Backpropagation

Gradient Descent

Network parameters
$$\theta = \left\{ w_1, w_2, \cdots, b_1, b_2, \cdots \right\}$$

Starting $\theta^0 \longrightarrow \theta^1 \longrightarrow \theta^2 \longrightarrow \dots$

$$\nabla L(\theta) \qquad Compute \nabla L(\theta^0) \qquad \theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$= \begin{bmatrix} \partial L(\theta)/\partial w_1 \\ \partial L(\theta)/\partial w_2 \\ \vdots \\ \partial L(\theta)/\partial b_1 \\ \partial L(\theta)/\partial b_2 \\ \vdots \end{bmatrix}$$
Compute $\nabla L(\theta^1) \qquad \theta^2 = \theta^1 - \eta \nabla L(\theta^1)$

Millions of parameters

To compute the gradients efficiently, we use backpropagation.

Chain Rule

Case 1
$$y = g(x)$$
 $z = h(y)$
$$\Delta x \to \Delta y \to \Delta z \qquad \frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

Case 2

$$x = g(s)$$
 $y = h(s)$ $z = k(x, y)$

Backpropagation

$$L(\theta) = \sum_{n=1}^{N} l^{n}(\theta) \longrightarrow \frac{\partial L(\theta)}{\partial w} = \sum_{n=1}^{N} \frac{\partial l^{n}(\theta)}{\partial w}$$

Backpropagation, Continued

$\frac{\partial l}{\partial w} = ? \quad \frac{\partial z}{\partial w} \frac{\partial l}{\partial z}$ (Chain rule)

Compute $\partial z/\partial w$ for all parameters

Backward pass:

Backpropagation – Forward Pass: Part I

Compute $\partial z/\partial w$ for all parameters

$$\frac{\partial z}{\partial w_1} = ? x_1$$

$$\frac{\partial z}{\partial w_2} = ? x_2$$

The value of the input connected by the weight

Backpropagation – Forward Pass: Part II

Compute $\partial z/\partial w$ for all parameters

Backpropagation – Backward Pass: Part III

Backpropagation – Backward Pass: Part IV

Backpropagation – Backward Pass: Part V

Backpropagation – Backward Pass: Part VI

Backpropagation – Backward Pass: Part VII

Backpropagation – Backward Pass: Part VIII

Compute $\partial l/\partial z$ for all activation function inputs z

Case 2. Not Output Layer

Backpropagation – Backward Pass: Part IX

Compute $\partial l/\partial z$ for all activation function inputs z

Case 2. Not Output Layer

Backpropagation – Backward Pass: Part X

Backpropagation – Backward Pass: Part XI

Compute $\partial l/\partial z$ for all activation function inputs z

Compute $\partial l/\partial z$ from the output layer

Backpropagation – Backward Pass: Part XII

Compute $\partial l/\partial z$ for all activation function inputs z Compute $\partial l/\partial z$ from the output layer

Backpropagation – Summary

