第十七單元 倍角公式

(甲)倍角公式

(1)二倍角公式:

由和角公式: $sin(\alpha + \beta) = sin\alpha \cdot cos\beta + cos\alpha \cdot sin\beta$, $\phi\alpha = \beta = \theta$,可得

(a) $\sin 2\theta = 2 \cdot \sin \theta \cdot \cos \theta$

由和角公式: $\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$, $\Rightarrow \alpha = \beta = \theta$,可得

(b) $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$

由和角公式:
$$tan(\alpha + \beta) = \frac{tan\alpha + tan\beta}{1 - tan\alpha \cdot tan\beta}$$
, $\Rightarrow \alpha = \beta = \theta$,可得

(c)
$$\tan 2\theta = \frac{2\tan \theta}{1-\tan^2 \theta}$$

[注意]:

根據公式(b) $cos2\theta=cos^2\theta-sin^2\theta=2cos^2\theta-1=1-2sin^2\theta$,可知已知 θ 的正弦值、餘弦值,可 得 2θ 的餘弦值。另一方面,若已知 α 的餘弦值,就可得 $\frac{\alpha}{2}$ 的正弦值、餘弦值。

例如:

已知 $\cos\theta = \frac{2}{3}$,請求出 $\cos 2\theta = ?$

[解法]:

根據
$$\cos 2\theta = 2\cos^2 \theta - 1 = 2(\frac{2}{3})^2 - 1 = \frac{-1}{9}$$
,已知 $0 < \alpha < \frac{\pi}{2}$,且 $\cos \alpha = \frac{2}{3}$,試求 $\cos \frac{\alpha}{2} = ?$

根據(b)
$$\Rightarrow 2\theta = \alpha$$
,可得 $\cos \alpha = 2\cos^2 \frac{\alpha}{2} - 1$,所以 $\cos^2 \frac{\alpha}{2} = \frac{5}{6} \Rightarrow \cos^2 \frac{\alpha}{2} = \pm \sqrt{\frac{5}{6}} \Rightarrow \cos^2 \frac{\alpha}{2} = \sqrt{\frac{5}{6}}$ 。

結論:我們整理倍角公式如下:

 $(a)\sin 2\theta = 2 \cdot \sin \theta \cdot \cos \theta$

$$(b)cos2\theta = cos^2\theta - sin^2\theta = 2cos^2\theta - 1 = 1 - 2sin^2\theta$$

(c)
$$\tan 2\theta = \frac{2\tan \theta}{1-\tan^2 \theta}$$

(d)
$$\cos\alpha = 2\cos^2\frac{\alpha}{2} - 1 = 1 - 2\sin^2\frac{\alpha}{2}$$

$$(e)\cos^2\theta = \frac{1+\cos 2\theta}{2}$$
, $\sin^2\theta = \frac{1-\cos 2\theta}{2}$

(2)以正切表示二倍角

$$\sin 2\theta = \frac{2\tan \theta}{1 + \tan^2 \theta}$$

證明:

$$sin2\theta = 2sin\theta cos\theta = 2\frac{sin\theta}{cos\theta} cos^2\theta = 2tan\theta(\frac{1}{sec^2\theta}) = \frac{2tan\theta}{1 + tan^2\theta}$$

證明:

$$\cos 2\theta = 2\cos^2 \theta - 1 = \frac{2}{\sec^2 \theta} - 1 = \frac{2}{1 + \tan^2 \theta} - 1 = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

結論:利用 $tan\theta$ 可以將 $sin2\theta$, $cos2\theta$, $tan2\theta$ 表示出來,整理如下:

(a)
$$\sin 2\theta = \frac{2\tan\theta}{1+\tan^2\theta}$$
 (b) $\cos 2\theta = \frac{1-\tan^2\theta}{1+\tan^2\theta}$ (c) $\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$

[討論]:

利用 $\tan\theta$ 來表示 $\sin 2\theta \cdot \cos 2\theta \cdot \tan 2\theta$,主要是將 $\sin\theta \cdot \cos\theta \cdot \tan\theta$ 表示成分式的形式,即 $\sin\theta = \frac{2t}{1+t^2}$, $\cos\theta = \frac{1-t^2}{1+t^2}$, $\tan\theta = \frac{2t}{1-t^2}$,其中 $t = \tan\frac{\theta}{2}$ 為任意實數,可以應用於求某些三角函數的積分。

(3)三倍角公式

(a)
$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

證明:

 $\sin 3\theta = \sin(\theta + 2\theta) = \sin\theta \cos 2\theta + \cos\theta \sin 2\theta$

$$=\sin\theta(1-2\sin^2\theta)+\cos\theta(2\sin\theta\cos\theta)$$

$$= \sin\theta(1 - 2\sin^2\theta) + 2\sin\theta\cos^2\theta$$

$$= \sin\theta(1 - 2\sin^2\theta) + 2\sin\theta(1 - \sin^2\theta) = 3\sin\theta - 4\sin^3\theta$$

(b) $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$

證明:

 $\cos 3\theta = \cos(\theta + 2\theta) = \cos\theta \cos 2\theta - \sin\theta \sin 2\theta$

$$=\cos\theta(2\cos^2\theta-1)-\sin\theta(2\sin\theta\cos\theta)$$

$$= \cos\theta(2\cos^2\theta - 1) - 2\sin^2\theta\cos\theta$$

 $=\cos\theta(2\cos^2\theta-1)-2(1-\cos^2\theta)\cos\theta=4\cos^3\theta-3\cos\theta$

[例題1] 已知 $\tan\theta = \frac{-3}{4}$ 且 $\frac{3\pi}{2} < \theta < 2\pi$,求

$$(1)cos2\theta \cdot tan2\theta (2)sin\frac{\theta}{2} \cdot tan\frac{\theta}{2}$$

Ans :
$$(1)\cos 2\theta = \frac{7}{25}$$
 \(\tan 2\theta = \frac{-24}{7} \) \((2)\sin \frac{\theta}{2} = \frac{1}{\sqrt{10}} \) \(\tan \frac{\theta}{2} = \frac{-1}{3}

[例題2] 如右圖,一個大的正八角星形的頂點為周圍八個全等的小正八角星形中心,相鄰的兩個小八角星有一個共同頂點。觀察圖中虛線部分,設小八角星頂點 C 到其中心 A 的距離為 a,大八角星頂點 A 到其中心的距離為 b。試問 a:b

的比值為何? Ans: $\frac{\sqrt{2-\sqrt{2}}}{2}$

[**例題3**] 若 $3 \cdot \sin 2\theta + 2\cos 2\theta = 3$,求 $\tan \theta$ 之值。 Ans:1 或 $\frac{1}{5}$

[**例題4**] 設
$$\sin 2\theta = \frac{-3}{5}$$
, $\frac{\pi}{2} < \theta < \frac{3\pi}{4}$,試求下列之值:

$$(1)\sin\theta - \cos\theta$$
 $(2)\cos^4\theta - \sin^4\theta$ $(2)\tan\theta + \cot\theta$ $(3)\sin^6\theta + \cos^6\theta$

Ans:
$$(1)\sqrt{\frac{8}{5}}$$
 $(2)\frac{-4}{5}$ $(2)\frac{-10}{3}$ $(3)\frac{73}{100}$

結論:

底下是一些有用的公式:

$$(a)\sin^2\theta = 1 - \cos^2\theta$$
 $(b)\cos^2\theta = 1 - \sin^2\theta$

$$(c)\sin^4\theta + \cos^4\theta = (\sin^2\theta + \cos^2\theta)^2 - 2\sin^2\theta\cos^2\theta = 1 - 2\sin^2\theta\cos^2\theta$$

$$(d)\sin^6\theta + \cos^6\theta = (\sin^2\theta + \cos^2\theta)^3 - 3\sin^2\theta \cos^2\theta (\sin^2\theta + \cos^2\theta) = 1 - 3\sin^2\theta \cos^2\theta$$

(e)
$$\tan\theta + \cot\theta = \frac{1}{\sin\theta\cos\theta} = \frac{2}{\sin2\theta}$$

$$(f)(\sin\theta\pm\cos\theta)^2 = \sin^2\theta + \cos^2\theta\pm2\sin\theta\cos\theta = 1\pm\sin2\theta$$

(練習1) 設
$$\frac{\pi}{2}$$
< θ < π 且 $\sin\theta$ = $\frac{3}{5}$,求 $\sin 2\theta$ 及 $\sin\frac{\theta}{2}$ 、 $\sin 3\theta$ 的值。

Ans:
$$\sin 2\theta = \frac{-24}{25}$$
, $\sin \frac{\theta}{2} = \frac{3}{\sqrt{10}}$, $\sin 3\theta = \frac{117}{125}$

(練習2) 試求
$$\sin\frac{\pi}{8}$$
, $\cos\frac{\pi}{8}$, $\tan\frac{\pi}{8}$ 之值。Ans: $\frac{\sqrt{2-\sqrt{2}}}{2}$, $\frac{\sqrt{2+\sqrt{2}}}{2}$, $-1+\sqrt{2}$

(練習3)
$$\pi < \theta < \frac{3\pi}{2}$$
,且 $\tan \theta = \frac{3}{4}$,則 $\sin \frac{\theta}{2} = \underline{\hspace{1cm}}$, $\cos \frac{\theta}{2} = \underline{\hspace{1cm}}$ 。 Ans : $\frac{3}{\sqrt{10}}$, $\frac{-1}{\sqrt{10}}$

(練習4) 設
$$\cos 2\theta = t$$
,試以 t 表示 $4(\cos^6\theta - \sin^6\theta) = ?$ Ans : $t^3 - 3t$

(練習5) 設
$$\frac{\pi}{2}$$
< θ < π ,且 $3\sin^2\theta$ - $\sin\theta$ $\cos\theta$ - $2\cos^2\theta$ = 0 ,則 $\sin 2\theta$ + $\cos 2\theta$ = $_{--}$ 。 Ans : $\frac{-7}{13}$

(練習6) 試求 $\cos^4\frac{\pi}{8} + \cos^4\frac{3\pi}{8} + \cos^4\frac{5\pi}{8} + \cos^4\frac{7\pi}{8}$ 的值。Ans: $\frac{3}{2}$

(練習7)
$$\frac{-\pi}{2} < \theta < \frac{\pi}{2}$$
, 且 $\sin\theta + \cos\theta = \frac{1}{4}$,
 則(1) $\sin 2\theta = \underline{\qquad}$ (2) $\cos 2\theta = \underline{\qquad}$, (3) $\sin^3\theta + \cos^3\theta = \underline{\qquad}$ \circ Ans : (1) $\frac{-15}{16}$ (2) $\frac{\sqrt{31}}{16}$ (3) $\frac{47}{128}$

(練習8) 如圖, θ 為一有向角, \overline{AB} =3, \overline{BC} =4,求 $\sin 2\theta$ =? Ans: $\frac{-24}{25}$

(乙)倍角公式的應用

[**例題5**] (1)利用倍角公式,求出 sin18°之值。 (2)求 sin54°之值。

(3) 如圖,假設正五邊形的邊長為a,請求出對角線 \overline{AC} 的長度。

Ans: (1) $\frac{\sqrt{5}-1}{4}$ (2) $\frac{\sqrt{5}+1}{4}$ (3) $\frac{\sqrt{5}+1}{2}a$ 註: $\frac{\sqrt{5}+1}{2}$ 稱為黃金比例數

[**例題6**] 求在 $0< x< 2\pi$ 的範圍內, $y=\sin x$ 與 $y=\sin 2x$ 兩圖形的交點坐標。 Ans: $(\pi,0)$ 、 $(\frac{\pi}{3},\frac{1}{2})$ 、 $(\frac{5\pi}{3},\frac{-1}{2})$

[**例題7**] 已知 \triangle ABC 中, \overline{AB} =2、 \overline{BC} =3 且 \angle A=2 \angle C,則 \overline{AC} =____。 Ans: $\frac{5}{2}$ (2010 學科能力測驗)

- (練習9) 利用 $\sin 18^\circ$ 的值求出 $\cos 36^\circ$ 的值。 $\operatorname{Ans}: \cos 36^\circ = \frac{\sqrt{5}+1}{4}$
- (練習10) 試求在 $0 \le x \le 2\pi$ 的範圍內, $y = \cos x$ 與 $y = \cos 2x$ 兩圖形的交點坐標。 Ans:(0,1)、 $(\frac{2\pi}{3},\frac{-1}{2})$ 、 $(\frac{4\pi}{3},\frac{-1}{2})$ 、 $(2\pi,1)$
- (練習11) 設 $f(x)=4x^3-3x+1$,則 f(x)被 $x-\sin\frac{\pi}{9}$ 除後所得的餘式=____。 Ans: $1-\frac{\sqrt{3}}{2}$ (提示:利用三倍角公式與餘式定理)

(練習12)求下列的值:

$$(1)\cos 20^{\circ}\cos 40^{\circ}\cos 80^{\circ} \quad (2)\cos \frac{\pi}{7}\cos \frac{3\pi}{7}\cos \frac{5\pi}{7} \text{ Ans } : (1)\frac{1}{8} (2)\frac{-1}{8}$$

綜合練習

(1) 如圖, θ 為一個有向角, $\overline{AB}=2$, $\overline{BC}=5$,則 $\sin 2\theta =$ ___。

- (2) $\stackrel{\text{def}}{\otimes} \cos\theta = \frac{3}{5} \stackrel{\text{def}}{\otimes} \frac{3\pi}{5} < \theta < 2\pi$, $\stackrel{\text{def}}{\otimes} (a)\sin 2\theta$ (b) $\sin 3\theta$ (c) $\cos \frac{\theta}{2}$
- (3) 設 $\cos 2\alpha = \frac{1}{3}, \frac{3\pi}{2} \le 2\alpha \le 2\pi$,求
 (a) $\cos \alpha$ (b) $\tan \alpha$ (c) $\cos^4 \frac{\alpha}{2} + \sin^4 \frac{\alpha}{2}$ 之值
- (4) 設 $0 < \alpha < \frac{\pi}{2}$, $0 < \beta < \frac{\pi}{2}$,且 $\cos \alpha = \frac{11}{61}$, $\sin \beta = \frac{4}{5}$,請求出 $(a)\cos(\alpha \beta) \qquad (b)\sin^2 \frac{\alpha \beta}{2} \quad (c)\cos^2 \frac{\alpha + \beta}{2} \circ$
- (5) 如右圖,直角三角形 ABD 中,∠A 為直角,
 C 為AD邊上的點。已知BC=6, AB=5,∠ABD=2∠ABC,
 則BD=_____。(2010 學科能力測驗)

- (6) 在ΔABC 中,已知 \overline{AB} =5, \cos ∠ABC= $\frac{-3}{5}$,且其外接圓半徑為 $\frac{13}{2}$ 則 \sin ∠BAC=____。 (2010 指定甲)
- (7) 下列何者為 8x³-6x+1=0 之根? (A) sin10(B) sin30(C) sin130°(D) sin160°(E)sin250°。
- (8) 設 $0 < \alpha < \frac{\pi}{2}$, $0 < \beta < \frac{\pi}{2}$, 若 $\sin \alpha = \frac{4}{5}, \cos \beta = \frac{5}{13}$ 則 (A) $0 < \alpha + \beta < \frac{\pi}{2}$ (B) $\tan(\alpha - \beta) = \frac{-16}{63}$ (C) $\cos \frac{\alpha}{2} = \frac{2\sqrt{5}}{5}$ (D) $\sin 2\beta = \frac{120}{169}$
- (9) 如右圖,在 $\triangle ABC$ 中, $\overline{AB}=3$, $\overline{BC}=6$, $\overline{CA}=7$,且 $\angle B$ 的分角線交其外接 圓於 P 點,若 $\angle ABP=\theta$,求: (a) $\sin\theta$ 之值。(b) \overline{PC} 之長。
- (10) 求函數 $f(x)=2\sin^2 x$ 的週期。

(12) 仁簡 $-\cos^2\theta + \cos^2(\frac{\pi}{6} + \theta) + \cos^2(\frac{\pi}{6} - \theta) = ____$ 。

- (13) 若 $\sin x = \frac{\sqrt{5}-1}{2}$,請計算 $\sin 2(x-\frac{\pi}{4}) = ?$
- (14) 設 $\sin\theta + \cos\theta = \sqrt{2}$,求 $\tan\frac{\theta}{2}$ 之值。
- (15) $\frac{5\pi}{4} < \theta < \frac{3\pi}{2}$, $\sin 2\theta = a$, $\sin \theta \cos \theta = \underline{\qquad}$
- (16) 設 $0<\alpha<\frac{\pi}{2}$,試化簡 $\sqrt{1+\sin\alpha}$ $-\sqrt{1-\sin\alpha}$ 。
- (17) 設 x^2 -(tan θ +cot θ)x+1=0 有一根 2+ $\sqrt{3}$,求 sin2 θ =____。
- (18) $2x^2 + ax 1 = 0$ 有一根為 $\sin 30^\circ + \cos 30^\circ$,求 a 的值。
- (19) 以 $x \cos 40^{\circ}$ 除 $f(x) = 3x 4x^3$ 之餘式為
- (20) (a)試求 $\cos\frac{\pi}{16}$; $\sin\frac{\pi}{16}$? (b)試求單位圓內接正十六邊形的面積及周長?
- (21) 設 $\pi < x < 2\pi$, 化簡 $\sqrt{1 + \cos x} + \sqrt{1 \cos x}$ 。
- (22) 已知正五角星(即 ABCDE 為正五邊形)內接於一圓 O,如右圖所示.若 \overline{AC} = 1,則圓 O 的半徑長=?. [$\sin 18^\circ = \frac{\sqrt{5}-1}{4}$, $\cos 18^\circ = \frac{\sqrt{10+2\sqrt{5}}}{4}$]

- (23) 等腰三角形的頂角為 20° ,腰長為1,底長為2b,試求 $8b^{3}-6b$ 之值為何?
- (24) 四邊形 ABCD 內接於圓 O,圓 O 的半徑為 $\frac{65}{8}$,已知四邊形的周長為 44, $\overline{BC}=\overline{CD}=13$,試問 \overline{AB} 、 \overline{AD} 的長度為何?
- (25) 已知 \triangle ABC 的 \angle A 和 $b \cdot c$ 兩邊,試求 \angle A 的內角平分線段長。
- (26) 在右圖 \triangle ABC 中, \overline{AB} =3, \overline{AC} =6, \overline{AD} =2,且 \angle BAD= θ , \angle DAC=2 θ :

(a)利用 ΔABC 之面積= ΔABD 面積+ ΔADC 面積,

以0之三角函數列出方程式。

(b)試利用(a)的結果求 cosθ 之值。

進階問題

- (27) 化簡求 $\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{8\pi}{15}$ 之積。 (提示: \Leftrightarrow A= $\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{8\pi}{15}$,同乘 $\sin\frac{\pi}{15}$,再利用 $\sin 2\theta = 2\sin \theta \cos \theta$ 的公式)。
- (28) 設實數 x 滿足 $\sin^4 x 6\sin^2 x \cos^2 x + \cos^4 x$ (a)求 $\sin^2 x \cos^2 x$ 的值。 (b)設 $0 \le x \le \pi$,試求 x = ?

- (30) $\triangle ABC$ 中,BC=a,CA=b,AB=c,s= $\frac{a+b-c}{2}$ 試證: $\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$
- (31) 設 α , β 為 $a\cos x + b\sin x + c = 0$ 的相異二根, $a \neq 0$, $-\pi < \alpha$, $\beta < \pi$ (a) 令 $\tan \frac{x}{2} = t$,試將上述方程式化成 t 的方程式。
 (b) 求 x 在 $-\pi$ 與 π 之間有二實根的條件。(c) 求 $\tan \frac{\alpha + \beta}{2}$ 之值。

綜合練習解答

(1)
$$\frac{-20}{29}$$

(2)
$$(a)\frac{-24}{25}$$
 $(b)\frac{-44}{125}$ $(c)\frac{-2}{\sqrt{5}}$

(3) (a)
$$\frac{-\sqrt{6}}{3}$$
 (b) $\frac{-\sqrt{2}}{2}$ (c) $\frac{5}{6}$

(4)
$$(a)\frac{273}{305}$$
 $(b)\frac{16}{305}$ $(c)\frac{49}{305}$

(5)
$$\frac{90}{7}$$

(6)
$$\frac{33}{65}$$

$$(7)$$
 $(A)(C)(E)$

(8)
$$(B)(C)(D)$$

(9) (a)
$$\frac{\sqrt{5}}{3}$$
 (b) $\frac{21}{4}$

$$(10)$$
 τ

(10)
$$\pi$$
 (11) $\frac{3}{2}$

(12)
$$\frac{1}{2}$$

(13)
$$2-\sqrt{5}$$

(14)
$$\sqrt{2}-1$$

(13)
$$2-\sqrt{5}$$

(14) $\sqrt{2}-1$
(15) $-\sqrt{1-a}$

(16)
$$2\sin\frac{\alpha}{2}$$
[提示: $1+\sin\alpha=\sin^2\frac{\alpha}{2}+\cos^2\frac{\alpha}{2}+2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}=(\sin\frac{\alpha}{2}+\cos\frac{\alpha}{2})^2$, $1-\sin\alpha=\sin^2\frac{\alpha}{2}+\cos^2\frac{\alpha}{2}-2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}=(\sin\frac{\alpha}{2}-\cos\frac{\alpha}{2})^2$]

(17)
$$\frac{1}{2}$$

(19)
$$\frac{1}{2}$$

(20) (a)
$$\frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}$$
 ; $\frac{\sqrt{2-\sqrt{2+\sqrt{2}}}}{2}$ (b) $\overline{\text{iff}} = 8\sin\frac{\pi}{8} = 4\sqrt{2-\sqrt{2}}$; $\overline{\text{iff}} \in 32\sin\frac{\pi}{16} = 16\sqrt{2-\sqrt{2+\sqrt{2}}}$

(21)
$$\sqrt{2}(\sin{\frac{x}{2}} - \cos{\frac{x}{2}})$$
[提示:利用 $\cos{x} = 2\cos{\frac{2x}{2}} - 1 = 1 - 2\sin{\frac{2x}{2}}$]

(22)
$$\frac{2}{\sqrt{10+2\sqrt{5}}}$$

(24) $4 \cdot 16$ 或 $16 \cdot 4$ [提示:設 $\overline{AB}=x,\overline{AD}=y$, $\angle CBD=\angle CDB=\theta$,根據正弦定理可知 $\sin\theta=\frac{4}{5}$,又 周長為 44,所以 x+y=18,由餘弦定理可知 $\overline{BD}^2=x^2+y^2-2xy\cos2\theta$,根據倍角公式 $\Rightarrow xy=56$]

$$(25) \qquad \frac{2bc\cos\frac{A}{2}}{b+c}$$

(26) (a)3sin3
$$\theta$$
=sin θ +2sin2 θ (b) $\frac{1+\sqrt{13}}{6}$

(27)
$$\frac{-1}{16}$$
 °

(28)
$$(a)\frac{1}{8}$$
 $(b)\frac{\pi}{8} \cdot \frac{3\pi}{8} \cdot \frac{5\pi}{8} \cdot \frac{7\pi}{8}$

- (29) 1[提示: $\sin\alpha=1-\sin\beta$, $\cos\alpha=-\cos\beta$, 兩式平方相加可得 $\sin\beta=\frac{1}{2}$ \Rightarrow $\sin\alpha=\frac{1}{2}$ 再計算 $\cos 2\alpha+\cos 2\beta$]
- (30) [提示: $\sin^2 \frac{A}{2} = \frac{r^2}{OA^2}$,因為 $r = \frac{\Delta}{s}$ 所以 $r^2 = \frac{1}{s^2} \cdot s(s-a)(s-b)(s-c)$ $= \frac{(s-a)(s-b)(s-c)}{s} \cdot OA^2 = r^2 + (s-a)^2 = \frac{(s-a)[(s-b)(s-c) + s(s-a)]}{s} ,$ $\sin^2 \frac{A}{2} = \frac{r^2}{OA^2} = \frac{(s-b)(s-c)}{(s-b)(s-c) + s(s-a)} = \frac{(s-b)(s-c)}{bc}]$

(31)
$$(a)(c-a)t^2+2bt+(a+c)=0$$
 $(b)a^2+b^2 \ge c^2$ $(c)\frac{b}{a}$

(32) $\frac{1}{2}(b-a)^2\sin\alpha$ [提示: BS=BC· $\sin\frac{\alpha}{2}=b\sin\frac{\alpha}{2}$, BP=BA· $\sin\frac{\alpha}{2}=a\cdot\sin\frac{\alpha}{2}$ PS=BS-BP= $(b-a)\sin\frac{\alpha}{2}$, AQ=AD· $\cos\frac{\alpha}{2}$, AP=AB· $\cos\frac{\alpha}{2}$, PQ=AQ-AP= $(b-a)\cos\frac{\alpha}{2}$, 故矩形面積=PS·PQ= $\frac{1}{2}(b-a)^2\sin\alpha$ 。]