Universidad de San Carlos de Guatemala

Facultad de Ingeniería

Escuela de Ciencias y Sistemas

Organización Computacional

Ing. Juan Carlos Maeda Juárez

Auxiliares: Javier Gutierrez

NOMBRE	CARNÉ	PORCENTAJE DE PARTICIPACIÓN
Álvaro Gabriel Ramírez Alvarez	202112674	25%
Diego René Chen Teyul	202202882	25%
Nestor Enrique Villatoro Avendaño	202200252	25%
Pakal B'alam Rodriguez Espantzay	202201457	25%

Guatemala, 16 de junio 2024

Introducción

En el mundo actual, la tecnología digital está omnipresente. Desde nuestros dispositivos móviles hasta las computadoras que controlan la infraestructura crítica, la lógica combinacional juega un papel fundamental en el funcionamiento de estos sistemas. En este contexto, Intel Corporation busca una solución innovadora para una calculadora lógica combinacional que pueda realizar operaciones aritméticas, lógicas y comparativas.

El proyecto "LogicCalc" tiene como objetivo desarrollar un prototipo de calculadora que satisfaga las necesidades de Intel. La calculadora debe ser capaz de:

- Realizar operaciones aritméticas: suma, resta, multiplicación y potenciación.
- Realizar operaciones lógicas: AND, OR, XOR y NOT.
- Realizar operaciones comparativas: determinar el mayor, menor o igualdad entre dos números binarios.

Objetivos

Objetivo General

Construir una Unidad Aritmética Lógica Básica (ALU)

- Objetivos Específicos
 - Aprender el funcionamiento de Multiplexadores, Demultiplexadores, Comparadores y Decodificadores
 - o Construir un diseño optimo, logrando utilizar la menor cantidad de dispositivos
 - Adaptar el diseño lógico del display de 7 segmentos para que pueda ser implementado Aprender el funcionamiento de Operaciones lógicas, aritméticas y comparativas con números binarios.

Descripción del problema

Dentro del laboratorio práctico de la clase de Organización Computacional se nos solicitó desarrollar un prototipo de calculadora llamado "LogicCalc", Con fundamento en la búsqueda de una solución óptima basada en la lógica combinacional que fuera capaz de realizar de manera eficiente cálculos aritméticos y lógicos.

Funciones Booleanas

Tabla 1: Proceso teórico aplicado en el cubo para llegar su diagrama solución

	CUBO														
No. Elevado A3 A2		A2 A		A0	S6	S5	S4	S 3	S2	S1	S0	S0			
0	0	0	0	0	0	0	0	0	0	0	0	0			
1	0	0	0	1	0	0	0	0	0	0	1	1			
2	0	0	1	0	0	0	0	1	0	0	0	8			
3	0	0	1	1	0	0	1	1	0	1	1	27			
4	0	1	0	0	1	0	0	0	0	0	0	64			

Fuente: Elaboración propia con Excel, junio 2024

Tabla 2: Proceso teórico aplicado en el cuadrado para llegar su diagrama solución.

	CUADRADO														
No. Elevado	A3	A2	A1	A0	S6	S5	S4	S3	S2	S1	S0	S0			
0	0	0	0	0	0	0	0	0	0	0	0	0			
1	0	0	0	1	0	0	0	0	0	0	1	1			
2	0	0	1	0	0	0	0	0	1	0	0	4			
3	0	0	1	1	0	0	0	1	0	0	1	4			
4	0	1	0	0	0	0	1	0	0	0	0	16			
5	0	1	0	1	0	0	1	1	0	0	1	25			
6	0	1	0	0	0	1	0	0	1	0	0	36			
7	0	1	1	1	0	1	1	0	0	0	1	44			
8	1	0	0	0	1	0	0	0	0	0	0	64			
9	1	0	0	1	1	0	1	0	0	0	1	81			

CUBO

S0	Α	В	С	D	Υ
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	1
6	0	1	0	0	
7	0 1 1		1	1	1
8	1 0		0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

S1	Α	В	С	D	Υ
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	X
6	0	1	1	0	X
7	0	1	1	1	X
8	1	0	0	0	X
9	1	0	0	1	X
10	1	0	1	0	X
11	1	0	1	1	X
12	1	1	0	0	X
13	1	1	0	1	X
14	1	1	1	0	Х
15	1	1	1	1	X

S2	Α	В	С	D	Υ
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	Х
6	0	1	1	0	Х
7	0	1	1	1	Х
8	1	0	0	0	Х
9	1	0	0	1	Х
10	1	0	1	0	Х
11	1	0	1	1	Х
12	1	1	0	0	Х
13	1	1	0	1	X X
14	1	1	1	0	Χ
15	1	1	1	1	х

S 3	Α	В	С	D	Υ
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	Х
6	0	1	1	0	Х
7	0	1	1	1	х
8	1	0	0	0	х
9	1	0	0	1	Х
10	1	0	1	0	х
11	1	0	1	1	Х
12	1	1	0	0	Х
13	1	1	0	1	х
14	1	1	1	0	Х
15	1	1	1	1	х

S 4	Α	В	С	D	Υ
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	
4	0	1	0	0	0
5	0	1	0	1	х
6	0	1	1	0	Х
7	0 1 1		1	Х	
8	1	0	0	0	Х
9	1	0	0	1	Х
10	1	0	1	0	Х
11	1	0	1	1	х
12	1	1	0	0	Х
13	1	1	0	1	х
14	1	1	1	0	х
15	1	1	1	1	х

S 5	Α	В	С	D	Υ	
0	0	0	0	0	0	
1	0	0	0	1	0	
2	0	0	1	0	0	
3	0	0	1	1	0	
4	0	1	0	0	0	
5	0	1	0	1	Х	
6	0	1	1	0	х	
7	0	1	1	1	х	
8	1	0	0	0	х	
9	1	0	0	1	х	
10	1	0	1	0	х	
11	1	0	1	1	х	
12	1	1	0	0	х	
13	1	1	0	1	х	
14	1	1	1	0	Х	
15	1	1	1	1	х	

S 6	Λ	В	С	D	Υ
	Λ (-
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	Χ
6	0	1	1	0	Χ
7	0	1	1	1	Χ
8	1	0	0	0	X
9	~	0	0	1	X
10	1	0	1	0	Χ
11	1	0	1	1	Χ
12	1	1	0	0	Χ
13	1	1	0	1	X
14	1	1	1	0	Х
15	1	1	1	1	X

CUADRADO

S	Α	В	С	D	Υ	S1	Α	В	С	D	Υ	S2	2 A	В	С	D	Υ	S 3	Α	В	С	D	Υ
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	~	0	1	0	0	0	1	0
2	0	0	1	0	1	2	0	0	1	0	0	2	0	0	1	0	0	2	0	0	1	0	1
3	0	0	1	1	1	3	0	0	1	1	0	3	0	0	1	1	1	3	0	0	1	1	0
4	0	1	0	0	0	4	0	1	0	0	0	4	0	1	0	0	0	4	0	1	0	0	0
5	0	1	0	1	х	5	0	1	0	1	х	5	0	1	0	~	1	5	0	1	0	1	0
6	0	1	1	0	х	6	0	1	1	0	х	6	0	1	1	0	0	6	0	1	1	0	1
7	0	1	1	1	х	7	0	1	1	1	х	7	0	1	1	1	0	7	0	1	1	1	0
8	1	0	0	0	х	8	1	0	0	0	х	8	1	0	0	0	0	8	1	0	0	0	0
9	1	0	0	1	х	9	1	0	0	1	х	9	1	0	0	1	0	9	1	0	0	1	0
10	1	0	1	0	х	10	1	0	1	0	х	10) 1	0	1	0	х	10	1	0	1	0	x
11	1	0	1	1	х	11	1	0	1	1	х	11	1 1	0	1	1	х	11	1	0	1	1	х
12	1	1	0	0	х	12	1	1	0	0	х	12	2 1	1	0	0	х	12	1	1	0	0	х
13	1	1	0	1	х	13	1	1	0	1	х	13	3 1	1	0	1	х	13	1	1	0	1	х
14	1	1	1	0	х	14	1	1	1	0	х	14	1 1	1	1	0	х	14	1	1	1	0	х
15	1	1	1	1	х	15	1	1	1	1	х	15	5 1	1	1	1	х	15	1	1	1	1	х
		1					1							+			-		1	\vdash			

S4	Α	В	С	D	Υ	S 5	Α	В	С	D	Υ	S 6	Α	В	С	D	Υ
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0
2	0	0	1	0	0	2	0	0	1	0	0	2	0	0	1	0	0
3	0	0	1	1	0	3	0	0	1	1	0	3	0	0	1	1	0
4	0	1	0	0	1	4	0	1	0	0	0	4	0	1	0	0	0
5	0	1	0	1	1	5	0	1	0	1	Х	5	0	1	0	1	0
6	0	1	1	0	0	6	0	1	1	0	Х	6	0	1	1	0	0
7	0	1	1	1	1	7	0	1	1	1	х	7	0	1	1	1	0
8	1	0	0	0	0	8	1	0	0	0	х	8	1	0	0	0	1
9	1	0	0	1	1	9	1	0	0	1	х	9	1	0	0	1	1
10	1	0	1	0	х	10	1	0	1	0	х	10	1	0	1	0	х
11	1	0	1	1	х	11	1	0	1	1	х	11	1	0	1	1	х
12	1	1	0	0	х	12	1	1	0	0	х	12	1	1	0	0	Х
13	1	1	0	1	х	13	1	1	0	1	х	13	1	1	0	1	х
14	1	1	1	0	х	14	1	1	1	0	х	14	1	1	1	0	Х
15	1	1	1	1	х	15	1	1	1	1	х	15	1	1	1	1	х

Diagramas del diseño del circuito

Diagrama 1: La creación del diagrama fue por medio del programa Proteus, aplicando la entrada de los dos números y la entrada del controlador.

Diagrama 2: La creación del diagrama fue por medio del programa Proteus, aplicando la función de suma.

Diagrama 3: La creación del diagrama fue por medio del programa Proteus, aplicando la función del comparador.

Diagrama 4: La creación del diagrama fue por medio del programa Proteus, aplicando la función de resta.

Diagrama 5: La creación del diagrama fue por medio del programa Proteus, aplicando las funciones de multiplicación y potencia

Diagrama 6: La creación del diagrama fue por medio del programa Proteus, Salida Aritmética

Diagrama 7: La creación del diagrama fue por medio del programa Proteus, aplicando la unidad lógica

Equipo Utilizado

Cantidad	Objeto
10	Display 7 segmentos
2	74ls138 (Decoder)
4	74Is04 (Not)
20	74Is08 (And)
11	74ls32 (Or)
19	74ls86 (Xor)
7	Comparador
10	Decoder
3	Dip Switch (4 entradas)
10	sumador
7	Multiplexor
14	Protoboards
19	Resistencias (valor 330Ω)
1	Arduino MEGA
16m	Cable

Presupuesto

Nombre del Articulo	Cantidad	Precio Unitario	Total
Display 7 segmentos			
74ls138 (Decoder)	4	6	24
74ls04 (Not)			
74ls08 (And)	9	5.50	49.5
74ls32 (Or)	7	6	63
74Is86 (Xor)	2	10	20
Comparador	7	11	77
Decoder	10	5.01	5.01
Dip Switch (4 entradas)			
Sumador 7483	5	15	75
Multiplexor	10	7	70
Protoboards	5	50	250
Resistencias (valor 330Ω)			

❖ Gastos totales

Total gastado	633.5
Total integrantes	158.37

Aporte individual de cada integrante

Integrante	
Pakal B'alam Rodriguez Espantzay	Elaboración Circuito ,proteus,
	Arduino,funciones
Nestor Enrique Villatoro Avendaño	Elaboración Circuito ,proteus,
	Arduino,funciones ,Tinkercad
Diego René Chen Teyul	Elaboración Circuito ,proteus,
	Arduino,funciones
Álvaro Gabriel Ramírez Alvarez	Elaboración Circuito ,proteus,
	Arduino,funciones

Conclusion General

 Se logró construir una Unidad Aritmética Lógica Básica (ALU) funcional que cumple con los requisitos especificados. La ALU es capaz de realizar operaciones aritméticas, lógicas y comparativas con números binarios.

Conclusion Especificos:

- Se logró un aprendizaje profundo del funcionamiento de Multiplexadores,
 Demultiplexadores, Comparadores y Decodificadores. Este conocimiento fue fundamental para el diseño e implementación de la ALU.
- Se construyó un diseño optimizado que utiliza la menor cantidad de dispositivos posible.
 Esto se logró mediante la aplicación de técnicas de simplificación de circuitos lógicos.
- Se adaptó el diseño lógico del display de 7 segmentos para que pueda ser implementado.
 Esta adaptación permitió visualizar correctamente los resultados de las operaciones realizadas por la ALU.
- Se logró un aprendizaje completo del funcionamiento de operaciones lógicas, aritméticas y comparativas con números binarios. Este conocimiento fue fundamental para la comprensión y el desarrollo de la ALU.