

Soutenance du projet n°5 : Parcours « Ingénieur Machine Learning »

Plan de la présentation :

- Présentation de la problématique et du prétraitement effectué, *cleaning*, *feature engineering* et exploration
- Présentation de l'approche non supervisée
- Présentation de l'approche supervisée et du modèle final sélectionné
- Démonstration de l'API et conclusion

La problématique

• Dataset : Données textuelles issues de Stackoverflow.

 Paramètres: Des questions d'utilisateurs (titre + corps) ainsi que 5 tags déjà suggérés par Stackoverflow.

• Objectif : développer notre propre algorithme de suggestion de tags.

Le pré-traitement effectué

Données extraites avec la requête SQL suggérée par OC :

```
1 SELECT TOP 5000000 Title, Body, Tags, Id, Score, ViewCount, FavoriteCount, AnswerCount
2 FROM Posts
3 WHERE PostTypeId = 1 AND ViewCount > 10 AND FavoriteCount > 10
4 AND Score > 5 AND AnswerCount > 0 AND LEN(Tags) - LEN(REPLACE(Tags, '<','')) >= 5
```

- Title, Body et Tags (données textuelles) servent à construire le jeu de données.
- Les autres colonnes (features numériques) ne servent qu'à la sélection de certains documents.
- Rigoureusement 5 mots-clefs (tags) par question (cf Notebook).

Réduction dimensionnelle supplémentaire sur la base du score

- Corpus initial > 27000 documents
 - ◆ Trop lourd à traiter
 - → Taille à diviser par 2

	Score	ViewCount	FavoriteCount	AnswerCount
Score	1.000000	0.680333	0.891282	0.396596
ViewCount	0.680333	1.000000	0.510110	0.478100
FavoriteCount	0.891282	0.510110	1.000000	0.315248
AnswerCount	0.396596	0.478100	0.315248	1.000000

- La sélection doit être pertinente :
 - → Basée sur les meilleurs scores (paramètre numérique le mieux corrélé aux autres)

Le cleaning

Le cleaning

Entrées

Les corpus : Title + corpus alternatif

Au final, on a travaillé sur deux corpus de documents :

- Title (vocabulaire riche, de tokens → + rapide à traiter);
- Un corpus « alternatif », faits de documents de Title et/ou Body .
- Pour chaque document, le + petit ensemble qui contient le + de mots-clefs :

Presents	dans	title	6516
Presents	dans	body	5691
Presents	dans	les deux	1351

Feature engineering

Des features adaptées aux approches imposées :

- Approche non supervisée :
 - → Bag of words pondéré (TF-IDF).
- Approche supervisée : réduction de dimension avec plongement de mots
 - Word2Vec;
 - ◆ BERT (de type Hugging-Face);
 - + USE.

Plan de la présentation :

- Présentation de la problématique et du prétraitement effectué, cleaning, feature engineering et exploration
- Présentation de l'approche non supervisée
- Présentation de l'approche supervisée et du modèle final sélectionné
- Démonstration de l'API et conclusion

Utilisation de la métrique : score de cohérence

- Librairie python gensim [1] utilisée dans le notebook pour générer les BOW et faire de la LDA.
 - → nombreux hyper-paramètres;
 - → optimisation nécessaire.
- Utilisation le score de « cohérence » de type c_v [2] :
 - → pas la + simple à comprendre, mais mise en oeuvre rapide.
 - → confirme supériorité de TF-IDF sur TF.
- Optimisation sur :
 - nombre de sujets à inférer ;
 - \bullet probabilité initiale de la distribution de thèmes par documents (α);
 - \bullet probabilité initiale de la distribution de mots par thèmes (η).
- On associe à chaque document le thème le plus probable.

Succès TRES mitigé sur le corpus de Title

Appliquée à *Title* :

- quasiment tous les documents dans le même thème (mots + fréquents);
- difficile d'interpréter les thèmes inférés (seuls quelques mots/thème semblent concorder)

1st	most	likely	topic	
0				10921
1				1162
2				521
3				349
4				202
5				201
6				109
7				93

	Topic n°0	Topic n°1	Topic n°2	Topic n°3	Topic n°4	Topic n°5	Topic n°6	Topic n°7
Top word n°0	file	dataframe	delete	react	uninstall	matplotlib	encrypt	asynchronous
Top word n°1	python	spark	required	webpack	nginx	sdk	turning	dataframes
Top word n°2	string	color	purpose	await	role	plot	decrypt	concatenation
Top word n°3	٧	import	notification	async	jvm	called	diagram	restful
Top word n°4	error	docker	automatically	cors	production	understanding	merging	iterator
Top word n°5	java	bar	firebase	notebook	bad	sublime	cast	effect
Top word n°6	android	е	loaded	typescript	association	trying	wordpress	explanation
Top word n°7	function	scala	virtualenv	jupyter	aggregation	seaborn	life	versus
Top word n°8	value	fragment	fit	exactly	deleted	anaconda	uml	volume
Top word n°9	object	container	bundle	babel	legacy	eslint	imagemagick	modern

Cohérence VS Fréquence ?

Amélioration des résultats en ne conservant que les mots les + fréquents (1)

Appliquée à *Title* - {mots de fréquence < 50} :

- 2 x + de thèmes, mais bien meilleure répartition documents/thème ;
- thèmes + facilement interprétables.

1st	most	likely	topic	
10				1119
0				1046
6				1031
2				945
9				930
8				913
13				901
7				894
3				883
12				862
11				859
1				808
5				793
4				763

	Topic n°0	Topic n°1	Topic n°2	Topic n°3	Topic n°4	Topic n°5	Topic n°6	Topic n°7	Topic n°8	Topic n°9	Topic n°10	Topic n°11	Topic n°12	Topic n°13
n°0	difference	type	function	object	java	data	٧	python	file	error	list	array	С	io
n°1	value	javascript	window	арр	method	make	set	android	test	spring	studio	image	text	project
n°2	panda	swift	add	code	create	name	return	string	line	арі	git	view	convert	parameter
n°3	column	multiple	json	core	http	web	run	read	command	failed	install	variable	server	date
n°4	change	class	find	xcode	angular	application	google	r	element	access	visual	time	key	page
n°5	dataframe	request	cannot	build	without	check	task	dependency	asp.net	version	work	database	sql	chrome
n°6	color	found	std	module	framework	service	query	mysql	mvc	number	php	numpy	performance	linux
n°7	bootstrap	header	laravel	memory	load	static	C++	like	html	property	update	loop	component	remove
n°8	row	button	table	django	mean	jpa	url	format	j	working	package	call	operator	input
n°9	getting	library	running	support	directory	docker	bash	folder	node	jquery	rail	form	token	c#

Amélioration des résultats en ne conservant que les mots les + fréquents (2)

Si on représente les documents par thèmes dans un espace réduit (par TSNE) :

- (+) régulièrement des blocs compacts de documents de même thème ;
- (-) mais pas de « grandes » frontières de décisions évidentes entre thèmes.

Conclusions de l'approche non supervisée

- Résultats reproduits avec le corpus « alternatif ».
- Nécessité d'exclure les mots rares pour pouvoir interpréter les thèmes inférés.
- « Cohérence VS Fréquence » met en question la pertinence de cette métrique.
- De fait, questionne aussi le nombre de thème « optimal » qui en découle :
 - nombre faible, pratique pour l'esprit humain ;
 - → mais << au nombre de mots-clefs...

Plan de la présentation :

- Présentation de la problématique et du prétraitement effectué, cleaning, feature engineering et exploration
- Présentation de l'approche non supervisée
- Présentation de l'approche supervisée et du modèle final sélectionné
- Démonstration de l'API et conclusion

Modus operandi

- Inspiration du notebook de classification de tweets (ressource OC) [1].
- Par manque de temps, seul le corpus issu de *Title* a été testé.
- La division train/test set est réalisée dans les promotions 70%/30% (pour gagner du temps de calcul) :
 - → X = les matrices issues du plongement de mots, de dimension = (taille du jeu, dimension de l'espace de plongement)
 - → Y = matrice de mots-clefs, de dimension = (taille du jeu, 5)
- Pour les 3 types de features, même procédure :
 - optimisation d'UN hyper-paramètre ;
 - → 5 tags par documents → classification avec MultiOutputClassifier;
 - → 3-4 estimateurs de classification « connue » par MultiOutputClassifier.

Fabrication d'une métrique pour évaluer la performance : « intersection score »

• Le score de précision risque d'être insuffisant du fait des 5 prédictions indépendantes du *MultiOutputClassifier* :

	Tag 1	Tag 2	Tag 3	Tag 4	Tag 5
True	python	python-3.x	java	open	oriented
Pred	python	androïd	python-3.x	file	platform
Correct	✓	×	×	×	X
Accuracy			0.2		

• Notre métrique calcule l'intersection des prédictions et des *targets* pour compenser une prévision à la mauvaise position :

	Tag 1	Tag 2	Tag 3	Tag 4	Tag 5
True	python	python-3.x	java	open	oriented
Pred	python	androïd	python-3.x	file	platform
Correct	\checkmark	×	✓	×	×
IS			0.4		

Les différences entre les modèles d'extraction de features

- Quand on a utilisé Word2Vec :
 - optimisation de la taille de fenêtre ;
 - (→ peu/pas d'impact sur le score sur jeu d'entraînement/de test)
 - ◆ on a pris 300 vecteurs dans l'espace de plongement (~3% jeu d'entraînement);
 - → les mots constitués d'une seule lettre sont pris en compte.
- Quand on a utilisé BERT ou USE :
 - optimisation de la taille du batch ;
 - (→ pas d'impact sur les score sur les deux jeux)
 - → dimension l'espace de plongement calculée par le modèle :
 - ∼750 vecteurs de base avec BERT ;
 - ~500 vecteurs de base avec USE.

Comparaison des modèles

- Sur-apprentissage régulier.
- Scores sur jeu de test assez faibles [baseline sur matrice TF-IDF après réduction de dimension
 → ~0.12 sur jeu d'entraînement/test]
- On choisit USE + régression logistique (2nd meilleur score, et surtout calculs + rapide qu'avec SVC).

Modèle final sélectionné

On préfère le modèle issu de USE + réversion logistique, plutôt que la LDA appliquée sur Title réduit aux mots très fréquents :

- Score médiocre, mais moins de soucis d'interprétabilité.
- Comparaison directe possible avec les questions de StackOverflow.
- Facilite la mise en place de la pipeline pour l'API.

Plan de la présentation :

- Présentation de la problématique et du prétraitement effectué, cleaning, feature engineering et exploration
- Présentation de l'approche non supervisée
- Présentation de l'approche supervisée et du modèle final sélectionné
- Démonstration de l'API et conclusion

Démonstration de l'API

- 1. Ouvrir un terminal;
- 2. Se rendre dans le répertoire de stockage du fichier python;
- Taper « streamlit run fichier.py »;
- 4. Taper une phrase dans le style des questions Stackoverflow.

```
OpenClassroom - Machine learning
engineer cursus - Categorize
question automatically (n°5 project)
by Luke Duthoit
Write a question in the stackoverflow's style:
 How can i serialize a javascript api with streamlit if streamlit is in python-3.x?
Our model suggests the following tags
▼ [ 🕏
  0: "javascript"
  1: "jquery"
  2: "html"
  3: "json"
  4: "asp.net-web-api" 📴
```

Conclusion...

- Projet très long et laborieux.
- Sélection des documents selon popularité pour réduire drastiquement la taille du *data* set.
- L'approche non supervisée par LDA infèrent des *topics* interprétables SEULEMENT avec un vocabulaire de mots + fréquents.
- Modèle « optimal » : Classification multi-sortie avec régression logistique sur des features extraites par plongement de mots de type USE.

... et perspectives

Pistes d'améliorations :

- Pour gagner du temps :
 - ◆ {Title + Body} pour TOUS les documents,
 - utiliser directement les fonctions de nettoyage/tokenisation des modèles.
- Pour l'approche non supervisée :
 - ◆ Essayer de remplacer le BOW par un corpus de n-grams.
 - ◆ Tester d'autres scores que la « cohérence » c_v.
- Tester d'autres modèles pour l'approche supervisée :
 - une « simple » classification directe [présence ou non du tag dans le document] en guise de baseline;
 - → utiliser le BERT de hub Tensorflow.