

Árvores de Decisão

Huei Diana Lee

Inteligência Artificial CECE/UNIOESTE-FOZ

Exemplo

- Um cientista está pesquisando a audição das formigas
- A formiga está parada e o cientista dá um grito. A formiga sai correndo
- Ele então arranca uma das pernas da formiga, e dá outro grito, da mesma intensidade que o primeiro. A formiga corre, mas não tão depressa como anteriormente
- O cientista então arranca as outras pernas e dá outro grito. A formiga não corre. Então ele conclui que <u>as</u> formigas ouvem pelas pernas
- A conclusão, baseada no experimento do cientista, não é válida porque ele escolheu mal as características relevantes na determinação da audição das formigas

Árvores de Decisão

- Árvore de Decisão (AD): usa estratégia dividir para conquistar para resolver problema de decisão
 - Problema complexo é dividido em problemas mais simples, aos quais a mesma estratégia é aplicada
 - Soluções dos subproblemas são então combinadas na forma de uma árvore

Em problemas de regressão são denominadas **Árvores de Regressão**, mas, dadas suas semelhanças, usaremos o termo Árvore
de Decisão de maneira genérica

Árvore de Decisão

Formalmente: grafo direcionado acíclico em que cada nó é:

Nó de divisão:

- Possui dois ou mais sucessores
- Contém teste condicional baseado nos valores de atributos
- Padrão: testes univariados e um atributo
- Ex: Idade > 18, Profissão ∈
 {professor, estudante}, 0,3 +
 0,2 x¹ 0,5 x² ≤ 0

Nó folha:

- É rotulado com uma função que considera valores da variável alvo dos exemplos que chegam na folha
- Classificação: moda
- Regressão: média

Árvores de Decisão

• Estrutura da árvore é determinada por

processo de aprendizado triplá de <u>nucleótidos</u> dentro Ex. caracterizar genes do RNA mensageiro que Contém códon de parada? sinaliza a terminação da <u>tradução</u> Não Sim Não-gene Códon de parada downstream? Não Sim ... Não-gene

Novo caso: Contém códon de parada dowstream e tamanho da sequência é menor que limiar Contém códon de parada? Não Sim Não-gene Códon de parada downstream? Não Sim Tamanho da sequência > limiar? Não-gene Não Sim Não-gene Gene

Novo caso: Contém códon de parada dowstream e tamanho da sequência é menor que limiar Contém códon de parada? Não Sim Não-gene Códon de parada downstream? Não Sim Tamanho da sequência > limiar? Não-gene Não Sim Não-gene Gene

Árvore de Decisão

- Espaço de hipóteses de AD enquadra-se no formalismo Forma Normal Disjuntiva (FND)
 - Classificador codifica uma FND para cada classe
 - Percurso de raiz a folha (ramo): conjunções de condições
 - Ramos individuais: disjunções
 - Cada ramo forma uma regra com uma parte condicional e uma conclusão

Se sorri **e** segura espada Então é inimigo

Se sorri **e** segura bandeira Então é amigo

Se não sorri Então é inimigo

Construir árvore a partir de dados – existem vários algoritmos:

- Algoritmo de Hunt
 - Um dos primeiros
 - Base de vários algoritmos atuais
- CART
- CHAID
- ID3, C4.5
- SLIQ, SPRINT

Seja D_t o conjunto de objetos de treinamento que atingem o nó t

Se todos os objetos de $D_t \in \text{mesma classe } y_t$ **Então** t é um nó folha rotulado como y_t

Se $D_t = \emptyset$

Então t é um nó folha rotulado pela classe *default*, y_d

Se os objetos de $D_t \in mais$ de uma classe

Então dividir dados em subconjuntos com um atributo teste Aplicar procedimento a cada subconjunto gerado

Emprego	Estado	Renda	Crédito
Sim	Solteiro	9500	Sim
Não	Casado	8000	Não
Não	Solteiro	7000	Não
Sim	Casado	12000	Sim
Não	Divorciado	9000	Sim
Não	Casado	6000	Não
Não	Divorciado	4000	Não
Não	Solteiro	8500	Sim
Não	Casado	7500	Não
Não	Divorciado	8000	Não

Emprego	Estado	Renda	Crédito
Sim	Solteiro	9500	Sim
Não	Casado	8000	Não
Não	Solteiro	7000	Não
Sim	Casado	12000	Sim
Não	Divorciado	9000	Sim
Não	Casado	6000	Não
Sim	Divorciado	4000	Sim
Não	Solteiro	8500	Sim
Não	Casado	7500	Não
Não	Divorciado	8000	Não

Classe default

Emprego	Estado	Renda	Crédito
Sim	Solteiro	9500	Sim
Não	Casado	8000	Não
Não	Solteiro	7000	Não
Sim	Casado	12000	Sim
Não	Divorciado	9000	Sim
Não	Casado	6000	Não
Sim	Divorciado	4000	Sim
Não	Solteiro	8500	Sim
Não	Casado	7500	Não
Não	Divorciado	8000	Não

Emprego	Estado	Renda	Crédito
Sim	Solteiro	9500	Sim
Não	Casado	8000	Não
Não	Solteiro	7000	Não
Sim	Casado	12000	Sim
Não	Divorciado	9000	Sim
Não	Casado	6000	Não
Sim	Divorciado	4000	Sim
Não	Solteiro	8500	Sim
Não	Casado	7500	Não
Não	Divorciado	8000	Não

Emprego	Estado	Renda	Crédito
Sim	Solteiro	9500	Sim
Não	Casado	8000	Não
Não	Solteiro	7000	Não
Sim	Casado	12000	Sim
Não	Divorciado	9000	Sim
Não	Casado	6000	Não
Sim	Divorciado	4000	Sim
Não	Solteiro	8500	Sim
Não	Casado	7500	Não
Não	Divorciado	8000	Não

Emprego	Estado	Renda	Crédito
Sim	Solteiro	9500	Sim
Não	Casado	8000	Não
Não	Solteiro	7000	Não
Sim	Casado	12000	Sim
Não	Divorciado	9000	Sim
Não	Casado	6000	Não
Sim	Divorciado	4000	Sim
Não	Solteiro	8500	Sim
Não	Casado	7500	Não
Não	Divorciado	8000	Não

Algoritmo genérico:

```
GeraÁrvore(D) - Algoritmo para construção de AD
```

Entrada: conjunto de treinamento $\mathbf{D} = \{(\mathbf{x}_i, y_i), i=1,...,n\}$

Saída: AD

/* Função **GeraÁrvore(D)** */

Se critério de parada então

Retorna nó folha com rótulo que maximiza função de custo

Escolha o atributo que maximiza o critério de divisão em D

Para cada partição \mathbf{D}_i baseada nos valores do atributo **faça** Induzir subárvore $\acute{A}rvore_i = Gera\acute{A}rvore(\mathbf{D}_i)$

Retorna Árvore com nó de decisão baseado no atributo escolhido e descendentes Árvore:

 Construir AD mínima (número mínimo de nós) condizente com conjunto de dados é um problema NP-completo

- Algoritmos usualmente usam heurísticas que olham um passo à frente:
 - Estratégia gulosa
 - Suscetível a encontrar ótimo local
 - Mas permite construção de AD em tempo linear

Decisões importantes:

– Como dividir os objetos?

Método para escolha do atributo de teste / medida para avaliar qualidade de atributo escolhido

– Quando parar de dividir os objetos?

Como dividir os atributos?

- Valores de atributos particionam os objetos
- Como divisão é feita depende:
 - Do tipo do atributo
 - Do número de divisões suportada pelo algoritmo

Emprego	Estado	Renda	Crédito
Sim	Solteiro	9500	Sim
Não	Casado	8000	Não
Não	Solteiro	7000	Não
Sim	Casado	12000	Sim
Não	Divorciado	9000	Sim
Não	Casado	6000	Não
Sim	Divorciado	4000	Sim
Não	Solteiro	8500	Sim
Não	Casado	7500	Não
Não	Solteiro	9000	Sim

Como dividir os atributos?

Qualitativos: usualmente

#ramos = #possíveis valores

- Quantitativos: usualmente
 - Comparação (A < valor)
 - Escolher posição (valor) que gera melhor partição
 - Ponto de referência

Que atributo escolher para divisão?

Estratégias para escolha do atributo:

- Aleatória
- Menos valores
- Mais valores
- Ganho de informação
- Ganho máximo
- Razão de ganho
- Índice Gini

Que atributo escolher para divisão?

Regras de divisão para classificação:

- Guiada por medida de *goodness* of split
 - Indicar quão bem, segundo alguma medida de qualidade, um atributo discrimina as classes
 - Selecionar atributo que maximiza a medida

Funciona como heurística que olha um passo para

frente

Qualidades Desejadas para uma Medida de Pureza

- Quando um nó é puro, a medida deve ser ZERO
- Quando a impureza é máxima (todas as classes são igualmente prováveis), a medida deve MÁXIMA
- Ideia de pureza:

Para duas classes, um bom atributo divide os exemplos em subconjuntos que idealmente são "todos positivos" ou "todos negativos"

Computando Informação

A informação é computada em bits:

 Dada uma distribuição de probabilidade, a informação requerida para predizer um evento é a entropia da distribuição

– Entropia:

- é importante para calcular a medida de Ganho de Informação
- provê a informação requerida em bits (isso pode envolver frações de bits!)

Entropia

Entropia (desordem, impureza) de um conjunto de exemplos, S, relativa a classificação binária é:

$$Entropy(S) = -p_1 \log_2(p_1) - p_0 \log_2(p_0)$$

onde

 p_1 é a fração de exemplos positivos em S e p_0 é a fração de negativos em S

Entropia para Classificação Binária

Entropia em AD

Usada como medida de impureza para medir a aleatoriedade (dificuldade para predizer) do atributo alvo

- Para caso binário:
 - A entropia é 0 se todos elementos pertencem à mesma classe, ou seja, pureza máxima
 - A entropia é 1 quando a coleção contém número igual de exemplos positivos e negativos
- A cada nó de decisão, o atributo que mais reduz a aleatoriedade do alvo é escolhido para divisão

Entropia em AD

Sejam p e q o número de objetos de duas classes diferentes em um conjunto de dados D

$$H(D) = -\frac{p}{p+q} \log \left(\frac{p}{p+q}\right) - \frac{q}{p+q} \log \left(\frac{q}{p+q}\right)$$

Probabilidade é computada a partir do conjunto de treinamento D

Entropia em AD

Entropia pode ser usada em problemas com mais que duas classes (k classes):

$$H(D) = \sum_{i=1}^{k} -p_i \log_2(p_i)$$

Entropia em AD

Se atributo A com v valores é selecionado, a árvore resultante tem um conteúdo de informação esperado de:

$$H(A, D) = \sum_{i=1}^{v} \frac{p_i + q_i}{p + q} H(D_i)$$

onde $p_{i} \ e \ q_{i}$: números de objetos em cada classe na partição D_{i}

Ganho de informação

Ganho de informação alcançado selecionando A para divisão:

$$IG(A,D) = H(D) - H(A,D)$$

IG(A,D) = redução esperada da entropia devido à "classificação" de acordo com o atributo A

$$IG(A,D) \equiv H(D) - \sum_{v \in Valores(A)} \frac{/D_v}{/D} / H(D_v)$$

Usar o critério de ganho de informação para decidir!

$H(D) = -\frac{p}{p+q} \log \left(\frac{p}{p+q}\right) - \frac{q}{p+q} \log \left(\frac{q}{p+q}\right)$

$$H(A,D) = \sum_{i=1}^{\nu} \frac{p_i + q_i}{p + q} H(D_i)$$

$$IG(A,D)=H(D)-H(A,D)$$

Ganho de informação:

$$D = \{29 +, 35 -\}$$

• $H(D) = -(29/64) * \log_2(29/64) - (35/64) * \log_2(35/64) = 0,994$

■ De acordo com A1:

- $D_{AII} = \{21 +, 5 -\}$
 - $H(D_{A11}) = -(21/26)*\log_2(21/26) (5/26)*\log_2(5/26) = 0,706$
- $D_{A12} = \{8 +, 30 -\}$
 - $H(D_{A12}) = -(8/38) * \log_2(8/38) (30/38) * \log_2(30/38) = 0,742$
- IG(A1,D) = 0.994 ((26/64)*0.706 + (38/64)*0.742) = 0.266

Ganho de informação:

- De acordo com A2:
 - $D_{A21} = \{18 +, 33 -\}$
 - $H(D_{21}) = -(18/51)*\log_2(18/51) (33/51)*\log_2(33/51) = 0.937$
 - $D_{A22} = \{11 +, 2 -\}$
 - $H(D_{A22}) = -(11/13) * \log_2(11/13) (2/13) * \log_2(2/13) = 0,619$
 - IG(A2,D) = 0.994 ((51/64)*0.937 + (13/64)*0.619) = **0.121**

A1 traz maior ganho de informação (0,266) do que A2 (0,121). Assim, A1 é escolhido.

Usar o critério de ganho de informação para decidir!

Conjunto de dados "play tênis" Decidir quando jogar dadas condições de tempo

Tempo	Temperatura	Umidade	Vento	Joga
Chuvoso	71	91	Sim	Não
Ensolarado	69	70	Não	Sim
Ensolarado	80	90	Sim	Não
Nublado	83	86	Não	Sim
Chuvoso	70	96	Não	Sim
Chuvoso	65	70	Sim	Não
Nublado	64	65	Sim	Sim
Nublado	72	90	Sim	Sim
Ensolarado	75	70	Sim	Sim
Chuvoso	68	80	Não	Sim
Nublado	81	75	Não	Sim
Ensolarado	85	85	Não	Não
Ensolarado	72	95	Não	Não
Chuvoso	75	80	Não	Sim

$$H(D) = -\frac{p}{p+q} \log \left(\frac{p}{p+q} \right) - \frac{q}{p+q} \log \left(\frac{q}{p+q} \right)$$

$$H(A,D) = \sum_{i=1}^{\nu} \frac{p_i + q_i}{p + q} H(D_i)$$

Conjunto de dados play tênis

Tempo	Temperatura	Umidade	Vento	Joga
Chuvoso	71	91	Sim	Não
Ensolarado	69	70	Não	Sim
Ensolarado	80	90	Sim	Não
Nublado	83	86	Não	Sim
Chuvoso	70	96	Não	Sim
Chuvoso	65	70	Sim	Não
Nublado	64	65	Sim	Sim
Nublado	72	90	Sim	Sim
Ensolarado	75	70	Sim	Sim
Chuvoso	68	80	Não	Sim
Nublado	81	75	Não	Sim
Ensolarado	85	85	Não	Não
Ensolarado	72	95	Não	Não
Chuvoso	75	80	Não	Sim

Entropia da classe para todo o conjunto de exemplos:

$$p(Joga = Sim) = 9/14 = 0,640$$

 $p(Joga = Não) = 5/14 = 0,360$

$$H(Joga) = -9/14log_2(9/14) - 5/14log_2(5/14)$$

= 0,940

IG(A,D)=H(D)-H(A,D)

Exemplo ilustrativo

Conjunto de dados play

Tempo	Temperatura	Umidade	Vento	Joga
Chuvoso	71	91	Sim	Não
Ensolarado	69	70	Não	Sim
Ensolarado	80	90	Sim	Não
Nublado	83	86	Não	Sim
Chuvoso	70	96	Não	Sim
Chuvoso	65	70	Sim	Não
Nublado	64	65	Sim	Sim
Nublado	72	90	Sim	Sim
Ensolarado	75	70	Sim	Sim
Chuvoso	68	80	Não	Sim
Nublado	81	75	Não	Sim
Ensolarado	85	85	Não	Não
Ensolarado	72	95	Não	Não
Chuvoso	75	80	Não	Sim

Joga	Ensolarado	Nublado	Chuvoso
Sim	2	4	3
Não	3	0	2

IG para atributos nominais:

Ex. atributo **Tempo**: três partições

1º passo: estimar probabilidades de observar classes dado cada valor

```
p(Joga|Ensolarado) = 2/5
p(\negJoga|Ensolarado) = 3/5
H(Joga|Ensolarado) = -2/5*\log_2(2/5) - 3/5*\log_2(3/5) = \mathbf{0,971}
```

p(Joga|Nublado) = 4/4 $p(\neg Joga|Nublado) = 0/4$ H(Joga|Nublado) = 0,00

p(Joga|Chuvoso) = 3/5 $p(\neg Joga|Chuvoso) = 2/5$ H(Joga|Chuvoso) = 0,971

Entropia para Classificação Binária

$$IG(A,D)=H(D)-H(A,D)$$

$$H(A,D) = \sum_{i=1}^{\nu} \frac{p_i + q_i}{p + q} H(D_i)$$

Conjunto de dados play

Tempo	Temperatura	Umidade	Vento	Joga
Chuvoso	71	91	Sim	Não
Ensolarado	69	70	Não	Sim
Ensolarado	80	90	Sim	Não
Nublado	83	86	Não	Sim
Chuvoso	70	96	Não	Sim
Chuvoso	65	70	Sim	Não
Nublado	64	65	Sim	Sim
Nublado	72	90	Sim	Sim
Ensolarado	75	70	Sim	Sim
Chuvoso	68	80	Não	Sim
Nublado	81	75	Não	Sim
Ensolarado	85	85	Não	Não
Ensolarado	72	95	Não	Não
Chuvoso	75	80	Não	Sim

IG para atributos nominais:

Ex. atributo **Tempo**: três partições

2º passo: calcular a entropia ponderada para o atributo Tempo

3º passo: calcular o ganho de informação em dividir o conjunto de acordo com os valores do atributo Tempo

$$IG(Tempo, Joga) = H(Joga) - H(Tempo, Joga)$$

= 0,940 - 0,693 = **0,247**

Conjunto de dados play

Tempo	Temperatura	Umidade	Vento	Joga
Nublado	64	65	Sim	Sim
Chuvoso	65	70	Sim	Não
Chuvoso	68	80	Não	Sim
Ensolarado	69	70	Não	Sim
Chuvoso	70	96	Não	Sim
Chuvoso	71	91	Sim	Não
Nublado	72	90	Sim	Sim
Ensolarado	72	95	Não	Não
Chuvoso	75	80	Não	Sim
Ensolarado	75	70	Sim	Sim
Ensolarado	80	90	Sim	Não
Nublado	81	75	Não	Sim
Nublado	83	86	Não	Sim
Ensolarado	85	85	Não	Não

IG para atributos contínuos:

Buscar partição binária dos valores

- Atributo ≤ valor
- Atributo > valor

E aplicar as equações a essas partições

Ex. atributo **Temperatura**

1º passo: definir ponto de corte

- Ordena-se os valores do atributo
- Toma-se a média de dois valores consecutivos: candidato a ponto de corte
- Avalia mérito (ex. IG) do ponto de corte
- Escolhe ponto que maximiza mérito

No exemplo, 1º ponto de corte = 64,5 e último ponto de corte = 84

Conjunto de dados play

Tempo	Temperatura	Umidade	Vento	Joga
Nublado	64	65	Sim	Sim
Chuvoso	65	70	Sim	Não
Chuvoso	68	80	Não	Sim
Ensolarado	69	70	Não	Sim
Chuvoso	70	96	Não	Sim
Chuvoso	71	91	Sim	Não
Nublado	72	90	Sim	Sim
Ensolarado	72	95	Não	Não
Chuvoso	75	80	Não	Sim
Ensolarado	75	70	Sim	Sim
Ensolarado	80	90	Sim	Não
Nublado	81	75	Não	Sim
Nublado	83	86	Não	Sim
Ensolarado	85	85	Não	Não

IG para atributos contínuos:

Ex. atributo Temperatura

2º passo: Escolhido ponto de corte, fazer cálculos de IG correspondentes
 Considerando o ponto 70,5:

Conjunto de dados play

Tempo	Temperatura	Umidade	Vento	Joga
Nublado	64	65	Sim	Sim
Chuvoso	65	70	Sim	Não
Chuvoso	68	80	Não	Sim
Ensolarado	69	70	Não	Sim
Chuvoso	70	96	Não	Sim
Chuvoso	71	91	Sim	Não
Nublado	72	90	Sim	Sim
Ensolarado	72	95	Não	Não
Chuvoso	75	80	Não	Sim
Ensolarado	75	70	Sim	Sim
Ensolarado	80	90	Sim	Não
Nublado	81	75	Não	Sim
Nublado	83	86	Não	Sim
Ensolarado	85	85	Não	Não

$$IG(A,D)=H(D)-H(A,D)$$

$$H(A,D) = \sum_{i=1}^{\nu} \frac{p_i + q_i}{p + q} H(D_i)$$

IG para atributos contínuos:

Ex. atributo Temperatura

2º passo: considerando o ponto 70,5:

p(Joga|Temperatura
$$\leq$$
 70,5) = 4/5
p(\neg Joga|Temperatura \leq 70,5) = 1/5

p(Joga|Temperatura > 70,5) = 5/9
p(
$$\neg$$
Joga|Temperatura > 70,5) = 4/9

$$H(Joga|Temperatura \le 70,5) = -4/5log_2(4/5) - 1/5log_2(1/5) = 0,721$$

$$H(Joga|Temperatura > 70,5) = -5/9log_2(5/9) -$$

$$4/9\log_2(4/9) = 0.991$$

$$H(Temperatura, Joga) = 5/14 * 0,721 + 9/14 *$$

$$0,991 = 0,895$$

$$IG(Temperatura, Joga) = 0,940-0,895 = 0,045$$

Divisão de atributos contínuos

Exemplo:

Emprego	Estado	Renda	Crédito
Sim	Solteiro	9500	Sim
Não	Casado	10000	Não
Não	Solteiro	7000	Não
Não	Casado	12000	Sim
Sim	Divorciado	9000	Sim
Não	Casado	6000	Não
Não	Divorciado	22000	Sim
Sim	Solteiro	8500	Sim
Não	Casado	7500	Não
Não	Solteiro	12500	Sim

Exemplo

Atributo Renda

Matriz de contagem

Divisão de atributos contínuos

Método pode ser acelerado: Considerar apenas pontos entre dois objetos adjacentes com classes diferentes

- Não Sim ou Sim Não
- Reduz de de 11 para 2 o número de pontos de corte candidatos no exemplo anterior

Exemplo de Superajuste

- Quando se tem poucos dados, há muitas regras de divisão que classificarão perfeitamente os dados, mas que não generalizarão o conhecimento para futuros conjuntos de dados
- Por exemplo, a regra "Veste verde?" classifica perfeitamente os dados, assim como "Tem sapatos azuis"...

Métodos de Prevenção de Superajuste (Poda)

- Duas abordagens básicas para árvores de decisão:
 - Pré-poda: para de crescer a árvore quando não há mais dados suficientes para fazer previsões confiáveis
 - Pós-poda: constrói a árvore toda, depois as subárvores para as quais há não evidência suficiente são removidas
- A folha resultante da poda deve ser marcada com a classe majoritária ou uma distribuição de probabilidade de cada classe
- Todos mantêm ponto de equilíbrio entre tamanho da árvore e estimativa de erro

Exemplo de Poda de AD

Construindo uma AD para o dataset Voyage

Podando a AD

AD "podada"

Exemplo de Construção de Árvore de Decisão com Interpretação Geométrica

Interpretação Geométrica

- Consideramos os exemplos como um vetor de m atributos
- Cada vetor corresponde a um ponto em um espaço m-dimensional
- A AD corresponde a uma divisão do espaço em regiões (hiperplanos), cada região rotulada como uma classe

Age	Income	Class
20	2000	Bad
30	5100	Good
60	5000	Bad
40	6000	Good

Vantagens ADs

Flexibilidade e robustas

- São invariantes a transformações monótonas de variáveis de entrada
- Ex. usar \times e log \times produz mesma árvore
- Seleção de atributos embutida
 - Seleciona atributos mais relevantes em sua construção
 - Robustas a atributos irrelevantes e redundantes

Vantagens ADs

Interpretabilidade

- Eficiência
 - Algoritmo guloso top-down, com estratégia dividir-para-conquistar
 - Complexidade linear no número de exemplos

Desvantagens ADs

- Atributos contínuos
 - Operação de ordenação consome muito tempo
 - Alguns autores recomendam discretização prévia
- Instabilidade
 - Pequenas variações no conjunto de treinamento podem produzir grandes variações na árvore final

Trabalho 2

- 1. Pesquisar sobre as medidas:
 - Ganho máximo
 - Razão de ganho
 - Índice Gini
- 2. Fazer um breve relato (contendo identificação e referências bibliográficas) de até 4 páginas.
- 3. Trabalho Individual
- 4. Data da Entrega: até 23:59hs de 17/04/24

Referências

Slides de:

- Profa. Ana Carolina Lorena, UNIFESP
- Prof. André C. P. L. F. Carvalho, ICMC-USP
- Prof. Marcilio C. P. Souto, UFPE
- Prof. José Augusto Baranaukas, FFCLRP-USP
- Profa. Huei Diana Lee
- Livro Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina - Katti Faceli, Ana Carolina Lorena, João Gama, André C.P.L.F. de Carvalho, Editora LTC, 2011 (Capítulo 6)