Chapitre 4 : Matrices et systèmes linéaires

Dans tout le chapitre, "le corps des scalaires" K est \mathbb{R} ou \mathbb{C} et n, p, q, r sont des entiers ≥ 1

1 Matrices

1.1 Ensemble $M_{np}(K)$

Définition 1.1. Une matrice $n \times p$ (ou : à n lignes et p colonnes) à coefficients dans K est un tableau

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1p} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{np} \end{pmatrix} \text{ de taille}$$

de taille $n \times p$ dont les <u>coefficients</u> (ou : <u>éléments</u>) a_{11}, \dots, a_{np} appartiennent à K On note $M_{np}(K)$ l'ensemble de ces matrices.

Définition 1.2. Soit $A \in M_{np}(K)$

On définit :

* Pour tout $i \in [1, n]$, sa <u>i-ème ligne</u>:

$$L_i(A) = \begin{pmatrix} [A]_{i1} & [A]_{i2} & \cdots & [A]_{ip} \end{pmatrix} \in M_{ip}(K)$$

* Pour tout $j \in [1, n]$, sa j-ème colonne :

$$C_j(A) = \begin{pmatrix} [A]_{1j} \\ [A]_{2j} \\ \vdots \\ [A]_{nj} \end{pmatrix}$$

1.2 Somme et produit

Définition 1.3. Soit $A, B \in M_{np}(K)$

On définit la somme coefficient par coefficient, càd :

$$A + B = \left([A]_{ij} + [B]_{ij} \right)_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

La somme hérite des propriétés de la somme dans *K*

Proposition 1.4.

- * L'addition est associative : $\forall A, B, C \in M_{np}(K), A + (B + C) = (A + B) + C$
- * L'addition est commutative : $\forall A, B \in M_{np}(K), A + B = B + A$

Définition 1.5. Soit $A \in M_{np}(K)$ et $B \in M_{pq}(K)$

Le produit $AB \in M_{np}(K)$ est défini par :

$$\forall i \in [1, n], \forall j \in [1, q], [AB]_{ij} = \sum_{k=1}^{p} [A]_{ik} [B]_{kj}$$

1

Proposition 1.6. Soit $A, A' \in M_{np}(K), B, B' \in M_{pq}(K), C \in M_{qr}(K)$ et $\lambda \in K$ On a :

- * (A + A')B = AB + A'B
- $* (\lambda A) = \lambda AB$
- *A(B+B')=AB+AB'
- $* A(\lambda B) = \lambda(AB)$
- *A(BC) = (AB)C

Le produit matriciel est bilinéaire est associative.

Remarque capitale:

- * Le produit n'est pas commutatif.
- * Il y a des diviseurs de 0 : on peut obtenir 0 en multipliant deux matrices non nulles.

Transposée 1.3

Définition 1.7. Soit $A \in M_{np}(K)$

On définit sa transposée $A^T \in M_{pn}(K)$ par :

$$\forall i \in [1, p], \forall j \in [1, n], [A^T]_{ij} = [A]_{ji}$$

Proposition 1.8. Soit $A \in M_{np}(K)$ et $B \in M_{pq}(K)$

Alors
$$(AB)^T = B^T A^T$$

1.4 Matrices élémentaires

Définition 1.9. On appelle matrice élémentaire et on note $E_{ij}^{(n,p)}$ ou E_{ij} si le contexte est claire la matrice $n \times p$ dont l'unique coefficient non nul est en position (i, j) et vaut 1

Alors
$$E_{ij}^{(n,p)} E_{kl}^{(p,q)} = \begin{cases} E_{il}^{(n,p)} & \text{si } j = k \\ 0_{n \times q} & \text{si } j \neq k \end{cases} = \mathbb{1}_{(j=k)} E_{il}^{(n,q)} = \delta_{jk} E_{il}^{(n,q)}$$

 $\begin{aligned} & \textbf{Proposition 1.10. Soit } (i,j) \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket \text{ et } (k,l) \in \llbracket 1,p \rrbracket \times \llbracket 1,q \rrbracket \\ & \text{Alors } E_{ij}^{(n,p)} E_{kl}^{(p,q)} = \begin{cases} E_{il}^{(n,p)} \text{ si } j=k \\ 0_{n\times q} \text{ si } j \neq k \end{cases} = \mathbb{1}_{(j=k)} E_{il}^{(n,q)} = \delta_{jk} E_{il}^{(n,q)} \\ & \text{où } \delta_{jk} = \mathbb{1}_{(j=k)} = \begin{cases} 1 \text{ si } j=k \\ 0 \text{ sinon} \end{cases} \text{ s'appelle "le symbole delta de Kronecker".} \end{aligned}$

Matrices carrée 2

2.1 Généralités

Définition 2.1. Une matrice carrée d'ordre n est une matrice de taille $n \times n$ On note $M_n(K) = M_{nn}(K)$ l'ensemble de ces matrices.

Définition 2.2. On dit que $A, B \in M_n(K)$ commutent si AB = BA

Définition 2.3.

* On appelle matrice identité (d'ordre n) la matrice

$$I_n = \begin{pmatrix} 1 & & (0) \\ & \ddots & \\ (0) & & 1 \end{pmatrix} = \left(\delta_{ij}\right)_{1 \leq i,j \leq n}$$

* On appelle matrice scalaire toute matrice de la forme λI_n , où $\lambda \in K$

Proposition 2.4. Soit $A \in M_{np}(K)$

On a :
$$AI_p = I_n A = A$$
 et $A(\lambda I_p) = (\lambda I_n) A = \lambda A$

En particulier, les matrices scalaires commutent à toutes les matrices carrées.

2.2 Matrices inversibles

Définition 2.5. Soit $A \in M_n(K)$

- * On dit que A est inversible s'il existe $B \in M_n(K)$ tel que $AB = BA = I_n$
- * Une telle matrice B, si elle existe, est unique : on l'appelle l'inverse de A et on la note A^{-1}
- * L'ensemble des matrices $n \times n$ inversibles est appelé groupe (général) linéaire d'ordre n et est noté $GL_n(K)$

Proposition 2.6.

* Soit $A, B \in GL_n(K)$

Alors
$$AB \in GL_n(K)$$
 et $(AB)^{-1} = B^{-1}A^{-1}$ (stabilité par produit)

* Soit $A \in GL_n(K)$

Alors
$$A^{-1} \in GL_n(K)$$
 et $(A^{-1})^{-1} = A$

Proposition 2.7 (Simplifiabilité / régularité des matrices inversibles). Soit $A \in GL_n(K)$

- * On a $\forall B, C \in M_{np}(K), AB = AC \implies B = C$
- * On a $\forall B, C \in M_{pn}(K), BA = CA \implies B = C$

Remarque : En général, si A n'est pas inversible, l'égalité AB = AC n'entraine pas B = C

2.3 Puissances

Définition 2.8. Soit $A \in M_n(K)$

- * Pour tout $k \in \mathbb{N}$, on définit $A^k = AA...A$ (k facteurs) En particulier, $A^0 = I_n$ et $A^1 = A$
- * Si A est inversible, on étend la définition aux exposants négatifs : $\forall k \in \mathbb{Z}$, $A^k = \begin{cases} A...A \text{ si } k \geq 0 \\ A^{-1}...A^{-1} \text{ si } k \leq 0 \end{cases}$

Proposition 2.9. Soit $A \in M_n(K)$

On a
$$\forall k, l \in \mathbb{N} : \begin{cases} A^{k+l} = A^k A^l \\ A^{kl} = (A^k)^l \end{cases}$$

L'énoncé se généralise aux exposants négatifs si A est inversible.

Remarque : En revanche, $(AB)^k$ n'est en général pas égal à A^kB^k

Par contre, cela devient vrai si A et B commutent.

Théorème 2.10. Soit $A, B \in M_n(K)$ tels que AB = BA

Alors

$$\forall n \in \mathbb{N}, (A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}$$
 et $\forall n \in \mathbb{N}, A^n - B^n = (A-B) \sum_{k=0}^{n-1} A^k B^{n-1-k}$

Proposition 2.11. Soit $A \in M_n(K)$

Alors
$$\forall n \in \mathbb{N}, (A^n)^T = (A^T)^n$$

Cette formule s'étend aux exposants négatifs si $A \in GL_n(K)$

2.4 Trace

Définition 2.12. Soit $A \in M_n(K)$

On définit sa trace :

$$\operatorname{tr}(A) = \sum_{k=1}^{n} [A]_{kk}$$

Proposition 2.13.

* Linéarité de la trace :

$$\forall A, B \in M_n(K), \operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$$

 $\forall \lambda \in K, \forall A \in M_n(K), \operatorname{tr}(\lambda A) = \lambda \operatorname{tr}(A)$

* Cyclicité de la trace :

$$\forall A, B \in M_n(K), \operatorname{tr}(AB) = \operatorname{tr}(BA)$$

Parties remarquables de $M_n(K)$

Définition 2.14. Soit $A \in M_n(K)$

- * On dit que A est diagonale si $\forall i, j \in [1, n], i \neq j \implies [A]_{ij} = 0$ Dans ce cas, on note $A = diag([A]_{11} [A]_{22} ... [A]_{nn})$
- * On dit que A est triangulaire supérieure si $\forall i, j \in [1, n], i > j \implies [A]_{ij} = 0$
- * On dit que A est <u>triangulaire inférieure</u> si $\forall i, j \in [1, n], i < j \implies [A]_{ij} = 0$ On note $T_n^+(K)$ (resp. $T_n^-(K)$) l'ensemble de ces matrices.

Théorème 2.15. Ces trois ensembles sont stables par somme et par produit.

On a
$$\forall A, B \in D_n(K)$$
:
$$\begin{cases} A + B \in D_n(K) \\ AB \in D_n(K) \end{cases}$$
 et $\underline{\text{idem pour } T_n^{\pm}(K)}$ En outre, les coefficients diagonaux du produit quand $A, B \in D_n(K)$ (ou $T_n^+(K)$ ou $T_n^-(K)$) sont les produits

des coefficients diagonaux de A et B

Proposition 2.16. Soit
$$A = diag(\lambda_1, ..., \lambda_n) \in D_n(K)$$

Alors A est inversible si et seulement si tous ses coefficients diagonaux sont non nuls, càd ssi $\forall i \in [1, n], \lambda_i \neq 0$ Si c'est la cas, $A^{-1} = \operatorname{diag}(\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n})$

Définition 2.17. Soit $A \in M_n(K)$

- * On dit que A est symétrique si $A = A^T$ On note $S_n(K)$ l'ensemble des matrices symétriques.
- * On dit que A est antisymétrique si $A^T = -A$ On note $A_n(K)$ l'ensemble des matrices antisymétriques.

Proposition 2.18. $S_n(K)$ et $A_n(K)$ sont stables par somme.

3 Matrices et systèmes linéaires

Définition et formulations équivalentes

Définition 3.1. Un système d'équations linéaires à n équations et p inconnues est un système de la forme

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p = b_n \end{cases}$$

La matrice $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ est la <u>matrice</u> du système.

Le vecteur
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^p$$
 est l'inconnu et $B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \in K^n$ est le second membre du système. Avec ces notations, le système se réécrit $AX = B$

Avec ces notations, le système se réécrit AX =

Définition 3.2.

- * Un système linéaire est homogène si son second membre est nul.
- * Le système linéaire homogène associé à AX = B est le système AX = 0

Définition 3.3. Soit $A \in M_{nv}(K)$

Le <u>noyau</u> de A est l'ensemble des solutions du système linéaire homogène de matrice A, càd ker $A = \{X \in K^p \mid AX = 0_{K^n}\}$

Définition 3.4. Un système linéaire est dit compatible s'il possède des solutions.

3.2 Principe de superposition

Proposition 3.5. Soit $A \in M_{np}(K)$

- * Si X_1 et $X_2 \in K^p$ sont solutions de AX = 0 alors $X_1 + X_2$ l'est aussi.
- * Si $X_1 \in K^p$ est solution de AX = 0 et $\lambda \in K$, alors λX est aussi solution.

Corollaire 3.6. ker *A* est stable par combinaison linéaire :

Pour tous $X_1, ..., X_r \in \ker A$ et tous $\lambda_1, ..., \lambda_r \in K$ on a $\lambda_1 X_1 + ... + \lambda_r X_r \in \ker A$

Proposition 3.7. Soit $A \in M_{np}(K)$ et $B \in K^n$

Supposons le système AX = B compatible, de telle sorte qu'il admette une solution (particulière) X_0 Alors l'ensemble des solutions de AX = B est $\{X_0 + X_n \mid X_n \in \ker A\}$

Corollaire 3.8. Un système linéaire possède zéro, une ou infinité de solutions.

3.3 Opérations élémentaires

Lemme 3.9 (Lemme fondamental). Soit $A \in M_{np}(K)$ et $B \in K^n$. Soit $U \in GL_n(K)$ Alors, $\forall X \in K^p$, $AX = B \iff UAX = UB$ On dit que les systèmes AX = B et UAX = UB sont équivalentes.

3.3.1 Première opération : l'échange

Définition 3.10. Soit $i, j \in [1, n]$ différents.

On définit la matrice d'échange

$$P_{i,j} = \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 0 & & 1 & & \\ & & & \ddots & & & \\ & & 1 & & 0 & & \\ & & & & \ddots & & \\ & & & & & 1 \end{pmatrix} = I_n - E_{ii} - E_{jj} + E_{ij} + E_{ji}$$

 I_n , après l'échange des lignes i et j

Proposition 3.11. Soit $i, j \in [1, n]$ différents.

- * On a $P_{i,j} \in GL_n(K)$
- * Multiplier à gauche $A \in M_{np}(K)$ par P_{ij} a pour effet d'échanger $L_i(A)$ et $L_j(A)$ On dit qu'on effectue $[L_i \leftrightarrow L_j]$ sur A

3.3.2 Deuxième opération : la dilatation

Définition 3.12. Soit $i \in [1, n]$ et $\lambda \in K^*$

On définit la matrice de dilatation

Proposition 3.13.

- $* D_i(\lambda) \in GL_n(K)$
- * Multiplier A à gauche par $D_i(\lambda)$ a pour effet de remplacer $L_i(A)$ par $\lambda L_i(A)$ On note cette opération $[L_i \leftarrow \lambda L_i]$

3.3.3 Troisième opération : la transvection

Définition 3.14. Soit $i, j \in [[1, n]]$ différents et $\lambda \in K$

On définit la matrice de transvection

Proposition 3.15.

- * $T_{ii}(\lambda) \in GL_n(K)$
- * Multiplier A à gauche par $T_{ij}(\lambda)$ a pour effet de remplacer $L_i(A)$ par $L_i(A) + \lambda L_j(a)$ On dit qu'on effectue l'opération $\left[L_i \leftarrow L_i + \lambda L_j\right]$

4 Pivot de Gauss

Définition 4.1. Soit $A \in M_{np}(K)$

- * On appelle pivot d'une ligne de A le premier coefficient non nul de la ligne, s'il existe.
- * On dit qu'une matrice est échelonnée si :
 - Si une ligne de *A* est nulle, les suivantes le sont aussi.
 - Le pivot d'une ligne non nulle est strictement plus à gauche que le pivot des suivantes.
- * Une matrice échelonnée est dite réduite si :
 - Tous ses pivots valent 1
 - Chaque pivot est le seul coefficient non nul de sa colonne.

Théorème 4.2. Soit $A \in M_{np}(K)$

Il existe une suite d'opérations élémentaires transformant A en une matrice échelonnée réduite.

Remarque : La matrice échelonnée réduite du théorème est en faite unique.

Expliquons l'algorithme (du pivot de Gauss) qui transforme effectivement A en une matrice échelonnée réduite.

On parcourt la matrice *A* colonne par colonne :

- * S'il n'y a aucun coefficient non nul sur une ligne non encore utilisée, on passe à la colonne suivante.
- * S'il y a un coefficient non nul sur une ligne non encore utilisée :
 - On en choisit un.
 - On le ramène (par un échange, s'il y a besoin) tout en haut des lignes non encore utilisés.
 - On le ramène (par une dilatation) à 1.
 - Par des transvections, on rend nuls tous les autres coefficients de la colonne.
 - On décrète utilisée la ligne.

Définition 4.3. Dans un système linéaire dont la matrice est échelonnée réduite :

- * Les équations 0 = ... correspondant aux lignes nulles de la matrice s'appellent les équations de compatibilité
- * Les inconnus correspondant aux colonnes comportant un pivot sont dites principales et les autres secondaires

Pour résoudre un tel système :

- * Si toutes les équations de compatibilité sont 0 = 0, le système est compatible et on obtient l'ensemble des solutions par paramétrage, en utilisant les inconnues secondaires comme paramètre.
- * Si au moins une des équations de compatibilité est 0 = a le système est incompatible : l'ensemble des solutions est vide.

5 Conséquences sur l'inversibilité

5.1 Critère "nucléaire" d'inversibilité

Théorème 5.1. Soit $A \in M_n(K)$

Alors *A* est inversible si et seulement si ker $A = \{0\}$

Lemme 5.2. Soit $S \in M_n(K)$ une matrice échelonnée réduite et telle que $\ker S = \{0\}$ Alors $S = I_n$

5.2 Inversibilité à gauche et à droite

Théorème 5.3. Soit $A \in M_n(K)$

LASSÉ:

- (i) *A* est inversible.
- (ii) A est inversible à gauche : $\exists B \in M_n(K) : BA = I_n$
- (iii) *A* est inversible à droite : $\exists B \in M_n(K) : AB = I_n$

En outre, si $B \in M_n(K)$ vérifie $AB = I_n$ ou $BA = I_n$, alors B est l'inverse de A.

5.3 Systèmes de Cramer et première méthode de calcul de l'inverse

Théorème 5.4. Soit $A \in M_n(K)$

LASSÉ:

- (i) $A \in GL_n(K)$
- (ii) Quelque soit $B \in K^n$, le système AX = B a une unique solution

En outre, si $A \in GL_n(K)$, l'unique solution de AX = B est $X = A^{-1}B$

5.4 Génération de $GL_n(K)$

Théorème 5.5. Soit $A \in GL_n(K)$

Alors il existe une liste de matrices d'opérations élémentaires $\Omega_1, ..., \Omega_m$ telles que $A = \Omega_m ... \Omega_1$ On dit que les matrices d'opérations élémentaires engendrent $GL_n(K)$

Lemme 5.6. Soit $S \in M_n(K)$ une matrice échelonnée réduite inversible. Alors $S = I_n$

5.5 Calcul de l'inverse par les opérations élémentaires

Exemple: On échelonne:

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix} \quad [L_2 \leftarrow L_2 - L_1]$$

$$\rightarrow \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad [L_2 \leftarrow -\frac{1}{2}L_2]$$

$$\rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad [L_1 \leftarrow L_1 - L_2]$$

Matriciellement : $I_2 = T_{12}(-1)D_2(-\frac{1}{2})T_{21}(-1)I_2$ On en déduit que A est inversible, d'inverse $A^{-1} = T_{12}(-1)D_2(-\frac{1}{2})T_{21}(-1)$

En pratique, on présente le calcul avec des "bimatrices"

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -2 & -1 & 1 \end{pmatrix} \quad [L_2 \leftarrow L_2 - L_1]$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \qquad [L_2 \leftarrow -\frac{1}{2}L_2]$$

$$\rightarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \qquad [L_1 \leftarrow L_1 - L_2]$$

Donc *A* est inversible, d'inverse

$$A^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

6 Réduction des matrices 2×2

6.1 Déterminant

Définition 6.1. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(K)$

On définit son déterminant

$$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Théorème 6.2.

 $\ast\,$ Le déterminant est multiplicatif :

$$\forall A, B \in M_2(K), \det(AB) = \det(A) \det(B)$$

* Pour tout
$$A \in M_2(K)$$
, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on a:

$$A \in GL_n(K)$$
 si et seulement si $\det(A) \neq 0$

— Si
$$det(A) \neq 0$$
, $A^{-1} = \frac{1}{det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

6.2 Valeurs propres, vecteurs propres

Définition 6.3. Soit $A \in M_2(K)$. Soit $X = \begin{pmatrix} x \\ y \end{pmatrix} \in K^2$ et $\lambda \in K$

On dit que X est un <u>vecteur propre</u> pour A <u>associé à la valeur propre</u> λ si $X \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ et $AX = \lambda X$

On définit le spectre de A comme l'ensemble $S_{p_K}(A)$ des valeurs propres de A

Définition 6.4. Soit $A \in M_2(K)$

On définit <u>le polynôme caractéristique de A</u> :

$$\mathcal{X}_A = X^2 - \operatorname{tr}(A)X + \det(A)$$

Proposition 6.5. Soit $A \in M_2(K)$ et $\lambda \in K$

Alors λ est une valeur propre de A ssi λ est racine de \mathcal{X}_A

Proposition 6.6 (Non-colinéarité des vecteurs propres). Soit $A \in M_2(K)$ et $X_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ et $X_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ deux vecteurs propres de A associés à des valeurs propres $\lambda_1 \neq \lambda_2$. Alors $\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \neq 0$

6.3 Similitude

Définition 6.7. Soit $A, B \in M_2(K)$

On dit que A et B sont <u>semblables</u> et on note $A \sim B$ si $\exists P \in GL_2(K) : B = P^{-1}AP$

Proposition 6.8. \sim est une relation d'équivalence. Elle est :

Réflexive : $\forall A \in M_2(K)$, $A \sim A$

Symétrique : $\forall A, B \in M_2(K), A \sim B \implies B \sim A$

Transitive: $\forall A, B, C \in M_2(K)$, $(A \sim B \text{ et } B \sim C) \implies A \sim C$

Proposition 6.9. Deux matrices de $M_2(K)$ semblables ont la même trace, même déterminant, même polynôme caractéristique et même spectre.

9

Définition 6.10. Une matrice de $M_2(K)$ est dite :

- * diagonalisable : si elle est semblable à une matrice diagonale.
- * trigonalisable : si elle est semblable à une matrice triangulaire.

6.4 Théorème de classification

Théorème 6.11. Soit $A \in M_2(K)$

* Si A possède deux valeurs propres $\lambda_0 \neq \lambda_1 \in K$, alors $A \sim \operatorname{diag}(\lambda_0, \lambda_1)$ (On dit que A est diagonalisable à spectre simple)

* Si A possède une valeur propre double $\lambda \in K$, alors :

— Ou bien $A = \lambda I_2$ — Ou bien $A \sim \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ ("bloc de Jordan")

* Si $K = \mathbb{R}$ et que A possède deux valeurs propres conjuguées $a \pm ib$ (où $a \in \mathbb{R}$ et $b \in \mathbb{R}^*$), alors $A \sim \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$

Lemme 6.12 ("de descente" pour la similitude). Soit $A, B \in M_2(\mathbb{R})$

Si $A \sim B$, alors $A \sim B$

7 Suites récurrentes linéaires

7.1 Suites arithmético-géométriques

Définition 7.1. Une <u>suite arithmético-géométrique</u> est une suite $(u_n)_{n\in\mathbb{N}}$ à valeurs dans K telle qu'il existe $\alpha,\beta\in K$ tels que $\forall n\in\mathbb{N}$

$$u_{n+1} = \alpha u_n + \beta$$

Proposition 7.2. Soit $(u_n)_{n\in\mathbb{N}}\in K^{\mathbb{N}}$ telle que $\forall n\in\mathbb{N}$, $u_{n+1}=\alpha u_n+\beta$, où $\alpha,\beta\in K$ et $\alpha\neq 1$

Alors $\forall n \in \mathbb{N}$

$$u_n = \alpha^n \left(u_0 - \frac{\beta}{1 - \alpha} \right) + \frac{\beta}{1 - \alpha}$$

7.2 Suites récurrentes linéaires homogènes d'ordre 2

Dans cette section, on fixe $\alpha, \beta \in K$ et on considère les suites récurrentes $(u_n)_{n \in \mathbb{N}} \in K^{\mathbb{N}}$ vérifiant la relation de récurrence $\forall n \in \mathbb{N}$

$$u_{n+2} + \alpha u_{n+1} + \beta u_n = 0$$
 (RR)

Cela se réécrit matriciellement

$$\forall n \in \mathbb{N}, \begin{pmatrix} u_{n+1} \\ u_{n+2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\beta & -\alpha \end{pmatrix} \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$$

Notons
$$A = \begin{pmatrix} 0 & 1 \\ -\beta & -\alpha \end{pmatrix}$$

Son polynôme caractéristique $\mathcal{X}_A = X^2 + \alpha X + \beta$ est appelé polynôme caractéristique de (RR)

On va réduire *A*, càd trouver :

- * Une matrice "simple" $S \in M_2(K)$
- * Une matrice $P \in GL_2(K)$

telles que $A = PSP^{-1}$

On aura alors, pour tout $n \in \mathbb{N}$

$$\begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix} = A^n \begin{pmatrix} u_0 \\ u_1 \end{pmatrix}$$

En notant

$$S^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}, P = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \text{ et } P^{-1} \begin{pmatrix} u_0 \\ u_1 \end{pmatrix} = \begin{pmatrix} v \\ w \end{pmatrix}$$

On obtient

$$\begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix} = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix}$$

donc

$$u_n = rva_n + rwb_n + svc_n + swd_n$$

Autrement dit, $(u_n)_{n\in\mathbb{N}}$ est une combinaison linéaire de quatre suites $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$, $(d_n)_{n\in\mathbb{N}}$

Théorème 7.3. Soit $(u_n)_{n\in\mathbb{N}}\in K^{\mathbb{N}}$ vérifiant (RR)

Notons $\mathcal{X} = X^2 + \alpha X + \beta$

- * si \mathcal{X} a deux racines simples $\lambda_0, \lambda_1 \in K$, alors il existent $a, b \in K$ tels que $(u_n)_{n \in \mathbb{N}} = (a\lambda_0^n + b\lambda_1^n)_{n \in \mathbb{N}}$
- * Si \mathcal{X} a une racine double $\lambda \in K^*$, alors il existent $a,b \in K$ tels que $(u_n)_{n \in \mathbb{N}} = (a\lambda^n + bn\lambda^n)_{n \in \mathbb{N}}$
- * Si $K = \mathbb{R}$ et que \mathcal{X} a deux racines complexes conjuguées $re^{i\theta}$ et $re^{-i\theta}$ (ou $r \in \mathbb{R}_+^*$ et $\theta \in]0, \pi[$) alors il existent $a, b \in \mathbb{R}$ tels que $(u_n)_{n \in \mathbb{N}} = (ar^n \cos(n\theta) + br^n \sin(n\theta))_{n \in \mathbb{N}}$