BLOCK DIAGRAM

IMAGE ACQUISITION

- Images collected from online sources.
- Live Images have been obtained.
- Classification into 7 Different classes of Garbage Cardboard, Metal, Paper, Plastic, Glass, Trash, Ewaste.
- Image Format: jpg
- Image sizes: 4032x3024, 3024x4032, 3264x2448, 2448x3264

Sources:

- 1. https://github.com/garythung/trashnet
- 2. https://www.kaggle.com/kaustubh2402/ewaste-dataset

IMAGE DATA AUGMENTATION

- Image Flip
- Image Shear
- Image Zoom
- Image Height Shift
- Image Width Shift
- Image Rotation

IMAGE RESIZING

- Resizing an image means changing the dimensions of it, be it width alone, height alone or changing both of them.
- The aspect ratio of the original image is also preserved in the resized image, so that the image does not appear distorted to the naked eye.
- To resize an image, OpenCV in python provides cv2.resize() function.
- Python, by default, uses a method called Bilinear Interpolation to resize the image.

FEATURE EXTRACTION

- Feature extraction involves reducing the number of resources required to describe a large set of data.
- Feature extraction refers to the process of transforming raw data into numerical features that can be processed while preserving information in the original dataset.

Feature Extraction

Features

FULLY CONNECTED LAYER

Convolution Neural Network (CNN) Input Output Pooling Pooling Pooling _Horse -Zebra -Dog SoftMax Activation Convolution Convolution Convolution Function ReLU ReLU Kernel Flatten ReLU Layer Fully Connected -Feature Maps Layer Probabilistic Classification Feature Extraction Distribution

MODEL TRAINING REQUIREMENTS

- Platform used: Google Colab
- Language: Python
- RAM Used: 2.38 GB
- GPU Used: 8.81 GB
- Total No. of Images in Dataset: 3344
- Images Split-up: Cardboard 403

E-waste - 406

Plastic - 482

Paper - 594

Metal - 410

Glass - 501

Trash - 548

- Training Split − 80% 2675
- Testing and Validation Split 20% 669

Xception Model

XCEPTION FEATURES

- Total number of Convolutional layers : 36
- Total number of Features extracted : 2048
- Xception uses Modified Depthwise Separable Convolution : Pointwise followed by Depthwise Convolution
- Optimizer Used: SGD (Stochastic Gradient Descent) Optimizer
- Loss function used: Categorical Cross Entropy

Multi Branch Deep Learning Model

Proposed Model

CNN Model Parameters

Models	Features Extracted	Input Size	Model Storage Size	No. of Epochs	Training Time per Epoch	Total Training Time
Xception	2048	299x299	80 MB	250	105 seconds	7.3 hours
Inception V3	2048	299x299	85 MB	500	67 seconds	9.3 hours
Resnet50	2048	229x229	91 MB	500	59 seconds	8.2 hours
VGG16	512	224x224	57 MB	500	50 seconds	6.9 hours
MobileNet	1024	224x224	13 MB	500	45 seconds	6.25 hours

THIRD REVIEW 12

Confusion Matrix

• Confusion Matrix gives us a matrix as output and describes the complete performance of a CNN model.

- There are 4 important terms :
 - True Positives
 - True Negatives
 - False Positives
 - False Negatives

	Predicted:	Predicted:
n=165	NO	YES
Actual:		
NO	50	10
Actual:		
YES	5	100

Metrics for Model Evaluation

1.
$$Accuracy = \frac{True\ Positive + True\ Negative}{Total\ Samples}$$
 Range = 0 to 1

2. $Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$ Range = 0 to 1

3. $Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$ Range = 0 to 1

4. $F1\ Score = \frac{True\ Positive}{True\ Positive + \frac{1}{2}(False\ Positive + False\ Negative)} = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$ Range = 0 to 1

5. $MCC = \frac{TP * TN - FP * FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$ Range = -1 to 1

6. $\kappa = \frac{po - pe}{1 - ne} = 1 - \frac{1 - po}{1 - ne}$ Range = -1 to 1

Results

Original Size: 3264x2448

Original Size: 3264x2448

Resized: 299x299

Resized: 299x299

Resized: 299x299

IMAGE AUGMENTATION

Original Image

Rotated Image

Sheared Image

Horizontal Flip

IMAGE AUGMENTATION

Original Image

Height Shifted Image

Zoomed Image

Width Shifted Image

Performance of Xception - Accuracy

Performance of Xception - Loss

VISUALIZATION OF EXTRACTED FEATURES

Original Image

-1.0
-0.8
-0.6
-0.6
-0.4
-0.2
Extracted Features

Extracted Features
Visualized over Original Image

Original Image

-1.0 -0.8 -0.6 -0.4 -0.2 0 1 2 3 4 5 6 7 8 9

Extracted Features

Extracted Features Visualized over Original Image

CLASSIFICATION OUTPUT EXAMPLES

Maximum Probability: 0.9979786

Predicted: Ewaste Truth: Ewaste

Maximum Probability: 0.9616854

Predicted: Glass Truth: Glass

Maximum Probability: 0.9999882

Predicted: Cardboard Truth: Cardboard

Maximum Probability: 0.99974936

Predicted: Metal Truth: Metal

Maximum Probability: 0.999979

Predicted: Paper Truth: Paper

Maximum Probability: 0.999691

Predicted: Plastic Truth: Plastic

CLASSIFICATION OUTPUT EXAMPLES

Loaded Image	AND		
Predicted Class	Ewaste	Cardboard	Paper
Truth	Ewaste	Cardboard	Paper
Maximum Probability	0.9979786	0.9999882	0.999979

CLASSIFICATION OUTPUT EXAMPLES

Loaded Image			
Predicted Class	Glass	Metal	Plastic
Truth	Glass	Metal	Plastic
Maximum Probability	0.9616854	0.99974936	0.999691

Confusion Matrix

Confusion Matrix Cardboard 0.941 0.000 0.000 0.000 0.000 0.000 0.059 Ewaste 0.000 0.944 0.000 0.000 0.056 0.000 0.000 Glass 0.000 0.000 0.952 0.048 0.000 0.000 0.000 **True class** Metal 0.059 0.000 0.059 0.882 0.000 0.000 0.000 Paper 0.042 0.000 0.000 0.000 0.875 0.042 0.042 Plastic 0.000 0.000 0.050 0.000 0.000 0.950 0.000 Trash 0.000 0.000 0.000 0.000 0.000 1.000 Cardboar Bwaste Glass Metal Paper Plastic Trash Predicted class

Proposed Modified Xception

Comparison

Model Metrics	Normalized Values		
Accuracy	0.9571		
MCC	0.9503		
Cohen's Kappa Coefficient	0.9499		

Class	Accuracy	Precision	Recall	F1 Score
Cardboard	1.0000	1.0000	1.0000	1.0000
Ewaste	1.0000	1.0000	1.0000	1.0000
Glass	0.9714	0.9474	0.8571	0.9714
Metal	0.9786	0.8500	1.0000	0.9786
Paper	0.9857	0.9583	0.9583	0.9857
Plastic	0.9786	0.9474	0.9000	0.9786
Trash	1.0000	1.0000	1.0000	1.0000

Accuracy, Recall, Precision and F1 Score of Proposed Model

Classes

Class Accuracy

Class Accuracy

■ VGG16 Resnet50

Xception

MobileNet

Inception

Class Accuracy

Class Accuracy

Model Accuracy Comparison

Accuracy

Proposed Model Accuracy Comparison

Accuracy

