Analysis I

Thomas Fleming

November 2, 2021

Contents

- 1 Functions of Bounded Variation and Absolutely Continuous Functions
- 2 Derivatives and Fundamental Theorem of Calculus 4

Lecture 19: End of Convergence, Functions of Bounded Variation, and Derivatives

Thu 28 Oct 2021 13:02

 $\mathbf{2}$

Recall we had the dominated convergence theorem. A similar version of the theorem makes use of convergence in measure as follows.

Theorem 0.1 (Dominated Convergence - Convergence in Measure). Let (f_n) be a sequence of measurable functions $f_n: \mathbb{R} \to \overline{\mathbb{R}}$ and suppose there is an integrable function $g: \mathbb{R} \to \overline{\mathbb{R}}$ so that $|f_n| \leq g$ for all $n \in \mathbb{N}$. If $(f_n) \to f: \mathbb{R} \to \overline{\mathbb{R}}$ in measure, (with f measurable), then f is integrable and $\lim_{n \to \infty} \int |f_n - f| = 0$ and $\lim_{n \to \infty} \int f_n = f$.

Proof. First, note a subsequence of (f_n) converges to f pointwise almost everywhere. Hence, we find $|f| \leq g$ almost everywhere, so f is integrable. We cam assume $|f_n - f| \leq 2g$ (almost) everywhere. Then, we find a subsequence $(g_n) = (f_{n_k})$ such that $\limsup_{n \to \infty} |f_n - f| = \lim_{n \to \infty} |g_k - f|$. Then, as $(g_k) \to f$ in measure, we find another subsequence $(h_j) = (g_{k_j}) = (f_{n_{k_j}})$ which converges pointwise to f almost everywhere.

Applying dominated convergence theorem yields

$$\lim_{n \to \infty} \int |h_j - f| = 0.$$

Then, we find

$$\limsup_{n \to \infty} \int |f_n - f| = \lim_{n \to \infty} \int |g_k - f|$$
$$= \lim_{n \to \infty} |h_j - f|$$
$$= 0.$$

This completes the proof.

1 Functions of Bounded Variation and Absolutely Continuous Functions

Remark. For this chapter $[a,b] \subseteq R$ will always denote a compact interval on \mathbb{R} .

Definition 1.1 (Partition). A finite sequence $P = (x_k)_{k=n}^N$ with $n, N \in \mathbb{Z}$ and n < N is called a **partition** of [a, b] if $x_n = a$, $x_N = b$ and $x_{k-1} \le x_k$ for $n < k \le N$. We denote the collection of all partitions of [a, b] to be $\mathscr{P}([a, b])$.

Definition 1.2. Let $f:[a,b] \to \mathbb{R}$ be a function. Then,

• For a partition $P = (x_k)_{k=n}^N$, we denote

$$V(f, P) = \sum_{k=n+1}^{N} |f(x_k) - f_{(x_{k-1})}|$$

to be the variation of f with respect to P.

• We define the quantity TV $(f) = \sup\{V(f, P) : P \in \mathscr{P}([a, b])\}$ to be the **total variation of** f.

Remark. If $f:[a,b]\to\mathbb{R}$ and $c\in[a,b]$ with partitions $P_1=(x_k)_{k=n}^N$ of [a,c] and $P_2=(x_k)_{k=N}^K$ of [c,b]. Then denote, $P=(x_k)_{k=n}^K$ to be a partition of [a,b] and we find

$$V(f, P) = V(f|_{[a,c],P_1}) + V(f|_{[c,b]}, P_2).$$

Moreover,

$$\mathrm{TV}\left(f\right) = \mathrm{TV}\left(f\mid_{[a,c]}\right) + \mathrm{TV}\left(f\mid_{[c,b]}\right).$$

Definition 1.3 (Bounded Variation). A function $f : \mathbb{R} \to \overline{\mathbb{R}}$ has bounded variation if $\mathrm{TV}(f) < \infty$.

Theorem 1.1 (Jordan's Theorem). A function $f:[a,b]\to\mathbb{R}$ is of bounded variation if and only if there are increasing functions $g,h:[a,b]\to\mathbb{R}$ so that f=g-h.

Proof. Suppose TV $(f) < \infty$ and let $x, y \in [a, b]$ with x < y. Then, we find

$$\begin{aligned} \operatorname{TV}\left(f\mid_{[a,y]}\right) &= \operatorname{TV}\left(f\mid_{[a,x]}\right) + \operatorname{TV}\left(f\mid_{[x,y]}\right) \\ &\geq \operatorname{TV}\left(f\mid_{[a,x]}\right) + |f\left(y\right) - f\left(x\right)| \\ &\geq \operatorname{TV}\left(f\mid_{[a,x]}\right) + f\left(x\right) - f\left(y\right). \end{aligned}$$

Furtheromre, $h: x \mapsto \text{TV}\left(f\mid_{[a,x]}\right)$ and $g: x \mapsto \text{TV}\left(f\mid_{[a,x]}\right) + f\left(x\right)$ are increasing. This fact is trivial for h and we find, adding f(y) to both sides of the former inequality yields $g(y) \ge g(x)$ for arbitrary $y \ge x$, so this claim holds as

Taking the difference, g - h = f.

Conversely, suppose f = g - h for increasing $g, h : [a, b] \to \mathbb{R}$. Then, let $x, y \in [a, b]$ with $y \ge x$. Then, we find

$$|f(y) - f(x)| = |g(y) - g(x) + h(x) - h(y)|$$

$$\leq |g(y) - g(x)| + |h(x) - h(y)|$$

$$= g(y) - g(x) + h(y) - h(x).$$

Hence, for a partition $P = (x_k)_{k=n}^N$, we find

$$V(f, P) = \sum_{k=n+1}^{N} |f(x_k) - f(x_{k-1})|$$

$$\leq \sum_{k=n+1}^{N} (g(x_k) - g(x_{k-1}) + h(x_k) - h(x_{k-1})) = g(b) - g(a) + h(b) - h(a)$$

$$< \infty.$$

Definition 1.4 (Absolute Continuity). A function $f:[a,b]\to\mathbb{R}$ is abso**lutely continuous** if for each $\varepsilon > 0$ we find a $\delta > 0$ such that for every finite disjoint collection of nonempty intervals $\{(a_k,b_k)\subseteq [a,b]: 1\leq k\leq K\}$ with $\sum_{k=1}^K (b_k-a_k)<\delta$, we have $\sum_{k=1}^K |f\left(a_k\right)-f\left(b_k\right)|<\varepsilon$.

Remark. Absolute continuity is stronger than uniform continuity, but weaker than lipschitz continuity.

Theorem 1.2. If a function $f:[a,b]\to\mathbb{R}\to$ is absolutely continuous, then f is continuous and f has bounded variation.

Proof. f is trivially continuous, taking a finite disjoint collection consisting only of 1 interval $\{(x,y)\}$ yields the definition of continuity.

Now we show bounded variation. For $\varepsilon = 1$, let $\delta > 0$ be the number such that

the definition of absolute continuity holds for f. Now fix $(x_k)_{k=n}^N \in \mathscr{P}([a,b])$ so that $x_k - x_{k-1} < \delta$ for all $n < k \le N$. Then, if $P \in \mathscr{P}([x_{k-1},x_k])$, we see $V\left(f|_{[x_{k-1},x_k]},P\right) < 1$ by definition of absolute

1 FUNCTIONS OF BOUNDED VARIATION AND ABSOLUTELY CONTINUOUS FUNCTIONS

3

continuity.

So, we have TV $([x_{k-1}, x_k]) \le 1$, so TV $(f) = \sum_{k=n+1}^{N} \text{TV} \left(f \mid_{[x_{k-1}, x_k]} \right) \le N - n$ by the ε assumption.

As it turns out, absolutely continuous functions have a relation to integrable functions, particularly, an integrable function f is simply the anti-integral of an absolutely continuous one.

Proposition 1.1. If $f:[a,b]\to \overline{\mathbb{R}}$ is integrable, then,

$$F: [a,b] \to \mathbb{R}, \ x \mapsto \int_{[a,x]} f$$

is absolutely continuous.

This claim can be generalized into a sort of fundamental theorem of calculus for the lebesque integrals to characterize integrals and derivatives. For now, we only prove the weak version.

Proof. For $\varepsilon > 0$ there is a $\delta > 0$ such that $\int_{S} |f| < \varepsilon$ for every measurable set $S \subseteq [a,b]$ with $m(S) < \delta$.

Now, let $\{(a_k, b_k) : 1 \le k \le K\}$ be a disjoint collection of intervals in [a, b] with $\sum_{k=1}^{K} (b_k - a_k) < \delta$. Fix $S = \bigcup_{k=1}^{K} (a_k, b_k)$. Then, since $m(S) < \delta$ and

$$\sum_{k=1}^{K} |F(b_k) - F(a_k)| = \sum_{k=1}^{K} \left| \int_{[a_k, b_k]} f \right|$$

$$\leq \sum_{k=1}^{K} \int_{[a_k, b_k]} |f|$$

$$= \int_{S} |f|$$

$$< \varepsilon \text{ by assumption.}$$

Hence, absolute continuity holds.

2 Derivatives and Fundamental Theorem of Calculus

Proposition 2.1. Let $f:(a,b)\to \overline{\mathbb{R}}$ be monotone on $(a,b)\subseteq \mathbb{R}$ with $a,b\in \overline{\mathbb{R}}$ and a< b. Then,

$$\lim_{x\rightarrow a}f\left(x\right)=\inf\{f\left(x\right):x\in\left(a,b\right)\},\lim_{x\rightarrow b}f\left(x\right)=\sup\{f\left(x\right):x\in\left(a,b\right)\}$$

are both well defined.

Lecture 20 Tue 02 Nov 2021 12:58