Programme de colle - Semaine 3

Notation

On adoptera les principes suivants pour noter les étudiants :

- \times si l'étudiant sait répondre à la question de cours, il aura une note > 8.
- \times si l'étudiant ne sait pas répondre à la question de cours ou s'il y a trop d'hésitations, il aura une note ≤ 8 .

Questions de cours

• Critère de convergence des séries télescopiques : Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels.

$$(u_n)$$
 converge $\Leftrightarrow \sum (u_{n+1} - u_n)$ converge

De plus, si (u_n) converge vers $\ell \in \mathbb{R}$,

$$\lim_{n \to +\infty} S_n = \sum_{k=0}^{+\infty} (u_{k+1} - u_k) = \ell - u_0.$$

Preuve.

Pour tout $n \ge 0$, on a :

$$S_{n} = \sum_{k=0}^{n} (u_{k+1} - u_{k}) = \sum_{k=0}^{n} u_{k+1} - \sum_{k=0}^{n} u_{k}$$

$$= \sum_{j=1}^{n+1} u_{j} - \sum_{k=0}^{n} u_{k} \qquad (avec \ le \ changement \ d'indice \ j = k+1)$$

$$= \sum_{j=1}^{n} u_{j} + u_{n+1} - \left(\sum_{k=1}^{n} u_{k} + u_{0}\right)$$

$$= u_{n+1} - u_{0}$$

Donc (S_n) converge si et seulement si (u_n) converge.

De plus, si (u_n) converge vers $\ell \in \mathbb{R}$:

$$\lim_{n \to +\infty} \sum_{k=0}^{n} (u_{k+1} - u_k) = \lim_{n \to \infty} (u_{n+1} - u_0) = \ell - u_0.$$

• Critère de convergence des séries de Riemann :

$$\sum \frac{1}{n^{\alpha}} \text{ converge } \Leftrightarrow \alpha > 1$$

Preuve.

On détaillera uniquement le cas $\alpha > 1$.

Soit $k \in \mathbb{N}$ et $x \in [k, k+1]$.

Alors, par décroissante de la fonction $x \mapsto \frac{1}{x^{\alpha}}$ sur $]0, +\infty[$:

$$\frac{1}{(k+1)^{\alpha}} \leqslant \frac{1}{x^{\alpha}} \leqslant \frac{1}{k^{\alpha}},$$

Donc, par croissance de l'intégrale, les bornes étant dans l'ordre croissant $(k \leqslant k+1)$:

$$\int_{k}^{k+1} \, \frac{1}{(k+1)^{\alpha}} \, \, dx \, \, \leqslant \, \, \int_{k}^{k+1} \, \frac{1}{x^{\alpha}} \, \, dx \, \, \leqslant \, \, \int_{k}^{k+1} \, \frac{1}{k^{\alpha}} \, \, dx$$

Comme k^{α} et $(k+1)^{\alpha}$ sont des constantes par rapport à la variable d'intégration x, on obtient :

$$\frac{1}{(k+1)^{\alpha}} \leqslant \int_{k}^{k+1} \frac{1}{x^{\alpha}} dx \leqslant \frac{1}{k^{\alpha}}$$

Soit $n \in \mathbb{N}^*$. En sommant l'encadrement précédent de 1 à n-1, on obtient :

$$\sum_{k=1}^{n-1} \frac{1}{(k+1)^{\alpha}} \leq \int_{1}^{n} \frac{1}{x^{\alpha}} dx \leq \sum_{k=1}^{n-1} \frac{1}{k^{\alpha}}$$

c'est-à-dire :

$$\textstyle \sum\limits_{k=2}^{n} \frac{1}{k^{\alpha}} \, \, \leqslant \, \, \int_{1}^{n} \, \, \frac{1}{x^{\alpha}} \, \, dx \, \, \leqslant \, \, \sum\limits_{k=1}^{n-1} \frac{1}{k^{\alpha}}$$

Or:
$$\int_{1}^{n} \frac{1}{x^{\alpha}} dx = \left[\frac{1}{1-\alpha} \frac{1}{x^{\alpha-1}} \right]_{1}^{n} = \frac{1}{\alpha-1} \left(1 - \frac{1}{n^{\alpha}} \right)$$
. Donc:

$$\sum_{k=2}^{n} \frac{1}{k^{\alpha}} \leqslant \frac{1}{\alpha - 1} \left(1 - \frac{1}{n^{\alpha}} \right) \leqslant \sum_{k=1}^{n-1} \frac{1}{k^{\alpha}}.$$

Si $\alpha > 1$, alors : $0 \leqslant 1 - \frac{1}{n^{\alpha}} \leqslant 1$ pour tout $n \in \mathbb{N}^*$.

La suite $\left(\sum_{k=1}^{n} \frac{1}{k^{\alpha}}\right)$ est donc majorée par $\frac{1}{\alpha-1}$. Elle est de plus croissante car c'est une somme de termes positifs. Donc, par théorème de convergence monotone, elle converge.

D'où la série
$$\sum \frac{1}{n^{\alpha}}$$
 est convergente.

• Comparaison série / intégrale :

Soit f une fonction définie sur $[0, +\infty[$, continue, positive et décroissante sur cet intervalle.

Alors la série
$$\sum f(n)$$
 et la suite $\left(\int_0^n f(t) dt\right)$ ont même nature.

Preuve.

Pour tout $k \in \mathbb{N}$, comme f est décroissante, on a :

$$\forall x \in [k, k+1], \ f(k+1) \leqslant f(x) \leqslant f(k)$$

Par croissance de l'intégrale, les bornes étant bien ordonnées $(k \le k+1)$:

$$f(k+1) \leqslant \int_{k}^{k+1} f(t) dt \leqslant f(k)$$

On somme l'encadrement précédent pour k variant de 0 à n-1. On obtient ainsi :

$$\sum_{k=0}^{n-1} f(k+1) \leqslant \int_0^n f(t) dt \leqslant \sum_{k=0}^{n-1} f(k)$$

et, si on note S_n la somme partielle d'indice n de la série $\sum f(n)$, cela s'écrit :

$$S_n - f(0) \leqslant \int_0^n f(t) dt \leqslant S_{n-1}$$

En observant que les deux suites (S_n) et $\left(\int_0^n f(t) dt\right)_{n \in \mathbb{N}}$ sont croissantes (car f est positive), on peut affirmer grâce à la dernière égalité :

 \times si (S_n) converge vers ℓ , alors $\left(\int_0^n f(t) dt\right)_{n \in \mathbb{N}}$ est majorée par ℓ , donc converge aussi;

 \times si $\left(\int_0^n f(t) dt\right)_{n \in \mathbb{N}}$ converge vers ℓ' , alors (S_n) est majorée par $\ell' + f(0)$, donc converge aussi.

Remarque: On pourra demander à l'étudiant s'il est possible d'amoindrir les hypothèses.

Connaissances exigibles

- convergence de suites numériques (théorème de convergence monotone, théorème d'encadrement, etc.)
- suites adjacentes
- étude de suites récurrentes (les élèves doivent être guidés dans le cheminement de ces études)
- équivalents
- négligeabilité
- séries numériques, à termes positifs, séries usuelles, comparaison série / intégrale, comparaisons de séries par négligeabilité et équivalence.
- les séries alternées sont hors programme mais les étudiants ont vu en exercice comment démontrer le critère de convergence des séries alternées.
- toutes les techniques sont à connaître (sommation télescopique, calcul direct des sommes partielles séries usuelles, comparaison séries / intégrales, critères sur les SATP...)
- on insistera particulièrement en colle sur les rédactions classiques (notamment pour tous les critères sur les SATP).