酚和醌

一、酚的定义和结构特点

定 义	羟基直接连在芳环上的化合物
结 构	8
共振式	$\begin{array}{c} : \text{OH} \\ \\ \hline \end{array} \\ \begin{array}{c} + \text{OH} \\ \\ \hline \end{array}$

二、酚的分类和命名

分类	结构特点	命名	名实 例
以酚为母体	芳环上连一个羟基		OH CH ₃) 苯酚或对甲 (基) 苯酚 ohenol or p-methyl phenol CH ₃ 5-甲基-2-萘酚 5-methyl-2-naphthol

分	类	结构特点	命名实例
	二元酚	芳环上连 两个羟基	OH OH OH OH OH OH 1,2-苯二酚或邻苯二酚 1,3-苯二酚或间苯二酚 1,4-苯二酚或对苯二酚 1,2-dihydroxybenzene o- dihydroxybenzene m- dihydroxybenzene p- dihydroxybenzene p- dihydroxybenzene
以酚为母体	三元酚	一 方 外 上 连 一 二 个 羟 其	OH OH OH 1,2,3-苯三酚或连苯三酚 1,2,4-苯三酚或间苯三酚 1,2,4-trihydroxybenzene OH 1,3,5-苯三酚或均苯三酚 1,3,5-trihydroxybenzene
酚羟基为取代基	芳环上连有复杂 侧链; 苯环上还 同时连有羧基、 醛基、磺酸基等 取代基		COOH OH 对羟基苯甲酸 p-hydroxybenzoic acid CH3CHCH2OH OH OH OH SO3H 2-(3-羟基苯基)-1-丙醇 2-(3-hydroxyphenyl)-1-propanol

三、酚的物理性质

性 状	大多数酚类化合物常温下为固体;分子间存在氢键,沸点较高;与水形成氢键,有一定水溶性;一些酚具有杀菌作用	
波谱性质	IR: O-H 伸缩振动: 3590~3650cm ⁻¹ (缔合时出现宽峰: 3200~3550cm ⁻¹); C-O 伸缩振动: 1220~1250cm ⁻¹ ; 苯环 C-C 伸缩振动: 1600cm ⁻¹ 附近	
	¹ H-NMR: 酚羟基质子δ值 4.5~7.7; 苯环质子δ值 6.58	

四、酚的化学性质

$H_{2}O$		化学性质	备 注
氢键 断裂的 反	7.17 8.28 7.15 OH OH OH	氧氢键断裂的反	影强素效位空 甲供基位均减邻硝具子应效位电影强素效位空 甲供基位均减邻硝具子应效位电形 基电三取酸 对同吸导共,有诱证,有诱动应只子

续表

化学性质	代表反应	备 注
	OH ONA OR NAOH	Williamson合成法
	$\begin{array}{c c} OH & OCH_3 \\ \hline & (CH_3)_2SO_4 \\ \hline & NaOH, H_2O \end{array}$	甲基化反应
	OH OCH_3 $+ CH_2N_2 \longrightarrow OCH_3$	甲基化反应
氧	ONa OCH ₂ CH=CH ₂ OH CH ₂ CH=CH ₂	Claisen 重排
氢键断裂的 Claisen 重排	$OCH_2CH = CH_2$ OH CH_3C OH CH_3C $CH_3CH = CH_3$ $CH_2CH = CH_2$	邻位都被 占据时 反应发生 在对位
並	$ \begin{array}{c} \alpha \\ \beta \\ H \end{array} $	27 :08
	O H	Claisen 重排反应 机制
	$\begin{array}{c c} \alpha & \beta & \\ CH_3 & CH_3 & \\ \end{array}$ $\begin{array}{c} CH_3 & \\ \end{array}$ $\begin{array}{c} CH_3 & \\ \end{array}$	

续表

化当	学性质	性质 代表反应		注
氧氢键断裂	酚醚 的形 Claisen 重排	$\begin{array}{c} CH_{3} \\ CH_{4} \\ CH_{5} \\ CH_{5$	各 Claisen 重排反 机制	
的反应	酚酯 的形和 Fries 重排	$OH \qquad O-C-R \qquad + \qquad RCOOH$ $OCOR \qquad OH \qquad OH$ $AlCl_b \qquad AlCl_b \qquad COR$		一、小狗生好病
苯环上的亲电取代反应	卤代反应	OH $+ 3Br_2$ Br Br $(\stackrel{\cdot}{\boxminus} \stackrel{\cdot}{\rightleftharpoons})$ OH OH OH OH OH OH OH OH	低温、极性溶得一代产物	剂-溴

续表

化	学性质	代表反应	备	注
	磺化 反应	OH 	磺化反 具有可 性	
苯环上的亲	硝化反应	OH OH NO ₂ OH NO ₂ + NO ₂ (15%)	用水蒸 蒸馏法 离邻硝 苯酚和 硝基苯	分基对
中取代反应	Friedel- Crafts 反应	OH $CO(CH_2)_5CC1 \xrightarrow{AlCl_3, 140 ^{\circ}C} \xrightarrow{H_2O}$ OH $CO(CH_2)_5CH_3 + CO(CH_2)_5CH_3$ OH OH	酚可与 AlCl ₃ 形 成配合	4
	Kolbe- Schmidt 反应	ONa OH COONA H* COOH	在苯环 直接引 羧基	

续表

	REPORTED TO THE PROPERTY OF THE PARTY OF THE		 	
化学性质		生质 代表反应		注
苯环上的亲电取代反应	Reimer- Timann 反应	OH OH CHO CHO	在苯直接醛基	引入
	显色 反应	酚能与 FeCl ₃ 发生显色反应。此外,具有烯醇结构的化合物遇 发生显色反应	FeCl ₃	也能
其他反应	氧化反应	OH O 连苯三	基苯酚 氧 246 三酚 ((俗) 又称

五、酚的制备

反应名称	化学表达式
苯磺酸盐碱熔法	SO ₃ Na OH NaOH 300°C H ₃ O*
卤代芳烃的水解	C1 ONa OH + NaOH 340°C HyO*

反应名称	化学表达式
异丙苯氧化法	CH_3 — C — CH_3 CH_3 — C — CH_3 OH OH OH OH OH OH OH OH
重氮盐水解法	$\begin{array}{c c} NH_2 & N_2^+HSO_4^- & OH \\ \hline & N_2 N_2 N_2 N_2 N_2^-HSO_4^- & OH \\ \hline & N_2 N_2 N_2 N_2 N_2^-HSO_4^- & OH \\ \hline & N_2 N_2 N_2 N_2^-HSO_4^- & OH \\ \hline & N_2 N_2^-H$

六、醌的定义、分类和命名

定	义	含有环己烯二酮	自结构的化合物
分	类	对醌型	邻醌型
	苯醌	CH ₃ CH ₃ CH ₃ CH ₃ 2,5-二甲基-1,4-苯醌 2,5-二甲基对苯醌	1,2-苯醌(邻苯醌)
命名	萘醌	1,4-萘醌	1,2-萘醌
	蒽醌	9,10-蒽醌	1,2-蔥龍

续表

七、对苯醌的化学性质

反应类型	反应式
亲核加成反应	$ \begin{array}{c c} O & N-OH & N-OH \\ \hline O & NH_2OH & N-OH \\ \hline O & N-OH \end{array} $
亲电加成反应	$ \begin{array}{c c} O \\ Br_2 \end{array} $ $ \begin{array}{c c} O \\ H \\ Br \\ Br \\ Br \\ H \end{array} $ $ \begin{array}{c} H \\ Br \\ Br \\ H \end{array} $ $ \begin{array}{c} H \\ Br \\ Br \\ H \end{array} $
Diels-Alder 反应	
不饱和羰基化合物共轭加成	OH OH OH OH Q化 Q化 Q化 CI OH