

Эксперименты Семинар 1

Ставнийчук Анна annastavnychuk@gmail.com

Практическая эконометрика

5 сентября 2023 г.

- Организационная информация
- 2 Разминочный пример
- 3 Условные обозначения
- 🐠 Фундаментальная проблема причинного вывода
- **6** Средние эффекты
- 6 Предпосылки
- **7** Симуляция в R
- 8 Что почитать

Преподаватели

- Сучкова Ольга Владимировна
 - лекции (по четвергам на 5 паре)
 - suchkovaolga.91@mail.ru
- Ставнийчук Анна Юрьевна
 - семинары в группах 401-403 (по вторникам на 3 паре)
 - annastavnychuk@gmail.com
- Замниус Алексей Васильевич
 - семинары в группах 404-411 (по вторникам на 6 паре)
 - a.zamnius@me.com

Важные ссылки

БРС

- Экзамен (40%) письменная индивидуальная работа, январь
- Домашние задания (30%) практическая работа в парах, конец сентября, конец октября, начало декабря
- Контрольная работа (20%) письменная индивидуальная работа, середина октября
- **Коллоквиум** 1 (10%) устная индивидуальная работа, конец ноября
- **⋆ Бонусы** (до 15%)

Ориентиры критериев: 40-65-85, отдельный критерий по коллоквиуму

¹для получения «хор» и «отл» необходимо сдать коллоквиум хотя бы на 4 из 10

$KT\Pi$

Nº	Неделя	Тема лекции	Важное
1	4 - 10 сентября	Эксперименты	
2	11 - 17 сентября	Эксперименты	
3	18 - 24 сентября	Мощность, множественное тестирование гипотез	
4	25 сентября - 1 октября	Снижение дисперсии	
5	2 - 8 октября	Мэтчинг	
6	9 - 15 октября	Мэтчинг	Сдача ДЗ 1
7	16 - 22 октября	Контрольная работа	Контрольная работа
8	23 - 29 октября	Большая размерность	
9	30 октября - 5 ноября	Гетерогенные эффекты	
10	6 - 12 ноября	Разрывная регрессия	
11	13 - 19 ноября	Разрывная регрессия	Сдача ДЗ 2
12	20 - 26 ноября	Коллоквиум	Коллоквиум
13	27 ноября - 3 декабря	Разность разностей, синтетический контроль	
14	4 - 10 декабря	Событийный анализ	
15	11 - 17 декабря	Ступенчатая разность разностей	
16	18 - 24 декабря	Обобщение методов	Сдача ДЗ 3
17	25 - 31 декабря	Резерв	•

- ① Организационная информация
- 2 Разминочный пример
- 3 Условные обозначения
- 🐠 Фундаментальная проблема причинного вывода
- **6** Средние эффекты
- 6 Предпосылки
- **7** Симуляция в R
- **8** Что почитать

Есть 2 лекарства A и B от гипотетической болезни. Больные поступают на лечение в разной степени тяжести состояния. В таблице находится процент неудачного лечения (чем он меньше, тем лучше):

	Средней тяжести	Тяжелые	Итого
Α	15%	30%	16%
A	(210/1400)	(20/100)	(240/1500)
В	10%	20%	19%
	(5/50)	(100/500)	(105/550)

Какое лекарство эффективнее?

Есть 2 лекарства A и B от гипотетической болезни. Больные поступают на лечение в разной степени тяжести состояния. В таблице находится процент неудачного лечения (чем он меньше, тем лучше):

	Средней тяжести	Тяжелые	Итого
\mathbf{A}	15%	30%	16%
A	(210/1400)	(20/100)	(240/1500)
В	10%	20%	19%
	(5/50)	(100/500)	(105/550)

Какое лекарство эффективнее?

А 1400 из 1500 имели среднюю тяжесть заболевания

В 500 из 550 были в тяжелом состоянии

Есть 2 лекарства A и B от гипотетической болезни. Больные поступают на лечение в разной степени тяжести состояния. В таблице находится процент неудачного лечения (чем он меньше, тем лучше):

	Средней тяжести	Тяжелые	Итого
\mathbf{A}	15%	30%	16%
A	(210/1400)	(20/100)	(240/1500)
В	10%	20%	19%
	(5/50)	(100/500)	(105/550)

Какое лекарство эффективнее?

- А 1400 из 1500 имели среднюю тяжесть заболевания
- В 500 из 550 были в тяжелом состоянии
- Правильный выбор зависит от структуры ваших данных

Парадокс Симпсона: явление в статистике, когда при наличии двух групп данных, в каждой из которых наблюдается одинаково направленная зависимость, при объединении этих групп направление зависимости меняется на противоположное.

- Организационная информация
- 2 Разминочный пример
- 3 Условные обозначения
- 🐠 Фундаментальная проблема причинного вывода
- **6** Средние эффекты
- 6 Предпосылки
- **7** Симуляция в R
- 8 Что почитать

Условные обозначения

- X_i независимые переменные (covariates)
- T_i бинарная переменная воздействия (treatment variable):

$$T_i = \begin{cases} 1, & \text{воздействие на объект і оказано} \\ 0, & \text{воздействие на объект і не оказано} \end{cases}$$

• Y_{i1} , Y_{i0} – потенциальные исходы (potential outcomes) [factual and counterfactual]

Условные обозначения

- Наблюдаемые исходы Y_i отличаются от потенциальных исходов
 - Потенциальные исходы являются гипотетическими случайными величинами
 - Наблюдаемые исходы являются фактическими случайными величинами
- Наблюдаемые исходы являются функцией от потенциальных исходов:

$$Y_i = T_i \cdot Y_{i1} + (1 - T_i) \cdot Y_{i0}$$

And are the potential outcomes in the room with us now?

Условные обозначения

- Наблюдаемые исходы Y_i отличаются от потенциальных исходов
 - Потенциальные исходы являются гипотетическими случайными величинами
 - Наблюдаемые исходы являются фактическими случайными величинами
- Наблюдаемые исходы являются функцией от потенциальных исходов:

$$Y_i = T_i \cdot Y_{i1} + (1 - T_i) \cdot Y_{i0}$$

• Тогда эффект воздействия для конкретного наблюдения равен разнице между двумя состояниями мира для этого наблюдения (потенциальными исходами):

$$\tau_i = Y_{i1} - Y_{i0}$$

• В чем тут проблема?

- Организационная информация
- 2 Разминочный пример
- 3 Условные обозначения
- 4 Фундаментальная проблема причинного вывода
- **6** Средние эффекты
- **6** Предпосылки
- **7** Симуляция в R
- 8 Что почитать

Фундаментальная проблема причинного вывода

- Чтобы оценить эффект воздействия для конкретного индивида, мы должны знать потенциальные исходы сразу для двух его состояний мира
- Реально мы наблюдаем только одно из них либо, если индивид подвергся воздействию, либо, если он ему не подвергался
- Оценка индивидуального эффекта требует доступа к данным, которых у нас физически не может быть
- Если с распределением индивидуального эффекта воздействия (treatment effect) работать не получается, будем довольствоваться средними величинами

- Организационная информация
- 2 Разминочный пример
- 3 Условные обозначения
- 🐠 Фундаментальная проблема причинного вывода
- 6 Средние эффекты
- 6 Предпосылки
- **7** Симуляция в R
- **8** Что почитать

Средние эффекты

• Средний эффект воздействия (average treatment effect)

$$ATE = \mathbb{E}[\tau_i] = \mathbb{E}[Y_{i1} - Y_{i0}] = \mathbb{E}[Y_{i1}] - \mathbb{E}[Y_{i0}] = \frac{1}{N_1} \sum_{i=1}^{N_1} Y_{i1} - \frac{1}{N_0} \sum_{i=1}^{N_0} Y_{i0}$$

• Средний эффект воздействия на подвергшихся воздействию (average treatment effect for the treatment group)

$$ATT = \mathbb{E}[\tau_i | T_i = 1] = \mathbb{E}[Y_{i1} - Y_{i0} | T_i = 1] = \mathbb{E}[Y_{i1} | T_i = 1] - \mathbb{E}[Y_{i0} | T_i = 1]$$

• Средний эффект воздействия на не подвергшихся воздействию (average treatment on the non-treated)

$$ATnT = \mathbb{E}[\tau_i|T_i = 0] = \mathbb{E}[Y_{i1} - Y_{i0}|T_i = 0] = \mathbb{E}[Y_{i1}|T_i = 0] - \mathbb{E}[Y_{i0}|T_i = 0]$$

• И средние, и индивидуальный эффект воздействия нельзя напрямую рассчитать но мы будем пробовать их оценить

Средние эффекты

- И средние, и индивидуальный эффект воздействия нельзя напрямую рассчитать, но мы будем пробовать их оценить
- Самая простая идея для оценки АТЕ, которая всем придет в голову, взять простую разницу в средних:

$$\mathbb{E}[Y_1|T=1] - \mathbb{E}[Y_0|T=0]$$

 Но тут всё не так просто, после небольших преобразований мы получим следующее (доказательство тут):

$$\mathbb{E}[Y_1|T=1] - \mathbb{E}[Y_0|T=0] =$$

$$=\underbrace{\mathbb{E}[Y_1] - \mathbb{E}[Y_0]}_{\text{ATE}} + \underbrace{\mathbb{E}[Y_0|T=1] - \mathbb{E}[Y_0|T=0]}_{\text{Selection Bias}} + \underbrace{(1-\pi)(ATT - ATnT)}_{\text{Heterogeneous treatment effect bias}}$$

Средние эффекты

$$\mathbb{E}[Y_1|T=1] - \mathbb{E}[Y_0|T=0] =$$

$$=\underbrace{\mathbb{E}[Y_1] - \mathbb{E}[Y_0]}_{\text{ATE}} + \underbrace{\mathbb{E}[Y_0|T=1] - \mathbb{E}[Y_0|T=0]}_{\text{Selection Bias}} + \underbrace{(1-\pi)(ATT - ATnT)}_{\text{Heterogeneous treatment effect bias}}$$

- АТЕ интересующий нас эффект
- Selection Bias смещение, возникающее из-за того, что контрольная группа и группа воздействия различались, даже если бы на них не было оказано воздействие, то есть имеет место некоторый дисбаланс
- Heterogeneous treatment effect bias различие в интенсивности эффекта для тритмент и контрольной группы, взвешенное на долю выборки $(1-\pi)$, которая попала в контрольную группу

- ① Организационная информация
- 2 Разминочный пример
- 3 Условные обозначения
- Фундаментальная проблема причинного вывода
- **6** Средние эффекты
- 6 Предпосылки
- **7** Симуляция в R
- 8 Что почитать

Предпосылки

$$\mathbb{E}[Y_1|T=1] - \mathbb{E}[Y_0|T=0] =$$

$$=\underbrace{\mathbb{E}[Y_1] - \mathbb{E}[Y_0]}_{\text{ATE}} + \underbrace{\mathbb{E}[Y_0|T=1] - \mathbb{E}[Y_0|T=0]}_{\text{Selection Bias}} + \underbrace{(1-\pi)(ATT - ATnT)}_{\text{Heterogeneous treatment effect bias}}$$

- Экзогенность воздействия (Independence assumption) распределение объекта в тритмент или контрольную группы осуществляется случайно и независимо от его изначальных характеристик $(T_1, Y_0, X)_i \perp T_i$
 - $\mathbb{E}[Y_0|T=1] \mathbb{E}[Y_0|T=0] = 0 \Rightarrow \text{Selection Bias} = 0$
 - $\mathbb{E}[Y_1|T=1] \mathbb{E}[Y_1|T=0] = 0$
 - $(1-\pi)(ATT-ATnT) = (1-\pi)[(\mathbb{E}[Y_1|T=1]-\mathbb{E}[Y_0|T=1])-(\mathbb{E}[Y_1|T=0]-\mathbb{E}[Y_0|T=0])] = 0 \Rightarrow$ Heterogeneous treatment effect bias = 0
 - Хорошая рандомизация, а следовательно, и выполнение предпосылок, позволяет нам очистить эффект воздействия от двух типов смещения:

$$ATE = \mathbb{E}[Y_1] - \mathbb{E}[Y_0] = \mathbb{E}[Y_1|T=1] - \mathbb{E}[Y_0|T=0] \xrightarrow{p} \frac{1}{N_1} \sum_{i=1}^{N_1} Y_{i1} - \frac{1}{N_2} \sum_{i=1}^{N_0} Y_{i0}$$

Предпосылки

- Отсутствие «внешних эффектов» воздействия (SUTVA Stable unit treatment value assumption)
 - воздействие оказывается только на один объект и внешние эффекты у него отсутствуют
 - 2 воздействие гомогенно существует только один тип тритмента

- Организационная информация
- 2 Разминочный пример
- 3 Условные обозначения
- 🐠 Фундаментальная проблема причинного вывода
- **6** Средние эффекты
- 6 Предпосылки
- **7** Симуляция в R
- 8 Что почитать

Симуляция в R

- Симуляции это «игрушечные» примеры
- За ними не стоят реальные данные. Данные для симуляций мы будем специальным образом заранее моделировать
- Это удобно, когда идеально подходящих данных нет. К тому же, живые данные часто могут быть зашумлены из-за других факторов, на которые нам не всегда будет удобно отвлекаться

Симуляция в R

Смоделируем гипотетическую ситуацию. Мы хотим оценить величину эффекта от использование сайта с расписанием cacs.ws на свободное время студента

- Предположим, что наша экспериментальная выборка состоит из ${
 m N}=1000$ человек
- Для простоты у них будет всего две характеристики (X возраст и Z время в пути от дома до $\Theta\Phi$), имеющих влияние на потенциальный исход (Y_0 и Y_1 – свободное время), причем $X \sim U[18, 25], Z \sim N[60, 20]$
- При этом предположим, что **реальный эффект воздействия** равен $\tau=15$ минутам
- Будем считать, что реальная зависимость потенциального исхода от ковариатов и тритмента выглядит следующим образом:

 - $Y_0=240-3\cdot X-Z+15\cdot\underbrace{T}_{=0}+\varepsilon=120-3\cdot X-Z+\varepsilon$ не было воздействия $Y_1=240-3\cdot X-Z+15\cdot\underbrace{T}_{=0}+\varepsilon=120-3\cdot X-Z+15+\varepsilon$ было воздействие

- ① Организационная информация
- 2 Разминочный пример
- 3 Условные обозначения
- 🐠 Фундаментальная проблема причинного вывода
- **6** Средние эффекты
- 6 Предпосылки
- **7** Симуляция в R
- **8** Что почитать

Что почитать

- Causal Inference: The Mixtape (Scott Cunningham, 2021). Chapter 4. Potential Outcomes Causal Model
- Causal Inference for The Brave and True (Matheus Facure). Chapter 1. Introduction To Causality
- Introduction to Causal Inference (Brady Neal, 2020). Chapter 1. Motivation: Why You Might Care, Chapter 2. Potential Outcomes

