Herd immunity in a network

Jens Kinch, Nikolai Plambech Nielsen & Mads Ehrhorn 28th of July 2017

Niels Bohr Institute University of Copenhagen

Herd immunity

Figure 1: By Tkarcher - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=56760604

Let's frontload some variables!

- R₀: 'basic reproduction number'
 - · Avg. no. of people infected pr. person
- HIT = $1 1/R_0$
- N: no. of people initially
- $n_{\rm sick}$: no. of sick people
- n_{immune} : no. of immune people
- n_{dead} : no. of dead people
- n_{healthy} : no. of healthy people (not immune)
- $R_e = R_0 \cdot n_{\text{healthy}} / (N n_{\text{dead}})$

Diseases

	R ₀	Mortality rate	HIT
Ebola	1.5-2.5	0.25-0.90	0.33-0.60
Measles	12-18	0.15	0.92-0.94
Polio	5-7	0.15-0.30	0.80-0.86

Table 1: Data from https://en.wikipedia.org/wiki/Herd_immunity

Code

Networks

- · Small world
- · Scale free
- · Random
- Custom network (two cities with commuters. Random networks for each city)

Custom network

Custom network, simulating two cities with commuters

Movie time: two cities, death

Movie time: two cities, death

Movie time: two cities, immunity

Movie time: two cities, immunity

Success criteria

- · Real world
 - · Disease no longer endemic
- · Our model
 - · Discussion of alternate criteria
 - Percolation
 - Effective reproductive number $R_e = \text{fraction of susceptible individuals} \cdot R_0 \le 1$
 - $n_{\rm sick} = 0$ and $n_{\rm healthy} \neq 0$
 - $n_{\text{healthy}} = 0$
 - Total sick < arbitrary threshold

The simulations

• Test 20 values of p_I (0 to 0.95, in steps of 0.05)

The simulations

- Test 20 values of p₁ (0 to 0.95, in steps of 0.05)
- For each p₁ test 50 different networks, and test each network 50 times (random distribution of patient zero and immune nodes)

The simulations

- Test 20 values of p_1 (0 to 0.95, in steps of 0.05)
- For each p₁ test 50 different networks, and test each network 50 times (random distribution of patient zero and immune nodes)
- · Save relevant output

Conclusion

Simulating the spread of disease is easy. Defining herd immunity is hard.