Foundations of Machine Learning

Module 4:

Part C: Naïve Bayes

Sudeshna Sarkar IIT Kharagpur

Bayes Theorem

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$

Naïve Bayes

Bayes classification

$$P(Y \mid \mathbf{X}) \propto P(\mathbf{X} \mid Y)P(Y) = P(X_1, \dots, X_n \mid Y)P(Y)$$

Difficulty: learning the joint probability $P(X_1, \dots, X_n \mid C)$

Naïve Bayes classification

Assume all input features are conditionally independent!

$$P(X_{1}, X_{2}, \dots, X_{n} | Y) = P(X_{1} | X_{2}, \dots, X_{n}, Y) P(X_{2}, \dots, X_{n} | Y)$$

$$= P(\overline{X_{1} | Y}) P(X_{2}, \dots, X_{n} | Y)$$

$$= P(X_{1} | Y) P(X_{2} | Y) \dots P(X_{n} | Y)$$

Naïve Bayes

Bayes rule:

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) P(X_1 ... X_n | Y = y_k)}{\sum_j P(Y = y_j) P(X_1 ... X_n | Y = y_j)}$$

Assuming conditional independence among X_i's:

$$P(Y = y_k | X_1 \dots X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

So, classification rule for $X^{new} = \langle X_1, ..., X_n \rangle$ is:

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

Naïve Bayes Algorithm – discrete X_i

• Train Naïve Bayes (examples) for each* value y_k estimate $\pi_k \equiv P(Y=y_k)$ for each* value x_{ij} of each attribute X_i estimate $\theta_{ijk} \equiv P(X_i=x_{ij}|Y=y_k)$

• Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$
$$Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i \theta_{ijk}$$

^{*} probabilities must sum to 1, so need estimate only n-1 parameters...

Estimating Parameters: Y, X_i discrete-valued

Maximum likelihood estimates (MLE's):

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$

$$\widehat{\theta}_{ijk} = \widehat{P}(X_i = x_{ij} | Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\}}{\#D\{Y = y_k\}}$$

Number of items in set D for which $Y=y_k$

Example

Example: Play Tennis

PlayTennis: training examples					
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Example

Learning Phase

Outlook	Play=Ye	Play=No
	S	
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play= <i>Yes</i>	Play= <i>No</i>
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	Play= <i>Yes</i>	Play=No
High	3/9	4/5
Normal	6/9	1/5

Wind	Play= <i>Yes</i>	Play= <i>No</i>
Strong	3/9	3/5
Weak	6/9	2/5

$$P(Play=Yes) = 9/14$$
 $P(Play=No) = 5/14$

Example

Test Phase

P(Play=Yes) = 9/14

- Given a new instance, predict its label
 - **X**'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)
- Look up tables achieved in the learning phrase

P(Outlook=
$$Sunny \mid Play=Yes$$
) = 2/9
P(Temperature= $Cool \mid Play=Yes$) = 3/9
P(Huminity= $High \mid Play=Yes$) = 3/9
P(Wind= $Strong \mid Play=No$) = 3/5

 $P(Yes | \mathbf{x}') \approx [P(Sunny | Yes)P(Cool | Yes)P(High | Yes)P(Strong | Yes)]P(Play=Yes) = 0.0053$ $P(No|\mathbf{X}') \approx [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206$ Given the fact $P(Yes | \mathbf{x}') < P(No | \mathbf{x}')$, we label \mathbf{x}' to be "No".

Estimating Parameters: Y, X_i discrete-valued

If unlucky, our MLE estimate for $P(X_i \mid Y)$ may be zero.

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_{ij}|Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\}}{\#D\{Y = y_k\}}$$

MAP estimates:

$$\widehat{\pi}_k = \widehat{P}(Y = y_k) = \frac{\#D\{Y = y_k\} + l}{|D| + lR}$$
 Only difference: "imaginary" examples

Only difference:

$$\widehat{\theta}_{ijk} = \widehat{P}(X_i = x_{ij} | Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\} + l}{\#D\{Y = y_k\} + lM}$$

Naïve Bayes: Assumptions of Conditional Independence

Often the X_i are not really conditionally independent

- We can use Naïve Bayes in many cases anyway
 - often the right classification, even when not the right probability

Gaussian Naïve Bayes (continuous X)

- Algorithm: Continuous-valued Features
 - Conditional probability often modeled with the normal distribution

$$P(X_i = x \mid Y = y_k) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x-\mu_{ik})^2}{2\sigma_{ik}^2}}$$

Sometimes assume variance

- is independent of Y (i.e., ♠_i),
- or independent of X_i (i.e., \star_k)
- or both (i.e., ♦)

Gaussian Naïve Bayes Algorithm – continuous X_i (but still discrete Y)

• Train Naïve Bayes (examples) for each value y_k estimate* $\pi_k \equiv P(Y=y_k)$ for each attribute X_i estimate class conditional mean , variance μ_{ik} , σ_{ik}

• Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$
 $Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i Normal(X_i^{new}, \mu_{ik}, \sigma_{ik})$

Estimating Parameters: Y discrete, X_i continuous

$$\widehat{\sigma}_{ik}^2 = \frac{1}{\sum_j \delta(Y^j = y_k)} \sum_j (X_i^j - \widehat{\mu}_{ik})^2 \delta(Y^j = y_k)$$

Naïve Bayes

- Example: Continuous-valued Features
 - Temperature is naturally of continuous value.

Yes: 25.2, 19.3, 18.5, 21.7, 20.1, 24.3, 22.8, 23.1, 19.8

No: 27.3, 30.1, 17.4, 29.5, 15.1

Estimate mean and variance for each class

$$\mu = \frac{1}{N} \sum_{n=1}^{N} x_n, \quad \sigma^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu)^2 \qquad \mu_{Yes} = 21.64, \quad \sigma_{Yes} = 2.35$$

$$- \text{ Lear, ping Phase: } \text{but put two Gaussian } \text{ models for P(tens) | C)}$$

$$\hat{P}(x \mid Yes) = \frac{1}{2.35\sqrt{2\pi}} \exp\left(-\frac{(x-21.64)^2}{2\times2.35^2}\right) = \frac{1}{2.35\sqrt{2\pi}} \exp\left(-\frac{(x-21.64)^2}{11.09}\right)$$

$$\hat{P}(x \mid No) = \frac{1}{7.09\sqrt{2\pi}} \exp\left(-\frac{(x-23.88)^2}{2\times7.09^2}\right) = \frac{1}{7.09\sqrt{2\pi}} \exp\left(-\frac{(x-23.88)^2}{50.25}\right)$$

The independence hypothesis...

- makes computation possible
- yields optimal classifiers when satisfied
- Rarely satisfied in practice, as attributes (variables)
 are often correlated.
- To overcome this limitation:
 - Bayesian networks combine Bayesian reasoning with causal relationships between attributes

Thank You