

Botection·博文强识

Progress Report I

Shangbin Feng, Herun Wan, Ningnan Wang
Xi'an Jiaotong University
{wind binteng,wanherun,mrwangyou}@stu.xjtu.edu.cn

Report Outline

- I. Introduction
- II. Overall Architecture
- III. Data Collection & Preprocessing
- IV. Bi-LSTM Textual Network
- V. Random Forest Classifier
- VI. Result Analysis
- VII. Deployment
- VIII. Conclusion & Future Work

Supervised & Account-level[1]

Figure 4: Cumulative distribution functions of three user behavior attributes

Supervised & Tweet-level[2]

Fig. 1. Architecture of model for tweet-level bot detection that takes only the tweet content as its input.

Unsupervised & Account-level[3]

Contribution

-Be the first to integrate account-level & tweet-level detection(to the best of our knowledge)

-Collect Weibo data, label and preprocess into a dataset which would be publicized to the research community

-Our proposed model achieves competitive performance compared with existing state-of-the-art bot detection systems

II. Overall Architecture: Botection

III. Data Collection & Preprocessing

Data collection

Data preprocessing

```
-≥4kB
```

```
-@ → 'ttttt'

# → 'ggggg'

<url> → 'uuuuu'

© & emoji → 'eeeee'

out-of-vocabulary words → 'ooooo'
```

-lol//@fsb: hhhhh//@whr: Repost → lol

III. Data Collection & Preprocessing

Labelling

III. Data Collection & Preprocessing

Final dataset composition

-1154 accounts with ≥4kB textfile

-985 accounts available

-95385 posts in total

IV. Bi-LSTM Textual Network

tokenizer:

PyNLPIR by [4]

Chinese Academy of Sciences

embedding:

pretrained on Weibo dataset by [5]
Word2vec / Skip-Gram with Negative Sampling

with a vocabulary of size 195203, vector dimension of 300 randn for special characters/zeros for oov

LSTMn:

Bi-LSTM layers n = 3(hyperparameter)

softmax:

converts the output of the last LSTMn layer into two numbers y1 & y2, representing the probability of being bot/human.

 \mathbf{x}_2

Embedding

LSTM₁

LSTM_n

softmax

Bot

IV. Bi-LSTM Textual Network

Training:

HIDDEN_DIM = 100 NUM_LAYER = 3

BATCH_SIZE = 32(with regard to a total of 95385 tweets)

EPOCH = 100(with no_up settings for validation set)

DROPOUT = 0.5, DROPOUT_SCHEDULE = 0.95 WEIGHT_DECAY = 5e-4

OPTIMIZER = torch.adam LEARNING_RATE = 1e-3

thx for the server!! (although CUDA drive version is antiquated...)

V. Random Forest Classifier

Feature selection:

V. Random Forest Classifier

hyperparameters

Number of decision trees *n*Max depth of each decision tree *d*

These hyperparameters are tuned using the predetermined validation set.

The result is:

n = 25

d = 15

feature	precision	recall	specificity	accuracy	f-measure	MCC
with text- based	1.000	0.974	1.000	0.987	0.987	0.974
without text- based	0.866	0.829	0.866	0.847	0.847	0.694

Text-based features significantly improve the overall performance of Botection

feature	precision	recall	specificity	accuracy	f-measure	MCC
BotOrN ot[6]	0.471	0.208	0.918	0.734	0.288	0.174
C. Yang et al.[7]	0.563	0.170	0.860	0.506	0.261	0.043
Miller et al.[8]	0.555	0.358	0.698	0.526	0.435	0.059
W. Feng et al.[9]	0.940	0.976	0.935	0.961	0.963	0.920
Ahmed et al.[10]	0.945	0.944	0.945	0.943	0.944	0.886
Cresci et al.[11]	0.982	0.972	0.981	0.976	0.977	0.952
Ours	1.000	0.974	1.000	0.987	0.987	0.974

interpretability:

- 1) probability
- 2) metadata coefficient
- 3) text coefficient

VII. Deployment

Front end & back end

-ThinkPHP 5

VII. Deployment

请输入微博用户名

@人民日报
人民日报是微博机器人的概率为
被关注数得分:
关注数得分:
活跃时间得分:
•••••

A demo of the website is available for trail

VIII. Conclusion & Future Work Summing up briefly:

- -Collected Weibo data, labelled & preprocessed into a dataset which could be publicized to the research community
- -Proposed **Botection**, which:
 combines textual info and metadata
 integrates tweet-level & account-level detection
 achieves significant(surprisingly) performance on real-world data
- -Analyzed feature selection and its effect on the performance
- -Proposed interpretable values for user reference
- This project is at 90% progress currently.

VIII. Conclusion & Future Work

Future work:

For the 10% remaining:

- -Deployment as planned
- -Github repository

For paper publication:

- -Dataset acquiring[12]
- -Reading group
- -Idea Practice

temporal pattern of tweet metadata group anomaly behaviour source of tweet pics advanced feature design(graph, neighbor, ...) comprehensive feature evaluation(effective+feasible+robust)

• • •

-Demo-track paper?

Reference

- [1]Z. Alom, B. Carminati and E. Ferrari, "Detecting Spam Accounts on Twitter," 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Barcelona, 2018, pp. 1191-1198, doi: 10.1109/ASONAM.2018.8508495.
- [2]Kudugunta, S., Ferrara, E., 2018. Deep neural networks for bot detection. Information Sciences.. doi:10.1016/j.ins.2018.08.019 [3]Chavoshi, Nikan & Hamooni, Hossein & Mueen, Abdullah. (2016).
- DeBot: Twitter Bot Detection via Warped Correlation.
- 10.1109/ICDM.2016.0096.
- [4]https://github.com/tsroten/pynlpir
- [5]https://github.com/Embedding/Chinese-Word-Vectors
- [6]C. A. Davis, O. Varol, E. Ferrara, A. Flammini, and F. Menczer,
- "Botornot: A system to evaluate social bots," in Proc. 25th Int. Conf.
- Companion on World Wide Web, 2016.

Reference

- [7]C. Yang, R. Harkreader, and G. Gu, "Empirical evaluation and new design for fighting evolving twitter spammers," IEEE Trans.
- Information Forensics Security, vol. 8, no. 8, pp. 1280–1293, 2013.
- [8]F. Wei and U. T. Nguyen, "Twitter Bot Detection Using Bidirectional Long Short-Term Memory Neural Networks and Word Embeddings," 2019 First IEEE International Conference on Trust, Privacy and Security
- in Intelligent Systems and Applications (TPS-ISA), Los Angeles, CA, USA,
- 2019, pp. 101-109, doi: 10.1109/TPS-ISA48467.2019.00021.
- [9]Z. Miller, B. Dickinson, W. Deitrick, W. Hu, and A. H. Wang, "Twitter spammer detection using data stream clustering," Information Sciences, vol. 260, pp. 64–73, 2014.
- [10]F. Ahmed and M. Abulaish, "A generic statistical approach for spam detection in online social networks," Computer Communications, vol. 36, no. 10-11, pp. 1120–1129, 2013.

Reference

[11]S. Cresci, R. Di Pietro, M. Petrocchi, A. Spognardi, and M. Tesconi, "Dna-inspired online behavioral modeling and its application to spambot detection," IEEE Intelligent Systems, vol. 31, no. 5, pp. 58–64, 2016.

[12]S.Cresci, "Mib datasets," http://mib.projects.iit.cnr.it/dataset.html, 2017.

Thank you!

Shangbin Feng, Herun Wan, Ningnan Wang
Xi'an Jiaotong University
{wind binteng,wanherun,mrwangyou}@stu.xjtu.edu.cn