Repeated measures

Nora Wickelmaier

Last modified: December 16, 2024

Outline

1 Repeated measures ANOVA

2 Example: Depression and Imipramin

3 Mixed-effects regression

Repeated measures ANOVA

Model with one repeated measurement factor

- When subjects are observed for more than two time points, we can model these data using a repeated measures ANOVA
- Data layout

	Time point						
Subject	1	2		j		n	
1	<i>y</i> 11	<i>y</i> 12		<i>Y</i> 1 <i>j</i>		y_{1n}	
2	<i>y</i> 21	<i>y</i> 22	• • •	У2ј	• • •	<i>Y</i> 2 <i>n</i>	
:	:					:	
i	y _{i1}	Yi2		Уij		Уin	
÷	:					:	
Ν	Y _{N1}	УN2		УNј		y_{Nn}	

Statistical model

• When we observe i = 1, ..., N subjects for j = 1, ..., n time points, we get

$$y_{ij} = \mu_0 + \tau_j + \upsilon_i + \varepsilon_{ij}$$

with

 μ_0 grand mean

 τ_i effect of time point j equal for all subjects

 v_i effect of subject *i* constant over time

 ε_{ij} error term for subject i at time point j

- Assumptions
 - $v_i \sim N(0, \sigma_v^2)$ i.i.d., σ_v^2 being the variance between subjects
 - $\varepsilon_{ij} \sim N(0, \sigma^2)$ i.i.d., σ^2 being the variance within subjects
 - ullet v_i and $arepsilon_{ij}$ are independent

Statistical model

$$y_{ij} = \mu_0 + \tau_j + \upsilon_i + \varepsilon_{ij}$$

response	grand mean	time effect	subject effect	residual
<i>y</i> ₁₁	μ_{0}	$ au_1$	v_1	$arepsilon_{11}$
<i>y</i> ₁₂	μ_{0}	$ au_2$	v_1	$arepsilon_{12}$
<i>y</i> 13	μ_{0}	$ au_3$	v_1	$arepsilon_{13}$
:	:	:	÷	:
<i>y</i> ₂₁	μ_{0}	$ au_1$	v_2	$arepsilon_{21}$
<i>y</i> ₂₂	μ_{0}	$ au_2$	v_2	ε_{22}
<i>y</i> 23	μ_0	$ au_3$	v_2	$arepsilon_{23}$
:	:	:	:	:
УNп	μ_0	$ au_n$	v_{N}	$\varepsilon_{\mathit{Nn}}$

Statistical model

$$y_{ij} = \mu_0 + \tau_j + \upsilon_i + \varepsilon_{ij}$$

response	grand mean	time effect	subject effect	residual
<i>y</i> ₁₁	μ_{0}	$ au_1$	v_1	$arepsilon_{11}$
<i>y</i> ₁₂	μ_0	$ au_2$	v_1	$arepsilon_{12}$
<i>y</i> 13	μ_0	$ au_3$	v_1	$arepsilon_{13}$
:	:	:	:	:
<i>y</i> ₂₁	μ_0	$ au_1$	v_2	$arepsilon_{21}$
<i>y</i> ₂₂	μ_0	$ au_2$	v_2	ε_{22}
<i>y</i> 23	μ_{0}	$ au_3$	v_2	ε_{23}
:	:	:	:	:
УNn	μ_0	$ au_n$	v_{N}	$\varepsilon_{\mathit{Nn}}$
$\sigma_v^2 + \sigma^2$			σ_v^2	σ^2

Mixed-effects regression

Model properties

For the model, we have

$$E(y_{ij}) = \mu_0 + \tau_j$$

$$Var(y_{ij}) = Var(\mu_0 + v_i + \tau_j + \varepsilon_{ij}) = \sigma_v^2 + \sigma^2$$

$$Cov(y_{ij}, y_{i'j}) = 0 \text{ for subjects } i \neq i'$$

$$Cov(y_{ij}, y_{ij'}) = \sigma_v^2 \text{ for observations } j \neq j'$$

The correlation between observations and subjects is

$$Corr(y_{ij}, y_{ij'}) = \frac{\sigma_v^2}{\sigma_v^2 + \sigma^2}$$

known as intraclass correlation (ICC)

Compound Symmetry

• For the covariance matrix of the observations for one subject we get the so-called compound symmetry structure

$$\mathbf{\Sigma}_{\mathbf{y}_i} = \sigma_v^2 \mathbf{1} \mathbf{1}' + \sigma^2 \mathbf{I} = egin{pmatrix} \sigma_v^2 + \sigma^2 & \sigma_v^2 & \sigma_v^2 & \cdots & \sigma_v^2 \ \sigma_v^2 & \sigma_v^2 + \sigma^2 & \sigma_v^2 & \cdots & \sigma_v^2 \ dots & \ddots & & dots \ \sigma_v^2 & \sigma_v^2 & \sigma_v^2 & \cdots & \sigma_v^2 + \sigma^2 \end{pmatrix}$$

- The assumption of a compound symmetry structure is usually unrealistic for longitudinal data
- In general, successive observations are more strongly correlated than observations being farther apart (covariance is not constant)
- Variance increases with time, e.g., when some subjects are more responsive to a certain treatment than others

2 Example: Depression and Imipramin

Depression and Imipramin (Reisby et al., 1977)

- Reisby et al. (1977) studied the effect of Imipramin on 66 inpatients treated for depression
- Depression was measured with the Hamilton depression rating scale (HDRS)
- Additionally, the concentration of Imipramin and its metabolite Desipramin was measured in their blood plasma
- Patients were classified into endogenous and non-endogenous depressed
- Depression was measured weekly for 6 time points; the effect of the antidepressant was observed starting at week 2 for four weeks

Descriptive statistics

HDRS score

t	W0	W1	W2	W3	W4	W5
M	23.44	21.84	18.31	16.42	13.62	11.95
SD	4.53	4.70	5.49	6.42	6.97	7.22
n	61	63	65	65	63	58

Empirical correlation matrix of HDRS score

	W0	W1	W2	W3	W4	W5
Week 0	1	.49	.41	.33	.23	.18
Week 1	.49	1	.49	.41	.31	.22
Week 2	.41	.49	1	.74	.67	.46
Week 3	.33	.41	.74	1	.82	.57
Week 4	.23	.31	.67	.82	1	.65
Week 5	.18	.22	.46	.57	.65	1

Depression and Imipramin

```
dat <- read.table("data/reisby.dat", header = TRUE)</pre>
dat$id <- factor(dat$id)</pre>
dat$diag <- factor(dat$diag, levels = c("nonen", "endog"))</pre>
dat <- na.omit(dat) # drop missing values</pre>
# descriptive statistics
aggregate(hamd ~ week, dat, mean)
aggregate(hamd ~ week, dat, sd)
aggregate(hamd ~ week, dat, length)
dat[, c("hamd", "id", "week")] |>
  reshape(direction = "wide", timevar = "week") |>
  dplvr::select(-id) |>
  cor(use = "pairwise.complete.obs") |>
  round(3)
```

Fitting repeated-measures ANOVA

```
# week needs to be a factor when computing an ANOVA
dat$week2 <- factor(dat$week)</pre>
contrasts(dat$week2) <- "contr.sum" # effect coding</pre>
summary(aov(hamd ~ week2 + Error(id + id:week2), dat))
# --> ??
library(ez) # "SPSS"-style
ezANOVA(data = dat, dv = hamd, wid = id, within = week2, type = 3)
# check data
ezDesign(data = dat, x = week2, y = id, col = diag)
replications(hamd ~ week2 + id, dat)
```

Fitting repeated-measures ANOVA

```
# remove IDs with missing observations
ids <- names(which(replications(hamd ~ id, dat)$id == 6))
dat_val <- dat[dat$id %in% ids, ]</pre>
# fit ANOVAs again
aov1 <- aov(hamd ~ week2 + Error(id/week2), dat_val)
summarv(aov1)
ez1 <- ezANOVA(data = dat_val, dv = hamd, wid = id, within = week2)
ez1$ANOVA
```

Fitting repeated-measures ANOVA

```
# How close can we get with a mixed-effects model?
library(lme4)
lme1 <- lmer(hamd ~ week2 + (1 | id), dat_val)</pre>
anova(lme1)
# calculate mean sum of squares for id by hand
sp <- attr(VarCorr(lme1)$id, "stddev")</pre>
se <- sigma(lme1)
se^2 + 6 * sp^2
```

Mixed-effects regression

Depression and Imipramin – individual processes

Alternative model with a constant time term

$$y_{ij} = \beta_0 + \beta_1 time + v_{0i} + \varepsilon_{ij}$$

with $v_{0i} \sim N(0, \sigma_v^2)$ i.i.d., $\varepsilon_{ii} \sim N(0, \sigma^2)$ i.i.d., v_{0i} and ε_{ii} i.i.d.

response	intercept	time effect	time	subject effect	residual
<i>y</i> ₁₁	β_0	eta_{1}	0	v_1	$arepsilon_{11}$
<i>y</i> ₁₂	β_0	$eta_{ extbf{1}}$	1	v_1	$arepsilon_{12}$
<i>y</i> 13	eta_0	$eta_{ extbf{1}}$	2	v_1	$arepsilon_{13}$
:	:	:	:	:	:
<i>y</i> ₂₁	eta_{0}	eta_{1}	0	v_2	$arepsilon_{21}$
<i>y</i> ₂₂	β_0	eta_{1}	1	v_2	ε_{22}
<i>y</i> 23	eta_0	$eta_{ extbf{1}}$	2	v_2	$arepsilon_{23}$
:	:	:	:	:	:
УNn	eta_0	eta_1	n	v_N	$arepsilon_{ extsf{Nn}}$

Mixed-effects regression

Random intercept model

$$y_{ij} = \beta_0 + \beta_1 time + v_{0i} + \varepsilon_{ij}$$
 with $v_{0i} \sim N(0, \sigma_v^2)$ i.i.d., $\varepsilon_{ii} \sim N(0, \sigma^2)$ i.i.d., v_{0i} and ε_{ii} i.i.d.

- The estimated mean baseline HDRS score is $\hat{\beta}_0 = 23.55$
- However, the estimated standard deviation between patients is $\hat{\sigma}_v = 4.02$
- The mean improvement per week is $\hat{eta}_1 = -2.38$

Mixed-effects regression

Implied marginal covariance matrix

• For the three time points $t_{ii} = 0, 1, 2$, $\mathbf{Z}_i = \mathbf{1}'_{n_i}$ and $\mathbf{\Sigma}_v = \sigma_v^2$ we get

$$Cov(\mathbf{y}_i) = \mathbf{Z}_i \mathbf{\Sigma}_v \mathbf{Z}_i' + \sigma^2 \mathbf{I}_{n_i}$$

$$= \sigma_v^2 \mathbf{1}_{n_i} \mathbf{1}_{n_i}' + \sigma^2 \mathbf{I}_{n_i}$$

$$= \begin{pmatrix} \sigma_v^2 + \sigma^2 & \sigma_v^2 & \sigma_v^2 \\ \sigma_v^2 & \sigma_v^2 + \sigma^2 & \sigma_v^2 \\ \sigma_v^2 & \sigma_v^2 & \sigma_v^2 + \sigma^2 \end{pmatrix}$$

The random intercept model implies the compound symmetry structure

$$y_{ij} = \beta_0 + \beta_1 time + v_{0i} + v_{1i} time + \varepsilon_{ij}$$

with

$$\begin{pmatrix} v_{0i} \\ v_{1i} \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \; \mathbf{\Sigma}_{v} = \begin{pmatrix} \sigma_{v_0}^2 & \sigma_{v_0 v_1} \\ \sigma_{v_0 v_1} & \sigma_{v_1}^2 \end{pmatrix}$$
 i.i.d.
$$\varepsilon_i \sim \mathcal{N}(\mathbf{0}, \, \sigma^2 \mathbf{I}_{n_i}) \text{ i.i.d.}$$

• Individual intercepts and slopes each have a unique variance component and correlate with $\varrho_{v_0v_1}=\frac{\sigma_{v_0v_1}}{\sigma_{v_0}\,\sigma_{v_1}}$

Model predictions

- The estimated mean baseline HDRS score is $\hat{\beta}_0 = 23.58$
- The estimated standard deviation between patients is $\hat{\sigma}_{v_0}=3.55$
- The mean improvement per week is $\hat{\beta}_1 = -2.38$
- The estimated standard deviation between patients is $\hat{\sigma}_{\upsilon_1}=1.44$
- The estimated correlation between individual intercepts and slopes is $\hat{\varrho}_{v_0v_1}=-0.28$
- Patients with higher (that means worse) baseline scores improve more strongly than patients with smaller baseline scores

Implied marginal covariance matrix

• For the three time points $t_{ii} = 0, 1, 2,$

$$\mathbf{Z}_i = egin{pmatrix} 1 & 0 \ 1 & 1 \ 1 & 2 \end{pmatrix} \ \ \mathsf{und} \ \mathbf{\Sigma}_{v} = egin{pmatrix} \sigma_{v_0}^2 & \sigma_{v_0v_1} \ \sigma_{v_0v_1} & \sigma_{v_1}^2 \end{pmatrix}$$

we get

$$Cov(\mathbf{y}_{i}) = \mathbf{Z}_{i} \mathbf{\Sigma}_{v} \mathbf{Z}'_{i} + \sigma^{2} \mathbf{I}_{n_{i}}$$

$$= \begin{pmatrix} \sigma_{v_{0}}^{2} & \sigma_{v_{0}}^{2} + \sigma_{v_{0}v_{1}} & \sigma_{v_{0}}^{2} + 2\sigma_{v_{0}v_{1}} \\ \sigma_{v_{0}}^{2} + \sigma_{v_{0}v_{1}} & \sigma_{v_{0}}^{2} + 2\sigma_{v_{0}v_{1}} + \sigma_{v_{1}}^{2} & \sigma_{v_{0}}^{2} + 3\sigma_{v_{0}v_{1}} + 2\sigma_{v_{1}}^{2} \\ \sigma_{v_{0}}^{2} + 2\sigma_{v_{0}v_{1}} & \sigma_{v_{0}}^{2} + 3\sigma_{v_{0}v_{1}} + 2\sigma_{v_{1}}^{2} & \sigma_{v_{0}}^{2} + 4\sigma_{v_{0}v_{1}} + 4\sigma_{v_{1}}^{2} \end{pmatrix} + \sigma^{2} \mathbf{I}_{n_{i}}$$

 Hence, a more flexible covariance structure when compared to compound symmetry

Fitting mixed-effects models

```
# random intercept model
lme1 <- lmer(hamd ~ week + (1 | id), dat, REML = FALSE)</pre>
summarv(lme1)
# random slope model
lme2 <- lmer(hamd ~ week + (week | id), dat, REML = FALSE)</pre>
summary(lme2)
# model comparison
anova(lme1, lme2)
```

• For the fixed effects, based on the covariance matrix

$$Var(\hat{eta}) = \left(\sum_{i=1}^N \mathbf{X}_i' \mathbf{\Sigma}_i^{-1} \mathbf{X}_i
ight)^{-1}$$

we can construct Wald tests analogously to the regular linear model with approximately normally or *t* distributed test statistics

- First, Σ_i must be estimated; hence, the quality of the approximation strongly depends on the quality of the estimation of the variance and covariance components
- Many authors principally discourage using Wald tests for random effects (e.g., Hedeker & Gibbons, 2006, p. 52 or ?lme4::pvalues)

- Hypotheses about fixed and random effects can be tested with likelihood ratio tests
- When M_0 is a model that results from a more general model M_1 by parameter restrictions, then the test statistic

$$G^2 = 2 \log \frac{L(M_1)}{L(M_0)} = 2 (\log L(M_1) - \log L(M_0))$$

is approximately χ^2 distributed with (Number of parameters in M_1) — (Number of parameters in M_0) degrees of freedom

- However, for fixed effects this test can result in progressive test decisions for small samples (H₀ is rejected too often)
- For random effects and hypotheses of the form H_0 : $\sigma_v^2 = 0$, the test is rather conservative

 Assumptions of repeated measures ANOVA are often too restrictive for measurements taken over time

- Assumptions of repeated measures ANOVA are often too restrictive for measurements taken over time
- Mixed-effects models allow for a more flexible variance-covariance structure

- Assumptions of repeated measures ANOVA are often too restrictive for measurements taken over time
- Mixed-effects models allow for a more flexible variance-covariance structure
- For unequal group sizes, repeated measures ANOVA is not defined

- Assumptions of repeated measures ANOVA are often too restrictive for measurements taken over time
- Mixed-effects models allow for a more flexible variance-covariance structure
- For unequal group sizes, repeated measures ANOVA is not defined
- (For within designs where assumptions of equal variance are more plausible, repeated measures ANOVA is well suited)

Exercise

- Expand the linear mixed-effects model to more than one factor:
 - Add diagnosis ("endogenous" vs. "non-endogenous") as additional between factor
- Test if this factor interacts with week using a likelihood-ratio test
- Use parametric bootstrapping to get a sampling distribution for your LRT statistic
- Plot the sampling distribution and add the empirical confidence interval

References

- Hedeker, D. R., & Gibbons, R. D. (2006). Longitudinal data analysis. John Wiley.
- Raudenbush, S. W., & Bryk, A. S. (2002). *Hierarchical linear models: Applications and data analysis methods* (Vol. 1). Sage.
- Reisby, N., Gram, L. F., Bech, P., Nagy, A., Petersen, G. O., Ortmann, J., Ibsen, I., Dencker, S. J., Jacobsen, O., Krautwald, O., Sondergaard, I., & Christiansen, J. (1977).Imipramine: Clinical effects and pharmacokinetic variability. *Psychopharmacology*, *54*, 263–272.