In-Class Assignment 12

- 1. Take the function $f(x) = x^2 + 3\sin(x)$.
 - a. Graph the function between -8 and 8. What do you see about minimum and maximum values?

- return(x^2 + 3*sin(x))
- 3. }
- 4.
- 5. curve(f1, from = -8, to = 8)

- b. Use the optimize function to find a minimum value in the interval [-3, 3].
 - i. optimize(f1, lower = -3, upper = 3)
- c. Use the optimize function to find a maximum value in the interval [-3, 3].
 - i. optimize(f1, upper = 3, lower = -3, maximum = TRUE)
 - ii.
- 2. Take the function $f(x, y) = x^2 + y^2 3x + 2y + \sin(xy)$
 - a. Produce a contour plot for the function in the square [-5, 5] x [-5, 5]. Where do you see a minimum or maximum value?
 - i. #3-d plot of $z = x^2 + y^2 3x$
 - ii. fm <- function(x) $x[1]^2 + x[2]^2 3 * x[1] + 2 * x[2] + sin(x[1] * x[2])$
 - iii. x_min <- -5
 - iv. x_max <- 5
 - v. y_min <- -5
 - vi. y_max <- 5
 - vii. x <- seq(-5, 5, by = 0.05)

viii.y
$$<$$
- seq(-5, 5, by = 0.05)

ix. z <- matrix(nrow=length(x), ncol=length(y))</pre>

xii.
$$z[i,j] \leftarrow fm(c(x[i],y[j]))$$

xiii. }

xiv.}

xv. contour(x,y,z)

xvi.max value i see is top left, (-4,4) min is (2,0)

- b. Use the optim function to find the minimum value in this square.
 - i. # Multi-variable optimization
 - ii. optim(c(-5,5),fm)
 - 1. \$par
 - 2. [1] 1.513134 -1.020135
 - 3.
 - 4. \$value
 - 5. [1] -4.249052
 - 6.
 - 7. \$counts

- 8. function gradient
- 9. 61 NA
- 10.
- 11. \$convergence
- 12. [1] 0
- 13.
- 14. \$message
- 15. NULL