১০ প্রয়োজনীয় সূত্রাবণি ইনফিনিটি পার্বণিকেশন

ট্রাপিজিয়াম:

ট্রাপিজিয়ামের সমান্তরাল দুইটি বাছ a একক, b একক এবং এদের লম্ব দূরতু h একক হলে-

- ক্ষেত্ৰফল = ¹/₂ (a + b)h বৰ্গ একক
- 🗹 সুষম বহুভূজ:

সুষম বহুভূজের বাহুর সংখ্যা n একক এবং বাহুর দৈর্ঘ্য a একক

- ক্ষেত্রফল = $\frac{na^2}{4} \cot \left(\frac{180^\circ}{n} \right)$ বর্গ একক
- - ব্রের ব্যাস = 2r একক
 - ব্রের পরিধি = 2πr একক
 - বৃত্তের ক্ষেত্রফল = πr² বর্গ একক
 - অর্ধবৃত্তের ক্ষেত্রফল = $\frac{1}{2} \pi r^2$ বর্গ একক

- r একক ব্যাসার্ধের কোনো বৃত্তে S একক চাপ দ্বারা কেন্দ্রে θ ডিগ্রী কোণ উৎপন্ন হলে-
 - বৃভাংশের দৈঘ্য, s = $\frac{\pi r \theta}{180^{\circ}}$ একক
 - বৃভকলার ক্ষেত্রফল = $\frac{\theta}{360^{\circ}} \times \pi r^2$ বর্গ একক
- আয়তাকার ঘনবস্তু: দৈর্ঘ্য a একক, প্রস্থ b একক এবং উচ্চতা c একক হলে,
 - কর্ণের দৈর্ঘ্য = $\sqrt{a^2 + b^2 + c^2}$ একক
 - সমগ্রতলের ক্ষেত্রফল = 2(ab + bc + ca) বর্গ একক
 - আয়তন = abc ঘনএকক
- ্ৰ খনক: দৈৰ্ঘ্য = প্ৰস্থ = উচ্চতা = a একক হলে
 - কর্ণের দৈর্ঘ্য = √3a একক
 - সমগ্রতলের ক্ষেত্রফল = 6a² একক
 - আয়তন = a³ ঘন একক
- বেলন: সমবৃত্তভূমিক বেলনের ভূমির ব্যাসার্ধ r একক এবং উচ্চতা h একক হলে
 - ভূমির ক্ষেত্রফল = πr^2 বর্গ একক
 - বক্রতলের ক্ষেত্রফল = 2πrh বর্গ একক
 - পৃষ্ঠতলের/সমগ্রতলের ক্ষেত্রফল = 2πr (r + h) বর্গ একক
 - আয়তন = πr²h ঘন একক

পরিসংখ্যানের সূত্রসমূহ:

		অবিন্যস্ত উপাত্ত 🥖	বিন্যস্ত উপা ত্ত
	গাণিতিক গড়	গাণিতিক গড় $= \frac{\sum x_i}{n}$ এখানে, $\sum x_i =$ উপাত্ত সমূহের যোগফল $n =$ মোট উপাত্তের সংখ্যা	গাণিতিক গড় $=\frac{1}{n}\sum_{i=1}^k f_i x_i$ এখানে, $x_i=i$ তম প্রেণির মধ্যমান $f_i=i$ তম প্রেণির গণসংখ্যা $n=$ মোট উপাত্তের সংখ্যা $\sum_i f_i x_i=$ প্রতিটি প্রেণির মধ্যমান ও গণসংখ্যার ওণফলের সমষ্টি
কেন্দ্রীয় প্রবণতা	মধ্যক	উপান্তসমূহকে ক্রমানুসারে সাজানোর পর, উপান্তের সংখ্যা (n) বিজ্ঞাড় হলে, মধ্যক = $\left(\frac{n+1}{2}\right)$ তম পদের মান উপান্তের সংখ্যা (n) জোড় হলে, মধ্যক = $\frac{n}{2}$ তম ও $\left(\frac{n}{2}+1\right)$ তম পদের গাণিতিক গড়	মধ্যক = $L + \left(\frac{n}{2} - F_c\right) \times \frac{h}{f_m}$ এখানে, $L =$ মধ্যক শ্রেণির নিমুসীমা $n =$ গণসংখ্যা $F_c =$ মধ্যক শ্রেণির পূর্ববর্তী শ্রেণির যোজিত গণসংখ্যা $f_m =$ মধ্যক শ্রেণির গণসংখ্যা $h =$ শ্রেণি ব্যাপ্তি
8	প্রচুরক	কোনো উপাতে যে সংখ্যা সর্বাধিক বার থাকে, সেইটাই ঐ উপাত্তের প্রচুরক এবং প্রতিটি উপাদান সমান সংখ্যক বার থাকলে সেই উপাত্তে কোনো প্রচুরক নেই।	প্রচুরক = $L + \frac{f_1}{f_1 + f_2} \times h$ এখানে, $L =$ প্রচুরক শ্রেণির নিমুসীমা $f_1 =$ প্রচুরক শ্রেণির গণসংখ্যা $-$ পূর্ববর্তী শ্রেণির গণসংখ্যা $f_2 =$ প্রচুরক শ্রেণির গণসংখ্যা $-$ পরবর্তী শ্রেণির গণসংখ্যা $h =$ শ্রেণি ব্যান্তি
	বিন্যস্ত	উপারের সংক্ষিপ্ত পদ্ধতিতে গাণিতিক গড়ঃ $\overline{x} = a + \frac{\sum f_i u_i}{n} \times h$	যেখানে, \overline{x} = নির্ণেয় গড়, a = আনুমানিক গড় $f_i = i$ তম শ্রেণির গণসংখ্যা n = মোট উপাত্তের সংখ্যা $f_i u_i = i$ তম শ্রেণির গণসংখ্যা ধাপ বিচ্যুতি h = শ্রেণি ব্যাঞ্জি

গণিত ১ম শ্রেণি ১ম খণ্ড - ১(*

Side by Md Raiyan Islam

প্রয়োজনীয় সূত্রাবলি

বর্গ ও ঘন সম্পর্কিত সত্র ও অনুসিদ্ধান্তসমহ:

1.
$$(a+b)^2 = a^2 + 2ab + b^2 = (a-b)^2 + 4ab$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2 = (a+b)^2 - 4ab$$

3.
$$a^2 + b^2 = (a+b)^2 - 2ab = (a-b)^2 + 2ab = \frac{(a+b)^2 + (a-b)^2}{2}$$

4.
$$2(a^2+b^2) = (a+b)^2 + (a-b)^2$$

$$a^2 - b^2 = (a+b)(a-b)$$

6.
$$ab = \left(\frac{a+b}{2}\right)^2 - \left(\frac{a-b}{2}\right)^2$$

7.
$$4ab = (a+b)^2 - (a-b)^2$$

8.
$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

9.
$$(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca$$

10.
$$a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca)$$

11.
$$2(ab+bc+ca) = (a+b+c)^2 - (a^2+b^2+c^2)$$

12.
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + b^3 + 3ab(a+b)$$

13.
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 = a^3 - b^3 - 3ab(a-b)$$

14.
$$a^3 + b^3 = (a+b)^3 - 3ab(a+b) = (a+b)(a^2 - ab + b^2)$$

15.
$$a^3 - b^3 = (a - b)^3 + 3ab(a - b) = (a - b)(a^2 + ab + b^2)$$

ত্রিকোণমিতিক সূত্রাবলিঃ

$$1. \quad \sin\theta \ = \frac{\text{বিপরীত বাছ (লম)}}{\text{অতিভুজ}} \qquad \qquad \text{এবং } \csc\theta = \frac{\text{অতিভুজ}}{\text{বিপরীত বাছ (লম)}}$$

$$2. \quad \cos\theta = \dfrac{\pi$$
র্মাহিত বাহ (ভূমি) অবিং $\sec\theta = \dfrac{$ অতিভূজ $}{\pi$ র্মাহিত বাহ (ভূমি)

$$3. \quad an heta = rac{ ext{fay} an heta = ext{fay} an heta = ext{(ভূমি)}}{ ext{সিন্নিহিত বাছ (ভূমি)}}$$
 এবং $\cot heta = rac{ ext{সিন্নিহিত বাছ (ভূমি)}}{ ext{fay} an heta = ext{fay}}$

4.
$$\sin\theta = \frac{1}{\csc\theta}$$
 বা, $\csc\theta = \frac{1}{\sin\theta}$

$$5. \cos\theta = \frac{1}{\sec\theta}$$
 $\exists t, \sec\theta = \frac{1}{\cos\theta}$

6. (i)
$$\tan\theta = \frac{1}{\cot\theta}$$
 বা, $\cot\theta = \frac{1}{\tan\theta}$ (ii) $\tan\theta = \frac{\sin\theta}{\cos\theta}$ এবং $\cot\theta = \frac{\cos\theta}{\sin\theta}$

7.
$$\sin^2\theta + \cos^2\theta = 1$$
 वा, $\cos^2\theta = 1 - \sin^2\theta$ वा, $\sin^2\theta = 1 - \cos^2\theta$

8.
$$\sec^2\theta - \tan^2\theta = 1$$
 $\exists \theta$, $\sec^2\theta = 1 + \tan^2\theta$ $\exists \theta$, $\tan^2\theta = \sec^2\theta - 1$

9.
$$\csc^2\theta - \cot^2\theta = 1$$
 $\exists t$, $\csc^2\theta = 1 + \cot^2\theta$ $\exists t$, $\cot^2\theta = \csc^2\theta - 1$

You can check it in Rokomary

sourced

and free to use

সূচক ও লগারিদমের সূত্রসমূহ:

$$1. \quad a^m \times a^n = a^{m+n}$$

$$3. \quad (a^m)^n = a^{mn}$$

5.
$$\sqrt[n]{a} = a^{n}$$

5.
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$
7. $x = \log_a N$ হলে, $a^x = N$ অথবা, $a^x = N$ হলে $x = \log_a N$

9.
$$\log_a \frac{M}{N} = \log_a M - \log_a N$$

$$11. \log_a b = \frac{1}{\log_b a}$$
 অথবা, $\log_b a = \frac{1}{\log_a b}$

13.
$$\log_a 1 = 0$$

$$2. \quad a^m \div a^n = a^{m-n}$$

$$4. \quad a^{-n} = \frac{1}{a^n}$$

6.
$$a^0 = 1$$

8.
$$\log_a MN = \log_a M + \log_a N$$

$$10. \log_a M^r = r \log_a M$$

12.
$$\log_a a = 1$$

বাস্তব সমস্যা সমাধানের সূত্রাবলিঃ

ক্রমিক নং	সূত্র	প্রতীকগুলোর বর্ণনা/পরিচয়	মনে রাখার উপায়
٥	দেয় বা প্রাপ্য বিষয়ক: দেয় বা প্রাপ্য, $A=qn$	q=জনপ্রতি দের বা প্রাপ্য টাকার পরিমাণ $n=$ লোকের সংখ্যা	A o Total Amount/ Allowance $q o$ Per Quantity $n o$ Number (সংখ্যা)
2	সময় ও কাজ বিষয়ক: কয়েকজন পোক একটি কাজ সম্পন্ন করপে, কাজের পরিমাণ, $W=qnx$	q= প্রত্যেক একক সময়ে কাজের যে অংশ সম্পন্ন করে $n=$ কাজ সম্পাদনকারীর সংখ্যা $x=$ কাজের মোট সময় $W=n$ জনে x সময়ে কাজের ব্লে অংশ সম্পন্ন করে	w o Work (কাজ) $q o Per Quantity$ $n o Number (সংখ্যা)$
9	সময় ও দূরত্ব বিষয়ক: নির্দিষ্ট সময়ে দূরত্ব, $d=vt$	u = গতিবেগ $t = $ মোট স্ময়	d o Distance (দ্রত্ব) v o Velocity (বেগ) t o Time (সময়)
8	নল ও চৌবাচ্চা বিষয়ক: নির্দিষ্ট সময়ে চৌবাচ্চায় পানির পরিমাণ, $Q(t)=Q_0\pm qt$	$Q_0=$ নলের মুখ খুলে দেওয়ার সময় চৌবাচ্চায় জমা পানির পরিমাণ। $q=$ প্রতি একক সময়ে নল দিয়ে যে পানি প্রবেশ করে অথবা বের হয়। $t=$ অতিক্রান্ত সময় $Q(t)=t$ সময়ে চৌবাচ্চায় পানির পরিমাণ (পানি প্রবেশ হওয়ার শর্তে '+' চিহ্ন এবং পানি বের হওয়ার শর্তে '-' চিহ্ন ব্যবহার করতে হবে)	
œ	শতকরা অংশ বিষয়ক: $p = br$	$b=$ মোট রাশি $r=$ শতকরা ভগ্নাংশ $=\frac{s}{100}=s\%$ $p=$ শতকরা অংশ $=b$ এর $s\%$	$p \to \text{Percentage}$ $r \to \text{Rate}$
S	লাভ-ক্ষতি বিষয়ক: $S=C(I\pm r)$ লাভের ক্ষেত্রে, $S={\rm C}\;(I+r)$ ক্ষতির ক্ষেত্রে, $S={\rm C}\;(I-r)$	S = বিক্রমূল্য $C =$ ক্রমূল্য $I =$ লাভ বা মুনাফা	S o Sale Price (বিক্রমমূল্য) $C o Cost Price (ক্রমমূল্য)$ $I o Interest (মুনাফা)$ $r o Rate (হার)$
٩	বিনিয়োগ-মুনাফা বিষয়ক: সরল মুনাফার ক্ষেত্রে, • $I = Pnr$ • $A = P + I = P + Pnr$ = P(1 + nr) চক্রবৃদ্ধি মুনাফার ক্ষেত্রে, (i) $A = P(1 + r)^n$	I=n সময় পরে মুনাফা $n=$ নির্দিষ্ট সময় $P=$ মূলধন $r=$ একক সময়ে একক মূলধনের মুনাফা $A=n$ সময় পরে মুনাফাসহ মূলধন	$I o ext{Interest (মুনাফা)} \ p o ext{Principle (মূলধন)} \ n o ext{Number (বছরের বা মাসের সংখ্যা} \ $

প্রয়োজনীয় সূত্রাবলি

ধারা সম্পর্কিত সূত্রাবলিঃ

গণিত

- 1. সমান্তর ধারার প্রথম পদ a এবং সাধারণ অন্তর d হলে
 - ☑ সমান্তর ধারাটি: a + (a + d) + (a + 2d) +
 - ✓ সমান্তর ধারার n তম পদ (সাধারণ পদ) = a + (n-1)d
 - ✓ n সংখ্যক পদের সমষ্টি $S_n = \frac{n}{2} \{2a + (n-1)d\}$
- 2. গুণোন্তর ধারার প্রথম পদ a এবং সাধারণ অনুপাত r হলে
 - ☑ গুণোভর ধারাটি: a + ar + ar² +
 - ৺ ভণোভর ধারার n তম পদ (সাধারণ পদ) = ar^{n-1}
 - ্রা n সংখ্যক পদের সমষ্টি $S_n = a.\frac{r^n-1}{r-1}$; যখন r>1 এবং $S_n = a.\frac{1-r^n}{1-r}$; যখন r<1
- 3. $1+2+3+...+n=\frac{n(n+1)}{2}$ [প্রথম n সংখ্যক স্বাভাবিক সংখ্যার সমষ্টি]
- 4. $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ [প্রথম n সংখ্যক স্বাভাবিক সংখ্যার বর্গের সমষ্টি]
- 5. $1^3 + 2^3 + 3^3 + \dots + n^3 = \left\{\frac{n(n+1)}{2}\right\}^2$ [প্রথম n সংখ্যক স্বাভাবিক সংখ্যার ঘনের সমষ্টি]

পরিমিতির সূত্রাবলিঃ

- ☑ কোনো ত্রিভূজের ক্ষেত্রে:
 - i. ত্রিভুজের ভূমি a একক ও উচ্চতা b একক হলে ত্রিভুজের ক্ষেত্রফল $=(\frac{1}{2}\times ভূমি\times উচ্চতা)$ বর্গ একক $=\frac{1}{2}ab$ বর্গ একক
 - ii. ত্রিভূজের দুইবাহ ও অন্তর্ভুক্ত কোণ দেওয়া থাকলে, ত্রিভূজের ক্ষেত্রফল = 1/2 ab sinC বর্গ একক [এখানে ∠C হলো a ও b বাহুর অন্তর্ভুক্ত কোণ]
 - iii. ত্রিভুজের তিনটি বাহর দৈর্ঘ্য a একক, b একক ও c একক হলে ত্রিভুজের ক্ষেত্রফল $= \sqrt{s(s-a)(s-b)(s-c)}$ বর্গ একক

[এখানে অর্থপরিসীমা $s = \frac{a + b + c}{2}$ একক]

- extstyle ex
- ☑ সমবাহ ত্রিভুজের ক্ষেত্রে: সমবাহ ত্রিভুজের প্রতিটি বাহ a একক হলে, সমবাহ ত্রিভুজের ক্ষেত্রফল = $\frac{\sqrt{3}}{4}$ a² বর্গ একক

এবং সমবাহু ত্রিভুজের উচ্চতা
$$h = \frac{\sqrt{3}a}{2}$$
 একক

✓ সমির্বিছ ত্রিভুজের ক্ষেত্রে: সমির্বিছ ত্রিভুজের ভূমি b একক এবং সমান সমান বাছ a একক হলে,

সমদ্বিবাছ ত্রিভুজের ক্ষেত্রফল
$$= \frac{b}{4} \sqrt{4a^2 - b^2} \,$$
 বর্গ একক

✓ আয়তকেয়:

আয়তক্ষেত্রের দুইটি বাহু a একক, b একক হলে-

- ক্ষেত্ৰফল = ab বৰ্গ একক
- পরিসীমা = 2(a + b) একক
- কর্ণের দৈর্ঘ্য = \(\sqrt{a}^2 + b^2 \) একক

✓ বর্গক্ষেত্র:

বর্গক্ষেত্রের বাহুর দৈর্ঘ্য a একক হলে-

- ক্ষেত্ৰফল = a² বৰ্গ একক
- পরিসীমা = 4a একক
- কর্ণের দৈর্ঘ্য = a√2 একক

☑ সামান্তরিক:

সামান্তরিকের ভূমি b একক ও উচ্চতা h একক হলে-

ক্ষেত্ৰফল = bh বৰ্গ একক

সামান্তরিকের কর্ণের দৈর্ঘ্য d একক ও ঐ কর্ণের বিপরীত কৌণিক বিন্দু থেকে অন্ধিত লম্বের দৈর্ঘ্য h একক হলে-

- ক্ষেত্রফল = dh বর্গ একক

রম্বসের দুইটি কর্ণ d1 একক ও d2 একক হলে-

ক্ষেত্ৰফল = ¹/₂ d₁d₂ বৰ্গ একক