

일반화선형모형 (2)

서강대학교 경영학과 이윤동교수

목 차

- 1. 정규분포 경우의 예
- 2. 이항분포 경우의 예
- 3. 포아송분포 경우의 예
- 4. 다항분포 경우의 예

1 정규분포 경우의 예

정규분포: Iris data

- E. Anderson(1936)에 의하여 수집
- 세 종류의 붓꽃(iris), Setosa, Versicolor, Virginica 각 50개 씩
- 5개의 변수: (꽃잎, 꽃받침) X (폭, 길이), 붓꽃의 종류

붓꽃자료

```
> names(iris) <- c("SL", "SW", "PL", "PW", "SP")
> levels(iris$SP)<-c("st","vc","vg")</pre>
> zip<- function(data,k=3) rbind(head(data,k), tail(data,k))</pre>
> zip(iris)
    SL SW PL PW SP
                                               Sepal.Length → SL
 1 5.1 3.5 1.4 0.2 st
                                               Sepal.Width → SW
 2 4.9 3.0 1.4 0.2 st
                                               Species → SP
 3 4.7 3.2 1.3 0.2 st
148 6.5 3.0 5.2 2.0 vg
                                               setosa → st
149 6.2 3.4 5.4 2.3 vg
                                               versicolor → vc
150 5.9 3.0 5.1 1.8 vg
                                               virginica → vg
```

[R 6.1] 붓꽃자료

꽃받침의 폭과 길이

두 가지 모형

모형 A: 자유절편 **동일**기울기

모형 B: 자유절편 **자유**기울기

붓꽃 자료 : 모형 A

2.2514

```
> Im( SL~SP+SW-1 , data=iris)
# glm(SL~SP+SW-1, data=iris) 동일한 표현
Coefficients:
 SPst SPvc SPvg
                        SW
2.2514 3.7101 4.1982 0.8036
Residual Deviance: 28 AIC: 183.9
                                      2.0
    > lm( SL~SP+SW
                         data=iris)
                                           2.5
                                                      4.0
                                               SW
    Coefficients:
                              SPvg
    (Intercept)
                    SPvc
                                           SW
```

1.9468

0.8036

1.4587

붓꽃 자료 : 모형 B

```
> Im( SL~SP+SP/SW -1 , data=iris)
# Im( SL~ SP/SW -1, data=iris)
# glm( SL~ SP/SW -1, data=iris)
....
```

Coefficients:

SPst SPvc SPvg SPst:SW SPvc:SW SPvg:SW 2.6390 3.5397 3.9068 0.6905 0.8651 0.9015

•••

Residual Deviance: 28 AIC: 187.09

4.0

SW

두 모형의 비교

	모형 A	모형 B
이탈도	28	27.8
2*음로그우도	173.93	173.09
잔차의 자유도	146	144
모형모수 개수	5	7
AIC	183.93	187.09

질문 & 답변

Q: 동일절편 자유기울기 모형?

> summary(glm(SL~SP/SW -SP , data=iris))

..

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.35789	0.33000	10.175	< 2e-16 ***
SPst:SW	0.48326	0.09683	4.991	1.69e-06 ***
SPvc:SW	0.92991	0.11976	7.765	1.32e-12 ***
SPvg:SW	1.08401	0.11166	9.708	< 2e-16 ***

....

AIC: 185.75

정규분포: lm, glm 비교

```
> anova( glm( SL~SP/SW , data=iris))
Analysis of Deviance Table 이탈도분석표
Terms added sequentially (first to last)
          Deviance Resid. Df
                            Resid. Dev
      Df
NULL
                        149
                             102.168
SP
     2 63.212
                        147 38.956
SP:SW
            11.110
                   144 27.846
> anova( Im( SL~SP/SW , data=iris))
Analysis of Variance Table 분산분석표
        Df Sum Sq Mean Sq F value
                                  Pr(>F)
SP
         2 63.212 31.6061 163.44
                                  < 2.2e-16 ***
         3 11.110 3.7032 19.15 1.66e-10 ***
SP:SW
Residuals 144 27.846 0.1934
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

2 이항분포 경우의 예

이항분포: 담배나방 자료

〈표 6.3〉 담배나방 독성실험 자료

	살충제 투여량					
암수	1	2	4	8	16	32
수컷	1	4	9	13	18	20
암컷	0	2	6	10	12	16

- Collett(1991,p75) 소개
- 담배나방에 대한 살충제의 살충효과 실험 자료
- 6개의 실험 챔버에, 각 챔버별로 암수 각각 20마리씩을 넣고
- 챔버별로 살충제 양을 달리하여 투여
- 사흘 후 **죽은 나방의 수**를 기록함

담배나방 자료: 변수

⟨표 6.3⟩ 담배나방 독성실험 자료

	살충제 투여량					
암수	1	2	4	8	16	32
수컷	1	4	9	13	18	20
암컷	0	2	6	10	12	16

종속변수 : 죽은나방의 수 (ndead)
 살아 있는 나방의 수(nalive)

nalive = 20 - ndead

• 독립변수: 로그투여량 (Idose)

암수 (sex)

담배나방 자료의 준비

```
Idose <- rep(0:5, 2)

ndead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)

sex <- factor(rep(c("M","F"),e=6))

nda<-cbind(ndead, alive=20-ndead)

xd<-data.frame(Idose, sex)
```

>	xd	
	ldose	sex
1	0	M
2	1	M
3	2	M
4	3	M
5	4	M
6	5	M
7	0	F
8	1	F
9	2	F
10	3	F
11	4	F
12	5	F

> nda		
	ndead	alive
[1,]	1	19
[2,]	4	16
[3,]	9	11
[4,]	13	7
[5,]	18	2
[6,]	20	0
[7,]	0	20
[8,]	2	18
[9,]	6	14
[10,]	10	10
[11,]	12	8
[12,]	16	4

담배나방 자료: 두 모형

• 모형 A: 교호작용이 있는 모형 (ndead, nalive) ~ log(dose) * sex

• 모형 B: 교호작용이 없는 모형 (ndead, nalive) ~ log(dose) + sex

담배나방 자료: 모형A

```
> ( bw.glm0<-glm( nda~sex*ldose , family=binomial(link=probit), data=xd ) )
```

••

> summary(bw.glm0) 모형 A : 교호작용 있는 모형

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-1.80072	0.29832	-6.036	1.58e-09 ***
sexM	0.15479	0.41635	0.372	0.710
ldose	0.54523	0.09138	5.966	2.43e-09 ***
sexM:ldose	0.19165	0.14259	1.344	0.179

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 124.876 on 11 degrees of freedom Residual deviance: 3.768 on 8 degrees of freedom

AIC: 41.878

담배나방 자료: 모형B

> summary(update(bw.glm0, . ~sex+ldose))

Coefficients:

모형 B: 교호작용 없는 모형

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.06033	0.25087	-8.213	< 2e-16 ***
sexM	0.65364	0.20235	3.230	0.00124 **
ldose	0.63245	0.06975	9.068	< 2e-16 ***

--- ..

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 124.876 on 11 degrees of freedom Residual deviance: 5.566 on 9 degrees of freedom

AIC: 41.676

두 모형의 비교

	모형A	모형B
이탈도	3.768	5.566
AIC	41.878	41.676

3 포아송분포 경우의 예

갈라파고스 자료

Johnson & Raven (1973)에 소개된, 갈라파고스 제도에 속하는 30개의 섬들 대한 생태적 특성을 기록한 자료.

섬 이름, 다음과 같은 7개의 변수를 포함.

Species: 섬에서 발견된 식물 종의 수

Endemics : (토착 종의 주)

Area: 섬의 면적(km²)

Elevation: 섬의 최고점 해발고도(m)

Nearest: 가장 가까운 섬과의 거리(km)

Scruz: 산타크루즈(Santa Cruz) 섬과의 거리(km)

Adjacent: 인접한 섬의 면적(km²)

갈라파고스 자료 읽기

- > install.packages('faraway')
- > library('faraway')
- > gala
- > rbind(gala[1:3,], gala[27:30,])

	Species	Endemics	Area	Elevation	Nearest	Scruz	Adjacent
Baltra	58	23	25.09	346	0.6	0.6	1.84
Bartolome	31	21	1.24	109	0.6	26.3	572.33
Caldwell	3	3	0.21	114	2.8	58.7	0.78
SantaMaria	285	73	170.92	640	2.6	49.2	0.10
Seymour	44	16	1.84	147	0.6	9.6	25.09
Tortuga	16	8	1.24	186	6.8	50.9	17.95
Wolf	21	12	2.85	253	34.1	254.7	2.33

갈라파고스 자료

```
> galax<- gala[,-2] # Endemics 제거
> galax0<- glm(Species<-.,) family=poisson, data=galax)
> summary( galax0 )
                          Endemics 변수를 제외하고 data.frame 구성
                          Species 종속변수, 나머지 모든 변수를 독립변수로.
Coefficients:
            Estimate Std. Error z value Pr(|z|)
(Intercept) 3.155e+00 5.175e−02 60.963 < 2e−16 ***
           -5.799e-04 2.627e-05 -22.074 < 2e-16 ***
Area
Elevation
            3.541e-03 8.741e-05 40.507 < 2e-16 ***
Nearest
         8.826e-03 1.821e-03 4.846 1.26e-06 ***
           -5.709e-03 6.256e-04 -9.126 < 2e-16 ***
Scruz
Adjacent
         -6.630e-04 2.933e-05 -22.608 < 2e-16 ***
   Null deviance: 3510.73 on 29 degrees of freedom
Residual deviance: 716.85 on 24 degrees of freedom
(AIC: 889.68)
```


갈라파고스 자료

```
Df Deviance AIC
<none> 348.1 516.9
- Scruz 1 395.5 562.4
- log(Adjacent) 1 527.7 694.5
- log(Area) 1 3343.6 3510.4
```

> summary(gala.glm1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.4893 0.0515 67.745 < 2e-16 ***
log(Area) 0.3577 0.0080 44.429 < 2e-16 ***
Scruz -0.0032 0.0004 -6.582 4.63e-11 ***
log(Adjacent) -0.0835 0.0063 -13.166 < 2e-16 ***

Null deviance: 3510.73 on 29 degrees of freedom Residual deviance: 348.08 on 26 degrees of freedom

AIC: 516.91

갈라파고스 제도의 배치

과산포성의 확인

산포모수의 추정

```
> rd<- resid( gala.glm1 )
# 기본설정은 "deviance" residual
> dpd<- sum(rd*rd)/gala.glm1$df.res
# 13.38 = 이탈도 348.1 / 잔차 자유도 (30-4)
```

- > rsp<-**resid**(gala.glm1 , **"pearson"**) # Pearson 잔차 (y-yhat)/sqrt(yhat)
- > dpp<- sum(rsp*rsp)/gala.glm1\$df.res # 15.07 = 피어슨 잔차 제곱합 391.9 / 26

의사포아송 분포

- > gala.glm3<-glm(Species~log(Area)+Scruz+log(Adjacent),
- + family=quasipoisson(link=log), data=galax)
- > summary(gala.glm3)

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.489344	0.199974	17.449	7.12e-16 ***
log(Area)	0.357777	0.031265	11.443	1.19e-11 ***
Scruz	-0.003186	0.001879	-1.695	0.10195
log(Adjacent)	-0.083586	0.024648	-3.391	0.00223 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be **15.07352**)

Null deviance: 3510.73 on 29 degrees of freedom Residual deviance: 348.08 on 26 degrees of freedom

AIC: NA

4 다항분포 경우의 예

다항분포 로지스틱 회귀모형

$$(y_{(0)}, y_{(1)}, \dots, y_{(K)}) \sim Multinom(n, p_0, \dots, p_K)$$

$$\sum_{i=0}^{K} y_{(k)} = n \qquad \sum_{i=0}^{K} p_k = 1$$

$$\log(p_k/p_0) = \alpha_k + \beta_k x, \quad k = 0, 1, \dots, K$$

$$\alpha_0 = \beta_0 = 0$$

<mark>다항분포 로</mark>짓 모형.

$$p_k = \frac{\exp(\alpha_k + \beta_k x)}{\sum_{k=0}^K \exp(\alpha_k + \beta_k x)}, \ k = 0, \dots, K$$

교육프로그램 선택 자료

http://faculty.knou.ac.kr/~sskim/ progselection.txt

교육프로그램 선택 자료

- 외국 고등학교의 교육 프로그램 선택에 대한 자료.
- 교육 선택 대안 : 직업교육, 진학교육, 일반교육
- 200명 학생에 대하여 생성한 가상적 자료.

읽기(read), 쓰기(write), 수학 등의 성적과, 다음 변수들.

sex: 학생의 남녀 성별(여: f, 남: m)

ses: 학생의 사회경제적 수준. 상(high), 중(middle), 하(low).

type: 학생이 속한 학교가 공립(public)인지 사립(private)인지를 나타냄

prog: 학생이 선택한 고교 교육 프로그램

(직업교육: vocational, 진학교육: academic, 일반교육: general)

honors: 우등반에 등록 했는지의 여부

awards: 수상횟수

기초분석

- > hdata<-read.table("c:/temp/progselection.txt")</p>
- > hdata\$prog<-factor(hdata\$prog,c("vocation","general","academic"))>
- > hdata\$ses<-factor(hdata\$ses,c("low","middle","high"))</p>
- > with(hdatax, table(ses,prog))

prog ses vocation general academic low 15 14 20

·			
high	8	10	39
middle	30	24	40
low	15	14	20

prog

ses	0.31 0.32	0.29 0.26	0.41 0.43
	0.14	0.18	0.68

> with(hdata, do.call(rbind, tapply(read, prog,

+ function(x) c(M = mean(x), SD = sd(x))))

M SD vocation 46.54717 8.830816 general 51.04167 9.118507 academic 56.37374 9.358600

세 모형

• 모형 A: prog ∼ ses -1

• 모형 B: prog ~ ses + read -1

• 모형 C: prog ~ read

모형 A

- > library(nnet)
- > summary(multinom(prog~ ses-1 , data=hdata))

•••

Coefficients:

	sesiow	sesmidale	sesnign
general	-0.06899311	-0.2231440	0.223136
academic	0.28768238	0.2876817	1.584115

Std. Errors:

seslow sesmiddle seshigh general 0.3716117 0.2738613 0.4743413 academic 0.3415650 0.2415229 0.3881243

Residual Deviance: 404.6719

AIC: 416.6719

모형 B

> summary(multinom(prog~ ses+read-1, data=hdata))

•••

Coefficients:

	sesiow	sesmiaaie	sesnign	read
general	-2.867706	-3.134470	-2.825895	0.05960965
academic	-5.202425	-5.451592	-4.483538	0.11275868

Std. Errors:

	seslow	sesmiddle	seshigh	read
general	1.195471	1.216225	1.323616	0.02419606
academic	1.155365	1.175912	1.242470	0.02290054

Residual Deviance: 373.9069

AIC: 389.9069

모형 B

모형 C

> summary(multinom(prog~ read , data=hdata))

•••

Coefficients:

(Intercept) read general -2.951153 0.05854582 academic -5.460551 0.11877769

Std. Errors:

(Intercept) read

general 1.166806 0.02359973 academic 1.129366 0.02236958

Residual Deviance: 379.0829

AIC: 387.0829

세 모형의 비교

	Α	В	С
독립변수	ses	ses, read	read
이탈도	404.7	373.9	379.1
AIC	416.7	389.9	387.1

● 다음시간 안내

분류분석 (1)

