READING: 6.3 - 6.5,

7.4 - 7.6, 8.7

EXERCISES: CH 6. 38

CH 7.34

ASSIGNED: NONE

PRODUCER: DR. MARIO

Example: Grades on Different Exams

Data

	Barb	Betsy	Bill	Bob	Bud
Exam #1:	62	94	68	86	50
Exam #2:	87	95	93	97	63
Exam #3:	74	86	82	70	28
Exam #4:	77	89	73	79	47
Mean	75	91	79	83	47

- Using One-Way ANOVA:
 - No Significant Differences Between Exams
 - Significant Differences Between Students
- Question: Can we use **both** factors to explain variability in scores?

Simple Block Design

- **Simple Block Design** has two factors with exactly one observation in each combination of factors
- Example: Examine Effect of Different Treatments at Different Severities
 - Factor A (Treatments) has I Levels
 - Factor B (Severity) has J Levels
 - Sample Size is n = I * J in a Simple Block Design
- Question: What is the problem of this design?

Means Version

$$Y = \mu_{ij} + \epsilon$$

Treatment: $i \in \{1, 2, \dots, I\}$

Block: $j \in \{1, 2, \dots, J\}$

Mean of Y for Treatment i and Block j

Effects Version (Additive)

$$Y = \mu + \alpha_i + \beta_j + \epsilon$$

Grand

Mean

Sa
Ak

Same Assumptions
About Error Term

Effect of Treatment i

$$Y = \mu + \alpha_i + \beta_j + \epsilon$$

Factor A: $i \in \{1, 2, \dots, I\}$ Factor B: $j \in \{1, 2, \dots, J\}$

Estimation of Model

Parameter	Estimate
μ	$\overline{\mathcal{y}}$
α_i	$\bar{y}_i - \bar{y}$
eta_j	$\bar{y}_j - \bar{y}$
σ_ϵ	\sqrt{MSE}

Group Means for A: \bar{y}_i

Group Means for B: \bar{y}_j

Partition of Variation

$$SST = \sum_{i} \sum_{j} (y_{ij} - \bar{y})^2 = (n-1)s^2$$

$$SSA = \sum_{i} \sum_{j} (\overline{y}_i - \overline{y})^2 = \sum_{i} J(\overline{y}_i - \overline{y})^2$$

$$SSB = \sum_{i} \sum_{j} (\bar{y}_{j} - \bar{y})^{2} = \sum_{j} I(\bar{y}_{j} - \bar{y})^{2}$$

$$SSE = SST - SSA - SSB$$

Thank You

Make Reasonable Decisions

