Prepare a prediction model for profit of 50_startups data. Do transformations for getting better predictions of profit and make a table containing R^2 value for each prepared model.

R&D Spend -- Research and develop spend in the past few years
Administration -- spend on administration in the past few years
Marketing Spend -- spend on Marketing in the past few years
State -- states from which data is collected
Profit -- profit of each state in the past few years

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import statsmodels.formula.api as smf from statsmodels.graphics.regressionplots import influence_plot import statsmodels.api as sm

------Read the Dataset-----data = pd.read_csv ('Downloads/50_Startups.csv')
data

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03

------Provide information about the dataset-----data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	R&D Spend	50 non-null	float64
1	Administration	50 non-null	float64
2	Marketing Spend	50 non-null	float64
3	State	50 non-null	object
4	Profit	50 non-null	float64
	63 1 / -)	1.1. 1.7.3	

dtypes: float64(4), object(1)

memory usage: 2.1+ KB

------Rename the Column names------

rename = data.rename ({'R&D Spend':'RD','Administration':'Admin','Marketing Spend':'Market','State':'State','Profit':'Profit'},axis=1)
rename

	RD	Admin	Market	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03

------Data Description-----rename.describe()

	RD	Admin	Market	Profit
count	50.000000	50.000000	50.000000	50.000000
mean	73721.615600	121344.639600	211025.097800	112012.639200
std	45902.256482	28017.802755	122290.310726	40306.180338
min	0.000000	51283.140000	0.000000	14681.400000
25%	39936.370000	103730.875000	129300.132500	90138.902500
50%	73051.080000	122699.795000	212716.240000	107978.190000
75%	101602.800000	144842.180000	299469.085000	139765.977500
max	165349.200000	182645.560000	471784.100000	192261.830000

------Correlation Analysis-----rename.corr()

	RD	Admin	Market	Profit
RD	1.000000	0.241955	0.724248	0.972900
Admin	0.241955	1.000000	-0.032154	0.200717
Market	0.724248	-0.032154	1.000000	0.747766
Profit	0.972900	0.200717	0.747766	1.000000


```
------Model Building------
import statsmodels.formula.api as smf
model = smf.ols ('Profit~Admin+Market+State+RD', data = rename).fit()
    ------Calculate parameters------
model.params
Intercept
                        50125.343832
State[T.Florida]
                          198.788793
State[T.New York]
                          -41.887019
Admin
                           -0.027004
Market
                             0.026980
RD
                             0.806023
dtype: float64
print (model.tvalues, '\n', model.pvalues)
Intercept
                   7.280560
State[T.Florida] 0.058970
State[T.New York] -0.012864
Admin
                   -0.517012
Market
                    1.573889
                   17.368580
dtype: float64
 Intercept
                   4.444178e-09
State[T.Florida] 9.532429e-01
State[T.New York] 9.897941e-01
Admin
                   6.077373e-01
Market
                   1.226769e-01
RD
                   2.578772e-21
dtype: float64
  -----Calculate Rcsquared values------
print (model.rsquared, model.rsquared adj)
0.9507524843355148 0.945156175737278
------Calculate T Values and P values for [Profit,Admin]-----
mlv = smf.ols ('Profit~Admin', data = rename).fit()
print (mlv.tvalues, '\n', mlv.pvalues)
Intercept
               3.040044
Admin
               1,419493
dtype: float64
  Intercept
               0.003824
Admin
               0.162217
dtype: float64
```

```
------Calculate T values and P values for [Profit, Market]-----
nlv = smf.ols ('Profit~Market', data = rename).fit()
print (nlv.tvalues, '\n', nlv.pvalues)
 Intercept
                  7.808356
 Market
                  7.802657
 dtype: float64
  Intercept
                   4.294735e-10
 Market
                  4.381073e-10
 dtype: float64
------Calculate T values and P values for [Profit,Admin,Market]------
hlv = smf.ols ('Profit~Admin+Market', data = rename).fit()
print (hlv.tvalues, '\n', hlv.pvalues)
  Intercept
                  1.142741
  Admin
                  2.467779
  Market
                  8.281039
  dtype: float64
   Intercept
                    2.589341e-01
  Admin
                  1.729198e-02
  Market
                  9.727245e-11
  dtype: float64
 ------Calculate R^2 value for [RD,Admin,Market]------
mllv = smf.ols ('RD~Admin+Market', data = rename).fit().rsquared
m = 1/(1-mllv)
m
2.4689030699947017
------Calculate R^2 value for [Admin,RD,Market]------
nllv = smf.ols ('Admin~RD+Market', data = rename).fit().rsquared
n = 1/(1-nllv)
n
1.1750910070550458
—-----Calculate R^2 value for [Market,RD,Admin]-------
hllv = smf.ols ('Market~RD+Admin', data = rename).fit().rsquared
h = 1/(1-hllv)
h
2.3267732905308773
  -----Put the values in DataFrame------
list = {'Variables':['RD','Admin','Market'],'values':[m,n,h]}
simple = pd.DataFrame (list)
simple
```

	Variables	values
0	RD	2.468903
1	Admin	1.175091
2	Market	2.326773

------Plotting QQPLOT-------

import statsmodels.api as sm qqplot = sm.qqplot (model.resid, line = 'q') fig = plt.figure (figsize = (16,8))

def standard_values(vals) : return (vals - vals.mean())/vals.std()
plt.scatter (standard_values(model.fittedvalues), standard_values (model.resid))

plt.title('Residual Plot')

import statsmodels.formula.api as smf import statsmodels.api as sm from statsmodels.graphics.regressionplots import influence_plot sm.graphics.plot_regress_exog(model,'Admin',fig=fig)

------Regression Plots for [Market]-----import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.graphics.regressionplots import influence_plot
sm.graphics.plot_regress_exog(model,'Market',fig=fig)

Y and Fitted vs.) Residuals versus Market 200000 175000 125000 D -10000 100000 75000 -20000 50000 25000 400000 400000 200000 300000 Market CCPR Plot Partial regression plot 20000 10000 10000 -10000 -10000 -20000 -20000 _30000 120000

--Regression Plots for [RD]-----

import statsmodels.api as sm import statsmodels.formula.api as smf from statsmodels.graphics.regressionplots import influence plot sm.graphics.plot_regress_exog(model,'RD',fig=fig)

Implement Cooks Distance-

from statsmodels.graphics.regressionplots import influence_plot model_influence = model.get_influence() (c,_) = model_influence.cooks_distance

```
array([7.67941285e-06, 3.96002384e-03, 2.78948395e-02, 2.35705108e-02,
       1.40231490e-02, 1.17098970e-02, 2.49314176e-03, 4.16542624e-03,
       7.29467176e-05, 6.31415598e-03, 2.21391699e-02, 1.93512168e-02,
       2.13263552e-02, 7.40092001e-03, 7.20165958e-02, 4.34157410e-02,
       1.57591120e-02, 4.33058862e-03, 3.43997076e-03, 3.28909738e-02,
       7.03247647e-04, 1.17002661e-02, 3.52541534e-03, 3.68801928e-04,
       5.07030667e-03, 4.16365620e-03, 5.79414020e-03, 3.25030423e-02,
       1.07438091e-03, 1.14685871e-04, 2.67092819e-05, 4.26003187e-06,
       6.55180125e-04, 2.69550649e-04, 2.09894518e-02, 8.32171521e-03,
       5.92471519e-02, 7.19280439e-05, 5.58017593e-02, 1.60830329e-03,
       2.27122555e-03, 2.19513492e-03, 1.66164967e-04, 2.33988898e-02,
       1.16697070e-04, 9.43947846e-02, 4.23233340e-02, 4.48153392e-03,
       1.56376134e-01, 2.63959436e-01])
```

————Use Stem Plot for Cooks distance Visualization————plt.stem(np.arange(len(data)),np.round(c,5))

<StemContainer object of 3 artists>

------Index and values of Influencer---------

np.argmax(c), np.max(c) (49, 0.2639594358711302)

-----Influence Plot-----

influence_plot(model)

k = data.shape[1]

n = data.shape[0]

leverage = (3*(k+1))/n

leverage

0.36

In []:

In []:

————Look for 49th Row———data[data.index.isin([49])]

	R&D Spe	end Admin	istration	Marketi	ng Spend	State	Profit	
49		0.0	116983.8		45173.06	California	14681.4	
	Drop	49th Row—						
drop drop	drop = data.drop(data.index[[49]],axis=0).reset_index(drop=True)							
26	75328.87	144135.98	134050.07	Florida	105733.54			
27	72107.60	127864.55	353183.81	New York	105008.31			
28	66051.52	182645.56	118148.20	Florida	103282.38			
29	65605.48	153032.06	107138.38	New York	101004.64			
30	61994.48	115641.28	91131.24	Florida	99937.59			
31	61136.38	152701.92	88218.23	New York	97483.56			
32	63408.86	129219.61	46085.25	California	97427.84			
33	55493.95	103057.49	214634.81	Florida	96778.92			
34	46426.07	157693.92	210797.67	California	96712.80			
35	46014.02	85047.44	205517.64	New York	96479.51			
36	28663.76	127056.21	201126.82	Florida	90708.19			
37	44069.95	51283.14	197029.42		89949.14			
38	20229.59	65947.93	185265.10	New York	81229.06			
39	38558.51	82982.09	174999.30	California	81005.76			
40	28754.33	118546.05	172795.67		78239.91			
41	27892.92	84710.77	164470.71	Florida	77798.83			
42	23640.93	96189.63	148001.11	California	71498.49			
44	15505.73 22177.74	127382.30 154806.14	35534.17 28334.72		69758.98 65200.33			
45	1000.23	124153.04		New York	64926.08			
46	1315.46	115816.21	297114.46	Florida	49490.75			
47	0.00	135426.92	0.00	California	42559.73			
48	542.05	51743 15		New York	35673 41			
		Model Detec	tion—					
while	e np.max(c))>0.5:						
	. , ,	ols('Profit~R	D+Admin+N	larket' c	lata=data2`	\ fit()		
		`		-	iala-dalaz,).iit(<i>)</i>		
(C	,_) = mode	l_influence.c	ooks_distan	ice				
С	C							
np.argmax(c),np.max(c) data2=data2.drop(data2.index[[np.agrmax(c)]],axis=0).reset_index(drop=True) data2								
else: final_model=smf.ols("Profit~RD+Admin+Market",data=data2).fit()								
	_	•			et",data=da	ata2).fit()		
fir	nal_model.r	squared , fin	al_model.ai					

Thus model accuracy is improved to 0.9613162435129847

print("Thus model accuracy is improved to",final_model.rsquared)

-----Final Results

list = {'Names':['model','final_model'],'Values':[model.rsquared_adj,final_model.rsquared]} simple=pd.DataFrame(list) simple

	Names	Values
0	model	0.958737
1	final_model	0.961316