

Esercitazione OLAP

Master FCA, A.A. 2020/21

Matteo Francia

BOLOGNA BUSINESS SCHOOL

Alma Mater Studiorum Università di Bologna

UN BREVE RIPASSO

Sales (Foodmart) – Database Structure

Sales (Foodmart) – DFM

Operatori OLAP: Roll-Up

Operatori OLAP: Drill-Down

Operatori OLAP: Slice & Dice

Operatori OLAP: Pivoting

	Occupation									
Category	Clerical	Management	Manual	Professional	Skilled Manua					
Baking Goods	338	2,242	3,823	5,262	3,781					
Bathroom Products	257	1,910	3,319	4,278	3,266					
Beer and Wine	148	1,861	3,449	4,739	3,833					
Bread	278	2,116	3,980	5,569	4,512					
Breakfast Foods	239	2,405	3,855	4,879	4,179					
Candles	10	231	304	463	353					
Candy	188	2,117	3,699	4,636	3,910					
Canned Anchovies	25	381	425	875	590					
Canned Clams	6	229	445	774	459					
Canned Oysters	19	236	427	495	26					
Canned Sardines	7	172	404	436	338					
Canned Shrimp	31	302	654	671	489					
Canned Soup	251	2,207	3,908	5,531	4,068					
Canned Tuna	23	444	751	1,114	879					
Carbonated Beverages	126	974	1,333	2,107	1,696					
Cleaning Supplies	97	986	1,715	2,365	1,95					
Cold Remedies	59	454	817	1,275	752					
Decongestants	28	464	806	1,172	830					
Drinks	79	887	1,413	1,779	1,485					

							Category							
Occupation	Baking	Bathroo	Beer an	Bread	Breakfa	Candles	Candy	Canned						
Clerical	338	257	148	278	239	10	188	25	6	19	7	31	251	23
Management	2,242	1,910	1,861	2,116	2,405	231	2,117	381	229	236	172	302	2,207	444
Manual	3,823	3,319	3,449	3,980	3,855	304	3,699	425	445	427	404	654	3,908	751
Professional	5,262	4,278	4,739	5,569	4,879	463	4,636	875	774	495	436	671	5,531	1,114
Skilled Manual	3,781	3,266	3,833	4,512	4,179	353	3,910	590	459	265	338	489	4,068	879

Inventory (Foodmart) – DFM

Inventory (Foodmart) – Database Structure

TABLEAU: VISUAL ANALYTICS

Architettura

Connessione

Scaricare il file foodmart_sales.twbx e aprirlo

Cliccare su Data Source in basso a sinistra e impostare la

connessione come in figura

Aprire infine un foglio di lavoro (Worksheet)

Interfaccia

Interfaccia

Dimensione VS Misura

- In Tableau le definizioni di dimensione e misura sono più lasche rispetto a quelle tradizionalmente utilizzate in letteratura e ogni campo può essere utilizzato sia come dimensione che come misura
- In generale è comunque utile dare una classificazione iniziale ai campi
 - * Una dimensione è un qualunque campo indipendente (eg. *città*)
 - * Una misura è un qualunque campo i cui valori sono funzione di altri campi (eg. *profitto vendite*)

Gerarchie

 Ogni path dalle foglie alla radice diventa una gerarchia separata e gli attributi comuni vengono duplicati

 Le gerarchie condivise vengono duplicate

Green VS Blue

 In Tableau, il colore verde è associato a campi continui mentre il colore blu a quelli discreti

- Spesso (ma non sempre) le misure sono campi continui, mentre le dimensioni sono campi discreti
- Campi continui e discreti producono effetti diversi
 - * Quando vengono impostati in righe e colonne
 - * Quando vengono utilizzati in un filtro
 - * Quando vengono associati a colori

Green VS Blue (Righe e Colonne)

- Quando vengono assegnati a righe e colonne
 - * Un campo *discreto* produce un'*intestazione*
 - * Un campo *continuo* produce un *asse*

Green VS Blue (Filtri)

- Con un campo continuo è possibile specificare dei range
 - * Sui valori al livello più dettagliato
 - * Oppure su particolari aggregazioni

Con un campo discreto è possibile anche selezionare valori specifici (i.e., uno ad uno)

Green VS Blue (Colori)

Ad un campo continuo viene associato un insieme di colori sequenziali (e.g. gradazioni più chiare per valori bassi e gradazioni più scure per valori alti)

Con un campo discreto è possibile assegnare un colore diverso (non necessariamente correlato agli altri) per ogni valore distinto

Canvas

Canvas (Pane e Cell)

Canvas (Pane e Cell) (2)

- In caso di campi continui
 - * Dato un valore distinto dell'ultimo campo discreto, viene definito un pane per ogni campo continuo (i campi continui sono sempre posizionati per ultimi!)
 - * Una cell è un punto nello spazio definito dagli assi

Mark

- I dati vengono visualizzati all'interno del canvas tramite mark
- Esistono diversi tipi di mark (bar, line, text, etc.)
 - * Ogni mark possiede diverse *proprietà* (*colour*, s*ize*, *label*, etc.)
 - * A ciascuna proprietà può essere associato un campo con effetti diversi in base alla proprietà e al tipo di campo (continuo o discreto)

Mark (2)

- Una cell può contenere da zero a più mark
 - * Ad esempio nel caso in cui vengano visualizzate più misure
- In uno stesso canvas possono essere presenti più tipi di mark

Ordinamento

- Esistono tre tipologie di ordinamento
 - * Manual: l'ordinamento è fissato manualmente dall'utente
 - * Computed: l'ordinamento si basa su un calcolo (eg. la somma di una certa misura)
 - * Data Source Order: l'ordinamento è lo stesso della sorgente dati
- Gli ordinamenti rispettano le gerarchie (ci sono workaround)

Ordinamento (2)

Un comportamento inaspettato si presenta quando si cerca di ordinare un campo a destra di un altro che non lo determina funzionalmente

• Workaround: utilizzare un campo combinato

Ordinamento (3)

Un comportamento inaspettato si presenta quando si cerca di ordinare un campo a destra di un altro che non lo determina funzionalmente

• Workaround: utilizzare un campo combinato

View Data

- Tramite l'opzione *View Data* è possibile visualizzare l'insieme record (i.e., i dati a granularità più fine) utilizzati per calcolare un determinato mark
- View Data può essere considerato come una versione light dell'operazione Drill Through
- Particolarmente utile per test e debug quando si creano visualizzazioni complesse

View Data (2)

Show Me

- La palette Show Me contiene scorciatoie per produrre visualizzazioni di tipi differenti a partire da un insieme di dimensioni e misure
- Per poter utilizzare una visualizzazione tramite Show Me è necessario rispettare determinati requisiti che variano di caso in caso (e.g. per uno scatter plot sono necessari campi continui)
- Alcuni tipi di visualizzazioni sono poco intuitive da costruire manualmente (e.g. mappe e box-plot)

0 or more dimensions 2 to 4 measures

Filtri

- È possibile applicare un filtro (i.e., Slice & Dice)
 - * A specifici worksheet: il filtro è applicato solamente a quegli specifici worksheet
 - * Ad una specifica sorgente dati: il filtro verrà implicitamente applicato a tutti i worksheet che estraggono dati da quella sorgente
- È possibile filtrare
 - * A *livello di record*: la vista è calcolata considerando solamente i record che soddisfano il filtro; ogni filtro è calcolato indipendentemente dagli altri
 - □ Eg. *Sales* > 100.00\$
 - * A *livello di aggregazione*: dopo che la vista è stata calcolata (applicando i filtri a livello di record) vengono escluse le cell per cui almeno un mark non soddisfa il filtro aggregato
 - □ Eg. SUM(*Sales*) > 100.00\$

Filtri: Context Filter

- I Context Filter sono un particolare tipo di filtro che viene applicato prima dei normali filtri (gli altri filtri sono dipendenti dal risultato dei context filter)
- Quando viene creato un context filter Tableau crea una tabella temporanea in modo da snellire successivi calcoli
- I context filter non possono essere però applicati a livello di aggregazione

I context filter sono riconoscibili dal colore grigio (sia per campi continui che discreti)

Top N

- È possibile filtrare in modo tale da ottenere solamente i primi (o gli ultimi) *N* elementi in base ad un determinato ordinamento
 - * E.g. le prime 10 categorie per cui la somma delle vendite è più elevata
- Attenzione: i filtri top / bottom N vengono applicati indipendentemente dagli altri filtri e dalla visualizzazione
 - * E.g. selezionando una famiglia e impostando un filtro top 10 sulle categorie risulterebbe in una visualizzazione in cui sono presenti le categorie che *globalmente* sono tra le top 10!

Top N (2)

Top N (3)

Pivoting

Grand Total e Sub Total

- I totali sono utili per mostrare diversi livelli di aggregazione nella stessa visualizzazione
- Possono essere applicati solamente a campi discreti

Binning

- Con *binning* si intende la creazione di *bin* (o *bucket*), ovvero intervalli numerici che raggruppano valori di una o più variabili
 - In Tableau gli intervalli sono inclusivi a sinistra ed esclusivi a destra: [start, end)
- Rappresentando i dati tramite bin è possibile *discretizzare* variabili continue o comunque di ridurre il numero di valori in caso di variabili discrete
- Il binning può essere utile per ridurre l'effetto di piccoli scostamenti considerati rumore (e.g. *smoothing*) ed è usato per la creazione di *istogrammi*
- Le misure vengono aggregate per bin
 - Eg. la media delle vendite associata ad un bin può essere la media delle vendite degli ordini che ricadono all'interno del bin

Binning (2)

Group

- È possibile creare nuovi campi raggruppando i valori di campi già esistenti; utile ad esempio per
 - * Raggruppare valori che hanno la stessa semantica ma sono etichettati differentemente
 - * Ottenere nuovi raggruppamenti intermedi senza modificare la sorgente dati

Set

- In Tableau, un set è un insieme di combinazioni di valori dimensionali (i.e., non contiene misure). Esistono due tipologie di set
 - * Constant: gli elementi vengono selezionati manualmente e rimangono gli stessi anche se i dati variano
 - * Computed: gli elementi vengono selezionati in base ad una formula e si aggiornano automaticamente al variare dei dati
- I set non possono essere creati a partire da visualizzazioni in cui non ci sono misure aggregate
- I set possono essere utilizzati in vari modi: come filtri, per applicare diversi colori, come livelli in gerarchie, all'interno di formule, ...
- I set possono essere combinati tra loro per ottenere nuovi set
 - * Eg. creare un nuovo set come unione di altri due

Set (2)

- Se usati come filtri, i set escludono tutti i valori non appartenenti al set
- Se assegnati come colore o utilizzati come dimensione, i set dividono i mark o il canvas in elementi che appartengono al set (*In*) ed elementi che non appartengono al set (*Out*)

Calculated Field

- Tramite *Calculated Field* è possibile definire nuovi campi dinamicamente senza modificare la sorgente dati
- Un calculated field è definito da una formula che può utilizzare campi già esistenti e numerose funzioni (logiche, numeriche, su stringhe, su date, etc.)
 - * Eg. Il campo *Profit* può essere definito come *Sales Cost*
- Un calculated field può essere definito a diversi livelli di granularità
 - * Line Granularity: il campo viene calcolato tupla per tupla
 - * Aggregated Granularity: il campo viene calcolato su aggregazioni di campi
- Un calculated field può essere (generalmente) utilizzato come qualunque altro campo, ad eccezione dei campi con granularità aggregated, per i quali è possibile filtrare solo se sono campi continui

Calculated Field: Sintassi

- Per utilizzare un campo esistente in una formula basta scriverne il nome all'interno di parentesi quadre, eg. [Sales]
- È possibile utilizzare costrutti condizionali

Per utilizzare una funzione è necessario indicarne il nome e inserire tra parentesi tonde gli argomenti di input separati da virgola

```
* MAX([Sales], [Cost])
```


Calculated Field: Line Granularity

Calculated Field: Aggregated Granularity

Riferimenti

- Tutorial: http://www.tableau.com/learn/training
- Knowledge Base: http://kb.tableau.com/

ESERCIZI - PRIMA PARTE

- Visualizzare tramite un grafico a barre la somma delle *Store Sales* per ogni *S. State*
 - * Qual è lo stato con le vendite più elevate?
- Effettuare un drill-down per visualizzare le vendite a livello di S. City
 - * Esistono città con vendite molto inferiori rispetto alle altre?
- Quanti sono i negozi (*Store*) presenti in ogni *S. State*? E in ogni *S. City*?
 - * Tip: Utilizzare l'aggregazione COUNTD
 - * È possibile imputare le basse vendite in alcune città al numero di negozi?
- Visualizzare le vendite a livello di *S. City* (come fatto in precedenza) e associare alla proprietà *color* numero di negozi distinti (*COUNTD(store)*)

- Data l'ultima visualizzazione creata in Esercizio 1, associare il campo *S. Type* alla proprietà *color*
 - * Quale pattern interessante è possibile notare?
- Visualizzare le vendite (SUM) per ogni S. Type
 - * Quale discrepanza è possibile notare rispetto al grafico precedente?
- Associare il numero di negozi (*Store*) alla proprietà *color* e alla proprietà *label*
 - * Da cosa è causata la discrepanza tra le due visualizzazioni precedenti?

- Visualizzare tramite un grafico a linee l'andamento mensile delle vendite
 - * Quale pattern è presente?
- Dividere il grafico precedente per *S. State* (un asse per ogni stato)
 - * Il pattern precedente è presente in ogni stato?
 - * Tip: di default gli assi hanno tutti lo stesso range: su un asse qualsiasi, click destro > Edit Axis > Selezionare Independent axis...
- Dato il grafico precedente, visualizzare quanto impattano le varie *Family* sul totale delle vendite mantenendo la visualizzazione del trend mensile
 - * Quale può essere una buona visualizzazione?
 - * Tip: associare ogni *Family* ad una proprietà dei mark ed eventualmente cambiare tipologia di mark
 - * Tip: è possibile cambiare il tipo di mark dal menu a tendina nel pannello Marks

- Visualizzare tutti i negozi e ordinarli in ordine decrescente per somma delle vendite
- Aggiungere alla visualizzazione precedente l'attributo dimensionale Type
- Data la visualizzazione precedente, ordinare i negozi in ordine decrescente per numero di clienti (*Customer*)
 - * Per chiarezza, associare il numero di clienti alla proprietà color
- Visualizzare in ordine decrescente la somma delle vendite per *Type* e *S. State*
 - * All'interno di ogni *Type* alcuni campi non sono ordinati correttamente...
 - * Tip: per creare un *campo combinato* è necessario selezionare (dal menu delle dimensioni) due campi, *click destro* > *Create* > *Combined Field*

- Visualizzare le vendite per *Occupation* (dimensione *Customer*) escludendo tutte le tuple con un importo minore di 5
 - * Tip: applicare un filtro sul campo Store Sales
- Data la visualizzazione precedente (mantenere anche il filtro), applicare un filtro che scarti tutte le *Occupation* per cui la somma delle vendite è inferiore a 80K
 - * Sono ancora presenti alcune *Occupation* con vendite inferiori a 80K... Come è possibile spiegare questo comportamento di Tableau?
 - Fare in modo che il filtro aggregato (i.e., sulla somma delle vendite) venga applicato dopo quello sulle singole tuple
 - * Tip: per trasformare un filtro in un *context filter*, click destro > Apply to Context

ESERCIZI - SECONDA PARTE

- Visualizzare i dieci clienti (*Customer*) con la più alta somma di vendite
 - * Tip: un filtro Top N può essere applicato trascinando un campo nel pannello *Filters* ed utilizzando l'apposita tab *Top*
- Data la visualizzazione al punto precedente, aggiungere il campo Occupation
 - * Tutte le occupazioni non hanno dieci clienti? Perché?
- Data la visualizzazione al punto precedente, filtrare per Occupation e selezionare il valore *Professional*
 - * Quanti clienti sono visualizzati? È possibile fare in modo che vengano visualizzati i Top N clienti relativamente a Professional?
 - * Tip: vedi Esercizio 5

- Visualizzare la distribuzione delle tuple per *Store Sales*
 - * Tip: uno strumento molto utile per analizzare distribuzioni è l'*istogramma* (vedi *Histogram* nel pannello *Show Me*)
 - * Che forma ha la distribuzione risultante?
 - * Quali vendite contiene il bin etichettato 0 (utilizzare *View Data*)? Contiene solo le vendite con importo = 0?
- Senza utilizzare il pannello *Show Me*, visualizzare un grafico a barre con *Store Sales* sulle colonne raggruppati in bin di dimensione 2, e con la somma di *Store Cost* sulle righe
 - * Tip: dal pannello *Measures*, click dx sul campo *Store Sales > Create > Bins*
 - * Non sarebbe intuitivo aspettarsi che all'aumentare delle vendite aumentino anche i costi? Perché questa visualizzazione è fuorviante?
 - Modificare il grafico in modo da mostrare la correlazione tra Store Cost e Store Sales

- Creare un set con i Top 500 clienti per somma di Store Sales
 - * Tip: per creare un set, click destro sul campo Customer > Create > Set
- Posizionare la somma delle vendite sulle colonne e il set creato al punto precedente sulle righe
 - * Cosa rappresenta la visualizzazione risultante?
- Modificare la visualizzazione precedente spostando il set sulla proprietà *color* e aggiungendo *S. Country* sulle righe
 - * Data questa visualizzazione è possibile vedere che i top 500 contribuiscono in modo considerevole al totale?
 - * Dopo aver effettuato drill-down sulla gerarchia S. Location, è possibile notare una distribuzione omogenea o eterogenea delle vendite dei top 500?

- Visualizzare l'andamento dei profitti (Profitto = Vendite Costi) mese per mese per ogni *Type*
 - * Tip: per creare un Calculated Field, dal menu principale (in alto), Analysis > Create Calculated Field...
- Per ogni utente, calcolare l'età e visualizzarne l'istogramma considerando bin di dimensione pari a cinque
 - * Tip: la funzione *DATEDIFF* restituisce la differenza di due date (vedi descrizione data cliccando sul nome della funzione durante la creazione del campo)
 - * Esiste qualche gruppo di età che si comporta in modo differente dagli altri?
- Data la visualizzazione precedente, sostituire il numero di vendite con il numero di vendite rapportato per il numero di clienti
 - * Il pattern al punto precedente è ancora così evidente? Perché?

