Cell Reports Methods

A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data

Kodai Minoura, Ko Abe, Hyunha Nam, Hiroyoshi Nishikawa, Teppei Shimamura

2021, Cell Reports Methods

Motivation

- ✓ Highly complex of single-cell multimodal data
- ✓ multimodal low-dimensional joint representations
- ✓ Cross-modal predictions is unsolved.
- ✓ "Black-box" nature of deep learning.

Highlights

- > Learning low-dimensional joint representations from single-cell multi-omics data
- > Detecting previously overlooked cell populations in single-cell multimodal data
- > Accurately predicts missing modalities by crossmodal generation
- > Pseudocell generation enables scMM to learn interpretable latent dimensions

Architecture A

Underlying distribution of cell n

Multimodal latent variables

- Clustering
- Visualization

Data generation

- · Prediction of missing modality
- Integration of datasets

Underlying distribution of cell n

Multimodal latent variables

- Clustering
- Visualization

Data generation

- · Prediction of missing modality
- · Integration of datasets

Encoder: $q_{\varphi_m}(\mathbf{z}|\mathbf{x}_m)$

Sampling:

1. Transcriptome and surface protein

Negative Binomial Distribution

$$X \sim NB(r; P)$$

Non-negative counts with overdispersion(Gayoso et , 2021)

2. Chromatin accessibility

zero-inflated negative binomial (ZINB) distribution

Extreme sparsity

MOE(mixture-of-experts)
$$q_{\Phi}(z_n \mid x_n) = \sum_{m=1}^{2} \frac{1}{2} q_{\phi_m}(z_n \mid x_n)$$

Decoder: $\rho_{\theta_m}(\mathbf{x}_m|\mathbf{z})$

$$\mathsf{Loss} \ = \mathbb{E}_{\mathbf{z} \sim q_{\Phi}(\mathbf{z}|\mathbf{x})}[\mathsf{log}p_{\Theta}(\mathbf{x}|\mathbf{z})] - \mathsf{KL}[q_{\Phi}(\mathbf{z}|\mathbf{x}) \parallel p(\mathbf{z})],$$

Interpretability

Calculate correlation

 $-5\sigma_d$ to $5\sigma_d$ at a rate of $0.5\sigma_d$.

Cross-model Generation

Cross-modal generation ≀

Experiment

Transcriptome and surface protein

PMBC of CITE-seq dataset (接种疫苗患者的外周血单核细胞数据)

the transcriptome and 224 surface protein, and 54 cell populations measurements for over 160,000 cells

BMNC if CITE-seq (接种疫苗患者的骨髓单核细胞数据)

30,000 cells with transcriptome and 25 surface protein Used for crossmodal estimation

Transcriptome and Chromatin accessibility

SHARE-seq dataset (小鼠皮肤单细胞转录组和染色质可及性)

UMAP Visualization

MultiModal Heterogeneity Discover

Crossmodal Prediction

transcriptome-to-protein crossmodal estimation

training with PBMC and test with BMNC

$$p(x_{n,2} \mid z_{n,1})$$

SHARE-seq dataset

