This assignment requests questions 3-12 from Papa Rudin be done

- 3. Prove that if f is a real function on a measurable space X such that $\{x: f(x) \ge r\}$ is measurable for every rational r, then f is measurable.
- 4. Let $\{a_n\}$ and $\{b_n\}$ be sequences in $[-\infty, \infty]$, and prove the following assertions:

(a)

$$\limsup_{n\to\infty}(-a_n)=-\liminf_{n\to\infty}a_n.$$

Proof: We first begin by showing that $\sup -a_n = -\inf a_n$. The result follows from proper-

ties of limits, namely $\lim_{n\to\infty} -a_n = -\lim_{n\to\infty} a_n$ provided the limit exists. Let $\beta = \inf_{m>n} a_n$. Then for any m>n, we have $\beta < a_m$, and therefore $-\beta > -a_m$. So $-\beta$ is an upper bound for $-a_m$.

Since is the greatest lower bound for $A = \{a_m : m > n\}$, we have that if $\gamma > \beta$ is a lower bound for A, then necessarily $\gamma = \beta$.

Suppose that α is a lesser upper bound for

(b)

$$\limsup_{n\to\infty}(a_n+b_n)\leq \limsup_{n\to\infty}a_n+\limsup_{n\to\infty}b_n$$

provided none of the sums is of the form $\infty - \infty$.

Proof: Suppose that a_n , b_n are as above.

$$\limsup_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}\sup_{m>n}(a_n+b_n)$$

One needs only to choose constant sequences (or one constant and one nonconstant), in order for strict equality to hold.

(c) If $a_n \leq b_n$ for all n, then

$$\liminf_{n\to\infty}a_n\leq \liminf_{n\to\infty}b_n.$$