Interaksi Manusia & Komputer

Model Prediktif

Pengantar

Model Prediktif

• mengevaluasi/menguji sistem tanpa pengguna sebenarnya

Teknik Model Prediktif

GOMS

(Goals-Operator-Methods-Selection Rules)

KLM (Keystroke Level Model)

1. GOMS

- Goals
- Operator
- Methods
- Selection Rules

GOMS

GOMS

- Goals merujuk pada kondisi/keadaan tertentu yang ingin dicapai pengguna
 - Contoh:
 - membuka situs belanja daring,
 - mengunggah berkas ke Google Drive,
 - melampirkan berkas di surel, dsb.
- Operator merujuk pada proses kognitif dan aksi nyata (fisik) yang dilakukan secara berurutan (langkah demi langkah) agar bisa mencapai Goal yang diinginkan.

GOMS

- Methods merupakan urutan langkah demi langkah dari Operator dalam rangka mencapai Goal yang diinginkan
- Selection Rule merupakan pengetahuan dan kemampuan pengguna untuk memilih satu dari beberapa Method yang tersedia
 - Contoh: Untuk menghapus sebuah berkas maka ada beberapa Methods yang bisa dipilih untuk digunakan:
 - 1. Klik kanan mouse, pilih Hapus
 - 2. Klik menu Berkas, pilih Hapus
 - 3. Tekan tombol Delete di keyboard
- Pilihlah Methods yang sesuai dengan Task dan situasi yang dihadapi dengan Selection Rules

Contoh Pemodelan GOMS

- Goal: Menghapus berkas di Windows Explorer
- Method 1 yang digunakan untuk menghapus berkas dengan menggunakan opsi menu:
 - <u>Langkah 1</u>. Ingat bahwa ikon berkas yang akan dihapus mesti dipilih terlebih dahulu
 - Langkah 2. Ingat bahwa nama perintahnya adalah 'Delete'
 - Langkah 3. Ingat bahwa perintah 'Delete' ada di menu File
 - <u>Langkah 4</u>. Selesaikan Goal menghapus berkas dengan mengeksekusi perintah 'Delete'
 - Langkah 5. Goal menghapus berkas sudah tercapai

Contoh Pemodelan GOMS

- Method 2 yang digunakan untuk menghapus berkas dengan menggunakan menu pop-up pada mouse:
 - Langkah 1. Ingat bahwa nama perintahnya adalah 'Delete'
 - <u>Langkah 2</u>. Ingat bagian mana untuk mengeluarkan menu pop-up tetikus
 - Langkah 3. Selesaikan Goal dengan mengeksekusi perintah 'Delete'
 - <u>Langkah 4</u>. Goal menghapus berkas tercapai
- Method 3 yang digunakan untuk menghapus berkas dengan menggunakan tombol Delete
 - Langkah 1. Ingat bahwa berkas yang akan dihapus mesti dipilih dahulu
 - Langkah 2. Ingat bagian mana tombol 'Delete' di papan ketik
 - Langkah 3. Selesaikan Goal dengan menekan tombol 'Delete'
 - Langkah 4. Goal menghapus berkas tercapai

Contoh Pemodelan GOMS

- Operator yang digunakan pada ketiga Method di atas:
 - Pilih menu
 - Klik mouse
 - Pilih berkas
 - Arahkan kursor ke berkas
 - Tekan tombol
- Selection Rules untuk menentukan Method mana yang diprioritaskan dan menentukan method hapus pada kondisi tertentu:
 - 1. Menghapus berkas menggunakan opsi menu jika kebetulan posisi kursor sedang di menu 'File'
 - 2. Menghapus berkas dengan menu pop-up tetikus jika posisi tangan sedang berada di mouse dan berkas yang dihapus cuma satu
 - 3. Menghapus berkas menggunakan tombol 'Delete' jika kebetulan posisi tangan sedang lebih banyak di papan ketik

GOAL: EDIT-MANUSCRIPT GOAL: EDIT-UNIT-TASK ... repeat until no more unit tasks GOAL: ACQUIRE UNIT-TASK . . GOAL: GET-NEXT-PAGE ... if at end of manuscript page GOAL: GET-FROM-MANUSCRIPT . GOAL: EXECUTE-UNIT-TASK ... if a unit task was found GOAL: MODIFY-TEXT . . [select: GOAL: MOVE-TEXT* ...if text is to be moved . . . GOAL: DELETE-PHRASE ...if a phrase is to be deleted . . . GOAL: INSERT-WORD] ... if a word is to be inserted . . VERIFY-EDIT *Expansion of MOVE-TEXT goal GOAL: MOVE-TEXT GOAL: CUT-TEXT GOAL: HIGHLIGHT-TEXT . [select**: GOAL: HIGHLIGHT-WORD] MOVE-CURSOR-TO-WORD DOUBLE-CLICK-MOUSE-BUTTON VERIFY-HIGHLIGHT GOAL: HIGHLIGHT-ARBITRARY-TEXT MOVE-CURSOR-TO-BEGINNING 1.10 . CLICK-MOUSE-BUTTON 0.20 . MOVE-CURSOR-TO-END 1.10 . SHIFT-CLICK-MOUSE-BUTTON 0.48 . VERIFY-HIGHLIGHT] 1.35 GOAL: ISSUE-CUT-COMMAND MOVE-CURSOR-TO-EDIT-MENU 1.10 PRESS-MOUSE-BUTTON 0.10 1.10 MOVE-CURSOR-TO-CUT-ITEM . VERIFY-HIGHLIGHT 1.35 . RELEASE-MOUSE-BUTTON 0.10 GOAL: PASTE-TEXT GOAL: POSITION-CURSOR-AT-INSERTION-POINT MOVE-CURSOR-TO-INSERTION-POIONT 1.10 CLICK-MOUSE-BUTTON 0.20 1.35 VERIFY-POSITION GOAL: ISSUE-PASTE-COMMAND 1.10 MOVE-CURSOR-TO-EDIT-MENU 0.10 PRESS-MOUSE-BUTTON . MOVE-MOUSE-TO-PASTE-ITEM 1.10 VERIFY-HIGHLIGHT 1.35 RELEASE-MOUSE-BUTTON 0.10 TOTAL TIME PREDICTED (SEC) 14.38

2. Keystroke Level Model (KLM)

David Kieras

KLM menganalisis langkah-langkah (steps) yang dibutuhkan dalam proses sebuah task. Sehingga bisa memungkinkan steps tersebut untuk disusun ulang atau dihapus.

Terminologi Steps Desktop App

		1	1 1
Kode	Operasi — — — — — — — — — — — — — — — — — — —		Waktu (detik)
K	Key press dan lepas (keyboard)	Best Typist (135 wpm)	0.08
		Good Typist (90 wpm)	0.12
		Poor Typist (40 wpm)	0.28
		Average Skilled Typist (55 wpm)	0.20
		Average Non-secretary Typist (40 wpm)	0.28
		Typing Random Letters	0.50
		Typing Complex Codes	0.75
		Worst Typist (unfamiliar with keyboard)	1.20
Р	(Pointing) Mengarahkan mouse ke obyek di layar		1.10
В	(Button) Mengklik atau melepas tombol mouse		0.10
Н	(Hand) Tangan berpindah dari keyboard ke mouse atau sebaliknya		0.40
M	Mental preparation		1.20
T(n)	(Type) Menulis		n x K
W(t)	(Waiting) User menunggu respon sistem		
D(n0,l0)	(Draw) Menggambar garis lurus n0 dengan mouse dari total 10 cm		

Pengoperasian KLM

- Misal kita mengklik mouse berarti melibatkan klik dan lepas artinya melibatkan dua operator yaitu B (untuk klik) dan B (untuk lepas), sehingga ditulis "BB". Waktu yang diperlukan yaitu 2 x 0.10 = 0.2 detik
- Misal kita mengetik (average skilled typist) tiga karakter maka penulisannya menjadi "KKK" atau "T(3)". Waktu yang diperlukan yaitu $3 \times 0.20 = 0.6$ detik
- Yang umum kita lakukan biasanya Pointing dan Clicking di layar monitor, bisa ditulis dengan "MPBB" (mental, point, press, release).

11 Langkah KLM-GOMS

- Langkah 1 Dapatkan prototipe antarmuka atau deskripsi task langkah-perlangkah
- Langkah 2 Identifikasikan goal atau hasil yang diharapkan
- Langkah 3 Temukan sub-goal atau task yang membantu tercapainya goal utama
- Langkah 4 Identifikasikan metode untuk mencapai goal utama dan sub-goal keseluruhan
- Langkah 5 Konversikan deskripsi metode ke dalam pseudo-code
- Langkah 6 Nyatakan seluruh asumsi yang digunakan dalam penulisan pseudocode dan goal
- Langkah 7 Tentukan operator mental atau keystroke yang tepat untuk setiap langkah/step
- Langkah 8 Berikan berapa lama waktu yang dibutuhkan pada masing-masing operator mental atau keystroke
- Langkah 9 Jumlahkan waktu eksekusi operator
- Langkah 10 Sesuaikan/selaraskan total waktu yang diperoleh dengan usia user
- Langkah 11 Lakukan validasi hasil

- Ditemukan oleh Paul Fitts 1954
- Setiap desainer UX harus memahami hukum Fitt
- Prediksi waktu yang dibutuhkan untuk menuju ke posisi target (objek)
- "Semakin besar target obyek di layar, semakin dekat ke titik awal, maka semakin cepat Anda mencapai obyek tersebut"
- Jarak (D) bertambah, maka waktu (MT) menuju target juga bertambah, begitu pula lebar objek (W) bertambah, maka waktu (MT) berkurang.

- $MT = a + b \log_2 (D/W + c)$
- MT = Movement Time (lama pergerakan)
- D = jarak menuju target
- W = ukuran target objek
- a = perkiraan waktu mulai/berhenti piranti (detik)
- b = kecepatan piranti (detik)
- a dan b ditentukan sesuai karakteristik piranti
- Contoh: a = 300 milidetik, b = 200 milidetik/bit, D = 10 cm, W = 2 cm
 - $= 300 + 200 \log_2 (10/2 + 1)$
 - $= 500 \log_2(6)$
 - =500.0.3(6)
 - = 900 milidetik

- Fitt mencatat bahwa waktu yang diperlukan untuk mencapai suatu objek bergantung pada jarak yang mesti ditempuh oleh pergerakan tangan pengguna (D), ukuran target objek (W).
- Hukum Fitt optimal diterapkan pada situasi/permukaan berukuran lebar dengan piranti penunjuk

Waktu menuju target objek

Ukuran Target

Implikasi Hukum Fitts Pada Desain UI

- Target klik: tombol, item menu, *links* dibuat cukup besar sehingga pengguna mudah untuk mengkliknya.
- Jangan menyulitkan pengguna dengan mengklik target yang terlalu kecil
- Baca aturan UI di masing-masing platform (Windows, Mac, iOS, Android) untuk mengetahui ukuran minimal
- Buatlah target klik yang ukurannya aktual dengan yang terlihat. Jangan buat pengguna frustrasi dengan menampilkan tombol besar yang seolah-olah bisa diklik, padahal yang bisa diklik hanya di bagian kecilnya saja (contoh: label teks pada tombol)

Implikasi Hukum Fitts Pada Desain UI

• Checkbox, radio button, toggle switch harus bisa diklik baik label dan tombolnya, sehingga memperluas area yang bisa diklik

Hukum Fitts Pada Desain Antarmuka

Hukum Fitts Pada Desain Antarmuka

Hukum Fitts Pada Desain Antarmuka Desktop

Hukum Fitts Pada Desain Antarmuka Menu

