NUCLEAR REACTION THEORY

TAYLOR WHITEHEAD

REACTION THEORY FOR RARE ISOTOPES

Nuclear Astrophysics

The nuclear equation of state for neutron stars and corecollapse supernovae may be constrained by reaction theory

Element Creation

Understanding the abundances of heavy elements requires the knowledge of neutron interactions with exotic neutron rich isotopes

Rare Isotope Experiments

Reaction theory for experiments with rare isotopes is untested so robust models with uncertainty estimates are crucial for experimental design and data analysis

REACTION MODELS NEEDED!

Cutting edge research in nuclear physics requires reaction models for a wide range of isotopes (A) at energies (E)

NUCLEAR REACTION EXPERIMENTS

Traditional nuclear scattering experiments scatter a beam of projectiles on a stable target

QUANTUM MECHANICS OF SCATTERING

QUANTUM MECHANICS OF SCATTERING

QUANTUM MECHANICS OF SCATTERING

$$\psi_{out} \sim e^{ikz} + f(\theta)e^{ikr}/r$$

$$\sigma(\theta) \propto |f(\theta)|^2$$

How does the scattering amplitude relate to the projectile-target interaction?

$$f(\theta) = -\frac{m}{2\pi} \int e^{-ik \cdot r} U(r) d^3r$$

Spherically symmetric

$$f(\theta) = -\frac{m}{2\pi} \int e^{-ik \cdot r} \ U(r) \ d^3r \qquad \xrightarrow{\text{potential}} \qquad f(\theta) = -\frac{2m}{k} \int U(r) \sin(kr) \ r \ d^3r$$

Spherically symmetric

$$f(\theta) = -\frac{m}{2\pi} \int e^{-ik \cdot r} U(r) d^3r \xrightarrow{\text{potential}} f(\theta) = -\frac{2m}{k} \int U(r) \sin(kr) r d^3r$$

Taking a Yukawa potential:

$$U(r) = g \frac{e^{-\mu r}}{r}$$

aking a Yukawa potential:
$$U(r)=g\frac{e^{-\mu r}}{r} \qquad f(\theta)=-\frac{2mg}{\mu^2+\mathbf{k}^2} \rightarrow \quad \frac{d\sigma}{d\Omega}=\frac{4m^2g^2}{(\mu^2+4k^2\sin^2(\theta/2))^2}$$

Spherically symmetric

$$f(\theta) = -\frac{m}{2\pi} \int e^{-ik \cdot r} U(r) d^3r \xrightarrow{\text{potential}} f(\theta) = -\frac{2m}{k} \int U(r) \sin(kr) r d^3r$$

Taking a Yukawa potential:

$$U(r) = g \frac{e^{-\mu r}}{r}$$

iking a Yukawa potential:
$$U(r)=g\frac{e^{-\mu r}}{r} \qquad f(\theta)=-\frac{2mg}{\mu^2+\mathbf{k}^2} \rightarrow \quad \frac{d\sigma}{d\Omega}=\frac{4m^2g^2}{(\mu^2+4k^2\sin^2(\theta/2))^2}$$

For Coulomb interaction:

$$g = Z_1 Z_2 \; , \; \mu = 0$$

$$\frac{d\sigma}{d\Omega} = \frac{(Z_1 Z_2)^2}{16E^2 \sin^4(\theta/2)}$$

Spherically symmetric

$$f(\theta) = -\frac{m}{2\pi} \int e^{-ik \cdot r} U(r) d^3r \xrightarrow{\text{potential}} f(\theta) = -\frac{2m}{k} \int U(r) \sin(kr) r d^3r$$

Taking a Yukawa potential:

$$U(r) = g \frac{e^{-\mu r}}{r}$$

king a Yukawa potential:
$$U(r)=g\frac{e^{-\mu r}}{r} \qquad f(\theta)=-\frac{2mg}{\mu^2+\mathbf{k}^2} \to \quad \frac{d\sigma}{d\Omega}=\frac{4m^2g^2}{(\mu^2+4k^2\sin^2(\theta/2))^2}$$

For Coulomb interaction:

$$g = Z_1 Z_2 , \ \mu = 0$$

$$\frac{d\sigma}{d\Omega} = \frac{(Z_1 Z_2)^2}{16E^2 \sin^4(\theta/2)}$$

This is the Rutherford cross section!

NUCLEAR REACTION THEORY

Goal: Construct a simple and reliable reaction model from a theoretical description of the nuclear force to predict reaction observables measured by experimentalists

Theory Experiment

NUCLEON-NUCLEUS INTERACTION

NUCLEON-NUCLEUS INTERACTION

Could a single-particle potential work?

NUCLEON-NUCLEUS INTERACTION

Could a single-particle potential work?

Nuclear scattering is complicated: many-body system with internal degrees of freedom, excitations, and resonances to account for.

NUCLEAR OPTICAL POTENTIAL

It turns out that a nucleon-nucleus interaction can be well described by a complex single-particle potential called the optical potential

NUCLEAR OPTICAL POTENTIAL

It turns out that a nucleon-nucleus interaction can be well described by a complex single-particle potential called the optical potential

$$n = \frac{c}{v}, \quad n(\lambda) = n_R(\lambda) + in_I(\lambda)$$

Complex index of refraction:

- real part n_R: refraction
- imaginary part n₁: absorption in the medium
- wavelength dependent

NUCLEAR OPTICAL POTENTIAL

It turns out that a nucleon-nucleus interaction can be well described by a complex single-particle potential called the optical potential

$$n = \frac{c}{v}, \quad n(\lambda) = n_R(\lambda) + in_I(\lambda)$$

U(E) = V(E) + iW(E)

Complex index of refraction:

- real part n_R: refraction
- imaginary part n₁: absorption in the medium
- wavelength dependent

By analogy, for a complex nuclear potential:

- real part V: elastic scattering
- imaginary part W: inelastic processes
- energy dependent

REACTION MODELS NEEDED!

Cutting edge research in nuclear physics requires reaction models for a wide range of isotopes (A) at energies (E)

Phenomenological

Assume form of reaction model then fit to experimental data

- Successful at describing reactions for nuclei near stability
- Descriptions of rare isotope reactions are unreliable

Phenomenological

Assume form of reaction model then fit to experimental data

- Successful at describing reactions for nuclei near stability
- Descriptions of rare isotope reactions are unreliable

Phenomenological

Assume form of reaction model then fit to experimental data

- Successful at describing reactions for nuclei near stability
- Descriptions of rare isotope reactions are unreliable

Microscopic

Calculate in many-body framework with realistic nuclear forces

Robust predictions for unstable nuclei where experiments are difficult

Microscopic

Calculate in many-body framework with realistic nuclear forces

Robust predictions for unstable nuclei where experiments are difficult

Realistic nuclear forces?

NUCLEAR FORCES FROM CHIRAL EFFECTIVE FIELD THEORY

MICROSCOPIC OPTICAL POTENTIAL

Chiral Effective Field Theory

Many-Body Perturbation Theory

"The self-energy (Σ) is equivalent to the optical potential" -Bell, Squires; PRL (1959)

ELASTIC NEUTRON SCATTERING

RECAP

Scattering theory

Nuclear reactions

29