El Teorema de Russo-Dye y refinamientos

David Cabezas Berrido

Trabajo final de la asignatura Métodos Avanzados de Análisis Funcional y Análisis de Fourier

Índice

- Introducción
- 2 Preliminares
 - Descomposición polar de elementos invertibles
- Teorema de Russo-Dye
 - Una importante consecuencia
- 4 Refinamiento de Kadison y Pedersen

Índice

- Introducción
- 2 Preliminares
 - Descomposición polar de elementos invertibles
- Teorema de Russo-Dye
 - Una importante consecuencia
- 4 Refinamiento de Kadison y Pederser

¿De qué formas se puede expresar un elemento de una C*-álgebra como combinación convexa de elementos unitarios?

R.R. Phelps en "Extreme points in function algebras" (1965)

En una C*-álgebra conmutativa y unital, la envolvente convexa de los elementos unitarios es densa en la bola cerrada unidad.

¿De qué formas se puede expresar un elemento de una C*-álgebra como combinación convexa de elementos unitarios?

R.R. Phelps en "Extreme points in function algebras" (1965)

En una C*-álgebra conmutativa y unital, la envolvente convexa de los elementos unitarios es densa en la bola cerrada unidad.

Teorema de Russo-Dye (1966)

En una C*-álgebra unital, la envolvente convexa de los elementos unitarios es densa en la bola cerrada unidad.

¿De qué formas se puede expresar un elemento de una C*-álgebra como combinación convexa de elementos unitarios?

R.R. Phelps en "Extreme points in function algebras" (1965)

En una C*-álgebra conmutativa y unital, la envolvente convexa de los elementos unitarios es densa en la bola cerrada unidad.

Teorema de Russo-Dye (1966)

En una C*-álgebra unital, la envolvente convexa de los elementos unitarios es densa en la bola cerrada unidad.

 Manifiesta la abundancia de elementos unitarios en una C*-álgebra (unital).

¿De qué formas se puede expresar un elemento de una C*-álgebra como combinación convexa de elementos unitarios?

R.R. Phelps en "Extreme points in function algebras" (1965)

En una C*-álgebra conmutativa y unital, la envolvente convexa de los elementos unitarios es densa en la bola cerrada unidad.

Teorema de Russo-Dye (1966)

En una C*-álgebra unital, la envolvente convexa de los elementos unitarios es densa en la bola cerrada unidad.

- Manifiesta la abundancia de elementos unitarios en una C*-álgebra (unital).
- Posteriormente refinado y versionado

¿De qué formas se puede expresar un elemento de una C*-álgebra como combinación convexa de elementos unitarios?

R.R. Phelps en "Extreme points in function algebras" (1965)

En una C*-álgebra conmutativa y unital, la envolvente convexa de los elementos unitarios es densa en la bola cerrada unidad.

Teorema de Russo-Dye (1966)

En una C*-álgebra unital, la envolvente convexa de los elementos unitarios es densa en la bola cerrada unidad.

- Manifiesta la abundancia de elementos unitarios en una C*-álgebra (unital).
- Posteriormente refinado y versionado.

Índice

- Introducción
- 2 Preliminares
 - Descomposición polar de elementos invertibles
- Teorema de Russo-Dye
 - Una importante consecuencia
- 4 Refinamiento de Kadison y Pederser

Notación

- A C*-álgebra unital sobre el cuerpo $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$
- $\mathbb{1} \in A$ su unidad.
- ullet $A_1 = \{a \in A: \|a\| < 1\}$ bola abierta unidad de A_1
- $B_A = \{a \in A : ||a|| \le 1\}$ bola cerrada unidad de A

Notación

- A C*-álgebra unital sobre el cuerpo $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$
- $\mathbb{1} \in A$ su unidad.
- $A_1 = \{a \in A : ||a|| < 1\}$ bola abierta unidad de A.
- $B_A = \{a \in A : ||a|| \le 1\}$ bola cerrada unidad de A.
- $U = \mathcal{U}(A)$ grupo de elementos unitarios de A

Notación

- A C*-álgebra unital sobre el cuerpo $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$
- $\mathbb{1} \in A$ su unidad.
- $A_1 = \{a \in A : ||a|| < 1\}$ bola abierta unidad de A.
- $B_A = \{a \in A : ||a|| \le 1\}$ bola cerrada unidad de A.
- $U = \mathcal{U}(A)$ grupo de elementos unitarios de A.

Lema

Todo elemento invertible $a \in A$ admite una descomposición polar de la forma a = u|a|, donde $|a| = (a^*a)^{1/2}$ es positivo y u es unitario.

Demostración

 $|a|^2 := a^*a \in A$ invertible y positivo, admite raíz cuadrada |a| (CFC)

Lema

Todo elemento invertible $a \in A$ admite una descomposición polar de la forma a = u|a|, donde $|a| = (a^*a)^{1/2}$ es positivo y u es unitario.

Demostración

 $|a|^2 := a^*a \in A$ invertible y positivo, admite raíz cuadrada |a| (CFC).

$$|a|(|a||a|^{-2}) = (|a||a|)|a|^{-2} = |a|^2|a|^{-2} = 1$$

 $(|a|^{-2}|a|)|a| = |a|^{-2}(|a||a|) = |a|^{-2}|a|^2 = 1$

|a| invertible con $|a|^{-1} = |a||a|^{-2} = |a|^{-2}|a| \Rightarrow |a|^{-1}|a|^{-1} = |a|^{-2}$.

Lema

Todo elemento invertible $a \in A$ admite una descomposición polar de la forma a = u|a|, donde $|a| = (a^*a)^{1/2}$ es positivo y u es unitario.

Demostración

$$|a|^2 := a^*a \in A$$
 invertible y positivo, admite raíz cuadrada $|a|$ (CFC).

$$|a|(|a||a|^{-2}) = (|a||a|)|a|^{-2} = |a|^2|a|^{-2} = 1$$

$$(|a|^{-2}|a|)|a| = |a|^{-2}(|a||a|) = |a|^{-2}|a|^2 = 1,$$

$$|a|$$
 invertible con $|a|^{-1} = |a||a|^{-2} = |a|^{-2}|a| \Rightarrow |a|^{-1}|a|^{-1} = |a|^{-2}$.

Lema

Todo elemento invertible $a \in A$ admite una descomposición polar de la forma a = u|a|, donde $|a| = (a^*a)^{1/2}$ es positivo y u es unitario.

Demostración

 $u := a|a|^{-1} \in A$ invertible. Como $|a|^{-1}$ auto-adjunto,

$$uu^* = a|a|^{-1}|a|^{-1}a^* = a|a|^{-2}a^* = a(a^*a)^{-1}a^* = aa^{-1}(a^*)^{-1}a^* = 1$$
$$u^*u = |a|^{-1}a^*a|a|^{-1} = |a|^{-1}|a|^2|a|^{-1} = |a|^{-1}|a||a||a|^{-1} = 1.$$

и unitario

Lema

Todo elemento invertible $a \in A$ admite una descomposición polar de la forma a = u|a|, donde $|a| = (a^*a)^{1/2}$ es positivo y u es unitario.

Demostración

u unitario.

$$u:=a|a|^{-1}\in A$$
 invertible. Como $|a|^{-1}$ auto-adjunto,
$$uu^*=a|a|^{-1}|a|^{-1}a^*=a|a|^{-2}a^*=a(a^*a)^{-1}a^*=aa^{-1}(a^*)^{-1}a^*=1$$

$$u^*u=|a|^{-1}a^*a|a|^{-1}=|a|^{-1}|a|^2|a|^{-1}=|a|^{-1}|a||a||a|^{-1}=1,$$

Índice

- 1 Introducción
- 2 Preliminares
 - Descomposición polar de elementos invertibles
- Teorema de Russo-Dye
 - Una importante consecuencia
- 4 Refinamiento de Kadison y Pedersen

El resultado

Teorema de Russo-Dye (1966)

Sea A una C*-algebra unital y $U = \mathcal{U}(A)$ su grupo de unitarios. Entonces, $B_A = \overline{\operatorname{co}}(U)$.

Original: "A note in unitary operators in C*-algebras" (A.H. Dye & B. Russo, 1966).

El resultado

Teorema de Russo-Dye (1966)

Sea A una C*-algebra unital y $U = \mathcal{U}(A)$ su grupo de unitarios. Entonces, $B_A = \overline{\operatorname{co}}(U)$.

Original: "A note in unitary operators in C*-algebras" (A.H. Dye & B. Russo, 1966).

Prueba elemental: "Shorter Notes: An Elementary Proof of the Russo-Dye Theorem" (L.T. Gardner, 1984).

El resultado

Teorema de Russo-Dye (1966)

Sea A una C*-algebra unital y $U = \mathcal{U}(A)$ su grupo de unitarios. Entonces, $B_A = \overline{\operatorname{co}}(U)$.

Original: "A note in unitary operators in C^* -algebras" (A.H. Dye & B. Russo, 1966).

Prueba elemental: "Shorter Notes: An Elementary Proof of the Russo-Dye Theorem" (L.T. Gardner, 1984).

Basta probar $A_1 \subset \overline{\operatorname{co}}(U)$. Tomamos $x \in A_1, \ u \in U$ cualesquiera, sea

$$y:=\frac{x+u}{2}=\frac{xu^*+1}{2}u.$$

Basta probar $A_1 \subset \overline{\operatorname{co}}(U)$. Tomamos $x \in A_1$, $u \in U$ cualesquiera, sea

$$y := \frac{x+u}{2} = \frac{xu^* + 1}{2}u. \|xu^*\| \le \|x\| \|u^*\| = \|x\| < 1 \Rightarrow xu^* + 1$$

invertible (también y)

Basta probar $A_1 \subset \overline{\operatorname{co}}(U)$. Tomamos $x \in A_1$, $u \in U$ cualesquiera, sea $y := \frac{x+u}{2} = \frac{xu^*+1}{2}u$. $\|xu^*\| \leq \|x\| \|u^*\| = \|x\| < 1 \Rightarrow xu^*+1$ invertible (también y). Podemos escribir y = v|y| con $v \in U$ y $|y| = (y^*y)^{1/2} \in \mathcal{B}_A$ positivo.

Basta probar $A_1\subset \overline{\operatorname{co}}(U)$. Tomamos $x\in A_1,\ u\in U$ cualesquiera, sea $y:=\frac{x+u}{2}=\frac{xu^*+\mathbb{1}}{2}u.\ \|xu^*\|\leq \|x\|\|u^*\|=\|x\|<1\Rightarrow xu^*+\mathbb{1}$ invertible (también y). Podemos escribir y=v|y| con $v\in U$ y $|y|=(y^*y)^{1/2}\in B_A$ positivo.

 $||y|^2|| = ||y^*y|| = ||y||^2 < 1 \Rightarrow |y|^2 \le ||y|^2 ||1 \le 1 \Rightarrow 1 - |y|^2 \ge 0$ admite rafz cuadrada.

Basta probar $A_1\subset \overline{\operatorname{co}}(U)$. Tomamos $x\in A_1,\ u\in U$ cualesquiera, sea $y:=\frac{x+u}{2}=\frac{xu^*+\mathbb{1}}{2}u.\ \|xu^*\|\leq \|x\|\|u^*\|=\|x\|<1\Rightarrow xu^*+\mathbb{1}$ invertible (también y). Podemos escribir y=v|y| con $v\in U$ y $|y|=(y^*y)^{1/2}\in B_A$ positivo.

$$||y|^2|| = ||y^*y|| = ||y||^2 < 1 \Rightarrow |y|^2 \le ||y|^2 ||1 \le 1 \Rightarrow 1 - |y|^2 \ge 0$$
 admite raíz cuadrada. Por tanto, $|y| = (w + w^*)/2$, donde

$$w = |y| + i(1 - |y|^2)^{1/2}, \quad w^* = |y| - i(1 - |y|^2)^{1/2}.$$

Basta probar $A_1\subset \overline{\operatorname{co}}(U)$. Tomamos $x\in A_1,\ u\in U$ cualesquiera, sea $y:=\dfrac{x+u}{2}=\dfrac{xu^*+\mathbb{1}}{2}u.\ \|xu^*\|\leq \|x\|\|u^*\|=\|x\|<1\Rightarrow xu^*+\mathbb{1}$ invertible (también y). Podemos escribir y=v|y| con $v\in U$ y $|y|=(y^*y)^{1/2}\in B_A$ positivo.

$$\||y|^2\|=\|y^*y\|=\|y\|^2<1 \Rightarrow |y|^2\leq \||y|^2\|\mathbb{1}\leq \mathbb{1} \Rightarrow \mathbb{1}-|y|^2\geq 0$$
 admite raíz cuadrada. Por tanto, $|y|=(w+w^*)/2$, donde

$$w = |y| + i(1 - |y|^2)^{1/2}, \quad w^* = |y| - i(1 - |y|^2)^{1/2}.$$

Además, $w, w^* = w^{-1}$ unitarios, ya que |y| y $1 - |y|^2$ conmutar

Basta probar $A_1\subset \overline{\operatorname{co}}(U)$. Tomamos $x\in A_1,\ u\in U$ cualesquiera, sea $y:=\frac{x+u}{2}=\frac{xu^*+\mathbb{1}}{2}u$. $\|xu^*\|\leq \|x\|\|u^*\|=\|x\|<1\Rightarrow xu^*+\mathbb{1}$ invertible (también y). Podemos escribir y=v|y| con $v\in U$ y $|y|=(y^*y)^{1/2}\in B_A$ positivo.

$$\||y|^2\|=\|y^*y\|=\|y\|^2<1 \Rightarrow |y|^2\leq \||y|^2\|\mathbb{1}\leq \mathbb{1} \Rightarrow \mathbb{1}-|y|^2\geq 0$$
 admite raíz cuadrada. Por tanto, $|y|=(w+w^*)/2$, donde

$$w = |y| + i(1 - |y|^2)^{1/2}, \quad w^* = |y| - i(1 - |y|^2)^{1/2}.$$

Además, $w, w^* = w^{-1}$ unitarios, ya que |y| y $\mathbb{1} - |y|^2$ conmutan.

Basta probar $A_1\subset \overline{\operatorname{co}}(U)$. Tomamos $x\in A_1$, $u\in U$ cualesquiera, sea $y:=\frac{x+u}{2}=\frac{xu^*+\mathbb{I}}{2}u$. $\|xu^*\|\leq \|x\|\|u^*\|=\|x\|<1\Rightarrow xu^*+\mathbb{I}$ invertible (también y). Podemos escribir y=v|y| con $v\in U$ y $|y|=(y^*y)^{1/2}\in B_A$ positivo.

$$|||y|^2|| = ||y^*y|| = ||y||^2 < 1 \Rightarrow |y|^2 \le |||y|^2|| \mathbb{1} \le \mathbb{1} \Rightarrow \mathbb{1} - |y|^2 \ge 0$$
 admite raíz cuadrada. Por tanto, $|y| = (w + w^*)/2$, donde

$$w = |y| + i(1 - |y|^2)^{1/2}, \quad w^* = |y| - i(1 - |y|^2)^{1/2}.$$

Además, $w, w^* = w^{-1}$ unitarios, ya que |y| y $\mathbb{1} - |y|^2$ conmutan.

Hemos probado
$$x + u = vw + vw^* \Rightarrow A_1 + U \subset U + U$$
 (*).

$$\frac{x+U}{2}\subset \operatorname{co}(U)\Leftrightarrow U\subset 2\operatorname{co}(U)-x\Rightarrow \operatorname{co}(U)\subset 2\operatorname{co}(U)-x\Rightarrow \frac{x+\operatorname{co}(U)}{2}\subset \operatorname{co}(U)$$

Basta probar $A_1 \subset \overline{\operatorname{co}}(U)$. Tomamos $x \in A_1$, $u \in U$ cualesquiera, sea $y := \frac{x+u}{2} = \frac{xu^* + \mathbb{I}}{2}u$. $\|xu^*\| \leq \|x\| \|u^*\| = \|x\| < 1 \Rightarrow xu^* + \mathbb{I}$ invertible (también y). Podemos escribir y = v|y| con $v \in U$ y $|y| = (y^*y)^{1/2} \in B_A$ positivo.

$$|||y|^2|| = ||y^*y|| = ||y||^2 < 1 \Rightarrow |y|^2 \le |||y|^2|| \mathbb{1} \le \mathbb{1} \Rightarrow \mathbb{1} - |y|^2 \ge 0$$
 admite raíz cuadrada. Por tanto, $|y| = (w + w^*)/2$, donde

$$w = |y| + i(1 - |y|^2)^{1/2}, \quad w^* = |y| - i(1 - |y|^2)^{1/2}.$$

Además, $w, w^* = w^{-1}$ unitarios, ya que |y| y $\mathbb{1} - |y|^2$ conmutan.

Hemos probado
$$x + u = vw + vw^* \Rightarrow A_1 + U \subset U + U$$
 (*).

$$\frac{x+U}{2}\subset\operatorname{co}(U)\Leftrightarrow U\subset\operatorname{2}\operatorname{co}(U)-x\Rightarrow\operatorname{co}(U)\subset\operatorname{2}\operatorname{co}(U)-x\Rightarrow\frac{x+\operatorname{co}(U)}{2}\subset\operatorname{co}(U)$$

Por tanto, la sucesión $x_0 = u$ y $x_{n+1} = (x + x_n)/2$ yace en co(U

Claramente $x_n \to x$

Basta probar $A_1 \subset \overline{\operatorname{co}}(U)$. Tomamos $x \in A_1$, $u \in U$ cualesquiera, sea $y := \frac{x+u}{2} = \frac{xu^* + \mathbb{1}}{2}u$. $\|xu^*\| \leq \|x\| \|u^*\| = \|x\| < 1 \Rightarrow xu^* + \mathbb{1}$ invertible (también y). Podemos escribir y = v|y| con $v \in U$ y $|y| = (y^*y)^{1/2} \in B_A$ positivo.

$$|||y|^2|| = ||y^*y|| = ||y||^2 < 1 \Rightarrow |y|^2 \le |||y|^2|| \mathbb{1} \le \mathbb{1} \Rightarrow \mathbb{1} - |y|^2 \ge 0$$
 admite raíz cuadrada. Por tanto, $|y| = (w + w^*)/2$, donde

$$w = |y| + i(1 - |y|^2)^{1/2}, \quad w^* = |y| - i(1 - |y|^2)^{1/2}.$$

Además, $w, w^* = w^{-1}$ unitarios, ya que |y| y $\mathbb{1} - |y|^2$ conmutan.

Hemos probado
$$x + u = vw + vw^* \Rightarrow A_1 + U \subset U + U$$
 (*).

$$\frac{x+U}{2}\subset \operatorname{co}(U)\Leftrightarrow U\subset 2\operatorname{co}(U)-x\Rightarrow \operatorname{co}(U)\subset 2\operatorname{co}(U)-x\Rightarrow \frac{x+\operatorname{co}(U)}{2}\subset \operatorname{co}(U)$$

Por tanto, la sucesión $x_0 = u$ y $x_{n+1} = (x + x_n)/2$ yace en co(U).

Claramente $x_n \to x$.

Como $x \in A_1$, podemos tomar $x' \in A_1$ tal que $x \in [u, x']$.

Como $x \in A_1$, podemos tomar $x' \in A_1$ tal que $x \in [u, x']$.

La sucesión $x_0 = u$ y $x_{n+1} = (x' + x_n)/2$ cumple $x \in [u, x_n]$ para n lo bastante grande, luego $x \in co(U)$.

Como $x \in A_1$, podemos tomar $x' \in A_1$ tal que $x \in [u, x']$. La sucesión $x_0 = u$ y $x_{n+1} = (x' + x_n)/2$ cumple $x \in [u, x_n]$ para n lo bastante grande, luego $x \in co(U)$.

Claramente, A = span U

Como $x \in A_1$, podemos tomar $x' \in A_1$ tal que $x \in [u, x']$. La sucesión $x_0 = u$ y $x_{n+1} = (x' + x_n)/2$ cumple $x \in [u, x_n]$ para n lo bastante grande, luego $x \in co(U)$.

Claramente, A = span U.

Aplicación

Corolario

Sea A una C*-álgebra unital y $U=\mathcal{U}(A)$ su grupo de unitarios, y sea X un espacio normado arbitrario. Entonces, una aplicación lineal $\phi:A\to X$ es continua si y solo si ϕ está acotada en U. Además, se tiene la siguiente igualdad:

$$\|\phi\| = \sup_{u \in U} \|\phi(u)\|.$$

Definimos una nueva norma en A

$$\|a\|_U:=\inf\left\{\sum_{j=1}^n|\lambda_j|:a=\sum_{j=1}^n\lambda_ju_j,\;\lambda_j\in\mathbb{K},\;u_j\in U
ight\}$$

Corolario

Sea A una C*-álgebra unital y $U=\mathcal{U}(A)$ su grupo de unitarios, y sea X un espacio normado arbitrario. Entonces, una aplicación lineal $\phi:A\to X$ es continua si y solo si ϕ está acotada en U. Además, se tiene la siguiente igualdad:

$$\|\phi\| = \sup_{u \in U} \|\phi(u)\|.$$

Demostración

Definimos una nueva norma en A

$$\|a\|_U:=\inf\left\{\sum_{j=1}^n|\lambda_j|:a=\sum_{j=1}^n\lambda_ju_j,\;\lambda_j\in\mathbb{K},\;u_j\in U
ight\}$$

Cumple $||a|| \le ||a||_U \ \forall a \in A$. Además, $a \in co(U)$ implica $||a||_U \le 1$

Corolario

Sea A una C*-álgebra unital y $U=\mathcal{U}(A)$ su grupo de unitarios, y sea X un espacio normado arbitrario. Entonces, una aplicación lineal $\phi:A\to X$ es continua si y solo si ϕ está acotada en U. Además, se tiene la siguiente igualdad:

$$\|\phi\| = \sup_{u \in U} \|\phi(u)\|.$$

Demostración

Definimos una nueva norma en A

$$\|a\|_U := \inf \left\{ \sum_{j=1}^n |\lambda_j| : a = \sum_{j=1}^n \lambda_j u_j, \ \lambda_j \in \mathbb{K}, \ u_j \in U
ight\}$$

Cumple $||a|| \le ||a||_U \ \forall a \in A$. Además, $a \in co(U)$ implica $||a||_U \le 1$.

Para cada
$$\varepsilon > 0$$
, $b = \frac{a}{\|a\| + \varepsilon} \in A_1 \subset \operatorname{co}(U)$, luego $\|b\|_U \le 1$ y $\|a\|_U \le \|a\| + \varepsilon$. Por tanto, $\|a\| = \|a\|_U \ \forall a \in A$.

Para cada
$$\varepsilon > 0$$
, $b = \frac{a}{\|a\| + \varepsilon} \in A_1 \subset \operatorname{co}(U)$, luego $\|b\|_U \le 1$ y $\|a\|_U \le \|a\| + \varepsilon$. Por tanto, $\|a\| = \|a\|_U \ \forall a \in A$.

Para cada
$$\varepsilon > 0$$
, $b = \frac{a}{\|a\| + \varepsilon} \in A_1 \subset \operatorname{co}(U)$, luego $\|b\|_U \le 1$ y $\|a\|_U \le \|a\| + \varepsilon$. Por tanto, $\|a\| = \|a\|_U \ \forall a \in A$. Sea $K = \sup_{u \in U} \|\phi(u)\| \in \mathbb{R}_0^+$. Para cada $a = \sum_{j=1}^n \lambda_j u_j$ (con cada $\lambda_i \in \mathbb{K} \ \forall \ u_i \in U$) tenemos

$$\|\phi(a)\| = \left\| \sum_{j=1}^n \lambda_j \phi(u_j) \right\| \le \sum_{j=1}^n |\lambda_j| \|\phi(u_j)\| \le K \sum_{j=1}^n |\lambda_j|$$

Para cada
$$\varepsilon > 0$$
, $b = \frac{a}{\|a\| + \varepsilon} \in A_1 \subset \operatorname{co}(U)$, luego $\|b\|_U \le 1$ y $\|a\|_U \le \|a\| + \varepsilon$. Por tanto, $\|a\| = \|a\|_U \ \forall a \in A$. Sea $K = \sup_{u \in U} \|\phi(u)\| \in \mathbb{R}_0^+$. Para cada $a = \sum_{j=1}^n \lambda_j u_j$ (con cada $\lambda_j \in \mathbb{K}$ y $u_j \in U$) tenemos

$$\|\phi(a)\| = \left\| \sum_{j=1}^n \lambda_j \phi(u_j) \right\| \le \sum_{j=1}^n |\lambda_j| \|\phi(u_j)\| \le K \sum_{j=1}^n |\lambda_j|,$$

luego $\|\phi(a)\| \le K \|a\|_U = K \|a\|$.

Para cada
$$\varepsilon>0$$
, $b=\frac{a}{\|a\|+\varepsilon}\in A_1\subset \operatorname{co}(U)$, luego $\|b\|_U\leq 1$ y $\|a\|_U\leq \|a\|+\varepsilon$. Por tanto, $\|a\|=\|a\|_U\ \forall a\in A$. Sea $K=\sup_{u\in U}\|\phi(u)\|\in\mathbb{R}^+_0$. Para cada $a=\sum_{j=1}^n\lambda_ju_j$ (con cada $\lambda_j\in\mathbb{K}$ y $u_j\in U$) tenemos

$$\|\phi(a)\| = \left\| \sum_{j=1}^n \lambda_j \phi(u_j) \right\| \le \sum_{j=1}^n |\lambda_j| \|\phi(u_j)\| \le K \sum_{j=1}^n |\lambda_j|,$$

luego $\|\phi(a)\| \le K\|a\|_U = K\|a\|$. Por tanto, ϕ es continua con $\|\phi\| \le K$.

Para cada
$$\varepsilon > 0$$
, $b = \frac{a}{\|a\| + \varepsilon} \in A_1 \subset \operatorname{co}(U)$, luego $\|b\|_U \le 1$ y $\|a\|_U \le \|a\| + \varepsilon$. Por tanto, $\|a\| = \|a\|_U \ \forall a \in A$.

Sea $K = \sup_{u \in U} \|\phi(u)\| \in \mathbb{R}_0^+$. Para cada $a = \sum_{j=1}^n \lambda_j u_j$ (con cada $\lambda_i \in \mathbb{K}$ y $u_i \in U$) tenemos

$$\|\phi(a)\| = \left\| \sum_{j=1}^n \lambda_j \phi(u_j) \right\| \le \sum_{j=1}^n |\lambda_j| \|\phi(u_j)\| \le K \sum_{j=1}^n |\lambda_j|,$$

luego $\|\phi(a)\| \le K \|a\|_U = K \|a\|$. Por tanto, ϕ es continua con $\|\phi\| \le K$.

Por la definición de K, existe una sucesión $\{u_n\}$ en $U \subset B_A$ tal que $\|\phi(u_n)\| \to K$, de modo que $\|\phi\| \ge K$.

Para cada
$$\varepsilon > 0$$
, $b = \frac{a}{\|a\| + \varepsilon} \in A_1 \subset \operatorname{co}(U)$, luego $\|b\|_U \le 1$ y $\|a\|_U \le \|a\| + \varepsilon$. Por tanto, $\|a\| = \|a\|_U \ \forall a \in A$.

Sea $K=\sup_{u\in U}\|\phi(u)\|\in\mathbb{R}^+_0$. Para cada $a=\sum_{j=1}^n\lambda_ju_j$ (con cada $\lambda_j\in\mathbb{K}$ y $u_j\in U$) tenemos

$$\|\phi(a)\| = \left\| \sum_{j=1}^n \lambda_j \phi(u_j) \right\| \le \sum_{j=1}^n |\lambda_j| \|\phi(u_j)\| \le K \sum_{j=1}^n |\lambda_j|,$$

luego $\|\phi(a)\| \le K\|a\|_U = K\|a\|$. Por tanto, ϕ es continua con $\|\phi\| \le K$.

Por la definición de K, existe una sucesión $\{u_n\}$ en $U \subset B_A$ tal que $\|\phi(u_n)\| \to K$, de modo que $\|\phi\| \ge K$.

Índice

- Introducción
- 2 Preliminares
 - Descomposición polar de elementos invertibles
- Teorema de Russo-Dye
 - Una importante consecuencia
- 4 Refinamiento de Kadison y Pedersen

Mejora del teorema

Gardner prueba $A_1 + U \subset U + U$ (*)

Teorema

Sea A una C*-algebra unital y $U=\mathcal{U}(A)$ su grupo de unitarios. Si un elemento $a\in A$ cumple $\|a\|<1-\frac{2}{n}$ para algún entero n>2, entonces existen n elementos unitarios $u_1,\ldots,u_n\in U$ tales que $a=n^{-1}(u_1+\cdots+u_n)$.

Mejora del teorema

Gardner prueba $A_1 + U \subset U + U$ (*)

Teorema

Sea A una C*-algebra unital y $U=\mathcal{U}(A)$ su grupo de unitarios. Si un elemento $a\in A$ cumple $\|a\|<1-\frac{2}{n}$ para algún entero n>2, entonces existen n elementos unitarios $u_1,\ldots,u_n\in U$ tales que $a=n^{-1}(u_1+\cdots+u_n)$.

"Means and convex combinations of unitary operators" (R.V. Kadison & G.K. Pedersen, 1985).

Mejora del teorema

Gardner prueba $A_1 + U \subset U + U$ (*)

Teorema

Sea A una C*-algebra unital y $U=\mathcal{U}(A)$ su grupo de unitarios. Si un elemento $a\in A$ cumple $\|a\|<1-\frac{2}{n}$ para algún entero n>2, entonces existen n elementos unitarios $u_1,\ldots,u_n\in U$ tales que $a=n^{-1}(u_1+\cdots+u_n)$.

"Means and convex combinations of unitary operators" (R.V. Kadison & G.K. Pedersen, 1985).

Demostración

Sean $x \in A_1$ and $u \in U$ cualesquiera, consideremos el elemento

$$z = u + (n-1)x = u + x + (n-2)x \in A.$$

Existen $u_1, v_1 \in U$ tales que $u + x = u_1 + v_1$.

Demostración

Sean $x \in A_1$ and $u \in U$ cualesquiera, consideremos el elemento

$$z = u + (n-1)x = u + x + (n-2)x \in A.$$

Existen $u_1, v_1 \in U$ tales que $u + x = u_1 + v_1$. Luego

$$z = u_1 + v_1 + (n-2)x = u_1 + v_1 + x + (n-3)x$$

Demostración

Sean $x \in A_1$ and $u \in U$ cualesquiera, consideremos el elemento

$$z = u + (n-1)x = u + x + (n-2)x \in A.$$

Existen $u_1, v_1 \in U$ tales que $u + x = u_1 + v_1$. Luego

$$z = u_1 + v_1 + (n-2)x = u_1 + v_1 + x + (n-3)x.$$

Existen $u_2, v_2 \in U$ tales que $v_1 + x = u_2 + v_3$

Demostración

Sean $x \in A_1$ and $u \in U$ cualesquiera, consideremos el elemento

$$z = u + (n-1)x = u + x + (n-2)x \in A.$$

Existen $u_1, v_1 \in U$ tales que $u + x = u_1 + v_1$. Luego

$$z = u_1 + v_1 + (n-2)x = u_1 + v_1 + x + (n-3)x.$$

Existen $u_2, v_2 \in U$ tales que $v_1 + x = u_2 + v_2$. Luego

$$z = u_1 + u_2 + v_2 + (n-3)x = u_1 + u_2 + v_2 + x + (n-4)x$$

Demostración

Sean $x \in A_1$ and $u \in U$ cualesquiera, consideremos el elemento

$$z = u + (n-1)x = u + x + (n-2)x \in A.$$

Existen $u_1, v_1 \in U$ tales que $u + x = u_1 + v_1$. Luego

$$z = u_1 + v_1 + (n-2)x = u_1 + v_1 + x + (n-3)x.$$

Existen $u_2, v_2 \in U$ tales que $v_1 + x = u_2 + v_2$. Luego

$$z = u_1 + u_2 + v_2 + (n-3)x = u_1 + u_2 + v_2 + x + (n-4)x.$$

En n-3 pasos más

$$z=u+(n-1)x=\sum_{j=1}u_j, \;\; {
m donde}\; u_j\in U \; {
m para}\; {
m cada}\; j=1,\ldots,n \quad (1)$$

Demostración

Sean $x \in A_1$ and $u \in U$ cualesquiera, consideremos el elemento

$$z = u + (n-1)x = u + x + (n-2)x \in A.$$

Existen $u_1, v_1 \in U$ tales que $u + x = u_1 + v_1$. Luego

$$z = u_1 + v_1 + (n-2)x = u_1 + v_1 + x + (n-3)x.$$

Existen $u_2, v_2 \in U$ tales que $v_1 + x = u_2 + v_2$. Luego

$$z = u_1 + u_2 + v_2 + (n-3)x = u_1 + u_2 + v_2 + x + (n-4)x$$
.

En n-3 pasos más,

$$z=u+(n-1)x=\sum_{j=1}^n u_j, \;\; {
m donde}\; u_j\in U \; {
m para}\; {
m cada}\; j=1,\ldots,n \quad (1)$$

Demostración

$$z=u+(n-1)x=\sum_{j=1}^n u_j, \;\; {
m donde}\; u_j\in U \; {
m para}\; {
m cada}\; j=1,\ldots,n \quad (1)$$

$$\|(n-1)^{-1}(na-1)\| \le (n-1)^{-1}(n\|a\|+1)$$

 $<(n-1)^{-1}(n(1-2/n)+1) = (n-1)^{-1}(n-1) = 1$

Demostración

$$z=u+(n-1)x=\sum_{j=1}^n u_j, \;\; {
m donde}\; u_j\in U \; {
m para}\; {
m cada}\; j=1,\ldots,n \quad (1)$$

$$\begin{split} \|(n-1)^{-1}(na-1)\| &\leq (n-1)^{-1}(n\|a\|+1) \\ &< (n-1)^{-1}\big(n(1-2/n)+1\big) = (n-1)^{-1}(n-1) = 1, \end{split}$$

luego
$$(n-1)^{-1}(na-1) \in A_1$$
.

Demostración

$$z=u+(n-1)x=\sum_{j=1}^n u_j, \;\; {
m donde}\; u_j\in U \; {
m para}\; {
m cada}\; j=1,\ldots,n \quad (1)$$

$$\begin{split} \|(n-1)^{-1}(n\mathsf{a}-\mathbb{1})\| &\leq (n-1)^{-1}(n\|\mathsf{a}\|+1) \\ &< (n-1)^{-1}\big(n(1-2/n)+1\big) = (n-1)^{-1}(n-1) = 1, \end{split}$$

luego
$$(n-1)^{-1}(na-1) \in A_1$$
.

Apricamos (1) con
$$x = (n-1)^{-1}(na-1)$$
 y $u = 1$.

$$u + (n-1)x = 1 + (na-1) = na = u_1 + u_2 + \dots + u_n = \sum_{n=1}^{n} u_n$$

Demostración

$$z=u+(n-1)x=\sum_{j=1}^n u_j, \;\; {
m donde}\; u_j\in U \; {
m para}\; {
m cada}\; j=1,\ldots,n \quad (1)$$

$$\|(n-1)^{-1}(na-1)\| \le (n-1)^{-1}(n\|a\|+1)$$

 $<(n-1)^{-1}(n(1-2/n)+1) = (n-1)^{-1}(n-1) = 1,$

luego
$$(n-1)^{-1}(na-1) \in A_1$$
.

Aplicamos (1) con
$$x = (n-1)^{-1}(na - 1)$$
 y $u = 1$:

$$u + (n-1)x = 1 + (na - 1) = na = u_1 + u_2 + \dots + u_n = \sum_{j=1}^n u_j$$

Corolario

Todo elemento de una C^* -algebra unital A es un multiplo positivo de la suma de tres unitarios.

Demostración

Dado cualquier $a \in A$, tomamos $\varepsilon > 0$ cualquiera y consideramos el elemento $b = \frac{1}{3(\|a\| + \varepsilon)}a$.

Corolario

Todo elemento de una C^* -algebra unital A es un multiplo positivo de la suma de tres unitarios.

Demostración

Dado cualquier $a \in A$, tomamos $\varepsilon > 0$ cualquiera y consideramos el elemento $b = \frac{1}{3(\|a\| + \varepsilon)}a$. Claramente $\|b\| < 1/3$.

Corolario

Todo elemento de una C^* -algebra unital A es un multiplo positivo de la suma de tres unitarios.

Demostración

Dado cualquier $a \in A$, tomamos $\varepsilon > 0$ cualquiera y consideramos el elemento $b = \frac{1}{3(\|a\| + \varepsilon)}a$. Claramente $\|b\| < 1/3$.

Por el teorema anterior con n = 3, podemos escribir $b = (u_1 + u_2 + u_3)/3$ con $u_i \in U$ para j = 1, 2, 3.

Corolario

Todo elemento de una C^* -algebra unital A es un multiplo positivo de la suma de tres unitarios.

Demostración

Dado cualquier $a \in A$, tomamos $\varepsilon > 0$ cualquiera y consideramos el elemento $b = \frac{1}{3(\|a\| + \varepsilon)}a$. Claramente $\|b\| < 1/3$.

Por el teorema anterior con n = 3, podemos escribir $b = (u_1 + u_2 + u_3)/3$ con $u_i \in U$ para j = 1, 2, 3. Por tanto,

$$a = 3(||a|| + \varepsilon)b = (||a|| + \varepsilon)(u_1 + u_2 + u_3)$$

Corolario

Todo elemento de una C^* -algebra unital A es un multiplo positivo de la suma de tres unitarios.

Demostración

Dado cualquier $a \in A$, tomamos $\varepsilon > 0$ cualquiera y consideramos el elemento $b = \frac{1}{3(\|a\| + \varepsilon)}a$. Claramente $\|b\| < 1/3$.

Por el teorema anterior con n=3, podemos escribir $b=(u_1+u_2+u_3)/3$ con $u_j\in U$ para j=1,2,3. Por tanto,

$$a = 3(||a|| + \varepsilon)b = (||a|| + \varepsilon)(u_1 + u_2 + u_3)$$

Otra vuelta de tuerca

Teorema

Sea A una C*-algebra unital y $U=\mathcal{U}(A)$ su grupo de unitarios. Si un elemento $a\in A$ cumple $\|a\|\leq 1-2/n$ para algún entero n>2, entonces existen n elementos unitarios $u_1,\ldots,u_n\in U$ tales que $a=n^{-1}(u_1+\cdots+u_n)$.

"Means of unitary operators, revisited" (U. Haagerup, R.V. Kadison & G.K. Pedersen, 2007).

Otra vuelta de tuerca

Teorema

Sea A una C*-algebra unital y $U=\mathcal{U}(A)$ su grupo de unitarios. Si un elemento $a\in A$ cumple $\|a\|\leq 1-2/n$ para algún entero n>2, entonces existen n elementos unitarios $u_1,\ldots,u_n\in U$ tales que $a=n^{-1}(u_1+\cdots+u_n)$.

"Means of unitary operators, revisited" (U. Haagerup, R.V. Kadison & G.K. Pedersen, 2007).

Fin.

Gracias por la atención.