АиСД | SET-2 | А3

TODO:

1. Вы планируете разработать алгоритм MULT, предназначенный для умножения двух квадратных матриц A и B размерности N × N и асимптотически более эффективный, чем алгоритм Штрассена.

Разрабатываемый алгоритм будет также использовать стратегию «разделяй-и-властвуй».

Исходные матрицы A и B разделяются на неизвестное количество фрагментов размера $N/4 \times N/4$ для дальнейшей рекурсивной обработки. Асимптотическая точная граница общих временных затрат на выполнение шагов CONQUER и COMBINE алгоритма MULT — $\Theta(N2)$.

Таким образом, временная сложность алгоритма MULT будет описываться рекуррентным соотношением $T(N) = a \cdot T(N/4) + \Theta(N^2)$, где коэффициент а отвечает за количество решаемых подзадач — количество блоков-подматриц размерности $N/4 \times N/4$. Например, для алгоритма Штрассена в соответствии с рекуррентным соотношением $T(N) = 7 \cdot T(N/2) + \Theta(N^2)$ известно, что для каждой задачи решается 7 подзадач вдвое меньшего размера.

В каком диапазоне должен находиться параметр а разрабатываемого вами алгоритма MULT для того, чтобы в результате он был асимптотически более эффективным по временной сложности в сравнении с алгоритмом Штрассена? Обоснуйте свой ответ.

Task 1: (Определение диапазона параметра a)

Из формулы MULT известно, что b = 4, k = 2. Рассчитаем $\log_b a = \log_4 a = \frac{\log a}{\log 4} = \frac{\log a}{2}$. Согласно формуле мастер-теоремы, необходимо, чтобы $\log_b a < k$, чтобы временная сложность была $O(n^k)$. Временная сложность алгоритма Штрассена равна $O(n^{\log_2 7})$. Таким образом, чтобы алгоритм MULT был более эффективным, его сложность должна быть

 $O(n^c)$, где $c<\log_2 7$. Подставим это значение: $\frac{\log a}{2}<\log_2 7\Longrightarrow\log a<2\log_2 7\Longrightarrow a<2^{2\log_2 7}\Longrightarrow a<49$. Таким образом, параметр а должен находиться в пределах от 1 до 49, или же [1,49) (ограничение ≥ 1 наложено мастер-теоремой)

Ответ: [1, 49)