Calculus-II

B.Tech. (First Semester)

(Syllabus for all Engineering Branches except BT and CSBS)

L	\mathbf{T}	P	C
2	0	0	2

Preamble

This course is designed to impart knowledge on calculus of functions of more variables which are useful in modelling and analyzing physical phenomena involving continuous change of variables or parameters and have applications across all branches of engineering.

Course Objectives:

- To teach basic concepts of partial derivatives.
- To explain the evaluation of double integrals and its applications.
- To demonstrate the evaluation and applications of triple integrals.
- To acquaint the knowledge of line and surface integrals and applications.

Unit-1: Partial derivatives and applications

(7 hours)

Partial Derivatives of a Function of Two Variables and More Than Two Variables, Second-order Partial derivatives, The Chain Rule for Functions of Two and Three variables, Extreme Values and Saddle Points, Lagrange Multipliers, Taylor's Formula for Two Variables (Without proofs)

Learning Outcomes:

At the end of this unit, the student will be able to

- find partial derivatives of various functions
- apply chain rule for functions of two and three variables
- evaluate maxima and minima of functions

Unit-2: Double integrals

(6 hours)

Double and iterated Integrals over Rectangles, Double Integrals over General Regions, Area by Double Integration: Area of bounded region in a plane, Double Integrals in Polar Form. (Without proofs)

Learning Outcomes:

At the end of this unit, the student will be able to

- evaluate double integrals of functions of several variables in two dimensions in Cartesian and polar coordinates.
- calculate the areas bounded by a region using double integration techniques.

Unit-3: Triple integrals

(5 hours)

Triple Integrals in Rectangular Coordinates: Triple Integrals, Volume of a Region in Space, Finding limits of integration, Triple Integrals in Cylindrical and Spherical Coordinates. (Without proofs)

Learning Outcomes:

At the end of this unit, the student will be able to

- find limits of integration
- evaluate multiple integrals in Cartesian, cylindrical and spherical geometries.
- find volumes using triple integrals.

Unit-4: Integrals and Vector fields

(8 hours)

Vector Fields and Line Integrals: Line Integrals of Vector Fields, Line Integrals with Respect to dx, dy, or dz, Work Done by a Force over a Curve in Space, Green's Theorem in the Plane: Tangential form, Using Green's Theorem to Evaluate the Line Integral and Verification, Surface Integrals: Surface Integrals of Vector Fields, Stokes' Theorem (Without proofs)

Learning Outcomes:

At the end of this unit, the student will be able to

- find the work done in moving a particle along the path over a force field.
- find the rate of flow of a fluid across a surface.
- apply Green's and Stokes' theorem in evaluation of line, surface and volume integrals.

Textbook: Joel Hass, Christopher Heil, Maurice D. Weir, Thomas' Calculus, Fourteenth edition, Pearson Addison Wesley (2018).

References:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2018.
- 2. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna publishers, 2017.
- 3. Hyghes-Hallett, Gleason, McCallum et al. Multivariable Variable Calculus (6th Edn) John Wiley and Sons New York, 2013.
- 4. James Stewart. Multivariate Calculus, Concepts and Contexts. (3rd Edn) Thomson/Brooks/Cole, Canada, 2005.

Course Outcomes:

At the end of the course, the student will be able to

- utilize functions of several variables in optimization.
- employ the tools of calculus for calculating the areas.
- calculate volumes using multiple integrals.
- determine the work done and rate of flow of a fluid using vector calculus