Серия 19

- 1. Определите коэффициент трения скольжения колёс машины о дорогу, если её тормозной путь с заблокированными колёсами при начальной скорости $v_0 = 90$ км/ч составляет L = 50 м? Для этого:
 - а. Введите обозначения массы машины и времени торможения. Постройте график зависимости скорости машины от времени.
 - b. Определите из графика, как связаны время торможения и тормозной путь. Найдите время торможения.
 - с. Сделайте рисунок и отметьте на нём все существенные силы, действующие на машину в процессе торможения.
 - d. Запишите второй закон Ньютона для машины в проекции на горизонтальную ось.
 - е. Выразите силу трения во втором законе Ньютона через массу машины и коэффициент трения.
 - f. Найдите искомый коэффициент трения.
- 2. Одна из стандартных характеристик автомобилей время разгона до 100 км/ч в первую очередь зависит от массы автомобиля и мощности двигателя. Однако увеличение мощности двигателя не позволяет сделать время разгона сколь угодно малым, так как при достижении некоторого порогового значения мощности колёса машины начинают пробуксовывать при разгоне, и дальнейшее увеличение мощности не ускоряет разгон.
 - а. Сделайте рисунок и отметьте на нём все силы, действующие на автомобиль в процессе разгона. Какая сила разгоняет автомобиль, если его колёса пробуксовывают при разгоне?
 - b. Какая сила разгоняет автомобиль, если его колёса не пробуксовывают?
 - с. От чего зависит мощность, при которой начинается пробуксовывание? Почему дальнейшее увеличение мощности не ускоряет разгон?
 - d. Каково минимально достижимое время разгона, если коэффициент трения колёс о дорогу равен $\mu=0.8$?
- 3. Масса учебника по физике равна 300 г. С какой минимальной по величине горизонтальной силой нужно прижать учебник к стенке, чтобы он не падал? Коэффициент трения между учебником и стенкой $\mu = 0,3$. Чему равна сила трения между учебником и стенкой, если учебник прижат к стенке с силой 30 H?