Dos recipientes cerrados A y B se encuentran unidos por medio de un tubo delgado de volumen despreciable (ver dibujo). Inicialmente, cada uno de ellos contiene hidrógeno molecular (H_2) a una temperatura $T_0 = 0$ °C y una presión $p_0 = 1$ atm. Los recipientes tienen un volumen fijo. El recipiente A tiene un volumen $V_0 = 2.10^{-3}$ cm³, mientras que el recipiente B tiene el triple de este volumen. La masa molar del hidrógeno es $M_H = \frac{1}{mol}$.

- a) Hallar el número de moles contenido en cada recipiente (n_A y n_B) y el número total de moles (n_T) del sistema completo. ¿Cuál es la relación entre n_A y n_B?. Hallar la masa de H₂ contenida en el sistema completo.
- b) Si el recipiente A se mantiene a la misma temperatura y el recipiente B se sumerge en un baño de vapor a 100°C. ¿Cuál es el número de moles de hidrógeno molecular en cada recipiente en está nueva situación de equilibrio? ¿Cuánto varío n_A? ¿cuál es la presión del gas?
- c) Considerando T_B = 100°C ¿Cuál debería haber sido la temperatura del recipiente A para que el n_A de la configuración final sea igual a ⁿ/₄? ¿cuál sería la presión en esta situación?

Datos del problema: $T_0 = 0$ °C, $p_0 = 1$ atm, $V_A = 2.10^{-3}$ cm³, $V_B = 3V_A$, $M_H = \frac{1g}{mol}$.

$$m_{A} = \frac{P_{A}V_{A}}{RT_{A}} = \frac{I_{Mux} \times 2\times 10^{6} L}{0.08206 \text{ mull} \times 273 \times} = 0.09 \times 10^{6} \text{ modes}$$

$$m_{B} = \frac{P_{B}V_{B}}{RT_{B}} = \frac{P_{B}V_{A}}{RT_{B}} = \frac{P_{$$