Величина ΔT_K представляет собой поправку к координированному времени для перехода к T_{rp} (TU_1). По современным требованиям отклонения ΔT_K не должны превышать 0.9^c , поэтому время от времени шкала TUC корректируется точно на 1^c . Сейчас корректировка вводится два раза в год в $TU_1 = O^4$ на 1 января и на 1 августа. Ноль шкалы TUC смещается ближе к нулю TU_1 подачей сигнала 0.0^c в $23^459^M61^C$ (если $\Delta T_K = +1^C$) или в $23^459^M59^C$, если $\Delta T_K = -1^c$. Такие корректировки производят все службы мира в одно и то же время через свои радиостанции (кроме Китая). Расхождения шкал в любое время указываются при подаче сигналов времени (кроме шести точек). Из сказанного следует твердо усвоить, что все сигналы времени подаются в шкале TUC, их расхождения с TU_1 (T_{rp}) не превышают 0.9^c и указываются в сигнале времени, а два раза в год происходит их корректировка, приближающая TUC к TU_1 .

Вследствие корректировки нуль шкалы TUC отходит от нуля атомной шкалы TAU, но всегда на целые секунды (в 1973 г. 1,1 на $+12,0^{\circ}$).

Шкала международного атомного времени TAU ближе всего моделирует эфемеридное время TE — теоретическое равномерное время, принятое при предвычислении координат светил (они называются — эфемериды светил). Это время связано с TU_1 (T_{rp}) соотношением

$$TE = TU_1 + \Delta T \qquad (91)$$

где ΔT – предварительное значение поправки, данное в астрономическом ежегоднике (AE) на данный год, например на 1977 г. $\Delta T = +46.0^{\circ}$.

Это соотношение применяется при работе с AE $P\Phi$ для перехода от T_{rp} к TE.