Metode Hibrida EfficientNet-B0 dan Prototypical Network

untuk Klasifikasi Multikelas Diabetic Retinopathy

Abi Eka Putra Wulyono

NIM: 22081010190

Program Studi Informatika, UPN "Veteran" Jawa Timur

Latar Belakang: Ancaman Diabetic Retinopathy (DR)

Definisi DR

Diabetic Retinopathy adalah komplikasi diabetes yang merusak pembuluh darah retina, stadium awal hingga parah.

Dampak Global

DR merupakan penyebab utama kebutaan yang dapat dicegah pada populasi usia kerja di seluruh dunia.

Deteksi Dini sangat krusial untuk penanganan.

Keterbatasan Deteksi Manual

Proses diagnosis tradisional membutuhkan tenaga ahli (oftalmologis) dan bersifat subyektif serta tidak efisien untuk skrining massal.

Inovasi Deep Learning: Efisiensi dan Few-Shot Learning

Peran Deep Learning

Jaringan saraf tiruan (CNN) menunjukkan performa superior dalam ekstraksi fitur kompleks dari citra fundus, mendukung klasifikasi otomatis.

Tantangan Data

Dataset medis seringkali tidak seimbang (imbalance) dan memiliki jumlah sampel yang terbatas (limited data).

Keunggulan EfficientNet

EfficientNet (terutama B0) menawarkan keseimbangan terbaik antara akurasi dan efisiensi komputasi, ideal sebagai ekstraktor fitur.

Solusi ProtoNet

Penerapan Prototypical Network (ProtoNet) sebagai teknik **Few-Shot Learning** berpotensi mengatasi keterbatasan sampel per kelas.

Rumusan Masalah dan Tujuan Penelitian

Rumusan Masalah

ightarrow Implementasi Model Hibrida

Bagaimana penerapan model hibrida EfficientNet-B0 dan Prototypical Network dalam klasifikasi multikelas DR (stadium 0 hingga 4)?

ightarrow Analisis Pengaruh

Bagaimana pengaruh integrasi Prototypical Network terhadap peningkatan performa model baseline (EfficientNet-B0 saja) dalam klasifikasi DR?

Tujuan Penelitian

Menerapkan Model Hibrida

Berhasil mengimplementasikan arsitektur gabungan EfficientNet-B0 dan ProtoNet.

Menganalisis Performa

Menganalisis secara komprehensif performa model hibrida untuk klasifikasi multikelas Diabetic Retinopathy.

Batasan Masalah Penelitian

Penelitian ini difokuskan untuk menjaga ruang lingkup agar hasil yang diperoleh akurat dan relevan dengan tujuan yang telah ditetapkan.

Dataset

Menggunakan dataset citra fundus mata APTOS 2019 (Asia Pacific Tele-Ophthalmology Society).

Fokus Klasifikasi

Klasifikasi multikelas Diabetic Retinopathy pada 5 tingkat keparahan (stadium 0 hingga 4).

Arsitektur Backbone

Hanya menggunakan arsitektur Convolutional Neural Network (CNN) EfficientNet-BO.

Metode Classifier

Menggunakan **Prototypical Network** untuk tahap klasifikasi few-shot learning.

Metrik Evaluasi

Evaluasi terbatas pada metrik: Accuracy, F1-Score, Recall, Precision, dan Quadratic Weighted Kappa (QWK).

Signifikansi dan Manfaat Penelitian

Bagi Peneliti

Implementasi praktis konsep deep learning dan few-shot learning dalam skenario data medis dunia nyata.

Bagi Bidang Kesehatan

Menghasilkan alat bantu diagnosis DR yang **cepat dan akurat** untuk skrining awal, mengurangi beban kerja klinisi.

Pendorong Inovasi

Mendorong penelitian lebih lanjut dalam pengembangan sistem klasifikasi medis berbasis AI untuk penyakit retina lainnya.

Bagi Akademisi

Menyediakan referensi yang komprehensif mengenai integrasi model CNN efisien (EfficientNet) dengan metode Few-Shot Learning (ProtoNet).

Penelitian ini berkontribusi pada efisiensi diagnosis dan kemajuan ilmu komputasi medis.

Tinjauan Pustaka: Landasan EfficientNet

EfficientNet dan Klasifikasi DR

- Studi-studi sebelumnya mengonfirmasi superioritas arsitektur EfficientNet dalam tugas klasifikasi citra medis, termasuk citra fundus.
- EfficientNet berfokus pada Compound Scaling: menyeimbangkan resolusi, kedalaman, dan lebar jaringan secara optimal.
- Temuan utama menunjukkan akurasi tinggi dengan kebutuhan daya komputasi yang relatif rendah, menjadikannya ideal untuk implementasi praktis.
- Celah Penelitian: Belum ada literatur utama yang secara langsung mengintegrasikan ekstraktor fitur EfficientNet dengan classifier Prototypical Network.

Tinjauan Pustaka: Kekuatan Prototypical Network (ProtoNet)

Few-Shot Learning

Learn effectively from very few examples

Distance-Based Classification

Classify via prototype distances for robustness

Handling Data Scarcity

Perform well when labeled data are limited

Mengatasi Keterbatasan Data

ProtoNet adalah fondasi dari fewshot learning, yang memungkinkan model belajar dengan efektif meskipun hanya memiliki sedikit sampel per kelas.

Klasifikasi Berbasis Jarak

Klasifikasi dilakukan dengan memetakan data ke ruang embedding dan menghitung jarak (Euclidean distance) terhadap "prototype" kelas.

Relevansi Domain Medis

ProtoNet telah terbukti efektif dalam studi kasus medis lain, seperti klasifikasi lesi kulit dan patologi, di mana sampel kelas langka sering terjadi.

Metodologi Penelitian: Alur Kerja Hibrida

Proses penelitian ini mengikuti alur sistematis dari pengumpulan data hingga evaluasi performa model.

Dataset APTOS 2019

Pengumpulan dan pembagian citra Diabetic Retinopathy.

Preprocessing Citra

Normalisasi, resizing, dan augmentasi untuk meningkatkan kualitas dan generalisasi data.

Ekstraksi Fitur

Menggunakan EfficientNet-B0 untuk menghasilkan representasi fitur (embedding) citra.

Klasifikasi ProtoNet

Pembelajaran episode few-shot dan klasifikasi berbasis jarak prototype.

5

Evaluasi Model

Pengujian performa menggunakan QWK, F1, Accuracy, dll.

Arsitektur Model Hibrida: CNN + ProtoNet

Komponen Kunci Arsitektur

- **EfficientNet-B0:** Berfungsi sebagai fungsi embedding f yang memetakan citra masukan menjadi vektor fitur dimensionalitas rendah.
- Vektor Embedding: Representasi fitur yang telah diekstrak oleh EfficientNet, digunakan sebagai masukan untuk ProtoNet.
- **Prototypical Network:** Menghitung prototype setiap kelas dan menentukan prediksi dengan mengukur jarak Euclidean antara vektor embedding kueri dan prototype-prototype tersebut.

Integrasi ini memanfaatkan ekstraksi fitur yang efisien (EfficientNet) dan kemampuan klasifikasi few-shot (ProtoNet) secara sinergis.