# Research and Development Technical Report

ECOM 66-G22-F

# ANEMOCLINOMETER MEASUREMENTS OF REYNOLDS STRESS AND HEAT TRANSPORT IN THE ATMOSPHERIC SURFACE LAYER

Ву

C. B. Tanner

and

G. W. Thurtell

April 1969

# Distribution Statement

DECARAGED LED

This document has been approved for public release and sale; its distribution is unlimited.

# ECOM

UNITED STATES ARMY ELECTRONICS COMMAND ATMOSPHERIC SCIENCES LABORATORY FORT HUACHUCA, ARIZONA

Grant DA-AMC-28-043-66-022

University of Markey Orin

University of Wisconsin
Medison, Wisconsin

| HOELS HE |       |            |             |
|----------|-------|------------|-------------|
|          |       |            |             |
|          |       |            |             |
| 编研算      |       | 17         |             |
|          | 100   |            | eum pyrt    |
| DISTANT  |       | UNIUT<br>T | tarita<br>T |
| dist.    | RATE. | wil/#      |             |
|          |       |            |             |

# NOTICES

Citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced.

The findings in this report are not to be construct as an official Department of Army position unless so designated by other authorized rocuments.

Destroy this report when it is no longer needed. Do not return it to insoriginator.

# ANEMOCLINOMETER MEASUREMENTS OF REYNOLDS STRESS AND HEAT TRANSPORT IN THE ATMOSPHERIC SURFACE LAYER

# FINAL REPORT

Under Grant Number DA-AMC-28-043-66-G22
DA Task No. 1T061102B53A-17

# Prepared by:

C. B. Tanner, Principal Investigator
G. W. Thurtell, Co-investigator

Department of Soil Science University of Wisconsin, Madison, Wisconsin

For

United States Army Electronics Command Atmospheric Sciences Laboratory Fort Huachuca, Arizona

Distribution Statement
This document has been approved for public release and sale; its distribution is unlimited.

# TABLE OF CONTENTS

|                                              | Page             |
|----------------------------------------------|------------------|
| Preface                                      | <b>v</b>         |
| Three-dimensional pressure-sphere anemometer |                  |
| system G. W. Thurtell, C. B. Tanner,         |                  |
| and M. L. Wesely.                            | 1                |
| Eddy correlation measurements of sensible    |                  |
| heat flux near the earth's surface           |                  |
| M. W. Wesely, G. W. Thurtell, and            |                  |
| C. B. Tanner.                                | 25               |
| Evaporation measurements by an eddy corre-   |                  |
| lation method S. M. Goltz, C. B. Tanner,     |                  |
| G. W. Thurtell, and F. E. Jones              | 45               |
| A fast response thermometer for eddy corre-  |                  |
| lation measurements M. L. Wesely,            |                  |
| G. W. Thurtell and C. B. Tanner.             | 61               |
| Sensible heat flux measurements with a yaw   |                  |
| sphere and thermometer C. B. Tanner and      |                  |
| G. W. Thurtell                               | 73               |
| Appendices                                   |                  |
|                                              |                  |
| Anemoclinometer equations and computer       | m1 m10           |
| program                                      | P1-P19<br>R1-R10 |
| Coordinate systems and rotations             |                  |
| Data listing                                 | D1-D78           |
| Distribution list                            | L1-L10           |

#### **PREFACE**

We became interested in the anemoclinometer as a possible three-dimensional pressure-sphere anemometer in 1961 when Professor H. Lettau called it to our attention. Several features were of interest; the small size which would enable measurements near the ground, the internal angular precision of construction, and the stability and ruggedness of the probe were all valuable attributes. Most importantly, however, the vertical velocity, which is the most critical measurement, is obtained from a pressure proportional to the product of the vertical and horizontal winds. Consequently, the vertical wind is contained in a term of large magnitude, which can be measured with precision, and is then obtained by division rather than by differencing, which also lends precision to the measurement.

The early work, which validated the potential of the anemoclinometer as a three-dimensional anemometer, was supported under grant DA-SIG-36-039-62-G25 by the Atmospheric Sciences Laboratory, U. S. Army Electronics Command, Fort Huachuca, Arizona (formerly the Department of Meteorology, U. S. Army Electronics Research and Pevelopment Activity, Fort Huachuca, Arizona). This work, which included tests on frequency response, sensitivity of the anemometer to angular rotation, and a limited comparison to wind profile measurements of shear stress, was reported 1/ for the above

Thurtell, G. W. and C. B. Tanner. 1965. Momentum Transport Measurement in the Atmospheric Surface Layer with the Anemoclinometer. University of Wisconsin, Department of Soil Science, Madison, Wisconsin, Final Report 1962-1965.

grant. The results also are presented by Thurtell  $\frac{2}{}$ .

The use of the pressure probe hinged upon a pressure measurement with severe requirements of sensitivity, zero stability, sensitivity stability and frequency response. The only pressure transducer available at that time which appeared to meet our requirements was one made by Datametrics, Inc., as described in this report and the earlier one. Datametrics was most helpful in modifying the sensor and the electronics to meet our requirements, including smaller transducer volume, distant separation of the transducer from the electronics, and read out of electrical zero and full scale.

Earlier experience with data-logging via a magnetic tape system  $\frac{1.2}{}$  convinced us that the only feasible route was on-line computation. This was done in the experiments discussed in this report, and proved to be as valuable as we anticipated.

Most of the results in this report were obtained as part of the 1967 Cooperative Field Experiment conducted at the University of California at Davis and sponsored by the Atmospheric Sciences Laboratory, U. S. Army Electronics Command, Fort Huachuca, Arizona. The remaining data were gathered at the University of Wisconsin Hancock Experiment Farm.

We wish to express our appreciation to Mr. T. A. Black, graduate student who worked with us on the Davis California experiment and helped also at Hancock in providing all of

Thurtell, G. W. 1965. Momentum transport measurements in the atmospheric surface layer with the anemoclinometer. Ph.D. Thesis, Univ. Wis. (Pub. No. 65-11,179). 47 p. Univ. Microfilms, Ann Arbor, Mich. (Diss. Abstr. 1: 4017.).

the energy balance data. We owe thanks also to Dr. C. R. Stearns (Department of Meteorology, University of Wisconsin), Dr. W. O. Pruitt (Department of Water Science and Engineering, University of California-Davis), and Dr. J. A. Businger (Department of Atmospheric Sciences, University of Washington), who participated in the 1967 Cooperative Field Experiment and provided data used for independent comparisons of shear stress and sensible heat flux density.

G. W. Thurtell

C. B. Tanner

# THREE-DIMENSIONAL PRESSURE-SPHERE ANEMOMETER SYSTEM

G. W. Thurtell, C. B. Tanner, and M. L. Wesely

The state of the s

### ABSTRACT

A rugged and stable pressure-sphere anemometer system is described which provides an accurate measurement of wind velocity and direction within a meter of the ground. The horizontal wind velocity,  $(u^2 + v^2)^{\frac{1}{2}}$ , agreed very closely with cup anemometer measurements, indicating good accuracy in the measurement of the dominant term, u. Eddy correlation measurements of shear stress with the pressure-sphere agreed very well with Davis shear-stress meter measurements and satisfactory agreement was found with data obtained from wind velocity profiles and from wind measurements using a drag coefficient. Ratios of gw/u, during neutral periods were found to be in excellent agreement with values derived by Panofsky and Lettau, providing further indication of the accuracy obtainable with the pressure sphere system.

### 1. Introduction

The basic mechanisms of turbulent transport in the layers of air within a few meters of the earth's surface are receiving increasing attention from researchers from many disciplines. Inadequate diffusion models are limiting research progress in meteorology, ecology, agriculture, water resources and air pollution since many of the critical problems in these fields are associated with the exchange of energy, gases and aerosols between the earth and its atmosphere. The testing and development of improved transport models requires accurate experimental data which is at present insufficient.

Field measurements of turbulent mixing processes have been few and generally inadequate because of the stringent requirements for the instrumentation. wind velocity sensors must be accurate, stable under field conditions, fast responding, small for measurements near the ground, rugged, and must measure both the flow direction and velocity without seriously disturbing the flow. Sonic anemometers (Kaimal, et al., 1964; Kaimal, et al., 1968), bivanes (Gill, 1963; McCready and Jex, 1964; Cramer, et al., 1961), two types of heattransfer anemometers; (Miyake and Badgley, 1967; Dyer, 1960), fast-response cup anemometers (Frenzen, 1965) and vertical, propeller-type anemometers (Thornthwaite, et al., 1961 and Holmes, et al., 1964) have all been used in the atmospheric surface layer but each fails to meet one or more of the essential criteria mentioned above for measurements near the ground. The pressure sphere is well-suited to measuring the lateral and vertical wind components because they appear as products with the

large longitudinal velocity in the basic pressure measurement. It is felt that the anemometer system to be described does meet these requirements to greater degree than do other available instruments and will thus aid research on turbulent diffusion processes.

The basic sensor of our system is the anemoclinometer described by Martinot-Lagarde, et al., (1952) and made by the Institut de Mecanique des Fluides. The tests to be described were conducted at the University of California at Davis as part of the 1967 Cooperative Field Experiment sponsored by the Atmospheric Sciences Laboratory, U. S. Army Electronics Command, Ft. Huachuca, Arizona. Wind velocity measurements made with our anemometer system were compared with cup anemometers. Eddy correlation shear stress measurements were compared both with wind profile data and with data from the large Davis shear-stress meter (Brooks and Pruitt, 1966). In addition measurements of the standard deviation of the vertical component of wind velocity are presented for Davis and also some from Hancock, Wisconsin.

# 2. Anemometer system

The anemometer system consists of a spherical probe with pressure ports drilled into its surface. This particular design of sphere, called Philip I, can be replaced satisfactorily by other styles. The pressures developed at these ports are transmitted through small tubes and measured by pressure transducers. The

<sup>1/</sup> Institut de Mecanique des Fluides de Lille, 5, Boulevard Painleve, Lille (Nord), France.

electrical outputs of the pressure transducers can be analyzed to give the orthogonal components of the wind vector.

# a. Spherical pressure probe

We used both 3-cm and 8-cm pressure probes as described by Martinot-Lagarde, et al., (1952). The 3-cm probe, shown in Fig. 1, consists of a spherical head mounted on a supporting shaft. A drawing of the head, showing some of the ports, is given in Fig. 2. When in use, the probe is fixed with the sphere on the upstream end of the shaft. Twelve small ports are drilled into the spherical surface and a pitot tube is centered in a Venturi which is bored in the sphere on the axis of the shaft. Eight of the twelve ports on the surface of the sphere are located on a circle at an angle of 47.5° to the shaft axis and serve as reference ports for the pitot tube in the Venturi; these eight holes are connected to a common pressure-averaging cavity in the shaft. The other four holes lie at right angles in the x,z and x,y planes, and each hole is at  $45^{\circ}$  from the shaft axis. The x-coordinate is taken parallel and the y- and z-coordinates perpendicular to the probe shaft, with z in the vertical plane. The open end of the pitot tube in the Venturi is in the upstream direction. The pressure difference

$$P_1 = P_t - P_m \tag{1}$$

between the pitot tube and the cavity common to the eight reference ports, is proportional to the dynamic pressure,



Fig. 1. Spherical sensing head of anemoclinometer showing pressure ports.



Fig. 2. Front and cross-section views of anemoclinometer head, with y- and z-coordinates shown on front view.

$$P_1 = \frac{1}{2}a_\rho V^2 \tag{2}$$

where

$$v^2 = (u^2 + v^2 + w^2) \tag{3}$$

where u, v, and w are the axial, cross-horizontal, and vertical wind components, o is the fluid density, and "a" is a constant of the probe equal to 1.015 according to data supplied by the manufacturer. The pressure difference between the two vertical ports (x,z plane) and that between the horizontal ports (x,y plane) are predicted reasonably well by

$$P_2 = b_0 uw (4)$$

$$P_{3} = b_0 uv ag{5}$$

The factor, b, is a function of the Reynold's number but is relatively constant in the Reynold number range of 2,000 to 200,000.

Calibration data supplied by the manufacturer indicated that for the 3-cm spheres, the pressure ratios  $P_2/P_1$  and  $P_3/P_1$  were linearly related to the angles F and G respectively by the equations

$$F = c P_2/(P_1 \cos G)$$
 (6a)

$$G = c P_3/(P_1 \cos F)$$
 (6b)

where c is a constant and Fand G are the complements of the

directional angles. Accordingly,

$$w = V \sin F$$
 (7a)

$$v = V \sin G \tag{7b}$$

$$u \approx V(\cos F)(\cos G)$$
 (7c)

The components of the wind vector are described more closely by equations (3), (6), and (7) than by equations (3), (4), and (5). When using (6), an iterative procedure is used to solve for F and G which are then used in equations (7).

# b. Pressure transducers

Capacitive pressure transducers manufactured by Datametrics, Inc.  $\frac{2}{}$  were chosen for the pressure measurement. The gains of the signal conditioners can be selected to provide full scale outputs ( $\pm$  5.0V) for differential pressures of 10, 20, 30, 60, 100, 200, 300, 600, 1000, 2000, 3000, 6000, 10,000 dynes cm<sup>-2</sup>. The transducer has a maximum nonlinearity of about  $\pm$  0.1%, zero drift of  $10^{-5}$  of maximum range per degree Celsius and sensitivity change of  $2 \times 10^{-2}$ %/C.

### c. Frequency response

The frequency response and phase shift of a pressure transducer connected by tubing to a fluctuating pressure has been described by Iberall (1950), whose

<sup>2/</sup> Datametrics Incorporated, 87 Beaver Street, Waltham, Mass. (Model 511-8 Barocel).

analysis was basic to our system design. The response of the transducer is controlled by the size and length of the tubing and the effective internal volume of the transducers. The transducers used in our system were a special design which used a stiffer-than-normal diaphragm and a reduced internal volume of 1.6 cm<sup>3</sup> to improve the frequency response of the system. The spherical probe was connected by approximately 43 cm of approximately 1.5-mm I.D. tubing to the pressure transducer; tests showed this tubulation optimized the system performance.

The frequency response and phase shift of the system were checked by producing known sinusoidal pressure differences at various frequencies between appropriate ports on the surface of the pressure spheres and monitoring the amplitude and phase of the transducer output. stead of attempting to produce the pressure differences between ports on a single sphere, two identical spheres were placed in separate pressure chambers with tubing connecting appropriate ports to the pressure transducers. Equal pressure fluctuations, 180 degrees out of phase with each other, were produced in the two chambers by pistons which were closely coupled to the chambers. The pistons were dri en by a variable speed motor and the phase of the pressure fluctuation was determined by optically sensing the position of the Scotch yoke piston drive. Typical amplitude and phase shift characteristics of the 3-cm anemoclinometer and pressure transducer are shown in Table 1. The response was limited by the tubing used to construct the anemoclinometers and could be improved by redesigning the pressure sphere, tubulation, and transducer system for optimum performance.

Table 1. Anemometer system frequency response and phase shift.

| frequency<br>Hz | relative<br>amplitude | phase shift<br>(degrees) |
|-----------------|-----------------------|--------------------------|
| 1               | 1.00                  | 0                        |
| 5               | 1.02                  | 18                       |
| 10              | 1.05                  | 48                       |
| 15              | 1.00                  | 76                       |
| 20              | 0.84                  | 100                      |
| 25              | 0.63                  | 126                      |
| 30              | 0.47                  | 145                      |

### d. Field installation

For field measurements, the pressure-sphere anemometer is mounted on a 2.5-cm diameter mast (Fig. 3) at the desired height. The anemometer is oriented with the shaft axis parallel to the anticipated direction of mean flow. The three pressure transducers are housed in a temperature-controlled (± 0.2C) box which is an integral part of the mounting assembly located at the opposite side of mast to the pressure sphere. The temperature control provides the required zero stability. The whole assembly can be moved to different levels on the mast or completely removed as one unit without disconnecting the pressure transducers from the pressure sphere. The pressure transducers are connected by 150 m of cable to their power supply and signal conditioners which are housed in a 2.5 x 6 m air-conditioned instrument trailer.

The masts are on pivot points and supported higher up by guy wires attached to bearings. This arrangement



Fig. 3. Anemometer assembly on its mast.

allows the mast to be rotated so that the probe can be criented easily into the mean wind. When the data discussed below were obtained, the anemometer was rotated in azimuth manually into the mean wind; at the beginning of each half-hour run the crientation was adjusted to the position of the mean wind for the previous half hour. Since then, a motor assembly, controlled by the  $P_3 = b_0uv$  output of the wind probe, has been used to continuously but slowly adjust the position of the probe into the wind. The orientation of the mast is monitored through the output of a potentiometer attached to the base of the mast and is included in the calculation of the components of the wind vector.

# 3. Data handling

Since the sensors respond to frequencies as high as 30 Hz, a large amount of data must be analyzed if the system is operated over extended periods of time. Storing large quantities of data under field conditions is costly and often results in a serious reduction in data quality. In addition it is highly desirable that some data analysis capability be available at the experimental site so that the experiment can be run efficiently and crumentation faults detected as soon as possible. After a careful study of the available alternatives we elected to drastically reduce, by digital on-line computation, the quantity of data to be stored to the point where it could be typed out in table form by a typewriter or stored on paper tape. In 1967, this amounted to a data reduction of approximately 18000:1.

In 1967 the data analysis was performed on an EMR 6020

computer 3/ and later on the faster and smaller EMR 6130. The 1967 system included a Raytheon A-D converter, 6020 computer and model 33 teletype with paper tape reader with punch. The 6130 system includes an EMR 2701 converter, and a higher speed paper tape reader and punch in adultion to the model 33 teletype.

Five channels of analogue data were obtained at each of three sites to give a total of 15 channels. At each site three channels represented the three pressure differences P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub> and the other two channels represented a fast response resistance thermometer (Wesely, et al., 1969) and a fast response barium fluoride relative humidity element (Jones, 1967). The velocity components of the wind vector were calculated using equations (6) and (7) and means, squares, and crossproducts of the five parameters (u. v, w, T, e) were calculated, where T, and e were the temperature and vapor pressure respectively.

The complete operation (i.e. 15 channels of analogue to digital conversion and the data analysis) was repeated 40 times per second. At the end of each half-hour sampling period the necessary scaling operations were performed and the outputs were teletyped. Approximately 2.5 minutes of each half-hour period were required for output and no data were collected during this time.

This data system has proven to be a very efficient and powerful research tool and it is felt that the success achieved with the anemometer system would not have been possible if, alternatively, data storage equipment had been selected.

<sup>3/</sup> Electro-mechanical Research, Inc., 8001 Bloomington Freeway, Minneapolis, Minn.

# 4. Tests of anemometer system

A complete description of the experimental area may be found in Brooks and Pruitt (1966). A plan of the field site is given in Fig. 4, showing the heights and spatial arrangement of our three anemometers with respect to the 6-meter, Davis shear stress lysimeter and the triangular array of masts installed by Dr. C. R. Stearns, University of Wisconsin Department of Meteorology. These masts carried cup anemometer and aspirated dry- and wetbulb thermometers. The surface was uniform alta fescue, 5 to 10 cm high, which was periodically mown.

Wind velocity measurements with our pressure probe are compared with cup anemometer data and our eddy—correlation, shear stress measurements are compared with both shear stress lysimeter data and shear stresses obtained by Dr. Stearns' preliminary analysis of his vertical profiles of wind velocity and of temperature (KEYPS-type, diabatic profile analysis). In addition, a graphical description of the vertical fluctuations of wind velocity as a function of the stability parameter z/L is presented.

# a. Comparison of wind velocity measurements

The on-line computer program which was used to analyze our anemometer data included the calculation of the horizontal wind.

$$\overline{V_{H}} = (\overline{v^2 + v^2)^{\frac{1}{2}}}$$

where u and v are the instantaneous values of the horizontal components of the wind vector. The value of  $\overline{V_H}$  is primarily dependent upon P<sub>1</sub>, as given in (2), and



Fig. 4. Plan of the site of the 1967 cooperative field experiment.

since u generally is much larger than either v or w, errors associated with the measurement of wind angles calculated from (6) do not seriously degrade the estimate of  $\overline{V_H}$ . The good agreement between  $\overline{V_H}$  and cup anemometer measurements presented in Fig. 5, demonstrate the accuracy of pressure-sphere measurements of u.

# b. Comparison of shear stress measurements

Shear stress measurements obtained with the pressuresphere anemometer are compared with data from the shearstress lysimeter and from analysis of the wind profiles.
The data obtained on May 2, 3, 4, and 5 are presented in
Figs. 6 and 7. The pressure-sphere anemometer data
represent the average of measurements available at the
three sites. The shear stress data from the three wind
profile sites also were averaged. The Davis shear stress
lysimeter independently measures the north-south, and
east-west components of the surface shear stress and the
data used were computed by W. O. Pruitt as the vector sum
of the half-hour means of these components.

Agreement among the three methods is satisfactory even though the aerodynamic analysis generally provides somewhat larger values than the other two methods. This discrepancy appears unduly large on May 4 and 5. The average  $z_0$  value computed from the wind profiles is 0.95 cm for May 2 and 3, and about 1.4 cm for May 4 and 5. For the latter two days new estimates of the shear stress were calculated via a drag coefficient using  $z_0 = 0.95$  cm, a KEYPS diabatic correction and the cup anemometer wind velocity at 80 cm. The results of this calculation are more consistent with the comparisons on May 2 and 3. Calculations indicate that best agreement between drag



Fig. 5. Comparison of horizontal wind measured with the three-dimension anemometer and with cup anemometers.



Fig. 6. Comparison of shear stress measurements on May 2 and 3, 1967.



Fig. 7. Comparison of shear stress measurements on May 4 and 5, 1967.

coefficient and eddy correlation determinations would have been obtained by using  $z_0 \approx 0.7$  cm.

# c. Standard deviation of the vertical wind

Ratios of the standard deviation of the vertical component of wind velocity to the friction velocity, u,, as measured at the two 1-m sites and one 4-m site, are plotted in Fig. 8. The comparison of horizontal wind measured with our anemometer system and with cup anemometers indicates that our pressure-sphere anemometer measures the u-component of wind velocity accurately. Accordingly the ratio ow/u, would vary as the square root of a constant percentage error in the measurement of w. This is not a very sensitive test of the measurement of the vertical component of velocity since the error in w would be twice that in w/u, but our value of 1.25 for ww/u, under neutral conditions is the same as that derived by Panofsky, et al., (1967) and close to the value of 1.33 predicted by Lettau (1968). Over one hundred additional data points were collected over snap bears ( $z_{o} = 4$  cm) in 1968 at Hancock, Wisconsin. The data, averaged over stability ranges of z/L = -0.15 to 0.25, are also presented in Fig. 8 and are very similar to the Davis data. For ready comparison with the Panofsky (1967) and Panofsky et al. (1967) the curve  $[1 - (z/L)/s]^{\frac{1}{4}}$  is plotted.



Fig. 8. Ratio  $\sigma w/u_*$  as a function of z/L.

### REFERENCES

- Brooks, F. A. and W. O. Pruitt, 1966: Investigation of energy, momentum, and mass transfer near the ground,
  University of California-Davis, Final Rept., 1965,
  U. S. Army Electronics Command Grant DA-AMC-28-043-65-G12,
  259 pp. DDC Accession # AD 635 588.
- Cramer, H. E., F. A. Record, and J. E. Tillman, 1961:
  Studies of the spectra of vertical fluxes of
  momentum, heat and moisture in the atmospheric
  boundary layer. Ann. Rept., Meteor. Dept., Mass.
  Inst. Tech. 130 pp.
- Dyer, A. J., 1960: Heat transport anemometer of high stability. J. Sci. Instr., 37, 166-169.
- Frenzen, P., 1965: Determination of turbulence dissipation by Eulerian variance analysis. Quart. J. Roy. Meteor. Soc., 91, 28-34.
- Gill, G. C., 1963: Data validation. Dept. Meteor. and Oceanog., University of Michigan, Publ. No. 79, Ann Arbor. 23 pp.
- Holmes, R. M., G. C. Gill, and H. W. Carson, 1964: A propeller-type vertical anemometer. <u>J. Appl. Meteor.</u>, <u>3</u>, 802-804.
- in instrument lines. U. S. Nat. Bur. Standards. J.
  Res. , 45, 85-108.
- Jones, F. E., 1967: Study of the storage stability of the
  barium fluoride film electric hygrometer element.
  U. S. Nat. Bur. Standards J. Res., 71C, 199-207.

- Kaimal, J. C., H. E. Cramer, F. A. Record, J. E. Tillman, J. A. Businger, and M. Miyake, 1964: Comparison of bivane and sonic techniques for measuring the vertical wind component. <u>Quart. J. Roy. Meteor. Soc.</u>, <u>90</u>, 467-472.
- Kaimal, J. C., J. C. Wyngaard, and D. A. Haugen, 1968:
   Deriving power spectra from a three-component sonic
   anemometer. J. Appl. Meteor., 7, 827-837.
- Lettau, H. H., 1968: Studies of effects of boundary modification in problems of small area meteorology.

  University of Wisconsin Ann. Rept. 1966-67. U. S.

  Army Electronics Command Grant DA-AMC-28-043-66-G24,
  156 pp.
- MacCready, P. B., and H. R. Jex, 1964: Response characteristics and meteorological utilization of propeller and vane wind sensors. <u>J. Appl. Meteor.</u>, <u>3</u>, 192-193.
- Martinot-Lagarde, A., A. Fauquet, and F. M. Frenkiel, 1952:
  The IMFL anemoclinometer -- an instrument for the investigation of a fluctuating velocity vector.

  Rev. Sci. Instr., 23, 661-666.
- Miyake, M. and F. I. Badgley, 1967: A constant temperature wind component meter and its performance characteristics.

  J. Appl. Meteor., 6, 186-194.
- Panofsky, H. A. and B. Prasad, 1965: Similarity theories and diffusion. Int. J. Air Water Poll., 9, 419-430.
- Panofsky, H. A., N. Busch, B. Prasad, S. Hanna, E. Peterson, and E. Mares, 1967: Properties of wind and temperature at Round Hill, South Dartmouth, Mass. Pennsylvaria State University Tech. Rept. ECOM-0035-F. U. S. Army Electronics Command Grant DAB07-67-0035, 95 pp.

Thornthwaite, C. E., W. J. Superior, J. R. Mather, and F. K. Hare, 1961: The measurement of vertical winds and momentum flux. Pub. in climatology, 14(1), Centerton, N. J.

# EDDY CORRELATION MEASUREMENTS OF SENSIBLE HEAT FLUX NEAR THE EARTH'S SURFACE

M. L. Wesely, G. W. Thurtell, and C. B. Tanner

### ABSTRACT

A three-dimensional pressure-sphere anemometer and fast thermometer system (P.S.A.T.) was used to measure vertical heat flux density in the atmospheric surface layer at one to four meters above alta fescue and snap beans. Good agreement with independent measurements was obtained, which shows that the P.S.A.T. is sufficiently small and has adequately high frequency response and accuracy for eddy-correlation measurements within one meter of the surface. Also obtained with the P.S.A.T. were (u'T')/(w'T'),  $r_{u,T}$ ,  $r_{w,T}$ , and  $\sigma_{T}/T_{\star}$  and their dependence upon stability. When the atmosphere was thermally stable, slow wave motions frequently increased  $\sigma_{T}$  even though turbulent mixing was lacking.

### 1. Introduction

The turbulent vertical heat flux, H, in the atmospheric surface layer over a horizontally uniform surface can be determined from

$$H = \rho c_p \overline{w'T'}$$
 (1)

where  $_0$  is the air density,  $_{\mathbf{p}}$  is the specific heat of air, w is the vertical wind velocity, and T is the air temperature. The bar denotes a time average and the prime denotes an instantaneous deviation from the time-averaged quantity. The major difficulty with making eddy correlation measurements of turbulent heat transport is in measuring the vertical wind. This requires an accurate and stable anemometer that measures the wind components with a sufficiently high frequency response for use close to the surface where the fetch requirements are minimum. present, the most promising anemometers are sonic anemometers, either pulsed wave (Mitsuta, 1966) or continuous wave (Kaimal, et al., 1968), and the pressure-sphere anemometer (Thurtell, et al., 1969). The pressure-sphere anemometer is smaller than sonic anemometers and thus can be used closer to the surface where eddies are smaller.

This paper describes the measurement of turbulent heat transport with the pressure-sphere anemometer and a small, fast-response, resistance thermometer. Measurements of heat flux above alta fescue are compared with independent measurements made by others at the University of California at Davis as part of the 1967 Cooperative Field Experiment sponsored by the Atmospheric Sciences Laboratory, U. S. Army Electronics Command, Ft. Huachuca, Arizona. Also presented are measurements of heat flux

made in 1968 over snap beans at the University of Wisconsin Hancock Experiment Farm. A summary of the standard deviation of temperature,  $\sigma_{\rm T}$ , divided by the dimensionless temperature scale,  $T_{\star}$ , and of correlation coefficients for wind and temperature also is given for measurements over the above two surfaces.

2. Equipment, sites, and comparison measurements.

# a. Pressure sphere anemometer-thermometer assembly

A fine-wire-resistance thermometer (Wesely, et al., 1969) was mounted parallel to the horizontal ports of the pressure sphere (Thurtell. et al., 1969), as shown for a 3-cm diameter sphere in Fig. 1. The closest edge of the thermometer was about 1.25 cm from the 3-cm anemoclinometer and about 2.5 cm from the 8-cm anemoclinometer. The thermometer was placed so that the sensitive element was slightly upwind of the leading edge of the pressure sphere; tests showed that this forward placement was necessary to prevent thermal modification of the air that flowed to the thermometer past the large thermal mass of the sphere. The thermometer was outside the angle of acceptance of the anemoclinometer and tests showed that the flow patterns around the sphere were not significantly affected.

When the 1967 data were obtained, the anemometer was rotated in azimuth manually into the mean wind at the beginning of each half-hour run. During 1968, a motor assembly, controlled by the anemometer, rotated the mast to point the anemometer into the wind. The azimuth rotation of the mast was monitored with a potentiometer attached to the base of the mast and was included in the



Fig. 1. Arrangement of thermometer with the anemoclinometer.

calculation of the components of the wind vector.

# b. Data handling

The current through the thermometer was kept nearly constant at 0.3 ma by its bridge, which was located about 5 m from the thermometer. The bridge output was fed directly into a floating differential amplifier with a 1000 gain, to provide a signal with a temperature sensitivity of about  $0.6 \, \text{c} \, \text{v}^{-1}$ . The amplifier output was transmitted through 150 m of cable to the instrument trailer. The thermometer and anemometer signals were fed to a scanner-converter and an EMR computer as described by Thurtell, et al., (1969). The sampling rate was  $40 \, \text{sec}^{-1}$  in 1967 and 150  $\, \text{sec}^{-1}$  in 1968.

The outputs of the thermometer bridges were filtered in the amplifiers to match the phase shifts and response of the pressure-sphere anemometer and also to avoid high frequency noise. The response of the two systems are shown in Fig. 2. The curves for the anemoclinometers are roughly representative of the vertical wind component.

## c. Site description

A description of the site of the 1967 Cooperative Field Experiment, and our instrument locations as well as the locations of other relevant instruments may be found in Thurtell, et al., (1969).

The 1968 measurements at Hancock, Wisconsin were on a  $100 \times 160$  m field of snap beans planted in rows spaced at 90 cm. The snap beans were about 30 cm high and provided about 50% cover over Plainfield sand. The fetch was 60 m to the north, 50 m to the east and west and 100 m to the south. Beyond these boundaries to the south was alfalfa extending for 150 m to a 15-m high



Fig. 2. Frequency response and phase shift of the thermometer system and of the anemometer system.

woods and to the west was an alfalfa field extending 100 m to a 10-m high shelter belt, to the northwest were low crops extending 200 m to a shelter belt, and to the east was alfalfa extending 300 m to a woods. The wind was predominately from the south and west during the tests.

# d. Independent measurements of sensible heat flux

During the 1967 Cooperative experiment, Dr. C. R. Stearns, University of Wisconsin, measured wind, temperature, and vapor pressure profiles at three locations in a triangular array. At the same locations, he measured net radiation and soil heat flux density for energy balance calculations. The sensible heat flux was calculated from the energy balance using Bowen's ratio,  $9 = \gamma \Delta T/\Delta e, \text{ determinel from vertical temperature and vapor pressure differences measured over the same height intervals within 120 cm of the surface. An aerodynamic calculation of the sensible heat flux also was made using the wind and temperature profiles to find the shear stress with a KEYPS-type analysis and then using similarity (<math>K_{\rm H} = K_{\rm M}$ ) and the profiles to find the heat flux. Dr. Stearns supplied us data from both analyses.

The University of California-Davis group measured the evaporation with a C-m diameter weighing lysimeter (Pruitt and Angus, 1960). In addition, they measured net radiation and soil heat flux near the lysimeter. The sensible heat flux density was calculated by differencing the energy balance terms as  $H = R_n - G - E$ . The Davis group also measured the sensible heat flux directly with an Evapotron (Dyer and Maher, 1965). Both measurements were supplied to us by Pr. W. O. Pruitt, University

of California-Davis.

The University of Washington group measured the sensible heat flux both with a one-dimensional sonic anemometer thermometer (Kaimal and Businger, 1963) and with a three-dimensional unit (Mitsuta, 1966). These data were supplied by Dr. J. A. Businger.

The comparison data at Hancock, Wisconsin were obtained by differencing measurements of net radiation, soil heat flux density and evaporation. The evaporation was measured with a 2.1 x 5.5 m weighing lysimeter (Black et al., 1968), the net radiation was measured with a large Funk radiometer, and the soil heat flux was measured with soil heat flux plates (Fuchs and Tanner, 1968) and integrating soil thermometers (Tanner, 1958).

### 3. Heat flux density comparisons

During the 1967 Cooperative Field Experiment, fetches were easily in excess of 100 m, except for small changes in elevation, since the wind was predominately from the south and southwest where fields had similar vegetation and roughness.

Heat flux estimates by the pressure-sphere anemometer and thermometer system (called the P.S.A.T. hereafter) were averaged from two 1-m high units and one 4-m high unit to give the results shown in Fig. 3. There was no systematic difference of heat flux measured at the two heights except from 1615 to 2015 on April 27, when the data from the higher mast were discarded. Heat flux data from a three-dimensional, sonic anemometer-thermometer at four meters above the surface and one-dimensional, sonic anemometer-thermometer 2.2 m high agreed well with the P.S.A.T.; the scatter of estimates at our three different P.S.A.T.



Fig. 3. Comparisons of heat flux density estimates at Davis, California for April 27, May 2, May 3, and May 4 and 5 of 1967.

sites frequently is of the same order as the difference between our data and that of the sonic anemometerthermometer.

The eddy-flux from the Evapotron is shown on Fig. 3 for May 4 and 5. The wide fluctuations may have been due to the averaging process to remove the mean wind and temperature terms since a time constant of only one minute is used in this system.

Several indirect estimates of sensible heat flux are also shown in Fig. 3. The energy balance estimates obtained from differencing the energy balance H =  $R_n$ -G-E appear high during the day and low at night. Since  $|R_n|$  and |E| are much larger than |H|, a small relative error in these terms could produce a large relative error in |H|.

The results from the Bowen ratio energy balance and those from the aerodynamic method are the averages of heat flux data from three sites. These methods are nearly independent, but not completely so, because they use the same temperature profiles. Both methods show remarkably good agreement with the P.S.A.T.

In Fig. 4 is shown the average of heat flux estimates at two P.S.A.T. sites. Both sites were 117 cm above the soil surface until 1030 when one site was moved to 210 cm above the surface. Since estimates of heat flux by the P.S.A.T. at 210 cm from the soil surface were not systematically different from the 117-cm high site, fetch was considered adequate. On another day, we compared measurements with one P.S.A.T. at 75 cm and the other at 117 cm and found no systematic differences.

The energy balance estimate of heat flux leads the P.S.A.T. estimate in the morning. This was probably due



Fig. 4. Heat flux density estimates over snap beans.

to a time lag in the evaporative flux caused by unrepresentative heat storage in the lysimeter (Black, et al., 1968). This also could have caused an overestimate of the magnitude of the heat flux after sunset. The low value of 1015 was caused by an unexplainably large estimate of evaporative flux.

## 4. Temperature structure

When the data used in this section were collected, H and  $\tau$  were constant with height, within the accuracy of our measurements; thus we can use H and  $\tau$  as scaling factors as described by Monin and Obukhov (1954). They define a dimensionless height ratio z/L where z is the height from the surface and L =  $-u_{\star}^3 \circ_{\rm C} T/({\rm kgH})$  [ $u_{\star} = (\tau/\circ)^{\frac{1}{2}}$  is the friction velocity; k = 0.428 is Karman's constant, and g = 980 cm sec<sup>-2</sup>]. The relationships obtained between our measurements of z/L and our measurements of the correlation coefficients  $r_{u,T}$  and  $r_{w,T}$ , and of the ratio (u'T')/(w'T') are given in Fig. 5. Fig. 7 shows the relation of z/L to a dimensionless standard deviation of temperature,  $\sigma_{\rm T}/T_{\star}$  [ $\sigma_{\rm T}$  is the standard deviation of air temperature and  $T_{\star} = -H/({\rm koc}_{\rm D} u_{\star})$ ].

It appears that  $(\overline{u'T'})/(\overline{w'T'}) \approx 4$  for z/L = 0.1 and  $\approx 2.5$  for z/L = -0.05. The large scatter indicates that more meaningful results might have been obtained from sampling periods shorter than the 30 min used. For instance, Zubkovskii and Tsvang (1966) obtain less scatter by using running means of the winds and temperatures from electrical filters with time constants of 100 sec and 80 sec, respectively. Fig. 5 shows that air temperatures are more closely coupled with horizontal winds than with vertical winds since  $|r_{u,T}| > |r_{w,T}|$ .



Fig. 5. Correlation coefficients of wind and temperature and (u'T')/(w'T') as a function of stability.

This is especially true for stable conditions. As shown in Fig. 6, the fluctuations of air temperature and vertical wind during unstable conditions are much larger and faster than during stable conditions; however, it has been observed that slow wave motion (not evident in Fig. 6) frequently occurs at night when the wind speed is low. Then the temperature at a stationary height in a highly stratified atmosphere fluctuates as much as 3C every 5C to 200 sec, the period of the slow waves. This oscillation substantially increases  $c_T$  and probably accounts for some small values of  $r_{w,T}$  and  $|r_{u,T}|$  for large positive values of z/L.

In Fig. 7,  $\sigma_{\rm T}/{\rm T}_{\star}$  is plotted against z/L and aprears to scale well for unstable conditions, except near z/L = 0, where  ${\rm T}_{\star}=0$ . A function suggested by Dyer (1965) is drawn following Panofsky, et al., (1967). Data from Russian sonic anemometers and resistance thermometers (Mordukhovich and Tsvang, 1966) and data from a one-dimensional sonic anemometer-thermometer (Rusinger et al., 1967) are also included in Fig. 7. The P.S.A.T. data agrees well with the Russian data, but appears lower than the data summarized by Panofsky et al., (1967).

The large scatter for stable conditions may be caused in part by small absolute errors in  $\tau$  and H, since both  $\tau$  and H are about ten times smaller at night than during the day; however, slow wave motion may increase  $\tau_{\rm T}$  without increasing the heat flux enough to keep  $\tau_{\rm T}/T_{\star}$  from increasing whenever these large-scale disturbances occur. Since Mordukhovich and Tsvang (1966) use a running mean of temperature with a time constant of 80 sec, temperature oscillations with periods longer than 20 sec are substantially attenuated, causing their



Fig. 6. Fluctuations of T and nuw for stable conditions at 2.0 m (bottom) above bare Plainfield sand at Hancock, Wis.



Fig. 7. Standard deviation of dimensionless temperature as a function of stability.

estimates of  $\sigma_{\rm T}/{\rm T}_{\star}$  to have less scatter and be lower than our estimates. Measurements during stable conditions, when the wind speeds were at least 2.5 m sec<sup>-1</sup> at 1 m, have less scatter; mixing is probably adequate then to prevent domination by large-scale disturbances.

#### REFERENCES

- Black, T. A., G. W. Thurtell, and C. B. Tanner, 1968:
  hydraulic load cell lysimeter, construction,
  calibration and tests. Soil Sci. Soc. Amer. Proc.,
  32, 623-633.
- Businger, J. A., M. Miyake, A. J. Dyer, and E. F. Eradley, 1967: On the direct determination of turbulent heat flux near the ground. J. Appl. Meteor., 6, 1025-1032.
- Dyer, A. J., 1965: The flux-gradient relation for turbulent heat transfer in the lower atmosphere.

  Quart. J. Roy. Meteor. Soc., 91, 151-157.
- Dyer, A. J., and F. J. Maher, 1965: Automatic eddy-flux measurement with the evapotron. J. Appl. Meteor., 4, 622-625.
- Fuchs, M., and C. B. Tanner, 1968: Calibration and field test of soil heat flux plates. <u>Soil Sci. Soc. Amer. Proc.</u>, 32, 326-328.
- Kaimal, J. C., and J. A. Businger, 1963: A continuous
  wave sonic anemometer-thermometer. J. Appl. Meteor.,
  2, 156-164.
- Kaimal, J. C., J. C. Wyngaard, and D. A. Haugen, 1968:
   Deriving power spectra from a three-component sonic
   anemometer. J. Appl. Meteor., 7, 827-837.
- Mitsuta, Y., 1966: Sonic anemometer-thermometer for general use. J. Meteor. Soc. Japan, 44, 12-23.
- Monin, A. S., and A. M. Obukhov, 1954: Fundamental regularities of turbulent agitation in the ground layer of the atmosphere. Transactions of the Georphysical Institute of the Academy of Sciences, U.S.S.R., 24, 163-187.

- Mordukhovich, M. I., and L. R. Tsvang, 1966: Direct measurement of turbulent flows at two heights in the atmospheric ground layer. <u>Izv. Atmos. Oceanic Phys.</u>, 2, 786-803.
- Panofsky, H. A., N. Busch, B. Frasad, S. Hanna, E. Peterson, and E. Mares, 1967: Properties of wind and temperature at Round Hill, South Dartmouth, Mass. Pennsylvania State University Tech. Rept. ECOM-0035-F. U. S. Army Electronics Command Grant DAB07-67-0035, 95 pp.
- Pruitt, W. O., and D. E. Angus, 1950: Large weighing lysimeter for measuring evapotranspiration. <u>Trans. Amer. Soc. Agric. Eng.</u>, 3, 13-15.
- Tanner, C. B., 1958: Soil thermometer giving the average temperature of several locations in a single reading.

  <u>Agron. J.</u>, <u>50</u>, 384-387.
- Thurtell, G. W., C. B. Tanner, and M. L. Wesely, 1969:

  Three-dimensional pressure-sphere anemometer system.

  J. Appl. Meteor., 8 (submitted).
- Wesely, M. I., G. W. Thurtell, and C. B. Tanner, 1969:
  A fast-response thermometer for eddy correlation
  measurements. J. Appl. Meteor., 8 (submitted).
- Zubkovskii, S. L., and L. R. Tsvang, 1966: Horizontal turbulent heat flow. <u>Izv. Atmos. Gceanic Phys.</u>, <u>2</u>, 1307-1310.

EVAPORATION MEASUREMENTS BY AN EDDY CORRELATION METHOD

S. M. Goltz

C. B. Tanner

G. W. Thurtell

F. E. Jones  $\frac{1}{}$ 

<sup>1/</sup> F. E. Jones is with Institute for Basic Standards, National Bureau of Standards, Washington, D. C. 20234

#### ABSTRACT

Eddy correlation measurements of water vapor flux density have been made using a barium fluoride film humidity sensor. During morning and evening periods, good agreement was obtained between eddy correlation data and two independent methods. Serious disagreement between measurements occurred only when the humidity sensor was operating within a poorly defined portion of the calibration curve which was not suited to on-line calculations. The results indicate that the humidity sensor could be modified to allow operation at all times within well defined segments of the calibration curve and permit successful eddy correlation vapor flux measurements within one meter of the surface. (Key Words: Humidity sensor; eddy correlation; vapor flux)

#### Introduction

Of the micrometeorological methods currently available for determining evaporation, the eddy correlation approach is most satisfying since it requires the least number of basic assumptions. The equation which describes the evaporation as latent heat flux density, may be written as

$$F_{v} = \lambda \left[ \vec{q} \ \vec{w} + \vec{q'w'} \right] \tag{1}$$

where ) is the latent heat of vaporization, q is vapor concentration (absolute humidity) and w is the vertical wind velocity. The overbars indicate time averages and the primes indicate fluctuations about the mean. The surface evaporation, E, will be equal to

$$E = \lambda \left[ \overline{q'w'} \right] \tag{2}$$

when  $\bar{w}$  is equal to zero.

Although eddy correlation measurements of sensible heat flux have been made [Kaimal and Businger, 1963; Businger, et al., 1967; Wesely, Thurtell, and Tanner, 1969] evaporation measurements have been limited by slow humidity sensors. Dyer and Hicks [1967] and Goddard and Pruitt [1966], using fine-wire psychrometers, found that measurement at four meters was necessary where larger and slower eddies could be recorded by these relatively slow elements. At these elevations, however, storage and advection errors occurred unless there was a very long fetch. In order to work closer to the ground, we have investigated the possible

use of a rapid-response barium fluoride film humidity sensor [Jones, 1967]. Bean and Florey [1968] report on the use of this sensor for measuring evaporation at two meters above Lake Hefner. However, their system was limited by the relatively slow response of an anemometer-bivane and not by the humidity element's response. We believe that in association with a fast response wind vector sensor the barium fluoride film humidity sensor can allow measurement of evaporation considerably closer to the surface.

#### Instrumentation and Methods

Barium fluoride film humidity sensor. The barium fluoride humidity sensor consists of a glass plate of approximately  $10 \times 2 \times 0.16$  cm on which a  $0.3\mu$ -thick film of barium fluoride has been evaporated over closely-spaced, evaporated chromium electrodes. The electrical resistance is measured between the electrodes. Jones [1967] reports in detail on these sensors and their properties.

The particular elements used in the present work are calibrated by determining their resistances over a series of known relative humidity solutions from 12 to 97%. Plots of the logarithm of sensor resistance against relative humidity consist of three linear segments. Unfortunately, sensor calibration is not stable for an unlimited time and degrades substantially over a period of several months. Calibration curves indicating changes over time are shown in Figure 1.

In order to use relative humidity measurements in the eddy correlation method, a reference temperature must be measured. During preliminary tests at Davis, California



Fig. 1. Calibration curves for a barium fluoride film humidity sensor showing changes with time.

in 1967, we used the air temperature; the results showed that the sensor film temperature should be used as the reference for converting relative humidity to absolute humidity and must be monitored. Accordingly, a  $127\mu$  micro-bead thermistor is cemented with a very small amount of clear epoxy to the center of the sensitized surface. A linearized bridge is used with the thermistor for the surface temperature measurement.

The sensors also have electrical leads cemented to them. Vapors from the epoxy used to attach the leads and thermistors caused an immediate calibration shift, and it is possible that the drifts shown in Figure 1 were accelerated by the early exposure to organic vapors.

Electronic circuitry. A block diagram of the circuit used with the barium fluoride humidity sensor and its associated thermistor is shown in Figure 2. The two most important features of the system are the logarithmic amplifier and the phase adjustment. The logarithmic amplifier provides an output voltage that is linear with relative humidity as shown in Figure 1. The phase adjustment is necessary because at low humidities, and with very high sensor resistances, there is significant capacitive react-The phase is adjusted to null the capacitive reactance while the sensor is at very low humidity over a desiccant: no further adjustment is required throughout the full humidity range. The capacitive reactance is associated with the linear segment at the lowest humidities of the calibrations curves of Figure 1. importance of this segment with its relatively flat slope and its shift to higher relative humidity ranges with time becomes a problem as discussed later.

Eddy correlation system. The fluctuating wind vector needed in (2) is measured with the pressure sphere anemometer,



Fig. 2. Block diagram of circuit used with barium fluoride film humidity sensor and its associated thermistor.

details of which are reported by Thurtell, et al., (1969). The barium fluoride humidity sensor is mounted to the side of pressure sphere anemometer and a fine-wire resistance thermometer is mounted on the other side (Figure 3). The thermometer provides air temperatures which, when used in the heat equation analogous to that of (2), gives the sensible heat flux density (Wesely, et al., 1969). Figure 4 gives a plan view of locations of the various components. In addition, and not shown in Figures 3 and 4, a small sunshade was elevated 15 to 20 cm above the humidity sensor. The shade was used since radiational heating often caused sensor temperatures to rise as much as 10 C above air temperature, which, in turn, caused the effective relative humidity of the sensor to fall into its least sensitive, very dry, range (above or near knee in Figure 1).

We anticipated that the spatial grouping of sensors was small enough and the sensors had sufficiently high frequency responses to measure transport occurring in small, high-frequency eddies found within one meter of the surface.

Calculations were made on-line by transmitting analog voltages of relative humidity, sensor surface temperature, and anemometer pressures to an analog to digital converter and an Electro-Mechanical Research 6130 computer (8001 Bloomington Freeway, Minneapolis, Minn. 55420) housed in an instrument trailer. Sampling rate was 150 times per second with data acquisition for 28.5 minutes of each half hour and summary data calculations and typewriter output for the remainder of the time.

A servo-mechanism rotated the instrument system assembly into the wind as wind direction changed. Therefore,





Fig. 3. (<u>Upper</u>) Entire eddy correlation system.

(<u>Lower</u>) Close view of sensors.



Fig. 4. Plan of system components.

data was acquired automatically, except for sunshade adjustment, gain adjustments, and equipment maintenance which were done during data printout.

Field trial site. During September 1968, vapor flux measurements were made at Hancock, Wisconsin over snap beans (Phaseolus vulgaris), which were 30 cm high. A pressure where anemometer with humidity sensor was located 60 m south of the instrument trailer with a bean fetch of 60 m to the north, 50 m to the east and west, and 100 m to the south. A 100 m to 200 meter fetch of alfalfa-brome pasture extended beyond the beans to shelter belts which were 15 meters high. A second anemometer without a humidity sensor was located 10 m west of the previously described site.

The instruments at the humidity sensor site were at an initial elevation of 1.17 m above ground surface. This elevation was maintained until 1030 on the 14th when it was raised to 2.10 m. The 2.10 m elevation was lowered to 0.75 m following 0630 on September 15. On September 20 the elevation was 1.17 m. The changes in elevations were used to try to detect the affect of eddy size and frequency on sensor response.

Additional site instrumentation provided two other measurements of latent heat flux density for comparison with the eddy correlation data. One was evapotranspiration measured with a hydraulic load-cell lysimeter [Black, et al., 1969]. The other measurement was made using the energy balance equation

$$E = R_n - G - H_a$$
 (3)

The net radiation,  $R_{n}$ , was measured with a Funk net

radiometer, the soil heat flux density, G, was measured using soil heat flux plates in conjunction with thermometers, while the sensible heat flux density, H<sub>a</sub>, was obtained from the average of the two eddy correlation measurements [Wesely, et al., 1969].

# Results

Half-hourly values of latent heat flux density from (2), (3), and the lysimeter are compared in Figure 5 for September 12, 13, 14, and 20. On September 20 energy balance data were unavailable. This figure also shows half-hourly mean values of relative humidity as measured by the barium fluoride sensor and wind speed measured by a cup anemometer mounted at 1.32 m approximately 25 m southwest of the eddy correlation sites.

Several conclusions can be drawn from these comparative data. First, there is excellent general agreement both in trends and in magnitude between the lysimeter and the energy balance data; this confirms the validity of our independent measurements used for comparisons. Secondly, for the most part, the eddy correlation data prior to 1000 and past 1600 on each day show good agreement with the other two sets of evaporation data, while during the mid-day period they are one-half to one-third the Thirdly, during data collection at elevations other data. of 1.17 m to 2.1 m, no apparent systematic differences could be detected in sensor response by comparison with the independent methods. Figure 5 presents no data for the 0.75 m elevation since only two hours of morning data were collected, but these limited data are also in good agreement with the independent measurements. fourthly, although wind speed is correlated with eddy



Fig. 5. Diurnal trends of latent heat flux density from eddy correlation measurements, from energy balance and lysimeter data, and diurnal trends of windspeed and relative humidity.

frequency, there was no association between periods of either good or poor agreement and windspeed. Finally, there is a strong correlation between periods of poor agreement and mean relative humidities, as seen by the sensor, of less than about 45 percent.

In Figure 1 the August 31, 1968 calibration curve shows a sharp break in slope at 42 percent relative humidity. This critical value was determined by extrapolation, while the actual change was most probably a gradual one over a ARH range of 8 to 10 percent. slope of the calibration curve is one of the constants required for the on-line computer program, and during periods when the mean relative humidity was near the knee of the calibration curve, vapor flux density could not be satisfactorily computed. Figure 5 shows that all periods of poor agreement occur when the mean relative humidity was less than or only slightly in excess of the critical value, 42 percent. A portion of this decrease in sensor-perceived relative humidity during mid-day periods is attributed to radiational heating. Aswind direction and sun angle varied, the small sunshade in a fixed position relative to the humidity sensor frequently did not shade the sensor. Visual inspection of shade orientation and adjustment of its position were possible only in the 1.5-min intervals at the end of each half-hour, and not during data collection.

The pressure sphere anemometer measurements associated with the humidity sensor gave a lower mean horizontal wind, and more negative  $\rho$   $\overline{w'v'}$  than those from the anemometer without a humidity sensor attached. We doubt that this was due to spatial heterogeneity of the row crop; it most likely was due to locating the barium fluoride element

too far forward (see Figure 4) where it interferred with the wind flow when wind was from the side. Any errors in the cross-wind measurement affect the wind coordinate transform.

#### Recommendations

The field measurements indicate that the barium fluoride film humidity sensor has sufficiently rapid response to allow reliable eddy correlation measurements of vapor flux within a meter or less of the surface. Modifications to the present system should be: (1) The sensor configuration should be changed from a plate to a cylinder, with cooling tubes inside the cylinder to maintain the sensor at or below ambient air temperature. Such a change would permit temperature control of the sensor so that the operating point on the calibration curve could be kept away from any "knee". The cylindrical configuration also should affect air flow around the sphere less than the plate. (2) Since the sensor calibration is altered by contamination with time, BaF, films should be applied as close as possible to time of The BaF, should be coated on elements to which thermistor and leads have been attached previously. Films should be recalibrated frequently during field use. (3) Further tests should be made of the optimum sensor location with respect to the pressure sphere to assure minimum interference. Certainly the forward end of the sensor should be behind the sphere. (4) Frequency characteristics of the sensor should be established to allow matching amplitudes and phase shifts to the wind measuring system.

#### REFERENCES

- Bean, B. R. and Q. L. Florey, A field study of the effectiveness of fatty alcohol mixtures as evaporation reducing monomolecular films, <u>Water Resources Res.</u>, 4, 206-208, 1968.
- Black, T. A., G. W. Thurtell, and C. B. Tanner,
  Hydraulic load cell lysimeter, construction,
  calibration, and tests, Soil Sci. Soc. Amer.
  Proc., 32, 623-629, 1968.
- Businger, J. A., M. Miyake, A. J. Dyer, and E. F. Bradley,
  On direct determination of the turbulent heat flux
  near the ground, <u>J. Appl. Meteorol</u>., 6, 1025-1032,
  1967.
- Dyer, A. J. and B. B. Hicks, The fluxatron -- a revised approach to the measurement of eddy fluxes in the lower atmosphere, <u>J. Appl. Meteorol</u>., 6, 408-413, 1967.
- Goddard, W. B. and W. C. Pruitt, Mass transfer-eddy flux methods, 42-44, in Evapotranspiration and its role in water resources management, Conf. Proc. Publ. by Amer. Soc. Agr. Eng., St. Joseph, Mich., 1966.
- Jones, F. E., Study of the storage stability of the barium fluoride film electric hygrometer element, J. Res. NBS, 71C, 199-207, 1967.
- Kaimal, J. C. and J. A. Businger, A continuous wave sonic anemometer-thermometer, <u>J. Appl. Meteorol.</u>, 2, 156-164, 1963.
- Thurtell, G. W., C. B. Tanner, and M. L. Wesely, Three-dimensional pressure-sphere aneometer system, <u>J. Appl. Meteorol.</u>, 8, (Submitted), 1969.
- Wesely, M. L., G. W. Thurtell, and C. B. Tanner, Eddy correlation measurements of sensible heat near the earth's surface, J. Appl. Meteorol., 8, (Submitted), 1969.

# A FAST-RESPONSE THERMOMETER FOR EDDY CORRELATION MEASUREMENTS.

M. L. Wesely, G. W. Thurtell, and C. B. Tanner

Eddy-correlation measurements of sensible heat flux close to the earth's surface require fast-responding, small thermometers; these can be made with fine resistance wire. Resistance thermometers with 13 µ diameter (e.g. McIlroy, 1955; Dyer and Maher, 1965; Hyson, 1968) have better frequency response and lower radiation errors than the commercially-available thermoccuples which are 25 μ wire and may have junctions larger than 25 μ. the resistance wire is less than 13 u in diameter, the frequency response and radiation error is still less dependent upon wind speed than with 13 µ wire, and radiation error decreases. Because very fine wire thermometers have small radiation error, they can be used to measure average vertical temperature differences without radiation shielding or aspiration; however, in this instance the rapidly fluctuating thermometer output is filtered electrically.

The purpose of this note is to describe a fast, very fine wire thermometer which is constructed easily and which we have found useful for eddy correlation measurement within 0.5 to 1.0 m of the earth's surface (Wesely, et al., 1969).

Description and construction of the thermometer
 The supporting structure of the thermometer, as
 pictured in Figs. 1 and 2, consists of the frame, the
 insulating plug, and the stainless steel supporting tube.
 The thermometer element consists of about 55 cm of
 platinum-coated, 5.6 μ-diameter, tungsten wire wound

<sup>1/</sup> Sigmund Cohn, Mount Vernon, N. Y. (0.00022-inch diameter, with about 4 to 7% weight platinum coating).



Fig. 1. Front view of the resistance thermometer.



Fig. 2. Resistance thermometer details.

on the frame as shown.

# a. Thermometer frame

The frame consists of three 0.16 mm (0.0063 inch) enameled Karma wires which were epoxied to two rings constructed from 0.66 mm (0.0253 inch) stainless steel wire. These rings are 1.9 cm in diameter and spaced 3.2 cm. The resistance wire is soldered to two inward extensions of the rings. The rings and their extensions serve as electrical connections and provide mechanical support.

The rings are formed on a mandrel and spot-welded. The extensions are spot-welded to the rings and all the spot-weld joints are hard soldered. The extensions are pretinned, which requires acid flux; when once pretinned future soldering operations may be done with neutral and rosin fluxes. Following pretinning, the stainless steel and any parts exposed to acid flux fumes must be thoroughly cleansed with soapy water and rinsed in distilled water.

<sup>2/</sup> Driver Harris Co., Harrison, N. J.

<sup>2/</sup> Eutectic Welding Alloys Corporation, Flushing, N. Y., EutecRod 157; All-State Welding Alloys Co., White Plains, N. Y., #430 solder.

#### b. Frame support

The frame support consists of the stainless steel tube (9.5 mm 0.D. x 1.58 mm wall) and the insulating plug, which is held in the tube with a set screw. Two 0.66 mm diameter stainless steel leads are pretinned  $\frac{3}{2}$ , washed, and epoxied in holes drilled in the plug. The stainless wires extend inside the tube, where they are soldered to copper leads and covered by heat-shrink tubing.

#### c. Winding the resistance wire

Tungsten was chosen as a thermometer wire because of its high tensile strength, but due to the small wire diameter, a load of only seven grams will break it. wire is best seen against a dark background with proper lighting. When the resistance wire is wound on the frame, the frame is attached with clips to the end of a threaded arbor which has a pitch of 2.5 mm and which is fixed in a threaded nut. About 65 cm of the resistance wire is unspooled and cut with masking tape folded to the ends so it may be held. One end is soldered to one of the pretinned frame extensions and the other end, weighted with the masking tape, hangs free. As the arbor is turned the resistance wire is pulled through a stationary feed (needle with eye enclosure cut away) and wrapped around the frame, automatically spacing the windings at least 2.5 mm apart. Closer spacing may cause adjacent resistance wires to touch if the Karma wire flexes slightly. When ten windings are on the frame, the free end of the wire is soldered to the second extension. Before the wire is wound on the frame, the Karma cross - struts are coated either with

epoxy or with a silicone-base contact cement  $\frac{4}{}$  to prevent the tungsten wire from sliding on the strut.

The platinum-coated tungsten resistance wire is soldered with a sonic soldering iron without flux to the pretinned frame extension using indium solder . If a sonic soldering iron is not available, either a cut-acid, zinc chloride flux or an All-State neutral 420 flux can be used with the indium solder; however, the fluxless joint made with a sonic iron is preferable since no electrolytes are introduced. Satisfactory solder joints cannot be made with tungsten wire that is not coated with solderable metals.

To prevent misalignment of the fragile assembly after winding the wire, the frame should be attached immediately to the frame support.

#### 2. Frequency response and radiation heating

Chao and Sandborn (1964) show that a resistance wire thermometer responds to a temperature change as a first-order system. For first-order systems the amplitude ratios and phase shift angles, 0, with sinusoidally fluctuating air temperatures are:

$$A/A_{0} = (1 + \omega^{2} \tau^{2})^{-\frac{1}{2}}$$
 (1)

$$A/A_{O} = \cos\theta \tag{2}$$

<sup>4/</sup> Mystik Tape, Inc., 1700 Winnetka Ave., Northfield, Ill. (Type A-117)

<sup>5/</sup> Indium Corporation of America, Utica, N. Y., Indalloy solder #4, indium metal.

where  $\tau$  is the time constant,  $\omega$  is angular frequency, and  $A_O$  is the output amplitude when  $\omega=0$ .

Chao and Sandborn derive an expression for the time constant of a resistance wire, neglecting radiation exchange.

$$\tau^{-1} = (k/_0C) (\pi/L)^2 + (4/D^2) (hD)/_0C)$$

$$- (k/_0C) (4/_\pi D^2)^2 I^2$$
(3)

where k is the thermal conductivity of the wire, I the current through the wire, L and D are the wire length and diameter, o and C are density and specific heat of the wire, K is the wire resistivity, and  $h = (k_a/D)N_u$  where  $k_a$  is the thermal conductivity of air. The Nusselt number, Nu, for air in transverse flow can be found from

$$Nu = 0.3 + 0.51Re^{\frac{1}{2}}$$
 (4)

where Re is the Reynolds number. According to Grant and Kronauer (1962), the Nusselt number for our extremely fine, long wire would be slightly less than 0.3 in still air; however (4) is a sufficiently good approximation to calculate performance for field experiments.

The first term in the right side of (3) represents internal conduction along the wire to the supports and is negligible for long wires. The second term is proportional to the convection from the wire per unit temperature difference and is much larger than the last term, which indicates how the temperature of the wire

effects the time constant. When all of the values for our resistance wire are inserted into (3), it simplifies to:

$$\tau = 1/(1530 \text{ Nu} + 5.8)$$
 (5)

For a given wind velocity, (5) can be used to calculate  $\tau$  for the resistance wire; then (1) can be used to find the ratio of the amplitudes for a given frequency and (2) will give the phase shift. For the resistance wire used in the thermometer, the time constant was calculated to be about 1.5 msec in "still" air and 0.6 msec in 10 m sec<sup>-1</sup> winds. In a laboratory relatively free of air currents, the time constant of the thermometer was observed to be about 1 msec. Up to a frequency of 20 Hz, reduction in amplitude should be less than 2% and phase shift about 10 deg. Even at 50 Hz, less than 10% reduction is amplitude and a phase shift less than 25 deg is expected.

The frequency response may be decreased and the phase shift may be increased by electrically filtering the analog signal from the thermometer bridge. This is necessary to match the response of a wind-measuring system when eddy correlation measurements are made or to average the signal when temperature gradients are measured. An advantage of the fine wire is that the effect of the wind speed upon r is negligible compared to the total phase shift and degraded frequency response needed to match most eddy correlation wind systems.

Solar heating of the fine resistance wire on the thermometer must be dissipated by convective transport. Neglecting other sources of heating, the steady state

energy balance can be expressed as

$$R_{s}(1-a_{s})DL = hD_{\pi}L(T-T_{a})$$
 (6)

where R<sub>S</sub> is the solar radiation and a<sub>S</sub> is the absorptivity for solar radiation. Since this equation is for the radiation being absorbed uniformly over the entire cross-section of the wire and no radiation losses, the calculated temperature difference will be an overestimate.

Using an extreme value of 1400 W m<sup>-2</sup> for R<sub>s</sub> and 0.5 for a<sub>s</sub> temperature differences for the fine resistance wire are about 0.15C in still air, 0.09C in 0.5 m sec<sup>-1</sup> wind, and 0.05C in a 5 m sec<sup>-1</sup> wind. Thus, it is conceivable that radiation could cause the wire to heat up as much as 0.1C, but a wind gust would not change this offset by more than a few hundredths of a degree Celsius. This change is negligible for eddy heat flux calculations, and often is not significant when mean air temperature differences are needed, provided all the thermometers are exposed equally to radiation.

#### 3. Bridge design criteria

The temperature coefficient of resistance of the wire was determined by measuring the thermometer resistance in a temperature-controlled kerosene bath; it was found to be 0.360% C<sup>-1</sup> at 20C, and 0.350% C<sup>-1</sup> at 30C. The 55 cm of resistance wire wound on each thermometer spool had a total resistance of about 1550 ohms, which increased with temperature at the rate of about 5.5 ohms C<sup>-1</sup> at 25C.

The thermometer is measured in a constant-current bridge, with the current low enough for negligible

self-heating. Since the Nusselt number calculated by (5) for  $5.6~\mu$  wire only doubles as the wind velocity changes from still air to a 5 m sec<sup>-1</sup> wind, the effect of convective heat transfer on self-heating is weak. In still air, the maximum current allowable for less than 0.01C temperature rise is 0.33 ma. This value increases to 0.35 ma in a 0.5 m sec<sup>-1</sup> wind, and to 0.50 ma in a 5 m sec<sup>-1</sup> wind. If the current were 0.30 ma, the temperature difference would be less than 0.01C and would change by about 0.004C as the wind changed from 0.5 m sec<sup>-1</sup> to 5 m sec<sup>-1</sup>.

In our bridge we use a 16.2 V mercury battery (two 8.1 V, TR-236R) across a 40 k ohm resistance in series with the thermometer. Fixed resistors of similar value and a potentiometer for balancing form the other half of the bridge. The bridge output is 0.60 C mv<sup>-1</sup>. When two thermometers are used to measure vertical temperature differences for Bowen's ratio measurements the second half of the bridge also is a 40 k ohm resistance in series with the thermometer; the 40 k ohm resistance is comprised of a fixed resistor and a potentiometer to obtain balance. When used for measuring vertical temperature differences, the thermometers are mounted on a stand which interchanges their position periodically to obviate zero errors (Sargeant and Tanner, 1967).

#### REFERENCES

- Chao, J. L., and V. A. Sandborn, 1964: A resistance thermometer for transient temperature measurements. Fluid Mechanics Paper No. 1, Colorado State University, Fort Collins, Colo.
- Dyer, A. J., and F. J. Maher, 1965: Automatic eddy-flux measurements with the evapotron. J. Appl. Meteor., 4, 622-625.
- Hyson, P., 1968: The tungsten wire temperature sensor.

  J. Appl. Meteor., 7, 684-690.
- McIlroy, I. C., 1955: <u>Australian J. Agr. Res.</u>, <u>6</u>, 196-199.
- Sargeant, D. H., and C. B. Tanner, 1967: A simple psychometric apparatus for Bowen ratio measurements.

  J. Appl. Meteor., 6, 414-418.
- Wesely, M. L., Thurtell, G. W. and C. B. Tanner, 1969:

  Eddy correlation measurements of sensible heat flux
  near the earth's surface. <u>J. Appl. Meteor.</u>, <u>8</u>,

  (Submitted)

# SENSIBLE HEAT FLUX MEASUREMENTS WITH A YAW SPHERE AND THERMOMETER

C. B. Tanner and G. W. Thurtell

#### 1. Introduction

A yaw sphere, shown schematically in Fig. 1, when directed into the wind flow, generates a pressure between the ports proportional to the product of the horizontal and vertical winds. If this pressure is measured with an electrical pressure transducer and if the analog pressure signal then is passed through a high-pass filter to drive a resistance thermometer bridge, the bridge output is proportional to  $\bar{u}(w'T')$ . The sensible heat flux density can be determined by integrating the bridge output and dividing the mean,  $\bar{u}(w'T')$ , by the mean wind speed measured with a nearby cup anemometer.

The objective of this note is to describe this analog system for sensible heat flux measurement and to present some comparisons with independent measurements of sensible heat flux density.

#### 2. Equipment description

The description of the equipment is helpful to a discussion of the theory and is given first.

#### a. Yaw sphere, vane, and pressure system

The yaw sphere was made by drilling two 1.59-mm holes off-center through a 5-cm plastic sphere so that the included angle, 9, between radius vectors to holes on the sphere surface was 45°. The sphere was mounted on a 6.35-mm O.D. tubular stem inserted in the head of a Gill propeller vane where the propeller normally mounts, (Fig. 1). Two 1.59-mm I.D. polyethylene tubes were run through the stem and down the center of the hollow, rotating shaft in the Gill propeller vane that drives the azimuth potentiometer. These polyethylene tubes were



Fig. 1. Schematic of the yaw sphere on a vane and of the recording system.

brought out through the bottom of the vane housing and attached to a Datametrics, Model 511-8 Barocel capacitive pressure transducer. A 1-m length of 1.59-mm I.D. tubing was required to connect each sphere port to the pressure transducer. A fast resistance thermometer (Wesely, et al., 1969a) was mounted on vane head and located at the side of sphere as described by Wesely, et al. (1969b). The thermometer leads were run in parallel with the pressure tubing out the bottom of the vane housing to the thermometer bridge.

Although Wesely, et al. (1969b) adjusted the frequency response of the thermometer bridge amplifier to match that of their pressure-sphere anemometer, this would have complicated our simple analog system; accordingly the yaw-sphere and thermometer have different phase and frequency response. The frequency response of the yaw sphere is indicated in Table 1. The thermometer relative amplitude at 20 Hz is about 0.98 with 1 m sec<sup>-1</sup> winds and the phase shift is about 10°. Details of the pressure transducer system and frequency response calibration methods can be found in Thurtell, et al. (1969).

Table 1. Frequency response of the yaw sphere, tubing and Barocel.

| Frequency, Hz:        | 2   | 4   | 10   | 15   | 20   |
|-----------------------|-----|-----|------|------|------|
| Relative amplitude:   | 1.0 | 1.0 | 0.83 | 0.63 | 0.46 |
| Phase shift, degrees: | 5   | 15  | 35   | 50   | 60   |

#### b. Electronics and recording

The output from the Barocel and its signal conditioner is the electrical analog of the pressure,  $\Delta P$ , between the yaw sphere ports. This signal is passed through a high-

pass filter with a 17-min time constant and unity gain. The output of the high-pass filter is an analog of  $(\Delta P - \overline{\Delta P})$ . This signal drives the thermometer bridge so that the output is an analog of  $\Delta T(\Delta P - \Delta P)$  where  $\Delta T$  is the bridge temperature unbalance. If the bridge is set at a null temperature very different from the air temperature so that a large unbalanced offset appears in AT, the peak-to-peak range of the fluctuating bridge output is unduly large and may saturate the following electronics. To facilitate balancing the bridge, it can be switched from the high-pass filter to a battery. The output of the bridge is fed to a differential amplifier and thence to either an electronic integrator or a recorder with ball-and-disc integrator. The integrator is preceded by a 5-sec low-pass filter to decrease the transient response and dynamic range requirements.

#### 3. Theory of operation

The pressure distribution at points on a sphere in a perfect fluid with irrotational motion is given by Lamb (1932; sec. 92) as

$$P = P_s + (\rho/2) V^2 [1 - (9/4) \sin^2 \psi]$$
 (1)

where  $F_s$  is the static pressure, v is the density of air, v is the air speed, and v is the angle between  $\vec{v}$  and the radius vector of the point. Schlichting (1960, p. 20) shows that in real fluids, the pressure distribution is that of ideal fluids for  $v \leq 65^\circ$ . If the yaw sphere is directed azimuthly into the wind, then the pressure difference between the ports of the yaw sphere is

$$\Delta P = P_2 - P_1 = (90/8) |\vec{v}|^2 (\sin^2 \psi_1 - \sin^2 \psi_2)$$

This holds for winds within a vertical angle  $\alpha = \pm (65^{\circ} - 16)$  where  $\alpha$  is the angle between the wind vector and the bisect of the ports and  $\theta$  is the included angle between the ports. Assuming that the vane directs the sphere into the wind, the components of the wind vector with respect to the x,2 plane formed by the ports and the stem are

$$u = |V| \cos \alpha$$
 (2a)

$$\mathbf{v} = 0 \tag{2b}$$

$$w = |V| \sin \alpha$$
 (2c)

Since  $\psi_1 = (\alpha + \frac{1}{20})$  and  $\psi_2 = (\alpha - \frac{1}{20})$ 

$$\Delta P = (9/4) (\sin \theta) \text{ ouw}$$
 (3)

The electrical output of the pressure transducer is

$$E_p = M(\Delta P) = bM\rho uw$$

where  $b = (9/4 \sin \theta)$  and M is the transducer constant. The output of the high pass filter is

$$E_{\mathbf{F}} = E_{\mathbf{p}} - \overline{E_{\mathbf{p}}} = M(\Delta P - \overline{\Delta P})$$
 (4a)

Substituting (3) into (4a), and using Reynold's notation

$$E_{p} = b M_{0} (\bar{u}w' + \bar{w}u' + u'w' - \bar{u'w'})$$
 (4b)

Since  $\Delta T = \overline{\Delta T} + \Delta T' = \overline{\Delta T} + T'$ , where  $\overline{\Delta T}$  is the mean bridge balance offset, the output of the bridge is

$$E_{B} = BE_{F} \Delta T = BE_{F} (\overline{\Delta T} + T')$$
 (5)

where B is the bridge constant. The amplifier output is then

$$E_{O} = G E_{B} \tag{6}$$

where G is the amplifier gain. When  $E_0$  is integrated we have from (4), (5), and (6),

$$\overline{E_0} = bGBM_0 \left( \overline{u} \ \overline{w'T'} + \overline{w} \ \overline{u'T'} + \overline{u'w'T'} \right) \tag{7}$$

Assuming the last two terms in parentheses in (7) are negligible as compared with the first, the product of the sensible heat flux and the mean wind is

$$\bar{\mathbf{u}}\mathbf{H} \approx \rho c_{\mathbf{p}} (\bar{\mathbf{u}} \ \overline{\mathbf{w'T'}} + \bar{\mathbf{w}} \ \overline{\mathbf{u'T'}} + \bar{\mathbf{u'w'T'}})$$

$$= c_{\mathbf{p}} \ \overline{\mathbf{E}_{\mathbf{0}}} / \mathbf{b} \mathbf{G} \mathbf{B} \mathbf{M}$$
(8)

If a cup anemometer is run near the yaw sphere-thermometer assembly at the same height to find  $\bar{\mathbf{u}}$ ,

$$H \approx c_p [(9/4) GBM sine]^{-1} (\overline{E_0}/\overline{u})$$
 (9)

#### 4. Measurements

Sensible heat flux density measurements were made with the yaw sphere and thermometer during three days in September 1968 at Hancock, Wisconsin. The yaw sphere was about 95 cm above a crop of snap beans. We integrated  $\mathbf{E}_0$  with a ball-and-disc on a strip chart recorder which also

gave a record of E<sub>0</sub>. We used (9) to find the heat flux where  $\theta = 45^{\circ}$  for our sphere. The mean wind speed was measured with a cup anemometer mounted at about the same height and located 15 m from the yaw sphere. We compared the results with eddy correlation measurements of sensible heat flux density made with a three-dimensional pressure-sphere anemometer in combination with a fast thermometer. We also compared the results with energy balance measurements, where the sensible heat flux density was found by subtracting measured soil heat flux density and evaporation from the net radiation. Wesely, et al. (1969b) describe the site, the pressure sphere anemometer and thermometer measurements and the energy balance measurements.

All measurements are given in Fig. 2 for three periods. The fluctuation of the energy balance measurements is mainly due to the lysimeter, which is not well suited to measuring evaporation over periods as short as 30 min when peak evaporation is equivalent to 250 w/m<sup>2</sup>. Also any phase differences in the three heat flux terms can make for large relative errors in sensible heat; this is particularly evident around 1800 hours.

The yaw sphere-thermometer results generally are higher than the other two measurements. The difference between yaw sphere-thermometer data and that of the other methods corresponds more nearly to a zero offset than to a proportionality factor. A damaging zero offset could easily arise since the mean bridge output voltage was of the order of 80 to 120 µv during periods of high sensible heat flux. In the equipment, which we jerry-rigged hurriedly for this test, there were two possible sources of zero error: no particular precaution was taken to avoid thermal emf's in the bridge; also in the



Fig. 2. Sensible heat flux density from the yaw sphere and thermometer system, energy balance measurements, and from the three-dimensional pressure sphere anemometer and thermometer system.

constructing of the active, high-pass filter, no special attention was given to avoiding small d-c components in the output, and any d-c across the unbalanced thermometer bridge would result in a zero offset. These features of the system can be improved relatively easily.

In view of the success of the preliminary tests of this simple yaw sphere-thermometer system, we believe it holds high promise for routine measurements of sensible heat flux density as close to the ground as one-meter where other eddy correlation systems are not suitable.

#### REFERENCES

- Lamb, H., 1932: Hydrodynamics. Dover, N. Y. 738 p.
- Schlichting, H., 1960: Boundary layer theory. McGraw-Hill, N. Y. 647 p.
- Thurtell, G. W., C. B. Tanner, and M. L. Wesely, 1969:

  Three-dimensional pressure-sphere anemometer system.

  J. Appl. Meteor., 8 (submitted).
- Wesely, M. L., G. W. Thurtell, and C. B. Tanner, 1969a:
  A fast-response thermometer for eddy correlation
  measurements. J. 1. Meteor., 8 (submitted).
- Wesely, M. L., G. W. Thurtell, and C. B. Tanner, 1969b:
  Eddy correlation measurement of sensible heat flux
  near the earth's surface. <u>J. Appl. Meteor.</u>, <u>8</u>
  (submitted).

## ANEMOCLINOMETER EQUATIONS AND COMPUTER PROGRAM

The instrument, shown in Figures 1 and 2, consists of a spherical head, 3 cm in diameter, mounted on a supporting shaft. When in use the probe is fixed in the fluid, with the shaft axis parallel to the direction of mean flow and the sphere on the upstream end of the shaft. In the following discussion, all coordinate axes, planes, and the velocities are referenced to the ports in the anemoclinometer head and the anemoclinometer axis.

The static pressures developed between small holes drilled in the spherical probe head are measured (Figure 2). The pressure difference between the two holes in the x-z plane is measured and also between the two holes in the x-y plane; each of these four holes is drilled at a 45° angle to the axis of the shaft. In addition to the above pressure ports an upstream opening in the spherical head leads into a Venturi centered on the axis of the shaft. A small pressure tube is placed in this Venturi, parallel to the probe shaft, with its open end in the upstream direction. The pressure difference is measured between the pitot and eight reference ports on the surface of the spherical head, which are located on a circle at an angle of 47.5° to the shaft axis.

The instantaneous velocity component along the z-axis and normal to the shaft in the x-z plane of the two vertical ports (plane Z, Figure 2) is defined as w. The velocity components in the x-y plane of the two horizontal ports (plane Y, Figure 2), are u and v, with u as the component parallel with the shaft (x-coordinate) and v as the component normal to the shaft in the x-y plane (y component). The equations for the velocity vectors with respect to the anemoclinometer coordinates are



Fig. Pl. Spherical sensing head of anemoclinometer showing pressure ports.



Fig. P2. Front and cross-section views of anemoclinometer head, y- and z-coordinates shown on front view.

$$u = |\vec{v}| \cos F' \cos G \approx |\vec{v}| \cos F' \cos G'$$
 [1a]

$$V = |\vec{V}| \cos F' \sin G = |\vec{V}| \sin G'$$
 [2a]

$$w = |\vec{V}| \sin F'$$
 [3a]

$$|\vec{v}| = (u^2 + v^2 + w^2)^{\frac{1}{2}}$$
 [4a]

where F, and G are the elevation and azimuth angles projected on the x,z and x,y planes and F' and G' are complements of the directional angles as shown in Figure 3. We can find

$$F' = \arctan [\tan(F \cos G)] \approx F \cos G$$
 [5a]

The approximations in [la] and [5a] result in less than 5% error at angles equal to or less than 30°.



Fig. P3. Definition of the components u, v, and w of the total wind vector  $\vec{\mathbf{V}}$ ; the elevation and azimuth angles, F' and G', which are complements of the directional angles; and F and G, which are the projections of F' and G' on the x,z and x,y planes respectively.

#### Anemoclinometer Constants (30-mm Sphere)

The pressure  $\mathbf{P}_{\mathbf{V}}$ , measured between the pitot and the reference ports is related to the true dynamic pressure,  $\mathbf{P}_{\mathbf{O}}$ , as

$$P_V/P_O = a$$
 [6a]

where  $P_0 = (0/2)\vec{V}^2$  and where the first anemoclinometer constant, a, is close to 1.015 for the 3-cm anemoclinometer.

When the centerline of the uw ports (anemoclinometer axis) is at an angle, F, with respect to the mean flow (G=0 in Figure 3) a pressure,  $P_F$ , is developed between the ports, where

$$P_{\rm p} = b_0 u w$$
 [7a]

where b is approximately constant, and is near 1.70 for the 3-cm anemoclinometer when 2000 < Re < 200,000.

The ratio of  $P_F/P_V$  changes linearly with angle  $(F \le 20^{\circ})$  as shown in Figure 4.

$$(P_F/P_V)/F = c = 0.057/deg = 3.266/rad$$
 [8a]

where c is the third probe constant.

Note that equations analogous to [7a], and [8a], exist for the uv ports upon rotation through an azimuth angle,  $G \le 20^{\circ}$ , when F = 0

$$P_{ci} = b_0 uv$$
 [Sa]

$$(P_G/P_V)/G = c = 0.057/deg = 3.266/zad$$
 [10a]



Fig. P4. Variation of  $(P_F/P_V)$  as angle F is changed with angle G = 0, or of  $P_G/P_V$  as angle G is changed with F = C.

The above F, G angle relations hold for the linear region of Figure 4 until the velocity vector is  $20^{\circ}$  off axis. Beyond  $20^{\circ}$ , the relation is approximated by

$$F = c'_1(P_F/P_V) - c'_2$$
 [11a]

which can also be written as

$$F_2 = c_1 F_1 - c_2$$
 [12a]

where  $F_1 = (P_F/P_V)/c$ . Similarly,

$$G_2 = c_1 G_1 - c_2$$
 [13a]

where  $G_1 = (P_G/P_V)/c$ . In [12a] and [13a],  $c_1$  and  $c_2$  have values of  $c_1 = 1.500$  and  $c_2 = 10$  degrees = 0.1745 rad. Equations [12a, 13a] are shown by the dashed line in Figure 4. Other approximations can be used, but since accuracy at  $F_2$  or  $G_2$  greater than  $30^O$  is poor, there is little basis for choice.

#### Wind Component Calculations

To find u, v, w using [la, 2a, 3a], we find V from [6a] and find F' and G' from calibration curves provided by the Institute de Mecanique des Fluides de Lille (IMFL) for their anemoclinometers (Figure 5). These curves give the variation of  $(P_F/P_V)$  and  $(P_G/P_V)$  for winds which are outside of the x, z and the x, y planes. IMFL does not specify whether the symmetric angles in Figure 5 are the angles F and G projected on the x,z and x,y planes or if they are F' and G', which are complements of the directional angles (see Fig. 3). We have assumed that F' and G' were the appropriate angles  $\frac{1}{2}$ .

If F and G were the correct angles then [5a] would be used to determine the angles F' for use in [1a, 2a, and 3a]. We believe the choice of F' and G' is correct because if we had used F and G, the values of w and v at F = G = 30° would have been about 10% smaller than if F' and G' had been used and 5% smaller at F = G = 20°. Our calculations of shear stress which used F' and G', never appear systematically large as would be the case if F were the correct angle.



Fig. P5. Variation of  $(P_F/P_V)$  and  $(P_G/P_V)$  as both F and G vary.

The experimental data for anemoclinometers shown in Figure 5 indicates that the  $(P_F/P_V)$  at any angle G' is related to that for G' = 0 as

$$(P_F/P_V)_{G'} = \cos G' (P_F/P_V)_{G'=0}$$

Similarly,

$$(P_G/P_V)_{F'} = cosf'(P_G/P_V)_{F'=0}$$

using [8a] and [10a] we have

$$F' = (P_F/P_V)/c \cos G'$$
 [14a]

$$G' = (P_G/P_V)/c \cos F'$$
 [15a]

We find F' and G' by iteration:

Step 1: An angle  $F'_1$  is found from [8a].

Step 2: An  $F_2'$  is found from [12a] if  $F_1' > 20^{\circ}$ ; if  $F'_{1} \le 20^{\circ}$ ,  $F'_{2} = F'_{1}$ Step 3: Using ccs $F'_{2}$ ,  $G'_{1}$  is found from [15a].

Step 4: A  $G_2'$  is found from [13a] if  $G_1' > 20^{\circ}$ ; if  $G_1' \le 20^\circ$ , then  $G_2' = G_1'$ . Step 5: Using  $\cos G_2'$ ,  $F_3'$  is found from [14a]. Step 6: An  $F_4'$  is found from [12a] if  $F_3' > 20^\circ$ ;

if  $F_3' < 20^\circ$ ,  $F_4' = F_3'$ .

Although further iterations could be made,  $F'_4$  and  $G'_2$  are within 1% of the values obtained by a third loop.

#### Azimuth angle measurement:

During 1968, the anemoclinometers were mounted on masts which were servo-driven with slow motors to maintain orientation into the wind with a dead-band of about 10°. signal from the anemoclinometers was used for sensing direction. The rotation of the masts was measured with a potentiometer. The azimuth angle used in the wind calculations was, GA, defined as

$$G_4 = G_2' + (G_3 - G_{4P})$$
 [16a]

where  $\mathbf{G}_{\gamma}$  was the angle of mast rotation measured by the servo potentiometer, GAP was the mean GA for the previous half-hour, and  $G_2'$  is the azimuth angle with respect to the anemoclinometer as found by [15a] in the iteration procedure.

#### **PROGRAM**

#### Program Constants

#### Thermometers:

constants for tungsten wire air temperature thermometer and bridge where  $T = B_1 + B_2V_4$ , Celsius

 $B_3$  constants for thermistor and the linearized bridge for  $B_4$  measuring the surface temperature of the  $B_aF_2$  humidity sensor.  $T_H = B_3 + B_4V_6$ .

#### **Heat:**

 $C_{\text{T}} = nc_{\text{p}} = 2.9 \text{ cal cm}^{-3} \text{K}^{-1}$ , heat capacity of air

#### Vapor pressure:

C<sub>0</sub> = 6.108mb = saturation vapor pressure at zero Celsius

C<sub>1</sub> = 7.5 constants in Teten's formula for calculating saturation vapor pressure, S, corresponding to a Celsius temperature,

S (defined here and on Pl4)  $S/C_0 = 10^{\left[C_1T/(C_2+T)\right]}$   $= antilog_{10}\left[C_1T/(C_2+T)\right]$ 

 $C_V$  = slope of the  $B_aF_2$  humidity sensor calibration curve for operating range [( $\Delta$ relative humidity)/ $\Delta$ volts)

 $C_{p} = 4620 \text{mb cm}^{-3} \text{K}^{-1} \text{gm}^{-1}$ , the specific gas constant for water vapor.

#### Wind and stress:

$$E_1 = 1.015 = a \text{ in } [6a]$$
 $E_2 = 3.266 \text{ rad}^{-1} = C \text{ in } [8a, 10a]$ 
 $E_3 = 1.5 = C_1 \text{ in } [12a, 13a]$ 
 $E_A = 0.1745 \text{ rad} = C_2 \text{ in } [12a, 13a]$ 

E<sub>5</sub> Potentiometer constants to give (see [16a])  
E<sub>6</sub> 
$$G_3 = E_5V_7 + E_6$$
 [17a]

M = range constant of pressure transducer which converts
 output to pressure

 $R = 1.2 \text{gm cm}^3 = \text{density of air}$ 

#### Channels

| Channel | Signal         |                    | Sensor                                     |               | Variable                                     | ^ |
|---------|----------------|--------------------|--------------------------------------------|---------------|----------------------------------------------|---|
| 1       | $v_1$          | Pressure           | transducer                                 | #1            | $P_{V} = (a_0/2)V$                           | , |
| 2       | $v_2$          | 11                 | ц                                          | #2            | $P_{\mathbf{F}} = b_0 \mathbf{u} \mathbf{w}$ |   |
| 3       | v <sub>3</sub> | **                 | 11                                         | #3            | $P_{G} = b_0 uv$                             |   |
| 4       | v <sub>4</sub> |                    | ce wire the<br>for air tem                 |               | T                                            |   |
| 5       | v <sub>5</sub> | Barium :<br>sensor | fluoride hu                                | midity        | <pre>H = relative humidity</pre>             |   |
| 6       | v <sub>6</sub> |                    | flu <b>oride</b> se<br>ur <b>e fro</b> m a |               | T <sub>H</sub>                               |   |
| 7       | v <sub>7</sub> |                    | gle from po<br>see [16a, 1                 | tenti-<br>7a] | G <sub>3</sub>                               |   |

#### Initialization Program

The electronics of the pressure sensors have an electrical zero,  $\mathbf{V}_0$ , and a full-scale,  $\mathbf{V}_F$ , voltage readout for any pressure range. The measured voltages must be normalized to  $(\mathbf{V}_F - \mathbf{F}_0)$ . In addition, a/tight chamber is placed over the anemoclinometer sphere to shut out the wind and short all the ports hydraulically; any residual signal,  $\mathbf{V}_S$  on any pressure range are due to sensor offset and this must be accounted for. Thus we have a normalized voltage from any transducer

$$V_n = (V - V_S) / (V_F - V_O)$$
 [183]

During the initialization program, the  $\rm V_O$ ,  $\rm V_F$ ,  $\rm V_S$  are read on each channel for 1 to 3 minutes, averaged, and stored as constants in the machine so that the normalized voltages may be calculated.

#### Combined Constants Used in Program

 $\begin{array}{lll} D_{1} &= M_{1}/(V_{F1}-V_{O1}): & M_{1} \text{ is the range constant of pressure} \\ & \text{transducer #1 to convert } V_{n1} &= (V_{1}-V_{S1})/(V_{F1}-V_{O1}) \text{ to} \\ & P_{V}(\text{see [22a]}) \end{array}$ 

 $D_2 = M_2/(V_{F2} - V_{O2})$ : Similar to  $D_1$  but for  $P_F$ 

 $D_3 = M_3/(V_{F3} - V_{O3})$ : Similar to  $D_1$  but for  $P_G$ 

 $A_1 = D_2/D_1E_2$ 

Note that  $(D_2/D_1E_2)[(V_2-V_{S2})/(V_1-V_{S1})] = (P_F/P_V)/E_2 = F_1$ 

 $A_2 = D_3/D_1E_2$  which, analogous to  $A_1$ , is used to find G from  $(V_3 - V_{S2})/(V_1 - V_{S1})$ .

 $A_3 = (RE_1/2)/D_1$ Note that  $(V_1 - V_{S1})/A_3 = V^2 = u^2 + v^2 + w^2$ 

#### ON-LINE COMPUTATIONS

$$v_{1}^{-} v_{Si} = x_{1}$$
 [1A]

If  $\mathbf{X}_1$  is negative, set to zero and record the number of times  $\mathbf{X}_1$  was negative

$$v_2 - v_{S2} = x_2$$
 [18]

$$v_3 - v_{S3} = x_3$$
 [1c]

$$F_1 = A_1(X_2/X_1)$$
 [2]  $\frac{2}{}$ 

If  $|F_1| > 0.349$ rad  $(20^{\circ})$ , then

$$|F_2| = E_3|F_1| - E_4$$
 [3A]

If  $|F_1| \le 0.349$ rad then

$$|F_2| = |F_1|$$
 [3B]

Sign of  $F_2$  is the same as the sign of  $F_1$ 

$$G_1 = A_2(X_3/X_1)$$
 [4]

If  $|G_1| > 0.349$ rad, then

$$|G_2| = E_3|G_1| - E_4$$
 [5A]

If  $|G_1| \le 0.349$  rad, then

$$|G_2| = |G_1|$$
 [5B]

Sign of  $G_2$  is the same as the sign of  $G_1$ . If  $G_2$  exceeds 0.69rad (40°) set  $G_2$  = 0.69rad and record

If  $G_2$  exceeds 0.69rad (40°) set  $G_2$  = 0.69rad and record number of times  $G_2 > 0.69$ rad.

$$F_3 = A_1(X_2/X_1)$$
 [6]

If |F<sub>3</sub>| > 0.349rad,

$$|F_4| = E_3|F_3| - E_4$$
 [7A]

 $<sup>\</sup>frac{2}{2}$  Eqs. [2] through [7] are from equations on page P8.

If  $|F_3| < 0.349$ rad

$$|F_4| = |F_3|$$
 [7B]

Sign of  $F_4$  is the same as the sign of  $F_3$ . If  $F_4$  exceeds 0.69rad, set  $F_4$  = 0.69rad and record number of times  $F_4$  > 0.69 rad.

$$G_3 = E_5 V_7 + E_6$$
 [8A]

$$G_4 = G_2 + (G_3 - \overline{G}_{4p})$$
 [8B]

where  $\ddot{G}_{4p} = \ddot{G}_2 + \ddot{G}_3$  for the previous run  $(\ddot{G}_2 = \text{mean } G_2, \ddot{G}_3 = \text{mean } G_3)$ .

$$X_1^{\frac{1}{2}} \sin F_4 = A_2^{\frac{1}{2}} w$$
 [9A] 3/

$$X_1^{\frac{1}{2}} \cos F_4 \cos G_4 = A_3^{\frac{1}{2}} u$$
 [9B]

$$X_1^{\frac{1}{2}} \sin G_4 = A_3^{\frac{1}{2}} v$$
 [9C]

$$T_{H} = B_{3} + B_{4}V_{6}$$
 [10]

$$S/C_0 = 10^{[C_1T_H/(T_H + C_2)]}$$
 [11]  $\underline{4}/$ 

 $<sup>\</sup>frac{3}{}$  NOTE: In the 1967 program, since the mast was not rotated through  $G_3$ , we used  $G_2$  in place of  $G_4$  in [9A, 9B, 9C].

See page P20 for alternate program equations

 $<sup>\</sup>frac{4}{}$  NOTE: Teten's equation (continued  $\frac{4}{}$  page P14)

| Accumulate sums and calculate averages of:                                           | From           |
|--------------------------------------------------------------------------------------|----------------|
| $N1 = (1/n) \nabla w A_3^{\frac{1}{2}}$                                              | [ 9A]          |
| $N2 = (1/n) \Sigma u A_3^{\frac{1}{2}}$                                              | [9B]           |
| $N3 = (1/n)\Sigma \vee A_3^{\frac{1}{2}}$                                            | [90]           |
| $N4 = (1/n) \sum (w A_3^{\frac{1}{2}})^2$                                            | [Ae]           |
| N5 = $(1/n) \Sigma (u A_3^{\frac{1}{2}})^2$                                          | [9B]           |
| $N6 = (1/n) \Sigma (v A_3^{\frac{1}{2}})^2$                                          | [ 9 <b>c</b> ] |
| N7 = $(1/n) \Sigma (w A_3^{\frac{1}{2}}) (u A_3^{\frac{1}{2}})$                      | [9A],[9B]      |
| N8 = $(1/n) \sum (w A_3^{\frac{1}{2}}) (v A_3^{\frac{1}{2}})$                        | [9A],[9C]      |
| N9 = $(1/n) \Sigma (u A_3^{\frac{1}{2}}) (v A_3^{\frac{1}{2}})$                      | [98],[90]      |
| N10 = $(1/n) \sum [(u A_3^{\frac{1}{2}})^2 + (v A_3^{\frac{1}{2}})^2]^{\frac{1}{2}}$ | N5,N6          |

$$S/C_O = antilog [C_1T_H/(T_H + C_2)]$$

S is the saturation vapor pressure corresponding to the  $\operatorname{BaF}_2$  humidity sensor Celsius temperature,  $\operatorname{T}_H$ .  $\operatorname{C}_O$  is the saturation vapor pressure at OC, and  $\operatorname{C}_1$  and  $\operatorname{C}_2$  are constants, as given on page P9. [Tetens, O. 1930. Uher einige meteorologische Begriffe. Z. Geophys. 6:297-309.]

 $<sup>\</sup>frac{4}{}$  NOTE (Cont.). Teten's equation is also written

| $N11 = (1/n) \nabla (F_4)$                               | [7A],[7B]               |
|----------------------------------------------------------|-------------------------|
| $N12 = (1/n) \Sigma (F_4)^2$                             | [7A],[7B]               |
| $N13 = (1/n) \Sigma (G_2)$                               | [5]                     |
| $N14 = (1/n) \Sigma (G_2)^2$                             | [5]                     |
| $N15 = (1/n) \sum (X_1)$                                 | [1A]                    |
| $N16 = (1/n) \% (X_2)$                                   | [18]                    |
| $N17 = (1/n) \Sigma (X_3)$                               | [1c]                    |
| $N20 = (1/n) \Sigma (V_4)$                               | Channel 4               |
| $N21 = (1/n) \Sigma (v_4)^2$                             | Channel 4               |
| $N22 = (1/n) \sum (V_4) (w A_3^{\frac{1}{2}})$           | [9A],Channel 4          |
| $N23 = (1/n) \pi (V_4) (u A_3^{1/2})$                    | [9B],Channel 4          |
| $N24 = (1/n) \sum (V_4) (v A_3^{\frac{1}{3}})$           | [9C],Channel 4          |
| $N25 = (1/n) \Sigma (S) / (C_0)$                         | [11]                    |
| $N26 = (1/n) \Sigma[(S)/(C_0)]^2$                        | [11]                    |
| $N27 = (1/n) \Sigma (S/C_0) (w A_3^{\frac{1}{2}}) (V_5)$ | [11],[9A],<br>Channel 5 |
| $N28 = (1/n) 7 (9/C_0) (u A_3) (V_5)$                    | [11].[9B],<br>Channel 5 |
| $N29 = (1/n) \gamma (S/C_0) (v A_3^{\frac{1}{2}}) (v_5)$ | [11],[9C],<br>Channel 5 |
| $N30 = (1/n) \Sigma (V_6)$                               | Channel 6               |
| $N31 = (1/n) \Sigma (V_6)^2$                             | Channel 6               |
| $N32 = (1/n) \Sigma (^{\circ}3)$                         | [AE]                    |
|                                                          |                         |

ention and and and the second

| N33 = | (1/n) 7 (G <sub>3</sub> ) <sup>2</sup>                           | [A8]                   |   |
|-------|------------------------------------------------------------------|------------------------|---|
| N34 = | (1/n) \(\tau_4\)                                                 | [88]                   |   |
| N35 = | $(1/n) \Sigma (G_4)^2$                                           | [88]                   |   |
| N36 = | $(1/n) \Sigma (X_2) (V_4)$                                       | [1B],Channel           | 4 |
| N37 = | $(1/n) \Sigma (w A_3^{\frac{1}{2}}) (u A_3^{\frac{1}{2}}) (V_4)$ | [9A],[9B]<br>Channel 4 |   |
| N38 = | (1/n) ¬ (V <sub>5</sub> )                                        | Channel 5              |   |
| N39 = | $(1/n) \Sigma (V_5)^2$                                           | Channel 5              |   |
| N40 = | $(1/n)\Sigma (S/C_0) (V_5)$                                      | [11],Channel           | 5 |
| N41 = | $(1/n) \pi [(s/c_0)(v_5)]^2$                                     | [11],Channel           | 5 |

## Output Calculations (averages and standard deviations):

| Para-<br>meter | Avg.                       | Stand. dev.                                                   |
|----------------|----------------------------|---------------------------------------------------------------|
| $F4 = F_4$     | N11                        | $[(N12) - (N11)^2]^{\frac{1}{2}}$                             |
| $G2 = G_2$     | N13                        | $[(N14) - (N13)^2]^{\frac{1}{2}}$                             |
| $G3 = G_3$     | N32                        | $[(N33) - (N32)^2]^{\frac{1}{2}}$                             |
| $G4 = G_4$     | N34                        | $[(N35) - (N34)^2]^{\frac{1}{2}}$                             |
| υ = u          | $(N2)/(A_3^{\frac{1}{2}})$ | $\{(N5)/(A_3) - [(N2)/(A_3^{\frac{1}{2}})]^2\}^{\frac{1}{2}}$ |
| v = v          | $(N3)/(A_3^{\frac{1}{2}})$ | $\{(N6)/(A_3) - [(N3)/(A_3^{\frac{1}{2}})]^2\}^{\frac{1}{2}}$ |
| w = w          | (N1)/(A <sup>1/2</sup> )   | $\{(N4)/(A_3) - [(N1)/(A_3^{\frac{1}{2}})]^2\}^{\frac{1}{2}}$ |
| TA = T         | $(B_1) + (B_2) (N20)$      | $\{(B_1)^2 + 2(B_1)(B_2)(N20)$                                |
|                |                            | $+ (B_2)^2 (N21)$                                             |
|                |                            | $- [(B_1) + (B_2) (N20)]^2$                                   |

$$S = (M25)(C_0) \qquad \{ (M26)(C_0)^2 - \{ (M25)(C_0)^2 \}^{\frac{1}{2}} \}$$

$$TH = T_H \qquad (B_3) + (B_4)(M30) \qquad \{ (B_3)^3 + 2(B_3)(B_4)(M30) + (B_4)^2(M31) - \{ (B_3) + (B_4)(M30) \}^2 \}^{\frac{1}{2}} \}$$

$$V_5 \qquad M38 \qquad \{ (M39) - (M38)^2 \}^{\frac{1}{2}} \}$$

$$E = e, mb \qquad \{ (M40) - (M25)(M38) \} (C_0)(C_0)$$

NOTE: The relative humidity, H, is linear with the logarithm of the resistance. The electronics produces a voltage linear with H.

$$H_{1}-H_{2} = H' = - k \log P' = C_{v}V_{5}'$$

$$V_{5} = \overline{V_{5}} + V_{5}'$$

$$S = \overline{S} + S' \qquad \text{as found from [11]}$$

$$\overline{SV_{5}} = \overline{S} \overline{V_{5}} + \overline{S'V_{5}'}$$

$$\overline{S'V_{5}'} = \overline{S} \overline{V_{5}} - \overline{S} \overline{V_{5}}$$

$$C_{v} \overline{S'V_{5}'} = \overline{S'H'} = C_{v}(\overline{SV_{5}} - \overline{S} \overline{V_{5}})$$

Since the vapor pressure E = Sh

$$\overline{E} = \overline{SH} = \overline{S} \ \widehat{H} + \overline{S'H'}$$

$$\overline{E} = \overline{S} \ \overline{H} + C_O C_V [(\overline{S/C_O}) V_5 - (\overline{S/C_O}) V_5]$$

$$\overline{E} = \overline{S} \ \overline{H} + \{C_O C_V [(N40) - (N25)(N38)]\}$$

To find  $\overline{E}$ ,  $\overline{S}$  is found in the above output;  $\overline{H}$  is found manually from  $\overline{V}_5$  given in the output, using the calibration curve for the particular sensor; the term in braces is calculated above as an average.

$$(E')^2 = c_V[(N41) - (N40)^2]$$

### Output Calculations (averages only):

$$J_1 = [(60)(B_2)][(N36) - (N16)(N20)]$$
 SEE NOTE  $\frac{7}{2}$ 

$$J_2 = [(60)(B_2)(C_T)/(A_3)][(N37)-(N7)(N20)]$$

$$q = e/[C_{R}(T + 273.2], T in Celsius$$

<sup>6/</sup> NOTE: The composition of the EU, EV, and EW terms are similar. EW =  $\lambda q'w'$  is the vertical vapor flux expressed as latent heat, where (60) is included to give cal cm<sup>-2</sup>min<sup>-1</sup>. In this equation

 $<sup>\</sup>lambda = [597 - 0.57T]$ , T in Celsius to give cal/gm (latent heat)

 $q = e/R_V^T_K$ , where  $T_K$  is Kelvin and  $R_V$  is the specific gas constant, so that

NOTE:  $J_1$  and  $J_2$  calculate the heat flux term  $({}_0c_p)[u w'T' + w u'T' + u'w'T']$  found by the yaw sphere and thermometer (Chapter 3).  $J_1$  is based on values which are not corrected for pressure decreases with off-axis winds, whereas  $J_2$  is corrected.

#### COURDINATE SYSTEMS AND ROTATIONS

In flow problems, the components of the flow velocity must be measured relative to some well-defined system of coordinates. In the atmosphere, unlike duct flow where the direction of mean flow is well defined, the coordinate system used can be selected arbitrarily. The wind velocity components are measured with respect to the instrument coordinates.

At the beginning of an experiment, the instrument may be roughly aligned with respect to the direction of mean flow; however, the direction of the mean flow is not known precisely until the end of the experiment. The instrument also can be referenced with respect to gravity and some arbitrary against hal direction.

### Instrument Coordinate System

Let the  $x_1$ ,  $y_1$  plane be the plane of the two horizontal ports of the anemoclinometer, (plane Y in Figure P2), the  $x_1$ ,  $z_1$  plane be the plane of the two vertical ports of the anemoclinometer, (plane Z in Figure P2) and the  $y_1$ ,  $z_1$  plane be the plane perpendicular to both the  $x_1$ ,  $y_1$  plane and the  $x_1$ ,  $z_1$  plane. Since the relative positions of the ports are determined by precision machining, the  $x_1$ ,  $y_1$  plane is probably perpendicular to the  $x_1$ ,  $z_1$  plane to within a minute of arc, and we can assume the three planes are orthogonal.

The anemoclinometer is aligned in the field such that the  $x_1$ -axis is approximately the same direction as the mean wind vector,  $\overline{y}$ ; the  $y_1$ -axis is approximately normal to gravity (although it could be aligned roughly parallel to a sloping land or canopy surface), the  $z_1$ -axis is perpendicular to both  $x_1$  and  $z_1$  to form the third axis in a right-handed coordinate system. If the anemoclinometer is

moved in the  $x_1$ ,  $y_1$  plane during the measurement period to keep the angle between  $\overline{y}$  and  $x_1$ -axis within the acceptance angle of the anemoclinometer Venturi, we can redefine the reference of the  $x_1$ -axis, for example to be, true south, or we may also use as a reference the azimuth of the  $\overline{y}$  as determined during the previous measurement period. We elected the latter in the 1968 measurements.

### General Coordinate Transforms

New coordinate systems can be defined by rotations of an angle  $\eta$  about the  $z_1$ -axis, the angle  $\theta$  about the  $y_1$ -axis, or the angle  $\theta$  about the  $x_1$ -axis. The angle  $\eta$  is positive as the x,y plane is rotated counterclockwise as viewed from the  $z_1$ -axis; the angle  $\theta$  is positive as the x,z plane is rotated clockwise as viewed from the positive  $y_1$ -axis; and the angle  $\theta$  is positive as the z,y plane is rotated counterclockwise as viewed from the positive  $x_1$ -axis.

The coordinate system rotations are orthogonal transformations and can be represented in matrix form (e.g. Albert, A. A. 1949. Solid analytic geometry. Phoenix Books Science Series, University of Chicago Press). For instance, if the  $\mathbf{x}_1$ ,  $\mathbf{y}_1$  plane is rotated about the  $\mathbf{z}_1$  axis by the angle  $\mathbf{\eta}$  to define new axes,  $\mathbf{x}_2$ ,  $\mathbf{y}_2$ , and  $\mathbf{z}_2$ ,

$$\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = (Z_{\eta}) \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$
 [1A]

where 
$$(Z_{\eta}) = \begin{pmatrix} \cos \eta & \sin \eta & 0 \\ -\sin \eta & \cos \eta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 [1B]

Similarly, rotations through the angles  $\theta$  or  $\theta$  can be done with the orthogonal matrices, respectively.

$$(Y_{\theta}) = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$
 [2]

and

$$(X_{g}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix}$$
 [3]

If more than one rotation is performed, the second rotation angle is defined with respect to the coordinates after the first rotation. A third rotation angle would be defined with respect to the coordinates after the second rotation. Sequential rotations are indicated by placing the matrix of the succeeding transformation to the left of the matrix of the transformation that preceded it.

Natural wind coordinate system:

A natural wind coordinate system may be defined as being a right-handed coordinate system in which the x-axis is parallel to the mean flow with x increasing in the direction of the flow; thus  $\vec{w}=\vec{v}=0$ , where  $\vec{w}$  and  $\vec{v}$  are the mean wind components along the z-axis and the y-axis, respectively. The transformation from the instrument to the natural coordinate system, requires the rotation through angles  $\eta$  and  $\theta$ . Rotation around the x-axis by an angle  $\theta$  will be considered later (p.R7), but for the present we shall assume that z-axis is normal to the land surface.

The instantaneous wind components can be separated into mean values and deviations from the means due to turbulence and can be represented in Reynold's notation as

$$u = \bar{u} + u'$$
 [4]

$$v = \tilde{v} + v'$$
 [5]

$$w = \tilde{w} + w'$$
 [6]

and  $\vec{w}$  are time averages where  $\vec{u}$ ,  $\vec{v}$ /and  $\vec{u}'$ ,  $\vec{v}'$  and  $\vec{w}'$  are the deviations along the x-, y-, and z-axes, respectively. Since the mean wind components  $\vec{w}_1$  and  $\vec{v}_1$ , as measured in the instrument coordinates, usually are not zero, we rotate through the angle  $\eta$  and then through the angle  $\theta$ , where

$$\eta = \arctan (\bar{v}_1/\bar{u}_1)$$
 [7]

$$\theta = \arctan \left[ \bar{w}_1 / (\bar{u}_1^2 + \bar{v}_1^2)^{\frac{1}{2}} \right]$$
 [8]

Let (CE) = 
$$\cos \pi = \bar{u}_1 / (\bar{u}_1^2 + \bar{v}_1^2)^{\frac{1}{2}}$$
 [9]

(SE) = 
$$sirm_1 = \bar{v}_1 / (\bar{u}_1^2 + \bar{v}_1^2)$$
 [10]

(CT) = 
$$\cos\theta = (\bar{u}_1^2 + \bar{v}_1^2)^{\frac{1}{2}}/(\bar{u}_1^2 - \bar{v}_1^2 + \bar{w}_1^2)^{\frac{1}{2}}$$
 [11]

(ST) = 
$$\sin\theta = \bar{w}_1/(\bar{u}_1^2 + \bar{v}_1^2 + \bar{w}_1^2)^{\frac{1}{2}}$$

Then

$$\begin{pmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{w} \end{pmatrix} = (\mathbf{Y}_{\theta}) (\mathbf{Z}_{\eta}) \begin{pmatrix} \mathbf{u}_{1} \\ \mathbf{v}_{1} \\ \mathbf{w}_{1} \end{pmatrix}$$
 [13]

Therefore,

$$u = u_1(CT)(CE) + v_1(CT)(SE) + w_1(ST)$$
 [14]

$$v = v_1(CE) - u_1(SE)$$
 [15]

$$w = w_1(CT) - u_1(ST)(CE) - v_1(ST)(SE)$$
 [16]

Equations [14], [15], and [16] can be written for the timeaveraged wind components or for the fluctuating components.

$$\bar{\mathbf{u}} = \bar{\mathbf{u}}_1 (CT) (CE) + \bar{\mathbf{v}}_1 (CT) (SE) + \bar{\mathbf{w}}_1 (ST)$$
 [17]

$$u' = u'_1(CT)(CE) + v'_1(CT)(SE) + w'_1(ST)$$
 [18]

$$v' = v'_1(CE) - u'_1(SE)$$
 [19]

$$w' = w'_1(CT) - u'_1(ST)(CE) - v'_1(ST)(SE)$$
 [20]

By the definition of A and  $\eta$ ,  $\bar{v} = \bar{w} = 0$ .

By performing the proper multiplications and averaging, [18], [19] and [20] can be manipulated to yield following relationships:

$$(\overline{u'})^{2} = \overline{(u'_{1})^{2}} (CT)^{2} (CE)^{2} + \overline{(v'_{1})^{2}} (CT)^{2} (SE)^{2} + \overline{(w'_{1})^{2}} (ST)^{2}$$

$$+ 2\overline{u'_{1}v'_{1}} (CT)^{2} (CE) (SE) + 2\overline{u'_{1}w'_{1}} (CT) (ST) (CE) \qquad [21]$$

$$+ 2\overline{v'_{1}w'_{1}} (CT) (ST) (SE)$$

$$(\overline{v'})^{2} = \overline{(v'_{1})^{2}} (CE)^{2} + \overline{(u'_{1})^{2}} (SE)^{2} - 2\overline{u'_{1}v'_{1}} (CE) (SE) \qquad [22]$$

$$(\overline{w'})^{2} = \overline{(w'_{1})^{2}} (CT)^{2} + \overline{(u'_{1})^{2}} (ST)^{2} (CE)^{2} + \overline{(v'_{1})^{2}} (ST)^{2} (SE)^{2}$$

$$- 2\overline{u'_{1}w'_{1}} (CT) (ST) (CE) - 2\overline{w'_{1}v'_{1}} (CT) (ST) (SE) \qquad [23]$$

$$+ 2\overline{u'_{1}v'_{1}} (ST)^{2} (CE) (SE)$$

$$\overline{u'w'} = \overline{u'_1w'_1(CE)[(CT)^2 - (ST)^2]} - 2\overline{u'_1v'_1(CT)(ST)(CE)(SE)} 
+ \overline{w'_1v'_1(SE)[(CT)^2 - (ST)^2]} - (\overline{u'_1})^2(CT)(ST)(CE)^2 [24] 
- (\overline{v'_1})^2(CT)(ST)(SE)^2 + (\overline{w'_1})^2(CT)(ST) 

\overline{u'v'} = \overline{u'_1v'_1(CT)[(CE)^2 - (SE)^2]} + \overline{w'_1v'_1(ST)(CE)} 
- \overline{u'_1w'_1(ST)(SE)} - (\overline{u'_1})^2(CT)(CE)(SE) [25] 
+ (\overline{v'_1})^2(CT)(CE)(SE) 

\overline{v'w'} = \overline{v'_1w'_1(CT)(CE)} - \overline{u'_1w'_1(CT)(SE)} - \overline{u'_1v'_1(ST)[(CE)^2 - (SE)^2]} 
+ (\overline{u'_1})^2(ST)(CE)(SE) - (\overline{v'_1})^2(ST)(CE)(SE)$$
[26]

Similarly, a scalar such as temperature or water vapor measured near the anemoclinometer can be represented in Reynold's notation as  $Q = \overline{Q} + Q'$  and covariances can be corrected by the transform to natural wind coordinates as follows:

$$Q'u' = Q'u'_1(CT)(CE) + Q'v'_1(CT)(SE) + Q'w'_1(ST)$$
 [27]

$$\overline{Q'v'} = \overline{Q'v'_1}(CE) - \overline{Q'u'_1}(SE)$$
 [28]

$$Q'w' = Q'w'_1(CT) - Q'u'_1(ST)(SE) - Q'v'_1(ST)(SE)$$
 [29]

Natural coordinate system with an angular rotation about the x-axis.

At a site with adequate fetch, no divergence, and steady state flow, measurements indicate that in addition to  $\overline{v} = \overline{w} = 0$ ,  $(u')^2 > (w')^2$  1/. Lettau states that  $\overline{u'v'} = \overline{w'v'} = 0$  2/. Although wide variations of  $(v')^2$  at different meteorological sites with similar conditions have been reported, our measurements at a one-meter height indicate that  $(\overline{u'})^2 \ge (\overline{v'})^2 > (\overline{w'})^2$ .

When  $u'v' \neq 0$ , conditions are not ideal; during the sampling period the horizontal wind velocity tends to increase as it shifts a particular direction 3/. When measurements indicate that u'v' is significantly different than zero, local divergence caused by fetch or surface homogeneity may be occurring, since the coordinate transform for forcing u'v' to zero results in finite  $\bar{v}$  and  $\bar{w}$ . A shift in wind direction may be accompanied by a change in velocity due to flow about large-scale surface features; this large scale divergence also may affect u'v' significantly over our 30-min sampling period.

Since  $\bar{v} = 0$  and there is no reason to expect v' to be correlated with w' 4/, measurements

Lumley, J. L. and H. A. Panofsky. 1964. The structure of atmospheric turbulence. Interscience Monogr. Vol. 12. John Wiley and Sons, New York, 239 p.

Lettau, H. H., 1968. Three-dimensional turbulence in unidirectional mean flow. p.127-156. In Studies of the effects of boundary modification in problems of small area meteorology. U. S. Army Electronics Command Tech. Rept. ECOM66-624-A, 156p.

<sup>3/</sup>Sutton, O. G. 1953. Micrometeorology. McGraw-Hill
Book Company, Inc. 333p.

<sup>4/</sup>Sutton, O. G. 1948. Atmospheric turbulence. Methuen & Co. Ltd. London. 107 pp.

of finite  $\overline{w'v'}$  indicate that the z-axis is orientated such that part of  $\overline{u'w'}$  appears in  $\overline{w'v'}$ . By a proper rotation of the z,y plane through the angle a in the natural wind coordinate system,  $\overline{w'v'}$  can be set to zero, with  $\overline{v}$  and  $\overline{w}$  remaining zero. The result is that the x,y plane is made parallel to the average slope of the terrain somewhere upwind from the sampling point.

Using  $(X_q)$  from [3] and letting  $u_2$ ,  $v_2$  and  $w_2$  be the wind components after the planar rotation to make  $w_2'v_2'=0$ ,

$$\begin{pmatrix} u_2 \\ v_2 \\ w_2 \end{pmatrix} = (X_{\beta}) \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$
 [30]

Therefore,

$$u_2 = u$$
 [31]

$$v_2 = v(CB) + w(SB)$$
 [32]

$$w_2 = w(CB) - v(SB)$$
 [33]

where

$$CB = \cos \theta \qquad [34]$$

$$SB = \sin^{q}$$
 [35]

The proper multiplications and averaging of the deviation of the wind components results in

$$\frac{(v_2')^2}{(v_2')^2} = \frac{(v')^2(CB)^2 + 2v'w'(CB)(SB) + (w')^2(SB)^2}{(36)}$$

$$\frac{(w_2')^2}{(w_2')^2} = \frac{(w')^2}{(CB)^2} - \frac{2w'v'}{(CB)} (SB) + \frac{1}{(v')^2} (SB)^2$$
 [37]

$$u_2'w_2' = u'w' (CB) - u'v' (SB)$$
 [38]

$$u_2'v_2' = u'v' (CB) + u'w' (SB)$$
 [39]

$$\overline{w_2'v_2'} = \overline{v'w'[(CB)^2 - (SB)^2] + \overline{(w')^2(CB)(SB)}}$$

$$- \overline{(v')^2(CB)(SB)}$$

and

$$(u_2')^2 = \overline{(u')^2}$$
 [41]

$$\overline{u_2} = \overline{u}$$
 [42]

$$\vec{\mathbf{v}} = \vec{\mathbf{w}} = \mathbf{0} \tag{43}$$

For a scalar quantity Q,

$$\overline{Q'u_2'} = \overline{Q'u'}$$
 [44]

$$Q'v'_2 = Q'v'(CB) + Q'w'(SB)$$
 [45]

$$Q'w_2' = \overline{Q'w'}(CB) - \overline{Q'v'}(SB)$$
 [46]

To make  $w_2'v_2' = 0$ , we must manipulate [40] to get

where

$$K = \overline{w'v'}/[(v')^2 - (w')^2]$$
 [48]

The positive sign must be used in [47] because then  $(w_2')^2$  is minimized and  $\overline{(v_2')^2}$  is maximized, as is desirable for  $\overline{(v_2')^2} > \overline{(w_2')^2}$ . Since  $9 = \arccos$  (CB) is small, (CB) and (SB) can be found in a few iterations by first assuming CB = 1, then solving [47] for SB, then

$$CB = (K)/(SB) - 2(K)(SB)$$
 [49]

and repeating until sufficient convergence obtains.

# DATA LISTING

|                                                                 | Page |
|-----------------------------------------------------------------|------|
| DAVIS, 1967, WITH TWO ROTATIONS TO MAKE v = w = 0               | D2   |
| DAVIS, 1967, WITH THREE ROTATIONS TO<br>MAKE v = w = v'w' = 0   | D22  |
| HANCOCK, 1968, WITH TWO ROTATIONS TO MAKE v = w = 0             | D42  |
| HANCOCK, 1968, WITH THREE ROTATIONS TO<br>MAKE v = w = v'w' = 0 | D58  |
| EXPLANATION OF HEADINGS                                         | D75  |

| NAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | ETA | THETA   | BETA    | HU<br>SENS IB | SENSIBLE HEAT TRANS |        | A I F | AIR TEMP<br>MEAN ST DEV |          | EU EV EM | RANS    | 7          |     | EXCEEDED 6 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|---------|---------|---------------|---------------------|--------|-------|-------------------------|----------|----------|---------|------------|-----|------------|--|
| 1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00   | RAD       | α   | RAD     | RAD     | ····CAL       | / CM2-MI            | •      | CEN   | FIGRADE                 | •        | / CM2-MI | :       | PARTS      | œ   | OUSAND     |  |
| 1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,100   1,10   |           |     |         | 6       | 0             | 0                   | 0      | •     |                         | 6        | 9        | 6       | ď          | •   |            |  |
| 1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00   | •         | ĭ   | 24.40   |         |               | 0000                |        | ċ     |                         | 0000     | 0000     | 0000    | - 6        | 0   |            |  |
| 0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0   | •         | 1   | 2160    |         |               | 0000                | 0.000  | Ċ     | 0.000                   | 0.000    | 0.000    | 0.000   | 5 <b>c</b> | •   |            |  |
| 1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,170   1,17   |           | - 1 | .2041   |         | 000000        | 0.6000              | 0.000  | o     | 00000                   | 00000    | 00000    | 0.0000  | 0          | 0   |            |  |
| 1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00   |           |     | 4010.   |         | 000000        | 0.0000              | 0.000  | ċ     | 0,000                   | 000000   | 0.000.0  | 0050*0  | 0          | 0   |            |  |
| 1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00   | - 40714-  | t   | -010-   | טיטפר ס | 0.000         | CC • C              | 0000   | ¢.    | 0000°                   | 00000    | 0,000    | 000000  | c          | c   |            |  |
| ### 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •         | 1   | .0040   |         | 0000-0        | 0.000               | 0.000  | C.    | 000000                  | 000000   | 000000   | 000000  | 0          | c   |            |  |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |     | .0410   |         | 3.0000        | 000000              | 0.000  | ċ     | 0000                    | 000000   | 0-000    | 000000  | 0          | 0   |            |  |
| 0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0   | - 3185 -  | ī   | £260.   |         | 0.000         | 0.0000              | 0.000  | ċ     | 0000°¢                  | 0000     | 00000    | 000000  | ဝ          | c   |            |  |
| 0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0   | - 1000-   | •   | 1000    |         | 0000          |                     | 000    | ć     | 0000                    | 000      |          |         | c          | •   |            |  |
| 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |     | 0217    |         | 0.0000        | 0.000               | 00000  | ċ     | 00000                   | 00000    | 00000    | 000000  | c          | 0   |            |  |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |           |     | -013E   |         | 0.000         | 000000              | 0.000  | Ċ     | 000000                  | ט • טטטט | 000000   | 000000  | ¢          | C   |            |  |
| 0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0   | 5272      |     | 45.00   |         | 0,000         | 2000                |        | ć     | 0000                    | 0000     | 00000    | 00000   | c          | c   |            |  |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |           | 1   | .0163   |         | 0.0000        | 0000                | 0000   | ċ     | 0.000                   | 00000    | 0000     | 0.0000  | 0          | 0   |            |  |
| 10.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |     | .0152   | 0.0000  | 000000        | 000000              | 0.000  | ċ     | 0.000                   | 000000   | 0.0000   | 000000  | O          | 0   |            |  |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 | - 11107 - | ,   | £ 000   |         | 0000          | 0000                |        | ć     | 0000                    | 0000     | 0000     | 000000  | c          | c   |            |  |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0. |           | 1   | 0165    |         | 0000          | 0000                | 000    | ċ     | 0000                    |          | 0000     | 00000   | c          |     |            |  |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |     | 1800    | 0.0000  | 0.000         | 0.000               | 0.000  |       | 0000                    | 0.000    | 00000    | 0.000   | 0          | c   |            |  |
| 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0         |     |         |         | 0             | 0                   | 0      | •     |                         | 0        | 0        | 0       | •          | •   |            |  |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0. |           |     |         |         |               | 0000                |        | •     | 0000                    | 00000    | 00000    | 0000    | 0          | •   |            |  |
| 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | ٠,  | 4540 ·- | 0.0000  | 0.000.0       | 0.000               | 0.000  | ċ     | 0.000.0                 | 0.0000   | 00000    | 0.0000  | 9 6        | 00  |            |  |
| 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2870      |     | 28.20   | 0000    | 0000          | 0000                |        | ć     |                         | 0000     |          | 0000    | c          | •   |            |  |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0. |           |     | .002€   | 0.0000  | 000000        | 000000              | 000000 | ċ     | 000000                  | 0000     | 00000    | 000000  | c          | 0   |            |  |
| 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |     | .0698   |         | 0.000         | 0.000               | 0.0000 | 0     | 00000                   | 0000     | 000000   | 000000  | 0          | 0   |            |  |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0. | 2520      |     | 20404   |         | 0000          | 00000               | 0000   | ć     |                         |          |          | 0.0000  | 0          | o   |            |  |
| 0.0000 0.0000 0.0000 0.0000 0.0.0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 |           | 1   | .0020   |         | 000000        | 00000               | 0000   | ċ     |                         | 0000     | 00000    | 000000  | 0          | 0   |            |  |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 |           | 1   | .0477   |         | 0000-0        | 0.0000              | 0.0000 | ċ     | 0000-0                  | 0.000.0  | 0000-0   | 0.000.0 | 0          | 0   |            |  |
| 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |     | . 047E  | 0.0000  | 0.0000        | 000, 3              | 0.000  | c     | 0000000                 | 000000   | 0.000.0  | 000000  | 0          | 0   |            |  |
| 0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | •   | *906*   |         | 0.0000        | 00000               | 0.0000 | ċ     | 0.000                   | 0.000    | 0.0000   | 0000.0  | 0          | 0   |            |  |
| 0.0006 .0877 .00670221 121890 0.0000 0.0000 0.0000 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1723      | 1   | .0652   |         | 00000         | 000000              | 00000  | ċ     | 000000                  | 000000   | 000000   | 000000  | 0          | 0   |            |  |
| 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5448 -    | •   | 0452    | 0.0000  | .0877         | .0067               | 0221   | 12.   | .1890                   | 0.0000   | 0.0000   | 0.0000  | 0          | 0   |            |  |
| 0.0000 .0652 .09510216 111730 0.0000 0.0000 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4976      |     | .0512   |         | 000000        | 000000              | 0.0000 | ċ     | 0.0000                  | 0.0000   | 0.0000   | 0000.0  | 0          | •   |            |  |
| 0.0000 .0652 .09510216 111730 0.0000 0.0000 0 0 0 0 0 0.0000 0.0000 0 0 0 0 0.0000 0.0000 0 0 0 0 0 0.0000 0.0000 0.0000 0 0 0 0 0 0 0.0000 0.0000 0.0000 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |     | .0114   |         | 0000          | 0.000.0             | 0.0000 | ċ     | 000000                  | 0.0000   | 00000    | 0000*0  | 0          | 0   |            |  |
| 0.0000 0.0000 0.0000 0.0.0.0000 0.0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000                                                              | 1471      | •   | 0657    |         | •0652         | .0951               | 0216   | 11.   | .1730                   | 000000   | 0000.0   | 0000*0  | 0          | ٥   |            |  |
| 0.0000 0.237010430205 112330 0.0000 0.0000 0.0000 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1506      |     | .0427   |         | 0.0000        | 0.000               | 000000 | ċ     | 0.0000                  | 0-000    | 0.000    | 000000  | G :        | 0   |            |  |
| 0.0000 .237010430205 112930 0.0000 0.0000 0.0000 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1362      |     | .0449   |         | 000000        | 0.000               | 0.0000 | ċ     | 0000•0                  | 0.0000   | 0.0000   | 000000  | 0          | 0   |            |  |
| 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | •   |         |         |               | 1043                | 0205   |       | .2930                   | 000000   | 0000-0   | 000000  | 0          | 0   |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FF62      |     |         |         |               | 000000              | 0.0000 |       | 00000                   | 00000    | 0.0000   | 0.0000  | <b>o</b> c | > C |            |  |

D3

| WIND<br>SHIFT<br>RAD    | 0.000  | 00000  | 00000 | 0.000  | 000    |      | 0.00         | 000    | 0.00  | 0.000  | 00000  | 000   | 0.000  | 0.000  | 00000 |     | 0.00   | 00000  | 0.000  | 000    |        | 0.00   | 000    | 000    | 0.000    | 0.00   | 000    | 0.000          | 000   | 000.0  | 0.00  |     | 00000  | 000   | 0.000 | 0.000  | 00000 | 0.000          | 0000   | 0000   | 000    |
|-------------------------|--------|--------|-------|--------|--------|------|--------------|--------|-------|--------|--------|-------|--------|--------|-------|-----|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|----------------|-------|--------|-------|-----|--------|-------|-------|--------|-------|----------------|--------|--------|--------|
| R A D                   | 0.000  | 0000   | 000.0 | 00000  |        |      | 000.0        | 0000   | 0.00  | 000.0  | 0.000  | 0000  | 000.0  | 00000  | 00000 |     | 00000  | 0.000  | 0.000  | 000    | 000    | 0.00   | 000    | 0000   | 0.000    | 0000   | 00000  | 000 0          | 00000 | 00000  | 00000 |     | 0.000  | 000   | 0.000 | 00000  | 0.000 | 00000          | 0.000  | 0.000  | 0000   |
| GSD<br>ANGLE<br>RAD     | .209   | •230   | 000.0 | •205   | 1000   |      | .150         | .149   | 00000 | .180   | • 186  | 00000 | .237   | •226   | 000.0 |     | .235   | .251   | • 432  | 282    | 208    | .272   | 7.8.7  | .279   | •225     | .142   | -172   | 00000          | .133  | .155   | .147  |     |        | 000   |       |        | 0.100 |                | .162   | .145   | •165   |
| G<br>AZIM<br>RAD        | -217   | •      | 000.0 | 140.   | C      |      | -,051        |        | 0.000 | 163    |        | 0000  |        |        | 0.00  |     |        | 158    |        | -230   | 1      |        |        |        | 192      | .186   |        | 0              |       | .170   |       |     | • 223  | 00000 | 0.000 | .003   | 00000 |                | 203    |        |        |
| FSU<br>ANGLE<br>KAD     | •080   |        | 0.000 | .088   | •      | •    | 660.         |        | 0.000 | •109   |        | 0.000 | .135   | .139   | C     |     |        |        | .119   | .123   |        | .126   |        |        | .086     | 760.   | •      | C              | •     | •093   | •     |     | •215   |       | 0.00  |        |       | 0.00           |        | •093   |        |
| ELEV                    | 054    |        |       | 750    | 400    |      | 059          | •055   | 000.0 | 090    | • 062  | 0.500 | -,054  |        | Ç     |     |        |        | 008    | £003   | 100    | 0.00   |        | • 035  |          |        | 015    |                |       | 015    |       |     | •036   | 0.000 | 000.0 |        | 0.000 |                | •003   | 160.   | - 007  |
| HOR12<br>WIND<br>CM/SEC | 135.48 |        | 00°C  | 167.72 | _      |      | 182.61       | 185.52 | 00 °C | 192.75 | _      | J.00  | ~      | _      | 9.00  |     | 261.59 | 261.22 | 265.51 | 277.90 | 278-47 |        | 327.84 | 329.01 | 394.66   |        | 456.97 | 0.00           | 232   | 232.22 | 237   |     | 2      |       | 00.0  | 22     |       | 0.0            | 96.404 | 524.86 | 422.20 |
| Rev                     | .048   | 248    | 0.000 | •639   | 1000   | 0.00 | •015         | -005   | 0.00  | 007    | 039    | 0.903 | .018   | 024    | 0.000 |     | .123   | 133    | .208   | 1747   | -2716  | .562   | 365    | 250    | -612     | .202   | 182    | 00000          | •039  | 022    | 0.000 |     | 00000  | 0.000 | 0.000 | .176   | 00000 | 000            | .057   | 013    | 074    |
| REYVOLDS STRESSES       | 273    | 502    | 0.00  | 323    | 1000   | 001. | 337          | 375    | 000-0 | 487    | 606    | 0.000 | 517    | 576    | 0.000 |     | 358    | 527    | 675    | 0000   | 9000-  | 454    | -2-146 | -2.753 | -1.235   | .351   | .455   | 000°           | 167   | 379    | 321   |     | 1.241  | 0.00  | 000.0 | 055    | 0.00  | 000.0          | 504    | -1.789 | 572    |
| RUM<br>REYVO            | 051    | 020    | 0.003 | 179    | 1000.0 | 601. | 225          | 195    | 0.000 | 268    | - 238  | 00000 | -,290  | 279    | 00000 |     | 671    | 712    | 734    | -77.4  | 728    | 814    | -1.126 | 764    | 563      | -1.267 | -1.554 | 0000           | 47%-  | 280    | 210   |     | 621    | 000-0 | 0.000 | 476    | 0000  | 0000           | -1,268 | -1.280 | 16401- |
| WSD<br>DEV              | 8.33   | 8.93   | 00.0  | 15.82  | 200    |      | 18.17        | 19.23  | 2.00  | 20.78  | 20.29  | 00.0  | 20.76  | 20.17  | 00.0  |     | 28.77  | 30.31  | 29.84  | 31.08  | 31.26  | 32.34  | 37.16  | 33.00  | 29.77    | 40.67  | 41.59  | <b>C</b> O • C | 21.03 | 21-11  | 20.18 |     | 24.03  | C .   | 0.00  | 25.11  | 00.0  | 00.0           | 39.42  | 47.99  | 12064  |
| VSD<br>ND ST            | 28.82  | 30-12  | 00.00 | 33.62  | 0.00   |      | 28-22        | 28.64  | 00.0  | 34.65  | 37.26  | 0.00  | 38.83  | 40.50  | 0000  |     | 59.28  | 64.68  | 90-65  | 76.80  | 82.60  | 74.27  | 80.88  | 91.19  | 92.51    | 66.49  | 78.89  | 0°0            | 31.24 | 35.89  | 35.10 |     | 53.23  | 0.00  | 00-0  | 79.28  | 0000  | 0.00           | 67.44  | 77.87  | 76.00  |
| USD<br>WIN              | 19.21  | 24.04  | 0.0   | 46.74  |        |      | 42.51        | 40.14  | 00.0  | 40.30  | 47.14  | 2.00  | 51.64  | 41.24  | 0.01  |     | 96.00  | 63.81  | 66.89  | 75.54  | 72.64  | 74.55  | 92.87  | 97.30  | 66.7!    | 91.73  | 94.19  | C<br>C         | 43.39 | 43.23  | 42.12 |     | 116.64 | C (   | 0     | 104.52 | 0.00  | 0              | 94.12  | 98.11  | 103.47 |
| MEAN                    | 132.68 | 130.45 | 00.0  | 164.76 | 00.00  |      | 180.91       | 133.69 | 0000  | 190.10 | 193.84 | 00.00 | 183.16 | 191.61 | 0.00  |     | 254.72 | 253.28 | 564.59 | 267.36 | 256.58 | 275.35 | 312.69 | 316.66 | 392.64   | - ec   | 450.51 | 00.0           | 30.6  | 229.56 | 37.4  |     |        | 0000  |       | 207.68 | 0.00  | 00.0           | 399.60 |        |        |
| SITE                    | 191    | 2      | *     | ٦,     | 4 (*   |      | <b>~</b> 4 ( | ٠,     | •     | -      | 2      | ۳.    | -      | ~      | ~     | 567 | _      | ~      | m      |        |        | ~      | 1      | ~      | <b>~</b> | -      | N      | "              | -     | 7      | m     | 199 | _      | ۸,    | er.   | -      | ۸,    | Pr.            | (      | ~ .    | •      |
| TIME S<br>START         | 4226   | 1830   | 2     | 1900   | 1900   |      | 1930         | 0661   | 0161  | 2000   | 2000   | 2000  | 7030   | 2030   | 6606  | 425 | 900    | 900    | 930    | 945    | 596    | 345    | 1015   | 1015   | 1015     | 1614   | 1614   | 1614           | 1713  | 1713   | 1713  | 426 | 1330   | 066   | 1330  | 3400   | 0071  | ()<br>()<br>() | 1630   | 0630   | 1630   |

| DED<br>G<br>SAND                              | 000                                     | 000                       | 000                     | 000                        | 000                                     | 000                          | 900                        | 000                        | 000                           | 000                            | 000                                 | 000                        | 000                                     |
|-----------------------------------------------|-----------------------------------------|---------------------------|-------------------------|----------------------------|-----------------------------------------|------------------------------|----------------------------|----------------------------|-------------------------------|--------------------------------|-------------------------------------|----------------------------|-----------------------------------------|
| EXCEEDED<br>F<br>G<br>R THOUSAND              | 000                                     | 000                       | 000                     | 000                        | 000                                     | 000                          | 000                        | •••                        | 000                           | 000                            | 030                                 | 000                        | 000                                     |
| LIMITS EXCEEDED<br>VSQ F<br>PARTS PER THOUSAN | 000                                     | 000                       | 000                     | 200                        | 000                                     | 000                          | 000                        | 000                        | 600                           | 006                            | 000                                 | ٥٥٥                        | 600                                     |
| EW<br>RANS<br>N)                              | 0000000                                 | 0.0000                    | 0.0000                  | 00000                      | 000000000000000000000000000000000000000 | 00000*0                      | 0.0000<br>0.0000<br>0.0000 | 0.0000                     | 00000°0<br>00000°0<br>00000°0 | \$355.0<br>\$355.0<br>\$0000.0 | 0.0000                              | 0,0000<br>0,0000<br>0,0000 | *0554<br>0*0000<br>0*0000               |
| EU EV EW<br>LATENT HEAT TRANS                 | 0000-0                                  | 0.0000                    | 0.0000                  | 0.0000                     | 0.0000                                  | 0.0000<br>0.0000<br>0.0000   | 0.0000<br>0.7000<br>0.0000 | 0.0000<br>0.0000<br>0.0000 | 0.0000                        | 0.0000<br>0.0000<br>0.0000     | 0.000<br>0.000<br>0.000             | 0.0000                     | 0.0000                                  |
| w :                                           | 000000000000000000000000000000000000000 | 0.0000                    | 0.0000                  | 0.0000                     | 0.0000                                  | 0.0000<br>0.00000<br>0.00000 | 0-00mg                     | 0-0000<br>0-0000<br>0-0000 | 0.0000                        | 0-0000                         | 0.0000<br>0.0000                    | .3419<br>0.0000<br>0.0000  | 0.0000<br>0.0000<br>0.0000              |
| AIR TEMP<br>HEAN ST DEV<br>CENTIGRADE         | .1790<br>0.0000<br>0.0000               | .3190<br>0.0000<br>0.0000 | .1940<br>n.0000         | .2460<br>0.0000<br>0.0000  | .1890<br>0.0000<br>0.0000               | •4480<br>7•0000<br>7•0000    | .8400<br>0.0000<br>0.0000  | .8370<br>0.0000<br>0.0000  | .5140                         | .5720<br>0.0000<br>0.0000      | 1.0100<br>0.0000<br>0.0000          | .8470                      | .1680                                   |
| AIR<br>MEAN<br>CENTI                          |                                         | • • •                     | ø e e                   |                            | 900                                     | 966                          | ; · · ·                    | 5000                       |                               | 0000                           | 5000                                | 500                        | 13:                                     |
| 2.                                            | 0650<br>0.0000<br>0.0000                | 0181<br>0.0000<br>0.0000  | 0.0000<br>0.0000        | 0.0000                     | 0.0000                                  | .0876<br>0.0300<br>0.0000    | 0.0000                     | .2212<br>0.0000<br>0.0000  | .0766<br>0.0000<br>0.0000     | 0.0000                         | .1324<br>0.0000<br>0.0000           | .1300                      | 0180<br>0166<br>0251                    |
| HU HV HW<br>SENSIBLE HEAT TRANS               | .0028<br>0.0009<br>0.0009               | 0356<br>7.0000<br>7.0000  | 0,0000                  | 0.0000<br>0.0000<br>0.0000 | .0259<br>0.0000<br>0.0000               | 3180<br>/-0000<br>/-0000     | .0805<br>0.0000<br>0.0000  | 0246<br>0.0000<br>0.0000   | .1218<br>0.0000<br>0.0000     | 0.0000                         | 1261<br>7-9960<br>7-5000            | 7.0340<br>7.0000<br>7.0000 | .0313<br>0013<br>0347                   |
| HU<br>SENSIB                                  | .0234<br>0.0060                         | .1799<br>0.0000<br>0.0000 | .1192                   | .1130<br>0.0000<br>0.0000  | 0.0000                                  | 1606<br>7-0000<br>7-0000     | 0.0000                     | 0.0000<br>0.0000           | 0.000<br>0.000<br>0.000       | .2458<br>0.0000<br>0.0000      | •0962<br>••0000<br>••0000           | 0.0000                     | .0231                                   |
| BETA                                          | 0.0000                                  | 0.0000                    | 0.0000                  | 0.0000                     | 0.00000                                 | 0000°0<br>0°0000°0           | 0.0000                     | 0.0000                     | 0.0000                        | 0.00000                        | 0000°0                              | 0.0000<br>0.0000<br>0.0000 | 000000000000000000000000000000000000000 |
| THETA                                         | 658n<br>-039n<br>n.1000                 | 0629<br>.0467<br>0.2000   | 0654<br>.0519<br>0.0000 | 0570<br>0584<br>0784       | 0642                                    | 0059                         | 0056                       | -0027                      | .0129<br>0237                 | -0110<br>020<br>0104           | .0191<br>0.0000<br>0.0000           | .0075                      | 0047                                    |
| ETA                                           | .2049<br>.2526<br>0.0000                | .0868<br>.1306<br>5.0000  | 0595<br>0169            | 1743<br>1379<br>0-0000     | 2637<br>2260<br>0-0000                  | 2745                         | 2291<br>1159<br>1889       | 3156<br>2256<br>1949       | .1283                         | .1532<br>.1655<br>.1604        | .2894<br>0.0000<br>0.0000           | 0.0000                     | 2068<br>2139<br>2726                    |
| SITE                                          | 42267<br>0 1<br>0 2<br>0 2              | - ~ ~                     | 474                     |                            | 426                                     | 42567<br>0 1<br>0 2<br>0 2   |                            | -~6                        | v r                           | ~~                             | 2 2 2                               |                            | ~ ~ m                                   |
| TIME SITE                                     | 42<br>1830<br>1830<br>1830              | 1900                      | 1930                    | 2000<br>2000<br>2000       | 2030                                    | 42<br>900<br>900<br>900      | 945<br>945<br>845          | 1015                       | 1614                          | 1713<br>1717<br>1717           | 42667<br>1330 1<br>1330 2<br>1330 2 | 1400                       | 1630<br>1630<br>1630                    |

| WIND<br>SHIFT<br>RAD             | 0.000                       | 0.0000                    | 0.000                    | 0.000                    | 0.000                                  | 000000                  | 000000                     | 0.000                       | 000000000000000000000000000000000000000 | 0.000                      | 000000                     | 0.0000                    | 0.000                      |
|----------------------------------|-----------------------------|---------------------------|--------------------------|--------------------------|----------------------------------------|-------------------------|----------------------------|-----------------------------|-----------------------------------------|----------------------------|----------------------------|---------------------------|----------------------------|
| WIND<br>DIR<br>RAD               | 0.000                       | 0.000                     | 0.000                    | 0.000                    | 0.000                                  | 0000-0                  | 000.0                      | 0.0000                      | 000000                                  | 0.000                      | 0000                       | 000000                    | 0.000                      |
| 6SD<br>ANGLE<br>RAD              | *151<br>*134<br>*157        | 0.000                     | .119                     | .138<br>.165<br>0.000    | .136<br>.176<br>.265                   | 0.000                   | .227<br>.238               | .258<br>.247<br>.243        | .258<br>.240<br>.214                    | .293<br>.274<br>.278       | .214<br>.175               | .134<br>0.000<br>.173     | .230<br>.214<br>.217       |
| G<br>AZ 1M<br>RAD                | 169                         | 0.000                     | 369<br>0+000<br>447      | 276                      | 272<br>315<br>034                      | 0.000                   | 218<br>066<br>169          | 114                         | -168                                    | 032                        | .254<br>.381<br>.283       | .394<br>0.000<br>.370     | 063                        |
| FSC<br>ANGLE<br>RAD              | .100                        | 0.096<br>0.000<br>0.108   | 0000                     | .100                     | .098<br>.093                           | 0.000                   | . 108<br>. 099<br>. 106    | .109                        | •105<br>•094<br>•105                    | .107                       | •102<br>•090<br>•135       | 091                       | .105<br>.089<br>.136       |
| F<br>ELEV<br>RAD                 | .005                        | 7.003<br>7.000<br>00i     | 0.030                    | .004<br>.140             | 001<br>034                             | 000.0                   | 00000                      | .001                        | 0.000                                   | .003<br>040<br>-039        | .009                       | 0.000                     | .003<br>.037<br>008        |
| HOR 12<br>W IND<br>CM/SEC        | 398°76<br>515°71<br>422°77  | 417.82<br>0.00<br>419.10  | 390.37<br>0.00<br>341.38 | 274.17<br>364.41<br>0.00 | 259.25<br>341.11<br>230.78             | 0.00                    | 460.29<br>579.86<br>482.00 | 434.64<br>551.39<br>462.20  | 435.79<br>548.77<br>423.07              | 623.09<br>516.77<br>432.71 | 420.78<br>507.90<br>424.95 | 477.94<br>0.00<br>484.23  | 529.74<br>691.18<br>550.13 |
| RWV<br>SSES                      | .151                        | .970<br>0.000<br>175      | 0.000                    |                          | .026<br>501<br>077                     | 0.000<br>0.000<br>254   | .207<br>528<br>171         | -1.346<br>-1.346<br>237     | -328<br>899<br>196                      | -1-870<br>-1-569           | -281<br>-743<br>153        | 069<br>0.000<br>0.158     | -1.797<br>312              |
| RUW RUV RWV<br>REYNOLDE STRESSES | .013<br>649<br>999          | 0.000                     | 0.000<br>0.000<br>1.460  | 196<br>1-454<br>0-0.00   | 1.455                                  | 0.000<br>0.000<br>0.873 | .870<br>1.462<br>439       | -2.627<br>-4.446<br>-3.398  | 1.935                                   | -1.846<br>.788<br>-1.693   | 1.530                      | .919<br>0.000<br>017      | -3.435<br>-2.431<br>-1.632 |
| RUW<br>REYNO                     | -1-196<br>-1-278<br>-1-395  | -1.311<br>0.000<br>-1.366 | 7.570<br>7.000<br>-1.346 | 1.661                    | 465                                    | 000000                  | -1.968<br>-1.615<br>-1.631 | -1.653<br>-1.652<br>-1.650  | -1.592<br>-2.259<br>-1.423              | -1.618<br>-2.105<br>-1.279 | -1,212                     | -1-371<br>0-000<br>-1-283 | -2-335<br>-2-215<br>-2-190 |
| WSB<br>DEV                       | 38.28<br>46.16<br>42.99     | 37.93<br>0.00<br>41.36    | 34.55                    | 35.56<br>0.00            | 24.55<br>31.55<br>31.90                | 0.00                    | 45.26<br>54.13<br>48.42    | 43.94<br>52.50<br>45.92     | 42.57<br>46.85<br>44.97                 | 42.15<br>51.08<br>42.72    | 39.55<br>42.42<br>40.25    | 00.05<br>0.00<br>42.62    | 51.92<br>57.50<br>55.24    |
| VSD<br>C. S.T                    | 61.72<br>69.67<br>63.92     | 54.88<br>0.30<br>45.43    | 46.65<br>0.00<br>40.47   | 37.34<br>60.33<br>0.00   | 88 88 88 88 88 88 88 88 88 88 88 88 88 | 0.00                    | 104.94<br>131.83<br>98.91  | 1111.74<br>134.38<br>112.10 | 126-12                                  | 121-79<br>135-26<br>120-75 | 85.14<br>83.01<br>93.40    | 56.74<br>0.00<br>78.74    | 128.58<br>151.65<br>122.04 |
| USD<br>WIN                       | 90.33<br>92.36<br>104.19    | 92.79<br>0.00<br>100.55   | 82.02<br>0.00<br>100.10  | 62.02<br>61.52<br>0.00   | 57-17<br>53-52<br>69-78                | 0.00                    | 124,30<br>120,39<br>128,44 | 107.84<br>120.79<br>121.34  | 119.3A<br>147.77<br>115.04              | 119.85<br>139.06<br>115.9! | 114.36                     | 120.97<br>0.00<br>129.31  | 124.89<br>131.51<br>128.24 |
| MEAN                             | 394.20<br>512.94<br>425.03  | 414.43<br>9.99<br>432.50  | 277-75<br>0.00<br>405-39 | 271.67<br>362.88<br>5.00 | 256.91<br>339.07<br>226.94             | 0.00<br>0.00<br>205.77  | 4:8.69<br>564.70<br>479.21 | 420-42<br>535-34<br>455-61  | 422+60<br>594+32<br>451+30              | 405.70<br>498.94<br>424.64 | 412.00<br>501.54<br>*26.16 | 03.00                     | 515-13<br>575-53<br>542-87 |
| SITE                             | 1 2 2 3                     | r. m                      | - 00                     | 35 =                     | 32 -                                   | 146                     | 341.6                      | VE                          | -12 m                                   | 00                         | in fulfi                   | ** 100 100                |                            |
| TIME S<br>START                  | 426<br>1700<br>1700<br>1700 | 1730<br>1770<br>1730      | 1800<br>1800<br>1800     | 1900                     | 1930                                   | 2000<br>2000<br>2000    | 427<br>930<br>936<br>936   | 1000                        | 1030                                    | 1100                       | 1130                       | 1200<br>1200<br>1200      | 1400                       |

| XCEEDED<br>G<br>THOUSAND              | •••                        | 000                        | 000                       | 000                        | 000                       | 000                                     | 000                        | 000                        | 000                        | 000                       | 000                       | 000                                     | 000                         |
|---------------------------------------|----------------------------|----------------------------|---------------------------|----------------------------|---------------------------|-----------------------------------------|----------------------------|----------------------------|----------------------------|---------------------------|---------------------------|-----------------------------------------|-----------------------------|
| W L ~                                 | 000                        | 000                        | 000                       | 000                        | 000                       | 000                                     | 636                        | 000                        | 000                        | ٥٥٥                       | 000                       | 000                                     | 000                         |
| LIMITS<br>VSQ<br>PARTS PER            | 000                        | 000                        | 000                       | 000                        | 000                       | 000                                     | 000                        | 000                        | 600                        | 000                       | 000                       | 000                                     | <b>5</b> 00                 |
| EN RANS                               | .0283<br>0.0000<br>0.0000  | 0.0000                     | 0170<br>0.0000<br>0.0000  | 0.0000                     | 0.0000                    | 0000000                                 | 0000000                    | .3349<br>0.0000<br>0.0000  | 0.0000                     | .3419<br>6.0000<br>0.0000 | 0.0000                    | ,3613<br>0,0000<br>0,0000               | .3702<br>0.0000<br>0.0000   |
| EU EV EW<br>LATENT HEAT TRANS         | .0090<br>0.0000<br>0.0000  | 0063<br>0-0000<br>0-0000   | 0016<br>7-0000<br>0-0000  | 0042<br>9-6000<br>0.000    | .0205<br>9.0000<br>0.0000 | 0.0000                                  | 0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000           | 1857<br>0.0000<br>1.0000   | 2748<br>0.0000<br>0.0000  | .1907<br>0.0000<br>0.0000 | .1221<br>7.0000<br>0.0000               | .2569<br>6.0000<br>0.0000   |
| EU<br>LATEN                           | -*20*0<br>0*0000<br>0*0000 | 7.0507<br>0.0000<br>0.0000 | .0410<br>7.0000<br>0.0000 | .0967<br>0.0000<br>0.0000  | .0521<br>0.0000<br>0.0000 | 0-000-0                                 | 0.0000                     | 9212<br>0.0000<br>0.0000   | 9138<br>0-0000<br>0-0000   | 9550<br>0.0000<br>0.0000  | 0000°0<br>0°000<br>0°000  | 7.0030<br>0.0000                        | -1.5430<br>0.0000<br>0.0000 |
| AIR TEMP<br>IEAN SI DEV<br>CENTIGRADE | .2270<br>.2110<br>.2130    | .3100<br>0.000<br>0.2910   | .2920<br>0.0000<br>.3080  | .2540<br>.2310<br>0.0000   | .2520<br>.1980            | 000000000000000000000000000000000000000 | 0.000<br>•4690<br>0.0000   | .5570<br>0.0000            | . 1740<br>.6339<br>0.0000  | .8920<br>.6140            | .9110<br>.5900<br>0.0000  | .8390<br>0.000<br>.8130                 | .6520<br>.5250<br>.6490     |
| A1R<br>MEAN<br>CENTI                  | 13•<br>13•<br>10•          | 12.                        | 11.                       | 0000                       | . 6<br>. 4<br>. 4         | 000                                     | ំដូ                        | 112.                       | 13.<br>12.<br>n.           | 13.<br>12.<br>0.          | 13.<br>12.                | 13.                                     | 13.                         |
|                                       | 0333<br>0382<br>0346       | 0590<br>0,000<br>0699      | 0517<br>0.0000<br>0752    | 0530<br>0674<br>n.conn     | 0336<br>0490<br>1863      | 0.0000<br>0.0000<br>-1271               | 0.0000<br>.2155<br>0.0000  | ,2496<br>,2554<br>0,0000   | .2347<br>.2640<br>^.0000   | .5285<br>.5270<br>0.0000  | .2367<br>.2052<br>0.9060  | .2079<br>0.0000<br>.2217                | .1869<br>.1953<br>.7046     |
| HU HW<br>SENSIBLE HEAT TRANS          | .0273<br>.0332<br>.0015    | .0626<br>0.7000<br>.0651   | .0110<br>.0000<br>.0565   | 0154<br>0595<br>0-0000     | *0338<br>*1232<br>2:2453  | 0.0000<br>0.0000<br>1.003               | 0.0000<br>0.0974<br>0.0000 | 0823                       | .0798<br>.1219             | 2863<br>3363<br>0-000     | 0829<br>.0036<br>n.nnn    | 0040<br>n.nnn<br>1376                   | .1514                       |
| HU<br>SENSIB                          | •2909<br>•1221<br>•1020    | .3586<br>n.nnn<br>.2896    | .3087<br>0.0000<br>.4335  | .2417<br>.1906<br>n.0000   | .0954                     | 0.0000<br>0.0000<br>0594                | 0.3000<br>3466<br>0.0000   | 6398                       | 9508<br>0761<br>/          | 6709                      | 6445<br>5910<br>0.0000    | 7.0000<br>7.0000<br>2260                | 5774                        |
| BETA                                  | 0.00.0<br>0.0000<br>0.0000 | 0000000                    |                           | 0.0000<br>0.0000<br>0.0000 | 0.0000                    | 0.0000<br>0.0000<br>0.0000              | 0.0000                     | 0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000 | 0.00000                   | 0.000                     | 0.0000000000000000000000000000000000000 | 0.0000<br>0.0000<br>0.0000  |
| THETA                                 | 0018<br>-0831<br>0146      | 010%<br>0.0000<br>0083     | 0073<br>0-0000<br>0077    | 033r<br>.1361<br>n.000n    | 6661<br>-1359<br>0217     | 0.0000<br>0.0000<br>0094                | -0104<br>-0259<br>0164     | 0075<br>0367<br>0138       | CO77<br>.0361<br>0078      | 0060<br>-0342<br>0167     | 0027<br>-0053<br>0247     | .3035<br>04:1000<br>0246                | -0047                       |
| E ETA                                 | 1697<br>1780<br>2345       | 3536<br>^.0000<br>4059     | 3704<br>0.0000<br>4262    | 2797<br>3162<br>0-0000     | 2764<br>3080<br>0329      | 0.0000                                  | 5132<br>6632<br>1673       | 1256<br>-0032<br>0961      | 1736<br>0566<br>1965       | 040G<br>-1073<br>0396     | .2664<br>.3947<br>.278    | .3998<br>0.0000<br>.3597                | 0145<br>-0414<br>0188       |
| \$116                                 | 42667<br>0 1<br>0 2<br>0 3 | re                         | ~ r.m                     | - 0 r                      | 126                       |                                         | 42767<br>0 1<br>0 2<br>0 3 | rv r-                      | - 2 -                      | 1 2 6                     | 726                       |                                         | 3 2 1                       |
| START                                 | 42<br>1700<br>1700<br>1700 | 1730<br>0571<br>1730       | 1830                      | 1900<br>1900<br>1900       | 1930<br>1930<br>1930      | 2000<br>2000<br>2000                    | 930                        | 1000                       | 1030<br>1030<br>1030       | 1100                      | 1130                      | 1200                                    | 1400                        |

| WIND<br>SHIFT<br>RAD      | 000000000000000000000000000000000000000 | 0.0000                     | 0.0000000000000000000000000000000000000 | 0.000                       | 0.0000000000000000000000000000000000000 | 0000                       | 000000                     | 0000                       | 0.0000000000000000000000000000000000000 | 0.000                                   | 0.000                     | 000000                     | 000000                     |
|---------------------------|-----------------------------------------|----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------------|-----------------------------------------|---------------------------|----------------------------|----------------------------|
| KIND<br>DIR<br>RAD        | 0.000                                   | 0000                       | 0000                                    | 000000                      | 000000                                  | 00000                      | 0.000                      | 0000                       | 0000                                    | 0.0000000000000000000000000000000000000 | 00000                     | 0000                       | 0000                       |
| GSD<br>ANGLE<br>RAD       | .221                                    | .239<br>.232<br>.243       | .229<br>.218                            | .169<br>.145<br>.181        | .191<br>.169<br>.191                    | .245<br>.232<br>.227       | .120<br>.130               | .149<br>.117               | .138<br>.106                            | .149<br>.117<br>.143                    | .260<br>.246<br>0.000     | .149<br>.126               | .158<br>27.302<br>.136     |
| G<br>AZ IM<br>RAD         | 093                                     | .108                       | .013                                    | .113                        | 051<br>010<br>057                       | 241<br>211<br>232          | .380<br>.392               | 0.010                      | 221<br>198<br>211                       | 135<br>102<br>115                       | .173                      | 035<br>125<br>208          | 0.000                      |
| FSD<br>ANGLE<br>RAD       | .107                                    | .094                       | .104<br>.089<br>.102                    | .105                        | .105<br>.085                            | .100                       | .097<br>.094<br>.129       | 960.                       | .107                                    | .101                                    | .116<br>.120<br>^.100     | 0643                       | .087                       |
| F<br>ELEV<br>RAD          | .003                                    | .035<br>-011               | .002<br>.035<br>014                     | .005<br>.033<br>013         | .002                                    | 001                        | .010                       | 006                        | 007                                     | 003<br>037<br>011                       | 006<br>.038               | 005<br>041<br>016          | 0.000                      |
| HOR12<br>WIND<br>CM/SEC   | 507.95<br>655.04<br>555.47              | 447.35<br>,72.67<br>487.55 | 499.10<br>638.99<br>520.33              | 501.72<br>666.29<br>549.77  | 533.61<br>703.91<br>585.71              | 420.56<br>605.23<br>452.76 | 330.10<br>423.16<br>320.41 | 187.01<br>275.96<br>214.63 | 293.69<br>399.72<br>314.76              | 250.68<br>359.28<br>281.34              | 162.44<br>230.61<br>0.00  | 151.35<br>265.77<br>164.54 | 145.19<br>247.27<br>155.36 |
| RWV<br>SES                | .595<br>961<br>237                      | -1.393                     | -1 c095                                 | .251<br>544<br>068          | -208<br>880<br>318                      | 0.000<br>652<br>315        | .004<br>282<br>080         | .038<br>.111<br>002        | .054<br>050<br>017                      | .007<br>105                             | .050<br>.009<br>.009      | 011                        | .020                       |
| RUW RUY<br>REYNOLDS STRES | -1.097<br>.400<br>-2.071                | 1.750<br>3.969<br>2.582    | 2.276<br>2.123<br>3.256                 | -1.391<br>-066              | .589<br>495<br>381                      | 3.343<br>1.304<br>-,572    | 171<br>484<br>-2.497       | .018<br>019                | .310                                    | 1.452                                   | -2.215<br>-3.487<br>0.000 | .083<br>.109               | 052<br>-016<br>087         |
| RUW<br>REYNO              | -2.322<br>-2.456<br>-2.219              | -1.472<br>-2.185<br>-1.832 | -1.947<br>-2.326<br>-1.842              | -2.044<br>-1.993<br>-1.965  | -2.282<br>-2.215<br>-2.179              | -1.430<br>-1.418<br>-1.568 | 996                        | 196                        | 626<br>625<br>739                       | 416                                     | 159<br>296<br>^.000       | 065                        | 109                        |
| MSD<br>DEV                | 50.82<br>56.89<br>55.15                 | 44.45<br>56.36<br>46.84    | 48.84<br>53.76<br>50.26                 | 50.05<br>54.10<br>53.58     | 52.75<br>57.82<br>55.64                 | 41.93<br>44.83<br>44.53    | 30.33<br>38.38<br>29.03    | 15.26<br>2.92<br>19.28     | 29.96<br>30.83<br>30.28                 | 24.84<br>25.88<br>26.81                 | 18.98<br>23.52<br>0.00    | 10.60<br>11.54<br>10.93    | 12.55<br>14.11<br>11.41    |
| VSD<br>ST                 | 116.21<br>133.25<br>122.30              | 110.66<br>137.66<br>121.16 | 112.23<br>134.38<br>115.28              | 84.21<br>97.55<br>99.92     | 101.82<br>118.27<br>112.06              | 106.59<br>145.30<br>55.73  | 41.76<br>56.76<br>41.93    | 29.20<br>33.78<br>31.78    | 45.60<br>40.19                          | 38.52<br>43.94<br>40.41                 | 37.01<br>41.92<br>n.00    | 22.85<br>33.90<br>23.80    | 22.48<br>.08<br>21.22      |
| USD<br>WIND               | 118.19<br>116.65<br>126.61              | 104.37<br>108.71<br>109.90 | 115.87<br>124.71<br>114.91              | 120.76<br>120.66<br>1111.19 | 115.97<br>107.58<br>117.00              | 155.57<br>155.57<br>152.28 | 89.74<br>84.47<br>115.64   | 39.66<br>37.93<br>41.93    | 59.40<br>56.50<br>60.83                 | 60.14<br>52.97<br>64.95                 | 92.71<br>124.34<br>0.!!0  | 19.26<br>25.67<br>23.43    | 25.86<br>26.78<br>21.07    |
| MEAN                      | 494.93<br>642.40<br>548.77              | 434.31<br>557.22<br>480.81 | 486.37<br>624.85<br>513.45              | 494.72<br>653.61<br>545.42  | 524.00<br>694.52<br>580.22              | 408.37<br>589.3,<br>452.14 | 327.77<br>419.82<br>335.77 | 184.89<br>274.11<br>313.47 | 291.01<br>397.97<br>316.37              | 247.86<br>357.02<br>280.52              | 158.24<br>226.33<br>0.30  | 149.65<br>263.88<br>165.15 | 143.43<br>246.05<br>154.89 |
| SITE                      | 2767                                    | .4 ti m                    | - 76                                    | ~ 0 F                       | 406                                     | - 12 5                     | 3 2 1                      | 3 5 1                      | 222                                     | 355                                     | - 7 5                     |                            | <b>→ 7/ F</b>              |
| SIARI                     | 42<br>1430<br>1430<br>1430              | 1500<br>1500<br>1500       | 1530<br>1530<br>1530                    | 1600<br>1600<br>1600        | 1630<br>1630<br>1630                    | 1700                       | 1800<br>1800<br>1800       | 1900                       | 1930<br>1930<br>1930                    | 2000                                    | 2030                      | 2360<br>2300<br>2300       | 2330<br>2330<br>2330       |

| DED<br>G<br>SAND                      | 000                                     | 000                       | 000                         | 000                                     | 000                                     | •••                         | 000                      | 000                     | 0 0 C                                   | coc                       | 000                                     | 000                                     | 000                                     |
|---------------------------------------|-----------------------------------------|---------------------------|-----------------------------|-----------------------------------------|-----------------------------------------|-----------------------------|--------------------------|-------------------------|-----------------------------------------|---------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| EXCEEDED G G R THOUSAND               | 000                                     | 000                       | 000                         | 000                                     | 000                                     | 000                         | 000                      | 000                     | 000                                     | ၀၀င                       | 000                                     | 000                                     | 000                                     |
| LIMITS 6<br>VSG P<br>PARTS PER        | 000                                     | • • •                     | 000                         | c <b>o</b> o                            | •••                                     | 000                         | 000                      | 000                     | 000                                     | 000                       | <b>0</b> 00                             | 000                                     | 000                                     |
| :                                     | 0.000.0<br>0.000.0                      | 0.00000                   | .2797<br>0.0000<br>0.0000   | 000000000000000000000000000000000000000 | 0.0000<br>0.0000<br>0.0000              | .0814<br>0.0000<br>0.0000   | 0.0000                   | 0.0000                  | 0.0000                                  | 0.0000                    | 0.0000                                  | 0.0000                                  | 0201<br>0.0000<br>0.0000                |
| EU EV EW LATENT HEAT TRANS            | 0543<br>0500<br>                        | .3661<br>0.0000<br>0.0000 | .0024<br>0.0000<br>0.0000   | 0.0000                                  | 0.0000000000000000000000000000000000000 | 0.0000                      | 0512<br>0.0000<br>0.0000 | 0181<br>0-0000<br>-0046 | 0.0000000000000000000000000000000000000 | .0151<br>0.0000<br>0.0000 | 0365<br>0-0000<br>0-0000                | 0.00000                                 | 0001<br>.0081<br>0.000c                 |
| •                                     | -1.4133<br>0.0000<br>0.0000             | 0.0000                    | -1.0723<br>0.0000<br>0.0000 | 00000                                   | 7234<br>0.0000<br>0.0000                | -1.0444<br>0.0000<br>0.0000 | 0.0000                   | .0869                   | •1232<br>0•0000<br>0•0000               | .1334<br>0.0000<br>0.0000 | 000000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE | .5580<br>.4800<br>.5130                 | .5480<br>.4200<br>.5150   | .4810<br>.3750<br>.4910     | .5680<br>.3560<br>.4240                 | .3430<br>.1710<br>.2130                 | . 4340<br>. 4340            | .5280<br>.3010<br>.5020  | .6160<br>.2430<br>.5460 | .4080<br>.2550                          | .4320<br>.2590            | .6110<br>.3330<br>n.0000                | 000000000000000000000000000000000000000 | .9370<br>.1970<br>1.3870                |
| AIR<br>EAN<br>CENT                    | 13.<br>12.                              | 14.<br>13.                | 14.<br>13.                  | 13.<br>12.<br>13.                       | 12.<br>12.<br>13.                       | 111.                        | 100                      | 46.                     | ٠٠٠                                     | * • •                     | w.e.c                                   | 606                                     | ***                                     |
| •                                     | .1544<br>.1867                          | .1323<br>.1350<br>.1318   | .1053<br>.1290<br>.1110     | .0250                                   | .0255<br>.0255                          | 0045                        | 0733                     | 0276                    | 0711                                    | 0568<br>0351<br>0665      | 0367                                    | 0.0000                                  | 0279                                    |
| U HV HW<br>ENSIBLE HEAT TRANS         | .0146<br>0367<br>0016                   | .0274<br>0568<br>0163     | 0001<br>0652<br>1537        | 1461<br>0892<br>1158                    | .0250                                   | .0407<br>.4824<br>.4850     | 1143                     | .0108<br>.0218<br>.0115 | 0010<br>.0419                           | 0146<br>0596<br>0184      | 1247<br>1006<br>0.0000                  | 00000-0                                 | 0191                                    |
| HU<br>SENSIBI                         | 5887<br>3988<br>5894                    | 4478                      | 4027<br>4147<br>4782        | 1922<br>1275<br>0234                    | 0554                                    | 1.1628 .25914969            | .4592<br>.2272<br>878    | .2456<br>.0837<br>.2093 | .2704                                   | .1987<br>.0087<br>.2564   | .6790<br>.5215<br>0.0000                | 000000000000000000000000000000000000000 | .0823<br>0001<br>.0454                  |
| BETA                                  | 0.0000000000000000000000000000000000000 | 0.00000                   | 0.0000                      | 0.0000                                  | 0.0000000000000000000000000000000000000 | 0.0000                      | 0.0000                   | 0.0000                  | 0.00000                                 | 0.0000                    | 0.0000000000000000000000000000000000000 | 0.0000                                  | 0.0000                                  |
| THETA                                 | 0054<br>-0481<br>0188                   | .0301                     | 0051<br>-0313<br>0208       | 0027<br>-0294<br>0200                   | 0055<br>0408<br>0174                    | 008A<br>.0409               | .0037<br>.0094<br>0260   | 0109<br>.0290<br>0169   | 0136<br>-0471<br>0120                   | 0094<br>.0350<br>0169     | -0092<br>-03330                         | .040                                    | 0047<br>.0374<br>0219                   |
| E ETA                                 | 0478<br>0728                            | .1145<br>.1704<br>.1170   | .0218<br>.087?<br>.0533     | .0564<br>.1114<br>.0726                 | 0114<br>0114<br>0567                    | 2466<br>2145<br>2368        | .3927<br>.3927<br>.4668  | .0006                   | 2228<br>1972<br>2115                    | 1234<br>0941<br>1100      | .0342<br>.0829<br>0.0000                | 0320<br>1245<br>2002                    | 0029<br>-i.5704<br>0981                 |
| 5175                                  | 2767<br>1<br>2<br>3                     | 3 2 1                     | 406                         | - 26                                    | 3 5 1                                   | ~~~                         | ** ** **                 | 32.                     | 325                                     | - ~ E                     | es to es                                | -~-                                     |                                         |
| START                                 | 1430<br>1430<br>1430<br>1430            | 1500<br>1500<br>1500      | 1530<br>1530<br>1530        | 1600                                    | 1630<br>1630<br>1630                    | 1730<br>1700<br>1700        | 1300<br>1600<br>1800     | 1900                    | 1930<br>1930<br>1930                    | 2000                      | 2030                                    | 2300<br>2300<br>2300                    | 2330<br>2330<br>2330                    |

| 0.15.0                  | 222                        | 888                        | 222                        | 0000                       | 222                      | 888                        | 888                     | 222                       | 888                        | 222                                 | 888                        | 222                      | 225              |
|-------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------------|----------------------------|-------------------------|---------------------------|----------------------------|-------------------------------------|----------------------------|--------------------------|------------------|
| WIND<br>SHIFT<br>RAD    | 00000                      | 0000                       | 0.000                      | • • •                      | 00000                    | 0000                       | 0.0000                  | 00000                     | 0.000                      | 0.000                               | 0.000                      | 0.000                    | 00000            |
| WIND<br>DIR<br>RAD      | 000000                     | 0000                       | 0000                       | 000000                     | 0.000                    | 0.000                      | 0.0000                  | 0.000                     | 000000                     | 000000                              | 0000.0                     | 0.000                    | 0000             |
| GSD<br>ANGLE<br>RAD     | 171.                       | .279<br>.251<br>.268       | .196<br>.114<br>.156       | .134                       | .301<br>.169             | .240<br>.234<br>.273       | 0.000<br>.190           | .234<br>.209<br>.226      | .334<br>.317               | .346<br>0.000<br>.350               | .319<br>.323<br>.269       | .283<br>0.000<br>.210    | .183             |
| G<br>AZIM<br>RAD        | .075<br>002<br>028         | .026<br>046<br>060         | 236<br>337<br>319          | 160                        | 158                      | 001<br>163<br>030          | 0.000                   | 305<br>234<br>221         | 128                        | .018<br>0.000                       | .042<br>.048<br>030        | .091                     | .065             |
| FSD<br>ANGLE<br>RAD     | .039<br>.043               | .081                       | .085<br>.061               | .069<br>.049               | .036<br>.020<br>.072     | .099<br>.099               | 0.000<br>.057<br>0.000  | .089                      | .159<br>.145<br>.137       | .144<br>0.000<br>.160               | .128                       | .105<br>0.000<br>.087    | .091             |
| F<br>ELEV<br>RAD        | -002                       | 002                        | 0.000                      | -0045                      | 009<br>003               | .017<br>.016<br>003        | 0.000                   | .016                      | .003                       | .010<br>0.000<br>.009               | .001                       | 000.000                  | •006             |
| HORIZ<br>WIND<br>CM/SEC | 105.81<br>182.50<br>116.90 | 114.44<br>207.18<br>120.73 | 137.96<br>229.64<br>154.47 | 104-17<br>191-43<br>118-36 | 76.51<br>152.94<br>84.60 | 107.43<br>171.56<br>104.66 | 0.00<br>139.63<br>0.00  | 95.76<br>156.86<br>108.32 | 119.87<br>148.54<br>144.47 | 210.44<br>0.00<br>200.44            | 279.52<br>351.87<br>283.21 | 302.72<br>0.00<br>316.79 | 403.24<br>518.16 |
| RWV<br>SSES             | .010<br>052<br>012         | .014<br>156<br>044         | -012<br>-025<br>0-000      | -034                       | 044                      | .007<br>110<br>022         | 0.000                   | .013<br>.003<br>015       | -007<br>142<br>098         | 0.000                               | -172<br>340<br>213         | .166<br>0.000<br>148     | -197             |
| REYNOLDS STRESSES       | 344<br>027                 | 101<br>718<br>209          | 285<br>113<br>225          | 216<br>-103<br>171         | 160<br>080<br>059        | .501<br>.675               | 0.000                   | .181                      | .283<br>190                | .204<br>3.090<br>-2.206             | 2.544<br>5.731<br>1.324    | .992<br>0.000<br>190     | -1-401           |
| RUW<br>REYNO            | 005                        | 035<br>006<br>008          | 103                        | 044                        | 002<br>016<br>018        | 052<br>195<br>082          | 0.000<br>016<br>0.000   | 044                       | 198<br>147<br>161          | 430<br>0.000<br>231                 | 359                        | 0.000                    | -1.246           |
| MSD<br>DEV              | 4 • 18<br>8 • 03<br>4 • 83 | 8.28<br>10.39<br>6.25      | 12.10<br>14.31<br>12.33    | 8.15<br>9.88<br>10.13      | 1.63                     | 9.44<br>16.69<br>8.52      | 0,00<br>0,50<br>0,00    | 8°.05<br>14°.20<br>8°.17  | 15.34<br>21.25<br>16.35    | 23.31<br>0.00<br>20.12              | 29.42<br>17.77<br>24.52    | 29.61<br>0.00<br>26.24   | 39.88<br>43.83   |
| WIND ST D               | 16.09<br>28.56<br>22.79    | 51.57<br>51.27<br>32.12    | 24.25<br>24.77<br>21.86    | 19.65<br>26.49<br>20.62    | 19.28<br>26.06<br>21.35  | 26.28<br>40.28<br>25.11    | 26.00                   | 21-67<br>31.35<br>21-12   | 43.69<br>53.29<br>56.98    | 88.34<br>0.00<br>73.29              | 82.60<br>98.82<br>79.34    | 87-67<br>0-00<br>66-78   | 83.86            |
| USD<br>HI<br>HI<br>CM/S | 12-38<br>18-66<br>12-22    | 24.58<br>25.96<br>20.87    | 33.02<br>41.33<br>28.82    | 31.61<br>41.76<br>31.90    | 27.34<br>29.57<br>31.14  | 41.09<br>51.26<br>44.77    | 31.37                   | 32.06<br>37.60<br>25.64   | 55.57<br>60.17<br>40.50    | 147.94<br>0.00<br>141.87            | 106.13<br>119.68<br>101.65 | 0.00                     | 95.60            |
| MEAN                    | 104.27<br>180.35<br>115.67 | 110.08<br>200.90<br>118.46 | 135.61<br>228.66<br>156.94 | 102-48                     | 73.78<br>50.90<br>69.51  | 104-42                     | 0.00<br>13.7.42<br>9.00 | 93-33<br>153-75<br>107-88 | 112.63<br>140.27<br>138.30 | 197.06<br>0.00<br>188.13            | 267.63<br>334.80<br>271.62 | 290.65<br>0.00<br>308.84 | 394.64<br>508.92 |
| SITE                    | 3512                       | 32                         | -06                        | - 46                       |                          | - N m                      | -0.5                    | ~~~                       | -26                        |                                     | - 25                       | ~ ve                     | ~~~              |
| TIME                    | 4.28                       | 333                        | 100                        | 130                        | 230                      | 0000                       | 430<br>633<br>633       | 300<br>300<br>500         | 700<br>700<br>700<br>700   | 50267<br>1430 1<br>1430 2<br>1430 3 | 1530<br>1530<br>1530       | 1600                     | 1630             |

## CORRECTED DATA FOR SITE 3, MAY 2, 1967, Pages DIO-DI5

| TIME                                                                                                          | SITE                                                                                               | E MEAN                                                                                   | JSD                                                        | VSD                                                                                                   | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RUW                                                                                                                                      | RUV                                                                                                                | RWV                                                                        | HORIZ                                                                                                              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G                                                                                                                   | GSD                                                               |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| START                                                                                                         | •                                                                                                  | CHIM                                                                                     | W                                                          | IND ST D                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | REYNOL                                                                                                                                   | DS STRES                                                                                                           |                                                                            | WIND                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANGLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MISA                                                                                                                | ANGLE                                                             |
|                                                                                                               |                                                                                                    | •••••                                                                                    | CM/                                                        | SEC                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DY                                                                                                                                       |                                                                                                                    |                                                                            |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RAD                                                                                                                 | RAD                                                               |
|                                                                                                               |                                                                                                    | _                                                                                        |                                                            |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                        |                                                                                                                    |                                                                            | 15                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                     |                                                                   |
|                                                                                                               | 267                                                                                                |                                                                                          |                                                            |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                        |                                                                                                                    |                                                                            |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                     |                                                                   |
| 1430                                                                                                          | 3                                                                                                  |                                                                                          | 142.71                                                     | 86.14                                                                                                 | 23.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          | -2.912                                                                                                             |                                                                            | 200.44                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .017                                                                                                                | •412                                                              |
| 1530                                                                                                          | 3                                                                                                  |                                                                                          | 101-64                                                     | 93.44                                                                                                 | 28 • 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 564                                                                                                                                      | 1.531                                                                                                              | 296                                                                        | 283.2                                                                                                              | 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 034                                                                                                                 | •317                                                              |
| 1600                                                                                                          | 3                                                                                                  | 308.88                                                                                   | 70.74                                                      | 78.65                                                                                                 | 30.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 661                                                                                                                                      | 168                                                                                                                |                                                                            |                                                                                                                    | 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .028                                                                                                                | .247                                                              |
| 1630                                                                                                          | 3                                                                                                  | 410.78                                                                                   | 88.33                                                      | 90.96                                                                                                 | 41.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 982                                                                                                                                      | 818                                                                                                                |                                                                            | 418.6                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .005                                                                                                                | .213                                                              |
| 1705                                                                                                          | 3                                                                                                  |                                                                                          | 101.69                                                     | 73.00                                                                                                 | 46.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.578                                                                                                                                   | 407                                                                                                                |                                                                            |                                                                                                                    | 007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178                                                                                                                 | .153                                                              |
| 1735                                                                                                          | 3                                                                                                  | 333.08                                                                                   | 75.51                                                      | 44.78                                                                                                 | 30.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 688                                                                                                                                      | -1.038                                                                                                             |                                                                            |                                                                                                                    | 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 291                                                                                                                 | .138                                                              |
| 1800                                                                                                          | 3                                                                                                  | 273.05                                                                                   | 62.06                                                      | 37.56                                                                                                 | 26.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 450                                                                                                                                      | 346                                                                                                                |                                                                            |                                                                                                                    | 008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 145                                                                                                                 | .136                                                              |
| 1830                                                                                                          | 3                                                                                                  | 212-27                                                                                   | 45.88                                                      | 34.88                                                                                                 | 18.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 217                                                                                                                                      | 394                                                                                                                |                                                                            |                                                                                                                    | 023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .188                                                                                                                | .163                                                              |
| 1900                                                                                                          | 3                                                                                                  | 186.54                                                                                   | 37.70                                                      | 20.13                                                                                                 | 15.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 152                                                                                                                                      | 003                                                                                                                |                                                                            |                                                                                                                    | 029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -266                                                                                                                | •105                                                              |
| 2000                                                                                                          | 3                                                                                                  | 201.85                                                                                   | 38.69                                                      | 28.44                                                                                                 | 18.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 210                                                                                                                                      | .064                                                                                                               |                                                                            |                                                                                                                    | 019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 116                                                                                                                 | .139                                                              |
| 2030                                                                                                          | 3                                                                                                  | 205.29                                                                                   | 37.89                                                      | 27.96                                                                                                 | 19.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 271                                                                                                                                      | 089                                                                                                                |                                                                            |                                                                                                                    | 016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133                                                                                                                 | -136                                                              |
| 2100                                                                                                          | 3                                                                                                  | 192.26                                                                                   | 40.42<br>38.80                                             | 29.71<br>15.94                                                                                        | 20.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 291<br>185                                                                                                                               | 163                                                                                                                |                                                                            |                                                                                                                    | 9013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160                                                                                                                 | -140                                                              |
| 2136                                                                                                          | 3                                                                                                  | 180.94                                                                                   | 35-10                                                      | 22.95                                                                                                 | 15.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 169                                                                                                                                      | -109                                                                                                               |                                                                            |                                                                                                                    | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440                                                                                                                 |                                                                   |
| 2200                                                                                                          | 3                                                                                                  | 198.64                                                                                   | 42.91                                                      | 28.88                                                                                                 | 17.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 185                                                                                                                                      | -081                                                                                                               |                                                                            |                                                                                                                    | 7005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 356                                                                                                                 | -123                                                              |
| 2230                                                                                                          | 3                                                                                                  | 163.71                                                                                   | 30.43                                                      | 27.31                                                                                                 | 16.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 173                                                                                                                                      | 261<br>.019                                                                                                        |                                                                            |                                                                                                                    | 500 <b>8</b><br>0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 237                                                                                                                 | -143                                                              |
| 2305                                                                                                          | 3                                                                                                  | 166.17                                                                                   | 33.72                                                      | 23.28                                                                                                 | 15.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 153                                                                                                                                      | 284                                                                                                                |                                                                            |                                                                                                                    | 6010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 090                                                                                                                 | -148                                                              |
| 2330                                                                                                          | 3                                                                                                  | 160.92                                                                                   | 48.60                                                      |                                                                                                       | 14.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 119                                                                                                                                      | 528                                                                                                                |                                                                            | _                                                                                                                  | 3029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -172                                                                                                                |                                                                   |
|                                                                                                               |                                                                                                    |                                                                                          | 70000                                                      |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          | 1720                                                                                                               | 01000                                                                      |                                                                                                                    | 3 -1027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****                                                                                                                | ****                                                              |
|                                                                                                               |                                                                                                    |                                                                                          |                                                            |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          |                                                                                                                    |                                                                            |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                     |                                                                   |
|                                                                                                               |                                                                                                    |                                                                                          |                                                            |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          |                                                                                                                    |                                                                            |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                     |                                                                   |
| TIME                                                                                                          | SIT                                                                                                | E ETA                                                                                    | THETA                                                      | BETA                                                                                                  | -4L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HV                                                                                                                                       | 1414                                                                                                               | AIR T                                                                      | FMD                                                                                                                | <b>e</b> u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | State of the state | eu.                                                                                                                 |                                                                   |
| TIME                                                                                                          |                                                                                                    | E ETA                                                                                    | THETA                                                      | BETA                                                                                                  | HU<br>SENS I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HV<br>BLE HEAT                                                                                                                           | HW<br>TRANS                                                                                                        | AIR T<br>Mean s                                                            |                                                                                                                    | EU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z-/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ÉW<br>TRANS                                                                                                         |                                                                   |
|                                                                                                               |                                                                                                    | E ETA                                                                                    | THETA<br>RAD                                               | BETA<br>RAD                                                                                           | SENSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HV<br>BLE HEAT<br>L/(CM2-M)                                                                                                              | TRANS !                                                                                                            | HEAN S                                                                     | T DEV                                                                                                              | LATEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T HEAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS                                                                                                               |                                                                   |
| START                                                                                                         |                                                                                                    |                                                                                          |                                                            |                                                                                                       | SENSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BLE HEAT                                                                                                                                 | TRANS !                                                                                                            |                                                                            | T DEV                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T HEAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS                                                                                                               |                                                                   |
| START                                                                                                         | 267                                                                                                | RAD                                                                                      | RAD                                                        | RAD                                                                                                   | SENS I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BLE HEAT<br>L/(CM2-M)                                                                                                                    | TRANS                                                                                                              | MEAN S<br>CENTIC                                                           | T DEV                                                                                                              | LATEN<br>••••CAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T HEAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS                                                                                                               |                                                                   |
| STAR1                                                                                                         | 267                                                                                                | RAD<br>1226                                                                              | RAD0119                                                    | RAD<br>0.0000                                                                                         | SENS !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BLE HEAT<br>L/(CM2-M)<br>-<br>3752                                                                                                       | TRANS (                                                                                                            | CENTIC                                                                     | T DEV                                                                                                              | LATEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T HEAT<br>-CM2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRANS                                                                                                               | •••                                                               |
| STAR1                                                                                                         | 267<br>3<br>3                                                                                      | RAD<br>1226<br>0100                                                                      | 0115                                                       | RAD<br>0.0000<br>0.0000                                                                               | •5517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BLE HEAT<br>L/(CM2-M)<br>-<br>3792<br>2040                                                                                               | .0267                                                                                                              | MEAN S<br>CENTIO                                                           | T DEV<br>BRADE<br>5150<br>3820                                                                                     | LATEN<br>CAL<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T HEAT<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRANS<br>MIN)<br>0 0.0                                                                                              | 000                                                               |
| STAR1<br>1430<br>1530<br>1600                                                                                 | 267<br>3<br>3                                                                                      | 1226<br>0100<br>-0258                                                                    | 0115<br>0201                                               | RAD<br>0.0000<br>0.0000<br>0.0000                                                                     | CAICAICAICAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BLE HEAT<br>L/(CM2=M)<br>-<br>3752<br>2040<br>0134                                                                                       | .0267<br>.0485<br>.0174                                                                                            | 20                                                                         | 5150<br>3820<br>1670                                                                                               | LATEN<br>CAL<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T HEAT<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRANS<br>HIN)<br>0 0.0<br>0 0.0                                                                                     | 000                                                               |
| 51430<br>1530<br>1600<br>1630                                                                                 | 267<br>3<br>3<br>3                                                                                 | 1226<br>0100<br>-0258<br>-0007                                                           | 0115<br>020*<br>0197<br>0231                               | RAD<br>0.0000<br>0.0000<br>0.0000                                                                     | •5517<br>•••0175<br>••0737<br>••0824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BLE HEAT<br>L/(CH2-M)<br>-<br>3752<br>2040<br>0134<br>.0239                                                                              | .0267<br>.0485<br>.0174                                                                                            | ZO                                                                         | 5150<br>3820<br>1670                                                                                               | LATEN<br>CAL<br>0-0000<br>0-0000<br>0-0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TRANS<br>HINI<br>0.00<br>0.00<br>0.00                                                                               | 000                                                               |
| 57AR1<br>1430<br>1530<br>1600<br>1630<br>1705                                                                 | 267<br>3<br>3<br>3<br>3                                                                            | 1226<br>0100<br>-0258<br>-0007<br>1802                                                   | 0115<br>0201<br>0197<br>0231<br>0140                       | RAD<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                           | •5517<br>••0175<br>••0737<br>••0824<br>•1850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BLE HEAT<br>L/(CH2-MI<br>3752<br>2040<br>0134<br>.0239<br>.0071                                                                          | .0267<br>.0485<br>.0174<br>0144                                                                                    | 20.<br>20.<br>20.<br>20.<br>19.                                            | 5150<br>3820<br>1670<br>2480                                                                                       | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000.000.000.000.000.000.000.000.000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0                                                                                 | 000<br>000<br>000<br>000                                          |
| 57AR1<br>1430<br>1530<br>1600<br>1630<br>1705<br>1735                                                         | 267<br>3<br>3<br>3<br>3                                                                            | 1226<br>0100<br>-0258<br>-0007<br>1802<br>2487                                           | 0119<br>0209<br>0199<br>0291<br>0140                       | RAD<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                 | •5517<br>••0175<br>••0175<br>••0824<br>•1850<br>•4301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BLE HEAT<br>L/(CM2-MI<br>                                                                                                                | .0267<br>.0485<br>.0174<br>0144<br>0445                                                                            | ZO                                                                         | 5150<br>3820<br>1670<br>2480<br>1560                                                                               | LATEN<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0                                                                                 | 000<br>000<br>000<br>000                                          |
| 57AR1<br>1430<br>1530<br>1600<br>1630<br>1705<br>1735<br>1800                                                 | 267<br>3<br>3<br>3<br>3<br>3                                                                       | 1226<br>0100<br>-0258<br>-0007<br>1802<br>2487<br>1500                                   | RAD011502020197023101400140                                | RAD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                                         | CAICAICAICAICAICAICAICAICAICAICAICAICAICAICAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BLE HEAT<br>L/(CM2-MI<br>                                                                                                                | .0267<br>.0485<br>.0174<br>01445<br>0532                                                                           | 20. 20. 20. 20. 19. 18. 18. 16.                                            | 5150<br>3820<br>1670<br>2480<br>1560<br>4750                                                                       | LATEN<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TRANS 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0                                                                           | 000<br>000<br>000<br>000<br>000                                   |
| 51430<br>1530<br>1600<br>1630<br>1705<br>1735<br>1800                                                         | 267<br>3<br>3<br>3<br>3<br>3<br>3                                                                  | 1226<br>0100<br>-0258<br>-0007<br>1802<br>2987<br>1500<br>-1810                          | RAD011902001990291014001400272                             | RAD<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                       | -5517<br>0175<br>0737<br>0824<br>-1850<br>-4501<br>-5410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                          | .0267<br>.0485<br>.0174<br>0144<br>0453<br>0570<br>0570                                                            | ZO. 20. 20. 20. 19. 418. 418. 418. 418. 418. 418. 418. 418                 | 51 DEV<br>5150<br>3820<br>1670<br>2480<br>2480<br>4750<br>6640                                                     | LATEN<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRANS #1N)  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0                                                         | 000<br>000<br>000<br>000<br>000<br>000                            |
| 51430<br>1530<br>1600<br>1630<br>1705<br>1735<br>1803<br>1833                                                 | 267<br>3<br>3<br>3<br>3<br>3<br>3                                                                  | 1226<br>0100<br>-0258<br>-0007<br>1802<br>2487<br>1500<br>-1810<br>-2662                 | 0119020901990291014001420272                               | RAD<br>0.9000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                             | •5517<br>•••175<br>••0175<br>••0175<br>••0824<br>•1850<br>•4301<br>•5410<br>•6429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BLE HEAT<br>L/ICM2-MI<br>3752<br>2040<br>0134<br>-0239<br>-0071<br>1190<br>0464<br>1494<br>0036                                          | .0267<br>.0485<br>.0174<br>0144<br>0445<br>0570<br>0570<br>0337                                                    | 20.<br>20.<br>20.<br>20.<br>19.<br>18.<br>18.                              | 5150<br>3820<br>1670<br>2480<br>4750<br>4640<br>9840                                                               | D-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRANS #IN1 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0                                                          | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000              |
| 51AR1<br>1430<br>1530<br>1600<br>1630<br>1735<br>1803<br>1800<br>1930                                         | 267<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                             | 1226<br>0100<br>-0258<br>-0007<br>1802<br>2987<br>1500<br>-1810<br>-2662<br>1146         | RAD011902010199029101100127203200239                       | RAD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                           | •5517<br>••••CAI<br>•5517<br>••0175<br>••0737<br>••0824<br>•1850<br>•4301<br>•5410<br>•4629<br>•0244<br>•1257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BLE HEAT<br>L/(CM2-MI<br>3752<br>2040<br>0134<br>-0239<br>-0071<br>1190<br>0464<br>1494<br>0036<br>0002                                  | .0267<br>.0485<br>.0174<br>0144<br>0532<br>0570<br>0337<br>0228<br>0230                                            | ZO. 20. 20. 20. 19. 18. 18. 11. 9.                                         | 5150<br>3820<br>1670<br>2480<br>1560<br>4750<br>6640<br>9840<br>9840                                               | LATEN CAL 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 | 3-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRANS #IN) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0                                        | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000              |
| 51AR1<br>1430<br>1530<br>1600<br>1630<br>1705<br>1735<br>1803<br>1830<br>1930<br>1930<br>2000                 | 267<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                         | 1226<br>0100<br>-0258<br>-0007<br>1802<br>2487<br>1500<br>-1810<br>-2662<br>1146<br>1347 | RAD01190290199014001100142027202390239                     | RAD<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000         | CAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICA | BLE HEAT<br>L/(CM2-MI<br>                                                                                                                | .0267<br>.0485<br>.0174<br>0144<br>0532<br>0570<br>0397<br>0228<br>0230                                            | ZO                                                                         | 5150<br>3820<br>1670<br>2480<br>1560<br>4750<br>6440<br>9840<br>9840<br>9840                                       | LATEN CAL 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 | 9-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRANS #IN) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0                                        | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000       |
| 57AR1<br>1430<br>1530<br>1600<br>1630<br>1705<br>1735<br>1803<br>1833<br>1930<br>2000<br>2030                 | 267<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                    | 12260100 -0258 -0007180229871500 -1810 -2662114613471636                                 | RAD011902001990140014202720239023902196                    | RAD<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000         | CAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICAICA | BLE HEAT<br>L/(CM2-MI<br>                                                                                                                | .0267<br>.0485<br>.0174<br>0144<br>0532<br>0570<br>0337<br>0328<br>0330                                            | ZO                                                                         | 3150<br>3820<br>1670<br>2480<br>1560<br>4750<br>6640<br>9840<br>9840<br>3650                                       | LATEN<br>CAL<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0                                       | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000       |
| 57AR1<br>1430<br>1530<br>1600<br>1630<br>1735<br>1735<br>1803<br>1830<br>1900<br>1930<br>2000<br>2030<br>2100 | 267<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                   | 12260100 -0258 -00071802298715001810 -26621146134716364240                               | RAD01190200199029101400142027203200239021960106            | RAD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                      | -5517017907370824 -1850 -4301 -5410 -4629 -0244 -1257 -1343 -1919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BLE HEAT<br>L/(CM2-MI<br>3752<br>2040<br>0134<br>-0239<br>-0071<br>1190<br>0464<br>1494<br>0036<br>0002<br>0110<br>0254<br>0046          | .0267<br>.0485<br>.0174<br>-0144<br>-0445<br>-0532<br>-0570<br>-,0397<br>-0228<br>-0345<br>-0356                   | 20. 20. 20. 20. 19. 18. 18. 11. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.     | 5150<br>3820<br>1670<br>2480<br>1570<br>4750<br>46640<br>9840<br>5290<br>4090<br>3650<br>3650                      | DATEN CAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS #IN1  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00 |
| 51AR1<br>1430<br>1530<br>1600<br>1630<br>1705<br>1830<br>1830<br>1930<br>2000<br>2030<br>2136                 | 267<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                              | 12260100 -0258 -0007180224871500 -266211461347163643403518                               | RAD0119020019902310140014202720239C21901960099             | RAD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                      | -5517<br>0175<br>0737<br>0824<br>-1850<br>-4501<br>-5410<br>-4629<br>-0244<br>-1257<br>-1341<br>-1919<br>-1668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BLE HEAT<br>L/(CM2-MI<br>3752<br>2040<br>0134<br>-0239<br>0071<br>1190<br>0464<br>0096<br>0002<br>0110<br>0254<br>0260                   | -0267<br>-0485<br>-0174<br>0144<br>0452<br>0570<br>0397<br>0328<br>0330<br>0356<br>0252                            | 20. 20. 20. 20. 19. 18. 18. 11. 9. 9. 8. 8. 8. 8.                          | 5150<br>3820<br>1670<br>2480<br>1560<br>4750<br>46640<br>9840<br>5290<br>4090<br>3590<br>3590<br>3200              | DATEN CAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS #IN) 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00                             | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00 |
| 51AR1<br>1430<br>1530<br>1600<br>1630<br>1705<br>1735<br>1803<br>1900<br>1930<br>2000<br>2030<br>2136<br>220G | 267<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 12260100 -0258 -0007180224871500 -2662114613471636434035182431                           | RAD0119029019901400140014202720239023902190106             | RAD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BLE HEAT<br>L/(CM2-MI<br>3752<br>2040<br>0134<br>-0239<br>-0071<br>1190<br>0464<br>0494<br>0096<br>00902<br>0110<br>0254<br>0260<br>0070 | -0267<br>-0485<br>-0174<br>-01445<br>-0570<br>-0570<br>-0278<br>-0236<br>-0236<br>-0257<br>-0228<br>-0236<br>-0257 | 20. 20. 20. 20. 19. 18. 18. 11. 9. 9. 8. 8. 7.                             | 5150<br>3820<br>1670<br>2480<br>1560<br>4750<br>46640<br>9840<br>5290<br>4090<br>3650<br>3290<br>3290              | DATEN CAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRANS #IN1 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00               | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00 |
| 51430<br>1430<br>1600<br>1630<br>1705<br>1735<br>1830<br>1930<br>2000<br>2030<br>2136<br>2206<br>2230         | 267<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 12260100 -0258 -0007180224871500 -1810 -2662114613471636351824310612                     | RAD01190201019902310140014202720239023902190164            | RAD 0.9000 0.0000 0.0000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 | -5517<br>0175<br>0175<br>0737<br>0824<br>-1850<br>-4301<br>-5410<br>-4629<br>-1257<br>-1343<br>-1919<br>-1668<br>-1183<br>-1800<br>-3869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                          | .0267<br>.0485<br>.0174<br>0144<br>0532<br>0532<br>0230<br>0345<br>0258<br>0259<br>0259<br>0259<br>0259            | ZO. 20. 20. 20. 19. 18. 18. 11. 9. 9. 4                                    | 5150<br>3820<br>1670<br>2480<br>1560<br>4750<br>4640<br>9840<br>9840<br>9840<br>9840<br>9840<br>9840<br>9840<br>98 | 0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000<br>0-0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRANS #IN1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                      | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00 |
| 51AR1<br>1430<br>1530<br>1600<br>1630<br>1705<br>1735<br>1803<br>1900<br>1930<br>2000<br>2030<br>2136<br>220G | 267<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 12260100 -0258 -0007180229871500 -1810 -2662114613471636351806121003                     | RAD0119029019901400110014202390239023901960094012401740151 | RAD 0.9000 0.0000 0.0000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BLE HEAT<br>L/(CM2-MI<br>3752<br>2040<br>0134<br>-0239<br>-0071<br>1190<br>0464<br>0494<br>0096<br>00902<br>0110<br>0254<br>0260<br>0070 | -0267<br>-0485<br>-0174<br>-01445<br>-0570<br>-0570<br>-0278<br>-0236<br>-0236<br>-0257<br>-0228<br>-0236<br>-0257 | ZO. 20. 20. 20. 19. 18. 18. 11. 19. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18 | 5150<br>3820<br>1670<br>2480<br>1560<br>4750<br>6440<br>9840<br>9840<br>9840<br>9840<br>9840<br>9840<br>9840<br>9  | DATEN CAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000<br>0-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRANS #IN1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                      | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00 |

| SAND                                  | 000                       | 000                     | 000                     | 000                                     | 000                                     | 000                                     | 000                                     | 000                     | 000                      | 000                                 | 000                       | •••                       | 000                                     |
|---------------------------------------|---------------------------|-------------------------|-------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------|--------------------------|-------------------------------------|---------------------------|---------------------------|-----------------------------------------|
| TS EXCEEDED F G PER THOUSAND          | 000                       | 000                     | 000                     | 000                                     | 000                                     | 000                                     | 000                                     | 000                     | 000                      | 000                                 | 000                       | •••                       | 000                                     |
| LIMITS<br>VSQ<br>PARTS PER            | 000                       | 500                     | 000                     | 000                                     | 000                                     | 000                                     | 000                                     | 000                     | 000                      | 000                                 | 000                       | 000                       | 000                                     |
| EW<br>RANS<br>N)                      | 0.0000                    | 0.0000                  | 0.0000                  | 0.0000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0.0000                  | 0000°0<br>00000°0        | .1888<br>0.0000<br>0.0000           | .3265<br>0.0000<br>0.0000 | .2336<br>0.0000<br>0.0000 | 0.0000                                  |
| EU EV EW<br>LATENT HEAT TRANS         | .0338<br>0.0000<br>0.0000 | 0.0000                  | 0.0000                  | 0.0000                                  | 0.0000                                  | 0.0000                                  | 0.0000                                  | 0.0000                  | 0687<br>0.0000<br>0.0000 | 5181<br>0.0000                      | .3970<br>0.0000<br>0.0000 | .1857<br>0.0000<br>0.0000 | .0277<br>0.0000<br>0.0000               |
|                                       | .0349<br>0.0000<br>0.0000 | 0.0000                  | 0.0000                  | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0.00000                                 | 00000                   | 2126<br>0.0000<br>0.0000 | 3.2180<br>0.0000<br>0.0000          | 3104<br>0.0000<br>0.0000  | 0.0000                    | 5724<br>0-0000<br>0-0000                |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE | .5140<br>.2980<br>.3610   | .3810<br>.1760<br>.4200 | .3120<br>.2070<br>.3500 | .2400<br>.1390                          | .3390<br>.5550<br>.2630                 | .2700<br>.3600                          | 0.0000<br>.2500<br>0.0000               | .4100<br>.2260<br>.4410 | .3790                    | .5320<br>0.0000<br>.5150            | .2540<br>.2390<br>.3820   | .2940<br>n.nnn            | .3130<br>.1660<br>.2480                 |
| E AN CEN                              | 200                       | 12:                     | 1.<br>2.                | 15:1                                    | 12:                                     | • • •                                   | coc                                     | •••                     | v 4 v                    | 20.00                               | 20.<br>20.                | 20.                       | 19.                                     |
|                                       | 0.0000                    | 0110<br>0052<br>0004    | 0?11<br>0132<br>0210    | 0098                                    | 0042                                    | 0211                                    | 0.0004<br>0.0004                        | 0113                    | .0579                    | .0584<br>0.0000<br>.0226            | .0396<br>.0314<br>.0412   | .0172                     | 0165<br>0038<br>0122                    |
| SENSIBLE HEAT TRANS                   | .0876<br>.0278<br>.0268   | 0692<br>0409<br>1035    | 0335<br>.0058<br>0472   | 0203<br>0031<br>0505                    | 0739<br>0083                            | 0084<br>.0899<br>.0353                  | 0.0000<br>0147<br>0.0000                | 0385                    | 1765                     | 6081<br>0.0000<br>3193              | 0266<br>0634<br>1732      | .0420<br>0.0000<br>0114   | .0816<br>.0277<br>.0203                 |
| HU<br>SENSIE                          | .0596<br>0400<br>8460     | .0860<br>.0505<br>.0722 | .1135<br>.1142<br>.1085 | .0591<br>.0520<br>.0634                 | .0399                                   | .0328                                   | 0.0000<br>0.0000<br>0.0000              | .0306<br>-0306<br>-0271 | .0779                    | 3438<br>0.0000<br>.5378             | 4249<br>2885<br>0178      | 1339<br>n.nnn<br>0735     | 0884<br>1707<br>0825                    |
| BETA                                  | 0.000<br>0.0000<br>0.0000 | 0.00000                 | 0.0000                  | 0.00000                                 | 0.0000                                  | 0.0000                                  | 0.00000                                 | 0.0000                  | 0.00000                  | 0.00000                             | 0.0000                    | 0.0000                    | 000000000000000000000000000000000000000 |
| THETA                                 | -0031                     | 004<br>0361             | 7044<br>-050*<br>0127   | 2069<br>0444<br>0117                    | 0084<br>0369                            | .0147<br>.0118                          | 0.000n<br>.0467<br>.0000n               | .0387<br>.0387          | .0204                    | .0023<br>0.0000                     | .0022                     | .0009                     | 0002                                    |
| ETA                                   | .0848<br>0114<br>0300     | .0250<br>0578<br>0696   | 2507<br>3412<br>3216    | 2777                                    | 1647                                    | .0429<br>.1865<br>.0314                 | 0.0000                                  | -2152                   | 0960<br>.0045<br>0706    | 0.000                               | .1132                     | 0962                      | .0562<br>.0741<br>.0006                 |
| SITE                                  | 1 2 2 3                   | -26                     |                         | HNE                                     |                                         |                                         | -0"                                     |                         | -46                      |                                     | - 26                      |                           | 705                                     |
| TIME S                                | 428                       | 999                     | 0001                    | 130                                     | 230<br>230                              | 4 4 4<br>0 0 0<br>0 0 0                 | 444<br>000<br>000                       | 5000                    | 700<br>700<br>700        | 50267<br>1430 1<br>1410 ?<br>1430 3 | 1530<br>1530<br>1530      | 1600<br>1600<br>1600      | 1630<br>1630<br>1630                    |

| WIND<br>SHIFT<br>RAD             | 00000                       | 0000                       |                            |                                      | 0.00             | 0000                       | 0000                       | 0.000                      | 000000                     | 0000                       | 0000                       | 0000                       | 00000                      |
|----------------------------------|-----------------------------|----------------------------|----------------------------|--------------------------------------|------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| WIND<br>DIR<br>RAD               | 0.000                       | 0.000                      | 00000                      |                                      | 0000             | 0.000                      | 0000                       | 00000                      | 0.000                      | 0.000                      | 00000                      | 000000                     | 0000                       |
| GSD<br>ANGLE<br>RAD              | -177<br>-157<br>-130        | .142<br>.137               | •163<br>•121<br>•116       | .138                                 | .083             | .146<br>.112<br>.118       | .151<br>.109<br>.116       | .149<br>.109               | .108<br>.070               | .126<br>.123<br>.105       | .186<br>.148<br>.122       | .153<br>.110               | .197<br>.116<br>.121       |
| G<br>AZIM<br>RAD                 | 129<br>127<br>151           | 248<br>236<br>247          | 1 1 1                      | • • • •                              | .329             | 142<br>096<br>098          | 157<br>106<br>113          | 174<br>144<br>136          | 445<br>421<br>373          | 375                        | 126<br>-011<br>201         | 122<br>-013<br>052         | 048                        |
| FSD<br>ANGLE<br>RAD              | .100                        | .084                       |                            |                                      | .063             | .099<br>.075               | .080                       | .080                       | .101<br>.063<br>.068       | .067                       | .104<br>.073               | .102<br>.068<br>.077       | .103<br>.073               |
| F<br>ELEV<br>RAD                 | 0.000                       | 007                        | 90                         | •••                                  | 025              | .004<br>.021<br>016        | .005<br>.026<br>013        | .004                       | .001                       | .005                       | .005<br>.025<br>007        | .004<br>.020<br>010        | .024                       |
| HOR12<br>WIND<br>CM/SEC          | 458.68<br>614.26<br>481.29  | 332.54<br>425.56<br>333.11 | 254.18<br>354.84<br>274.58 | 296.97<br>296.97<br>213.94<br>181.07 | 271.14<br>186.20 | 194.74<br>282.88<br>203.20 | 203-32<br>288-28<br>206-50 | 196.47<br>287.89<br>212.19 | 166.11<br>261.52<br>189.86 | 156.79<br>256.48<br>180.27 | 188.91<br>279.70<br>199.35 | 169.43<br>260.62<br>185.30 | 137.26<br>229.79<br>167.36 |
| RWV                              | .025<br>338<br>024          | .039<br>132<br>047         | -039                       | 066                                  | 003              | -028<br>033<br>012         | 0.000                      | .035                       | 020                        | 010                        | .005                       | 024                        | .022<br>012<br>004         |
| RUW RUV RWV<br>REYMOLDS STRESSES | 1.217                       | 724<br>934<br>711          | 169                        | 983                                  | 034              | 004<br>.046                | 091<br>130<br>045          | 086                        | .033                       | -314<br>092<br>-120        | .069<br>266<br>163         | .031                       | 629                        |
| RUW<br>REYMOI                    | -1.480<br>-2.040<br>-1.327  | 701<br>883<br>580          | -439                       | 255                                  | 141              | 239                        | 276                        | 260                        | -189                       | 163<br>182<br>142          | 272                        | 200                        | 167                        |
| WSD<br>DEV                       | 43.10<br>49.72<br>39.55     | 30.97<br>34.90<br>26.10    | 25.74                      | 22.06<br>16.12<br>16.15              | 17.67            | 19.02<br>21.31<br>15.62    | 20.98<br>23.06<br>16.92    | 19.80<br>23.05<br>17.68    | 15.78<br>16.97<br>13.04    | 15.00<br>17.83<br>13.50    | 18.84<br>20.44<br>15.11    | 16.66<br>17.72<br>14.10    | 14.13<br>16.52<br>13.25    |
| VSD<br>ST                        | 83-19<br>96-95<br>62-25     | 46.26<br>58.71<br>38.49    | 40.93<br>43.08<br>31.99    | 29.75<br>29.75<br>20.36              | 23.36<br>17.25   | 28.26<br>31.65<br>24.19    | 30.22<br>31.48<br>23.80    | 29.20<br>31.47<br>25.32    | 17.73<br>19.01<br>13.88    | 19.63<br>32.04<br>19.82    | 34.49<br>40.54<br>24.72    | 25.21<br>26.84<br>23.20    | 24.45<br>25.46<br>19.79    |
| USD<br>WIND<br>***CM/SEC         | 106.91<br>101.76<br>101.02  | 73.92<br>67.77<br>73.76    | 62-11<br>57-74<br>61-69    | 51.22<br>46.01<br>37.86              | 37.81<br>37.31   | 40.41<br>37.75<br>38.58    | 41.46<br>40.03<br>37.70    | 42.0m<br>41.11<br>40.11    | 42.84<br>33.00<br>38.17    | 38°76<br>32°81<br>34°73    | 45.00<br>45.24<br>42.27    | 31.20<br>30.10<br>30.41    | 46.27<br>43.32<br>33.47    |
| MEAN                             | 451.49<br>605.23<br>475.88  | 329.45<br>419.78<br>329.02 | 250.96<br>351.83<br>272.19 | 292.00<br>292.00<br>211.28<br>180.07 | 268.23<br>184.71 | 192.72<br>280.76<br>201.47 | 201-11<br>286-22<br>204-76 | 194.38<br>285.68<br>210.20 | 165-32<br>258-21<br>187-45 | 15°.69<br>2512<br>177.91   | 185.77<br>276.39<br>197.03 | 167.54<br>258.87<br>183.61 | 134.98<br>228.17<br>165.93 |
| SITE                             | 3776                        |                            |                            |                                      | ~ m              | ~ N E                      | 446                        | - N E                      | - NE                       | ~ N M                      |                            |                            |                            |
| THE                              | 502<br>1705<br>1705<br>1705 | 1735<br>1735<br>1735       | 1800                       | 1630                                 | 1900             | 1930<br>1930<br>1930       | 2000                       | 2030                       | 2130<br>2100<br>2100       | 2136<br>2136<br>2136       | 2200                       | 2230<br>2230<br>2230       | 2365<br>2305<br>2305       |

| DED<br>G<br>SAND                      | 000                                 | 000                       | 000                       | 000                       | 000                                     | 000                     | 000                     | 000                     | 000                                     | 000                                     | 000                       | 000                       | 000                       |
|---------------------------------------|-------------------------------------|---------------------------|---------------------------|---------------------------|-----------------------------------------|-------------------------|-------------------------|-------------------------|-----------------------------------------|-----------------------------------------|---------------------------|---------------------------|---------------------------|
| EXCEEDED<br>F G<br>R THOUSAND         | 000                                 | 000                       | 000                       | 000                       | 000                                     | 000                     | 000                     | 000                     | 000                                     | 000                                     | 000                       | 000                       | 000                       |
| LIMITS I                              | 000                                 | 000                       | 000                       | 000                       | 000                                     | 000                     | 000                     | 000                     | 000                                     | 0 0 <b>0</b>                            | 000                       | 000                       | 900                       |
| EW<br>RANS<br>N)                      | .0579<br>0.0000<br>0.0000           | .0212<br>0.0000<br>0.0000 | 0.0000                    | 0.0000                    | 000000000000000000000000000000000000000 | 0.0000                  | 00000                   | 000000                  | 000000000000000000000000000000000000000 | 0263<br>0.0000<br>0.0000                | 0.0000                    | 0.0000                    | 0.0000<br>0.0000          |
| EV EW<br>T HEAT TRANS                 | .0531<br>0.0000<br>0.0000           | .0112<br>0.0000<br>0.0000 | .0452<br>0.0000<br>0.0000 | 0225<br>0.0000<br>0.0000  | 000000000000000000000000000000000000000 | 0.00000                 | 0.0000                  | 0.00000                 | 0.0000                                  | .0103                                   | .0327<br>0.0000<br>0.0000 | 0039<br>0.0000<br>0.0000  | 0.0000<br>0.0000          |
| EU<br>LATENT                          | 0.0000                              | 2328<br>0-0000<br>0-0000  | 0.0000                    | .2014<br>0.0000<br>0.0000 | 0.0000000000000000000000000000000000000 | 0.00000                 | 0.00000                 | 0.00000                 | 0.0000                                  | .1349<br>0.0000<br>0.0000               | .1629<br>0.0000<br>0.0000 | .0997<br>0.0000<br>0.0000 | .1768<br>0.6000<br>0.0000 |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE | .3050<br>.1890<br>.1560             | .4870<br>.2990<br>.4750   | .7120<br>.4410<br>.6640   | .8570<br>.7170<br>.9840   | .5780<br>.5790<br>.5290                 | .4670<br>.3620<br>.4090 | .3580<br>.2680<br>.3650 | .4019<br>.3130          | .4470<br>.2690<br>.3200                 | .3960<br>.2750<br>.3000                 | .4020<br>.3090<br>.3280   | .2930<br>.2080            | .2730<br>.2970            |
| AIR<br>EAN<br>CENTI                   | 188                                 | 17.<br>18.                | 16.<br>17.                | 13.<br>15.                | 113.                                    | 9::0                    | 10.                     |                         | 10.                                     | - ° ° •                                 | . 6.                      | , e,                      | •••                       |
| •                                     | 0496<br>0467<br>0378                | 0682<br>0564<br>0452      | 0596                      | 0388<br>0201<br>0285      | 0409                                    | 0406<br>0303<br>0280    | 0384<br>0316<br>0292    | 0365                    | 0279                                    | 0235<br>0163<br>0186                    | 0316<br>0277<br>0199      | 0287<br>0175<br>0196      | 0253                      |
| HU HV HW<br>SENSIBLE HEAT TRANS       | .0821<br>.0654<br>.0061             | 111:<br>1429<br>1023      | 0478<br>0496<br>0565      | 1373                      | .0001<br>0427<br>0031                   | 0203                    | .0103                   | 0122<br>0247<br>0216    | .0357<br>0051<br>.0940                  | .0201<br>0433<br>0242                   | .0446                     | 0078                      | 05636<br>0268<br>0205     |
| SENSTB                                | .2710<br>.1475<br>.1843             | .4034<br>.2270<br>.4152   | .5651<br>.3212<br>.5363   | .3263                     | -1091<br>-0243                          | .1526<br>.0489<br>.1253 | .0716                   | .1954<br>.1363<br>.1898 | .2255                                   | .1811<br>.0226<br>.1137                 | .1898<br>.1086<br>.1780   | .0923<br>.0529<br>.0862   | .2316<br>.1102<br>.1129   |
| BETA                                  | 0.0000                              | 0.0000                    | 0.0000                    | 0.00000                   | 0.0000                                  | 0.0000                  | 0.0000                  | 0.0000                  | 0.0000                                  | 0.0000000000000000000000000000000000000 | 0.0000                    | 0.0000                    | 0.0000                    |
| THETA                                 | 0075<br>-0222<br>0119               | 0079                      | 0018<br>.0224<br>0121     | .0037                     | .0066<br>.0013                          | 000*<br>0197            | 0015<br>.0239<br>9184   | 3014<br>.0267<br>0167   | 008;                                    | .0002<br>.0369<br>0080                  | 000g<br>0230<br>0109      | 0319<br>-0187             | .0007                     |
| ETA                                   | 1218<br>1253<br>1534                | 2550<br>2426<br>2557      | 0941<br>0919<br>1276      | .2496<br>.2611<br>.1541   | .3340<br>.3332<br>.2275                 | 1425<br>0962<br>0974    | 1632<br>1088<br>1145    | 1768<br>1483<br>1393    | 4332                                    | 3650<br>2886<br>3021                    | -1252                     | -1214-0144                | 0831<br>.0145<br>0852     |
| SITE                                  |                                     | - N m                     |                           | - 2 5                     | ~~~                                     | 335                     | - N m                   | -26                     |                                         | - 2 6                                   |                           | -~~                       | ₩ N W                     |
| START                                 | 50267<br>1705 1<br>1705 2<br>1705 3 | 1735<br>1735<br>1735      | 1800                      | 1830<br>1830              | 1900                                    | 1930<br>1930<br>1930    | 2000                    | 2030<br>2030<br>2030    | 2100<br>2100<br>2100                    | 2136<br>2136<br>2136                    | 2200<br>2200<br>2200      | 2230<br>2230<br>2230      | 2305<br>2305<br>2305      |

| WIND<br>SHIFT<br>RAD             | 000000000000000000000000000000000000000 |                                                             |                                                          | 0000                                                     | 000000000000000000000000000000000000000                                                     | 000000000000000000000000000000000000000                  | 0000                                                     |
|----------------------------------|-----------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| WIND<br>DIR<br>RAD               | 000000000000000000000000000000000000000 |                                                             |                                                          | 000000000000000000000000000000000000000                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 000000000000000000000000000000000000000                  |                                                          |
| GSD<br>ANGLE<br>RAD              | .174<br>.124<br>.122                    | .181<br>.134<br>.185<br>.379<br>.389                        | .315<br>.315<br>.296<br>.159<br>.166                     | . 3 4 4 8 9 4 4 8 9 4 8 9 4 8 9 9 9 9 9 9 9              | .218<br>.231<br>.295<br>0.000<br>0.000                                                      | .257<br>.246<br>.251<br>.191<br>.171                     | .168<br>.129<br>.151<br>.145<br>.110                     |
| G<br>AZ IM<br>RAD                | .123                                    | .089<br>.216<br>.102<br>160<br>111                          | .173<br>.274<br>.354<br>.354                             | .089<br>.102<br>.032<br>.070                             | .298<br>.328<br>.263<br>0.000                                                               | .145<br>.149<br>.134<br>.030                             | 1 0662<br>1 0662<br>1 0653<br>1 0659                     |
| FSD<br>ANGLE<br>RAD              | .102<br>.070                            | .108<br>.098<br>.231<br>.230                                | 159<br>159<br>1098<br>125<br>125                         | .137<br>.163<br>.154<br>.127<br>.144                     | .142<br>.186<br>.166<br>7.000                                                               | .105<br>.097<br>.106<br>.090                             | .106<br>.086<br>.103<br>.080                             |
| F<br>ELEV<br>RAD                 | .012<br>.011<br>024                     | .009<br>-013<br>-013<br>.001                                | .008<br>.007<br>.013<br>.013                             | 000<br>006<br>006                                        | .006                                                                                        | .0004<br>015<br>015<br>014                               | .008<br>013<br>023<br>023                                |
| HORIZ<br>WIND<br>CM/SEC          | 174.06<br>257.88<br>161.93              | 205-15<br>296-41<br>191-68<br>113-35<br>145-70<br>115-28    | 219.82<br>263.86<br>226.94<br>276.14<br>337.81           | 235.52<br>284.72<br>247.39<br>196.27<br>235.16<br>194.40 | 206.01<br>233.27<br>185.24<br>0.00<br>158.48                                                | 290.85<br>363.24<br>290.77<br>298.79<br>388.32<br>298.59 | 259.27<br>357.35<br>278.40<br>229.47<br>321.00<br>245.80 |
| RWV<br>SSES                      | -0043                                   | .022<br>0462<br>046<br>081                                  | 1.199<br>1.250<br>1.006<br>1.034                         | -184<br>-397<br>-254<br>-099<br>-549                     | -020<br>-124<br>-051<br>-051<br>-053                                                        | -134<br>-295<br>-185<br>-029<br>-192                     | .0444<br>082<br>007<br>068                               |
| IUM RUV RWV<br>REYNOLDS STRESSES | 1.548                                   | 054<br>164<br>.240<br>299<br>-2.048                         | 1.680<br>2.107<br>.617<br>-2.287<br>-1.320               | 2.563<br>3.350<br>3.307<br>1.460<br>001                  | 569<br>569<br>039<br>0.000<br>0.000                                                         | 1.109<br>.954<br>.901<br>.266<br>.266                    | -280<br>-406<br>-043<br>-134<br>-064                     |
| REYNOL                           | 208                                     | 304<br>273<br>233<br>146<br>191                             |                                                          | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                 | 11.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.                          | 1                                                        | - 523<br>- 571<br>- 584<br>- 396<br>- 391                |
| WSD                              | 17.83<br>18.69<br>12.42                 | 21-27<br>22-48<br>18-62<br>13-46<br>26-64<br>19-31          | 23.70<br>34.21<br>27.75<br>25.26<br>36.68<br>28.30       | 255.il<br>339.96<br>26.45<br>19.40<br>27.80              | 22:34<br>22:34<br>23:68<br>00:00<br>16:99                                                   | 28.72<br>33.07<br>29.16<br>29.71<br>33.97<br>29.84       | 26.41<br>27.98<br>23.20<br>26.36<br>23.75                |
| VSD<br>ST D                      | 30.94<br>32.41<br>20.85                 | 37.61<br>39.01<br>39.03<br>30.03<br>50.03<br>50.03<br>50.03 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 70.95<br>84.32<br>75.63<br>62.56<br>80.04<br>65.57       | 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                    | 71.95<br>84.90<br>70.00<br>56.67<br>65.64                | 44.67<br>46.80<br>42.98<br>33.95<br>37.36                |
| USD<br>WIND                      | 42-73<br>44-21<br>48-79                 | 39.19<br>38.20<br>37.79<br>68.73<br>91.87                   | 122-18<br>127-89<br>106-64<br>105-74<br>104-24<br>98-88  | 102.04<br>118.12<br>196.37<br>81.11<br>86.28             | 34.40<br>100.04<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                     | 67.48<br>75.18<br>69.80<br>71.57<br>62.31                | 60.96<br>66.98<br>68.53<br>61.31<br>57.89                |
| MEAN<br>WIND                     | 171.43<br>254.72<br>160.35              | 201.89<br>292.61<br>189.34<br>106.66<br>134.55              | 210-72<br>249-29<br>220-58<br>273-55<br>329-60<br>272-74 | 226.96<br>270.57<br>238.23<br>197.21<br>219.99           | 261.83<br>225.35<br>225.35<br>180.83<br>0.00<br>0.00<br>164.33                              | 281.82<br>351.02<br>284.20<br>293.50<br>294.28           | 255.60<br>353.93<br>275.93<br>227.09<br>318.68<br>244.21 |
| SITE                             | 9 - 2 -                                 | <b>5</b> -26 126                                            |                                                          | 351 351                                                  |                                                                                             |                                                          |                                                          |
| TIME S<br>START                  | 5026<br>2330<br>2330<br>2330            | 5036.<br>1130 11130 11130 2                                 | 1230<br>1230<br>1230<br>1306<br>1306<br>1306             | 1330<br>1330<br>1330<br>1400<br>1400                     | 1444<br>1444<br>1440<br>1440<br>1440<br>1440<br>1440<br>1440                                | 1630<br>1630<br>1630<br>1700<br>1700<br>1700             | 1730<br>1730<br>1730<br>1800<br>1800                     |
|                                  |                                         |                                                             |                                                          |                                                          |                                                                                             |                                                          |                                                          |

| SAND                           | 000                        | 000                       | 000                                     | 000                       | 000                                     | 000                         | 000                                     | 000                       | 000                                     | 000                       | 000                        | 000                        | 000                        |
|--------------------------------|----------------------------|---------------------------|-----------------------------------------|---------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|---------------------------|-----------------------------------------|---------------------------|----------------------------|----------------------------|----------------------------|
| EXCEEPED<br>F<br>G<br>THOUSAND | 000                        | 000                       | 000                                     | 000                       | •00                                     | 000                         | 000                                     | <b>650</b>                | 000                                     | 000                       | 000                        | 000                        | 000                        |
| TS<br>PE                       | 000                        | 000                       | 600                                     | 000                       | 000                                     | 000                         | 000                                     | 000                       | 000                                     | 000                       | 000                        | <b>0</b> 00                | 000                        |
| LIMI<br>VSQ<br>PARTS           |                            | 00.0                      |                                         |                           |                                         |                             |                                         |                           |                                         |                           |                            | •                          | 000                        |
| 7.0                            | .0300                      | .0310                     | 0000                                    | .0000                     | 0000                                    | 0.0000                      | .2206                                   | .4332<br>0.0000<br>0.0000 | 0000                                    | .1592<br>0.0000<br>0.0000 | .1512<br>0.0000<br>0.0000  | 0.3000                     | 0316<br>0.4500<br>U.0000   |
| ENTRANS                        | 100                        | 100                       | 000                                     | 00                        | 00                                      | 00                          | 00                                      |                           | 000                                     |                           | 00                         |                            |                            |
| EU EV EW<br>LATENT HEAT TRANS  | 0380<br>0-0000<br>0-0000   | 0159<br>0-0000<br>0-0000  | 0.0000<br>0.0000<br>0.0000              | .2905<br>0.0000<br>0.0000 | 1683<br>0.0000<br>9.0000                | .6748<br>0.0000<br>0.0000   | 3696<br>0-0000<br>0-0000                | 00046<br>0-0000<br>0-0000 | 0.000.0<br>0.0000                       | 0.0000<br>0.0000          | 0.0000                     | 0000 -0<br>0-0000          | -0070<br>0-0000<br>0-0000  |
| EU<br>LATEN                    | .1482<br>0.0000<br>0.0000  | .0940<br>0.0000<br>0.0000 | 0.00000                                 | 0.0000                    | 5082<br>0.0000<br>0.0000                | . 39999<br>0.0000<br>0.0000 | 0.0000                                  | .3888<br>0.0000<br>0.0000 | 000000000000000000000000000000000000000 | 6176<br>7.0000<br>0.0000  | 1.0475<br>0.0000<br>0.0000 | 1.2322<br>0.0000<br>0.0000 | 1814<br>0-0000<br>0-0000   |
| TEMP<br>ST DEV                 | .3200<br>.2400<br>.3770    | .2920<br>.2520<br>.2630   | .8980<br>.5960                          | .4090<br>.6930            | .7560<br>.5680<br>.6670                 | •6860<br>•4670<br>•6430     | .5560<br>.3400<br>.5490                 | .7520<br>.5390<br>.7220   | 0.0000                                  | •3120<br>•1980<br>•1890   | .3440 -1<br>.3150 0        | .4910<br>.3670<br>.4920    | -6450<br>-4710<br>-6190    |
| MEAN CENTIC                    | 6.46                       |                           | 17.<br>17.                              | 19.<br>19.<br>20.         | 20.                                     | 20•<br>19•<br>20•           | 19.<br>19.<br>20.                       | 20.                       |                                         | 19.<br>19.                | 19.                        | 17.<br>18.                 | 15.<br>16.                 |
|                                | 0297<br>0204<br>0134       | 0308<br>0262<br>0248      | .1557                                   | .1198<br>.1198            | •1351<br>•1641<br>•1287                 | •1194<br>•1161<br>•1290     | .0251                                   | .1057                     | 0.0000                                  | 0085<br>0054<br>0125      | 0463                       | 0593<br>0503<br>0518       | 0520                       |
| HV<br>E HEAT<br>(CM2-M)        | -0374<br>-0068<br>-0534    | 0140<br>0237<br>0095      | .2680<br>0508<br>0973                   | 1370                      | 0798<br>-0854<br>-0310                  | .0565                       | .2609<br>.2679<br>.2820                 | -01130                    | 0-1000<br>0-1000<br>0374                | .1526<br>.1526            | .0679<br>.1106             | 0280<br>023:<br>0001       | .0158<br>.0120<br>0183     |
| HU<br>SENSTBL                  | .0239                      | .0921<br>.)462<br>.)607   | 8854<br>-5758                           | 9407<br>-0274<br>-1150    | -1.3048<br>3267<br>1526                 | 0764<br>1007<br>0509        | 0925<br>0130<br>-1310                   | 5066<br>5038<br>5038      | 0.0000<br>0.0000<br>2637                | .0453<br>.0207<br>.0511   | .1231<br>.0172<br>.1342    | .3341<br>.277<br>.4185     | . 3337<br>. 3337<br>. 6888 |
| BETA                           | 0000000                    | 0000°0<br>0°0000          | 0.0000000000000000000000000000000000000 | 0.0000                    | 0.0000000000000000000000000000000000000 | 0.0000                      | 0.0000000000000000000000000000000000000 | 0.00000                   | 0.000.0                                 | 0.0000                    | 0.0000                     | 0.0000                     | 0.0000                     |
| THETA                          | .0394<br>-0384             | .0026<br>.0104<br>0234    | 0127<br>0178<br>0009                    | 0017                      | .0065<br>.0016<br>0234                  | 0009<br>0044<br>0240        | 0005<br>0024<br>0175                    | .0037<br>.0034<br>0164    | 0.0000<br>0.0000<br>0152                | 0017<br>-0111<br>0231     | 002;<br>0107               | .0194                      | .0001                      |
| RAD                            | .1139<br>.2390<br>.1325    | .2164<br>.1088            | 2460<br>2241<br>2852                    | .2231<br>.2500<br>.2664   | .3906<br>.3906<br>.3467                 | .1542                       | .1194                                   | .3338<br>.3338            | 0.0000<br>0.0000<br>0.2611              | .1574                     | .0329                      | 0645                       | 0415                       |
| SITE                           | 0267<br>1<br>2             | 50367<br>1<br>2<br>3      | - 2 6                                   | +1 N/m                    | <b>~~~</b>                              | ~ N M                       | ~ 7 %                                   | e1 (0) (6)                | - r.r.                                  | ~ n n                     | ~ ~ c                      | - 2 E                      | - 0 m                      |
| START                          | 50<br>2330<br>2330<br>2330 | **                        | 1130                                    | 1230<br>1230<br>1230      | 1336<br>1306<br>1306                    | 1330                        | 1400                                    | 1430                      | 1690<br>1690                            | 1630<br>1630<br>1630      | 1700                       | 1730<br>1730<br>1730       | 1800                       |

| WIND<br>SHIFT<br>RAD          | 0.000                        | 000000                 | 000000                     | 0.0000                           | 000000000000000000000000000000000000000 | 000000                     | 000000000000000000000000000000000000000 | 000000                     | 000000                                  | 0.0000                     | 0000             | 0.0000                 | 000000                   |
|-------------------------------|------------------------------|------------------------|----------------------------|----------------------------------|-----------------------------------------|----------------------------|-----------------------------------------|----------------------------|-----------------------------------------|----------------------------|------------------|------------------------|--------------------------|
| WIND<br>DIR<br>RAD            | 000000                       | 0.000                  | 000000                     | 000000                           | 0.000                                   | 000000                     | 0.0000000000000000000000000000000000000 | 0000                       | 000000000000000000000000000000000000000 | 00000                      | 0000             | 0.000                  | 0000                     |
| GSD<br>ANGLE<br>RAD           | .149<br>0.000<br>.143        | .160<br>0.900<br>.151  | .149<br>.121<br>.144       |                                  | .147<br>.125<br>.148                    | .149<br>.129<br>.160       | .123<br>0.000<br>.139                   | .148                       | •141<br>•103<br>•132                    | .125<br>.104<br>.134       | 194              | .327<br>0.000<br>0.000 | .324<br>0.000<br>.275    |
| G<br>AZIM<br>RAD              | .018<br>0.000<br>.001        | 080<br>0.000<br>107    | 131<br>.007<br>089         |                                  | 210<br>125<br>176                       | 227<br>122<br>180          | 310<br>0.000<br>286                     | 086<br>115<br>136          | .146<br>.116                            |                            | .156             | 031<br>0.000<br>0.000  | .089                     |
| FSD<br>ANGLE<br>RAD           | .100<br>0.000                | .105<br>0.000<br>.100  | .108<br>.103               | • • •                            | .090                                    | .106<br>.092<br>.107       | .106<br>0.000<br>.104                   | .102                       | .105<br>.078<br>.097                    | .105                       | .103             | .117<br>0.000<br>0.000 | .140<br>0.000<br>.135    |
| F<br>ELEV<br>RAD              | .004<br>0.000<br>014         | .006<br>0.009<br>010   | .003<br>-035<br>-016       | •••                              | .005<br>.048<br>012                     | 00 <i>?</i><br>040<br>011  | 0.000                                   | .030                       | .023                                    | _ 1                        | .031             | .017<br>0.000<br>0.000 | .010<br>0.000<br>020     |
| HORIZ<br>WIND<br>CM/SEC       | 235.25                       | 0.00<br>0.00<br>236.40 | 256.50<br>348.14<br>263.16 | 300.87<br>390.81<br>327.47       | 252-65<br>333-52<br>265-57              | 269.86<br>352.63<br>279.83 | 318.15<br>0.00<br>329.65                | 187.21<br>273.87<br>212.29 | 182.30<br>254.11<br>186.64              | 187-15<br>250-85<br>175-76 | 254.59<br>185.97 | 160.96                 | 269.68<br>0.00<br>281.37 |
| RWV                           | .027<br>0.000<br>053         | 0.000                  | -032<br>-039<br>-050       | -0107                            | .005                                    | .026<br>019<br>014         | 0.000<br>0.000<br>0.000                 | .019<br>053<br>009         | .015<br>.012<br>005                     | -0004                      | -116             | 000000                 | .185<br>0.000<br>152     |
| RUV<br>DS STRES               | .044<br>0.000<br>010         | .038<br>0.030<br>414   | 027<br>134<br>092          | .513<br>.891<br>.165             | 235                                     | 451                        | .070<br>0.000<br>013                    | .056<br>.007<br>018        | 019<br>052<br>135                       | .024<br>016<br>159         | 817              | 319<br>0.000<br>0.000  | 1.557<br>0.000<br>.514   |
| RUM RUV RWV REYNOLDS STRESSES | 360<br>0.000<br>373          | 0.000                  | 540<br>507<br>524          | 814                              | 523<br>486<br>447                       | 527<br>603<br>531          | 0.000<br>749                            | 234<br>283<br>283          | 228<br>259<br>217                       | 230                        | 259              | 0.000                  | 0.000                    |
| WSD                           | 23.21<br>0.00<br>23.52       | 23.01<br>0.00<br>23.10 | 26.48<br>29.66<br>26.41    | 30.39<br>34.18<br>32.43          | 26.30<br>29.34<br>26.48                 | 27.10<br>31.75<br>28.85    | 31.53<br>0.00<br>32.84                  | 18.58<br>21.38<br>20.15    | 18.81<br>19.64<br>17.78                 | 19.23<br>21.36<br>18.46    | 25.74            | 18.04                  | 29.90                    |
| VSD<br>ST                     | 36.02<br>0.09<br>35.01       | 36.66                  | 37.70<br>42.68<br>38.13    | 54.05<br>54.05<br>64.05<br>64.05 | 36.69<br>41.87<br>39.07                 | 40.02<br>45.18<br>44.87    | 38.86<br>0.90<br>45.65                  | 28.01<br>29.53<br>27.87    | 25.69<br>26.40<br>24.90                 | 23.70<br>25.69<br>23.36    | 45.73            | 0.00                   | 84.19<br>0.00<br>76.89   |
| USD<br>WIND                   | 50.64<br>0.00<br>50.86       | 0.00<br>47.78          | 62.74<br>62.34<br>64.57    | 70.41                            | 55.28                                   | 70.02<br>74.02<br>68.75    | 72.74<br>0.00<br>72.21                  | 35.97<br>37.25<br>36.29    | 35-17<br>32-40<br>36-31                 | 43.57<br>45.01<br>39.72    | 51.83<br>48.58   | 0.00                   | 99.81<br>0.00<br>104.30  |
| MEAN                          | 232.62<br>0.00<br>242.39     | 222.40                 | 253.79<br>345.42<br>261.18 | 297.65<br>386.5)<br>325.3)       | 330.57<br>263.97                        | 267.07<br>349.27<br>277.79 | 315.97<br>0.00<br>329.33                | 185.17<br>271.94<br>211.14 | 180.54<br>252.43<br>185.39              | 185-82<br>247-73<br>175-79 | 249.44           | 152.96<br>0.00<br>0.00 | 257.28<br>0.00<br>274.59 |
| S17E                          | 32 12                        | - ~e                   | - 26                       | - 26                             | 32 -                                    |                            | - ce                                    | 3 5 1                      |                                         |                            | 35               |                        | 325                      |
| START                         | 5036<br>1830<br>1840<br>1830 | 1900<br>1900<br>1900   | 2000<br>2000<br>2000       | 2035                             | 2130                                    | 2130<br>2130<br>2130       | 2200<br>2200<br>2200                    | 2300<br>2300<br>2300       | 2330<br>2330<br>2330                    | v č                        | 200              | 100                    | 1200                     |

| XCEEDED<br>6<br>THOUSAND              | 000                                     | 000                       | 000                       | 000                                     | 000                        | 000                       | 000                      | 000                       | 000                       | 000                       | •••                                     | 000                       | 000                                     |
|---------------------------------------|-----------------------------------------|---------------------------|---------------------------|-----------------------------------------|----------------------------|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|-----------------------------------------|---------------------------|-----------------------------------------|
| tal ta.                               | 000                                     | 000                       | 600                       | 000                                     | 000                        | 000                       | 000                      | 000                       | 000                       | 000                       | 000                                     | 000                       | 000                                     |
| LIMITS 1                              | 000                                     | 000                       | 000                       | 000                                     | 000                        | 000                       | 000                      | 000                       | 000                       | 000                       | 000                                     | 000                       | 000                                     |
| EW<br>RAMS                            | 0514<br>0.0000<br>0.0000                | 000000                    | 0.0000                    | 0.0000000000000000000000000000000000000 | 0.0000<br>0.0000<br>0.0000 | 0355<br>0.0000<br>0.0000  | 0.0000                   | 0221<br>0.0000<br>0.0000  | 0215<br>0.0000<br>0.0000  | 0.0000                    | 0282<br>0.0000<br>0.0000                | 0254<br>0.0000<br>0.0000  | 000000000000000000000000000000000000000 |
| EU EV EW<br>LATENT HEAT TRANS         | .0495<br>0.0000                         | .0365<br>^.0000<br>0.0000 | .0181<br>0.0000<br>0.0000 | -1421<br>0-9000<br>0-9000               | 0027<br>7.7000<br>7.9000   | .0117<br>0.0000<br>0.0000 | .0153<br>0.0000          | .0046<br>7.0000<br>7.0000 | 0044<br>0004<br>0000      | .0019<br>0.0000<br>0.0000 | .0039<br>0.0000<br>0.0000               | 0835<br>0-0000<br>1-0000  | 0.00000                                 |
| •                                     | .1065<br>0.0000                         | .1689<br>                 | .0178<br>0.0000<br>0.0000 | .5294<br>0.0000<br>0.0000               | .1156<br>0.0000<br>0.0000  | .0780<br>0.0000<br>0.0000 | .1330<br>0.0000          | .0670<br>0.0000<br>0.0000 | .0771<br>0.0000<br>0.0000 | .0711<br>0.0000<br>0.0000 | .0911<br>0.0000<br>0.0000               | .1276<br>0.0000<br>0.0000 | 0.00000                                 |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE | .6770<br>0.0000<br>0.5950               | .5100<br>0.0000<br>.5160  | .3270<br>0.0000<br>.2600  | .3300<br>0.0000<br>.2680                | .3500<br>0.0000<br>.3500   | .2820<br>0.0000<br>.2490  | .2720<br>n.0000<br>.1950 | .2970<br>n.0000<br>.1490  | .2500<br>0.0000<br>.2270  | .2150<br>0.0000<br>.2310  | .2580<br>0.0000<br>.2100                | .2960<br>0.0000<br>0.0000 | .8770<br>0.0000<br>.7930                |
| ATI<br>GEN<br>CEN                     | 13.                                     | 12.<br>0.<br>12.          | 000                       | 900                                     | 000                        | œ c o                     | 6 6 6                    | <b>6</b> C &              | 000                       | F C 8                     | + C &                                   | +66                       | 18.                                     |
| •                                     | 0.000.c<br>0.000.l                      | 0480<br>0.0000<br>0442    | 0405<br>0.0000<br>0342    | 0.0000<br>0.0000<br>0382                | 0394<br>0.0000<br>0307     | 0366<br>0.9000<br>0294    | 0393<br>0.0000<br>0340   | 0231<br>0.0000<br>0207    | 0212<br>0.9000<br>0194    | 0200<br>0.0000<br>0154    | 0275<br>^.0000<br>0211                  | 0568<br>0.0000<br>0.0000  | .1783<br>0.0000<br>.1477                |
| U HV HW<br>ENSIBLE HEAT TRANS         | .0439<br>0.0000<br>.0754                | .0281<br>0.0000           | 0011<br>0-000<br>-0036    | .0444<br>0.1000<br>.0232                | 0226<br>0.9000<br>0355     | 0134<br>9.0000<br>-,3121  | 0.0000                   | .0061                     | .0012<br>0000-0<br>0131   | 0022<br>0.0000<br>0115    | .0306<br>n.0000<br>.0401                | .1036<br>0.0000<br>0.0000 | 1143<br>0.0000<br>.0660                 |
| HU<br>SENSIB                          | .1265<br>n.100n<br>.0749                | .2081<br>0.0000<br>.2391  | .1764<br>0.0000<br>.2006  | .2840<br>0.0000<br>.2085                | .2113<br>0.0500<br>.2021   | .1521<br>0.0000<br>.1951  | .2003<br>0.0000<br>.2018 | .1032<br>0.0000<br>.0851  | .0925<br>n.1047           | .1149<br>0.0000<br>.0973  | .0888<br>0.0000<br>.0917                | .2324<br>0.0000<br>0.0000 | 1772<br>0-0900<br>1789                  |
| RETA                                  | 000000000000000000000000000000000000000 | 0.0000                    | 0.0000                    | 0.0000                                  | 0.00000                    | 0.0000                    | 0.0000                   | 0.0000                    | 0.0000                    | 0.0000                    | 0.0000000000000000000000000000000000000 | 0.000<br>0.0000<br>0.0000 | 0.0000                                  |
| THETA                                 | 0006<br>0204                            | 0.0000                    | 004n<br>032e<br>0229      | 002A<br>.0191                           | 0023                       | 0097<br>1770-             | 0074<br>0.0700<br>0134   | 0054<br>-0277<br>0177     | 0015<br>.0207             | .0007<br>.0117<br>0254    | .029                                    | .010¢<br>0.000n<br>0.000n | .003n<br>0.000n<br>0272                 |
| E ETA                                 | .0193<br>0.0000<br>.0011                | 0804<br>0.0000<br>1135    | 1321<br>-0059<br>0910     | 2203<br>1188<br>1765                    | 2122                       | 2343                      | 3113<br>0.0000<br>2862   | 0854<br>1164<br>1373      | .11471                    | .3350<br>.4366<br>.2920   | 0552<br>-1442<br>1375                   | 00000-0                   | .1222<br>0.0000<br>.2466                |
| SITE                                  | 367<br>3                                | - ~ ~ ~                   | 1. 5                      | r e                                     | - re                       | ~ ~ m                     | r m                      | - ~ 6                     | re                        | 0467                      | 321                                     | 40.5                      |                                         |
| TIME                                  | 1830<br>1830<br>1830                    | 1900<br>1900<br>1900      | 2000<br>2000<br>2000      | 2035<br>2035<br>2035                    | 2100<br>2100<br>2100       | 2130<br>2130<br>2130      | 2200<br>2200<br>2200     | 2300<br>2300<br>2300      | 2330<br>7410<br>2330      | <b>6</b>                  | 0 F 6                                   | 100                       | 1200<br>1200<br>1200                    |

| MIND<br>SHIFT<br>RAD             | 0.0000                      | 0.0000000000000000000000000000000000000 | 0.000.0                                 | 000000                     | 000000                          | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 000.00000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0.000                       | 0.00000                   | 0.0000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |
|----------------------------------|-----------------------------|-----------------------------------------|-----------------------------------------|----------------------------|---------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------|---------------------------|-----------------------------------------|-----------------------------------------|
| WIND<br>DIR<br>RAD               | 0.000                       | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0.000                      | 0.000                           | 0.000                                   | 0.000                                   | 0.0000                                  | 000000                                  | 000000                      | 0.000                     | 0.000                                   | 0.000                                   |
| GSD<br>ANGLE<br>RAD              | .261<br>0.090<br>.265       | 0.0000                                  | .252<br>0.000<br>.260                   | .261<br>.273<br>.280       | .244                            | .145                                    | •178<br>•111<br>•176                    | .183<br>.095                            | .153<br>0.000<br>.158                   | .148<br>.103                | 0.000                     | .127<br>.107<br>.128                    | .155<br>.102<br>.152                    |
| G<br>AZIM<br>RAD                 | .222<br>0.000<br>.309       | .235<br>0.000<br>0.000                  | 0.000                                   | .106<br>.086               | .166<br>.0 <sup>2</sup><br>.179 | 038<br>157<br>002                       | 237<br>320<br>223                       | 135<br>256<br>158                       | 249<br>0.000<br>222                     | 280                         | 300<br>0.900<br>303       | 309                                     | 181<br>192<br>168                       |
| FSD<br>ANGLE<br>RAD              | .139<br>0.000<br>.155       | .109<br>0.000<br>0.000                  | .120<br>0.000<br>.127                   | •120<br>•117<br>•119       | .112                            | .090<br>.090                            | .108<br>.081                            | .129<br>.083<br>.103                    | .107<br>0.000<br>.104                   | .043<br>.081                | .107<br>0.000<br>.104     | .110                                    | .080                                    |
| ELEV<br>RAD                      | .020<br>0.000<br>025        | .000                                    | .014<br>7.707<br>020                    | .014<br>.035<br>013        | .011<br>.025<br>023             | .008<br>.035<br>018                     | .003<br>.036<br>011                     | .003<br>.037<br>014                     | .001                                    | .001<br>.037                | 0.000                     | .001<br>.035                            | .005<br>.034<br>010                     |
| HOR12<br>WIND<br>CM/SEC          | 279.93<br>0.00<br>284.87    | 273.30<br>0.00<br>0.00                  | 297.77<br>0.00<br>286.87                | 314.30<br>396.51<br>321.88 | 351.08<br>450.04<br>369.11      | 379.03<br>492.18<br>388.72              | 425.77<br>553.61<br>454.81              | 433.38<br>549.53<br>442.32              | 449.59<br>0.00<br>481.75                | 444.56<br>588.72<br>472.69  | 402.29<br>0.00<br>430.87  | 340.08<br>449.23<br>350.75              | 278.51<br>385.96<br>287.79              |
| RWV                              | .079<br>0.000<br>110        | .266<br>0.000<br>0.000                  | .105<br>000.0                           | -155<br>093<br>203         | -203<br>323<br>188              | .359                                    | .165<br>.332<br>081                     | .204<br>.343<br>260                     | 0.000<br>0.000<br>071                   | .115<br>.356<br>036         | .151<br>0.000<br>056      | .307                                    | .070<br>.258<br>017                     |
| RUW RUV RWV<br>REYNOLDS STRESSES | 1.072<br>0.050<br>1.276     | 2.385<br>0.000<br>0.000                 | 0.000                                   | -4-375<br>134              | -4.542<br>-509                  | .340<br>-2.759<br>.204                  | .859<br>649<br>397                      | 1.109<br>950<br>039                     | 0.000                                   | .156<br>-2.357<br>-1.503    | 186<br>0.000<br>953       | 266<br>-2.024<br>642                    | 519<br>-2-057<br>585                    |
| RUW<br>REYNOL                    | 807<br>                     | 0.000                                   | 0.003                                   | -1.272                     | -1.018<br>-1.546<br>-1.016      | -1.252<br>-1.399<br>-1.281              | -1.658<br>-1.242<br>-1.417              | -1.529<br>-1.581<br>-1.403              | -1.658<br>0.000<br>-1.526               | -1.735<br>-1.540<br>-1.521  | -1.420<br>0.000<br>-1.364 | -1.046<br>624<br>919                    | 717                                     |
| WSD                              | 30.13<br>0.00<br>30.64      | 25.86<br>0.00<br>0.00                   | 32.07<br>0.00<br>31.86                  | 33.62<br>41.21<br>34.08    | 36.31<br>46.28<br>36.54         | 39.42<br>41.44<br>39.94                 | 42.88<br>43.61<br>43.81                 | 44.50<br>44.58<br>43.37                 | 44.81<br>0.00<br>46.76                  | 45.39<br>46.11<br>45.99     | 40.26<br>0.00<br>42.51    | 35.35<br>32.53<br>34.83                 | 29.38<br>30.89<br>29.51                 |
| VSD<br>ND ST                     | 70.80<br>0.00<br>64.18      | 85.67<br>0.00<br>0.00                   | 73.62<br>0.00<br>71.32                  | 83.21<br>104.49<br>89.59   | 87.44<br>104.35<br>85.22        | 75.48<br>66.68<br>77.54                 | 76.52<br>61.61<br>80.48                 | 79.76<br>52.93<br>84.42                 | 68.05<br>0.00<br>76.16                  | 66.21<br>60.50<br>72.67     | 54.93                     | 43.37                                   | 42.51<br>38.78<br>44.17                 |
| USD<br>WIS                       | 109.46<br>0.00<br>118.17    | 117.02<br>0.00<br>0.00                  | 97.53<br>7.00<br>98.93                  | 87.72<br>102.22<br>96.84   | 90.69<br>108.57<br>94.45        | 95.85<br>103.48<br>95.14                | 101.68<br>92.68<br>91.84                | 103.42<br>103.42<br>93.06               | 105.99<br>0.00<br>101.87                | 1111-92<br>105-30<br>107-36 | 99.63                     | 85.04<br>80.97<br>F14                   | 67.78<br>67.78<br>67.99                 |
| MEAN                             | 271.62<br>0.00<br>281.22    | 260.99                                  | 289-12<br>0-00<br>280-72                | 303.78<br>380.95<br>312.25 | 340.74<br>435.77<br>362-14      | 371.69<br>486.15<br>382.52              | 419-19<br>546-56<br>450-94              | 426.29<br>544.85<br>436.83              | 444.67<br>00.00<br>478.94               | 439.96<br>589.67<br>471.42  | 398.85<br>0.00<br>430.83  | 337.57<br>443.85<br>351.62              | 275.16<br>382.96<br>285.83              |
| SITE                             | 0467                        | 4 6 6                                   | 3.5                                     | 3 5 7                      | 32 7                            | 321                                     | 321                                     | 4 2 5                                   | - 0.6                                   | 3 2 1                       | - 0· E                    | 351                                     | 126                                     |
| START                            | 50,<br>1230<br>1230<br>1230 | 1330<br>1730<br>1730                    | 1400                                    | 1430<br>1430<br>1430       | 1500<br>1500<br>1500            | 1530<br>1530<br>1530                    | 1600<br>1600<br>1600                    | 1630<br>1630<br>1630                    | 1700<br>1700<br>1700                    | 1730<br>1730<br>1730        | 1800<br>1800<br>1800      | 1830                                    | 1300<br>1900<br>1900                    |

| DED<br>G<br>SAND                      | 000                                     | 000                          | 000                                     | 000                                     | 000                                     | 000                                     | 000                                     | 000                                     | 000                                     | 000                                     | 000                                     | ၁၀၀                                     | 000                                     |
|---------------------------------------|-----------------------------------------|------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| EXCEEDED<br>F<br>F THOUSAND           | 000                                     | 000                          | e o e                                   | 000                                     | 000                                     | 000                                     | 000                                     | 000                                     | 500                                     | 200                                     | 000                                     | 000                                     | 000                                     |
| LIMITS<br>VSG<br>PARTS PER            | <b>0</b> 00                             | 000                          | 000                                     | 000                                     | 000                                     | 000                                     | 000                                     | 000                                     | 000                                     | 000                                     | 000                                     | c o o                                   | 000                                     |
| EW<br>RANS<br>N)                      | 0000000                                 | 0000000                      | 0.0000                                  | 0.0000                                  | 0.0000                                  | 0.0000000000000000000000000000000000000 | 0.0000                                  | 0.0000000000000000000000000000000000000 | 0000000                                 | 0000000                                 | 000000000000000000000000000000000000000 | 0000000                                 | 000000000000000000000000000000000000000 |
| EU EV EW<br>LATENT HEAT TRANS         | 0.0000000000000000000000000000000000000 | 0.0000<br>0.0000<br>0.0000   | 0.0000                                  | 0.0000                                  | 0.0000                                  | 0.00000                                 | 0.0000                                  | 0.0000                                  | 0.0000                                  | 0.0000000000000000000000000000000000000 | 0.0000                                  | 0.0000                                  | 0.00000                                 |
| •                                     | 0.00000                                 | 0.0000                       | 0.0000000000000000000000000000000000000 | 0.00000                                 | 0.0000                                  | 0.00000                                 | 0.0000                                  | 0.0000.0                                | 0.0000                                  | 0.0000                                  | 0.00000                                 | 0.0000<br>0.0000<br>0.0000              | 0.600.0<br>0.0000.0<br>0.0000           |
| AIR TEMP<br>KEAN ST DEV<br>CENTIGRADE | .8670<br>0.0000<br>0.777.0              | .7350<br>0.000,0             | .6700<br>nenn.n                         | .5220<br>.4840<br>.5130                 | .3340<br>.3960                          | .3410<br>.3180<br>.2900                 | .2940<br>.2970<br>.3270                 | .2420<br>.2810<br>.2050                 | .3820<br>0.0000<br>.4360                | .3600<br>.3640<br>.4130                 | .4470<br>0.0000<br>.4460                | .4680<br>.3820<br>.4720                 | .3790<br>.4123                          |
| AIR<br>MEAN<br>CENTI                  | 200                                     | 6 6 6 6                      | 19.                                     | 19•<br>19•<br>21•                       | 19.                                     | 19.<br>19.<br>20.                       | 18.<br>18.                              | 17.<br>18.                              | 8 5 6                                   | 15.<br>16.                              |                                         | 12.<br>13.<br>14.                       | 11.                                     |
| 4                                     | .1787<br>0.0000<br>.1527                | .1622                        | .1122<br>0.0000<br>.1132                | .1079<br>.1091                          | .0876<br>.1144<br>.0800                 | .0605<br>.0835                          | .0471                                   | .0234<br>.0185<br>.0208                 | 0.0001                                  | 0364<br>0345<br>0292                    | 0.0000<br>0.0000<br>0493                | 0572<br>0388<br>0452                    | 0553<br>0505<br>0440                    |
| HU HV HW<br>SENSIBLE HEAT TRANS       | 0557<br>0000                            | 2024<br>0000<br>0000         | .0315<br>0.0000<br>0.0680               | .0383<br>.1027<br>.1000                 | 0070                                    | .0125<br>.1178<br>.0058                 | .0357                                   | 0216                                    | .0481<br>0.0000<br>.0360                | 0125<br>0408<br>0597                    | 0107<br>0.0000<br>0108                  | 0452                                    | 0213<br>0529<br>0058                    |
| HU<br>SENSIBL                         | 7.5444<br>7.0700<br>0568                | -1.2067<br>-1.0000<br>0.0000 | 2863<br>n.0000<br>1149                  | 2127<br>2209<br>1083                    | 2491<br>2052<br>2661                    | 2741<br>2871<br>2342                    | 1887<br>1384<br>1300                    | 1565                                    | 1844<br>0.0000<br>1391                  | .1461 .0322 .1524                       | .3176<br>0.0000<br>.3548                | .3470                                   | .2850<br>.1695                          |
| BETA                                  | 0.0000                                  | 0.0000                       | 0.0000                                  | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0.000.0                                 | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0.0000                                  | 0.0000000000000000000000000000000000000 | 0.0000                                  |
| THETA                                 | .0072<br>                               | .0024                        | .0049<br>0287                           | .0045<br>.0277<br>023*                  | .0034<br>.0184<br>0314                  | .0004<br>.0304<br>5265                  | -00049<br>-0325<br>-0185                | 0043<br>.0337<br>0214                   | 0066<br>n.nnn<br>0176                   | 0004<br>-034n<br>0146                   | 0.0000<br>0.0000<br>0.0140              | 006#<br>0141                            | 0025<br>-0304<br>0180                   |
| ETA                                   | .2403<br>0.0000<br>3258                 | .2675<br>0.0000<br>0.0000    | .1829<br>0,000,0<br>.2107               | .0566<br>.0566                          | .1694<br>.0521<br>.1725                 | 0377                                    | 2337                                    | 1306<br>2624<br>1573                    | 0.0000<br>0.0000<br>0.2262              | 2807<br>3783<br>2833                    | 0.0000                                  | 3171                                    | 1886<br>2062<br>1734                    |
| SITE                                  | 1 2 2 2 3                               | ** 6. F                      | - 6                                     | - N F                                   |                                         | ~ v. w                                  | - 25                                    | -26                                     |                                         | - 2 6                                   | ~ ~ ~                                   | 325                                     | - 26                                    |
| START                                 | 5046<br>1230 1<br>1230 2<br>1230 3      | 1330                         | 1400                                    | 1430<br>1430<br>1430                    | 15.00<br>1500<br>1500                   | 1530<br>1530<br>1530                    | 1600<br>1600                            | 1530<br>1630<br>1630                    | 1700                                    | 1750<br>1730<br>1730                    | 1900                                    | 1830<br>1830<br>1830                    | 1906<br>1906<br>1900                    |

| 6 GSD<br>AZI:3 ANGLE<br>PAD PAD<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .195 0.000<br>.222 0.000<br>.291 0.000<br>.267 0.000 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| G GSD<br>AZI: ANGLE<br>RAD RAD<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .22<br>.22<br>.22<br>.267                            |
| AZIX<br>RAD<br>186<br>191<br>243<br>243<br>243<br>243<br>243<br>243<br>243<br>243<br>243<br>243<br>165<br>243<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |
| Section   Sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 115                                                  |
| 100 0000 0000 0000 0000 0000 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |
| TER III III III III III III III III III I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .108<br>.108<br>.113<br>.695                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -013<br>-023<br>-013                                 |
| HORING<br>WIND<br>WIND<br>WIND<br>WIND<br>23422<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96<br>295-96 |                                                      |
| \$5.55 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.00 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.11.1 \$1.1                                                                                                                                                                                                                                                          | - 327<br>- 327<br>- 186<br>- 527                     |
| RUW<br>REWNOLDS STRESSES<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.148<br>.342<br>3.055<br>5.080                      |
| REG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 269<br>200<br>200<br>285<br>285<br>538               |
| DEEV WSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43.98<br>43.98<br>37.99<br>42.69                     |
| 8 450 400 400 400 400 604 600 604 60 40 60 60 60 60 60 60 60 60 60 60 60 60 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.80<br>99.80<br>104.02<br>122.22<br>249.30         |
| USD VSEC • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110.74<br>110.74<br>93.94<br>101.09                  |
| MEAN MIND MIND MIND MIND MIND MIND MIND MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5500-71<br>2570-71<br>349-75<br>447-89               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
| ν <del>1</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1130                                                 |

| DED<br>G<br>SAND                                 | 000                                     | 000                     | 000                        | 000                                     | 000                        | 000                                     | 000                        | 000                        | •••                        | 000                                     | 000                                     | 000                                     |
|--------------------------------------------------|-----------------------------------------|-------------------------|----------------------------|-----------------------------------------|----------------------------|-----------------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| EXCEE<br>F<br>THOU                               | 000                                     | 000                     | 000                        | ა e o                                   | 000                        | 000                                     | 000                        | 000                        | 000                        | 000                                     | 000                                     | 000                                     |
| LIMITS EXCEEDED<br>VSQ F G<br>PARTS PER THOUSAND | 000                                     | 000                     | 000                        | 000                                     | 005                        | 000                                     | 000                        | 000                        | 000                        | 000                                     | 000                                     | 000                                     |
| EM<br>RANG<br>N)                                 | 0.000<br>0.000<br>0.000                 | 0000°0<br>0000°0        | 0.00000                    | 0,0100<br>0,040<br>0,000<br>0,000       | 0.0000                     | 0.00000                                 | 0.0000                     | 00000                      | 0.0000                     | 0.0000000000000000000000000000000000000 | 0.00000                                 | 000000000000000000000000000000000000000 |
| EU EV EW<br>'ATENT HEAT TRANS                    | 0.0000<br>0.0000<br>0.0000              | 0.000.0                 | 0.0000<br>0.0000<br>0.0000 | 3.0000<br>0.0900<br>0.0900              | 0-2020<br>0-3030<br>0-0053 | 0.0000                                  | 0.0000                     | 0000000                    | 0.0000<br>0.0000           | 0.0000<br>0.0000<br>0.0000              | 0.0000000000000000000000000000000000000 | 0.000<br>0.000<br>0.000<br>0.000        |
|                                                  | 0-0000<br>0-0000<br>0-0000              | 0.0000                  | 0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000              | 000000                     | 000000000000000000000000000000000000000 | 0.0000<br>0.0000<br>0.0000 | 0000000                    | 0.0000                     | 0000000                                 | 0.00000                                 | 0.0000                                  |
| AIR TEMP<br>MEAN ST DEY<br>CEMTIGRADE            | 2450<br>2030<br>3463                    | .3570<br>.3570          | .252C<br>.2470<br>.2750    | 1.3680<br>1.3680<br>1.5900              | .5680<br>.3850<br>.5490    | .2610<br>.2500<br>.3060                 | 0.0000<br>0.0000<br>.2200  | 0.0000                     | 0.0000<br>0.0000<br>0.3920 | 0.0000                                  | .4260<br>.3820<br>.4340                 | .4770<br>.3340<br>.4610                 |
| AIR<br>IE AN<br>CENT                             | 11:                                     | 10:                     | 100.                       | 13.                                     | 13.<br>13.<br>14.          | 13.                                     | c c 4                      | c e E                      | 0<br>75.                   | 6.68                                    | 14.<br>14.<br>16.                       | 14.                                     |
| TKANS P                                          | 0456<br>0400<br>0405                    | 0525<br>0541<br>0403    | 0514<br>0520<br>0453       | .1257<br>.0743<br>.1171                 | .0902<br>.0961<br>.1075    | .0419                                   | 0.0000<br>0.0000<br>0.0576 | 0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.1049 | 0.0000<br>0.0000<br>0.1576              | .1134<br>.1068<br>.1063                 | .1036<br>.1035                          |
| HU HV HW<br>SENSIBLE HEAT TYANS                  | 0279                                    | 0666<br>1193<br>0370    | 0017<br>0373<br>-0217      | .1267<br>0823<br>1233                   | 0254<br>0213<br>-0121      | .1181<br>.1315<br>0899                  | 0.0000                     | 0.0000<br>0.0000<br>0.0637 | 0.0000<br>0.0000<br>0.0282 | 0.0000<br>0.0000<br>0.0493              | .0145<br>0469<br>0200                   | .1061<br>.0875                          |
| HU<br>SENSIB                                     | .2861<br>.1371<br>.2653                 | .3276<br>.2676<br>.2601 | .2233<br>.1873<br>.3250    | 3127<br>0161<br>2882                    | 0935<br>0141<br>2021       | .1240<br>.2042<br>2161                  | 0.0000<br>0.0000<br>1860   | 0.0000<br>0.000<br>2521    | 0.0000<br>0.0006<br>3216   | 0.0000<br>0.0000<br>5607                | 3158<br>2389<br>3587                    | 2301<br>1140<br>2673                    |
| BETA                                             | 000000000000000000000000000000000000000 | 0.0000                  | 0.0000                     | 000000000000000000000000000000000000000 | 0.0000                     | 0.0000                                  | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                                  | 0.0000                                  | 0.0000                                  |
| THETA                                            | 0097<br>0367                            | 0083<br>-0370<br>0167   | 0080<br>-0334<br>0154      | 0146<br>-0140<br>0133                   | 007n<br>.0345<br>0175      | 0047<br>-010n<br>0201                   | 0.0000                     | 0.0000<br>0.0000<br>0273   | 7.000<br>7.000<br>0304     | 0.0000<br>0.0000<br>0265                | 0040<br>-0153<br>0217                   | 2049<br>.0188                           |
| ETA<br>RAD                                       | 1969<br>2028<br>1988                    | 2473<br>2413<br>2410    | 2985<br>3082<br>2858       | 1823<br>1960<br>0023                    | 1819<br>1881<br>-0647      | .1536<br>.1501<br>.0138                 | 0.0000                     | 0.0000                     | 0.0000<br>7.0000<br>.2637  | 0.0000                                  | 0925                                    | 0438<br>0575<br>0575                    |
| SITE                                             | 50467<br>0 1<br>0 2<br>0 3              | 325                     | 321                        | 50567<br>5 2 2<br>5 3 3                 | 176                        | 40.6                                    | - 10                       | - ~ 6                      |                            | ~ ~ ~                                   | -26                                     | 4 N E                                   |
| START                                            | 50<br>1930<br>1930<br>1930              | 2000<br>2000<br>2000    | 2030<br>2030<br>2030       | 735<br>735<br>735                       | 800<br>800<br>800          | 830<br>830<br>830                       | 9006                       | 010<br>010<br>030          | 1000                       | 1630                                    | 1100                                    | 3130<br>1130<br>1330                    |

| WIND<br>SHIFT<br>RAD             | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000000000000000000000000000000000000000                      | 000000000000000000000000000000000000000            | 000 000 000                                                                                              |                                                                                             |                                                |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|
| EIA"<br>DIR<br>RAD               | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000000000000000000000000000000000000000                      | 000000000000000000000000000000000000000            | 000 000 000                                                                                              |                                                                                             | 000000000000000000000000000000000000000        |
| GSD<br>ANGLE<br>RAD              | 251<br>251<br>256<br>271<br>260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .208<br>.187<br>.190<br>.256<br>.270                         | 2884<br>2789<br>2789<br>2750<br>2753               | .221<br>.219<br>.212<br>.192<br>.188<br>.187                                                             | .195<br>.195<br>.195<br>.079<br>.079                                                        | .253<br>.253<br>.223                           |
| G<br>AZIM<br>RAD                 | 255<br>231<br>261<br>174<br>173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 335<br>321<br>009<br>000                                     | 025<br>006<br>027<br>102<br>084                    | 2546<br>246<br>281<br>268<br>268<br>268<br>268                                                           |                                                                                             | 133<br>122<br>257<br>260                       |
| FSD<br>ANGLE<br>RED              | .135<br>.131<br>.121<br>.121<br>.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .118<br>.109<br>.113<br>.113                                 | . 114<br>. 114<br>. 114<br>. 111<br>. 113          |                                                                                                          | <b>&gt;</b>                                                                                 | .111<br>.109<br>.116                           |
| F.EV<br>RAD                      | .004<br>.004<br>.004<br>.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .004<br>-015<br>-015<br>-017                                 | 007<br>007<br>009<br>009                           |                                                                                                          |                                                                                             | .058<br>.058<br>.058<br>.066                   |
| HORIZ<br>WIND<br>CM/SEC          | 206.22<br>206.32<br>207.41<br>233.70<br>236.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 322-72<br>329-33<br>930-27<br>355-66<br>355-66               | 980.97<br>980.53<br>385.14<br>352.74<br>362.03     | 391 - 16<br>386 - 31<br>386 - 31<br>386 - 32<br>386 - 35<br>386 - 36<br>386 - 36<br>386 - 36<br>386 - 36 | 50 00 00 00 00 00 00 00 00 00 00 00 00 0                                                    | 204.35<br>309.41<br>206.54<br>212.17<br>218.81 |
| :                                | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000 000                                                      | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 |                                                                                                          | 000000000000000000000000000000000000000                                                     | 000000000000000000000000000000000000000        |
| RLW PUV RBV<br>REYNOLDS STRESSES | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.206<br>-1.206<br>-1.466<br>-126<br>-126                   | - 563<br>- 738<br>- 10406<br>- 10406<br>- 10550    | 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                  | 1.1F2<br>1615<br>1615<br>1615<br>1705<br>1705<br>1705<br>1705<br>1705<br>1705<br>1705<br>17 | -2.824<br>-2.824<br>-1.419<br>-1.639           |
| RUM<br>REYNOL                    | 1 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10138<br>-1034<br>-1926<br>-1936<br>-1936                   | -1-279<br>-1-298<br>-1-692<br>-1-691<br>-1-151     | 111 111 111 111 111 111 111 111 111 11                                                                   | 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                     | 766<br>767<br>488<br>383                       |
| WSD<br>DEV                       | 23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>23.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00 | 33.3<br>32.3<br>33.4<br>33.4<br>33.4<br>33.4<br>33.4<br>33.4 | 39.68<br>40.96<br>41.07<br>37.03<br>36.91          | 38.01<br>39.08<br>39.08<br>39.27<br>36.27<br>36.27<br>36.27                                              | 30 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -                                                     | 32,28<br>31,16<br>23,16<br>23,116<br>22,65     |
| VSD<br>ND ST<br>EC               | 52.06<br>51.06<br>51.06<br>51.06<br>65.04<br>63.02<br>63.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59-26<br>64-69<br>64-28<br>93-68<br>94-38                    | 108.22<br>109.73<br>107.23<br>85.55<br>86.65       | 88 88 88 88 88 88 88 88 88 88 88 88 88                                                                   | 23 - 64 - 65 - 65 - 65 - 65 - 65 - 65 - 65                                                  | 81.78<br>81.71<br>42.57<br>42.38<br>43.49      |
| USD<br>W11                       | 66-11<br>67-12<br>64-12<br>64-13<br>64-13<br>64-13<br>64-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95-33<br>92-90<br>58-09<br>88-87<br>69-76                    | 98.33<br>94.48<br>92.17<br>97.35<br>98.43          | 8889<br>9889<br>9889<br>989<br>989<br>989<br>989<br>989<br>989                                           | 92.85<br>79.95<br>80.40<br>99.40<br>97.26<br>79.46                                          | 78.78<br>81.01<br>73.11<br>72.51<br>75.14      |
| MEAN                             | 199.81<br>200.51<br>203.50<br>230.16<br>230.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 315,74<br>324,42<br>328,14<br>345,28<br>342,61               | 365.866<br>373.0;<br>352.34<br>355.34              | 382.65<br>379.42<br>379.42<br>379.42<br>379.43<br>374.60<br>374.60                                       | 326.07<br>325.11<br>325.62<br>373.39<br>393.02<br>291.21                                    | 294-77<br>302-09<br>204-21<br>208-62<br>216-39 |
| 3176                             | 20 mm mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                                                    |                                                                                                          |                                                                                             | <b>MW 44W</b>                                  |
| TIME S<br>START                  | 923<br>923<br>923<br>953<br>953<br>953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1108<br>1108<br>1108<br>1158<br>1158                         | 1230<br>1230<br>1230<br>1300<br>1300               | 11411111111111111111111111111111111111                                                                   | 1513<br>1611<br>1611<br>1640<br>1640<br>1723                                                | 1723<br>1723<br>1753<br>1753                   |

| EXCEEDED G G THOUSAND                 | 000                                     | 000          | 000                                     | 000                   | 000                                     | 000                                     | 000                                     | coo                    | 000                                     | 000                                     | 000                       | 000                                     | 000                                     |
|---------------------------------------|-----------------------------------------|--------------|-----------------------------------------|-----------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------|-----------------------------------------|-----------------------------------------|---------------------------|-----------------------------------------|-----------------------------------------|
|                                       | 000                                     | 000          | 000                                     | 000                   | 000                                     | 000                                     | 00 <b>0</b>                             | 000                    | 000                                     | 000                                     | 000                       | 000                                     | 000                                     |
| LIMITS I                              | 000                                     | 000          | 000                                     | 000                   | 000                                     | 000                                     | 000                                     | 600                    | 000                                     | 000                                     | 000                       | 000                                     | 000                                     |
| PA                                    |                                         |              |                                         |                       |                                         |                                         |                                         |                        |                                         |                                         |                           |                                         |                                         |
| EW<br>RANS<br>N)                      | 0.0000000000000000000000000000000000000 | 00000        | 0.0000                                  | 0.00000               | 00000                                   | 00000                                   | 0.0000                                  | 00000                  | 0.0000<br>0.0000<br>0.0000              | 0.0000                                  | 0.0000                    | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |
| EV EW EW EW LATENI HEAT TRANS         | 0.0000<br>0.0000<br>0.0000              | 0.0000       | 0.0000                                  | 0.0000.0              | 00000                                   | 0.0000                                  | 0.0000.0                                | 0.0000.0               | 0.0000                                  | 0.000.0                                 | 0.000.0                   | 0.0000                                  | 0.0000                                  |
| EU<br>LATENT                          | 0.000<br>0.0000<br>0.0000               | 0.0000       | 00000*0                                 | 0.000.0               | 0.0000                                  | 0.0000                                  | 0-0000                                  | 0.000.0                | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000000                   | 0.00000                                 | 0.0000                                  |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE | 0.0000000000000000000000000000000000000 | 0.0000       | 0.0000.0                                | 0.000.0               | 0.0000                                  | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 00000*0                | 00000*0                                 | 000000000000000000000000000000000000000 | 0.0000                    | .1730<br>0.0000<br>0.0000               | .2380<br>0.0000<br>0.0000               |
| AIR<br>EAN                            | 000                                     | ¢ ¢ ¢        |                                         | 666                   |                                         |                                         | 000                                     | 666                    |                                         | :::                                     | 12.                       | 100                                     | #°°°                                    |
| •                                     | 0.000<br>0.000<br>0.000<br>0.000        | 0.0000       | 0.0000<br>0.0000<br>0.0000              | 0.000.0               | 0.0000000000000000000000000000000000000 | 0.000.0                                 | 0.000.0                                 | 0°000°0<br>0°0000°0    | 0000°0                                  | 0.0000000000000000000000000000000000000 | 0233<br>0.0000<br>0.0000  | 0219<br>0.0000<br>0.0000                | 0225<br>0-0000<br>0-0000                |
| SENSIBLE HEAT TRANS                   | 0.0000<br>0.0000<br>0.0000              | 0.000.0      | 000000000000000000000000000000000000000 | 0.0000.0              | 0.000.0                                 | 0.0000.0                                | 0.000.0                                 | 0000-0                 | 0.000.0                                 | 0.0000000000000000000000000000000000000 | .0026<br>0.0000<br>0.0000 | 0.0000                                  | 1039<br>0.0000<br>9.0000                |
| SENSIBI                               | 0.0000<br>0.0000<br>0.0000              | 0.0000.0     | 000000000000000000000000000000000000000 | 0.000.0<br>0.0000     | 0000-0                                  | 00000-0                                 | 0.0000                                  | 0.0000.0               | 000000000000000000000000000000000000000 | 0.0000.0                                | .0877<br>0.0000<br>0.0000 | .0652<br>0.0000<br>0.0000               | .2370<br>0.0000<br>0.0000               |
| BETA                                  | .0710<br>-0340<br>-0460                 | 0350<br>0350 | -0220<br>-0580                          | -0500                 | .0240<br>0540<br>.0540                  | 0410<br>0410                            | .0500<br>-0500<br>.0420                 | .0890<br>0630<br>.0310 | -0580<br>-0580                          | .0110<br>0570<br>.0440                  | .1800<br>1709<br>0570     | .0030                                   | 0190<br>.04.0                           |
| THETA                                 | 0034<br>-0449<br>0169                   | 0051         | .0418<br>-0737                          | 0001<br>0217<br>-0135 | -0034<br>-0163                          | 016-                                    | .0578<br>0014<br>1454                   | .0584<br>0074<br>0698  | .0604<br>-00020<br>-0677                | .0625<br>0064<br>0653                   | 0452<br>.0517<br>.0114    | 0657<br>.0527<br>.0440                  | .0560                                   |
| ETA<br>RAD                            | 2522<br>2427<br>2523                    | 1687         | 3404<br>3340<br>3185                    | 0091<br>0098<br>0047  | 0277<br>0109<br>0309                    | 1107                                    | 2480<br>7488<br>2100                    | 2820<br>2803<br>2583   | 2545                                    | 2115                                    | 5448<br>4876<br>4654      | 1471<br>1506<br>1787                    | 2940<br>2933<br>2818                    |
| SITE                                  | 267                                     | - 0 5        | -0"                                     |                       | -25                                     |                                         | - C F                                   |                        |                                         | - ~ F                                   | - ~ F                     | -~-                                     | - 0,6                                   |
| TIME STARE                            | 923                                     | 953<br>953   | 1108                                    | 1158                  | 1230<br>1230<br>1230                    | 1300                                    | 1411                                    | 1441                   | 1515                                    | 1611<br>1611<br>1611                    | 1640<br>1640<br>1640      | 1723<br>1721<br>1721                    | 1753<br>1753<br>1753                    |

| WIND<br>SHIFT<br>RAD       | 0.0000                   | 0000                     | 000000                                  | 0.000                    | 0000                     | 000000                     | 0000                       | 0000                       | 0000                      | 0000                       | 0000                        | 0.000                                   | 0000                       |
|----------------------------|--------------------------|--------------------------|-----------------------------------------|--------------------------|--------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|-----------------------------|-----------------------------------------|----------------------------|
| WIND<br>DIR<br>RAD         | 0.000                    | 0000                     | 0.000                                   | 0.000                    | 0000                     | 00000                      | 0000                       | 0000                       | 0000                      | 0000                       | 00000                       | 0.000                                   | 0000                       |
| GSD<br>ANGLE<br>RAD        | .209<br>.230<br>0.000    | .202<br>.204<br>0.000    | .150<br>.149<br>0.300                   | .180<br>.186<br>0.000    | .237<br>.226<br>0.000    | .235<br>.251               | .282<br>.298<br>.272       | .257<br>.279<br>.225       | .142<br>.172<br>0.000     | .133<br>.155               | .316<br>0.000<br>0.000      | ,360<br>0.000<br>0.000                  | .162<br>.145<br>.165       |
| G<br>AZIM<br>RAD           | .217<br>.278<br>0.000    | .097<br>.143<br>0.000    | 051                                     | 163<br>125<br>0-000      | 217<br>215<br>0-000      | 273<br>158<br>227          | 230<br>114<br>188          | 301<br>206<br>192          | .186<br>.229<br>0.000     | .154<br>.170<br>.166       | .223<br>0.000<br>0.000      | .003<br>0.000<br>0.000                  | 203<br>207<br>275          |
| FSD<br>ANGLE<br>RAD        | .059                     | .088<br>.090             | 000.0                                   | .109<br>.104<br>0.000    | .135<br>.109<br>0.000    | •121<br>•125<br>•119       | .123<br>.121<br>.126       | .112<br>.109               | .094<br>.097<br>0.000     | .092<br>.093<br>.086       | .215<br>n.000<br>n.000      | .175<br>0.000<br>0.000                  | .103                       |
| ELEV                       | 054<br>.038<br>0.000     | .057                     | 059                                     | 060                      | 054<br>.064<br>0.000     | .003<br>-004               | 001                        | .005<br>010                | .018<br>015<br>0.000      | -015<br>-015<br>-007       | .036<br>0.000<br>0.000      | .020<br>0.000<br>0.000                  | .003<br>.097<br>007        |
| HORIZ<br>WIND<br>CM/SEC    | 135-48<br>133-74<br>0-00 | 167.72<br>169.72<br>0.90 | 182-61<br>185-52<br>0.00                | 192.75<br>196.89<br>0.00 | 187-11<br>195-76<br>0-00 | 261.59<br>261.22<br>265.51 | 277.90<br>278.47<br>278.17 | 322.84<br>329.01<br>394.64 | 456.20<br>456.97<br>0.00  | 232.65<br>232.22<br>237.59 | 202 -81<br>0 - 00<br>0 - 00 | 220.59<br>0.00<br>0.00                  | 404.96<br>524.86<br>422.20 |
| RWV<br>SSES                | 0.000                    | 000000                   | 0.0000000000000000000000000000000000000 | 0.000                    | 0.0000                   | 00000                      | 0000-0                     | 000000                     | 000000                    | 0.000                      | 0.000                       | 0.0000                                  | 0000                       |
| RUV<br>DS STRE<br>NES/CM2  | 276<br>501<br>0-000      | 330<br>406<br>0-000      | 342                                     | 485<br>598<br>0.000      | 521<br>572<br>0.000      | 383<br>503<br>723          | 029<br>-016<br>538         | -2.208<br>-2.731<br>-1.298 | .268<br>.508<br>0.000     | 184<br>372<br>321          | 1.241<br>0.000<br>0.000     | 0.0000000000000000000000000000000000000 | 524<br>-1.786<br>537       |
| RUW<br>REYNOL              | 036                      | 167<br>164<br>0-000      | 218<br>196<br>0.000                     | 272<br>258<br>0.000      | 283<br>289<br>0-000      | 657<br>730<br>690          | 724                        | -1.008                     | -1.290<br>-1.539<br>9.900 | 269<br>297<br>210          | 620<br>0-000<br>0-000       | 0.0000                                  | -1.260<br>-1.284<br>-1.451 |
| EV EV                      | 8.22<br>8.83<br>0.00     | 15.79<br>16.05<br>0.00   | 18.23<br>18.23<br>0.00                  | 20.27<br>20.27<br>0.00   | 20.76<br>20.76<br>0.00   | 28.73<br>30.26<br>28.71    | 30.96<br>31.18<br>31.74    | 31.94<br>32.92<br>28.63    | 40.62<br>41.55<br>0.00    | 21.04<br>21.10<br>20.18    | 24.03<br>0.00<br>0.00       | 25.04                                   | 39.41<br>47.99<br>43.27    |
| VSD<br>ND ST D             | 28.90<br>30.18<br>0.00   | 33.66<br>33.93<br>0.00   | 28.23<br>28.64<br>0.00                  | 34.65<br>37.30<br>0.00   | 38-84<br>40-51<br>0-00   | 59.35<br>64.75<br>59.29    | 76.92<br>82.67<br>74.99    | 81.11<br>91.26<br>83.58    | 55.22<br>78.96<br>0.00    | 31.33<br>35.91<br>35.10    | 53.23<br>0.00<br>0.00       | 0.00                                    | 67.46<br>77.87<br>66.56    |
| USD<br>W II                | 19-21<br>24-04<br>0-04   | 46.94<br>96.98           | 42.51<br>41.84<br>0.00                  | 40.30<br>41.14<br>0.00   | 51.64<br>41.24<br>0.00   | 66.00<br>63.81<br>66.89    | 75.54<br>72.64<br>74.55    | 92.87<br>87.30<br>66.71    | 91.73<br>94.18<br>0.00    | 43.39<br>43.23<br>42.12    | 116.64<br>0.00<br>0.00      | 104.52<br>0.00<br>0.00                  | 94.17<br>98.11<br>103.42   |
| MEAN<br>WIND               | 132.68<br>130.45<br>0.00 | 164.76<br>166.58<br>0.00 | 180.91<br>183.69<br>0.00                | 190.10<br>193.84<br>0.00 | 183.16<br>191.61<br>0.00 | 254.72<br>253.28<br>264.59 | 267.36<br>266.58<br>275.35 | 312.69<br>316.66<br>392.64 | 451.68<br>450.51<br>2.00  | 230.62<br>229.56<br>237.46 | 0.00                        | 207.66                                  | 399.60<br>523.67<br>425.92 |
| 67<br>1TE                  | 321                      | - 2 5                    | 301                                     | 351                      | 321                      | 3216                       | 300                        | - N N                      | 406                       | 400                        | 7 7 7 7                     | - 46                                    |                            |
| 42267<br>TIME SIT<br>START | 1830                     | 1900                     | 1930                                    | 2000                     | 2030                     | 900                        | 945<br>945<br>845          | 1015                       | 1614<br>1614<br>1614      | 1713<br>1713<br>1713       | 426<br>1330<br>1330<br>1330 | 1400                                    | 1630                       |
|                            |                          |                          |                                         |                          |                          |                            |                            |                            |                           |                            |                             |                                         |                            |

| ITS EXCEEDED F G PER THOUSAND                        | 000 00                                                      | c 00c 0                    | 00 000                                                 | 000 000                                             | 000 000 000                                                                                                     | 000 000 0                                       | 000                              |
|------------------------------------------------------|-------------------------------------------------------------|----------------------------|--------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|
| LIMIT<br>VSQ<br>PARTS P                              | 000000000000000000000000000000000000000                     |                            | 0 00000                                                | 0 00000                                             |                                                                                                                 |                                                 | •0552<br>•0000<br>•0000<br>•0000 |
| LATENT HEAT TRANS                                    | 606 60                                                      | 0 000 0                    |                                                        | 000000000000000000000000000000000000000             |                                                                                                                 | 00 00                                           | 0.0000 0.0000                    |
| EU E'<br>LATENT H                                    |                                                             |                            | 0 00000 0                                              |                                                     |                                                                                                                 |                                                 | 0.0000                           |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE                | .1790<br>0.000<br>0.000<br>0.3190<br>0.0000                 | 0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.1890<br>0.0000                             |                                                     | .8570<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                               | 2.0000<br>2.0000<br>2.0000<br>2.0000            | .1680                            |
| . ·                                                  | -00002 9.<br>0.0000 0.<br>0.0000 0.<br>0.0000 0.            |                            | -                                                      | .0883 10.<br>                                       | . 2226 13.<br>0.0000 0.<br>.0000 0.<br>.0000 0.<br>.00000 0.                                                    | Hee Nec 1                                       | 0185 13.<br>0166 13.             |
| HU HV HW<br>SENSIBLE HEAT TGAN<br>***CAL/(CM2-MIN)** |                                                             |                            |                                                        | 0146<br>0.0000<br>0.0000<br>0.0000                  | 0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000                                                  |                                                 | 0012                             |
| HU<br>SENSIB                                         |                                                             |                            | 0.0000<br>0.0000<br>0.0000<br>0.0000                   | 0.1606<br>0.0000<br>0.0000<br>0.1000                | 000000<br>000000<br>000000<br>000000<br>000000<br>00000                                                         | ccicc                                           | .0231                            |
| A BETA                                               | 16 1                                                        |                            | ic ic                                                  | 2 .0380<br>2 .0380<br>5 .0640<br>6 .0410<br>7 .0410 |                                                                                                                 | 00000000000000000000000000000000000000          | 2 0020                           |
| THET                                                 | 1 C 1                                                       | c i c i                    | 79 .0584<br>00 0.000<br>370662<br>60 .0591<br>00 0.000 | 0005<br>810.                                        | 3156 -0027<br>7256 -0077<br>11949 -0146<br>11883 -0129<br>2310 -0737<br>7000 0.0000<br>1532 -0110<br>1655 -0200 | 66 66                                           | 760                              |
| SITE ETA                                             | 267<br>1 -2049<br>2 -2526<br>3 0.0000<br>1 -0868<br>2 -1306 |                            |                                                        | 9mne0e                                              | 13156<br>27256<br>31947<br>1 -1883<br>2 -2310<br>3 0.0000<br>1 -1532<br>2 -1655<br>3 -1655                      | ~                                               | 22139                            |
| STAPT                                                | 422<br>1830<br>1830<br>1830<br>1900                         | 1930                       | 2000<br>2000<br>2030<br>2030<br>5010<br>5010           | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9               | 1015<br>1015<br>1015<br>1614<br>1614<br>1713<br>1713                                                            | 1330 11<br>1340 1<br>1340 7<br>1400 1<br>1400 7 | 1630                             |

| WIND<br>SHIFT<br>RAD     | 000000000000000000000000000000000000000 | 0.000                     | 0.0000000000000000000000000000000000000 | 000000                                  | 0.000                                   | 000000                  | 0000                       | 000000                      | 0.0000                                  | 0.000                                   | 0.000                                   | 0.000                     | 0.0000                                  |
|--------------------------|-----------------------------------------|---------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------|----------------------------|-----------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------|-----------------------------------------|
| EIND<br>DIR<br>RAD       | 000000                                  | 0000                      | 0000                                    | 0000                                    | 0000                                    | 0000                    | 0000000                    | 0000                        | 0000                                    | 0.000                                   | 000000000000000000000000000000000000000 | 0.000                     | 000000                                  |
| GSD<br>ANGLE<br>RAD      | .151<br>.134<br>.157                    | .128<br>0.000<br>.117     | .119<br>0.000<br>.116                   | .138<br>.165<br>0.000                   | .136<br>.176<br>.265                    | 0.000                   | .227<br>.238<br>.207       | .258<br>.247<br>.243        | .258<br>.240<br>.214                    | .293<br>.274<br>.278                    | .214<br>.175                            | 0.000                     | .230<br>.214<br>.217                    |
| AZIH /                   | 169<br>174<br>236                       | 354<br>0.000<br>419       | 369<br>0.900<br>447                     | 276<br>322<br>0.000                     | 272<br>315<br>034                       | 0.000                   | 218<br>066<br>169          | 114                         | 168                                     | 032<br>033                              | .254<br>.381<br>.283                    | 394<br>0.000 0            | 003                                     |
| FSD<br>ANGLE<br>RAD      | .100<br>.092                            | .096<br>0.000<br>.108     | .096<br>0.000<br>.115                   | .106<br>.100                            | .093<br>.093                            | 0.000<br>0.000<br>0.208 | .108<br>.099               | .109<br>.100                | .105                                    | .107<br>.108                            | .102<br>.090                            | .091                      | .105<br>.089                            |
| F<br>ELEV<br>RAD         | .005<br>.086<br>                        | 003<br>0.000<br>001       | 00:<br>0.000<br>.001                    | .004<br>.140                            | 001<br>-138<br>004                      | 0.000                   | 040.0                      | .001                        | 0.000                                   | .009                                    | .004<br>.009<br>018                     | .009<br>0.000<br>019      | .003<br>.037                            |
| HOR 12<br>WIND<br>CM/SEC | 398.76<br>515.71<br>422.77              | 417.82<br>0.00<br>419.10  | 380.37<br>0.00<br>391.38                | 274-17<br>364-41<br>0-00                | 259.25<br>341.11<br>230.78              | 0.00<br>0.00<br>200.78  | 460.29<br>579.86<br>482.00 | 434.64<br>551.39<br>462.20  | 435.79<br>548.77<br>423.07              | 423.09<br>516.77<br>433.71              | 420.78<br>507.90<br>424.95              | 477.94<br>0.00<br>484.23  | 529.74<br>691.18<br>550.13              |
| RWV                      | 000000                                  | 0000                      | 000000                                  | 0.0000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000                  | 00000                      | 0000                        | 000000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0000000                                 | 0.000                     | 0.0000000000000000000000000000000000000 |
| REYNOLDS STRESSES        | 052<br>658<br>357                       | 0.000                     | .083<br>0.000<br>2.211                  | 1.585<br>0.000                          | 1.542<br>0.098                          | 0.000<br>1.025          | .833<br>1.511<br>408       | -2.658<br>-4.326<br>-3.367  | -1.533<br>2.058<br>.039                 | -1.892<br>.994<br>-1.645                | 1.680                                   | .891<br>0.000<br>059      | -3.517<br>-2.264<br>-1.584              |
| REW<br>REYNO             | -1-197<br>-1-274<br>-1-407              | -1.329<br>0.009<br>-1.160 | 0.074<br>0.000<br>535                   | 642<br>646<br>0.000                     | 457<br>328<br>725                       | 0.000<br>0.000<br>292   | -1.984<br>-1.570<br>-1.639 | -1.603<br>-1.974<br>-1.714  | -1.551<br>-2.154<br>-1.423              | -1,566<br>-2,029<br>-1,341              | -1.289<br>-1.091<br>-1.250              | -1.389<br>n.000<br>-1.383 | -2.214<br>-2.398<br>-2.226              |
| WSD<br>DEV               | 38.24<br>46.16<br>42.98                 | 37.93<br>0.00<br>42.82    | 34.55<br>0.00<br>43.75                  | 27.10<br>35.19<br>r.00                  | 24.58<br>30.84<br>31.88                 | 0.00<br>0.00<br>29.79   | 45.23<br>54.04<br>48.40    | 43.91<br>51.87<br>45.89     | 42.50<br>46.48<br>44.94                 | 42.04<br>49.79<br>42.54                 | 39.46<br>41.82<br>40.22                 | 40.02<br>n.00<br>42.59    | 51.79<br>56.67<br>55.20                 |
| VSD<br>WD ST             | 61.37<br>69.67<br>63.97                 | 54.94<br>0.00<br>48.30    | 46.09<br>0.00<br>67.56                  | 37-61<br>61-35<br>0-00                  | 35.77<br>60.69<br>55.62                 | 0.00<br>0.00<br>41.32   | 104.97<br>131.94<br>98.94  | 1111.78<br>135.04<br>112.13 | 109.20<br>125.56<br>95.05               | 121.79<br>136.47<br>120.90              | 85.26<br>84.04<br>93.43                 | 66.76<br>0.20<br>78.80    | 128.72<br>152.45<br>122.09              |
| USD<br>VIV<br>VIV        | 90.33<br>92.34<br>104.19                | 92.79<br>0.00<br>100.55   | 82.07<br>0.00<br>100.10                 | 62.02<br>61.57                          | 57.17<br>53.52<br>59.78                 | 73.29                   | 124.90<br>120.39<br>128.44 | 107.86<br>123.79<br>121.34  | 119.3R<br>147.77<br>115.04              | 119.85<br>139.04<br>115.91              | 114.36<br>142.03<br>127.97              | 120.97<br>0.00<br>120.31  | 124.89<br>131.51<br>128.24              |
| MEAN                     | 394.20<br>512.94<br>425.03              | 414.43<br>0.00<br>432.50  | 377.75<br>0.00<br>405.39                | 271.67<br>362.88<br>0.00                | 256.91<br>339.07<br>226.94              | 0.00                    | 448.69<br>564.70<br>479.21 | 420.42<br>535.34<br>435.61  | 422.00<br>534.32<br>451.30              | 405.70<br>498.94<br>424.64              | 412.00<br>501.54<br>426.16              | 0.00                      | 515.13<br>675.53<br>542.87              |
| SITE                     | 3446                                    | 325                       | 400                                     | 44 FW FF                                | 426                                     |                         | 167                        | 325                         | 325                                     | 400                                     | m (1) (m)                               | - ~ ~                     | 406                                     |
| TIME S<br>START          | 426<br>1700<br>1700<br>1700             | 1730                      | 1800<br>1800<br>1800                    | 1900                                    | 1930<br>1930<br>1930                    | 2000<br>2000            | 427<br>930<br>930<br>930   | 1000                        | 1030<br>1030<br>1030                    | 1100                                    | 1130                                    | 1200<br>1200<br>1200      | 1400<br>1400<br>1400                    |
|                          |                                         |                           |                                         |                                         |                                         |                         |                            |                             |                                         |                                         |                                         |                           |                                         |

| SAND                                  | 000                          | 000                      | 000                       | 000                       | 000                       | 000                        | 000                                    | 000                       | 000                        | 000                        | 000                       | 000                         | 000                         |
|---------------------------------------|------------------------------|--------------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------------------|---------------------------|----------------------------|----------------------------|---------------------------|-----------------------------|-----------------------------|
| EXCEEDED<br>F G<br>R THOUSAND         | 000                          | 000                      | 000                       | 000                       | <b>300</b>                | 000                        | ပဝင                                    | 000                       | 000                        | 000                        | 000                       | 000                         | 000                         |
| LIMITS PASS PARTS PER                 | 000                          | 000                      | 000                       | 000                       | 000                       | 000                        | 000                                    | 000                       | 900                        | 000                        | 000                       | 000                         | 000                         |
| EW<br>RANS<br>N)                      | .0278<br>0.0000<br>0.0000    | 0.0000                   | 0169<br>0.0000<br>0.0000  | 0261<br>0.0000<br>0.0000  | 0173<br>0.0000<br>0.0000  | 0.0000                     | 0.0000                                 | .3438<br>0.0000<br>0.0000 | .3499<br>0.0000<br>0.0000  | .3497<br>0.0000<br>0.0000  | .3257<br>0.0000<br>0.0000 | 0.000<br>0.0000<br>0.0000   | .3611<br>0.0000<br>0.0000   |
| LATENT HEAT TRANS                     | .0106<br>0.0000<br>0.0000    | 0.0000                   | 0.0000                    | 0.0000                    | 0000000                   | 0.0000                     | 0-0000<br>0-0000<br>0-0000             | 0.0000                    | 0.0000                     | 0.0000<br>0.0000<br>0.0000 | .2044<br>0.0000<br>0.0000 | .1294<br>7.0000<br>0.0000   | .2700<br>0.0000<br>0.0000   |
| ω :                                   | 2040<br>0-0000<br>0-0000     | 0.0000                   | 0.0000                    | .0967<br>0.0000<br>0.0000 | .0521<br>0.0000<br>0.0000 | 0.0000                     | 0.0000                                 | 9212<br>0-0000<br>0-0110  | 0.0000<br>0.0000<br>0.0000 | 0.0000                     | 5928<br>0.0000<br>0.0000  | -1.0630<br>9.0000<br>0.0000 | -1.5430<br>0.0000<br>0.0000 |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE | .2270<br>.2110               | .3100<br>n.0000<br>.2910 | .2920<br>0.0000<br>.3080  | .2640<br>.2310<br>^.7000  | .2520<br>.1980<br>.2520   | 0.0000                     | 0000°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° | .7420<br>.5570            | .7740<br>.6330<br>0.0000   | .8920<br>.6140<br>0.0000   | .9110<br>.5900<br>0.0000  | .8390<br>0.0000<br>.8130    | . 350                       |
| AII                                   | 13.<br>13.                   | 12.<br>                  | 111.<br>0.<br>12.         | 1000                      | 9.<br>10.<br>14.          | c c <b>o</b>               |                                        | 112.                      | 13.<br>12.                 | 13.<br>12.<br>0.           | 13.<br>12.                | 13.                         | 13.                         |
|                                       | 0348<br>0385<br>0345         | 0613<br>n.n.n.n          | 7.0520<br>0437            | 0514<br>0590<br>0590      | 0347                      | 0.0000                     | 0.0000<br>.2185<br>0.0000              | .2512<br>.2532<br>0.0000  | .2325<br>.2706<br>0.0000   | .2366<br>.2942<br>0.0000   | .2401<br>.2056<br>0.0000  | .2080<br>0.0000<br>.2259    | .2027                       |
| SENSIBLE HEAT TRANS                   | .0254<br>.0329<br>.0025      | .0603<br>.0878           | .0092<br>0.0000<br>0.0985 | -0207<br>-0690<br>-0690   | .0327<br>.1309<br>2.2511  | 0.0000<br>0.0000<br>1961   | 0.000.<br>0.000.<br>0.0000.            | 0775<br>0483<br>0.0000    | .0861<br>.1076<br>0.0000   | 2798<br>3682<br>0.0000     | 0730                      | .0001<br>0.0000<br>1310     | .1479                       |
| HU<br>SENS 1BL                        | .2009<br>.1221               | .3686<br>0.0000          | .3087<br>7.0000<br>14335  | .2417<br>.1906<br>0.000   | .0954                     | 0.0000                     | 0.0000<br>3466<br>0.0000               | 43979                     | 9508<br>8701<br>0-000      | 6709<br>4894<br>0-0000     | 6445                      | 0.0000<br>0.0000<br>2260    | 7450<br>5774<br>8601        |
| BETA                                  | .0550                        | .0370<br>0.0000<br>3130  | 0.0000                    | .0980<br>1400<br>0.0000   | -0320<br>-1550<br>-0310   | 0.0000<br>0.0000<br>2750   | 0380<br>0300                           | .0190<br>0720<br>0180     | .0270<br>054C<br>0240      | .0280<br>0970<br>0370      | .0410<br>1170<br>0180     | .0200<br>0.0000<br>.0300    | .0350<br>0750<br>0210       |
| THETA                                 | 001A<br>0831<br>0144         | 7.0105<br>7.0000<br>0083 | 0.00073<br>0.0000<br>0077 | 0035<br>-1361<br>0.0000   | 0081<br>.1359<br>0210     | 0.0000<br>0.0000<br>0.0000 | 0104<br>-0369<br>0104                  | 0075<br>-0362<br>0170     | 0077<br>.0361<br>7078      | 0060<br>-0342<br>0167      | .0027                     | .0035<br>0.7000<br>0246     | 0042                        |
| E ETA                                 | 1697                         | 3536<br>0.0000<br>4059   | 3704<br>0.0000<br>4262    | 2797<br>3162<br>0.0000    | 2764<br>3080<br>0329      | 0.0000                     | 0132<br>0632<br>1673                   | -1256                     | 1736<br>0566<br>1965       | 0406<br>-1073<br>0396      | .3947                     | .3998<br>0.0000<br>.3597    | 0145<br>-0414<br>0188       |
| SITE                                  | 667<br>1<br>2<br>3           | ~                        | - 20                      | - 2 5                     | 3 8 1                     | - 0:6                      | 42767<br>0 3<br>0 2<br>0 3             | 126                       | 325                        | 1400                       | 3 2 1                     | H 6.E                       | 446                         |
| TIME                                  | 1700<br>1700<br>1700<br>1700 | 1730<br>1771<br>0671     | 1800<br>1800<br>1800      | 1900<br>1900<br>1936      | 1930<br>1930<br>1930      | 2000<br>2000<br>2000       | 930                                    | 1000                      | 1030                       | 1100<br>1100<br>1100       | 1130<br>1130<br>0r11      | 1200<br>1200<br>1200        | 1400                        |

| WIND<br>SHIFT<br>RAD    | 0.000                       | 0000                       | 0000                       | 0000                          | 0000                       | 0000                       | 0000                       | 0.000                      | 0000                          | 00000                      | 0000                                    | 0000                       | 0000                       |
|-------------------------|-----------------------------|----------------------------|----------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-------------------------------|----------------------------|-----------------------------------------|----------------------------|----------------------------|
| WIND<br>DIR<br>RAD      | 0000                        | 00000                      | 0.000                      | 0000                          | 0.000                      | 0000                       | 0000                       | 0.000                      | 0000                          | 0.0000                     | 0.000                                   | 0000                       | 00000                      |
| GSD<br>ANGLE<br>RAD     | .227<br>.202<br>.218        | .239<br>.232<br>.243       | .229<br>.218<br>.227       | .165<br>.145                  | .191<br>.169<br>.191       | .245<br>.232<br>.227       | .130                       | .149<br>.117<br>.244       | .138<br>.106                  | •149<br>•117<br>•143       | .260<br>.246<br>0.000                   | .126                       | 27.302<br>27.302           |
| G<br>AZIM<br>RAD        | 048                         | .150<br>.150               | .013<br>.081               | .064                          | 051<br>-010<br>057         | 241                        | .392                       | 0.000                      | 221                           | 135<br>102<br>115          | .173                                    | 125                        | 0.000                      |
| FSD<br>ANGLE<br>RAD     | .107<br>.091<br>.124        | .094<br>.094               | .089                       | .084                          | .105                       | .130                       | .094                       | 960                        | .107                          | .101<br>.073               | .116<br>.120                            | .069                       | .087<br>.057               |
| F<br>ELEV<br>RAD        | .003<br>.052<br>011         | .035<br>-011               | .002<br>.035               | .033<br>.033                  | .002                       | 001                        | .010<br>.014<br>025        | 006                        | 007                           | 003                        | 008<br>038                              | 005                        | 0.000                      |
| WOR12<br>WIND<br>CM/SEC | 507-95<br>655-04<br>555-47  | 447-35<br>572-67<br>487-55 | 499-10<br>638-99<br>520-33 | 501-72<br>666-29<br>549-77    | 533.61<br>703.91<br>585.71 | 420.56<br>605.23<br>452.76 | 330-10<br>423-16<br>320-41 | 187.01<br>275.96<br>214.63 | 293.69<br>399.72<br>314.76    | 250.68<br>359.28<br>281.34 | 152.44<br>230.61<br>0.00                | 151.35<br>265.77<br>164.54 | 145.19<br>247.27<br>155.36 |
| RWV                     | 00000                       | 0000                       | 0000                       | 0000                          | 00000                      | 0000                       | 0000                       | 00000                      | 0000                          | 000000                     | 000000000000000000000000000000000000000 | 0000                       | 000000                     |
| JV<br>STRE<br>S/CM2     | -1.203<br>.534<br>-2.034    | 1.694                      | 2.200<br>2.262<br>3.298    | -1.255                        | -537<br>343                | 3.344                      | 175                        | 036                        | .340                          | 1.485                      | -2.221<br>-3.489                        | .081                       | 058<br>037                 |
| RUM REYNOLDS            | -2.272                      | -1.538<br>-1.907<br>-1.779 | -2.199<br>-2.199<br>-1.767 | -2.064<br>-2.088<br>-1.965    | -2.249<br>-2.249<br>-2.190 | -1.429<br>-1.381<br>-1.587 | -1.059                     | 197<br>205<br>245          | 629<br>610<br>713             | 423                        | 274                                     | 067                        | 106                        |
| WSD                     | 50.65<br>56.58<br>55.13     | 46.32                      | 46.71<br>53.34<br>50.21    | 50.00<br>53.94<br>53.58       | 52.74<br>57.52<br>55.60    | 41.93<br>44.68<br>44.46    | 30.33                      | 18.24<br>1.01<br>19.28     | 29.97<br>30.83<br>30.28       | 24.84<br>25.83<br>26.81    | 18.95<br>23.52<br>0.00                  | 10.59<br>11.41<br>10.96    | 12.54<br>17.66<br>11.40    |
| VSD<br>WIND ST B        | 116.42<br>133.62<br>122.33  | 110.83<br>138.32<br>121.21 | 112.39<br>134.83<br>115.34 | 34 - 35<br>97 - 94<br>99 - 93 | 101.87<br>118.76<br>112.13 | 106.59<br>145.41<br>99.82  | 41.76<br>57.51<br>42.10    | 29.30<br>34.00<br>31.78    | 40.11<br>42.67<br>40.20       | 38.52<br>43.23<br>40.42    | 37.07<br>41.92                          | 22.86<br>34.01<br>23.82    | 22.52<br>8.76<br>21.24     |
| USD<br>WI               | 118.19<br>116.65<br>126.63  | 108-37                     | 115.87<br>124.71<br>114.9) | 120.76<br>120.66<br>1111.19   | 115.97<br>107.58<br>117.00 | 166-15<br>155-52<br>152-28 | 89.74<br>84.42<br>115.64   | 39.66<br>37.93<br>41.93    | 56.00<br>0.00<br>0.00<br>0.00 | 60.14<br>62.97<br>64.95    | 92-71<br>124-34<br>0.04                 | 19.26<br>25.67<br>23.43    | 25.86<br>26.78<br>21.07    |
| MEAN                    | 494.93<br>642.40<br>548.77  | 434.31<br>557.22<br>480.81 | 486.37<br>624.85<br>513.45 | 494.72<br>659.61<br>545.42    | 524.00<br>694.52<br>580.22 | 408-37<br>589-37<br>452-14 | 327.77<br>419.82<br>333.77 | 184.89<br>274.11<br>213.47 | 291.01<br>397.97<br>715.37    | 247.86<br>357.02<br>280.52 | 158-24<br>226-33<br>0.00                | 149.65<br>263.88<br>165.15 | 143.43<br>246.05<br>154.89 |
| 5116                    | 3226                        | - 20                       | - 0.6                      | C                             | 40.5                       | m 01 m                     | 11 N M                     | HNE                        | -126                          | - N 50                     | -06                                     | -06                        | - 2 E                      |
| TIME S                  | 427<br>1430<br>1430<br>1430 | 1500                       | 1530<br>1530<br>1530       | 1600                          | 1630<br>1630<br>1630       | 1700<br>1750<br>1700       | 1850<br>1800<br>1800       | 1900                       | 1930<br>1930<br>1930          | 2000                       | 2030<br>2030<br>0105                    | 2300                       | 2330<br>2330<br>2330       |
|                         |                             |                            |                            |                               |                            |                            |                            |                            |                               |                            |                                         |                            |                            |

| ۵۵                                    | 000                                 | 000                         | <b></b>                     | 000                                     | 000                       | 000                       | 000                      | 000                      | 000                       | 000                       | 000                                     | <b>0</b> 00                             | 000                              |
|---------------------------------------|-------------------------------------|-----------------------------|-----------------------------|-----------------------------------------|---------------------------|---------------------------|--------------------------|--------------------------|---------------------------|---------------------------|-----------------------------------------|-----------------------------------------|----------------------------------|
| EXCEEDED<br>F<br>G<br>THOUSAND        |                                     |                             |                             |                                         |                           |                           |                          |                          |                           |                           |                                         |                                         |                                  |
| E 4                                   | 000                                 | 000                         | 000                         | 300                                     | 000                       | 000                       | 200                      | 000                      | 000                       | 000                       | 000                                     | 000                                     | 000                              |
| LIMIT.<br>VSQ<br>ARTS P               | ကစပ                                 | ٥00                         | 000                         | 000                                     | 000                       | 000                       | 000                      | 000                      | 000                       | 000                       | 000                                     | 000                                     | 000                              |
| RANS<br>N) D,                         | .3716<br>0.0000<br>0.0000           | .3260<br>0.0300<br>0.0300   | 0.0000<br>0.0000<br>0.0000  | 0.0000                                  | .1579<br>0.5000<br>0.0000 | .0813<br>0.0000<br>0.0000 | 0062<br>0.0000<br>0.0000 | 0318<br>0.0500<br>.0017  | 0.0000                    | 0.0349                    | 0247<br>0.0000<br>0.0000                | 0.0000000000000000000000000000000000000 | 0201<br>.0034<br>0.0000          |
| EV EW<br>MI HEAT TRANS                | 0376<br>7.0500<br>7.0000            | 0.00000                     | .0133<br>0.0000<br>0.0000   | 0.0000000000000000000000000000000000000 | 0.0000                    | 4505<br>0.0000<br>0.0000  | 0512<br>0.0000<br>0.0000 | 0201                     | .0020<br>0.0000<br>0.0000 | .0148<br>0.0060<br>0.0006 | 0376<br>0.9006<br>6.9009                | 0.0000                                  | 0011<br>-0081<br>0.0000          |
| ELATE:                                | -1-4133<br>0-0000<br>0-0000         | -1.0473<br>0.0000<br>0.0000 | -1.0723<br>0.0000<br>0.0000 | 0.0000000000000000000000000000000000000 | 7234<br>0.0000<br>0.0000  | -1.0464                   | 0.0000                   | .0869<br>0.0000<br>.1015 | .1232<br>0.0000<br>0.0000 | .1334<br>0.0000<br>0.0000 | 000000000000000000000000000000000000000 | 0.0000                                  | .0609<br>0.0000<br>0.0000        |
| AIR TEMP<br>MEAN ST DEV<br>CENT:GRADE | .5580<br>.4800<br>.5130             | .5480<br>.4200<br>.5150     | .4810<br>.3750<br>.4910     | .3560                                   | .3450<br>.1710<br>.2130   | . 4690<br>. 4440          | .5280<br>.3510           | .6160<br>.2430<br>.5460  | .4080<br>.2550<br>.4030   | .4320<br>.2590<br>.4280   | .6110<br>.5330<br>n.nnon                | 0.0000.0                                | 07 - 10<br>07 - 10<br>10 - 38 70 |
| AIR<br>EAN<br>CENT                    | 13•<br>12•<br>14•                   | 13.                         | 14.<br>13.<br>14.           | 13.<br>12.<br>13.                       | 12.<br>12.<br>13.         | 11.                       | 9.01                     | 96.                      | \$2.5                     |                           | W 0 C                                   |                                         | 25.                              |
| •                                     | .1537<br>.1847<br>.1609             | .1312<br>.1310<br>.1315     | .1053<br>.1251<br>.1074     | .0316<br>.0338<br>.0223                 | .0036<br>.0272<br>.0036   | 0045<br>.0103<br>0699     | 0727<br>0568<br>0878     | 0493                     | 0710<br>0529<br>0802      | 0567<br>0395<br>0667      | 0315<br>0312<br>7.0000                  | 0.0000                                  | 0270<br>0218<br>0183             |
| HV<br>-E HEAT                         | .0216<br>0470<br>0042               | .0324<br>0663<br>0190       | .0039<br>0729<br>1563       | 1449<br>0920<br>1160                    | .0081<br>.0232<br>0478    | .0407<br>.4825<br>.4878   | 1147<br>1489<br>3248     | .0078<br>.0195           | 0055                      | 0150                      | 1263<br>1006<br>0.0000                  | 0.0000                                  | 0205<br>0390<br>0228             |
| HU<br>SENS I BI                       | 5887<br>3988<br>5894                | 4478<br>3917<br>5244        | 4027<br>4147<br>4782        | 1922<br>1275<br>0234                    | 0554                      | 1.1628 .25914969          | .4592<br>.2272<br>3878   | .2456<br>.0837<br>.2093  | .2704<br>.1662<br>.2909   | .1987<br>.0087<br>.2564   | .5215<br>.5215                          | 0.0000000000000000000000000000000000000 | .0823<br>0001<br>.0464           |
| BETA                                  | .0450<br>0540<br>0160               | .0370<br>0690<br>0200       | .0390<br>0590<br>0230       | .0450<br>0680<br>0080                   | .0220<br>0680<br>0280     | 0.6000<br>6280<br>0320    | .0040<br>1290<br>0710    | .0610                    | .0640<br>0480<br>0200     | .0066<br>0730<br>0140     | .0410                                   | .0240<br>0470<br>0320                   | .0480<br>4020<br>0310            |
| THETA                                 | 0656<br>0481<br>0188                | .0301                       | 0051<br>.0313               | 0027<br>.0298<br>0200                   | -0055<br>-0408            | -,6068<br>-0409<br>-,6079 | .0037                    | 0109<br>.0290<br>0169    | 0136<br>.0471<br>0120     | 0094<br>0350              | 0092<br>.0339                           | -0080<br>-0404<br>019:)                 | 0047<br>0374<br>0219             |
| ETA                                   | 0953<br>0478<br>0728                | .1704                       | .0218<br>.0872<br>.0533     | .0664<br>.1114<br>.0726                 | 0501<br>0114<br>0567      | 2466<br>2145<br>2368      | .3927<br>.4668           | 0096<br>-0006<br>0456    | 2228<br>1972<br>2115      | 1234<br>0941<br>1100      | .0942<br>.0829<br>0.0000                | 0429                                    | 0029<br>-1.5704<br>0981          |
| SITE                                  | 767<br>1<br>2<br>3                  | - 26                        | ~ ~ ~                       | 351                                     | 325                       | 3 5 7                     | 3 2 3                    | 321                      | 3 5 1                     | 321                       | - 2 5                                   | -26                                     | 321                              |
| TIME                                  | 42767<br>1430 1<br>1430 2<br>1430 3 | 1500<br>1500<br>1500        | 1530<br>1530<br>1530        | 1600<br>1600<br>1600                    | 1630<br>1630<br>1630      | 1700<br>1700<br>1700      | 1800<br>1800<br>1830     | 1900<br>1900<br>1900     | 1930<br>1930<br>1930      | 2000<br>2000<br>2000      | 2030<br>2030<br>2010                    | 2300<br>2300<br>2300                    | 2330<br>2330<br>2330             |

| MIND<br>SHIFT<br>RAD                      | 00000                      | 0000                       | 0000                       | 0000                       | 0000                     | 0000                       | 0000                                    | 0000                      | 0000                       | 0000                                    | 0000                       | 0.000                    | 0000                       |
|-------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------------|----------------------------|-----------------------------------------|---------------------------|----------------------------|-----------------------------------------|----------------------------|--------------------------|----------------------------|
| WIND<br>DIR<br>9AD                        | 0.000                      | 00000                      | 0000                       | 0000                       | 0000                     | 0000                       | 0.000                                   | 0000                      | 0000                       | 000000000000000000000000000000000000000 | 0000                       | 0.000                    | 0000                       |
| GSD<br>ANGL E<br>RAD                      | .171<br>.159<br>.197       | .279<br>.251<br>.268       | .196<br>.114<br>.156       | .134                       | .301<br>.169             | .240<br>.234<br>.273       | 0.000<br>0.000                          | .234<br>.209<br>.226      | .334<br>.317               | .346<br>0.000<br>.350                   | .319<br>.323<br>.269       | .283<br>0.000<br>.210    | .209<br>.183<br>.181       |
| G<br>AZ IM<br>RAD                         | .075<br>002<br>028         | .026<br>046<br>060         | 236<br>337<br>319          | 160<br>282<br>227          | 158<br>103<br>249        | 001<br>-163<br>030         | 0.000                                   | 305<br>234<br>221         | 128                        | .018<br>0.000<br>.015                   | .042<br>.048<br>030        | 0.000                    | 0065                       |
| FSD<br>ANGLE<br>RAD                       | .039<br>.043<br>.039       | .081<br>.049<br>.052       | .085<br>.061<br>.079       | .069<br>.049<br>.087       | .036<br>.020<br>.072     | .099<br>.085               | 0.000                                   | .087<br>.089              | .159<br>.145<br>.137       | 0.000<br>0.000<br>0.160                 | .128                       | .105<br>0.009<br>.087    | .105<br>.091<br>.086       |
| F<br>ELEV<br>RAD                          | 002                        | 002<br>.035<br>019         | 0.000                      | -0045                      | 009                      | .017<br>.016<br>003        | 0.000                                   | .016<br>.040<br>0.000     | .023                       | 0.000                                   | .011                       | 0.007                    | .006<br>.016<br>014        |
| HORIZ<br>WIND<br>CM/SEC                   | 105.81<br>182.50<br>116.90 | 114.44<br>207.18<br>120.73 | 137.96<br>229.64<br>154.47 | 104.17<br>191.43<br>118.36 | 76.51<br>152.94<br>84.60 | 107.43<br>171.56<br>104.66 | 0.00<br>139.63<br>0.00                  | 95.76<br>156.86<br>108.32 | 119.87<br>148.54<br>144.47 | 210.44<br>0.00<br>200.44                | 279.52<br>351.87<br>283.21 | 302.72<br>0.00<br>316.79 | 403.24<br>518.16<br>418.63 |
| RWV                                       | 000000                     | 0.0000                     | 0000                       | 0000-0                     | 00000                    | 0000-0                     | 0.0000000000000000000000000000000000000 | 0000-0                    | 00000                      | 0.000                                   | 0.000                      | 0.000                    | 0.000                      |
| M RUV<br>EYNOLDS STRESS<br>•••DYNES/CM2•• | .127<br>343<br>027         | 101<br>718<br>209          | 287<br>107<br>225          | 218<br>-106<br>170         | 160<br>080<br>058        | .500<br>.688<br>.357       | 0.000                                   | .180                      | .676<br>.290<br>186        | .195<br>0.000<br>-2.203                 | 2.527<br>5.742<br>1.339    | .978<br>0.000<br>172     | -1.438<br>-2.561<br>663    |
| RUW<br>REYNOL                             | 009<br>027<br>011          | 037<br>043<br>016          | 096<br>127<br>078          | 037<br>051<br>055          | 0.000<br>012<br>020      | 057<br>150<br>071          | 0.000                                   | 050<br>110<br>028         | 200<br>133<br>166          | 0.000<br>0.000<br>264                   | 756<br>187<br>433          | 0.000                    | -1.203<br>-1.476<br>853    |
| MSD                                       | 4.15<br>7.86<br>4.81       | 8.27<br>10.07<br>6.14      | 12.09<br>14.29<br>12.33    | 8.13<br>9.82<br>10.12      | 1.61<br>2.94<br>1.96     | 9.43<br>16.54<br>E9        | 0.00                                    | 8.64<br>14.30<br>8.15     | 15.34<br>21.14<br>16.23    | 23.24<br>0.00<br>20.09                  | 29.37<br>17.:3<br>24.42    | 29.57<br>0.60<br>26.13   | 39.84<br>43.55<br>36.75    |
| VSD<br>D ST                               | 18.11<br>28.65<br>22.80    | 31.58<br>51.41<br>32.16    | 24.26<br>24.82<br>21.86    | 19.66<br>26.55<br>20.63    | 19.28<br>26.14<br>21.36  | 26.29<br>40.45<br>26.14    | 0.00<br>26.03<br>0.00                   | 21.68<br>31.55<br>21.15   | 43.69<br>53.41<br>57.02    | 88.38<br>0.00<br>73.31                  | 82.65<br>98.91<br>79.41    | 87.70<br>0.00<br>66.84   | 83.92<br>89.87<br>77.36    |
| USD<br>WIN                                | 12.38<br>18.66<br>12.22    | 24.58<br>25.94<br>20.87    | 33.02<br>41.33<br>28.82    | 31.61<br>41.76<br>31.90    | 27.34<br>29.57<br>31.14  | 41.09<br>51.26<br>44.77    | 31.34                                   | 32.04<br>37.60<br>25.64   | 55.52<br>60.17<br>40.50    | 147.94<br>0.00<br>141.87                | 106.17<br>119.64<br>101.65 | 82.73<br>0.00<br>70.71   | 95.60<br>118.84<br>88.27   |
| MEAN                                      | 104.27<br>180.35<br>115.67 | 110.08<br>200.90<br>118.46 | 135.61<br>228.66<br>156.94 | 102.48<br>189.93<br>118.73 | 73.78<br>150.50<br>83.51 | 104.42<br>167.04<br>102.98 | 0.00                                    | 93.33<br>153.75<br>1088   | 112.83<br>140.27<br>138.30 | 197.06<br>0.00<br>188.13                | 267.63<br>334.80<br>271.62 | 290.65<br>0.00<br>308.84 | 394.64<br>508.92<br>410.75 |
| 67<br>ITE                                 | 3 5 1                      | HNM                        | 32                         | 3 2 1                      | - 2 E                    | - 26                       | 725                                     | H 46                      | - 26                       | 50267<br>0 1<br>0 2<br>0 3              |                            | 126                      | 126                        |
| 42867<br>TIME SITE<br>START               |                            | 8 8 8<br>8 8 8             | 1000                       | 130<br>130<br>130          | 230<br>230<br>230        | 0004                       | 0 6 4<br>0 6 4<br>0 6 7                 | 7 00 0<br>00 0            | 700<br>700<br>700          | 5 22<br>1430<br>1430<br>1430            | 1530<br>1530<br>1530       | 1600<br>1600<br>1600     | 1630<br>1630<br>1630       |
|                                           |                            |                            |                            |                            |                          |                            |                                         |                           |                            |                                         |                            |                          |                            |

## CORRECTED DATA FOR SITE 3, MAY 2, 1967, Pages D30-D35

| TIME SITE ME<br>START WI |                 |                        | RUV RHV<br>DLDS STRESSES<br>DYNES/CH2   | HGRIZ F<br>WIND ELEV<br>CM/SEC RAD | FSD G GSD<br>SIDNA NISA SIDNA<br>KAD KAN KAN |
|--------------------------|-----------------|------------------------|-----------------------------------------|------------------------------------|----------------------------------------------|
|                          |                 |                        |                                         |                                    |                                              |
| 54267                    |                 |                        |                                         | =                                  |                                              |
|                          | 53 142.71 86.26 | 23.67315               |                                         | 200.44 .011                        | .186 .017 .412                               |
|                          | 64 101.64 93.53 | 28.76516               |                                         | 283-21 010                         |                                              |
| 1600 3 308.              |                 |                        |                                         | 316.79712                          | c103 •U2W •247                               |
| 1630 3 410.              |                 | 41.17 -1.015           |                                         | 418.63 017                         |                                              |
|                          | 04 101.63 73.00 | 46.59 -1.582           |                                         | 481.29007                          | -101173 -153                                 |
| 1733 3 333.              |                 | 30.73743               |                                         | 333.11005                          |                                              |
| 1800 3 273.              |                 | 26.32445               |                                         | 274.58008                          | •097 -4145 •136                              |
| 1830 3 212.              |                 |                        |                                         | 213.94023                          |                                              |
| 1900 3 186.              |                 |                        |                                         | 186.20029                          |                                              |
| 1935 3 201.              |                 | 18.40208               |                                         | 203.20019                          |                                              |
| 2000 3 205.              |                 |                        |                                         | 206.50 016                         |                                              |
| 2030 3 211.              |                 |                        |                                         | 212.19013                          |                                              |
| 2105 3 192.              |                 |                        |                                         | 189.86 301                         | .08044u .083                                 |
| 2136 3 180.              |                 | 15.89163               |                                         | 140.27 305                         |                                              |
| 2206 3 198.              |                 |                        |                                         | 199.35008                          | ·088 -·237 ·145                              |
| 2230 3 183.              |                 | 16.61172               |                                         | 185.30012                          | -091061 -148                                 |
| 2305 3 166.              |                 | 15.61 ~.158            |                                         | 167.36010                          | .093090 .142                                 |
| 2330 3 169.              | 92 48,60 24,48  | 14-63119               | ~.528 0.000                             | 161.93029                          | .082 .172 .144                               |
| TIME SITE ET<br>START    |                 | HU HV<br>SENSIBLE HEA' |                                         | T DEV LATEN                        | EV EK<br>T HEAT TRANS<br>/(CM2-MEN)          |
|                          |                 |                        |                                         |                                    |                                              |
| 54267                    |                 |                        |                                         |                                    |                                              |
|                          | 2601150150      |                        | 7 •0209 20• •!                          | 5150 0.0000                        | 0.0000 0000                                  |
|                          | 00 0204 0310    |                        | • • • • • • • • • • • • • • • • • • • • | 3820 0.0000                        | 0.0000 0.0000                                |
|                          | 58 0199 0320    |                        |                                         | 1670 0.0000                        | 0.0000 0.5000                                |
|                          | 07 0231 0430    |                        | 50133 19. ·                             | 2480 0.0000                        | 0.0000 0.0000                                |
|                          | 02 0140 0090    |                        |                                         | 1560 0.0000                        | 0.0000 0.0000                                |
|                          | 8701100520      |                        |                                         | 4750 0.0000                        | 0.0000 0.0000                                |
|                          | 00 0142 .0130   |                        |                                         | 6640 0.0000                        | 0.0000 0.00UA                                |
|                          | 10 0272 0240    |                        |                                         | 9840 0.0000                        | 0.0000 0.0000                                |
|                          | 62 0329 0520    |                        |                                         | 5290 0.0000                        | 0.0000 0.6000                                |
|                          | 46 0230 0300    |                        |                                         | 4090 0.0000                        | 0.0000 0.0000                                |
|                          | 4702190190      |                        |                                         | 3650 0.0000                        | 0.0000 0.0000                                |
|                          | 36 0194 0200    |                        |                                         | 3590 0.0000                        | 0.0000 0.0000                                |
|                          | 40 0062 4290    |                        |                                         | 3200 0.0000                        | 0.0000 0.000                                 |
|                          | 18 0092 0650    |                        |                                         | 3000 0.0000                        | 0.0000 0.0000                                |
|                          | 3101240300      |                        |                                         | 3280 0.0000                        | 0.0000 0.0000                                |
|                          | 12 0172 0050    | ,                      |                                         | 3010 0.0000                        | 0.0000 0.0000                                |
|                          | 0301510180      |                        |                                         | 2970 0.0000                        | 0.0000 0.0000                                |
| 2330 3 .15               | 57 3329 0. 3000 | •2535062               | 70159 6                                 | 3775 3.0000                        | 0.0000 0.0000                                |

|                    |                     | _     | 0       | _        | _       | _     |        | _     | _     |        |       |       |          |   | 0        | _      | _      |   | _             | 5 6    |        |        | 0       | _       | _    |      | . 0    |   |          | 00                                      |             |       | 0         | _        | _     | _     | _      |         | _       | _      | 0      | _     | _     |        |
|--------------------|---------------------|-------|---------|----------|---------|-------|--------|-------|-------|--------|-------|-------|----------|---|----------|--------|--------|---|---------------|--------|--------|--------|---------|---------|------|------|--------|---|----------|-----------------------------------------|-------------|-------|-----------|----------|-------|-------|--------|---------|---------|--------|--------|-------|-------|--------|
| ë,                 | AND                 | Ŭ     |         |          | Ŭ       |       |        | Ŭ     |       | •      | •     | •     | -        |   | •        | _      | Ŭ      | • | •             | •      | ,      | Ŭ      | Ĭ       | Ŭ       | •    | •    | , ,    | , |          |                                         | ,           |       | _         |          |       | Ū     |        |         | Ü       | Ŭ      | Ŭ      |       |       |        |
| CEED               | HOUS                | 0     | 0       | 0        | 0       | 0     | 0      | 0     | ح     | ی      |       | > 0   | ם כ      | , | 0        | 0      | ٥      |   | <b>&gt;</b> ( | ۰ د    | ,      | 0      | 0       | 0       | c    | , (  | 0      | , | 0        | 00                                      |             |       | 0         | <b>.</b> | 0     | 0     | 0      | 0       | 0       | ٥      | 0      | 0     | 0     |        |
| ري<br>ن            | ה<br>ה              |       |         |          |         |       |        |       |       |        |       |       |          |   |          |        |        |   |               |        |        |        |         |         |      |      |        |   |          |                                         |             |       |           |          |       |       |        |         |         |        |        |       |       |        |
| I WI               | VSG F G             | ဂ     | 0       | ٥        | 0       | 0     | 0      | 0     | c     | 0      | •     | > 0   | 0        | , | <b>၁</b> | 0      | 0      | • | <b>.</b>      | 0 1    | 9      | 0      | 0       | 0       | c    | •    | 0      | , | 0        | 00                                      | ,           |       | 0         | n ·      | 0     | 0     | ٥      | ၁       | 0       | 0      | 0      | 0     | 0     | •      |
|                    | P 8 4               |       |         |          |         |       |        |       |       |        |       |       |          |   |          |        |        |   |               |        |        |        |         |         |      |      |        |   |          |                                         |             |       |           |          |       |       |        |         |         |        |        |       |       |        |
| •                  | :                   | 0000  | 0.000.0 | 000      | 0.000.0 | 0000  | 0.000  | 000   | 0000  | 0.0000 | 9     | 000   | 000000   | • | 000000   | 0000   | 0000   | 9 | 0000          | 00000  | 200    | 0000   | 000000  | 0000    | 9    |      | 000000 |   | 299      | 0000                                    | •           | ľ     | •2500     | 0000     | 000   | 100   | 000    | 0.000.0 | 2298    | 0000   | 0.0000 | 1399  | 0000  | 0.0000 |
| 13                 | LATENT HEAT INANS   |       |         |          |         |       |        |       |       |        |       |       |          |   |          |        |        | • | ٠, د          | ٠,     | _      | 0      | 0       | 0       |      |      |        |   |          | 00                                      | ı           |       |           |          |       | Ę,    |        | •       |         |        |        |       |       |        |
|                    | 42-M                | .0337 | 000000  | 0000     | 0000-0  | 0000  | .0000  | 0000  | 0000  | 0.000  | 0     | 00000 | 0000     |   | 000000   | 0000   | 0000   | - | 0000          | 000000 | 0000   | 0000   | 000000  | 0000    |      | 2 6  | 0000   | 1 | 5882     | 000000000000000000000000000000000000000 | :<br>:<br>! |       | -5140     | 000000   | 00.00 | 6404  | 000000 | 000000  | +1904 · | 0000   | 0.0000 | 0350  | 0000  | 0.000  |
| <u>.</u>           | <b>E</b> O          | •     | ċ       | ċ        |         |       |        |       |       |        | •     |       | c        |   | Ü        | ò      | •      |   |               |        |        | C      | 0       | C       | <    |      |        |   |          |                                         |             |       |           |          |       | •     | ċ      | Ċ       | •       |        |        | ٠     |       |        |
|                    | LATE                | •0349 | 000000  | 9000     | 0.0000  | 0000  | 0.0000 | 0000  | 0000  | 000000 | 000   | 00000 | 0000     |   | 0000     | 0.0000 | •0000  |   | 0000          | 000000 | 0000   | U COU  | 0.000.0 | ייטטט•  | 000  |      | 00000  |   | 2126     | 0000000                                 |             | ı     | 3.2180    | 00000    | 0000  | 3104  | 0.0000 | .0000   | .6413   | 0000   | 0000-0 | 5724  | 0000  | 0.0000 |
|                    | ·<br>>              |       |         | C        |         |       |        |       |       |        | •     |       |          |   | ċ        |        |        |   |               |        |        |        |         | C       | •    |      |        |   |          |                                         |             |       |           |          |       | i     | ò      |         | i       |        |        |       |       |        |
| Q 6                | ENTIGRADE           | .5140 | *298D   | • 2610   | .3810   | .1760 | •4200  | .3120 | -2070 | 1500   |       | 0000  | .3370    |   | •3380    | .5550  | • 2630 | ; | 01/5.         | 00/7   | • 3600 | 000000 | •2500   | 000000  | 000  | 2016 | • 4410 |   | 6260     | . 5000                                  |             | 1     | • 5320    | 0.0000   | •5159 | .2540 | • 2390 | .3820   | .2940   | 000000 | .1676  | .3130 | 41660 | .2480  |
| A 5.9              | CERT                | e,    | 2*      | <b>~</b> |         | ?     |        | :     | 2     | 2.     | •     | • ,   | • •<br>V |   | :        | 2•     | -:     |   | •             | •      | •      |        | •       | ċ       |      |      | •      | , | <b>.</b> | • •                                     |             |       |           |          | 20•   | 20.   | 20.    | 20.     | 20.     |        |        | 19.   | 19.   | 13.    |
|                    | v :                 | 025   | 0033    | 039      | 101     | 073   | -+00%5 | 203   | 129   | 0211   |       | 1 6 6 | 0006     |   | 9600     | 003    | 0023   | Š | 4600          | 0610   | 7      | COC    | 0009    | DOOD    | 203  | 9 0  | 0100   |   | 579      | 0500                                    |             |       |           | 0000     |       |       |        | 0358    |         |        | 0144   | 0190  |       | 0113   |
| Ī                  | Z . Z               | 0     | 0       | •        | 0       | 0     | •      | 0     | 0     | •      |       |       |          |   | •        | •      | •      | • | 0             | 0      | •      | 0      | 0.1     | c<br>c  | -    |      |        |   | •        | •                                       |             |       | •         | Č,       | •     | •     | •      | 0       | •       | C      | •      | 1     | 0     | 0      |
|                    | SENSIBLE HEAT TRANS | 9480  | 0280    | 569      | 0693    | 407   | 980    | 0340  | 965   | 0472   | 200   | 9600  | .0505    |   | .0738    | .0701  | •0083  |   | 2000          | 4160   | 121    | 0000   | 146     | 0000*0  | 200  | 370  | 0684   |   | 500      | 347                                     |             | 1     | 6068      | 000000   | 196   | 0257  | 0644   | 245     | 423     | 500    | 0118   | 119   | 279   | 0208   |
| ₹                  |                     | •     | Ç       | c.       | 0       | C.    | 103    | •     | ç     | •      | ,     | 1     |          |   | 0        | ç      | •      | • |               | •      | •      | C      | 014     | ¢<br>¢  |      |      |        |   | 0        | 1347                                    | •           | •     | 9         | C (      |       | •     | •      | 174     | •       | Ç      | •      | •     | 0     | 9      |
| _                  | S. C. A.            | 969   | 9040    | 348      | 860     | 505   | 3722   | 135   | 142   | +1685  | 0     | 1000  | 0634     |   | 0673     | 399    | 035    | Š | , ,           | 9250   | 305    | 000    | •0203   | 00000   | 5.0  | 304  | .0271  |   | 100      | -0353                                   |             | 3     | 3438      | 00000    | 376   | 249   | 695    | 178     | 339     | 600    | 0735   | 884   | 707   | 0825   |
| 3.                 | 3                   | 0     | ē.      | ç        | •       | •     | ç      | •     | •     | 7      | •     | •     |          |   | •        | •      | •      | • | •             | •      | •      | 0.0    | •       | č       |      |      | •      |   | 401      | 20                                      |             |       | •         | C 6      | ·     | 1     |        | 0178    | 133     | 5      |        | -     | -     | 0      |
| BETA               | RAD                 | 0520  | 1580    | 9210     | 0110    | 3510  | 0360   | 0570  | 9200  | 0013   | 01.00 |       | 0250     |   | .0150    | 1550   | 280    | 9 | 2 6           | 2.00   | 310    | 000    | 0380    | 000000  | 280  | 200  | 0336   |   | 030      | .0270                                   |             |       | 0120      | 000      | 150   | 0540  | 0620   | 0310    | 0020    | 5000   | 0350   | 300   | 0590  | 0430   |
|                    | Œ                   | •     | i       | i        | •       | i     | i      | •     | i     | i      |       | •     |          |   | •        | •      | •      |   | •             | i      | i      | 0      | 0       |         |      |      | ٠      |   |          |                                         |             | •     | •         |          |       |       |        |         | •       | c      | i      |       |       |        |
| THETA              | RAD                 | 5031  | .0320   | 0234     | 204     | •0361 | 0200   | 0044  | .050  | 0123   | 7     | 7000  | -0117    |   | 0086     | +0360  | 0160   |   |               |        | **     | 0.000n | • 0467  | 0000°   | 9210 | 0.00 | 3042   |   | -002     | 0067                                    |             |       | £20c*     | 2000     | 000   | .0022 | .0064  | 0172    | .000    | 0,000  | 0163   | -0000 | .0114 | 4196   |
| ETA                | RAD                 |       |         | 3300     | 0250    |       |        | 2507  | 4:2   | 3216   |       | 2277  |          |   | 1647     | 0975   | 2049   |   |               | 1992   |        |        |         | COOC    | 75.2 | 15.7 | 1927   |   | 960      | 0706                                    |             |       | 6 6 6 6 6 | 050000   | 7 00  | 616   | 132    | *000*   | 3900    |        |        |       |       | 9000   |
|                    |                     | 0     | 0       |          | •       | 0     | -      | 2     | 1     |        |       |       | - 2      |   |          | •      | 2      | • | •             | •      | •      | c.     | 3       | ٠.<br>د |      |      |        |   | •        | •                                       |             |       | 0 0       | 0        | •     | •     |        | 0       | 17.     | C C    | •      | 0     | •     | 0      |
| 511                |                     | ~     | ~       | 'n       | -       | ~     | •      |       | 2     | (FT)   | -     | 4 6   | 'n       |   |          | 2      | •      | • | 4 (           | ۱ ۱    | •      | -      | ~       | ~       | -    | • ^  | 1 60   |   | ~ (      | 4 W                                     |             | 50267 | → (       | ۸.       | ۳,    |       | ~      |         | ***     | •      | 60     | -     | ~     | •      |
| 42867<br>TIME SITE | X X                 |       |         |          | 30      | 30    | 30     | 100   | 100   | 100    | 7.50  | 2 6   | 130      |   | 230      | 230    | 230    | , |               |        | 9      | 430    | 430     | 630     | 000  | 200  | 200    |   | 200      | 26                                      |             | in i  | 2641      | 25.4     | 1630  | 1530  | 1530   | 1539    | 1600    | 1600   | 1600   | 1636  | 1630  | 1630   |

| WING<br>SHIFT<br>RAD                         | 000.0                              | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000        | 000000000000000000000000000000000000000 | 0.000                      | 0.000                      | 0000                       | 0.000                      | 000000                                  | 000    | 0000                       | 0000                       |
|----------------------------------------------|------------------------------------|-----------------------------------------|------------------------------------------------|-----------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------------|--------|----------------------------|----------------------------|
| WIND<br>OIR<br>RAD                           | 0000                               |                                         | 000000000000000000000000000000000000000        | 000000000000000000000000000000000000000 | 0000                       | 0.000                      | 0000                       | 0000                       | 000000000000000000000000000000000000000 | 0000   | 0000                       | 0000                       |
| GS9<br>AMGLE<br>PAD                          | 177<br>151<br>130                  | 197                                     | .121<br>.116<br>.161<br>.150                   | .110<br>.083<br>.069                    | ,112<br>,112               | .151<br>.109<br>.115       | 109<br>109<br>118          | .070<br>.070               | •126<br>•123<br>•105                    | .148   | .153<br>.110<br>.126       | .197<br>.118               |
| S<br>AZIM<br>RAD                             |                                    | 247                                     | 038<br>123<br>-256<br>-267                     | .331<br>.229<br>.226                    |                            | 157<br>135<br>113          | - 174<br>146<br>130        | 421                        |                                         | 201    | 122<br>-013<br>052         | 048                        |
| FSD<br>ANGLE<br>RAD                          | .00.<br>400.<br>400.               | .084<br>.082                            | .098<br>.098<br>.073                           | .063<br>.063                            | .099<br>.075<br>.077       | .080                       | .105<br>.080<br>.085       | .101<br>.063<br>.063       | .100                                    | .073   | .102                       | .103                       |
| F<br>RAD                                     | 0 1                                |                                         | 0000<br>0000<br>0000<br>0000                   | •••                                     | .021                       | .026                       | .029                       | 001                        | •••                                     | -007   | .004<br>.020<br>010        | .008                       |
| HORIZ<br>WIND<br>CM/SEC                      | 458.68<br>614.26<br>481.29         | 332.54<br>425.56<br>333.11<br>254.16    | 354.84<br>274.58<br>209.33<br>296.97<br>213.94 | 181<br>271<br>186                       | 194.74<br>282.88<br>203.20 | 203.32<br>288.28<br>206.50 | 196.47<br>287.89<br>212.19 | 166.11<br>261.52<br>189.86 |                                         | 279.70 | 169.43<br>260.62<br>185.30 | 137.26<br>229.79<br>167.36 |
| RWV                                          | 0000                               |                                         | 000000000000000000000000000000000000000        | 0.000                                   | 0000                       | 000                        | 000                        | 000                        | 0000                                    | 0000   | 0000                       | 000                        |
| PM RUV<br>REYNOLDS STRFES<br>****DYNES/CM2** | 1.857<br>1.300<br>056              | 744<br>891<br>683<br>183                | 404<br>238<br>973<br>993                       | 009                                     | -017<br>-058<br>-086       | 109<br>130<br>041          | 098                        | .002                       | 079<br>-129                             | 256    | .026                       | 636                        |
| RUM<br>REYNOL                                | -1.488<br>-1.991<br>-1.327         | 680<br>929<br>613<br>429                | 420<br>374<br>272<br>291                       | 151                                     | 237                        | 298                        | 256                        | 087                        | 146                                     | 254    | 201                        | 138<br>160<br>132          |
| wsp<br>DEV                                   | 43.10<br>49.65<br>39.55            | 26.09<br>25.09                          | 25.69<br>22.34<br>20.59<br>22.03<br>16.11      | 16.18<br>17.67<br>12.77                 | 19.02<br>21.30<br>15.62    | 20.98<br>23.06<br>16.92    | 19.79<br>23.05<br>17.68    | 16.06<br>17.23<br>13.65    | 15.01<br>17.78<br>13.49                 | 20.41  | 16.65<br>17.71<br>14.10    | 14.11<br>16.51<br>13.25    |
| VSD<br>ND ST<br>EC                           | 53-19<br>97-09<br>62-26            | \$6.29<br>\$8.83<br>38.56<br>\$0.97     | 43.09<br>31.99<br>35.06<br>44.77<br>29.77      | 20.47<br>23.36<br>17.29                 | 28.32<br>31.72<br>24.20    | 30.30<br>31.48<br>23.80    | 29.25<br>31.57<br>25.32    | 18.32<br>19.51<br>14.85    | 19.67<br>32.18<br>19.87                 | 24.74  | 25.22<br>28.88<br>23.20    | 24.50<br>25.47<br>19.80    |
| USD<br>WIW                                   | 106.91<br>101.76<br>101.07         | 73-92<br>67-77<br>73-76<br>62-11        | 57.79<br>61.58<br>52.31<br>51.22<br>46.01      | 37.86<br>33.81<br>37.33                 | 40.41<br>37.75<br>38.58    | 41.46<br>40.03<br>37.70    | 42.08<br>41.11<br>40.11    | 42.84<br>33.00<br>38.12    | 38.75<br>32.81<br>34.74                 | 45.26  | 31.20<br>30.10<br>30.41    | 46.27<br>43.32<br>33.47    |
| MEAN                                         | 100                                | 329-45<br>419-78<br>329-02<br>250-96    | 351.83<br>272.19<br>206.65<br>292.00<br>211.28 | 180.07<br>268.23<br>184.71              | 192.72<br>280.76<br>201.47 | 201-11<br>286-22<br>264-76 | 194.38<br>285.68<br>210.20 | 165.32<br>258.21<br>187.45 | 155.69<br>253.12<br>177.91              | 276.39 | 167.54<br>258.87<br>183.61 | 134.98<br>228.17<br>165.93 |
| SITE                                         | 284                                |                                         | NF -NF                                         | 321                                     | 325                        | 3.2                        | 35                         | 321                        |                                         | N 10   | -26                        | 424                        |
| TIME                                         | 5026<br>1705 1<br>4705 2<br>1705 3 | 1735<br>1735<br>1735<br>1800            | 18 000 18 18 18 18 18 18 18 18 18 18 18 18 18  | 1900<br>1900<br>1900                    | 1930<br>1930<br>1930       | 2000<br>2000<br>2000       | 2030<br>2030<br>2030       | 2100<br>2100<br>2100       | 2136<br>2136<br>2136                    | 2200   | 2230<br>2230<br>2230       | 2305<br>2305<br>2305       |

| c                                     | 000                                 | 000                       | 000                                     | 000                       | 000                                     | 000                     | 000                                     | 000                                     | 000                                     | 000                       | 000                       | 000                     | 000                        |
|---------------------------------------|-------------------------------------|---------------------------|-----------------------------------------|---------------------------|-----------------------------------------|-------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------|---------------------------|-------------------------|----------------------------|
| EXCEEDED<br>F G<br>THOUSAND           |                                     |                           |                                         |                           |                                         |                         |                                         |                                         |                                         |                           |                           |                         |                            |
| ~ ~                                   | 000                                 | 000                       | 000                                     | 000                       | 000                                     | 000                     | 000                                     | 000                                     | 000                                     | 000                       | 000                       | 000                     | 000                        |
| LIMITS<br>VSQ<br>PARTS PE             | 000                                 | 000                       | 000                                     | 000                       | 000                                     | 000                     | 000                                     | 000                                     | 000                                     | 000                       | 000                       | 000                     | 000                        |
| > 4                                   |                                     | 000                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                           | 0.00                                    |                         |                                         |                                         |                                         | <b>~00</b>                | •••                       | ~ ~ ~                   |                            |
| :                                     | .0577<br>0.0000<br>0.0000           | .0209<br>0.0000<br>0.0000 | 0.0000                                  | 0370<br>0.0000<br>0.0300  | 0.0000                                  | 0000000                 | 0.00000                                 | 00000                                   | 000000000000000000000000000000000000000 | 0.0000                    | 0336<br>0.0000<br>0.0000  | 0.0000                  | 0234<br>0.0000<br>0.0000   |
| EV<br>HEAT T<br>(CM2-MI               | .0534<br>0.0000<br>0.0000           | .0118<br>0.0000<br>0.0000 | 000000000000000000000000000000000000000 | 0231<br>0.0000<br>0.0000  | 0.0000 0.000000000000000000000000000000 | 0.0000.0                | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0.0000                                  | .0118<br>0.0000<br>0.0000 | 0325                      | 0.00000                 | 0.0000<br>0.0000<br>0.0000 |
| EU EV EW<br>LATENT HEAT TRANS         | - 4030<br>0.0000<br>0.0000          | 2328<br>0-0000<br>0-0000  | 0.0000                                  | .2014<br>0.0000<br>0.0000 | 000000000000000000000000000000000000000 | 0.0000                  | 00000-0                                 | 0.0000000000000000000000000000000000000 | 0.0000                                  | .1349<br>0.0000<br>0.0000 | .1629<br>0.0000<br>0.0000 | 0.0000                  | .1768<br>0.0000<br>0.0000  |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE | .3050<br>.1890<br>.1560             | .2990<br>.4750            | .7120<br>.4410<br>.6540                 | .8570<br>.7170<br>.9840   | .5780<br>.5790<br>.5290                 | .4670<br>.3520<br>.4090 | .3580<br>.2680<br>.3650                 | .4010 (<br>.3130 (                      | .2690<br>.3200                          | .3960<br>.2750<br>.3000   | .4020<br>.3090<br>.3280   | .2930<br>.2080<br>.3010 | .3860<br>.2730<br>.2970    |
| AIR<br>EAN<br>CENTI                   | 18.<br>18.                          | 17.<br>19.<br>18.         | 16.<br>17.<br>16.                       | 13•<br>15•<br>13•         | 113.                                    | 9.                      | 9.                                      | 8.<br>8.                                | 10.                                     | . 6 8                     |                           | - 01                    | 400                        |
| •                                     | 0499                                | 0651<br>0634<br>0503      | 05800469                                | 0363<br>0254<br>0318      | 0409                                    | 0395<br>0310<br>0280    | 0390<br>0316<br>0291                    | 0359<br>0263<br>0307                    | 0196                                    | 022.<br>019:<br>0201      | 0319<br>0251<br>0200      | 0285<br>0175<br>0197    | 0224<br>0179<br>0151       |
| HV<br>E HEAT<br>ICM2-MI               | .0819<br>.0473<br>.0064             | 1130<br>1401<br>1001      | 0488<br>0488<br>0573                    | 1380<br>1434<br>1267      | 0424                                    | 0225<br>0118<br>.0006   | .0137                                   | 0139                                    | -00093<br>-00114                        | -0214<br>-0421<br>-0230   | .0640                     | 0084<br>0011<br>0269    | 0648<br>0263<br>0201       |
| HU<br>SENSIBL                         | .2710<br>.1575<br>.1843             | .4034<br>.2270<br>.4152   | .565<br>.3212<br>.5363                  | .5017<br>.3263<br>.4680   | -1091<br>-0243                          | .1526<br>.0489<br>.1253 | .1477<br>.0716<br>.1339                 | .1954<br>.1363<br>.1896                 | .2255<br>.0666<br>.1631                 | .1811<br>.0226<br>.1137   | -1898<br>-1086<br>-1780   | .0923<br>.0529<br>.0862 | .2318<br>.1102<br>.1129    |
| RAD                                   | 0040                                | .0280<br>0490             | -0320<br>-0150<br>-0140                 | .0170<br>0360<br>0260     | .0860<br>0130<br>0550                   | .0530<br>0500<br>0290   | .0590<br>.0010<br>0180                  | .0460                                   | 2280<br>-2050<br>3350                   | 0550<br>0773<br>0710      | .0950<br>0410<br>0280     | .0210<br>0380<br>0050   | .0460<br>0270<br>0170      |
| THETA                                 | 0075                                | -0079                     | 0018<br>0225<br>0121                    | .0037                     | 0014                                    | 0508<br>0192            | 0015<br>-0239<br>0186                   | 0014<br>0267                            | -0081<br>-0404<br>-0054                 | .0002<br>.0369            | -0008<br>-0230            | 0187                    | .0007<br>.0223<br>0129     |
| ETA                                   | 1218<br>1253<br>1534                | 2550<br>2426<br>2557      | 0941<br>0919<br>1276                    | .2496<br>.2611<br>.1541   | .3332<br>.2275                          | 1425<br>0962<br>0974    | 1602<br>1088<br>1145                    | 1768<br>1483<br>1393                    | 4332<br>4261<br>3748                    | 3650<br>2886<br>3021      | 1252<br>-0075<br>2075     | 1214<br>-0144<br>0520   | 0831<br>.0145<br>0852      |
| SITE                                  | _                                   | 426                       | 3 5 1                                   | 426                       | -26                                     | - 2 E                   | - 26                                    | 325                                     | ~~                                      | 3 5 11                    | 126                       | 486                     | - 76                       |
| TIME                                  | 50267<br>1705 1<br>1705 2<br>1705 3 | 1735<br>1735<br>1735      | 1800<br>1800<br>1800                    | 1830<br>1830<br>1830      | 1900<br>1900<br>1900                    | 1930<br>1930<br>1930    | 2000<br>2000<br>2000                    | 2030<br>2030<br>2030                    | 2100<br>2100<br>2100                    | 2136<br>2136<br>2136      | 2200<br>2200<br>2200      | 2230<br>2230<br>2230    | 2305<br>2305<br>2305       |

| WIND<br>SHIFT<br>RAD             | 0000                        | 0000                       | 0000                       | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000                       | 0000.0                     | 0.000                   | 0.000                      |                            |
|----------------------------------|-----------------------------|----------------------------|----------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------|----------------------------|-------------------------|----------------------------|----------------------------|
| N IND                            | 000000                      | 000000                     | 0000                       | 0000                                    | 0000                                    | 0000                                    | 0000                       | 0000                       | 0.000                   | 000                        | 0                          |
| GSD<br>ANGLE<br>RAD              | .174                        | .181<br>.134               | .389<br>.389               | .312<br>.315                            | .159<br>.166<br>.186                    | .331<br>.312                            | .314<br>.344<br>.345       | .218<br>.231               | 0.000                   | .257<br>.246<br>.251       | 191                        |
| G<br>AZIM<br>RAD                 | .123<br>.244<br>.146        | .089<br>.216               | 160                        | .213<br>.213                            | 354<br>395<br>370                       | .102                                    | .070<br>.119<br>.115       | .298<br>.328<br>.265       | 00000                   | .145<br>.149<br>.134       | .030                       |
| FSD<br>ANGLE<br>RAD              | .070                        | .108                       | .231<br>.230               | .144                                    | .098<br>.125                            | .137                                    | .127<br>.144<br>.145       | .142<br>.186<br>.166       | 0.000                   | .105<br>.097<br>.106       | .106                       |
| F<br>RAD                         | .012<br>.911<br>024         | .009<br>.013               | .001<br>.002<br>.015       | .008                                    | .013<br>.007<br>015                     | 0.002                                   | .005<br>.008               | .005                       | 0.000                   | .004<br>.015               | •005                       |
| HORIZ<br>WIND<br>CM/SEC          | 174.06<br>257.88<br>161.93  | 205.15<br>296.41<br>191.68 | 113•35<br>145•70<br>115•28 | 219.82<br>263.86<br>226.94              | 276.14<br>337.81<br>273.36              | 235.52<br>284.72<br>247.39              | 196.27<br>235.16<br>194.40 | 206.01<br>233.27<br>185.24 | 0.00                    | 290.85<br>363.24<br>290.77 | 298.79<br>388.32           |
| RWV<br>SSES                      | 00000                       | 00000                      | 0000                       | 0.000                                   | 0000                                    | 0000                                    | 0000                       | 0.000                      | 0000                    | 0000                       | 0000                       |
| RUW RUV RHV<br>REYNOLDS STRESSES | 371                         | 060                        | 305<br>-2.059<br>910       | 1.666<br>2.148<br>.648                  | 666<br>-2.279<br>-1.301                 | 2.557<br>3.365<br>3.336                 | 1.455<br>.332<br>.007      | .197<br>549<br>-050        | 0.000                   | 1.097                      | 302                        |
| RUW<br>REYNOL                    | 188<br>188<br>099           | 302<br>279<br>221          | 134<br>-068<br>202         | 415<br>483<br>602                       | 519<br>706<br>694                       | 260                                     | 313                        | 196<br>387<br>540          | 0.000<br>0.000<br>1.465 | 503                        | 144                        |
| WSD<br>DEV                       | 17.80<br>18.69<br>12.42     | 21.27<br>22.47<br>18.59    | 18.40<br>26.53<br>19.10    | 23.57<br>33.90<br>27.59                 | 25.26<br>36.67<br>28.29                 | 25.02<br>33.74<br>26.30                 | 19.36<br>27.21<br>20.83    | 22°34<br>32°57<br>23°87    | 0000                    | 28.68<br>32.95<br>29.08    | 29.70<br>33.90             |
| vsb<br>st                        | 31.03<br>32.44<br>20.85     | 36.62<br>39.05<br>33.99    | 44.51<br>54.48<br>42.65    | 68.41<br>85.65<br>70.10                 | 43.24<br>59.67<br>49.53                 | 71.03<br>84.56<br>75.93                 | 62.69<br>30.53<br>65.60    | 43.33<br>54.07<br>52.51    | 0.00                    | 72.00<br>85.02<br>70.10    | 56.68<br>65.79             |
| USD<br>WIND                      | 42.73<br>44.21<br>48.79     | 39.19<br>38.20<br>37.79    | 68.73<br>91.87<br>89.59    | 122.18<br>127.89<br>106.64              | 105.74<br>104.24<br>98.86               | 102.04<br>118.12<br>196.32              | 81-11<br>86-28<br>88-14    | 84.40<br>98.70<br>100.05   | 5000<br>5000<br>5000    | 67.48<br>75.14<br>69.87    | 71.57 62.31                |
| MEAN                             | 171.43<br>254.72<br>160.35  | 201.89<br>292.61<br>189.34 | 106.66<br>134.55<br>110.33 | 210.72<br>249.29<br>220.58              | 273.55<br>329.60<br>272.74              | 224.96<br>270.67<br>238.23              | 187.21<br>219.99<br>185.98 | 201.83<br>225.35<br>180.83 | 0.00                    | 281.82<br>351.02<br>284.20 | 293.50<br>361.97<br>294.28 |
| SITE                             | 267<br>1<br>2<br>3          | 50367<br>1<br>2<br>3       | 126                        | 32                                      |                                         | - 26                                    | 25                         | 3 2 1                      |                         | 3 2 1                      | - 2 -                      |
| TIME                             | 502<br>2330<br>2330<br>2330 | 0.0                        | 1136<br>1130<br>1130       | 1230<br>1230<br>1230                    | 1306<br>1306<br>1306                    | 1330<br>1330<br>1330                    | 1400                       | 1430<br>1430<br>1430       | 1600<br>1600<br>1600    | 1630<br>1630<br>1630       | 1700                       |

|                                       |                              |                           |                                         |                            |                            |                                  |                             |                           |                              |                             | _                           |                          |                                         |
|---------------------------------------|------------------------------|---------------------------|-----------------------------------------|----------------------------|----------------------------|----------------------------------|-----------------------------|---------------------------|------------------------------|-----------------------------|-----------------------------|--------------------------|-----------------------------------------|
| ED<br>G<br>SAND                       | 000                          | 000                       | 000                                     | 000                        | 000                        | 000                              | 000                         | 000                       | 000                          | 000                         | 000                         | 000                      | 000                                     |
| EXCEEDED<br>F<br>THOUSAND             | 000                          | 000                       | 000                                     | 000                        | 000                        | 000                              | 000                         | 000                       | 000                          | 000                         | 000                         | 000                      | 000                                     |
| TS E)<br>PER                          |                              |                           |                                         |                            |                            |                                  |                             |                           |                              |                             |                             |                          |                                         |
| LIMITS<br>VSQ<br>PARTS PER            | 000                          | 000                       | 000                                     | 000                        | 000                        | 000                              | 000                         | 000                       | 000                          | 000                         | 000                         | 000                      | 000                                     |
| > 4                                   | 200                          |                           | 200                                     |                            | - 00                       |                                  |                             | 2100                      |                              |                             |                             |                          | ۰۰۰                                     |
| 3. S                                  | 0278<br>0.0000<br>0.0000     | 0307<br>0-0000<br>0-0000  | 0000                                    | .4130<br>0.0000<br>0.0000  | 0.0000                     | .4339                            | .2292                       | .4332<br>.0000            | 0000                         | .1704<br>0.0000<br>0.0000   | .1771<br>0.0000<br>0.0000   | 0116<br>0-0000<br>0-0000 | 0.0000000000000000000000000000000000000 |
| TRAI                                  |                              |                           | 000                                     |                            | 00                         | 00                               | 00                          | 66                        | 000                          | 00                          |                             |                          |                                         |
| EU EV EW<br>LATENT HEAT TRANS         | 0397<br>0-0000<br>0-0000     | 0166<br>0-0000<br>0-0000  | 00000                                   | .3076<br>0.0000<br>0.0000  | 1663<br>0.0000<br>0.0000   | 0000°0                           | 3645<br>0.0000<br>0.0000    |                           | 00000                        | 4283<br>0.0000<br>0.0000    | .2.4206<br>0.0000<br>0.0000 | 0.0000                   | .0064<br>0.0000<br>0.0000               |
| ENT<br>AL/C                           |                              |                           |                                         |                            |                            |                                  |                             |                           |                              |                             | ,                           |                          |                                         |
| EU                                    | .1482<br>0.0000<br>0.0000    | 0940                      | 000000000000000000000000000000000000000 | .4387<br>0.0000<br>0.0000  | 0.0000<br>0.0000<br>0.0000 | .8999<br>0.0000<br>0.0000        | 1617<br>0.0000<br>0.0000    | .3888<br>0.0000<br>0.0000 | 0.0000                       | 6176<br>0-0000<br>0-0000    | 0.0000                      | 1.2322                   | 181                                     |
|                                       |                              |                           |                                         |                            |                            |                                  |                             |                           |                              |                             | •                           |                          |                                         |
| TEME<br>ST C                          | .3200<br>.2400<br>.3770      | .2920<br>.2520<br>.2630   | .8980<br>.5960<br>.9120                 | .4090<br>.6930             | .7560<br>.5680<br>.6670    | .6860<br>.4670<br>.6430          | .5560<br>.3400<br>.5490     | .7520<br>.5390<br>.7220   | 0.0000<br>0.0000<br>0.4340   | .3120<br>.1980<br>.1890     | .3440<br>.3150<br>.3450     | .4910<br>.3670<br>.4820  | .6450<br>.4710<br>.6190                 |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE | \$ - 6                       | • • •                     | 17.                                     | 19.<br>19.                 | 20.<br>20.                 | 20.<br>20.                       | 19.<br>20.                  | 20.                       | 6 6 6                        | 19.                         | 19.                         | 17.<br>18.<br>17.        | 15.<br>16.<br>16.                       |
| •                                     | 0276<br>0202<br>0135         | 0305<br>0270<br>0244      | 0380<br>1526<br>1674                    | .1497<br>.1251             | 1354<br>1652<br>1296       | 159<br>192<br>292                | 0466                        | 1084                      |                              | .0127                       | 0470                        | 0585<br>0515<br>0518     | 0523                                    |
| HU HV HW<br>SENSIBLE HEAT TRANS       | 000                          | 111                       | 9::                                     | 777                        |                            | 777                              | 000                         | 944                       | 0.000.0<br>0.000.0<br>4.010. | 000                         | 000                         | 000                      |                                         |
| HV<br>HEAT<br>CM2-M1                  | 0391<br>.0074<br>0534        | 0147<br>0227<br>-0107     | •2701<br>•0601<br>•1126                 | .151;<br>.0725             | .0792<br>.9833<br>.0271    | .0501                            | .2616<br>.2659<br>.2810     | .0119<br>.0419<br>.0337   | 0.0000<br>0.0000<br>0.0374   | .1628<br>.1528<br>.1101     | .1124                       | 0297                     | .0148<br>.0152                          |
| FEE.                                  |                              |                           | 1 1                                     | ' '                        | 1                          | •                                |                             | '                         |                              |                             |                             | 1 1                      | •                                       |
| HU<br>SENS IBL                        | .1472<br>.0239<br>.2551      | 0921<br>0462<br>0307      | 0552<br>8854<br>5758                    | .9307<br>.0274<br>.1150    | -1.3098<br>3267<br>1826    | 1007                             | 0925<br>0130<br>.1310       | 5038                      | 0.0000                       | 0453<br>0207<br>0511        | 1231                        | 3341<br>2770<br>4185     | .5312<br>.3337<br>.4858                 |
| S. S.                                 |                              | • • • •                   | 11.                                     | į                          | •                          |                                  |                             |                           |                              | • • •                       | •••                         | • • •                    |                                         |
| BETA                                  | .0550<br>0280<br>0010        | .0210<br>0340<br>0480     | 0410<br>0590<br>0860                    | .0400<br>0650<br>0500      | -0120<br>0120              | .0340<br>0550<br>0410            | .0230<br>0400<br>0210       | -0120<br>0550<br>0190     | 0.0000<br>0.0000<br>0152     | .0250<br>0400<br>0380       | .0100<br>0500<br>0220       | .0280<br>0530<br>0050    | -0180<br>0790                           |
| €0                                    |                              | 26<br>06<br>1.            | V & R                                   |                            | E 4 4                      |                                  |                             | <br>                      | c c \                        |                             |                             |                          |                                         |
| THETA                                 | .0067<br>.0093               | 000                       | 01127<br>-0178<br>0005                  | 0017<br>0013               | .0065<br>.0014<br>.0234    | 0009<br>0046<br>0240             | 000¢<br>-002¢<br>0175       | .0037<br>.0034            | 7.9900<br>7.9000<br>0152     | 0012<br>-0111<br>0231       | 0021<br>.0107<br>0215       | .0019<br>.019%<br>0207   | .020%<br>.020%                          |
| ETA<br>RAD                            | .1139<br>.2390<br>.1325 -    | .0893<br>.2164<br>.1088 - |                                         | 2231 -<br>2500 -<br>2664 - | .3674<br>.3906<br>.3567 -  | • 1464 -<br>• 1542 -<br>• 1463 - | •1660 -<br>•1194<br>•1065 - | 3039<br>3338<br>2808      | 000                          | -1574 -<br>-1558<br>-1434 - | .0250                       |                          | 1                                       |
|                                       | 77.                          | 77.5                      | 2460<br>2241<br>2852                    | 222                        | £ £ £                      | 41.                              | 2                           | 2,3                       | 0.0000                       | 111                         | 000                         | 0645<br>0659<br>0651     | 0415                                    |
| SITE                                  | 0267                         | 50367<br>1<br>2<br>3      | 426                                     | <b>~ 7 €</b>               | ~ m                        | - 2 6                            | 3.2                         | H 0 6                     | <b>~ ν ε</b> ι               | 3 5 1                       | 35                          | H 01 E                   | 1 2 6                                   |
| TIME                                  | 2330<br>2330<br>2330<br>2330 | ₩.                        | 1130<br>1130<br>1130                    | 1230<br>1230<br>1230       | 1306<br>1306<br>1306       | 1330<br>1330<br>1330             | 1400<br>1400<br>1400        | 1430<br>1430<br>1430      | 1600<br>1600                 | 1630<br>1630<br>1630        | 1700<br>1700<br>1700        | 1730<br>1730<br>1730     | 1800<br>1800                            |
|                                       |                              |                           |                                         |                            |                            |                                  |                             |                           |                              |                             |                             |                          |                                         |

|                         | 000                         | 000                                     | 000                        |                            | 0.00                                    | 000                        | 000                      | 000                                     | 000                        | 0.00                       | 000                        | 0.00                                    | 0.00                                    |
|-------------------------|-----------------------------|-----------------------------------------|----------------------------|----------------------------|-----------------------------------------|----------------------------|--------------------------|-----------------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------------|-----------------------------------------|
| WIND<br>SHIFT<br>RAD    | 0.000                       | 000000000000000000000000000000000000000 | 0.000                      | 0000                       | 000000000000000000000000000000000000000 | 000000                     | 000000                   | 0000                                    | 0.000                      | 00000                      | 0.000                      | 0.000                                   | 000000000000000000000000000000000000000 |
| WIND<br>DIR<br>RAD      | 00000                       | 00000                                   | 000000                     | 000000                     | 0000                                    | 0.000                      | 0.000                    | 0.0000                                  | 000000                     | 000.0                      | 0.00.0                     | 0.000.0                                 | 000000000000000000000000000000000000000 |
| GSD<br>ANGLE<br>RAD     | .149<br>0.000<br>.143       | .160<br>0.000<br>.151                   | .149                       | •149<br>•138<br>•150       | .125                                    | .129                       | 00000                    | .148<br>.109<br>.132                    | .141<br>.103               | .125<br>.104<br>.134       | .237<br>.19+<br>.263       | 000000                                  | .324<br>0.000<br>.275                   |
| G<br>AZ IM<br>RAD       | 0.000                       | 0.000                                   | 131                        | 225<br>122<br>178          | 210<br>125<br>176                       | 227<br>122<br>180          | -,310<br>0,000<br>-,286  | 086<br>115<br>136                       | .146<br>.116<br>.053       | .332<br>.331               | 642<br>155<br>115          | 0.0031<br>0.000<br>0.000                | .089<br>0.000                           |
| FSD<br>ANGLE<br>RAD     | .100<br>0.000<br>.098       | 0.000                                   | .108                       | .108<br>.088               | .090                                    | .106<br>.092<br>.107       | 0.000<br>0.000<br>104    | .102<br>.078<br>.098                    | .105<br>.078               | .105                       | 121                        | .117<br>0.000<br>0.000                  | .140<br>0.000<br>.135                   |
| F<br>ELEV<br>RAD        | .004<br>0.050<br>014        | 0000                                    | .003<br>.035<br>016        | .005                       | .005<br>.048<br>012                     | 002<br>040<br>011          | 0.000                    | 0.000                                   | .004<br>.023<br>021        | .006<br>.015<br>019        | .012<br>.031<br>015        | .017<br>0.076<br>0.000                  | .010<br>0.000<br>020                    |
| HORIZ<br>WIND<br>CM/SEC | 235.25<br>0.00<br>244.40    | 225.29<br>0.00<br>236.40                | 256.50<br>348.14<br>263.16 | 300.67<br>390.81<br>327.47 | 252.65<br>333.52<br>265.57              | 269.86<br>352.63<br>279.83 | 318.15<br>0.00<br>329.65 | 187.21<br>273.87<br>212.29              | 182.30<br>254.11<br>186.64 | 187.15<br>250.85<br>175.76 | 190.68<br>254.59<br>185.97 | 160.96<br>0.00<br>0.00                  | 269.68<br>0.00<br>281.37                |
| •                       | 00000                       | 0.0000                                  | 00000                      | 0000-0                     | 00000                                   | 0.000                      | 0.0000                   | 0.0000000000000000000000000000000000000 | 000000                     | .004<br>003                | 000000                     | 0.0000000000000000000000000000000000000 | 000000                                  |
| V<br>STRE               | 0.000                       | 0.000                                   | 116                        | .484<br>.932<br>.181       | 1111<br>237<br>259                      | 464<br>438<br>741          | .104<br>0.900<br>.029    | .048<br>.037<br>012                     | 028<br>061<br>132          | 0000                       | 403<br>799<br>688          | 0.000                                   | 1.539<br>0.000<br>.532                  |
| RUM RU<br>REYNOLDS      | 361<br>0.000<br>374         | 0.000                                   | 539<br>512<br>529          | 776<br>770<br>739          | 518<br>485<br>452                       | 516<br>610<br>538          | 0.000                    | 236<br>282<br>283                       | 227                        | 230<br>277<br>203          | 348<br>315<br>233          | 0.000<br>0.000<br>0.000                 | 0.000                                   |
| WSD<br>DEV              | 23.20<br>0.00<br>23.61      | 23.01<br>0.00<br>23.10                  | 26.48<br>29.66<br>26.40    | 30.38<br>34.16<br>32.4     | 26.31<br>29.34<br>26.48                 | 27.09<br>31.75<br>28.85    | 31.54<br>7.00<br>32.85   | 18+58<br>21•38<br>20•15                 | 18.81<br>19.64<br>17.78    | 19.23<br>21.36<br>18.46    | 21.38<br>25.67<br>19.57    | 18.04<br>0.00<br>0.00                   | 29.85                                   |
| V SS                    | 36.04<br>0.00<br>35.13      | 36.68<br>7.00<br>35.86                  | 37.74<br>42.72<br>38.22    | 45.00<br>54.65<br>49.43    | 36.82<br>41.87<br>39.08                 | 40.04<br>45.19<br>44.87    | 38.90<br>0.00<br>45.76   | 28.04<br>29.78<br>27.88                 | 25.72<br>26.42<br>24.90    | 23.70<br>25.69<br>23.36    | 41-11<br>45.91<br>38.48    | 50.60<br>0.00<br>0.00                   | 54.24<br>0.00<br>76.94                  |
| USD<br>WIN              | 50.64<br>0.01<br>50.85      | 46.10<br>0.00<br>47.73                  | 62.74<br>63.39<br>64.57    | 70.41<br>64.19<br>65.19    | 1                                       | 70.02<br>74.02<br>68.75    | 72.74<br>0.00<br>72.21   | 35.97<br>37.25<br>36.29                 | 35.17<br>32.40<br>36.31    | 43.57<br>45.01<br>39.72    | 46.94<br>51.83<br>68.46    | 0.00                                    | 99.81<br>0.06<br>104.30                 |
| MEAN                    | 232.62<br>0.00<br>242.39    | 222.40<br>0.00<br>234.48                | 253.79<br>345.42<br>261.18 | 297.65<br>386.51<br>325.33 | 250.07<br>330.57<br>263.97              | 267.07<br>349.27<br>277.79 | 315.97<br>0.00<br>329.33 | 185.17<br>271.94<br>211.14              | 180.54<br>252.43<br>185.39 | 185.82<br>247.73<br>175.79 | 186.22<br>249.44<br>182.59 | 152.96<br>0.00<br>0.00                  | 257.28<br>0.00<br>274.59                |
| SITE                    | 37 1 26                     | 32 11                                   | ~~~                        | 3 2 1                      | 35 =                                    | 3 2 1                      | m 0:00                   | 32                                      | ₩ N E                      | 0467<br>1<br>2<br>3        | 2 6                        |                                         | M V-W                                   |
| TIME S                  | 503<br>1830<br>1830<br>1830 | 1900<br>1900<br>1900                    | 2000<br>2000<br>2000       | 2035<br>2035<br>2035       | 2100<br>2100<br>2100                    | 2130<br>2130<br>2130       | 2200<br>2200<br>2200     | 2300<br>2300<br>2300                    | 2330<br>2330<br>2330       | 200                        | 000                        | 100                                     | 1200<br>1200<br>1200                    |

| SAMD                                  | 000                                | 000                       | 000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000                        | 000                       | 000                        | 000                      | 000                                      | 000                      | 000                       | 000                        | 000                      |
|---------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|----------------------------|--------------------------|------------------------------------------|--------------------------|---------------------------|----------------------------|--------------------------|
| EXCEEDED<br>F G<br>THOUSAND           | 000                                | 000                       | 000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000                        | 000                       | 200                        | 000 0                    | 000                                      | 000                      | 000                       | 000                        | 000                      |
| LIMITS E<br>VSQ F<br>PARTS PER        | 000                                | 000                       | 000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000                        | 000                       | 000                        | 000                      | 000                                      | 000                      | 000                       | ၁ <b>၀၀</b>                | 000                      |
| :                                     | 0528<br>0.0000<br>0.0000           | 0.0000.0                  | 0.0374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0376                      | 0.0000<br>0.0000          | 0.0000                     | 0.0000                   | 00000                                    | 0.0000                   | 0.0000                    | 0.0000                     | 0.0000                   |
| LATENT HEAT TRANS                     | .0480<br>0.0000<br>0.0000          | .0350<br>0.0000<br>0.0000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0054<br>0.0000<br>0.0000 | .0108<br>7.0000<br>7.0000 | .0167<br>7-0000<br>7-0000  |                          |                                          |                          | 0.0000                    | 0835<br>0.0000<br>0.0000   | 0.0000                   |
|                                       | .1065<br>0.0000                    | .1689<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>.5294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .1156<br>0.0000<br>0.0000  | .0780<br>0.000<br>0.0000  | .1330<br>0.0000<br>0.0000  | 0.0000                   | 0000                                     | 0.0000                   | 0.0000                    | .1276<br>6,0000<br>0,0000  | 0.0000                   |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE | .6770<br>0.0000<br>.5950           | .5100<br>7.0000<br>.5160  | .3270<br>0.6000<br>.2600<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3500                       | .2820<br>0.0000<br>.2490  | .2720<br>                  | 0.0000<br>0.0000<br>1490 | 0.0000                                   | .2150<br>0.0000<br>.2310 | 0.3030<br>0.3030<br>.2100 | .2969<br>0.0000<br>0.0000  | .8770<br>.0000<br>.7936  |
| EAN CENT                              | 13.                                | 12.<br>0.<br>12.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | * * * *                    | <b>6</b> 0 0              | 80 5 0                     |                          |                                          | -00                      |                           | P C C                      | 18.                      |
|                                       | 0.0000                             | 7.0483<br>7.0000<br>0441  | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0000                     | 0362<br>0.5000<br>0295    | 0.0000<br>0.0000<br>0.0037 | 0.0000<br>0208           | 0.0000                                   | 0.0000                   | 0.0000                    | 1.0568<br>5.0000<br>0.0000 | .1812<br>0.0000<br>.1494 |
| HU HV HW<br>SENSIBLE HEAT TRANS       | 00423                              | .0276<br>0.0000<br>.0021  | 0026<br>0.0070<br>0.0055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                     | 0144<br>7.0000<br>0118    | .0015<br>.0071             | .0052<br>n.0000<br>0017  | 0.000                                    | 0022<br>n.0000<br>0115   | 0.0000                    | .1036<br>0.0000<br>0.0000  | 1098<br>n. 1090<br>.0622 |
| SENSIBL                               | .1265<br>0.7000<br>.0749           | .2081<br>0.0000<br>.2391  | 0.0000<br>.2006<br>0.2840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .2113<br>0-0000<br>-2021   | .1521<br>0.0000<br>.1951  | .2003<br>0.000<br>.2018    | .1032<br>0.0000<br>.0851 | 0.0000                                   | 0.0000                   | 0.0000                    | -2324<br>0,0000<br>7,0000  | 7-1772<br>0-0000<br>1789 |
| BETA                                  | .0293<br>0.0000<br>0550            | .0100                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .079¢<br>.0050             | .0250<br>0150<br>0100     | 0410<br>0.0000<br>0570     | 1 1                      | 1                                        |                          | 0670                      | 0.0010                     | 0240                     |
| THETA                                 | 0306<br>0.0000<br>0204             | 0.0000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0024                      | -00094                    | 0672<br>0-0000<br>0130     | 0054                     | -0271                                    | • • •                    | 0200-                     | .0106<br>7.0000            | .003n<br>n.000n<br>0272  |
| E ETA<br>RAD                          | .0193<br>0.0000<br>.0011           | 0804<br>0000<br>1135      | 1321<br>-0050<br>0910<br>2203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2122                      | 2343<br>1273<br>1886      | 3113<br>0.0000<br>2862     | A 44 60                  | 25                                       | .335C<br>.3366<br>.2920  | -1975<br>-1375            | 0.0000<br>0.0000<br>0.0000 | .1222                    |
| 211                                   | 1267                               | N:M                       | m / m / m / m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | 4 4 6                     | m 1/10                     | m type in                | 50 00 00 00 00 00 00 00 00 00 00 00 00 0 | - ce                     | - (v e-                   |                            | - 126                    |
| START                                 | 5026<br>1830 1<br>1830 2<br>1830 3 | 1900                      | 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 20 | 2100                       | 2130<br>2130<br>2130      | 2200<br>2290<br>2290       | 2300                     | 2330                                     | :                        | 200                       | 100                        | 1200                     |

| E DIR SHIFT<br>RAD RAD | 000.0                                  | 000.0 000.0                                        | 000000000000000000000000000000000000000                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------|----------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AZIM ANGLE<br>RAD RAD  | .222 .261<br>0.000 0.000<br>.309 .265  |                                                    | .235 .309<br>0.000 0.000<br>178 .252<br>0.000 0.000<br>219 .260 | 0.000<br>0.000<br>0.000<br>0.000<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005 | 00000000000000000000000000000000000000                                                                                   | 0.309<br>0.0000<br>0.0000<br>0.0000<br>0.252<br>0.260<br>0.270<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.2 | 00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.00000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.0000<br>00.00 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | .309<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.00 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 |
| ELEV ANGLE<br>RAD RAD  | .020 .139<br>0.000 0.000 0<br>025 .155 |                                                    | .009 .109<br>0.000 0.000 0<br>0.000 0.000 0<br>0.000 0.000      | .109<br>0.000<br>0.000<br>0.000<br>0.120<br>.120<br>.117<br>.118<br>.119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .109<br>0.000<br>0.000<br>0.120<br>0.127<br>0.117<br>0.117<br>0.117<br>0.110                                             | 0.000<br>0.000<br>0.000<br>0.120<br>0.127<br>0.117<br>0.117<br>0.117<br>0.117<br>0.117<br>0.110<br>0.110<br>0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000<br>0.000<br>0.000<br>0.120<br>0.127<br>0.117<br>0.117<br>0.107<br>0.100<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000<br>0.000<br>0.000<br>0.120<br>0.120<br>0.117<br>0.117<br>0.107<br>0.108<br>0.081<br>0.083<br>0.083<br>0.081<br>0.081<br>0.081<br>0.081<br>0.081<br>0.081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 |
| WIND<br>CM/SEC         | 279.93<br>0.00<br>284.87               |                                                    | 273-30<br>0-00<br>0-00<br>297-77<br>286-87                      | 272-30<br>0-00<br>0-00<br>297-77<br>0-00<br>286-87<br>396-51<br>321-88<br>450-04<br>369-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 273.30<br>0.00<br>0.00<br>297.77<br>0.00<br>314.30<br>396.51<br>396.51<br>396.51<br>396.51<br>396.51<br>396.51<br>396.51 | 272.30<br>0.00<br>0.00<br>297.77<br>286.87<br>336.83<br>396.51<br>396.51<br>396.00<br>450.00<br>392.18<br>388.72<br>452.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 273.30<br>0.00<br>0.00<br>297.77<br>0.00<br>396.81<br>336.81<br>396.51<br>396.51<br>396.51<br>396.51<br>450.04<br>450.04<br>450.11<br>450.11<br>450.11<br>450.11<br>460.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 273.30<br>0.00<br>0.00<br>297.77<br>0.00<br>396.81<br>396.51<br>396.51<br>396.51<br>396.51<br>369.11<br>454.81<br>462.18<br>388.72<br>462.18<br>462.18<br>462.18<br>462.18<br>462.18<br>462.18<br>462.18<br>462.18<br>462.18<br>462.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 273.30<br>0.00<br>0.00<br>0.00<br>396.51<br>396.51<br>396.51<br>396.51<br>396.51<br>396.51<br>396.51<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>460.01<br>4                                                                                                                                              | 272.30<br>0.00<br>0.00<br>396.51<br>396.51<br>396.51<br>396.51<br>396.51<br>396.51<br>396.51<br>369.11<br>456.81<br>4425.77<br>553.61<br>4425.77<br>4425.77<br>4425.77<br>4425.77<br>4426.81<br>4426.81<br>4426.81<br>4426.81<br>4426.81<br>4426.82<br>4426.82<br>4426.82<br>4426.83<br>4426.83<br>4426.83<br>4426.83<br>4426.83<br>4426.83<br>4426.83<br>4426.83<br>4426.83<br>4426.83<br>4426.83<br>4426.83<br>4426.83<br>4426.83<br>4426.83<br>4426.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83<br>4436.83                                                                                                                                                                                                                                                         | 272.30 70.00 70.00 70.00 297.77 296.81 314.30 396.51 396.51 396.21 396.23 366.22 449.55 449.55 440.56 440.50 400.60 360.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                      | 000000                                 |                                                    | 000000000000000000000000000000000000000                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| REYNOLDS STRESSES      | •824 1.059<br>•000 0.000<br>•447 1.299 |                                                    | 2.36<br>0.00<br>0.00<br>0.00<br>0.00                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                          | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| :                      | 30.12824<br>0.00 0.000<br>30.81447     | 5.74576                                            |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 111 111                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 111 111 111 111 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ST DEV                 | 70-82 30<br>0-00 0<br>64-22 30         | 85.76 25<br>0.00<br>0.00                           | 73.65 32<br>0.00 0<br>71.41 31                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5                      | 109.46                                 | 0.00                                               | 98.93                                                           | 0.00<br>98.93<br>87.77<br>102.27<br>96.84<br>108.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98.93<br>87.77<br>102.27<br>96.84<br>90.69<br>108.57<br>94.45<br>103.48                                                  | 98.93<br>87.77<br>102.27<br>108.69<br>96.84<br>96.45<br>95.85<br>95.85<br>95.14<br>95.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98.93<br>98.93<br>97.72<br>102.22<br>108.55<br>96.84<br>96.84<br>95.88<br>95.14<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00<br>98.93<br>98.93<br>96.84<br>90.84<br>95.85<br>103.48<br>95.14<br>95.14<br>95.14<br>101.68<br>92.68<br>103.47<br>100.66<br>103.47<br>103.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.93<br>87.77<br>102.27<br>108.56<br>96.84<br>96.84<br>96.84<br>95.14<br>97.68<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98.93<br>87.77<br>102.27<br>103.64<br>95.85<br>103.64<br>95.14<br>95.14<br>95.14<br>91.84<br>103.67<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 98.93<br>87.77<br>102.27<br>103.65<br>96.84<br>96.84<br>95.85<br>95.85<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84<br>91.84                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NIA<br>NIA             | 271.62<br>0.00<br>281.22               | 260.99<br>n.00<br>0.00<br>289.12<br>0.00<br>280.72 |                                                                 | 303,78<br>380,95<br>312,25<br>340,74<br>435,77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| START                  | 50467<br>1230 1<br>1230 2<br>1230 3    | 1330 1<br>1330 2<br>1330 3<br>1400 1<br>1400 3     |                                                                 | 1430 1<br>1430 2<br>1430 3<br>1500 1<br>1500 2<br>1500 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| SED<br>G<br>SAND                                        | 000                                     | 000                       | 000                       | 000                                     | 000                                     | 000                                     | 000                                     | 000                                     | 000                      | 000                                     | 000                      | 000                     | 000                     |
|---------------------------------------------------------|-----------------------------------------|---------------------------|---------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------|-----------------------------------------|--------------------------|-------------------------|-------------------------|
| LIMITS EXCEEDED<br>SO F G<br>RTS PER THOUSAND           | • • •                                   | 000                       | 000                       | 000                                     | 000                                     | 000                                     | 000                                     | 000                                     | 000                      | 000                                     | 000                      | 000                     | 000                     |
| LIMITS I<br>VSO PARTS PER                               | 000                                     | 000                       | •••                       | 000                                     | 000                                     | 000                                     | 000                                     | 000                                     | 000                      | 00 <b>0</b>                             | 000                      | 000                     | 000                     |
| AAP.S                                                   | 00000                                   | 00000                     | 00000                     | 00000                                   | 000000000000000000000000000000000000000 | 00000                                   | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000000                  | 000000000000000000000000000000000000000 | 00000                    | 000000                  | 000000                  |
| EU EV EM<br>LATENT HEAT TRAMS                           | 0000000                                 | 0.0000                    | 0.0000                    | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0.0000                                  | 0.0000                                  | 000000000000000000000000000000000000000 | 0.0003                   | 0.0000                                  | 0.0000                   | 0.0000                  | 0.0000                  |
|                                                         | 0.0000000000000000000000000000000000000 | 0.0000                    | 0.0000                    | 0000000                                 | 0000000                                 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000                                  | 0.0000                   | 0.0000                                  | 0.0000                   | 000000                  | 000000                  |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE                   | .8670<br>0.0900<br>0777.                | .7350<br>0.0000<br>0.0000 | .6700<br>0.0000<br>.6730  | .5220<br>.4840<br>.5130                 | .4170<br>.3340<br>.3960                 | .3410<br>3180<br>.2900                  | .2940<br>.2970<br>.3270                 | .2420<br>.2810<br>.2050                 | .3820<br>0.0000<br>.4360 | .3600<br>.3640<br>.4130                 | .4470<br>0.0000<br>.4460 | .4680<br>.3820<br>.4720 | .4440<br>.3790<br>.4120 |
| MEAN<br>CENT                                            | 19.<br>20.                              | 6 c c                     | 19.                       | 19.<br>19.<br>21.                       | 19.<br>19.                              | 19.<br>20.                              | 199                                     | 17.<br>18.<br>19.                       | 36.                      | 15.<br>16.                              | 14.<br>25.               | 12.<br>13.              | 11.<br>12.<br>12.       |
|                                                         | •1796<br>0•0000<br>•1524                | .1589<br>0.0000<br>0.0000 | .1115<br>0.0000<br>1157   | .1100                                   | .0877<br>.1162<br>.0788                 | .0602                                   | .0466<br>.0354<br>.0354                 | .0243<br>.0152<br>.0190                 | 0083<br>0.0000<br>0064   | 0359<br>0271<br>0297                    | 0606<br>0.0000<br>0496   | 0524<br>0152<br>0458    | 0540<br>0308<br>0441    |
| HU HV HW<br>SENSIBLE KEAT TRANS<br>•••CAL/(CM2-MIN)•••* | 0528<br>0-0000<br>0135                  | 1970<br>0.0000<br>0.0000  | .0337<br>0.0000<br>0.0539 | .1018                                   | 0047<br>.0551<br>0453                   | .0136<br>.1268<br>.0046                 | .0172                                   | 0207                                    | .0478<br>0.0000<br>.0361 | 0140                                    | 0162<br>^.0095           | 0513<br>1347<br>0631    | 0247                    |
| HU<br>SENSIB<br>••••CAL                                 | 7.5444<br>7.0000<br>0568                | -1.2067                   | 2863<br>0.0000<br>1149    | 2127<br>2209<br>1083                    | 2491<br>2052<br>2661                    | 2741                                    | 1887<br>1384<br>1300                    | 1565<br>1765<br>0891                    | 1844<br>0.0000<br>1391   | .1461<br>.0322<br>.1524                 | .3176<br>0.0000<br>.3548 | .4818<br>.3470<br>.3806 | .2890<br>.1695<br>.2298 |
| BETA                                                    | .0160<br>0.0000<br>0280                 | .0330                     | .0190<br>0.0000<br>0360   | .0220<br>0080<br>0240                   | .0260<br>0300<br>0260                   | .0170<br>.1060<br>0200                  | .0340                                   | .0380<br>.2830<br>0410                  | 0.0000                   | .1790                                   | .0880<br>0.0900<br>0260  | .1060<br>.1830<br>0080  | .0610<br>.3040<br>0130  |
| THETA                                                   | .0077<br>0.0000<br>0304                 | . 6025F                   | .0049<br>7.1000<br>0287   | .0277<br>-0238                          | .0033                                   | .0304                                   | 0049<br>.0325<br>018                    | 0044                                    | 0066<br>0.0000<br>0176   | 0064<br>0349<br>0146                    | 7.0075<br>7.0000<br>0140 | 0068<br>.0330<br>0141   | 0025<br>-0304<br>0180   |
| ETA                                                     | .2403<br>0.0000<br>.3258                | .2675<br>0.0000<br>0.0000 | .1829<br>0.0000<br>.2107  | .1042<br>.0566<br>.0872                 | .1694<br>.0521<br>.1795                 | 0377                                    | 2337                                    | 1308<br>2624<br>1573                    | 2540<br>0-0000<br>2262   | 2807<br>3783<br>2833                    | 0.0000                   | 3171<br>3217<br>3277    | 1886<br>2062<br>1734    |
| SITE                                                    | 0467                                    | - ~ ~                     | 4 6 6                     | 3 5 1                                   | 351                                     | 353                                     | - 2 E                                   | -26                                     | - 00                     | -26                                     | - 26                     | 357                     | -26                     |
| START                                                   | 1230<br>1230<br>1230<br>1230            | 1330                      | 1400<br>1400<br>1400      | 1430<br>1430<br>1430                    | 1500<br>1500<br>1500                    | 1530<br>1530<br>1530                    | 1600<br>1600<br>1600                    | 1630<br>1630<br>1630                    | 1700<br>1700<br>1700     | 1730<br>1730<br>1730                    | 1800<br>1800<br>1800     | 1830<br>1830<br>1930    | 1900<br>1900<br>1900    |

| VSD YSD RUW RUV RWV<br>WIYD ST DEV REYNOLDS STRESSES<br>/SEC************************************ |
|--------------------------------------------------------------------------------------------------|
| 48.86 28.93565<br>45.55 30.98138<br>46.41 30.45594                                               |
| 43.91 31.21679                                                                                   |
| 34.39                                                                                            |
| 50-69 34.87458<br>49.74 34.99888                                                                 |
| 97                                                                                               |
| 49-68 28-85251                                                                                   |
|                                                                                                  |
| 65-39 29-3823<br>65-39 29-3823<br>65-71 23-20440                                                 |
| 90.76 28.03550<br>107 R8 35.55483<br>77.23 28.05692                                              |
| 0.00 0.00 0.000<br>0.00 0.00 0.000<br>9.27 37.63978                                              |
| 0.00 0.00 0.000 0.000 77.62 39.81 -1.151                                                         |
| 0.00 0.00 0.00<br>0.00 0.00 0.00<br>75.17 (2.20 -1.470                                           |
| 0.00 0.00 0.000<br>0.00 0.00 0.000<br>90.39 44.14 -1.536                                         |
| 67-72 4:-30 -1-447<br>99-95 43-87 -1-183<br>9(-31 40-71 -1-185                                   |
| 1034-04 37-96 -1-105<br>122-33 42-56 -1-129<br>103-57 17-38 -2-342                               |

| SAND                                  | c <b>c o</b>                | 000                        | 000                          | 000                                     | 000                           | 300                        | 000                        | 000                         | c 0 0                             | 000                           | •••                          | 000                            |
|---------------------------------------|-----------------------------|----------------------------|------------------------------|-----------------------------------------|-------------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------------|-------------------------------|------------------------------|--------------------------------|
| EXCEEDED 6 6 1 THOUSAND               | 000                         | 0 O O                      | 000                          | 000                                     | 000                           | 000                        | 200                        | 000                         | 000                               | 000                           | 000                          | 000                            |
| LIMITS E<br>Su F<br>RTS PER           | 0.00                        | 886                        | 000                          | υ <b>0</b> 0                            | <b>coo</b>                    | 000                        | 000                        | 000                         | 000                               | 000                           | 000                          | 000                            |
| LIM<br>VSC<br>PARTS                   |                             |                            |                              |                                         |                               |                            |                            |                             |                                   |                               |                              |                                |
| EW<br>RANS<br>NI                      | 0.000°0<br>0.0000<br>0.0000 | 0.930¢<br>0.00¢<br>0.0000  | 0.0000                       | 0.0000000000000000000000000000000000000 | 0.00000                       | 0.5000                     | 0.000000                   | 5-0900<br>7-0009<br>0-0009  | 0.0000                            | 0.000.0<br>0.000.0<br>0.000.0 | 0.0000                       | 0.00000                        |
| EV<br>PEAT C                          | 0*00°0<br>0*000°0<br>0*0000 | 0.000.0                    | 0.000.0<br>0.000.0<br>0.0000 | 0.0000<br>0.0000<br>0.0000              | 0.00 10<br>0.000 0<br>0.000 0 | 0.0000                     | 1.0000<br>0.0000<br>0.0000 | 0.0000<br>0.00000           | 0.0000<br>0.000<br>0.000<br>0.000 | 0.0000<br>0.0000<br>0.0000    | 0-0000°0<br>0-0000<br>0-0000 | 0000-0                         |
| EU EV EW EW LATENT NEAT FRANS         | 0.0000<br>0.0000<br>0.0000  | 0.0000<br>0.0000<br>0.0000 | 0.0000.0                     | 0.000.0                                 | 0.00000                       | 0.0000<br>0.0000<br>0.0000 | 0.0000                     | 0.0000                      | 0.000.0<br>0.0000                 | 0.0000                        | 0.0000                       | 0.0000                         |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE | .3550<br>.2330<br>.3400     | .3590<br>.3570<br>.3540    | .2520<br>.2470<br>.2750      | 1.4560<br>1.3680<br>.5900               | ,5680<br>.3850<br>.5490       | .2510<br>.2500<br>.3060    | 1.0000<br>0.0000<br>0.2200 | 0.0000<br>0.0000<br>0.2850  | 0.0000<br>0.0000<br>0.3920        | 0.0000<br>0.6070              | .4260<br>.3820<br>.4340      | 144770<br>143340<br>-7.35.8090 |
| A'R<br>EAN                            | :14<br>114<br>120           | 10.                        | 10.                          | 13.                                     | 13,                           | 13.<br>13.                 | ç ç <u>ş</u>               | 5,5                         | 66.5                              | 66.9                          | 16.                          | 14:                            |
| •                                     | 0439<br>0303<br>0404        | 3473                       | 0512<br>0439<br>0447         | .3196<br>.0760<br>.1118                 | . 1978<br>. 1979              | .0395<br>.0423<br>.0389    | 0578                       | 0.0000                      | 0.0000<br>0.0000<br>1054          | 0.0000                        | .1131<br>.1550<br>.0935      | .1069<br>.1062<br>.1925        |
| HU HV HW<br>SENSIBLE HEAT TRANS       | 0%06<br>0%4)<br>0{31        | 0702<br>1371<br>0365       | 0053<br>0486<br>7228         | .1328<br>0808<br>1294                   | 0240                          | .1189<br>.1297<br>1922     | 0,0000<br>0,0000<br>0331   | 0.0000<br>0.0000<br>0.0620  | 0.0000<br>0.0006<br>0.0263        | 0.0000<br>0.0000<br>0.0460    | -0512<br>-0512<br>-0242      | .1079<br>.0843<br>.1102        |
| HIJ<br>SENSTBL                        | .2861<br>.1371<br>.2653     | .3276<br>.2876<br>.2603    | .2233<br>.1873<br>.2260      | 3127<br>0161<br>2882                    | 0141<br>0141<br>2021          | .1240                      | 0,000<br>0,000<br>-1360    | 0.0000                      | 0.0000<br>5.0000<br>3216          | 0.0000                        | 3158                         | 2301<br>1140<br>2617           |
| BETA<br>RAD                           | .0590<br>.1660<br>.0040     | .0680<br>.3170<br>0110     | .0710<br>.7140<br>0230       | .0700<br>-0700<br>-0430                 | .0260<br>0520<br>0280         | .6200<br>0520<br>0520      | 0900°-                     | 0.0000<br>0.0000<br>0.00000 | 0.0000                            | 0.0000                        | -0230<br>-0400<br>-0420      | .0160<br>0300<br>.2010         |
| THETA                                 | 2097<br>246<br>0162         | 008<br>-0370<br>315-       | 7081<br>-0338<br>0356        | 0144                                    | 0070<br>0248<br>02. F         | 0367<br>-0367              | 0,0000<br>0,0000<br>0281   | 4720                        | 0303<br>0303                      | 0.0000<br>0.0000<br>0265      | 0040<br>-0153<br>0217        | 0049<br>-0189                  |
| E ETA                                 | -1969<br>-2028<br>-1988     | 2473                       | 296°<br>30JZ<br>2858         | 1822<br>3960<br>0023                    | 1816<br>1863<br>-0647         | .1536                      | 0.0000                     | 7.0000<br>7.0000<br>1243    | 0.0000                            | 0.0000                        | 0925                         | 0438                           |
| SITE                                  | 467                         | ~~~                        | ~ r; m                       | 50367<br>25.25<br>35.25                 | - N E                         | -26                        | - c w                      | ~~~~                        | -~                                | r e                           | 3 5 7                        | ~ ~ E                          |
| TIME                                  | 50467<br>1930 1<br>1930 2   | 2000                       | 2030<br>2030<br>2030         | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 870<br>800<br>800             | 830<br>830                 | E # 6                      | 999                         | 1000                              | 1000                          | 1100                         | 1130                           |

| WIND<br>SHIFT<br>RAD             | 00000               | 0.000<br>1.872 | -12    | .053          | 135            | .319           | 044              | 108    | 299              | .037          | 520            | 0.000 | 034    | 0.000          | 00000          | 0.000         | .112             | 094<br>094     |
|----------------------------------|---------------------|----------------|--------|---------------|----------------|----------------|------------------|--------|------------------|---------------|----------------|-------|--------|----------------|----------------|---------------|------------------|----------------|
| HIND<br>DIR<br>RAD               | 5.776               | 5.244          | 5.368  | 5.410         | 5.271          | 5.460          | 5.418            | 5.336  | 5.055            | 5.289         | 4.580<br>5.068 | 5.136 | 5.100  | 0.000          | 0,000          | 0.000         | 4.327            | 4.392          |
| GSD<br>ANGLE<br>RAD              | .322                | .356           | .344   | .350          | .416           | .366           | .368             | .379   | .413             | 404°          | .361           | 0.000 | .331   | .372           | 0.000          | 0.000         | .348             | 107            |
| G<br>AZIM<br>RAD                 | .015                | -005           | 005    | .023<br>0.000 | 002            | .036           | .034             | 008    | 010              | 007           | 017            | 0000- | 097    | 0.000          | 0000-          | 0.000         | 041              | 023            |
| FSD<br>ANGLE<br>PAD              | .186                | .252           | .195   | .191          | .207           | .192           | .187             | .190   | ,199             | .200          | .197           | 0.00c | .209   | .214<br>0.000  | 9-1-90         | 0.000         | .233<br>825.     | .272           |
| F<br>ELEV<br>RAD                 | .076                | .055           | .036   | .037          | .042           | .036           | .034             | .038   | .045             | .042<br>.051  | •036           | 0.000 | .034   | 0.049          | 0.000          | 2.000<br>.018 | •039             | .056           |
| KOR1Z<br>HIND<br>CM/SEC          | 112.28              | 133.64         | 153.15 | 201-41        | 180.56         | 224.90         | 238.46           | 240.66 | 232•19<br>222•20 | 239.46        | 167.70         | 0.00  | 189.95 | 169-96<br>0-00 | 0.00           | 76.98         | 117-11           | 110.86         |
| REV<br>SES                       | .067<br>107         | .001           | .033   | -117          | 050            | .112           | -108             | ,098   | .044             | •052<br>-•054 | .146           | 0.000 | 060    | 0.000          | 0.000          | 0.000         | 026              | 018            |
| RUM RUV RWI<br>REYNOLDS STRESSES | 200                 | .061           | 038    | -1.154        | .117           | 091            | 471              | -1.858 | 312              | -1.963        | -1.493         | 0.000 | 960-   | 0.000          | 0.000          | 0.000         | 975              | -122           |
| RUM<br>REYNOI                    | 260                 | 414            | 539    | 920           | 659            | -1.749         | -1.095<br>-1.115 | -1.158 | -1.032           | -1.153        | 875            | 0.000 | 765    | 00000          | 0.000          | 0.000         | 286              | -,308          |
| WSD                              | 16.59               | 22.51          | 25.47  | 33.60         | 29.13          | 36.49          | 37.26            | 38.65  | 37.53<br>37.58   | 38.91         | 29.87          | 30.33 | 30.47  | 28.89          | 0.00           | 0.00          | 20.27            | 21.03          |
|                                  | 33.35               | 41.59          | 34.74  | 47.04         | 69.07          | 75.97<br>57.58 | 77.45            | 89.09  | 87.93            | 94.09         | 79.02          | 0.00  | 54.63  | 56.21          | 0.00           | 20.09         | 34.14            | 39.79          |
| USD VSD<br>WIND ST               | 39.07               | 43.80          | 46.15  | 70.02         | 64.68<br>69.16 | 74.80          | 86-67            | 85.30  | 83.41            | 96.27         | 96.59          | 71.29 | 78.40  | 72.94          | 0.00           | 30.89         | 46.69<br>51.33   | 51.23<br>48.08 |
| MEAN                             | 107.08              | 126.73         | 144.91 | 195.71        | 166.97         | 211.22         | 224.74           | 222.47 | 214.62           | 231.40        | 146.59         | 0.00  | 183.97 | 160.88         | 0.0C<br>138.17 | 0.00          | 111.84           | 103.63         |
| SITE                             | 91168<br>0 1<br>0 2 | ~~             | - ~    | H 2           | - 2            | -~             | - ~              | ~ ~    | - ~              | - 2           | ~ ~            | - 2   | - ~    | e c            | - ~            | ~~            | 91268            | ~~             |
| TIME S<br>START                  | 30 41               | 715            | 745    | 830           | 900            | 1000           | 1135             | 1230   | 1330             | 1400          | 1430           | 1500  | 1535   | 1605           | 1640           | 1840          | 91<br>710<br>710 | 7.0            |

|                                      |                                         |              |               |         | 1.02          |               |               |               |               |                   |                |                 |              |         |                    |                 |                     |              |
|--------------------------------------|-----------------------------------------|--------------|---------------|---------|---------------|---------------|---------------|---------------|---------------|-------------------|----------------|-----------------|--------------|---------|--------------------|-----------------|---------------------|--------------|
| EXCEEDED 5<br>F 100.000              | 2955<br>18390                           | 4415         | 2826          | 1811    | 4078          | 2243<br>42907 | 2416<br>24523 | 2235<br>20896 | 3396<br>29983 | 5240<br>24512     | 17270<br>25148 | 29427           | 9789         | 10065   | 28066              | 9667            | 9791                | 14179        |
| 20                                   | 1377                                    | 2347<br>9216 | 1505<br>10551 | 1499    | 2822<br>11186 | 1588<br>9273  | 1462<br>1199  | 1402          | 2076<br>3847  | <b>2661 24</b> 20 | 10946          | 4140            | 3336         | 3385    | 0<br>3 <b>56</b> 9 | 2230            | 4334                | 8340<br>9163 |
| LIMITS<br>VSQ<br>PARTS P             | 122                                     | 144          | 1392          | 188     | 891<br>1706   | 193           | 232           | 250           | 711           | 1184              | 6275           | 1398            | 316          | 1123    | 049                | 561             | 889<br>5957         | 2898         |
| EW<br>RANS<br>N)                     | 0000000                                 | 0.00000      | 0.0000        | 0.0000  | 0.0000        | 0.0000        | 0.0000        | 0.0000        | 0.0000        | 0.0000            | 0.0000         | 0.0000          | 0.0000       | 0000000 | 0.0000             | 0.0000          | 0.0000              | 0.0000       |
| EU EV EW<br>LATENT HEAT TRANS        | 0.0000                                  | 0.0000       | 0.0000        | 0.0000  | 0.0000        | 0.0000        | 0.0000        | 0.0000        | 0.0000        | 0.0000            | 0.0000         | 0.0000          | 0.0000       | 0.0000  | 0.0000<br>.1961    | .0000           | 0.0000              | 0.0000       |
| EU<br>LATEN                          | 0.0000000000000000000000000000000000000 | 0.0000       | 0.0000        | 0.0000  | 0.0000        | 0.0000        | 0.0000        | 0.0000        | 00000-        | 0.0000            | 0.0000         | 0.0000          | 0.0000       | 0.000.0 | 0399               | 0060-           | 0.000.              | 0.0000       |
| AIR TEMP<br>EAN ST DEV<br>CENTIGRADE | .2190                                   | .5940        | .5590         | .6200   | .7290         | .7500         | .5740         | .6030         | .6660         | .5890             | .4860          | .5710           | .3240        | 0044.   | 0.000              | 0.0000          | 131.0610<br>144619. | .4130        |
| AIR<br>MEAN<br>CENTI                 | e .                                     | 10.          | ::            | 13.     |               | 17.<br>16.    | 18.           | 20.           | 21.           | 21.               | 21.            | 22.             | 21.          | 21.     | 22.                | c e             | 1.0                 | 14.          |
| 3                                    | 022A                                    | .0576        | .0781         | .1234   | .1447         | .1886         | .1306         | .1929         | .1681         | .0972             | .0459          | 0.0000<br>40824 | .0325        | 0022    | 0.0000             | 0.0000          | .0341               | .0476        |
| SENSIBLE HEAT 1RAMS                  | 0077                                    | 0221         | \$100         | .0721   | 1151          | .0349         | 0063          | 1081          | 0806          | 0943              | 0751           | 0.0000          | 0114         | 0.0000  | 0.0000             | 0.0000          | 0396                | .0216        |
| HU<br>SENSIBL                        | .0693                                   | 0925         | 1686          | 3946    | 2895          | 4250          | -,1033        | 3380          | 3974          | 2681              | 0501           | 0.000           | 1779         | .1178   | 0,000.             | 10622           | 0157                | 1015<br>0832 |
| BETA                                 | 000010                                  | 0.000.0      | 0.000.0       | 0.000.0 | 0.0000        | 0.00000       | 0.000.0       | 0.000.0       | 0.0000        | 0.000.0           | 0.00000        | 0.0000          | 0.0000       | 0.000.0 | 0.0000             | 0.0000          | 0.0000              | 0.0000       |
| THETA                                | . 1074                                  | .0163        | .0131         | .0142   | .0123         | .0129         | .0107         | .0161         | .0224         | .0127<br>.6216    | \$110°         | 0.000n          | .0161        | .018s   | .0102              | 5000°<br>• 0000 | .0070               | .0135        |
| ETA                                  | .1749                                   | 1.2355       | 1229          | 0745    | .1504         | 0388          | .0389         | .0837         | .3016         | 0615              | .3090          | 0.0000          | 1186         | .0091   | 0.0000             | 0.0000          | 6490                | 0889         |
| SITE                                 | 2 = 2                                   | <b>→</b> 63  | - ~           | m N     | 7 7           | - 7           | 1 2           | - 2           | - 2           |                   | - ~            | - 7             | per 617      | ٦ ٨     | ~ ~                | -8              | 91266               | - ~          |
| TIME START                           | 911<br>30<br>30                         | 715          | 740           | 630     | 900           | 1000          | 1135          | 1230<br>1250  | 1330          | 1400              | 1430           | 1500            | 1535<br>1535 | 1605    | 1640               | 1840            | 917                 | 740          |

| WIND<br>SHIFT<br>RAD             | .983                   | .528   | 198            | 110            | 237              | .196           | 181          | .100           | 422              | 014            | 118              | .089             | 078<br>057     | .108             | 002            | 082    | 348<br>126    | -081  |
|----------------------------------|------------------------|--------|----------------|----------------|------------------|----------------|--------------|----------------|------------------|----------------|------------------|------------------|----------------|------------------|----------------|--------|---------------|-------|
| PAN DER                          | 4.759                  | 5.010  | 4.956<br>5.382 | 5.409          | 4.740            | 4.788          | 4.580        | 4.873          | 4.429            | 4.222          | 4.111            | 4.201            | 4.155<br>4.355 | 4.306            | 4-191          | 4.104  | 3.756         | 3.670 |
| GSD<br>ANGLE<br>RAD              | .490                   | .388   | .364           | .345           | .418             | .404           | •436<br>•485 | 419            | .365             | .381           | .323             | .375<br>.390     | .372           | .353             | .355           | .293   | .227          | .198  |
| G<br>AZIM<br>RAD                 | 040                    | 170    | 025            | .258           | .105             | -100           | .162         | .212           | .207             | .018           | .024             | .252             | .272           | .028             | .014           | .009   | .009          | .065  |
| FSD<br>ANGLE<br>RAD              | .296                   | .249   | .230           | .198           | .235             | .239           | .328         | .351           | .105             | .281           | .208             | •234             | .262           | .233             | -207           | .196   | .153          | .088  |
| F<br>ELEV<br>RAD                 | .079                   | .058   | .055           | .040           | .106             | .100           | .119         | .162           | .097             | .024           | .018             | .035             | .057           | .031             | 419.<br>689.   | .020   | -020          | 025   |
| HOR12<br>WIND<br>CM/SEC          | 101.08                 | 142.07 | 171.84         | 225.65         | 199.72           | 209.34         | 152.38       | 147.40         | 210.97<br>192.76 | 185.77         | 210.59           | 179.84<br>169.73 | 152.85         | 176.74<br>178.58 | 154.09         | 110.20 | 75.66         | 77.34 |
| :                                | 018                    |        | 008            | 124            | 093              | 216            | 159          | 145            | 161              | 165            |                  | 023              | -013           | 015              | 045            | 007    | ამ∂ს<br>• 043 | 003   |
| RUM RUV RWV<br>RETMOLDS STRESSES | 378                    | 341    | 105            | 139            | -,770            | 479            | 084          | +095           | •547<br>-•120    | ,518<br>455    | .312             | -240             | .234           | 390              | 416            | 093    | 085<br>.058   | 018   |
| RUM<br>REYNOL                    | 249                    | -544   | 649            | -1.057         | 763              | -,916          | 621          | 616            | 861              | 675            | 911              | - £95<br>- £96   | 605            | 626              | 643            | 251    | 036           | 028   |
| usb<br>DEV                       | 19.13                  | 26.04  | 29.70          | 36.55          | 32,83            | 34.51<br>33.15 | 31.61        | 29.08<br>33.53 | 34.56            | 32.56<br>33.36 | 34.34            | 31.47            | 28.03          | 31.68            | 25.72<br>26.12 | 18.27  | 9.46          | 7.38  |
| a                                | 37-23                  | 45.84  | 55.82          | 70-17          | 74.54            | 73.35          | 68-49        | 60.44          | 71.21            | 65.31          | 61-11            | 64.25            | 51.35          | 57,43<br>61.13   | 44.92          | 29.83  | 16.57         | 14.17 |
| USD VS<br>MIND S                 | 51-80                  | 61.37  | 74.70          | 81.94<br>91.05 | 87.79<br>98.11   | 96.60          | 94.82        | 108.69         | 113.81           | 86.53          | 66-17            | 76-69            | 72.51          | 74.29            | 57.29<br>55.63 | 40.08  | 21.62         | 16.79 |
| MEAN                             | 93.95                  | 134.13 | 162.66         | 214.08         | 185.77<br>152.98 | 196-15         | 153.40       | 137.38         | 149.41           | 174.72         | 201.76<br>197.76 | 168.70           | 144.24         | 167.39           | 147.39         | 106.03 | 73.94         | 76.02 |
| S176                             | 2 1 2                  | ~ ~    | 63             | ~~             | - 2              | 7              | 7            | - 2            | - ~              | - 2            | 7                | ~ ~              | - 2            | ~ ~              | ~ ~            | - 2    | - 2           | - 2   |
| START                            | 9126<br>810 1<br>810 2 | 006    | 930            | 1005           | 1035             | 1105           | 1135         | 1205           | 1305             | 1335           | 1430             | 1500             | 1530           | 1600             | 1630           | 1710   | 1746          | 1805  |

| LIMITS EXCEEDED<br>SQ F G<br>ARTS PER 100.000 | 1 11909 27059           | 5640 16190     | 1 4688 9479    | 1996 3429      |        | 5079 8763<br>14768 26125 | 5079<br>14768<br>6197<br>11696 | 5079<br>14768<br>6197<br>11696<br>10858 | 5079<br>14768<br>6197<br>11696<br>10858<br>17826<br>24367 | 5079<br>14768<br>6197<br>11696<br>10858<br>17826<br>24367<br>13532<br>10484<br>15672 | 5079<br>14768<br>6197<br>11696<br>10858<br>17826<br>24367<br>19532<br>10484<br>15672<br>5005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5079<br>14768<br>6197<br>11696<br>10858<br>17826<br>24367<br>13532<br>10484<br>15672<br>5005<br>9346<br>2638 | 5079<br>14768<br>6197<br>11696<br>17826<br>24367<br>13532<br>10484<br>15672<br>5005<br>9346<br>2638<br>1928<br>4173 | 5079<br>14768<br>6197<br>11696<br>17826<br>24367<br>13532<br>10484<br>15672<br>5005<br>9346<br>1926<br>4173<br>7224<br>7682 | 5079<br>14768<br>6197<br>11696<br>17826<br>24367<br>13532<br>10484<br>15672<br>5005<br>9346<br>10572<br>5005<br>9346<br>7682<br>4173<br>7224<br>7682<br>7682<br>7682 | 5079<br>14768<br>6197<br>11696<br>17826<br>24367<br>13532<br>10484<br>15672<br>5005<br>9346<br>15672<br>5005<br>9346<br>7224<br>7224<br>7682<br>7682<br>7682<br>7682<br>7682<br>7682<br>6230 | 5079<br>14768<br>6197<br>11696<br>17826<br>24367<br>13532<br>10484<br>15672<br>5005<br>9346<br>15672<br>4173<br>7224<br>7224<br>7224<br>7224<br>7224<br>7224<br>7224<br>7224<br>7224<br>7224<br>7224<br>7238<br>7299 | 5079<br>14768<br>11696<br>110858<br>17826<br>24367<br>13532<br>10484<br>15672<br>5005<br>9346<br>15672<br>4173<br>7224<br>7224<br>7682<br>4244<br>4903<br>6230<br>1889<br>4953<br>4734 |
|-----------------------------------------------|-------------------------|----------------|----------------|----------------|--------|--------------------------|--------------------------------|-----------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIMIT<br>VSQ<br>PARTS                         | 5758<br>7775            | 1261           | 2153           | 362            | 2114   |                          | 3765                           | -                                       |                                                           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                     |                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| EW<br>TRANS<br>IN)                            | 0.0000                  | 0.0000         | 0.0000         | 0.00000        | 0.0000 |                          | 0.0000                         |                                         |                                                           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                     |                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| LATERT HEAF TRANS                             | 0.0000                  | 0.0000         | 0.0000         | 0.0000         | 0.0000 |                          | 0.0000                         |                                         |                                                           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                     |                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| <b>"</b> :                                    | 0.0000                  | 0.0000         | 0.0000         | 0.000.0        | 0.0000 |                          | 0-0000                         | 0.0000<br>5743<br>0.0000<br>1859        |                                                           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                     |                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE         | .6680                   | 4090<br>• 7980 | .6915<br>.7180 | .6830<br>.6830 | .7370  |                          | .7130                          |                                         | • • • • • • • • • • • • • • • • • • • •                   |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                     |                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| MEAN                                          | 16.                     | 23.            | 21.            | 20.            | 23.    |                          | 24.                            | 24 24 25 25 25 25 25                    | 22 22 22 22 23 23 23 23 23 23 23 23 23 2                  |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                     |                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                                                                                                                        |
|                                               | .080.                   | •1229<br>•1160 | .1372          | .1647          | .1465  |                          | .1670                          |                                         |                                                           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                     |                                                                                                                             |                                                                                                                                                                      | i                                                                                                                                                                                            | 1 1 (                                                                                                                                                                                                                | 1 11 11                                                                                                                                                                                |
| SENSIBLE HEAT TRANS                           | 0587                    | 0437           | .0165          | 0889           | 0324   |                          | 0877                           |                                         |                                                           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                     | ., , ,                                                                                                                      |                                                                                                                                                                      | ., , ,                                                                                                                                                                                       |                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| SENSIE                                        | 1189                    | 2101           | 2629           | 3840           | 4288   |                          | 3917                           |                                         |                                                           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                     |                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| RAD                                           | 0.0000                  | 0.00000        | 0.0000         | 0.0000         | 0.0000 |                          | 0.0000                         |                                         |                                                           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                     |                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| THETA                                         | .0065                   | .0322          | .0172<br>.0178 | .0044          | .0064  |                          | .0117                          | ••••                                    | •• •• ••                                                  | ••• •• •• ••                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                     |                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| re e:A<br>RAD                                 | 5043<br>-1-0694         | -44253         | .1867          | .1023          | .1951  |                          | 1523                           | 1523<br>6966<br>-1263                   |                                                           | -1523<br>-0966<br>-0538<br>-0512<br>-0512<br>-0512<br>-1508                          | 1523<br>1546<br>1563<br>1561<br>1562<br>1562<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br>1563<br> | 1523<br>                                                                                                     | 1523<br>                                                                                                            | 1523<br>0966<br>1561<br>0513<br>0523<br>1.1036<br>0383<br>1138<br>1138<br>0952<br>0952<br>0853<br>0853<br>0853<br>0853      | 1523<br>-1666<br>-1766<br>-1766<br>-1766<br>-1766<br>-1768<br>-1768<br>-1768<br>-1768<br>-1768<br>-1768<br>-1768<br>-1768<br>-1768                                   |                                                                                                                                                                                              | -1923<br>-1924<br>-1926<br>-1926<br>-1861<br>-1936<br>-1936<br>-1936<br>-1936<br>-1936<br>-1937<br>-1977<br>-1129<br>-1129<br>-1129<br>-1129<br>-1129<br>-1129<br>-1129<br>-1129<br>-1129                            | 1923<br>0966<br>0833<br>0831<br>0831<br>0831<br>0833<br>0883<br>0888<br>0888<br>0888<br>0982<br>0982<br>0982<br>0982<br>0983<br>0983<br>0983<br>0983<br>0983<br>0983<br>0983<br>0988   |
| 517E                                          | 91268<br>810 1<br>610 2 | - 7            | ~~             |                | ~~     |                          | ~~                             |                                         |                                                           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                     |                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| START                                         | 9 0 0 0 0 0             | 969            | 930            | 1005           | 1035   | 1105                     | 1105                           | 1105<br>1135<br>1135                    | 1105<br>1135<br>1135<br>1205<br>1205                      | 1105<br>1135<br>1135<br>1205<br>1205<br>1505                                         | 1105<br>11135<br>11205<br>1205<br>1505<br>1505<br>1235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11135<br>11135<br>11135<br>1205<br>1205<br>1505<br>1505<br>1630<br>1630                                      | 11135<br>11135<br>11135<br>1205<br>1205<br>1505<br>1630<br>1630<br>1630                                             | 11105<br>111135<br>11135<br>11205<br>11205<br>11335<br>11330<br>11330<br>11330                                              | 11105<br>11135<br>11135<br>11205<br>1205<br>1205<br>1205<br>1430<br>1430<br>1430<br>1430<br>1430<br>1430<br>1430                                                     | 11105<br>11135<br>11135<br>11135<br>1205<br>1205<br>1205<br>11200<br>11500<br>11500<br>11500<br>11500<br>11500                                                                               | 11105<br>11135<br>11135<br>1205<br>1205<br>1205<br>1205<br>1200<br>1200<br>1200<br>1500<br>1600<br>1600<br>1600<br>1600<br>1600<br>1600<br>1710                                                                      | 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                  |

(f. (f.) fried, Epolif Ange, Afte, 110° 50° Appending to make the mentioned control and an execution and a control of the cont

| WIND<br>SHIFT<br>RAD             | 0.000 | 0.000 | .022   | 008    | .022   | 017              | 027                        | .037             | 012              | 051                 | .030             | .049             | 131               | .124             | 554         | .032             | 035              | 064           |
|----------------------------------|-------|-------|--------|--------|--------|------------------|----------------------------|------------------|------------------|---------------------|------------------|------------------|-------------------|------------------|-------------|------------------|------------------|---------------|
| WIND<br>DIR<br>RAD               | 0.000 | 0.000 | 4.334  | 4.328  | 4.351  | 4.333            | 4.305                      | 4.334            | 4.304            | 4.257               | 4.300            | 4.355            | 5.162             | 5.113            | 4.383       | 4.418            | 4.383            | 4.316         |
| GSD<br>ANGLE<br>RAD              | 0.000 | 0.000 | .057   | .050   | .050   | •069             | .049                       | .065             | .076<br>.087     | .068                | .087             | .105             | .179              | .330             | .128        | .129             | .120             | .119          |
| G<br>AZ IH<br>RAD                | 0.000 | 0.000 | 013    | 011    | 009    | 011              | -,012<br>,002              | 010              | 027              | 023                 | 011              | 005              | .346              | .172             | 008         | 002              | 002              | 010           |
| FSD<br>PNGLE<br>RAD              | 0.000 | 0.000 | .038   | .032   | .034   | .047             | .034                       | .044             | 940.             | .042                | .051             | .059             | .370              | .349             | .110        | .121             | .112             | .105          |
| ELE                              | 0.00  | 0.000 | .000   | 002    | 001    | .001             | 002                        | 0.000            | .000             | 002                 | 0000             | .003             | .245              | .205             | .012        | .014             | .010             | .010          |
| HORIZ<br>WIND<br>CM/SEC          | 00.00 | 0.00  | 162.91 | 147.03 | 167.32 | 178.69           | 186.90                     | 181.11<br>174.18 | 132.42<br>133.17 | 139.81<br>130.74    | 213.59<br>201.21 | 241.51<br>232.37 | 211.70            | 258.34           | 000         | 000              | 0000             | 0000          |
| . :                              | 0.000 | 0.000 | 0.000  | 039    | 012    | 007              | 008                        | 008              | 010              | 010                 | 013              | 026              | 317               | 240              | .190<br>137 | 166              | 013<br>00&       | •004          |
| RUM RUV RWI<br>REYNOLDS STRESSES | 0.000 | 0.000 | .051   | 024    | 0.000  | 006              | 066                        | .056             | 009              | 086                 | 126              | 092<br>187       | 7.389             | 9.537            | -2.228      | -1.297           | 632              | 035           |
| RUM                              | 0.000 | 0000- | 000    | 052    | 087    | 116              | 115                        | 108              | 055              | 070                 | 160              | 239              | -1.319            | -1.382           | -1.053      | 690              | 926              | 862<br>-1.056 |
| WSD<br>DEV                       | 0.00  | 00-00 | 4.88   | 3.28   | 5.46   | 5 . 46<br>4 . 34 | 5.27                       | 5.53<br>5.53     | 3.43             | 4.04                | 7.12             | 8.66<br>8.54     | 26.89             | 26.41<br>26.98   | 21.04       | 20.98            | 23.12            | 22.62         |
| VSD                              | 0.00  | 0.00  | 9.37   | 7.19   | 9.65   | 11.26            | 9.55                       | 11.10            | 8.06             | 8.61                | 14.09            | 24.75<br>19.64   | 62.23             | 69.50<br>50.18   | 56.35       | 80.61            | 75.12<br>75.40   | 77.58         |
| USD<br>WIND                      | 0.00  | 53.33 | 53.47  | 32.50  | 41.34  | 52.70<br>49.66   | 48.58<br>52.51             | 59.6A            | 98•64<br>45•35   | 47.53<br>45.10      | 67.49            | 83.52            | 197.67<br>185.89  | 225.40<br>200.86 | 143.25      | 107.97           | 110.61           | 115.14        |
| MEAN                             | 0.00  | 0000  | 162.69 | 146.87 | 167.12 | 178.36           | 186.68                     | 180.80           | 132.19           | 139.56              | 213.14           | 220.37           | 195.30            | 225.68           | 283.57      | 298.08<br>298.15 | 325.96<br>327.48 | 328.96        |
| SITE                             | 91368 | -2    | - ~    | - 2    | ~ ~    | 7 7              | 7 7                        | 7                | ~ ~              | 77                  | - ~              | - 2              | -~                |                  | - ~         | - ~              |                  | 7 7           |
| START                            | 91:   | 215   | 245    | 315    | 335    | 415              | 4<br>4<br>4<br>5<br>5<br>5 | 515              | 545<br>545       | \$15<br><b>61</b> 5 | 130              | 705<br>705       | 800<br>000<br>000 | 835              | 995<br>935  | 933              | 1995             | 1040          |

| EXCEEDED<br>F G<br>FR 180-000          | 0 4    | 243    | 140        | 75<br>51   | 13         | 211          | 23      | 182<br>126 | 411                     | 225<br>863 | 261<br>302   | 379              | 47940             | 33373<br>31573 | 292    | 444    | 294<br>394 | 243        |
|----------------------------------------|--------|--------|------------|------------|------------|--------------|---------|------------|-------------------------|------------|--------------|------------------|-------------------|----------------|--------|--------|------------|------------|
| நிய                                    | 200    | 1380   | 108        | 33         | 70         | 157          | 12 23   | 115        | 222<br>562              | 112<br>688 | 194          | 326<br>577       | 37941<br>35931    | 31382<br>30528 | 257    | 450    | 284<br>375 | 210<br>375 |
| LIMITS<br>VSQ<br>PARTS PI              | 1700   | 115    | 91         | 15         | n 4        | 1119         | 1       | 86<br>51   | 200                     | 90<br>588  | 160          | 252              | 29899             | 24789          | 210    | 363    | 230        | 157        |
| EW<br>RANS                             | Õõ     | 00000  | 0.000.0    | 0.0000     | 0.0000     | 0.0000       | 0.000.0 | 0.0000     | 0.00000                 | 0.00000    | 0.0000       | 0.00000          | 0.0000            | 0.0000         | 0.0000 | 0.0000 | 0.0000     | 0.0000     |
| EU EV EW LATENT REAL LATENT HEAT TRANS | 0.0000 | 00000  | 0.0000     | 0.0000     | 0.0000     | 00000-0      | 0.0000  | 0.0000     | 0.0000                  | 0.0000     | 0,0000       | 0.0000           | 0.0000            | 0.0000         | 0.0000 | 0.0000 | 0.0000     | 0.0000     |
| •                                      | 00000  | 0000   | 0000000    | 0000-0     | 0.00000    | 0.000.0      | 0.0000  | 0.000      | 0.0000                  | 0.0000     | 0.000        | 0000•0<br>0000•0 | 0.0000            | 0.0000         | 0.0000 | 0.0000 | 0-999      | 0.0000     |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE  | 000000 | 0000   | .0590      | .2230      | .2180      | .3066        | .3160   | .3190      | .3110                   | .2360      | 0.000.0      | 1.2130           | .9200             | .3660          | .5080  | .4720  | .5130      | .5740      |
| AIR<br>MEAN<br>CENT                    | c c    |        | 13.        | 13.<br>13. | 13.        | 15.<br>13.   | 12.     | 13.<br>13. | 13.                     | 13.        | 13.          | 10.              | 18.               | 17.            | 22.    | 23.    | 23.        | 21.        |
|                                        | C C    | 000000 | 0012       | 0044       | 0065       | 0098<br>0091 | 0110    | 0105       | 0067                    | 0025       | 0006<br>0006 | 0015             | 0647              | .0286          | .0430  | .0591  | .0706      | .0721      |
| HU HV HW<br>SENSIBLE HEAT TRANS        | 000000 | 00000  | •0000      | 0013       | 0003       | 0062         | 0014    | 0001       | 0009                    | 0056       | 0006         | 0807             | .0072             | 1674           | .1073  | .0438  | .1565      | .1579      |
| HU<br>SENSIB                           | 0.000  | 0.0000 | .0093      | .0482      | .0661      | .1380        | .1595   | .1885      | .0309                   | .1048      | 1005         | -3277            | 2.5939            | 9210           | 3512   | 3927   | 5128       | 5513       |
| BETA                                   | 00000  | 0.0000 | 0.000.0    | 0.0000     | 0.0000     | 0.0000       | 0.0000  | 0.00000    | 0.0000                  | 0.0000     | 0.0000       | 0.00000          | 0.0000            | 0.0000         | 0.0000 | 0.0000 | 0.0000     | 0.0000     |
| RAD                                    | 0.0000 | 0.000  | 000-       | 00*0       | 0041       | 6034         | 0045    | 0041       | 0047                    | 0051       | 0044         | 0033             | .0096             | .0077          | 000,-  | 0004   | 0019       | 0006       |
| RAD RAD                                | 0.0000 | 0.0000 | .8613      | .0069      | 0218       | .0162        | .0260   | 0266       | .0102                   | .0469      | 0338         | 0527             | 1247              | .3226          | 1.1280 | 1306   | .1066      | .2126      |
| S11E                                   | 91368  | -~     | ~~         | 7          | <b>~</b> ∧ | 1 2          | ~ ~     | - 2        | - ~                     | ~ ~        | -~           | - 2              |                   | -2             | - 2    | - 2    | - 2        | - N        |
| START                                  | 144    | 215    | 245<br>245 | 315        | 335<br>335 | 415          | 445     | 515<br>515 | 8. 8.<br>8. 8.<br>8. 8. | 615<br>615 | 610          | 705              | 800<br>000<br>000 | 835<br>835     | 905    | 935    | 1005       | 1040       |

| WIND<br>SHIFT<br>RAD             | 041                       | .978   | 049              | .042             | .078             | 168              | .047             | .030             | .039             | 033               | .319             | 138            | .070           | .157             | 050   | .009              | .100           | .166            |
|----------------------------------|---------------------------|--------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|------------------|----------------|----------------|------------------|-------|-------------------|----------------|-----------------|
| RAD CA                           | 4.279                     | 4.352  | 4.235            | 4.358            | 4.403            | 4.222            | 4.262            | 4.311            | 4.338            | 4.285             | 4.215            | 4.093          | 4.142          | 4.357            | 4.255 | 4.269             | 4.505          | 4.711           |
| GSD<br>ANGLE<br>RAD              | .146                      | .129   | .280             | .305             | .293             | .280             | .285             | .271             | .288             | .278              | .282             | .333           | •252<br>•230   | .259             | .268  | .264              | .367           | .416            |
| AZ IM<br>RAD                     | 0.000                     | .062   | .010             | .014             | .010             | 003              | 011              | .041             | 003              | 024               | •004             | .026           | .005           | .011             | .011  | .015              | .152           | .193            |
| FSD<br>ANGLE<br>RAD              | 105                       | .125   | .174             | .173             | .188             | •173<br>•190     | .177             | .178             | .178             | .181              | .190             | .202           | .160           | .165             | .174  | .134              | .335           | .342            |
| F<br>ELEV<br>RAD                 | .012                      | .016   | .010             | .012             | .019             | .018             | .114<br>3027     | .013             | .009             | .015              | .013             | .014           | 005            | 0.005<br>.016    | 003   | 013               | .145           | .129            |
| HOR12<br>WIND<br>CM/SEC          | 000                       | 000    | 310.63           | 319.59<br>313.66 | 279.04           | 256.55<br>258.94 | 242.62           | 275.79<br>275.80 | 278.26<br>279.86 | 191, 71<br>186.66 | 156.15<br>154.41 | 109.27         | 103.50         | 124.82<br>130.71 | 92.57 | 77.00<br>84.73    | 61.53<br>65.81 | 74.33<br>105.66 |
| RWV<br>SES                       | -094                      | 217    | 126              | 142              | 020              | 032              | 122              | 113              | 096              | 050               | 225              | 007            | 615            | 0.000            | .011  | -, 0.29<br>-, 048 | 004            | 025             |
| RUM RUV RWV<br>REYNOLDS STRESSES | 2.755<br>.906             | -,368  | -1,057           | ,17?<br>-1.3A3   | -1.797           | 162              | 6653             | 685              | .941             | 036               | #6:<br>#6:       | 678            | -,078<br>-,119 | -,008            | 086   | -,633             | 0.00°-         | .255            |
| R.VM<br>AEYNO                    | 936                       | -,998  | -2.564           | -1.771           | -1 52;<br>-2.,55 | -1,135           | -1.093           | -1.360           | -1.344           | 765               | 467              | 200            | 144            | 236              | 136   | 055               | 050            | -1110           |
| MSD<br>DEV                       | 22.72                     | 24.78  | 46.80            | 48.58<br>51.28   | 43.52            | 37.56            | 37.25            | 42.59            | 42.24            | 29.79             | 24.85            | 18.46          | 14.51          | 18.67            | 13.53 | 8.95              | 10.25          | 12.46           |
| VSD<br>ST                        | 96.35                     | 87.66  | 83.14            | 86.83            | 75.59            | 67.51            | 65.37            | 70.79            | 78.75            | 50.77             | 40.38            | 33.27<br>28.81 | 24.41          | 30.91            | 22.79 | 17.96             | 18.38<br>17.67 | 22.54           |
| USD<br>W1N<br>W1N<br>W1N         | 110.35                    | 122.21 | 106.37           | 112.05           | 99.76            | 85.24            | 82.32<br>90.45   | 98.84<br>104.68  | 104.46           | 74.83             | 67.04            | 54.30          | 39.24          | 46.33            | 33.97 | 22.45             | 44.35          | 51.70           |
| MEAN                             | 328.19<br>336.92          | 347.58 | 299.42<br>283.05 | 307.75           | 268.82<br>263.23 | 249.57           | 233.85<br>235.01 | 266.63<br>2(5.71 | 267.50<br>269.10 | 185-12            | 151.00           | 104.57         | 100.55         | 121.03           | 89.72 | 74.75             | 59.08          | 71.16           |
| SITE                             | 368<br>1<br>2             | - 2    | - 2              | - 7              | - 7              | 72               | 7 7              | - 2              | - 2              | ~ 7               | -12              | ~ ~            | - 2            | - 2              | - 2   | - 7               | 42             | ~ ~             |
| TIME SITE<br>START               | 91368<br>1130 1<br>1330 2 | 1200   | 1300             | 1330             | 1400             | 1430             | 1505             | 1535             | 1605             | 1635              | 1755             | 1735           | 1805           | 1905             | 1935  | 2005              | 2035           | 2110            |

| 20fb<br>5<br>0•060                    | 240                 | 451        | 1432<br>4828   | 1641           | 2980            | 1776<br>3598 | 2064        | 1746                                    | 2357                                    | 3657    | 4528<br>5078  | 3524    | 3158<br>2061     | 3095         | 5341       | 5927   | 12990  | 27972         |
|---------------------------------------|---------------------|------------|----------------|----------------|-----------------|--------------|-------------|-----------------------------------------|-----------------------------------------|---------|---------------|---------|------------------|--------------|------------|--------|--------|---------------|
| TS EACEEDED<br>F<br>PFR 100+00        | 263                 | 419        | 711            | 686<br>2271    | 1510            | 713          | 876<br>2135 | 891                                     | 969                                     | 1135    | 1815<br>1799  | 2911    | 938<br>691       | 929          | 1741       | 124    | 5636   | 22110<br>718  |
| LIMITS<br>VSG<br>PARTS PI             | 200                 | 368        | 153<br>611     | 143            | 669<br>365      | 95           | 34<br>279   | 121                                     | 184                                     | 123     | 282           | 1309    | 97               | 130          | 261<br>181 | 200    | 2981   | 15579         |
| EW<br>TRANG                           | 0.0000              | 0.0000     | 0.0000         | 0.0000         | 0.0000          | 0,0000       | 0,000,0     | 0.0000                                  | 0.0000                                  | 0000°0  | 0.0000        | 0.0000  | 0°C000<br>0.0000 | 0.0000       | 0.0000     | 0.0000 | 0.0000 | 960000        |
| EV<br>HEAT                            | 0.0000              | 0.0000     | 0.0000         | 0.0000         | 6.00°0<br>.0626 | 0.000        | 0.0000      | 0.0000                                  | 0.0000<br>.1868                         | 3.0000  | 0.000.0       | 0.0000  | 6.0000<br>.020h  | 0.0000       | 0.0000     | 0.0000 | 0.0000 | 0.0000        |
| _                                     | 0.0000              | 0.4000     | 6.0000<br>2388 | 000000         | 0.0000          | 0.0000       | 0.0000      | 0.0000                                  | 040000                                  | 0.0000  | 0.0000-2-5699 | 0.0000  | 0.0000           | 0.0000       | 0.0000     | 0.0000 | 0.0000 | 0.0000        |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE | .5450               | .5920      | .5890          | .5540          | .5810           | .3170        | .3400       | .3050                                   | .3730                                   | .4910   | .5980         | 2.4070  | .5620            | .5150        | .5560      | .5080  | .6750  | .8470<br>2870 |
| ATR<br>EAN<br>CENT                    | 22.                 | 22.<br>23. | 26.            | 26.            | 26.             | 25.          | 26.<br>26.  | 26.                                     | 25.<br>26.                              | 25.     | 24.           | 22      | 20.              | 19.          | 19.        | 18.    | 17.    | 17.           |
| •                                     | .0777               | .0809      | .1746          | •1501<br>•1596 | .0952           | .0216        | .0?61       | .0606                                   | .0314                                   | 0399    | 0355          | 0254    | 0273             | 0450         | 0385       | 0137   | 0156   | 0244          |
| HU HV HE<br>SENSIBLE HEAT TRANS       | .1052               | .0938      | .0748          | .1352          | .0194           | .0099        | 0089        | .0004                                   | -0201                                   | 0201    | 0791          | 1347    | 0050             | .0091        | 0169       | 0134   | .0169  | .0116         |
| HU<br>SENSIB                          | 5218                | 6655       | 5304           | 5222           | 2528            | 0607         | 2257        | 2567                                    | 1894                                    | .2708   | .4519         | .4946   | .1081            | .2487        | .1066      | .0826  | .3313  | .3229         |
| BETA                                  | 0.000               | 0.0000     | 0.000.0        | 0.0000         | 0.0000          | 0.0000       | 0.00000     | 0.0000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0.00000 | 0.0000        | 0.000.0 | 0.0000           | 0.0000       | 0.000.0    | 0.0000 | 0.0000 | 0.0000.0      |
| THETS                                 | .0001<br>0056       | .0004      | 0081           | 0064           | 0064            | 0094         | 0050        | 0053                                    | .0504                                   | 0054    | 0074          | 0082    | 0184             | 0148         | 0194       | 0217   | 0130   | 0142          |
| ETA<br>RAD                            | .1608               | 2538       | .0569          | 0434           | 1057            | .1647        | 0452        | 0322                                    | 0331                                    | .0267   | .0535         | .0812   | 0772             | 1607         | 0050       | -0147  | 0.0000 | .c120<br>0180 |
| SITE                                  | 91368<br>0 1<br>3 2 | ~ ''       | - 2            | ~ 7            |                 | 1 2          | - 2         | ~ ~                                     | 7                                       | - 2     | 7             | - 2     | 7                | - 2          | N          | 7      | ~~     | -2            |
| TIME                                  | 91<br>1130<br>1133  | 1200       | 1300           | 1330           | 1400            | 1430         | 1505        | 1535                                    | 1605                                    | 1635    | 1705          | 1735    | 1805<br>1805     | 1905<br>1905 | 1935       | 2005   | 2635   | 2110<br>2110  |

| WIND<br>SHIFT<br>RAD            | 196                                                                | . 000          | 0.000            | 004            | .053         | 017    | 080           | 218          | .018           | 0.000        | 0.000         | 020            | 025              | .015           | .037             | 040              | .021           | 003              |
|---------------------------------|--------------------------------------------------------------------|----------------|------------------|----------------|--------------|--------|---------------|--------------|----------------|--------------|---------------|----------------|------------------|----------------|------------------|------------------|----------------|------------------|
| WIND<br>DIR<br>RAD              | 4.328                                                              | 4.339          | 4.506            | 4.439          | 4.388        | 4.359  | 4.613         | 4.391        | 4.398          | 0.000        | 0.000         | 4.283          | 0.264<br>4.411   | 4.277          | 4-297            | 4.324            | 4.360          | 4.376            |
| GSD<br>ANGLE<br>RAD             | .251                                                               | .269<br>.251   | .280<br>.281     | .278           | .248         | .204   | 000-0         | .234<br>.233 | .256           | .304         | 0.000         | .276<br>.273   | .275             | .268           | .265             | .276             | .287<br>.272   | .274             |
| G<br>AZIM<br>RAD                | •005                                                               | .032           | .015             | .016           | .005<br>.002 | 008    | .118          | 001          | 012            | 0.000        | 0.000         | .002           | .009             | .030           | 011              | 024              | 010            | .039             |
| FSD<br>ANGLE<br>RAD             | .164                                                               | .187           | .189             | .185           | .152         | .128   | .275<br>0.000 | .156         | .162           | 0.000        | 0.000         | .194           | .183             | .182           | .171             | .183             | .191           | .178             |
| F<br>ELEV<br>RAD                | 001                                                                | .017           | .016             | .013           | 004          | 009    | .056          | -,002        | 001            | 0.000        | 0.000         | 600.           | .006             | .000           | .009             | .015             | .023           | .018             |
| HOR 12<br>W IND<br>CM / SEC     | 151.55<br>153.93                                                   | 146-83         | 152.80<br>154.28 | 123.16         | 113.89       | 106.65 | 81.85         | 126.84       | 96.42          | 96.09        | 0.00          | 146.37         | 174.16           | 212-87         | 264.30           | 260.56<br>251.59 | 260.32         | 285.70<br>286.85 |
| _ :                             | 045                                                                | 193            | -277             | 005            | -038         | 0.000  | 0.300         | 022          | -005           | 0.000        | 0-000         | 194            | 059              | .024           | 010              | .258             | -024<br>074    | -,002            |
| UW RUY RWY<br>REYNOLDS STRESSES | 055                                                                | 019            | 096              | 154            | 296          | 051    | .162          | 020          | 547            | 0.000<br>831 | 5.000         | .413           | 171              | 281            | .101             | 104              | ?28<br>701     | 387<br>59A       |
| RUW<br>PEYNOL                   | 388<br>384<br>384<br>384<br>384<br>384<br>384<br>384<br>384<br>384 | 450            | 516              | 272            | 156          | 131    | 0.000         | 242          | 131            | 0.000        | 000.0         | 455            | 524              | 798            | -1.175           | -1-744           | -1.346         | -1.454           |
| MSD<br>DEV                      | 22.55                                                              | 24.02          | 24.01            | 19.59          | 15,77        | 12.48  | 11.83         | 18.05        | 13.44          | 0.00         | 0.00          | 23.96          | 27.69            | 33.47          | 38.70<br>40.12   | 39.37<br>41.56   | 41.29          | 44,19            |
| VS.5                            | 36.73                                                              | 36.63          | 38.61<br>39.17   | 30.85          | 25.26        | 20.86  | 19.77         | 28.27        | 22.21          | 30.97        | 30.00         | 38.31          | 43.44            | 53-62<br>53-00 | 65.03            | 60.05            | 68.66<br>68.50 | 72.45            |
| USD<br>WIND                     | 48.42                                                              | 50.31<br>55.95 | 35.41<br>56.86   | 42.58<br>67.56 | 35.19        | 25.90  | 0.00          | 36.56        | 33.10<br>32.98 | 0.00         | 0.00<br>56.20 | 48.37<br>53.00 | 55.22            | 74.59          | 37.53            | 95.03            | 90.84          | 95.34<br>95.21   |
| MEAN                            | 147.10                                                             | 1.2.08         | 147-67           | 119.08         | 101.45       | 104.61 | 00.00         | 123,65       | 93.07          | 0.00         | 161.01        | 131.19         | 168.40<br>164.26 | 206.01         | 256.13<br>246.18 | 259-37           | 250.09         | 276-14           |
| S11E                            |                                                                    | m 17           | 2 1 2            | ~ ~            | 7            | m es   | ~ ~           | ~            | 1 2            | ₩ <b>7</b>   | - 2           | - 2            | - 2              | - 2            | - 2              | - 2              | - ~            | ~~~              |
| TIME S<br>START                 | 91368<br>2140 1<br>2160 2                                          | 2210<br>2210   | 9146             | 30<br>30       | 110          | 140    | 240           | 335          | 40.4<br>20.4   | 530<br>530   | <b>909</b>    | 530<br>630     | 700<br>700       | 730            | 300<br>870       | 835              | 905<br>905     | 935<br>935       |

| DED        | 100.000            | 1972                | 3335        | 4104   | 5000   | 2453<br>3326 | 1511    | 16064           | 1820       | 4463   | 1961           | 3142           | 4373   | 3409      | 2453            | 2124   | 2620<br>3971 | 2773         | 2296           |
|------------|--------------------|---------------------|-------------|--------|--------|--------------|---------|-----------------|------------|--------|----------------|----------------|--------|-----------|-----------------|--------|--------------|--------------|----------------|
| S EXCEEDED | L OC               | 735                 | 1460        | 1694   | 1673   | 729          | 399     | 11557           | 552        | 1335   | 3514           | 1742           | 1553   | 1251 2388 | 994             | 902    | 1188         | 1491<br>1531 | 1005<br>1578   |
| LIMITS     | PARTS              | 30                  | 128         | 275    | 185    | 138          | 3.6     | 0 0             | 17         | 524    | 838            | 192            | 167    | 203       | 105             | 328    | 229          | 335          | 145            |
| * E        | RANS               | 0.0000              | 0.0000      | 0.0000 | 0.9000 | 0.0000       | 9.0000  | 0.000.0         | 0.0000     | 0.0000 | 0.0000         | 0.0000         | 0.0000 | 0.0000    | 0.0000          | 0.0000 | 0.0000       | 0.0000       | 0.0000         |
| EV EW      |                    | 0.0000              | 0.0000      | 0,0000 | 0~0000 | 0.0000       | 0.0000  | 0-0000          | 0.0000     | 0.0000 | 0.0000         | 6.7000<br>0128 | 0.0000 | 0.0000    | .1200           | 0.0000 | 0.0000       | 0.0000       | 0.0000         |
| w          | *                  | 0.0000              | 0.0000      | 0.0000 | 0.0000 | 0.0000       | 0.0000  | 0.00000         | 0.0000     | 0.0000 | 0.0000         | 0.0000         | 0.0000 | 0.0000    | 0.0900          | 0.0000 | 0.0000       | 0.0000       | 9564           |
| TEMP       | CENTIGRADE         | .4680               | .4130       | .4840  | .5240  | .5910        | .5580   | .4080           | .3480      | 0.0000 | 0.0000         | 0.0000         | .2030  | .3780     | 1-1200<br>-9780 | .4340  | .4500        | .5140        | .4570<br>.4410 |
| AiR        | CENT               | 16.                 | 18.         | 17.    | 15.    | 15.          | 14.     | 14.             | 14.        | 14.    | 13.            | ¢ 4            | 15.    | 16.       | 17.             | 21.    | 23.          | 23.          | 24.            |
|            |                    | 0544                | 0553        | 0521   | 0485   | -,0404       | 0285    | 0205            | 0400       | 0274   | 0.0000         | 0.0000         | 0026   | .0251     | .0245           | .0605  | .1114        | .1213        | .1087          |
| MH AH NH   | SENSIBLE HEAT TRAN | 0111                | 0029        | 0285   | 0223   | 0680         | 0081    | 00054<br>0.0000 | 0031       | 0146   | 0.0000         | 7.000r         | .0055  | .0143     | .0033           | -,0487 | .0526        | .0552        | .0968          |
| D.         | SENSIB             | .2150               | .2029       | .2536  | .1833  | .1743        | .0952   | .1419           | .1545      | .1023  | 0.0000         | 0.0000         | .3074  | 0073      | 2628            | 2747   | 2926         | 4250         | 3802           |
| RETA       | RAD                | 0.0000              | 0.0000      | 0.0000 | 0.0000 | 0.00000      | 0.00000 | 0.00000         | 0.0000     | 0.0000 | 0.00000        | 0.0000         | 0.0000 | 0.0000    | 0.0000          | 0.0000 | 0.0000       | 0.0000       | 0.0000         |
| THETA      | RAD                | 0149                | 1033<br>068 | 0141   | 0054   | 0164         | 0184    | 0131<br>n.0000  | 0165       | 0014   | 7.000-C        | 0.000A         | 0014   | 0333      | -,0095          | 5101   | 0005         | 0001         | .0017          |
| ETA        | KAD                | .1537               | 0098        | 1215   | 0084   | 077)         | .3156   | .1772           | .3223      | 0023   | 0.0000<br>0387 | 0.0000-        | .0005  | .0196     | 0227            | 0396   | 0046         | 0026         | 0089           |
| SITE       |                    | 368<br>1<br>2       | - 2         | •      | - 2    |              | -1.4    |                 | - ~        | ~: K)  | - 2            | -2             | 1 2    | - 2       | 7 7             | - 2    | - 2          | - 2          | 7 7            |
| TIME       | ¥                  | 913<br>2140<br>2140 | 2210        | 91461  | 30     | 110          | 140     | 240             | 335<br>335 | 405    | 530<br>530     | 600            | 630    | 7007      | 730             | 800    | 835          | 905          | 935            |

| WIND<br>SHIFT<br>RAD                                   | -010                | 010            | 148             | .155             | .031           | 030              | 057              | .029             | 005              | 089              | .035             | .065             | .003             | 025                              | 05?              | 032              | 034    | -,005          |
|--------------------------------------------------------|---------------------|----------------|-----------------|------------------|----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------------------------|------------------|------------------|--------|----------------|
| DER DER DER DER DE | 4.350               | 4.396          | 4.413           | 4.324            | 4.354          | 4.323            | 4.267            | 4.501            | 4.289            | 4.232            | 4-248            | 4.311            | 4.309            | 4.261                            | 4.250            | 4.208            | 4.171  | 4.:79          |
| GSD<br>ANGLE<br>RAD                                    | •285<br>ŋ~600       | ,295<br>.628   | .312            | .307<br>.244     | 289            | .295<br>.261     | .293             | .302             | .289<br>.298     | .242             | .276<br>.29.     | .264             | .282             | .264                             | .235             | .233             | .247   | .257           |
| AZ IM                                                  | 0.000               | .003           | .053            | .030             | .039           | .065             | .003             | 610              | .033             | .014             | .050<br>.050     | 012<br>-048      | 016              | 039                              | 0.000            | 009              | 012    | 0.000          |
| FSD<br>ANGLE<br>RAD                                    | .165                | .191           | .181            | .191             | .132           | .184             | .:83             | .181             | .177             | .169             | .166             | .171             | 186              | .174                             | .160             | .169             | .164   | .172           |
| F<br>ELEV<br>RAD                                       | •024                | .022           | .019            | .030             | .022           | .025             | .017             | .019             | .018             | .013             | .306             | .018             | .023             | .021                             | • 000            | .003             | .006   | 009            |
| HORIZ<br>WIND<br>CM/SEC                                | 281.38              | 305.31         | 319.55          | 305.19<br>371.69 | 304.71         | 283.13<br>346.11 | 260.6U<br>315.35 | 265.93<br>320.11 | 302.59<br>353.97 | 319.88<br>397.71 | 320.5?<br>389.35 | 253.75<br>316.53 | 233.14           | 196.65<br>249.80                 | 203.82<br>246.12 | 155.25<br>186.53 | 118.51 | 126.83         |
| :                                                      | 162                 | -2.194         | 124             | 257              | 104            | 077              | 059<br>-588      | 218              | 189              | 128              | 109<br>1-702     | .015             | 110              | 1 . 0000<br>1 . 0000<br>1 . 0000 | 034              | 006              | -206   | .030           |
| RUV RUV RWV<br>REYNOLDS STRESSES                       | .102                | 9.728          | 057<br>3.775    | .529             | .410           | .394             | 210              | 109              | 253              | .364             | .533             | -2.084           | .166<br>584      | 240                              | .C49<br>-887     | 184              | 032    | 218            |
| RUW<br>REYNOL                                          | -1.529              | -1.686         | -1.896          | -1.824           | -1,939         | -1,652           | -1.341           | -1.392           | -1.743           | -1.862           | -1.705           | -1.274           | -1.013<br>-1.288 | 730                              | 700              | 430              | -,214  | 290            |
| KSD<br>DEV                                             | 42.54<br>0.00       | >8.09<br>52.99 | 48.92<br>54.93  | 47.20<br>55.16   | 48.60<br>56.47 | 53.00            | 41-05            | 40.69            | 54.90            | 47.83            | 47.58<br>59.07   | 37.9i<br>51.60   | 37.25<br>35.00   | 30.34                            | 29.30            | 18.14            | 17,35  | 19.08          |
| V SV                                                   | 72.29               | 87.54          | 85.52<br>108.51 | 89.66            | 87.11          | 77.88<br>97.50   | 77.75            | 76.47            | 84.45            | 87.42<br>102.53  | 84.16<br>109.77  | 65.65            | 63.37<br>79.26   | 49.70                            | 46.58<br>53.00   | 36-39            | 27.97  | 30.18          |
| USD<br>WIN<br>WIN                                      | 105.66              | 118.55         | 113.64          | 119.1R<br>127.95 | 117.13         | 99.09            | 91.77<br>98.36   | 96.97            | 98.71<br>112.7.  | 102.80           | 101.24           | 94.85            | 85.45            | 70.8%<br>79.74                   | 66.24<br>68.30   | 52.42            | 33.37  | 39.69<br>43.01 |
| WEAN                                                   | 271.49              | 283-12         | 306.12          | 292-70           | 297.79         | ?72.35<br>333.27 | 250.68<br>301.66 | 254.98<br>104.76 | 337.39           | 363.05           | 309.52           | 245.56<br>304.33 | 224.96           | 190.44                           | 198.54           | 180.91           | 115.15 | 123.09         |
| SITE                                                   | 2 1 2               | - 2            | - N             | - 2              | - 2            | 01               | 14 N             | H 5              | H N              | . 4 . 4          | F# (N            | ~ N              | - 2              | - 2                              | -14              | - 2              |        | - ~            |
| TIME SITE<br>START                                     | 91,<br>1005<br>1005 | 1035           | 1105            | 1200             | 1230           | 1710             | 1335<br>1335     | 1400             | 1425             | 1450             | 3530<br>1530     | 1600             | 1630<br>1630     | 1700                             | 1735             | 1835             | 1835   | 1905           |

|                                       |                    | <b></b>      | ed 10         | 0.80       |                | m ~          | s. ~           | ~ ~            | vo vo                      | m m    | 0.5         |            | v .        | ~ ~          |                   | •      | ~ -         | ~ 0         |
|---------------------------------------|--------------------|--------------|---------------|------------|----------------|--------------|----------------|----------------|----------------------------|--------|-------------|------------|------------|--------------|-------------------|--------|-------------|-------------|
| CEEDED 6                              | 7864               | 3518<br>8597 | 2101          | 3200       | 2222           | 2168<br>3032 | 2465           | 3367           | 1686                       | 943    | 939         | 1621       | 2765       | 2742<br>1766 | 1168              | 2339   | 2557<br>961 | 3382<br>700 |
| 3,52                                  | C C                | 1655         | 1054          | 1971       | 1134           | 1123         | 1108           | 1269           | 674<br>1014                | 518    | <b>4</b> 06 | 754        | 1342       | 1001 253     | <b>526</b><br>115 | 368    | 669<br>155  | 1135        |
| VSQ<br>VARTS F                        | 373                | 692<br>301¢  | 616           | 627<br>161 | 248<br>169     | 169<br>339   | 212<br>116     | 466            | 131                        | 136    | 1100        | 76<br>192  | 321        | 185          | 9                 | 107    | 13          | 102         |
| RANG<br>N)                            | 0.0000             | 0.0000       | 0.0000        | 0.0000     | 0.0000         | 0.0000       | 0.0000         | 0.0000         | 0.0000                     | 0.0000 | 0.0000      | 000000     | 0.0000     | 0.0000       | 0.0000            | 0.0000 | 0.0000      | 0.0000      |
| CATENT HEAT TRANS                     | 0.0000             | 0.0000       | 0.0000        | 0.0000     | 0.0000         | 0.0000       | 0.0000         | 0,0000         | 0.0000                     | 0.0000 | 0.0000      | 0.0000     | 0.0000     | 0.0000       | .1755             | .3290  | 0.0000      | 0.0000      |
| -                                     | 000000<br>00000    | 0.0000       | 0.0000        | 000000     | 7.0000<br>8037 | 0.0000       | 0.0000<br>0279 | 0.0000         | 0.0000                     | 0.0000 | 0.0000      | .1061      | .5081      | 0.0000       | 0.0000            | 0.0000 | 0.0000      | 0.0000      |
| AIR TEMP<br>MEAN SI DEY<br>CENTIGRADE | .4680<br>0.0000    | .5660        | .5990         | .5300      | .6590<br>.4970 | .5480        | .5160          | .5430<br>.5090 | .4290                      | .3080  | .2100       | 1.3000     | .2830      | .4120        | .4860<br>.4070    | .5590  | .6940       | .4880       |
| AIR<br>FAN<br>CENT                    | 46                 | 25.<br>26.   | 26.<br>26.    | 25.<br>27. | 25.<br>76.     | 26.<br>27.   | 26.<br>27.     | 26.<br>27.     | 27 <b>.</b><br>28 <b>.</b> | 27.    | 26.<br>28.  | 28.<br>29. | 28.<br>29. | 27.          | 24.<br>25.        | 23.    | 24.         | 24.         |
| v. •                                  | +1090<br>-1000     | .1803        | .1490         | .:568      | .1275          | .1218        | .1197          | .142/          | .1278                      | .0896  | .0523       | .0151      | 0086       | 0348         | 0619              | 0541   | 0323        | 0530        |
| SENSISLE HEAT TRANS                   | .0744              | .0388        | .0537<br>0835 | .0511      | .1606          | .0348        | .0412          | 0609           | .0280                      | .0212  | .0335       | .2152      | 0400.      | 1400         | .0374<br>.650     | 0572   | 0121        | 0339        |
| HU<br>SENS FS                         | -,3425             | 6326         | 5956<br>5806  | 5774       | 2735           | 4016<br>3619 | 4385           | 3605           | 3546                       | 2358   | 1624        | 1116       | 0460       | .2044        | .2905             | .3364  | .1307       | .1984       |
| BETA                                  | 0.00000            | 0.0000       | 0.0000        | 0.0000     | 0.0000         | 0.0000       | 0.0000         | 0.0000         | 0.00000                    | 0.0000 | 00000       | 0.0000     | 0.0000     | 0.0000       | 0.000.0           | 0.0000 | 0.000       | 0000000     |
| THETA                                 | 0.0000.<br>0.0000. | 3026         | .0019         | .0033      | .0000          | .0025        | 000-           | 0034           | 0017                       | 0049   | 0072        | 0015       | .0031      | 0032         | 0097              | 0145   | 0074        | 0126        |
| ETA<br>RAD                            | 0340               | .0768        | 0160          | .0842      | 0286           | .0297        | .0984          | 0342           | .0040                      | .0716  | 0304        | 0813       | 0053       | .0208        | .0543             | .0248  | .0306       | 0076        |
| SITE                                  | 4 to 6             | 1 2          | - ~           | 7          | - 2            | - 2          | ~ ~            | 7              | 7 7                        | ~ ~    | 7           | ~ ~        | 7          | - 7          | ~ 0               | ~~     | - 2         | ~ ~         |
| TIME SITE<br>START                    | 1005               | 1035         | 1105          | 1200       | 1230           | 1310         | 1335           | 1450           | 1425                       | 1450   | 1530        | 1600       | 1630       | 1700<br>1700 | 1735<br>1735      | 1635   | 1635        | 1905        |

NOTIFIED BY THE SECTION OF THE SECTI

| YIMO<br>SHIFT<br>RAD             | -,003            |                | 039              | 298              | .008               | *000            | .004               | ~•003<br>-•014 | .014<br>355      | .001             | 004            | .009             | .017            | 003            | 006    | .037           | 009                | -1003            |
|----------------------------------|------------------|----------------|------------------|------------------|--------------------|-----------------|--------------------|----------------|------------------|------------------|----------------|------------------|-----------------|----------------|--------|----------------|--------------------|------------------|
| BIAD<br>RAD                      | 4-172            | 4.193          | 4.140            | 3.864            | 3.864              | 3.958           | ₽986<br>946<br>946 | 3.889          | 3.869<br>3.85    | 3.873<br>3.915   | 3.875          | 3.878            | 3.883           | 3.886          | 3.887  | 3.693          | 3 - 895<br>3 - 833 | 3.874            |
| GSD<br>ANGLE<br>RAD              | .244             | ,258           | .225<br>.195     | .262             | ,257<br>,223       | .268<br>.217    | .258               | .254<br>.213   | -266             | .226             | •261<br>•210   | •276<br>•209     | .270<br>.20÷    | •253<br>•211   | .245   | .25¢           | .236               | .261             |
| G<br>AZ I H<br>RAD               | 004              | .039           | 005              | .025             | 002                | 005             | 007                | 004            | 017              | 015              | 008            | 014              | 027             | 020            | 312    | -014           | 004                | 001              |
| FSD ANGLE                        | .156             | .174           | .148             | .165             | 161                | .178            | .169               | .159           | .168             | .169             | .104           | .179             | 161             | .096           | .167   | .173           | .167               | .176             |
| F<br>ELEV<br>RAD                 | .003             | -,010          | 003              | 004              | 007                | 011             | 002                | 001            | .005<br>~.010    | 003              | 005            | 012              | 003             | 001            | 004    | .003           | .005               | 900°-            |
| HOR 12<br>W IND<br>CM / SEC      | 125.96<br>167.34 | 147.15         | 118.41           | 148.09           | 141.18             | 130.57          | 148.97             | 150.92         | 122.52           | 126.26<br>153.35 | 140.84         | 113.20<br>147.16 | 101.48          | 143.75         | 151.60 | 161.70         | 167.36             | 180.32<br>220.19 |
| RWV                              | 024              | .023           | 004              | 030              | 047                | 006             | 035                | 044            | 030              | 013              | 024            | 033              | 014             | 044            | 002    | 006            | 062                | 043              |
| RUW RUV RWI<br>PEYNOLDS STRESSES | 075              | 690            | 8; 0°-           | .040             | .032               | 043             | 029                | .023           | .014             | .002             | .054           | 044              | 028             | .068           | .027   | .044           | -142               | - 5089           |
| RUN<br>PEYNOL                    | 241              | 388            | 188              | 382              | 316                | 322             | 359                | -,365          | 257              | 308              | 346            | 226              | 142             | 364            | 330    | 451            | 456                | 599              |
| WSD<br>DEV                       | 17.55            | 22.37          | 15.87            | 21.39            | 23,75              | 19.70           | 22,39<br>18,26     | 21•19<br>17•19 | 1. 8c<br>14.3b   | 18-66            | 20.91<br>15,45 | 17-12            | 14453<br>10:99  | 20.55<br>35.77 | 21-3.  | 23.58<br>18.39 | 24.38              | 27.34            |
| ۵-:                              | 28.83<br>34.32   | 35.30<br>42.61 | 25.01            | 36.10            | 34+21              | 31.77           | 36.03              | 36.27          | 27.90            | 34.11            | 34.20          | 28.49<br>29.60   | 25.62<br>24.66  | 34.10          | 34.57  | 98-22          | 39.57              | 45.50<br>55.45   |
| USD VS<br>WIND S                 | 37.29            | 44             | 35.29            | 46.38.           | 40 . 43<br>40 . 45 | \$5.37<br>42.54 | 45.42              | 45.30          | 37.41            | ÷1.99            | 42.63          | 37.27            | 33.430          | 47.67<br>50.66 | 50.25  | 46.12          | 5%63<br>55,48      | \$5.44<br>65.02  |
| HIND                             | 122.5:<br>163.65 | 154.75         | 115.65<br>151.84 | 143.57<br>375.40 | 136.87             | 125.49          | 144,49             | 146.47         | 118.65<br>150.66 | 122-30           | 136.51         | 109.43           | 98.15<br>129.64 | 139,62         | 147.52 | 156.93         | 162.55             | 174.40           |
| S. 1E                            | 468              | r N            | ~ ~              | - 0              | ~ ~                | - ~             | ė i                | . <b>-</b> ~   | ≠ (v             |                  | H N            | 7 7              | -1 (1           | 1 2            | - ~    | mN             | -~                 | -~               |
| T) (E S                          | 0261             | 2060           | 2030             | 2230<br>2230     | 2306               | 2330            | 3156<br>1<br>2     | 30             | 100              | 130              | 200            | 230              | 300             | 330            | 004    | 430            | 000                | 530              |

| CEEDED<br>G<br>160.000                | 2355<br>882         | 2850<br>1286 | 1760<br>763    | 2454     | 1844   | 3260<br>1345 | 2260          | 1782<br>861 | 2996       | 2555<br>1273 | 2523    | 3990<br>976 | 3563<br>1111 | 2116                                    | 1791<br>771    | 2350    | 2002    | 2184        |
|---------------------------------------|---------------------|--------------|----------------|----------|--------|--------------|---------------|-------------|------------|--------------|---------|-------------|--------------|-----------------------------------------|----------------|---------|---------|-------------|
| M r K                                 | 707                 | 1186         | 99<br>99       | 968      | 609    | 1584         | 957           | 34          | 925<br>169 | 1099<br>308  | 990     | 1538        | 862<br>190   | 769                                     | <b>876</b> 209 | 1131    | 832     | 1053<br>278 |
| LIMITS<br>VSQ<br>PARTS PI             | 25                  | 93           | 21             | 140      | 50     | 159          | 90            | 2°4<br>0    | 78         | 3.8          | F 4     | 209         | 13           | 12                                      | 26             | 136     | 39      | 124         |
| RANS<br>N)                            | 0.0000              | 0.0000       | 0.0000         | 0.0000   | 0.0000 | 0000.0       | 0.0000        | 0.0000      | 0.0000     | .0105        | 0.0000  | 0.0000      | 0.0000       | 0.0000                                  | 0.0000         | .0108   | 9.0000  | 0.0000      |
| EU EV EW EW LATENT HEAT TRANS         | .0193               | 0.0000       | 0.0000         | 0.0000   | 0.0000 | 0.0030       | 0.0000        | 0.0000      | 0.0000     | 0.0000       | .0106   | 0.0000      | 0.0000       | 0.0000                                  | 0.0000         | 000000  | 0.0000  | 0.0000      |
| EU<br>LATEN                           | 0.0000              | 0.0000       | 0.0000         | 0.0000   | 0.0000 | 0.0000       | 0.0000        | 0.0000      | 0.0000     | 0.0000       | 0.0000  | 0.0000      | 0.0000       | 0.0000                                  | 0.0000         | .0108   | 0.0000  | 0.0000      |
| AIR TFMP<br>MEAN ST DEV<br>CENTIGRADE | .4400               | .3920        | .5210<br>.4570 | .3550    | .3350  | .9220        | .3640         | .3670       | .3980      | .3940        | .3570   | .4050       | .3960        | .3950                                   | .2440          | .2380   | .2260   | .2220       |
| A I R<br>E A N<br>C E N T             | 24.                 | 24.          | 23.            | 23.      | 22.    | 22.          | 24.           | 24.         | 23.        | 23.          | 23.     | 22.         | 22.          | 22.                                     | 21.            | 21.     | 72.     | 22.         |
| •                                     | 0198                | 0588         | 01319<br>0189  | 0489     | 0429   | 0491         | 0413          | 0435        | 0375       | 0404         | 0397    | 0314        | 0240         | 0345                                    | 0237           | 0282    | 0282    | 0308        |
| HU HV HW<br>SENSIPLE HEAF TRANS       | 0035                | 0106         | 0143           | 0007     | .0042  | .0030        | 0075          | .6026       | .0062      | .0025        | 0049    | 0038        | 0026         | *690°-                                  | 0028           | 0105    | .0162   | .0056       |
| HU SENSIPLE                           | .1704               | .2161        | .1432          | .1970    | .1547  | .2717        | .1636         | .1801       | -1445      | .1781        | .1417   | .1673       | .1186        | .1826                                   | .1180          | .1240   | .1193   | .1251       |
| BETA<br>RAÚ                           | 0.000.0             | 0.0000       | 0000-0         | 0.0000.0 | 0.0000 | 0.000.0      | 0.000.0       | 0.000.0     | 0.000.0    | 0.00000      | 0.00000 | 0.000.0     | 0.000.0      | 000000000000000000000000000000000000000 | 0.0000         | 0.000.0 | 0000000 | 0.0000.0    |
| THETA                                 | 0111                | 0091         | 0133           | 0137     | 7214   | 0047         | 0184          | 0167        | 011%       | 0146         | 0152    | 0157        | 0161         | 0174                                    | 0194           | 0171    | 0119    | 010A        |
| ETA                                   | 0010                | 0139         | .0387          | -2918    | 0063   | 0094         | 0058          | .0030       | 0131       | 0021         | .0052   | 0149        | 0182         | .2217                                   | .0209          | 0072    | .0140   | .0030       |
| SITE                                  | 91468<br>0 1<br>0 2 | 1 2          | -10            | - 2      | 1      | - 2          | 568<br>1<br>2 | - 2         | - 2        | - 12         | - 2     | 7           | ~ ~          | 7                                       | 7              | ~ ~     | 7       | - 7         |
| START                                 | 91-<br>1930<br>1930 | 2000         | 2030           | 2230     | 2300   | 2330         | 91            | 30          | 100        | 130          | 200     | 230         | 300          | 330                                     | 00¢            | 430     | 500     | 530<br>530  |

ooraansaansa eratuutsustaania eratiiniisia. Tuosistoorii Armittaisissa taakkanistoorii tootiiniinii 1967 kahto Armittaania kariista ka muuriista karii kasaani saabatuu tututusta enimasa katoorii anomanamana a

| _                                | 0.4                 | m C                      | 0.4            | 80 N             | <i>.</i>         | m 0                      |                  | 50                       | ~ 0                        | • 0           |                                     |
|----------------------------------|---------------------|--------------------------|----------------|------------------|------------------|--------------------------|------------------|--------------------------|----------------------------|---------------|-------------------------------------|
| WIND<br>SHIFT<br>RAD             | 010                 | 023                      | 030            | 048              | 044              | 003                      | 0.000            | 0.000                    | .052                       | 00000         | 000000                              |
| PAD<br>CER<br>CAS                | 3.889<br>3.851      | 3.873                    | 3.838          | 3.911            | 3.760<br>3.921   | 3.748                    | 4.409            | 3.795                    | 3.806                      | 3.812         | 3.824                               |
| GSD<br>ANGLE<br>RAD              | .265                | .269                     | .307           | .284             | .309             | .352                     | .579             | .326                     | .386                       | .364          | .356                                |
| G<br>AZIM<br>RAD                 | .020                | .010                     | •005           | .010             | .019             | .010                     | .131             | 209                      | 0.000                      | 177           | 223                                 |
| FSD<br>ANGLE<br>RAD              | .172                | .181                     | .196           | .190             | .214             | .187                     | .399             | .194<br>0.000            | .230<br>0.090              | .227<br>1.600 | .217<br>0.000                       |
| F<br>RA5                         | 062                 | 0.000                    | .016           | .004             | .019             | .010                     | .220             | .019                     | .051<br>0.000              | .038<br>0.001 | 21.93 .030 .217<br>0.00 0.000 0.000 |
| HOR12<br>WIND<br>CM/SEC          | 188.82              | .003 196.82<br>.000 0.00 | 189.63         | 201.76<br>:58.70 | 194.65<br>157.31 | 057 736.91<br>284 191.07 | 262.02           | 025 336-88<br>ก-กจก ๑-cก | 176 330.31<br>0.000 0.00   | 330.56        | 214 321.93                          |
| RWV<br>SSES                      | 007                 | .003                     | 070            | 057              | 088              | 057                      | .936<br>-1.104   | 025<br>0.500             | 0.000                      | 153           | 214                                 |
| RUW RUV RWV<br>REYNOLDS STRESSES | .024<br>567         | .182<br>0.000            | .098<br>190    | .115             | .053<br>578      | .083                     | 15.515           | 513<br>0-010             | .268<br>0.000              | 000-0         | .216                                |
| RUW<br>REYNOI                    | 579                 | 0.000                    | 797            | 720              | 803              | -1.032                   | -1.577           | -2.400                   | -1.939                     | -1.991        | -1.947                              |
| WSD<br>DEV                       | 27.67               | 29.45                    | 29.80<br>28.78 | 31.34            | 32.39<br>30.83   | 37.02<br>35.24           | 59.54            | 50.96<br>0.00            | 0.00                       | 50.00         | 00.00                               |
| USD VSD<br>WIND ST D             | 46.43               | 68-89                    | 51.89          | 51.77            | 53.64            | 63.83<br>63.01           | 164.54           | 99.07                    | 101.34                     | 97.93         | 97.40                               |
| USD<br>WI                        | 60.52               | 67.69                    | 69.88          | 71.26            | 82.68            | 85.23                    | 196.63           | 135-84                   | 146.85                     | 150.78        | 136.75                              |
| MEAN                             | 182.91              | 190.55                   | 182.09         | 194.82<br>150.99 | 187.12           | 228.11<br>180.81         | 213.52<br>189.06 | 322.38<br>0.09           | 315.62 146.85<br>0.00 0.00 | 316.63        | 307.63                              |
| SITE                             | 91568<br>0 1<br>0 2 | ~ n                      | 7 7            | ٦ ٦              | 7 7              | 7 7                      | 7                | - ~                      | - 2                        | - ~           | - 2                                 |
| TIME SITE<br>STARÎ               | 600<br>600          | 630                      | 700            | 730              | 800              | 830                      | 1200             | 1300                     | 1330                       | 1400          | 1430                                |

| EDED<br>6                                       | 2093                 | 2286            | 4391       | 3119<br>8815 | 5179<br>12454         | 2432       | 43367                                       | 6626                                     | 15324                                   | 11133                      | 11116                                   |
|-------------------------------------------------|----------------------|-----------------|------------|--------------|-----------------------|------------|---------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------|-----------------------------------------|
| LIMITS EXCEEDED<br>VSQ F G<br>PARTS PER 100.000 | 938<br>519           | 1288            | 1907       | 1691<br>5001 | 2897                  | 1273       | 37812<br>37799                              | 2128                                     | 6488                                    | 5718<br>0                  | 6074                                    |
| LIMIT<br>VSQ<br>PARTS                           | 171                  | 137             | 366        | 299          | 814                   | 232        | 27165<br>28796                              | 1040                                     | 5252<br>0                               | <b>4819</b>                | 321 <b>6</b><br>0                       |
| EW<br>ANS                                       | 0.0000               | 0.000.0         | 9690.      | 0.0000       | 0.0000                | 0.0000     | 0.0000                                      | 0.000.0                                  | 00000*0                                 | 0.000.0                    | 0.0000000000000000000000000000000000000 |
| EU EV EW<br>LATENT HEAT TRANS                   | 0.0000               | 0.000.0         | 0.0000     | 0.0000       | 0.0000                | 0.0000     | 0.0000                                      | 0.00000                                  | 0.0000                                  | 0.000.0                    | 0.0000                                  |
| EU<br>LATENT                                    | 0.0000               | 000000          | 0.0000     | 0.0000       | 0.0000                | 0.0000     |                                             | 0.000.0                                  | 000000                                  | 0.000.0                    | 0.000.0                                 |
| TEMP<br>ST DEV<br>GRADE                         | .1970                | 0.2400          | .3250      | .4430        | .7430                 | .5850      | .8080 0.0000<br>.9590-18.6285               | .6160                                    | 0.820                                   | 0.000.0                    | 244300                                  |
| AIR<br>MEAN<br>CENTI                            | 22.                  |                 | 23.        | 24.          | 26.                   | 24.        | 25.                                         |                                          |                                         |                            | 26.0                                    |
| 2                                               | 0207 22.<br>0195 21. | 0007 23.        | .0312      | .0621        | .0890                 | .1242      | .1270                                       | .2072 25.                                | .1460 24.<br>0.0000 0.                  | .1609 25.                  | .1334 24.<br>0.0000 0.                  |
| HU HV HW<br>SENSIBLE MEAT TRANS                 | 0016                 | .0024<br>0.0000 | .0619      | 0043         | 0347                  | .0185      | -1.2529                                     | .0039<br>0.000.                          | 0014<br>1.0000                          | 0508                       | 0007<br>0-0000                          |
| HU<br>SENS IBL                                  | .0886<br>.0869       | 0178<br>0.0000  | 1378       | 1409         | 4441                  | 3712       |                                             | 7806                                     | 4554                                    | 0.0000                     | 0.0000                                  |
| BETA                                            | 0.000.0              | 0.000.0         | 0.000.0    | 0.000000     | 0000000               | 0000000    | 3074 0.0000 -2.2449<br>-3025 0.0000 -1.9726 | 0.00000                                  | 0.0000                                  | 0.000.0                    | 0.000.0                                 |
| THETA                                           | 0194                 | 0147            | 03094      | 0185         | .03450117<br>0227025n | 0129       | 2074                                        | .26680116 0.0000<br>0.0000 0.0000 0.0000 | 10520049 0.0000<br>0.0000 0.0000 0.0000 |                            |                                         |
| ETA<br>RAD                                      | .0086                | .0242           | .5106      | .0466        | .0345                 | .0007      | 4450                                        | .2668<br>0.0000                          | 1052<br>7-1000                          | .02610141<br>0.0000 0.000A | 39056141<br>0-0000 0-0000               |
| SITE                                            | 91568<br>0 1<br>0 2  | <b>→</b> N      | 7          | 7 7          | 7                     | 7          | 7                                           | <b>-</b> ~                               | - ~                                     | <b>-</b> ~                 | - ~                                     |
| TIME SITE<br>START                              | 91<br>600<br>600     | 630             | 700<br>700 | 730          | 900                   | 830<br>830 | 1200                                        | 1300                                     | 1330                                    | 1400                       | 1430                                    |

| SHIFT                          | 00000                   | 0.000            | .121           | .053           | 135<br>145       | .319            | 044              | 108    | 288            | .037   | 323              | 00000 | 034              | 0.000  | 0.000 | 0.000 | -112                    | 094            |
|--------------------------------|-------------------------|------------------|----------------|----------------|------------------|-----------------|------------------|--------|----------------|--------|------------------|-------|------------------|--------|-------|-------|-------------------------|----------------|
| T S                            |                         |                  |                |                | • •              | '               |                  |        |                |        |                  | •     |                  |        |       |       |                         |                |
| RAD<br>RAD                     | 5.999                   | 5.244            | 5.368          | 5.410          | 5.271            | 5.460           | 5.418            | 5.336  | 5.055          | 5.089  | 4.580<br>5.088   | 0.000 | 4.868<br>5.100   | 0.000  | 0.000 | 0.000 | 4.327                   | 4.392          |
| GSD<br>ANGLE<br>RAD            | .387                    | .356             | .344           | .350           | .416             | .366            | .368             | .379   | .413           | .340   | .361             | .366  | .331             | .372   | 0.000 | 0.000 | 348                     | .401           |
| G<br>AZ ISM<br>RAD             | .015                    | .014             | .012           | .023           | 002              | .036            | .034             | 008    | 010            | 007    | 017              | 0.000 | 092              | 0.000  | 0.000 | 0.000 | 041                     | 023            |
| FSD<br>ANGLE<br>RAD            | .317                    | .252             | .195           | .191           | .207             | .192            | .187             | .190   | .199           | .200   | .197             | 0.900 | .209             | .214   | 0.000 | 0.000 | .233                    | .272           |
| ELEV                           | .026                    | .055             | .036           | .037           | .042             | .036            | .034             | .028   | .045           | .042   | .039             | 00000 | .034             | 0.000  | 0.000 | .018  | .039                    | .067           |
| HOR 12<br>WIND<br>CM/SEC       | 112•28<br>112•28        | 133.64           | 153.15         | 207.41         | 180.56<br>173.77 | 224.80          | 238.46           | 240.66 | 232.19         | 249.46 | 167.70<br>197.62 | 0.00  | 189.95<br>190.23 | 169.96 | 0.00  | 70.98 | 117-11                  | 110.86         |
| RWV                            | 000.0                   | 0000             | 0.000          | 0.000          | 0000-0           | 0.000           | 0.000            | 00000  | 00000          | 0.000  | 0.000            | 0.000 | 0.000            | 0.000  | 0.000 | 0.000 | 00000                   | 0.000          |
| RUW RITY RWY KEYMOLDS STRESSES | 023                     | .037             | 054            | -1.179         | .110             | 113             | 492              | -1.873 | 318            | -1.970 | -1.513           | 0.000 | 078              | 7.435  | 0.000 | 0.000 | 066                     | 118            |
| RUM<br>KEYMO                   | 260                     | 414              | 53d<br>748     | 689            | 660              | -1.047          | -1.086           | -1.134 | -1.030         | -1.142 | 842              | 0.000 | 768              | 0.000  | 0.000 | 0.000 | 282                     | 310            |
| WSD<br>DEV                     | 18.53                   | 22.51            | 25.45          | 33.57          | 25-12<br>35-85   | 36.47           | 37.24            | 38.65  | 37.53<br>37.57 | 38.93  | 29.83            | 30.31 | 30.46            | 28.89  | 0.00  | 0.00  | 20.26<br>18:70          | 21.03          |
| VSD<br>C ST                    | 33.50                   | 41.59            | 35.23          | 68.74<br>47.10 | 69.08<br>51.86   | 76.00<br>\$7.59 | 77.67<br>60.48   | 89.11  | 87.93<br>75.26 | 94.10  | 79.06            | 0.00  | 54.66<br>54.51   | 56.21  | 0.00  | 0.00  | 34.16<br>24.01          | 39.79          |
| USD<br>WIN                     | 39.07                   | 43.80            | 46.15<br>56.39 | 70.02          | 64.65            | 74.80           | 86.67            | 85.30  | 83.41          | 96.32  | 96.59            | 71.29 | 78.40            | 72.94  | 63.35 | 30.89 | A6.69<br>51.33          | 51.23<br>46.08 |
| MEAN                           | 107.08<br>104.16        | 126.73<br>126.72 | 144.91         | 195.71         | 166.97<br>166.95 | 211.22          | 224.74<br>218.19 | 222.47 | 214.62         | 231.40 | 146.59           | 0.00  | 181.97           | 00°0   | 00.00 | 0.00  | 111.84                  | 103.83         |
| SITE                           | 91168<br>0 1 1<br>0 2 1 | 7                | 7 7            | 7 7            | - 2              | - 2             | - ~              | ~ ~    | - 0            | ~ ~    | 7 7              | -2    | -2               | - ~    | - 2   | ~~~   | 91268<br>0 1 1<br>0 2 1 | - 2            |
| TIME SITE<br>START             | 30                      | 715<br>715       | 740            | 830<br>830     | 900              | 1000            | 1135             | 1230   | 1330           | 1409   | 1450             | 1500  | 1535<br>1535     | 1605   | 1640  | 1840  | 917<br>017              | 740            |

| EDED<br>6<br>0•000                    | 2955                | 4415    | 2826          | 1811              | 407=          | 2243<br>429C7   | 2416<br>24523 | 2235   | 3396<br>29983 | 5240<br>24512    | 17270<br>25148  | 29427           | 9789         | 10065          | 29006           | 9667           | 9791<br>18679       | 14179<br>15479 |
|---------------------------------------|---------------------|---------|---------------|-------------------|---------------|-----------------|---------------|--------|---------------|------------------|-----------------|-----------------|--------------|----------------|-----------------|----------------|---------------------|----------------|
| IS EXCEEDED<br>F<br>PER 100.00        | 1377                | 2347    | 1505<br>10551 | 1499              | 2822          | 1588            | 1462          | 1402   | 2076          | <b>2661</b> 2420 | 10946           | 4140            | 3336<br>2101 | 3385           | 9569            | 2230           | 4334                | 8340<br>9163   |
| LIMITS<br>VSQ<br>PARTS PI             | 122                 | 144     | 1392          | 188               | 1706          | 193             | 232           | 250    | 711           | 1184             | 6275            | 0<br>1398       | 1155<br>318  | 1123           | 0 4             | 561            | 889<br>5957         | 2898           |
| EW<br>(PANS<br>IN)                    | 0.0000              | 0.0000  | 0.0000        | 0.0000            | 0.0000        | 0.0000          | 0.0000        | 0.0000 | 0.0000        | 0.0000           | 0.0000          | 0.0000          | 0.0000       | 0.000000       | 0.0000          | 0.0000         | 0.0000<br>0.011P    | 0.0000         |
| EV<br>HEAT<br>(CM2-M                  | 0.0000              | 0.000.0 | 0000000       | 0.0000            | 0.0000        | 0.0000<br>.2957 | 3.0000        | 0.0000 | 0.0000        | 0.0000           | 0.0000          | 0.0000          | 0.0000       | 0.000.0        | 0.0000<br>.1946 | 0.0000         | 0.0000              | 0.0000         |
| EU<br>LATENT                          | 0.0000              | 0.0000  | 0.000         | 0.0000            | 0.0000        | 0.0000          | 0.0000        | 0.6000 | 0.0000        | 0.0000           | 0.0000          | 0.000.0         | 0.0000       | 0.0000         | 0.0000          | 0060-          | 0.0000              | 0.0000         |
| AIR TEMP<br>IEAN ST DEV<br>CENTIGRADE | .2190               | .5940   | .6250         | .6200<br>.5930    | .7290         | .7500           | .5740         | .6030  | .6800         | .5890            | .4860           | 0.0000          | .3240        | 0000*0         | 0.0000          | 0.0000         | 1.0610              | .4130          |
| AIP.<br>MEAN<br>CENTI                 | 9 5                 | .00     | 11:           | 13.<br>13.        | 14            | 17.<br>16.      | 18.           | 20.    | 21.           | 21.              | 21.             | 22.             | 21.          | 21.            | 22.             | 0.18.          | 131<br>14.          | 14.            |
| s •                                   | 0222                | .0576   | .0781         | .1214             | .1460         | .1878           | .0427         | .1943  | .1686         | .1024            | .0476           | 0.0000          | .0322        | 0021<br>C.0000 | 0.0000          | 0.0000         | .0329               | .0479          |
| HV<br>E HEAT<br>(CM2-M)               | 0094                | 0221    | .0005<br>0029 | .0755             | 1135          | .0388           | 0052          | 1056   | 0796          | 0938             | 0740            | 0.0000<br>-0730 | 0122         | .0649          | 0.0000          | 0.0000<br>0086 | 0406                | .0209          |
| HU<br>SENSIBL                         | .0793               | 0925    | 1686          | 3946              | 2895          | 4250            | 1003          | 3380   | 3974          | 2861             | 0501            | 0.0000          | 1779         | .1178          | 0.000.          | 0.0000         | 0157                | 1215           |
| BETA                                  | -0720               | 0.0000  | .0300         | .0270             | ,0100<br>C523 | .0210           | .0190         | .0120  | .0050         | .0050            | .022C<br>0.0000 | 0.0000          | 0240         | 000000         | 0.0000          | 0.0000         | 0290                | 0130           |
| THETA                                 | .0073               | .0163   | .0131         | .0147             | .0123         | .0129           | .0107         | .0161  | .0224         | .01£7<br>.0214   | .0214           | 0.000           | .0163        | .0188          | .0102           | .000°-         | .0070               | .0008          |
| ETA<br>RAU                            | .1740               | 1.2355  | 1229          | 0745              | .1504         | 0388            | .0389         | .0837  | .3016         | 0615             | .3008           | 0.0000          | 1146         | .0000          | 0.9000          | 0.000 o        | 6490                | .0589          |
| SITE                                  | 91168<br>0 1<br>0 2 | 7       | - 2           | 7                 | 7             | 1 2             | - 2           | 7      | 7             | (+               | 7               | - 2             | - 0          | <b>-</b> ~     |                 | ~~             | 91268<br>0 1<br>C 2 | - 2            |
| STARY                                 | 91<br>30<br>30      | 715     | 740<br>740    | 000<br>000<br>000 | 906           | 1000            | 1135          | 1230   | 1330<br>1330  | 1400             | 1430            | 1500            | 1535<br>1535 | 1605           | 1640            | 1840           | 710                 | 740            |

THE PROPERTY OF THE PROPERTY O

| WIND<br>SHIFT<br>RAD          | .383                | .381             | 198              | 110              | 237              | .106             | 181                | .100           | 422              | 014              | 118            | .089             | 078            | .080             | 002              | 082             | -•348<br>-•126 | 081   |
|-------------------------------|---------------------|------------------|------------------|------------------|------------------|------------------|--------------------|----------------|------------------|------------------|----------------|------------------|----------------|------------------|------------------|-----------------|----------------|-------|
| WIND<br>DIR<br>RAD            | 4.759<br>5.121      | 5.010            | 4.956            | 4.879<br>5.409   | 4.740            | 4.788            | 4.722              | 4.873          | 4.499            | 4.222            | 4.111          | 4.201            | 4.155          | 4.206            | 4.191            | 4-104           | 3.756          | 3.670 |
| GSD<br>ANGLE<br>RAD           | .475                | .388             | .364             | .345             | .418             | 404              | .436               | 419            | .365<br>.393     | .381             | .323           | .375             | .372           | .353             | .320             | .293            | •227<br>•210   | .198  |
| G<br>AZ IM<br>RAD             | 040                 | 170              | 025              | .007             | .105             | .047             | .162               | .212           | .207<br>.291     | .018             | .024           | .026             | .057           | .028             | .01%<br>.179     | .346            | .009           | .005  |
| FSD<br>ANGLE<br>RAD           | .296                | .249             | .230             | .198             | .235             | .239             | .328               | .351           | .305             | .240             | .208           | .234             | .262           | .233             | .207             | .196            | .153           | .116  |
| ELEV<br>RAD                   | .079                | .058             | .055             | .040             | .106             | .100             | .079               | .162           | .097             | .024             | .018           | .035             | .057           | .031             | .014             | .008            | 020            | 025   |
| HOR12<br>WIND<br>CM/SEC       | 101.08              | 142.07           | 171.84<br>166.38 | 225.65           | 199.72           | 209.34<br>191.30 | 166.18<br>152.38   | 147.40         | 210.97<br>192.76 | 185.77<br>172.78 | 210.59         | 179.84<br>169.72 | 152.85         | 176.74<br>178.58 | 154.09           | 110.20          | 75.66<br>72.42 | 77.34 |
| RHV<br>SES                    | 00000               | 0.000            | 0.000            | 0.000            | 0.000            | 0.000            | 00000              | 000000         | 0.0000           | 0.000            | 00000          | 0.000            | 0.000          | 00000            | 0.000            | 0.000           | 0.000          | 0.000 |
| RUW RUY RWY REYNOLDS STRESSES | 375<br>831          | 326              | 105              | 108              | -2.107           | 439              | 055<br>-1.002      | .107           | .580<br>118      | .547             | .336           | .244             | .230           | 387              | 404              | 060             | 089            | 019   |
| RUW<br>REYMO                  | 251                 | 553              | 699              | -1,061           | 777              | 936              | 824                | 614            | 840              | 653              | 902            | 693              | 607            | 628<br>914       | 434              | 252             | 029            | 027   |
| WSD<br>DEV                    | 19.12               | 26.03            | 29.70            | 36.52            | 32.82            | 34.43            | 31.56              | 29.07<br>33.50 | 34.90            | 32.50<br>33.31   | 34.32          | 31.47            | 28.03<br>28.15 | 31.68            | 25.71            | 18.27           | 9.41<br>8.51   | 7.37  |
| a- :                          | 37.24               | 45.87            | 55.83<br>57.06   | 70.22            | 74.56<br>96.03   | 73.47            | <b>68.57</b> 69.19 | 60.46          | 71.30            | 65.42            | 61.15<br>63.35 | 64.25<br>65.49   | 51.35          | 57.43            | 44.95            | 29.83           | 16.68          | 14.18 |
| USD VS<br>WIND S              | 51.80<br>51.97      | 61.97            | 74.70            | 81.94            | 87.79<br>98.11   | 96.60            | 94.82              | 108.69         | 113.61           | 83.03            | 86.17<br>87.24 | 76.69            | 72.53          | 74.29            | 57.29<br>55.63   | 40.08<br>42.89  | 21.67          | 16.79 |
| MEAN                          | 93.96<br>87.55      | 134.13<br>133.93 | 162.66<br>156.35 | 214.08<br>192.78 | 185.77<br>152.98 | 196.15<br>180.21 | 153.40             | 137.38         | 199.41           | 174.72<br>160.22 | 201.76         | 168.70<br>157.89 | 144.24         | 167.39           | 147.30<br>133.03 | 106.03<br>95.61 | 73.94          | 76.02 |
| <b>517</b> E                  | 91268<br>0 1<br>0 2 | 1 2              | 7                | 7                | - 2              | - ~              | 7 7                | 7              | 7 2              | ~~               | - ~            | - 2              | 7 7            | 7                | ~                | - ~             | 7              | 24 N  |
| TIME SITE<br>START            | 912<br>610<br>810   | 900              | 930              | 1005             | 1035             | 1105             | 1135               | 1205           | 1305<br>1305     | 1335<br>1335     | 1430           | 1500             | 1530<br>1530   | 1600             | 1630             | 1710            | 1740           | 1805  |

| ი ღ <b>0</b>                          | 27059<br><b>298</b> 55 | 16190<br>10661        | 9479         | 3429<br>19855 | 8763<br>26125    | 12103<br>18339       | 16346<br>30444 | 33407<br>25252 | 15254<br>30045 | 8061<br>6356 | 6956<br>8644 | 7660             | 12557<br>20981       | 8461<br>4392  | 5899<br>16049 | 5824<br>25416 | 4647             | 1892<br>503   |
|---------------------------------------|------------------------|-----------------------|--------------|---------------|------------------|----------------------|----------------|----------------|----------------|--------------|--------------|------------------|----------------------|---------------|---------------|---------------|------------------|---------------|
| EDE                                   | 29                     | 20                    | 17           | 19            |                  | 12<br>18             | 30             | 33             | 15             | 16           | 40           | 7 22             | 12                   | 14            | 16            | 2, 5          | 10               | -             |
| TS EXCEEDED<br>F G<br>PER 100,000     | 11909                  | 5640                  | 4688<br>7980 | 1996<br>7851  | 5079<br>14768    | 6197<br>11696        | 10858<br>17826 | 24367<br>13632 | 10484<br>13672 | 5005<br>9346 | 2638<br>3926 | 4173<br>7890     | 7224<br>7683         | 4244          | 2389          | 1889          | 1677             | 478<br>57     |
| LIMIT<br>VSQ<br>PARTS                 | 5758<br>7775           | 1 <b>26</b> 1<br>2242 | 2153<br>3417 | 362           | 2114             | 37 <b>65</b><br>8026 | 5663<br>12375  | 17811<br>9015  | 7944<br>8508   | 1584         | 785          | 3864             | 289 <b>2</b><br>2561 | 1541          | 437           | 238           | 854<br>3357      | ¥ 0           |
| EX<br>RANS<br>N)                      | 0.0000                 | 0.0000                | 0.0000       | 0.0000        | 0.0035           | 0.0000               | 0.0000         | 0.0000         | 0.0009         | 0.0000       | 0.0000       | 0.000            | 0.0000               | 0.0000        | 0.3000        | 0.0000        | 0.0000           | .0100         |
| EU EV E#<br>LATENT HEAT TRANS         | 0.0000                 | 0.0000                | 0.0000       | 0.00000       | 0.0000           | 0.0000               | 0.0000         | 0.0000         | 0.0000         | 0.0000       | 0.0900       | 0.0000           | 0.0000               | 0.0000        | 0.0000        | 0.0000        | 0.0000           | 0.0000        |
|                                       | 0.0000                 | 0.0000                | 0.0000       | 0.000         | 6.0000<br>1.4050 | 0.0000               | 0.0150         | 0.5000         | 0.0000         | 0.0000       | 0.0000       | 0.0000<br>1664   | 0.0000               | 0.0000        | 0.0000        | 0.0000        | 0000-0<br>0000-0 | 0.0000        |
| AIR TEMP<br>IEAN SI DEV<br>CENTIGRADE | .6680                  | .7080                 | .4910        | .5820         | .7170            | .7060                | .8340<br>.8000 | .8170          | .6580          | .7170        | .5170        | .4870            | .4310                | .2870         | .2110         | .3450         | .6010            | 1730          |
| AIR<br>MEAN<br>CENT                   | 16.                    | 20 <b>•</b><br>21•    | 21.          | 20.           | 23.              | 24.                  | 24.            | 25.            | 25.            | 25.          | 15.<br>26.   | 15.              | 15.                  | 15.           | 15.           | 23.           | 21.              | 20.           |
| ν <b>.</b>                            | .0807                  | .1218                 | .1373        | .1622         | .1459            | .1638                | .1576          | .0872          | .1258          | .1250        | .0987        | .0907            | .0727                | .0414         | 0025          | 0270          | 0083             | 0123          |
| HV<br>E HEAT                          | 0549                   | 0470                  | .0162        | 0937          | 0350             | -,3813               | 0107           | 0488           | .0440          | .0161        | .0502        | .0165            | .0270                | .0205         | .0051         | 0462          | 0455             | 0237          |
| HU<br>SENCIBL                         | 1189                   | 2101                  | 2629         | 3840          | 4288             | 3917                 | 6614           | 3943           | 2796           | 3332         | 3143         | -,2812<br>-,3063 | 2124                 | ; 246<br>1605 | 0134          | .1122         | -1404            | .0861         |
| BETA                                  | 0150                   | 0260                  | 0030         | 0280          | 0170             | 0420                 | 0350           | 0190           | 0390           | 0420         | 0270         | 0050             | .0060                | 0050          | 0270          | 0106          | .0900            | .0180         |
| THETA                                 | .0204                  | .0227                 | .0172        | -0249         | .0064            | .0117                | .0057          | .0071          | 0107<br>.0018  | 0136         | 0091         | .0001            | .000                 | 0042          | 0091          | 0142          | 0316             | 0314          |
| E ETA:                                | 5043                   | 4253                  | .1867        | .1023         | •1951<br>•2741   | 1523                 | .1363          | 1661           | .4231          | .0046        | .1135        | 0952             | .0585                | 1077          | 0194          | .0733         | .3343            | .5791<br>0110 |
| SITE                                  | 91268<br>0 1<br>0 2 -  | 7                     | 1 2          | 1 2           | H N              | 1 2                  | 7 2            | 1 2            | 7              | ~ ~          | 7            | ~ ~              | 2 2                  | 7             | 7 7           | 7             | 7 7              | 7             |
| I IME<br>START                        | 91<br>810<br>810       | 900                   | 930          | 1005          | 1035             | 1105                 | 1135           | 1205           | 1305           | 1335         | 1430         | 1500             | 1530                 | 1600          | 1630          | 1710          | 1740             | 1865<br>1895  |

| SHIFT<br>PAD                    | 0.000               | 3.000          | .022   | 008             | .022                | 017            | 027              | .027        | 0112             | 051              | .030   | .049               | -457           | .124             | 554            | .032             | 635    | 064           |
|---------------------------------|---------------------|----------------|--------|-----------------|---------------------|----------------|------------------|-------------|------------------|------------------|--------|--------------------|----------------|------------------|----------------|------------------|--------|---------------|
| WIND<br>DIR<br>RAD              | 9.600<br>4.426      | 0.000<br>4.345 | 4.334  | 4.328           | 4.353<br>4.336      | 4 . 333        | 4.305            | 4.353       | 4.364            | 4.300            | 4.309  | 4 • 355<br>4 • 338 | 5.162          | 5.113            | 4.383          | 4.418            | 4.363  | 4.316         |
| 6SD<br>ANSLE<br>RAD             | 0.000<br>.125       | 0.900          | .057   | د<br>د د<br>د . | .050                | 590°           | .049             | .065        | .078             | .068             | .077   | .105               | .179           | .330             | .128           | .129             | .120   | .119          |
| G<br>AZIM<br>RAD                | 6.000               | 0.000          | 013    | 011             | 009                 | 631            | 012              | -010        | 027              | 023              | 011    | 005                | .346           | .172             | 008            | 002              | 002    | 010           |
| FSD<br>ANGLE<br>RAD             | 0.000               | 0.000          | .058   | •032<br>•036    | .034                | .047           | .034             | .044        | .068             | •042             | .051   | .059               | .370           | .349             | .110           | .121             | 123    | .105          |
| F<br>ELEV<br>RAD                | 0.000               | 3.000          | 0.000  | 002             | 001                 | .001           | 002              | 0.000       | 0.000            | 002              | .000   | .003               | .245           | .205             | .012           | .014             | .010   | .010          |
| HORIZ<br>WIND<br>CM/SEC         | 9.00<br>111.80      | 0.00           | 162.91 | 147.03          | 167.32<br>169.93    | 178.69         | 186.90<br>187.73 | 181.11      | 132.42<br>133.17 | 139.81<br>130.74 | 213.59 | 241.51<br>232.37   | 211.70         | 258.34<br>254.86 | 00.00          | 000              | 000    | 00.00         |
| :                               | 000                 | 00000          | 0.000  | 0.000           | 0.000               | 000000         | 00000            | 000000      | 0.0000           | 0.000            | 0.000  | 0.000              | 00000          | 00000            | 00000          | 00000            | 00000  | 0.000         |
| UW RUV RWY<br>REYNOLDS STRESSES | 0.000               | 000.0          | .051   | 014             | .015                | .014           | 052              | .064<br>036 | 0.000            | 075              | 113    | 082                | 7.498          | 9.604            | -2.289         | -1.282<br>912    | 630    | 035           |
| RUW<br>REYNOL                   | 0.000               | 0.000          | 080    | 057<br>073      | 087                 | 115            | 123              | 104         | 157              | 083              | 170    | 243                | 707            | 921              | 925            | 719              | 927    | 862<br>-1.050 |
| WSD<br>DEV                      | 0.00                | 0.00           | 4.37   | 3.09            | <b>4.66</b><br>5.29 | 5.43           | 5.22             | 5.54        | 3.26             | 3.92             | 7.08   | 8.61               | 26.57<br>27.29 | 26.25<br>26.85   | 20.85          | 20.91            | 23.12  | 22.62         |
| VSD<br>ST                       | 0.00                | 00.00          | 9.37   | 7.42            | 8.90                | 11.30          | 9.56             | 11.15       | 8.24             | 8.77             | 14.16  | 24.79<br>19.67     | 62.62<br>32.41 | 69.65            | 56.53<br>55.33 | 80.65            | 75.12  | 77.58         |
| USD<br>WIND<br>***CM/SEC        | 0.00                | 0.00           | 44.43  | 32.50           | 41.34               | 52.70<br>49.66 | 48.58<br>52.51   | 59.68       | 38.64            | 45.10            | 67.49  | 83.52              | 197.67         | 228.40           | 143.25         | 107.92           | 110.61 | 115.14        |
| MEAN                            | 0.00                | 0.00           | 162.69 | 146.87          | 167-12<br>169-70    | 178.36         | 186.68           | 180.80      | 132.19           | 139.56           | 213.14 | 240.37             | 195.30         | 225.58           | 283.57         | 298.08<br>298.15 | 325.96 | 328.96        |
| 51 TE                           | 91368<br>5 1<br>5 2 | 7              | ~ ()   | ~ ~             | - 2                 | 7 7            | ~ 2              | 1 2         | - ~              | 7                | 7 7    | 7                  | 7 7            | 7 7              | 7 2            | - 2              | 7      | 7             |
| TIME SITE<br>START              | 913                 | 215<br>215     | 245    | 315<br>315      | 335<br>335          | 415            | 445              | 515<br>515  | 545              | 615<br>615       | 630    | 705                | 800            | 835<br>835       | 905            | 935              | 1005   | 1040          |

| CEEDED<br>6<br>100+000                | 3054                        | 243                                     | 140          | 75                 | 13         | 211            | 23                                      | 182        | 411                          | 225               | 261<br>302   | 379        | 47940          | 33373<br>31573 | 292             | 444        | 394    | 243    |
|---------------------------------------|-----------------------------|-----------------------------------------|--------------|--------------------|------------|----------------|-----------------------------------------|------------|------------------------------|-------------------|--------------|------------|----------------|----------------|-----------------|------------|--------|--------|
| IS E)<br>PER                          | 1934                        | 3.58                                    | 108<br>89    | 33                 | 7 70       | 157            | 12 23                                   | 115        | 2 <b>2</b> 2<br>5 <b>5</b> 2 | 112               | 194          | 326<br>577 | 37941<br>35931 | 31362<br>30528 | 257             | 400        | 284    | 210    |
| LIMITS<br>VSQ<br>PARTS PI             | 1709                        | 115                                     | 91           | 15                 | v 4        | 110            | 7                                       | 86<br>51   | 200                          | 90                | 160          | 252        | 29899          | 24789          | 210             | 363<br>351 | 230    | 157    |
| EW<br>RANS<br>N)                      | 0.00000                     | 0000000                                 | 0.000.0      | 0000000            | 0.00000    | 0.0000         | 0.0000000000000000000000000000000000000 | 0.0000     | 000000                       | 0.000.0           | 0.0000       | 0.000.0    | 0.0000         | 0.0000         | C.0000<br>.1348 | 0.0000     | 0.0000 | 0.0000 |
| EU EV EW<br>LATENT HEAT TRANS         | 0.0000                      | 0000000                                 | 0000000      | 0.0000             | 0.000.0    | 0.000.0        | 0.000.0                                 | 0.0000     | 0.0000                       | 00000•0<br>0000•ï | 00000-0      | 0000000    | 0.0000         | 0.0000         | 0.0000          | 0.0000     | 0.0000 | 0.0000 |
| EU<br>LATENT                          | 0.0000                      | 0.000.0                                 | 0.000.0      | 0.0000             | 0.00000    | 0.00000        | 0.000.0                                 | 0.000.0    | 0000-0                       | 0.00000           | 0.00000      | 0.00000    | 0.0000         | 0.0000         | 0.0000          | 0.0000     | 0.0000 | 0.0000 |
| AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE | 0.000.0                     | 0.000.0                                 | .0590        | .2230              | .2180      | •3060<br>•3070 | .3160<br>.3180                          | .3290      | .2980                        | .2360             | 00000-0      | 1.2130     | .9200          | .3560          | .5080           | •4720      | .5340  | .5650  |
| AIR .                                 | 0 5                         | 33.                                     | 13.<br>13.   | 13 <b>.</b><br>13. | 13.<br>13. | 13•<br>13•     | 12 <b>.</b><br>12.                      | 13.<br>13. | 13.                          | 13.<br>13.        | 55           | 10.        | 18.            | 17.            | 22.             | 23.        | 23.    | 21.    |
| TRANS P                               | 0.0000                      | 0.0000                                  | 0012         | 0046               | 0069       | 0102           | 0112                                    | 0105       | 0068                         | 0033              | 0006         | 0048       | 0247           | .0205          | .0368           | .0602      | .0709  | .0720  |
| HU HV HW<br>SENSIBLE HEAT TRANS       | 0.0000                      | 000000000000000000000000000000000000000 | .0002        | 0065               | 0011       | 0055           | 0001                                    | -0000      | -00004                       | 0052              | 0005         | -,0806     | .4884          | 1688           | .1098           | .0474      | .1563  | .1579  |
| HU<br>SENS IB                         | 0.0000                      | 0.000                                   | .0093        | .0482              | .0661      | .1380          | .1595                                   | .1885      | .0909                        | .1048             | 0005         | .0167      | 2.5939         | 9210           | 3512<br>4457    | 3927       | 5128   | 5513   |
| BETA                                  | 0.0000                      | 0.0000                                  | .0040        | 1810               | 1790       | 0670           | 1130                                    | 0720       | 1530                         | 1430              | 0760<br>0640 | 0400       | 0820           | 0480           | .0570           | 0220       | 0020   | 0.0000 |
| THETA                                 | 0.0000                      | 0.0000                                  | 002#<br>0021 | 0040               | 0041       | 0034           | 0045<br>0028                            | 0041       | 0040                         | 0051              | 0044         | 0034       | .0096          | .0077          | 0006            | .000H      | 0019   | 0006   |
| ETA<br>RAD                            | 0.0000                      | 0.0000                                  | .8613        | .0069              | 0218       | .0001          | .0260                                   | 0266       | .0102                        | .0390             | 0338         | 0527       | 1247           | .3226          | 1.1280          | 1306       | .1066  | .2126  |
| SITE                                  | 913 <b>68</b><br>5 1<br>5 2 | - 2                                     | 7            | - 2                | 7          | 7              | 7 7                                     | 1 2        | ~ ~                          | 7                 | - ~          | 7 7        | m 2            | ~ ~            | 7               | 1          | 7      | 7      |
| START                                 | 91                          | 215                                     | 245          | 315                | 335<br>335 | 415            | 445                                     | 515<br>515 | 545<br>545                   | 615<br>615        | 630          | 705        | 800            | 835<br>835     | 903<br>905      | 935<br>935 | 1005   | 1040   |

| WIND<br>SHIFT<br>RAD             | 041                       | .072             | 049              | .042           | .048             | 168              | - 00.        | .030             | .039             | 033    | .319   | 138    | .070         | .157   | 053          | .00%  | .010           | .003  |
|----------------------------------|---------------------------|------------------|------------------|----------------|------------------|------------------|--------------|------------------|------------------|--------|--------|--------|--------------|--------|--------------|-------|----------------|-------|
| BIND<br>BIR<br>RAD               | 4.279                     | 4.352            | 4.312            | 4.358          | 4.403            | 4.222            | 4.262        | 4.311            | 4.338            | 4.285  | 4.215  | 4.093  | 4-142        | 4.305  | 4.255        | 4.269 | 4.505          | 4.711 |
| GSD<br>ANGLE<br>RAD              | .146                      | 129              | .280             | .784           | .293             | .280             | .279<br>.285 | .271             | .288             | .278   | .282   | .333   | .252<br>.230 | .259   | .268<br>.253 | .217  | .367           | .225  |
| G<br>AZ 14<br>RAD                | 0.000                     | .002             | .010             | .014           | .010             | 003              | 011          | .009             | 003              | 024    | •004   | .026   | .005         | .036   | .011         | .015  | .152           | .193  |
| FSD<br>ANGLE<br>RAD              | .105                      | .125             | .174             | .203           | .168             | .173             | .177         | .178             | .178             | .181   | .190   | .202   | .160         | .165   | .174         | .134  | .335           | .342  |
| F! F.V<br>RAD                    | .012                      | .016             | .010             | .012           | .019             | .009             | .014         | .013             | .009             | .015   | .013   | .014   | 005          | 0.000  | 003          | 013   | .034           | .120  |
| HOR12<br>WIND<br>CM/SEC          | 00.00                     | 000              | 310,63           | 319.59         | 279.04           | 256.56<br>258.94 | 242.62       | 275.79           | 278.28<br>279.86 | 191.71 | 156.15 | 109.27 | 103.50       | 124.82 | 92.57        | 77.00 | 61.53<br>65.81 | 74.33 |
| RWV                              | 000                       | 0000             | 0000             | 0.000<br>0.000 | 0.000            | 0.000            | 0.000        | 0.000            | 00000            | 00000  | 000000 | 0.000  | 0.000        | 0.000  | 0.000        | 0.000 | 0.000          | 00000 |
| PUW RUV RWV<br>REYNOLDS STRESSES | 2.763                     | 343              | -1.046           | .218           | 406              | 172              | .089         | .152             | .965             | 017    | 188    | 676    | 073          | 008    | 090          | 031   | .011           | .263  |
| PUN<br>REYNO                     | 911                       | -1.00            | -1.664           | -1.767         | -1.535<br>-1.965 | -1.137<br>-1.515 | -1.092       | -1.357           | -1.326<br>-1.755 | 766    | 503    | 205    | 146          | 236    | 133          | 056   | 050            | 091   |
| WSD<br>DEV                       | 22.71                     | 24.69            | 46.78            | 48.57<br>51.27 | 43.52            | 37.96            | 37.23        | 42.67            | 42.7             | 29,78  | 24.82  | 18.46  | 14.51        | 18.67  | 13.52        | 9.78  | 10.24          | 12.43 |
| VSD<br>ST                        | 96•36<br>85•52            | 87.71<br>79.81   | 83.18            | 86.87          | 75.59            | 67.52<br>69.21   | 65.43        | 70.84            | 78.77<br>80.17   | 50.80  | 40.59  | 33.27  | 24.43        | 30.91  | 22.81        | 17.98 | 18.38<br>18.10 | 2120  |
| .1SD<br>HIND<br>***CH'SEC        | 110.35                    | 122.21           | 106.37<br>108.86 | 112.05         | 99.76            | 85.24            | 92.37        | 98.84            | 104.44           | 74.83  | 67.04  | 54.30  | 29.24        | 46.33  | 33.97        | 22.46 | 44.34          | 51.70 |
| MEAN                             | 328.19<br>336.92          | 347.58<br>365.74 | 299.42           | 307.75         | 768.82<br>253.23 | 247.47           | 233.85       | 256.63<br>265.71 | 267.50<br>259.10 | 185-12 | 151.00 | 104.57 | 100.55       | 121.03 | 89.72        | 74.75 | 59.08<br>63.37 | 71.16 |
| SITE                             |                           | - ~              | ~ ~              | ~ ~            | ~ ~              | 2                | ~ ~          | 7                | 7 7              | - 2    | 7 2    | ~~     | ~ ~          | ~ ~    | 1 2          | 7     | 7 2            | - ~   |
| TIME START                       | 91368<br>1130 1<br>1130 2 | 1200             | 1300             | 1330           | 1400             | 1430             | 1505         | 1535             | 1605             | 1635   | 1705   | 1735   | 1805<br>1805 | 1905   | 1935<br>1935 | 2005  | 2035           | 2110  |

| CEEDED                                | 240                 | 451                 | 1432         | 1641            | 2980           | 1796        | 2064            | 1746               | 2357        | 3657         | 4528<br>5078   | 8767<br>3524    | 3158<br>2061 | 3095           | 5341            | 6080<br>1927   | 12990          | 27972 2198       |
|---------------------------------------|---------------------|---------------------|--------------|-----------------|----------------|-------------|-----------------|--------------------|-------------|--------------|----------------|-----------------|--------------|----------------|-----------------|----------------|----------------|------------------|
| χ.<br>π. α.<br>π. α.                  | 242.263             | 419                 | 711          | 1122<br>989     | 1510<br>2396   | 713<br>1753 | 876             | 891                | 960<br>1536 | 1135         | 1815           | 2911            | 938<br>691   | 929            | 1741            | 724            | 5636           | 22110<br>718     |
| LIMII<br>VSQ<br>PARTS                 | 202                 | 3 <b>5.8</b><br>340 | 183          | 143             | 365            | 233         | 34.             | 181                | 184         | 123          | 282            | 1309            | 97           | 130            | 261             | 203            | 2.381          | 15579            |
| EN TRANS                              | 0.0000              | 0.0000              | 0.0000       | 0.0000          | 0.0000         | 0.0000      | 0.0000          | 0.3000             | 0.0000      | 0.0000       | 0.0000         | 0.0000          | 0.0000       | 0.0000         | 0.0000          | 00000          | 0.0000         | 0.0000           |
| EV<br>HEAT<br>(CM2-N                  | 0+0000              | 0.0000              | 0.0000       | 0000.0          | 0.0000.        | 0.0000      | 0.000.0         | 0.0000             | 0.0000      | 0.0000       | 0.0000         | 0.0000.         | 0.0000       | \$300°-        | 6.000n<br>.0243 | 0.0000         | 0.0000         | 0.000.<br>0.0653 |
| EU<br>LATENT                          | 0.0000              | 0.0000              | 0.0000       | 0.000.0         | 0.0000         | 0.0000      | 0.0000          | 0.0000             | 0.0000      | 0.0000       | 0.0000         | 0.0000          | 0.0000       | 0.3000         | 0000.0          | 0.0060         | 0.000-0        | 0.0000           |
| AIR TEMP<br>MEAN SI DEV<br>CENTIGRADE | .5450               | .5920               | 0609°        | .5540           | .5310          | .3170       | .3400           | .2840              | .3730       | .4910        | 0675           | 2.4070<br>.6860 | .5620        | .5750<br>.5170 | .5560<br>.5296  | .5010<br>.5080 | •7230<br>•6750 | 2870             |
| A1R<br>EAN<br>CENT                    | 22.                 | 22.<br>22.          | 26.          | 26.             | 26.<br>26.     | 25.         | 26.<br>26.      | 26.                | 26.<br>26.  | 25.          | 24.            | 22.             | 20.          | 15.            | 13,             | 18.            | 17.            | 17.<br>18.       |
|                                       | .0787               | .0924               | .1760        | .1515           | .0955          | .0217       | •(,358<br>•0432 | .0606              | .0318       | 0404         | 0366           | -,0264          | 0174         | 0450           | ~.0790<br>0316  | 0143           | 0153           | 0235             |
| HU HV HW<br>SENSIBLE HEAT TRANS       | .0971               | .0600               | .0595        | .0572<br>.1393  | ,7190<br>•0860 | 0118        | -,0101          | 0013               | .0195       | 3191         | 0787           | 345             | 0040         | .0091          | 0180            | 0190           | .0190          | .0134            |
| HU<br>SENSIBI                         | 4792                | 6555<br>6584        | 5304<br>6034 | 5922            | -,2528         | 0607        | 2257            | 2567               | 1894        | .2738        | .4519          | .4944           | .1061        | .2800          | .1366           | 3480.          | .3560<br>.3313 | .453C            |
| BETA                                  | 0080                | 0250                | 0220         | -c3220<br>-026U | 0640           | 0080        | (-350           | 0290               | 0180        | 0250<br>2130 | 0130           | 0370            | 20330        | 0.0000         | .0290           | 0330           | 0170           | 6720             |
| RAD                                   | .0001               | .0000               | 0081<br>0018 | 3043            | 0067           | 0094        | 0050<br>0030    | 1.00083<br>1.00083 | 0104        | 0054         | 0076<br>0-0900 | 3087            | 0184         | 016#           | 0194            | 0217           | 013n<br>0978   | 010              |
| E ETA                                 | .1508               | 2538<br>2862        | .0490        | 0434<br>0515    | 0625           | .1647       | 0813            | 0322               | 0331        | -,0089       | .0884          | .0812           | 6772         | 1607           | .0405           | 0147           | 0.0000         | -0120            |
| SITE                                  | 91368<br>0 1<br>C 2 | ~ ~                 | <b>⊷</b> 6.  | ~~              | - 2            | - 2         | -~              | ~ ~                | ни          |              | - 2            | 2               | N            | 7 2            | 7 ~             | - 2            | 7              | ⊷ N              |
| TIME START                            | 91<br>1130<br>1130  | 1200                | 1300         | 1330            | 1400           | 1430        | 1505            | 1535               | 1605        | 1635         | 1705           | 1735<br>1735    | 1805         | 1905           | 1935            | 2605           | 2035           | 2110             |

| WIND<br>SHIFT<br>RND             | 196                | 00000            | 0.000          | .004           | .053           | 017    | 0.000         | 213                | .019           | 0.000         | 0.000         | - 020          | 025            | .015             | .037                   | 070.         | .021             | -003   |
|----------------------------------|--------------------|------------------|----------------|----------------|----------------|--------|---------------|--------------------|----------------|---------------|---------------|----------------|----------------|------------------|------------------------|--------------|------------------|--------|
| WIND<br>DIR<br>RAD               | 4.328<br>4.394     | 4.339            | 4.442          | 4.439          | 4.388          | 4.359  | 4.613         | 4.503              | 4.398          | 0.000         | 0.000         | 4.283          | 4.264          | 4.277            | 4.297                  | 4.324        | 4.360            | 4-376  |
| GSD<br>ANGLE<br>RAD              | .251               | .269             | .280           | .278           | 248            | .264   | .335          | .234               | .256           | 3000          | 0,000         | 276<br>2.2.3   | .275<br>.230   | .268             | .265<br>.266           | .276         | .287             | .274   |
| G<br>AZ IM<br>RAD                | .005               | .032             | .038           | •016<br>•016   | .002           | 008    | .118          | 001                | 012            | 0.000         | 0.000         | ,002           | .022           | .030             | 011                    | 024          | .010             | •00•   |
| F SU<br>ANGLE<br>RAD             | .164               | .187             | .189           | -185           | .152           | .128   | .275          | .356               | .162           | 0.000         | 0.000         | .194           | .183           | .162             | .171                   | .183         | .191             | .178   |
| F<br>ELEV<br>RAD                 | 001                | .017<br>-014     | .008           | .013           | 304            | 009    | .056          | -, 302             | .001           | 5.090<br>.028 | 0.090         | .009           | .021           | •059             | .009                   | .034         | .021             | .018   |
| HOR12<br>WIND<br>CK/SEC          | 151,55<br>153.93   | 546.83<br>153,99 | 152.80         | 123.16         | 113.89         | 106.65 | 81.85<br>0.00 | 126-84             | 96.42<br>93.63 | 0.00          | 156.14        | 154.00         | 174.16         | 212.87           | 254.30                 | 260.56       | 260.32           | 285.70 |
|                                  | 00000              | 0.000            | 000000         | 0.000          | 0.000          | 0.000  | 0.000         | 0.000              | 0.000          | 0.000         | 0.000         | 0.000          | 0.000          | 0.000            | 0.000                  | 0.000        | 0.0000           | 000.0  |
| RUW RUV RWV<br>KEYNOLDS JTRESSES | 039                | 604              | 091            | 152<br>253     | -308           | 051    | .163          | 039                | 048            | 0,000         | 0.000         | .491           | -172           | 290              | .105                   | -134         | 237              | 386    |
| RUK                              | 360                | -,450            | 164            | 272            | 157            | 131    | 960*-         | 269                | 130            | 00000         | 0.000         | -385           | 524            | -1.170           | -1.174                 | -:-243       | -1,345           | -1.454 |
| WSD<br>DEV                       | 22.53              | 24.02            | 24.01          | 19.25          | 15.74          | 12.48  | 11.83         | 18 ¢ 95<br>16 - 82 | 13.44          | 0.00<br>16-39 | 0.00<br>26.18 | 23.49          | 26.96<br>27.63 | 34.80            | 35.70                  | 39.96        | 41.20            | 43-19  |
| USD VSD<br>WIMD ST D             | 35.79<br>34.83     | 36.64            | 38.61<br>40.89 | 30.85          | 25-83          | 20.86  | 19,77         | 28.31<br>26.7i     | 22.15          | 33.47         | 40.91         | 39.24          | 43.44          | 53.63<br>530     | 64.39<br>62.08         | 60.38        | 68.66            | 72.45  |
| USD<br>WI                        | 40-42              | 50.31            | 55.41<br>56.85 | 42.58<br>47.98 | 35.70<br>36.15 | 27.58  | 0.00          | 36.93              | 33.10<br>32.98 | 0.0v          | 55.20         | 48.37<br>52.03 | 55.27          | 74.59<br>76.76   | 87.93<br>90.18         | 95.03        | 90.84            | 95.38  |
| MEAN                             | 147-10             | 142.08           | 147.67         | 119-08         | 101.65         | 104.61 | 19.37         | 123.65             | 93.07          | 1,00          | 161.01        | 131.19         | 166.40         | 208-01<br>208-94 | 2:6.13                 | 259.07       | 250.C1<br>260.08 | 276.14 |
| SITE                             | 91368              | -7               | 468<br>1       | - ~            | 7 7            | ~ ~    | ~ ~           | ~ (·4              | - ~            | - ~           | - 2           | - r:           | ₩ F4           | - N              | ~ N                    | - 8          | - ~              | F4     |
| TIME                             | 91<br>2140<br>2140 | 2210             | 6              | 30             | 110            | 140    | 240           | 335<br>335         | 404            | 0 E E         | 60<br>00<br>0 | 630            | 700            | 730              | 8 80<br>00<br>00<br>00 | 83.5<br>83.5 | 905              | 935    |

| EXCEEDED  | 100,000      | 1972<br>1653 | 3335<br>26 <b>58</b> | 4104           | ± 000<br>6844 | 3326            | 1511           | 15054           | 1820           | 4463             | 7957           | 3142     | 4373   | 3409         | 2453   | 2124       | 3471   | 2773           | 2296       |
|-----------|--------------|--------------|----------------------|----------------|---------------|-----------------|----------------|-----------------|----------------|------------------|----------------|----------|--------|--------------|--------|------------|--------|----------------|------------|
|           | P. R.        | 735          | 1460                 | 1694           | 1673          | 729<br>1436     | 393            | 11557<br>0      | 552<br>1078    | 1355             | 3514           | 1742     | 1553   | 1251<br>2388 | 994    | 902        | 1488   | 1491           | 1005       |
| LIMITS    | PARTS        | 30           | 128<br>83            | 275            | 185           | 138             | 46<br>35       | 0               | 17             | 524<br>128       | 83.8           | 192      | 167    | 203          | 105    | 328<br>367 | 229    | 335            | 145        |
| E E       | N,           | 0.0000       | 0.0000               | 0.0000         | 0.0000        | 0.000c<br>.0273 | 0.0000         | 0000000         | 0.0000         | 0.0000           | 0.0000         | 000000   | 000000 | 9.0000       | 0.0000 | 0,0000     | 0.0000 | 0.0000         | 0.0000     |
| EV E      | _            | 0.0000       | 0.000.               | 0.0000         | 0.0000        | 0000.           | 0.0000         | 0.0000          | 0.0930         | 6.5063<br>• 6062 | 0.0007<br>1051 | 0.0000   | 0.0000 | 0.0000       | 0.0000 | 0.0000     | 0.0000 | 0.0000         | 0.0000     |
| E)        |              | 0.0000       | 0.0000               | 0.0000         | 0.0000        | 0.0000          | 0.0900         | 0.0003          | 0.0000         | 0.0000           | 0.0000         | 0.0000   | 0.0000 | 0.0000       | 0.0000 | 0.0000     | 0.0007 | 9.00C0<br>4355 | 0.0000     |
| TEMP      | CENT 1 GRADE | .4580        | .4130                | .4940<br>.4410 | .5240         | .6230<br>.5913  | .5580<br>.5040 | .408U           | .3480          | 0.4240           | 0.0000         | 0.0000   | .2240  | .3780        | 1.1260 | .4340      | .4270  | .5140          | .4570      |
| AIR       | CEN          | 13.          | 13.                  | 17.<br>16.     | 16.           | 15.             | 14.            | ; °             | 14.            | 13.              | 13.            | c 4<br>4 | 15.    | 16.          | 17,    | 21.        | 23.    | 23.            | 24°<br>25• |
| N A G     |              | 7.050.       | 0553                 | 0638<br>2551   | 0486          | 0361            | 0285           | 0205<br>0.00fi0 | 0401           | 0273             | 0.0000<br>0337 | 0.0000   | 0017   | .0250        | .0244  | .0560      | .1101  | .1209          | .1185      |
| ) I       | , <b>:</b>   | 1100*        | 002:                 | 6/37           | 0215          | 0706            | 0082           | .0055<br>0.3000 | 0014           | 0148             | 0.0000         | 000000   | .0060  | .0143        | .0087  | 0489       | .0553  | 1950.          | .0343      |
| HC<br>FW? | •••CAL       | .2265        | .2029                | .2536<br>.2370 | .1833         | .1693           | -0952<br>-0984 | .1419           | ,1545<br>,1370 | .1013            | 0.000          | 0.0000   | .0024  | 0073         | 2628   | 2747       | 2926   | 4414           | 3802       |
| 8£.7A     | RAD          | 6446         | 2030                 | .0020          | 0070          | .0630           | 0.0000         | 0050            | 0400           | .0070            | .0000          | 0.0000   | 1690   | .0010        | .0116  | 0030       | .0240  | .0060          | 0.0040     |
| THETA     | BAD          | 0349         | 0033<br>0068         | 0141           | 0054          | 3164            | 0184           | 0131<br>0.0000  | 0165           | 0016             | 1.0007         | 0.000    | 0014   | 0133         | 0094   | 0101       | -0000  | 0001           | .0017      |
| ETA.      | RAD          | -1937        | 0098                 | 1050           | 0094          | 1391            | .0156          | .1772           | .3223          | 0023             | 0.0000<br>0597 | 0.000    | .0392  | .0156        | 0227   | 0110       | 0040   | -,0026         | 0089       |
| SITE      |              | 91368        | ~ 2                  | 91468          | 1 2           | 7               | ~ 7            | H 6             | ·4 62          | ~ N              |                | ~~       | ~ ~    | 7            | r 8    |            | 7      | ~~             | n.v        |
| TEME STIE | ·            | 214C<br>2140 | 2210                 | 6              | 30            | 110             | 140            | 240             | 335<br>335     | 405<br>405       | R. R.<br>C. O. | 004      | 630    | 700          | 730    | 800<br>800 | 835    | \$06<br>\$06   | 935        |

| WIND<br>SHIFT<br>RAD                    | .032                     | 010               | 148              | .155<br>-1.503   | .031           | 030              | 057              | .029             | 005              | 690    | .035             | .069             | .003             | 025              | 052              | 032          | 034              | 013    |
|-----------------------------------------|--------------------------|-------------------|------------------|------------------|----------------|------------------|------------------|------------------|------------------|--------|------------------|------------------|------------------|------------------|------------------|--------------|------------------|--------|
| WIND<br>DIR<br>RAD                      | 4.350                    | 4.396             | 4.413            | 4.508            | 4.354          | 4.325            | 4.267            | 4.283            | 4.289            | 4.232  | 4.248            | 4.311            | 4.309            | 4.261            | 4.250            | 4.208        | 4.171            | 4.178  |
| GSD<br>AN'SLE<br>RAD                    | .289                     | .296              | .280             | .302             | .289           | .290             | .291             | .302             | .289<br>.298     | .278   | .291             | .264             | .282             | .264             | .235             | •251<br>•233 | .204             | .257   |
| G<br>AZIN<br>RAD                        | 054                      | .003              | .008             | .036             | .003           | .005             | .055             | 010              | .033             | .014   | 005              | 012              | -016             | 039              | 0.000            | 009          | 012              | 0.000  |
| FSD<br>ANGLE<br>RAD                     | .185                     | •191              | .181             | 191              | .182           | .184             | .183             | .181             | .177             | .169   | .169             | .171             | .136             | .114             | .160             | .167         | .164             | .172   |
| FLEV                                    | .024                     | .022              | .019             | .030             | .022           | .025             | .021             | .019             | .018             | .013   | .006             | .018             | .023             | .021             | 900              | 003          | 010              | 005    |
| HOR12<br>WIND<br>CM/SEC                 | 281.38<br>0.00           | 305.31<br>34.7.83 | 319.55           | 305-19           | 369.33         | 283.11<br>346.11 | 260.60           | 265.93<br>320.11 | 302.59<br>353.97 | 319.88 | 320.53<br>389.35 | 253.75<br>316.53 | 233.14<br>290.76 | 196.65<br>249.8f | 273-82           | 155.25       | 118.51<br>155.32 | 126.83 |
| RWV                                     | 000.0                    | 00000             | 0.000            | 0.000            | 0.0000         | 0.000            | 0.0000           | 0.000            | 0.000            | 0.000  | 0.000            | 0.000            | 0.000            | 00000            | 0.000            | 00000        | 0.000            | 0.000  |
| RUW RUV RWV<br>REYNOLDS STRESSES        | .163                     | 8.817             | 017<br>3.641     | .521             | .683           | .103             | 190              | -2.204           | -197             | 013    | .582             | 856              | 329              | 216              | 780              | -181         | 092              | 232    |
| REYNO                                   | -1.525                   | -1.883            | -1-897           | -1.807           | -1.932         | -1.647           | -1.344           | -1.397           | -1.751           | -1.855 | -1.689           | -1.270           | 1.007            | 738              | 589              | 431          | 211              | 280    |
| MSD<br>DEV                              | 42.51                    | 48.08<br>51.11    | 54.79            | 47.15<br>55.15   | 48-59<br>56-45 | 14.28            | 41.04            | 40.63            | 46.82            | 47.82  | 47.55<br>57.81   | 37.91            | 37.23            | 30-33            | 29.30            | 22.89        | 17.64            | 19.07  |
| 7 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × | 72.38                    | 87.57<br>131.10   | 85.55            | 89.76            | 87.13          | 77,89            | 71.76            | 76.59            | 94.53<br>100.43  | 87.45  | 112.17           | 93.34            | 63.43            | 49.74            | 55.71            | 36.39        | 28.02<br>52.77   | 30.23  |
| USD<br>WIN                              | 105.66                   | 116.55            | 113.64           | 119.18<br>127.95 | 117.13         | 99.09            | 91.77            | 96.97            | 98.71            | 102.80 | 101.24           | 94.84            | 85.46            | 70.87            | 66.24            | 52.42        | 40.04            | 39.69  |
| MEAN                                    | 271.49                   | 293-12            | 308,12<br>364.23 | 292.70           | 354.89         | 272,35           | 250.68<br>301.56 | 254.98<br>304.76 | 290.77           | 306.05 | 309.57           | 245.56<br>304.38 | 224.96<br>200.28 | 190.44           | 194.54<br>240.31 | 150.91       | 115.15<br>152.29 | 123.09 |
| SITE                                    | 2 4 6                    | 7 7               | 7                | 7                | ~~             | ~ ~              | 7 2              | - ~              | 7                | (1     | ~ ~              | ~~               | m N              | 7                | - 2              | - 2          | ~ ~              | - 2    |
| START                                   | 9146<br>1005 1<br>1005 2 | 1035              | 1105             | 1200             | 1230           | 1310             | 1335             | 1400             | 1425             | 1450   | 1530             | 1600             | 1630             | 1700             | 1735             | 1835         | 1835             | 1905   |

| ETA THETA                                                | THE<br>RA                 | HETA                      | BETA           | HU<br>SENSTBI | HU HV HW<br>SENSIBLE HEAT TRANS<br>***CAL/(CM2-MIN)*** | -                                      | AIR<br>MEAN<br>CENTI | AIR TEMP<br>MEAN ST DEV<br>CENTIGRADE | EU<br>LATENT | EV<br>HEAT<br>(CM2 -v | EW<br>TRANS<br>IIN) | LIMITS<br>VSQ<br>PARTS PE | பூட்               | CEEDED<br>6<br>100+000 |
|----------------------------------------------------------|---------------------------|---------------------------|----------------|---------------|--------------------------------------------------------|----------------------------------------|----------------------|---------------------------------------|--------------|-----------------------|---------------------|---------------------------|--------------------|------------------------|
| 0340 0.000003903425<br>0.0000 0.0000 0.0000 0.0000       | 0.0000-0                  | 0.0000-0                  | 7.342<br>7.700 | m C           | .0701                                                  | •1119<br>0•000                         | 24.                  |                                       | 0000000      | 0.0000                | 000000              | 373                       | 1482               | 4386                   |
| .0068002401806326<br>6785 .012912609107                  | 0160                      | 0160                      | 6326           |               | .0355<br>1837                                          | .1610                                  | 26.                  | .5660                                 | 0.0000       | 0.0000-               | 0.0000              | 692<br>3019               | 1625               | 3518<br>8697           |
| ~*0160 -*0019 -*0210 -*5956<br>*1771 *3089 *0500 -*5806  | 0210                      | 0210                      | 5956<br>5806   |               | .0506<br>0753                                          | 1502                                   | 26.                  | .5990                                 | 0.0000       | 0.0000                | 0.0000              | 319                       | 1054               | 2101                   |
| .0842 .003303605774<br>:5003 .015400906182               | 0360                      | 0360                      | 5774           |               | .0454                                                  | .1587                                  | 26.                  | .5860                                 | 0.5000       | 0.0000                | 0.0000              | 827<br>161                | 1971<br>962        | 3200                   |
| 0286 .000901602735<br>9643 .0154 .01062759               | 0160                      | 0160                      | 2735           |               | .1585                                                  | .1302                                  | 25.                  | .6590                                 | 0.00008637   | 0.0000                | 0.0000              | 248                       | 1073               | 2222                   |
| .0297 .002801504016<br>.0484 .0058 .07303619             | 0150                      | 0150                      | 4016           |               | .0529                                                  | .1226                                  | 25.                  | .5480                                 | 0.0000       | 0.0000                | 0.0000              | 169<br>339                | 1123               | 2168                   |
| **************************************                   | 0140                      | 0140                      | 4385           |               | .0684                                                  | 11207                                  | 26.                  | .3940                                 | 0.0000       | 0.0000                | 0.0000              | 212                       | 1108               | 2465<br>2197           |
| 0342003404303605<br>08700001 .07003910                   | .0430                     |                           | 3605           |               | 0671                                                   | .1395                                  | 26.                  | .5090                                 | 0.0000       | 0.0000                | 0.0000              | 466<br>626                | 1269               | 2937<br>3367           |
| .3040001703103546<br>.3461 .0098 .01304134               | 0310                      |                           | 3546           |               | .0239                                                  | .1287                                  | 27.                  | .4290                                 | 0.0000       | 0.0000<br>.1112       | 0.0000              | 131                       | 674<br>1014        | 1686                   |
| .01180049011902858<br>.0898000901602470                  | 0190                      |                           | 2858           | •             | -0194                                                  | .0900                                  | 27.                  | .3080                                 | 0.0000       | 0.0000                | 0.0000-             | 136                       | \$18<br>233        | 6.44                   |
| 03040107202901624<br>00960103 .15602114                  | 0290                      |                           | 1624           |               | .0320                                                  | .0532                                  | 26.                  | .2100                                 | 0.0300       | 0.0000                | 0.0000              | 1100                      | 406                | 939                    |
| 08130015 .00401116<br>07100098 .22501080                 | .2250                     | .2250                     | 1116           |               | .29153                                                 | .0140                                  | 28.                  | .9290                                 | 0.0000       | 0.0000                | 0.0000              | 76<br>192                 | 754<br>1285        | 1621 2384              |
| -,0053 .0031 -,0350 -,0460<br>.0215 -,0613 -,1950 -,0347 | 0350                      |                           | 0460           |               | .0043                                                  | 1085                                   | 28.                  | .2830                                 | 0.0000       | 0.0000                | 0.0000              | 321<br>348                | 1342<br>1047       | 2765                   |
| .0508 .00320320 .2044 .                                  | 0320 .2044<br>1890 .2083  | 0320 .2044<br>1890 .2083  |                |               | 0564                                                   | ************************************** | 27.                  | .4120                                 | 0.0000       | 0.0000                | 0.0000              | 185                       | 1001 253           | 2742<br>1766           |
| .054300970210 .2905<br>.060401312250 .2267               | 0210 .2905<br>2250 .2267  | .2267                     |                | •             | .0092                                                  | 0617                                   | 24.                  | .4860                                 | 0.0000       | 0.0000                | 0.0000              | 4<br>0 m                  | 52 <b>6</b><br>115 | 1168                   |
| .024801450060 .3364 .                                    | 2160 .3364                | 2160 .3364                |                |               | 0369                                                   | 0544                                   | 23.                  | .5590                                 | 0.0900       | 3.0000                | 0.0000              | 107                       | 368                | 2339                   |
| .03060076 .0460 .0746<br>.000401572080 .1307             | .0460 .0746<br>2080 .1307 | .0460 .0746<br>2080 .1307 |                |               | 0136                                                   | 0317                                   | 24.                  | .6940                                 | 0.0000       | 0.0000                | 0.0000              | 13                        | 669<br>155         | 2657                   |
| 00760126 .0460 .1984<br>.000601562120 .3644              | .0460 .1984<br>2120 .3644 | .0460 .1984<br>2120 .3644 |                |               | 0364                                                   | 0515                                   | 24.                  | .4880                                 | 0.0000       | 0.0000                | 0,0000              | 102                       | 1135               | 3382<br>700            |

| WIND<br>SHIFT<br>RAD             | 003                      | .009           | 039            | 288    | 041              | • 000          | •000           | 003            | .014             | .001   | 004              | .009             | .017   | 003            | 006          | .037             | 009              | 003        |
|----------------------------------|--------------------------|----------------|----------------|--------|------------------|----------------|----------------|----------------|------------------|--------|------------------|------------------|--------|----------------|--------------|------------------|------------------|------------|
| WIND<br>PIR<br>RAD               | 4.172                    | 4.193          | 4.140          | 3.864  | 3.964            | 3.958          | 3.868          | 3.869<br>3.931 | 3.869            | 3.873  | 3.675            | 3.878            | 3.891  | 3.886          | 3.889        | 3.893            | 3.833            | 3.895      |
| GSD<br>A.VGLE<br>RAD             | .244                     | .258           | .195           | .217   | .257             | .217           | .258           | .254           | .266             | .228   | .261             | .276             | .270   | .253<br>.211   | .245<br>.233 | .255<br>.218     | .253             | .257       |
| AZIM<br>RAD                      | 004                      | .038           | 305            | .007   | 002              | -0005          | 007            | 004            | 017              | 015    | 008              | 014              | 027    | 020            | 012          | 014              | 004              | 001        |
| FSD<br>ANGLE<br>RAD              | .158                     | .174           | .148           | .165   | .161             | .178           | .169           | .159           | .168             | .169   | .170             | .099             | .161   | .163           | .167         | .173             | .167             | .176       |
| F<br>ELEV<br>RAD                 | .003                     | 0.00-          | 003            | 004    | 007              | 011            | 002            | 001            | 010              | 003    | 005              | .003             | 003    | 001            | 004          | 003              | 012              | .000       |
| HORIZ<br>WIND<br>CM. SEC         | 125.96<br>167.34         | 147.15         | 118.41         | 148.09 | 141.18<br>166.66 | 130.57         | 148.97         | 150.92         | 122.52<br>153.89 | 126.26 | 140.84           | 113.20<br>147.18 | 101.48 | 143.75         | 151.60       | 161.70           | 167-36<br>205.54 | 180.22     |
| •                                | 000.0                    | 0.000          | 0.000          | 0.000  | 000000           | 000000         | 0.000          | 00000          | 00000            | 000000 | 00000            | 00000            | 000000 | 0.000          | 000000       | 0.000            | 0.000            | 000000     |
| RUW RUY RWY<br>REYNOLDS STRESSES | 7.065                    | 100            | 626            | .051   | .04E             | 040            | 316            | .039           | .025             | .007   | .363             | 032              | 024    | 603            | .028         | 347              | .166             | .105       |
| RUW<br>REYNO                     | 244                      | 385            | 188            | 381    | 315              | 232            | 350            | 364            | 257              | 308    | 344              | 229              | 143    | 361            | 330          | 451              | 449              | 597        |
| 45b<br>05v                       | 17,54                    | 22.37          | 15.87          | 21.38  | 20.73            | 19.70          | 22.08<br>16.29 | 21.17<br>:4.82 | 17.87            | 18.66  | 20.90            | 17.11            | 14.52  | 20.53          | 21.80        | 23.58            | 24.36            | 27.33      |
| VSD<br>C ST                      | 28.87<br>35.88           | 35-32          | 25.01<br>30.48 | 36.09  | 34.59            | 31.78<br>36.61 | 36.07          | 36.33          | 33.99            | 31.08  | 34.22            | 28.56<br>31.21   | 25.63  | 34.16          | 34.57        | 38.22<br>43.50   | 39.66            | 56.85      |
| USD<br>W1N                       | 37.29                    | 47.53<br>47.58 | 31,84          | 46.94  | 40.33            | 43,37          | 46.42<br>52.15 | 46.30          | 37.41            | 41.99  | 42.69            | 37.27            | 31.30  | 47.62<br>50.66 | 46.87        | 48.17            | 54.63            | 59.44      |
| KEAN                             | 122.57                   | 142.78         | 115.66         | 143.57 | 136.8?<br>162.63 | 126.49         | 144.48         | 146.47         | 150.66           | 122.30 | 136.51<br>165.86 | 109.43           | 98.15  | 139.62         | 147.52       | 156.93<br>192.03 | 162.55           | 174.40     |
| SITE                             | €0                       | 7              | m fil          | 7      | 2 2              | -~             | 568<br>1<br>2  | ~ ~            | 7                | 2      | 7 7              | - 2              | 72     | - 2            | 7 7          | - ~              | H N              | - 2        |
| START                            | 9146<br>1930 1<br>1930 2 | 2000<br>2000   | 2030           | 2230   | 2300             | 2330           | 919            | 30             | 001              | 130    | 200              | 230              | 000    | 330            | 000          | <b>430</b>       | 500              | 530<br>530 |

| DED<br>G       | 100+000      | 2355                      | 2350<br>1286 | 1760         | 2*54       | 1845   | 3260<br>1345 | 2260<br>1369 | 1782<br>861 | 2996          | 2555<br>1273 | 2523   | 3990<br>976 | 3563    | 2116      | 1791<br>177                             | 2350          | 2002   | 2164   |
|----------------|--------------|---------------------------|--------------|--------------|------------|--------|--------------|--------------|-------------|---------------|--------------|--------|-------------|---------|-----------|-----------------------------------------|---------------|--------|--------|
| S E            | PER          | 707                       | 1166         | 003          | 968<br>207 | \$0¢   | 1564         | 957<br>281   | 999         | 925<br>169    | 1099<br>308  | 990    | 1538        | 190     | 763<br>92 | 876<br>209                              | 11,11         | 111    | 1053   |
| LIMITS<br>VSO  | PARTS        | 25                        | <b>30</b> W  | 21           | 140        | 000    | 159          | 96           | ₹ o         | 78            | 3.5          | 7,4    | 205         | 13      | 170       | 26                                      | 136           | 39     | 124    |
| RANS           | -MIN)        | 0.0000                    | 0.0000       | 0.0000       | C.0000     | 0.0000 | 0.0000       | 0.0000       | 0.0000      | 0.0000        | 0.0000       | 0.0000 | 0.0000      | 0.0000  | 0.0000    | 000000                                  | 0.0500        | 0.0000 | 6,3000 |
| EV             | 1 CM2-M1     | 0.0000                    | .0164        | 0.0000       | 0.0000     | 0.0000 | 0.0000       | 0.0000       | 0.9900      | 0.0000        | 0.0000       | 0.0000 | 0.0000      | 0.00.00 | 0.0000    | 0.0000                                  | 0.0000        | 3.0000 | 0.0000 |
| W              | · · · · CAL  | 0.0000                    | 0.0000       | 0.0000       | 0.0000     | 0.0000 | 0.0000       | 0.0000       | 0.0000      | 0.0000        | 0.0000       | 6.0000 | 0.0001      | .0000   | 0.0000    | 3000.0                                  | 0.0000        | 0.2000 | 0.0000 |
| ST DEV         | IGPADE       | .3843                     | .3920        | .5210        | .3550      | .3350  | .9220        | .3640        | .3170       | .3980         | .3340        | .3570  | .3450       | .3960   | .3950     | .1860                                   | .2380<br>0752 | .2670  | .2050  |
| AIR )          | ENT          | 24.                       | 24.          | 6.45         | 23.        | 22.    | 22.          | 24.          | 24.         | 23.<br>23.    | 23.          | 23.    | 22.         | 22.     | 22.       | 21:                                     | 21.           | 22.    | 22.    |
|                | •            | 0387                      | 0585         | 0353<br>0508 | 0499       | 0427   | 0401         | 0416         | 3434        | 0372          | 0404         | 0396   | 0316        | 0241    | 0350      | 0237                                    | 0287          | 0273   | 0306   |
|                | / (CM2-NIN)  | 0020                      | 0122         | 0140         | -00007     | .0065  | .0034        | 0060         | .0045       | .0078<br>0073 | .0033        | .0060  | 0021        | 0019    | .0109     | 0028                                    | .0011         | .0177  | .00%   |
| HU<br>SENS 181 | · · · · CAL/ | .1704                     | .2161        | .1432        | .1970      | .1547  | .2717        | .1669        | .1801       | .1445         | .1761        | .1417  | .1673       | .1186   | .1826     | .1180                                   | .1240         | .1467  | .1251  |
| BETA           | RAO          | 2130                      | .0266        | 0100         | 2530       | 0510   | 2260         | 0360         | 0420        | 0430          | 0180         | 0270   | 0530        | 0260    | 0490      | 0030                                    | 2300          | 0530   | 2430   |
| THETA          | RAD          | 0111                      | 0091         | 0139         | 0137       | 0218   | 0097         | 0184         | 0167        | 0115          | 0146         | 0152   | 0157        | 0161    | 0175      | 0194                                    | 0171          | 0119   | 0108   |
|                | RAD          | 0010                      | 0139         | .0387        | -2918      | 0063   | 0094         | 0058         | .0030       | 0131          | 0021         | .0052  | 0149        | 0182    | .2217     | .0067                                   | 0072          | -0140  | .0360  |
| SITE           |              | 7 7 7                     | 7            | ~ ~          | -2         | ~ Z    | - 2          | 91568        | - 7         | 7             | ~ ~          | 7      | ~ ~         | 7       | 7         | - 7                                     | <u> </u>      | 7      | 77     |
| TIME           |              | 91466<br>1930 1<br>1930 2 | 2000         | 2030         | 2230       | 2300   | 2330         | 16           | 30          | 100           | 130          | 200    | 230         | 300     | 330       | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 430<br>430    | 200    | 530    |

ter a fewer of the descensional conservation of present of the second of the sold of the second of t

| HIND<br>SHIFT<br>AAD             | 010            | 023                                 | 330              | 048               | 044                      | 003              | 0.000                          | 0.000                      | .052                                   | 000.0                      | .058                                              |
|----------------------------------|----------------|-------------------------------------|------------------|-------------------|--------------------------|------------------|--------------------------------|----------------------------|----------------------------------------|----------------------------|---------------------------------------------------|
| WIND<br>DIR<br>RAD               | 3.889          | 3.873                               | 3.838            | 3.794<br>3.911    | 3.921                    | 3.748            | 4.409                          | 3.795                      | 3.806                                  | 3.812                      | 3.824<br>0.000                                    |
| GSD<br>ANGLE<br>ZAD              | .265           | .269                                | .350             | .342              | .309                     | .352             | .396                           | .326                       | .386                                   | .364                       | 000000                                            |
| G<br>AZ IM<br>RAD                | •004           | .010 .269                           | .005             | .010              | .019                     | .010             | .13!                           | -,209                      | 249                                    | .227177                    | 223                                               |
| FSD<br>AiGLE<br>RAD              | .172           | .181                                | .196             | .190              | .214                     | .187             | .392                           | 010 - 154<br>0-000 0-000   | 0.000                                  |                            | .217                                              |
| F<br>ELEV<br>RAD                 | 007            | 36-82 ,008 .181<br>0,00 0,000 0,000 | .018             | .019              | .019                     | .010             | .220                           | .019                       | 000.0                                  | . U38                      | 21.93 .030 .217223 .356<br>0.00 0.000 0.000 0.000 |
| HORIZ<br>WIND<br>CM/SEC          | 188.82         | <u>~</u>                            | 189.63<br>154.35 | 201-76<br>158, 70 | 0.000 194.65             | 236.91           | 262.02<br>208.40               | 0.000 336.88               | 0.000 332.11<br>0.000 0.00             | 0.000 330.56               | 0.000 321.93 .030 .217 ~.223                      |
| PWV                              | 00000          | 0.000                               | 000000           | 0.000             | 0.000                    | 0.000            | 0.000                          | 0.000                      | 0.000                                  | 0.000                      | 0.000                                             |
| RUW RUV PWV<br>REYNOLDS STRESSES | -027           | , 180<br>0,000                      | .124             | .136              | .085                     | -102             | 15,460                         | 7.506<br>0.000             | 9304<br>0*000                          | .719<br>000-0              | 264                                               |
| RUW<br>REYN:                     | 579            | 0.000                               | 794              | 716               | A01                      | -1.031           | -2.120                         | -2.402<br>0.000            | 1.934                                  | -1.979                     | -1.941                                            |
| WSD<br>EV                        | 25.08          | 29.45                               | 29.78            | 31,33             | 32.37                    | 37.32<br>35.08   | 69.38<br>57.64                 | 50.96                      | 48.78                                  | 00.00                      | 48.63<br>0.00                                     |
| USD VSD WSD WIND ST DEV          | 46.43<br>51.15 | 0.00                                | \$1.94<br>49.33  | 51.80             | 53.72                    | 63.85            | 164.72<br>109.72               | 0.04                       | 101.37                                 | 97.96                      | 97.46                                             |
| USD<br>WI<br>***CM/S             | 65.52          | 0.00                                | 66.89<br>66.89   | 71.26             | 82.68<br>72.72           | 85.23            | 196.63 164.72<br>161.77 109.72 | 135.86                     | 166.85                                 | 150.78                     | 136.75                                            |
| MEAN                             | 182.91         | 190-35                              | 182.09<br>146.61 | 194.82            | 187-12                   | 228.11<br>180.81 | 213,52                         | 322-32 135-86<br>0-00 0-00 | 315.62 146.85 101.37<br>0.90 0.00 0.00 | 313.63 150.78<br>0.00 5.01 | 307.63 136.75<br>0.00 0.00                        |
| SITE                             | 91568          | m 1/2                               | ~ ~              | 7 7               | 0                        | ~ ~              | H N                            |                            | - ~                                    | ٠,                         | <b>→ /</b>                                        |
| TIME SITE<br>START               | 916            | 630                                 | 700              | 730               | 800<br>800<br>800<br>800 | 830<br>830       | 1200                           | 1300                       | 1336                                   | 1400                       | 1430                                              |

| EDED<br>6<br>0•000                            | 2093<br>1547                  | 2286                       | 4391                       | 3119                          | 5179<br>12454                 | 2432<br>9421                  | 43367                         | <b>6626</b><br>0                      | 15324                  | 11133                      | 11116                                |
|-----------------------------------------------|-------------------------------|----------------------------|----------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------------|------------------------|----------------------------|--------------------------------------|
| LIMITS EXCEEDED VSQ F G G G PARTS PER 100.000 | 936                           | 1266                       | 1907                       | 1691                          | 2897                          | 1273                          | 37812                         | 2128                                  | 949                    | 5718<br>0                  | 400                                  |
| LIMI1<br>VSQ<br>PARTS                         | 171                           | 137                        | 366                        | 299                           | 814                           | 232                           | 27165                         | 1040                                  | 5252<br>0              | 4819                       | 3216<br>0                            |
| EV<br>Ars                                     | 0.0000                        | 0.000,0                    | 3640.                      | 65.50.<br>0000.0              | .1201                         | 0.0000                        | 0.0000.                       | 0.0000                                | 0.0000                 | 0.000.0                    | 0.0000.0                             |
| EU EV EW<br>LATENT HCA! TRANS                 | 0,0000                        | 0.000.0                    | 0.0000                     | 0.0000                        | 0.0000                        | .1044                         | 0.0000                        | 0.0000                                | 0.000.0                | 0.000.0                    | 0.000.0                              |
| EU<br>LATENT<br>CAL/                          | 0.0000                        | 0.000.0                    | 0.0000                     | 0.0000                        | 0.0000                        | 0.0000                        |                               | 0.000.0                               | 0.000                  | 0.000.0                    | 0000000                              |
| AIR TEMP<br>IEAN ST DEV<br>CENTIGRADE         | .1970                         | 0.2400                     | .2900 (                    | . 64430                       | .7436                         | .5850                         | .8080 0.0000<br>.9590-18.6285 | .6160                                 | 0.4820                 | .5250                      | 244300 C                             |
| A I R<br>MEAN<br>CENTI                        | 22.                           |                            | 23.                        | 24.                           | 26.                           | 24.                           | 25.                           |                                       | 2.<br>c                | 25.                        | 24.<br>0.0                           |
| 2.                                            | 0207 22.<br>0202 21.          | 0007 23.                   | .0314                      | .0523                         | .0937                         | .1245                         | .1708                         | .2072 25.<br>0.0000 0.                | .1460                  | .1600                      | .1334 24.<br>0.0000 0.               |
| HU HV HW<br>SENSIBLE HEAT TRANS               | 60015<br>-00007               | *005*                      | .0029                      | 0061                          | 0383                          | .0163                         | -1.2484                       | 00033                                 | 1400                   | 0537                       | 0.0040                               |
| HU<br>SENSIBL                                 | .0886                         | 0178                       | 1378<br>1288               | 1409                          | 4441                          | 3712                          |                               | -, 7896<br>9.0000                     | 4554                   | 5311<br>3.9000             | 4801<br>0-3000                       |
| BETA                                          | 0646                          | 0.0010                     | 0320                       | 0270                          | 0409                          | 01/0                          | .0340 -2.24^9<br>1960 -1.9726 | 0020                                  | 0180                   | 0180                       | 0.000.0                              |
| THETA                                         | .008601940C4G<br>005700072040 |                            | .02510095 .<br>.51060309 . | -046601840270<br>162102566680 | -034501170409<br>022702500873 | .000701290170<br>139902970850 | 0074                          | .266801180020<br>0.0000 0.0000 0.0000 | 105200490180<br>0-0000 | .026101410180              | 096501410250<br>3.0000 0.0000 0.0000 |
| ETA                                           | -00086                        | .02420147<br>0.0000 0.0000 | .0251<br>.5106             | .0466                         | -0345                         | .0007                         | 4450                          | .2668                                 | 1052                   | .02610141<br>0.0000 1.0000 | 0000-0                               |
| SITE                                          | 91568<br>0 1<br>0 2           | ~ K                        | 1 2                        | 1 2                           | 1 2                           | 7                             | 7                             | ~ ~                                   |                        | - ~                        | - C                                  |
| TIME SITE<br>SIART                            | 913<br>600<br>600             | 630<br>630                 | 7007                       | 730                           | 800                           | 830                           | 1200                          | 1300                                  | 1330                   | 1400                       | 1430                                 |

## IDENTIFICATION OF HEADINGS ON DATA LISTING

TIME:

Starting time. Pacific Standard time in 1967 and Central Standard in 1968. During 1967, the runs ended at 1 minute and 20 seconds before the hour or half-hour. During 1968, runs were for 30 minutes.

SITE (1967): The site description is given in Chapter 1, as are the instrument locations for April 26-27, and May 2-5. On April 22-25, all anemoclinometers were at 1 meter at the north end of the field.

SITE (1968): Site 1 was located 60 meters south of the instrument trailer in a field of snapbeans. A 3-cm anemoclinometer was mounted at a height of 117 cm. The beans were 25 to 30 cm high.

Site 2 was 10 meters east of site 1. A 3-cm anemoclinometer was mounted at a height of 117 cm except following 1030 on September 14, when the anemoclinometer was moved to 210 cm until 0630 on September 15. It was at 75 cm after 0700 on September 15 for the remainder of the day.

The bean fetch was 60 meters to the north, 50 meters to the east and west, and 100 meters to the south. Beyond the beans to the south was alfalfa extending for 150 meters to a 15-meter high woods. To the west was a 100-meter alfalfa field extending to a 10-meter high shelter belt. Fetch to the northwest beyond the beans was 200 meters of low crops to a shelter belt. To the east was 300 meters of alfalfa extending to a woods.

Mean wind:  $\overline{U}$ .

USD: Standard deviation,  $(\underline{u'^2})^{\frac{1}{2}}$ , cm/sec.

VSD: "  $(\underline{v'^2})^{\frac{1}{2}}$ , cm/sec.

WSD: "  $(\underline{w'^2})^{\frac{1}{2}}$ , cm/sec.

RUW: Reynold's stress,  $\underline{0u'w'}$ , dynes/cm<sup>2</sup>.

RUV: "  $\underline{0u'v'}$ , dynes/cm<sup>2</sup>.

RWV: "  $\underline{0u'v'}$ , dynes/cm<sup>2</sup>.

HORIZ. WIND: Equivalent to anemometer wind,  $(\underline{u_1^2 + v_1^2})^{\frac{1}{2}}$ , cm/sec.

F, ELEV. ANGLE: Mean angle of wind with  $x_1$ ,  $y_1$  plane of anemoclincmeter,  $\overline{F}$ .

plane of anemoclinemeter,  $\overline{F}_4$  in program, radians. FSD, ELEV. ANGLE: Standard deviation of F,  $(\overline{F}')^2$ . G, AZIM. ANGLE: Mean angle of wind with the  $x_1$ ,

 $s_1$  plane of the anemoclinometer,  $(\overline{G}_2$  in program), radians.

GSD, AZIM. ANGLE: Standard deviation of azimuth angle,  $(G'_4)^2$  in program.

WIND DIR: Mean wind azimuth direction,  $\overline{G}_2 + \overline{G}_3$  in program, measured clockwise from North, radians. (The listing is incorrect and gives mean  $G_3$ ; the G AZIM. ANGLE,  $\overline{G}_2$ , should be added to give the wind direction).

WIND SHIFT: Change in azimuth of mean direction for one half-hour period from the previous half-hour,  $\overline{G}_4$  in program.

ETA: Azimuth angle used in coordinate transform, arctan  $(\bar{v}_1/\bar{u}_1)$ , radians.

THETA: Elevation angle used in coordinate transform, arctan  $[\bar{w}_1/(\bar{u}_1^2+\bar{v}_1^2)^{\frac{1}{2}}]$ , radians.

BETA: Rotation angle about x-axis (anemoclinometer axis), to force  $\overline{w'v'} = 0$ , see transform program.

HU:  $\mathfrak{oc}_{\mathfrak{D}} \overline{\mathfrak{u}'\mathfrak{T}'}$ , cal  $\mathfrak{cm}^{-2} \mathfrak{min}^{-1}$ .

HV:  $\rho C_p \overline{v'T'}$ , cal cm<sup>-2</sup>min<sup>-1</sup>.

HW:  $\mathfrak{oc}_{p}^{\overline{w'r'}}$  vertical heat flux, cal cm<sup>-2</sup>min<sup>-1</sup>.

AIR TEMP. MEAN: Mean air temperature, Celsius .

AIR TEMP. ST. DEV:  $(T^{2})^{2}$ .

EU:  $\lambda \overline{u'q'}$ , cal cm<sup>-2</sup>min<sup>-1</sup>

EV:  $\lambda \overline{v'q'}$ , cal cm<sup>-2</sup>min<sup>-1</sup>.

EW:  $\lambda \overline{w'q'}$  (latent heat of evaporation), cal cm<sup>-2</sup>min<sup>-1</sup>.

LIMITS EXCEEDED (times per 100,000 scans):

VSQ: Times V<sup>2</sup> voltages were negative and set equal to zero (Program equation [1A]).

- F: Times elevation angle, F, exceeded  $40^{\circ}$  (0.698 rad) and was set equal to  $40^{\circ}$  (program equation [7]).
- G: Times azimuth angle, G2, exceeded 40° and was set equal to 40° (Program equation [5]).

In 1967, the position of the anemoclinometer was fixed and the azimuth angle G often was very large. When G was greater than 25°, the data were discarded. When correlation coefficients between u', v', and w' exceeded unity, the run was discarded.

The data listing obviously includes more digits than are experimentally significant.

## Notes on 1968 Data

No effort has been made to check the data gathered at Hancock, Wisconsin during 1968. The only data excluded were those where notes indicated obvious instrument failure or when winds were less than 50cm/sec.

There were times when the azimuth servo-drive failed and had to be replaced. The accuracy of the azimuth angle may be in doubt during preceeding periods. Some notes regarding questionable periods are given below.

- Site 1: The azimuth potentiometer was not referenced during September 11-12
- Site 2: The servo system definitely malfunctioned from 2000h September 11
  through 0550h September 12. The
  motor required replacement at
  1200h on September 12. From
  1035h September 14 onward, the
  anemoclinometer was on a mast driven
  at 1/3 the earlier speed. We believe
  performance was satisfactory; however, the slow response may have
  created larger error than would be
  observed with a faster motor.
- General: At night when winds were intermittent and low, the uv signal to the servo system occasionally was too low to actuate the motor. If wind direction had shifted appreciably following a calm period, at times the servo system turned the

wrong direction until it struck a limit stop.

## Data differences between site 1 and site 2:

Lower horizontal wind, higher | pu'w' | and more negative ou'v' generally are observed at Site 2. This possibly may be due to spatial heterogeneity of the row crop; however, a more likely possibility is that the differences are due to the location of the humidity sensor (see Chapter 5), which may have changed the wind flow around the sphere. There may be other reasons, not yet considered.

Security Classification

| DOCUMENT CONT (Security classification of title, body of shefrect and indexing                      |                  |             | overall report is classified;    |
|-----------------------------------------------------------------------------------------------------|------------------|-------------|----------------------------------|
| 1. ORIGINATING ACTIVITY (Corporate author)                                                          |                  |             | CURITY CLASSIFICATION            |
| University of Wisconsin                                                                             |                  | Uncl        | assified                         |
| Medison, Wisconsin 53706                                                                            |                  | 26. GROUP   |                                  |
| ANEMOCLINOMETER MEASUREMENTS OF REYNOLDS SURFACE LAYER                                              | STRESS AND H     | EAT TRANSP  | ORT IN THE ATMOSPHERIC           |
| A. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final report - October 1965 to January 19 | 69               |             |                                  |
| R. AUTHOR(8) (First name, middle initial, leat name) Champ B. Tanner and Peorge W. Thurtell         |                  |             |                                  |
| April 1969                                                                                          | 74. TOTAL NO. 01 | PAGES       | 78. NO. OF REFS<br>56            |
| SA. CONTRACT OR GRANT NO. DA-AMC-28-043-66-G22                                                      | SE ORIGINATOR'S  | REPORT NUMB | E P(8)                           |
| 6. PROJECT NO. 17061102B53A                                                                         |                  |             |                                  |
| a Task 17                                                                                           | sb. OTHER REPOR  |             | her numbers that may be assigned |
| 4.                                                                                                  |                  | ECON 66-G   | 22 <b>-</b> F                    |
| This document has been approved for publiculimited.                                                 | c release an     | isale; i    | ts distribution is               |
| 11. SUPPLEMENTARY NOTES                                                                             | Atmospher        | Flectron:   | ies Command<br>s Laboratory      |
| 13. ABSTRACT                                                                                        | a nacha an       |             | /*W57                            |

A small, three-dimensional pressure-probe anemometer (IMFL anemo-clinometer) was used to measure the three components of the wind vector, shear stress, and the ratio of the standard deviation of the vertical wind to the friction velocity as influenced by atmospheric stability. Horizontal wind and shear stress have been compared with independent wind profile and shear stress meter measurements. The anemometer was coupled with a fast thermometer for eddy correlation measurements of sensible heat flux and with a fast hygrometer for measurements of latent heat flux. The eddy correlation measurements of sensible and latent heat fluxes were compared with independent energy balance, wind profile, and sonic anemometer-thermometr measurements.

DD 1988 1473 REPLACES DO FORM TATE, I JAN 44, WHICH IS

UNCLASSIFIED

Secrety Classification

UNCLASSIFIED

PRINCE, AND AND THE HARMON PROPERTY AND THE PROPERTY OF THE PR

| Shear stress Eddy correlation Wind vector components Three-dimensional anemometer Sensible heat flux Evanporation Energy balance |
|----------------------------------------------------------------------------------------------------------------------------------|
| Shear stress Eddy correlation Wind vector components Three-dimensional anemometer Sensible heat flux Evanporation                |
|                                                                                                                                  |

UNCLASSIFIED
Security Classification