

In the Claims

1. (currently amended) A process for the preparation of a grafted thermoplastic or elastomeric polymer or copolymer, which process comprises in a first step
 - A) the preparation of a nitroxyl terminated oligomer or polymer by controlled free radical polymerization of an ethylenically unsaturated monomer or monomer mixture
 - a1) in the presence of a nitroxyl ether containing a structural element of formula (Ia), wherein X is selected such, that cleavage of the O-X bond occurs and a radical X• is formed capable of initiating polymerization; or
 - a2) in the presence of a nitroxyl radical containing a structural element of formula (Ib) and a free radical initiator capable of initiating polymerization;
 - where unreacted monomer or monomers are removed and the nitroxyl terminated oligomer or polymer is isolated,
 - and in a second step
- B) heating, mixing and reacting the nitroxyl terminated oligomer or polymer of step A) together with a thermoplastic or elastomeric polymer or copolymer at a temperature of between 150° C and 300° C,
wherein the structural elements of formula (Ia) and (Ib) are

(Ia)

(Ib)

wherein

G_1, G_2, G_3, G_4 are independently C_1-C_6 alkyl or G_1 and G_2 or G_3 and G_4 , or G_1 and G_2 and G_3 and G_4 together form a C_5-C_{12} cycloalkyl group; and

G_5, G_6 independently are H, C_1-C_{18} alkyl, phenyl, naphthyl or a group $COOC_1-C_{18}$ alkyl,

where

X is selected from the group consisting of

$(C_5-C_6$ cycloalkyl)₂CCN, $(C_1-C_{12}$ alkyl)₂CCN, $-CH_2CH=CH_2$, (C_1-C_{12}) alkyl- $CR_{20}-C(O)-(C_1-C_{12})$ alkyl,
 (C_1-C_{12}) alkyl- $CR_{20}-C(O)-(C_6-C_{10})$ aryl, (C_1-C_{12}) alkyl- $CR_{20}-C(O)-(C_1-C_{12})$ alkoxy,
 (C_1-C_{12}) alkyl- $CR_{20}-C(O)$ -phenoxy, (C_1-C_{12}) alkyl- $CR_{20}-C(O)-N-di(C_1-C_{12})$ alkyl,
 (C_1-C_{12}) alkyl- $CR_{20}-CO-NH(C_1-C_{12})$ alkyl, (C_1-C_{12}) alkyl- $CR_{20}-CO-NH_2$,

3-cyclohexenyl, 3-cyclopentenyl,

R₂₀ is hydrogen or C₁-C₁₂alkyl;

the alkyl groups are unsubstituted or substituted with one or more -OH, -COOH or -C(O)R₂₀ groups; and

the aryl groups are phenyl or naphthyl which are unsubstituted or substituted with C₁-C₁₂alkyl, halogen, C₁-C₁₂alkoxy, C₁-C₁₂alkylcarbonyl, OH, -COOH or -COO(C₁-C₁₂)alkyl and

where the thermoplastic or elastomeric polymer or copolymer is selected from the group consisting of low density polyethylene, high density polyethylene, polypropylene, polystyrene, styrene-block copolymers, ethylene-propylene-diene modified rubber, ethylene propylene rubber, polybutylene, polyisobutylene and poly-4-methylpentene-1.

2-6. (canceled)

7. (currently amended) A process according to claim 1 wherein the nitroxyl ether or the nitroxyl radical is of formula A, A', B, B' O or O'

wherein

G₁, G₂, G₃ and G₄ are independently alkyl of 1 to 4 carbon atoms, or G₁ and G₂ together and G₃ and G₄ together, or G₁ and G₂ together or G₃ and G₄ together are pentamethylene;

G₅ and G₆ are independently hydrogen or C₁-C₄ alkyl;

m is 1, 2, 3 or 4

R, if m is 1, is hydrogen, C₁-C₁₈alkyl which is uninterrupted or C₂-C₁₈alkyl which is interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an α,β-unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms, where each carboxylic acid can be substituted in the aliphatic, cycloaliphatic or aromatic moiety by 1 to 3 -COOZ₁₂ groups, in which Z₁₂ is H, C₁-C₂₀alkyl, C₃-C₁₂alkenyl, C₅-C₇cycloalkyl, phenyl or benzyl; or

R is a monovalent radical of a carbamic acid or phosphorus-containing acid or a monovalent silyl radical;

R, if m is 2, is C₂-C₁₂alkylene, C₄-C₁₂alkenylene, xylylene, a divalent radical of an aliphatic dicarboxylic acid having 2 to 36 carbon atoms, or a cycloaliphatic or aromatic dicarboxylic acid having 8-14 carbon atoms or of an aliphatic, cycloaliphatic or aromatic dicarbamic acid having 8-14 carbon atoms, where each dicarboxylic acid may be substituted in the aliphatic, cycloaliphatic or aromatic moiety by one or two -COOZ₁₂ groups; or

R is a divalent radical of a phosphorus-containing acid or a divalent silyl radical;

R, if m is 3, is a trivalent radical of an aliphatic, cycloaliphatic or aromatic tricarboxylic acid, which may be substituted in the aliphatic, cycloaliphatic or aromatic moiety by -COOZ₁₂, of an aromatic tricarbamic acid or of a phosphorus-containing acid, or is a trivalent silyl radical,

R, if m is 4, is a tetravalent radical of an aliphatic, cycloaliphatic or aromatic tetracarboxylic acid; p is 1, 2 or 3,

R₁ is C₁-C₁₂alkyl, C₅-C₇cycloalkyl, C₇-C₈aralkyl, C₂-C₁₈alkanoyl, C₃-C₅alkenoyl or benzoyl; when p is 1,

R₂ is C₁-C₁₈alkyl, C₅-C₇cycloalkyl, C₂-C₈alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula -CH₂CH(OH)-Z or of the formula -CO-Z- or -CONH-Z wherein Z is hydrogen, methyl or phenyl; or

when p is 2,

R₂ is C₂-C₁₂alkylene, C₆-C₁₂-arylene, xylylene, a -CH₂CH(OH)CH₂-O-B-O-CH₂CH(OH)CH₂- group, wherein B is C₂-C₁₀alkylene, C₆-C₁₅arylene or C₆-C₁₂cycloalkylene; or, provided that R₁ is not alkanoyl, alkenoyl or benzoyl, R₂ can also be a divalent acyl radical of an aliphatic, cycloaliphatic or aromatic

dicarboxylic acid or dicarbamic acid, or can be the group -CO-; or R₁ and R₂ together when p is 1 can be the cyclic acyl radical of an aliphatic or aromatic 1,2- or 1,3-dicarboxylic acid; or R₂ is a group

where T₇ and T₈ are independently hydrogen, alkyl of 1 to 18 carbon atoms, or T₇ and T₈ together are alkylene of 4 to 6 carbon atoms or 3-oxapentamethylene;
when p is 3,
R₂ is 2,4,6-triazinyl; and

X is selected from the group consisting of

(C₅-C₆cycloalkyl)₂CCN, (C₁-C₁₂alkyl)₂CCN, -CH₂CH=CH₂, (C₁-C₁₂)alkyl-CR₂₀-C(O)-(C₁-C₁₂)alkyl, (C₁-C₁₂)alkyl-CR₂₀-C(O)-(C₆-C₁₀)aryl, (C₁-C₁₂)alkyl-CR₂₀-C(O)-(C₁-C₁₂)alkoxy, (C₁-C₁₂)alkyl-CR₂₀-C(O)-phenoxy, (C₁-C₁₂)alkyl-CR₂₀-C(O)-N-di(C₁-C₁₂)alkyl, (C₁-C₁₂)alkyl-CR₂₀-CO-NH(C₁-C₁₂)alkyl, (C₁-C₁₂)alkyl-CR₂₀-CO-NH₂,

-CH₂CH=CH-CH₃, -CH₂-C(CH₃)=CH₂, -CH₂-CH=CH-phenyl, -CH₂-C≡CH,

R_{20} is hydrogen or C_1-C_{12} alkyl;

the alkyl groups are unsubstituted or substituted with one or more -OH, -COOH or $-C(O)R_{20}$ groups; and

the aryl groups are phenyl or naphthyl which are unsubstituted or substituted with C_1-C_{12} alkyl, halogen, C_1-C_{12} alkoxy, C_1-C_{12} alkylcarbonyl, glycidyloxy[[,]] OH, -COOH or $-COO(C_1-C_{12})alkyl$.

8. (previously presented) A process according to claim 7 wherein the nitroxyl ether or the nitroxyl radical is of formula A, A', B, B', O or O'

(B)

(B')

(O)

(O')

wherein

m is 1,

R is hydrogen, C₁-C₁₈alkyl which is uninterrupted or interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an α,β-unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

p is 1;

R₁₀₁ is C₁-C₁₂alkyl, C₅-C₇cycloalkyl, C₇-C₈aralkyl, C₂-C₁₈alkanoyl, C₃-C₅alkenoyl or benzoyl;

R_{102} is C_1 - C_{18} alkyl, C_5 - C_7 cycloalkyl, C_2 - C_8 alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula $-CH_2CH(OH)-Z$ or of the formula $-CO-Z$ or $-CONH-Z$ wherein Z is hydrogen, methyl or phenyl;

G_6 is hydrogen and G_5 is hydrogen or C_1 - C_4 alkyl,

G_1 , G_2 , G_3 and G_4 are methyl; or

G_1 and G_3 are methyl and G_2 and G_4 are ethyl or propyl or G_1 and G_2 are methyl and G_3 and G_4 are ethyl or propyl; and

X is selected from the group consisting of

$-CH_2$ -phenyl, CH_3CH -phenyl, $(CH_3)_2C$ -phenyl, $(C_5-C_6$ cycloalkyl) $_2CCN$, $(CH_3)_2CCN$, $-CH_2CH=CH_2$,

$CH_3CH-CH=CH_2$ (C_1 - C_4 alkyl) $CR_{20}-C(O)$ -phenyl, $(C_1-C_4)alkyl-CR_{20}-C(O)-(C_1-C_4)alkoxy$,

$(C_1-C_4)alkyl-CR_{20}-C(O)-(C_1-C_4)alkyl$, $(C_1-C_4)alkyl-CR_{20}-C(O)-N-di(C_1-C_4)alkyl$,

$(C_1-C_4)alkyl-CR_{20}-C(O)-NH(C_1-C_4)alkyl$ and $(C_1-C_4)alkyl-CR_{20}-C(O)-NH_2$, wherein

R_{20} is hydrogen or $(C_1-C_4)alkyl$.

9. (original) A process according to claim 7 wherein G_2 and G_4 are ethyl, G_1 and G_3 are methyl, G_6 is hydrogen and G_5 is methyl.

10. (original) A process according to claim 1 wherein the free radical initiator of component a2) is a bis-azo compound, a peroxide, a perester or a hydroperoxide.

11. (original) A process according to claim 1, wherein the nitroxylether of component a1) or the nitroxyl radical of component a2) is present in an amount of from 0.001 mol-% to 20 mol-%, based on the monomer or monomer mixture.

12. (original) A process according to claim 1, wherein the free radical initiator is present in an amount of from 0.001 mol-% to 20 mol-%, based on the monomer or monomer mixture.

13. (previously presented) A process according to claim 1, wherein the ethylenically unsaturated monomer is selected from the group consisting of styrene, substituted styrene, conjugated dienes,

vinyl acetate, vinylpyrrolidone, vinylimidazole, maleic anhydride, (alkyl)acrylic acid anhydrides, (alkyl)acrylic acid salts, (alkyl)acrylic esters, (meth)acrylonitriles, (alkyl)acrylamides, vinyl halides and vinylidene halides.

14. (previously presented) A process according to claim 12, wherein the ethylenically unsaturated monomer is a compound of formula $\text{CH}_2=\text{C}(\text{R}_a)-(\text{C}=\text{Z})-\text{R}_b$, wherein R_a is hydrogen or $\text{C}_1\text{-}\text{C}_4$ alkyl, R_b is NH_2 , $\text{O}^-(\text{Me}^+)$, glycidyl, unsubstituted $\text{C}_1\text{-}\text{C}_{18}$ alkoxy, $\text{C}_2\text{-}\text{C}_{100}$ alkoxy interrupted by at least one N and/or O atom, or hydroxy-substituted $\text{C}_1\text{-}\text{C}_{18}$ alkoxy, unsubstituted $\text{C}_1\text{-}\text{C}_{18}$ alkylamino, di($\text{C}_1\text{-}\text{C}_{18}$ alkyl)amino, hydroxy-substituted $\text{C}_1\text{-}\text{C}_{18}$ alkylamino or hydroxy-substituted di($\text{C}_1\text{-}\text{C}_{18}$ alkyl)amino, $-\text{O}-\text{CH}_2\text{-CH}_2\text{-N}(\text{CH}_3)_2$ or $-\text{O}-\text{CH}_2\text{-CH}_2\text{-N}^+\text{H}(\text{CH}_3)_2\text{ An}^-$; An^- is a anion of a monovalent organic or inorganic acid; Me is a monovalent metal atom or the ammonium ion and Z is oxygen or sulfur.

15. (original) A process according to claim 1 wherein step B) is performed in an extruder, mixer or kneading apparatus.

16. (original) A process according to claim 1 wherein in step B) additionally a processing stabilizer and/or antioxidant is added.

17. (original) A process according to claim 1 wherein in step B) additionally a radical generator is added.

18. (currently amended) A process according to claim 1 wherein the nitroxyl terminated polymer or oligomer of step A) has an a number average molecular weight of from 1000 to 100 000 Dalton.

19. (previously presented) A process according to claim 1 wherein the nitroxyl terminated polymer or oligomer of step A) has a polydispersity (PD) from 1.0 to 2.0.

20. (original) A process according to claim 1 wherein the nitroxyl terminated polymer or oligomer of step A) is added to the thermoplastic or elastomeric polymer or copolymer in an amount from 0.1% to 50% by weight based on the weight of the thermoplastic or elastomeric polymer or copolymer.

21. (canceled)

22. (canceled)

The thermoplastic or elastomeric polymer or copolymer of the present claims is now specifically required to be those of amended claim 1. Unsaturated polyester is not included, setting a clear line of demarcation between the present claims and those of Kazmaier.

Further, unsaturated polyesters contain activated double bonds. The present thermoplastic or elastomeric polymers or copolymers do not. The success of the present invention cannot be obvious from the disclosure of Kazmaier.

In view of the present amendments and this discussion, Applicants submit that these 35 USC 102(a) and 35 USC 103(a) rejections are addressed and are overcome.

Claims 1-5 and 7-20 are rejected under 35 USC 102(e) or, in the alternative, under 35 USC 103(a) as being obvious over Chin, et al., U.S. Pat. No. 6,444,754.

The present claims are amended to specifically limit the definition of group "X". Glycidyloxy is not included. The polymers of component iii) of Chin are prepared in the presence of a glycidyl-functionalized nitroxyl initiator. Thus, there is now a clear line of demarcation between the present claims and the disclosure of Chin.

Thus Chin cannot anticipate the present claims.

Chin qualifies as 102(e) prior art.

The presently claimed invention and U.S. Pat. No. 6,444,754 were, at the time the invention was made, entirely assigned to Ciba Specialty Chemicals Corp. or were subject to an obligation of assignment to Ciba Specialty Chemicals Corp.

The assignment of U.S. Pat. No. 6,444,754 was recorded in the USPTO July 16, 2002, reel/frame 013091/0280.

The assignment of the present application was recorded in the USPTO July 5, 2005, reel/frame 016740/0233.

The 35 USC 103(a) rejections as applied to 35 USC 102(e) are overcome as the present application and cited Chin patent are commonly assigned to Ciba Specialty Chemicals Corp.

In view of the above statement, Applicants submit that the 35 USC 103(a) rejections over Chin are addressed and are overcome.

In view of the present amendments and the above discussion, Applicants submit that each of the present claim rejections are addressed and are overcome.

The Examiner is kindly requested to reconsider and to withdraw the present rejections.

Applicants submit that the present claims are in condition for allowance and respectfully request that they be found allowable.

Respectfully submitted,

Tyler A. Stevenson
Agent for Applicants
Reg. No. 46,388

Ciba Specialty Chemicals Corp.
540 White Plains Road
P.O. Box 2005
Tarrytown, NY 10591-9005
Tel. (914)785-2783
Fax (914)785-7102

September 26, 2007