This file provides an overview of the codes included in different folders. Most of them are MATLAB files. The codes are accompanied with demos for demonstration purposes.

Hyperspectral Image Processing contains the codes for:

- Denoising: an implementation of [13];
- Band Selection: an implementation of [14];
- Classification: an implementation of multi-class SVM with one-against-all strategy;
- Simulation: generating HSI and MSI from SRI, see Section 4.1 of [2];
- Fusion: reconstructing SRI from HSI and MSI using graph Laplacian regularization [2];
- Quality Evaluation: various metrics for evaluating the reconstructed SRI.

Compressed Sensing contains the codes for:

- Multilevel sampling: adaptive sampling method in [1];
- CS based fusion: codes for the recovery of SRI from the samples of HSI and MSI, see [4].

Low Rank Approximation contains the codes for:

- CUR: CUR decomposition [10] with different sampling strategies;
- SketchySVD: an implementation of [16];
- SketchyCoreSVD: [6], SketchySVD with random subsampling.

Tensor Decomposition contains the codes for:

- CP: alternating least squares, see [11];
- Tucker: high-order orthogonal iteration (HOOI) [11], SketchyTucker [15], and the extension of [6] to Tucker decomposition, see Section 1 of [5];
- Tensor Train: an implementation of [12].

Modeling Dynamics contains the codes for:

- Dynamics Mode Decomposition: exact DMD [17], randomized DMD [9], EDMD [18] with Gaussian and quadratic polynomial kernels;
- Cardiac Velocities: for a Cardiac MRI video, the velocities are inferred from the video based on optical flow techniques [7], then the velocity fields are decomposed into divergence-free, curl-free, and harmonic parts [8]. The implementation of EDMD with matrix kernels are included. For separable kernels, see Section 1 of [3]. For divergence-free (curl-free) kernels, see Section 15 of [3].

References

- [1] B. ADCOCK, A. C. HANSEN, C. POON, AND B. ROMAN, *Breaking the coherence barrier: A new theory for compressed sensing*, in Forum of Mathematics, Sigma, vol. 5, Cambridge University Press, 2017.
- [2] C. BAJAJ AND T. WANG, Blind hyperspectral-multispectral image fusion via graph Laplacian regularization, arXiv preprint arXiv:1902.08224, (2019).
- [3] —, *DMD*, *EDMD*, *etc.* 2019.
- [4] —, Multiple sensor image fusion from joint adaptive compressed sampling. 2019.
- [5] —, Tensor decomposition based on sketches. 2019.
- [6] C. BAJAJ, Y. WANG, AND T. WANG, *SketchyCoreSVD: SketchySVD from random subsampling of the data matrix*, in 2019 IEEE International Conference on Big Data (Big Data), IEEE, 2019, pp. 26–35.
- [7] J. L. BARRON, D. J. FLEET, AND S. S. BEAUCHEMIN, *Performance of optical flow techniques*, International journal of computer vision, 12 (1994), pp. 43–77.
- [8] H. Bhatia, V. Pascucci, and P.-T. Bremer, *The natural Helmholtz-Hodge decomposition for open-boundary flow analysis*, IEEE transactions on visualization and computer graphics, 20 (2014), pp. 1566–1578.
- [9] N. B. ERICHSON, L. MATHELIN, J. N. KUTZ, AND S. L. BRUNTON, *Randomized dynamic mode decomposition*, SIAM Journal on Applied Dynamical Systems, 18 (2019), pp. 1867–1891.
- [10] K. HAMM AND L. HUANG, CUR decompositions, approximations, and perturbations, arXiv preprint arXiv:1903.09698, (2019).
- [11] T. G. KOLDA AND B. W. BADER, Tensor decompositions and applications, SIAM review, 51 (2009), pp. 455–500.
- [12] I. V. OSELEDETS, *Tensor-Train decomposition*, SIAM Journal on Scientific Computing, 33 (2011), pp. 2295–2317.
- [13] R. ROGER, *Principal components transform with simple, automatic noise adjustment*, International journal of remote sensing, 17 (1996), pp. 2719–2727.
- [14] K. Sun, X. Geng, L. Ji, and Y. Lu, *A new band selection method for hyperspectral image based on data quality*, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7 (2014), pp. 2697–2703.
- [15] Y. Sun, Y. Guo, C. Luo, J. Tropp, and M. Udell, Low-rank Tucker approximation of a tensor from streaming data, arXiv preprint arXiv:1904.10951, (2019).
- [16] J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER, Streaming low-rank matrix approximation with an application to scientific simulation, SIAM Journal on Scientific Computing, 41 (2019), pp. A2430–A2463.
- [17] J. H. Tu, C. W. ROWLEY, D. M. LUCHTENBURG, S. L. BRUNTON, AND J. N. KUTZ, On dynamic mode decomposition: Theory and applications, arXiv preprint arXiv:1312.0041, (2013).
- [18] M. O. WILLIAMS, C. W. ROWLEY, AND I. G. KEVREKIDIS, A kernel-based approach to data-driven Koopman spectral analysis, arXiv preprint arXiv:1411.2260, (2014).