

BOS1901 Piezo Haptic Driver with Digital Front End

1 Features

- High-Voltage Low Power Piezo Driver
 - Drives 100 nF at 190 V_{pk-pk} and 300 Hz with only 350 mW
 - Drives Capacitive Load up to 820 nF
 - Energy Recovery
 - Differential Output
 - Small Solution Footprint, QFN & WLCSP
 - Low BOM cost
- Integrated Digital Front End with SPI
 - 64 samples Internal FIFO Interface
 - 1.8 V to 5.0 V Digital I/O Supply
- Piezo Sensing
- Fast Start Up Time, < 300 μs
- Unidirectional Power Input option
- Wide Supply Voltage Range, 3 to 5.5 V

2 Applications

- Mobile Phones and Tablets
- Portable Computers
- Keyboards and Mice
- Gaming Controllers
- Wearables
- Electronic Cooling

Figure 1: Simplified schematic

3 Description

The BOS1901 is a single-chip piezo actuator driver with energy recovery, based on Boréas' patented CapDrive™ technology. It can drive actuators with up to 190 V_{pk-pk} waveforms while operating from a 3 to 5.5 V supply voltage. The input digital stream is written in the internal FIFO over the digital interface to generate the desired output waveform. Its low power and small size make it ideal for a variety of applications requiring minimal power consumption and heat dissipation.

The BOS1901 uses a high-speed SPI in its digital front end. It enables the device to share a common communication bus for multi-actuator systems and allows the user to query various data such as the actuator voltage for sensing applications (e.g., piezo buttons).

The BOS1901 differential driver achieves low distortion waveforms and quiet actuator operation. All settings are adjustable through the digital front end to reduce the BOM. Only 7 passive discrete components are required. The BOS1901 can be operated with a wide selection of COTS inductors.

In systems that cannot handle reverse current flow in the power delivery network, the BOS1901 features a Unidirectional Power Input (UPI). When its UPI mode is activated, the BOS1901 behaves as a resistive load without reducing the system's power efficiency.

With a typical start-up time of less than 300 μ s, the BOS1901 latency is negligible in most systems. Safety systems protect the device against damage in case of a fault.

Table 1: Product information

PART NUMBER	DESCRIPTION
BOS1901CQ	QFN 20L 4.0mm × 4.0mm
BOS1901CW	WLCSP 25B 2.1mm × 2.2mm

See section 10 for ordering information.

4 Pins & Bumps Configuration and Functions

Figure 2: QFN 20L 4.0mm × 4.0mm package with exposed thermal pad (TOP VIEW; NOT TO SCALE)

Table 2: QFN 20L 4.0mm × 4.0mm package pins description

PIN NO.	NAME	TYPE	DESCRIPTION
1	GND	Power	Supply Ground
2	HV	Power	High Voltage Output
3	OUT-	Output	Negative Differential Output
4	OUT+	Output	Positive Differential Output
5	VDD	Power	Intermediate Supply Voltage
6	VDD	Power	Intermediate Supply Voltage
7	VBUS	Power	Main Power Supply
8	RP	Input	Current Sense Positive Input
9	RM	Input	Current Sense Negative Input
10	PUMP	Power	Internal 5 V Charge Pump Voltage
11	GND	Power	Supply Ground
12	REG	Power	Internal 1.8 V Regulator Output
13	SDO	Output	SPI serial Data Output
14	SDI	Input	SPI Serial Data Input
15	SCLK	Input	SPI Clock Input
16	CS	Input	SPI Chip Select Input (active low)
17	VDDIO	Power	Digital IO Power Supply
18	SW	Power	Internal Power Converter Switch Pin
19	NC	-	No Connect
20	TST0	-	Factory Test Pin: Must be kept floating

Figure 3: WLCSP 25B 2.1mm × 2.2mm package (TOP VIEW; NOT TO SCALE)

Table 3: WLCSP 25B 2.1mm × 2.2mm package bumps description

BUMP NO.	NAME	TYPE	DESCRIPTION
A1	VDD	Power	Intermediate Supply Voltage
A2	VBUS	Power	Main Power Supply
A3	TST5	-	Factory Test Pin: Must be kept floating
A4	PUMP	Power	Internal 5 V Charge Pump Voltage
A5	GND	Power	Supply Ground
B1	OUT+	Output	Positive Differential Output
B2	GND	Power	Supply Ground
В3	RP	Input	Current Sense Positive Input
B4	RM	Input	Current Sense Negative Input
B5	REG	Power	Internal 1.8 V Regulator Output
C1	OUT-	Output	Negative Differential Output
C2	TST0	-	Factory Test Pin: Must be kept floating
C3	TST4	-	Factory Test Pin: Must be kept floating
C4	TST1	-	Factory Test Pin: Must be connected to VDDIO
C5	SDO	Output	SPI serial Data Output
D1	HV	Power	High Voltage Output
D2	TST2	-	Factory Test Pin: Must be connected to VDDIO
D3	TST3	-	Factory Test Pin: Must be connected to VDDIO
D4	CS	Input	SPI Chip Select Input (active low)
D5	SDI	Input	SPI Serial Data Input
E1	GND	Power	Supply Ground
E2	SW	Power	Internal Power Converter Switch Pin
E3	SW	Power	Internal Power Converter Switch Pin
E4	VDDIO	Power	Digital IO Power Supply
E5	SCLK	Input	SPI Clock Input

5 Specifications

5.1 Absolute Maximum Ratings

Table 4: Absolute maximum ratings[‡]

	SYMBOL	PARAMETER	MIN	NOM	MAX	UNIT
1		Voltage at pins HV, OUT+, OUT-, SW	-0.3		110	V
2		Voltage at all other pins	-0.3		7	V
3	T_{stg}	Storage temperature	-65		150	°C
4	TJ	Junction Temperature	-40		150	°C
5	SOA	Safe operating area	9	See Figure 13	3	-

[‡]Exceeding these values may cause permanent damage. Functional operation under these conditions is not guaranteed.

5.2 Thermal Resistance

Table 5: Thermal resistance[‡]

	SYMBOL	PARAMETER	PACKAGE	NOM ^(1,2)	UNIT
1	ӨЈА	Thermal resistance:	QFN 20L 4.0mm × 4.0mm	Coo Figure 1F	°C/W
		junction to ambient	WLCSP 25B 2.1mm × 2.2mm	See Figure 15	°C/W

[‡]Power dissipated in the package is not obvious to calculate. Please consult Boréas Technologies before using these parameters.

5.3 Recommended Operating Conditions

Table 6: Recommended operating conditions

	SYMBOL	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
1	T _A	Operating temperature	Operating free-air	-40		85	°C
			temp.				
2	V_{BUS} , V_{DD} ⁽¹⁾	Supply voltage		3.0		5.5	V
3	$V_{DDIO}^{(2)}$	I/O Supply voltage		1.62		5.5	V
4	C _{Load} ⁽³⁾	Load capacitance	$ f_{sig} = 400 \text{ Hz} $ $V_{OUT} = 190 V_{pk-pk} $ $THD+N 1\% $			100	nF
			$ \begin{aligned} f_{sig} &= 300 \text{ Hz} \\ V_{OUT} &= 100 \text{ V}_{pk\text{-}pk} \\ \text{THD+N 1}\% \end{aligned} $			470	nF
			$ f_{sig} = 170 \text{ Hz} $ $ V_{OUT} = 100 \text{ V}_{pk-pk} $ $ THD+N \text{ 1}\% $			820	nF
5	L ₁	Inductance		10		51	μН
6	R _{sense}	Sense resistor		0.2		1.0	Ω

⁽¹⁾ If Unidirectional Power Input mode is enabled (bit \underline{UPI} set to 0x1), V_{DD} may increase above the maximum recommended operating condition, see section 6.2.10.

⁽²⁾ Digital I/O voltage (VDDIO) must match with master SPI interface voltage (MCU).

⁽³⁾ See Figure 14 for recommended signal frequency and amplitude over load capacitance.

5.4 Electrical Characteristics

Table 7: Electrical characteristics. Conditions: $T_A = 25$ °C, $V_{BUS} = 3.6$ V (unless otherwise noted)

	SYMBOL	PARAMETER	TEST CC	ONDITIONS	MIN	NOM	MAX	UNIT
1	V_{REG}	Voltage at REG pin			1.75	1.80	1.85	V
2	V _{IL}	Digital low-level input voltage					0.5	V
3	V _{IH}	Digital high-level input voltage			V _{DDIO} ×0.7		V _{DDIO} +0.3	٧
4	V _{OL}	Digital low-level output voltage					0.4	V
5	V _{OH}	Digital high-level output voltage			V _{DDIO} ×0.8			
6	V _{OUT(FS)}	Full-scale output voltage			186	190	194	V_{pk-pk}
7	ΙQ	Quiescent current	SLEEP			1	10	μΑ
			IDLE			710		μΑ
8	I _{BUS,AVG}	Average supply current during operation	$\begin{array}{c} f_{\text{sig}} \\ V_{\text{OUT}} \\ C_{\text{Load}} \end{array}$	= DC = 95 V = 100 nF		4.4		mA
			$f_{sig} \\ V_{OUT} \\ C_{Load}$	= 300 Hz = 190 V _{pk-pk} = 100 nF		87		mA
9	I _{SW}	Transient current at SW pin					1.3	А
10	THD+N	Total Harmonic Distortion + Noise	$\begin{array}{c} f_{sig} \\ V_{OUT} \\ C_{Load} \end{array}$	= 300 Hz = 190 V _{pk-pk} = 100 nF		0.4		%
11	F _{FIFO}	Programmable FIFO playback rate		<u>:0]</u> = 0x0 <u>:0]</u> = 0x7	1008 7.875	1024 8	1040 8.125	ksps

5.5 Timing Characteristics (SPI)

Table 8: Timing characteristics. Condition: $T_A = 25$ °C, $V_{DDIO} = 3.3$ V to 5.5 V, SDO load = 20 pF

	SYMBOL	PARAMETER	MIN	NOM	MAX	UNIT
1	t _{clk} ⁽¹⁾	Clock period	28			ns
2	t _{clkL}	Clock Low period	10			ns
3	t _{clkH}	Clock High period	10			ns
4	t _L	Time between CS falling edge and CLK rising	10			ns
		edge				
5	t _H	Time between CLK last falling edge and rising	10			ns
		edge of CS				
6	t _{CS}	CS High time between two transmissions	150			ns
7	t _{SDI,S}	Input data setup time	4.5			ns
8	t _{SDI,H}	Input data hold time	3.5			ns
9	t _{SDO} ⁽¹⁾	CS or CLK falling edge to data output valid			14	ns
10	t _{oz}	Bus release time after $\overline{\text{CS}}$ rising edge			14	ns

⁽¹⁾ Dependent on V_{DDIO} and SDO load, see Table 9.

Table 9: Maximum SPI frequency vs. V_{DDIO} and SDO load.

	V _{DDIO}	MAXIMUM SPI FREQUENCY (1/t _{clk})						
		SDO load = 20 pF	SDO load = 80 pF					
1	1.8 V	13	10	MHz				
2	2.5 V	28	20	MHz				
3	3.3 V	35	30	MHz				
4	5.5 V	35	30	MHz				

Figure 4: SPI timing diagram

5.6 Typical Performance Characteristics

Conditions: $T_A = 25$ °C, $V_{BUS} = 3.6$ V, L = 10 μ H, $C_{Load} = 100$ nF, $f_{sig} = 200$ Hz, sine waveform (unless otherwise noted)

Figure 5: Supply current vs output voltage

Figure 6: THD + Noise vs output voltage

Figure 7: Supply current vs output voltage

Figure 8: THD + Noise vs output voltage

Figure 9: Supply current vs temperature

Figure 10: THD + Noise vs temperature

Figure 11: Output signal frequency variation vs temperature

Figure 13: Safe operating area (SOA) for 190 V_{pk-pk}

Figure 15: Typical temperature rise vs steady-state frequency for -10 to 60 V waveform (QFN 20L 4.0mm × 4.0mm)

Figure 12: Typical waveform, latency from start-up

Figure 14: Recommended operating area (THD ≤1%)

6 Functional Description

6.1 Overview

The BOS1901 is a highly integrated low-power piezo actuator driver with integrated digital front end and energy recovery, based on Boreas' patented CapDriveTM technology. The BOS1901 requires a single low-voltage supply and 7 passive components to generate waveforms up to 190 V_{pk-pk} .

The digital interface enables the user to stream the waveforms from any MCU with an SPI port. The internal FIFO enables the user to transmit the waveform in burst mode. Data from the FIFO can be read at different sample rates. The digital interface also provides access to many internal registers enabling the performance of the BOS1901 to be optimized for specific applications without increasing the BOM. Internal registers also provide access to the voltage read on the piezo element at any time, enabling the development of sensing algorithms to use a piezo element as an input force sensor in a system.

The BOS1901 can use any commercial off-the-shelf (COTS) inductor. The L_1 inductor specification can be chosen to optimize the power / size / performance trade-off for the user application. With a start-up time of less than 300 μ s from its low-power mode, the BOS1901 can be used in application where low latency is important such as haptic feedback.

6.2 Features

6.2.1 Digital Front End Interface

The BOS1901 offers a 35 MHz SPI slave interface. This high-speed communication interface enables the device to share the system communication bus with other ICs and to access many internal registers, see section 6.4 for details. This interface is in the VDDIO voltage domain.

The SPI interface gives access to a 64-sample FIFO for waveform playback. The FIFO accepts 12-bit two's complement format. If bit <u>OE</u> is set to 0x1, the data is read automatically out of the FIFO at a read-out rate set by bits <u>PLAY [2:0]</u>. For continuous waveform playback, the user should match the rate of data writing to the FIFO with the read-out rate of the waveform playback to always keep valid data inside the FIFO. If FIFO becomes empty, bit <u>EMPTY</u> is set and the FIFO maintains the last valid data, keeping the waveform in a steady state.

With the high-speed SPI, burst mode data transfers can be used. Packets of 12-bit words can be sequentially written in the FIFO at a maximum speed of 35 Mbps. To help manage data write to the FIFO, bits <u>FIFO SPACE [5:0]</u> can be read to verify the space available for new data. During burst mode transmission, FIFO might become full and cannot accept more data. In this condition, bit <u>FULL</u> is set and the user must wait until room is available before sending more data.

In some cases, the user might want to play a new waveform while the FIFO still contains data from the previous stream. In this situation, the user must wait until the last data from the previous stream is read. It is required that the waveform begin and end with 0 V amplitude. In case bit <u>OE</u> is set to 0x0 /or bit <u>RST</u> is set to 0x1 during waveform playback, output safely goes back to 0 V.

6.2.2 Square Wave Playback

Discontinuous waveforms (e.g., square waves) can be playback by setting bit <u>SQ</u> to 0x1. In this mode, the user can safely send discontinuous waveforms with arbitrary sample rate. As soon as a sample is received, the output of the BOS1901 will start to move toward the new value as fast as possible.

6.2.3 Fault Behavior

If an overvoltage condition at the output is detected during waveform generation, bit \underline{OVV} is set and the output voltage will safely ramp down to V_{DD} . A software reset (bit \underline{RST} set to 0x1) is required to clear the fault and resume normal operation.

6.2.4 SLEEP Mode

When no output waveform is being requested, no sensing is needed and the output is disabled (bit \underline{OE} set to 0x0), the BOS1901 can enter in one of its two low-power modes by the use of the bit \underline{DS} : IDLE or SLEEP mode. By default, power mode is IDLE (bit \underline{DS} set to 0x0). SLEEP mode is selected when bit \underline{DS} is set to 0x1. In SLEEP mode, the BOS1901 is in its lowest power state and all registers are set back to their default values. The BOS1901 goes out of SLEEP mode when pin \overline{CS} is pulsed low.

6.2.5 Low Latency Startup

The BOS1901 features a fast start-up time. From IDLE or SLEEP mode, the device takes less than 300 μ s to start playing the waveform. That makes the BOS1901 a very small contributor to system latency.

6.2.6 Device Reset

The BOS1901 device has software-based reset functionality. When bit <u>RST</u> is set to 0x1, all registers are set to their default value and IC goes in IDLE mode. If a waveform is playing, output safely goes back to 0 V.

6.2.7 Adjustable Current Limit

The maximum current of the power converter must be limited to avoid damage to both the L_1 inductor and the BOS1901 device by selecting the proper R_{sense} value (see section 7.5.3). Current flowing in the L_1 inductor is sensed by measuring the voltage drop across R_{sense} , placed between pins RP and RM.

The IC current limit must be selected in combination with the current saturation limit of the L_1 inductor chosen to enable enough energy to/from the actuator. This should be tested during worst-case operation of the device to ensure that the BOS1901 will meet the bandwidth requirement for the user application.

If the selected R_{sense} is smaller than 0.32 Ω , bit LMI must be set to 0x1.

6.2.8 Internal Charge Pump

The BOS1901 has an internal 5 V charge pump. A 0.1 μF capacitor with 6.3 V or higher voltage rating must be placed at the PUMP pin.

6.2.9 Energy Recovery

The BOS1901 IC implements bidirectional power transfer: input to output, and output to input. Such architecture enables the recovery of the energy accumulated on the capacitive load and transfers it back to the input. The internal controller determines the direction of the power flow during waveform playback.

6.2.10 Unidirectional Power Input (UPI)

The BOS1901 can sink and source current from the power delivery network (PDN) during normal operation due to its energy recovery feature. Configuring the Unidirectional Power Input (bit <u>UPI</u> set to 0x1) enables the device to appear as a resistive load to the power supply (IC only sinks current). This is useful when the power delivery network (PDN) can't sink current or to reduce RMS current flowing in the PDN. This feature does not affect the efficiency of the BOS1901, but it causes the following to happen:

- First, power is drawn from the input source when the amplitude of the output waveform increases.
- Second, energy recovered accumulates on the input capacitor (C_{VDD}) when the amplitude of the output waveform decreases.

Energy accumulation on the input capacitor causes the input voltage to increase, see Figure 17. The voltage increase can be adjusted by first calculating the maximum energy that may be recovered from the load and then sizing the input capacitor appropriately to achieve the desired voltage increase (see section 7.5.4). The voltage on the input capacitor should never exceed the 5.5 V limit.

Figure 16: Block diagram of the Unidirectional Power Input (UPI)

Figure 17: VDD voltage increase during energy recovery when bit UPI is set to 0x1. $C_{VDD} = 100 \, \mu F$, $C_{Load} = 100 \, nF$

6.2.11 Piezo Sensing

The BOS1901 can use a piezo actuator as a force sensor by sensing the voltage across its terminals.

The following sequence allows the use of the sensing feature:

- 1. Set bit <u>SUP_RISE.SENSE</u> to 0x1 to enable the sensing of the actuator voltage without forcing any voltage across its terminal. This bit allows the piezo actuator voltage to vary freely as the user physically interacts with it.
- 2. Set bit <u>CONFIG.OE</u> to 0x1 to activate the BOS1901 output.
- 3. Set bits CONFIG.BC [4:0] to 0xD to broadcast the VFEEDBACK [9:0] on SDO.
- 4. Write a dummy 0xF000 to SPI interface, read a word on SDO pin and extract VFEEDBACK [9:0] bits to monitor the voltage across the piezo terminals (see section 6.4.2 for more detail on how to use the SDO Broadcast).
- 5. Repeat the step 4) as needed.

6.2.12 Adjustable Internal Clock

The internal BOS1901 clock oscillator frequency is trimmed during fabrication using Hardware Fuses (as shown in Figure 19) and the <u>TRIM</u> register allows it to be adjusted. This feature can be used to match the BOS1901 internal clock to the frequency of the external system clock, thereby adjusting the FIFO readout rate. This might be needed to minimize waveform distortion if the user writes waveform data at a constant rate to the FIFO, without managing space available in it. To successfully adjust internal clock frequency, bit OE needs to be set to 0x0.

The internal oscillator can be adjusted with the following sequence:

- 1. Set CONFIG.OE bit to 0x0.
- 2. Set <u>TRIM.TRIMRW [1:0]</u> bits to 0x1 to latch the Hardware Fuses to Trim Block and push them to the <u>TRIM</u> register, or set <u>TRIM.TRIMRW [1:0]</u> bits to 0x2 to push the last used value to the TRIM register.
- 3. Wait for 1 ms.
- 4. Read <u>TRIM.TRIM OSC [5:0]</u> bits (using bits <u>CONFIG.BC [4:0]</u>) to get the internal oscillator Hardware Fuse value.
- 5. Set <u>TRIM.TRIM OSC [5:0]</u> bits to the desired value and set <u>TRIM.TRIMRW [1:0]</u> bits to 0x3 in the same write operation (keep other bits the same).

The same procedure can be used to adjust the internal 1.8 V regulator voltage (pin REG) using bits TRIM REG [2:0] instead of TRIM.TRIM OSC [5:0].

6.2.13 Device Protection

Thermal Protection

The BOS1901 has an internal temperature sensor that puts the device in IDLE mode in case the die temperature exceeds 150°C. In this condition, bit <u>OVT</u> is set and will clear automatically once conditions are safe for a restart.

The device very low power dissipation makes very improbable that the die will ever reach that temperature even when operating continuously at the maximum load in the operating temperature range T_A .

Brownout Protection

The BOS1901 has internal brownout protection. If V_{REG} goes below approximately 1 V, the chip issues a reset signal, and all registers are set back to their default value. When V_{REG} goes back to a normal operating voltage, the BOS1901 goes to IDLE mode.

6.3 SPI Interface

A slave SPI port enables communication with the IC. SPI is a 4-wire synchronous serial interface that uses two control lines and two data lines: Chip Select (CS), Serial Clock (SCLK), Serial Data Output (SDO) and Serial Data Input (SDI).

The BOS1901 SPI interface supports 16 bits per transfer. A SPI transmission starts when \overline{CS} line goes low and ends when \overline{CS} line goes high. Each SPI slave device requires its own \overline{CS} line from the master. The diagram below shows the correct configuration for the SPI Master. Because different manufacturers have different definitions of SPI modes, the user should rely on the diagram below to select the appropriate SPI mode for its MCU.

SPI features

- 1. Each transmission starts with a 4-bit address followed by 12 bits of data.
- 2. MSB is sent first.
- 3. Data is latched on the rising edge of SCLK.
- 4. Input Data should be transitioned on the falling edge of SCLK.
- 5. Data rates up to 35 Mbps are supported.
- 6. Single or Burst read/write transmission is supported. In burst mode, $\overline{\text{CS}}$ line can be maintained low.

Figure 18: SPI specification

6.4 Register Map

The Table 10 lists the main register map used to configure the BOS1901. Table 11 lists registers accessible only for reading using CONFIG.BC [4:0] bits.

Table 10: Main Register map

ADDRESS	11	10	9	8	7	6	5	4	3	2	1	0	
0x0 REFERENCE	FIFO [1	1:0]											
0x1 ION_BL	FSWM	AX [1:0]	SB [1:0]		I_ON_S	CALE [7:	E [7:0]						
0x2 DEADTIME	DHS [6:	:0]						DLS [4:	0]				
0x3 KP	SQ	SQ KP [10:0]											
0x4 KPA_KI	KIBASE	ASE [3:0] KPA [7:0]											
0x5 CONFIG	BC [4:0]				LOCK	RST	OE	DS	PLAY [2	2:0]		
0x6 PARCAP	UPI	LMI	CP5	CAL	PARCA	7:0]							
0x7 SUP_RISE	SENSE	VDD [4	:0]				TI_RISE	[5:0]					
0x8 DAC	DAC_H	S [5:0]					DAC_LS	S [5:0]					
0xC IC_STATUS	STATE [[1:0]	OVV	OVT	FULL	EMPTY	TY FIFO_SPACE [5:0]						
0xD SENSE	STATE	[1:0]	VFEEDE	BACK [9:0	0]								
0xE TRIM	TRIMR	W [1:0]	SDOBP	TRIM_C	OSC [5:0]					TRIM_I	REG [2:0]		

Table 11: Broadcast Register Map

ADDRESS IN BC [4:0]	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OxO to OxE BROADCAST	BC [3	:0]			Conte	ent of i	of main register with address BC [3:0]									
0x10 BROADCAST	SDO	SDO output if off.														
Ox12 BROADCAST	RSVD PERIOD [9:0]															
0x13 BROADCAST	RSVD)			PHASE	STM_S [1:0]	STATE ERR [8:0]									
Ox14 BROADCAST	RSVD)			PHASE	ASE RSVD CURRENT_PI [9:0]										
Ox1A BROADCAST	RSVD	FULL	EMPTY	Р	AMP	LITUDE	TUDE [11:0]									

6.4.1 Register Map Details

Table 12: REFERENCE register details

ADDRESS	S: 0x00 RI	EFERE	NCE									
11	10	9	8	}	7	6	5	4	3	2	1	0
FIFO [11	:0]											
BITS	NAME		DEFA	ULT T	YPE [DESCRIPTION	NC					
11:0	FIFO		0x00	F		oput of the Desired amormat. BO data to align where V_{re} he feedbequal to $\frac{9}{2}$ T43. Moreover, and $\frac{9}{2}$	iplitude of S1901 will in MSBs. amplitud $V_{OUT} = 0.6 \text{ N}$ ack ration of S5 V or Freover, the state of S100 or Freover,	I work with e (V_{OUT}) ir $ = \frac{FIFO [1]}{2^{11}} = FIFO [1]$	th lower representations of the second seco	esolution $r_{ref} \times FB_{r}$ t range a ways be smaller tween tw	ratio and FB _{rat} smaller than or o	n: shift io = 31 is than or equal to

Table 13: ION_BL register details

ADDRESS	S: 0x01 IO	N_BL	-											
11	10	9		8		7	6		5	4	3	2	1	0
FSWMAX	۲ [1:0]	SB [1	L:0]			IONSC	ALE [7:0	0]						
BITS	NAME		DEF	AULT	TY	PE	DESCR	IPTIC	N					
11:10	FSWMAX	(0x0		R/		Set boo 0x0: 0x1: 0x2: 0x3:	1 N 833 666		maximum	ı switchin	g frequen	icy.	
9:8	SB		0x3		R/		0x0: 0x1: 0x2: 0x3:	35 44 53 62	ns ns ns (reco	nking time ommende e should v	ed)	ll applicat	ions.	
7:0	IONSCAL	E	0xA(0	R/			I_{ON}	$J_{SCALE} = 1$	quired to $round\left(rac{L}{L} ight)$ ns and F	$\frac{atency}{\times 2^{-12}} \times$	⟨ R _{sense} ×		

Table 14: DEADTIME register details

ADDRESS	S: 0x02 D	EADT	IME (1)								
11	10	9	8	7	6	5	4	3	2	1	0
DHS [6:0]	I	<u>'</u>	l .			DLS [4:0]]			
BITS	NAME		DEFAULT	TYPE	DESCRIPTI	ON					
11:5	DHS		0x23	R/W	Sets the m and high-s Use the fo	ide (HS) sv	witch turn t _{dead} =	on. DHS × 2 calculate	1.1 ns the appr	opriate v	
					Typical IC of Parasitic callayout. The user callage and the second call callage and the second callage and the se	apacitance	e C _{par} depe	ends on th	ne L ₁ indu	ctor and	
4:0	DLS		0x0A	R/W	Sets the m turn on.	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	·	
							$t_{dead} =$	$= DLS \times 4$	1.4 ns		
					Default va for most a specific ap	pplication	•				

⁽¹⁾ Default value of DEADTIME register is unique among various versions of BOS1901. It can be used as chip ID.

Table 15: KP register details

ADDRESS	S: 0x03 KI	P												
11	10	9		8		7		6	5	4	3	2	1	0
SQ	KP [10:0]]												
BITS	NAME		DEF	AULT	TYF	PE	DE	SCRIPTIC	N					
11	SQ		0x0		R/\		In wi ou 1:	this mod th arbitra tput of tl Square w	e, the use ary sample ne BOS19	e rate. As 01 will sta	k. d safely d soon as a art to mov	sample i	s received	d, the

ADDRES	S: 0x03 K	Р											
11	10	9		8	7		6	5	4	3	2	1	0
SQ	KP [10:0]											
BITS	NAME		DEF	AULT	TYPE		DESCRIPTION	ON					
10:0	КР		0x08	30	R/W	p	ets the phoroportion	al gain. Th d by:	ne physica	al value (<i>K</i>	$(p_{Physical})$ ir 2^{-14} A		oller

Table 16: KPA_KI register details

ADDRES:	S: 0x04 KI	PA_KI											
11	10	9	8		7	6		5	4	3	2	1	0
KIBASE [3:0]				KPA [7:	:0]							
BITS	NAME	D	EFAULT	TY	'PE	DESCRI	PTIC	ON					
11:8	using the following equation f_{pol}								equation:	kHz of th $\frac{102}{2^{KIBA}}$		ted PI con	troller
7:0	КРА	Ox	xA0	R/			•	ortional g	Use follow gain used $= KP + K$	in the into	egrated P	I controlle	

Table 17: CONFIG register details

ADDRES:	S: 0x05 C	ONFIG										
11	10	9	8	7		6	5	4	3	2	1	0
BC [4:0]						LOCK	RST	OE	DS	PLAY [2:0	0]	
BITS	NAME		DEFAULT	TYPE	D	ESCRIPTIO	NC					
11:7	ВС	0	0x02	R/W	p 0 0	ddress of ort (SDO p x02: DEAD x10: SDO ee section	oin). DTIME (ch is off.	ip ID).		ent is shif	fted out o	n SPI
6	LOCK	0)x0	R/W	0 b	egister loo x1: All reg it <u>OE</u> is se x0: Disabl	isters are t to 0x1	write-pro	otected ex	cept CON	IFIG & FIF	O when

ADDRESS	S: 0x05 C	ONFI	Ĵ												
11	10	9		8		7	6	!	5	4	3	2	1	0	
BC [4:0]							LOCK	ı	RST	OE	DS	PLAY [2:0	0]		
BITS	NAME		DEF	AULT	TY	PE [ESCRIP	TIOI	N						
5	RST		0x0		R/	t (o IDLE n 0x1: RES	troll mod ET	er resets e.		registers t	to default	values ar	nd goes	
4	OE		0x0		0x0: Normal operation R/W Enable waveform playback. 0x1: Enable 0x0: Disable										
3	DS		0x0		R/	(ower m 0x1: SLEI 0x0: IDLI	EP n	node	ot playing	g wavefor	ms (bit <u>0</u>	E set to 0	x0).	
2:0	PLAY		0x0		R/		vavefori 0x0: 2 0x1: 5 0x2: 2 0x3: 2 0x4: 6 0x5: 3	ms: 1024 512 256	4 ksps ksps ksps ksps ssps ssps	at which	FIFO data	is read to	o create o	utput	

Table 18: PARCAP register details

ADDRES	SS: 0x06 P	ARCA	.P											
11	10	9		8		7		6	5	4	3	2	1	0
UPI	LMI	CP5		CAL		PARCA	۱P	[7:0]						
BITS	NAME		DEF	AULT	TY	PE.	DI	ESCRIPTIO	ON					
11	UPI		0x0		R/	W	Er	nables the	Unidired	tional Po	wer Inpu	ıt.		
				0x1: Enable										
					0x0: Disable									
10	LMI		0x1		R/	'W	Hi	gh Side (I	HS) switch	n current	limit.			
									0x1 when					
									de HS swi			typical	value: 81	5 mA)
							0х	0: Currer	nt limit se	t by R _{sense}	·			
9	CP5		0x1		R/	'W	In	ternal 5 \	/ charge p	ump				
							0х	1: ON						
							_	0: OFF						
											can be t	urned C	OFF only	if VBUS pin
							is	supplied	with 5 V o	or more.				

ADDRES:	S: 0x06 P/	ARCA	Р										
11	10	9		8		7	6	5	4	3	2	1	0
UPI	LMI	CP5		CAL		PARCAP	[7:0]						
BITS	NAME		DEF	AULT	TY	PE D	ESCRIPTIO	NC					
8	CAL		0x1		R/W Enables an automatic internal calibration done when OE bit to 0x1. The BOS1901 is calibrated only once after power-up software reset using bit RST or wake-up from SLEEP. Calibration results are written in DAC HS [5:0] and DAC LS [registers. Calibration might be disabled only if the user writes proper calibration values in DAC register. The proper calibration dat be read from DAC register after the output is disabled by set OE bit to 0x0. 0x1: Enable 0x0: Disable (not recommended) R/W Internal parameter. Use following equation								
7:0	PARCAP		0x3	A	R/	V p ir	·	PARCAP == 144 pF,	$= \frac{\sqrt{\frac{C_{sw}}{I}}}{2^{-1}}$ is the type parasition	$+ C_{par}$ $\frac{1}{11} \times 1$ ical interior capacita	$R_{sense} imes 1$ nal IC capa	acitance v on pin SW	/ which

Table 19: SUP_RISE register details

ADDRESS	S: 0x07 SU	JP_RI	ISE									
11	10	9	8		7	6	5	4	3	2	1	0
SENSE	VDD [4:0)]					TI_RISE [5:0]				
BITS	NAME		DEFAU	JLT 1	ГҮРЕ	DESCRIPTION	NC					
11	SENSE		0x0	F	R/W	Mute the of it. Use who ox1: Enable 0x0: Disable	en sensing e	•	the actua	tor voltag	ge withou	t driving
10:6	VDD		0x05	F	R/W	Digital report The VDD [4] For VDD [4] For VDD [4]	VDI:0] in dec	imal value $0 \ [4:0] =$ al value $>$	e is determine is determined by $\left(\frac{V_{DD}[Vc]}{0.02c}\right)$	mined by: $\frac{(lt]}{5} - 12$ 2 DD [4:0] to	28 — o 0x1F.	

ADDRES	S: 0x07 S	UP_R	ISE									
11	10	9	8		7	6	5	4	3	2	1	0
SENSE	VDD [4:	0]					TI_RISE [5:0]				
BITS	NAME		DEFAL	ULT	TYPE	DESCRIPT	ON					
5:0	TI_RISE		0x27	1	R/W	Proportion Internal particle T _{CLK} = 70 n	arameter. TI_{RI}		ving equa		<u>io</u> e	

Table 20: DAC register details

ADDRESS	S: 0x08 D	AC										
11	10	9	8	3	7	6	5	4	3	2	1	0
DAC_HS	[5:0]						DAC_LS	[5:0]				
BITS	NAME		DEFAL	ULT T	YPE	DESCRIPTIO	N					
11:6	DAC_HS		0x02	R	R/W	Internal cal	ibration v	alue.				
5:0	DAC_LS		0x02	R	R/W	Internal cal	ibration v	alue.				

Table 21: IC_STATUS register details

ADDRES	S: 0x0C (r	ead-or	nly)	IC.	_ST	ATUS								
11	10	9	8	3		7		6	5	4	3	2	1	0
STATE [1	1:0]	OVV	(TVC		FULL		EMPTY	FIFO_SP/	ACE [5:0]				
BITS	NAME		DEFA	ULT	ΤY	PE	DI	ESCRIPTIO	N					
11:10	STATE	(0x0		R		ST	ATE of th	e control	ler				
							0х	(0: IDLE						
							0х	(1: CALIB	RATION					
						0x2: RUN.								
						0x3: ERROR								
9	OVV	(0x0		R		O۱	vervoltag	e status b	it.				
									_		the maxi	mum volt	tage allow	/ed
							0х	0: Outpu	t voltage	is OK				
8	OVT	(0x0		R		O۱	ver tempe	erature st	atus bit.				
							0х	1: Over t	emperatu	ire detect	ed on the	IC		
							0х	0: IC tem	perature	is OK				
7	FULL	(0x0		R		FI	FO is full.						
								(1: Full						
							0х	(0: Not Fu	ıll					
6	EMPTY	(0x1		R			FO is emp	•					
								(1: Empty						
							0х	(0: Not En	npty, avai	lable space	ce given b	y FIFO_SI	PACE [5:0]

ADDRESS	6: 0x0C (re	ead-o	nly)	IC	_S	TATUS								
11														0
STATE [1:0] OVV OVT FULL EMPTY FIFO_SPACE [5:0]														
BITS	NAME		DEF	AULT	TY	/PE	DI	ESCRIPTIC	N					
5:0	FIFO_SPA	CE	0x0	0	R		Sp	ace avail	able in FIF	O for nev	v data.			

Table 22: SENSE register details

ADDRESS	6: 0x0D (r	ead-on	ly) SE	NSE								
11	10	9	8	7		6	5	4	3	2	1	0
STATE [1	:0]	VFEED	BACK [9:	0]								
BITS	NAME		EFAULT	TYPE	DE	ESCRIPTIO	N					
11:10	STATE 0x0 R STATE of the controller 0x0: IDLE 0x1: CALIBRATION 0x2: RUN. 0x3: ERROR VFEEDBACK 0x000 R Voltage feedback measured on 10 bits											
9:0	VFEEDBA	CK 0	x000	R	W		<i>VFEE</i> = 3.6 V is	'DBACK	n 10 bits $=rac{V_{HVOUT}}{V_{ref}}$ Cinput ran			1 is the

Table 23: TRIM register details

ADDRES:	S: 0x0E TF	RIM											
11	10	9	8		7		6	5	4	3	2	1	0
TRIMRW	[1:0]	SDOBP	TRIM	_os	C [5:0]]					TRIM_RE	G [2:0]	
BITS	NAME	DE	FAULT	TY	PE	DE	SCRIPTIC	N					
11:10	TRIMRW	Ox	0	R/	W	free (TI) ch TR op Ox Tri Ox tra rea Ox TR	equency (RIM_REG ip-to-chip RIMRW [1 beration. 0: Defaul im Block 1: Resets ansfers Tr ading (wa 2: Transf	ol bits for (TRIM OS [2:0]), see p. More do .:0] bits an at power the Trim Block ait for 1 mers Trim E [2:0] for res TRIM OS TRIM OS	e Figure 1 etail is avere automatur where Block with data to This before Block data reading (w	nd 1.8 V i 19. Hardwailable in atically res Hardward h the Har RIM OSC reading) to TRIM vait for 1 i	nternal revare fuses section 6 set to 0x0 e Fuses and dware Fuses 50 & Ti	egulator v values va .2.12. after each re latched ses and t RIM REG	roltage ary from the to the fer [2:0] for

ADDRES:	S: 0x0E TF	RIM												
11	10	9		8		7		6	5	4	3	2	1	0
TRIMRW	[1:0]	SDOB	Р	TRIM_	OS	C [5:0]						TRIM_RE	G [2:0]	
BITS	NAME		DEF	AULT	ΤY	'PE	DI	ESCRIPTIC	ON					
9	SDOBP		0x0		R/	W	0х	ssign inter (1: Interna (0: Keep S	al clock to	SDO pin	·	ty		
8:3	TRIM_OSC 0x00 R/W						St		approxim ximum fr nimum fre hange in e	nately 1%. equency a equency a	at 0x1F at 0x20		uce circui	t
2:0	TRIM_RE	EG	0x0		R/	'W	St Cł		approxim ximum vo nimum vo nis param	nately 22 o oltage at 0 oltage at 0 eter is no	mV Dx3 Ix4	·		

Figure 19: Block diagram: trim control

6.4.2 SDO Broadcast Details

The internal register whose content is returned to the full-duplex SPI port (SDO pin) is selected by the bits BC [4:0].

The main register content can be broadcast by setting BC [4:0] bits from 0x0 to 0xE. The returned 16-bit content is detailed in Table 24.

Extra broadcast registers are also available by setting \underline{BC} [4:0] bits to $\underline{0x10}$, $\underline{0x12}$, $\underline{0x13}$, $\underline{0x14}$ or $\underline{0x1A}$. The returned 16-bit content is detailed in Table 25 to Table 29.

Table 24: BC [4:0] = 0x00 to 0x0E: Details of the 16-bit data returned on the SPI port (SDO pin)

BC [4	:0] = 0x	0 to 0x	E											
15	15 14 12 12 14 10 0 0 7 6 5 4 2 2 1													
BC [3	:0]			Conte	ent of m	nain reg	ister w	ith add	ress BC	[3:0]				

Table 25: BC [4:0] = 0x10: Details of the 16-bit data returned on the SPI port (SDO pin)

BC [4	:0] = 0x	10													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Regis	ter con	tent ou	tput is	disable	d. SDO	output	is force	ed low	during t	he con	nmunic	ation.			

Table 26: BC [4:0] = 0x12: Details of the 16-bit data returned on the SPI port (SDO pin)

BC [4:	0] = 0x	12													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD PERIOD [9:0]															
BITS		NAM	•		DESCI	RIPTION	1								
9:0		PERIC	D		Switcl	hing pe	riod at	pin SW	counte	ed in nu	ımber d	of clock	cycles.		

Table 27: BC [4:0] = 0x13: Details of the 16-bit data returned on the SPI port (SDO pin)

00[4	01 0	40													
BC [4:	0] = 0x	13													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD				PHASE	STM_S	STATE	ERR [8	:0]							
					[1:0]										
BITS		NAME			DESCI	RIPTION	J								
11		PHASI	Ē		H-brid	lge pha	se								
					0x1: n	egative	voltag	e							
					0x0: p	ositive	voltage	9							
10:9		STM_	STATE		Main	state m	achine	state							
					0x0: II	DLE									
					0x1: C	Calibrat	e								
					0x2: R	lun									
					0x3: C	vervol	t								
8:0		ERR			Differ	ence be	etween	the rec	questec	outpu	t voltag	ge and	the fee	dback	
					voltag	ge meas	sured b	y the in	ternal <i>i</i>	ADC, gi	ven in 9	9-bit 2's	compl	ement	and
					repres	senting	the err	or.							

Table 28: BC [4:0] = 0x14: Details of the 16-bit data returned on the SPI port (SDO pin)

BC [4	:0] = 0x	14													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD PHASE RSVD CURRENT_PI [9:0]															
BITS NAME DESCRIPTION															
11		PHAS	E		H-brid	lge pha	se								
11 PHASE H-bridge phase Ox1: negative voltage															
					0x0: p	ositive	voltag	e							

BC [4:	:0] = 0x	14													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD PHASE RSVD CURRENT_PI [9:0]															
BITS		NAME	•		DESCI	RIPTION	1								
9:0		CURR	ENT_PI		Desire	ed curre	ent in m	nA from	the PI	contro	ller for	next cy	cle		
					(base	d on Rse	ense = 0.	5 Ω)							

Table 29: BC [4:0] = 0x1A: Details of the 16-bit data returned on the SPI port (SDO pin)

BC [4:	:0] = 0x	1A													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD	FULL	EMPTY	Р	AMPL	ITUDE	[11:0]									
BITS		NAME			DESC	RIPTION	J								
14		FULL			Full: F	IFO sta	tus								
					0x1: F	ull									
					0x0: N	Not Full									
13		EMPT	Υ		Empty FIFO										
					0x1: E	mpty									
					0x0: N	Not Emp	oty								
12		Р			Polari	ty of th	e outp	ut							
					0x1: N	Negativ	е								
					0x0: F	ositive									
11:0		AMPL	ITUDE		Desire	ed amp	litude	of the o	utput:						
								$V = \frac{A}{}$	mplitı 2 ¹¹ –	$\frac{\iota de}{1} \times V$	y _{ref} × I	FB_{ratio}			

7 Implementation

7.1 Differential Output Configuration

Differential output configuration is required for applications using both sensing and driving capabilities. The piezoelectric actuator is driven with one terminal connected to OUT+ pin and the other connected to OUT- pin. This configuration can achieve a differential output voltage of 190 V_{pk-pk} .

Typical application schematics of this configuration are shown in Figure 20 and Figure 21, the latter of which being for Unidirectional Power Input (UPI) configuration. The BOM list is detailed in Table 30.

Figure 20: Typical schematic

Figure 21: Typical schematic with UPI configuration.

7.2 Single-Ended Configuration

When sensing is not needed, the single-ended output configuration allows driving two actuators independently to reduce the bill-of-material, see Figure 22. A piezoelectric actuator is driven with the

positive terminal connected to OUT+ and another with the positive terminal connected to OUT-. Both actuators negative terminal is connected to VDD.

This configuration will output up to 95 V waveform with positive polarity on each actuator. Only one piezo element can be driven at a time based on the signal polarity. Positive voltages will play on the actuator connected to OUT+ and negative voltages will play on the actuator connected to OUT-.

Figure 22: Typical schematic with single-ended output configuration

7.3 External Components

Typical values of external components are presented in Table 30. See section 7.5 for details on selecting components.

Table 30: Recommended external components for 190 V_{pk-pk} / 100 nF load

COMPONENT	DESCRIPTION	TYPICAL VALUE
C_{VDD}	Input capacitor	10 μF (<u>UPI</u> bit set to 0x0)
		100 μF (<u>UPI</u> bit set to 0x1)
C _{REG}	Regulator capacitor	100 nF
C _{PUMP}	Charge pump capacitor	100 nF
C_{VDDIO}	VDDIO decoupling capacitor	100 nF
C _{HV}	Boost capacitor	5% of load /or up to 10 nF
R _{sense}	Current sense resistor	0.2 Ω
L ₁	Boost inductor	10 μΗ

7.4 Initialization

7.4.1 Power-Up Sequence

- 1. Apply power to the BOS1901 device. Note that the different supplies (VBUS/VDD & VDDIO) can be powered up in any sequence.
- 2. Wait for 10 ms during which the BOS1901 performs power-up, initialisation sequence and then go to SLEEP mode.
- 3. Wake-up from SLEEP mode by forcing a pulse low at pin \overline{CS} or performing a dummy SPI write.
- 4. Wait 50 μ s for the BOS1901 device to reach IDLE mode.
- 5. Program the desired internal registers according to your application.
- 6. BOS1901 is ready for waveform playback.

7.4.2 Start-Up Sequence

After the initial power-up sequence, the following start-up sequence applies:

- From SLEEP mode, the user must perform steps 3 to 7 of section 7.4.1.
- From IDLE mode, BOS1901 is ready for waveform playback.

7.5 Design Methodology: selection of component

7.5.1 Load Selection

The BOS1901 is designed to drive a load of up to 100 nF at 190 V_{pk-pk} and 300 Hz. Larger load capacitances (C_{Load}) can be driven if the waveform frequency and/or the waveform amplitude is reduced (see Table 6).

Load capacitance defines the required value of component C_{HV} (up to 10 nF):

$$C_{HV} = 5\% C_{Load} \tag{1}$$

The capacitor should have a voltage rating at least equivalent to half the maximum amplitude of the waveform. For instance, for a 190 V_{pk-pk} waveform, a capacitor with a minimum voltage rating of 95 V is required.

7.5.2 Inductor Selection

The BOS1901 can use any COTS inductor. The L_1 inductor value can be chosen to optimize the power / size / performance trade-off for the user application:

- Select lower inductance together with a higher switching frequency using bits <u>FSWMAX [1:0]</u> to optimize distortion THD+N.
- Select larger inductance to reduce the switching frequency. In general, lower switching frequency corresponds to lower power consumption.

Use the following procedure to select the first inductor value and then experiment with other values to optimize your application if required:

- 1. Fix the lowest desired switching frequency (f_{swmin}) for the boost converter. We recommend a value of 300 kHz.
- 2. Set the output signal maximum frequency (fsig). e.g., 200 Hz.
- 3. Set the maximum amplitude of the waveform (V_{pk}). e.g., 95 V for a 190 V_{pk-pk} output.
- 4. Set the minimum supply voltage (V_{BUS}) value during operation. e.g., 3 V.
- 5. Calculate the maximum power transfer point:

Bipolar Waveform

Unipolar Waveform

$$V_{\text{out}} = V_{\text{pk}} \sin(45) + V_{\text{BUS}}$$
 $V_{\text{out}} = \frac{V_{\text{pk}}}{2} (1 + \sin(30)) + V_{\text{BUS}}$ (2)

$$\overline{I_{\text{out}}} = 2\pi f_{\text{sig}} C_{\text{Load}} V_{\text{pk}} \cos(45) \qquad \overline{I_{\text{out}}} = \pi f_{\text{sig}} C_{\text{Load}} V_{\text{pk}} \cos(30)$$
 (3)

6. Calculate the average input current at the maximum transfer point:

$$\overline{I_{IN}} = \frac{V_{\text{out}} \times \overline{I_{out}}}{V_{RIIS}} \tag{4}$$

7. Calculate the inductor peak current:

$$I_{\rm pk} = 2\overline{I_{\rm out}} \frac{V_{\rm out}}{V_{\rm BHS}} \tag{5}$$

An inductor of 10 μ H is recommended with saturation current higher than I_{pk}.

7.5.3 Current Limit Selection (Rsense)

The current limit of the power converter is set by R_{sense} value. The R_{sense} value must be selected to enable a current range appropriate for the I_{pk} value calculated for the inductor. Refer to Table 31 and equation 7 to calculate R_{sense} value. If the selected value is smaller than 0.32 Ω , bit LMI must be set to 0x1.

Make sure that the L₁ inductor saturation current is higher than the current limit setting.

$$current limit = \frac{0.256 [V]}{R_{sense}}$$
 (6)

Table 31: L1 inductor peak current limit, min/max values

$R_{sense} [\Omega]$	CURRENT LIMIT [A]	COMMENT
0.2	1.28	Minimum R _{sense} value
1	0.256	Maximum R _{sense} value

7.5.4 Input Capacitor (C_{VDD})

An input capacitor (C_{VDD}) must be placed next to the inductor because of the current requirement of the power converter. A low-ESR capacitor of at least 10 μ F is recommended.

If Unidirectional Power Input mode is enabled (bit $\underline{\sf UPI}$ set to 0x1), the energy recovered from the load in reverse mode accumulates on the input capacitor. Energy accumulation on the input capacitor causes the input voltage to increase. The voltage increase must not make the total voltage on the input capacitor

exceed the 5.5 V limit (V_{DD_max}). Equation (7) helps find the minimum capacitance value for your specific design.

$$C_{\text{VDD}} = \frac{C_{\text{load}} V_{\text{pk}}^2}{V_{\text{DD_max}}^2 - V_{\text{BUS_max}}^2}$$
 (7)

When selecting the capacitor, make sure to select a capacitor with an effective capacitance close to the calculated value in your operating condition.

7.6 Design Methodology: programming

Many operational settings are adjustable through the digital front end. The user should program the following parameters according to its specific design. For details, see section 7.5.

7.6.1 Waveform Playback

• Set FIFO readout speed: PLAY [2:0]

7.6.2 Power Converter

- Set the maximum switching frequency of the power converter: FSWMAX [1:0]
- Set Power Input mode: UPI

7.6.3 Loop Controller

The BOS1901 implements a proportional-integral (PI) control loop feedback. The user can optimize the following parameters if required.

- Set proportional gain: KP [10:0]
- Set proportional gain term related to waveform amplitude: KPA [7:0]
- Set integral term: KIBASE [3:0]

Table 32 shows the recommended value for a 100 nF load operating at up to 190 V_{pk-pk} and 300 Hz with a 10 μ H L_1 inductor and 0.2 Ω sense resistor.

Table 32: Loop controller parameters

PARAMETER	RECOMMENDED VALUE	COMMENT
KP [10:0]	128 (0x80), default	Reduce value for smaller loads
KPA [7:0]	160 (0xA0), default	Reduce value for smaller loads
KIBASE [3:0]	2 (0x2), default	Increase value to 3 or 4 when
		using a larger L₁ inductor

7.6.4 Timing

The power efficiency of the BOS1901 depends on proper switching timing of the power MOSFETs.

Adjust the following parameters based on selected inductor value (L_1) and current sense limit (R_{sense}):

- Adjust power switch deadtime: <u>DHS [6:0]</u>
- Adjust minimum current required to turn on HS switch: <u>IONSCALE [7:0]</u>
- Adjust typical capacitance value on pin SW: <u>PARCAP [7:0]</u>
- Adjust proportional gain for the offset: TI_RISE [5:0]
- Set the nominal supply voltage (VDD) of the design: VDD [4:0]

8 Layout

The 4-layer PCB layout examples of Figure 23 are for UPI configuration and based on the following considerations:

- Recommended layers are: Top, GND plane, Power plane (split with V_{DD} and V_{BUS}), Bottom
- Close placement of components L₁, R_{sense} and C_{VDD} to minimize the area of the high current loop formed by these components
- L₁ is a TDK Corporation VLS3012HBX series inductor with 3x3 mm package
- C_{VDD} is a 100 μF capacitor 1206 (3216 metric) package, adequate for UPI configuration
- Component C_{HV} is in 0603 (2012 metric) package
- Components C_{PUMP}, C_{REG}, C_{VDDIO} and R_{sense} are in 0402 (1005 metric) package
- Traces connecting L₁, R_{SENSE}, C_{VDD} are as wide as possible to minimize resistance, and multiple vias are used, when possible, to reduce both via parasitic resistance and inductance
- For QFN package layout, all other lines are 8 mils (0.203 mm) wide, minimum spacing of 8 mils
- For WLCSP package layout, all other lines are 6 mils (0.152 mm) wide, minimum spacing of 6 mils
- The WLCSP package layout requires 0.15 mm vias and Via-in-Pad

Figure 23: UPI configuration PCB layout examples for QFN 20L 4.0mm × 4.0mm (left) and WLCSP 25B 2.1mm × 2.2mm (right)

9 Mechanical

9.1 BOS1901CQ (QFN) Package Description

Figure 24: QFN 20L 4.0mm × 4.0mm package outline drawing

Table 33: QFN 20L 4.0mm × 4.0mm package dimensions

SYMBOL	MILLIMETERS			
	MIN	MAX		
Α	0.70	0.80		
A1	0.00	0.05		
b	0.18	0.30		
D	4.00 BSC			
D2	2.40	2.70		
E	4.00	O BSC		
E2	2.40	2.70		
е	0.50 BSC			
K	0.20	-		
L	0.35	0.50		

‡Reference: JEDEC MO-220-K.01. BSC: Basic Spacing between Center.

Four lines are marked on the package:

(1) Company Name: BOREAS(2) Product Name: BOS1901

(3) Wafer Batch Number (XXXXXX.XX)

(4) Assembly Date (YYWW, year and week) with Assembly House Code (ZZ)

e3 Material Category Symbol of Terminal Finish: not present on latest packages.

9.2 BOS1901CQ (QFN) Package Soldering Footprint

Figure 25: QFN 20L 4.0mm × 4.0mm package soldering footprint (NOT TO SCALE)

9.3 BOS1901CQ (QFN) Reflow

The QFN package soldering reflow profile should be determined based on the reflow profile recommended by the manufacturer of the solder paste used. Also, it is important to take into consideration that the circuit board dimensions, other board components and the reflow soldering oven can affect the reflow profile.

Finally, please note that the quality of the solder paste plays an important role in board assembly and allows for a reliable and repeatable assembly process.

9.4 BOS1901CW (WLCSP) Package Description

Figure 26: WLCSP 25B 2.1mm × 2.2mm package outline drawing

Table 34: WLCSP 25B 2.1mm × 2.2mm package dimensions

CVMADOL	MILLIMETERS					
SYMBOL	MIN	NOM	MAX			
Α	0.585	0.625	0.665			
A1	0.180	0.200	0.220			
A2	0.380	0.400	0.420			
A3	0.022	0.025	0.028			
Е	2.105	2.125	2.145			
D	2.205	2.225	2.245			
E1		1.60 BSC				
D1		1.60 BSC				
е		0.40 BSC				
b	0.245					

BSC: Basic Spacing between Center.

Four lines are marked on the package:

(1) Company Name: BOREAS(2) Product Name: BOS1901

(3) Wafer Batch Number (XXXXXXX)

(4) Assembly Date (YYWW, year and week) with Assembly House Code (ZZ)

9.5 BOS1901CW (WLCSP) Package Soldering Footprint

Figure 27: WLCSP 25B 2.1mm × 2.2mm package soldering footprint (NOT TO SCALE)

The use of non-solder mask defined (NSMD) pads is recommended, with 0.05 mm solder mask expansion as shown in Figure 27.

9.6 BOS1901CW (WLCSP) Reflow

BOS1901CW supports JEDEC J-STD-020D.1 reflow profile using SAC405 bumps. Note this flow may be optimized for specific PCB assembly conditions.

Figure 28: WLCSP reflow profile

Table 35: Reflow profile parameters

PARAMETER	DESCRIPTION	VALUE
T _{Smin}	Preheat minimum temperature	150°C
T _{Smax}	Preheat maximum temperature	200°C
ts	Time from T _{Smin} to T _{Smax}	60-120 s
	Ramp-up rate from T _L to T _P	3°C/s max
TL	Liquidus temperature	217°C
T _P	Peak package temperature	260°C
tL	Time above T _L	60-150 s
	Ramp-down rate from T _P to T _L	6°C/s max
	Time 25 °C to peak temperature	8 min max

9.7 Tape and Reel Specification

9.7.1 BOS1901CQ (QFN) 16 mm Tape Specification

Figure 29: 16 mm embossed carrier tape dimensions (NOT TO SCALE)

Table 36: Constant dimensions for embossed 16 mm carrier tape – Reference ANSI/EIA-481 (all dimensions in mm)

TAPE SIZE	W	Ø D ₀	D ₁ MIN.	E ₁	P ₀	P ₂	T
16 mm	16.0 ± 0.30	1.5 + 0.1 - 0.0	1.50	1.75 ± 0.10	4.00 ± 0.20	2.00 ± 0.10	0.30 ± 0.05

Table 37: Variable dimensions for embossed 16 mm carrier tape – Reference ANSI/EIA-481 (all dimensions in mm)

TAPE SIZE	W	F	P ₁	A ₀	B ₀	K ₀	K ₁
16 mm	16.0 ± 0.30	7.5 ± 0.1	8.00 ± 0.05	4.40 ± 0.10	4.40 ± 0.10	1.80 ± 0.10	1.30 ± 0.10

Figure 30: BOS1901CQ Product Orientation on 16 mm embossed carrier tape (NOT TO SCALE)

9.7.2 BOS1901CQ (QFN) 330 mm (13") Reel Specification (7" Hub)

Figure 31: Reel outline drawing (NOT TO SCALE)

Table 38: Constant dimensions for embossed 16 mm carrier tape – Reference ANSI/EIA-481 (all dimensions in mm)

TAPE SIZE W	REEL SIZE Ø A	B MIN.	ØС	Ø D MIN.
16.0 ± 0.30	330.0 ± 2.0 (13 inches)	1.5	13.0 + 0.5 - 0.2	20.2

Table 39: Variable dimensions for embossed 16 mm carrier tape – Reference ANSI/EIA-481 (all dimensions in mm)

TAPE SIZE W			W ₃
16.0 ± 0.30	330.0 ± 2.0 mm (13 inches)	178 ± 2.0 (7 inches)	13.9

Figure 32: Leader/Trailer and Orientation (NOT TO SCALE) for BOS1901CQ 16 mm Tape

9.7.3 BOS1901CW (WLCSP) 12 mm Tape Specification

Figure 33: 12 mm embossed carrier tape dimensions (NOT TO SCALE)

Table 40: Constant dimensions for embossed 12 mm carrier tape – Reference ANSI/EIA-481 (all dimensions in mm)

TAPE SIZE	W	Ø D ₀	D ₁ MIN.	E ₁	P ₀	P ₂	Т
12 mm	12.00 ± 0.30	1.5 + 0.1 - 0.0	1.50	1.75 ± 0.10	4.00 ± 0.10	2.00 ± 0.10	0.30 ± 0.10

Table 41: Variable dimensions for embossed 12 mm carrier tape – Reference ANSI/EIA-481 (all dimensions in mm)

ĺ	TAPE SIZE	W	F	P ₁	A ₀	B ₀	K ₁
	12 mm	12.00 ± 0.30	5.50 ± 0.10	8.00 ± 0.10	2.425 ± 0.10	2.525 ± 0.10	0.925 ± 0.10

Figure 34: BOS1901CW Product Orientation on 12 mm embossed carrier tape (NOT TO SCALE)

9.7.4 BOS1901CW (WLCSP) 330 mm (13") Reel Specification (7" Hub)

Figure 35: Reel outline drawing (NOT TO SCALE)

Table 42: Constant 330 mm (13") Reel dimensions- Reference ANSI/EIA-481 (all dimensions in mm)

TAPE SIZE W	REEL SIZE Ø A	B MIN.	ØС	Ø D MIN.
12.00 ± 0.30	330.0 ± 2.0 (13 inches)	1.5	13.0 + 0.5 - 0.2	20.2

Table 43: Variable 330 mm (13") Reel dimensions- Reference ANSI/EIA-481 (all dimensions in mm)

TAPE SIZE W	REEL SIZE Ø A	ØN	W_1	W ₂ MAX.	W ₃
12.00 ± 0.30	330.0 ± 2.0 (13 inches)	178 ± 2.0 (7 inches)	12.4 + 2.0 mm - 0.0 mm	18.4	13.9

Figure 36: Leader/Trailer and Orientation (NOT TO SCALE) for BOS1901CW 12 mm Tape

10 Ordering Information

Table 44: Ordering information

	ORDERING PART	PACKAGE	PACKING	QUANTITY	MSL	DEVICE
	NUMBER (1)	(2)	FORMAT	(3)	PEAK TEMP. (4)	MARKING
1 BOS1901CQT	QFN 20L 4.0mm × 4.0mm	Cut Tane (T)	Min: 20	Level 3	BOS1901	
			Max: 2000	260°C 168Hrs		
2	BOS1901CQR	QFN 20L 4.0mm × 4.0mm	Tape & Reel (R)	2500 / Reel	Level 3 260°C 168Hrs	BOS1901
3	BOS1901CWT	WLCSP 25B 2.1mm × 2.2mm	ICut Tane (T)	Min: 20 Max: 4000	Level 1 260°C Unlimited	BOS1901
4	BOS1901CWR	WLCSP 25B 2.1mm × 2.2mm	Tape & Reel (R)	5000 / Reel	Level 1 260°C Unlimited	BOS1901

NOTE

- (1) Ordering Part Number where last letter indicates packing format.
- (2) All parts are RoHS compliant.
- (3) Contact sales@boreas.ca to order.
- (4) MSL: Moisture Sensitivity Levels, IPC/JEDEC J-STD-020.

11 Document History

Table 45: Document Changes between previous and current versions

ISSUE	DATE	DOCUMENT NUMBER	CHANGES
10	March 2022	BT001FDS01.01	Section 3 – Package type naming changed. Section 6.2.11 – Section clarified. Section 6.2.12 – Section clarified. Section 6.4.2 – Section clarified. Section 8 – Recommended layout changed. Section 9.1 – Device package branding changed. Section 9.3 – Added information about QFN reflow. Figure 19 – Figure clarified.
9	July 2020	BT001DDS01.01	Table 22 – Changed oscillator trimming step size units. Section 7.5.2 – Added unipolar waveform and input current equations. Section 13 – New section.

12 Notice and Warning

Warning High Voltage

For safety, this integrated circuit must be used by qualified and skilled personnel familiar with all applicable safety standards.

ESD Caution

This integrated circuit is ESD (Electrostatic Discharge) sensitive. Therefore, proper ESD precautions and procedures are recommended for handling and installation to avoid damage.

Information relating to products and circuits furnished herein by Boréas Technologies Inc. is believed to be reliable. However, Boréas Technologies assumes no liability for errors that may appear in this document, or for liability otherwise arising from the application or use of any such information which may result from such application or use. The products, their specifications and the information appearing in the document are subject to change by Boréas Technologies without notice. Trademarks and registered trademarks are the property of their respective owners.

Boréas's products are provided subject to the Boréas's Terms & Conditions available at:

https://www.boreas.ca/pages/general-terms-and-conditions

Boréas Technologies Datasheet Status:

Advance Information Datasheet: Design Data

Preliminary Information Datasheet: Prototype information Final Datasheet: Production information