1 Notation

- \mathcal{T} Phylogeny with migration history
- d Number of distinct demes
- Λ Migration matrix $\Lambda = [\Lambda_{ij}]_{i,j=1}^d$ such that $\Lambda = \lambda_{i\to j}$ is the migration rate from deme i into deme j backwards in time. Note that self-migrations are forbidden, i.e. $\lambda_{ii} = 0 \ \forall i = 1, 2, \dots, d$.
- θ Effective population vector such that θ_i is the effective population in deme i
- g Mean generation length for individuals in the overall population (g > 0)

2 Structured Coalescent Likelihood

(Based on Ewing et al. (2004))

$$L_{n,d}(\mathcal{T}) = \prod_{i=1}^{d} \prod_{\substack{j=1\\j\neq i}}^{d} \frac{1}{\theta_i^{c_i}} \lambda_{ij}^{m_{ij}} \prod_{r=2}^{2n+M-1} \exp\left\{-\left(\frac{k_{ir}(k_{ir}-1)}{2\theta_i} + k_{ir}\lambda_{ij}\right)(t_{r-1} - t_r)\right\}$$
(1)