

Рисунок 4.5 Метод діаграм Вейча

 $f_{4MHJI\Phi}=(X4X3\overline{X}2) \ v \ (X4X1) \ v \ (X2X1) \ v \ (\overline{X3}X1)$

3.4. Спільна мінімізація функцій f1, f2, f3

Для отримання схем з мінімальними параметрами треба провести спільну мінімізацію системи функцій та їх заперечень. Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ.

Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.6). Побудуємо таблицю покриття (таблиця 4.5).

,p==g,	9-9	4.0
KO	K1	K2
0000 (1,2,3)	000X (1,2)	OXXO (1,3)
<i>0001 (1,2</i>)	00X0 (1,2,3)	OXXO (1,3)
0010 (1,2,3)	<i>0X00 (1,3)</i>	XX00 (1)
0100 (-1,3)	X000 (1,2)	XX00 (1)
0110 (1,-2,-3)	OX10 (1,2,3)	X1X0 (1)
0111 (-1,-2,3)	X010 (3)	X1X0 (1)
1000 (1,2)	01X0 (1,3)	X11X (1)
-1010 (3)	X100 (1,3)	X11X (1)
1100 (1,-2,3)	011X (1,2,3)	11XX (1)
1101 (1,2)	X110 (1)	11XX (1)
-1110 (1)	X111 (1,2,3)	
1111 (1,2,3)	1X00 (1,2)	
	110X (1,2)	
	11XO (1)	•
	11X1 (1,2)	
	111X (1)	

Рисунок 4.6 Склеювання і поглинання термів системи

			·	
Зм.	Арк.	№ докум.	Підп.	Дата

	0000lF1l	0001/F1/	0010IF1)	0110lF1)	1000lF1)	1100/F1/	1101/F1)	1110/F1/	1111/F1)	0000lF2l	0001/F2J	0010lF2l	1000lF2)	1101(F2)	1111/F2)	0000lF3/	0010IF3I	0100IF3/	0111F3J	1010IF3/	1100IF3/	1111F3J
1100 (1,-2,3)																						
000X (1,2)	+	+								+	+										+	
00X0 (1,2,3)			+									+										
X000 (1,2)					+								+									
OX10 (1,2,3)																						
X010 (3)																				+		
X100 (1,3)																						
011X (1,2,3)																						
X111 (1,2,3)																			+			+
1X00 (1,2)																						
110X (1,2)																						
11X1 (1,2)														+	+							
OXXO (1,3)				+												+	+	+				
XX00 (1)																						
X1X0 (1)																						
X11X (1)																						
11XX (1)						+	+	+	+													

Таблиця 4.5 Таблиця покриття системи

Після мінімізації визначили кожну з функцій в формі І/АБО.

 $f1_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (\overline{X4}\overline{X1}) \ v \ (\overline{X3}\overline{X2}\overline{X1}) \ v \ (X4X3)$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (X4X1) \ v \ (\overline{X3}\overline{X2}\overline{X1}) \ v \ (X4X3X1)$

 $f3_{MDH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X3}X2\overline{X1}) \ v \ (X3X2X1) \ v \ (\overline{X4}\overline{X1})$

Проведемо <u>мініміз</u>ацію функцій методом Квайна-Мак-Класкі за ДДНФ. Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.7). Побудуємо таблицю покриття (таблиця 4.6).

3M.	Арк.	№ докум.	Підп.	Дата

KO	K1	<i>K2</i>
0001 (3)	-00X1-(3)	X0X1 (3)
0011 (1,2,3)	<i>0X01 (3)</i>	XX01 (3)
0100 (-1,2)	X001 (3)	X0X1 (3)
0101 (1,2,3)	OX11 (1,2)	XX01 (3)
0110 (-2,-3)	X011 (1,2,3)	01XX (2)
0111 (-1,-2)	010X (1,2)	01XX (2)
-1000 (3)	01X0 (2)	X1X0 (2)
1001 (1,2,3)	X100 (2)	X1X0 (2)
1010 (1,2,-3)	01X1 (1,2)	10XX (3)
1011 (1,2,3)	X101 [3]	10XX (3)
1100 (-2)	011X (2)	
-1101 (3)	X110 (2,3)	
-1110 (2,3)	100X (3)	-
	10X0 (3)	
	10X1 (1,2,3)	
	1X01 (3)	•
	101X (1,2,3)	
	1X10 (2,3)	
	11X0 (2)	1

Рисунок 4.7 Склеювання і поглинання термів системи

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.6 Таблиця покриття системи

	0011/F1)	01011F1)	1001/F1	1010IF1)	1011/F1/	0011/F2J	0100(F2)	0101F2J	1001/F2/	1010IF2I	1011/F2J	1110IF2)	0001/F3/	0011F3J	0101F3J	1000(F3)	1001(F3)	1011F3J	11011F3J	1110IF3J
0101 (1,2,3)																				
OX11 (1,2)																				
X011 (1,2,3)	+					+					+			+						
010X (1,2)		+					+	+												
01X1 (1,2)																				
X110 (2,3)																				
10X1 (1,2,3)			+		+				+											
101X (1,2,3)				+																
1X10 (2,3)										+		+								+
XOX1 (3)																				
XX01 (3)													+		+				+	
01XX (2)																				
X1X0 (2)																				
10XX (3)																+	+	+		

Після мінімізації визначили кожну з функцій в формі І/АБО-НЕ.

f1_{MDHФ}= (X3X2X1) v (X4X3X2) v (X4X3X1) v (X4X3X2)

f2_{MDHФ}= (\$\overline{X}\overline{3}\text{X2}\text{X1}\text{ v (\$\overline{X}\overline{4}\text{X3}\overline{X2}\text{X1}\text{)}

 $f3_{MDH\Phi}=(\overline{X3}X2X1) \ v \ (X4X2\overline{X1}) \ v \ (\overline{X2}X1) \ v \ (X4\overline{X3})$

3.5. Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальны форми I/AБО, I/AБО-НЕ. Розглянемо програмування ПЛМ для системи перемикальних функції, що подана в формі I/AБО.

 $f1_{MDH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (\overline{X4}\overline{X1}) \ v \ (\overline{X3}\overline{X2}\overline{X1}) \ v \ (X4X3)$

 $f2_{MJH\phi} = (\overline{X}4\overline{X}3\overline{X}2) \ v \ (\overline{X}4\overline{X}3\overline{X}1) \ v \ (X4X1) \ v \ (\overline{X}3\overline{X}2\overline{X}1) \ v \ (X4X3X1)$

 $f3_{M\Pi H \phi} = (\overline{X4} \overline{X3} \overline{X2}) \ v \ (\overline{X3} X2 \overline{X1}) \ v \ (X3X2X1) \ v \ (\overline{X4} \overline{X1})$

Зм.	Арк.	№ докум.	Підп.	Дата

ІАЛЦ.463626.004 ПЗ

Арк.

Позначимо терми системи:

$$P1 = \overline{X4}\overline{X3}\overline{X2}$$

$$P2 = \overline{X4}\overline{X3}\overline{X1}$$

$$P3 = \overline{X4}\overline{X1}$$

$$P4 = \overline{X3}\overline{X2}\overline{X1}$$

$$P6 = X4X1$$

$$P7 = X4X3X1$$

Тоді функції виходів описуються системою:

 $f1 = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (\overline{X4}\overline{X1}) \ v \ (\overline{X3}\overline{X2}\overline{X1}) \ v \ (X4X3) = P1 \ v \ P2 \ v \ P3 \ v \ P4 \ v \ P5$

 $f2 = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (X4X1) \ v \ (\overline{X3}\overline{X2}\overline{X1}) \ v \ (X4X3X1) = P1 \ v \ P2 \ v \ P6 \ v \ P4$

$$f3 = (\overline{X4}\overline{X3}\overline{X2}) \vee (\overline{X3}X2\overline{X1}) \vee (X3X2X1) \vee (\overline{X4}\overline{X1}) = P1 \vee P8 \vee P9 \vee P3$$

Визначимо мінімальні параметри ПЛМ:

n = 4 — число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій.

р = 9 — число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи.

т = 3 — число інформаційних виходів, котре дорівнює кількості функцій виходів.

Побудуємо спрощену мнемонічну схему ПЛМ(4,10,3) (рисунок 4.8).

Зм.	Арк.	№ докум.	Підп.	Дата

X1 X2 X3 X4

Рисунок 4.8 Мнемонічна схема ПЛМ

Складемо карту програмування ПЛМ(4,10,3) (таблиця 4.7).

Таблиця 4.7 Карта програмування ПЛМ

Nº		Вхі	оди		В	ססאט	ע
ШИНИ	<i>X</i> 4	<i>X3</i>	<i>X2</i>	<i>X1</i>	f1	<i>f2</i>	f3
P1	0	0	0	1	1	1	1
<i>P2</i>	0	0	-	0	1	1	0
<i>P3</i>	0	-	-	0	1	0	1
P4	_	0	0	0	1	1	0
<i>P5</i>	1	1	-	-	1	0	0
<i>P6</i>	1	_	_	1	0	1	0
<i>P7</i>	1	1	-	1	0	0	0
<i>P8</i>	-	0	1	0	0	0	1
<i>P9</i>	-	1	1	1	0	0	1

Покажемо умовне графічне позначення даної ПЛМ (рисунок 4.8).

Зм.	Арк.	№ докум.	Підп.	Дата

Рисунок 4.8 – умовне графічне позначення ПЛМ

Зм.	Арк.	№ докум.	Підп.	Дата

4. Висновок

У даній курсовій роботі на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ» був виконаний синтез керуючого автомата, а також синтез комбінаційних схем. Функціональна схема автомата приведена у документі «Керуючий автомат. Схема електрична функціональна» і виконана згідно з вимогами єдиної системи конструкторської документації.

При синтезі комбінаційних схем у роботі була виконана мінімізація функції різними методами, а також мінімізована методом Квайна— Мак-Класкі система функцій. В результаті було отримано дві форми представлення системи функцій, одна з яких була реалізована на програмувальній логічній матриці (ПЛМ).

Під час виконання роботи були закріплені знання теоретичного курсу, отримані навички їх практичного застосування, а також навички роботи зі стандартами та пошуку інформації.

Зм.	Арк.	№ докум.	Підп.	Дата

IA/ILI.463626.004	//3
" " " " " " " " " " " " " " " " " " " "	, , ,

5. Список літератури

1. Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів. Київ: книжкове видавництво НАУ, 2007 р. 2. Конспект лекцій з курсу «Комп'ютерна логіка», 2015р.

Зм.	Арк.	№ докум.	Підп.	Дата