TOPICS IN MODERN GEOMETRY: HOMEWORK 1 MODEL SOLUTIONS

(1) Let $P = \{p_1, p_2, p_3, p_4\}$ be the following partially ordered set, considered as a topological space with the order topology. (Here, $p \to q$ means $p \le q$.)

(a) List the open sets of P.

The open sets of P are the complements of the closed sets from part (b); that is, $\{p_1, p_2, p_3, p_4\}, \{p_2, p_3, p_4\}, \{p_1, p_3, p_4\}, \{p_3, p_4\}, \{p_4\}, \{p_3\}, \text{ and } \emptyset$.

(b) List the closed sets of P.

The basic closed sets of P are $\{p_1\}$, $\{p_2\}$, $\{p1, p2, p3\}$, and $\{p1, p3, p4\}$. So, all closed sets are \emptyset , $\{p_1\}$, $\{p_2\}$, $\{p1, p2\}$, $\{p1, p2, p3\}$, $\{p1, p3, p4\}$, and $\{p_1, p_2, p_3, p_4\}$.

(2) Let f be the bijection from \mathbb{C}^n to $\mathrm{mSpec}(\mathbb{C}[x_1,\ldots,x_n])$ given by

$$f(a_1,\ldots,a_n)=(x_1-a_1,\ldots,x_n-a_n).$$

Consider \mathbb{C}^n to have the Euclidean topology and $\mathrm{mSpec}(\mathbb{C}[x_1,\ldots,x_n])$ to have the Zariski topology. Prove that f is continuous.

Let I be any ideal of $\mathbb{C}[x_1,\ldots,x_n]$, and consider the associated closed set V_I . It suffices to show that $f^{-1}(V_I)$ is closed. We have

$$f^{-1}(V_I) = \{(a_1, \dots, a_n) \in \mathbb{C}^n : I \le (x_1 - a_1, \dots, x_n - a_n)\}.$$
(0.1)

The ideal I is finitely generated because $\mathbb{C}[x_1,\ldots,x_n]$ is Noetherian, so we have

$$I = (f_1, \dots, f_m) \tag{0.2}$$

2 HOMEWORK 1

for some generators $f_1, \ldots, f_m \in \mathbb{C}[x_1, \ldots, x_n]$. Thus,

$$f^{-1}(V_I) = \{(a_1, \dots, a_n) \in \mathbb{C}^n : I \le f_j(a_1, \dots, a_n) = 0 \text{ for } 1 \le j \le m\}$$
 (0.3)

$$= \bigcap_{j=1}^{m} \{ (a_1, \dots, a_n) \in \mathbb{C}^n : I \le f_j(a_1, \dots, a_n) = 0 \}.$$
 (0.4)

The vanishing set of a polynomial is a closed set in \mathbb{C}^n , and an intersection of closed sets is closed, so $f^{-1}(V_I)$ is closed.

(3) Let f be the map from (2). Show that (for every $n \ge 1$) f^{-1} is not continuous.

First, consider the case n=1. The set $\mathbb Z$ of integers is a closed set of $\mathbb C$. Any ideal of $\mathbb C[x]$ is principal, so the closed sets of $\mathrm{mSpec}(\mathbb C[x])$ are the sets $V_{(g(x))}\cap\mathrm{mSpec}(\mathbb C[x])=\{(x-a):g(a)=0\}$. A polynomial $g(x)\in\mathbb C[x]$ vanishes at finitely many points—unless it is identically zero—so the closed sets of $\mathrm{mSpec}(\mathbb C[x])$ are all either finite or the whole space. Thus, the infinite set $f(\mathbb Z)$ is not closed in $\mathrm{mSpec}(\mathbb C[x])$. Therefore, f^{-1} is not continuous.

Now, consider the general case. Let $f_n=f$ be the map from $\mathbb{C}^n\to \operatorname{Spec}(\mathbb{C}[x_1,\ldots,x_n])$ and f_1 be the map from $\mathbb{C}\to\operatorname{Spec}(\mathbb{C}[x])$. There is a ring homomorphism $\pi:\mathbb{C}[x_1,\ldots,x_n]\to\mathbb{C}[x]$ defined by $\pi(g(x_1,x_2,\ldots,x_n))=g(x_1,0,\ldots,0)$. As proven in Lecture 3, Proposition 3.2, the induced map $\pi^*:\operatorname{Spec}(\mathbb{C}[x])\to\operatorname{Spec}(\mathbb{C}[x_1,\ldots,x_n])$ is continuous. Note that $\pi^*((x-a))=(x_1-a,x_2,\ldots,x_n)$, so π^* restricts to a map $j:\operatorname{mSpec}(\mathbb{C}[x])$ to $\operatorname{mSpec}(\mathbb{C}[x_1,\ldots,x_n])$. If $f_n(\mathbb{Z}\times\mathbb{C}^{n-1})$ were closed, then $j^{-1}(f(\mathbb{Z}\times\mathbb{C}^{n-1}))=f_1(\mathbb{Z})$ would be closed, but we just showed that it isn't. So $f_n(\mathbb{Z}\times\mathbb{C}^{n-1})$ is not closed, and thus $f_n^{-1}=f^{-1}$ is not continuous.

(4) For questions (4)–(6), we will need the definitions of some properties that a topological space X can have.

T1 If $x \in X$, then $\{x\}$ is closed.

T2 If $x, y \in X$ and $x \neq y$, then there exist open sets $U, V \subseteq X$ such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$. (A space X with this property is called *Hausdorff*.)

Prove that, if X has property **T2**, then X has property **T1**.

Let X be a topological space with property **T2**, and consider any point $x \in X$. Then, for any $y \in X$ such that $x \neq y$, there exist open sets $U_x, V_y \subseteq X$ such that $x \in U_x$, $y \in V_y$, and $U_x \cap V_y = \emptyset$. Then, the set

$$X \setminus \{x\} = \bigcup_{y \in X \setminus \{x\}} V_y \tag{0.5}$$

is open, so $\{x\}$ is closed.

HOMEWORK 1 3

(5) Prove that any metric space has property T2.

Let X be a metric space with distance function $d: X \times X \to \mathbb{R}_{\geq 0}$. Suppose $x, y \in X$ such that $x \neq y$, and let $\delta = d(x, y)$. Consider the open sets

$$U = B_x \left(\frac{\delta}{2}\right) \tag{0.6}$$

$$V = B_y \left(\frac{\delta}{2}\right). \tag{0.7}$$

Clearly, $x \in U$ and $y \in V$. If $z \in U \cap V$, then $\delta = d(x,y) \le d(x,z) + d(z,y) < \frac{\delta}{2} + \frac{\delta}{2} = \delta$, which is impossible. Thus, $U \cap V = \emptyset$.

(6) Let (P, \leq) be a partially ordered set, considered as a topological space with the order topology. Prove that, if P has property $\mathbf{T2}$, then $x \leq y \implies x = y$.

First, we show that, in any partially ordered set, the smallest closed set containing x is $C_x = \{y : x \le y\}$. To do so, let C be any closed set containing x. Then, C can be written as an intersection of finite unions of sets C_s :

$$C = \bigcap_{S \in \mathcal{S}} \bigcup_{y \in S} C_z,\tag{0.8}$$

where S is a collection of finite sets $S \subseteq P$. Thus, for all $S \in S$,

$$x \in \bigcup_{z \in S} C_z,\tag{0.9}$$

so for each S, there is some z_S such that $x \in C_{z_S}$. That is, $z_S \le x$. If $x \le y$, then $z_S \le y$; that is, $C_x \subseteq X_{z_S}$ for every $S \in \mathcal{S}$. By eq. (0.8), $C_x \subseteq C$.

Suppose P has property **T2**. By (3), P also has property **T1**. That is, for any $x \in P$, $\{x\}$ is closed, so by the above, $C_x \subseteq \{x\}$, and in fact $C_x = \{x\}$ because $x \in C_x$. If $x \leq y$, then $y \in C_x = \{x\}$, so x = y.

(7) Use (6) to prove that, if R is a commutative Noetherian ring with unity satisfying rad((0)) = (0), and Spec(R) has property **T2**, then R is a direct product of finitely many fields.

This problem required more commutative algebra knowledge than I initially thought it did—sorry about that! By known results in algebra, a Noetherian ring has finitely many minimal prime ideals, and $\operatorname{rad}((0))$ is the intersection of all the minimal prime ideals of R. But by property **T2** and **(6)**, every prime ideal of R is minimal; write $\operatorname{Spec}(R) = \{I_1, \ldots, I_n\}$. It follows that, for any $k \neq \ell$, $I_k + I_\ell = R$. Thus, the Chinese Remainder Theorem gives an isomorphism

$$R/\operatorname{rad}((0)) = R/(I_1 \cap \dots \cap I_n) \cong R/(I_1 \dots I_n) \cong R/I_1 \times \dots \times R/I_n.$$
 (0.10)

4 HOMEWORK 1

We have $R = R/\operatorname{rad}((0))$ because $\operatorname{rad}((0)) = (0)$. The I_k are maximal as well as minimal, so the R/I_k are fields.

(8) Describe $\operatorname{Spec}(\mathbb{R}[x])$.

Because $\mathbb{R}[x]$ is a domain, (0) is the unique minimal prime ideal. Because $\mathbb{R}[x]$ is a principal ideal domain, all the nonzero prime ideals are maximal and generated by a single irreducible polynomial in $\mathbb{R}[x]$. Up to multiplication by units, the irreducible polynomials in $\mathbb{R}[x]$ are either monic linear polynomials, or monic quadratic polynomials of negative discriminant.

To summarise,

$$Spec(\mathbb{R}[x]) = \{(0)\} \cup \{(x-a) : a \in \mathbb{R}\} \cup \{(x^2 + bx + c) : b, c \in \mathbb{R} \text{ and } b^2 - 4c < 0\}. \quad (0.11)$$

The closed sets of $\operatorname{Spec}(\mathbb{R}[x])$ are all of $\operatorname{Spec}(\mathbb{R}[x])$ and any finite subset not containing (0).

(9) Give a rational parametrisation of the hyperbola $H = \{(x, y) : x^2 - y^2 = 1\}.$

Consider the point $P = (1,0) \in H$. Draw a line ℓ_t of slope t through P; the equation of ℓ_t is y = t(x-1). Find the points of intersection between H and ℓ_t :

$$x^2 - y^2 = 1$$
 and $y = t(x - 1)$ (0.12)

$$\implies x^2 - t^2(x - 1)^2 = 1 \tag{0.13}$$

$$\implies (1 - t^2)x^2 + 2t^2x - (1 + t^2) = 0 \tag{0.14}$$

$$\implies (1 - t^2)(x - 1)\left(x + \frac{1 + t^2}{1 - t^2}\right) = 0. \tag{0.15}$$

When x=1, we recover the point P. When $x=-\frac{1+t^2}{1-t^2}=\frac{t^2+1}{t^2-1}$, we find the point of intersection

$$P_t = \left(\frac{t^2 + 1}{t^2 - 1}, \frac{2t}{t^2 - 1}\right). \tag{0.16}$$

We may then verify that, for $t \neq \pm 1$,

$$\left(\frac{t^2+1}{t^2-1}\right)^2 - \left(\frac{2t}{t^2-1}\right)^2 = 1. \tag{0.17}$$

To check that $\varphi(t):=\left(\frac{t^2+1}{t^2-1},\frac{2t}{t^2-1}\right)$ is a rational parametrisation, one may construct the rational inverse $\psi(x,y):=\frac{y}{x-1}$. One then checks algebraically that $\psi(\varphi(t))=t$ for $t\in\mathbb{A}^1\setminus\{1,-1\}$, and $\varphi(\psi(x,y))=(x,y)$ for $(x,y)\in H\setminus\{(0,1),(0,-1)\}$.

(10) Let P be the partially ordered set from (1). Find an example of a commutative ring R with unity such that $\operatorname{Spec}(R) \cong P$ as a topological space.

HOMEWORK 1 5

In $\mathbb{C}[x,y]$, we have the following inclusions of ideals:

We use quotients and localisation to "snip off" the rest of $\operatorname{Spec}(\mathbb{C}[x,y])$, leaving only these ideals.

Let $R_1=\mathbb{C}[x,y]$. Let $R_2=R_1/(x(x^2+y^2-1))$; then, $\operatorname{Spec}(R_2)$ has two minimal prime ideals (x) and (x^2+y^2-1) , maximal prime ideals corresponding to the points on the affine variety $\{x(x^2+y^2-1)=0\}$, and no other prime ideals. To get rid of all the maximal ideals of R_2 except for (x,y-1) and (x,y+1), let

$$S = \{ f \in R_2 : f(0,1) \neq 0 \text{ and } f(0,-1) \neq 0 \}.$$
 (0.18)

Let R be the localisation $R = S^{-1}R_2$. Then, $\operatorname{Spec}(R) \cong P$.