Question 1:

Hene,
$$f(z) = \log_e(1+z)$$

and $z = x^T x$
 $f(z) = \frac{1}{dz} \log_e(1+z)$

Let, $f(z) = \frac{1}{dz} \log_e(1+z)$
 $\frac{1}{1+z} \frac{1}{z} \frac{1}{z$

利しているトビされたけるというない から

Part of the property with

where,
$$Z = g(y) = yTs^{-1}y$$

$$X = e^{-\frac{2}{2}} \cdot \frac{d}{d^2} \left(-\frac{2}{2} \right)$$

Heroe,
$$\frac{d}{dy}(y^T s^2 y) = \lim_{h \to 0} \frac{g(y+h) - g(y)}{h}$$

$$\Rightarrow \lim_{h\to 0} \frac{\chi(\gamma^r \bar{s}' + \bar{s}' \gamma + \bar{s}' h)}{\chi}$$

and,
$$\frac{d}{dx}(x-\mu) = 1$$

:.
$$f'(z) = -\frac{1}{2} \cdot e^{-z/2} \cdot (\gamma^T 5' + 5' \gamma)$$