EXERCICE N°1 Vocabulaire (Le corrigé)

On donne ici les premiers termes d'une suite $(v_n)_{n\geq 0}$:

5,8,11,14,17,20,...

On débute à 0

1) Donner la valeur du premier terme de v.

Le premier terme de v est $v_0 = 5$

2) Donner la valeur du terme de rang 4.

$$v_4 = 17$$

3) Donner la valeur du cinquième terme de v puis donner son rang.

Le cinquième terme est $v_4 = 17$ et son rang est 4

 v_0 étant le 1^{er} terme, v_1 est le 2^e ... et v_4 est le 5^e.

EXERCICE N°2 Attention on ne commence pas toujours à zéro (Le corrigé)

1) On donne ici les premiers termes d'une suite $(w_n)_{n\geq 1}$:

5,8,11,14,17,20,...

On débute à 1

1.a) Donner la valeur du premier terme de w.

Le premier terme de w est $w_1 = 5$

1.b) Donner la valeur du terme de rang 4.

$$w_4 = 14$$

Notez la différence avec l'exercice précédent.

1.c) Donner la valeur du cinquième terme de w puis donner son rang.

Le cinquième terme est $w_5 = 17$ et son rang est 5.

2) On donne ici les premiers termes d'une suite $(t_n)_{n\geq 4}$:

5, 8, 11, 14, 17, 20, ...

On débute à 4

2.a) Donner la valeur du premier terme de t.

Le premier terme de t est $t_4 = 5$

2.b) Donner la valeur du terme de rang 4.

$$t_4 = 5$$

2.c) Donner la valeur du cinquième terme de t puis donner son rang.

Le cinquième terme est $w_8 = 17$ et son rang est 8.

EXERCICE N°3 Notation fonctionnelle vs Notation classique (Le corrigé)

On donne ici les premiers termes d'une suite $(v_n)_{n\geq 0}$:

On débute à 0

1) Donner v(1) et v(4).

$$v(1) = 8$$
 et $v(4) = 17$

2) Donner v_1 et v_4 .

$$v_1 = 8$$
 et $v_4 = 17$

3) Déterminer v(2)+1 et v(2+1).

•
$$v(2)+1 = 11+1$$
 ainsi $v(2)+1 = 12$

•
$$v(2+1) = v(3)$$
 ainsi $v(2+1) = 14$

4) Déterminer v_2+1 et v_{2+1} .

•
$$v_2 + 1 = 11 + 1$$
 ainsi $v_2 + 1 = 12$

•
$$v_{2+1} = v_3$$
 ainsi $v_{2+1} = 14$

On fera donc particulièrement attention à bien écrire quand on rédigera...

EXERCICE N°4 Suite explicite: premier contact (Le corrigé)

On donne la suite u définie pour tout $n \in \mathbb{N}$, $u_n = 4n+7$

1) Identifier la fonction f du cours.

$$f: x \mapsto 4x + 7$$

2) Déterminer u_0 , u_1 , u_2 et u_{1000} .

•
$$u_0 = 4 \times 0 + 7$$
 ainsi $u_0 = 7$
• $u_1 = 4 \times 1 + 7$ ainsi $u_1 = 11$

•
$$u_1 = 4 \times 1 + 7$$
 ainsi $u_1 = 11$
• $u_2 = 4 \times 2 + 7$ ainsi $u_2 = 15$

$$u_{1000} = 4 \times 1000 + 7$$
 ainsi $u_{1000} = 4007$

3) Pour tout $n \in \mathbb{N}$, calculer la différence $u_{n+1} - u_n$.

Soit
$$n \in \mathbb{N}$$

 $u_{n+1} - u_n = 4(n+1) + 7 - [4n+7]$
 $= 4n + 4 + 7 - 4n - 7$
 $= 4$

Ainsi $\forall n \in \mathbb{N}$, $u_{n+1} - u_n = 4$

EXERCICE N°5 Suite explicite : deuxième contact (Le corrigé)

On donne la suite v définie pour tout $n \in \mathbb{N}$, $v_n = 2n^2 - 3n - 1$

1) Identifier la fonction f du cours.

$$f: x \mapsto 2x^2 - 3x - 1$$

2) Déterminer v_0 , v_1 , v_2 et v_{1000} .

•
$$v_0 = 2 \times 0^2 - 3 \times 0 - 1$$
 ainsi $v_0 = -1$

•
$$v_1 = 2 \times 1^2 - 3 \times 1 - 1$$
 ainsi $v_1 = -2$

•
$$v_2 = 2 \times 2^2 - 3 \times 2 - 1$$
 ainsi $|v_2| = 1$

•
$$v_{1000} = 2 \times 1000^2 - 3 \times 1000 - 1$$
 ainsi $v_{1000} = 1996999$

3) Pour tout, calculer la différence $v_{n+1} - v_n$.

Soit
$$n \in \mathbb{N}$$

$$v_{n+1} - v_n = 2(n+1)^2 - 3(n+1) - 1 - [2n^2 - 3n - 1]$$

= 2n^2 + 4n + 2 - 3n - 3 - 1 - 2n^2 + 3n + 1
= 4n - 1

$$= 4n-1$$
Ainsi $\forall n \in \mathbb{N}$, $v_{n+1}-v_n = 4n-1$

Suite explicite: troisième contact (Le corrigé) EXERCICE N°6

Pour tout $n \in \mathbb{N}$, on pose $u_n = \sqrt{2n-5}$.

1) Identifier la fonction f du cours.

$$f: x \mapsto \sqrt{2x-5}$$

2) À partir de quel rang la suite u est-elle définie?

 $\sqrt{2x-5}$ existe si et seulement si $2x-5 \ge 0 = \Leftrightarrow x \ge 2,5$

On en déduit que u est définie | à partir du rang 3 | .

3) Déterminer, en fonction de n, u_{n-1} et u_{n+1} .

Ici il faut faire en sorte que le terme existe...Pour u_{n+1} pas de souci, si u_n existe alors u_{n+1} aussi (si la suite est correctement définie). Par contre, si u_n existe ,ce n'est pas forcément le cas pour u_{n-1} : Ici, par exemple, u_3 existe mais pas u_2

Pour
$$n \in \mathbb{N}$$
, $n \ge 4$

$$u_{n-1} = \sqrt{2(n-1)-5} = \sqrt{2n-2-5}$$
 d'où $u_{n-1} = \sqrt{2n-7}$

$$u_{n-1} = \sqrt{2n-7}$$

$$u_{n+1} = \sqrt{2(n+1)-5} = \sqrt{2n+2-5}$$
 d'où $u_{n+1} = \sqrt{2n-3}$

On notera bien la différence

EXERCICE N°7 Suite explicite : un peu d'intuition... (Le corrigé)

On donne à chaque fois les premiers termes d'une suite $(u_n)_{n\in\mathbb{N}}$. Conjecturer une expression de u_n en fonction de n.

Ici, pas de méthode miracle, on cherche...

Cela ressemble beaucoup à des nombres impairs... on essaie donc 2n+1

problème : u_0 donne $2 \times 0 + 1 = 1$. Il y a 2 en trop, essayons 2n-1 ... ha ça marche!

Il semble que
$$u_n = 2n-1$$

On connaît la suite des carrés : 0 , 1 , 4 , 9 , 16 ha ben c'est presque que ça. Essayons n^2+1 ... ça marche ! _____

Il semble que
$$u_n = n^2 + 1$$

EXERCICE N°8 Suite explicite : du concret ! (Le corrigé)

(Exercice extrait du sesamath 1er spé : 39 p 64)

Alphonse paye 45€ un abonnement résidentiel annuel pour garer sa voiture dehors. Il doit ensuite payer 1,5 € supplémentaire par jour de stationnement.

On note u_n le prix payé par Alphonse pour son abonnement et n jours de stationnement.

1) Donner une expression de u_n en fonction de n.

Pour
$$n \in \mathbb{N}$$

$$u_n = 45 + 1,5 n$$

2) Combien payera-t-il au total, s'il gare sa voiture dehors 300 jours par an?

Il s'agit de calculer u_{300} .

$$u_{300} = 45 + 1,5 \times 300 = 495$$

Ainsi, Alphonse devra payer | 495 €