SURVEX: CHEAT SHEET

Explore, Explain, and Examine Survival Models with the survex package

Survival analysis models are commonly used in medicine and other areas. Many of them are too complex to be interpreted by human. Exploration and explanation is needed, but standard methods do not give a broad enough picture.

survex provides easy-to-apply methods for explaining survival models, both complex blackboxes and simpler statistical models.

Explainer

The survex package operates on the explainer objects. They can be used for calculating explanations, measuring model performance, and making predictions.

explain() model

explainer

library(survex) library(survival) library(randomForestSRC) rsf_model <- rfsrc(</pre> Surv(time, status)~., data = veteran) explainer <- explain(rsf_model)</pre>

For some models explainers are created automatically with the explain() function (only model argument is required).

However, an explainer can be created for any survival model using the explain_survival() function.

Remember to:

- provide data as a data.frame without target
- provide v as a survival::Surv object,
- provide predict survival function as a function of (model, newdata, times).

This is all you need for a fully functional explainer but you can also set:

- predict function,
- predict cumulative hazard function,
- times (for making functional predictions) on your own.

Global explanations

explain model's predictions for an entire dataset

VARIABLE IMPORTANCE

Which variables are important to the model?

m_parts <- model_parts(explainer)</pre> loss_function, type, output_type

plot(m_parts)

Time-dependent feature importance

PARTIAL DEPENDENCE

How does a variable affect the average prediction?

m_profile <- model_profile(explainer)</pre> variables, categorical_variables, groups, N

plot(m_profile,

numerical_plot_type='lines')

Partial dependence survival profile created for the rsf model

Local explanations

explain model's prediction for a single observation

VARIABLE ATTRIBUTIONS

Which variables contribute to the prediction?

SurvSHAP(t)

survshap <- predict_parts(explainer,</pre> patient, type='survshap') aggregation_method, B

plot(survshap)

SurvSHAP(t)

SurvLIME survlime <- predict_parts(explainer.</pre> patient, type='survlime') kernel width, N

plot(survlime)

CETERIS PARIBUS

How does a variable affect the prediction?

p_profile <- predict_profile(explainer,</pre> patient) variable_splits_type

plot(p_profile, numerical_plot_type='contours')

Ceteris paribus survival profile created for the rsf mode

Performance

examine model's quality

MODEL PERFORMANCE

How good is the model?

m_perf <- model_performance(explainer)</pre> cph_perf <- model_performance(cph_exp)</pre> plot(m_perf, cph_perf)

plot(m_perf, cph_perf, metrics_type='scalar')

Prediction

explore model's predictions

MAKING PREDICTIONS

What is the model's prediction?

Survival function

predict(explainer, veteran, output_type='survival')

Cumulative hazard function predict(explainer, veteran, output_type='chf')

Risk score/prognostic index predict(explainer, veteran, output_type='risk')

