AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	 (Currently amended) A method for using interval techniques
2	within a computer system to solve a multi-objective optimization problem,
3	comprising:
4	receiving a representation of multiple objective functions (f_1 ,, f_n) at
5	the computer system, wherein $(f_1,, f_n)$ are scalar functions of a vector
6	$\mathbf{x}=(x_1,, x_n);$
7	receiving a representation of a domain of interest for the multiple
8	objective functions;
9	storing the representations in a memory within the computer system; and
10	performing an interval optimization process to compute guaranteed
11	bounds on a Pareto front for the objective functions $(f_1,, f_n)$, wherein for
12	each point on the Pareto front, an improvement in one objective function cannot
13	be made without adversely affecting at least one other objective function;
14	wherein performing the interval optimization process involves applying a
15	direct-comparison technique between subdomains of the domain of interest to
16	eliminate subdomains that are certainly dominated by other subdomains,
17	wherein performing the interval optimization process involves applying a
18	gradient technique to eliminate subdomains that do not contain a local Pareto
19	optimum,

20	wherein a subdomain $[x]_i$ is eliminated by the gradient technique if an
21	intersection of certainly negative gradient regions \mathbf{C}_{j} for each objective function f_{j}
22	is non-empty, $\bigcap_{j=1}^{n} C_{j}([x]_{j}) \neq \emptyset$, and
23	wherein the certainly negative gradient region C_i for objective function f_i
24	is the intersection of $\underline{\mathbf{N}_{j}}[\![\mathbf{x}]\!]_{t}$ (the negative gradient region associated with the
25	$\underline{\underline{minimum angle}} \ \underline{\underline{\theta_j}} \ \underline{\underline{of the gradient of f_i over the subdomain [x]_j)}} \ \underline{\underline{N_j}([x]_i)} \ \underline{(the}$
26	negative gradient region associated with the maximum angle $\overline{\theta_j}$ of the gradient of
27	fi over the subdomain [x]).
1	2. (Cancelled)
1	3. (Cancelled)
1	4. (Currently amended) The method of elaim 3claim 1, wherein the
2	method further comprises iteratively:
3	bisecting remaining subdomains that have not been eliminated by the
4	gradient technique; and
5	applying the gradient technique to eliminate bisected subdomains that do
6	not contain a local Pareto optimum.
1	5. (Original) The method of claim 4, wherein bisecting a subdomain
2	involves bisecting the subdomain in the direction that has the largest width of

(Original) The method of claim 4, wherein the direct-comparison

partial derivatives of all objective functions $(f_1, ..., f_n)$ over the subdomain.

technique is applied once for every n iterations of the gradient technique.

3

1

2

6.

- (Original) The method of claim 6, wherein the iterations continue until either a predetermined maximum number of iterations are performed, or the largest area of any subdomain is below a predetermined value.
- (Original) The method of claim 1,

2 wherein a subdomain U certainly dominates a subdomain V if every point

3 $u \in U$ dominates every point $v \in V$; and

1

3

4

1

2

3

4

5

6

12

13

14

15

16

wherein a point u dominates a point v under minimization if,

5
$$u_i \# v_i, i = 1, ..., n$$
, and

6
$$u_i < v_i \text{ for some } i \in \{1, ..., n\}.$$

- 9. (Currently amended) A computer-readable storage medium storing instructions that when executed by a computer cause the computer to perform a method for using interval techniques within a computer system to solve a multi-objective optimization problem, wherein the computer-readable storage medium can be any device that can store code and/or data for use by a computer system, the method comprising:
- receiving a representation of multiple objective functions $(f_1, ..., f_n)$ at
 the computer system, wherein $(f_1, ..., f_n)$ are scalar functions of a vector $\mathbf{x} = (x_1, ..., x_n);$

receiving a representation of a domain of interest for the multiple
 objective functions;

storing the representations in a memory within the computer system; and performing an interval optimization process to compute guaranteed bounds on a Pareto front for the objective functions $(f_1, ..., f_n)$, wherein for each point on the Pareto front, an improvement in one objective function cannot

be made without adversely affecting at least one other objective function;

7	wherein performing the interval optimization process involves applying a
8	direct-comparison technique between subdomains of the domain of interest to
9	eliminate subdomains that are certainly dominated by other subdomains,
20	wherein performing the interval optimization process involves applying a
21	gradient technique to eliminate subdomains that do not contain a local Pareto
22	optimum,
23	wherein a subdomain [x] _l is eliminated by the gradient technique if an
24	intersection of certainly negative gradient regions C_{ij} for each objective function f_{ij}
25	is non-empty. $\bigcap_{j=1}^{n} C_{j}([\mathbf{x}]_{j}) \neq \emptyset$, and
26	wherein the certainly negative gradient region C_i for objective function f_i
27	is the intersection of $\underline{\mathbf{N}_{j}}[[\mathbf{x}]_{i})$ (the negative gradient region associated with the
28	minimum angle $\underline{\theta}_j$ of the gradient of f_i over the subdomain $[x]_j$ and $\overline{N_j}([x]_j)$ (the
29	negative gradient region associated with the maximum angle $\overline{\theta_j}$ of the gradient of
80	f_i over the subdomain $[\mathbf{x}]_i$.
1	10. (Cancelled)
1	11. (Cancelled)
1	12. (Currently amended) The computer-readable storage medium of
2	elaim 11claim 9, wherein the method further comprises iteratively:
3	bisecting remaining subdomains that have not been eliminated by the
4	gradient technique; and
5	applying the gradient technique to eliminate bisected subdomains that do
6	not contain a local Pareto optimum.

- Original) The computer-readable storage medium of claim 12,
- 2 wherein bisecting a subdomain involves bisecting the subdomain in the direction
- 3 that has the largest width of partial derivatives of all objective functions $(f_l, ...,$
- 4 f_n) over the subdomain.
- Original) The computer-readable storage medium of claim 12,
- wherein the direct-comparison technique is applied once for every n iterations of
- 3 the gradient technique.

2

1

- (Original) The computer-readable storage medium of claim 14,
- 2 wherein the iterations continue until either a predetermined maximum number of
- 3 iterations are performed, or the largest area of any subdomain is below a
- 4 predetermined value.
- 16. (Original) The computer-readable storage medium of claim 9.
- 2 wherein a subdomain U certainly dominates a subdomain V if every point
- 3 $u \in U$ dominates every point $v \in V$; and
- 4 wherein a point u dominates a point v under minimization if,
- 5 $u_i \# v_i, i = 1, ..., n$, and
- 6 $u_i < v_i \text{ for some } i \in \{1, ..., n\}.$
 - 17. (Currently amended) An apparatus that uses interval techniques to
- 2 solve a multi-objective optimization problem, comprising:
- a receiving mechanism configured to receive a representation of multiple
 objective functions (f₁,..., f_n), wherein (f₁,..., f_n) are scalar functions of a
- 5 vector $\mathbf{x} = (x_1, ..., x_n)$;
- wherein the receiving mechanism is configured to receive a representation
 of a domain of interest for the multiple objective functions;

8	a memory configured to store the representations; and
9	an interval optimizer configured to performing an interval optimization
10	process to compute guaranteed bounds on a Pareto front for the objective
11	functions $(f_I,, f_n)$, wherein for each point on the Pareto front, an
12	improvement in one objective function cannot be made without adversely
13	affecting at least one other objective function;
14	wherein the interval optimizer is configured to apply a direct-comparison
15	technique between subdomains of the domain of interest to eliminate subdomains
16	that are certainly dominated by other subdomains,
17	wherein the interval optimizer is configured to apply a gradient technique
18	to eliminate subdomains that do not contain a local Pareto optimum,
19	wherein a subdomain [x] is eliminated by the gradient technique if an
20	intersection of certainly negative gradient regions C _j for each objective function f
21	$ \underline{is \text{ non-empty.}}\bigcap_{j=1}^{n} C_{j}([\mathbf{x}]_{j}) \neq \emptyset$, and
22	wherein the certainly negative gradient region C_i for objective function f_i
23	is the intersection of $N_j([x]_l)$ (the negative gradient region associated with the
24	$\underline{\underline{\underline{minimum angle } \underline{\theta_j}}} \underbrace{\underline{\theta_j}} \text{ of the gradient of } \underline{f_i} \text{ over the subdomain } \underline{[x]_i)} \text{ and } \underline{\overline{N_j}([x]_i)} \text{ (the subdomain } \underline{N_j}([x]_i) \text{ over the subdomain } \underline{N_j}([x]_i) over the subd$
25	negative gradient region associated with the maximum angle $\overline{\theta_j}$ of the gradient of
26	f_i over the subdomain $[x]_i$.
1	18. (Cancelled)
1	19. (Cancelled)
1	20. (Currently amended) The apparatus of elaim 19 claim 17, wherein
2	the interval optimizer is configured to iteratively:

- bisect remaining subdomains that have not been eliminated by the gradient technique; and to

 apply the gradient technique to eliminate bisected subdomains that do not
 - apply the gradient technique to eliminate bisected subdomains that do not contain a local Pareto optimum.
- 21. (Original) The apparatus of claim 20, wherein bisecting a
 subdomain involves bisecting the subdomain in the direction that has the largest
 width of partial derivatives of all objective functions (f₁, ..., f_n) over the
- 1 22. (Original) The apparatus of claim 20, wherein the direct2 comparison technique is applied once for every *n* iterations of the gradient
 3 technique.

4

subdomain.

- 1 23. (Original) The apparatus of claim 22, wherein the iterations
 2 continue until either a predetermined maximum number of iterations are
 3 performed, or the largest area of any subdomain is below a predetermined value.
- 24. (Original) The apparatus of claim 17,
 wherein a subdomain U certainly dominates a subdomain V if every point
 u ∈ U dominates every point v ∈ V; and
 wherein a point u dominates a point v under minimization if,
 u_i ≠ v_i, i = 1, ..., n, and
 u_i < v_i for some i ∈ {1, ..., n}.