Package 'predfinitepop'

April 24, 2014

Type Package

Title Predictive Inference on Totals and Averages of Finite

Populations Segmented in Planned and Unplanned Domains.

Version 1.0	
Date 2014-04-24	
Copyright Banco de Mexico	
Author Juan Carlos Martinez-Ovando, Sergio I. Olivares-Guzman, Adriana Roldan-Rodriguez.	
Maintainer Juan Carlos Martinez-Ovando < juan.martinez@banxico.org.mx>	
Description This package computes Bayesian predictive inference on totals and averages of fini ulations segmented in planned and unplanned domains. Inference is based on Bayesian no metric methods using species-sampling models (specifically the Dirichlet process).	
Acknowledgement The authors appreciate advice from Pedro Gonzalez-Alegria and Claudia Velazquez-Villegas of Banco de Mexico.	
License GPL-3	
R topics documented:	
conteo dataref datasample dinvgauss domnoplan domnoplan_composicion domnoplan_g0 domnoplan_totalcomp domplan domplan g0 domplan g0 go_licitacion g0_simulacion ghat_simulacion gstar_simulacion	

2 conteo

pinvgauss																					
popcomp																					
poptot																					
predfinitepop																					
qinvgauss																					
randDirichlet																					
rinvgauss																					
unicstar																					

conteo

Index

Counts the number of individuals in S_j and \widetilde{S}_j .

33

Description

This function counts the number of individuals in S_j and \widetilde{S}_j , with respect to the total number of individuals in a given planned domain P_j .

Usage

```
conteo(datos_j, N_j)
```

Arguments

datos_j	Data matrix with individual measurements for S_j
N_j	Number of individuals in \mathcal{P}_j (the jth planned domain) (N_j is assumed known)

Details

"datos_j" - This object should contain two columns labeled " n_i " and "domplan".

"domplan" - Column vector with categories for the planned domains.

"n_i"- Number of individuals in the ith group of individuals, and

" N_j " - This object should include two colums labeled " N_j " and "domplan".

"domplan" - Column vector with categories for the planned domains.

" N_j " - Number of individuals in the jth planned domain, and

Value

The function 'conteo' produces an output list with three elements:

М	Number of groups in " S_j "
CardS	Number of individuals in " \mathcal{S}_j " (if " n_i "= 1, for any " j ", then $Cards=M=nrow(datos_j)$)
CardNoS	Number of individuals out of sample

Author(s)

Sergio I. Olivares-Guzman, Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

dataref 3

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.

dataref Reference data set of a simulated population segemented in planned and unplanned domains.

Description

This data set corresponds to a simulated population of 500 individuals grouped in two planned domains. Each planned domain of the population has been segmented, as well, into the three unplanned domains. Within the planned domain A, the segmentation is given as domain I (200), domain II (400) and domain III (200), whereas within planned domain B, the segmentation is given as domain I (780), domain II (400) and domain III (20). Individual measurements were simulated from log-normal and Weibull distributions with different parameterizations for each combination of planned and unplanned domains. See Martinez-Ovando et al. (2014) for further explanations.

Usage

data(dataref)

Format

A data frame with 500 observations on the following 3 variables.

id Identification code for simulated data.

y_i Simulated individual ourcomes.

domplan Identification for planned domains (domain A and B).

Source

Simulated data. See Martinez-Ovando et al. (2014) for further details.

References

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

Examples

data(dataref)

4 datasample

datasample	Data set of a simulated population segemented in planned and unplanned domains.

Description

This is an object list with 20 simulated samples from the simulated population of 2,000 individuals grouped in two planned domains. Planned domain A is formed of 800 individuals, and domain B is composed of 1.2 thousand individuals. Each planned domain of the population has been segmented, as well, into the three unplanned domains.

Usage

data(datasample)

Format

List of lenght 20, with entries:

11. 'data.frame': 100 obs. of 8 variables with a sample of size 5 percent

12. 'data.frame': 200 obs. of 8 variables with a sample of size 10 percent

13. 'data.frame': 300 obs. of 8 variables with a sample of size 15 percent

14. 'data.frame': 400 obs. of 8 variables with a sample of size 20 percent

15. 'data.frame': 500 obs. of 8 variables with a sample of size 25 percent

16. 'data.frame': 600 obs. of 8 variables with a sample of size 30 percent

17. 'data.frame': 700 obs. of 8 variables with a sample of size 35 percent

18. 'data.frame': 800 obs. of 8 variables with a sample of size 40 percent

19. 'data.frame': 900 obs. of 8 variables with a sample of size 45 percent

110. 'data.frame': 1000 obs. of 8 variables with a sample of size 50 percent

111. 'data.frame': 1100 obs. of 8 variables with a sample of size 55 percent

112. 'data.frame': 1200 obs. of 8 variables with a sample of size 60 percent

113. 'data.frame': 1300 obs. of 8 variables with a sample of size 65 percent

114. 'data.frame': 1400 obs. of 8 variables with a sample of size 70 percent

115. 'data.frame': 1500 obs. of 8 variables with a sample of size 75 percent

116. 'data.frame': 1600 obs. of 8 variables with a sample of size 80 percent

117. 'data.frame': 1700 obs. of 8 variables with a sample of size 85 percent

118. 'data.frame': 1800 obs. of 8 variables with a sample of size 90 percent

119. 'data.frame': 1900 obs. of 8 variables with a sample of size 95 percent

120. 'data.frame': 2000 obs. of 8 variables with a sample of size 100 percent

List of variables:

id Individual identification code

y_i Group measurenment

dinygauss 5

domnoplan Identification code for unplanned domains

n_i Group size

domplan Identification code for planned domains

- 1 Indicator variable for unplanned domain I
- 2 Indicator variable for unplanned domain II
- 3 Indicator variable for unplanned domain III

Details

Within the planned domain A, the segmentation is given as domain I (200), domain II (400) and domain III (200), whereas within planned domain B, the segmentation is given as domain I (780), domain II (400) and domain III (20). Individual measurements were simulated from log-normal and Weibull distributions with different parameterizations for each combination of planned and unplanned domains. The original sample is of size 5 percent. The upcoming samples were extrated increasing the sample size in 5 percent at a time. See Martinez-Ovando et al. (2014) for further explanations.

Source

Simulated data. See Martinez-Ovando et al. (2014) for further details.

References

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

Examples

data(datasample)

dinvgauss

Inverse Gaussian distribution - Density.

Description

Computes de p.d.f. function for the inverse Gaussian distribution.

Usage

```
dinvgauss(y, m, s, logcond=FALSE)
```

Arguments

y p-dimensional	I vector with positive entries
-----------------	--------------------------------

m Mean parameters Scale parameter

logcond Logic parameter for log-scale form

6 domnoplan

Author(s)

Jim Lindsey <jlindsey@luc.ac.be>

References

- "Utilities for Nonlinear Regression and Repeated Measurements Models." Package "rmutil" version 1.0.

domnoplan	Finite population inference on unplanned domains using reference data.

Description

Generates Monte Carlo samples from the predictive distribution of totals of a finite population segmented in planned and unplanned domains, along with simulations of the predictive distribution for the composition of the population between the unplanned domains.

Usage

domnoplan(datos,datos_ant,domplan_N,alphaDP,colid_D,alpha_D,inter,part,nSim)

Arguments

datos	$(M \times p)$ -dimensional array with positive entries for S_j
datos_ant	$(M \times p)$ -dimensional reference array for calibration of G_0
domplan_N	Matrix array with counts of individuals in each planned domain
alphaDP	J -dimensional array with positive entries for the parameters of the Dirichlet process for F_j (with J being the number of planned domains)
colid_D	<i>D</i> -dimensional matrix array with the columns in datos that correspond to the indicator variables of the planned domains (those indicator variables represent a partion of "datos")
alpha_D	$(J \times D)$ -dimensional array with positive entires for the parameters of the multinomial-Dirichlet component for the composition across unplanned domains. Note: Each one of the J rows is a vector of composition for \mathcal{P}_j divided across the D unplanned domains
inter	Tuning parameter for model comparison and selection (related to calibration of G_0)
part	Number of partitions for predictive cross-validation (related to calibration of G_0)
nSim	Number of Monte Carlo simulated replicates of the predictive distribution

domnoplan 7

Details

- datos: Represent the data sample of the target population, unplanned domains labeled.

It should contain the following columns:

"domplan" - Categories for planned domains.

"y_i" - Actual individual measurements (for the moment, they must be positive and continuous) for the group of observation.

"n_i" - Number of individuals in the group (if the unit of observation in the sample are individuals, then " n_i " must be equal to 1)

- datos_ant : Represents the data reference used to calibrate G_{i0}

The data must be labeled by planned domains. It should contain the following columns:

"domplan" - Categories of planned domains

"y i" - Positive real and individual measurements of each group in the sample (when the units of observation are the groups, " y_i " should be per capita measurement)

- domplan_N: Represents counts (or reference population) of the target population, divided by the planned domains.

Tagged data must be labeled by domains planned. It should contain the following columns:

"domplan" - Categories fot planned domains.

"N_j" - Number of individuals in each planned domain.

Value

The function 'domnoplan' produces:

total_domnoplan_sim

Matrix array of dimension "J * (3 + 2 D)" nSim" with predictions for the planned

Column 1 - Indicator of the planned domains

Column 2 - T_i (totals of the planned domains)

Column 3 - N_j (composition of the planned domains)

Column 4 - $(4+D-1)-T_{d_j}$ (totals of unplanned domains, such that $T_j=$

$$\sum_{j=1}^{J} T_{d_j}(\text{across d}))$$

Column 5 -
$$(4+D)$$
 to $(3+2*D)-N_{d_j}$ (composition of unplanned domains, such that $N_j = \sum_{j=1}^J N_{d_j}$ (across d))

Author(s)

Setgio I. Olivares-Guzman, Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

8 domnoplan

See Also

domnoplan_composicion, domnoplan_totalcomp.

Examples

```
# Uses of library: "predfinitepop"
#-----
           Read files with functions in R
rm(list=ls())
library("predfinitepop")
set.seed(12345)
#-----
# DATA
data(dataref)
data(datasample)
data(popcomp)
# Sample (with 10% of the population)
datos <- datasample[[1]]</pre>
datos_ant <- dataref</pre>
domplan_N <- popcomp[[1]]</pre>
#-----
# MODEL PARAMETERS
#-----
# a. Parameter "alpha" of the Dirichlet process
# (this is for J02 planned domains)
alphaDP \leftarrow matrix(0.03,2,1)
# b. vector with indicator variables for unplanned domains
colid_D \leftarrow t(as.matrix(c(6:8)))
# c. Matrix with parameters for unplanned domains
# (this is for J=2 planned domains)
alpha_D <- matrix(0.3,2,length(colid_D))</pre>
# CODE PARAMETERS
#-----
\# A. Interval for calibration of G_0
inter <- 3
# B. Number of groups for predictive validation and model comparison
part <- 20
# C. Number of Monte Carlo replicates of the predictive distributions
nSim <- 10
```

```
# TESTING "domnoplan.R"
date.ini <- date()</pre>
domnoplan_sim <- domnoplan(datos,datos_ant,domplan_N,alphaDP,colid_D,alpha_D,inter,part,nSim)</pre>
date.fin <- date()</pre>
# --END --
```

domnoplan_composicion Generates Monte Carlo samples from the predictive distribution for the vector N_j across the D unplanned domains within a given planned domain.

Description

This function simulates Monte Carlo samples from the predictive distribution of the vector N_i across the D unplanned domains within a given planned domain j.

Usage

```
\\ domnoplan\_composicion(datos\_j, N\_j, N\_S\_j, N\_Stil\_j, colid\_D, alpha\_D, nSim)
```

Arguments

datos_j	Data matrix with features and number of individuals in the sample S_j
N_j	Number of individuals in \mathcal{P}_j (jth planned domain)
N_S_j	Number of individuals in the sample S_j
N_Stil_j	Number of individuals out the sample S_j
colid_D	D-dimensional matrix array with the columns in 'datos' that correspond to the indicator variables of the planned domains (those indicator variables represent a partion of 'datos')
alpha_D	<i>D</i> -dimensional array with positive entires for the parameters of the multinomial-Dirichlet component for the composition across unplanned domains (NOTE: this one makes reference to a single planned domain)
nSim	Number of Monte Carlo simulated replicates of the predictive distribution

Value

This function 'domnoplan_composicion' produces:

```
Composition of the number of individuals in saample S_j (N_j^S) across the D
N_S_domnoplan
                  unplanned domains
domnoplan_composicion_sim
                  (1 X D X nSim) matrix with Monte Carlo samples of the predictive distribution
                  of the composition of S_i
```

10 domnoplan_g0

Author(s)

Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

domnoplan

domnoplan_g0	Finite population inference on unplanned domains using subjective G_j0 .
--------------	---

Description

Generates Monte Carlo samples of the predictive distribution of total baseline distributions of a finite population segmented in planned and unplanned domains, using a predefined set of $(G_{j0})_{j=1}^{J}$, along with simulations of the predictive distribution for the composition of the population between the unplanned domains.

Usage

domnoplan_g0(datos,domplan_N,alphaDP,colid_D,alpha_D,nSim,g0_licitacion_sal)

Arguments

datos	$(M \times p)$ -dimensional array with positive entries for S_j
domplan_N	Matrix array with counts of individuals in each planned domain
alphaDP	J -dimensional array with positive entries for the parameters of the Dirichlet process for F_j (with J being the number of planned domains)
colid_D	D-dimensional matrix array with the columns in datos that correspond to the indicator variables of the planned domains (those indicator variables represent a partion of datos)
alpha_D	$(J \times D)$ -dimensional array with positive entires for the parameters of the multinomial-Dirichlet component for the composition across unplanned domains. Note: Each one of the J rows is a vector of composition for \mathcal{P}_j segmented across D unplanned domains
nSim	Number of Monte Carlo simulated replicates of the predictive distribution
g0_licitacion_s	sal
	$(J X 1)$ object list, each entry is and the object list itself associated with each G_{j0} for the J planned domains. The first element for arch G_{j0} should be the name of the chosen distribution (see details below for alternatives), the second element should be a vector object with the parameters associated with distribution, and the third element should be its associated expectation

 $domnoplan_g0$ 11

Details

- datos: Represent the data sample of the target population, unplanned domains labeled.

It should contain the following columns:

"domplan" - Categories fot planned domains.

"y_i" - Actual individual measurements/putcomes (for the moment, they must be positive) for the group of observation.

" n_i " - Number of individuals in the group (if the unit of observation in the sample are individuals, then " n_i " must be equal to 1)

- domplan_N : Represents counts (or reference population) of the target population, divided by the planned domains.

Tagged data must be labeled by domains planned. It should contain the following columns:

"domplan" - Categories fot planned domains.

"N_j" - Number of individuals in each planned domain.

- g0_licitacion_sal: Chose one and only one of the distribution,
- i) Gamma
- ii) Weibull
- iii) Lognormal
- iv) Inverse-Gaussian

Parameterizations for distribution:

i) Gamma distribution, with parametetrs $\pmb{\theta} = c(\alpha>0, \beta>0)$ and density function

$$f(x) \propto x^{\alpha-1} \exp\{-x/\beta\},$$

where α is the shape parameter, and β is the scale parameter.

ii) Weibull distribution, with parametetrs $\theta = c(\alpha > 0, \beta > 0)$ and density function

$$f(x) \propto (x/\beta)^{\alpha-1} \exp\{-(x/\beta)^{\alpha}\},$$

where α is the shape parameter, and β is the scale parameter.

iii) Lognormal distribution, with parameters $\theta = c(\alpha > 0, \beta > 0)$ and density function

$$f(x) \propto \exp\{-(\log x - \alpha)^2/2\beta^2\},$$

where α is the mean, and β is the standard deviation of the logarithm.

iv) Inverse — Gaussian distribution, with parameters $\theta = c(\alpha > 0, \beta > 0)$ and density function

$$f(x) \propto x^{-3/2} \exp\{-\alpha (x-\beta)^2/2x\beta^2\},$$

where α is the shape parameter, and β is the mean parameter.

Value

The function 'domnoplan' produces:

total_domnoplan_sim

Matrix array of dimension "J * (3 + 2 D)" nSim" with predictions for the planned domains.

Column 1 - Indicator of the planned domains

Column 2 - T_i (totals of the planned domains)

Column 3 - N_j (composition of the planned domains)

12 domnoplan_g0

Column 4 -
$$(4+D-1)-T_{d_j}$$
 (totals of unplanned domains, such that $T_j=\sum_{j=1}^J T_{d_j} (\text{across d})$)
Column 5 - $(4+D)$ to $(3+2*D)-N_{d_j}$ (composition of unplanned domains, such that $N_j=\sum_{j=1}^J N_{d_j}$ (across d))

Author(s)

Sergio I. Olivares-Guzman, Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

domnoplan_composicion, domnoplan_totalcomp.

Examples

domnoplan_totalcomp 13

```
alphaDP \leftarrow matrix(0.03,2,1)
# b. vector with indicator variables for unplanned domains
colid_D \leftarrow t(as.matrix(c(6:8)))
# c. Matrix with parameters for unplanned domains
# (this is for J=2 planned domains)
alpha_D <- matrix(0.3,2,length(colid_D))</pre>
#-----
# CODE PARAMETERS AND INCORPORATION OF THE DISTRIBUTION
#-----
# Incorporate each element ("g0_licitacion_in_J") according to the number of domains planned
    g0_licitacion_in_1 <- list("distribution", teta1, esp(teta1))</pre>
# In this case we have two domains planned
g0\_licitacion\_in\_1 \leftarrow list("Lognormal", c(6.198, 0.840), .5)
g0_licitacion_in_2 <- list("Gamma",c(6.198,0.840),.5)</pre>
g0_licitacion_sal <- list(g0_licitacion_in_1,g0_licitacion_in_2)</pre>
# B. Number of Monte Carlo replicates of the predictive distributions
nSim <- 10
#-----
# TESTING "domnoplan.R"
date.ini <- date()</pre>
domnoplan_sim <- domnoplan_g0(datos,domplan_N,alphaDP,colid_D,alpha_D,nSim,g0_licitacion_sal)</pre>
date.fin <- date()</pre>
# --END --
```

domnoplan_totalcomp

Simulates Monte Carlo samples from the predictive distribution of the vector T_j across the D unplanned domains within a given planned domain.

Description

This function simulates Monte Carlo samples from the predictive distribution of the vector T_i across the D unplanned domains in a given planned domain j.

Usage

```
domnoplan_totalcomp(datos_j,rho,ystar,phi,g0_licitacion_sal,N_Stil_domnoplan_j_sim,
nSim, colid_D)
```

Arguments

Data matrix with features and number of individuals in the sample S_j datos_j

rho (U X 2)-dimensional vector with weights associated with the sample ties 'ystar'

ystar Sample ties y_i^* in the sample S_j

phi Probability weight associated with G_{j0} (the continuos part of \hat{G}_{j})

 $g0_licitacion_sal$

Object list with the continuous component in \hat{G}_j

N_Stil_domnoplan_j_sim

(1 X D X nSim) matrix with Monte Carlo samples of the predictive distribution

of the composition of \hat{S}_j

nSim Number of Monte Carlo simulated replicates of the predictive distribution

colid_D D-dimensional matrix array with the columns in 'datos' that correspond to the

indicator variables of the planned domains (those indicator variables represent a

partion of 'datos')

Value

The function 'domnoplan_totalcomp' produces an object list with three entries:

T_S_domnoplan Composition of T_i for the planned domain j in sample S_i

T_Stil_domnoplan_j

(1 X D X nSim)-dimensional array with simulated samples of the convolution for $T^{\tilde{\mathcal{S}}_j}$

 ${\tt domnoplan_totalcomp_sim}$

(1 X D X nSim)-dimensional array with samples from the predictive distribution of the composition of \tilde{S}_j

Author(s)

Sergio I. Olivares-Guzman, Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

domnoplan.

domplan 15

domplan	Finite population inference on unplanned domains using reference data.

Description

Generates Monte Carlo samples of the predictive distribution of totals of a finite population segmented in planned domains.

Usage

```
domplan(datos,datos_ant,domplan_N,alphaDP,inter,part,nSim)
```

Arguments

datos	$(M \times p)$ -dimensional array with positive entries for S_j
datos_ant	$(M \times p)$ -dimensional reference array for calibration of G_0
domplan_N	Matrix array with counts of individuals in each planned domain
alphaDP	J -dimensional array with positive entries for the parameters of the Dirichlet process for F_j (with J being the number of planned domains)
inter	Tunning parameter for model comparison and selection (related to calibration of G_0)
part	Number of partitions for predictive cross-validation (related to calibration of G_0)
nSim	Number of Monte Carlo simulated replicates of the predictive distribution

Details

- datos: Represents the data sample of the target population, unplanned domains labeled.

It should contain the following columns:

"domplan" - Categories fot planned domains.

"y_i" - Actual individual measurements(for the moment, they must be positive) for the group of observation.

" n_i " - Number of individuals in the group (if the unit of observation in the sample are individuals, then " n_i " must be equal to 1)

- datos_ant : Represents the data of reference used to calibrate G_0 .

The data must be labeled by domains planned. It should contain the following columns:

"domplan" - Planned categories of domains

" y_i " - Positive real and individual measurements of each group in the sample (when the units of observation are groups, " y_i " should be a per capita measurement)

- domplan_N : Represents counts (or reference population) of the target population, divided by the planned domains.

Tagged data must be labeled by domains planned. It should contain the following columns:

"domplan" - Categories fot planned domains.

"N_j" - Number of individuals in each planned domain.

16 domplan

Value

Author(s)

Sergio I. Olivares-Guzman, Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

```
domplan_total
```

Examples

```
# Uses of library: "predfinitepop"
         Read files with functions in R
rm(list=ls())
library("predfinitepop")
set.seed(12345)
#-----
# DATA
#-----
data(dataref)
data(datasample)
data(popcomp)
# Sample (with 10% of the population)
datos <- datasample[[1]]</pre>
datos_ant <- dataref</pre>
domplan_N <- popcomp[[1]]</pre>
#-----
```

 $domplan_g0$ 17

```
# MODEL PARAMETERS
 # a. Parameter "alpha" of the Dirichlet process
 # (this is for J02 planned domains)
 alphaDP <- matrix(0.03,2,1)
 # b. vector with indicator variables for unplanned domains
 colid_D <- t(as.matrix(c(6:8)))</pre>
 # c. Matrix with parameters for unplanned domains
 # (this is for J=2 planned domains)
 alpha_D <- matrix(0.3,2,length(colid_D))</pre>
 #----
 # CODE PARAMETERS
 # A. Interval for calibration of G_0
 inter <- 3
 # B. Number of groups for predictive validation and model comparison
 # C. Number of Monte Carlo replicates of the predictive distributions
 nSim <- 10
 # TESTING "domplan.R"
 #-----
 date.ini <- date()</pre>
 domplan_sim <- domplan(datos,datos_ant,domplan_N,alphaDP,inter,part,nSim)</pre>
 date.fin <- date()</pre>
 # --END --
domplan_g0
                       Finite population inference on unplanned domains using subjective
                       G_{j0}.
```

Description

Generates Monte Carlo samples of the predictive distribution of totals of a finite population segmented in planned domains, using a predefined set of baseline distributions $(G_{j0})_{j=1}^{J}$.

Usage

```
domplan_g0(datos,domplan_N,alphaDP,nSim,g0_licitacion_sal)
```

Arguments

datos $(M \times p)$ -dimensional array with positive entries for \mathcal{S}_j domplan_N Matrix array with counts of individuals in each planned domain

18 domplan_g0

alphaDP

J-dimensional array with positive entries for the parameters of the Dirichlet process for F_j (with J being the number of planned domains)

nSim

Number of Monte Carlo simulated replicates of the predictive distribution

g0_licitacion_sal

 $(J \ X \ 1)$ object list, each entry is itself an object list associated with each G_{j0} for the J planned domains. The first element for arch G_{j0} should be the name of the chosen distribution (see details below for the admissible alternatives), the second element should be a vector object with the parameters associated with "distribution", and the third element should be its associated expectation

Details

- datos : Represents the data sample of the target population, unplanned domains labeled.

It should contain the following columns:

"domplan" - Categories fot planned domains.

"y_i" - Actual individual measurements/putcomes (for the moment, they must be positive) for the group of observation.

" n_i " - Number of individuals in the group (if the unit of observation in the sample are individuals, then " n_i " must be equal to 1)

- domplan_N : Represents the counts (or number of individuals) in the target population, segmented in the planned domains.

Data must be labeled by the planned domain. It should contain the following columns:

"domplan" - Categories fot planned domains.

"N_j" - Number of individuals in each planned domain.

- g0_licitacion_sal: Chose one and only one of the distribution,
- i) Gamma
- ii) Weibull
- iii) Lognormal
- iv) Inverse-Gaussian

Parameterizations for distribution:

i) Gamma distribution, with parametetrs $\theta = c(\alpha > 0, \beta > 0)$ and density function

$$f(x) \propto x^{\alpha - 1} \exp\{-x/\beta\},$$

where α is the shape parameter, and β is the scale parameter.

ii) Weibull distribution, with parametetrs $\theta = c(\alpha > 0, \beta > 0)$ and density function

$$f(x) \propto (x/\beta)^{\alpha-1} \exp\{-(x/\beta)^{\alpha}\},$$

where α is the shape parameter, and β is the scale parameter.

iii) Lognormal distribution, with parameters $\theta = c(\alpha > 0, \beta > 0)$ and density function

$$f(x) \propto \exp\{-(\log x - \alpha)^2/2\beta^2\},$$

where α is the mean, and β is the standard deviation of the logarithm.

iv) Inverse – Gaussian distribution, with parameters $\theta = c(\alpha > 0, \beta > 0)$ and density function $f(x) \propto x^{-3/2} \exp\{-\alpha(x-\beta)^2/2x\beta^2\}$,

where α is the shape parameter, and β is the mean parameter.

 $domplan_{\underline{g}0}$

Value

Author(s)

Sergio I. Olivares-Guzman, Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

```
domplan_total
```

Examples

```
# Uses of library: "predfinitepop"
        Read files with functions in R
rm(list=ls())
#library("predfinitepop")
set.seed(12345)
#-----
# DATA
#-----
data(datasample)
data(popcomp)
# Sample (with 10% of the population)
datos <- datasample[[1]]</pre>
domplan_N <- popcomp[[1]]</pre>
#-----
# MODEL PARAMETERS
#-----
```

20 domplan_total

```
# a. Parameter "alpha" of the Dirichlet process
# (this is for J02 planned domains)
alphaDP <- matrix(0.03,2,1)
# b. vector with indicator variables for unplanned domains
colid_D \leftarrow t(as.matrix(c(6:8)))
# c. Matrix with parameters for unplanned domains
# (this is for J=2 planned domains)
alpha_D <- matrix(0.3,2,length(colid_D))</pre>
#-----
# CODE PARAMETERS AND INCORPORATION OF THE DISTRIBUTION
# Incorporate each element ("g0_licitacion_in_J") according to the number of domains planned
    g0_licitacion_in_1 <- list("distribution",teta1,esp(teta1))</pre>
# In this case we have two domains planned
g0_licitacion_in_1 <- list("Lognormal",c(6.198,0.840),.5)</pre>
g0_licitacion_in_2 <- list("Gamma",c(6.198,0.840),.5)</pre>
g0_licitacion_sal <- list(g0_licitacion_in_1,g0_licitacion_in_2)</pre>
# B. Number of Monte Carlo replicates of the predictive distributions
nSim <- 10
# TESTING "domplan.R"
#-----
date.ini <- date()</pre>
domplan_sim <- domplan_g0(datos,domplan_N,alphaDP,nSim,g0_licitacion_sal)</pre>
date.fin <- date()</pre>
# --END --
```

domplan_total

Monte Carlo simulation of total for a given planned domain.

Description

Simulates Monte Carlo samples of size 'nSim' of the final distribution for the total for the given planned domain \mathcal{P}_j .

Usage

```
domplan_total(datos_j,rho,ystar,phi,g0_licitacion_sal,N_Stil_j,nSim)
```

Arguments

datos_j	Data matrix with features and number of individuals in the sample S_j
rho	$(U~{\rm X}~{\rm 2})$ -dimensional vector with weights associated with the sample ties ' $ystar$ '
ystar	Sample ties y_i^* , in the sample \mathcal{S}_j

g0_licitacion 21

```
phi Probability weight associated with G_{j0} (the continuos part of \hat{G}_{j}) g0_licitacion_sal Object list with the continuous component in \hat{G}_{j} N_Stil_j Composition of individuals out of S_{j} Number of Monte carlosimulated replicates of the predictive distribution
```

Value

The function 'domplan_total' produces and object list with two entries:

```
T_S_j Composition of 'T_j' of the given planned domains in the sample 'S_j' domplan_total_sim  (1 * nSim) \text{ matrix with samples from the predictive distribution of the total } \text{`T_Stil_j'}
```

Author(s)

Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

domnoplan

g0_licitacion

Prior elicitation of G_{j0} using reference data.

Description

This function computes the prior elicitation of G_{j0} using reference data for the planned domain j. G_{j0} is used by the SSM as the baseline function. The distribution is elicited using a predictive cross-validation procedure for model comparison and selection among the following alternatives: Gamma, Weibull, Lognormal and Inverse-Gaussian. The function also computes the expectation of the chose distribution.

Usage

```
g0_licitacion(datos_ant,inter,part)
```

22 g0_simulacion

Arguments

datos_ant Reference data for calibration of G_{j0}

inter Tunning parameter for model comparison and selection

part Number of groups for predictive validation. The larger the number of groups the

fewer observations are to be removed for calibration

Details

datos_ant: Data collected in a previous time or from another source for each planned domain. It must contain two columns, labeled by 'domplan' and 'y_i' 'domplan' - Labels of planned domains 'y_i' - individual outcome (for the sake of implementation, this must be positive)

Value

The function 'g0_licitacion' produces an object list with three elements:

distribution List arrangement: String object for 'distribution' i) Gamma ii) Weibull iii) Log-

normal iv) Inverse Gaussian

theta Vector of parameters associated with 'distribution'

mu Expected value of 'distribution'

Author(s)

Adriana Roldan-Rodriguez

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

g0_simulacion Computes Monte Carlo samples from a given G_{j0} .

Description

This function computes Monte Carlo samples from a given continuous G_{i0} .

Usage

```
g0_simulacion(g0_licitacion_sal,nSim)
```

Arguments

```
g0_licitacion_sal
```

Object list with three elements (produced with 'g0_licitacion'):

ghat_simulacion 23

- a) String object for 'distribution'
- i) Gamma
- ii) Weibull
- iii) Log-normal
- iv) Inverse-Gaussian
- b) theta Vector of parameters associated with 'distribution'
- c) mu Expected value of 'distribution'

nSim

Number of Monte Carlo simulations

Value

```
This function 'g0_simulacion' produces:
```

```
g0_simulacion_sal
```

(nSim X 1) dimensional array with simulated data

Author(s)

Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

```
ghat_simulacion
```

ghat_simulacion

Simulates Monte Carlo samples from \hat{G}_{j} .

Description

This function simulates Monte Carlo samples from \hat{G}_j .

Usage

```
ghat_simulacion(rho,ystar,phi,g0_licitacion_sal,N_Stil_j)
```

24 ghat_simulacion

Arguments

rho $(U \times 2)$ -dimensional vector with weights associated with 'ystar'

ystar Sample ties y_i^* in S_j

phi Probability weight associated with G_{j0} (the continuos part of \hat{G}_{j})

g0_licitacion_sal

Object list with three elements (produced with 'g0_licitacion'):

gstar_simulacion 25

- a)String object for 'distribution'
- i) Gamma
- ii) Weibull
- iii) Log-normal
- iv) Inverse-Gaussian
- b) theta Parameters associated with 'distribution'
- c) mu Expected value of 'distribution'

N_Stil_j Number of samples to simulate (number of individuals in $\tilde{\mathcal{S}}_j$) out of the sample

Value

Author(s)

Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

```
g0_simulacion, gstar_simulacion.
```

gstar_simulacion

Generates Monte Carlo samples from the discrete component of \hat{G}_{j}

Description

This function generates Monte Carlo samples from the discrete component of \hat{G}_j for the Dirichlet process prior in the planned domain j.

Usage

```
gstar_simulacion(rho,ystar,nSim)
```

26 pesosDP

Arguments

rho (U X 2)-dimensional vector with weights associated with 'ystar'

ystar Sample ties y_i^* in S_j

nSim Number of Monte Carlo simulations

Value

```
The function 'gstar_simulacion' produces:
```

```
gstar_simulacion_sal
```

(nSim X 1) dimensional vector with simulated data

Author(s)

Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

```
ghat_simulacion
```

pesosDP	Computes the weights associated with the predictive distribution \hat{G}_{j} for a given planned domain j under the Dircihlet processes prior.
	for a given plannea domain 3 under the Dircinlet processes prior.

Description

This function computes the weights associated with the predictive distribution \hat{G}_j for a given planned domain j, using the sample ties (y_j^*) , under the Dirichlet processes prior.

Usage

```
pesosDP(unicos_sal,alphaDP)
```

Arguments

unicos_sal (U X 2) matrix with sample ties and associated frequencies (produced with 'uni-

cos')

alphaDP Scale parameter of the Dirichlet process

pinvgauss 27

Details

The matrix with sample ties 'unicos_sal' must include a column named 'm_k' for the frequencies of the sample ties.

Value

The function 'pesosDP' produces an object list with two elements:

rho $(U \times 2)$ dimensional vector with weights associated with 'ystar' (the sample ties)

phi Probability weight associated with G_{j0} (the continuos part of \hat{G}_{j})

Author(s)

Sergio I. Olivares-Guzman, Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

pinvgauss

Inverse Gaussian distribution - Probability.

Description

Computes de c.d.f. function for the inverse Gaussian distribution.

Usage

```
pinvgauss(q, m, s)
```

Arguments

q p-dimensional vector with (0,1)-valued entries

m Mean parameters Scale parameter

Author(s)

Jim Lindsey <jlindsey@luc.ac.be>

References

- "Utilities for Nonlinear Regression and Repeated Measurements Models." Package "rmutil" version 1.0.

28 poptot

popcomp	Composition of the simulated population segemented in planned and unplanned domains.

Description

This object corresponds to a list with the composition of the simulated population across planned and unplanned domains. See Martinez-Ovando et al. (2014) for further details.

Usage

```
data(popcomp)
```

Format

The format is: List of 3 \$: num [1:2] 800 1200 \$: num [1:3] 980 800 220

Source

Simulated data. See Martinez-Ovando et al. (2014) for further details.

References

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

Examples

data(popcomp)

poptot

Totals of the simulated population segemented in planned and unplanned domains.

Description

This object corresponds to a list with the totals of the simulated population across planned and unplanned domains. See Martinez-Ovando et al. (2014) for further details.

Usage

```
data(poptot)
```

Format

The format is:

- [[1]] Composition of the population across planned domains (working format).
- [[2]] Composition of the population across planned domains.
- [[3]] Composition of the population across unplanned domains .

predfinitepop 29

Source

Simulated data. See Martinez-Ovando et al. (2014) for further details.

References

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

Examples

data(poptot)

predfinitepop

Predictive Inference on Totals and Averages of Finite Populations Segmented in Planned and Unplanned Domains.

Description

This package computes Bayesian predictive inference on totals and averages of finite populations segmented in planned and unplanned domains. Inference is based on Bayesian nonparametric methods using species-sampling models (specifically the Dirichlet process).

Details

Package: predfinitepop Type: Statistical

Version: v-1

Date: 2014-04-24

Author(s)

Juan Carlos Martinez-Ovando Sergio I. Olivares-Guzman Adriana Roldan-Rodriguez

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as

30 randDirichlet

Banco de Mexico Working Paper 2014-04.

qinvgauss

Inverse Gaussian distribution - Quantile.

Description

Computes the quantiles for the inverse Gaussian distribution.

Usage

```
qinvgauss(p, m, s)
```

Arguments

p p-dimensional vector with (0,1)-valued entries

m Mean parameters Scale parameter

Author(s)

Jim Lindsey <jlindsey@luc.ac.be>

References

- "Utilities for Nonlinear Regression and Repeated Measurements Models." Package "rmutil" version 1.0.

randDirichlet

Simulates samples from the Dirichlet distribution with (px1) vector parameter α .

Description

This function simulates samples from the Dirichlet distribution with (px1) vector parameter α .

Usage

```
randDirichlet(alpha,n)
```

Arguments

alpha *p*-dimensional vector with positive entries

n Number of simulated replicates

Value

This function produces:

 ${\it randDir} \hspace{1cm} (n~{\bf X}~p)~{\it matrix~with~'n'}~{\it simulated~replicates}$

rinvgauss 31

Author(s)

Juan Carlos Martinez-Ovando

References

- "Non-Uniform Random Variate Generation", Luc Devroy (1986), Berlin: Springer-Verlag.

rinvgauss

Inverse Gaussian distribution - Simulation.

Description

Simulates reandom variables from the inverse Gaussian distribution.

Usage

```
rinvgauss(n=1, m, s)
```

Arguments

- n Number of simulatios
- m Mean parameter
- s Scale parameter

Author(s)

Jim Lindsey <jlindsey@luc.ac.be>

References

- "Utilities for Nonlinear Regression and Repeated Measurements Models." Package "rmutil" version 1.0.

unicstar

Identifies the sample ties in S_j and computes their associated sample frequencies.

Description

This function identifies the sample ties (y_k^*) in S_j and computes their associated sample frequencies.

Usage

```
unicstar(datos_j)
```

Arguments

datos_j

Data matrix with individual measurements in " S_j "

32 unicstar

Details

The column with individual measurements in "datos_j" should be named "y_i"

Value

The function 'unicstar' produces an object list with two elements:

U Number of sample ties in " S_j "

unicstar Data matrix with sample ties y_i and associated frequencies

Author(s)

Sergio I. Olivares-Guzman, Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

Index

*Topic Calibration	poptot, 28
g0_licitacion, 21	_
*Topic Compositional analysis	conteo, 2
domnoplan, 6	dataref,3
domnoplan_g0, 10	datasample, 4
*Topic Convolutions	dinvgauss, 5
domnoplan, 6	domnoplan, 6, 10, 21
domplan, 15	domnoplan., 14
domplan_g0, 17	domnoplan_composicion, 9
*Topic Domains planned	domnoplan_g0, 10
domnoplan, 6	domnoplan_totalcomp, 13
domnoplan_g0, 10	domnoplan_totalcomp., 8, 12
domplan, 15	domplan, 15
*Topic Domains unplanned	domplan_g0, 17
domnoplan, 6	domplan_total, 16, 19, 20
domnoplan_g0, 10	•
*Topic Model comparison and	g0_licitacion, 21
selection	$g0_simulacion, 22$
g0_licitacion, 21	ghat_simulacion, <i>23</i> , <i>23</i> , <i>26</i>
*Topic Monte Carlo simulation	gstar_simulacion, 25
g0_simulacion, 22	gstar_simulacion.,25
ghat_simulacion, 23	200 and 200
gstar_simulacion, 25	pesosDP, 26
*Topic Planned domains	pinvgauss, 27
domplan_g0, 17	popcomp, 28 poptot, 28
*Topic Population Total	predfinitepop, 29
domplan_g0, 17	predi 1111 tepop, 29
*Topic Prediction	qinvgauss, 30
g0_simulacion, 22	4
ghat_simulacion, 23	randDirichlet,30
gstar_simulacion, 25	rinvgauss, 31
*Topic Prior elicitation	
g0_licitacion, 21	unicstar, 31
*Topic Total Population	
domnoplan, 6	
domnoplan_g0, 10 domplan, 15	
*Topic convolutions	
domnoplan_g0, 10	
*Topic datasets	
dataref, 3	
datasample, 4	
popcomp, 28	
popeonip, 20	