POS tagging (2)

LING 570

Fei Xia

Week 6: 11/04/09

Unit 2 (so far)

- LM
 - Ngram model
 - Smoothing: add-one, GT, backoff, interpolation

- POS tagging
 - N-gram model
 - HMM (I): definition

Outline for today

- Using HMM for n-gram taggers
 - Bigram tagger
 - Trigram tagger
- Smoothing
 - Unseen tag sequences
 - Unknown words

Using HMM for ngram taggers

HMM

• HMM:

- States: {s₁, s₂, ..., s_N}
- Output symbols: {w₁, w₂, ..., w_m}
- Initial prob: π_{i}
- Transition: a_{ii}
- Emission: b_{ik}
- How to use HMM to build a n-gram tagger?

N-gram POS tagger

$$argmax_{t_1^n}P(t_1^n|w_1^n)$$

$$\approx argmax_{t_1^n} \prod_i P(w_i|t_i) P(t_i|t_{i-N+1}^{i-1})$$

Bigram model:

$$\prod_{i} P(w_i|t_i)P(t_i|t_{i-1})$$

Trigram model:

$$\prod_{i} P(w_{i}|t_{i})P(t_{i}|t_{i-2},t_{i-1})$$

The bigram tagger

- States: POS tags, BOS, EOS
- Output symbols: words, <s>, </s>
- Initial probability: $\pi(BOS) = 1$.
- Transition probability: $a_{ij} = P(s_j | s_i)$
- Emission probability: $b_{jk} = P(w_k | s_j)$

The bigram tagger (cont)

$$X_1^{n+1}: X_1 = BOS, X_2 = t_1, ..., X_{n+1} = t_n$$

$$P(O_1^n, X_1^{n+1})$$

$$= \pi(X_1) \prod_{i=1}^n P(O_i|X_{i+1}) P(X_{i+1}|X_i)$$

$$= \pi(BOS) \prod_{i=1}^n P(w_i|t_i) P(t_i|t_{i-1})$$

 $=\prod_{i=1}^{n} P(w_i|t_i)P(t_i|t_{i-1})$

 $O_1^n = w_1^n$

The trigram tagger

- States: a tag pair, a tag is a POS tag or BOS or EOS
- Output symbols: words, <s>, </s>
- Initial probability: $\pi(BOS_BOS) = 1$.
- Transition probability:

$$a_{ij} = P(t_3|t_1, t_2)$$
, where $s_i = (t_1, t_2)$, and $s_j = (t_2, t_3)$
= 0, where $s_i = (t_1, t_2)$, and $s_j = (t_2', t_3)$, and $t_2 != t_2'$

Emission probability:

$$b_{ik} = P(w_k \mid t)$$
, where $s_i = (t',t)$ for any t'

The trigram tagger (cont)

$$O_1^n = w_1^n$$

$$X_1^{n+1} : X_1 = (BOS, BOS), X_2 = (BOS, t_1), ..., X_{n+1} = (t_{n-1}, t_n)$$

$$P(O_1^n, X_1^{n+1})$$

$$= \pi(X_1) \prod_{i=1}^n P(O_i|X_{i+1}) P(X_{i+1}|X_i)$$

$$= \pi(BOS) \prod_{i=1}^n P(w_i|t_i) P(t_i|t_{i-2}, t_{i-1})$$

$$= \prod_{i=1}^n P(w_i|t_i) P(t_i|t_{i-2}, t_{i-1})$$
₁₀

Smoothing

Why smoothing?

- To handle unseen tag sequences
 - to smooth the transition prob

- To handle unknown words
 - to smooth the emission prob

 To handle unseen (word, tag) pairs, where both word and tag are known (?)

Handling unseen tag sequences

Ex: To smooth P(t₃|t₁, t₂) for a trigram tagger.

How about interpolation?

$$P(t_3 | t_1, t_2) = \lambda_1 P(t_3) + \lambda_2 P(t_3 | t_2) + \lambda_3 P(t_3 | t_1, t_2)$$

How about unknown words?

- Introduce a new output symbol: <unk>
- Estimate P(<unk> | t) for each tag t:
 - Ex: split training data into two sets: create the voc from set1, and estimate P(<unk>|t) from set2.
- Add P(<unk> | t) to the emission prob and renormalize so that sum_w P(w|t) = 1.
 - Ex: Keep P(<unk>|t) the same, and make

$$P_{w \neq \langle unk \rangle}(w|t) = 1 - P(\langle unk \rangle |t)$$

Summary so far

- We can use HMM to build ngram taggers.
- The best state sequence corresponds to the best tag sequence.
 - → We can use the Viterbi algorithm to find the best tag sequence.
- Accuracy on PTB:
 - Unigram tagger: 91%
 - Trigram tagger: 95%

Remaining issues

- Viterbi algorithm
 - → Week 7

- Other algorithms
 - → Week 8-9 and ling572

- How to exploit unlabeled data?
 - → semi- and unsupervised learning

Additional slides

Cues for predicting POS tags for unknown words

- Affixes: unforgettable: un-, -able → JJ
- Capitalization: Hyderabad → NNP
- Word shapes: 123,456 → CD
- The previous word: San _ → NNP

How can we take advantage of these cues?

→ Treat them as features

Unsupervised POS tagging

- Unlabeled data
 - learn word clusters

- What else could be available?
 - A lexicon: all allowed tags for each word
 - use unambiguous words as anchors
 - A few examples (prototypes): e.g., "book" is a noun, "the" is a determiner