

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA: ESCUELA SUPERIOR DE CÓMPUTO (ESCOM), UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA, CAMPUS ZACATECAS (UPIIZ)

PROGRAMA ACADÉMICO: Ingeniería en Sistemas Computacionales

UNIDAD DE APRENDIZAJE: Bioinformatics

SEMESTRE: VII

PLAN DE ESTUDIOS: 2020

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

Construye aplicaciones de bioinformática con base en el análisis de secuencias biológicas y la representación computacional del flujo de información de cadenas peptídicas a estructura tridimensional con función biológica y la simulación de su dinámica

simulación de su dinán	nica.	·	•				, ,			
CONTENIDOS:	Bioinformática estructural II. Análisis de secuencias biológicas III. Bioinformática aplicada									
	Métodos de enser	Métodos de enseñanza				Estrategias de aprendizaje				
	a) Inductivo				a) Estudio de Casos	3				
ORIENTACIÓN DIDÁCTICA:	b) Deductivo	b) Deductivo			b) Aprendizaje Basa	ido en Problemas	Х			
DIDAG HOA.	c) Analógico				c) Aprendizaje Orier	ntado a Proyectos				
	d)Heurístico	d)Heurístico			d)					
	Diagnóstica			Х	Saberes Previament	te Adquiridos				
	Solución de casos			Х	Organizadores gráfi	cos				
,	Problemas resueltos			Х	Problemarios					
EVALUACIÓN Y ACREDITACIÓN:	Reporte de proyectos				Exposiciones		Х			
ACKEDITACION.	Reportes de indagación			Х	Otras evidencias a	evaluar:				
	Reportes de prácticas			Х						
	Evaluación escrita			Х						
	Autor(es)	Año		Títul	o del documento	Editorial / ISB	N			
	Baxevanis, A. D., Bader, G. D. y Wishart, D. S.	2020	Bioi	inform	atics	John Wiley & Sons/ 978- 1119335580				
BIBLIOGRAFÍA BÁSICA:	Jensen, F.	2017		oduction emistry	on to Computational	Wiley/ 978-1118825990				
	Lesk, A.	2019	Intro	oductio	on to Bioinformatics	Oxford university press/ 978-0198794141				
	Lesk, A.	2017	Intro	oductio	on to Genomics	Oxford university press/ 978-0198754831				
	Singh, D. B.	2020	Cor	nputer	-Aided Drug Design	Springer/ 978- 9811568176				

SECRETARÍA ACADÉMICA

PROGRAMA DE ESTUDIOS

UNIDAD DE APRENDIZAJE: Bioinformatics HOJA 2 DE 8

UNIDAD ACADÉMICA: ESCUELA SUPERIOR DE CÓMPUTO (ESCOM), UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA, CAMPUS ZACATECAS (UPIIZ)

PROGRAMA ACADÉMICO: Ingeniería en Sistemas Computacionales

SEMESTRE: VII ÁREA DE FORMACIÓN: MODALIDAD: PLAN DE ESTUDIOS: 2020 Profesional Escolarizada

Profesional
TIPO DE UNIDAD DE APRENDIZAJE:

Teórica- práctica/ Optativa

VIGENTE A PARTIR DE: CRÉDITOS:

Enero 2023 **TEPIC:** 7.5 **SATCA:** 6.3

INTENCIÓN EDUCATIVA

La unidad de aprendizaje contribuye al perfil de egreso de la Ingeniería en Sistemas Computacionales proporcionando los conocimientos que le permitan solucionar problemas, analizar información obtenida de sistemas bióticos, comprender los modelos de flujo de información biológica y proponer un tratamiento computacional de las propiedades y la interacción entre moléculas con actividad biológica. Asimismo, fomenta habilidades transversales como el trabajo en equipo transdisciplinario, responsabilidad social, bioética, creatividad e ingenio.

Esta unidad de aprendizaje se relaciona de manera antecedente con Compiladores, Matemáticas discretas, Álgebra lineal, Inteligencia artificial, Ingeniería, ética y sociedad, Probabilidad y estadística y Mecánica y electromagnetismo. No tiene relación lateral ni consecuente con otras unidades de aprendizaje.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

Construye aplicaciones de bioinformática con base en el análisis de secuencias biológicas y la representación computacional del flujo de información de cadenas peptídicas a estructura tridimensional con función biológica y la simulación de su dinámica.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 3.0

HORAS PRÁCTICA/SEMANA: 1.5

HORAS TEORÍA/SEMESTRE: 54.0

HORAS PRÁCTICA/SEMESTRE:

27.0

HORAS APRENDIZAJE AUTÓNOMO: 24.0

HORAS TOTALES/SEMESTRE: 81.0

UNIDAD DE APRENDIZAJE REDISEÑADA POR: Academia de

Ciencias de la Computación

REVISADA POR:

M. en C. Iván Giovanny Mosso García
Subdirector Académico ESCOM

M. en C. Roberto Oswaldo Cruz Lejía Subdirector Académico UPIIZ

APROBADA POR:

Consejo Técnico Consultivo Escolar

M. en C. Andrés Ortigoza Campos Presidente ESCOM 22/11/2022

Dr. Fernando Flores Mejía

Presidente del CTCE de UPIIZ

27/06/2022

APROBADO POR: Comisión de Programas Académicos del Consejo General Consultivo del IPN.

24/11/2022

AUTORIZADO Y VALIDADO POR:

Mtro. Mauricio Igor Jasso Zaranda **Secretario Académico**

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Bioinformatics HOJA 3 DE 8

UNIDAD TEMÁTICA I Bioinformática estructural	CONTENIDO		HORAS CON DOCENTE		
		T	Р		
UNIDAD DE COMPETENCIA	1.1. Bioinformática y sociedad1.1.1. Conceptualización de bioinformática1.1.2. Historia y actualidad de la bioinformática	1.5		1.0	
Explica la bioinformática estructural a partir de su historia, su contexto social y el estudio, modelado y simulación de proteínas.	1.2. Proteínas1.2.1. Aminoácidos y sus propiedades1.2.2. Cadenas peptídicas1.2.3. Funciones de las proteínas	3.0		1.0	
on all process and	1.3. Plegamiento de proteínas1.3.1. El experimento de Anfinsen1.3.2. Relación entre plegamiento y función en las proteínas1.3.3. Casos de plegamiento incorrecto de proteínas	1.5		1.0	
	 1.4. Representación computacional de la estructura tridimensional de las proteínas 1.4.1. Repositorios de archivos de coordenadas 1.4.2. Representaciones gráficas de proteínas 	3.0	3.0	1.0	
	 Simulaciones de dinámica molecular de proteínas 1.5.1. Campos de fuerzas 1.5.2. Algoritmos para la integración de ecuaciones de movimiento 1.5.3. Análisis de los resultados de una simulación de dinámica molecular 1.5.4. Hipótesis ergódica y búsqueda de confórmeros 	6.0	4.5	2.0	
	 1.6. Fronteras de la bioinformática estructural 1.6.1. Modelado y simulación ab initio 1.6.2. Campos de fuerzas obtenidos por aprendizaje automatizado 1.6.3. Dinámica molecular dirigida 	3.0	1.5	2.0	
	Subtotal	18.0	9.0	8.0	

UNIDAD DE APRENDIZAJE:

INSTITUTO POLITÉCNICO NACIONAL

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

4

DE

8

HOJA

18.0

Subtotal

9.0

8.0

Bioinformatics

UNIDAD TEMÁTICA II CONTENIDO **HORAS CON** HRS Análisis de secuencias **DOCENTE** AA biológicas Т 2.1. Flujo de información entre secuencia biológicas 3.0 1.0 **UNIDAD DE** 2.1.1. Replicación de ADN COMPETENCIA 2.1.2. Transcripción de ADN 2.1.3. El código genético y cadenas sobre los alfabetos de nucleótidos y aminoácidos Estructura el análisis de 2.1.4. Traducción de ARN secuencias biológicas a partir de los modelos de flujo de información entre Conservación evolutiva de información biológica 3.0 1.0 ADN, ARN y proteínas y su 2.2.1. Procesos de mutación del ADN representación 2.2.2. Proteínas homólogas como 2.2.3. Proteínas parálogas cadenas sobre un alfabeto. 2.2.4. Proteínas ortólogas 2.2.5. Proteínas análogas 4.5 Análisis de secuencias de proteínas 3.0 2.0 2.3.1. Repositorios de secuencias de proteínas 2.3.2. Alineamiento de secuencias 2.3.3. Matrices de sustitución 2.3.4. Algoritmos de alineamiento de secuencias 2.3.5. Búsqueda de secuencias homólogas 1.5 2.0 Predicción de estructura de proteínas 3.0 2.4.1. El problema de plegamiento de proteínas 2.4.2. Paradoja de Levinthal 2.4.3. Predicción de estructura de proteínas por homología 2.4.4. Predicción de estructura de proteínas por enhebrado de pliegues 2.4.5. Métodos de predicción de estructura de proteínas Ab initio Genómica 3.0 1.5 1.0 2.5.1. Repositorios de secuencias de nucleótidos 2.5.2. Genomas y variantes genómicas 2.5.3. Genómica de poblaciones Fronteras del análisis de secuencias biológicas 3.0 1.5 1.0 2.6.1. Alineamiento de múltiples secuencias 2.6.2. Modelo hidrofóbico-polar para el plegamiento de proteínas 2.6.3. Caracterización automatizada de genomas

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Bioinformatics HOJA 5 DE 8

UNIDAD TEMÁTICA III Bioinformática aplicada	CONTENIDO	HORA DOC	HRS AA	
•		Т	Р	
UNIDAD DE COMPETENCIA Implementa aplicaciones de	3.1. Interacciones entre moléculas con actividad biológica3.1.1. Acoplamiento molecular3.1.2. Predicción de interacciones entre moléculas3.1.3. Reactividad química	4.5	3.0	2.0
vanguardia de la bioinformática a partir de repositorios de información biológica y los algoritmos más recientes en un contexto de responsabilidad social y bioética.	3.2.2. Metabolómica3.2.3. Relación cuantitativa entre estructura y actividad	6.0	3.0	2.0
social y bioctica.	3.3. Redes de regulación génica3.3.1. Repositorios de información transcriptómica3.3.2. Algoritmos de predicción de redes de regulación génica	3.0	1.5	2.0
	3.4. Epigenética3.4.1. Etiquetas epigenéticas y sus efectos3.4.2. Análisis de epigenomas	3.0	1.5	1.0
	3.5. Bioética	1.5		1.0
	Subtotal	18.0	9.0	8.0

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

6

DE 8

HOJA:

UNIDAD DE APRENDIZAJE:

Bioinformatics

EVALUACIÓN DE LOS APRENDIZAJES

ESTRATEGIAS DE APRENDIZAJE

Estrategia de Aprendizaje Basado en Problemas

El alumno desarrollará las siguientes actividades:

- 1. Indagación previa sobre temas revisados y sobre temas de frontera de la Bioinformática
- 2. Lectura de artículos de divulgación y/o investigación
- 3. Análisis de casos de aplicaciones de la Bioinformática y de problemas de Bioética
- 4. Resolución de problemas de forma individual y en equipo
- 5. Realización de prácticas de laboratorio

Evaluación diagnóstica

Portafolio de evidencias:

- 1. Reportes de indagación
- 2. Presentaciones
- 3. Solución de casos y presentaciones
- 4. Problemas resueltos
- 5. Reportes de prácticas
- 6. Evaluación escrita

RELACIÓN DE PRÁCTICAS							
PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	LUGAR DE REALIZACIÓN				
1	Estructura 3D de las proteínas	l					
2	Dinámica molecular de proteínas	I					
3	Software de actualidad para bioinformática estructural	I					
4	Protocolos de análisis de secuencias de proteínas	II					
5	Protocolos de predicción de estructura de proteínas	II					
6	Obtención y análisis de información genómica	II	Laboratorio de				
7	Software de actualidad para análisis de secuencias biológicas	II	Cómputo				
8	Modelado de la interacción entre moléculas con actividad biológica	III					
9	Diseño computacional de un fármaco	III					
10	Inferencia de redes de regulación entre genes	III					
11	Obtención y análisis de información epigenética	III					
		TOTAL DE HORAS	27.0				

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

HOJA: 7

DE 8

UNIDAD DE APRENDIZAJE:

Bioinformatics

			Bibliografía								
Tipo	Autor(es)	Año	Título del documento	Editorial/ ISBN		N	Libro	Antología m	Otros		
В	Baxevanis, A. D., Bader, G. D. y Wishart, D. S.	2020	Bioinformatics	John Wiley & Sons/ 978-1119335580			ıs/	х			
С	DeGrazia, D. y Millum, J.	2021	A Theory of Bioethics	Cambridge University Press/ 978-1009011747					Х		
С	Gagniuc, P. A.	2021	Algorithms in Bioinformatics: Theory and implementation	111	ey/ 9 [.] 9697	7961			Х		
В	Jensen, F.	2017	Introduction to Computational Chemistry	Wiley/ 978- 1118825990			Х				
В	Lesk, A.	2019	Introduction to Bioinformatics	Oxford university press/ 978-0198794141				Х			
В	Lesk, A.	2017	Introduction to Genomics	Oxford university press/ 978-0198754831			Х				
C*	Schlick, T.	2010	Molecular modeling and simulation: An interdisciplinary guide	Springer/ 978- 1441963505				Х			
В	Singh, D. B.	2020	Computer-Aided Drug Design	Springer/ 978- 9811568176				Х			
			Recursos digitales								
Autor, año, título y Dirección Electrónica					Simulador	Imagen	Tutorial	Video	Presentación	Diccionario	Otro
Bertram, J. (2020). Evolution rapidly optimizes stability and aggregation in lattice proteins despite pervasive landscape valleys and mazes. Recuperado el 11 de abril de 2022, de: https://doi.org/10.1534/genetics.120.302815											
Harrell, R. (2017). Bioethical Considerations of Advancing the Application of Marine Biotechnology and Aquaculture. Recuperado el 11 de abril de 2022, de: https://doi.org/10.3390/md15070197											
Hogeweg, P. (2011). The Roots of Bioinformatics in Theoretical Biology. Recuperado el 11 de abril de 2022, X de: https://doi.org/10.1371/journal.pcbi.1002021											
Unke, O. (2021). Machine Learning Force Fields. Recuperado el 11 de abril de 2022, de: https://doi.org/10.1021/acs.chemrev.0c01111											

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

HOJA:

DE 8

UNIDAD DE APRENDIZAJE: Bioinformatics

PERFIL DOCENTE: Ingeniería en Sistemas Computacionales Licenciatura y/o Ingeniería en Ciencias Físico- Matemáticas o Ciencias Médico-Biológicas con grado de Maestría en Ciencias Físico Matemáticas o en Ciencias Médico-Biológicas.

EXPERIENCIA PROFESIONAL	CONOCIMIENTOS	HABILIDADES DIDÁCTICAS	ACTITUDES
		Coordinar grupos de	Compromiso con la
Un año en docencia a nivel	Compiladores	aprendizaje	enseñanza
superior	Matemáticas discretas	Organizar equipos de	Congruencia
	Álgebra lineal	aprendizaje	Disponibilidad al cambio
Un año en desarrollo de	Inteligencia artificial	Planificación de la	Empatía
proyectos de bioinformática	Ética	enseñanza	Generosidad
	Probabilidad y estadística	Manejo de estrategias	Honestidad
	Mecánica y	didácticas centradas en el	Proactividad
	electromagnetismo	aprendizaje	Respeto
	Del Modelo Educativo	Manejo de TIC en la	Responsabilidad
	Institucional	enseñanza y	Solidaridad
		para el aprendizaje	Tolerancia
		Comunicación	Vocación de servicio
		multidireccional	Liderazgo
			Optimismo

ELABORÓ REVISÓ AUTORIZÓ Dr. Jorge Luis Rosas Trigueros Coordinador Dra. Rosaura Palma Orozco M. en C. Roberto Oswaldo Cruz M. en C. Andrés Ortigoza Campos **Director ESCOM Participante** Lejía Subdirector Académico UPIIZ M. en C. Miguel Sánchez Brito M. en C. Iván Giovanny Mosso Dr. Fernando Flores Mejía **Participante** García **Director UPIIZ Subdirector Académico**

ESCOM