

杉数科技教学平台



## 第三章线性规划的对偶

第二节 对偶问题的相关性质

郭加熠 | 助理教授





## 回顾:对偶问题

上节课中,介绍了线性规划的对偶问题。例如,若线性规划的原问题为

minimize 
$$c^T x$$

subject to 
$$Ax = b$$

$$\mathbf{x} \geq 0$$

则其对偶问题为

maximize 
$$\boldsymbol{b}^T \boldsymbol{y}$$

subject to 
$$A^T \mathbf{y} \leq \mathbf{c}$$





| 原问题 | minimize   | maximize   | 对偶 |  |
|-----|------------|------------|----|--|
|     | $\geq b_i$ | $\geq 0$   |    |  |
| 约束  | $\leq b_i$ | $\leq 0$   | 变量 |  |
|     | $= b_i$    | 无约束        |    |  |
|     | $\geq 0$   | $\leq c_j$ |    |  |
| 变量  | $\leq 0$   | $\geq c_j$ | 约束 |  |
|     | 无约束        | $= c_j$    |    |  |

- 1. 每个原问题约束对应对偶问题一变量,每个原问题变量对应对偶问题一约束。
- 2. 等式约束对应无约束变量, 反之亦然。
- 3. 正常(异常)约束对应正常(异常)约束。





#### 定理 3.1

对偶问题的对偶问题是原问题

#### 定理 3.2

两个等价问题(比如加入剩余变量、替换无约束变量)的对偶问题也是等价的



# 目录



弱对偶定理

强对偶定理

互补松弛条件

讲员

叶荫宇,王子卓,皇甫琦,邓琪, 高建军,葛冬冬,郭加熠,何斯 迈,江波,刘慧康

## 弱对偶定理

| 原问题 |            | 对偶问题                                           |            |                                     |
|-----|------------|------------------------------------------------|------------|-------------------------------------|
|     | minimize   | $c^T x$                                        | maximize   | $\boldsymbol{b}^{T} \boldsymbol{y}$ |
|     | subject to | $A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0$ | subject to | $A^T \mathbf{y} \leq \mathbf{c}$    |

### 定理 3.3 弱对偶定理

若 x 是原问题可行解, y 是对偶问题可行解, 则:

$$\boldsymbol{b}^T \boldsymbol{y} \leq \boldsymbol{c}^T \boldsymbol{x}$$

若原问题是最小化问题,对偶问题是最大化问题,则:

- ▶ 任意对偶问题可行解都会给出原始问题最优值的下界
- ▶ 任意原始问题可行解都会给出对偶问题最优值的上界
- ▶ 原始问题的最优值大于等于对偶的最优值



# 证明与推论

假设x是原问题可行解,y是对偶问题可行。则:

$$\boldsymbol{b}^T \boldsymbol{y} = (A\boldsymbol{x})^T \boldsymbol{y} = \boldsymbol{x}^T (A^T \boldsymbol{y}) \leq \boldsymbol{c}^T \boldsymbol{x}$$

最后一个不等式根据  $x \ge 0$  及  $A^T y \le c$  得到。

### 推论 3.1

- ▶ 若原问题无界(即最优值为 -∞),则对偶问题无解。
- ▶ 若对偶问题无界(即最优值为∞),则原问题一定无解。



## 推论(续)

### 推论 3.2

设 x 和 y 分别为原问题和对偶问题的可行解。若  $c^Tx = b^Ty$ ,则 x 和 y 为原问题和对偶问题最优解

### 线性规划的最优性条件: 若x, y 满足:

- 1. x 是原问题可行解
- 2. y 是对偶问题可行解
- 3. 目标函数值相同,即  $c^T x = b^T v$

则x和y分别为原问题和对偶问题最优解。

反之结论依然成立。



# 目录



弱对偶定理

强对偶定理

互补松弛条件

讲员

叶荫宇,王子卓,皇甫琦,邓琪, 高建军,葛冬冬,郭加熠,何斯 迈,江波,刘慧康

## 强对偶定理

#### 定理 3.4 强对偶定理

若线性规划的原问题和对偶问题都有最优解,则原问题和对偶问题的最优值相等。

- ▶ 将提供一种构造性证明。即,给定一个原问题最优解,构造其对偶最优解,证 明两者的目标函数值相同
- ▶ 可以发现当单纯形法结束时,也能找到对偶问题最优解



# 证明

使用单纯形法进行证明。假设原问题是标准型进行证明,结论具有一般性。

若原问题的最优解为  $\mathbf{x}^*$ , 则与最优基 B 相关,B 服从  $\mathbf{x}_B = A_B^{-1} \mathbf{b}$  ( $\mathbf{x}_B$  是  $\mathbf{x}^*$  基变量部分)。当单纯形法完成,检验数非负,也就是

$$\boldsymbol{c}^T - \boldsymbol{c}_B^T A_B^{-1} A \ge 0 \tag{1}$$

定义  $\mathbf{y}^T = \mathbf{c}_B^T A_B^{-1}$ , 通过 (1) 可知  $A^T \mathbf{y} \leq \mathbf{c}$ , 即  $\mathbf{y}$  是对偶问题可行解。并且

$$\boldsymbol{b}^T \boldsymbol{y} = \boldsymbol{c}_B^T A_B^{-1} \boldsymbol{b} = \boldsymbol{c}_B^T \boldsymbol{x}_B = \boldsymbol{c}^T \boldsymbol{x}^*$$

因此根据弱对偶定理, y 是对偶问题最优解, 定理成立。





从证明中可以看出,当使用单纯形算法时,对偶最优解实际上是一个副产品。

 $\mathbf{c}_{B}^{T}A_{B}^{-1}$  这一项是对偶问题最优解(若原问题有最优解)。因此,当对原问题进行求解,对偶问题可以同时得到解决。

这并不是一个特殊现象。几乎所有的线性规划算法(单纯形法,内点法或椭球法)都会同时解决原问题和对偶问题。



# 讨论

根据强对偶定理,可以得到 (x,y) 分别是原问题和对偶问题的最优解的充要条件是

- ► x 是原问题可行解
- ▶ y 是对偶问题可行解
- ▶ 两者目标函数值相同

因此线性规划问题的求解实际与以下线性系统求解等价:

- ightharpoonup Ax = b,  $x \ge 0$
- $ightharpoonup A^T \mathbf{y} \leq \mathbf{c}$
- $b^T y = c^T x$





### 线性规划及其对偶可能存在以下哪种状态

|    | 有界 | 无界 | 无解 |
|----|----|----|----|
| 有界 | ?  | ?  | ?  |
| 无界 | ?  | ?  | ?  |
| 无解 | ?  | ?  | ?  |





# 例子: 原问题对偶问题均无解

## 原问题:

minimize 
$$x_1 + 2x_2$$
 subject to  $x_1 + x_2 = 1$   $2x_1 + 2x_2 = 3$ 

## 对偶问题:

maximize 
$$y_1 + 3y_2$$
 subject to  $y_1 + 2y_2 = 1$  
$$y_1 + 2y_2 = 2$$



# 答案

线性规划可能情形:

|    | 有界        | 无界        | 无解 |
|----|-----------|-----------|----|
| 有界 | $\sqrt{}$ |           |    |
| 无界 |           |           |    |
| 无解 |           | $\sqrt{}$ |    |

► 若原问题和对偶问题均有解,则两者都有最优解。(可以据此快速判断线性规划问题是否有界)。通过强对偶定理,两者的最优值相等。

现在解决了原问题和对偶问题最优值之间的关系,接下来分析原问题和对偶问题最优解之间的关系。



# 目录



弱对偶定理

强对偶定理

互补松弛条件

讲员

叶荫宇,王子卓,皇甫琦,邓琪, 高建军,葛冬冬,郭加熠,何斯 迈,江波,刘慧康

## 互补松弛条件

| 原问题        |                                              | 对偶问题       |                                     |  |
|------------|----------------------------------------------|------------|-------------------------------------|--|
| minimize   | $c^T x$                                      | maximize   | $\boldsymbol{b}^{T} \boldsymbol{y}$ |  |
| subject to | $A\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$ | subject to | $A^T \mathbf{y} \leq \mathbf{c}$    |  |

#### 定理 3.5

假设x和y为原问题和对偶问题的可行解,则x和y为最优解的充要条件是

$$x_i > 0 \implies A_i^T \mathbf{y} = c_i$$

$$A_i^T \mathbf{y} < c_i \implies x_i = 0$$

或者可以表达为,

$$x_i \cdot (c_i - A_i^T \mathbf{y}) = 0, \quad \forall i$$

# 例子

原问题 - 最优解 (1,0,1): minimize

minimize 
$$13x_1 + 10x_2 + 6x_3$$

subject to 
$$5x_1 + x_2 + 3x_3 = 8$$
  
 $3x_1 + x_2 = 3$   
 $x_1, x_2, x_3 \ge 0$ 

对偶问题 - 最优解 
$$(2,1)$$
:

maximize 
$$8y_1 + 3y_2$$
 subject to  $5y_1 + 3y_2 \le 13$   $y_1 + y_2 \le 10$   $3y_1 \le 6$ 

验证互补条件:

$$x_1 \cdot (13 - 5v_1 - 3v_2) = 0$$
,  $x_2 \cdot (10 - v_1 - v_2) = 0$ ,  $x_3 \cdot (6 - 3v_1) = 0$ 

## 证明

根据强对偶性定理,若x和y为原问题和对偶问题最优解,则

$$c^T x = b^T y$$

所以,

$$0 = \boldsymbol{c}^T \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{y} = \boldsymbol{c}^T \boldsymbol{x} - \boldsymbol{y}^T A \boldsymbol{x} = \sum_{i=1}^n (c_i - A_i^T \boldsymbol{y}) \cdot x_i$$
 (2)

由于  $\mathbf{x}$  和  $\mathbf{y}$  都为可行解,因此对于任意 i, 有  $\mathbf{c}_i - \mathbf{A}_i^T \mathbf{y} \ge 0$  和  $\mathbf{x}_i \ge 0$ 。因此,为了保证 (2) 成立,必须有

$$(c_i - A_i^T \mathbf{y}) \cdot x_i = 0, \quad \forall i$$

另一个方向的证明可以运用同样逻辑(上述过程步步可逆)。



# 总结

- ▶ 互补松弛条件描述的是原问题与对偶问题之间的变量与约束的关系;
- ▶ 在最优解中,如果某个变量是正的  $(x_i > 0)$ ,那么其对应的对偶约束必须激活  $(c_i A_i^T y = 0)$ ;
- ▶ 相反,如果某个对偶约束未激活  $(c_i A_i^T y > 0)$ ,则对应的变量必须为零  $(x_i = 0)$ ;
- ▶ 简而言之,原问题的变量和其对应的对偶约束不能同时存在松弛。





## 互补条件的另一种形式

有时,可以将对偶问题等价写为:

| 原问题                                                      | 对偶问题 |                                                               |
|----------------------------------------------------------|------|---------------------------------------------------------------|
| minimize $c^T x$                                         | max  | $\boldsymbol{b}^{T} \boldsymbol{y}$                           |
| subject to $A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq 0$ | st.  | $A^T \mathbf{y} + \mathbf{s} = \mathbf{c},  \mathbf{s} \ge 0$ |

称 s 为松弛变量。因此互补条件可以写为

$$x_i \cdot s_i = 0 \quad \forall i$$

也称互补条件为互补松弛条件。



## 一般互补松弛条件

| 原问题        |                                                   |                        | 对偶问题       |                                     |                     |
|------------|---------------------------------------------------|------------------------|------------|-------------------------------------|---------------------|
| minimize   | $c^T x$                                           |                        |            | $\boldsymbol{b}^{T} \boldsymbol{y}$ |                     |
| subject to | $\boldsymbol{a}_i^T \boldsymbol{x} \geq b_i$ ,    | $i\in M_1$ ,           | subject to | $y_i \geq 0$ ,                      | $i \in M_1$         |
|            | $\boldsymbol{a}_{i}^{T}\boldsymbol{x}\leq b_{i},$ | $i \in M_2$ ,          |            |                                     | $i \in M_2$         |
|            | $\boldsymbol{a}_{i}^{T}\boldsymbol{x}=b_{i},$     | $i \in M_3$ ,          |            | y <sub>i</sub> 无约束,                 | $i \in M_3$         |
|            | $x_j \geq 0$ ,                                    | $j\in \mathcal{N}_1$ , |            | $A_j^T \mathbf{y} \leq c_j$ ,       | $j\in \textit{N}_1$ |
|            | $x_j \leq 0$ ,                                    | $j\in \mathcal{N}_2$ , |            | $A_j^T \mathbf{y} \geq c_j$ ,       | $j\in \textit{N}_2$ |
|            | x <sub>j</sub> 无约束,                               | $j \in N_3$ ,          |            | $A_j^T \mathbf{y} = c_j$ ,          | $j \in N_3$         |

#### 定理 3.6

若x和y为原问题和对偶问题的可行解。则x和y为最优解的充要条件是

$$y_i \cdot (\boldsymbol{a}_i^T \boldsymbol{x} - b_i) = 0, \quad \forall i; \quad x_j \cdot (A_i^T \boldsymbol{y} - c_j) = 0, \quad \forall j$$



## 线性约束最优化条件其他形式

根据线性约束的最优化条件:

- 1. x 为原问题可行解
- 2. y 为对偶问题可行解
- 3.  $\boldsymbol{c}^T \boldsymbol{x} = \boldsymbol{b}^T \boldsymbol{y}$

根据互补松弛条件,可以得到条件的等价形式:

- 1. x 为原问题可行解
- 2. y 为对偶问题可行解
- 3. 满足所有互补松弛条件





利用互补松弛条件,快速判断给定的原问题解 x 是否为最优解。

- ▶ 验证解 x 是否满足原问题的可行性;
- ▶ 若满足原问题可行性,则列出对偶可行性与互补松弛约束;
- ▶ 求解上述系统,若该系统存在解 y,则解 x 是原问题最优解;
- ▶ 否则, **x** 不是原问题最优解。

如果已经求得原问题最优解 $x^*$ ,求解互补松弛条件可以快速求得对偶最优解





原问题:

maximize 
$$x_1 - x_2$$
 subject to  $-2x_1 + x_2 \le 2$   $x_1 - 2x_2 \le 2$   $x_1 + x_2 = 5$   $x_1, x_2 \ge 0$ 

对偶问题:

minimize 
$$2y_1 + 2y_2 + 5y_3$$
 subject to  $-2y_1 + y_2 + y_3 \ge 1$   $y_1 - 2y_2 + y_3 \ge -1$   $y_1 \ge 0, \quad y_2 \ge 0, \quad y_3$  无约束



# 例子

互补松弛条件:

$$y_1(-2x_1 + x_2 - 2) = 0$$

$$y_2(x_1 - 2x_2 - 2) = 0$$

$$y_3(x_1 + x_2 - 5) = 0$$

$$x_1(-2y_1 + y_2 + y_3 - 1) = 0$$

$$x_2(y_1 - 2y_2 + y_3 + 1) = 0$$

- ▶ 验证 (1,4) 是否是原问题最优解:根据互补松弛条件,可以得到  $y = (-\frac{2}{3}, 0, -\frac{1}{3})$ ,并不是对偶问题可行解,因此 (1,4) 不是原问题最优解。
- ▶ 验证 (4,1) 是否是原问题最优解:根据互补松弛条件,可以得到  $y = (0, \frac{2}{3}, \frac{1}{3})$ ,为对偶问题的解,因此,(4,1) 是原问题最优解。



# 严格互补松弛条件

### 定理 3.7 严格互补松弛定理

对于线性规划,如果原问题与对偶问题均存在可行解,则在所有可行解中,存在一对 严格互补的可行解  $x^* \ge 0$  和  $s^* \ge 0$ ,满足:

$$x^* \cdot s^* = 0$$
  $\pi x^* + s^* > 0$ 

此外,严格互补可行解的支撑集:

$$P^* = \{j : s_i^* > 0\}$$
  $\mathcal{Z}^* = \{j : s_i^* > 0\}$ 

对于所有的严格互补可行解对都是不变的, $P^*$ , $Z^*$  也被称为(严格)互补分割





## 考虑如下的原问题

和对应的对偶问题

minimize 
$$x_1+x_2+1.5\cdot x_3$$
 subject to 
$$x_1+x_3=1$$
 
$$x_2+x_3=1$$
 
$$x_1,\ x_2,\ x_3\geq 0$$
 maximize 
$$y_1+y_2$$
 subject to 
$$y_1+s_1=1$$
 
$$y_2+s_2=1$$

 $\mathbf{s} > 0$ 

 $v_1 + v_2 + s_3 = 1.5$ 





根据最优性条件可以给出一对严格互补松弛可行解:

$$x_1 = x_2 = 0$$
,  $x_3 = 1$ ,  $y_1 = y_2 = 0.75$ ,  $s_1 = s_2 = 0.25$ ,  $s_3 = 0$ 

满足:

$$x_i s_i = 0, \ x_i + s_i > 0, \ \forall i$$

此时,(严格) 互补分割为 
$$P^* = \{3\}, Z^* = \{1, 2\}$$



# 感谢聆听!

Thank You!

