Computer Graphics Scan Conversion

Graphics in Practice: Summary

- Basic primitives: Points, Lines, Triangles/Polygons.
- Each constructed fundamentally from points.
- Points can be specified in different coordinate systems.
 The pipeline of operations on a point is:

Scan Conversion or Rasterization

- Primitives are defined using points, which have been mapped to the screen coordinates.
- In vector graphics, connect the points using a pen directly.
- In Raster Graphics, we create a discretized image of the whole screen onto the frame buffer first. The image is scanned automatically onto the display periodically.
- This step is called Scan Conversion or Rasterization.

Scan Converting a Point

- The 3D point has been transformed to its screen coordinates (u, v).
- Round the coordinates to frame buffer array indices (i, j).
- Current colour is defined/known. Frame buffer array is initialized to the background colour.
- Perform: frameBuf[i, j] ← currentColour
- The function WritePixel(x, y, colour) does the above.
- If PointSize > 1, assign the colour to a number of points in the neighbourhood!

Scan Converting a Line

- Identify the grid-points that lie on the line and colour them.
- Problem: Given two end-points on the grid, find the pixels on the line connecting them.
- Incremental algorithm or Digital Differential Analyzer (DDA) algorithm.
- Mid-Point Algorithm

Line on an Integer Grid

Incremental Algorithm

```
Function DrawLine(x_1, y_1, x_2, y_2, \text{colour})
\Delta x \leftarrow x_2 - x_1, \Delta y \leftarrow y_2 - y_1, \text{ slope} \leftarrow \Delta y/\Delta x
x \leftarrow x_1, y \leftarrow y_1
While (x < x_2)
WritePixel (x, \text{round}(y), \text{colour})
x \leftarrow x + 1, \ y \leftarrow y + \text{slope}
EndWhile
WritePixel (x_2, y_2, \text{colour})
EndFunction
```

Points to Consider

- If abs(slope) > 1, step through y values, adding inverse slopes to x at each step.
- Simple algorithm, easy to implement.
- Need floating point calculations (add, round), which are expensive.
- Can we do with integer arithmetic only?
 Yes: Bresenham's Algorithm
- We will study a simplified version of it called the Mid-Point Line Algorithm.

Two Options at Each Step!

Mid-Point Line Algorithm

- Line equation: ax + by + c = 0, a > 0. Let $0 < \text{slope} = \Delta y/\Delta x = -a/b < 1.0$
- F(x,y) = ax + by + c > 0 for below the line, < 0 for above.
- NE if $d = F(\mathbf{M}) > 0$; E if d < 0; else any!
- $d_{\mathbf{E}} = F(M_{\mathbf{E}}) = d + a$, $d_{\mathbf{NE}} = d + a + b$.
- Therefore, $\Delta_{\mathbf{E}} = a$, $\Delta_{\mathbf{NE}} = a + b$.
- Initial value: $d_0 = F(x_1 + 1, y_1 + \frac{1}{2}) = a + b/2$
- Similar analysis for other slopes. Eight cases in total.

CS3500

Pseudocode

```
Function DrawLine (l, m, i, j, colour)
   a \leftarrow j - m, \ b \leftarrow (l - i), \ x \leftarrow l, \ y \leftarrow m
   d \leftarrow 2a + b, \ \Delta_E \leftarrow 2a, \ \Delta_{NE} \leftarrow 2(a + b)
   While (x < i)
       WritePixel(x, y, colour)
       if (d < 0) // East
           d \leftarrow d + \Delta_E, \ x \leftarrow x + 1
       else // North-East
           d \leftarrow d + \Delta_{NE}, \ x \leftarrow x + 1, \ y \leftarrow y + 1
   EndWhile
   WritePixel(i, j, colour)
EndFunction
```

Example: (10, 10) to (20, 17)

$$F(x,y) = 7x - 10y + 30, \ a = 7, \ b = -10$$

 $d_0 = 2 * 7 - 10 = 4, \ \Delta_{\mathbf{E}} = 2 * 7 = 14, \ \Delta \mathbf{NE} = -6$
 $d > 0 : \mathbf{NE} (11,11), \ d = 4 + -6 = -2$
 $d < 0 : \mathbf{E} (12,11), \ d = -2 + 14 = 12$
 $d > 0 : \mathbf{NE} (13,12), \ d = 12 + -6 = 6$
 $d > 0 : \mathbf{NE} (14,13), \ d = 6 + -6 = 0$
 $d = 0 : \mathbf{E} (15,13), \ d = 0 + 14 = 14$
 $d > 0 : \mathbf{NE} (16,14), \ d = 14 + -6 = 8$

Later, **NE** (17, 15), **NE** (18, 16), **E** (19, 16), **NE** (20, 17).

CS3500

Scan Converting Circles

- Need to consider only with centre at origin: $x^2 + y^2 = r^2$.
- For arbitrary centre, add (x_c, y_c) to each point.
- 8-way symmetry: Only an eighth of the circle need to be scan converted!
- If (x,y) on circle, $(\pm x,\pm y)$, $(\pm y,\pm x)$ are also on the circle!
- Easy way: $y = \sqrt{r^2 x^2}$, but floating point calculations!

CS3500

Back to Two Points??

 Choice between E and SE neighbours between the vertical and the 45 degree lines.

Mid-Point Circle Algorithm

- Circle equation: $x^2 + y^2 r^2 = 0$
- $F(x,y) = x^2 + y^2 r^2 < 0$ for inside circle, > 0 for outside.
- SE if $d = F(\mathbf{M}) > 0$; E if d < 0; else any!
- $d_{\mathbf{E}} = F(M_{\mathbf{E}}) = d + 2x + 3$, $d_{\mathbf{SE}} = d + 2(x y) + 5$.
- Therefore, $\Delta_{\mathbf{E}} = 2x + 3$, $\Delta_{\mathbf{SE}} = 2(x y) + 5$.
- Initial value: $d_0 = F(1, r \frac{1}{2}) = \frac{5}{4} r$

Pseudocode

```
Function DrawCircle (r, colour)
   x \leftarrow 0, \ y \leftarrow r, \ d \leftarrow 1 - r
   CirclePoints (x, y, colour)
   While (x < y)
      if (d < 0) // East
         d \leftarrow d + 2 * x + 3, \ x \leftarrow x + 1
      else // South-East
          d \leftarrow d + 2 * (x - y) + 5, \ x \leftarrow x + 1, \ y \leftarrow y - 1
      CirclePoints (x, y, colour)
   EndWhile
EndFunction
```

Eliminate Multiplication?

• Current selection is E: What are the new Δ 's?

$$\Delta'_{\mathbf{E}} = 2(x+1) + 3 = \Delta_{\mathbf{E}} + 2$$

 $\Delta'_{\mathbf{SE}} = 2(x+1-y) + 5 = \Delta_{\mathbf{SE}} + 2$

• Current selection is SE: What are the new Δ 's?

$$\Delta'_{\mathbf{E}} = 2(x+1) + 3 = \Delta_{\mathbf{E}} + 2$$

 $\Delta'_{\mathbf{SE}} = 2(x+1-(y-1)) + 5 = \Delta_{\mathbf{SE}} + 4$

• if (d < 0) // East $d \leftarrow d + \Delta_E, \ \Delta_E += 2, \ \Delta_{SE} += 2, \ x++$ else // South-East $d \leftarrow d + \Delta_{SE}, \ \Delta_E += 2, \ \Delta_{SE} += 4, \ x++, \ y = y-1$

CS3500

Patterned Line

- Represent the pattern as an array of booleans/bits, say,
 16 pixels long.
- Fill first half with 1 and rest with 0 for dashed lines.
- Perform WritePixel(x, y) only if pattern bit is a 1.

if (pattern[i]) WritePixel(x, y)

where i is an index variable starting with 0 giving the ordinal number (modulo 16) of the pixel from starting point.

Shared Points/Edges

- It is common to have points common between two lines and edges between two polygons.
- They will be scan converted twice. Not efficient.
 Sometimes harmful.
- Solution: Treat the intervals closed on the left and open on the right. $[x_m, x_M)$ & $[y_m, y_M)$
- Thus, edges of polygons on the top and right boundaries are not drawn.

Clipping

- Often, many points map to outside the range in the normalized 2D space.
- Think of the FB as an infinite canvas, of which a small rectangular portion is sent to the screen.
- Let's get greedy: draw only the portion that is visible. That
 is, clip the primitives to a clip-rectangle.

Scissoring: Doing scan-conversion and clipping together.

Clipping Points

• Clip rectangle: (x_m, y_m) to (x_M, y_M) .

- For (x,y): $x_m \le x \le x_M, y_m \le y \le y_M$
- Can use this to clip any primitives: Scan convert normally.
 Check above condition before writing the pixel.
- Simple, but perhaps we do more work than necessary.
- Analytically clip to the rectangle, then scan convert.

Clipping Lines

Intersecting Line Segments

• Infinite line equation: ax + by + c = 0. Not good for line segments!

•
$$P = P_1 + \mathbf{t} (P_2 - P_1), \ 0 \le t \le 1.$$

• Represent sides of clip-rectangles and lines for clipping this way, with two parameters ${\bf t}$ and ${\bf s}$. Solve for s,t. Both should be within [0,1].

Cohen-Sutherland Algorithm

- Identify line segments that can be accepted trivially.
- Identify line segments that can be rejected trivially.
- For the rest, identify the segment that falls within the cliprectangle.
- For ease of this, assign outcodes to each of the 9 regions.

Region Outcodes

Bits from left to right:

$$y > y_M$$

$$y < y_m$$

$$x > x_M$$

$$x < x_m$$

Overall Algorithm

- Accept: code1 | code0 == 0
- Reject: code1 & code0 != 0
- Else, identify one of the boundaries crossed by the line segment and clip it to the inside.
- Do it in some order, say, TOP, RIGHT, BOTTOM, LEFT.
- We also have: TOP = 1000, BOTTOM = 0100, LEFT = 0001, RIGHT = 0010

Intersecting with Right/Top

```
if (code & RIGHT) // Intersects right boundary
   // Adjust right boundary to the intersection with x_M
   y \leftarrow y0 + (y1 - y0) * (x_M - x0) / (x1 - x0)
   x \leftarrow x_M
   ComputeCode(x, y)
if (code & TOP) // Intersects top boundary
   // Adjust top boundary to the intersection with y_M
   x \leftarrow x0 + (x1 - x0) * (y_M - y_0) / (y_1 - y_0)
   y \leftarrow y_M
   ComputeCode(x, y)
```

CS3500

Whole Algorithm

- 0 code0 ← ComputeCode(x0, y0), code1 ← ···
- 1 if (! (code1 | code0)) Accept and Return
- 2 if (code1 & code0) Reject and Return
- $3 \text{ code} \leftarrow \text{code1} ? \text{code1} : \text{code0}$
- 4 if (code & TOP) Intersect with y_M line.
- 5 elsif (code & RIGHT) Intersect with x_M line.
- 6 elsif (code & BOTTOM) Intersect with y_m line.
- 7 elsif (code & LEFT) Intersect with x_m line.
- 8 if (code == code1) Replace EndPoint1.
- 9 else Replace EndPoint0.
- 10 Goto step 1.

4 to accept and 3 to reject.

CS3500

Scan Conversion

Discussion

- Simple logical operations to check intersections etc.
- Not efficient, as external intersections are not eliminated.
- In the worst case, 3 intersections may be computed and then the line segment could be rejectd.
- 4 intersections may be computed before accepting a line segment.

Clipping Polygons

- Restrict drawing/filling of a polygon to the inside of the clip rectangle.
- A convex polygon remains convex after clipping.
- A concave polygon can be clipped to multiple polygons.
- Can perform by intersecting to the four clip edges in turn.

An Example

An Example

Sutherland-Hodgman Algorithm

- Input: A list of vertices v_1, v_2, \cdots, v_n . Implied edges from v_i to v_{i+1} and from v_n to v_1 .
- Output: Another list of vertices giving the clipped polygon.
- Method: Clip the entire polygon to the infinite line for each clip edge in turn.
- Four passes, the output of each is a partially clipped polygon used as input to the next.
- Post-processing to eliminate degenerate edges.

Algorithm Detail

- Process edges one by one and clip it to a line.
- Start with the edge $E(v_n, v_1)$.
- Compare the current edge $E(v_{i-1}, v_i)$ with the current clip line. Clip it to lie within the clip rectangle.
- Repeat for the next edge $E(v_i, v_{i+1})$. Till all edges are processed.
- When processing $E(v_{i-1}, v_i)$, treat v_{i-1} as the **in** vertex and v_i as the **out** vertex.

At Each Step ...

• in vertex: s (already handled). out vertex: p. Four cases:

Function SuthHodg()

```
p ← last(inVertexList) // Copy, not remove
while (notEmpty(inVertexList))
    s \leftarrow p, p \leftarrow removeNext(inVertexList)
    if (inside(p, clipBoundary))
      if (inside(s, clipBoundary))
         addToList(p, outVertexList) // Case 1
       else i ← intersect(s, p, clipBoundary) // Case 4
         addToList(i, outVertexList), addToList(p, outVertexList)
    elsif (inside(s, clipBoundary)) // Case 2
      addToList(intersect(s, p, clipBoundary), outVertexList)
```

Complete Algorithm

- Invoke SuthHodg() 4 times for each clip edge as clipBoundary.
- The outVertexList after one run becomes the inVertexList for the next.
- Uses list data structures to implement polygons.
- Function inside() determines if a point is in the **inside** of the clip-boundary. We can define it as "being on the left when looking from first vertex to the second".

Can be extended to clip to any convex polygonal region!

Filled Rectangles

Write to all pixels within the rectangle.

```
Function FilledRectangle (x_m, x_M, y_m, y_M, \text{colour}) for x_m \leq x \leq x_M do for y_m \leq y \leq y_M do WritePixel (x, y, \text{colour}) EndFunction
```

How about non-upright rectangles? General polygons?

Filled Polygons

- For each scan line, identify spans of the polygon interior.
 Strictly interior points only.
- For each scan line, the **parity** determines if we are inside or ouside the polygon. Odd is inside, Even is outside.
- Trick: End-points count towards parity enumeration only if it is a y_{min} point.
- Span extrema points and other information can be computed during scan conversion. This information is stored in a suitable data structure for the polygon.

Parity Checking

Edge Coherence

- If scan line y intersects with an edge E, it is likely that y+1 also does. (Unless intersection is the y_{max} vertex.)
- When moving from y to y+1, the X-coordinate goes from x to x+1/m. $1/m=(x_2-x_1)/(y_2-y_1)=\Delta x/\Delta y$
- Store the integer part of x, the numerator (Δx) and the denominator (Δy) of the fraction separately.
- For next scan line, add Δx to numerator. If sum goes $> \Delta y$, increment integer portion, subtract Δy from numerator.

Scan Converting Filled Polygons

- Find intersections of each scan line with polygon edges.
- Sort them in increasing X-coordinates.
- Use parity to find interior spans and fill them.
- Most information can be computed during scan conversion.
 A list of intersecting polygons stored for each scan line.
- Use edge coherence for the computation otherwise.

Special Concerns

- Fill only strictly interior pixels: Fractions rounded up when even parity, rounded down when odd.
- Intersections at integer pixels: Treat interval closed on left, open on right.
- Intersections at vertices: Count only y_m vertex for parity.
- Horizontal edges: Do not count as $y_m!$

Filled Polygon Scan Conversion

- Perform all of it together. Each scan line should not be intersected with each polygon edge!
- Edges are known when polygon vertices are mapped to screen coordinates.
- Build up an edge table while that is done.
- Scan conversion is performed in the order of scan lines.
 Edge coherence can be used; an active edge table can keep track of which edges matter for the current scan line.

Edge Table for a Polygon

- Construct a bucket-sorted table of edges, sorted into buckets of y_m for the edge.
- Each bucket y contains a list of edges with $y = y_m$, in the increasing order of x coordinate of the lower end point.
- Each edge is represented by its y_M for the edge, x of the lower (that is y_m) point, and the slope as a rational number.
- This is the basis for constructing the Active Edge Table to compute the spans.

Polygon and Edge Table

Active Edge Tables

- Start with the lowest y value and an empty AET.
- Insert edges from bucket y of ET to AET. (They have $y = y_m$ and are sorted on x.)
- Remove edges from AET where y is the y_M point.
- Between pairs of AET entries lie spans. Fill them.
- Compute next point on edge using coherence. (Increment y by 1 and numerator by Δx , etc. Or vice versa)
- Continue above 4 steps till ET and AET are empty.

Active Edge Table: Snapshots

$$y = 15$$
 AET \longrightarrow 20, 9, -10, 15 \longrightarrow 32, 31, 5, 22
 $y = 22$ AET \longrightarrow 30, 5, 0, 10 \longrightarrow 32, 32, 5, 22
 $y = 27$ AET \longrightarrow 30, 5, 0, 10 \longrightarrow 30, 14, -15, 5 \longrightarrow 32, 24, 15, 7 \longrightarrow 32, 34, 5, 22

Pattern Filling

- A rectangular bit-map with the desired pattern can be used to fill the interior with a pattern.
- If $pattern(i \mod M, j \mod N)$, draw pixel, else ignore.
- *i*, *j* are row, col indices. Lower left corner at 0 and 0.

• M, N are the pattern height and width.

Scan Conversion: Summary

- Filling the frame buffer given 2D primitives.
- Convert an analytical description of the basic primitives into pixels on an integer grid in the frame buffer.
- Lines, Polygons, Circles, etc. Filled and unfilled primitives.
- Efficient algorithms required since scan conversion is done repeatedly.
- 2D Scan Conversion is all, even for 3D graphics.

Scan Conversion: Summary

- High level primitives (point, line, polygon) map to window coordinates using transformations.
- Creating the display image on the Frame Buffer is important. Needs to be done efficiently.
- Clipping before filling FB to eliminate futile effort.
- After clipping, line remains line, polygons can become polygons of greater number of sides, etc.
- General polygon algorithm for clipping and scan conversion are necessary.