1 Euclidean Domains, Principal Ideal Domains, and Unique Factorization Domains

All rings in this chapter are commutative

1.1 Euclidean Domains

Definition. Any function $N: R \to \mathbb{Z}^+ \cup \{0\}$ with N(0) = 0 is called a *norm* on the integral domain R. If N(a) > 0 for $a \neq 0$ define N to be a *positive norm*.

Definition. The integral domain R is said to be a *Euclidean Domain* (or possess a *Division Algorithm*) if there is a norm N on R such that for any two elements a and b of R with $b \neq 0$ there exist elements q and r in R with

$$a = qb + r$$
 with $r = 0$ or $N(r) < N(b)$.

The element q is called the *quotient* and the element r the *remainder* of the division.

Proposition 1. Every ideal in a Euclidean Domain is principal. More precisely, if I is any nonzero ideal in the Euclidean Domain R then I = (d), where d is any nonzero element of I of minimal norm.

Definition. Let R be a commutative ring and let $a, b \in R$ with $b \neq 0$.

- 1. a is said to be a multiple of b if there exists an element $x \in R$ with a = bx. In this case b is said to divide a or be a divisor of a, written b|a.
- 2. A greatest common divisor of a and b is a nonzero element d such that
 - (a) d|a and d|b, and
 - (b) if d'|a and d'|b then d'|d.

A greatest common divisor of a and b will be denoted by g.c.d(a, b), or (abusing the notation) simply (a, b)

Note.

- 1. b|a in R if and only if $a \in (b)$ if and only if $(a) \subseteq (b)$.
- 2. The above definition of greatest common divisor can be restated in terms of ideals as such. If I is the ideal of R generated by a and b, then d is a greatest common divisor of a and b if
 - (a) I is contained in the principal ideal (d), and
 - (b) if (d') is any principal ideal containing I then $(d) \subseteq (d')$.

Proposition 2. If a and b are nonzero elements in the commutative ring R such that the ideal generated by a and b is a principal ideal (d), then d is a greatest common divisor of a and b.

Proposition 3. Let R be an integral domain. If two elements d and d' of R generate the same principal ideal, i.e., (d) = (d'), then d' = ud for some unit u in R. In particular, if d and d' are both greatest common divisors of a and b, then d' = ud for some unit u.

Theorem 4. Let R be a Euclidean Domain and let a and b be nonzero elements of R. Let $d = r_n$ be the last nonzero remainder in the Euclidean Algorithm for a and b. Then

- 1. d is a greatest common divisor of a and b, and
- 2. the principal ideal (d) is the ideal generated by a and b. In particular, d can be written as an R-linear combination of a and b, i.e., there are elements x and y in R such that

$$d = ax + by$$
.

1.2 Principal Ideal Domains (P.I.D.s)

Definition. A *Principal Ideal Domain* (P.I.D) is an integral domain in which every ideal is principal.

Note. By Proposition 1 every Euclidean Domain is a Principal Ideal Domain. So every result about P.I.D.s automatically holds for Euclidean Domains.

Proposition 6. Let R be a Principal Ideal Domain and let a and b be nonzero elements of R. Let d be a generator for the principal ideal generated by a and b. Then

- 1. d is a greatest common divisor of a and b
- 2. d can be written as an R-linear combination of a and b
- 3. d is unique up to multiplication by a unit of R.

Proposition 7. Every nonzero prime ideal in a Principal Ideal Domain is a maximal ideal.

Corollary 8. If R is any commutative ring such that the ring R[x] is a Principal Ideal Domain (or Euclidean Domain), then R is necessarily a field.

Definition. Define N to be a *Dedekind-Hasse norm* if N is a positive norm and for every nonzero $a, b \in R$ either a is an element of the ideal (b) or there is a nonzero element of the ideal (a, b) of norm strictly smaller then the norm of b (i.e., either b divides a in R or there exist $s, t \in R$ with 0 < N(sa - tb) < N(b)).

Proposition 9. The integral domain R is a P.I.D if and only if R has a Dedekind-Hasse norm.