TEMA 7.- COMBUSTIBLES SOSTENIBLES

- Combustibles sólidos
- Combustibles líquidos
- Combustibles gaseosos
- Cadena del gas natural
- Hidrocarburos no convencionales
- Almacenamiento y transporte de CO₂
- Hidrógeno como vector energético

Combustibles Sólidos

• El mas habitual es el carbón, formado a partir de la carbonización de la madera y materiales orgánicos:

	C (%)	H(%)	<i>O</i> (%)	PCS (MJ/kg)
madera	49	7	44	10 ÷ 16
turba	60	6	34	17
lignito	70	5	25	< 20
hulla	75÷85	5	20÷10	20 ÷ 36
antracita	94	3	3	33 ÷ 36

Incremento de presión, temperatura y tiempo

• Carbonización: descomposición de los enlaces mediante calor y en ausencia de oxígeno

Combustibles Líquidos

• Se obtienen en su mayor parte de la destilación fraccionada del petróleo. También se pueden conseguir de procesos de licuefacción del carbón.

	fórmula	ρ	С	PCI	PCS	AC_e
		(kg/m^3)	(kJ/kg-K)	(MJ/kg)	(MJ/kg)	
gasolina	C_8H_{18}	750	2,4	44	47,3	14,6
gasóleo	$C_{12}H_{26}$	810	2,2	43,2	46,1	14,5
metanol	CH4O	792	2,6	20	22,7	6,47
etanol	C_2H_6O	785	2,5	26,9	29,7	9,00

• Ejemplo de análisis elemental (en masa)

	Fuelóleo I	Fuelóleo II	Gasóleo C
C	0,846	0,837	0,860
Н	0,097	0,092	0,111
5	0,027	0,036	0,008
0	0,000	0,000	0,000
Ν	0,010	0,010	0,010
H ₂ O	0,015	0,020	0,010
Cenizas	0,005	0,005	0,001

Combustibles Gaseosos

- Su origen puede ser natural o artificial, pudiendo producirse en este último caso a partir del carbón o del petróleo
- Índice de Wobbe: $W = \frac{PCS}{\sqrt{\rho_r}}$ (evalúa la validez de gases para un quemador)

donde $\, \rho_{r} \,$ representa la densidad relativa al aire

<u> Familia</u>	denominación	W (MJ/Nm³)	
1	gas manufacturado: gas ciudad,	23,8 ÷ 31,4	
	gas de agua, gas de aire, gas mixto,		
	gas de hulla, gasificación de carbón		
II	gas natural	41,2 ÷ 58	
Ш	gases licuados del petróleo (GLP):	77,4 ÷ 92,4	
	butano y propano		

Combustibles Gaseosos: Primera familia

Gases manufacturados

- Se obtienen de la destilación de carbones, cracking de naftas, ...
- Gas manufacturado (ciudad) típico
 - obtenido por reformado catalítico por vapor de naftas ligeras
 - así se transforma un hidrocarburo líquido en gaseoso, facilitando su distribución

```
H_2: 53 % ; CO: 2,8 % ; CO_2: 21,2 % ; CH_4: 23 % \rho_r = 0,54 ; PCS: ~17,6 MJ/Nm<sup>3</sup>
```

- Gas de hulla
 - obtenido de la destilación seca de carbones (hulla)
 - la hulla se introduce en un horno sin aire a 1200 ºC, descomponiéndose en coque (sólido) y gas:

$$H_2$$
: 50 % ; CO: 10 % ; CO₂: 2 % ; CH₄: 30 % ; C_nH_m: 4% ; N₂: 4% ρ_r = 0,4 ; PCS: ~ 23,4 MJ/Nm³

1 kg de hulla produce 650 g de coque (29,26 MJ/kg) y 350 g de gas (45,26 MJ/kg)

Combustibles Gaseosos: Primera familia

- gasificación del carbón
 - se obtiene un gas de síntesis (CO + H₂) a partir de una combustión incompleta del carbón con defecto de aire (10 a 50% del teórico)
 - en estado gaseoso resulta fácil eliminar sustancias nocivas (compuestos de azufre y cenizas)
 - el gas de síntesis se emplea para la obtención de amoniaco, metanol, gasolina y otros productos
 - la gasificación comercial para obtener gas de síntesis comenzó en los 1950s, diseñandose una segunda y tercera generación de gasificadores y construyéndose grandes unidades comerciales en los 1980s. La gasificación para producción de electricidad comenzó con plantas prototipo en 1992
 - en la producción eléctrica si se emplea oxígeno como comburente el SO₂ y los NO_x se pueden eliminar con facilidad, produciendo una "combustión limpia".
 - la gasificación para producción de electricidad permite un elevado nivel de integración, favoreciendo los IGCC

Combustibles Gaseosos: Primera familia

• la composición del gas y su poder calorífico depende del comburente y del tipo de carbón

	aire	oxígeno
CO	17	40 ÷ 60
H_2	23	26 ÷ 30
N_2	38	
CO ₂	15	2 ÷ 10
CH4	6	< 4
H_2O	(*)	2 ÷ 17
PCS [MJ/Nm³]	3,5 ÷ 8	10,6 ÷ 24,6

(*) en el caso del aire como comburente la composición es en base seca

Combustibles Gaseosos: Gas natural (segunda familia)

- Se obtiene de forma natural en los yacimientos
 - En el yacimiento suele estar acompañado por butano y propano, que normalmente se separan
 - El principal componente es el metano, que presenta las siguientes características
 - $\rho_r = 0.5523$; PCS = 55.6 MJ/kg (39.7 MJ/Nm3); PCI = 50 MJ/kg
 - la combustión completa de 1 g de CH₄ produce 2,75 g de CO₂, liberando 55,6 kJ. Es decir, se producen 20,21 kJ por cada g de CO₂ liberado a la atmósfera
 - la producción de CO₂ anterior es la mínima entre los combustibles fósiles habituales
 - el gas se distribuye canalizado en gasoductos, o bien licuado (GNL) para transporte por mar y tierra, gasificándolo posteriormente. El GNL se almacena a -160°C y presión atmosférica
 - Las composiciones son variadas. Se adjunta una tabla de las distribuciones en España

Combustibles
Gaseosos: Gas natural (segunda familia)

composición	gasoducto	importado	yacimiento	yacimiento
[%]	35 bar	Argelia	Serralbo	Gaviota
CH ₄	86,52	91,2	98,61	86,99
C_2H_6	12,38	7,4	0,24	5,27
C_3H_8	0,31	0,76	0,02	1,78
C_4H_{10}	0,05	0,09	0,02	0,66
C_5H_{12}	-	-	0,01	0,28
N_2	0,75	0,52	0,14	3,77
CO_2	-	-	0,96	1,25
PCS (MJ/Nm³)	43,6	42,5	39,5	41,5
$ ho_{r}$	0,623	0,603	0,566	0,641

Combustibles Gaseosos: Tercera familia (GLPs)

- Se obtienen de forma natural en los yacimientos de gas natural o mediante el refino del petróleo
 - Son el propano y el butano, comercializados en mezclas con otros HC
 - El propano puro presenta las siguientes características
 - $\rho_r = 1,562$; PCS = 50,4 MJ/kg (99 MJ/Nm³); PCI = 46,3 MJ/kg
 - la combustión completa de 1 g de C₃H₈ produce 3 g de CO₂, liberando 50,4 kJ. Es decir, se producen 16,8 kJ por cada g de CO₂ liberado a la atmósfera
 - la producción de CO₂ anterior es superior a la del CH₄
 - El butano puro presenta las siguientes características
 - ρ_r = 2,091 ; PCS = 49,6 MJ/kg (128,4 MJ/Nm³) ; PCI = 45,7 MJ/kg
 - la combustión completa de 1 g de C₄H₁₀ produce 3,03 g de CO₂, liberando 49,6 kJ. Es decir, se producen 16,35 kJ por cada g de CO₂ liberado a la atmósfera
 - la producción de CO₂ anterior es superior a la del CH₄ y a la del C₃H₈

Combustibles Gaseosos: Tercera familia (GLPs)

• Ambos GLPs se distribuyen en mezclas, por ejemplo

Propano comercial Butano comercial

 C_3H_8 : 87,48 % C_4H_{10} : 90,40 %

 C_4H_{10} : 11,89 % C_3H_8 : 9,14 %

 C_2H_6 : 0,63 % C_2H_6 : 0,46 %

- Ambos suelen almacenarse en fase líquida (vapor húmedo)
- A 30 °C la presión de vapor del butano puro es de 3 bar ; para el propano de 11 bar
- A presión ambiente la temperatura de ebullición del butano puro es de -1ºC; para el propano de -40ºC
- El propano se suele distribuir en canalizaciones gaseosas para uso en pequeñas comunidades
- El butano se usa casi exclusivamente en recipientes domésticos (13 a 35 kg)

Cadena del gas natural

[Álvarez, Balbás, 2003]

Cadena del gas natural Gasoducto

- Tubería normalmente enterrada
- Presión máxima de operación 100 bar; 72 bar habitual
- Estaciones de recompresión cada 200 km. Para 72 bar de máxima la presión no ha de bajar de 45 bar
- Velocidades entre 10 y 20 m/s
- Elementos de una estación de recompresión:
 - Filtros
 - Compresores (centrífugos, accionado por TG)
 - Enfriador (salida por debajo de 50ºC)
 - Valvulería, inversión de flujo, venteo

Cadena del gas natural Tratamiento

Endulzamiento (supresión ácidos)

- H₂S es corrosivo
- CO₂ puede congelarse

Secado y supresión mercurio

- Agua puede congelarse
- HC superiores al metano ensucian si son líquidos y pueden congelarse

Cadena del gas natural Licuefacción

- GNL a presión ambiente y unos -160ºC
- Gran densidad: facilita el transporte
- Refrigeración por varios procesos:
 - Refrigerantes puros (cascada o Philips)
 - Refrigerantes mixtos (mezclas, proceso APCI)

Cadena del gas natural Regasificación

Vaporizador sumergido

Vaporizador agua de mar

[Álvarez, Balbás, 2003]

- Hidrocarburo convencional:
 - roca madre, roca almacén y roca sello
 - se produce una migración del HC desde su formación hasta el almacenamiento definitivo
 - la premeabilidad de las rocas almacén es elevada
- Hidrocarburo NO convencional:
 - roca madre y almacén coinciden (no hay migración)
 - la permeabilidad es reducida o muy reducida: se requiere fracturación
 - no se requiere una trampa geológica (sello)
 - el gas natural puede estar:
 - Libre en la microgrietas
 - Adsorbido en la materia orgánica (carbón y pizarras)

- Tipos de gas natural no convencional:
 - "shale gas" o gas de pizarra: el gas está en microgrietas y adsorbido en la materia orgánica de pizarras, que son a la vez roca madre y almacén (no hay migración)
 - "coal bed methane" (CBM) o gas en capas de carbón no minable: similar al anterior, pero siendo las rocas capas de carbón. Es el gas denominado antiguamente "grisú".

 "Tight gas/gas sands" o gas en arenas de baja permeabilidad: el gas se encuentra en microgrietas de la roca almacén, procedente de la migración desde rocas madre cercanas. No hay gas adsorbido por la ausencia de materia orgánica.

[Cámara, Pendás, 2013]

- Perforación horizontal: menor ocupación superficial
- Estimulación (fracturación hidráulica):
 - inyección de agua con aditivos a presión
 - formación de microfracturas
 - aporte de arena para mantener abiertas las fracturas

- La extracción del gas es continua, la fracturación no
- Gran parte del agua empleada retorna a la superficie y es tratada

History

30

1990

- Gran desarrollo en USA
- Estrategia de futuro

1 bcm = 1 G Nm 3 1 tcm = 1 T Nm 3

Producción de gas en USA

Projections

- Pasan de ser consumidores de GNL a exportadores
- Los países de mayor producción (2012) son:
 - USA: 600 bcm (70% del total de GN producido)
 - China: 400 bcm (80%)
 - Canadá: 110 bcm (65%)
 - Australia: 105 bcm (63%)
 - India: 90 bcm (78 %)
 - Rusia: 50 bcm (8%)
- ESPAÑA:
 - Recurso de 37 bcm en CBM
- MUNDO:
 - Recursos:
 - Convencional: 404 tcm

25 49% 20 Shale gas 15 26% Alaska Tight gas 21% 10 Non-associated offshore 9% 7% 1% 10% 5 7% Associated with oil 7% 21% Non-associated onshore 9% 0

2010

• Tight: 84 tcm / Shale: 204 tcm / CBM: 118 tcm

[Cámara, Pendás, 2013]

Separación del CO₂ CAPTURA

Coste y capacidad para las distintas alternativas de transporte a 250 Km (2003)

El coste del transporte de CO_2 , según Chalmers, de forma aprox. (y según la gráfica) es entre 1 y 2 ϵ /Tm de CO_2 transportado por tubería (1000MW de carbón producen al año -6000h- unos 5M Tm de CO_2 . la mitad para CC de gas)

- Formaciones geológicas consideradas
 - Yacimientos/reservas de hidrocarburos: petróleo o gas natural
 - Acuíferos salinos profundos
 - Capas de carbón no explotables

Fuente IPCC, 2005	Gt CO ₂
Yacimientos de Petróleo y gas natural	675~900
Acuíferos salinos	1.000~10.00
Capas de carbón no explotables	3-15~200

Emisiones CO₂, **2004: 26.583 Mt CO₂**

Fuente IEA, 2006

Referencias

- A. Cámara, F. Pendás, Gas no convencional en España, una oportunidad de futuro,
 Consejo Superior de Ingenieros de Minas, 2013
- E. Álvarez, J. Balbás, El gas natural del yacimiento al consumidor, DOSSAT, 2003
- <u>Hidrocarburos convencionales</u>
- Hidrocarburos no convencionales (I)
- Hidrocarburos no convencionales (II)
- Cortés, Navarrete, Captura, transporte y almacenamiento del CO₂ originado por el empleo de combustibles fósiles, Fundación Ciudad de la Energía (CIUDEN), 2011
- Almacenamiento de CO₂