MAT115A HW6

Tao Wang

November 22, 2024

(1)

Question:

Find the order of 9 modulo 17.

Answer:

$$\{9^1, 9^2, 9^3, 9^4, 9^5, 9^6, 9^7, 9^8\} \pmod{17} = \{9, 13, 15, 16, 8, 4, 2, 1\}$$

By Definition 4.1.1, $\operatorname{ord}_m a$ is the n where $a^n \equiv 1 \pmod{m}$. Since $9^8 \equiv 1 \pmod{17}$ and 8 is the least positive integer to satisfy this property, $\operatorname{ord}_{17}9 = 8$.

(2)

Question:

Find all incongruent primitive roots modulo 18.

Answer:

$$\{5^1, 5^2, 5^3, 5^4, 5^5, 5^6\} (\bmod\ 18) = \{5, 7, 17, 13, 11, 1\}$$

By Corollary 4.1.14.2, the number of incongruent primitive roots modulo 18 is $\phi(\phi(18)) = 2$.

Also,

$$\{11^1,11^2,11^3,11^4,11^5,11^6\} (\bmod\ 18) = \{5,7,17,13,11,1\}$$

Therefore, the two incongruent primitive roots modulo 18 are 5 and 11

(3)(a)

Proposition:

Let m be a positive integer and let a, b be integers relatively prime to m with $(\operatorname{ord}_m a, \operatorname{ord}_m b) = 1$. Prove that $\operatorname{ord}_m(ab) = (\operatorname{ord}_m a)(\operatorname{ord}_m b)$.

Proof:

We have $\operatorname{ord}_m a = x$ and $\operatorname{ord}_m b = y$.

Therefore, $a^x \equiv 1 \pmod{m}$ and $b^y \equiv 1 \pmod{m}$.

$$(ab)^{xy} = (a^x)^y (b^y)^x \equiv 1^y 1^x \equiv 1 \pmod{m}$$

By Proposition 4.1.1, $\operatorname{ord}_m(ab) \mid xy$ and $\operatorname{ord}_m(ab) \mid (\operatorname{ord}_m a)(\operatorname{ord}_m b)$

Also, let $n = \operatorname{ord}_m(ab)$. Then,

$$((ab)^n)^y=(a^{ny})(b^y)^n=a^{ny}\equiv 1 (\mathrm{mod}\ m)$$

This implies $x \mid ny$, which implies $x \mid n$ because (x, y) = 1. Similarly, we could show that $y \mid n$.

Since (x, y) = 1, $x \mid n$ and $y \mid n$ implies $xy \mid n$ or $(\operatorname{ord}_m a)(\operatorname{ord}_m b) \mid \operatorname{ord}_m(ab)$

Since we've proven divisibility in both direction, $\operatorname{ord}_m(ab) = (\operatorname{ord}_m a)(\operatorname{ord}_m b)$

(3)(b)

Question:

Show that $(\operatorname{ord}_m a, \operatorname{ord}_m b) = 1$ cannot be eliminated from part (a).

Answer:

We need $(\operatorname{ord}_m a, \operatorname{ord}_m b) = 1$ to show that $(\operatorname{ord}_m a)(\operatorname{ord}_m b) \mid \operatorname{ord}_m(ab)$.

(4)

Proposition:

Show that r is a primitive root modulo the odd prime p if and only if r is an integer with (r, p) = 1 such that

$$r^{\frac{p-1}{q}} \not\equiv 1 \pmod{p}$$

for all prime divisors q of p-1.

Proof:

We'll first show that r is a primitive root modulo p implies (r,p)=1 and $r^{\frac{p-1}{q}}\not\equiv 1 \pmod p$

r is a primitive root modulo p implies that (r,p)=1 and $r^{\phi(p)}\equiv 1 \pmod{p}$.

Since $\phi(p)=p-1$, we have $r^{p-1}\equiv 1 \pmod p$. Assume that $r^{\frac{p-1}{q}}\equiv 1 \pmod p$, then there's a contradiction because $\frac{p-1}{q}< p-1$ and r is a primitive root guarantees that p - 1 is the smallest integer n to make $r^n\equiv 1 \pmod p$.

Therefore, $r^{\frac{p-1}{q}} \not\equiv 1 \pmod{p}$.

Next, we'll show that the converse is true. By the Euler's Theorem, (r, p) = 1 implies $a^{\phi(p)} \equiv 1 \pmod{p}$.

By Proposition 4.1.3, $\operatorname{ord}_m r \mid p-1$.

Assume $\operatorname{ord}_m r < p-1$ and p-1 = bq for some integer b and the prime divisor q, then $(\operatorname{ord}_m r)(a) = \frac{p-1}{q}$ for some integer a.

By Definition 4.1.1, $r^{\operatorname{ord}_m r} \equiv 1 \pmod{p}$, so $r^{(\operatorname{ord}_m r)(a)} = (r^{\operatorname{ord}_m r})^a \equiv r^{\frac{p-1}{q}} \equiv 1 \pmod{p}$.

This contradicts our hypothesis that $r^{\frac{p-1}{q}} \not\equiv 1 \pmod{p}$. Therefore, $\operatorname{ord}_m r = p-1 = \phi(p)$ and r is a primitive root.

(5)

Proposition:

Show that if r is a primitive root modulo the positive integer m, then \bar{r} , the inverse of r modulo m, is also a primitive root modulo m.

Proof:

Since \bar{r} is the inverse of r,

$$(r)(\bar{r}) \equiv 1 \pmod{m}$$

 $\implies ((r)(\bar{r}))^{\phi(m)} \equiv 1 \pmod{m}$

However, r is a primitive root modulo m implies $r^{\phi(m)} \equiv 1 \pmod{m}$. Both statements are true if and only if $\bar{r}^{\phi(m)} \equiv 1 \pmod{m}$.

 $\phi(m)$ must also be the least root for \bar{r} .

Assume that there exists $k < \bar{r}$, then $r^k \equiv 1 \pmod{m}$ holds because $(r)(\bar{r}) \equiv 1 \pmod{m}$. However, this contradicts with the fact the r is a primitive root.

As a result, \bar{r} is also a primitive root modulo m.