Distributted SPMV algorithm design and performance analysis

Zhengjiang Li

Department of Mechanical and Aerospace Engineering University at Buffalo, State University of New York

June 15, 2015

母

Data Structure

- Distributed Vector
- Distributed Sparse Matrix

母[。]

Distributed SPMV

Algorithm 1 SPMV

```
1: for i=0; i < LocalNumberOfRows; i++do
2: cur\_mat\_val = matrixValues[i]
3: ur\_local.ind = matrizInd[i]
4: cur\_nnz = nnzInRow[i]
5: for j=0; j < cur\_nnz; j++do
6: sum+=cur\_mat\_val[j]*
vec\_val[cur\_nnz[j]]
7: end for
8: end for
```


Communication Buffer

GlobalRow	nnzCollnCurRow	Interface Communicate
101	(96, 97, 101, 102, 106, 107)	(j, 106, 107)
102	(96, 97, 98, 101, 102, 103, 106, 107, 108)	(j, 106, 107, 108)
103	(97, 98, 99, 102, 103, 104, 107, 108 109	(j, 107, 108, 109)

Zhengjiang Li Master Oral Defense June 15, 2015

CG algorithm

Algorithm 2 CG

```
SparseMatrixA
Vectorx0, Ax0, b, r, d
spmv(A, x0)
Scalar Product(b, Ax0, r) % initial residual
DotProduct(r, r, normr); % residual norm
norm0 = norm
for i = 1; i < max\_iter \&\&normr/norm0 > eps; <math>i + + do
  beta = norm/norm0;
  Scalar Product(z, beta, d, d) %update direction vector
  spmv(A, d, Ad)
  DotProduct(d, Ad, dAd);
  alpha = norm/dAd:
  Scalar Product(x, alpha, d, x); %update solution vector
  Scalar Product(r, -alpha, Ad, r); %update residual vector
  DotProduct(r, r, normr)
end for
```

Time Complexity

topology	localX	localY	buffer
1D	NX	NY/p	2NX
2D	NX/px	NY/py	2(NX/px + NY/py)

CPU calcuation time:

$$t_1 = (2m + 2N)/c_1 = 2(nnzInRow + 1)N/c_1$$
 (1)

Communicate time:

$$t_2 = 2NX/c_2\%1D \ cpu$$
 (2)

$$t_2 = 2(NX/px + NY/py)/c_2\%2D \ cpu$$
 (3)

Zhengjiang Li Master Oral Defense June 15, 2015

Time Complexity II

$$t = t_1 + t_2 = \begin{cases} 2\delta \frac{NX \cdot NY}{p \cdot c_1} + 2\frac{NX}{c_2} \% 1D \ cpu \\ 2\delta \frac{NX \cdot NY}{p \cdot c_1} + 2\frac{NX \cdot py + NY \cdot px}{px \cdot py \cdot c_2} \% 2D \ cpu \end{cases}$$

The time complexity is proportional to the size of problem, nonzeros In rows, as well as hardward performance. The speed-up will reach an upper limit when:

- **1** For 1D CPU topology, $p \ge \gamma NX$
- **2** For 2D CPU topology, $2\sqrt{p} \ge \gamma NX$

Also consider accuracy(iteration numbers)

Results

Figure: CPU performance

sparse matrix src

```
struct SparseMatrix
   Geometry* geom;
   /*local variable */
   local_int_t localNumberOfRows;
   local_int_t localNumberOfColumns;
   local_int_t localNumberOfNonzeros;
   global_int_t ** mtxIndG;
   global_int_t** mtxIndL;
   double ** matrix Values:
   global_int_t* nonzerosInRow;
   std::map<global_int_t, local_int_t> globalToLocalMap;
   std::vector<global_int_t> localToGlobalMap;
16
```

Zhengjiang Li Master Oral Defense June 15, 2015

Thank you for your attention

¹Jonathan Richard Shewchuk "An introduction to the Conjugate Gradietn Metho