

ME 397- ASBR Week 2-Lecture 1

a Curiosity NASA/JPLCaltech;b Savioke Relay;c self driving car, Oxford Univ.;d Cheetah legged robot, Boston Dynamics

FARSHID ALAMBEIGI, Ph.D.

Assistant Professor | Walker Department of Mechanical Engineering Cockrell School of Engineering | The University of Texas at Austin

Skew Symmetric matrices

Figure 3. Given a vector
$$\mathbf{x} = [\mathbf{x}_1 \, \mathbf{x}_2 \, \mathbf{x}_3]^{\mathrm{T}} \in \mathbb{R}^3$$
, define: $[x] = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix}$

ightharpoonup The space of $\underline{n \times n}$ skew-symmetric matrices S is: $so(n) = \{S \in \mathbb{R}^{n \times n} : S^T = -S\}$

 \triangleright We can write the **cross product of two vectors** as: $a \times b = (a)^{\wedge}b$.

Vector linear differential equation

The linear differential equation $\dot{x}(t) = Ax(t)$ with initial condition $x(0) = x_0$, where $A \in \mathbb{R}^{n \times n}$ is constant and $x(t) \in \mathbb{R}^n$, has solution

$$x(t) = e^{At}x_0$$

where

$$e^{At} = I + tA + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + \cdots$$

The matrix exponential e^{At} further satisfies the following properties:

- (a) $d(e^{At})/dt = Ae^{At} = e^{At}A$.
- (b) If $A = PDP^{-1}$ for some $D \in \mathbb{R}^{n \times n}$ and invertible $P \in \mathbb{R}^{n \times n}$ then $e^{At} = Pe^{Dt}P^{-1}$.
- (c) If AB = BA then $e^A e^B = e^{A+B}$.
- (d) $(e^A)^{-1} = e^{-A}$.

Exponential coordinates for rotation

Let's rotate the rigid body at <u>constant unit velocity</u> <u>about the axis ω </u>, the velocity of the point, \dot{q} , may be written as the following linear differential equation:

$$\dot{q}(t) = \omega \times q(t) = \widehat{\omega}q(t)$$
 $q(t) = e^{\widehat{\omega}t}q(0)$

where q(0) is the initial (t = 0) position of the point and $e^{\widehat{\omega}t}$ is the matrix exponential:

$$e^{\widehat{\omega}t} = I + \widehat{\omega}t + \frac{(\widehat{\omega}t)^2}{2!} + \frac{(\widehat{\omega}t)^3}{3!} + \cdots$$

- It follows that if we <u>rotate</u> about the <u>axis ω at unit velocity</u> for <u>θ units of time</u> ($\mathbf{t} = \mathbf{\theta}$), then the **net rotation** is given by: $R(\omega, \theta) = e^{\widehat{\omega}\theta}$
- Figure 3 Given a matrix $\widehat{\omega} \in so(3)$, $\|\omega\| = 1$, and a real number $\theta \in \mathbb{R}$, we write the exponential $\widehat{\omega}\theta$ as $\exp(\widehat{\omega}\theta) = e^{\widehat{\omega}\theta} = I + \theta\widehat{\omega} + \frac{\theta^2}{2!}\widehat{\omega}^2 + \frac{\theta^3}{2!}\widehat{\omega}^3 + \dots$
- This is an **infinite series** and, hence, <u>not useful from a computational standpoint</u>.
- It can be shown that if **the matrix is constant** and **finite** then this series is always guaranteed **to converge to a finite limit**.

Exponential coordinates for rotation

ightharpoonup Given $\widehat{a} \in so(3)$, the following relations hold:

$$\widehat{a}^2 = aa^T - ||a||^2 I$$

$$\widehat{a}^3 = -||a||^2 \widehat{a}$$

and higher powers can be calculated recursively.

 $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$

Violating this with
$$a = \omega \theta$$
, $\|\omega\| = 1$, we have:
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$

$$\exp(\widehat{\omega}\theta) = e^{\widehat{\omega}\theta} = I + \theta\widehat{\omega} + \frac{\theta^2}{2!}\widehat{\omega}^2 + \frac{\theta^3}{3!}\widehat{\omega}^3 + \dots$$

$$e^{\widehat{\omega}\theta} = I + \left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots\right) \widehat{\omega} + \left(\frac{\theta^2}{2!} - \frac{\theta^4}{4!} + \frac{\theta^6}{6!} - \cdots\right) \widehat{\omega}^2$$

$$\operatorname{Rot}(\hat{\omega}, \theta) = e^{\widehat{\omega}\theta} = I + \widehat{\omega} \sin \theta + \widehat{\omega}^2 (1 - \cos \theta) \in SO(3) \text{ Rodrigues' formula}$$

Mhen
$$\|\omega\| \neq 1$$
, it may be verified:

$$e^{\widehat{\omega}\theta} = I + \frac{\widehat{\omega}}{\|\omega\|} \sin(\|\omega\|\theta) + \frac{\widehat{\omega}^2}{\|\omega\|^2} (1 - \cos(\|\omega\|\theta)).$$

Exponential coordinates for rotation

- The quantity $e^{\hat{\omega}\theta} q$ has the effect of rotating q about the fixed-frame axis $\underline{\omega}$ by an angle $\underline{\theta}$.
- Similarly, considering that a rotation matrix **R** consists of three column vectors, the rotation matrix $R' = \text{Rot}(\hat{\omega}, \theta)R$ is the orientation achieved by rotating R by an angle $\underline{\theta}$ about **axis** $\underline{\omega}$ in the fixed frame.

Reversing the order of matrix multiplication, $R'' = R \operatorname{Rot}(\hat{\omega}, \theta)$ is the orientation achieved by rotating R in the body frame.

$$R'' = Re^{[\hat{\omega}_2]\theta_2} \neq R' = e^{[\hat{\omega}_2]\theta_2}R.$$

- Exponentials of skew symmetric matrices are orthogonal!
- \triangleright Given a skew-symmetric matrix $\widehat{\omega} \in so(3)$ and $\theta \in \mathbb{R}$ \Longrightarrow $e^{\widehat{\omega}\theta} \in SO(3)$.
- Secondarically, the <u>skew symmetric matrix corresponds to an axis of rotation</u> and the <u>exponential map generates the rotation</u> corresponding to rotation about the axis by a specified amount θ .

- The matrix logarithm is the inverse of the matrix exponential.
- Just as the <u>matrix exponential</u> integrates the <u>matrix</u> representation of an angular velocity for <u>one second</u> to give an orientation $R \in SO(3)$, the <u>matrix logarithm</u> differentiates an $R \in SO(3)$ to find the <u>matrix representation of a constant angular velocity</u> which, if integrated for one second, rotates a frame from I to R.

exp:
$$[\hat{\omega}]\theta \in so(3) \rightarrow R \in SO(3),$$

$$\log: R \in SO(3) \rightarrow [\hat{\omega}]\theta \in so(3).$$

The exponential map is surjective onto SO(3) i.e.,

Given
$$R \in SO(3)$$
, there exists $\omega \in \mathbb{R}^3$, $\|\omega\| = 1$ and $\theta \in \mathbb{R}$ such that $R = \exp(\widehat{\omega}\theta)$.

Surjective means that every "B" has <u>at least one matching</u> "A" (maybe more than one). There won't be a "B" left out.

Every B has some A

Given an R, we equate terms of R and $\exp(\hat{\omega} \theta)$ and solve the corresponding equations.

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \quad v_{\theta} = 1 - \cos \theta, c_{\theta} = \cos \theta, \text{ and } s_{\theta} = \sin \theta,$$

$$e^{\widehat{\omega}\theta} = I + \widehat{\omega} \sin \theta + \widehat{\omega}^2 (1 - \cos \theta)$$

$$= \begin{bmatrix} 1 - v_{\theta}(\omega_2^2 + \omega_3^2) & \omega_1 \omega_2 v_{\theta} - \omega_3 s_{\theta} & \omega_1 \omega_3 v_{\theta} + \omega_2 s_{\theta} \\ \omega_1 \omega_2 v_{\theta} + \omega_3 s_{\theta} & 1 - v_{\theta}(\omega_1^2 + \omega_3^2) & \omega_2 \omega_3 v_{\theta} - \omega_1 s_{\theta} \\ \omega_1 \omega_3 v_{\theta} - \omega_2 s_{\theta} & \omega_2 \omega_3 v_{\theta} + \omega_1 s_{\theta} & 1 - v_{\theta}(\omega_1^2 + \omega_2^2) \end{bmatrix}$$

$$= \begin{bmatrix} \omega_1^2 v_{\theta} + c_{\theta} & \omega_1 \omega_2 v_{\theta} - \omega_3 s_{\theta} & \omega_1 \omega_3 v_{\theta} + \omega_2 s_{\theta} \\ \omega_1 \omega_2 v_{\theta} + \omega_3 s_{\theta} & \omega_2^2 v_{\theta} + c_{\theta} & \omega_2 \omega_3 v_{\theta} - \omega_1 s_{\theta} \\ \omega_1 \omega_3 v_{\theta} - \omega_2 s_{\theta} & \omega_2 \omega_3 v_{\theta} + \omega_1 s_{\theta} & \omega_3^2 v_{\theta} + c_{\theta} \end{bmatrix}.$$

$$\operatorname{tr} R = r_{11} + r_{22} + r_{33} = 1 + 2\cos\theta.$$

$$[\hat{\omega}] = \begin{bmatrix} 0 & -\hat{\omega}_3 & \hat{\omega}_2 \\ \hat{\omega}_3 & 0 & -\hat{\omega}_1 \\ -\hat{\omega}_2 & \hat{\omega}_1 & 0 \end{bmatrix} = \frac{1}{2\sin\theta} (R - R^{\mathrm{T}})$$

WHAT?

Because of the $\underline{\sin \theta \text{ term}}$ in the denominator, $[\widehat{\omega}]$ is not well defined if θ is an integer multiple of π (Singularity).

Algorithm: Given R ϵ SO(3), find a $\theta \epsilon$ [0; π] and a unit rotation axis

$$\omega \in \mathbb{R}^3, \|\omega\| = 1$$
, such that $e^{\hat{\omega}\theta} = R$.

(a) If
$$\mathbf{R} = \mathbf{I}$$
 then $\mathbf{\theta} = \mathbf{0}$ and $\widehat{\boldsymbol{\omega}}$ is undefined

(a) If
$$\mathbf{R} = \mathbf{I}$$
 then $\mathbf{\theta} = \mathbf{0}$ and $\widehat{\boldsymbol{\omega}}$ is undefined.
$$[\widehat{\omega}] = \begin{bmatrix} 0 & -\widehat{\omega}_3 & \widehat{\omega}_2 \\ \widehat{\omega}_3 & 0 & -\widehat{\omega}_1 \\ -\widehat{\omega}_2 & \widehat{\omega}_1 & 0 \end{bmatrix} = \underbrace{\frac{1}{2\sin\theta}} (R - R^T)$$

(b) If tr(R) = -1 then $\theta = \pi$. Set $\widehat{\omega}$ equal to any $\operatorname{tr} R = r_{11} + r_{22} + r_{33} = 1 + 2\cos\theta.$ of the following three vectors:

$$R = e^{[\hat{\omega}]\pi} = I + 2[\hat{\omega}]^2.$$

$$\hat{\omega} = \frac{1}{\sqrt{2(1+r_{33})}} \begin{bmatrix} r_{13} \\ r_{23} \\ 1+r_{33} \end{bmatrix} \quad \hat{\omega} = \frac{1}{\sqrt{2(1+r_{22})}} \begin{bmatrix} r_{12} \\ 1+r_{22} \\ r_{32} \end{bmatrix} \text{ or } \hat{\omega} = \frac{1}{\sqrt{2(1+r_{11})}} \begin{bmatrix} 1+r_{11} \\ r_{21} \\ r_{31} \end{bmatrix}$$

$$\theta = \cos^{-1}\left(\frac{1}{2}(\operatorname{tr} R - 1)\right) \in [0, \pi)$$

$$\hat{\omega} = \frac{1}{2\sin\theta}(R - R^{\mathrm{T}})$$

 \triangleright Since every R ϵ SO(3), satisfies one of the three cases in the algorithm, for every R there exists a matrix logarithm $\hat{\omega}\theta$ and therefore a set of exponential coordinates $\omega\theta$ (Surjective onto SO(3)).

- Because the matrix logarithm calculates exponential coordinates $\omega\theta$ satisfying $||\hat{\omega}\theta|| \leq \pi$, we can picture the rotation group SO(3) as a solid ball of radius π .
- Figure 3 Given a point $r \in \mathbb{R}^3$ in this solid ball, let $\omega = r/\|r\|$ be the **unit axis** in the direction from the origin to the point r and let $\theta = \|r\|$ be the **distance from the origin to r**, so that $r = \omega \theta$.
- The **rotation matrix** corresponding to \mathbf{r} can then be regarded as a <u>rotation about the axis</u> $\boldsymbol{\omega}$ by an angle $\boldsymbol{\theta}$.
- For any R ϵ SO(3) such that $\mathbf{tr} \ \mathbf{R} \neq -1$, there exists a unique r in the interior of the solid ball such that $e^{[r]} = R$.
- In the event that $\mathbf{tr} \mathbf{R} = -1$, $\log \mathbf{R}$ is given by $\underline{\mathbf{two}}$ antipodal points on the surface of this solid ball.

 $-\pi$

Exponential coordinates and Matrix Logarithm

exp:
$$[\hat{\omega}]\theta \in so(3) \rightarrow R \in SO(3),$$

log: $R \in SO(3) \rightarrow [\hat{\omega}]\theta \in so(3).$

$$\operatorname{Rot}(\hat{\omega}, \theta) = e^{\widehat{\omega}\theta} = I + \widehat{\omega}\sin\theta + \widehat{\omega}^2(1 - \cos\theta) \in SO(3)$$
 Rodrigues' formula

ightharpoonup When $\|\omega\| \neq 1$, it may be verified:

forward
$$e^{\widehat{\omega}\theta} = I + \frac{\widehat{\omega}}{\|\omega\|} \sin(\|\omega\|\theta) + \frac{\widehat{\omega}^2}{\|\omega\|^2} (1 - \cos(\|\omega\|\theta)).$$

inverse
$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
 $\theta = \cos^{-1}\left(\frac{1}{2}(\operatorname{tr} R - 1)\right) \in [0, \pi)$ $\hat{\omega} = \frac{1}{2\sin\theta}(R - R^{\mathrm{T}})$

Since every R ϵ SO(3), satisfies one of the three cases in the algorithm, for every R there exists a matrix logarithm $\hat{\omega}\theta$ and therefore a set of exponential coordinates $\omega\theta$ (Surjective onto SO(3)).

Example

(a) The frame $\{b\}$ is obtained by rotation from an initial orientation aligned with the frame $\{s\}$ about a **unit axis** $\boldsymbol{\omega} = (0; 0.866; 0.5)$ by an **angle** $\boldsymbol{\theta} = 30^{\circ} = 0.524$ rad.

Find the rotation matrix representation of {b}.

$$Rot(\hat{\omega}, \theta) = e^{\widehat{\omega}\theta} = I + \widehat{\omega}\sin\theta + \widehat{\omega}^2(1 - \cos\theta)$$

$$[x] = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix}$$

Example

(b) If $\{b\}$ is then rotated by θ_2 about a <u>fixed-frame axis</u> $\omega_2 \neq \omega_1$ or a **body frame axis**, what will be the final rotation in each case?

$$Rot(\hat{\omega}, \theta) = e^{\widehat{\omega}\theta} = I + \widehat{\omega}\sin\theta + \widehat{\omega}^2(1 - \cos\theta)$$

Euler Angles Representation of rotation matrix

- > Rotation matrices give a redundant description of frame orientation.
- They are characterized by nine elements which are not independent but related by six constraints due to the orthogonality conditions, i.e., column vectors r_i are mutually perpendicular and have magnitude equal to 1.

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \qquad r_i^T r_j = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j. \end{cases}$$

- This implies that <u>three parameters</u> are <u>sufficient</u> to describe orientation of a rigid body in space (is it correct for axis-angle representation?)
- A minimal representation of orientation can be obtained by using a set of **three** angles $\varphi = [\phi \ \theta \ \psi]^T$.
- A generic rotation matrix can be obtained by composing a suitable sequence of three elementary rotations (i.e., rotations about x, y, or z axis) while guaranteeing that two successive rotations are not made about parallel axes.
- This implies that 12 distinct sets of angles are allowed out of all 27 possible combinations; each set represents a triplet of Euler angles.

ZYZ Euler Angles

- The rotation described by ZYZ angles is obtained as composition of the following elementary rotations:
 - First: Rotate the reference frame by the angle ϕ about axis z; this rotation is described by the matrix $R_z(\phi)$
 - Second: Rotate the <u>current frame</u> by the angle ϑ about axis y'; this rotation is described by the matrix $R_{v'}$ (ϑ)
 - \checkmark Third: Rotate the current frame by the angle ψ about axis z"; this rotation is described by the matrix R_{z} " (ψ)
- The resulting frame orientation is obtained by composition of rotations via post-multiplication: $R(\phi) = R_z(\varphi)R_{y'}(\vartheta)R_{z''}(\psi)$

$$R_{\mathbf{x}}(\phi) := e^{\widehat{\mathbf{x}}\phi} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{bmatrix}$$

$$R_{\mathbf{y}}(\beta) := e^{\widehat{\mathbf{y}}\beta} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_{\mathbf{z}}(\alpha) := e^{\widehat{\mathbf{z}}\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

ZYZ Euler Angles

$$R(\phi) = R_z(\varphi)R_{y'}(\vartheta)R_{z''}(\psi)$$

$$= \begin{bmatrix} c_{\varphi}c_{\vartheta}c_{\psi} - s_{\varphi}s_{\psi} & -c_{\varphi}c_{\vartheta}s_{\psi} - s_{\varphi}c_{\psi} & c_{\varphi}s_{\vartheta} \\ s_{\varphi}c_{\vartheta}c_{\psi} + c_{\varphi}s_{\psi} & -s_{\varphi}c_{\vartheta}s_{\psi} + c_{\varphi}c_{\psi} & s_{\varphi}s_{\vartheta} \\ \hline -s_{\vartheta}c_{\psi} & s_{\vartheta}s_{\psi} & c_{\vartheta} \end{bmatrix}$$

We are interested in solving the *inverse problem*, that is to <u>determine the</u> set of Euler angles corresponding to a given rotation matrix.

$$m{R} = egin{bmatrix} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33} \end{bmatrix}.$$

$$r_{13} \neq 0 \text{ and } r_{23} \neq 0$$

$$r_{13} \neq 0 \text{ and } r_{23} \neq 0$$

$$\varphi = \text{Atan2}(r_{23}, r_{13})$$

The function Atan2(y, x)computes the arctangent of the ratio y/x but utilizes the sign of each argument determine which quadrant the resulting angle belongs to.

Squaring and summing the elements [1, 3] and [2, 3] and using the element [3, 3]:

$$\theta = \operatorname{Atan2}\left(\sqrt{r_{13}^2 + r_{23}^2}, r_{33}\right) \vartheta \in (0, \pi).$$

elements [3, 1] and [3, 2]
$$\psi = \text{Atan2}(r_{32}, -r_{31}).$$

ZYZ Euler Angles

 \triangleright Choosing θ in the range $(-\pi, 0)$ leads to $\varphi = \text{Atan2}(-r_{23}, -r_{13})$

$$R(\phi) = R_{z}(\varphi)R_{y'}(\vartheta)R_{z''}(\psi) \qquad \qquad \vartheta = \operatorname{Atan2}\left(-\sqrt{r_{13}^{2} + r_{23}^{2}}, r_{33}\right) \\ = \begin{bmatrix} c_{\varphi}c_{\vartheta}c_{\psi} - s_{\varphi}s_{\psi} & -c_{\varphi}c_{\vartheta}s_{\psi} - s_{\varphi}c_{\psi} & c_{\varphi}s_{\vartheta} \\ s_{\varphi}c_{\vartheta}c_{\psi} + c_{\varphi}s_{\psi} & -s_{\varphi}c_{\vartheta}s_{\psi} + c_{\varphi}c_{\psi} & s_{\varphi}s_{\vartheta} \\ \hline -s_{\vartheta}c_{\psi} & s_{\vartheta}s_{\psi} & c_{\vartheta} \end{bmatrix} \qquad \psi = \operatorname{Atan2}\left(-r_{32}, r_{31}\right).$$

- As in the case of the exponential map, the map from $(\alpha, \beta, \gamma) \to SO(3)$ is surjective!
- when $s_{\theta} = 0$; in this case, it is **possible to determine only the sum or difference of** ϕ and ψ . In fact, if $\theta = 0$, π , the successive rotations of ϕ and ψ are made about axes of current frames which are parallel, thus giving equivalent contributions to the rotation (Singularity). $R(\phi) = R_z(\varphi)R_{u'}(\vartheta)R_{z''}(\psi)$
- As in the case of the <u>angle/axis representation</u>, singularities in the parameterization (i.e., <u>the lack of existence of global, smooth solutions to the inverse problem of determining the Euler angles from the rotation</u>) occur at $\mathbf{R} = \mathbf{I}$, the identity rotation.
- There are <u>infinitely many representations</u> of the identity rotation in the ZYZ Euler angles parameterization in the form of $Rot(\alpha, 0, -\alpha) = I!$

ZYX (Roll-Pitch-Yaw) Euler Angles

- ➤ Roll-Pitch-Yaw angles *are a*nother set of Euler angles originates from a representation of orientation in the (aero)nautical field.
- \Rightarrow $\phi = [\varphi \ \theta \ \psi]^T$ represent rotations **defined with respect to a fixed frame** attached to the center of mass of the craft.
- ➤ The rotation resulting from Roll–Pitch–Yaw angles can be obtained as follows:
 - First: Rotate the reference frame by the angle ψ about axis x (yaw); this rotation is described by the matrix $R_x(\psi)$.
 - ✓ Second: Rotate the reference frame by the angle ϑ about axis y (pitch); this rotation is described by the matrix $\mathbf{R}_{\mathbf{v}}(\vartheta)$.
 - \checkmark Third: Rotate the reference frame by the angle φ about axis z (roll); this rotation is described by the matrix $\mathbf{R}_{\mathbf{z}}(\mathbf{\phi})$.

$$R_{\mathbf{x}}(\phi) := e^{\widehat{\mathbf{x}}\phi} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{bmatrix},$$

$$R_{\mathbf{y}}(\beta) := e^{\widehat{\mathbf{y}}\beta} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix},$$

$$R_{\mathbf{z}}(\alpha) := e^{\widehat{\mathbf{z}}\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

$$R(\phi) = R_z(\varphi)R_y(\vartheta)R_x(\psi)$$

https://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw

ZYX (Roll-Pitch-Yaw) Euler Angles

$$R(\phi) = R_z(\varphi)R_y(\vartheta)R_x(\psi)$$

$$= \begin{bmatrix} c_{\varphi}c_{\vartheta} & c_{\varphi}s_{\vartheta}s_{\psi} - s_{\varphi}c_{\psi} & c_{\varphi}s_{\vartheta}c_{\psi} + s_{\varphi}s_{\psi} \\ s_{\varphi}c_{\vartheta} & s_{\varphi}s_{\vartheta}s_{\psi} + c_{\varphi}c_{\psi} & s_{\varphi}s_{\vartheta}c_{\psi} - c_{\varphi}s_{\psi} \\ -s_{\vartheta} & c_{\vartheta}s_{\psi} & c_{\vartheta}c_{\psi} \end{bmatrix} \qquad R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}.$$

ϑ in the range $(-\pi/2, \pi/2)$

$$\varphi = \text{Atan2}(r_{21}, r_{11})$$

$$\vartheta = \text{Atan2}\left(-r_{31}, \sqrt{r_{32}^2 + r_{33}^2}\right)$$

$$\psi = \text{Atan2}(r_{32}, r_{33}).$$

ϑ in the range $(\pi/2, 3\pi/2)$

$$\varphi = \text{Atan2}(-r_{21}, -r_{11})$$

$$\vartheta = \text{Atan2}(-r_{31}, -\sqrt{r_{32}^2 + r_{33}^2})$$

$$\psi = \text{Atan2}(-r_{32}, -r_{33}).$$

- > ZYX Euler angles do not have a singularity at the identity orientation, R = I, though they do contain singularities when $\theta = +/-\pi/2$.
- It is a fundamental topological fact that <u>singularities can never be eliminated in any 3-dimensional representation of SO(3).</u>

References

- Murray, R.M., Li, Z., Sastry, S.S., "A Mathematical Introduction to Robotic Manipulation.", Chapter 2.
- Corke, Peter. "Robotics, vision and control: fundamental algorithms in MATLAB®" second, completely revised. Vol. 118. Springer, 2017, **Chapter 2.**
- Lynch and Park, "Modern Robotics," Cambridge U. Press, 2017, Chapter 3.