Algèbre Linéaire

Corrigé du Partiel 1 du 26 février 2016

Exercice 1.

1. Soit E un espace vectoriel sur \mathbb{R} . Donner les conditions nécessaires et suffisantes pour qu'un sous-ensemble F de E soit un sous-espace vectoriel de E.

Pour être un \mathbb{R} -sous espace vectoriel de E, F doit satisfaire les trois conditions nécassaires et suffisantes suivantes : (i) $F \neq \emptyset$; (ii) pour tous $v, w \in F$ on doit avoir $v + w \in F$; (iii) pour tout $v \in F$ et pour tout $\lambda \in \mathbb{R}$ on doit avoir $\lambda v \in F$. La condition (i) peut être remplacée par la condition équivalente (i') $0 \in F$ tandis que les conditions (ii) et (iii) peuvent être remplecées par la condition : pour tous $v, w \in F$ et tous $\lambda, \mu \in \mathbb{R}$ on doit avoir $\lambda v + \mu w \in F$.

- 2. Dans chacun des cas suivants, justifier si oui ou non l'ensemble F est un sous-espace vectoriel de l'espace vectoriel E, muni de ses lois usuelles :
 - (a) $E = \mathbb{R}^3$ et $F = \{(x, y, z) \in \mathbb{R}^3 : x + 3y 2z = 0 \text{ et } z = 1\}$. La condition z = 1 implique que le vecteur nul (0,0,0) de \mathbb{R}^3 n'appartient pas à F. Par conséquent F n'est pas un \mathbb{R} -sous-espace vectoriel de $E = \mathbb{R}^3$ car il ne satisfait pas la condition (i').
 - (b) $E = \mathbb{R}[X]$ et $F = \{P \in \mathbb{R}[X] : P(1) = 0\}.$

F est bien un \mathbb{R} -sous-espace vectoriel de $E = \mathbb{R}[X]$. En effet :

- (i) le polynôme nul $\mathbb{O}(x)$ appartient à F car sa valeur en tout point $x \in \mathbb{R}$ vaut zéro et en particulier $\mathbb{O}(1) = 0$;
- (ii) soient $P,Q \in F$, càd deux polynômes vérifiant P(1) = 0 et Q(1) = 0. On a (P+Q)(1) = P(1) + Q(1) = 0 + 0 = 0, ce qui montre bien $P+Q \in F$;
- (iii) soient $\lambda \in \mathbb{R}$ et $P \in F$, càd un polynôme vérifiant P(1) = 0. On a $(\lambda P)(1) = \lambda(P(1)) = \lambda 0 = 0$, donc $\lambda P \in F$.
- (c) $E = \mathbb{R}^3$ et $F = \{(x, y, z) \in \mathbb{R}^3 : xyz \ge 0\}.$

F n'est pas un \mathbb{R} -sous-espace vectoriel de $E=\mathbb{R}^3$. En effet, les deux vecteurs (-1,0,0) et (0,1,1) sont bien dans F (le produit $xyz=0\geq 0$ dans les deux cas) alors que leur somme (-1,1,1) n'appartient pas à F, car xyz=-1<0: la condition (ii) n'est donc pas remplie. En prenant v=(1,1,1) et $\lambda=-1$ on voit que la condition (iii) n'est remplie non plus.

Exercice 2.

1. Rappeler les définitions de famille libre et génératrice d'un R-espace vectoriel.

Une famille $\{v_1, \ldots, v_n\}$ de vecteurs d'un espace vectoriel E est dite libre si pour toute combinaison linéaire $\lambda_1 v_1 + \ldots + \lambda_n v_n$ à coeficients réels $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, on a l'implication suivante

$$\lambda_1 v_1 + \ldots + \lambda_n v_n = \mathbb{O}_E \implies \lambda_1 = \ldots = \lambda_n = 0.$$

Une famille $\{v_1, \ldots, v_n\}$ de vecteurs d'un espace vectoriel E est dite génératrice si tout vecteur de E est combinaison linéaire d'éléments de cette famille. De façon équivalente, la famille $\{v_1, \ldots, v_n\}$ est génératrice si E = Vect(A).

Considérons trois vecteurs de $\mathbb{R}_2[X]$ suivants :

$$v_1 = 1 - X$$
, $v_2 = 1 + X^2$, $v_3 = 1 + 2X - 3X^2$.

2. Montrer que la famille $\mathcal{B} = (v_1, v_2, v_3)$ est une base de $\mathbb{R}_2[X]$.

Puisque $\mathbb{R}_2[X]$ est un \mathbb{R} -espace vectoriel de dimension 3 et puisque la famille donnée a précisément trois éléments, pour montrer qu'elle est une base, il suffit de montrer qu'elle est une famille libre. Notons \mathbb{O} le vecteur nul de $\mathbb{R}_2[X]$ c'est-à-dire le polynôme constant égal à 0. Notons aussi $\mathbb{1}$ le polynôme constant égal à 1.

Cherchons maintenant $a, b, c \in \mathbb{R}$ tels que $av_1 + bv_2 + cv_3 = \mathbb{O}$. Nous avons

$$a(1-X) + b(1+X^2) + c(1+2X-3X^2) = \mathbb{O},$$

$$(a+b+c)\mathbb{1} + (-a+2c)X + (b-3c)X^2 = \mathbb{O}.$$

La famille $(1, X, X^2)$ étant libre (base canonique de $\mathbb{R}_2[X]$), on en déduit le système suivant :

$$\begin{cases} a+b+c=0\\ -a+2c=0\\ b-3c=0 \end{cases} \Rightarrow \begin{cases} a+b+c=0\\ a=2c\\ b=3c \end{cases} \Rightarrow \begin{cases} 6c=0\\ a=2c\\ b=3c \end{cases} \Rightarrow \begin{cases} c=0\\ a=0\\ b=0 \end{cases}$$

La famille (v_1, v_2, v_3) est donc libre. C'est une base de $\mathbb{R}_2[X]$.

3. Soit $u = 1 + X + X^2 \in \mathbb{R}_2[X]$. Déterminer les coordonnées du vecteur u dans la base \mathcal{B} . Nous cherchons des réels $a, b, c \in \mathbb{R}$ tels que $u = av_1 + bv_2 + cv_3$ c'est-à-dire

$$1 + X + X^{2} = (a + b + c)\mathbb{1} + (-a + 2c)X + (b - 3c)X^{2}.$$

Ceci donne le système suivant :

$$\begin{cases} a+b+c=1 \\ -a+2c=1 \\ b-3c=1 \end{cases} \Rightarrow \begin{cases} a+b+c=1 \\ a=2c-1 \\ b=3c+1 \end{cases} \Rightarrow \begin{cases} 6c=1 \\ a=2c-1 \\ b=3c+1 \end{cases} \Rightarrow \begin{cases} c=1/6 \\ a=-2/3 \\ b=3/2 \end{cases}$$

Nous avons obtenu les coordonnées suivantes

$$(u)_{\mathcal{B}} = \begin{pmatrix} -2/3\\3/2\\1/6 \end{pmatrix}.$$

4. Déterminer les valeurs de $a \in \mathbb{R}$ pour lesquelles la famille $\mathcal{B}' = (v_1, v_1 + v_2, v_1 + v_2 + a \cdot v_3)$ est aussi une base de $\mathbb{R}_2[X]$.

La famille \mathcal{B}' est encore composée de 3 vecteurs dans l'espace $\mathbb{R}_2[X]$ qui est de dimension 3. Pour que cette famille soit une base de $\mathbb{R}_2[X]$ il suffit donc qu'elle soit libre. Vérifions pour quelles valeurs de $a \in \mathbb{R}$ nous obtenons une famille libre. On cherche $\alpha, \beta, \gamma \in \mathbb{R}$ tels que

$$\alpha v_1 + \beta (v_1 + v_2) + \gamma (v_1 + v_2 + av_3) = \mathbb{O}$$

 $(\alpha + \beta + \gamma)v_1 + (\beta + \gamma)v_2 + a\gamma v_3 = \mathbb{O}.$

Mais on sait déjà que (v_1, v_2, v_3) est une famille libre. Alors l'égalité ci-dessus est équivalente au système

$$\begin{cases} \alpha + \beta + \gamma = 0 \\ \beta + \gamma = 0 \\ a\gamma = 0 \end{cases}$$

Si $a \neq 0$, la dernière équation donne $\gamma = 0$ et en remplacant dans les équations précédentes on trouve aussi $\beta = 0$ et $\alpha = 0$. La famille \mathcal{B}' est donc libre pour tout $a \neq 0$. Pour tout $a \neq 0$ c'est une base de $\mathbb{R}_2[X]$.

Si a = 0, on a $\mathcal{B}' = (v_1, v_1 + v_2, v_1 + v_2)$ et cette famille est clairement liée. Ce n'est pas une base.

Exercice 3.

Soit $F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ et $G = \text{Vect}\{(0, 1, 0), (-1, 1, 1), (-2, 3, 2)\}$ deux sous-espaces vectoriels de \mathbb{R}^3 .

1. Trouver la dimension et déterminer une base de chacun des sous-espaces F et G.

L'équation x+y+z=0 est celle d'un plan dans \mathbb{R}^3 . On en déduit que F est un plan vectoriel et donc $\dim(F)=2$. Une base de F sera donc formée par deux vecteurs appartenants à F et non colinéaires, par exemple ((1,-1,0),(0,1,-1)).

Pour G on voit aisement que la famille qui l'enqendre est liée. En effet, nous avons

$$(-2,3,2) = (0,1,0) + 2 \cdot (-1,1,1).$$

Alors $G = \text{Vect}\{(0,1,0), (-1,1,1)\}$. De plus, ces deux vecteurs non seulement engendre G mais aussi forment une famille libre (car non colinéaires). C'est une base de G et $\dim(G) = 2$.

2. A-t-on $F \oplus G = \mathbb{R}^3$?

Non, $car \dim(F) + \dim(G) = 2 + 2 = 4 \neq \dim(\mathbb{R}^3)$.

3. Déterminer une base de $F \cap G$.

Les vecteurs de $F \cap G$ sont ceux de G, et donc de la forme $\alpha(0,1,0) + \beta(-1,1,1) = (-\beta, \alpha+\beta, \beta)$ avec $\alpha, \beta \in \mathbb{R}$. Ils sont aussi dans F, donc satisfont à l'équation x+y+z=0. On obtient $0=-\beta+(\alpha+\beta)+\beta=\alpha+\beta$. Les vecteurs de l'intersection sont donc de la forme $(-\beta,0,\beta)$, $\beta \in \mathbb{R}$. L'intersection est un espace de dimension 1 (une droite vectorielle) dont une base est ((1,0,-1)).

4. Compléter la base de $F \cap G$ donnée à la question précédente en une base de \mathbb{R}^3 . En déduire un sous-espace vectoriel H de \mathbb{R}^3 tel que $(F \cap G) \oplus H = \mathbb{R}^3$.

Pour complétér la base (1,0,-1) de $F \cap G$ en une base de \mathbb{R}^3 , il faut lui ajouter deux vecteurs tout en créant une famille libre. On peut chosir de prendre la famille suivante : ((1,0,-1),(1,0,0),(0,1,0)). On vérifie facilement qu'elle est libre et donc c'est une base de \mathbb{R}^3 . On pose donc H = Vect((1,0,0),(0,1,0)), à savoir le plan vectoriel d'équation z = 0. On obtient $F \cap G \oplus H = \mathbb{R}^3$.

Exercice 4.

Soit E un espace vectoriel sur \mathbb{R} .

1. Soient $v_1, \ldots, v_n, w_1, \ldots, w_m \in E$. Montrer que $\text{Vect}\{v_1, \ldots, v_n\} \subseteq \text{Vect}\{w_1, \ldots, w_m\}$ si et seulement si $v_i \in \text{Vect}\{w_1, \ldots, w_m\}$, $\forall 1 \leq i \leq n$.

Supposons $v_i \in \text{Vect}\{w_1, \ldots, w_m\}$, $\forall 1 \leq i \leq n$. Dans ce cas $\text{Vect}\{w_1, \ldots, w_m\}$ est un sous-espace vectoriel de E qui contient v_1, \ldots, v_n . Il doit donc contenir $\text{Vect}\{v_1, \ldots, v_n\}$ qui est le plus petit sous-espace vectoriel de E contenant v_1, \ldots, v_n .

Supposons maintenant Vect $\{v_1, \ldots, v_n\} \subseteq \text{Vect } \{w_1, \ldots, w_m\}$. Puisque Vect $\{v_1, \ldots, v_n\}$ contient v_1, \ldots, v_n par construction, v_1, \ldots, v_n sont aussi contenus dans Vect $\{w_1, \ldots, w_m\}$ a fortiori.

- 2. Montrer que pour tout $u, v \in E$, Vect $\{u, v\} = \text{Vect }\{u + v, u v\}$.
 - Nous allons utiliser le résultat de la question précédente. Les vecteurs u+v et u-v sont combinaisons linéaires de u et v, ils sont donc contenus dans $\mathrm{Vect}\,\{u,v\}$. D'après le point précédent on a $\mathrm{Vect}\,\{u+v,u-v\}\subseteq\mathrm{Vect}\,\{u,v\}$. Or on a u=1/2(u+v)+1/2(u-v) et v=1/2(u+v)-1/2(u-v). Il en suit que $u,v\in\mathrm{Vect}\,\{u+v,u-v\}$ et donc, encore d'après le premier point, $\mathrm{Vect}\,\{u,v\}\subseteq\mathrm{Vect}\,\{u+v,u-v\}$. On a donc montré par double inclusion que les sous-espaces coïncident.
- 3. Soient $u, v \in E$ deux vecteurs non nuls. Montrer que la famille (u, v) est libre si et seulement si Vect $\{u, v\} = \text{Vect } \{u\} \oplus \text{Vect } \{v\}$.

Supposons que la famille (u,v) soit libre. Nous avons toujours $\text{Vect}\{u\} + \text{Vect}\{v\} = \text{Vect}\{u,v\}$. Il suffit donc de montrer qu'il s'agit de somme directe, c'est-à-dire que

$$Vect\{u\} \cap Vect\{v\} = 0_E$$
.

Cherchons donc les vecteurs qui appartiennent aux deux sous-espaces. Soit $x \in \text{Vect}\{u\} \cap \text{Vect}\{v\}$. Il existe donc $\alpha, \beta \in \mathbb{R}$ tel que $x = \alpha \cdot u = \beta \cdot v$. Comme la famille (u, v) est libre, l'égalité $\alpha \cdot u = \beta \cdot v$ implique $\alpha = \beta = 0$ et donc $x = 0_E$. Nous avons montré que $\text{Vect}\{u, v\} = \text{Vect}\{u\} \oplus \text{Vect}\{v\}$.

Inversement, supposons maintenant que $\text{Vect}\{u,v\} = \text{Vect}\{v\}$. Comme u et v sont non nuls, nous avons $\dim(\text{Vect}\{u\}) = \dim(\text{Vect}\{v\}) = 1$. Comme ces deux sousespaces sont en somme directe, on en déduit que

$$\dim(\operatorname{Vect}\{u,v\}) = \dim(\operatorname{Vect}\{u\} \oplus \operatorname{Vect}\{v\}) = \dim(\operatorname{Vect}\{u\}) + \dim(\operatorname{Vect}\{v\}) = 2.$$

Alors les vecteurs u et v ne peuvent pas être colinéaires, ils forment une famille libre.