Matematyka obliczeniowa

dr inż. Piotr Piela

Wydział Informatyki ZUT w Szczecinie

Metody iteracyjne rozwiązywania układów równań liniowych

Metody iteracyjne rozwiązywania układów równań liniowych (URL)

Metody iteracyjne rozwiązywania układów równań liniowych

Metody iteracyjne rozwiązywania układów równań liniowych (URL)

Stacjonarne metody iteracyjne

Matoda Richardsona Matoda Jacobiego

Metoda Gaussa-Seidela

Metoda nadrelaksacji (SOR)

Układ równań liniowych

Układem równań liniowych nazywamy układ:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\ \ldots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \end{cases}$$

Ten sam układ zapisany w postaci macierzowej:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Oznaczając przez A macierz układu, x wektor kolumnowy niewiadomych i b wektor kolumnowy wyrazów wolnych otrzymamy:

$$A \cdot x = b$$

- metoda Richardsona.
- Metoda iteracji prostej (metoda Jacobiego).
- Metoda Gaussa-Seidela.
- Metoda nadrelaksacji.
- Metoda najszybszego spadku.
- Metoda gradientów sprzężonych.

- metoda Richardsona.
- Metoda iteracji prostej (metoda Jacobiego).
- Metoda Gaussa-Seidela.
- Metoda nadrelaksacji.
- Metoda najszybszego spadku.
- Metoda gradientów sprzężonych.

- metoda Richardsona.
- Metoda iteracji prostej (metoda Jacobiego).
- Metoda Gaussa-Seidela.
- Metoda nadrelaksacji.
- Metoda najszybszego spadku.
- Metoda gradientów sprzężonych.

- metoda Richardsona.
- Metoda iteracji prostej (metoda Jacobiego).
- Metoda Gaussa-Seidela.
- Metoda nadrelaksacji.
- Metoda najszybszego spadku.
- Metoda gradientów sprzężonych.

- metoda Richardsona.
- Metoda iteracji prostej (metoda Jacobiego).
- Metoda Gaussa-Seidela.
- Metoda nadrelaksacji.
- Metoda najszybszego spadku.
- Metoda gradientów sprzężonych.

- metoda Richardsona.
- Metoda iteracji prostej (metoda Jacobiego).
- Metoda Gaussa-Seidela.
- Metoda nadrelaksacji.
- Metoda najszybszego spadku.
- Metoda gradientów sprzężonych.

- rozwiązanie układu równań Ax = b otrzymujemy w postaci ciągu wektorów zbieżnych do rozwiązania dokładnego,
- obliczenia przerywamy gdy przybliżone rozwiązanie osiągnęło wymaganą dokładność albo po ustalonej liczbie iteracji,
- dla dużych układów (tysiące równań) szybsze niż metody dokładne,
- efektywne dla układów rzadkich,
- stabilne, błędy zaokrągleń są wygaszane w dalszych iteracjach.

- rozwiązanie układu równań Ax = b otrzymujemy w postaci ciągu wektorów zbieżnych do rozwiązania dokładnego,
- obliczenia przerywamy gdy przybliżone rozwiązanie osiągnęło wymaganą dokładność albo po ustalonej liczbie iteracji,
- dla dużych układów (tysiące równań) szybsze niż metody dokładne,
- efektywne dla układów rzadkich,
- stabilne, błędy zaokrągleń są wygaszane w dalszych iteracjach.

- rozwiązanie układu równań Ax = b otrzymujemy w postaci ciągu wektorów zbieżnych do rozwiązania dokładnego,
- obliczenia przerywamy gdy przybliżone rozwiązanie osiągnęło wymaganą dokładność albo po ustalonej liczbie iteracji,
- dla dużych układów (tysiące równań) szybsze niż metody dokładne,
- efektywne dla układów rzadkich,
- stabilne, błędy zaokrągleń są wygaszane w dalszych iteracjach.

- rozwiązanie układu równań Ax = b otrzymujemy w postaci ciągu wektorów zbieżnych do rozwiązania dokładnego,
- obliczenia przerywamy gdy przybliżone rozwiązanie osiągnęło wymaganą dokładność albo po ustalonej liczbie iteracji,
- dla dużych układów (tysiące równań) szybsze niż metody dokładne,
- efektywne dla układów rzadkich,
- stabilne, błędy zaokrągleń są wygaszane w dalszych iteracjach.

- rozwiązanie układu równań Ax = b otrzymujemy w postaci ciągu wektorów zbieżnych do rozwiązania dokładnego,
- obliczenia przerywamy gdy przybliżone rozwiązanie osiągnęło wymaganą dokładność albo po ustalonej liczbie iteracji,
- dla dużych układów (tysiące równań) szybsze niż metody dokładne,
- efektywne dla układów rzadkich,
- stabilne, błędy zaokrągleń są wygaszane w dalszych iteracjach.

Stacjonarne metody iteracyjne

Stacjonarne metody iteracyjne polegają na rozkładzie macierzy A równania Ax=b na część M oraz R.

Równanie Ax = b można wówczas zapisać postaci równoważnej:

$$Mx = Rx + b$$
, $R = M - A$

Jeśli macierze A i M są nieosobliwe to możemy zapisać:

$$x = M^{-1}(Rx + b)$$

W celu znalezienia przybliżonego rozwiązania możemy zastosować metodę iteracji prostej:

$$x_{k+1} = M^{-1}(Rx_k + b)$$

Matoda Richardsona

W metodzie Richardsona przyjmujemy, że macierz M jest równa macierzy jednostkowej E. Wzór iteracyjny przyjmie zatem postać:

$$x_{k+1} = (E - A)x_k + b$$

Jeśli określimy wektor residualny w postaci $r_k = b - Ax_k$ otrzymamy:

$$x_{k+1} = x_k + r_k$$

Warunek zbieżności metody:

$$||E - A|| < 1$$

Normy na macierzach

Najczęściej stosowane normy macierzy:

Norma spektralna:

$$||A|| = ||A||_2 := \sqrt{\lambda_{max}(A^T A)}.$$

 $\lambda_{max}(A^TA)$ - największa wartość własna macierzy A^TA .

Norma wierszowa:

$$||A|| = ||A||_{\infty} := \max_{1 \leqslant i \leqslant n} \sum_{i=1}^{n} |a_{ij}|.$$

Norma kolumnowa:

$$||A|| = ||A||_1 := \max_{1 \leqslant j \leqslant n} \sum_{i=1}^n |a_{ij}|.$$

Matlab: norm()

Matoda Jacobiego

Macierz A występująca w równaniu Ax = b może zostać podzielona na trzy części: diagonalną, ściśle dolną trójkątną i ściśle górną trójkątną:

$$A = L + D + U$$

gdzie:

Matoda Jacobiego

W metodzie Jacobiego macierz M = D, gdzie D jest macierzą diagonalną składająca się z wyrazów stojących na głównej przekatnej macierzy A. Wzór iteracyjny przyjmie zatem postać:

$$x_{k+1} = D^{-1}(b - (L + U)x_k)$$

Rozpisując podany wzór po współrzędnych, dostajemy układ równań:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right)$$

W metodzie Jacobiego warunek dostateczny zbieżności wynosi:

$$||D^{-1}(L+U)|| < 1$$

Matoda Jacobiego

Jeśli macierz A jest dominująca przekątniowo, to dla dowolnego wektora początkowego x_0 metoda iteracji prostej oraz metoda Gaussa-Seidela tworzy ciąg zbieżny do rozwiązania x^* układu Ax=b.

Macierz A nazywamy diagonalnie dominującą, jeżeli moduły elementów na diagonali są nie mniejsze od sumy modułów pozostałych elementów stojących w tym samym wierszu:

$$|a_{ii}| > \sum_{k=1}^{n} |a_{ik}|, \quad i = 1, 2, \dots, n, \quad k \neq i$$

Metoda Gaussa-Seidela

W metodzie Gaussa–Seidela macierz M=L+D a Z=-U. Wzór iteracyjny przyjmie zatem postać:

$$x_{k+1} = (L+D)^{-1}(b-Ux_k)$$

Rozpisując podany wzór po współrzędnych, dostajemy układ równań:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j^{(k+1)} - \sum_{j > i} a_{ij} x_j^{(k)} \right)$$

Jeśli macierz A jest diagonalnie dominująca, to metoda Gaussa–Seidela jest zbieżna do x^* dla dowolnego wektora startowego x_0

Metoda nadrelaksacji (ang. successive overrelaxation, SOR)

W metodzie SOR macierz $M=\frac{1}{\omega}D+L$ a macierz $Z=\left(\frac{1}{\omega}-1\right)D-U$. Wzór iteracyjny przyjmie zatem postać:

$$x_i^{(k+1)} = (1 - \omega)x_i^{(k)} + \omega \tilde{x}_i^{k+1}.$$

Wprowadzając parametr relaksacji $\omega>1$ kolejne współrzędne nowego przybliżenia x_{k+1} wyznaczamy, kombinując ze sobą poprzednie przybliżenie $x_i^{(k)}$ oraz współrzędną nowego przybliżenia \tilde{x}_i^{k+1} , uzyskanego metodą Gaussa–Seidela.

Jeśli macierz A ma niezerową diagonalę, a metoda SOR jest zbieżna, to parametr ω musi zawierać się w przedziale $0<\omega<2$

Jeśli macierz A jest symetryczna i dodatnio określona to metoda SOR jest zbieżna dla dowolnego $\omega \in (0,2)$

Zatrzymanie obliczeń iteracyjnych

Jako warunek zatrzymania obliczeń iteracyjnych najczęściej przyjmuje się by jedna ze zmodyfikowanych norm różnicy wektorów k-tego i (k+1)-szego przybliżenia była mniejsza od przyjętej dokładności ϵ lub gdy liczba wykonanych iteracji osiągnie maksymalną przyjętą wartość. Jako zmodyfikowane normy wektora można przyjąć:

$$||x_{k+1} - x_k|| = \max_i |x_i^{(k+1)} - x_i^{(k)}| \le \epsilon$$

$$||x_{k+1} - x_k|| = \frac{\sum_{i=1}^n |x_i^{(k+1)} - x_i^{(k)}|}{n} \leqslant \epsilon$$

$$||x_{k+1} - x_k|| = \sqrt{\frac{\sum_{i=1}^{n} |x_i^{(k+1)} - x_i^{(k)}|^2}{n}} \leqslant \epsilon$$

Metody iteracyjne rozwiązywania URL

Metoda iteracji prostej

$$X^{(k+1)} = W \cdot X^{(k)} + Z$$

Warunek zbieżności metody:

$$||W||_{\infty} = \max \sum_{j=1}^{n} |w_{ij}| \quad \forall_{i} (\overline{1,n})$$

$$||W||_1 = max \sum_{i=1}^n |w_{ij}| \quad \forall_j (\overline{1,n})$$

Metoda iteracji prostej

Przykład. Rozwiąż podany układ równań stosując metodę iteracji prostej.

$$\begin{cases} 4 \cdot x_1 + x_2 = 8 \\ x_1 + 2 \cdot x_2 = 9 \end{cases}$$

$$\begin{cases} x_1 + \frac{1}{4} \cdot x_2 = 2 \\ \frac{1}{2} \cdot x_1 + x_2 = \frac{9}{2} \end{cases} \begin{cases} x_1 = -\frac{1}{4} \cdot x_2 + 2 \\ x_2 = -\frac{1}{2} \cdot x_1 + \frac{9}{2} \end{cases} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 & -1/4 \\ -1/2 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 2 \\ 9/2 \end{pmatrix}$$

$$\underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(k+1)}}_{X^{(k+1)}} = \underbrace{\begin{pmatrix} 0 & -1/4 \\ -1/2 & 0 \end{pmatrix}}_{W} \cdot \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(k)}}_{X^{(k)}} + \underbrace{\begin{pmatrix} 2 \\ 9/2 \end{pmatrix}}_{Z}$$

Metoda iteracji prostej

$$\underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(k+1)}}_{X^{(k+1)}} = \underbrace{\begin{pmatrix} 0 & -1/4 \\ -1/2 & 0 \end{pmatrix}}_{W} \cdot \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(k)}}_{X^{(k)}} + \underbrace{\begin{pmatrix} 2 \\ 9/2 \end{pmatrix}}_{Z}$$

$$X^{(k+1)} = W \cdot X^{(k)} + Z$$

Warunek początkowy:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(1)} = \begin{pmatrix} 0 & -1/4 \\ -1/2 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(0)} + \begin{pmatrix} 2 \\ 9/2 \end{pmatrix} = \begin{pmatrix} 2 \\ 9/2 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(2)} = \begin{pmatrix} 0 & -1/4 \\ -1/2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 9/2 \end{pmatrix}^{(1)} + \begin{pmatrix} 2 \\ 9/2 \end{pmatrix} = \begin{pmatrix} 0.875 \\ 3.5 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(3)} = \begin{pmatrix} 0 & -1/4 \\ -1/2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0.875 \\ 3.5 \end{pmatrix}^{(2)} + \begin{pmatrix} 2 \\ 9/2 \end{pmatrix} = \begin{pmatrix} 1.125 \\ 4.062 \end{pmatrix}$$

Metoda Gaussa-Seidela

Przykład. Rozwiąż podany układ równań stosując metodę iteracji Gaussa-Seidela.

$$\begin{cases} 4 \cdot x_1 + x_2 = 8 \\ x_1 + 2 \cdot x_2 = 9 \end{cases}$$

$$\begin{cases} x_1 + \frac{1}{4} \cdot x_2 = 2 \\ \frac{1}{2} \cdot x_1 + x_2 = \frac{9}{2} \end{cases} \begin{cases} x_1 = -\frac{1}{4} \cdot x_2 + 2 \\ x_2 = -\frac{1}{2} \cdot x_1 + \frac{9}{2} \end{cases} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 & -1/4 \\ -1/2 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 2 \\ 9/2 \end{pmatrix}$$
tak samo jak w iteracji prostej

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 & -1/4 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ -1/2 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 2 \\ 9/2 \end{pmatrix}$$

$$\underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(k+1)}}_{X^{(k+1)}} = \underbrace{\begin{pmatrix} 0 & -1/4 \\ 0 & 0 \end{pmatrix}}_{W_U} \cdot \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(k)}}_{X^{(k)}} + \underbrace{\begin{pmatrix} 0 & 0 \\ -1/2 & 0 \end{pmatrix}}_{W_L} \cdot \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(k+1)}}_{X^{(k+1)}} + \underbrace{\begin{pmatrix} 2 \\ 9/2 \end{pmatrix}}_{Z}$$

Metoda Gaussa-Seidela

$$\boldsymbol{X}^{(k+1)} {=} \boldsymbol{W}_{U} {\cdot} \boldsymbol{X}^{(k)} {+} \boldsymbol{W}_{L} {\cdot} \boldsymbol{X}^{(k+1)} {+} \boldsymbol{Z}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(k+1)} = \begin{pmatrix} 0 & -1/4 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(k)} + \begin{pmatrix} 0 & 0 \\ -1/2 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(k+1)} + \begin{pmatrix} 2 \\ 9/2 \end{pmatrix}$$

Warunek początkowy:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_{1}^{(1)} = -1/4 \cdot x_{2}^{(0)} + 2 = -1/4 \cdot 0 + 2 = 2$$

$$x_{2}^{(1)} = -1/2 \cdot x_{1}^{(1)} + 9/2 = -1/2 \cdot 2 + 9/2 = 3.5$$

$$x_{1}^{(2)} = -1/4 \cdot x_{2}^{(1)} + 2 = -1/4 \cdot 3.5 + 2 = 1.125$$

$$x_{2}^{(2)} = -1/2 \cdot x_{1}^{(2)} + 9/2 = -1/2 \cdot 1.125 + 9/2 = 3.9375$$

$$x_{1}^{(3)} = -1/4 \cdot x_{2}^{(2)} + 2 = -1/4 \cdot 3.9375 + 2 = 1.0156$$

$$x_{2}^{(3)} = -1/2 \cdot x_{1}^{(3)} + 9/2 = -1/2 \cdot 1.0156 + 9/2 = 3.9922$$

Twierdzenie

Jeśli macierz A jest dominująca przekątniowo, to dla dowolnego wektora początkowego metoda iteracji prostej oraz metoda Gaussa-Seidela tworzy ciąg zbieżny do rozwiązania układu Ax=b.

Twierdzenie

Jeśli macierz A nie jest dominująca przekątniowo, to metody iteracji prostej i Gaussa-Seidela nie muszą tworzyć ciągu rozbieżnego do rozwiązania układu Ax=b.

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 3 & 1 \\ -2 & 1 & 4 \end{pmatrix}$$

$$b = \begin{pmatrix} -2\\4\\-4 \end{pmatrix}$$

$$X_0 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

Kolejne iteracje

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 3 & 1 \\ -2 & 1 & 4 \end{pmatrix}$$

$$b = \begin{pmatrix} -2 \\ 4 \\ -4 \end{pmatrix}$$

$$X_0 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 3 & 1 \\ -1 & 1 & 3 \end{pmatrix}$$

$$b = \begin{pmatrix} -2 \\ 4 \\ -4 \end{pmatrix}$$

$$X_0 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & 0.5 \end{pmatrix}$$

$$b = \begin{pmatrix} -2 \\ 4 \\ -4 \end{pmatrix}$$

$$X_0 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

