Body Fat Analysis

Stat 628 Thursday Group 5

UW-Madison

October 10, 2019

- Data Preprocessing
- 2 Linear Model Construction
 - Multicolinearity
 - Model Selection
 - Diagnostics
- Bodyfat and BMI
 - Bodyfat and BMI
 - Model Construct
 - Diagnostics
- 4 Models Evaluation
- Summary
- 6 Reference

Introduction

- Body fat percentage (BFP) is a measurement of fitness level.
- BFP plays an important role in various health outcomes.
- It is quite difficult and costly to calculate.
- It is very practical to come up with a simple and precise method to estimate BFP.

Body Fat Data

```
'data.frame':
                252 obs. of 16 variables:
  BODYFAT
                   12.6 6.9 24.6 10.9 27.8 20.6 19 12.8 5.1 12 ...
  DENSITY
                   1.07 1.09 1.04 1.08 1.03 ...
            : num
S AGE
            : int
                   23 22 22 26 24 24 26 25 25 23 ...
                   154 173 154 185 184 ...
  WEIGHT
            : num
  HEIGHT
                   67.8 72.2 66.2 72.2 71.2 ...
              num
  ADIPOSITY: num
                   23.7 23.4 24.7 24.9 25.6 26.5 26.2 23.6 24.6 25.8 ...
  NECK
                   36.2 38.5 34 37.4 34.4 39 36.4 37.8 38.1 42.1 ...
            : num
  CHEST
                   93.1 93.6 95.8 101.8 97.3 ...
            : num
  ABDOMEN
                   85.2 83 87.9 86.4 100 94.4 90.7 88.5 82.5 88.6 ...
            : num
  HIP
             num
                   94.5 98.7 99.2 101.2 101.9 ...
                   59 58.7 59.6 60.1 63.2 66 58.4 60 62.9 63.1 ...
  THIGH
              num
  KNEE
                   37.3 37.3 38.9 37.3 42.2 42 38.3 39.4 38.3 41.7 ...
              num
  ANKLE
                   21.9 23.4 24 22.8 24 25.6 22.9 23.2 23.8 25 ...
            : num
  BICEPS
                   32 30.5 28.8 32.4 32.2 35.7 31.9 30.5 35.9 35.6 ...
            : num
  FOREARM
                   27.4 28.9 25.2 29.4 27.7 30.6 27.8 29 31.1 30 ...
            : num
$ WRIST
                   17.1 18.2 16.6 18.2 17.7 18.8 17.7 18.8 18.2 19.2 ...
              num
```

Data Cleaning

There are three abnormal observations.

Data Cleaning

From the *Cook's distance*^[1] points. The subject of observation 39 weights 363 pounds which is very abnormal and we consider to delete it.

Diagnostics

There are no obvious outliers and influential points.

- Data Preprocessing
- 2 Linear Model Construction
 - Multicolinearity
 - Model Selection
 - Diagnostics
- Bodyfat and BMI
 - Bodyfat and BMI
 - Model Construct
 - Diagnostics
- Models Evaluation
- Summary
- 6 Reference

Multicollinearity

VIF of each variable

Age	2.25	Weight	124.94	
Height	28.58	Adiposity	92.76	
Neck	3.92	Chest	11.08	
Abdomen	12.22	Hip	12.26	
Thigh	7.20	Knee	4.41	
Ankle	1.83	Biceps	3.39	
Forearm	2.42	Wrist	3.20	

Since some of the VIFs are greater than 10, and the mean VIF is 22.18, which is greater than 1.Multicollinearity may have a large impact on the inference.

 R^2 , $AdjR^2$, Mallow's C_p and BIC criterions. (Exhaustive Search)

rsq	adjr2	ср	bic
0.6742	0.6729	60.1617	-269.3042
0.7192	0.717	19.8244	-300.9901
0.7314	0.7282	10.3594	-306.576
0.7364	0.732	7.7344	-305.6788
0.7395	0.7342	6.7556	-303.1817
0.7422	0.7358	6.2277	-300.2556
0.7444	0.737	6.2044	-296.8312
0.7462	0.7377	6.5122	-293.0772
0.7473	0.7379	7.4015	-288.7226
0.7482	0.7377	8.5727	-284.0755
0.7492	0.7376	9.666	-279.514
0.7497	0.737	11.2284	-274.4572
0.7498	0.7361	13.0652	-269.1093
0.7499	0.735	15	-263.6572

 $Model: BODYFAT \sim WEIGHT + ABDOMEN$

Significance test for coefficients

The coefficients and the model are significant and the R^2 and Adj- R^2 are both greater than 0.7. Hence, the model is effective.

BIC criterion (Stepwise Search)

step(fit2,direction="both",trace=2,k=log(n))

```
Step: AIC=696.32
BODYFAT ~ AGE + ADIPOSITY + CHEST + ABDOMEN + WRIST
            Df Sum of Sq
                            RSS
                                   AIC
                         3796.1 696.32
<none>
+ HIP
                   38.79 3757.3 696.46
+ WEIGHT
                   38.19 3757.9 696.50
+ NECK
                   32.30 3763.8 696.89
+ HEIGHT
                   29.59 3766.5 697.07
                   16.31 3779.8 697.95
+ FOREARM
                   12.88 3783.2 698.18
+ BICEPS
                   6.59 3789.5 698.59
+ KNEE
+ ANKLE
                   1.73 3794.4 698.91
+ THIGH
                  0.10 3796.0 699.02
                95.35 3891.5 699.81
- ADTPOSITY 1
- CHEST
               102.85 3899.0 700.29
- AGE
                220.05 4016.2 707.70
- WRIST
                 534.44 4330.6 726.54

    ABDOMEN

               1534.45 5330.6 778.48
Call:
lm(formula = BODYFAT ~ AGE + ADIPOSITY + CHEST + ABDOMEN + WRIST,
    data = fatnew)
```

BIC criterion (Stepwise Search)

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.56583
                        5.63576
                                -0.455 0.649316
                        0.02121
                                  3.761 0.000212 ***
AGE
             0.07976
                        0.21825 2.476 0.013978 *
ADTPOSTTY
            0.54033
CHEST
            -0.22324
                       0.08682 -2.571 0.010729 *
                       0.07101 9.931 < 2e-16 ***
ABDOMEN
            0.70521
                        0.36002 -5.861 1.48e-08 ***
WRIST
            -2.11010
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

The predictors are all significant. Then Compare BIC with the first model of exhaustive search again.

The BIC of the exhaustive search and for the stepwise search are quite similar. Considering the simplicity, we choose the model:

```
BIC(fit_bic);BIC(fit_bic2)
1429.10136684762
```

1428.18756476567

BODYFAT ∼ WEIGHT + ABDOMEN

Diagnostics

Residuals vs Index plot:satisfy the independence. Residuals vs Fitted plot:satisfy the homoscedasticity. Normal Q-Q plot:satisfy the normality.

- Data Preprocessing
- 2 Linear Model Construction
 - Multicolinearity
 - Model Selection
 - Diagnostics
- Bodyfat and BMI
 - Bodyfat and BMI
 - Model Construct
 - Diagnostics
- 4 Models Evaluation
- Summary
- 6 Reference

- Many materials have talked about relationships between BODYFAT and BMI, like TerenceC.Mills^[2] provides a semi-logarithmic relation between bodyfat and BMI.
- BMI is much easier to measure than ABDOMEN

Thus, we consider to use *InBMI* to make our model much easily to achieve. Firstly, we explore the relation between *BODYFAT* and *InBMI*.

From the scatter plot of *BMI* and *InBMI*, we can find linear relation between *BODYFAT* and *InBMI* is much better.

Then, we need to test whether InBMI can explain ABDOMEN well.

```
Call:
lm(formula = ABDOMEN ~ lnBMI, data = fatnew)
Residuals:
    Min
            10 Median
                                      Max
-11.1186 -2.8416 0.1658
                           3.1393 10.1363
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -142.536 6.625 -21.52 <2e-16 ***
                        2.052 35.49 <2e-16 ***
1nBMT
          72.845
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.117 on 248 degrees of freedom
Multiple R-squared: 0.8355, Adjusted R-squared: 0.8349
F-statistic: 1260 on 1 and 248 DF, p-value: < 2.2e-16
```

We can see R^2 statistics is 0.8355, which means InBMI can explain most information of ABDOMEN. So InBMI is great! And we know $BMI = \frac{WEIGHT}{HEIGHT^2}$. Thus, for reducing approximation error, we use WEIGHT and HEIGHT to construct a linear model.

Model Construct

```
Call:
lm(formula = BODYFAT ~ lnWEIGHT + lnHEIGHTsg, data = fatnew)
Residuals:
             10 Median
    Min
                               30
                                      Max
-12.1396 -3.4080 0.1672 3.8969 11.9231
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 347.724
                       48.028 7.240 5.67e-12 ***
          44.439 2.532 17.554 < 2e-16 ***
1nWETGHT
                    5.096 -9.908 < 2e-16 ***
lnHEIGHTsq -50.491
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.107 on 247 degrees of freedom
Multiple R-squared: 0.5558, Adjusted R-squared: 0.5522
F-statistic: 154.5 on 2 and 247 DF, p-value: < 2.2e-16
```

The R^2 is 0.5558, which is not bad under only one variable. So we get the model.

$$BODYFAT \sim In(WEIGHT) + In(HEIGHT^2)$$

Next, we check the model assumption.

Diagnostics

Residuals vs Index plot:satisfy the independence. Residuals vs Fitted plot:satisfy the homoscedasticity. Normal Q-Q plot:satisfy the normality.

- Data Preprocessing
- 2 Linear Model Construction
 - Multicolinearity
 - Model Selection
 - Diagnostics
- Bodyfat and BMI
 - Bodyfat and BMI
 - Model Construct
 - Diagnostics
- Models Evaluation
- Summary
- 6 Reference

Models Evaluation

Here, we get two models,

Model A: $BODYFAT \sim WEIGHT + ABDOMEN$

 $Model \ B: \ BODYFAT \sim In(WEIGHT) + In(HEIGHT^2)$

We know *Model B* is easier than *Model A*, and we need to test whether these two models are useful compared to the real model. We use official *US Army bodyfat percentage* [3] calculator to evaluate models under the same data.

Models Evaluation

```
ABFP Model: 3.878458
Model A: BODYFAT ~ WEIGHT + ABDOMEN: 3.292001
Model B: BODYFAT ~ ln(WEIGHT) + ln(HEIGHT^2): 4.142432
```

We use Mean absolute error to compare three models. From the result, we can find that model A and B perform well under acceptable error. Especially, model A perform much better than others.

- Data Preprocessing
- 2 Linear Model Construction
 - Multicolinearity
 - Model Selection
 - Diagnostics
- Bodyfat and BMI
 - Bodyfat and BMI
 - Model Construct
 - Diagnostics
- Models Evaluation
- **5** Summary
- 6 Reference

Summary

From the analysis above, we decide these three variables: *WEIGHT*, *HEIGHT* and *ABDOMEN*.

Under the consideration of convenience, if someone only can provide WEIGHT and HEIGHT, we will use,

Model B: $BODYFAT \sim In(WEIGHT) + In(HEIGHT^2)$

And if we want a more accurate result, adding ABDOMEN, we will use,

Model A: $BODYFAT \sim WEIGHT + ABDOMEN$

Summary

Rule of thumb:

Model A: BODYFAT= -42.5-0.12 WEIGHT+0.90 ABDOMEN+ ϵ

Model B: BODYFAT= 347.724+44.439 In(WEIGHT) -50.491

 $ln(HEIGHT^2) + \epsilon$, where $\epsilon \sim N(0, \sigma^2)$

For model A, the mean change in BODYFAT will be $0.12\,\%$ per pound change in WEIGHT,will be $0.90\,\%$ change per cm change in ABDOMEN, holding each other predictor fixed.

For model B, the mean BODYFAT will be 44.439 % change per exponential pound unit change in WEIGHT, will be 50.491*2 % change per exponential cm unit change in height.

Strength and Weakness

Strength

- The predictors we choose are easy to measure, and therefore the model is practical.
- There are 2 models requiring different predictor variables. Hence, according to different situations, different models could be applied correspondingly.

Weakness

- The confidence interval of the predicted value is so wide.
- The models are still not accurate for those abnormal observations.

- Data Preprocessing
- 2 Linear Model Construction
 - Multicolinearity
 - Model Selection
 - Diagnostics
- Bodyfat and BMI
 - Bodyfat and BMI
 - Model Construct
 - Diagnostics
- Models Evaluation
- 5 Summary
- 6 Reference

Reference

- [1] Shalabh, IIT Kanpur Regression Analysis. 2002
- [2] Terence C. Mills *Predicting Body Fat Using Data on the BMI*. 2005
- [3] Army Regulation 600–9 Army Regulation 600–9. 2013
- [4] AceFitness AceFitness. 2009