Dominik Wawszczak Student ID Number: 440014

Group Number: 1

Problem 1

We define an ω -word u as universal if, and only if, for any $i \in \mathbb{N}$, there exists a j > i such that $u[i] \neq u[j]$. Intuitively, this means that u contains an infinite subsequence of the form $(ab)^{\infty}$. Note that if $u \in \Sigma^{\omega}$ is universal, then for any $v \in \Sigma^{\omega}$, it holds that $v \sqsubseteq u$. This is because we can remove finitely or infinitely many letters from u to obtain $(ab)^{\infty}$, and for each i-th pair of consecutive ab occurrences, we can remove either a or b, depending on the value of v[i].

If an ω -word u is not universal, then either $\#_a(u)$ or $\#_b(u)$ is finite. In the first case, u is of the form vb^{∞} , and we will refer to such an ω -word as a-long. In the second case, u is of the form va^{∞} , and we will call it b-long. In both cases, v is a word of finite length.

Let u_1, u_2, \ldots be any infinite sequence of ω -words. We will prove that there exist indices i < j such that $u_i \sqsubseteq u_j$. If there are at least two universal ω -words in this sequence, the proof is straightforward since u_1 can embed into the second universal word in the sequence. Otherwise, either there are infinitely many a-long words in the sequence, or there are infinitely many b-long words. Without loss of generality, assume there are infinitely many a-long words in the sequence. Let k_1, k_2, \ldots be the indices of the a-long words. Denote $u_{k_l} = u'_{k_l} a^{\infty}$, where u'_{k_l} is finite. By Higman's lemma, there exist indices i < j such that u'_{k_i} is a substring of u'_{k_j} , concluding the proof as $u_{k_i} \sqsubseteq u_{k_i}$.

Now, we will show that in the variant where only finitely many letters can be removed, the resulting relation is not a well-quasi-order. Consider the infinite sequence of ω -words u_1, u_2, \ldots such that

$$u_i = a^i b a^{i+1} b a^{i+2} b \dots$$

Clearly, for any $i \in \mathbb{N}^+$, we have $u_i \supseteq u_{i+1}$ because the first i+1 letters of u_i can be removed to obtain u_{i+1} .

Suppose, for the sake of contradiction, that there exists $i \in \mathbb{N}^+$ such that $u_i \sqsubseteq u_{i+1}$. Let k be the smallest number such that a non expandable block of the form $a^k b$ remains intact, after removing finitely many letters from u_{i+1} to obtain u_i . The number of letters b in u_{i+1} before this block equals k - i - 1. However, the number of letters b in u_i before this block equals k - i > 1, which is a contradiction, as letters can only be removed.

Suppose, for the sake of contradiction, that there exists $i \in \mathbb{N}^+$ such that $u_i \sqsubseteq u_{i+1}$. Let k be the smallest number such that a non-expandable block of the form $a^k b$ remains intact after removing finitely many letters from u_{i+1} to obtain u_i . The number of b letters in u_{i+1} before this block is k-i-1. However, the number of b letters in u_i before this block is k-i, which is greater than k-i-1, contradicting the fact that letters can only be removed.

From the above, we conclude that $u_i \supseteq u_{i+1}$ for any $i \in \mathbb{N}^+$. Therefore, u_1, u_2, \ldots forms an infinite sequence of strictly decreasing elements, which shows that the relation is not a well-quasi-order.

Problem 2

Consider the structure $((\mathbb{N} \cup \{\omega\})^d, \leqslant)$, where $(x_1, \ldots, x_d) \leqslant (y_1, \ldots, y_d)$ if and only if, for each $i \in \{1, \ldots, d\}$, one of the following holds:

$$x_i = y_i = \omega$$
 or $x_i \in \mathbb{N} \land y_i = \omega$ or $x_i, y_i \in \mathbb{N} \land x_i \leqslant y_i$.

By Dickson's lemma, this structure is a well-quasi-order because $(\mathbb{N} \cup \{\omega\}, \leq)$ is itself a well-quasi-order.

For any tuple $(x_1, \ldots, x_d) \in (\mathbb{N} \cup \{\omega\})^d$, we say $(x_1, \ldots, x_d) \in X$ if and only if, for every $n \in \mathbb{N}$, the following condition holds:

$$([x_1 = \omega] \cdot n + [x_1 \neq \omega] \cdot x_1, \dots, [x_d = \omega] \cdot n + [x_d \neq \omega] \cdot x_1) \in X,$$

where [P] denotes the Iverson bracket, i.e., [P] = 1 if P is true, and [P] = 0 otherwise.

A subset $A \subseteq \{1, \ldots, d\}$ is called *good* if and only if $([1 \in A] \cdot \omega, \ldots, [d \in A] \cdot \omega) \in X$. For any good set A, define g(A) as the set of tuples $(x_1, \ldots, x_d) \in (\mathbb{N} \cup \{\omega\})^d$ satisfying:

- 1. $x_i = \omega$, for all $i \in A$;
- 2. $(x_1, \ldots, x_d) \in X$;
- 3. $(x_1, \ldots, x_{i-1}, x_i + 1, x_{i+1}, \ldots, x_d) \notin X$, for all $i \in \{1, \ldots, d\} \setminus A$.

Suppose, for the sake of contradiction, that g(A) is infinite. Let

$$g(A) = \{(x_1^1, \dots, x_d^1), (x_1^2, \dots, x_d^2), \dots\}.$$

Since $((\mathbb{N} \cup \{\omega\})^d, \leqslant)$ is a well-quasi-order, there exist indices $i, j \in \mathbb{Z}^+$ such that i < j and $(x_1^i, \ldots, x_d^i) \leqslant (x_1^j, \ldots, x_d^j)$, contradicting the third condition for tuples in g(A).

Define $\operatorname{down}(g(A))$ as the set of all tuples $(y_1, \ldots, y_d) \in \mathbb{N}^d$ for which there exists a tuple $(x_1, \ldots, x_d) \in g(A)$ such that $(x_1, \ldots, x_d) \geq (y_1, \ldots, y_d)$ and $y_i = 0$ for all $i \in A$. If g(A) is empty, let $\operatorname{down}(g(A))$ be the singleton containing the zero tuple. The set $\operatorname{down}(g(A))$ is finite, with an upper bound on its size:

$$|\operatorname{down}(g(A))| \leq \sum_{(x_1,\dots,x_d)\in g(A)} \prod_{i\in\{1,\dots,d\}\setminus A} (x_i+1).$$

Using this, define a semilinear set

$$Y = \bigcup_{A \subset \{1, \dots, d\} \land A \text{ is good}} \left(\operatorname{down}(g(A)) + \left(\bigcup_{i \in A} ([1 = i], \dots, [d = i]) \right)^* \right).$$

By definition of g(A), we have $Y \subseteq X$. Our goal is to prove that Y = X.

Suppose, for the sake of contradiction, that there exists a tuple $(x_1, \ldots, x_d) \in X \setminus Y$. We will construct a tuple $(y_1, \ldots, y_d) \in \mathbb{N}^d$ such that $(x_1, \ldots, x_d) \leq (y_1, \ldots, y_d)$ and $(y_1, \ldots, y_d) \in X$. Since Y is downward closed, this will imply $(y_1, \ldots, y_d) \in X \setminus Y$.

Proceed through indices $i=1,\ldots,d$, choosing y_i iteratively while maintaining a set A, initially empty. Assume y_1,\ldots,y_{i-1} have been chosen. For all $j\in\{1,\ldots,i-1\}$, define $y'_j=\omega$ if $j\in A$, and $y'_j=y_j$ otherwise. If there exists a number $z_i\in\mathbb{N}$ such that

$$(y'_1, \dots, y'_{i-1}, z_i, x_{i+1}, \dots, x_d) \in X$$
 and $(y'_1, \dots, y'_{i-1}, z_i + 1, x_{i+1}, \dots, x_d) \notin X$,

set $y_i = z_i$. Otherwise, let $y_i = x_i$ and add i to A. Note that $y_i \ge x_i$.

By construction, $(y_1, \ldots, y_d) \in X$, and A is good. Furthermore,

$$\forall_{i \in \{1, \dots, d\} \setminus A} (y'_1, \dots, y'_{i-1}, y_i + 1, y'_{i+1}, \dots, y'_d) \notin X,$$

where y_i' is as defined earlier. Thus,

$$(y_1, \dots, y_d) \in \text{down}(g(A)) + \left(\bigcup_{i \in A} ([1 = i], \dots, [d = i])\right)^*.$$

This contradiction completes the proof that X is a semilinear set.

Now we proceed to the second part of the problem. Let $T \subseteq \mathbb{Z}^d$ be the set of available transitions. Define X as the downward closure of configurations reachable from x.

Consider a directed graph G where $V(G) = (\mathbb{N} \cup \{\omega\})^d$ and E(G) contains pairs $((y_1, \ldots, y_d), (z_1, \ldots, z_d))$ such that there exists a transition $(t_1, \ldots, t_d) \in T$ satisfying:

$$y_i = z_i = \omega$$
 or $y_i, z_i \in \mathbb{N} \land y_i + t_i = z_i$

for each $i \in \{1, ..., d\}$. Run a breadth-first search (BFS) on this graph, starting at vertex x.

Whenever a vertex (y_1, \ldots, y_d) is encountered such that there exists an ancestor (z_1, \ldots, z_d) in the BFS-tree with $(z_1, \ldots, z_d) \leq (y_1, \ldots, y_d)$, perform the following:

- 1. For each $i \in \{1, ..., d\}$, set $y'_i = \omega$ if $y_i > z_i$, or $y'_i = y_i$ otherwise;
- 2. If (y'_1, \ldots, y'_d) has not been visited, add it to the BFS queue and mark it as visited;

Note that $(y'_1, \ldots, y'_d) \ge (y_1, \ldots, y_d)$, so we do not need to process the neighbors of (y_1, \ldots, y_d) . We do this because if (y_1, \ldots, y_d) and (z_1, \ldots, z_d) belong to X, then (y'_1, \ldots, y'_d) also belongs to X.

Suppose, for the sake of contradiction, that the BFS does not terminate. Then there exists an infinite sequence of vertices:

$$Y_0 = ((y_1^1, \dots, y_d^1), (y_1^2, \dots, y_d^2), \dots,)$$

where each vertex (y_1^i, \ldots, y_d^i) is the parent of the next. Since $((\mathbb{N} \cup \{\omega\})^d, \leqslant)$ is a well-quasi-order, there exist indices $i, j \in \mathbb{Z}^+$ with i < j such that $(y_1^i, \ldots, y_d^i) \leqslant (y_1^j, \ldots, y_d^j)$. Now consider the sequence:

$$Y_1 = ((y_1^j, \dots, y_d^j), (y_1^{j+1}, \dots, y_d^{j+1}), \dots).$$

In this sequence, each tuple has at least one element equal to ω . Repeating this argument produces sequences Y_2, Y_3, \ldots , where each tuple in Y_k contains at least k elements equal to ω . The existence of Y_{d+1} leads to a contradiction. Therefore, the BFS terminates

Let S be the set of visited vertices. The answer is:

$$X = \bigcup_{y \in S} \left(\text{down}(\{y\}) + \left(\bigcup_{i \in \{1, \dots, d\} \land y_i = \omega} ([1 = i], \dots, [d = i]) \right)^* \right).$$

The algorithm is correct because for every y coverable by x, there exists $y' \in S$ such that $y' \geqslant y$.

Problem 4

This problem was solved in collaboration with Kacper Bal and Mateusz Mroczka.

To begin, we construct an injection $f: \{0,1\}^* \to \mathbb{N}$, defined as:

$$f(s) = 2^n + \sum_{i=0}^{n-1} [s[i+1] = 1] \times 2^i,$$

where s is a string of length n. Note that every natural number except 0 lies in the image of this function.

We will utilize the following formulas:

$$\begin{split} \psi_{\mathrm{zero}}(a) &\coloneqq \ \forall \ a+b=b, \\ \psi_{\mathrm{one}}(a) &\coloneqq \ \forall \ a\times b=b, \\ \psi_{\mathrm{even}}(a) &\coloneqq \ \exists \ a=b+b, \\ \psi_{\mathrm{pow2}}(a) &\coloneqq \ \exists \ b\in\mathbb{N} \ \left(\left(\neg\psi_{\mathrm{zero}}(b) \ \land \ \exists \ b\times c=a\right) \ \Rightarrow \ (\psi_{\mathrm{even}}(b) \ \lor \ \psi_{\mathrm{one}}(b))\right), \\ \psi_{\leqslant}(a,b) &\coloneqq \ \exists \ a+c=b, \\ \psi_{<}(a,b) &\coloneqq \ \exists \ a+c=b, \\ \psi_{<}(a,b) &\coloneqq \ \exists \ (a+c=b \ \land \ \neg\psi_{\mathrm{zero}}(c)), \\ \psi_{\log}(a,b) &\coloneqq \ \psi_{\mathrm{pow2}}(b) \ \land \ \psi_{\leqslant}(b,a) \ \land \ \psi_{<}(a,2\times b). \end{split}$$

Next, we construct a function g that transforms a first-order logic sentence $\varphi(s_1,\ldots,s_m)$ over the free monoid $(\{0,1\}^*,\cdot,0,1)$ into a sentence $\psi(a_1,\ldots,a_m)$ over the arithmetic structure $(\mathbb{N},+,\times)$. This transformation ensures that $\varphi(s_1,\ldots,s_m)$ is true if and only if $\psi(a_1,\ldots,a_m)$ is true.

The function g is defined as follows:

$$g\left(\begin{array}{c} \forall \\ s \in \{0,1\}^* \end{array} \varphi'(s,s_1',\ldots,s_{m'}') \right) \ \coloneqq \ \begin{array}{c} \forall \\ a \in \mathbb{N} \end{array} (\neg \psi_{\mathrm{zero}}(a) \ \land \ g(\varphi'(s,s_1',\ldots,s_{m'}'))), \\ \\ g\left(\begin{array}{c} \exists \\ s \in \{0,1\}^* \end{array} \varphi'(s,s_1',\ldots,s_{m'}') \right) \ \coloneqq \ \begin{array}{c} \exists \\ a \in \mathbb{N} \end{array} (\neg \psi_{\mathrm{zero}}(a) \ \land \ g(\varphi'(s,s_1',\ldots,s_{m'}'))), \\ \\ g(\varphi'(s_1',\ldots,s_{m'}') \ \land \ \varphi''(s_1'',\ldots,s_{m'}'')) \ \coloneqq \ g(\varphi'(s_1',\ldots,s_{m'}')) \ \land \ g(\varphi''(s_1'',\ldots,s_{m'}'')), \\ \\ g(\varphi'(s_1',\ldots,s_{m'}') \ \lor \ \varphi''(s_1'',\ldots,s_{m'}'')) \ \coloneqq \ g(\varphi'(s_1',\ldots,s_{m'}')) \ \lor \ g(\varphi''(s_1',\ldots,s_{m'}'')), \\ \\ g(\neg \varphi'(s_1',\ldots,s_{m'}')) \ \coloneqq \ \neg g(\varphi'(s_1',\ldots,s_{m'}')). \end{array}$$

The remaining case involves sentences of the form $s'_1 \cdot \ldots \cdot s'_{m'} = s''_1 \cdot \ldots \cdot s''_{m''}$. Without loss of generality, we assume these are reduced to $s \cdot t = u$. Let a_s be defined as follows: if s is a variable, a_s is the corresponding variable; if s is a constant, a_s is f(s); and if s is an argument, a_s is the corresponding argument. The values a_t and a_u are defined analogously. Define:

$$g(s \cdot t = u) := \underset{b_t \in \mathbb{N}}{\exists} (\psi_{\log}(a_t, b_t) \wedge b_t \times a_s + a_t = a_u + b_t).$$

The term b_t represents the most significant bit of a_t . Ideally, we would express the equation as $b_t \times a_s + (a_t - b_t) = a_u$, but since subtraction is not available in this framework, we add b_t to the right-hand side instead.

Finally, for each argument a_i of ψ , we impose the restriction $\neg \psi_{\text{zero}}(a_i)$.

By this construction, $\varphi(s_1, \ldots, s_m)$ is true if and only if its transformed counterpart $g(\varphi(s_1, \ldots, s_m)) = \psi(a_1, \ldots, a_m)$ is also true, thus completing the proof.