

# BIG DATA IN FINANCE AND BANKING: CAT 1: DSA 8504

11/02/2025

Lecturer: Dr. John Olukuru | Assistant Instructor: Joan Ngugi

# This Takeaway CAT is divided into two sections:

- Section 1: Read the case study carefully and answer the questions, making specific references to the details provided in the case(30 Marks)
- 2. **Section 2**: Complete the practical implementation task as instructed. Please submit this section in **notebook format** (70 Marks)

**Submission Deadline Date:** 23/02/2025 – 9pm

# Section 1: Case Study(30 Marks)

# HakiLend's Big Data Modernization Project

#### **Context & Unique Constraints**

**HakiLend** is a microfinance institution focused on providing consumer loans across **20 countries** in East and West Africa. Recently, the bank's CTO approved a **modernization project** to build a new Big Data platform. This platform aims to integrate **historical batch data**, **real-time transaction streams**, and **third-party credit risk data**.

#### 1. Current Technology & Pain Points

- Legacy Systems: Transactional data (20 years' worth) is stored on a mainframe using COBOL-based applications.
- Volume Explosion: HakiLend processes 20 million transactions daily, largely due to the rise of mobile banking.
- Emerging Markets: Expansion into two new countries with strict data sovereignty
   laws requires in-country data storage and specific encryption standards.
- Limited Development Team: HakiLend's in-house Big Data team is small, seeking straightforward, cost-effective solutions that can scale as hiring increases.

#### 2. Business & Compliance Drivers

- Immediate Fraud Detection: Near real-time alerts for suspicious cross-border credit card transactions.
- Regulatory Audits: Multiple regulators (including GDPR and local authorities)
   require data retention, audit trails, and granular access control.
- Credit Risk Analytics: HakiLend receives semi-structured credit rating data from two
  external agencies, which must be merged with internal historical data for advanced
  modeling.
- Cost Concerns: The CTO demands a high-level cost estimate and is open to cloud services if they reduce long-term expenses without sacrificing data control.

## 3. High-Level Goals

- Unified Data Environment: Capable of storing structured, semi-structured, and unstructured data (or at least seamlessly integrating them).
- Modular Big Data Architecture: Clear layers for ingestion, storage, batch processing, real-time streaming, and governance.
- Scalable Analytics: Must support machine learning (e.g., credit risk scoring, customer behaviour analysis).

#### **TASKS & MARK DISTRIBUTION**

Total Marks: 30

#### Instructions

- 1. Please answer **all** questions.
- 2. **Length & Format**: Each response should be concise but sufficiently detailed. You may include diagrams where necessary.

## 1. Introduction to Big Data (2 Marks)

In your own words, justify why HakiLend's scenario qualifies as a Big Data
 challenge. Reference the 3 Vs (Volume, Velocity, Variety) (and others if relevant) to support your argument.

# 2. Big Data Architecture & Components (13 Marks)

# Task:

- 1. **Propose a high-level, end-to-end architecture** for HakiLend, including batch and streaming layers.
- 2. Provide a **diagram** labeling key components (e.g., Hadoop, Spark, or cloud services).
- 3. **Explain** how each component addresses HakiLend's needs (legacy integration, real-time fraud detection, data governance, etc.).

#### 3. Common Big Data Challenges in Banking (3 Marks)

#### Task:

- 1. Discuss **two typical challenges** (technical, cultural, or regulatory) that banks face when implementing Big Data solutions.
- For each challenge, provide one feasible solution relevant to HakiLend's limited in-house
   Big Data team.

## 4. HakiLend's Justification (2 Marks)

#### Task:

- Summarize why a traditional relational database alone is insufficient for HakiLend's scenario.
- 2. Explain **why** a shift to modern Big Data solutions is **inevitable** for long-term competitiveness.

#### 6. YARN & Resource Management (2 Marks)

**Scenario**: HakiLend wants multiple teams (fraud analytics, risk modeling, marketing) to run Hadoop jobs **simultaneously** on a shared cluster.

#### Task:

- Explain how YARN (Yet Another Resource Negotiator) allocates cluster resources among different applications.
- Mention any key features that ensure balanced resource usage

#### 7. Hadoop Ecosystem Tools (2 Marks)

#### Task:

- 1. Identify **two Hadoop ecosystem tools** (beyond HDFS and MapReduce) that might benefit HakiLend.
- 2. For each tool, describe a **use case** specific to HakiLend (e.g., data ingestion, analytics, workflow orchestration).

## 8. RDDs, DataFrames, and Datasets (3 Marks)

**Context**: HakiLend's data engineering team is migrating batch jobs from MapReduce to Spark.

#### Task:

- Compare RDDs, DataFrames, and Datasets in Spark.
- Recommend which API you would use for complex ETL on structured financial data, justifying your choice.

#### 9. Tool Selection & Complexity (2 Marks)

#### Task:

 In your own words, explain how you would streamline tool selection to ensure HakiLend's small team can manage the Big Data environment effectively.

# **Section 2: Practical Implementation (70 Marks)**

# Optimizing Collaborative Filtering with Spark ALS

# **Background**

In class, we learned about **Collaborative Filtering** for recommendation systems using **Singular Value Decomposition (SVD)**. We applied this technique on the **transactions.csv** dataset, which contains **1** million records.

However, SVD was inefficient for this dataset:

- It took too long to run due to large matrix computations.
- It was **not optimized for big data** since it processed everything in memory.

#### **Task Overview**

To **improve performance**, we will use **Apache Spark** to:

- ✓ Load & preprocess the dataset using PySpark (instead of Pandas).
- ✓ Perform basic EDA to understand the dataset more using PySpark
- ✓ Apply ALS (Alternating Least Squares) for collaborative filtering (instead of SVD).

✓ Generate top-N product recommendations for users efficiently.

# Why ALS instead of SVD?

SVD is slow for large, sparse user-item matrices.

- It performs **matrix factorization on the entire dataset**, which becomes computationally expensive.
- It does not scale well for large datasets.

ALS (Alternating Least Squares) is optimized for large-scale collaborative filtering.

- It runs efficiently on distributed Spark clusters.
- It **converges faster than SVD**, especially for sparse recommendation matrices.

# **Assignment Expectations**

- Complete an end-to-end PySpark ALS implementation (hint :Use Google Collab if PySpark installation is not working on local machine)
- Preprocess & split the dataset correctly
- Train & evaluate an ALS model (RMSE score must be reported)
- Generate top-3 recommendations for each user as a dataframe

# **Deliverables**

- ✓ Python script (.py or .ipynb) implementing ALS-based recommendations.
- ✓ RMSE score on test data.
- ✓ Generated recommendations for test users saved to a csv file.