

Course > Section... > 4.2 Ass... > Questi...

Questions 5 and 6: Insurance rates, part 3

Question 5, which has 4 parts, continues the pandemic scenario from Questions 3 and 4.

Suppose that there is a massive demand for life insurance due to the pandemic, and the company wants to find a premium cost for which the probability of losing money is under 5%, assuming the death rate stays stable at p=0.015.

Question 5a

1.0/1.0 point (graded)

Calculate the premium required for a 5% chance of losing money given n=1000 loans, probability of death p=0.015, and loss per claim l=-150000. Save this premium as $\overline{\mathbf{x}}$ for use in further questions.

3268.063 **✓** Answer: 3268

Explanation

The premium can be calculated using the following code:

```
p <- .015
n <- 1000
l <- -150000
z <- qnorm(.05)
x <- -l*( n*p - z*sqrt(n*p*(1-p)))/ ( n*(1-p) + z*sqrt(n*p*(1-p)))
x</pre>
```

Submit

You have used 2 of 10 attempts

• Answers are displayed within the problem

Question 5b

1.0/1.0 point (graded)

What is the expected profit per policy at this rate?

969.0422

✓ Answer: 969

969.0422

Explanation

The expected profit can be calculated using the following code:

1*p + x*(1-p)

Submit

You have used 2 of 10 attempts

1 Answers are displayed within the problem

Question 5c

1.0/1.0 point (graded)

What is the expected profit over 1,000 policies?

969042.2

✓ Answer: 969042

969042.2

Explanation

The expected profit can be calculated using the following code:

 $mu \leftarrow n*(1*p + x*(1-p))$

mu

Submit

You have used 1 of 10 attempts

1 Answers are displayed within the problem

Question 5d

1.0/1.0 point (graded)

Run a Monte Carlo simulation with <code>B=10000</code> to determine the probability of losing money on 1,000 policies given the new premium <code>x</code>, loss on a claim of \$150,000, and probability of claim p=.015. Set the seed to 28 before running your simulation.

(IMPORTANT! If you use R 3.6 or later, you will need to use the command
 set.seed(x, sample.kind = "Rounding") instead of set.seed(x). Your R version will be
 printed at the top of the Console window when you start RStudio.)

What is the probability of losing money here?

Explanation

The probability can be calculated using the following code:

Submit

You have used 2 of 10 attempts

• Answers are displayed within the problem

The company cannot predict whether the pandemic death rate will stay stable. Set the seed to 29, then write a Monte Carlo simulation that for each of B=10000 iterations:

- randomly changes p by adding a value between -0.01 and 0.01 with sample(seq(-0.01, 0.01, length = 100), 1)
- ullet uses the new random p to generate a sample of n=1,000 policies with premium ${f x}$ and loss per claim l=-150000
- ullet returns the profit over n policies (sum of random variable)

(IMPORTANT! If you use R 3.6 or later, you will need to use the command set.seed(x), sample.kind = "Rounding") instead of set.seed(x). Your R version will be printed at the top of the Console window when you start RStudio.)

The outcome should be a vector of \boldsymbol{B} total profits. Use the results of the Monte Carlo simulation to answer the following three questions.

(Hint: Use the process from lecture for modeling a situation for loans that changes the probability of default for all borrowers simultaneously.)

Question 6a

0.0/1.0 point (graded)

What is the expected value over 1,000 policies?

989687

X Answer: 968306

989687

Explanation

This code will run the Monte Carlo simulation:

This code gives the expected value for the profit:

mean(profit)

Submit

You have used 10 of 10 attempts

1 Answers are displayed within the problem

Question 6b

0.0/1.0 point (graded)

What is the probability of losing money?

0.0484 **X** Answer: 0.191

Explanation

This probability can be calculated using this code:

mean(profit < 0)

Submit You have used 10 of 10 attempts

1 Answers are displayed within the problem

Question 6c

0.0/1.0 point (graded)

What is the probability of losing more than \$1 million?

Explanation

This probability can be calculated using this code:

1 Answers are displayed within the problem

© All Rights Reserved