2000年数学(一) 真题解析

一、填空题

(1)【答案】 $\frac{\pi}{4}$.

【解】 方法一

$$\int_{0}^{1} \sqrt{2x - x^{2}} \, dx = \int_{0}^{1} \sqrt{1 - (x - 1)^{2}} \, d(x - 1) = \int_{-1}^{0} \sqrt{1 - x^{2}} \, dx$$

$$= \int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \frac{x = \sin t}{\int_{0}^{\frac{\pi}{2}} \cos^{2} t \, dt} = I_{2} = \frac{1}{2} \times \frac{\pi}{2} = \frac{\pi}{4}.$$

方法二 根据定积分的几何应用, $\int_0^1 \sqrt{2x-x^2} \, \mathrm{d}x$ 即以曲线

 $y = \sqrt{2x - x^2}$ (0 $\leq x \leq 1$) 为曲边的曲边梯形的面积.

如图所示,显然 $\int_0^1 \sqrt{2x-x^2} dx = \frac{\pi}{4}$.

(2) **[答案]**
$$\frac{x-1}{1} = \frac{y+2}{-4} = \frac{z-2}{6}$$
.

【解】 $n = \{F'_x, F'_y, F'_z\} \mid_{(1,-2,2)} = \{2x, 4y, 6z\} \mid_{(1,-2,2)} = \{2, -8, 12\},$

则曲面在点(1,-2,2) 处的法线方程为 $\frac{x-1}{1} = \frac{y+2}{-4} = \frac{z-2}{6}$.

(3)【答案】 $y = \frac{C_1}{r^2} + C_2(C_1, C_2)$ 为任意常数).

【解】 方法一 由 xy'' + 3y' = 0,得 $y'' + \frac{3}{x}y' = 0$.

解得 $y' = C_0 e^{-\int_x^3 dx} = \frac{C_0}{x^3}$, 积分得原方程的通解为 $y = \frac{C_1}{x^2} + C_2(C_1, C_2)$ 为任意常数).

方法二 由 xy'' + 3y' = 0, 得 $x^3y'' + 3x^2y' = 0$ 或 $(x^3y')' = 0$.

于是 $x^3y' = C_0$,解得 $y' = \frac{C_0}{x^3}$,积分得原方程通解为 $y = \frac{C_1}{x^2} + C_2(C_1, C_2)$ 为任意常数).

(4)【答案】 -1.

【解】 因为原方程组无解,所以 $r(A) < r(\overline{A})$,而 $r(\overline{A}) \le 3$,所以 r(A) < 3. 于是 |A| = 0,解得 a = -1 或 a = 3.

当
$$a=3$$
时,由 $\overline{A}=\begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 5 & 3 \\ 1 & 3 & -2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 3 & 1 \\ 0 & 1 & -3 & -1 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$,

得 $r(\mathbf{A}) = r(\mathbf{A}) = 2$,原方程组有无数个解,所以 $a \neq 3$,故 a = -1.

(5)【答案】 $\frac{2}{3}$.

[M] $P(AB) = P(A) - P(AB), P(\overline{AB}) = P(B) - P(AB),$

由 $P(A\overline{B}) = P(\overline{A}B)$, 得 P(A) = P(B). 由 $P(\overline{A}\overline{B}) = P(\overline{A+B}) = 1 - P(A+B) = \frac{1}{9}$, 得 $P(A+B) = \frac{8}{9}$. 又 $P(A+B) = P(A) + P(B) - P(AB) = 2P(A) - P^2(A)$, 得 $P^2(A) - 2P(A) + \frac{8}{9} = 0$,解得 $P(A) = \frac{2}{3}$.

二、选择题

(6)【答案】 (A).

【解】 由
$$f'(x)g(x) - f(x)g'(x) < 0$$
,得 $\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)} < 0$,即 $\frac{f(x)}{g(x)}$ 为减函数,当 $a < x < b$ 时,有 $\frac{f(a)}{g(a)} > \frac{f(x)}{g(x)} > \frac{f(b)}{g(b)}$. 于是 $f(x)g(b) > f(b)g(x)$,应选(A).

方法点评:本题考查函数单调性.

若 f'(x) > 0 或 f'(x) < 0 时, f(x) 严格递增或严格递减.

注意如下技巧:若题中出现 f'(x)g'(x)-f(x)g'(x) 时,一般构造辅助函数 $\frac{f(x)}{g(x)}$; 若题中出现 f'(x)g(x)+f(x)g'(x),一般构造辅助函数 f(x)g(x).

(7)【答案】 (C).

【解】 由对面积的曲面积分的对称性质,得

$$\iint_S dS = \iint_S y dS = 0 \,, \quad \iint_S z dS = 4 \iint_{S_1} z dS \,,$$
又因为 $\iint_{S_1} x dS = \iint_{S_1} y dS = \iint_{S_1} z dS \,,$ 所以 $\iint_S z dS = 4 \iint_{S_1} x dS \,,$ 应选(C).

方法点评:二重积分、三重积分、对弧长的曲线积分、对面积的曲面积分有类似的对称性, 对面积的曲面积分的对称性如下:

若 Σ 关于xOy 平面对称,其中xOy 平面上方为 Σ_1 ,则有

$$\iint_{\Sigma} f(x,y,z) dS = \begin{cases} 0, & f(x,y,-z) = -f(x,y,z), \\ 2 \iint_{\Sigma_{1}} f(x,y,z) dS, & f(x,y,-z) = f(x,y,z). \end{cases}$$

其他两种情形同上.

(8)【答案】 (D).

【解】 方法一 令
$$S_n = u_1 + u_2 + \dots + u_n$$
,因为 $\sum_{n=1} u_n$ 收敛,所以 $\lim_{n \to \infty} u_n = 0$ 且 $\lim_{n \to \infty} S_n$ 存在. 设 $\lim_{n \to \infty} S_n = S$,令 $S'_n = (u_1 + u_2) + (u_2 + u_3) + \dots + (u_n + u_{n+1}) = 2S_n - u_1 + u_{n+1}$. 因为 $\lim_{n \to \infty} S'_n = 2S - u_1$,所以级数 $\sum_{n=1}^{\infty} (u_n + u_{n+1})$ 收敛,应选(D).
方法二 取 $u_n = \frac{(-1)^n}{\ln(n+1)}$,级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$ 收敛,而 $\sum_{n=1}^{\infty} \frac{1}{n \ln(n+1)}$ 发散,(A) 不对;

取
$$u_n = \frac{(-1)^n}{\sqrt{n}}$$
,级数 $\sum_{n=1}^{\infty} u_n^2 = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散,(B) 不对;
取 $u_n = \frac{(-1)^{n-1}}{n}$,级数 $\sum_{n=1}^{\infty} (u_{2n-1} - u_{2n}) = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散,(C) 不对,应选(D).

(9)【答案】 (D).

由 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关, 得 r(A) = m.

若 β_1 , β_2 , ····, β_m 线性无关,则 r(B) = m,因为 r(A) = r(B) = m,所以矩阵 A, B 等价; 反之,若矩阵 A, B 等价,则 r(A) = r(B),因为 r(A) = m,所以 r(B) = m,又因为矩阵的秩与矩阵列向量组的秩相等,所以 β_1 , β_2 , ····, β_m 的秩为 m, 即 β_1 , β_2 , ····, β_m 线性无关,应选(D).

(10)【答案】 (B).

【解】 ξ, η 不相关的充分必要条件是 $Cov(\xi, \eta) = 0$.

$$\overrightarrow{\mathrm{mi}}\ \mathrm{Cov}(\xi,\eta) = \mathrm{Cov}(X+Y,X-Y) = \mathrm{Cov}(X,X) - \mathrm{Cov}(Y,Y) = D(X) - D(Y),$$

$$X D(X) = E(X^2) - [E(X)]^2, D(Y) = E(Y^2) - [E(Y)]^2,$$

所以 ξ ,η 不相关的充分必要条件是D(X) = D(Y),

即
$$E(X^2) - [E(X)]^2 = E(Y^2) - [E(Y)]^2$$
,应选(B).

三、解答题

(11) **[M]**
$$\lim_{x \to 0^{+}} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x}{|x|} \right) = \lim_{x \to 0^{+}} \frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \lim_{x \to 0^{+}} \frac{\sin x}{x} = 0 + 1 = 1,$$

$$\lim_{x \to 0^{-}} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x}{|x|} \right) = \lim_{x \to 0^{-}} \frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} - \lim_{x \to 0^{-}} \frac{\sin x}{x} = 2 - 1 = 1,$$

得
$$\lim_{x\to 0} \left(\frac{2+e^{\frac{1}{x}}}{1+e^{\frac{4}{x}}} + \frac{\sin x}{|x|} \right) = 1.$$

(12)【解】 由复合函数求偏导法则,得

$$\frac{\partial z}{\partial x} = yf_1' + \frac{1}{y}f_2' - \frac{y}{x^2}g',$$

$$\begin{split} \frac{\partial^2 z}{\partial x \partial y} &= f_1' + y \left(x f_{11}''' - \frac{x}{y^2} f_{12}'' \right) - \frac{1}{y^2} f_2' + \frac{1}{y} \left(x f_{21}'' - \frac{x}{y^2} f_{22}'' \right) - \frac{1}{x^2} g' - \frac{y}{x^3} g'' \\ &= f_1' - \frac{1}{y^2} f_2' + x y f_{11}'' - \frac{x}{y^3} f_{22}'' - \frac{1}{x^2} g' - \frac{y}{x^3} g''. \end{split}$$

(13) [M]
$$\Leftrightarrow P(x,y) = \frac{-y}{4x^2 + y^2}, \quad Q(x,y) = \frac{x}{4x^2 + y^2},$$

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = \frac{y^2 - 4x^2}{(4x^2 + y^2)^2} \quad ((x, y) \neq (0, 0)).$$

如图所示,作 L_0 : $4x^2 + y^2 = r^2$ (r > 0且 L_0 位于L 内,取 逆时针方向),设 L_0^- 与L 围成的区域为 D_1 , L_0 围成的区域为 D_2 , 由格林公式得

三(13) 题图

$$\begin{split} \oint_{L+L_0^-} \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{4x^2 + y^2} &= \iint\limits_{D_1} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y = 0 \,, \\ \mp E \oint_L \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{4x^2 + y^2} &= \oint_{L_0} \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{4x^2 + y^2} = \frac{1}{r^2} \oint_{L_0} x \, \mathrm{d}y - y \, \mathrm{d}x \\ &= \frac{1}{r^2} \iint\limits_{D_0} 2 \, \mathrm{d}\sigma = \frac{2}{r^2} \iint\limits_{D_0} \mathrm{d}\sigma = \frac{2}{r^2} \cdot \pi \cdot r \cdot \frac{r}{2} = \pi \,. \end{split}$$

(14) [A] P = xf(x), Q = -xyf(x), $R = -e^{2x}z$,

由高斯公式得

$$\iint_{S} x f(x) dy dz - xy f(x) dz dx - e^{2x} z dx dy = \pm \iint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dv$$

$$= \pm \iint_{\Omega} \left[f(x) + x f'(x) - x f(x) - e^{2x} \right] dv = 0,$$
其中 Ω 为 S 围成的有界闭区域.

由曲面 S 的任意性,得 $f(x) + xf'(x) - xf(x) - e^{2x} = 0$,

整理得
$$f'(x) + \left(\frac{1}{x} - 1\right) f(x) = \frac{e^{2x}}{x}$$
,

解得
$$f(x) = \left[\int \frac{e^{2x}}{x} e^{\int (\frac{1}{x} - 1) dx} dx + C \right] e^{-\int (\frac{1}{x} - 1) dx} = \frac{e^{x} (e^{x} + C)}{x}.$$

因为
$$\lim_{x\to 0^+} f(x) = 1$$
,所以 $C = -1$,于是 $f(x) = \frac{e^x(e^x - 1)}{x}$.

(15) **[M]**
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n}{n+1} \cdot \frac{3^n + (-2)^n}{3^{n+1} + (-2)^{n+1}} = \frac{1}{3} \ \text{#} \sum_{n=1}^{\infty} \frac{1}{3^n + (-2)^n} \cdot \frac{x^n}{n} \text{ in which where } \frac{x^n}{n} \text{ in the proof of the pr$$

径为 R = 3,幂级数 $\sum_{n=1}^{\infty} \frac{1}{3^n + (-2)^n} \cdot \frac{x^n}{n}$ 的收敛区间为(-3,3).

当
$$x = 3$$
 时, $\sum_{n=1}^{\infty} \frac{1}{3^n + (-2)^n} \cdot \frac{3^n}{n} = \sum_{n=1}^{\infty} \frac{3^n}{3^n + (-2)^n} \cdot \frac{1}{n}$,

因为
$$\frac{3^n}{3^n+(-2)^n}\cdot\frac{1}{n}>\frac{1}{2n}>0$$
且 $\sum_{n=1}^{\infty}\frac{1}{2n}$ 发散,所以 $\sum_{n=1}^{\infty}\frac{1}{3^n+(-2)^n}\cdot\frac{3^n}{n}$ 发散,

即
$$x = 3$$
 时,级数 $\sum_{n=1}^{\infty} \frac{1}{3^n + (-2)^n} \cdot \frac{x^n}{n}$ 发散;

当
$$x = -3$$
时,

$$\sum_{n=1}^{\infty} \frac{1}{3^n + (-2)^n} \cdot \frac{(-3)^n}{n} = \sum_{n=1}^{\infty} \frac{3^n}{3^n + (-2)^n} \cdot \frac{(-1)^n}{n}$$
$$= \sum_{n=1}^{\infty} \frac{(-1)^n}{n} - \sum_{n=1}^{\infty} \frac{2^n}{3^n + (-2)^n} \cdot \frac{1}{n},$$

对正项级数
$$\sum_{n=1}^{\infty} \frac{2^n}{3^n + (-2)^n} \cdot \frac{1}{n}$$
,

$$\lim_{n \to \infty} \left\{ \left[\frac{2^{n+1}}{3^{n+1} + (-2)^{n+1}} \cdot \frac{1}{n+1} \right] / \left[\frac{2^n}{3^n + (-2)^n} \cdot \frac{1}{n} \right] \right\} = \frac{2}{3} < 1$$
 得级数 $\sum_{n=1}^{\infty} \frac{2^n}{3^n + (-2)^n} \cdot \frac{1}{n} = \frac{2}{3}$

$$\frac{1}{n}$$
 收敛,再由 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 收敛得 $x = -3$ 时,级数 $\sum_{n=1}^{\infty} \frac{1}{3^n + (-2)^n} \cdot \frac{x^n}{n}$ 收敛.

(16)【解】 设球体为 $\Omega: x^2 + y^2 + z^2 \le R^2$,点 $P_0(0,0,R)$ 为球面 Σ 上一点,且设 Ω 的重心 坐标为 $(\overline{x},\overline{y},\overline{z})$,由对称性得 $\overline{x} = 0,\overline{y} = 0$.

$$\overline{z} = \frac{\iint_{\Omega} z \cdot k [x^2 + y^2 + (z - R)^2] dv}{\iint_{\Omega} k [x^2 + y^2 + (z - R)^2] dv} = \frac{\iint_{\Omega} z [x^2 + y^2 + (z - R)^2] dv}{\iint_{\Omega} [x^2 + y^2 + (z - R)^2] dv},$$

由奇偶性得∭[
$$x^2 + y^2 + (z - R)^2$$
] $dv = \iiint_{\Omega} (x^2 + y^2 + z^2) dv + \iiint_{\Omega} R^2 dv$

$$= \int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^R r^4 \sin \varphi dr + \frac{4\pi R^5}{3}$$

$$= 2\pi \int_0^{\pi} \sin \varphi d\varphi \int_0^R r^4 dr + \frac{4\pi R^5}{3} = \frac{32\pi R^5}{15},$$

$$\iint_{\Omega} z \left[x^2 + y^2 + (z - R)^2 \right] dv = -2R \iint_{\Omega} z^2 dv = -\frac{2R}{3} \iint_{\Omega} (x^2 + y^2 + z^2) dv = -\frac{8\pi R^6}{15},$$
 于是 $\overline{z} = -\frac{R}{4}$,故 Ω 的重心坐标为 $\left(0,0,-\frac{R}{4}\right)$.

方法点评:本题考查三重积分的物理应用.

积分学的物理应用是数学一的考点,主要有:

(1) 重心

设D为平面区域,面密度为 $\rho(x,y)$,则重心坐标为

$$\overline{x} = \frac{\iint_{D} x \rho(x, y) d\sigma}{\iint_{D} \rho(x, y) d\sigma}, \quad \overline{y} = \frac{\iint_{D} y \rho(x, y) d\sigma}{\iint_{D} \rho(x, y) d\sigma};$$

设 Ω 为几何体,体密度为 $\rho(x,y,z)$,则重心坐标为

$$\overline{x} = \frac{\iint_{\Omega} x \rho(x, y, z) dv}{\iint_{\Omega} \rho(x, y, z) dv}, \quad \overline{y} = \frac{\iint_{\Omega} y \rho(x, y, z) dv}{\iint_{\Omega} \rho(x, y, z) dv}, \quad \overline{z} = \frac{\iint_{\Omega} z \rho(x, y, z) dv}{\iint_{\Omega} \rho(x, y, z) dv};$$

设L为平面曲线段,线密度为 $\rho(x,y)$,则重心坐标为

$$\overline{x} = \frac{\int_{L} x \rho(x, y) ds}{\int_{L} \rho(x, y) ds}, \quad \overline{y} = \frac{\int_{L} y \rho(x, y) ds}{\int_{L} \rho(x, y) ds};$$

设 Σ 为曲面,面密度为 $\rho(x,y,z)$,则重心坐标为

$$\overline{x} = \frac{\iint_{\Sigma} x \rho(x, y, z) dS}{\iint_{\Sigma} \rho(x, y, z) dS}, \quad \overline{y} = \frac{\iint_{\Sigma} y \rho(x, y, z) dS}{\iint_{\Sigma} \rho(x, y, z) dS}, \quad \overline{z} = \frac{\iint_{\Sigma} z \rho(x, y, z) dS}{\iint_{\Sigma} \rho(x, y, z) dS}.$$

(2) 转动惯量

设D为平面区域,面密度为 $\rho(x,y)$,则转动惯量为

$$I_{x} = \iint_{D} y^{2} \rho(x, y) d\sigma, \quad I_{y} = \iint_{D} x^{2} \rho(x, y) d\sigma, \quad I_{o} = \iint_{D} (x^{2} + y^{2}) \rho(x, y) d\sigma.$$

对几何体、空间曲线、空间曲面绕某直线旋转的转动惯量有类似公式.

(17) **[M]** $\Rightarrow F(x) = \int_{0}^{x} f(t) dt, F(0) = F(\pi) = 0.$

由罗尔定理,存在 $c \in (0,\pi)$,使得 F'(c) = 0,即 f(c) = 0.

用反证法. 不妨设在 $(0,\pi)$ 内 f(x) 除 c 外没有其他零点,则 f(x) 在(0,c) 与 (c,π) 内异号,不妨设当 $x \in (0,c)$ 时, f(x) > 0; 当 $x \in (c,\pi)$ 时, f(x) < 0.

$$\int_0^{\pi} (\cos x - \cos c) f(x) dx = \int_0^c (\cos x - \cos c) f(x) dx + \int_c^{\pi} (\cos x - \cos c) f(x) dx,$$

因为 $(\cos x - \cos c) f(x)$ 在[0,c] 上连续, $(\cos x - \cos c) f(x) \ge 0$ 且不恒为零,所以 $\int_{c}^{c} (\cos x - \cos c) f(x) dx > 0.$

同理
$$\int_{c}^{\pi} (\cos x - \cos c) f(x) dx > 0$$
,故 $\int_{0}^{\pi} (\cos x - \cos c) f(x) dx > 0$.

而 $\int_0^\pi (\cos x - \cos c) f(x) dx = \int_0^\pi \cos x f(x) dx - \cos c \int_0^\pi f(x) dx = 0$,矛盾,所以 f(x) 在 $(0,\pi)$ 内至少有两个零点。

(18) 【解】 $|A^*|=8$, $\oplus |A^*|=|A|^3$, $\oplus |A|=2$.

由 $ABA^{-1} = BA^{-1} + 3E$, 得 AB = B + 3A, 解 得 (A - E)B = 3A.

于是 $B = 3(A - E)^{-1}A = 3[A^{-1}(A - E)]^{-1} = 6(2E - 2A^{-1})^{-1} = 6(2E - A^*)^{-1}$,

因为
$$2\mathbf{E} - \mathbf{A}^* = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 3 & 0 & -6 \end{bmatrix}$$
,所以 $(2\mathbf{E} - \mathbf{A}^*)^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{6} \end{bmatrix}$

于是
$$\mathbf{B} = \begin{bmatrix} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 6 & 0 & 6 & 0 \\ 0 & 3 & 0 & -1 \end{bmatrix}$$
.

(19)【解】(I)由题意得

$$\begin{cases} x_{n+1} = \frac{5}{6}x_n + \frac{2}{5}\left(\frac{1}{6}x_n + y_n\right), \\ y_{n+1} = \frac{3}{5}\left(\frac{1}{6}x_n + y_n\right), \end{cases}$$

$$\underbrace{ \begin{cases} x_{n+1} = \frac{9}{10}x_n + \frac{2}{5}y_n, \\ y_{n+1} = \frac{1}{10}x_n + \frac{3}{5}y_n. \end{cases}}_{}$$

令
$$\mathbf{A} = \begin{pmatrix} \frac{9}{10} & \frac{2}{5} \\ \frac{1}{10} & \frac{3}{5} \end{pmatrix}$$
,则 $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \mathbf{A} \begin{pmatrix} x_n \\ y_n \end{pmatrix}$.

(Ⅱ)令 $\mathbf{P} = (\mathbf{\eta}_1, \mathbf{\eta}_2) = \begin{pmatrix} 4 & -1 \\ 1 & 1 \end{pmatrix}$,因为 $\mathbf{\eta}_1, \mathbf{\eta}_2$ 不成比例,所以 $\mathbf{\eta}_1, \mathbf{\eta}_2$ 线性无关. 由 $\mathbf{A}\mathbf{\eta}_1 = \mathbf{\eta}_1$,得 $\mathbf{\eta}_1$ 为 \mathbf{A} 的属于特征值 $\lambda_1 = 1$ 的特征向量; 由 $\mathbf{A}\mathbf{\eta}_2 = \frac{1}{2}\mathbf{\eta}_2$,得 $\mathbf{\eta}_2$ 为 \mathbf{A} 的属于特征值 $\lambda_2 = \frac{1}{2}$ 的特征向量.

$$(||||) {x_{n+1} \choose y_{n+1}} = A {x_n \choose y_n} = A^2 {x_{n-1} \choose y_{n-1}} = \cdots = A^n {x_1 \choose y_1},$$

曲
$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$
,得 $\mathbf{A} = \mathbf{P} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \mathbf{P}^{-1}$,于是 $\mathbf{A}^{n} = \mathbf{P} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2^{n}} \end{pmatrix} \mathbf{P}^{-1}$,

丽
$$\mathbf{P}^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 1 \\ -1 & 4 \end{pmatrix}$$
,因此 $\mathbf{A}^{n} = \mathbf{P} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2^{n}} \end{pmatrix} \mathbf{P}^{-1} = \frac{1}{5} \begin{pmatrix} 4 + \frac{1}{2^{n}} & 4 - \frac{1}{2^{n-2}} \\ 1 - \frac{1}{2^{n}} & 1 + \frac{1}{2^{n-2}} \end{pmatrix}$,

故
$$\binom{x_{n+1}}{y_{n+1}} = \mathbf{A}^n \cdot \frac{1}{2} \binom{1}{1} = \frac{1}{10} \binom{8 - \frac{3}{2^n}}{2 + \frac{3}{2^n}}.$$

(20)【解】 随机变量 X 的分布律为

$$P\{X=k\} = p(1-p)^{k-1}(k=1,2,\cdots),$$

则
$$E(X) = \sum_{k=1}^{\infty} kP(X=k) = p \sum_{k=1}^{\infty} k(1-p)^{k-1}$$
.

于是
$$E(X) = pS(1-p) = \frac{1}{p}$$
; $E(X^2) = \sum_{k=1}^{\infty} k^2 P\{X = k\} = p \sum_{k=1}^{\infty} k^2 (1-p)^{k-1}$,

$$\Leftrightarrow S_1(x) = \sum_{k=1}^{\infty} k^2 x^{k-1},$$

$$\begin{split} \bigvee S_1(x) &= \sum_{k=1}^{\infty} k (k-1) x^{k-1} + \sum_{k=1}^{\infty} k x^{k-1} \\ &= x \sum_{k=2}^{\infty} k (k-1) x^{k-2} + \frac{1}{(1-x)^2} = x \left(\sum_{k=2}^{\infty} x^k \right)'' + \frac{1}{(1-x)^2} \\ &= x \left(\frac{x^2}{1-x} \right)'' + \frac{1}{(1-x)^2} = \frac{1+x}{(1-x)^3}, \end{split}$$

则 $E(X^2) = pS_1(1-p) = \frac{2-p}{p^2}$, 于是 $D(X) = E(X^2) - [E(X)]^2 = \frac{1-p}{p^2}$.

(21)【解】 似然函数为

$$L(\theta) = f(x_1; \theta) f(x_2; \theta) \cdots f(x_n; \theta) = 2^n e^{-2\sum_{i=1}^n x_i + 2n\theta} (x_i > \theta, i = 1, 2, \dots, n),$$

$$\ln L(\theta) = n \ln 2 - 2\sum_{i=1}^n x_i + 2n\theta,$$

因为 $\frac{\mathrm{d}}{\mathrm{d}\theta}$ ln $L(\theta) = 2n > 0$,所以 ln $L(\theta)$ 关于 θ 为增函数,

于是 θ 的最大似然估计值为 $\hat{\theta} = \min\{x_i\}$.