Noah Casey

MATH 4720

Homework 5

1 Let G be a finite group and G a normal subgroup of G. Let H' be a subgroup of G/N and let $H1 = \pi^{-1}(H)$ be the corresponding subgroup of G via the Correspondence Theorem. Show that $|H1| = |H| \cdot |N|$.

2 In the group \mathbb{Z}_{40} , let $H = \langle 4 \rangle$ and $N = \langle 10 \rangle$.

a Find the elements of H + N and $H \cap N$.

$$H \cap N = \langle (4, 10) \rangle$$

$$s = \{0,20\}$$

$$H+N=\langle 4\rangle + \langle 10\rangle s = \langle 14\rangle s = \{14,28,2,16,30,4,18,32,6,20,34,8,22,36,10,24,38,12,26,0\} s = \{0,2,4,10,10\} s = \langle (4,10)\rangle s = \langle$$

$$s = \{0, 20\}$$

b List the cosets of $\frac{H+N}{N}$.

Note that this quotient group is a + N for all $a \in H + N$.

$$\frac{H+N}{N} = \{\{0,10,20,30\},\{2,12,22,32\},\{4,14,24,34\},\{6,16,26,36\},\{8,18,28,38\}\}.$$

c List the cosets of $\frac{H}{H \cap N}$. Note that this is a + N for all $a \in H \cap N$.

$$\frac{H+N}{N} = \{\{0,20\}, \{4,24\}, \{8,28\}, \{12,32\}, \{16,36\}\}$$