

MIT-WPU Final Year (B.Tech)

System Software and Compiler Design

Module II

- Macro processor: Macro Definition, Macro expansion and nested macros
- Loaders: Loader schemes: Types of loaders, direct linking loaders.
- Linkers: Relocation and linking concepts, self-relocating programs, Static and dynamic link libraries.

Loader

Loaders

Loader is a program that accepts the object program, prepares these programs for execution by the computer and initiates the execution of the program.

Functions of the loader

- 1. Allocate space in memory for the programs.(Allocation)
- 2. Resolve symbolic references between object decks.(Linking)
- 3. Adjust all addr dependent locations, such as addr constants, to correspond to the allocated space.(Relocation)

Concept of Relocation

Language Processing System

Different Types of Loader Schemes

- 1. Compile and Go Loaders
- 2. General Loader Scheme
- 3. Absolute Loaders
- 4. Relocating Loaders
- 5. Direct Linking Loaders

1. Compile and Go Loaders

- -Assembler places the code into core
- -Loader consists of one instr that transfers to the starting instr of the newly assembled program
- -easy to implement
- -portion of memory is wasted because of assembler
- -every time the program is run it has to be retranslated
- -difficult to handle multiple segments

Memory

2. General Loader Scheme

- As loader is smaller than assembler more memory is available
- Reassembling of program is not required to run the program later.
- Loader is present in memory.

3. Absolute Loader

- -Same as "compile and go" loader except data is punched on cards instead of memory.
- -Loader accepts m/c language text and places it into memory at the location specified by the assembler

Advantages

-More memory is available, -simple to implement

Disadvantages

- -Programmer must specify address to the assembler where the program is loaded.
- -In case of multiple subroutines, programmer has to remember address of each subroutine.

Relocating Loader (Binary Symbolic Subroutine)

- -To avoid possible reassembling of all subroutines when a single subroutine is changed.
- -To perform task of allocation and linking for the programmer.
- -Allows many procedure segments but only one data segment.
- -Translated code segments and the information regarding relocation and intersegment references is passed to the loader.

Information provided by the assembler to the BSS loader.

Transfer Vector

- Contains the address and names related to the subroutines referenced in the program.
- Total length of the program
- length of transfer vector

Relocation Bits

- relocation bit is associated with every instruction
- Relocation bits can be 0 or 1.
- If 1 then address field needs relocation

ST	14 SAVE	
ST	14	SAVE
Reloc	cation Bit=0	Relocation Bit=1

If 0 then address field does not need relocation

4. Relocating Loader (Binary Symbolic Subroutine)

- In BSS
- All four functions of loader (allocation, linking, relocation and loading) are performed automatically by the BSS loader.

• Relocation bits are used to solve the problem of relocation.

• The **transfer vector** is used to solve the problem of linking.

• The **program length** information is used to solve the problem of allocation.

12

4. Relocating Loader (Contd..)

Source program

Program Length = 48 bytes

Transfer Vector = 8 bytes

				<u>Rel.</u>	<u>Rel</u>	<u>Obje</u>	ct Co	<u>de</u>							
MAIN	STAR	T			<u>Addr</u>	:Bits									
	EXTR	^a N	SQR	Γ	0	00	'SQR	T'			←				
	EXTR	^a N	ERR		4	00	'ERR	b'			←				
	ST	14,S/	4VE		8	01	ST	14,3	6						
	L	1,=F'	9'		12	01	L	1,40							
	BAL	14,S0	QRT		16	01	BAL	14,0							
	С	1,=F'	3′		20	01	С	1,44							
	BNE	ERR		24	01	ВС	•		L	14,SA	VE	28	01	L	
14,3	6		BR	14		32	0	BCR	15,1	.4					

SAVEDS F 36 00 (Temp location) END 40 00 9 44 00 3

4. Relocating Loader (Contd..)

Disadvantages of Relocating Loader

• The transfer vector linkage is only useful for transfers and **not well** suited for loading or storing external data.

• The transfer vector increases the size of the object program in memory.

• BSS loader processes procedure segments but does not facilitate access to data segments that can be shared.

5. Direct Linking Loader

- Flexible intersegment referencing and accessing ability.
- Allows independent translation of programs.

Information provided by the assembler with each procedure or data segment

- Length of the segment.
- List of symbols and relative locations.
- List of symbols not defined but referenced.
- Information where address constants are located.
- M/c translation of source program and relative address assigned.

Assembler produces 4 types of cards in the object deck.

ESD_{5/3/2}External Symbol Dictionary.

16

5. Direct Linking Loader(contd...)

- Contains info related to all the symbols defined and referenced in the program.
- Values for ESD cards are

SD (Segment Definition) □ name on START card

LD (Local Definition) ☐ Specified on ENTRY card

ER (External Reference) □ specified on EXTRN card

TXT cards

Contains actual object code translated version of program.

RLD cards

- The location constant that needs to be changed due to relocation
- By what is has to be changed
- The operation to be performed(+/-)

5. Direct Linking Loader(contd...)

Card No	ALP	Rel Loc	Translation
1.	JOHN START	Officet	Findey real These real
2.	ENTRY RESULT		[index reg] + [base reg] + [12] = 54 + 0 + 2 = 56
3.	EXTRN SUM		<u> </u>
4.	BALR 12, 0	0	BALR 12,0
5.	USING *, 12		[12]< current value of LC
6	ST 14, SAVE	2	ST 14, 54(0,12)
7.	L 1, POINTER	6	L 1, 46(0,12)
8.	L 15, ASUM	10	L 15, 58(0,12)
9.	BALR 14, 15	14	BALR 14, 15
10.	ST 1, RESULT	16	ST 1, 50(0,12)
11.	L 14, SAVE	20	L 14, 54(0,12)
12.	BR 14	24	BCR 15, 14
13.	TABLE DC F '1, 7, 9, 10, 3'	28 32 36 40 44	1 7 9 10 3
14.	POINTER DC A(TABLE)	48	28
15.	RESULT DS F	52	-
16.	SAVE DS F	56	-
17.	ASUM DC A(SUM)	60	?
18.	END	64	

ESD And RLD Cards

ESD Cards						
Ref No	Symbol	Type	Relative Loc	Length		
1.	JOHN	SD	0	64		
2.	RESULT	LD	52	-		
3.	SUM	ER	-	-		

RLD Cards					
Ref No	Symbol	Flag	Length	Rel Loc	
14	JOHN	+	4	48	
17	SUM	+	4	60	

TXT Cards

TXT Cards		
Ref No	Rel Loc	Object Code
4	0	BALR 12,0
6	2	ST 14, 54(0,12)
7	6	L 1, 46(0,12)
8	10	L 15, 58(0,12)
9	14	BALR 14, 15
10	16	ST 1, 50(0,12)
11	20	L 14, 54(0,12)
12	24	BCR 15, 14
13	28	1
13	32	7
13	36	9
13	40	10
13	44	3
14	48	28
17	60	0

1 2 3 4	PG1 PG1ENT1	START ENTRY EXTRN	PG1ENT1, PG1ENT2 PG2ENT2, PG2
5 6 7 8 9 10 11	PG1ENT2	DC A (PC DC A (PC	G1ENT1) G1ENT2+15) G1ENT2-PG1ENT1-3) G2) G2ENT1+PG2-PG1ENT1+4)
12 13 14	PG2	START ENTRY EXTRN	PG2ENT1 PG1ENT1, PG1ENT2
15 16 17 18 19	PG2ENT1	DC A (PC	G1ENT1) G1ENT2+15) G1ENT2-PG1ENT1-3)

Source Card Ref no	Relat Addr			
1 2 3	0	PG1	START ENTRY EXTRN	PG1ENT1, PG1ENT2 PG2ENT2, PG2
4 5 6 7 8 9 10 11	20 30 40 44 48 52 56 60	PG1ENT1 PG1ENT2	DC A	A (PG1ENT1) A (PG1ENT2+15) A (PG1ENT2-PG1ENT1-3) A (PG2) A (PG2ENT1+PG2-PG1ENT1+4)
12 13 14 15 16 17 18	0 16 24 28 32 36	PG2 PG2ENT1	DC A	

OBJECT DECK FOR PG1

ESD Cards

Source Card Ref No	Name	Туре	ID	Relative Address	Length
1	PG1	SD	01	0	60
2	PG1ENT1	LD	01	20	
2	PG1ENT2	LD	01	30	
3	PG2	ER	02		
3	PG2ENT1	ER	03		

TXT Cards (Those having address constants)

Source Card Ref No	Relative Address	Contents	Comments	
6	40-43	20		
7	44-47	45	30 +15	
8	48-51	7	30-20-3	
9	52-55	0	UNKNOWN TO PG	
10	56-59	-16	-20+4	

RLD Cards

Source Card Ref No	ESD-ID	Length in bytes	FLAG + or -	Relative Address
6	01	4	+	40
7	01	4	+	44
9	02	4	+	52
10	03	4	+	56
10	02	4	+	56
10	01	4	-	56

PG2

ESD Cards

Source Card Ref No	Name	Туре	ID	Relative Address	Length
12	PG2	SD	01	0	36
13	PG2ENT1	LD		16	
14	PG1ENT1	ER	02		
14	PG1ENT2	ER	03		

Txt Cards (Those having address constants)

Source Card Ref No	Relative Address	Contents	Comments
16	24-27	0	
17	28-31	15	
18	32-35	-3	

RLD Cards

Source Card Ref No	ESD-ID	Length in bytes	FLAG + or -	Relative Address
16	02	4	+	24
17	03	4	+	28
18	03	4	+	32
18	02	4	-	32