天岸大学

数据结构实验报告

实验名称: 线性表实验

学院名称				
专	业	计算机科学与技术		
学生姓名		何天阳		
学	号	30220001441		
年	级	2022		
班	级	智能2班		
时	间	2024年10月11日		

1 实验内容

test

2 程序实现

test

3 实验结果

tttes

4 实验总结

4.1 实验心得

这是一个中文句子,包含中文标点符号。比如逗号、句号、括号(这样排版更美观),以 及其他符号。

4.2 其他总结

5 真的只是一个测试

中文学位论文测试[?]。

5.1 参考文献标引

一只敏捷的棕色狐狸跳过那只懒惰的狗[?]。

6 行内公式与行间公式

考虑整个供应链的利润函数 β_{SC} 。因为 $\frac{\partial \beta_{SC}}{\partial p_1}=q-\int_0^q F(x)\mathrm{d}x>0$,所以 β_{SC} 对 p_1 单调递增,所以:

$$\beta_{SC}(q_s, p_{1s}, p_{2s}) < \beta_{SC}(q_s, p_{1n}, p_{2n})$$
 (1)

因为对于 $\forall q \in [q_s, q_n)$, 有:

$$\frac{\partial \beta_{SC}}{\partial q}\Big|_{(q,p_{1n},p_{2n})} = p_{1n} - c + c_L + (p_{2n} - p_{1n} - c_L)F(q)$$

销售商决策如式(2)所示:

$$\begin{cases} p_{1s} = v_h - (v_h - p_2)\mathbb{E}(\varphi) \\ p_{2s} = v_l \\ q_s \in \underset{q \ge 0}{\operatorname{argmax}} \beta_R(q, p_1, p_2) \end{cases}$$
 (2)

7 插图

当 q = 5190 时, $p_{1s} = 5.78, p_{2s} = 2.95$,图像如图 1 所示。

图 1: 最优 p_1, p_2 仿真结果

8 代码环境

很多和计算机专业背景相关的同学都会使用到代码环境,使用\verb指令或者是 verbatim环境固然是一种选择,但是比不上专门的 lstlisting 环境这么专业。

```
int main(int argc, char ** argv) {
    printf("Hello world!\n");
    return 0;
}
```

9 普通表格的绘制方法

表格应具有三线表格式,其标准格式如表 1 所示。 得出结论,楼主傻逼。

表 1: 符合本科生毕业论文绘图规范的表格

D(in)	$P_u(lbs)$	$u_u(in)$	β	$G_f(\mathrm{psi.in})$
5	269.8	0.000674	1.79	0.04089
10	421.0	0.001035	3.59	0.04089
20	640.2	0.001565	7.18	0.04089
5	269.8	0.000674	1.79	0.04089
10	421.0	0.001035	3.59	0.04089
20	640.2	0.001565	7.18	0.04089
5	269.8	0.000674	1.79	0.04089
10	421.0	0.001035	3.59	0.04089
20	640.2	0.001565	7.18	0.04089
5	269.8	0.000674	1.79	0.04089
10	421.0	0.001035	3.59	0.04089
20	640.2	0.001565	7.18	0.04089