Statistics for Data Science

Lecture 1

Introduction

Ken Cameron

Statistics for Data Science

- Lecturers
- Content
- Assessment
- Structure
- Resources

Lecturers

- Vangelis
 - Evangelos Evangelou
 - Dept. of Mathematical Sciences
 - E.Evangelou@bath.ac.uk
 - 4 West 4.7

- Ken Cameron
 - Dept. of Computer Science
 - K.M.Cameron@bath.ac.uk
 - 1 West 3.53

Content (My half)

- Sets
- Laws of Probability
- Random Variables
- Bayes Theorem
- Discrete & Continuous Distributions
- Multiple Random Variables
- Sampling
- Central Limit Theorem

Assessment

Examination

- 50% of overall unit mark.
- 2 hours, during exam period.

Class Tests

- 50% of overall unit mark.
- In classroom, one mid semester, one at the end.
- 30 minute written.

Structure

- Lectures
 - Tuesdays 11.15 am and Thursdays 1.15pm
- Tutorials
 - Second slot on Thursdays 2.15pm
 - Will cover material from preceding week.
 - Problem sheets.

Resources

- Lecture slides/notes on moodle.
- Problem sheets on moodle.

• Statistical Inference. Casella, Berger.

Statistics

• Two of the most commonly used statistics that we can calculate from some data points $\boldsymbol{x_i}$

Arithmetic mean

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Standard deviation

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Probability

 A probability is a number between 0 and 1 which measures the chance of an event occurring

Examples

- The chance of throwing a 6 on a fair die
- The chance that a student is between 1.7-1.8m
- The chance that it will rain tomorrow, given that it is sunny today

Probability

- In practice, you will often just count the occurrences of events and divide by the total
 - e.g. (number of rainy days)/(total days in year)

 You might have reason to expect that next year will be wetter than this year.

- Frequentist: stick with counting
- Bayesian: incorporate our prior beliefs

Probability

• Probabilities can be continuous or discrete

- Continuous: height, computation time
- Discrete: coin toss, die roll, horses in race

Probability Notation

 A random variable is a variable whose value is subject to uncertainty or chance

• It can take on one of many values, called random variates

• For example, let x be a random variable representing the roll of a die.

• Then the set of outcomes is $X = \{1,2,3,4,5,6\}$, and we call each element $X \in X$ a random variate

Probability Notation

- Write p(x = X) to mean the probability that the random variable x takes on the value X
 - e.g. for a fair die $p(x=3) = \frac{1}{6}$
- We might write other conditions on x
 - e.g. p(x < 4) = 0.5
- We will sometimes write p(x) when the meaning is clear
- We might also write p(3)

Joint Probability

 The *joint* probability is the chance that a collection of events occur together

• We write

$$p(x = X, y = Y, z = Z)$$

Or simply

Exchangeability

$$p(x,y,z) = p(x,z,y) = p(y,z,x) = \cdots$$

Marginal Probability

 The *marginal* probability is the chance of observing a random variable in a particular state when two (or more) events are observed simultaneously

• Given variables x and y, the joint is p(x, y) the marginal is:

$$p(x) = \sum_{v} p(x, y)$$

Conditional Probability

• The *conditional* probability is the chance of observing an event ygiven that an event x has occurred

• This is written p(y|x), and can be calculated:

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

Example

 We have two random variables, the type of newspaper and the day of the week

1	1		
Mon	10	8	9
Tue	8	6	7
Wed	7	8	5
Thurs	8	7	7
Fri	9	8	8
FII	9	0	0

Opinion | Record

Voice

What are the variates?

Table 2.1: Newspaper Sales in 10,000's

- What is: p(Voice, Monday)? **Joint**
- What is: p(Monday)? Marginal
- What is:

 p(Voice|Monday) ?

 Conditional

Fundamental Axioms

1. All probabilities are non-negative, for all x $p(x) \ge 0$

2. Mutually exclusive events (cannot occur at the same time) add $p(x_1 \operatorname{xor} x_2 \operatorname{xor} ...) = p(x_1) + p(x_2) + \cdots$

3. Some event must occur

$$\sum_{x} p(x) = 1$$

Fair Dice Roll Example

- 1. All outcomes (1-6) have positive probability
- 2. Probabilities of rolling a 1 or a 2 add $p(1 \text{ or } 2) = p(1) + p(2) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$
- 3. We are guaranteed to get some result 1-6 $p(1\sim6) = 6 \times 1/6 = 1$

 If you ever find your probabilities are negative or do not add up to one (over all events), something has gone wrong

Set Theory

 We can use Set Theory to give us a more formal basis on which to build.

• The set S, of all possible outcomes of an experiment is called the sample space.

- An event is any collection of possible outcomes of an experiment.
 - i.e. Any subset of S.
 - Let A, a subset of S, be an event.
 - We say A occurs if the outcome of the experiment is in the set A.

Set Theory

$$A \subset B \Leftrightarrow x \in A \Rightarrow x \in B$$

 $A = B \Leftrightarrow A \subset B \text{ and } B \subset A$

- Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$
- Complementation: $A^c = \{ x : x \notin A \}$

Sigma Algebra

- A collection of subset of S is called a sigma algebra or Borel field, B if it satisfies the following properties:
 - $\emptyset \in B$ (the empty set is an element of B)
 - If $A \in B$, then $A^c \in B$ (B is closed under complementation)
 - If $A_1, A_2, ... \in B$, then $\bigcup_{i=1,\infty} A_i \in B$ (B is closed under countable unions)

Probability Function

• Given a sample space S and an associated sigma algebra B, a probability function is a function P with domain B that satisfies

- P(A) >= 0 for all $A \in B$
- P(S) = 1
- If A_1 , A_2 , ... $\in B$ are pairwise disjoint, then $P(\bigcup_{i=1,\infty} A_i) = \sum_{i=1,\infty} P(A_i)$

A Theorem

If P is a probability function and A and B are any sets in B then,

a.
$$P(B \cap A^c) = P(B) - P(A \cap B)$$

b.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

c. If
$$A \subset B$$
, then $P(A) \leq P(B)$

Can we prove this?

a.
$$P(B \cap A^c) = P(B) - P(A \cap B)$$

For any sets A and B:

$$B = \{B \cap A\} \cup \{B \cap A^c\}$$

And therefore

$$P(B) = P(\{B \cap A\} \cup \{B \cap A^c\}) = P(B \cap A) + P(B \cap A^c)$$

Remember B \cap A and B \cap A^c are disjoint. Rearrange to get a.

b.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Start with the identity:

$$A \cup B = A \cup \{ B \cap A^c \}$$

 $B \cap A$ and $B \cap A^c$ are disjoint

$$P(A \cup B) = P(A) + P(B \cap A^c) = P(A) + P(B) - P(A \cap B)$$

c. If $A \subset B$, then $P(A) \leq P(B)$

• I'll leave you to consider...

Answer next lecture.