Divisibilité, division euclidienne, congruences

I. Divisibilité dans \mathbb{Z}

1. Quelques notations

- $\star \mathbb{N}$ est l'ensemble des entiers naturels : $\mathbb{N} = \{0; 1; 2; 3...\}$.
- $\star \mathbb{Z}$ est l'ensemble des entiers relatifs : $\mathbb{Z} = \{\ldots; -3; -2; -1; 0; 1; \ldots\}.$
- $\star \Longrightarrow$ est la notation mathématique de l'implication.
- $\star \iff$ est la notation mathématique de l'équivalence.
- \star \forall est le symbole mathématique de « pour tout ».
- $\star [1; n] = \{1; 2; 3; 4...; n\}.$

2. Diviseurs, multiples

Définition.

Soit a et b deux entiers relatifs avec $b \neq 0$.

Dire que b divise a (ou que a est un multiple de b) signifie qu'il existe un entier relatif k tel que :

a =

Remarque. 0 est un multiple de *tout* entier car $0 = n \times 0$ pour tout entier n. En revanche, 0 n'est un diviseur d'aucun nombre.

Exemple. 312 est un multiple de -6 car $312 = -6 \times (-52)$.

Exercice 1.3.

- 1. Soit p et q deux entiers relatifs. Montrer que $14p^2 35q$ est divisible par 7.
- **2.** Déterminer les entiers naturels n tels que 4 divise n + 13.
- 3. Montrer que, quelque soit l'entier relatif n, 2n + 5 n'est jamais divisible par 2.

Propriété.

Soit a et b deux entiers relatifs avec $b \neq 0$. On a les implications suivantes :

- Si b divise a alors les **multiples** de a sont des **multiples** de b.
- Si b divise a alors les **diviseurs** de b sont des **diviseurs** de a.

Notation: l'ensemble des multiples d'un entier relatif b dans \mathbb{Z} est noté $b\mathbb{Z}$ et l'ensemble des diviseurs de b est noté $\mathcal{D}(b)$.

Exemple. Les multiples de 6 sont aussi des multiples de 3 donc $6\mathbb{Z} \subset 3\mathbb{Z}$.

Exercice 2.3. Déterminer dans \mathbb{Z} la liste des diviseurs de 7 et en déduire les entiers relatifs n tels que 4n + 1 divise 7.

Propriété.

```
Soit a et b deux entiers relatifs avec b \neq 0.

b|a \iff -b|a \iff b|-a \iff -b|-a.
```

Conséquence : a et -a ont les mêmes diviseurs dans \mathbb{Z} . Les diviseurs de -a étant les opposés des diviseurs positifs de a, on restreindra souvent l'étude à la divisibilité dans \mathbb{N} .

Propriété.

Tout entier n non nul a pour **diviseurs** 1, -1, n et -n et a un nombre fini de diviseurs tous compris entre n et -n.

Remarque. Un entier *non nul* a une infinité de multiples.

3. Divisibilité et transitivité

Propriété.

Soit a, b et c des entiers relatifs tels que $b \neq 0$ et $c \neq 0$. Si c divise b et b divise a, alors c divise a.

Démonstration

```
Par hypothèse, c divise b donc il existe un entier relatif k tel que b=. De même, b divise a, il existe donc un entier relatif k' tel que a=. Ainsi a= où kk' est un entier relatif. Donc a est un multiple de c, avec c non nul, autrement dit c divise a
```

4. Divisibilité et combinaison linéaire

Propriété.

Soit a, b et c des entiers relatifs tels que $c \neq 0$.

Si c est un diviseur commun à a et b, alors c divise ua + vb pour tous entiers relatifs u et v.

Démonstration

Si c est un diviseur commun de a et b alors il existe deux entiers relatifs a' et b' tels que a = a'cet b = b'c.

Par conséquent, pour u et v entiers relatifs quelconques,

$$ua + vb =$$
 $=$
 $=$

est un entier. Donc ua + vb est multiple de c avec c non nul, par conséοù quent c divise ua + vb

Exercice 3.3. Déterminer les entiers relatifs n tels que n+2 divise 2n+8.

Division euclidienne TT.

Théorème

Soit a et b deux entiers naturels avec $b \neq 0$.

Il existe un unique couple (q, r) d'entiers naturels tels que :

$$a = bq + r$$
 avec $0 \le r < b$.

On dit que a est le dividende, b le diviseur, q le quotient et r le reste de la division euclidienne de a par b.

Il y a de multiples écritures de a sous la forme bq + r. Prenons par exemple a = 103 et b = 13. On a $103 = 13 \times 7 + 12$ ou $103 = 13 \times 6 + 25$ ou encore $103 = 13 \times 5 + 38$, etc. Mais seule la 1^{re} égalité, où $0 \le r < b$, est la relation de la division euclidienne de a par b.

Propriété.

Dans la division euclidienne de a par b, il y a b restes possibles :

$$0, 1, 2 \dots, b - 1.$$

Propriété.

Soit a un entier naturel et b un entier naturel non nul.

b divise a si et seulement si le reste dans la division euclidienne de a par b est nul.

Propriété.

Soit b un entier naturel supérieur ou égal à 2.

Tout entier relatif s'écrit sous l'une des formes suivantes : bq, bq + 1, bq + 2, \cdots , bq + (b - 1) où q est un entier relatif.

Exemple. Tout entier a pour reste 0, 1, 2 ou 3 dans la division euclidienne par 4, donc s'écrit sous la forme 4k, 4k + 1, 4k + 2 ou 4k + 3 avec k entier.

Exercice 4.3. En utilisant la méthode de disjonction des cas, démontrer que $n^2 + 1$, $n \in \mathbb{Z}$, n'est jamais divisible par 3.

III. Congruences dans \mathbb{Z}

1. Propriété et définition

Propriété.

Soit n un entier naturel non nul.

Deux entiers relatifs a et b ont même reste dans la division euclidienne par n si et seulement si a-b est multiple de n.

Démonstration

On écrit les relations de division euclidienne par n:

$$a = nq + r$$
, $0 \le r < n$ et $b = nq' + r'$, $0 \le r' < n$.

On en déduit que a - b = n(q - q') + r - r' et que -n < r - r' < n.

- Supposons que r = r' alors a b = n(q q') avec q q' entier, donc a b multiple de n.
- Réciproquement, si a-b multiple de n, alors n|a-b et comme n|n(q-q') alors n|a-b-n(q-q') c'est-à-dire n|r-r'. Or -n < r-r' < n, il faut avoir r-r'=0 c'est-à-dire r=r'

Définition.

Soit n un entier naturel non nul.

Si a et b ont $m\hat{e}me$ reste dans la division euclidienne par n, on dit que a et b sont congrus modulo n et on écrit : $a \equiv b \pmod{n}$ ou $a \equiv b \pmod{n}$ ou encore $a \equiv b \pmod{n}$

Exemple. Sur la droite numérique, on a repéré en bleu des multiples de 4 et en rouge des nombres ayant tous pour reste 1 dans la division par 4; ils sont tous congrus entre eux. $5 \equiv 1(4), -7 \equiv 1(4), -3 \equiv 5(4)$:

Remarque : $a \equiv b \ [n] \iff b \equiv a \ [n]$. On dit aussi que a et b sont congrus modulo n.

Propriétés.

Soit a et b deux entiers relatifs et n un entier naturel non nul.

- $a \equiv 0$ [n] si et seulement si a est **divisible** par n.
- $a \equiv a [n]$.
- r est le reste de la division euclidienne de a par n si et seulement si $a \equiv r [n]$ et $0 \le r < n$.

2. Congruence et transitivité

Propriété.

Soit a, b, c des entiers relatifs et n un entier naturel non nul.

Si $a \equiv b$ (n) et $b \equiv c$ (n) alors $a \equiv c$ (n).

Idée de la démonstration

Par hypothèse, il existe k et k' entiers relatifs tels que a=b+kn et b=c+k'n...

3. Compatibilité avec les opérations algébriques

Propriété.

Soit a, b, c et d quatre entiers relatifs et n un entier naturel non nul.

Si $a \equiv b \ [n]$ et $c \equiv d \ [n]$ alors :

- $a + c \equiv b + d [n]$
- $a-c \equiv b-d [n]$
- $ac \equiv bd [n]$
- $a^p \equiv b^p [n]$ pour tout entier naturel p.

En particulier, si $a \equiv b \ [n]$, pour tout entier relatif m, on a : $ma \equiv mb \ [n]$.

La réciproque est fausse! On ne peut pas simplifier une congruence comme une égalité. Par exemple, on a $22 \equiv 18$ (4) mais 11 et 9 ne sont pas congrus modulo 4.

Exercice 5.3.

- **1.** Résoudre dans \mathbb{Z} l'équation $3x \equiv 2$ [5].
- **2.** Montrer que pour tout entier naturel n non nul, $2^{3n} 1$ est multiple de 7.
- 3. Déterminer le reste dans la division euclidienne de 11^{2020} par 3.