Number Theory – Midterm 1 – Review

Problem 1 Prove or disprove: There exists integers x, y such that $x^2 + y^2 \equiv 3 \pmod{4}$.

Problem 2 Show that the equation $x^2 + 13y^2 = 12z^2 + 3$ has no integer solutions.

Problem 3 Show that $\{1^{p-2}, 2^{p-2}, \dots, p^{p-2}\}$ is a complete residue system modulo p for any prime p. (What happens if p is composite?)

Problem 4 Does $x^4 - x^3 + 1 = 0$ have any integer solutions? Explain?

Problem 5 Which of the following numbers are representable as a sum of two integer squares: 41, 122, 150? Explain?

Problem 6 Solve $x^3 - 2x + 4 \equiv 0 \pmod{3^3}$.

Problem 7 Find the greatest common divisor of 72 and 231. Write it in the form d = 72x + 231y.

Problem 8 Calculate $gcd(x^8 + x^6 - 3x^4 - 3x^3 + 8x^2 + 2x - 5, 3x^6 + 5x^4 - 4x^2 + 9x + 21)$.

Problem 9 Find a number n satisfying

$$\begin{cases} n \equiv 5 \pmod{7} \\ n \equiv 2 \pmod{4} \\ n \equiv 2 \pmod{2} \end{cases}$$

Problem 10 If possible, find all solutions for each of the following equations. Explain if not.

- (a) $3x \equiv 5 \pmod{7}$
- (b) $3x \equiv 9 \pmod{6}$
- (c) $3x \equiv 5 \pmod{6}$
- (d) 3x + 5y = 51
- (e) 36x + 52y = 6
- $(f) \ x^{48} \equiv -1 \pmod{97}$

Learning outcomes:

- (g) $x^2 \equiv -1 \pmod{97}$
- (h) $x^{2017} \equiv 1 \pmod{97}$
- (i) $x^{96} \equiv -1 \pmod{97}$
- $(j) \ x^2 \equiv -1 \ (\bmod \ 97)$
- $(k) x^2 \equiv -1 \pmod{101}$

Problem 11 Calculate 45⁹⁰ (mod 17).