On Longitudinal Emittance

W.D. Klotz, wdklotz@alecli.com

March 1, 2022

1 Overview

The standard formula for an upright ellipse in phase-space $\Delta \phi \otimes w$ is:

$$\frac{\Delta\phi^2}{\Delta\phi_0^2} + \frac{w^2}{w_0^2} = 1\tag{1}$$

with $\Delta \phi = \phi - \phi_s$ and $w \equiv \delta \gamma = \Delta W/mc^2$. ϕ_s being the synchronous phase, mc^2 the rest energy, W the total energy and γ the Lorentz factor. It has the emittance

$$\epsilon_w = |\Delta\phi_0 w_0| \tag{2}$$

and units [rad]. The ellipse intersects the $\Delta\phi$ -axis at $\Delta\phi_0$ and the w-axis at w_0 . The intersection with the w-axis determines the β -function by the relation $\beta_w = \epsilon_w/w_0^2$. Its units are [rad].

Let's change to new coordinates, for instance the pair of canonical variables $z\otimes \Delta p/p$, as it is used internally in Trace 3D. The transformation from old to new coordinates is: $z=-\kappa\Delta\phi=-\frac{\beta\lambda}{2\pi}\Delta\phi$ and $\Delta p/p=\tau w=\gamma/(\gamma^2-1)w=(\gamma\beta^2)^{-1}w$. This gives the modified ellipse equation:

$$\frac{z^2}{(\kappa \Delta \phi_0)^2} + \frac{(\Delta p/p)^2}{(\tau w_0)^2} = 1 \tag{3}$$

which has the transformed emittance

$$\epsilon_z = \kappa |\Delta \phi_0| * \tau |w_0| = \kappa \tau \epsilon_w = \frac{\beta \lambda}{2\pi} \gamma / (\gamma^2 - 1) \epsilon_w = \frac{\lambda}{2\pi \gamma \beta} \epsilon_w,$$
 (4)

with units $[m \times rad]$. Again the β -function is given by

$$\beta_z = \epsilon_z / (\Delta p/p)_0^2 = \kappa \tau \epsilon_w / (\tau w_0)^2 = \kappa / \tau \times \beta_w = \frac{\beta \lambda}{2\pi} \frac{\gamma^2 - 1}{\gamma} \beta_w, \tag{5}$$

with units [m].

For the $\Delta\phi\otimes\Delta W$ phase space, because $\Delta W=mc^2w$, we have $\kappa=1$ and $\tau=mc^2$. So that

$$\epsilon_W = mc^2 \epsilon_w \quad [rad \times eV] \tag{6}$$

$$\beta_W = 1/mc^2 \beta_w \quad [rad/eV] \tag{7}$$

Finally for the $\Delta z \otimes \Delta W$ phase space we get the emittance

$$\epsilon_{zW} = \frac{\beta \lambda}{2\pi} mc^2 \epsilon_w \quad [m \times eV] \tag{8}$$

$$\beta_{zW} = \frac{\beta \lambda}{2\pi} \frac{1}{mc^2} \beta_w \quad [m/eV] \tag{9}$$

The ESS conceptual design report uses the ffl $z \otimes z'$ phase space, i.e. the emittance $\epsilon_{zz'}$. Since $\delta \gamma = w = \beta^2 \gamma^3 \delta \beta / \beta = \beta^2 \gamma^3 z'$ and $\Delta \phi = \frac{2\pi}{\beta \lambda} z$ we have:

$$\epsilon_{zz'} = \frac{\lambda}{2\pi\beta\gamma^3}\epsilon_w \tag{10}$$

with units $[m \times rad]$.

Instead of longitudinal position some people use arrival time. For the $\Delta t \otimes \Delta W$ phase space we use $\Delta t = -(\beta c)^{-1}z = (\beta c)^{-1}\frac{\beta\lambda}{2\pi}\Delta\phi$ and get

$$\epsilon_{tW} = \frac{\lambda}{2\pi c} mc^2 \epsilon_w \quad [sec \times eV] \tag{11}$$

2 Full Treatment

The ellipse in normal form:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\tag{12}$$

defines the emittance ϵ as:

$$\epsilon = |a * b| \tag{13}$$

Changing scales of x, y coordinates: $x = x'/\kappa$ and $y = y'/\tau$ and inserting into normal form:

$$\frac{x^{2}}{(a\kappa)^{2}} + \frac{y^{2}}{(b\tau)^{2}} = 1 \tag{14}$$

gives scaled emittance ϵ'

$$\epsilon' = |(a\kappa) * (b\tau)| = \kappa \tau \epsilon$$
 (15)

Let $\beta_x = x_0^2/\epsilon$ then $\beta_x = (x'/\kappa)^2/(\epsilon'/\kappa\tau) = \frac{\tau}{\kappa}\beta_x'$, we get

$$\beta_x' = -\frac{\kappa}{\tau} \beta_x \tag{16}$$

In phase space $\Delta \phi$, z and Δt are usually used as abscissa and w, ΔW , $\Delta p/p$ and z' as ordinates. We use κ to connect abscissa and τ to connect different ordinates. Six different combinations of abscissa can be made and 11 combinations for ordinates. Their corresponding κ - and τ -values are assembled in the following tables.

κ -values				
wanted \downarrow in terms of \rightarrow	$\Delta \phi$ [rad]	z [m]	$\Delta t [{ m sec}]$	
$\Delta \phi \text{ [rad]}$	1	$2\pi/\lambda$	$2\pi\beta c/\beta\lambda$	
z [m]	$\beta \lambda / 2\pi$	1	eta c	
$\Delta t [\mathrm{sec}]$	$\beta \lambda/(2\pi\beta c)$	$1/\beta c$	1	

au-values				
wanted \downarrow in terms of \rightarrow	$\delta \gamma = w$	$\Delta W [eV]$	$\Delta p/p$	z' [rad]
$\delta \gamma = w$	1	$1/(mc^2)$	$\gamma \beta^2$	$\gamma(\gamma\beta)^2$
$\Delta W [eV]$	mc^2	1	$mc^2\gamma\beta^2$	$mc^2\gamma^3\beta^2$
$\Delta p/p$	$(\gamma \beta^2)^{-1}$	$(mc^2\gamma\beta^2)^{-1}$	1	γ^2
z' [rad]	$\gamma^{-1}(\gamma\beta)^{-2}$	(' ' '	γ^{-2}	1
with $W = mc^2(\gamma - 1)$ as kinetic energy.				

Example: Phase space $z \otimes \Delta W$ in terms of $\Delta \phi \otimes \delta \gamma$: $\kappa = \beta \lambda / 2\pi$, $\tau = mc^2$.

$$\epsilon_{zW} = \kappa \tau \epsilon_w = (\beta \lambda / 2\pi) m c^2 \epsilon_w.$$
 (17)

$$\beta_{zW} = \frac{\kappa}{\tau} \beta_w = \frac{\beta \lambda / 2\pi}{mc^2} \beta_w. \tag{18}$$

More interesting details about emittance definitions, normalized and unnormalized, and their units can be found in the UserManual of the $\mathit{TraceWin}$ program.

3 Twiss Parameter Values

To simplify we assume the twiss parameter $\alpha = 0$. The twiss parameter γ then reduces to $1/\beta$ and only two free parameters ϵ and β remain to describe the ellipse in phase space completely.

For small aplitude longitudinal oscillations the separatrix intersects the w-axis at w_0 and is given by

$$w_0 = \frac{\Delta W}{mc^2} = \sqrt{2qE_0LT\beta_s^3\gamma_s^3\lambda\phi_s^2\sin(-\phi_s)/\pi mc^2}$$
 (19)

With w_0 and $\Delta \phi_0$ the maximal emittance on the separatrix is given.

$$\epsilon_w = w_0 * \Delta \phi_0 \tag{20}$$

and from (20) we get finally $\gamma_0 = \epsilon_w/\Delta\phi_0^2$ and $\beta_0 = 1/\gamma_0$.

NOTE: the two twiss parameters γ_0 and β_0 are completely defined by the emittance ϵ_w , the cavity field E_0 , rf-phase ϕ_s , rf-wavelength λ and particle impuls $\sim \gamma \beta$.

4 Appendix

4.1 SIMULAC Variables

Table 1: Variable Names				
$\epsilon_w = \text{emitw}$	$\Delta \phi = \mathrm{Dphi}$	$\Delta \phi_0 = \mathrm{Dphi}0$	w = w	$w_0 = w0$
$\epsilon_W = \mathrm{emitW}$	$\Delta z = z$	$\Delta W = \mathrm{DW}$	$\Delta p/p = \mathrm{Dp2p}$	$\Delta p/p_0 = \mathrm{Dp2p0}$
$\epsilon_z = \text{emitz}$	$\beta_z = \text{betaz}$	$\gamma_z = \text{gammaz}$	$\alpha_z = \text{alphaz}$	$\lambda = lamb$
$Ez_{avg} = EzAvg$	$Ez_{peak} = EzPeak$	$\phi_+ = \text{phi} 1$	$\phi_{-} = \text{phi}_{-}2$	$\psi = \mathrm{psi}$
$\gamma = \text{gamma}$	$\gamma\beta = \mathrm{gb}$	$\beta = \text{beta}$	$E_0T = E0T$	$E_0LT = E0LT$
$mc^2 = m0c2$	$mc^3 = m0c3$	$\epsilon_{xi} = \text{emitx_i}$	$\epsilon_{yi} = \text{emity_i}$	$\epsilon_{zi} = \text{emitz}$ i
$\beta_{xi} = \text{betax_i}$	$\beta_{yi} = \text{betay.i}$	$\alpha_{xi} = \text{alfax}_i$	$\alpha_{yi} = \text{alfay_i}$	$\gamma_{xi} = \text{gamax}_i$
$\gamma_{yi} = \text{gamay}_i$	$\omega = \text{omg}$	$\phi = \mathrm{phi}$	$\phi_s = \text{phisoll}$	$\Delta W/W = \mathrm{DT2T}$
W = Tkin				

${\bf 4.2}\quad {\bf Relations\ Between\ Ellipse\ and\ Twiss\ Parameters}$

5.4 Geometrical properties of the ellipse

	α, β, γ, ε	C ₁ C ₂ C ₃ C ₄	L, S, ε		
	$\beta_{\Upsilon} - \alpha^2 = 1$ $ii = \frac{1}{2}(\beta + \gamma)$	$\epsilon = c_1 c_4 - c_2 c_3$ $ii = \frac{1}{2} \left(c_1^2 + c_2^2 + c_3^2 + c_4^2 \right) / \epsilon$	$H = \frac{1}{2L} (L^2 + S^2 + 1)$		
У1	√e/ _Y	$\epsilon/\sqrt{c_3^2+c_4^2}$	√€L		
У2	$\sqrt{\epsilon eta}$	$\sqrt{c_1^2 + c_2^2}$	$\sqrt{\epsilon/L} \sqrt{S^2 + L^2}$		
y ś	 α√ε/β 	$(c_1c_3 + c_2c_4)/\sqrt{c_1^2 + c_2^2}$	$S\sqrt{\epsilon/L}/\sqrt{S^2 + L^2}$	19 -	
У3	 α√ε/γ 	$(c_1c_3 + c_2c_4)/\sqrt{c_3^2 + c_4^2}$	S√€/L		
у ś	$\sqrt{e_{\Upsilon}}$	$\sqrt{c_3^2 + c_4^2}$	√€/L		
у і	√ε/ ['] β	$\epsilon/\sqrt{c_1^2 + c_2^2}$	$\sqrt{\varepsilon L}/\sqrt{S^2 + L^2}$		
a	$\sqrt{\varepsilon/2} \left(\sqrt{H+1} + \sqrt{H-1} \right)$				
b	$\sqrt{2\varepsilon}/(\sqrt{H+1}+\sqrt{H-1}) = \sqrt{\varepsilon/2} (\sqrt{H+1}-\sqrt{H-1})$				
a/b > 1	$II + \sqrt{II^2 - 1}$				
tan ç	$[-\alpha(H + \sqrt{H^2 - 1})]/[\beta(H + \sqrt{H^2 - 1}) - 1]$	$[c_2 + c_3(H + \sqrt{H^2 - 1})]/[c_1(H + \sqrt{H^2 - 1}) - c_4]$	$S/[L(H + \sqrt{H^2 - 1}) - 1]$		
sin 2€	$-\alpha/\sqrt{11^2-1}$	$(c_1c_3 + c_2c_4)/\epsilon\sqrt{11^2 - 1}$	S/L√H ² - 1		
cos 2€	$(\beta - \gamma)/2\sqrt{11^2 - 1}$	$(c_1^2 + c_2^2 - c_3^2 - c_4^2)/2\epsilon\sqrt{ll^2 - 1}$	$(L^2 + S^2 - 1)/2L\sqrt{li^2 - 1}$		
tan 2¢	- 2α/(β - Υ)	$2(c_1c_3 + c_2c_4)/(c_1^2 + c_2^2 - c_3^2 - c_4^2)$	$2S/(L^2 + S^2 - 1)$		