PRÁCTICA 3

SUBSISTEMAS COMBINACIONALES CON PUERTAS

Descripción

En esta práctica se utilizarán circuitos integrados con puertas lógicas para realizar dos subsistemas combinacionales: un MUX de 2 canales y un DEC2:4 y se comprobará su funcionamiento.

Estudio Teórico

En este apartado vamos a analizar el circuito que será montado en el estudio experimental.

Enunciado

Se pide implementar y comprobar el funcionamiento de un MUX2:1 y un DEC2:4. Los circuitos deben ser implementados empleando puertas NAND e inversores.

MUX2:1 - Circuito con NAND

En la figura 1 se muestra el diseño de un MUX2:1 empleando puertas NAND. Si analiza el circuito comprobará que la función lógica \mathbf{z} expresada en suma de productos es $\mathbf{z} = \mathbf{s} \ \mathbf{d}_1 + \mathbf{s}' \ \mathbf{d}_0$. Esta ecuación corresponde a la de un MUX 2:1 donde \mathbf{s} es la entrada de selección y \mathbf{d}_1 y \mathbf{d}_0 son los canales (entradas de datos). Puede comprobar que si $\mathbf{s} = 0$, $\mathbf{z} = \mathbf{d}_0$ y si $\mathbf{s} = 1$, $\mathbf{z} = \mathbf{d}_1$.

Figura 1

Circuitos Electrónicos Digitales Grado en Ingeniería Informática – Tecnologías Informáticas

Test del circuito

Para comprobar el funcionamiento del circuito en el laboratorio fijaremos una de las entradas de datos a un valor constante mientras que en la otra proporcionaremos una secuencia de valores ...010101... A continuación, la entrada de selección se fijará a 0 o a 1 y con el osciloscopio comprobaremos que en la salida z se obtiene la entrada de datos seleccionada en cada caso.

Si elegimos que d_0 sea la entrada que toma un valor constante (por ejemplo 0), y d_1 la que varía obtendremos los siguientes casos:

caso 1	s = 0	$z = d_0 = 0$
caso 2	s = 1	$z = d_1 =010101$

Para fijar $\mathbf{d_0} = 0$, bastará conectar los cables de dicha entrada a 0V; para fijarla a 1 se conectarán a 5V. Ambas tensiones deben obtenerse de la fuente de polarización que también nos servirá para polarizar el circuito (pin de VCC a 5V y pin de GND a 0V). Para que $\mathbf{d_1}$ tome la secuencia de valores ...010101..., conectaremos el cable de esta entrada a una señal cuadrada que oscile entre 0V y 5V.

Finalmente, para comprobar que el circuito funciona basta con ver simultáneamente la señal d_1 y la salida z. En cada uno de los casos debemos obtener lo siguiente:

DEC2:4 - Circuito con NAND e inversores

En la figura 2 se muestra el diseño de un DEC2:4 (activo en bajo) empleando puertas NAND e inversores. En este caso necesitaremos utilizar dos circuitos integrados. Si analiza el circuito comprobará que las salidas Q_3 , Q_2 , Q_1 y Q_0 son los maxtérminos de las variables A_1 y A_0 . Para cada combinación de valores en las entradas A_1 y A_0 una y solo una de las salidas toma el valor 0 mientras que el resto toma el valor 1.

Figura 2

Test del circuito

Para comprobar el funcionamiento del circuito en el laboratorio fijaremos sus entradas a un valor constante y comprobaremos si la salida correspondiente es la única que toma el valor 0:

caso 1	$A_1A_0=00$	$Q_0=0,$
		$Q_1 = Q_2 = Q_3 = 1$
caso 2	$A_1A_0 = 01$	$Q_1 = 0,$
		$Q_0 = Q_2 = Q_3 = 1$

Circuitos Electrónicos Digitales Grado en Ingeniería Informática – Tecnologías Informáticas

2000 2	A A - 10	$Q_2=0,$
caso 3	$A_1A_0=10$	$Q_0 = Q_1 = Q_3 = 1$
caso 4	$A_1A_0 = 11$	Q ₃ =0,
		$Q_0 = Q_1 = Q_2 = 1$

caso 5

A continuación, una de las entradas se fijará a 0 o a 1 y la otra se excitará con la secuencia ...010101... Con el osciloscopio comprobaremos qué salidas cambian y si lo hacen correctamente. Por ejemplo, si A_1 =0 y A_0 oscila encontraremos que las salidas Q_3 y Q_2 permanecerán a 0 mientras que Q_1 y Q_0 variarán con A_0 como sigue:

Montaje

Los circuitos han de montarse con los circuitos integrados: 7400 y 7404 (Figura 4).

Figura 3

Estudio Experimental

Consejos previos:

- No olvide polarizar el circuito: GND = 0V, VCC = 5V.
- Visualice en el osciloscopio las señales antes de conectarlas al circuito
- Razone los resultados obtenidos y compruebe si coinciden con los que esperaba.

Parte 1: el multiplexor

1. Realice un esquema sobre la Figura 4, que indique cómo va a montar el MUX descrito en el estudio teórico. Se pide que indique claramente dónde va a colocar entradas y salida y cómo conectará las puertas.

Figura 4

2. Avise a su profesor cuando haya comprobado que el montaje funciona correctamente. Para ello considere los casos que se le plantean en el estudio teórico. Recuerde: la señal cuadrada debe oscilar entre 0V y 5V, fije como frecuencia 10 Khz y visualice la señal en el osciloscopio para asegurarse de que ha sido correctamente generada **antes** de conectarla al circuito.

Circuitos Electrónicos Digitales Grado en Ingeniería Informática — Tecnologías Informáticas

3. Complete las plantillas para los casos 1 y 2, muestre simultáneamente **d**₁ y **z**. <u>No</u> <u>olvide</u> indicar la situación de la línea de tierra (0V).

Escala de tiempo: _____ Escala de tensión: _____

Escala de tiempo: _____ Escala de tensión: _____

Parte 2: el decodificador

4. Realice un esquema sobre la Figura 5, que indique cómo va a montar el DEC2:4 descrito en el estudio teórico. Se pide que indique claramente dónde va a colocar entradas y salida y cómo conectará las puertas.

Figura 5

- 5. Avise a su profesor cuando haya comprobado que el montaje funciona correctamente. Para ello considere los casos que se le plantean en el estudio teórico (casos 1-2-3-4).
- 6. Complete las plantillas de la página siguiente para el caso 5, muestre simultáneamente Q_1 y Q_0 en una de ellas y A_0 y Q_0 en la otra. Recuerde: la señal cuadrada debe oscilar entre 0V y 5V, fije como frecuencia 10 Khz y visualice la señal en el osciloscopio para asegurarse de que ha sido correctamente generada **antes** de conectarla al circuito.

Circuitos Electrónicos Digitales Grado en Ingeniería Informática — Tecnologías Informáticas

Escala de tiempo: _____ Escala de tensión: _____

Escala de tiempo: _____ Escala de tensión: _____