

Pose Estimation?

• 이미지 내의 신체(포즈)의 구조 를 추정하는 프로세스

Instance Segmentation with Top-down vs Bottom-Up

- Box object detector를 이용하여 이미지상에서 사람 Instance를 먼저 찾아낸다.
- 하나의 인물이 있는 사진이거나 Box object detector안에 있는 사람에 대해서만 적용했다.
- 사람의 수에 따라 계산 비용이 달라진다.

- 사람 Instance가 기준이 아닌 개념적으로 신체의 각 keypoint로 각 파트별로 인지하는 것에서부터 시작된다.
- Box object detector 없이 모든 지점이 연결되어있다.
- 사람의 수가 아닌 오로지 학습 신경망에 의해서 추출된 특성으로 계산비용이 정 해진다.

Person detection and Pose estimation (Bottom-up 접근방식)

- 1. (Pose estimation) 이미지내의 K keypoints를 탐지
 - Short range Offset
 - Mid range Offset
- 2. (Person detection) 인물별 17개 keypoints(얼굴 5, 몸 12)를 통해 Human Instance로 Grouping
 - Long range Offset

rsonLab: Person Pose Estimation and Instance Segmentation

KEYPOINT – DETECTION (Short-range Offset)

Heatmap과 Short-range Offset을 voting하여 명확한 keypoints를 도출해낸다.

$$x \in \mathcal{D}_R(y_{j,k})$$

$$S_k(x) = y_{j,k} - x$$

$$h_k(x) = \frac{1}{\pi R^2} \sum_{i=1:N} p_k(x_i) B(x_i + S_k(x_i) - x),$$

KEYPOINT – DETECTION (Mid-range Offset)

학습에 의하여 두 Keypoints의 거리가 한 Instance안에 포함될 기준 내에 있으면 두 Keypoints를 이어준다.

$$M_{k,l}(x) = (y_{j,l} - x)[x \in \mathcal{D}_R(y_{j,k})]$$

Recurrent한 방식을 이용해서 이를 개선

$$M_{k,l}(x) \leftarrow x' + S_l(x')$$
, where $x' = M_{k,l}(x)$,

Long-range Offset

Fig. 3. Long-range offsets defined in the person segmentation mask. (a) Estimated person segmentation map. (b) Initial long range offsets for the *Nose* destination keypoint: each pixel in the foreground of the person segmentation mask points towards the *Nose* keypoint of the instance that it belongs to. (c) Long-range offsets after their refinements with the short-range offsets.

Instance-level person segmentation

Fig. 4. From semantic to instance segmentation: (a) Image; (b) person segmentation; (c) basins of attraction defined by the long-range offsets to the *Nose* keypoint; (d) instance segmentation masks.

PersonLab: Person Pose Estimation and Instance Segmentation

	AP	$AP^{.50}$	$AP^{.75}$	AP^{M}	AP^L	AR	$AR^{.50}$	$AR^{.75}$	AR^{M}	AR^L
Bottom-up methods:		Secure	55	50 11	514656	Ar TIN	= 100.0		5	
CMU-Pose [32] (+refine)	0.618	0.849	0.675	0.571	0.682	0.665	0.872	0.718	0.606	0.746
Assoc. Embed. [2] (multi-scale)	0.630	0.857	0.689	0.580	0.704	-	2	-	2	2
Assoc. Embed. [2] (mscale, refine)	0.655	0.879	0.777	0.690	0.752	0.758	0.912	0.819	0.714	0.820
Top-down methods:										
Mask-RCNN [34]	0.631	0.873	0.687	0.578	0.714	0.697	0.916	0.749	0.637	0.778
G-RMI COCO-only [33]	0.649	0.855	0.713	0.623	0.700	0.697	0.887	0.755	0.644	0.77
PersonLab (ours):										
ResNet101 (single-scale)	0.655	0.871	0.714	0.613	0.715	0.701	0.897	0.757	0.650	0.77
ResNet152 (single-scale)	0.665	0.880	0.726	0.624	0.723	0.710	0.903	0.766	0.661	0.77
ResNet101 (multi-scale)	0.678	0.886	0.744	0.630	0.748	0.745	0.922	0.804	0.686	0.82
ResNet152 (multi-scale)	0.687	0.890	0.754	0.641	0.755	0.754	0.927	0.812	0.697	0.83

기존 Openpose 등 대비해서 훨씬 높은 성능.

	AP	AP^{50}	AP^{75}	AP^S	AP^{M}	AP^L	AR^1	AR^{10}	AR^{100}	AR^S	AR^M	AR^L
Mask-RCNN [34]	0.455	0.798	0.472	0.239	0.511	0.611	0.169	0.477	0.530	0.350	0.596	0.721
PersonLab (ours): ResNet101 (1-scale, 20 prop) ResNet152 (1-scale, 20 prop)												
ResNet101 (mscale, 20 prop) ResNet152 (mscale, 20 prop) ResNet152 (mscale, 100 prop)	0.418	0.688	0.455	0.219	0.497	0.621	0.170	0.460	0.497	0.284	0.573	0.730

Human category Segmentation 결과에서도 높은 성능