Q02a Let n be a positive integer greater then 1, then by the Unique Factorization Theorem, n can be expressed as:

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

where $p_1, p_2, ..., p_k$, $k \ge 1$ are a list distinct primes $\le \sqrt{n}$ and $a_1, a_2, ..., a_k$ are all non-negative integers. From the DFPF, we know that all of n's divisors (known as the integer c) are of the form:

$$c = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k}$$
, where $0 \le \beta_i \le \alpha_i$ for $i = 1, 2, ..., k$

For any given prime (p_i) , we will have α_i as