

Institut für Stochastik

Prof. Dr. D. Hug · Dr. F. Nestmann

Stochastische Geometrie (SS2019)

Übungsblatt 13

Aufgabe 1 (Voraussetzung (4.2.3))

Es seien $\gamma > 0$, \mathbb{Q} ein Wahrscheinlichkeitsmaß auf \mathcal{C}' mit

$$\int_{\mathcal{C}'} \lambda_d(K+C) \, \mathbb{Q}(\mathrm{d}K) < \infty, \qquad C \in \mathcal{C}^d,$$

und Ψ ein Poisson-Prozess in $\mathbb{R}^d \times \mathcal{C}'$ mit Intensitätsmaß $\gamma \lambda_d \otimes \mathbb{Q}$. Weiter seien $C \in \mathcal{C}'$ und

$$N_C := \int_{\mathbb{R}^d \times \mathcal{C}'} \mathbf{1}\{(K+x) \cap C \neq \emptyset\} \, \Psi(\mathrm{d}(x,K)).$$

Zeigen Sie:

$$\mathbb{E}\left[r^{N_C}\right] < \infty, \qquad r \in \mathbb{R}.$$

 $\bf Aufgabe~2~(Vgl.~Aufgabe~2,~\ddot{U}bungsblatt~11)$

Es seien $M, K, K_0 \in \mathcal{K}'$ mit $K \subset K_0, V_d(K_0) > 0$ und

$$A_{K_0} := \{ g \in G_d : K_0 \cap gM \neq \emptyset \}.$$

Weiter sei α eine G_d -wertige Zufallsvariable mit Verteilung $\frac{\mu(\cdot \cap A_{K_0})}{\mu(A_{K_0})}$.

(a) Die inneren Volumina von M, K und K_0 seien bekannt. Bestimmen Sie damit die Wahrscheinlichkeit

$$\mathbb{P}(\alpha M \cap K \neq \emptyset).$$

(b) Nun sei $d=2, e \in S^1, 0 < r \le 1$ und $K_0=B^2$. Bestimmen Sie die Wahrscheinlichkeit

$$\mathbb{P}(\alpha([0,1]^2) \cap [-re, re] \neq \emptyset).$$

Hinweis: Verwenden Sie die Formel

$$V_i([0,1]^d) = \binom{d}{i}.$$

Aufgabe 3

Es seien $K \in \mathcal{K}^3$ mit $K \subset [0,1]^3$ und X_1 eine zufällige Gerade in $[0,1]^3$, definiert wie in Aufgabe 2 von Übungsblatt 11. Nehmen Sie an, Sie können für Realisierungen $X_1(\omega)$ der zufälligen Gerade feststellen, ob der Schnitt $X_1(\omega) \cap K$ leer ist und außerdem die Länge von $X_1(\omega) \cap K$ bestimmen. Konstruieren Sie nun erwartungstreue Schätzer für die Oberfläche und das Volumen von K.

Aufgabe 4 (Lemma 5.1.3)

Es seien m ein Mosaik und $K \in m$.

(a) Zeigen Sie, dass es endlich viele Zellen $K_1, \ldots, K_k \in m \setminus \{K\}$ gibt mit $K_i \cap K \neq \emptyset$ für $i = 1, \ldots, k$ und dass gilt

$$\operatorname{bd} K = \bigcup_{i=1}^{k} (K_i \cap K).$$

(b) Für jedes $i \in \{1, \dots, k\}$ gibt es wegen int $K \cap \text{int } K_i = \emptyset$ eine Hyperebene H_i , die K und K_i trennt, das heißt sie erfüllt $K \subset H_i^+$ und $K_i \subset H_i^-$, wobei H_i^+ und H_i^- die beiden durch H_i berandeten abgeschlossenen Halbräume sind. Zeigen Sie, dass K ein Polytop ist, das heißt

$$K = \bigcap_{i=1}^{k} H_i^+.$$

Hinweis: Ist $A \subset \mathbb{R}^d$ konvex, $x \in \operatorname{cl} A$ und $y \in \operatorname{relint} A$, so gilt $(x, y] \subset \operatorname{relint} A$.

Aufgabe 5 (Beispiel 5.1.7)

Es sei $\varphi \in N_s(\mathbb{R}^d) \setminus \{0\}$ und für $x \in \varphi$ sei

$$C(\varphi,x):=\{z\in\mathbb{R}^d:\|z-x\|\leq\|z-y\|\;\forall y\in\varphi\}$$

die Voronoi-Zelle von x. Zeigen Sie, dass alle Voronoi-Zellen beschränkt sind, falls $\operatorname{conv}(\varphi) = \mathbb{R}^d$ gilt.