We explain New_NoE in sec. IV through both theoretical analysis and empirical validation:

We assume the computation time for encoder processing each signal: x (x>0) and computation time for decoder processing each pair: y (y>0)

Original NMR-SQA Method

Parameters:

- Number of epochs: NoE
- Each batch contains N degraded signals, each paired with 1 reference

Computational time per pair:

- Encoder cost: 2x (one reference + one degraded signal)
- Decoder cost: y
- Total time processing per pair: 2x + y

Total computational time= NoE \times N \times (2x + y)

Proposed Method

Parameters:

- Number of epochs: New NoE
- Each batch contains:
 - N degraded signals
 - o M reference signals
 - Each degraded signal pairs with all M references
 - \circ Total pairs = $N \times M$

Computation efficiency implementation:

- References and degraded signals are computed **once per batch** when passed through the encoder
- Per batch computation:
 - \circ Encoder cost: $(M + N) \times x$
 - \circ Decoder cost: $M \times N \times v$
 - Average time processing per pair: $((M + N) \times x + M \times N \times y) / (M \times N)$

Total computational time= New NoE × $((M + N) \times x + M \times N \times y)$

Setting equal training time:

$$NoE \times N \times (2x + y) = New NoE \times ((M + N) \times x + M \times N \times y)$$

Therefore: New NoE = NoE
$$\times$$
 N \times (2x + y) / ((M + N) \times x + M \times N \times y)

In my model $x \sim y/2$ (this derived empirically)

New_NoE \sim 2N×NoE/((M+N)/2 + M×N) Besides, in my setting M<<N, M×N \sim M×(N+M) (M+N)/2 + M×N \sim (M+ 0.5)×(M+N) \sim M×(M+N) Therefore, we select New_NoE \sim 2N/(M×(M+N)) × NoE We also analyze in general cases:

- 1. When $x \gg y$:
 - \circ New NoE \sim (2N/(N+M)) \times NoE
- 2. When x > y but not x >> y:
 - \circ (3N/(N+M)) \times NoE > New NoE > (2N/(N+M+M \times N)) \times NoE
- 3. When $x \ll y$:
 - \circ New NoE \sim NoE/M
- 4. When y > x but not y >> x:
 - \circ (3/M) \times NoE > New NoE > (N/(N+M+M \times N)) \times NoE
- 5. When x = y:
 - $\circ \text{ New NoE} = (3N/(N+M+M\times N)) \times \text{NoE}$