CÁLCULO NUMÉRICO UERJ/2023

01 - Sistemas de numeração

Rodrigo Madureira rodrigomadureira@msn.com IME-UERJ

Sumário

- 1 Sistema Decimal Números inteiros
- Sistema Binário Números inteiros
- Conversão de bases
- 4 Representação de Números Reais no Computador

Números na base 10:

Cada posição digital de um número inteiro N representa uma potência de dez.

$$\begin{split} N &= (\alpha_n \alpha_{n-1} \dots \alpha_1 \alpha_0)_{10} \\ &= \alpha_n \times 10^n + \alpha_{n-1} \times 10^{n-1} + \dots + \alpha_1 \times 10^1 + \alpha_0 \times 10^0, \\ \text{onde } \alpha_i &\in \{0,1,2,\dots,9\}. \end{split}$$

$$(21)_{10} = 2 \times 10^1 + 1 \times 10^0$$

$$(2001)_{10} = 2 \times 10^3 + 0 \times 10^2 + 0 \times 10^1 + 1 \times 10^0.$$

$$(23457)_{10} = 2 \times 10^4 + 3 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 7 \times 10^0$$

Números na base 10:

Cada posição digital de um número inteiro N representa uma potência de dez.

$$\begin{split} N &= (\alpha_n \alpha_{n-1} \dots \alpha_1 \alpha_0)_{10} \\ &= \alpha_n \times 10^n + \alpha_{n-1} \times 10^{n-1} + \dots + \alpha_1 \times 10^1 + \alpha_0 \times 10^0, \\ \text{onde } \alpha_i &\in \{0,1,2,\dots,9\}. \end{split}$$

$$(21)_{10} = 2 \times 10^1 + 1 \times 10^0$$
.

$$(2001)_{10} = 2 \times 10^3 + 0 \times 10^2 + 0 \times 10^1 + 1 \times 10^0.$$

$$(23457)_{10} = 2 \times 10^4 + 3 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 7 \times 10^0$$

Números na base 10:

Cada posição digital de um número inteiro N representa uma potência de dez.

$$\begin{split} N &= (\alpha_n \alpha_{n-1} \dots \alpha_1 \alpha_0)_{10} \\ &= \alpha_n \times 10^n + \alpha_{n-1} \times 10^{n-1} + \dots + \alpha_1 \times 10^1 + \alpha_0 \times 10^0, \\ \text{onde } \alpha_i &\in \{0, 1, 2, \dots, 9\}. \end{split}$$

$$(21)_{10} = 2 \times 10^1 + 1 \times 10^0$$
.

$$(2001)_{10} = 2 \times 10^3 + 0 \times 10^2 + 0 \times 10^1 + 1 \times 10^0.$$

$$(23457)_{10} = 2 \times 10^4 + 3 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 7 \times 10^0$$

Números na base 10:

Cada posição digital de um número inteiro N representa uma potência de dez.

$$\begin{split} N &= (a_n a_{n-1} \dots a_1 a_0)_{10} \\ &= a_n \times 10^n + a_{n-1} \times 10^{n-1} + \dots + a_1 \times 10^1 + a_0 \times 10^0, \\ \text{onde } a_i &\in \{0, 1, 2, \dots, 9\}. \end{split}$$

$$(21)_{10} = 2 \times 10^1 + 1 \times 10^0$$
.

$$(2001)_{10} = 2 \times 10^3 + 0 \times 10^2 + 0 \times 10^1 + 1 \times 10^0.$$

$$(23457)_{10} = 2 \times 10^4 + 3 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 7 \times 10^0.$$

Base 2: usada nos computadores binários.

Cada posição digital de um número inteiro N representa uma potência de dois.

$$\begin{split} N &= (a_n a_{n-1} \dots a_1 a_0)_2 \\ &= a_n \times 2^n + a_{n-1} \times 2^{n-1} + \dots + a_1 \times 2^1 + a_0 \times 2^0, \\ \text{onde } a_i &\in \{0,1\}. \end{split}$$

$$(101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0.$$

$$(1010)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^2 \times 2^$$

$$(110101)_2 = 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0.$$

Base 2: usada nos computadores binários.

Cada posição digital de um número inteiro N representa uma potência de dois.

$$\begin{split} N &= (a_n a_{n-1} \dots a_1 a_0)_2 \\ &= a_n \times 2^n + a_{n-1} \times 2^{n-1} + \dots + a_1 \times 2^1 + a_0 \times 2^0, \\ \text{onde } a_i &\in \{0,1\}. \end{split}$$

$$(101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0.$$

$$(1010)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0.$$

$$(110101)_2 = 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0.$$

Base 2: usada nos computadores binários.

Cada posição digital de um número inteiro N representa uma potência de dois.

$$\begin{split} N &= (a_n a_{n-1} \dots a_1 a_0)_2 \\ &= a_n \times 2^n + a_{n-1} \times 2^{n-1} + \dots + a_1 \times 2^1 + a_0 \times 2^0, \\ \text{onde } a_i &\in \{0,1\}. \end{split}$$

$$(101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$
.

$$(1010)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0.$$

$$(110101)_2 = 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0.$$

Base 2: usada nos computadores binários.

Cada posição digital de um número inteiro N representa uma potência de dois.

$$\begin{split} N &= (a_n a_{n-1} \dots a_1 a_0)_2 \\ &= a_n \times 2^n + a_{n-1} \times 2^{n-1} + \dots + a_1 \times 2^1 + a_0 \times 2^0, \\ \text{onde } a_i &\in \{0,1\}. \end{split}$$

$$(101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$
.

$$(1010)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0.$$

$$(110101)_2 = 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0.$$

Um número na base β pode ser convertido para base decimal como

$$N = (\alpha_n \alpha_{n-1} \dots \alpha_1 \alpha_0)_{10}$$

= $\alpha_n \times \beta^n + \alpha_{n-1} \times \beta^{n-1} + \dots + \alpha_1 \times \beta^1 + \alpha_0 \times \beta^0$,

onde a_i são os dígitos do número representado na base β .

Exemplo 1: Converta $(110)_2$ para a base decimal.

$$(110)_2 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^1 = (6)_{10}$$

Exemplo 2: Converta $(1001)_2$ para a base decimal.

 $(1001)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (9)_{10}$

Um número na base β pode ser convertido para base decimal como

$$\begin{split} N &= (\alpha_n \alpha_{n-1} \dots \alpha_1 \alpha_0)_{10} \\ &= \alpha_n \times \beta^n + \alpha_{n-1} \times \beta^{n-1} + \dots + \alpha_1 \times \beta^1 + \alpha_0 \times \beta^0, \end{split}$$

onde α_i são os dígitos do número representado na base β .

Exemplo 1: Converta $(110)_2$ para a base decimal.

$$(110)_2 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^1 = (6)_{10}$$

Exemplo 2: Converta (1001)₂ para a base decimal.

$$(1001)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (9)_{10}.$$

Um número na base β pode ser convertido para base decimal como

$$N = (a_n a_{n-1} \dots a_1 a_0)_{10} = a_n \times \beta^n + a_{n-1} \times \beta^{n-1} + \dots + a_1 \times \beta^1 + a_0 \times \beta^0,$$

onde a_i são os dígitos do número representado na base β .

Exemplo 1: Converta $(110)_2$ para a base decimal.

$$(110)_2 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^1 = (6)_{10}.$$

Exemplo 2: Converta (1001)₂ para a base decimal.

$$(1001)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (9)_{10}.$$

Um número na base β pode ser convertido para base decimal como

$$\begin{split} N &= (\alpha_n \alpha_{n-1} \dots \alpha_1 \alpha_0)_{10} \\ &= \alpha_n \times \beta^n + \alpha_{n-1} \times \beta^{n-1} + \dots + \alpha_1 \times \beta^1 + \alpha_0 \times \beta^0, \end{split}$$

onde α_i são os dígitos do número representado na base β .

Exemplo 1: Converta $(110)_2$ para a base decimal.

$$(110)_2 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^1 = (6)_{10}.$$

Exemplo 2: Converta $(1001)_2$ para a base decimal.

$$(1001)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (9)_{10}.$$

Um número na base β pode ser convertido para base decimal como

$$\begin{split} N &= (\alpha_n \alpha_{n-1} \dots \alpha_1 \alpha_0)_{10} \\ &= \alpha_n \times \beta^n + \alpha_{n-1} \times \beta^{n-1} + \dots + \alpha_1 \times \beta^1 + \alpha_0 \times \beta^0, \end{split}$$

onde α_i são os dígitos do número representado na base β .

Exemplo 1: Converta $(110)_2$ para a base decimal.

$$(110)_2 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^1 = (6)_{10}.$$

Exemplo 2: Converta $(1001)_2$ para a base decimal.

$$(1001)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (9)_{10}.$$

Conversão da base decimal para a base β :

Divisões sucessivas do número em base decimal por β até que o quociente seja igual a zero.

O número na base β é formado pela concatenação em ordem inversa dos restos das divisões.

Exemplo 1: Converta $(25)_{10}$ para a base 2.

 $25 = 11001_{2}$

Conversão da base decimal para a base β :

Divisões sucessivas do número em base decimal por β até que o quociente seja igual a zero.

O número na base β é formado pela concatenação em ordem inversa dos restos das divisões.

Exemplo 1: Converta $(25)_{10}$ para a base 2.

 $25 = 11001_{2}$

Conversão da base decimal para a base β :

Divisões sucessivas do número em base decimal por β até que o quociente seja igual a zero.

O número na base β é formado pela concatenação em ordem inversa dos restos das divisões.

Exemplo 1: Converta $(25)_{10}$ para a base 2.

$$25 = 11001_2$$

Exemplo 2: Converta $(637)_{10}$ para a base 2.

$$637 = 1001111101_2$$

Exemplo 2: Converta $(637)_{10}$ para a base 2.

$$637 = 10011111101_2$$

Um número real positivo N na base β pode ser escrito como

$$\begin{split} N &= (\underbrace{\alpha_n \alpha_{n-1} \dots \alpha_1 \alpha_0}_{N_{\text{int}}} \ , \ \underbrace{b_1 b_2 b_3 \dots}_{N_{\text{frac}}})_{\beta} \\ &= \alpha_n \times \beta^n + \alpha_{n-1} \times \beta^{n-1} + \dots + \alpha_1 \times \beta^1 + \alpha_0 \times \beta^0 \\ &+ b_1 \times \beta^{-1} + b_2 \times \beta^{-2} + b_3 \times \beta^{-3} \dots \\ &= \underbrace{\sum_{i=0}^n \alpha_i \times \beta^i}_{N_{\text{int}}} + \underbrace{\sum_{i=1}^\infty b_i \times \beta^{-i}}_{N_{\text{frac}}}, \end{split}$$

onde N_{int} é a parte inteira de N e N_{frac} é a parte fracionária de N.

Exemplo 1:

$$(123,45)_{10} = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + 4 \times 10^{-1} + 5 \times 10^{-2}$$
.

Exemplo 2

 $(101, 101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = (5, 625)_{\text{page}}$

Um número real positivo N na base β pode ser escrito como

$$\begin{split} N &= (\underbrace{\alpha_n \alpha_{n-1} \dots \alpha_1 \alpha_0}_{N_{\text{int}}}, \underbrace{b_1 b_2 b_3 \dots}_{N_{\text{frac}}})_{\beta} \\ &= \alpha_n \times \beta^n + \alpha_{n-1} \times \beta^{n-1} + \dots + \alpha_1 \times \beta^1 + \alpha_0 \times \beta^0 \\ &+ b_1 \times \beta^{-1} + b_2 \times \beta^{-2} + b_3 \times \beta^{-3} \dots \\ &= \underbrace{\sum_{i=0}^n \alpha_i \times \beta^i}_{N_{\text{int}}} + \underbrace{\sum_{i=1}^\infty b_i \times \beta^{-i}}_{N_{\text{frac}}}, \end{split}$$

onde N_{int} é a parte inteira de N e N_{frac} é a parte fracionária de N.

Exemplo 1:

$$(123,45)_{10} = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + 4 \times 10^{-1} + 5 \times 10^{-2}$$

Exemplo 2

 $(101,101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = (5,625)_{300}$

Um número real positivo N na base β pode ser escrito como

$$\begin{split} N &= (\underbrace{\alpha_n \alpha_{n-1} \dots \alpha_1 \alpha_0}_{N_{\text{int}}}, \underbrace{b_1 b_2 b_3 \dots}_{N_{\text{frac}}})_{\beta} \\ &= \alpha_n \times \beta^n + \alpha_{n-1} \times \beta^{n-1} + \dots + \alpha_1 \times \beta^1 + \alpha_0 \times \beta^0 \\ &+ b_1 \times \beta^{-1} + b_2 \times \beta^{-2} + b_3 \times \beta^{-3} \dots \\ &= \underbrace{\sum_{i=0}^n \alpha_i \times \beta^i}_{N_{\text{int}}} + \underbrace{\sum_{i=1}^\infty b_i \times \beta^{-i}}_{N_{\text{frac}}}, \end{split}$$

onde N_{int} é a parte inteira de N e N_{frac} é a parte fracionária de N.

Exemplo 1:

$$(123,45)_{10} = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + 4 \times 10^{-1} + 5 \times 10^{-2}$$
.

Exemplo 2:

$$(101, 101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = (5, 625)_{10}$$

- Conversão de base binária para decimal
 - Similar ao caso inteiro
- Conversão de base decimal para binária
 - Converte-se a parte inteira
 - ★ Divisões sucessivas
 - Converte-se a parte fracionária
 - Multiplicações sucessivas

Exemplo: Converta $(12, 625)_{10}$ para a base binária

Parte inteira: $(12)_{10} \Rightarrow$ Divisões sucessivas

Parte fracionária: $(0,625)_{10} \Rightarrow \text{Multiplicações sucessivas}$

- Conversão de base binária para decimal
 - Similar ao caso inteiro
- Conversão de base decimal para binária
 - Converte-se a parte inteira
 - Divisões sucessivas
 - Converte-se a parte fracionária
 - ★ Multiplicações sucessivas

Exemplo: Converta (12,625)₁₀ para a base binária

Parte inteira: $(12)_{10} \Rightarrow \text{Divisões sucessivas}$

Parte fracionária: $(0,625)_{10} \Rightarrow \text{Multiplicações sucessivas}$

- Conversão de base binária para decimal
 - Similar ao caso inteiro
- Conversão de base decimal para binária
 - Converte-se a parte inteira
 - * Divisões sucessivas
 - Converte-se a parte fracionária
 - Multiplicações sucessivas

Exemplo: Converta $(12,625)_{10}$ para a base binária

Parte inteira: $(12)_{10} \Rightarrow \text{Divisões sucessivas}$

Parte fracionária: $(0,625)_{10} \Rightarrow Multiplicações sucessivas$

- Conversão de base binária para decimal
 - Similar ao caso inteiro
- Conversão de base decimal para binária
 - Converte-se a parte inteira
 - ★ Divisões sucessivas
 - Converte-se a parte fracionária
 - Multiplicações sucessivas

Exemplo: Converta $(12,625)_{10}$ para a base binária

Parte inteira: $(12)_{10} \Rightarrow \text{Divisões sucessivas}$

Parte fracionária: $(0,625)_{10} \Rightarrow$ Multiplicações sucessivas

Parte inteira: $(12)_{10} \Rightarrow$ Divisões sucessivas

 $12 = 1100_2$

Parte fracionária: $(0,625)_{10} \Rightarrow \text{Multiplicações sucessivas}$

Parte inteira: $(12)_{10} \Rightarrow \text{Divisões sucessivas}$

$$12 = 1100_2$$

Parte fracionária: $(0,625)_{10} \Rightarrow Multiplicações sucessivas$

Parte fracionária: $(0,625)_{10} \Rightarrow Multiplicações sucessivas$

```
0,625 \times 2 = 1,35 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1,35 e multiplico por 2)

0,35 \times 2 = 0,70 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,70 por 2)

0,70 \times 2 = 1,40 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1,40 e multiplico por 2)

0,40 \times 2 = 0,80 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,80 por 2)

0,80 \times 2 = 1,60

0,60 \times 2 = 1,20

0,20 \times 2 = 0,40

0,40 \times 2 = 0,80

0,80 \times 2 = 1,60
```

Logo, (12,625); (1100,101011001100110...) (12,625); (12,625); (1100,101011001100110...) (1100)

Parte fracionária: $(0,625)_{10} \Rightarrow Multiplicações sucessivas$

$$0,625 \times 2 = 1,35$$
 (Parte inteira: $1 \Rightarrow$ Subtraio 1 de 1,35 e multiplico por 2)
 $0,35 \times 2 = 0,70$ (Parte inteira: $0 \Rightarrow$ Apenas multiplico 0,70 por 2)
 $0,70 \times 2 = 1,40$ (Parte inteira: $1 \Rightarrow$ Subtraio 1 de 1,40 e multiplico por 2)
 $0,40 \times 2 = 0,80$ (Parte inteira: $0 \Rightarrow$ Apenas multiplico 0,80 por 2)
 $0,80 \times 2 = 1,60$
 $0,60 \times 2 = 1,20$
 $0,40 \times 2 = 0,80$
 $0,80 \times 2 = 1,60$
 $0,60 \times 2 = 1,20$

Parte fracionária: $(0,625)_{10} \Rightarrow \text{Multiplicações sucessivas}$

```
0.625 \times 2 = 1.35 (Parte inteira: 1 \Rightarrow \text{Subtraio } 1 \text{ de } 1.35 \text{ e multiplico por } 2)
 0.35 \times 2 = 0.70 (Parte inteira: 0 \Rightarrow Apenas multiplico 0.70 por 2)
```

Parte fracionária: $(0,625)_{10} \Rightarrow \text{Multiplicações sucessivas}$

```
0.625 \times 2 = 1.35 (Parte inteira: 1 \Rightarrow \text{Subtraio } 1 \text{ de } 1.35 \text{ e multiplico por } 2)
 0.35 \times 2 = 0.70 (Parte inteira: 0 \Rightarrow Apenas multiplico 0.70 por 2)
 0.70 \times 2 = 1.40 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1.40 e multiplico por 2)
```

Parte fracionária: $(0,625)_{10} \Rightarrow Multiplicações sucessivas$

```
0,625 \times 2 = 1,35 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1,35 e multiplico por 2) 0,35 \times 2 = 0,70 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,70 por 2) 0,70 \times 2 = 1,40 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1,40 e multiplico por 2) 0,40 \times 2 = 0,80 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,80 por 2) 0,80 \times 2 = 1,60 0,60 \times 2 = 1,20 0,20 \times 2 = 0,40 0,40 \times 2 = 0,80 0,80 \times 2 = 1,60
```

Parte fracionária: $(0,625)_{10} \Rightarrow Multiplicações sucessivas$

```
0,625 \times 2 = 1,35 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1,35 e multiplico por 2) 0,35 \times 2 = 0,70 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,70 por 2) 0,70 \times 2 = 1,40 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1,40 e multiplico por 2) 0,40 \times 2 = 0,80 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,80 por 2) 0,80 \times 2 = 1,60 0,60 \times 2 = 1,20 0,20 \times 2 = 0,40 0,40 \times 2 = 0,80 0,40 \times 2 = 0,80
```

Parte fracionária: $(0,625)_{10} \Rightarrow Multiplicações sucessivas$

```
0,625 \times 2 = 1,35 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1,35 e multiplico por 2) 0,35 \times 2 = 0,70 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,70 por 2) 0,70 \times 2 = 1,40 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1,40 e multiplico por 2) 0,40 \times 2 = 0,80 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,80 por 2) 0,80 \times 2 = 1,60 0,60 \times 2 = 1,20 0,20 \times 2 = 0,40 0,40 \times 2 = 0,80 0,80 \times 2 = 1,60
```

Logo. (12, 625)) = (1100, 101011001100110...) = (대왕(화)(한희(왕조) 표 의 (

```
0.625 \times 2 = 1.35 (Parte inteira: 1 \Rightarrow \text{Subtraio } 1 \text{ de } 1.35 \text{ e multiplico por } 2)
 0.35 \times 2 = 0.70 (Parte inteira: 0 \Rightarrow Apenas multiplico 0.70 por 2)
 0.70 \times 2 = 1.40 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1.40 e multiplico por 2)
 0,40 \times 2 = 0,80 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,80 por 2)
 0.80 \times 2 = 1.60
 0.60 \times 2 = 1.20
 0.20 \times 2 = 0.40
```

```
0.625 \times 2 = 1.35 (Parte inteira: 1 \Rightarrow \text{Subtraio } 1 \text{ de } 1.35 \text{ e multiplico por } 2)
 0.35 \times 2 = 0.70 (Parte inteira: 0 \Rightarrow Apenas multiplico 0.70 por 2)
 0.70 \times 2 = 1.40 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1.40 e multiplico por 2)
 0,40 \times 2 = 0,80 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,80 por 2)
 0.80 \times 2 = 1.60
 0.60 \times 2 = 1.20
 0.20 \times 2 = 0.40
 0,40 \times 2 = 0,80
```

```
0.625 \times 2 = 1.35 (Parte inteira: 1 \Rightarrow \text{Subtraio } 1 \text{ de } 1.35 \text{ e multiplico por } 2)
 0.35 \times 2 = 0.70 (Parte inteira: 0 \Rightarrow Apenas multiplico 0.70 por 2)
 0.70 \times 2 = 1.40 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1.40 e multiplico por 2)
 0,40 \times 2 = 0,80 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,80 por 2)
 0.80 \times 2 = 1.60
 0.60 \times 2 = 1.20
 0.20 \times 2 = 0.40
 0,40 \times 2 = 0,80
 0.80 \times 2 = 1.60
```

```
0.625 \times 2 = 1.35 (Parte inteira: 1 \Rightarrow \text{Subtraio } 1 \text{ de } 1.35 \text{ e multiplico por } 2)
 0.35 \times 2 = 0.70 (Parte inteira: 0 \Rightarrow Apenas multiplico 0.70 por 2)
 0.70 \times 2 = 1.40 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1.40 e multiplico por 2)
 0,40 \times 2 = 0,80 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,80 por 2)
 0.80 \times 2 = 1.60
 0.60 \times 2 = 1.20
 0.20 \times 2 = 0.40
 0,40 \times 2 = 0,80
 0.80 \times 2 = 1.60
 0,60 \times 2 = 1,20
```

Parte fracionária: $(0,625)_{10} \Rightarrow Multiplicações sucessivas$

```
0.625 \times 2 = 1.35 (Parte inteira: 1 \Rightarrow \text{Subtraio } 1 \text{ de } 1.35 \text{ e multiplico por } 2)
 0.35 \times 2 = 0.70 (Parte inteira: 0 \Rightarrow Apenas multiplico 0.70 por 2)
 0.70 \times 2 = 1.40 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1.40 e multiplico por 2)
 0,40 \times 2 = 0,80 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,80 por 2)
 0.80 \times 2 = 1.60
 0.60 \times 2 = 1.20
 0.20 \times 2 = 0.40
 0,40 \times 2 = 0,80
 0.80 \times 2 = 1.60
 0,60 \times 2 = 1,20
 0,20 \times 2 = 0,40
```

ogo, $(12,625)_{10}=(1100,101011001100110\ldots)_2=(1뒤00)$ 화기이탈()) $_2$ 로 $^{\prime}$ 모 $^{\prime}$ 오오

Parte fracionária: $(0,625)_{10} \Rightarrow Multiplicações sucessivas$

```
0.625 \times 2 = 1.35 (Parte inteira: 1 \Rightarrow \text{Subtraio } 1 \text{ de } 1.35 \text{ e multiplico por } 2)
 0.35 \times 2 = 0.70 (Parte inteira: 0 \Rightarrow Apenas multiplico 0.70 por 2)
 0.70 \times 2 = 1.40 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1.40 e multiplico por 2)
 0,40 \times 2 = 0,80 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,80 por 2)
 0.80 \times 2 = 1.60
 0.60 \times 2 = 1.20
 0.20 \times 2 = 0.40
 0.40 \times 2 = 0.80
 0.80 \times 2 = 1.60
 0,60 \times 2 = 1,20
 0,20 \times 2 = 0,40
```

.ogo, (12,625)₁0 = (1100,101011001100110...)₂ = (1리00;Φ010首0)₂፮ㅏ 쿨 ∽요증

Parte fracionária: $(0,625)_{10} \Rightarrow \text{Multiplicações sucessivas}$

```
0.625 \times 2 = 1.35 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1.35 e multiplico por 2)
 0.35 \times 2 = 0.70 (Parte inteira: 0 \Rightarrow Apenas multiplico 0.70 por 2)
 0.70 \times 2 = 1.40 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1.40 e multiplico por 2)
 0,40 \times 2 = 0,80 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,80 por 2)
 0.80 \times 2 = 1.60
 0.60 \times 2 = 1.20
 0.20 \times 2 = 0.40
 0.40 \times 2 = 0.80
 0.80 \times 2 = 1.60
 0,60 \times 2 = 1,20
 0,20 \times 2 = 0,40
```

11/22

 \Rightarrow $(0,625)_{10} = (0,101011001100110...)_2 = (0,101\overline{0110})_2$

Parte fracionária: $(0,625)_{10} \Rightarrow Multiplicações sucessivas$

```
0.625 \times 2 = 1.35 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1.35 e multiplico por 2)
 0.35 \times 2 = 0.70 (Parte inteira: 0 \Rightarrow Apenas multiplico 0.70 por 2)
 0.70 \times 2 = 1.40 (Parte inteira: 1 \Rightarrow Subtraio 1 de 1.40 e multiplico por 2)
 0,40 \times 2 = 0,80 (Parte inteira: 0 \Rightarrow Apenas multiplico 0,80 por 2)
 0.80 \times 2 = 1.60
 0.60 \times 2 = 1.20
 0.20 \times 2 = 0.40
 0.40 \times 2 = 0.80
 0.80 \times 2 = 1.60
 0,60 \times 2 = 1,20
 0,20 \times 2 = 0,40
```

Logo, $(12,625)_{10} = (1100, 101011001100110...)_2 = (1100, 401\overline{0110})_2$

 \Rightarrow $(0,625)_{10} = (0,101011001100110...)_2 = (0,101\overline{0110})_2$

Em todos esses exemplos, a posição da vírgula está fixa, separando a casa das unidades da primeira casa fracionária.

Entretanto, pode-se variar a posição da vírgula, corrigindo-se o valor com a potência da base, seja dez ou dois, dependendo do sistema que se use.

Exemplo 1 (Base decimal):

$$(45,31)_{10} = 4,531 \times 10^1 = 0,4531 \times 10^2 = 453,1 \times 10^{-1}$$

Exemplo 2 (Base binária)

$$(1110,01)_2 = 1,11001 \times 2^3 = 0,111001 \times 2^4 = 11100,1 \times 2^{-1}$$

Em todos esses exemplos, a posição da vírgula está fixa, separando a casa das unidades da primeira casa fracionária.

Entretanto, pode-se variar a posição da vírgula, corrigindo-se o valor com a potência da base, seja dez ou dois, dependendo do sistema que se use.

Exemplo 1 (Base decimal):

$$(45,31)_{10} = 4,531 \times 10^1 = 0,4531 \times 10^2 = 453,1 \times 10^{-1}$$

Exemplo 2 (Base binária)

$$(1110,01)_2 = 1,11001 \times 2^3 = 0,111001 \times 2^4 = 11100,1 \times 2^{-1}$$

Em todos esses exemplos, a posição da vírgula está fixa, separando a casa das unidades da primeira casa fracionária.

Entretanto, pode-se variar a posição da vírgula, corrigindo-se o valor com a potência da base, seja dez ou dois, dependendo do sistema que se use.

Exemplo 1 (Base decimal):

$$(45,31)_{10} = 4,531 \times 10^1 = 0,4531 \times 10^2 = 453,1 \times 10^{-1}$$

Exemplo 2 (Base binária)

$$(1110,01)_2 = 1,11001 \times 2^3 = 0,111001 \times 2^4 = 11100,1 \times 2^{-1}$$

Em todos esses exemplos, a posição da vírgula está fixa, separando a casa das unidades da primeira casa fracionária.

Entretanto, pode-se variar a posição da vírgula, corrigindo-se o valor com a potência da base, seja dez ou dois, dependendo do sistema que se use.

Exemplo 1 (Base decimal):

$$(45,31)_{10} = 4,531 \times 10^1 = 0,4531 \times 10^2 = 453,1 \times 10^{-1}$$

Exemplo 2 (Base binária)

$$(1110,01)_2 = 1,11001 \times 2^3 = 0,111001 \times 2^4 = 11100,1 \times 2^{-1}$$

Em todos esses exemplos, a posição da vírgula está fixa, separando a casa das unidades da primeira casa fracionária.

Entretanto, pode-se variar a posição da vírgula, corrigindo-se o valor com a potência da base, seja dez ou dois, dependendo do sistema que se use.

Exemplo 1 (Base decimal):

$$(45,31)_{10} = 4,531 \times 10^1 = 0,4531 \times 10^2 = 453,1 \times 10^{-1}$$

Exemplo 2 (Base binária)

$$(1110,01)_2 = 1,11001 \times 2^3 = 0,111001 \times 2^4 = 11100,1 \times 2^{-1}$$

Em todos esses exemplos, a posição da vírgula está fixa, separando a casa das unidades da primeira casa fracionária.

Entretanto, pode-se variar a posição da vírgula, corrigindo-se o valor com a potência da base, seja dez ou dois, dependendo do sistema que se use.

Exemplo 1 (Base decimal):

$$(45,31)_{10} = 4,531 \times 10^1 = 0,4531 \times 10^2 = 453,1 \times 10^{-1}$$

Exemplo 2 (Base binária):

$$(1110,01)_2 = 1,11001 \times 2^3 = 0,111001 \times 2^4 = 11100,1 \times 2^{-1}$$

Em todos esses exemplos, a posição da vírgula está fixa, separando a casa das unidades da primeira casa fracionária.

Entretanto, pode-se variar a posição da vírgula, corrigindo-se o valor com a potência da base, seja dez ou dois, dependendo do sistema que se use.

Exemplo 1 (Base decimal):

$$(45,31)_{10} = 4,531 \times 10^1 = 0,4531 \times 10^2 = 453,1 \times 10^{-1}$$

Exemplo 2 (Base binária):

$$(1110,01)_2 = 1,11001 \times 2^3 = 0,111001 \times 2^4 = 11100,1 \times 2^{-1}$$

Em todos esses exemplos, a posição da vírgula está fixa, separando a casa das unidades da primeira casa fracionária.

Entretanto, pode-se variar a posição da vírgula, corrigindo-se o valor com a potência da base, seja dez ou dois, dependendo do sistema que se use.

Exemplo 1 (Base decimal):

$$(45,31)_{10} = 4,531 \times 10^1 = 0,4531 \times 10^2 = 453,1 \times 10^{-1}$$

Exemplo 2 (Base binária):

$$(1110,01)_2 = 1,11001 \times 2^3 = 0,111001 \times 2^4 = 11100,1 \times 2^{-1}$$

Em todos esses exemplos, a posição da vírgula está fixa, separando a casa das unidades da primeira casa fracionária.

Entretanto, pode-se variar a posição da vírgula, corrigindo-se o valor com a potência da base, seja dez ou dois, dependendo do sistema que se use.

Exemplo 1 (Base decimal):

$$(45,31)_{10} = 4,531 \times 10^1 = 0,4531 \times 10^2 = 453,1 \times 10^{-1}$$

Exemplo 2 (Base binária):

$$(1110,01)_2 = 1,11001 \times 2^3 = 0,111001 \times 2^4 = 11100,1 \times 2^{-1}$$

Como se vê, há diferentes maneiras de escrever o mesmo número.

Chama-se <u>forma normalizada</u> aquela que apresenta um único dígito diferente de zero antes da vírgula.

Exemplo 1 na forma normalizada: $(45,31)_{10} = 4,531 \times 10^{1}$

Exemplo 2 na forma normalizada: $(1110, 01)_2 = 1,11001 \times 2^3$

$$(110101)_2 = 1,10101 \times 2^5 = (53)_{10}...$$

$$(0,0011)_2 = 1,1x2^{-3} = (0,1875)_{10}.$$

$$(0,1001)_2 = 1,001 \times 2^{-1} = (0,5625)_{10}$$

Como se vê, há diferentes maneiras de escrever o mesmo número.

Chama-se <u>forma normalizada</u> aquela que apresenta um único dígito diferente de zero antes da vírgula.

Exemplo 1 na forma normalizada: $(45,31)_{10} = 4,531 \times 10^{\circ}$

Exemplo 2 na forma normalizada: $(1110, 01)_2 = 1,11001 \times 2^3$

$$(110101)_2 = 1,10101x2^5 = (53)_{10}.$$

$$(0,0011)_2 = 1,1x2^{-3} = (0,1875)_{10}.$$

$$(0,1001)_2 = 1,001x2^{-1} = (0,5625)_{10}$$

Como se vê, há diferentes maneiras de escrever o mesmo número.

Chama-se <u>forma normalizada</u> aquela que apresenta um único dígito diferente de zero antes da vírgula.

Exemplo 1 na forma normalizada: $(45,31)_{10} = 4,531 \times 10^1$

Exemplo 2 na forma normalizada: $(1110, 01)_2 = 1,11001 \times 2^3$

$$(110101)_2 = 1,10101 \times 2^5 = (53)_{10}.$$

$$(0,0011)_2 = 1,1x2^{-3} = (0,1875)_{10}.$$

$$(0,1001)_2 = 1,001 \times 2^{-1} = (0,5625)_{10}$$

Como se vê, há diferentes maneiras de escrever o mesmo número.

Chama-se <u>forma normalizada</u> aquela que apresenta um único dígito diferente de zero antes da vírgula.

Exemplo 1 na forma normalizada: $(45,31)_{10} = 4,531 \times 10^{1}$

Exemplo 2 na forma normalizada: $(1110,01)_2 = 1,11001 \times 2^3$

$$(110101)_2 = 1,10101 \times 2^5 = (53)_{10}.$$

$$(0,0011)_2 = 1,1x2^{-3} = (0,1875)_{10}.$$

$$(0,1001)_2 = 1,001 \times 2^{-1} = (0,5625)_{10}.$$

Como se vê, há diferentes maneiras de escrever o mesmo número.

Chama-se <u>forma normalizada</u> aquela que apresenta um único dígito diferente de zero antes da vírgula.

Exemplo 1 na forma normalizada: $(45,31)_{10} = 4,531 \times 10^1$

Exemplo 2 na forma normalizada: $(1110,01)_2 = 1,11001 \times 2^3$

$$(110101)_2 = 1,10101x2^5 = (53)_{10}.$$

$$(0,0011)_2 = 1,1x2^{-3} = (0,1875)_{10}.$$

$$(0,1001)_2 = 1,001x2^{-1} = (0,5625)_{10}.$$

O computador representa os números em sistema binário.

- A representação é finita
 - Números como o $\pi = 3, 1415...$ são aproximados.

Vamos usar a representação em ponto flutuante na forma normalizada.

Exemplo: $110101 = 1,10101 \times 2^5$

Chama-se **mantissa** ao número 1,10101 e **expoente** ao número 101, que é 5₂, deste exemplo.

Para se definir a maneira como o computador armazenará o número real em pontcu flutuante, é preciso definir o número de bits que ele usará para representar a mantissa e o número de bits para o expoente.

O computador representa os números em sistema binário.

- A representação é finita
 - Números como o $\pi = 3, 1415...$ são aproximados.

Vamos usar a representação em ponto flutuante na forma normalizada.

Exemplo: $110101 = 1,10101 \times 2^5$

Chama-se **mantissa** ao número 1, 10101 e **expoente** ao número 101, que é 5₂, deste exemplo.

Para se definir a maneira como o computador armazenará o número real em ponto flutuante, é preciso definir o número de bits que ele usará para representar a mantissa e o número de bits para o expoente.

O computador representa os números em sistema binário.

- A representação é finita
 - Números como o $\pi = 3, 1415...$ são aproximados.

Vamos usar a representação em ponto flutuante na forma normalizada.

Exemplo: $110101 = 1,10101 \times 2^5$

Chama-se **mantissa** ao número 1, 10101 e **expoente** ao número 101, que é 5_2 , deste exemplo.

Para se definir a maneira como o computador armazenará o número real em ponto flutuante, é preciso definir o número de bits que ele usará para representar a mantissa e o número de bits para o expoente.

O computador representa os números em sistema binário.

- A representação é finita
 - Números como o $\pi = 3, 1415...$ são aproximados.

Vamos usar a representação em ponto flutuante na forma normalizada.

Exemplo: $110101 = 1,10101 \times 2^5$

Chama-se **mantissa** ao número 1,10101 e **expoente** ao número 101, que é 5_2 , deste exemplo.

Para se definir a maneira como o computador armazenará o número real em ponto flutuante, é preciso definir o número de bits que ele usará para representar a mantissa e o número de bits para o expoente.

O computador representa os números em sistema binário.

- A representação é finita
 - Números como o $\pi = 3, 1415...$ são aproximados.

Vamos usar a representação em ponto flutuante na forma normalizada.

Exemplo: $110101 = 1,10101 \times 2^5$

Chama-se **mantissa** ao número 1, 10101 e **expoente** ao número 101, que é 5_2 , deste exemplo.

Para se definir a maneira como o computador armazenará o número real em ponto flutuante, é preciso definir o número de bits que ele usará para representar a mantissa e o número de bits para o expoente.

O computador representa os números em sistema binário.

- A representação é finita
 - Números como o $\pi = 3, 1415...$ são aproximados.

Vamos usar a representação em ponto flutuante na forma normalizada.

Exemplo: $110101 = 1,10101 \times 2^5$

Chama-se **mantissa** ao número 1, 10101 e **expoente** ao número 101, que é 5_2 , deste exemplo.

Para se definir a maneira como o computador armazenará o número real em ponto flutuante, é preciso definir o número de bits que ele usará para representar a mantissa e o número de bits para o expoente.

Para armazenar a mantissa, é dispensável representar o "1,", por estar sempre presente, sendo também desnecessário armazenar o 2, base do sistema.

Suponha-se que um determinado computador reserve 1 byte, isto é, 8 bits, para representar os números reais.

Admita-se que usa o primeiro bit para sinal do número, três bits seguintes para o expoente e os últimos quatro bits para o restante da mantissa.

Para armazenar a mantissa, é dispensável representar o "1,", por estar sempre presente, sendo também desnecessário armazenar o 2, base do sistema.

Suponha-se que um determinado computador reserve **1 byte**, isto é, **8 bits**, para representar os números reais.

Admita-se que usa o primeiro bit para sinal do número, três bits seguintes para o expoente e os últimos quatro bits para o restante da mantissa.

Para armazenar a mantissa, é dispensável representar o "1,", por estar sempre presente, sendo também desnecessário armazenar o 2, base do sistema.

Suponha-se que um determinado computador reserve **1 byte**, isto é, **8 bits**, para representar os números reais.

Admita-se que usa o primeiro bit para sinal do número, três bits seguintes para o expoente e os últimos quatro bits para o restante da mantissa.

Para armazenar a mantissa, é dispensável representar o "1,", por estar sempre presente, sendo também desnecessário armazenar o 2, base do sistema.

Suponha-se que um determinado computador reserve **1 byte**, isto é, **8 bits**, para representar os números reais.

Admita-se que usa o primeiro bit para sinal do número, três bits seguintes para o expoente e os últimos quatro bits para o restante da mantissa.

O bit 0 indica o sinal do número: 0 positivo, 1 negativo.

Os bits 1, 2 e 3 constituem o expoente e precisam representar tanto expoentes positivos quanto expoentes negativos.

Tabela: Tabela para os bits do expoente

O bit 0 indica o sinal do número: 0 positivo, 1 negativo.

Os bits 1, 2 e 3 constituem o expoente e precisam representar tanto expoentes positivos quanto expoentes negativos.

bits	expoente	valor em decimal
001	-2	1
010	-1	2
011	0	3
100	+1	4
101	+2	5
110	+3	6
111	NaN, Inf., Indet.	

Tabela: Tabela para os bits do expoente

O bit 0 indica o sinal do número: 0 positivo, 1 negativo.

Os bits 1, 2 e 3 constituem o expoente e precisam representar tanto expoentes positivos quanto expoentes negativos.

bits	expoente	valor em decimal
000	Desnormalizado	
001	-2	1
010	-1	2
011	0	3
100	+1	4
101	+2	5
110	+3	6
111	NaN, Inf., Indet.	

Tabela: Tabela para os bits do expoente

Dessa maneira, o número que representa o expoente será o valor em decimal menos três.

Os bits da mantissa representam os dígitos que aparecem depois da vírgula na forma normalizada.

Exemplo 1:

$$(3,5)_{10} = (11,1)_2 = 1,11 \times 2^1 = 1,1100 \times 2^1 \Rightarrow$$

bit de sinal: 0; bits do expoente: 100; mantissa: 11

Tabela: Exemplo 1

Dessa maneira, o número que representa o expoente será o valor em decimal menos três.

Os bits da mantissa representam os dígitos que aparecem depois da vírgula na forma normalizada.

Exemplo 1:

$$(3,5)_{10} = (11,1)_2 = 1,11 \times 2^1 = 1,1100 \times 2^1 \Rightarrow$$

bit de sinal: 0: bits do expoente: 100: mantissa: 110

Tabela: Exemplo 1

Dessa maneira, o número que representa o expoente será o valor em decimal menos três.

Os bits da mantissa representam os dígitos que aparecem depois da vírgula na forma normalizada.

Exemplo 1:

$$(3,5)_{10} = (11,1)_2 = 1,11 \times 2^1 = 1,1100 \times 2^1 \Rightarrow$$
 bit de sinal: 0; bits do expoente: 100; mantissa: 1100

Tabela: Exemplo 1

Exemplo 2:

$$(-7,25)_{10} = (-111,01)_2 = -1,1101 \times 2^2 \Rightarrow$$

bit de sinal: 1; bits do expoente: 101; mantissa: 1101

Tabela: Exemplo 2

Exemplo 2:

$$(-7,25)_{10} = (-111,01)_2 = -1,1101 \times 2^2 \Rightarrow$$

bit de sinal: 1; bits do expoente: 101; mantissa: 1101

Tabela: Exemplo 2

Exemplo 3 - Maior número positivo:

Exemplo 2:

$$(-7,25)_{10} = (-111,01)_2 = -1,1101 \times 2^2 \Rightarrow$$

bit de sinal: 1; bits do expoente: 101; mantissa: 1101

Tabela: Exemplo 2

Exemplo 3 - Maior número positivo:

Tabela: Exemplo 3

Exemplo 2:

$$(-7,25)_{10} = (-111,01)_2 = -1,1101 \times 2^2 \Rightarrow$$

bit de sinal: 1; bits do expoente: 101; mantissa: 1101

Tabela: Exemplo 2

Exemplo 3 - Maior número positivo:

Tabela: Exemplo 3

Devemos lembrar que os expoentes 000 e 111 possuem tratamento especial

Usa-se o expoente 000 para indicar que o número não está normalizado

Assim, 000 será configurado como o menor expoente, isto é, -2 neste exemplo

Na forma desnormalizada, a mantissa passa a ser 0, b₁ b₂ b₃ b₄, onde b₁,...,b₄ são os bits da mantissa neste exemplo.

Assim, o menor número positivo armazenado pelo computador de 8 bits recebe a seguinte configuração:

0 0 0 0 0 0 1 sinal do número expoente mantissa

Devemos lembrar que os expoentes 000 e 111 possuem tratamento especial.

Usa-se o expoente 000 para indicar que o número não está normalizado

Assim, 000 será configurado como o menor expoente, isto é, -2 neste exemplo

Na forma desnormalizada, a mantissa passa a ser $0, b_1b_2b_3b_4$, onde b_1, \ldots, b_4 são os bits da mantissa neste exemplo.

Assim, o menor número positivo armazenado pelo computador de 8 bits recebe a seguinte configuração:

0 0 0 0 0 0 1 sinal do número expoente mantissa

Devemos lembrar que os expoentes 000 e 111 possuem tratamento especial.

Usa-se o expoente 000 para indicar que o número não está normalizado.

Assim, 000 será configurado como o menor expoente, isto é, -2 neste exemplo

Na forma desnormalizada, a mantissa passa a ser $0, b_1b_2b_3b_4$, onde b_1, \ldots, b_4 são os bits da mantissa neste exemplo.

Assim, o menor número positivo armazenado pelo computador de 8 bits recebe a seguinte configuração:

Devemos lembrar que os expoentes 000 e 111 possuem tratamento especial.

Usa-se o expoente 000 para indicar que o número não está normalizado.

Assim, 000 será configurado como o menor expoente, isto é, -2 neste exemplo.

Na forma desnormalizada, a mantissa passa a ser $0, b_1b_2b_3b_4$, onde b_1, \ldots, b_4 são os bits da mantissa neste exemplo.

Assim, o menor número positivo armazenado pelo computador de 8 bits recebe a seguinte configuração:

Tabela: Exemplo 4

Devemos lembrar que os expoentes 000 e 111 possuem tratamento especial.

Usa-se o expoente 000 para indicar que o número não está normalizado.

Assim, 000 será configurado como o menor expoente, isto é, -2 neste exemplo.

Na forma desnormalizada, a mantissa passa a ser $0, b_1b_2b_3b_4$, onde b_1, \ldots, b_4 são os bits da mantissa neste exemplo.

Assim, o menor número positivo armazenado pelo computador de 8 bits recebe a seguinte configuração:

Tabela: Exemplo 4

Exemplo 4 - Menor número positivo:

Devemos lembrar que os expoentes 000 e 111 possuem tratamento especial.

Usa-se o expoente 000 para indicar que o número não está normalizado.

Assim, 000 será configurado como o menor expoente, isto é, -2 neste exemplo.

Na forma desnormalizada, a mantissa passa a ser $0, b_1b_2b_3b_4$, onde b_1, \ldots, b_4 são os bits da mantissa neste exemplo.

Assim, o menor número positivo armazenado pelo computador de 8 bits recebe a seguinte configuração:

Exemplo 4 - Menor número positivo:

Devemos lembrar que os expoentes 000 e 111 possuem tratamento especial.

Usa-se o expoente 000 para indicar que o número não está normalizado.

Assim, 000 será configurado como o menor expoente, isto é, -2 neste exemplo.

Na forma desnormalizada, a mantissa passa a ser $0, b_1b_2b_3b_4$, onde b_1, \ldots, b_4 são os bits da mantissa neste exemplo.

Assim, o menor número positivo armazenado pelo computador de 8 bits recebe a seguinte configuração:

A configuração

representa +0,

enquanto a configuração

representa -0, devendo ambos serem reconhecidos como iguais nas comparações.

O expoente 111 é reservado para representar $+\infty$,

e $-\infty$, que é representado por

As demais combinações com o expoente 111 não são válidas, sendo consideradas (NaN ou Not a Number)

A configuração

representa +0,

enquanto a configuração

representa -0, devendo ambos serem reconhecidos como iguais nas comparações.

O expoente 111 é reservado para representar $+\infty$,

 $e-\infty$, que é representado por

As demais combinações com o expoente 111 não são válidas, sendo consideradas (NaN. ou Not a Number).

A configuração

representa +0,

enquanto a configuração

representa -0, devendo ambos serem reconhecidos como iguais nas comparações.

O expoente 111 é reservado para representar $+\infty$,

e $-\infty$, que é representado por

bastando trocar o bit de sinal do número para 1 por ser negativo.

As demais combinações com o expoente 111 não são válidas, sendo consideradas (NaN, ou Not a Number).

E quando a mantissa não cabe nos 4 bits?

Somos obrigados a arredondar a mantissa para que ela caiba nos 4 bits

Vamos, assim, perder precisão no número e ele não mais representará exatamente, o número desejado.

Exemplo 5: $(9,375)_{10} = (1001,011)_2 = 1,001011 \times 2^3$

- ⇒ Possui 6 dígitos depois da vírgula, mas o computador só tem reservados 4 bits para a mantissa.
- ⇒ Deve ser feito o arredondamento para 4 casas decimais: se o dígito abandonado após as 4 casas decimais for menor que 1 (ou seja, se for 0), os dígitos anteriores devem ser mantidos. Se o dígito abandonado for igual a 1, somo 1 ao dígito anterior

E quando a mantissa não cabe nos 4 bits?

Somos obrigados a arredondar a mantissa para que ela caiba nos 4 bits.

Vamos, assim, perder precisão no número e ele não mais representará exatamente, o número desejado.

Exemplo 5

$$(9,375)_{10} = (1001,011)_2 = 1,001011 \times 2^3$$

- \Rightarrow Possui 6 dígitos depois da vírgula, mas o computador só tem reservados 4 bits para a mantissa.
- ⇒ Deve ser feito o arredondamento para 4 casas decimais: se o dígito abandonado após as 4 casas decimais for menor que 1 (ou seja, se for 0), os dígitos anteriores devem ser mantidos. Se o dígito abandonado for igual a 1, somo 1 ao dígito anterior

E quando a mantissa não cabe nos 4 bits?

Somos obrigados a arredondar a mantissa para que ela caiba nos 4 bits.

Vamos, assim, perder precisão no número e ele não mais representará, exatamente, o número desejado.

Exemplo 5: $(9,375)_{10} = (1001,011)_2 = 1,001011 \times 2^3$

- \Rightarrow Possui 6 dígitos depois da vírgula, mas o computador só tem reservados 4 bits para a mantissa.
- ⇒ Deve ser feito o arredondamento para 4 casas decimais: se o dígito abandonado após as 4 casas decimais for menor que 1 (ou seja, se for 0), os dígitos anteriores devem ser mantidos. Se o dígito abandonado for igual a 1, somo 1 ao dígito anterior.

E quando a mantissa não cabe nos 4 bits?

Somos obrigados a arredondar a mantissa para que ela caiba nos 4 bits.

Vamos, assim, perder precisão no número e ele não mais representará, exatamente, o número desejado.

$$(9,375)_{10} = (1001,011)_2 = 1,001011 \times 2^3$$

- \Rightarrow Possui 6 dígitos depois da vírgula, mas o computador só tem reservados 4 bits para a mantissa.
- ⇒ Deve ser feito o arredondamento para 4 casas decimais: se o dígito abandonado após as 4 casas decimais for menor que 1 (ou seja, se for 0), os dígitos anteriores devem ser mantidos. Se o dígito abandonado for igual a 1, somo 1 ao dígito anterior.

E quando a mantissa não cabe nos 4 bits?

Somos obrigados a arredondar a mantissa para que ela caiba nos 4 bits.

Vamos, assim, perder precisão no número e ele não mais representará, exatamente, o número desejado.

$$(9,375)_{10} = (1001,011)_2 = 1,001011 \times 2^3$$

- \Rightarrow Possui 6 dígitos depois da vírgula, mas o computador só tem reservados 4 bits para a mantissa.
- ⇒ Deve ser feito o arredondamento para 4 casas decimais: se o dígito abandonado após as 4 casas decimais for menor que 1 (ou seja, se for 0), os dígitos anteriores devem ser mantidos. Se o dígito abandonado for igual a 1, somo 1 ao dígito anterior.

E quando a mantissa não cabe nos 4 bits?

Somos obrigados a arredondar a mantissa para que ela caiba nos 4 bits.

Vamos, assim, perder precisão no número e ele não mais representará, exatamente, o número desejado.

$$(9,375)_{10} = (1001,011)_2 = 1,001011 \times 2^3$$

- \Rightarrow Possui 6 dígitos depois da vírgula, mas o computador só tem reservados 4 bits para a mantissa.
- \Rightarrow Deve ser feito o arredondamento para 4 casas decimais: se o dígito abandonado após as 4 casas decimais for menor que 1 (ou seja, se for 0), os dígitos anteriores devem ser mantidos. Se o dígito abandonado for igual a 1, somo 1 ao dígito anterior.

Exemplo 5:

$$(9,375)_{10} = (1001,011)_2 = 1,001011 \times 2^3 = 1,0011 \times 2^3$$

Exemplo 6: $(9,125)_{10} = (1001,001)_2 = 1,001001 \times 2^3 = 1,0010 \times 2^3$

Exemplo 5:

$$(9,375)_{10} = (1001,011)_2 = 1,001011 \times 2^3 = 1,0011 \times 2^3$$

Exemplo 6: $(9, 125)_{10} = (1001, 001)_2 = 1,001001 \times 2^3 = 1,0010 \times 2^3$

$$(9,375)_{10} = (1001,011)_2 = 1,001011 \times 2^3 = 1,0011 \times 2^3$$

Exemplo 6:
$$(9,125)_{10} = (1001,001)_2 = 1,001001 \times 2^3 = 1,0010 \times 2^3$$

$$(9,375)_{10} = (1001,011)_2 = 1,001011 \times 2^3 = 1,0011 \times 2^3$$

Exemplo 6:
$$(9,125)_{10} = (1001,001)_2 = 1,001001 \times 2^3 = 1,0010 \times 2^3$$

Exemplo 5:

$$(9,375)_{10} = (1001,011)_2 = 1,001011 \times 2^3 = 1,0011 \times 2^3$$

Exemplo 6: $(9,125)_{10} = (1001,001)_2 = 1,001001 \times 2^3 = 1,0010 \times 2^3$

Exemplo 5:

$$(9,375)_{10} = (1001,011)_2 = 1,001011 \times 2^3 = 1,0011 \times 2^3$$

Exemplo 6: $(9,125)_{10} = (1001,001)_2 = 1,001001 \times 2^3 = 1,0010 \times 2^3$

