ITMO University

LABORATORY WORK REPORT №1 «Simple semiconductor device circuits design and simulation» (Includes Practice 1 Report) Principles of Circuits

Student: CAO Xinyang 20321308 Program of Automation/ of Computer Science and Technology

> group № Name Surname

1. Work purpose: to study parameters of semiconductor elements and basis of the semiconductor device design

Goals:

- 1) Design rectifier model on the basis of diode «diode name»
- 2) Simulate rectifier scheme and analyze dependencies of DC voltage ripple from load and filter capacitor values variation
- 3) Simulate overvoltage and overcurrent states (optional)

2. Starting data

- 2.1.1. Parameters of the voltage source:
 - One-phase sine voltage source
 - Rectifier scheme: Half-Wave Rectifier (HWR) /Central tap rectifier (CTR) /Full -Bridge rectifier (FBR)
 - Source voltage amplitude

$$V_{\rm s} = 50 \tag{V}$$

Source voltage frequency

$$f=100$$
 (Hz)

- 2.1.2. Diode: (copy the 1stand the second line of .lib file of your variant)
- 2.1.3. Required parameters of DC output:
 - Load resistance:

$$R_{L} = R_{LOAD_HWR/CTR/FBR} = 180$$
 (V)

• Desired DC voltage ripple factor:

$$K_p = .035$$

3. Simulation report

Fig. 3.1 – Rectifier scheme model

3.1.1. Filter parameters:

$$--C_{real} = \underline{\qquad \qquad } (uF)$$

3.1.2. Load parameters:

$$-R_{L} = R_{LOAD_HWR} = \underline{\qquad \qquad 180} \qquad \underline{\qquad (\Omega)}$$

$$-V_{R_{L_{AVG}}} \qquad \qquad 46.84 \qquad \underline{\qquad (V)}$$

$$-V_{R_{L_{RMS}}} \qquad \qquad 46.91 \qquad \underline{\qquad (V)}$$

$$-K_{p} = K_{p} = \underline{\qquad \qquad \qquad } \underline{\qquad \qquad } \underline$$

3.2. Simulation results

Fig 3.2 – Simulation results

3.2.1. Ripple factor:

Required:

$$--K_p = 0.035$$

Simulated with 0.8 C_{real}

$$--K_{P_EXP}=$$
 0.034

b) Full-bridge rectifier

Fig 3.3 –Voltage ripple analysis

To define Average and RMS values use CTRL+left click mouse button on the signal name. Use 2-3 Voltage periods in the end of simulation interval Right-click with mouse on the signal name gives access to the signal cursor

3.2.2. Voltage ripple from simulation results

$$V_{R_{LAVG}exp} = 45.918 \tag{V}$$

$$V_{R_{L_{RMS}}exp} = 45.929 \tag{V}$$

$$V_{R_{L_{max}}} = 47.45 \tag{V}$$

$$V_{R_{Lmin}} = 44.18 \tag{V}$$

$$\Delta V_{R_L exp} = V_{R_{L_{max}}} - V_{R_{L_{min}}} = 3.27 \tag{V}$$

3.2.3. Ripple factor

$$K_{Pexp} = \sqrt{\left(\frac{V_{R_{L},RMS}}{V_{R_{LAVG}}}\right)^2 - 1} = 0.021$$

$$K_{pRMS} \approx \sqrt{\left(\frac{V_{R_{LRMS}}}{V_{R_{LAVG}}}\right)^2 - 1} \approx \frac{\frac{V_{R_{L_{max}}} - V_{R_{L_{min}}}}{2\sqrt{3}}}{V_{R_{L_{AVG}}exp}} = 0.021$$

3.2.4. Diode opening state angle:

$$\tau_1 = 0.00107$$
 (s)

$$\theta_{exp} = \tau_1 \cdot \mathbf{f} \cdot 2\pi = \frac{\tau_1}{T} \cdot 2\pi = 0.672$$
 (rad)

Fig $3.4 - \theta_{exp}$ angle definition from simulation results (It is recommended to consider diode open state at current level 0.05-0.1A or determine theta on the capacitor charging interval)

3.2.5. Average rectifier scheme diode current (To define Average and RMS values use CTRL+left click mouse button on the signal name. Use 2-3 Voltage periods in the end of simulation interval)

$$I_{VDexp} = 0.133 \tag{A}$$

3.2.6. Starting (Non-repetitive) maximum peak surge diode current in rectifier scheme

Fig 3.5 –Starting current

$$I_{VD_{ON}exp} = 28.65 \tag{A}$$

PRACTICE REPORT №1

«Simple semiconductor device circuits design and simulation»

4. Rectifier evaluation

4.1. Diode simulation parameters evaluation

4.1.1. Datasheet parameters:

Maximum Ratings (@ $T_A = +25 \, ^{\circ}C$, unless otherwise specified.)

Single phase, half wave, 60Hz, resistive or inductive load. For capacitance load, derate current by 20%.

Characteristic	Symbol	ES1A	ES1B	ES1C	ES1D	ES1G	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage (Note 6)	V _{RRM} V _{RWM} V _R	50	100	150	200	400	V
RMS Reverse Voltage	V _{R(RMS)}	35	70	105	140	280	V
Average Rectified Output Current @ T _T = +110°C	lo	1.0			Α		
Non-Repetitive Peak Forward Surge Current 8.3ms Single Half Sine-Wave Superimposed on Rated Load	I _{FSM}	м 30		•	Α		

a)

Fig.4.1 – Diode parameters for 25°C

Maximum average rectified current

$$I_{fwd_AVG} = 1.0 (A)$$

Maximum peak reverse voltage

$$V_{reverse_imp} = 100$$
 (V)

• Maximum peak surge current (as known as Maximum forward surge current or Non-repetitive peak surge current)

$$I_{FSM} = 30 \tag{A}$$

Maximum repetitive peak surge current

$$I_{fwd_imp} = 10 (A)$$

4.1.2. Diode forward bias voltage

Fig.4.2 – Diode parameters for 25°C

$$V_{fwd\ max}(I_{fwd\ imp}) = 1.3 \tag{V}$$

4.1.3. Diode threshold voltage:

$$v_{ON} = 0.54 \tag{V}$$

4.1.4. Diode active resistance:

$$r_{VD} = \frac{V_{fwd_max} - v_{ON}}{I_{fwd_imp} - I_{fwd}(v_{ON})} = 0.0761$$
 (\O)

4.2.Diode rectifier without filter (Part 4.3 is optional for LAB 1 report. It is considered as Practice 1 Task)

4.2.1. Average load voltage

$$V_{R_{L_{AVG}}} = \begin{cases} \frac{V_S}{\pi}, \text{ for HWR schemes} \\ \frac{2 \cdot V_S}{\pi}, \text{ for FBR or CTR schemes} \end{cases} = 31.831$$
 (V)

4.2.2. RMS load voltage:

$$V_{R_{L_{RMS}}} = \begin{cases} \frac{V_S}{2} \text{, for HWR schemes} \\ \frac{V_S}{\sqrt{2}} \text{, for FBR or CTR schemes} \end{cases} = 35.3553$$
 (V)

4.2.3. Max peak diode reverse voltage:

$$V_{VD_{max}} = V_S = 50 \tag{V}$$

4.2.4. Average load current:

$$I_{L_{AVG}} = \frac{v_{R_{LAVG}}}{R_L} = \begin{cases} \frac{v_S}{\pi R_L}, \text{ for HWR schemes} \\ \frac{2 \cdot v_S}{\pi R_L}, \text{ for FBR or CTR schemes} \end{cases} = 0.1768$$
 (A)

4.2.5. RMS load current:

$$I_{L_{RMS}} = \frac{V_{R_{L_{RMS}}}}{R_L} = \begin{cases} \frac{V_S}{2R_L}, \text{ for HWR schemes} \\ \frac{V_S}{\sqrt{2}R_L}, \text{ for FBR or CTR schemes} \end{cases} = 0.1964$$
 (A)

4.2.6. Average diode rectified output current:

$$I_{VD} = \begin{cases} I_{L_{AVG}}, \text{ for HWR schemes} \\ \frac{I_{L_{AVG}}}{2}, \text{ for FBR or CTR schemes} \end{cases} = 0.0884$$
 (A)

4.2.7. Peak repetitive forward output current:

$$I_{VD_{max}} \begin{cases} \frac{V_S}{R_L}, \text{ for HWR schemes} \\ \frac{V_S}{2R_L}, \text{ for FBR or CTR schemes} \end{cases} = 0.1389$$
 (A)

4.2.8. Voltage ripple evaluated from desired K_n :

$$\Delta U_{R_L} = 2 \cdot K_p \cdot U_{R_{LAVG}} = 30.7758$$
 (V)

4.2.9. Voltage ripple evaluated:

$$K_p = \sqrt{\left(\frac{V_{R_{L_{RMS}}}}{V_{R_{L_{AVG}}}}\right)^2 - 1} = 0.4834$$
 (V)

4.2.10. Voltage ripple evaluated for the rectifier scheme:

$$\Delta V_{R_L} = 2 \cdot K_p \cdot V_{R_{LAVG}} = 30.5 \tag{V}$$

Conclusion: to provide required K_p (ΔV_{R_L}) additional C- filter is required

4.3. Diode rectifier with filter (Part 4.3 is optional for LAB 1 report. It is considered as Practice 1 Task)

4.3.1. Source output resistance (overcurrent protection):

$$r_{on} = r_{V_S} = \frac{V_S}{I_{FSM}} = 1.6667$$
 (\O)

4.3.2. Input rectifier resistance:

$$r_{IN} = \begin{cases} r_{vd} + r_{V_S}, \text{ for HWR } or \text{CTR schemes} \\ \frac{2}{2} \cdot r_{vd} + r_{V_S}, \text{ for FBR schemes} \end{cases} = 1.7427 \tag{\Omega}$$

4.3.3. Starting (Non-repetitive) maximum peak surge diode current in rectifier scheme

$$I_{VD_{ON}} = \frac{V_S}{r_{IN}} = 28.6904$$

Maximum Ratings (@T_A = +25 ℃, unless otherwise specified.)

Single phase, half wave, 60Hz, resistive or inductive load.

Characteristic	Symbol	ES1A	ES1B	ES1C	ES1D	ES1G	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage (Note 6)	$V_{RRM} \ V_{RWM} \ V_{R}$	50	100	150	200	400	v
RMS Reverse Voltage	V _{R(RMS)}	35	70	105	140	280	V
Average Rectified Output Current @ T _T = +110°C	lo			1.0			Α
Non-Repetitive Peak Forward Surge Current 8.3ms Single Half Sine-Wave Superimposed on Rated Load	I _{FSM}	30		Α			

At this state, if $I_{VD_ON} > I_{FSM}$ it is necessary to increase $r_{VS} = \frac{V_S}{I_{VD_ON}}$ and repeat evaluations 4.3.1-4.3.3.

4.3.4. Diode opening state angle:

$$\theta = \begin{cases} 2 \cdot \sqrt[3]{3 \cdot \pi \cdot \frac{r_{IN}}{R_L}}, \text{ for HWR schemes} \\ 2 \cdot \sqrt[3]{\frac{3}{2} \cdot \pi \cdot \frac{r_{IN}}{R_L}}, \text{ for FBR or CTR schemes} \end{cases} = 0.7147$$
 (rad)

4.3.5. Average load voltage

$$V_{R_{L_{AVG}}} = V_S \cdot \cos\left(\frac{\theta}{2}\right) = 46.8417 \tag{V}$$

4.3.6. Average load current:

$$I_{L_{AVG}} = \frac{V_{R_{LAVG}}}{R_{L}} = \begin{cases} \frac{1}{\pi \cdot r_{IN}} (V_{S} \cdot \sin\left(\frac{\theta}{2}\right) - V_{R_{LAVG}} \cdot \frac{\theta}{2}), \text{ for HWR schemes} \\ \frac{2}{\pi \cdot r_{IN}} (V_{S} \cdot \sin\left(\frac{\theta}{2}\right) - V_{R_{LAVG}} \cdot \frac{\theta}{2}), \text{ for FBR or CTR schemes} \end{cases} = 0.2742 \text{ (A)}$$

4.3.7. Average diode current:

$$I_{VD} = \begin{cases} \frac{V_S}{R_L} \cdot \cos\left(\frac{\theta}{2}\right) = \frac{V_S}{R_L} \cdot \cos\left(\sqrt[3]{3 \cdot \pi \cdot \frac{r_{IN}}{R_L}}\right), \text{ for HWR schemes} \\ \frac{V_S}{2 \cdot R_L} \cdot \cos\left(\frac{\theta}{2}\right) = \frac{V_S}{2 \cdot R_L} \cdot \cos\left(\sqrt[3]{\frac{3}{2} \cdot \pi \cdot \frac{r_{IN}}{R_L}}\right), \text{ for FBR or CTR schemes} \end{cases}$$

$$0.1301 \text{ (A)}$$

Compare with:

Maximum Ratings (@ $T_A = +25 \, ^{\circ}C$, unless otherwise specified.)

Single phase, half wave, 60Hz, resistive or inductive load.

For capacitance load, derate current by 20%.

Characteristic	Symbol	ES1A	ES1B	ES1C	ES1D	ES1G	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage (Note 6)	$V_{RRM} \ V_{RWM} \ V_{R}$	50	100	150	200	400	٧
RMS Reverse Voltage	V _{R(RMS)}	35	70	105	140	280	V
Average Rectified Output Current @ T _T = +110°C	Ю	1.0			Α		
Non-Repetitive Peak Forward Surge Current 8.3ms Single Half Sine-Wave Superimposed on Rated Load	I _{FSM}	30				Α	

4.3.8. Maximum repetitive rectifier scheme diode current:

$$I_{VD_{max}} = \frac{V_S - V_{R_{LAVG}}}{r_{IN}} = \begin{cases} \frac{V_S \left(1 - \cos\left(\sqrt[3]{3} \cdot \pi \cdot \frac{r_{vd} + r_{V_S}}{R_L}\right)\right)}{r_{vd} + r_{V_S}}, \text{ for HWR schemes} \\ \frac{V_S \left(1 - \cos\left(\sqrt[3]{\frac{3}{2}} \cdot \pi \cdot \frac{r_{vd} + r_{V_S}}{R_L}\right)\right)}{r_{vd} + r_{V_S}}, \text{ for CTR schemes} \\ \frac{V_S (1 - \cos\left(\sqrt[3]{\frac{3}{2}} \cdot \pi \cdot \frac{2 \cdot r_{vd} + r_{V_S}}{R_L}\right))}{2 \cdot r_{vd} + r_{V_S}}, \text{ for FBR schemes} \end{cases}$$

(A)

Electrical Characteristics (@ T_A = +25 $^{\circ}$ C, unless otherwise specified.)

Characteristic		Symbol	ES1A	ES1B	ES1C	ES1D	ES1G	Unit
Minimum Reverse Breakdown Voltage (Note 6)	$I_R = 5\mu A$	V _{(BR)R}	R 50 100 150 200		400	V		
Maximum Forward Voltage Drop	I _F = 0.6A I _F = 1.0A	V _{FM}	0.90 — 0.92 — 1.29		 1.25	٧		
Peak Reverse Current at Rated DC Blocking Voltage (Note 6)	T _A = +25°C T _A = +125°C	I _{RM}	5.0 200					μA
Maximum Reverse Recovery Time (Note 7)		t _{RR} 25			ns			
Typical Total Capacitance (Note 8)		C _T	20					pF

Notes: 5. Unit mounted on PC board with 5.0 mm² (0.013 mm thick) copper pad as heat sink

6. Short duration pulse test used to minimize self-heating effect. 7. Measured with I_F = 0.5A, I_R = 1.0A, I_R R= 0.25A. See figure 5. 8. Measured at 1.0MHz and applied reverse voltage of 4.0V DC.

Compare with capacitor rated current.

4.3.9. Peak repetitive reverse voltage:

$$V_{VD_{max}} = \begin{cases} V_S + V_{R_{L_{AVG}}}, & \text{for HWR schemes or CTR schemes} \\ \frac{V_S + V_{R_{L_{AVG}}}}{2}, & \text{for FBR} \end{cases} = 96.8417$$

Compare with:

Maximum Ratings (@T_A = +25 ℃, unless otherwise specified.)

Single phase, half wave, 60Hz, resistive or inductive load.

Characteristic	Symbol	ES1A	ES1B	ES1C	ES1D	ES1G	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage (Note 6)	V _{RRM} V _{RWM} V _R	50	100	150	200	400	٧
RMS Reverse Voltage	V _{R(RMS)}	35	70	105	140	280	V
Average Rectified Output Current @ T _T = +110°C	lo	1.0					Α
Non-Repetitive Peak Forward Surge Current 8.3ms Single Half Sine-Wave Superimposed on Rated Load	I _{FSM}	30					Α

4.3.10. Voltage ripple evaluated for the K_p from given variant data:

	Rectifier scheme	Source voltage amplitude , [V]	Load resistance, $[\Omega]$	Desired DC voltage ripple factor	Source voltage frequency, [Hz]
Variant #	wave rectifier, CTR-	V_s	R_L	K_P	f
72	CTR	120	180	0.035	100

$$\Delta V_{R_L} = \begin{cases} \frac{I_{L_{AVG}}}{2\pi f \cdot C} (2\pi - \theta) = K_p V_{R_{L_{AVG}}} 2\sqrt{3}, \text{ for HWR schemes} \\ \frac{I_{L_{AVG}}}{2\pi f \cdot C} (\pi - \theta) = K_p V_{R_{L_{AVG}}} 2\sqrt{3}, \text{ for FBR or CTR schemes} \end{cases} = 3.2789 \quad (V)$$

4.4. Capacitor evaluation

4.4.1. Capacitance evaluation:

$$C = \begin{cases} \frac{I_{L_{AVG}}}{2\pi f \cdot \Delta V_{R_L}} (2\pi - \theta) \text{ , for HWR schemes} \\ \frac{I_{L_{AVG}}}{2\pi f \cdot \Delta V_{R_L}} (\pi - \theta) \text{ , for FBR or CTR schemes} \end{cases} = 0.0003 \tag{F}$$

Pay attention to maximum tolerance rating: for the example in this case 20%

$$C_{real} = \frac{C}{0.8} = 1,25C = 0.000375$$
(F)
$$(100\%-20\%)C_{real} \ge C = 0.0003$$
(F)

4.4.2. After the nominal value is chosen:

$$C_{real} = 0.000375$$
 (F)

$$0.8C_{real} = 0.0003$$
 (F)

$$1.2C_{real} = 0.00045$$
 (F)

4.5. Expected parameters of the developed rectifier

4.5.1. Voltage ripple:

$$\Delta V_{R_L} = \begin{cases} \frac{I_{L_{AVG}}}{2\pi f \cdot 0.8C_{\text{real}}} (2\pi - \theta) \text{, for HWR schemes} \\ \frac{I_{L_{AVG}}}{2\pi f \cdot 0.8C_{\text{real}}} (\pi - \theta) \text{, for FBR or CTR schemes} \end{cases} = 3.2789 \tag{V}$$

$$\Delta V_{R_L} = \begin{cases} \frac{I_{L_{AVG}}}{2\pi f \cdot C_{real}} (2\pi - \theta) \text{, for HWR schemes} \\ \frac{I_{L_{AVG}}}{2\pi f \cdot C_{real}} (\pi - \theta) \text{, for FBR or CTR schemes} \end{cases} = 2.6231$$
 (V)

$$\Delta V_{R_L} = \begin{cases} \frac{I_{L_{AVG}}}{2\pi f \cdot 1.2C_{\text{real}}} (2\pi - \theta) \text{, for HWR schemes} \\ \frac{I_{L_{AVG}}}{2\pi f \cdot 1.2C_{\text{real}}} (\pi - \theta) \text{, for FBR or CTR schemes} \end{cases} = 2.1859 \tag{V}$$

4.5.2. Voltage ripple factor:

$$K_p \approx \frac{\frac{\Delta V_{R_L}}{2\sqrt{3}}}{V_{R_{L\Delta VG}}} = 0.021$$

4.6. Comparing simulation and estimation results

4.6.1. Average load voltage tolerance

$$\Delta_{V_{R_{LAVG}}} = \frac{\left| v_{R_{LAVG}} = v_{R_{LAVG}} \right|}{v_{R_{LAVG}}} = 1.97 \tag{\%}$$

4.6.2. Ripple factor tolerance:

$$\Delta_{K_P} = \frac{|K_{Pexp} - K_P|}{K_P} \cdot 100\% = 40 \tag{\%}$$

4.6.3. Voltage ripple tolerance:

$$\Delta_{\Delta V_{R_L}} = 0.27 \tag{\%}$$

4.6.4. Diode opening state angle tolerance:

$$\Delta_{\theta} = 5.97 \tag{\%}$$

4.6.5. Maximum repetitive rectifier scheme diode current tolerance:

$$\Delta_{I_{VD_{max}}} = 1.23 \tag{\%}$$

4.6.6. Average rectifier scheme diode current tolerance:

$$\Delta_{I_{VD}}=0.077\tag{\%}$$

4.6.7. Starting (Non-repetitive) maximum peak surge diode current in rectifier scheme tolerance:

$$\Delta_{I_{VD_{ON}}} = 13.9 \tag{\%}$$

Table 4.1 Tolerance report

Parameter	Desired/evaluated	Simulation result	Tolerance %
	value		
$V_{R_{L_{AVG}}}(V)$	46.8417	45.918	1.97
K_P	0.035	0.021	40
$\Delta V_{R_L}(V)$	3.2789	3.27	0.27
θ (rad)	0.7147	0.672	5.97
$I_{VD_{max}}(A)$	1.8122	1.79	1.23
I_{VD} (A)	0.1301	0.13	0.077

Conclusions

Conclusions should contain:

- 1) Diode check results:
 - Is breakdown voltage check passed? /Is voltage source changed because of overvoltage?

Yes/Yes

• Is starting current check passed? /Is additional resistance r_vs added to prevent overcurrent in diode/capacitor?

Yes/Yes

- 2) Capacitor information: nominal value, tolerance, allowed current .MODEL D_VAR_0 D $\,$ (IS=123n RS=42.0m BV=100 IBV=5.00u+ CJO=18.5p M=0.333 N=2.12 TT=28.8n $\,$)
- 3) Provided ripple factor value 0.035

Appendix A.

ES1B

Maximum Ratings (@T_A = +25 ℃, unless otherwise specified.)

Single phase, half wave, 60Hz, resistive or inductive load. For capacitance load, derate current by 20%.

Characteristic	Symbol	ES1A	ES1B	ES1C	ES1D	ES1G	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage (Note 6)	$V_{RRM} \ V_{RWM} \ V_{R}$	50	100	150	200	400	٧	
RMS Reverse Voltage	V _{R(RMS)}	35	70	105	140	280	>	
Average Rectified Output Current @ T _T = +110°C	0	1.0				Α		
Non-Repetitive Peak Forward Surge Current 8.3ms Single Half Sine-Wave Superimposed on Rated Load	I _{FSM}			30				

Fig.1. Diode parameters for 25°C

Appendix B. VariantNo72.lib listing