Lecture 19 QR Algorithm with Shifts

Songting Luo

Department of Mathematics lowa State University

MATH 562 Numerical Analysis II

Outline

QR Algorithm With Shifts

Outline

QR Algorithm With Shifts

Simultaneous Inverse Iteration ⇔QR Algorithm

- Similar to inverse iteration, QR algorithm can be sped-up by introducing shifts at each step.
- Assume **A** is real and symmetric. QR algorithm is equivalent to simultaneous inverse iteration, applied to "flipped" identity matrix

$$\mathbf{P} = \begin{bmatrix} & & 1 \\ & 1 \\ & \vdots \\ 1 \end{bmatrix}$$

Simultaneous inverse iteration

$$\begin{split} \hat{\mathbf{Q}}^{(0)} &= \mathbf{P} \\ \text{for } k = 1, 2, \dots \\ \mathbf{Z} &= \mathbf{A}^{-1} \hat{\mathbf{Q}}^{(k-1)} \\ \hat{\mathbf{Q}}^{(k)} \hat{\mathbf{R}}^{(k)} &= \mathbf{Z} \end{split}$$

"Pure" QR Algorithm

$$\begin{aligned} \mathbf{A}^{(0)} &= \mathbf{A} \\ \text{for } k = 1, 2, \dots \\ \mathbf{Q}^{(k)} \mathbf{R}^{(k)} &= \mathbf{A}^{(k-1)} \\ \mathbf{A}^{(k)} &= \mathbf{R}^{(k)} \mathbf{Q}^{(k)} \end{aligned}$$

Simultaneous Inverse Iteration ⇔QR Algorithm

- Let $\underline{\mathbf{Q}}^{(k)} = \prod_{j=1}^k \mathbf{Q}^{(j)}$ and $\underline{\mathbf{R}}^{(k)} = \prod_{j=k}^1 \mathbf{R}^{(j)}$. Then $\mathbf{A}^k = \underline{\mathbf{Q}}^{(k)}\underline{\mathbf{R}}^{(k)}$
- Inverting \mathbf{A}^k , we have $\mathbf{A}^{-k} = (\underline{\mathbf{R}}^{(k)})^{-1}(\underline{\mathbf{Q}}^{(k)})^T$
- Because \mathbf{A}^{-k} is symmetric, $\mathbf{A}^{-k} = \mathbf{Q}^{(k)}(\mathbf{\underline{R}}^{(k)})^{-T}$.
- ullet Use "flipped" permutation matrix ${f P}$ and write that last expression as

$$\mathbf{A}^{-k}\mathbf{P} = [\underline{\mathbf{Q}}^{(k)}\mathbf{P}][\mathbf{P}(\underline{\mathbf{R}}^{(k)})^{-T}\mathbf{P}]$$

which is QR factorization of $\mathbf{A}^{-k}\mathbf{P}$

- Therefore, simultaneous inverse iteration applied to $\hat{\mathbf{Q}}^{(0)} = \mathbf{P}$ is "equivalent" to QR algorithm, in that it produces $\hat{\mathbf{Q}}^{(k)} = \underline{\mathbf{Q}}^{(k)}\mathbf{P}$ and $\hat{\mathbf{R}}^{(k)}\hat{\mathbf{R}}^{(k-1)}\cdots\hat{\mathbf{R}}^{(1)} = \mathbf{P}(\underline{\mathbf{R}}^{(k)})^{-T}\mathbf{P}$
- Question: How to obtain $\mathbf{A}^{(k)}$ in simultaneous inverse iteration?

Simultaneous Inverse Iteration ⇔QR Algorithm

- Let $\underline{\mathbf{Q}}^{(k)} = \prod_{j=1}^k \mathbf{Q}^{(j)}$ and $\underline{\mathbf{R}}^{(k)} = \prod_{j=k}^1 \mathbf{R}^{(j)}$. Then $\mathbf{A}^k = \underline{\mathbf{Q}}^{(k)}\underline{\mathbf{R}}^{(k)}$
- Inverting \mathbf{A}^k , we have $\mathbf{A}^{-k} = (\mathbf{\underline{R}}^{(k)})^{-1}(\mathbf{\underline{Q}}^{(k)})^T$
- Because \mathbf{A}^{-k} is symmetric, $\mathbf{A}^{-k} = \mathbf{Q}^{(k)} (\mathbf{R}^{(k)})^{-T}$.
- \bullet Use "flipped" permutation matrix \boldsymbol{P} and write that last expression as

$$\mathbf{A}^{-k}\mathbf{P} = [\mathbf{\underline{Q}}^{(k)}\mathbf{P}][\mathbf{P}(\mathbf{\underline{R}}^{(k)})^{-T}\mathbf{P}]$$

which is QR factorization of $\mathbf{A}^{-k}\mathbf{P}$

- Therefore, simultaneous inverse iteration applied to $\hat{\mathbf{Q}}^{(0)} = \mathbf{P}$ is "equivalent" to QR algorithm, in that it produces $\hat{\mathbf{Q}}^{(k)} = \underline{\mathbf{Q}}^{(k)}\mathbf{P}$ and $\hat{\mathbf{R}}^{(k)}\hat{\mathbf{R}}^{(k-1)}\cdots\hat{\mathbf{R}}^{(1)} = \mathbf{P}(\underline{\mathbf{R}}^{(k)})^{-T}\mathbf{P}$
- Question: How to obtain $\mathbf{A}^{(k)}$ in simultaneous inverse iteration?
- Answer: $\mathbf{A}^{(k)} = (\mathbf{Q}^{(k)})^T \mathbf{A} \mathbf{Q}^{(k)} = \mathbf{P}(\hat{\mathbf{Q}}^{(k)})^T \mathbf{A} \hat{\mathbf{Q}}^{(k)} \mathbf{P}$

QR Algorithm with Shifts

 \bullet Similar to inverse iteration, we can introduce shifts $\mu^{(k)}$ to accelerate convergence

Algorithm: QR Algorithm with Shifts

$$\begin{aligned} \mathbf{A}^{(0)} &= \mathbf{A} \\ \text{for } k = 1, 2, \dots \\ \text{Pick a shift } \mu^{(k)} \\ \mathbf{Q}^{(k)} \mathbf{R}^{(k)} &= \mathbf{A}^{(k-1)} - \mu^{(k)} \mathbf{I} \\ \mathbf{A}^{(k)} &= \mathbf{R}^{(k)} \mathbf{Q}^{(k)} + \mu^{(k)} \mathbf{I} \end{aligned}$$

Properties of QR Algorithm with Shift

• From $\mathbf{Q}^{(k)}\mathbf{R}^{(k)}=\mathbf{A}^{(k-1)}-\mu^{(k)}\mathbf{I}$ and $\mathbf{A}^{(k)}=\mathbf{R}^{(k)}\mathbf{Q}^{(k)}+\mu^{(k)}\mathbf{I}$, we have

$$\mathbf{A}^{(k)} = (\mathbf{Q}^{(k)})^T \mathbf{A}^{(k-1)} \mathbf{Q}^{(k)}$$

Then by induction, $\mathbf{A}^{(k)} = (\mathbf{Q}^{(k)})^T \mathbf{A} \mathbf{Q}^{(k)}$

• However, instead of $\mathbf{A}^k = \underline{\mathbf{Q}}^{(k)} \underline{\mathbf{R}}^{(k)}$, we have

$$(\mathbf{A} - \boldsymbol{\mu}^{(k)} \mathbf{I}) (\mathbf{A} - \boldsymbol{\mu}^{(k-1)} \mathbf{I}) \cdots (\mathbf{A} - \boldsymbol{\mu}^{(1)} \mathbf{I}) = \underline{\mathbf{Q}}^{(k)} \underline{\mathbf{R}}^{(k)}$$

which can be shown by induction

- In other words, $\underline{\mathbf{Q}}^{(k)}$ is orthogonalization of $\prod_{j=k}^1 (\mathbf{A} \mu^{(k)} \mathbf{I})$
- If shifts are good estimates of eigenvalues, then last column of $\underline{\mathbf{Q}}^{(k)}$ converges to corresponding eigenvector

Choosing $\mu^{(k)}$: Rayleigh Quotient Shift

• Natural choice of $\mu^{(k)}$ is Rayleigh quotient for last column of $\mathbf{Q}^{(k)}$

$$\boldsymbol{\mu}^{(k)} = r(\mathbf{q}_m^{(k)}) = (\mathbf{q}_m^{(k)})^T \mathbf{A} \mathbf{q}_m^{(k)}$$

- ullet As in Rayleigh quotient iteration, last column ${f q}_m^{(k)}$ converges cubically
- This Rayleigh quotient appears as (m,m) entry of $\mathbf{A}^{(k)}$ since $\mathbf{A}^{(k)}=(\mathbf{Q}^{(k)})^T\mathbf{A}\mathbf{Q}^{(k)}$
- Rayleigh quotient shift corresponds to setting $\mu^{(k)} = A_{mm}^{(k)}$

Choosing $\mu^{(k)}$: Wilkinson Shift

- QR algorithm with Rayleigh quotient shift might fail sometimes, e.g., $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, for which $\mathbf{A}^{(k)} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and μ is always 0.
- Wilkinson breaks symmetry by considering lower-rightmost 2×2 submatrix of $\mathbf{A}^{(k)}:\mathbf{B}=\left[\begin{array}{cc}a_{m-1}&b_{m-1}\\b_{m-1}&a_{m}\end{array}\right]$
- Choose eigenvalue of **B** closer to a_m , with arbitrary tie-breaking:

$$\mu = a_m - sign(\delta)b_{m-1}^2/(|\delta| + \sqrt{\delta^2 + b_{m-1}^2})$$

where
$$\delta = (a_{m-1} - a_m)/2$$
; if $\delta = 0$, set $sign(\delta) = 1$ (or -1)

 QR algorithm always converges with this shift; quadratically in worst case, and cubically in general

"Practical" QR Algorithm

Practical QR algorithm involves two additional components:

- tridiagonalization of ${\bf A}$ at the beginning. The tridiagonal structure is preserved by ${\bf A}^{(k)}$
- deflation of ${\bf A}$ into submatrices when ${\bf A}^{(k)}$ is separable

Algorithm: "Practical" QR Algorithm

$$\begin{split} &(\mathbf{Q}^{(0)})^T\mathbf{A}^{(0)}\mathbf{Q}^{(0)} = \mathbf{A} \text{ f tridiagnolization of } \mathbf{A} \} \\ &\text{for } k=1,2,\dots \\ &\text{Pick a shift } \mu^{(k)} \\ &\mathbf{Q}^{(k)}\mathbf{R}^{(k)} = \mathbf{A}^{(k-1)} - \mu^{(k)}\mathbf{I} \\ &\mathbf{A}^{(k)} = \mathbf{R}^{(k)}\mathbf{Q}^{(k)} + \mu^{(k)}\mathbf{I} \end{split}$$

If any off-diagonal element $a_{j,j+1}^{(k)}$ is sufficiently close to zero, set

$$a_{j,j+1}=a_{j+1,j}=0$$
 to obtain $\left[egin{array}{cc} {\bf A}_1 & & \\ & {\bf A}_2 \end{array}
ight]={\bf A}^{(k)}$ and apply QR algorithm

to \mathbf{A}_1 and \mathbf{A}_2

4 D > 4 D > 4 B > 4 B > B 9 Q C

Stability and Accuracy

Theorem

QR algorithm is backward stable

$$\tilde{\mathbf{Q}}\tilde{\mathbf{\Lambda}}\tilde{\mathbf{Q}} = \mathbf{A} + \delta\mathbf{A}, \ \frac{\|\delta\mathbf{A}\|}{\|\mathbf{A}\|} = O(\epsilon_{machine})$$

where $\tilde{\Lambda}$ is computed Λ and \tilde{Q} is exactly orthogonal matrix

Its combination with Hessenberg reduction is also backward stable Furthermore, eigenvalues are always well conditioned for normal matrices: it can be shown that $|\tilde{\lambda}_j - \lambda_j| \leqslant \|\delta \mathbf{A}\|_2$, and therefore,

$$\frac{|\ddot{\lambda}_j - \lambda_j|}{\|\mathbf{A}\|} = O(\epsilon_{machine})$$

where $ilde{\lambda}_j$ are the computed eigenvalues

