

Linux Device Driver (Kernel Memory Allocation)

Amir Hossein Payberah

payberah@yahoo.com

Contents

- kmalloc
- get_free_page
- vmalloc

kmalloc

- The kmalloc allocation engine is a powerful tool,
 - □ It is similar to malloc.
- The function is fast and it doesn't clear the memory it obtains.
- The allocated region is also contiguous in physical memory.

kmalloc

- void *kmalloc(unsigned int size, int priority);
- It is defined in linux/malloc.h>

Kmalloc priority

- GFP_KERNEL
 - Normal allocation of kernel memory. May sleep.
- GFP_ATOMIC
 - □ Used to allocate memory from interrupt handlers and other code outside of a process context. Never sleeps.
- __GFP_DMA
 - ☐ This flag requests memory usable in DMA data transfers to/from devices.

Kmalloc size

- Linux handles memory allocation by creating a set of pools of memory objects of fixed sizes.
- Allocation requests are handled by going to a pool that holds sufficiently large objects, and handing an entire memory chunk back to the requester.
- The data sizes available are generally powers of two.

kfree

- void kfree(void *obj);
- It is used to free memory.

Contents

- kmalloc
- get_free_page
 - vmalloc

get_free_page and friend

If a module needs to allocate big chunks of memory, it is usually better to use a page-oriented technique.

get_free_page and friend

- unsigned long get_zeroed_page(int flags);
 - Returns a pointer to a new page and fills the page with zeros.
- unsigned long get free page(int flags);
 - Similar to get_zeroed_page, but doesn't clear the page.
- unsigned long <u>get_free_pages(int flags, unsigned long order);</u>
 - Allocates and returns a pointer to the first byte of a memory area that is several (physically contiguous) pages long, but doesn't zero the area.
- unsigned long <u>get_dma_pages(int flags, unsigned long order);</u>
 - Similar to get_free_pages, but guarantees that the allocated memory is DMA capable.

get_free_page and friend

- The flags argument works in the same way as with kmalloc.
- order is the base-two logarithm of the number of pages you are requesting or freeing (log2N).
 - For example, order is 0 if you want one page and 3 if you request eight pages.

free_page

- When a program is done with the pages, it can free them with one of the following functions.
- void free_page(unsigned long addr);
- void free_pages(unsigned long addr, unsigned long order);

Contents

- kmalloc
- get_free_page
- → vmalloc

vmalloc

- It allocates a contiguous memory region in the virtual address space.
 - □ Although the pages are not necessarily consecutive in physical memory.

vmalloc

- void *vmalloc(unsigned long size);
- void vfree(void * addr);
- void *ioremap(unsigned long offset, unsigned long size);
- void iounmap(void * addr);
- They are defined in linux/vmalloc.h>

vmalloc and ioreamp

- Like vmalloc, ioremap builds new page tables.
- Unlike vmalloc, however, it doesn't actually allocate any memory.
- ioremap is most useful for mapping the (physical) address of a PCI buffer to (virtual) kernel space.

Question?