Mathematical Forecasting Methods Лекция 2

МФТИ

Осень, 2024

Временной ряд

- Временной ряд это совокупность значения параметра $\{x_1, x_2, ..., x_T\} = \{x_t\}_{t=1}^T$, изменяющегося во времени, через равные промежутки времени.
- ▶ Задача прогнозирования: найти функции $f_{T,d}$:

$$x_{T+d} \approx f_{T,d}(x_1,...x_T; w) =: \hat{x}_{T+d},$$

где $f_{T,d}$ — модель временного ряда, d=1,...,D — горизонт прогнозирования.

Минимизация квадратов ошибок (МНК):

$$Q_t(w) = \sum_{t=1}^{T} (\hat{x}_t(w) - x_t)^2 \to \min_{w}$$

Временной ряд

Важно:

- ▶ временной ряд реализация последовательности случайных величин,
- совокупность случайных величин дискретный случайный или стохастический процесс,
- ▶ при каждом фиксированном t значение стохастического процесса рассматривается как случайная величина.

Компоненты временного ряда

- ▶ тренд плавное долгосрочное изменение временного ряда,
- сезонность циклические изменения временного ряда с постоянным периодом,
- цикл изменения временного ряда с переменным периодом (цикл жизни товара, экономические волны, периоды солнечной активности),
- ошибка непрогнозируемая случайная компонента ряда.

Примеры временных рядов

Стационарный временной ряд

Определение. Временной ряд $\{x_i\}_{i=1}^T$ называется слабо стационарным (или стационарным в широком смысле), если

- ightharpoonup $\mathrm{E}[x_t]=\mathrm{const}\;(ext{т.e.}\;$ временной ряд не имеет *тренда*),
- $ightharpoonup \mathrm{Cov}(x_t, x_{t+k}) = \mathrm{E}[(x_t \mathrm{E} x_t)(x_{t+k} \mathrm{E} x_{t+k})] = \gamma(k)$ (ковариация зависит только от разницы во времени).

Причем $\mathrm{Cov}(x_t,x_t)=\mathrm{D}(x_t)=\gamma(0)=\gamma_0$, т.е. дисперсия стационарного временного ряда не меняется со временем.

Белый шум $u_t \sim \mathsf{WN}(0, \sigma^2)$: $\mathrm{E} u_t = 0, \; \mathrm{D} u_t = \sigma^2, \; \mathrm{Cov}(u_t, u_{t+k}) = 0$

Стационарный временной ряд

Вопрос: какие из этих рядов, вероятно, стационарные?

Автокорреляция

Определение. Функция $\rho(k)$, где k - величина лага, называется автокорреляционной функцией (autocorrelation function, ACF) стационарного временного ряда.

$$\rho(k) = \operatorname{Corr}(x_t, x_{t+k}) = \frac{\operatorname{Cov}(x_t, x_{t+k})}{\sqrt{\operatorname{D}(x_t) \cdot \operatorname{D}(x_{t+k})}} = \frac{\gamma(k)}{\sqrt{\gamma(0) \cdot \gamma(0)}} = \frac{\gamma(k)}{\gamma(0)}$$

Оценка:

$$\hat{
ho}(k) = rac{\sum_{t=1}^{T-k} (x_t - \overline{x})(x_{t+k} - \overline{x})}{\sum_{t=1}^{T} (x_t - \overline{x})},$$
 где $\overline{x} = rac{1}{T} \sum_{t=1}^{T} x_t$

Для стационарных временных рядов верно, что

$$\lim_{k\to\infty}\rho(k)=0$$

Автокорреляция

Monthly housing sales (millions)

Australian monthly electricity production

Автокорреляция

Частичная Автокорреляция (РАСF)

Частичная автокорреляция лага k>1 также измеряет корреляцию между x_t и x_{t+k} , но за вычетом линейных зависимостей этих величин от $x_{t+1},...,x_{t+k-1}$:

$$\rho_{PACF}(k) = \operatorname{Corr}(x_t - \hat{x}_t, x_{t+k} - \hat{x}_{t+k})$$

Здесь \hat{x}_t , \hat{x}_{t+k} - это линейные комбинации $x_{t+1},...,x_{t+k-1}$ с коэффициентами, минимизирующими среднеквадратичную ошибку предсказания значений x_t и x_{t+k} соответственно:

$$\hat{x}_t = \beta_1^{(1)} x_{t+1} + \dots + \beta_{k-1}^{(1)} x_{t+k-1}, \quad \hat{x}_{t+k} = \beta_1^{(2)} x_{t+1} + \dots + \beta_{k-1}^{(2)} x_{t+k-1}$$

Для стационарных временных рядов значение коэффициента, полученного с помощью МНК, зависит только от разности временных индексов, поэтому коэффициенты для \hat{x}_t и \hat{x}_{t+k} одинаковые, но имеют противоположный порядок:

$$\hat{x}_t = \beta_1 x_{t+1} + \dots + \beta_{k-1} x_{t+k-1}, \quad \hat{x}_{t+k} = \beta_{k-1} x_{t+1} + \dots + \beta_1 x_{t+k-1}$$

Модель ARMA

Общая смешанная модель ARMA(p,q) (AutoRegression Moving Average) авторегрессии-скользящего среднего:

$$x_t = \mu + \sum_{j=1}^p \phi_j x_{t-j} + u_t + \sum_{s=1}^q \theta_s u_{t-s}, \quad u_t \sim \mathsf{WN}(0, \sigma^2), \quad \phi_p, \theta_q \neq 0$$

Составные части:

- $\blacktriangleright \mu + \sum_{j=1}^{p} \phi_j x_{t-j}$ авторегрессионная часть AR,
- $u_t + \sum_{s=1}^q \theta_s u_{t-s}$ часть скользящего среднего МА (в классическом случае гауссовский белый шум).

Согласно теорема Вольда, любой стационарный ряд может быть аппроксимирован моделью $\mathsf{ARMA}(p,q)$ с любой точностью.

Модель ARMA. Прогноз

$$x_t = \mu + \sum_{j=1}^{p} \phi_j x_{t-j} + u_t + \sum_{s=1}^{q} \theta_s u_{t-s}, \quad u_t \sim WN(0, \sigma^2), \quad \phi_p, \theta_q \neq 0$$

Пусть известны значения ряда x_t и возмущения u_t до момента времени T включительно, а также получены веса ϕ_j , $j=\overline{1,p}$, θ_s , $s=\overline{1,q}$ модели ARMA(p,q).

Выражение для x_{T+1} в рамках модели:

$$x_{T+1} = \mu + \sum_{j=1}^{p} \phi_j x_{T+1-j} + u_{T+1} + \sum_{s=1}^{q} \theta_s u_{T+1-s}$$

Неизвестным в правой части является только возмущение $u_{T+1}.$ Отметим: $\mathrm{E} u_{T+1}=0,\ \mathrm{Cov}(u_{T+1},x_t)=0$ для всех $t\leq T.$ Оценка на момент времени T+1:

$$\hat{x}_{T+1} = \mu + \sum_{j=1}^{p} \phi_j x_{T+1-j} + \sum_{s=1}^{q} \theta_s u_{T+1-s}$$

Модель ARMA. Прогноз

Выражение для x_{T+2} в рамках модели:

$$x_{T+2} = \mu + \sum_{j=1}^{p} \phi_j x_{T+2-j} + u_{T+2} + \sum_{s=1}^{q} \theta_s u_{T+2-s}$$

Неизвестными в правой части здесь является только возмущения $u_{T+1},\ u_{T+2}$ и значение ряда $x_{T+1}.$ Как и на предыдущем шаге, занулим неизвестные возмущения, а вместо значения x_{T+1} используем его оценку \hat{x}_{T+1} , получим:

$$\hat{x}_{T+2} = \mu + \phi_1 \hat{x}_{T+1} + \sum_{j=2}^{p} \phi_j x_{T+2-j} + \sum_{s=2}^{q} \theta_s u_{T+2-s}$$

Заметим, что МА часть уменьшается с каждым последующим прогнозом в будущее.

Модель ARMA. Прогноз

Последовательное построение оптимального прогноза на au шагов для общего случая:

- 1. Записываем ARMA-формулу для $x_{T+\tau}$.
- 2. Зануляем неизвестные возмущения $u_{T+1}, ..., u_{T+\tau}$.
- 3. Заменяем неизвестные значения $x_{T+1},...,x_{T+\tau-1}$ на их прогнозы, полученные на предыдущих шагах.

Вопросы:

- Как получить оптимальные веса модели ARMA?
- lacktriangle Как в реальных данных получить возмущения $u_t,\ t \leq T$, необходимые для построения прогноза?

Дифференцирование временного ряда

Дифференцирование ряда — переход к попарным разностям его соседних значений:

$$x_1, ..., x_T \to x'_2, ..., x'_T,$$

 $x'_t = x_t - x_{t-1}.$

Дифференцированием можно стабилизировать среднее значение ряда и избавиться от тренда и сезонности. Может применяться неоднократное дифференцирование; например, для второго порядка:

$$x_1,...,x_T \rightarrow x_2',...,x_T' \rightarrow x_3'',...,x_T'',$$

 $x_t'' = x_t' - x_{t-1}' = x_t - 2x_{t-1} + x_{t-2}.$

Дифференцирование временного ряда

Определение: лаговыи оператор L — оператор сдвига, позволяющий получить значения элементов временного ряда на основании ряда предыдущих значений:

$$L(x_t) \stackrel{\mathsf{def}}{=} x_{t-1}.$$

Далее
$$L^2(x_t) = L(L(x_t)) = L(x_{t-1}) = x_{t-2}$$
.

Следовательно,
$$L^k(x_t) = x_{t-k}$$
, причем $L^0(x_t) = x_t$.

Тогда дифференцирование временного ряда представимо в виде

$$x'_t = x_t - x_{t-1} = (1 - L)(x_t).$$

Дифференцирование временного ряда

Модель ARIMA

Ряд описывается моделью ARIMA(p,d,q), если ряд его разностей

$$\nabla^d x_t = (1 - L)^d (x_t)$$

описывается моделью ARMA(p,q):

$$\nabla^{d} x_{t} = \mu + \sum_{j=1}^{p} \phi_{j}(\nabla^{d} x_{t-j}) + u_{t} + \sum_{s=1}^{q} \theta_{s} u_{t-s}.$$

Модель Seasonal additive ARMA

Для учета сезонной компоненты в моделью ARMA(p,q), добавляют авторегрессионные части и скользящее среднее по сезонным компонентам периода S.

Модель ARMA(p,q):

$$x_t = \mu + \sum_{j=1}^{p} \phi_j x_{t-j} + u_t + \sum_{s=1}^{q} \theta_s u_{t-s}$$

с авторегрессией с Р сезонными компонентами:

$$+\phi_{S}x_{t-S} + \phi_{2S}x_{t-2S} + ... + \phi_{PS}x_{t-PS}$$

и с скользящим средним с Q сезоными компонентами:

$$+\theta_{S}u_{t-S} + \theta_{2S}u_{t-2S} + ... + \theta_{QS}u_{t-QS}.$$

Модель SARIMAX

К модели SARIMA(p,d,q)(P,D,Q) добавляюся экзогенные переменные, значение которых формируется вне модели. Экзогенные переменные являются в модели независимыми величинами, а их изменение называется автономным изменением.

$$x_t = \mu + \sum_{j=1}^{p} \phi_j x_{t-j} + u_t + \sum_{s=1}^{q} \theta_s u_{t-s} + \dots + \sum_{i=1}^{r} \beta_i x_i^{\text{exog}}$$

Модель SARIMAX

Из документации statsmodels.tsa.statespace.sarimax.SARIMAX Python:

The SARIMA model is specified $(p, d, q) \times (P, D, Q)_s$

$$\phi_p(L)\tilde{\phi}_P(L^s)\Delta^d\Delta^D_s y_t = A(t) + \theta_q(L)\tilde{\theta}_Q(L^s)\zeta_t$$

In terms of a univariate structural model, this can be represented as

$$egin{aligned} y_t &= u_t + \eta_t \ \phi_p(L) ilde{\phi}_P(L^s) \Delta^d \Delta^D_s u_t &= A(t) + heta_q(L) ilde{ heta}_Q(L^s) \zeta_t \end{aligned}$$

where η_t is only applicable in the case of measurement error (although it is also used in the case of a pure regression model, i.e. if p=q=0).

In terms of this model, regression with SARIMA errors can be represented easily as

$$egin{aligned} y_t &= eta_t x_t + u_t \ \phi_p(L) ilde{\phi}_P(L^s) \Delta^d \Delta^D_s u_t &= A(t) + heta_q(L) ilde{ heta}_Q(L^s) \zeta_t \end{aligned}$$

this model is the one used when exogenous regressors are provided.

Информационные критерии

Информационные критерии — это разные виды регуляризованного правдоподобия.

Критерий Акаике (Akaike's information criterion, AIC) — критерий выбора из класса параметризованных регрессионных моделей, оценивающий модели с разным числом параметров. Содержит функцию штрафа, линейно зависящую от числа параметров:

$$AIC = 2\frac{p+q}{T} + \ln\left(\frac{\sum_{t=1}^{T} (x_t - \hat{x}_t)^2}{n}\right)$$

Прогнозирование с помощью ARIMA

- 1. Строится график ряда, идентифицируются необычные значения.
- 2. При необходимости делается стабилизирующее дисперсию преобразование.
- 3. Если ряд нестационарен, подбирается порядок дифференцирования.
- 4. Анализируются ACF/PACF, чтобы понять, можно ли использовать модели AR(p)/MA(q).
- 5. Обучаются модели-кандидаты, сравнивается их AIC.
- 6. Остатки полученной модели исследуются на несмещённость, стационарность и неавтокоррелированность; если предположения не выполняются, исследуются модификации модели.
- 7. В финальной модели t заменяется на $T+\tau$, будущие наблюдения на их прогнозы, будущие ошибки на нули, прошлые ошибки на остатки.

Резюме

- временные ряды представляются как случайные процессы,
- стационарный временной ряд по Теореме Вольда представим с помощью ARMA модели,
- модель ARMA линейная комбинация предыстории и шумов,
- модель SARIMAX это объединение авторегрессии с некоторыми эвристиками (сезонность, тренд) для обеспечения стационарности временного ряда.