	Assignment No:01
	Topic: FDS (PROBABILITY) DATE 10/12/2020
	Courses MG DOOT TOO (SEM 1)
	OSISE, TISE DOWN PART I SOURS IN
	Name: Hemant Vigay Hatankar
	Email TD: hemanthatankar agmail.com Mobile NO: 9594317710
(1)	Alice has 2 kids and one of them is a girl. What is
	the probability that the other child is also a
	girla?
	You can assume that there are an equal numbers
	Of male and females in the world.
=	As per given assumption there are an equal
	number of mol & females in wordd.
	". Universal set for having 2 kids
	": Universal set for having 2 kids U= { (B,B), (B,C), (G,B), (G,G)}
	Where
	B stands for Boy
	G stands for Chot.
	As par gover information one of them is a giral
	Hence sample space is
	S= f (G,B), (B,G), (G,G)
	Lets consider, Eventa is the other child is
	- E also girl. i.c Both the kids are girls.
	En = { (G,G)}
	(-) 0 0 - (-)
	: n(s) = 3 & n(EA) = 1
	The probability of the other shild is also a
	girl is = 1/3 = 0.333

A few's six- sided die is molled twice. What is the probability of getting 2 on First roll and sigetting 4 on the second moll & 1 Lets, EA (Event A): Cetting 2 on First woll.

EB (Event B): Cretting 4 on the second woll. Universal set U={(1,4),(1,2),(1,3),(1,4)(1,5),(1,6), (2,2), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6) (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) } n(U) = 36 Sample set for Event A En = { (2,1), (2,2) (2,3) (2,4), (2,5) (2,6) } n (En) = 6 Sample Set For Event B. Eo = of (1,1), (1,2), (1,3), (1,5), (1,6), (211), (2,2), (2,3), (2,5), (2,6)1 (3,1), (3,2), (3,3), (3,5) (3,6), (4,1), (4,2), (4,3) (4,5), (4,6) (5,1), (5,2) (5,3), (5,5), (5,6) (6,1), (6,2), (6,3), (6,5), (6,6)} n (EB) = 30 The given Event A & Event B are independent. : P(EA) = 6/36 = 1/6 : P(EB) = 30/36 = 5/6

: Given	40	Buch	0	independent	
	.,,	200195	ores	here be an	

= 1/ x 5/

= 5/36

P = 0.139

Amita randomly picks 4 cords from a deck of \$2-cords and places them back into the deck (Any set of 4 cords is equally likely). Then Babita randomly choose 8 cords out of the same deck (Any set of 8 cards is equally likely). Assume that the choice of 4 cords by Amita and the choice of 8 cards by Babita are independent. What is the probability that all 4 cards choosen by Amita are in the set of 8 cords choosen by Babita?

total possible combination for selecting 4 cords
by Amila = 520 i

Total possible combination for selecting 8

conds by Bobita = 52

: Total possible combination for selecting 4

cands by Amila of 8 cands by Babila is

n(3) = 520 x 520

.: As per given event, all 4 cools choosen by Babita, Since the 4 cools selected by Amita are common, so all possible combination

	PAGE No.
	For the event is 480
	combination are $n(E) = 52C \times 48C$
	$\frac{\nu(3)}{1} \left(\frac{25}{25} \times \frac{8}{18}\right)$ $\frac{\nu(3)}{1} = \frac{25}{1} \times \frac{1}{18}$
	= 781 X 81 X AM! = 781 X AM!
	= 1680
	6494400
	P(E) = 0.000 259
	. Propobility that all 4 coods chosen by Amita
	are in the set of 8 cards chosen by Bobita.
	62 0.000153
44>	Cross - Feretilizing a red and a white flower
	produces sed flowers 25% of the time. Now
	we cross-fortilize five poins of read and while
	Howers and produce five off spring & What
	is the probability that there are no red flower
	plants in the fiven off spring?
\Rightarrow	Lets consider,
	Event A (EA) = cross-fer tilizer of produce red
	Flowers
	P(Ea) = 0.25
	Event B (EB) = Cross-featilizing produce white
	tlomers
	P(28) = 0.75

DAIL / /
It his ticket matches the 2 numbers and 1
letter drawn in order, he wing the grand
prize and receives \$ 10405. It just his
letter matches but one or both of the numbers do
not match, he wing \$100. Unders any other
circustence; he wing nothing. The game wats
him \$5 to play. Suppose he has chosen OAR to
play. What is the expected net profit from
playing this tickets
Lets consider
P(Number chose from 0-9) = 1/10
P(Letter chose) = 1/26
p(grand prize) = (1/10) # (1/10) # (1/26)
The game wat = \$5
" Need to match both Numbers as well as
Letter to win grand prize.
P (small prize) = Just letter matches but one
or both of the number do not maket
: b (2001 baisse) = (1) - (1000)
(26) (2600)
(: Estuding the case where where both.
(: Eduding the case where where both. the numbers also match [grand prize winning condition])
winning conditions)
Probability of 109 pag the prize is
p (Losing Prize) = 1 - P (Winning)
$= 1 - \left(\frac{1}{24}\right) - \frac{1}{26 \times 10 \times 10}$
76 × 10 × 10

