MATH 345 Homework 6

T.J. Liggett

March 2021

1 Problems

- **2.24** Determine δA in each case.
 - (a) A = (0,1] in the lower limit topology on \mathbb{R} . $\delta A = \{0,1\}$.
 - (b) $A = \{a\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}$. $\delta A = \{b, c\}$.
 - (c) $A = \{a, c\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}$. $\delta A = \{b, c\}$.
 - (d) $A = \{b\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}\}$. $\delta A = \{b, c\}$.
 - (e) $A = (-1,1) \cup \{2\}$ in the standard topology on \mathbb{R} . $\delta A = \{-1,1,2\}$.
 - (f) $A = (-1,1) \cup \{2\}$ in the lower limit topology on \mathbb{R} . $\delta A = \{-1,2\}$.
 - (g) $A = \{(x,0) \in \mathbb{R}^2 | x \in \mathbb{R}\}$ in \mathbb{R}^2 with the standard topology. $\delta A = A$
- **2.26** Determine the boundary of each of the following subsets of \mathbb{R}^2 in the standard topology:
 - (a) $A = \{(x, x) \in \mathbb{R}^2 | x \in \mathbb{R} \}. \ \delta A = A.$
- (b) $B = \{(x, y) \in \mathbb{R}^2 | x > 0, y \neq 0\}.$ $\delta B = \{(0, y) | y \in \mathbb{R}\} \cup \{(x, 0) | x \ge 0\}.$
- (c) $C = \{(\frac{1}{n}, 0) \in \mathbb{R}^2 | n \in \mathbb{Z}_+ \}. \ \delta C = C^{\bullet}$
- (d) $D = \{(x, y) \in \mathbb{R}^2 | 0 \le x^2 y^2 < 1\} \ \delta D = \{(x, y) \in \mathbb{R}^2 | x^2 y^2 = 1\}.$
- **2.28** Prove Theorem 2.15: Let A be a subset of a topological space X.
- (a) δA is closed.

Proof. From part b below, we can see that δA is an intersection of closed sets. Since we know that the intersection of closed sets is closed, we know δA is closed.

(b) $\delta A = Cl(A) \cap Cl(X - A)$

Proof. First, let $x \in \delta A$. Then by definition, $x \in Cl(A)$, and $x \notin Int(A)$. So, $x \in X - Int(A)$. By Theorem 2.6, X - Int(A) = Cl(X - A), $x \in Cl(X - A)$. Thus, $x \in Cl(A) \cap Cl(X - A)$, and $\delta A \subset Cl(A) \cap Cl(X - A)$. Next, let $x \in Cl(A) \cap Cl(X - A)$ We know that $x \in Cl(A)$, $x \in Cl(X - A)$. So $x \in X - Int(X)$ by Theorem 2.6, and thus $x \notin Int(A)$, $x \in Cl(A) - Int(A)$. Hence, $Cl(A) \cap Cl(X - A) \subset \delta A$. Therefore, $\delta A = Cl(A) \cap Cl(X - A)$.

(g) $\delta A = \emptyset$ if and only if A is both open and closed.

Proof. (\rightarrow) Let $\delta A = \emptyset$. Since $Cl(A) - Int(A) = \emptyset$, it follows that Cl(A) = Int(A) = A. Since A is equal to both its interior and closure, by Theorem 2.2 A is both open and closed.

(←) Let A be both closed and open. Then by Theorem 2.2, A = Int(A) and A = Cl(A), and hence Cl(A) = Int(A). It follows that $\delta A = Cl(A) - Int(A) = \emptyset$.

Therefore, $\delta A = \emptyset$ if and only if A is both open and closed.

.

3.3 Prove Theorem 3.4: Let X be a topological space, and let $Y \subset X$ have the subspace topology. Then $C \subset Y$ is closed in Y if and only if $C = D \cap Y$ for some closed set D in X.

Proof. (\rightarrow) Let $C \subset Y$ be closed in Y. Then C = Y - V for some open set V in Y, where $V = U \cap Y$ and U is an open set in X. Consider D = X - U, so D is a closed set in X. Then

$$D \cap Y = (X - U) \cap Y = (X \cap Y) - (U \cap Y) = Y - (U \cap Y) = Y - V = C$$

So $C = D \cap Y$. Thus, if $C \subset Y$ is closed in Y, then $C = D \cap Y$ for some closed set D in X.

 (\leftarrow) Let $C=D\cap Y$, where D is closed in X. Consider U=X-D, an open set in X.

$$U \cap Y = (X - D) \cap Y = (X \cap Y) - (D \cap Y) = Y - (D \cap Y) = Y - C.$$

Since $Y - C = U \cap Y$, by the definition of the subspace topology the complement of C is an open set in the subspace topology, and thus C is closed in Y. Hence, if $C = D \cap Y$, then $C \subset Y$ is closed in Y.

Therefore, $C \subset Y$ is closed in Y if and only if $C = D \cap Y$ for some closed set D in X.

.

3.4 Let Y = (0,5] inherit the standard topology:

- (a) (0,1) open
- (b) (0,1] closed
- (c) $\{1\}$ closed
- (d) (0,5] both
- (e) (1,2) open
- (f) [1,2) neither
- (g) (1,2] neither
- (h) [1,2] closed
- (i) (4,5] neither
- (j) [4,5] closed

3.5 Let Y = (0,5] inherit the lower limit topology:

- (a) (0,1) both
- (b) (0,1] neither
- (c) {1} neither
- (d) (0,5] both
- (e) (1,2) closed

- (f) [1,2) both
- (g) (1,2] neither
- (h) [1,2] neither
- (i) (4,5] neither
- (j) [4,5] both

3.7 Let X be a Hausdorff topological space, and Y be a subset of X. Prove that the subspace topology on Y is Hausdorff.

Proof. Let X be a Hausdorff topological space, and Y be a subset of X. Consider $x, y \in X$, where $x, y \in Y$ as well. There exist disjoint neighborhoods U and V for x and y in X because it is Hausdorff. Consider the open sets in the subspace topology on Y, by definition, $U \cap Y$ and $V \cap Y$. Then

$$(U \cap Y) \cap (V \cap Y) = (U \cap V) \cap Y = \emptyset \cap Y = \emptyset$$

So, since U and V are disjoint, $U \cap Y$ and $V \cap Y$ are disjoint as well. Thus, there exist disjoint neighborhoods $x \in U \cap Y$ and $y \in V \cap Y$ in the subspace topology, for arbitrary elements in Y.

Therefore, if X is a Hausdorff topological space, and Y is a subset of X, then the subspace topology on Y is Hausdorff.

.

3.8 (a) Let X be a topological space, and let $Y \subset X$ have the subspace topology. If A is open in Y, and Y is open in X, show that A is open in X.

Proof. Let A be open in the subspace topology Y, and Y be open in X. By definition of the subspace topology, $A = U \cap Y$ for some open set U in X. Since U and Y are both open, A is a finite intersection of open sets in X, and is therefore an open set in X by the definition of a topology.

Therefore, if A is open in Y, and Y is open in X, then A is open in X. \blacksquare

3.9

- (a) Let $K = \{\frac{1}{n} \in \mathbb{R} | n \in \mathbb{Z}_+\}$. Show that the standard topology on K is the discrete topology.
- (b) Let $K^* = K \cup \{0\}$. Show that the standard topology on K^* is not the discrete topology.

 \mathbf{a}

Proof. For any element $k \in K$, $k = \frac{1}{n} | n \in \mathbb{Z}_+$, the open set in the standard topology $(\frac{1}{n+1}, \frac{1}{n+1})$ generates the singleton set $\{k\}$ in the subspace topology for K. Using unions of these open sets, we can generate any subset of K, making the standard topology on K the discrete topology.

b

Proof. BWOC, assume the standard topology on K^* is the discrete topology. Consider the singleton set $\{0\} \in K^*$. Let (a,b) be an open set in the standard topology on \mathbb{R} that contains \mathbb{R} . For any value of b > 0, there exists an element in $k = \frac{1}{n} | n \in \mathbb{Z}_+$ where b < k. Thus, this set will not generate the singleton set in the subspace topology. This is a contraction.

Therefore, the standard topology on K^* is not the discrete topology.

3.16 Pictures! 3.18 Show that if X and Y are Hausdorff spaces, then so is the product space $X \times Y$.

Proof. Let X and Y be Hausdorff spaces, consider the disjoint open sets $u_x \in U_x$ and $v_x \in V_x$ in X and $u_y \in U_y$ and $v_y \in V_y$ in Y. Consider $(u_x, u_y) \in U_x \times U_y$ and $(v_x, v_y) \in V_x \times V_y$. By definition of the product topology, $(U_x \times U_y)$ and $(V_x \times V_y)$ are open sets in $X \times Y$, and

$$(U_x \times U_y) \cap (V_x \times V_y) = (U_x \cap V_x) \times (U_y \cap V_y) = \emptyset \times \emptyset = \emptyset.$$

.

3.21 Determine whether or not the sets in Figure 3.13 are open, closed, both, or neither in the product topologies on the plane given by $\mathbb{R} \times \mathbb{R}$, $\mathbb{R}_l \times \mathbb{R}$, and $\mathbb{R}_l \times \mathbb{R}_l$, where \mathbb{R}_l is the real line in the lower limit topology. 1 $\mathbb{R} \times \mathbb{R}$, 2 $\mathbb{R}_l \times \mathbb{R}$, and 3 $\mathbb{R}_l \times \mathbb{R}_l$ (a) Closed, Closed, Closed (b) Neither, Both, Closed (c) Neither, Neither, Both

Therefore, if A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$.