ELLIPTIC CURVES

Homework 2

- 4. *a*) Let *E* be the elliptic curve over \mathbf{Q}_p with affine equation $y^2 = x^3 + p$. Show that the point (0,0) on the reduction of *E* mod *p* does not lift to a point in $E(\mathbf{Q}_p)$.
- b) Find an example of an elliptic curve E over \mathbf{Q}_p with additive reduction where the point (0,0) on the reduction of E mod p lifts to a point in $E(\mathbf{Q}_p)$.
- 5. Let E be an elliptic curve over \mathbf{Q} . We have seen in class that for all primes p the group $E(\mathbf{Q}_p)^{(1)}$ is uniquely m-divisible for m prime to p. Use this result to give a proof of the fact, proven in class in another way, that there are only finitely many torsion points in $E(\mathbf{Q})$. (You will need a small trick.)
- 6. We admit the following facts from number theory: If $\overline{\mathbf{Q}}_p$ is a fixed algebraic closure of \mathbf{Q}_p , for each n>0 there is a unique unramified extension $K_n|\mathbf{Q}_p$ contained in $\overline{\mathbf{Q}}_p$. The union \mathbf{Q}_p^{nr} of the K_n for all n is the maximal unramified extension of \mathbf{Q}_p . It is the fraction field of a complete discrete valuation ring with maximal ideal (p) and residue field $\overline{\mathbf{F}}_p$.
- a) Let E be an elliptic curve over \mathbf{Q}_p . Show that for m prime to p the group $E(\mathbf{Q}_p^{\mathrm{nr}})^{(0)}$ is m-divisible, i.e. the multiplication-by-m map is surjective. Here $E(\mathbf{Q}_p^{\mathrm{nr}})^{(0)}$ denotes, as in class, the group of points in $E(\mathbf{Q}_p^{\mathrm{nr}})$ whose reduction in $\overline{E}(\overline{\mathbf{F}}_p)$ is smooth.
- b) Is $E(\mathbf{Q}_p^{\mathrm{nr}})^{(0)}$ always uniquely m-divisible for m prime to p? If yes, give a proof, if not, give a counterexample. [Hint: You may want to consider the case m=2.]
- 7. Let *E* be an elliptic curve over **Q**, with Tate–Shafarevich group $\coprod (E)$.
- a) Show that $\coprod (E)$ is finite if and only if $N \coprod (E) = 0$ for some N > 0.
- b) Suppose there is a surjective morphism with finite kernel $E \to E'$ with $\coprod (E')$ finite. Deduce that $\coprod (E)$ is finite.

Note: In b) we mean the morphism $E \to E'$ is a surjective group homomorphism on points and has finite kernel. It can be shown that any non-constant morphism $E \to E'$ (in the sense of algebraic geometry) sending O to O has this property. Such maps are called *isogenies*.