Rob J Hyndman George Athanasopoulos

FORECASTING PRINCIPLES AND PRACTICE

8. Exponential smoothing

8.4 A taxonomy of methods
OTexts.org/fpp3/

Exponential smoothing methods

		Seasonal Component		
	Trend	N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
Ν	(None)	(N,N)	(N,A)	(N,M)
Α	(Additive)	(A,N)	(A,A)	(A,M)
A_{d}	(Additive damped)	(A_d,N)	(A_d,A)	(A_d,M)

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A_d,N): Additive damped trend method (A,A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A_d,M): Damped multiplicative Holt-Winters' method

Exponential smoothing methods

Seasonal Component				
	Trend	N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
Ν	(None)	(N,N)	(N,A)	(N,M)
Α	(Additive)	(A,N)	(A,A)	(A,M)
A_{d}	(Additive damped)	(A_d,N)	(A_d,A)	(A_d, M)

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A_d,N): Additive damped trend method

(A,A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A_d,M): Damped multiplicative Holt-Winters' method

There are also multiplicative trend methods (not recommended).

Exponential smoothing methods

Trend	Seasonal						
	N	Α	M				
	$\hat{\mathcal{Y}}_{t+h t} = \ell_t$	$\hat{\mathcal{Y}}_{t+h t} = \ell_t + s_{t+h-m(k+1)}$	$\hat{\mathcal{Y}}_{t+h t} = \ell_t s_{t+h-m(k+1)}$				
N	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	$\begin{split} \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)\ell_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\ell_{t} = \alpha(y_{t}/s_{t-m}) + (1 - \alpha)\ell_{t-1}$ $s_{t} = \gamma(y_{t}/\ell_{t-1}) + (1 - \gamma)s_{t-m}$				
A	$\begin{aligned} \hat{y}_{t+h t} &= \ell_t + hb_t \\ \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \end{aligned}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t + hb_t + s_{t+h-m(k+1)} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= (\ell_t + hb_t)s_{t+h-m(k+1)} \\ \ell_t &= \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t/(\ell_{t-1} + b_{t-1})) + (1 - \gamma)s_{t-m} \end{split}$				
A_d	$\hat{y}_{t+h t} = \ell_t + \phi_h b_t$ $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$ $b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1}$	$\hat{y}_{t+h t} = \ell_t + \phi_h b_t + s_{t+h-m(k+1)}$ $\ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$ $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}$ $s_t = \gamma(y_t - \ell_{t-1} - \phi b_{t-1}) + (1 - \gamma)s_{t-m}$	$\hat{y}_{t+h t} = (\ell_t + \phi_h b_t) s_{t+h-m(k+1)}$ $\ell_t = \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$ $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}$ $s_t = \gamma(y_t/(\ell_{t-1} + \phi b_{t-1})) + (1 - \gamma)s_{t-m}$				

k is the integer part of (h-1)/m

 $\phi_h = \phi + \phi^2 + \dots + \phi^h$