



# Human vs. Computer

Shuofan Zhang 5/28/2018

#### Reminder of the first presentation

#### Teach the computer to read residual plots

A major component used to diagnose model fits is a plot of the residuals. Residual plots are used to assess:

- Gauss-Markov assumption
- Heteroskedasticity
- Clumps of outliers

## Why plots?



#### **Visual inference**



#### **Visual inference**

- Plot of data is a test statistic
- Type of plot determines null hypothesis, e.g. residuals vs fitted scatterplot would imply  $H_0$ : no relationship, vs  $H_a$ : some relationship
- Human visual system evaluates lineup of data plot in field of null plots
- $\blacksquare$  If data plot is "identified" as different from null,  $H_o$  is rejected
- Combining results from multiple observers enables p-value calculation

#### **Deep learning**

- Computer vision has advanced substantially
- Computer vision underlying self-driving cars, robotics
- Computer vision is being build on deep learning models
- If we can train a computer to read residual plots we can have it process a lot more data, than a human can manage.

# Aside: Volvo admits its self-driving cars are confused by kangaroos

Volvo admits its self-driving cars are confused by kangaroos Volvo's self-driving car is unable to detect kangaroos because hopping confounds its systems, the Swedish carmaker says.

# Aside: Computers can't tell difference between blueberry muffins and chihuahuas



**Figure 1:** Computers can't tell difference between blueberry muffins and chihuahuas

#### **Experiment**

- Simulate data from the different models
- 2 Fit a linear model to the data, extract standardized residuals and fitted values
- 3 Save residual plots as fixed-sized images
- Train a deep learning classifier to recognise the departures from assumptions
- Test the model's performance on new data and compute the accuracy

#### **Data simulation**

#### These factors are being controlled in the data simulation

- Type of relationship: none, linear, nonlinear or heteroskedasticity
- **Explanatory variables:**  $X \sim N(0,3)$  and intercept  $\beta_0 = 0$
- Sample size: randomly generated between 20-1500
- Image size: fixed 150x150

# Type of relationship



#### Simchoni's analysis

- Simulate data from linear relationship with  $\rho=-0.9$  to  $\rho=0.9$
- Separate into two groups: significant/insignificant by t-test
- Train deep learning model with these two groups
- Test the model on lineup
- Successful in detecing linear relationship but fail in non-linear
- Simchoni's blog

### Comparison with human subject experiments

- Majumder et al (2013) conducted a large study to compare the performance of the lineup protocol, assessed by human evaluators, in comaprison to the classical test
- Experiment 2 examined  $H_o: \beta_k = 0$  vs  $H_a: \beta_k \neq 0$  assessing the importance of including variable k in the linear model, conducted with a t-test, and also lineap protocol
- 70 lineups of size 20 plots
- 351 evaluations by human subjects
- ř
- Trained deep learning model will be used to classify plots from this study. Accuracy will be compared with results by human subjects.

#### **Example lineup from experiment 2**



#### **Timeline**

| Date   | Component                                                              |
|--------|------------------------------------------------------------------------|
| Apr 27 | Deep learning model trained                                            |
| May 4  | Classification of new residual plots with model and results summarised |
| May 18 | Comparison with Turk studies                                           |
| May 24 | Refinements made, final summaries written                              |
| May 31 | Thesis finalised                                                       |

#### **Materials**

- The thesis, code and data is available on the github repository https://github.com/shuofan18/ETF5550
- Software used to conduct this research is R, Tensorflow, keras, tidyverse