Image Classification with mageNette

Caspar Chan (z5206252), Fenyi Shen (z5323706), Henry Ho (z5312521), Rachael Yu (z5164297), William Wong (z5205428)

Problem Statement

- Image classification aiming high accuracy
- ImageNette
- Evaluate effectiveness of different approaches

Data Sources

- From Imagenette (Not imagenet)
- Easy to/access
- Sufficiently non-trivial
- Size is not too big
- Project limitations

O ILSVRC2012 v

al_00000665.JP

al_00000557.JP

al_00003944.JP EG

SILSVRC2012_v

al_00017775.JP EG

al_00017463.JP EG

al_00016648.JP EG

al_00014287.JP EG

O ILSVRC2012_v

O ILSVRC2012_v

Data Exploration

- Similar number of images across classes (858 to 993)
- Images have different sizes (between 200 and 500 pixels)
- Premade training and validation sets (9469 training, 3925 validation)
- Slight noisy labelling (~5%)

Data pre-processing

Image Transformations

- Resize
- RandomCrop
- RandomHorizontalFlip
- RandomErasing
- ToTensor
- Normalize

Methods

Approach

- Tested performance of popular networks used for image classification such as GoogLeNet and various versions of ResNet (ResNet34, ResNet50, ResNet50-d)
- ResNet architecture displayed overall better performance
- Modifications were made based on ResNet's architecture incorporating features from other networks and alternative components proposed by recent research papers
- Final model is a composition of all adjustments that demonstrated increase in peak accuracy or general performance

Proposal for new block

- How would we gather more information?
- By performing multiple passes on the same input!

Problems

- Computationally more expensive
- n times more expensive for each block added
- High contrast blocks may pick up completely different things
- Might not pick up any new information at all

Model Architecture

Main Structure of our Model

Input	Operator	1	c	u	S
$224^2 \times 3$	conv2d	ε	32	1	_
$112^{2} \times 32$	bottleneck	_	91	-	
$112^{2} \times 16$	bottleneck	9	24	7	
$56^2 \times 24$	bottleneck	9	32	С	
$28^2 \times 32$	bottleneck	9	49	4	
$14^2 \times 64$	bottleneck	9	96	ю	
$14^2 \times 96$	bottleneck	9	160	c	-
$7^2 \times 160$	bottleneck	9	320	-	
$7^{2} \times 320$	conv2d 1x1	π	1280	-	
$7^2 \times 1280$	avgpool 7x7	Ľ		-	
$1 \times 1 \times 1280$	conv2d 1x1	. 1	¥	1	

s != 1 || in != out

Dwise 3x3,stride=s

Conv3x3, stride=s Conv 1x1

Conv 1x1

Conv 1x1

Conv 1x1

Input

Experimentation

- Mish -> Faster convergence
- MaxBlurPool -> Decrease in accuracy
- Dropout -> Drastic increase in training time without showing significant effect in reducing overfitting or increasing accuracy
- Adam optimiser -> Major increase in learning speed compared to SGD
- Learning rate scheduler-> Significant improvement in learning speed up to 80% accuracy with Cosine annealing scheduler demonstrating better performance than Exponential scheduler

Alternative Models Tested

- Current model with Dropout
- ResNet with Dropout
- ResNet34
- ResNet50
- ResNet50-d
- GoogLeNet

Results

Merging features from different models can bring more insights on new model

Class Accuracy Tench English Springer Cassette Player Chain Saw Church French Horn Garbage Truck Gas Pump Golf Ball	Modified MobileNetV2 94.8 % 91.9 % 80.8 % 90.7 % 88.1 % 90.7 % 85.0 % 91.7 %	93.0 % 95.9 % 81.2 % 90.2 % 91.9 % 77.8 % 84.7 %
Parachute	% 0.0%	89.7 %
Overall	806	87%

he size and purity of the training dataset can have an impact on the accuracy

Image Classification on ImageNet

- Raw Resnet50 only achieves an 87 % accuracy
- Insufficient dataset size
- 5% noisy data
- Increases the model complexity
- Increases time of learning

Dropout layers do not necessarily improve the model performance

- Batch normalization already has a regularizing effect
- Partial dropout can be harmful in CNN

essential to achieve a high accuracy Fine-tuning hyperparameters is

- ResNet50 with a consistent 0.001 learning rate
- Barely reach 80%
- Cosine Annealing LR scheduler
- Improve to 87%

Mish activation and BlurPool

- Activation change: ReLU6 to Mish
- Improved training speed, faster in reaching 80%
- Blurpool
- Accuracy decreased

Limitations

- GPU limitation
- Training process is fime consuming
 - Time constraint

Conclusion

- Merging features from different models can bring insights on new model architecture
- Effectiveness of different techniques and approaches in model construction and training
- Mish
- BlurPool
- Scheduler
- Dropout