Zadania 2021L

Dokument zawiera listę 15 zadań, których rozwiązania należy dostarczyć w 3ech kamieniach milowych z datami określonymi na stronie kursu.

Jako wynik należy załączyć archiwum zip zawierające za każdym razem po pięć katalogów nazwami: zad1, zad2, zad3, zad4, zad5, itp. W każdym podkatalogu powinny znajdować się oczekiwane wyniki, które zostały opisany pod zadaniami. Zeskanowane dokumenty muszą być w formacie PDF!

Część 1

Zadanie 1

Używając funkcji wbudowanych w MATLAB: spline , interp1 stwórz gładkie wykresy, które przedstawią poniższe dane w czytelny i wygodny do interpretacji sposób używając:

- · interpolacji funkcjami sklejanymi pierwszego stopnia,
- interpolacji funkcjami sklejanymi trzeciego stopnia.

Wykresy należy stworzyć dla przedziału $u \in <-1.5, 1.5>$, a więc wykorzystując ekstrapolację (czyli określanie wartości wykraczających poza przedział zadanych wartości w tabeli). Na wykresie powinny być zaznaczone wyraźnie punkty z tabeli poniżej oraz 'gładka' krzywa przygotowana za pomocą interpolacji. Wybierz dwa punkty z przedziału $u \in <-0.9, 0.9>$, które nie znajdują się w tabeli i oblicz dla nich wartość interpolacji. Zaznacz wyraźnie na wykresie te punkty i opisz je. Pamiętaj o podpisaniu osi na wykresach.

u [V]	-1	-0.75	-0.5	-0.25	0	0.25	0.5	0.75	1
i [A]	0.01	-0.02	0.02	-0.01	0	0.08	0.22	0.6	0.98

```
Przydatne funkcje w MATLABie: doc , help , interp1 , spline , ylim , xlabel , ylabel , linspace , title , figure , set(gcf, 'color', [1,1,1]) , axis , polyval , polyfit .
```

Oszacuj wizualnie na wykresie, która metoda jest najskuteczniejsza. Uzasadnij odpowiedź.

Przykładowy wykres. (Przykładowy!)

Oczekiwane wyniki:

- skrypt w MATLABie w pełni generujący gotowy rysunek,
- · rysunek w formacie PNG,
- plik tekstowy z komentarzem.

Zadanie 2

Oblicz błędy bezwzględny i względny wyznaczenia wartości poniższego wyrażenia

$$P=rac{R^2i^2}{C+R}~[W],$$

przy założeniu, że wartości argumentów zostały zmierzone z ograniczoną tolerancją:

- $C = 1.1 [mF] \pm 5\%$,
- $R = 1 [k\Omega] \pm 2\%$,
- $i = 1.2 \ [mA] \pm 1\%$.

Oczekiwany wynik:

- zeskanowane ręczne obliczenia uwzględniające wszystkie wyprowadzenia na kartce
- skrypt w MATLABie z obliczeniami arytmetycznymi.

Zadanie 3

Oblicz wartość wielomianu interpolacyjnego dla punktu $x=0.55\,\mathrm{dla}$ poniższego zestawu danych używając metody Newtona.

x_i	0.1	0.3	0.6	0.8
y_i	-1	1.2	1.0	1.5

Oczekiwany wynik:

- zeskanowane ręczne obliczenia uwzględniające wszystkie wyprowadzenia na kartce,
- skrypt w MATLABie z obliczeniami arytmetycznymi oraz wizualizacją wyniku,
- rysunek z wykresem w formacie PNG.

Zadanie 4

Wykorzystując funkcję Czebyszewa $f(x)=\frac{1}{1+25x^2}$ proszę wyznaczyć średni błąd interpolacji samodzielnie zaimplementowaną metodą wielomianów Lagrange'a w przedziale $x\in<-1.5,1.5>$ dla następujących liczb równoodległych węzłów interpolacji: 3,5,6,8,9.

Oczekiwany wynik:

- skrypt w MATLABie z obliczeniami arytmetycznymi oraz kodem generującym wizualizację wyniku,
- jeden rysunek z wykresem w formacie PNG zawierającym wszystkie przebiegi.

Zadanie 5

Oblicz wartość funkcji interpolacji funkcjami sklejanymi w punkcie x=0.23 dla poniższych danych.

x_i	0.1	0.2	0.3
y_i	-2.79	-2.26	-1.99

Na granicach funkcji zastosuj następujące warunki: $\alpha = f'(0.1) = 4.02$ oraz $\beta = f'(0.3) = -2.62$.

Oczekiwany wynik:

- ręczne pełne obliczenia na kartce zgodnie z wzorami i metodyką przedstawioną w podręczniku,
- skrypt w MATLABie z obliczeniami arytmetycznymi oraz kodem generującym wizualizację wyniku,
- jeden rysunek z wykresem w formacie PNG zawierającym wszystkie przebiegi.