Kapitel WT:III (Fortsetzung)

III. Dokumentsprachen

- □ Auszeichnungssprachen
- □ HTML
- Cascading Stylesheets CSS
- □ XML-Grundlagen
- □ XML-Schema
- □ Die XSL-Familie
- Parse-Paradigmen und APIs für XML

WT:III-124 Dokumentsprachen © STEIN 2022

WT:III-125 Dokumentsprachen ©STEIN 2022

```
<!DOCTYPE html>
<html>
 <head>
   <meta charset="utf-8">
   <title>Person</title>
 </head>
 <body>
   <h3>Alan Turing</h3>
   >
     23. Juni 1912* <br>
     Mathematiker, Informatiker
   </body>
</html>
<?xml version="1.0" standalone="no" ?>
<!DOCTYPE person SYSTEM "person.dtd">
<person>
  <name>
   <vorname>Alan
   <nachname>Turing</nachname>
  </name>
 <geburtstag>23. Juni 1912/geburtstag>
 <beruf>Mathematiker/
 <beruf>Informatiker
</person>
```

WT:III-126 Dokumentsprachen © STEIN 2022

</person>

```
<!DOCTYPE html>
<html>
  <head>
   <meta charset="utf-8">
   <title>Person</title>
 </head>
  <body>
   <h3>Alan Turing</h3>
   >
     23. Juni 1912* <br>
     Mathematiker, Informatiker
   </body>
</html>
                            - keine operationale Semantik -
<?xml version="1.0" standalone="no" ?>
                                                <?xml version="1.0" standalone="no" ?>
<!DOCTYPE person SYSTEM "person.dtd">
                                                <!DOCTYPE person SYSTEM "person.dtd">
                                                <person>
<person>
  <name>
                                                  <address>
   <vorname>Alan
                                                    <zip>Alan</zip>
   <nachname>Turing</nachname>
                                                    <city>Turing</city>
                                                  </address>
  </name>
  <geburtstag>23. Juni 1912/geburtstag>
                                                  <weight>23. Juni 1912</weight>
  <beruf>Mathematiker/
                                                  <name>Mathematiker</name>
 <beruf>Informatiker/beruf>
                                                  <name > Informatiker < /name >
```

WT:III-127 Dokumentsprachen ©STEIN 2022

</person>

[person.html]

[person.xml]

In XML können beliebige Elementtypen definiert und deklariert werden. Mittels einer DTD (*Document Type Definition*) oder XML-Schema lassen sich strukturelle Constraints (= Inhaltsmodelle) für die Verwendung von Elementinstanzen vorschreiben.

WT:III-128 Dokumentsprachen ©STEIN 2022

Bemerkungen:

- ☐ XML kompakt:
 - 1. Historie
 - 2. XML Dokumentenverarbeitung
 - 3. Aufbau XML-Dokument
 - 4. Weitere Regeln zur Syntax
 - 5. Wohlgeformtheit und Validität
 - 6. Document Type Definition, DTD
 - 7. Namensräume
 - 8. XML Information Set

WT:III-129 Dokumentsprachen ©STEIN 2022

XML-Grundlagen [W3C xml home, reports]

Historie: zentrale XML-Spezifikationen

- 2006 Extensible Markup Language (XML) 1.1. Recommendation. [W3C REC, status]
- 2004 XML Schema Part 0: Primer. Recommendation. [W3C REC, status]
- 2012 XML Schema (XSD) 1.1 Part 1: Structures. [W3C REC]
- 2012 XML Schema (XSD) 1.1 Part 2: Datatypes. [W3C REC]
- 2021 XSL Transformations (XSLT) 2.0. Recommendation. [W3C REC, status]
- 2017 XML Path Language (XPath) 3.1. Recommendation. [W3C REC, status]
- 2017 XML Query Language (XQuery) 3.1. Recommendation. [W3C REC, status]
- 2012 XSL Formatting Objects (XSL-FO) 2.0. Working Draft. [W3C WD, Wiki]

WT:III-130 Dokumentsprachen ©STEIN 2022

Historie: zentrale XML-Spezifikationen (Fortsetzung)

- 2014 Mathematical Markup Language (MathML) 3.0. [W3C REC, status, examples]
- 2018 Scalable Vector Graphics (SVG) 2. [W3C CR, status, svg home]
- 2015 Resource Description Framework (RDF) 1.1 Primer. [W3C NOTE, status, why, example]
- 2014 Resource Description Framework (RDF) 1.1 Concepts and Syntax. [W3C REC]
- 2007 Web Services Description Language (WSDL) 2.0. [W3C REC, status]

WT:III-131 Dokumentsprachen ©STEIN 2022

Bemerkungen:

- XML enstand aus dem Wunsch nach einer leistungsfähigen, erweiterbaren Markup-Sprache, die weniger kompliziert als SGML ist.
- XML-Dokumente werden nicht nur in Web-Anwendungen genutzt. Aufgrund seiner Flexibilität kann XML den Publishing-Anforderungen von Büchern, Zeitschriften, Katalogen, Postern etc. gerecht werden. Darüber hinaus hat XML als generelles Austauschformat große Verbreitung erlangt und stellt die wichtigste Sprache zur Codierung bzw. Serialisierung von RDF-Graphen dar.
- □ Übersicht über die Ziele von XML (= sinnvolle Ziele für (Markup-)Sprachen generell)
- lue LaTeX (\sim "Input-Format") versus MathML (\sim "Output-Format") :
 - Input-Format: optimiert für die direkte Eingabe durch Menschen
 - Output-Format: nicht konzipiert für die direkte Eingabe durch Menschen
 - Hintergrund: [Andrew Stacey] [stackexchange] [Wikipedia]

WT:III-132 Dokumentsprachen ©STEIN 2022

XML Dokumentenverarbeitung

Vergleiche hierzu

- die SGML Dokumentenverarbeitung
- und die HTML Dokumentenverarbeitung.

WT:III-133 Dokumentsprachen ©STEIN 2022

Aufbau XML-Dokument

- Zum Prolog zählt alles vor dem Start des XML-Wurzelelementes; der Prolog enthält Meta-Informationen (= Informationen über das Dokument).
- Der Body besteht aus ineinander geschachtelten XML-Elementen.
- Der Epilog enthält Kommentare und Verarbeitungsanweisungen für das Dokument; der Epilog ist optional.
- Vergleiche hierzu die HTML-Dokumentstruktur.

WT:III-134 Dokumentsprachen © STEIN 2022

Dokumenten-Prolog

1. XML-Deklaration.

```
<?xml version="1.0"?> bzw.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
```

WT:III-135 Dokumentsprachen ©STEIN 2022

Dokumenten-Prolog

1. XML-Deklaration.

```
<?xml version="1.0"?> bzw.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
```

2a. DTD-Deklaration.

```
<!DOCTYPE Wurzelelementname SYSTEM "URI">
```

WT:III-136 Dokumentsprachen ©STEIN 2022

Dokumenten-Prolog

1. XML-Deklaration.

```
<?xml version="1.0"?> bzw.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
```

2a. DTD-Deklaration.

```
<!DOCTYPE Wurzelelementname SYSTEM "URI">
```

2b. Anstelle oder kombiniert mit der Referenz auf eine Datei lassen sich DTD-Befehle auch im Dokument einbinden. Man spricht von der externen bzw. der internen DTD-Teilmenge (external subset, internal subset); zusammen bilden sie die vollständige DTD.

WT:III-137 Dokumentsprachen ©STEIN 2022

Dokumenten-Prolog

1. XML-Deklaration.

```
<?xml version="1.0"?> bzw.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
```

2a. DTD-Deklaration.

```
<!DOCTYPE Wurzelelementname SYSTEM "URI">
```

2b. Anstelle oder kombiniert mit der Referenz auf eine Datei lassen sich DTD-Befehle auch im Dokument einbinden. Man spricht von der externen bzw. der internen DTD-Teilmenge (external subset, internal subset); zusammen bilden sie die vollständige DTD.

```
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE poem [
    <!ELEMENT poem (#PCDATA)>
        <!ENTITY author "William Shakespeare">
]>

<poem>
    Dieses Gedicht stammt von &author;
</poem>
```

3. Verarbeitungsanweisung für XML-Stylesheets.

```
<?xml-stylesheet type="text/css" href="person.css"?>
```

WT:III-138 Dokumentsprachen ©STEIN 2022

Bemerkungen:

- □ DTD = Document Type Definition = Definition des Dokumentyps
 □ DTD enthält die Definitionen und Deklarationen für die Elemente und Attribute eines Dokuments des entsprechenden Typs.
- Das Attribut standalone="no" in der XML-Deklaration bedeutet, dass der Rückgriff auf eine externe DTD erforderlich ist. "no" ist der Defaultwert des standalone-Attributs.
- □ Die DTD-Deklaration enthält eine Referenz auf (= deklariert) den Dokumenttyp (die DTD).
- □ Die Dateiendung einer DTD-Datei ist .dtd.
- □ Die Dokumenttyp-Deklaration kann entfallen.
- □ Bei einer weltweit bekannten DTD kann anstelle des Schlüsselwortes SYSTEM das Schlüsselwort PUBLIC zusammen mit dem Public-Identifier dieser DTD verwendet werden. Der Public-Identifier wiederum muss durch einen lokalen Katalog-Server auf eine URL abgebildet werden; als Fallback ist zusätzlich noch eine URI anzugeben. In der Praxis werden Public-Identifier kaum verwendet.

WT:III-139 Dokumentsprachen ©STEIN 2022

Dokumenten-Body

Allgemeine Form einer XML-Elementinstanz:

```
<elementname {attribute}*> ... </elementname>
```

Tags müssen balanciert sein – Ausnahme sind *Empty-Element-Tags*:

```
<elementName/> = <elementName></elementName>
```

WT:III-140 Dokumentsprachen ©STEIN 2022

Dokumenten-Body

Allgemeine Form einer XML-Elementinstanz:

```
<elementname {attribute}*> ... </elementname>
```

Tags müssen balanciert sein – Ausnahme sind *Empty-Element-Tags*:

```
<elementName/> \equiv <elementName></elementName>
```

Die Elementstruktur des Bodies entspricht einem Baum. Beispiel:

WT:III-141 Dokumentsprachen ©STEIN 2022

Attribute

Verwendung von Attributen wie in HTML bzw. SGML [WT:III SGML]:

```
<person geboren="1912-06-23" gestorben="1954-06-07">
   Alan Turing
</person>
```

Frage des Stils: Elementmodellierung (a) oder Attributmodellierung (b)

WT:III-142 Dokumentsprachen ©STEIN 2022

Bemerkungen:

Notiert man Empty-Element-Tags anstatt

```
<elementName .../>
als
<elementName ...></elementName>,
```

so darf kein Whitespace (Leerzeichen, Tabulatorzeichen, Zeilenvorschub) zwischen dem Start-Tag und dem Ende-Tag stehen.

- Zum Modellierungsstil: mit Hilfe von Attributen sollten nur Meta-Daten einer Elementinstanz spezifiziert werden. Deshalb ist im vorigen Beispiel die Elementmodellierung (a) vorzuziehen.
- □ Eine eindeutige Trennung zwischen Objektdaten und Meta-Daten ist nicht immer möglich.

WT:III-143 Dokumentsprachen ©STEIN 2022

Weitere Regeln zur Syntax

- □ XML-Namen dürfen aus beliebigen alphanumerischen, ideographischen sowie den drei Interpunktionszeichen "_", "—" und "." bestehen.
- □ Entity-Referenzen wie in SGML: & Entity-Name; [WT:III SGML]
- □ Kommentare:<!-- Dies ist ein Kommentar -->

WT:III-144 Dokumentsprachen ©STEIN 2022

Weitere Regeln zur Syntax

- □ XML-Namen dürfen aus beliebigen alphanumerischen, ideographischen sowie den drei Interpunktionszeichen "_", "—" und "." bestehen.
- □ Entity-Referenzen wie in SGML: & Entity-Name; [WT:III SGML]
- □ Kommentare: <!-- Dies ist ein Kommentar -->
- □ Die CDATA-Deklaration ermöglicht die literale Verwendung aller Zeichen:

□ Verarbeitungsanweisungen werden mit <? und ?> eingeschlossen:

```
<?php
  mysql_connect("database.unc.edu", "clerk", "password");
  ...
?>
```

Bemerkungen:

- Ideographische Zeichen, auch Bildzeichen genannt, sind Zeichen, die eine unmittelbare Interpretation besitzen. Sie k\u00f6nnen sprachunabh\u00e4ngig als auch sprachspezifisch sein. Beispiele sind mathematische Zeichen, chinesische Schriftzeichen oder Logogramme.
- □ Kommentare und Verarbeitungsanweisungen sind Markup, aber keine Elementinstanzen. Sie dürfen überall im Dokument jedoch nicht *in* einem Tag stehen.
- □ Das Schlüsselwort #CDATA bezeichnet den Datentyp *Character Data*. Abschnitte diesen Datentyps werden durch den Parser nicht analysiert. Innerhalb eines CDATA-Abschnitts wird nur die Zeichenkette "]] >" als Markup interpretiert; sie markiert das CDATA-Ende-Tag. [w3schools]
- □ Das Schlüsselwort #PCDATA bezeichnet den Datentyp *Parsed Character Data*. Abschnitte diesen Datentyps werden durch den Parser analysiert. Innerhalb eines PCDATA-Abschnitts müssen deshalb Zeichen, die Bestandteil der Markup-Syntax sind (<, >, etc.) maskiert werden, falls sie nicht als Markup interpretiert werden sollen.
 - Es sind alle Arten von Zeichen, Entity-Referenzen, CDATA-Abschnitte, Kommentare und Verarbeitungsanweisungen zugelassen, jedoch keine Elementinstanzen. Bei PCDATA handelt es sich üblicherweise um Text, der zwischen dem Anfang- und dem Ende-Tag einer Elementinstanz notiert wird. [w3schools]

WT:III-146 Dokumentsprachen ©STEIN 2022

Wohlgeformtheit und Validität

XML-Dokumente müssen wohlgeformt sein:

- 1. balancierte und geschachtelte (d.h. unverschränkte) Tags
- 2. genau ein Wurzelelement
- Attributnamen eindeutig pro Element, Wertzuweisungen müssen in Anführungszeichen stehen
- 4. keine Kommentare und Verarbeitungsanweisungen in Tags

(es gibt noch mehr)

WT:III-147 Dokumentsprachen ©STEIN 2022

Wohlgeformtheit und Validität

XML-Dokumente müssen wohlgeformt sein:

- 1. balancierte und geschachtelte (d.h. unverschränkte) Tags
- 2. genau ein Wurzelelement
- 3. Attributnamen eindeutig pro Element, Wertzuweisungen müssen in Anführungszeichen stehen
- 4. keine Kommentare und Verarbeitungsanweisungen in Tags

(es gibt noch mehr)

XML-Dokumente können valide (gültig) sein. Das heißt,

- 1. das Dokument ist wohlgeformt,
- 2. das Dokument referenziert eine DTD (bzw. ein XML-Schema), und
- 3. der Dokumenteninhalt ist konform mit der DTD (bzw. dem XML-Schema). [vgl. XML-Schema]

WT:III-148 Dokumentsprachen ©STEIN 2022

Document Type Definition, DTD

XML-Dokument:

```
<!ELEMENT person (name, geburtstag, beruf+)>
<!ELEMENT name (vorname, nachname)>
<!ELEMENT vorname (#PCDATA)>
<!ELEMENT nachname (#PCDATA)>
<!ELEMENT geburtstag (#PCDATA)>
<!ELEMENT beruf (#PCDATA)>
```

Document Type Definition, DTD

XML-Dokument:

```
<!ELEMENT person (name, geburtstag, beruf+)>
<!ELEMENT name (vorname, nachname)>
<!ELEMENT vorname (#PCDATA)>
<!ELEMENT nachname (#PCDATA)>
<!ELEMENT geburtstag (#PCDATA)>
<!ELEMENT beruf (#PCDATA)>
```

Document Type Definition, DTD

XML-Dokument:

```
<!ELEMENT person (name, geburtstag, beruf+)>
<!ELEMENT name (vorname, nachname)>
<!ELEMENT vorname (#PCDATA)>
<!ELEMENT nachname (#PCDATA)>
<!ELEMENT geburtstag (#PCDATA)>
<!ELEMENT beruf (#PCDATA)>
```

Document Type Definition, DTD

XML-Dokument:

```
<!ELEMENT person (name, geburtstag, beruf+)>
<!ELEMENT name (vorname, nachname)>
<!ELEMENT vorname (#PCDATA)>
<!ELEMENT nachname (#PCDATA)>
<!ELEMENT geburtstag (#PCDATA)>
<!ELEMENT beruf (#PCDATA)>
```

Document Type Definition, DTD (Fortsetzung) [WT:III SGML]

Die DTD definiert:

- Art und Aufbau von Elementtypen für eine Klasse von Dokumenten
 die Inhaltsmodelle der Elementtypen
- 2. die in Elementinstanzen verwendbaren Attribute und ihre Datentypen
- 3. verschiedene Arten von Textkonstanten, sogenannte Entities

Closed-World-Semantik: Was in der DTD nicht deklariert ist, ist verboten.

WT:III-153 Dokumentsprachen © STEIN 2022

Document Type Definition, DTD (Fortsetzung) [WT:III SGML]

Die DTD definiert:

- Art und Aufbau von Elementtypen für eine Klasse von Dokumenten
 die Inhaltsmodelle der Elementtypen
- 2. die in Elementinstanzen verwendbaren Attribute und ihre Datentypen
- 3. verschiedene Arten von Textkonstanten, sogenannte Entities

Closed-World-Semantik: Was in der DTD nicht deklariert ist, ist verboten.

Syntax der Sätze in der DTD (Ausschnitt) [Beispiel]:

- 1. <!ELEMENT Elementname Inhaltsmodell >
- 2. <!ATTLIST Elementname { Attributname Attributtyp Default-Wert }* >
- 3. <!ENTITY Entity-Name Zeichenkette >

WT:III-154 Dokumentsprachen © STEIN 2022

Document Type Definition, DTD (Fortsetzung)

Definition eines Elementtyps in einer DTD:

WT:III-155 Dokumentsprachen ©STEIN 2022

Document Type Definition, DTD (Fortsetzung)

Definition eines Elementtyps in einer DTD:

WT:III-156 Dokumentsprachen ©STEIN 2022

Document Type Definition, DTD (Fortsetzung)

Definition eines Elementtyps in einer DTD:

gültige Elementinstanz:

```
<name>
  <vorname>Alan</vorname>
  <nachname>Turing</nachname>
</name>
```

ungültige Elementinstanzen:

WT:III-157 Dokumentsprachen ©STEIN 2022

Document Type Definition, DTD (Fortsetzung)

Definition eines Elementtyps in einer DTD:

gültige Elementinstanz:

```
<name>
  <vorname>Alan</vorname>
  <nachname>Turing</nachname>
</name>
```

ungültige Elementinstanzen:

WT:III-158 Dokumentsprachen ©STEIN 2022

Document Type Definition, DTD (Fortsetzung)

Definition von Alternativen:

```
<!ELEMENT ziffer (null | eins | zwei | drei | vier | fünf)>
```

Klammerung und Kombination von syntaktischen Einheiten:

```
<!ELEMENT kreis (zentrum, (radius | durchmesser))>
```

WT:III-159 Dokumentsprachen ©STEIN 2022

Document Type Definition, DTD (Fortsetzung)

Definition von Alternativen:

```
<!ELEMENT ziffer (null | eins | zwei | drei | vier | fünf)>
```

Klammerung und Kombination von syntaktischen Einheiten:

```
<!ELEMENT kreis (zentrum, (radius | durchmesser))>
```

Wichtige Inhaltsmodelle für Elementtypen:

Inhaltsmodell	Typischer Aufbau
einfacher Inhalt	ELEMENT <i Elementname (#PCDATA)>
explizite Kindelemente	ELEMENT Elementname (Elementname,, Elementname)</th
gemischter Inhalt	ELEMENT <i Elementname (#PCDATA <i>Elementname</i>) *>
beliebiger Inhalt	ELEMENT <i Elementname ANY>
leerer Inhalt	ELEMENT <i Elementname EMPTY>

WT:III-160 Dokumentsprachen ©STEIN 2022

Document Type Definition, DTD (Fortsetzung)

Deklaration der erlaubten Attribute für einen Elementtyp:

WT:III-161 Dokumentsprachen ©STEIN 2022

Document Type Definition, DTD (Fortsetzung)

Deklaration der erlaubten Attribute für einen Elementtyp:

Default-Wert für Attribut	Semantik
#REQUIRED	das Attribut ist obligatorisch
Wert	Default, falls kein Attributwert im Dokument angegeben ist
#FIXED Wert	der Attributwert ist fest und kann angegeben sein
#IMPLIED	das Attribut ist optional

WT:III-162 Dokumentsprachen ©STEIN 2022

Bemerkungen:

- □ Attributwerte dürfen keine Elemente sein oder enthalten.
- □ In XML gibt es 10 Attributtypen, u.a.:
 - CDATA (Zeichenkette)
 - ID (eindeutiger Name)
 - IDREF (Verweis auf ein ID-Attribut)
 - NMTOKEN (Symbol)
 - ENTITY

WT:III-163 Dokumentsprachen ©STEIN 2022

Quiz [w3schools]

WT:III-164 Dokumentsprachen © STEIN 2022

Namensräume

Namensräume (*Namespaces*) in XML haben folgende Aufgaben:

- Unterscheidung von Elementen und Attributen, die den gleichen Namen haben, aber in verschiedenen Zusammenhängen verwendet werden.
 Stichwort: Vermeidung von Namenskonflikten
- Logische Gruppierung aller Elemente und Attribute einer Anwendung.

WT:III-165 Dokumentsprachen ©STEIN 2022

Namensräume

Namensräume (*Namespaces*) in XML haben folgende Aufgaben:

- Unterscheidung von Elementen und Attributen, die den gleichen Namen haben, aber in verschiedenen Zusammenhängen verwendet werden.
 Stichwort: Vermeidung von Namenskonflikten
- Logische Gruppierung aller Elemente und Attribute einer Anwendung.

Namensräume sind Bezeichner – sie definieren keine Umgebung (Scope).

WT:III-166 Dokumentsprachen © STEIN 2022

Namensräume (Fortsetzung)

Namensräume (Namespaces) in XML haben folgende Aufgaben:

- Unterscheidung von Elementen und Attributen, die den gleichen Namen haben, aber in verschiedenen Zusammenhängen verwendet werden.
 Stichwort: Vermeidung von Namenskonflikten
- Logische Gruppierung aller Elemente und Attribute einer Anwendung.

Verwendung von Namensräumen in zwei Schritten:

1. Deklaration des Namensraums durch Bindung einer URI an einen Präfix mit xmlns.

```
xmlns:book="https://www.books.com"
```

Qualifizierung des Vokabulars.

book:title qualifizierender Name

book: Präfix

title lokaler Teil

Jede URI ist als Namensraum verwendbar.

WT:III-167 Dokumentsprachen ©STEIN 2022

Namensräume (Fortsetzung)

Gültigkeit der Namensraumdeklaration:

Innerhalb des Elements (einschließlich), in dem die URI gebunden wird.

```
<book:Buch xmlns:book="https://www.books.com">
    <book:Titel>Heuristics</book:Titel>
      <Autor>Judea Pearl</Autor>
</book:Buch>
```

Überschreiben der Deklaration innerhalb der Elementhierarchie möglich.

WT:III-168 Dokumentsprachen ©STEIN 2022

Namensräume (Fortsetzung)

Gültigkeit der Namensraumdeklaration:

Innerhalb des Elements (einschließlich), in dem die URI gebunden wird.

```
<book:Buch xmlns:book="https://www.books.com">
    <book:Titel>Heuristics</book:Titel>
        <Autor>Judea Pearl</Autor>
    </book:Buch>
```

Überschreiben der Deklaration innerhalb der Elementhierarchie möglich.

Konzept des Default-Namensraums ermöglicht Qualifizierung ohne Präfix:

Deklaration durch Bindung einer URI an den leeren Präfix.

```
<Buch xmlns="https://www.books.com">
  <Titel>Heuristics</Titel>
   <Autor>Judea Pearl</Autor>
</Buch>
```

WT:III-169 Dokumentsprachen ©STEIN 2022

Bemerkungen:

- Man bezeichnet Elementnamen, Attributnamen etc. die zu einem Namensraum gehören, als "qualifiziert". Diese Qualifizierung kann explizit über ein Präfix, oder implizit über die Deklaration eines Default-Namensraums geschehen.
- Nicht qualifizierte Namen gehören zu dem anonymen bzw. universellen Namensraum. Im ersten Beispiel gehört <Autor> zum anonymen Namensraum.
- □ Die Konzepte Default-Namensraum (= implizite Qualifizierung ohne Präfix) und anonymer Namensraum (= keine Qualifizierung) sind sorgfältig zu unterscheiden.
- Attribute ohne Präfix gehören nicht zum Default-Namensraum. D.h., auch wenn ein Element zu einem bestimmten (Default-)Namensraum gehört, so gehören dessen Attribute ohne Präfix zu dem anonymen Namensraum.
- Eine Namensraumdeklaration mit Präfix besitzt Präferenz gegenüber dem Default-Namensraum.
- Durch Bindung einer leeren URI an einen Präfix wird eine bestehende
 Namensraumdeklaration aufgehoben. So entsteht eine Situation identisch zu einem
 Dokument ohne Namensraum; d.h., die Elemente gehören zum anonymen Namensraum.
- □ Eine Elementinstanz kann mehrere Namensraumdeklarationen aufnehmen. In der Praxis hat es sich aus Übersichtlichkeitsgründen durchgesetzt, alle in einem XML-Dokument verwendeten Namensräume zu Beginn des Dokuments im Wurzelelement zu deklarieren.

WT:III-170 Dokumentsprachen ©STEIN 2022

XML Information Set [W3C REC, status] [Jeckle 2004]

WT:III-171 Dokumentsprachen ©STEIN 2022

XML Information Set (Fortsetzung)

Das XML Information Set (Infoset) definiert das XML-Dokumenten unterliegende Datenmodell. Es dient zur Beantwortung der Frage:

Welche Informationen sind in einem XML-Dokument codiert?

Ein Parser, der ein XML-Dokument analysiert, orientiert sich an der Definition des XML Information Set und stellt die entsprechenden aus dem XML-Dokument ableitbaren Informationen in einer Datenstruktur bereit.

WT:III-172 Dokumentsprachen © STEIN 2022

XML Information Set (Fortsetzung)

Das XML Information Set (Infoset) definiert das XML-Dokumenten unterliegende Datenmodell. Es dient zur Beantwortung der Frage:

Welche Informationen sind in einem XML-Dokument codiert?

Ein Parser, der ein XML-Dokument analysiert, orientiert sich an der Definition des XML Information Set und stellt die entsprechenden aus dem XML-Dokument ableitbaren Informationen in einer Datenstruktur bereit. Beispiele:

- □ wie ein Element heißt
- zu welchem Namensraum ein Element gehört
- die Reihenfolge der Elementinstanzen
- die Code-Tabelle

Beispiele für nicht ableitbare Information:

- Größe des Leerraums zwischen Attributen
- □ Reihenfolge der Attribute eines Elementtyps

WT:III-173 Dokumentsprachen © STEIN 2022

Bemerkungen:

- □ Das XML Information Set ist keine Sprache wie andere W3C-Spezifikationen, sondern ein Datenmodell. Die XML-Syntax ist eine Serialisierung dieses Datenmodells.
- Das W3C hat mittlerweile drei Datenmodelle für XML-Dokumente definiert: XML Information Set, XPath, Document Object Model (DOM). Das XPath-Datenmodell basiert auf einer Baumstruktur, die bei der Abfrage eines XML-Dokuments durchlaufen wird und ist dem XML Information Set ähnlich; DOM ist der Vorläufer beider Datenmodelle. DOM und das XPath-Datenmodell können als Interpretationen des XML Information Sets betrachtet werden. [MSDN]
- Spezifikation des XQuery and XPath-Datenmodells: [W3C REC]

WT:III-174 Dokumentsprachen ©STEIN 2022

XML Information Set (Fortsetzung)

Das XML Information Set eines XML-Dokuments wird als Baum repräsentiert.

Die Elemente des Baums heißen Informationseinheiten (*Information Items*) und sind von einem der folgenden Typen [w3c]:

- 1. Document Information Item ≡ Wurzelknoten des Dokuments
- 2. Element Information Item
- Attribute Information Item
- 4. Processing Instruction Information Item
- 5. Unexpanded Entity Reference Information Item
- 6. Character Information Item
- 7. Comment Information Item
- 8. Document Type Declaration Information Item
- 9. Unparsed Entity Information Item
- 10. Notation Information Item
- 11. Namespace Information Item

WT:III-175 Dokumentsprachen © STEIN 2022

XML Information Set: Beispiel

```
<?xml version="1.0"
  encoding="ISO-8859-1"
  standalone="yes">

<person>
    <name geburtstag="23-06-1912">
        <vorname>Alan</vorname>
        <nachname>Turing</nachname>
        </name>
</person>
```

WT:III-176 Dokumentsprachen ©STEIN 2022

XML Information Set: Beispiel (Fortsetzung)

Document Information Item

version="1.0" Encoding Scheme="ISO-8859-1" standalone="yes"

WT:III-177 Dokumentsprachen ©STEIN 2022

XML Information Set: Beispiel (Fortsetzung)

```
Document Information Item

version="1.0"
Encoding Scheme="ISO-8859-1"
standalone="yes"

Element Information Item

local name="person"
```

WT:III-178 Dokumentsprachen ©STEIN 2022

XML Information Set: Beispiel (Fortsetzung)

WT:III-179 Dokumentsprachen ©STEIN 2022

XML Information Set: Beispiel (Fortsetzung)

WT:III-180 Dokumentsprachen ©STEIN 2022

Quellen zum Nachlernen und Nachschlagen im Web: XML

- ☐ Jeckle. XML Vorlesung. www.mario-jeckle.de
- □ W3C. *Namespaces in XML 1.1.* www.w3.org/TR/xml-names11
- □ W3C. XML Information Set, Second Edition. www.w3.org/TR/xml-infoset
- □ W3 Schools. *XML Tutorial*. www.w3schools.com/xml

WT:III-181 Dokumentsprachen ©STEIN 2022