Worksheet #2: Periodic sinks and sources

Consider the function $g(x) = \frac{7}{2}x(1-x)$ ie. a logistic function with $a = \frac{7}{2}$. $x = \frac{5}{2}$ is a fixed point of $g^2(x)$.

(1) Is there a 2-periodic orbit of g? If so, what is the orbit? need to find fixed pts of $g^2(x) = g(g(x)) = g(\frac{1}{2}x(1-x)) = (\frac{7}{2})^2x(1-x)$ fixed pts are R = 0, $X = \frac{5}{7}$, $X = \frac{3}{7}$, $X = \frac{9}{12}$ $\frac{3}{8}$ $\frac{491}{8}$ $\frac{3}{8}$ $\frac{491}{4}$ $\frac{3}{8}$ $\frac{3}{4}$ $\frac{491}{8}$ $\frac{3}{4}$ $\frac{3}{4}$

At least 4 fixed pts.

(3) Is $p_1 = \frac{3}{7}$ a periodic sink, source or can you not tell? $g'(x) = \frac{7}{7}(1-2x)$ | (すり(P,) | = | g'(P,) g'(Pz) | 一型 (1-14) (1-14) =(計) | 立(5/4) = ラン

=) periodic Source.

(4) Is p_2 also a period-2 sink, source or can you not tell? Does this answer agree with p_1 ?

Yes, since | (2) (P1) = (g2) (P2) .

Since they are periodic, thmost have same behavior.

(5) Generalize the derivative test: If $\{p_1, \ldots, p_k\}$ is a periodic-k orbit of f, what is $(f^k)'$ at

 $x = p_1$ in terms of f'? [Hint: Use induction.] We know $|f^{(2)}(\rho_1)| = |f'(\rho_1)| + |f'(\rho_2)|$ etc. | (fex) (P;) | = | TI f'(P;) |

(6) Does the test care which p_i you evaluate $(f^k)'$ at?

No since derivative is evaluated at allpts in the orbit.

The state of the extension of the property of the contract of the state of

and the second s

- I have the

to the first of the property of the state of

with the training of the said

it is all the rough or make the base by a property of the contraction of

and the strain of the

I don't like the think the