CLAIMS

5

10

15

20

- 1. A single crystal substrate comprising:
- a langasite substrate with a SAW propagation surface; and

input and output IDTs having electrodes on the surface for launching and/or detecting surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis, and the substrate further has an Z'-axis perpendicular to the surface and a Y'-axis parallel to the surface and perpendicular to the X'-axis, the langasite substrate having a crystal orientation defined by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is in a range of $8^{\circ} \leq \phi \leq 25^{\circ}$, θ is in a range of $15^{\circ} \leq \theta \leq 30^{\circ}$, and ψ is in a range of $55^{\circ} \leq \psi \leq 85^{\circ}$.

2. The single crystal substrate according to claim 1, wherein optimal Euler angles of the langasite are φ = 10°, θ = 23.6° and ψ = 78.8°.

3. A single crystal substrate comprising:

a langasite substrate with a SAW propagation surface; and

input and output IDTs having electrodes on the surface for launching and/or detecting surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis, and the substrate further has an Z'-axis perpendicular to the surface and a Y'-axis parallel to the surface and perpendicular to the X'-axis, the langasite substrate having a crystal orientation defined by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is θ , θ is in a range of θ , θ is in a range of θ .

35

4. The single crystal substrate according to claim 3, wherein optimal Euler angles of the langasite are φ = 0°, θ =

14.6° and $\psi = 76.2^{\circ}$.

- 5. A single crystal substrate comprising:
- a quartz substrate with a SAW propagation surface; and input and output IDTs having electrodes on the surface for launching and/or detecting surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis, and the substrate further has an Z'-axis perpendicular to the surface and a Y'-axis parallel to the surface and perpendicular to the X'-axis, the quartz substrate having a crystal orientation defined by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is in a range of $-5^{\circ} \le \phi \le +5^{\circ}$, θ is in a range of $60^{\circ} \le \theta \le 80^{\circ}$ and ψ is in a range of $-5^{\circ} \le \psi \le +5^{\circ}$.
 - 6. The single crystal substrate according to claim 5, wherein optimal Euler angles of the quartz are ϕ = 0°, θ = 70.5° and ψ = 0°.

20

25

30

5

10

15

- 7. A single crystal substrate comprising:
- a quartz substrate with a SAW propagation surface; and input and output IDTs having electrodes on the surface for launching and/or detecting surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis, and the substrate further has an Z'-axis perpendicular to the surface and a Y'-axis parallel to the surface and perpendicular to the X'-axis, the quartz substrate having a crystal orientation defined by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is θ , θ is in a range of θ , θ and θ is in a range of θ .
- 8. The single crystal substrate according to claim 7, wherein optimal Euler angles of the quartz are ϕ = 0°, θ = 20° and ψ = 13.7°.

- 9. A single crystal substrate comprising:
- a lithium tantalate substrate with a SAW propagation surface; and

input and output IDTs having electrodes on the surface for launching and/or detecting surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis, and the substrate further has an Z'-axis perpendicular to the surface and a Y'-axis parallel to the surface and perpendicular to the X'-axis, the lithium tantalate substrate having a crystal orientation defined by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is in a range of $-5^{\circ} \leq \phi \leq +5^{\circ}$, θ is in a range of $70^{\circ} \leq \theta \leq 90^{\circ}$ and ψ is in a range of $85^{\circ} \leq \psi \leq 95^{\circ}$.

15

20

25

30

10

- 10. The single crystal substrate according to claim 9, wherein optimal Euler angles of the lithium tantalate are ϕ = 0°, θ = 79° and ψ = 90°.
- 11. A single crystal substrate comprising:
 - a lithium tantalate substrate with a SAW propagation surface; and

input and output IDTs having electrodes on the surface for launching and/or detecting surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis, and the substrate further has an Z'-axis perpendicular normal to the surface and a Y'-axis parallel to the surface and perpendicular to the X'-axis, the lithium tantalate substrate having a crystal orientation defined by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is in a range of $-5^{\circ} \leq \phi \leq +5^{\circ}$, θ is in a range of $160^{\circ} \leq \theta \leq 180^{\circ}$ and ψ is in a range of $85^{\circ} \leq \psi \leq 95^{\circ}$.

35 12. The single crystal substrate according to claim 11, wherein optimal Euler angles of the lithium tantalate are ϕ = 0°, θ = 168° and ψ = 90°.

13. A single crystal substrate comprising:

5

10

15

20

25

30

a lithium tantalate substrate with a SAW propagation surface; and

input and output IDTs having electrodes on the surface for launching and/or detecting surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis, and the substrate further has an Z'-axis perpendicular to the surface and a Y'-axis parallel to the surface and perpendicular to the X'-axis, the lithium tantalate substrate having a crystal orientation defined by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is in a range of $-5^{\circ} \leq \phi \leq +5^{\circ}$, θ is in a range of $20^{\circ} \leq \theta \leq 40^{\circ}$ and ψ is in a range of $5^{\circ} \leq \psi \leq 25^{\circ}$.

- 14. The single crystal substrate according to claim 13, wherein optimal Euler angles of the lithium tantalate are ϕ = 0°, θ = 30° and ψ = 16.5°.
- 15. A cutting method of a single crystal substrate comprising the steps of:
- (a) defining a crystal orientation based on modified axes X, Y and Z, for the surface of the single crystal substrate which surface acoustic waves are propagated;
- (b) defining X', Y' and Z' axes on the single crystal substrate, in which a direction of surface wave of the propagation is parallel to X'-axis and the Z'-axis is perpendicular to the surface wave and the Y'-axis is parallel to the surface and normal to the X'-axis;
- (c) defining the X', Y' and Z' axes defined at (b) as relative orientation Euler angles of crystals, $\phi,~\theta$ and $\psi;$ and
- (d) setting a range of the ϕ , θ , and ψ defined at (c) in an optimal range in accordance with a type of the substrate.
 - 16. The method according to claim 15, wherein the single

crystal substrate is a langasite substrate.

5

- 17. The method according to claim 15, wherein the single crystal substrate is a quartz substrate.
- 18. The method according to claim 15, wherein the single crystal substrate is a lithium tantalate substrate.