Autonomous Dyslexia Evaluation System

CPG 283

KASHISH 101903120
PARAS BAKSHI 101917118
SANIDHIYA 101917126
SHREYA SOMANI 101917127

MENTOR: DR. PARSHANT SINGH RANA

Table of Content

- Background of Project
- Scope and Utility of Project
- Objectives
- Literature Survey
- Architecture of the Project
- Techniques and Tools used
- Snapshots of Project
- Methodology and Diagrams
- Deliverables of the Project
- Professional and Technical Learning
- Individual Roles

Background of Project

- Dyslexia is a learning disorder where a person faces difficulty in reading, writing and with fluency skills.
- Dyslexia may occur because of genetic heredity or due to differences in different parts of brain.
- Statistics show that one in ten people around the world suffers from dyslexia.
- Our Project is solving the problem by evaluating the dyslexic subject on all parameters which are required to be tested and keeping the track records.

Scope and Utility of Project

- We offer a personalized remote-based solution that helps to monitor the progress of dyslexic subjects.
- It can be used as a learning tool in special education schools for slow learners.
- We can track the treatment progress of the dyslexic subject through graphical visualizations.
- Registered users will have access to all tests and their previous track records.
- System consists of all types of tests which are required to test dyslexic subject on basis of reading, writing and fluency skills.

Objectives

- Automate the process of a Dyslexia evaluation.
- Conduct tests for Dyslexia evaluation which includes:
 - 1. Spelling orientation test
 - 2. Pronunciation test
 - 3. Object classification-based spelling orientation test
 - 4. Color recognition-based fluency test
- Increase efficiency of dyslexia evaluation process and track progress.
- Provide personalized, remote-based solution for evaluating dyslexia.

Literature Survey

- Dyslexia is a learning disorder that affects reading, writing, and speaking skills.
- It is estimated that dyslexia affects about 10% of the population worldwide.
- Some studies have suggested that the prevalence of dyslexia may be as high as 20% in some countries.
- Handwriting recognition is the process of using artificial intelligence to convert handwritten text to digital format.

Literature Survey

- Speech recognition is the process of using artificial intelligence to convert speech to text.
- Deep learning is a type of machine learning that uses artificial neural networks inspired by the human brain.
- Computer vision is a scientific field that involves using computers to understand and interpret digital images or videos.

Architecture of the Project

Architecture of the Dyslexia Evaluation System

Techniques and Tools used

- Programming Languages: Python, JavaScript
- Python Packages: OpenCV, Tensorflow, Mediapipe, Librosa Library
- Frontend Frameworks: React JS, Material UI Library
- Backend Frameworks: Django, Django REST Framework, Flask
- IDE : Visual Studio Code , PyCharm
- UML Tools: LucidChart
- Version Control: Git, GitHub
- Cloud Tools and Services: Google Collab, Azure

Snapshots of Project

Home Screen of Evaluation System

Rapid Color Naming Test

Spelling Orientation Test

Spelling Orientation Test

Snapshots of Project

Pronunciation Test

Results Outcomes (Line Chart)

Object Classification Test

Results Outcomes (Histogram)

Methodology

- Hand tracking: Google's Mediapipe library, a collection of pre-trained deep learning modules is used to track human hands.
- Handwriting Recognition: A custom-trained and handcrafted convolutional neural network (CNN) is being used for handwriting recognition.
- Speech Recognition: A custom-trained RNN (recurrent neural network) with LSTM layers is being used for speech recognition.
- Speech to Text Conversion: Using inbuilt speech recognition modules available in JavaScript.

Diagrams

Activity diagram

DFD Level 0

DFD Level 1

Deliverables of the Project

- Automate the process of evaluating dyslexic subjects through various tests specifically designed for them.
- A dyslexic subject has been tested on all the required parameters, such as reading, writing, and fluency skills.
- Maintain a track record of the entire test history to help analyze progress after each test.
- Provide a personalized, remote-based solution that is easily accessible and free of cost.

Professional and Technical Learning

- Developing complex technical systems from scratch.
- Applying deep learning techniques and neural networks, such as convolutional neural networks (CNN) and recurrent neural networks (RNN).
- Understanding application programming interfaces (API) and how to use them to integrate the frontend and backend.
- Applying computer vision techniques using libraries like OpenCV.
- Implementing strategies and evaluation methods for dyslexia.
- Designing UML diagrams and preparing technical reports.

Individual Roles

- Kashish: UML Diagram, Front end, Backend, Database,
 Software Requirements Specification
- Paras Bakshi: Deep Learning Model for Speech Recognition, Documentation, Data Collection, Testing Software
- Sanidhiya: Deep Learing model on handwriting recognization, Documentation, Cost Analysis, Testing Software
- Shreya Somani: UML Diagram , Front end, Literature Survey, Software Requirements Specification

Results

- The pronunciation evaluation module is producing accurate results.
- The spelling orientation module is correctly recognizing handwriting.
- The rapid color naming module is accurately recording and identifying the order of the names of colors spoken.
- The object classification module is producing seamless results based on the options selected.

Thank You