Peter Lukianchenko

10 January 2022

Today

- Time series: definition
- Structural/non-structural modeling
- Stationarity, weak and strong
- Autocovariance, autocorrelation, partial autocorrelation
- Lag operator
- ARMA models (beginning)
- Tsay "Analysis of Financial Time Series." (1.2, 2.1-2.6) Hamilton "Time Series Analysis" (2.1, 3.1-3.5) Stock and Watson "Introduction to Econometrics" (14.1, 14.2)
- ✓ Diebold "Forecasting" (online version: http://www.ssc.upenn.edu/ fdiebold/Teaching221/Forecasting.pdf (6.5, 7.1, 7.2)

Cross-sectional data:

- The sample is i.i.d. (or at least independent)
- Useful for answering questions about
 causal effects of one variable on another

Time Series:

- The sample is not i.id., observe variable(s) over time
- Useful for answering questions about dynamic causal effects
- Useful for forecasting future values of a variable

Cross-sectional data:

- The sample is i.i.d. (or at least independent)
- Useful for answering questions about
 causal effects of one variable on another

Time Series:

- The sample is not i.id., observe variable(s) over time
- Useful for answering questions about dynamic causal effects
- Useful for forecasting future values of a variable

Useful for forecasting future values of a variable We will study quantitative (non-structural) models of time series to use them later for forecasting:

Structural

- Has some economic theory behind it
- Parameters have meaning and causal interpretation
- Will briefly touch in VAR and ADL topic

Non-structural

- Models based on fitting data
- Coefficients do not have causal interpretation
- Will be the main topic of the course

Time Series: definition

- Informaly: a set of realizations of a random variable ordered according to time
- Formally:

Definition 1

Collection of random variables defined on the sample space $\{Y_t, t \in T\}$ is called a *stochastic process*

We will consider $T = \{..., -1, 0, 1, 2,...\} = \mathbb{Z}$

Definition 2

A *time series* is a realization of a stochastic process: $\{y_t, t \in \mathbb{Z}\}$

Definition 3

A time series sample is $\{y_t, t = 1, ..., T\}$ for some $T < \infty$.

But 'time series' can be used as a synonym of 'stochastic process'

Important concepts

- Goal: forecast values of a random variable using the time series sample
- So, we need the future to be like the past
- Reflected in the concept of *stationarity*

Definition 4

A process $\{Y_t, t \in Z\}$ is *strictly stationary* if, for any k, s and any $t_1, ..., t_k$, the *distributions* of $(Y_{t_1}, Y_{t_2}, ..., Y_{t_k})$ and $(Y_{t_1+s}, Y_{t_2+s}, ..., Y_{t_k+s})$ are *the same* .

In other words, the following distributions are the same:

- of Y_1 and Y_{100}
- of (Y_1, Y_2) and (Y_5, Y_6)
- of (Y_3, Y_{10}, Y_{22}) and (Y_{13}, Y_{20}, Y_{32})
- and so on ...

Strict stationarity is a complicated concept

Very often people consider *weak stationarity*

Definition 5

A process $\{Y_t, t \in Z\}$ is weakly, or covariance-, stationary if, for any $t_1, t_2, s \in Z$

$$E[Y_{t_1}] = E[Y_{t_2}],$$

$$E[Y_{t_1}] = E[Y_{t_2}],$$

$$Cov(Y_{t_1}, Y_{t_1+s}) = Cov(Y_{t_2}, Y_{t_2+s}) \neq f(t_1) \quad \forall s$$

So, only the following has to be the same:

- E C4+ J • mean of all Y_t
- variance of all Y_t $V_{at}(Y_t)$ \longrightarrow News T BE indep-t on t
- ullet covariances between all of the possible pairs of Y_t that are fixed number of periods away from each other Cov (5+,5++s) / 45

Question

If $\{Y_t, t \in \mathbb{Z}\}$ is weakly stationary, is it also strictly stationary?

Question

If $\{Y_t, t \in \mathbb{Z}\}$ is *strictly stationary*, is it also *weakly stationary*?

Stationarity: extra remarks

Not all *weakly stationary* process *strictly stationary.*

But if $\{Y_t\}$ is gaussian, then it is *weakly stationary*, it is also *strictly stationary*.

Autocovariance and autocorrelation function

- Want to forecast future by exploring the relation between r.v.
 corresponding to consecutive periods of time
- Autocovariance is a way to quantify this relation

Definition 6

- Autocovariance of order k is $\gamma(k) = Cov(Y_t, Y_{t+k})$
- Autocorrelation of order k is $\rho(k) = corr\left(Y_t, Y_{t+k}\right) = \frac{\gamma(k)}{Var(Y_t)}$ \Rightarrow $\Im(k) = \frac{\gamma(k)}{I}$
- $\gamma(\bullet)$ is called *autocovariance function* (ACF)
- $\rho(\bullet)$ is called *autocorrelation function* (also ACF)

Estimated ACF

$$\bar{Y}_T = \frac{1}{T} \sum_{t=1}^T Y_t$$

$$\gamma(0) = \frac{1}{T} \sum_{t=1}^{T} (Y_t - \bar{Y}_T)^2$$

$$\gamma(\hat{k}) = \frac{1}{T} \sum_{t=k+1}^{T} (Y_t - \bar{Y}_T)(Y_{t-k} - \bar{Y}_T)$$

Sample autocorrelation function:

$$\hat{\rho}(k) = \frac{\gamma(\hat{k})}{\gamma(\hat{0})}$$

Correlogram: a graph of sample ACF

Partial Autocorrelation Function (PACF)

- Autocorrelation measures how dependent the data is
- If Y_1 and Y_2 are related, and Y_2 and Y_3 are related, then Y_1 and Y_3 have to be related at least indirectly
- Partial Autocorrelation Function (PACF) measures direct relation between different Y_t .

Definition 6

Partial Autocorrelation Function (PACF) at lag k is

$$\alpha(k) = corr(Y_1 - P(1, Y_2, ..., Y_k)Y_1, Y_{k+1} - P(1, Y_2, ..., Y_k)Y_{k+1}),$$

where $P(1, Y_2, ..., Y_k)Y_i$ is the linear projection of Y_i on a constant, $Y_2, ...,$ and Y_k .

Partial Autocorrelation Function (PACF)

Write the linear projection of $Y_{t+k+1} - \mu$ on $Y_{t+k} - \mu$, ..., $Y_{t+1} - \mu$:

$$\hat{Y}_{t+k+1} - \mu = \alpha(1)(Y_{t+k} - \mu) + \dots + \alpha(k)Y_{t+1} - \mu$$

PACF of order 1 to k can be found as

$$\begin{pmatrix} \alpha(1) \\ \alpha(2) \\ \dots \\ \alpha(k) \end{pmatrix} = \begin{pmatrix} \gamma(0) & \gamma(1) & \dots & \gamma(k) \\ \gamma(1) & \gamma(0) & \dots & \gamma(k-2) \\ \dots & \dots & \dots & \dots \\ \gamma(k-1) & \gamma(k-2) & \dots & \gamma(0) \end{pmatrix}^{-1} \begin{pmatrix} \gamma(1) \\ \gamma(2) \\ \dots \\ \gamma(k) \end{pmatrix}$$

Partial Autocorrelation Function (PACF)

Write the linear projection of $Y_{t+k+1} - \mu$ on $Y_{t+k} - \mu$, ..., $Y_{t+1} - \mu$:

$$\hat{Y}_{t+k+1} - \mu = \alpha(1)(Y_{t+k} - \mu) + \dots + \alpha(k)(Y_{t+1} - \mu)$$

PACF of order 1 to k can be found as

$$\begin{pmatrix} \alpha(1) \\ \alpha(2) \\ \dots \\ \alpha(k) \end{pmatrix} = \begin{pmatrix} \gamma(0) & \gamma(1) & \dots & \gamma(k) \\ \gamma(1) & \gamma(0) & \dots & \gamma(k-2) \\ \dots & \dots & \dots & \dots \\ \gamma(k-1) & \gamma(k-2) & \dots & \gamma(0) \end{pmatrix}^{-1} \begin{pmatrix} \gamma(1) \\ \gamma(2) \\ \dots \\ \gamma(k) \end{pmatrix}$$

Sample PACF: estimate by OLS

$$Y_{t+k+1} - \mu = \alpha(1)(Y_{t+k} - \mu) + \dots + \alpha(k)(Y_{t+1} - \mu) + \varepsilon_{t+k+1}$$

Lag operator (a.k.a back-shift operator)

Definition 7

The lag operator L is a linear operator such that for all t

$$LY_t = Y_{t-1} \qquad \qquad \bigsqcup \left(\mathcal{Y}_{+} \right) = \mathcal{Y}_{4-1}$$

Properties:

•
$$L^2Y_t = L(LY_t) = LY_{t-1} = Y_{t-2}$$

•
$$L^{j}L^{i}Y_{t} = L^{j+i}Y_{t} = Y_{t-i-j}$$

•
$$Lc = c$$

•
$$(L^{j} + L^{i})Y_{t} = Y_{t-i} + Y_{t-j}$$

• L to a negative power is a *lead operator*: $L^{-i}Y_t = Y_t$

• For
$$|a| < 1$$
,

For
$$|a| < 1$$
,
$$\mathcal{Y}_{t} = \begin{bmatrix} 1 + aL + a^{2}L^{2} + \dots + a^{k}L^{k} + \dots \end{bmatrix} = (1 - aL)^{-1}Y_{t} = \underbrace{Y_{t}}_{1 - aL}$$

$$\mathcal{Y}_{t} + \alpha \mathcal{Y}_{t-1} + \alpha^{2}\mathcal{Y}_{t-2} \dots + \alpha^{k}\mathcal{Y}_{t-k}$$
Time Series and Stochastic Processes

ARMA models

Starting with basics

- $\{\varepsilon_t, t \in \mathbf{Z}\}$: ε_t are iid
 - is it stationary?
- MDS (Martingale Difference Sequence): $\{\varepsilon_t, t \in Z\}$:

$$E[\varepsilon_t \mid \varepsilon_{t-1}, \varepsilon_{t-2}, \dots] = 0$$

- A process like that is closer to economics: many dynamic optimization problems result in a condition of this type.
- White noise: (A more statistical description of innovations) $\{\varepsilon_t, t \in \mathbf{Z}\}$:

s.t.

$$Cov(\varepsilon_t, \varepsilon_s) = 0$$
, for any $t \neq s$

$$E[\varepsilon_t] = 0$$
, for any $t \neq s$

Moving-Average Models

• Start with $\{\varepsilon_t\}$, a white noise.

MA(1) - Moving average of order 1

$$Y_t = \varepsilon_t + \varphi \varepsilon_{t-1}$$

MA(q) - Moving average of order q

$$Y_t = \varepsilon_t + \varphi_1 \varepsilon_{t-1} + \varphi_2 \varepsilon_{t-2} \dots + \varphi_q \varepsilon_{t-q}$$

Linear regression: review

$$Y_i = X_i \beta + \varepsilon_i$$

- Is it a model?
- Need assumption: $E[\varepsilon_i | X_i] = 0$
- ${\color{blue} \bullet}$ Equivalent to assumption that $E\big[Y_i\,\Big|\,X_i\big] = X_i\beta$
- This is a model for *conditional mean of Y given X*
- That is what's called a *linear regression*

Linear regression: review

$$Y_i = X_i \beta + \varepsilon_i$$

- Need assumption: $E[\varepsilon_i | X_i] = 0$, equivalent to assumption that $E[Y_i | X_i] = X_i \beta$. Then it's a linear regression.
- Sometimes, people are interested in the linear projection of Y on X only. Then they assume $Cov(X_i, \varepsilon_i) = 0$.
- It's not a regression. But people call it regression anyway...
- Given a sample $\left\{ \left(X_i, \ Y_i \right) \right\}_{i=1}^n$, the relation between X and Y is estimated by the OLS (ordinary least squares): $\hat{\beta}_n = (X'X)^{-1}X'Y$
- For consistency of $\hat{\beta}_n (\hat{\beta}_n \xrightarrow{p} \beta)$, $Cov(X_i, \varepsilon_i) = 0$ is enough.

Autoregressive Models

Now, let $X = Y_{t-1}$. Then $Y_t = \theta Y_{t-1} + \varepsilon_t$

- It's a regression model, if we assume $E[\varepsilon_t \mid Y_{t-1}] = 0$.
- But again, people often assume only that $corr(\varepsilon_t, \ Y_{t-1}) = 0.$

So, start with $\{\varepsilon_t\}$ being a white noise.

AR(1) - Autoregressive Model of order 1

$$Y_t = \theta Y_{t-1} + \varepsilon_t$$

AR(p) - Autoregressive Model of order p

$$Y_t = \theta_1 Y_{t-1} + \theta_2 Y_{t-2} + \dots + \theta_p Y_{t-p} + \varepsilon_t$$

$$\mathcal{J}_{t} = \theta \cdot \mathcal{J}_{t-1} + \mathcal{E}_{t}$$

$$ARMA(1;1) = AR(1) + MA(1)$$

$$\mathcal{J}_{t} = \theta \cdot \mathcal{J}_{t-1} + \mathcal{E}_{t} + \mathcal{V} \cdot \mathcal{E}_{t-1}$$

$$ARMA(1;1) = AR(1) + MA(1)$$

$$ARMA(1;1) = AR$$

Autoregressive Moving-Average Models

 $\{\varepsilon_t\}$ is a white noise

• ARMA(1, 1)

$$Y_t = \theta Y_{t-1} + \varepsilon_t + \varphi \varepsilon_{t-1}$$

ARMA(p, q)

$$Y_t = \theta_1 Y_{t-1} + \theta_2 Y_{t-2} + \dots + \theta_p Y_{t-p} + \varepsilon_t + \varphi_1 \varepsilon_{t-1} + \varphi_2 \varepsilon_{t-2} + \dots + \varphi_q \varepsilon_{t-q}$$

More general ARMA(p, q)

$$Y_t = c + \theta_1 Y_{t-1} + \theta_2 Y_{t-2} + \dots + \theta_p Y_{t-p} + \varepsilon_t + \varphi_1 \varepsilon_{t-1} + \varphi_2 \varepsilon_{t-2} + \dots + \varphi_q \varepsilon_{t-q}$$

Properties of ARMA(p,q) models

White Noise

Stationarity

- $\to E[\varepsilon_t] = 0$ for all t
- $\Rightarrow \operatorname{Var}(\varepsilon_t) = \sigma^2 \text{ for all } t$
- $\rightarrow Cov(\varepsilon_t, \varepsilon_{t+j}) = 0$ for all t and $j \neq 0$

Autocovariances

- $\rightarrow \gamma(0) = \sigma^2$
- $\gamma(k) = 0$ for all $k \neq 0$

Autocorrelation

- $\rho(0) = 1$
- $\rho(k) = 0$ for all $k \neq 0$

PACF

- $\alpha(0) = 1$
- $\rightarrow \alpha(k) = 0$ for all k > 0

$MA(1): Y_t = \varepsilon_t + \varphi \varepsilon_{t-1}$

Stationarity

- $\rightarrow E[Y_t] = E[\varepsilon_t] + \varphi E[\varepsilon_{t-1}]$ for all t
- $\operatorname{Var}(Y_t) = Var(\varepsilon_t) + \varphi^2 Var(\varepsilon_{t-1}) + 2\varphi Cov(\varepsilon_t, \varepsilon_{t-1}) = (1 + \varphi^2)\sigma^2$ for all t
- $\rightarrow Cov(Y_t, Y_{t+1}) = \varphi \sigma^2$ for all t. $Cov(Y_t, Y_{t+k}) = 0$, for all $|\mathbf{k}| > 1$

Autocovariances

$$\gamma(\mathbf{0}) = Var(Y_t) = \sigma^2(\mathbf{1} + \varphi^2), \gamma(\mathbf{1}) = Cov(Y_t, Y_{t+1}) = \varphi\sigma^2$$

$$\gamma(k) = 0 \text{ for all } |k| > 1$$

ACF

$$\rho(0) = 1, \rho(1) = \frac{\varphi}{1 + \varphi^2}$$

$$\rho(k) = 0 \text{ for all } |k| > 1$$

PACF

> complicated, but does not become 0 at some lag

$MA(q): Y_t = \varepsilon_t + \varphi_1 \varepsilon_{t-1} + \dots + \varphi_q \varepsilon_{t-q}$

Stationarity

 \rightarrow automatically follows from stationarity of $\{\varepsilon_t\}$

Autocovariances

,
$$\gamma(0) = Var(Y_t) = \sigma^2(1+\varphi_1^2+\ldots+\varphi_q^2),$$

$$\gamma(k) = \sigma^2(\varphi_k + \varphi_{k+1}\varphi_1 + \varphi_{k+2}\varphi_2 + ... + \varphi_q\varphi_{q-k}) \text{ for } k = 1, ..., q$$

$MA(\infty)$

$$Y_t = \mu + \sum_{j=0}^{+\infty} \varphi_j \varepsilon_{t-j}$$

Well-defined and covariance-stationary, if sequence $\left\{ \varphi_j \right\}_{j=0}^{\infty}$ is absolutely summable, i.e.

$$\sum_{j=0}^{\infty} \left| \varphi_j \right| < \infty$$

$AR(1): Y_t = \theta Y_{t-1} + \varepsilon_t$

• Plug in the expression for Y_{t-1} , Y_{t-2} and so on:

$$Y_{t} = \theta Y_{t-1} + \varepsilon_{t}$$

$$Y_{t-1} = \theta Y_{t-2} + \varepsilon_{t-1}$$

$$Y_{t} = \theta (\theta Y_{t-2} + \varepsilon_{t-1}) + \varepsilon_{t} = \theta^{2} Y_{t-2} + \theta \varepsilon_{t-1} + \varepsilon_{t}$$

$$Y_{t} = \theta^{n} Y_{t-n} + \sum_{i=0}^{n-1} \theta^{i} \varepsilon_{t-j}$$

- If $|\theta| \ge 1$, as $n \to \infty$, $\theta^n \to \infty$, and Y_t explodes.
- lacksquare So we need $\left| heta
 ight| < 1$ forstationarity.

$AR(1): Y_t = \theta Y_{t-1} + \varepsilon_t$

• **Stationarity:** stationary if $|\theta| < 1$. Then

$$E[Y_t] = 0 \text{ for all } t$$

,
$$Var(Y_t) = \theta^2 Var(Y_{t-1}) + Var(\varepsilon_t) = \frac{\sigma^2}{1 - \theta^2}$$
 for all t

,
$$Cov(Y_t, Y_{t-k}) = \theta^k \frac{\sigma^2}{1 - \theta^2}$$
 for all t , for all k

Autocovariances

$$\gamma(k) = \theta^k \frac{\sigma^2}{1 - \theta^2}$$
 for all k

ACF

$$\rho(k) = \theta^k$$
 for all k

PACF

$$\rightarrow \alpha(1) = \theta$$

$$\rightarrow \alpha(k) = 0$$
 for all $|k| > 1$

32

$AR(1): Y_t = \theta Y_{t-1} + \varepsilon_t$

• Can be derived in a different way: $(1 - \theta L)Y_t = \varepsilon_t$, so if $(1 - \theta L)$ has an inverse, Y_t can be written as

$$Y_t = (1 - \theta L)^{-1} \varepsilon_t = \sum_{j=0}^{\infty} \theta^j L^j \varepsilon_t$$

- So it is covariance-stationary, if $\sum_{j=0}^{\infty} |\theta^j| < \infty$, i.e., whenever $|\theta| < 1$.
- Now, $Cov(\varepsilon_t, Y_{t-1}) = \sum_{j=0}^{\infty} \theta^j Cov(\varepsilon_t, \varepsilon_{t-j}) = 0$, if $Cov(\varepsilon_t, \varepsilon_{t-j}) = 0$ for all j > 0. So, if $\{\varepsilon_t\}$ is a white noise, it holds.
- Also, $E[\varepsilon_t | Y_{t-1}] = E[\varepsilon_t | \varepsilon_{t-1}, \varepsilon_{t-2}, \ldots]$, so if $\{\varepsilon_t\}$ is an MDS, the regression assumption is satisfied.

What you should know after today:

- Concepts of weak and strong stationarity
- What are ACF and PACF
- What are white noise, AR, MA, and ARMA processes
- What are their characteristics (ACF, PACF)
- How to write AR(1) model using the lag operator and how to derive MA(∞)