Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

А.В.Пастор

Дискретная математика Глава 5. Рекуррентные соотношения в комбинаторике

А. В. Пастор

17.10.2022

Определение

Числа Фибоначчи — последовательность, задаваемая соотношениями $F_1=F_2=1$ и $F_{n+1}=F_n+F_{n-1}$ при n>1.

Замечание

- Начало последовательности:
- $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, \dots$
- Можно считать, что $F_0 = 0$.
- Задача о кроликах (Леонардо Пизанский, \sim 1202 г.)
 - Новорожденная пара кроликов начинает давать потомство через месяц;
 - взрослая пара кроликов раз в месяц производит на свет одну новорожденную пару;
 - изначально есть одна новорожденная пара кроликов.
 - Сколько кроликов будет через год?

Свойства чисел Фибоначчи

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

А.В.Пастор

$$F_k F_\ell + F_{k-1} F_{\ell-1} = F_{k+\ell-1}.$$

Доказательство.

$$\underline{\ell = 1}: F_k F_1 + F_{k-1} F_0 = F_k \cdot 1 + F_{k-1} \cdot 0 = F_k = F_{k+1-1}.$$

$$\underline{\ell \to \ell + 1} \colon F_k F_{\ell+1} + F_{k-1} F_{\ell} = F_k (F_{\ell} + F_{\ell-1}) + F_{k-1} F_{\ell} = F_k F_{\ell} + F_k F_{\ell-1} + F_{k-1} F_{\ell} = (F_k + F_{k-1}) F_{\ell} + F_k F_{\ell-1} = F_k F_{\ell} F_{\ell} + F_k F_{\ell} F_{\ell} + F_k F_{\ell} F_{\ell} = F_k F_{\ell} F_{\ell} + F_k F_{\ell} +$$

$$=F_{k+1}F_{\ell}+F_kF_{\ell-1}=F_{(k+1)+\ell-1}=F_{k+(\ell+1)-1}.$$

Следствие

$$F_n^2 + F_{n-1}^2 = F_{2n-1}.$$

Теорема $\sum F_k = F_{n+2} - 1$.

Свойства чисел Фибоначчи

Доказательство.
$$\underline{n=1}$$
: $F_1=F_3-1$.

$$\underline{n \to n+1}$$
: $\sum_{k=1}^{n+1} F_k = \sum_{k=1}^n F_k + F_{n+1} = (F_{n+2}-1) + F_{n+1} = F_{n+3}-1$. Теорема

$$F_1 + F_3 + \ldots + F_{2n-1} = F_{2n};$$

 $F_2 + F_4 + \ldots + F_{2n} = F_{2n+1} - 1.$

Доказательство.
$$\underline{n=1}$$
: $F_1=F_2$; $F_2=F_3-1$.

Доказательство.
$$\underline{n=1}$$
: $F_1=F_2$; $F_2=F_3$

$$F_2$$
; $F_2 = F_3 - 1$.

 $F_2 + F_4 + \ldots + F_{2n} + F_{2n+2} = (F_{2n+1} - 1) + F_{2n+2} = F_{2n+3} - 1.$

$$n \to n+1$$
: $F_1 + F_3 + \ldots + F_{2n-1} + F_{2n+1} = F_{2n} + F_{2n+1} = F_{2n+2}$;

Лискретная математика Глава 5.

Рекуррентные соотношения в комбинаторике.

Числа Каталана

Определение

<u>Числа Каталана</u> — последовательность, задаваемая соотношениями

$$c_0 = 1$$
 и $c_{n+1} = c_0 c_n + c_1 c_{n-1} + \ldots + c_n c_0$ при $n \ge 0$.

Замечание

- 1. Eugène Charles Catalan (1814–1894).
- 2. Начало последовательности (начиная с *c*₀): 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, . . .

Правильные скобочные последовательности

Определение

Последовательность открывающих и закрывающих скобок называется *правильной скобочной последовательностью*, если она удовлетворяет следующим двум условиям:

- количества открывающих и закрывающих скобок равны;
- ightharpoonup для любого k среди первых k скобок открывающих не меньше, чем закрывающих.

математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Дискретная

Примеры

- 1. ()(()()) правильная скобочная последовательность;
- 2. ())((()) неправильная скобочная последовательность.

Теорема

Количество правильных скобочных последовательностей из 2n скобок равно c_n .

Доказательство. Обозначим через 5, количество правильных скобочных

последовательностей из 2n скобок.

- Нужно доказать, что $s_n = c_n$ при всех $n \ge 0$.
- $s_0 = c_0 = 1$, поскольку есть ровно одна правильная скобочная последовательность длины 0 (пустая).
- Докажем, что последовательность s_n задается тем же рекуррентным соотношением, что и c_n (т. е. что $s_{n+1} = s_0 s_n + s_1 s_{n-1} + \ldots + s_n s_0$ при $n \ge 0$).
- Тогда индукцией по n получим, что $s_n = c_n$ при всех n > 0.

Рекуррентные соотношения в комбинаторике.

Дискретная математика. Глава 5.

• Рассмотрим правильную скобочную последовательность длины 2n + 2.

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

• Рассмотрим правильную скобочную последовательность длины 2n + 2.

• Отметим в ней первую и m-ю скобки, где $m = \min\{k \mid \text{среди первых } k \text{ скобок поровну "(" и ")"}\}.$

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

А.В.Пастор

• Рассмотрим правильную скобочную последовательность длины 2n+2.

(()(()))(())

- Отметим в ней первую и m-ю скобки, где $m = \min\{k \mid \text{среди первых } k \text{ скобок поровну "(" и ")"}\}.$
 - ▶ Очевидно, что, $m = 2\ell + 2$, где $\ell \in [0..n]$;
 - между первой и m-й скобками находится правильная скобочная последовательность длины 2ℓ ;
 - ightharpoonup а после m-й скобки правильная скобочная последовательность длины $2(n-\ell)$.
- Обратно, любой упорядоченной паре правильных скобочных последовательностей длин 2ℓ и $2(n-\ell)$ соответствует правильная скобочная последовательность длины 2n+2.
- Итого, получаем $s_\ell s_{n-\ell}$ правильных скобочных последовательностей при данном ℓ .
- Просуммировав по всем ℓ получим $s_{n+1} = s_0 s_n + s_1 s_{n-1} + \ldots + s_n s_0$.

Следствие 1

Количество последовательностей длины 2n, в которых n членов равны 1, n членов равны -1 и все частичные суммы $(\tau. e. cymmu nepsux k членов при <math>k \le n)$ неотрицательны, равно c_n .

Доказательство. Биекция со скобочными последовательностями.

- Открывающей скобке соответствует 1;
- ullet закрывающей скобке соответствует -1.

Следствие 2

Количество путей из точки (0,0) в точку (n,n) по линиям клетчатой сетки, идущих вверх и вправо, и не опускающихся ниже прямой y=x, равно c_n .

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Рассмотрим все 2n-звенные ломаные, ведущие из (0,0) в (2n,0) по точкам с целыми координатами, звенья которых — диагонали единичных квадратиков.

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Рассмотрим все 2n-звенные ломаные, ведущие из (0,0) в (2n,0) по точкам с целыми координатами, звенья которых — диагонали единичных квадратиков.

▶ Ломаная — хорошая, если она не опускается ниже оси ОХ

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Рассмотрим все 2n-звенные ломаные, ведущие из (0,0) в (2n,0) по точкам с целыми координатами, звенья которых — диагонали единичных квадратиков.

▶ Ломаная — хорошая, если она не опускается ниже оси ОХ и плохая в противном случае.

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Рассмотрим все 2n-звенные ломаные, ведущие из (0,0) в (2n,0) по точкам с целыми координатами, звенья которых — диагонали единичных квадратиков.

- Всего ломаных C_{2n}^n , из них хороших c_n .
- А сколько плохих ломаных?

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Рассмотрим все 2n-звенные ломаные, ведущие из (0,0) в (2n,0) по точкам с целыми координатами, звенья которых — диагонали единичных квадратиков.

- Всего ломаных C_{2n}^n , из них хороших c_n .
- А сколько плохих ломаных?
- ightharpoonup Плохая ломаная пересекает прямую y=-1.

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Рассмотрим все 2n-звенные ломаные, ведущие из (0,0) в (2n,0) по точкам с целыми координатами, звенья которых — диагонали единичных квадратиков.

- ▶ Ломаная хорошая, если она не опускается ниже оси ОХ и плохая в противном случае.
 - Всего ломаных C_{2n}^n , из них хороших c_n .
 - А сколько плохих ломаных?
- ▶ Плохая ломаная пересекает прямую y = -1.
 - Рассмотрим первую точку пересечения и отразим идущую после этой точки часть ломаной относительно прямой y=-1.

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Рассмотрим все 2n-звенные ломаные, ведущие из (0,0) в (2n,0) по точкам с целыми координатами, звенья которых — диагонали единичных квадратиков.

- ▶ Ломаная хорошая, если она не опускается ниже оси ОХ и плохая в противном случае.
 - Всего ломаных C_{2n}^n , из них хороших c_n .
 - А сколько плохих ломаных?
- ▶ Плохая ломаная пересекает прямую y = -1.
 - Рассмотрим первую точку пересечения и отразим идущую после этой точки часть ломаной относительно прямой y=-1.
 - Получим ломаную, ведущую из (0,0) в (2n,-2).

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Рассмотрим все 2n-звенные ломаные, ведущие из (0,0) в (2n,0) по точкам с целыми координатами, звенья которых — диагонали единичных квадратиков.

- ▶ Ломаная хорошая, если она не опускается ниже оси ОХ и плохая в противном случае.
 - Всего ломаных C_{2n}^n , из них хороших c_n .
 - А сколько плохих ломаных?
- ▶ Плохая ломаная пересекает прямую y = -1.
 - Рассмотрим первую точку пересечения и отразим идущую после этой точки часть ломаной относительно прямой y=-1.
 - Получим ломаную, ведущую из (0,0) в (2n,-2).
- ▶ Обратно, любая ломаная из (0,0) в (2n,-2) пересекает y=-1.

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Рассмотрим все 2n-звенные ломаные, ведущие из (0,0) в (2n,0) по точкам с целыми координатами, звенья которых — диагонали единичных квадратиков.

- ▶ Ломаная хорошая, если она не опускается ниже оси ОХ и плохая в противном случае.
 - Всего ломаных C_{2n}^n , из них хороших c_n .
 - А сколько плохих ломаных?
- ▶ Плохая ломаная пересекает прямую y = -1.
 - Рассмотрим первую точку пересечения и отразим идущую после этой точки часть ломаной относительно прямой y=-1.
 - Получим ломаную, ведущую из (0,0) в (2n,-2).
- ightharpoonup Обратно, любая ломаная из (0,0) в (2n,-2) пересекает y=-1.
 - Рассмотрим первую точку пересечения и отразим идущую после этой точки часть ломаной относительно прямой y=-1.
 - Получим плохую ломаную из (0,0) в (2n,0).

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Рассмотрим все 2n-звенные ломаные, ведущие из (0,0) в (2n,0) по точкам с целыми координатами, звенья которых — 0-1 диагонали единичных квадратиков. 0-2 Ломаная — хорошая, если она не опускается

- 1 0 1 2n x
- ниже оси OX и плохая в противном случае.
 Всего ломаных C_{2n}^n , из них хороших c_n .
- А сколько плохих ломаных?
- ▶ Плохая ломаная пересекает прямую y = -1.
 - Рассмотрим первую точку пересечения и отразим идущую после этой точки часть ломаной относительно прямой y=-1.
- Получим ломаную, ведущую из (0,0) в (2n,-2). • Обратно, любая ломаная из (0,0) в (2n,-2) пересекает y=-1.
- Рассмотрим первую точку пересечения и отразим идущую после этой точки часть ломаной относительно прямой y=-1.
- Получим плохую ломаную из (0,0) в (2n,0).
 ▶ Итого, плохих ломаных столько же, сколько ломаных
- итого, плохих ломаных столько же, сколько ломаниз (0,0) в (2n,-2). Легко видеть, что их C_{2n}^{n-1} .

математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Лискретная

Числа Каталана: явная формула

Теорема

$$c_n = \frac{C_{2n}^n}{n+1}$$

Доказательство.

- c_n количество хороших ломаных из (0,0) в (2n,0).
- Всего ломаных C_{2n}^n .
- Плохих ломаных C_{2n}^{n-1} .
- Следовательно,

$$c_n = C_{2n}^n - C_{2n}^{n-1} = \frac{(2n)!}{n!n!} - \frac{(2n)!}{(n-1)!(n+1)!} = \frac{(2n)!(n+1-n)}{n!(n+1)!} = \frac{C_{2n}^n}{n+1}.$$

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Определение

Триангуляцией многоугольника называется такое разбиение его на треугольники, при котором любые два треугольника либо не имеют общих точек, либо имеют ровно одну общую точку (вершину), либо имеют общую сторону.

Замечание

- Триангуляцию многоугольника можно рассматривать как плоский граф. Все его грани, кроме внешней, будут треугольниками.
- Далее мы будем рассматривать *триангуляции многоугольника его диагоналями*, т. е. вершинами триангуляции будут вершины многоугольника, а ребрами стороны и диагонали многоугольника.
- В курсе теории графов было доказано, что в любой триангуляции k-угольника его диагоналями участвуют ровно k-3 диагонали, которые разбивают k-угольник ровно на k-2 треугольника.

Теорема

Количество способов триангулировать выпуклый (n+2)-угольник его диагоналями равно c_n .

Доказательство. Индукция по n. n = 0, n = 1: утверждение очевидно.

 $\underline{0,\ldots,n o n+1}$: Пусть $A_1\ldots A_{n+3}$ — выпуклый (n+3)-угольник.

- Сторона A_1A_{n+3} входит в некоторый треугольник разбиения.
- Пусть его третья вершина A_{m+2} , где $0 \le m \le n$.
- ullet Удалив $\triangle A_1 A_{m+2} A_{n+3}$, получим (m+2)-угольник и (n-m+2)-угольник.
- По индукционному предположению, их можно триангулировать c_m и c_{n-m} способами соответственно.
- Итого, получаем $\sum_{m=0}^{n} c_m c_{n-m} = c_{n+1}$ триангуляций.

Следствие 1

$$c_n = \frac{n+2}{2(n-1)} \sum_{k=1}^{n-1} c_k c_{n-k},$$
 при $n \ge 2$.

Доказательство. Рассмотрим триангуляцию выпуклого (n+2)-угольника.

- Вместо того, чтобы нумеровать его вершины, будет считать, что в (n+2)-угольнике есть выделенная сторона.
 - ▶ Тогда нумерация вершин задается однозначно.
- Выберем диагональ триангуляции и направление на ней.
 - ightharpoonup Это можно сделать 2(n-1) способами.
- Итого, получили $2(n-1)c_n$ триангуляций с отмеченной ориентированной диагональю.

Далее, мы посчитаем их количество другим способом

- ► Таких пар $\sum_{i=1}^{n-1} c_i c_{n-i}$.
- ▶ В каждом многоугольнике рассмотренной пары есть выделенная сторона.
- Склеим получившиеся многоугольники по их выделенным сторонам.
 - ▶ Получим триангуляцию (n + 2)-угольника.
 - ▶ Отметим в ней диагональ, по которой произошла склейка.
- Направление выберем так, чтобы первый многоугольник был слева. Осталось выделить одну из сторон полученного (n+2)-угольника.
- ▶ Это можно сделать n+2 способами.
- Итого, получаем $(n+2)\sum_{k=1}^{n-1}c_kc_{n-k}$ триангуляций с отмеченной ориентированной диагональю.
- Следовательно, $2(n-1)c_n = (n+2)\sum_{k=1}^{n-1} c_k c_{n-k}$.

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Простая рекуррента для чисел Каталана

Следствие 2

$$c_{n+1} = \frac{2(2n+1)}{n+2}c_n$$
, при $n \ge 0$.

Доказательство. При n=0 и n=1 проверяется непосредственно.

При n ≥ 2:

$$c_{n+1} = c_0c_n + c_1c_{n-1} + \ldots + c_{n-1}c_1 + c_nc_0;$$

$$c_n = \frac{n+2}{2(n-1)}(c_1c_{n-1} + \ldots + c_{n-1}c_1).$$

• Следовательно,

$$c_{n+1} = 2c_n + \frac{2(n-1)}{n+2}c_n = \frac{2(2n+1)}{n+2}c_n.$$

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Другое доказательство явной формулы

Следствие 3 $c_n = \frac{2^n(2n-1)!!}{(n+1)!!} = \frac{C_{2n}^n}{n+1}$, при n > 0.

Доказательство. Равенство
$$c_n = \frac{2^n(2n-1)!!}{(n+1)!}$$
 доказывается индукцией по n .

$$\underline{n=1}$$
: $c_1=1=\frac{2^1\cdot 1!!}{2!}$.

 $\underline{n \rightarrow n+1}$:

$$c_{n+1} = \frac{2(2n+1)}{n+2}c_n = \frac{2(2n+1)}{n+2} \cdot \frac{2^n(2n-1)!!}{(n+1)!} = \frac{2^{n+1}(2n+1)!!}{(n+2)!}.$$

• Далее,

$$\frac{2^{n}(2n-1)!!}{(n+1)!} = \frac{2^{n}n!(2n-1)!!}{n!(n+1)!} = \frac{(2n)!!(2n-1)!!}{n!(n+1)!} = \frac{(2n)!}{n!(n+1)!} = \frac{C_{2n}^{n}}{n+1}.$$

математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Дискретная

Определение

- *Разбиением* множества X называется его представление в виде $X = X_1 \cup X_2 \cup \ldots \cup X_k$, где все подмножества X_k непусты и попарно не пересекаются.
- Разбиения, отличающиеся лишь нумерацией подмножеств, считаются одинаковыми.
- Подмножества X_i называются блоками или частями разбиения.
- Числом Белла B_n называется число разбиений n-элементного множества.
- Будем считать, что $B_0 = 1$.

Пример

Трехэлементное множество можно разбить пятью способами:

```
\{1,2,3\} = \{1,2,3\};

\{1,2,3\} = \{1,2\} \cup \{3\};

\{1,2,3\} = \{1,3\} \cup \{2\};

\{1,2,3\} = \{2,3\} \cup \{1\};

\{1,2,3\} = \{1\} \cup \{2\} \cup \{3\}.

Следовательно. B_3 = 5.
```

Замечание

- 1. Eric Temple Bell (1883–1960).
- 2. Начало последовательности (начиная с B_0): 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, . . .

Рекуррентная формула для чисел Белла

Теорема

$$B_{n+1} = \sum_{i=0}^n C_n^i B_{n-i}.$$

Доказательство.

- Пусть $X_1 \cup ... \cup X_k$ разбиение множества [1..n + 1];
 - ▶ не умаляя общности, $n+1 \in X_k$.
- ullet Тогда $X_1 \cup \ldots \cup X_{k-1}$ разбиение множества $[1..n+1] \setminus X_k$.
- Пусть $|X_k| = i + 1$ (где $i \in [0..n]$).
 - ightharpoonup Тогда X_k можно выбрать C_n^i способами.
 - ightharpoonup Оставшиеся элементы можно разбить B_{n-i} способами.
- Следовательно, всего $\sum_{i=0}^{n} C_{n}^{i} B_{n-i}$ разбиений.

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Треугольник Белла

Определение

- Определим числа $A_{n,k}$ (где $n \ge k \ge 1$) при помощи следующих соотношений: $A_{1,1} = 1$; $A_{n+1,1} = A_{n,n}$ и $A_{n+1,k+1} = A_{n+1,k} + A_{n,k}$.
- Эти числа образуют треугольник Белла.

						1						
					1		2					
				2		3		5				
			5		7		10		15			
		15		20		27		37		52		
	52		67		87		114		151		203	
203		255		322		409		523		674		877

Теорема

Для всех $n \in \mathbb{N}$ выполнено равенство $A_{n,n} = B_n$.

Доказательство. Докажем следующее более общее утверждение.

• $A_{n,k}$ — это количество таких разбиений множества [1..n], в которых в одном блоке с n могут встречаться только числа, меньшие k.

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Треугольник Белла

Индукция по n.

5аза: при n=1 утверждение очевидно.

Переход $(n \to n+1)$: будем доказывать индукцией по k.

- k=1: $A_{n+1,1}=A_{n,n}$ это количество разбиений множества [1..n+1], в которых n+1 является единственным элементом в своем блоке.
- ▶ $\underline{k \to k+1}$: пусть $X_1 \cup \ldots \cup X_s$ разбиение множества [1..n+1], в котором в одном блоке с n+1 могут быть только числа, меньшие k+1.
 - Не умаляя общности можно считать, что $n+1 \in X_s$.
 - ullet Далее возможны два случая: $k
 otin X_s$ и $k \in X_s$.
 - 1° Пусть $k \notin X_s$. Тогда в X_s кроме n+1 могут быть только числа, меньшие k. Таких разбиений $A_{n+1,k}$.
 - 2° Пусть $k \in X_s$. Тогда удалив k и уменьшив все большие k числа на 1, получим разбиение множества [1..n], в котором в одном блоке с n могут встречаться только числа, меньшие k. Таких разбиений $A_{n,k}$.
 - Итого, получаем $A_{n+1,k} + A_{n,k} = A_{n+1,k+1}$ разбиений.

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Числа Стирлинга второго рода

Числом Стирлинга второго рода S(n,k) называется число разбиений n-элементного множества на k блоков

Трехэлементное множество можно тремя способами разбить на два блока: $\{1,2,3\} = \{1,2\} \cup \{3\}; \quad \{1,2,3\} = \{1,3\} \cup \{2\}; \quad \{1,2,3\} = \{2,3\} \cup \{1\}.$

Пример

Определение

Следовательно, S(3, 2) = 3.

Замечание

• Очевидно, что

- Будем считать, что S(0,0) = 1 и S(0,k) = 0 при k > 0.
- \triangleright S(n, k) = 0, при k > n > 0;
- ▶ S(n,0) = 0, при всех n > 0;
- S(n,1) = S(n,n) = 1, при всех n > 0.

Рекуррентные соотношения в комбинаторике. А. В. Пастор

Дискретная математика Глава 5.

Утверждение 1 $S(n,2) = 2^{n-1} - 1$, при всех n > 0.

Доказательство.

• Пусть $[1..n] = X_1 \cup X_2$ — разбиение множества [1..n] на два блока.

• В любом разбиении [1..n] на n-1 блок есть ровно один блок,

- Не умаляя общности, пусть $1 \in X_1$:
- тогда X_2 произвольное непустое подмножество множества [2..n];
- \bullet таких подмножеств $2^{n-1}-1$. Утверждение 2

 $S(n, n-1) = C_n^2$, при всех n > 0.

Доказательство.

- состоящий из двух элементов.
- Такой блок можно выбрать C_n^2 способами.
- Остальные блоки выбираются однозначно.

математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Дискретная

Рекуррентная формула для чисел Стирлинга второго рода

Теорема

$$S(n, k) = kS(n-1, k) + S(n-1, k-1).$$

- Доказательство.
- Пусть $X_1 \cup ... \cup X_k$ разбиение множества [1..n]. ▶ Не умаляя общности, $n \in X_k$.
- Далее, возможны два случая: блок X_k может состоять только из n, либо содержать и другие элементы.
 - 1° Пусть $X_k = \{n\}$. Тогда $X_1 \cup \ldots \cup X_{k-1}$ разбиение множества [1..n-1]. Таких разбиений S(n-1,k-1) и каждому из них соответствует ровно одно разбиение для первого случая.
 - 2° Пусть $\{n\} \subsetneq X_k$. Тогда $X_1 \cup \ldots \cup X_{k-1} \cup X'_k$, где $X'_k = X_k \setminus \{n\}$ разбиение множества [1..n-1]. Таких разбиений S(n-1,k). Каждому из них соответствует ровно k разбиений для второго случая, поскольку число n можно добавить в любой из k блоков.
- Итого, получаем kS(n-1,k) + S(n-1,k-1) разбиений множества [1..n] на k блоков.

Глава 5. Рекуррентные соотношения в комбинаторике.

Дискретная математика

Числа Стирлинга второго рода и сюръективные отображения

Теорема

Число сюръективных отображений из n-элементного множества в k-элементное равно k!S(n,k).

Доказательство. Пусть $f\colon [1..n] o [1..k]$ — сюръекция.

- Положим X_i = f⁻¹(i).
 Тогда [1..n] = X₁ \cdot \
- на *k* блоков. ▶ Т. е. разбиения, отличающиеся сменой нумерации блоков, здесь считаются различными.
- Обратно, каждому упорядоченному разбиению множества [1..n] на k блоков можно поставить в соответствие сюръективное отображение из множества [1..n] в множество [1..k].
 - ▶ Образом элемента $x \in [1..n]$ будет номер содержащего x блока.
- Каждому разбиению множества [1..n] на k блоков соответствует k! упорядоченных разбиений. Следовательно, число упорядоченных разбиений множества [1..n] на k блоков равно k!S(n,k).

Глава 5. Рекуррентные соотношения в комбинаторике.

Дискретная математика

$$S(n,k) = \frac{1}{k!} \sum_{s=0}^{k} (-1)^{k-s} C_k^s s^n.$$

Доказательство.

• Мы уже доказывали, что число сюръективных отображений

$$f \colon [1..n] o [1..k]$$
 равно $\sum_{s=1}^k (-1)^{k-s} C_k^s s^n$.

Тем самым,

$$k!S(n,k) = \sum_{s=1}^{k} (-1)^{k-s} C_k^s s^n,$$

откуда, сократив на k!, получим требуемое.

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Дискретная

Теорема

При всех $x \in \mathbb{R}$ и $n \in \mathbb{N}$ выполнено равенство

$$x^n = \sum_{k=0}^n S(n,k)x(x-1)...(x-k+1).$$

Доказательство. Докажем сначала, что это равенство выполнено при всех натуральных x, больших n.

- Рассмотрим все возможные отображения из [1..n] в [1..x].
- Мы знаем, что их x^n . Посчитаем их число другим способом.
- Рассмотрим произвольное отображение $f: [1..n] \rightarrow [1..x]$.
- ▶ Обозначим его образ через Y (т. е. $Y \stackrel{\text{def}}{=} f([1..n])$). Пусть |Y| = k.
 - ▶ Тогда отображение f является сюръекцией из [1..n] на Y.
 - \blacktriangleright Таких сюръекций существует ровно k!S(n,k).
 - ▶ Множество $Y \subset [1..x]$ (где |Y| = k) можно выбрать C_x^k способами.

Числа Стирлинга второго рода и многочлены

ullet Итого, для каждого $k \in [0..n]$ существует ровно

$$k!S(n,k)C_x^k = S(n,k)x(x-1)...(x-k+1)$$

отображений с образом из k элементов.

- Складывая получившиеся выражения по всем возможным k получаем требуемую формулу.
- Итак, мы доказали, что равенство

$$x^{n} = \sum_{k=0}^{n} S(n,k)x(x-1)\dots(x-k+1)$$
 (1)

выполнено при всех $x \in \mathbb{N}$, таких, что x > n.

- Заметим, что и в левой и в правой частях равенства (1) записаны многочлены с целыми коэффициентами от переменной x.
- Мы доказали, что значения этих многочленов равны для бесконечного множества значений х. Следовательно, равны сами многочлены.
- Таким образом, значения этих многочленов равны при всех x.

математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Лискретная

Определение

• Пусть c(n, k) — число перестановок из S_n , имеющих в точности k циклов.

• Будем считать, что c(0,0) = 1 и c(0,k) = 0 при k > 0.

• Обозначим также $s(n, k) = (-1)^{n-k} c(n, k)$.

• Числа s(n, k) называются числами Стирлинга первого рода,

• а числа c(n,k) — числами Стирлинга первого рода без знака.

Пример

• В S_3 есть три перестановки с двумя циклами: (12)(3), (13)(2), (23)(1).

• Следовательно, c(3,2) = 3 и s(3,2) = -3.

Теорема c(n, k) = (n-1)c(n-1, k) + c(n-1, k-1).

Доказательство.

• Пусть $\sigma \in S_{n-1}$ — перестановка ровно с k циклами.

MATEMATINKA Глава 5. Рекуррентные соотношения в комбинаторике. А. В. Пастор

Дискретная

- ▶ Мы можем вставить n после любого из элементов $1, 2, \ldots, n-1$ в разложении перестановки σ на независимые циклы.
- ▶ Это можно сделать n-1 способом.
- ▶ Получим перестановку $\sigma' \in S_n$ с k циклами, в которой n входит в цикл длины не меньше двух.
- Очевидно, что каждая такая перестановка σ' будет получена ровно один раз. Следовательно, таких перестановок (n-1)c(n-1,k).
- ullet Пусть $au \in S_{n-1}$ перестановка ровно с k-1 циклом.
 - ightharpoonup Добавим туда элемент n так, чтобы он образовывал цикл длины 1.
 - lacktriangleright Получим перестановку $au' \in S_n$ с k циклами, в которой n входит в цикл длины один.
 - ightharpoonup Очевидно, что каждая такая перестановка au' будет получена ровно один раз. Следовательно, таких перестановок c(n-1,k-1).
- ullet Итого, получаем (n-1)c(n-1,k)+c(n-1,k-1) перестановок из S_n с k циклами.

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

При всех $x \in \mathbb{R}$ и $n \in \mathbb{N}$ выполнено равенство

$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1).$$

Доказательство. Индукция по n.

Теорема

База: при n=1 утверждение очевидно.

Переход
$$(n-1 \to n)$$
: $x(x+1) \dots (x+n-2)(x+n-1) =$

 $\overline{= x(x+1)...(x+n-2)\cdot x + x(x+1)...(x+n-2)\cdot (n-1)} =$

$$=\sum_{k=0}^{n-1}c(n-1,k)x^k\cdot x+\sum_{k=0}^{n-1}c(n-1,k)x^k\cdot (n-1)=$$

$$= \sum_{k=1}^{n} c(n-1, k-1)x^{k} + \sum_{k=0}^{n-1} (n-1)c(n-1, k)x^{k} =$$

$$= \sum_{k=0}^{n} ((n-1)c(n-1, k) + c(n-1, k-1))x^{k} = \sum_{k=0}^{n} c(n, k)x^{k}.$$

соотношения в комбинаторике. А. В. Пастор

Дискретная математика Глава 5.

Рекуррентные

Дискретная математика. Глава 5. Рекуррентные соотношения в комбинаторике.

А.В.Пастор

Следствие

При всех $x \in \mathbb{R}$ и $n \in \mathbb{N}$ выполнено равенство

$$\sum_{k=0}^{n} s(n,k)x^{k} = x(x-1)\dots(x-n+1).$$

Доказательство.

Заменим в предыдущей формуле x на -x и домножим на $(-1)^n$.

Теорема

При всех $m,n\in\mathbb{N}$ выполнено равенство

$$\sum_{k=0}^{\infty} S(m,k)s(k,n) = \delta_{mn}$$

(где $\delta_{mn}=1$ при m=n и $\delta_{mn}=0$ в остальных случаях).

Доказательство.
$$x^m = \sum_{k=0}^m S(m,k) x(x-1) \dots (x-k+1) =$$

$$=\sum_{k=0}^m \left(S(m,k)\cdot\sum_{n=0}^k s(k,n)x^n\right)=\sum_{n=0}^\infty \left(\sum_{k=0}^\infty S(m,k)s(k,n)\right)x^n.$$

Приравнивая коэффициенты при x^n получаем требуемое равенство.

Числа Стирлинга и линейная алгебра

- Кольцо многочленов $\mathbb{R}[x]$ можно рассматривать как линейное пространство над \mathbb{R} .
 - ▶ Это пространство имеет счётную размерность;
 - ▶ его базис $-1, x, x^2, x^3, ...$ (т. е. все степени x);
 - ▶ $1, x, x(x-1), x(x-1)(x-2), \dots$ другой базис этого же пространства.

Замечание

- ▶ Выражение x(x-1)...(x-k+1) называется нисходящей факториальной степенью или убывающим факториалом и обозначается x^k или $(x)_k$;
- ▶ выражение x(x+1)...(x+k-1) называется восходящей факториальной степенью или возрастающим факториалом и обозначается $x^{\overline{k}}$ или $(x)^k$.
- Мы доказали формулы $x^n = \sum_{k=0}^n S(n,k) x^{\underline{k}}$ и $x^{\underline{n}} = \sum_{k=0}^n s(n,k) x^k$.
- То есть числа S(n,k) это коэффициенты разложения многочленов $1,x,x^2,\ldots$ по базису $1,x,x^2,\ldots$ А числа s(n,k) это коэффициенты разложения многочленов $1,x,x^2,\ldots$ по базису $1,x,x^2,\ldots$

математика. Глава 5. Рекуррентные соотношения в комбинаторике.

Дискретная

- Из чисел Стирлинга первого и второго рода можно составить матрицы s и S соответственно.
 - ▶ Это матрицы счетной размерности. Их элементы определяются равенствами $s_{ij} = s(i,j)$ и $S_{ij} = S(i,j)$.

$$s = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 2 & -3 & 1 & 0 & 0 & 0 & 0 & \dots \\ 0 & -6 & 11 & -6 & 1 & 0 & 0 & 0 & \dots \\ 0 & 24 & -50 & 35 & -10 & 1 & 0 & 0 & \dots \\ 0 & -120 & 274 & -225 & 85 & -15 & 1 & 0 & \dots \\ 0 & 720 & -1764 & 1624 & -735 & 175 & -21 & 1 & \dots \\ \vdots & \ddots \end{pmatrix}; \quad S = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 1 & 3 & 1 & 0 & 0 & 0 & 0 & \dots \\ 0 & 1 & 15 & 25 & 10 & 1 & 0 & 0 & \dots \\ 0 & 1 & 31 & 90 & 65 & 15 & 1 & 0 & \dots \\ 0 & 1 & 63 & 301 & 350 & 140 & 21 & 1 & \dots \\ \vdots & \ddots \end{pmatrix}$$

- Эти матрицы состоят из коэффициентов разложения элементов одного базиса по другому. Такие матрицы называются матрицы перехода.
- Теорема о связи чисел Стирлинга первого и второго рода фактически означает, что $S \cdot s = E$, то есть матрицы S и s взаимно обратны.