Modulformen I

Sommersemester 2018 Vorlesung von Prof. Dr. Winfried Kohnen

> Vorlesungsmitschrieb von Patrick Arras Jonas Müller

Heidelberg, den 13. Mai 2018

Vorwort

Dies ist ein nicht offizielles Skript der Vorlesung Modulformen 1 aus dem Sommersemester 2018 gehalten von Professor Winfried Kohnen an der Universität Heidelberg. Das Skript wurde in der Vorlesung mitgetext und mit pdflatex kompiliert. Deshalb kann es Fehler enthalten und wir übernehmen keine Garantie für die Richtigkeit.

Bei Fehlern, kann ich unter folgender Mailadresse erreicht werden:

```
jj@mathphys.stura.uni-heidelberg.de
```

Die aktuellste Version des Skriptes befindet sich immer unter

https://github.com/jenuk/modulformen/blob/master/script.pdf

Die LATEX-Source Dateien findet man hier, auf Fehler kann hier alternativ über neues Issue aufmerksam gemacht werden:

https://github.com/jenuk/modulformen/tree/master

Inhaltsverzeichnis

ln	halts	verzeichnis	iv
1	Gru	ndlegende Tatsachen	1
	1.1	Ergebnisse aus Funktionentheorie 2 (Errinnerung)	1
		1.1.1 Fundamentalbereich	
		1.1.2 Modulform	2
		1.1.3 Beispiele für Modulformen	4
		1.1.4 Valenzformel und Anwendungen	5
	1.2	Die Modulinvariante j	9
2	Hec	keoperatoren	13
	2.1	Vorbemerkung, Motivation	13
	2.2	Die Heckeoperatoren $T(n)$	15
ln	dex		21
Li	ste d	er Sätze	23

1 Grundlegende Tatsachen

1.1 Ergebnisse aus Funktionentheorie 2 (Errinnerung)

1.1.1 Fundamentalbereich

Wie üblich sei

$$\mathbb{H} = \{ z \in \mathbb{C} \mid \operatorname{Im} z > 0 \}$$

die obere Halbebene und

$$SL_2(\mathbb{Z}) = \{ M \in M_2(\mathbb{R}) \mid \det M = 1 \} .$$

Dann operiert $SL_2(\mathbb{Z})$ auf \mathbb{H} durch

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ z = \frac{az+b}{cz+d},$$

das heißt $E \circ z = z$ und $(M_1 M_2) \circ z = M_1 \circ (M_2 \circ z)$. Hierbei beachte man, dass

$$\operatorname{Im}\left(\frac{az+b}{cz+d}\right) = \frac{\operatorname{Im}z}{\left|cz+d\right|^{2}}.$$

 $\Gamma(1) = \operatorname{SL}_2(\mathbb{Z}) \subseteq \operatorname{SL}_2(\mathbb{R})$ ist eine diskrete Untergruppe, spezielle Matrizen in $\Gamma(1)$ sind

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 und $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

die Translation $T \circ z = z + 1$ und Stürzung $S \circ z = -\frac{1}{z}$.

Man interessiert sich für die Operation von diskreten Untergruppen $\Gamma \subseteq SL_2(\mathbb{Z})$ insbesondere $\Gamma = \Gamma(1)$.

Definition 1.1.1. Eine Teilmenge $\mathcal{F} \subseteq \mathbb{H}$ heißt Fundamentalbereich für die Operationen von $\Gamma \subseteq SL_2(\mathbb{R})$ auf \mathbb{H} , falls:

- (i) \mathcal{F} ist offen,
- (ii) zu jedem $z \in \mathbb{H}$ existiert ein $M \in \Gamma$ mit $M \circ z \in \overline{\mathcal{F}}$,

Abbildung 1.1: Der Fundamentalbereich \mathcal{F}_1 der vollen Modulgruppe.

(iii) Sind $z_1, z_2 \in \mathcal{F}$ und $z_2 = M \circ z_1$ mit $M \in \Gamma$, dann gilt $M = \pm E$ und somit $z_1 = z_2$.

Beispiel 1.1.2. Die Menge $\mathcal{F}_1 := \{z = x + iy \mid |x| < \frac{1}{2}, |z| > 1\}$ ist ein Fundamentalbereich für die Operation von $\Gamma(1)$ auf \mathbb{H} , dieser wird auch MODULFIGUR genannt. Siehe Abbildung 1.1.

Bemerkung 1.1.3. Identifikationen in $\overline{\mathcal{F}_1}$ finden nur auf dem Rand statt. (Die Geraden $x = \pm \frac{1}{2}$ werden miteinander identifiziert unter T bzw T^{-1} , Punkte auf den Kreisbögen rechts oder links von i werden unter S identifiziert.

Satz 1.1.4. Die Gruppe $\Gamma(1)$ wird erzeugt von S und T.

1.1.2 Modulform

Definition 1.1.5. Eine Abbildung $f: \mathbb{H} \to \overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ heißt Modulfunktion vom Gewicht $k \in \mathbb{Z}$ für $\Gamma(1)$, falls gilt:

- (i) f ist auf \mathbb{H} meromorph,
- (ii) $f(\frac{az+b}{cz+d}) = (cz+d)^k f(z)$ für alle $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$,
- (iii) f ist meromorph in ∞ .

Bedeutung von (iii): Wendet man (ii) an mit M=T, so erhält man f(z+1)=f(z). Sei $\mathcal{R}=\{q\in\mathbb{C}\mid 0<|q|<1\}$. Die Abbildung $z\mapsto q=e^{2\pi iz}$ bildet \mathbb{H} auf \mathcal{R} ab und F(q):=f(z) ist wohldefiniert und holomorph bis auf mögliche Polstellen, die sich prinzipiell gegen q=0 häufen könnten. Bedingung (iii) fordert nun, dass q=0 eine unwesentliche isolierte Singularität¹ von F ist. Nach Funktionentheorie 1 hat dann F eine Laurententwicklung

$$F(q) = \sum_{n \ge n_0} a_n q^n \qquad \text{für } 0 < |q| < |q_0|$$

wobei $n_0 \in \mathbb{Z}$ fest. Damit erhalten wir also

$$f(z) = \sum_{n \geqslant n_0} a_n e^{2\pi i n z} \qquad \text{für } 0 < y_0 < y$$

Definition 1.1.6. Ein solches f heißt Modulform falls f auf \mathbb{H} und in ∞ holomorph ist (letzteres bedeutet, dass F in q=0 hebbar ist, also $f(z)=\sum_{n\geqslant 0}a_ne^{2\pi inz}$ für alle $z\in\mathbb{H}$). Eine Modulform heißt Spitzenform, falls $a_0=0$.

Bemerkung 1.1.7. Die Fourierkoeffizienten a_n sind im Allgemeinen wichtige und interessante Größen (z. B. Darstellungsanzahlen von natürlichen ahlen durch quadratische Formen, etwa $r_4(n) = \#\{(x, y, z, w) \in \mathbb{Z}^4 \mid n = x^2 + y^2 + z^2 + w^2\}$ oder die Anzahl von Punkten auf elliptischen Kurven über \mathbb{F}_p).

Definition 1.1.8. Sei : $\mathbb{H} \to \mathbb{C}$, $k \in \mathbb{Z}$, $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{R})$. Man setzt

$$(f|_k M)(z) := (cz+d)^{-k} f\left(\frac{az+b}{cz+d}\right)$$

für $z \in \mathbb{H}$, dies ist der Peterssonscher Strichoperator.

Dann gilt $f|_k E = f$ und $f|_k(M_1M_2) = (f|_kM_1)|_kM_2$ für alle $M_1, M_2 \in SL_2(\mathbb{R})$. Es folgt:

(i) Es gilt $(f|_k M)(z) = (cz+d)^{-k} f(\frac{az+b}{cz+d}) = f(z)$ für alle $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$ genau dann, wenn dies für S und T gilt, d. h. $f(-\frac{1}{z}) = z^k f(z)$ und f(z+1) = f(z), da S und T SL₂(\mathbb{Z}) erzeugen.

¹Das heißt es handelt sich um eine hebbare Singularität oder eine Polstelle.

1.1. Ergebnisse aus Funktionentheorie 2 (Errinnerung)

(ii) Eine Funktion $f \colon \mathbb{H} \to \mathbb{C}$ ist genau dann eine Modulform vom Gewicht k, wenn f eine Fourierentwicklung

$$f(z) = \sum_{n \ge 0} a_n e^{2\pi i n z} \qquad \text{für } z \in \mathbb{H}$$

hat und zusätzlich gilt

$$f\left(-\frac{1}{z}\right) = z^k f(z)$$

1.1.3 Beispiele für Modulformen

Thetareihen

Definition 1.1.9. Sei $A \in M_m(\mathbb{R})$ symmetrisch und positiv definit. Dann heißt

$$\vartheta_A(z) = \sum_{g \in \mathbb{Z}^m} e^{\pi i A[g]z}$$
 für $z \in \mathbb{H}$

eine Thetareihe, wobei $A[g] := g^t A g$ für $g \in \mathbb{Z}^m \cong M_{m,1}(\mathbb{Z})$.

Satz 1.1.10.

- (i) $\vartheta_A(z)$ ist gleichmäßig absolut konvergent auf $y \ge y_0 > 0$. Insbesondere ist $\vartheta_A(z)$ auf \mathbb{H} holomorph.
- (ii) Es gilt die Theta-Transformationsformel: $\vartheta_{A^{-1}} = \sqrt{\det A} \cdot (\frac{z}{i})^{\frac{m}{2}} \vartheta_A(z)$.

Satz 1.1.11. Sei $A \in M_m(\mathbb{Z})$ symmetrisch, positiv definit, gerade² und det A = 1. Dann gilt 8|m und $\vartheta_A(z)$ ist eine Modulform vom Gewicht $\frac{m}{2}$ für $\Gamma(1)$.

Beachte $\vartheta_A(z) = 1 + \sum_{n \geqslant 1} r_A(n) q^n$ wobei $r_A(n)$ die Anzahl der Darstellungen von n durch die ganzzahlige, positive definite quadratische Form $x \mapsto \frac{1}{2} x^t A x$ auf \mathbb{R}^m ist.

Eisensteinreihen

Definition 1.1.12. Sei $k \in \mathbb{Z}$, k gerade und $k \geqslant 4$. Dann heißt

$$G_k(z) = \sum_{m,n}' \frac{1}{(mz+n)^k}$$
 für $z \in \mathbb{H}$

²Das heißt für alle $\mu \in \{1, ..., m\}$ gilt $a_{\mu\mu}$ ist gerade

EISENSTEINREIHE vom Gewicht $k.^3$

Satz 1.1.13.

- (i) $G_k(z)$ ist gleichmäßig absolut konvergent auf $D_{\varepsilon} = \{ z = x + iy \mid y \geqslant \varepsilon, \ x^2 \leqslant \frac{1}{\varepsilon} \}$, insbesondere also holomorph auf \mathbb{H} .
- (ii) G_k ist Modulform vom Gewicht k für $\Gamma(1)$.
- (iii) Es gilt

$$G_k(z) = 2\zeta(k) + \frac{2(2\pi i)^k}{(k-1)!} \sum_{n\geq 1} \sigma_{k-1}(n) q^n$$

wobei $\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k}$ und $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$.

Setze $E_k := \frac{1}{2\zeta(k)}G_k$ die Normalisierte Eisensteinreihe. Benutze nun

$$\zeta(k) = \frac{(-1)^{\frac{k}{2} - 1} 2^{k - 1} B_k}{k!} \pi^k$$

für k gerade und $k \ge 2$. Damit folgt

$$E_k = 1 - \frac{2k}{B_k} \sum_{n \ge 1} \sigma_{k-1}(n) q^n$$

wobei alle \mathcal{B}_k rationale Zahlen sind. Speziell gilt

$$B_4 = -\frac{1}{30} \qquad \Longrightarrow \qquad E_4 = 1 + 240 \sum_{n \geqslant 1} \sigma_3(n) q^n \,,$$

$$B_6 = \frac{1}{42} \qquad \Longrightarrow \qquad E_6 = 1 - 504 \sum_{n \geqslant 1} \sigma_5(n) q^n.$$

1.1.4 Valenzformel und Anwendungen

Satz 1.1.14 (VALENZFORMEL). Sei f eine Modulfunktion vom Gewicht $k \in \mathbb{Z}$, $f \not\equiv 0$. Dann gilt

$$\operatorname{ord}_{\infty} f + \frac{1}{2} \operatorname{ord}_{i} f + \frac{1}{3} \operatorname{ord}_{\rho} f + \sum_{\substack{z \in \Gamma(1) \setminus \mathbb{H} \\ z \neq i, \rho}} \operatorname{ord}_{z} f = \frac{k}{12}.$$

$${}^{3}\sum_{m,n}' := \sum_{\substack{(m,n) \in \mathbb{Z}^{2} \\ (m,n) \neq (0,0)}}$$

Abbildung 1.2: Die Kurve $\mathcal C$ wobei A und E so gewählt sind, dass $\mathcal C$ alle Null- und Polstellen enthält.

Hierbei ist $\rho = e^{\frac{2\pi i}{3}}$ und

$$\operatorname{ord}_{\infty} f := \operatorname{ord}_{q=0} F(q)$$

mit F(q) = f(z) für $q = e^{2\pi i z}$.

Beweis. Zum Nachweis reduziert man auf den Fall, dass f außer in $z=\rho, -\overline{\rho}, i$ keine Null- oder Polstellen auf $\partial \overline{F_1}$ hat und berechnet

$$\frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f'(z)}{f(z)} \, \mathrm{d}z.$$

Wobei die Kurve \mathcal{C} wie in Abbildung 1.2 gewählt ist.

g. e. s.

Definition 1.1.15. Sei

$$\Delta(z) = \frac{1}{1728} \left(E_4^3(z) - E_6^2(z) \right)$$

die Diskriminantenfunktion. Dann ist Δ eine Spitzenform vom Gewicht k=12 mit $\Delta(z) \neq 0 \,\forall z \in \mathbb{H}$ und $\operatorname{ord}_{\infty} \Delta = 1$, d. h. $\Delta = q + \dots$

Bemerkung 1.1.16. Δ ist in gewisser Weise die "erste" von 0 verschiedene Spitzenform und wurde von vielen Mathematikern studiert.

Beispiel 1.1.17.

- (i) Schreibe $\Delta(z) = \sum_{n\geqslant 1} \tau(n)q^n$, dann heißt $n\mapsto \tau(n)$ RAMANUJAN-FUNKTION. Es gilt: $\tau(n)\in\mathbb{Z}$ für alle $n\geqslant 1$. Ferner lässt sich zeigen, dass $\tau(n)\equiv\sigma_{11}(n)\mod 691$, mithilfe von $B_{12}=-\frac{691}{2730}$.
- (ii) Vermutung: $\tau(n) \neq 0$ für alle $n \geqslant 1$ (Lehner)

Sei M_k der C-Vektorraum der Modulformen vom Gewicht $k \in \mathbb{Z}$ und $S_k \subseteq M_k$ der Unterraum der Spitzenformen.

Bemerkung 1.1.18. $M_k = \{0\}$ für k ungerade, da $f((-E) \circ z) = f(z) = (-1)^k f(z)$.

Satz 1.1.19. Sei $k \in \mathbb{Z}$ gerade. Dann gilt:

- (i) $M_k = \{0\}$ für k < 0 und $M_2 = \{0\}$.
- (ii) $M_0 = \mathbb{C}$.
- (iii) $M_k = \mathbb{C}E_k \oplus S_k$, falls $k \geqslant 4$.
- (iv) Die Abbildung $f \mapsto f \cdot \Delta$ gibt einen Isomorphismus von M_{k-12} auf S_k .
- (v) dim $M_k < \infty$.

Satz 1.1.20. Sei $k \ge 0$ gerade. Dann gilt:

$$\dim M_k = \begin{cases} \left\lfloor \frac{k}{12} \right\rfloor & \text{falls } k \equiv 2 \mod 12 \\ 1 + \left\lfloor \frac{k}{12} \right\rfloor & \text{falls } k \not\equiv 2 \mod 12 \end{cases}$$

Beispiel 1.1.21.

- (i) $M_4 = \mathbb{C}E_4$.
- (ii) $M_6 = \mathbb{C}E_6$.
- (iii) $M_8 = \mathbb{C}E_8 = \mathbb{C}E_4^2$.
- (iv) $M_{10} = \mathbb{C}E_{10} = \mathbb{C}E_4E_6$.
- (v) $M_{12} = \mathbb{C}E_{12} \oplus \mathbb{C}\Delta$.

1.1. Ergebnisse aus Funktionentheorie 2 (Errinnerung)

(vi)
$$M_{14} = \mathbb{C}E_{14}$$
.

Satz 1.1.22. Sei $k \ge 0$ gerade. Dann bilden $E_4^{\alpha} E_6^{\beta}$ mit $4\alpha + 6\beta = k$ eine Basis von M_k , insbesondere gilt also

$$M_k = \bigoplus_{\substack{\alpha,\beta \geqslant 0\\ 4\alpha + 6\beta = k}} \mathbb{C} E_4^{\alpha} E_6^{\beta}$$

.

Beweis. Wir zeigen zunächst induktiv, dass die Monome M_k erzeugen. Für $k \le 10$ ist dies nach Beispiel 1.1.21 klar. Sei also $k \ge 12$. Man bestimme eine beliebige Kombination $\alpha, \beta \ge 0$ mit $4\alpha + 6\beta = k$ und setze $g := E_4^{\alpha} E_6^{\beta} \in M_k$ mit konstantem Term gleich 1.

Sei nun $f \in M_k$ beliebig mit konstantem Term a_0 . Dann ist $f - a_0 \cdot g \in S_k$. Nach Satz 1.1.19, iv) gilt daher $f - a_0 \cdot g = \Delta \cdot h$ mit $h \in M_{k-12}$. Nach Induktionsvoraussetzung ist h eine Linearkombination von Monomen $E_4^{\gamma} E_6^{\delta}$ mit $4\gamma + 6\delta = k - 12$. Aber $\Delta = \frac{1}{1728} (E_4^3 - E_6^2)$ und daher ist $f - a_0 \cdot g$ Linearkombination von Monomen $E_4^{\gamma + 3} E_6^{\delta}$ und $E_4^{\gamma} E_6^{\delta + 2}$. Wegen

$$4(\gamma + 3) + 6\delta = k - 12 + 12 = k$$

$$4\gamma + 6(\delta + 2) = k - 12 + 12 = k$$

ist also auch f als Linearkombination von Monomen der behaupteten Form schreibbar. Somit erzeugen die Monome tatsächlich M_k .

Noch zu zeigen ist, dass die Monome über $\mathbb C$ linear unabhängig sind. Beweis durch Widerspruch: Angenommen, es existiere eine nicht-triviale lineare Relation

$$\sum_{\substack{\alpha,\beta\geqslant 0\\ 4\alpha+6\beta=k}} \lambda_{\alpha,\beta} E_4^{\alpha} E_6^{\beta} = 0.$$

Fall 1: Sei $k \equiv 0 \mod 4$. Dann sind alle β gerade, also schreibe jeweils $\beta = 2\beta'$ mit $\beta' \geqslant 0$. Es folgt $\alpha = \frac{k}{4} - 3\beta'$ und somit

$$E_4^{\alpha} E_6^{\beta} = E_4^{\frac{k}{4} - 3\beta'} E_6^{2\beta'} = E_4^{\frac{k}{4}} \left(\frac{E_6^2}{E_4^3}\right)^{\beta'}.$$

Da $E_4^{\frac{k}{4}}$ nicht die Nullfunktion ist, ergibt sich eine nicht-triviale Polynom-Relation für $\frac{E_6^2}{E_4^3}$, d. h. die meromorphe Funktion $\frac{E_6^2}{E_4^3}$ ist Nullstelle eines nicht-trivialen Polynoms über C. Da C algebraisch abgeschlossen ist (jedes nicht-konstante Polynom über C zerfällt vollständig über C in Linearfaktoren), ist $\frac{E_6^2}{E_4^3}$ somit konstant.

Wir zeigen $\frac{E_6^2}{E_4^3} \equiv 0$ mit einem Trick: Es gilt $E_6(-\frac{1}{z}) = z^6 E_6(z)$, denn $E_6 \in M_6$. Auswerten in $z = i = -\frac{1}{i}$ liefert $E_6(i) = 0$. Ferner gilt

$$E_4(z) = 1 + 240 \sum_{n \ge 1} \sigma_3(n) e^{2\pi i n z} \implies E_4(i) = 1 + 240 \sum_{n \ge 1} \sigma_3(n) e^{-2\pi n}.$$

Da alle Summanden positiv sind, folgt $E_4(i) \neq 0$ und somit $\frac{E_6^2(i)}{E_4^3(i)} = 0$. Dies impliziert jedoch da $\frac{E_6^2}{E_4^3}$ konstant ist bereits $E_6 \equiv 0$. 4

Fall 2: Sei $k \equiv 2 \mod 4$, dann sind alle β ungerade. Analoges Vorgehen zum ersten Fall liefert ebenfalls einen Widerspruch.

Somit sind die Monome über $\mathbb C$ linear unabhängig.

g. e. s.

Bemerkung 1.1.23. Der Satz impliziert additive Faltungsformeln für die multiplikativen Funktionen $\sigma_{k-1}(n)$ (weiterhin $k \in \mathbb{Z}, k \ge 4$ gerade). "Multiplikativ" bedeutet hier

$$ggT(m, n) = 1 \Longrightarrow \sigma_{k-1}(m \cdot n) = \sigma_{k-1}(m) \cdot \sigma_{k-1}(n)$$
.

Beispiel 1.1.24.
$$E_8 = E_4^2$$
, ferner $E_4 = 1 + 240 \sum_{n \ge 1} \sigma_3(n) q^n$, also $\sigma_7(n) = \sigma_3(n) + 120 \sum_{m=1}^{n-1} \sigma_3(n-m) \sigma_3(m)$.

Allgemeiner kann man E_k ausdrücken als Linearkombination von Monomen der Form $E_4^{\alpha} E_6^{\beta}$ und erhält hieraus Formeln für $\sigma_{k-1}(n)$.

1.2 Die Modulinvariante j

Definition 1.2.1. Sei $j := \frac{E_4^3}{\Delta}$.

Satz 1.2.2.

- (i) j ist holomorph auf H und hat einen einfachen Pol in ∞ .
- (ii) j ist eine Modulfunktion vom Gewicht 0.
- (iii) j liefert eine Bijektion $\Gamma(1)\setminus \mathbb{H} \cong \mathbb{C}$.

Beweis.

(i) Da $\Delta(z) \neq 0$ für alle $z \in \mathbb{H}$, ist j(z) holomorph auf \mathbb{H} . Ferner gilt

$$\operatorname{ord}_{\infty} j = \operatorname{ord}_{\infty} E_4^3 - \operatorname{ord}_{\infty} \Delta = 0 - 1 = -1.$$

1.2. Die Modulinvariante j

- (ii) Da E_4^3 , $\Delta \in M_{12}$ folgt die Aussage.
- (iii) Sei $\lambda \in \mathbb{C}$. Dann ist zu zeigen, dass die Modulfunktion $j_{\lambda} := j \lambda$ vom Gewicht Null eine modulo $\mathrm{SL}_2(\mathbb{Z})$ eindeutig bestimmte Nullstelle hat. Man wendet auf j_{λ} die Valenzformel an! Es gilt $\mathrm{ord}_z \, j_{\lambda} \geqslant 0$ für alle $z \in \mathbb{H}$ und $\mathrm{ord}_{\infty} \, j_{\lambda} = -1$. Da k = 0 folgt mit der Valenzformel

$$-1 + n + \frac{n'}{2} + \frac{n''}{3} = 0$$

mit $n, n', n'' \in \mathbb{N}_0$. Also

$$n + \frac{n'}{2} + \frac{n''}{3} = 1 \tag{1.1}$$

Man prüft nach: die einzigen Lösungen $(n, n', n'') \in \mathbb{N}_0^3$ von (1.1) sind (1, 0, 0), (0, 2, 0) und (0, 0, 3). Dies impliziert die Behauptung.

Satz 1.2.3. Sei $f \colon \mathbb{H} \to \overline{\mathbb{C}}$ eine meromorphe Funktion. Dann sind folgende Aussagen äquivalent:

- (i) f ist eine Modulfunktion vom Gewicht 0.
- (ii) f ist Quotient zweier Modulformen gleichen Gewichts.
- (iii) f ist eine rationale Funktion in j.

Beweis.

(iii) \Rightarrow (ii) Sei $f = \frac{P(j)}{Q(j)}$ wobei $P(X) = a_0 + a_1 X + \ldots + a_m X^m$ mit $a_{\nu} \in \mathbb{C}$, $a_m \neq 0$ und $Q(X) = b_0 + b_1 X + \ldots + b_n X^n$ mit $b_{\nu} \in \mathbb{C}$, $b_n \neq 0$ mit $Q \not\equiv 0$, insbesondere also auch $Q(j) \not\equiv 0$. Wegen $j = \frac{E_A^3}{\Delta}$ folgt

$$f = \frac{a_0 + a_1 \frac{E_4^3}{\Delta} + \dots + a_m \left(\frac{E_4^3}{\Delta}\right)^m}{b_0 + b_1 \frac{E_4^3}{\Delta} + \dots + b_n \left(\frac{E_4^3}{\Delta}\right)^n}$$
$$= \frac{(a_0 \Delta^m + a_1 E_4^3 \Delta^{m-1} + \dots + a_m (E_4^3)^m) \cdot \Delta^n}{(b_0 \Delta^n + b_1 E_4^3 \Delta^{n-1} + \dots + b_n (E_4^3)^n) \cdot \Delta^m}.$$

Hier sind Zähler und Nenner Modulformen vom Gewicht 12(m+n). Also folgt die Behauptung.

 $(ii) \Rightarrow (i) \text{ klar}$

(i) \Rightarrow (iii) Sei f eine Modulfunktion vom Gewicht Null und $f \not\equiv 0$. Seien $z_1, \dots z_r$ die modulo $\Gamma(1)$ verschiedenen Polstellen von f und $m_1, \dots m_r$ deren Ordnungen. Sei

$$P(z) := \prod_{\nu=1}^{r} (j(z) - j(z_{\nu}))^{m_{\nu}}.$$

Dann gilt

$$\operatorname{ord}_{z_{\nu}} P = \operatorname{ord}_{z_{\nu}} (j(z) - j(z_{\nu}))^{m_{\nu}} = m_{\nu} \operatorname{ord}_{z_{\nu}} (j(z) - j(z_{\nu})) \ge m_{\nu}.$$

Dann ist P(z)f(z) eine Modulfunktion vom Gewicht Null und holomorph auf H. Da P(z) ein Polynom in j ist, genügt es die Behauptung für P(z)f(z) zu zeigen. Insbesondere kann man voraussetzen, dass f holomorph auf H ist. Da ord $_{\infty} \Delta = 1$, gibt es $n \in \mathbb{N}_0$ so dass $g := \Delta^n f$ in unendlich holomorph ist. Dann ist $f = \frac{g}{\Delta^n}$ und g ist eine Modulform vom Gewicht 12n. Nach Satz 1.1.22 ist g eine Linearkombination von Monomen $E_4^{\alpha}E_6^{\beta}$ mit $4\alpha + 6\beta = 12n$. Es genügt somit die Behauptung für $\frac{E_4^{\alpha}E_6^{\beta}}{\Delta^n}$ zu zeigen. Insbesondere gilt $3|\alpha$ und $2|\beta$, schreibe $\alpha = 3p$ und $\beta = 2q$. Dann gilt

$$\frac{E_4^{\alpha} E_6^{\beta}}{\Delta^n} = \frac{(E_4^3)^p (E_6^2)^q}{\Delta^{p+q}} = j^p (j - 1728)^q ,$$
 denn $j - 1728 = j - \frac{E_4^3 - E_6^2}{\Delta} = \frac{E_4^3}{\Delta} - \frac{E_4^3 - E_6^2}{\Delta} = \frac{E_6^2}{\Delta} .$ g.e.s.

Bemerkung 1.2.4.

- (i) Der Quotient $\Gamma(1)^{\mathbb{H}}$ besitzt in natürlicher Weise die Struktur einer Riemannschen Fläche isomorph zu $S^2 \setminus \{\text{Punkt}\}$ indem man die Ränder in $\overline{\mathcal{F}_1}$ identifiziert. Fügt man den Punkt ∞ hinzu, so erhält an $\overline{\Gamma(1)^{\mathbb{H}}} := \Gamma(1)^{\mathbb{H}} \cup \{\infty\} \cong S^2$ (die Sphäre in \mathbb{R}^3). Satz 1.2.2 (iii) besagt dann, dass j ein Isomorphismus von $\overline{\Gamma(1)^{\mathbb{H}}} \cong S^2 \cong \mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup \infty$ ist. Satz 1.2.3 entspricht dann der Tatsache, dass die einzigen meromorphen Funktionen auf S^2 die rationalen Funktionen sind.
- (ii) Man kann zeigen (schwer!)

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24}.$$

Damit folgt

$$j = \frac{E_4^3}{\Delta} = \frac{1}{q} \left(1 + 240 \sum_{n \ge 1} \sigma_3(n) q^n \right)^3 \frac{1}{\prod_{n \ge 1} (1 - q^n)^{24}}$$
$$= \frac{1}{q} \left(1 + 240 \sum_{n \ge 1} \sigma_3(n) q^n \right)^3 \prod_{n \ge 1} \left(\sum_{m \ge 0} q^{mn} \right)^{24}$$

$$=\frac{1}{q}+744+\sum_{n\geqslant 1}c(n)q^n\qquad\text{mit }c(n)\in\mathbb{N}\,.$$

Also hat die j-Funktion eine Fourierentwicklung in q, wobei die Koeffizienten positive ganzen Zahlen sind.

(iii) Man zeigt leicht: $\frac{1}{\prod_{n\geqslant 1}(1-q^n)}=1+\sum_{n\geqslant 1}p(n)q^n$ wobei p(n) die Anzahl der Partionen von n ist, d. h. die Anzahl der Zerlegungen von n als Summe positiver, ganzer Zahlen (Beispielsweise p(4)=5, denn 4=3+1=2+2=2+1+1=1+1+1+1). Man sagt: die erzeugende Reihe von p(n) wird durch $\frac{1}{\prod_{m\geqslant 1}(1-q^n)}$ gegeben.

Beachte $1+\sum_{n\geqslant 1}p(n)q^n=\frac{e^{\pi i\frac{\pi}{12}}}{\eta(z)}$ wobei $\eta(z)=e^{\pi i\frac{\pi}{12}}\prod_{n\geqslant 1}(1-q^n)$ die sogenannte Dedekindische η -Funktion ist. Beachte $\eta^{24}=\Delta$. η sollte also eine Modulform vom Gewicht $\frac{1}{2}$ sein. Mit Hilfe der Theorie der Modulformen kann man zeigen $p(n)\sim\frac{1}{4\sqrt{3}n}\cdot e^{\pi\sqrt{\frac{3}{2}n}}$ für $n\to\infty$ (hier $a(n)\sim b(n)$ genau dann, wenn $\lim_{n\to\infty}\frac{a(n)}{b(n)}=1$).

2 Heckeoperatoren

2.1 Vorbemerkung, Motivation

Definition 2.1.1. Definiere die Gruppe

$$\operatorname{GL}_{2}^{+}(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2}(\mathbb{R}) \mid ad - bc > 0 \right\},$$

welche $SL_2(\mathbb{R})$ als Untergruppe enthält.

Definition 2.1.2.

(i) Seien $z \in \mathbb{H}$ und

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R}),$$

dann setze

$$M \circ z := \frac{az+b}{cz+d} \,.$$

(ii) Für $k \in \mathbb{Z}, M \in \mathrm{GL}_2^+(\mathbb{R})$ und $f \colon \mathbb{H} \to \mathbb{C}$ setze

$$(f|_k M)(z) := (ad - bc)^{\frac{k}{2}} (cz + d)^{-k} f(M \circ z)$$
.

Diese Definitionen verallgemeinern die früheren Definitionen für $SL_2(\mathbb{R})$ (siehe 1.1.1). Beachte, dass weiterhin für alle $\lambda \in \mathbb{R}_+$ gilt:

$$f|_k \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = f.$$

Lemma 2.1.3.

- (i) Die Abbildung $(M,z)\mapsto M\circ z$ definiert eine Operation von $\mathrm{GL}_2^+(\mathbb{R})$ auf $\mathbb{H}.$
- (ii) Man hat $f|_k M_1 M_2 = (f|_k M_1)|_k M_2$.

Beweis.

- (i) Rechne nach und beachte hierbei, dass $\operatorname{Im}\left(\frac{az+b}{cz+d}\right) = (ad-bc)\frac{\operatorname{Im}z}{|cz+d|^2}$.
- (ii) Für $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2^+(\mathbb{R})$ setze j(M, z) := cz + d. Dann gilt für beliebige Matrizen $M_1, M_2 \in GL_2^+(\mathbb{R})$, dass

$$j(M_1M_2, z) = j(M_1, M_2 \circ z) \cdot j(M_2, z)$$

woraus wegen $(cz + d)^{-k} = j(M, z)^{-k}$ die Behauptung folgt.

g. e. s.

Ziel: Definition gewisser linearer Operatoren $T: M_k \to M_k$ auf den Vektorräumen M_k (Modulformen vom Gewicht $k \in \mathbb{Z}$) durch geeignete Mittelbildung.

Idee: Sei $\mathcal{M} \subseteq GL_2^+(\mathbb{R})$ eine Teilmenge mit folgenden Eigenschaften (mit · die gewöhnliche Matrizenmultiplikation):

- (i) $\Gamma(1) \cdot \mathcal{M} \subset \mathcal{M}$
- (ii) $\mathcal{M} \cdot \Gamma(1) \subset \mathcal{M}$
- (iii) \mathcal{M} zerfällt in endlich viele disjunkte Rechtsnebenklassen, d.h.

$$\mathcal{M} = \bigcup_{M \in \Gamma(1) \setminus \mathcal{M}} \Gamma(1) \cdot M,$$

wobei die Vereinigung disjunkt und endlich ist.

Für eine Modulform $f \in M_k$ setze dann

$$f|T_{\mathcal{M}} := \sum_{M \in \Gamma(1) \setminus \mathcal{M}} f|_k M.$$

Dann ist $f|T_{\mathcal{M}}$ wohldefiniert, denn jede Rechtsnebenklasse $\Gamma(1) \cdot M \in \Gamma(1) \setminus \mathcal{M}$ besteht aus Vertretern der Form NM mit $N \in \Gamma(1)$ und es gilt

$$f|_k NM = (f|_k N)|_k M = f|_k M$$

wegen Lemma 2.1.3, ii) und $f|_k N = f$ für beliebiges $N \in \Gamma(1)$, da $f \in M_k$.

Ferner: Sei eine Matrix $N \in \Gamma(1)$ gegeben. Dann ist

$$(f|T_{\mathcal{M}})|_k N = \sum_{M \in \Gamma(1) \setminus \mathcal{M}} f|_k M N = \sum_{M \in \Gamma(1) \setminus \mathcal{M}} f|_k M = f|T_{\mathcal{M}},$$

denn mit M durchläuft auch MN ein Vertretersystem der Rechtsnebenklassen. (Begründung: Sind zwei Matrizen $M_1, M_2 \in \mathcal{M}$ nicht äquivalent unter Linksmultiplikation mit $\Gamma(1)$, so gilt dies trivialerweise auch für M_1N, M_2N . Auch ist

$$\mathcal{M}N = \left(\bigcup_{M \in \Gamma(1) \setminus \mathcal{M}} \Gamma(1) \cdot M\right) N = \bigcup_{M \in \Gamma(1) \setminus \mathcal{M}} \Gamma(1) \cdot MN = \mathcal{M},$$

denn nach Voraussetzung gilt sowohl $\mathcal{M}N\subseteq\mathcal{M}$ als auch $\mathcal{M}=\mathcal{M}N^{-1}N\subseteq\mathcal{M}N$.)

Folgerung: $f|T_{\mathcal{M}}$ hat das Transformationsverhalten einer Modulform vom Gewicht k.

2.2 Die Heckeoperatoren T(n)

Definition 2.2.1. Sei $n \in \mathbb{N}$. Setze

$$\mathcal{M}(n) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}) \mid ad - bc = n \right\}.$$

Beobachtung: $\mathcal{M}(n)$ ist invariant unter Links- und Rechtsmultiplikation von $\Gamma(1)$.

Lemma 2.2.2.

$$\mathcal{M}(n) = \bigcup_{\substack{ad=n\\d>0\\b \pmod{d}}}^{\cdot} \Gamma(1) \cdot \begin{pmatrix} a & b\\0 & d \end{pmatrix},$$

wobei die Vereinigung über alle Matrizen $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ geht, derart dass $a, b, d \in \mathbb{Z}$, ad = n, d > 0, und b ein volles Restsystem modulo d durchläuft (also z.B. $b \in \{1, 2, \dots, d\}$).

Beweis. Die Inklusion \supseteq ist klar, zeige also noch \subseteq . Sei dazu $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}(n)$. Da ad-bc=n>0, können a und c nicht gleichzeitig Null sein. Deswegen existiert $t:=\operatorname{ggT}(a,c)\in\mathbb{N}$. Also sind $-\frac{c}{t}$ und $\frac{a}{t}$ teilerfremd und es existieren $\alpha,\beta\in\mathbb{Z}$ mit

$$\begin{pmatrix} \alpha & \beta \\ -\frac{c}{t} & \frac{a}{t} \end{pmatrix} \in \Gamma(1) .$$

Dann ist

$$\begin{pmatrix} \alpha & \beta \\ -\frac{c}{t} & \frac{a}{t} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \; .$$

Man kann also voraussetzen, dass c=0. Wegen det M=n gilt dann ad=n. Multipliziert man gegebenenfalls mit -E, so kann man annehmen, dass d>0. Schließlich multipliziere für $\nu\in\mathbb{Z}$ mit

$$\begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} \in \Gamma(1) \Longrightarrow \begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} a & b + \nu d \\ 0 & d \end{pmatrix} \,.$$

Durch geeignete Wahl von $\nu \in \mathbb{Z}$ kann man erreichen, dass $b + \nu d$ in einem vorgegebenen Restsystem modulo d liegt. Damit ist die Inklusion \subseteq gezeigt.

Noch zu zeigen ist, dass die Vereinigung disjunkt ist (die Endlichkeit ist nach Konstruktion klar). Angenommen, für zwei Matrizen

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}, \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix}$$

(mit $ad=n=a'd',\,d>0,\,d'>0$ und b,b' Vertreter zweier Restklassen modulo d bzw. d') existiere ein $N\in\Gamma(1)$, sodass

$$N\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix} .$$

Dann folgt, dass die untere linke Komponente von N Null ist, $N \in \mathrm{SL}_2(\mathbb{Z})$ also die Gestalt

$$N = \begin{pmatrix} \pm 1 & \nu \\ 0 & \pm 1 \end{pmatrix}$$

mit $\nu \in \mathbb{Z}$ hat. Damit ist

$$N\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} \pm 1 & \nu \\ 0 & \pm 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} \pm a & \pm b + \nu d \\ 0 & \pm d \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix}.$$

Es folgt $d' = \pm d$ und da d, d' > 0 nach Voraussetzung bereits d = d'. Die Diagonalelemente von N sind also beide +1 und es folgt $b' = b + \nu d$. Wegen d = d' stammen b, b' beide aus dem gleichen Restsystem modulo d. Da sie sich nur um ein Vielfaches von d unterscheiden, folgt

$$\begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} .$$

g. e. s.

Definition 2.2.3. Sei $n \in \mathbb{N}$. Man setze dann für $f \in M_k$

$$f|T(n) := n^{\frac{k}{2}-1} \sum_{M \in \Gamma(1) \setminus \mathcal{M}(n)} f|_k M.$$

Satz 2.2.4.

- (i) Durch T(n) wird eine lineare Abbildung $M_k \to M_k$ definiert. Diese lässt S_k invariant (gemeint ist: Spitzenformen werden auf Spitzenformen geschickt). Man nennt T(n) den n-ten Hecke-Operator.
- (ii) Ist $f = \sum_{m \geqslant 0} a(m)q^m \in M_k$, so gilt

$$f|T(n) = n^{\frac{k}{2}-1} \sum_{m \geqslant 0} \left(\sum_{d|(m,n)} d^{k-1} a\left(\frac{mn}{d^2}\right) \right) q^m.$$

Beachte: Der konstante Term von f|T(n) ist gleich

$$n^{\frac{k}{2}-1} \sum_{d|n} d^{k-1} a(0) = n^{\frac{k}{2}-1} \sigma_{k-1}(n) a(0)$$

Beispiel 2.2.5. Sei n = p prim. Dann ist

$$f|T(p) = p^{\frac{k}{2}-1} \sum_{m \geqslant 0} \left(\sum_{d|(m,p)} d^{k-1} a\left(\frac{mp}{d^2}\right) \right) q^m$$
$$= p^{\frac{k}{2}-1} \sum_{m \geqslant 0} \left(a(mp) + p^{k-1} a\left(\frac{m}{p}\right) \right) q^m,$$

wobei $a\left(\frac{m}{p}\right) := 0$ für $p \not\mid m$, denn

$$\sum_{d \mid (m,p)} d^{k-1}a\left(\frac{mn}{d^2}\right) = a(mp) + \begin{cases} 0 & \text{falls } p \not \mid m \\ p^{k-1}a\left(\frac{m}{p}\right) & \text{falls } p \mid m \end{cases}$$

Beweis.

- (i) Nach den Überlegungen in 2.1 wissen wir, dass f|T(n) das Transformationsverhalten einer Modulform vom Gewicht k besitzt. Auch ist f|T(n) als Summe holomorpher Funktionen selbst holomorph auf H. Zu zeigen verbleibt noch, dass f|T(n) holomorph in ∞ ist und den Raum S_k invariant lässt. Beides folgt direkt aus Teil ii) des Satzes.
- (ii) Benutze Lemma 2.2.2, damit folgt

$$\begin{split} f|T(n) &= n^{\frac{k}{2}-1} \sum_{\substack{ad=n\\ d>0\\ b \bmod d}} f|_k \binom{a\ b}{0\ d} \\ &= n^{\frac{k}{2}-1} \sum_{\substack{ad=n\\ d>0\\ b \bmod d}} n^{\frac{k}{2}} d^{-k} f \left(\frac{az+b}{d}\right) \\ &= n^{k-1} \sum_{\substack{m>0\\ ad=n,\ d>0\\ b \bmod d}} d^{-k} a(m) e^{2\pi i m \frac{az+b}{d}} \\ &= n^{k-1} \sum_{\substack{m>0\\ d|n,\ d>0}} d^{-k} a(m) e^{2\pi i m \frac{n}{d^2} z} \left(\sum_{b \bmod d} e^{2\pi i m \frac{b}{d}}\right). \end{split}$$

Es gilt

$$\sum_{b \bmod d} e^{2\pi i m \frac{b}{d}} = \begin{cases} 0 & \text{falls } d \nmid m \\ d & \text{falls } d | m \end{cases}$$

Allgemein $1+q+\dots q^{N-1}=\frac{q^n-1}{q-1}=0$, falls $q\neq 1$ und $q^N=1$, wende dies an mit $q=e^{2\pi i\frac{m}{d}}$, N=d. Damit erhalten wir, wobei zu beachten ist, dass die Vertauschung wegen absoluter Konvergenz gerechtfertigt sind

$$f|T(n) = n^{k-1} \sum_{\substack{m \geqslant 0 \\ m \equiv 0 \bmod d \\ d|n, \ d > 0}} d^{-k+1}a(m)e^{2\pi i\frac{mn}{d^2}z} \qquad (m \mapsto md)$$

$$= \sum_{\substack{m \geqslant 0 \\ d|n, \ d > 0}} \left(\frac{n}{d}\right)^{k-1}a(md)e^{2\pi i\frac{mn}{d}z} \qquad \left(d \mapsto \frac{n}{d}\right)$$

$$= \sum_{\substack{m \geqslant 0 \\ d|n, \ d > 0}} d^{k-1}a\left(\frac{mn}{d}\right)e^{2\pi imdz} \qquad (md \mapsto m)$$

$$= \sum_{\substack{m \geqslant 0 \\ m \equiv 0 \bmod d \\ d|n, \ d > 0}} d^{k-1}a\left(\frac{mn}{d^2}\right)e^{2\pi imz}$$

$$= \sum_{\substack{m \geqslant 0 \\ d|n, \ d > 0}} \left(\sum_{\substack{d|m \ d|n}} d^{k-1}a\left(\frac{mn}{d^2}\right)\right)q^m.$$

g. e. s.

Satz 2.2.6. Für alle $m, n \in \mathbb{N}$ gilt

$$T(m)T(n) = \sum_{d|(m,n)} d^{k-1}T\left(\frac{mn}{d^2}\right)$$

Speziell gilt (vergleiche mit Ramanujan- τ -Funktion):

- (i) T(n)T(m) = T(mn) falls ggT(m, n) = 1
- (ii) $T(p)T(p^{\nu})=T(p^{\nu+1})+p^{k-1}T(p^{\nu-1})$ für p prim und $\nu\geqslant 1.$

Beachte dass (ii) äquivalent ist zur Identität

$$\frac{1}{1 - T(p)X + p^{k-1}X^2} = \sum_{\nu > 0} T(p^{\nu})X^{\nu}$$

Beweis. in mehreren Schritten: 1. Schritt: Beweis von (i): Seien m, n teilerfremd. Benutze Lemma 2.2.2, dann gilt

$$f|T(m)T(n) = (mn)^{\frac{k}{2}-1} \sum_{\substack{ad=m\\d>0,\ b \bmod d}} \left(\sum_{\substack{a'd'=n\\d'>0,\ b' \bmod d'}} f|_k \begin{pmatrix} a & b\\0 & d \end{pmatrix} \begin{pmatrix} a' & b'\\0 & d' \end{pmatrix} \right)$$

$$= (mn)^{\frac{k}{2}-1} \sum_{\substack{ad=m\\d>0,\ b \bmod d}} \left(\sum_{\substack{a'd'=n\\d'>0,\ b' \bmod d'}} f|_k {\tiny \begin{pmatrix} aa'\ ab'+bd'\\0\ dd' \end{pmatrix}} \right).$$

Durchläuft d alle positiven Teiler von m und d' alle positiven Teiler von n, so durchläuft D := dd' alle positiven Teiler von mn, denn ggT(m,n) = 1. Setzt man A := aa', so gilt dann AD = mn. Ferner gilt: Durchläuft b ein volles Restsystem mod d und b' ein solches mod d', so durchläuft B = ab + bd' ein volles Restsystem mod dd', denn in der Tat genügt es zu zeigen, dass diese Zahlen inkongruent mod dd' sind, denn dann sind dies genau dd' paarweise inkongruente Zahlen. Angenommen

$$ab_1' + b_1d' \equiv ab_2' + b_2d' \mod dd',$$

dann gilt

$$a(b_1' - b_2') \equiv d(b_2 - b_1) \mod dd'$$
.

Dies impliziert $a(b'_1 - b'_2) \equiv 0 \mod d'$. Aber ggT(a, d') = 1, denn a|m und d'|n und ggT(m, n) = 1 nach Voraussetzung. Also folgt $b'_1 \equiv b'_2 \mod d'$, also $b'_1 = b'_2$. Es folgt jetzt $b_2 \equiv b_1 \mod d$, also $b_2 = b_1$. Also folgt die Behauptung. Und damit

$$f|T(m)T(n) = (mn)^{\frac{k}{2}-1} \sum_{\substack{AD = mn \\ D > 0, \ B \bmod D}} f|_k \left(\begin{smallmatrix} A & B \\ 0 & D \end{smallmatrix} \right) = f|_k T(mn) \,.$$

2. Schritt: Beweis von (ii): Es gilt nach Lemma 2.2.2:

$$f|T(p) = p^{\frac{k}{2}-1} \left(f|_k {\binom{p \ 0}{0}} + \sum_{\mu \bmod p} f|_k {\binom{1 \ \mu}{0}} \right)$$

und

$$f|T(p^{\nu}) = (p^{\nu})^{\frac{k}{2}-1} \sum_{\substack{0 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta}}} f|_k {p^{\nu-\beta} \choose 0 p^{\beta}}.$$

Dann

$$f|T(p)T(p^{\nu}) = (p^{\nu+1})^{\frac{k}{2}-1} \left(\sum_{\substack{0 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta}}} f|_{k} {p \choose 0} {p^{\nu-\beta} \choose 0} + \sum_{\substack{0 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta} \\ \mu \bmod p}} f|_{k} {1 \choose 0} {p \choose 0} {p^{\nu-\beta} \choose 0} \right)$$

$$= (p^{\nu+1})^{\frac{k}{2}-1} \left(\sum_{\substack{0 \le \beta \le \nu \\ b \bmod p^{\beta}}} f|_{k} {p^{\nu+1-\beta} pb \choose 0 p^{\beta}} + \sum_{\substack{0 \le \beta \le \nu \\ b \bmod p^{\beta} \\ \mu \bmod p}} f|_{k} {p^{\nu-\beta} b + \mu p^{\beta} \choose 0 p^{\beta+1}} \right)$$
(2.1)

Betrachte 2. Summe in (2.1): Durchläuft b ein Restsystem modulo p^{β} und μ ein Restsystem modulo p, so durchläuft $b + \mu p^{\beta}$ ein solches modulo $p^{\beta+1}$ (denn insgesamt $p^{\beta+1}$ Zahlen, paarweise inkongruent modulo $p^{\beta+1}$). Man sieht daher, dass die 2. Summe gleich

$$f|T(p^{\nu+1})-(p^{\nu+1})^{\frac{k}{2}}f|_k(p^{\nu+1}_0)$$

ist.

Betrachte 1. Summe in (2.1). Diese ist gleich

$$(p^{\nu+1})^{\frac{k}{2}-1} \left(f|_k \left(\begin{smallmatrix} p^{\nu+1} & 0 \\ 0 & 1 \end{smallmatrix} \right) + \sum_{\substack{1 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta}}} f|_k \left(\begin{smallmatrix} p^{\nu+1-\beta} & pb \\ 0 & p^{\beta} \end{smallmatrix} \right) \right).$$

Man erhält also

$$f|_{k}T(p)T(p^{\nu}) = f|_{T}(p^{\nu+1}) + (p^{\nu+1})^{\frac{k}{2}-1} \underbrace{\sum_{\substack{1 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta}}} f|_{k}\binom{p\ 0}{0\ p}|_{k}\binom{p^{\nu-\beta}\ b}{0\ p^{\beta-1}}}_{=:R}$$

In R ersetze β durch $\beta + 1$, erhalte

$$R = \sum_{\substack{0 \le \beta \le \nu - 1\\ b \bmod p^{\beta + 1}}} f|_k {\binom{p^{\nu - 1 - \beta} b}{0 p^{\beta}}},$$

Man setze $b = \widetilde{b} + \mu p^{\beta}$ wobe
i μ modulo p und \widetilde{b} modulo
 p^{β} läuft

$$R = \sum_{\substack{0 \le \beta \le \nu - 1 \\ \widetilde{b} \bmod p^{\beta} \\ \mu \bmod p}} f|_{k} \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}|_{k} \begin{pmatrix} p^{\nu - 1 - \beta} & \widetilde{b} \\ 0 & p^{\beta} \end{pmatrix}$$

da f Periode 1 hat, erhält man

$$(p^{\nu+1})^{\frac{k}{2}-1}R = p^{k-1}(p^{\nu-1})^{\frac{k}{2}-1} \sum_{\substack{0 \leqslant \beta \leqslant \nu-1\\ \widetilde{b} \bmod p^{\beta}}} f|_k {p^{\nu-1-\beta} \widetilde{b} \choose 0 p^{\beta}} = p^{k-1}f|_k T(p^{\nu-1})$$

g. e. s.

Index

Dedekindische η -Funktion, 12	Modulform, 3
Diskriminantenfunktion, 6	Modulfunktion, 2
Eisensteinreihe, 5	normalisierte Eisensteinreihe, 5
Fundamentalbereich, 1	Peterssonscher Strichoperator, 3
Hecke-Operator, 16	Ramanujan-Funktion, 7
Modulfigur, 2	Thetareihe, 4

Liste der Sätze

1.1.14Satz (Valenzformel)																								5		
---------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--