

TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights

Aiwei Liu¹, Haoping Bai², Zhiyun Lu², Yanchao Sun², Xiang Kong², Simon Wang², Jiulong Shan², Albin Madappally Jose², Xiaojiang Liu², Lijie Wen¹, Philip S. Yu³, Meng Cao²

¹Tsinghua University, ²Apple, ³University of Illinois at Chicago

Limitations of Direct Preference Optimization

DPO Objective: \mathcal{L}_{DPO} (Maximizing likelihood ratio between winning and losing responses)

$$-\mathbb{E}_{(x,y_w,y_l)} \left[\log \sigma \left(\beta \sum_{i=1}^{n_w} \log \frac{\pi_{\theta}(y_w^i|x,y_w^{< i})}{\pi_{\mathsf{ref}}(y_w^i|x,y_w^{< i})} - \beta \sum_{j=1}^{n_l} \log \frac{\pi_{\theta}(y_l^j|x,y_l^{< j})}{\pi_{\mathsf{ref}}(y_l^j|x,y_l^{< j})} \right) \right]$$

Key Issues: Equal gradient for all tokens in winning/losing responses, regardless of their importance:

$$\frac{\partial \mathcal{L}_{\text{DPO}}}{\partial \log \pi_{\theta}(y_w^i)} = -\beta \cdot \sigma(-z) \quad \text{and} \quad \frac{\partial \mathcal{L}_{\text{DPO}}}{\partial \log \pi_{\theta}(y_l^j)} = \beta \cdot \sigma(-z)$$

where z is the log-ratio term, showing identical gradients for all tokens

Theoretical Bound on Optimization Stability: (Higher token reward variance leads to less stable optimization)

$$P(S_w \le S_l) \le \exp\left(-\frac{2n_w t^2}{(b_w - a_w)^2}\right) + \exp\left(-\frac{2n_l t^2}{(b_l - a_l)^2}\right)$$

where S_w, S_l : avg. rewards, $(b_w - a_w), (b_l - a_l)$: token reward ranges indicating variance

TIS-DPO Method

Our Solution: Assign importance weights to tokens based on their contribution to response quality

Step 1: Define optimal dataset \mathcal{D}^* with consistent token rewards

$$\forall (x, y^{< t}), \quad \mathbb{E}_{y^t \sim \mathcal{D}^*(\cdot \mid x, y^{< t})}[r(y^t \mid x, y^{< t})] = R^*$$

Step 2: Derive token-level weights through importance sampling

$$D^*(x, y^{< t}, y^t) = \frac{D(x, y^{< t}, y^t)}{w(y^t \mid x, y^{< t})}$$

where $w(y^t \mid x, y^{< t}) = k \cdot \exp(\mu r(y^t \mid x, y^{< t}))$ represents weights

Step 3: Reformulate Bradley-Terry model with token-level importance weights $P_{\text{BT}}(y_w \succ y_l \mid x)$

$$\sigma \left(\sum_{i=1}^{T_w} w_i^w \beta \log \frac{\pi_{\theta}(y_{w_i} \mid x, y_w^{< i})}{\pi_{\mathsf{ref}}(y_{w_i} \mid x, y_w^{< i})} - \sum_{j=1}^{T_l} w_j^l \beta \log \frac{\pi_{\theta}(y_{l_j} \mid x, y_l^{< j})}{\pi_{\mathsf{ref}}(y_{l_j} \mid x, y_l^{< j})} - \eta \right)$$

where η represents the difference in weighted KL divergence between winning and losing sequences

Definition of η :

$$\eta = \beta \left(\sum_{i=1}^{T_w} w_i^w D_{\mathsf{KL}}(\pi_\theta \parallel \pi_{\mathsf{ref}})_{x,y_w^{< i}} - \sum_{j=1}^{T_l} w_j^l D_{\mathsf{KL}}(\pi_\theta \parallel \pi_{\mathsf{ref}})_{x,y_l^{< j}} \right)$$

Final TIS-DPO Objective: $\mathcal{L}_{TIS-DPO}$

$$-\mathbb{E}_{(x,y_w,y_l)} \left[\log \sigma \left(\sum_{i=1}^{T_w} w_i^w \beta \log \frac{\pi_{\theta}(y_{w_i}|x,y_w^{< i})}{\pi_{\mathsf{ref}}(y_{w_i}|x,y_w^{< i})} - \sum_{j=1}^{T_l} w_j^l \beta \log \frac{\pi_{\theta}(y_{l_j}|x,y_l^{< j})}{\pi_{\mathsf{ref}}(y_{l_j}|x,y_l^{< j})} - \eta \right) \right]$$

Token Importance Estimation

Key Idea: Use contrastive LLMs to estimate token-level importance weights

Weight Estimation Formula:

$$w_t = k \cdot \exp(\mu \cdot \text{clamp}(\log \frac{\pi^+(y_t \mid x, y^{< t})}{\pi^-(y_t \mid x, y^{< t})}, L, U))$$

where π^+ favors high-reward tokens and π^- favors low-reward tokens

Three Methods for Contrastive LLM Construction:

TIS-DPO(P): Prompt-based - Using contrastive prompts (e.g., "harm-less" vs. "harmful")

TIS-DPO(S): SFT-based - Fine-tuning separate models on winning vs. losing responses

TIS-DPO(D): DPO-based - Training with DPO on normal and swapped preference pairs

TIS-DPO: Experiment Results

Datasets: PKU-SafeRLHF for harmlessness/helpfulness evaluation, with AdvBench, JailbreakBench, and Alpaca

Metrics: Llama-Guard safety detection, Beaver-Cost/Reward scoring, MT-bench, GPT-4 human preference

Hyperparameters: μ =±1, L=-0.5, U=1.5, k=1, β =0.1; trained for 1 epoch with RMSprop

Llama-Guard ↑ Harm. ↓ Help. ↑ MT ↑ Win LLaMA2-7B w. DPO 74.4% 5.6 7.9 4.1 - w. PPO 78.7% 4.2 8.1 4.2 53.29 w. IPO 74.8% 5.7 8.0 4.1 50.99	Settings	PKU-SafeRLHF					
w. DPO 74.4% 5.6 7.9 4.1 - w. PPO 78.7% 4.2 8.1 4.2 53.29 w. IPO 74.8% 5.7 8.0 4.1 50.99 w. TDPO 75.9% 4.6 8.0 4.1 52.49 w. KTO 79.8% 4.1 8.0 4.0 58.39 w. TIS-DPO(P) 75.9% 4.6 8.0 4.1 49.49 w. TIS-DPO(S) 89.6% 3.2 7.8 4.3 66.79		Llama-Guard ↑	Harm. ↓	Help. ↑	MT ↑	Win ↑	
w. PPO 78.7% 4.2 8.1 4.2 53.29 w. IPO 74.8% 5.7 8.0 4.1 50.99 w. TDPO 75.9% 4.6 8.0 4.1 52.49 w. KTO 79.8% 4.1 8.0 4.0 58.39 w. TIS-DPO(P) 75.9% 4.6 8.0 4.1 49.49 w. TIS-DPO(S) 89.6% 3.2 7.8 4.3 66.79	LLaMA2-7B						
w. IPO 74.8% 5.7 8.0 4.1 50.9% w. TDPO 75.9% 4.6 8.0 4.1 52.4% w. KTO 79.8% 4.1 8.0 4.0 58.3% w. TIS-DPO(P) 75.9% 4.6 8.0 4.1 49.4% w. TIS-DPO(S) 89.6% 3.2 7.8 4.3 66.7%	w. DPO	74.4%	5.6	7.9	4.1	_	
w. TDPO 75.9% 4.6 8.0 4.1 52.49 w. KTO 79.8% 4.1 8.0 4.0 58.39 w. TIS-DPO(P) 75.9% 4.6 8.0 4.1 49.49 w. TIS-DPO(S) 89.6% 3.2 7.8 4.3 66.79	w. PPO	78.7%	4.2	8.1	4.2	53.2%	
w. KTO 79.8% 4.1 8.0 4.0 58.39 w. TIS-DPO(P) 75.9% 4.6 8.0 4.1 49.49 w. TIS-DPO(S) 89.6% 3.2 7.8 4.3 66.79	w. IPO	74.8%	5.7	8.0	4.1	50.9%	
w. TIS-DPO(P) 75.9% 4.6 8.0 4.1 49.49 w. TIS-DPO(S) 89.6% 3.2 7.8 4.3 66.79	w. TDPO	75.9%	4.6	8.0	4.1	52.4%	
w. TIS-DPO(S) 89.6% 3.2 7.8 4.3 66.79	w. KTO	79.8%	4.1	8.0	4.0	58.3%	
	w. TIS-DPO(P)	75.9%	4.6	8.0	4.1	49.4%	
w. TIS-DPO(D) 96.7% 0.1 8.0 4.3 79.39	w. TIS-DPO(S)	89.6%	3.2	7.8	4.3	66.7%	
	w. TIS-DPO(D)	96.7%	0.1	8.0	4.3	79.3%	