Sea

$$I_n = \int_0^1 \frac{x^n}{5+x} \, dx, \quad n \in \mathbb{N}.$$

Parte (a)

Cálculo de I_0 :

$$I_0 = \int_0^1 \frac{1}{5+x} dx = \left[\ln(5+x)\right]_0^1 = \ln(6) - \ln(5) = \ln\left(\frac{6}{5}\right)$$

No negatividad de I_n :

Para $n \geq 1$, en el intervalo [0,1] se cumple que $x^n \geq 0$ y 5+x>0, luego

$$\frac{x^n}{5+x} \ge 0 \quad \Rightarrow \quad I_n \ge 0$$

Relación de recurrencia:

Partimos de la identidad

$$x^n = (x+5)x^{n-1} - 5x^{n-1}$$

Dividiendo entre (5+x):

$$\frac{x^n}{5+x} = x^{n-1} - \frac{5x^{n-1}}{5+x}$$

Integrando en [0,1]:

$$I_n = \int_0^1 x^{n-1} dx - 5 \int_0^1 \frac{x^{n-1}}{5+x} dx$$

La primera integral es

$$\int_0^1 x^{n-1} \, dx = \frac{1}{n}$$

La segunda integral es exactamente I_{n-1} . Por tanto,

$$I_n = \frac{1}{n} - 5I_{n-1}$$

Reordenando:

$$I_n + 5I_{n-1} = \frac{1}{n}, \quad n \ge 1$$

Parte (b)

Propagación del error relativo de I_n (ε_{I_n}) al error relativo de I_{n+1} ($\varepsilon_{I_{n+1}}$):

Por definición de error relativo:

$$\varepsilon_{I_n} = \frac{I_n - \bar{I_n}}{I_n}$$

Reordenando:

$$\bar{I}_n = (1 + \varepsilon_{I_n})I_n$$

Al calcular I_{n+1} en función de una aproximación de I_n (\bar{I}_n) se obtiene una aproximación de I_{n+1} (\bar{I}_{n+1}):

$$\bar{I_{n+1}} = \frac{1}{n+1} - 5\bar{I_n}$$

Sustituyendo $\bar{I_n}$ y reordenando:

$$I_{n+1}^{-} = \frac{1}{n+1} - 5(1 + \varepsilon_{I_n})I_n$$

$$I_{n+1}^{-} = \frac{1}{n+1} - 5I_n + 5\varepsilon_{I_n}I_n$$

$$I_{n+1}^{-} = I_{n+1} + 5\varepsilon_{I_n}I_n$$

Por definición de error relativo:

$$|\varepsilon_{I_{n+1}}| = |\frac{I_{n+1}^{-} - I_{n+1}}{I_{n+1}}|$$

Sustituyendo I_{n+1}^- :

$$|\varepsilon_{I_{n+1}}| = |\frac{5\varepsilon_{I_n}I_n}{I_{n+1}}|$$

Como $I_n \approx I_{n+1}$:

$$|\varepsilon_{I_{n+1}}|\approx|5\varepsilon_{I_n}|\Rightarrow|\varepsilon_{I_{n+1}}|\approx5|\varepsilon_{I_n}|$$

En general se cumple:

$$|\varepsilon_{I_n}| \approx 5^n |\varepsilon_{I_0}|$$

Conclusión: Por esta aproximación vemos que el error aumenta exponencialmente cuando se utiliza la recurrencia hacia adelante, por esto el resultado obtenido al calcular I_{30} no es confiable, por lo tanto, la recurrencia hacia adelante resulta numéricamente inestable.

Parte (c)

Propagación del error relativo de I_{n+1} ($\varepsilon_{I_{n+1}}$) al error relativo de I_n

Partimos de la relación invertida (recurrencia hacia atrás):

$$I_n = \frac{1}{5} \left(\frac{1}{n+1} - I_{n+1} \right)$$

Al calcular I_n en función de una aproximación de I_{n+1} (I_{n+1}) se obtiene una aproximación de I_n (I_n) :

$$\bar{I}_n = \frac{1}{5} \left(\frac{1}{n+1} - \bar{I}_{n+1} \right)$$

Sustituyendo $\bar{I}_{n+1} = (1 + \varepsilon_{I_{n+1}})I_{n+1}$ y reordenando:

$$\bar{I}_n = \frac{1}{5} \left(\frac{1}{n+1} - (1 + \varepsilon_{I_{n+1}}) I_{n+1} \right)$$

$$\bar{I}_{n} = \frac{1}{5} \left(\frac{1}{n+1} - I_{n+1} \right) - \frac{1}{5} \varepsilon_{I_{n+1}} I_{n+1}$$

$$\bar{I}_{n} = I_{n} - \frac{1}{5} \varepsilon_{I_{n+1}} I_{n+1}$$

$$\bar{I}_n = I_n - \frac{1}{5}\varepsilon_{I_{n+1}}I_{n+1}$$

Por definición de error relativo:

$$|\varepsilon_{I_n}| = |\frac{\bar{I}_n - I_n}{I_n}|$$

Sustituyendo \bar{I}_n :

$$|\varepsilon_{I_n}| = |\frac{\varepsilon_{I_{n+1}}I_{n+1}}{5I_n}|$$

Como $I_n \approx I_{n+1}$:

$$|\varepsilon_{I_n}| \approx |\frac{\varepsilon_{I_{n+1}}}{5}| \Rightarrow |\varepsilon_{I_n}| \approx \frac{1}{5}|\varepsilon_{I_{n+1}}|$$

Iterando la relación hacia atrás desde un índice m hasta n, se obtiene:

$$|\varepsilon_{I_n}| \approx \frac{1}{5^{m-n}} |\varepsilon_{I_m}|$$

Conclusión: Esta aproximación muestra que el error decrece exponencialmente al aplicar la recurrencia hacia atrás, de modo que al tomar distintos valores iniciales para I_{100} , las aproximaciones convergen y se estabilizan en torno a I_{30} .