Una aproximación a sen(x)

Luis Enrique Serrano Gutiérrez

12 de noviembre de 2019

Resumen

Se presenta una forma de calcular el seno de un número basada en la publicación "Algoritmos Sencillos para Evaluar Funciones Elementales" escrita por el profesor Pablo Barrera Sánchez [PBS1996].

Las ideas

La base para este procedimiento son los siguientes dos hechos:

$$1. \lim_{x \to 0} \frac{sen(x)}{x} = 1$$

Esto quiere decir que para valores de α muy cercanos a cero el seno (α) es muy cercano a α , por ejemplo:

i	$\alpha = 1/i^i$	$sen(\alpha)$	α -sen(α)
1	0.500000000000	0.479425538604	-0.020574461396
2	0.250000000000	0.247403959255	-0.002596040745
3	0.125000000000	0.124674733385	-0.000325266615
4	0.062500000000	0.062459317842	-0.000040682158
5	0.031250000000	0.031244913985	-0.000005086015

Cuadro 1: Comparación $sen(\alpha)$ contra α para valores de α cercanos a cero

2.
$$sen(2\alpha) = 2sen(\alpha)\sqrt{1 - sen^2(\alpha)}$$

Este hecho se deduce de las identidades:

$$sen(2\alpha) = 2sen(\alpha)cos(\alpha)$$

 $sen^2(\alpha) + cos^2(\alpha) = 1$

El procedimiento

Si se encuentra la forma de llevar el valor α lo suficientemente cerca a cero se tendría la posibilidad de aplicar la idea del punto 1, ese nuevo valor cercano a cero(que se calcula a partir de α) se llamará β y se define como: $\beta = \frac{\alpha}{25}$.

Este valor es lo suficientemente pequeño para que: $sen(\beta) \approx \beta$.

Por ejemplo, si $\alpha=0.1$ el valor de β se calcula de la siguiente forma: $\beta=\frac{\alpha}{2^5}=\frac{0.1}{2^5}=\frac{0.1}{32}=0.003125$. Para el valor $\beta=0.003125$ se cumple que $sen(\beta)\approx\beta$ para verificarlo se debe calcular la diferencia entre sen(0.003125) y 0.003125.

$$sen(\beta) \approx 0.003125$$

Ahora se conoce el valor de $sen(\beta)$ pero el problema original es calcular $sen(\alpha)$ por lo que para "regresar" al valor original se hace uso del punto dos, te tal forma que:

$$sen(2\beta) = 2 * sen(\beta) * \sqrt{1 - sen^2(\beta)} = 2 * (0.003125) * \sqrt{1 - (0.003125)^2} = 0.00625 * \sqrt{1 - 0.000009} = 0.00625 * \sqrt{0.9999902} = 0.00625 * 0.9999951 = 0.006250$$

$$sen(2\beta) = 0.006250$$

del valor original.

Se ha obtenido en forma numérica el valor de $sen(2\beta)$, observemos lo siguiente: $sen(2\beta) = sen(2\frac{\alpha}{2^5}) = sen(\frac{\alpha}{2^{5-1}}) = sen(\frac{\alpha}{2^4})$ el exponente del denominador se redujo en 1, de 5 a 4, por lo que se está una potencia más cerca

Ahora se calcula el seno del doble del ángulo anterior, 2β

$$sen(2(2\beta)) = 2 * sen(2\beta) * \sqrt{1 - sen^2(2\beta)} = 2 * (0.006250) * \sqrt{1 - (0.006250)^2} = 0.0124999 * \sqrt{1 - 0.0000391} = 0.0124999 * \sqrt{0.9999609} = 0.0124999 * 0.9999805 = 0.0124997$$

$$sen(2(2\beta)) = 0.0124997$$

$$sen(2 \cdot 2\beta) = 0.0124997$$

Observe lo siguiente: $sen(2(2\beta)) = sen(2\frac{\alpha}{2^4}) = sen(\frac{\alpha}{2^{4-1}}) = sen(\frac{\alpha}{2^3})$, y nuevamente se esta una potencia más cerca del valor original, por lo que al calcular el seno del doble del ángulo anterior tres veces más se tendrá el seno de α que es el objetivo.

Ahora se calcula el seno del doble del ángulo anterior, $2 \cdot 2\beta$

$$sen(2(2\cdot 2\beta)) = 2*sen(2\cdot 2\beta)*\sqrt{1-sen^2(2\cdot 2\beta)} = 2*(0.0124997)*\sqrt{1-(0.0124997)^2} = 0.0249994*\sqrt{1-0.0001562} = 0.0249994*\sqrt{0.9998438} = 0.0249994*0.9999219 = 0.0249974 \\ sen(2(2\cdot 2\beta)) = 0.0249974$$

y, nuevamente: $sen(2(2 \cdot 2\beta)) = sen(2\frac{\alpha}{2^3}) = sen(\frac{\alpha}{2^{3-1}}) = sen(\frac{\alpha}{2^2})$ Ahora se calcula el seno del doble del ángulo anterior, $2 \cdot 2 \cdot 2\beta$

$$\begin{array}{c} sen(2(2\cdot 2\cdot 2\beta))=2*sen(2\cdot 2\cdot 2\beta)*\sqrt{1-sen^2(2\cdot 2\cdot 2\beta)}=\\ 2*(0.0249974)*\sqrt{1-(0.0249974)^2}=\\ 0.0499949*\sqrt{1-0.0006249}=\\ 0.0499949*\sqrt{0.9993751}=\\ 0.0499949*0.9996875=0.0499793\\ sen(2(2\cdot 2\cdot 2\beta))=0.0499793\\ \hline \left[sen(2\cdot 2\cdot 2\cdot 2\beta))=0.0499793\right] \end{array}$$

y, nuevamente: $sen(2(2 \cdot 2 \cdot 2\beta)) = sen(2\frac{\alpha}{2^2}) = sen(\frac{\alpha}{2^{2-1}}) = sen(\frac{\alpha}{2^1}) = sen(\frac{\alpha}{2^2})$. Por lo que calculando una vez mas el seno del doble del ángulo anterior el exponente del 2 del denominado será cero y se tendrá el valor del seno de α , que es el problema original que se quería resolver.

Ahora se calcula el seno del doble del ángulo anterior, $2 \cdot 2 \cdot 2 \cdot 2\beta$

$$sen(2(2 \cdot 2 \cdot 2 \cdot 2\beta)) = 2 * sen(2 \cdot 2 \cdot 2 \cdot 2\beta) * \sqrt{1 - sen^2(2 \cdot 2 \cdot 2 \cdot 2\beta)} = 2 * (0.0499793) * \sqrt{1 - (0.0499793)^2} = 0.0999585 * \sqrt{1 - 0.0024979} = 0.0999585 * \sqrt{0.9975021} = 0.0999585 * (0.9987503) = 0.0998336$$

$$sen(2(2 \cdot 2 \cdot 2 \cdot 2\beta)) = 0.0998336$$

$$sen(2(2 \cdot 2 \cdot 2 \cdot 2\beta)) = 0.0998336$$

$$sen(2(2 \cdot 2 \cdot 2 \cdot 2\beta)) = sen(2(2 \cdot 2 \cdot 2 \cdot 2\beta)) = s$$

Preguntas

Esta forma de calcular el seno de un ángulo nos deja algunas preguntas, a saber:

- 1. ¿ El valor de la potencia, en el ejemplo se utilizó 5, es adecuado para todos los ángulos a los que requiera calcular el seno?
- 2. ¿ Ente mayor sea n la precisión se incrementará?

El código

```
#
def seno(alfa):
    alfa = 0.1
    Beta = alfa/2**5
    resultado = Beta
    return (resultado)
if __name__ = "__main__":
    seno(.5)
    print("Este_bloque_se_ejecuta_si_el_programa_\
es_llamado_desde_IDLE, _la_variable___name___tiene_\
almacenada_la_cadena_'__main__''_")
    print ( __name__ )
else:
    print("Si_el_archivo_se_utiliza_como_modulo,\
_es_decir_se_importa,_la_variable___name___contiene
el_nombre_nombre_del_archivo")
    print ( __name__ )
```

Referencias

[PBS1996] Barrera Sánchez Pablo, Algoritmos Sencillos para Evaluar Funciones Elementales, 1996.