Ultrahigh Dimensional Feature Screening via RKHS Embeddings -Supplementary material

This document contains the statement and proof of Lemma 1 which is used to prove Theorem 4.1.

A Statement and Proof of Lemma 1

Lemma 1. Let $k_{\mathcal{X}}$ and $k_{\mathcal{Y}}$ be measurable kernels satisfying assumptions **A1** and **A2**. Then for any $1 \leq r \leq p_n$, with probability at least $1 - \delta$ over the choice of samples, $\{(x_r^{(i)}, y^{(i)})\}$,

$$|\widehat{\omega}_r - \omega_r| \leq \sqrt{\frac{8U_n(\mathcal{K}; \{(x_r^{(i)}, y^{(i)})\})}{n}} + \sqrt{\frac{8AU_n(\mathcal{K}_{\mathcal{X}}; \{x_r^{(i)}\})}{n}} + \sqrt{\frac{8AU_n(\mathcal{K}_{\mathcal{Y}}; \{y^{(i)}\})}{n}} + \sqrt{\frac{162A^2}{n} \log \frac{6}{\delta}} + \frac{6A}{\sqrt{n}}.$$

Proof. The proof technique is similar to that of Theorem 7 in (Sriperumbudur et al., 2009). Consider $|\widehat{\omega}_r - \omega_r| = |\widehat{\gamma}_r(\mathbb{P}^{X_rY}, \mathbb{P}^{X_r}\mathbb{P}^Y) - \gamma_r(\mathbb{P}^{X_rY}, \mathbb{P}^{X_r}\mathbb{P}^Y)| \leq \sup_{k \in \mathcal{K}} \|\mathbb{P}_n^{X_rY}k - \mathbb{P}^{X_rY}k\|_{\mathcal{H}} + \sup_{k \in \mathcal{K}} \|\mathbb{P}_n^{X_r}\mathbb{P}_n^Yk - \mathbb{P}^{X_r}\mathbb{P}^Yk\|_{\mathcal{H}}$. We now bound the terms $\theta := \sup_{k \in \mathcal{K}} \|\mathbb{P}_n^{X_rY}k - \mathbb{P}^{X_rY}k\|_{\mathcal{H}}$ and $\phi := \sup_{k \in \mathcal{K}} \|\mathbb{P}_n^{X_r}\mathbb{P}_n^Yk - \mathbb{P}^{X_r}\mathbb{P}^Yk\|_{\mathcal{H}}$. Since θ satisfies the bounded difference property, using McDiarmid's inequality gives that with probability at least $1 - \frac{\delta}{6}$ over the choice of $\{(x_r^{(i)}, y^{(i)})\}_{i=1}^n$, we have

$$\theta \le \mathsf{E} \sup_{k \in \mathcal{K}} \|\mathbb{P}_n^{X_r Y} k - \mathbb{P}^{X_r Y} k\|_{\mathcal{H}} + \sqrt{\frac{2A^2}{n} \log \frac{6}{\delta}}. \tag{1}$$

By invoking symmetrization for $\mathsf{E} \sup_{k \in \mathcal{K}} \|\mathbb{P}_n^{X_r Y} k - \mathbb{P}^{X_r Y} k\|_{\mathcal{H}}$, we have

$$\mathsf{E}\,\theta \le 2\mathsf{E}\,\mathsf{E}_{\rho} \sup_{k \in \mathcal{K}} \left\| \frac{1}{n} \sum_{i=1}^{n} \rho_{i} k(., (x_{r}^{(i)}, y^{(i)})) \right\|_{\mathcal{H}},\tag{2}$$

where $\{\rho_i\}_{i=1}^n$ represent i.i.d. Rademacher random variables and E_ρ represents the expectation w.r.t. $\{\rho_i\}$ conditioned on $\{(x_r^{(i)},y^{(i)})\}$. Since $\mathsf{E}_\rho\sup_{k\in\mathcal{K}}\left\|\frac{1}{n}\sum_{i=1}^n\rho_ik(.,(x_r^{(i)},y^{(i)}))\right\|_{\mathcal{H}}$ satisfies the bounded difference property, by McDiarmid's inequality, with probability at least $1-\frac{\delta}{6}$ over the choice of the random samples of size n, we have

$$\mathsf{E}\,\mathsf{E}\,_{\rho}\sup_{k\in\mathcal{K}}\left\|\frac{1}{n}\sum_{i=1}^{n}\rho_{i}k(.,(x_{r}^{(i)},y^{(i)}))\right\|_{\mathcal{H}}\leq\sqrt{\frac{2A^{2}}{n}\log\frac{6}{\delta}}+\mathsf{E}\,_{\rho}\sup_{k\in\mathcal{K}}\left\|\frac{1}{n}\sum_{i=1}^{n}\rho_{i}k(.,(x_{r}^{(i)},y^{(i)}))\right\|_{\mathcal{H}}.\tag{3}$$

By writing

$$\left\| \frac{1}{n} \sum_{i=1}^{n} \rho_{i} k(., (x_{r}^{(i)}, y^{(i)})) \right\|_{\mathcal{H}} \leq \frac{A}{\sqrt{n}} + \frac{\sqrt{2}}{n} \sqrt{\left| \sum_{i < j}^{n} \rho_{i} \rho_{j} k((x_{r}^{(i)}, y^{(i)}), (x_{r}^{(j)}, y^{(j)})) \right|}$$
(4)

we have with probability at least $1 - \frac{\delta}{6}$, the following holds:

$$\mathsf{E}\,\mathsf{E}\,\rho\sup_{k\in\mathcal{K}}\left\|\frac{1}{n}\sum_{i=1}^{n}\rho_{i}k(.,(x_{r}^{(i)},y^{(i)}))\right\|_{\mathcal{U}}\leq\sqrt{\frac{2A^{2}}{n}\log\frac{6}{\delta}}+\frac{A}{\sqrt{n}}+\sqrt{\frac{2U_{n}(\mathcal{K};\{(x_{r}^{(i)},y^{(i)})\})}{n}}.\tag{5}$$

Tying (1)-(5), we have that w.p. at least $1-\frac{\delta}{3}$ over the choice of $\{(x_r^{(i)},y^{(i)})\}$, the following holds:

$$\theta \le \sqrt{\frac{8U_n(\mathcal{K}; \{(x_r^{(i)}, y^{(i)})\})}{n}} + \frac{2A}{\sqrt{n}} + \sqrt{\frac{18A^2}{n} \log \frac{6}{\delta}}.$$
 (6)

Now we consider bounding ϕ

$$\begin{split} \phi &\stackrel{\text{def}}{=} \sup_{k \in \mathcal{K}} \left\| \mathcal{P}_{n}^{X_{r}} \mathcal{P}_{n}^{Y} k - \mathcal{P}^{X_{r}} \mathcal{P}^{Y} k \right\|_{\mathcal{H}} \\ &= \sup_{k \in \mathcal{K}} \left\| \int k_{\mathcal{X}}(\cdot, x) k_{\mathcal{Y}}(\cdot, y) \, d[(\mathcal{P}^{X_{r}} \times \mathcal{P}^{Y}) - (\mathcal{P}_{n}^{X_{r}} \times \mathcal{P}_{n}^{Y})](x, y) \right\|_{\mathcal{H}} \\ &= \sup_{k \in \mathcal{K}} \left\| \int k_{\mathcal{X}}(\cdot, x) \, d\mathcal{P}^{X_{r}}(x) \int k_{\mathcal{Y}}(\cdot, y) \, d\mathcal{P}^{Y}(y) - \int k_{\mathcal{X}}(\cdot, x) \, d\mathcal{P}_{n}^{X_{r}}(x) \int k_{\mathcal{Y}}(\cdot, y) \, d\mathcal{P}^{Y}(y) \right\|_{\mathcal{H}} \\ &\leq \sup_{k \in \mathcal{K}} \left\| \int k_{\mathcal{X}}(\cdot, x) \, d(\mathcal{P}^{X_{r}} - \mathcal{P}_{n}^{X_{r}})(x) \int k_{\mathcal{Y}}(\cdot, y) \, d\mathcal{P}^{Y}(y) \right\|_{\mathcal{H}} \\ &+ \sup_{k \in \mathcal{K}} \left\| \int k_{\mathcal{X}}(\cdot, x) \, d(\mathcal{P}^{X_{r}} - \mathcal{P}_{n}^{X_{r}})(x) \right\|_{\mathcal{H}_{\mathcal{X}}} \left\| \int k_{\mathcal{Y}}(\cdot, y) \, d\mathcal{P}^{Y}(y) \right\|_{\mathcal{H}_{\mathcal{Y}}} \\ &+ \sup_{k \in \mathcal{K}} \left\| \int k_{\mathcal{X}}(\cdot, x) \, d(\mathcal{P}^{X_{r}} - \mathcal{P}_{n}^{X_{r}})(x) \right\|_{\mathcal{H}_{\mathcal{X}}} \left\| \int k_{\mathcal{Y}}(\cdot, y) \, d(\mathcal{P}^{Y} - \mathcal{P}_{n}^{Y})(y) \right\|_{\mathcal{H}_{\mathcal{Y}}} \\ &= \sup_{k_{\mathcal{X}} \in \mathcal{K}_{\mathcal{X}}} \left\| \int k_{\mathcal{X}}(\cdot, x) \, d(\mathcal{P}^{X_{r}} - \mathcal{P}_{n}^{X_{r}})(x) \right\|_{\mathcal{H}_{\mathcal{X}}} \sup_{k_{\mathcal{Y}} \in \mathcal{K}_{\mathcal{Y}}} \left\| \int k_{\mathcal{Y}}(\cdot, y) \, d\mathcal{P}^{Y}(y) \right\|_{\mathcal{H}_{\mathcal{Y}}} \\ &+ \sup_{k_{\mathcal{Y}} \in \mathcal{K}_{\mathcal{Y}}} \left\| \int k_{\mathcal{Y}}(\cdot, y) \, d(\mathcal{P}^{Y} - \mathcal{P}_{n}^{Y})(y) \right\|_{\mathcal{H}_{\mathcal{Y}}} \sup_{k_{\mathcal{X}} \in \mathcal{K}_{\mathcal{Y}}} \left\| \int k_{\mathcal{Y}}(\cdot, x) \, d\mathcal{P}_{n}^{X_{r}}(x) \right\|_{\mathcal{H}_{\mathcal{X}}} \\ &\leq \sqrt{A} \sup_{k_{\mathcal{X}} \in \mathcal{K}_{\mathcal{Y}}} \left\| \int k_{\mathcal{X}}(\cdot, x) \, d(\mathcal{P}^{X_{r}} - \mathcal{P}_{n}^{X_{r}})(x) \right\|_{\mathcal{H}_{\mathcal{X}}} + \sqrt{A} \sup_{k_{\mathcal{Y}} \in \mathcal{K}_{\mathcal{Y}}} \left\| \int k_{\mathcal{Y}}(\cdot, y) \, d(\mathcal{P}^{Y} - \mathcal{P}_{n}^{Y})(y) \right\|_{\mathcal{H}_{\mathcal{Y}}} \end{aligned}$$

Now, $\phi_{\mathcal{X}} \stackrel{\text{def}}{=} \sup_{k_{\mathcal{X}} \in \mathcal{K}_{\mathcal{X}}} \| \int k_{\mathcal{X}}(\cdot, x) d(\mathbb{P}^{X_r} - \mathbb{P}_n^{X_r})(x) \|_{\mathcal{H}_{\mathcal{X}}}$ and $\phi_{\mathcal{Y}} \stackrel{\text{def}}{=} \sup_{k_{\mathcal{Y}} \in \mathcal{K}_{\mathcal{Y}}} \| \int k_{\mathcal{Y}}(\cdot, y) d(\mathbb{P}^Y - \mathbb{P}_n^Y)(y) \|_{\mathcal{H}_{\mathcal{Y}}}$ can be bounded by using Theorem 7 of (Sriperumbudur et al., 2009), which yields that probability at least $1 - \frac{\delta}{3}$

$$\phi_{\mathcal{X}} \le \sqrt{\frac{8U_n(\mathcal{K}_{\mathcal{X}}; \{x_r^{(i)}\})}{n}} + \frac{2\sqrt{A}}{\sqrt{n}} + \sqrt{\frac{18A}{n}\log\frac{6}{\delta}}$$
 (7)

and

$$\phi_{\mathcal{Y}} \le \sqrt{\frac{8U_n(\mathcal{K}_{\mathcal{Y}}; \{y^{(i)}\})}{n}} + \frac{2\sqrt{A}}{\sqrt{n}} + \sqrt{\frac{18A}{n}\log\frac{6}{\delta}}.$$
 (8)

Using (7) and (8), with probability at least $1 - \frac{2\delta}{3}$ over the choice of $\{x_r^{(i)}\}$ and $\{y^{(i)}\}$, we have

$$\phi \le \sqrt{\frac{8AU_n(\mathcal{K}_{\mathcal{Y}}; \{y^{(i)}\})}{n}} + \frac{4A}{\sqrt{n}} + \sqrt{\frac{72A^2}{n} \log \frac{6}{\delta}} + \sqrt{\frac{8AU_n(\mathcal{K}_{\mathcal{X}}; \{x_r^{(i)}\})}{n}}.$$
 (9)

Combining (6) and (9) provides the result.

References

Sriperumbudur, B., Fukumizu, K., Gretton, A., Lanckriet, G., and Schölkopf, B. (2009). Kernel choice and classifiability for RKHS embeddings of probability distributions. In *Advances in Neural Information Processing Systems 22*, pages 1750–1758. MIT Press.