# Trig Final (SLTN v633)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

#### Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 1.1 radians. The radius is 82 meters. How long is the arc in meters?



$$\theta = \frac{L}{r}$$
  $r = \frac{L}{\theta}$   $L = r\theta$ 

L = 90.2 meters.

## Question 2

Consider angles  $\frac{15\pi}{4}$  and  $\frac{-8\pi}{3}$ . For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for  $\sin\left(\frac{15\pi}{4}\right)$  and  $\cos\left(\frac{-8\pi}{3}\right)$  by using a unit circle (provided separately).



$$\sin(15\pi/4) = \frac{-\sqrt{2}}{2}$$



Find  $cos(-8\pi/3)$ 

$$\cos(-8\pi/3) = \frac{-1}{2}$$

## Question 3

If  $\tan(\theta) = \frac{-21}{20}$ , and  $\theta$  is in quadrant II, determine an exact value for  $\sin(\theta)$ .

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.



Solve the Pythagorean Equation

$$20^{2} + 21^{2} = C^{2}$$

$$C = \sqrt{20^{2} + 21^{2}}$$

$$C = 29$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant II in a unit circle.



$$\sin(\theta) = \frac{21}{29}$$

## Question 4

A mass-spring system oscillates vertically with a frequency of 8.48 Hz, a midline at y = -4.95 meters, and an amplitude of 2.9 meters. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -2.9\sin(2\pi 8.48t) - 4.95$$

or

$$y = -2.9\sin(16.96\pi t) - 4.95$$

or

$$y = -2.9\sin(53.28t) - 4.95$$