Aula 04: O Cálculo Proposicional - Parte 3

Karla Lima

Álgebra Elementar: 26/10/23

FACET/UFGD

Classificação das Proposições

Considerações Finais - Parte 1

Implicações e Equivalências Lógicas

Considerações Finais - Parte 2

Classificação das Proposições

Contradições [1]

Uma proposição é uma sentença que pode ser classificada como verdadeira ou falsa, não podendo ser os dois ao mesmo tempo.

Contradições [1]

Uma proposição é uma sentença que pode ser classificada como verdadeira ou falsa, não podendo ser os dois ao mesmo tempo.

Qualquer sentença composta equivalente a uma afirmação do tipo A e não A é uma contradição.

Contradições [1]

Uma proposição é uma sentença que pode ser classificada como verdadeira ou falsa, não podendo ser os dois ao mesmo tempo.

Qualquer sentença composta equivalente a uma afirmação do tipo A e não A é uma contradição.

Exemplo 1

A sentença

"João é pernambucano e João não é pernambucano."

é uma contradição.

Contradições [2]

Definição 1

Um proposição composta é chamada de **contradição** se, e somente se, o seu valor lógico for sempre falso (F), independente do valor lógico das proposições simples que a compõem.

Contradições: qual o problema?

"
$$2 = 1 e 2 \neq 1$$
."

A partir desta contradição, numa aula, o filósofo e matemático Bertrand Russel concluiu ao seus alunos que ele era o Papa. Veja o argumento:

```
"Eu e o Papa somos diferentes; eu e o Papa somos 2; \max 2 = 1; logo, eu e o Papa somos 1."
```

Contradições: qual o problema?

Contradizer-se, portanto, pode ser fatal numa argumentação. De uma contradição é possível concluir-se qualquer coisa.

O polo oposto: Tautologias

Uma **tautologia** é uma sentença que afirma algo certamente verdadeiro:

"João é pernambucano ou João não é pernambucano."

O polo oposto: Tautologias

Uma **tautologia** é uma sentença que afirma algo certamente verdadeiro:

"João é pernambucano ou João não é pernambucano."

Uma proposição tautológica nada nos informa de novo, em nada contribui para a construção da argumentação.

Tautologia

Definição 2

Um proposição composta é chamada de **tautologia** se, e somente se, o seu valor lógico for sempre verdadeiro (V), independente do valor lógico das proposições simples que a compõem.

Falácias

Anteriormente, associamos a palavra **falácia** a um argumento não válido.

Na linguagem ordinária, no entanto, ela é utilizada quando nos referimos a um argumento que **parece correto**, mas não o é.

Falácias

- Ou votas no Silveira ou será a desgraça nacional.
- Uma pessoa ou é boa ou é má.
- Os fantasmas existem! Já provastes que não existem?
- Se aprovamos leis contra as armas automáticas, não demorará muito até aprovarmos leis contra todas as armas, e então começaremos a restringir todos os nossos direitos. Acabaremos por viver num estado totalitário.
 Portanto não devemos banir as armas automáticas.

Falácias

- Não podes aceitar que a teoria da evolução é verdadeira, porque se fosse verdadeira estaríamos ao nível dos macacos.
- As pessoas razoáveis concordarão com a nossa política fiscal. As sondagens sugerem que os liberais vão ter a maioria no parlamento, também deves votar neles.

Exercícios

Exercício 1

Classifique as proposições como tautologia, contradição ou falácia.

- a) Se 2(1-1) = 1-1, teremos $\frac{2(1-1)}{1-1} = \frac{1-1}{1-1}$. Logo 2=1.
- Mário é casado com Joana, mas Joana não é casada com Mário.
- c) Se eu ficar em casa, não irei à escola.

Exercícios

Exercício 2

Classifique as proposições como tautologia ou contradição.

a)
$$p \rightarrow (p \lor r)$$

b)
$$\neg (p \rightarrow (\neg p \rightarrow (q \lor \neg q)))$$

Considerações Finais - Parte 1

O que aprendemos

- 1. Contradições são proposições falsas, independente da validade das proposições que a compõem.
- Uma tautologia é uma proposição que não acrescenta nenhuma informação. É sempre verdadeira, independente da validade das proposições compostas que a compõem.
- As falácias, na lógica formal, representa os argumentos inválidos - aqueles nos quais a conclusão não é consequência lógica das premissas.
- 4. Já na lógica informal, as falácias referem-se a argumentos que parecem corretos, mas um olhar mais cuidadoso verifica que o argumento não se sustenta.

Um Puzzle [3]

Vamos acrescentar à ilha dos "cavaleiros" e dos "patifes", os habitantes "normais". Esse último tipo às vezes mentem e às vezes dizem a verdade.

Duas pessoas, A e B, cada um dos quais é um cavaleiro, ou patife, ou um normal, fazem as seguintes afirmações:

A: B é um cavaleiro.

B: A não é um cavaleiro.

Prove que pelo menos um deles está falando a verdade, mas não é um cavaleiro.

Implicações e Equivalências

Lógicas

Definições [4]

Definição 3

a) Duas proposições são ditas **independentes** quando, em suas tabelas-verdade, ocorrem as quatro alternativas:

p	q
F	F
F	V
V	F
V	V

Definições

 b) Duas proposições são dependentes quando, em suas tabelas-verdade, uma ou mais alternativas não ocorrem.
Neste caso, dizemos que existe uma relação entre as proposições dadas.

Exemplo 2

Exemplo 2

Proposições independentes:

M = Maria foi ao cinema.

P = Pedro foi ao teatro.

Proposições dependentes:

C = Eu ficarei em casa.

E = Eu irei à escola.

Relação de Implicação

Definição 4

Uma proposição p **implica** uma proposição q quando, em suas tabelas-verdade, não ocorre VF (nessa ordem!).

Notação: $p \Longrightarrow q$.

Relação de Implicação

Definição 4

Uma proposição p **implica** uma proposição q quando, em suas tabelas-verdade, não ocorre VF (nessa ordem!).

Notação: $p \Longrightarrow q$.

Observação:

ightarrow: representa uma operação entre proposições, dando origem a uma nova operação.

⇒: indica apenas uma relação entre duas proposições dadas.

Exemplo 3

Exemplo 3

Dadas as proposições

C = Eu ficarei em casa.

E = Eu irei à escola.

vamos verificar que $C \Longrightarrow \neg E$.

Exemplo 4

Exemplo 4

Verifique que $p \Longrightarrow q \to p$.

Relação de Equivalência

Definição 5

Diz-se que uma proposição p é **equivalente** a uma proposição q quando, em suas tabelas-verdade, não ocorrem VF nem FV.

Notação: $p \iff q$.

Relação de Equivalência

Definição 5

Diz-se que uma proposição p é **equivalente** a uma proposição q quando, em suas tabelas-verdade, não ocorrem VF nem FV.

Notação: $p \iff q$.

Observação:

 \leftrightarrow : representa uma operação entre proposições, dando origem a uma nova operação.

⇒: indica apenas uma relação entre duas proposições dadas.

Exemplo 5

Exemplo 5

Verifique se as proposições abaixo são equivalentes:

C = Se Marcos estudou, então foi aprovado.

N = Marcos não estudou ou foi aprovado.

Exemplo 6

Exemplo 6

Verifique se as proposições abaixo são equivalentes:

D = Maria é médica ou João é professor.

C = Maria não é medica, então João é professor.

Considerações Finais - Parte 2

O que aprendemos

- 1. Estudamos as relações de implicação e equivalência entre duas proposições. Você consegue dizer a diferença entre elas?
- É importante identificar qual dos tipos de relação estamos lidando; muitas vezes, assumimos uma equivalência onde temos apenas uma implicação.

Um Puzzle [3]

Quando Alice entrou na Floresta do Esquecimento, ela não esqueceu tudo; apenas certas coisas. Muitas vezes ela esquecia seu nome, e a coisa mais provável dela esquecer era o dia da semana. Agora, o Leão e o Unicórnio eram visitantes frequentes da floresta. Esses dois são criaturas estranhas. O Leão mente às segundas, terças e quartas-feiras e fala a verdade nos outros dias da semana. O Unicórnio, por outro lado, mente às quintas, sextas e sábados, mas fala a verdade nos outros dias da semana.

Um Puzzle [3]

Um dia, Alice encontrou o Leão e o Unicórnio descansando sob uma árvore. Eles fizeram as seguintes declarações:

Leão: Ontem foi um dos meus dias mentirosos.

Unicórnio: Ontem também foi um dos meus dias de mentiras.

A partir dessas duas declarações, Alice (que era uma garota muito inteligente) foi capaz de deduzir o dia da semana. Que dia foi?

Referências

Lógica e linguagem cotidiana: Verdade, coerência, comunicação, argumentação.

Autêntica Editora, 2013.

L. B. Bispo, C.A. F.and Castanheira and O.M. S. Filho. *Introdução à lógica Matemàtica*.

Cengage Learning Brasil, 2017.

R.M. Smullyan.

What is the Name of this Book?: The Riddle of Dracula and Other Logical Puzzles.

Prentice-Hall, 1978.

J. Daghlian.

Lógica e Álgebra de Boole.