

Optimization

Big Data

Prof. Hwanjo Yu POSTECH

Optimization

- Basis for Modern Machine Learning Techniques
 - Artificial Neural Network and Deep Learning
 - Support Vector Machine
 - Matrix Factorization and Recommender System

• ...

Optimization

- Gradient Descent and Stochastic Gradient Descent
 - Popularly used optimization methods
 - Basis for advanced optimization methods

Gradient descent in a nutshell

- Express your learning problem in terms of a cost function that should be minimized
- Starting at initial point, step "downhill" until you reach a minimum
- Some situations offer a guarantee that the minimum is the global minimum; others don't

input	response
variable	variable
X	У
3.1	84.2
19.6	175.8
45.9	448.3
6.8	50.4
3.5	81.9
•••	•••

$$y = \theta_0^{(i)} + \theta_1^{(i)} x$$

$$y = \theta_0^{(i)} + \theta_1^{(i)} x$$

$$y = \theta_0^{(i)} + \theta_1^{(i)} x$$

$$y = \theta_0^{(i)} + \theta_1^{(i)} x$$

$$y = \theta_0^{(i)} + \theta_1^{(i)} x$$

$$y = \theta_0^{(i)} + \theta_1^{(i)} x$$

$$\bullet y = x^3 - 2x^2 + 2$$

• To find a local minimum, $x_{i+1} = x_i - \alpha \frac{\partial y}{\partial x}$

Model at i

- Initialization
 - Where do you drop the ball? "small random values"
- Step size
 - We don't really "roll", we "jump" in the direction of steepest descent
 - How far should we jump? α
 - Too far => you might hop over the minimum and raise the function value
 - Too small => slow convergence
- Momentum
 - $v_{i+1} \leftarrow \alpha \frac{\partial}{\partial \theta} J(\theta^{(i)}) \beta v_i$
 - $\theta^{(i+1)} \leftarrow \theta^{(i)} v_{i+1}$

What's the point?

$$\theta_j^{(i+1)} \leftarrow \theta_j^{(i)} - \alpha \frac{\partial}{\partial \theta_j} J(\theta^{(i)})$$

Model parameters can be anything

Cost function can be anything*

*needs to be differentiable

Other cost functions

• Logistic Regression

vector of weights

vector of instance data

Regularization term

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} log_2(1 + \exp(-y_i(\theta \cdot x_i))) + \frac{\lambda}{2} ||\theta||^2$$

Support Vector Machines

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \max(1 - y_i(\theta \cdot x_i), 0) + \frac{\lambda}{2} ||\theta||^2$$

Quick intuition for regularization

- As one weight goes up, another goes down to compensate.
- And so weights may explode overfitting again
- Need to enforce some condition on the weights to prefer simple models.
- The regularization term provides this balance

Aside on norms

• Norm: any function that assigns a strictly positive number to every non-zero vector

$$L^{p} - norm = ||x||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}$$

Aside on cost functions

- Not a norm : $\sum_i H_i H_i'$
 - errors cancel out
- L1-norm : $\sum_i |H_i H_i'|$
 - assert that 1 error of 7 units is as bad as 7 errors of 1 unit each
- L2-norm : $\sqrt{\sum_i (H_i H_i')^2}$
 - assert that 1 error of 7 units is as bad as 49 errors of 1 unit each

Back to regularization

• "LASSO": Regularized Least Squares with L1-norm

•
$$J(\theta) = \sum_{k=1}^{n} (h(x_k) - y_k)^2 + \frac{\lambda}{2} ||\theta||_1$$

• "Ridge Regression": Regularized Least Squares with L2-norm

•
$$J(\theta) = \sum_{k=1}^{n} (h(x_k) - y_k)^2 + \frac{\lambda}{2} ||\theta||_2^2$$

Back to gradient descent

Process the entire dataset on every iteration

•
$$\theta_0^{(i+1)} \leftarrow \theta_0^{(i)} - \alpha \sum_{k=1}^n \left(\theta_0^{(i)} + \theta_1^{(i)} x_k - y_k \right)$$

•
$$\theta_1^{(i+1)} \leftarrow \theta_1^{(i)} - \alpha \sum_{k=1}^n \left(\theta_0^{(i)} + \theta_1^{(i)} x_k - y_k \right) x_k$$

- Stochastic Gradient Descent (SGD)
 - At each step, pick one random data point
 - Continue as if your entire dataset was just the one point
- Minibatch Gradient Descent
 - At each step, pick a small subset of data points
 - Continue as if your entire dataset just this subset

Back to gradient descent

Example using Stochastic Gradient Descent

Example using Minibatches

Parallel stochastic gradient descent

- Stochastic Gradient Descent (SGD)
 - At each step, pick one random data point
 - Continue as if your entire dataset was just the one point
- Parallel Stochastic Gradient Descent
 - In each of k threads, pick a random data point
 - Compute the gradient and update the weights
 - Weights will be "mixed"
 - => converging zig-zag
 - How about forcing "strong consistency" by locking?

Thread 1	Thread 2
$\theta_0^{(1)} \leftarrow \theta_0^{(0)} - \left(\theta_0^{(0)} + \theta_1^{(0)} x_3 - y_3\right)$	
	$\theta_0^{(2)} \leftarrow \theta_1^{(1)} - \left(\theta_0^{(1)} + \theta_1^{(0)} x_8 - y_8\right)$
$\theta_1^{(1)} \leftarrow \theta_1^{(0)} - \left(\theta_0^{(2)} + \theta_1^{(0)} x_3 - y_3\right) x_3$	
	$\theta_1^{(2)} \leftarrow \theta_1^{(1)} - \left(\theta_0^{(2)} + \theta_1^{(1)} x_8 - y_8\right) x_8$
$\theta_0^{(3)} \leftarrow \theta_0^{(2)} - \left(\theta_0^{(2)} + \theta_1^{(2)} x_5 - y_5\right)$	
	$\theta_0^{(4)} \leftarrow \theta_0^{(3)} - \left(\theta_0^{(3)} + \theta_1^{(2)} x_9 - y_9\right)$
$\theta_1^{(3)} \leftarrow \theta_1^{(2)} - \left(\theta_0^{(4)} + \theta_1^{(2)} x_5 - y_5\right) x_5$	
	$\theta_1^{(4)} \leftarrow \theta_1^{(3)} - \left(\theta_0^{(4)} + \theta_1^{(3)} x_9 - y_9\right) x_9$

