Karth Palath 15 Feb 2021

Problem 5.1

1. Baseline (No Masters):

Current Age: 26 Years, Average Salary = \$60,000/year, Inflation Rate = 5%

- After 5 years i.e. at the age of 31, PV = 60,000 x (P|A, 5%, 5) = 60,000 x 4.3295 = \$259,770
- Retirement at the age of 55 years, i.e. after 29 years, $PV = 60,000 \times (P|A, 5\% 29) = 60,000 \times 15.1411 = $908,466$
- Retirement at the age of 66 years, i.e. after 40 years, $PV = 60,000 \times (P|A, 5\% 40) = 60,000 \times 17.1591 = $1,029,546$

2. Option 1: Enroll for masters, pay full tuition \$40,000 and graduate in one year:

Current Age: 26 Years, Average Salary = \$70,000/year, Inflation Rate = 5%

- After 5 years i.e. at the age of 31,
 Deducting initial tuition fees and no income for 1st year
 PV = -40,000 + 70,000 x (P|A, 5%, 5) 70,000 x (P|A, 5%, 1)
 PV = -40,000 + 70,000 x 4.3295 70,000 x 0.9524 = \$196,397
- Retirement at the age of 55 years, i.e. after 29 years, Deducting initial tuition fees and no income for 1^{st} year $PV = -40,000 + 70,000 \times (P|A, 5\%, 29) 70,000 \times (P|A, 5\%, 1)$ $PV = -40,000 + 70,000 \times 15.1411 70,000 \times 0.9524 = \$953,209$
- Retirement at the age of 66 years, i.e. after 40 years, Deducting initial tuition fees and no income for 1st year PV = -40,000 + 70,000 x (P|A, 5%, 40) 70,000 x (P|A, 5%, 1) PV = -40,000 + 70,000 x 17.1591 70,000 x 0.9524 = \$1,094,469

3. Option 2: Enroll for masters, no tuition fee and graduate in two years:

Current Age: 26 Years, Average Salary = \$70,000/year, Inflation Rate = 5%

- After 5 years i.e. at the age of 31,
 No income for 2 years
 PV = 70,000 x (P|A, 5%, 5) 70,000 x (P|A, 5%, 2)
 PV = 70,000 x 4.3295 70,000 x 1.8594 = \$196,397
- Retirement at the age of 55 years, i.e. after 29 years, No income for 2 years
 PV = 70,000 x (P|A, 5%, 29) 70,000 x (P|A, 5%, 2)
 PV = 70,000 x 15.1411 70,000 x 1.8594 = \$929,719
- Retirement at the age of 66 years, i.e. after 40 years, No income for 2 years
 PV = 70,000 x (P|A, 5%, 40) 70,000 x (P|A, 5%, 2)
 PV = 70,000 x 17.1591 70,000 x 1.8594 = \$1,070,979

4. Option 3: Enroll for masters, initial loan, graduate in one year:

Current Age: 26 Years, Average Salary = \$70,000/year, Inflation Rate = 5%, \$5,000/year loan starting from year 2 to year 11

• After 5 years i.e. at the age of 31, No income for 1 year PV = [70,000 x (P|A, 5%, 5) - 70,000 x (P|A, 5%, 1)] - [5,000 x (P|A, 5%, 4) - 5,000 x (P|A, 5%, 1)] PV = (70,000 x 4.3295 - 70,000 x 0.9524) - (5,000 x 3.5459 - 5,000 x 0.9524) = \$223,429

• Retirement at the age of 55 years, i.e. after 29 years,

No income for 1 year

$$PV = 70,000 \times (P|A, 5\%, 29) - 70,000 \times (P|A, 5\%, 1)] - [5,000 \times (P|A, 5\%, 11) - 5,000 \times (P|A, 5\%, 1)]$$

$$PV = (70,000 \text{ x } 15.1411 - 70,000 \text{ x } 0.9524) - (5,000 \text{ x } 8.3064 - 5,000 \text{ x } 0.9524) = \frac{\$956,439}{1}$$

• Retirement at the age of 66 years, i.e. after 40 years,

No income for 1 year

$$PV = 70,000 \text{ x } (P|A, 5\%, 40) - 70,000 \text{ x } (P|A, 5\%, 1)] - [5,000 \text{ x } (P|A, 5\%, 11) - 5,000 \text{ x } (P|A, 5\%, 1)]$$

$$PV = (70,000 \text{ x } 17.1591 - 70,000 \text{ x } 0.9524) - (5,000 \text{ x } 8.3064 - 5,000 \text{ x } 0.9524) = \frac{\$1,097,699}{10.9524}$$

5. Comparison Matrix:

	Baseline	Option 1	Option 2	Option 3
After 5 Years	\$259,770	\$196,397	\$196,397	\$223,429
Retirement at 55 Years	\$908,466	\$953,209	\$929,719	\$956,439
Retirement at 65 Years	\$1,029,546	\$1,094,469	\$1,070,979	\$1,097,699

6. Analysis: It is apparent from the above matrix that the student would benefit from baseline option, that is, applying for a job immediately after getting B.S. degree and skipping masters for short term (after 5 years). However, Option 3 where the student borrows money and graduates within one year is more fruitful in both the scenarios where the student wants to retire at 55 years and 66 years.

Interest f	actors fo	r Engine	ering Ed	onomy F	Present \	North Fa	ctor Equ	al Paym	ents- To	find P g	iven A (F	P/A)								
I VS nY	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%	16%	17%	18%	19%	20%
1	0.9901	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9259	0.9174	0.9091	0.9009	0.8929	0.885	0.8772	0.8696	0.8621	0.8547	0.8475	0.8403	0.8333
2	1.9704	1.9416	1.9135	1.8861	1.8594	1.8334	1.808	1.7833	1.7591	1.7355	1.7125	1.6901	1.6681	1.6467	1.6257	1.6052	1.5852	1.5656	1.5465	1.5278
3	2.941	2.8839	2.8286	2.7751	2.7232	2.673	2.6243	2.5771	2.5313	2.4869	2.4437	2.4018	2.3612	2.3216	2.2832	2.2459	2.2096	2.1743	2.1399	2.1065
4	3.902	3.8077	3.7171	3.6299	3.546	3.4651	3.3872	3.3121	3.2397	3.1699	3.1024	3.0373	2.9745	2.9137	2.855	2.7982	2.7432	2.6901	2.6386	2.5887
5	4.8534	4.7135	4.5797	4.4518	4.3295	4.2124	4.1002	3.9927	3.8897	3.7908	3.6959	3.6048	3.5172	3.4331	3.3522	3.2743	3.1993	3.1272	3.0576	2.9906
6	5.7955	5.6014	5.4172	5.2421	5.0757	4.9173	4.7665	4.6229			4.2305	4.1114	3.9975	3.8887	3.7845	3.6847	3.5892	3.4976	3.4098	3.3255
7	6.7282	6.472	6.2303	6.0021	5.7864		5.3893		5.033		4.7122	4.5638	4.4226	4.2883	4.1604	4.0386	3.9224	3.8115	3.7057	3.6046
8	7.6517	7.3255	7.0197	6.7327	6.4632	6.2098	5.9713	5.7466	5.5348	5.3349	5.1461	4.9676	4.7988	4.6389	4.4873	4.3436	4.2072	4.0776	3.9544	3.8372
9	8.566	8.1622	7.7861	7.4353	7.1078	6.8017	6.5152	6.2469	5.9952	5.759	5.537	5.3282	5.1317	4.9464	4.7716	4.6065	4.4506	4.303	4.1633	4.031
10	9.4713	8.9826	8.5302	8.1109	7.7217	7.3601	7.0236	6.7101	6.4177	6.1446	5.8892	5.6502	5.4262	5.2161	5.0188	4.8332	4.6586	4.4941	4.3389	4.1925
11	10.368	9.7868	9.2526	8.7605	8.3064				6.8052		6.2065			5.4527		5.0286	4.8364	4.656	4.4865	4.3271
12	11.255	10.575	9.954	9.3851	8.8633	8.3838	7.9427	7.5361	7.1607	6.8137	6.4924	6.1944	5.9176	5.6603	5.4206	5.1971	4.9884	4.7932	4.6105	4.4392
13	12.134	11.348	10.635	9.9856	9.3936			7.9038			6.7499	6.4235	6.1218	5.8424	5.5831	5.3423	5.1183	4.9095	4.7147	4.5327
14	13.004	12.106	11.296	10.563	9.8986			8.2442			6.9819					5.4675	5.2293	5.0081	4.8023	4.6106
15	13.865	12.849	11.938	11.118	10.38						7.1909	6.8109	6.4624	6.1422	5.8474	5.5755	5.3242	5.0916	4.8759	4.6755
16	14.718	13.578	12.561	11.652	10.838	10.106	9.4466	8.8514	8.3126	7.8237	7.3792	6.974	6.6039	6.2651	5.9542	5.6685	5.4053	5.1624	4.9377	4.7296
17	15.562	14.292	13.166	12.166	11.274	10.477	9.7632	9.1216	8.5436	8.0216	7.5488	7.1196	6.7291	6.3729	6.0472	5.7487	5.4746	5.2223	4.9897	4.7746
18	16.398	14.992	13.754	12.659	11.69						7.7016				6.128	5.8178			5.0333	4.8122
19	17.226	15.678	14.324	13.134	12.085	11.158	10.336	9.6036	8.9501	8.3649	7.8393	7.3658	6.938	6.5504	6.1982	5.8775	5.5845	5.3162	5.07	4.8435
20	18.046	16.351	14.877	13.59	12.462						7.9633		7.0248	6.6231	6.2593	5.9288	5.6278	5.3527	5.1009	4.8696
21	18.857	17.011	15.415	14.029	12.821			10.017					7.1016		6.3125	5.9731	5.6648	5.3837	5.1268	4.8913
22	19.66		15.937	14.451	13.163						8.1757				6.3587	6.0113			5.1486	
23	20.456	18.292	16.444	14.857	13.489	12.303	11.272	10.371	9.5802	8.8832	8.2664	7.7184	7.2297	6.7921	6.3988	6.0442	5.7234	5.4321	5.1668	4.9245
24	21.243	18.914	16.936	15.247	13.799	12.55	11.469			8.9847			7.2829			6.0726	5.7465	5.4509	5.1822	4.9371
25	22.023	19.523	17.413	15.622	14.094	12.783	11.654	10.675			8.4217			6.8729		6.0971	5.7662	5.4669	5.1951	4.9476
26	22.795		17.877		14.375			10.81					7.3717							4.9563
27	23.56	20.707		16.33	14.643			10.935			8.5478				6.5135	6.1364	5.7975		5.2151	
28	24.316	21.281		16.663	14.898						8.6016					6.152			5.2228	
29	25.066	21.844	19.188	16.984	15.141						8.6501		7.4701		6.5509	6.1656	5.8204		5.2292	
30	25.808	22.396	19.6		15.372						8.6938		7.4957	7.0027	6.566	6.1772				4.9789
31	26.542	22.938		17.588	15.593				10.343		8.7331		7.5183		6.5791	6.1872	-		5.2392	-
32	27.27		20.389	17.874	15.803						8.7686				6.5905			5.5277		4.9854
33	27.99		20.766	18.148	16.003			11.514			8.8005		7.556		6.6005		5.8493		5.2462	
34	28.703		21.132	18.411	16.193						8.8293				6.6091	6.2098			5.2489	
35	29.409	24.999		18.665	16.374						8.8552			7.07		6.2153				_
36	30.108		21.832	18.908	16.547						8.8786		7.5979		6.6231	6.2201	5.8617			-
37	30.8	25.969		19.143	16.711						8.8996		7.6087		6.6288				5.2547	
38	31.485	26.441		19.368	16.868			11.829				8.221	7.6183	7.0937			5.8673			4.9951
39	32.163		22.808			14.949				9.757	0.10.00.		7.6268	7.0997		6.2309			5.2572	
40	32.835	27.355	23.115	19.793	17.159	15.046	13.332	11.925	10.757	9.7791	8.9511	8.2438	7.6344	7.105	6.6418	6.2335	5.8713	5.5482	5.2582	4.9966

Problem 5.2

Assumption: Tax Rate = 33% and Straight-Line Depreciation for the Machine.

1. Two-Cavity Mold:

Each mold can make 200,000 parts lifetime and the company is targeting to produce 40,000 parts/year.

Therefore 200,000/40,000 = 5 years is the lifetime of two-cavity mold.

Depreciation = 45,000/5 = 9000/year.

And it will earn a profit of $0.25 \times 40,000 = 10,000/year$.

Investment = \$45,000.

Year	Before Tax Cash	Depreciation	Taxable Income	Taxes	After Tax Cash
End	Flow				Flow
A	В	С	D = B + C	E = -0.33*D	F = B + E
0	-45,000				
1	10,000	-9000	1000	-330	9670
2	10,000	-9000	1000	-330	9670
3	10,000	-9000	1000	-330	9670
4	10,000	-9000	1000	-330	9670
5	10,000	-9000	1000	-330	9670

PW T1; at i =
$$4\% \rightarrow -45,000 + (9670 \text{ x } (P|A, 4\%, 5)) = -45,000 + 9670(4.4518) = -1951.09$$

PW T2; at i = $3\% \rightarrow -45,000 + (9670 \text{ x } (P|A, 3\%, 5)) = -45,000 + 9670(4.5797) = -714.30$
PW T3; at i = $2\% \rightarrow -45,000 + (9670 \text{ x } (P|A, 2\%, 5)) = -45,000 + 9670(4.7135) = 579.54$

Prorating between 2% and 3%,
$$2 + \frac{579.54}{(579.54 + 714.30)} = 2 + 0.45 = 2.45\%$$

2. Four-Cavity Mold:

Each mold can make 400,000 parts lifetime and the company is targeting to produce 40,000 parts/year.

Therefore 400,000/40,000 = 10 years is the lifetime of two-cavity mold.

Depreciation = 45,000/5 = 9000/year

And it will earn a profit of $0.25 \times 40,000 = 10,000/year$

Investment = \$80,000

Year	Before Tax Cash	Depreciation	Taxable Income	Taxes	After Tax Cash
End	Flow				Flow
A	В	С	D = B + C	E = -0.333*D	E = B + E
0	-80,000				
1	10,000	-8000	2000	-660	9340
2	10,000	-8000	2000	-660	9340
3	10,000	-8000	2000	-660	9340
4	10,000	-8000	2000	-660	9340
5	10,000	-8000	2000	-660	9340
6	10,000	-8000	2000	-660	9340
7	10,000	-8000	2000	-660	9340
8	10,000	-8000	2000	-660	9340
9	10,000	-8000	2000	-660	9340
10	10,000	-8000	2000	-660	9340

PW T1; at i =
$$4\% \Rightarrow -80,000 + (9340 \text{ x } (P|A, 4\%, 10)) = -80,000 + 9340(8.1109) = -4244.19$$

PW T2; at i = $3\% \Rightarrow -80,000 + (9340 \text{ x } (P|A, 3\%, 10)) = -80,000 + 9340(8.5302) = -327.93$
PW T3; at i = $2\% \Rightarrow -80,000 + (9340 \text{ x } (P|A, 2\%, 10)) = -80,000 + 9340(8.9826) = 3897.48$
Prorating between 2% and 3%, $2 + \frac{3897.48}{(3897.48 + 327.93)} = 2 + 0.92 = 2.92\%$

3. Conclusion: Clearly, for four-cavity molding machine, the ROI is greater than two-cavity molding machine. Therefore, the second option can be preferred over first option of two-cavity molding machine.

Interest fa	actors for	r Engine 2%	ering Ec	onomy F	resent V 5%	Vorth Fa	ctor Equ 7%	al Paym 8%	ents- To 9%	find P g		7/A) 12%	13%	14%	15%	16%	17%	18%	19%	20%
1			0.9709							0.9091	11%			0.8772	0.8696	0.8621	0.8547			
2		1.9416				1.8334	1.808			1.7355	-			1.6467	1.6257		1.5852	1.5656	1.5465	
3			2.8286				2.6243			2.4869									2.1399	2.1065
4	3.902	3.8077		3.6299						3.1699						2.7982			2.6386	
5		4.7135			4.3295													300,000	3.0576	
6					5.0757									3.8887					3.4098	
7	6.7282		6.2303	-	5.7864			5.2064		4.8684									3.7057	3.6046
8		7.3255			6.4632														3.9544	3.8372
9	8.566	8.1622	7.7861		7.1078					5.759				4.9464					4.1633	4.031
10	9.4713	8.9826	8.5302		7.7217					6.1446								4.4941	4.3389	4.1925
11	10.368	9.7868	9.2526	8.7605	8.3064					6.4951				5.4527			4.8364	4.656	4.4865	4.3271
12	11.255	10.575	9.954	9.3851	8.8633	8.3838	7.9427	7.5361	7.1607	6.8137	6.4924	6.1944	5.9176	5.6603	5.4206	5.1971	4.9884	4.7932	4.6105	4.4392
13	12.134	11.348	10.635	9.9856	9.3936	8.8527	8.3577			7.1034							5.1183	4.9095	4.7147	4.5327
14	13.004	12.106	11.296	10.563	9.8986	9.295	8.7455	8.2442	7.7862	7.3667	6.9819	6.6282	6.3025	6.0021	5.7245	5.4675	5.2293	5.0081	4.8023	4.6106
15	13.865	12.849	11.938	11.118	10.38	9.7122	9.1079	8.5595	8.0607	7.6061	7.1909	6.8109	6.4624	6.1422	5.8474	5.5755	5.3242	5.0916	4.8759	4.6755
16	14.718	13.578	12.561	11.652	10.838	10.106	9.4466	8.8514	8.3126	7.8237	7.3792	6.974	6.6039	6.2651	5.9542	5.6685	5.4053	5.1624	4.9377	4.7296
17	15.562	14.292	13.166	12.166	11.274	10.477	9.7632	9.1216	8.5436	8.0216	7.5488	7.1196	6.7291	6.3729	6.0472	5.7487	5.4746	5.2223	4.9897	4.7746
18	16.398	14.992	13.754	12.659	11.69	10.828	10.059	9.3719	8.7556	8.2014	7.7016	7.2497	6.8399	6.4674	6.128	5.8178	5.5339	5.2732	5.0333	4.8122
19	17.226	15.678	14.324	13.134	12.085	11.158	10.336	9.6036	8.9501	8.3649	7.8393	7.3658	6.938	6.5504	6.1982	5.8775	5.5845	5.3162	5.07	4.8435
20	18.046	16.351	14.877	13.59	12.462	11.47	10.594	9.8181	9.1285	8.5136	7.9633	7.4694	7.0248	6.6231	6.2593	5.9288	5.6278	5.3527	5.1009	4.8696
21	18.857	17.011	15.415	14.029	12.821	11.764	10.836	10.017	9.2922	8.6487	8.0751	7.562	7.1016	6.687	6.3125	5.9731	5.6648	5.3837	5.1268	4.8913
22	19.66	17.658	15.937	14.451	13.163	12.042	11.061	10.201	9.4424	8.7715	8.1757	7.6446	7.1695	6.7429	6.3587	6.0113	5.6964	5.4099	5.1486	4.9094
23	20.456	18.292	16.444	14.857	13.489	12.303	11.272	10.371	9.5802	8.8832	8.2664	7.7184	7.2297	6.7921	6.3988	6.0442	5.7234	5.4321	5.1668	4.9245
24	21.243	18.914	16.936	15.247	13.799	12.55	11.469	10.529	9.7066	8.9847							5.7465	5.4509	5.1822	4.9371
25	22.023	19.523	17.413	15.622	14.094						8.4217			6.8729			5.7662	5.4669	5.1951	4.9476
26	22.795	20.121						10.81		9.1609							5.7831	5.4804	5.206	4.9563
27		20.707	18.327	16.33	14.643												5.7975			
28	24.316	21.281	18.764							9.3066				6.9607	6.5335	6.152	5.8099	5.5016	5.2228	4.9697
29	25.066	21.844			15.141					9.3696					6.5509	6.1656			5.2292	4.9747
30	25.808	22.396			15.372					9.4269			7.4957	7.0027		6.1772			5.2347	4.9789
31		22.938					12.532		10.343		8.7331		7.5183		6.5791				5.2392	
32	27.27			17.874		14.084				9.5264						6.1959				4.9854
33	27.99	23.989		18.148	16.003		12.754			9.5694			7.556		6.6005		5.8493		5.2462	
34	28.703	24.499			16.193	14.368				9.6086				7.0599			5.8541		5.2489	
35	29.409	24.999		-	16.374					9.6442					6.6166		5.8582		5.2512	
36		25.489			-					9.6765	-				6.6231				5.2531	
37		25.969			16.711					9.7059				7.0868			5.8647		5.2547	
38	31.485	26.441			16.868					9.7327		8.221	7.6183		6.6338		5.8673		5.2561	
39			22.808		17.017						8.9357		7.6268			6.2309			5.2572	
40	32.835	27.355	23.115	19.793	17.159	15.046	13.332	11.925	10.757	9.7791	8.9511	8.2438	7.6344	7.105	6.6418	6.2335	5.8713	5.5482	5.2582	4.9966

Problem 5.3

Production Capacity = 200,000 cells/year; Profit of 1 cell = \$1.00; Net profit = \$200,000/year

1. Fully Automatic Machine; 33% Taxes; Salvage 10%; Five-Year Life:

Year End	Before Tax Cash Flow	Depreciation	Taxable Income	Taxes	After Tax Cash Flow
A	В	С	D = B + C	E = -0.33*D	F = B + E
0	-800,000				
1	200,000	-160,000	40,000	-13,200	186,800
2	200,000	-160,000	40,000	-13,200	186,800
3	200,000	-160,000	40,000	-13,200	186,800
4	200,000	-160,000	40,000	-13,200	186,800
5	200,000	-160,000	40,000	-13,200	186,800
Book Value	80,000				

$$PW = -800,000 + 80,000 \times (P|F, 10\%, 5) + 186,800 \times (P|A, i\%, 5) = 0$$

$$\therefore$$
 -800,000 + 80,000 x 0.6209 + 186,800(P|A, i\%, 5) = 0

$$\therefore$$
 (P|A, i%, 5) = 750328/186800

$$\therefore$$
 (P|A, i%, 5) = 4.0167

From P|A table, this number lies in between 7% and 8%

For I = 7%, PW =
$$-800,000 + 80,000 \times 0.6209 + 186,800 \times 4.1002 = \$15,589.36$$

For I = 8%, PW = $-800,000 + 80,000 \times 0.6209 + 186,800 \times 3.9927 = -\$4,491.64$
Prorating between 7% and 8%, $7 + \frac{15589.36}{(15589.36 + 4491.64)} = 7 + 0.78 = 7.78\%$

2. Fully Automatic Machine; No Taxes; No Salvage; Five-Year Life:

Year End	Before Tax
	Cash Flow
A	В
0	-800,000
1	200,000
2	200,000
3	200,000
4	200,000
5	200,000

$$PW = -800,000 + 200,000 \times (P|A, i\%, 5) = 0$$

$$\therefore$$
 (P|A, i\%, 5) = 4

From P|A table, this number lies in between 7% and 8%

For
$$I = 7\%$$
, $PW = -800,000 + 200,000 \times 4.1002 = $20,040.00$
For $I = 8\%$, $PW = 800,000 + 200,000 \times 3.0027 = $1.460.00$

For I = 8%, PW = -800,000 + 200,000 x 3.9927 = -\$1,460.00
Prorating between 7% and 8%,
$$7 + \frac{20040}{(20040+1460)} = 7 + 0.93 = 7.93\%$$

Production Capacity = 120,000 cells/year; Profit of 1 cell = \$1.00; Net profit = \$120,000/year

3. Semi-Automatic Machine; 33% Taxes; Salvage 10%; Five-Year Life:

Year End	Before Tax	Depreciation	Taxable Income	Taxes	After Tax Cash
	Cash Flow				Flow
A	В	С	D = B + C	E = -0.33*D	F = B + E
0	-500,000				
1	120,000	-100,000	20,000	-6,600	113,400
2	120,000	-100,000	20,000	-6,600	113,400
3	120,000	-100,000	20,000	-6,600	113,400
4	120,000	-100,000	20,000	-6,600	113,400
5	120,000	-100,000	20,000	-6,600	113,400
Book Value	50,000	_			

$$PW = -500,000 + 50,000 \times (P|F, 10\%, 5) + 113,400 \times (P|A, i\%, 5) = 0$$

$$\therefore$$
 -500,000 + 50,000 x 0.6209 + 113,400(P|A, i\%, 5) = 0

$$\therefore$$
 (P|A, i%, 5) = 468955/113400

$$\therefore$$
 (P|A, i%, 5) = 4.1354

From P|A table, this number lies in between 6% and 7%

For I = 6%, PW = -500,000 + 50,000 x 0.6209 + 113,400 x 4.2124 = \$8,731.16
For I = 7%, PW = -500,000 + 50,000 x 0.6209 + 113,400 x 4.1002 = -\$3,992.32
Prorating between 6% and 7%, 6 +
$$\frac{8731.16}{(8731.16+3992.32)}$$
 = 6 + 0.69 = **6.69**%

4. Semi-Automatic Machine; No Taxes; No Salvage; Five-Year Life:

Year End	Before Tax
	Cash Flow
A	В
0	-500,000
1	120,000
2	120,000
3	120,000
4	120,000
5	120,000

$$PW = -500,000 + 120,000 \times (P|A, i\%, 5) = 0$$

$$\therefore$$
 (P|A, i%, 5) = 4.1667

From P|A table, this number lies in between 6% and 7%

For
$$I = 6\%$$
, $PW = -500,000 + 120,000 \times 4.2124 = $5,488.00$

For I = 7%, PW = -500,000 + 120,000 x 4.1002 = -\$7,976.00
Prorating between 6% and 7%,
$$6 + \frac{5,488.00}{(5,488.00+7,976.00)} = 6 + 0.41 = 6.41%$$

5. Conclusion:

- a. With taxes and remaining book value: ROI of fully automatic machine is 7.78% which is greater than ROI of semi-automatic machine at 6.69%, hence planning for fully automatic machine is better.
- b. Without taxes and remaining book value: ROI of fully automatic machine is 7.93% which is greater than ROI of semi-automatic machine at 6.41%, hence planning for fully automatic machine is better.

