6 opcode

26 25

MIPS Reference Data

1

III I U	Ke	ier	ence Data
CORE INSTRUCTI	ON SE	т	OPCODE
NAME ADJEMO	NIC	FOR- MAT	
NAME, MNEMO Add	add	MAI R	$\Gamma OPERATION (in Verilog) (Hex)$ $R[rd] = R[rs] + R[rt] (1) 0 / 20_{hex}$
Add Immediate	addi	I	$R[rt] = R[rs] + SignExtImm $ (1,2) 8_{hex}
Add Imm. Unsigned			R[rt] = R[rs] + SignExtImm (1,2) 9hex
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt] 0 / 21 _{hex}
And	and	R	R[rd] = R[rs] & R[rt] 0 / 24 _{hex}
And Immediate	andi	I	$R[rt] = R[rs] \& ZeroExtImm$ (3) c_{hex}
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr (4) 4hex
Branch On Not Equa	lbne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr (4) 5 hex
Jump	j	J	PC=JumpAddr (5) 2 _{hex}
Jump And Link	jal	J	$R[31]=PC+8;PC=JumpAddr$ (5) 3_{hex}
Jump Register	jr	R	PC=R[rs] 0 / 08 _{hex}
Load Byte Unsigned	lbu	I	$R[rt] = \{24'b0,M[R[rs] + SignExtImm](7:0)\}$ (2) 24_{hex}
Load Halfword Unsigned	lhu	I	$ \begin{array}{ll} R[rt] = & \{16^{\circ}b0, M[R[rs] \\ + SignExtImm](15:0)\} \end{array} $ (2)
Load Linked	11	I	$R[rt] = M[R[rs] + SignExtImm]$ (2,7) 30_{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16\text{'b0}\} $ f _{hex}
Load Word	lw	I	$R[rt] = M[R[rs] + SignExtImm]$ (2) 23_{hex}
Nor	nor	R	$R[rd] = \sim (R[rs] R[rt])$ 0 / 27 _{hex}
Or	or	R	R[rd] = R[rs] R[rt] 0 / 25 _{hex}
Or Immediate	ori	I	$R[rt] = R[rs] ZeroExtImm$ (3) d_{hex}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0 0 / 2a _{hex}
Set Less Than Imm.	slti	I	$R[rt] = (R[rs] < SignExtImm)? 1:0 (2) a_{hex}$
Set Less Than Imm. Unsigned	sltiu	I	$R[rt] = (R[rs] < SignExtImm) ? 1:0 (2,6) b_{hex}$
Set Less Than Unsig.	sltu	R	$R[rd] = (R[rs] < R[rt]) ? 1 : 0$ (6) $0 / 2b_{hex}$
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt \qquad 0 / 00_{hex}$
Shift Right Logical	srl	R	$R[rd] = R[rt] >> shamt 0 / 02_{hex}$
Store Byte	sb	I	$M[R[rs]+SignExtImm](7:0) = R[rt](7:0) $ (2) 28_{hex}
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; $R[rt] = (atomic) ? 1 : 0$ (2,7) 38_{hex}
Store Halfword	sh	I	$M[R[rs]+SignExtImm](15:0) = R[rt](15:0)$ (2) 29_{hex}
Store Word	SW	I	$M[R[rs]+SignExtImm] = R[rt]$ (2) $2b_{hex}$
Subtract	sub	R	$R[rd] = R[rs] - R[rt]$ (1) $0/22_{hex}$
Subtract Unsigned	subu	R	$R[rd] = R[rs] - R[rt] \qquad 0 / 23_{hex}$
	(2) Sig (3) Zer (4) Bra (5) Jur (6) Op	gnExtI roExtl anchA npAderand	use overflow exception Imm = { 16{immediate[15]}, immediate } Imm = { 16{1b'0}, immediate } Addr = { 14{immediate[15]}, immediate, 2'b0 } Idr = { PC+4[31:28], address, 2'b0 } Ids considered unsigned numbers (vs. 2's comp.) Itest&set pair; R[rt] = 1 if pair atomic, 0 if not atomic
BASIC INSTRUCTI			ats 5 6
R 6 opcode		·s 5	rt 5 rd shamt funct
	26 25		1 20 16 15 11 10 6 5 0 5 rt 76 immediate
I opcode	5 1 26 25	rs 21	5 rt

ARITHMETIC	CORE	INSTRUCTION SET	
AIIIIIIII	COLLE	INCTITION TO THE	

		/ FMT /FT
	FOR	- / FUNCT
NAME, MNEMONIC	MAT	OPERATION (Hex)
Branch On FP True bc1t	FI	if(FPcond)PC=PC+4+BranchAddr (4) 11/8/1/
Branch On FP False bc1f	FI	if(!FPcond)PC=PC+4+BranchAddr(4) 11/8/0/
Divide div	R	Lo= $R[rs]/R[rt]$; Hi= $R[rs]$ % $R[rt]$ 0//1a
Divide Unsigned divu	R	Lo= $R[rs]/R[rt]$; Hi= $R[rs]$ % $R[rt]$ (6) 0///1b
FP Add Single add.	FR.	F[fd] = F[fs] + F[ft] 11/10//0
FP Add	ı FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} + 11/11//0$
Double add.	ı rĸ	{F[ft],F[ft+1]}
FP Compare Single c.x.s	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0 11/10//y
FP Compare	FR	FPcond = $\{\{F[fs], F[fs+1]\}\} op$
Double		$\{F[ft], F[ft+1]\}\} ? 1 : 0$
		==, <, or <=) (y is 32, 3c, or 3e)
	FR.	F[fd] = F[fs] / F[ft] 11/10//3
FP Divide	i FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} / $
Double		{F[ft],F[ft+1]}
FP Multiply Single mul.	s FR	F[fd] = F[fs] * F[ft] 11/10//2
FP Multiply	ı FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$
Double		{F[ft],F[ft+1]}
FP Subtract Single sub.	s FR	F[fd]=F[fs] - F[ft] 11/10//1
FP Subtract	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} - 11/11//1$
Double		{F[ft],F[ft+1]}
Load FP Single lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2) 31//
Load FP	I	F[rt]=M[R[rs]+SignExtImm]; (2) 35//
Double		F[rt+1]=M[R[rs]+SignExtImm+4]
Move From Hi mfhi		R[rd] = Hi 0 ///10
Move From Lo mflo		R[rd] = Lo 0 ///12
Move From Control mfc0		R[rd] = CR[rs] 10 /0//0
Multiply mult		$\{Hi,Lo\} = R[rs] * R[rt] $ 0//18
Multiply Unsigned multi-	ı R	$\{Hi,Lo\} = R[rs] * R[rt]$ (6) 0///19
Shift Right Arith. sra	R	R[rd] = R[rt] >>> shamt 0//-3
Store FP Single swc1	I	M[R[rs]+SignExtImm] = F[rt] (2) 39//
Store FP sdc1	I	$M[R[rs]+SignExtImm] = F[rt]; \qquad (2) 3d//$
Double	1	M[R[rs]+SignExtImm+4] = F[rt+1]
EL CATING DOINT INC	DIIO.	TION FORMATS

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	;
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	l bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS
NAME	NUMBER	USE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	No

address

26

OPCODES	S, BASE	CONVER	SION, ASCI	ISYMB	OLS
MIDC (1)	MIDC	(2) MIDC		YY	100

OPCOD	ES. BASI	CONVER	SION	Ι. Α	SCIL	SYMB	OLS		9	
	(1) MIPS						ASCII	L .	Hexa-	ASCII
opcode	funct	funct	Bina	PX 7	Deci-	deci-	Char-	Dec1-	deci-	Char-
			Dilla	y	mal			mal		
(31:26)	(5:0)	(5:0)	00 00	00	0	mal 0	acter NUL	64	mal 40	acter
(1)	sll	add.f							41	@
١.		sub.f	00 00		1	1	SOH	65		A
j	srl	mul.f	00 00		2	2	STX	66	42	В
jal	sra	div.f	00 00		3	3	ETX	67	43	C
beq	sllv	sqrt.f	00 01		4	4	EOT	68	44	D
bne		abs.f	00 01		5	5	ENQ	69	45	E
blez	srlv	mov.f	00 01		6	6	ACK	70	46	F
bgtz	srav	neg.f	00 01		7	7	BEL	71	47	G
addi	jr		00 10		8	8	BS	72	48	H
addiu	jalr		00 10		9	9	HT	73	49	I
slti	movz		00 10		10	a	LF	74	4a	J
sltiu	movn		00 10		11	b	VT	75	4b	K
andi	syscall	round.w.f	00 11		12	c	FF	76	4c	L
ori	break	trunc.w.f	00 11		13	d	CR	77	4d	M
xori		ceil.w f	00 11		14	e	SO	78	4e	N
lui	sync	floor.w.f	00 11		15	f	SI	79	4f	О
	mfhi		01 00		16	10	DLE	80	50	P
(2)	mthi		01 00		17	11	DC1	81	51	Q
	mflo	movz.f	01 00		18	12	DC2	82	52	R
	mtlo	${\tt movn.} f$	01 00		19	13	DC3	83	53	S
			01 01	00	20	14	DC4	84	54	T
			01 01		21	15	NAK	85	55	U
			01 01		22	16	SYN	86	56	V
			01 01	11	23	17	ETB	87	57	W
	mult		01 10		24	18	CAN	88	58	X
	multu		01 10		25	19	EM	89	59	Y
	div		01 10		26	1a	SUB	90	5a	Z
	divu		01 10		27	1b	ESC	91	5b	[
			01 11		28	1c	FS	92	5c	/
			01 11		29	1d	GS	93	5d	Ì
			01 11		30	1e	RS	94	5e	^
			01 11		31	1f	US	95	5f	-
lb	add	cvt.s.f	10 00		32	20	Space	96	60	
lh	addu	cvt.d.f	10 00		33	21	!	97	61	a
lwl	sub		10 00		34	22		98	62	b
lw	subu		10 00		35	23	#	99	63	c
lbu	and	cvt.w.f	10 01		36	24	\$	100	64	d
lhu	or		10 01		37	25	%	101	65	e
lwr	xor		10 01		38	26	&	102	66	f
	nor		10 01		39	27		103	67	g
sb			10 10 10 10		40 41	28 29	(104 105	68 69	h
sh	3.1		10 10		41	29 2a)	103	6a	i
swl	slt				42		+			j Ir
SW	sltu		10 10		43	2b 2c		107	6b	k 1
			l .		45	2d	,	108	6c 6d	
			10 11		46	2u 2e	-	1109		m
swr			10 11 10 11		46	2e 2f	,	1110	6e 6f	n
cache 11	+ ~~	2 f f	11 00		48	30	0	111	70	0
	tge	c.f.f	11 00		48	31	1	113	71	p
lwc1	tgeu	c.un.f	11 00		50	32	2	113	72	q
lwc2	tlt tltu	c.eq.f	11 00		51	33	3	1114	73	r s
pref	teq	c.ueq.f	11 00		52	34	4	116	74	t
ldc1	red	c.olt./ c.ult./	11 01		53	35	5	117	75	u
ldc2	tne	c.ult.j c.ole.f	11 01		54	36	6	118	76	u V
1402	-110	c.ule.f	11 01		55	37	7	119	77	W
sc		c.sf.f	11 10		56	38	8	120	78	X
swc1		c.ngle.f	11 10		57	39	9	121	79	y
swc2		c.seq.f	11 10		58	3a	:	122	7a	y Z
		c.ngl.f	11 10		59	3b	;	123	7b	{
		c.lt.f	11 11		60	3c	· <	124	7c	
sdc1		c.nge.f	11 11		61	3d	=	125	7d	}
sdc2		c.le.f	11 11		62	3e	>	126	7e	~
1			11 11	11	(2	26	9	127	7.6	DEL

c.ngt.f | 11 1111 63 (1) opcode(31:26) == 0(2) opcode(31:26) == 17_{ten} (11_{hex}); if fmt(25:21)== 16_{ten} (10_{hex}) f = s (single);

if $fmt(25:21) == 17_{ten} (11_{hex}) f = d (double)$

IEEE 754 FLOATING-POINT STANDARD

(3)

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

IEEE 754 Symbols

Exponent	Fraction	Object
0	0	± 0
0	≠0	± Denorm
1 to MAX - 1	anything	± Fl. Pt. Num.
MAX	0	±∞
MAX	≠0	NaN
S.P. $MAX = 2$	255, D.P. N	MAX = 2047

Exponent Fraction 31 23 22 S Exponent Fraction 63 62 52 51

DATA ALIGNMENT

			Doub	ole Wor	d		
Word				Word			
Halfv	vord	Halfword		Hal	Halfword		word
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte
0	1	2	3	4	5	6	7

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

 	 ۸.۰			-				
В		Interrupt			Exception			
D		Mask			Code			
31	15		8	6		2		
		Pending			U		Е	Ι
		Interrupt			M		L	Е
	15		8		4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

EXCEPTION CODES

=/	KCEPIIC	JN CC	DES			
	Number Name		Cause of Exception	Number	Name	Cause of Exception
	0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
	4	AdEL	Address Error Exception	10	RI	Reserved Instruction
	-	Auel	(load or instruction fetch)	10	KI	Exception
	5	AdES	Address Error Exception	11	CpU	Coprocessor
	3		(store)	11	СрС	Unimplemented
	6	IBE	Bus Error on	12	Ov	Arithmetic Overflow
	0	IDE	Instruction Fetch	12	Ov	Exception
	7	DBE	Bus Error on	13	Tr	Trap
	_ ′	DBE	Load or Store	13	11	пар
	8	Svs	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10^x for Disk, Communication: 2^x for Memory)

TIET IXES (TO TOT DISK, COMMINGRICATION, 2 TOT MEMOTY)								
		PRE-		PRE-		PRE-		PRE-
	SIZE	FIX	SIZE	FIX	SIZE	FIX	SIZE	FIX
	$10^3, 2^{10}$	Kilo-	$10^{15}, 2^{50}$	Peta-	10-3	milli-	10 ⁻¹⁵	femto-
	$10^6, 2^{20}$	Mega-	$10^{18}, 2^{60}$	Exa-	10 ⁻⁶	micro-	10 ⁻¹⁸	atto-
	$10^9, 2^{30}$	Giga-	$10^{21}, 2^{70}$	Zetta-	10 ⁻⁹	nano-	10-21	zepto-
	$10^{12}, 2^{40}$	Tera-	10 ²⁴ , 2 ⁸⁰	Yotta-	10-12	pico-	10-24	yocto-
THE 1 10 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1								

The symbol for each prefix is just its first letter, except μ is used for micro.

127