GEL-2005Systèmes et commande linéaires

Examen #1

Lundi 2 novembre 2015, 8h30-10h20

Document permis: une feuille manuscrite recto-verso

Professeur: André Desbiens, Département de génie électrique et de génie informatique

Remarques:

- Accompagnez vos réponses d'unités lorsque c'est pertinent.
- Sauf pour la question 5, les détails de vos calculs sont requis.

Question 1 (20%)

La fonction de transfert du système est :

$$\frac{Y(s)}{U(s)} = \frac{2}{1+5s}$$

Si l'entrée est celle illustrée à la figure 1 et que y(4) = 0.5, que vaut $y(0^+)$?

Figure 1

Question 2 (20%)

Les figures 2 à 4 montrent trois expériences réalisées avec le même système. Le système était au repos avant chaque expérience. Tout allait mal durant ce laboratoire. Durant le premier test, l'enregistrement du temps n'a pas bien fonctionné. Pendant les deux autres essais, l'amplitude du signal ne fut pas enregistrée et les données des 5 premières secondes furent effacées par votre collègue. Quelle serait la **période** des oscillations transitoires (s'il y en a) de la réponse impulsionnelle de ce système?

Figure 3

Question 3(10% + 10% = 20%)

La figure 5 est le lieu de Nyquist du système suivant :

$$\frac{Y(s)}{U(s)} = \frac{Ke^{-\theta s}}{s}$$

- a) Que vaut *K*?
- b) Quelle est la durée du retard?

Question 4 (20%)

Le système étudié est un moteur DC à contrôle d'induit dont le comportement peut être supposé linaire. Le frottement et l'inductance peuvent être négligés. Deux expériences sont réalisées avec ce moteur :

- 1. On applique 5 volts au moteur et on attend le régime permanent. Sa vitesse de rotation est alors 2000 tours/minute.
- 2. On applique 9 volts au moteur et ce dernier génère un couple de $2 \cdot 10^{-3}$ N·m lorsqu'on le bloque (i.e. lorsqu'on l'empêche de tourner).

Suite à un échelon de tension, quel est le temps de réponse à $\pm 5\%$ de ce moteur si l'inertie de l'induit vaut $1.5 \cdot 10^{-6} \, \text{kg} \cdot \text{m}^2$?

Question 5 $(5 \times 4\% = 20\%)$

Les questions de ce numéro sont indépendantes. Écrivez vos réponses dans votre cahier ET à la page 7. Seules les réponses finales seront corrigées. La correction est binaire : 0% ou 4%. Une réponse numérique sera jugée bonne si elle est à $\pm 5\%$ de la bonne valeur.

- a) La réponse d'un système linéaire à une entrée sinusoïdale de fréquence 2 rad/s et à des conditions initiales inconnues est $y(t) = 32.249 \sin(2t 0.519) 16.124e^{-3t} \sin(4t 1.447)$. Quels sont les pôles de la fonction de transfert du système?
- b) La figure 6 montre la réponse en fréquences d'un système. Si l'entrée est un échelon d'amplitude 3, que vaut la sortie en régime permanent?
- c) La figure 6 montre la réponse en fréquences d'un système. Si l'entrée est $u(t) = 2\cos(4.4t 0.5)$, que vaut l'amplitude de la sortie en régime permanent?
- d) Parmi les systèmes de la table I, identifiez tous ceux qui sont stables asymptotiquement. Choississez une réponse parmi les suivantes :
 - a) Aucun système.
 - b) Tous les systèmes.
 - c) Les systèmes B, D, F, G et J.
 - d) Les systèmes A et B.
 - e) Les systèmes E, F, I et J.
 - f) Les systèmes A, B, E, F, I et J.
 - g) Les systèmes C et D.
 - h) Les systèmes A, C, D, F, H et J.
 - i) Aucune de ces réponses.
- e) Parmi les systèmes de la table I, identifiez tous ceux qui sont à déphasage non minimal. Choississez une réponse parmi les suivantes :
 - a) Aucun système.
 - b) Tous les systèmes.
 - c) Les systèmes A et C.
 - d) Les systèmes B, E, G et I.
 - e) Les systèmes C et D.
 - f) Les systèmes E, F, G, H, I et J.
 - g) Les systèmes A, B, C, E, G, H, I.
 - h) Les systèmes A, B, D, E, F, H, I et J.
 - i) Aucune de ces réponses.

Fonction de transfert A : $\frac{-2(1-5s)}{(1+10s)(1+8s)}$	Fonction de transfert B : $\frac{-2(1+5s)e^{-2s}}{(1+10s)(1+8s)}$
Fonction de transfert C : $\frac{2(1-5s)}{(1+10s)(1-8s)}$	Fonction de transfert D : $\frac{-2(1+5s)}{(1+10s)(1-8s)}$
Fonction de transfert E : $\frac{-2(1-5s)e^{-2s}}{s(1+10s)(1+8s)}$	Fonction de transfert F : $\frac{-2(1+5s)}{s(1+10s)(1+8s)}$
Fonction de transfert G : $\frac{2(1+5s)e^{-2s}}{s^2(1+10s)(1+8s)}$	Fonction de transfert H : $\frac{-2(1-5s)}{s^2(1+10s)(1+8s)}$
Fonction de transfert I : $\frac{-2(1-5s)e^{-2s}}{s(1+10s)^2}$	Fonction de transfert J: $\frac{-2(1+5s)}{s(1+10s)^2}$

Table I

Bon succès!

N'OUBLIEZ PAS D'ÉCRIRE VOS RÉPONSES DANS VOTRE CAHIER \underline{ET} D'INSÉRER CETTE FEUILLE REMPLIE DANS VOTRE CAHIER

Matricul	e:
Question	a 5
	Réponse
a)	
b)	
c)	
d)	
e)	

Transformation de Laplace

F(s) sans pôles

$f(t)$ pour $t \ge 0^-$	F(s)	Pôles de $F(s)$
$\delta(t)$	1	Aucun

F(s) avec des pôles simples (réels ou conjugués)

f(t) pour $t > 0$	F(s)	Pôles de $F(s)$
1 ou $u_e(t)$	$\frac{1}{s}$	0
e^{-at}	$\frac{1}{s+a}$	-a
$\sin(\omega t + \phi)$	$\frac{[\sin\phi]s + \omega\cos\phi}{s^2 + \omega^2}$	$\pm j\omega$
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$	$\pm j\omega$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$	$\pm j\omega$
$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$	$-a \pm j\omega$
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2+\omega^2}$	$-a \pm j\omega$

F(s) avec des pôles multiples

f(t) pour $t > 0$	F(s)	Pôles de $F(s)$
t	$\frac{1}{s^2}$	0 (double)
$\frac{t^{n-1}}{(n-1)!}, n = 1, 2, 3, \dots$ te^{-at}	$\frac{1}{s^n}$	0 (ordre n)
te^{-at}	$\frac{1}{(s+a)^2}$	-a (double)
$\frac{t^{n-1}}{(n-1)!}e^{-at}, n = 1, 2, 3, \dots$	$\frac{1}{(s+a)^n}$	-a (ordre n)
$t\cos(\omega t)$	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$	$\pm j\omega$ (double)
$\frac{t}{2\omega}\sin(\omega t)$	$\frac{s}{(s^2+\omega^2)^2}$	$\pm j\omega$ (double)
$\frac{t^2}{2\omega}\sin(\omega t)$	$\frac{3s^2 - \omega^2}{(s^2 + \omega^2)^3}$	$\pm j\omega$ (triple)

Table 1: Transformées de Laplace

$$\mathcal{L}f'(t) \text{ (pour } t > 0) = s\mathcal{L}f(t) - f(0^+)$$
(1)

$$\mathcal{L}\left[\int_0^t f(\tau)d\tau\right] = \frac{1}{s}\mathcal{L}f(t) \tag{2}$$

$$f(0^{+}) = \lim_{s \to \infty} s \mathcal{L}f(t) \tag{3}$$

$$f(\infty) = \lim_{s \to 0} s \mathcal{L} f(t) \tag{4}$$

$$\mathcal{L}f(t-\theta)u_e(t-\theta) = e^{-\theta s}\mathcal{L}f(t)u_e(t)$$
(5)

$$\mathcal{L}\left[\int_0^t f_1(\tau)f_2(t-\tau)d\tau\right] = F_1(s)F_2(s) \tag{6}$$

Systèmes du second ordre

$$G(s) = \frac{K}{\frac{1}{\omega_n^2} s^2 + \frac{2z}{\omega_n} s + 1} \tag{7}$$

$$\omega_p = \omega_n \sqrt{1 - z^2} \tag{8}$$

$$\omega_R = \omega_n \sqrt{1 - 2z^2} \tag{9}$$

$$Q = \frac{|G(j\omega_R)|}{|G(j0)|} = \frac{1}{2z\sqrt{1-z^2}}$$
 (10)

Figure 1: Les dépassements de la réponse à l'échelon versus le coefficient d'amortissement

Figure 2: Le temps de réponse à $\pm 5\%$.

Figure 3: Le facteur de résonance versus le coefficient d'amortissement

Identification des systèmes

Туре	Modèle Fonction de transfert	Réponse à l'échelon	Paramètres
I	$\frac{K_p}{1+T_1s}, T_1 > 0$	Δy Δt $t_{63\%}$	$K_{p} = \frac{\Delta y}{\Delta u}$ $T_{1} = t_{63\%}$
II	$\frac{K_p e^{-\theta s}}{1+T_1 s}, T_1 > 0$	$ \begin{array}{c c} & \Delta y \\ & \Delta u \\ & \delta_{63\%} \end{array} $	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = t_{63\%}$
III	$\frac{K_p}{s}$	Δt Δu	$K_{p} = \frac{\Delta y}{\Delta t \Delta u}$
IV	$\frac{K_{p}e^{-\theta s}}{s}$	$\begin{array}{c} & & & \Delta y \\ & & \Delta t \\ & & & \Delta u \end{array}$	$K_{p} = \frac{\Delta y}{\Delta t \Delta u}$
V	$\frac{K_p}{(1+T_1s)^2}$, $T_1 > 0$	$\begin{array}{c} & & & \Delta y \\ & & & \Delta u \end{array}$	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = \frac{t_{73\%}}{2.6}$
VI	$\frac{K_{p}e^{-\theta s}}{(1+T_{1}s)^{2}}, T_{1} > 0$	$ \begin{array}{c c} & & & & & & \\ \hline & & & &$	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = \frac{t_{73\%}}{2.6}$
VII	$\frac{K_p(1-T_{0i}s)}{(1+T_1s)^2}, T_1 > 0, T_{0i} > 0$	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	$K_p = \frac{\Delta y}{\Delta u}$ Table 2
VIII	$\frac{K_{p}(1-T_{0i}s)e^{-\theta s}}{(1+T_{1}s)^{2}}, T_{1} > 0, T_{0i} > 0$	$ \begin{array}{c} $	$K_p = \frac{\Delta y}{\Delta u}$ Table 2

Modèle		Dán ann Suládadan	D	
Type	Fonction de transfert	Réponse à l'échelon	Paramètres	
IX	$\frac{K_p(1+T_{0s}s)}{(1+T_1s)^2}, T_1 > 0, T_{0s} > T_1$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$K_p = \frac{\Delta y}{\Delta u}$ Table 2	
X	$\frac{K_p(1+T_{0s}s)e^{-\theta s}}{(1+T_1s)^2}, T_1 > 0, T_{0s} > T_1$	$ \begin{array}{c c} \hline \theta & \Delta y_{\text{max}} & \Delta u \\ \hline \vdots & \vdots & \vdots \\ \hline t_{\text{max}} & \Delta u \end{array} $	$K_p = \frac{\Delta y}{\Delta u}$ Table 2	
XI	$\frac{K_p}{\frac{1}{\omega_n^2} s^2 + \frac{2z}{\omega_n} s + 1}, 0 < z < 1, \omega_n > 0$	$ \begin{array}{c} $	$K_p = \frac{\Delta y}{\Delta u}$ z: dépassements (fig. 1) $\omega_n : \omega_p \text{ ou } T_{5\%} \text{ (fig. 2)}$	
XII	$\frac{K_{p}e^{-\theta s}}{\frac{1}{\omega_{n}^{2}}s^{2} + \frac{2z}{\omega_{n}}s + 1}, 0 < z < 1, \omega_{n} > 0$	$\begin{array}{c} \uparrow \\ \downarrow \bullet \\ \downarrow \bullet \\ \downarrow \Delta u \\ \downarrow \Delta u \\ \downarrow \bullet \\ \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \\ \bullet \\ \bullet \bullet$	$K_p = \frac{\Delta y}{\Delta u}$ z: dépassements (fig. 1) $\omega_n : \omega_p \text{ ou } T_{5\%} \text{ (fig. 2)}$	
XIII	$\frac{K_p}{(1+T_1s)s}, T_1 > 0$	$ \begin{array}{c} $	$K_p = \frac{\Delta y}{\Delta t \Delta u}$	
XIV	$\frac{K_p e^{-\theta s}}{(1+T_1 s)s}, T_1 > 0$	$ \begin{array}{c} $	$K_p = \frac{\Delta y}{\Delta t \Delta u}$	

Types VII et VIII			Types IX et X		
$-\Delta y_{min}/\Delta y$	t_{min}/T_1	T_{0i}/T_1	$\Delta y_{max} / \Delta y$	t_{max}/T_1	T_{0s} / T_I
0.01	0.14	0.16	1.02	3.13	1.47
0.02	0.19	0.23	1.04	2.69	1.59
0.03	0.22	0.29	1.06	2.45	1.69
0.04	0.25	0.34	1.08	2.28	1.78
0.05	0.28	0.39	1.10	2.16	1.86
0.06	0.31	0.44	1.15	1.95	2.05
0.07	0.32	0.48	1.20	1.81	2.23
0.08	0.34	0.52	1.25	1.72	2.39
0.09	0.36	0.56	1.30	1.65	2.55
0.10	0.38	0.60	1.35	1.58	2.71
0.20	0.49	0.96	1.40	1.54	2.86
0.30	0.56	1.28	1.45	1.50	3.01
0.40	0.61	1.58	1.50	1.46	3.16
0.50	0.65	1.88	1.55	1.43	3.31
0.60	0.68	2.17	1.60	1.41	3.45
0.70	0.71	2.46	1.65	1.38	3.60
0.80	0.73	2.75	1.70	1.36	3.74
0.90	0.75	3.03	1.75	1.35	3.88
1.00	0.77	3.32	1.80	1.33	4.03
1.10	0.78	3.60	1.85	1.32	4.17
1.20	0.79	3.87	1.90	1.30	4.31
1.30	0.81	4.15	1.95	1.29	4.45
1.40	0.82	4.43	2.00	1.28	4.60
1.50	0.82	4.70	2.10	1.26	4.87
1.60	0.83	4.98	2.20	1.24	5.16
1.70	0.84	5.26	2.30	1.23	5.43
1.80	0.85	5.53	2.40	1.21	5.71
1.90	0.85	5.81	2.50	1.20	5.98
2.00	0.86	6.09	2.60	1.19	6.26
2.20	0.87	6.63	2.70	1.18	6.54
2.40	0.88	7.18	2.80	1.17	6.81
2.60	0.89	7.72	2.90	1.16	7.09
2.80	0.89	8.27	3.00	1.16	7.36
3.00	0.90	8.82	3.50	1.13	8.73
3.20	0.90	9.37	4.00	1.11	10.10
3.40	0.91	9.91	4.50	1.10	11.47
3.60	0.91	10.46	5.00	1.08	12.84
3.80	0.92	11.28	6.00	1.07	15.56
4.00	0.92	11.56	7.00	1.06	18.28
4.50	0.93	12.91	8.00	1.05	21.00
5.00	0.93	14.28	9.00	1.04	23.72

Table 2 : Paramètres des modèles VII à X

Réponses :

- Q.1 1.11
- Q.2 2.09 s
- Q.3
- a) 2 b) 3 s
- Q.4 0.84 s
- Q.5 a) $-3 \pm 4j$

 - b) 6 c) 1 d) d
 - e) g