Estrategias Transversales en las Encuestas de Hogares

Curso de Muestreo Probabilístico en Encuestas de Hogares

Andrés Gutiérrez, Ph.D.

CEPAL - Unidad de Estadísticas Sociales

Motivación

Desde que se popularizaron las encuestas de hogares en 1940, se ha hecho evidente algunas tendencias que están ligadas a los avances tecnológicos en las agencias estadísticas y en la sociedad y se han acelerado con la introducción del computador.

Gambino & Silva (2009)

Bibliografía y referencias

- Kish, L. (1965) Survey Sampling. John Wiley and Sons.
- Cochran, W. G. (1977) Sampling Techniques. John Wiley and Sons.
- Särndal, et. al. (2003) Model-assisted Survey Sampling. Springer.
- Gutiérrez, H. A. (2016) Estrategias de muestreo: diseño de encuestas y estimación de parámetros. Ediciones de la U.
- Gutiérrez, H. A. (2017) TeachingSampling. R package.

Muestreo aleatorio simple en dos etapas estratificado

- La teoría discutida en las secciones anteriores es aplicable cuando las unidades primarias de muestreo son seleccionadas dentro de un estrato.
- No hay nuevos principios de estimación o diseño involucrado en el desarrollo de esta estrategia de muestreo.

- Se supone que el muestreo en cada estrato respeta el principio de la independencia.
- Las estimaciones del total, así como el cálculo y estimación de la varianza son simplemente resultado de añadir o sumar para cada estrato la respectiva cantidad.

- Dentro de cada estrato U_h $h=1,\ldots,H$ existen N_{lh} unidades primarias de muestreo, de las cuales se selecciona una muestra s_{lh} de n_{lh} unidades mediante un diseño de muestreo aleatorio simple.
- Suponga, además que el sub-muestreo dentro de cada unidad primaria seleccionada es también aleatorio simple.
- Para cada unidad primaria de muestreo seleccionada i ∈ s_{Ih} de tamaño N_i se selecciona una muestra s_i de elementos de tamaño n_i.

Para utilizar los prinicpios de estimación del último conglomerado en este diseño particular se definen las siguientes cantidades:

- 1 $d_{l_i} = \frac{N_{lh}}{n_{lh}}$, que es el factor de expansión de la *i*-ésima UPM en el estrato h.
- 2 $d_{k|i} = \frac{N_i}{n_i}$, que es el factor de expansión del k-ésimo hogar para la i-ésima UPM.
- (3) $d_k = d_{I_i} \times d_{k|i} = \frac{N_{Ih}}{n_{Ih}} \times \frac{N_i}{n_i}$, que es el factor de expansión final del k-ésimo elemento para toda la población U.

head(FrameI, 10)

PSU	Stratum	Persons	Income	Expenditure
PSU0001	idStrt001	118	70912	44232
PSU0002	idStrt001	136	68887	38382
PSU0003	idStrt001	96	37213	19495
PSU0004	idStrt001	88	36926	24031
PSU0005	idStrt001	110	57494	31142
PSU0006	idStrt001	116	75272	43473
PSU0007	idStrt001	68	33028	21833
PSU0008	idStrt001	136	64293	47660
PSU0009	idStrt001	122	33156	23292
PSU0010	idStrt002	70	65254	37115

head(sizes, 10)

Stratum	NIh	nlh	dl
idStrt001	9	2	4.5
idStrt002	11	2	5.5
idStrt003	7	2	3.5
idStrt004	13	2	6.5
idStrt005	11	2	5.5
idStrt006	5	2	2.5
idStrt007	14	2	7.0
idStrt008	7	2	3.5
idStrt009	8	2	4.0
idStrt010	8	2	4.0

Emplo Ved Poo

StratuNnhhnlh dl	$HHIDPersoP\!P\!$	nt
head(FrameII,	10)	

idStrt 9 012	4.5 idHH 00010-4AD 15U 070.00-24 Male 32	Marri 89 9 648	Empld yled Poo
idStrt 9 012	4.5 idHH00010144025U0700024Fem2314e	Marri 89 9 648	Empld yled Poo
idStrt 9 012	4.5 idHH0001014410735U0700024Femalle	Single899 648	NA NotPoo
idStrt 9 012	4.5 idHH0001101441045U017000224Fem 29le	NA 899 648	NA NotPoo
idStrt 9 012	4.5 idHH000101456015U0700024Fem5512e	Separ 48e d273	Inacti₩otPoo
idStrt 9 012	4.5 idHH0001P4:592\$U0R0.02a1Male18	Single430 273	Inacti W otPoo
idStrt 9 012	4.5 idHH000101455075\$U0700024Fema314e	Wido ₩36 273	Inacti₩otPoo
idStrt 9 012	4.5 idHH00011014510145U017000124Fem2616e	Wido ₩36 273	Inacti₩otPoo
idStrt 9 012	4.5 idHH00010450955U0700024Femalle	NA 430 273	NA NotPoo

idStrt**9**012 4.5 idHH**000P&dP**\$U**0002M**ale36 Partn**5**44 365

[1] 702

```
sam = S.SI(Ni[1], ni[1])
clusterII = FrameII[which(FrameII$PSU == sampleI[1]), ]
sam.HH <- data.frame(HHID = unique(clusterII$HHID)[sam])
clusterHH <- left_join(sam.HH, clusterII, by = "HHID")
clusterHH$dki <- Ni[1]/ni[1]
clusterHH$dk <- clusterHH$dI * clusterHH$dki
sam_data = clusterHH</pre>
```

head(sam_data,	10)

HHIDStratNihhnl	hdl Pers&18DZon&ex AgeMaritalSoTexpe	enEdritpull@govrædnknjrdk
idH Hi2lS6669 0012	4.5 idPelPOSIUBROWO 2Male36 Parth 5e44 365	Empl blyætdf 8oor36
idH H215669 0002	4.5 idPelP02UlP0002Hem218e Partn5e44 365	Inact Ne tPoor36
idHH2 15666 90002	4.5 idPe P0SUB0002 Hem 1 2e Singl 5 44 365	NA NotPoor36
idHH2 15666 90002	4.5 idPelP094U1800002Fem7ale NA 544 365	NA NotPoor36
idHH2 15666 90002	4.5 idPe P0\$UB0002 Hem2ale NA 544 365	NA NotPoor36
idHH2 1566692 0022	4.5 idPenPOSLUBC00023Wale55 Marri4e762 248	Empl blyætdf 8oor36
idHH2 1566692 0022	4.5 idPelP022U180002Fem4lbe Marr#12702 248	Inact N etੴooß6
idHH2 1566692 0022	4.5 idPePOSUB0002Wale13 Single72 248	NA NotPoor36
idHH2 15666 97002	4.5 idPePOSLUEX00023Wale28 Marr36e26 128	Empl blyætdP oor36
idH H2156667 002	4.5 idPelP02UD0002Hem218e Marr3625 128	Inact Ne tPකoහි6

```
for (i in 2:length(Ni)) {
    sam = S.SI(Ni[i], ni[i])
    clusterII = FrameII[which(FrameII$PSU == sampleI[i]), ]
    sam.HH <- data.frame(HHID = unique(clusterII$HHID)[sam])
    clusterHH <- left_join(sam.HH, clusterII, by = "HHID")
    clusterHH$dki <- Ni[i]/ni[i]
    clusterHH$dk <- clusterHH$dI * clusterHH$dki
    data1 = clusterHH
    sam_data = rbind(sam_data, data1)
}
encuesta <- sam_data</pre>
```

```
dim(encuesta)
## [1] 2733 17
sum(encuesta$dk)
## [1] 161699
nrow(BigCity)
## [1] 150266
attach(encuesta)
```

Definir diseño muestral con la librería srvyr

```
library(srvyr)
diseno <- encuesta %>%
  as_survey_design(
    strata = Stratum,
    ids = PSU,
    weights = dk,
   nest = T
sum(weights(diseno))
```

```
## [1] 161699
```

Calibrando los pesos muestrales, para ello empleamos la función calibrate de la librería survey

```
library(survey)
totales <- colSums(model.matrix(~ -1 + Zone:Sex, BigCity))
diseno_cal <- calibrate(diseno, ~-1 + Zone:Sex, totales, calibrate)</pre>
```

```
sum(weights(diseno))
```

```
## [1] 161699
```

```
sum(weights(diseno_cal))
## [1] 150266
```

nrow(BigCity)

```
## [1] 150266
encuesta$wk <- weights(diseno_cal)</pre>
```

```
par(mfrow = c(1,2))
hist(encuesta$dk)
hist(encuesta$wk)
```


plot(encuesta\$dk,encuesta\$wk)

boxplot(encuesta\$wk ~ encuesta\$Stratum)

idStrt001 idStrt013 idStrt025 idStrt037 idStrt049 idStrt061 idStrt073 idStrt085 idStrt097 idStrt109

```
saveRDS(object = encuesta, file = "../Data/encuesta.rds")
```