Can six simple measures predict movie ratings?

Data Analytics in Engineering project
Jingyu Chen
Xiuping Yang
Yi Yu

Introduction

- The quality of movies: UNEVEN
- Imagine being a movie investor and you want to invest in great movies, can you predict the rating of a movie, or whether a movie is great or not?

Objectives

- To predict rating (1 to 10)
- To predict classes of movies: Great or Average
- To give helpful suggestions on making great movies

We use IMDb Dataset

Use R to scrape data from IMDb.com

IMDb.com is the largest online database, which has tons of information for over 4 million titles, including movies, TV series and others.

What is our scraping?

- 'Scraping' is also named 'Fetching'
- It is a bunch of codes which can recognize the detail information on the website and collect them
- 10000+ movies are randomly collected in several hours
- All of our data is fetched from IMDB instead of simply downloading!

Dataset with budget information

- 3809 objects
- 28 variables

Description of the variables

Variables we use after data preprocessing:

```
Rating [1.9, 9.3] Genres (20 types)
Year [1980, 2017] Top 210 Director?
Budget [$4500, $12 billion] Top 1000 Actor?
Runtime [63, 325](min)
```

- Genres, top directors and top actors: Binary variables
- Lists of top directors / actors are from IMDb.com

We have 20 genres:

- Action, Adventure,
 Animation, Biography,
 Comedy, Crime, Drama,
 Family, Fantasy, History,
 Horror, Music, Musical,
 Mystery, Romance, Sci-Fi,
 Sport, Thriller, War, Western
- Within such genre: 1, otherwise: 0

Rating ≥ 8.0 means Great!

When it comes to classification, we have to draw a line between great movies and average movies.

We decide to choose rating of 8 as the dividing threshold.

Key takeaways:

- Longer runtime associates with higher rating and great movies
- Genres have a significant influence on the movies
 - Drama, Adventure, Animation ---> Better!
 - Comedy, Action, Romance, Horror ---> Not good
- Top actors and directors involved really matters

Great movies tend to be longer!

	Great Movies	Average Movies
Average runtime	139.82 minutes	106.38 minutes
Median runtime	137 minutes	103 minutes
Percentage of long runtime (> 120 mins) movies	78.18%	17.27%
Box-plot	180 - 160 - 120 - 100 - 80 - Great Movies	Average Movies

Comedy, Drama and Action movies are more

1st Comedy 2nd Drama 3rd Action

Chi - Square test will tell whether each genre is a significant attribute or not

Chi-Square test says Genres matter

	Great Movies	Average Movies	
Action	39%	26%	
Adventure	31%	21%	
Animation	12%	5%	
Comedy	13%	40%	
Drama	65%	50%	
Horror	2%	11%	
Romance	7%	18%	

Chi-Square test says Genres matter

These genres have statistically significant impact on chances of being a great movie:

Chi-Square says Top Actor & Top Director Matters!

	Great Movies	Average Movies
% with top actors	15%	6%
% with top directors	4%	<1%
Average rating	8.2	6.3

Leonardo DiCaprio: Inception(8.8), The wolf of Wall Street(8.2), Shutter Island(8.1)

Christopher Nolan: The dark knight(9.0), Inception(8.8), Interstellar(8.6)

Let's predict ratings!

- Data is randomly splitted into training (⅔) and testing (⅓).
- Regression tree and random forest are used to train on the training set and predict rating of the testing set.

Conclusions from rating prediction

- Longer runtime tends to have higher rating
- Higher budget ≠ higher rating
- Drama and animation tends to have higher rating
- Predicting error is large

Runtime is important!

More budget ≠ higher rating

Drama has higher rating for runtime <111.5

Runtime< 111.5

Animation has higher ratings

Random forest has better accuracy than regression tree

Measure	Decision Tree	Random Forest
Root mean square error (standard error)	0.91	0.85
Mean absolute error	0.68	0.65

But how good is Random forest?

Predict rating of the test set using the average rating of the training set

Measure	Using average rating of the training set as the predicted rating
Root mean square error (standard error)	1.04
Mean absolute error	0.81

Let's treat this as the baseline.

Random forest improves the baseline by only 20%

Measure	Baseline	Random Forest
Root mean square error (standard error)	1.04	0.85
Mean absolute error	0.81	0.65

Conclusions from rating prediction

- Longer runtime tends to have higher rating
- Higher budget ≠ higher rating
- Drama and animation tends to have higher rating
- Predicting error is large

How about Classification Model?

Classification Models:Dataset

Rating ≥ 8.0: Great movies (4%)

Train set: 70% Test set: 30%

Stratified Sampling (4% great movies in train set & test set)

The data is Unbalanced!

Only 4% is considered as Great movies

Using statistically significant attributes to build models

Runtime
Top 210 Directors?
Top 1000 Actors?
Genres:

Logistic Regression

Decision Tree

KNN

Naive Bayes

Measuring Accuracy

Logistic Regression Accuracy: 97%

Decision Tree Accuracy: 96%

KNN Accuracy: 95% Naive Bayes Accuracy: 94%

They are pretty much the same

Sensitivity vs. Specificity

Sensitivity:

Percentage of great movies that are correctly identified

Sensitivity = TP / P

Specificity:

Percentage of average movies that are correctly identified

Sensitivity = TN / N

Logistic Regression has the highest sensitivity

However, the sensitivities are not satisfying How about another technique?

Using method of Upsampling

Upsampling: increase the frequency of great movies in sample, to balance the ratio of average movies and great movies to about 50-50

50/50

Logistic Regression keeps ahead

	Logistic Regression	Decision Tree	KNN	Naive-Bayes
Accuracy	77%	70%	68%	63%
Sensitivity	77%	74%	70%	36%

The accuracies are pretty low

We can't predict class with only 6 simple measures

But Logistic Regression model is the best classification model since it's in the first place twice

Details on Logistic Regression model

If the coefficient is positive, then there's greater chance to make the movie a great one by increasing that variable

```
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
                      0.4311 -7.813 5.60e-15
(Intercept)
           -3.3684
           -1.4905
                      0.4459 -3.342 0.000831
Year
Runtime ------ 8.4365
                      1.2091 6.978 3.00e-12
Action -1.1449
                      0.2815 -4.068 4.75e-05
Animation → 2.0235
                      0.3635 5.566 2.60e-08
Comedy -1.3474
                      0.3229 -4.173 3.01e-05
                      0.6062 -2.344 0.019060 *
Horror
       -1.4211
Romance -1.8124
                      0.5263 -3.444 0.000574
TopActor — 0.6318
                      0.3304 1.912 0.055813 .
```

Suggestions from classification models

- Make it LONG!
- Make it ANIMATION!
- Hire top ACTORS!

It's helpful to...

Make it LONG!

It's helpful to...

Make it ANIMATION

It's helpful to...

Have top ACTORS

Prediction of 2018's movies

Prediction:

Average

/6.3

Actual: Average

7.7

Prediction:

Average

/6.1

Actual:

Average

/4.2

Prediction of 2018's movies

Prediction:

Great

/7.3

Actual:

Great

/8.2

Prediction:

Average

/6.7

Actual:

Yet to see

If you want to make a great movie...

- Longer runtime associates with higher rating and great movies
- Genres have a significant influence on the movies
 - O Drama, Adventure, Animation ---> Better!
 - Comedy, Action, Romance, Horror ---> Not good
- Top actors and directors involved really matters

Further Improvement:

- The results of our models are not so good
 - There are many relevant factors that we can't use or are hard to quantify
- Try to get more data from other sources
- Try new methods other than the ones we learned from class

Questions?