Conjuntos

Aula 1

Conjuntos

Na teoria dos conjuntos três noções são aceitas sem definição (noção primitiva):

- Conjunto;
- Elemento;
- Relação de pertinência

Notação

☐ Indicamos um conjunto, em geral, com uma letra maiúscula:

$$A, B, C, \ldots, X, Y, Z.$$

☐ Denotamos um elemento de um conjunto, em geral, com letras minúsculas:

☐ O diagrama de Venn é uma maneira de representar graficamente um conjunto.

- A usamos a notação: $x \in A$
- ❖ Para indicar que um elemento x não faz parte de um conjunto A usamos a notação: $x \notin A$

Conjunto vazio

O conjunto vazio é o único conjunto que não possui elementos e é denotado por:

Listando

Alguns conjuntos podem ser descritos listando seus elementos entre chaves.

Exemplo:

- \rightarrow a) Conjunto das vogais: $A = \{a, e, i, o, u\}$
- \rightarrow b) Conjunto dos números inteiros divisores de 8: $B = \{-8, -4, -2, -1, 1, 2, 4, 8\}$

Propriedade

Um conjunto A também pode ser designado por uma propriedade p da seguinte forma

$$A = \{x \mid x \text{ verifica a propriedade } p(x)\}.$$

Exemplos:

- (a) conjunto das vogais: $A = \{x / x \text{ \'e vogal}\}$
- (b) Conjunto das raízes de $x^2 9$: $B = \{x / x^2 9 = 0\}$
- (c) Conjunto dos inteiros múltiplos de 3: $C = \{x/x = 3k \ e \ k \in \mathbb{Z}\}$

Conjuntos iguais

Dois conjuntos A e B são iguais se todo elemento que pertence a um deles também pertence a outro e vice-versa. Denotamos por

$$A = B$$
 (A igual a B).

OBS.:

✓ A ordem em que os elementos são listados em um conjunto é irrelevante:

$$\left\{\sqrt{5}, \sqrt{6}, \sqrt{7}\right\} = \left\{\sqrt{7}, \sqrt{6}, \sqrt{5}\right\}$$

✓ A repetição dos elementos em um conjunto é irrelevante:

$${a,b,c} = {a,a,b,b,b,c,c,c,c}$$

Subconjuntos

Um conjunto B é subconjunto de um conjunto A se todo elemento de B pertence também a A. Nesse caso dizemos que B está contido em A e denotamos por $B \subseteq A$

Por exemplo, o conjunto B = {3, −2, 5} está contido em A = {3, −2, 5, 7, −10}.

OBS.: Na definição de igualdade de conjuntos está explícito que todo elemento de A é elemento de B e vice-versa, isto é, A \subseteq B e B \subseteq A; portanto, podemos escrever: A = B se, e somente se, A \subseteq B e B \subseteq A

- Sejam $A = \{0, 1, 2, 3, 4, 5\}, B =$ $\{3,4,5,6,7,8\}, C = \{1,3,7,8\}, D = \{3,4\},$ $E = \{1, 3\}, F = \{1\} \in X \text{ um conjunto des-}$ conhecido. Para cada item abaixo, determine quais dos conjuntos A, B, C, D, E ou F podem ser iguais a X:
 - (a) $X \subseteq A \in X \subseteq B$ (c) $X \nsubseteq A \in X \nsubseteq C$
- - (b) $X \nsubseteq B \in X \subseteq C$ (d) $X \subseteq B \in X \nsubseteq C$.

- (5) Sejam $R = \{1, 3, \pi, 4, 9, 10\}, T = \{1, 3, \pi\},\$ $S = \{\{1\}, 3, 9, 10\} \text{ e } V = \{\{1, 3, \pi\}, 1\}.$ Quais das sentenças a seguir são verdadeiras?
 - (a) $S \subseteq R$

(i) $\varnothing \subseteq S$

(b) $1 \in R$

(j) $T \subseteq V$

(c) $1 \in S$

(k) $T \in V$

(d) $1 \subseteq V$

(1) $T \notin R$

(e) $\{1\} \subseteq T$

(m) $S \subseteq \{1, 3, 9, 10\}$

(f) $\{1\} \subseteq S$

(n) $\varnothing \in V$

(g) $T \subseteq R$

(o) $\emptyset \notin S$

(h) $\{1\} \in S$

(p) $\varnothing \subseteq R$

União e intersecção

 \square Dados os conjuntos A e B, chama-se **união de A e B** o conjunto formado pelos elementos que pertencem a A ou a B. Denotamos por: $A \cup B$

Por exemplo, se
$$A = \{0, 1, 2, 3\}$$
 e $B = \{0, 2, 4, 6, 8\}$, então $A \cup B = \{0, 1, 2, 3, 4, 6, 8\}$

□ Dados os conjuntos A e B, chama-se interseção de A e B o conjunto formado pelos elementos que pertencem a A e a B. Denotamos por A ∩ B (A interseção B). Em

símbolos: $A \cap B = \{x \mid x \in A \ e \ x \in B\}.$

Por exemplo, se A = $\{0, 1, 2, 3\}$ e B = $\{0, 2, 4, 6, 8\}$, então A \cap B = $\{0, 2\}$.

Diferença entre conjuntos

A diferença entre os conjuntos A e B é o conjunto de todos os elementos que pertencem ao conjunto A e não pertencem ao conjunto B , ou seja,

$$A - B = \{x/x \in A \text{ e } x \notin B\}$$

- (4) Quais das sentenças a seguir são verdadeiras para quaisquer conjuntos $A, B \in \mathbb{C}$?
 - (a) $\{\emptyset\} = \emptyset$
 - (b) $\emptyset \in \{\emptyset\}$
 - (c) $\varnothing \subseteq A$, para todo A.
 - (d) $\emptyset \in A$, para todo A.
 - (e) $A \cap \emptyset = \emptyset$, para todo A.
 - (f) $A \cup \emptyset = A$, para todo A.

(7) Determinar os conjuntos A, B, C sabendo-se que:

$$A \cap B = \{2, 4\}, \quad A \cup B = \{2, 3, 4, 5\},$$

 $A \cap C = \{2, 3\} \quad \text{e} \quad A \cup C = \{1, 2, 3, 4\}.$

Conjunto universo

Quando desenvolvemos um determinado assunto de Matemática, admitimos a
 existência de um conjunto U ao qual pertencem todos os elementos utilizados no tal
 assunto. Esse conjunto U recebe o nome de conjunto universo.

Por exemplo:

- (a)Em Geometria Plana, o universo é o conjunto de todos os pontos do plano.
- (b)O universo dos números primos é o conjunto dos números inteiros

Descrição de um conjunto

 \square No universo U, o conjunto A dos elementos x que verificam a condição p(x) denota-se por: $A = \{x \in U \mid p(x)\}$.

Por exemplo,

- (a) $A = \{x \text{ \'e aluno da Matemática} \mid x \text{ tem olhos azuis }\}$
- (b) conjunto dos números naturais múltiplos de 10 pode ser descrito por:

$$\{x \in \mathbb{N} \mid x \text{ multiplo de } 10\};$$

→ ou,

$$\{x \in \mathbb{N} \mid x = 10n, n \in \mathbb{N}\};$$

ou ainda,

$$\{10n \mid n \in \mathbb{N}\};$$

(c) conjunto dos números inteiros maiores do que -153 denota-se por:

$${x \in \mathbb{Z} \mid x > -153};$$

Conjuntos numéricos

Uma breve história...

e administrar os seus bens de forma a não ser enganado. O homem sempre teve a necessidade de se organizar

Uma breve história...

O primeiro sistema de contagem foi as mãos.

Depois riscos em madeiras e ossos.

Uma breve história...

 Desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Desta preocupação sugiram os

Conjuntos Numéricos

NÚMEROS NATURAIS

Estes números foram criados pela necessidade prática de contar as coisas da natureza, por isso são chamados de números naturais.

Números naturais

A representação matemática deste conjunto é:

$$\mathbb{N} = \{0,1,2,3,4,5,\dots\}$$

Subconjunto: $\mathbb{N}^* = \{1,2,3,4,5,...\}$

Números inteiros

- Os números naturais não permitiam a resolução de todas as operações. A subtração de 3 4 era impossível.
- A ideia do número negativo, aparece na Índia, associada a problemas comerciais que envolviam dívidas.
- A ideia do número zero surgiu também nesta altura, para representar o nada.

Números inteiros

A representação matemática deste conjunto é:

$$\mathbb{Z}$$
= {..., -3, -2, -1, 0, 1, 2, 3, ...}

Suconjuntos:

$$\mathbb{Z}^* = \{ \dots -4, -3, -2, -1, 1, 2, 3, 4, \dots \} = \mathbb{Z} - \{0\}$$

$$\mathbb{Z}_{+}$$
= {0, 1, 2, 3, 4, 5, 6, ...} Inteiros não-negativos

$$\mathbb{Z}_{+}^{*}$$
= {1, 2, 3, 4, 5, 6, ...} Inteiros positivos

$$\mathbb{Z}_{-}=\{\ldots$$
 -4, -3, -2, -1,0} Inteiros não-positivos

$$\mathbb{Z}_{-}^* = \{\dots -4, -3, -2, -1\}$$
 Inteiros negativos

 $\mathbb{N} \subset \mathbb{Z}$

Operações em \mathbb{Z} :

- Adição
- Multiplicação
- Divisão ????

Números racionais

Entretanto...surgiu outro tipo de problema:

"Como dividir 3 vacas por 2 herdeiros?"

Para resolver este tipo de problemas foram criados os números **fracionários**. Estes números juntamente com os números inteiros formam os **racionais**.

$$\mathbb{Q} = \left\{ x \mid x = \frac{p}{q}, onde \ p \in \mathbb{Z}, q \in \mathbb{Z}^* \right\}$$

Neste conjunto encontram-se os número inteiros, os decimais exatos e as dízimas periódicas.

Ex.:
$$2 = \frac{4}{2} = \frac{100}{50} = \cdots$$

 $\frac{1}{2} = 0.5$
 $\frac{1}{3} = 0.33333 \dots$

Números irracionais

- Conjunto de números que não podem ser expressos na forma de uma fração de dois inteiros
- Exemplo:

Decimais infinitos não periódicos, como:

$$\pi = 3,14,1592653...$$

$$e = 2,718291828 \dots$$
 (número de Euler)

$$\Phi = 1,61803399 \dots (número de ouro)$$

$$\sqrt{2} = 1,414213562 \dots$$

$$\sqrt{10} = 3,162277660 \dots$$

OBS.: $\mathbb{Q} \cap I = \emptyset$ (\mathbb{Q} e I são conjuntos disjuntos)

Números reais

Conjunto numérico que é a união do conjunto dos racionais (\mathbb{Q}) com os irracionais (I)

$$\mathbb{R} = \mathbb{Q} \cup \mathbf{I}$$

Operações em \mathbb{R} :

- Adição e Subtração
- Multiplicação e Divisão

(1) Descreva cada um dos conjuntos a seguir, listando seus elementos:

(a)
$$A = \{x \in \mathbb{Z} \mid x^2 < 25\}$$

(b)
$$B = \{ x \in \mathbb{N} \mid x \text{ \'e par e } 2 < x \le 11 \}$$

(c)
$$C = \{x \in \mathbb{R} \mid x^2 = -1\}$$

(d)
$$D = \{x \in \mathbb{N} \mid x^2 - 5x + 6 = 0\}$$

(e)
$$E = \{x \in \mathbb{Z} \mid x < -3 \text{ e } x > 4\}$$

(f)
$$F = \{x \in \mathbb{Z} \mid x < -3 \text{ ou } x > 4\}.$$

(2) Representar, através de uma propriedade conveniente, os seguintes conjuntos:

(a)
$$A = \{1, -1, 2, -2, 4, -4\}$$
;

(b)
$$B = \{4, 5, 6, 7, 8, 9\};$$

(c)
$$C = \{6, 7, 8, 9, 10, \dots\};$$

(d)
$$D = \{2, 3, 5, 7, 11, 13, 17, 19\}.$$

(6) Com relação aos conjuntos numéricos, determine se é verdadeiro ou falso cada uma das sentenças abaixo:

(a) $5 \in \mathbb{N}$

- (h) $\pi \in \mathbb{Z}$
- (b) $0.999... \in \mathbb{N}$
- (i) 91 ∈ ℚ

(c) $-3 \in \mathbb{N}$

 $(j) -\frac{15}{12} \in \mathbb{Q}$

- (d) $\sqrt{2} \in \mathbb{N}$
- (e) $17 \in \mathbb{Z}$

- $(k)\ \frac{\sqrt{3}}{2}\in\mathbb{Q}$
- $(f) \ 0.01313\ldots \in \mathbb{Z}$
- (l) $\sqrt{-7} \in \mathbb{R}$

(g) $-3 \in \mathbb{Z}$

(8) Considere $A = \{x \in \mathbb{N} \mid 2 \le x < 8\}$, $B = \{3, 4, 9\}$ e $C = \{x \in \mathbb{Z} \mid x \text{ divide } 18\}$. Determine os conjuntos abaixo, listando seus elementos:

(a) $A \cap B$

(d) A - B

(b) $A \cup B$

(e) B-A

(c) $B \cap \emptyset$

(f) $B \cup (A \cap C)$

- (9) Siga o modelo do item (a) para completar os próximos itens.
 - (a) $\mathbb{Q}_+ = \{x \in \mathbb{Q} \mid x \ge 0\} =$ racionais não negativos.
 - (b) $\mathbb{Q}_{-} = \{ x \in \mathbb{Q} \mid x \le 0 \} =$
 - (c) $\mathbb{Q}_{+}^{*} = \{$ racionais negativos.
 - (d) $\mathbb{Q}^* = \{$ racionais não nulos. $\} =$
 - (e) $\mathbb{R}^* = \{x \in \mathbb{R} \mid x \neq 0\} =$
 - $(f) \ \mathbb{R}_+ = \{$

- } =
- (g) $\mathbb{R}_+^* = \{$ reais positivos.

(h) $\mathbb{R}_{-} = \{$

 $\} =$

(i) $\mathbb{R}_{-}^{*} = \{$

=