Task 2 — BJT Overvoltage Protection

1 Circuit Overview

Two LTspice protectors with distinct behaviors:

- NPN series pass (emitter follower): sharp clamp near 11.3 V using a 12 V zener reference.
- PNP shunt clamp (with input series resistor $R_{SER} = 100 \,\Omega$): gradual limitation near 12.7 V by sinking excess current.

2 Components

- 2N2222 / 2N2907 transistor models ($\beta_F \approx 100$).
- 12 V zener diode (breakdown voltage $BV \approx 12 \text{ V}, R_S \approx 10 \Omega$).
- Load resistor $R_{\text{LOAD}} = 1 \,\text{k}\Omega$.
- Bias resistor $\approx 10 \,\mathrm{k}\Omega$.
- For PNP shunt: input series resistor $R_{\rm SER} = 100 \,\Omega$.

3 Operation & Expected Results

3.1 NPN Series Pass

• For $V_{IN} < 12 \,\mathrm{V}$:

$$V_{OUT} \approx V_{IN} - V_{CE(sat)}$$

• For $V_{IN} \gtrsim 12 \,\mathrm{V}$: zener conducts, fixing base \Rightarrow

$$V_{OUT} \approx V_Z - V_{BE} \approx 11.2 \text{--} 11.4 \text{ V}$$

• Load current:

$$I_{LOAD} \approx \frac{V_{OUT}}{R_{LOAD}} \approx 11\text{--}11.4~\text{mA}$$

• Pass BJT dissipation:

$$P \approx (V_{IN} - V_{OUT}) \cdot I_{LOAD}$$

3.2 PNP Shunt Clamp (with R_{SER})

- For V_{IN} below knee: $V_{OUT} \approx V_{IN}$ (little shunt action).
- For V_{IN} above knee:

$$V_{OUT} \approx 12.6-13.0 \text{ V}$$

• Excess current diverted by Q_{SHUNT}:

$$I_{SHUNT} \approx \frac{V_{IN} - V_{OUT}}{R_{SER}} - \frac{V_{OUT}}{R_{LOAD}}$$

4 Key Figures to Plot

4.1 NPN File

- V(VIN), $V(VOUT_M)$ (output).
- V(N1) (zener/base node).
- $I(VIM_OUT)$ (load current).
- Optional: $V(VIN, VOUT_M)$ (voltage drop across pass BJT).

4.2 PNP File

- V(VIN), V(VOUT).
- V(NB) (zener/base node).
- I(VPROBE) (load current).
- I(QSHUNT) (or Ic(QSHUNT)).
- V(VPRE) (pre- R_{SER} node).

5 Comparison

Aspect	NPN Series Pass	PNP Shunt Clamp
Behavior	Sharp clamp	Gradual clamp
Setpoint	$11.3 \mathrm{V} (\approx V_Z - V_{BE})$	$12.6 - 13.0 \mathrm{V} \ (\approx V_Z + V_{EB})$
Heat location	Pass BJT	Shunt BJT + R_{SER}
Best use	Precise protection	Soft limiting / current sharing