39.	You are	given
J).	I ou are	given

< · >	. 1	0.1	•
(i)	A sample	of losses	1S:

600 700 900

- (ii) No information is available about losses of 500 or less.
- (iii) Losses are assumed to follow an exponential distribution with mean θ .

Calculate the maximum likelihood estimate of θ .

- (A) 233
- (B) 400
- (C) 500
- (D) 733
- (E) 1233

40. You are given:

- (i) The number of claims follows a Poisson distribution with mean λ .
- (ii) Observations other than 0 and 1 have been deleted from the data.
- (iii) The data contain an equal number of observations of 0 and 1.

Calculate the maximum likelihood estimate of λ .

- (A) 0.50
- (B) 0.75
- (C) 1.00
- (D) 1.25
- (E) 1.50

90. You are given the following observations on 185 small business policies:

Number of Claims	Number of Policies
0	80
1 or more	105

The number of claims per policy follows a Poisson distribution with parameter λ .

Using the maximum likelihood estimate of λ , determine the estimated probability of a policy having fewer than two claims.

- (A) 0.79
- (B) 0.84
- (C) 0.89
- (D) 0.95
- (E) 0.98