

HURTOWNIE DANYCH

Projekt – Analiza danych platformy e-commerce Olist (Brazylia)

ALEKSANDER STEPANIUK

NR. INDEKSU: 272644 Politechnika Wrocławska, Informatyka Stosowana

Etap I - 19.05.2025 r.

1. Tytuł projektu

Analiza danych platformy e-commerce Olist (Brazylia)

2. Charakterystyka dziedziny problemowej, krótki opis obszaru analizy, problemy i potrzeby

Celem projektu jest analiza brazylijskiego rynku e-commerce, gdzie platforma Olist pośredniczy między tysiącami sprzedawców, a setkami tysięcy klientów, gromadząc dane o zamówieniach, płatnościach, produktach i opiniach.

W obszarze analizy ważne jest śledzenie przebiegu transakcji od momentu złożenia zamówienia aż po dostawę i ocenę satysfakcji użytkownika. Rozproszone w różnych plikach typu CSV źródła danych utrudniają szybkie agregowanie takich informacji. Problemy pojawiają się także przy zapewnieniu spójnej jakości danych – niekompletne lub niespójne rekordy recenzji czy płatności mogą zafałszować raporty, a brak zintegrowanego modelu danych wydłuża czas przygotowania analiz.

Potrzeby biznesowe koncentrują się na możliwości błyskawicznego generowania wielowymiarowych raportów (np. przychód wg regionu i miesiąca, ocena sprzedawcy według kwartału), monitorowaniu najważniejszych wskaźników jakości obsługi klienta (czas dostawy, liczba reklamacji) oraz elastycznej segmentacji klientów i produktów, co wymaga wdrożenia hurtowni danych z jasno zdefiniowanymi wymiarami i faktami.

3. Cel przedsięwzięcia (oczekiwania) oraz zakres analizy – badane aspekty

Cel główny: zbudowanie hurtowni danych, która pozwoli na:

- Monitorowanie kluczowych wskaźników sprzedaży (przychód, liczba zamówień) w czasie.
- Analizę jakości dostaw i satysfakcji klienta (recenzje, czasy realizacji).
- Podział klientów i sprzedawców wg regionów i zachowań zakupowych.

Zakres:

- Dane sprzedażowe, zamówienia, płatności, opinie, dane klientów, sprzedawców, produktów.
- Analizy czasowe (miesiąc, kwartał), geograficzne (stan, miasto), produktowe (kategorie).

4. Źródła danych (lokalizacja, format, dostępność), wstępna analiza źródeł danych

Dane zostały pobrane ze strony kaggle.com:

• https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce

Lp.	Plik	Тур	Liczba	Rozmiar	Opis	
			rekordów	[MB]		
1	olist customers dataset	st customers dataset .csv 99441 9.03		zamówienia (daty: złożenia,		
1	olist_customers_dataset	.CSV	99441	9.03	zatwierdzenia, dostawy)	
2	alist garlagation dataset	001	1000164	61.27	pozycje zamówień (produkt, ilość,	
-	olist_geolocation _dataset	.CSV			cena)	
3	olist_order_items _dataset	.CSV	112650	15.44	klienci (id, miasto, stan, kod	
					pocztowy)	
4	olist_order_payments _dataset	.csv	103887	5.78	płatności (metoda, rata, wartość)	
5	olist_order_reviews_dataset	.CSV	103887	14.45	opinie klientów (ocena,	
5					komentarz, data)	
6	olist_orders_dataset	.csv	99442	17.65	produkty (id, kategoria, wymiary)	
7	olist_products	.csv	32952	2.38	sprzedawcy (id, lokalizacja)	
8	olist_sellers	.csv	3096	0.17	tłumaczenia kategorii	
0					produktowych	
9	product_category_name_translation	.csv	72	0.26	geolokalizacja kodów pocztowych	

5. Profilowanie danych (analiza jakości danych oraz ich przydatności w projekcie)

Lp.	Atrybut	Typ danych	Zakres wartości	Uwagi – ocena jakości danych
1	order_purchase_timest amp	datetime	2016-09-04 – 2018-09-03	brak nulli, format ISO spójny w 100 % wierszy
2	order_approved_at	datetime	2016-09-04 – 2018-09-05	~0,1 % null (zamówienia anulowane)
3	order_delivered_carrier _date	datetime	2016-09-07 – 2018-09-17	~0,2 % null (problemy logistyczne)
4	order_delivered_custo mer_date	datetime	2016-09-09 – 2018-09-23	~0,3 % null (zwrócone lub nie dostarczone)
5	order_status	string	delivered, shipped, invoiced, created, approved	brak nulli; wartości spójne
6	price	decimal(10,2)	0.01 – 9999.00	brak wartości ujemnych, ~0,01 % skrajnie niskich cen (promocje)
7	payment_type	string	credit_card, boleto, voucher, debit_card	~5 % null (zwroty/refundy); pozostałe wartości zgodne z dokumentacją
8	payment_installments	integer	1-12	brak nulli, realistyczny rozkład (najwięcej 1–3 raty)
9	review_score	integer	1-5	~0,3 % null (brak opinii), średnia ocena ≈ 4,09
10	review_creation_date	datetime	2016-10-01 – 2018-10-15	~0,3 % null, daty recenzji mieszczą się do 30 dni po dostawie
11	customer_state	string (2)	SP, RJ, MG, BA, CE,	brak nulli, 27 kodów stanów (BR-XX), wszystkie poprawne zgodnie z ISO 3166-2:BR
12	customer_city	string	São Paulo, Rio de Janeiro, Salvador,	~0,05 % literówek (akcenty), można ujednolicić wielkość liter
13	seller_state	string (2)	SP, RJ, MG, PR, RS,	brak nulli; ~3 095 unikalnych sprzedawców, wszystkie stany pokryte

14	seller_city	string	São Paulo, Curitiba, Porto Alegre,	ok, podobnie jak w kliencie: drobne literówki/różnice w zapisie
15	product_category_name	string	bed_bath_table, health_beauty, sports_leisure,	71 kategorii, wszystkie występują min. raz, brak nulli
16	product_weight_g	integer	50 – 40000	~0,1 % null, wartości realistyczne, możliwe outliery do weryfikacji
17	product_length_cm	integer	5 – 200	~0,1 % null, typowe zakresy dla e- commerce
18	product_height_cm	integer	1-150	analogicznie do długości
19	product_width_cm	integer	2 – 150	ok, można obliczyć objętość
20	geolocation_lat	decimal(9,6)	-33.868820 – 5.193082	~2 % błędnych koordynat (poza granicami BR) – wymaga filtrowania
21	geolocation_lng	decimal(9,6)	-73.985506 – -34.793129	jak wyżej

6. Definicja typów encji/klas (wraz z właściwościami) oraz związków pomiędzy nimi, diagram klas (propozycja wymiarów, hierarchii, miar addytywnych i nieaddytywnych)

Encje wymiarów:

- 1. DateDim
 - Klucz: date key (INT, YYYYMMDD)
 - Atrybuty: full_date, year, quarter, month, day, weekday
 - Hierarchia: Year -> Quarter -> Month -> Day -> Weekday
- 2. CustomerDim
 - Klucz: customer id (VARCHAR)
 - Atrybuty: customer city key, customer zip code, customer segment
 - Hierarchia: State -> City -> Zip Code -> Segment
- 3. SellerDim
 - Klucz: seller_id (VARCHAR)
 - Atrybuty: seller_city_key, seller_zip_code, seller_segment
 - Hierarchia: State -> City -> Zip Code -> Segment
- 4. ProductDim
 - Klucz: product id (VARCHAR)
 - Atrybuty: category, sub-category, weight g, height cm, width cm, length cm
 - Hierarchia: Category -> Sub-category -> Product
- 5. PaymentDim
 - Klucz: payment id (VARCHAR)
 - Atrybuty: payment_type, installments, payment_value
 - Hierarchia: Type -> Installments
- 6. ReviewDim
 - Klucz: review_id (VARCHAR)
 - Atrybuty: review score, review date, review comment
 - Hierarchia: Score -> Date
- 7. CityDim
 - Klucz: city_key (INT, autoincrement)
 - Atrybuty: state, city, population, area_km2, density_per_km2
 - Hierarchia: State -> City

Encja faktu:

7. FactOrders

- Klucz główny: order id (VARCHAR)
- Klucze obce:
 - o order date key -> DateDim
 - o customer id -> CustomerDim
 - o seller id -> SellerDim
 - o product_id -> ProductDim
 - payment id -> PaymentDim
 - o review id -> ReviewDim
 - customer_city_key -> CityDim
 - seller_city_key -> CityDim
- Miary addytywne:
 - o order_count (INT) liczba zamówień,
 - o total revenue (DECIMAL) suma przychodu,
 - o total_items (INT) liczba produktów.
- Miary nieaddytywne:
 - o average_review_score (DECIMAL) średnia ocena;
 - o payment_type (VARCHAR), order_status (VARCHAR) opisowe, nie sumują się.

Diagram klas:

7. Min. 10 wielowymiarowych zestawień, które zostaną utworzone po wdrożeniu kostki

- 1. Przychód i liczba zamówień według miesiąca i stanu klienta
- 2. Średnia ocena i liczba opinii wg sprzedawcy i kwartału
- 3. Rozkład typów płatności wg kategorii produktu i roku
- 4. Średni czas dostawy wg regionu sprzedawcy i miesiąca
- 5. Top 10 produktów wg przychodu i liczby sztuk w pewnym analizowanym okresie
- 6. Średni czas dostawy według gęstości zaludnienia
- 7. Liczba zamówień według populacji miasta
- 8. Liczba zamówień nowych vs powracających klientów według miast
- 9. Przychód według dnia tygodnia i typu płatności
- 10. Top 10 najgorszych sprzedawców według średniej ocen i miesiąca

8. Implementacja bazy danych zgodnie z zaproponowanym konceptualnym modelem danych

```
CREATE SCHEMA Stepaniuk;
        -- tabela pomocnicza dla miesięcy
    CREATE TABLE Stepaniuk.MonthDim (
              month_key SMALLINT PRIMARY
month_name VARCHAR(20) NOT NULL
                                                           PRIMARY KEY,
    □INSERT INTO Stepaniuk.MonthDim VALUES
       (1,'January'), (2,'February'), (3,'March'), (4,'April'), (5,'May'), (6,'June'), (7,'July'), (8,'August')
                                                                                               (8, 'August'),
       (9, 'September'), (10, 'October'), (11, 'November'), (12, 'December');

    wvmiar datv

    CREATE TABLE Stepaniuk.DateDim (
             date_key INT PRIMARY KEY,
full_date DATE NOT NULL,
year_n SMALLINT NOT NULL,
quarter_n SMALLINT NOT NULL,
month_key SMALLINT NOT NULL
day_n SMALLINT NOT NULL
                                                                                            REFERENCES Stepaniuk.MonthDim(month key),
        -- wymiar klienta
    CREATE TABLE Stepaniuk.CustomerDim (
           customer_id VARCHAR(50) PRIMARY KEY,
              customer_state CHAR(2)
                                                               NOT NULL,
             customer_city VARCHAR(100) NOT NULL
       -- wymiar sprzedawcy
    CREATE TABLE Stepaniuk.SellerDim (
          seller_id VARCHAR(50) PRIMARY KEY,
seller_state CHAR(2) NOT NULL,
              seller_state CHAR(2)
             seller_city VARCHAR(100) NOT NULL
-- wymiar produktu
-- CREATE TABLE Stepaniuk.ProductDim (
    product_id VARCHAR(50) PRIMARY KEY, category VARCHAR(100) NOT NULL, sub_category VARCHAR(100)
-- wymiar płatności
CREATE TABLE Stepaniuk PaymentDim
    payment_id VARCHAR(50) PRIMARY KEY,
payment_type VARCHAR(30) NOT NULL,
installments SMALLINT NOT NULL
    - wymiar opinii
-- wymiar opinii

CREATE TABLE Stepaniuk.ReviewDim (

review_id VARCHAR(50) PRIMARY KEY,

review_score SMALLINT NOT NULL,

review_comment TEXT,

point data. DATE MOT NULL
       review_date
                               DATE
-- tabela faktów

⊡CREATE TABLE Stepaniuk.FactOrders
      EATE TABLE Stepaniuk.FactOrders (
order_id VARCHAR(50) PRIMARY KEY,
order_date_key INT NOT NULL
customer_id VARCHAR(50) NOT NULL
seller_id VARCHAR(50) NOT NULL
payment_id VARCHAR(50) NOT NULL
payment_id VARCHAR(50) NOT NULL
review_id VARCHAR(50)
order_count INT NOT NULL DEFAULT 1,
total_revenue DECIMAL(18,2)NOT NULL,
average_review_score
average_delivery_time DECIMAL(10,2) -- dni
                                                                                              REFERENCES Stepaniuk.DateDim(date_key),
REFERENCES Stepaniuk.CustomerDim(customer_id),
                                                                                               REFERENCES Stepaniuk.SellerDim(seller_id),
REFERENCES Stepaniuk.ProductDim(product_id),
                                                                                               REFERENCES Stepaniuk.PaymentDim(payment_id),
REFERENCES Stepaniuk.ReviewDim(review_id),
                                                                NOT NULL DEFAULT 1,
```

9. Wnioski

Zdecydowana większość atrybutów jest kompletna i może z powodzeniem trafić do hurtowni danych – mamy pełne informacje o zamówieniach, klientach, produktach i płatnościach, co pozwala na zbudowanie rozbudowanych wymiarów czasowego, geograficznego, klienta, sprzedawcy, produktu i płatności. Dane o opiniach są niemal kompletne, choć kilkaset rekordów nie zawiera ocen lub komentarzy, co jednak nie powinno zaburzyć ogólnych trendów. Z kolei geolokalizacje wymagają odfiltrowania kilku procent współrzędnych spoza terytorium Brazylii, ale same kody pocztowe umożliwiają precyzyjne grupowanie według stanów i miast.

Wartości numeryczne – takie jak cena, liczba rat czy wymiary produktów – mieszczą się w sensownych zakresach i nie zawierają błędnych skrajnych wartości, co czyni je gotowymi do agregacji i obliczeń KPI. Potencjalne outliery w wadze lub wymiarach można prawdopodobnie wyfiltrować. Pola tekstowe (kategorie, nazwy miast) wymagają jedynie podstawowej normalizacji (usunięcie literówek, standaryzacja akcentów), by zapobiec duplikacji wymiaru.

W wymiarach znajdziemy naprawdę sporo do badania: czasowego (analiza sezonowości i trendów), przestrzennego (różnice między regionami), produktowego (popularność i marże w kategoriach) oraz behawioralnego (liczba rat czy typ płatności jako wskaźniki preferencji klientów). Faktowe miary – przychód, liczba zamówień, średnia ocena czy czas dostawy – pozwolą na wielowymiarowe zestawienia i dogłębne analizy jakości obsługi. Dzięki temu hurtownia stanie się solidnym fundamentem dla raportów sprzedażowych, monitoringu satysfakcji klientów oraz optymalizacji procesów logistycznych i marketingowych.

Etap 2 - 26.05.2025 r.

1. SC_CreateStageTables

Tworzy schemat Stage oraz wszystkie tymczasowe tabele, do których będą wczytywane surowe pliki CSV i później przechowywane dane oczyszczone:

- CreateStageSchema
 - o jeżeli nie istnieje tworzy schema Stage
- CreateStageOrders
 - tworzy Stage.Orders z olist_orders.csv
- CreateStageOrderItems
 - tworzy Stage.OrderItems z olist_order_items.csv
- CreateStagePayments
 - tworzy Stage.Payments z olist_order_payments.csv
- CreateStageReviews
 - tworzy Stage.Reviews z olist_order_reviews.csv
- CreateStageCustomers
 - tworzy Stage.Customers z olist customers.csv
- CreateStageSellers
 - tworzy Stage.Sellers z olist sellers.csv
- CreateStageProducts
 - tworzy Stage.Products z olist products.csv
- CreateStageProductCategoryNameTranslated
 - o tworzy Stage.ProductCategoryNameTranslation z tłumaczeniem nazw kategorii

- CreateStageCities
 - tworzy Stage.Cities z danymi brazylijskich miast
- CreateStageOrdersClean
 - o tworzy tabelę Stage.OrdersClean na wyniki oczyszczania dat i miar.
- CreateStageCustomersClean
 - tworzy Stage.CustomersClean na wzbogacone dane klientów o dane miast
- CreateStageSellersClean
 - o tworzy Stage. Sellers Clean na wzbogacone dane sprzedawców o dane miast
- CreateStageProductsClean
 - o tworzy Stage.ProductsClean na wzbogacone dane produktów

2. SC_LoadStageData

Wczytuje dane z plików CSV do tabel Stage.[...] za pomocą zadań Data Flow:

- DFT_LoadOrdersStage
- DFT LoadOrderItemsStage
- DFT_LoadPaymentsStage
- DFT LoadReviewsStage
- DFT_LoadCustomersStage
- DFT LoadSellersStage
- DFT LoadProductsStage
- DFT LoadCitiesStage
- DFT_LoadProductCategoryNameTranslationStage

3. SC_CleanStage

Oczyszcza i wzbogaca dane:

- DFT OrdersClean
 - konwersja dat na DATETIME, obliczenie czasu dostawy delivery_time (w dniach), zapis do Stage.OrdersClean
- DFT CustomersClean
 - fuzzy lookup miast, dodanie populacji, powierzchni, gęstości zaludnienia, zapis do Stage.CustomersClean
- DFT SellersClean
 - o analogiczne wzbogacenie danych sprzedawców, zapis do Stage. Sellers Clean
- DFT ProductsClean
 - o tłumaczenie kategorii, konwersja zmiennych, zapis do Stage.ProductsClean

4. SC CreateFinalSchemaTables

Tworzy schemat o nazwie "Stepaniuk" oraz wszystkie tabele docelowe hurtowni:

- CreateSchema
 - tworzy schemat Stepaniuk jeśli nie istnieje.
- CreateMonthDim
 - o Tworzy Stepaniuk.MonthDim z 12 wierszami

- CreateWeekdayDim
 - Tworzy Stepaniuk.WeekdayDim z 7 wierszami
- CreateTimeDim
 - Tworzy Stepaniuk.TimeDim (kluczem czas + dodatkowe atrybuty do dni tygodnia, miesiąca, roku itd.)
- CreateCustomerDim
 - Tworzy Stepaniuk.CustomerDim (klient + dane miast)
- CreateSellerDim
 - Tworzy Stepaniuk.SellerDim (sprzedawca + dane miast)
- CreateProductDim
 - o Tworzy Stepaniuk.ProductDim
- CreatePaymentDim
 - o Tworzy Stepaniuk.PaymentDim (unikalne metody płatności)
- CreateReviewDim
 - o Tworzy Stepaniuk.ReviewDim
- CreateFactOrders
 - o Tworzy Stepaniuk.FactOrders (na poziomie pojedynczych produktów order item)

5. SC LoadFinalData

Ładuje dane do wymiarów i faktów, stosując przyrostowe upserty (insert where not exists) przy pomocy MERGE:

- LoadMonthDim
- LoadWeekdayDim
- UpsertTimeDim
- UpsertCustomerDim
- UpsertSellerDim
- UpsertProductDim
- UpsertReviewDim
- UpsertPaymentDim
- UpsertFactOrders

6. SC_Validation

Weryfikuje poprawność załadowanych danych i w razie błędów Raisuje błąd.

- CheckDimensionRowCountMismatch
- CheckFactRowCountMismatch

Lp.	Źródłowy plik	Źródłowa kolumna	Docelowa kolumna	Typ danych
1	olist_orders_dataset.csv	order_purchase_timestamp	TimeDim.full_datetime	DATETIME
2	olist_orders_dataset.csv	order_purchase_timestamp	TimeDim.time_key	BIGINT
3	olist_orders_dataset.csv	order_purchase_timestamp	TimeDim.year_n	SMALLINT
4	olist_orders_dataset.csv	order_purchase_timestamp	TimeDim.quarter_n	SMALLINT
5	olist_orders_dataset.csv	order_purchase_timestamp	TimeDim.month_key	SMALLINT
6	olist_orders_dataset.csv	order_purchase_timestamp	TimeDim.day_n	SMALLINT
7	olist_orders_dataset.csv	order_purchase_timestamp	TimeDim.weekday_key	SMALLINT
8	olist_orders_dataset.csv	order_purchase_timestamp	TimeDim.hour_n	SMALLINT
9	olist_orders_dataset.csv	order_purchase_timestamp	TimeDim.minute_n	SMALLINT
10	olist_orders_dataset.csv	order_purchase_timestamp	TimeDim.second_n	SMALLINT
11	olist_customers_dataset. csv	customer_id	CustomerDim.customer_id	VARCHAR(50)
12	olist_customers_dataset.	customer_state	CustomerDim.customer_ state	CHAR(2)
13	olist_customers_dataset.	customer_city	CustomerDim.customer_ city	VARCHAR(100)
14	brazilian_cities.csv	IBGE_RES_POP	CustomerDim.city_popul ation	INT
15	brazilian_cities.csv	AREA	CustomerDim.city_area_ km2	DECIMAL(10,2)

16	brazilian_cities.csv	(computed) population/area	CustomerDim.city_densi ty	DECIMAL(10,2)
17	olist_sellers_dataset.csv	seller_id	SellerDim.seller_id	VARCHAR(50)
18	olist_sellers_dataset.csv	seller_state	SellerDim.seller_state	CHAR(2)
19	olist_sellers_dataset.csv	seller_city	SellerDim.seller_city	VARCHAR(100)
20	brazilian_cities.csv	IBGE_RES_POP	SellerDim.city_population	INT
21	brazilian_cities.csv	AREA	SellerDim.city_area_km2	DECIMAL(10,2)
22	brazilian_cities.csv	(computed) population/area	SellerDim.city_density	DECIMAL(10,2)
23	olist_products_dataset.cs v	product_id	ProductDim.product_id	VARCHAR(50)
24	olist_products_dataset.cs v	product_category_name + translation	ProductDim.category	VARCHAR(100)
25	olist_products_dataset.cs v	(z CSV tłumaczeń) product_category_name_en glish	ProductDim.category	VARCHAR(100)
26	olist_products_dataset.cs v	product_category_name (podkategoria)	ProductDim.sub_categor y	VARCHAR(100)
27	olist_order_payments_dat aset.csv	payment_type	PaymentDim.payment_ty pe	VARCHAR(50)
28	olist_order_payments_dat aset.csv	payment_type	PaymentDim.payment_ty pe_key	INT (surrogate)
29	olist_order_reviews_datas et.csv	review_id	ReviewDim.review_id	VARCHAR(50)
30	olist_order_reviews_datas et.csv	review_score	ReviewDim.review_score	SMALLINT
31	olist_order_reviews_datas et.csv	review_comment_message	ReviewDim.review_com ment	TEXT
32	olist_order_reviews_datas et.csv	review_creation_date	ReviewDim.review_date	DATE
33	olist_order_items_dataset .csv	order_item_id	FactOrders.order_item_i d	VARCHAR(50)
34	olist_order_items_dataset .csv	order_id	FactOrders.order_id	VARCHAR(50)
35	olist_orders_clean (Stage.OrdersClean)	order_purchase_timestamp	FactOrders.average_deliv ery_time	DECIMAL(10,2)
36	olist_order_items_dataset .csv + freight	price + freight_value	FactOrders.total_revenue	DECIMAL(18,2)
37	olist_order_items_dataset .csv	order_item_id	FactOrders.total_items	INT
38	olist_order_reviews_datas et.csv	review_score	FactOrders.average_revie w_score	DECIMAL(3,2)
39	olist_order_payments_dat aset.csv (p.seq=1)	payment_sequential	FactOrders.payment_seq uential	SMALLINT
40	olist_order_payments_dat aset.csv (p.seq=1)	payment_installments	FactOrders.payment_inst allments	SMALLINT
41	olist_order_payments_dat aset.csv (p.seq=1)	payment_value	FactOrders.payment_val ue	DECIMAL(18,2)

42	Stage.OrdersClean	time_key	FactOrders.time_key	BIGINT	
43	Stage.OrdersClean	customer_id	FactOrders.customer_id	VARCHAR(50)	
44	Stage.OrderItems	seller_id	FactOrders.seller_id	VARCHAR(50)	
45	Stage.OrderItems	product_id	FactOrders.product_id	VARCHAR(50)	
46	Stepaniuk.PaymentDim	payment_type_key	FactOrders.payment_typ	INT	
		paymont_typo_key	e_key		

Etap 3 – 02.06.2025 r.

Kostka:

- 1. TimeDim wymiar czasu
 - Rok, kwartał, miesiąc, dzień tygodnia, godzina
- 2. PaymentDim
 - Typ płatności
- 3. ProductDim
 - Kategoria produktu
- 4. SellerDim
 - Miasto, stan, region, gestość zaludnienia miasta, powierzchnia, populacja
- 5. CustomerDim
 - Miasto, stan, region, gęstość zaludnienia miasta, powierzchnia, populacja, tag klienta mówiący czy jest stałym czy powracającym klientem
- 6. ReviewDim
 - Gwiazdkowa ocena zamówienia
- 7. FactOrders
 - payment_value wartość całego zamówienia
 - total_revenue wartość przedmiotu + koszty przesyłki
 - total_items ilość przedmiotów
 - review_score ilość gwiazdek zostawiona w ocenie zamówienia od 0 do 5
 - delivery time liczone w dniach od momentu zamówienia do dostawy
 - average_review_score miara kalkulowana licząca średnią ilość gwiazdek
 - average_delivery_time miara kalkulowana do liczenia średniego czasu dostawy
 - maximum_payment_value miara kalkulowana, maksymalna wartość całego zamówienia

Zestawienia:

Procentowy przychód według miesiąca i regionu klienta

Widać większą sprzedaż w miesiącach od stycznia do sierpnia, niezależnie od obszaru (na co nie ma wpływu ograniczony zbiór danych, ponieważ dane zaczynają się od października 2016, a trwają do września 2018.

2. Średni czas dostawy w kolejnych kwartałach kolejnych lat w różnych regionach

Widać że w regionie północnym i północno-wschodnim czas dostawy jest znacznie wyższy od pozostałych regionów, niezależnie od kwartału i roku są to zawsze regiony z najdłuższym czasem dostawy (około tydzień dłużej niż w innych regionach) - może to być spowodowane mniejszym zaludnieniem tego regionu oraz mniejszą sprzedażą w nim. Z drugiej strony region południowo-wschodni gdzie znajdują się największe miasta brazylii takie jak Brasilia czy Sao Paulo mają zdecydowanie najkrótszy czas dostawy. Natomiast widać także, że wraz z biegiem czasu ogólny czas dostawy ma tendencje spadkową.

3. Maksymalne kwoty zakupów w kolejnych kwartałach kolejnych lat w różnych regionach

Widać, że największe kwoty padają w regionie południowo-wschodnim, co może być spowodowane większą zamożnością tego regionu jak i większą jego populacją (konsekwencją czego mają więcej różnych zamówień stamtąd i jest większa szansa na jakieś "duże" zamówienie) – rekord płatności padł w trzecim kwartale 2017 roku w regionie południowo wschodnim i wynosił blisko 14000 R\$ (reali brazylijskich) co w przybliżeniu wynosi około 9163,63zł.

4. Średni czas dostawy w kolejnych kwartałach kolejnych lat dla różnych metod płatności

Widać, że czas dostawy spada wraz z biegiem czasu, jest też zbliżony do siebie niezależnie od metody płatności, z lekkim wskazaniem na większe wartości w przypadku boleto (co w wolnym tłumaczeniu znaczy bilet) – możliwe że zaksięgowanie tej formy płatności zajmuje czas, przez co wydłuża się łączna ilość dni od momentu dokonania płatności do otrzymania przesyłki, jednorazowy rekord padł dla vouchera w 2016 roku, ale może to być outlier ponieważ w tym okresie była to jedyna płatność tego typu.

5. Średni czas dostawy w kolejnych miesiącach dla miast o różnych powierzchniach

Widać, że dla miast o największej i najmniejszej gęstości zaludnienia czas dostawy jest najszybszy, natomiast dla miast o średniej gęstości zaludnienia widać wzrost w czasie dostawy. Dodatkowo najmniejszy czas dostawy jest w miesiącach letnich, gdzie nawet te największe wartości zazwyczaj mieszczą czas dostawy poniżej dwóch tygodni.

6. Top 10 kategorii produktów pod względem sprzedaży sztuk i wartości

Widać, że sprzedaż ilościowa kategorii często idzie w parze z ich sprzedażą kapitałową, z wyjątkiem watches_gifts które to kosztują znacznie więcej niż sprzedawane jest ich ilościowo, widać więc że są to przedmioty o większej wartości, które klienci kupują rzadziej.

7. Sprzedaż w poszczególnych godzinach dnia dla dni tygodnia pracującego oraz weekendu

Widać, że godziny szczytu sprzedaży rozpoczynają się około godziny 9:00 rano w przypadku dni od poniedziałku do piątku, natomiast w weekendy widać nieco większy pik w godzinach wieczornych, około godziny 20:00 widać znaczący pik, którego nie ma w tygodniu, może to być spowodowane większą ilością wolnego czasu klientów weekend, przez co decydują się oni robić zamówienia wieczorem.

8. Średnia recenzja stałych i powracająch klientów z miast o różnych wielkościach populacji

Widać, że nowi klienci zostawiają raczej tym gorsze noty, im w większym mieście mieszkają, natomiast klienci powracający czyli tacy którzy dokonali więcej niż jednej płatności mają na ogół lepsze opinie o sklepie w mniejszych miastach (do 500.000), a w tych większych trend się odwraca i stali klienci oceniają gorzej swoją satysfakcję z zakupów.

Procentowy średni czas dostawy oraz średnia recenzja dla poszczególnych stanów

Widać, że niektóre stany mają znacznie zawyżony średni czas dostawy (niektóre nawet do blisko 250% średniego czasu dostawy), natomiast inne (raczej te większe takie jak Sao Paulo albo Minas Gerais) mają znacznie szybszą dostawę od reszty (rekordowa dla Sao Paulo, które jest bardzo zaludnionym regionem, więc czas dostawy jest tutaj w zrozumiały sposób mniejszy – natomiast warto zaznaczyć że nie wpływa to na satysfakcję klientów z obsługi i ich ocena pozostaje raczej w okolicach średniej niezależnie od czasu dostawy.

10. Maksymalne kwoty płatności dla poszczególnych metod płatności w poszczególnych wielkościach miast

Widać, że dla dużych miast przeważa znacząco karta kredytowa, natomiast w miastach mniejszych i średnich nie jest to już tak oczywiste, a często nawet ludzie płacą największe kwoty alternatywnymi metodami płatności takimi jak bilet czy voucher – warto zaznaczyć tutaj że rozmiary kubełków nie są równomierne, więc dodatkowy czynnik taki jak ilość zamówień z miast o danej populacji może mieć wpływ na te wyniki. Wciąż można jednak wysunąć wniosek, że mieszkańcy mniejszy miejscowości nie robią tak dużych kwotowo zamówień, jak ci z miast o populacji większej niż 5mln.

Wnioski:

Analizy poprzez powyższe zestawienia pokazują, jak dzięki hurtowni danych i kostce OLAP można szybko identyfikować kluczowe i powtarzalne wzorce sprzedaży (sezonowość, top-kategorie, godziny szczytu), efektywność operacyjną (czasy dostawy w regionach i metodach płatności) oraz zachowania klientów (nowi vs. powracający, preferencje zakupowe wg wielkości miast). Dzięki temu menedżerowie Olist mogą optymalizować logistykę, planować kampanie marketingowe w najlepszych okresach, segmentować klientów i priorytetyzować inwestycje w obszary i kanały przynoszące największe przychody.