2770.
$$\sum_{n=1}^{\infty} \left(\frac{x^n}{n} - \frac{x^{n+1}}{n+1} \right); \quad -1 \le x \le 1.$$

2771.
$$\sum_{n=1}^{\infty} \frac{x}{[(n-1)x+1](nx+1)}; \quad 0 < x < +\infty.$$

2772.
$$\sum_{n=1}^{\infty} \frac{1}{(x+n)(x+n+1)}; \quad 0 < x < +\infty.$$

2773.
$$\sum_{n=1}^{\infty} \frac{nx}{(1+x)(1+2x)\dots(1+nx)};$$

a)
$$0 \le x \le \varepsilon$$
, rge $\varepsilon > 0$; 6) $\varepsilon \le x < +\infty$.

2774. Пользуясь признаком Вейерштрасса, доказать равномерную сходимость в указанных промежутках следующих функциональных рядов:

a)
$$\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}, -\infty < x < +\infty;$$

6)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{x+2^n}$$
, $-2 < x < +\infty$;

B)
$$\sum_{n=1}^{\infty} \frac{x}{1+n^4x^2}$$
, $0 \le x < +\infty$;

r)
$$\sum_{n=1}^{\infty} \frac{nx}{1+n^6x^2}$$
, $|x| < +\infty$;

A)
$$\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n!}} (x^n + x^{-n}), \frac{1}{2} < |x| < 2;$$

e)
$$\sum_{n=1}^{\infty} \frac{x^n}{\left[\frac{n}{2}\right]!}$$
, $|x| < a$, где a — произвольное

положительное число;