

Smarksens Contill

### SmartSens™ SC035HGS 数据手册

**Preliminary V0.3 2021.3.9** 



### 应用

- 机器视觉
- 条码扫描
- 汽车电子
- 安防监控系统
- 高速摄影系统

### 特性

- 全局曝光
- 支持高动态输出
- 外部控制曝光及多 sensor 同步
- 自动曝光/增益控制,支持小于一行曝光
- LED STROBE
- 水平/垂直窗口调整
- 15.5x 模拟增益, 8x 数字增益
- 高光敏度
- I<sup>2</sup>C 接口寄存器编程
- 低功耗 (Max: 120mW)

### 关键指标 (典型值)

- 分辨率: 30万
- 有效像素阵列: 640H × 480V
- 像素尺寸: 3.744 µm × 3.744 µm BSI
- 镜头光学尺寸: 1/6"
- 最大图像传输速率:
  - Linear 640H×480V@10bit 180fps
  - HDR 640H×480V@10bit 90fps (KPC on) 640H×480V@10bit 180fps (KPC off)
- 输出接口:
  - 12/10/8-bit DVP
  - 12/10/8-bit 1/2 lane MIPI
  - 12/10/8-bit 1/2 lane LVDS
- 输出格式: RAW MONO/RAW RGB
- CRA: 33°
- 灵敏度:
  - Mono: 6500 mV/lux s
- 动态范围(Mono/Color):
  - 普通模式: 60 dB
  - 宽动态模式: >100 dB
- 信噪比:
  - Mono/Color: 40 dB
- 工作温度范围: -30℃~+85℃
- 最佳工作温度范围: -20°C~+60°C
- 电源电压:
  - Analog = 2.8V ± 0.1V
  - Digital = 1.5V ± 0.1V
  - $I/O = 1.8V \pm 0.1V$
- 封装信息: COB



### 目录

| 目  | 录     |                    | 3   |
|----|-------|--------------------|-----|
| 图  | 片索引   |                    | 5   |
| 1. | 芯片    | · 简述               | 7   |
|    | 1.1.  | 芯片概述               | 7   |
|    | 1.2.  | 系统框架               | 7   |
|    | 1.3.  | 引脚描述               | 10  |
|    | 1.4.  | 芯片初始化              |     |
|    | 1.4.1 | 1. 上电时序            | 13  |
|    | 1.4.2 | 1 5/4/4            |     |
|    | 1.4.3 |                    |     |
|    | 1.4.4 | 1. 复位模式            | 14  |
|    |       | 配置接口               |     |
|    | 1.6.  | 数据接口               | 17  |
|    | 1.6.1 | 1. DVP             | 17  |
|    | 1.6.2 |                    |     |
|    | 1.6.3 |                    |     |
|    | 1.7.  | 锁相环                | 23  |
| 2. |       | 介绍                 |     |
|    |       | LED STROBE         |     |
|    |       | 外触发全局曝光模式          |     |
|    | 2.3.  | 高动态模式              | 26  |
|    | 2.3.1 | 1. HDR 控制模式        | 27  |
|    | 2.4.  | AEC/AGC            | .28 |
|    | 2.4.1 | 1. AEC/AGC 的控制策略   | 28  |
|    | 2.4.2 | 2. AEC/AGC 控制寄存器说明 | 28  |
|    | 2.5.  | GROUP_HOLD         | 33  |
|    | 2.6.  | 黑电平控制(BLC)         | .33 |
|    | 2.7.  | HDR Calibration    | 34  |
|    | 2.8.  | 视频输出模式             | 35  |
|    | 2.8.1 | 1. 读取顺序            | 35  |
|    | 2.8.2 | 2. 输出窗口            | 36  |
|    | 2.9.  | 帧率计算               | 36  |
|    | 2.10. | 测试模式               | 37  |
| 3. | 电气    | 特性                 | 38  |
| 4. | 光学    | 特性                 | 40  |
|    | 4.1.  | QE 曲线              | 40  |
|    | 4.2.  | 主光线入射角(CRA)        | 40  |
| 5. | 封装    | :信息                | 41  |
|    | 5.1.  | CSP 封装             | 41  |



### Company Confidential 数据手册

| •• | //\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Y      | . • |
|----|-----------------------------------------|--------|-----|
| 6. | 版本变更                                    | 记录     | 43  |
|    | 5.1.2.                                  | 封装尺寸图  | 42  |
|    | 5.1.1.                                  | 芯片封装信息 | 41  |

Smartsens Confidential. ANDA Only



### 图片索引

| 图 | 1-1 SC035HGS 结构图                       | 7  |
|---|----------------------------------------|----|
| 图 | 1-2 典型应用示意图                            | 9  |
| 图 | 1-3 引脚图                                | 10 |
| 图 | 1-4 上电时序图                              | 13 |
| 图 | 1-5 下电时序图                              | 14 |
| 图 | 1-6 I <sup>2</sup> C 接口时序              | 16 |
| 图 | 1-7 DVP 时序                             | 17 |
| 图 | 1-8 MIPI/LVDS 接口示意图                    | 18 |
|   | 1-9 MIPI 底层数据包示意图                      |    |
| 图 | 1-10 MIPI 长/短数据包结构示意图                  | 19 |
| 图 | 1-11 MIPI 2-lane 模式数据包传输示意图            | 19 |
| 图 | 1-12 MIPI 数据包 DI 结构                    | 19 |
| 图 | 1-13 LVDS 每个 lane 数据结构示意图(以 10-bit 为例) | 21 |
| 图 | 1-14 PLL 控制示意图                         | 23 |
| 图 | 2-1 外部触发全局模式时序图                        | 24 |
|   | 2-2 HDR 功能说明                           |    |
|   | 2-3 HDR 功能控制                           |    |
| 图 | 2-4 像素阵列图一                             | 35 |
| 图 | 2-5 镜像和倒置实例                            | 35 |
| 图 | 2-6 视频有效输出示意图                          | 36 |
| 图 | 2-7 测试模式                               | 37 |
|   | <b>3-1</b> 外部时钟(EXTCLK)波形图             |    |
| 图 | 4-1 QE 曲线(Mono)                        | 40 |
| 图 | 4-2 CRA Curve                          | 40 |
| 图 | 5-1 封装示意图                              | 41 |
| S | nailes.                                |    |



### 表格索引

| 表 | 1-1 SC035HGS 引脚描述(for DVP)               | .11 |
|---|------------------------------------------|-----|
| 表 | 1-2 SC035HGS 引脚描述(for MIPI)              | .12 |
| 表 | 1-3 睡眠模式控制寄存器                            | .14 |
| 表 | 1-4 软复位控制寄存器                             | .14 |
| 表 | 1-5 I <sup>2</sup> C 设备地址控制(仅 MIPI 封装支持) | .15 |
| 表 | 1-6 I <sup>2</sup> C 接口时序详细参数            | .16 |
| 表 | 1-7 DVP 同步调整寄存器                          | .17 |
| 表 | 1-8 MIPI 数据类型                            | .20 |
| 表 | 1-9 MIPI 同步调整寄存器                         | .20 |
| 表 | 1-10 LVDS 数据同步信息编码示意表                    | .21 |
|   | 1-11 LVDS 调整相关寄存器                        |     |
|   | 2-1 LED STROBE 控制寄存器                     |     |
|   | 2-2 外部触发全局曝光控制寄存器                        |     |
| 表 | 2-3 HDR 模式控制寄存器                          | .27 |
| 表 | 2-4 曝光的手动控制寄存器2-5 模拟 gain 值控制寄存器         | .28 |
| 表 | 2-5 模拟 gain 值控制寄存器                       | .29 |
| 表 | 2-6 数字 gain 值控制寄存器                       | .31 |
|   | 2-7 Group hold 控制寄存器                     |     |
| 表 | 2-8 BLC 控制寄存器                            | .33 |
|   | 2-9 HDRC 寄存器控制                           |     |
| 表 | 2-10 镜像和倒置模式控制寄存器                        | .35 |
|   | 2-11 输出窗口寄存器                             |     |
| 表 | 2-12 帧率相关寄存器                             | .36 |
| 表 | 2-13 测试模式控制寄存器                           | .37 |
| 表 | 3-1 绝对最大额定值                              | .38 |
| 表 | 3-2 直流电气特性                               | .38 |
| 表 | 3-3 交流特性                                 | .39 |
| 表 | 5-1 封装尺寸图                                | .42 |



### 1. 芯片简述

### 1.1. 芯片概述

SC035HGS 是一款 Global shutter CMOS 图像传感器,最高支持 640H x 480V@180fps的传输速率。SC035HGS 输出黑白图像,有效像素窗口为 640H x 480V,支持复杂的片上操作——例如 HDR 模式、支持外触发全局曝光模式、窗口化、水平镜像、垂直倒置等。

SC035HGS 可以通过标准的 I<sup>2</sup>C 接口进行配置。

SC035HGS 可以通过 TRIG 引脚实现外部控制曝光。

### 1.2. 系统框架

图 1-1 展示了 SC035HGS 图像传感器的功能模块图。图 1-2 展示了一个典型的应用示例。

### Block Diagram LED STROB 行 输 光学阵列 模拟处理模块 数字处理模块 DVP MIPI/LV DS 列输入 系统控制 I<sup>2</sup>C Slave PLL **XSHUTDN** TRIG **EXTCLK**

Copyright © 2020-2021 SmartSens Technology Co., Ltd.

图 1-1 SC035HGS 结构图



SC035HGS 支持 DVP 接口、MIPI 接口和 LVDS 接口,如下是不同输出的典型应用示意图:

### **DVP**



### MIPI





**LVDS** 





### 1.3. 引脚描述

表 1-1 和表 1-2 列出了 SC035HGS 图像传感器的引脚描述。

### Package Top View for DVP



### Package Top View for MIPI



图 1-3 引脚图



**DVP** 

表 1-1 SC035HGS 引脚描述(for DVP)

| 序号 | 编号 | 信号名        | 引脚类型  | 描述                               |
|----|----|------------|-------|----------------------------------|
| 1  | ۸۵ | OTDDCM     | 松)    | OTP 烧录电压控制管脚。使用 4.7K 电阻下拉至       |
| 1  | A2 | OTPPGM     | 输入    | DGND                             |
| 2  | A4 | AVDD       | 电源    | 2.8V 模拟电源                        |
| 3  | A6 | TRIG       | 输入    | 触发信号,外部曝光控制                      |
| 4  | A8 | AGND       | 地线    | 模拟地                              |
| 5  | B1 | LED STROBE | 输出    | LED STROBE 信号                    |
| 6  | B3 | FSYNC      | 输入    | DVP 帧同步                          |
| 7  | B5 | AGND       | 地线    | 模拟地                              |
| 8  | B7 | XSHUTDN    | 输入    | XSHUTDN 信号输入(内置上拉电阻,低电位有效)       |
| 9  | C2 | SDA        | 输入/输出 | I <sup>2</sup> C 数据线(open drain) |
| 10 | C4 | DVDD       | 电源    | 1.5V 数字电源                        |
| 11 | C6 | DOGND      | 地线    | I/O 地                            |
| 12 | C8 | VERFGS     | 输出    | 内部参考电压(外接电容至 AGND)               |
| 13 | D1 | EXTCLK     | 输入    | 时钟输入                             |
| 14 | D3 | LREF       | 输入    | DVP 行同步                          |
| 15 | D5 | SCL        | 地线    | I <sup>2</sup> C 时钟线             |
| 16 | D7 | AVDD       | 电源    | 2.8V 模拟电源                        |
| 17 | E2 | DOGND      | 地线    | I/O 地                            |
| 18 | E4 | PCLK       | 输入    | DVP 时钟                           |
| 19 | E6 | D<7>       | 输出    | DVP 输出 bit[7]                    |
| 20 | E8 | VREFN      | 输出    | 内部参考电压(外接电容至 AGND)               |
| 21 | F1 | DVDD       | 电源    | 1.5V 数字电源                        |
| 22 | F3 | D<1>       | 输出    | DVP 输出 bit[1]                    |
| 23 | F5 | D<4>       | 输出    | DVP 输出 bit[4]                    |
| 24 | F7 | DOVDD      | 电源    | 1.8V I/O 电源                      |
| 25 | G2 | D<0>       | 输出    | DVP 输出 bit[0]                    |
| 26 | G4 | D<3>       | 输出    | DVP 输出 bit[3]                    |
| 27 | G6 | D<6>       | 输出    | DVP 输出 bit[6]                    |
| 28 | G8 | VREFH      | 输出    | 内部参考电压(外接电容至 AGND)               |
| 29 | H1 | DOVDD      | 电源    | 1.8V I/O 电源                      |
| 30 | H3 | D<2>       | 输出    | DVP 输出 bit[2]                    |
| 31 | H5 | D<5>       | 输出    | DVP 输出 bit[5]                    |
| 32 | H7 | AGND       | 地线    | 模拟地                              |



### MIPI

表 1-2 SC035HGS 引脚描述(for MIPI)

| 序号 | 编号 | 信号名        | 引脚类型  | 描述                               |
|----|----|------------|-------|----------------------------------|
| 1  | A2 | OTPPGM     | 输入    | OTP 烧录电压控制管脚。使用 4.7K 电阻下拉至 DGND  |
| 2  | A4 | AVDD       | 电源    | 2.8V 模拟电源                        |
| 3  | A6 | SID1       | 输入    | I <sup>2</sup> C Device ID 1     |
| 4  | A8 | AGND       | 地线    | 模拟地                              |
| 5  | B1 | LED STROBE | 输出    | LED STROBE 信号                    |
| 6  | В3 | TRIG       | 输入    | 触发信号,外部曝光控制                      |
| 7  | B5 | AGND       | 地线    | 模拟地                              |
| 8  | В7 | XSHUTDN    | 输入    | XSHUTDN 信号输入(内置上拉电阻,低电位有效)       |
| 9  | C2 | SDA        | 输入/输出 | I <sup>2</sup> C 数据线(open drain) |
| 10 | C4 | DVDD       | 电源    | 1.5V 数字电源                        |
| 11 | C6 | SID0       | 输入    | I <sup>2</sup> C Device ID 0     |
| 12 | C8 | RSTM       | 输出    | 内部参考电压(外接电容至 AGND)               |
| 13 | D1 | EXTCLK     | 输入    | 时钟输入                             |
| 14 | D3 | SCL        | 输入    | I <sup>2</sup> C 时钟线             |
| 15 | D5 | DOGND      | 地线    | I/O 地                            |
| 16 | D7 | VREFGS     | 输出    | 内部参考电压(外接电容至 AGND)               |
| 17 | E2 | DOGND      | 地线    | I/O 地                            |
| 18 | E4 | DVDD       | 电源    | 1.5V 数字电源                        |
| 19 | E6 | AVDD       | 电源    | 2.8V 模拟电源                        |
| 20 | E8 | VREF1      | 输出    | 内部参考电压(外接电容至 AGND)               |
| 21 | F1 | DVDD       | 电源    | 1.5V 数字电源                        |
| 22 | F3 | MD0P       | 输出    | MIPI 数据 0 正极信号                   |
| 23 | F5 | MD1N       | 输出    | MIPI 数据 1 负极信号                   |
| 24 | F7 | VREFN1     | 输出    | 内部参考电压(外接电容至 AGND)               |
| 25 | G2 | MD0N       | 输出    | MIPI 数据 0 负极信号                   |
| 26 | G4 | MCP        | 输出    | MIPI 时钟正极信号                      |
| 27 | G6 | AGND       | 地线    | 模拟地                              |
| 28 | G8 | VREFH      | 输出    | 内部参考电压(外接电容至 AGND)               |
| 29 | H1 | DOVDD      | 电源    | 1.8V I/O 电源                      |
| 30 | НЗ | MCN        | 输出    | MIPI 时钟负极信号                      |
| 31 | H5 | MD1P       | 输出    | MIPI 数据 1 正极信号                   |
| 32 | H7 | VREFN      | 输出    | 内部参考电压(外接电容至 AGND)               |



### 1.4. 芯片初始化

### 1.4.1. 上电时序



注: T1≥0ms,T2≥0ms,T3≥0ms,T4≥4ms。

Smarksens

### 1.4.2. 下电时序



图 1-5 下电时序图

注: T0≥6EXTCLKs,T1≥0ms,T2≥0ms,T3≥0ms,T4≥0ms。

### 1.4.3. 睡眠模式

在睡眠模式下,寄存器保持不变。SC035HGS 提供两种方式进入睡眠模式:

- 1) 将 XSHUTDN 拉低,此时不能访问寄存器。
- 2) 将寄存器 16'h0100[0]写入 0, 此时仍然可以访问传感器的寄存器。

地址 寄存器名 默认值 读/写 描述

16'h0100 Manual sleep mode 'b0 R/W D: sleep enable 1: sleep disable

表 1-3 睡眠模式控制寄存器

### 1.4.4. 复位模式

在复位模式下, SC035HGS 所有寄存器都重置为默认值;通过将 SC035HGS 寄存器 16'h0103 的 Bit[0]设置为 1 进入复位模式,如下表所示。

表 1-4 软复位控制寄存器

| 地址       | 寄存器名    | 默认值 | 读/写 | 描述                 |
|----------|---------|-----|-----|--------------------|
| 16'h0103 | Rst_pon | 'b0 | W   | Bit[0]: soft reset |



### 1.5. 配置接口

SC035HGS 提供标准的 I<sup>2</sup>C 总线配置接口对寄存器进行读写,I<sup>2</sup>C 设备地址由 PAD SID0,SID1 的电平值决定,如下表所示。Slave Address 即设备地址(从机地址),Sub Address 与寄存器相关。

表 1-5 I<sup>2</sup>C 设备地址控制(仅 MIPI 封装支持)

| 7-bit I <sup>2</sup> C 设备地址 | SID0 | SID1 |
|-----------------------------|------|------|
| 7'h30                       | 低电平  | 低电平  |
| 7'h31                       | 高电平  | 低电平  |
| 7'h32                       | 低电平  | 高电平  |
| 7'h33                       | 高电平  | 高电平  |

### 消息类型: 16-bit 地址、8-bit 数据和 7-bit 设备地址

| S | Slave<br>Address | R/W | Α | Sub<br>Address<br>[15:8] | А | Sub<br>Address<br>[7:0] | Α | data | A/Ã | Р |  |
|---|------------------|-----|---|--------------------------|---|-------------------------|---|------|-----|---|--|
|---|------------------|-----|---|--------------------------|---|-------------------------|---|------|-----|---|--|

### I2C Write

| S | Slave<br>Address | 0 | Α | Sub<br>Address<br>[15:8] | Α | Sub<br>Address<br>[7:0] | Α | data | A/Ã | Р |  |
|---|------------------|---|---|--------------------------|---|-------------------------|---|------|-----|---|--|
|---|------------------|---|---|--------------------------|---|-------------------------|---|------|-----|---|--|

### I2C Read

| S | Slave<br>Address | 0 | А | Sub<br>Address<br>[15:8] | Α | Sub<br>Address<br>[7:0] | Α | Sr | Slave<br>Address | 1 | Α | data | Ã | Р |
|---|------------------|---|---|--------------------------|---|-------------------------|---|----|------------------|---|---|------|---|---|



15



### I<sup>2</sup>C 时序



图 1-6 I<sup>2</sup>C 接口时序

表 1-6 I2C 接口时序详细参数

| Symbol              | Parameter                                                         | Standard | d-mode | Fast-r | node | Unit |
|---------------------|-------------------------------------------------------------------|----------|--------|--------|------|------|
|                     |                                                                   | Min      | Max    | Min    | Max  |      |
| f <sub>SCL</sub>    | SCL clock frequency                                               | 0        | 100    | 0      | 400  | kHz  |
| t <sub>HD;STA</sub> | hold time (repeated) START condition                              | 4.0      | -      | 0.6    | -    | μS   |
| $t_{LOW}$           | LOW period of the SCL clock                                       | 4.7      | -      | 1.3    | -    | μS   |
| t <sub>HIGH</sub>   | HIGH period of the SCL clock                                      | 4.0      | -      | 0.6    | _    | μS   |
| t <sub>SU;STA</sub> | set-up time for a repeated START condition                        | 4.7      | -      | 0.6    | -    | μ\$  |
| t <sub>HD;DAT</sub> | data hold time                                                    | 0        | -      | 0      | -    | μS   |
| t <sub>SU;DAT</sub> | data set-up time                                                  | 250      | -      | 100    | -    | ns   |
| t <sub>r</sub>      | rise time of both SDA and SCL signals                             | -        | 1000   | 20     | 300  | ns   |
| t <sub>f</sub>      | fall time of both SDA and SCL signals                             | -        | 300    | 20     | 300  | ns   |
| t <sub>su;sто</sub> | set-up time for STOP condition                                    | 4.0      | -      | 0.6    | -    | μs   |
| t <sub>BUF</sub>    | bus free time between a STOP and START condition                  | 4.7      | -      | 1.3    | -    | μS   |
| $t_{VD;DAT}$        | data valid time                                                   | -        | 3.45   | -      | 0.9  | μS   |
| t <sub>VD;ACK</sub> | data valid acknowledge time                                       | -        | 3.45   | -      | 0.9  | μS   |
| t <sub>SP</sub>     | pulse width of spikes that must be suppressed by the input filter | -        | -      | 0      | 50   | ns   |

注:判断上升沿起始或下降沿终止的电平阈值为30%;判断上升沿终止或下降沿起始的阈值为70%。



### 1.6. 数据接口

SC035HGS 提供三种数据接口: DVP、MIPI 和 LVDS。

### 1.6.1. DVP

SC035HGS 支持并行视频端口(DVP),输出 12-bit 并行数据。FSYNC 脉冲信号表示新一帧数据的开始,LREF 表示数据行同步信号,PCLK 表示输出数据时钟。下图是 DVP时序示意图。



图 1-7 DVP 时序

注:

- 1) T<sub>PCLK</sub>表示 PCLK 的周期。
- 2) L2F\_dly 表示最后的 LREF 下降沿至 FSYNC 上升沿间时延。
- 3) F2L dly 表示 FSYNC 下降沿至第一条 LREF 上升沿间时延。
- 4) LINE width 表示一行宽度,由寄存器{0x320c,0x320d}控制。
- 5) FSYNC width 默认值为一行宽度,由寄存器 0x3d01 调节。

表 1-7 DVP 同步调整寄存器

| 地址       | 寄存器名            | 默认值   | 读/写 | 描述                                     |
|----------|-----------------|-------|-----|----------------------------------------|
| 16'h3d01 | DVP_FSYNC_WIDTH | 8'h01 | RW  | FSYNC length, 以 1 行为单位                 |
|          |                 |       |     | Bit[2]: LREF polarity                  |
| 16'h3d08 | DVP_POL_CTRL    | 8'h01 | RW  | Bit[1]: FSYNC polarity                 |
| C        |                 |       |     | Bit[0]: PCLK polarity                  |
| 16'h3641 | PAD_DRIVER_CAP  | 8'h00 | RW  | Bit[2:0]: adjust PAD driver capability |
| 16'h3640 | PCLK DLY        | 8'h00 | RW  | Bit[1:0]: PCLK DLY 2ns/step            |



### 1.6.2. MIPI

SC035HGS 提供串行视频端口(MIPI)。下图是 MIPI/LVDS 数据接口示意图,其中 Sensor 支持 1/2 lane 来传输图像 8/10/12-bit 数据。



图 1-8 MIPI/LVDS 接口示意图

下图是 MIPI 底层数据包的简略示意图, 其中分别展示了一个短数据包和长数据包的传输过程。



图 1-9 MIPI 底层数据包示意图

图 1-10 展示了 MIPI 长、短数据包结构示意图。其中数据标识 DI(Data Identifier)用来 区分不同的数据包类型。图 1-11 展示了 MIPI 工作在 2-lane 模式下的数据包传输示意图,需要注意的是,在 2-lane 模式下传输的一行数据包个数必须是偶数。图 1-12 中,DI 包括两部分,分别是虚拟通道(VC)和数据类型(DT)。默认情况下,Sensor 给出的 MIPI 数据 VC 值都是 0,而 DT 值如表 1-8 所示。





图 1-10 MIPI 长/短数据包结构示意图



图 1-11 MIPI 2-lane 模式数据包传输示意图

# Data Identifier(DI) Byte DI<7> DI<6> DI<5> DI<4> DI<3> DI<2> DI<1> DI<0> VC DT Virtual Channel Data Type

图 1-12 MIPI 数据包 DI 结构



### 表 1-8 MIPI 数据类型

| DT    | 描述             |
|-------|----------------|
| 8'h00 | 帧起始短包          |
| 8'h01 | 帧结束短包          |
| 8'h2a | 8-bit 模式下数据长包  |
| 8'h2b | 10-bit 模式下数据长包 |
| 8'h2c | 12-bit 模式下数据长包 |

表 1-9 MIPI 同步调整寄存器

| 功能                | 寄存器名     | 描述                                                                                                                                 |
|-------------------|----------|------------------------------------------------------------------------------------------------------------------------------------|
| MIPI pad 引脚输出(高位) | 16'h3000 | Bit[3:0]: pad_ctrl<br>4'h0: MIPI pad 引脚输出<br>4'hf: DVP pad 引脚输出                                                                    |
| MIPI pad 引脚输出(低位) | 16'h3001 | Bit[7:0]: pad_ctrl<br>8'hff: DVP pad 引脚输出<br>8'h00: MIPI pad 引脚输出                                                                  |
| MIPI fifo read 使能 | 16'h4603 | Bit[0]: MIPI_read_dis 0 ~ MIPI read from fifo enable 1 ~ MIPI read from fifo disable                                               |
| MIPI lane 数量      | 16'h3018 | Bit[7:5]: MIPI lane num-1 3'h0 ~ 1 lane mode 3'h1 ~ 2 lane mode                                                                    |
| MIPI 输出数据模式       | 16'h3031 | Bit[3:0]: MIPI bit mode 4'h8 ~ raw8 mode 4'ha ~ raw10 mode 4'hc ~ raw12 mode                                                       |
| MIPI clock 设置     | 16'h303f | Bit[7]: pclk sel 1'b0~ sel pll_pclk                                                                                                |
| MIPI 模式下 FIFO 设置  | 16'h3c00 | Bit[2]: fifo mode<br>1'b0 ~ fifo data for MIPI                                                                                     |
| LP 模式驱动           | 16'h3650 | Bit[1:0]: LP 模式驱动能力调整,默认 10                                                                                                        |
| HS 模式驱动           | 16'h3651 | Bit[2:0]: HS 模式驱动能力调整,默认 101                                                                                                       |
| MIPI Lane 0&1 延时  | 16'h3652 | Bit[7]: lane0 相位反向,默认 0 Bit[6:4] ~ lane0 延时,100ps/step,默认 3'b100 Bit[3] ~ lane1 相位反向,默认 0 Bit[2:0] ~ lane1 延时,100ps/step,默认 3'b100 |
| MIPI Clock 延时     | 16'h3654 | Bit[3] ~ 时钟反向,默认 0<br>Bit[2:0] ~ 时钟延时,100ps/step,默认 3'b100                                                                         |

注: LP 指的是 low power



### 1.6.3. LVDS

SC035HGS 提供串行视频端口(LVDS),其数据接口与 MIPI 数据接口复用,通过寄存器控制选择输出 LVDS 格式数据。支持 1/2 个 Data lane 来传输图像 8/10/12 bit 数据,默认先传输数据(8/10 bit)的 HSB 位。接口示意图如图 1-8 MIPI/LVDS 接口示意图所示。

SC035HGS LVDS 传输顺序为: 上电复位后 →first active line → second active line → .... → last acvtive line → only one dummy line-→ next frame first active line →....。LVDS 输出时在行开始插入 line sav 同步编码,行结束处插入 line eav 同步编码,使用 dummy line 做帧结束标识。LVDS 同步编码数据结构如下图所示。



图 1-13 LVDS 每个 lane 数据结构示意图(以 10-bit 为例)

注:

- 1) 图中的 10'h010,10'h080 分别是 Dummy0 data, Dummy1 data, 可由寄存器控制。
- 2) 1lane 及 2lane 模式的 lane 数据结构与图 1-10 一样。

SC035HGS LVDS 同步编码信息为 8bit 数据,放在数据高 8bit 传输,同步编码信息如下表所示。

| 默认值   | 描述              |
|-------|-----------------|
| 8'hab | Dummy line SAV  |
| 8'hb6 | Dummy line EAV  |
| 8'h80 | Active Line SAV |
| 8'h9d | Active Line EAV |

表 1-10 LVDS 数据同步信息编码示意表

注:以 10-bit 为列,Active Line SAV 为 10'h200



### 表 1-11 LVDS 调整相关寄存器

| 功能                 | 寄存器地址名                   | 描述                             |
|--------------------|--------------------------|--------------------------------|
|                    |                          | BIT[3:0]: pad_ctrl[11:8]       |
| LVDS pad 引脚输出(高位)  | 16'h3000                 | 4'hf~DVP pad 引脚输出              |
|                    |                          | 4'h0~LVDS pad 引脚输出             |
|                    |                          | BIT[7:0]: pad_ctrl[7:0]        |
| LVDS pad 引脚输出(低位)  | 16'h3001                 | 8'hff~DVP pad 引脚输出             |
|                    |                          | 8'h00~LVDS pad 引脚输出            |
|                    |                          | BIT[3]: MIPI_lvds_mode         |
| LVDS/MIPI 功能切换     | 16'h3022                 | 1'b1 ~ LVDS                    |
|                    |                          | 1'b0 ~ MIPI                    |
|                    |                          | Bit[0]: MIPI_read_dis          |
| MIPI fifo read 使能  | 16'h4603                 | 0 ~ MIPI read from fifo enable |
|                    |                          | 1 ~ MIPI read from fifo enable |
|                    |                          | BIT[7:5]: lane_num-1           |
| LVDS lane 数量       | 16'h3018                 | 3'h0 ~ 1 lane mode             |
|                    |                          | 3'h1 ~ 2 lane mode             |
|                    |                          | BIT[6:5]: bitsel_man           |
| LVDS 输出数据模式        | 16'h302b                 | 2'b0 ~ raw 8 mode              |
| LVD3 相山 X 加快八      | 10113020                 | 2'b1 ~ raw 10 mode             |
|                    |                          | 2'b10 ~ raw 12 mode            |
| LVDS CLOCK 设置      | 16'h303f                 | Bit[7]: pclk sel               |
| LVD3 OLOOK 改直      | 10 113031                | 1'b0 ~ sel pll_pclk            |
|                    |                          | BIT[3]: r_bit_flip_i,          |
| LVDS bit 设置        | 16'h4b00                 | 1'b1 ~ HSB first               |
|                    |                          | 1'b0 ~ LSB first               |
| DUMMY0 data        | {16'h4b02[3:0],16'h4b03} | Dummy0 data                    |
| DUMMY1 data        | {16'h4b04[3:0],16'h4b05} | Dummy1 data                    |
| LVDS 驱动            | 16'h3651                 | Bit[2:0]: LVDS 驱动能力调整,默认 101   |
| X                  |                          | Bit[7]: lane0 相位反向             |
| LVDS Lane 0&1 延时   | 16'h3652                 | Bit[6:4]: lane0 延时,100ps/step  |
| LVDO LANG UXT MENT | 10110002                 | Bit[3]: lane1 相位反向             |
|                    |                          | Bit[2:0]: lane1 延时,100ps/step  |
| LVDS Clock 延时      | 16'h3654                 | Bit[3]: 时钟反向                   |
| LVDO Olock Alli    | 10110004                 | Bit[2:0]: 时钟延时,100ps/step      |



### 1.7. 锁相环

SC035HGS 的 PLL 模块允许的输入时钟频率范围为 6~27MHz, 其中 VCO 输出频率 (F<sub>VCO</sub>)的范围为 400MHz-1200MHz。PLL 结构示意图在图 1-14 展示。





### 2. 功能介绍

### 2.1. LED STROBE

SC035HGS 支持 LED STROBE 功能,<mark>当 SC035HGS Pixel 处于曝光期间时,PAD</mark> LEDSTROBE 置于高电平,以驱动外部 LED。

表 2-1 LED STROBE 控制寄存器

| 功能            | 寄存器地址         | 说明                      |
|---------------|---------------|-------------------------|
|               |               | LED STROBE 使能控制         |
| LED STROBE 使能 | 16'h3361[7:6] | 2'b11~LED STROBE 功能关闭   |
|               |               | 2'b00 ~ LED STROBE 功能打开 |

### 2.2. 外触发全局曝光模式

外触发全局曝光模式是主控芯片通过 TRIG 信号触发曝光,以实现多个 sensor 同步曝光及视频数据输出。当 TRIG 信号由低电平变为高电平时,SC035HGS 开始曝光,曝光结束后输出图像数据,帧率受外部控制。

当 SC035HGS 工作在外触发全局曝光模式时,主控芯片通过 TRIG 引脚触发曝光开始。通过寄存器{16'h3e01,16'h3e02}控制曝光时间,具体时序如下图所示。



图 2-1 外部触发全局模式时序图

注:

- 1) EXP Rows 以行为单位,EXP Rows = {16'h3e01,0x3e02[7:4]} + 16'h3226
- 2) 当 TRIG 上升沿发生后,经过寄存器 16'h3226 所配置的行数后(不建议调整,该段时间会进行多次 Pixel 复位操作,以获取更高的图像质量), SC035HGS 开始曝光
- 3) Start of frame N 表示曝光结束及开始读取并传输图像数据
- 4) Active Rows 时读出芯片图像数据,由寄存器控制,以行为单位
- 5) Blank Rows 时读出芯片图像数据之后的消隐时间,由寄存器控制,以行为单位



### 表 2-2 外部触发全局曝光控制寄存器

| 功能           | 寄存器地址                                                                                                            | 说明                                                                                                                                            |
|--------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Trigger 模式使能 | 16'h3222[1]                                                                                                      | Trigger 模式使能控制<br>1~Trigger 模式打开<br>0~Trigger 模式关闭                                                                                            |
| Active Rows  | {16'h3202,16'h3203}<br>{16'h3206,16'h3207}<br>16'h3248<br>16'h3249<br>{16'h324a,16'h324b}<br>{16'h324c,16'h324d} | Active Rows = ({16'h 3206, 16'h 3207} - {16'h 3202, 16'h 3203} + 1 + 16'h3249 - 16'h3248 + 1 + {16'h324c,16'h324d} - {16'h324a,16'h324b} + 1) |
| Blank Rows   | {16'h3218,16'h3219}                                                                                              | Blank Rows = {0x3218,0x3219} x2                                                                                                               |
| SMailS       | SUS                                                                                                              |                                                                                                                                               |



### 2.3. 高动态模式

SC035HGS 提供两种曝光模式: 1. Normal mode 2. HDR mode, 如图 2-2 所示。





图 2-2 HDR 功能说明



Normal mode 下,输出值随曝光线性变化,芯片可感应到的最大曝光为 L1。

HDR mode 下, 输出值随曝光分为两段。在曝光较小时(小于 HDR point),输出值随曝光变化敏感,灵敏度高;在曝光较大时(大于 HDR point), 输出值随 Light 变化不敏感,可响应更大的曝光范围,可分辨的最大曝光为 L2。因此,开启高动态模式后,动态范围可以增加 20\*log(L2/L1)。

### **HDR Control Mode**



图 2-3 HDR 功能控制

### 2.3.1. HDR 控制模式

表 2-3 HDR 模式控制寄存器

| 功能         | 寄存器地址               | 说明           |
|------------|---------------------|--------------|
|            | 9                   | HDR 模式使能控制   |
| HDR 模式使能   | 16'h3220[6]         | 1 ~ HDR 模式打开 |
|            | - O'                | 0 ~ HDR 模式关闭 |
| TOTAL 曝光时间 | {16'h3e01,16'h3e02} | 以 1/16 行为单位  |
| HDR 曝光时间   | {16'h3e31,16'h3e32} | 以 1/16 行为单位  |

注:

HDR 控制具体参考文档如下:

- 1) SC035HGS 图像传感器 HDR 校准库使用说明(文档号 SCLN30006)
- 2) SC035HGS 图像传感器 HDRC 使用说明(文档号 SCLN30005)



### 2.4. AEC/AGC

AEC/AGC 都是基于亮度进行调节的,AEC 调节曝光时间,AGC 调节增益值,最终使图像亮度落在设定亮度阈值范围内。

### 2.4.1. AEC/AGC 的控制策略

SC035HGS 本身没有 AEC/AGC 功能,需要通过后端平台实现 AEC/AGC。

在整个 AEC/AGC 过程中,不是独立的调整 sensor 的曝光时间或者增益,调整策略为: 曝光时间优先,曝光时间已经最长无法继续调整时,调整增益。

### 2.4.2. AEC/AGC 控制寄存器说明

AEC/AGC 的控制寄存器如下表所示。

## 功能 寄存器地址 说明 曝光时间 {16'h3e01,16'h3e02} Normal 模式下的曝光时间,HDR 模式下的总曝光时间。以 1/16 行为单位 HDR 曝光时间 {16'h3e31,16'h3e32} 以 1/16 行为单位

表 2-4 曝光的手动控制寄存器

### AEC 控制说明如下:

- 1) AEC 的调节步长为 1/16 行曝光时间,一行行曝光时间等于行长乘以 TP (其中的 TP 为 Pixel clock 的一个周期),行长=寄存器{16'h320c,16'h320d}的值。
- 2) 曝光时间及增益若在第 N 帧写入,第 N+2 帧生效。
- 3) 曝光时间上限不能超过当前帧长减去6行,帧长=寄存器{16'h320e,16'h320f}的值,即在同一时刻,写入的{16'h3e01,16'h3e02[7:4]}值最大为{16'h320e,16'h320f}-6。如果曝光时间大于等于帧长,为了避免时序错误而闪烁,sensor 会自动加大真实帧长(此时真实帧长会在{16'h320e,16'h320f}基础上按需加一个值),以避免闪烁,但同时也带来帧率的下降。

### AGC 控制方法有两种,具体说明如下:

- 1) 16'h3e03 设置为 8'h03 时的 Gain mapping: gain 值 = {16'h3e08,16'h3e09}/8'h10。
- 2) 16'h3e03 设置为 8'h0b 时对应的模拟 gain 值如表 2-5 所示, 数字 gain 值如表 2-6 所示。

SC035HGS 具有 Digital Fine Gain, Digital Fine Gain 的精度为 1/128, 以 1/16 的精度为例,列出 digital gain 的控制如下表 2-6 所示。



表 2-5 模拟 gain 值控制寄存器

|         |                                          | 、gain 恒拴刺奇什奋<br>Fine gain(16'h | 3e09)  |            |
|---------|------------------------------------------|--------------------------------|--------|------------|
| Item    | Coarse gain                              | bit[7:0]                       | ,      | Total gain |
|         | (16'h3e08) bit[4:2]                      | 寄存器值                           | 増益     |            |
|         |                                          | 10                             | 1      | 1          |
|         |                                          | 11                             | 1.0625 | 1.0625     |
|         |                                          | 12                             | 1.125  | 1.125      |
|         |                                          | 13                             | 1.1875 | 1.1875     |
|         |                                          | 14                             | 1.25   | 1.25       |
|         |                                          | 15                             | 1.3125 | 1.3125     |
|         |                                          | 16                             | 1.375  | 1.375      |
|         | 增益 x 1                                   | 17                             | 1.4375 | 1.4375     |
|         | 寄存器值: 0                                  | 18                             | 1.5    | 1.5        |
|         |                                          | 19                             | 1.5625 | 1.5625     |
|         |                                          | 1a                             | 1.625  | 1.625      |
|         |                                          | 1b                             | 1.6875 | 1.6875     |
|         |                                          | 1c                             | 1.75   | 1.75       |
|         |                                          | 1d                             | 1.8125 | 1.8125     |
|         |                                          | 1e                             | 1.875  | 1.875      |
|         |                                          | 1f                             | 1.9375 | 1.9375     |
|         |                                          | 10                             | 1      | 2          |
| 增益      | × ×                                      | 11                             | 1.0625 | 2.125      |
| 控制      |                                          | 12                             | 1.125  | 2.25       |
| 177.141 | CO,                                      | 13                             | 1.1875 | 2.375      |
|         |                                          | 14                             | 1.25   | 2.5        |
|         | 5                                        | 15                             | 1.3125 | 2.625      |
|         | 增益 x 2                                   | 16                             | 1.375  | 2.75       |
|         | 增血 X Z                                   | 17                             | 1.4375 | 2.875      |
|         | 寄存器值: 1                                  | 18                             | 1.5    | 3          |
|         | 41.11.11.11.11.11.11.11.11.11.11.11.11.1 | 19                             | 1.5625 | 3.125      |
|         | 0                                        | 1a                             | 1.625  | 3.25       |
|         |                                          | 1b                             | 1.6875 | 3.375      |
| 5       |                                          | 1c                             | 1.75   | 3.5        |
|         |                                          | 1d                             | 1.8125 | 3.625      |
|         |                                          | 1e                             | 1.875  | 3.75       |
|         |                                          | 1f                             | 1.9375 | 3.875      |
|         |                                          | 10                             | 1      | 4          |
|         | 增益 x 4                                   | 11                             | 1.0625 | 4.25       |
|         |                                          | 12                             | 1.125  | 4.5        |
|         | 寄存器值:3                                   | 13                             | 1.1875 | 4.75       |
|         |                                          | 14                             | 1.25   | 5          |



| Item | Coarse gain<br>(16'h3e08) bit[4:2] | Fine gain(16'h<br>bit[7:0] | 3e09)  | Total gain |
|------|------------------------------------|----------------------------|--------|------------|
|      | (10 113600) มห[4.2]                | 寄存器值                       | 增益     |            |
|      |                                    | 15                         | 1.3125 | 5.25       |
|      |                                    | 16                         | 1.375  | 5.5        |
|      |                                    | 17                         | 1.4375 | 5.75       |
|      |                                    | 18                         | 1.5    | 6          |
|      |                                    | 19                         | 1.5625 | 6.25       |
|      |                                    | 1a                         | 1.625  | 6.5        |
|      |                                    | 1b                         | 1.6875 | 6.75       |
|      |                                    | 1c                         | 1.75   | 7          |
|      |                                    | 1d                         | 1.8125 | 7.25       |
|      |                                    | 1e                         | 1.875  | 7.5        |
|      |                                    | 1f                         | 1.9375 | 7.75       |
|      |                                    | 10                         | 1      | 8          |
|      |                                    | 11                         | 1.0625 | 8.5        |
|      |                                    | 12                         | 1.125  | 9          |
|      |                                    | 13                         | 1.1875 | 9.5        |
|      |                                    | 14                         | 1.25   | 10         |
|      |                                    | 15                         | 1.3125 | 10.5       |
|      | 增益 x 8                             | 16                         | 1.375  | 11         |
|      | 增量XO                               | 17                         | 1.4375 | 11.5       |
|      | 寄存器值:7                             | 18                         | 1.5    | 12         |
|      | 可行前臣: 7                            | 19                         | 1.5625 | 12.5       |
|      |                                    | 1a                         | 1.625  | 13         |
|      | 9                                  | 1b                         | 1.6875 | 13.5       |
|      |                                    | 1c                         | 1.75   | 14         |
|      |                                    | 1d                         | 1.8125 | 14.5       |
|      | 25                                 | 1e                         | 1.875  | 15         |
|      |                                    | 1f                         | 1.9375 | 15.5       |



表 2-6 数字 gain 值控制寄存器

|      | Digital gain(16'h3e06) | Fine gain(16'h3 | e07) bit[7:0] |            |
|------|------------------------|-----------------|---------------|------------|
| Item | bit[1:0]               | 寄存器值            | 增益            | Total gain |
|      |                        | 80              | 1             | 1          |
|      |                        | 88              | 1.0625        | 1.0625     |
|      |                        | 90              | 1.125         | 1.125      |
|      |                        | 98              | 1.1875        | 1.1875     |
|      |                        | a0              | 1.25          | 1.25       |
|      |                        | a8              | 1.3125        | 1.3125     |
|      |                        | b0              | 1.375         | 1.375      |
|      | 增益 <b>x 1</b>          | b8              | 1.4375        | 1.4375     |
|      | 寄存器值: 0                | сО              | 1.5           | 1.5        |
|      |                        | с8              | 1.5625        | 1.5625     |
|      |                        | d0              | 1.625         | 1.625      |
|      |                        | d8              | 1.6875        | 1.6875     |
|      |                        | e0              | 1.75          | 1.75       |
|      |                        | e8              | 1.8125        | 1.8125     |
|      |                        | f0              | 1.875         | 1.875      |
|      |                        | f8              | 1.9375        | 1.9375     |
|      |                        | 80              | 1             | 2          |
|      | Š.                     | 88              | 1.0625        | 2.125      |
| 增益控制 |                        | 90              | 1.125         | 2.25       |
|      | ~O,                    | 98              | 1.1875        | 2.375      |
|      |                        | a0              | 1.25          | 2.5        |
|      | 5                      | a8              | 1.3125        | 2.625      |
|      |                        | b0              | 1.375         | 2.75       |
|      | 增益 x 2                 | b8              | 1.4375        | 2.875      |
| >    | 寄存器值: 1                | с0              | 1.5           | 3          |
|      |                        | с8              | 1.5625        | 3.125      |
| ~~   | Y .                    | d0              | 1.625         | 3.25       |
| Smai |                        | d8              | 1.6875        | 3.375      |
| 9    |                        | e0              | 1.75          | 3.5        |
|      |                        | e8              | 1.8125        | 3.625      |
|      |                        | f0              | 1.875         | 3.75       |
|      |                        | f8              | 1.9375        | 3.875      |
|      |                        | 80              | 1             | 4          |
|      | 增益 x 4                 | 88              | 1.0625        | 4.25       |
|      | 海血 X 4<br>寄存器值: 3      | 90              | 1.125         | 4.5        |
|      | 的红期田: 3                | 98              | 1.1875        | 4.75       |
|      |                        | a0              | 1.25          | 5          |



| Item   | bit[1:0] | 寄存器值       a8       b0       b8       c0       c8       d0       d8       e0       e8       f0       f8 | 增益 1.3125 1.375 1.4375 1.5 1.5625 1.625 1.6875 1.75 1.8125 1.875 1.9375         | 5.25 5.5 5.75 6 6.25 6.75 7 7.25 7.55                       |
|--------|----------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------|
|        |          | b0 b8 c0 c8 d0 d8 e0 e8 f0 f8                                                                           | 1.375 1.4375 1.5 1.5625 1.625 1.6875 1.75 1.8125 1.875 1.9375                   | 5.5<br>5.75<br>6<br>6.25<br>6.5<br>6.75<br>7<br>7.25<br>7.5 |
|        |          | b8 c0 c8 d0 d8 e0 e8 f0 f8                                                                              | 1.4375<br>1.5<br>1.5625<br>1.625<br>1.6875<br>1.75<br>1.8125<br>1.875<br>1.9375 | 5.75<br>6<br>6.25<br>6.5<br>6.75<br>7<br>7.25<br>7.5        |
|        |          | c0<br>c8<br>d0<br>d8<br>e0<br>e8<br>f0<br>f8                                                            | 1.5<br>1.5625<br>1.625<br>1.6875<br>1.75<br>1.8125<br>1.875<br>1.9375           | 6<br>6.25<br>6.5<br>6.75<br>7<br>7.25<br>7.5                |
|        |          | c8<br>d0<br>d8<br>e0<br>e8<br>f0                                                                        | 1.5625<br>1.625<br>1.6875<br>1.75<br>1.8125<br>1.875<br>1.9375                  | 6.25<br>6.5<br>6.75<br>7<br>7.25<br>7.5                     |
|        |          | d0<br>d8<br>e0<br>e8<br>f0<br>f8                                                                        | 1.625<br>1.6875<br>1.75<br>1.8125<br>1.875<br>1.9375                            | 6.5<br>6.75<br>7<br>7.25<br>7.5                             |
|        |          | d8<br>e0<br>e8<br>f0<br>f8                                                                              | 1.6875<br>1.75<br>1.8125<br>1.875<br>1.9375                                     | 6.75<br>7<br>7.25<br>7.5                                    |
|        |          | e0<br>e8<br>f0<br>f8                                                                                    | 1.75<br>1.8125<br>1.875<br>1.9375                                               | 7<br>7.25<br>7.5                                            |
|        |          | e8<br>f0<br>f8                                                                                          | 1.8125<br>1.875<br>1.9375                                                       | 7.25<br>7.5                                                 |
|        |          | f0<br>f8                                                                                                | 1.875<br>1.9375                                                                 | 7.5                                                         |
|        |          | f8                                                                                                      | 1.9375                                                                          |                                                             |
|        |          |                                                                                                         |                                                                                 | 7.75                                                        |
|        |          |                                                                                                         |                                                                                 |                                                             |
| C      | ens      |                                                                                                         |                                                                                 |                                                             |
| SMaire |          |                                                                                                         |                                                                                 |                                                             |



### 2.5. GROUP\_HOLD

SC035HGS 具有 Group hold 功能,Group hold 指的是把寄存器打包在一帧特定时刻生效的功能。

使用方法: 寄存器 16'h3812 写 8'h00,需要打包生效的寄存器写入对应值,寄存器 16'h3812 写 8'h30。

注:

- 1) 需要打包生效的寄存器最多支持 10 个
- 2) 打包生效的时刻为 16'h3812 写 8'h30 之后第一个帧内生效时刻(帧延迟为 0 时), 帧内生效时刻由寄存器 {16'h3235,16'h3236}控制, {16'h3235,16'h3236}==16'h0 时表示帧开始。

### 表 2-7 Group hold 控制寄存器

| 功能     | 寄存器名                | 描述                             |
|--------|---------------------|--------------------------------|
| 帧内生效时刻 | {16'h3235,16'h3236} | 帧内生效时刻,以行为单位,当该值等于 0 时表示帧开始    |
| 帧延迟控制  | 16'h3802            | Bit[7:0]:帧延迟控制,生效时间帧延迟控制,写0表示不 |
| 火炬之江中  | 10 113002           | 做帧延迟,写 1 表示一帧延迟                |

### 2.6. 黑电平控制(BLC)

SC035HGS 像素阵列包含 12 条黑行,这些黑行可以为补偿消除算法提供数据。数字 图像处理首先要减去黑电平数据,BLC 算法可以从黑行数据中估算黑电平的补偿值,而彩 色像素的值会减去各自色彩通道的黑电平补偿值。如果在一些特定的像素点,这样的减法得 到了负值,那么将结果置 0。

默认情况下,改变增益值后会重新进行 BLC 操作。

黑电平有两种计算模式:手动 BLC 和自动 BLC。在手动模式下,补偿值由寄存器指定;在自动模式下,补偿值通过黑行计算得到。

### 表 2-8 BLC 控制寄存器

| 功能        | 寄存器名                      | 描述                              |  |
|-----------|---------------------------|---------------------------------|--|
|           |                           | Bit[0]: blc_enable              |  |
| BLC 使能    | 16'h3900                  | 0 ~ bypass BLC                  |  |
| 6         |                           | 1 ~ BLC enable                  |  |
|           |                           | Bit[6]: blc_auto_en             |  |
| 自动 BLC 使能 | 16'h3902                  | 0 ~ manual mode                 |  |
|           |                           | 1 ~ auto mode                   |  |
|           |                           | 16'h3928[0]:                    |  |
|           | {16'h3928[0],16'h3905[6]} | 0 ~ use 8 channel offset mode   |  |
| BLC 通道选择  |                           | 1 ~ use 4 channel offset mode   |  |
| DLO 远远远洋  |                           | 16'h3905[6]: one channel enable |  |
|           |                           | 0 ~ use 8 or 4 channel offset   |  |
|           |                           | 1 ~ use one channel mode        |  |
| BLC 目标值   | {16'h3907[4:0],16'h3908}  | BLC target                      |  |

. . \



### 2.7. HDR Calibration

为提高图像效果,SC035HGS 在 HDR 模式下具有 HDRC 功能,用于消除 HDR 模式 带来的图像噪声。

HDRC 功能打开时,SC035HGS 要多读取一帧 HDR point 数据,图像读取时间会增加一倍。该模式下读取期间不能进行曝光,帧率由曝光时间(Texp)与读取时间(Tread)之和决定。HDRC 功能关闭时,帧率由曝光时间和读取时间中的较大者决定。曝光时可读取,流水线作业

### 表 2-9 HDRC 寄存器控制

| 功能                 | 寄存器名                     | 描述                         |
|--------------------|--------------------------|----------------------------|
|                    |                          | Bit[5:4]: HDR point 数据读取使能 |
| HDR point 数据读取使能   | 16'h3222                 | 2'b00~ 不读取 HDR point 数据    |
|                    |                          | 2'b11~ 读取 HDR point 数据     |
|                    |                          | Bit[3]: HDRC 功能控制          |
|                    |                          | 默认当 HDR point 数据读取功能打开时    |
| HDRC 功能控制          | 16'h540a                 | HDRC 功能自动打开,当 HDR point 数  |
| DRU 切能控制           | 10 11540a                | 据读取功能关闭时 HDRC 功能自动关        |
|                    |                          | 闭,如需要改变 HDRC 功能开关,把        |
|                    |                          | 该寄存器 Bit 写 1               |
|                    |                          | Bit[6]: HDR point 均值自动计算使能 |
| HDR point 均值自动计算使能 | 16'h3906                 | 0~HDR point 均值寄存器控制        |
|                    | 610.                     | 1~HDR point 均值自动计算         |
| HDR point 均值寄存器值   | {16'h393b[3:0],16'h393c} | HDR point 均值控制控制值          |
| ,xSen              |                          |                            |



### 2.8. 视频输出模式

### 2.8.1. 读取顺序

下图提供了芯片工作的时候,第一个读取的 pixel 位置,以及整个 array 的结构示意图。 此图是在 A2 脚置于上方的时候得到(top view)。



图 2-4 像素阵列图一

SC035HGS 提供镜像模式和倒置模式。前者会水平颠倒传感器的数据读出顺序;而后者会垂直颠倒传感器的读出顺序。如图 2-5 所示。



图 2-5 镜像和倒置实例

### 表 2-10 镜像和倒置模式控制寄存器

| 功能   | 寄存器地址          | 寄存器值 | 描述                    |
|------|----------------|------|-----------------------|
|      |                |      | Bit[2:1]: mirror ctrl |
| 镜像模式 | 16'h 3221[2:1] | 2'h3 | 2'b00 ~ mirror off    |
|      |                |      | 2'b11 ~ mirror on     |
|      |                |      | Bit[6:5]: flip ctrl   |
| 倒置模式 | 16'h 3221[6:5] | 2'h3 | 2'b00 ~ flip off      |
|      |                |      | 2'b11 ~ flip on       |



### 2.8.2. 输出窗口

### 表 2-11 输出窗口寄存器

| 功能   | 寄存器名                 | 描述        |
|------|----------------------|-----------|
| 窗口宽度 | {16'h3208, 16'h3209} | 输出窗口宽度    |
| 窗口高度 | {16'h320a, 16'h320b} | 输出窗口高度    |
| 列起始  | {16'h3210, 16'h3211} | 输出窗口列起始位置 |
| 行起始  | {16'h3212, 16'h3213} | 输出窗口行起始位置 |

### 2.9. 帧率计算

图 2-6 为有效输出示意图,可以按照以下公式来计算图像帧率: 帧率 =FPCLK/(行长\*帧长)。其中 FPCLK 指的是 Pixel CLK 的时钟频率,行长包括图像水平方向上,有效区域宽度以及行消隐区宽度之和; 帧长包括图像竖直方向上,有效区域高度以及帧消隐区高度之和。



### 图 2-6 视频有效输出示意图

表 2-12 帧率相关寄存器

| 功能 | 寄存器名                | 描述      |
|----|---------------------|---------|
| 行长 | {16'h320c,16'h320d} | 一行数据的个数 |
| 帧长 | {16'h320e,16'h320f} | 一帧图像的行数 |



### 2.10. 测试模式

为方便测试,SC035HGS 提供了灰度渐变测试模式,如下图所示。



图 2-7 测试模式

### 表 2-13 测试模式控制寄存器

| 功能     | 寄存器地址          | 寄存器值 | 描述                                 |
|--------|----------------|------|------------------------------------|
|        |                |      | Bit[3]: incremental pattern enable |
|        | 16'h4501[3]    | 1'b1 | 0 ~ normal image                   |
|        |                |      | 1 ~ incremental pattern            |
|        |                |      | Bit[6]: blc auto enable            |
|        | 16'h3902[6]    | 1'b0 | 0 ~ manual BLC                     |
| 灰度渐变模式 |                |      | 1 ~ auto BLC                       |
| 外文研义铁八 | 25             |      | Bit[1:0]: digital gain             |
|        |                |      | 2'h0 ~ 1x                          |
|        | 16'h3e06[1:0]  | 2'h3 | 2'h1 ~ 2x                          |
|        | 10 113600[1.0] | 2113 | 2'h3 ~ 4x                          |
|        | 7              |      | 2'h7 ~ 8x                          |
| 0.0.   |                |      | 2'hf ~ 16x                         |



### 3. 电气特性

表 3-1 绝对最大额定值

| 项目       | 符号                 | 绝对最大额定值        | 单位 |
|----------|--------------------|----------------|----|
| 模拟电源电压   | $V_{AVDD}$         | -0.3~3.4       | V  |
| I/O 电源电压 | $V_{DOVDD}$        | -0.3~2.2       | V  |
| 数字电源电压   | $V_{	extsf{DVDD}}$ | -0.3~1.8       | V  |
| I/O 输入电压 | Vı                 | -0.3~DOVDD+0.3 | V  |
| I/O 输出电压 | Vo                 | -0.3~DOVDD+0.3 | V  |
| 工作温度     | Topr               | -30~+85        | °C |
| 最佳工作温度   | T <sub>SPEC</sub>  | -20~+60        | °C |
| 贮存温度     | T <sub>STG</sub>   | -40~+85        | °C |

表 3-2 直流电气特性

|           |                    | W 02 E              | TAIL CLAIT |             |    |
|-----------|--------------------|---------------------|------------|-------------|----|
| 项目        | 符号                 | 最小值                 | 典型值        | 最大值         | 单位 |
| 电源        |                    |                     |            |             |    |
| 模拟电源电压    | $V_{\text{AVDD}}$  | 2.7                 | 2.8        | 2.9         | V  |
| I/O 供电电压  | $V_{DOVDD}$        | 1.7                 | 1.8        | 1.9         | V  |
| 数字电源      | $V_{DVDD}$         | 1.4                 | 1.5        | 1.6         | V  |
| 电流(工作电流*  | 1 线性模式 1           | 80fps MIPI 2-lane o | output)    |             |    |
| 模拟电源电流    | I <sub>AVDD</sub>  | -                   |            | -           | mA |
| I/O 电源电流  | I <sub>DOVDD</sub> | -                   | <u> </u>   | -           | mA |
| 数字电源电流    | I <sub>DVDD</sub>  | -                   | -          | -           | mA |
| 总功耗(*)    | Power              | ~ O),               | -          | -           | mW |
| 数字输入(典型名  | 条件: AVDD           | =2.8V,DOVDD=1.8     | BV)        |             |    |
| 输入低电平     | VIL                | G -                 | -          | 0.3 x DOVDD | V  |
| 输入高电平     | Vih                | 0.7 x DOVDD         | -          | -           | V  |
| 输入电容      | Cin                | -                   | -          | 10          | pF |
| 数字输出(25pF | 标准负载)              |                     |            |             |    |
| 输出高电平     | Vон                | 0.9 x DOVDD         | -          | -           | V  |
| 输出低电平     | Vol                | -                   | -          | 0.1 x DOVDD | V  |
| 串行接口输入(\$ | SCL和 SDA           | )                   |            |             |    |
| 输入低电平     | VIL                | -0.5                | 0          | 0.3 x DOVDD | V  |
| 输入高电平     | ViH                | 0.7 x DOVDD         | DOVDD      | DOVDD+0.5   | V  |

注:

- \*1 工作电流: (典型值) 工作电压 2.8V/1.8V/1.5V, T<sub>j</sub>=25°C; 亮度条件: 芯片亮度达到最大亮度 1/3 时。
- 2) 该功耗是在使用 MIPI 2lane 传输图像, 180fps 的情况下的测试结果。



表 3-3 交流特性

| 项目              | 符号              | 最小值        | 典型值 | 最大值 | 単位  |
|-----------------|-----------------|------------|-----|-----|-----|
| 交流参数(TA=25°C,A) | /DD=2.8V,       | DOVDD=1.8V | )   |     |     |
| 直流微分线性误差        | DLE             | -          | <1  | -   | LSB |
| 直流积分线性误差        | ILE             | -          | <2  | -   | LSB |
| 晶振和时钟输入         |                 |            |     |     |     |
| EXTCLK 频率       | fextclk         | 6          | -   | 27  | MHz |
| EXTCLK 高电平脉冲宽度  | tw⊦             | 5          | -   | -   | ns  |
| EXTCLK 低电平脉冲宽度  | t <sub>WL</sub> | 5          | -   | -   | ns  |
| EXTCLK 占空比      | -               | 45         | 50  | 55  | %   |

注: 封装热阻,θ<sub>ia</sub>=40℃/W。



图 3-1 外部时钟(EXTCLK)波形图



### 4. 光学特性

### 4.1. QE 曲线

SC035HGS 光学曲线图如下图所示。

### Mono



图 4-1 QE 曲线(Mono)

### 4.2. 主光线入射角(CRA)

SC035HGS CRA 曲线如下图所示。



图 4-2 CRA Curve



### 5. 封装信息

SC035HGS 支持 CSP 封装形式。

### 5.1. CSP 封装

### 5.1.1. 芯片封装信息

如下是 CSP 封装示意图及封装尺寸表供参考。

# Mechanical Drawing 1 2 3 4 5 6 7 8 Chip-Genter (0,0) E F G H Top View(Bumps Down) Side view Side view

图 5-1 封装示意图

注: SC035HGS 的 Chip Center 与 Optical Center 不重合, Pixel Center (38.98, -172.655) 等于 Optical Center, 单位为 um。



### 5.1.2. 封装尺寸图

表 5-1 封装尺寸图

| Parameter                                 | Symbol | Nominal | Min        | Max    | Nominal          | Min    | Max   |
|-------------------------------------------|--------|---------|------------|--------|------------------|--------|-------|
|                                           |        | M       | illimeters |        |                  | Inches |       |
| Package Body Dimension X                  | Α      | 3.7038  | 3.6788     | 3.7288 | 0.1458           | 0.1448 | 0.146 |
| Package Body Dimension Y                  | В      | 3.0720  | 3.0470     | 3.0970 | 0.1209           | 0.1200 | 0.121 |
| Package Height                            | С      | 0.7600  | 0.7000     | 0.8200 | 0.0299           | 0.0276 | 0.032 |
| Ball Height                               | C1     | 0.1300  | 0.1000     | 0.1600 | 0.0051           | 0.0040 | 0.006 |
| Package Body Thickness                    | C2     | 0.6300  | 0.5950     | 0.6650 | 0.0248           | 0.0234 | 0.026 |
| Thickness from top glass surface to wafer | C3     | 0.4450  | 0.4250     | 0.4650 | 0.0175           | 0.0167 | 0.018 |
| Glass Thickness                           | C4     | 0.4000  | 0.3900     | 0.4100 | 0.0157           | 0.0154 | 0.016 |
| Ball Diameter                             | D      | 0.2500  | 0.2200     | 0.2800 | 0.0098           | 0.0087 | 0.011 |
| Total Ball Count                          | N      | 32      | —          | —      | ( <del>-</del> ) | —      | _     |
| Pins Pitch X axis                         | J1     | 0.4000  | _          | _ <    |                  | —      | _     |
| Pins Pitch Y axis                         | J2     | 0.3000  | _          |        | _                | _      | _     |
| Edge to Pin Center Distance along X1      | S1     | 0.4519  | 0.4219     | 0.4819 | 0.0178           | 0.0166 | 0.019 |
| Edge to Pin Center Distance along Y1      | S2     | 0.4860  | 0.4560     | 0.5160 | 0.0191           | 0.0180 | 0.020 |
| Smarksen                                  | C      |         |            |        |                  |        |       |
| ceil                                      |        |         |            |        |                  |        |       |



### 6. 版本变更记录

| 版本 修改内容以及说明            | Owner and date        |
|------------------------|-----------------------|
| 0.1 初始版本               | Vicky Song/2020.12.31 |
| 0.2 章节 4.2: 更新图 4-2    | Vicky Song/2021.1.27  |
| 0.3 首页:增加彩色版本动态范围和信噪比  | Vicky Song/2021.3.9   |
| Smarksens Confidential |                       |



### 联系我们:

### 总部:

地址:上海市徐汇区宜山路 1009 号 11 楼

电话: 021-64853570

传真: 021-64853570-8009

邮箱: sales@smartsenstech.com

网址: http://www.smartsenstech.com

### 美国分公司:

地址: 4340 Stevens Creek Blvd. Suite 280, San Jose, CA 95129

电话: +1 (408) 981-6626

### 深圳分公司:

地址:深圳市龙岗区坂田街道五和大道南星河 WORLD B 座 2908.

电话: 0755-23739713

### 思特威技术支持邮箱:

support@smartsenstech.com