN GIBBS

- Gibbs sampling from $p(\theta_1, \theta_2, \theta_3 | \mathbf{y})$
 - Sample $p(\theta_1|\theta_2,\theta_3,\mathbf{y})$
 - Sample $p(\theta_2|\theta_1,\theta_3,\mathbf{y})$
 - Sample $p(\theta_3|\theta_1,\theta_2,\mathbf{y})$
- When a **full conditional is not easily sampled** we can simulate from it using MH.
- **Example:** at *i*th iteration, propose θ_2 from $q(\theta_2|\theta_1,\theta_3,\theta_2^{(i-1)},\mathbf{y})$. Accept/reject.
- **Gibbs sampling is a special case of MH** when $q(\theta_2|\theta_1,\theta_3,\theta_2^{(i-1)},\mathbf{y})=p(\theta_2|\theta_1,\theta_3,\mathbf{y})$, which gives $\alpha=1$. Always accept.

THE EFFICIENCY OF MCMC

- How efficient is MCMC compared to iid sampling?
- If $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(N)}$ are **iid** with variance σ^2 , then

$$\operatorname{Var}(\bar{\theta}) = \frac{\sigma^2}{N}.$$

■ Autocorrelated $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(N)}$ generated by **MCMC**

$$\operatorname{Var}(\bar{\theta}) = \frac{\sigma^2}{N} \left(1 + 2 \sum_{k=1}^{\infty} \rho_k \right)$$

where $\rho_k = Corr(\theta^{(i)}, \theta^{(i+k)})$ is the autocorrelation at lag k.

■ Inefficiency factor

$$IF = 1 + 2\sum_{k=1}^{\infty} \rho_k$$

■ Effective sample size from MCMC

$$ESS = N/IF$$

BURN-IN AND CONVERGENCE

- How long burn-in?
- How long to sample after burn-in?
- **Thinning**? Keeping every *h* draw reduces autocorrelation.
- **■** Convergence diagnostics
 - Raw plots of simulated sequences (trajectories)
 - · CUSUM plots
 - · Potential scale reduction factor, R.

BURN-IN AND CONVERGENCE

