```
Download from finelybook www.finelybook.com
def transform(self, X):
   return X[self.attribute names].values
```

Select and Train a Model

At last! You framed the problem, you got the data and explored it, you sampled a training set and a test set, and you wrote transformation pipelines to clean up and prepare your data for Machine Learning algorithms automatically. You are now ready to select and train a Machine Learning model.

Training and Evaluating on the Training Set

The good news is that thanks to all these previous steps, things are now going to be much simpler than you might think. Let's first train a Linear Regression model, like we did in the previous chapter:

```
from sklearn.linear_model import LinearRegression
lin reg = LinearRegression()
lin reg.fit(housing prepared, housing labels)
```

Done! You now have a working Linear Regression model. Let's try it out on a few instances from the training set:

```
>>> some data = housing.iloc[:5]
>>> some_labels = housing_labels.iloc[:5]
>>> some_data_prepared = full_pipeline.transform(some_data)
>>> print("Predictions:\t", lin_reg.predict(some_data_prepared))
Predictions:
             [ 303104. 44800. 308928. 294208. 368704.]
>>> print("Labels:\t\t", list(some_labels))
                [359400.0, 69700.0, 302100.0, 301300.0, 351900.0]
Labels:
```

It works, although the predictions are not exactly accurate (e.g., the second prediction is off by more than 50%!). Let's measure this regression model's RMSE on the whole training set using Scikit-Learn's mean_squared_error function:

```
>>> from sklearn.metrics import mean_squared_error
>>> housing predictions = lin reg.predict(housing prepared)
>>> lin_mse = mean_squared_error(housing_labels, housing_predictions)
>>> lin rmse = np.sqrt(lin mse)
>>> lin_rmse
68628.413493824875
```

Okay, this is better than nothing but clearly not a great score: most districts' median_housing_values range between \$120,000 and \$265,000, so a typical prediction error of \$68,628 is not very satisfying. This is an example of a model underfitting the training data. When this happens it can mean that the features do not provide enough information to make good predictions, or that the model is not powerful enough. As we saw in the previous chapter, the main ways to fix underfitting are to

Download from finelybook www.finelybook.com

select a more powerful model, to feed the training algorithm with better features, or to reduce the constraints on the model. This model is not regularized, so this rules out the last option. You could try to add more features (e.g., the log of the population), but first let's try a more complex model to see how it does.

Let's train a DecisionTreeRegressor. This is a powerful model, capable of finding complex nonlinear relationships in the data (Decision Trees are presented in more detail in Chapter 6). The code should look familiar by now:

```
from sklearn.tree import DecisionTreeRegressor
tree reg = DecisionTreeRegressor()
tree_reg.fit(housing_prepared, housing_labels)
```

Now that the model is trained, let's evaluate it on the training set:

```
>>> housing predictions = tree reg.predict(housing prepared)
>>> tree mse = mean squared error(housing labels, housing predictions)
>>> tree rmse = np.sqrt(tree mse)
>>> tree rmse
0.0
```

Wait, what!? No error at all? Could this model really be absolutely perfect? Of course, it is much more likely that the model has badly overfit the data. How can you be sure? As we saw earlier, you don't want to touch the test set until you are ready to launch a model you are confident about, so you need to use part of the training set for training, and part for model validation.

Better Evaluation Using Cross-Validation

One way to evaluate the Decision Tree model would be to use the train_test_split function to split the training set into a smaller training set and a validation set, then train your models against the smaller training set and evaluate them against the validation set. It's a bit of work, but nothing too difficult and it would work fairly well.

A great alternative is to use Scikit-Learn's *cross-validation* feature. The following code performs K-fold cross-validation: it randomly splits the training set into 10 distinct subsets called folds, then it trains and evaluates the Decision Tree model 10 times, picking a different fold for evaluation every time and training on the other 9 folds. The result is an array containing the 10 evaluation scores:

```
from sklearn.model_selection import cross val score
scores = cross_val_score(tree_reg, housing_prepared, housing_labels,
                         scoring="neg mean squared error", cv=10)
rmse_scores = np.sqrt(-scores)
```