3MAVZU: BAZIS. VEKTORNING BERILGAN BAZISGA NISBATAN KOORDINATALARI.

1-Ta'rif: Vektor fazoning ixtiyoriy $\vec{e}_1, \vec{e}_2...\vec{e}_n \in V$ vektorlar chiziqli erkli bo'lib bu vektor fazaning extimollik elementi $\vec{e}_1, \vec{e}_2...\vec{e}_n$ vektorlarning chiziqli kambinatsiyasi ko'rinishida ifodalansa, $\vec{e}_1, \vec{e}_2...\vec{e}_n$ vektorlarga V vektor fazoning bazisi deyiladi.

2-Ta'rif: Agar vektor fazo bazisining elementlari birlik vektor bo'lib ularning har extimollik ikkitasi ortaganal bo'lsa bunday bazisga ortaganal bazis deyiladi. Ya'ni $|\vec{e}_1| = 1, |\vec{e}_2|, ..., |\vec{e}_n| = 1; \vec{e}_i \perp \vec{e}_j, i \neq j$ ixtiyoriy j lar uchun ($\forall j$ uchun). Bazisning elementlar soniga vektor fa'zoni o'lchovi deyiladi:

$$V_1, V_2, ..., V_n$$

Teorema: V_3 da har qanday toʻrtta vektor chiziqli bogʻliq deyiladi.

Vektorning berilgan bazisga nisbatan koordinatalari.

 $\vec{e}_1, \vec{e}_2...\vec{e}_n \in V$ vektor fazodagi bazis bilan teorema ga asosan ixtiyoriy $\vec{a} \in V_3$ vektorni $\vec{a} = x\vec{e}_1 + y\vec{e}_2 + z\vec{e}_3$ koʻrinishida ta'svirlashimiz mumkin. \vec{a} vektorni bunday koʻrinishda ta'svirlanishiga uning bazis boyicha yoyilmasi deyidadi.

Teorema: V_3 vektor fazodagi ixtiyoriy vektor berilgan $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ bazis boʻyicha yagona yoyilmaga ega.

Isbot. Teskarisini faraz qilamiz. \vec{a} vektor $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ bazisda ikkita yoyilmaga ega boʻlsin. Keyin $\vec{a}_1 = x_1\vec{e}_1 + y_1\vec{e}_2 + z_1\vec{e}_3$ va $\vec{a}_2 = x_2\vec{e}_1 + y_2\vec{e}_2 + z_2\vec{e}_3$ $\vec{a}_1 = \vec{a}_2$; $x_1\vec{e}_1 + y_1\vec{e}_2 + z_1\vec{e}_3 = x_2\vec{e}_1 + y_2\vec{e}_2 + z_2\vec{e}_3$ $(x_1 - x_2)\vec{e}_1 + (y_1 - y_2)\vec{e}_2 + (z_1 - z_2)\vec{e}_3 = 0$ $\vec{e}_1, \vec{e}_2, \vec{e}_3$ vektorlar chiziqli erkli boʻlgani uchun $x_1 - x_2 = 0$ $y_1 - y_2 = 0$ $z_1 - z_2 = 0$ $x_1 = x_2$; $y_1 = y_2$; $z_1 = z_2$ yagona yoyilmaga ega.

Ta'rif: 3 yoyilmadagi x, y, z sonlarga \vec{a} vektorning $\vec{e}_1, \vec{e}_2, \vec{e}_3$ bazisdagi koordinatalari deyiladi va shunday ko'rinishda bo'ladi: $\vec{a}(x, y, z)$.

Koordinatalari bilan berilgan vektorlar ustida amallar.

Bizga V_3 vektor $\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$ fazoda bazisda \vec{a} va \vec{b} vektorlarning koordinatalari

 $\vec{a}(x_1y_1z_1) = x_1\vec{e}_1 + y_1\vec{e}_2 + z_1\vec{e}_3$ va $\vec{a}(x_2y_2z_2) = x_2\vec{e}_1 + y_2\vec{e}_2 + z_2\vec{e}_3$ koʻrinishda berilgan boʻlsin.

Uning bir qator xossalari quyidagicha boʻladi:

1) Tekislikda har qanday ikkita nokollinear vektorlar bazisni tashkil qiladi.

$$\vec{a} \pm \vec{b} = (\vec{a} \pm \vec{b})(x_1 \pm x_2; y_1 \pm y_2; z_1 \pm z_2)$$
 bo'lsin.

Isbot:

$$\vec{a} \pm \vec{b} = x_2 \vec{e_1} + y_2 \vec{e_2} + z_2 \vec{e_3} + x_1 \vec{e_1} + y_1 \vec{e_2} + z_1 \vec{e_3} = (x_1 + x_2) \vec{e_1} + (y_1 + y_2) \vec{e_2} + (z_1 + z_2) \vec{e_3} = (\vec{a} + \vec{b})(x_1 + x_2; y_1 + y_2; z_1 + z_2)$$

2) Fazoda har qanday uchta nokomplanar vektorlar bazisni tashkil qiladi.

$$\lambda \vec{a} = (\lambda x_1; \lambda y_1; \lambda z_1)$$

Isbot:

$$\lambda \vec{a} = \lambda (x_1 \vec{e}_1 + y_1 \vec{e}_2 + z_1 \vec{e}_3) = \lambda x_1 \vec{e}_1 + \lambda y_1 \vec{e}_2 + \lambda z_1 \vec{e}_3 = (\lambda x_1) \vec{e}_1 + (\lambda y_1) \vec{e}_2 + (\lambda z_1) \vec{e}_3 = (\lambda x_1; \lambda y_1; \lambda z_1)$$

Teorema: Uch vektor chiziqli bogʻliq boʻlishi uchun ularning komplanar boʻlishi zarur va yetarli.

Ikkinchi xossani isbotlaymiz: Bizga uchta nokomplanar $\vec{a}, \vec{b}, \vec{c}$ vektorlar berilgan boʻlsin. 1-teoremaga koʻra ular chiziqli erkli vektorlar tashkil qiladi. Endi ixtiyoriy \vec{d} vektorni olib, uni $\vec{a}, \vec{b}, \vec{c}$ vektorlar orqali chiziqli ifodalash mumkinligini koʻrsatamiz

(1.3.1-rasm).

Buning uchun $\vec{a}, \vec{b}, \vec{c}$ vektorlarning boshlarini O nuqtaga joylashtiramiz va \vec{d} vektorning oxiridan \vec{a}, \vec{b} vektorlar tekisligiga, \vec{a}, \vec{c} vektorlar tekisligiga va \vec{c}, \vec{b} vektorlar tekisligiga parallel tekisliklar oʻtkazamiz. Oʻtkazilgan tekisliklarning

 $\vec{a}, \vec{b}, \vec{c}$ vektorlar yotgan toʻgʻri chiziqlar bilan kesishish nuqtalarini mos ravishda A, B, C harflar bilan belgilaymiz. Vektorlarni qoʻshish qoidasiga koʻra

$$\vec{d} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$

tenglikni olamiz.

Bu yerda $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$ vektorlar mos ravishda $\vec{a}, \vec{b}, \vec{c}$ vektorlarga kollinear boʻlganligi uchun shunday λ, μ, ν sonlar mavjudki

$$\overrightarrow{OA} = \lambda \overrightarrow{a}, \overrightarrow{OB} = \mu \overrightarrow{b}, \overrightarrow{OC} = v\overrightarrow{c}$$

tengliklar oʻrinli boʻladi. Bu tengliklarni hisobga olib

$$\vec{d} = \lambda \vec{a} + \mu \vec{b} + \nu \vec{c}$$

tenglikni olamiz. Teorema isbotlandi.

Ta'rif: Bizga $\{\vec{e}_1,\vec{e}_2,...,\vec{e}_n\}$ bazis berilib, \vec{a} vektor uchun

$$\vec{a} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + ... + a_n \vec{e}_n$$

tenglik oʻrinli boʻlsa, $\{a_1, a_2, ..., a_n\}$ sonlar \vec{a} vektorning koordinatalari deyiladi.

Xossa. Har bir vektor berilgan bazisda oʻzining koordinatalari bilan yagona ravishda aniqlanadi.

Berilgan \vec{a} vektor uchun ikkita

$$\vec{a} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + ... + a_n \vec{e}_n$$

$$\vec{a} = b_1 \vec{e}_1 + b_2 \vec{e}_2 + ... + b_n \vec{e}_n$$

tengliklar oʻrinli boʻlsa, ularning birini ikkinchisidan hadma had ayirib

$$\vec{0} = (a_1 - b_1)\vec{e}_1 + (a_2 + b_2)\vec{e}_2 + ... + (a_n + b_n)\vec{e}_n$$

tenglikni hosil qilamiz. Bazisni tashkil qiluvchi $\{\vec{e}_1,\vec{e}_2,...,\vec{e}_n\}$ vektorlar chiziqli erkli boʻlganligi uchun $a_1 - b_1 = 0, a_2 - b_2 = 0,..., a_n - b_n = 0$ munosabat hosil boʻladi.

Koordinatalari bilan berilgan vektorlar ustida amallar.

 L_3 chiziqli fazodagi $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ bazisga nisbatan \vec{a}, \vec{b} vektorlar ushbu koordinatalarga ega boʻlsin:

$$\vec{a}(x_1, y_1, z_1) \Rightarrow \vec{a} = x_1 \vec{e}_1 + y_1 \vec{e}_2 + z_1 \vec{e}_3;$$

 $\vec{b}(x_2, y_2, z_2) \Rightarrow \vec{b} = x_2 \vec{e}_1 + y_2 \vec{e}_2 + z_2 \vec{e}_3.$

1. \vec{a} va \vec{b} vektorlarni qoʻshamiz:

$$\vec{a} + \vec{b} = (x_1 \vec{e}_1 + y_1 \vec{e}_2 + z_1 \vec{e}_3) + (x_2 \vec{e}_1 + y_2 \vec{e}_2 + z_2 \vec{e}_3).$$

Bu tenglikdan vektorlarni qoʻshish va songa koʻpaytirish amallari xossalariga ko'ra

$$\vec{a} + \vec{b} = (x_1 + x_2)\vec{e}_1 + (y_1 + y_2)\vec{e}_2 + (z_1 + z_2)\vec{e}_3 \Rightarrow$$
$$\Rightarrow (\vec{a} + \vec{b}) = (x_1 + x_2, y_1 + y_2, z_1 + z_2).$$

Demak, ikki vektor yigʻindisining koordinatalari qoʻshiluvchi vektorlar mos koordinatalarining yigʻindisidan iborat.

2. Shuning singari $\vec{a} - \vec{b}$ ning koordinatalari:

$$(\vec{a} - \vec{b}) = (x_1 - x_2, y_1 - y_2, z_1 - z_2).$$

3. $\vec{a}\{x_1, y_1, z_1\}$ vektoning λ songa ko'paytmasining koordinatalari:

$$\lambda \vec{a} = (\lambda x_1, \lambda y_1, \lambda z_1)$$
.

Ta'rif. Berilgan $\{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$ bazis uchun

$$\left(e_{i}, e_{j}\right) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

$$(1.3.1)$$

bajarilsa, $\{\vec{e}_1,\vec{e}_2,...,\vec{e}_n\}$ – ortonormalanlgan bazis deyiladi.

MISOLLAR

- 1. Tekislikda biror bazisga nisbatan uchta vektor oʻzining koordinatalari bilan berilgan: $\vec{a}(3;1), \vec{b}(-2;3), \vec{c}(5;2)$. \vec{c} vektorni \vec{a} va \vec{b} vektorlar orqali ifodalang.
 - 2. Tekislikda quyidagi vektorlar berilgan: $\vec{a}(3;1), \vec{b}(-2;3), \vec{c}(-8;1)$.

Bazis vektorlar sifatida bu vektorlarning ixtiyoriy ikkitasini olib, ular orqali uchinchisini yoyilmasini yozing.

- 3. $\beta = \{\vec{e}_1, \vec{e}_2\}$ bazisga koʻra $\vec{a}(3; -4)$. Agar $\vec{e}_1' = -2\vec{e}_1, \vec{e}_2' = -\frac{2}{5}\vec{e}_2$ boʻlsa, \vec{a} ning $\beta' = \{\vec{e}'_1, \vec{e}'_2\}$ bazisga nisbatan koordinatalarini toping.
- 4. Quyida berilgan vektorlar uchligidan uchburchak mumkinmi?
- 1) $\vec{a} = \vec{e}_1 + 2\vec{e}_2;$ $\vec{b} = 3\vec{e}_1 5\vec{e}_2;$ $\vec{c} = -4\vec{e}_1 + 3\vec{e}_2;$ 2) $\vec{a} = -2\vec{e}_1 + 3\vec{e}_2;$ $\vec{b} = \vec{e}_1 \vec{e}_2;$ $\vec{c} = 2\vec{e}_2;$ 3) $\vec{a} = 3\vec{e}_1;$ $\vec{b} = -2\vec{e}_1 2\vec{e}_2;$ $\vec{c} = \vec{e}_1 + 2\vec{e}_2$

- 5. $\beta = \{\vec{e}_1, \vec{e}_2\}$ bazisga nisbatan $\vec{a}_1(0, -3, 0); \vec{a}_2(-2, 0, 5); \vec{a}_3(0, 2, -1); \vec{a}_4(0, 0, 7);$

- $\vec{a}_5(1,0,0)$; $\vec{a}_6(0,1,-3)$; $\vec{a}_7(1,-2,3)$ berilgan:
- 1) \vec{e}_1 va \vec{e}_3 vektorga kollinear vektorlarni;
- 2) \vec{e}_1 va \vec{e}_3 bilan komplanar bo'lgan vektorlarni ko'rsating.
- 6. $\overrightarrow{AB} = \overrightarrow{c}; \overrightarrow{BC} = \overrightarrow{a}; \overrightarrow{CA} = \overrightarrow{b}$ vektorlar ABC uchburchakning tomonlari. ABC uchburchakning $\overrightarrow{AQ}, \overrightarrow{BN}, \overrightarrow{CP}$ medianalaridan iborat vektorlarni $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ vektorlar orqali ifodalang.
- 7. $\vec{a} = (-3,0,4)$ va $\vec{b} = (5,2,14)$ vektorlar orasidan bissektrisa boʻyicha chiquvchi \vec{c} vektorning koordinatalarini toping.
- 8. Biror bazisda vektorlar koordinatalarda berilgan: $\vec{a} = \{1,1,2\}$ va $\vec{e}_1 = \{2,2,-1\}; \vec{e}_2 = \{0,4,8\}; \vec{e}_3 = \{-1,-1,3\}$. Ushbu $\vec{e}_1,\vec{e}_2,\vec{e}_3$ vektorlar bazis tashkil etishiga ishonch hosil qiling va unda \vec{a} vektorning koordinatalarini toping.
- 9. $\overrightarrow{AB} = (2,6,-4); \overrightarrow{AC} = (4,2,-2)$ vektorlar ABC uchburchakning tomonlari. Uchburchakning *C* uchidan o'tkazilgan \overrightarrow{CD} mediana vektorning uzunligini toping.
- 10. \vec{a} vektor OX va OY oʻqlari bilan mos ravishda $\alpha = \frac{\pi}{3}$, $\beta = \frac{2\pi}{3}$ li burchaklar tashkil etadi. Agar $|\vec{a}| = 2$ boʻlsa, uning koordinatalarini hisoblang.
- 11. Trapetsiyaning uchta ketma-ket A(-1;-2), B(1;3), C(9;9) uchlari berilgan. Trapetsiyaning asosi AD=15 bo'lsa, uning to'rtinchi D uchi topilsin.
- 12. \vec{i} , \vec{j} , \vec{k} bazis boʻyicha vektorlar yoyilmasi berilgan: $\vec{c} = 16\vec{i} 15\vec{j} + 12\vec{k}$. Shu bazis boʻyicha \vec{c} vektorga parallel va qarama-qarshi \vec{d} vektorning yoyilmasini aniqlang, bunda $|\vec{d}| = 75$ ga teng.
- 13. Tekislikda $\vec{p}(2;-3), \vec{q}(1;2)$ vektorlar berilgan boʻlsin. $\vec{a}(9;4)$ vektorni \vec{p}, \vec{q} bazis boʻyicha yoyilmasini toping.
- 14. Tekislikda $\vec{p}(-4;1), \vec{q}(3;-5)$ vektorlar berilgan bo'lsin. $\vec{a}(11;-7)$ vektorni \vec{p}, \vec{q} bazis bo'yicha yoyilmasini toping.
- 15. Tekislikda $\vec{p}(3;-2), \vec{q}(-4;1)$ vektorlar berilgan boʻlsin. $\vec{a}(17;-8)$ vektorni \vec{p},\vec{q} bazis boʻyicha yoyilmasini toping.
- 16. Tekislikda $\vec{a}(3;-2), \vec{b}(-2;1)$ va $\vec{c}(7;-4)$ vektorlar berilgan. Har bir vektorni, qolgan ikki vektorni bazis sifatida qabul qilib, yoyilmasini aniqlang.
- 17. $\vec{p}(3;-2;1), \vec{q}(-1;1;-2), \vec{r}(2;1;-3)$ va $\vec{c}(11;-6;5)$ vektorlar berilgan. $\vec{p}, \vec{q}, \vec{r}$ bazis boʻyicha $\vec{c} = \alpha \vec{p} + \beta \vec{q} + \gamma \vec{r}$ vektorning yoyilmasini toping.
- 18. $\vec{p}(3;-2;1), \vec{q}(-1;1;-2), \vec{r}(2;1;-3)$ va $\vec{c}(11;-6;5)$ vektorlar berilgan. $\vec{c}, \vec{q}, \vec{r}$ bazis boʻyicha $\vec{p} = \alpha \vec{c} + \beta \vec{q} + \gamma \vec{r}$ vektorning yoyilmasini toping.
- 19. $\vec{p}(3;-2;1), \vec{q}(-1;1;-2), \vec{r}(2;1;-3)$ va $\vec{c}(11;-6;5)$ vektorlar berilgan. $\vec{p}, \vec{c}, \vec{r}$ bazis

- bo'yicha $\vec{q} = \alpha \vec{p} + \beta \vec{c} + \gamma \vec{r}$ vektorning yoyilmasini toping.
- 20. $\vec{p}(3;-2;1), \vec{q}(-1;1;-2), \vec{r}(2;1;-3)$ va $\vec{c}(11;-6;5)$ vektorlar berilgan. $\vec{p}, \vec{q}, \vec{c}$ bazis boʻyicha $\vec{r} = \alpha \vec{p} + \beta \vec{q} + \gamma \vec{c}$ vektorning yoyilmasini toping.
- 21. $\vec{p}(1;-2;1)$, $\vec{q}(-1;5;3)$, $\vec{r}(7;1;-1)$ vektorlar berilgan. \vec{p} , \vec{q} , \vec{r} bazis bo'yicha $\vec{c}(12;-9;6)$ vektorning yoyilmasini toping.
- 22. $\vec{a}(3;-1), \vec{b}(1;-2), \vec{c}(-1;7)$ vektorlar berilgan. \vec{a}, \vec{b} bazis bo'yicha $\vec{p} = \vec{a} + \vec{b} + \vec{c}$ vektorning yoyilmasini aniqlang.
- 23. $\vec{a}(2;1;0)$, $\vec{b}(1;-1;2)$, $\vec{c}(2;2;-1)$ va $\vec{d}(3;7;-7)$ vektorlar berilgan boʻlsin. Har bir vektorning yoyilmasini qolgan uchta vektorni bazis sifatida qabul qilib aniqlang.
- 24. $\overrightarrow{AB} = \{2;6;-4\}$ va $\overrightarrow{AC}\{4;2;-2\}$ vektorlar \overrightarrow{ABC} uchburchakning yon tomonlariga mos keladi. Uchburchakning medianalariga toʻgʻri keluvchi $\overrightarrow{AM},\overrightarrow{BN},\overrightarrow{CP}$ vektorlarning koordinatalarini aniqlang.
- 25. $\vec{x}(n;n+4;n-1)$ vektorni $\vec{e}_1(1;1;0)$, $\vec{e}_2(1;0;1)$ va $\vec{e}_3(0;1;1)$ bazisdagi yoyilmasini toping .
- 26. Biror bazisda vektorlar koordinatalarda berilgan: $\overline{a} = \{1, 1, 2\}$ va $\overline{e}_1 = \{2, 2, -1\}$, $\overline{e}_2 = \{0, 4, 8\}$, $\overline{e}_3 = \{-1, -1, 3\}$. Ushbu $\overline{e}_1, \overline{e}_2, \overline{e}_3$ vektorlar bazis tashkil etishiga ishonch hosil qiling va unda \overline{a} vektorning koordinatalarini toping.
- 27. R^3 da $x_1 + x_2 + x_3 = 1$ tenglamani qanoatlantiruvchi vektorlar toʻplami qism fazo boʻla oladimi?
- 28. *R*³ da birinchi va uchinchi koordinatalar ustma-ust tushuvchi toʻplami qism fazo hosil qiladimi?
- 29. Tartibi 3 ga teng boʻlgan koʻphadlar toʻplami qism fazo hosil qila oladimi?
- 30. $\vec{e}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\vec{e}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ bazisda $\vec{x} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ vektor koordinatalarini toping.
- 31. $\vec{e}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\vec{e}_2 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ bazisda $\vec{x} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ vektor koordinatalarini toping.
- 32. $\vec{e}_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $\vec{e}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ bazisda $\vec{x} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ vektor koordinatalarini toping.
- 33. $\vec{e}_1 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, $\vec{e}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ bazisda $\vec{x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ vektor koordinatalarini toping.

TESTLAR

1.Quyidagi mulohazalardan qaysi biri noto'g'ri?

- a)Matritsaning satrlari chiziqli bogʻliqli boʻlishligi uchun ulardan biri qolganlarining chiziqli kombinatsiyasidan iborat boʻlishligi zarur va etarligi
- b)Bazis satrlar chiziqli erklidir Matirtsaning ixtiyoriy satrini bazis satrlarning chiziqli kombinatsiyasi orqali ifodalash mumkin
- c)Matritsaning satrlari chiziqli bog'liqli deyiladi, agar biror sonlar bilan chiziqli kombinatsiyasi nolga teng bo'lsa
- d)Determinant nolga teng boʻlishligi uchun uning satrlari chiziqli bogʻliqli boʻlishligi zarur va etarli

2. Quyidagi mulohazalardan qaysi biri noto'g'ri?

- a)Xar qanday n o'lchovli Evklid fazosida ortonormal bazis mavjud
- b)Barcha n oʻlchovli Evklid fazosilari izomorfdir
- c)Xar qanday Evklid fazosi normallangan fazo boʻladi
- d)Xar qanday n oʻlchovli Evklid fazosida yagona bazis mavjud

3.V chiziqli fazoning xar bir x elementiga W chiziqli fazonig biror y elementini mos quyuvchi akslantrishga

- a) chiziqli operator deyiladi
- b) funktsiya deyiladi
- c) operator deyiladi
- d) chiziqli forma deyiladi

4.V fazoda $e_1, e_2, ..., e_n$ bazis tashkil etadi deyiladi, agar

- a) ular orqali fazoning har bir elementini ifodalash mumkin boʻlsa
- b) ular chiziqli erkli boʻlib, ular orqali fazoning har bir elementini ifodalash mumkin boʻlsa
- c) ular chiziqli erkli boʻlsa
- d) ular chiziqli bogʻliqli boʻlib, ular orqali fazoning har bir elementini ifodalash mumkin boʻlsa