📶 nguaggi Formali e Traduttori

2.4 Espressioni regolari

- Sommario
- Sintassi delle espressioni regolari
- Significato di un'espressione regolare
- Proprietà delle espressioni regolari
- Espressioni e linguaggi regolari
- Espressione regolare $\rightarrow \varepsilon$ -NFA (1/4)
- Espressione regolare $\rightarrow \varepsilon$ -NFA (2/4)
- Espressione regolare $\rightarrow \varepsilon$ -NFA (3/4)
- Espressione regolare $\rightarrow \varepsilon$ -NFA (4/4)
- Esempio: sequenze di a seguite da sequenze di b
- Esempio: 0 oppure sequenze non vuote di 1
- Esempio: ogni a è seguita da bb
- Esempio: esiste a seguita da bb
- Esercizi sulla definizione di espressioni regolari
- Esercizi sulla conversione di espressione regolari

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza: ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

Sommario

Automi

- approcci riconoscitivi per descrivere linguaggi regolari
- 3 varianti equivalenti: deterministici, non deterministici, con **\varepsilon**-transizioni

Espressioni regolari

• approccio generativo per descrivere linguaggi regolari

In questa lezione

- 1. Definiamo la sintassi ed il significato delle espressioni regolari
- 2. Enunciamo alcune leggi fondamentali delle espressioni regolari
- 3. Mostriamo che le espressioni regolari generano tutti e soli i linguaggi regolari

Sintassi delle espressioni regolari

Definizione

Le **espressioni regolari** su un alfabeto Σ (abbreviate RE, da Regular Expressions) sono definite induttivamente come segue:

- \emptyset ed ε sono espressioni regolari;
- se $a \in \Sigma$, allora a è un'espressione regolare;
- ullet se $m{E}$ ed $m{F}$ sono espressioni regolari, allora $m{E}+m{F}$ ed $m{E}m{F}$ sono espressioni regolari;
- ullet se $m{E}$ è un'espressione regolare, allora $m{E^*}$ è un'espressione regolare.

Convenzioni

- assumiamo la **precedenza** degli operatori + < concatenazione < *
- usiamo le parentesi per disambiguare la struttura di un'espressione regolare

Esempi

- $\bullet \ ab+c=(ab)+c\neq a(b+c)$
- $01^* = 0(1^*) \neq (01)^*$
- $0+11^*=0+(1(1^*))$

Significato di un'espressione regolare

Se E è un'espressione regolare, il **linguaggio generato** da E, denotato da L(E), è definito per induzione sulla struttura di E come segue:

$$L(\emptyset) = \emptyset$$
 linguaggio vuoto
 $L(arepsilon) = \{arepsilon\}$ stringa vuota
 $L(a) = \{a\}$ simbolo dell'alfabeto
 $L(E+F) = L(E) \cup L(F)$ unione
 $L(EF) = L(E)L(F)$ concatenazione
 $L(E^*) = L(E)^*$ chiusura di Kleene

Diciamo che E ed F sono **equivalenti**, notazione E=F, se L(E)=L(F).

Esercizio

Calcolare il linguaggio generato dalle espressioni regolari
$$(\mathbf{a} + \mathbf{b})^*$$
 e $(\mathbf{ab})^*$.
$$\{ \mathbf{ab} \}^* \}$$

Proprietà delle espressioni regolari

Unione

- commutatività: E + F = F + E
- associatività: E + (F + G) = (E + F) + G
- idempotenza: E+E=E
- identità: $E + \emptyset = \emptyset + E = E$

Concatenazione

- associatività: E(FG) = (EF)G
- ullet identità: Earepsilon=arepsilon E=E
- assorbimento: $E\emptyset = \emptyset E = \emptyset$
- ullet distributività sinistra della concatenazione sull'unione: E(F+G)=EF+EG
- ullet distributività destra della concatenazione sull'unione: (E+F)G=EG+FG

Chiusura di Kleene

- idempotenza: $(E^*)^* = E^*$
- casi banali: $\varepsilon^* = \emptyset^* = \varepsilon$

Espressioni e linguaggi regolari

Conseguenza

DFA, NFA, ϵ -NFA ed espressioni regolari sono approcci diversi ma **equivalenti** di definire (riconoscere, generare) linguaggi regolari

Espressioni e linguaggi regolari

Conseguenza

DFA, NFA, ϵ -NFA ed espressioni regolari sono approcci diversi ma **equivalenti** di definire (riconoscere, generare) linguaggi regolari

Teorema

Per ogni DFA A, esiste un'espressione regolare E tale che L(A)=L(E).

Dimostrazione

Si veda la Sez. 3.2.1 del libro (lettura facoltativa)

Espressione regolare $\rightarrow \varepsilon$ -NFA (1/4)

Teorema

Data un'espressione regolare E, esiste un ϵ -NFA A tale che L(A)=L(E).

Dimostrazione

Costruiamo \boldsymbol{A} per induzione sulla struttura di \boldsymbol{E} e per casi sulla sua forma, facendo in modo che l' $\boldsymbol{\epsilon}$ -NFA ottenuto abbia sempre esattamente uno stato finale (quello più a destra nei diagrammi che seguono).

Espressione regolare $\rightarrow \varepsilon$ -NFA (2/4)

Caso ∅ (linguaggio vuoto)

Espressione regolare $\rightarrow \varepsilon$ -NFA (2/4)

Caso ∅ (linguaggio vuoto)

Caso ε (linguaggio che contiene la sola stringa vuota)

Espressione regolare $\rightarrow \epsilon$ -NFA (2/4)

Caso ∅ (linguaggio vuoto)

Caso arepsilon (linguaggio che contiene la sola stringa vuota)

Caso a (linguaggio che contiene solo a)

Espressione regolare $\rightarrow \varepsilon$ -NFA (3/4) Caso $oldsymbol{E} + oldsymbol{F}$ (unione) automa che riconosce L(E) automa che riconosce L(F)

Espressione regolare $\rightarrow \varepsilon$ -NFA (3/4)

Caso $oldsymbol{E} + oldsymbol{F}$ (unione)

Caso EF (concatenazione)

Espressione regolare $\rightarrow \epsilon$ -NFA (4/4)

Caso $oldsymbol{E^*}$ (chiusura di Kleene)

Esempio: sequenze di a seguite da sequenze di b

```
L(\mathbf{a}^*\mathbf{b}^*) = L(\mathbf{a}^*)L(\mathbf{b}^*)
= L(\mathbf{a})^*L(\mathbf{b})^*
= \{\mathbf{a}\}^*\{\mathbf{b}\}^*
= \{\varepsilon, \mathbf{a}, \mathbf{a}\mathbf{a}, \mathbf{a}\mathbf{a}\mathbf{a}, \ldots\}\{\varepsilon, \mathbf{b}, \mathbf{b}\mathbf{b}, \mathbf{b}\mathbf{b}, \ldots\}
= \{\varepsilon, \mathbf{a}, \mathbf{b}, \mathbf{a}\mathbf{a}, \mathbf{a}\mathbf{b}, \mathbf{b}\mathbf{b}, \mathbf{a}\mathbf{a}\mathbf{a}, \mathbf{a}\mathbf{b}, \mathbf{b}\mathbf{b}, \ldots\}
```

Esempio: 0 oppure sequenze non vuote di 1

```
Cosy
```

```
\begin{array}{lll} L(0+11^*) & = & L(0) \cup L(11^*) \\ & = & \{0\} \cup L(1)L(1^*) \\ & = & \{0\} \cup \{1\}L(1)^* \\ & = & \{0\} \cup \{1\}\{1\}^* \\ & = & \{0\} \cup \{1\}\{\varepsilon, 1, 11, 111, \ldots\} \\ & = & \{0\} \cup \{1, 11, 111, 1111, \ldots\} \end{array}
```

Esempio: ogni a è seguita da bb

Esempio: esiste a seguita da bb
$$(\partial_{+}b)^{*}$$
 $\partial_{+}b (\partial_{+}b)^{*}$ $= L((a+b)^{*})L(abb)L((a+b)^{*})$ $= L(a+b)^{*}L(a)L(b)L(b)L(a+b)^{*}$

$$= (L(\mathtt{a}) \cup L(\mathtt{b}))^* L(\mathtt{a}) L(\mathtt{b}) (L(\mathtt{a}) \cup L(\mathtt{b}))^* \ = (\{\mathtt{a}\} \cup \{\mathtt{b}\})^* \{\mathtt{a}\} \{\mathtt{b}\} \{\mathtt{b}\} (\{\mathtt{a}\} \cup \{\mathtt{b}\})^*$$

Esercizi sulla definizione di espressioni regolari

Definire espressioni regolari che generino i seguenti linguaggi:

- 1. stringhe di a, b e c che iniziano con due a e finiscono con due b
- 2. stringhe di 0 e 1 la cui lunghezza è un multiplo di 3
- 3. stringhe di 0 e 1 con un numero pari di 0
- 4. stringhe di a, b e c che non contengono la sottostringa ab
- 5. costanti numeriche binarie pari senza 0 inutili a sinistra (es. 0, 10, ma non 010 o 11)
- 6. costanti numeriche decimali con virgola facoltativa (es. 42, .5, 12.3, 12. ma non .)

Esercizi sulla conversione di espressione regolari

Convertire le seguenti espressioni regolari in E-NFA e gli automi ottenuti in DFA:

1.
$$(a+b)^{*}$$
2. $(ab)^{*}$
3. $a^{*}b^{*}$
4. $a^{*}+b^{*}$