

Deep Learning in R with Keras and Google Cloud ML Engine

Doug Ashton

Twitter: @mangothecat

Email: training@mango-solutions.com

Code: https://github.com/dougmet/cloudml

Agenda

- Introduction to Deep Learning
- Google Cloud Platform (GCP)
- CloudML
 - Built in data
 - Supplied data
 - Cloud storage

Code: https://github.com/dougmet/cloudml

About Me

- Physics
 - 💔 Started at Balliol
 - 10 years research
 - Soft Matter / Monte Carlo / Graphs
- Mango:
 - Data Scientist at Mango 5 years
 - Consulting / Training / R community

Julia Silge, Stack Overflow

EARL London 2019

Code: https://github.com/dougmet/cloudml

CloudML Use Cases

Cloud project. Central RSS. Run big jobs in ML-engine

Local project. Run big jobs in ML-engine

Introduction to Deep Learning

(shallow)

What Does it Solve?

- Unstructured
 - Features are learned rather than designed
- Big
 - Generally need lots of data
- Familiar
 - Can reuse models on new problems

Spatial

- Computer vision
- Audio
- Time series: pattern recognition

Sequential

- Language
- Time series: Forecasting

Reinforcement/Adversarial

- AlphaGo
- Generative Networks

Neural Networks

A Neuron

0.2

Neurons

Neural Network

Input layer More abstract Hidden layers Output layer

TensorFlow

- Turns equations into dataflow graphs
 - https://www.tensorflow.org

- Efficient numerical solver
- Built for CPU, GPU, and TPU
- Not only for neural networks

TensorFlow and R

- RStudio built an R interface
 - https://tensorflow.rstudio.com
- Python <-> R handled by reticulate
 - https://rstudio.github.io/reticulate

Keras

High level interface specified networks

– https://keras.id

– François Cholle

Works with multiplication

TensorFlow, CNTK,

News! Keras is to be News! Keras tightly in integrated tightly in integrated tightly in

, MXNet, CoreML,...

Keras and R

- Rstudio built an interface to Keras
 - https://keras.rstudio.com

Also to TensorFlow directly

Keras and R Book

Deep Learning with R

- François Chollet
- J. J. Allaire

Manning

How it fits together

Alternatives for R Users

- MXNet
 - Native R support
 - https://mxnet.incubator.apache.org/api/r/
 - Amazon investment https://aws.amazon.com/mxnet/

Google Cloud Platform

Disclosure

- Mango are Google partners
- Not exclusive but GCP is our default cloud
- AWS has equivalents for most things here

ML Engine ~ SageMaker

Cloud Storage ~ S3

BigQuery ~ RedShift

Trends in Cloud Computing

- Separation of storage and compute
 - (no more Hadoop?)

- Service based
 - (no more servers?)

Separate Storage and Compute

High speed

network

Storage

Cloud Storage

BigQuery

Compute

ML Engine

Data Labs

Compute Engine

Serverless

Storage

Cloud Storage

BigQuery

High speed

network

Compute

ML Engine

Data Labs

Rstudio and ML Engine

 https://tensorflow.rstudio.com/tools/cloud ml/articles/getting_started.html

TensorFlow for R

R Interface to Google CloudML

Overview

The **cloudml** package provides an R interface to <u>Google Cloud Machine Learning</u>
<u>Engine</u>, a managed service that enables:

- Scalable training of models built with the <u>keras</u>, <u>tfestimators</u>, and <u>tensorflow</u> R packages.
- On-demand access to training on GPUs, including the new <u>Tesla P100 GPUs</u> from NVIDIA®.
- · Hyperparameter tuning to optmize key attributes of model architectures in

Should I just use Python?

- + R
- Continue R-based workflow (any R-based job)
- cloudml really easy →

- + Python
- Native Python support
- Packages pre-installed
- More flexible in deployment

gs://keras-235720/py-cloudml

gs://keras-235720/r-cloudml 1.03 GiB

AWS RStudio Server Alternative

Make a Project

Enable ML Engine API

Install SDK

```
install.packages("cloudml")
library(cloudml)
gcloud_install()
	ilde{\#} I'm taking the default location in my user dir.
# It didn't ask me about projects so running init again
gcloud_init()
                                                    Google Cloud SDK Setup
                                                                                                                            \times
                                                                                Welcome to Google Cloud SDK
                                                                                Setup
                                                                                This wizard will guide you through the installation of the
                                                                                Google Cloud SDK.
                                                                                Google Cloud SDK contains tools and libraries that will
                                                                                enable you to easily create and manage resources on
                                                                                Google Cloud Platform.
                                                           Google
                                                      Cloud Platform
                                                                                Help make Google Cloud SDK better by automatically sending anonymous usage statistics to Google
                                                                                Your privacy is important to us. Click here to learn more.
                                                                                                          Next >
                                                                                                                       Cancel
```


Login

Maybe run init (Rstudio)

Had to run gcloud_init again to pickup projects

```
C:\Users\dashton\Documents\R\cloudml>"C:\Users\dashton\AppData\Local\Google\
Welcome! This command will take you through the configuration of gcloud.

Settings from your current configuration [default] are:
core:
    account: dashton@mango-solutions.com
    disable_usage_reporting: 'False'

Pick configuration to use:
[1] Re-initialize this configuration [default] with new settings
[2] Create a new configuration
Please enter your numeric choice: 1
```


Choose project

```
this configuration:
 [1] dashton@mango-solutions.com
 [2] Log in with a new account
Please enter your numeric choice: 1
You are logged in as: [dashton@mango-solutions.com].
Pick cloud project to use:
 [2] ____ ___311
 [3] keras-235720
 [4] mango-233109
 [6] Create a new project
Please enter numeric choice or text value (must exactly match list
item): 3
Your current project has been set to: [keras-235720].
```


Code: https://github.com/dougmet/cloudml

Iris Neural Network

Code: https://github.com/dougmet/cloudml

Iris Neural Network

Code: https://github.com/dougmet/cloudml

Demo!

Networks for Spatial Data

Convolutional Neural Networks

- Accelerometer data from the UCI
- Filtered to walking activity
- 15 Different people
- Can we recognise someone by their gait?
- Chopped into 5 second chunks

Walking[50,,]

Person 1

Walking[4100,,]

Person 10

Convolution Layer

Convolution Layer - Filters

Max Pooling

Flattening

Dogs vs Cats

- Example from keras book
 - https://www.manning.com/books/deep-learning-with-r

Dogs vs Cats

- Images stored in Cloud Storage
 - Keras flow_images_from_directory
- Requires GPU

- 03 Train model from scratch
- 04 Build on pretrained-model

CNN Architectures - VGG

Pre-trained Networks

• Pre-trained Networks

Reusable

Spatial Layers

Dense Layers

Output

Summary

- Cloudml is easy
 - Use it before you buy a GPU
 - Use it for any compute task

- Don't feel bad using R for TensorFlow
 - Just get stuff done!
 - It's just another layer

