5. Linear Programming

Roberto Amadini

Department of Computer Science and Engineering, University of Bologna, Italy

Combinatorial Decision Making and Optimization

2nd cycle degree programme in Artificial Intelligence University of Bologna, Academic Year 2023/24

Operations research

- Let's face (combinatorial) decision making and optimization from a different perspective
 - different paradigm, same goal: modeling and solving hard real-world optimization problems subject to different constraints
- Less "Al-oriented" and "logic-oriented", more "math-oriented"
- Less "constraints-centered", more "inequalities-centered"
- Based on relaxations and cutting-planes rather than propagation and search

Operations research

- Operation Research (OR) is a well-established field based on mathematical techniques for enhancing complex decision-making
- Originated in first half of 20th century for military purposes, nowadays OR finds application in several fields, e.g.:
 - Finance
 - Manufacturing and Logistics
 - Simulations and stochastic models
 - Transportation
 - ...
- OR strongly influenced by linear programming techniques and its variants (ILP, MIP, NLP...)
 - As for CP, "programming" does not mean "coding" in this context...

Linear programming

- Linear programming (LP) is based on systems of linear (in-)equalities
- We typically resort to LP when we need an optimal allocation for a limited number of resources
- LP is among the most relevant scientific advances of last century: several applications in disparate fields — not only scientific fields
 - Agriculture, sports, marketing, environment etc.
 - Delta claimed 100.000.000\$ saving per year using LP
 - H. Markowitz won Nobel prize for using LP to optimize portfolio profit
- Let's start with a toy example from MiniZinc tutorial
 - https://www.minizinc.org/doc-2.5.5/en/modelling.html# an-arithmetic-optimisation-example

Baking cakes

```
1% We know how to make two sorts of cakes. A banana cake which takes 250g of
2% self-raising flour, 2 mashed bananas, 75g sugar and 100g of butter, and a
3% chocolate cake which takes 200g of self-raising flour, 75g of cocoa, 150g
4% sugar and 150g of butter. We can sell a chocolate cake for $4.50 and a
5% banana cake for $4.00. And we have 4kg self-raising flour, 6 bananas,
6% 2kg of sugar, 500g of butter and 500g of cocoa. How many of each sort of
7% cake should we bake for the fete to maximise the profit
9 var 0..100; b; % no. of banana cakes
10 var 0..100; c; % no. of chocolate cakes
11
12% flour
13 constraint 250*b + 200*c <= 4000;
14% bananas
15 constraint 2*b <= 6:
16% sugar
17 constraint 75*b + 150*c <= 2000;
18% butter
19 constraint 100*b + 150*c <= 500;
20% cocoa
21 constraint 75*c <= 500;
22
23% maximize our profit
24 solve maximize 400*b + 450*c:
25
26 output ["no. of banana cakes = (b)\n",
           "no. of chocolate cakes = (c)\n"];
27
```

◆□ ▶ ◆□ ▶ ◆■ ▶ ◆■ ◆9.00

Geometric interpretation

- This is an example of linear problem: all the constraints are linear inequalities and we optimize a linear function
- Because only two variables are involved, we can geometrically represent the problem on the Cartesian plane
 - In 2 dim: equalities \equiv straight-lines, inequalities \equiv half-plane
 - In n dim: equalities \equiv hyperplanes, inequalities \equiv half-spaces
- ullet Feasible solution \equiv assignment satisfying all the constraints \equiv points within the intersection of all half-spaces defined by inequalities
- Set of all solutions \equiv set of all feasible points \equiv feasible region
 - It is a convex polyhedron: it may be empty, bounded or unbounded
- GOAL: find a point within the feasible region where the objective function has maximal value

Geometric interpretation

Where is the feasible region? What point is optimal?

Geometric interpretation

- By "tuning the isolines" of the objective function we find optimal solution (3, 4/3), having optimal value $z = 400 \cdot 3 + 450 \cdot 4/3 = 1800$ \$
- This is inconsistent with the model specification, where $b, c \in \mathbb{Z}$
- No worries, for now let's assume that we can sell slices of cake
 - If not, what would be the optimal solution?

Brewery problem

- Let's see another toy example: the brewery problem
 - From https://www.cs.princeton.edu/courses/archive/spr03/cs226/lectures/lp-4up.pdf
- A small brewery needs to produce ale and beer with limited resources:

Beverage	Corn	Hops	Malt	Profit
Ale	5	4	35	13
Beer	15	4	20	23
Q.ty available	480	160	1190	

- How can they maximize profits?
 - Devote all resources to ale: 34 barrels of ale \rightarrow 442\$
 - ullet Devote all resources to beer: 32 barrels of beer o 736\$
 - 7.5 barrels of ale, 29.5 barrels of beer \rightarrow 776\$
 - 12 barrels of ale, 28 barrels of beer \rightarrow 800\$
 - ...

Brewery problem

- Let's see another simple example: the brewery problem
 - From https://www.cs.princeton.edu/courses/archive/spr03/cs226/lectures/lp-4up.pdf
- A small brewery needs to produce ale and beer with limited resources:

Beverage	Corn	Hops	Malt	Profit
Ale	5	4	35	13
Beer	15	4	20	23
Q.ty available	480	160	1190	

• Let's formulate this as a LP problem:

The feasible region is:

We need to maximize 13A + 23B:

Observation: the optimal solution necessarily occurs at extreme point

- Extreme point property: if an optimal solution for a LP problem exists, then there is one at the extreme point of its feasible region
- Good news: the number of extreme points is finite
- Bad news: the number of extreme points can be exponential
 - E.g., the n-dimensional hypercube has exactly 2^n vertices

Canonical form

A LP problem in canonical form has the form:

$$\begin{array}{ll} \max & \sum_{j=1}^n c_j x_j \\ \text{s.t.} & \sum_{j=1}^n a_{i,j} x_j \leq b_i & 1 \leq i \leq m \\ & x_j \geq 0 & 1 \leq j \leq n \end{array}$$

- m = no. of linear constraints, n = no. of non-negative variables
- $a_{i,j}, b_i, c_j \in \mathbb{R}$ are known parameters
- $\sum_{i=1}^{n} c_i x_i$ is the objective function to maximize
 - subject to m linear inequalities $\sum_{j=1}^{n} a_{i,j} x_j \leq b_i$
- Matrix form: $\max c \cdot x$ s.t. $Ax \le b$ and $x \ge 0$

•
$$c = \langle c_1, \dots, c_n \rangle, \ x = \langle x_1, \dots, x_n \rangle^t, \ b = \langle b_1, \dots, b_m \rangle^t,$$

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \dots & \dots & \dots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix}$$

Standard form

A LP problem in standard form has the form:

$$\begin{array}{ll} \max & \sum_{j=1}^n c_j x_j \\ \text{s.t.} & \sum_{j=1}^n a_{i,j} x_j = b_i & 1 \leq i \leq m \\ & x_j \geq 0 & 1 \leq j \leq n \end{array}$$

- Matrix form: $\max c \cdot x$ s.t. Ax = b and $x \ge 0$
- We can easily convert from canonical to equivalent standard form with m slack variables $y_1, \ldots, y_m \ge 0$
 - From *n*-dimensional to (n + m)-dimensional problem
- $\sum_{j=1}^n a_{i,j} x_j \le b_i \implies \sum_{j=1}^n a_{i,j} x_j + y_i = b_i, y_i \ge 0$ for $i = 1, \dots, m$
 - Objective function does not change

Example

The above brewery problem is already in canonical form:

The corresponding standard form is:

• How to find an optimal solution with n > 2 variables?

Symplex algorithm

- Symplex algorithm developed by G. Dantzig in 1947
- General idea: start at some extreme point and iteratively move to a neighboring one that doesn't decrease the objective value
 - If no such extreme point exists, we found an optimal solution

• It exploits linear algebra properties

Basis

- Given a LP problem P in standard form, a basis of P is a subset $\mathcal{B} = \{x_{i_1}, \dots, x_{i_m}\}$ of $m \leq n$ variables s.t. columns A^{i_1}, \dots, A^{i_m} form a $m \times m$ invertible matrix $A_{\mathcal{B}}$
 - E.g., if $A = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & 1 \end{pmatrix}$ then $\mathcal{B} = \{x_1, x_2\}$ is not a basis because $A_{\mathcal{B}} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ is not invertible, while $\{x_1, x_3\}$ and $\{x_2, x_3\}$ are basis
- We can rewrite P by separating basic from non-basic variables: $\max(c_{\mathcal{B}}x_{\mathcal{B}}+c_{\mathcal{N}}x_{\mathcal{N}})$ s.t. $A_{\mathcal{B}}x_{\mathcal{B}}+A_{\mathcal{N}}x_{\mathcal{N}}=b$ and $x_{\mathcal{B}},x_{\mathcal{N}}\geq 0$
 - $\mathcal{N} = \{x_1, \dots, x_n\} \mathcal{B}$ are the non-basic variables of P
- By setting $x_{\mathcal{N}} = 0$, P becomes $\max(c_{\mathcal{B}}x_{\mathcal{B}})$ s.t. $A_{\mathcal{B}}x_{\mathcal{B}} = b$ hence $x_{\mathcal{B}} = A_{\mathcal{B}}^{-1}b \in \mathbb{R}^m$ with objective value $c_{\mathcal{B}}A_{\mathcal{B}}^{-1}b$. This solution is called a basic solution for \mathcal{B}

Basis

- A basic solution for \mathcal{B} is feasible iff $(\forall_{i=1}^m)$ $(x_{\mathcal{B}})_i \geq 0$
 - ullet Basic feasible solution (BFS) \equiv extreme point of feasible region
- A BFS for \mathcal{B} is non-degenerate iff $(\forall_{i=1}^m)$ $(x_{\mathcal{B}})_i > 0$
 - If BFS non-degenerate, then it's represented by a unique basis
- Simplex method iteratively considers BFS $\widetilde{x}_1, \widetilde{x}_2, \ldots$ s.t. $c\widetilde{x}_k \geq c\widetilde{x}_{k-1}$

Brewery example

The brewery example in standard form is:

- Let's first pick an arbitrary feasible basis, e.g., $\mathcal{B} = \{S_C, S_H, S_M\}$
 - $A_{\mathcal{B}}$ is the 3×3 identity matrix, $\mathcal{N} = \{A, B\}$ so A = B = 0
- The BFS for \mathcal{B} is $S_C = 480, S_H = 160, S_M = 1190$ with obj. value 0
 - ullet Feasible, but we may improve it with a new basis ${\cal B}'$ adjacent to ${\cal B}$
 - $\mathcal{B}' = \mathcal{B} \cup \{x^{in}\} \{x^{out}\}$ with $x^{in} \notin \mathcal{B}$ and $x^{out} \in \mathcal{B}$

- How to select entering variable x^{in} and leaving variable x^{out} ?
- We can choose the x^{in} which "increases more" the objective value
 - x^{in} will increase from 0 $(x^{in} \in \mathcal{N})$ to a value ≥ 0 $(x^{in} \in \mathcal{B}')$
 - In the brewery example, a unit increase in A increases the obj. value of 13; a unit increase in B increases the obj. value of 23: $x^{in} = B$
- Then, choose x^{out} by ensuring that $\mathcal{B}' = \mathcal{B} \cup \{x^{in}\} \{x^{out}\}$ is a feasible basis
 - Minimum ratio rule: x^{out} is in the row i minimizing ratio $\beta_i^{in}/\alpha_i^{in}$ where $\alpha_i^{in}, \beta_i^{in}$ are the x^{in} coefficient and known term in the i-th row
 - ullet Otherwise, \mathcal{B}' not feasible
 - In the brewery ex. $\min\{480/15, 160/4, 1190/20\} = \min\{32, 40, 59.5\} = 32$ so $x^{out} = S_C$: the new basis will be $\mathcal{B}' = \{B, S_H, S_M\}$
 - Then, x^{in} is derived and its value replaced in all other equations

• Selecting x^{in} , x^{out} resp. means choosing a pivot column and a pivot row from the tableau representation of max(Z) s.t.:

• From 2nd row we get $B = \frac{480-5A-S_C}{15} = 32 - \frac{1}{3}A - \frac{1}{15}S_C$ and we substitute it in all other equations:

- A contributes more than S_C in increasing Z: 1st column chosen $(x^{in} = A)$
 - The coefficients in the obj. function row are called reduced costs

- A contributes more than S_C in increasing $Z: x^{in} = A$
- The ratios for A are $\{32 \cdot 3, 32 \cdot \frac{3}{8}, 550 \cdot \frac{3}{85}\}$: 2^{nd} row chosen $(x^{\text{out}} = S_H)$

- A contributes more than S_C in increasing Z: $x^{in} = A$
- The ratios for A are $\{32 \cdot 3, 32 \cdot \frac{3}{8}, 550 \cdot \frac{3}{85}\}$: $x^{out} = S_H$
- New basis: $\{A, B, S_M\}$. We derive $A = \frac{3}{8} \cdot (32 + \frac{4}{15}S_C S_H) = 12 + \frac{1}{10}S_C \frac{3}{8}S_H$ and substitute it in the other equations

Optimality

- All the reduced costs are ≤0: increasing the value of corresponding variables won't increase the obj. value
- We cannot improve the current feasible solution → we reached an optimal solution:
 - $S_C = S_H = 0$
 - $A = 12, B = 28, S_M = 210$
 - $-S_C 2S_H Z = -800 \implies Z = 800 S_C 2S = 800$

Optimality

- The simplex method performs an "optimality check": if all the reduced costs are ≤0, we reached an optimal solution
- This condition is sufficient: for any optimal solution there is at least a basis s.t. all the reduced costs are ≤0
- ...But it's not necessary: we may reach an optimal solution even if some reduced cost is >0
- E.g., $\max(x_1)$ s.t. $x_3 = 1 x_2, x_4 = -x_1, x_i \ge 0$ with basis $\mathcal{B} = \{x_3, x_4\}$ corresponds to solution $x_3 = 1, x_1 = x_3 = x_4 = 0$.
- If we switch to $\mathcal{B} = \{x_3, x_1\}$ we get $\max(-x_4)$ s.t. $x_3 = 1 x_2$, $x_1 = -x_4$: optimality condition is OK but last solution not improved

Optimal region

- The feasible region for a LP problem P in canonical form is a set $\mathcal{F}_P = \{x \in \mathbb{R}^n \mid Ax \leq b, x \geq 0\}$ denoting a convex polyhedron
- The optimal region for a LP problem P in standard form is a set of solutions $\mathcal{O}_P = \{x^* \in \mathcal{F}_P \mid cx^* \geq cx, \forall x \in \mathcal{F}_P\}$
- Clearly $\mathcal{O}_P \subseteq \mathcal{F}_P$ and $\mathcal{F}_P = \emptyset \Rightarrow \mathcal{O}_P = \emptyset$
- If \mathcal{O}_P is finite, then $|\mathcal{O}_P|=1$ (hence $|\mathcal{O}_P|>1\Rightarrow \mathcal{O}_P$ infinite)
 - if $x_1, x_2 \in \mathcal{O}_P$ and $x_1 \neq x_2$ then all points in segment $\overline{x_1} \overline{x_2}$ are in \mathcal{O}_P because $x_1, x_2 \in \mathcal{F}_P$ which is convex
- Is there any problem P such that $\mathcal{F}_P \neq \emptyset \land \mathcal{O}_P = \emptyset$?

Unboundedness

- Simply consider $\max(x)$ s.t. $x \ge 0$: we have $\mathcal{F}_P = [0, +\infty)$ but there is no $x^* \in \mathcal{R}$ s.t. $x^* \ge x$ forall $x \in \mathcal{F}_P$: $\mathcal{O}_P = \emptyset$
- In these cases P is said unbounded: no optimal solution exists
 - \bullet \mathcal{F}_P is an unbounded polyhedron
- Simplex method also performs an "unboundedness check"
- With the tableau method seen above, we must ensure that no column j has reduced cost $\gamma_i > 0$ and coefficients $\alpha_{i,j} \leq 0$ for i = 1, ..., m
 - In the literature you can find different but equivalent formulations

Unboundedness

• For example, consider $\max(x-y+2)$ s.t. $x+y \ge 0$, $2x+y \ge -1$, $x,y \ge 0$. The tableau of the problem can be written as:

- With B = {S₁, S₂} we have a BFS with x = y = 0 and obj. value 2
 Degenerate solution (S₁ = 0)
- Reduced cost of x is 1 > 0 and its row coefficients are $-1, -2 \le 0$: the problem is unbounded: x can be arbitrarily increased

Unboundedness

• E.g., from each feasible solution $(\widetilde{x}, \widetilde{y})$ we can always derive a better solution $(\widetilde{x} + k, \widetilde{y})$ for each k > 0

Simplex steps

Given LP P in standard form, we can (roughly) summarize the simplex method as:

- 0. Let $k \leftarrow 0$, let \mathcal{B}_0 a feasible base for P and go to 1.
- 1. If BFS of \mathcal{B}_k is optimal then STOP, else go to 2.
- 2. If *P* unbounded then STOP, else go to 3.
- 3. Select an entering variable $x^{in} \notin \mathcal{B}_k$ and go to 4.
- 4. Select a leaving variable $x^{out} \in \mathcal{B}_k$ and go to 5.
- 5. Let $\mathcal{B}_{k+1} = \mathcal{B}_k \cup \{x^{in}\} \{x^{out}\}$ and reformulate P accordingly. Let $k \leftarrow k+1$ and go back to 1.

Baking cakes

• The former baking example in standard form is:

• Exercise: Find the optimal solution through the simplex method.

Simplex properties

- If all the possible BFS are non-degenerate, the simplex method always terminates in a finite number of steps
 - The no. of vertices is finite and at each step we move from one vertex to another always strictly improving the obj. value
- Otherwise, possible stalling: we repeatedly change base without improving the obj. value (common in large scale applications)
 - Termination can be guaranteed by setting rules preventing possible (but unlikely) infinite loops $\mathcal{B}_k \to \mathcal{B}_{k+1} \to \cdots \to \mathcal{B}_k$
- Worst-case time-complexity of simplex method is $O(2^n)$ but in practice is typically polynomial
- Alternative: interior point methods (polynomial) or approximation algorithms
 - Interior point better than simplex for problems with lots of vertices

- So far we assumed that we can always find a feasible base
 - How to choose an initial feasible base \mathcal{B}_0 ?
 - What if the problem is unsatisfiable?
- The two-phase method finds (if any) an initial base for a standard problem P by first solving an "artificial" problem P' derived from P by adding fresh variables s_1, \ldots, s_m
- 2nd phase problem P: max(cx) s.t. $Ax = b, x \ge 0$
- 1st phase problem P': max $\left(-\sum_{i=1}^{m} s_i\right)$ s.t.
 - $\sum_{j=1}^{n} a_{i,j} x_j + s_i = b_i$ for $i \in \{k \in \{1, ..., m\} \mid b_k \ge 0\}$
 - $\sum_{i=1}^{n} a_{i,j} x_j s_i = b_i$ for $i \in \{k \in \{1, ..., m\} \mid b_k < 0\}$
 - $s_i, x_j \geq 0$

- 1st phase problem P': max $\left(-\sum_{i=1}^{m} s_i\right)$ s.t.
 - $\sum_{i=1}^{n} a_{i,j} x_j + s_i = b_i$ for $i \in \{k \in \{1, ..., m\} \mid b_k \ge 0\}$
 - $\sum_{j=1}^{n} a_{i,j} x_j s_i = b_i$ for $i \in \{k \in \{1, ..., m\} \mid b_k < 0\}$
 - $s_i, x_i \geq 0$
- E.g., if *P* is:

$$\max(x_1 + 2x_2)$$
 s.t.
 $-x_1 - x_2 + x_3 = -1$
 $x_1 + x_2 + x_4 = 2$
 $x_1, \dots, x_4 > 0$

• Then *P'* is:

$$\max(-s_1 - s_2) \text{ s.t.} -x_1 - x_2 + x_3 - s_1 = -1 x_1 + x_2 + x_4 + s_2 = 2 x_1, \dots, x_4, s_1, s_2 > 0$$

- Note that objective $-\sum_{i=1}^m s_i$ is always ≤ 0 and $\mathcal{B}' = \{s_1, \dots, s_m\}$ is always a feasible basis corresponding to BFS $x_j = 0, s_i = |b_i|$
 - Hence, $\mathcal{F}_{P'} \neq \emptyset$ and $\mathcal{O}_{P'} \neq \emptyset$ (P' upper-bounded by 0)
- So we reformulate P' w.r.t. \mathcal{B}' . In the example above we get:

$$\max(-3 - 2x_1 + 2x_2 - x_3 + x_4) \text{ s.t.}$$

$$s_1 = 1 - x_1 - x_2 + x_3$$

$$s_2 = 2 - x_1 - x_2 - x_4$$

$$x_1, \dots, x_4, s_1, s_2 > 0$$

- Then we solve P' with the simplex method. A nice property is that $\mathcal{F}_P \neq \emptyset \iff \sum_{i=1}^m s_i = 0$:
 - If the optimal value of P' is < 0, then P is unsatisfiable,
 - Otherwise, from the basis corresponding to the optimal solution of P' we get an initial basis for P by removing s_i variables

Let's now tackle the brewery problem from a different angle

Beverage	Corn	Hops	Malt	Profit
Ale	5	4	35	13
Beer	15	4	20	23
Q.ty available	480	160	1190	

- An entrepreneur wants to buy individual resources (corn, hops, malt) from brewer at minimum cost
- The brewer won't sell resources if 5C + 4M + 35H < 13 (Ale profit) and 15C + 4M + 20H < 23 (Beer profit)
- What would be the minimum unit cost for corn, hops, malt given the resource availability and the brewer's constraints?

Let's now tackle the brewery problem from a different angle

Beverage	Corn	Hops	Malt	Profit
Ale	5	4	35	13
Beer	15	4	20	23
Q.ty available	480	160	1190	

• The entrepreneur LP problem can be formulate as:

minimize
$$480C + 160H + 1190M$$

subject to $5C + 4H + 35M \ge 13$
 $15C + 4H + 20M \ge 23$
 $C , H , M \ge 0$

- Optimal solution: C = 1, H = 2, M = 0 with total cost 800\$
 - Exercise: transform in canonical and standard form

- The entrepreneur problem is the dual of the brewery problem
- Resource evaluation rather than allocation
- Two different perspectives, but same optimal value
 - Brewer knows that she can earn at most 800\$
 - Entrepreneur knows that she has to spend at least 800\$
- The duality concept is important (not only) in LP and can be extended to general (N)LP problems

- Let $P: \max(cx)$ s.t. $Ax = b, x \ge 0$ with $b \in \mathbb{R}^m, x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}$ the primal problem
- Its dual problem $\mathcal{D}(P)$: $\min(by)$ s.t. $A^t y \geq c$ with $y \in \mathbb{R}^m$ has:
 - a variable y_i for each constraint $\sum_{j=1}^n a_{i,j}x_j = b_i$ of P, i = 1, ..., m
 - a constraint $\sum_{i=1}^{m} a_{j,i} y_i \le c_j$ for each variable x_j of P, $j=1,\ldots,n$
- Exercise: find the dual of following primal problem:

- Let $P: \max(cx)$ s.t. $Ax = b, x \ge 0$ with $b \in \mathbb{R}^m, x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}$ the primal problem
- Its dual problem $\mathcal{D}(P)$: $\min(by)$ s.t. $A^t y \geq c$ with $y \in \mathbb{R}^m$ has:
 - a variable y_i for each constraint $\sum_{j=1}^n a_{i,j}x_j = b_i$ of P, i = 1, ..., m
 - a constraint $\sum_{i=1}^{m} a_{j,i} y_i \le c_j$ for each variable x_j of P, $j=1,\ldots,n$
- Exercise: find the dual of following primal problem:

- Let $P: \max(cx)$ s.t. $Ax = b, x \ge 0$ with $b \in \mathbb{R}^m, x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}$ the primal problem
- Its dual problem $\mathcal{D}(P)$: $\min(by)$ s.t. $A^t y \geq c$ with $y \in \mathbb{R}^m$ has:
 - a variable y_i for each constraint $\sum_{j=1}^n a_{i,j}x_j = b_i$ of P, i = 1, ..., m
 - a constraint $\sum_{i=1}^{m} a_{j,i} y_i \le c_j$ for each variable x_j of P, $j=1,\ldots,n$
- Exercise: find the dual of following primal problem:

- Let $P: \max(cx)$ s.t. $Ax = b, x \ge 0$ with $b \in \mathbb{R}^m, x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}$ the primal problem
- Its dual problem $\mathcal{D}(P)$: $\min(by)$ s.t. $A^t y \geq c$ with $y \in \mathbb{R}^m$ has:
 - a variable y_i for each constraint $\sum_{j=1}^n a_{i,j} x_j = b_i$ of P, i = 1, ..., m
 - a constraint $\sum_{i=1}^{m} a_{j,i} y_i \leq c_j$ for each variable x_j of P, $j=1,\ldots,n$
- What about the dual of the dual?

Duality properties

- $\mathcal{D}(\mathcal{D}(P)) = P$: the dual of the dual is the primal
- Weak duality: the cost of any feasible solution of the primal is \leq the cost of any solution of the dual: $(\forall x \in \mathcal{F}_P, \forall y \in \mathcal{F}_{\mathcal{D}(P)})$ $cx \leq by$
 - by is an upper bound for obj. value of P
 - cx is a lower bound for obj. value of $\mathcal{D}(P)$
 - by "decreases" until a minimum value eventually reached
 - cx "increases" until a maximum value eventually reached /
 - If P unbounded, $\mathcal{D}(P)$ unfeasible: $(\mathcal{F}_P \neq \emptyset \land \mathcal{O}_P = \emptyset) \Rightarrow \mathcal{F}_{\mathcal{D}(P)} = \emptyset$
 - if $\mathcal{D}(P)$ unbounded, P unfeasible: $(\mathcal{F}_{\mathcal{D}(P)} \neq \emptyset \land \mathcal{O}_{\mathcal{D}(P)} = \emptyset) \Rightarrow \mathcal{F}_{P} = \emptyset$
- Strong duality: if primal and dual are feasible they have same optimal values: $\mathcal{F}_P, \mathcal{F}_{\mathcal{D}(P)} \neq \emptyset \Rightarrow (\forall x^* \in \mathcal{O}_P, \forall y^* \in \mathcal{O}_{\mathcal{D}(P)}) \ cx^* = by^*$
 - Remember brewery example?

Possible cases

- Note that primal unbounded ⇒ dual unfeasible but in general primal unfeasible ⇒ dual unbounded
 - E.g., $P: \max(2x_1 x_2)$ s.t. $x_1 x_2 \le 1, -x_1 + x_2 \le -2, x_1, x_2 \ge 0$ is unfeasible, and so is $\mathcal{D}(P)$
 - Exercise: prove it!
- In summary (✓= possible, X= impossible):

	$\mathcal{D}(P)$ bounded	$\mathcal{D}(P)$ unbounded	$\mathcal{D}(P)$ unfeasible
P bounded	✓	X	X
P unbounded	X	X	✓
P unfeasible	×	✓	✓

Dual simplex

- We can avoid to compute $\mathcal{D}(P)$ to apply the (primal) simplex on $\mathcal{D}(P)$ by running on P the dual simplex (C.E. Lemke, 1954)
 - C.E. Lemke, 1954
- Primal simplex: from feasible to optimal basis, preserving feasibility
- Dual simplex: from optimal basis (reduced costs ≤ 0, not necessarily feasible) to feasible basis, while preserving optimality
 - x^{out} = variable with minimum negative value
 - \bullet x^{in} = variable with maximum negative ratio
- Primal-dual: hybrid approach

Why duality?

- Theoretical purposes
 - E.g., finding a feasible solution is as hard as finding the optimal one: if we can find a solution for $\max(cx)$ s.t. $Ax = b, x \ge 0$ in T(n, m) time, we can find one for $Ax = b, x \ge 0$, $A^ty \ge c$, cx = by in O(T(n, m))
- Prove infeasibility of the primal problem (via dual simplex)
- Bounding the objective function (maybe with parallel solving)
 - Primal gives lower bound, dual gives upper bound
- Exploiting alternative/hybrid approaches
 - (primal-)dual simplex, (logic-based) Benders' decomposition
- Sensitivity analysis

Sensitivity analysis

- Sensitivity analysis refers to how the optimal solution of a problem is affected by changes in the input parameters
 - Post-optimality analysis
- If x^* is the optimal solution for standard LP problem P, will x^* be still feasible and/or optimal for a perturbed problem $\overline{P} \neq P$?
- \overline{P} : max(cx) s.t. $Ax = b, x \ge 0$ can be obtained from P by altering:
 - The known term: $b \leadsto \overline{b} = b + \Delta b$
 - The objective function coefficients: $c \rightsquigarrow \overline{c} = c + \Delta c$
 - The variables coefficients: $A \rightsquigarrow \overline{A} + \Delta A$

Sensitivity analysis

• Known term: Changing $b \leadsto \overline{b} = b + \Delta b$ can affect both the feasibility and optimality of current solution

Beverage	Corn	Hops	Malt	Profit
Ale	5	4	35	13
Beer	15	4	20	23
Q.ty available	480	160	1190	

- E.g., for brewery problem if corn availability decreases from 480 to 479 the optimal solution A=12, B=28 is not feasible anymore and the objective value drops from 800 to 790 (A=13, B=27)
 - ullet If hops decreases 1 unit, objective value drops to 787 (A=11,B=28)
 - If malt decreases up to 210 units, A = 12, B = 28 still optimal
 - In fact, $S_C = S_H = 0$ and $S_M = 210$ in the original optimal solution

Changing known term

- For brewery problem, increasing b doesn't affect feasibility, but can improve the obj. value
 - $\Delta b < 0 \rightarrow$ narrowing \mathcal{F}_P , $\Delta b > 0 \rightarrow$ extending \mathcal{F}_P
- In this case:
 - Increasing corn of ≥ 10 units improves the obj. value
 - Increasing hops of \geq 4 units improves the obj. value
 - Increasing malt only never improves the obj. value
- Changing known term of $P \equiv$ changing objective function of $\mathcal{D}(P)$
- We can compute the impact of Δb on P without re-solving P: if \mathcal{B} is an optimal basis for P, $\overline{x}_{\mathcal{B}} = A_{\mathcal{B}}^{-1}\overline{b} = A_{\mathcal{B}}^{-1}b + A_{\mathcal{B}}^{-1}\Delta b$
 - If feasible $(\overline{x}_{\mathcal{B}} \geq 0)$, the objective value $c_{\mathcal{B}}A_{\mathcal{B}}^{-1}\overline{b}$ can change as well

Geometric interpretation

Baking example: what ingredients should we (not) buy first to increase profit? If we can't buy, which ones should we sell without altering profit?

Changing costs

- Cost coefficients: Changing $c \leadsto \overline{c} = c + \Delta c$ can't affect feasibility, but may involve:
 - Loss of optimality of current solution
 - Different objective value for current solution (still optimal)
- E.g., in the brewery example if the profit of beer is 39 instead of 23 the optimal solution will be still A = 12, B = 28
 - But total profit would be 1248 instead of 800!
 - The same applies if beer profit drops to 14 (total profit 548)
- If beer profit is outside [14, 39] the solution changes as well
 - E.g., if beer profit = 13 then A = 26, B = 14 is more convenient
- ullet Again, we don't need to re-solve P to assess the impact of Δc

Changing constraints

- The impact of changing a coefficient $A \leadsto \overline{A} = A + \Delta A$ depends on whether $\overline{a}_{i,j}$ refers to a variable x_j in the optimal basis:
- If not, $x_j = 0$ so the current solution is still feasible and its value won't change. But the obj. function can change: we may lose optimality
- If yes, we can't say much: we need to re-solve with \overline{A}
- E.g., if the ale production would now require 4 units of corn instead of 5, then A=12, B=28 still feasible but no more optimal
 - A = 11, B = 29 would be better in this case (total profit 810)

Take-home messages

- Linear programming (LP) is one of the main areas of Operations Research (OR) field
- LP is about solving problems with linear constraints/objective function in a canonical or standard form
- The feasible region for a LP is a convex polyhedron
 - it can be empty, bounded, unbounded
- The simplex algorithm is a well-known method to tackle LP problems
 - Worst-case exponential, typically polynomial
 - Worst-case polynomial algorithms exist for LP problems

Take-home messages

- Simplex works by moving from one extreme point of the feasible region to a "not-worse one" up to an optimal point
 - Interior point methods traversing feasible region may scale better
- Two-phase method to check feasibility and get initial basis
- We can solve the dual of a LP problem: different perspective, same optimal value
- Sensitivity analysis to assess the effect of perturbations of the original problem
 - Post-optimality analysis, often doable without re-solving the problem

Resources

• https://www.cs.princeton.edu/courses/archive/spr03/cs226/lectures/lp-4up.pdf

• CDMO course a.y. 2020/21

• ...