TD8: Groupe orthogonal (et symplectique)

Exercices * : à préparer à la maison avant le TD, seront corrigés en début de TD.

Exercices ** : seront traités en classe en priorité.

Exercices $\star\star\star$: plus difficiles.

Exercice $1: \star$

Soient K un corps de caractéristique $\neq 2$ et E un K-espace vectoriel de dimension finie. Soit q une forme quadratique non dégénérée sur E. Soit $u: E \to E$ une application (pas forcément linéaire a priori) telle que u(0) = 0 et pour tout $x, y \in E$, q(u(x) - u(y)) = q(x - y).

- a) Montrer que $u \in O(E, q)$ (on pourra utiliser une base orthogonale).
- b) L'hypothèse u(0) = 0 est-elle nécessaire?

Exercice 2: *

Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \geq 1$.

- a) Montrer que tout endomorphisme de E admet un sous-espace stable de dimension 1 ou 2.
- b) Soit q une forme quadratique définie positive sur E. Montrer que pour tout $u \in O(E,q)$, il existe une base orthonormée e de E, des entiers positifs r, s, t tels que n = r + s + 2t et des réels $\theta_1, \ldots, \theta_t \in \mathbb{R} \setminus \pi\mathbb{Z}$, tels que

$$\operatorname{Mat}_{e}(u) = \begin{pmatrix} I_{r} & 0 & 0 & \dots & 0 \\ 0 & -I_{s} & 0 & \dots & 0 \\ 0 & 0 & R_{\theta_{1}} & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & \dots & R_{\theta_{t}} \end{pmatrix},$$

où R_{θ} désigne la matrice $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

c) En déduire que sous les hypothèses précédentes, SO(E,q) est connexe par arcs.

Exercice 3: **

Soit \mathbb{F}_q un corps fini à q éléments, de caractéristique différente de 2. Soient $n \geq 1$, $b \in \mathbb{F}_q$ et $\varepsilon \in \mathbb{F}_q^{\times} \setminus \mathbb{F}_q^{\times 2}$. Notons S(2n,b), S(2n+1,b) et $S_{\varepsilon}(2n,b)$ les nombres respectifs de solutions des équations

$$x_1^2 - y_1^2 + \dots + x_n^2 - y_n^2 = b, (1)$$

$$x_1^2 - y_1^2 + \dots + x_n^2 - y_n^2 + x_{n+1}^2 = b,$$
 (2)

$$x_1^2 - y_1^2 + \dots + x_n^2 - \varepsilon y_n^2 = b. (3)$$

a) Montrer

$$S(2n,b) = \begin{cases} q^{2n-1} + q^n - q^{n-1} & \text{si } b = 0; \\ q^{2n-1} - q^{n-1} & \text{si } b \neq 0; \end{cases}$$

$$S(2n+1,b) = \begin{cases} q^{2n} & \text{si } b = 0; \\ q^{2n} - q^n & \text{si } b \notin \mathbb{F}_q^{\times 2}; \\ q^{2n} + q^n & \text{si } b \in \mathbb{F}_q^{\times 2}; \end{cases}$$

$$S_{\varepsilon}(2n,b) = \begin{cases} q^{2n-1} - q^n + q^{n-1} & \text{si } b = 0; \\ q^{2n-1} + q^{n-1} & \text{si } b \neq 0. \end{cases}$$

b) En déduire

$$|\mathcal{O}_{2n+1}(\mathbb{F}_q)| = 2q^{n^2} \prod_{i=1}^n (q^{2i} - 1),$$

$$|\mathcal{O}_{2n}^+(\mathbb{F}_q)| = 2q^{n(n-1)}(q^n - 1) \prod_{i=1}^{n-1} (q^{2i} - 1),$$

$$|\mathcal{O}_{2n}^-(\mathbb{F}_q)| = 2q^{n(n-1)}(q^n + 1) \prod_{i=1}^{n-1} (q^{2i} - 1).$$

Exercice 4: **

Soit V un \mathbb{R} -espace vectoriel de dimension 3 muni de la forme quadratique définie positive $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$. Le but de cet exercice est de montrer que SO(V, f) est simple. Soit N un sous-groupe distingué non trivial de SO(V, f).

- a) Montrer que si N contient un renversement, alors N = SO(V, f).
- b) Soit N_0 la composante connexe de l'identité de N. Montrer que N_0 est un sous-groupe distingué de SO(V, f).
- c) Montrer que $N = \{id\}$ si et seulement si $N_0 = \{id\}$.
- d) Montrer que la fonction

$$\varphi: N_0 \longrightarrow [-1,1]$$

$$g \longmapsto \frac{\operatorname{tr}(g) - 1}{2}$$

est bien définie et continue.

- e) Montrer qu'il existe $g \in N_0$ tel que $\varphi(g) \leq 0$.
- f) Montrer qu'il existe $g \in N_0$ tel que $\varphi(g) = 0$.
- g) Conclure.

Exercice 5: **

Soit V un \mathbb{R} -espace vectoriel de dimension $n \geq 5$ muni de la forme quadratique définie positive $f(x_1,\ldots,x_n)=x_1^2+\cdots+x_n^2$. Le but de cet exercice est de montrer que $\mathrm{PSO}(V,f)$ est simple. Soit \overline{N} un sous-groupe distingué non trivial de $\mathrm{PSO}(V,f)$ et soit N le sous-groupe de $\mathrm{SO}(V,f)$ lui correspondant.

- a) Montrer que si N contient un renversement, alors $\overline{N} = PSO(V, f)$.
- b) Supposons qu'il existe un sous-espace U de V de dimension 3 tel que $N \cap SO(U, f|_U) \neq \{id\}$. Montrer qu'alors $\overline{N} = PSO(V, f)$.
- c) Conclure (on pourra considérer le commutateur d'un élément $r \in N \setminus \{\pm id\}$ ayant un vecteur fixe non nul avec la composée de deux réflexions bien choisies).

Exercice 6: **

On note $\mathbb{Z}_{(2)}$ le sous-anneau de \mathbb{Q} formé des rationnels à dénominateur impair. On note $G = \mathcal{O}_3(\mathbb{Q})$.

- a) Montrer que $G \subset \operatorname{Mat}_3(\mathbb{Z}_{(2)})$.
- b) Pour tout $n \in \mathbb{N}^*$, on pose $G_n := \{A \in G : \exists B \in \operatorname{Mat}_3(\mathbb{Z}_{(2)}), A = I_3 + 2^n B\}$. Montrer que G_n est un sous-groupe distingué de G.
- c) Montrer que $\bigcap_{n\in\mathbb{N}^*} G_n = \{I_3\}.$
- d) Montrer que $G_1 \subsetneq G$ et que $G_1 \not\subset SO_3(\mathbb{Q})$.
- e) Montrer que pour tout $n \geq 1$, $G_{n+1} \subsetneq G_n$.
- f) Montrer que pour tout $n \geq 2$, $G_n \subset SO_3(\mathbb{Q})$.
- g) Pour tout $n \geq 2$, montrer que $G_n/G_{n+1} \cong (\mathbb{Z}/2\mathbb{Z})^3$.

- h) Montrer que $G/G_1 \cong \mathfrak{S}_3$.
- i) Montrer que $G_1/G_2 \cong (\mathbb{Z}/2\mathbb{Z})^4$.
- j) Comparer la structure de $O_3(\mathbb{Q})$ avec celle de $O_3(\mathbb{R})$.

Exercice $7: \star \star \star$

Soient $K = \mathbb{F}_q$ un corps fini de caractéristique impaire et $n \in \mathbb{N}^*$. On note $\mathrm{P}\Omega_n^{\pm}(K)$ le quotient du groupe dérivé de $\mathrm{O}_n^{\pm}(K)$ par son centre.

- a) Déterminer $O_1(K)$, $SO_1(K)$ et $P\Omega_1(K)$.
- b) Montrer que $O_2^+(K)$ est isomorphe au groupe diédral D_{q-1} . Identifier $SO_2^+(K)$ et $P\Omega_2^+(K)$.
- c) En considérant le corps \mathbb{F}_{q^2} , montrer que $\mathcal{O}_2^-(K)$ est isomorphe à D_{q+1} et identifier $\mathcal{SO}_2^-(K)$ et $\mathcal{P}\Omega_2^-(K)$.
- d) On suppose n=3. On note V le K-espace vectoriel des matrices 2×2 de trace nulle.
 - i) Exhiber une base naturelle de V comme K-espace vectoriel.
 - ii) Montrer que $GL_2(K)$ agit naturellement sur V.
 - iii) En déduire un morphisme de groupes $\rho: \mathrm{GL}_2(K) \to \mathrm{GL}(V) \cong \mathrm{GL}_3(K)$ que l'on explicitera.
 - iv) Montrer que $Ker(\rho) = K^*I_2$.
 - v) Montrer que pour tout $A \in GL_2(K)$, $det(\rho(A)) = 1$.
 - vi) Vérifier que le déterminant définit une forme quadratique non dégénérée sur V.
 - vii) En déduire des isomorphismes $\operatorname{PGL}_2(K) \cong \operatorname{SO}(V, \det) \cong \operatorname{SO}_3(K)$.
 - viii) Montrer que l'on a des isomorphismes $PGL_2(K) \times \{\pm 1\} \cong O(V, \det) \cong O_3(K)$.
 - ix) Montrer que $P\Omega_3(K) \cong PSL_2(K)$.
- e) On suppose n = 4. On note $W := \operatorname{Mat}_2(K)$, et pour tout $M \in W$, on note $Q(M) := \det(M)$.
 - i) Montrer que Q est une forme quadratique sur W qui est somme de deux plans hyperboliques.
 - ii) Montrer que $\operatorname{GL}_2(K) \times \operatorname{GL}_2(K)$ agit naturellement sur W.
 - iii) Soit $A, B \in GL_2(K)$. Montrer que l'action de (A, B) sur W préserve Q si et seulement si $\det(A) = \det(B)$, et que cette action est triviale si et seulement s'il existe $\lambda \in K^*$ tel que $A = B = \lambda I_2$.
 - iv) En déduire un morphisme de groupes injectif $i: ((\operatorname{SL}_2(K) \times \operatorname{SL}_2(K)) \rtimes K^*) / K^* \to \operatorname{O}(W, Q)$, où l'on explicitera le groupe de gauche.
 - v) Montrer que $\langle \text{Im}(i), T \rangle = O(W, Q)$, où $T: W \to W$ est défini par $T(M) := {}^tM$ et décrire SO(W, Q).
 - vi) En déduire que $P\Omega_4^+(K) \cong PSL_2(K) \times PSL_2(K)$ si |K| > 3.
 - vii) Décrire $P\Omega_4^+(\mathbb{F}_3)$.

Exercice 8:

On considère $V = \mathbb{F}_2^6$ muni de la forme bilinéaire $x \cdot y = \sum_{i=1}^6 x_i y_i$. On note $x_0 := (1, \dots, 1) \in V$.

- a) Donner la définition des groupes $\mathrm{Sp}_n(K)$ lorsque K est un corps de caractéristique 2.
- b) Montrer que $W := x_0^{\perp}/\mathbb{F}_2 x_0$ est naturellement muni d'une forme bilinéaire alternée non dégénérée.
- c) En déduire un morphisme naturel $\mathfrak{S}_6 \to \operatorname{Sp}_4(\mathbb{F}_2)$.
- d) Conclure que $\operatorname{Sp}_4(\mathbb{F}_2) \cong \mathfrak{S}_6$.

Exercice 9: $\star\star\star$

Soit K un corps de caractéristique différente de 2 et soit $m \geq 3$. On munit $V = K^{2m}$ de la forme bilinéaire alternée usuelle B; on note $\operatorname{Sp}_{2m}(K)$ le groupe symplectique correspondant. Soient $s,t \in \operatorname{Sp}_{2m}(K)$ des involutions.

a) Montrer qu'il existe une décomposition $V = E_+(s) \stackrel{\perp}{\oplus} E_-(s)$, où $E_+(s)$ et $E_-(s)$ désignent les espaces propres de s associées aux valeurs propres 1 et -1, respectivement.

b) En déduire une bijection entre l'ensemble des involutions de $\operatorname{Sp}_{2m}(K)$ et l'ensemble des sousespaces non dégénérés de V.

On dit que l'involution s est de type (2r, 2m - 2r) si l'espace $E_+(s)$ est de dimension 2r. On parle d'involution extrémale pour une involution de type (2, 2m - 2) ou (2m - 2, 2). Dans ce cas-là, on note $E_2(s)$ l'espace $E_{\pm}(s)$ de dimension 2.

c) En considérant les familles commutatives maximales d'involutions conjuguées dans $\operatorname{Sp}_{2m}(K)$, montrer que tout automorphisme de $\operatorname{Sp}_{2m}(K)$ envoie une involution extrémale sur une involution extrémale.

On dit que des involutions extrémales s et t forment un couple minimal si on a dim $(E_2(s) \cap E_2(t)) = 1$. Si $S \subseteq \operatorname{Sp}_{2m}(K)$ est un ensemble d'involutions extrémales, on note C(S) l'ensemble des involutions extrémales qui commutent à tout élément de S.

- d) Montrer que s et t forment un couple minimal si et seulement si $(st \neq ts)$ et pour tous $s', t' \in C(C(\{s,t\}))$ avec $s't' \neq t's'$ on a $C(C(\{s,t\})) = C(C(\{s',t'\}))$.
- e) Déterminer les ensembles maximaux I d'involutions extrémales tels que toute paire d'éléments de I forme un couple minimal ou commute.

Soit $n \geq 3$. Une application $\phi: K^n \to K^n$ est dite semi-linéaire s'il existe un automorphisme de corps $\theta: K \to K$ tel que ϕ soit θ -linéaire, c'est-à-dire :

- On a $\phi(v+v') = \phi(v) + \phi(v')$, pour tous $v, v' \in K^n$.
- On a $\phi(\lambda v) = \theta(\lambda)\phi(v)$, pour tout $v' \in K^n$ et tout $\lambda \in K$.

L'ensemble des applications semi-linéaires inversibles forment un groupe, noté $\Gamma L_n(K)$ et appelé le groupe des transformations semi-linéaires de K^n .

On admet le théorème fondamental de la géométrie projective, qui est l'énoncé suivant : soit ϕ : $\mathbb{P}^n(K) \to \mathbb{P}^n(K)$ une bijection telle que trois points A_1, A_2, A_3 de $\mathbb{P}^n(K)$ sont alignés si et seulement si $\phi(A_1), \phi(A_2), \phi(A_3)$ le sont. Alors il existe un automorphisme de corps $\sigma : K \to K$ et une transformation σ -linéaire $\gamma \in \Gamma L_{n+1}(K)$ telle que ϕ soit induite par γ .

On définit enfin $\Gamma \operatorname{Sp}_{2m}(K)$ comme le sous-groupe de $\Gamma \operatorname{L}_{2m}(K)$ des éléments préservant la forme B.

f) Montrer que tout automorphisme de $\mathrm{Sp}_{2m}(K)$ est de la forme $x\mapsto axa^{-1}$ pour un certain élément $a\in \Gamma\mathrm{Sp}_{2m}(K)$.