Finite-size study of the Quench Action approach in integrable spin chains

Vincenzo Alba¹, Pasquale Calabrese¹

 1 International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy, INFN, Sezione di Trieste

Abstract.

fdasfa

1. Introduction

2. Overlap with the Neel state

Let us consider a generic *n*-string state

$$\lambda_{n;\alpha}^a = \lambda_{n;\alpha} + \frac{i}{2}(n+1-2a) + i\delta_{n;\alpha}^a \quad \text{with } a = 1,\dots, n.$$
 (1)

We denote the generic parity invariant eigenstate as $|\{\pm\lambda_j\}_{j=1}^m, n_\infty\rangle$, where m is the number of rapidity pairs, N_∞ is the number of infinite rapidities, with $M=L/2=N_\infty+2m$, and $n_\infty\equiv N_\infty/L$ is the infinite rapidities density.

The overlap with the Neel state $|\Psi_0\rangle$ reads

$$\frac{\langle \Psi_0 | \{ \pm \lambda_j \}_{j=1}^m, n_\infty \rangle}{\| \| \{ \lambda_j \}_{j=1}^m, n_\infty \rangle \|} = \frac{\sqrt{2} N_\infty!}{\sqrt{(2N_\infty)!}} \left[\prod_{j=1}^m \frac{\sqrt{\lambda_j^2 + 1/4}}{4\lambda_j} \right] \sqrt{\frac{\det_m(G^+)}{\det_m(G^-)}}$$
(2)

where

$$G_{jk}^{\pm} = \delta_{jk} \left(NK_{1/2}(\lambda_j) - \sum_{l=1}^{m} K_1^{+}(\lambda_j, \lambda_l) \right) + K_1^{\pm}(\lambda_j, \lambda_k), \quad j, k = 1, \dots, m(3)$$

and

$$K_1^{\pm}(\lambda,\mu) = K_1(\lambda-\mu) \pm K_1(\lambda+\mu) \tag{4}$$

and

$$K_{\alpha}(\lambda) \equiv \frac{2\alpha}{\lambda^2 + \alpha^2} \tag{5}$$

2.1. Reduced Neel overlap

In the case of perfect strings the matrices G_{jk}^{\pm} become ill-defined. Precisely, $K_1^+(\lambda, \mu)$ diverges if λ and μ are successive members of the same string, i.e., $|\lambda - \mu| = i$.

It is possible to rewrite (2) in terms of the string centers $\lambda_{n;\alpha}$ only. Here we restrict ourselves to rapidity configurations with no zero-momentum strings.

It is convenient to split the indices i, j of G_{ij}^{\pm} as $i = (n, \alpha)$ $j = (m, \beta)$, with n, m being the length of the strings and α, β labelling the string centers.

The result reads

$$\frac{1}{2}G_{(n,\alpha)(m,\beta)}^{+} = \begin{cases}
L\theta_{n}'(\lambda_{n;\alpha}) - \sum_{(\ell,\gamma)\neq(n,\alpha)} (\Theta_{n,\ell}'(\lambda_{n;\alpha} - \lambda_{\ell;\gamma}) + \Theta_{n,\ell}'(\lambda_{n;\alpha} + \lambda_{\ell;\gamma})) & \text{if } (n,\alpha) = (m,\beta) \\
\Theta_{n,m}'(\lambda_{n;\alpha} - \lambda_{m;\beta}) + \Theta_{n,m}'(\lambda_{n;\alpha} + \lambda_{m;\beta}) & \text{if } (n,\alpha) \neq (m,\beta)
\end{cases} (6)$$

Here $\theta'_n(x) \equiv d/dx\theta_n(x)$ and $\Theta'(x) \equiv d/dx\Theta(x)$.

For G_{ij}^- one obtains

$$\frac{1}{2}G_{(n,\alpha)(m,\beta)}^{-} = \begin{cases}
(L-1)\theta'_n(\lambda_{n;\alpha}) - 2\sum_{k=1}^{n-1}\theta'_k(\lambda_{n;\alpha}) - \sum_{(\ell,\gamma)\neq(n,\alpha)}(\Theta'_{n,\ell}(\lambda_{n;\alpha} - \lambda_{\ell;\gamma}) + \Theta'_{n,l}(\lambda_{n;\alpha} + \lambda_{\ell;\gamma})) & \text{if } (n, \theta) \\
\Theta'_{n,m}(\lambda_{n;\alpha} - \lambda_{m;\beta}) - \Theta'_{n,m}(\lambda_{n;\alpha} + \lambda_{m;\beta}) & \text{if } (n, \theta)
\end{cases}$$

Finally, the multiplicative prefactor in (2) for the generic n-string can be rewritten as

$$\prod_{a=1}^{n} \frac{\sqrt{(\lambda_{n;\alpha}^{a})^{2} + 1/4}}{4\lambda_{n;\alpha}^{a}} = \frac{1}{4^{n}} \left(\frac{\sqrt{n^{2} + \lambda_{n;\alpha}^{2}}}{\lambda_{n;\alpha}} \prod_{k=0}^{\lceil n/2 \rceil - 1} \frac{(2k)^{2} + \lambda_{n;\alpha}^{2}}{(2k+1)^{2} + \lambda_{n;\alpha}^{2}} \right)^{\mathcal{P}}, \quad (8)$$

with $\mathcal{P} = +$ and $\mathcal{P} = -$ for even and odd strings, respectively.

String content	$2I_n^+$	E	$ \langle\{\lambda\} \Psi_0 angle ^2$	here
6 inf	-	0	0.002164502165	0.002164502165
2 one, 4 inf	1_1	-3.918985947229	0.096183409244	0.096183409244237
	3_1	-3.309721467891	0.011288497947	0.0112884979464673
	5_1	-2.284629676547	0.004542580506	0.0045425805061850
	7_1	-1.169169973996	0.002752622983	0.0027526229835876
	9_{1}	-0.317492934338	0.002116006203	0.0021160062026402
4 one, 2 inf	$1_{1}3_{1}$	-7.070529325964	0.310133033838	0.554809782804
	$1_{1}5_{1}$	-5.847128730477	0.129277023687	
	$1_{1}7_{1}$	-4.570746557876	0.085992436024	
	$3_{1}5_{1}$	-5.153853093221	0.015256395523	
	$3_{1}7_{1}$	-3.916336243695	0.010091113504	
	5_17_1	-2.817696043731	0.004059780228	
2 two, 2 inf	1_2	-1.905667167442	0.001207238321	0.005468702625
	3_2	-1.368837200825	0.002340453815	
	5_2	-0.681173793635	0.001921010489	
1 one, 1 three, 2 inf	$0_{1}0_{3}$	-2.668031843135	0.034959609810	0.034959609810
6 one	$1_13_15_1$	-8.387390917445	0.153412152966	0.153412152966
2 two, 2 one	$1_{1}1_{2}$	-5.401838225870	0.040162686361	0.046134750850
	$3_{1}1_{2}$	-4.613929948329	0.004636541934	
	$5_{1}1_{2}$	-3.147465758841	0.001335522556	
1 three, 3 one	$0_12_10_3$	-6.340207488736	0.052743525774	0.078910020729
	$0_14_10_3$	-5.203653009936	0.015022005621	
	$0_16_10_3$	-3.788693957250	0.011144489334	
1 five, 1 one	$0_{1}0_{5}$	-2.444293750583	0.005887902992	0.005887902992
2 three	13	-1.111855930538	0.001342476001	0.001342476001
1 two, 1 four	$0_{2}0_{4}$	-1.560671012472	0.000026982174	0.000026982174

Table 1. All Bethe states for N=12 with nonzero overlap with the zero-momentum Néel state. The overlap squares add up to 1 up to the precision in which the Bethe equations were solved. The $2I_n^+$ in the second column give the positive n-string quantum numbers of the parity-invariant Bethe states.

Figure 1. The squared overlap $|\langle \Psi_0 | \{\lambda\} \rangle|^2$ between the Neel state $|\Psi_0\rangle$ and the eigenstates $|\{\lambda\}\rangle$ of the XXX chain with L=22 sites. Only non-zero overlaps are shown. In all the panels the x-axis shows the eigenstate energy density E/L. The circles are the exact diagonalization results for all the non-zero overlaps. The crosses are the Bethe ansatz results obtained using the Bethe-Gaudin-Takahashi equations. The missing crosses correspond to eigenstates containing zero-momentum strings. (a) Overview of all the non-zero overlaps. (b)(c)(d) The same overlaps as in (a) zooming in the regions [0,0.2], [0,0.020], and $[0,4\cdot 10^{-5}]$. The discrepancies between the ED and the Bethe ansatz results are attributed to the string deviations.

Figure 2. The overlap sum rule $\sum_{\{\lambda\}} |\langle \{\lambda\} | \Psi_0 \rangle|^2$, with $|\Psi_0\rangle$ the Neel state and $|\{\lambda\}\rangle$ the eigenstates of the XXX spin chain, plotted versus 1/L, with L the chain length. The circles are Bethe ansatz results for chains up to L=36. Only the eigenstates with no zero-momentum strings are considered in the sum. The dash-dotted line is a fit to $A/L^{1/2} + B/L$, with A, B fitting parameters. Inset: The same data as in the main Figure plotted versus $1/L^{1/2}$.

Figure 3. The overlap sum rule $\sum_{\{\lambda\}} |\langle \{\lambda\} | \Psi_0 \rangle|^2$, with $|\Psi_0 \rangle$ the Majumdar-Ghosh state and $|\{\lambda\}\rangle$ the eigenstates of the XXX spin chain, plotted versus 1/L, with L the chain length. The circles are Bethe ansatz results for chains up to L=32. Only the eigenstates with no zero-momentum strings are considered in the sum. The dash-dotted line is a fit to $A/L^{1/2} + B/L$, with A,B fitting parameters. Inset: The same data as in the main Figure plotted versus $1/L^{1/2}$.

Figure 4. The overlap between the Neel state and the eigenstates of the XXX chain as a function of the eigenstate energy. (a) The squared overlap $|\langle\{\lambda\}|Neel\rangle|^2$ plotted versus the eigenstates energy density E/L. The data are Bethe ansatz results for chains of length L=22,26,32,36 (different symbols). (b) Same as in (a) plotting on the y-axis the combination $-2\log(|\langle\{\lambda\}|Neel\rangle|)/L$.