Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-225. Вариант 8

1. Пусть
$$z = \frac{1}{2} + \frac{\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[6]{z^2}$, для которого число $\frac{\sqrt[6]{z^2}}{2 - 2\sqrt{3}i}$ имеет аргумент $\frac{7\pi}{9}$.

2. Решить систему уравнений:

$$\begin{cases} x(14+5i) + y(-9+5i) = -141 + 152i \\ x(-3-3i) + y(9-2i) = 84+9i \end{cases}$$

- 3. Найти корни многочлена $4x^6+88x^5+864x^4+4992x^3+18932x^2+46920x+57800$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=-1-4i,\,x_2=-5+3i,\,x_3=-5.$
- 4. Даны 3 комплексных числа: 4-7i, -10+24i, -16+24i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -4$, $z_2 = -2\sqrt{3} 2i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+i| < 2\\ |arg(z+1+4i)| < \frac{\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-2, 0, -7), b = (0, 2, -6), c = (5, 4, 4). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-15,-12,-11) и плоскость P:-42x-26y-50z+978=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-1,9,-10), $M_1(0,1,2)$, $M_2(-1,-1,2)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -30x - 7y + 32z - 409 = 0 \\ -13x - 14y + 17z - 19 = 0 \end{cases} \qquad L_2: \begin{cases} -17x + 7y + 15z + 1862 = 0 \\ -6x - 4y - 20z - 704 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .