

Chapter 06

조도센서 사용해보기

Step 1. 조도센서 값 읽어보기

Step 2. 조도의 밝기에 따라 LED가 제어되는 회로와 프로그램 만들기

조도센서 사용해보기

조도센서 값 읽어보기

조도센서

- 조도의 밝기를 측정할 수 있는 전자 소자
- 포토 셀, 포토 레지스터, CDS등으로 불린다.
- 핀 극성 없음
- 정격
 - 정격 전압: 4 ~ 6V
 - 정격 전류: 상관없음

조도센서의 원리

• 조도의 밝기에 따라 저항 값이 바뀐다.

밝기(Lux)	저항(Ω)
10,000	100
1,000	300
100	1,500
10	10,000
1	70,000
0.1	600,000

조도센서(Cds) 구조도

아두이노 ADC 핀

- A표시 핀
 - Uno보드의 경우 6개 (A0 ~ A5 핀)

조도센서 회로 구현

Chapter 06

조도센서 사용해보기

조도센서 값 읽어보기

analog Read

- 아두이노 ADC 핀의 결과 확인
- C언어 문법
 - int analogRead(int pin);
 - 반환값 있음, 인자 1개
- 사용방법
 - pin: 아두이노 ADC 핀 번호
 - 반환값: 해당 핀의 ADC결과
 - 해상도 1024 (0 ~ 1023 범위)
 - 예) int state = analogRead(A0); // A0 핀의 ADC 결과를 state 변수에 저장

Chapter 06 조도센서

조도센서 사용해보기

조도센서 값 읽어보기

조도센서 소스코딩

```
#define CDS_PIN A0

void setup() {
    Serial.begin(9600);
    pinMode(CDS_PIN, INPUT);
}

void loop() {
    int value = analogRead(CDS_PIN);
    Serial.println(value);
    delay(100);
}
```


조도센서 값 확인해보기

우측 상단의 돋보기 모양을 클릭

그림과 같이 설정해주세요.

조도의 밝기에 따라 LED가 제어되는 회로와 프로그램 만들기

map

- 서로 다른 범위 체계 값을 손쉽게 변환
- C언어 문법
 - int map(int value, int fromLow, int fromHigh, int toLow, int toHigh);
 - 반환값 있음, 인자 1개
- 사용방법
 - value: 변환할 값
 - fromLow, fromHigh: 입력된 값의 범위
 - toLow, toHigh: 출력될 값의 범위
 - 반화값: 변화된 값
 - 예) int result = map(a, 0, 1023, 0, 255);

// a변수의 값을 0~1023범위 체계에서 0~255범위 체계로 바꾼다.

조도의 밝기에 따라 LED가 제어되는 회로와 프로그램 만들기

조도센서 회로구현

Chapter 06 조도센서 사용해보기

조도의 밝기에 따라 LED가 제어되는 회로와 프로그램 만들기

조도센서 소스코딩

```
#define LED_PIN 11
#define CDS_PIN A0

void setup()
{
   pinMode(LED_PIN, OUTPUT);
   pinMode(CDS_PIN, INPUT);
}

void loop()
{
   int value = analogRead(CDS_PIN);
   int output = map(value, 0, 1023, 0, 255);
   analogWrite(LED_PIN, output);
}
```


Chapter 07

적외선센서 사용해보기

Step 1. 적외선 값 읽어보기 - digital

Step 2. 적외선 값 읽어보기 - analog

적외선센서 사용해보기

적외선 값 읽어보기 - digital

적외선 알아보기

- 빛의 스펙트럼에서 가시광선의 적색부 바깥쪽을 나타내는 광선
- 리모콘, 라인트레이서, 물체 감지 등에 사용되는 적외선은 근적외선을 사용 함
- 장점
 - 빛을 매체로 사용하기 때문에 전파규제가 없다
 - 전파에 비해 넓은 대역폭을 획득할 수 있다
- 단점
 - 통신거리가 짧고 양쪽 송.수신기가 마주보고 있어야함
 - 자연광. 인공광의 영향을 받음

적외선 값 읽어보기 - digital

적외선센서 알아보기(TCRT5000)

- 발광부에서 나온 적외선이 물체에 반사되어 수광부에 들어오는 양에 따라서 전압이 변함.
- TCRT5000 적외선 센서는 아날로그와 디지털 값 확인 할 수 있음.
 - 디지털 기준 전압 보다 높을경우 HIGH, 낮을경우 LOW가 출력되며, 기준 전압은 센서의 가변저항을 통해 바꿀수 있음
 - 아날로그 전압의 값을 아날로그 값으로 확인할수 있음
 - 적외선은 검정색에서 흡수가 잘되고, 흰색에서 반사가 잘되기 때문에 밝을수록 HIGH에 가까운 값이 출력됨

적외선 값 읽어보기 - digital

적외선 회로구현

Chapter 07

적외선센서 사용해보기

적외선 값 읽어보기 - digital

적외선 소스코딩

```
#define IR_PIN 8

void setup() {
    Serial.begin(9600);
    pinMode(IR_PIN, INPUT);
}

void loop() {
    int value = digitalRead(IR_PIN);
    Serial.println(value);
    delay(100);
}
```

Chapter 07 적외선센서 사용해보기

적외선 값 읽어보기 - analog

적외선 회로구현

Chapter 07

적외선센서 사용해보기

적외선 값 읽어보기 - analog

적외선 소스코딩

```
#define IR_PIN A0

void setup() {
    Serial.begin(9600);
    pinMode(IR_PIN, INPUT);
}

void loop() {
    int value = analogRead(IR_PIN);
    Serial.println(value);
    delay(100);
}
```

Chapter 07

적외선센서 사용해보기

적외선 값 읽어보기

실습 - 1 디지털 값을 활용하여 LED on/off 제어하기

실습 - 2 아날로그 값을 활용하여 LED 밝기 제어하기

Chapter 08 LCD디스플레이 사용해보기

Step 1. LCD디스플레이에 글자 출력하기

LCD 디스플레이사용해보기

LCD디스플레이에 글자 출력하기

LCD 디스플레이

- 글자나 숫자를 표현 할수 있는 표시 장치
- 저전압, 저전력으로 작동하지만 시야각이 제한점이고 선명함이 떨어짐.
- 손목시계, TV 등 다양하게 사용됨

LCD디스플레이에 글자 출력하기

라이브러리 설치하기

스케치 - 라이브러리 포함하기 라이브러리 설치

LiquidCrystal I2C 를 검색하여 라이브러리를 설치해줍니다.

LCD디스플레이에 글자 출력하기

I2C LCD 디스플레이 회로구현

Chapter 08 LCD 디스플레이사용해보기

LCD디스플레이에 글자 출력하기

I2C LCD 디스플레이 소스코딩

25

Chapter 08 LCD 디스플레이사용해보기

LCD디스플레이에 글자 출력하기

I2C LCD 디스플레이 소스코딩

Chapter 08 LCD 디스플레이사용해보기

LCD디스플레이에 글자 출력하기

I2C LCD 디스플레이 소스코딩

Chapter 09

온습도센서 사용해보기

Step 1. 온도 습도 값 읽어오기

Step 2. LCD디스플레이에 온도 습도 출력하기

온습도센서 사용해보기

온도 습도 값 읽어보기

온습도센서 알아보기

- 정전식 습도센서와 써미스터를 내장되어 온도와 습도를 측정하는 센서
 - 써미스터 온도에 따라 저항값이 변하는 소자
 - 정전식 습도센서 습도에 따라 저항값이 변하는 소자
- 온도: 0 ~ 50℃ 습도: 20~90%(상대습도)의 측정범위를 가짐.

온도 습도 값 읽어보기

라이브러리 설치하기

스케치 - 라이브러리 포함하기 라이브러리 설치

dht11 를 검색하여 라이브러리를 설치해줍니다.

온도 습도 값 읽어보기

온습도센서 회로도 연결

Chapter 09 온습도센서 사용해보기

온도 습도 값 읽어보기

온습도센서 소스코딩

```
#include <DHT.h>

#define DHTPIN 4
#define DHTTYPE DHT11 // DHT 11

DHT dht(DHTPIN, DHTTYPE);

void setup() {
    Serial.begin(9600);
    dht.begin();
}

void loop() {
    float h = dht.readHumidity();
    float t = dht.readTemperature();
```

```
Serial.print("Humidity: ");
Serial.print(h);
Serial.print("% ");
Serial.print("Temperature:");
Serial.print(t);
Serial.println("°C ");
delay(1000);
}
```


LCD디스플레이에 온도 습도 출력하기

회로도 연결

LCD디스플레이에 온도 습도 출력하기

온습도센서 소스코딩

```
#include <DHT.h>
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 16, 2);
#define DHTPIN 4
#define DHTTYPE DHT11 // DHT 11
DHT dht(DHTPIN, DHTTYPE);
void setup() {
  Serial.begin(9600);
  dht.begin();
  lcd.init();
  lcd.backlight();
void loop() {
 float h = dht.readHumidity();
 float t = dht.readTemperature();
```

```
lcd.setCursor(0, 0);
lcd.print("Humidity: ");
lcd.print(h);
lcd.print("%");
lcd.setCursor(0, 1);

lcd.print("Temperature:");
lcd.print(t);
lcd.println("°C ");
delay(1000);
```


Step 1. 시리얼통신

Step 2. 시리얼통신으로 조도센서 값 읽어보기

시리얼통신

시리얼 통신

- 선 하나로 데이터를 보내는 방식
 - 병렬(Parallel) 통신: bit당 한 선으로 데이터를 보내는 방식
- 전송(Tx)과 수신(Rx)
 - Full Duplex 방식: 전송선과 수신선이 따로 존재
 - Half Duplex 방식: 전송선과 수신선을 공유
 - 전송과 수신은 서로 꼬인 상태로 연결되어야 한다.
- 보레이트(Baudrate)
 - Bit 정보를 추출하기 위한 약속된 타이밍

시리얼통신

아두이노 시리얼 통신

- 하드웨어 시리얼
 - UART라 부르는 시리얼 통신 전용 장치를 사용
 - 우노 보드의 경우 1개 존재
- 소프트웨어 시리얼
 - 아두이노 라이브러리를 이용해서 디지털 핀을 사용
 - TX, RX선을 지정하여 사용 가능
 - 여러 선을 연결해도 동시에 통신하지 못함

시리얼통신

아두이노 시리얼 모니터

- PC에서 손쉽게 아두이노 보드를 제어할 수 있도록 만든 프로그램
- 예전의 DOS환경처럼 아두이노 보드를 PC에서 다룰 수 있다.

시리얼통신

Serial Class

- 아두이노에서 시리얼 통신을 위해 사용되는 Class
- 선언없이 바로 사용
- 함수
 - begin
 - print
 - println
 - available
 - read
 - write
 - readString

시리얼통신

Serial.begin()

- 시리얼 통신을 위해 보레이트 설정
- C언어 문법
 - void begin(int speed);
 - 반환값 없음, 인자 1개
- 사용방법
 - speed: 보레이트 값
 - 예) Serial.begin(9600); // 9600bps로 보레이트 설정

시리얼통신

보레이트(Baudrate)

- 시리얼 통신에서 사용하는 통신 속도 (단위: bps)
- 양쪽이 동일한 보레이트를 사용해야 한다.
- 자주 사용되는 표준 보레이트
 - 9600 bps
 - 14400 bps
 - 38400 bps
 - 57600 bps

시리얼통신

Serial.print / println

- 아두이노 보드에서 시리얼 모니터에 출력 (print와 println은 용법은 같지만 println의 경우 데이터 끝에 줄바꿈 문자(/n)를 추가하여 보낸다.)
- C언어 문법
 - void print(value);
 - 반환값 없음, 인자 1개
- 사용방법
 - value: 시리얼 모니터에 출력할 값 (정수, 소수, 문자열 가능)
 - 예)

Serial.print(a); // a변수의 값을 출력

Serial.print(30); // 30이라는 숫자 출력

Serial.print("Hello Arduino"); // Hello Arduino 문자열 출력

시리얼통신

Serial.available()

- 시리얼 통신으로 받은 데이터 크기를 확인한다.
- C언어 문법
 - int available();
 - 반환값 있음, 인자 없음
- 사용방법
 - 반환: 받은 데이터 크기를 바이트 단위로 알려줌
 - 예) int num = Serial.avilable(); // num변수에 받은 데이터 크기를 저장

시리얼통신

Serial.read()

- 시리얼 통신으로 데이터 1 byte를 받는다.
- C언어 문법
 - int read();
 - 반환값 있음, 인자 없음
- 사용방법
 - 반환값: 받은 1byte 데이터
 - 예) int data = Serial.read(); // 시리얼 통신으로 받은 1 byte 데이터를 data변수에 저장한다.

시리얼 통신으로 조도센서 값 읽어보기

조도센서 회로 구현

시리얼 통신으로 조도센서 값 읽어보기

조도센서 소스코딩

```
#define CDS_PIN A0

void setup() {
    Serial.begin(9600);
    pinMode(CDS_PIN, INPUT);
}

void loop() {
    int value = analogRead(CDS_PIN);
    Serial.println(value);
    delay(100);
}
```


시리얼 통신으로 조도센서 값 읽어보기

조도센서 값 확인해보기

우측 상단의 돋보기 모양을 클릭