Universal Portfolios

Yoav Freund

March 10, 2025

Based On "Universal Portfolios" by Cover and "Universal Portfolios with Side Information" by Cover and Ordentlich.

Payoff:

▶ Assumption: Let m horses run in a race. Let the odds be o(1),...,o(m)

- Assumption: Let m horses run in a race. Let the odds be o(1),...,o(m)
- ► Gambler starts with \$1.

- Assumption: Let m horses run in a race. Let the odds be o(1),...,o(m)
- Gambler starts with \$1.
- ▶ before each race the gambler distributes all her money among m horses: $b(1), ..., b(m), b(i) \ge 0, \sum_i b(i) = 1$

- Assumption: Let m horses run in a race. Let the odds be o(1),...,o(m)
- Gambler starts with \$1.
- ▶ before each race the gambler distributes all her money among m horses: $b(1), ..., b(m), b(i) \ge 0, \sum_i b(i) = 1$
- ▶ If horse *i* wins, the payoff is o(X) per \$1.

- Assumption: Let m horses run in a race. Let the odds be o(1),...,o(m)
- Gambler starts with \$1.
- ▶ before each race the gambler distributes all her money among m horses: $b(1), ..., b(m), b(i) \ge 0, \sum_i b(i) = 1$
- If horse *i* wins, the payoff is o(X) per \$1.
- S(i) = b(i) o(i) is the factor by which the gambler's wealth is multiplied when horse i wins.

- Assumption: Let m horses run in a race. Let the odds be o(1),...,o(m)
- Gambler starts with \$1.
- ▶ before each race the gambler distributes all her money among m horses: $b(1), ..., b(m), b(i) \ge 0, \sum_i b(i) = 1$
- If horse i wins, the payoff is o(X) per \$1.
- S(i) = b(i) o(i) is the factor by which the gambler's wealth is multiplied when horse i wins.
- The wealth of the gambler after n races is

$$S_n = \prod_{j=1}^n o(i_j)b(i_j),$$

▶ Put all of the money on the horse with the highest return.

- ▶ Put all of the money on the horse with the highest return.
- Put all of the money on the horse with the highest probability.

- Put all of the money on the horse with the highest return.
- Put all of the money on the horse with the highest probability.
- Risky: most probable horse might still lose.

- Put all of the money on the horse with the highest return.
- Put all of the money on the horse with the highest probability.
- Risky: most probable horse might still lose.
- Better to hedge.

- Put all of the money on the horse with the highest return.
- Put all of the money on the horse with the highest probability.
- Risky: most probable horse might still lose.
- Better to hedge.
- ▶ Define $Z = \sum_{i} \frac{1}{o(i)}$ then betting $b(i) = \frac{1}{Zo(i)}$ guarantees $\forall i, S(i) = \frac{1}{Z}$

- Put all of the money on the horse with the highest return.
- Put all of the money on the horse with the highest probability.
- Risky: most probable horse might still lose.
- Better to hedge.
- ▶ Define $Z = \sum_{i} \frac{1}{o(i)}$ then betting $b(i) = \frac{1}{Zo(i)}$ guarantees $\forall i, S(i) = \frac{1}{Z}$
- ▶ If Z < 1 this guarantees S(i) > 1.

▶ Suppose the odds are all one o(i) = 1

- ▶ Suppose the odds are all one o(i) = 1
- ▶ The wealth of the gambler after *n* races is

$$S_n = \prod_{i=1}^n b_i,$$

- ► Suppose the odds are all one o(i) = 1
- ▶ The wealth of the gambler after *n* races is

$$S_n = \prod_{i=1}^n b_i,$$

$$-\log S_n = -\sum_{i=1}^m \log b_i$$

- Suppose the odds are all one o(i) = 1
- ► The wealth of the gambler after n races is

$$S_n = \prod_{i=1}^n b_i$$

- ightharpoonup $-\log S_n = -\sum_{i=1}^m \log b_i$
- minus-log-wealth is equal to the sum of log losses.

m stocks.

- m stocks.
- Investor starts with \$1.

- m stocks.
- Investor starts with \$1.
- At the start of each trading day the investor distributes all her money among m stocks: $\mathbf{b} = (b_1, \dots, b_m)^T$, $b_i \ge 0$, $\sum_i b_i = 1$

- m stocks.
- Investor starts with \$1.
- At the start of each trading day the investor distributes all her money among m stocks: $\mathbf{b} = (b_1, \dots, b_m)^T$, $b_i \ge 0$, $\sum_i b_i = 1$
- > $x_i > 0$ the price relative (PR) = ratio between prices of stock *i* at the beginning and end of the day.

- m stocks.
- Investor starts with \$1.
- At the start of each trading day the investor distributes all her money among m stocks: $\mathbf{b} = (b_1, \dots, b_m)^T$, $b_i \ge 0$, $\sum_i b_i = 1$
- > x_i > 0 the price relative (PR) = ratio between prices of stock *i* at the beginning and end of the day.
- ightharpoonup All PR for a day $\mathbf{x} = (x_1, \dots x_m)^T$

- m stocks.
- Investor starts with \$1.
- At the start of each trading day the investor distributes all her money among m stocks: $\mathbf{b} = (b_1, \dots, b_m)^T$, $b_i \ge 0$, $\sum_i b_i = 1$
- > x_i > 0 the price relative (PR) = ratio between prices of stock *i* at the beginning and end of the day.
- ightharpoonup All PR for a day $\mathbf{x} = (x_1, \dots x_m)^T$
- ightharpoonup All PR for m days: $\mathbf{x}^n = (\mathbf{x}_1, \dots, \mathbf{x}_n)$

- m stocks.
- Investor starts with \$1.
- At the start of each trading day the investor distributes all her money among m stocks: $\mathbf{b} = (b_1, \dots, b_m)^T$, $b_i \ge 0$, $\sum_i b_i = 1$
- > $x_i > 0$ the price relative (PR) = ratio between prices of stock *i* at the beginning and end of the day.
- ightharpoonup All PR for a day $\mathbf{x} = (x_1, \dots x_m)^T$
- ► All PR for *m* days: $\mathbf{x}^n = (\mathbf{x}_1, \dots, \mathbf{x}_n)$
- $S = \mathbf{b}^T \mathbf{x}^T$ is the factor by which the wealth increases in a day.

- m stocks.
- Investor starts with \$1.
- At the start of each trading day the investor distributes all her money among m stocks: $\mathbf{b} = (b_1, \dots, b_m)^T$, $b_i \ge 0$, $\sum_i b_i = 1$
- > $x_i > 0$ the price relative (PR) = ratio between prices of stock *i* at the beginning and end of the day.
- ightharpoonup All PR for a day $\mathbf{x} = (x_1, \dots x_m)^T$
- ► All PR for *m* days: $\mathbf{x}^n = (\mathbf{x}_1, \dots, \mathbf{x}_n)$
- $S = \mathbf{b}^T \mathbf{x}^T$ is the factor by which the wealth increases in a day.
- \triangleright The wealth of the gambler after n days:

$$S_n(\mathbf{x}^n) = \prod_{i=1}^n \mathbf{b}_i^T \mathbf{x}_i^T$$

Doubling rate

Rate Per Day

Doubling rate

- ► Rate Per Day
- $ightharpoonup W_n(\mathbf{x}^n) = \frac{1}{n} \log S_n(\mathbf{x}^n)$

Doubling rate

- Rate Per Day
- $V_n(\mathbf{x}^n) = \frac{1}{n} \log S_n(\mathbf{x}^n)$
- Our goal is to design portfolio strategies with competitive doubling rate.

➤ A strategy where in day one you distribute your money among the stocks.

- ➤ A strategy where in day one you distribute your money among the stocks.
- No trading in subsequent days

- A strategy where in day one you distribute your money among the stocks.
- No trading in subsequent days
- Suppose the split is into m equal parts.

- A strategy where in day one you distribute your money among the stocks.
- No trading in subsequent days
- Suppose the split is into m equal parts.

- A strategy where in day one you distribute your money among the stocks.
- No trading in subsequent days
- Suppose the split is into m equal parts.

$$\triangleright S_n = \sum_{i=1}^m \frac{1}{m} \prod_{j=1}^n x_{ji}$$

•
$$W_n = \frac{1}{n} \log S_n = \frac{1}{n} \log \sum_{i=1}^m \frac{1}{m} \prod_{j=1}^n x_{ji}$$

- A strategy where in day one you distribute your money among the stocks.
- No trading in subsequent days
- Suppose the split is into m equal parts.

•
$$W_n = \frac{1}{n} \log S_n = \frac{1}{n} \log \sum_{i=1}^m \frac{1}{m} \prod_{j=1}^n x_{ji}$$

$$ightharpoonup \geq rac{1}{n} \left(-\log m + \max_i \log \prod_{j=1}^n x_{ji} \right) = \max_i W_i - rac{\log m}{n}$$

- A strategy where in day one you distribute your money among the stocks.
- No trading in subsequent days
- Suppose the split is into m equal parts.

•
$$W_n = \frac{1}{n} \log S_n = \frac{1}{n} \log \sum_{i=1}^m \frac{1}{m} \prod_{j=1}^n x_{ji}$$

$$ightharpoonup \geq rac{1}{n} \left(-\log m + \max_i \log \prod_{j=1}^n x_{ji} \right) = \max_i W_i - rac{\log m}{n}$$

▶ The doubling rate converges to that of the best stock!

- A strategy where in day one you distribute your money among the stocks.
- No trading in subsequent days
- Suppose the split is into m equal parts.

•
$$W_n = \frac{1}{n} \log S_n = \frac{1}{n} \log \sum_{i=1}^m \frac{1}{m} \prod_{j=1}^n x_{ji}$$

$$ightharpoonup \geq rac{1}{n} \left(-\log m + \max_i \log \prod_{j=1}^n x_{ji} \right) = \max_i W_i - rac{\log m}{n}$$

- The doubling rate converges to that of the best stock!
- Not very surprising.

Buy and hold

- A strategy where in day one you distribute your money among the stocks.
- No trading in subsequent days
- Suppose the split is into m equal parts.

$$V_n = \frac{1}{n} \log S_n = \frac{1}{n} \log \sum_{i=1}^m \frac{1}{m} \prod_{j=1}^n x_{ji}$$

$$ightharpoonup \geq \frac{1}{n} \left(-\log m + \max_i \log \prod_{j=1}^n x_{ji} \right) = \max_i W_i - \frac{\log m}{n}$$

- The doubling rate converges to that of the best stock!
- Not very surprising.
- Can we compete against stronger comparators?

Use a fixed distribution of the stocks b

- Use a fixed distribution of the stocks b
- $ightharpoonup W_n = \prod_{i=1}^n \mathbf{b}^T \mathbf{x}_i$

- Use a fixed distribution of the stocks b
- $V_n = \prod_{i=1}^n \mathbf{b}^T \mathbf{x}_i$
- Unlike buy and hold: rebalancing requires trading.

- Use a fixed distribution of the stocks b
- $V_n = \prod_{i=1}^n \mathbf{b}^T \mathbf{x}_i$
- Unlike buy and hold: rebalancing requires trading.
- Can make money even if no no gain by indiv. stocks

- Use a fixed distribution of the stocks b
- $V_n = \prod_{i=1}^n \mathbf{b}^T \mathbf{x}_i$
- Unlike buy and hold: rebalancing requires trading.
- Can make money even if no no gain by indiv. stocks
- ► Example: **b** = (1/2, 1/2) lter: 1,2,3,4,5,...

Cash: 1,1,1,1,1,... Stock: 1,2,1,2,1....

- Use a fixed distribution of the stocks b
- $V_n = \prod_{i=1}^n \mathbf{b}^T \mathbf{x}_i$
- Unlike buy and hold: rebalancing requires trading.
- Can make money even if no no gain by indiv. stocks
- ► Example: b = (1/2,1/2) Iter: 1,2,3,4,5,... Cash: 1,1,1,1,... Stock: 1,2,1,2,1,...
- ▶ Wealth: $1, \frac{3}{2}, \frac{3}{4} + \frac{3}{4} \frac{1}{2} = \frac{9}{8}, \frac{9}{8} \frac{3}{2}, \dots$

- Use a fixed distribution of the stocks b
- $V_n = \prod_{i=1}^n \mathbf{b}^T \mathbf{x}_i$
- Unlike buy and hold: rebalancing requires trading.
- Can make money even if no no gain by indiv. stocks
- Example: b = (1/2,1/2) Iter: 1,2,3,4,5,... Cash: 1,1,1,1,1,... Stock: 1,2,1,2,1,...
- ▶ Wealth: $1, \frac{3}{2}, \frac{3}{4} + \frac{3}{4}\frac{1}{2} = \frac{9}{8}, \frac{9}{8}\frac{3}{2}, \dots$
- ▶ Wealth increases by a factor of $\frac{9}{8}$ every two iterations.

- Use a fixed distribution of the stocks b
- $V_n = \prod_{i=1}^n \mathbf{b}^T \mathbf{x}_i$
- Unlike buy and hold: rebalancing requires trading.
- Can make money even if no no gain by indiv. stocks
- ► Example: **b** = (1/2,1/2) Iter: 1,2,3,4,5,... Cash: 1,1,1,1,1,... Stock: 1,2,1,2,1,...
- ▶ Wealth: $1, \frac{3}{2}, \frac{3}{4} + \frac{3}{4} \frac{1}{2} = \frac{9}{8}, \frac{9}{8} \frac{3}{2}, \dots$
- Wealth increases by a factor of $\frac{9}{8}$ every two iterations.
- Market Makers.

Discovered by Kelly [1956]

- Discovered by Kelly [1956]
- Suppose PR x is drawn from a fixed distribution.

- ▶ Discovered by Kelly [1956]
- Suppose PR x is drawn from a fixed distribution.
- The strategy that achieves the maximal doubling rate is a constant rebalanced portfolio.

- Discovered by Kelly [1956]
- Suppose PR x is drawn from a fixed distribution.
- The strategy that achieves the maximal doubling rate is a constant rebalanced portfolio.
- If we know the distribution we can solve
 b* = argmax_b E_X[log b^Tx]

- Discovered by Kelly [1956]
- Suppose PR x is drawn from a fixed distribution.
- The strategy that achieves the maximal doubling rate is a constant rebalanced portfolio.
- If we know the distribution we can solve
 b* = argmax_b E_X[log b^Tx]
- What if we don't know the distribution?

- Discovered by Kelly [1956]
- Suppose PR x is drawn from a fixed distribution.
- The strategy that achieves the maximal doubling rate is a constant rebalanced portfolio.
- If we know the distribution we can solve
 b* = argmax_b E_X[log b^Tx]
- What if we don't know the distribution?
- We will give an algorithm that performs almost as well as the best constant rebalanced portfolio in hindsight.

What Are Universal Portfolios?

➤ Concept: Introduced by Thomas M. Cover, a universal portfolio is an investment strategy that asymptotically achieves the same growth rate of wealth as the best rebalanced portfolio in hindsight without knowing the future in advance.

What Are Universal Portfolios?

- Concept: Introduced by Thomas M. Cover, a universal portfolio is an investment strategy that asymptotically achieves the same growth rate of wealth as the best rebalanced portfolio in hindsight without knowing the future in advance.
- Key Idea: Use a buy and hold mixture over all constant rebalanced portfolios.

What Are Universal Portfolios?

- Concept: Introduced by Thomas M. Cover, a universal portfolio is an investment strategy that asymptotically achieves the same growth rate of wealth as the best rebalanced portfolio in hindsight without knowing the future in advance.
- ► **Key Idea:** Use a buy and hold mixture over all constant rebalanced portfolios.
- **Bound:** $\forall \mathbf{x}^n : \widehat{W}_n(\mathbf{x}^n) \geq W_n^*(\mathbf{x}^n) O(m^{\frac{\log n}{n}})$

▶ \mathcal{B} - the m-1 dimensional simplex = The set of all possible CRPs.

- ▶ \mathcal{B} the m-1 dimensional simplex = The set of all possible CRPs.
- $\blacktriangleright \mu$ a prior distribution over \mathcal{B}

- ▶ \mathcal{B} the m-1 dimensional simplex = The set of all possible CRPs.
- $\blacktriangleright \mu$ a prior distribution over \mathcal{B}

- ▶ \mathcal{B} the m-1 dimensional simplex = The set of all possible CRPs.
- $\blacktriangleright \mu$ a prior distribution over \mathcal{B}
- ► The portfolio for day *i* is

$$\hat{\mathbf{b}}_{i} = \hat{\mathbf{b}}_{i}(\mathbf{x}^{i-1}) = \frac{\int_{\mathcal{B}} \mathbf{b} \, S_{i-1}(\mathbf{b}, \mathbf{x}^{i-1}) \, \mathrm{d}\mu(\mathbf{b})}{\int_{\mathcal{B}} S_{i-1}(\mathbf{b}, \mathbf{x}^{i-1}) \, \mathrm{d}\mu(\mathbf{b})}, \quad i = 1, 2, \dots$$

- ▶ \mathcal{B} the m-1 dimensional simplex = The set of all possible CRPs.
- $\blacktriangleright \mu$ a prior distribution over \mathcal{B}
- ► The portfolio for day *i* is

$$\hat{\mathbf{b}}_{i} = \hat{\mathbf{b}}_{i}(\mathbf{x}^{i-1}) = \frac{\int_{\mathcal{B}} \mathbf{b} \, S_{i-1}(\mathbf{b}, \mathbf{x}^{i-1}) \, \mathrm{d}\mu(\mathbf{b})}{\int_{\mathcal{B}} S_{i-1}(\mathbf{b}, \mathbf{x}^{i-1}) \, \mathrm{d}\mu(\mathbf{b})}, \quad i = 1, 2, \dots$$

• We assume the μ is symmetric therefor $\mathbf{b}_1 = (1/m, \dots, 1/m)$

Main Theorems

▶ Theorem 1 For the Uniform distribution.

$$\frac{S_n^*(\mathbf{x}^n)}{\widehat{S}_n(\mathbf{x}^n)} \leq (n+1)^{m-1}$$

Main Theorems

▶ Theorem 1 For the Uniform distribution.

$$\frac{S_n^*(\mathbf{x}^n)}{\widehat{S}_n(\mathbf{x}^n)} \leq (n+1)^{m-1}$$

▶ Theorem 2 For the Dirichlet-(1/2,...,1/2) distribution.

$$\frac{S_n^*(\mathbf{x}^n)}{\widehat{S}_n(\mathbf{x}^n)} \le 2(n+1)^{(m-1)/2}$$

Comparing the priors for two stocks

Lemma 2: The μ -Weighted Universal Portfolio

For the μ -weighted universal portfolio:

$$\frac{S_n^*(x^n)}{\hat{S}_n(x^n)} \leq \max_{j^n} \frac{\prod\limits_{i=1}^n b_{j_i}^*}{\int_{\mathcal{B}} \prod\limits_{i=1}^n b_{j_i} d\mu(b)}$$

where the maximum is over the set of sequences of indices

$$j^n \in \{1,\ldots,m\}^n,$$

and

$$\mathbf{b}^* = (b_1^*, \dots, b_m^*)^t$$

is the best constant rebalanced portfolio for the sequence x^n .

Proof of Theorems

By Upper bounding

$$\max_{j^n} \frac{\prod\limits_{i=1}^n b_{j_i}^*}{\int_{\mathcal{B}} \prod\limits_{i=1}^n b_{j_i} d\mu(b)}$$

For each prior distribution.

Proof of Lemma 2

Recall the Definitions

First, recall the definitions:

$$S_n^*(x^n) = \prod_{i=1}^n b^{*t} x_i$$

and

$$\hat{S}_n(x^n) = \int_{\mathcal{B}} \prod_{i=1}^n b^t x_i \, d\mu(b).$$

Rewriting $S_n^*(x^n)$

We rewrite the product of sums $S_n^*(x^n)$ as a sum of products.

$$S_n^*(x^n) = \prod_{i=1}^n b^{*t} x_i = \prod_{i=1}^n \left(\sum_{j=1}^m b_j^* x_{ij} \right) = \sum_{j^n \in \{1, \dots, m\}^n} \prod_{i=1}^n b_{j_i}^* x_{j_i}$$

Where

$$j^n = (j_1, j_2, \dots, j_n) \in \{1, \dots, m\}^n.$$

Rewriting $\hat{S}_n(x^n)$

Similarly, we rewrite $\hat{S}_n(x^n)$ as:

$$\hat{S}_n(x^n) = \int_{\mathcal{B}} \prod_{i=1}^n b^t x_i \, d\mu(b)$$

$$= \sum_{j^n \in \{1, \dots, m\}^n} \int_{\mathcal{B}} \prod_{i=1}^n b_{j_i} x_{ij_i} \, d\mu(b).$$

Ratio of Wealths

The ratio of wealths can now be written as:

$$\frac{S_n^*(x^n)}{\hat{S}_n(x^n)} = \frac{\sum\limits_{j^n \in \{1, \dots, m\}^n} \prod\limits_{i=1}^n b_{j_i}^* x_{j_i}}{\sum\limits_{j^n \in \{1, \dots, m\}^n} \int_{\mathcal{B}} \prod\limits_{i=1}^n b_{j_i} x_{ij_i} d\mu(b)}$$

Alternative Formulation of Ratio

$$\frac{S_n^*(x^n)}{\hat{S}_n(x^n)} = \frac{\sum\limits_{\substack{j^n: \prod\limits_{i=1}^n x_{ij_i} > 0}} \prod\limits_{i=1}^n b_{j_i}^* x_{j_i}}{\sum\limits_{\substack{j^n: \prod\limits_{i=1}^n x_{ij_i} > 0}} \int_{\mathcal{B}} \prod\limits_{i=1}^n b_{j_i} x_{ij_i} \, d\mu(b)}$$

Lemma 1

If
$$\alpha_1, \ldots, \alpha_n \geq 0$$
, and $\beta_1, \ldots, \beta_n \geq 0$, then

$$\frac{\sum\limits_{i=1}^{n}\alpha_{i}}{\sum\limits_{j=1}^{n}\beta_{i}}\leq\max_{j}\frac{\alpha_{j}}{\beta_{j}}.$$

Applying Lemma 1

We apply Lemma 1 with:

$$\alpha_{(j^n)} \triangleq \prod_{i=1}^n b_{j_i}^* x_{ij_i}$$

and

$$eta_{(j^n)} riangleq \int_{\mathcal{B}} \prod_{i=1}^n b_{j_i} x_{ij_i} d\mu(b)$$

for

$$j^n \in \left\{j^n: \prod_{i=1}^n x_{ij_i} > 0\right\}.$$

Obtaining the Bound

Using Lemma 1, we obtain:

$$\frac{S_n^*(x^n)}{\hat{S}_n(x^n)} \leq \max_{\substack{j^n: \prod \\ i=1 \\ j = 1}} \frac{\prod \limits_{i=1}^n b_{j_i}^* x_{ij_i}}{\int_{\mathcal{B}} \prod \limits_{i=1}^n b_{j_i} x_{ij_i} d\mu(b)}$$

Simplifying the Expression

The fraction simplifies to:

$$= \max_{j^n: \prod\limits_{i=1}^n x_{ij_i} > 0} \frac{\prod\limits_{i=1}^n b_{j_i}^*}{\int_{\mathcal{B}} \prod\limits_{i=1}^n b_{j_i} d\mu(b)}$$
$$\leq \max_{j^n} \frac{\prod\limits_{i=1}^n b_{j_i}^*}{\int_{\mathcal{B}} \prod\limits_{i=1}^n b_{j_i} d\mu(b)}$$

Completing the Proof

Since the product of x_{ij_i} 's factors out of the numerator and denominator, we conclude:

$$\frac{S_n^*(x^n)}{\hat{S}_n(x^n)} \leq \max_{j^n} \frac{\prod\limits_{i=1}^n b_{j_i}^*}{\int_{\mathcal{B}} \prod\limits_{i=1}^n b_{j_i} d\mu(b)}$$

2-stock portfolios

- 2-stock portfolios
- Period:1963 1985

- 2-stock portfolios
- Period:1963 1985
- Kin Arc and Iroquis are two of the most volatile stocks.

- 2-stock portfolios
- Period:1963 1985
- Kin Arc and Iroquis are two of the most volatile stocks.
- Iroquis was the best performing stock for this period (791% profit)

Iroqu vs. Kinar

FIGURE 8.1. Performance of Iroquois brands and Kin Ark.

Iroqu vs. Kinar vs Universal

Iroqu vs. Kinar 20yr return of different fixed portfolios

FIGURE 8.2. Performance of rebalanced portfolio.

Iroqu vs. Kinar mix in universal portfolio

FIGURE 8.4. The portfolio \hat{b}_k .

Commercial Metals and Kin Arc

18.5. Commercial Metals and Kin Ark; Performance of Universal Portfolio; Universal Portfolio; Performance of Rebalanced F

Commercial Metals and Mei Corp

IBM and CocaCola

Transaction costs are ignored.

- Transaction costs are ignored.
- Stocks selected in hind-sight.

- Transaction costs are ignored.
- Stocks selected in hind-sight.
- Volatile stocks are sensitive to exit time.

- Transaction costs are ignored.
- Stocks selected in hind-sight.
- Volatile stocks are sensitive to exit time.
- Ignores mergers bankruptcies and acquisitions.