INFO-F-302

Informatique Fondamentale Logique du premier ordre

Prof. Emmanuel Filiot

Exercice 1

- 1. Soit un langage $\mathcal{L} = (p,q,r,s,t,f,g)$ où p,q sont des prédicats unaires, r,s,t sont des prédicats binaires, et f,g sont des fonctions unaires. Modélisez en logique du premier ordre les propriétés suivantes :
 - (a) La relation r modélise une fonction.
 - (b) le prédicat s contient le produit cartésien de p et q.
 - (c) le prédicat t est égal au produit cartésien de q et p.
 - (d) La fonction f est surjective.
 - (e) La fonction g est injective.
- 2. Soit un langage $\mathcal{L} = (p, f, g)$ où p est un prédicat binaire, f une fonctions binaire, et soit une formule φ de \mathcal{L} telle que $\varphi \equiv \exists y \cdot p(z, f(x, y))$. La formule φ est-elle vraie dans la structure \mathcal{M} , en utilisant la valuation \mathcal{V} ?

(a)
$$\mathcal{M} = (D \equiv \mathbb{N}, p \equiv \geq, f \equiv +)$$
 et $\mathcal{V} \equiv (x \mapsto 5, z \mapsto 3)$

(b)
$$\mathcal{M} = (D \equiv \mathbb{Z}, p \equiv >, f \equiv +) \text{ et } \mathcal{V} \equiv (x \mapsto 5, z \mapsto 3)$$

(c)
$$\mathcal{M} = (D \equiv \mathbb{N}, p \equiv \geq, f \equiv \times)$$
 et $\mathcal{V} \equiv (x \mapsto 5, z \mapsto 3)$

(d)
$$\mathcal{M} = (D \equiv \mathbb{Z}, p \equiv -, f \equiv \times)$$
 et $\mathcal{V} \equiv (x \mapsto 5, z \mapsto 3)$

(e)
$$\mathcal{M} = (D \equiv \mathbb{Z}_6, p \equiv -, f \equiv \times) \text{ et } \mathcal{V} \equiv (x \mapsto 5, z \mapsto 3)$$

(f)
$$\mathcal{M} = (D \equiv \mathbb{N}, p \equiv \leq, f \equiv \times)$$
 et $\mathcal{V} \equiv (x \mapsto 2, z \mapsto 4)$

(g)
$$\mathcal{M} = (D \equiv \mathbb{Z}, p \equiv \leq, f \equiv \times)$$
 et $\mathcal{V} \equiv (x \mapsto 2, z \mapsto 4)$

- 3. Trouver un modèle non vide avec le moins d'éléments possibles qui satisfait la formule :
 - (a) $\exists x \exists y \exists z \cdot x \neq y \land y \neq z$
 - (b) $\forall x \cdot [f(x) \neq x]$
 - (c) $\forall x \cdot [f(x) \neq x] \land \exists x \forall y \cdot [f(y) \neq x]$
 - (d) $\forall x \cdot [f(x) \neq x] \land \forall x \forall y \forall z \cdot [(f(x) = z \land f(y) = z) \rightarrow x = y]$
 - (e) $\forall x \cdot [f(x) \neq x] \land \exists x \forall y \cdot [f(y) \neq x] \land \forall x \forall y \forall z \cdot [(f(x) = z \land f(y) = z) \rightarrow x = y]$

Exercice 2 On s'intéresse à l'ensemble des entiers \mathbb{N} , muni de la fonction unaire "successeur" s telle que s(n) = n + 1.

1. Donnez une formule φ_0 ouverte sur la variable x qui est validée si et seulement si x vaut 0. Attention, la constante 0 ne fait pas partie du vocabulaire.

- 2. Soient p et i deux prédicats unaires. Donnez une formule qui garantit que p(n) est vrai exactement pour les n pairs, et i(n) exactement pour les n impairs.
- 3. Soit d une fonction unaire. Donnez une formule qui garantit que d(n) = 2n pour tout n.
- 4. On cherche à réinventer les symboles +, \times , et \geqslant . Seraient-ce des prédicats? Des fonctions? De quelle arité? Donner une formule pour garantir leur bon fonctionnement.

Exercice 3 On s'intéresse maintenant au modèle qui contient à la fois les entiers et les listes d'entiers strictement positifs. Les entiers sont identifiés par le prédicat N(x), et on peut appliquer sur eux le vocabulaire de l'Exercice 2 $(s,0,p,i,d,+,\times,\geqslant)$. Les listes sont identifiés par le prédicat L(x), et on peut appliquer sur elles la fonction e(x,y) qui retourne le $y^{\text{ème}}$ élément de x. Par convention si x n'a pas de $y^{\text{ème}}$ élément, e(x,y)=0.

- On veut "typer" la fonction e et s'assurer qu'elle renvoie toujours un entier. Donner la formule qui doit être vraie dans ce cas.
- On veut s'assurer que si une liste a n éléments, alors tous les e(x,y) avec y>n valent 0. Donner la formule qui doit être vraie dans ce cas.

On s'intéresse maintenant à la conjecture de Syracuse. Soit une valeur n. On génère une liste de valeurs comme suit.

- Si n est pair, la prochaine valeur est n/2
- Si n est impair, la prochaine valeur est 3n + 1

On s'arrête si on atteint 1. Par exemple, pour une valeur initiale de 13, la séquence serait :

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

La conjecture de Syracuse dit que : quelque soit la valeur de départ, on atteint toujours 1.

Exprimer la conjecture de Syracuse en logique du premier ordre à l'aide de fonctions et prédicats de votre choix.

Exercice 4 Soit un langage $\mathcal{L} = (t)$, où t est un prédicat binaire.

- 1. Modélisez en logique du premier ordre que t est une relation transitive (φ_1) et totale (φ_2) .
- 2. Soit un graphe non-dirigé G, et \mathcal{M}_G la structure définie par G où le domaine est l'ensemble des nœuds de G et t la présence d'un chemin entre deux nœuds. Est-ce que \mathcal{M}_G est un modèle pour la propriété de transitivité sur t? Sinon donnez un contre-exemple.
- 3. Est-ce qu'on a $\mathcal{M}_G \models \varphi_2$? Sinon donnez un contre-exemple.
- 4. Soit un graphe non-dirigé G tel que $\mathcal{M}_G \not\models (\neg \varphi_1 \lor \neg \varphi_2)$, que pouvez-vous dire de G?
- 5. Soit a le prédicat binaire représentant les arêtes de G. Construire φ sur \mathcal{L} telle que $\mathcal{M}_G \models \varphi$:
 - (a) Si et seulement si G possède un élément qui est un successeur de tous les autres nœuds.
 - (b) Si et seulement si G possède une clique de taille k.

Exercice 5 Soit le langage $\mathcal{L}=(p)$, où p est un prédicat binaire. Ecrire une formule φ telle que si $\mathcal{M}\models\varphi$, alors le domaine de \mathcal{M} est infini. Si c'est le cas, montrer que $\mathbb{N}\models\varphi$ pour une certaine interprétation de p.

1 Solutions

Exercice 1

1. (a) La relation r modélise une fonction.

$$\forall x \forall y \forall z \cdot (r(x,y) \land r(x,z)) \rightarrow y = z$$

(b) le prédicat s contient le produit cartésien de p et q.

$$\forall x \forall y \cdot (p(x) \land q(y)) \to s(x,y)$$

(c) le prédicat t est égal au produit cartésien de q et p.

$$\forall x \forall y \cdot t(x,y) \leftrightarrow (q(x) \land p(y))$$

(d) La fonction f est surjective.

$$\forall y \exists x \cdot f(x) = y$$

(e) La fonction g est injective.

$$\forall x \forall y \cdot (x \neq y) \rightarrow \neg (f(x) = f(y))$$

2. (a) $\mathcal{M}=(D\equiv\mathbb{N},p\equiv\geq,f\equiv+)$ et $\mathcal{V}\equiv(x\mapsto5,z\mapsto3)$

 $\exists y \cdot 3 \geq 5 + y \text{ est faux dans } \mathbb{N}$

(b) $\mathcal{M} = (D \equiv \mathbb{Z}, p \equiv \geq, f \equiv +) \text{ et } \mathcal{V} \equiv (x \mapsto 5, z \mapsto 3)$

 $\exists y \cdot 3 \geq 5 + y \text{ est vrai dans } \mathbb{Z} \text{ (on prend } y = -2)$

(c) $\mathcal{M} = (D \equiv \mathbb{N}, p \equiv \geq, f \equiv \times)$ et $\mathcal{V} \equiv (x \mapsto 5, z \mapsto 3)$

 $\exists y \cdot 3 \geq 5 \times y \text{ est vrai dans } \mathbb{N} \text{ (on prend } y = 0)$

(d) $\mathcal{M} = (D \equiv \mathbb{Z}, p \equiv -, f \equiv \times) \text{ et } \mathcal{V} \equiv (x \mapsto 5, z \mapsto 3)$

 $\exists y \cdot 3 = 5 \times y \text{ est faux dans } \mathbb{N}$

(e) $\mathcal{M} = (D \equiv \mathbb{Z}_6, p \equiv -, f \equiv \times) \text{ et } \mathcal{V} \equiv (x \mapsto 5, z \mapsto 3)$

 $\exists y \cdot 3 = 5 \times y \text{ est vrai dans } \mathbb{Z}_6 \text{ (on prend } y = 3, 5 \times 3 = 15 \equiv 3[6])$

(f) $\mathcal{M} = (D \equiv \mathbb{N}, p \equiv \leq, f \equiv \times)$ et $\mathcal{V} \equiv (x \mapsto 2, z \mapsto 4)$

 $\exists y \cdot 4 \leq 2 \times y \text{ est vrai dans } \mathbb{N} \text{ (on prend } y = 3)$

(g) $\mathcal{M} = (D \equiv \mathbb{Z}, p \equiv \leq, f \equiv \times)$ et $\mathcal{V} \equiv (x \mapsto 2, z \mapsto 4)$

 $\exists y \cdot 4 \leq 2 \times y \text{ est vrai dans } \mathbb{Z} \text{ (on prend } y = 3)$

3. (a) $\exists x \exists y \exists z \cdot x \neq y \land y \neq z$

On peut prendre le modèle $\{0,1\}$ avec f(0)=0, f(1)=1. La valuation qui valide la formule \exists est x=0, y=1, z=1.

Deux éléments au moins sont nécessaires pour avoir $x \neq y$.

(b) $\forall x \cdot [f(x) \neq x]$

On s'assure qu'aucun élément n'est sa propre image. On peut prendre le modèle $\{0,1\}$ avec $f(0)=1,\,f(1)=0.$

Deux éléments au moins sont nécessaires pour avoir $x \neq f(x)$.

(c) $\forall x \cdot [f(x) \neq x] \land \exists x \forall y \cdot [f(y) \neq x]$

On s'assure qu'aucun élément n'est sa propre image, et que f n'est pas surjective. On peut prendre le modèle $\{0,1,2\}$ avec f(0)=1, f(1)=2, f(2)=1.

On a besoin de 3 éléments : 0 qui n'a aucun antécédent, f(0) qui ne peut pas être 0 (car il n'a pas d'antécédents), et f(f(0)) qui ne peut être ni 0 (car il n'a pas d'antécédents), ni f(0) (aucun élément n'est sa propre image).

(d) $\forall x \cdot [f(x) \neq x] \land \forall x \forall y \forall z \cdot [(f(x) = z \land f(y) = z) \rightarrow x = y]$

On s'assure qu'aucun élément n'est sa propre image, et que f est injective. On peut prendre le modèle $\{0,1\}$ avec f(0)=1, f(1)=0.

Deux éléments au moins sont nécessaires pour avoir $x \neq f(x)$. Ce modèle respecte l'injectivité en plus.

(e) $\forall x \cdot [f(x) \neq x] \land \exists x \forall y \cdot [f(y) \neq x] \land \forall x \forall y \forall z \cdot [(f(x) = z \land f(y) = z) \rightarrow x = y]$ On s'assure qu'aucun élément n'est sa propre image, que f n'est pas surjective, et que f est injective.

Il n'existe pas de modèle fini pour cette formule!

On nomme 0 un élément sans antécédent. f(0) n'est pas 0 (car il n'a pas d'antécédents), f(f(0)) n'est pas 0 (car il n'a pas d'antécédents) ni f(0) (par injectivité), f(f(f(0))) n'est pas 0 (car il n'a pas d'antécédents) ni f(0) ni f(f(0)) (par injectivité)...

Cela ne veut pas dire que la formule n'a pas de modèle : \mathbb{N} avec f(i) = i + 1 convient.

Exercice 2

1. $\varphi_0(x)$ valide si et seulement si x vaut 0 :

$$\forall y \cdot s(y) \neq x$$
.

0 est le seul élément qui n'est pas un successeur.

2. p(n) vrai exactement pour les pairs, i(n) exactement pour les impairs.

$$\forall x \cdot (p(x) \lor i(x)) \land \neg (p(x) \land i(x)) \qquad p \text{ et } i \text{ sont disjoints mais d'union } \mathbb{N}$$

$$\land \forall x \cdot \varphi_0(x) \to p(x) \qquad 0 \text{ est pair}$$

$$\land \forall x \cdot p(x) \to i(s(x)) \qquad \text{Si } x \text{ est pair alors } x+1 \text{ est impair}$$

$$\land \forall x \cdot i(x) \to p(s(x)) \qquad \text{Si } x \text{ est impair alors } x+1 \text{ est pair}$$

3. d(n) = 2n.

$$\forall x \cdot \varphi_0(x) \to \varphi_0(d(x))$$

$$\uparrow \forall x \cdot d(s(x)) \to s(s(f(x)))$$

$$2 \times 0 = 0$$

$$2 \times (x+1) = 2 \times x + 1 + 1$$

$$\forall x \cdot d(s(x)) - s(s(d(x)))$$

- ∀x · d(s(x)) = s(s(d(x)))
 4. On cherche à réinventer les symboles +, x, et ≥. Seraient-ce des prédicats? Des fonctions? De quelle arité? Donner une formule pour garantir leur bon fonctionnement.
 - $+, \times$ sont des fonctions binaires, \geqslant un prédicat binaire.

$$\forall x, y \cdot \varphi_0(y) \to x + y = x$$

$$\land \forall x, y \cdot x + s(y) = s(x) + y$$

$$(x+1) + y = x + (y+1)$$

Cela suffit pour +. Par exemple, pour montrer que 5+3=8 :

$$5+3=5+(2+1)=(5+1)+2=6+2$$
$$=6+(1+1)=(6+1)+1=7+1$$
$$=7+(0+1)=(7+1)+0=8+0=8$$

$$\forall x, y \cdot \varphi_0(y) \to x \times y = y$$

$$\land \forall x, y \cdot x \times s(y) = (x \times y) + x$$

$$(x+1) \times y = x \times y + x$$

Cela suffit pour \times . Par exemple, pour montrer que $5 \times 3 = 15$:

$$5 \times 3 = 5 \times (2+1) = (5 \times 2) + 5$$

$$= (5 \times (1+1)) + 5 = ((5 \times 1) + 5) + 5$$

$$= ((5 \times (0+1)) + 5) + 5 = (((5 \times 0) + 5) + 5) + 5 = (((0) + 5) + 5) + 5 = 15$$

$$\forall x \cdot x \geqslant x$$

$$\land \forall x, \ y \cdot x \geqslant y \rightarrow s(x) \geqslant y$$

$$\land \forall x, \ y \cdot x \geqslant y \land y \geqslant x \rightarrow x = y$$
Si $x \geqslant y$ alors $x + 1 \geqslant y$

Cela suffit pour \geqslant . La dernière ligne est nécessaire pour que les interprétations trop permissives (par exemple " $x \geqslant y$ toujours vrai") soient éliminées.

Exercice 3

- "Typer" la fonction e:
 - $\forall x, y \cdot N(e(x,y))$
- Si une liste a n éléments, tous les e(x, y) avec y > n valent 0.

$$\forall x, y \cdot \varphi_0(e(x,y)) \rightarrow \varphi_0(e(x,s(y)))$$

Si on veut s'assurer que toute liste se termine (ce qui n'est pas forcément le cas dans cet exercice):

$$\forall x \cdot L(x) \rightarrow \exists y \cdot N(y) \land \varphi_0(e(x,y))$$

On s'intéresse maintenant à la conjecture de Syracuse. Soit une valeur n. On génère une liste de valeurs comme suit.

- Si n est pair, la prochaine valeur est n/2
- Si n est impair, la prochaine valeur est 3n + 1

Conjecture de Syracuse :

$$\forall x \cdot [L(x) \land \forall y \cdot \\ (N(y) \land p(e(x,y))) \rightarrow e(x,y) = 2 \times e(x,s(y))$$
 Cas $e(x,y)$ pair
$$\land (N(y) \land i(e(x,y))) \rightarrow e(x,s(y)) = 3 \times e(x,y) + 1]$$
 Cas $e(x,y)$ impair
$$\rightarrow \exists z \cdot N(z) \land e(x,z) = 1$$
 On finit par trouver 1

Exercice 4

- 1. $\varphi_1 \equiv \forall a \forall b \forall c \cdot (t(a,b) \land t(b,c)) \rightarrow t(a,c)$ (t est transitive). $\varphi_2 \equiv \forall a \forall b \cdot a \neq b \rightarrow (t(a,b) \lor t(b,a))$ (t est totale).
- 2. t est transitive : considérons un graphe non-dirigé G quelconque, pour tout chemin entre les sommets a, b et b, c dans G on a un chemin entre a et c.
- 3. t n'est en général pas totale : contre-exemple, G = (V, E) : sommets $V = \{1, 2\}$, arrêtes $E = \emptyset$.

4. t est totale si tout sommet x a un chemin vers tout autre sommet y, i.e. G est connexe.

5.

$$\mathcal{M}_G \not\models (\neg \varphi_1 \lor \neg \varphi_2)$$
 ssi
$$\mathcal{M}_G \models \neg (\neg \varphi_1 \lor \neg \varphi_2)$$
 ssi par sémantique de \neg
$$\mathcal{M}_G \models (\varphi_1 \land \varphi_2)$$
 par la loi de De Morgan

Par la sémantique de \land on obtient que $\mathcal{M}_G \models \varphi_1$ et $\mathcal{M}_G \models \varphi_2$. On a que t est totale et transitive sur \mathcal{M}_G . Finalement on conclut que G est connexe.

6. (a) G possède un élément qui est un successeur de tous les autres nœuds :

$$\exists y \cdot \forall x \cdot a(x,y)$$

(b) G possède une clique de taille k :

$$\exists x_1, \dots, x_k \cdot \bigwedge_{i,j=1}^k a(x_i, x_j)$$

Exercice 5 On peut se servir des autres exercices :

- On utilise 1.1.a pour garantir que p représente une fonction
- On utilise 1.1.d et 1.1.e pour garantir que cette fonction est injective et non surjective
- On a vu en 1.3.e que tout modèle d'une telle formule est infini

 \mathbb{N} est un modèle de cette formule pour $p(x,y) \equiv y = x+1$.