Human Gait Recognition using LiDAR and Deep Learning Technologies

Dept. of Comput. Sci. and Information Engineering, National University of Tainan, Tainan, Taiwan

Tzu-Chun. Chiu, Tzung-Shi. Chen, Jing-Mei Lin

Contents

- 1. Motivation and Goals
- 2. Related research
- 3. Methodology
- 4. Experiment and Result
- 5. System display
- 6. Conclusion

1. Motivation and Goals

- Motivation
- Goals

Motivation

Home security care

- unable to move freely
- fall down
- Monitor at any time without violating privacy

Goals

Using Light Detection and Ranging (LiDAR) to sense the human gait

- Collect information from the environment through 3D-LiDAR
- Combined with deep learning to identify human gait
- Five categories

2. Related research

- Human Activity Recognition
- Deep Learning

- Human activity recognition has a wide range of applications, such as health care and smart homes.
- Sensors for HAR
 - Wearable device
 - Camera
 - O Wi-Fi
 - Radar
 - LiDAR

- Wearable device
 - Pressure sensors are used to detect human muscle activity for gesture recognition.
 - Sensors are deployed on the body to recognize behavior.

- Advantage : Accurate results
- Disadvantage : Uncomfortable

- Camera
 - Convert the collected data into human skeleton for activity recognition and gesture recognition.

- Advantage : Non-contact, Accurate results.
- Disadvantage : Affected by light, Privacy problem.

- Wi-Fi
 - Wi-Fi's CSI signals are used to detect fall.
 - Convert Wi-Fi signals into visual images to identify human activity.

- Advantage : Have privacy, Non-contact.
- Disadvantage : Disturbed by the environment.

- Radar
 - Radar Echo is used to gesture and human activity recognition.

- Advantage: Have privacy, Non-contact.
- Disadvantage : Disturbed by the environment.

- LiDAR
 - Collect human movement trajectories for multi-object classification.
 - Human Recognition and Tracking.

Advantage: Have privacy, Non-contact, High precision, Not easily disturbed by the environment.

Deep Learning

- Deep Learning models for time-series data.
 - Recurrent Neural Network (RNN)
 - O Long Short-Term Memory (LSTM)
 - Temporal Convolutional Network (TCN)
- Integrate with other Deep Learning models.

3. Methodology

- Data Collection and Processing
- Deep Learning architecture

The horizontal and vertical axes are the 3D-LiDAR recognition area (divided into 8*8), and the value is the distance from the 3D-LiDAR in millimeters.

2885	2790	2990	2980	2925	2925	2935	2870
3035	3090	2850	3065	2985	2985	2860	3010
2835	2855	2875	2960	2930	2930	3010	2970
2895	3005	2985	2890	2940	2940	3015	2905
3095	3005	2945	2945	2910	3175	3180	2970
2965	3060	3100	3040	2985	2935	3065	2910
3025	3070	3060	2960	3055	3015	2980	2945
3320	3000	3060	3155	3000	2995	3035	3085

Two 3D-LiDARs are used for data collection at the same time, collected data as (1) shows.

$$\bigcirc F = \left\{ \begin{bmatrix} f_{11} & f_{12} & \dots & f_{1j} \\ f_{21} & f_{22} & \dots & f_{2j} \\ \vdots & \ddots & \vdots \\ f_{i1} & f_{i2} & \dots & f_{ij} \end{bmatrix} \middle| 1 \le i \le 8, 1 \le j \le 16 \right\}$$
(1)

To reduce the influence of bias, the data is normalized to the interval of 0 and 1, normalization formula as (2) shows.

- \bigcirc f_{ij} is raw data, \hat{f}_{ij} is normalized data
- \bigcirc distance = 3000

A series of time-series data are segmented by the sliding window method as figure shows.

- Six deep learning architectures
 - LSTM
 - TCN
 - O CNN-LSTM
 - O CNN-TCN
 - AutoEncoder-LSTM (AE-LSTM)
 - AutoEncoder-TCN (AE-TCN)

O LSTM

TCN

O CNN-LSTM

O CNN-TCN

AutoEncoder

AE-LSTM

AE-TCN

Experiment and Result

- Experiment
- Result

- 3D-LiDAR: TERABEE's TeraRanger-EVO-64PX
- LiDAR layout: (1) LiDAR is placed 3 meters in front of the wall (2)
 The distance between the two LiDARs needs to be 52.66 cm
- Hardware Specifications : Intel i7-8700 3.2GHz, DDR4 32GB,
 GeForce GTX 1070Ti 8GB
- 100 pieces of data were collected in each of the 5 categories.
- 80% of the collected data is used to train the model and 20% is
 used to test the model.

- Deep Learning parameters
 - Description

 Description
 - Batch Size: 128
 - Loss : Cross-Entropy
 - Optimizer: Adam

The experiment environment as figure shows.

Experimental scenario

Equipment layout

3D-LiDAR sensing schematic

0.965	0.928	0.936	0.951	0.865	0.713	0.651	0.675	0.736	0.998	1	1	1	1	1	1
0.975	1	0.92	0.955	0.85	0.715	0.623	0.64	0.743	0.95	1	1	1	1	1	1
0.998	0.958	0.99	0.966	0.78	0.678	0.62	0.553	0.755	0.955	1	1	1	1	1	1
1	1	1	0.963	0.821	0.67	0.595	0.655	0.711	0.941	1	1	1	1	1	1
1	1	1	0.901	0.751	0.595	0.605	0.57	0.751	0.901	1	1	1	1	1	1
1	0.96	1	0.965	0.773	0.605	0.555	0.573	0.718	0.961	1	1	1	1	1	1
1	1	0.97	0.9	0.755	0.585	0.523	0.533	0.79	0.998	1	1	1	1	1	1
1	0.998	0.996	0.958	0.741	0.593	0.518	0.571	0.823	1	1	1	1	1	1	1

nobody

nobody

stand

stand

walk

walk

o run

o run

fall

fall

														1			
0 -	3000	2820	2790	2345	1800	1345	1625	1670	1490	1555	1565	1620	1835	2020	2385	2685	P
н-	2920	3000	2560	2415	1700	1560	1635	1435	1335	1330	1330	1350	1480	1555	1805	2465	(
n -	2960	2975	3000	2845	2080	2185	1850	1470	1390	1380	1350	1415	1285	1410	1560	1785	
m -	3000	3000	2780	2710	2805	2395		1875	1715	1575	1495	1320	1225	1170	1395	1550	
4 -	3000	3000	2845	3000	2845	2775		2015			1660	1605	1305	1140	1250	1360	
<u>د</u> د	3000	2800	2950	2920	2795	2575				1810	1595	1315	1275	1070	1255	1310	
9 -	3000	2930	2895	2840	2755	2370			1810	1390	1545	1315	1185	1275	1290	1240	
7	2805	3000	2765	2685	2445	2120			1570	1340	1415	1215	1305	1340	1290	1385	
	0	i	2	3	4	5	6	7	8	9	10	11	12	13	14	15	

fall

Result

Result

LSTM Confusion Matrix									
Predict True	walk	nobody	fall	stand	run				
walk	83%	3%	4%	2%	8%				
nobody	0	99%	1%	0	0				
fall	6%	6%	86%	0	2%				
stand	0	0	0	99%	1%				
run	12%	0	3%	4%	81%				

Result

AE-LSTM Confusion Matrix									
Predict True	walk	nobody	fall	stand	run				
walk	95%	1%	2%	0	2%				
nobody	0	100%	0	0	0				
fall	3%	2%	93%	0	2%				
stand	0	0	0	100%	0				
run	2%	0	1%	1%	96%				

5. System Display

System Display

3D-LiDAR Information

 2465.0
 2215.0
 1780.0
 1430.0
 1220.0
 1340.0
 1540.0
 1400.0
 1770.0
 2075.0
 2505.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0
 3000.0

fall: 99.9987244606018%

Fall Detection

Conclusion and Future Outlook

Conclusion

- LiDAR are combined with deep learning for gait recognition.
- In order to improve the accuracy of gait recognition, models are established through combining CNN, AutoEncoder and LSTM / TCN respectively.
- Among them, AE-LSTM has the best achievement in gait recognition.

Future Outlook

- Multi-object Trajectory Recognition
- Expand the scope of 3D-LiDAR collection

