5.0 Discrete-time Fourier Transform

5.1 Discrete-time Fourier Transform Representation for discrete-time signals

Chapters 3, 4, 5

Chap 3 Periodic Fourier Series	Chap 4 Aperiodic Fourier Transform	Chap 5 Aperiodic Fourier Transform
Continuous $x(t) = x(t+T)$	$x(t) \leftrightarrow X(j\omega)$	
Discrete $x[n] = x[n+N]$		$x[n] \leftrightarrow X(e^{j\omega})$

Harmonically Related Exponentials for

Periodic Signals (p.11 of 3.0)

- All with period T: integer multiples of ω_0
- Discrete in frequency domain

Fourier Transform (p.3 of 4.0)

Discrete-time Fourier Transform

continuous and periodic in ω

Figure 3.6 Periodic square wave.

Figure 3.7 Plots of the scaled Fourier series coefficients Ta_k for the periodic square wave with T_1 fixed and for several values of T: (a) $T=4T_1$; (b) $T=8T_1$; (c) $T=16T_1$. The coefficients are regularly spaced samples of the envelope $(2\sin\omega T_1)/\omega$, where the spacing between samples, $2\pi/T$, decreases as T increases.

Figure 4.2 The Fourier series coefficients and their envelope for the periodic square wave in Figure 4.1 several values of T (with T_1 fixed): (a) $T = 4T_1$; (b) $T = 8T_1$; (c) $T = 16T_1$.

Figure 3.16 Discrete-time periodic square wave.

Figure 3.17 Fourier series coefficients for the periodic square wave of Example 3.12; plots of Na_k for $2N_1 + 1 = 5$ and (a) N = 10; (b) N = 20; and (c) N = 40.

- Considering x[n], x[n]=0 for $n > N_2$ or $n < -N_1$
 - Construct $\tilde{x}[n]$ periodic with period $N > N_1 + N_2 + 1$

$$\widetilde{x}[n] = x[n] \text{ if } -N_1 \le n \le N_2$$

 $\widetilde{x}[n] = x[n] \text{ if } N \to \infty$

(b)

Figure 5.1 (a) Finite-duration signal x[n]; (b) periodic signal $\tilde{x}[n]$ constructed to be equal to x[n] over one period.

- Considering x[n], x[n]=0 for $n > N_2$ or $n < -N_1$
 - Fourier series for $\tilde{x}[n]$

$$\widetilde{x}[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k=\langle N \rangle} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

$$a_{k} = \frac{1}{N} \sum_{n=< N>} \widetilde{x}[n] e^{-jk\left(\frac{2\pi}{N}\right)n} = \frac{1}{N} \sum_{n=-\infty}^{\infty} x[n] e^{-jk\left(\frac{2\pi}{N}\right)n}$$

- Defining envelope of Na_k as $X(e^{j\omega})$

$$a_{k} = \frac{1}{N} X \left(e^{jk \left(\frac{2\pi}{N} \right)} \right) = \frac{1}{N} X \left(e^{j\omega} \right)_{\omega = k \left(\frac{2\pi}{N} \right) = k\omega_{0}}$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$\widetilde{x}[n] = \sum_{k=\langle N \rangle} \frac{1}{N} X(e^{jk\omega_0}) e^{jk\omega_0 n}$$

$$=\frac{1}{2\pi}\sum_{k=< N>}X\left(e^{jk\omega_0}\right)e^{jk\omega_0n}\omega_0,\ \frac{\omega_0}{2\pi}=\frac{1}{N}$$

- As
$$N \to \infty$$
, $\omega_0 \to 0$, $\widetilde{x}[n] \to x[n]$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
 signal, time domain, Inverse Discrete-time Fourier Transform

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 spectrum, frequency domain Discrete-time Fourier Transform

Similar format to all Fourier analysis representations previously discussed

(p.10 of 4.0)

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
: spectrum, frequency domain Fourier Transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega : \text{ signal, time domain}$$
Inverse Fourier Transform

Fourier Transform pair, different expressions

$$x(t) \longleftrightarrow X(j\omega)$$

very similar format to Fourier Series for periodic signals

• Note: $X(e^{j\omega})$ is continuous and periodic with period 2π

Integration over 2π only

Frequency domain spectrum is continuous and periodic, while time domain signal is discrete-time and aperiodic

Frequencies around ω =0 or 2π are low-frequencies, while those around ω = $\pm \pi$ are high-frequencies, etc.

See Fig. 5.3, p.362 of text For Examples see Fig. 5.5, 5.6, p.364, 365 of text

Figure 1.27 Discrete-time sinusoidal sequences for several different frequencies.

Figure 5.3 (a) Discrete-time signal $x_1[n]$. (b) Fourier transform of $x_1[n]$. Note that $X_1(e^{j\omega})$ is concentrated near $\omega=0,\pm 2\pi,\pm 4\pi,\ldots$ (c) Discrete-time signal $x_2[n]$. (d) Fourier transform of $x_2[n]$. Note that $X_2(e^{j\omega})$ is concentrated near $\omega=\pm \pi,\pm 3\pi,\ldots$

Figure 5.5 (a) Signal $x[n] = a^{|n|}$ of Example 5.2 and (b) its Fourier transform (0 < a < 1).

Figure 5.6 (a) Rectangular pulse signal of Example 5.3 for $N_1=2$ and (b) its Fourier transform.

• Convergence Issue

given x[n]

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$\hat{x}[n] = \frac{1}{2\pi} \int_{-W}^{W} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$\hat{x}[n] = x[n]$$
 when $W = \pi$

- No convergence issue since the integration is over an finite interval
- No Gibbs phenomenon
 See Fig. 5.7, p.368 of text

Figure 5.7 Approximation to the unit sample obtained as in eq. (5.16) using complex exponentials with frequencies $|\omega| \leq W$: (a) $W = \pi/4$; (b) $W = 3\pi/8$; (c) $W = \pi/2$; (d) $W = 3\pi/4$; (e) $W = 7\pi/8$; (f) $W = \pi$. Note that for $W = \pi$, $\hat{\chi}[n] = \delta[n]$.

Figure 4.17 Relationship between the Fourier transform pairs of eqs. (4.36) and (4.37).

Figure 4.11 Fourier transform pair of Figure 4.9 for several different values of W.

Rectangular/Sinc

- Fourier Transform for Periodic Signals –
 Unified Framework (p.16 of 4.0)
 - Given x(t)

assume
$$X(j\omega) = 2\pi\delta(\omega - \omega_0)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi\delta(\omega - \omega_0) e^{j\omega t} d\omega = e^{j\omega_0 t}$$

$$e^{j\omega_0 t} \xleftarrow{F} 2\pi\delta(\omega - \omega_0)$$

(easy in one way)

Unified Framework: Fourier Transform for Periodic Signals (p.17 of 4.0)

$$e^{j\omega_{0}t} \qquad F \qquad 2\pi\delta(\omega - \omega_{0})$$

$$x(t) \qquad T \qquad \omega_{0} \qquad \omega$$

$$x(t) \qquad FS \qquad \chi(j\omega) \qquad 2\pi a_{k}\delta(\omega - k\omega_{0})$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_{k}e^{jk\omega_{0}t} \qquad \chi(j\omega) = \sum_{k=-\infty}^{\infty} 2\pi a_{k}\delta(\omega - k\omega_{0})$$

$$x(t) \leftarrow FS \qquad A_{k} \rightarrow X(j\omega)$$

- For Periodic Signals Unified Framework
 - Given x[n]

assume
$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 - 2\pi k)$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega = e^{j\omega_0 n}$$

$$e^{j\omega_0 n} \longleftrightarrow \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 - 2\pi k)$$

See Fig. 5.8, p.369 of text

Figure 5.8 Fourier transform of $X[n] = e^{j\omega_0 n}$.

• For Periodic Signals – Unified Framework

- If
$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

$$X(e^{j\omega}) = \sum_{k=\langle N \rangle} a_k \sum_{m=-\infty}^{\infty} 2\pi\delta \left(\omega - \frac{2\pi k}{N} - 2\pi m\right)$$

$$= \sum_{k=-\infty}^{\infty} 2\pi a_k \delta \left(\omega - \frac{2\pi k}{N}\right), a_k = a_k + mN$$

See Fig. 5.9, p.370 of text

Figure 5.9 Fourier transform of a discrete-time periodic signal: (a) Fourier transform of the first term on the right-hand side of eq. (5.21); (b) Fourier transform of the second term in eq. (5.21); (c) Fourier transform of the last term in eq. (5.21); (d) Fourier transform of x[n] in eq (5.21).

Signal Representation in Two Domains

Time Domain

x[n]

$$\frac{\delta[n-k_1]}{k_1}$$

$$\delta[n-k_2]$$

Frequency Domain

$$\sum_{m=-\infty}^{\infty} 2\pi\delta \left(\omega - \omega_k - 2\pi m\right), \quad 0 < \omega_k \le 2\pi$$

$$\{\delta[n-k], k: integer, -\infty < k < \infty\}$$

5.2 Properties of Discrete-time Fourier Transform

$$x[n] \longleftrightarrow X(e^{j\omega})$$

Periodicity

$$X(e^{j(\omega+2\pi)}) = X(e^{j\omega})$$

Linearity

$$x_1[n] \stackrel{F}{\longleftrightarrow} X_1(e^{j\omega}), x_2[n] \stackrel{F}{\longleftrightarrow} X_2(e^{j\omega})$$

 $ax_1[n] + bx_2[n] \stackrel{F}{\longleftrightarrow} aX_1(e^{j\omega}) + bX_2(e^{j\omega})$

$$x[n] \longleftrightarrow X(e^{j\omega})$$

• Time/Frequency Shift

$$x[n-n_0] \longleftrightarrow F \longrightarrow e^{-j\omega n_0} X(e^{j\omega})$$
$$e^{j\omega_0 n} x[n] \longleftrightarrow F \longrightarrow X(e^{j(\omega-\omega_0)})$$

Conjugation

$$x^*[n] \longleftrightarrow F \to X^*(e^{-j\omega})$$
 $X(e^{j\omega}) = X^*(e^{-j\omega}) \text{ if } x[n] \text{ real}$
Even/Odd Relations

Figure 5.3 (a) Discrete-time signal $x_1[n]$. (b) Fourier transform of $x_1[n]$. Note that $X_1(e^{j\omega})$ is concentrated near $\omega=0,\pm 2\pi,\pm 4\pi,\ldots$ (c) Discrete-time signal $x_2[n]$. (d) Fourier transform of $x_2[n]$. Note that $X_2(e^{j\omega})$ is concentrated near $\omega=\pm \pi,\pm 3\pi,\ldots$

$$x[n] \longleftrightarrow X(e^{j\omega})$$

• Differencing/Accumulation

$$x[n] - x[n-1] \longleftrightarrow_F (1 - e^{-j\omega}) X(e^{j\omega})$$

$$\sum_{m=-\infty}^{n} x[m] \longleftrightarrow_{1 - e^{-j\omega}} X(e^{j\omega}) + \pi X(e^{j\omega}) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$$

• Time Reversal

$$x[-n] \longleftrightarrow X(e^{-j\omega})$$

Differentiation (p.35 of 4.0)

$$\frac{dx(t)}{dt} \longleftrightarrow_{F} j\omega X(j\omega)$$

$$|j\omega \cdot X(j\omega)| = |\omega| \cdot |X(j\omega)|$$

$$|\omega| \qquad |X(j\omega)|$$

$$|\omega| |X(j\omega)|$$

Enhancing higher frequencies
De-emphasizing lower frequencies
Deleting DC term (=0 for ω =0)

Integration (p.36 of 4.0)

$$\int_{-\infty}^{t} x(\tau)d\tau \xleftarrow{F} \frac{1}{j\omega} X(j\omega) + \pi X(j0)\delta(\omega)$$

$$dc \text{ term}$$

$$\frac{1}{j} = e^{-j90^{\circ}}$$

$$\left|\frac{1}{j\omega}\right| \cdot |X(j\omega)| = \left|\frac{1}{\omega}\right| \cdot |X(j\omega)|$$

$$X(j\omega)$$

Enhancing lower frequencies (accumulation effect)

De-emphasizing higher frequencies

(smoothing effect)

Undefined for $\omega=0$

Differencing/Accumulation

$$|1 - e^{-j\omega}| = 2 \left| \sin(\frac{\omega}{2}) \right|$$

Accumulation

Enhancing higher frequencies De-emphasizing lower freq Deleting DC term

• Differencing/Accumulation

$$x[n] - x[n-1] \longleftrightarrow (1 - e^{-j\omega}) X(e^{j\omega})$$

$$\sum_{m=-\infty}^{n} x[m] \longleftrightarrow \frac{1}{1 - e^{-j\omega}} X(e^{j\omega}) + \pi X(e^{j\omega}) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$$

• Time Reversal (p.29 of 3.0)

$$x(-t) \longleftrightarrow FS \longrightarrow a_{-k}$$

the effect of sign change for x(t) and a_k are identical

$$\cdots a_{-1}e^{-j\omega_0 t} + a_0 + a_1e^{j\omega_0 t} + \cdots = x(t)$$

$$\cdots a_{-1}e^{j\omega_0 t} \cdots = x(-t)$$

unique representation for orthogonal basis

$$x[n] \longleftrightarrow X(e^{j\omega})$$

• Time Expansion

define $x_{(k)}[n] = x[n/k]$, If n/k is an integer, k: positive integer

$$=0$$
, else

See Fig. 5.13, p.377 of text

$$x_{(k)}[n] \longleftrightarrow X(e^{jk\omega})$$

See Fig. 5.14, p.378 of text

Figure 5.13 The signal $x_{(3)}[n]$ obtained from x[n] by inserting two zeros between successive values of the original signal.

Figure 5.14 Inverse relationship between the time and frequency domains: As k increases, $x_{(k)}[n]$ spreads out while its transform is compressed.

Time Expansion

$$(k\omega)3\omega \qquad (k\omega)3\omega$$

$$X(e^{j\underline{\omega}}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\underline{\omega}n}$$

Time Expansion

$$x[n] \longleftrightarrow X(e^{j\omega})$$

• Differentiation in Frequency

$$nx[n] \longleftrightarrow_{F} j \frac{dX(e^{j\omega})}{d\omega}$$

• Parseval's Relation

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega$$

$$x[n] \longleftrightarrow X(e^{j\omega})$$

Convolution Property

$$y[n] = x[n] * h[n] \longleftrightarrow Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$$

 $H(e^{j\omega})$: frequency response or transfer function

$$h[n] \stackrel{F}{\longleftrightarrow} H(e^{j\omega})$$

 $\delta[n] \stackrel{F}{\longleftrightarrow} 1, \quad 0 < \omega \le 2\pi$

Multiplication Property

$$y[n] = x_1[n]x_2[n] \longleftrightarrow Y(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta$$
periodic convolution

Input/Output Relationship (P.55 of 4.0)

• Time Domain

$$\frac{\delta(t)}{0}t \qquad \qquad \int_{0}^{h(t)} h(t)$$

Frequency Domain

Convolution Property (p.57 of 4.0)

$$X(j\omega_{2})H(j\omega_{2}) = Y(j\omega_{2}) \quad Y(j\omega) = X(j\omega)H(j\omega)$$

$$X(j\omega) \quad H(j\omega_{2}) = \int_{-\infty}^{\infty} h(\tau) e^{-j\omega_{2}\tau} d\tau$$

$$X(t) \quad H(j\omega_{1}) = \int_{-\infty}^{\infty} h(\tau) e^{-j\omega_{1}\tau} d\tau$$

$$X(t) \quad H(t) = Y(t)$$

$$Y(j\omega) = X(j\omega)H(j\omega)$$

$$X(t) \quad H(t) = Y(t)$$

$$Y(j\omega) = X(j\omega)H(j\omega)$$

$$X(t) \quad H(t) = Y(t)$$

$$Y(j\omega) = X(j\omega)H(j\omega)$$

$$Y(j\omega) = X(j\omega)H$$

$$x[n] \longleftrightarrow X(e^{j\omega})$$

System Characterization

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

$$\sum_{k=0}^{N} a_k e^{-jk\omega} Y(e^{j\omega}) = \sum_{k=0}^{M} b_k e^{-jk\omega} X(e^{j\omega})$$

$$h[n] \longleftrightarrow H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{k=0}^{M} b_k e^{-jk\omega}}{\sum_{k=0}^{N} a_k e^{-jk\omega}}$$

Tables of Properties and Pairs

See Table 5.1, 5.2, p.391, 392 of text

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Property	Aperiodic Signal		Fourier Transform
	x[n]		$X(e^{j\omega})$ periodic with
	v[n]		$Y(e^{j\omega})$ period 2π
Linearity			$aX(e^{j\omega}) + bY(e^{j\omega})$
			$e^{-j\omega n_0}X(e^{j\omega})$
			$X(e^{j(\omega-\omega_0)})$
	All the second s		$X^*(e^{-j\omega})$
Time Reversal	x[-n]		$X(e^{-j\omega})$
Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], \\ 0 \end{cases}$	if $n = \text{multiple of } k$	$X(e^{jk\omega})$
Convolution	x[n] * y[n]	If $n \neq \text{multiple of } k$	$X(e^{j\omega})Y(e^{j\omega})$
Multiplication	x[n]y[n]		$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
Differencing in Time	x[n] - x[n-1]		$(1-e^{-j\omega})X(e^{j\omega})$
Accumulation	$\sum_{k=-\infty}^{n} x[k]$		$\frac{(1 - e^{-j\omega})X(e^{j\omega})}{\frac{1}{1 - e^{-j\omega}}X(e^{j\omega})}$
Differentiation in Frequency	nx[n]		$+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
			$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re\{X(e^{j\omega})\} = \Re\{X(e^{-j\omega})\} \\ \Im\{X(e^{j\omega})\} = -\Im\{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \langle X(e^{j\omega}) = -\langle X(e^{-j\omega}) \rangle \end{cases}$
			$\Re e\{X(e^{j\omega})\} = \Re e\{X(e^{-j\omega})\}$
Conjugate Symmetry for	x[n] real		$\left\langle \mathfrak{I}m\{X(e^{j\omega})\}\right\rangle = -\mathfrak{I}m\{X(e^{-j\omega})\}$
Real Signals			$ X(e^{j\omega}) = X(e^{-j\omega}) $
			$ \langle X(e^{j\omega}) \rangle = -\langle X(e^{-j\omega}) \rangle $
Symmetry for Real, Even	x[n] real an even		$X(e^{j\omega})$ real and even
Symmetry for Real, Odd	x[n] real and odd		$X(e^{j\omega})$ purely imaginary and odd
	$x_n[n] = \mathcal{E}_{\nu}\{x[n]\}$	[x[n] real]	$\Re e\{X(e^{j\omega})\}$
6 - 6 Table 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			$i\mathcal{G}m\{X(e^{j\omega})\}$
7			Jone M. (c.)!
T ex	80 SE		
$\sum x[n] $	$rac{1}{2} = \frac{1}{2} \left X(e^{j\omega}) ^2 dt$	$d\omega$	
	Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Expansion Convolution Multiplication Differencing in Time Accumulation Differentiation in Frequency Conjugate Symmetry for Real Signals Symmetry for Real, Even Signals Symmetry for Real, Odd Signals Even-odd Decomposition of Real Signals Parseval's Re	Linearity $x[n]$ $y[n]$ $ax[n] + by[n]$ Time Shifting $x[n - n_0]$ Frequency Shifting $x^*[n]$ Conjugation $x^*[n]$ Time Reversal $x[-n]$ Time Expansion $x[n] * y[n]$ Multiplication $x[n]y[n]$ Differencing in Time $x[n] - x[n-1]$ Accumulation $x[n]y[n]$ Differentiation in Frequency $x[n]$ Conjugate Symmetry for $x[n]$ Conjugate Symmetry for $x[n]$ Symmetry for Real, Even $x[n]$ real an even Signals Symmetry for Real, Odd $x[n]$ real and odd Signals Even-odd Decomposition $x[n] = 8v[x[n]]$ of Real Signals $x_0[n] = 9d[x[n]]$ Parseval's Relation for Aperiodic S	Linearity $x[n]$ $y[n]$ $ax[n] + by[n]$ Time Shifting $x[n-n_0]$ Frequency Shifting $x^*[n]$ Conjugation $x^*[n]$ Time Reversal $x[-n]$ Time Expansion $x[n] * y[n]$ Multiplication $x[n] * y[n]$ Differencing in Time $x[n] - x[n-1]$ Accumulation $x[n] * x[n]$ Differentiation in Frequency $x[n]$ Conjugate Symmetry for Real Signals Symmetry for Real, Even Signals Symmetry for Real, Odd Signals Even-odd Decomposition $x[n] * x[n] * x[$

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k
$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \left\{ \delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l) \right\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N \sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k
$a^nu[n], a <1$	$\frac{1}{1-ae^{-j\omega}}$	
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	-
$\frac{\sin w_n}{\pi n} = \frac{w}{\pi} \operatorname{sinc}\left(\frac{w_n}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	_
$\delta[n]$	1	_
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{+\infty} \pi \delta(\omega - 2\pi k)$	_
$\delta[n-n_0]$	$e^{-j\omega n_0}$	_
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	_
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^r}$	

Vector Space Interpretation

 $\{x[n], \text{ aperiodic defined on } -\infty < n < \infty\} = V$ is a vector space

$$(x_1[n])\cdot(x_2[n]) = \sum_{k=-\infty}^{\infty} x_1[k]x_2^*[k]$$

basis signal sets

$$\{\phi_{\omega}[n] = e^{j\omega n}, -\infty < \omega < \infty\}$$

$$\phi_{\omega}[n] = \phi_{\omega+2\pi k}[n]$$

repeats itself for very 2π

- Vector Space Interpretation
 - Generalized Parseval's Relation

$$\sum_{n=-\infty}^{\infty} x_1[n] x_2^*[n] = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\omega}) X_2^*(e^{j\omega}) d\omega$$

 $\{X(e^{j\omega}), \text{ with period } 2\pi \text{ defined on } -\infty < \omega < \infty\} = V:$ a vector space

inner-product can be evaluated in either domain

Vector Space Interpretation

Orthogonal Bases

$$e^{j\omega_k n} \longleftrightarrow \sum_{m=-\infty}^{\infty} 2\pi \delta(\omega - \omega_k - 2\pi m)$$

$$e^{j\omega_{j}n} \longleftrightarrow \sum_{l=-\infty}^{\infty} 2\pi\delta(\omega-\omega_{j}-2\pi l)$$

$$\begin{aligned} & \left[\phi_{\omega_{k}}(n)\right] \cdot \left[\phi_{\omega_{j}}(n)\right] \\ &= 2\pi \int_{2\pi} \left[\sum_{m=-\infty}^{\infty} \delta(\omega - \omega_{k} - 2\pi m)\right] \left[\sum_{l=-\infty}^{\infty} \delta(\omega - \omega_{j} - 2\pi l)\right] d\omega \\ &= 0, \quad \omega_{k} \neq \omega_{j} \\ &\neq 1, \quad \omega_{k} = \omega_{j} \end{aligned}$$

- Vector Space Interpretation
 - Orthogonal Bases

Similar to the case of continuous-time Fourier transform. Orthogonal bases but not normalized, while makes sense with operational definition.

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = (x[n]) \cdot (\phi_{\omega}[n])$$

Summary and Duality (p.1 of 5.0)

Chap 3 Periodic Fourier Series	Chap 4 Aperiodic Fourier Transform	Chap 5 Aperiodic Fourier Transform	
Continuous $\langle \mathbf{C} \rangle$ x(t) = x(t+T)	$x(t) \leftrightarrow X(j\omega)$ <a>		
Discrete $\langle B \rangle$ x[n] = x[n+N]		$\begin{array}{c} \langle D \rangle \\ x[n] \leftrightarrow X(e^{j\omega}) \end{array}$	

Time Expansion (p.41 of 5.0)

5.3 Summary and Duality

<A> Fourier Transform for Continuous-time Aperiodic Signals

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \qquad \text{(Synthesis)} \qquad (4.8)$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \qquad (Analysis) \qquad (4.9)$$

$$-x(t)$$
: continuous-time $(\Delta t \rightarrow 0)$

 $-X(j\omega)$: continuous in frequency $(\omega_0 \rightarrow 0)$

aperiodic in time
$$(T \rightarrow \infty)$$

aperiodic in frequency $(W \rightarrow \infty)$

Duality:
\$\$x\(t\) \stackrel{F}{\longleftrightarrow} X\(j\omega\) \square y\(t\) \stackrel{F}{\longleftrightarrow} z\(\omega\)\$\$

 \$z\(t\) \stackrel{F}{\longleftrightarrow} 2\pi y\(-\omega\)\$

Case <A> (p.44 of 4.0)

$$x(t): y(t)$$

$$T \to \infty$$

$$\Delta t \to 0$$

$$T \to \infty$$

 Fourier Series for Discrete-time Periodic Signals

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n}, \quad \omega_0 = \frac{2\pi}{N}$$
 (Synthesis) (3.94)

$$a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk\omega_0 n}, \quad \omega_0 = \frac{2\pi}{N}$$
 (Analysis) (3.95)

$$-x[n]$$
: discrete-time $(\Delta t = 1)$

 $-a_k$: discrete in frequency $(\omega_0 = 2\pi/N)$

periodic in time
$$(T = N)$$

periodic in frequency($W = 2\pi$)

Duality**:
$$x[n] \xleftarrow{FS} a_k \square g[n] \xleftarrow{FS} f[k]$$

$$f[n] \xleftarrow{FS} \frac{1}{N} g[-k]$$**

Case Duality

$$x[n]: g[n]$$

$$a_k: f[k]$$

$$W = 2\pi$$

$$\Delta t = 1$$

$$\omega_0 = \frac{2\pi}{N}$$

$$f[n]$$

$$K$$

$$x[n] \stackrel{FS}{\longleftrightarrow} a_k \Rightarrow g[n] \stackrel{FS}{\longleftrightarrow} f[k]$$

$$f[n] \stackrel{FS}{\longleftrightarrow} \frac{1}{N} g[-k]$$

<C> Fourier Series for Continuous-time Periodic Signals

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}, \quad \omega_0 = \frac{2\pi}{T}$$
 (Synthesis) (3.38)

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt, \quad \omega_0 = \frac{2\pi}{T}$$
 (Analysis) (3.39)

$$-x(t)$$
: continuous-time $(\Delta t \rightarrow 0)$

 $-a_k$: discrete in frequency $(\omega_0 = 2\pi/T)$

periodic in time
$$(T = T)$$

aperiodic in frequency $(W \rightarrow \infty)$

$$x(t) \overset{FS}{\longleftrightarrow} a_k \square v(t) \overset{FS}{\longleftrightarrow} g[k]$$

Case <C> <D> Duality

<D> Discrete-time Fourier Transform for Discrete-time Aperiodic Signals

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega \qquad \text{(Synthesis)} \qquad (5.8)$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 (Analysis) (5.9)

$$-x[n]$$
: discrete-time $(\Delta t = 1)$

 $-X(e^{j\omega})$: continuous in frequency $(\omega_0 \rightarrow 0)$

aperiodic in time
$$(T \rightarrow \infty)$$

periodic in frequency($W = 2\pi$)

$$x[n] \longleftrightarrow X(e^{j\omega}) \Longrightarrow y[n] \longleftrightarrow z(\omega)$$

Duality<C>/<D>

For
$$\langle C \rangle x(t) \longleftrightarrow a_k \qquad \Rightarrow v(t) \longleftrightarrow g[k]$$

For $\langle D \rangle x[n] \longleftrightarrow X(e^{j\omega}) \Rightarrow y[n] \longleftrightarrow z(\omega)$
Duality $z(t) \longleftrightarrow y[-k], g[n] \longleftrightarrow v(-\omega)$

- taking z(t) as a periodic signal in time with period 2π , substituting into (3.38), $\omega_0 = 1$

$$z(t) = \sum_{n=-\infty}^{\infty} a_k e^{jkt}$$

which is of exactly the same form of (5.9) except for a sign change, (3.39) indicates how the coefficients a_k are obtained, which is of exactly the same form of (5.8) except for a sign change, etc.

See Table 5.3, p.396 of text

TABLE 5.3 SUMMARY OF FOURIER SERIES AND TRANSFORM EXPRESSIONS

	Continuous time		Discrete time		
	Time domain	Frequency domain	Time domain	Frequency domain	
Fourier	$x(t) = (3.38)$ $\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$ (C)	$a_k = $ (3.39) $\frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t}$	$x[n] = (3.94)$ $\sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n} < \mathbf{B} >$	$a_k = \frac{(3.95)}{\frac{1}{N} \sum_{\boldsymbol{n} = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}}$	
Series	continuous time periodic in time	discrete frequency aperiodic in frequency	discrete time periodic in time duality	discrete frequency periodic in frequency	
Fourier Transform	$x(t) = \frac{(4.8)}{\frac{1}{2\pi} \Big _{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega} \stackrel{!}{\overset{!}{\sim}}$	$X(j\omega) = (4.9)$ $\int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$	$x[n] = (5.8)$ $\frac{1}{2\pi} \int_{2\pi} X(e^{i\omega}) e^{i\omega u} d\omega$ $\langle \mathbf{D} \rangle$	$X(e^{j\omega}) = (5.9)$ $\sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$	
	continuous time aperiodic in time	continuous frequency aperiodic in frequency	discrete time aperiodic in time	continuous frequency periodic in frequency	

More Duality

- Discrete in one domain with Δ between two values
 - \rightarrow periodic in the other domain with period $\frac{2\pi}{\Delta}$
- Continuous in one domain $(\Delta \rightarrow 0)$
 - \rightarrow aperiodic in the other domain $\frac{2\pi}{\Delta} \rightarrow \infty$

Harmonically Related Exponentials for

Periodic Signals (P.11 of 3.0)

- All with period T: integer multiples of ω_0
- Discrete in frequency domain

Extra Properties Derived from Duality

– examples for Duality

$$x[n-n_0] \longleftrightarrow a_k e^{-jk\left(\frac{2\pi}{N}\right)n_0} \longleftrightarrow duality$$

$$e^{jm\left(\frac{2\pi}{N}\right)n} x[n] \longleftrightarrow a_{k-m} \longleftrightarrow duality$$

$$x[n] y[n] \longleftrightarrow \sum_{l=\langle N \rangle} a_l b_{k-l} \longleftrightarrow \sum_{l=\langle N \rangle} x[r] y[n-r] \longleftrightarrow Na_k b_k \longleftrightarrow duality$$

Unified Framework

• Fourier Transform : case <A>

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \qquad (4.8)$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
 (4.9)

Unified Framework

• Discrete frequency components for signals periodic in time domain: case <C>

$$e^{j\omega_0 t} \stackrel{F}{\longleftrightarrow} 2\pi \delta(\omega - \omega_0)$$

 $x(t) \stackrel{FS}{\longleftrightarrow} a_k$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \longleftrightarrow X(j\omega) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$$

you get (3.38)

(applied on (4.8))

Case <C> is a special case of Case <A>

Unified Framework: Fourier Transform for Periodic Signals (p.17 of 4.0)

Unified Framework

 Discrete time values with spectra periodic in frequency domain: case <D>

$$\delta(t - t_0) \overset{F}{\longleftrightarrow} e^{-j\omega t_0}$$

$$x[n] \overset{F}{\longleftrightarrow} X(e^{j\omega})$$

$$\overset{\infty}{\longrightarrow}$$

$$x[n] \to x(t) = \sum_{n=-\infty}^{\infty} x[n] \delta(t-n)$$

(4.9) becomes

$$X(j\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 (5.9)

Case <D> is a special case of Case <A>

Note : ω in rad/sec for continuous-time but in rad for discrete-time

Time Expansion (p.41 of 5.0)

Unified Framework

Both discrete/periodic in time/frequency domain:
 case -- case <C> plus case <D>
 periodic and discrete, summation over a period of N

$$x(t) = \sum_{n=-\infty}^{\infty} x[n] \mathcal{S}(t-n)$$

$$X(j\omega) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$$

(4.8) becomes

(4.9) becomes

$$x[n] = \sum_{n=} a_k e^{jk\omega_0 n} \qquad a_k = \frac{1}{N} \sum_{n=} x[n] e^{-jk\omega_0 n}$$
(3.94)
(3.95)

Unified Framework

- Cases <C> <D> are special cases of case <A>
 Dualities , <C>/<D> are special case of Duality
 <A>
- Vector Space Interpretation
 - ----similarly unified

Summary and Duality (p.1 of 5.0)

Chap 3 Periodic Fourier Series	Chap 4 Aperiodic Fourier Transform	Chap 5 Aperiodic Fourier Transform
Continuous $\langle \mathbf{C} \rangle$ x(t) = x(t+T)	$x(t) \leftrightarrow X(j\omega)$ <a>	
Discrete $\langle B \rangle$ x[n] = x[n+N]		$\begin{array}{c} \langle D \rangle \\ x[n] \leftrightarrow X(e^{j\omega}) \end{array}$

An Example across Cases <A><C><D>

$$<\mathsf{A}>x(at) \overset{F}{\leftrightarrow} \frac{1}{(a)} X(\frac{j\omega}{a}) \qquad (4.34)$$

$$<\mathsf{D}>x_{(k)}[n] \overset{F}{\leftrightarrow} (\quad) X(e^{jk\omega}) (5.45)$$

$$<\mathsf{C}>x(\alpha t) \overset{FS}{\leftrightarrow} (\quad) a_k \qquad (\mathsf{Sec.}\ 3.5.4)$$

$$(T' = T/\alpha, \, \omega_0' = \alpha \omega_0) \quad (\mathsf{Table}\ 3.1)$$

$$<\mathsf{B}>x_{(m)}[n] \overset{FS}{\leftrightarrow} \frac{1}{m} a_k \qquad (\mathsf{Table}\ 3.2)$$

• Time/Frequency Scaling (p.38 of 4.0)

$$x(at) \longleftrightarrow \frac{1}{|a|} X \left(\frac{j\omega}{a}\right)$$

$$x(-t) \longleftrightarrow X(-j\omega) \quad \text{(time reversal)}$$

$$X(j\omega)$$

$$x(t) \longleftrightarrow F \longleftrightarrow \omega$$

$$x(at), a > 1 \longleftrightarrow F \longleftrightarrow \omega$$

$$x(at), a < 1 \longleftrightarrow F \longleftrightarrow \omega$$

$$x(at), a < 1 \longleftrightarrow F \longleftrightarrow \omega$$

See Fig. 4.11, p.296 of text

Single Frequency (p.40 of 4.0)

$$\cos \omega_0 t = \frac{1}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right)$$

• Parseval's Relation (p.37 of 4.0)

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$$

total energy: energy per unit time integrated over the time

total energy: energy per unit frequency integrated over the frequency

$$\vec{A} = \sum_{i} a_i \, \hat{v}_i = \sum_{k} b_k \, \hat{u}_k$$

$$\|\vec{A}\|^2 = \sum_{i} |a_i|^2 = \sum_{k} |b_k|^2$$

Single Frequency

[\\$\\$x\\(at\\) \stackrel{F}{\leftrightarrow} \frac{1}{|a|} X\\(\frac{j\omega}{a}\\)\\$\\$
 \\(4.34\\)

\$\$x\(t\) = \cos \omega_0 t \stackrel{F}{\leftrightarrow} X\(j\omega\) = \pi \delta\(\omega - \omega_0\) + \cdots\$\$

\$\$x\(at\) = \cos\(a\omega_0 t\) \stackrel{F}{\leftrightarrow} \frac{1}{a} \pi \delta\(\frac{\omega}{a} - \omega_0\) + \cdots\$\$](#)

$$\frac{a}{a} \cdot \int_{-\infty}^{\infty} \delta\left(\frac{\omega}{a}\right) d\left(\frac{\omega}{a}\right) = a \qquad \Rightarrow \qquad \delta\left(\frac{\omega}{a}\right) = a\delta(\omega) \\ \delta\left(\frac{\omega}{a} - \omega_0\right) = 0 \delta(\omega - a\omega_0)$$

Another Example

See Figure 4.14 (example 4.8), p.300 of text

Cases <C><D>

Cases

$$x_{(m)}[n] \overset{FS}{\longleftrightarrow} \frac{1}{m} a_{k}$$

$$x_{(n)}[n] \overset{FS}{\longleftrightarrow} \frac{1}{m} a_{k}$$

$$x_{(n)}[n] \overset{FS}{\longleftrightarrow} a_{k} = \frac{1}{m} \sum_{\substack{n = < mN > \\ l = < N >}} x_{(m)}[n] e^{-jk(\frac{2\pi}{mN})n} \lim_{l \to \infty} \frac{1}{m} a_{k}$$

$$= \frac{1}{m} \cdot \left[\frac{1}{N} \sum_{l = < N >} x_{(l)}[l] e^{-jk(\frac{2\pi}{N})l} \right]$$

$$= \frac{1}{m} \cdot a_{k}$$

• Example 5.6, p.371 of text

Figure 5.11 (a) Discrete-time periodic impulse train; (b) its Fourier transform.

• Example 4.8, p.299 of text (P.76 of 4.0)

Figure 4.14 (a) Periodic impulse train; (b) its Fourier transform.

Discrete (
$$\Delta t = T$$
) \rightarrow Periodic ($W = \frac{2\pi}{T}$)

Periodic ($T = T$) \rightarrow Discrete ($\omega_0 = \frac{2\pi}{T}$)

• Example 5.11, p.383 of text

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \delta[n-n_0] e^{-j\omega n} = e^{-j\omega n_0}$$

$$Y(e^{j\omega}) = e^{-j\omega n_0} X(e^{j\omega})$$

time shift property

• Example 5.14, p.387 of text

Figure 5.18 (a) System interconnection for Example 5.14; (b) the overall frequency response for this system.

$$\begin{aligned} w_1[n] &= (-1)^n \mathbf{x}[n] = e^{j\pi n} \mathbf{x}[n] \\ W_1(e^{j\omega}) &= X(e^{j(\omega-\pi)}) \\ H(e^{j\omega}) &= H_{lp}(e^{j(\omega-\pi)}) + H_{lp}(e^{j\omega}) \end{aligned}$$

Figure 4.26 Implementation of a bandpass filter using amplitude modulation with a complex exponential carrier.

Figure 4.27 Spectra of the signals in the system of Figure 4.26.

• Example 5.17, p.395 of text

$$g(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & T_1 \le |t| \le \pi, \text{ in } [-\pi, \pi] \end{cases}$$

$$\text{periodic with } T = 2\pi, \ \omega_0 = \frac{2\pi}{T} = 1$$

$$a_k = \frac{\sin(kT_1)}{k\pi}, \text{ (example 3.5 of text)}$$

$$x[n] = \frac{\sin(\pi n/2)}{\pi n}$$
, by duality

$$X(e^{j\omega}) = \begin{cases} 1, & |\omega| \le \pi/2 \\ 0, & \pi/2 < \omega \le \pi \end{cases}$$

• Example 3.5, p.193 of text (P. 58 of 3.0)

Figure 3.7 Plots of the scaled Fourier series coefficients Ta_k for the periodic square wave with T_1 fixed and for several values of T: (a) $T=4T_1$; (b) $T=8T_1$; (c) $T=16T_1$. The coefficients are regularly spaced samples of the envelope $(2\sin\omega T_1)/\omega$, where the spacing between samples, $2\pi/T$, decreases as T increases.

Rectangular/Sinc (p.21 of 5.0)

Problem 5.36(c), p.411 of text

$$y[n] + y[n-1] + \frac{1}{4}y[n-2] = x[n-1] - \frac{1}{2}x[n-2]$$

$$H(e^{j\omega}) = \frac{e^{-j\omega} - \frac{1}{2}e^{-j2\omega}}{1 + e^{-j\omega} + \frac{1}{4}e^{-j2\omega}}$$

Inverse system

$$G(e^{j\omega}) = \frac{1}{H(e^{j\omega})} = \frac{e^{-j\omega} \left(e^{j\omega} + 1 + \frac{1}{4} e^{-j\omega} \right)}{e^{-j\omega} \left(1 - \frac{1}{2} e^{-j\omega} \right)}$$

$$g[n] = \left(\frac{1}{2} \right)^{n+1} u[n+1] + \left(\frac{1}{2} \right)^{n} u[n] + \frac{1}{4} \left(\frac{1}{2} \right)^{n-1} u[n-1]$$
Not causal
$$g'[n] = \left(\frac{1}{2} \right)^{n} u[n] + \left(\frac{1}{2} \right)^{n-1} u[n-1] + \frac{1}{4} \left(\frac{1}{2} \right)^{n-2} u[n-2]$$
Inverse with delay: output $x[n-1]$

Inverse with delay : output x[n-1]

Problem 5.43, p.413 of text

$$g[n] = x[2n], \quad G(e^{j\omega}) = ?$$

$$v[n] = \frac{1}{2} \left\{ (-1)^n x[n] + x[n] \right\}$$
odd index samples are zero
$$x[2n] = v[2n] = g[n]$$

$$G(e^{j\omega}) = \sum_{n=-\infty}^{\infty} v[2n]e^{-j\omega n}, \quad m = 2n$$

$$= \sum_{m=-\infty}^{\infty} v[m]e^{-j\omega \frac{m}{2}} = V(e^{j\omega/2})$$

$$= \frac{1}{2} \left[X(e^{j(\frac{\omega}{2} - \pi)}) + X(e^{j\frac{\omega}{2}}) \right]$$

Problem 5.46, p.415 of text

$$\alpha^{n} \mathbf{u}[n] \longleftrightarrow \frac{1}{1 - \alpha e^{-j\omega}}$$

$$(n+1)\alpha^{n} \mathbf{u}[n] \longleftrightarrow \frac{1}{(1 - \alpha e^{-j\omega})^{2}}$$

$$nx[n] \stackrel{\text{F}}{\longleftrightarrow} j \frac{dX(e^{j\omega})}{d\omega}$$
, example 5.13, P.385 of text

$$\frac{(n+r-1)!}{n!(r-1)!}\alpha^{n}\mathbf{u}[n] \longleftrightarrow \frac{1}{(1-\alpha e^{-j\omega})^{r}}$$

true for r = 1, 2

when r = k is true

show r = k + 1 is also true

Problem 5.56, p.422 of text

x[m, n] is a two-dimensional signal

$$X(e^{j\omega_1}, e^{j\omega_2}) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x[m, n] e^{-j(\omega_1 m + \omega_2 n)}$$

$$=\sum_{n=-\infty}^{\infty}\left[\sum_{m=-\infty}^{\infty}x[m,n]e^{-j\omega_{1}m}\right]e^{-j\omega_{2}n}$$

$$= \sum_{n=0}^{\infty} X_n \left(e^{j\omega_1} \right) e^{-j\omega_2 n}$$

$$x[m,n] = \left(\frac{1}{2\pi}\right)^{2} \int_{2\pi} \int_{2\pi} X(e^{j\omega_{1}}, e^{j\omega_{2}}) e^{j\omega_{1}m} e^{j\omega_{2}n} d\omega_{1} d\omega_{2}$$
$$= \frac{1}{2\pi} \int_{2\pi} \left[\frac{1}{2\pi} \int_{2\pi} X(e^{j\omega_{1}}, e^{j\omega_{2}}) e^{j\omega_{1}m} d\omega_{1} \right] e^{j\omega_{2}n} d\omega_{2}$$

Problem 3.70, p.281 of text

• 2-dimensional signals (P. 65 of 3.0)

Problem 3.70, p.281 of text

• 2-dimensional signals (P. 64 of 3.0)

