Comportamiento de las soluciones

Sea $f:(a,b)\to\mathbb{R}$ una función continua donde $-\infty\leq a< b\leq +\infty$. Supongamos que $\forall (t_0,x_0)\in\mathbb{R}\times(a,b)$ el PVI

$$(P) \begin{cases} x' = f(x) \\ G(t_0) = x_0 \end{cases}$$

tiene una única solución maximal a la que denotaremos

$$G(t; t_0, x_0)$$
 $\forall t \in (\alpha(t_0, x_0), \omega(t_0, x_0))$

Recuerda que la función G recibe el nombre de solución general.

Denotemos por Z_f el conjunto de ceros de la función f:

$$Z_f = \{ p \in (a, b) : f(p) = 0 \}$$

Existe una relación obvia entre los ceros de f (llamados en este contexto puntos de equilibrio) y las soluciones constantes de la EDO x'=f(x):

$$\varphi: \mathbb{R} \to \mathbb{R}, \varphi(t) = p$$
 es solución de $x' = f(x) \Longleftrightarrow p \in Z_f$

o usando la notación de solución general:

$$G(t; t_0, p) = p$$
 $\forall t \in (-\infty, +\infty) \iff p \in Z_f$.

Órbitas

Dado $x_0 \in (a, b)$ se define la *órbita* asociada a la EDO x' = f(x) que pasa por el punto x_0 como el conjunto

$$\mathcal{O}(x_0) = \{G(t; 0, x_0) : t \in (\alpha(0, x_0), \omega(0, x_0))\}$$

Es decir: la imagen de la única solución maximal del PVI $\begin{cases} x' = f(x) \\ G(0) = x_0 \end{cases}$

Propiedad 1

- ② Si $f(x_0) = 0$ entonces $\mathcal{O}(x_0) = \{x_0\}$.
- **3** Si $f(x_0) \neq 0$ entonces $\mathcal{O}(x_0)$ es un intervalo abierto.

Cuando $\mathcal{O}(x_0)$ es un conjunto unitario se representa en la recta real con un punto y cuando es un intervalo no degenerado se suele representar gráficamente como un segmento orientado (con una flecha).

Propiedad 2

Sean $t_0, t_1 \in \mathbb{R}$ y $x_0, x_1 \in (a, b)$ tales que $f(x) \neq 0$, $\forall x \in [x_0, x_1]$. Entonces:

- **1** $x_1 \in \mathcal{O}(x_0)$.
- **2** Existe $\tau \in \mathbb{R}$ tal que

$$G(t;t_1,x_1)=G(t+\tau;t_0,x_0) \qquad \forall t\in \big(\alpha(t_1,x_1),\omega(t_1,x_1)\big)$$

Ejemplo

¿Cuántas órbitas distintas tiene la EDO $x' = e^x$?

Diagrama de fases

Un diagrama de fases de la EDO x' = f(x) es una representación gráfica con las órbitas de la ecuación.

Ejemplo

El diagrama de fases de la EDO $x' = x^2 - 1$ es:

También se puede representar verticalmente.

Algoritmo

- Calculamos las raíces de f(x).
- 2 Representamos un diagrama del signo de f(x)
- Onvertimos el diagrama del signo en el diagrama de fases.
- Interpretamos el diagrama de fases.
- Sesso de algunas soluciones.
- Indicamos la infinitud de algunos extremos de los intervalos de definición de las soluciones maximales.

Región de atracción

Dada la EDO x' = f(x) y dado un punto de equilibrio $p \in Z_f$ se define la región de atracción de p como el conjunto

$$\mathcal{R}(p) = \left\{ x_0 \in (a,b) : \lim_{t \to \omega(0,x_0)} G(t;0,x_0) = p \right\}$$

Propiedad 3

Sea $p \in Z_f$. Entonces:

- ② Si $x_0 \in \mathcal{R}(p)$ entonces $\omega(0, x_0) = +\infty$.
- \circ $\mathcal{R}(p)$ es un intervalo.

Ejemplo

El diagrama de fases de la EDO $x' = x^2 - 1$ es:

$$\mathcal{R}(1)=\{1\}$$
 y $\mathcal{R}(-1)=(-\infty,1)$

Atractores

Dada la EDO x' = f(x) y dado un punto de equilibrio $p \in Z_f$ se dice que p es un *atractor* si está en el interior de su región de atracción.

Si además $\mathcal{R}(p) = (a, b)$ se dice que es un atractor global.

El diagrama de fases en el entorno de un atractor debe ser

Propiedad 4 (aproximación lineal)

Sea $p \in Z_f$ y supongamos que f es derivable en p.

- Si f'(p) < 0 entonces p es un atractor.
- ② Si f'(p) > 0 entonces p no es un atractor.

Ejemplo

¿Qué debe cumplir el parámetro a para que p=1 sea un atractor de la EDO $x^\prime=3ax^2+a^2x+2$

Propiedades de las soluciones

Propiedad 5

Si $\varphi(t) = G(t; t_0, x_0)$ es una solución no constante de la EDO x' = f(x) entonces es es estrictamente monótona.

Propiedad 6

Si existe

$$\lim_{t\to\omega(t_0,x_0)}G(t;t_0,x_0)=L$$

y $L \in (a, b)$ entonces $\omega(t_0, x_0) = +\infty$ y $L \in Z_f$.

Análogamente:

Propiedad 7

Si existe

$$\lim_{t\to\alpha(t_0,x_0)}G(t;t_0,x_0)=L$$

y $L \in (a, b)$ entonces $\alpha(t_0, x_0) = -\infty$ y $L \in Z_f$.

Propiedad 8

Sean $p \in Z_f$ y $x_0 \in (a, b)$. Si $x_0 < p$, entonces

$$G(t; t_0, x_0)$$

Análogamente:

Propiedad 9

Sean $p \in Z_f$ y $x_0 \in (a, b)$. Si $p < x_0$, entonces

$$G(t; t_0, x_0) > p$$
 $\forall t \in (\alpha(t_0, x_0), \omega(t_0, x_0)).$

Se suele decir que *los ceros de f son barreras infranqueables* para el resto de soluciones.

Ejercicio

Justifica que todas las soluciones de la EDO x' = sen(x) están acotadas.

Sigmoides

Propiedad 10

Sean $p, q \in (a, b)$ tales que p < q, f(p) = f(q) = 0. Entonces, para cada $x_0 \in (p, q)$ se cumplen:

- **1** $G(t; t_0, x_0) \in (p, q)$ $\forall t \in (\alpha(t_0, x_0), \omega(t_0, x_0)).$

Si además $f(x) > 0 \ \forall x \in (p, q)$, entonces

- \bullet $t \mapsto G(t; t_0, x_0)$ es estrictamente creciente.

En cambio, $sif(x) < 0 \ \forall x \in (p, q)$, entonces

- \bullet $t \mapsto G(t; t_0, x_0)$ es estrictamente decreciente.

Comportamiento en los bordes

Propiedad 11

Sea $x_0 \in (a, b)$ tal que $f(x) \neq 0$, $\forall x \in [x_0, b)$.

Análogamente:

Propiedad 12

Sea $x_0 \in (a, b)$ tal que $f(x) \neq 0$, $\forall x \in (a, x_0]$.

- $\ \, \textbf{Si} \,\, f(x_0) < 0 \,\, \text{entonces} \,\, \lim_{t \to \omega(t_0,x_0)} G(t;t_0,x_0) = a.$