I/O 포트의 활용 - BUZZER

한국공학대학교 지능형 헬스케어 시스템 연구소

부저(Buzzer)의 활용

- ♣ 부저 : 원하는 주파수로 부저에 인가하는 전압을 On/Off 하여 소리를 발생하는 소자
- ♣ 부저의 구동
 - 원하는 주파수의 주기와 듀티비를 갖는 구형파의 파형을 부저에 입력하면 음과음의 크기가 변하게 됨.
- ዹ 부저 사양 및 회로

Product Name		3V 능동 부저 [FQ-010]	5V 능동 부저 [FQ-011]	12V 능동부저 [FQ-012]			
Rated Voltage	٧	3	5	12			
Operating Voltage	٧	2~5	8~15				
*Rated Current(MAX)	mΑ	32 32		32			
*Min Sound Output at 10 cm	dΒ	80	85	85			
*Resonant Frequency	Hz	2300±300					
Operating Temperature	°C	-20~+45					
Storage Temperature	°C	-30~+60					
Size	mm	12 x 9.5					
Weight	g	2					

부저의 종류

- 회로 내장형: 발진회로가 내장되어 있어, 부저에 on 신호만 입력하면 단음이 출력이 되는 일반적인 부저
- 회로 외장형: 발진회로가 내장되지 않고, 단지 마그네틱 센서만 들어있어 스피커와 동일한 형태로 되어 있어 주파수를 입력하면 각 주파수에 해당하는 사운드가 출력됨.

<u>부저의</u> 구동

- ▶ 주 프로그램에서 시간 지연을 이용하여 On/Off를 변경하는 방범
- 타이머 인터럽트를 이용하여 부저를 구동하는 방법

부저 구동 프로그램

```
/* PORTG - Data Register, Port G */
#define
        PORTG0
                     0
                          //
#define
        PORTG1
                          //
        PORTG2
#define
#define
        PORTG3
                          //
#define PORTG4
                          //
                     4
① PORTG4 = 1; 또는 PORTG4 = 0;
  // 잘못된 방법
```

부저를 이용하여 음계를 발생하는 프로그램의 구동

옥타브 음계	1	2	3	4	5	6	7	8
C(도)	32.7032	65.4064	130.8128	261.6256	523.2511	1046.502	2093.005	4186.009
C#	34.6478	69.2957	138.5913	277.1826	554.3653	1108.731	2217.461	4434.922
D(레)	36.7081	73.4162	146.8324	293.6648	587.3295	1174.659	2349.318	4698.636
D#	38.8909	77.7817	155.5635	311.1270	622.2540	1244.508	2489.016	4978.032
E(0)	41.2034	82.4069	164.8138	329.6276	659.2551	1318.510	2637.020	5274.041
F(파)	43.6535	87.3071	174.6141	349.2282	698.4565	1396.913	2793.826	5587.652
F#	46.2493	92.4986	184.9972	369.9944	739.9888	1479.978	2959.955	5919.911
G(솔)	48.9994	97.9989	195.9977	391.9954	783.9909	1567.982	3135.963	6271.927
G#	51.9130	103.8262	207.6523	415.3047	830.6094	1661.219	3322.438	6644.875
A(라)	55.0000	110.0000	220.0000	440.0000	880.0000	1760.000	3520.000	7040.000
A#	58.2705	116.5409	233.0819	466.1638	932.3275	1864.655	3279.310	7458.620
B(시)	61.7354	123.4708	246.9417	493.8833	987.7666	1975.533	3951.066	7902.133

음계의 주파수

```
// 음계 주파수에 따른 주기(time) 계산, On-Off로
// 만들어야 하기 때문에 (음계 주기 / 2)
#define Do 1908 // 262Hz (3817us) 1908us
#define Re 1700 // 294Hz (3401us) 1701us
#define Mi 1515 // 330Hz (3030us) 1515us
#define Fa 1432 // 349Hz (2865us) 1433us
#define Sol 1275 // 370Hz (2703us) 1351us
#define La 1136 // 440Hz (2273us) 1136us
#define Si 1012 // 494Hz (2024us) 1012us
```

♣ 부저의 구동

- 음계의 주파수를 이용하여 음계를 발생하기 위해서는 먼저 주파수를 주기(시간)로 환산하고
- 이를 on/off 시켜야 하므로 다음과 같이 도에서 시까지 각각에 주파수에 대한 시간 테이블로 변환하여 정의
- ▶ 만약 도의 음을 출력하려면 262Hz=3817us이기 때문에 1908us 마다 on/off를 반복하여 PORTG4에 출력하면 됨.

부저음을 발생하는 함수 : void SSound(int time)

- 음계를 발생하기 위하여 1use 으로 계상-> <util/delay.h> 내의 지연 함수 _delay_us(1)를 사용
- 예) '도'음을 발생하기 위해 myDelay_us(time) 함수 이용 Do(1908)가 들어오면 _delay_us(1)을 1908번 반복하여 1908usec 만큼 시간 지연을 시키기 위함이다.

```
void SSound(int time)
  int i, tim;
  tim = 50000 / time;
  // 음계마다 같은 시간동안 울리도록 tim 변수 사용
  // ex) time = 10, tim = 50000/10 = 5000
        loopDelay: 10 \times 2 = 20 \text{ us}
        Function delay: 20us * 5000 = 0.1Sec
  for(i=0; i<tim; i++) {
     PORTG |= (1<<PG4); //buzzer on, PORTG의 4번 핀 on(out 1)
     myDelay_us(time);
     PORTG &= ~(1<<PG4); //buzzer off, PORTG의 4번 핀 off(out 0)
     myDelay_us(time);
```

```
void myDelay_us(unsigned int delay)
{
  int i;
  for(i=0; i<delay; i++)
  {
    __delay_us(1);
  }
}</pre>
```

스위치 입력에 따른 부저 출력

```
#define F CPU 14745600UL
#include <avr/io.h>
#include <util/delay.h>
#define
                 1908 // 262Hz (3817us) 1908us
#define
                1700 // 294Hz (3401us) 1701us
#define
                1515 // 330Hz (3030us) 1515us
                 1432 // 349Hz (2865us) 1433us
#define
#define
                1275 // 370Hz (2703us) 1351us
                 1136 // 440Hz (2273us) 1136us
#define
#define
                 1012 // 494Hz (2024us) 1012us
void myDelay us(unsigned int delay){
  int i;
 for(i=0; i<delay; i++){</pre>
   _delay_us(1);
void SSound(int time) {
  int i, tim;
  tim = 50000 / time;
  for(i=0; i<tim; i++){</pre>
    PORTG = (1<<PG4); //buzzer on, PORTG의 4번 핀 off(out 1)
    myDelay us(time);
    PORTG &= ~(1<<PG4); //buzzer off, PORTG의 4번 핀 on(out 0)
    myDelay us(time);
  PORTG |= (1<<PG4); //buzzer off, PORTG의 4번 핀 off(out 0)
```

스위치 입력에 따른 부저 출력

```
void main()
 unsigned char sw;
 DDRG |= (1<<PG4); // 부저와 연결되는 PORTG.4를 출력으로 설정
 PORTG |= (1<<PG4); // 교육용 보드의 BUZZ는 회로가 Active-Low 로 되어있음으로
                    // HIGH 상태 출력하여 부저 동작을 차단함
 DDRD = 0x00;  // TACT 스위치를 입력으로 설정
 DDRB = 0xFF; // TACT 스위치 입력정보를 LED로 확인하기 위함
 while(1){
   sw = \sim PIND;
   PORTB = sw;
   if(
              sw & (1<<PD0)){ SSound(D0);</pre>
   else if( sw & (1<<PD1)){ SSound(RE);</pre>
   else if( sw & (1<<PD2)){ SSound(MI);</pre>
   else if( sw & (1<<PD3)){ SSound(FA);</pre>
   else if( sw & (1<<PD4)){ SSound(SOL);</pre>
   else if( sw & (1<<PD5)){ SSound(LA);</pre>
   else if(
              sw & (1<<PD6)){ SSound(SI);</pre>
```

감사합니다.

- I/O 포트의 활용(Buzzer)