## Thuật toán sắp xếp (tiếp theo)

## **HEAP SORT**

A = 
$$\{12, 2, 8, 5, 1, 6, 4, 15\}$$
  
Phần tử liên đới của i  $\Rightarrow$  (2\*i + 1, 2\*i + 2)  
A[i] > A[2\*i + 1]  
A[i] > A[2\*i + 2]

Hiệu chỉnh và sắp xếp trên đoạn n=8

Bước 1: Hiệu chỉnh và sắp xếp trên mảng  $A = \{12, 2, 8, 5, 1, 6, 4, 15\}$ , n=8 lần lượt từng vị trí i từ n/2 -1 đến 0

Khi hoán vị 2 và 15 làm ảnh hưởng đến nhánh bên dưới 2 trở thành node cha của  $5 \rightarrow \text{Cần}$  hiệu chỉnh tiếp nhánh bên dưới sao cho thõa đk

$$A[i] > A[2*i + 1]$$
 và  $A[i] > A[2*i + 2]$   
Đây gọi là hiệu chỉnh lan truyền

Tại i = 0

15, 12, 8, 5, 1, 6, 4, 2 hoán vị vị trí đầu cuối  $\rightarrow$  2, 12, 8, 5, 1, 6, 4, 15

Bước 2: Hiệu chỉnh và sắp xếp trên mảng A = {2, 12, 8, 5, 1, 6, 4}, n=7 lần lượt từng vị trí i = n/2 -1  $\rightarrow$  0

| Tại i = 2                                             | Tại i = 1                                             |
|-------------------------------------------------------|-------------------------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| Tại i = 0                                             |                                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                       |
| Hiệu chỉnh lan truyền                                 |                                                       |
| 1 2 2 8 6 2 1 6 4                                     |                                                       |

12, 5, 8, 2, 1, 6, 4 hoán vị vị trí đầu cuối  $\rightarrow$  4, 5, 8, 2, 1, 6, 12

Bước 3: Hiệu chỉnh và sắp xếp trên mảng A = {4, 5, 8, 2, 1, 6}, n=6 lần lượt từng vị trí i =  $n/_2$  -1  $\rightarrow$  0

| m · · · · · · | m · · · · o           |
|---------------|-----------------------|
| Tại i = 1     | Tại i = 0             |
|               |                       |
| 0             |                       |
|               |                       |
| 1 2           | 0                     |
|               | 8                     |
| 5 4 5         | 1 2                   |
|               | 5 4                   |
| 2 1 6         | 3 4 5                 |
|               | 2 1 6                 |
|               |                       |
|               |                       |
|               |                       |
|               | Hiệu chỉnh lan truyền |
|               | Thọc chính lan truyền |
|               |                       |
|               |                       |
|               | 0                     |
|               | 8                     |
|               | 1 2                   |
|               | 5                     |
|               | 5 6<br>3 4 5          |
|               | 2 1 4                 |
|               | 2 1 4                 |
|               |                       |
|               |                       |

8, 5, 6, 2, 1, 4 hoán vị vị trí đầu cuối  $\rightarrow$  4, 5, 6, 2, 1, 8

Bước 4: Hiệu chỉnh và sắp xếp trên mảng  $A = \{4, 5, 6, 2, 1\}$ , n=5 lần lượt từng vị trí i = n/2 -1  $\rightarrow 0$ 



6, 5, 4, 2, 1 hoán vị vị trí đầu cuối → 1, 5, 4, 2, 6

Tương tự các bước còn lại ta có kết quả mảng A đã được sắp xếp  $A=\{1,2,4,5,6,8,12,15\}$ 

## **QUICK SORT**

 $A = \{12, 2, 8, 5, 1, 6, 4, 15\}$ 

| Left = 0 | 1 | 2 | 3 | 4 | 5 | 6 | Right = 7 |
|----------|---|---|---|---|---|---|-----------|
| 12       | 2 | 8 | 5 | 1 | 6 | 4 | 15        |

Chọn tùy ý phần tử X trong đoạn [left, right]  $\rightarrow$  chọn phần tử ở giữa (left+right)/2

Với giá trị khởi tạo i = left, trong khi A[i] < X → i++

Với giá trị khởi tạo j = right, trong khi  $A[j] > X \rightarrow j$ —

→ Sau khi tính toán, nếu i < j thì hoán vị A[i] với A[j]

Bước 1: Xét trên đoạn [0,7] và X = 5

Kết quả tính toán được i=0 và j=6  $\rightarrow$  hoán vị (A[0], A[6])  $\rightarrow$  i=1 và j=5

| i=0         | 1                                                                     | 2 | 3 | 4 | 5 | j=6 | j=7 |  |
|-------------|-----------------------------------------------------------------------|---|---|---|---|-----|-----|--|
| 4           | 2                                                                     | 8 | 5 | 1 | 6 | 12  | 15  |  |
| Kết quả tín | Kết quả tính toán được i=2 và j=4 → hoán vị (A[2], A[4]) → i=3 và j=3 |   |   |   |   |     |     |  |
| 0           | 1                                                                     | 2 | 3 | 4 | 5 | 6   | 7   |  |
| 4           | 2                                                                     | 1 | 5 | 8 | 6 | 12  | 15  |  |

Khi i = j  $\rightarrow$  Phân hoạch 2 đoạn [0,3] và [3,7]

Bước 2.1: Xét trên đoạn [0,3] và X = 2

| i = 0 | 1 | j = 2 | j = 3 |
|-------|---|-------|-------|
| 4     | 2 | 1     | 5     |

## Hoán vị (4,1) → Kết quả:

| i = 0 | i=1=j | j = 2 | j = 3 |
|-------|-------|-------|-------|
| 1     | 2     | 4     | 5     |

 $\rightarrow$  i = j  $\rightarrow$  Phân hoạch 2 đoạn [0,1] và [1,3]

void quickSort(int \*a, int left, int right)

if (left >= right) return;

if  $(i \le j)$ 

if(left < j) quickSort(a, left, j);</pre>

if(i < right) quickSort(a, i, right);</pre>

while (i < j)

int x = a[(left+right)/2], i = left, j = right;

{swap(a[i], a[j]); i++; j--; }

while (a[i] < x) i++;while (a[j] > x) j--;

Bước 2.1.1: Xét trên đoạn [0,1] và X = 1

| i=j=0 | 1 |
|-------|---|
| 1     | 2 |

Hoán vị  $(1,1) \rightarrow \text{Kết quả:}$ 

j=-1

| 0 | i=1 |
|---|-----|
| 1 | 2   |

→ dừng phân hoạch do left > j và i = right

Bước 2.1.2: Xét trên đoạn [1,3] và X = 4

. . . .

Bước 2.2: Xét trên đoạn [3,7] và X = 6

| i = 3 | i = 4 | j = 5 | 6  | j = 7 |
|-------|-------|-------|----|-------|
| X = 5 | 8     | 6     | 12 | 15    |

Hoán vị  $(8,6) \rightarrow \text{Kết quả:}$ 

| 3     | j = 4 | i = 5 | 6  | 7  |
|-------|-------|-------|----|----|
| X = 5 | 6     | 8     | 12 | 15 |

→ i > j → Phân hoạch 2 đoạn [3,4] và [5,7]

Bước 2.2.1: Xét trên đoạn [3,4] và X = 5

Bước 2.2.2: Xét trên đoạn [5,7] và X = 8