

Análise de Variância (ANOVA)

Bárbara Maria de Andrade Costa Murillo Fernando Rodrigues

> São Paulo 4 a 6 de outubro, 2016

Vamos comparar múltiplas médias

volte dois passos

Tipos de variáveis

A natureza das nossas medidas

Tipos de variáveis

Variável DEPENDENTE (resposta): mede o efeito sofrido (y)

Variável INDEPENDENTE (preditora): causa o efeito que procuramos investigar (x)

Tipos de variáveis

Qual a variável dependente (resposta) e independente (preditora) nas duas questões abaixo?

A temperatura afeta a o tamanho da região nasal em roedores?

A gradiente altitudinal afeta o tamanho da região nasal em roedores?

Tipos de variáveis

Qual a variável dependente (resposta) e independente (preditora) nas duas questões abaixo?

A temperatura afeta a o tamanho da região nasal em roedores?
 dependente independente

A gradiente altitudinal afeta o tamanho da região nasal em roedores?
 dependente independente

A natureza das nossas medidas

Variáveis categóricas (qualitativas): distinções de qualidade

Variáveis contínuas (quantitativas): diferenças de quantidade

Cor (preto, branco, azul) // Comprimento de onda da luz emitida

Altitude (cotas) // Altitude em gradientes

Porque queremos investigar o efeito de uma variável categórica (preditora) sobre a variação de uma variável contínua (resposta)

Porque queremos investigar o efeito de uma variável categórica (preditora) sobre a variação de uma variável contínua (resposta)

Por que não o teste t?

Porque queremos investigar o efeito de uma variável categórica (preditora) sobre a variação de uma variável contínua (resposta)

Hipótese nula(Ho): $\mu_1 = \mu_2 = \dots = \mu_n$

Porque queremos investigar o efeito de uma variável categórica (preditora) sobre a variação de uma variável contínua (resposta)

Hipótese nula(Ho): $\mu_1 = \mu_2 = \dots = \mu_n$

Hipótese alternativa (Ha): µ₁ ≠ µ₂ ≠ ... ≠ µո

Tabela de ANOVA

Variação	Soma dos Quadrados	Graus de Liberdade	Quadrados das medias	F
Entre Grupos (SQE)				
Dentro dos grupos (SDQ)				
Total (SQT)				

Será que as subespécies de andorinha tem comprimentos de crânio diferentes?

subespécies

a	b	C	
3	5	5	
2	3	6	valores de comprimento de crânio para cada grupo
1	4	7	

Será que as subespécies de andorinha tem comprimentos de crânio diferentes?

subespécies

<u>a</u>	b	C
3	5	5
2	3	6
1	4	7

valores de comprimento de crânio para cada grupo

Média de cada subespécie: a = 2 b = 4 c = 6

$$a = 2$$

$$b = 4$$

$$c = 6$$

Será que essas diferenças nas médias de cada subespécie é aleatória ?

subespécies

<u>a</u>	b	C
3	5	5
2	3	6
1	4	7

valores de comprimento de crânio para cada grupo

Média de cada subespécie: a = 2 b = 4 c = 6

$$b = 4$$

$$C = 6$$

A grande média ou média das médias

Grande média
$$(X) = \frac{3+2+1+5+3+4+5+6+7}{9} = 4$$

Soma dos Quadrados Total

a	b	C
3	5	5
2	3	6
1	4	7

Grande média (X) = 4

$$SQT = (3-4)^2 + (2-4)^2 + (1-4)^2 + (5-4)^2 + (3-4)^2 + (4-4)^2 + (5-4)^2 + (6-4)^2 + (7-4)^2$$

$$SQT = 30$$

Soma dos Quadrados Total

a	b	C
3	5	5
2	3	6
1	4	7

Grande média (X) = 4

$$SQT = (3-4)^2 + (2-4)^2 + (1-4)^2 + (5-4)^2 + (3-4)^2 + (4-4)^2 + (5-4)^2 + (6-4)^2 + (7-4)^2$$

$$SQT = 30$$

Graus de liberdade = números de elementos - 1

Graus de liberdade = 8

Tabela de ANOVA

Variação	Soma dos Quadrados	Graus de Liberdade	Quadrados das medias	F
Entre Grupos (SQE)				
Dentro dos grupos (SDQ)				
Total (SQT)	30	8		

Quanto da variação total se deve à variação dentro e entre grupos?

a	b	C
3	5	5
2	3	6
1	4	7

SQTotal = SQ Entre + SQ Dentro

Soma dos Quadrados Dentro dos Grupos

Média de cada grupo = $X_1 = 2$ $X_2 = 4$ $X_3 = 6$

$$SQD = (3-2)^2 + (2-2)^2 + (1-2)^2 + (5-4)^2 + (3-4)^2 + (4-4)^2 + (5-6)^2 + (6-6)^2 + (7-6)^2$$

$$SQD = 6$$

Graus de liberdade = 6

De 30, 6 se deve a variação dentro dos grupo

SQT = 30 SQD = 6

Tabela de ANOVA

Variação	Soma dos Quadrados	Graus de Liberdade	Quadrados das medias	F
Entre Grupos (SQE)				
Dentro dos grupos (SDQ)	6	6		
Total (SQT)	30	8		

Soma dos Quadrados Entre os Grupos

Média de cada grupo = $X_1 = 2$ $X_2 = 4$ $X_3 = 6$

Grande média (X) = 4

Distância ao quadrado entre a média de cada grupo e a média das médias, para cada elemento.

SQE =
$$(2-4)^2 + (2-4)^2 + (2-4)^2 + (4-4)^2 + (4-4)^2 + (4-4)^2 + (6-4)^2 + (6-4)^2 + (6-4)^2$$

SQE = 24

Soma dos Quadrados Entre os Grupos

$$SQT = 30$$
$$SQD = 6$$

Média de cada grupo =
$$X_1 = 2$$
 $X_2 = 4$ $X_3 = 6$

Grande média
$$(\overline{X}) = 4$$

Distância ao quadrado entre a média de cada grupo e a média das médias, para cada elemento.

SQE =
$$(2-4)^2 + (2-4)^2 + (2-4)^2 + (4-4)^2 + (4-4)^2 + (4-4)^2 + (6-4)^2 + (6-4)^2 + (6-4)^2$$

SQE = 24

Graus de liberdade = números de subespécies - 1

Graus de liberdade = 2

De 30, 24 se deve a variação entre grupos e 6 dentro dos grupos

SQTotal = SQ Entre + SQ Dentro

6 g.l

SQT = 30SQE = 24SQD = 68 g.l 2 g.l

Tabela de ANOVA

Variação	Soma dos Quadrados	Graus de Liberdade	Quadrados das medias	F
Entre Grupos (SQE)	24	2		
Dentro dos grupos (SDQ)	6	6		
Total (SQT)	30	8		

Será que as subespécies de andorinha tem comprimentos de crânio diferentes?

subespécies

a	b	C	
3	5	5	
2	3	6	valores de comprimento de crânio para cada grupo
1	4	7	

Será que essas diferenças nas médias de cada subespécie é aleatória ?

subespécies

<u>a</u>	b	C
3	5	5
2	3	6
1	4	7

valores de comprimento de crânio para cada grupo

Média de cada subespécie: a = 2 b = 4 c = 6

$$b = 4$$

$$C = 6$$

Será que essas diferenças nas médias de cada subespécie é aleatória ?

subespécies

a	b	C
3	5	5
2	3	6

valores de comprimento de crânio para cada grupo

Média de cada subespécie: a = 2 b = 4 c = 6

$$a = 2$$
 $b = 4$ $c = 6$

H0:
$$\overline{X}a = \overline{X}b = \overline{X}c$$
 não faz diferença

H alternativa: há diferença entre comprimento do crânio para cada subespécies

Teste de hipótese com a estatística F

H0:
$$\overline{X}a = \overline{X}b = \overline{X}c$$
 não faz diferença

Halternativa: as subespécies apresentam comprimento do crânio diferentes

Teste de hipótese com a estatística F

H0:
$$\overline{X}a = \overline{X}b = \overline{X}c$$
 não faz diferença

Halternativa: as subespécies apresentam comprimento do crânio diferentes

Estatística F =
$$\frac{SQE / m - 1}{SQD / m(n - 1)}$$

Teste de hipótese com a estatística F

H0:
$$\overline{X}a = \overline{X}b = \overline{X}c$$
 não faz diferença

Halternativa: as subespécies apresentam comprimento do crânio diferentes

Tabela de ANOVA

Variação	Soma dos Quadrados	Graus de Liberdade	Quadrados das medias	Д.
Entre Grupos (SQE)	24	2	12	12
Dentro dos grupos (SDQ)	6	6	1	
Total (SQT)	30	8		

TABLE E

F critical values

			Degrees of freedom in the numerator								
		p	1	2	3	4	5	6	7	8	9
		.100	39.86	49.50	53.59	55.83	57.24	58.20	58.91	59.44	59.86
		.050	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
	1	.025	647.79	799.50	864.16	899.58	921.85	937.11	948.22	956.66	963.28
		.010 .001	4052.2 405284	4999.5 500000	5403.4 540379	5624.6 562500	5763.6 576405	5859.0 585937	5928.4 592873	5981.1 598144	6022.5 602284
			100201	20000	510517	20200	510100	565751	0,20.0	0,01	
		.100	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38
		.050	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
	2	.025	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39
		.010	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39
		.001	998.50	999.00	999.17	999.25	999.30	999.33	999.36	999.37	999.39
		.100	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24
or		.050	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
lat	3	.025	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47
l ij		.010	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35
Degrees of freedom in the denominator		.001	167.03	148.50	141.11	137.10	134.58	132.85	131.58	130.62	129.86
de		.100	4 5 4	4 22	4.10	4.11	4.05	4.01	2.00	2.05	2.04
the		.050	4.54 7.71	4.32 6.94	4.19 6.59	4.11 6.39	4.05 6.26	4.01 6.16	3.98 6.09	3.95 6.04	3.94 6.00
.EI	4	.025	12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90
8	4	.010	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66
[Op		.001	74.14	61.25	56.18	53.44	51.71	50.53	49.66	49.00	48.47
iree											
Jf Jc		.100	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32
SS		.050	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
ž	5	.025	10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68
g		.010	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16
О		.001	47.18	37.12	33.20	31.09	29.75	28.83	28.16	27.65	27.24
		.100	3.78	3.46	3.29	3.18	3.11	3.05	3.01	2.98	2.96
		.050	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
	6	.025	8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52
	•	.010	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98
		.001	35.51	27.00	23.70	21.92	20.80	20.03	19.46	19.03	18.69
		100	3.50	2.2/	2.07	2.07	3.00	2.02	2.70	2.75	2.72
		.100	3.59	3.26	3.07	2.96	2.88	2.83	2.78	2.75	2.72
	7	.050	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
	7	.025	8.07	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82
		.010	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72
		.001	29.25	21.69	18.77	17.20	16.21	15.52	15.02	14.63	14.33

