פתרון 1 לוגיקה מתמטית - תרגיל

1. א. לכל הפחות מופיע פסוק אחד. דוגמה: P -...- כאשר סימן השלילה מופיע n פעמים.

 $((P \land P) \land (P \land P))$:n=2 לכל היותר: 2^n פעמים. דוגמה עבור

ב. לכל הפחות n קשרים. לכל היותר $2^{n}-1$ קשרים.

p	q	$q \lor p$	$p \to (q \lor p)$. አ. 2
T	T	T	T	
T	\mathbf{F}	T	T	
\mathbf{F}	T	T	T	
F	\mathbf{F}	\mathbf{F}	T	

p	q	r	$(p \lor (q \land r))$	(p \leftright q)	$(p \lor (q \land r)) \equiv (p \lor q)$
T	T	T	T	T	T
T	T	\mathbf{F}	T	T	T
T	\mathbf{F}	T	T	T	T
T	F	F	T	T	T
F	Т	Т	Т	Т	T
F	T	\mathbf{F}	\mathbf{F}	T	${f F}$
F	F	T	\mathbf{F}	\mathbf{F}	T
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f F}$	T

- 3. מכיוון ש- ${f A} o {f B}$ טאוטולוגיה אזי לפי טבלת האמת של הקשר ${f C}$ מקבלים שכל האפשרויות עבור ${f A}$ והשמה כלשהי הן: ${f T}$ או ${f F}$ ${f F}$ או ${f F}$ ${f F}$ והשמה מכיוון שיודעים ש- ${f A}$ טאוטולוגיה, מצטמצמות האפשרויות לאפשרות יחידה ${f T}$. על כן ${f B}$ טאוטולוגיה.
 - 4. הגדרה רקורסיבית:

ړ.

 $.A^* = \neg B^*$ אם $A = \neg B$

 $A^*=B_1^*\lor B_2^*$ אדי $A=B_1\land B_2$

 $.A*=B_1*_{\wedge}B_2*$ אם $A=B_1\vee B_2$ אדי

 $-\mathbf{A}$ הוכחה באינדוקציה כי \mathbf{A}^* שקול ל-

בסיס: A פסוק אטומי. לפי הגדרה A^{+} ולכן הטענה נכונה.

:צעד האינדוקציה

.A=¬B •

.5

(נובע מהמקרה)	${f B}$ - שקול ל ${f \neg A}$ (1)
(הנחת האינדוקציה)	$ eg B^*$ שקול ל B^* (2)
(נובע מ-2)	\mathbf{B} - שקול ל $-\mathbf{B}^*$ (3)
$(\mathbf{A}^*$ ההגדרה הרקורסיבית של $)$	$\neg \mathbf{B^*} = \mathbf{A^*} \ (4)$
(נובע מ-3 ו-4)	${f B}$ שקול ל- ${f A}^*$ (5)
(נובע מ-5 ו-1)	$ eg A^*$ שקול ל A^* (6)
	$A=B_1 \land B_2 \bullet$
(נובע מחוקי דה מורגן והמקרה)	$\neg B_1 \lor \neg B_2$ - שקול ל $\neg A (1)$
(הנחת האינדוקציה)	$\neg B_{1,2}$ ל ל-B $_{1,2}$ * (2)
(נובע מ-1 ו-2)	$\mathbf{B}_1^* \mathbf{V} \mathbf{B}_2^*$ - שקול ל \mathbf{A} (3)
$(\mathbf{A}^*$ ההגדרה הרקורסיבית של $)$	$B_1^* \vee B_2^* = A^* (4)$
(נובע מ-3 ו-4)	$ eg A^*$ שקול ל A^* (5)
	$A=B_1\lor B_2$ •
(נובע מחוקי דה מורגן והמקרה)	$\neg B_1 \land \neg B_2$ - שקול ל $\neg A (1)$
(הנחת האינדוקציה)	$\neg B_{1,2}$ "שקול ל $B_{1,2}$ (2)
(נובע מ-1 ו-2)	B_1 * A_2 *-שקול ל $\neg A$
$(\mathbf{A}^*$ ההגדרה הרקורסיבית של $)$	$B_1 * \wedge B_2 * = A * (4)$
(נובע מ-3 ו-4)	$ eg A^*$ שקול ל A^* (5)

ראשית נשים לב כי הקשר \equiv הוא קומוטטיבי ואסוציאטיבי. כמו כן נשים לב שלכל פסוק A ופסוק אטומי A, שקול ל- \Box

כיוון אחד: נניח שכל פסוק אטומי מופיע ב- ${f A}$ מספר זוגי של פעמים. לפי האמור לעיל, אפשר "לצמצם" כל הפסוקים האטומיים בפסוק בהדרגה תוך שמירת שקילות עד שיישאר פסוק מהצורה ${f q}$ שהוא טאוטולוגיה. מכאן שגם ${f A}$ טאוטולוגיה.

כיוון שני: נניח שבפסוק A יש פסוק אטומי, נסמן אותו p, שמופיע בו מספר A אי זוגי של פעמים. על ידי שינוי סדר של פסוקים אטומיים בפסוק $B \equiv p$ וצמצום של זוגות של הפסוק p, נקבל פסוק C שקול ל-A מהצורה C מאברה C לא מופיע ב-C. עכשיו כשניקח שתי השמות שמתלכדות על כל הפסוקים האטומיים פרט ל-C, אזי ערך האמת של C יהיה זהה בשתי ההשמות. אך מכיוון של-C יהיו ערכי האמת שונים, גם ל-C יהיו ערכי האמת שונים. מכאן ש-C לא טאוטולוגיה.