CS311: Data Communication

Medium Access Control - I

by

Dr. Manas Khatua

Assistant Professor Dept. of CSE IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Web: http://home.iitj.ac.in/~manaskhatua

http://manaskhatua.github.io/

Outline of the lecture

- > Introduction
- > Broadcast networks
- > Issues in MAC
- ➤ Goals in MAC
- > MAC techniques
- > Random Access MAC techniques
 - ALOHA, Slotted ALOHA, CSMA, CSMA/CD

Introduction to MAC

- Types of network
 - Switched communication networks
 - Users are interconnected by means of transmission lines, multiplexers and switches
 - Broadcast networks
 - A single transmission media is shared by all the users and information is broadcast by an user into the medium
- Two types of network links:
 - point-to-point links
 - protocol => PPP, HDLC
 - broadcast links
 - protocol => multiple access protocols

Issues in MAC

➤ The question is "who goes next?"

➤ The protocols used for this purpose are known as medium access control (MAC) techniques

➤ The key issues involved — where and how the control is exercised

Where?

- Centralized: a designated station has an authority to grant access to the network.
 - Simple logic at each station
 - Greater control to provide features like priority, overrides and guaranteed bandwidth
 - Easy coordination
 - Lower reliability
- Distributed: stations can dynamically determine transmission order.
 - Complex, reliable and scalable

How?

➤ Synchronous: dedicated specific capacity to a connection.

> Asynchronous: allocates capacity dynamically

Goals of MAC

- > Initialization
- > Fairness
- Priority
- > Limitation to one station
- > Receipt
- > Error limitation
- Recovery
- > Re-configurability
- Compatibility
- > Reliability

Multiple Access Protocols

Random Access

- No station is superior to another station
- None is assigned control over another
- No scheduled time for transmission
- Station compete with one another to access the medium

Pure ALOHA

- Developed in early 1970 at University of Hawaii
- Principle:
 - each station sends a frame whenever it has a frame to send
 - relies on acknowledgments from the receiver
 - if time-out occurs, then wait for random backoff time before retransmission
 - after a maximum number of retransmission, a station must give up and try later
 - Time-out := maximum round-trip time
 - Backoff time := random value generated by backoff algorithm (e.g. binary exponential backoff)

Problem in Pure ALOHA

Frame Collision

 vulnerable time: the length of time in which there is a possibility of collision.

Slotted ALOHA

 we divide the time into slots of T_{fr} seconds and force the station to send only at the beginning of the time slot

Vulnerable time= T_{fr}

Performance

Carrier Sense Multiple Access

- Sense the medium before trying to use it
- "sense before transmit" or "listen before talk"

CSMA vulnerable time

- Vulnerable period = t(prop) (one propagation time)
- What should a station do if channel is busy/idle?
 - 1-persistent
 - Non-persistent
 - p-persistent

Persistent Methods

1-persistent

- Continuously sense the channel
- if idle, transmit frame (with probability 1)

Non-persistent

- Sense the channel
- If idle, transmit frame (with probability 1)
- If busy, wait a random amount of time and then sense the channel again

• p-persistent

 Non-persistent, but transmit frame (with probability p)

Cont...

CSMA/CD (Collision Detection)

> CSMA with Collision Detection (CSMA/CD)

> Stations listens to the medium while transmitting; Listen while talking (LWT).

- Three cases:
 - If channel idle:
 - Packet is transmitted if non-persistent or 1-persistent
 - For p-persistent, the packet is sent with probability p or delayed by the end-to-end propagation delay with probability (1-p).

CSMA/CD

- If channel is busy:
 - The packet is backed off and the algorithm is repeated for non-persistent case
 - The station defers transmission until the channel is sensed idle and then immediately transmits in 1-persistent case
 - For p-persistent CSMA/CD the stations defers until the channel is idle, then follow the channel idle procedure.

CSMA/CD

Cont...

Cont...

Points to remember:

- Use of the persistence process
- The station transmits and receives continuously and simultaneously (using two different ports or a bidirectional port)
- We constantly monitor in order to detect one of two conditions: either transmission is finished or a collision is detected
- sending of a short jamming signal to make sure that all other stations become aware of the collision
- Use of random backoff mechanism
- Use of retransmission limit

Jamming Signal in CSMA/CD

- Did a collision occur? If so, go to collision detected procedure.
 - In that procedure, continue transmission (with a jam signal instead of frame header/data/CRC) until minimum packet time is reached to ensure that all receivers detect the collision.
 - The jam signal is a signal that carries a 32-bit binary pattern
 - The maximum jam-time:
 - The maximum allowed diameter of an <u>Ethernet</u> is limited to 232 bits. This makes a round-trip-time of 464 bits. As the <u>slot</u> <u>time</u> in Ethernet is 512 bits, the difference between slot time and round-trip-time is 48 bits (6 bytes), which is the maximum "jam-time".

Thanks!

Figure and slide materials are taken from the following sources:

- 1. W. Stallings, (2010), Data and Computer Communications
- 2. NPTL lecture on Data Communication, by Prof. A. K. Pal, IIT Kharagpur
- 3. B. A. Forouzan, (2013), Data Communication and Networking