Práctico 3 Álgebra II – Año 2024/1 FAMAF

ÁLGEBRA DE MATRICES

Objetivos.

- \circ Familiarizarse con las matrices y sus operaciones de suma y multiplicación, Ejercicios (1) (8).
- Familiarizarse con la notación de subíndices para las entradas de matrices,
 Ejercicios (8) y (9).
- o Aprender la noción de matriz inversa y cómo cálcularla, Ejercicios (10) (13).
- Usar matrices para la resolución de sistemas de ecuaciones, Ejercicios (14) –
 (19).

Ejercicios. Los ejercicios con el símbolo (a) tienen una ayuda al final del archivo para que recurran a ella después de pensar un poco.

(1) Sean

$$A = \begin{bmatrix} 1 & -2 & 0 \\ 1 & -2 & 1 \\ 1 & -2 & -1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1 & 2 \\ -2 & 0 & -1 \\ 1 & 3 & 5 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{bmatrix}.$$

Verificar que A(BC)=(AB)C, es decir que vale la asociatividad del producto.

(2) Determinar cuál de las siguientes matrices es A, cuál es B y cuál es C de modo tal que sea posible realizar el producto ABC y verificar que A(BC) = (AB)C.

$$\begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & 1 \end{bmatrix}, \qquad \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}, \qquad [1 \quad -1].$$

- (3) Calcular A^2 y A^3 para la matriz $A = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$.
- (4) ⓐ Dar ejemplos de matrices no nulas A y B de orden 2×2 tales que
 - a) $A^2 = 0$ (dar dos ejemplos).
- c) $A^2 = -I_2$.

b) $AB \neq BA$.

- d) $A^2 = A \neq I_2$.
- (5) ⓐ Sea $A \in \mathbb{R}^{2\times 2}$ tal que AB = BA para toda $B \in \mathbb{R}^{2\times 2}$. Probar que A es un múltiplo de I_2 .
- (6) Para cada $n \in \mathbb{N}$, con $n \geq 2$, hallar una matriz no nula $A \in \mathbb{R}^{n \times n}$ tal que $A^n = 0$ pero $A^{n-1} \neq 0$.

1

(7) ⓐ Dar condiciones necesarias y suficientes sobre matrices A y B de tamaño $n \times n$ para que

a)
$$(A + B)^2 = A^2 + 2AB + B^2$$
.
b) $A^2 - B^2 = (A - B)(A + B)$.

(8) (a) Sean

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^{n \times 1} \quad \text{y} \quad A = \begin{bmatrix} 1 & 1 & 1 \\ C_1 & C_2 & \cdots & C_n \\ 1 & 1 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{m \times n},$$

es decir, $C_1, ..., C_n$ denotan las columnas de A. Probar que $Av = \sum_{j=1}^n v_j C_j$.

- (9) Si A es una matriz cuadrada $n \times n$, se define la **traza** de A como $\text{Tr}(A) = \sum_{i=1}^{n} a_{ii}$.
 - a) Calcular la traza de las matrices del ejercicio (10).
 - b) (a) Probar que si $A, B \in \mathbb{R}^{n \times n}$ y $c \in \mathbb{R}$ entonces

$$Tr(A + cB) = Tr(A) + c Tr(B)$$
 y $Tr(AB) = Tr(BA)$.

(10) Para cada una de las siguientes matrices, usar operaciones elementales por fila para decidir si son invertibles y hallar la matriz inversa cuando sea posible.

$$\begin{bmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{bmatrix}, \quad \begin{bmatrix} -1 & -1 & 4 \\ 1 & 3 & 8 \\ 1 & 2 & 5 \end{bmatrix}, \quad \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & -3 & 3 & -8 \\ -2 & 1 & 2 & -2 \\ 1 & 2 & 1 & 4 \end{bmatrix}, \quad \begin{bmatrix} 1 & -3 & 5 \\ 2 & -3 & 1 \\ 0 & -1 & 3 \end{bmatrix}.$$

(para que hagan menos cuentas: las matrices 3×3 aparecieron en el Práctico 2).

- (11) Sea A la primera matriz del ejercicio anterior. Hallar matrices elementales E_1, E_2, \ldots, E_k tales que $E_k E_{k-1} \cdots E_2 E_1 A = I_3$.
- (12) \dot{c} Es cierto que si A y B son matrices invertibles entonces A+B es una matriz invertible? Justificar su respuesta.
- (13) ⓐ Una matriz $A \in \mathbb{R}^{n \times n}$ se dice *nilpotente* si $A^k = 0$ para algún $k \in \mathbb{N}$. Probar que si una matriz A es nilpotente, entonces $I_n A$ es invertible.
- (14) Sean v y w dos soluciones del sistema homogéneo AX=0. Probar que v+tw también es solución para todo $t \in \mathbb{K}$.
- (15) Sea v una solución del sistema AX = Y y w una solución del sistema homogéneo AX = 0. Probar que v + tw también es solución del sistema AX = Y para todo $t \in \mathbb{K}$.
- (16) Probar que si el sistema homogéneo AX = 0 posee alguna solución no trivial, entonces el sistema AX = Y no tiene solución o tiene al menos dos soluciones distintas.
- (17) Supongamos que los sistemas AX = Y y AX = Z tienen solución. Probar que el sistema AX = Y + tZ también tiene solución para todo $t \in \mathbb{K}$.

- (18) Sean A una matriz invertible $n \times n$, y B una matriz $n \times m$. Probar que los sistemas BX = Y y ABX = AY tienen las mismas soluciones.
- (19) ⓐ Sean A y B matrices $r \times n y n \times m$ respectivemente. Probar que:
 - a) Si m > n, entonces el sistema ABX = 0 tiene soluciones no triviales.
 - b) Si r > n, entonces existe un Y, $r \times 1$, tal que ABX = Y no tiene solución.

Ejercicios de repaso. Si ya hizo los ejercicios anteriores continue con la siguiente guía. Los ejercicios que siguen son similares y le pueden servir para practicar antes de los exámenes.

- (20) ⓐ Probar que si $A \in \mathbb{R}^{m \times n}$ y $B, C \in \mathbb{R}^{n \times p}$ entonces A(B + C) = AB + AC.
- (21) Probar que si $A, B \in \mathbb{R}^{m \times n}$ y $C \in \mathbb{R}^{n \times p}$ entonces (A + B)C = AC + BC.
- (22) Sea $v = [v_1 \cdots v_m] \in \mathbb{R}^{1 \times m}$ y $A \in \mathbb{R}^{m \times n}$. Probar que $vA = \sum_{i=1}^m v_i F_i$, donde F_1, \dots, F_m denotan las filas de A.
- (23) Sea $D = (d_{ij}) \in \mathbb{R}^{n \times n}$ una matriz diagonal y $A = (a_{ij}) \in \mathbb{R}^{m \times n}$. Probar que $AD = (d_{ij}a_{ij}) \in \mathbb{R}^{m \times n}$.
- (24) Probar las siguientes afirmaciones:
 - a) Si $A, B \in \mathbb{R}^{n \times n}$ son matrices diagonales, entonces AB = BA.
 - b) Si $A = c I_n$ para algún $c \in \mathbb{R}$, entonces AB = BA para toda $B \in \mathbb{R}^{n \times n}$.
- (25) Probar que si $A \in \mathbb{R}^{n \times n}$ es una matriz diagonal tal que $\text{Tr}(A^2) = 0$, entonces A = 0.
- (26) Sea A matriz 2×2 tal que Tr(A) = 0 y $Tr(A^2) = 0$.
 - a) Probar que $A^2 = 0$.
 - b) >Es cierta la recíproca?
- (27) Probar que si $A \cup B$ son matrices $n \times n$ que conmutan entre sí, entonces para todo $k \in \mathbb{N} \cup \{0\}$ se cumple que:

$$(A+B)^k = \sum_{j=0}^k \binom{k}{j} A^j B^{k-j}.$$

- (28) Sea $A \in \mathbb{R}^{m \times n}$. La matriz traspuesta de A es la matriz $A^t \in \mathbb{R}^{n \times m}$ tal que $(A^t)_{ij} = A_{ji}$, $1 \le i \le n$, $1 \le j \le m$.
 - a) Dar las matrices traspuestas de las matrices A, B y C de los ejercicios (1) y (2).
 - b) Probar que si $A, B \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{n \times p}$ y $c \in \mathbb{R}$ entonces $(A + cB)^t = A^t + cB^t, \qquad (BC)^t = C^tB^t.$
 - c) Probar que si $D \in \mathbb{R}^{n \times n}$ es invertible, entonces D^t también lo es y $(D^t)^{-1} = (D^{-1})^t$.

- (29) Una matriz A se dice simétrica si $A^t = A$. Una matriz B se dice antisimétrica si $B^t = -B$. Probar que toda matriz se puede expresar como la suma de una matriz simétrica y una antisimétrica.
- (30) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Si A y B son matrices cuadradas tales AB = BA pero ninguna es múltiplo de la otra, entonces A o B es diagonal.
 - b) Existen una matriz 3×2 , A, y una matriz 2×3 , B, tales que AB es una matriz invertible.
 - c) Existen una matriz 2×3 , A, y una matriz 3×2 , B, tales que AB es una matriz invertible.

Ayudas. (4) Probar con algunos 0 y 1 en las entradas.

- (5) Elegir matrices B apropiadas con muchos ceros y un 1.
- (7) El objetivo del ejercicio es completar los puntos suspensivos en la siguiente frase:

"
$$(A + B)^2 = A^2 + 2AB + B^2$$
 si y sólo si A y B satisfacen"

Desarrollen el cuadrado de la suma A+B usando que el producto de matrices es distributivo

y vean que les "sobra" para obtener la fórmula del binomio. Misma idea para el item (b).

- (8) Usar la notación de subíndices para las entradas de matrices.
- b) Usar la notación de subíndices para las entradas de matrices.
- (13) Pensar en la fórmula de $\sum_{i=0}^{n} a^{i}$ vista en Álgebra I/Matemática Discreta I.
- (19) Recordar el Ejercicio 11 del Práctico 2.
- (20) Usar la notación de subíndices para las entradas de matrices.