

Technology of optoelectronic semiconductor components - Part A

A: Growth and deposition Lithography and etching

B: Clean rooms
Fabrication of the laser diode

Typical fabrication

- Clear substrate: mono-crystalline semiconductor material
- Epitaxial growth: mono-crystalline layers of (other) semiconductors are deposited on it
- (Photo)lithography: a pattern is applied to a (light) sensitive resist
- Etching: by means of chemical or plasma process the pattern in the resist is transferred to the semiconductor under it
- Deposition: extra material (semiconductor, isolator, metal) is put on top of the structure
- Metallization: a metal layer (e.g. gold) for electrical contact

Monocrystalline semiconductor (1)

 Czochralski process: an ingot grows from a "seed", which is slowly rotated and pulled upwards from a bath

Monocrystalline semiconductor (2)

- Floating zone process: a melted zone moves impurities to the side
- The process is repeated
- Less popular than Czochralski process
 - smaller diameter of the ingot
 - less purity

Monocrystalline semiconductor (3)

Result: an ingot

• Diameter: 2" (5cm) \rightarrow 12" (30cm)

depends on the market (silicon industry: largest boules)

 depends on the material (the better the heat conductivity, the larger diameter can be achieved)

Technology

Semiconductor wafers

- An ingot is sliced with a saw
- The wafers are polished

- depends on the market
- depends on the material
 - Si: $4" \rightarrow 12"$
 - III-V: $2" \rightarrow 6"$
- Thickness: $400\mu m \rightarrow 1mm$
 - depends on the diameter (mechanical strength)

Epitaxial growth (1)

- Wafer = pure material
- Components consist of layers with different doping
 - n or p
 - different concentrations
- Deposition of layers
 - mono-crystalline
 - matched to the crystal structure of the substrate
 - = epitaxial growth

Epitaxial growth (2)

- Deposition of mono-crystalline layers: Atoms bind to the surface
 - Sources deliver material in molecular form
 - Reactions on the surface
 - Remaining substance is removed
- Deposition of materials:
 - with a molecular beam (Molecular Beam Epitaxy: MBE)
 - with a liquid (Liquid Phase Epitaxy: LPE)
 - from gas phase (Vapor Phase Epitaxy: VPE)

Special case: with metal-organic compounds (Metallo-Organic Chemical Vapor Deposition: MOCVD or Metallo-Organic Vapor Phase Epitaxy: MOVPE)

Molecular beam epitaxy

- Growth in an ultra-high vacuum
- Delivery of reagents from different molecular beams (generated by thermal effusion)
- Very good control of the composition
- Very thin layers (1 atom) can be created

Liquid Phase Epitaxy

- Material: group V material diluted in a molten group III material
- Solvent is cooled in contact with substrate: saturation
- Nucleation of III-V material on the substrate

Not used much any more

MOCVD of III-V materials (1)

- Materials
 - Metalorganic compounds (group III)
 - Hydrides (group V)

Technology

MOCVD of III-V materials (2)

MOCVD (MOVPE)

simple instrument limited possibilities

complex instrument, more safe greater possibilities (more layers)

Lithographic methods

- Lithography
 - A pattern is first defined in a sensitive resist (lithography)
 - Negative resist: exposed parts remain
 - Positive resist: exposed parts are removed

Contact photolithography

- A pattern is defined in a UV-sensitive resist
- Mask is aligned and attached to the resist
- Illumination with a uniform UV beam (e.g. mercury lamp)
- Advantages:
 - Simple process
- Disadvantages:
 - Alignment is difficult
 - Limited resolution

$$W \sim \sqrt{\lambda g}$$

λ: light wavelength

g: distance between mask and lower resist surface

Contact lithography

Projection lithography

- Mask pattern is projected on the resist
- Advantages:
 - Pattern is copied across the wafer
 - Use of reducing optics (mask pattern is larger than chip)
 - Applicable in industry (CMOS)
- Disadvantages:
 - Expensive equipment
 - Limited resolution (~wavelength)

$$W \sim \frac{\lambda}{NA}$$

λ: light wavelength

NA: numerical aperture of a lens

E-beam lithography

- Pattern is written directly in the resist with an electron beam
- Advantage:
 - Very high resolution (electrons have very small "wavelength") (nm scale)
 - No mask required
- Disadvantages:
 - (very) Slow
 - Limited area possible without moving sample

Technology

Etching

- Transfer of the pattern in the photoresist to the substrate
- Photoresist serves as a mask during
 - chemical dissolution of the substrate with a reactive liquid
 - = WET ETCHING
 - chemical dissolution + physical sputtering of the substrate with an energetic plasma
 - = DRY ETCHING

Wet etching of GaAs

- Etchants: $H_2SO_4/H_2O_2/H_2O_3$
 - \blacksquare H₂O₂ oxidizes the surface
 - \blacksquare H₂SO₄ dissolves the oxide
- Competition between the processes
 - Diffusion-limited: dissolving and removal of the oxide is the slowest: circular profile
 - Reaction-limited: oxidation is the slowest: all oxidized material is immediately dissolved: profile along the most slowly etched crystal plane. (111) in GaAs

Plasma deposition

- Electrical isolation / hard masking: SiO₂ or Si₃N₄ or oxynitrides
- Deposition: Plasma-Enhanced Chemical Vapor Deposition (PECVD)
 - Gas mixture is ionized
 - \blacksquare SiH₄/NH₃ / N₂ for Si₃N₄
 - \blacksquare SiH₄/ N₂O for SiO₂
 - Reaction of radicals and ions on the surface creates a uniform film with required composition
- Advantages
 - Low reaction temperature (use of strong radicals)
 - omni-directional

Plasma deposition

- Gas mixture under low pressure
- Ionization of the gas mixture by RF-voltage
- Removal of the rest products

Plasma etching (dry etching)

- Comparable with plasma deposition
 - Gas mixture corrodes substrate instead of depositing
 - Gas mixture can be selective for certain materials
- 'Physical' etching: together with chemical reaction the ions can destroy substrate 'kinetically' by the impact at high velocity:
 - etching in vertical direction
 - no underetching

Wet vs. dry etching

Wet etching

- Advantages:
 - Cheap/Easy process
 - Can be very selective
- Disadvantages:
 - Etches along the crystal plane
 - Underetching
 - Etch speed depends on the mask opening
 - Difficult to make deep, small structures

Dry etching

- Advantages:
 - No underetching
 - Possible to make deep, small structures
- Disadvantages:
 - Complex
 - Expensive

Metallization

- Goal: electrical connection of the components
- Deposition of metal:
 - thermal evaporation
 - sputtering
- Pattern definition in metal
 - Lithography + Etching
 - Lithography + Lift-off

Thermal evaporation

- Joule evaporator
 - Heating by high electrical current through the crucible with metal
 - Limited in temperature

- Electron beam evaporator
 - Heating by the high-energy electron beam
 - Very high temperature

Sputtering

- Kinetic 'dislodging' of the material
 - Argon is ionized
 - Ions are accelerated
 - Released particles are deposited on the substrate and the walls
- Possible for materials with high melting temperature (e.g. tungsten)
- Less precise control

Fabrication by lift-off

Fabrication by etching and by lift-off

Fabrication by etching

Packaging

- Electrical chips
 - die bonding: chip in protective package
 - wire bonding: wiring to external circuit
 - tolerant in positioning
 - package serves as a heat sink
- Photonic chips
 - Critical alignment with fibers (< 100nm positioning)</p>
 - Very good temperature control is required (refractive index ~ temperature)
 - Can reach 60% of the cost price

V-grooves for alignment

- Wet etching of V-grooves in Silicon along (111) plane
- Depth of the grooves is precisely controlled

V-grooves for alignment

Technology

Photonics

V-grooves

Technology of optoelectronic semiconductor components - Part B

Clean rooms

Fabrication of the laser diode

Clean rooms

- Fabrication of semiconductor components:
 - Stable environment:
 - temperature is accurate to 0.5 °C
 - humidity approx. 30° +/-0.5°
 - Clean-room standardization
 - Classification according to the number of dust particles per cubic feet: Class 1 .. 10 .. 100
- Solution
 - Keep dust outside: lock
 - Do not generate dust: special packaging
 - Do not collect dust: no unnecessary horizontal surfaces and corners
 - Dust removal: air circulation

Types of dust

VISIBLE WITH THE NAKED EYE	VISIBLE WITH A MICROSCOPE			VISIBLE WITH AN ELECTRON MICROSCOPE	
PARTICLE SIZE IN 100 MICRONS 10	1.0	0.5	0.1	0.01	0.001
	BAC	TERIA			
PLANT SPORES				VIRU	JSES
		KE			
	co	COOKING SMOKE/GREASE			
HUMAN HAIR	PET DANDER				
	HOUSEHO	LD DUST			
FERTILIZER					
	INSECTICIDE D	UST			
COALD	UST				

Technology

Generation of dust by people

• Generation of dust $>0.3\mu m$ per minute by one person

■ Sitting or standing: 100,000

■ Nudging head or a hand: 500,000

■ Nudging body: 1,000,000

■ Standing up: 2,500,000

■ Walking slowly: 5,000,000

Exercise: 10,000,000

Physical exercises: 25,000,000

Clean Room Architecture

- Air circulation:
 - from the top to the bottom
 - as small turbulence as possible
 - clean room pressure is higher than the outside

Stripe laser diode

- Fabrication
 - Definition of the stripe (mesa)
 - Isolation layer deposited
 - Metallization for top contact
 - Thinning
 - Bottom contact

Fabrication of the laser diode (1)

- Layer structure
 - GaAs carrier
 - AlGaAs coating on the top and at the bottom

Fabrication of the laser diode (2)

- Definition of the mesa
 - Spin coating

Fabrication of the laser diode (3)

- Definition of the mesa
 - Spin coating
 - <u>Photolithography</u>

Fabrication of the laser diode (4)

- Definition of the mesa
 - Spin coating
 - Photolithography
 - Wet etching

Technology

Fabrication of the laser diode (5)

- Definition of the mesa
 - Spin coating
 - Photolithography
 - Wet etching
 - Resist removal

Fabrication of the laser diode (6)

- Definition of the mesa
- Nitride isolation layer
 - <u>Deposition of Si₃N₄</u>

Fabrication of the laser diode (7)

- Definition of the mesa
- Nitride isolation layer
 - Deposition
 - Photolithography

Fabrication of the laser diode (8)

- Definition of the mesa
- Nitride isolation layer
 - Deposition
 - Photolithography
 - Dry etching

Fabrication of the laser diode (9)

- Definition of the mesa
- Nitride isolation layer
- Top contact
 - Deposition of Ohmic contact

Technology

Fabrication of the laser diode (10)

- Definition of the mesa
- Nitride isolation layer
- Top contact
 - Deposition of Ohmic contact
 - Gold layer deposition
 - Lithography
 - <u>Lift-off</u> or etching

Technology

Fabrication of the laser diode (11)

- Definition of the mesa
- Nitride isolation layer
- Top contact
- Bottom contact
 - Substrate thinning
 - Deposition of metal

Fabrication of the laser diode (12)

- Definition of the mesa
- Nitride isolation layer
- Top contact
- Bottom contact
- Cleaving of facets

Laser diode

InGaAs/AlGaAs laser diode (wavelength = 980nm)
 (isolation layer is etched away from under the metal by wet etching)

Stripe laser diode

Laser array for interconnects

