Programowanie Funkcyjne Wybrane trwałe struktury danych

Piotr Polesiuk

ii-uwr

28 października 2024

Trwałe struktury danych

- Dotychczas poznany podzbiór OCamla pozwala tylko na tworzenie danych, ale nie modyfikacje.
- Nie przeszkodziło nam to w zdefiniowaniu skompilowanych struktur danych np. kopców.
- Udało się to dzięki trwałym strukturom danych, gdzie modyfikacja oznacza utworzenie zmodyfikowanej kopii.
- ▶ Jest to odmienne podejście niż klasyczne ulotne struktury danych.

Zalety trwałych struktur danych

- Tworzenie zmodyfikowanej kopii nie musi być drogie, bo skopiowaniu ulega tylko niewielki kawałek struktury, a reszta jest współdzielona z oryginałem.
- A zalet mamy wiele:
 - współdzielenie
 - wersjonowanie
 - łatwe wnioskowanie
 - **•** ...

Definiowanie trwałych struktur danych

- Wiele klasycznych struktur danych elegancko da się wyrazić jako trwałe struktury danych, np.
 - kopce lewicowe
 - drzewa czerwono-czarne
 - 2-3 drzewa
 - kopce parujące
 - **...**
- Często funkcyjna implementacja takich struktur jest czytelniejsza niż imperatywna.
- Ale niektóre struktury danych nie chcą wpasować się w te ramy, np.
 - kolejki
 - tablice
 - **.**...

Kolejki

Dwie naiwne implementacje

```
type 'a queue = 'a list
                               type 'a queue = 'a list
let push q x = q @ [x]
                                let push q x = x :: q
let pop q =
                                let rec pop q =
  match q with
                                  match q with
  | [] -> None
                                  | [] -> None
  | x :: q \rightarrow Some(x, q)
                                  | x :: q ->
                                    (match pop q with
                                    | None \rightarrow Some(x, [])
                                    | Some(y, q) -> Some(y, x :: q))
```

Mieć ciastko i zjeść ciastko

- ▶ Gdy na początku listy jest przód kolejki (pierwsza implementacja) to:
 - ightharpoonup pop kosztuje O(1)
 - ightharpoonup push kosztuje O(n)
- Gdy na początku listy jest tył kolejki (druga implementacja) to:
 - ightharpoonup pop kosztuje O(n)
 - ightharpoonup push kosztuje O(1)
- A gdyby tak trzymać dwie listy?

Programowanie na żywo

Koszt zamortyzowany

- Pesymistyczny koszt operacji pop to O(n)
- ightharpoonup Ale zazwyczaj kosztuje O(1)
- ▶ Przed kosztownym odwróceniem n-elementowej listy trzeba wykonać n (tanich) wstawień do kolejki
- ightharpoonup Całkowity czas wykonania n operacji na kolejce będzie wynosił O(n)
- ightharpoonup Zamortyzowany koszt jednej operacji to O(1)

Analiza zamortyzowana

- Na każdym consie tylnej listy kładziemy żeton depozyt czasu potrzebnego na odwrócenie jednego consa
- Zamortyzowany koszt operacji push to

```
faktyczny koszt operacji push (O(1)) + koszt jednego żetonu (O(1))
```

- ightharpoonup Zamortyzowany koszt operacji pop to O(1)
 - kosztowne odwracanie opłacamy w całości ze zgromadzonych środków

Analiza zamortyzowana i współdzielenie

- Podana analiza zakłada, że każdej wersji struktury użyjemy raz.
- ightharpoonup Kopiowanie danych przez współdzielenie jest tanie (O(1))
- Ale kopiowanie żetonów jest drogie.
- W szczególności można skopiować kolejkę tuż przed odwróceniem listy i wyzwolić kosztowne odwracanie wiele razy!

Kolejki Hooda-Melville'a

- Przy każdej operacji zamiast płacić za odwracanie listy, można faktycznie wykonać kawałek odwracania.
- Elementy w kolejce podzielmy na trzy części: f, m, r
- Kolejka Hooda-Melville'a to trójka:
 - Listę *f* (z pierwszym elementem z przodu)
 - Listę r (z ostatnim elementem z przodu)
 - Częściowo policzoną listę:

```
s = rev\_append (rev f) (rev m)
```

- ▶ Gdy s się policzy, to s zastępuje f, a r zastępuje m
- Przy każdej operacji obliczamy kawałek s,
 tak by zdążyć je policzyć zanim f się opróżni (dwa kroki na operację wystarczą)
- W s pamiętamy ile elementów z f już usunęliśmy

Tablice

i listy o dostępie swobodnym

Listy o dostępie swobodnym

Chcemy zaprojektować strukturę danych, która:

- ightharpoonup pozwala na szybki dostęp do dowolnego elementu w czasie $O(\log n)$,
- pozwala na operacje cons, hd i tl

Można użyć słowników (drzew zbalansowanych), ale wtedy cons i tl działają w czasie $O(\log n)$

Czy można lepiej?

Struktura list i liczb naturalnych

- Listy i liczby naturalne w zapisie unarnym mają bardzo podobną strukturę
- Głębokość (długość) liczb unarnych (i list) jest O(n)
- ► Głębokość (długość) liczb binarnych jest $O(\log n)$
- ► A gdyby listy miały strukturę liczb binarnych?

Programowanie na żywo

Koszt operacji cons i tl

Długie ciągi operacji cons potrzebują średnio O(1) na operację
 połóżmy żeton na każdej jedynce.

```
10010100111111 + 1 = 10010101000000
```

- Długie ciągi operacji tl potrzebują średnio O(1) na operację
 połóżmy żeton na każdym zerze.
- Ale nie wolno mieszać!

Cyfry nadmiarowe

Rozważmy system binarny z cyframi 0, 1, 2

$$0+1=1$$
 $12+1=21$ $1+1=2$ $21+1=22$ $2+1=11$ $11+1=12$ $111+1=112$

- Następnik nie tworzy długich ciągów zer, kłopotliwych dla poprzednika
- ightharpoonup Zamortyzowany koszt operacji cons i tl to O(1): na każdym zerze i na każdej dwójce kładziemy żeton

Liczby binarne skośne

- \blacktriangleright Weźmy system pozycyjny, w którym cyfra na *n*-tej pozycji ma wagę 2^n-1
- Najmłodsza cyfra ma wagę 0
- ► Używamy cyfr 0, 1 i 2
- $\triangleright 2 \cdot (2^n 1) + 1 = 2^{n+1} 1$
- Każda liczba ma w zapisie dokładnie jedną dwójkę
 jako najmłodszą niezerową cyfrę

$$2+1 = 12$$
 $112+1 = 120$ $120+1 = 200$ $20+1 = 102$ $200+1 = 1012$ $1002+1 = 1012$

Operacja następnika (i poprzednika) modyfikuje co najwyżej trzy cyfry!

Liczby binarne skośne — reprezentacja rzadka

- Operacja następnika (i poprzednika) modyfikuje co najwyżej trzy cyfry!
- ► Ale te cyfry mogą być w środku liczby za długimi ciągami zer
- Możemy reprezentować długie ciągi zer jako jedną liczbę długość ciągu zer

Zippery

Motywacja

- Modyfikacja trwałej struktury danych wymaga skopiowania całej ścieżki od korzenia do miejsca modyfikacji
- Często przeprowadzamy wiele małych zmian w jednym miejscu
 - Edytowanie dokumentu tekstowego
 - Modyfikowanie drzewiastej bazy danych (XML)
 - Budowanie drzewa dowodu
- Można zmodyfikować strukturę danych tak, by mieć szybki dostęp do wybranego miejsca

Programowanie na żywo

Różniczkowanie typów

Różniczkowanie typów

Wyobraźmy sobie typ opisujący strukturę drzewiastą przechowującą dane typu x. Ten typ zbudowany jest za pomocą następujących operacji na typach

- danych typu x
- stałych 1 (unit) oraz 0 (empty)
- ightharpoonup sumy rozłącznej $t_1 + t_2$

```
type ('t1, 't2) either =
   | Left of 't1
   | Right of 't2
```

▶ produktu (par) $t_1 \times t_2$

```
type ('t1, 't2) prod = 't1 * 't2
```

Różniczkowanie typów

Typ opisujący kontekst $(\frac{\partial}{\partial x}t)$ dla danych typu x w typie t można wyliczyć

$$\frac{\partial}{\partial x}x = 1$$

$$\frac{\partial}{\partial x}0 = 0$$

$$\frac{\partial}{\partial x}1 = 0$$

$$\frac{\partial}{\partial x}(t_1 + t_2) = \frac{\partial}{\partial x}t_1 + \frac{\partial}{\partial x}t_2$$

$$\frac{\partial}{\partial x}(t_1 \times t_2) = \frac{\partial}{\partial x}t_1 \times t_2 + t_1 \times \frac{\partial}{\partial x}t_2$$

Projekt końcowy — szukajcie inspiracji

M31, ЮПИТЕР-37A + ZWO ASI 120MM, Ekspozycja: $180 \times 19s$