

SWINBURNE UNIVERSITY OF TECHNOLOGY

Virtual Private Networks

Lecture thirteen

Outline of Lecture

- Types of VPNs
 - remote access, intranet and extranet
- Building blocks of a VPN
 - VPN hardware and software
 - organisation's and service provider's security infrastructure
 - public networks
 - tunnels
- Ways of classifying VPNs
 - who implements it
 - where the endpoints are
 - its size and complexity

Learning objectives

- At the end of this lecture, students should be able to:
 - Explain what a VPN is
 - Explain the architectures and purposes of different types of VPNs
 - Describe the basic building blocks of VPNs
 - Explain the different ways of classifying VPNs

Introduction to VPNs

- Virtual Private Network
 - Makes use of publicly available networking infrastructure to provide the features of a private network
- Definition of VPN according to the IETF
 - An emulation of a private Wide Area Network (WAN) using shared or public IP facilities such as the Internet or private IP backbones
 - An extension of a private intranet across a public network (usually the Internet)
- Originally driven by low cost and wide reach of the Internet
- Recent drivers are avoiding geoblocking and concerns about privacy

Introduction to VPNs

- Key concepts of VPNs are
 - Tunnels
 - Main VPN concept
 - Enables two end-points to exchange data in a way that emulates point to point communication
 - Encryption
 - Enables communication to be confidential even though using shared and very insecure Internet
 - Integrity
 - Ensures data is unchanged
 - Authorisation
 - Specifies what services and resources users can have access to

Evolution of VPNs

- VPNs are quite an old concept
 - Originally Software Defined Networks
 - developed by ATT in the late 80s
- X.25 over ISDN in the early 90s
 - Virtual circuits over shared infrastructure
 - Problems with scalability to higher bit rates
- Frame Relay mid 90s
 - Took advantage of reliability of modern media
 - Extended the idea of Virtual Circuit Switching
 - Still an important technology
- IP based VPNs late 90s

VPN Tunneling protocols

- Tunnels in VPNs
 - Encapsulate data packets in a tunneling protocol
 - Possibly other IP packets
 - Then encapsulate in IP packets or layer two frames for transmission
- Example
 - Accessing HTTP over a VPN

Tunnel used depends on the VPN type

VPN Tunneling protocols

- IP Security (IPSec)
 - IETF
 - Network layer (layer 3) protocol
- Point-to-point tunneling protocol (PPTP)
 - Obsolete (lots of security issues and other alternatives)
 - Microsoft Layer 2 protocol
- Layer 2 Tunneling Protocol (L2TP)
 - Cisco Layer 2 protocol
 - Built from L2F (layer 2 forwarding) and PPP (Point to Point Protocol)
- Secure Socket Tunnelling Protocol (SSTP)
 - Secure Sockets Layer / Transport Layer Security
 - Transport over TLS/SSL with inbuilt key exchange mechanisms

Advantages and disadvantages of VPNs

Advantages

- Implementation costs
- Management costs
- Connectivity
- Security
- Efficient use of network capacity
- Scalable
- Privacy
- Can be used to avoid geoblocking

Disadvantages

- Variations in capacity
- Reliability of the Internet

VPN Considerations

Security

- Essential for private traffic using the very public and insecure Internet
- VPN security needs to be compatible with other security infrastructure
 - eg can be difficult to pass IPSec through a firewall
- Interoperability
 - Don't want to be tied to one supplier
 - May wish to construct VPNs that span other organisations (Extranets)
- Easy to implement, manage and use
 - Particularly important that the client software is easy to implement
 - Need to keep track of potentially hundreds of tunnels

VPN Considerations

Scalable

 Should be able to increase number of clients and sites without modification to existing clients and sites

Performance

- Encryption is a resource hungry activity. Need sufficient capacity to support many encryption tunnels
- Available bandwidth needs to be sufficient. Maybe some reservation of bandwidth is required (can be done in Frame Relay)

Reliable ISPs

- VPNs reliability is dependent on ISP reliability
- May need some service level agreements

Types of VPNs

- Remote access VPNs
 - Access to mobile or telecommuting employees
 - Avoid geoblocking
- Intranet VPNs
 - Interconnect remote branch offices of an organisation
- Extranet VPNs
 - Allow controlled access to external parties
 - Customers may wish to check our inventory
 - Customers may wish to place orders
 - May wish to transfer work to and from contract organisations

Remote access VPNs

- Typically used by mobile users and remote branches
 - sales people, frequently travelling senior managers etc
 - remote branches where a permanent connection via an Intranet is not justified
- Implemented through connection to an ISP's nearest Point of Presence
- Single remote users and mobile users will connect via the ISP to the corporate VPN server
- Small offices may have a VPN gateway that concentrates traffic from multiple hosts
 - A switch, router or firewall appliance

Remote Access VPNs

- The same technology can be used to avoid geoblocking or tracking of online activity
 - Typically this is household rather than office based
- Rather than connecting to a corporate VPN, the user subscribes to a VPN service located in a country which is not geoblocked
- As far as the service is concerned traffic is to and from the VPN server endpoint
- Again, there may be a shared VPN gateway (VPN client software) at the household that connects to the VPN server

Remote access VPN: Corporate The Internet Remote user Firewall Tunnel Server Mobile user VPN Server Tunnel Server VPN gateway Server Central office

Remote access VPN: Avoiding geoblocking

Remote access VPNs

Advantages

- Simple, comparatively low cost infrastructure
- No need for support personnel at remote sites
 - Done by ISP
- No fixed limit to number of users
 - Maybe limitations caused by performance
- Disadvantages
 - No guarantees of Quality of Service
 - Lots of protocol and computation overhead from encrypted tunnels

Intranet VPNs

- Used to interconnect remote branch offices
- Use local ISP to provide WAN connectivity rather than providing WAN connectivity directly
- Much more a peer-to-peer architecture than remote access VPNs

Intranet VPNs

- Advantages
 - Using a VPN over an ISP is much cheaper and more bandwidth efficient than setting up corporate network using leased lines
 - Maybe no need for dedicated WAN links
- Disadvantages
 - Can be slow
 - No guarantees of bandwidth through ISP unless Service Level Agreement obtained

Extranet VPNs

- Allow controlled access by partners, clients and customers to some of our sensitive information
 - our stock on hand
 - our availability to work on a project
 - contract work
- Needs to be very tightly controlled
- Many more variations than remote access and intranet
 - Less well defined term
 - Could include
 - password controlled access to website
 - SSH access to server

Extranet VPNs

General VPN requirements

- Security
 - Firewalls and NAT, User and Packet authentication, Encryption
- Availability and reliability
 - Service Level Agreements from ISPs
 - Do you need the ISP to have redundant routing, access and infrastructure?
- QoS
 - Best effort, Relative, Absolute
- Compatibility
 - IP gateways for non-IP traffic such as FR, IP tunneling
- Manageability
 - Need to be able to manage remote and local sites

VPN architectures

- Building blocks
 - VPN hardware
 - VPN software
 - organisation's security infrastructure
 - service provider's security infrastructure
 - public networks
 - tunnels

VPN hardware

- VPN servers
 - Dedicated servers running VPN server software
 - Functions are:
 - Listening for VPN requests
 - Negotiating connection requirements
 - Authenticating and authorising VPN clients
 - Accepting and forwarding data from clients
 - End point of VPN tunnel
 - VPN client is the other end-point
 - VPN servers often integrated into the firewall

VPN hardware

VPN clients

- Remote or local machines that initiate a VPN connection to a VPN server and login to the remote network
- Usually software based but can be hardware based

VPN routers

- Similar to ordinary routers in that they find and select paths to remote networks
- But may have additional features such as IPSec or path redundancy

VPN concentrators

- Aggregate multiple VPNs into the one device
- IP gateways
 - translate non IP traffic to IP traffic

VPN hardware

- Virtual Private Routers
 - Implemented at the ISP
 - Logical partitioning of a physical router at the ISP
 - Each partition provides full private router functionality to individual users
- Virtual Private Trunking
 - Implemented within the ISP
 - Provide switching functions for non-IP protocols such as Frame Relay
 - Based on Permanent Virtual Circuits and Switched Virtual Circuits

VPN Software

- VPN server software
 - The popular server software systems support VPN server functionality
 - Windows server, Linux, FreeBSD
- VPN client software
 - Most of the popular client software systems support VPN client functionality
 - Windows XP onwards
 - May require loading of compatible software
- VPN management software
 - Usually integrated with the VPN server software

Organisation's security infrastructure

- Firewalls
 - Control access to trusted network
- Authentication systems
 - Allows appropriate access to authenticated users
- IPSec
 - Provides data encryption and authentication between
 - Client to server
 - Client to router
 - Firewall to router
 - Router to router

Service provider's security Infrastructure

- Reliability and availability through redundancy
- Security through appropriate hardware and software
 - firewalls, authentication, encryption
- Supports main tunneling protocols
- Supports a variety of access networks

Public networks

- What technologies do we expect to run the VPN over?
- Commonly used public network technologies
 - ADSL, Frame Relay, Cable Modem
- Important to understand the difference between the Internet and the public networks
 - The Internet is an overlay network
 - It is built to use other network technologies

VPN architectures

- Many different ways of characterising VPN architectures
- Implementer based
 - who (ISP or subscriber) implements the VPN?
 - Dependent VPNs
 - Independent VPNs
 - Hybrid VPNs
- Security based
 - where in the network are the VPN endpoints?
 - Router to router
 - Firewall to firewall
 - Client initiated

VPN architectures

- Layer based
 - Link layer (layer 2)
 - PPTP, L2TP
 - Network layer (layer 3)
 - IPSec
 - Transport layer (layer 4)
 - SSTP
- Class based
 - Purpose, size and complexity of VPN
 - Class 0 to Class 4

Implementer based

Dependent VPNs

- service provider (ISP) provides complete VPN system
- service provider implements the tunnels to and from the subscriber's sites
- service provider implements NAS, RADIUS
- Suitable for small organisations
- Independent or in-house VPN
 - Entire responsibility is the subscriber organisation's
 - subscriber implements tunnels between sites across Internet
 - Has own NAS, RADIUS etc
 - Most common implementation
 - secure, not that much more expensive than Dependent VPN for moderate to large organisations

Implementer based

Hybrid VPN

- Combination of dependent and independent approaches
- Part of the VPN is provided by the ISP and the other by the subscriber
- Typical implementation is for tunneling to be provided by the ISP and Authentication by the subscriber
- Another typical implementation is for the use of multiple ISPs
 - provides redundancy should one ISP fail

Security based

- Router to router VPNs
 - VPN tunnel is constructed between the routers as needed
- Firewall to Firewall VPNs
 - Similar to Router to router VPNs
 - Usually implemented with IPSec
- Client initiated VPNs
 - Client to firewall/router VPNs
 - Client to server VPNs
- Directed VPNs
 - layer 5 (session layer) VPN
 - Data encrypted at layer 5
 - SOCKS v5

Layer based

- Link layer VPNs
 - PPTP, L2TP, SSTP
- Network layer
 - IPSec
- Transport layer
 - SSTP over SSL/TLS

Class based

- Class 0: small organisations, VPN server and client, PPTP, firewall
- Class 1: small to medium size organisations, DES Encryption, key exchange, authentication, one VPN gateway
- Class 2: medium size organisations, IPSec, 3DES, IKE, multiple VPN gateways, some high speed access options
- Class 3: ISP connectivity with SLA, directory services, IPSec and 3DES, IKE, multifactor authentication, 10 or more VPN gateways, RADIUS, NAT, high speed access
- Class 4: as for 3 but with greater capacity and additional high speed access options

Conclusion

- Looked at types of VPNs, VPN building blocks and ways of classifying VPNs
- Types of VPNs
 - remote access, intranet and extranet
- Building blocks of a VPN
 - VPN hardware and software
 - organisation's and service provider's security infrastructure
 - public networks
 - tunnels
- Many ways of classifying VPNs
 - who implements it
 - where the endpoints are
 - its size, services and complexity

