Weight Erosion: A novel personalized FL method

Felix Grimberg, CSE master student

Supervisors: Mary-Anne Hartley, Martin Jaggi, Sai Karimireddy, Andres Colubri

June 19th, 2020

Federated Learning & personalization

- Data can't be shared (private)
- □ IID?
- Individual data sets too small

- Local fine-tuning, MAML
- Featurization
- Multi-task learning

My contribution

Theory

- Adapted Ndoye factor
 - ► Rank agents *before* training
- Weight Erosion

Application

- Medical data set
- Titanic data set

Weight Erosion aggregation scheme

- Based on distances between gradients
 - ► He et al., 2020: Compute them securely with MPC, then pick byzantine-robust subset
- Intuition:

- Distance depends on
 - minibatch
 - how well the model is already performing

Application to medical data set

- ► Ebola data set, 577 patients in 2014 2015 (Hartley et al., 2017)
- Classification: predict diagnosis EVD(+) vs. EVD(-)
 - Using features identified in Hartley et al., 2017
 - ▶ 1 layer, Log-softmax activation, cross-entropy loss
- Splitting the data set by age:
 - ► AGE_STRICT: agent 0: 0 20 yo / agent 1: 21 40 yo / agent 2: 41+ yo
 - ► AGE_SOME: agents 0 & 1: 0 40 yo / agent 2: 41+ yo

Figure 1: Predicting Ebola infection with AGE_STRICT split.

Full lines: model's accuracy on the user's test set.

Red (dashed): baseline test accuracy (always EVD(+) or always EVD(-)). Pointed lines: weight of each agent in the Weight Erosion scheme.

The learning rates are displayed in the legend. Each agent's data set contains two batches of 125 samples each.

Figure 3: Parameters of the models in Figure 1 (left).

Weight for the 1st output of the linear regression layer.

Weight for the 2nd output of the linear regression layer.

Strong correlation with EVD(-)

Strong correlation with EVD(+)

References

- Hartley et al., 2017:
 - Mary-Anne Hartley et al. "Predicting Ebola infection: A malaria-sensitive triage score for Ebola virus disease". In: *PLoS neglected tropical diseases* 11.2 (2017).
- Ndoye factor:
 - Mohamed Ndoye et al. "Collaborative privacy". Semester project (2020). url: https://www.mndoye.com/collaborativeprivacy.pdf.
- ► He et al., 2020:
 - Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. \Secure Byzantine-Robust Machine Learning". In: arXiv:2006.04747 [cs, stat] (June 8, 2020). url: http://arxiv.org/abs/2006.04747 (visited on 06/16/2020).