

ECEN 758 Data Mining and Analysis: Lecture 6, Representative Clustering I

Joshua Peeples, Ph.D.

Assistant Professor

Department of Electrical and Computer Engineering

Announcements

- Solutions for Assignment #1 will be available Wednesday
- For future assignments
 - Please upload submission as single PDF
 - Please upload Python code (.py, ipynb)
 - Do not include screenshots of code in submission

Last Lecture

Frequent itemset mining and association rules

Today

- Representative Clustering I
- Reading: MMDS Chapter 7
- Supplemental reading: ZM Chapter 13 and 17

Review of Machine Learning

Machine Learning Model

- In machine learning the model is derived from the data (observations)
- As a <u>learning machine</u>, the model can be modified over time, with additional data (observations), with the goal of improving outcomes

Many Sub-areas in Machine Learning

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning
- Semi-supervised Learning
- Self-supervised Learning
- Multiple Instance Learning
- Active Learning
- Transfer Learning

•

Many Sub-areas in Machine Learning

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning
- Semi-supervised Learning
- Self-supervised Learning
- Multiple Instance Learning
- Active Learning
- Transfer Learning

•

Types of Learning

- Supervised learning
 - We "coach" the computer
 - Uses knowledge already learned
- Unsupervised learning
 - "We're free!!"

Unsupervised Learning: Clustering

- Clustering:
 - Unsupervised learning just data, no labels
 - Similarity/Dissimilarity in the data
 - Can provide insights when we have no preconception of data

- Basic idea: group together similar instances
- Example: Use total squared Euclidean distance as similarity (or dissimilarity) metric for 2D point patterns

- Is observation u more similar to v or w?
- Similarity (or dissimilarity) of u to v is square distance between them:

$$SqDist(u, v) = (v_{f1} - u_{f1})^2 + (v_{f2} - u_{f2})^2$$

- Clustering may appear straightforward
 - 2D
 - Small amounts of data
- Typically have large feature space
 - Difficult to tell differences between data points

Images from: Sloan Digital Sky Survey

- We will discuss several variants of clustering
 - Representative-based Clustering
 - Hierarchical Clustering
 - Density-Based Clustering

- We will discuss several variants of clustering
 - Representative-based Clustering
 - Hierarchical Clustering
 - Density-Based Clustering

Representative-based Clustering

Representative-based Clustering

- Goal: partition data into k groups or clusters
- Clusters:
 - Representative of data points in group (also called centroid)
 - Common choice is mean
- Brute force solution not ideal
 - Generate all possible partitions

$$\mathbf{D} = \begin{pmatrix} X_1 & X_2 & \cdots & X_d \\ X_{11} & X_{12} & \cdots & X_{1d} \\ X_{21} & X_{22} & \cdots & X_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \cdots & X_{nd} \end{pmatrix}$$

$$\mathcal{C} = \{C_1, C_2, \dots, C_k\}$$

$$\boldsymbol{\mu}_i = \frac{1}{n_i} \sum_{x_j \in C_i} \boldsymbol{x}_j$$

- Basic idea: use distance to group together similar instances
- k-means clustering algorithm
 - Choose k

- Basic idea: use distance to group together similar instances
- k-means clustering algorithm
 - Choose k
 - Assign k random points as estimate of cluster centers, ck (means)

21

- Basic idea: use distance to group together similar instances
- k-means clustering algorithm
 - Choose k
 - Assign k random points as estimate of cluster centers, c_k (means)
 - Alternate between:
 - 1) Assign data instances to closest mean
 - 2) Reassign each mean to the average of its newly assigned points
 - Stop when no points' assignments change

k-Means Example

k-Means Clustering Algorithm

k-Means Pseudocode


```
K-means (D, k, \epsilon):
  1 t = 0
 2 Randomly initialize k centroids: \mu_1^t, \mu_2^t, \dots, \mu_k^t \in \mathbb{R}^d
  3 repeat
        t \leftarrow t + 1
  5 | C_i \leftarrow \emptyset for all j = 1, \dots, k
        // Cluster Assignment Step
  6 | foreach x_j \in D do
      \left| i^* \leftarrow \operatorname{arg\,min}_i \left\{ \| oldsymbol{x}_j - oldsymbol{\mu}_i^t \|^2 
ight\} \ / / \ \operatorname{Assign} \ oldsymbol{x}_j \ 	ext{to closest}
                C_{i^*} \leftarrow C_{i^*} \cup \{\boldsymbol{x}_i\}
          // Centroid Update Step
  9 | foreach i = 1 to k do
10 \mu_i^t \leftarrow \frac{1}{|C_i|} \sum_{\mathbf{x}_j \in C_i} \mathbf{x}_j
11 until \sum_{i=1}^{k} \| \mu_i^t - \mu_i^{t-1} \|^2 \le \epsilon
```

k-Means Algorithm: Objective

- Sum of squared errors (SSE) objective function
- Goal: find clustering to minimize SSE
- Greedy iterative approach
 - Can converge to a local optima
- Two steps to achieve minima

$$SSE(C) = \sum_{i=1}^{k} \sum_{\mathbf{x}_j \in C_i} \|\mathbf{x}_j - \boldsymbol{\mu}_i\|^2$$

$$C^* = \arg\min_{C} \{SSE(C)\}$$

Phase I: Update Assignments

- For each point, re-assign to closest mean: $a_{ij} = \underset{k}{argmin\ dist}(x_i, c_k)$
- Choose among $[c_1, \ldots c_k]$ the mean which minimizes the distance between x_i and c_k , and assign that value of [1..k] to a_{ij}

Phase II: Update Means

- Move each mean to the average of its assigned points:
- Select the points which are assigned to the mean point c_k (i.e. those with $a_{ij}=k$.) Average these points and assign that new value to c_k

$$c_k = \frac{1}{|\{i: a_{ij} = k\}|} \sum_{i: a_{ij} = k} x_i$$

k-Means Algorithm Choices

k-Means Consideration

- Selecting number of clusters (k)
- Initialization

Choosing k

- k is hyperparameter to determine number of clusters
- Results heavily dependent on k
- Selecting k
 - Try different values and look at change in average distance to centroid
 - Average falls rapidly until right k, then changes little ("elbow method")

Too few k

Too few; many long distances to centroid.

Too many k

Too many;

little improvement in average distance.

Optimal k

Just right; distances rather short.

k-Means Consideration

- Selecting number of clusters (k)
- Initialization

Initialization

- Result depends on initial location of the k-means
 - What can go wrong?
 - Most k-means solvers include initialization heuristics to minimize these issues

Initialization

- Will it always locate the clusters in the same location and assign the same data to each mean? i.e. deterministic?
- Is k-means guaranteed to find the solution with the lowest total distance to the means? i.e. global optimum solution?

Unsupervised: No labels, d

- Unsupervised: No labels, d
- Mapper:
 - k-means algorithm
 - Takes input data and groups into k clusters

- Unsupervised: No labels, d
- Mapper:
 - k-means algorithm
 - Takes input data and groups into k clusters
- Cost function:
 - Sum of squared errors (SSE)

$$SSE(C) = \sum_{i=1}^{k} \sum_{\mathbf{x}_j \in C_i} \|\mathbf{x}_j - \boldsymbol{\mu}_i\|^2$$

- Unsupervised: No labels, d
- Mapper:
 - k-means algorithm
 - Takes input data and groups into k clusters
- Cost function:
 - Sum of squared errors (SSE)
- Learning algorithm
 - Update cluster assignments
 - Update centroids

Gif from: D. Sheehan, Clustering with Scikit with GIFs

Cluster Evaluation

Evaluating Clustering

- Two important measures:
 - Intra-cluster compactness
 - Inter-cluster separability
- Various indices to capture metrics
 - Silhouette index
 - Calinski-Harabasz (CH) index
 - Davie-Bouldin (DB) index
 - Dunn index
- More details in ZM Chapter 17!

Sonar Image Segmentation

Input Image

Semi-supervised Learning

k-Means for Semi-supervised learning

- Cluster initial data
 - Unsupervised
- "Labels" clusters
- Take new data and assign to clusters
 - Supervised

Next class

Representative Clustering II

Supplemental Slides

Useful Links

- Sklearn k-means
- StatQuest: k-means clustering
- k-mean Google Colab Notebook
- k-means Clustering: Algorithm, Applications, Evaluation Methods, and Drawbacks