IOMMUFD – Choice of Adapting IOMMU Advancements to Userspace Drivers

Yi Liu

Dec. 26th, 2021

Agenda

- Backgrounds
 - IOMMU Recap
 - Userspace Driver Recap
 - Challenges for software
- IOMMUFD Proposal
 - Key concepts of IOMMUFD proposal
 - Basic flow of IOMMUFD usage
 - Adapting existing frameworks to IOMMUFD
- Status & Future work
- Q&A

IOMMU Recap

- IOMMU (I/O Memory Management Unit)
- It connects a Direct Memory Access (DMA) capable I/O bus to the system memory¹
- I/O Virtual Address (IOVA) is used in device memory access
- I/O Page table is used for the IOVA to PA translation

Direct Memory Access (DMA) Isolation

IOMMU Advancements

Feature	Usage	Requirements to software
PASID Granular Translation	SIOV, SVM	PASID management and page table management
Nested Translation	vIOMMU	Support user-managed page table and IOTLB invalidation from page table owner (e.g., QEMU/VM)
Dirty bit support in I/O Page Table	Live migration	Enable/disable dirty tracking, large page splitting during the dirty page logging and merge afterward
I/O Page Fault	Eliminate page pinning on DMA buffers	Forward I/O page fault to page table owner (can be either kernel or user, e.g., user-managed page table owned by user)

Userspace Driver Recap

- Userspace driver framework
 - Device management
 - Handle the device access like PCI configuration space r/w, BAR mmap, interrupts, etc.;
 - Example: vfio-pci, vfio-platform;
 - IOMMU management
 - Map/unmap the userspace memory
 - Example: vfio iommu type1 driver;
 - Current userspace driver frameworks
 - VFIO (Virtual Function I/O), vDPA (Virtual data path acceleration);

Challenges at Today and Future

- Existing problem
 - Unable to share I/O page table between devices managed by different userspace driver frameworks (e.g., vfio device and vdpa device)
 - Reduced IOTLB efficiency
 - Extra memory footprint
- Not scaled if supporting a new IOMMU feature requires duplicated logic in every userspace driver framework

IOMMUFD

- iommufd is a new framework dedicated for managing I/O page tables for devices managed by userspace drivers
 - Consolidates all userspace iommu operations and interactions between userspace driver and kernel
 - o map userspace memory in I/O page table, forward I/O page fault and response etc.
- The single portal of supporting new IOMMU advancements for all userspace driver frameworks
 - Improved IOTLB efficiency and less memory footprint compared with today
 - Simplified maintenance model

Key Concepts of IOMMUFD

■ IOMMU FD

- Created per /dev/iommu opening
- Hold multiple I/O address spaces for the current process
- Support the iommu operations (e.g., DMA map/unmap) from userspace

IOAS

- An iommufd-local software handle representing an I/O address space
- Allocated via iommufd
- Helper for interacting with userspace driver frameworks
 - Bind/unbind device to iommufd
 - Attach/detach selected IOAS to device

Basic Flow of IOMMUFD

Adapting VFIO/vDPA to IOMMUFD

Adapting VFIO/vDPA to IOMMUFD (Cont.)

Adapting VFIO/vDPA to IOMMUFD (Cont.)

Status & Future Work

Status

- RFCv1was sent out
 - https://lwn.net/Articles/869818/
 - Only PCI devices and only basic DMA map/unmap feature supported by iommufd in RFCv1.
- QEMU part change was not sent out yet
- A work aiming at enabling iommufd usage in DPDK is in progress
 - https://github.com/luxis1999/iommufd

Future Works

- Enable the iommufd basic flow in QEMU usage
- Consolidate the iommu kernel APIs regards to the requirement of SIOV and SVM features
- Enable new iommu features in iommufd

Summary

- Emerging IOMMU advancements brings new requirements and complexity to software
- Existing userspace driver framework implementations doesn't scale as new IOMMU features step in
- IOMMUFD is a new framework dedicated for managing I/O page tables for all kinds of devices managed by userspace driver
- IOMMUFD accelerates supporting new IOMMU features (Scalable IOV, SVM, dirty bit tracking, I/O page fault etc.) in Linux world

Q&A