

Lecture 12: Model ages

- 1. Decay chains and half-lives
- 2. Model ages
 - A. Sm-Nd system
 - B. Isochrons

We acknowledge and respect the $l \ni k^w \ni j \ni n$ peoples on whose traditional territory the university stands and the Songhees, Esquimalt and $W \subseteq k$ historical relationships with the land continue to this day.

The decay equation.

Half life

Half lite

how long does it take For half of N to decay? $N = \frac{N_0}{2}$

$$N = \frac{N_0}{2}$$

$$\frac{N_0}{2} = N_0 e^{-\lambda t}$$

$$-\lambda t_{\frac{1}{2}}$$

$$-\frac{\ln^{\frac{1}{2}}}{\lambda}=t_{i}$$

large decay constant means short half-life

Decay chains

* isotope ratio more meaningful than absolute abundance, so ue divide by a stable isotope 147 Sm \longrightarrow 143 Nd half life 105 billion years $\left(\frac{143 \text{Nd}}{144 \text{Nd}}\right) = \left(\frac{143 \text{Nd}}{144 \text{Nd}}\right) + \left(\frac{147 \text{Sm}}{144 \text{Nd}}\right) \left(e^{\lambda^{147} t} - 1\right)$ Sm, Nd are RLE What hoppens when we welt the mantle? Sm, Nd incompatible mantle? Sm, Nd incompatible melt sm and more incompatible melt sm lawer that time today

time

Isochrons

Isochrons

if a suite of samples forms a line in $\frac{D}{N}$, then the samples have the same age and initial Do. to use an isochron: 1. Samples have some age 2. Samples have the same initial Descendant 3. D and N isotopes to not enter of leave the mineral or rock since formation (closed 345+8m) it helps when the samples have very different N concentrations