Devoir surveillé n° 6 – Version 2 –

Durée : 3 heures, calculatrices et documents interdits

I. Valeur de $\zeta(2)$.

On cherche dans ce problème à calculer la limite suivante 1 :

$$\zeta(2) = \lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k^2} \right)$$
, notée $\sum_{k=1}^{+\infty} \frac{1}{k^2}$.

Pour tout entier naturel n non nul, on définit le polynôme

$$P_n = \frac{1}{2i} [(X+i)^n - (X-i)^n].$$

On identifiera un polynôme à sa fonction polynomiale associée et l'on rappelle la définition de la fonction *cotangente* :

$$\cot x : \mathbb{R} \setminus \pi \mathbb{Z} \to \mathbb{R} .$$

$$x \mapsto \frac{\cos(x)}{\sin(x)} .$$

- 1) a) Déterminer P_1 , P_2 et P_3 .
 - **b)** Montrer que, pour tout entier $n \in \mathbb{N}^*$, $P_n \in \mathbb{R}[X]$.
 - c) Déterminer, pour tout entier $n \in \mathbb{N}^*$, le degré de P_n et montrer que le coefficient dominant de P_n vaut n.
 - d) Déterminer, pour tout entier $n \in \mathbb{N}^*$, la parité de P_n .
- 2) Soit $n \in \mathbb{N}^*$.
 - a) Montrer, sans les calculer explicitement, que toutes les racines de P_n sont réelles.
 - b) Déterminer les racines de P_n , que l'on écrira sous la forme cotan $\left(\frac{k\pi}{n}\right)$, pour des valeurs de k à déterminer.
 - c) Écrire la factorisation de P_n en produit de polynômes irréductibles dans $\mathbb{R}[X]$.
- 3) On considère les suites $u = (u_n)_{n \in \mathbb{N}^*}$ et $v = (v_n)_{n \in \mathbb{N}^*}$ définies, pour tout entier naturel n non nul, par :

$$u_n = \sum_{k=1}^n \frac{1}{k^2}$$
 et $v_n = u_n + \frac{1}{n}$.

^{1.} le symbole ζ est la lettre grecque zêta (ζ, Z) , à ne pas confondre avec le xi (ξ, Ξ) .

- a) En s'aidant de la suite v, montrer que u converge. On notera $\zeta(2)$ sa limite.
- **b)** Majorer, pour tout entier $n \in \mathbb{N}^*$, $|\zeta(2) u_n|$.
- c) Écrire une fonction Python zeta2(eps) qui, à un flottant eps > 0 donné, renvoie une valeur approchée de $\zeta(2)$ à eps près.
- 4) a) Soit $S \in \mathbb{R}[X]$. Montrer que S est pair si et seulement si tous ses coefficients impairs sont nuls.
 - **b)** Montrer que, pour tout entier naturel n, il existe un polynôme $R_n \in \mathbb{R}[X]$ tel que $P_{2n+1} = R_n(X^2)$.
 - c) Soit $n \in \mathbb{N}$. Quel est le degré, noté d, de R_n ? Calculer les coefficients de X^d et de X^{d-1} dans R_n .
 - d) Soit $n \in \mathbb{N}$. Déterminer les racines de R_n et en déduire sa factorisation en produit de polynômes irréductibles dans $\mathbb{R}[X]$.
 - e) En déduire que, pour tout entier naturel n non nul,

$$\sum_{k=1}^{n} \cot^2 \left(\frac{k\pi}{2n+1} \right) = \frac{n(2n-1)}{3} .$$

- **5)** Soit $n \in \mathbb{N}^*$. On pose désormais, pour tout $k \in \mathbb{N}$, $\theta_k = \frac{k\pi}{2n+1}$.
 - a) Montrer que, pour tout θ vérifiant $0 < \theta < \frac{\pi}{2}$, on a :

$$0 < \sin(\theta) \le \theta \le \tan(\theta)$$
.

b) En déduire que, pour tout p dans $\{1, \ldots, n\}$,

$$\cot^2(\theta_p) \leqslant \frac{1}{\theta_p^2} \leqslant 1 + \cot^2(\theta_p).$$

c) En déduire un encadrement de u_n puis la valeur de $\zeta(2)$.

II. Conjugaison de Fenchel de fonctions strictement convexes.

Notations

Dans ce problème, on notera \mathcal{N} l'ensemble des fonctions f de \mathbb{R}_+ dans lui-même telles que f(0) = 0 et qui admettent une dérivée positive, continue et strictement croissante sur \mathbb{R}_+ . On notera \mathcal{N}_0 le sous-ensemble de \mathcal{N} formé des fonctions f telles que

$$f'(0) = 0$$
 et $f'(x) \xrightarrow[x \to +\infty]{} +\infty$

Partie 1 : conjugaison de Fenchel

Dans toute cette partie f désigne un élément de \mathcal{N} .

- 1) Quels sont les différents comportements possibles de f'(x) lorsque x tend vers $+\infty$?
- 2) On se propose d'établir dans cette question l'équivalence entre les deux propositions :

$$f'(x) \xrightarrow[x \to +\infty]{} +\infty \text{ et } \frac{f(x)}{x} \xrightarrow[x \to +\infty]{} +\infty.$$

a) Montrer que pour tout x, réel positif, on a l'inégalité :

$$f(x) \leqslant xf'(x)$$

et vérifier que cette inégalité est stricte si x > 0.

- **b)** En déduire que la fonction définie sur \mathbb{R}_+^* par $x \mapsto \frac{f(x)}{x}$ est strictement croissante.
- c) Justifier, pour tout x réel positif l'inégalité :

$$xf'(x) \leqslant f(2x)$$
.

Indication: on pourra évaluer la différence f(2x) - f(x).

- d) Conclure quant à l'équivalence énoncée ci-dessus.
- 3) Un exemple. Soit F l'unique primitive de Arctan sur \mathbb{R}_+ nulle en 0. Prouver que F appartient à \mathcal{N} et expliciter F(x) pour x réel positif.

 Donner une représentation graphique de F en précisant la tangente au point d'abscisse o

Dans toute la suite du problème, on supposera que f est un élément de \mathcal{N}_0 .

4) a) Montrer que, pour tout t réel positif, la fonction

$$w_t: \mathbb{R}_+ \to \mathbb{R}$$

 $x \mapsto tx - f(x)$

admet un maximum et qu'elle l'atteint en un unique réel positif x_t .

On notera

et

$$f^*: \mathbb{R}_+ \to \mathbb{R}$$
 . $t \mapsto w_t(x_t)$

La fonction f^* sera appelée fonction conjuguée de f.

4) b) Démontrer que φ est continue et strictement croissante sur \mathbb{R}_+ , que $\varphi(0) = 0$ et que $\varphi(t)$ tend vers $+\infty$ lorsque t tend vers $+\infty$.

5) a) Dans cette question, t est un réel strictement positif et h est un réel vérifiant : $|h| \leq t$.

Justifier l'existence d'un réel $\alpha_{t,h}$ compris entre t et t+h tel que :

$$f(\varphi(t+h)) - f(\varphi(t)) = \alpha_{t,h}(\varphi(t+h) - \varphi(t))$$

En déduire que l'on peut écrire :

$$f^*(t+h) - f^*(t) = h\varphi(t) + \beta_{t,h} \left(\varphi(t+h) - \varphi(t) \right)$$

où $\beta_{t,h}$ est un réel vérifiant : $|\beta_{t,h}| \leq |h|$.

- **b)** En déduire que f^* est dérivable en tout point de \mathbb{R}_+^* et que sa dérivée sur \mathbb{R}_+^* est la fonction φ .
- c) Montrer que f^* est dérivable en 0 et donner $(f^*)'(0)$.
- d) Vérifier que les fonctions dérivées f' et $(f^*)'$ sont réciproques l'une de l'autre. En déduire que f^* appartient à \mathcal{N}_0 et que l'on a :

$$f^{**} = f$$

où l'on note f^{**} la fonction conjuguée de f^* .

6) Des exemples:

Dans les trois cas suivants, justifier l'appartenance de f à \mathcal{N}_0 et exprimer $f^*(t)$ en fonction de t pour t réel positif.

a) Premier cas : Soit $K \in \mathbb{R}_+^*$. On pose : $f: \mathbb{R}_+ \to \mathbb{R}$ $x \mapsto Kx^2$

On montrera de plus qu'il existe un unique K tel que $f^* = f$.

b) Deuxième cas : Soit m>1. On pose : $f: \mathbb{R}_+ \to \mathbb{R}$ $x\mapsto x^m$

On mettra $f^*(t)$ sous la forme $\lambda_m \left(\frac{t}{m}\right)^{\beta}$.

c) Troisième cas : $f: \mathbb{R}_+ \to \mathbb{R}$ $x \mapsto e^x - 1 - x$

Partie 2 : Recherche des fonctions f vérifiant l'égalité $f=f^*$

7) Vérifier pour tout couple (x,t) de réels positifs, l'inégalité :

$$xt \le f(x) + f^*(t)$$

Montrer que cette inégalité est une égalité si et seulement si $x = \varphi(t)$.

8) Montrer que, si g est un élément de \mathcal{N}_0 , on a :

$$f\leqslant g\Longrightarrow g^*\leqslant f^*$$

où g^* est la fonction conjuguée de g.

9) En déduire que la seule fonction f de \mathcal{N}_0 vérifiant l'égalité $f = f^*$ est la fonction

$$f: \mathbb{R}_+ \to \mathbb{R} .$$

$$x \mapsto \frac{x^2}{2}.$$