Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №2 з дисципліни: «Схемотехніка-2. Цифрова схемотехніка»

КОМБІНАЦІЙНІ ЕЛЕМЕНТИ

Виконавець:		
Студент 4-го курсу	(підпис)	А.С. Мнацаканов
Перевірила:	(підпис)	Г.С. Порева

Мета роботи

Ознайомитися з логікою роботи логічних елементів типу І-НІ, АБО-НІ, ВИКЛЮ-ЧАЮЧЕ - АБО, І-АБО-НІ та виміряти динамічні параметри.

Рис. 1: Схеми комбінаційних елементів, які досліджуються в лабораторній роботі.

На рис.1 представлені досліджувані схеми комбінаційних елементів. Елемент DD1.1 реалізує функцію I-HI, елемент DD2.1 - функцію AБО-HI, елемент DD3.1 -ВИКЛЮЧАЮЧЕ-АБО, елемент DD4.1 - функцію 2-I-АБО-HI. Перемикачі П1 - П5 задають вхідні сигнали логічних елементів. Якщо перемикач не замкнений — на відповідний вхід логічного елемента подається рівень логічного нуля через підключення до землі. Якщо перемикач замкнений, то до відповідного входу під'єднується напруга живлення +5В, що відповідає подачі на цей вхід рівня логічної одиниці. В контрольних точках КТ2 - КТ5 спостерігаються вихідні сигнали відповідних логічних елементів.

Виконання роботи

Рис. 2: Часові діаграми роботи логічного елементу І-НІ

x1	0	0	1	1
x2	0	1	0	1
У	1	1	1	0

Рис. 3: Часові діаграми роботи логічного елементу АБО-НІ

x1	0	0	1	1
x2	0	1	0	1
У	1	0	0	0

Рис. 4: Часові діаграми роботи логічного елементу ВИКЛЮЧНЕ АБО

x1	0	0	1	1
x2	0	1	0	1
у	0	1	1	0

Рис. 5: Часові діаграми роботи логічного елементу І-АБО-НІ

x1	0	0	0	0	1	1	1	1
x2	0	0	1	1	0	0	1	1
x3	0	1	0	1	0	1	0	1
У	1	0	1	0	1	0	0	0

Визначення затримки поширення сигналів досліджуваних ЛЕ

ЛЕ	$t_{\text{3.п.}}^{01}$, нс	$t_{\text{3.п.}}^{10}$, HC
I-HI	9	120
АБО-НІ	66	66
ВИКЛЮЧНЕ АБО	72	100
2І-АБО-НІ	148	224

Висновок

Аналізуючи дані отримані в ході лабораторної роботи можна підмітити особливості затримками поширення, наприклад у ЛЕ І-НІ має — найменшу затримку при переході з закритого у відкритий стан. ЛЕ АБО-НІ — має найменшу затримку при переході з відкритого у закритий стан. ЛЕ ВИКЛЮЧНЕ АБО не має якихось особливостей окрим того, що перемикання з закритого у відкритий стан відбувається швидше, ніж з відкритого у закритий. ЛЕ 2-І-АБО-НІ — має найбільшу затримку серед усіх ЛЕ при переході з закритого у відкритий стан і навпаки, пояснюється затримка тим що це просто такий елемент за своєю так би мовити каскадністю операцій може накопичувіти затримку.