91222RO2 VOLUME II 2ND COPY

Interim Response Action Basin F Liquid Incineration Project

FINAL DRAFT HUMAN HEALTH RISK ASSESSMENT

(APPENDIX TO VOLUME I)

THE CHARLES THE LANGE BETTER SECTION OF THE SECTION

Volume II

Preplaced Remedial Action Contract Contract No. DACW-45-90-D-0015

19960917 014

July 1991

Approved for public release;
Distribution Unlimited

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing Instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blan	k)	2. REPORT DATE 07/00/91	3. REPORT TYPE AN	D DATES	COVERED
4. TITLE AND SUBTITLE INTERIM RESPONSE ACTION, BASIN	N F I	IQUID INCINERATION PROJEC	T, HUMAN HEALTH	5. FUND	ING NUMBERS
6. AUTHOR(S)				DACW45	90 D 0015
7. PERFORMING ORGANIZATION NA	AME	S) AND ADDRESS(ES)			ORMING ORGANIZATION
ROY F. WESTON, INC. LAKEWOOD, CO					RT NUMBER
9. SPONSORING/MONITORING AGE	NCY	NAME(S) AND ADDRESS(ES)	·		ISORING/MONITORING NCY REPORT NUMBER
ARMY CORPS OF ENGINEERS. OMAH OMAHA, NE	A DI	STRICT			£ .
11. SUPPLEMENTARY NOTES		·		l	,
12a. DISTRIBUTION / AVAILABILITY	STAT	EMENT		12b. DIS	TRIBUTION CODE
APPROVED FOR PUBLIC RE	LEA	SE; DISTRIBUTION I	S UNLIMITED		
13. ABSTRACT (Maximum 200 word	ls)			!	
LIMITS WHICH ARE PROTE INTAKES WERE CALCULATE EXPOSURE SCENARIOS UND WAS CONCLUDED THAT THE NONCARCINOGENIC RISK THE ASSESSMENT IS DELINCTION OF 2. DESCRIPTION OF 3. PROCESS OF POLE	ED OF OF CTI DER OIVI TACI	FOR THE PROPOSED B. NERATOR WILL TREAT THE RISK ASSESSMEN' VE OF HUMAN HEALTH OR ADULTS, CHILDRE BASE CASE AND SENS CINERATION FACILIT NY SENSITIVE POPUL DED INTO THE FOLLO LITY DESCRIPTION	ASIN F LIQUID IN BASIN F LIQUID T IS TO ESTABLIS . AVERAGE AND M N, AND INFANTS I ITIVITY CASE EMI Y POSES NEITHER ATION. WING SECTIONS: AND SELECTION	ICINERA AND HY SH CHEM HAXIMUM IN FOUR SSIONS CARCIN	TION PROJECT. DRAZINE RINSE ICAL EMISSION LIFETIME DAILY MAXIMUM CONDITION. IT
14. SUBJECT TERMS					15. NUMBER OF PAGES
SQI, EMISSION RATES, AIR QUAL	ITY,	TOXICITY ASSESSMENT, IRA	F .		16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED		SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFI OF ABSTRACT	CATION	20. LIMITATION OF ABSTRACT

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

PROGRAM MANAGER FOR ROCKY MOUNTAIN ARSENAL COMMERCE CITY, COLORADO

INTERIM RESPONSE ACTION BASIN F LIQUID INCINERATION PROJECT

APPENDICES TO FINAL DRAFT HUMAN HEALTH RISK ASSESSMENT

VOLUME II

Preplaced Remedial Action Contract (PRAC) Contract No. DACW-45-90-D-0015

Delivery Order No. 5001 Document Control No.: 3886-44-01-ABTD

> U.S. Army Corps of Engineers Omaha District Omaha, NE

> > Prepared by:

Roy F. Weston, Inc. 1 Weston Way West Chester, PA 19380

LIST OF APPENDICES

Appendices	<u>Title</u>	<u>Page</u>
3A	Data On Designated Fishing Areas	
5A	Derivation of Emission Rates for Dioxins/Furans and the Inorganics	
5B	Estimate of Organic Mass Emission Rates From Incineration of Basin F Liquids	
6A	Ambient Air Quality Modeling and Health Risk Assessment Protocols, Rocky Mountain Arsenal Basin "F" Liquid Incineration System Design	
7 A	Derivation of Surface Water Pollutant Concentrations for Engineers Lake, Tier 1 and 2 Analysis	
8A	Derivation of Soil Pollutant Concentrations	
8B	Methodology for Calculating Pollutant Concentrations in Vegetables	
8C	Methodology for Determining Pollutant Uptake Through Milk and Beef Consumption	
8D	Calculation of the Estimated Daily Intake for the Soil/Dust Ingestion Route of Exposure	
8E	Calculation of the Estimated Daily Intake for the Fish Ingestion Route of Exposure	
8 F	Calculation of the Estimated Daily Intake for the Dermal Absorption Route of Exposure	
8G	Methodology for Calculating Organic Pollutant Concentrations in Mother's Milk	
8H	Carcinogenic Risk for Individuals Under all Scenarios	
9A	Derivation of Selected Oral Reference Doses (RfDs)	

LIST OF APPENDICES (continued)

<u>Appendices</u>	<u>Title</u>	<u>Page</u>
9B	Derivation of Selected Inhalation Reference Doses (RfDs)	
12A	Cited References	

APPENDIX 3A DATA ON DESIGNATED FISHING AREAS

STATE OF COLORADO Roy Romer, Governor DEPARTMENT OF NATURAL RESOURCES

DIVISION OF WILDLIFE

AN EQUAL OPPORTUNITY EMPLOYER

Perry D. Olson, Director 6080 Broadway Denver, Colorado 80216 Telephone: (303) 297-1192

October 3, 1990

Nathan Mottl Roy F. Weston Inc. 1 Weston Way Bldg. 51 West Chester, PA 19380

Dear Mr. Mottl:

In response to your telephone request, I am providing the following information:

Within a 5 km radius of the center of the Rocky Mountain Arsenal we are only aware of the ponds on the Arsenal as being open to public (although limited) fishing.

Within a 5-10 km radius, we have identified 7 ponds which are open to public fishing, four of which are at the same site. Here are the names and locations of the ponds:

Clear Creek Pond Adams County T3S, R68W, S2 Engineer's Lake Adams County T2S, R68W, S36 Rotella Park Pond Adams County T2S, R68W, S35 Grandview Ponds 1-4 Adams County T2S, R67W, S18

Here is a summary of recent fish stocking information:

Clear Creek Pond - not stocked, but fish are present and fishing takes place

Engineer's Lake

1985: Stocked with 1100 4" Channel Catfish

1987: Stocked with 800 4" Largemouth Bass and 1500 6" Channel Catfish

Rotella Park Pond

1985: Stocked with 100 7" Bluegills

Grandview Pond #1

1988: Stocked with 20 15" Hybrid Grass Carp and 100 7" Largemouth Bass

Grandview Pond #2

1988: Stocked with 40 12" Hybrid Grass Carp and 200 7" Largemouth Bass

(continued)

COLUMN OF WHITE

REFER TO:

DEPARTMENT OF NATURAL RESOURCES, Hamlet J. Barry, Executive Director
WILDLIFE COMMISSION, William R. Hegberg, Chairman • Dennis Luttrell, Vice Chairman • Eldon W. Cooper, Secretary
Felix Chavez, Member • Rebecca L. Frank, Member • Louis Swift, Member • George VanDenBerg, Member • Larry M. Wright, Member

3A-1

Grandview Pond #3

1988: Stocked with 10 12" Hybrid Grass Garp and 100 7" Largemouth Bass

Grandview Pond #4

1988: Stocked with 20 12" Hybrid Grass Carp and 100 7" Largemouth Bass

The attached map shows the location of all 4 areas and provides some additional data - I have drawn in Grandview Ponds on it.

Let me know if you have any questions.

Sincerely,

Dave Weber

Habitat Biologist

cc: Jim Satterfield, Pat Tucker

bass, yellow perch, and rainbow trout (catchable size stocked).

Agency: Adams County Parks & Recreation.

Comments: Open 5 a.m. to 11 p.m. No boats. Fishing pier on the south shore. Playground and restrooms. Extreme water level fluctuation. Hard surface foot trail.

Butts Park Pond

Location: Northwest of the intersection of W. 94th Ave. and Perry Street. Parking area is off of Perry Street just south of 96th Ave. or off of 94th Ave. next to the ice rink.

Size: 3 acres; 5 feet maximum depth.

Fish: Bluegill, bullhead, channel catfish, crappie, green sunfish, sucker, and yellow perch.

Agency: Hyland Hills Recreation & Park District.

Comments: Open daylight hours. No boats. Recreation Center and playground.

Standley Lake

Location: W. 88th Ave. and Kipling Street. Parking area is off of Kipling. Access also on the west side of the lake via Alkire Street at 87th Ave.

Size: 1,210 acres; 80 feet maximum depth.

Fish: Bluegill, carp, channel catfish, green sunfish, largemouth bass, smallmouth bass, sucker, walleye, yellow perch, and rainbow trout (catchable size stocked).

Agency: South and southwest shore, Jefferson County Open Space. Remaining shore and lake itself, City of Westminster Parks & Recreation.

Comments: Open 5 a.m. to 11 p.m. for walk-in visitors. Open 8 a.m. to 7 p.m. for vehicles and boats. All boats need Westminster boat permit. Fee area for vehicles at Kipling & W. 88th Ave. Walk-in fishing is free. Extreme water level fluctuation. Two boat ramps on east shore. No fishing from dam.

MAY BE CLOSED DUE TO INSURANCE PROBLEMS: CONTACT MANAGING AGENCY.

Pomona Lake,

Location: In Meadow Glen Park. North of W. 80th Ave. and one-quarter mile west of Wadsworth Blvd. Main parking area can be reached via 80th Ave. by going north on Club Crest Drive, and then east on W. 81st Place.

Size: 31 acres; 8 feet maximum depth.

Fish: Largemouth bass, yellow perch, bullhead, channel catfish, crappie, and green sunfish.

Agency: North Jeffco Parks & Recreation.

Comments: Open dawn to 11 p.m. No boats. Hard surface foot trail.

Lake Arbor

Location: North of W. 80th Ave. between Wadsworth Blvd. and Sheridan Blvd. Both the north and south shores of the lake can be reached via 80th Ave. To reach the south shore, take 80th Ave. to Lamar Street. Go north on Lamar to 80th Place. Take 80th Place east to the cul-de-sac. To reach the north shore take Lamar Street north past 80th Place on to Pomona Drive. Go east on Pomona around the north end of the lake to the parking area.

Size: 37 acres, 19 feet maximum depth.

Fish: Bluegill, bullhead, carp, channel catfish, crappie, green sunfish, largemouth bass, pumpkinseed sunfish, and sucker. Grass carp stocked to control aquatic plants.

Agency: North Jeffco Recreation & Park District and City of Arvada.

Comments: Open dawn to 11 p.m. Non-motorized boats only. Fishing piers located on the north shore. Artificial fish habitat structures in lake. Playground. Hard surface foot trail.

Faversham Park Pond

Location: Sheridan and 72nd Ave.

Size: 6 acres; 11 feet maximum depth.

Fish: Bluegill.

Agency: City of Westminster Parks & Recreation.

Comments: Open sunrise to 11 p.m. No boats. No wading or swimming. Kids 15 years old and under.

Camenisch Park Pond

Location: West of Pecos Street, south of W. 90th Ave. at Fontaine Street. Parking area south of 90th Ave.

Size: 3 acres; 10 feet maximum depth.

Fish: Largemouth bass, pumpkinseed sunfish, sucker, bluegill, bullhead, channel catfish, crappie, and green sunfish.

Agency: Hyland Hills Recreation & Park District.

Comments: Open dawn to 10 p.m. No boats. Playground and restrooms. Hard surface foot trail.

Bell Roth Park Pond

Location: On the east side of Pecos Street, 2 blocks north of W. 84th Ave.

Size: 3 acres; 8 feet maximum depth.

Fish: Channel catfish, crappie, green sunfish, sucker, yellow

perch, bluegill, bullhead, and carp.

Agency: Hyland Hills Recreation & Park District.

Comments: Open dawn to 10 p.m. No boats. Playground.

2 Kiwanis Park Pond

Location: W. 80th Ave. east of Zuni Street. Parking area south of 80th Ave.

Size: 3 acres; 2 feet maximum depth. Fish: Bullhead and green sunfish.

Agency: Hyland Hills Recreation & Park District.

Comments: Open dawn to half hour after sunset. No boats.

13 Rotella Park Pond

and N. York Street. Parking north of 78th Ave. or south of Coronado Drive So.

Size: 3 acres; 10 feet maximum depth.

Fish: Bluegill, bullhead, channel catfish, largemouth bass, and pumpkinseed sunfish.

Agency: Adams County Parks.

Comments: Open 7 a.m. to 11 p.m. No boats. Extreme water level fluctuation. Playground and restrooms. Hard surface foot trail.

14 Engineers Lake

Location: From I-76 go to Hwy 224. Travel west on 224. Parking area is south of 224, just west of the South Platte River. The lake is

at the confluence of Clear Creek and the South Platte River. Hard surface foot trail across the river.

Size: 11 acres; 25 feet maximum depth.

Fish: Bullhead

Agency: Adams County Parks & Recreation.

Comments: Open 7 a.m. to 11 p.m. No boats. Walk-in trail and steen shoreline. Picnic shelter.

15 Clear Creek Pond

York Street. Parking area is south of Hwy 224, and east of Washington Street.

Size: 3 acres; 9 feet maximum depth.

Fish: Bluegill, bullhead, carp, channel catfish, crappie, green sunfish, largemouth bass, pumpkinseed sunfish, and yellow perch.

Agency: Adams County Parks & Recreation.

Comments: Open 7 a.m. to 11 p.m. No boats. Hard surface trail along south side of pond.

16 Twin Lakes Park Ponds

Location: Just west of Broadway on 70th Ave. Parking area south from 70th Ave.

Size: 2 ponds; 7 acres total; 16 feet maximum depth.

Fish: Bullhead, carp, channel catfish, crappie, green sunfish, largemouth bass, sucker, and yellow perch.

Agency: Adams County Parks.

Comments: Open 7 a.m. to 11 p.m. No boats. Hard surface foot trail, which connects with Clear Creek Trail.

17 Arvada Reservoir (not shown on map)

Location: Between Highway 93 and Indiana on W. 66th Ave.

Size: 180 acres; 77 feet maximum depth.

Fish: Rainbow trout, walleye, largemouth bass, smallmouth bass, yellow perch.

Agency: City of Arvada

Comments: City of Arvada permit required; available only at Arvada City Hall. No ice fishing. Non-motorized boats only. Open dawn to dusk. Special regulations apply.

18 Carl Park Pond

Location: West of Federal Blvd., on W. 54th Ave. at 1seade Street. Parking area north of 54th Ave.

Size: 4 acres; 8 feet maximum depth.

Fish: Largemouth bass, bluegill, and bullhead.

Agency: Hyland Hills Recreation & Park District.
Comments: Open dawn to 10 p.m. No boats.

19 Birdland Lake

Location: W. 51st Ave. and Garrison Street. Parking area west of Garrison at south end of the lake.

Size: 3 acres; 10 feet maximum depth.

Fish: Bluegill, channel catfish, green sunfish, largemouth bass, pumpkinseed sunfish, and yellow perch.

Agency: North Jeffco Recreation & Park District.

Comments: Open dawn to 11 p.m. Non-motorized boats only. No ice fishing. Playground and hard surface foot trail.

Ward Road Pond

Location: Northeast of the intersection of I-70 and Ward Road. Parking area east of Ward Road and south of W. 48th Ave.

Size: 7 acres; 30 feet maximum depth.

Fish: Largemouth bass, pumpkinseed, bluegill, bullhead, crappie, and green sunfish.

Agency: City of Arvada and Division of Wildlife.

Comments: Non-motorized boats only. Belly-boats allowed. Pond open for fishing only. Good bass fishing. Restrooms.

Special Regulations: 1. Fishing by artificial flies or artificial lures only; 2. All fish caught must be returned to the water immediately.

New Ponds Not Yet In Guide

Lowell Ponds - Adams County- At Lowell Street and 56th Way

Size: 3 ponds - 11 acres, 2 acres, 2 acres + Sheets Lake, 5 acres leased from City of Westminster. Maximum Depth - 10 feet.

Fish: Largemouth and smallmouth bass, channel catfish, bluegill, 19 4 2 5 6 A STATE crappie and bullhead.

Agency: Colorado Division of Wildlife Comments: Belly boats allowed for fishing, except on Sheets Lake. Special Regulation: All largemouth and smallmouth bass possessed must be 15 inches or longer.

Ketner Lake - Jefferson County - Off of 100th Ave. and County Side Drive.
Size: 25 acres

Agency: City of Westminster

Fish: Largemouth bass, crappie, bluegill, green sunfish, yellow perch and bullhead

Comments: Belly boats allowed for fishing but no other types of boats. Ice fishing is prohibited. Special Regulation: All largemouth & smallmouth bass possessed must be 15 inches or longer.

Grandview Ponds Adams County - Off of 104th and Riverdale Road

Size. 4 ponds - 10 acres total

Agency: Colorado Division of Wildlife
Fish: Largemouth bass, bluegill, channel catfick Fish: Largemouth bass, bluegill, channel catfish, crapppie, bullhead, green sunfish and yellow perch.

Special Regulation: All largemouth and smallmouth bess possessed must be 15 inches or longer.

Adams County Fairgrounds Lake (Public Works Lake) - Adams County - Off of 124th at Adams County Fairgrounds.

Size: 20 acres

Agency: Adams County Parks and Recreation

Fish: Largemouth bass, blurgill, channel catfish, crappie and yellow

Special Regulation: All largemouth and smallmouth bass possessed must be 15 inches or longer.

Boating Changes

Cottonwood Park Lake - Page 9 - No boating is allowed. Kendrick Reservoir - Page 9 - No boating is allowed Quincy Reservoir - Page 12 - Boat rental available Own boat allowed with Aurora permit - Non-motorized boats only Waneka Lake - Page 14 - Boat rental now available

Phone Number Changes

Bear Creek Reservoir - 987-7880 Chatfield Reservoir - 791-7275 Foothills Parks & Recreation - 987-3602

AGENCY CHANGES

Webster Lake - Page 4 - Agency: City of Northglenn Main Reservoir - Page 9 - Agency: Lakewood Department of Community Resources East Reservoir - Page 9 - Agency: Lakewood Department of Community Resources Smith Reservoir - Page 9 - Agency: Lakewood Department of Community Resources Kendrick Reservoir - Page 9 - Agency: Foothills Parks & Recreation Teller Lake - Page 14 - Agency: City of Boulder Open Space

FISH SPECIES ADDITIONS

Standley Lake - Page 5 - Wiper 2000 Overland Park Pond - Page 8 - Bullhead

Bear Creek Reservoir - Page 9 - Tiger Muskie Barr Lake - Page 4 - Tiger Muskie Chatfield Reservoir - Page 11 - Walleye Cherry Creek Reservoir - Page 11 & 12 - Wiper & Tiger Muskie Quincy Reservoir - Page 12 - Tiger Muskie Gross Reservoir - Page 15 & 16 - Tiger Muskie Evergreen Lake - Page 23 - Tiger Muskie

LIMITS

BAG AND POSSESSION LIMITS FOR SPECIFIC FISH esset below. Be sure to check the Colorado fishing regulations before fishing any water. PARTY POSSESSION -

IN ADDITION TO THE ABOVE DESCRIBED BIGHT FISH DAILY BAG AND POSSESSION LIMITS FOR TROUT, A PERSON MAY TAKE BYTO POSSESSION A FULL LIMIT OF EACH OF THE FOLLOWING

	Oally	Possession
Fid	Lig	Limit
Brook Found mones or least	10	
Kolonee Salmore Angling, Feb.1-Aug.31	10	10 10 1
Snapping or angling Sopt.1-fax.31		40
WASHINGTON TO THE PROPERTY OF	X4273644	- N. 20
Sauceye	10	10
Salar	STORE -	N 16
Largemouth Bass	10	10
Section of the sectio	Company of the second	2010
Change Catho	10	10
TO STATE OF THE PARTY OF THE PA	14 × 10 + 1	27.70
White bass or wipers - Adamsas/Rep		
factoring Benny Reservoid - 20 fet	in account	
more than 6 can be 20 inches or los	COC.	
South Platte Drainage, in accrecate.		
THE PROPERTY OF THE PARTY OF TH	ALC: NEW	25-20-
Coppie	20	20
MANAGEMENT OF THE PARTY OF THE	SCHOOL SEC	3-20
Northern Plice	20	20
The Tarton of the Control of the Control	14 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	and love
Confid Company	No Limit	No Limit
THE PERSON NAMED IN COLUMN	CONTRACTOR S	50 k40i S.
Colombia America and from		
Salamander: Aquetic gilled form Adult land form	120	120
There are no limits for game fish o	and Great at a	- Godydian
there are no made for game time (AN ARKED SOON	e lucrous

APPENDIX 5A

DERIVATION OF EMISSION RATES FOR DIOXINS/FURANS AND THE INORGANICS

5A.1 INTRODUCTION

Once the pollutants are identified, the next step in identifying process emissions is to predict the mass of these pollutants emitted from the stack over time. Emission factors are used to predict or estimate the concentrations and emission rates of the pollutants likely to be emitted from proposed facilities or from facilities for which there are no emissions data. Emission factors account for variations in emissions with respect to facility capacities and stack gas conditions (i.e., moisture content, temperature, and excess air) so that they can be used to estimate likely emissions from a facility that is basically similar in design and operation. Therefore, it is important that the emission factors be developed from data for the specific waste to be burned or from emissions data from comparable operating facilities. This section presents the emission factors and the resulting emission rates for the identified pollutants and provides the basis for the selection of the emission factors.

5A.2 OVERVIEW

The current analyses of emissions for four separate groups of pollutants are reported in this section. These categories are: polychlorinated dibenzo-p-dioxins (dioxins or PCDDs) and polychlorinated dibenzofurans (furans or PCDFs); inorganics (trace metals); volatile and semi-volatile organics [including products of incomplete combustion (PICs) and principal organic hazardous constituents (POHCs)]; and criteria pollutants (for which national ambient air quality standards have been established) and acid gases. The emission factors for each category of pollutants were derived from several methods and were based on:

- The test burn data for the Basin F waste obtained by T-THERMAL in February 1989 and August 1990.
- The expected waste feed rate and composition (based on previous Basin F sampling data) and published destruction and removal efficiencies.
- Federal and Colorado emission limitations and vendor performance guarantees.

• Emission test data obtained from other hazardous waste incineration facilities (from WESTON's comprehensive database).

The first method used to estimate emissions was based on the test burn conducted by T-THERMAL in August 1990. This test burn was comprised of nine test runs performed on a pilot-scale incinerator, which burned Basin F liquid and hydrazine wastewater. Most of the test runs could not be used to develop emission factors because dried waste clogged the atomizing tip of the nozzle during testing. There were several methods used to remove the waste buildup from the nozzle tip. In some instances, a hammer was used to gently hit the injector tip. Another method was passing steam or high pressure atomizing air through the injector. During these periods, the waste, the atomizing air flow, and the sampling trains were shut down; however, discontinuities in emissions were likely. There were no equipment operating difficulties during organic test runs 4 and 8; therefore, only test runs 4 and 8 were used to develop emission factors for dioxins and furans. Inorganic test run 4 was used to develop emission factors for metals and other inorganics (criteria pollutants and acid gases). The averages of all the test runs, including the unacceptable ones, were considered in developing upper bound sensitivity case emission factors. Tables 5A-1 and 5A-2 describe the problems that occurred during organic and inorganic testing, respectively.

The second method used to estimate the emissions was based on the expected feed rate of the waste being incinerated. WESTON investigated, collected, and assembled previous analytical data on the Basin F liquids. Sources of information and test data included Rocky Mountain Arsenal, Woodward-Clyde Consultants, T-THERMAL, Waterway Experiment Station, Ebasco, and Shell Oil Company. Testing by these companies occurred from 1978 through 1989. WESTON also performed a series of tests on the pond and storage tanks in August and October 1989, and in February and April 1990. Although it is possible that organics may have degraded since the earlier analyses, the results of these analyses were considered because they were the only measures of some compounds and would ensure a conservative and comprehensive estimate of emissions. All of the test data were reviewed and converted into common units of milligrams per liter. (This involved a density correction

Table 5A-1 Problems During Organic Testing

Test Date	Test Time	Sample Time (min)	Run Number		Problems During Testing
14-Aug-9	0 10:04 10:58	54	1	1.) 2.) 3.)	9:40 - Basin F liquid waste was introduced. 10:30 - rapping was performed on the nozzle to help reduce increasing CO levels. 10:34 - highest CO readings (301 ppmdv @ 7% O2).
14-Aug-9	0 15:30 16:31	56	2	1.)	15:05 - restarted the incinerator. 15:35, 16:00 & 16:05 - rapping was performed on the nozzle to help reduce CO levels. 16:05 & 16:20 - a shot of high pressure atomizing air was injected into the nozzle. 16:10 - the atomizing air temp. was increased to 200 F.
15-Aug-9	0 08:45 09:25	32	3	1.) 2.) 3.)	8:30 - Basin F liquid waste was introduced. 9:00 & 9:30 - steam was injected through the nozzle. 9:11 - highest CO readings (183 ppmdv @ 7% O2).
16-Aug-9	0 08:55 12:08	180	4	1.) 2.)	8:46 - Basin F liquid waste was introduced. 9:45 - highest CO readings (212 ppmdv @ 7% O2).
16-Aug-9	0 12:51 17:09	180	5	1.) 2.)	12:22 - compressor went down 12:30 - Basin F liquid waste was introduced. 14:00 - the injectors were changed to help reduce high CO levels. 14:30 - Basin F liquid waste was introduced.
16-Aug-9	0 18:10 21:43	180	6	1.) 2.) 3.) 4.)	17:40 - the waste interlock tripped due to low water levels in the venturi sump. 18:00 - Basin F liquid waste was introduced. 18:15, 20:30 & 21:00 - rapping was performed on the nozzle to help reduce CO levels. 18:12 - highest CO readings (258 ppmdv @ 7% O2).
17-Aug-9	0 08:02 11:29	120	7	1.) 2.) 3.) 4.) 5.)	8:03 - hydazine waste water was also introduced. 9:45 - the injectors were steamed for 10 minutes and the liquid was reintroduced after CO levels spiked over 100 ppm. Once the waste was reintroduced the O2 levels fell below 1.7% which automatically shutoff the waste. 10:00 - the injectors were replaced twice. 10:45 - the waste was reintroduced.
17-Aug-9	12:10 14:13	113	8	6.)1.)2.)	10:33 - highest CO readings (102 ppmdv @ 7% O2). 12:08 - rapping was performed on the nozzle to help reduce CO levels. 12:58 - highest CO readings (150 ppmdv @ 7% O2).
17-Aug-90	14:51 16:51	120	9	1.)	14:45, 15:35 & 16:11 - rapping was performed on the nozzle to help reduce CO levels. 15:30 - highest CO readings (227 ppmdv @ 7% O2).

Note:

Rapping - hitting the liquid pipe portion of the injector with a hammer to remove the dried waste clogging the atomizing air slots of the waste injector nozzle atomizing tip. It manifested itself by an increase in CO.

Other actions - passing steam or high pressure atomizing air throughout the passages of the injector.

During these periods, the waste and the atomizing air flow was shutoff. Also the emission sampling trains were shut down.

Table 5A-2 Problems During Metal Testing

Test Date	Test Time	Sample Time (min)	Run Number		Problems During Testing
14-Aug-90	10:17 10:58	29	1	1.) 2.) 3.)	9:40 - Basin F liquid waste was introduced. 10:30 - rapping was performed on the nozzle to help reduce increasing CO levels. 10:34 - highest CO readings (301 ppmdv @ 7% O2).
14-Aug-90	15:29 16:31	51	2	2.)	15:05 - restarted the incinerator. 15:35, 16:00 & 16:05 - rapping was performed on the nozzle to help reduce CO levels. 16:05 & 16:20 - a shot of high pressure atomizing air was injected into the nozzle. 16:10 - the atomizing air temp. was increased to 200 F. 16:20 - the nozzle was lowered 1/2" further into into chamber. 16:05 - highest CO readings (212 ppmdv @ 7% O2).
15-Aug-90	08:47 09:26	31	3		8:30 - Basin F liquid waste was introduced. 9:00 & 9:30 - steam was injected through the nozzle. 9:11 - highest CO readings (183 ppmdv @ 7% O2).
16-Aug-90	09:08 11:20	120	4	1.) 2.)	8:46 - Basin F liquid waste was introduced. 9:45 - highest CO readings (212 ppmdv @ 7% O2).
16-Aug-90	11:42 15:13	120	5	2.) 3.)	high CO levels. 14:30 - Basin F liquid waste was introduced.
16-Aug-90	15:58 18:53	120	6	1.)2.)3.)4.)	17:40 - the waste interlock tripped due to low water levels in the venturi sump. 18:00 - Basin F liquid waste was introduced. 18:15 - rapping was performed on the nozzle to help reduce CO levels. 18:12 - highest CO readings (258 ppmdv @ 7% O2).
16-Aug-90	19:09 21:27	120	7	1.) 2.)	20:30 & 21:00 - rapping was performed on the nozzle to help reduce CO levels. 20:28 - highest CO readings (356 ppmdv @ 7% O2).
17-Aug-90	08:07 11:55	120	8	1.) 2.) 3.) 4.) 5.) 6.)	9:45 - the injectors were steamed for 10 minutes and the liquid was reintroduced after CO levels spiked over 100 ppm. Once the waste was reintroduced the O2 levels fell below 1.7% which automatically shutoff the waste. 10:00 - the injectors were replaced twice.
17-Aug-90	13:26 15:51	120	9	1.) 2.)	14:45 & 15:35 - rapping was performed on the nozzle to help reduce CO levels. 14:29 - highest CO readings (356 ppmdv @ 7% O2).

Note:

Rapping - hitting the liquid pipe portion of the injector with a hammer to remove the dried waste clogging the atomizing air slots of the waste injector nozzle atomizing tip. It manifested itself by an increase in CO.

Other actions - passing steam or high pressure atomizing air throughout the passages of the injector. During these periods, the waste and the atomizing air flow was shutoff. Also the emission sampling trains were shut down. 5A-4

considering the 1.24 g/mL density of the waste for the historical data that had been reported as ppm or ppb.) The midpoints were taken of each data set (e.g., historical Basin F testing by Shell Oil Company) for which only a range of data was available. Then the arithmetic mean and the maximum values were determined for each of the groups of data (historical Basin F, pond, and storage tanks). The maximum of the arithmetic means was determined by taking the highest value of the arithmetic means for the historical Basin F, pond, and storage tank data. Similarly, the maximum of the maximums was determined by taking the highest value of the maximums determined for each group of data. Table 5A-3 presents the basic analytical data for each data set. Tables 5A-4a and 5A-4b give the arithmetic means and maximums for each group of data in milligrams per liter and tons per year, respectively. Tons per year values were calculated based on the design incinerator capacity of 10,325 lb/hr, the waste density of 1.24 g/mL, and 7,000 operating hours per year.

For certain inorganics, the maximum of the arithmetic mean and maximum of the maximum waste feed values were used to estimate the expected (i.e., base case) and reasonable worst case (i.e., sensitivity case) emissions, respectively. For metals, the volatilization and removal efficiencies for the individual elements were based on the <u>Guidance on Metals and HCl Controls from Hazardous Waste Incineration</u> (EPA, 1989). For acid gases, criteria, and other inorganic pollutants, conversion and removal efficiencies were based on regulatory requirements, the literature, and data for similar pollutants.

The maximum of the arithmetic means in the waste feed were the basis of expected emission estimates for volatile and semi-volatile organics other than dioxins/furans. Destruction efficiencies and PIC formation rates were estimated by Dr. Barry Dellinger of the University of Dayton Research Institute and were based on the results of his experimental studies. Dr. Dellinger's report is given as Appendix 5B. A summary of Dr. Dellinger's results and the results after limiting the destruction efficiency of any waste feed component to a maximum of 99.99% are presented in Table 5A-5. This additional level of conservatism ensures that the estimates will not be exceeded for any compound. A

		_	_	Testing Company	_		
Compounds	Historical (1978)	RMA (1980)	EBASCO (1986)	She11 (1986)	WES (1986)	WCC (1988)	
						(Unfiltered)	(Filtered)
Volatiles							
1,1,1-Trichloroethane	NA	Y'N	NA	NA	NA NA	ΩN	Y'A
1,1,2-Trichloroethane	NA	NA	NA	NA	Y Y	QN	NA A
1,1-Dichloroethane	NA	NA	NA	YZ V	Y'A	ΩN	Y'A
1,1-Dichloroethene	NA	NA A	NA	NA	NA VA	QN	Y'A
1,2-Dichloroethane	NA	NA A	NA	NA	NA A	ΩN	AN
1,2-Dichloroethene (total)	NA	AN	NA	NA	NA	ΩN	AN
1,2-Dichloropropane	NA	NA	NA	NA NA	ΝA	ΩN	NA VA
1,3-Dimethylbenzene	NA	AN	NA	NA	NA VA	V.	NA
2-Chloroethylbenzene	NA	Y Y	ΝΑ	NA	NA A		Y'N
Acetone	NA	AN	NA	NA	Y.	3.2E-01	NA A
Ammonia	*	*	NA	7.2E+04	5.0E+04		5.3E+04
Benzene	*	*	9.5E-03	*	AN	ΩN	QN N
Bromoform	NA	¥N .	NA	NA	NA	QX	A N
Bromomethane	*	*	*	*	*	ND - 1.8E-02	NA A
Carbon Tetrachloride	NA	NA	NA	NA	NA	QN	NA
Chlorobenzene	NA	AN	NA	NA	ΝĄ	_	NA
Chloroform	*	*	*	*	*		AN
Dicyclopentadiene	NA	NA A	NA	NA	NA	5.5E-02	NA A
Ethylbenzene	NA	A'N	NA	NA	NA V		Y Z
Methanol	NA	AN	NA	NA	NA	VA	Y Y
Methylene Chloride	NA	NA	NA	NA	NA V	ΩN	Y Z
Tetrachlorethene	NA	AN	NA	NA	NA V	ΩN	NA AN
Toluene	*	*	*	*	*	8.3E-03 - 9.8E-03	AZ AZ
Trichloroethene	NA	NA	NA A	NA	Y.	ΩN	AZ A
Xylene (total)	NA	NA	NA	NA	Y'N	NA AN	NA

		_		Testing Company			
Compounds	Historical (1978)	RMA (1980)	EBASCO (1986)	Shell (1986)	WES (1986)	WCC (1988)	
						(Unfiltered)	(Filtered)
Semivolatiles							
1,2,4-Trichlorobenzene	NA	A'N	ΝA	NA	NA	QN	QN
1,4-Dichlorobenzene	¥	AN	Ϋ́	NA	NA	QN	CN
4-Chlorophenylmethylsulfone	,	1.0E+02	1.2E+00	2.5E+02	NA	+	+
4-Chlorophenylmethylsulfoxide	5.0E+00 - 1.2E+01	3.2E+01	1.2E+00	2.5E+01	NA	+	+
4-Nitrophenol	*	*	*	*	*	8.6E+00 - 1.8E+01	7.4E+00
Acenaphthene	¥	NA	NA	NA	NA VA	ND	ND
Aldrin	6.2E-02 - 5.0E-01	3.0E-02	2.9E+00	5.2E-01	NA	2.5E+00 - 2.9E+00	1.1E+00
Atrazine	*	*	2.7E-01	*	Y'A	N	QN
Cyanide	- 1	*	Ϋ́	*	NA	6.8E-01 - 1.2E+00	6.8E-01
Dieldrin		8.9E-03	5.7E-01	3.7E-01	AN	N	S
Diisopropyl Methylphosphonate	- 2	1.5E+02	5.0E-01	1.2E-01	NA	ND	Q.
Dimethyl Methylphosphonate	6.2E+02 - 2.5E+03	6.9E+02	NA VA	9.4E+02	NA	ND	+
Dimethyldisulfide	*	*	A'N	9.9E+01 - 1.5E+02	NA	+	QN
Dithiane	- 1	6.2E-03	*	*	NA	+	+
Endrin	6.2E-03 - 5.0E-02	2.5E-03	7.4E-01	2.2E-01	NA	NO	QN
Hexachlorocyclopentadiene	*	*	2.3E+00	*	NA	ND	N
South	2.5E-03 - 1.9E-02	9.4E-03	2.5E+00	1.1E-01	NA	QN	ΩN
Malatnion	* :	*	1.0E+00	*	NA	ΩN	QN
raratnion	*	*	1.4E-01	*	NA	ΩN	QN
Lyrene	NA	V.	NA V	NA	NA	NA	NA
aupona 1	* :	*	4.2E-01	*	NA	QN	ND
Urea	*	*	Y'A	1.8E+05	Ϋ́Α	NA AN	NA
vapona	*	*	1.1E+00	*	ΝA	ΩN	ND
Hondy	*	*	1.4E-01	*	Ϋ́	ND	ND
IUUqqq	*	*	4.2E-01	*	NA	ND	ND

Management Man					Testing Company	-		
Signature Sign	Compounds	Historical (1978)	RMA (1980)	EBASCO (1986)	Shell (1986)	WES (1986)	WCC (1988)	(Filtered)
1,2E+00 1,2E+00 2,6E+00 3,7E+00 9,9E+00 3,8E+00 3,0E+00 3,0E	Metals						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(100)
tef 12E+00 - 1.6E+00 2.6E+00 3.7E+00 9.9E+00 3.8E+00 3.6E+01 6.0E-01 - 6.0E-01 num 1.0E-02 2.5E+00 NA 1.7E+02 3.3E+02 NA 1.7E+02 3.0E-02 3.0E-02 3.0E-02 1.7E+02 3.0E-02 NA 1.7E+02 3.0E-03 1.7E+02 3.0E-03 1.7E+02 3.0E-03 1.7E+02 1.7E+02 1.7E+03 3.0E-03 1.7E+03 1.7E+03<	Aluminum	*	*	*	*	*		3.15.00
lium lim lim lim lim lim lim lim lim lim li	Antimony	*	*	*	*	*		5.1E+00
turm 10E-02 2.5E+00 NA 3.0E-02 3.0E-02 3.0E-02 3.0E-02 3.0E-02 3.0E-02 3.0E-02 3.0E-02 3.0E-03 NA 1.7E+02 3.0E-02 3.0E-02 NA 1.7E+02 3.0E-02 NA 1.7E+02 3.0E-03 NA 1.7E+02 3.0E-03 NA 1.7E+02 3.0E-03 NA 1.7E+02 1.7E+03 3.0E-03 NA NA 1.7E+03 3.0E-03 NA 1.7E+03 3.0E-03 NA 1.7E+03 NA 1.7E+03 NA 1.7E+03 NA 1.7E+03 NA 1.7E+03 NA	Arsenic		2.6E+00	3.7E+00	9.9E+00	3.8E+00	,	3.8E+00
Lightharm Ligh	Barium	*	*	*	*	*		4.0E-01
num num 10E02 25E+00 NA 30E02 2. de mm 60E+04 69E+04 1.4E+05 1.5E+06 NA 1.7E+02 NA 1.7E+03 NA </td <td>Boron</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>1.9E+01</td> <td>2.1E+01</td>	Boron	*	*	*	*	*	1.9E+01	2.1E+01
Sample S	Cadmium	*	*	1.0E-02	2.5E+00	NA		4.0E-02
A	Calcium	*	*	8.4E+00	3.3E+02	Y.		1.8E+02
1.1E-01 1.2E+00 NA 1.5E+00	Chioride	•	1.4E+05	1.5E+05	2.0E+05	Y Y		1.3E+05
STE-02 STE-02 STE-02 STE-03 S	Chromium	*	*	1.1E-01	1.2E+00	NA V		1.9E+00
Secondary Seco	Cobalt	*	*	*	•	*		9.3E-01
14E+02 - 1.5E+02 2.6E+01 6.8E+01 NA 5.9E+01 NA 6.2E+00 - 7.4E+02 7.4E+02 NA 9.3E+01 NA 9.2E-02 2.5E+00 NA 2.3E+02 NA 1.3E+01 - 5.0E+01 * 6.9E+00 2.7E+02 NA 2.3E+02 1.3E-02 - 3.6E-02 * 1.7E-01 2.5E-01 NA 2.3E+02 1.5E+02 - 1.8E+02 * * * * * * * * * * * * * * * * * *	Copper	•	*	2.6E+02	6.4E+03	7.3E+03	•	4.2E+03
ssium	Fluoride	ı	2.1E+02	2.6E+01	6.8E+01	NA A	1.0E+04	1.0E+04
Seitlim	Iron	•	*	NA	9.3E+01	NA	,	5.8E+01
ssium 4.3E+01 - 50E+01	Lead	*	*	9.2E-02	2.5E+00	NA	ND	ND
3.2E-02	Magnesium	,	*	6.9E+00	2.7E+02	NA	•	2.5E+02
3.2E-02 - 3.6E-02 * 1.7E-01 2.5E-01 NA 2.4E+00 -	Manganese	*	*	*	*	*	,	7.1E+00
1.5E+02 - 1.8E+02	Mercury	•	*	1.7E-01	2.5E-01	NA AN		3.4E-01
Secondary Seco	Molybdenum	*	*	*	*	*		2.6E+00
The control of the	Nickel	*	*	*	•	*		3.3E+01
1.5E+02 - 1.8E+02 NA NA NA NA NA NA NA N	Nitrate	*	*	*	*	*	1.3E+03	1.3E+03
ium 2.5E+03 - 2.7E+03	Nitrogen		*	A'N	*	NA V	1	1.0E+05
um * 3.7E+01 1.4E+03 NA 1.0E+03 - um NA NA NA NA NA NA ND n * 8.1E+04 2.9E+03 6.1E+04 7.6E+04 NA NA ND * * * * * 2.5E+04 - * * 2.5E+04 - * * * * * * * * 2.5E+00 -	Phosphorus (total)	4 -	*	NA V	2.0E+04	NA		8.4E+03
Im NA 2.5E+04 - ium * * * * * * * 2.5E+00 - * * * * * * * 2.5E+00 -	Fotassium	* .	*	3.7E+01	1.4E+03	Y Y		- 2.7E+03
n	Selenium	YZ.	NA	NA VA	NA	Y'A	NΩ	QN
# 8.1E+04 2.9E+03 6.1E+04 7.6E+04 NA 2.5E+04	Silver	Ϋ́Z	NA	NA	NA	NA	ΩN	QN
te 2.6E+04 - 3.1E+04 * NA 5.8E+04 NA 2.5E+04 - dium * * 1.2E+00 2.7E+01 NA 2.5E+00 -	Sodium		8.1E+04	2.9E+03	•	NA	6.0E+04	5.4E+04
dium	Sulfate		*	NA	5.8E+04	NA	•	2.7E+04
*	Vanadium	*	*	*	*	*	,	2.6E+00
	Zinc	*	*	1.2E+00	2.7E+01	AN	2.3E+01	2.3E+01
		,						

		-	_	Testing Company			
Compounds	Historical (1978)	RMA (1980)	EBASCO (1986)	She11 (1986)	WES (1986)	WCC (1988)	_
L						(Unfiltered)	(Filtered)
Parameters							
Alkalinity	*	•	*	*	*	1 EE . 00 1 CE . 00	Local
COD	3.0E+04 - 3.2E+04	*	VIV.	30.50	414		Z.UE+U3
Conductivity umbos /om		,		Z.UE+03	YZ.	Z.ZE+U5 - Z.3E+U5	2.1E+05
Conductivity, pilitios/cin		*	*	*	*	1.1E+05	1.1E+05
Hardness	2.6E+03 - 3.5E+03	*	AN	*	Z	¥Z	
Specific Gravity	*	*	*	*	*	. *	יייייייייייייייייייייייייייייייייייייי
					,	1.2±+00	1.2E+00
Com. [111]	2.5E+04 - 2.8E+04	3.7E+04	AN	8.9E+04	1.2E+05	1.8E+04 - 2.3E+04	2.2E+04
Total Organic Flande (TOX)	*	*	*	*	*	3.8E+02 - 5.7E+02	3.45+02
Total Suspended Solids	*	*	*	*	*		1 1E±03
Viscosity 10° C, cp	NA NA	NA	NA	AZ	NA.		3 8E+00
Viscosity 15° C, cp	NA	NA	NA	Ϋ́N	AZ	2 9E+00	3.1E.00
Viscosity 20° C, cp	¥Z.	NA	Y Z	N N	VIV	00.11.0	00 E 00
Vismsity 25° C on				V.	V.	7.55+00	7.6E+00
Viscosity 20 C	¥N,	e Z	NA NA	Y'A	Y Y	2.1E+00	2.3E+00
Viscosity 2 C, cp	*	*	*	*	*	4.6E+00 - 4.7E+00	5.0E+00
пд	6.9E+00 - 7.2E+00	*	6.0E+00	6.0E+00	5.7E+00	6.1E+00 - 6.3E+00	5.8E+00

= Exact analytical procedures unclear, assumed to be "not analyzed"

= pH for this type of solution must be interpreted
 w/care. Measured 36 days after sample collected.

** = Not quantifiable due to matrix interference.

 = tentatively identified compound, see chemical analyses tables.

= TSS measured 8 days after sample collection.

++ = TSS measured 8 NA = Not analyzed.

ND = Not detected or below detection limit.

= Suspect due to COD:TOC ratio and past results

 = Ranges are given for Tanks 1,2 and 3 because samples were collected at three distinct depths. (top,middle, and bottom)

5A-9

			Testing Company	npany				
Compounds	Scott (February 1989)			₹ <u>₹</u>	WESTON (a) (August 1989)			
	Tanks	Pond A	Tank 1		Tank 2		Tank 3	•
Volatiles								
1,1,1-Trichloroethane	QN	ND	ND		ND		QN	
1,1,2-Trichloroethane	QN	ND	ND		ND		QN	
1,1-Dichloroethane	QN	ND	ND		ND		QN	
1,1-Dichloroethene	QN	8.7E-02	2.0E-01 -	2.9E-01	2.3E-01 -	3.2E-01	3.0E-02	2.6E-01
1,2-Dichloroethane	QN	ND	ND		ND		ND	
1,2-Dichloroethene (total)	QN	N	QN		ND .	3.1E-02	ND -	5.1E-02
1,2-Dichloropropane	QN	ND	ΩN		ND		ND	
1,3-Dimethylbenzene	QN	ND	5.1E-02 -	1.0E-01	8.4E-02 -	1.2E-01	NO.	7.1E-02
2-Chloroethylbenzene	QN	ND	ΩN		ND		QN	
Acetone	1.9E+00	NA	Y'A		NA		ZA	
Ammonia	NA	NA	NA		NA		NA	
Benzene	QN	1.3E-01	ΩN		ND		ND	
Bromoform	QN	ND	QN		ND		ND	
Bromomethane	QN	NA	NA		NA		A'N	
Carbon Tetrachloride	QN	1.5E-01	ND		ND		ΩN	
Chlorobenzene	QN	QN	4.4E-02 -	1.1E-01	3.3E-02 -	7.2E-02	ND -	3.6E-02
Chloroform	QN	1.7E-01	2.8E-01 -	3.5E-01	2.5E-01 -	3.0E-01	1.4E-01 -	2.3E-01
Dicyclopentadiene	QN	ΩN	ND		ND		ΩN	
Ethylbenzene	QN	ND	ND .	1.6E-01	ND		ND	
Methanol	4.7E+03	NA	NA		NA		NA	
Methylene Chloride	6.4E+00	ND	1.7E-01 -	2.6E-01	6.4E-02 -	2.8E-01	8.7E-02 -	3.4E-01
Tetrachlorethene	QN	ND	ND		ND		ND	
Toluene	QN	ND	2.7E-02 -	3.5E-02	ND -	4.2E-02	ND.	3.7E-02
Trichloroethene	ΩN	ND	1.8E-02 -	7.3E-02	7.7E-02 -	1.0E-01	3.3E-02 -	1.1E-01
Xylene (total)	ΩN	1.3E-01	ND -	9.9E-01	6.4E-02 -	3.4E-01	2.5E-02 -	1.5E-01

		_	Testing Company	npany				
Compounds	Scott (February 1989) Tanks	Pond A	Tank 1	W.	WESTON (a) (August 1989) Tank 2		Touk 3	~
Semivolatiles								
Venilly Order Landson Commence		;	;					
1,2,4-1 richlorobenzene	ON	NA	NA		NA		NA	
1,4-Dichlorobenzene	ΩN	NA	NA		NA		NA	
4-Chlorophenylmethylsulfone	QN	3.6E+01	9.0E+01 - 2	2.0E+02	1.8E+02 -	3.0E+02	1.8E+02 -	2.1E+02
4-Chlorophenylmethylsulfoxide	QN	NA			NA		NA	
4-Nitrophenol	QN	NA	NA		NA		NA	
Acenaphthene	QN	AN	NA		NA		N'A	
Aldrin	QN	ND		3.0E-01	5.0E-01 -	1.0E+00	ND.	5.0E-01
Atrazine	QN	NA	NA		NA		NA	
Cyanide	ΩN	NA	NA		NA		NA	
Dieldrin	QN	NA	NA		NA		NA	
Diisopropyl Methylphosphonate	QN	NA	NA		NA		AN	
Dimethyl Methylphosphonate	QN	5.5E+01		2.9E+02	4.5E+02 -	8.2E+02	2.7E+02 -	5.8E+02
Dimethyldisulfide	8.4E+01	NA	NA		NA		NA	
Dithiane	QN	NA	NA		NA		NA	
Endrin	QN	NA	NA		NA		NA	
Hexachlorocyclopentadiene	QN	NA	NA		NA		NA	
Isodrin	QN	NA	NA		NA		NA	
Malathion	QN	Ϋ́	NA		NA NA		NA	
Parathion	QN	NA	NA		NA		NA	
lyrene	Q	NA	NA		NA		NA	
Supona	QN	NA	NA		NA		NA	
Urea	Q	NA	NA		NA		NA	
Vapona	QN	NA	NA		NA		NA	
PPDDE	QN	NA	NA		NA		NA	
ppDDT	QN	NA	NA		NA		NA	

		_	Testing Company	pany				
Compounds	Scott (February 1989)	7	Ē	WESTON (a) (August 1989)	JN (a) t 1989)			
	Ianks	Pond A	Iank I		Tank 2		Tank 3	
Wetals								
Aluminum	NA	Y Y Y	NA		NA		NA	
Antimony	NA	NA NA	NA		NA		NA	
Arsenic	2.4E+00	NA	NA		A Z		N A	
Barium	ND	NA	NA		Y Z		Z	
Boron	NA	NA	NA		Y Z		Z	
Cadmium	2.5E-01	NA AN	NA		Y X		Z	
Calcium	NA	7.5E+01	•	1.7E+02 8.5E	8.5E+01 - 1.6E+02	02 1.0E+02		.5E+02
Chloride	AN	NA	NA		NA		Ϋ́	
Chromium	1.4E+00	AN	NA		Y Z		Ϋ́	
Cobalt	NA	NA	NA		Y Z		Z	
Copper	NA	1.7E+03		5.7E+03 5.2E	5.2E+03 - 6.5E+03	03 5 0F±03		7.0E±03
Fluoride	NA	NA	Ϋ́		NA		Y.	
Iron	NA	NA	NA		Ϋ́Z		Ϋ́	
Lead	QN	NA A	NA		NA		Ž	
Magnesium	NA	NA	NA		NA		N A	
Manganese	NA	NA NA	NA		NA		Ϋ́	
Mercury	7.4E-02	NA	NA		NA		X	
Molybdenum	NA	NA	NA		NA		NA	
Nickel	NA	NA	NA		NA		NA	
Nitrate	NA	NA	NA		ΝΑ		NA	
Introgen	AN	NA	ΥN		NA		NA	
L'hosphorus (total)	NA	ΝĄ	NA		NA		NA	
Potassium	NA	NA	NA		NA		NA	
Selenium	2.1E+00	NA	NA		NA		NA	
Silver	5.4E-01	NA	NA		NA		Ϋ́	
Sodium	NA	8.8E+04	2.2E+05 - 2.8	2.8E+05 2.6E+05	+05 - 3.3E+05	35 2.1E+05		2.8E+05
Sulfate	NA	NA	NA VA		NA		AN	
Vanadium	NA A	NA	AN		NA		Y Z	
Zinc	Ϋ́N	4.8E+00	1.6E+01 - 2.0	2.0E+01 1.6E+01	+01 - 2.0E+01	1.8E+01	,	1.9E+01
								;

CHEMICAL CHARACTERIZATION DATA OF BASIN F LIQUID TABLE 5A-3 (continued) (1/8m)

		Η.	Festing Company		
Compounds	Scott (February 1989)			WESTON (a) August 1989)	
	Tanks	Pond A	Tank 1	Tank 2	Tank 3
Parameters					
Alkalinity	QN	NA NA	Y.	NA	ĄV
COD	QN	NA	NA.	. V	Y N
Conductivity, µmhos/cm	QN	NA	NA.	. V	Y N
Hardness	QN	NA	NA	¥N.	V V
Specific Gravity	1.2E+00	NA	NA	NA	A N
TOC	QN	NA	NA	Y.	Y N
Total Organic Halide (TOX)	QN	NA	NA	NA	Y Z
Total Suspended Solids	QN	NA	NA	NA	N AN
Viscosity 10° C, cp	QN	NA	NA	NA	NA
Viscosity 15° C, cp	ΩN	NA	NA	Ϋ́	NA
Viscosity 20° C, cp	4.1E+00	NA	NA	NA	NA
Viscosity 25° C, cp	QN	NA	NA	NA	NA.
Viscosity 2° C, cp	QN	NA	NA	NA	NA
ht	QN	NA	NA	NA	NA

= Exact analytical procedures unclear, assumed to be "not analyzed"

w/care. Measured 36 days after sample collected. = pH for this type of solution must be interpreted

= Not quantifiable due to matrix interference.

= tentatively identified compound, see chemical analyses tables.

= TSS measured 8 days after sample collection. ‡ ¥

= Not analyzed.

= Suspect due to COD:TOC ratio and past results ND = Not detected or below detection limit.
 S = Suspect due to COD:TOC ratio and pas
 (a) = Ranges are given for Tanks 1,2 and 3 be

= Ranges are given for Tanks 1,2 and 3 because samples were collected at three distinct depths. (top,middle, and bottom)

TABLE 5A-3
CHEMICAL CHARACTERIZATION DATA
OF BASIN F LIQUID
(mg/l)
(continued)

				Testing Company	χη'-			
Compounds		WES (Octo	WESTON (a) (October 1990)			WESTON (a) (February 1990)	WESTON (a) February 1990)	
	Pond A	Tank 1	Tank 2	Tank 3	Pond A	Tank 1	Tank 2	Tank 3
Volatiles								
1,1,1-Trichloroethane	ΩN	ND	ND	ND	QV	NA	NA	NA.
1,1,2-Trichloroethane	ΩN	ND	ND	NΩ	ΩN	NA	NA V	AN
1,1-Dichloroethane	ΩN	ND	NΩ	ΩN	ΩN	NA	NA	Z
1,1-Dichloroethene	ND	ND	ND	ND	ΩN	NA	AZ	NA
1,2-Dichloroethane	ΩN	NΩ	ND	ND	QN	NA	AN	NA
1,2-Dichloroethene (total)	ΩN	ND	ND	QN	ΩN	NA	NA	NA
1,2-Dichloropropane	Q N	ND - 1.1E+00	ΩN	ΩN	QN	NA	NA	NA
1,3-Dimethylbenzene	QN —	S	ΩN	ΩN	QX	Y'N	NA	ΥN
2-Chloroethylbenzene	Ω	NO	ΩN	ND	QN	NA	NA	NA
Acetone	¥Z	NA	NA	ΥN	A'N	NA	NA	NA
Ammonia	¥ Z	NA	NA VA	NA	AN AN	Ϋ́	NA	Ϋ́
Benzene	QN	ΩN	ΩN	ND	ΩN	ΝA	NA	ΥV
Bromoform	ΩN	NO NO	ND	ND	ΩN	NA	NA	NA
Bromomethane	Y Y	NA	NA	NA	A A	NA	NA	NA
Carbon Tetrachloride	ΩN	NΩ	NΩ	NΩ	QN	Ϋ́Z	NA	NA
Chlorobenzene	ΩN	NΩ	ND	ND - 2.0E-02	ΩN	NA	NA NA	NA
Chloroform	Ω	QN.	N Q	ND	ΩN	NA	NA	NA
Dicyclopentadiene	ON N	ΩN	Ω	ΩN	ΩN	Ϋ́	Y Z	Y'A
Ethylbenzene	ΩN	ΩN	ΩN	NΩ	ΩN	Ϋ́Z	NA	NA
Methanol	Y Y	Ϋ́	NA	NA	NA	NA	Y'A	NA
Methylene Chloride	Ω N	ND - 1.1E+01	ND	ND	ΩN	NA	A'Z	NA
Tetrachlorethene	ON N	ND	ΩN	ΩN	ΩN	Y V	NA	NA A
Toluene	ΩN	ΩN	NΩ	ND	ΩN	AN	NA	NA A
Trichloroethene	4.4E-01	ND	ND	NΩ	QN	NA	AN	Y'A
Xylene (total)	ND	ND	ND	ND	ND	NA	AN	NA V

				Testing Company	X -			
Compounds		\$ 9	WESTON (a) (October 1990)			WEST (Februa	WESTON (a) (February 1990)	
	Pond A	Tank 1	Tank 2	Tank 3	Pond A	Tank 1	Tank 2	Tank 3
Semivolatiles								
1,2,4-Trichlorobenzene	AN	NA	NA	NA	Ž	X	Z	AN
1,4-Dichlorobenzene	A'N	NA	NA	NA	NA NA	X	Y Z	Z
4-Chlorophenylmethylsulfone	4.8E+01	2.3E+01 - 1.1E+02	6.8E+01 - 1.0E+02	8.7E+01 - 1.9E+02	1.1E+02	NA	Y Z	Z
4-Chlorophenylmethylsulfoxide	NA.	NA	NA	NA	Y'A	NA	Y Z	Z
4-Nitrophenol	NA NA	NA	NA	NA	NA VA	NA A	AZ	NA
Acenaphthene	Y Y	Y.	NA	NA	Ϋ́Z	NA	NA	NA V
Aldrin	QN :	Q	ΩN	ND	ΩN	NA	V	NA
Attazine	AN —	NA	NA	NA	Y V	AN	AN	ZA
Cyanide	¥Z	NA	NA	NA	AN	NA	AZ	Ž
Dieldrin	NA NA	NA	NA	NA VA	Y'A	Y'N	AZ	NA
Disopropyl Methylphosphonate	Z	NA	NA	NA	A'N	NA	AN	Z
Umethyl Methylphosphonate	7.7E+01	1.2E+02 - 1.7E+02	1.3E+02 - 2.5E+02	1.5E+02 - 3.1E+02	2.8E+02	NA	NA	NA
Dimetnylaisuinae	Y :	NA	NA N	NA	Ϋ́Z	NA	NA	Z
Critiane	¥Z ;	NA	NA	NA	VA	Ϋ́	NA	NA NA
Userable	Y Z	NA	NA	ΝΑ	AN	NA	NA NA	NA
riexachiorocyclopentagiene	AN :	NA	NA	NA	AZ	NA	Y'A	NA
Malathion	Y :	A :	NA	NA	Y Y	NA	Y'A	NA
D this	NA ?	NA	NA	NA	Ϋ́	Y V	NA A	NA
Parathion	YZ:	Y'A	NA	NA	NA	NA	NA	NA
ryrene	YZ :	NA V	NA	Ϋ́	NA	Ϋ́	NA	NA
aupona	YZ :	NA	NA	NA V	Ϋ́	NA V	NA	NA
Urea	YZ	NA	NA	V Z	NA VA	NA V	NA	NA
Vapona	Y Y	NA.	NA	NA	Y.	NA	NA V	N A
PPUDE	YY :	NA	NA V	NA V	NA	Y'Z	NA	N A
ppuul	NA	NA	NA	ZA	NA	Ϋ́Z	NA	AN

	<u> </u>
(1/811)	(continued

NA					Testing Company	At .			
truntinum NA	Compounds			VESTON (a) Actober 1990)			WESTO (February	IN (a) (1990)	
uniformy NA <		Pond A	Tank 1	Tank 2	Tank 3	Pond A	Tank 1	Tank 2	Tank 3
NA	Metals		,						
NA	Alumnum	AN V	NA V	ĄZ	ΥN	AN	Ν	AN	AN
NA	Antimony	Y Y	NA	NA	NA	NA	NA V	YZ	Y.
NA N	Arsenic	NA	NA	NA	NA N	Z	Y Z	Y Z	¥ Z
NA	Barium	NA NA	NA	NA	Z	Z	Y Z	Y Z	Ϋ́
NA	Boron	NA	NA	NA	NA V	Z	Z	Y Z	Z Z
A	Cadmium	Y Y		NA	NA	Z	Y.	Z	Y Z
NA N	Calcium	4.6E+01	E+01 -	•	•	1.5E+01	NA	Y.	Ϋ́
NA	Chloride	NA	NA	NA	NA	NA V	NA V	N'A	Y.
NA	Chromium	NA	NA	NA	NA	VA	AZ	Z	Z Z
NA	Cobalt	AN A	NA	NA	NA	NA	Z	Y Z	Y X
MA NA NA NA NA NA NA NA	Copper	7.1E+02	E+03 -	•	1	3.1E+03	NA	AN	Y
NA	Fluoride	Y Y	NA	NA	NA	Y'A	AN	NA.	A
May NA	Iron	AN	NA	NA	NA	NA	AN	NA	NA
MA	Lead	AZ	NA	NA	NA	Y'N	NA	Y'A	NA
NA	Magnesium	YZ :	NA	NA	NA	Ϋ́Z	NA	NA	NA
NA	Manganese	YZ :	NA	NA	ZA	NA NA	NA	A'N	ΝĄ
NA	Mercury	YZ :	NA	NA	NA VA	NA NA	ΝĀ	Y.	NA
Liste 104 2.3E+05 - 3.0E+05 2.2E+04 - 3.1E+04 2.3E+06 NA	Molybaenum	Y ;	NA :	NA	NA	NA NA	NA	NA	NA
us (total) NA N	Nickel	Y ;	YN :	NA	NA	Y Y	NA	Y V	Y'Z
us (total) NA N	Nitrocon	Y :	Y S	NA.	NA	NA V	NA	NA	NA
ium NA N	Disconfession	Y :	¥ ;	NA	Ϋ́Z	Y Z	NA	Y Y	Y'A
um NA NA<	Determines (total)	Y ;	Y ?	¥Z :	Y.V	Y Y	ΝA	Ϋ́	Y Y
In NA	Lotassium	YZ :	NA.	NA	NA V	NA NA	NA	NA	Ϋ́Z
n NA	Selenium	YZ	NA	NA	NA	NA V	NA	Y'N	Ϋ́
Lin 1.5E+04 2.3E+05 - 3.0E+05 2.2E+04 - 3.1E+04 - 3.1E+04 3.2E+04 NA	Suver	YZ V	N N	NA	NA	ΝĄ	NA	AN	Ϋ́Z
te NA	Sodium	1.5E+04	•	i	,	3.2E+04	Y'N	NA.	XX
dium NA	Sulfate	Ϋ́	NA	NA	NA	NA V	AZ	YZ.	Z Z
5.9E+00 8.2E+00 - 1.5E+01 1.1E+01 - 1.6E+01 7.9E+00 - 1.4E+01 3.8E+01 NA NA	Vanadium	NA	-	Y'A	NA	NA	NA A	NA	NA
171	Zinc	5.9E+00			7.9E+00 - 1.4E+01	3.8E+01	NA	NA	NA

				Testing Compan	xu			
Compounds			WESTON (a) (October 1990)			WEST (Februa	WESTON (a) February 1990)	
	Pond A	Tank 1	Tank 2	Tank 3	Pond A	Tank 1	Tank 2	Tank 3
Parameters								
Alkalinity	NA	NA	NA	AN	N	N	MA	MA
COD	YZ.	NA	₩.	VIV.			4	₹Z:
Conductivity umbos /om			VAI		AZ Z	NA V	Y Y	Y V
TITE I	AN .	NA V	AN	NA V	NA NA	Y Y	AN	AN
Hardness	Y Z	NA	NA	NA	Y'N	YZ Z	Y.	Z
Specific Gravity	NA	NA	NA	NA	NA VA	Z	NA N	Z
25.	NA	NA	ΝΑ	NA	Y X	YZ.	AZ	AZ
Total Organic Halide (TOX)	NA	NA	NA	NA	Z	X	Z	N N
Total Suspended Solids	NA A	NA	NA	NA	A'N	AN	Z	X
Viscosity 10° C, cp	NA -	NA	Y'A	Ϋ́Z	Y'Z	NA V	Z	Y
Viscosity 15° C, cp	NA	NA	Ϋ́	ZA	AN	NA	NA	X
Viscosity 20° C, cp	NA	NA	NA	NA	NA	AN	Z	Z
Viscosity 25° C, cp	NA	NA	Y'A	NA	NA	NA	Y Z	Y
Viscosity 2° C, cp	NA	NA V	Ϋ́Z	NA	Y'A	NA	NA	NA
Hd	NA	NA	NA	NA	NA VA	AN	Z	X

= Exact analytical procedures unclear, assumed

to be "not analyzed"

= pH for this type of solution must be interpreted w/care. Measured 36 days after sample collected.

= Not quantifiable due to matrix interference.

tentatively identified compound, see chemical analyses tables.

= TSS measured 8 days after sample collection.

++ = TSS measured 8 NA = Not analyzed.

ND = Not detected or below detection limit.

= Suspect due to COD:TOC ratio and past results

= Ranges are given for Tanks 1,2 and 3 because samples were collected at three distinct depths.

(top,middle, and bottom)

		I	Testing Company	
Compounds			WESTON (a) (April 1990)	
	Pond A	Tank 1	Tank 2	Tank 3
Volatiles				
1,1,1-Trichloroethane	ND	ND	ND	ΩN
1,1,2-Trichloroethane	ΩN	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ΩN
1,1-Dichloroethene	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	NΩ
1,2-Dichloroethene (total)	ΩN	QN	QN	ND
1,2-Dichloropropane	ΩN	ND	QN	ND
1,3-Dimethylbenzene	NΩ	ND	ND	ND
2-Chloroethylbenzene	ND	ΩN	ND	ND
Acetone	NA	NA	NA	NA
Ammonia	NA	NA	NA	NA
Benzene	ΩN	ΩN	ND	ND
Bromoform	ND	ΩN	ND	NΩ
Bromomethane	NA	NA	NA	NA
Carbon Tetrachloride	NΩ	ND	ND	ND
Chlorobenzene	NΩ	ΩN	ND	ND
Chloroform	ΝΩ	NΩ	QN	ND
Dicyclopentadiene	NΩ	ΩN	ΩN	ND
Ethylbenzene	ΩN	NΩ	ND	ND
Methanol	NA	NA	NA	NA
Methylene Chloride	ND	ND	QN	ND
Tetrachlorethene	NΩ	QN	1.2E-01 - 1.5E-01	-01 ND
Toluene	ND	NΩ	ND	ND
Trichloroethene	ND	NO	ND	QN
Xylene (total)	ND	ΩN	ON	ND

			Testin	Testing Company	ħ			
Compounds			WE A	WESTON (a) (April 1990)				
	Pond A	Tank 1		Tank 2	2		Tank 3	
Semivolatiles								
1,2,4-Trichlorobenzene	NA	NA		NA			AN	
1,4-Dichlorobenzene	NA	NA		AZ			Z	
4-Chlorophenylmethylsulfone	8.0E+01	_	1.4E+02	1.0E+02 -	1.3E+02	1.0E+02		1.2E+02
4-Chlorophenylmethylsulfoxide	NA	NA		NA			AN	
4-Nitrophenol	NA	NA A		NA			NA	
Acenaphthene	NA	NA		NA			NA	
Aldrin	ND	ND		ΩN			N	
Atrazine	NA	NA		NA			NA	
Cyanide	NA	NA		NA			NA	
Dieldrin	NA	NA		AN			NA	
Diisopropyl Methylphosphonate	NA	NA		NA			NA	
Dimethyl Methylphosphonate	2.2E+02		3.4E+02	2.5E+02 -	2.7E+02			2.3E+02
Dimethyldisulfide	NA	NA		NA			NA	
Dithiane	NA	NA		NA			NA	
Endrin	NA	NA		AN			NA	
Hexachlorocyclopentadiene	NA	NA		NA			NA	
Isodrin	NA	NA		NA			NA	
Malathion	NA	NA		NA			NA	
Parathion	NA	NA		NA			NA	
Pyrene	NA	NA		NA			NA	
Supona	NA	NA		NA			NA V	
Urea	NA	NA		NA			NA	
Vapona	NA	NA		AN			NA	
PPDDE	NA	NA		NA			NA	
ppDDT	NA	NA		NA			NA	

		Tes	Testing Company		
Compounds		¥ °	WESTON (a) (April 1990)		
	Pond A	Tank 1	Tank 2	Ta	Tank 3
Metals					
Aluminum	NA	NA	NA	4	ΙA
Antimony	NA	NA	NA V	_	AA.
Arsenic	NA	NA	NA	_	AA.
Barium	NA	NA	NA	4	NA
Boron	NA	NA	NA	4	Ϋ́
Cadmium	NA	NA	NA	4	1A
Calcium	NON	9.2E+01 - 1.1E+02	1.2E+02 - 1.3E+02	1.2E+02	- 1.3E+02
Chloride	NA	NA	NA	4	
Chromium	NA	NA	NA	4	NA
Cobalt	NA	NA	NA	4	IA.
Copper	2.0E+03	1.2E+03 - 1.9E+03	1.9E+03 - 2.2E+03	2.0E+03	- 2.0E+03
Fluoride	NA	NA	NA		
Iron	NA	NA	NA	2	IA
Lead	NA	NA	NA	2	IA
Magnesium	NA	NA	NA	7	ΙA
Manganese	NA	NA	NA	4	ΙA
Mercury	NA	NA	NA	2	IA
Molybdenum	NA	NA	NA	7	IA
Nickel	NA	NA	NA	Z	IA
Nitrate	NA	NA	NA	Z	ΙA
Nitrogen	NA	NA	NA	Z	ΙA
Phosphorus (total)	NA	NA	NA	Z	IA.
Potassium	NA	NA	NA	Z	YI.
Selenium	NA	NA	NA	Z	NA
Silver	NA	NA	NA	Z	IA
Sodium	3.1E+04	1.9E+04 - 2.9E+04	3.9E+04 - 4.5E+04	3.5E+04	- 3.9E+04
Sulfate	NA	NA			
Vanadium	NA	NA	NA	Z	NA
Zinc	1.6E+01	8.5E+00 - 1.3E+01	1.3E+01 - 1.4E+01	1.3E+01	- 1.3F+01

		E	(
		Tes	esting Company	
Compounds		\$	WESTON (a) (April 1990)	
	Pond A	Tank 1	Tank 2	Tank 3
Parameters				
Alkalinity	NA	NA	NA	ĄZ
COD	NA	NA	A Z	Y Z
Conductivity, mmhos/cm	NA	NA	ĄN	· AZ
Hardness	NA	NA	NA	¥Z.
Specific Gravity	NA	NA	NA	\X
TOC	NA	NA	ZA	₩.Z
Total Organic Halide (TOX)	NA	NA	NA	₹Z
Total Suspended Solids	NA	NA	NA	AN.
Viscosity 10° C, cp	NA	NA	NA	NA
Viscosity 15° C, cp	NA	NA	NA	NA.
Viscosity 20° C, cp	NA	NA	NA	NA AN
Viscosity 25° C, cp	NA	NA	NA	AN
Viscosity 2° C, cp	NA	NA	NA	NA
pH	NA	NA	NA	NA

- = Exact analytical procedures unclear, assumed to be "not analyzed"
- ** = pH for this type of solution must be interpreted w/care. Measured 36 days after sample collected.
 - *** = Not quantifiable due to matrix interference.
- = tentatively identified compound, see chemical analyses tables.
 - ++ = TSS measured 8 days after sample collection.
 - NA = Not analyzed.
- ND = Not detected or below detection limit.
- S = Suspect due to COD:TOC ratio and past results
 - a) = Ranges are given for Tanks 1,2 and 3 because samples were collected at three distinct depths.
 (top,middle, and bottom)

TABLE 5A-4A CHEMICAL CHARACTERIZATION DATA OF BASIN F LIQUID (mg/l)

Compounds	Arit	Arithmetric Mean		Maximum of the	Ma	Maximum Value		Maximum of the
	History	Pond	Tanks	Average	History	Pond	Tanks	Maximum
Volatiles								
1,1,1-Trichloroethane	NA	NA	NA	NA	NA	NA	NA	Y Z
1,1,2-Trichloroethane	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	NA	NA	AN	NA	NA	NA	NA	NA
1,1-Dichloroethene	NA	8.72E-02	2.24E-01	2.24E-01	NA	8.72E-02	3.22E-01	3.22E-01
1,2-Dichloroethane	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethene (total)	NA	NA	2.05E-02	2.05E-02	NA	NA	5.14E-02	5.14E-02
1,2-Dichloropropane	NA	NA	5.50E-01	5.50E-01	NA	NA	1.10E+00	1.10E+00
1,3-Dimethylbenzene	NA	NA	7.16E-02	7.16E-02	NA	NA	1.23E-01	1.23E-01
2-Chloroethylbenzene	NA	NA	NA	NA AN	NA	NA	NA	NA
Acetone	3.20E-01	NA	1.93E+00	1.93E+00	3.20E-01	NA	1.93E+00	1.93E+00
Ammonia	5.75E+04	NA	NA	5.75E+04	7.17E+04	NA	AN	7.17E+04
Benzene	9.55E-03	1.31E-01	NA	1.31E-01	9.55E-03	1.31E-01	NA	1.31E-01
Bromoform	NA	NA	NA	NA	NA	NA	NA	NA
Bromomethane	9.00E-03	NA	NA	9.00E-03	1.80E-02	NA	NA	1.80E-02
Carbon Tetrachloride	NA	1.49E-01	NA	1.49E-01	NA	1.49E-01	NA	1.49E-01
Chlorobenzene	NA	NA	3.95E-02	3.95E-02	NA	NA	1.12E-01	1.12E-01
Chlorotorm	2.50E-03	1.70E-01	2.57E-01	2.57E-01	3.10E-03	1.70E-01	3.49E-01	3.49E-01
Dicyclopentadiene	5.50E-02	NA	NA	5.50E-02	5.50E-02	NA	NA	5.50E-02
Ethylbenzene	NA	NA	8.15E-02	8.15E-02	NA	NA	1.63E-01	1.63E-01
Methanol	NA	NA	4.73E+03	4.73E+03	NA	NA	4.73E+03	4.73E+03
Methylene Chloride	NA	NA	2.50E+00	2.50E+00	NA	NA	1.10E+01	1.10E+01
Tetrachlorethene	NA	NA	1.35E-01	1.35E-01	NA	NA	1.50E-01	1.50E-01
Toluene	9.05E-03	NA	2.34E-02	2.34E-02	9.80E-03	NA	4.22E-02	4.22E-02
Trichloroethene	NA	4.40E-01	6.88E-02	4.40E-01	NA	4.40E-01	1.10E-01	4.40E-01
Xylene (total)	NA	1.27E-01	2.61E-01	2.61E-01	NA	1.27E-01	9.88E-01	9.88E-01

TABLE 5A-4A CHEMICAL CHARACTERIZATION DATA OF BASIN F LIQUID (mg/l) (continued)

Compounds	Arit	Arithmetric Mean		Maximum of the	May	Maximum Value		Maximum of the
	History	Pond	Tanks	Average	History	Pond	Tanks	Maximum
Semivolatiles								
1,2,4-Trichlorobenzene	NA	NA	NA	NA	NA	NA	NA	AZ
1,4-Dichlorobenzene	NA	NA	NA	NA	NA	NA	AN	NA
4-Chlorophenylmethylsulfone	1.01E+02	6.85E+01	1.35E+02	1.35E+02	2.48E+02	1.10E+02	3.01E+02	3.01E+02
4-Chlorophenylmethylsulfoxide	1.67E+01	NA	AN	1.67E+01	3.20E+01	NA	AN	3.20E+01
4-Nitrophenol	1.04E+01	NA	NA	1.04E+01	1.80E+01	NA	NA	1.80E+01
Acenaphthene	NA	NA	AN	NA	Ϋ́N	NA	NA	NA
Aldrin	1.25E+00	ΝĄ	3.83E-01	1.25E+00	2.90E+00	NA	1.00E+00	2.90E+00
Atrazine	2.73E-01	NA	NA	2.73E-01	2.73E-01	NA	AN	2.73E-01
Cyanide	1.16E+00	NA	NA	1.16E+00	1.92E+00	NA	NA	1.92E+00
Dieldrin	2.55E-01	NA	NA	2.55E-01	5.69E-01	NA	NA	5.69E-01
Disopropyl Methylphosphonate	4.29E+01	NA	NA	4.29E+01	1.53E+02	NA	NA	1.53E+02
Dimethyl Methylphosphonate	1.06E+03	1.58E+02	2.80E+02	1.06E+03	2.48E+03	2.80E+02	8.24E+02	2.48E+03
Dimethyldisulfide	1.24E+02	NA	8.40E+01	1.24E+02	1.49E+02	NA	8.40E+01	1.49E+02
Dithiane	4.34E-02	NA	AN	4.34E-02	1.24E-01	NA	NA	1.24E-01
Endrin	2.48E-01	NA	NA	2.48E-01	7.39E-01	NA	NA	7.39E-01
Hexachlorocyclopentadiene	2.29E+00	NA	AN	2.29E+00	2.29E+00	NA	NA	2.29E+00
Isogrin Melettien	6.47E-01	YY:	AN	6.47E-01	2.46E+00	NA	NA	2.46E+00
Malathion	1.00E+00	NA	NA VA	1.00E+00	1.00E+00	NA	AN	1.00E+00
raratnion	1.36E-01	NA	AN	1.36E-01	1.36E-01	NA	NA	1.36E-01
ryrene	NA	NA	A V	AN	NA	NA	AN	NA
Supona	4.22E-01	NA	NA	4.22E-01	4.22E-01	NA	AN	4.22E-01
Urea	1.77E+05	NA	A A	1.77E+05	1.77E+05	NA	AN	1.77E+05
Vapona	1.10E+00	NA	NA	1.10E+00	1.10E+00	NA	NA	1.10E+00
PPUUE	1.35E-01	NA	AN	1.35E-01	1.35E-01	NA	NA	1.35E-01
PpUUI	4.22E-01	NA	NA	4.22E-01	4.22E-01	NA	NA	4.22E-01

TABLE 5A-4A CHEMICAL CHARACTERIZATION DATA OF BASIN F LIQUID (mg/l) (continued)

Compounds		Arithmetric Mean		Maximum of the	Ma	Maximum Value		Maximum of the
	History	Pond	Tanks	Average	History	Pond	Tanks	Maximum
Metals								
Aluminum	4.17E+00	NA	NA	4.17E+00	5.50E+00	NA	AN	5.50E+00
Antimony	7.25E-01	ΝĄ	NA	7.25E-01	1.10E+00	NA	NA	1.10E+00
Arsenic	4.11E+00	AN	2.38E+00	4.11E+00	9.92E+00	NA	2.38E+00	9.92E+00
Barium	4.00E-01	NA	NA	4.00E-01	4.00E-01	NA	AN	4.00E-01
Boron	2.00E+01	NA	NA	2.00E+01	2.10E+01	NA	AN	2.10E+01
Cadmium	6.43E-01	NA	2.48E-01	6.43E-01	2.48E+00	NA	2.48E-01	2.48E+00
Calcium	1.76E+02	4.56E+01	1.05E+02	1.76E+02	3.35E+02	7.50E+01	1.70E+02	3.35E+02
Chloride	1.34E+05	NA	NA	1.34E+05	1.97E+05	NA	NA	1.97E+05
Chromium	1.22E+00	NA	1.41E+00	1.41E+00	1.90E+00	NA	1.41E+00	1.90E+00
Cobalt	9.03E-01	NA	NA	9.03E-01	9.30E-01	NA	NA	9.30E-01
Copper	3.84E+03	1.87E+03	3.02E+03	3.84E+03	7.27E+03	3.10E+03	6.95E+03	7.27E+03
Fluoride	3.41E+03	NA	NA	3.41E+03	1.00E+04	NA	NA	1.00E+04
Iron	5.46E+01	NA	NA	5.46E+01	9.30E+01	NA	AN	9.30E+01
Lead	1.29E+00	NA	NA	1.29E+00	2.48E+00	NA	NA	2.48E+00
Magnesium	1.63E+02	NA	NA	1.63E+02	2.73E+02	NA	AN	2.73E+02
Manganese	7.05E+00	NA	NA	7.05E+00	7.20E+00	NA	AN	7.20E+00
Mercury	2.27E-01	NA	7.43E-02	2.27E-01	3.40E-01	NA	7.43E-02	3.40E-01
Molybdenum	2.53E+00	Y'N	NA	2.53E+00	2.60E+00	NA	NA	2.60E+00
Nickel	3.28E+01	NA	NA	3.28E+01	3.40E + 01	NA	NA	3.40E+01
Nitrate	1.30E+03	NA	NA	1.30E+03	1.30E+03	NA	AN	1.30E+03
Nitrogen	6.85E+04	NA	NA	6.85E+04	1.04E+05	NA	NA	1.04E+05
Phosphorus (total)	9.99E+03	NA	NA	9.99E+03	2.01E+04	NA	NA	2.01E+04
Potassium	1.30E+03	NA	NA	1.30E+03	2.90E+03	NA	NA	2.90E+03
Selenium	NA	NA	2.10E+00	2.10E+00	NA	NA	2.10E+00	2.10E+00
Silver	NA	NA	5.45E-01	5.45E-01	NA	NA	5.45E-01	5.45E-01
Sodium	5.31E+04	4.15E+04	1.34E+05	1.34E+05	8.06E+04	8.80E+04	3.31E+05	3.31E+05
Sulfate	3.50E+04	NA	NA	3.50E+04	5.83E+04	NA	NA	5.83E+04
Vanadium	2.67E+00	NA	AN	2.67E+00	3.00E+00	NA	NA	3.00E+00
Zinc	1.86E+01	1.62E+01	1.41E+01	1.86E+01	2.73E+01	3.82E+01	1.96E+01	3.82E+01
Total		•						

TABLE 5A-4A CHEMICAL CHARACTERIZATION DATA OF BASIN F LIQUID (mg/l) (continued)

Compounds	Arith	Arithmetric Mean		of the	Maxi	Maximum Value		Maximum of the
	History	Pond	Tanks	Average	History	Pond	Tanks	Maximum
Parameters								
Alkalinity	1.77E+03	NA	NA	1.77E+03	2.00E+03	Ϋ́	NA	2.00E+03
COD	1.66E+05	NA	NA	1.66E+05	2.30E+05	Y'A	Y Z	2.30E+05
Conductivity, µmhos/cm	1.10E+05	AN	NA	1.10E+05	1.10E+05	NA	Z	1.10E+05
Hardness	3.04E+03	NA	NA	3.04E+03	3.47E+03	AN	NA.	3.47E+03
Specific Gravity	1.24E+00	NA	1.24E+00	1.24E+00	1.24E+00	NA	1.24E+00	1.24E+00
Toc	5.26E+04	NA	AN	5.26E+04	1.20E+05	NA	AZ	1.20E+05
Total Organic Halide (TOX)	4.08E+02	NA	NA	4.08E+02	5.70E+02	NA	NA	5.70E+02
Total Suspended Solids	1.33E+03	NA	NA	1.33E+03	1.60E+03	NA	NA	1.60E+03
Viscosity 10° C, cp	3.60E+00	NA	NA	3.60E+00	3.80E+00	NA	NA	3.80E+00
Viscosity 15° C, cp	3.00E+00	NA	NA	3.00E+00	3.10E+00	NA A	NA	3.10E+00
Viscosity 20° C, cp	2.55E+00	NA	4.12E+00	4.12E+00	2.60E+00	AN	4.12E+00	4.12E+00
Viscosity 25° C, cp	2.20E+00	NA	AN	2.20E+00	2.30E+00	NA A	NA	2.30E+00
Viscosity 2° C, cp	4.83E+00	NA	NA	4.83E+00	5.00E+00	NA	NA	5.00E+00
pH	6.13E+00	NA	NA	6.13E+00	7.20E+00	NA	NA	7.20E+00

TABLE 5A-4B CHEMICAL CHARACTERIZATION DATA OF BASIN F LIQUID (tons/yr)

Compounds	Arit	Arithmetric Mean		Maximum of the	Ma	Maximum Value		Maximum of the
	History	Pond	Tanks	Average	History	Pond	Tanks	Maximum
Volatiles								
1,1,1-Trichloroethane	NA	NA	NA	NA	NA	NA	NA	Ϋ́
1,1,2-Trichloroethane	NA	NA	NA	NA	NA	NA	NA	NA.
1,1-Dichloroethane	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethene	NA	2.54E-03	6.53E-03	6.53E-03	NA	2.54E-03	9.38E-03	9.38E-03
1,2-Dichloroethane	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethene (total)	NA	NA	5.99E-04	5.99E-04	NA	NA	1.50E-03	1.50E-03
1,2-Dichloropropane	NA	NA	1.60E-02	1.60E-02	NA	NA	3.21E-02	3.21E-02
1,3-Dimethylbenzene	NA	NA	2.09E-03	2.09E-03	NA	NA	3.58E-03	3.58E-03
2-Chloroethylbenzene	NA	NA	NA	AN	Ϋ́	NA	NA	NA
Acetone	9.33E-03	NA	5.61E-02	5.61E-02	9.33E-03	NA	5.61E-02	5.61E-02
Ammonia	1.68E+03	NA	NA	1.68E+03	2.09E+03	NA	NA	2.09E+03
Benzene	2.78E-04	3.82E-03	NA	3.82E-03	2.78E-04	3.82E-03	NA	3.82E-03
Bromoform	NA	NA	NA	AN	NA	NA	NA	NA
Bromomethane	2.62E-04	NA	NA	2.62E-04	5.25E-04	NA	NA	5.25E-04
Carbon Tetrachloride	NA	4.34E-03	NA	4.34E-03	NA	4.34E-03	NA	4.34E-03
Chlorobenzene	NA	NA	1.15E-03	1.15E-03	NA	NA	3.26E-03	3.26E-03
Chlorotorm	7.29E-05	4.95E-03	7.50E-03	7.50E-03	9.03E-05	4.95E-03	1.02E-02	1.02E-02
Dicyclopentadiene	1.60E-03	NA	NA	1.60E-03	1.60E-03	NA	NA	1.60E-03
Ethylbenzene	NA	NA	2.38E-03	2.38E-03	NA	NA	4.75E-03	4.75E-03
Methanol	NA	NA	1.38E+02	1.38E+02	NA	NA	1.38E+02	1.38E+02
Methylene Chloride	NA	NA	7.29E-02	7.29E-02	NA	NA	3.21E-01	3.21E-01
Tetrachlorethene	NA	NA	3.93E-03	3.93E-03	NA	NA	4.37E-03	4.37E-03
Toluene	2.64E-04	NA	6.83E-04	6.83E-04	2.86E-04	NA	1.23E-03	1.23E-03
Trichloroethene	NA	1.28E-02	2.01E-03	1.28E-02	NA	1.28E-02	3.21E-03	1.28E-02
Xylene (total)	NA	3.70E-03	7.59E-03	7.59E-03	NA	3.70E-03	2.88E-02	2.88E-02

TABLE 5A-4B CHEMICAL CHARACTERIZATION DATA OF BASIN F LIQUID (tons/yr) (continued)

Compounds	Ari	Arithmetric Mean		Maximum of the	<u> </u>	Maximum Value		Maximum of the
	History	Pond	Tanks	Average	History	Pond	Tanks	Maximum
Semivolatiles								
1,2,4-Trichlorobenzene	NA	NA	Z	Ϋ́	Ą	MA	MA	V.V.
1,4-Dichlorobenzene	NA	NA	NA N	Y	NA	Y N	Y Y	× × ×
4-Chlorophenylmethylsulfone	2.93E+00	2.00E+00	3.94E+00	3.94E+00	7.23E+00	3.21E+00	8.77F±00	8 77F±00
4-Chlorophenylmethylsulfoxide	4.86E-01	NA	NA	4.86E-01	9.32E-01	AN	Y X	9.32E-01
4-Nitrophenol	3.02E-01	NA	NA	3.02E-01	5.25E-01	NA	AN	5.25E-01
Acenaphthene	NA A	NA	NA	NA	NA	NA	NA	NA
Aldrin	3.63E-02	NA	1.12E-02	3.63E-02	8.45E-02	NA	2.91E-02	8.45E-02
Atrazine	7.95E-03	NA	NA	7.95E-03	7.95E-03	NA	NA	7.95E-03
Cyanide	3.38E-02	NA	NA	3.38E-02	5.60E-02	NA	AN	5.60E-02
Dieldrin	7.44E-03	NA	NA	7.44E-03	1.66E-02	NA	NA	1.66E-02
Disopropyl Methylphosphonate	1.25E+00	NA	NA	1.25E+00	4.44E+00	NA	NA	4.44E+00
Ulmethyl Methylphosphonate	3.09E+01	4.60E+00	8.15E+00	3.09E+01	7.23E+01	8.16E+00	2.40E+01	7.23E+01
Umetnylaisultide	3.61E+00	NA	2.45E+00	3.61E+00	4.34E+00	NA	2.45E+00	4.34E+00
Lithlane	1.26E-03	NA	NA	1.26E-03	3.61E-03	NA	NA	3.61E-03
Location	7.23E-03	NA	NA A	7.23E-03	2.15E-02	NA	NA	2.15E-02
riexaciiorocyclopentadiene	6.69E-02	NA	NA	6.69E-02	6.69E-02	NA	NA	6.69E-02
Malation	1.88E-02	NA	NA	1.88E-02	7.16E-02	NA	NA	7.16E-02
Destrion	2.93E-02	NA	NA	2.93E-02	2.93E-02	NA	NA	2.93E-02
Person	3.98E-03	NA	NA	3.98E-03	3.98E-03	NA	NA	3.98E-03
ryrene	NA	NA	NA	NA	NA	NA	NA	NA
Jupona	1.23E-02	NA	NA	1.23E-02	1.23E-02	NA	NA	1.23E-02
V	5.17E+03	NA	NA	5.17E+03	5.17E+03	NA	NA	5.17E+03
Vapolia	3.22E-02	NA	NA NA	3.22E-02	3.22E-02	NA	NA	3.22E-02
PPUDE TOTAL	3.94E-03	NA	NA	3.94E-03	3.94E-03	·NA	NA	3.94E-03
PPUUI	1.23E-02	NA	NA	1.23E-02	1.23E-02	NA	NA	1.23E-02

TABLE 5A-4B CHEMICAL CHARACTERIZATION DATA OF BASIN F LIQUID (tons/yr)

_
=
ă
=
=
-=
=
夏
Ö

Compounds	Ari	Arithmetric Mean		Maximum of the	Ma	Maximum Value		Maximum of the
	History	Pond	Tanks	Average	History	Pond	Tanks	Maximum
Metals								
Aluminum	1.22E-01	NA	NA	1.22E-01	1.60E-01	NA	NA	1.60E-01
Antimony	2.11E-02	NA	NA	2.11E-02	3.21E-02	NA	AN	3.21E-02
Arsenic	1.20E-01	NA	6.93E-02	1.20E-01	2.89E-01	AN	6.93E-02	2.89E-01
Barium	1.17E-02	NA	NA	1.17E-02	1.17E-02	NA	NA	1.17E-02
Boron	5.83E-01	NA	NA	5.83E-01	6.12E-01	NA	NA	6.12E-01
Cadmium	1.87E-02	NA	7.22E-03	1.87E-02	7.23E-02	NA	7.22E-03	7.23E-02
Calcium	5.12E+00	1.33E+00	3.07E+00	5.12E+00	9.76E+00	2.19E+00	4.95E+00	9.76E+00
Chloride	3.89E+03	NA	NA	3.89E+03	5.75E+03	NA	NA	5.75E+03
Chromium	3.57E-02	NA	4.11E-02	4.11E-02	5.54E-02	NA	4.11E-02	5.54E-02
Cobalt	2.63E-02	NA	NA	2.63E-02	2.71E-02	NA	NA	2.71E-02
Copper	1.12E+02	5.45E+01	8.81E+01	1.12E+02	2.12E+02	9.03E+01	2.03E+02	2.12E+02
Fluoride	9.93E+01	NA	NA	9.93E+01	2.91E+02	NA	NA	2.91E+02
Iron	1.59E+00	NA	NA	1.59E+00	2.71E+00	NA	AN	2.71E+00
Lead	3.75E-02	NA	NA	3.75E-02	7.23E-02	NA	NA	7.23E-02
Magnesium	4.76E+00	NA	NA	4.76E+00	7.95E+00	NA	NA	7.95E+00
Manganese	2.05E-01	NA	NA	2.05E-01	2.10E-01	NA	NA	2.10E-01
Mercury	6.62E-03	NA	2.16E-03	6.62E-03	9.91E-03	NA	2.16E-03	9.91E-03
Molybdenum	7.36E-02	NA	NA	7.36E-02	7.58E-02	NA	NA	7.58E-02
Nickel	9.54E-01	NA	NA	9.54E-01	9.91E-01	NA	NA	9.91E-01
Nitrate	3.79E+01	NA	NA	3.79E+01	3.79E+01	NA	NA	3.79E+01
Nitrogen	2.00E+03	NA	NA	2.00E+03	3.04E+03	NA	NA	3.04E+03
Phosphorus (total)	2.91E+02	NA	NA	2.91E+02	5.85E+02	NA	NA	5.85E+02
Potassium	3.79E+01	NA	NA	3.79E+01	8.45E+01	NA	NA	8.45E+01
Selenium	NA	NA	6.13E-02	6.13E-02	NA	NA	6.13E-02	6.13E-02
Silver	NA	NA	1.59E-02	1.59E-02	NA	AN	1.59E-02	1.59E-02
Sodium	1.55E+03	1.21E+03	3.89E+03	3.89E+03	2.35E+03	2.56E+03	9.65E+03	9.65E+03
Sulfate	1.02E+03	Ν	NA	1.02E+03	1.70E+03	NA	NA	1.70E+03
Vanadium	7.80E-02	NA	NA	7.80E-02	8.74E-02	NA	NA	8.74E-02
Zinc	5.42E-01	4.73E-01	4.11E-01	5.42E-01	7.95E-01	1.11E+00	5.71E-01	1.11E+00
. Total								

TABLE 5A-4B CHEMICAL CHARACTERIZATION DATA OF BASIN F LIQUID (tons/yr) (continued)

Compounds	Arith	Arithmetric Mean		Maximum of the	Max	Maximum Value		Maximum
	History	Pond	Tanks	Average	History	Pond	Tanks	Maximum
Parameters								
Alkalinity	5.17E+01	NA	NA	5.17E+01	5.83E+01	Ą	ĄZ	5.835.101
COD	4.82E+03	NA	NA	4.82E+03	6.70E+03	Z	ĄZ	6.70E+03
Conductivity, µmhos/cm	3.21E+03	NA	NA	3.21E+03	3.21E+03	Ϋ́	AN	3.21E+03
Hardness	8.85E+01	NA	NA	8.85E+01	1.01E+02	Ϋ́	Y Z	1.01E+02
Specific Gravity	3.61E-02	NA	3.61E-02	3.61E-02	3.61E-02	NA	3.61E-02	3.61E-02
TOC	1.53E+03	NA	NA	1.53E+03	3.51E+03	NA	NA	3,51E+03
Total Organic Halide (TOX)	1.19E+01	NA	NA	1.19E+01	1.66E+01	NA	AN	1.66E+01
Total Suspended Solids	3.86E+01	NA	NA	3.86E+01	4.66E+01	NA	NA	4.66E+01
Viscosity 10° C, cp	1.05E-01	NA	NA V	1.05E-01	1.11E-01	NA	NA	1.11E-01
Viscosity 15° C, cp	8.74E-02	NA	NA	8.74E-02	9.03E-02	NA	Y'A	9.03E-02
Viscosity 20° C, cp	7.43E-02	NA	1.20E-01	1.20E-01	7.58E-02	AN	1.20E-01	1.20E-01
Viscosity 25° C, cp	6.41E-02	NA	NA	6.41E-02	6.70E-02	NA	AN	6.70E-02
Viscosity 2° C, cp	1.41E-01	NA	NA	1.41E-01	1.46E-01	NA	AZ	1.46E-01
Hd	1.79E-01	NA	NA	1.79E-01	2.10E-01	NA	NA	2.10E-01

TABLE 5A-5
ORGANIC EMISSION RATES FROM INCINERATION
OF ROCKY MOUNTAIN ARSENAL BASIN F WASTE
(1 of 4)

								Emission	Destruction	Calculated	Destruction	Emission
							Effective	Rate	Efficiency	Emis. Rate	Efficiency	Rate
		Thermal	Theoretical	Emission	Emission	Total	Theoretical	Normalized	Normalized	Normalized	Normalized	Normalized
	Feed	Destruction	Destruction	Rate of	Rate of	Emission	Destruction	to Toluene	to Toluene	to 99.99%	to 99.99%	to 99.99%
	Rate (a)	Efficiency	Efficiency	POHC (b)	PIC (b)	Rate (b)	Efficiency	at 99.99%	at 99.99%	Maximum (c) Maximum		Maximum (e)
Compounds	(tons/yr)	(%) (%)	(%) (%)	(tons/yr)	(tons/yr)	(tons/yr)	(4) (%)	(tons/yr) (b)	(%) (P)	(tons/yr)	(b) (%)	(grams/sec)
1,1-Dichloroethene	6.53E-03	66.66	6666666	6.530E-09	2.561E-07	2.627E-07	0966'66	5.039E-11	100.0000	6.53E-07	99.9900	2.35E-08
1,2-Dichloroethene	5.99E-04	66.66	6666666	5.990E-10	2.686E-07	2.692E-07	99.9551	5.165E-11	100.0000	5.99E-08	99.9900	2.16E-09
1,2-Dichloropropane	1.60E-02	66.66	6666666	1.600E-08	0.000E+00	1.600E-08	666666	3.070E-12	100.0000	1.60E-06	0066'66	5.76E-08
1,3-Dimethylbenzene	2.09E-03	66.66	6666666	2.090E-09	1.404E-04	1.405E-04	93.2798	2.695E-08	286.66	2.09E-07	0066'66	7.52E-09
Acetone	5.61E-02	66.66	666666	5.610E-08	0.000E+00	5.610E-08	6666'66	1.076E-11	100.0000	5.61E-06	66.660	2.02E-07
Ammonia	1.68E+03	0.00	99.0000	1.676E+01	0.000E+00	1.676E+01	99.0000	3.215E-03	866666	1.68E-01	0066'66	6.03E-03
Benzene	3.82E-03	51.00	99.5100	1.872E-05	7.038E-04	7.226E-04	81.0847	1.386E-07	99.9964	3.82E-07	99.9900	1.38E-08
Bromomethane	2.60E-04	97.00	99.9700	7.800E-08	7.022E-05	7.030E-05	72.9606	1.349E-08	99.9948	2.60E-08	0066'66	9.36E-10
Carbon Tetrachloride	4.34E-03	66.66	666666	4.340E-09	2.906E-07	2.949E-07	99,9932	5.657E-11	100.0000	4.34E-07	0066'66	1.56E-08
Chlorobenzene	1.15E-03	90.00	99.9000	1.150E-06	3.699E-04	3.710E-04	67.7379	7.118E-08	99.9938	1.15E-07	99.9900	4.14E-09
Chloroform	7.50E-03	66.66	6666666	7.500E-09	2.894E-08	3.644E-08	99,9995	6.991E-12	100.0000	7.50E-07	99,9900	2.70E-08
Dicyclopentadiene	1.60E-03	66.66	666666	1.600E-09	0.000E+00	1.600E-09	666666	3.070E-13	100.0000	1.60E-07	99.9900	5.76E-09
Ethylbenzene	2.38E-03	66.66	666666	2.380E-09	2.107E-04	2.107E-04	91.1481	4.042E-08	99.9983	2.38E-07	0066'66	8.57E-09
Methanol	1.38E+02	66.66	666666	1.378E-04	7.022E-04	8.400E-04	99.9994	1.612E-07	100.0000	1.38E-02	0066'66	4.96E-04
Methylene Chloride	7.29E-02	66.66	666666	7.290E-08	7.029E-05	7.036E-05	99,9035	1.350E-08	100.0000	7.29E-06	0066'66	2.62E-07
Tetrachloroethene	3.93E-03	99.90	066666	3.930E-08	2.802E-06	2.841E-06	99.9277	5.451E-10	100.0000	3.93E-07	99.9900	1.41E-08
Toluene	6.83E-04	99.32	99.9932	4.644E-08	3.512E-04	3.513E-04	48.5666	6.739E-08	99,9901	6.83E-08	99.9900	2.46E-09
Trichloroethene	1.28E-02	99.95	99.9995	6.400E-08	8.298E-07	8.938E-07	99,9930	1.715E-10	100.0000	1.28E-06	99.9900	4.61E-08
Xylene	7.59E-03	99.95	99.9995	3.795E-08	1.404E-04	1.405E-04	98.1490	2.695E-08	966666	7.59E-07	99.9900	2.73E-08
4-Chlorophenylmethylsulfone	3.94E+00	66.66	666666	3.940E-06	0.000E+00	3.940E-06	666666	7.559E-10	100.0000	3.94E-04	0066'66	1.42E-05
4-Chlorophenylmethylsulfoxide	4.86E-01	66.66	6666'66	4.860E-07	0.000E+00	4.860E-07	666666	9.324E-11	100.0000	4.86E-05	0066'66	1.75E-06
4-Nitrophenol	3.02E-01	66.66	6666666	3.020E-07	0.000E+00	3.020E-07	6666666	5.794E-11	100.0000	3.02E-05	0066'66	1.09E-06

5A-30

TABLE 5A-5
ORGANIC EMISSION RATES FROM INCINERATION
OF ROCKY MOUNTAIN ARSENAL BASIN F WASTE
(continued 2 of 4)

								Emission	Destruction	Calculated	Destruction	Emission
							Effective	Rate	Efficiency	Emis. Rate	Efficiency	Rate
_		Thermal	Theoretical	Emission	Emission	Total	Theoretical	Normalized	Normalized	Normalized Normalized	Normalized	Normalized
	Feed	Destruction	Destruction	Rate of	Rate of	Emission	Destruction	to Toluene	to Toluene	to 99.99%	to 99.99%	to 99.99%
	Rate (a)	Efficiency	Efficiency	POHC (b)	PIC (b)	Rate (b)	Efficiency	at 99.99%	at 99.99%	Maximum (c) Maximum Maximum (e)	Maximum	Maximum (e)
Compounds	(tons/yr)	(4) (%)	(%) (%)	(tons/yr)	(tons/yr)	(tons/yr)	(%) (%)	(tons/yr) (b)	(%) (%)	(tons/yr)	(b) (d)	(grams/sec)
Aldrin	3.63E-02	66.66	666666	3.630E-08	0.000E+00	3.630E-08	666666	6.964E-12	100.000	3.63E-06	99.9900	1.31E-07
Atrazine	7.95E-03	66.66	6666666	7.950E-09	0.000E+00	7.950E-09	666666	1.525E-12	100.0000	7.95E-07	99.9900	2.86E-08
Hydrogen Cyanide	3.38E-02	1.00	99.0100	3.346E-04	0.000E+00	3.346E-04	99.0100	6.420E-08	866666	3.38E-06	0066'66	1.22E-07
Dieldrin	7.44E-03	66'66	6666666	7.440E-09	0.000E+00	7.440E-09	6666'66	1.427E-12	100.0000	7.44E-07	0066'66	2.68E-08
Diisopropyl Methylphosphonate	1.25E+00	66.66	6666666	1.250E-06	0.000E+00	1.250E-06	666666	2.398E-10	100.0000	1.25E-04	0066'66	4.50E-06
Dimethyl Methylphosphonate	3.09E+01	66'66	666666	3.091E-05	0.000E+00	3.091E-05	666666	5.930E-09	100.0000	3.09E-03	0066'66	1.11E-04
Dimethyldisulfide	3.61E+00	66'66	6666.66	3.610E-06	0.000E+00	3.610E-06	666666	6.926E-10	100.0000	3.61E-04	0066'66	1.30E-05
Dithiane	1.26E-03	66'66	6666.66	1.260E-09	0.000E+00	1.260E-09	666666	2.417E-13	100.0000	1.26E-07	0066'66	4.54E-09
Endrin	7.23E-03	66.66	6666666	7.230E-09	0.000E+00	7.230E-09	666666	1.387E-12	100.0000	7.23E-07	0066'66	2.60E-08
Hexachlorocyclopentadiene	6.69E-02	66.66	6666666	6.690E-08	0.000E+00	6.690E-08	6666.66	1.283E-11	100.000	6.69E-06	0066'66	2.41E-07
Isodrin	1.88E-02	66.66	6666666	1.880E-08	0.000E+00	1.880E-08	666666	3.607E-12	100.0000	1.88E-06	0066'66	6.77E-08
Malathion	2.93E-02	66.66	6666666	2.930E-08	0.000E+00	2.930E-08	666666	5.621E-12	100.0000	2.93E-06	0066'66	1.05E-07
Parathion	3.98E-03	66.66	6666.66	3.980E-09	0.000E+00	3.980E-09	6666666	7.636E-13	100.000	3.98E-07	0066'66	1.43E-08
Supona	1.23E-02	66.66	6666'66	1.230E-08	0.000E+00	1.230E-08	666666	2.360E-12	100.0000	1.23E-06	99.9900	4.43E-08
Urea	5.17E+03	66.66	6666666	5.168E-03	0.000E+00	5.168E-03	6666666	9.914E-07	100.0000	5.17E-01	0066'66	1.86E-02
Vapona	3.22E-02	66.66	6666666	3.220E-08	0.000E+00	3.220E-08	6666666	6.178E-12	100.0000	3.22E-06	99,9900	1.16E-07
p,p-DDE	3.94E-03	66'66	666666	3.940E-09	6.150E-05	6.150E-05	98.4390	1.180E-08	266.66	3.94E-07	0066'66	1.42E-08
P,p-DDT	1.23E-02	66'66	6666'66	1.230E-08	0.000E+00	1.230E-08	666666	2.360E-12	100.0000	1.23E-06	0066'66	4.43E-08

5A-31

TABLE 5A-5
ORGANIC EMISSION RATES FROM INCINERATION
OF ROCKY MOUNTAIN ARSENAL BASIN F WASTE
(continued 3 of 4)

PICS with							Rate	
PICS with		Thermal		Emission	Emission	Total	Normalized	Total
PICS with	Feed	Destruction	Destruction	Rate of	Rate of	Emission	to Toluene	Emission
	Rate (a)	Efficiency	Efficiency	POHC (b)	PIC (b)	Rate (b)	at 99.99%	Rate (f)
Specific Precursors	(tons/yr)	(4) (%)	(4) (%)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr) (b)	(grams/sec)
Vinyl Chloride					7.071E-04	7.071E-04	1,375E-07	2.55E-05
					7.030E-04	7.030E-04	1.367E-07	2.53E-05
Styrene					7.048E-04	7.048E-04	1.370E-07	2.54E-05
					3.813E-03	3.813E-03	7.414E-07	1.37E-04
					7.325E-04	7.325E-04	1.424E-07	2.64E-05
Benzoic Acid					3.541E-04	3.541E-04	6.885E-08	1.27E-05
Acetonitrile					3.380E-06	3.380E-06	6.572E-10	1.22E-07
Acrylonitrile					3.380E-07	3.380E-07	6.572E-11	1.22E-08
Cyanogen					3.380E-08	3.380E-08	6.572E-12	1.22E-09
Hexachlorobenzene					2.402E-06	2.402E-06	4.669E-10	8.65E-08
Pentachlorobenzene					1.073E-06	1.073E-06	2.087E-10	3.86E-08
Tetrachlorobenzene					4.530E-07	4.530E-07	8.808E-11	1.63E-08
Trichlorobenzene					2.408E-07	2.408E-07	4.681E-11	8.67E-09
Dichlombenzene					1.287E-07	1.287E-07	2.503E-11	4.63E-09
Biphenyl					3.560E-04	3.560E-04	6.922E-08	1.28E-05
4-Chlorobiphenyl					2.376E-03	2.376E-03	4.619E-07	8.55E-05
4,4'-Chlorobiphenyl					4.471E-05	4.471E-05	8.693E-09	1.61E-06
Benzonitrile					3.380E-07	3.380E-07	6.572E-11	1.22E-08
Pyridine					3.380E-08	3.380E-08	6.572E-12	1.22E-09
Carbazole					6.760E-08	6.760E-08	1.314E-11	2.43E-09
Quinoline					1.690E-07	1.690E-07	3.286E-11	6.08E-09

TABLE 5A-5
ORGANIC EMISSION RATES FROM INCINERATION
OF ROCKY MOUNTAIN ARSENAL BASIN F WASTE
(continued 4 of 4)

PICS without Specific Precursors	Thermal Feed Destructio Rate (a) Efficiency (tons/yr) (%) (b)	Thermal Destruction Efficiency (%) (b)	Theoretical Destruction Efficiency (%) (b)	Emission Rate of POHC (b) (tons/yr)	Emission Rate of PIC (b) (tons/yr)	Total Emission Rate (b) (tons/yr)	Emission Rate Normalized to Toluene at 99.99% (b) (tons/yr)	Total Emission Rate (f) (grams/sec)
Benzofuran					1.404E-03	1.404E-03	2.731E-07	5.0KE-05
Dibenzofuran					7.022E-05	7.022E-05	1.365E-08	2.53E-06
Acenaphthalene					3.511E-04	3.511E-04	6.827E-08	1.26E-05
Acenaphthene					3.511E-04	3.511E-04	6.827E-08	1.26E-05
Fluoranthene					2.107E-04	2.107E-04	4.096E-08	7.58E-06
Fnenanthrene					1.404E-04	1.404E-04	2.731E-08	5.06E-06
					7.022E-05	7.022E-05	1.365E-08	2.53E-06
					7.022E-05	7.022E-05	1.365E-08	2.53E-06
Benzo(a)pyrene					7.022E-05	7.022E-05	1.365E-08	2.53E-06
Urbenzo(a)anthracene					7.022E-05	7.022E-05	1.365E-08	2.53E-06
					7.022E-05	7.022E-05	1.365E-08	2.53E-06

5A-33

⁽a) From Table 5A-4B, Maximum of the Average.

⁽b) From Dr. Dellingers' analysis. See Appendix 5B, Appendix 1.

⁽c) Calculated Emission Rate = Feed Rate x (1 - (99.99%/100)) or Emisssion Rate Normalized to Toluene, whichever is less.

⁽d) 99.99% or Destruction Efficiency Normalized to Toluene, whichever is less.

⁽e) Assuming 7000 operating hours per year.

⁽f) Total (unnormalized) Emission Rate was converted to grams per second, assuming 7,000 operating hours per year.

destruction and removal efficiency of 99.99% must be demonstrated during the required trial burn for all compounds selected as POHCs. PIC emissions were conservatively assumed to be equal to Dr. Dellinger's unnormalized estimates.

The third method used to determine emission estimates was to calculate them from regulatory limits and vendor performance guarantees. This method was used for some of the nonmetallic inorganics. Base and sensitivity case particulate matter emission estimates were set at the Colorado regulatory limit. Sensitivity case carbon monoxide emissions were assumed to be at the federal regulatory limit. Sulfur oxide, nitrogen oxide, and hydrogen chloride sensitivity case emissions were based on vendor performance guarantees.

The fourth method used to determine emission factors was based on a comprehensive database of air emissions from waste burning facilities developed by WESTON. The database contains information compiled from 12 hazardous waste incineration facilities. Because there is wide variation among these facilities in terms of incinerator design, processing capacities, stack gas conditions, combustion conditions, and other parameters, emission factors, which are independent of these parameters, are used to standardize emissions data. Emission factors are usually calculated as the mass emissions per unit weight of waste processed (e.g., pounds of pollutant per ton of waste processed), or as the mass emissions per standardized stack gas volume (e.g., nanograms per normal cubic meter of stack gas). This is in contrast to the emission rates that are reported in units of mass emission per unit of time (e.g., grams per second or pounds per hour). Consequently, emission factors can be used to estimate the emission rates for facilities that may be similar in concept, but that may vary in design and operation. The sensitivity case for dioxins and furans was based on the 95% confidence interval (log normal of the mean) of the emission factors calculated for the facilities in the database.

Dioxin/Furan Emissions Test Burn Results (ng/Nm³, dry @ 12% CO₂)

Dioxins/Furans	1	7	က	4	Test Runs 5	9	7		6
2,3,7,8-TCDF Total TCDF	0.226	0.173	0.104	0.146	0.149	0.139	0.138	0.112	0.122
2,3,7,8-TCDD Total TCDD	0.008	0.011	0.015	0.003	0.003	0.003	0.004	0.004	0.004
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.042 0.721 0.635	0.032 0.059 0.460	0.018 0.034 0.254	0.024 0.055 0.369	0.025 0.051 0.349	0.028 0.065 0.424	0.025 0.051 0.367	0.022 0.045 0.350	0.025
1,2,3,7,8-PeCDD Total PeCDD	0.001	0.001	0.002	0.000	0.000	0.000	0.001	0.001	0.001
1,2,3,4,7,8-HxCDF	0.087	0.047	0.040	0.061	0.055	0.062	0.053	0.027	0.029
1,2,3,7,8,9-HxCDF	0.069	0.060	0.053	0.043	0.039	0.043	0.040	0.037	0.037
Total HxCDF	0.613	0.345	0.197	0.267	0.238	0.262	0.246	0.211	0.220
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	0.003	0.002	0.006	0.001	0.001	0.001	0.001	0.002	0.001
1,2,3,7,8,9-HxCDD Total HxCDD	0.007	0.008	0.010	0.003	0.004	0.002	0.003	0.003	0.004
1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD Total HpCDF	0.009 0.020 0.089	0.012 0.020 0.064	0.081 0.013 0.093	0.094 0.011 0.133	0.081 0.014 0.128	0.084 0.015 0.131	0.075 0.012 0.115	0.064 0.009 0.092	0.070 0.011 0.099
1,2,3,4,6,7,8-HpCD Total HpCDD	0.129	0.159	0.340	0.061	0.051	0.054	0.068	0.043	0.087
OCDF OCDD	0.098	0.096	0.059	0.473	0.081	0.077	0.063	0.042	0.056
U.S.EPA TEF	0.422	0.081	0.070	0.065	0.061	0.069	0.062	0.052	0.053

5A.3 DIOXIN/FURAN EMISSIONS

5A.3.1 Expected Emissions

The Rocky Mountain Arsenal predicted air contaminant emissions from the proposed hazardous waste incinerator system were determined by performing test burns of the waste. T-THERMAL performed nine source tests of the waste in a pilot incinerator in August 1990. Table 5A-6 shows the dioxin/furan emission results of the individual test runs converted into nanograms per dry normal (32°F) cubic meter corrected to 12% CO₂ (ng/Nm³, dry @ 12% CO₂). During the series of tests, dried waste accumulated on the atomizing tip of the waste injector nozzle. As described in detail in Table 5A-1, procedures were taken to remove the waste. Because these injector clogging problems prevented normal incinerator operating conditions, many of the test runs were excluded; only test runs 4 and 8 were used to determine the base case in estimating the expected emission rates at the proposed RMA facility. A statistical analysis of all of the test runs and of test runs 4 and 8 alone is presented in Table 5A-7. Confidence intervals are not meaningful for only two data points; therefore, the standard deviation and standard error were used as measures of variation. The variation is much less for test runs 4 and 8.

The dioxin and furan concentrations were then converted into toxic equivalence factors (TEF). The TEF is the currently acceptable method for evaluating such emissions, and is a weighting scheme in which the measured congeners of dioxins and furans are normalized or weighted by their toxicity relative to that of a single congener (i.e., 2,3,7,8-tetrachloro-dibenzo-p-dioxin [2,3,7,8-TCDD]). This congener is the most studied and most toxic congener. Table 5A-8 illustrates the international weighting scheme adopted by the EPA.

5A.3.2 Upper Bound Emissions

For the sensitivity or upper bound case, data on hazardous waste facilities from the WESTON comprehensive database were used. Unfortunately, most of the available dioxin

Table 5A-7
Dioxin/Furan Emissions Test Burn Results
(ng/Nm³, dry @ 12% CO₂)

	4	All Test Runs				Runs	4 & 8	Emission
		Standard	Standard		1	Standard	Standard	Rate
Dioxins/Furans	Average	Deviation	Error		Average	Deviation	Error	(lb/hr)
2,3,7,8-TCDF	0.145	0.037	0.253		0.129	0.024	0.186	2.62E-09
Total TCDF	0.654	0.187	0.233		0.129	0.024		
Total Tebi	0.054	0.167	0.200		0.570	0.106	0.185	1.16E-08
2,3,7,8-TCDD	0.006	0.004	0.688		0.004	0.001	0.255	7.64E-11
Total TCDD	0.035	0.020	0.553		0.051	0.012	0.230	1.05E-09
1,2,3,7,8-PeCDF	0.027	0.007	0.251		0.023	0.001	0.045	4.65E-10
2,3,4,7,8-PeCDF	0.125	0.224	1.788	١	0.050	0.007	0.140	1.03E-09
Total PeCDF	0.397	0.105	0.265	1	0.360	0.014	0.038	7.32E-09
	5.57,	0.100	0.200	١	0.500	0.014	0.030	7.32E-09
1,2,3,7,8-PeCDD	0.001	0.001	0.836	١	0.001	0.001	1.414	1.13E-11
Total PeCDD	0.014	0.011	0.758		0.015	0.012	0.822	2.99E-10
1,2,3,4,7,8-HxCDF	0.051	0.019	0.362		0.044	0.024	0.551	8.86E-10
1,2,3,6,7,8-HxCDF	0.035	0.015	0.435	1	0.030	0.008	0.271	6.13E-10
1,2,3,7,8,9-HxCDF	0.047	0.011	0.245	ı	0.040	0.005	0.116	8.10E-10
2,3,4,7,8,9-HxCDF	0.005	0.002	0.325	1	0.004	0.000	0.054	8.68E-11
Total HxCDF	0.289	0.129	0.446		0.239	0.039	0.163	4.87E-09
1,2,3,4,7,8-HxCDD	0.002	0.002	0.806		0.002	0.001	0.519	3.30E-11
1,2,3,6,7,8-HxCDD	0.005	0.004	0.685	1	0.004	0.001	0.255	7.64E-11
1,2,3,7,8,9-HxCDD	0.005	0.003	0.537	I	0.003	0.000	0.253	6.51E-11
Total HxCDD	0.044	0.032	0.712	١	0.025	0.005	0.183	5.18E-10
1004/7011 00	0.040							
1,2,3,4,6,7,8-HpCD	0.063	0.031	0.493	ı	0.079	0.021	0.269	1.61E-09
1,2,3,4,7,8,9-HpCD	0.014	0.004	0.272	ı	0.010	0.002	0.170	2.05E-10
Total HpCDF	0.105	0.024	0.225	l	0.113	0.029	0.260	2.29E-09
1,2,3,4,6,7,8-HpCD	0.110	0.094	0.856	l	0.052	0.012	0.237	1.0CE 00
Total HpCDD	0.342			I				1.06E-09
10tal TipeDD	0.342	0.380	1.109		0.139	0.084	0.602	2.83E-09
OCDF	0.116	0.135	1.162		0.257	0.305	1.183	5.24E-09
OCDD	1.666	1.568	0.941	l	0.845	0.262	0.310	1.72E-08
					0.0 10	U.EUC	0.510	1.721:-00
U.S.EPA TEF	0.104	0.120	1.152		0.058	0.009	0.154	1.19E-09

Table 5A-8

EPA 2,3,7,8-TCDD Toxic Equivalency Factors (TEFs)¹

Homologue/Congener ²	TEF ³
Mono through trichloro dibenzo-p-dioxins and dibenzofurans	0
2,3,7,8-TCDD	1
Other TCDDs	0
2,3,7,8-PeCDD	0.5
Other PeCDDs	0
2,3,7,8-HxCDDs	0.1
Other HxCDDs	0
2,3,7,8-HpCDDs	0.01
Other HpCDDs	0
OCDDs	0.001
2,3,7,8-TCDF	0.1
Other TCDFs	0
1,2,3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
Other PeCDFs	0
2,3,7,8-HxCDFs	0.1
Other HxCDFs	0
2,3,7,8-HpCDFs	0.01
Other HpCDFs	0
OCDFs	0.001

¹ Source: Bellin J.S., and D.G. Barnes, "Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-dioxins and Dibenzo-furans and 1989 Update", EPA Risk Assessment Forum, EPA/625/3-89/016, March 1989.

² The following abbreviations are used for dioxin/furan homologues and congeners:

<u>s</u>	
-	tetrachlorinated dibenzo-p-dioxin (4 chlorines)
_	pentachlorinated dibenzo-p-dioxin (5 chlorines)
-	hexachlorinated dibenzo-p-dioxin (6 chlorines)
-	heptachlorinated dibenzo-p-dioxin (7 chlorines)
-	octachlorinated dibenzo-p-dioxin (8 chlorines)
-	tetrachlorinated dibenzo-furans (4 chlorines)
-	pentachlorinated dibenzo-furans (5 chlorines)
-	hexachlorinated dibenzo-furans (6 chlorines)
-	heptachlorinated dibenzo-furans (7 chlorines)
-	octachlorinated dibenzo-furans (8 chlorines)
=	2,3,7,8-substituted congeners of homologue.
=	All congeners of homologue other than the 2,3,7,8-substituted congeners.
=	Toxic equivalency factor.

and furan data compiled from these facilities lacked the information required to calculate TEFs. In a number of cases, only amounts of total PCDD and PCDF, and frequently of total tetrachlorinated dibenzo-p-dioxin (TCDD) and total tetrachlorinated dibenzo-furan (TCDF) homologues are reported along with the 2,3,7,8-TCDD congener, if detected.

In order to deal most effectively with this absence of data and the need to establish TEFs, the following process was used:

- TEFs were calculated for the available data sets. Because most of the facility tests measured all congener groups needed to calculate the TEF, the available data were used in conjunction with ratios of homologue emissions to TCDD emissions and of 2,3,7,8-substituted emissions of a homologue to the total emissions of the homologue in order to establish TEF emissions for each facility. The ratios of emissions used were calculated from emission test data for municipal solid waste (MSW) incinerators (Siebert et al., 1989). These ratios are conservatively higher (from a risk assessment perspective) than the theoretical splits based on the possible number of congeners.
- Geometric mean and confidence intervals of the mean based on a log normal distribution of estimated TEF values were used to establish the range of TEF emissions. A log normal distribution was assumed among facilities because it is common for emissions data and has been demonstrated for dioxin/furan TEF emissions from MSW incinerators (Siebert et al., 1988).

This approach would not be the preferred approach if more congener-specific data were available; however, it is considered the most appropriate approach in light of the limited quantity and quality of the available data.

Several key points need to be made about all the dioxin/furan data used to establish emissions and its applicability to the RMA incinerator:

• A number of the facilities used in the analysis burn significantly different wastes than those to be burned in the RMA incinerator. In fact, many of the tested incinerators burn large quantities of PCBs. Although the formation mechanisms for dioxins/furans are not clearly understood, the presence of PCBs or other likely dioxin/furan precursors in the waste stream would probably tend to increase dioxin/furan emissions.

- The data sets used in this analysis generally were not taken directly from original comprehensive test reports, but from partial results reported in the literature. This makes standardization of the data difficult.
- An inherent assumption is that the homologue/TCDD ratios and 2,3,7,8/total homologue ratios are relatively consistent for municipal solid waste and hazardous waste incineration.

Table 5A-9 summarizes the EPA toxic equivalent data for each facility and the resulting geometric mean and confidence interval. Also displayed is a summary of the T-THERMAL test results for all the tests and for the acceptable tests only. The corresponding emission rates in pounds per hour (lb/hr) are also presented. These emission rates were based upon the % CO₂, the actual temperature and the moisture content of the flue gas during the trial burns of the Basin F waste, and the expected flue gas flow rate for the full-scale submerged quench incinerator proposed for RMA. The emission rates, which were used for the base case, were the average of the acceptable test runs from the trial burn of the RMA-Basin F waste, while those used for the sensitivity case were the upper 95% confidence limit of test results from facilities in the WESTON database.

5A.4 INORGANICS EMISSIONS

5A.4.1 Expected Emissions

Emission factors for metals and other inorganics (such as criteria pollutants and acid gases) were derived by several methods. For the base case emissions, the maximum value was selected from the acceptable test burn emission results and the emissions derived from the maximum of the averages concentration of metals in the waste feed to the incinerator, assuming that the volatilization fraction and the efficiencies of the air pollution control (APC) equipment are equal to those given by EPA.

Table 5A-9 Summary of Dioxin/Furan Toxic Equivalent Emissions from the Hazardous Waste Incinerators

	<u>U.S. EPA TEF I</u>	<u>Emissio</u>
	Factor	Rate
Facility	(ng/Nm^3 @ 12% CO2)	(lbs/hr)
Ross	0.048	
American Cyanamid	0.054	
DuPont	0.044	
UpJohn .	0.104	
Mitchell	0.236	
Plant B (Outlet Location)	7.295	
SCA	0.872	
Rollins (Deer Park, Texas)	1.519	
ENSCO	0.103	
Rollins (Bridgeport, New Jersey)	0.620	
Biebesheim	1.050	
Geometric Mean	0.300	6.11E-09
Upper 95% Confidence Interval	0.931	1.90E-08
Lower 95% Confidence Interval	0.097	1.97E-09
Pooler Manager Assess		
Rocky Mountain Arsenal All Tests	0.104	2.11E-09
Acceptable Tests	0.104	1.19E-09
and him a repre	0.036	1.19E-03

ng		m^3	(273.15)N °C	(10.10)A % CO2	(100 - 6.74) moist	lb	3600 sec
,dry	7 @ 12% C	:O2 x 4.72 x		x	x	(x
Nm^3		sec	(394.30)A °C	12% CO2	100	453.6*10^9 ng	hr

For the first approach, the test burn data were converted into emission factors in pounds of metal and other inorganics per ton of waste incinerated (lb/ton) and evaluated to see if the operating conditions were representative of the expected RMA submerged quench incinerator conditions. Table 5A-10 illustrates the results of the converted test burn data for metals. As displayed in Table 5A-2, upset conditions occurred during every test run except test run 4; therefore, it is considered acceptable and representative of the expected conditions. Table 5A-11 presents a statistical analysis of all the test runs and compares the results with test run 4 alone.

The second approach was based on information regarding the concentrations of metals and other inorganics in the waste feed. The base case calculations for metals are given in Table 5A-12. The uncontrolled emissions are based on the maximum of the average concentrations from each of the historical tests of the Basin F waste and the series of tests WESTON performed both on the tanks and on the pond. The results were converted into lb/ton based on the density of the waste.

The controlled emission rate was based on the expected feed rate, the percent of metals volatilized (and subsequently condensed and adsorbed onto particles), and the removal efficiency of the air pollution control equipment. After identifying the input of waste stream metals, the next step was to determine the fractions of those metals that would be expected to volatilize and later condense and adsorb onto particles. This adsorption process is necessary for the collection of metals by the air pollution control (APC) system. Based on EPA (1989), all metals in liquid waste will volatilize during combustion.

Removal efficiencies (considering both adsorption and collection) were estimated for a packed scrubber in series with a 60-inch pressure drop Venturi scrubber in the incinerator APC system. EPA (1989) only provided efficiency values for selected metals controlled by a packed scrubber in series with a 20-inch pressure drop Venturi scrubber and a 20-inch or 60-inch pressure drop Venturi scrubber alone. Therefore, the removal efficiency of the packed scrubber was calculated and added to the removal efficiency of the 60-inch pressure

TABLE 5A-10 METAL EMISSIONS TEST BURN RESULTS (lb/ton)

Metals	1	2	ဇ	4	Test Runs 5	9	7	æ	6
					:				
Silver	1.26E-05	7.04E-06	1.29E-05	3.38E-06	2.70E-06	3.34E-06	2.88E-06	3.34E-06	3.33E-06
Aluminum	1.80E-03	1.49E-03	1.67E-03	9.98E-04	1.22E-03	1.03E-03	1.24E-03	1.26E-03	1.74E-03
Arsenic	2.85E-05	2.18E-05	3.87E-05	9.46E-06	8.78E-06	9.36E-06	9.37E-06	1.00E-05	9.98E-06
Boron	3.82E-03	2.57E-03	1.16E-03	1.48E-03	1.38E-03	1.92E-03	5.23E-04	2.42E-03	2.81E-03
Barium	2.06E-05	4.93E-06	3.50E-05	4.87E-05	5.40E-06	6.02E-06	4.83E-05	1.67E-06	1.66E-06
Beryllium	8.62E-06	4.93E-06	9.12E-06	2.03E-06	2.03E-06	2.01E-06	2.16E-06	2.50E-06	2.49E-06
Calcium	2.22E-03	1.81E-03	4.79E-03	3.61E-03	5.07E-03	9.00E-03	9.76E-03	7.21E-03	6.00E-03
Cadminm	7.30E-06	2.11E-06	2.28E-06	6.76E-07	6.75E-07	1.34E-06	7.21E-07	8.34E-07	8.31E-07
Cobalt	3.98E-06	2.11E-06	3.80E-06	6.76E-07	6.75E-07	6.69E-07	NA	8.34E-07	8.31E-07
Chromium	7.30E-06	4.22E-06	7.60E-06	2.03E-06	2.03E-06	2.01E-06	2.16E-06	1.67E-06	1.66E-06
Copper	6.89E-04	4.33E-03	3.40E-03	2.10E-02	1.46E-02	5.67E-03	4.90E-03	2.83E-03	2.43E-03
Iron	1.45E-03	4.19E-04	1.60E-03	5.15E-04	9.33E-04	4.86E-03	3.89E-04	5.84E-05	9.81E-05
Mercury	1.26E-05	7.04E-06	1.29E-05	3.38E-06	2.70E-06	3.34E-06	2.88E-06	3,34E-06	3.33E-06
Potessium	1.23E-03	7.35E-04	1.29E-03	3.20E-04	2.99E-04	3.10E-04	3.19E-04	3.34E-04	3.39E-04
Lithium	2.45E-05	1.48E-05	2.58E-05	6.08E-06	6.08E-06	6.02E-06	6.49E-06	6.67E-06	6.65E-06
Magnesium	6.30E-04	7.32E-05	3.37E-03	3.88E-03	3.32E-03	9.22E-03	1.11E-02	6.63E-03	4.63E-03
Manganese	3.18E-03	8.30E-05	8.36E-05	5.61E-05	4.46E-05	4.01E-06	3.60E-06	1.67E-06	1.66E-06
Molybdenum	1.26E-05	7.04E-06	1.29E-05	3.38E-06	2.70E-06	3.34E-06	2.88E-06	3.34E-06	3.33E-06
Sodium	9.69E-01	2.46E+00	2.60E+02	3.59E+00	2.93E+00	2.23E+00	2.23E+00	1.60E+00	1.18E+00
Nickel	2.84E-04	7.04E-06	1.29E-05	3.38E-06	2.70E-06	3.34E-06	2.88E-06	3.34E-06	3.33E-06
Phosphorus	3.67E-03	5.77E-03	2.97E-02	9.80E-02	8.14E-02	4.44E-02	3.70E-02	1.99E-02	1.93E-02
Lead	3.71E-04	1.48E-05	3.36E-04	6.08E-06	6.08E-06	6.02E-06	6.49E-06	6.67E-06	6.65E-06
Sulfur	1.24E+01	7.79E-03	5.69E-02	9.82E-02	7.87E-02	4.71E-02	3.38E-02	2.16E-02	2.16E-02
Antimony	2.45E-05	1.48E-05	5.94E-04	6.08E-06	6.08E-06	6.02E-06	6.49E-06	6.67E-06	6,65E-06
Selenium	2.25E-05	2.18E-05	1.55E-03	9.46E-06	8.78E-06	5.22E-04	9.37E-06	1.00E-05	4.75E-04
Silicon	2.54E-02	1.30E-02	2.12E-02	8.76E-03	5.11E-03	7.13E-03	7.43E-03	3.79E-03	2.44E-03
Tin	1.36E-04	1.48E-05	2.07E-03	4.48E-04	4.19E-04	4.33E-04	4.46E-04	6.67E-06	4.07E-04
Strontium	8.62E-06	2.11E-06	3.80E-06	2.03E-06	6.75E-07	4.01E-06	3.60E-06	1.67E-06	1.66E-06
Titanium	1.46E-05	7.04E-06	1.29E-05	3.38E-06	2.70E-06	3.34E-06	2.88E-06	3.34E-06	3.33E-06
Thallium	3.71E-05	2.18E-05	2.33E-03	5.12E-04	4.19E-04	5.26E-04	9.37E-06	1.00E-05	4.07E-04
Vanadium	2.65E-06	1.41E-06	2.28E-06	6.76E-07	6.75E-07	6.69E-07	7.21E-07	8.34E-07	8.31E-07
Yttrium	1.33E-06	7.04E-07	1.52E-06	0.00E+00	0.00E + 00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zinc	4.93E-04	8.83E-03	3.15E-04	2.72E-04	2.36E-04	1.69E-04	8.51E-05	1.48E-04	1.37E-04

TABLE 5A-11 METALS EMISSIONS TEST BURN RESULTS

	AIIT	All Test Runs (1b/ton	(uoı)			_
		Standard	Standard	Run 4	n 4	
Metals	Average	Deviation	Error	(lb/ton)	(Ib/hr)	- 11
Silver	5.72E-06	4.19E-06	0.7322	3.38E-06	1.74E-05	
Aluminum	1.38E-03	3.03E-04	0.2189	9.98E-04	5.15E-03	
Arsenic	1.62E-05	1.10E-05	0.6760	9.46E-06	4.88E-05	
Boron	2.01E-03	1.0E-03	0.4976	1.48E-03	7.65E-03	
Barium	1.91E-05	1.98E-05	1.0369	4.87E-05	2.51E-04	
Beryllium	3.99E-06	2.92E-06	0.7315	2.03E-06	1.05E-05	
Calcium	5.50E-03	2.79E-03	0.5070	3.61E-03	1.87E-02	
Cadmium	1.86E-06	2.13E-06	1.1433	6.76E-07	3.49E-06	
Cobalt	1.70E-06	1.46E-06	0.8590	6.76E-07	3.49E-06	
Chromium	3.41E-06	2.42E-06	0.7092	2.03E-06	1.05E-05	_
Copper	6.65E-03	6.68E-03	1.0045	2.10E-02	1.08E-01	
Iron	1.15E-03	1.50E-03	1.3046	5.15E-04	2.66E-03	
Mercury	5.72E-06	4.19E-06	0.7322	3.38E-06	1.74E-05	
Potassium	5.76E-04	4.13E-04	0.7178	3.20E-04	1.65E-03	
Lithium	1.15E-05	8.27E-06	0.7214	6.08E-06	3.14E-05	_
Magnesium	4.76E-03	3.66E-03	0.7693	3.88E-03	2.00E-02	
Manganese	3.84E-04	1.05E-03	2.7296	5.61E-05	2.90E-04	
Molybdenum	5.72E-06	4.19E-06	0.7322	3.38E-06	1.74E-05	
Sodium	3.08E+01	8.58E+01	2.7906	3.59E+00	1.85E+01	
Nickel	3.59E-05	9.31E-05	2.5946	3.38E-06	1.74E-05	
Phosphorus	3.77E-02	3.26E-02	0.8647	9.80E-02	5.06E-01	
Lead	8.44E-05	1.53E-04	1.8103	6.08E-06	3.14E-05	
Sulfur	1.41E+00	4.11E+00	2.9031	9.82E-02	5.07E-01	
Antimony	7.46E-05	1.95E-04	2.6128	6.08E-06	3.14E-05	
Selenium	2.92E-04	5.17E-04	1.7687	9.46E-06	4.88E-05	
Silicon	1.05E-02	7.95E-03	0.7594	8.76E-03	4.52E-02	_
Tin	4.87E-04	6.22E-04	1.2778	4.48E-04	2.31E-03	
Strontium	3.13E-06	2.35E-06	0.7504	2.03E-06	1.05E-05	_
Titanium	5.95E-06	4.63E-06	0.7785	3.38E-06	1.74E-05	
Thallium	4.74E-04	7.30E-04	1.5400	5.12E-04	2.64E-03	
Vanadium	1.19E-06	7.62E-07	0.6385	6.76E-07	3.49E-06	
Yttrium	1.18E-06	4.26E-07	0.3604	NA	AN	
Zinc	1.19E-03	2.87E-03	2.4168	2.72E-04	1.40E-03	

TABLE 5A-12 EXPECTED METAL EMISSIONS BASED ON TEST BURN EMISSIONS & WASTE STREAM DATA

		Based on Waste	Stream Data		Bas	sed upon Acceptable <u>Test Burn Data</u>	Maxi Emis	
Metals	Uncontrolled Emissions (1)	Metals to APCD (2)	Removal Efficiency	(3)	Controlled Emissions (4)		Betwe Two Sc	enarios
	(lb/ton)	(%)	(%)		(lb/ton)	(lb/ton)	(lb/ton)	(lb/hr)
Aluminum	6.7E-03	100	97	(6)	2.02E-04	9.98E-04	9.98E-04	5.15E-03
Antimony	1.2E-03	100	97		3.51E-05	6.08E-06	3.51E-05 I	1.81E-04
Arsenic	6.6E-03	100	97		1.99E-04	9.46E-06	1.99E-04 I	1.03E-03
Barium	6.5E-04	100	99.4		3.87E-06	4.87E-05	4.87E-05 I	2.51E-04
Beryllium	NA	100	99.4		NA	2.03E-06	2.03E-06 I	1.05E-05
Boron	3.2E-02	100	97	(8)	9.68E-04	1.48E-03	1.48E-03 I	7.65E-03
Cadmium	1.0E-03	100	97		3.11E-05	6.76E-07	3.11E-05 I	1.61E-04
Calcium	2.8E-01	100	97	(7)	8.51E-03	3.61E-03	8.51E-03 I	4.39E-02
Chromium	2.3E-03	100	99.4		1.37E-05	2.03E-06	1.37E-05 I	7.05E-05
Cobalt	1.5E-03	100	97	(6)	4.37E-05	6.76E-07	4.37E-05 I	2.25E-04
Copper	6.2E+00	100	97	(6)	1.86E-01	2.10E-02	1.86E-01 I	9.59E-01
Iron	8.8E-02	100	97	(6)	2.64E-03	5.15E-04	2.64E-03 I	1.36E-02
Lead	2.1E-03	100	97		6.22E-05	6.08E-06	6.22E-05 I	3.21E-04
Lithium	NA	100	NA		NA	6.08E-06	6.08E-06 I	3.14E-05
Magnesium	2.6E-01	100	97	(6)	7.90E-03	3.88E-03	7.90E-03 I	4.08E-02
Manganese	1.1E-02	100	97	(6)	3.41E-04	5.61E-05	3.41E-04 I	1.76E-03
Mercury	3.7E-04	100	85		5.50E-05	3.38E-06	5.50E-05 I	2.84E-04
Molybdenum	4.1E-03	100	8 5	(6)	6.11E-04	3.38E-06	6.11E-04 I	3.15E-03
Nickel	5.3E-02	100	97	(6)	1.58E-03	3.38E-06	1.58E-03	8.18E-03
Potassium	2.1E+00	100	97	(7)	6.29E-02	3.20E-04	6.29E-02 I	3,25E-01
Selenium	3.4E-03	100	85	(6)	5.09E-04	9.46E-06	5.09E-04 I	2.63E-03
Silicon	NA	100	NA		NA	8.76E-03	8.76E-03 I	4.52E-02
Silver	8.8E-04	100	99.4		5.27E-06	3.38E-06	5.27E-06 I	2.72E-05
Sodium	NA	100	97	(9)	NA	3.59E+00	3.59E+00	1.85E+01
Strontium	NA	100		(8)	NA	2.03E-06	2.03E-06 I	1.05E-05
Thallium	NA	100	97		NA	5.12E-04	5.12E-04 I	2.64E-03
Tin	NA	100	97	(7)	NA	4.48E-04	4.48E-04 I	2.31E-03
Titanium	NA	100		(6)	NA	3.38E-06	3.38E-06 I	1.74E-05
Vanadium	4.3E-03	100		(6)	1.29E-04	6.76E-07	1.29E-04 I	6.68E-04
Yttrium	NA	100	97	(8)	NA	NA	0.00E+00 I	0.00E+00
Zinc	3.0E-02	100	97	(6)	9.01E-04	2.72E-04	9.01E-04 I	4.65E-03

- (1) Based upon the maximum of the averages emission concentration from historical test data (tons/yr) and multiplying by 2000 lbs/ton / ((10,325 lbs of waste/hr / 2000 lbs/ton) \times 7,000 operating hrs/yr).
- (2) Percent of metal volatilization is estimated at 100% for all metals in liquid waste based on EPA Guidance on Metals and HCl Controls from Hazardous Waste Incineration, Draft Final Report, August 1989, Table III-9.
- (3) Based on EPA Guidance (note 2), Table III-8. The removal efficiency of the wet scrubber in series with the Venturi scruber at 20" of water was calculated. This removal efficiency was used in series with the removal efficiency of the Venturi scrubber at 60" of water.
- (4) Controlled Emissions = Uncontrolled Emissions x % Metals to APCD x (1- % Removal Efficiency)
- (5) Based upon the emissions during the one acceptable test run from the test burn by T-Thermal in Aug. 1990.
- (6) Assumed removal efficiency of antimony, arsenic, cadmium, lead and thallium or of mercury per footnote (3), based on scrubber efficiency similar to those compounds in "Hazardous Waste Stream Trace Metal Concentrations and Emissions", Mitre Corp., U.S.EPA Office of Solid Waste, November 1983.
- (7) Similar to copper, cobalt and titanium in showing no concentration with particle size per Davision, Natusch, et al. "Trace Elements in Fly Ash", Environmental Science & Technology, Vol. 8, No. 13, December 1974. Therefore, assumed scrubber efficiency similar.
- (8) Similar emissions to feed ratio to that of iron and aluminum per Kaakinen Jorden, et al., "Trace Element Behavior in Coal-Fired Power Plant", Environmental Science & Technology, Vol. 9, No. 9, September 1975. Therefore, assumed scrubber efficiency similar.
- (9) Similar control efficiency to that of calcium, iron and potassium per Klein, Andren, et al., "Pathways of Thirty-seven Trace Elements Through Coal-Fired Power Plant", Environmental Science & Technology, Vol. 9, No. 10, October 1975. Therefore, assumed scrubber efficiency similar.

drop Venturi scrubber. It should be noted, that it was conservatively assumed that no metals were removed in the incinerator quench pit; similarly, no metals in the waste feed or in the flue gas entering the APC devices were assumed to be removed. Several documents provided information for conservatively estimating removal efficiencies of the metals not noted in EPA (1989), based on the efficiencies given in EPA (1989). The detailed assumptions and results of this approach are presented in Table 5A-12.

For acid gases, criteria, and other inorganic pollutants, the same two approaches were used. However, the controlled emissions based on the waste stream data considered the conversion of the waste stream component to its emitted chemical form and assumed removal efficiencies based on a number of sources. The basis of the assumed removal efficiencies included regulatory requirements, literature values, and data for similar pollutants. The base case emissions analysis (along with the sensitivity case analysis) is presented in Table 5A-13.

5A.4.2 Upper Bound Emissions

The upper bound emissions or sensitivity case for metals and other inorganics was based upon the average of all runs during the test burn, and the maximum controlled emission rate based on the waste feed data. The higher value of those generated by these two approaches was used.

The first approach for estimating the upper bound emissions was based on the average of all the runs from the test burn (acceptable or not). The second approach was based on the highest of the maximum waste feed rate values and the volatilization and removal efficiency methodology applied to the expected feed rate, explained in the previous section. Table 5A-14 presents the assumptions and results of these two approaches for metals. The assumptions and results for other inorganics are given in Table 5A-13.

EXPECTED ACID & OTHER COMPOUNDS EMISSIONS BASED ON TEST BURN EMISSIONS & WASTE STREAM DATA

						Base	Based upon Acceptable	le Maximum	
			Basec	Based on Waste Stream Data	n Data		Test Burn Data	Emissions	8]
Original	Waste		Converted	Uncontrolled	Removal	Controlled	Controlled	Between the	he
Pollutant	Feedrate (1) Pollutan (lb/ton)	(1)	Pollutant	Emissions ((lb/ton)	(2) Efficiency (%)	Emissions (3) (1b/ton)	Emissions (4) (lb/ton)	Two Scenarios (1b/ton) 1 (1	rios (5) (tb/hr)
Particulate Matter	Z Y		PM	N.	NA VA	AN	NA	V Z	4.00 (6)
Carbon Monoxide	NA		8	NA	Z	N AN	0.261	0,261	1.35
Chloride (Cl)	215.5		HCI	221.7	95	11.1	NA	NA I	1.35 (8)
Fluoride (F)	5.5		詽	5.8	95	0.289	NA	0.289	1.49
Nitrate (NO3)	2.1		HN03	2.1	06	0.213	NA	0.213	1.10
Nitrogen (N)	110.5		NO2	362.9	0	362.9	1.778	1.778	9.18
Phosphorus (P)	16.1		PO4	16.1	99.4	0.097	0.098	1 860'0	0.51
Sulfate (SO4)	56.4		H2SO4	57.6	66	9.0	NA	0.58	2.97
Sulfur (S)	215.6		SO2	430.6	06	43.1	NA	NA -	(8) 86.9

MAXIMUM ACID & OTHER COMPOUNDS EMISSIONS BASED ON TEST BURN EMISSIONS & WASTE STREAM DATA

			ı				Based upon		Maximum	
			Base	Based on Waste Stream Data	m Data		Test Burn Data		Emissions	100
Original	Waste		Converted	Uncontrolled	Removal	Controlled	Controlled		Between the	16
Pollutant	Feedrate (1) Pollutar (1b/ton)	(1)	Pollutant	Emissions (lb/ton)	(2) Efficiency (%)	Emissions (3) (1b/ton)	Emissions (4) (1b/ton)		Two Scenarios	tos (5)
Particulate Matter	VIA		PMG	AIA	MA	1	ATA		- 47	27 004
atticulate Mattel	27		LINI	Y Z	YN.	VNI	Y.	9.3	- 42	4:00 (o
Carbon Monoxide	Y V V		8	NA	NA	NA	0.403 (7)		0.403	2.08
Chloride (CI)	318.0		HCI	327.1	95	16.4	NA		- AN	4.00 (9
Fluoride (F)	16.1		HF	17.0	95	0.849	NA		0.849	4.38
Nitrate (NO3)	2.1		HN03	2.1	8	0.213	NA		0.213 1	1.10
Nitrogen (N)	168.4		NO2	553.0	0	553.0	NA		NA -	40.92 (9)
Phosphorus (P)	32.4		PO4	32.4	99.4	0.194	0.038		0.194	1.00
Sulfate (SO4)	94.0		H2SO4	0.96	66	1.0	NA		1 96.0	4.96
Sulfur (S)	533.9		205	1,066.6	86	106.7	Z		- YZ	29.00 (9

⁽¹⁾ Based upon the maximum of the averages emission concentration and the maximum of the maximums emission concentration from historical test data (tons/yr) and for expected and maximum emissions, respectively, multiplying by 2000 lbs/ton / ((10,325 lbs of waste/hr / 2000 lbs/ton) x 7,000 operating hrs/yr).

Based upon the waste feed rate x the molecular weight of the converted pollutant the molecular weight of the orginal pollutant. (3) Controlled Emissions = Uncontrolled Emissions x (1- % Removal Efficiency)

Based upon the average emission during the test burn by T-Thermal in Aug. 1990. 4

⁽⁵⁾ The maximum values were used for all pollutants, except NO2, for which the test burn data was used, and as otherwise noted.

⁽⁶⁾ Particulate matter is based upon Colorado regulations of 0.08 gr/dscf @ 12% CO2.

⁽⁷⁾ Carbon monoxide is based upon Federal regulations of 100 ppm.(8) Based upon February 1989 test burn which tested for the specific compounds.(9) Based upon vendor performance guarentees.

TABLE 5A-14 MAXIMUM METAL EMISSIONS BASED ON TEST BURN EMISSIONS & WASTE STREAM DATA

		Based on Waste	Stream Data			Based upon Test Burn Data	Maxii Emiss	
Metals	Uncontrolled Emissions (1)	Metals to APCD (2)	Removal Efficiency		Controlled Emissions (4)	Controlled Emissions (5)	Betwee Two Sco	en the
	(lb/ton)	(%)	(%)	,	(lb/ton)	(lb/ton)	(lb/ton) l	(lb/hr)
Aluminum	8.9E-03	100	97	(6)	2.66E-04	1.38E-03	1.38E-03	7.14E-03
Antimony	1.8E-03	100	97	,	5.32E-05	7.46E-05	7.46E-05 I	3.85E-04
Arsenic	1.6E-02	100	97		4.80E-04	1.62E-05	4.80E-04 I	2.48E-03
Barium	6.5E-04	100	99.4		3.87E-06	1.91E-05	1.91E-05 I	9.87E-05
Beryllium	NA	100	99.4		NA	3.99E-06	3.99E-06 I	2.06E-05
Boron	3.4E-02	100		(8)	1.02E-03	2.01E-03	2.01E-03 I	1.04E-02
Cadmium	4.0E-03	100	97	1-7	1.20E-04	1.86E-06	1.20E-04 I	6.20E-04
Calcium	5.4E-01	100	97	(7)	1.62E-02	5.50E-03	1.62E-02 I	8.36E-02
Chromium	3.1E-03	100	99.4		1.84E-05	3.41E-06	1.84E-05 I	9.49E-05
Cobalt	1.5E-03	100	97	(6)	4.50E-05	1.70E-06	4.50E-05 1	2.32E-04
Copper	1.2E+01	100	97	(6)	3.52E-01	6.65E-03	3.52E-01 I	1.82E+00
Iron	1.5E-01	100	97	(6)	4.50E-03	1.15E-03	4.50E-03 1	2.32E-02
Lead	4.0E-03	100	97	, , ,	1.20E-04	8.44E-05	1.20E-04 I	6.20E-04
Lithium	NA	100	NA		NA	1.15E-05	1.15E-05 I	5.92E-05
Magnesium	4.4E-01	100	97	(6)	1.32E-02	4.76E-03	1.32E-02 I	6.81E-02
Manganese	1.2E-02	100	97	(6)	3.48E-04	3.84E-04	3.84E-04 I	1.98E-03
Mercury	5.5E-04	100	85		8.23E-05	5.72E-06	8.23E-05 I	4.25E-04
Molybdenum	4.2E-03	100	85	(6)	6.29E-04	5.72E-06	6.29E-04 I	3.25E-03
Nickel	5.5E-02	100	97	(6)	1.65E-03	3.59E-05	1.65E-03 I	8.49E-03
Potassium	4.7E+00	100	97	(7)	1.40E-01	5.76E-04	1.40E-01 I	7.24E-01
Selenium	3.4E-03	100	85	(6)	5.09E-04	2.92E-04	5.09E-04 I	2.63E-03
Silicon	NA	100	NA		NA	1.05E-02	1.05E-02 I	5.41E-02
Silver	8.8E-04	100	99.4		5.27E-06	5.72E-06	5.72E-06 I	2.96E-05
Sodium	NA	100	97	(9)	NA	3.08E+01	3.08E+01 I	1.59E+02
Strontium	NA	100			NA	3.13E-06	3.13E-06 I	1.62E-05
Thallium	NA	100	97		NA	4.74E-04	4.74E-04 I	2.45E-03
Tin	NA	100	97	(7)	NA	4.87E-04	4.87E-04 I	2.51E-03
Titanium	NA	100	97	(6)	NA	5.95E-06	5.95E-06 I	3.07E-05
Vanadium	4.8E-03	100	97	(6)	1.45E-04	1.19E-06	1.45E-04 I	7.49E-04
Yttrium	NA	100	97	(8)	NA	1.18E-06	1.18E-06 l	6.11E-06
Zinc	6.2E-02	100	97	(6)	1.85E-03	1.19E-03	1.85E-03 I	9.54E-03

- (1) Based upon the maximum of the maximums emission concentration from historical test data (tons/yr) and multiplying by 2000 lbs/ton / ((10,325 lbs of waste/hr / 2000 lbs/ton) x 7,000 operating hrs/yr).
- (2) Percent of metal volatilization is estimated at 100% for all metals in liquid waste based on EPA Guidance on Metals and HCl Controls from Hazardous Waste Incineration, Draft Final Report, August 1989, Table III-9.
- (3) Based on EPA Guidance (note 2), Table III-8. The removal efficiency of the wet scrubber in series with the Venturi scruber at 20" of water was calculated. This removal efficiency was used in series with the removal efficiency of the Venturi scrubber at 60" of water.
- (4) Controlled Emissions = Uncontrolled Emissions x % Metals to APCD x (1- % Removal Efficiency)
- (5) Based upon the average emission during the test burn by T-Thermal in Aug. 1990.
- (6) Assumed removal efficiency of antimony, arsenic, cadmium, lead and thallium or of mercury per footnote (3), based on scrubber efficiency similar to those compounds in "Hazardous Waste Stream Trace Metal Concentrations and Emissions", Mitre Corp., U.S.EPA Office of Solid Waste, November 1983.
- (7) Similar to copper, cobalt and titanium in showing no concentration with particle size per Davision, Natusch, et al. "Trace Elements in Fly Ash", Environmental Science & Technology, Vol. 8, No. 13, December 1974. Therefore, assumed scrubber efficiency similar.
- (8) Similar emissions to feed ratio to that of iron and aluminum per Kaakinen Jorden, et al., "Trace Element Behavior in Coal-Fired Power Plant", Environmental Science & Technology, Vol. 9, No. 9, September 1975. Therefore, assumed scrubber efficiency similar.
- (9) Similar control efficiency to that of calcium, iron and potassium per Klein, Andren, et al., "Pathways of Thirty-seven Trace Elements Through Coal-Fired Power Plant", Environmental Science & Technology, Vol. 9, No. 10, October 1975. Therefore, assumed scrubber efficiency similar.

5A.5 SUMMARY OF EMISSIONS

Table 5A-15 is a compilation of all the emission estimates developed in this section including the organic emission estimates, which were based on the analysis in Appendix 5B. The emissions were converted to mass-per-unit time using the projected waste feed rate (10,325 lb/hr) and annual operating schedule (7,000 hours per year) for the RMA facility. These rates were used to determine the predicted ambient concentrations and deposition rates.

TABLE 5A-15 EMISSION RATES FOR ROCKY MOUNTAIN ARSENAL BASIN F WASTE SUBMERGED QUENCH INCINERATOR

Category/	Base Case (a)			<u>s</u>		
Pollutant	(ton/yr)	(lb/hr)	(g/sec) (c)	(ton/yr)	(lb/hr)	(g/sec) (c)
Dioxins/Furans						
U.S. EPA TEF	4.16E-09	1.19E-09	1.50E-10	6.63E-08	1.90E-08	2.39E-09
<u>Metals</u>						
Aluminum	1.80E-02	5.15E-03	6.49E-04	2.50E-02	7.14E-03	8.99E-04
Antimony	6.34E-04	1.81E-04	2.28E-05	1.35E-03	3.85E-04	4.85E-05
Arsenic	3.59E-03	1.03E-03	1.29E-04	8.67E-03	2.48E-03	3.12E-04
Barium	8.79E-04	2.51E-04	3.16E-05	8.79E-04	2.51E-04	3.16E-05
Beryllium	3.66E-05	1.05E-05	1.32E-06	7.20E-05	2.06E-05	2.59E-06
Boron	2.68E-02	7.65E-03	9.63E-04	3.63E-02	1.04E-02	1.31E-03
Cadmium	5.62E-04	1.61E-04	2.02E-05	2.17E-03	6.20E-04	7.81E-05
Calcium	1.54E-01	4.39E-02	5.53E-03	2.93E-01	8.36E-02	1.05E-02
Chromium	2.47E-04	7.05E-05	8.88E-06	3.32E-04	9.49E-05	1.20E-05
Cobalt	7.89E-04	2.25E-04	2.84E-05	8.13E-04	2.32E-04	2.93E-05
Copper	3.35E+00	9.59E-01	1.21E-01	6.35E+00	1.82E+00	2.29E-01
Iron	4.77E-02	1.36E-02	1.72E-03	8.13E-02	2.32E-02	2.29E-01 2.93E-03
Lead	1.12E-03	3.21E-04	4.05E-05	2.17E-03	6.20E-04	7.81E-05
Lithium	1.10E-04	3.14E-05	3.96E-06	2.07E-04	5.92E-05	7.45E-06
Magnesium	1.43E-01	4.08E-02	5.14E-03	2.39E-01	6.81E-02	
Manganese	6.16E-03	1.76E-03	2.22E-04	6.93E-03		8.59E-03
Mercury	9.93E-04	2.84E-04	3.57E-05	6.93E-03 1.49E-03	1.98E-03	2.50E-04
Molybdenum	1.10E-02	3.15E-03	3.97E-04		4.25E-04	5.35E-05
Nickel	2.86E-02	8.18E-03		1.14E-02	3.25E-03	4.09E-04
Potassium	1.14E+00		1.03E-03	2.97E-02	8.49E-03	1.07E-03
Selenium		3.25E-01	4.09E-02	2.54E+00	7.24E-01	9.13E-02
Silicon	9.20E-03	2.63E-03	3.31E-04	9.20E-03	2.63E-03	3.31E-04
Silver	1.58E-01	4.52E-02	5.70E-03	1.89E-01	5.41E-02	6.81E-03
Sodium	9.52E-05	2.72E-05	3.43E-06	1.03E-04	2.96E-05	3.72E-06
Strontium	6.49E+01	1.85E+01	2.34E+00	5.56E+02	1.59E+02	2.00E+01
Thallium	3.66E-05	1.05E-05	1.32E-06	5.66E-05	1.62E-05	2.04E-06
Tin	9.25E-03	2.64E-03	3.33E-04	9.25E-03	2.64E-03	3.33E-04
	8.09E-03	2.31E-03	2.91E-04	8.79E-03	2.51E-03	3.16E-04
Titanium	6.10E-05	1.74E-05	2.20E-06	1.07E-04	3.07E-05	3.87E-06
Vanadium	2.34E-03	6.68E-04	8.42E-05	2.62E-03	7.49E-04	9.44E-05
Yttrium	NA	NA	NA	2.14E-05	6.11E-06	7.70E-07
Zinc	1.63E-02	4.65E-03	5.86E-04	3.34E-02	9.54E-03	1.20E-03
Denomia.						
organics 1,1-Dichloroethene	/ FOE OF	4.0000.00				
	6.53E-07	1.87E-07	2.35E-08			
1,2-Dichloroethene	5.99E-08	1.71E-08	2.16E-09	1		
1,2-Dichloropropane	1.60E-06	4.58E-07	5.77E-08			
1,3-Dimethylbenzene	2.09E-07	5.96E-08	7.51E-09			
Acetone	5.61E-06	1.60E-06	2.02E-07			
Ammonia	1.68E-01	4.79E-02	6.03E-03			
Benzene	3.82E-07	1.09E-07	1.37E-08			
Bromomethane	2.60E-08	7.43E-09	9.36E-10			
Carbon Tetrachloride	4.34E-07	1.24E-07	1.56E-08			
Chloroferene	1.15E-07	3.29E-08	4.15E-09			
Chloroform	7.50E-07	2.14E-07	2.70E-08			
Dicyclopentadiene	1.60E-07	4.57E-08	5.76E-09	1		
Ethylbenzene	2.38E-07	6.79E-08	8.55E-09			
Methanol	1.38E-02	3.94E-03	4.96E-04			
Methylene Chloride	7.29E-06	2.08E-06	2.62E-07	1		
Tetrachlorethene	3.93E-07	1.12E-07	1.42E-08			
Toluene	6.83E-08	1.95E-08	2.46E-09	1		
Trichloroethene	1.28E-06	3.66E-07	4.62E-08	1		
Xylene	7.59E-07	2.17E-07	2.73E-08			
4-Chlorophenylmethylsulfone	3.94E-04	1.13E-04	1.42E-05			
4-Chlorophenylmethylsulfoxide	4.86E-05	1.39E-05	1.75E-06	1		

TABLE 5A-15 EMISSION RATES FOR ROCKY MOUNTAIN ARSENAL BASIN F WASTE SUBMERGED QUENCH INCINERATOR (continued)

Category/ Pollutant	(ton/yr)	Base Case (a) (lb/hr)	(alass) (-)	/tt-\	Sensitivity Case (b)	
	(tongr)	(tojnir)	(g/sec) (c)	(ton/yr)	(lb/hr)	(g/sec) (c)
Organic						
4-Nitrophenol	3.02E-05	8.62E-06	1.09E-06			
Aldrin	3.63E-06	1.04E-06	1.31E-07			
Atrazine	7.95E-07	2.27E-07	2.86E-08			
Hydrogen Cyanide	3.38E-06	9.66E-07	1.22E-07			
Dieldrin	7.44E-07	2.13E-07	2.68E-08			
Diisopropyl Methylphosphonate	1.25E-04	3.58E-05	4.50E-06			
Dimethyl Methylphosphonate	3.09E-03	8.83E-04	1.11E-04			
Dimethyldisulfide	3.61E-04	1.03E-04	1.30E-05			
Dithiane	1.26E-07	3.61E-08				
Endrin	7.23E-07	2.07E-07	4.55E-09			
Hexachlorocyclopentadiene	6.69E-06		2.60E-08			
Isodrin		1.91E-06	2.41E-07			
Malathion	1.88E-06	5.38E-07	6.78E-08	1		
	2.93E-06	8.36E-07	1.05E-07	-		
Parathion	3.98E-07	1.14E-07	1.43E-08	İ		
Supona	1.23E-06	3.51E-07	4.42E-08			
Urea	5.17E-01	1.48E-01	1.86E-02			
Vapona	3.22E-06	9.19E-07	1.16E-07			•
p,p-DDE	3.94E-07	1.13E-07	1.42E-08			
p,p-DDT	1.23E-06	3.51E-07	4.42E-08	1		
				Í		
YC 11 C 14 T						
PICs with Specific Precursors						
Vinyl Chloride	7.07E-04	2.02E-04	2.55E-05	1		
Methyl Chloride	7.03E-04	2.01E-04	2.53E-05			
Styrene	7.05E-04	2.01E-04	2.54E-05			
Phenol	3.81E-03	1.09E-03	1.37E-04	ļ		
Benzaldehyde	7.32E-04	2.09E-04	2.64E-05	ĺ		
Benzoic Acid	3.54E-04	1.01E-04	1.27E-05			
Acetonitrile	3.38E-06	9.66E-07	1.22E-07			
Acrylonitrile	3.38E-07	9.66E-08	1.22E-08			
Cyanogen	3.38E-08	9.66E-09	1.22E-09			
Hexachlorobenzene	2.40E-06	6.87E-07	8.66E-08			
Pentachlorobenzene	1.07E-06	3.07E-07				
Tetrachlorobenzene	4.54E-07		3.87E-08			
Trichlorobenzene		1.30E-07	1.63E-08			
Dichlorobenzene	2.41E-07	6.89E-08	8.68E-09			
	1.29E-07	3.68E-08	4.64E-09			
Biphenyl	3.56E-04	1.02E-04	1.28E-05	1		
4-Chlorobiphenyl	2.38E-03	6.79E-04	8.55E-05	1	•	
4,4-Chlorobiphenyl	4.47E-05	1.28E-05	1.61E-06			
Benzonitrile	3.38E-07	9.66E-08	1.22E-08			
Pyridine	3.38E-08	9.66E-09	1.22E-09			
Carbazole	6.76E-08	1.93E-08	2.43E-09			
Quinoline	1.69E-07	4.83E-08	6.09E-09			
Cs without Specific Precursors						
Benzofuran	1.40E-03	4.01E-04	5.06E-05	1		
Dibenzofuran	7.02E-05	2.01E-05	2.53E-06	1		
Acenaphthalene	3.51E-04	1.00E-04				
Acenaphthene	3.51E-04		1.26E-05	}		
Fluoranthene		1.00E-04	1.26E-05			
Phenanthrene	2.11E-04	6.02E-05	7.58E-06	1		
	1.40E-04	4.01E-05	5.06E-06	1		
Pyrene	7.02E-05	2.01E-05	2.53E-06			
Fluorene	7.02E-05	2.01E-05	2.53E-06			
Benzo(a)pyrene	7.02E-05	2.01E-05	2.53E-06			
Dibenzo(a)anthracene	7.02E-05	2.01E-05	2.53E-06			
Chrysene	7.02E-05	2.01E-05	2.53E-06	1		

TABLE 5A-15 EMISSION RATES FOR ROCKY MOUNTAIN ARSENAL BASIN F WASTE SUBMERGED QUENCH INCINERATOR (continued)

Category/	Base Case (a)					Sensitivity Case (b)			
Pollutant	(ton/yr)		(lb/hr)	(g/sec) (c)	(ton/yr)		(lb/hr)	(g/sec) (c)	
Acid Gases & Other Compounds									
Particulate Matter	14.00	(d)	4.00	0.50	14.00		4.00	0.50	
Carbon Monoxide	4.71		1.35	0.17	7.29	(f)	2.08	0.26	
Hydrogen Chloride	4.73	(e)	1.35	0.17	14.00		4.00	0.50	
Hydrogen Fluoride	5.23		1.494	0.188	15.35	Ü	4.385	0.552	
Nitric Acid	3.85		1.10	0.14	3.85		1.10	0.14	
Nitrogen Dioxide	32.13		9.18	1.16	143.22	(2)	40.92	5.16	
Phosphate	1. <i>7</i> 7		0.51	0.06	3.51	Ü	1.00	0.13	
Sulfuric Acid	10.40		2.97	0.37	17.34		4.96	0.62	
Sulfur Dioxide	24.43	(e)	6.98	0.88	101.50	(g)	29.00	3.65	

- (a) These estimates are based upon the acceptable results during the test burn for dioxins/furans and the maximum of the acceptable test results or the maximum of the averages waste stream data for inorganics (including metals, acid gases and other compounds). The volatile and semi-volatile organic emissions are based upon Dellinger's analysis of the maximum of the averages wastestream data.
- (b) For metals: based upon the maximum value of the test results from the test burn, the maximum of the maximum values from the wastestream data, and the EPA Guidance Tier II limits for complex terrain.
 - For dioxins/furans: based upon the 95% confidence interval from WESTON's hazardous waste incinerator emissions database. For acid gases & other compounds: based upon the maximum value of the test results from the test burn and the maximum of the maximum values from the wastestream data.
- (c) Assuming 7000 operating hours per year.
- (d) Based upon Colorado's emission limitation of 0.08 gr/dscf @ 12% CO2.
- (e) Based upon the February 1989 test burn, which tested for the specific compound.
- (f) Based upon Federal emission limitation of 100 ppm.
- (g) Based upon vendor performance guarentees.

APPENDIX 5A

CITED REFERENCES

EPA (U.S. Environmental Protection Agency). 1989. <u>Guidance on Metals and HCI Controls from Hazardous Waste Incineration</u>, <u>Draft Final Report</u>. August, 1989.

Siebert, P.C., D.R. Alston, J.F. Walsh, and K.H. Jones. 1988. "Effects on Control Equipment and Operating Parameters on Municipal Solid Waste (MSW) Incinerator Trace Emissions." Paper 88-98.3 presented at the 81st Annual APCA Meeting, Dallas, Texas, 24 June 1988.

Siebert, P.C., D.R. Alston, and K.H. Jones. 1989. "Toxic Trace Pollutants from Incineration." Presented at the AIChE National Meeting, Philadelphia, Pennsylvania, 23 August 1989.

APPENDIX 5B

ESTIMATE OF ORGANIC MASS EMISSION RATES FROM INCINERATION OF BASIN F LIQUIDS

Estimate of Organic Mass Emission Rates from the Incineration of Basin F Liquids

prepared by:

Barry Dellinger, Ph. D. 10168 Atchison Rd. Spring Valley, OH 45370

for:

R. F. Weston Inc. Weston Way Westchester, PA 19380

October 27, 1990

Based on the estimated feed composition furnished by Mr. Paul Siebert of Weston Inc., an estimate of the organic emissions from the controlled incineration of Basin F liquids has been prepared. The difficulties in making accurate predictions of mass emission rates of organic pollutants is well documented. However, by making some reasonable assumptions it is possible to prepare an estimate of the <u>relative</u> emission rates of organic compounds, both Principal Organic Hazardous Constituents (POHCS) and Products of Incomplete Combustion (PICs). These relative emission rates can then be converted to absolute emission rates by "normalizing" these estimated emissions to actual measurements on the incinerator for a few selected compounds. When these measurements are not available, one can alternatively use the current EPA emissions regulations as a calibration technique.

The relative emission estimate identifies the theoretically most stable POHC, assuming its DRE to be 99.99% (the worst allowable case), the relative emission rate of every other POHC and PIC in the estimate may be ratioed to the emission rate of the most stable POHC to give calibrated emission rates for all of the potential emissions. These calibrated emission rates can then be used in conjunction with conventional risk assessment techniques to estimate the health risks due to the stack emissions.

The following paragraphs summarize the general scientific approach used to develop the relative emission rate data for POHCs and PICs. This is a very complex subject and a detailed discussion of the estimate of the emission rate for each compound is beyond the scope of this report. However, a short discussion of the emissions estimation procedure for several compounds of special interest based on various criteria is included. Polychlorinated dibenzo-p-dioxin and furans are not included in the emissions estimate because of their predicted ultra-trace yields for the compounds listed in the Basin F liquids.

At the conclusion of the report, a brief discussion of the results of this emissions estimate versus emissions measurements from other full scale facilities is presented. Appendix 1 presents the final emissions estimation results. The key to the table displays the actual calculation procedure used to obtain the relative emission rate estimates and the final calibrated or normalized emissions estimate. Appendix 2 contains the estimated PIC yields for input into the emissions estimate in Appendix 1.

BACKGROUND

Calculations and experimental observations have shown that the emissions of undestroyed, residual POHCs are kinetically, not thermodynamically controlled. [1,2] The destruction efficiency (DE) of POHCs is dominated by the temperature, time, and reaction atmosphere experienced by the POHCs in the high temperature zones of incinerators. Thus determination of the exact time, temperature, and reaction atmosphere history of all the molecules in an incinerator is necessary to determine the actual DE of a POHC. This type of information is, of course, not currently available. However, less information is required to estimate the relative DE of potential POHCS.

Simple conceptual and more complex computer models suggest that the gas-phase residence time, temperature, and reaction atmosphere in the post-flame or thermal zones of incinerators control the relative emissions of most POHCs. [3-5] The basic reasoning behind this is that all molecules entering the flame zone of an incinerator are essentially destroyed and only the small fraction of the material escaping the flame zone may be emitted for the facility. Various flame zone "failure modes" exist which may cause residual POHCs to be emitted. Once in the post-flame zone, gas-phase thermal decomposition kinetics controls the rate of POHC destruction and formation and destruction of PICs.

Calculations using available kinetic data indicate that the emissions observed from full scale incinerators are several orders of magnitude higher than those calculated using oxidation kinetics and residence times and temperatures anywhere near the mean values in the post-flame zone of the incinerator. [6] This suggests that oxygen depleted pathways must be responsible for most POHC and PIC emissions since the rate of POHC destruction is significantly slowed and the rate of PIC formation is increased under pyrolysis.

Even though the facility may be operating under nominally excess air conditions, poor mixing will result in oxygen-deficient pockets where the rate of POHC destruction is low and PIC formation is favored. Consequently, it is believed that gas-phase thermal stability under sub-stoichiometric oxygen conditions may be an effective predictor of POHC relative incinerability.

A recent study compared the incinerability predictions of several proposed POHC ranking methods with results of 10 pilot or full-scale test burns. [6] The ranking methods include heat of combustion, autoignition temperature, ignition delay time, flame failure modes, theoretical flame

mode kinetics, thermal stability of pure compounds under excess air conditions, thermal stability of mixtures under oxidative conditions, and thermal stability of mixtures under oxygen-starved conditions. Correlations of the prediction of the rankings with field results were poor except for thermal stability of mixtures under oxygen-starved conditions. Although the laboratory data base used to predict full-scale POHC DREs were very limited, statistically significant correlations in 7 of 10 cases were observed using this ranking approach. The results of this comparison along with theoretical considerations suggest that pyrolysis kinetics may be used to develop relative mass emission rate estimates (i.e. ranking of incinerability). Experimental studies have recently been undertaken to obtain stability data for Appendix VIII compounds using this approach. [7]

POHC STABILITY

In most general terms, the decomposition of a molecule can be initiated by either radical attack (i.e., bimolecular pathway) or by an internal redistribution of energy such that the molecule decomposes or rearranges (i.e., unimolecular pathway).

Unimolecular reactions can be further subclassified into bond homolysis, which involves breaking of the weakest bond, and concerted elimination, which involves an internal rearrangement and elimination of a stable species such as HCl, H2O, or CO2. [8]

An example of bond homolysis is carbon-chlorine bond rupture in carbon tetrachloride by reaction 1.

$$\xrightarrow{c} \rightarrow cc_g + c \qquad (rxn. 1)$$

This reaction involves breaking of a relatively low energy bond of approximately 70 kcal/mole. Other Appendix VIII organics such as nitroglycerine, tetranitromethane, hydrazine, methyl hydrazine, 1,1,dimethylhydrazine are documented to proceed by bond homolysis. Many other compounds such as difluorodichloromethane, hexachloroethane, and benzenethiol are expected to decompose largely by bond homolysis.

Concerted eliminations largely fall into two categories, four center processes and six-center processes. An interesting example of a four-center process is the decomposition of hexachlorocyclohexane depicted in reaction 2.

This pathway which results in ethylene and trichlorobenzene formation is expected to have a very low activation energy of about 55 kcal/mole. Practically any organic molecule with hydrogen and chlorine atoms on carbons connected by a single bond will undergo this type of process. Thus, species such as 1,1-dichloropropane, 2,2-dichloropropane; and 1,1,1-trichloroethane are known to undergo this process. Many other Appendix VIII organics are suspected of decomposing through this pathway.

The best documented examples of molecules undergoing six -center concerted elimination are secondary esters. An example of this process is the decomposition of diethyl phthalate shown in reaction 3.

These reactions have activation energies on the order of 45–50 kcal/mole and are consequently very fast. Almost all of the phthalates listed in Appendix VIII can decompose by this mechanism and are consequently considered quite fragile. Other classes of molecules are isoelectronic with organic esters and are suspected of proceeding by similar pathways. These types of compounds include phosphoric acid esters, sulfonates, some amides, and thioesters.

Other compounds may undergo more rare three-center processes. The best documented example of a possible three-center decomposition of an Appendix VIII molecule is the decomposition of chloroform shown in reaction 4.

$$chci_3 \longrightarrow \sum_{n=1}^{H--ci} \longrightarrow cci_2 + hci \qquad (rxn. 4)$$

Bimolecular reaction pathways involving radical attack may be largely subdivided into three classes; atom metathesis, electrophilic addition, and displacement. An example of an Appendix VIII organic suspected of decomposing by simple hydrogen abstraction is trichloroethylene. (see rxn. 5)

$$\frac{c_1}{c_2}c_2 - \frac{c_2}{c_1} + c_2 + c_3 \rightarrow \frac{c_1}{c_2}c_3 - c_3 \rightarrow c_4$$
 (FXR. 5)

The radical initiating the abstraction may in principle be any number of species; but under oxidative conditions, the hydroxyl radical is suspected of being the dominant reactive radical. Hydrogen atoms and chlorine atoms are suspected of playing a larger role under pyrolytic conditions. Some possible pathways may be eliminated on thermodynamic grounds. Halogenated alkyls (that cannot undergo bond homolysis or concerted elimination) may decompose by this mechanism.

Displacement reactions largely involve the substitutions of one radical for another. An example would be the displacement of a chlorine atom by a hydrogen atom in o-dichlorobenzene (see rxn. 6).

$$\bigcirc ^{\mathbf{C}_{\mathbf{I}}} \cdot \mathbf{H} \longrightarrow \bigcirc ^{\mathbf{C}_{\mathbf{I}}} \cdot \mathbf{E}_{\mathbf{I}} \qquad (rxn. 6)$$

The rate of this reaction would increase with increasing chlorine substitution. In the case of chlorobenzenes, if displacement by hydrogen atoms dominates over addition or abstraction by hydroxyl radical, the relative incinerability rankings would be reversed from that predicted from a mechanism based on hydroxyl radical attack.

PIC FORMATION MECHANISMS

From a purely chemical reaction kinetic viewpoint, one may classify known mechanisms of PIC formation into three general groups: 1) concerted

molecular eliminations, 2) radical-molecule reactions, and 3) radical-atom or radical-radical recombination reactions. As illustrated in Table 1, these mechanisms occur in different regions of the incinerator and can result in PICs of different structure and stability. Consequently, the nature of PICs formed and their potential destruction will be dependent on the different exposure conditions. The reaction rates for PIC formation processes increase from zero- to second-order in the radical concentration as one proceeds from mechanism 1 to mechanism 3. Thus, stoichiometry and elemental composition of the waste/fuel feed may significantly impact PIC yields for radical-molecule and radical-radical reaction pathways.

TABLE 1

DESCRIPTION OF HAZARDOUS WASTE INCINERATOR PIC FORMATION ZONES AND DOMINANT PIC FORMATION MECHANISMS

ZONE Preflame Zone	REACTION CONDITIONS T = 200-1000°C R.T. < 1 s [O2] = 0-50% EA®	PIC MECHANISMS ^a Mechanism 1 ^b Mechanism 2 ^c Mechanism 3 ^d
Flame Zone	T = 1000-1800°C R.T. < 1 s [O ₂] = 50% EA ^e	Mechanism 2 Mechanism 1 Mechanism 3
Postflame Zone (afterburner)	T = 600-1100°C R.T. = 1-3 s [O ₂] = 50-100% EA ^e	Mechanism 2 Mechanism 1 Mechanism 3
Cool Zone (APCD and stack)	T = 80-600°C R.T. = 2-20 s [O2] = 3-9%	Mechanism 3

^aPIC formation mechanisms listed in decreasing order of importance.

bConcerted molecular elimination reactions.

^CRadical-molecule reactions.

dRadical-atom or radical-radical recombination reactions.

eAverage values; localized deviations due to poor mixing can result in pyrolytic conditions.

Concerted molecular elimination to form stable PICs is a subclass of unimolecular reactions, viz., reactions only involving the parent compound. Since a second molecule or radical is not involved in the reaction, the PIC yield is dependent only upon time, temperature and the Arrhenius parameters of the molecular elimination reaction:

 $PIC YIELD = [PIC]/[POHC] \times 100 = 100[1-exp{-At exp (-Ea/RT)}] (Eqn. 1)$

where: [POHC] =concentration of the parent POHC; [PIC] = concentration of the PIC; t = reaction time; A = Arrhenius coefficient for the reaction; Ea = the activation energy for the reaction; T = the reaction temperature; and R = the universal gas constant.

Kinetic parameters for many reactions of this type have been tabulated. [8] The reaction rates for these molecules are all energetically favorable under incineration conditions with an extent of reaction greater than 99% at temperatures below 700 C. Because these PIC formation pathways occur so rapidly, the resultant PIC can experience almost the full gas-phase residence time experienced by the parent POHC. Thus, PICs produced by molecular elimination may undergo decomposition resulting in secondary PIC formation, or the reaction may proceed to the formation of thermodynamically stable combustion products.

Examples of bimolecular reactions that result in stable PIC formation are radical-molecule reactions. Once the decomposition of the parent POHC is initiated and a pool of reactive radicals is formed, radical-molecule reactions will usually be the dominant pathway for PIC formation. Hydroxyl (OH) radicals are the dominant reactive species under stoichiometric and oxidative conditions, while H atoms are the dominant reactive species under pyrolytic conditions. In addition, polyatomic organic radicals are also believed to play an important role in the formation of PICs that are of higher molecular weight than the parent compound.

Figure 1 illustrates the formation of several of the major products from the decomposition of chloroform (CHCl3) under 50% excess air conditions. Of particular interest is the formation hexachlorobenzene (C6Cl6) which is stable at high temperatures and is formed in percent yields. A mechanism has been proposed where CHCl3 rapidly forms C2HCl5, which decomposes to produce C2Cl4 and trichloroethene (C2HCl3). [9] This is followed by a radical-molecule mechanism resulting in the formation of C6Cl6 from C2HCl3 through experimentally observed intermediates such as dichloroacetylene (C2Cl2) and 1,3-hexachlorobutadiene (C4Cl6).

It should be recognized that since the rate of PIC formation is dependent on the concentration of both the radical and molecule reaction

partners, the observed PIC yield will generally increase with increasing waste feed rate. It is also important to note that many reaction steps may be required for the formation of given PIC, e.g. C6Cl6. Thus, the high-temperature, gas-phase residence time may be very short for such PICs, and their DE be much less than expected based on the full residence time in the incinerator. This is in contrast to PICs formed by concerted molecular elimination and suggests that for identical PIC formation yields for these pathways, the radical-molecule route will result in greater PIC emission rates.

Recombination reactions of radicals or atoms to form stable molecules are expected to occur only when molecule concentrations are very low or radical concentrations are high. These reaction rates are second order with respect to radical concentration and are temperature independent or exhibit small negative temperature dependencies. Since radical concentrations in the combustion zone are at least a factor of 100 times less than stable molecule concentrations, it can be shown that the overall forward reaction rate for radical-molecule reactions are typically greater than 50 times the radical-radical reaction rates at temperatures in excess of 1200 C. At lower temperatures, e.g. 800 C, due to the higher activation energy for the radical-molecular reactions, the ratio of rates decreases to about 10. Since product distributions are exponentially dependent on the

reaction rate, radical-molecule reactions are clearly kinetically favored routes as compare to recombination reactions at temperature greater the 600 C.

Once in the cool zone, temperatures may be sufficiently low that radical-molecule reactions with stable combustion endproducts now present in high concentrations, e.g. CO2, H2O, and HC1, occur at a much slower rate. As a result, radical-radical recombination routes may now become kinetically significant. If the temperature is rapidly quenched downstream of the post-flame zone, the concentrations of these radicals may be predicted from equilibrium calculations at the temperature just upstream of the quenching boundary. With this information, the recombination product concentrations downstream of the quenching boundary can be generally related to the predicted radical concentrations. Once formed, these molecules are not subjected to high temperatures and may exit the incinerator undestroyed.

SPECIFIC EXAMPLES FOR THE BASIN F LIQUID

Several specific examples have been selected for more detailed discussion of their origin and fate for the Basin F liquid. These compounds were selected to be of interest due to 3 factors: toxicity, high predicted relative mass emission rate, and prevalence in emissions from other incinerators. A brief discussion of the organic mass emissions estimate follows.

<u>Hexachlorobenzene</u> - Once formed, hexachlorobenzene is expected to be a very stable compound due to its resistance to oxidative attack by hydroxyl radical. [4] It has also been shown to be formed from the thermal degradation of chloroform, carbon tetrachloride, and tetrachloroethene in laboratory studies [8,9] A simple mechanism for its formation from chloroform was delineated in the previous paragraphs of this report. The highly chlorinated pesticides Aldrin, Dieldrin, Endrin, hexachlorocyclopentadiene, and Isodrin are expected to form hexachlorobenzene in moderate yields from a primarily unimolecular mechanism.

Penta-, tetra-, tri-, and di-chlorinated benzenes - The chlorobenzenes are formed primarily through the same mechanisms as hexachlorobenzene. The hexachlorobenzene initially formed is successively dechlorinated by the favorable displacement of chlorine by hydrogen atoms. For trichlorobenzene and dichlorobenzene, additional routes for formation are available from molecular growth pathways from 1,1-dichloroethene and 1,2-dichloroethene.

<u>Vinyl Chloride</u> - Vinyl chloride is expected to be formed from a number of the waste feed components in relatively low yields. It is most

readily formed from 1,1-dichlorethene and 1,2-dichloroethene by chlorine displacement by hydrogen atoms.

Acetonitrile and Acrylonitrile - The stability of the nitrile radical is expected to be largely responsible for the formation of these compounds. The nitrile radical, which can be liberated by hydrogen abstraction from hydrogen cyanide, can readily recombine with methyl radicals or vinyl radicals in the cool zones of the incinerator to form acetonitrile and acrylonitrile, respectively.

Benzene - Benzene has been shown to be very stable under pyrolytic conditions. [7] Its estimated stability as a POHC was determined using actual laboratory data. Because of its kinetic and thermodynamic stability, it can be readily formed as a PIC from many sources. Its major route of formation in the waste is expected to be via a displacement reaction of vinyl, methyl, chloro and other substituent groups by hydrogen atoms from species such as styrene, toluene, xylene, chlorobenzene etc. In addition, a relatively large yield by unspecified pathways has been included for formation from the organic waste matrix. Mechanisms for its formation via molecular growth pathways which are generally analogous to that previously described for hexachlorobenzene can result in benzene formation from simple aliphatic and olefinic hydrocarbons. The yield used for this estimate is based on yields and mass emission rates found in full scale incineration studies. [1,10]

<u>Chlorobenzene</u> - The emission of chlorobenzene is predicted based on its stability as a POHC and potential for formation in relatively low yields from a number of components of this waste stream. The pesticides Supona, DDE, and DDT are expected to form chlorobenzene in high yields by simple displacement reactions of substuent groups by hydrogen atoms to directly form chlorobenzene. The only available mode for its destruction under oxygen starved conditions is chlorine displacement by hydrogen atoms which is very slow. The predicted stability is based on laboratory data.(7)

1.1-Dichloroethene - From laboratory studies, 1,1-dichloroethene is known to form from the thermal degradation of methylene chloride, tetrachloroethene, and trichloroethylene. It is also expected to be readily formed from Aldrin, Dieldrin, and Endrin. However, once formed it is not expected to be particularly stable. Its low pridected DE is primarily due to its very low feed rate in combination with a moderated PIC yield.

 $\underline{\text{Bromomethane}} \text{-} \text{All bonds in bromomethane are relatively strong and} \\ \text{its is generally resistant to radical attack. Its emission is primarily due to} \\ \text{its thermally refractive nature}.$

<u>Tetrachloroethene</u> - This compound has been previously observed in laboratory studies of the thermal degradation of carbon tetrachloride and chloroform in large yields. [9] in fact it is the major product from these compounds, and once formed it is expected to be very difficult to destroy.

Toluene - Toluene is a readily formed PIC from a variety of compounds. Its mechanism of formation is similar to that of benzene in that it is expected to proceed through fast molecular growth reactions. In addition, the benzyl radical is a very stable radical which might be expected to survive the combustion zones of the incinerator and form toluene in the cool zones by recombination with hydrogen atoms. Its primary mode of formation in this waste stream is expected to be very fast, favorable displacement reactions for 1,3-dimethylbenzene, chlorobenzene, ethylbenzene, and xylene. In these reactions hydrogen atoms would displace methy, chloro, ethyl, and vinyl substituents respectively.

Carbon Tetrachloride - Carbon tetrachloride is a relatively fragile POHC. Laboratory studies have shown that it is decomposed by greater than 99.99% DE at temperatures below 900 C. [7] Consequently, residual POHC emissions are not expected for this or any other moderately well operated incinerator. However, the trichloromethyl radical is a stable radical and can recombine with chlorine atoms in cool zones of the incinerator. For this waste stream, chloroform, methylene chloride, and tetrachloroethene are expected to be the major sources of carbon tetrachloride. Carbon tetrachloride has been demonstrated in laboratory studies to be formed in moderate yields from the thermal degradation of both chloroform and tetrachloroethene.

Acenapthalene, Acenaphthene, Fluoranthene, Phenanthrene, Pyrene, Fluorene, Benzo-[a]-pyrene, Dibenzo-[a]-Anthracene, and Chrysene - These nine polynuclear aromatic hydrocarbons (PNAs) have been commonly observed as emissions from full scale hazardous and municipal waste incinerators. [1] Their formation is through a mechanism similar to that described for benzene (and hexachlorobenzene) and generally involves addition of substituted vinyl radicals to olefinic substituents on already formed aromatics. These are complex mechanisms and it is difficult to predict their yields accurately. As a result yields and mass emission rate were based on full scale emission measurements and general principals of reaction kinetics. [1,7,10] The emission estimates for benzo-[a]-pyrene, dibenzo-[a]-anthracene, and chrysene are worst case estimates based on measured emission data of other PNAs, but are included because of their relatively high carcinogenicity.

EMISSION MEASUREMENTS AT FULL SCALE INCINERATORS

Full scale incinerator emissions measurements have resulted in measured PIC to POHC emission ratios of 1:1 to 3:1. Commonly observed PICs have been chloroform, carbon tetrachloride, bromoform, other brominated and chlorinated methanes, trichloroethane, trichloroethylene, and various phthalates, benzene, and toluene. [1] The emissions of such

compounds as chloroform, bromoform, 1,1,1-trichloroethane and diethyl phthalte appear puzzling at first because they are all known to be very fragile materials. However, the emissions of brominated compounds from incinerators which are not reported as burning brominated wastes is very suggestive of an alternative source of introduction of these pollutants.

In fact, it has been shown that many of these halogenated compounds are commonly found as contaminants in the scrubber inlet water. [1] Since they are very volatile, they can be volatilized by hot combustion gases and stripped into the flue gas. Trenholm has shown that in many cases the quantities of these compounds in the scrubber inlet water can account for all of the observed emissions. Phthalates are common plasticizers and can be easily introduced as sampling or analysis artifacts. They have been apparently anamolously observed air pollution studies. [10]

Since it appears that these compounds are not produced in the combustion system, they have not been included in the emissions estimate. Measurement or estimation of volatile halocarbons in the scrubber water must be made as a first step to estimating this potential source of emissions.

Footnotes to table - Estimate of Organic Emissions

- B,C. Compounds and feed rate furnished by R.F. Weston
- D. Based on actual laboratory generated experimental thermal decomposition data or extrapolated based on theory. DE (Thermal) is the destruction efficiency at 900 C achieved under laboratory non-flame conditions in a purolytic atmosphere
- E. Based on the assumption that 99% of each POHC passes through the flame and is completely destroyed. The DE of the remaining 1% which is destroyed in the post-flame zone is assumed to be equal to DE (Thermal)

 Theoretical DE at 900C= 99.0000+0.01*DE(Thermal)
- F. Emission Rate of POHC=Feed Rate*(1-Theoretical DE at 900C/100)
- G. Emission Rate as PIC is based on the data included in the PIC estimate tables. The formation of each POHC as a PIC from every other POHC has been estimated. Also the contribution to PIC formation of poorly characterized reactions involving the waste feed as a whole have been included. Emission rates of other PICs have also been included at the bottom of the table.
- H. Emission Rate as POHC and PIC= Emission Rate POHC+Emission Rate PIC
- Effective Theoretical DE of POHC=100*(1-Emission Rate as POHC and PIC/Feed Rate)
- J. Assumes that the incinerator achieves 99.99% DRE for tetrachioroethene which is a likely POHC selection. Phenol and phenanthrene had a slightly lower predicted relative DREs due to their very low feed rate and propensity for PIC formation. However, these compounds would not be recommended for POHC trial burn selection because of their possible formation as a PIC from fuel combustion and other poorly characterized sources in the waste feed. Furthermore selection of tetrachloroethene (as opposed to phenol or phenanthrene) which has a higher un-normalized DE, results in a higher predicted emission rate for all the compounds after normalization. Thus selection of tetrachloroethene as the POHC for normalization represents a conservative, worst case approach to the risk assessment. Normalized Emission Rate=Emission as POHC and PIC*(0.0001/0.0514812)
- K. Normalized DE=100*(1-Normalized Emission Rate as POHC and PIC/ Feed Rate)

REFERENCES

- A. Trenholm, P. Gorman, and G. Jungelaus, *Performance Evaluation of Full Scale Incineration*, MRI Report under EPA contract 68-02-3177.
- 2. W. Tsang and W. Shaub, "Chemical Process in the Incineration of Hazardous Materials," *Detoxification of Hazardous Waste*, J. Exner, ed., Ann Arbor, 1982, pp. 41–59.
- W. Clark, M. Heap, W. Richter, and W. Seeker, "The prediction of Liquid Injection Hazardous Waste Incinerator Performance," ASME/AICHE 22nd National Heat Transfer Conference, 1984.
- 4. B. Dellinger, J. Torres, W. Rubey, D. Hall, J. Graham, and R. Carnes, *Haz. and Haz. Mat.*, 1, No. 2, 1984, pp. 137-157.
- M. Graham, P. Taylor, and B. Dellinger, "A Model Study of Vaporization and Thermal Oxidation of a Multicomponent Hazardous Waste Droplet," presented at ESS-CI, 1986.
- B. Dellinger, W. Rubey, D. Hall, and J. Graham, Haz. Waste and Haz. Mat., 3, No. 2, 1986, pp. 139-150.
- 7. P. H. Taylor and B. Dellinger, "A Thermal Stability Based Ranking of Hazardous Organic Compound Incinerability," Proceedings of the International Symposium on Incineration of Hazardous, Municipal, and other Wastes, Palm Springs, CA 1987.
- 8. S. W. Benson and H. E. O'Nea1, *Kinetic Data on Gas Phase Unimolecular Reactions*, NSRDS-NBS 21, February 1970.
- B. Dellinger, et. al., "Products of Incomplete Combustion from the High -Temperature Pyrolysis of Chlorinated Methanes," Presented at the 195th National Meeting of the American Chemical Society, Toronto, Ontario, Canada, June 1986.
- 10. B. Dellinger, M. Graham, and D. Tirey, *Haz. Waste and Haz. Mat.*, 3, No. 2., 1986, pp. 139-150.
- 11. W. A. Rubey, et al., *Chemosphere*, 14, No. 10, 1985, pp. 1483-1494.

Appendix 1

Estimate of Organic POHC and PIC Mass Emission Rates from the Incineration of Basin F Liquids

			ced Ra		Theoretica	on Rate	22 COLSS-CE T	<u>u</u>
2	4	Compound	(tons/gr)D	E (Thermal)	at 900 C (%	of POHC (tons/yr)	as PIC (tons/	<u> </u>
o 4	-	- Dichlaroethene	5E-0	9	566.66	5306-0	2.561E	-07
	-	2 - Dichlaraethene	5.99E-0	0 0 0 0	666.66	.9906-1	2.686	
ع ا	_	- Dichlaratranana)E-0	9	505 55	.600E-0	0.000	o
<u></u>		3-Dimethulbenzene	2.09E - 0	Q,	000.00	.090E-0	1.406	0
. &	-3	Acetone	E-0	9	565 56	.610E-0	3000.0	0
6	6 Amr	nonia	1.68E	0	000.66	30E+0	0.000E	0
0		Benzene	3.82E-0	<u> </u>	99.510	872E-0	7.045	0
=		Bromomethane	2.60E-0	0	026.66	800E-0	7.029	
· N	5	bon Tetrachloride	4.34E-0	0	666 66	340E-0	2.906	0
М		orobenzene	1.15E-0	0.0	006.66	150E-0	3.700E	0
4	11 Chi	oroform	7.50E-0	o,	666.66	500E-0	2.894E	0
2	12 Dic	uclopentadiene	1.60E - 0	o o	666.66	600E-0	0.000E	
9	13 Eth	Ethulbenzene	2.38E-0	o o	666.66	380E-0	2.109E	
_		hanol	1.38E+0	o,	99,999	380E-0	7.029E	
8	15 Met	Methulene Chloride	7.29E-0	σ	666.66	290E-0	7.034E	
6	••••••	rachloroethene	3.93E-0	9	666.66	930E-0	2.802E	
20	·	Toluene	6.83E-0	S S	266.66	644E-0	3.516	0
7	<u> </u>	richloroethene	1.28E-0	o o	666.66	400E-0	8.298E	
22	•	Xulene	7.59E-0	O,	666.66	795E-0	1.406E	$\overline{}$
23	····	4-Chlorophenylmethylsulfone	3.94E+0	o o	666 66 66	940E-0	0.000	0
₹	21 4-0	Shlorophenylmethylsulfoxide	4.86E-0	ტ ტ	665.66 6	860E-0	0.00	9
25	•	4-Nitrophenol	3.02E-0	O,	0 0 0 0 0	020E-0	0	9
26	•••••	Aldrin	3.63E-0	o,	656.65 656	630E-0	0.00	9
27		Atrazine	7.956-0	o,	656 66 6	950E-0	00.0	약
28	····	Hudrogen Cusnide	3.386-0	<u> </u>	99.010	346E-0	0.000E	0
29	26 Die	Dieldrin	7.44€-	o,	565 56	440E-0	0.000E	9
0	÷	Diisopropul Methulphosphonste	1.25E+0	9	666.66	250E-0	3000.0	0+
31	·····	Dimethyl Methylphosphonate	3.09E+0	66.66	666666	3.090E-0E	000E	-
32	·	Dimethyldisulfide	3.61E+0	Q.	666.65 5	610E-C	0.000E	0
33	:	Dithiane	1.26E-0	o,	565'56	260E-0	0.000	
3.4	31 End	Endrin	7.23E-0	Q.	666 66	230E-C	0.000	9
35	<u>:</u>	Hexachlorocyclopentadiene	6.69E-0	Ω, O,	566 66	0-3069	00.0	0
9	33	lsodrin	1.88E-0	o.	0.00 0.00	830E-C	000	7
37	:	Malathion	93E-0	g.	566.66 66	930E-C	0.000E	-
33	35 Par	Parathion	0-386	O,	566.66	3-3086	0000	7
25.0	36 Sup	Supona	23E-0	g,	00000000000000000000000000000000000000	230E-C	0000	9
9	37 Urea	Q er	<u>~</u>	0	5 5 5 5 5	1.70E-C	0.000E	0
7	38 43	Vapona	22E-0	o.	366'66	220E-0	0.00	7
42	39 p.p	p,p-DDE	946-0	o.	560.56	9401:-0	0.70	9
24		21.1	A		*	ALC: 140 A.S. Dell. 34		1

44 HCs With Specific Precursor 45 Vinyl Chloride 46 Vinyl Chloride 47 Methyl Chloride 49 Phenol 50 Benzaldehyde 51 Benzaldehyde 52 Acrylonitrile 53 Acrylonitrile 54 Cyanogen 55 Hexachlorobenzene 56 Acrylonitrile 60 Biphenyl 61 4-Chlorobiphenyl 62 4,4'-Chlorobiphenyl 63 Benzonitrile 64 A,4'-Chlorobiphenyl 65 Carbazole 65 Quinoline 65 Benzonitrile 66 Quinoline 67 Puridine 69 Benzofuran 70 Dibenzofuran 71 Acenaphthialene 72 Acenaphthene 73 Acenaphthene 74 Phenanthrene	PICs With Specific Precursors Vinyl Chloride Methyl Chloride Styrene Styrene Benzaldehyde Benzaldehyde Benzolc Acid Acetonitrile Acylonitrile Cyanogen Hexachlorobenzene Tetrachlorobenzene Dichlorobenzene Dichlorobenzene Biphenyl 4-Chlorobiphenyl 4-Chlorobiphenyl Benzonitrile			7.07E-04 7.036E-04 7.036E-04 7.331E-04 5.380E-05 5.380E-06 1.073E-06 1.073E-06
				24 55 25 35 35 35 35 35 35 35 35 35 35 35 35 35
				24 5 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				24 50 25 55 55 55 55 55 55 55 55 55 55 55 55
	\			8 K R K K K K K K K K K K K K K K K K K
				24 5 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
				24 50 24 50 50 50 50 50 50 50 50 50 50 50 50 50
				24 55 0 25 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
				2
				380E-0 299E-0 236E-0 286E-0 287E-0
				299E-0 073E-0 530E-0 287E-0
				073E-0 530E-0 408E-0 287E-0
				530E-0 408E-0 287E-0
				287E-0
				287F-D
			•••	564E-0
				3766-0
				471E-0
				380E-0
		•••		380E-0
				760E-0
		-		690E - 0
	PICs Without Specific Precursor	**		
O Dibenzofuran Acensphthaler Acensphthene Fluoranthene Phenanthrene				.406E-0
2 Acensphthaler 3 Acensphthene 4 Phenanthrene				.029E-0
2 Acenaphthene 5 Fluoranthene 4 Phenanthrene	Je L			5146-0
5 Fluoranti 4 Phenanth 5 Durens				5146-0
Phenanth		•		0-3601
Chicago C				1.406E-04
				.029E-0
Flore				.029E-0
77 Benzo-[a]-pyrene	elle	- 10 mm		.029E-0
78 Dibenzo-[a]-anth	[a] -anthracene	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.029E-0
				.029E-0

_	n Kate es			AND REAL PROPERTY AND REAL PRO
POHC	ind PIC (tons	DE at 900 C (%)	Rate (tons/yr)	9
23			····	
4	.627E-0	6		0.0
2	92E-0	9.955	.2306-1	8
	.600E-0	9 9 9	1086-1	0.00
_	.406E-0	3.273	.731E-0	999
	.610E-0	656 G	090E - 1	0.0
6	680E+0	9.000	.263E-0	9
0	232E-0	1.067	.405E - 0	9
-	7.0375-05	2.93	36	9
2	9496-0	9993	.728E-1	0.0
20	711E-0	7.726	0-360	9
4	.644E-0	9999	.078E-1	0.0
S	600E-0	999	1086-1	00.0
9	1096-0	1.139	0-3960	9
7	.409E-0	066 b	33E-0	0.00
8	.042E-0	9.903	68E-0	0.00
6	.841E-0	9.927	.519E-1	0
0	516E-0	8.518	830E-0	9
_	9386-0	9.993	736E-1	0.00
2	0 -3 9	98.1473	2.731E-08	6
ю	.940E-0	9,999	.653E-1	
ţ	.860E-0	9,999	.440E-1	ō o
ιυ	.020E-	999	.866E-1	
9	.630E-0	9,999	.051E-1	
7	9506-0	9999	.544E-1	0
80	.346E-0	99.010	.500E-0	99.999
ō	.440E-0	566 66	445	
9	.250E-0	5666	.428E-1	
-	0-3060:	666.66	.002E-0	100.000
¢.j	.610E-0	555 55	.012E-1	100.000
M	.260E-0	656.66	47E-1	100.000
4	.230E-0	666.65	문	00
មា	.690E-0	656.66	300E-1	100 000
v.	.880E-0	556.65	652E-1	100.000
~	النا	566.66	5.691E-12	100 000
0 72	.980E-0	556 55	.731E-1	100.000
6	.230E-0	55555 55	389E-1	100 000
9	170E-0	66666	0046-0	000 001
_	ÜE-0	06.66	6.255E-12	100 000
N	. 150E	ဘ	<i>⊙</i> .	O)
M	230E-	0.00	2,3896-12	<u> </u>

		_	_
7	AND MANAGEMENT OF THE PROPERTY	en de la companya de	at frame, partie is the property against the special special special special special special special special s
45			
	077E-0		-356
-	0.36E - 0		1 1 1 1
87	0546-0		70E-
D. T.	317E-0		出
3.0	331E-0	_	2.4E-
-	545E-0	Ó	356-
22	380E-0	9	
M M	380E-0	VO.	:990
40	380E-0	•	-399
52	299E-0		-390
56	0.73E - 0	N. O.	3SE-
75	530E-0	œ	99E-
58	408F~0	য	-1 -1 -1
59	287E-0	2	100
09	564E-0		72 72 73
- 9	2.376E-03	7	615E-07
62	471E-0	œ.	85E-
63	380E-0	ย์	66E-
64	380E-0	vo	-399
رة 15	760E-0		13E-
66	0-3069	M	8 3 3 E -
67			
68			
69	406E-0	Ø.	31E-0
70	0.296-0		65E-0
	5146-0	Ģ	27E-0
2	5146-0	Ö	27E-0
5.	109E-0	7	96E-0
7	406E-0	2	316-0
5	0-3670		65E-0
	0296-0	-	65E-0
2.2	7,029E-05		365E-US
72	029E-0		65E-0
C			0 667

Footnotes to table - Estimate of Organic Emissions

- B,C. Compounds and feed rate furnished by R.F. Weston
- D. Based on actual laboratory generated experimental thermal decomposition data or extrapolated based on theory. DE (Thermal) is the destruction efficiency at 900 C achieved under laboratory non-flame conditions in a pyrolytic atmosphere
- E. Based on the assumption that 99% of each POHC passes through the flame and is completely destroyed. The DE of the remaining 1% which is destroyed in the post-flame zone is assumed to be equal to DE (Thermal)

 Theoretical DE at 900C= 99.0000+0.01*DE(Thermal)
- F. Emission Rate of POHC=Feed Rate*(1-Theoretical DE at 900C/100)
- 6. Emission Rate as PIC is based on the data included in the PIC estimate tables. The formation of each POHC as a PIC from every other POHC has been estimated. Also the contribution to PIC formation of poorly characterized reactions involving the waste feed as a whole have been included. Emission rates of other PICs have also been included at the bottom of the table.
- H. Emission Rate as POHC and PIC= Emission Rate POHC+Emission Rate PIC
- Effective Theoretical DE of POHC=100*(1-Emission Rate as POHC and PIC/Feed Rate)
- J. Assumes that the incinerator achieves 99.99% DRE for the POHC which is most difficult to destroy. Toluene had the lowest Effective Theoretical DE of 47.8756% due to its very low feed rate and large propensity for PIC formation from a variety of compounds. Normalized Emission Rate=Emission as POHC and PIC*(0.0001/0.521244)
- K. Normalized DE=100*(1-Normalized Emission Rate as POHC and PIC/ Feed Rate)

Appendix 2

Estimate of PIC Yields for the Incineration of Basin F Liquids

	Á	В	C	Đ	E	F	Ğ
•			Feed Rate			PIC Yield (%)
2	#	Parent POHC	(tons/yr)	**************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
3				1,1-Dichloroe	1,2-Dichloree	1,2-Dichlorop	1,3-Dimethyl
4	1	1,1-Dichloroethene	6.53E-03				
5	2	1.2-Dichloroethene	5.99E-04				
6	3	1,2-Dichloropropane	1.60E-02	<u> </u>		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	* 4.6.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7	4	1,3-Dimethylbenzene	2.09E-03				
3	5	Acetone	5.61E-02		3		
9	6	Ammonia	1.68E÷03				. 54 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
10	7	: Genzene	3.82E-03		***********	44442	######################################
11	3	Bromomethane	2.60E-04				************
12	9	Carbon Tetrachloride	4.34E-03	å 	***********************************		
13	**********	Chlorobenzene	1.15E-03	*************	*********************	***************************************	***************************************
14	11	Chloroform	7.50E-03	A		***************************************	
15	*********	Dicyclopentadiene	1.60E-03	****************	***************************************	***************************************	A
16	15		2.38E-03	*************************		***************************************	
17	14	Methanol	1.38E+02				***************************************
18	15	Methylene Chloride	7.29E-02				
19	**********	Tetrachloroethene	3.93E-03		2.0 E- 04		***************************************
20	*********	Toluene	6.83E-04				1.0E-04
21		Trichloroethene	1.28E-02		5.0E-04		***********
22		Xylene	7.59E-03				
23		4-Chlorophenylmethylsulfone	3.94E+00		************		***************************************
24	21	4-Chlorophenyimethyisulfoxide	4.86E-01				
25	22	4-Nitrophenol	3.02E-01				***************************************
26	23		3.63E-02	*************	1.0E-04		
27		Atrazine	7.95E-03				
28		Hydrogen Cyamide	3.38E-02			,	
29	**********	**** * * * * * * * * * * * * * * * * * *	7.44E-03		1.0E-04		.,
30	27	Diisopropyl Methylphosphonate	1.25E+00				
31	28	Dimethyl Methylphosphonate	3.09E+01		***************************************		
32	29	Dimethyldisulfióe	3.61E+00				****************
33	30	Dithiane	1.26E-03				7444 889 4449999999999999
34	********	Endrin	7.23E-03		1.0E-04		*******************************
35	<u> 32</u>	Hexachiorocyclopentadiene	6.69E-02		•••••		0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36	**********	lsodrin	1.88E-02				
37	**********	Malathion	2.93E-02		***************************************		***********************
38		Parathion	3.98E-03				*******************************
39		Supone	1.23E-02	**********			
40		Ures	5.17E+03				***************************************
41		Yapona	3.22E-02				
42	***********	p,p-DDE	3.94E-03	********************************			
43	40	p,p-DDT	1.23E-02	*****************			0.05-00
44		Total Organic Feed Rate	7.03E+03				2.0E-06
45			:				4 3.5 5 5 5 7 7
45		Total PIC Emission Rate (t/y	T}=	2.5618-07	2.686E-07	0.00 0E+ 00	1.406E-04

Basin F PIC Emissions Estimate

	H	E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	j j	K	L	H	Ħ
1				PIC Yield (%)	**************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2							***************************************
3	Acetone	Ammonia	Benzene	Bromomethane	Carbon Tetrach(Chlorobenzene C	hioroform
4		000000000000000000000000000000000000000				1.0E-04	
5	***************************************	**************************************				1.0E-04	
ó			***************************************				
7		*	5.0E-04			1.0E-04	
8							
ģ			-				
10	***************************************	***************************************				2.0E-04	**************************************
11							,
12							1.0E-04
13			1.0E-03	- - - - 		***************************************	
14					1.0E-03		4
15				- - - - - 		***************************************	
Ìΰ	**************************************		1.0E-03			5.0E-04	.,,.,,
17	,	***************************************				***************************************	
18	6				1.0E-04		**************************************
19	N-1	**************************************			5.0E-04	***************************************	
20			1.0E-03			5.0E-04	
21	7			- - - - - - - -			
22 23			5.0E-04	**************************************		1.0E-04	
23	1			* * * * * * * * * * * * * * * * * * *		5.0E-03	
24 25		*	***************************************	**************************************		5.0E-03	
25			5.0E-04	• • • •		1.0E-04	
26	· • •		***************************************	* * * * * * * * * * * * * * * * * * *			
27	7			·		***************************************	
28		***************************************		-			
29	-		***************************************	· · ·	***************************************		
30	: 			**************************************			
31		·	**************************************	• •			
32	***************************************	***************************************	* * * * *			, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
33	4 1 2		***************************************	***************************************			
34	2			-			
35 36 37 39	**************************************		***************************************	• •		***************************************	
30	1	***************************************					
31	1	•		**************************************	***************************************		**************
39	4	***************************************		*		5.0E-02	
47			***************************************	• •			
40 41	\$ 			* price 10 mm			
42	\$ 		***************************************	- 		1.0E-02	
47	† }	***************************************		*	1.0E-03	1.0E-02	2.0E-04
45	1	:	1.0E-05	1.0E-06	1.06 00:	2.0E-06	
45	<u>.</u>	±					
	I n nnor±n	i n nnnF≥n	n 7 n45F-04	7.029E-05	2 9NAF-N7	3.700E-04	2.894E-08
46	U.000E+0	U;	C 7.045E-04	1.0291-05	Z.505E-07	5.700E-04	Z.094E=U

	0	P	Q	R	5	T	Ü
4				PIC Yield (%	3)	• • • • • • • • • • • • • • • • • • • •	* • • • • • • • • • • • • • • • • • • •
2			***************************************		***************************************	-	• •
	Dicyclopentadie	<u>Ethylbenzene</u>	Methanol	Methylene Chlo	Tetrachloroeth	Toluene	Trichloroethen
4					•••••	• • • • • • • • • • • • • • • • • • • •	• •
5				*******************************		· · · Q aaqqaaqqaaaaaaaaa	·
6				********************************		***************************************	• • • •
7			***************************************		. 2 2 4 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 	1.0E-03	-
8					***************************************	1	**************************************
9			• • •	******************************	*************	• • • •	**************************************
10							• • • • • • • • • • • • • • • • • • • •
11				***************************************		• • • •	
12		·····			3.0E-02		3.0E-03
13				**************************************		1.0E-04	
14		.		5.0E-04	2.0E-02	***************************************	2.0E-03
15	***************************************		**************************************				***************************************
16				*******************************	***************************************	1.0E-03	· · · · · · · · · · · · · · · · · · ·
17				*************************	***********************		
18	***************************************					- - - 	7.0E-04
19		***************************************		1.0E-04		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.0E-03
29		1.0E-04	***************************************		**********************		
21				1.0E-04		,	
22			***************************************	***************************************		1.0E-03	
23		***************************************		**********************	^**************************		
24			***************************************				\$
25			•••••••••••••			·····	***************************
26		***************************************			******************************		
27		***************************************			***************************************		***************************************
28				***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	0
29	***************************************						
30							^
31		***************************************		**********************		\	
32			***************************************				\$a*o=k4&v=v=b=b=a=b=c+b*o+b*o+b*o+b*o+b*o
33		***************************************				***************************************	
34				***************************************		0,00,000000000000000000000000000000000	·
35		*******************************	·····		***************************************		****************
36	***************************************						
37		**************************************			***************************************		
38			***************************************				
54	***************************************	***************************************	***************************************	\$++\$ 0 +# \$ 0# \$ 0 # \$0#########################	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
40			***************************************		,,		
41	******************************	***************************************	**************************************		***************************************		
42	***************************************		***************************************				•••••
43					*******************************		***************************************
35 36 37 38 39 40 41 42 43 44 45		3.0E-06	1.0E-05	1.0E-06	**********************************	5.0E-06	
45						>	
46	0.000E+00	2.109E-04	7.029E-04	7.034E-05	2.802E-06	3.516E-04	8.298E-07

	¥	₩	X	¥	Z	ÅÅ	ÁB
•				PIC Yield (%	5)	0 1 1 (0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	***************************************
2					• • • •		***************************************
	Xylana	4-Chloropheng	4-Chioropheni	4-Nitrophenol	<u>Aldrin</u>	Atrazine	Hydrogen Cyan
4					- - - -		***************************************
5					-	, , , , , , , , , , , , , , , , , , , ,	
6					\$	• • • • • • • • • • • • • • • • • • • •	
7					- - - - - 	, , , , , , , , , , , , , , , , , , ,	
8	,				- - - -		
9					- - - - - -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
10 11					<u>-</u>	***************************************	
12			10222-0024-00-0000-00-00-00-00-00-00-00-00-00-00-		b 		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
13							
14	***************************************						
15					<u> </u>	- 	***************************************
16							
17			***************************************		<u> </u>	***************************************	
18			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			6	
19							
	1.0E-04		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			() = = = = = = = = = = = = = = = = = = =	
20 21 22 23 24 25							
22					***************************************		**************
23					-	- - - - 	***************************************
24						- - - - - -	
25	~==~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				•	,	
26 27 28					- - - - - 	- - - - 	,
27			***************************************			A	
28		,					***************************************
29						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*************************
30 31					• •	6 8 80	
32	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					• •	
33						• • • • • • • • • • • • • • • • • • • •	
34	***************************************		P#+###################################				***************************************
35			.,		6-14-14-14-1		
35 36 37 38		***************************************				A.u.a	
37						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44-material properties and a second properties are a second properties are a s
38	**************************************	,	1				
39					-	• • • • • • • *	- - - - - - - - - - - - - - - - - - -
39 40						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
41						• • • •	
42				***************************************	<u> </u>	-	***************************************
43 44 45			***************************************	***************************************		• • • •	
44	2.0E-06					• • • • ••••••••••••••••••••••••••••••	
45			7 5555 55		0.0005.00	0.0005.00	0.0005.00
46	1.406E-04	0.000E+00	U.UUUE+00	0.000E+00	<u> </u>	U.000E+00	0.000E+00

	ÁĈ	AD	ΑE	AF	AG	Aii	Ai	ÁJ
1				PIC Yield (%	5)			
2	######################################		*	***************************************	**************************************	0	. 194 2. po 64 me ra 1-1-1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	**************************************
3	Dieldrin	Diisopropyl M	Dimethyl Meth	Dimethyldisulf	Dithiane	Endrin	Hexachiorocyc	Elsodrin
4			**************************************	***************************	0.0 t = m 10 m 10 m 10 t = 10 m 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		**************************************
5			**************************************	177 3 11 2 11 2 11 3 11 3 11 3 11 3 11 3 1 3 1 3 1 3 1	00000000000000000000000000000000000000	**************************************		
6	**************************************	*	**************************************	7 *** * * * * * * * * * * * * * * * * *	80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		***************************************	, , , , , , , , , , , , , , , , , , ,
7	***************************************	**************************************	©*************************************	***************************************	Ø*************************************		**************************************	
8	7	000		1400000 	**************************************	7		© ************************************
9		00000000000000000000000000000000000000	**************************************	***************************************	• • • • • • • • • • • • • • • • • • •		•448•40•40•40•40•40•40•40•40•40•40•40•40•	
10		• • • • • • • • • • • • • • • • • • •						• • • • • • • • • • • • • • • • • • •
11	***************************************		6		·			
12	**************************************	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·		***************************************		4 m - e 4 a 5 - 7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	<u>^</u> : :
13			**************************************	*******************************	**************************************			***************************************
14		**************************************	**************************************	· · · · · · · · · · · · · · · · · · ·		,		(*************************************
15	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	**************************************		***************************************	***************************************		***********************	• • • • • • • • • • • • • • • • • • •
16		**************************************	**************************************	***************************************	***************************************			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
17	**************************************		\$ - - -	***************************	***************************************			
18		**************************************	***************************************	***************************************		***********************		
19			¢	***************************************	***************************************			***************************************
20		**************************************		****************************			gu 200 gu 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
21			\$	******************************	******************************			**************************************
22		**************************************	***************************************	*******************************		***************************************	*****************************	***************************************
23				***************************************	***************************************			
24	***************************************	***************************************		*********************************	••••••••••••••••••••••••••••••••••••••			
25				************************************	•••••••••••		*************************	***************************************
26	***************************************	•		******************************	***************************************	, a vásoven a respensive prev bay v v v v v v v v v v v v v v v v v v v		
27	***************************************		·	###F##################################		***************************************		
28			***************************************	****************************			1 4 7 3 1 3 4 7 7 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
29	••••••••••••••••••		\	***************************************				
30		**************************************	***************************************	*******************************			****************	
31		***************************************		*****************************		***************************************	, y = 4 0 4 0 7 4 9 4 9 4 4 4 4 4 9 4 9 4 9 4 9 5 9 9 9 9	
32	••••••••••••	· · · · · · · · · · · · · · · · · · ·						***************************************
33		******************************	***************************************	***************************************	***************************************		********************************	
34	***************************************		***************************************	*****************			****************************	
35		**************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************	***************************************			
36	***************************************	-		***************************	****************************		***************	
36 37 38 39	•••••••••••••••••••••••••)			***************************************
38	***************************************	80° 00 00 00 00 00 00 00 00 00 00 00 00 0		***************************************	***************************************			
39		*	******************************	******************************	/b	***************************************		**********************
4Ū	************************************	**************************************		***************************************				***************************************
41	***************************************		******************************	***************************************	***************************************			
41 42	***************************************	*	***************************************					
43	***************************************				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
44	\$\$\$\\.d\\ \$ \$			***************************************				
45	****************************		,			••••••••••••••••••••••••••••••••••••••		
46	8.000E+80	0.0005+00	0.0005+00	Ո ՈՈՌԵ+ՌՈ	N NONE+ON	0.000E+00	0.0005+00	0.0005+00
74	O.OOOLT DU	: 0.0001700	0.0006+00	0.0006+00	0.0001700	0.000ET00;	0.0002700	0.0001700

	ΑK	ÁĹ	MÀ	ÁN	ÁŪ	ΑP	ÁŨ	ÁŘ
1	***********************		**************************					
2	1			13	Wales	n n nns	p,p-DDT	
Ĵ.	Malathion	Parathion	Supena	Urea	Vapona	p,p-DDE	P.P-PP1	**************************
4 5								
6		*****************************			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
7								
8					**************************************		•	
8 9 10								
10								
11		•••••		***************************************				
12							***************************************	
13		***************************************						
14								
15 16				***************************************		******************************		
17		***************************************						
15	**************************		***************************************		4	**************************************		
19							,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
20 21 22 23				***************************************				
21			**************************************					
22	.,		Q					
23		**************************************				***************************************		
24				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
25		************************	***************************************				***************************************	**********************
27			0	***************************************	******************************			
28	***************************************						}&************************************	
24 25 26 27 28 29 30			**************************************					
30								
31							*******************************	
32		,	• • •					
33		***************************************	-					
34								
35 36		**************************************				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
36 37 38							*************************	
38	**************************			***************************************	.,,			
39				,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
40	***************************************							
41		***************************************				***********************		*************************
42		- - - - - - -	0 4 5 7 7 8					*****************************
43		- - - - - - - - - - - - - -	• • • •		**********************	5.0E-01		***************************************
44	***************************************	: - 	n • a • a • a • a • a • a • a • a • a • a	***************************************				
45 46	<u>ი იიი</u>	0.0005+00	0.000E+00	0.0005+00	Ո ՈՈՈF+ՈՈ	6 150F-05	0 000F+00	42
70	0.00000	U.UUULTUU	: 0.0001700	0.0001700	0.0001700	J.130L 03	J.000E . 00	

	ÅS	ΑT	AU	A¥	ÁΨ	ÁΧ	ΑY
1			i i	o water once	VIETA ABESTI	i i	<u> </u>
2 3	Wani Chlasida		YIELD OF PIC				: :
4	Yinyl Chloride 1.0E-03	rietnyi Cinorius	ordi ene	Phenol	Delizatuelique	Benzoic Acid	ACEWINITHE
5	1.0E-03		**************************************	***************************************	····	* * * * * * * * * * * * * * * * * * *	: \$
6	1.06 60		***************************************	****************************		; (-
7						**************************************	
8				***************************************		j	**************************************
9		***************************************	***************************************	*******************************			• • • • • • • • • • • • • • • • • • •
10			***************************************	1.0E-04	1.0E-04	6	2 22422,2492,249222222222222222222222222
11		***************************************				**************************************	№
12	***************************************	**************************************	**************************************			<u> </u>	
15		***************************************	1.0E-04	3.0E-04	194000 000 94000 00 000 000 000 000 000 0	o o c o o o o o o o o o o o o o o o o o	♥
14						•	
15		***************************************					~ 0 0 0 0
16		***************************************	1.0E-01	5.0E-04	1.0E-04		• • • •
17				***************************************		\$	a a v o o o o o o o o o o o o o o o o o o o
18		1.0E-03	***************************************	*********************			6 6 6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8
19	1.0E-04					- - - - - - - - - - - - - - - - - - -	• • • • • • • • • • • • • •
20				5.0E-04	1.0E-94	• • • • • • • • • • • • • • • • • • • •	
21	2.08-03			***************************************			******************************
22	1.0E-04						
23 24	1.0E-04	***************************************	*************************		***************************************	**************************************	**************************************
25	1.05-04			1.0E-01	1.0E-02	1.0E-03	·
26	***************************************			1.01-01	1.01-02	1.01-03	5
27					***********************		*****************************
28	***************************************	•••••••••••••••••••••••••••••••••••••••	***************************************				1.0E-02
29				***************************************			1.02 02
30		***************************************		***************************************	***************************************	***************************************	***************************************
31			***************************************	***************************************			······································
32	***************************************		**************************************	77 00 7 00 7 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0	***************************************		
33	***************************************						
34			********************************	***************************************			200000000000000000000000000000000000000
35	1.0E-04						
36 37 33	1.0E-04						***************************************
57				***************************************		***************************************	
30				•	- 34000000000000000000000000000000000000		
27	***********************						******************************
40	VA		E 0 E 0 4:				, .
47	1.0E-04	•••••••••••••••••••••••••••••••••••••••	5.0E-04		***************************************		
42	1.05704;	· · · · · · · · · · · · · · · · · · ·	2.0E-04				
2.4	1.0E-05	1.0E-05	1.0E-05	5.0E-05	1.0E-05	5.08-06	
39 40 41 42 43 44 45	:.02704	1.0L-UU:	1.00-100	J.UL-U3:	I.ULTUU	J.UL-00	
46	7.0778-04	7.036E-04	7.054E-04	3.817E-03	7.331E-04	3.545E-04	3.380E-06

	ÁΖ	BA	88	BC	BD	BE	BF
1	***************************************		YIELD OF PIC	e with core	icie nacella	enne (o r)	
2	·	***************************************	rielb or Pil: Hexachioroben:				 Dichlorobenzen
	Acrylonitrile	Lyanugen :	nexacilior opeiki :	-endemorane	ieti acimoi obei:	2.0E-04	
5					***************************************	2.0E-04	*************************
5 5							
7				-			***************************************
8							**************************************
8							1
10					************************************		
11							
12			5.0E-03	2.0E-03	1.0E-03	5.0E-04	2.0E-04
13			 FAR AT	0.05.07	+ of of	F 0F 04	205 03
14			5.0E-03	2.0E-03	1.0E-03	5.0E-04	2.0E-04
15							
16 17							
18			1.0E-02				
19			7.00 00:	5.0E-03	2.0E-03	1.0E-03	5.0E-04
20							
21		***************************************	1.0E-02	5.0E-03	2.0E-03	1.0E-03	5.0E-04
22							
23							
24	***************************************						
25			1.0E-04				
26 27			1.00-04				
28	1.0E-03	1.0E-04		9 870000 1000000 704000 80000 7040000 8 8			
29	1.02.00	1.02	1.0E-04	**************************************		••••••••••••••••••••••••••••••••••••••	
30	, , , , , , , , , , , , , , , , , , ,						
31	· · · · · · · · · · · · · · · · · · ·						
32							
33				***************************************			q;
34	,		1.0E-04				
35			1.0E-04		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
36 37			1.0E-04				
38	; \$20021111222222222222222222222222222222	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		**************************************			
39							
4Ū					,		
41			***************************************				
42	1						
43			***************************************				***************************************
44							
45		7 7005 00	0.0005_00	4 637F 66	AFTOF OF	2 4005 27	1 2075 07
46	3.380E-07	3.380E-08	9.299E-06	1.073E-06	4.530E-07	2.408E-07	1.287E-07

	B6	BH	Bi	BJ	BK	BL	BM
2	· · · · · · · · · · · · · · · · · · ·		ZIFI N OF DIC	e was in ear	urio noroni	innered a	
	Bi phenyl	4-Chlorobiphe		S WITH SPEC		Carbazole	i Ouisoliso
1	inibilendi :	4-0110100101116	+,4 -611101 0011	Denzonitrile	Pyriume	Car pazore	Quinoline
4 5	***************************************	***************************************	:	***************************************	*****************************		***************************************
6					*****************	: 0	***************************************
7				•••••••••••	,	:	• • • • • • • • • • • • • • • • • • •
8		***************************************			*************************	<u> </u>	
9	-					**************************************	***************************************
10	1.0E-02	1.0E-03	1.0E-04	-		**************************************	**************************************
11		***************************************		***************************************		-	-
12							
13	1.08-03	5.0E-03	1.0E-04	***************************************		* * * * * * * * * * * * * * * * * * *	***************************************
14							·
15		205 5	·······	***************************************	****************************	- - - - 	***************************************
16	2.0E-03	2.0E-04					***************************************
17 18						• •	
19					***************************************		
20	1.0E-03	1.0E-04	·····	• • • • • • • • • • • • • • • • • • • •			
21	1.02703	1.02-04:					
22	**************************************	***************************************	······			- Q	
23	1.0E-04	5.0E-02	1.0E-03		***************	• • • • • • • •	
24	1.02-04		1.0E-03		********************************		
25							
26		***************************************		*************************		**************************************	
27					. 2204 () • • • • • • • • • • • • • • • • • •		•
28				1.0E-03	1.0E-04	2.0E-04	5.0E-04
29		***********************************	***************************************				
30			***************************************		******************************	***************************************	\$
31		***************************************				·	
32		·····		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			***************************************
33							
34			***************************************		********************************		
35			······································				
36 37			***************************************		***************************************		
38	1.0E-04			<u>-</u>			
39	1.0E-04	5.0E-02	1.0E-03	***************************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••••••••••
40				***************************************		\	
41					,		
42	1.0E-04	1.0E-01	2.0E-03				
43	1.0E-04	1.0E-01	2.0E-03				
44	5.0E-06	2.0E-06	***************************************				
45		:			12 *** *** **** **** **** *** *** *** **		
46	3.564E-04	2.3765-03	4.471E-05	3.380E-07	3.380E-08	6.760E-08	1.690E-07

	BH	B0	6P	BQ	BR	BS	BT
1		YIELD OF PIC	: WITHHIIT C	SECIFIC DOF	(3 0 \2002011	**************************************	
3	Banzofuran	Dibenzofuran A	censobbalene	Acenanhthene	Fluoranthene	Phenanthrene	Purene
4	i Delizarar en	ipiponzorei an m	conspiring one:	noonaphthene		8 350-31-81-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
5	**************************************		**************************************				
6	#		·			401 274 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
7	4			***************************************			
ទិ							
9	1						
10	1		**************************************				
11	-		······································				
13	- - - - - - - - -						
14	} 						
15	1						C
16							
17	•				**************************************		
18	1				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		\$
19	**************************************					***************************************	# # # # # # # # # # # # # # # # # # #
20	† •		**************************************			·	·
21	1						
23	1			······			
24				***************************************	***************************************	,,_,_,	
25	1						
26	1		***************************************			*******	·
27							
28						*************************	<u> </u>
29	i i						
<u>30</u>	<u> </u>			***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-
32						***************************************	
33							
34	ļ				***************************************		
35							-
36	***************************************				***********************		-
35 36 37 38 39							
30	<u> </u>		<u>.</u>			***************************************	
40						***************************************	
40 41 42 43					, evadd 20 ; e-797 n 904 y ân âââl wy r e e rêd ee e e	***************************************	5
42	<u> </u>					<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	***************************************
45						·	
44 45	2.0E-0	5 1.0E-06	5.0E-06	5.0E-06	3.0E-06	2.0E-06	1.0E-06
45	1 10.00		7 54 45 0 4	7 51 45 04	21005 04	1 4025 04	7 0005 05
46	1.406E-0	3 7.829E-05	5.514t-U4	3.514E-04	Z.109E-04	1.406E-04	7.029E-05

	80	BY	BW	BX	BY	BZ	CÁ
1		VIELA OF DIA	A 1.71T11011T 7	near a sa		***************************************	
3	Fluorane	YIELD OF PIC	5 Wilhuul 3	Chrusans	LUKSUKS(%	} :	
4	i i uvi elle	Benzo-[a]-pyr	Dine1150-[8]-8	Ciir qseile			.
5	****************************		***************************************			: 	
6			***************************************				
7	************************************			***************************************			
8	***************************************				***************************************		***************************************
9	*****************************						
10	******************************		***************************************				• — • • • • • • • • • • • • • • • • • •
11	***************************************		***************************************		:	• · · · · · · · · · · · · · · · · · · ·	
12	***************************************				•		
13		***************************************				· · · · · · · · · · · · · · · · · · ·	**************************************
14	~~~~~	-			***************************************	÷	
15	***************************************				• • • •		·
15	**** **********************************			***************************************	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	
17	***************************************			*************	·		
18	***************************************				*	• •	
19		<u> </u>	***************************************	*************	: :	: :	<u></u>
20	*******************************	***************************************		*************************	:	* * **********************************	
	***************************************			************************	* * * * * * * * * * * * * * * * * * *	- - - -	
22			•	**********************	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* 0 0 0 0 0 0 0 0	
24	***************************************			*************************		• • • • •	3
25				***************************************	***************************************	9 8 \$400000000000000000000000000000000000	
26	****************************		***************************************	***************************************	: •		·
27				***************************************	*		
28	P8 - 4 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 7 - 6 - 6				- 		
29	ir dai g + 40 II 4 II 40 ii 40 ii 50 ii 40 i				**************************************	**************************************	**************************************
38	***************************************			***************************************	Q		
31		\$				Ç ere 2000 <u>1000 1000 1000 1000 1000 1000 100</u>	
32				*******************************	(
33							
34	~~~~	**************************************			·	• • • • • •	
35	***************************************		******	**************************	* * * * * * * * * * * * * * * * * * *		<u></u>
36 37 38				*************************	**************************************	: - -	
37	******************************				·	* * * * * * * * * * * * * * * * * * *	·
56	******************************	***************************************			***************************************	• • • •	***************************************
39	***************************************	***************************************		***************************************		* * * * * * * * * * * * * * * * * * *	
40					- - - - 	.	
41		***************************************		100 ft 4 mm ft + 245 freu v freu 200 u film freu 200 u film	• • • •		
42 43				*************************	- - - - - - - - - - - - - - - - - - -	- - - -	
43	1.0E-06	1 05 04	1.0E-06	1.0E-06	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- - 	
44 45	1.02-00	1.0E-06	1.00-00	1.02-05	*************************	\$	
45	7 0205-05	7 0705_05	7 0205_05	7 0205-05	• •	*****************	
46	7.0296-03	7.029E-05	7.0296-05	1.0276-05			

APPENDIX A

PRELIMINARY DATA AND SUPPORTING DOCUMENTATION FOR HEALTH RISK ASSESSMENT PROTOCOL

U.S. ARMY CORPS OF ENGINEERS OMAHA DISTRICT OMAHA, NEBRASKA

Preplanned Remedial Action Contract (PRAC) Contract No. DACA45-90-D-0015

Task Order No. 1 Document Control No. 3886-44-01-AATT

REVISED DRAFT

AMBIENT AIR QUALITY MODELING AND HEALTH RISK ASSESSMENT PROTOCOLS

FOR

ROCKY MOUNTAIN ARSENAL
BASIN "F" LIQUID INCINERATION SYSTEM DESIGN
Commerce City, CO

Revised 25 November 1990

Prepared by:

ROY F. WESTON, INC. West Chester, Pennsylvania

TABLE OF CONTENTS

Section	<u>Title</u>	Page			
1.0	INTRODUCTION				
	1.1 Facility Location and Process Description 1.1.1 Facility Description	6A-1 6A-1			
	1.1.2 Process Description	6A-2			
	1.2 Physical Emissions Characteristics1.3 Good Engineering Practice Analysis	6A-3			
2.0					
2.0	AIR QUALITY MODELING PROTOCOL	6A-6			
	2.1 Model Selection	6A-6			
	2.1.1 Model for Inhalable Concentrations	6A-6			
	2.1.2 Model for Deposition	6A-7			
	2.2 Model Input Data	6A-11			
	2.2.1 Receptor Grid Network	6A-11			
	2.2.2 Meteorological Data	6A-13			
	2.2.3 Model Options	6A-13			
	2.3 Air Quality Analysis	6A-13			
	2.4 References	6A-17			
3.0	HEALTH RISK ASSESSMENT PROTOCOL	6A-19			
	3.1 Introduction	6A-19			
	3.2 Contaminant Identification	6A-22			
	3.2.1 Contaminant Identification	6A-22			
	3.2.2 Emission Rates	6A-26			
	3.2.3 Final Selection of Contaminants of Conce				
	3.3 Toxicity Assessment	6A-28			
	3.4 Exposure Assessment	6A-29			
	3.4.1 Exposure Scenarios	6A-29			
	3.4.2 Inhalation Exposure	6A-31			
	3.4.3 Ingestion Exposure	6A-32			
	3.4.4 Dermal Exposure	6A-40			
	3.5 Risk Characterization	6A-40			
	3.5.1 Evaluation of Risk	6A-40			
	3.5.2 Uncertainty Analysis	6A-41			
	3.6 References	6A-42			
	·	011-42			

LIST OF APPENDICES

APPENDIX A PRELIMINARY DATA AND SUPPORTING DOCUMENTATION FOR THE HEALTH RISK ASSESSMENT

rm012c.rpt 6A-ii

LIST OF TABLES

Tables	<u>Title</u>	Page
1-1	RCRA Incinerator Requirements	6A-4
2-1	Scavenging Coefficients	64-12
2-2	Regulatory Default Options Proposed for the ISCST Model	6A-16

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	Page
2-1	Annual Wind Rose for the Denver Airport	2-9

SECTION 1 INTRODUCTION

The following protocols describe the ambient air quality modeling and health risk assessment approach that will be used to establish numeric emission limits for the Submerged Quench Incinerator (SQI) at the Rocky Mountain Arsenal (RMA) in Denver, Co. The protocol included in this appendix was submitted in final form to the RMA in November of 1990. This protocol should be used only as a general reference to the approach used in this risk assessment. Many of the assumptions, particularly emissions estimates and exposure input parameters, have been extensively revised in early 1991. These revisions, although not included in the protocol, have been fully incorporated into the Final Draft Human Health Risk Assessment (Volumes I, II, and III) submitted June 1991 to RMA. RMA is required to install and operate the SQI to destroy the Basin F liquids currently stored in the three tanks and a double lined pond at the Arsenal. The action is part of the Interim Remedial Action (IRA) selected to treat and dispose of the Basin F liquid. These protocols describe the method to be used to establish stack gas emission limits for the incinerator which correspond to the allowable risk level/hazard index (as identified in the decision document) for the nearest exposed population. The protocols are based on EPA guidelines on air quality modeling and risk assessments and WESTON's experience gained through similar work assignments. The remaining portion of Section 1 presents a brief facility and process description. Section 2 provides a description of the air quality models, input data, and modeling approach to be used and Section 3 provides a description of the health risk assessment approach and methodology for contaminant identification, toxicity assessment, and exposure assessment.

1.1 FACILITY LOCATION AND PROCESS DESCRIPTION

1.1.1 Facility Description

The following facility description is a summary of the information provided in the Final Decision Document for the Basin F Liquid Interim Remedial Action (IRA). Rocky Mountain Arsenal

rm012c.rpt

(RMA) occupies over 17,000 acres (approximately 27 square miles) in Adams County, directly northeast of metropolitan Denver, Colorado. RMA was established in 1942 and has been the site of manufacture of chemical incendiary munitions and chemical munitions demilitarization. Agricultural chemicals including pesticides were manufactured at RMA from 1947 to 1982.

In 1956, an evaporation pond called Basin F was constructed in the northern part of RMA. Basin F had a surface area of 92.7 acres and a capacity of approximately 243 million gallons. From August 1957 until its use was discontinued in December 1981, Basin F was the only evaporative disposal facility in service at RMA.

In 1986, the Department of the Army, Shell Oil Company, and the U.S. Environmental Protection Agency (EPA) Region VIII, agreed that an accelerated remediation be undertaken pursuant to CERCLA (Comprehensive Environmental Response, Compensation and Liability Act) to contain the liquid and contaminated soils in and under Basin F. In a June 5, 1987 report to the court, the Organizations and the State agreed that fourteen interim actions, including the Basin FIRA, were necessary to expedite the cleanup of RMA.

In the first part of Basin F remediation, Basin F liquid was transferred to three lined steel storage tanks and to one double-lined covered pond. Transfer of Basin F liquid to tanks and Pond A for interim storage was initiated in May, 1988 and completed in December 1988. Presently approximately 4 million gallons of liquid are stored in the tank farm and 4.5 million gallons are stored in Pond A.

The Army has selected submerged quench incineration (SQI) to thermally treat 8.5 million gallons of stored liquid from Basin F at Rocky Mountain Arsenal as an Interim Remedial Action. The SQI consists of a feed system to inject the Basin F liquid into the incinerator; the high temperature incinerator with a quench chamber to cool the gases and dissolve the molten salts from combustion; a spray dryer; and associated air pollution control equipment.

1.1.2 Process Description

The submerged quench incineration process will use a vertical downfired liquid incinerator. The liquid to be incinerated would be injected at the top of the furnace into a gas flame. Burning the liquid at high temperature (about 1,900°F) is expected to destroy the organic compounds in Basin F liquid. After incineration, all the combustion products will be forced downward and cooled in a liquid quench tank, to aid in washing out particulates and cleaning the exhaust gases. The high temperatures will melt noncombustible components of the Basin F liquid, producing molten salts which will flow down the walls of the incinerator and also be cooled in a quench chamber. The exhaust gases, which will include a mixture of combustion byproducts and other gases, will be passed through air pollution control devices which include a venture scrubber and a packed tower. The brine from this process will be dried in a spray dryer to produce a salt. The spray dryer exhaust will be fed into a baghouse to control particulate emissions. The baghouse will be exhaust though the stack serving the incinerator.

Operation of the submerged quench incineration process will require the transportation onto the Arsenal of 2,600 cubic yards per year of sodium hydroxide, a caustic compound used in the air pollution control process. The submerged quench incineration process will produce salts, of about 25 percent of the original volume of the Basin F liquid. These salts which contain metals will be disposed of in an off-site hazardous waste landfill.

1.2 PHYSICAL EMISSION CHARACTERISTICS

The physical emission characteristics of the submerged quench incinerator have not been finalized at this time. The incinerator will be designed and operated to meet the RCRA incinerator requirements which are presented in Table 1-1. The trial burn will be required to demonstrate the ability of the incinerator to achieve the performance requirements outlined in the Final Decision Document (May, 1990).

Table 1-1

RCRA Incinerator Requirements^a

Destruction and Removal Efficiencies	
Dioxin and Dibenzofurans Polychlorinated Biphenyls All other Organic Compounds	99.9999% 99.9999% 99.99%
Particulates Emissions	0.08 grains per dry standard cubic ft. @ $7\% O_2$
Hydrogen Chloride Emissions	1.8 kg/hour 4.0 lb/hour

^a 40 CFR 264.343 (Performance Standards)

1.3 GOOD ENGINEERING PRACTICE ANALYSIS

Section 123 of the Clean Air Act defines Good Engineering Practice (GEP), with respect to stack heights, as "the height necessary to ensure that emissions from the stack do not result in excessive concentrations of any pollutant in the immediate vicinity of the source as a result of atmospheric downwash, eddies or wakes which may be created by the source itself, nearby structures or nearby terrain obstacles." For this analysis, 40 CFR 51.1(ii) defines nearby as "that distance up to five times the lesser of the height or the (projected) width dimension of a structure, but not greater than 0.8 km

"According to 40 CFR 51.1(ii), GEP stack height means the greater of the following 3 factors.

- 1. 65 meters, measured from the ground-level elevation at the base of the stack,
- 2. For stacks in existence after January 12, 1979,

$$Hg = H + 1.5 L$$

Where:

Hg = GEP stack height

- H = height of nearby structure(s) measured from the ground level elevation at the base of the stack.
- L = lesser of height or projected width of nearby structures.
- 3. The height demonstrated by fluid model or field study which satisfies the definition of GEP in Section 123 of the Clean Air Act.

This GEP stack height analysis will be based upon the EPA (1985) guideline document. The GEP determination will be made for each building, and then the stack will be associated with the nearby building which would result in the greatest GEP. The stack height for the SQI has not been specified at this time. When the stack height is finalized the GEP analysis described above will be performed to determine if building downwash of the stack gases could occur and if building downwash effects will be incorporated into the modeling analyses.

SECTION 2

AIR QUALITY MODELING PROTOCOL

2.1 MODEL SELECTION

Models to be used as input to the exposure assessment and establishment of numerical limits for the incinerator will be EPA-approved UNAMAP Version VI dispersion models and an enhanced version of a UNAMAP model which calculates dry and wet deposition. The procedures used in executing the models will follow those outlined in EPA's <u>Guideline on Air Quality Models</u> (Revised) (1986a, 1987a).

A preliminary review of the geographical setting and a review of the land use pattern near the Rocky Mountain Arsenal was conducted to classify land use for modeling purposes, according to the method of Auer (1978; copy attached). The preliminary review was based on inspection of the typographic maps of the SQI incinerator location out to 3 km. Based on their approximate evaluation, it was determined that greater than 50% of land use was rural. Therefore, models which include rural dispersion coefficients will be used to assess the air quality impact of the facility.

Furthermore, it is expected that there will be no areas near the arsenal where the terrain elevation exceeds stack top. As a result, a USEPA UNAMAP Version VI, rural flat terrain model was selected for the air quality modeling analysis for inhalable concentration calculations and a WESTON modified version of the ISCST model (WESTDEP) was selected for wet, dry, and total deposition calculations. Each of these models are described in the following subsections.

2.1.1 <u>Model for Inhalable Concentrations</u>

The Industrial Source Complex (ISC) model is a steady-state Gaussian plume model which can be sued to assess airborne pollutant concentrations from a wide variety of sources. The ISC model is part of EPA's UNAMAP VI series models (EPA, 1986b) and consists of a short-term (ISCST) and a long-term (ISCLT) module. It is listed as an EPA-approved "Appendix A" model.

The ISCST model will be used to calculate 1-hour, 3-hour, 8-hour, 24-hour, and annual air concentrations from the facility at receptors no higher than the stack height plus its base elevation. Receptor elevations higher than this are treated by the model as elevations equal to stack height plus base elevation. If the proposed stack height is less than the formula GEP stack height, building wake-effect induced downwash will be accounted for in the model otherwise no downwash effects will be evaluated.

2.1.2 Model for Deposition

The two major mechanisms for the accumulation of materials in surface soils and in surface water are wet and dry deposition. No EPA-approved model or modeling techniques currently exist which appropriately calculate both dry and wet deposition due to source emissions. WESTON has modified the EPA ISCST model to calculate wet, and total dry deposition as suggested in EPA guidance (EPA 1986c). A discussion of the WESTON approach to model these processes is included below.

2.1.2.1 Dry Deposition

Dry deposition is driven by atmospheric processes, the properties of the surfaces upon which materials deposit, and the properties of the particles being deposited. Previous studies of dry deposition have used only gravitational settling velocities to remove particles from the atmosphere. In particular, the EPA's Industrial Source Complex (ISC) model, which contains a gravitational algorithm, has been used in the past to calculate dry deposition. However, this model generally could not account for the properties of the particles deposited, the properties which effect dry deposition, or hourly meteorological effects other than stability.

Work by Sehmel and Hodgsen (1978) has resulted in a parameterization of the dry deposition process which takes more fully into account hourly meteorological conditions (e.g., wind speed, stability, etc.), particle properties (e.g., density, size) and the surface properties (e.g., surface roughness) upon which material is dry deposited.

The basic approach to dry deposition involves calculation of the ambient ground level concentration and the deposition velocity. The deposition flux is given by:

$$-F = V_d * X_i$$

Where:

-F = downward flux of material (dry deposition).

 V_d = the deposition velocity.

 X_i = is the ambient concentration for pollutant i.

Therefore, if an estimate of the deposition velocity and the ambient concentrations for a pollutant can be made, then the dry deposition flux can be calculated. Ransieri and Croes of the California Air Resources Board (CARB) have developed computer algorithms based on Sehmel and Hodgsen's work which provide hourly values of dry deposition velocity using pre-processed meteorological data which can be obtained using the EPA preprocessor program.

WESTON has modified the EPA UNAMAP Version VI of the ISCST model to incorporate the CARB algorithms to calculate dry deposition and renamed the model WESTDEP. The WESTDEP model calculates hourly ambient ground-level pollutant concentrations as well as hourly deposition velocities to predict the dry deposition flux at each receptor. The model is conservative in that no plume depletion is assumed so that the computed air concentration and deposition rates represent the upper bound limit values. The WESTDEP model allows for building wake effects, terrain adjustments, and incorporates a separate surface roughness coefficient (z_o) for each receptor. Source information required for the model include:

- Source emission parameters:
- Stack height;
- Stack gas velocity;
- Stack gas temperature;
- Pollutant emission rate:
- Building dimensions (for wake effects options);
- Mass particle size distribution.
- Particle density, by size (2 grams/cm³ will be used for all particle sizes).

The particle size distribution used in the modeling will be based on specification, design and control efficiency of the selected air position control equipment for the incinerator. Meteorological information required is provided by the standard UNAMAP meteorological preprocessor file. In addition, a value for the surface roughness coefficient (Z_0) must be supplied for each receptor. Based upon the typical land use around the RA, a Z_0 will be conservatively selected and used in the air quality modeling to represent the impact area. WESTDEP model output includes annual average pollutant concentration at each receptor, total annual dry deposition at each receptor, and average annual dry deposition velocity at each receptor.

2.1.2.2 Wet Deposition

The wet deposition process involves removal of particles via precipitation. Currently, no widely accepted wet deposition models are available. Several studies have developed mechanisms for removal of particles from the atmosphere during precipitation events. These studies assume that particle washout or scavenging is proportional to the mass of the plume exposed to the precipitation event, the intensity and duration of the event, and the size distribution of the particles in the plume, (Radke et al., 1980, Scire and Lurman, 1983).

The scavenging coefficients which have developed in these studies are themselves based on a very limited number of original studies and are generally related to removal of sulfate aerosols. For example, the work of Scier and Lurman is for sulfate and nitrate aerosols. Radke et al.

included measurements in power plant, pulp and paper boilers and volcanic plumes which all have large concentrations of sulfate aerosols. Since these aerosols are hygroscopic, i.e., they have a great affinity for absorbing water in the air, it is likely that scavenging coefficients based on these sources will be higher than for other less water-soluble species such as the pollutants emitted by the facility. Unfortunately, there is no quantifiable data available upon which to base a more reasonable scavenging coefficient. Therefore, the scavenging coefficients used in the WESTDEP model are conservative and provide an upper bound on the amount of wet deposition likely to occur in the area of the RMA.

The EPA (EPA, 1986c) has developed an algorithm which uses scavenging coefficients to calculate wet deposition based on the work of Bowman (1987), and Radke (1980). The algorithm developed includes particle size and rainfall intensity dependent washout coefficients to calculate wet deposition. Table 2-1 includes the scavenging coefficients that will be used in the modeling analysis. The algorithm is based on the mass of pollutants in a vertical column of air which extends from the bottom to the top of the plume. WESTON has integrated this algorithm into the WESTDEP model in order to conservatively calculate wet deposition due to precipitation events.

In order to compute wet deposition, the same information used for the dry deposition calculation is required (i.e., source emission characteristics and hour-by-hour meteorology). In addition, rainfall intensity and rainfall type (e.g., thunderstorm, showers, steady precipitation) is also needed. Furthermore, the WESTDEP model has been modified to compute dry deposition only when no wet deposition i.e., no rainfall is occurring.

The WESTDEP model has been approved for use in the preparation of numerous health risk assessments for hazardous waste incinerators and resource recovery facilities in Kentucky, Maryland, Michigan, Minnesota, New Jersey, Pennsylvania, and Rhode Island.

Therefore, the wet and dry algorithms, which are now a part of the WESTON modified EPA ISC model (WESTDEP) enable WESTON to predict total deposition due to emissions from specific facilities for use in multipathway risk assessments.

2.2 MODEL INPUT DATA

In addition to emission rates and physical emission characteristics of the incinerator other input data are needed to estimate the incremental and overall air quality impact of the incinerator. Specifically, a receptor grid network, meteorological data, and model options are required as input to both the ISC and WESTDEP models.

2.2.1 Receptor Grid Network

A coarse receptor grid network will be established to find the approximate location of maximum estimated air quality impact due to emissions from the facility. From this analysis, the nearest critical receptor(s) can be identified for evaluation in the exposure analysis. A polar coordinate system with a radial every ten degrees beginning with north, centered upon the stack will be used as a basis for receptor deployment for the ISC model application. Receptor points for ISCST will be placed at the following distances from the stack: 2,000m, 2,500m, 3,000m, 4,000m, 5,000m, 6,000m, 8,000m, 10,000m, 12,000m 15,000m, 17,500m, 20,000m, 22,500m and 25,000m. Terrain elevations selected for the receptor grid will be based upon the highest contour between the receptor point and half the distance to any neighboring receptor point. Discrete receptor points will be located at sensitive areas such as hospitals, schools, parks, etc., and along the property line of the RMA. A refined receptor grid with spacing of 100 meters will be used in areas of maximum concentrations identified by the initial course receptor grid. Receptors points will also be placed in 100 meter increments along 10 degree radials from the RMA property line to the first receptor ring. No receptor points will be placed within the RMA property.

Table 2-1
Scavenging Coefficients

Rainfall	Particle S	Size Categories	(Microns)
Intensity	<2µ	2-10μ	>10µ
Light ^(a)	0.22 x 10 ⁻³	0.18 x 10 ⁻³	0.969 x 10 ⁻²
Moderate ^(b)	0.56 x 10 ⁻³	0.893 x 10 ⁻³	0.969 x 10 ⁻²
Heavy ^(c)	0.146 x 10 ⁻²	0.464 x 10 ⁻²	0.969 x 10 ⁻²

⁽a) Light is less than 0.1 inches per hour.

⁽b) Moderate is 0.11-0.3 inches per hour.

⁽c) Heavy is greater than 0.31 inches per hour.

2.2.2 Meteorological Data

The meteorological data base for the modeling of annual impacts will consist of surface data collected at the Denver Stapleton Airport, for the most recent, available five-year period 1985-1989. The Airport is located approximately 5 miles south of the incinerator.

Selection of the meteorologic data is consistent with the recommendations in Section 6.6 of EPA's On-Site Meteorological Program Guidance for Regulatory Modeling Applications (1987). An annual wind rose for the Airport data showing the prevailing wind directions and wind speed classes is presented in Figure 2-1. Coincident mixing heights will be derived by merging surface temperatures with twice daily upper air data, both obtained from Denver Airport for the period 1985-1989. The raw meteorological surface data and mixing heights will be prepared for input to the ISCST models by using the EPA preprocessor program. Precipitation data from the Denver Airport during the period 1985-1989 will also be merged with the preprocessed data for use in the WESTDEP model for deposition calculations.

2.2.3 Model Options

The ISCST model has various options to simulate different dispersion conditions for emissions from a stack. The U.S. EPA has recommended (EPA, 1986a) various options to be used in dispersion modeling for regulatory purposes. These recommended regulatory default options, shown in Table 2-2, will be used in the air quality impact analysis for the incinerator.

2.3 AIR QUALITY ANALYSIS

The air quality analysis will be conducted using the models, options, and procedures discussed in previous sections of this protocol. The WESTON model will be employed to estimate annual concentrations, wet/dry and total depositions for each of the five years 1985-1989. Since the expected operational period for the SQI is 18 months, the year with the highest concentration and deposition rates will be used as input to the risk assessment.

FIGURE 2-1

Table 2-2

Regulatory Default Options Proposed for the ISCST Model

•	Stack-tip downwash.
•	Final plume rise.
•	Buoyancy induced dispersion (BID).
•	Vertical potential temperature gradients of 0.0, 0.0, 0.0, 0.0, 0.02, 0.035, for stability classes A through F, respectively.
•	Automatic treatment of calms.
•	Wind profile exponents of 0.07, 0.07, 0.010, 0.15, 0.35, 0.55 for stability classes A through F, respectively.
•	Infinite pollutant half-life.

2.4 REFERENCES

Auer, A. H. Jr., 1978. "Correlation of Land Use and Cover with Meteorological Anomalies". Journal of Applied Meteorology 17:636-643.

Bowman, D., et al., 1987. "Incorporation of Wet Deposition in the Industrial Source Complex Model."

EPA (U.S. Environmental Protection Agency), 1985. <u>Guideline for Determination of Good Engineering Practice Stack Height (Technical Support Document for the Stack Height Regulations)</u> (Revised). Research Triangle Park, NC. (NTIS No. PB 85-225241).

-----, 1986a. <u>Guideline on Air Quality Models (Revised)</u>. EPA 450/2-78-027R. Research Triangle Park, NC.

3.4, (Computer Programs on Tape). National Technical Information Service, Springfield, VA. (NTIS No. PB 86-222361).

Pathway Exposure to Municipal Waste Combustor Emissions (Draft). Environmental Criteria and Assessment Office, Cincinnati, Ohio.

-----, 1987a. Supplement A to the Guideline on Air Quality Models (Revised). EPA 450/2-78-027R, Supplement A.

-----, 1987b. <u>Ambient Monitoring Guidelines for Prevention of Significant Deterioration</u>
(PSD). EPA 450/4-87-007. Research Triangle Park, NC.

Radke, J., et al., 1980. "Scavenging of Aerosol Particles by Precipitation." <u>Applied Meteorology</u> 19: 715.

Ransieri and Croes, California Air Resources Board (CARB), personal communication with John Barone of WESTON.

Scire, J., and F. Lurman, 1983. <u>Development of the Mesopuff II Dispersion Model</u>. Presented at the Sixth Symposium on Turbulence and Diffusion, American Meteorological Society.

Sehmel and Hodgsen, 1978. "A Model for Predicting Dry Deposition of Particles and Gases to Environmental Surfaces." U.S. DE Contract EY-76-C-06-1830, January 1978.

SECTION 3

RISK ASSESSMENT PROTOCOL

3.1 INTRODUCTION

The objective of the health risk assessment to be conducted by WESTON for Rocky Mountain Arsenal (RMA) is to assist in the establishment of chemical emissions limits for the Basin F Submerged Quench Incinerator (SQI). The resultant emissions limits are to be protective of human health, as stated in the <u>Final Decision Document</u> (May, 1990). The risk characterization results and a discussion of ARARs will be initially presented in the <u>Implementation Document</u> to be submitted to RMA on December 14, 1990, and which will be used to evaluate possible design changes in the SQI. The detailed risk assessment document will be submitted immediately thereafter.

The purpose of this section of the protocol is to present the specific methodology and exposure assumptions to be used by WESTON in the risk assessment. Preliminary data concerning the contaminants of concern are also initially presented. In addition to the <u>Final Decision Document</u>, the approach and methodology draws upon the guidance set forth in the recently revised U.S. EPA <u>Risk Assessment Guidance for Superfund: Human Health Evaluation Manual</u> (EPA, 1989a) and the U.S. EPA <u>Methodology for Assessing Health Risks Associated With Indirect Exposure to Combustor Emissions</u> (EPA, 1990a). These and other pertinent guidance documents are indicated in the appropriate sections, and are listed in the protocol in Subsection 3.7.

A risk assessment for the proposed SQI was previously performed by Woodward-Clyde Consultants (Jan., 1990) to assist in the screening and selection of interim remedial actions (IRAs) as required under CERCLA and the National Contingency Plan. Additionally, on-site (Ebasco Report) and off-site (HLA/ESE Report) human health risk assessments have been performed for RMA with respect to worker and residential exposures, respectively, to existing onsite contamination. To maintain consistency with these studies, WESTON reviewed the data from these previous on-site and off-site evaluations and, where relevant utilized previously

developed exposure assumptions and input parameters, toxicity criteria and background data. These parameters have been appropriately cited in the remainder of this protocol or its attachments.

This risk assessment will be a comprehensive evaluation of both direct and indirect exposure pathways, and will use as the basis for estimating human exposure the results of the air dispersion and deposition modeling, the methods of which are described in Section 2 of this protocol. To be consistent with the most recent EPA guidance (EPA, 1989a; 1990a), WESTON will be considering certain pathways of indirect exposure that were not originally considered in the SQI risk assessment as part of the IRA prepared by Woodward-Clyde Consultants (Jan., 1990). These additional pathways include: breast milk consumption; ingestion of fish from contaminated surface waters; vegetable root uptake of metals and organics; and, beef and dairy cattle exposure with subsequent human consumption of homegrown or commercially-produced beef and cow's milk.

In accordance with the guidance set forth in the <u>Final Decision Document</u>, the risk assessment process will be used to establish emission limits as follows:

- Emission rates (both average and upper 95% confidence limits, where possible) will be determined from evaluation of historical waste stream characterization data, test burn data, and WESTON's hazardous waste incinerator emissions inventory, as described in detail in Section 3.2.
- These emissions data will be used in conjunction with the air modeling, exposure assessment and toxicity assessment results to calculate noncarcinogenic hazard indices and carcinogenic risk for each chemical and pathway in each proposed exposure scenario.
- As directed in the <u>Final Decision Document</u> (p.9-6), cumulative excess carcinogenic risk and noncarcinogenic hazard indices will be determined for each

exposure scenario. Assuming excess cancer risk does not exceed 1E-06, and the noncarcinogenic hazard index does not exceed 1 for the nearest most reasonable maximally-exposed individual, the emission rates for the contaminants of concern will be considered protective of human health. WESTON has developed four exposure scenarios, described in detail in Section 3.4.1, which represent reasonable maximally-exposed individuals in the vicinity of the facility. The facility is assumed to operate for two years.

• Should the cumulative cancer risk or noncarcinogenic hazard index exceed the limits described above for the most reasonable maximally-exposed individual, each contaminant and pathway assessed in that scenario will be evaluated to develop a profile of the major contributor(s) to risk. A report summarizing these findings will be presented to the appropriate agencies, as outlined in the <u>Final Decision Document</u>, to determine whether a change in the design of the treatment system is necessary.

The protocol is divided into four sections:

- 1. Contaminant Identification, Selection and Emission Rate Determination (Section 3.2)
- 2. Toxicity Assessment (Section 3.3)
- 3. Exposure Assessment (Section 3.4)
- 4. Risk Characterization (Section 3.5)

These sections of the protocol will correspond to the general format to be used in the final risk assessment document. For the final document, detailed calculations and supporting information that are applicable to the material presented in each of the sections of the final risk assessment document will be included in corresponding appendices.

3.2 <u>CONTAMINANT IDENTIFICATION, SELECTION AND EMISSION RATE</u> DETERMINATION

Initial identification of potentially emitted contaminants, and estimation of their emission rates will be based on an analysis of the composition of the waste stream and its theoretical products of incomplete combustion, valid test burn data, and comparison with WESTON's hazardous waste incinerator emissions database. This approach should be consistent with the <u>Final Decision Document</u> and yield a very conservative estimate of the emitted chemicals and their likely emission rates. This information will be supplemented or verified by additional Basin F liquid analyses being conducted currently, if the analytical results are available when the contaminant identification phase of the risk assessment is performed.

3.2.1 Contaminant Identification

Four groups of pollutants and their respective emission rates will be developed. These chemicals are generally categorized as principal organic hazardous constituents (POHCs), products of incomplete combustion (PICs), metals, and criteria pollutants (gases, particulates, and acid gases). The detailed lists of initially identified potential pollutants and emission rates are presented in Tables 1 and 2 (Appendix A). The remainder of this section discusses the methodology used for selecting the chemicals of concern.

3.2.1.1 Analysis of Waste Stream Composition

The following methodology was used to evaluate the waste stream composition for the Basin F liquid material at the RMA:

 The historical characterization data from 1978 through 1988 for the basin and the recent WESTON analyses for the pond and for the tanks were converted to a common basis of mg/l. (This involved a density correction considering the 1.24

g/ml density of the waste for the historical data that had been reported as ppm or ppb).

- The average and maximum of the reported values for each data source were taken for the values from the basin, pond and tank, each taken separately. (If a range was reported for a particular source of analyses, the midpoint of the range was assumed to represent the average and the upper range to represent the maximum of the data set).
- The maximum of the average values of the basin, pond and tank analyses were calculated, as well as the maximum of the maximum values.
- The maximum of the average and maximum of the maximum values were summed for all compounds (organics and metals).
- Because the total of the maximums of the maximum values was about 1 million mg/l, or about 100%, this approach was considered too overly conservative, even for risk assessment purposes. The total of maximums of the averages, however, was about 640,000 mg/l (about the same value as the portion of the waste stream that is not water).

Therefore, the maximums of the average values from each of the basin, pond, and tanks were taken as a reasonable worst case estimate of the composition of the waste stream. These values were then converted to tons of component per year for the design incinerator capacity of 10,325 lb/hr. These data were used by Dr. Barry Dellinger to predict the PICs and POHCs as discussed in more detail below.

3.2.1.2 Evaluation of Test Burn Data

Emissions testing results conducted during the test burns of Basin F waste performed by T-Thermal (August, 1990) were evaluated by the WESTON Air Permitting and Engineering staff. A number of the test runs were considered unacceptable for emissions estimation because of feed clogging followed by rapping or oxygen blasts into the feed nozzles. Two dioxin/furan runs, and one metals run were considered valid. The remaining runs have been discarded for evaluation purposes.

Compared to other hazardous waste incinerators, the dioxin/furan TEF for the two runs appears relatively small (0.06 ng/Nm3) compared to WESTON's emissions database values. However, the risk this poses cannot as yet be determined. For the risk analysis base case (i.e., average conditions), we will use the average of the two test burn runs; for the sensitivity case (i.e., upper bound conditions), we will use the upper 95% confidence limit of the WESTON database for hazardous waste incinerators.

The test burn data for the one acceptable run for metals compare well with the emission estimates based on the waste stream data (average of the maximums) and removal efficiencies published by the U.S. EPA for hazardous waste incinerators. Therefore, we will use the maximum of these two data sets for the base case. U.S. EPA Tier I and Tier II guidance values, based on the "maximum of the maximums" of the waste stream data and emission test runs from the test burn will be considered in the sensitivity analysis.

For pesticides and PCBs, we will use Dr. Dellinger's POHC and PIC data. These potential pollutants were not detected during the test burn emission testing

3.2.1.3 Key Organic Pollutants in the Waste Profile

Organic compounds were identified either as POHCs from an analysis of the waste stream composition (Section 3.2.1.1) or from the analysis of PICs resulting form combustion of the

POHCs (Section 3.2.1.4). Toluene was predicted to be the most difficult compound to destroy, and, therefore it was used to normalize destruction removal efficiency (DRE) for all POHCs by assuming toluene would be destroyed with a 99.99% DRE as verified by a trial burn. Historical data indicate that organics present in the waste stream include volatiles, semi-volatiles, and pesticides. Dioxins and furans, determined from an evaluation of the test burn data discussed above, are listed separately and are expressed as toxic equivalents based on the most recent U.S. EPA guidance (EPA, 1989b).

3.2.1.4 Products of Incomplete Combustion (With or Without Precursors)

Products of incomplete combustion (PICs) are organic compounds present in emissions from an incinerator and which are formed from the thermal breakdown of chemicals present in the waste stream, reformation reactions, or some other process subsequent to incineration (Trenholm and Hathaway, 1984; Oppelt, 1987). Specific PICs, with or without precursors, have been identified and their emission rates estimated by Dr. Barry Dellinger, who has been subcontracted for this effort.

3.2.1.5 Metals

Identification of metals and determination of their emission rates will be based on waste stream characteristics, test burn data and the U.S. EPA guidance document as discussed under Section 3.2.1.2.

3.2.1.6 Criteria Pollutants and Acid Gases

Selected criteria pollutants (particulate matter, sulfur dioxide, nitrogen dioxide, and carbon monoxide) and acid gases (primarily hydrogen chloride and hydrogen fluoride) will be evaluated both for potential acute and chronic health effects by the inhalation pathway. Their emissions rates were determined from test burn data, vendor guarantees and WESTON's hazardous waste emissions inventory database.

3.2.2 Emission Rates

Table 1 of Appendix A summarizes the initial list of emitted organic and inorganic chemicals with estimated emissions rates. Base case emissions rates are conservatively high estimates of the emissions which would be expected during the course of normal operation. Their methods of determination are footnoted in the table. Sensitivity case emissions rates represent upper bound or maximum worst case expected rates. Refer to the footnotes in Table 1 for specific methods of determination. Criteria pollutants, gases, and particulates are presented in detail in Table 2.

3.2.3 Final Selection of Contaminants of Concern

The final contaminants of concern will be selected from the initial list for each medium of potential exposure (air, soil, surface water) based on various conservative criteria discussed in detail below. The purpose of this part of the evaluation is to eliminate from the large list of chemicals those that will not likely.

3.2.3.1 Air

All contaminants, both carcinogens and noncarcinogens, will be evaluated in the air pathway, including the criteria pollutant gases and particulates.

3.2.3.2 Soil

All carcinogens (by the oral route) will be retained for final evaluation in all soil pathways. Volatile organics (VOCs) will be excluded from soil pathways based on the following rationale:

- VOCs are likely to be emitted as vapors
- VOCs are unlikely to be deposited in soils following their emission

rm012c.rpt

VOCs are unlikely to be persistent in soil, if deposited

For purposes of this screening procedure, a VOC is defined as any chemical (carcinogen or noncarcinogen) with a vapor pressure greater than 1E+02 mm Hg and/or Henry's Law constants greater than 1E-03 atm-m³/mol (Lyman, et al., 1982). The vapor pressure criterion was derived from inspection of the range of vapor pressures of chemicals that EPA classifies as volatiles (EPA, 1986).

Metals (except oral carcinogens) were screened based on comparison with regional background metals concentrations. Background data were obtained from data WESTON gathered for Rocky Flats (WESTON, 1989). Metals were excluded from further analysis through soil pathways if their predicted maximum total deposition at the points of exposure (refer to Section 3.4.1 for specific locations of reasonable maximally-exposed individuals) were greater than or equal to 1 percent of the mean background concentrations for the respective metal.

3.2.3.3 Surface Water

Land use evaluation and the deposition modeling isopleths revealed that Engineer's Lake, a designated manmade recreational fishing area (refer to Section 3.4 for more detail) was impacted by facility emissions. Contaminants of concern were evaluated for consideration in the surface water pathway (i.e., fish consumption) based on several criteria:

- all oral carcinogens will be included in the final surface water pathway evaluation
- VOCs were excluded from this pathway based on the same rationale as previously discussed for soils
- a modified Tier I analysis was performed to evaluate the remaining chemicals for possible exclusion from the surface water pathway. The basis of this screening analysis is to estimate a highly conservative concentration of the chemical

contaminants in the impacted surface water body and compare this to the Ambient Water Quality Criteria (AWQC) for fish consumption by humans. If a chemical had no designated AWQC, it was excluded from this analysis, and will be included in the more detailed surface water pathway evaluation in the actual risk assessment. The total areal deposition for the 32 acre watershed of Engineer's Lake was determined from the modeled isopleths. Lakewater concentrations for each chemical were determined by dividing the total amount deposited in the lake by the total volume of the lake. It was conservatively assumed that the lake had a 0.5 year hydraulic retention time and that all chemicals adsorbed to soil runoff was desorbed into the water. Table 3 in Appendix A shows the results of this analysis. It was concluded that the nine chemicals evaluated in this screen could be excluded from further evaluation based on the criterion that their conservatively predicted water concentrations were less than 10 percent of their respective AWQCs.

3.3 TOXICITY ASSESSMENT

The <u>Integrated Risk Information System</u> (IRIS) computer data base (EPA, 1990b) will be referred to for the most recent U.S. EPA reference doses and cancer potency factors. Other EPA sources, including EPA's quarterly <u>Health Effects Assessment Summary Tables</u> (EPA, 1990c), will also be used for those chemicals for which toxicity values are unavailable on IRIS.

For those chemicals for which EPA-derived potency factors or reference doses are unavailable, toxicity values will be derived from health-based criteria or toxicity data. Derived toxicity values published in the on-post and off-post exposure assessments will be used if possible. All approaches for the derivation of reference doses or cancer potency factors will be fully discussed in the risk assessment. The use of derived toxicity values and the methods by which they will be derived will be subject to the review of U.S. EPA Region VIII and RMA. Tables 4A and \$b in Appendix A list the chemicals of concern with their carcinogenic slope factors and reference loses, respectively.

To evaluate dioxins and furans, WESTON will follow, if applicable, the guidelines set forth in the <u>Interim Procedures for Estimating Risks Associated with Mixtures of CDDs and CDFs</u> (EPA, 1989b).

3.4 EXPOSURE ASSESSMENT

3.4.1 Exposure Scenarios

The exposure scenarios have been evaluated based upon the air dispersion and deposition modeling results. Theoretically, to determine emissions limits, it is necessary to evaluate only one scenario, the most reasonable maximally-exposed individual (RMEI). Reasonable maximum exposure is defined by the U.S. EPA as "the highest exposure that is reasonably expected to occur at a site" (EPA, 1989a). However, the RMEI cannot always be determined based on the modeling results alone. Therefore, it is recommended that several exposure scenarios be evaluated in the risk assessment. The scenario ultimately resulting in the greatest risk (i.e., most exposed), as directed in the <u>Final Decision Document</u>, will be used to assess numerical chemical emissions limits.

Based on available information regarding current off-site and on-site land usage, and the results of the air deposition modeling, four potential RMEIs have been identified. The scenarios presented below represent present use conditions. No future use scenarios were included since hypothetical exposures in this case would not likely exceed any present use exposures; this is based on the assessment that pathways of exposure and areas of maximum impact of emissions would not be different from any present use condition. The four potential RMEIs are:

- An individual currently living within the residential area where total deposition (dry plus wet) is maximal (i.e., just south of the property fenceline).
- An individual currently living within the residential area where dry deposition will be maximal (i.e., just north of fenceline).

rm012c.rpt

- An individual currently living on a local cattle farm where total deposition is highest for that land use (i.e., just northwest of site).
- A maintenance worker on the site who is exposed to an area weighted air concentration and wet/dry deposition as determined from the modeling results.

The respective locations of these RMEIs are indicated on the site diagram in Appendix A (Figure 1). The isopleths developed for the air modeling are not provided here but will presented in the final report. Note that all residential exposure scenarios include a fish consumption pathway based on the finding that Engineer's Lake, a recreational fishing area, is impacted by the deposition analysis. The Lake is located just west of RMA near Adams City.

Subsections 3.4.2 through 3.4.4 detail the specific equations or approaches for determining media concentrations, and the exposure algorithms and input parameters that will be employed by WESTON in determining estimated daily intakes (i.e., doses) of each of the pollutants. When available, site-specific or more recently developed input factors (e.g., ingestion rates) will be used in preference to the factors presented in the protocol. Table 5 of Appendix A is a summary of the key input parameters for air and soil pathways which has been developed in consultation with Dr. Chris Weis of EPA VIII and following a review of the offsite and onsite exposure assessments performed previously for RMA. Additional parameters are discussed with the algorithms in Sections 3.2.2 through 3.2.4. Depending on the results of the evaluation of local land and water usages and final contaminant pathways analysis, it is possible that some of these algorithms will not be included. The exposure algorithms presented in these subsections estimate daily exposure doses based on expected media concentrations determined through the dispersion and deposition modeling results. Adjustments to lifetime exposure doses will be determined in the risk characterization section. Section 3.5 discusses this in more detail.

A groundwater exposure pathway has not been included in this protocol. It has been WESTON's experience that groundwater contamination from incinerator facility emissions is minimal and makes no significant contribution to total risk. Current EPA guidance for assessing health risks

associated with combustor emissions indicates that the evaluation of the groundwater pathway is unnecessary due to limited potential for groundwater contamination (EPA, 1990a). However, should groundwater recharge patterns and private well use be significant factors at the proposed site, this pathway can be further evaluated.

3.4.2 <u>Inhalation Exposure</u>

3.4.2.1 Air Concentrations of Pollutants

The concentrations of pollutants in the ambient air will be determined based on the dispersion modeling results.

3.4.2.2 Exposure through Inhalation

Where:

- Respiration Rate = 20 m³/day adult (EPA, 1989c), 10 m³/day child (USNRC, 1977), 3.8 m³/day infant (NCRP, 1984)
- Body Weight = 70 kg adult, 15.5 kg child, 9 kg infant (0-1 yr old) (EPA, 1989c; Ebasco, 1989)

3.4.3 Ingestion Exposure

3.4.3.1 Soil Concentrations of Pollutants

Contaminants with no expected significant degradation:

Where:

- Expected Facility Life = 2 years
- Soil Density = site specific
- Soil Mixing Depth = 0.1 m (for untilled soil) (EPA, 1990a) = 0.2 m (for tilled soil) (EPA, 1990a)

Contaminants with expected significant degradation:

Maximum
Contaminant
Concentration
in Soil
(mg/kg)

$$1-e^{(-kt)} \times \text{Total Deposition Rate} \times 10^3 \text{ mg}$$

$$(g/m^2/year) \qquad g$$

$$k \times \text{Soil Density} \times \text{Soil Mixing Depth}$$

$$(kg/m^3) \qquad (m)$$

Where:

k = Decay Coefficient (yr⁻¹), chemical specific

t = Expected Facility Life = 2 years*

*An average concentration is also calculated for the contaminants with expected loss using a computerized model which takes into account daily degradation over 70 years.

3.4.3.2 Exposure from Soil/Dust Ingestion

Dust concentrations are assumed to be equal to the 0.1 m mixing depth soil concentrations.

Where:

- Annual average dust ingestion rate = 4.26E-06 kg/day adult (EPA, 1989c).
- Annual average soil ingestion rate = 5.7E-05 kg/day adult (EPA, 1989c).
- Soil/Dust Ingestion Rate = 1.65 E-04 kg/day child (EPA, 1989c).
- Body Weight = 70 kg adult, 15.5 kg child (EPA, 1989c).

3.4.3.3 Garden Produce Ingestion

Contaminant Concentration Contaminant Dry Vertical Surface in/on = Concentration xRoot Deposition x Deposition x Produce in Soil Uptake Rate Factor (mg/kg) (mg/kg) Factor (g/m²/year) (m²sec/kg) 3.15E+07 sec

For root vegetables, the second term of this equation (i.e., the contribution of contaminant deposition on the plant) drops out. The second term also drops out when calculating the contaminant concentrations in/on leafy vegetables and garden fruits during the years after the facility is closed.

Where:

- Soil concentration is calculated with an assumed mixing depth of 20 cm (EPA, 1990a).
- Root Uptake Factor chemical specific (inorganics: Baes et al., 1984; organics calculated based on Briggs et al., 1982 (root vegetables) and Travis and Arms, 1988).
- Vertical Surface Deposition Factor = $\underline{r (1-e^{-kt})}$ Yk
 - r = Interception fraction of the plant (unitless) (Baes et al., 1984).
 - k = Total rate constant for degradation process (seconds⁻¹) (Baes et al., 1984).
 - t = Growing Time (seconds)
 - y = Plant Yield (wet weight) (kg/m^2)

Contaminant Leafy Contaminant Concentration Vegetable Dose from in Leafy Consumption Fractions Produce Ingestion = Vegetables X Rate х Homegrown (mg/kg/day) (mg/kg) (kg/day)

Contaminant Root Vegetable Contaminant Garden Concentration Consumption Concentration Fruit in Root Rate in Garden Х x Fraction Consumption Vegetables (kg/day) Homegrown Fruits Rate (mg/kg)(mg/kg) (kg/day)

Fraction — 1

x Homegrown x Body Weight (kg)

Where:

• Consumption Rates in wet weight (calculated from EPA, 1986 and Baes et al., 1984)

leafy vegetables = 4.82E-02 kg/day - adult, 9.64E-03 kg/day - child. root vegetables = 1.49E-02 kg/day - adult, 6.26E-03 kg/day - child. garden fruits = 8.61E-02 kg/day - adult, 3.34E-02 kg/day - child.

- Body Weight = 70 kg adult, 15 kg child (EPA, 1989c).
- Fraction Homegrown (rural) = 0.596 (EPA, 1986).

To the extent possible, local consumption rates and homegrown fractions will be further investigated as part of the land use analysis.

3.4.3.4 Surface Water Concentrations of Pollutants

If the surface water pathway is determined to be a key exposure route, surface water concentrations will be determined using a Tier 2 analysis (EPA, 1990a). If requested, the details of the surface water model will be provided in a supplementary memorandum.

3.4.3.5 Drinking Water Ingestion

Contaminant Dose from		Estimated		Surface Water Consumption		1
Surface Water Ingestion (mg/kg/day)	=	Surface Water Concentration (mg/L)	x	Rate (L/day)	x	Body Weight (kg)

Where:

- Surface Water Consumption Rate = 1.4 L/day adult, 1 L/day child (EPA, 1989c)
- Body Weight = 70 kg adult, 15 kg child (EPA, 1989c).

3.4.3.6 Fish Ingestion

Contaminant Contaminant Adjusted
Concentration Concentration
in Fish = in Water x Factor
(mg/kg) (mg/L) (L/kg)

Where:

Adjusted Bioconcentration Factor: compound specific, adjusted to account for difference in lipid content in test and study organism (if information is available)

Bioconcentration Factor x LC Study LC Test

Where:

- LC study = Lipid concentration in study organism
- LC test = Lipid concentration in test organism

If data are available, an adjustment of the predicted contaminant concentration in the whole body of the fish to a concentration in the edible portion of the fish will be made.

Contaminant Contaminant Daily Fish 1

Dose from = Concentration x Consumption x

Fish Ingestion in Fish Rate Body Weight (mg/kg/day) (mg/kg) (kg/day) (kg)

- Fish Consumption Rate = 0.030 kg/day adult (EPA, 1989c), 0.015 kg/day child.
- Body Weight = 70 kg adult, 15 kg child (EPA, 1989c).

3.4.3.7 Ingestion of Meat and Milk

Only the first term of the equation applies for calculating contaminant concentration in grain. The second term also drops out when calculating contaminant concentrations in/on other animal feed during the years after the facility is closed.

Where:

- Vertical Surface Deposition Factor (see Section 3.2.3).
- Root Uptake Factor chemical specific.

(mg/kg)		(mg/kg) Dail		(kg/day)		in Soil (mg/kg) Daily	/ In	(kg/day) take
Contaminant Concentration in Animal Diet	=	Concentration in Animal Feed Concentration	x	Daily Intake of Feed	+	Contaminant Concentration in Soil	x	Daily Intake of Soil

Where:

Daily Intake

Feed = dependent on area-specific farming practices and type of cattle

Soil = 2 percent of grazing diet (Fries, 1986)

• Soil Concentration - Calculated using a 0.1 m mixing depth for untilled soil (e.g., pasture grass) and a 0.20 m mixing depth for tilled soil (e.g., corn, grain, hay). (EPA, 1990a).

Contaminant						
Concentration		Animal		Tissue		Total Feed
In Animal Product	=	Intake	x	Uptake	x	Intake*
(mg/kg)		(mg/kg)		Factor		(kg/day)
				(day/kg)		

- Tissue Uptake Factor contaminant specific (Baes et al., 1984; Fries, 1986; Travis et al., 1988).
- * Total feed intake is not used in determining dioxin concentrations in animal products and the dioxin tissue uptake factor is unitless.

Contaminant Dose from Animal Product Ingestion	=	Contaminant Concentration in Animal Product (mg/kg)	x	Product Consumption Rate (kg/day)	x	Fraction Homegrown Product
	-		В	ody Weight (kg)		

Where:

Product Consumption Rates:

Beef = 0.037 kg/day - child (Pao et al., 1982), 0.067 kg/day - adult (Fries, 1986).

Beef fat = 0.009 kg/day - child (EPA, 1986), 0.015 kg/day - adult (Fries, 1986).

Milk = 0.39 kg/day - child (Pao et al., 1982), 0.305 kg/day - adult (Fries, 1986).

Milk fat = 0.016 kg/day - child (EPA, 1986), 0.01 kg/day - adult (Fries, 1986)

• Fraction Homegrown or obtained from a local source (rural)

Beef = 0.44 (EPA, 1986)

Milk = 0.3994 (EPA, 1986)

• Body Weight = 70 kg - adult, 15 kg - child (EPA, 1989c).

3.4.3.8 Breast Milk Ingestion

Breast Milk
Concentration = Doses to Mother x
(mg/kg)

Sum of Contaminant
Breast Milk
Transfer Factor
(day)

Where:

- Sum of Contaminant Doses: Total dose through all exposure routes
- Breast Milk Transfer Factor: chemical specific (Smith, 1987; Travis et al., 1988)

The breast milk pathway will be evaluated for organic contaminants only due to insufficient information regarding breast milk transfer factors (based on estimated daily intakes) for metals in human milk.

Infant Contaminant
Contaminant
Dose = in Breast Milk x Rate
(mg/kg/day) (mg/kg) (kg/day)

Infant Body Weight
(kg)

Where:

- Milk Ingestion Rate = 0.8 kg/day (Smith, 1987)
- Infant Body Weight (0-1 yr old) = 9 kg (EPA, 1989c)

3.4.4 <u>Dermal Exposure</u>

Dose From Dermal	=	Contaminant Concentration in Soil		Exposed Skin Surface	x	Soil Adherence		Dermal
Contact (mg/kg/day)		(mg/kg)	^	Area (cm ²)	X	Factor (mg/cm²/event)	х	Absorption Factor

Where:

- Exposed Skin Surface (arm and hand) Area: 3190 cm² adult, 1,480 cm² child (Anderson et al., 1985).
- Soil Adherence Factor 1.45 mg/cm² (EPA, 1989a).
- Dermal Absorption Factor chemical specific (based on Skog and Wahlberg, 1964; Poiger and Schlatter, 1980).
- Body Weight = 70 kg adult, 15 kg child (EPA, 1989cc).

3.5 RISK CHARACTERIZATION

3.5.1 Evaluation of Risk

3.5.1.1 Noncarcinogenic Risk

Noncarcinogenic risk will initially be evaluated by comparing contaminant doses to chronic reference doses. The contaminant dose: reference dose ratios (i.e., hazard quotients) will be summed to calculate the total chronic hazard index. Separate hazard indices will be calculated for the adult, child, and infant. If a chronic hazard index exceeds one, the potential for acute health effects will also be determined, by comparing the contaminant doses to available or derived short-term toxicity values.

3.5.1.2 Carcinogenic Risk

The carcinogenic risk posed by each contaminant through each exposure route will be calculated using the following equation:

6A-40

rm012c.rpt

Cancer Contaminant Carcinogenic Exposure Risk = Dose x Potency x Duration (mg/kg/day) Factor Adjustment $(mg/kg/day)^{-1}$

The exposure duration adjustment takes into account the length of exposure, in effect averaging the calculated daily contaminant dose over a 70-year lifetime. The total risk posed by each contaminant will be calculated by adding the risks posed by the contaminant through all exposure routes. The lifetime incremental cancer risk posed by all contaminants will be estimated by summing the risks posed by all contaminants through all exposure routes.

3.5.2 **Uncertainty Analysis**

All key assumptions and uncertainties and their potential effects on the risk estimates presented in the risk characterization will be summarized. A quantitative sensitivity analysis will be performed for some of the assumptions that are indicated to have the greatest impact on the calculation of total risk.

3.6 <u>REFERENCES</u>

Anderson, E., Browne, N., Puletsky, S., And T. Warn, 1985. <u>Development of Statistical Distribution of Ranges or Standard Factors Used in Exposure Assessments</u> (Draft Report). Prepared for the U.S. EPA Office of Health and Environmental Assessment, Contract No. 68-02-3510, Washington, DC.

Baes, C., Sharp, R.D., Sjoreen, A.L., and R.W. Shor, 1984. <u>A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides Through Agriculture.</u> Prepared by Oak Ridge National Laboratory for the U.S. Department of Energy, ORNL-5786.

Briggs, G., R.H. Bromilow, and A.A. Evans, 1982. Relationships between lipophilicity and root uptake, and translocation of nonionized chemicals by barley. <u>Pesticide Science</u> 13:495.

Lyman, W.J., W.F. Reehl and D.H. Rosenldatt, 1982. <u>Handbook of Chemical Estimation</u>

Methods: Environmental Behavior of Organic Compounds, McGraw-Hill, NY.

National Council on Radiation Protection and Measurements (NCRP), 1984. <u>Radiological Assessment: Predicting the Transport, Bioaccumulation, and Uptake by Man of Radionuclides Released to the Environment.</u> NCRP Report No. 76.

Oppelt, E.T., 1987 "Incineration of Hazardous Waste: A Critical Review," <u>J. Air Pollution</u> Control Association 37:558.

Pao, E.M., K.H. Fleming, P.M. Guenther, and S.J. Mickle, 1982. <u>Foods Commonly Eaten by Individuals: Amounts Per Day and Per Eating Occasion</u>. Consumer Nutrition Center, Human Nutrition Information Service, U.S. Department of Agriculture, Hyattsville, Maryland.

Poiger, H., and C. Schlatter, 1980. "Influence of Solvents and Adsorbents on Dermal and Intestinal Absorption of TCDD." Fd. Cosmet. Toxicol. 18:447.

Skog, E. and J. Wahlberg, 1964. "A Comparative Investigation of the Percutaneous Absorption of Metal Compounds in the Guinea Pig by Means of the Radioactive Isotopes: ⁵¹Cr, ⁵⁸Co, ⁶⁵Zn, ^{110m}Ag, ^{115m}Cd, ²⁰³Hg." <u>J. Invest. Dermatol</u>. 43:187.

Smith, A.H., 1987. Infant exposure assessment for breast milk dioxins and furans derived from waste incinerator emissions. Risk Analysis 7:347.

Travic, C. and A. Arms, 1988. "Bioconcentration of Organics in Beef, Milk, and Vegetation." Environ. Sci. Technol. 22:271.

Travis, C.C., H.A. Hattemer-Frey, and A.D. Arms, 1988. "Relationship between dietary intake of organic chemicals and their concentrations in human adipose tissue and breast milk." <u>Arch. Environ. Contam. Toxicol.</u> 17:473.

Trenholm, A. 2nd Hathaway, R., 1984. "Products of Incomplete Combustion from Hazardous Waste Incinerators," in <u>Proceedings 10th Annual Hazardous Waste Research Symposium, Incineration of Hazardous Waste</u>, U.S. EPA, EPA-600/9-84-022.

U.S. Nuclear Regulatory Commission (USNRC), 1977. Regulatory Guide 1.109 Revision 1, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliances with 10 CFR Part 50, Appendix I. Office of Standards Development, U.S. Nuclear Regulatory Commission, Washington, DC.

WESTON, Inc., 1989. <u>Draft Background Geographical Characterization Report, Rocky Flats</u>
<u>Plant, Golden, Colorado</u>. Prepared by Roy F. Weston, Inc., Lakewood, Colorado, Dec., 1989.

AMBIENT AIR QUALITY MODELING AND HEALTH RISK ASSESSMENT PROTOCOLS FOR THE ROCKY MOUNTAIN ARSENAL SUBMERGED QUENCH INCINERATOR

Submitted to:

Prepared for:

Submitted by:

ROY F. WESTON, INC.

Weston Way West Chester, Pennsylvania 19380

NOVEMBER 1990

W.O.#: 3886-44-01

TABLE 1. EMISSION RATES FOR ROCKY MOUNTAIN ARSENAL BASIN F WASTE SUBMERGED QUENCH INCINERATOR

09 1.501 03 6.491 04 2.281 03 1.291 04 3.161 05 1.321 03 9.631	E-10 6.63E-08 E-04 2.50E-02 E-05 1.35E-03	7.14E-03	(g/sec) (c) 2.39E-09
03 6.491 04 2.281 03 1.291 04 3.161 05 1.321	E-04 2.50E-02 E-05 1.35E-03	7.14E-03	2.39E-09
03 6.491 04 2.281 03 1.291 04 3.161 05 1.321	E-04 2.50E-02 E-05 1.35E-03	7.14E-03	2.39E-09
04 2.28F 03 1.29F 04 3.16F 05 1.32F	E-04 2.50E-02 E-05 1.35E-03	7.14E-03	2.0021-00
04 2.28F 03 1.29F 04 3.16F 05 1.32F	E-05 1.35E-03		
04 2.28F 03 1.29F 04 3.16F 05 1.32F	E-05 1.35E-03		
03 1.29F 04 3.16F 05 1.32F		A APPL A .	8.99E-04
04 3.16E 05 1.32E	E-04 8.67E-03	3.85E-04	4.85E-05
05 1.321		2.48E-03	3.12E-04
		2.51E-04	3.16E-05
03 9.631		2.06E-05	2.59E-06
			1.31E-03
04 2.02I			7.81E-05
02 5.53E			1.05E-02
05 8.88E			1.20E-05
04 2.84E			2.93E-05
01 1.21E	1 -10-27	1.82E+00	2.29E-01
02 1. 72 E			2.93E-03
04 4.05E			7.81E-05
05 3.96E		5.92E-05	7.45E-06
02 5.14E		6.81E-02	8.59E-03
03 2.22E		1.98E-03	2.50E-04
04 3.57E		4.25E-04	5.35E-05
03 3.97E	E-04 1.14E-02	3.25E-03	4.09E-04
03 1.03E		8.49E-03	1.07E-03
01 4.09E		7.24E-01	9.13E-02
03 3.31E		2.63E-03	3.31E-04
02 5.70E		5.41E-02	6.81E-03
05 3.43E		2.96E-05	3.72E-06
01 2.34E-		1.59E+02	2.00E+01
05 1.32E		1.62E-05	2.04E-06
3.33E		2.64E-03	3.33E-04
3 2.91E		2.51E-03	3.16E-04
05 2.20E	-10.201	3.07E-05	3.87E-06
4 8.42E		7.49E-04	9.44E-05
	NA 2.14E-05	6.11E-06	7.70E-07
3 5.86E	I-04 3.34E-02	9.54E-03	1.20E-03
7 225	00		
7 2.35E 8 2.16E			
_			
8 7.51E- 6 2.02E-			
2.02E- 2 6.03E-			
7 1.37E-			
9 9.36E-	i		
7 1.56E-			
8 4.15E-	1		
7 2.70E-			
8 5.76E-			
	1		
	1		
	The state of the s		
4./3E-			
1.400			
	3 4.96E- 5 2.62E- 7 1.42E- 8 2.46E- 7 4.62E- 7 2.73E- 4 1.42E-	3 4.96E-04 6 2.62E-07 7 1.42E-08 8 2.46E-09 7 4.62E-08 7 2.73E-08	3 4.96E-04 5 2.62E-07 7 1.42E-08 8 2.46E-09 7 4.62E-08 7 2.73E-08 4 1.42E-05

TABLE 1. EMISSION RATES FOR ROCKY MOUNTAIN ARSENAL BASIN F WASTE SUBMERGED QUENCH INCINERATOR (continued)

Category/ Pollutant	(ton/yr)	Base Case (a) (lb/hr)	(g/sec) (c)	(ton/yr)	Sensitivity Case (b) (lb/hr)	(g/sec)
	13.7	111	10,000, (0)	(1011/9/)	(w/m/	(g/sec)
Organic 4 Nitrophone	2.0077.07					
4-Nitrophenol	3.02E-05	8.62E-06	1.09E-06	1		
Aldrin	3.63E-06	1.04E-06	1.31E-07			
Atrazine	7.95E-07	2.27E-07	2.86E-08	Ī		
Hydrogen Cyanide	3.38E-06	9.66E-07	1.22E-07			
Dieldrin	7.44E-07	2.13E-07	2.68E-08			
Diisopropyl Methylphosphonate	1.25E-04	3.58E-05	4.50E-06			
Dimethyl Methylphosphonate	3.09E-03	8.83E-04	1.11E-04	j		
Dimethyldisulfide	3.61E-04	1.03E-04	1.30E-05	ĺ		
Dithiane	1.26E-07	3.61E-08	4.55E-09	1		
Endrin	7.23E-07	2.07E-07	2.60E-08	1		
Hexachlorocyclopentadiene	6.69E-06	1.91E-06	2.41E-07			
Isodrin	1.88E-06	5.38E-07	6.78E-08			
Malathion	2.93E-06	8.36E-07	1.05E-07			
Parathion	3.98E-07	1.14E-07	1.43E-08			
Supona	1.23E-06	3.51E-07	4.42E-08			
Urea	5.17E-01	1.48E-01	1.86E-02			
Vapona	3.22E-06	9.19E-07	1.16E-07			
p,p-DDE	3.94E-07	1.13E-07	1.42E-08			
p,p-DDT	1.23E-06	3.51E-07	4.42E-08			
NCowith Specific Pro-						
PICs with Specific Precursors	7.000					
Vinyl Chloride	7.07E-04	2.02E-04	2.55E-05	1		
Methyl Chloride	7.03E-04	2.01E-04	2.53E-05	1		
Styrene	7.05E-04	2.01E-04	2.54E-05	1		
Phenol	3.81E-03	1.09E-03	1.37E-04			
Benzaldehyde	7.32E-04	2.09E-04	2.64E-05			
Benzoic Acid	3.54E-04	1.01E-04	1.27E-05			
Acetonitrile	3.38E-06	9.66E-07	1.22E-07			
Acrylonitrile	3.38E-07	9.66E-08	1.22E-08			
Cyanogen	3.38E-08	9.66E-09	1.22E-09			
Hexachlorobenzene	2.40E-06	6.87E-07	8.66E-08			
Pentachlorobenzene	1.07E-06	3.07E-07	3.87E-08	1		
Tetrachlorobenzene	4.54E-07	1.30E-07	1.63E-08	1		
Trichlorobenzene	2.41E-07	6.89E-08	8.68E-09	1		
Dichlorobenzene	1.29E-07	3.68E-08	4.64E-09			
Biphenyl	3.56E-04	1.02E-04	1.28E-05			
4-Chlorobiphenyl	2.38E-03	6.79E-04	8.55E-05		•	
4,4-Chlorobiphenyl	4.47E-05	1.28E-05	1.61E-06	1		
Benzonitrile	3.38E-07	9.66E-08	1.22E-08			
Pyridine	3.38E-08	9.66E-09	1.22E-09			
Carbazole Quinoline	6.76E-08 1.69E-07	1.93E-08 4.83E-08	2.43E-09			
	1.07E-0/	4.03E-08	6.09E-09			
ICs without Specific Precursors						
Benzofuran	1.40E-03	4.01E-04	5.06E-05			
Dibenzofuran	7.02E-05	2.01E-05	2.53E-06		•	
Acenaphthalene	3.51E-04	1.00E-04	1.26E-05			
Acenaphthene	3.51E-04	1.00E-04	1.26E-05			
Fluoranthene	2.11E-04	6.02E-05	7.58E-06			
Phenanthrene	1.40E-04	4.01E-05	5.06E-06			
Pyrene	7.02E-05	2.01E-05	2.53E-06			
Fluorene	7.02E-05	2.01E-05	2.53E-06	1		
Benzo(a)pyrene	7.02E-05	2.01E-05	2.53E-06			
Dibenzo(a)anthracene	7.02E-05	2.01E-05	2.53E-06			
Chrysene	7.02E-05	2.01E-05	2.53E-06	1		

TABLE 1. EMISSION RATES FOR ROCKY MOUNTAIN ARSENAL BASIN F WASTE SUBMERGED QUENCH INCINERATOR (continued)

Category/		Base Case (a)			Sensitivity Case (l	<u>o)</u>
Pollutant	(ton/yr)	(lb/hr)	(g/sec) (c)	(ton/yr)	(lb/hr)	(g/sec) (c)
Acid Gases & Other Compounds						
Particulate Matter	14.00 (d)	4.00	0.50	14.00	4.00	0.50
Carbon Monoxide	4.71	1.35	0.17	7.29	(f) 2.08	0.26
Hydrogen Chloride	4.73 (e)	1.35	0.17	14.00		0.50
Hydrogen Fluoride	5.23	1.494	0.188	15.35	4.385	0,552
Nitric Acid	3.85	1.10	0.14	3.85	1.10	0.14
Nitrogen Dioxide	32.13	9.18	1.16	143.22		5.16
Phosphate	1.77	0.51	0.06	3.51	1.00	0.13
Sulfuric Acid	10.40	2.97	0.37	17.34	4.96	0.62
Sulfur Dioxide	24.43 (e)	6.98	0.88	101.50	_	3.65

- (a) These estimates are based upon the acceptable results during the test burn for dioxins/furans and the maximum of the acceptable test results or the maximum of the averages waste stream data for inorganics (including metals, acid gases and other compounds). The volatile and semi-volatile organic emissions are based upon Dellinger's analysis of the maximum of the averages wastestream data.
- (b) For metals: based upon the maximum value of the test results from the test burn, the maximum of the maximum values from the wastestream data, and the EPA Guidance Tier II limits for complex terrain.
 For dioxins/furans: based upon the 95% confidence interval from WESTON's hazardous waste incinerator emissions database.

For acid gases & other compounds: based upon the maximum value of the test results from the test burn and the maximum of the maximum values from the wastestream data.

- (c) Assuming 7000 operating hours per year.
- (d) Based upon Colorado's emission limitation of 0.08 gr/dscf@12% CO2.
- (e) Based upon the February 1989 test burn, which tested for the specific compound.
- (f) Based upon Federal emission limitation of 100 ppm.
- (g) Based upon vendor performance guarentees.

EXPECTED ACID & OTHER COMPOUNDS EMISSIONS BASED ON TEST BURN EMISSIONS & WASTE STREAM DATA

		Bas	Based on Waste Stream Data	un Data	Base	used upon Acceptabl	le Maximum Finicione	
Original Pollutant	Waste Feedrate (lb/ton)	Waste Converted Reedrate (1) Pollutant (lb/ton)	Uncontrolled Emissions (lb/ton)	(2) Efficiency (%)	Controlled Emissions (3) (lb/ton)	Controlled Emissions (4) (lb/ton)	Between the Two Scenarios	(5) (5)
Particulate Matter (PM)	Y Z	ΡM	NA	¥Z	Y.	NA.	- *	(3) (0)
Carbon Monoxide (CO)	Y Z	8	AZ	X	Y Z	1960	1 1760	4.00 (0)
Chloride (Cl)	215.5	131	221.7	S		1040	1070	
Fluoride (F)	0.18	HF	0.0	S S	0000	2 2	VN 6	(11) 58.1
Nitrate (NO3)	2.1	HN03	2.1	8 8	0.000	4 2	600.0	0.05
Nitrogen (N)	110.5	NO2	362.9	2 =	367.0	Z 2	0.213	01.1
Phosphorus (P)	31.7	PO4	31.7	999.4	0.190	0.00	0//1	81.8
Sulfate (SO4)	56.4	H2SO4	57.6	8	90	80°0	030	0.98
Sulfur (S)	NA	203	¥Z	8	N N	K X	NA L	16.7

MAXIMUM ACID & OTHER COMPOUNDS EMISSIONS BASED ON TEST BURN EMISSIONS & WASTE STREAM DATA

		A	Based on Waste Stream Data	em Data		Based upon	Maximum	
Original Pollutant	Waste Feedrate (1) (lb/ton)	Converted (1) Pollutant	d Uncontrolled t Emissions (lb/tm)	Removal (2) Efficiency (%)	Controlled Emissions (3) (1b/ton)	Controlled Emissions (4) (lb/ton)	Between the Two Scenarios (11) (11)	s (5) (5)
Particulate Matter (PM)	¥Z	PM	¥Z	¥ Z	**	1		
Carbon Monoxide (CO)	YZ	8	Y.	¥2	\$ X	14 CO 402	NA C	4.00 (6)
Chloride (CI)	318.0	HC	327.1	95	16.4		CO#10	
Fluoride (F)	0.34	HP	0.4	8 8	8100	X X	T WIN TO SERVICE THE SERVICE T	4.00 (9)
Nitrate (NO3)	2.1	HIN03	2.1	8 8	0.013	V V	0.018	0.09
Vitrogen (N)	168.4	NO2	553.0	2	553.0	V V	0.213	
hosphorus (P)	138.7	PO4	138.7	99.4	0.832	0.038	0.63	40.92 (9)
Sulfate (SO4)	94.0	H2SO4	96.0	8	1.0	82	760.0	4.30
Sulfur (S)	¥Z	803	AN.	8	NA N	VIV		70.00

(1) Based upon the maximum of the maximums emission concentration from historical test data (tons/yr) and multiplying by 2000 lbs/ton / ((10,325 lbs of waste/hr / 2000 lbs/ton) \times 7,000 operating hrs/yr).

Based upon the waste feed rate x the molecular weight of the converted pollutant the molecular weight of the orginal pollutant. 8

Based upon the average emission during the test burn by T-Thermal in Aug. 1990. Controlled Emissions = Uncontrolled Emissions x (1- % Removal Efficiency) 3 3

The maximum values were used for all pollutants, except NO2, for which the test burn data was used. 3

Particulate is based upon Colorodo regulations of 0.08 gr/dscf @ 12% CO2. Carbon monoxide is based upon Federal regulations of 100 ppm. 9

Based upon February 1989 test burn which tested for the specific compounds. 683

TABLE 3

Chemicals of Concern Evaluated in Tier 1 Surface Water Screening Analysis For Rocky Mountain Arsenal

A 4 5 6 7	В	С	03-Dec-90 02:46:14 PM	D	E	F	G	H
8 9 10 11	POLLUTANTS ORGANICS			EMISSION RATE (g/sec)	TOTAL DEPOSITION RATE (g/m2*yr)	TOTAL BASIN DEPOSITION (g/yr)	WATER CONCENTRATION (mg/l)	AWQCs FISH INGESTION (mg/1)
12 13 14 15	Tetraci	nthene hlorobenze hlorobenze	ene ene	1.91E-09 9.73E-12 4.11E-12	1.72E-12 8.76E-15 3.70E-15	2.23E-07 1.13E-09 4.79E-10	3.23E-13 1.64E-15 6.93E-16	5.40E-02 8.50E-02 4.80E-02
16 17 18 19 20 21 22 23 24 25 26 27	INORGANICS Antimor Chromic Mangane Mercury Nickel Thallic	um (III) ese ⁄		3.90E-03 1.20E-05 2.50E-04 3.90E-03 1.07E-03 3.90E-03	3.51E-06 1.08E-08 2.25E-07 3.51E-06 9.63E-07 3.51E-06	4.55E-01 1.40E-03 2.91E-02 4.55E-01 1.25E-01 4.55E-01	6.58E-07 2.02E-09 4.22E-08 6.58E-07 1.81E-07 6.58E-07	4.50E+01 3.43E+03 1.00E-01 1.46E-04 1.00E-01 4.80E-02
25 26 27 28 29 30 31 32 33 34 35 36 37			TBO	5.00E-01 H 3.45E+05 L 1.00E-03 C	otal deposition otal basin are ydraulic reside ake volume (m3 onversion factor onversion factor fact	a (m2) ence time (yr) or (m3/1)		

^{*} All chemicals evaluated in this analysis will be excluded from the surface water pathway in the risk assessment.

FIGURE 1. Locations of Reasonable, Maximally-Exposed Individuals Based Upon Ambient Air and Deposition Modeling Data.

(A) Area of maximum total deposition (residential); (B) Area of maximum dry deposition and maximum ambient groundlevel air concentration (residential); (C) Area of maximum total deposition for local cattle farm; (D) A maintenance worker on-site exposed to area weighted total deposition and ambient groundlevel air concentrations.

TABLE 4A

Rocky Mountain Arsenal (RMA) Slope Factors for Carcinogenic Health Effects (mg/kg/day^-1)

	EPA	IARC	Inhalation	Reference or	Oral	Reference or	Dermal
	Carcinogenicity	Carcinogenicity	Route	Basis of	Route	Basis of	Route
Pollutant	Classification	Classification	Slope Factor	Inhalation	Slope	Oral Slope	Siope
				Slope Factor	Factor	Factor	Factor

Organics

Actyloninine B1 2A 2.40E-01 IRIS, 1990 5.40E-01 IRIS, 1990 NC Aldrin B2 3 1.70E+01 IRIS, 1990 1.70E+01 IRIS, 1990 3.40E+01 Benzene A 1 2.90E-02 IRIS, 1990 2.90E-02 IRIS, 1990 NC Carbon Tetrachloride B2 3 2.00E-02 OSF 2.00E-02 EBASCO, 1990 ALOG-02 Chloroform B2 28 1.30E-01 IRIS, 1990 1.30E-01 IRIS, 1990 NC DDE B2 28 8.10E-02 IRIS, 1990 6.10E-03 IRIS, 1990 NC DDT B2 28 3.40E-01 IRIS, 1990 3.40E-01 IRIS, 1990 6.80E-01 1,4-Dichlorobenzene B2 28 2.40E-02 ORD EPA, 1990 2.40E-02 EPA, 1990 NC 1,2-Dichloropenane B2 3 6.80E-02 ORD EPA, 1990 6.80E-01 IRIS, 1990 NC 1,2-Dichloropenae B2 3								
Benzene	Acrylonitrile	Bi	2A	2.40E-01	IRIS, 1990	5.40E-01	IRIS, 1990	NC
Carbazole B2 3 2.00E-02 OSF 2.00E-02 EBASCO, 1990 4.00E-02 Carbon Tetrachloride B2 2B 1.30E-01 IRIS, 1990 1.30E-01 IRIS, 1990 NC Chloroform B2 2B 8.10E-02 IRIS, 1990 6.10E-03 IRIS, 1990 NC DDE B2 3.40E-01 OSF 3.40E-01 IRIS, 1990 6.80E-01 DDT B2 2B 3.40E-01 IRIS, 1990 3.40E-01 IRIS, 1990 6.80E-01 1,4-Dichlorobenzene B2 2B 2.40E-02 ORD EPA, 1990 2.40E-02 EPA, 1990 NC 1,2-Dichloropropane B2 3 6.80E-02 ORD EPA, 1990 6.80E-02 EPA, 1990 NC 1,2-Dichloropropane B2 3 6.80E-02 ORD EPA, 1990 6.80E-02 EPA, 1990 NC 1,2-Dichloropropane B2 3 1.60E+01 IRIS, 1990 NC NC Dickdrin B2 3 1.50E+01 IRIS, 1990 </td <td>Aldrin</td> <td>B2</td> <td>3</td> <td>1.70E+01</td> <td>IRIS, 1990</td> <td>1.70E+01</td> <td>IRIS, 1990</td> <td>3.40E+01</td>	Aldrin	B2	3	1.70E+01	IRIS, 1990	1.70E+01	IRIS, 1990	3.40E+01
Carbon Tetrachloride B2 28 1.30E-01 IRIS, 1990 NC Chloroform B2 28 8.10E-02 IRIS, 1990 6.10E-03 IRIS, 1990 NC DDE B2 28 8.10E-02 IRIS, 1990 6.10E-03 IRIS, 1990 NC DDT B2 28 3.40E-01 IRIS, 1990 3.40E-01 IRIS, 1990 6.80E-01 1,4-Dichlorobenzene B2 28 2.40E-02 ORD EPA, 1990 2.40E-02 EPA, 1990 NC 1,1-Dichloroptopane B2 3 6.80E-02 ORD EPA, 1990 6.80E-02 EPA, 1990 NC 1,2-Dichloropropane B2 3 6.80E-02 ORD EPA, 1990 6.80E-02 EPA, 1990 NC 1,2-Dichloropropane B2 3 1.60E+01 IRIS, 1990 6.80E-02 EPA, 1990 NC 1,2-Dichloropropane B2 3 1.60E+01 IRIS, 1990 1.60E+01 IRIS, 1990 NC Dickidrin B2 3 1.60E+01 IR	Benzene	A	1	2.90E-02	IRIS, 1990	2.90E-02	IRIS, 1990	NC
Description B2 28 8.10E-02 IRIS, 1990 6.10E-03 IRIS, 1990 NC	Carbazole	B2	3	2.00E-02	OSF	2.00E-02	EBASCO, 1990	4.00E-02
DDE	Carbon Tetrachloride	B2	28	1.30E-01	IRIS, 1990	1.30E-01	IRIS, 1990	NC
DDT	Chloroform	B2	28	8.10E-02	IRIS, 1990	6.10E-03	IRIS, 1990	NC
1,4-Dichlorobenzene B2 2B 2,40E-02 ORD EPA, 1990 2,40E-02 EPA, 1990 NC 1,1-Dichloropethene C 1,20E+00 IRIS, 1990 6,00E-01 IRIS, 1990 NC 1,2-Dichloropropane B2 3 6,80E-02 ORD EPA, 1990 6,80E-02 EPA, 1990 NC Dicklorine B2 3 1,60E+01 IRIS, 1990 1,60E+01 IRIS, 1990 3,20E+01 Dioxins/Furans (as 2,3,7,8 TCDD) B2 2B 1,13E+05 EPA, 1990 1,50E+05 EPA, 1990 3,00E+05 Hexachlorobenzene B2 2B 1,60E+00 EPA, 1990 1,50E+05 EPA, 1990 3,20E+00 Methyl Chloride C 3 6,30E-03 EPA, 1990 1,30E-02 EPA, 1990 NC Methylene Chloride B2 1,40E-02 EPA, 1990 7,50E-03 EPA, 1990 NC Methylene Chloride B2 2A 6,10E+00 EPA, 1996 1,15E+01 EPA, 1996 NC PAHs — — — — — — — — — — — — — — — — — — <td>DDE</td> <td>B2</td> <td></td> <td>3.40E-01</td> <td>OSF</td> <td>3.40E-01</td> <td>IRIS, 1990</td> <td>6.80E-01</td>	DDE	B2		3.40E-01	OSF	3.40E-01	IRIS, 1990	6.80E-01
1,1-Dichloroethene C 1.20E+00 IRIS, 1990 6.00E-01 IRIS, 1990 NC 1,2-Dichloropropane B2 3 6.80E-02 ORD EPA, 1990 6.80E-02 EPA, 1990 NC Dieldrin B2 3 1.60E+01 IRIS, 1990 1.60E+01 IRIS, 1990 3.20E+01 Dioxins/Furans (as 2,3,7,8 TCDD) B2 2B 1.13E+05 EPA, 1990 1.50E+05 EPA, 1990 3.00E+05 Hexachlorobenzene B2 2B 1.60E+00 EPA, 1990 1.50E+05 EPA, 1990 3.20E+00 Methyl Chloride C 3 6.30E-03 EPA, 1990 1.30E-02 EPA, 1990 NC Methylene Chloride B2 1.40E-02 EPA, 1990 7.50E-03 EPA, 1990 NC PAHs — <	DDT	B2	2B	3.40E-01	IRIS, 1990	3.40E-01	IRIS, 1990	6.80E-01
1.2-Dichloropropane B2 3 6.80E-02 ORD EPA, 1990 6.80E-02 EPA, 1990 NC Dieldrin B2 3 1.60E+01 IRIS, 1990 1.60E+01 IRIS, 1990 3.20E+01 Dioxins/Furans (as 2,3,7,8 TCDD) B2 28 1.13E+05 EPA, 1990 1.50E+05 EPA, 1990 3.00E+05 Hexachlorobenzene B2 28 1.60E+00 EPA, 1990 1.60E+00 EPA, 1990 3.20E+00 Methyl Chloride C 3 6.30E-03 EPA, 1990 1.30E-02 EPA, 1990 NC Methylene Chloride B2 1.40E-02 EPA, 1990 7.50E-03 EPA, 1990 NC PAHS — <td>1,4-Dichlorobenzene</td> <td>B2</td> <td>28</td> <td>2.40E-02</td> <td>ORD EPA, 1990</td> <td>2.40E-02</td> <td>EPA, 1990</td> <td>NC</td>	1,4-Dichlorobenzene	B2	28	2.40E-02	ORD EPA, 1990	2.40E-02	EPA, 1990	NC
Dieldrin B2 3 1.60E+01 IRIS, 1990 1.60E+01 IRIS, 1990 3.20E+01 Dioxins/Furans (as 2,3,7,8 TCDD) B2 28 1.13E+05 EPA, 1990 1.50E+05 EPA, 1990 3.00E+05 Hexachlorobenzene B2 28 1.60E+00 EPA, 1990 1.60E+00 EPA, 1990 3.20E+00 Methyl Chloride C 3 6.30E-03 EPA, 1990 1.30E-02 EPA, 1990 NC Methylene Chloride B2 1.40E-02 EPA, 1990 7.50E-03 EPA, 1990 NC PAHs —	1,1-Dichloroethene	С		1.20E+00	IRIS, 1990	6.00E-01	IRIS, 1990	NC
Dioxins/Furans (as 2,3,7,8 TCDD) B2 28 1.13E+05 EPA, 1990 1.50E+05 EPA, 1990 3.00E+05 Hexachlorobenzene B2 28 1.60E+00 EPA, 1990 1.60E+00 EPA, 1990 3.20E+00 Methyl Chloride C 3 6.30E-03 EPA, 1990 1.30E-02 EPA, 1990 NC Methylene Chloride B2 1.40E-02 EPA, 1990 7.50E-03 EPA, 1990 NC PAHs —	1,2-Dichloropropane	82	3	6.80E-02	ORD EPA, 1990	6.80E-02	EPA, 1990	NC
Hexachlorobenzene B2 2B 1.60E+00 EPA, 1990 1.60E+00 EPA, 1990 3.20E+00 Methyl Chloride C 3 6.30E-03 EPA, 1990 1.30E-02 EPA, 1990 NC Methylene Chloride B2 1.40E-02 EPA, 1990 7.50E-03 EPA, 1990 NC PAHS — — — — — — — Benzo[a]pyrene B2 2A 6.10E+00 EPA, 1986 1.15E+01 EPA, 1986 2.30E+01 Chrysene B2 3 6.10E+00 EPA, 1986 1.15E+01 EPA, 1986 2.30E+01 Dibenzo[a]anthracene 2A,3 6.10E+00 EPA, 1986 1.15E+01 EPA, 1986 2.30E+01 Parathion C 1.20E+01 ORD 1.20E+01 EPA, 1990 2.40E+01 Styrene B2 2B 2.00E-03 EPA, 1990 3.00E-02 EPA, 1990 NC Tetrachloroethene B2 3 1.10E-02 EPA, 1990 1.10E-02 EP	Dieldrin	B2	3	1.60E+01	IRIS, 1990	1.60E+01	IRIS, 1990	3.20E+01
Methyl Chloride C 3 6.30E-03 EPA, 1990 1.30E-02 EPA, 1990 NC Methylene Chloride B2 1.40E-02 EPA, 1990 7.50E-03 EPA, 1990 NC PAHs — — — — — — — — Benzo[a]pyrene B2 2A 6.10E+00 EPA, 1986 1.15E+01 EPA, 1986 2.30E+01 Chrysene B2 3 6.10E+00 EPA, 1986 1.15E+01 EPA, 1986 2.30E+01 Dibenzo[a]anthracene 2A,3 6.10E+00 EPA, 1986 1.15E+01 EPA, 1986 2.30E+01 Parathion C 1.20E+01 ORD 1.20E+01 EPA, 1986 2.30E+01 Styrene B2 2B 2.00E-03 EPA, 1990 3.00E-02 EPA, 1990 NC Tetrachloroethene B2 3 1.10E-02 EPA, 1990 NC Vapona B2 3 2.90E-01 ORD 2.90E-01 IRIS, 1990 5.80E-01	Dioxins/Furans (as 2,3,7,8 TCDD)	B2	2B	1.13E+05	EPA, 1990	1.50E+05	EPA, 1990	3.00E+05
Methylene Chloride B2 1.40E-02 EPA, 1990 7.50E-03 EPA, 1990 NC PAHs —	Hexachlorobenzene	B2	28	1.60E+00	EPA, 1990	1.60E+00	EPA, 1990	3.20E+00
PAHs —	Methyl Chloride	С	3	6.30E-03	EPA, 1990	1.30E-02	EPA, 1990	NC
Benzo[a]pyrene B2 2A 6.10E+00 EPA, 1986 1.15E+01 EPA, 1986 2.30E+01 Chrysene B2 3 6.10E+00 EPA, 1986 1.15E+01 EPA, 1986 2.30E+01 Dibenzo[a]anthracene 2A,3 6.10E+00 EPA, 1986 1.15E+01 EPA, 1986 2.30E+01 Parathion C 0 <	Methylene Chloride	B2		1.40E-02	EPA, 1990	7.50E-03	EPA, 1990	NC
Chrysene B2 3 6.10E+00 EPA, 1986 1.15E+01 EPA, 1986 2.30E+01 Dibenzo[a]anthracene 2A,3 6.10E+00 EPA, 1986 1.15E+01 EPA, 1986 2.30E+01 Parathion C	PAHs		_	_	-	_	_	_
Dibenzo[a]anthracene 2A,3 6.10E+00 EPA, 1986 1.15E+01 EPA, 1986 2.30E+01 Parathion C	Benzo[a]pyrene	B2	2A	6.10E+00	EPA, 1986	1.15E+01	EPA, 1986	2.30E+01
Parathion C	Chrysene	B2	3	6.10E+00	EPA, 1986	1.15E+01	EPA, 1986	2.30E+01
Quinoline C 1.20E+01 ORD 1.20E+01 EPA, 1990 2.40E+01 Styrene B2 2B 2.00E-03 EPA, 1990 3.00E-02 EPA, 1990 NC Tetrachloroethene B2 5.10E-02 EPA, 1990 NC Trichloroethene B2 3 1.10E-02 EPA, 1990 1.10E-02 EPA, 1990 NC Vapona B2 3 2.90E-01 ORD 2.90E-01 IRIS, 1990 5.80E-01	Dibenzo(a)anthracene		2A,3	6.10E+00	EPA, 1986	1.15E+01	EPA, 1986	2.30E+01
Styrene B2 2B 2.00E-03 EPA, 1990 3.00E-02 EPA, 1990 NC Tetrachloroethene B2 5.10E-02 EPA, 1990 NC Trichloroethene B2 3 1.10E-02 EPA, 1990 1.10E-02 EPA, 1990 NC Vapona B2 3 2.90E-01 ORD 2.90E-01 IRIS, 1990 5.80E-01	Parathion	С						
Tetrachloroethene B2 5.10E-02 EPA, 1990 NC Trichloroethene B2 3 1.10E-02 EPA, 1990 1.10E-02 EPA, 1990 NC Vapona B2 3 2.90E-01 ORD 2.90E-01 IRIS, 1990 5.80E-01	Quinoline	С		1.20E+01	ORD	1.20E+01	EPA, 1990	2.40E+01
Trichloroethene B2 3 1.10E-02 EPA, 1990 1.10E-02 EPA, 1990 NC Vapona B2 3 2.90E-01 ORD 2.90E-01 IRIS, 1990 5.80E-01	Styrene	B2	2B	2.00E-03	EPA, 1990	3.00E-02	EPA, 1990	NC
Vapona B2 3 2.90E-01 ORD 2.90E-01 IRIS, 1990 5.80E-01	Tetrachloroethene	B2				5.10E-02	EPA, 1990	NC
	Trichloroethene	B2	3	1.10E-02	EPA, 1990	1.10E-02	EPA, 1990	NC
Vinyl Chloride A 1 2.95E-01 EPA, 1990 2.30E+00 EPA, 1990 NC	Vapona	B2	3	2.90E-01	ORD	2.90E-01	IRIS, 1990	5.80E-01
	Vinyl Chloride	Α	1	2.95E-01	EPA, 1990	2.30E+00	EPA, 1990	NC

Rocky Mountain Arsenal (RMA)
Slope Factors for
Carcinogenic Health Effects
(mg/kg/day^-1)

	EPA	IARC	Inhalation	Reference or	Oral	Reference or	Dermal
	Carcinogenicity	Carcinogenicity	Route	Basis of	Route	Basis of	Route
Pollutant	Classification	Classification	Slope Factor	Inhalation	Slope	Oral Slope	Slope
				Slope Factor	Factor	Factor	Factor

Inorganics

Arsenic
Beryllium
Cadmium
Chromium (VI)
Nickel (as soluble salts)

A	1	1.50E+01	IRIS, 1990	1.75E+00	EPA, 1990	3.50E+01
B2		8.40E+00	IRIS, 1990	4.30E+00	IRIS, 1990	8.60E+01
B1	2A	6.10E+00	IRIS, 1990	NC	-	NC
Α	1	4.10E+01	IRIS, 1990	NC	_	NC
A	1	2.00E-02	IRIS, 1990	NC		NC

NC = Not of Concern

NE = Not Evaluated

TABLE 4B

Rocky Mountain Arsenal (RMA) Reference Doses (RfDs) for Noncarcinogenic Health Effects (mg/kg/day)

	Inhalation	Reference or	Oral	Reference or	Dermal
	Route	Basis of	Route	Basis of	Route
Pollutant	RfD	Inhalation RfD	RfD	Oral RfD	RfD
	•				

Organics

Organics					
Acetone	1.82E+00	ACGIH-TWA	1.00E-01	EPA, 1990	NC
Acetonitrile	1.00E-02	EPA,1990	6.00E-02	EPA, 1990	3.00E-02
Acrylonitrile	4.39E-03	ACGIH-TWA	2.70E-04	Derived	NC
Aldrin	2.55E-04	ACGIH-TWA	3.00E-05	IRIS, 1990	1.50E-05
Atrazine	5.10E-03	ACGIH-TWA	5.00E-03	IRIS, 1990	2.50E-03
Benzaldehyde	1.00E-01	Oral RfD	1.00E-01	IRIS, 1990	5.00E-02
Benzene	3.26E-02	ACGIH-TWA	1.00E-03	Derived	NC
Benzofuran	5.00E-03	Oral RfD	5.00E-03	Derived	2.50E-03
Benzoic Acid	4.00E+00	Oral RfD	4.00E+00	IRIS, 1990	2.00E+00
Benzonitrile	8.00E-03	Oral RfD	8.00E-03	Derived	4.00E-03
Biphenyl	1.33E-03	ACGIH-TWA	5.00E-02	EPA, 1990	NC
Bromomethane	1.71E-02	EPA, 1990	1.40E-03	IRIS, 1990	NC
Carbazole	5.00E-03	Oral RfD	5.00E-03	Derived	2.50E-03
Carbon Tetrachloride	3.16E-02	ACGIH-TWA	7.00E-04	IRIS, 1990	NC
Chlorobenzene	5.00E-03	EPA, 1990	2.00E-02	IRIS, 1990	NC
4-Chlorobiphenyl	2.45E-02	Oral RfD	2.45E-02	Derived	1.22E-02
4,4'-Chlorobiphenyl	2.33E-02	Oral RfD	2.33E-02	Derived	1.16E-02
Chloroform	5.00E-02	ACGIH-TWA	1.00E-02	IRIS, 1990	NC
4-Chlorophenylmethylsulfone	1.98E-02	Oral RfD	1.98E-02	EBASCO, 1990	9.90E-03
4-Chlorophenylmethy/sulfoxide	1.98E-02	Oral RfD	1.98E-02	EBASCO, 1990	9.90E-03
DDE	5.00E-04	Oral RfD	5.00E-04	IRIS, 1990	2.50E-04
DDT	1.02E-03	ACGIH-TWA	5.00E-04	IRIS, 1990	2.50E-04
Dibenzofuran					
Dichlorobenzene	4.00E-02	EPA, 1990	9.00E-02	EPA, 1990	NC
1,4-Dichlorobenzene					
1,1-Dichloroethene	2.04E-02	ACGIH-TWA	9.00E-02	EPA, 1990	NC
1,2-Dichloroethene(total)	8.10E-01	ACGIH-TWA	9.00E-03	IRIS, 1990	NC
1,2-Dichloropropane	3.54E-01	ACGIH-TWA	8.60E-03	Derived	NC

Rocky Mountain Arsenal (RMA)
Reference Doses (RfDs) for
Noncarcinogenic Health Effects
(mg/kg/day)

	Inhalation	Reference or	Oral	Reference or	Dermal
	Route	Basis of	Route	Basis of	Route
Pollutant	RfD	Inhalation RfD	RfD	Oral RfD	RfD

· oldar	(ALD	maanon	1110	Giartib	MU
Dicyclopentadiene	6.00E-05	EPA, 1991	3.00E-02	EPA, 1991	1.50E-02
Dieldrin	2.55ë-04	ACGIH-TWA	5 00E-05	IRIS, 1990	2.50E-05
Diisopropyi Methylphosphonate	8.00E-02	Oral RfD	8.00E-02	IRIS, 1990	4.00E-02
1,3-Dimethylbenzene	2.00E-01	EPA, 1990	5.00E-02	Derived	2.50E-02
Dimethyldisulfide	8.10E-03	Oral RfD	8.10E- 0 3	EBASCO, 1990	NC
Dimethyl Methylphosphonate	1.80E-02	Oral RfD	1.80E-02	EBASCO, 1990	9.00E-03
Dioxins/Furans (as 2,3,7,8 TCDD)	1.00E-09	Oral RfD	1.00E-09	ATSDR, 1989	5.00E-10
Dithiane	1.00E-02	Oral RfD	1.00E-02	EBASCO, 1990	5.00E-03
Endrin	1.02E-04	ACGIH-TWA	3.00E-04	IRIS, 1990	1.50E-04
Ethylbenzene	4.43E-01	ACGIH-TWA	1.00E-01	IRIS, 1990	NC
Hexachlorobenzene	8.00E-04	Oral RfD	8.00E-04	IRIS, 1990	4.00E-04
Hexachlorocyclopentadiene (HCCPD)	2.00E-05	EPA, 1990	7.00E-03	IRIS, 1990	3.50E-03
Isodrin	7.00E-05	Oral RfD	7.00E-05	EBASCO, 1990	3.50E-05
Malathion	1.02E-02	ACGIH-TWA	2.00E-02	IRIS, 1990	1.00E-02
Methanol	2.67E-01	ACGIH-TWA	5.00E-01	IRIS, 1990	2.50E-01
Methyl Chloride	1.05E-01	ACGIH-TWA	1.80E-02	Derived	NC
Methylene Chloride	8.57E-01	EPA, 1990	6.00E-02	EPA, 1990	NC
4-Nitrophenol	2.50E-03	Oral RID	2.50E-03	Derived	1.25E-03
PAHs	_	_		_	-
Acenaphthalene	6.00E-02	Oral RfD	6.00E-02	IRIS, 1990	3.00E-02
Acenaphthene	6.00E-02	Oral RfD	6.00E-02	EPA, 1990	3.00E-02
Benzo[a]pyrene	3.00E-02	Oral RfD	3.00E-02	IRIS, 1990	1.50E-02
Chrysene	3.00E-02	Oral RfD	3.00E-02	IRIS, 1990	1.50E-02
Dibenzo[a,h]anthracene	3.00E-02	Oral RfD	3.00E-02	IRIS, 1990	1.50E-02
Fluoranthene	4.00E-02	Oral RfD	4.00E-02	EPA, 1990	2.00E-02
Fluorene	4.00E-02	Oral RfD	4.00E-02	IRIS, 1990	2.00E-02
Phenanthrene	3.00E-02	Oral RfD	3.00E-02	EPA, 1990	1.50E-02
Pyrene	3.00E-02	Oral RfD	3.00E-02	IRIS, 1990	1.50E-02
Parathion	5.10E-05	REL	6.00E-03	EPA, 1990	3.00E-03
Pentachlorobenzene	8.00E-04	Oral RfD	8.00E-04	IRIS, 1990	4.00E-04

Rocky Mountain Arsenal (RMA) Reference Doses (RfDs) for Noncarcinogenic Health Effects (mg/kg/day)

	Inhalation Route	Reference or Basis of	Oral Route	Reference or Basis of	Dermai Route
Pollutant	RfD	Inhalation RfD	RfD	Oral RfD	RfD
					, ,
Phenol	1.94E-02	ACGIH-TWA	6.00E-01	IRIS, 1990	3.00E-01
Pyridine	1.63E-02	ACGIH-TWA	1.00E-03	IRIS, 1990	NC
Quinoline	2.00E-01	Oral RfD	2.00E-01	IRIS, 1990	1.00E-01
Styrene	2.17E-01	ACGIH-TWA	2.00E-01	IRIS, 1990	NC
Supona	1.50E-04	Oral RfD	1,50E-04	EBASCO, 1990	7.50E-05
Tetrachlorobenzene	3.00E-04	Oral RfD	3.00E-04	IRIS, 1990	1.50E-04
Tetrachloroethene	3.46E-01	ACGIH-TWA	1.00E-02	IRIS, 1990	NC
Toluene	5.71E-01	EPA, 1990	2.00E-01	IRIS, 1990	NC
Trichlorobenzene	3.00E-03	EPA, 1990	2.00E-02	EPA, 1990	1.00E-02
Trichloroethene	2.74E-01	ACGIH-TWA	7.35E-03	EPA, 1987	NC
Urea	8.47E-02	Oral RfD	8.47E-02	Derived	4.28E-02
Vapona	8.00E-04	Oral RfD	8.00E-04	IRIS, 1990	4.00E-04
Vinyl Chloride	1.33E-02	ACGIH-TWA	1.30E-03	Derived	NC
Xylenes (total)	8.57E-02	EPA, 1990	2.00E+00	EPA, 1990	NC

Inorganics

Aluminum
Ammonia
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Calcium
Chromium (III)
Chromium (VI)
Cobalt

2.04E-03	ACGIH-TWA	NE	_	NC
1.73E-02	ACGIH-TWA	NE	_	NC
5.10E-04	ACGIH-TWA	4.00E-04	IRIS, 1990	2.00E-05
2.04E-04	ACGIH-TWA	1.00E-03	EPA, 1990	5.00E-05
1.00E-04	EPA, 1990	NE		3.50E-03
2.04E-06	ACGIH-TWA	5.00E-03	IRIS, 1990	2.50E-04
4.11E-03	ACGIH-TWA	NE	_	NC
5.10E-05	ACGIH-TWA	1.00E-03	IRIS, 1990	5.00E-05
1.46E-03	ACGIH-TWA	NC		NC
5.10E-04	ACGIH-TWA	NE	_	NC
5.10E-05	ACGIH-TWA	5.00E-03	IRIS, 1990	NC
5.10E-05	ACGIH-TWA	2.30E-03	Derived	NC

Rocky Mountain Arsenal (RMA) Reference Doses (RfDs) for Noncarcinogenic Health Effects (mg/kg/day)

	Inhalation	Reference or	Oral	Reference or	Dermal	
	Route	Basis of	Route	Basis of	Route	
Pollutant	RfD	Inhalation RfD	RfD	Oral RfD	RfD	
	•					

Copper
Cyanogen
Hydrogen Cyanide
Iron
Lithium
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Phosphate
Potassium
Selenium
Silicon
Silver
Sodium
Strontium
Thallium
Tin
Titanium
Vanadium
Yttrium
Zinc

1.00E-02	EBASCO, 1990	3.80E-02	EBASCO, 1990	1.90E-03
2.14E-02	ACGIH-TWA	NE	_	NC
5.10E-03	ACGIH-TWA	NE	-	NC
1.02E-03	ACGIH-TWA	NE		NC
1.00E-04	Derived	NE	_	NC
6.15E-03	ACGIH-TWA	NE	_	NC
3.00E-04	EPA, 1990	NE	_	NC
8.57E-05	EPA, 1990	3.00E-04	EPA, 1990	1.50E-05
5.10E-03	ACGIH-TWA	NE	-	NC
1.02E-04	ACGIH-TWA	NE	-	NC
		NC	-	NC
		NC	_	NC
2.04E-04	ACGIH-TWA	3.00E-03	EPA, 1990	NC
5.10E-05	ACGIH-TWA	NC	_	NC
1.02E-05	ACGIH-TWA	3.00E-03	IRIS, 1990	NC
		NC	-	NC
		NE	_	NC
1.02E-04	ACGIH-TWA	7.00E-05	EPA, 1990	NC
2.04E-03	ACGIH-TWA	NE	_	NC
6.11E-03	ACGIH-TWA	NE	_	NC
5.10E-05	ACGIH-TWA	7.00E-03	EPA, 1990	NC
1.02E-03	ACGIH-TWA	NE	_	NC
8.19E-03	ACGIH-TWA	2.00E-01	EPA, 1990	NC

Rocky Mountain Arsenal (RMA) Reference Doses (RfDs) for Noncarcinogenic Health Effects (mg/kg/day)

	Inhalation	Reference or	Oral	Reference or	Dermal
	Route	Basis of	Route	Basis of	Route
stant	RfD	Inhalation RfD	RfD	Oral RfD	RfD

Other Acid Gases/

Criteria Pollutants

Carbon Monoxide
Hydrogen Chloride
Hydrogen Fluorides
Nitric Acid
Nitrogen Dioxide
Particulate Matter
Sulfur Dioxide
Sulfuric Acid Mist

5.81E-02	ACGIH-TWA		
7.65E-03	ACGIH-TWA		
2.65E-03	ACGIH-TWA		
5.30E-03	ACGIH-TWA		
2.86E-02	NAAQS	 ·	
4.29E-02	NAAQS		
2.29€-02	NAAQS		
1.02E-03	ACGIH-TWA		

NC = Not of Concern

NE = Not Evaluated

NA = Not Applicable

APPENDIX 7A

DERIVATION OF SURFACE WATER POLLUTANT CONCENTRATIONS FOR ENGINEERS LAKE

APPENDIX 7A

DERIVATION OF SURFACE WATER POLLUTANT CONCENTRATIONS FOR ENGINEERS LAKE

7A.1 INTRODUCTION

This appendix presents a detailed discussion of the methods used to determine the surface water contaminant concentrations for Engineers Lake. The Tier 1 analysis describes the technique used initially to screen contaminants from further evaluation in the surface water pathways (EPA, 1986). The Tier 2 analysis explains the derivation of final contaminant concentrations used in estimating the exposure doses for the fish ingestion pathway in the risk assessment.

7A.2 TIER 1 ANALYSIS

Water concentrations of certain contaminants were predicted using a Tier 1 methodology and compared with the appropriate health-based criteria. Contaminants predicted to have water concentrations exceeding these criteria will be selected for further evaluation in the risk assessment. Those contaminants with concentrations less than the health-based criteria will not be subsequently evaluated.

The focus of the Tier 1 screening was to eliminate contaminants from the fish ingestion pathway, which is the only surface water-related pathway, evaluated in the risk assessment. As a result, only a subset of the total list of contaminants was screened using the Tier 1 methodology. Volatile organic compounds were not considered in this analysis since they are neither expected to accumulate in surface water nor bioaccumulate in fish.

With the objective of developing a conservative carcinogenic risk estimate, all oral carcinogens are arbitrarily evaluated through all relevant exposure pathways in the final risk assessment, and were not screened in the Tier 1 analysis.

The final criterion for inclusion in the Tier 1 screening was the availability of appropriate health-based water quality values. Only those nonvolatile, noncarcinogenic compounds, which had ambient water quality criteria for the protection of human health through fish ingestion, were screened in the Tier 1 analysis. These factors resulted in the evaluation of the three organic and six inorganic contaminants listed below.

Organics

Fluoranthene Pentachlorobenzene Tetrachlorobenzene

Inorganics

Antimony
Chromium (III)
Manganese
Mercury
Nickel
Thallium

Sensitivity case emission rates, which represent the maximum or upper-bound range of facility emissions, were used for inorganic contaminants in the Tier 1 screening to maximize the contaminant concentrations in Engineers Lake. Base case emission rates were used for the organic contaminants since sensitivity case rates were unavailable. It was conservatively assumed that all contaminants deposited in the watershed of Engineers Lake in a 1-year period would enter the lake as runoff. The decay and degradation of contaminants in surface water, soil, or air were not considered in this analysis, further maximizing the predicted lake water concentrations. The equations employed in the Tier 1 screening are presented as follows in the following text.

The total annual basin deposition rate was calculated using the following equation:

$$TBD = ER * DR * BA$$

Where:

TBD = Total basin deposition (g/yr)

ER = Emission rates (g/sec)

DR = Total (wet plus dry) deposition factor, 9.00E-04

 $(g/m^2 vr)/(g/sec)$

BA = Basin area, $1.30E + 05 \text{ m}^2$

The water concentration in Engineers Lake was calculated using the following equation:

Cwater = TBD * HRT * CF1 * CF2/VOL

Where:

Cwater = Contaminant concentration in Engineers Lake (mg/L).

TBD = Total basin deposition (g/yr).

HRT = Hydraulic residence time (assumed 0.5 yr).

CF1 = Conversion factor, 1.00E-03 m³/L. CF2 = Conversion factor, 1.00E+03 mg/g.

VOL = Lake volume, 3.45E+05 m³ (Nancy Koenig, personal communication,

1990).

The emission rates, water concentrations, and ambient water quality criteria used in the Tier 1 screening are presented in Table 7A-1. Table 7A-1 shows that none of the contaminants eligible for the Tier 1 screening exceeds 10% of their respective ambient water quality criteria for protection of human health through fish ingestion. As a result, these compounds are not evaluated in the fish ingestion pathway.

7A.3 TIER 2 ANALYSIS

A Tier 2 transport model was developed to predict surface water contaminant concentration from soil runoff and aerial deposition of pollutants in Engineers Lake for the fish ingestion

Table 7A-1

Tier 1 Surface Water Pollutant
Concentrations and Comparison To Standards

Pollutant	Emission Rate (g/sec)	Predicted Annual Surface Water Concentration (mg/L)	AWQC for Protection of Human Health* (mg/L)
<u>Organics</u>			
Fluoranthene	7.58E-06	1.63E-09	5.40E-02
Pentachlorobenzene	3.87E-08	8.31E-12	8.50E-02
Tetrachlorobenzene	1.63E-08	3.05E-12	4.80E-02
<u>Inorganics</u>			
Antimony	4.85E-05	8.38E-07	4.50E+01
Chromium (III)	1.20E-05	2.58E-09	3.43E+03
Manganese	2.50E-04	5.37E-08	1.00E-01
Mercury	5.35E-05	8.38E-07	1.46E-04
Nickel	1.07E-03	2.30E-07	1.00E-01
Thallium	3.33E-04	8.38E-07	4.80E-02

^{*} EPA. 1986. Quality Criteria for Water. 1986. Office of Water Regulations and Standards. EPA 440/5-86-001.

pathway. The Tier 2 model has less conservative assumptions and provides more realistic values than the Tier 1 model. Water concentrations were calculated for all pollutants except particulate matter, acid gases, volatile organic compounds, and contaminants excluded as a result of the Tier 1 analysis. The technical approach and assumptions of the Tier 2 model are presented in the subsections that follow.

7A.3.1 Prediction of Surface-Water Concentrations of Pollutants

To estimate the potential exposure to the pollutants through fish consumption, surface water pollutant concentrations were predicted using the following steps:

- Calculation of the average deposition rate within the watershed.
- Estimation of soil loss to Engineers Lake within the watershed.
- Determination of pollutant concentrations in Engineers Lake.

This approach to determining surface-water concentrations is based on the estimation of pollutant deposition on Engineers Lake and watershed soils and the subsequent runoff of pollutants to the lake. The concentrations are based on an assumed facility life of 2 years.

7A.3.2 Calculation of the Average Deposition Rate (DR) Within the Watershed

The first step in estimating the chronic surface-water concentrations involves a determination of the deposition factor for the impacted area. The watershed of Engineers Lake is limited in size and surrounded by major roadways. Due to the small size of the watershed, deposition in the entire area was described by a single rate, which precluded having to average the deposition over a wider area. The total deposition factor for the watershed is $9.00E-04 \, (g/m^2yr)/(g/sec)$.

7A.3.3 Estimation of Soil Loss to Engineer's Lake

Data that could be used to predict soil erosion within the Engineers Lake watershed were not available. As a result, soil loss was conservatively estimated at 1.5 tons/acre-yr or 336 g/m²-yr.

7A.3.3.1 Contaminant Loss Rate

To estimate the soil contaminant concentrations being transported to the lake, it is first necessary to estimate the rate constants for contaminant loss from soils. The contaminant loss rate is based on contaminant loss through one potential loss mechanism - the surface runoff rate (K_1r) , which is based on the loss of soil particles as they are transported to the lake.

The surface water runoff rate (K_1r) was calculated as follows:

$$K_1 r = X_1 / (B * d)$$

Where:

Estimated Value

```
K_1r = Surface runoff rate = 0.00118 per year 

X_t = Total sediment loss rate = 336.24 g/m²-yr 

B = Bulk density = 1,425,000 g/m³ (Alan Price, personal communication, 1990) 

d = Depth of incorporation = 0.2 meter
```

The contaminant loss rates for soils in the Engineers Lake watershed are presented in Table 7A-2.

Table 7A-2

Contaminant Loss Rates in the Engineers Lake Watershed

Pollutant	K ₁ r (/year)
ORGANICS	
Acetonitrile	1.18E-03
Aldrin	1.18E-03
Atrazine	1.18E-03
Benzaldehyde	1.18E-03
Benzofuran	1.18E-03
Benzoic Acid	1.18E-03
Benzonitrile	1.18E-03
Biphenyl	1.18E-03
Carbazole	1.18E-03
4-Chlorobiphenyl	1.18E-03
4,4-Chlorobiphenyl	1.18E-03
4-Chlorophenylmethylsulfone	1.18E-03
4-Chlorophenylmethylsulfoxide	1.18E-03
p,p-DDE	1.18E-03
p,p-DDT	1.18E-03
Dibenzofuran	1.18E-03
Dicyclopentadiene	1.18E-03
Dieldrin	1.18E-03
Diisopropyl Methylphosphonate	1.18E-03
1,3-Dimethylbenzene	1.18E-03
Dimethyl Methylphosphonate	1.18E-03
Dioxins/Furans (EPA TEFs)	1.18E-03
Dithiane	1.18E-03
Endrin	1.18E-03
Hexachlorobenzene	1.18E-03
Hexachlorocyclopentadiene	1.18E-03
Isodrin	1.18E-03

Table 7A-2 (continued)

Pollutant	K ₁ r (/year)	
Malathion	1.18E-03	
Methanol	1.18E-03	
4-Nitrophenol	1.18E-03	
PAHs		
Acenaphthalene	1.18E-03	
Acenaphthene	1.18E-03	
Benzo(a)pyrene	1.18E-03	
Chrysene	1.18E-03	
Dibenzo(a,h)anthracene	1.18E-03	
Fluorene	1.18E-03	
Phenanthrene	1.18E-03	
Pyrene	1.18E-03	
Parathion	1.18E-03	
Phenol	1.18E-03	
Pyridine	1.18E-03	
Quinoline	1.18E-03	
Supona	1.18E-03	
Trichlorobenzene	1.18E-03	
Urea	1.18E-03	
Vapona	1.18E-03	
INORGANICS		
Aluminum	1.18E-03	
Arsenic	1.18E-03	
Barium	1.18E-03	
Beryllium	1.18E-03	
Boron	1.18E-03	
Cadmium	1.18E-03	

Table 7A-2 (continued)

Pollutant	K ₁ r (/year)
Calcium	1.18E-03
Chromium (VI)	1.18E-03
Cobalt	1.18E-03
Copper	1.18E-03
Iron	1.18E-03
Lead	1.18E-03
Lithium	1.18E-03
Magnesium	1.18E-03
Molybdenum	1.18E-03
Phosphorus (total)	1.18E-03
Potassium	1.18E-03
Selenium	1.18E-03
Silicon	1.18E-03
Silver	1.18E-03
Sodium	1.18E-03
Strontium	1.18E-03
Tin	1.18E-03
Titanium	1.18E-03
Vanadium	1.18E-03
Yttrium	1.18E-03
Zinc	1.18E-03

No allowances were made for infiltration losses. Although these losses can be significant, it is beyond the scope of this analysis to determine the extent of groundwater recharge in the basin. Therefore, it is conservatively assumed that no loss to groundwater occurs. This conservative assumption increases the soil concentrations and thus the surface water concentrations.

7A.3.3.2 Determination of Steady State Soil Concentrations

Based on the rate of deposition and the loss of contaminants in soil from surface runoff and degradation, the steady state soil concentrations for each contaminant evaluated that will accumulate during the operation of the facility were calculated as follows:

Mn =
$$(K_2/K_1r) * (1-e-K_1r) * CF/(d * B)$$

Where:

Mn = Maximum contaminant soil concentration (g/kg).

 K_2 = Annual deposition rate for contaminant (g/m²-year).

 K_1 r = Contaminant loss rate (per year).

t = Life of the incinerator (2 yrs).

d = Depth of incorporation (0.2 m).

B = Bulk density $(1.425E + 06 \text{ g/m}^3)$.

CF = Conversion factor (1,000 g/kg).

The annual deposition rates (K_2) were calculated by multiplying the chemical-specific emission rates by the deposition factor of 9.00E-04 g/m²-year per g/sec. The maximum contaminant soil concentrations, as well as the emission rates and annual deposition rates used in the calculations, are presented in Table 7A-3.

7A.3.4 Determination of Contaminant Concentration (C) in the Receiving Water

The receiving water contaminant concentration is a function of the suspended solids in the inflow and outflow, as well as the concentration of contaminants in the soil. No data were

Table 7A-3

Maximum Contaminant Soil Concentrations, Emission Rates, and Annual Deposition Rates in the Engineers Lake Watershed

Pollutant	Soil Concentration (g/Kg)	Emission Rate g/sec	Annual Deposition (g/m2-year)
ORGANICS			
Acetonitrile	7.70E-13	1.22E-07	1.10E-10
Aldrin	8.26E-13	1.31E-07	1.18E-10
Atrazine	1.80E-13	2.86E-08	2.57E-11
Benzaldehyde	1.67E-10	2.64E-05	2.38E-08
Benzofuran	3.19E-10	5.06E-05	4.55E-08
Benzoic Acid	8.01E-11	1.27E-05	1.14E-08
Benzonitrile	7.70E-14	1.22E-08	1.10E-11
Biphenyl	8.07E-11	1.28E-05	1.15E-08
Carbazole	1.53E-14	2.43E-09	2.19E-12
4-Chlorobiphenyl	5.39E-10	8.55E-05	7.70E-08
4,4-Chlorobiphenyl	1.02E-11	1.61E-06	1.45E-09
4-Chlorophenylmethylsulfone	8.96E-11	1.42E-05	1.28E-08
4-Chlorophenylmethylsulfoxide	1.10E-11	1.75E-06	1.58E-09
p,p-DDE	8.96E-14	1.42E-08	1.28E-11
p,p-DDT	2.79E-13	4.42E-08	3.98E-11
Dibenzofuran	1.60E-11	2.53E-06	2.28E-09
Dicyclopentadiene	3.64E-14	5.77E-09	5.19E-12
Dieldrin	1.69E-13	2.68E-08	2.41E-11
Diisopropyl Methylphosphonate	2.84E-11	4.50E-06	4.05E-09
1,3-Dimethylbenzene	4.74E-14	7.51E-09	6.76E-12
Dimethyl Methylphosphonate	7.00E-10	1.11E-04	9.99E-08
Dioxins/Furans (EPA TEFs)	9.46E-16	1.50E-10	1.35E-13
Dithiane	2.87E-14	4.55E-09	4.10E-12
Endrin	1.64E-13	2.60E-08	2.34E-11
Hexachlorobenzene	5.46E-13	8.66E-08	7.79E-11

Table 7A-3 (continued)

Pollutant	Soil Concentration (g/Kg)	Emission Rate g/sec	Annual Deposition (g/m2-year)
Hexachlorocyclopentadiene	1.52E-12	2.41E-07	2.17E-10
Isodrin	4.28E-13	6.78E-08	6.10E-11
Malathion	6.62E-13	1.05E-07	9.45E-11
Methanol	3.13E-09	4.96E-04	4.46E-07
4-Nitrophenol	6.88E-12	1.09E-06	9.81E-10
PAHs			
Acenaphthalene	7.95E-11	1.26E-05	1.13E-08
Acenaphthene	7.95E-11	1.26E-05	1.13E-08
Benzo(a)pyrene	1.60E-11	2.53E-06	2.28E-09
Chrysene	1.60E-11	2.53E-06	2.28E-09
Dibenzo(a,h)anthracene	1.60E-11	2.53E-06	2.28E-09
Fluorene	1.60E-11	2.53E-06	2.28E-09
Phenanthrene	3.19E-11	5.06E-06	4.55E-09
Pyrene	1.60E-11	2.53E-06	2.28E-09
Parathion	9.02E-14	1.43E-08	1.29E-11
Phenol	8.64E-10	1.37E-04	1.23E-07
Pyridine	7.70E-15	1.22E-09	1.10E-12
Quinoline	3.84E-14	6.09E-09	5.48E-12
Supona	2.79E-13	4.42E-08	3.98E-11
Trichlorobenzene	5.48E-14	8.68E-09	7.81E-12
Urea	1.17E-07	1.86E-02	1.67E-05
Vapona	7.32E-13	1.16E-07	1.04E-10
INORGANICS			
Aluminum	4.09E-09	6.49E-04	5.84E-07
Arsenic	8.14E-10	1.29E-04	1.16E-07
Barium	1.99E-10	3.16E-05	2.84E-08

Table 7A-3 (continued)

Pollutant	Soil Concentration (g/Kg)	Emission Rate g/sec	Annual Deposition (g/m2-year)
Beryllium	8.33E-12	1.32E-06	1.19E-09
Boron	6.07E-09	9.63E-04	8.67E-07
Cadmium	1.27E-10	2.02E-05	1.82E-08
Calcium	3.49E-08	5.53E-03	4.98E-06
Chromium (VI)	1.90E-12	3.02E-07	2.72E-10
Cobalt	1.79E-10	2.84E-05	2.56E-08
Copper	7.63E-07	1.21E-01	1.09E-04
Iron	1.09E-08	1.72E-03	1.55E-06
Lead	2.55E-10	4.05E-05	3.65E-08
Lithium	2.50E-11	3.96E-06	3.56E-09
Magnesium	3.24E-08	5.14E-03	4.63E-06
Molybdenum	2.50E-09	3.97E-04	3.57E-07
Phosphorus (total)	7.79E-07	1.23E-01	1.11E-04
Potassium	2.58E-07	4.09E-02	3.68E-05
Selenium	2.09E-09	3.31E-04	2.98E-07
Silicon	3.60E-08	5.70E-03	5.13E-06
Silver	2.16E-11	3.43E-06	3.09E-09
Sodium	1.48E-05	2.34E+00	2.11E-03
Strontium	8.33E-12	1.32E-06	1.19E-09
Tin	1.84E-09	2.91E-04	2.62E-07
Titanium	1.39E-11	2.20E-06	1.98E-09
Vanadium	5.31E-10	8.42E-05	7.58E-08
Yttrium	4.86E-12	7.70E-07	6.93E-10
Zinc	3.70E-09	5.86E-04	5.27E-07

available for the suspended solids concentration of Engineers Lake. Therefore, it was assumed that the lake had a suspended solids outflow concentration of 100 mg/L.

The inflowing suspended solids concentration was based on the conservative assumption that 95% of inflowing suspended sediments settle out in Engineers Lake. The equations used to calculate the impoundment contaminant concentration are:

$$Si = So/(1-RE)$$

 $Ci = Si * Mn * CF$

Where:

Si = Suspended solids concentration in inflow (mg/L)

So = Suspended solids concentration in outflow (100 mg/L) (assumed value)

RE = Suspended solids removal efficiency (assume 95%)

Ci = Inflow total concentration (ng/L)

Mn = Maximum soil concentration (g/kg)

CF = Conversion factor, 1,000 mg/g

7A.3.5 Aerial Deposition on Engineers Lake

Direct aerial deposition onto Engineers Lake represents an additional source of pollutants. The contribution by direct deposition was calculated by first determining the total deposition factor for the lake. This factor, 9.00E-04, is the same as that described previously for soil loss.

The concentration due to deposition was calculated by determining the mass of pollutants falling onto 1 square meter of lake surface. The pollutant mass was then mixed in the volume of water underlying the square meter of lake surface, which was based on an average depth of 6 meters (Nancy Koenig, Personal Communication, 1990). An assumed hydraulic residence time of 0.5 year was factored into the final equation to account for pollutant loss by outflowing water. The equation used to calculate the concentration from direct deposition is:

$$Md = SA * K2i * Tr$$

Where:

Md = Mass deposited directly into unit volume (grams)

SA = Unit surface area (1 m²)

K2i = Area-weighted deposition (g/yr m²)

Tr = Hydraulic residence time (0.5 year)

The contaminant concentration from sedimentation and aerial deposition were combined in the following equation to form an intermediate water concentration:

$$Ci2 = Ci + ((Md * NGG)/Vp)$$

Where:

Ci2 = Intermediate unit volume concentration (ng/L)

Ci = Contaminant concentration due to erosion losses (ng/L)

Md = Mass due to aerial deposition (g)

Vp = Volume of water under 1 m² of lake surface (L), based on average depth

of 6.0 meters (Nancy Koenig, personal communication, 1990)

NGG = Conversion factor for grams to nanograms (1E+09 ng/g)

The concentration of contaminants in Engineers Lake is a function of the intermediate concentration, Ci2, the suspended solids concentration in outflow and inflow, and partitioning of the contaminant between dissolved and solid phases. The equation, which is presented below, represents the total water column concentration and takes into account dissolved and particle bound contaminants.

$$Ct = Ci2 * (1+(So * Kp * KGMG))/(1+Si * Kp * KGMG))$$

Where:

Ct = Total water column concentration

Ci2 = Intermediate unit volume concentration (ng/L)

So = Suspended solids concentration in outflow (mg/L)

Kp = Partition coefficient (L/kg)

KGMG = Conversion factor (1E-06 kg/mg)

Si = Suspended solids concentration in inflow (mg/L)

The water concentrations and partition coefficients used in the fish ingestion pathway are presented in Tables 7A-4 and 7A-5, respectively.

Table 7A-4

Surface Water Concentrations for Contaminants of Concern in Fish Ingestion Exposure Pathways

Pollutant	Water Concentration for Fish Pathway (mg/L)
ORGANICS	
Acetonitrile	1.05E-11
Aldrin	5.66E-13
Atrazine	1.32E-12
Benzaldehyde	2.16E-09
Benzofuran	2.37E-09
Benzoic Acid	9.63E-10
Benzonitrile	9.87E-13
Biphenyl	3.25E-10
Carbazole	5.12E-14
4-Chlorobiphenyl	4.13E-10
4,4-Chlorobiphenyl	7.13E-12
4-Chlorophenylmethylsulfone	1.19E-09
4-Chlorophenylmethylsulfoxide	1.45E-10
p,p-DDE	6.26E-14
p,p-DDT	1.92E-13
Dibenzofuran	1.85E-11
Dicyclopentadiene	2.34E-13
Dieldrin	1.17E-13
Diisopropyl Methylphosphonate	3.53E-10
1,3-Dimethylbenzene	1.80E-13
Dimethyl Methylphosphonate	9.59E-09
Dioxins/Furans (EPA TEFs)	6.53E-16
Dithiane	3.89E-13
Endrin	1.41E-13
Hexachlorobenzene	3.86E-13
Hexachlorocyclopentadiene	1.07E-12

Table 7A-4

(continued)

Pollutant	Water Concentration for Fish Pathway (mg/L)
Isodrin	2.94E-13
Malathion	3.83E-12
Methanol	4.29E-08
4-Nitrophenol	3.88E-11
PAHs	
Acenaphthalene	9.67E-11
Acenaphthene	1.13E-10
Benzo(a)pyrene	1.10E-11
Chrysene	1.11E-11
Dibenzo(a,h)anthracene	1.10E-11
Fluorene	1.52E-11
Phenanthrene	2.74E-11
Pyrene	1.16E-11
Parathion	1.46E-13
Phenol	1.12E-08
Pyridine	1.05E-13
Quinoline	4.38E-13
Supona	1.21E-12
Trichlorobenzene	7.30E-14
Urea	1.61E-06
Vapona	9.57E-12
INORGANICS	
Aluminum	3.10E-09
Arsenic	6.16E-10
Barium	1.40E-10
Beryllium	5.84E-12
Boron	4.60E-09

Table 7A-4 (continued)

Pollutant	Water Concentration for Fish Pathway (mg/L)
Cadmium	9.01E-11
Calcium	2.45E-08
Chromium (VI)	1.34E-12
Cobalt	1.26E-10
Copper	5.48E-07
Iron	7.61E-09
Lead	1.83E-10
Lithium	1.75E-11
Magnesium	2.27E-08
Molybdenum	1.76E-09
Phosphorus (total)	5.90E-07
Potassium	2.18E-07
Selenium	1.58E-09
Silicon	2.72E-08
Silver	1.62E-11
Sodium	1.04E-05
Strontium	5.84E-12
Tin	1.32E-09
Titanium	9.73E-12
Vanadium	3.73E-10
Yttrium	3.41E-12
Zinc	2.65E-09

Table 7A-5

Partition Coefficients for Contaminants of Concern in Surface Water/Fish Ingestion Pathway

Pollutant	Partition Coefficient (Kp) (L/kg)
ORGANICS	
Acetonitrile	4.57E-01
Aldrin	2.51E+07
Atrazine	4.79E+02
Benzaldehyde	3.02E+01
Benzofuran	4.68E+02
Benzoic Acid	7.41E+01
Benzonitrile	3.63E+01
Biphenyl	1.45E+03
Carbazole	1.95E+03
4-Chlorobiphenyl	7.94E+04
4,4-Chlorobiphenyl	3.80E+05
4-Chlorophenylmethylsulfone	1.58E+01
4-Chlorophenylmethylsulfoxide	2.14E+01
p,p-DDE	4.90E+05
p,p-DDT	2.29E+06
Dibenzofuran	1.32E+04
Dicyclopentadiene	6.31E+02
Dieldrin	1.58E+06
Diisopropyl Methylphosphonate	5.37E+01
1,3-Dimethylbenzene	1.58E+03
Dimethyl Methylphosphonate	1.32E-02
Dioxins/Furans (EPA TEFs)	1.26E+06
Dithiane	5.89E+00
Endrin	3.63E+04
Hexachlorobenzene	2.95E+05
Hexachlorocyclopentadiene	3.24E+05

Table 7A-5 (continued)

Pollutant	Partition Coefficient (Kp) (L/kg)
Isodrin	3.24E+06
Malathion	7.76E+02
Methanol	1.51E-01
4-Nitrophenol	8.13E+02
PAHs	
Acenaphthalene	1.17E+04
Acenaphthene	8.32E+03
Benzo(a)pyrene	2.63E+06
Chrysene	6.17E+05
Dibenzo(a,h)anthracene	3.16E+06
Fluorene	2.40E+04
Phenanthrene	3.72E+04
Pyrene	1.51E+05
Parathion	6.46E+03
Phenol	2.88E+01
Pyridine	4.57E+00
Quinoline	1.07E+02
Supona	1.29E+03
Trichlorobenzene	9.55E+03
Urea	1.07E-03
Vapona	2.51E+01
INORGANICS	
Aluminum	9.00E+04
Arsenic	9.00E+04
Barium	4.00E+05
Beryllium	4.00E+05
Boron	9.00E+04

Table 7A-5 (continued)

Pollutant	Partition Coefficient (Kp) (L/kg)
Cadmium	3.00E+05
Calcium	4.00E+05
Chromium (VI)	4.00E+05
Cobalt	4.00E+05
Copper	2.00E+05
Iron	4.00E+05
Lead	2.00E+05
Lithium	4.00E+05
Magnesium	4.00E+05
Molybdenum	4.00E+05
Phosphorus (total)	9.00E+04
Potassium	4.00E+04
Selenium	9.00E+04
Silicon	9.00E+04
Silver	1.00E+05
Sodium	4.00E+05
Strontium	4.00E+05
Tin	2.00E+05
Titanium	4.00E+05
Vanadium	4.00E+05
Yttrium	4.00E+05
Zinc	2.00E+05

APPENDIX 7A

CITED REFERENCES

EPA (U.S. Environmental Protection Agency). 1986. <u>Methodology for the Assessment of Health Risks Associated with Multiple Pathway Exposure to Municipal Waste Combustion Emissions</u>. Environmental Criteria and Assessment Office, Cincinnati, OH.

Koenig, N. 1990. Personal Communication. Adams County Parks Department.

Price, A. 1990. Personal Communication. USDA Soil Conservation Service, Denver, Colorado.

APPENDIX 8A

DERIVATION OF SOIL POLLUTANT CONCENTRATIONS

APPENDIX 8A

DERIVATION OF SOIL POLLUTANT CONCENTRATIONS

This appendix presents a detailed discussion of the methods used to determine the soil pollutant concentrations. These values were used to determine exposure through the soil pathway.

Pollutant levels in soil were calculated for those pollutants, identified in Section 7, to be of concern through the soil pathway. They include semi-volatile organics, trace metals predicted to increase in the soil by 1% or more of the background concentration, and trace metals that are potential oral carcinogens. Soil pollutant levels were calculated based on deposition over a 2-year period. It was assumed that all pollutant levels in the soil are unaffected by degradation or other loss processes. Although in reality, the soil concentrations of many of the organics will decline over time due to degradation, this was not evaluated since it is possible that in some cases, degradation products may be more toxic than or of similar toxicity to the parent compounds. Since adequate information is not available with which to evaluate the production, fate, and toxicity of all potential degradation products for the organics, degradation was not evaluated.

The equations used to calculate soil contaminant concentrations are as follows.

Maximum Concentrations:

The formula for determining the maximum concentration of a pollutant in soil is:

$$C_{\text{soil-max}} = D_{\text{total}} x \underline{1} x \underline{1} x \underline{1} x CF$$

Where:

 $C_{\text{soil-max}}$ = Maximum pollutant concentration in soil due to deposition (mg/kg).

 D_{total} = Total deposition rate (g/m²/yr).

T = Accumulation time (2 years), life of incinerator.

CF = Conversion factor (1,000 mg/g).

SD = Mixing depth of soil (0.1 or 0.2 meters).

BD = Bulk density of soil $(1,425 \text{ kg/m}^3)$.

The soil bulk density, which was used (1,425 kg/m³), was based on an average value from the various soil types that occur in the Rocky Mountain Arsenal vicinity (Price, 1990).

Average Concentrations:

Average soil pollutant concentrations that would occur over the 70-year lifetime of an individual were calculated as follows:

$$C_{\text{soil-avg}}$$
 = $\begin{pmatrix} 2 \text{ years} & C_{\text{soil-max}} & 68 \text{ years} & (C_{\text{soil-max}}) \\ \hline & x & \hline & 2 & 70 \text{ years} \end{pmatrix}$

Where:

C_{soil-avg} = Average pollutant concentration in soil due to deposition (mg/kg).

 $C_{\text{soil-max}}$ = Maximum pollutant concentration in soil due to deposition (mg/kg).

The first term in this equation accounts for the two years of deposition, and the second term accounts for the years following the facility lifetime.

Soil concentrations for all pollutants of concern were calculated for each of the exposure scenarios (i.e., Resident-A, Resident-B, Farmer, Worker) based on total deposition rates specific to each receptor location. Based on the selection of the routes of exposure under

the soil pathway, two mixing depths were used to calculate soil concentrations, 0.1 meter (10 cm) and 0.2 meter (20 cm).

Pollutant concentrations in soil determined for a 0.1-meter mixing depth were used in predicting exposure through the following routes of exposure:

- Exposure through child soil/dust ingestion.
- Exposure through child dermal absorption.
- Exposure through adult soil/dust ingestion.
- Exposure through adult dermal absorption.

For these exposure routes, the pollutants were assumed to be uniformly distributed in the top 0.1 meter of the soil.

Pollutant concentrations in soil established for a 0.2-meter mixing depth were used for the following routes of exposure:

- Exposure through vegetable consumption.
- Intake by cattle through grain, hay, and corn silage ingestion.

The 0.2-meter mixing depth was based on the assumption that only the top 0.2 meter (8 inches) of soil would be disturbed by diking or rototilling (EPA, 1986).

For all pollutants, maximum soil concentrations were used in estimating potential noncarcinogenic effects. Average soil concentrations were used in calculating carcinogenic risk for children and adults, since the calculation of carcinogenic risk is based on a 70-year lifetime exposure. Since infants are exposed for only 1 year during which exposure concentrations will be at a maximum, maximum soil concentrations were used in the calculation of carcinogenic risk to the infant.

Tables 8A-1 through 8A-4 present the pollutant concentrations in soil based on the Resident-A, Resident-B, Farmer, and Worker scenarios, respectively. It should be noted that the soil concentrations calculated for the Farmer scenario also were used in the Resident-A and Resident-B scenarios in estimating pollutant uptake through milk and beef consumption.

Table 8A-1
Soil Concentrations

Resident-A Scenario

		AVERAGE	MAXIMUM	AVERAGE	MAXIMUM
	TOTAL	CALCULATED	CALCULATED	CALCULATED	CALCULATED
	DEPOSITION	CONC IN	CONC IN	CONC IN	CONC IN
	RATE	SOIL	SOIL	SOIL	SOIL
•	g/M2/yr	.2M	.2M	. 1M	.1M
	•	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Acetone	NA	NA	NA	NA	NA
Acetonitrile	3.77E-10	2.61E-09	2.65E-09	5.22E-09	5.29E-09
Acrylonitrile	NA	NA	NA.	NA	NA NA
Aldrin	4.05E-10	2.80E-09	2.84E-09	5.60E-09	5.68E-09
Atrazine	8.84E-11	6.11E-10	6.20E-10	1.22E-09	1.24E-09
Benzaldehyde	8.16E-08	5.64E-07	5.72E-07	1.13E-06	1.14E-06
Benzene	NA	NA	NA NA	NA NA	NA
Benzofuran	1.56E-07	1.08E-06	1.10E-06	2.16E-06	2.19E-06
Benzoic Acid	3.92E-08	2.71E-07	2.75E-07	5.43E-07	5.51E-07
Benzonitrile	3.77E-11	2.61E-10	2.65E-10	5.22E-10	
Biphenyl	NA.	NA NA	NA NA	NA NA	5.29E-10
Bromomethane	NA.	NA NA	NA NA	NA NA	NA
Carbazole	7.51E-12	5.19E-11	5.27E-11	1.04E-10	NA 1.05E-10
Carbon Tetrachloride	NA	NA NA	NA	NA	NA NA
Chlorobenzene	NA	NA	NA NA	NA NA	
4-Chlorobiphenyl	2.64E-07	1.83E-06	1.85E-06	3.66E-06	NA 3.71E-06
4,4-Chlorobiphenyl	4.97E-09	3.44E-08	3.49E-08	6.88E-08	
Chloroform	NA NA	NA NA	NA		6.98E-08
4-Chiorophenylmethylsulfone	4.39E-08	3.04E-07	3.08E-07	NA 6.07E-07	NA
4-Chlorophenylmethylsulfoxide	5.41E-09	3.74E-08	3.79E-08		6.16E-07
p,p-DDE	4.39E-11	3.04E-10		7.48E-08	7.59E-08
P,P-DDT	1.37E-10	9.45E-10	3.08E-10 9.58E-10	6.07E-10	6.16E-10
Dibenzofuran	7.82E-09	5.41E-08	5.49E-08	1.89E-09	1.92E-09
Dichlorobenzenes (total)	NA NA	NA		1.08E-07	1.10E-07
1,4-Dichlorobenzene	NA NA	NA NA	NA NA	NA	NA
1,1-Dichloroethene	NA	NA NA	NA NA	NA	NA
1,2-Dichloroethene	NA NA	NA NA		NA	NA
1,2-Dichloropropane	NA NA	NA NA	NA	NA	NA
Dicyclopentadiene	1.78E-11	1.23E-10	NA 1.25E-10	NA 2 (75 40	NA D FOT 40
Dieldrin	8.28E-11	5.73E-10	5.81E-10	2.47E-10	2.50E-10
Diisopropyl Methylphosphonate	1.39E-08	9.62E-08		1.15E-09	1.16E-09
1,3-Dimethylbenzene	2.32E-11	1.61E-10	9.76E-08	1.92E-07	1.95E-07
Dimethyldisulfide	NA NA		1.63E-10	3.21E-10	3.26E-10
Dimethyl Methylphosphonate	3.43E-07	NA 2.37E-06	NA	NA ZEE OC	NA (OAT O
Dioxins/Furans (EPA TEFs)	4.63E-13		2.41E-06	4.75E-06	4.81E-06
Dithiane		3.21E-12	3.25E-12	6.41E-12	6.51E-12
Endrin	1.41E-11 8.03E-11	9.73E-11	9.87E-11	1.95E-10	1.97E-10
Ethylbenzene		5.56E-10	5.64E-10	1.11E-09	1.13E-09
Hexachlorobenzene	NA 2.68E-10	NA 4 OFF OO	NA 4 005 00	NA TOTAL	NA NA
Hexachlorocyclopentadiene		1.85E-09	1.88E-09	3.70E-09	3.76E-09
Isodrin	7.45E-10	5.15E-09	5.23E-09	1.03E-08	1.05E-08
Malathion	2.10E-10	1.45E-09	1.47E-09	2.90E-09	2.94E-09
Methanol	3.24E-10	2.24E-09	2.28E-09	4.49E-09	4.55E-09
Methyl Chloride	1.53E-06	1.06E-05	1.08E-05	2.12E-05	2.15E-05
Methylene Chloride	NA NA	NA	NA	NA	NA
, cone ontol lue	NA	NA	NA	NA	NA

Table 8A-1 (continued)

	TOTAL DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg
4-Nitrophenol	3.37E-09	2.33E-08	2.36E-08	4.66E-08	4.73E-08
PAHS					5 (/F 07
Acenaphthalene	3.89E-08	2.69E-07	2.73E-07	5.39E-07	5.46E-07
Acenaphthene	3.89E-08	2.69E-07	2.73E-07	5.39E-07	5.46E-07
Benzo(a)pyrene	7.82E-09	5.41E-08	5.49E-08	1.08E-07	1.10E-07
Chrysene	7.82E-09	5.41E-08	5.49E-08	1.08E-07	1.10E-07
Dibenzo(a,h)anthracene	7.82E-09	5.41E-08	5.49E-08	1.08E-07	1.10E-07
Fluoranthene	2.34E-08	1.62E-07	1.64E-07	3.24E-07	3.29E-07
Fluorene	7.82E-09	5.41E-08	5.49E-08	1.08E-07	1.10E-07
Phenanthrene	1.56E-08	1.08E-07	1.10E-07	2.16E-07	2.19E-07
Pyrene	7.82E-09	5.41E-08	5.49E-08	1.08E-07	1.10E-07
Parathion	4.42E-11	3.06E-10	3.10E-10	6.11E-10	6.20E-10
Pentachlorobenzene	1.20E-10	8.27E-10	8.39E-10	1.65E-09	1.68E-09
Phenol	4.23E-07	2.93E-06	2.97E-06	5.86E-06	5.94E-06
Pyridine	NA	NA	NA	NA .	NA NA
Quinoline	1.88E-11	1.30E-10	1.32E-10	2.60E-10	2.64E-10
Styrene	NA	NA	NA	NA OF SE	NA 4 OOF OO
Supona	1.37E-10	9.45E-10	9.58E-10	1.89E-09	1.92E-09
Tetrachlorobenzene	5.04E-11	3.48E-10	3.53E-10	6.97E-10	7.07E-10
Tetrachloroethene	NA	NA	NA	NA	NA
Toluene	NA	NA	NA	NA	NA 7 7(5 40
Trichlorobenzene	2.68E-11	1.86E-10	1.88E-10	3.71E-10	3.76E-10
Trichloroethene	NA	NA	NA	NA 7 OFF O	NA 8.07E-04
Urea	5.75E-05	3.98E-04	4.03E-04	7.95E-04	
Vapona	3.58E-10	2.48E-09	2.52E-09	4.96E-09	5.03E-09
Vinyl Chloride	NA	NA	NA	NA	NA NA
Xylene	NA	NA	NA	NA	NA
INORGANICS					
Aluminum	NA	, NA	NA	NA	NA
Ammonia	NA	NA	NA	NA	NA OF OF
Antimony	7.05E-08	4.87E-07	4.94E-07	9.75E-07	9.89E-07
Arsenic	3.99E-07	2.76E-06	2.80E-06	5.51E-06	5.59E-06
Barium	NA	NA	NA	_ NA	NA NA
Beryllium	4.08E-09	2.82E-08	2.86E-08	5.64E-08	5.72E-08
Boron	NA	NA	NA	NA	NA O T(T OT
Cadmium	6.24E-08	4.32E-07	4.38E-07	8.64E-07	8.76E-07
Calcium	NA	NA	NA	NA	NA
Chromium (III)	NA	NA	NA	NA	NA
Chromium (VI)	NA	NA	NA	NA	NA
Cobalt	NA	NA	NA NA	NA	NA F OST OZ
Copper	3.74E-04	2.59E-03	2.62E-03	5.17E-03	
Cyanogen	NA	NA	NA	NA	NA
Hydrogen Cyanide	NA	NA	NA	NA	NA
Iron	NA	NA	NA	NA	NA

Table 8A-1 (continued)

	TOTAL DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL -2M mg/Kg	AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg
Lead	1.25E-07	8.66E-07	8.78E-07	1.73E-06	1.76E-06
Lithium	NA	NA	NA	NA	NA
Magnesium	NA	NA	NA	NA	NA
Manganese Mercury	NA 1 105 07	NA	NA	NA NA	NA
Molybdenum	1.10E-07	7.63E-07	7.74E-07	1.53E-06	1.55E-06
Nickel	NA NA	NA	NA	NA	NA
Phosphate	NA NA	NA	NA	NA	NA
Potassium	NA NA	NA NA	NA	NA	NA
Selenium	NA NA	NA NA	NA	NA	NA
Silicon	NA	NA NA	NA	NA	NA
Silver	NA NA	NA NA	NA NA	NA	NA
Sodium	NA NA	NA NA	NA NA	NA NA	NA
Strontium	NA	NA	NA NA	NA NA	NA
Thallium	NA	NA	NA NA	NA NA	NA NA
Tin	NA	NA NA	NA	NA NA	NA NA
Titanium	NA	NA.	NA	NA NA	NA NA
Vanadium	NA	NA	NA NA	NA NA	NA NA
Yttrium	NA	NA	NA	NA NA	NA NA
Zinc	NA	NA	NA	NA	NA NA

8A-7

Table 8A-2
Soil Concentrations
Resident-B Scenario

	TOTAL DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg
Acetone	NA	NA	NA	NA	NA
Acetonitrile	6.12E-10	4.24E-09	4.30E-09	8.47E-09	8.60E-09
Acrylonitrile	NA	NA	NA	NA	NA
Aldrin	6.58E-10	4.55E-09	4.61E-09	9.10E-09	9.23E-09
Atrazine	1.44E-10	9.93E-10	1.01E-09	1.99E-09	2.02E-09
Benzaldehyde	1.33E-07	9.17E-07	9.30E-07	1.83E-06	1.86E-06
Benzene	NA	NA	NA	NA	NA
Benzofuran	2.54E-07	1.76E-06	1.78E-06	3.51E-06	3.57E-06
Benzoic Acid	6.38E-08	4.41E-07	4.47E-07	8.82E-07	8.95E-07
Benzonitrile	6.12E-11	4.24E-10	4.30E-10	8.47E-10	8.60E-10
Biphenyl	NA	NA	NA	NA	NA
Bromomethane	NA	NA	NA	NA	NA
Carbazole	1.22E-11	8.44E-11	8.56E-11	1.69E-10	1.71E-10
Carbon Tetrachloride	NA	NA	NA	NA	NA
Chlorobenzene	NA	NA	NA	NA	NA
4-Chlorobiphenyl	4.29E-07	2.97E-06	3.01E-06	5.94E-06	6.02E-06
4,4-Chlorobiphenyl	8.08E-09	5.59E-08	5.67E-08	1.12E-07	1.13E-07
Chloroform	NA	NA	, NA	NA	NA
4-Chlorophenylmethylsulfone	7.13E-08	4.93E-07	5.00E-07	9.86E-07	1.00E-06
4-Chlorophenylmethylsulfoxide	8.79E-09	6.08E-08	6.16E-08	1.22E-07	1.23E-07
p,p-DDE	7.13E-11	4.93E-10	5.00E-10	9.86E-10	1.00E-09
p,p-DDT	2.22E-10	1.53E-09	1.56E-09	3.07E-09	3.11E-09
Dibenzofuran	1.27E-08	8.79E-08	8.91E-08	1.76E-07	1.78E-07
Dichlorobenzenes (total)	NA	NA	NA	NA	NA
1,4-Dichlorobenzene 1,1-Dichloroethene	NA NA	NA NA	NA	NA	NA
	NA NA	NA NA	NA	NA	NA
1,2-Dichloroethene 1,2-Dichloropropane	NA NA	NA NA	NA NA	NA	NA
Dicyclopentadiene	2.90E-11	2.00E-10	2.03E-10	NA 4.01E-10	NA 4.07E-10
Dieldrin	1.35E-10	9.31E-10	9.44E-10	1.86E-09	1.89E-09
Diisopropyl Methylphosphonate	2.26E-08	1.56E-07	1.59E-07	3.13E-07	3.17E-07
1.3-Dimethylbenzene	3.77E-11	2.61E-10	2.65E-10	5.22E-10	5.29E-10
Dimethyldisulfide	NA	NA NA	NA NA	NA NA	NA NA
Dimethyl Methylphosphonate	5.57E-07	3.85E-06	3.91E-06	7.71E-06	7.82E-06
Dioxins/Furans (EPA TEFs)	7.53E-13	5.21E-12	5.28E-12	1.04E-11	1.06E-11
Dithiane	2.28E-11	1.58E-10	1.60E-10	3.16E-10	3.21E-10
Endrin	1.31E-10	9.03E-10	9.16E-10	1.81E-09	1.83E-09
Ethylbenzene	NA	NA	NA	NA NA	NA NA
Hexachlorobenzene	4.35E-10	3.01E-09	3.05E-09	6-01E-09	6.10E-09
Hexachlorocyclopentadiene	1.21E-09	8.37E-09	8.49E-09	1.67E-08	1.70E-08
Isodrin	3.40E-10	2.35E-09	2.39E-09	4.71E-09	4.78E-09
Malathion	5.27E-10	3.65E-09	3.70E-09	7.29E-09	7.40E-09
Methanol	2.49E-06	1.72E-05	1.75E-05	3.44E-05	3.49E-05
Methyl Chloride	NA	NA	NA	NA	NA
Methylene Chloride	NA	NA	NA	NA	NA

Table 8A-2 (continued)

	TOTAL	AVERAGE CALCULATED	MAXIMUM CALCULATED	AVERAGE CALCULATED	MAXIMUM CALCULATED
	DEPOSITION	CONC IN	CONC IN	CONC IN	CONC IN
	RATE	SOIL	SOIL	SOIL	SOIL
	g/M2/yr	.2M	.2M	.1M	.1M
		mg/Kg	mg/Kg	mg/Kg	mg/Kg
4-Nitrophenol	5.47E-09	3.79E-08	3.84E-08	7.57E-08	7.68E-08
PAHs		3.772 00	J.04E-00	1.315-08	7.00E-08
Acenaphthalene	6.33E-08	4.38E-07	4.44E-07	8.75E-07	8.88E-07
Acenaphthene	6.33E-08	4.38E-07	4.44E-07	8.75E-07	8.88E-07
Benzo(a)pyrene	1.27E-08	8.79E-08	8.91E-08	1.76E-07	1.78E-07
Chrysene	1.27E-08	8.79E-08	8.91E-08	1.76E-07	1.78E-07
Dibenzo(a,h)anthracene	1.27E-08	8.79E-08	8.91E-08	1.76E-07	1.78E-07
Fluoranthene	3.81E-08	2.63E-07	2.67E-07	5.26E-07	5.34E-07
Fluorene	1.27E-08	8.79E-08	8.91E-08	1.76E-07	1.78E-07
Phenanthrene	2.54E-08	1.76E-07	1.78E-07	3.51E-07	3.57E-07
Pyrene	1.27E-08	8.79E-08	8.91E-08	1.76E-07	1.78E-07
Parathion	7.18E-11	4.97E-10	5.04E-10	9.93E-10	1.01E-09
Pentachlorobenzene	1.94E-10	1.34E-09	1.36E-09	2.69E-09	2.73E-09
Phenol	6.88E-07	4.76E-06	4.83E-06	9.51E-06	9.65E-06
Pyridine	NA	NA	NA.	NA NA	NA
Quinoline	3.06E-11	2.11E-10	2.15E-10	4.23E-10	4.29E-10
Styrene	NA	NA	NA	NA NA	NA NA
Supona	2.22E-10	1.53E-09	1.56E-09	3.07E-09	3.11E-09
Tetrachlorobenzene	8.18E-11	5.66E-10	5.74E-10	1.13E-09	1.15E-09
Tetrachloroethene	NA	NA	NA	NA NA	NA
Toluene	NA	NA	NA	NA	NA.
Trichlorobenzene	4.36E-11	3.01E-10	3.06E-10	6.03E-10	6.12E-10
Trichloroethene	NA	NA	NA	NA	NA I
Urea	9.34E-05	6.46E-04	6.55E-04	1.29E-03	1.31E-03
Vapona	5.82E-10	4.03E-09	4.09E-09	8.06E-09	8.17E-09
Vinyl Chloride	NA	NA	NA	NA	NA
Xylene	NA	NA	NA	NA	NA
INORGANICS					
Aluminum	NA	NA	NA	NA	NA
Ammonia	NA	NA	NA	NA	NA
Antimony	1.14E-07	7.92E-07	8.03E-07	1.58E-06	1.61E-06
Arsenic	6.48E-07	4.48E-06	4.54E-06	8.96E-06	9.09E-06
Barium	NA	NA	NA	NA	NA
Beryllium	6.63E-09	4.58E-08	4.65E-08	9.17E-08	9.30E-08
Boron	NA	NA	NA	NA	NA
Cadmium	1.01E-07	7.01E-07	7.12E-07	1.40E-06	1.42E-06
Calcium	NA	NA	NA	NA	NA
Chromium (III)	NA	NA	NA	NA	NA
Chromium (VI)	NA	NA	NA	NA	NA
Cobalt	NA	NA	NA	NA	NA
Copper	6.07E-04	4.20E-03	4.26E-03	8.40E-03	8.53E-03
Cyanogen	NA	NA	NA	NA	NA
Hydrogen Cyanide Iron	NA	NA	NA	NA	NA
1.00	NA	NA	NA	NA	NA

Table 8A-2 (continued)

	TOTAL DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg
Lead	2.03E-07	1.41E-06	1.43E-06	2.81E-06	2.85E-06
Lithium	NA	NA	NA	NA	NA
Magnesium	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA
Mercury	1.79E-07	1.24E-06	1.26E-06	2.48E-06	2.52E-06
Molybdenum	NA	NA	NA	NA	NA
Nickel	NA	NA	NA	NA	NA
Phosphate	NA	NA	NA	NA	NA
Potassium	NA	NA	NA	NA	NA
Selenium	NA	NA	NA	NA	NA
Silicon	NA	NA	NA	NA	NA
Silver	NA	NA	NA	NA	NA
Sodium	NA	NA	NA	NA	NA
Strontium	NA	NA	NA	NA	NA
Thallium	NA	NA	NA	NA	NA
Tin	NA	₩A	NA	NA	NA
Titanium	NA	NA	NA	NA	NA
Vanadium	NA	NA	NA	NA	NA
Yttrium	NA	NA	NA	NA	NA
Zinc	NA	NA	NA	NA	NA

Table 8A-3
Soil Concentrations
Farmer Scenario

		AVERAGE	MAXIMUM	AVERAGE	MAXIMUM
•	TOTAL	CALCULATED	CALCULATED	CALCULATED	CALCULATED
	DEPOSITION	CONC IN	CONC IN	CONC IN	CONC IN
	RATE	SOIL	SOIL	SOIL	SOIL
	g/M2/yr	.2M	.2M	.1M	.1M
		mg/Kg	mg/Kg	mg/Kg	
		37 11.9	11197 129	ilig/ kg	mg/Kg
Acetone	NA	NA	NA	NA	NA
Acetonitrile	3.66E-10	2.53E-09	2.57E-09	5.06E-09	NA 5 1/5 00
Acrylonitrile	NA	NA NA	NA NA	NA	5.14E-09
Aldrin	3.93E-10	2.72E-09	2.76E-09		NA F FOR OO
Atrazine	8.58E-11	5.94E-10	6.02E-10	5.44E-09	5.52E-09
Benzaldehyde	7.92E-08	5.48E-07		1.19E-09	1.20E-09
Benzene	NA NA	NA	5.56E-07	1.10E-06	1.11E-06
Benzofuran	1.52E-07	1.05E-06	NA 1 075 04	NA 2 405 04	NA NA
Benzoic Acid	3.81E-08	2.64E-07	1.07E-06	2.10E-06	2.13E-06
Benzonitrile	3.66E-11		2.67E-07	5.27E-07	5.35E-07
Biphenyl	NA NA	2.53E-10	2.57E-10	5.06E-10	5.14E-10
Bromomethane	NA NA	NA	NA	NA	NA
Carbazole	7.29E-12	NA F O/F 44	NA .	NA	NA
Carbon Tetrachloride		5.04E-11	5.12E-11	1.01E-10	1.02E-10
Chlorobenzene	NA	NA	NA	NA	NA
4-Chlorobiphenyl	NA	NA	NA	NA	NA
4,4-Chlorobiphenyl	2.57E-07	1.77E-06	1.80E-06	3.55E-06	3.60E-06
Chloroform	4.83E-09	3.34E-08	3.39E-08	6.68E-08	6.78E-08
4-Chlorophenylmethylsulfone	NA (2/F 22	NA	NA	NA	NA
4-Chlorophenylmethylsulfoxide	4.26E-08	2.95E-07	2.99E-07	5.89E-07	5.98E-07
p,p-DDE	5.25E-09	3.63E-08	3.68E-08	7.26E-08	7.37E-08
p,p-DDT	4.26E-11	2.95E-10	2.99E-10	5.89E-10	5.98E-10
Dibenzofuran	1.33E-10	9.17E-10	9.31E-10	1.83E-09	1.86E-09
Dichlorobenzenes (total)	7.59E-09	5.25E-08	5.33E-08	1.05E-07	1.07E-07
1,4-Dichlorobenzene	NA	NA	NA	NA	NA
1,1-Dichloroethene	NA	NA	NA	NA	NA
1,2-Dichloroethene	NA	NA	NA	NA	NA
1,2-Dichloroethene	NA	NA	NA	NA	NA
1,2-Dichloropropane	NA	NA	NA	NA	NA
Dicyclopentadiene Dieldrin	1.73E-11	1.20E-10	1.21E-10	2.39E-10	2.43E-10
	8.04E-11	5.56E-10	5.64E-10	1.11E-09	1.13E-09
Diisopropyl Methylphosphonate	1.35E-08	9.34E-08	9.47E-08	1.87E-07	1.89E-07
1,3-Dimethylbenzene	2.25E-11	1.56E-10	1.58E-10	3.12E-10	3.16E-10
Dimethyldisulfide	NA	NA	NA	NA	NA
Dimethyl Methylphosphonate	3.33E-07	2.30E-06	2.34E-06	4.61E-06	4.67E-06
Dioxins/Furans (EPA TEFs)	4.50E-13	3.11E-12	3.16E-12	6.23E-12	6.32E-12
Dithiane	1.37E-11	9.44E-11	9.58E-11	1.89E-10	1.92E-10
Endrin	7.80E-11	5.40E-10	5.47E-10	1.08E-09	1.09E-09
Ethylbenzene	NA	NA	NA	NA	NA
Hexachlorobenzene	2.60E-10	1.80E-09	1.82E-09	3.59E-09	3.65E-09
Hexachlorocyclopentadiene	7.23E-10	5.00E-09	5.07E-09	1.00E-08	1.01E-08
Isodrin	2.03E-10	1.41E-09	1.43E-09	2.81E-09	2.85E-09
Malathion	3.15E-10	2.18E-09	2.21E-09	4.36E-09	4.42E-09
Methanol	1.49E-06	1.03E-05	1.04E-05	2.06E-05	2.09E-05
Methyl Chloride	NA	NA NA	NA NA	NA NA	NA
Methylene Chloride	NA	NA.	NA NA	NA NA	NA NA
		11/1	IIA	NA	NA

7/18/91

Table 8A-3 (continued)

		AVERAGE	MAXIMUM	AVERAGE	MAXIMUM
	TOTAL	CALCULATED	CALCULATED	CALCULATED	CALCULATED
	DEPOSITION	CONC IN	CONC IN	CONC IN	CONC IN
	RATE	SOIL	SOIL	SOIL	SOIL
	g/M2/yr	.2M	.2M	. 1M	. 1M
		mg/Kg	mg/Kg	mg/Kg	mg/Kg
4-Nitrophenol	3.27E-09	2.26E-08	2.29E-08	/ 525 00	
PAHs	312/2 07	2.202-00	2.295-00	4.52E-08	4.59E-08
Acenaphthalene	3.78E-08	2.61E-07	2.65E-07	F 07= 07	
Acenaphthene	3.78E-08	2.61E-07		5.23E-07	5.31E-07
Benzo(a)pyrene	7.59E-09	5.25E-08	2.65E-07	5.23E-07	5.31E-07
Chrysene	7.59E-09	5.25E-08	5.33E-08	1.05E-07	1.07E-07
Dibenzo(a,h)anthracene	7.59E-09		5.33E-08	1.05E-07	1.07E-07
Fluoranthene	2.27E-08	5.25E-08	5.33E-08	1.05E-07	1.07E-07
Fluorene	7.59E-09	1.57E-07	1.60E-07	3.15E-07	3.19E-07
Phenanthrene		5.25E-08	5.33E-08	1.05E-07	1.07E-07
Pyrene	1.52E-08	1.05E-07	1.07E-07	2.10E-07	2.13E-07
Parathion	7.59E-09	5.25E-08	5.33E-08	1.05E-07	1.07E-07
Pentachlorobenzene	4-29E-11	2.97E-10	3.01E-10	5.94E-10	6.02E-10
Phenol	1.16E-10	8.03E-10	8.15E-10	1.61E-09	1.63E-09
Pyridine	4.11E-07	2.84E-06	2.88E-06	5.69E-06	5.77E-06
Quinoline	NA 1 075 11	NA	NA	NA	NA
Styrene	1.83E-11	1.26E-10	1.28E-10	2.53E-10	2.56E-10
Supona	NA 1 777 10	NA	NA	NA	NA
Tetrachlorobenzene	1.33E-10	9.17E-10	9.31E-10	1.83E-09	1.86E-09
Tetrachloroethene	4.89E-11	3.38E-10	3.43E-10	6.77E-10	6.86E-10
Toluene	NA	NA	NA	NA	NA
Trichlorobenzene	NA NA	NA	NA	NA	NA
Trichloroethene	2.60E-11	1.80E-10	1.83E-10	3.60E-10	3.65E-10
Urea	NA S	NA .	NA	NA	NA
Vapona	5.58E-05	3.86E-04	3.92E-04	7.72E-04	7.83E-04
Vinyl Chloride	3.48E-10	2.41E-09	2.44E-09	4.81E-09	4.88E-09
Xylene	NA	NA	NA	NA	NA
Ayterie	NA	NA	NA	NA	NA
INORGANICS					
Aluminum	NA	NA	NA	NA	NA
Ammonia	NA	NA	NA	NA	NA NA
Antimony	6.84E-08	4.73E-07	4.80E-07	9.46E-07	9.60E-07
Arsenic	3.87E-07	2.68E-06	2.72E-06	5.35E-06	5.43E-06
Barium	NA	NA	NA	NA NA	NA NA
Beryllium	3.96E-09	2.74E-08	2.78E-08	5.48E-08	5.56E-08
Boron	NA	NA	NA NA	NA NA	NA
Cadmium	6.06E-08	4.19E-07	4-25E-07	8.38E-07	8.51E-07
Calcium	NA	NA	NA NA	NA NA	NA NA
Chromium (III)	NA	NA	NA NA	NA NA	NA NA
Chromium (VI)	NA	NA	NA NA	NA NA	NA NA
Cobalt	NA	NA.	NA	NA NA	
Copper	3.63E-04	2.51E-03	2.55E-03	5.02E-03	NA 5.09E-03
Cyanogen	NA	NA NA	NA NA	NA	
Hydrogen Cyanide	NA	NA	NA NA	NA NA	NA NA
Iron	NA	NA NA	NA NA	NA NA	
	-			N/A	NA

Table 8A-3 (continued)

	TOTAL	AVERAGE CALCULATED	MAXIMUM CALCULATED	AVERAGE CALCULATED	MAXIMUM CALCULATED
	DEPOSITION	CONC IN	CONC IN	CONC IN	CONC IN
	RATE	SOIL	SOIL	SOIL	SOIL
	g/M2/yr	.2M	.2M	.1M	.1M
	3/112//	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Lead	1.21E-07	8.40E-07	8.53E-07	1.68E-06	1.71E-06
Lithium	NA	NA	NA	NA	NA
Magnesium	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA
Mercury	1.07E-07	7.41E-07	7.52E-07	1.48E-06	1.50E-06
Molybdenum	NA	NA	NA	NA	NA
Nickel	NA	NA	NA	NA	NA
Phosphate	NA	NA	NA	NA	NA
Potassium	NA	NA	NA	NA	NA
Selenium	NA	NA	NA	NA	NA
Silicon	NA	NA	NA	NA	NA
Silver	NA	NA	NA	NA	NA
Sodium	NA	NA	NA	NA	NA
Strontium	NA	NA	NA	NA	NA
Thallium	NA	NA	NA	NA	NA
Tin	NA	NA	NA	NA	NA
Titanium	NA	NA	NA	NA	NA
Vanadium	NA	NA	NA	NA	NA
Yttrium	NA	NA	NA	NA	NA
Zinc	NA	NA	NA	NA	NA

Table 8A-4
Soil Concentrations
Worker Scenario

		AVERAGE	MAXIMUM	AVERAGE	MAXIMUM
	TOTAL	CALCULATED	CALCULATED	CALCULATED	CALCULATED
	DEPOSITION	CONC IN	CONC IN	CONC IN	CONC IN
	RATE	SOIL	SOIL	SOIL	SOIL
	g/M2/yr	.2M	.2M	.1M	.1M
		mg/Kg	mg/Kg	mg/Kg	mg/Kg
			373	37 113	11197119
Acetone	NA	NA	NA	NA	NA
Acetonitrile	5.44E-10	3.76E-09	3.82E-09	7.53E-09	7.64E-09
Acrylonitrile	NA	NA	NA	NA	NA NA
Aldrin	5.84E-10	4.04E-09	4.10E-09	8.08E-09	8.20E-09
Atrazine	1.28E-10	8.82E-10	8.95E-10	1.76E-09	1.79E-09
Benzaldehyde	1.18E-07	8.14E-07	8.26E-07	1.63E-06	1.65E-06
Benzene	NA	NA	NA	NA	NA
Benzofuran	2.26E-07	1.56E-06	1.58E-06	3.12E-06	3.17E-06
Benzoic Acid	5.66E-08	3.92E-07	3.97E-07	7.84E-07	7.95E-07
Benzonitrile	5.44E-11	3.76E-10	3.82E-10	7.53E-10	7.64E-10
Biphenyl	NA	NA	NA	NA	NA
Bromomethane	NA	NA	NA	NA	NA
Carbazole	1.08E-11	7.50E-11	7.61E-11	1.50E-10	1.52E-10
Carbon Tetrachloride	NA	NA	NA	NA	NA
Chlorobenzene	NA	NA	NA	NA	NA
4-Chlorobiphenyl	3.81E-07	2.64E-06	2.68E-06	5.28E-06	5.35E-06
4,4-Chlorobiphenyl	7.18E-09	4.97E-08	5.04E-08	9.93E-08	1.01E-07
Chloroform	NA	NA	NA	NA	NA
4-Chlorophenylmethylsulfone	6.33E-08	4.38E-07	4.44E-07	8.76E-07	8.89E-07
4-Chlorophenylmethylsulfoxide	7.81E-09	5.40E-08	5.48E-08	1.08E-07	1.10E-07
p,p-DDE	6.33E-11	4.38E-10	4.44E-10	8.76E-10	8.89E-10
p,p-DDT	1.97E-10	1.36E-09	1.38E-09	2.73E-09	2.77E-09
Dibenzofuran	1.13E-08	7.81E-08	7.92E-08	1.56E-07	1.58E-07
Dichlorobenzenes (total)	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	NA	NA	NA	NA	NA
1,1-Dichloroethene	NA	NA	NA	NA	NA
1,2-Dichloroethene	NA	NA	NA	NA	NA
1,2-Dichloropropane	NA 2 F75 44	NA 705 40	NA 1 245 12	_ NA	NA
Dicyclopentadiene Dieldrin	2.57E-11	1.78E-10	1.81E-10	3.56E-10	3.61E-10
	1.20E-10	8.27E-10	8.39E-10	1.65E-09	1.68E-09
Diisopropyl Methylphosphonate 1,3-Dimethylbenzene	2.01E-08 3.35E-11	1.39E-07 2.32E-10	1.41E-07	2.78E-07	2.82E-07
Dimethyldisulfide	NA NA		2.35E-10	4.63E-10	4.70E-10
Dimethyl Methylphosphonate	4.95E-07	NA 3.42E-06	NA 7 (75 0)	NA COSE OC	NA
Dioxins/Furans (EPA TEFs)	6.69E-13	4.63E-12	3.47E-06	6.85E-06	6.95E-06
Dithiane	2.03E-11	1.40E-10	4.69E-12	9.26E-12	9.39E-12
Endrin	1.16E-10	8.02E-10	1.42E-10	2.81E-10	2.85E-10
Ethylbenzene	NA	NA	8.14E-10	1.60E-09	1.63E-09
Hexachlorobenzene	3.86E-10	2.67E-09	NA 2.71E-09	NA 5 7/5 00	NA
Hexachlorocyclopentadiene	1.07E-09	7.44E-09	7.54E-09	5.34E-09	5.42E-09
Isodrin	3.02E-10	2.09E-09	2.12E-09	1.49E-08	1.51E-08
Malathion	4.68E-10	3.24E-09	3.29E-09	4.18E-09	4.24E-09
Methanol	2.21E-06	1.53E-05	1.55E-05	6.48E-09 3.06E-05	6.57E-09
Methyl Chloride	NA NA	NA NA	NA	3.00E-05	3.10E-05 NA
Methylene Chloride	NA	NA NA	NA NA	NA NA	NA NA
,	****	11/3	NA.	NA	NA

Table 8A-4 (continued)

		AVERAGE	MAXIMUM	AVERAGE	MAXIMUM
	TOTAL	CALCULATED	CALCULATED	CALCULATED	CALCULATED
	DEPOSITION	CONC IN	CONC IN	CONC IN	CONC IN
	RATE	SOIL	SOIL	SOIL	SOIL
	g/M2/yr	. 2M	.2M	.1M	. 1M
		mg/Kg	mg/Kg	mg/Kg	mg/Kg
4-Nitrophenol	4.86E-09	3.36E-08	7 (4- 00		
PAHs	4.00L-09	3.305-08	3.41E-08	6.73E-08	6.82E-08
Acenaph tha lene	5.62E-08	3.89E-07	3.94E-07	7 77- 07	7 00- 07
Acenaphthene	5.62E-08	3.89E-07	3.94E-07	7.77E-07	7.89E-07
Benzo(a)pyrene	1.13E-08	7.81E-08	7.92E-08	7.77E-07	7.89E-07
Chrysene	1.13E-08	7.81E-08	7.92E-08	1.56E-07	1.58E-07
Dibenzo(a,h)anthracene	1.13E-08	7.81E-08	7.92E-08	1.56E-07	1.58E-07
Fluoranthene	3.38E-08	2.34E-07	2.37E-07	1.56E-07	1.58E-07
Fluorene	1.13E-08	7.81E-08	7.92E-08	4.68E-07	4.74E-07
Phenanthrene	2.26E-08	1.56E-07	1.58E-07	1.56E-07	1.58E-07
Pyrene	1.13E-08	7.81E-08	7.92E-08	3.12E-07	3.17E-07
Parathion	6.38E-11	4.41E-10	4.48E-10	1.56E-07	1.58E-07
Pentachlorobenzene	1.73E-10	1.19E-09	1.21E-09	8.82E-10	8.95E-10
Phenol	6.11E-07	4.23E-06	(20E 04	2.39E-09	2.42E-09
Pyridine	NA NA	NA NA	4.29E-06	8.45E-06	8.58E-06
Quinoline	2.72E-11	1.88E-10	NA 1 015 10	_ NA	NA NA
Styrene	NA .	NA NA	1.91E-10	3.76E-10	3.81E-10
Supona	1.97E-10	1.36E-09	NA 1 707 00	NA NA	NA
Tetrachlorobenzene	7.27E-11	5.03E-10	1.38E-09	2.73E-09	2.77E-09
Tetrachloroethene	NA NA	NA NA	5.10E-10	1.01E-09	1.02E-09
Toluene	NA NA	NA NA	NA	NA	NA
Trichlorobenzene	3.87E-11	2.68E-10	NA 735 40	NA .	NA
Trichloroethene	NA	NA NA	2.72E-10	5.36E-10	5.43E-10
Urea	8.30E-05	5.74E-04	NA 5.82E-04	NA 1 155 05	NA
Vapona	5.17E-10	3.58E-09	3.63E-04	1.15E-03	1.16E-03
Vinyl Chloride	NA	NA NA	NA NA	7.16E-09	7.26E-09
Xylene	NA	NA.	NA NA	NA	NA
INORGANICS		NA.	NA	NA	NA
Aluminum					
Ammonia	NA	NA	NA	NA	NA
Antimony	NA	NA	NA	NA.	NA
Arsenic	1.02E-07	7.03E-07	7.14E-07	1.41E-06	1.43E-06
Barium	5.75E-07	3.98E-06	4.04E-06	7.96E-06	8.07E-06
Beryllium	NA	NA	NA	NA	NA
Boron	5.89E-09	4.07E-08	4.13E-08	8.14E-08	8.26E-08
Cadmium	NA	NA	NA	NA	NA NA
Calcium	9.01E-08	6.23E-07	6.32E-07	1.25E-06	1.26E-06
Chromium (III)	NA	NA	NA	NA	NA NA
Chromium (VI)	NA	NA	NA	NA	NA.
Cobalt	NA	NA	NA	NA	NA
Copper	NA .	NA	NA	NA	NA
Cyanogen	5.40E-04	3.73E-03	3.79E-03	7.47E-03	7.57E-03
Hydrogen Cyanide	NA	NA	NA	NA	NA NA
Iron	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA

Table 8A-4 (continued)

	TOTAL DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg
Lead	1.81E-07	1.25E-06	1,27E-06	2.50E-06	2.54E-06
Lithium	NA	NA	NA	NA	NA
Magnesium	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA
Mercury	1.59E-07	1.10E-06	1.12E-06	2.20E-06	2.23E-06
Molybdenum	NA	NA	NA	NA	NA
Nickel	NA	NA	NA	NA	NA
Phosphate	NA	NA	NA	NA	NA
Potassium	NA	NA	NA	NA	NA
Selenium	NA	NA	NA	NA	NA
Silicon	NA	NA	NA	NA	NA
Silver	NA	NA	NA	NA	NA
Sodium	NA	NA	NA	NA	NA
Strontium	NA	NA	NA	NA	NA
Thatlium	NA	NA	NA	NA	NA
Tin	NA	NA	NA	NA	NA
Titanium	NA	NA	NA	NA	NA
Vanadium	NA	NA	NA	NA	NA
Yttrium	NA	NA	NA	NA	NA
Zinc	NA	NA	NA	NA	NA

7/18/91

APPENDIX 8A

CITED REFERENCES

EPA (U.S. Environmental Protection Agency). 1986. <u>Methodology for the Assessment of Health Risks Associated with Multiple Pathway Exposure to Municipal Waste Combustor Emissions</u>, Draft. Environmental Criteria and Assessment Office, Cincinnati, OH.

Price, A. 1990. Personal Communication. Soil Conservation Service.

APPENDIX 8B

METHODOLOGY FOR CALCULATING POLLUTANT CONCENTRATIONS IN VEGETABLES

APPENDIX 8B

METHODOLOGY FOR CALCULATING POLLUTANT CONCENTRATIONS IN VEGETABLES

This appendix presents a detailed discussion of the methods used to determine the pollutant concentrations in vegetables that are considered in the vegetable consumption exposure route. Three vegetables (carrots, lettuce, and tomatoes) were selected to represent the vegetables that may be grown in a household garden in the area surrounding the Rocky Mountain Arsenal.

8B.1 CARROTS

8B.1.1 General Approach

The pollutant concentration (C_u) in carrots resulting from uptake from the soil is expressed by the following equation:

 C_u (mg/kg) = Pollutant concentration in soil (mg/kg) x RUF

Where:

RUF = Root uptake factor (unitless)

The soil concentrations used in the calculations are presented in Tables 8A-1, 8A-2, and 8A-3 for the Resident-A, Resident-B, and Farmer scenarios, respectively. The derivation of the root uptake factors is described in the following subsection.

8B.1.2 Derivation of Root Uptake Factors for Carrots

Organics

Root uptake factors (RUFs) were derived based on the work by Briggs et al. (1982). Briggs et al. (1982) studied the uptake of organic chemicals from solution by barley shoots and established the following relationship between the root concentration factor (RCF) and the K_{ow} (octanol/water partition coefficient) for the organics tested:

$$log (RCF - 0.82) = 0.77 log K_{ow} - 1.52$$

Where:

 $RCF = C_{root}/C_{solution}$

 C_{root} = Pollutant concentration in the root (mg/kg).

 C_{solution} = Pollutant concentration in water (mg/L).

Given the following relationship between pollutant distributions in soil and water phases:

$$\frac{C_{\text{soil}}}{C_{\text{colution}}} = (K_{\text{oc}}) (f_{\text{oc}})$$

Where:

C_{soil} = Pollutant concentration in soil (mg/kg). C_{solution} = Pollutant concentration in water (mg/L).

K_{oc} = Organic carbon partition coefficient.

 f_{oc} = Fraction of organic carbon in the soil, 1.42 percent (Price, 1990).

The RUF for each compound could be determined from the RCF as shown in the following equation:

$$RUF = \frac{RCF}{(K_{oc})(f_{oc})} = \frac{C_{root}/C_{solution}}{C_{soil}/C_{solution}} = \frac{C_{root}}{C_{soil}}$$

RCFs and RUFs were calculated for the pollutants of concern using $K_{bw}s$ and $K_{oc}s$ from EPA (1986) and a soil organic carbon content (f_{oc}) of 1.42 percent (Price, 1990). Log K_{ow} and K_{oc} values used in the calculation of RUFs are presented in Table 8B-1. K_{oc} data were not available for several chemicals. In these instances, the values were calculated based on the log K_{ow} . If the chemical was an aromatic with a log K_{ow} between 2 to 6.6, the following equation was used:

$$\log K_{oc} = 0.937 \log K_{ow} - 0.006$$
 (Lyman et al., 1982)

For aromatics with a log K_{ow} falling outside the given range, as well as all other organic substances, the following equation was used:

$$\log K_{oc} = 0.544 \log K_{ow} + 1.377$$
 (Lyman et al., 1982).

Inorganics

The RUFs used for the inorganic compounds were based on transfer coefficients developed by Baes et al. (1984) for tubers. Tubers are similar to carrots in that most tubers grow underground and serve as food storage organs. The transfer coefficients, which are expressed as dry weight plant concentrations divided by dry weight soil concentrations, were converted to wet weight by assuming a water content for carrots of 88 percent (Baes et al., 1984).

RUFs used to determine inorganic uptake by carrots can be found in Tables 8B-2 through 8B-7. It should be noted that, although the chemical composition of a plant reflects its

Table 8B-1

Log Kows and Kocs

Organic Compounds	Log Kow	Source	K _e	Source
Acetonitrile	-3.40E-01	EPA, 1986	2.20E+00	EPA, 1986
Aldrin	7.40E+00	EPA, 1989	9.60E+04	EPA, 1986
Atrazine	2.68E+00	EPA, 1987	3.20E+02	Calculated (a)
Benzaldehyde	1.48E+00	Verschueren, 1983	1.52E+02	Calculated (b)
Benzofuran	2.67E+00	Verschueren, 1983	3.13E+02	Calculated (a)
Benzoic Acid	1.87E+00	Verschueren, 1983	2.48E+02	Calculated (b)
Benzonitrile	1.56E+00	Verschueren, 1983	1.68E+02	Calculated (b)
Carbazole	3.29E+00	Verschueren, 1983	1.19E+03	Calculated (a)
4-Chlorobiphenyl	4.90E+00	EPA, 1987	3.85E+04	Calculated (a)
4,4-Chlorobiphenyl	5.58E+00	EPA, 1987	1.67E+05	Calculated (a)
4-Chlorophenylmethylsulfone	1.20E+00	Ebasco, 1990	1.26E+02	Ebasco, 1990
4-Chlorophenylmethylsulfoxide	1.33E+00	Ebasco, 1990	1.07E+02	Ebasco, 1990
p,p-DDE	5.69E+00	EPA, 1989	4.40E+06	EPA, 1989
p,p-DDT	6.36E+00	EPA, 1989	2,43E+05	EPA, 1989
Dibenzofuran	4.12E+00	HSDB, 1990	7.15E+03	Calculated (a)
Dicyclopentadiene	2.28E+00	QSAR, 1989	1.35E+02	Calculated (a)

(a) Calculated using $log K_{oc} = 0.937 log K_{ow}-0.006$ (Lyman et al., 1982). (b) Calculated using $log K_{oc} = 0.544 log K_{ow}+1.377$ (Lyman et al., 1982).

(continued) Table 8B-1

Organic Compounds	Log Kow	Source	K _{oc}	Source
Dieldrin	6.20E+00	EPA, 1989	1.70E+03	EPA, 1986
Diisopropyl Methlphosphonate	1.73E+00	Ebasco, 1990	2.08E+02	Ebasco, 1990
1,3-Dimethylbenzene	3.20E+00	Verschueren, 1983	9.83E+02	Calculated (a)
Dimethyl Methylphosphonate	-1.88E+00	Ebasco, 1990	2.30E+00	Calculated (b)
Dioxins/Furans (EPA TEFs)	6.10E+00	EPA, 1989	3.30E+06	EPA, 1986
Dithiane	7.70E-01	Ebasco, 1990	6.20E+01	Calculated (b)
Endrin	4.56E+00	EPA, 1989	90+309'S	Verschueren, 1983
Hexachlorobenzene	5.47E+00	EPA, 1989	5.00E+04	Howard, 1989
Hexachlorocyclopentadiene	5.51E+00	EPA, 1989	4.80E+03	EPA, 1986
Isodrin	6.51E+00	Ebasco, 1990	5.80E+03	Ebasco, 1990
Malathion	2.89E+00	EPA, 1987	1.80E+03	Ebasco, 1990
Methanol	-8.20E-01	Verschueren, 1983	8,50E+00	Calculated (b)
4-Nitrophenol	2.91E+00	EPA, 1989	5.26E+02	Calculated (a)
PAHs				
Acenaphthalene	4.07E+00	EPA, 1989	2,50E+03	EPA, 1986
Acenaphthene	3.92E+00	EPA, 1989	4.60E+03	EPA, 1986
Benzo(a)pyrene	6.42E+00	EPA, 1989	5.50E+06	EPA, 1986
Chrysene	5.79E+00	EPA, 1989	2.00E+05	EPA, 1986

8B**-**5

⁽a) Calculated using $\log K_{oc} = 0.937 \log K_{ow}$ -0.006 (Lyman et al., 1982). (b) Calculated using $\log K_{oc} = 0.544 \log K_{ow} + 1.377$ (Lyman et al., 1982).

Table 8B-1 (continued)

Organic Compounds	Log Kow	Source	K_{oc}	Source
Dibenzo(a,h)anthracene	6.50E+00	EPA, 1989	3.30E+06	EPA, 1986
Fluoranthene	5.22E+00	EPA, 1989	3,80E+04	EPA, 1986
Fluorene	4.38E+00	EPA, 1989	7.30E+03	EPA, 1986
Phenanthrene	4.57E+00	EPA, 1989	1.40E+04	EPA, 1986
Pyrene	5.18E+00	EPA, 1989	3.80E+04	EPA, 1986
Parathion	3.81E+00	EPA, 1987	3.66E+03	Calculated (a)
Pentachlorobenzene	5.08E+00	EPA, 1987	1.30E+04	EPA, 1986
Phenol	1.46E+00	EPA, 1989	1.40E+01	EPA, 1986
Quinoline	2,03E+00	Verschueren, 1983	7.90E+01	Calculated (a)
Supona	3.11E+00	Ebasco, 1990	1.17E+03	Ebasco, 1990
Tetrachlorobenzene	4.37E+00	EPA, 1987	1.60E+03	EPA, 1986
Trichlorobenzene	3.98E+00	EPA, 1989	9.20E+03	EPA, 1986
Urea	-2.97E+00	Verschueren, 1983	5.80E-01	Calculated (b)
Vapona	1.40E+00	Ebasco, 1990	1.38E+02	Calculated (b)

(a) Calculated using $\log K_{\infty} = 0.937 \log K_{\infty}$ -0.006 (Lyman et al., 1982). (b) Calculated using $\log K_{\infty} = 0.544 \log K_{\infty} + 1.377$ (Lyman et al., 1982).

Average Pollutant Concentration in Carrots, and Adult and Child Daily Intake at the Resident-A Location

Adul	Adult and Child Daily Intake at the Resident-A Location	Daily Inta	ake at the	Resident-	A Location		
	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	Log Kow	Koc	ROOT UPTAKE FACTOR	AVERAGE CONC.DUE TO UPTAKE mg/Kg	ADULT AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	CHILD AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day
ORGANICS			1				
Acetonitrile	2.61E-09	-0.34	2.5	2.68E+01	6.98E-08	6.77E-12	1.01E-11
Aldrin	2.80E-09	4.0	00004	0 505-01	5.0%E-00	5 475-14	8 745-14
Atrazine	6.116.10	20.7	320	7.50E-01	2 245-07	7 136-14	4 40E-11
Benzaldehyde	1 08E-04	2,40	112	0.576-01	1.04F-06	1.00E-10	1.50E-10
Benzoluran Benzoir Arid	2.71E-07	1.87	248	4.69E-01	1.27E-07	1,236-11	1.85E-11
Benzonitrile	2.61E-10	1.56	168	5.45E-01	1.42E-10	1.38E-14	2.06E-14
Carba; ole	5.19E-11	3.29	193	6.57.01	3.41E-11	3.31E-15	4.95E-15
4-Chlorobiphenyl	1.83E-06	6.4	38486	3.29E-01	6.02E-07	5.83E-11	8.75E-11 1.26E-12
4,4-Chlorophenylmethyleulfoot	20-344-6	2.7	126	6.00E-01	1.82E-07	1.77.	2.64E-11
4-Chlocopeny methylaul foxide	3.74E-08	1.33	107	7.50E-01	2.80E-08	2.72E-12	4.07E-12
	3.04E-10	5.69	4400000	1.16E-02	3.53E-12	3.43E-16	5.13E-16
D. D	9.45E-10	6.36	243000	6.91E-01	6.53E-10	6.33E-14	9.48E-14
Dibenzofuran	5.41E-08	4.12	7152	4.50E-01	2.44E-08	2.36E-12	3.54E-12
Dicyclopentadiene	1.23E-10	2.28	135	1.33E+00	1.63E-10	1.58E-14	2.5/E-14
Dieldrin	5.73E-10	7.0	002	/ 07E-01	785-08	4.135°12 6.446.12	6 04F-12
1 2 Dimothyl Metnylphosphonate	1 615-10	3.5	83	6.88F-01	1,116.10	1.07E-14	1.60E-14
Dimethy Methylphosphonate	2.37E-06	1.88	2.3	2.51E+01	5.96E-05	5.78E-09	8.66E-09
Dioxins/Furans (EPA TEFs)	3.21E-12	6.10E+00	3.30E+06	3.21E-02	1.03E-13	9.98E-18	1.49E-17
Dithiane	9.73E-11	0.77	62	1.07E+00	1.04E-10	1.00E-14	1.50E-14
Endrin	5,56E-10	4.56	2600000	1.24E-03	6.91E-13	6.69E-17	1.00E-16
Hexachlorobenzene	1.85E-09	7	20000		7.285-09	7 006-13	F 90F-13
Hexachlorocyclopentadiene	5.15E-09	 	0084	7.78E+00	5 47E-08	5.315-12	7.95E-12
Leogrin Le lething	2.24F-00	2.89	1800	2.31E-01	5.17E-10	5.02E-14	7.516-14
Methanol	1.06E-05	-0.82	8.5	6.85E+00	7.26E-05	7.04E-09	1.05E-08
4-Nitrophenol	2,33E-08	2.91	256	8.14E-01	1.90E-08	1.84E-12	2.75E-12
PARS	2 405.07	20 7	2500	1 18F+00	3, 18F-07	3.08F-11	4.62E-11
Acenaphinatene	2.69E-07	3.92	4600	4.95E-01	1.33E-07	1.29E-11	1.94E-11
Benzo(a)pyrene	5.41E-08	6.42	2200000	3.40E-02	1.84E-09	1.786-13	₹ 2.67E-13
Chrysene	5.41E-08	5.79	200000	3.06E-01	1.65E-08	1.60E-12	2.40E-12
Dibenzo(a,h)anthracene	5.41E-08		0000055	6.32E-U2	0.535-09	0 225-13	1 485-11
Fluoranthene	1.02E-U/	77.6	2300	6.95E-01	3.76E-08	3.646-12	5.46E-12
Dhonorthann	1 08E-07	75.7	14000	5.06E-01	5.47E-08	5.30E-12	7.94E-12
Prenantinrene	5 41F-08	18	38000	5.47E-01	2.96E-08	2.87E-12	4.29E-12
Darathion	3.06E-10	3.81	3664	5.14E-01	1.57E-10	1.52E-14	2.28E-14
Pentachlorobenzene	8.27E-10	5.08	13000	1.34E+00	1.116-09	1.07E-13	1.61E-13
Phenol	2.93E-06	1.46	7,	6.15E+00	1.80E-05	1.74E-09	2.61E-09
quinoline	1.30E-10	2.03	2;	1.72E+00	2.23E-10	2.16E-14	5.24E-14
Supona	7.455-10	5.47	1400	126+00	1 005-10	1 055.13	1 58F-13
richlorobenzene Trichlorobenzene	1.86E-10	3.98	9200	2.75E-01	5.09E-11	4.94E-15	7.39E-15

Table 8B-2 (continued)

5.75E-06 2.17E-13	2.55E-13 2.88E-13 7.37E-16 1.13E-08 2.66E-12
3.84E-06 1.45E-13	1.70E-13 1.92E-13 4.92E-16 7.53E-13 7.52E-09
3.96E-02 1.49E-09	1.75E-09 1.99E-09 5.08E-12 7.77E-09 7.76E-05 1.83E-08
9.96E+01 6.03E-01	3.60E-03 7.20E-04 1.80E-04 1.80E-02 3.00E-02 2.40E-02
0.58 138	
.2.97	
3.98E-04 2.48E-09	4.87E-07 2.76E-06 2.82E-08 4.32E-07 2.59E-03 7.63E-07
Urea Vapona	INORGANICS Antimony Arsenic Beryllium Cadmium Copper Mercury

Average Pollutant Concentration in Carrots, and Adult and Child Daily Intake at the Resident-B Location

AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg 4.24E-09 4.55E-09 9.93E-10 9.17E-07 1.76E-06 4.41E-07 4.24E-10 8.44E-11 2.97E-06 5.59E-08 4.93E-10 1.53E-09 8.79E-08 2.00E-10 9.31E-10								
onitrile 4.24E-09 4.55E-09 zine aldehyde 9.93E-10 aldehyde 9.75E-07 ofuran of Acid 1.76E-06 ooitrile 4.41E-07 ooitrile 8.44E-10 ooitrile 8.44E-10 casis 1.76E-06 4.24E-10 4.24E-10 4.24E-10 6.25F-06 1.76E-06 4.35E-11 1.35E-09 1.55E-09 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-10		OG KON	Koc	ROOT UPTAKE FACTOR	AVERAGE CONC.DUE TO UPTAKE mg/Kg	ADULT AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	CHILD AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	
lmethylaulfone 4.93E-07 Imethylaulfoxide 6.08E-08 Inethylaulfoxide 6.08E-08 Inethylaulfoxide 6.08E-08 Inethylaulfoxide 6.08E-09 Inethylaulfoxide 6.08E-07 Inethylaulfoxide 6.08E-07 Inethylaulfoxide 6.08E-07 Inethylaulfoxide 6.08E-07 Inethylaulfoxide 6.10 Inethylaulfoxide 6.08E-06 Inethylaulfoxide 6.08E-0	4.24E-09 4.55E-09 9.93E-10 9.17E-07 1.76E-06 4.24E-07 8.44E-11 2.26E-11	0.34 7.4 1.48 1.56 1.56 1.56	2.2 96000 152 152 313 248 168 1,193 38486 1,6011	2.68E-01 1.11E-01 9.57E-01 9.57E-01 6.67E-01 5.45E-01 5.45E-01	1.15E-07 5.03E-08 9.43E-10 5.25E-07 1.68E-06 2.07E-07 2.31E-10 5.54E-11 9.77E-07	5.09E-11 1.63E-10 2.01E-11 2.24E-14 5.37E-15	7.30e-12 1.37e-13 7.62e-11 3.00e-11 3.35e-14 8.05e-15 2.05e-12	
	de de 446	1.2 5.69 6.36 6.36 2.28 1.73 1.73 -1.88 6.10E+00	126 4400000 243000 7152 135 1700 208 983 2.3 3.30E+06 62 5600000	6.00E-01 7.50E-01 1.50E-01 6.91E-02 6.91E-01 7.44E-01 6.88E-01 6.88E-01 5.51E-01 3.21E-02 1.07E-00	2.96E-07 4.56E-08 5.76E-12 3.96E-08 2.66E-10 6.92E-08 7.77E-08 1.80E-10 1.67E-13	2.87E-12 5.57E-12 3.84E-12 2.57E-14 6.57E-14 7.53E-12 7.53E-12 7.53E-12 7.53E-12 7.53E-12 7.53E-12 7.53E-12	6.326-12 8.336-14 1.546-13 3.856-14 1.136-11 1.416-08 1.446-14 1.66-14 1.66-14 1.66-14	
coopenzene	3.01E-09 8.37E-09 2.35E-09 3.65E-09 3.79E-08	5.47 5.51 2.89 2.91	50000 4800 5800 1800 8.5 526	6.94E-01 7.76E+00 3.78E+01 2.31E-01 6.85E+00 8.14E-01	2.09E-09 6.49E-08 8.89E-08 8.41E-10 1.18E-04 3.08E-08	6.30E-12 6.30E-12 8.62E-12 8.15E-14 1,14E-08 2,99E-12	9.43E-12 1.29E-11 1.22E-13 1.71E-08	
atene 4,38E-07 ane 4,38E-07 ane 8,78E-08 8,79E-08 8,79E-08 ane 8,79E-08 ane 8,79E-08 ane 8,79E-08 ane 6,79E-08 anzene 4,76E-07 anzene 4,76E-06 anzene 6,76E-06 anzene 7,76E-06 anzene 7,76E-07		3.92 3.92 5.73 6.5 7.72 7.22 7.38 8.37 1.46 8.37 3.98	2500 4600 5500000 200000 38000 14000 3864 13000 1172 1172 1600	1.18E+00 4.95E-01 3.40E-02 3.06E-01 6.52E-02 5.95E-01 5.06E-01 5.47E-01 1.34E+00 1.72E+00 5.00E-01 3.12E+00	5.17E-07 2.98E-09 2.69E-08 5.75E-09 1.54E-07 6.11E-08 8.89E-08 4.80E-08 2.55E-10 1.56E-10 7.67E-10	5.01E-11 2.10E-11 2.89E-13 2.60E-12 5.55E-13 1.50E-12 4.66E-12 2.47E-14 1.74E-14 7.43E-14 7.43E-14 7.43E-14 7.43E-14	7.50E-11 4.33E-13 3.90E-12 8.96E-12 8.86E-12 1.29E-11 6.97E-12 5.71E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14 7.51E-14	

8B**-**9

9.34E-06 3.53E-13	4,14E-13 4,68E-13 1,20E-15 1,83E-12 1,83E-08 4,32E-12
6.24E-06 2.35E-13	2.76E-13 3.13E-13 8.00E-16 1.22E-12 1.22E-08 2.88E-12
6.43E-02 2.43E-09	2.85E-09 3.23E-09 8.25E-12 1.26E-08 1.26E-04 2.98E-08
9.96E+01 6.03E-01	3.60e-03 7.20e-04 1.80e-04 1.80e-02 3.00e-02
0.58 138	
-2.97	
6.46E-04 4.03E-09	7.92E-07 4.48E-06 4.58E-08 7.01E-07 4.20E-03
Urea Vapona	INORGANICS Antimony Arsenic Beryllium Cadmium Copper

Average Pollutant Concentration in Carrots, and Adult and Child Daily Intake at the Farmer Location

TED Y Gey		1.90E-12 8.93E-14
AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	ENCHOUNTERNAGEAUCREFFEUCRREN RUNGAFARRULHER	
AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	2.68e-1356-14-14-14-14-14-14-14-14-14-14-14-14-14-	8.85E-13 4.15E-14
CONC.DUE TO UPTAKE mg/Kg	5.78E - 08 5.64E - 10 5.64E - 10 1.24E - 17 1.24E - 07 1.24E - 07 1.25E - 08 2.34E - 11 2.34E - 11 1.01E - 10 2.34E - 11 2.34E - 07 1.25E - 08 2.34E - 10 1.26E - 07 1.26E - 08 2.34E - 08 2.34E - 10 1.26E - 07 1.26E - 08 2.34E - 08 2.34E - 07 1.26E - 08 2.34E	1.05E-09 4.94E-11
ROOT UPTAKE FACTOR	2. 58E+01 1.11E+01 1.11E+01 2. 75E-01 3. 75E-01 4. 69E-01 7. 50E-01 7.	3.12E+00 2.75E-01
Koc	2.2 96000 320 152 313 248 168901 168901 1700 243000 243000 243000 243000 2083 330000 250000 250000 250000 250000 330000 330000 330000 3364 11700 330000 330000 3364 11700 33000 330000 330000 3300 3300 30 3	1600
Log Kow	0.13 1.26	3.98
AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	2.55	3.38E-10 1.80E-10
	thylsul fone thylsul foxide thylsul foxide sene hylphosphonate hosphonate he sene anthracene anthracene	aue aue
	Acetonitrile Aldrin Atrazine Benzaldehyde Benzaldehyde Benzofuran Benzor Acid Benzoritrile Carbazole 4-Chlorobiphenyl 4,4-Chlorobiphenyl 6,4-Chlorophenylmethylsulfone 6,Chlorophenylmethylsulfone 6,Chlorophenylmethylsulfoxi p,p-DDE p,p-DDE p,p-DDI Dibenzofuran Dicyclopentadiene Dicyclopentadiene Dicyclopentadiene Dicyclopentadiene Dicyclopentadiene Dicyclopentadiene Dicyclopentadiene Dicyclopentadiene Dicyclopentadiene Hexachlorobenzene Hexachlorocyclopentadiene Isodrin Malathion Malathion Malathion Malathion Hexachlorosente Fluorene Benzo(a)pyrene Chysene Dibenzo(a,h)anthracene Fluoranthene Benzo(a)pyrene Chysene Perathion Pentachlorobenzene Pyrene	Tetrachlorobenzene Trichlorobenzene
	Actra Actra Actra Actra Actra Actra Actra Actra Actra Benza	

6/21/91

Table 8B-4 (continued)

6.94E-05 2.62E-12	3.08E-12 3.48E-12 8.90E-15 1.36E-11 3.21E-11
3.23E-05 1.22E-12	1,43E-12 1,62E-12 4,14E-15 6,33E-12 6,32E-08 1,49E-11
3.84E-02 1.45E-09	1.70E-09 1.93E-09 4.93E-12 7.55E-09 7.53E-05 1.78E-08
9.96E+01 6.03E-01	3.60e-03 7.20e-04 1.80e-04 1.80e-02 3.00e-02 2.40e-02
0.58 138	
1.4	
3.86E-04 2.41E-09	4.73E-07 2.68E-06 2.74E-08 4.19E-07 2.51E-03 7.41E-07
Urea Vapona	INORGANICS Antimony Arsenic Beryllium Cadmium Copper Mercury

815CA8B.51

Maximum Pollutant Concentration in Carrots, and Adult and Child Daily Intake at the Resident-A Location

	CALCULATED CONC IN SOIL .2M mg/Kg	log Kow	Кос	ROOT UPTAKE FACTOR	MAXIMUM CONC.DUE TO UPTAKE mg/Kg	ADULT MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/dby	CHILD MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
ORGANICS							•
Acetonitrile Aldrin	2.65E-09	-3.40E-01	2.20E+00	2.68E+01	7.08E-08	6.87E-12	1.03E-11
Atrazine	6.20E-10	2.68F+00	7.0E+04	0.50E-01	5.14E-08	5.04E-12	4.56E-12 8 55E-17
Benzaldehyde	5.72E-07	1.48E+00	1.52E+02	5.73E-01	3.28E-07	3. 18E-11	4.76E-11
Benzofuran Benzoia Apid	1.10E-06	2.67E+00	3.13E+02	9.57E-01	1.05E-06	1.02E-10	1.52E-10
Benzoni-rile	2.75E-07	1.87E+00	2.48E+02	4.69E-01	1.29E-07	-	1.88E-11
Carbazole	5.27E-11	3.20E+00	1.68E+02	5.45E-01	1.44E-10	1.40E-14	2.09E-14
4-Chlorobiphenyl	1.85E-06	4.90E+00	3.85E+04	3.29E-01	6.10F-07		8 86F-11
4,4-Chlorobiphenyl	3.49E-08	5.58E+00	1.67E+05	2.53E-01	8.82E-09	8.55E-13	1.28E-12
4-thlorophenylmethylsultone		1.20E+00	1.26E+02	6.00E-01	1.85E-07	1.79E-11	
p,p-DDE	3.08F-10	1.33E+UU 5.60E+UU	1.0/E+02	7.50E-01	2.85E-08	2.76E-12	4.13E-12
p,p-001	9.58E-10	6.36E+00	2.43E+05	6.91E-01	6.62F-10	6.42F-14	9.50E-16
Dibenzofuran	5.49E-08	4.12E+00	7.15E+03	4.50E-01	2.47E-08		3.59E-12
Dicyclopentadiene	1.25E-10	2.28E+00	1.35E+02	1.33E+00	1.66E-10	1.61E-14	2.41E-14
Disonropy Methylphosphose		6.20E+00	1.70E+03	7.44E+01	4.32E-08	4.19E-12	6.28E-12
1.3-Dimethylbenzene	1 63E-US	7 205 00	2.08E+02	4.97E-01	4.85E-08	4.70E-12	7.05E-12
Dimethyl Methylphosphonate	2.41E-06	-1.88F+00	7.83E+UZ	0.88E-U1	1.12E-10	1.09E-14	1.63E-14
Dioxins/Furans (EPA TEFs)	3.25E-12	6.10E+00	3.30E+06		1.04F-13	1.015-17	1 52F-17
Dithiane	9.87E-11	7.70E-01	6.20E+01	1.07E+00	1.05E-10	1.02E-14	1.53E-14
Endrin Bexachionobenzene	5.64E-10	4.56E+00	5.60E+06	1.24E-03	7.01E-13	6.79E-17	
Hexachlorocyclopentadiene	1.00E-U9	5.4/E+00 5.51E+00	5.00E+04	6.94E-01	1.30E-09	1.26E-13	1.89E-13
	1.47E-09	6.51E+00	5.806+03	7 78F+01	4.U0E-U8	5.936-12	5.89E-12
Malathion	2.28E-09	2.89E+00		2.31E-01	5.25E-10	5.096-14	7.62E-14
Methanol 6-Witrophenol	1.08E-05	-8.20E-01	8.50E+00		37E	7.14E-09	1.07E-08
PAHS	6.305.00	6.91E+00	2.40E+UZ	8.14E-01	1.92E-08	1.86E-12	2.79E-12
Acenaphthalene	2.73E-07	4.07F+00	2 50F+03	1 185+00	¥ 235.07	2 125.11	7 40E.11
Acenaphthene	2.73E-07	3.92E+00	4.60E+03	4.95E-01	1.356-07	1.31E-11	1.96F-11
Benzo(a)pyrene	5.49E-08	6.42E+00	5.50E+06	3.40E-02	1.86E-09	1.81E-13	2.70E-13
Dihenzo(a h)anthracene	5 49E-08	5.79E+00	2.00E+05	3.06E-01	1.68E-08	1.63E-12	2.44E-12
Fluoranthene	1 645-07	5 22E+00	3.50E+U0	6.52E-02	3.58E-09	3.47E-13	5.19E-13
Fluorene	5.49E-08	4.38E+00	7.30F+03	5.0/E-01	7.04E-US	7.35E-12	1.40E-11
Phenanthrene	1.10E-07	4.57E+00	1.40E+04	5.06E-01	5.556-08	5.38F-12	8-06F-12
Pyrene	5.49E-08	5.18E+00	3.80E+04	5.47E-01	3.00E-08	2.91E-12	4.35E-12
Dentachlorobenzene	5.10E-10	3.81E+00	3.66E+03	5.14E-01	1.59E-10	1.55E-14	-
Phenoi	2 07E-10	3.08E+00	1.50E+04	1.34E+00	1.12E-09	1.09E-13	1.63E-13
Quinoline	1.32F-10	7 035+00	7. 90E+01	6.15E+00	1.83E-05	1.77E-09	2.65E-09
Supona	9.58E-10	3.116+00	1.17F+03	5.00E-01	2.2/E-10 4 70E-10	2.20E-14	5.29E-14
Tetrachlorobenzene	3.53E-10	4.37E+00	1.60E+03	3.12E+00	1.10F-09	1 075-13	1 ANF-13
Trichlorobenzene	1.88E-10	3.98E+00	9.20E+03	2.75E-01	5.17E-11	5.01E-15	7.506-15

Table 8B-5 (continued)

5.83E-06 2.20E-13	2.58E-13 2.92E-13 7.48E-16 1.14E-12 1.14E-08 2.70E-12
3.89E-06 1.47E-13	1,73E-13 1,95E-13 4,99E-16 7,64E-13 7,63E-09
4.02E-02 1.52E-09	1.78E-09 2.01E-09 5.15E-12 7.88E-09 7.87E-05
9.96E+01 6.03E-01	3.60E-03 7.20E-04 1.80E-04 1.80E-02 3.00E-02
5.80E-01 1.38E+02	
-2.97E+00 1.40E+00	
4.03E-04 2.52E-09	4.94E-07 2.80E-06 2.86E-08 4.38E-07 7.6E-03
Urea Vapona	INDRGANICS Antimony Arsenic Beryllium Cadmium Copper

Maximum Pollutant Concentration in Carrots, and Adult and Child Daily Intake at the Resident-B Location

	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	log Kow	Кос	ROOT UPTAKE FACTOR	MAXIMUM CONC.DUE TO UPTAKE mg/Kg	ADULT MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	CHILD MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	
ORGANICS		:						
Acetonitrile Aldrin	4.30E-09 4.61E-09	-3.40E-01	2.20E+00	2.68E+01	1.15E-07	1.12E-11 4. 04E-12	1.67E-11 7 41E-12	
Atrazine	1.01E-09	2.68E+00	3.20E+02	9.50E-01	9.57E-10	9.28E-14	1.396-13	
Benzaldehyde	9.30E-07	1.48E+00	1.52E+02	5.73E-01	5.33E-07	5.16E-11	7.74E-11	
Benzofuran Benzoia Asid	1.78E-06	2.67E+00	3,13E+02	9.57E-01	1.71E-06	1.65E-10	2.48E-10	
Renzonitrile	4.4/E-U/	1.8/E+00	2.48E+U2	4.69E-01	2.10E-0/		3.05E-11	
Calibacité Calibacité	8.56F-11	3.20E+00	1.086+02	5.45E-01	5.546-10	2.2/E-14 5.45E-15	3.40E-14	
4-Chlorobiphenyl	3.01E-06	4.90E+00	3.85E+04	3.29E-01	9.91E-07	9.61E-11	1.44E-10	
4,4-Chlorobiphenyl	5.67E-08	5.58E+00	1.67E+05	2.53E-01	1.43E-08	1.39E-12	2.08E-12	
4-Chlorophenylmethylsulfone	'n.	1.20E+00	1.26E+02	6.00E-01	3.00E-07		4.36E-11	
4-Chlorophenylmethylsulfoxide	ė,	1.33E+00	1.07E+02	7.50E-01	4.62E-08	- •	6.71E-12	
200 d.d	1.56F-00	5.09E+UU	2.43E+05	4 91E-02	1 08F-00		8.46E-16	
Dibenzofuran	8.916-08	4.12E+00	7.15E+03	4.50E-01	4.01E-08	3.89E-12	5.83E-12	
Dicyclopentadiene	2.03E-10	2.28E+00	1.35E+02	1.33E+00	2.69E-10	2.61E-14	3.91E-14	
Discorpord Mothy/phoophones		6.20E+00	1.70E+03	7.44E+01	7.02E-08	6.81E-12	1.02E-11	
1.3.0 imethylbenzene		3 20F+00	0 R3F+02	4.97E-01	1 82F-10	1 775-16	1.14E-11	
	3.91E-06	-1.88E+00	2.30E+00	2.51E+01	9.83E-05		1.43E-08	
Dioxins/Furans (EPA TEFs)	5.28E-12	6.10E+00	3.30E+06	3.21E-02	1.70E-13	1.64E-17	2.46E-17	
Dithiane	1.60E-10	7.70E-01	6.20E+01	1.07E+00	1.71E-10	•	2.48E-14	
Hexach orobenzene	7.16E-10	4.56E+00	5.60E+06	1.24E-03	1.14E-12	1.10E-16	1.65E-16	
Hexachlorocyclopentadiene	8.49E-09	5.516+00	4.80E+03	7.76F+00	6.50F-08		5.U/E-15 0 56E-12	
	2.39E-09	6.51E+00	5.80E+03	3.78E+01	9.02E-08	8.74E-12	1.31E-11	
Malathion	3.70E-09	2.89E+00	1.80E+03	2.31E-01	8.53E-10	8.27E-14	1.24E-13	
Methanol	1.75E-05	-8.20E-01	8.50E+00	6.85E+00	1.20E-04	1.16E-08	1.74E-08	
4-Nitrophenol	3.84E-08	2.916+00	5.26E+02	8.14E-01	3.12E-08	3.03E-12	4.54E-12	
Acenaphthalene	4.44E-07	4.07E+00	2.50E+03	1.18E+00	5.24E-07	5.08E-11	7.61E-11	
Acenaphthene	4.44E-07	3.92E+00	4.60E+03	4.95E-01	2.20E-07	2.13E-11	3.196-11	
Benzo(a)pyrene	8.91E-08	6.42E+00	5.50E+06	3.40E-02	3.03E-09	2.93E-13	4.39E-13	
hlonthn	0.YIE-U0	2. /YE+00	Z.00E+05	3.U0E-U1	2.73E-08	2.04E-12	3.96E-12	
Fluoranthene	2.67F-07	5.22F+00	3.80E+06	5.87F-01	1.57E-07	5.03E-13	8.44E-13	
Fluorene	8.91E-08	4.38E+00	7.30E+03	6.95E-01	6.196-08	6.00E-12		
Phenanthrene	1.78E-07	4.57E+00	1.40E+04	5.06E-01	9.02E-08	8.74E-12	1.31E-11	
Pyrene	8.91E-08	5.18E+00	3.80E+04	5.47E-01	4.87E-08	4.72E-12	7.07E-12	
Dentechion	5.04E-10	3.81E+00	3.66E+03	5.14E-01	2.59E-10	2.51E-14	3.76E-14	
Phenol	4.83E-06	1.46F+00	1.40F+01	6.15F+00	2 97F-05	2 88E-00	2.65E-13	
Quinoline	2.15E-10	2.03E+00	7.90E+01	1,72E+00	3.68E-10	3.57E-14	5.34E-14	
Supona	1.56E-09	3.11E+00	1.17E+03	5.00E-01	7.78E-10	7.54E-14	1.13E-13	
etrach orobenzene Trich orobenzene	5.74E-10	4.37E+00	1.60E+03	3.12E+00	1.79E-09	1.73E-13	2.60E-13	
	3.005.10	3.705100	Y. CUETUS	10.36.77	0,375-11	8.146-15	1.22E-14	

815CA8B.51

6/21/91

Table 8B-6 (continued)

4.20E-13	4.75E-13	1.22E-15	1.86E-12	1.86E-08	4.38E-12
2.80E-13	3.17E-13	8.11E-16	1.24E-12	1.24E-08	2.93E-12
2.89E-09	3.27E-09	8.37E-12	1.28E-08	1.28E-04	3.02E-08
3.60E-03	7.20E-04	1.80E-04	1.80E-02	3.00E-02	2.40E-02
8.03E-07	4.54E-06	4.65E-08	7,12E-07	4.26E-03	1.26E-06
(NORGANICS Antimony	Arsenic	Beryllium	Cadmium	Copper	Mercury
	3,60E-03 2,89E-09 2,80E-13 4	8.03E-07 3.60E-03 2.89E-09 2.80E-13 4.54E-06 3.17E-13 4.54E-06 3.17E-13 4.54E-09 5.5E-09 5.5E-	8.03E-07 4.54E-06 7.20E-04 7.20E-04 7.20E-03 7.20E-03 7.20E-09 7.20E-03 7.20E-03 7.20E-03 7.20E-03 7.20E-03 7.20E-03 7.20E-03 7.20E-03 7.20E-03 7.20E-03 7.20E-04 7.65E-09 7.65E-09	8.03E-07 3.60E-03 2.89E-09 2.80E-13 4.54E-06 7.20E-04 8.37E-12 8.11E-16 7.12E-07 1.80E-02 1.28E-08 1.24E-12	INORGANICS 8.03E-07 3.60E-03 2.89E-09 2.80E-13 4.20E-13 Artimony 4.54E-06 7.20E-04 3.27E-09 3.17E-13 4.75E-13 Arsenic 4.65E-08 1.80E-04 8.37E-12 8.11E-16 1.22E-15 Beryllium 7.12E-07 1.80E-02 1.28E-08 1.24E-12 1.86E-12 Copper 4.26E-03 3.00E-02 1.28E-04 1.24E-08 1.86E-08

Maximum Pollutant Concentration in Carrots, and Adult and Child Daily Intake at the Farmer Location

	MAXIMUM CALCULATED CONC IN SOIL .ZM mg/Kg	log Kow	Koc	ROOT UPTAKE FACTOR	MAXIMUM CONC.DUE TO UPTAKE mg/Kg	ADULT MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	CHILD MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
Actonitrile Aldrin Atrazine Benzaldehyde Benzofuran Benzofuran Benzoic Acid Benzoic Acid Benzorole 4-Chlorobiphenyl 4,4-Chlorobiphenyl 4,4-Chlorobiphenyl 6,4-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfone 5,p-DDE 5,p-DD		3.40E-01 7.40E+00 1.68E+00 1.56E+00 1.56E+00 4.30E+00 4.32E+00 6.20E+00 6.20E+00 6.20E+00 6.20E+00 6.20E+00 7.70E-01	2.20E+00 3.20E+02 1.52E+02 2.48E+02 1.52E+02 1.52E+02 1.68E+02 1.07E+03 1.07E+03 1.07E+03 1.07E+03 1.07E+03 1.07E+03 1.07E+03 2.48E+02 1.07E+03 1.07E+03 1.07E+03 1.07E+03 1.07E+03 2.48E+03 1.07E+03 2.50E+04 5.00E+04 5.00E+03 5.20E+03 6.20E+03 6.20E+03 7.30E+04	2.68E+01 1.11E+01 9.50E-01 4.69E-01 5.45E-01 2.53E-01 6.00E-01 1.36E+00 4.69E-01 7.50E-01 7.50E-01 7.44E+01 7.50E-01 7.44E+01 7.50E-01 7.44E+01 7.50E-01 7.44E+01 7.76E+01 7.76E+01 8.18E+00 8.14E-01 3.06E-01 3.06E-01 3.06E-01 3.06E-01 3.06E-01 3.47E-01 3.46E-01 5.47E-01	6.88E-08 3.05E-08 3.05E-08 3.05E-08 1.25E-10 1.25E-07 1.25E-07 2.76E-08 1.76E-08 1.66E-08	5.77E-11 2.56E-11 1.05E-10 2.35E-11 1.05E-10 2.32E-11 2.32E-11 2.32E-11 3.52E-11 3.52E-11 4.53E-12 4.53E-11 1.52E-12 1.52E-12 1.52E-12 1.52E-12 1.52E-12 1.52E-11 1.52E-12 1.52E-12 1.52E-12 1.52E-12 1.52E-13	1.24e-10 5.50e-11 1.34e-10 2.55e-11 2.56e-10 2.55e-10 3.24e-10 4.99e-11 1.55e-11 1.55e-10 4.99e-11 1.55e-11 1.55e-10 2.51e-12 2.51e-12 2.51e-12 3.24e-10 3.24e-10 3.24e-10 3.24e-11 3.24e-11 3.24e-12 3.24e-13 3.24e-13 3.24e-13 3.24e-13 3.24e-13 3.24e-13 3.26e-13
Quinoline Supona Tetrachlorobenzene Trichlorobenzene	1.28E-10 9.31E-10 3.43E-10 1.83E-10	2.05E+00 3.11E+00 4.37E+00 3.98E+00	7.90E+01 1.17E+03 1.60E+03 9.20E+03	1.72E+00 5.00E-01 3.12E+00 2.75E-01	2.20E-10 4.65E-10 1.07E-09 5.02E-11	1.85E-13 3.90E-13 8.98E-13 4.21E-14	3.97E-13 8.39E-13 1.93E-12 9.06E-14

6/21/91

Table 8B-7 (continued)

7.04E-05 2.66E-12	3.12E-12 3.53E-12 9.03E-15 1.38E-11 1.38E-07 3.26E-11
3.27E-05 1.24E-12	1.45E-12 1.64E-12 4.20E-15 6.43E-12 6.42E-08 1.51E-11
3.90E-02 1.47E-09	1.73E-09 1.96E-09 5.00E-12 7.65E-09 7.64E-05 1.80E-08
9.96E+01 6.03E-01	3.60E-03 7.20E-04 1.80E-04 1.80E-02 3.00E-02 2.40E-02
5.80E-01 1.38E+02	
-2.97E+00 1.40E+00	
3.92E-04 2.44E-09	4.80E-07 2.72E-06 2.78E-08 4.25E-07 2.55E-03 7.52E-07
Urea Vapona	INORGANICS Antimony Arsenic Beryllium Cadmium Copper

growth medium, the rate of metals uptake by plants is highly variable and is influenced by many factors. These factors include parameters specific to the plant (species, age) and to the properties of the soil (pH, organic content, cation exchange capacity, concentration of other inorganics, temperature, aeration). Thus, in the absence of specific information regarding garden soil characteristics in the RMA area, the calculated RUFs should be viewed as best approximations.

Average concentrations of pollutants in carrots and average daily intakes are summarized for the adult and child for the Resident-A, Resident-B, and Farmer scenarios in Tables 8B-2, 8B-3, and 8B-4, respectively. The maximum pollutant concentration in carrots and the maximum daily intakes are summarized in Tables 8B-5, 8B-6, and 8B-7.

8B.2 TOMATOES AND LETTUCE

8B.2.1 Surface Deposition of Pollutants on Tomatoes and Lettuce

The plant pollutant concentration resulting from surface deposition (C_d) is expressed by the equation:

$$C_d$$
 = (DR) (VSDF)
(maximum) = (DR) (VSDF) (2/70)
(average)

Where:

DR = Pollutant dry deposition rate (mg/m²s). This includes only dry deposition. Pollutants falling on plant surfaces from wet deposition are washed off the plant and incorporated into the soil.

VSDF = Vegetable surface deposition factor (m²s/kg).

In calculating the average pollutant concentration from surface deposition, exposure duration was adjusted using a factor of 2/70. This factor is based on the assumption that

pollutant deposition resulting from the 2 years of facility operation is averaged over a 70-year lifetime.

The VSDF is calculated according to the following equation (Holton et al., 1984):

$$VSDF = \frac{r (1 - e^{-kt})}{Yk}$$

Where:

r = Interception fraction of the plant (unitless) (Baes et al., 1984).

k = Total rate constant for degradation process (s⁻¹) (Baes et al., 1984).

t = Growing time(s) (Ells, 1990).

Y = Plant yield (wet weight) (kg/m²) (Ennis, 1990).

The interception fraction refers to that fraction of the airborne material falling on a given growing area that is deposited upon (intercepted by) edible portions of the plant. The interception fractions used for lettuce (0.15) and tomatoes (0.068) are those computed by Baes et al. (1984) based on a theoretical model accounting for growth characteristics of the plants during their maturation in the field.

A number of degradation processes can affect the final concentrations of pollutants deposited on plant surfaces. These include weathering (mainly washoff by precipitation), volatilization, and photolysis. This analysis considered only weathering as a potential mechanism for loss of surface-deposited contamination. It was assumed that pollutants would remain sorbed to ash particles; therefore, only negligible amounts would undergo either volatilization or photolysis. Thus, the total rate constant for degradation processes (k) would be equal to the weathering loss removal constant (k_w). The weathering removal loss constant was calculated as follows (Baes et al., 1984):

A half-life of 14 days (1.2 x 10⁶ seconds), the value used by the U.S. Nuclear Regulatory Commission for particles (NCRP, 1984), was considered to be average for ash-bound pollutants. To be conservative, it was assumed in this assessment that no attenuation of surface contamination (e.g., by washing) takes place between the time the vegetables are harvested and eaten. The amount of a pollutant that can be removed by washing is highly variable, depending partially on the extent the pollutant is sorbed to, or can penetrate, the leaf (e.g., only about 10% of benzo(a) pyrene deposited on tomatoes and lettuce can be removed by cold water washing) (EPA, 1980).

Growing times for vegetables in the area surrounding RMA were estimated to be approximately 45 days (3.89E+06 seconds) for tomatoes from fruit set until harvest and 65 days (5.62E+06 seconds) for lettuce from initial leaf formation to harvest time (Ells, 1990). Average crop yields for the RMA area were estimated to be approximately 1.34 kg/m² and 1.58 kg/m² for tomatoes and lettuce, respectively (Ennis, 1990).

The concentrations of pollutants in lettuce resulting from surface deposition are summarized in Tables 8B-8 through 8B-13 for the three exposure scenarios. The concentrations of pollutants in tomatoes resulting from surface deposition are summarized in Tables 8B-14 through 8B-19 for the three exposure scenarios.

8B.2.2 Plant Uptake of Pollutants by Tomatoes and Lettuce

The accumulation of pollutants in edible parts of plants as a result of uptake from the soil is dependent on two processes: root absorption and translocation to the edible portion.

Table 8B-8

Average Pollutant Concentration in Lettuce, and Adult and Child Daily Intake at the Resident-A Location

			•					
	DRY DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	PLANT UPTAKE FACTOR	AVERAGE CONC.DUE TO UPTAKE mg/Kg	AVERAGE CONC. ON PLANT SURFACE mg/Kg	AVERAGE CONC ON PLANT mg/Kg	ADULT AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	CHILD AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day
Acetonitrile Aldrin Atrazine Benzaldehyde Benzaldehyde Benzonitrile Carbazuie 4-Chlorobiphenyl 4-Chlorobiphenyl 4-Chlorobiphenyl 4-Chlorobiphenyl 6-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfone 6-Chlorophenylmethylsulfone 6-Chlorophenylmethylsulfone 6-Chlorophenylmethylsulfone 7-Chlorophenylmethylsulfone 6-Chlorophenylmethylsulfone 7-Chlorophenylmethylsulfone 8-Chlorophenylmethylsulfone 8-Chlorophenylmethylsulfoxide 8-Chlorophenylmethylbenzene 8-Chlorophenol 8-Chlorophenol 8-Chlorophenol 8-Chlorophenol 8-Chrysene 8-Chry	1.78e - 0.9	2.64E-09 2.64E-10 2.64E-10 2.64E-10 2.64E-10 2.74E-10	3.06E+00 5.43E-02 7.56E-01	7.99E-09 7.92E-09 7.92E-11 7.92E-07 7.92E-07 7.92E-07 7.92E-07 7.92E-07 7.92E-07 7.92E-07 7.92E-07 7.92E-07 7.92E-12 7.92E-13 7.92E-13 7.92E-13 7.92E-13 7.92E-13 7.92E-13 7.92E-13 7.92E-13 7.92E-14 7.92E-14 7.92E-15 7.92E-16 7.92E-17	2.576-11 2.566-09 2.566-09 3.396-09 3.396-09 3.396-09 3.396-09 3.496-09 3.596-11 3.596-10 3.596-	8.36E-10 6.37E-10 7.58E-11 7.58E-11 7.58E-11 7.58E-11 7.58E-12 7.58E-	2.750. 2.750.	3. 22E-13 3. 22E-13 4. 4. 42E-13 5. 22E-13 5. 22E-13 5. 22E-13 5. 22E-13 6. 22E-1
		•	2	!				

Table 8B-8 (continued)

4.49E-13	1.52E-12	1.35E-14	3.07E-13	3.58E-09	1.94E-12
9.54E-13	3.22E-12	2.88E-14	6.53E-13	7.61E-09	4.13E-12
9.67E-09	3.27E-08	2.92E-10	6.63E-09	7.72E-05	4.19E-08
4.80E-09	2.72E-08	2.78E-10	4.25E-09	2.55E-05	7.51E-09
4.87E-09	5.51E-09	1.41E-11	2.37E-09	5.17E-05	3.43E-08
1.00E-02	2.00E-03	5.00E-04	5.50E-03	2.00E-02	4.50E-02
4.87E-07	2.76E-06	2.82E-08	4.32E-07	2.59E-03	7.63E-07
3.35E-08	1.90E-07	1.94E-09	2.97E-08	1.78E-04	5.25E-08
, suc	ပ	5	Ę	•	<u>ح</u>
	3.35E-08 4.87E-07 1.00E-02 4.87E-09 4.80E-09 9.67E-09 9.54E-13	3.35E-08 4.87E-07 1.00E-02 4.87E-09 4.80E-09 9.67E-09 9.54E-13 1.90E-07 2.76E-06 2.00E-03 5.51E-09 2.72E-08 3.27E-08 3.22E-12	3.35E-08 4.87E-07 1.00E-02 4.87E-09 4.80E-09 9.67E-09 9.54E-13 1.90E-07 2.76E-06 2.00E-03 5.51E-09 2.72E-08 3.27E-08 3.27E-08 1.94E-12 1.94E-09 2.82E-08 5.00E-04 1.41E-11 2.78E-10 2.92E-10 2.88E-14	3.35E-08 4.87E-07 1.00E-02 4.87E-09 4.80E-09 9.67E-09 9.54E-13 1.90E-07 2.76E-06 2.00E-03 5.51E-09 2.72E-08 3.27E-08 3.27E-08 3.22E-12 1.94E-09 2.82E-08 5.00E-04 1.41E-11 2.78E-10 2.92E-10 2.88E-14 2.97E-08 4.32E-07 5.50E-03 2.37E-09 4.25E-09 6.63E-09 6.53E-13	Antimony 3.35E-08 4.87E-07 1.00E-02 4.87E-09 4.80E-09 9.67E-09 9.54E-13 4.49E-13 Arsenic 1.90E-07 2.76E-06 2.00E-03 5.51E-09 2.72E-08 3.27E-08 3.22E-12 1.52E-12 Beryllium 1.94E-09 2.82E-08 5.00E-04 1.41E-11 2.78E-10 2.92E-10 2.88E-14 1.35E-14 Cadmium 2.97E-08 4.32E-07 5.50E-03 5.37E-09 4.25E-09 6.63E-09 6.53E-13 3.07E-13 Copper 7.72E-05 7.61E-09 3.58E-09

Adult and Child Daily Intake at the Resident-B Location Average Pollutant Concentration in Lettuce, and

ORGANICS

4.57E-12 3.30E-12 4.78E-15 9.82E-17 5.30E-13 5.66E-15 8.99E-12 9.31E-13 1.03E-16 8.76E-17 6.67E-17 6.67E-17 7.42E-09 3.30E-16 5.29E-16 3.29E-16 1.50E-16 1.50E-16 7.15E-17 1.93E-13 2.32E-13 5.78E-15 5.63E-15 3.51E-14 4.40E-14 4.40E-14 3.01E-14 6.13E-11 1.28E-15 2.25E-15 1.77E-16 CHILD AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day 1.28e-12 5.16e-16 5.16e-16 2.45e-11 7.01e-12 1.02e-14 1.13e-12 1.02e-14 1.31e-12 1.42e-12 2.99e-12 2.99e-12 2.99e-12 2.99e-12 2.99e-12 2.99e-14 4.86e-16 6.99e-16 6.99e-16 1.09e-16 1.0 4.78E-13 1.23E-14 1.20E-14 7.47E-14 7.47E-14 9.36E-14 6.39E-14 4.31E-16 1.30E-13 1.30E-15 3.76E-15 ADULT AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day 4.17E-09 4.99E-09 1.25E-10 1.21E-10 7.57E-10 5.85E-10 6.48E-12 4.37E-12 1.32E-06 2.76E-11 3.81E-12 3.20E-12 1.036-10 2.127-12 1.214-08 1.246-08 1.946-10 2.236-13 2.236-10 1.446-12 1.446-12 7.346-12 7.346-12 7.346-12 7.346-12 .00E-04 AVERAGE CONC ON PLANT mg/Kg 4.45E-12 1.04E-12 1.04E-12 1.04E-10 1.04E-10 1.04E-10 1.04E-11 1.04E-11 1.04E-11 1.04E-11 1.04E-11 1.04E-11 1.04E-11 1.04E-12 1.04E-13 1.06E-13 3.83E-12 1.81E-08 3.98E-11 4.60E-10 4.60E-10 9.24E-11 9.24E-11 9.24E-11 1.85E-10 9.24E-11 1.41E-12 5.00E-09 2.22E-13 3.17E-13 AVERAGE CONC. ON PLANT SURFACE mg/Kg 1.30E-08 4.52E-13 5.39E-11 2.66E-08 7.06E-08 1.03E-10 6.31E-09 6.11E-13 6.11E-13 6.11E-13 7.07E-10 7.07E-3.71E-09 4.53E-09 3.23E-11 2.39E-11 7.64E-10 7.64E-10 7.64E-10 7.64E-10 7.64E-10 7.64E-10 7.64E-10 7.64E-10 7.64E-10 7.66E-12 2.96E-12 2.96E-11 3.21E-12 AVERAGE CONC.DUE TO UPTAKE mg/Kg 3.06e+00 9.93e-05 2.69e-01 1.60e-01 2.42e-01 2.42e-01 3.29e-01 3.29e-01 3.29e-01 3.29e-01 3.29e-01 4.41e-02 5.66e-04 4.41e-03 1.31e-03 3.26e-04 4.93e-04 1.93e-04 4.93e-04 3.36e-04 5.66e-04 5.66e-04 5.66e-04 5.66e-04 5.66e-04 5.66e-04 5.66e-04 5.66e-04 8.48E-03 1.04E-02 3.68E-04 3.53E-04 1.83E-03 4.35E-03 1.20E-03 2.77E-01 1.29E-01 1.29E-01 5.68E-03 9.56E-03 AVERAGE CALCULATED PLANT UPTAKE **FACTOR** 4.24E-09
9.73E-10
9.73E-10
9.73E-10
9.74E-07
4.24E-10
4.24E-10
4.24E-10
2.97E-06
6.08E-08
8.77E-08
8.73E-10
9.31E-10
4.38E-07 4.38E-07 8.79E-08 8.79E-08 8.79E-08 1.76E-07 4.97E-10 1.34E-09 4.76E-06 2.11E-10 5.66E-10 3.01E-10 CONC IN SOIL 2M 3.11E-11 7.29E-12 6.27E-09 3.24E-09 3.24E-09 3.11E-12 6.20E-13 3.62E-12 1.13E-12 6.45E-10 1.15E-09 1.15E-12 5.83E-08 1.15E-12 1.15E-12 5.83E-08 1.15E-12 1.1 3.21E-09 6.45E-10 6.45E-10 6.45E-10 1.93E-09 6.45E-10 7.65E-10 3.65E-12 3.49E-08 1.55E-12 7.65E-12 DEPOSITION RATE 9/M2/yr DRY 4,4-Chiorobiphenyl 4-Chiorophenylmethylsulfone 4-Chiorophenylmethylsulfoxide Diisopropyl Methylphosphonate 1,3-Dimethylbenzene Dimethyl Methylphosphonate Dioxins/Furans (EPA TEFs) Dithiane Hexachlorobenzene Hexachlorocyclopentadiene Dibenzo(a,h)anthracene Tetrach! orobenzene Pentachlorobenzene Dicyclopentadiene Acenaphthalene Benzo(a)pyrene 4-Chlorobiphenyl Trichlorobenzene Fluoranthene Acenaph thene Fluorene Phenanthrene 4-Nitrophenol p, p-DDT Dibenzofuran **Benzal dehyde** Benzoic Acid **Benzonitrile Acetonitrile** Chrysene **3enzofuran** Carbazoie Malathion Pyrene **Quinoline** Parathion Atrazine Dieldrin Methanol 900-d'd Isodrin Aldrin Endrin Supona

Phenol

3.08E-06 5.62E-14	4.06e-13 6.34e-13 3.30e-15 2.13e-13 4.10e-09 2.65e-12
6.54E-06 1.20E-13	8.63E-13 1.35E-12 7.01E-15 4.53E-13 8.72E-09 5.63E-12
6.63E-02 1.21E-09	8.75E-09 1.37E-08 7.11E-11 4.60E-09 8.85E-05 5.71E-08
6.79E-07 4.24E-12	8.33E-10 4.71E-09 4.82E-11 7.38E-10 4.42E-06 1.30E-09
6.63E-02 1.21E-09	7.92E-09 8.96E-09 2.29E-11 3.86E-09 8.40E-05 5.58E-08
1.03E+02 3.00E-01	1.00E-02 2.00E-03 5.00E-04 5.50E-03 2.00E-02 4.50E-02
6.46E-04 4.03E-09	7.92E-07 4.48E-06 4.58E-08 7.01E-07 4.20E-03 1.24E-06
4.74E-06 2.96E-11	5.81E-09 3.29E-08 3.37E-10 5.15E-09 3.09E-05
Urea Vapona	INORGANICS Antimony Arsenic Beryllium Cadmium Copper

Table 8B-10

e, and	Location
n in Lettuce	at the Farmer
ant Concentration	ntake at th
ollutant Cor	d Child Daily Intake
erage Poll	dult and Chil
Av	Aduli

	DRY DEPOSITION RATE 9/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	PLANT UPTAKE FACTOR	AVERAGE CONC.DUE TO UPTAKE mg/Kg	AVERAGE CONC. ON PLANT SURFACE mg/Kg	AVERAGE CONC ON PLANT mg/Kg	ADULT AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	CHILD AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day
OBCANTCS				1	2, 100	7 7KE-00	1,195-12	5.59E-13
Acetonitrile	6.16E-11	2.53E-09		7.75E-U9	0.025-12	0 7/E-12	1.49E-15	7.01E-16
Aldrin	6.62E-11			2.70E-13	7.4/0.0	7 /15-11	5 - 74F - 15	2.47E-15
A+704-130	1.44E-11			3.22E-11	2.0/E-12	1 505.07	2 205-11	1.08E-11
Bonzal dehode	1.33E-08			1.48E-07	1.91E-09	1.305-07	0 40F-12	4.42E-12
Benzellran	2.56E-08			5.77E-08	3.66E-U9	7 215.08	A 40F-12	3, 10E-12
Benzoic Acid	6.41E-09			4.22E-U8	9, 18E-10	4.315-00	0.52F-15	4.48E-15
Benzonitrile	6.16E-12			6.15E-11	0.02E-13	1 305-12	2,12E-16	
Carbazole	1.23E-12		2.40E-02	1.215-14	4 185-00	1,11E-08	1.71E-12	8.03E-13
4-Chlorobiphenyl	4.32E-08			3 77F-11	1, 16E-10	1.54E-10		1.11E-14
4,4-Chlorobiphenyl	8.15E-10		-	1.15E-07	1.03E-09	1.16E-07	1.78E-11	8.38E-12
4-Chlorophenylmethylsultone				1,20E-08	1.27E-10	1.21E-08	1.85E-12	8, (de-15
4-Chlorophenylmethylsultoxide	7.17F-12	2.95E-10	9.74E-04	2.87E-13	1.03E-12	1.31E-12	2.01E-16	7.40E'17
p, p-une	2.23E-11			3.65E-13	3.20E-12	5.505-12	0 175-16	4.32F-14
Dibenzofuran	1.28E-09			4.16E-10	1.855-10	1 15E-11	1.76E-15	8.28E-16
Dicyclopentadiene	2.91E-12				1 0/6-12	2.21E-12		1.59E-16
Dieldrin			1 025-04	1 80F-08	3.25E-10	1.83E-08	2.81E-12	1.32E-12
Dijsopropyl Methylphosphonate					5.43E-13	4.77E-12		.43E-
1,3-Dimethylbenzene	5.61E-08			5.52E-05	8.03E-09	5.52E-05		77.
Dimetny methylphosphorac	7.58E-14				1.08E-14	1.20E-14	1 016-1	
Dithiane	2.30E-12				1 885-12	4 26F-12	6.51E-16	
Endrin	1.31E-11			2 35F-12	6.26E-12	8.61E-12	1.32E-15	.20E-1
Hexachlorobenzene	4.5/E-11	1.00E-UV			1.74E-11	2.36E-11	3.61E-15	
Hexachlorocyclopentadlene	4 42F-11	۔, ر			4.90E-12	5.36E-12	8.20E-16	3.86E-10
Isodrin	5.30E-11		4.10		7.59E-12	9.69E-11	1.486-14	0.Y0E-13
Materior Mothers!	2.50E-07	-		ທໍ	3.59E-08	5.99E-05	1 505-13	•
A-Nitrophenol	5.50E-10	2	_	9.03E-10	7.88E-11	9.82E-10	1.30E-13	
PAHS				2 225.00	0 115-10	7 17F-M	4	2.25E-13
Acenaphthalene	6.36E-09			2 715-09	9-11E-10	3.62E-09	N.	2.61E-13
Acenaphthene	4 286-09		- PC		1.83E-10	2.02E-10	3.09E-	1.46E-14
Benzo(a)pyrene	1.28E-09		8.53E-		1.83E-10	2.28E-10	3.48E-	1.645-14
Ditonera honthracana	1.28E-09		17		1.83E-10	2.00E-10	3.00E-	4 01E-14
Fluoranthane	3.83E-09				5.48E-10	8.35E-10	7 305	3.44E-14
Fluorene	1.28E-09		.		1.83E-10	8 22E-10	1.26F	5.92E-14
Phenanthrene	2.56E-09		•	4.076-	1 825-10	2 84F-10	4.35E-	2.05E-14
Pyrene	1.28E-09					4.59E-12	7.03E-	3,31E-16
Parathion	7.22E-12				2.80E-12	4.57E-12	-366-9	3.29E-16
Pentachlorobenzene	1.935-1		• • •			7.97E-07	1.22E-	5.74E-11
Phenol	3.08F-12					1.68E-11	2.57E-	7.216-15
Quinoline	2.23E-11	9.17E-10	M	2.80E-11	3.20E-12	3.12E-11	3 ~	2.23E-15
Tetrachlorobenzene	8.23E-1		5.68E		_ `	3.10E-12	7 60F-	1.69E-16
Trichlorobenzene	4.38E-1				6.28E-13	2.335-16	י	

2.85E-06 5.26E-14	4.59E-13 1.06E-12 7.86E-15 2.71E-13 4.25E-09 2.59E-12
6.06E-06 1.12E-13	9.76E-13 2.25E-12 1.67E-14 5.76E-13 9.02E-09 5.50E-12
3.96E-02 7.30E-10	6.38E-09 1.47E-08 1.09E-10 3.77E-09 5.90E-05 3.59E-08
1.35E-06 8.39E-12	1.65E-09 9.33E-09 9.55E-11 1.46E-09 8.75E-06 2.58E-09
3.96E-02 7.22E-10	4.73E-09 5.35E-09 1.37E-11 2.31E-09 5.02E-05 3.33E-08
1.03E+02 3.00E-01	1.00E-02 2.00E-03 5.00E-04 5.50E-03 4.50E-02
3.86E-04 2.41E-09	4.73E-07 2.68E-06 2.74E-08 4.19E-07 2.51E-03
9.39E-06 5.86E-11	1.15E-08 6.51E-08 6.67E-10 1.02E-08 6.11E-05
Urea Vapona	INORGANICS Antimony Arsenic Beryllium Cadmium Copper Mercury

815CA8B.51

▼	Adult and ORY DEPOSITION RATE 9/MZ/yr	Child Dail MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	Child Daily Intake at HAXIMUM CALCULATED PLANT UPTAKE CONC IN FACTOR SOIL .2M mg/Kg		the Resident-A Location MAXIMUM MAXIMUM MA CONC.DUE CONC. ON CO TO UPTAKE PLANT P Mg/Kg SURFACE M	ION MAXIMUM CONC ON PLANT mg/Kg	ADULT MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	CHILD MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	
		3							
ORGANICS Acetonitrile	1.79E-10	2.65E-09	3.06E+00	8.10E-09	8.99E-10	9.00E-09	8.885-13	4.18E-13	
Aldrin	1.93E-10	2.84E-09	σ,	2.82E-13	9.65E-10	9.65E-10	2 415-14	1.135-14	
Atrazine	4.20E-11	6.20E-10	n	3.5/E-11	1 0/5-07	3 40F-07	3.44E-11	1.62E-11	
Benzaldehyde	3.88E-08	5.72E-07	.	6 03F-08	3, 73E-07	4.33E-07	4.27E-11	2.01E-11	
Benzofuran	1.44E-US	1.10E-00	1.60F-01	4.41E-08	9.36E-08	1.38E-07	1.36E-11	6.39E-12	
Benzonitrile	1 70F-11	2.65E-10		6.41E-11	8.99E-11	1.54E-10	.52E-1	7.14E-15	
Carbazote	3.57E-12	5.27E-11		1.275-12	1.79E-11	1.926-17	.89E-1	8.89E-15	
4-Chlorobiphenyl	1.26E-07	1.85E-06	2.80E-03	5.19E-09	1.196-08	1.19E-08	1.17E-12		
4,4-Chlorobiphenyl	2.5/E-UV			1.21E-07	1.05E-07	2.25E-07	2.22E-11		
4-Chlorophenylmetnylsulfone 4-Chlorophenylmethylsulfoxide	2.57E-09			1.25E-08	1.29E-08	2.54E-08	2.50E-12		
p,p-DDE	2.09E-11			3,00E-13	1.05E-10	1.05E-10	3,21F-14		
p,p-001	6.50E-11			3.02E-13	1.86E-08	1.91E-08	1.88E-12		
Dibenzofuran Dievelopentadiana	8.48E-12			1.16E-11	4.25E-11	5.41E-11	5.33E-15		
Dieldrin	3.94E-11			2.87E-13	1.97E-10	1.98E-10	1.95E-14 E 42E-12		
Diisopropyl Methylphosphonate	6.61E-09			1.88E-08	5.52E-UB 5.52E-11	5.97F-11	5.89E-15		
1,3-Dimethylbenzene	1.106-11	1.63E-10 2.41E-06	<i>u</i> ~	5.76E-05	8.18E-07	5.85E-05	5.76E-09		
Dinetnyl Metnylphosphonate Dioxins/Furans (EPA TEFs)	2.20E-13	3.25E-12	Ņ	1.83E-15	1.11E-12	1.11E-12	1.09E-16	5.14E-17	
Dithiane	6.69E-12	9.87E-11	•	6.86E-11	5.35E-11	1 0/E-10	015		
Endrin	3.82E-11	5.64E-10	4.41E-US	2.45E-12	6.38E-10	6.40E-10		2.97E-14	
Hexach orobenzene	1.2/E-10 3.56E-10	5.23E-09	-,-	6.48E-12	1.78E-09		1.76E-13	-	
Isodrin	9.97E-11	1.47E-09	F -7	4.79E-13	5.00E-10	5.00E-10	4.93E-14		
Malathion	1.54E-10		7.	9.336-11		6.67E-10	6.536-09	3.07E-0	
Methanol	7.29E-07	1.08E-05	3.99E-02	9.43E-10	8.03E-09	8.97E-09	8.85E-13	4.	
PAHS	1.001	•	,		- 8		•	Ī	
Acenaphthalene	1.85E-08		ω.	2.32E-09	9.28E-08	9.51E-08	9.38E-12		
Acenaphthene	1.85E-08		 	2.02E-11		1.87E-08	1.84E-1	8.66E-13	
Benzo(a)pyrene Chrysone	3.72E-09		, w	4.68E-11	1.86E-08	1.87E-08	1.84E-1		
Dibenzo(a, h)anthracene	3.72E-09		۲,	1.81E-11	1.86E-08	1.87E-08	1.846-1		
Fluoranthene	1.11E-08	•	•	3.00E-10	5.58E-US	1 80E-08	1 876-1		
Fluorene	3.72E-09			5.07E-10 4 77E-10	3,735-08	3.78E-08	3.72E-1	1.75E-12	
Phenanthrene	7 72E-09	6		1.06E-10	1.86E-08	1.87E-08	1.85E-1	8.70E-13	
Pyrene	2.10E-11			3.72E-12	1.05E-10	1.09E-10	1.08E-1	5.06E-15	
Pentachlorobenzene	5.69E-11	w	2.20E	1.85E-12	2.85E-10	2.8/E-10 1 87E-06	1.816-1	8 50F-11	
Phenol	2.01E-07		~i ~	8.22E-U/	4.49E-11	6.19E-11	6.11E-1	2.87E-15	
Quinoline	8.95E-12 6.50F-11	- 0	m	93E-1	3.26E-10	3.55E-10	3.50E-1	1.65E-14	
Suporia Tetrachlorobenzene	2.40E-11	3.53E-10	5.68E-03	2.01E-12	1.20E-10	1.22E-10	1.20E-14 6.48E-15	5.67E-15	
Trichtorobenzene	1.28E-11		>	- 300	0.37	7.7.			
8B 51								/9	6/22/91

	4.10E-06 1.59E-13	1.70E-11 9.43E-11 9.60E-13 1.49E-11 9.31E-08 2.94E-11
	4.16E-02 1.61E-09	1.73E-07 9.56E-07 9.74E-09 1.51E-07 9.44E-04 2.98E-07
	1.37E-04 8.55E-10	1.68E-07 9.50E-07 9.72E-09 1.49E-07 8.91E-04 2.63E-07
= (a)	4.14E-02 7.54E-10	4.94E-09 5.58E-09 1.43E-11 2.41E-09 5.25E-05 3.48E-08
Table 8B-11 (continued)	1.03E+02 3.00E-01	1.00E-02 2.00E-03 5.00E-04 5.50E-03 2.00E-02 4.50E-02
	4.03E-04 2.52E-09	4.94E-07 2.80E-06 2.86E-08 4.38E-07 2.62E-03 7.74E-07
	2.73E-05 1.71E-10	3.35E-08 1.90E-07 1.94E-09 2.97E-08 1.78E-04 5.25E-08
	Urea Vapona INORGANICS	Antimony Arsenic Beryllium Cadmium Copper Mercury

1.93E-06 7.47E-14 8.02E-12 4.44E-11 4.52E-13 7.02E-12 4.38E-08 1.38E-11

Table 8B-12

	•	Maximu dult and	m Polluta Child Dail	Maximum Pollutant Concentration in Lettuce, and ult and Child Daily Intake at the Resident-B Location	ation in La the Reside	ettuce, and nt-B Locati	uo		
		DRY DEPOSITION RATE 9/M2/yr	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	PLANT UPTAKE FACTOR	MAXIMUM CONC.DUE TO UPTAKE mg/Kg	MAXIMUM CONC. ON PLANT SURFACE mg/Kg	MAXIMUM CONC ON PLANT mg/Kg	ADULT MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	CHILD MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
ORGANICS	NICS	,		1	3			fra few few	12 15 15 15 IS
Aldrin	חודוופ ח	3.34E-11	4.30E-09 4.61E-09	3.06E+00 9.93F-05	1.32E-08	1.56E-10	1.33E-08	1.31E-12	6.18E-13
Atrazine	ine	7.29E-12	1.01E-09		5.47E-11	3.66E-11	9.12E-11	8.90E-15	4.23F-15
Benza	Benzaldehyde Benzafiran	6.73E-09	9.30E-07	2.69E-01	2.516-07	3.37E-08	2.84E-07	2.80E-11	1.32E-11
Benzo	Benzoic Acid	3.24E-09	4.47F-07	3.50E-02	9.80E-08	6.47E-08	1.63E-07	1.60E-11	7.55E-12
Benzo	Benzonitrile	3.11E-12	4.30E-10	2.42E-01	1.04E-10	1.56F-11	1.205-10	8.00E-12	4.08E-12 5.55E-15
Carbarole	Cercatole.	6.206-13	8.56E-11	2.40E-02	2.06E-12	3.115-12	5. i6E-12		2.40E-16
7-7-4	4.4-Chlorobiphenyl	4.115-10	5.01E-06	2.80E-03	8.43E-09	1.09E-07	1.18E-07	1.16E-11	5.46E-12
4-chl	4-Chlorophenylmethylsulfone	3.62E-09	5.00E-07	3.92E-01	1.96F-07	2.00E-09	2.12E-09 2.14E-07		9.84E-14
4-ChC	4-Chlorophenylmethylsulfoxide	4.46E-10	6.16E-08	3.29E-01	2.03E-08	2.24E-09	2.25E-08	2.22E-12	1.05E-12
P, P-00E) T	3.62E-12	5.00E-10	9.74E-04	4.87E-13	1.81E-11	1.86E-11	1.84E-15	_
Diber	Dibenzofuran	6.45F-10	8 91F-08	3.98E-U4	6.20E-13	5.65E-11	5.71E-11	5.63E-15	Ξ,
Dicyc	Dicyclopentadiene	1.47E-12	2.03E-10	9.26E-02	1.88E-11	7.37E-12	2.62F-11	2.89E-15	1.83E-13
Dieldrin	rin	6.83E-12	9.44E-10	4.93E-04	4.66E-13	3.436-11	3.476-11	3.42E-15	
7.50	Ulisopropyt Metnytphosphonate 1 %-Dimethylbergere	1.15E-09	1.59E-07	1.93E-01	3.06E-08	5.75E-09	3.63E-08	3.58E-12	1.69E-12
Dimet	Dimethyl Methylphosphonate	2.83E-08	3.01F-06	2.71E-02 2.40E+01	7.17E-12	9.60E-12	1.68E-11	1.65E-15	7.78E-16
Dioxir	Dioxins/Furans (EPA TEFs)	3.83E-14	5.28E-12	5.64E-04	2.98E-15	1.92E-13	7.38E-US	9.25E-09	4.35E-09 0 03E-18
Dithiane	ane	1.16E-12	1.60E-10	6.96E-01	1.11E-10	5.81E-12	1.17E-10	1.16E-14	5.44E-15
Hexach	erarin Hexachlorobenzene	6.63E-12 2.21E-11	9.16E-10	4.41E-03	4.04E-12	3.32E-11		Ψ,	1.73E-15
Hexact	Hexachlorocyclopentadiene	6.15E-11	8.49E-09	1.246-03	3.99E-12	7.11E-10	7.156-10	1.13E-14	5.32E-15
Isodrin		1.73E-11	2.39E-09	3.26E-04	7.78E-13	8.66E-11	8.74E-11	8.62F-15	4.06F-15
Methanol	100	2.68E-11	3.70E-09	4.10E-02	1.52E-10	.34E	2.86E-10	٠,	1.33E-14
4-Nitr	4-Nitrophenol	2.78E-10	3.84E-08	3.99E-02	1.53E-09	6.34E-07 1.39E-09	1.02E-04 2.93E-09	1.01E-08 2.88E-13	4.74E-09 1.36E-13
Ace	S Acenaphthalene	3.21F-00	4. 44F-07	8 48E-03	725-00	4 747 00	90 200 9		
Ace	Acenaphthene	3.216-09	4.44E-07	1.04E-02	4.60F-09	1.01E-US	1.9%E-08		9.22E-13
8en	Benzo(a)pyrene	6.45E-10	8.91E-08	3.68E-04	3.28E-11	3.23E-09	3.27E-09	3.22E-13	1.52E-13
oib	Oil yserie Dibenzo(a.h)anthracene	6.456-10	8.91E-08	8.55E-04	7.60E-11	3.23E-09	3.31E-09		1.54E-13
FL	Fluoranthene	1.93E-09	2.67E-07	1.83E-03	4.87E-10	5.23E-09	3.26E-09		1.51E-13
Flu	Fluorene	6.45E-10	8.91E-08	5.60E-03	4.99E-10	3.23E-09	3.73E-09		1.735-13
2 Y	rnenantnrene Pyrene	1.29E-09	1.78E-07	4.35E-03	7.75E-10	6.47E-09	7.24E-09		3.36E-13
Parathion	ion	3.65E-12	5.04E-10	1.20E-02	1.72E-10 6.04E-12	3.23E-09	3.40E-09		1.58E-13
Pentac	Pentach lorobenzene	9.87E-12	1.36E-09	2.20E-03	3.00E-12	4.95E-11	5.25E-11	5,17E-15	2.43E-15
Quinoline	ine	3.49E-08 1.55E-12		2.77E-01	1.34E-06	1.75E-07	1.51E-06		Ξ,
Supona		1.136-11		3.06E-02	.76	7.78E-12 5.65E-11	5.33E-11 1.04E-10	3.50E-15 1.03E-14	1.65E-15 4.83E-15
Tetrac	Tetrachlorobenzene Trichlorobenzene	4.16E-12 2.21E-12	5.74E-10	5.68E-03	3.26E-12	2.08E-11	2.41E-11	2.38E-15	1.12E-15
21		! ! !	3	100	. 765	11.16-11	1.402-11	1.586-15	6.50E-16

Urea Vapona	4.74E-06 2.96E-11	6.55E-04	1.03E+02 3.00E-01	6.73E-02 1.23E-09	2.38E-05 1.48E-10	6.73E-02 1.37E-09	6.64E-06 1.35E-13	3.12E-06 6.37E-14
INORGANICS								
Antimony	5.81E-09	8.03E-07	1.00E-02	8.03E-09	2.91E-08	3.72E-08	3.67E-12	1.72E-12
Arsenic	3.29E-08	4.54E-06	2.00E-03	9.09E-09	1.65E-07	1.74E-07	1.72E-11	8.07E-12
Berylfium	3.37E-10	4.65E-08	5.00E-04	2.33E-11	1-69E-09	1.71E-09	1.69E-13	7.94E-14
Cadmium	5.15E-09	7.12E-07	5.50E-03	3.91E-09	2.58E-08	2.97E-08	2.93E-12	1.38E-12
Copper	3.09E-05	4.26E-03	2.00E-02	8.53E-05	1.55E-04	2.40E-04	2.37E-08	1.11E-08
Morcillo	0 105-00	1 245-04	CU-303 7	20-37-3	/ FAE-08	1 025-07	1 015-11	4 74F-12

Table 8B-13

	Maximus Adult and	m Polluta I Child De	Maximum Pollutant Concentration in I dult and Child Dailv Intake at the Far	ation in Le t the Farm	tion in Lettuce, and the Farmer Location			
	DRY DEPOSITION RATE g/MZ/yr	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg			MAXIMUM CONC. ON PLANT SURFACE mg/Kg	MAXIMUM CONC ON PLANT mg/Kg	ADULT MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	CHILD MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
OKGANICS Control to the control of t	4 145.11			7.87F-09	3.09E-10	8.18E-09	1.25E-12	5.89E-13
Acetonitrite	6 42E-11			2 74F-13	3.32E-10	3.32E-10	5.08E-14	2.39E-14
Aldrin	0.0cm			3 27F-11	7 24F-11	1.05E-10	1.61E-14	7.56E-15
Atrazine				3.C. 101	4 48E-08	2 17F-07	3.31E-11	1.56E-11
Benzaldehyde	1.55E-US			20.00.1	1 205.07	1 875-07	2 RKF-11	
Benzofuran	2.56E-08			5.805-08	7 247 00	7 705-08	1 155-11	
Benzoic Acid	6.41E-09			4.28E-U8	3.21E-08	0 747 46	4 725.47	
Benzonitrile	6.16E-12			6.22E-11	5.09E-11	7.016-11	1 125.15	5 315-16
Carbazole	1.23E-12			1.23E-12	6, 15E · 12	7.385-12	7 205 13	
4-Chlorobiphenyl	4.32E-08			5.04E-09	Z.16E-U/	715-00	4 20F-13	2 96F-13
4,4-Chlorobiphenyl	8.13E-10			5.83E-11	4.0/E-09	4.15-07	2 3/5-11	
4-Chlorophenylmethylsulfone				1.1/E-U/	3.59E-US	1 445-08	2 57F-12	1 10F-12
4-Chlorophenylmethylsulfoxide				7.01E-U0	7 505-11	7 AZE-11	5 54E-15	
p, p-00E	7.1/E-12			2 745-12	1 125.10	1 125-10	1.72E-14	8.08E-15
p,p-001	2.25E-11			2.715-13	7 705-00	A 83E-00	1.04E-12	4.91E-13
Dibenzofuran	1.28E-09			4 125-11	1 .46E-11	2 58F-11	3.96E-15	1.86E-15
Dicyclopentadiene	2.91E-12			2 78E-13	6 78F-11	6.81E-11	1.04E-14	4.90E-15
Dieldrin				1.83F-08	1.14E-08	2.97E-08	4.54E-12	2.14E-12
2				4.28E-12	1.90E-11	2.33E-11	3.56E-15	1.68E-15
Dimothyl Methylphosphopete	5 61E-08			5.60E-05	2.81E-07	5.63E-05	8.61E-09	4.05E-09
Disking Actin (Alba TEES)	7.58E-14			1.78E-15	3.80E-13	3.81E-13	5.84E-17	2.75E-17
Dithiane	2.30E-12	9.58E-11	6.96E-01	6.66E-11	.15E-	7.81E-11	1.20E-14	5.65E-15
Endrin	1.31E-11			2.41E-12	.58E-1	6.82E-11	7 20c 14	4.91E-12
Hexachlorobenzene	4.37E-11			2.38E-12		2.22E-10	5.59E-14	1.00E-14
Hexachlorocyclopentadiene	1.22E-10			6.29E-12	6.10E-10	4 72E-10	2 435-14	1.24F-14
Isodrin	3.42E-11			4.65E-13	1.72E-10	2 545-10	5 45F-14	2.57E-14
Malathion	5.30E-11			7.00E-11	266	5 20E-05	0.48F-09	
Methanol	2.50E-07			0.075-03	202-00	3 67F-09	5.62E-13	2.65E-13
4-Nitrophenol	2.50E-10		3.775	7.10E 10	201.3			
Aconsonthal ene	6.36E-09	2	w	2.25E-09	3.19E-08	3,41E-08	22E - 1	2.46E-12
Acenaphthene	6.36E-09	7		2.75E-09	3.19E-08	3.46E-08	30E-1	2.49E-12
Benzo(a)pyrene	1.28E-09	'n	۳,	1.96E-11	6.40E-09	6.42E-09	85E-1	4.02E-13
Chrysene	1.28E-09	'n	ω.	4.54E-11	6.40E-09	6.43E-09	2000	4.04E-14
Dibenzo(a,h)anthracene	1.28E-09	N,	-, ,	1.76E-11	6.40E-09	4.42E-UV	085.1	1.40E-12
Fluoranthene	3.83E · 09	- "	_	2.91E-10	4 ADE-00	6. 70F-09	03E-1	4.83E-13
Fluorene	1.28E-09	Ň·	., -	7, 425-10	1 285.08	1.33F-08	03E-1	9.55E-13
Phenanthrene	4 28E-09	<u> </u>		1 03E-10	6. 40F-09	6.51E-09	95E-1	4.68E-13
Pyrene	7 225-12	אר		7, 61F-12	3.62E-11	3.98E-11	09E-1	2.87E-15
Paratinon	1 05E-11	'nα	• • •	1. 79E-12	9.79E-11	9.97E-11	53E - 1	7.18E-15
Dhand	6.92E-08	~		7.98E-07	3.47E-07	1.15E-06	75E-1	8.24E-11
Quinotine	3.086-12	-		1.66E-11	1.54E-11	3.20E-11	89E-1	Z.50E-13
Supona	2.23E-11	0	Γ,	2.84E-11	1.12E-10	1.40E-10	15E-1	1.01E-14
Tetrachlorobenzene	8.23E-12	3.43E-10	5.68E-03	1.95E-12	4.13E-11	4.52E-11	2 AXE-15	1.71F-19
Trichlorobenzene	4.38E-12	_	•	1.755-12	2.20E-11	Z.3/E-11	025	:

Table 8B-13 (continued)

2.90E-06 7.39E-14	4.50E-12 2.39E-11 2.42E-13 3.85E-12 2.57E-08 8.94E-12
6.16E-06 1.57E-13	9.566-12 5.086-11 5.136-13 8.186-12 5.476-08
4.03E-02 1.03E-09	6.25E-08 3.32E-07 3.35E-09 5.35E-04 3.57E-04
4.71E-05 2.94E-10	5.77E-08 3.26E-07 3.34E-09 5.11E-08 3.06E-04
4.02E-02 7.32E-10	4.80E.09 5.43E.09 1.39E.11 2.34E.09 5.09E.05
1.03E+02 3.00E-01	1.00E-02 2.00E-03 5.00E-04 5.50E-03 2.00E-02 4.50E-02
3.92E-04 2.44E-09	4.80E-07 2.72E-06 2.78E-08 4.25E-07 2.55E-03 7.52E-07
9.39E-06 5.86E-11	1.15E-08 6.51E-08 6.67E-10 1.02E-08 6.11E-05 1.80E-08
Urea Vapona	INORGANICS Antimony Arsenic Beryllium Cachium Copper Mercury

	num nunc		a aureur en	110011					
	DRY DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	PLANT UPTAKE FACTOR	AVERAGE CONC.DUE TO UPTAKE mg/Kg	AVERAGE CONC. ON PLANT SURFACE mg/Kg	AVERAGE CONC ON PLANT mg/Kg	ADULT AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	CHILD AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	
Acetonitrile Aldrin Atrazine Atrazine Benzaldehyde Benzaldehyde Benzoitrile Caibazolc 4-Chlorobiphenyl 4,4-Chlorobiphenyl 4,4-Chlorobiphenyl 6,4-Chlorobiphenyl 6,4-Chlorobiphenyl 7-Chlorobiphenyl 6,4-Chlorobiphenyl 7-Chlorobiphenyl 6,4-Chlorobiphenyl 6,6-Chlorobiphenyl 7-Chlorobiphenyl 6,7-Chlorobiphenyl 6,7-Chlorobiphenyl 7-Chlorobiphenyl 6,7-Chlorobiphenyl 7-Chlorobiphenyl 6,7-Chlorobiphenyl 7-Chlorobiphenyl 6,7-Chlorobiphenyl 7-Chlorobiphenyl 6,7-Chlorobiphenyl 7-Chlorobiphenyl 8-Chlorobiphenyl 8-Chlorobenzene 8-Chrysene 8-Chrysen	1.79E-10 4.20E-10 7.44E-08 1.87E-08 1.87E-08 2.37E-09 2.37E-09 2.37E-09 2.37E-09 3.72E-09 6.61E-11 1.61E-11 1.85E-08 1.185E-08 1.85E-09 3.72E-09 3.72E-09 3.72E-09 3.72E-09 5.69E-11 1.85E-08 1.85E-09 3.72E-09 5.69E-11 1.85E-08 1.11E-08 3.72E-09 3.72E-09	2.61E-09 6.11E-10 5.64E-07 7.64E-09 7.64E-07 7.188E-06 7.16E-03 7.64E-10 7.16E-03 7.64E-09 7.66E-09 7.76E-09	3.68E+00 6.60E-02 1.92E-01 2.93E-01 3.28E-02 3.36E-02 1.35E-03 3.36E-03 3.36E-03 3.36E-03 4.70E-01 4.70E-01 1.11E-01 5.29E-04 6.76E-04 6.76E-04 6.76E-04 6.76E-04 7.76E-04 7.76E-01 1.16E-03 1.24E-02 4.79E-03 3.91E-04 4.79E-03 5.29E-04 5.29E-04 6.76E-03 7.60E-03 7.76E-03 7.7	9.58E-09 3.34E-13 3.34E-13 3.34E-13 7.14E-08 7.58E-11 1.43E-07 1.43E-08 3.55E-13 5.22E-12 6.82E-13 7.66E-12 7.66E-13 7.66E-12 7.66E-13 7.66E-12 7.66E-13 7.66E-13 7.66E-13 7.66E-13 7.66E-13 7.66E-13 7.66E-13 7.66E-13 7.66E-13 7.66E-13 7.66E-13 7.66E-13 7.66E-13 7.66E-13 7.66E-13 7.66E-13	1.28E - 11 2.39E - 11 2.30E - 09 1.33E - 09 1.33E - 09 1.49E - 13 2.55E - 10 6.04E - 13 6.04E - 13 1.49E - 12 1.49E - 12 1.57E - 12 2.55E - 10 1.32E - 09 1.32E - 09 1.32E - 09 1.32E - 10 2.65E - 10	9.60E-09 4.28E-11 4.28E-11 7.67E-08 5.35E-08 1.77E-12 1.77E-12 1.77E-12 1.75E-12 1.75E-12 1.44E-07 1.44E-07 1.45E-11 1.79E-12 5.66E-12 1.79E-14 1.79E-12 5.66E-12 1.21E-10 7.66E-09 4.06E-09 4.06E-09 1.15E-09 6.29E-10 1.15E-09 6.29E-10 1.15E-09 6.29E-10 1.15E-09 6.29E-10 1.09E-09 1.09E-09	5.09e-12 2.27a-14 2.07a-14 2.07a-14 2.07a-14 2.08e-14 2.15e-15 3.01a-16 3.01a-	1.21e-11 2.33e-14 6.72e-14 6.72e-11 6.72e-11 1.38e-14 1.38e-14 1.03e-15 1.03e-15 1.03e-14 1.03e-14 1.03e-14 1.03e-14 1.03e-14 1.03e-13 1.03e-13 1.03e-13 1.03e-14 1.03e-14 1.03e-14 1.03e-15 1.03e-15 1.03e-16 1.03e-17 1.03e-17 1.03e-13 1.03e-13 1.03e-14 1.03e-14 1.03e-14 1.03e-15 1.03e-14 1.03e-15 1.03e-16 1.03e-17	
Trichlorobenzene	1.28E-11	1.86E-10	1.15E-02	2.13E-12	9.09E-13	3.04E-12	1.61E-15	3.82E-15	

6.16E-05 1.14F-12	4.10E-12 1.82E-11 1.77E-13 7.54E-12 6.57E-08
2.60E-05 4.80E-13	1.73E-12 7.69E-12 7.46E-14 3.18E-12 2.73E-08
4.90E-02 9.04E-10	3.26E-09 1.45E-08 1.41E-10 6.00E-09 5.15E-05
1.95E-06 1.21E-11	2.39E-09 1.35E-08 1.38E-10 2.11E-09 1.27E-05 3.74E-09
4.90E-02 8.92E-10	8.77E-10 9.93E-10 2.54E-12 3.89E-09 3.88E-05 9.16E-09
1.23E+02 3.60E-01	1.80e-03 3.60e-04 9.00e-05 9.00e-03 1.50e-02
3.98E-04 2.48E-09	4.87E-07 2.76E-06 2.82E-08 4.32E-07 2.59E-03 7.63E-07
2.73E-05 1.71E-10	3.35E-08 1.90E-07 1.94E-09 2.97E-08 1.78E-04 5.25E-08
Urea Vapona INORGANICS	Artinony Arsenic Beryllium Cadmium Copper Mercury

815CA8B.51

	Average		Pollutant Concentration in Tomatoes, and	tion in Tor	natoes, and			
	Adult and		Child Daily Intake at the Resident-B	t the Resid	ent-B Location	tion		
	DRY DEPOSITION RATE 9/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	PLANT UPTAKE FACTOR	AVERAGE CONC.DUE TO UPTAKE mg/Kg	AVERAGE CONC. ON PLANT SURFACE mg/Kg	AVERAGE CONC ON PLANT mg/Kg	ADULT AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	CHILD AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day
ORGANICS							Am /Gu /Gu	de la
Acetonitrile	3.11E-11	4.24E-09	w,	1.56E-08	2.22E-12	1.56E-08	8.26E-12	1.96E-11
Atrazine	7.295-12	4.55E-09		5.42E-13	2.38E-12	2.92E-12	Ξ.	3.67E-15
Benzaldehyde	6.73E-09	9.17E-07	'n	2 04F-07	7. 19E-13	0.52E-11	3.40E-14	8.20E-14
Benzofuran	1.29E-08	1.76E-06	· •	1.16E-07	9.19E-10	1.175-07	6.20F-11	1 475-10
Benzoic Acid	3.24E-09	4.41E-07	1.92E-01	8.47E-08	2.31E-10	8.49E-08	4.50E-11	1.07E-10
Benzonitrile	3.11E-12	4.24E-10	916	1.23E-10	2.22E-13	1.23E-10	.54E-1	
Carbazole 4-Chlorohinhenvi	0.20E-13	3.446-11	2.88E-02	2.43E-12	4.4 IE- 14	2.48E-12	1.316-15	3.11E-15
4.4-Chlorobiphenvl	4.115-10	5 505.08	202	9.97E-09	1.55E-09	1.15E-08	***	
4-Chlorophenylmethylsulfone	3.62E-09	4 93E-07	705-03	2 22F-07	2.92E-11	1.05E-10		1.32E-13
4-Chlorophenylmethylsulfoxide	4.46E-10	6.08E-08	3.95F-01	2 40E-08	7 18E-11	2.32E-U/	1.25E-10	2.92E-10
p,p-00E	3.62E-12	4.93E-10	1.17E-03	5.77E-13	2.58F-13	8 34F-13	1.2/E-11	1 055-15
100-d,q	1.13E-11	1.53E-09	4.78E-04	7.33E-13	8.03E-13	1.54E-12		1.936-15
Ulbenzoturan Diewelenentediam	6.45E-10	8.79E-08	9.52E-03	8.36E-10	4.59E-11	8.82E-10	4.68E-13	1.11E-12
Dicyclopentaglene	1.4/E-12 6 925-13	2.00E-10	1.11E-01	2.23E-11	1.05E-13	2.24E-11		$\overline{}$
Diisopropyl Methylphosphonate	1.15F-00	1 54E-07	5.92E-04	5.51E-13	4.87E-13	1.04E-12	5.50E-16	1.30E-15
1,3-Dimethylbenzene	1.92E-12	2.61F-10	\$ 25E-01	3.62E-US	8.1/E-11	3.63E-U8	1.92E-11	4.56E-11
Dimethyl Methylphosphonate	2.83E-08	3.85E-06	2.87F+01	1 115-06	2 025-13	8.62E-12	4.5/E-15	1.08E-14
Dioxins/Furans (EPA TEFs)	3.83E-14	5.21E-12	6.76E-04	3.52E-15	2.72E-15	6.25F-15	3.315-18	7.85E-18
Dithiane		1.58E-10	8.35E-01	1.32E-10	8.26E-14	32E-1	7.00E-14	
Endrin Heverhlonohonsono	6.63E-12	9.03E-10	5.29E-03	4.77E-12	4.72E-13	5.25E-12	2.78E-15	6.60E-15
Hexach orocyclopentadiene		3.01E-09	1.5/E-03	4.72E-12	1.57E-12	6.29E-12	3.34E-15	-91E-
Isodrin	1.73E-11	2.35E-09	3.916-04	0 215-12	4.58E-12	1,68E-11	8.92E-15	,1TE
Malathion	.68E	3.65E-09	4.92E-02		1.91E-12	1.81E-10	0.61F-14	285
Methanol 7.Nitrophonol	1.26E-07	1.72E-05	6.98E+00	1.20E-04	9.01E-09	1.20E-04	6.37E-08	1.516-07
PAHS		3.79E-U8	4.79E-02	1.81E-09	1.98E-11	1.83E-09		2.30E-12
Acenaphthalene	3.21E-09	4.38E-07	1.02E-02	4.45F-09	2.20F-10	4 ARE-00	2 ARE-12	BBC. 1
Acenaphthene	3.21E-09	4.38E-07	1,24E-02	5.44E-09	2.29E-10	5.67E-09	3.01E-12	
Benzo(a)pyrene Chrysene	6.45E-10	8.79E-08	4.41E-04	3.87E-11	4.59E-11	8.47E-11	-	∵
Dibenzo(a.h)anthracene	6.45F-10	8 70F-08	1.02E-03	8.99E-11	4.59E-11			
Fluoranthene	1.93E-09	2.63E-07	2.19E-03	5.77F-10	1 38F-11	8.08E-11		
Fluorene	6.45E-10	8.79E-08	6.73E-03	5.91E-10	4.59E-11	6.37E-10		8.01F-13
Phenanthrene	1.29E-09	1.76E-07	5.22E-03	9.17E-10	_	1.01E-09	5.35E-1	1.27E-12
Derethion	6.45E-10	8.79E-08	2.31E-03	2.03E-10	_	2.49E-10	1.32E-1	3.13E-13
Pentachlorobenzene	9.87E-12	1.346-09	1.44E-UZ	7.15E-12	2.60E-13	7.41E-12	3.93E-1	9.32E-15
Phenol	3.49E-08	4.76E-06	3.32E-01	1.58E-06	.03E-13	1.58E-06	2.25E-15 8.39F-10	5.35E-15
Quinoline	1.55E-12	2.11E-10	1.55E-01	3.28E-11	.11E-13	3.29E-11	1.75E-1	4.14E-14
Tetrachlorobenzene	1.13E-11 4.16E-12	1.55E-09 5.66E-10	3.67E-02	5.63E-11	.03E-13	5.71E-11		Ξ.
Trichlorobenzene	2.21E-12	3.01E-10	1.15E-02	3.46F-12	7) K	4.15E-12	2.20E-15	5.22E-15
			1	1		31.000		_

	4.22E-05	7010	0 75E-12	2.10E-12	1.49E-14	3.54E-12	3.46E-08	8.23E-12
	7.96E-02		1.84F-00	3.96E-09	2.81E-11	6.68E-09	6.52E-05	1.55E-08
	3.38E-07 2.11E-12		4.146-10	2.34E-09	2.40E-11	3.67E-10	2.20E-06	6.48E-10
(p	7.96E-02 1.45E-09		1.43E-09	1.61E-09	4.13E-12	6.31E-09	6.30E-05	1.49E-08
(continued)	1.23E+02 3.60E-01		1.80E-03	3.60E-04	9.00E-05	9.UUE-03	1.50E-02	1.20E-02
	6.46E-04 4.03E-09		7.92E-07	4.48E-06	4.58E-U8	7.01E-U/	1 2/5 02	00.347*1
	4.74E-06 2.96E-11		5.81E-09	3.29E-U8	5 156-10	3 00E-05	9.105-09	20.00
	Urea Vapona	RGANICS	Antimony Arsenic	Beryllium	Cachnium	Copper	Mercury	
		INO						

1.00E-04 1.83E-12 2.31E-12 4.97E-12 3.53E-14 8.40E-12 8.20E-08 1.95E-11

•	Average P	ollutant C Child Dail	erage Pollutant Concentration in Tomatoes, and it and Child Daily Intake at the Farmer Locatio	n in Tomatoes, and the Farmer Location	oes, and				
	DRY DEPOSITION RATE 9/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M	PLANT UPTAKE FACTOR	AVERAGE CONC.DUE TO UPTAKE Mg/Kg	AVERAGE CONC. ON PLANT SURFACE mg/Kg	AVERAGE CONC ON PLANT mg/Kg	ADULT AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	CHILD AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	
ORGANICS								3	
Acetonitrile Aldrin	6.16E-11	2.53E-09	3.68E+00	9.31E-09	4.39E-12	9.31E-09	7.66E-12	1.82E-11	
Atrazine	1.44E-11	5.946-10	6.51E-02	3.86E-11	1.03E-12	3.97E-11	3.266-14	7.745-14	
Benzaldehyde	1.33E-08	5.48E-07	3.23E-01	1.77E-07	9.49E-10	1.78E-07	1.47E-10	3.47E-10	
Benzoic Acid	6.41F-09	1.05E-06	6.60E-02	6.93E-08	1.82E-09	7.11E-08	5.85E-11	1.39E-10	
Benzonitrile	6.16E-12	2.536-10	2.91E-01	7.36E-11	4.39E-13	7.40E-11	6.09E-14	7.9/E-11 1.44E-13	
Carbazcie 4-Chlorobinhenvi	1.23E-12	5.04E-11	2.88E-02	1.45E-12	8.74E-14	1.54E-12	1.27E-15		
4,4-Chlorobiphenyl	8.13F-10	7.7.E-US	3.36E-U3	5.96E-09	3.07E-09	9.03E-09	7.43E-12	1.76E-11	
4-Chlorophenylmethylsulfone	7.17E-09	2.95E-07	4.70E-01	1.386-07	5,116-10	1.39E-07	1.14E-10		
4.Chlorophenyimethylsulfoxide	8.84E-10	3.63E-08	3.95E-01	1.43E-08	6.29E-11	1.44E-08	_		
p,p-001	2.23F-11	2.95E-10 9.17E-10	1.17E-03	3.45E-13	5.11E-13	8.55E-13	7.04E-16	1.67E-15	
Dibenzofuran	1.28E-09	5.25E-08	9.52E-03	5.00E-10	9,10E-11	5.91E-10	4.86F-13		
Dicyclopentadiene Dieldrin	2.91E-12	1.20E-10	1.11E-01	1.33E-11	2.08E-13	1.35E-11	.11E-1		
Diisopropyl Methylphosphonate	2.27E-09	9.34F-08	5.92E-04	3.29E-13	9.64E-13	1.29E-12	1.06E-15	2.52E-15	
1,3-Dimethylbenzene	3.79E-12	1.56E-10	3.25E-02	5.07E-12	2.70E-13	5.34E-12		1.04F-14	
Dimethyl Methylphosphonate	5.61E-08	2.30E-06	2.87E+01	6.62E-05	3.99E-09	6.62E-05	۰.	1.29E-07	
Dithiane	2.30E-12	3.11E-12 9.44F-11	8.35F-04	2.10E-15 7.88E-11	5.39E-15	7.50E-15	6.17E-18	1.46E-17	
Endrin	31E-1	5.40E-10	5.29E-03	2.85E-12	9.35E-13	3.79E-12	3, 126-15	7.39F-15	
Hexach Corocontene	4.376-11	1.80E-09	1.57E-03	2.82E-12	3.116-12	5.93E-12	4.88E-15	1.16E-14	
Isodrin	7.42E-10	5.00E-09	1.49E-03	7.44E-12	8.67E-12	1.61E-11	1.33E-14	3.14E-14	
Malathion	5.30E-11			076	3.78E-12	1,116-10	9.13E-14	2.16E-13	
Methanol 4-Nitrophenol	2.50E-07 5.50E-10	1.03E-05 2.26E-08	6.98E+00 4.79E-02	7.18E-05	1.78E-08	7.18E-05	5.91E-08	1.40E-07	
PAHS								71. 77. 17	
Acenaphthene	6.36E-09	2.61E-07	1.02E-02 1.24E-02	2.66E-09	4.53E-10	3.11E-09		6.07E-12	
Benzo(a)pyrene	1.28E-09	5.25E-08	4.41E-04	2.32E-11	9.10E-11	1.14E-10	9.39E-14	2.23E-13	
Dibenzo(a h)anthracena	1.28E-09	5.25E-08	1.02E-03	5.37E-11	9.10E-11	1.45E-10		2.82E-13	
Fluoranthene	3.835-09	1.57E-07	5.96E-04 2.19E-03	2.08E-11	9.10E-11	1.12E-10 6.17E-10		2.18E-13	
Fluorene	1.28E-09	5.25E-08	6.73E-03	3.53E-10	9.10E-11	4.44E-10		8.66E-13	
Phenanthrene	2.56E-09	1.05E-07	5.22E-03	5.48E-10	1.82E-10	7.30E-10		1.42E-12	
Parathion	7.22F-12	2.22E-U8	2.31E-03	1.21E-10	9.10E-11	2.12E-10		4.14E-13	
Pentach lorobenzene	1.956-11	8.03E-10	2.64E-03	2.12E-12	1.39E-12	3.51E-12		9.34E-15 6.85E-15	
rnenol Quinoline	6.92E-08	2.84E-06	3.32E-01	9.44E-07	4.93E-09	9.496-07		1.85E-09	
Supona	2.23E-11	9.17E-10	3.67E-02	3.36E-11	1.596-12	3.526-11		876-1	
letrachlorobenzene Trichlorobenzene	8.23E-12 4.38E-12	3.38E-10	6.82E-03	2.31E-12	5.86E-13	2.89E-12	2.38E-15	5.64E-15	
		}	1,	r. 01 L	J. 16E" 1J	Z*20E . 1C		.04E-1	

Table 8B-16 (continued)

3.91E-05 9.28E-05	1.38e-12 3.26e-12 4.61e-12 1.09e-11 4.11e-14 9.74e-14 3.70e-12 8.78e-12 3.46e-08 8.20e-08 8.37e-12 1.98e-11
4.76E-02 8.70E-10	1.67E-09 5.60E-09 4.99E-11 4.50E-09 4.20E-05
6.69E-07 4.17E-12	8.20E-10 4.64E-09 4.75E-11 7.26E-10 4.35E-06
4.76E-02 8.66E-10	8.52E-10 9.64E-10 2.47E-12 3.77E-09 3.77E-05 8.89E-09
1.23E+02 3.60E-01	1.80E-03 3.60E-04 9.00E-05 9.00E-03 1.50E-02
3.86E-04 2.41E-09	4.73E-07 2.68E-06 2.74E-08 4.19E-07 2.51E-03
9.39E-06 5.86E-11	1,15E-08 6,51E-08 6,67E-10 1,02E-08 6,11E-05
Urea Vapona	INORGANICS Antimony Arsenic Beryllium Cadmium Copper

Table 8B-17

Maximum Pollutant Concentration in Tomatoes, and Adult and Child Daily Intake at the Resident-A Location

	DRY DEPOSITION RATE 9/M2/yr	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	PLANT UPTAKE FACTOR	MAXIMUM CONC.DUE TO UPTAKE mg/Kg	MAXIMUM CONC. ON PLANT SURFACE mg/Kg	MAXIMUM CONC ON PLANT mg/Kg	ADULT MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	CHILD MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
Acetonitrile Aldrin Atcaine Aldrin Atrazine Benzaldehyde Benzofuran Benzoic Acid Benzoir (Acid Benzoir (Acid Benzoritrile Carbacuie 4-Chlorobiphenyl 4-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfoxide p.p-DDE p.p-DDE p.p-DDE p.p-DDE p.p-DDT Dibenzofuran Dienzofuran Dienzofuran Dienzofuran Dienzofuran Dienzofuran Dienzofuran Dienzofuran Dienzofuran Dienzofuran Dienzofurans Dienthylbenzene Dienthyl Methylphosphonate Dienthyl Methylphosphonate Dienthyl Methylphosphonate Dienthyl Methylphosphonate Dientin Disopropyl Methylphosphonate Dienthyl Methylphosphonate Dientin Dienzorloropenzene Hexachlorobenzene Hexachlorocyclopentadiene Isodrin Melathion Melathion Melathion Melthanol	1.79E-10 3.88E-08 7.44E-08 1.87E-10 1.87E-12 1.78E-12 2.09E-11 5.56E-07 5.69E-11 1.08E-12 5.69E-11 1.08E-12 5.69E-11 1.08E-12 5.69E-11 1.57E-10 5.69E-11 1.57E-10	2.65E-09 6.20E-10 7.72E-07 7.72E-07 7.72E-07 7.72E-07 7.75E-11 7.75E-10 7.7	3.68E+00 6.51E-02 6.51E-02 6.51E-02 7.02E-01 7.02E-02 7.03E-02 7.03E-02 7.03E-02 7.03E-02 7.03E-02 7.03E-02 7.03E-02 7.03E-02 7.03E-02 7.03E-03	9.72E-09 3.38E-13 1.85E-07 7.24E-08 5.25E-12 6.23E-09 4.73E-11 1.50E-13 3.60E-13 5.22E-10 1.50E-13 5.22E-10 6.92E-05 6.92E-05 5.26E-08 5.26E-08 5.26E-13 7.77E-12 7.77E-12	4,47E-10 4,80E-10 1,05E-10 1,05E-10 4,65E-08 4,47E-11 8,90E-12 5,20E-09 5,20E-09 5,20E-09 5,20E-11 1,62E-11 1,62E-11 1,67E-11 1,67E-11 1,67E-11 1,67E-11 1,67E-11 3,17E-10 3,83E-10 3,83E-10 3,83E-10 3,83E-10	1.02E-08 4.80E-10 2.82E-07 2.58E-07 2.58E-07 3.20E-10 3.20E-11 3.20E-11 3.20E-11 3.20E-11 3.20E-10	5.39E-12 7.70E-14 1.49E-10 1.37E-10 5.53E-15 1.69E-10 1.04E-10 1.70E-14 5.19E-12 1.70E-14 5.25E-14 5.25E-14 5.25E-14 5.25E-14 5.25E-14 5.25E-14 5.25E-14 5.25E-14 5.25E-14 5.25E-14 5.25E-14 5.25E-14 5.25E-14 5.25E-14	2.28E-13 3.54E-10 1.33E-13 3.54E-10 1.53E-10 1.53E-10 1.53E-10 1.53E-10 1.23E-11 1.24E-13
Adenaphthalene Acenaphthalene Acenaphthane Baro(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Fluoranthrene Pyrene Parathion Pentachlorobenzene Supona Tetrachlorobenzene Trichlorobenzene	1.85E-08 3.72E-09 3.72E-09 3.72E-09 3.72E-09 3.72E-09 7.44E-09 2.10E-11 5.69E-11 6.50E-11 1.28E-11	2.73E-07 2.73E-07 2.74E-08 5.49E-08 5.49E-08 5.49E-08 3.10E-10 8.39E-10 1.32E-10 1.32E-10 1.38E-10	· ーールーランクラントンテーテー	T		4.89E-08 9.29E-09 9.29E-09 9.29E-09 9.29E-09 1.91E-08 9.40E-09 1.44E-10 1.4	2.60e-11 2.63e-11 4.93e-12 4.93e-12 1.49e-11 1.49e-11 1.01e-14 7.64e-14 7.64e-14 7.64e-14 7.64e-14 7.89e-10 2.27e-14 1.80e-14	6.15E-11 1.17E-11 1.17E-11 1.17E-11 1.21E-11 2.54E-11 1.81E-13 1.87E-09 5.38E-14 7.27E-14

Table 8B-17 (continued)

6.26E-05 1.67E-12	1.06E-10 5.96E-10 6.08E-12 9.80E-11 6.07E-07
2.64E-05 7.05E-13	4.48E-11 2.51E-10 2.57E-12 4.13E-11 2.56E-07 7.43E-11
4.98E-02 1.33E-09	8.44E-08 4.74E-07 4.84E-09 7.80E-08 4.83E-04
6.82E-05 4.25E-10	8.35E-08 4.73E-07 4.84E-09 7.40E-08 4.43E-04
4.97E-02 9.05E-10	8.90E-10 1.01E-09 2.58E-12 3.94E-09 5.29E-09
1.23E+02 3.60E-01	1.80E-03 3.60E-04 9.00E-05 9.00E-03 1.50E-02
4.03E-04 2.52E-09	4.94E-07 2.80E-06 2.86E-08 4.38E-07 2.62E-03 7.74E-07
2.73E-05 1.71E-10	3.35E-08 1.90E-07 1.94E-09 2.97E-08 1.78E-04 5.25E-08
Urea Vapone	INORGANICS Antimony Arsenic Beryllium Cachium Copper

Maximum Pollutant Concentration in Tomatoes, and

¥	dult and	Child Daily	іптаке ат	rne Kesiaer	tne Kesident-B Location	uo		
	DRY DEPOSITION RATE g/M2/yr	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	PLANT UPTAKE FACTOR	MAXIMUM CONC.DUE TO UPTAKE mg/Kg	MAXIMUM CONC. ON PLANT SURFACE mg/Kg	MAXIMUM CONC ON PLANT mg/Kg	ADULT MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	CHILD MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
001114000								
OKUANICS Acceptaniting 1	7 115.11			1 585-08	7,75F-11	1.596-08		2.00E-11
Acetonicale	7 7/5-11		1 10F-04	5,50F-13	8.335-11	8.38E-11	4.446-14	1.05E-13
	7 205 12			4 56F-11	1 82F-11	8.38F-11	4.44E-14	1.05E-13
ATTRZING	7.5%			2 045-07	1 485-08	3 18E-07	1 ARF-10	3 OOF - 10
Benzaldehyde	6.75E-U9			5.01E-07	00-100-1	4 FOE 07	7 0/6-11	1 885-10
Benzofuran	1.29E-08			1.18E-U/	3.22E-00	20.00	005-11	1 185-10
Benzoic Acid	3.24E-09		-	8.59E-08	8.U/E-U9	V 40E-00	4.995-11	1, 105-10
Benzonitrile	3.11E-12		<i>ح</i> ز	1.25E-10	7.75E-12	1.35E-10	7.USE-14	.0/E.
Ceripazole	6.20E- i3		۸i	2.47E-12	1.54E-12	4.01E-12	2.15E-15	-
4-Chlorobiphenyl	2.18E-08		3.36E-03	1.01E-08	5.43E-08	6.45E-08	3.42E-11	8.10E-11
4.4-Chlorobiphenvl	4.11E-10			7.68E-11	1.02E-09	1.10E-09	5.83E-13	
4-Chlorophenylmethylaulfone	3.62E-09			2.35E-07	9.03E-09	2.44E-07	1.29E-10	
4-Chlorophenylmethylsulfoxide	4.46E-10			2.44E-08	1.11E-09	2.55E-08	1.35E-11	3.20E-11
D.D-DDE	3.62E-12			5.85E-13	9.03E-12	9.61E-12	5.10E-15	1.27E-14
10-0-d	1.13E-11			7.44E-13	2.81E-11	2.88E-11	1.53E-14	3.63E-14
Dibenzofuran	6.45E-10			8.48E-10	1.61E-09	2.46E-09	1.30E-12	3.09E-12
Dicyclopentadiene	1.47E-12			2.26E-11	3.67E-12	2.62E-11	1.39E-14	3.30E-14
Diplorin	6.83F-12			5.59E-13	1.70E-11	1.76E-11	9.33E-15	2.21E-14
Diisopropyl Methylphosphonate	1.15E-09			3.67E-08	2.86E-09	3.96E-08	2.10E-11	4.98E-11
1.3-Dimethylbenzene	1.92E-12			8.60E-12	4.77E-12	1.34E-11	7.09E-15	1.68E-14
Dimethy! Methylphosphonate	2.83E-08			1.12E-04	7.06E-08	1.12E-04	5.96E-08	1.41E-07
Dioxins/Furans (EPA TEFs)	3.83E-14			3.57E-15	9.53E-14	9.89E-14	5.25E-17	1.24E-16
Dithiane	1.16E-12	1.60E-10	8.35E-01	1.34E-10	2.89E-12	1.37E-10	7.25E-14	1.72E-13
Endrin	6.63E-12			4.84E-12	1.65E-11	2.14E-11	1.13E-14	2.69E-14
Hexachlorobenzene	2.21E-11			4.79E-12	5.50E-11	5.98E-11	3.17E-14	7.52E-14
Hexachlorocyclopentadiene	6.15E-11			1.26E-11	1.53E-10	1.66E-10	8.796-14	2.08E-13
Isodrin	1.73E-11			9.34E-13	4.31E-11	4.40E-11	2.33E-14	7 477 64
Malathion	2.68E-11			1.82E-10	6.67E-11	2.49E-10	1.32E-13	3.136-13
Methanol	1.26E-07			1.22E-04	3.15E-U/	1.22E-04	0.405.00	7 405-17
4-Nitrophenol	2.78E-10			1.84E-U9	6.93E-10	Z.33E-UY	345-12	3.105.12
YARS	7 24E.00			4 52F-00	8.01F-09	1.25E-08	6.64E-12	1.57E-11
Acerementatene	2.21E-07			5 525-09	8.01E-09	1.35E-08	7.17E-12	1.70E-11
Rep20(a)pyrepa	6 45F-10		. 7	3.93E-11	1.61E-09	1.65E-09	8.74E-13	2.07E-12
Chrysene	6.45E-10		_	9.12E-11	1.61E-09	1.70E-09	9.01E-13	2.14E-12
Dibenzo(a.h)anthracene	6.45E-10		3.96E-	3.53E-11	1.61E-09	1.64E-09	8.71E-13	2.07E-12
Fluoranthene	1.93E-09		2.19E-	5.85E-10	4.82E-09	5.40E-09	2.87E-12	6.79E-12
Fluorene	6.45E-10		6.73E-	5.99E-10	1.61E-09	2.21E-09	1.17E-12	2.78E-12
Phenanthrene	1.29E-09		ın	9.30E-10	3.22E-09	4.15E-09	2.20E-12	5.21E-12
Pyrene	6.45E-10		2.31E-	2.06E-10	1.61E-09	1.81E-09	9.62E-13	2.28E-12
Parathion	3.65E-12		1.44E-	7.25E-12	9.09E-12	1.63E-11	8.67E-15	2.05E-14
Pentachlorobenzene	9.87E-12		2.64E-	3.60E-12	2.46E-11	2.82E-11	1.50E-14	3.55E-14
Phenot	3.49E-08		3.32E-	1.60E-06	8.71E-08	1.69E-06	8.90E-10	2.12E-UV
Quinoline	1.55E-12		1.55E-	3.33E-11	3.8/E-12	3.72E-11	1.9/E-14	1 075-14
Supona	1.13E-11		5.0/E-	7.7 E-11	1 0/5-11	1 435-11	7.57F-15	1 70F 14
Tetrachlorobenzene Trichlorobenzene	4.16E-12 2.21E-12	3.74E-10	1.15F-02	3.516-12	5.52E-12	9.03E-12	4.795-15	1.13E-14
	:							

	1.02E-04 1.94E-12	2.00e-11 1.05e-10 1.06e-12 2.42e-11 1.77e-07
	4.28E-05 8.19E-13	8.45E-12 4.43E-11 4.47E-13 1.02E-11 7.47E-08 2.00E-11
	8.08E-02 1.54E-09	1.59E-08 8.36E-08 8.43E-10 1.92E-08 1.41E-04 3.78E-08
	1.18E-05 7.37E-11	1.45E-08 8.20E-08 8.39E-10 1.28E-08 7.69E-05
8 (1)	8.07E-02 1.47E-09	1.45E-09 1.64E-09 4.19E-12 6.40E-09 6.39E-05 1.51E-08
Table 8B-18 (continued)	1.23E+02 3.60E-01	1.80E-03 3.60E-04 9.00E-05 9.00E-03 1.50E-02
	6.55E-04 4.09E-09	8.03E-07 4.54E-06 4.65E-08 7.12E-07 4.26E-03 1.26E-06
	4.74E-06 2.96E-11	5.816-09 3.296-08 3.376-10 5.156-09 3.096-05 9.106-09
	Urea Vapona INORGANICS	Antimony Arsenic Beryllium Cadmium Copper Mercury

K V	Maximum Adult and		Pollutant Concentration in Tomatoes, and Child Daily Intake at the Farmer Location		on in Tomatoes, and the Farmer Location				
		MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	PLANT UPTAKE FACTOR	MAXIMUM CONC.DUE TO UPTAKE mg/Kg	MAXIMUM CONC. ON PLANT SURFACE mg/Kg	MAXIMUM CONC ON PLANT mg/Kg	ADULT MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	CHILD MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	
001114000									
Okuanica Acetonitrile	6.16E-11	2.57E-09	3.68E+00	9.44E-09	1.54E-10	9.59E-09	7.89E-12	1.87E-11	
Aldrin	6.62E-11	2.76E-09		3.29E-13	1.65E-10	1.65E-10		3.22E-13	
Atrazine	1.44E-11	6.02E-10		3.92E-11	3.50E-11	7 12E-07	1 755-14	755-10	
Benzaldehyde	1.33E-08	5.56E-07		1.80E-U/	3.365-00	1 2/5-07	1 105-10	2 615-10	
Benzofuran	, E	1.07E-06		7.035-00	4 405.08	4 73E-08	5 54F-11	1.315-10	
Benzoic Acid	۳;	2.6/E-U/		7 7.45-11	1 565-11	0 OF-11	7.41F-14	1.76E-13	
Benzonitrile	6.16E-12			7,85-12	3 06F-12	4.53F-12	3.73E-15	8.85E-15	
Carbazole	1.235-12			201-104	1 08F-07	1.14F-07	9.35E-11	2.22E-10	
4-Chlorobiphenyl	4.52E-U8	- M		4.59E-11	2.03E-09	2.07E-09	1.71E-12	4.04E-12	
4,4-thioropiphenyt	7 175.00	, 0		1.41E-07	1.79E-08	1.58E-07	1.30E-10	3.09E-10	
4-Chlorophenylmethylsulfone	8 84F-10			1.46E-08	2.20E-09	1.68E-08	1.38E-11	3.27E-11	
D D-DDF	7.17E-12	,		3.506-13	1.79E-11	1.82E-11	.50E-1	3.56E-14	
120-0-0	2.23E-11			4.45E-13	5.56E-11	5.61E-11	4.61E-14	1.09E-13	
Dibenzofuran	1.28E-09			5.07E-10	3.18E-09	3.69E-09	.04E-1	7.20E-12	
Dicyclopentadiene	2,91E-12	•		1.35E-11	7.26E-12	Z.08E-11	- 4	-02E-	
Dieldrin	1.35E-11			3.54E-15	5.5/6-11	3.41E-11	- •	30E	
Dijsopropyl Methylphosphonate	2.27E-09			2.19E-US	0.00E-UV	1 46F-11		2.85F-14	
1,3-Dimethylbenzene	5.79E-12			725-05	1 40F-07	6. 73F-05	_	.31E-	
Dimethy! Methy!phosphonate	7.58E-16	4,6		2,14E-15	1.89E-13	1.916-13		.73E-	
Distins/Furans (EFA IEFS)	2 30F-12		8.35E-01	8.00E-11	5.73E-12	8.57E-11	•	.67E-	
Endrin	1.31E-11			2.89E-12	3.27E-11	3.56E-11	•	.95E-	
Hexach Lorobenzene	4.37E-11	_		2.86E-12	1.09E-10	1.12E-10		.18E-	
Hexachlorocyclopentadiene	1.22E-10			7.54E-12	3.03E-10	3.11E-10		6.0/E-13	
Isodrin	3.42E-11	- (8.53E-11	8.3%E-11		705-13	
Malathion	5.30E-11	2.21E-		- ^	٠.	7 356-05	_		
Methanol	2.50E-U/	٠.	0. YOF - 0.2	1, 10E-09	1.37E-09	2.476-09	2.03E-12	4.82E-12	
4-Nitrophenot	3.30E-10	Z. 4.7.	70.76						
Acenaphthalene	6.36E-09	8		7	1.59E-08	1.86E-08	1.53E-11	3.62E-11	
Acenaphthene	6.36E-09	N		3.30E-09	1.59E-08	1.92E-08	1.58E-11	3.74E-11	
Benzo(a)pyrene	1.28E-09	יט ו	4.	2.35E-11	3.10c-09	3.21E-09	2 67F-12	6 325-12	
Chrysene	1.28E-09	ח ש	- 1	2 11F-11	3, 18F-09	3.21E-09	2.64E-12	6.25E-12	
Ulbenzo(a,n)antnracene	1.20E-U9	-	,,,	3.50E-10	9.54E-09	9.89E-09	8.14E-12	1.93E-11	
	1.28E-09	'n		3.58E-10	3,18E-09	3.54E-09	2.92E-12	6.91E-12	
Phenanthrene	2,56E-09	-		5.56E-10	6.37E-09	6.93E-09	5.70E-12	1.35E-11	
Pyrene	1.28E-09	Ŋ	•	1.23E-10	3.18E-09	3.31E-09	2.72E-12	6.45E-12	
Parathion	7.22E-12	m	•	4.33E-12	1.80E-11	5 105-11	4 10F-14	0 025-14	
Pentachlorobenzene	1.95E-11	æ r	• 1-	0 58F-07	1.72F-07	1.13E-06	9.30E-10	2.21E-09	
Phenol	2 08E-10	v ~	•	1.99E-11	7.67E-12	2.76E-11	2.27E-14	5.38E-14	
Supone	2.23E-11	- 0	(*)	3.41E-11	5.56E-11	8.98E-11	39E-	1.75E-13	
Tetrachlorobenzene	8.23E-12	3.43E-10	6.82E-03	2.34E-12	2.05E-11	2.29E-11	1.88E-14	4.46E-14	
Trichlorobenzene	4.38E-12	-		Z.10E-12	1.09E-11	1.306-11	1.0/6-14	41 - 346 - 7	
č								6/22/91	
101								11-	- 1

3.97E-05 8.43E-13	2,43E-11 1,34E-10 1,37E-12 2,41E-11 1,57E-07 4,44E-11
4.83E-02 1.02E-09	2.96E-08 1.63E-07 1.66E-09 2.93E-08 1.91E-04 5.40E-08
2.34E-05 1.46E-10	2.87E-08 1.62E-07 1.66E-09 2.54E-08 1.52E-04 4.49E-08
4.83E-02 8.79E-10	8.64E-10 9.78E-10 2.50E-12 3.83E-09 3.02E-09
1.23E+02 3.60E-01	1.80E-03 3.60E-04 9.00E-05 9.00E-03 1.50E-02
3.92E-04 2.44E-09	4.80E-07 2.72E-06 2.78E-08 4.25E-07 2.55E-03
9.39E-06 5.86E-11	1, 15E-08 6,51E-08 6,67E-10 1,02E-08 6,11E-05
Urea Vapona	INORGANICS Antimony Arsenic Beryllium Cadmium Copper

Table 8B-18 (continued)

3.19E-11 3.19E-10 3.25E-12 5.71E-11 3.72E-07

9.42E-05 2.00E-12 In the case of the carrot, which is a modified taproot, the translocation distance is minimal, and the concentration predicted for the edible portion is essentially the root concentration (see preceding subsection). In the case of tomatoes and lettuce, where the edible portions (leaves in lettuce, fruit in tomatoes) are above ground, the potential for transport from the roots to the aerial portions of the plant also has to be considered.

The pollutant concentration (C_u) in the edible portions of tomato and lettuce plants resulting from uptake from the soil is expressed by the following equation:

$$C_n$$
 (mg/kg) = Pollutant concentration in soil (mg/kg) x PUF

Where:

The potential for the translocation of pollutants to aboveground plant parts varies considerably with the nature of the pollutant and the plant. The subsection that follows addresses the translocation potentials for the pollutants of concern and derives uptake factors for those that might potentially accumulate at significant concentrations.

Organics

Travis and Arms (1988) presented the following relationship between the log K_{ow} and the plant uptake factor:

$$PUF = 38.9 K_{ow}^{-0.58}$$

The uptake factors calculated by using the preceding equation were converted from dry weight to wet weight by assuming that lettuce and tomatoes have water contents of 95 and 94%, respectively (Baes et al., 1984).

The calculated PUFs for the pollutants of concern are presented in Tables 8B-8 through 8B-13 (lettuce) and Tables 8B-14 through 8B-19 (tomatoes).

Inorganics

The potential for the translocation of inorganics from roots to the aerial parts of the plants is influenced by numerous factors. These include the presence of chelating ligands (carriers), pH, oxidation-reduction state, competing cations, hydrolysis, polymerization, and the formation of insoluble salts (Kabata-Pendias and Pendias, 1985). However, a general distinction can be made between those inorganics that are easily translocated and those that tend to remain in the roots.

The uptake factors used for the inorganic compounds in tomatoes are based on transfer coefficients developed by Baes et al. (1984) for fruit. Tomatoes, although commonly referred to as vegetables, are actually fruit. The uptake factors used for inorganics in lettuce are based on the transfer coefficients developed by Baes et al. (1984) for vegetative parts of plants, since the edible parts of the lettuce are the leaves. The coefficients developed by Baes et al. (1984) were converted from dry weight to wet weight by assuming that lettuce and tomatoes have water contents of 95 and 94%, respectively. The uptake factors for the inorganic compounds are presented in Tables 8B-8 through 8B-13 (lettuce) and Tables 8B-14 through 8B-19 (tomatoes).

Average concentrations of pollutants in lettuce and average daily intakes are summarized for the adult and child for the Resident-A, Resident-B, and the Farmer exposure scenarios in Tables 8B-8, 8B-9, and 8B-10, respectively. Maximum lettuce concentrations and maximum daily intakes are presented in Tables 8B-11, 8B-12, and 8B-13. Average concentrations of pollutants in tomatoes and average daily intakes are summarized for the adult and child for the Resident-A, Resident-B, and Farmer, exposure scenarios in Tables 8B-14, 8B-15, and 8B-16, respectively. Maximum tomato concentrations and maximum daily intakes are presented in Tables 8B-17, 8B-18, and 8B-19.

APPENDIX 8B

CITED REFERENCES

Baes, C., et al. 1984. "A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides Through Agriculture." Prepared by Oak Ridge National Laboratory for the U.S. Department of Energy. ORNL-5786.

Briggs, G., et al. 1982. "Relationships Between Lipophilicity and Root Uptake, and Translocation of Nonionized Chemicals by Barley." <u>Pesticide Science</u>, 13:495.

Ells, J. 1990. Personal Communication. Extension Vegetable Crops Specialist, Colorado State University.

Ennis, B. 1990. Personal Communication. Adams County Agricultural Extension.

EPA (U.S. Environmental Protection Agency). 1980. <u>Ambient Water Quality Criteria for Polynuclear Aromatic Hydrocarbons</u>. Office of Water Regulations and Standards. EPA 440/5-80-069.

EPA (U.S. Environmental Protection Agency). 1986. <u>Superfund Public Health Evaluation Manual</u>. Office of Emergency and Remedial Response. EPA 540/1-86-060.

Holton, G.A., C.G. Travis, E.L. Etnier, F.R. O'Donnell, D.M. Hetrick, and E. Dixon. 1984. <u>Multiple-Pathways Screening-Level Assessment of a Hazardous Waste Incineration Facility</u>. Prepared for the U.S. EPA and the U.S. DOE by Oak Ridge National Laboratory. ORNL/TM 8652; DE 85000156.

Kabata-Pendias, A. and H. Pendias. 1985. <u>Trace Elements in Soils and Plants</u>. CRC Press, Inc., Boca Raton, Florida.

Lyman, W., W. Reehl, and D. Rosenblatt. 1982. <u>Handbook of Chemical Property Estimation Methods</u>. McGraw-Hill Book Company, New York.

NCRP (National Council on Radiation Protection and Measurements). 1984. <u>Radiological Assessment: Predicting the Transport, Bioaccumulation, and Uptake by Man of Radionuclides Released to the Environment</u>. NCRP Report No. 76.

Price, A. 1990. Personal Communication. Soil Conservation Service.

Travis, C.C. and A.D. Arms. 1988. "Bioconcentration of Organics in Beef, Milk, and Vegetation." Environ. Sci. and Tech. 22:271-274.

APPENDIX 8C

METHODOLOGY FOR DETERMINING POLLUTANT UPTAKE THROUGH MILK AND BEEF CONSUMPTION

APPENDIX 8C

METHODOLOGY FOR DETERMINING POLLUTANT UPTAKE THROUGH MILK AND BEEF CONSUMPTION

8C.1 INTRODUCTION

The calculation of pollutant intakes via the consumption of dairy and beef products involves a number of steps:

- Calculation of the pollutant concentration in locally grown cattle feed resulting from surface deposition and uptake from contaminated soil.
- Calculation of the concentration of the pollutant in the products (milk, beef).
- Prediction of daily intake of dairy and beef products by humans.

This appendix will address all of these issues.

8C.2 CONCENTRATIONS RESULTING FROM PLANT UPTAKE

The methodology used in calculating pollutant concentrations in cattle feed through plant uptake from soil was the same as that described for garden vegetables, and is described by the equation:

$$C_{plant} = (C_{soil}) (PUF)$$

Where:

C_{plant} = Pollutant concentration in plant resulting from root uptake (mg/kg).

 C_{soil} = Pollutant concentration in soil (mg/kg).

PUF = Plant uptake factor, the ratio between pollutant concentration in soil and plant (unitless).

It was assumed that hay, grain, and corn are grown in fields that are regularly tilled; therefore, soil pollutant concentrations were based on a 20-cm mixing depth. The contaminant soil concentrations are based on deposition at the Farmer scenario location over the 2-year life of the incinerator and are calculated as described in Appendix 8A. As discussed in Subsection 8.1.1, for all scenarios, a farm is assumed to be located in the area of highest deposition and air concentration where cows were observed grazing.

8C.2.1 Inorganics

Plant uptake factors were derived for antimony, arsenic, beryllium, cadmium, copper, and mercury. These are the inorganics that have been identified as contributing greater than 1% of background concentrations, or are potential oral carcinogens.

The uptake factors that were used for antimony in corn silage and hay were derived by dividing the antimony concentrations that have been reported in corn grain and grass, respectively, by a mean concentration for antimony reported in soils (Kabata-Pendias and Pendias, 1985). A transfer coefficient developed by Baes et al. (1984) for reproductive portions of plants was used as the uptake factor for antimony in grain.

The arsenic uptake factors for grain were based on data reported for barley grain, (Kabata-Pendias and Pendias, 1985). The uptake factors for arsenic by hay and corn are presented in NRCC (1978).

A transfer coefficient developed by Baes et al. (1984) for reproductive portions of plants was used as the uptake factor for beryllium in grain and corn silage. Baes et al. (1984) also developed a transfer coefficient for vegetative portions of plants for beryllium, which was used as the uptake factor for hay.

The cadmium uptake factor for grain was based on data reported for barley grains (Kabata-Pendias and Pendias, 1985). A transfer coefficient developed by Baes et al. (1984) for the vegetative portions of plants was used as the uptake factor for hay and pasture grass; and a transfer coefficient developed for the reproductive portions of plants was used for corn silage.

For copper, uptake factors in hay and grain were based on data reported for pasture herbage and barley grain, respectively (Kabata-Pendias and Pendias, 1985). An uptake factor for corn silage was derived by dividing the mean copper concentration in corn grain by a mean soil concentration (Kabata-Pendias and Pendias, 1985).

Uptake factors for mercury in corn silage and hay were derived by dividing the mean mercury concentration in corn grain and alfalfa by a mean mercury concentration in soils (Kabata-Pendias and Pendias, 1985). A transfer coefficient for mercury developed for the reproductive parts of plants was used as an uptake factor for mercury in grain (Baes et al., 1984).

The uptake factors are presented in Tables 8C-1, 8C-2, and 8C-3 for grain, hay, and corn silage, respectively, along with pollutant concentrations for these feeds.

8C.2.2 Organics

Plant uptake factors for organic compounds were calculated using the same methodology as that described for tomatoes and lettuce, and are expressed by the following equation developed by Travis and Arms (1988):

$$PUF = 38.9 K_{ow}^{-0.58}$$

Table 8C-1

Average and Maximum Pollutant Concentration in Grain at the Farm Location

	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	PLANT UPTAKE FACTOR	AVERAGE CALCULATED CONC. IN GRAIN mg/Kg	MAXIMUM CALCULATED CONC. IN GRAIN mg/Kg	
Acetonitrile Aldrin Atrazine Benzaldehyde Benzofuran Benzoir Acid Benzoir Acid Benzoir Acid Benzoir Acid Benzoir Acid A.4-Chlorobiphenyl 4,4-Chlorobiphenyl 4,4-Chlorophenylmethylsul fone 4-Chlorophenylmethylsul fone 4-Chlorophenylmethylsul fone 5-Chlorophenylmethylsul foxide p.p-DDE p.p-DDT Dibenzofuran Disopropyl Methylphosphonate Dieldrin Disopropyl Methylphosphonate Dieldrin Disopropyl Methylphosphonate Dieldrin Disopropyl Methylphosphonate Diethiane Endrin Hexachlorocyclopentadiene Isodrin Malathion Malathion Malathion Methanol	2.53E-09 2.72E-09 5.94E-10 1.64E-07 2.53E-10 2.53E-10 3.63E-08 3.63E-08 3.63E-08 3.53E-08 3.53E-08 3.53E-10 5.95E-10 5.95E-10 5.95E-10 5.96E-11 5.46E-11 5.46E-11 5.46E-10 6.16E-09 6.16E-	2.57E-09 2.76E-09 5.02E-10 1.07E-07 1.07E-07 2.57E-07 2.57E-07 2.57E-07 3.58E-08 3.58E-08 3.58E-08 3.58E-08 3.58E-10 5.37E-10 5.37E-10 5.47E-08 1.58E-10 5.47E-08 1.43E-09	0	- My die me dia kanana kanana de de de e	1.57e-07 5.48e-12 5.53e-10 3.00e-06 1.17e-06 1.24e-09 2.46e-11 1.61e-07 2.34e-06 2.43e-07 2.25e-10 3.56e-07 3.56e-07 4.82e-11 1.35e-09 4.82e-11 1.26e-10	
4-Nitrophenol	2.26E-08	2.29E-08	3 7.98E-01	1.81E-08	1.83E-08	

Table 8C-1 (Continued)

	2.535-07 2.535-08 5.335-08 5.335-08 1.606-07 1.075-07 5.335-08 5.015-10 8.155-10	2.07E-01 7.35E-03 1.71E-02 6.61E-03 3.65E-02 1.12E-01 8.70E-02 3.85E-02 2.40E-01 4.40E-02 5.54E-00	3.47E-08 3.64E-10 3.47E-10 5.74E-09 9.13E-09 7.12E-11 3.53E-11 3.57E-10	5.55E-09 5.92E-08 3.52E-10 9.08E-10 5.93E-09 9.26E-09 7.22E-11 3.59E-11
5.25E-08 5.25E-08 5.25E-08 1.57E-07 1.57E-07 1.55E-08 2.97E-10 2.84E-06 1.26E-10 9.17E-10 3.38E-04 2.41E-09	235-07 237-08 237-08 206-07 207-07 231-08 231-10 26-10	7.35E-03 1.71E-03 6.61E-03 3.65E-02 3.65E-02 3.85E-02 2.40E-02 5.54E-00	3.42E-108 3.86E-10 8.95E-10 3.47E-10 5.88E-09 9.13E-09 7.12E-11 3.53E-11 3.27E-10	3.52E-10 3.52E-10 3.52E-10 5.97E-09 5.05E-09 7.22E-11 3.58E-11
5.25E-08 5.25E-08 1.57E-07 5.25E-08 5.25E-08 5.25E-08 5.25E-08 5.25E-08 6.03E-10 7.7E-10 3.38E-10 3.86E-04 2.41E-09	335-08 335-08 305-07 335-08 335-08 316-10 15-10 38-06	7.35E-03 6.61E-03 3.65E-02 1.12E-01 8.70E-02 3.85E-02 2.40E-02 5.54E+00 2.59E+00	3.86E-10 8.95E-10 3.47E-10 5.8E-09 9.13E-09 7.12E-11 3.53E-11 3.27E-10	3.92E-10 3.08E-10 3.08E-10 5.93E-09 5.97E-09 7.22E-11 3.59E-11
5.25E-08 1.57E-07 5.25E-08 5.25E-08 1.05E-07 5.25E-08 5.25E-08 8.03E-10 1.26E-10 9.17E-10 3.38E-04 2.41E-09	33E - 08 33E - 08 50E - 07 33E - 08 37E - 07 33E - 08 31E - 10 15E - 10 88E - 06	1.71E-02 6.61E-03 3.65E-02 1.12E-01 8.70E-02 3.85E-02 2.40E-01 4.40E-02 5.54E+00 2.59E+00	8.95e-10 3.47e-10 5.74e-09 5.88e-09 9.13e-09 7.12e-11 3.53e-11 3.57e-05	9.08E-10 3.52E-10 5.83E-09 9.26E-09 2.05E-09 7.22E-11 3.59E-11
hracene 5.25E-08 1.57E-07 5.25E-08 1.05E-07 5.25E-08 2.97E-10 8.03E-10 1.26E-10 9.17E-10 9.17E-10 3.86E-04 2.41E-09	33E - 08 50E - 07 53E - 08 07E - 07 53E - 08 01E - 10 15E - 10 88E - 06	6.61E-03 3.65E-02 1.12E-01 8.70E-02 3.85E-02 2.40E-01 4.40E-02 2.59E+00	3.47E-10 5.74E-09 5.88E-09 9.13E-09 7.12E-11 3.53E-11 3.27E-10	3.52e-10 5.83e-09 5.97e-09 9.26e-09 7.25e-11 3.59e-11
1.57E-07 5.25E-08 1.05E-07 5.25E-08 2.57E-10 8.03E-10 1.26E-10 9.17E-10 3.38E-04 3.86E-04 2.41E-09	50E-07 53E-08 57E-07 53E-08 51E-10 15E-10 58E-06	3.65E-02 1.12E-01 8.70E-02 3.85E-02 2.40E-01 4.40E-02 2.59E+00	5.74E-09 5.88E-09 9.13E-09 2.02E-09 7.12E-11 3.53E-11 1.57E-05 3.27E-10	5.83E-09 5.97E-09 9.26E-09 2.05E-09 7.22E-11 3.59E-11 1.60E-05
5.25E-08 1.05E-07 5.25E-08 2.25E-08 8.03E-10 1.26E-10 9.17E-10 3.38E-10 1.80E-10 3.86E-04 2.41E-09	33E-08 37E-07 31E-10 15E-10 38E-06	1.12E-01 8.70E-02 3.85E-02 2.40E-01 4.40E-02 5.54E+00 2.59E+00	5.88E-09 9.13E-09 2.02E-09 7.12E-11 3.53E-11 1.57E-05 3.27E-10	5.97E-09 9.26E-09 2.05E-09 7.22E-11 3.59E-11 1.60E-05
1.05E-07 5.25E-08 2.95E-10 8.03E-10 1.26E-10 9.17E-10 3.38E-10 1.80E-10 3.86E-04 2.41E-09	37E-07 53E-08 31E-10 15E-10 58E-06	8.70E-02 3.85E-02 2.40E-01 4.40E-02 5.54E+00 2.59E+00	9.136-09 2.026-09 7.126-11 3.536-11 1.576-05 3.276-10	9.26E-09 2.05E-09 7.22E-11 3.59E-11 1.60E-05 3.31E-10
5.25e-08 2.97e-10 8.03e-10 2.84e-06 1.26e-10 9.17e-10 3.38e-10 3.86e-04 2.41e-09	33E-08 31E-10 15E-10 38E-06	3.85E-02 2.40E-01 4.40E-02 5.54E+00 2.59E+00	2.026-09 7.126-11 3.536-11 1.576-05 3.276-10	2.05E-09 7.22E-11 3.59E-11 1.60E-05 3.31E-10
2.97E-10 8.03E-10 2.84E-06 1.26E-10 9.17E-10 3.38E-10 1.80E-10 3.86E-04 2.41E-09	38E-10 38E-06 38E-10	2.40E-01 4.40E-02 5.54E+00 2.59E+00	7.12E-11 3.53E-11 1.57E-05 3.27E-10	7.22E-11 3.59E-11 1.60E-05 3.31E-10
8.03E-10 2.84E-06 1.26E-10 9.17E-10 3.38E-10 1.80E-10 3.86E-04 2.41E-09	38E-10 38E-06 38E-10	4.40E-02 5.54E+00 2.59E+00	3.53E-11 1.57E-05 3.27E-10	3.59E-11 1.60E-05 3.31E-10
2.84E-06 1.26E-10 9.17E-10 3.38E-10 1.80E-10 3.86E-04 2.41E-09	38E - 06 28E - 10	5.54E+00 2.59E+00 4.11E-01	1.57E-05 3.27E-10	1.60E-05 3.31E-10
1.26E-10 9.17E-10 3.38E-10 1.80E-10 3.86E-04 2.41E-09	28E - 10	2.59E+00	3.27E-10	3.316-10
3.38E-10 3.38E-10 1.80E-10 3.86E-04 2.41E-09		A 115-01		-
3.38E-10 1.80E-10 3.86E-04 2.41E-09	S1E-10	2	5.61E-10	5.69E-10
1.80E-10 3.86E-04 2.41E-09	3E-10	1.14E-01	3.84E-11	3.90E-11
.,,	3E-10	1.91E-01	3.44E-11	3.49E-11
	7E-04	2.05E+03	7.93E-01	8.04E-01
	.44E-09	6.00E+00	1.44E-08	1.46E-08
	30E-07	3.00E-02	1.42E-08	1.44E-08
	72E-06	3.30E-03	8.83E-09	8.96E-09
	78E-08	1.50E-03	4.11E-11	4.17E-11
4.19E-07 4.2	4.25E-07	1.00E-01	4.19E-08	4.25E-08
	5E-03	1.70E-01	4.27E-04	4.33E-04
	2E-07	2.00E-01	1.48E-07	1.50E-07

	Average	Average and Maxim		num Pollutant Concentration in Hay at the Farm Location	atration in	Hay at the	e Farm Loo	cation		
	AVERAGE CALCULATED CONC IN SOIL . 2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	DRY DEPOSITION RATE 9/M2/yr	PLANT UPTAKE FACTOR	AVERAGE CONC. DUE TO UPTAKE mg/Kg	MAXIMUM CONC. DUE TO UPTAKE mg/Kg	AVERAGE CONC. ON PLANT SURFACE mg/Kg	MAXIMUM CONC. ON PLANT SURFACE mg/Kg	AVERAGE CALCULATED CONC IN HAY mg/Kg	MAXIMUM CALCULATED CONC IN HAY mg/Kg
) i	•								
ORGANICS					1				1	1
Acetonitrile	2.53E-09	2.57E-09	6.16E-11	6.13E+01	1.55E-07	1.57E-07	1.39E-10	4.87E-09	1.55E-07	1.62E-07
Aldrin	2.72E-09	2.76E-09	6.62E-11	1.99E-03	5.40E-12	5.48E-12	1.49E-10	5.23E-09	1.55E-10	5.23E-09
Atrazine	5.94E-10	6.02E-10	1.44E-11	1.09E+00	6.44E-10	6.53E-10	3.26E-11	1.14E-09	6.77E-10	1.79E-09
Benzaldehyde	5.48E-07	5.56E-07	1.33E-08	5.39E+00	2.95E-06	3.00E-06	3.01E-08	1.05E-06	2.98E-06	4.05E-06
Benzofuran	1.05E-06	1.07E-06	2.56E-08	1.10E+00	1.15E-06	1.17E-06	5.77E-08	2.02E-06	1.21E-06	3.19E-06
Benzoic Acid	2.64F-07	2.67E-07	6.41E-09	3.20E+00	8.44E-07	8.56E-07	1.45E-08	5.07E-07	8.58E-07	1.36E-06
Benzonitrile	2.53E-10	2.57E-10	6.16E-12	4.84E+00	1.23E-09	1.24E-09	1.39E-11	4.87E-10	1.24E-09	1.73E-09
Carbazole	5.04E-11	5.12E-11	1.23E-12	4.81E-01	2.42E-11	2.46E-11	2.77E-12	9.69E-11	2.70E-11	1.22E-10
4 Chicrobialienvi	1.77E-36	1.80E-06	4.32E-08	5.60E-02	9.93E-08	1.01E-07	9.74E-08	3.41E-06	1.97E-07	3.51E-06
4,4-Chlorobiphenyl	3.34E-08	3.39E-08	8.13E-10	2.26E-02	7.54E-10	7.65E-10	1.83E-09	6.42E-08	2.59E-09	6.50E-08
4-Chlorophenylmethylsulfone	2.95E-07	2.99E-07	7.17E-09	7.83E+00	2.31E-06	2.34E-06	1.62E-08	5.66E-07	2.32E-06	2.91E-06
4-Chlorophenylmethylsulfoxide	3.63E-08	3.68E-08	8.84E-10	6.58E+00	2.39E-07	2.43E-07	1.99E-09	6.98E-08	2.41E-07	3.12E-07
p,p-00E	2.95E-10	2.99E-10	7.17E-12		5.74E-12	5.83E-12	1.62E-11	5.66E-10	2.19E-11	5.72E-10
p,p-00T	9.17E-10	9.31E-10	2.23E-11	7.96E-03	7.31E-12	7.41E-12	5.04E-11	1.76E-09	5.77E-11	1.77E-09
Dibenzofuran	5.25E-08	5.33E-08	1.28E-09		8.33E-09	8.45E-09	2.88E-09	1.01E-07	1.12E-08	1.09E-07
Dicyclopentadiene	1.20E-10	1.21E-10	2.91E-12		2.22E-10	2.25E-10	6.58E-12	2.30E-10	2.28E-10	4.55E-10
Dieldrin	5.56E-10	5.64E-10	1.35E-11		5.48E-12	5.56E-12	5.05E-11	1.0/E-09	3.60E-11	1.0/E-09
Disopropyl Methylphosphonate	9.34E-08	9.47E-08	2.27E-09		3.60E-07	3.66E-U/	5.15E-U9	1.79E-U/	3.66E-U/	5.45E-U/
1,3-Dimethylbenzene	1.56E-10	1.58E-10	3.79E-12		8.45E-11	8.5/E-11	8.56E-12	5.00E-10	9.50E-11	5.85E-10
Dimethyl Methylphosphonate	2.30E-06	2.34E-06	5.61E-08	4.79E+02	1.10E-03	1.12E-03	1.2/E-0/	4.43E-06	1.10E-03	1.12E-05
Dioxins/Furans (EPA TEFs)	3.11E-12	3.16E-12	7.58E-14	1.13E-02	3.51E-14	3.56E-14	1.71E-13	5.98E-12	2.06E-13	6.02E-12
Dithiane	9.44E-11	9.58E-11	2.30E-12	1.39E+01	1.31E-09	1.33E-09	5.19E-12	1.81E-10	1.32E-09	1.51E-09
Endrin	5.40E-10	5.47E-10	1.31E-11	8.81E-02	4.76E-11	4.82E-11	2.96E-11	1.04E-09	7.72E-11	1.09E-09
Hexachlorobenzene	1.80E-09	1.82E-09	4.37E-11	2.61E-02	4.70E-11	4.77E-11	9.87E-11	3.45E-09	1.46E-10	3.50E-09
Hexachlorocyclopentadiene	5.00E-09	5.07E-09	1.22E-10	2.48E-02	1.24E-10	1.26E-10	2.75E-10	9.61E-09	3.99E-10	9.74E-09
Isodrin	1.41E-09	1.43E-09	3.42E-11	6.52E-03	9.17E-12	9.30E-12	7.73E-11	2.70E-09	8.64E-11	2.71E-09
Malathion	2.18E-09	2.21E-09	5.30E-11	8.20E-01	1.79E-09	1.81E-09	1.20E-10	4.19E-09	1.91E-09	6.00E-09
Methanol	1.03E-05	1.04E-05	2.50E-07	1.16E+02	1.20E-03	1.21E-03	5.65E-07	1.98E-05	1.20E-03	1.23E-03
4-Nitrophenol	2.26E-08	2.29E-08	5.50E-10	7.98E-01	1.81E-08	1.83E-08	1.24E-09	4.35E-U8	1.95E-08	6.18E-08

6/24/91

Table 8C-2 (Continued)

	PAHS										
	Acenaphthalene	2.61E-07	2.65E-07	6.36E-09	1.70E-01	4.43E-08	4.50E-08	1.44E-08	5.03E-07	5.87E-08	5.48E-07
	Acenaphthene	2.61E-07	2.65E-07	6.36E-09	2.07E-01	5.42E-08	5.50E-08	1.44E-08	5.03E-07	6.85E-08	5.58E-07
	Benzo(a)pyrene	5.25E-08	5.33E-08	1.28E-09	7.35E-03	3.86E-10	3.92E-10	2.88E-09	1.01E-07	3.27E-09	1.01E-07
	Chrysene	5.25E-08	5.33E-08	1.28E-09	1.71E-02	8.95E-10	9.08E-10	2.88E-09	1.01E-07	3.78E-09	1.02E-07
	Dibenzo(a,h)anthracene	5.25E-08	5.33E-08	1.28E-09	6.61E-03	3.47E-10	3.52E-10	2.88E-09	1.01E-07	3.23E-09	1.01E-07
	Fluoranthene	1.57E-07	1.60E-07	3.83E-09	3.65E-02	5.74E-09	5.83E-09	8.64E-09	3.02E-07	1,44E-08	3.08E-07
	Fluorene	5.25E-08	5.33E-08	1.28E-09	1.12E-01	5.88E-09	5.97E-09	2.88E-09	1.01E-07	8.77E-09	1.07E-07
	Phenanthrene	1.05E-07	1.07E-07	2.56E-09	8.70E-02	9.13E-09	9.26E-09	5.77E-09	2.02E-07	1.49E-08	2,11E-07
	Pyrene	5.25E-08	5.33E-08	1.28E-09	3.85E-02	2.02E-09	2.05E-09	2.88E-09	1.01E-07	4.91E-09	1.03E-07
	Parathion	2.97E-10	3.01E-10	7.22E-12	2,40E-01	7.12E-11	7.22E-11	1.63E-11	5.70E-10	8.75E-11	6.43E-10
	Pentachlorobenzene	8.03E-10	8.15E-10	1.95E-11	4.40E-02	3.53E-11	3.59E-11	4.41E-11	1.54E-09	7.94E-11	1.58E-09
	Phenol	2.84E-06	2.88E-06	6.92E-08	5.54E+00	1.57E-05	1.60E-05	1.56E-07	5.46E-06	1.59E-05	2.14E-05
	Quinoline	1.26E-10	1.28E-10	3.08E-12	2.59E+00	3.27E-10	3.31E-10	6.94E-12	2,43E-10	3.34E-10	5.74E-10
	Supona	9.17E-10	9.31E-10	2.23E-11	6.11E-01	5.61E-10	5.69E-10	5.04E-11	1.76E-09	6.11E-10	2.33E-09
	Tetrachlorobenzene	3.38E-10	3.43E-10	8.23E-12	1.14E-01	3.84E-11	3.90E-11	1.86E-11	6.50E-10	5.70E-11	6.89E-10
	Trichlorobenzene	1.80E-10	1.83E-10	4.38E-12	1.91E-01	3.44E-11	3.49E-11	9.89E-12	3.46E-10	4.43E-11	3.81E-10
80	Urea	3.86E-04	3.92E-04	9.39E-06	2.05E+03	7.93E-01	8.04E-01	2.12E-05	7.42E-04	7.93E-01	8.05E-01
-7	Vapona	2.41E-09	2.44E-09	5.86E-11	6.00E+00	1.44E-08	1.46E-08	1.32E-10	4.63E-09	1.46E-08	1.93E-08
,	INORGANICS		•								
	Antimony	4.73E-07	4.80E-07	1.15E-08	2.90E-02	1.37E-08	1.39E-08	2.60E-08	9.09E-07	3.97E-08	9.23E-07
	Arsenic	2.68E-06	2.72E-06	6.51E-08	2.00E-01	5.35E-07	5.43E-07	1.47E-07	5.15E-06	6.82E-07	5.69E-06
	Beryllium	2.74E-08	2.78E-08	6.67E-10	1.00E-02	2.74E-10	2.78E-10	1.50E-09	5.27E-08	1.78E-09	5.29E-08
	Cadmium	4.19E-07	4.25E-07	1.02E-08	5.50E-01	2.31E-07	2.34E-07	2.30E-08	8.06E-07	2.54E-07	1.04E-06
	Copper	2.51E-03	2.55E-03	6.11E-05	5.00E-01	1.26E-03	1.27E-03	1.38E-04	4.83E-03	1.39E-03	6.10E-03
	Mercury	7.41E-07	7.52E-07	1.80E-08	2.30E-01	1.70E-07	1.73E-07	4.07E-08	1.42E-06	2.11E-07	1.60E-06

Table 8C-3

Average and Maximum Pollutant Concentration in Corn Silage at the Farm Location

	AVERAGE CALCULATED CONC IN SOIL . 2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL . 2M mg/Kg	DRY DEPOSITION RATE 9/M2/yr	PLANT UPTAKE FACTOR	AVERAGE CONC.DUE TO UPTAKE mg/Kg	MAXIMUM CONC.DUE TO UPTAKE mg/Kg	AVERAGE CONC. ON PLANT SURFACE mg/Kg	MAXIMUM CONC. ON PLANT SURFACE mg/Kg	AVERAGE CALCULATED CONC IN CORN SILAGE mg/Kg	MAXIMUM CALCULATED CONC IN CORN SILAGE mg/Kg
32114090	n n	De la companya de la								
Oretonitrii o	2 575.00	2 575.00	44.77	475.04	4 557 04	147.4	17.6			
A12.15	2 725 00	2.3/E-09	0.105-11	0. ISE+UI	1.355-07	1.5/E-U/	2.56E-11	8.26E-10	1.55E-07	1.58E-07
Atrazine	5 0/E-10	6 02E-10	0.02E-11	1 005+00	5.40E-12	5.48E-12	Z.55E-11	8.87E-10	3.07E-11	8.92E-10
Benzaldehvde	5 48F-07	5 56F-07	1 335-08	5 30F+00	2 055-06	2 00E-04	7.735-12	1 74E 10	0.30E-10	7 475 0
Benzofuran	1.05E-06	1.07E-06	2.56F-08	1,10F+00	1 15F-06	1 17F-06	0 705-00	7 72-07	1 145-06	3.1/E-00
Benzoic Acid	2.64E-07	2.67E-07	6.41E-09	3.20E+00	8.44F-07	8.56F-07	2 46F-09	8 40E-02	8 7.6E-07	0 70=00
Benzonitrile	2.53E-10	2.57E-10	6.16E-12	4.84E+00	1.23E-09	1.24E-09	2.36F-12	8.26F-11	1 238-00	1 335-00
Carbazole	5.04E-11	5.12E-11	1.23E-12	4.81E-01	2.42E-11	2.46E-11	4.70E-13	1.65E-11	2.47E-11	4.10E-11
4-Chiorociphenyi	1.77E-06	1.80E-06	4.32E-08	5.60E-02	9.93E-08	1.01E-07	1.65E-08	5.79E-07	1.16E-07	6.80E-07
4,4-Chlorobiphenyl	3.34E-08	3.39E-08	8.13E-10	2.26E-02	7.54E-10	7.65E-10	3.11E-10	1.09E-08	1.07E-09	1.17E-08
4-Chlorophenylmethylsulfone	2.95E-07	2.99E-07	7.17E-09	7.83E+00	2.31E-06	2.34E-06	2.75E-09	9.61E-08	2.31E-06	2.44E-06
4-Chlorophenylmethylsulfoxide	3.63E-08	3.68E-08	8.84E-10	6.58E+00	2.39E-07	2.43E-07	3.38E-10	1.18E-08	2.39E-07	2.54E-07
p,p-00E	2.95E-10	2.99E-10	7.17E-12	1.95E-02	5.74E-12	5.83E-12	2.75E-12	9.61E-11	8.49E-12	1.02E-10
100-d'd	9.17E-10	9.31E-10	2.23E-11	7.96E-03	7.31E-12	7.41E-12	8.55E-12	2.99E-10	1.59E-11	3.07E-10
Ulbenzoturan	5.25E-08	5.35E-08	1.28E-09	1.59E-01	8.33E-09	8.45E-09	4.89E-10	1.71E-08	8.82E-09	2.56E-08
Dicyclopentadiene	1.20E-10	1.21E-10	2.91E-12	1.85E+00	2.22E-10	2.25E-10	1.12E-12	3.91E-11	2.23E-10	2.64E-10
Disconney Mathylaborate	5.56E-10	5.64E-10	1.55E-11	9.86E-03	5.48E-12	5.56E-12	5.18E-12	1.81E-10	1.07E-11	1.87E-10
1 3-Dimethylbenzene	1 545-10	1 585.10	2.2/E-09	5.86E+00	3.60E-U/	3.66E-U/	8.70E-10	3.05E-08	3.61E-07	3.96E-07
Dimethy Methylphosphonete	2 30E-06	2 3/E-06	5 41E-08	705102	100-02	1 125.02	2 455 12	7 545 03	0.39E-11	1.3/E-10
Dioxins/Furans (EPA TEFs)	3,11F-12	3 16F-12	7 58F-14	1 135-02	3 51E-16	7 56E-17	2 ODE-16	1 02E-17	1.10E-US	1.12E-US
Dithiane	9.44E-11	9.58E-11	2.30E-12	1.39F+01	1.315-00	1 335-00	8 80F-13	Z 085-12	1 215-14	1 245-12
Endrin	5.40E-10	5.47E-10	1.31E-11	8.81E-02	4.76E-11	4.82E-11	5.03F-12	1 76F-10	5 2KF-11	2 2/E-10
Hexachlorobenzene	1.80E-09	1.82E-09	4.37E-11	2.61E-02	4.70E-11	4.77E-11	1.68E-11	5.86F-10	6.375-11	6 34F-10
Hexachlorocyclopentadiene	5.00E-09	5.07E-09	1.22E-10	2.48E-02	1.24E-10	1.26E-10	4.66E-11	1.63E-09	1.71E-10	1.76E-09
Isodrin	1.41E-09	1.43E-09	3.42E-11	6.52E-03	9.17E-12	9.30E-12	1.31E-11	4.59E-10	2.23E-11	4.68E-10
Malathion	2.18E-09	2.21E-09	5.30E-11	8.20E-01	1.79E-09	1.81E-09	2.03E-11	7.11E-10	1.81E-09	2.52E-09
Methanol	1.03E-05	1.04E-05	2.50E-07	1.16E+02	1.20E-03	1.21E-03	9.59E-08	3.36E-06	1.20E-03	1.22E-03
4-Nitrophenol	2.26E-08	2.29E-08	5.50E-10	7.98E-01	1.81E-08	1.83E-08	2.11E-10	7.38E-09	1.83E-08	2.57E-08

6/24/91

1.30E-07 1.40E-07 1.75E-08 1.75E-08 2.31E-08 4.35E-08 1.92E-10 2.98E-10 1.69E-05 3.73E-10 8.68E-10 1.46E-05 3.73E-10 1.56E-01 1.56E-05 1.56E-01 1.56E-01 1.56E-01 1.56E-01	2.01E-07 1.02E-03 2.58E-07
4.68E-08 8.75E-10 1.38E-09 8.36E-10 7.21E-09 6.37E-09 1.01E-08 2.51E-01 7.40E-11 4.28E-11 4.28E-10 5.69E-10 7.93E-09 6.41E-07 2.96E-10	6.68E-08 2.24E-04 2.32E-08
8.53E-08 8.53E-08 1.71E-08 1.71E-08 5.13E-08 1.71E-08 3.43E-01 2.62E-10 9.27E-07 4.12E-11 2.99E-11 1.26E-04 7.85E-10	1.37E-07 8.19E-04 2.42E-07
2.44E-09 4.89E-10 4.89E-10 4.89E-10 4.89E-10 4.89E-10 2.77E-12 2.65E-08 1.18E-12 3.15E-12 3.60E-06 2.24E-11	3.91E-09 2.34E-05 6.91E-09
4.50E-08 3.92E-10 9.08E-10 3.52E-10 5.58E-09 5.97E-09 7.22E-11 3.59E-11 3.59E-11 1.60E-05 3.90E-11 1.46E-08	5.38E-08 2.04E-04 1.65E-08
4.43E-08 5.42E-08 3.86E-10 8.95E-10 5.74E-10 5.88E-09 7.12E-11 1.57E-05 3.84E-11 7.93E-01 1.44E-08	2.01E-04 1.63E-08
1.70E-01 2.07E-01 7.35E-03 1.71E-02 6.61E-03 3.65E-02 3.65E-02 3.85E-02 5.54E-00 5.54E+00 6.11E-01 1.14E-01 1.14E-01 1.91E-01 2.05E+03 6.00E-03	8.00E-02 2.20E-02
6.36E-09 1.28E-09 1.28E-09 1.28E-09 1.28E-09 2.56E-09 1.28E-09 2.56E-09 2.56E-09 3.08E-12 4.38E-12 4.38E-12 4.38E-12 4.38E-12 6.57E-10 6.57E-08	6.11E-05 1.80E-08
2.65E-07 5.33E-08 5.33E-08 5.33E-08 1.60E-07 5.33E-08 3.01E-10 8.15E-10 2.88E-06 1.28E-10 9.31E-10 3.43E-10 1.28E-10 4.80E-07 2.72E-06 2.72E-06	2.55E-03 7.52E-07
2.61E-07 5.25E-08 5.25E-08 5.25E-08 1.57E-07 5.25E-08 2.97E-10 8.03E-10 1.26E-10 9.17E-10 3.38E-10 1.80E-10 3.86E-04 2.41E-09	2.51E-03 7.41E-07
INOK	Copper Mercury
8C-9	

8C.3 CONCENTRATION FROM SURFACE DEPOSITION

Surface deposition was evaluated for corn silage and hay. Since grain is protected by a husk, deposition was not evaluated for grain. The concentrations of pollutants in cattle feed resulting from surface deposition (C_d) were calculated using equations similar to those used for lettuce and tomatoes in Appendix 8B:

$$C_d$$
 = (DR)(SDF)
(maximum) = (DR)(SDF)(2/70)
(average)

Where:

DR = Pollutant dry deposition rate (mg/m²s). This includes only dry deposition. Pollutants falling on plant surfaces from wet deposition are washed off the plant and are incorporated into the soil.

SDF = Surface deposition factor (m²s/kg).

In calculating the average pollutant concentration from surface deposition, the factor of 2/70 accounts for the 2 years of pollutant deposition from the facility that would occur over a 70-year lifetime of an individual.

The surface deposition factor was calculated using the following formula (Holton, 1984):

SDF
$$(m^2s/kg) = \frac{r(1-e^{-kt})}{Yk}$$

Where:

r = Interception fraction of the plants (unitless) (Baes et al., 1984).

k = Total rate constant for degradation processes (s⁻¹) (Baes et al., 1984)

t = Growing time (s) (Ron Jepson, Adams County Agricultural Extension Agency, Personal Communication, 1990).

Y = Plant yield (dry weight) (kg/m²).

Pollutant concentrations were determined in terms of dry weight. The dry weight productivity factors (plant yields) that were used were based on information from Ron Jepson (Adams County Agricultural Extension Agency, Personal Communication, 1990). The plant yield used for hay (0.35 kg/m²) was based on one crop of alfalfa hay. The plant yield for one crop of corn silage was assumed to be 1.80 kg/m².

An interception fraction for hay was calculated using the following formula (Baes et al., 1984):

Interception fraction = $1 - e^{(-2.88Y)}$

Where:

Y = Productivity in dry weight (kg/m²).

Using the preceding productivity factor, an interception fraction of 0.635 was obtained for hay. An average interception fraction of 0.44 was used for corn silage (Baes et al., 1984).

As in the case of vegetable produce, only weathering was considered as a source of pollutant loss. The derivation of the weathering loss constant, $5.78 \times 10^{-7} \text{s}^{-1}$, is discussed in Appendix 8B.

A growing time of 4.5 weeks (2.72E+06 seconds) was assumed for one crop of alfalfa hay, and 130 days (1.12E+07 seconds) for one crop of corn silage (Ron Jepson, Adams County Agricultural Extension Agency, Personal Communication, 1990).

For the Resident-A, Resident-B, and Farmer scenarios, it was conservatively assumed that all hay, corn, and grain fed to the cattle were grown at the farm location. As discussed in Subsection 8.1.1, for all scenarios, a farm is assumed to be located in the area of highest deposition and air concentration where cows were observed grazing.

8C.4 ESTIMATE OF POLLUTANT UPTAKE BY CATTLE

It was assumed that dairy cattle consume 22.45 kg (dry weight) of feed per day, and beef cattle consume 13 kg (dry weight) of feed per day (Dr. Tim Stanton, Colorado State University, Personal Communication, 1990). It was assumed that in the Rocky Mountain Arsenal area, a dairy cow's average diet consists of 55% grain, 17.5% corn silage, 17.5% hay, and 10% protein supplement. The average diet of beef cattle consists of 80% grain, 5% corn silage, 5% hay, and 10% protein supplement (derived from information provided by Dr. Tim Stanton, Colorado State University, Personal Communication, 1990). It was assumed that protein supplement is not exposed to pollutants in the area, and thus does not contribute to pollutants that cattle receive through their diet.

In addition, although some cattle in the area may graze, lactating dairy cattle and finishing stock do not graze, and thus, pasture grass and incidental soil ingested while grazing will not be evaluated.

The average pollutant concentration in the feed from all sources was calculated using the following general equation:

$$C_{\text{feed}} = [(C_{\text{hay}} \times DI_{\text{hay}}) + (C_{\text{corn}} \times DI_{\text{corn}}) + (C_{\text{grain}} \times DI_{\text{grain}})]/DI_{\text{feed}}$$

Where:

C_{feed} = Pollutant concentration in cattle feed, mg/kg.

C_{hav} = Pollutant concentration in hay, mg/kg.

DI_{hav} = Daily intake of hay, dry weight, kg/day.

C_{com} = Pollutant concentration in corn silage, mg/kg.

DI_{corn} = Daily intake of corn silage, dry weight, kg/day.

C_{grain} = Pollutant concentration in grain, mg/kg.

DI_{grain} = Daily intake of grain, dry weight, kg/day.

 $DI_{feed} = DI_{hav} + DI_{corn} + DI_{grain}, kg/day.$

The calculated average dairy cattle feed pollutant concentrations are presented for the Resident-A and Resident-B scenarios in Table 8C-4, and for the Farmer scenario in Table 8C-5. The maximum dairy cattle feed pollutant concentrations are presented in Tables 8C-6 and 8C-7. The calculated average beef cattle feed pollutant concentrations are presented in Tables 8C-8 and 8C-9, and the maximum beef cattle feed pollutant concentrations are presented in Tables 8C-10 and 8C-11.

8C.5 CALCULATION OF THE POLLUTANT CONCENTRATION IN FARM PRODUCTS

The pollutant concentration in beef and dairy products resulting from ingestion of hay, grain, and corn silage by beef and dairy cattle is calculated as follows:

$$C_{product} = C_{diet} \times DUF$$

Where:

C_{product} = Pollutant concentration in farm product (milk, beef) (mg/kg).

 C_{diet} = Average pollutant concentration in total animal diet (mg/kg).

Table 8C-4

VOLUME II

Average Pollutant Concentration in Milk for the Resident-A and Resident-B Scenarios

e >	
CHILD AVERAGE ESTIMATED DAILY INTAKE	1.46E-17 6.44E-17 1.85E-14 1.35E-14 1.30E-17 1.00E-17 1.00E-17 1.00E-17 1.00E-17 1.00E-17 1.00E-17 1.00E-17 1.00E-17 1.00E-17 1.00E-17 1.00E-17 1.00E-17 1.00E-17 1.00E-17 1.00E-17 1.00E-17 2.33E-17 1.50E-18 1.72E-17 1.50E-18 2.91E-16 3.74E-14 3.74E-14
ADULT AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	2.54E-18 3.54E-14 1.25E-17 1.60E-18 1.60E-18 1.55E-17 1.55E-17 1.55E-16 6.95E-16 7.05E-18 7.0
AVERAGE CALCULATED CONC IN MILK FAT mg/Kg	3.33E-13
AVERAGE CALCULATED CONC IN MILK mg/Kg	1.16E-14 1.62E-10 1.62E-10 1.62E-10 1.03E-11 1.03E-11 1.03E-13 1.0
TRANSFER COEFFICIENT MILK Day/Kg	3.72E - 09 2.04E - 01 3.89E - 06 6.03E - 07 2.95E - 07 1.29E - 07
DIET UPTAKE MILK Unitless	5.00E+00
AVERAGE CALCULATED CONC IN DIET (milk) mg/Kg	3.54E-07 2.66E-06 1.05E-06 1.05E-06 1.05E-07 1.09E-07 1.05E-07 2.06E-07 3.25E-07 2.06E-07 3.25E-07 1.12E-11 1.12E-11 1.12E-11 1.12E-11 1.13E-07 1.08E-06 1.08E-07 1.08E-07 1.08E-07
	Acetonitrile Aldrin Atrazine Benzaldehyde Benzaldehyde Benzofc Acid Benzoritrile Carbazole 4-Chlorobiphenyl 4,4-Chlorobiphenyl 6,4-Chlorophenylmethylsulfone 7-Chlorophenylmethylsulfone 8-Chlorophenylmethylsulfone 8-Chlorophenylmethylmethylsulfone 8-Chlorophenylmethylmethylsulfone 8-Chlorophenylmethy

Table 8C-4 (Continued)

									_			Ī				•	•	7.51E-17		•					3 1.56E-12
	2.00E-	1-716-	9-80E-	3.42E-	1,13E-	4.58E-1	5.61E-1	1.39E-1	1.45E-1	1.73E-1	1.95E-1	1-63E-1	1.26E-1	2.64E-1	3.58E-1	1.25E-1	3.04E-1	1.30E-17		7 48E.1	4 94F-1	1 Z0E-1	3.87F-1	3.80E-0	2.70E-13
	9.19E-11	7.85E-11	4.50E-10	1.57E-10	5.21E-10	2.10E-10	2.58E-11	6.37E-11	6.66E-11	7.94E-14	8.96E-13	7.47E-11	5.78E-15	1.21E-13	1.64E-13	5.76E-14	1.40E-10	5.97E-14		₹ 52F.11	3.185-08	7, 795-15	1.785-09	1.74E-05	1.24E-09
	9.55E-05	6.76E-05	2,14E-02	5.01E-03	2.57E-02	1.35E-03	1.95E-04	3.02E-04	1.23E-03	5.25E-05	9.77E-04	2,34E-07	8.71E-07	1.05E-05	1.91E-04	7.76E-05	8.71E-12	2.04E-07		1,00E-04	6.00E-03	9-00E-07	1.00E-03	1.50E-03	4.50E-04
	4.28E-08	5.17E-08	9.38E-10	1.40E-09	9.02E-10	6.94E-09	5.89E-09	9.40E-09	2.41E-09	6.74E-11	4.08E-11	1.42E-05	2.96E-10	5.15E-10	3.84E-11	3.30E-11	7.13E-01	1.30E-08		1.57E-08	2.36E-07	3.86E-10	7.91E-08	5.18E-04	1.22E-07
PAHS	Acenaphthalene	Acenaphthene	Benzo(a)pyrene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Parathion	Pentachlorobenzene	Phenol	Quinoline	Supona	Tetrachlorobenzene	Trichlorobenzene	Urea	Vapona	INORGANICS	Antimony	Arsenic	Beryllium	Cadmium	Copper	Mercury

Table 8C-5

VOLUME II

Average Pollutant Concentration in Milk for the Farmer Scenario

2.93E-16 3.69E-13 2.26E-13 2.26E-13 2.26E-13 2.36E-14 1.84E-16 1.91E-14 1.78E-14 1.78E-14 1.78E-13 3.44E-14 3.44E-14 3.44E-14 3.44E-14 3.44E-14 3.44E-14 3.56E-16 3.44E-16
5.07e-17 7.07e-13 6.40e-14 7.07e-13 3.91e-14 7.49e-14 7.49e-14 7.60e-17 7.60e-
3.33E-13
1.16E-14 1.62E-10 1.67E-11 1.03E-11 1.03E-11 7.33E-15 7.58E-12 7.58E-12 7.58E-12 7.58E-12 7.58E-12 7.58E-12 7.58E-12 7.58E-12 7.58E-12 3.24E-11 2.37E-12 7.25E-14 7.56E-12 7.5
3.72E-09 3.89E-06 3.89E-06 6.03E-07 2.95E-07 1.58E-05 1.29E-07 1.74E-07 3.98E-03 1.29E-07 1.29E-07 1.29E-07 1.29E-07 1.29E-07 1.29E-07 1.29E-06 2.95E-06 6.31E-06 6.31E-06
5.00E+00
3.54E-11 5.86E-10 2.66E-06 1.05E-06 1.05E-06 1.11E-09 2.24E-11 1.09E-07 2.08E-06 3.25E-07 7.78E-11 3.25E-07 7.78E-11 6.65E-14 1.18E-09 1.18E-09 1.18E-09 1.08E-10 1.68E-11
Acetonitrile Aldrin Atrazine Benzaldehyde Benzofuran Benzofuran Benzofuran 4,4-Chlorobhenylmethylsulfone 4-Chlorophenylmethylsulfoxide p,p-DDE p,DDE p,DDI Dispropyl Methylphosphonate Dispropyl Methylphosphonate 1,3-Dimethyl Methylphosphonate Dispropyl Methylphosphonate

Table 8C-5 (Continued)

•	4.00E-13 2.31E-12	•	•	•	• ,	•			, `			•••	•	, `				•		•	•	2.60E-16 1.50E-15		ω	w	3,40E-17 1,96E-16	•		•	(
	9, 19E-11	7 85F-11		4.5UE-10	1.57E-10	5.21E-10	2 105-10	2 - 101 - 0	7.386-11	6.37E-11	6.66E-11	7 04F-14	0 0/E-12	0. YOE - 13	7.4/E-11	5.78E-15	1,21F-13	7 7/1 42	0.040	5.76E-14	1.40E-10	5.97E-14		3.52E-11	3.18E-08	7.79E-15	700	1.78E-UY	1.74E-05	1.24E-09
	9.55E-05	4 74E-05	2,101	2.14E-UZ	5.01E-03	2.57E-02	1 255-02	1.335-03	1.95E-U4	3.02E-04	1.23E-03	5 25E-05	0 775-0/	+0-U/1.A	2.34E-07	8.71E-07	1 05E-05	100.4	1.91E-04	7.76E-05	8.71E-12	2.04E-07		1.00E-04	6.00F-03	0 NOE-07	100 100	1.00E-US	1.50E-03	4.50E-04
	4. 28F-08	E 175.09	2.1/5-00	9.38E-10	1.40F-09	O 02E-10	20.170	0.94E-09	5.89E-09	60-307-6	2 41E-00	4 7/5-11	0.745-7	4.USE-11	1.42E-05	2.96E-10	F 15E-10	0.175-10	3.84E-11	3.30E-11	7.13E-01	1.30E-08		1.57E-08	2 36F-07	Z 86E-10	3.00.	7.91E-08	5.18E-04	1.22E-07
PAHS	Aconaphthalone	Accorded to the control of the contr	Acenaphrinene	Benzo(a)pyrene	Chryspie	Dibonzo(a h)anthracana		Fluoranthene	Fluorene	Phenanthrene	Dividend	2012	Farachion	Pentachlorobenzene	Phenol	Outnotine		auodne	Tetrachlorobenzene	Trichlorobenzene	lirea	Vapona	INORGANICS	Antimony	Arsenic	Boryllin		Cadmium	Copper	Mercury

Table 8C-6

Maximum Pollutant Concentration in Milk for the Resident-A and Resident-B Scenarios

	MAXIMUM CALCULATED CONC IN DIET (milk) mg/Kg	DIET UPTAKE MILK Unitless	TRANSFER COEFFICIENT MILK Day/Kg	MAXIMUM CALCULATED CONC IN MILK mg/Kg	MAXIMUM CALCULATED CONC IN MILK FAT mg/Kg	ADULT MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	CHILD MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	
ORGANICS								
Acetonitrile	1.43E-07		3.72F-00	1 105-14		2 505-18	1 505-17	
Aldrin	1.07E-09		2.04E-01	03E-00		1 07E-12	6 20E-12	
Atrazine	8.22E-10		3.89E-06	7.18E-14		1.56F-17	9-03F-17	
Benzaldehyde	2.91E-06		2.45E-07	1.60E-11		3.50E-15	2.02E-14	
Benzofuran	1.47E-06		3.80E-06	1.25E-10		2.73E-14	1.58E-13	
Benzoic Acid	8.74E-07		6.03E-07	1.18E-11		2.58E-15	1.49E-14	
Benzonitrile	1.22E-09		2.95E-07	8.08E-15		1.76E-18	1.02E-17	
Carbazole	4.20E-11		1.58E-05	1.49E-14		3.25E-18	1.88E-17	
4-Chlorobiphenyl	7.895-07		6.46E-04	1.14E-08		2.49E-12	1.44E-11	
4,4-Chlorobiphenyl	1.38E-08		3.09E-03	9.60E-10		2.09E-13	1.21E-12	
4-Chlorophenylmethylsulfone	2.22E-06		1.29E-07	6.43E-12		1.40E-15	8.09E-15	
4-Chlorophenylmethylsulfoxide	2.33E-07		1.74E-07	9.08E-13		1.98E-16	1.14E-15	
p,p-00E	1.21E-10		3.98E-03	1.08E-11		2.36E-15	1.36E-14	
p,p-u01	3.68E-10		1.86E-02	1.54E-10		3.35E-14	1.93E-13	
Ulbenzoturan	2.83E-08		1.07E-04	6.80E-11		1.48E-14	8.55E-14	
Ulcyclopentadiene	2.50E-10		1.55E-06	8.68E-15		1.89E-18	1.09E-17	
	2.24E-10		1.29E-02	6.47E-11		1.41E-14	8.14E-14	
Ulisopropyl metnylphosphonate	3.66E-07		4.37E-07	3.59E-12		7.81E-16	4.51E-15	
1,3-Ulmetny(benzene	1.38E-10		1.29E-05	4.00E-14		8.72E-18	5.04E-17	
ᄆ	1.01E-03		1.07E-10	2.43E-12		5.28E-16	3.05E-15	
Dioxins/Furans (EPA IEFS)	1.26E-12	5.00E+00			6.28E-12	4-94E-17	3.24E-16	
Ulthlane	1.24E-09		4.79E-08	1.33E-15		2.89E-19	1.67E-18	
Endrin	2.56E-10		2.95E-04	1.69E-12		3.69E-16	2,13E-15	
	7.50E-10		2.40E-03	4.04E-11		8.80E-15	5.08E-14	
Hexachlorocyclopentadiene	2.08E-09		2.63E-03	1.23E-10		2.68E-14	1.55E-13	
Isodrin	5.62E-10		2.63E-02	3.32E-10		7.23E-14	4.17E-13	
Malathion	2.49E-09		6.31E-06	3.52E-13		7.68E-17	4.43E-16	
Methanol	1.10E-03		1.23E-09	3.03E-11		6.60E-15	3.81E-14	
4-Nitrophenol	2.54E-08		6.61E-06	3.77E-12		8.20E-16	4.74E-15	

3.87E-13 2.91E-13 1.27E-11	1.52E-11 2.56E-12 1.43E-13 4.24E-13	7.82E-13 2.69E-16 9.61E-15 1.03E-13 8.56E-18	2.58E-16 9.05E-16 2.24E-16 1.78E-13 8.15E-17	5.56E-13 2.14E-10 2.76E-16 6.79E-12 6.29E-08 5.18E-12
6.70E-14 5.04E-14 2.20E-12	2.64E-12 4.43E-13 2.48E-14 7.33E-14	1,35E-13 4,67E-17 1,66E-15 1,78E-14	4.47E-17 1.57E-16 3.88E-17 3.08E-14 1.41E-17	9.62E-14 3.71E-11 4.78E-17 1.18E-12 1.09E-08 8.96E-13
3.07E-10 2.31E-10 1.01E-08	2.425-03 1.216-08 2.036-09 1.146-10 3.376-10	6.22E-10 2.14E-13 7.64E-12 8.15E-11	2.05E-13 7.19E-13 1.78E-13 1.42E-10 6.48E-14	4.42E-10 1.70E-07 2.19E-13 5.40E-09 5.00E-05 4.11E-09
9.55E-05 6.76E-05 2.14E-02	2.57E-02 1.35E-03 1.95E-04 3.02E-04	1,23E-03 5,25E-05 9,77E-04 2,34E-07	1.05E-05 1.91E-04 7.76E-05 8.71E-12 2.04E-07	1.00E-04 6.00E-03 9.00E-07 1.00E-03 1.50E-03 4.50E-04
1.43E-07 1.52E-07 2.10E-08	2.10E-08 2.10E-08 6.71E-08 2.60E-08 4.97E-08	2.25E-08 1.82E-10 3.48E-10 1.55E-05	8.73E-10 1.68E-10 1.02E-10 7.24E-01	1.97e-07 1.26e-06 1.09e-08 2.40e-07 1.48e-03 4.07e-07
PAHs Acenaphthalene Acenaphthene Benzo(a)pyrene	unrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	Pyrene Parathion Pentachlorobenzene Phenoling	Supona Supona Tetrachlorobenzene Trichlorobenzene Urea Vapona	INORGANICS Antimony Arsenic Beryllium Cadmium Copper Mercury

6/24/91

Table 8C-7

Maximum Pollutant Concentration in Milk for the Farmer Scenario

	MAXIMUM	DIET	TRANSFER	MAXIMUM	MAXIMUM	ADULT	CHILD
	CALCULATED CONC IN DIET (milk) mg/Kg	UPIAKE MILK Unitless	COEFFICIENT MILK Day/Kg	CALCOLATED CONC IN MILK mg/Kg	CONC IN CONC IN MILK FAT mg/Kg	ESTIMATED DAILY INTAKE mg/Kg/day	ESTIMATED DAILY INTAKE mg/Kg/day
ORGANICS	1 725.07		7 72E-00	1 105-14		5.18E-17	2.99E-16
Acetonitrite	1,435-07		2 0/6-01	0U-3K0 7		2, 15E-11	1.24E-10
Atorin	8 22E-10		3.89F-06	7, 18E-14		3,13E-16	1.81E-15
Bonzol dobiedo	2 015-06		2 45F-07	1.60E-11		6.99E-14	4.04E-13
Benzofinen Benzofinen	1 475-06		3.80E-06	1.25E-10		5.46E-13	3.15E-12
Benzoic Acid	8 74F-07		6.03E-07	1.18E-11		5.15E-14	2.98E-13
Renzonitrile	1,22E-09		2.95E-07	8.08E-15		3.52E-17	2.03E-16
Carbazole	4.20F-11		1.58E-05	1.49E-14		6.51E-17	3.76E-16
2 - Chi onobinienyl	7.89E-07		6.46E-04	1.145-08		4.98E-11	2.88E-10
4-Chlorobiohenvl	1.38E-08		3.09E-03	9.60E-10		4.18E-12	2.41E-11
4-Chlorophenvimethvisulfone	2.22E-06		1.29E-07	6.43E-12		2.80E-14	1.62E-13
4-Chlorophenylmethylsulfoxide			1.74E-07	9.08E-13		3.95E-15	2.28E-14
			3.98E-03	1.08E-11		4.72E-14	2.73E-13
100-0	3.68E-10		1.86E-02	1.54E-10		6.70E-13	3.87E-12
Dibenzofuran	2.83E-08		1.07E-04	6.80E-11		2.96E-13	1.71E-12
Dicyclopentadiene	2.50E-10		1,55E-06	8.68E-15		3.78E-17	2.18E-16
Dieldrin	2.24E-10		1.29E-02	6.47E-11		2.82E-13	1.63E-12
Discorport Methylphosphonate	3.66F-07		4.37E-07	3.59E-12		1.56E-14	9.02E-14
1.3-Dimethylbenzene			1.29E-05	4.00E-14		1.74E-16	1.01E-15
Dimethyl Methylphosphonate	_		1.07E-10	2.43E-12		1.06E-14	6.10E-14
Dioxine/Furane (FDA TEFS)	1.26F-12	5.00E+00			6.28E-12	9.87E-16	6.49E-15
Dithiane	1.24F-09		4.79E-08	1.33E-15		5.79E-18	3.34E-17
Fudrin	2.56E-10		2.95E-04	1.69E-12		7.38E-15	4.26E-14
Hexachlorobenzene	7.50E-10		2.40E-03	4.04E-11		1.76E-13	1.02E-12
Hexach procyclopentadiene	2.08E-09		2.63E-03	1.23E-10		5.35E-13	3.09E-12
Isodrin	5.62E-10		2.63E-02	3.32E-10		1.456-12	8.35E-12
Malathion	2.49E-09		6.31E-06	3.52E-13		1.546-15	8.87E-15
Methanol	1.10E-03		1.23E-09	3.03E-11		1.32E-13	7.62E-13
4-Nitrophenol	2.54E-08		6.61E-06	3.77E-12		1.64E-14	9.47E-14

Table 8C-7 (Continued)

s Acenaphthalene	1.43E-07	9.556-05	3.07E-10	1.34E-12	7.73E-12
	1.52E-07	6.76E-05	2.31E-10	1.01E-12	5.82E-12
	2.10E-08	2.14E-02	1.01E-08	4.39E-11	2.54E-10
	2.15E-08	5.01E-03	2.42E-09	1.05E-11	6.08E-11
racene	2.10E-08	2.57E-02	1.21E-08	5.27E-11	3.05E-10
	6.71E-08	1.35E-03	2.03E-09	8.86E-12	5.12E-11
	2.60E-08	1.95E-04	1.14E-10	4.96E-13	2.87E-12
	4.97E-08	3.02E-04	3.37E-10	1.476-12	8.47E-12
	2.25E-08	1.23E-03	6.22E-10	2.71E-12	1.56E-11
	1.82E-10	5.25E-05	2.14E-13	9.33E-16	5.39E-15
	3.48E-10	9.77E-04	7.64E-12	3.33E-14	1.92E-13
	1.55E-05	2.34E-07	8.15E-11	3.55E-13	2.05E-12
	3.48E-10	8.71E-07	6.81E-15	2.97E-17	1.71E-16
	8.73E-10	1.05E-05	2.05E-13	8.94E-16	5.16E-15
	1.68E-10	1.91E-04	7.19E-13	3.13E-15	1.81E-14
	1.02E-10	7.76E-05	1.78E-13	7.77E-16	4.49E-15
	7.24E-01	8.71E-12	1.42E-10	6.17E-13	3.56E-12
	1.41E-08	2.04E-07	6.48E-14	2.82E-16	1.63E-15
	1.97E-07	1.00E-04	4.42E-10	1.92E-12	1.11E-11
	1.26E-06	6.00E-03	1.70E-07	7.41E-10	4.28E-09
	1.09E-08	9.00E-07	2.19E-13	9.56E-16	5.52E-15
	2.40E-07	1.00E-03	5.40E-09	2.35E-11	1.36E-10
	1.48E-03	1.50E-03	5.00E-05	2.18E-07	1.26E-06
	4.07E-07	4.50E-04	4.11E-09	1.79E-11	1.04E-10

Table 8C-8

VOLUME II

Average Pollutant Concentration in Beef for the Resident-A and Resident-B Scenarios

CHILD AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	2.48E-18 1.33E-14 1.08E-17 1.90E-17 1.90E-17 1.56E-18 1.56E-18 1.56E-18 1.16E-14 1.16E-14 1.16E-14 1.48E-18 4.78E-16 6.29E-17 5.09E-16 6.29E-17 5.51E-18 5.16E-16 6.34E-16 6.34E-16 6.34E-16 6.34E-16 6.34E-16 6.34E-16 6.34E-16
ADULT AVERAGE ESTIMATED DAILY INTAK	9.95E-19 5.32E-15 7.60E-15 8.75E-16 6.25E-19 6.25E-19 7.60E-15 8.79E-16 7.60E-15 7.60E-15 7.60E-15 7.60E-15 7.60E-15 7.60E-16 7.66E-19 7.66E-19 7.66E-19 7.66E-19 7.66E-19 7.66E-19 7.66E-10 7.6
AVERAGE CALCULATED CONC IN BEEFFAT mg/Kg	2.08E-13
AVERAGE CALCULATED CONC IN BEEF mg/Kg	2.08E-14 1.11E-10 9.07E-14 1.59E-10 1.84E-11 1.31E-14 1.07E-11 1.07E-11 1.07E-11 2.46E-13 2.46E-13 3.29E-14 3.29E-14 3.29E-14 4.26E-12 5.27E-13 5.27E-13 5.27E-13 5.37E-11 1.35E-11
TRANSFER COEFFICIENT BEEF Day/Kg	1.15E-08 6.31E-01 1.20E-05 7.59E-07 1.17E-05 1.86E-06 9.12E-07 4.90E-05 5.37E-07 5.37E-07 5.37E-07 5.37E-07 1.23E-02 3.98E-05 3.98E-05 3.98E-05 3.98E-05 3.98E-05 3.98E-05 3.98E-05 3.98E-05 3.98E-05 3.98E-07 3.98E-07 3.98E-07 3.98E-07 3.98E-07 3.98E-07 3.98E-07 3.98E-07 3.98E-07 3.98E-07 3.98E-07 3.98E-07 3.98E-07 3.98E-07
DIET UPTAKE BEEF Unitless	5.00E+00
AVERAGE CALCULATED CONC IN DIET (beef) mg/Kg	1.40E-07 1.36E-11 2.66E-06 1.06E-06 7.60E-07 7.60E-07 2.15E-07 6.11E-12 9.52E-12 7.66E-09 6.72E-12 7.66E-09 7.66E-09 7.66E-09 7.66E-09 7.66E-09 7.66E-09 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11 7.66E-11
	Acetonitrile Aldrin Atrazine Benzaldehyde Benzaldehyde Benzofuran Benzoririle Carbazole 4-Chlorobiphenyl 4,4-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfoxide p,p-DDT Dibenzofuran Dienzofuran Hexachlorocyclopentadiene Isodrin Malathion Methanol 4-Nitrophenol

7.46E-15 1.86E-14 6.43E-15 1.60E-14 2.12E-14 5.28E-14 9.37E-15 2.34E-14 1.47E-14 5.91E-14 2.04E-15 5.91E-14 4.69E-15 1.24E-14 4.69E-15 1.24E-14 6.55E-18 1.63E-17 6.37E-15 1.53E-14 6.37E-15 1.25E-14 4.92E-19 1.23E-17 1.30E-17 2.54E-17 1.30E-17 2.54E-17 1.30E-17 2.54E-17 1.19E-14 2.97E-14	8.45E-15 2.11E-14 9.09E-14 2.27E-13 8.48E-17 2.11E-16 1.69E-14 4.22E-14 2.62E-09 6.54E-09 2.02E-11 5.04E-11
2.95E-04 1.56E-10 2.09E-04 1.34E-10 6.61E-02 4.42E-10 7.94E-02 4.95E-10 7.94E-02 4.95E-10 4.17E-03 3.07E-10 6.03E-04 1.04E-10 3.80E-03 1.04E-10 3.80E-03 1.35E-12 7.24E-07 1.35E-12 5.69E-04 2.13E-13 5.89E-04 9.83E-14 2.69E-04 2.49E-10 6.31E-07 1.06E-13	1.00E-03 1.77E-10 2.00E-03 1.90E-09 1.00E-03 1.77E-12 5.50E-04 3.53E-10 1.00E-02 5.48E-05 2.50E-01 4.22E-07
4.07E-08 4.96E-08 5.16E-10 9.74E-10 4.81E-10 5.67E-09 6.50E-11 1.99E-09 1.99E-09 5.07E-10 5.07E-10 3.77E-11 7.13E-01	1.36E-08 7.32E-08 1.37E-10 4.96E-08 4.22E-04 1.30E-07
Acenaphthalene Acenaphthene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Phenanthrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Trichlorobenzene Trichlorobenzene Trichlorobenzene Urea	INORGANICS Antimony Arsenic Beryllium Cadmium Copper

Table 8C-9

VOLUME II

Average Pollutant Concentration in Beef for the Farmer Scenario

	AVERAGE CALCULATED	DIET UPTAKE	TRANSFER	AVERAGE CALCULATED	AVERAGE CALCULATED	ADULT AVERAGE	CHILD
	CONC IN DIET (beef)	BEEF Unitless	BEEF Day/Kg	CONC IN BEEF mg/Kg	CONC IN BEEFFAT mg/Kg	ESTIMATED DAILY INTAKE	ESTIMATED DAILY INTAKE
	mg/Kg					mg/Kg/day	mg/Kg/day
ORGANICS							
Acetonitrile	1.40E-07		1.15E-08	2.08E-14		1.99E-17	4.96E-17
Aldrin	1.36E-11		6.31E-01	1.11E-10		1.06E-13	2.65E-13
Atrazine	5.82E-10		1.20E-05	9.07E-14		8.68E-17	2.16E-16
Benzaldehyde	2.66E-06		7.59E-07	2.62E-11		2.50E-14	6.25E-14
Benzofuran	1.04E-06		1.17E-05	1.59E-10		1.52E-13	3.79E-13
Benzoic Acid	7.60E-07		1.86E-06	1.84E-11		1.76E-14	4.38E-14
Benzonitrile	1.10E-09		9.12E-07	1.31E-14		1.25E-17	3.12E-17
Carbazole	2.20E-11		4.90E-05	1.40E-14		1.34E-17	3.33E-17
4-Chiorobiphenyi	9.51E-08		2.00E-03	2.46E-09		2.35E-12	5.87E-12
4,4-Chlorobiphenyl	7.86E-10		9.55E-03	9.74E-11		9.32E-14	2.32E-13
4-Chlorophenylmethylsulfone			3.98E-07	1.07E-11		1.03E-14	2.56E-14
4-Chlorophenylmethylsulfoxide	2.15E-07		5.37E-07	1.50E-12		1.44E-15	3.58E-15
p,p-DDE	6.11E-12		1.23E-02	9.76E-13		9.34E-16	2.33E-15
p,p-001	9.52E-12		5.75E-02	7.11E-12		6.80E-15	1.70E-14
Dibenzofuran	7.66E-09		3.31E-04	3.29E-11		3.15E-14	7.86E-14
Dicyclopentadiene	2.00E-10		4.79E-06	1.24E-14		1.19E-17	2.96E-17
			3.98E-02	3.47E-12		3.32E-15	8.29E-15
Diisopropyl Methylphosphonate	3.25E-07		1.35E-06	5.68E-12		5.44E-15	1.36E-14
1,3-Dimethylbenzene	7.65E-11		3.98E-05	3.95E-14		3.78E-17	9.43E-17
	9.93E-04		3.31E-10	4.26E-12		4.08E-15	1.02E-14
Dioxins/Furans (EPA TEFs)	4.16E-14	5.00E+00			2.08E-13	4.45E-17	1.21E-16
Dithiane	1.18E-09		1.48E-07	2.27E-15		2.17E-18	5.41E-18
Endrin	4.45E-11		9.12E-04	5.27E-13		5.04E-16	1.26E-15
Hexachlorobenzene	4.81E-11		7.41E-03	4.62E-12		4.42E-15	1.10E-14
Hexachlorocyclopentadiene	1.28E-10		8.13E - 03	1.35E-11		1.29E-14	3.21E-14
Isodrin	1.28E-11		8.13E-02	1.35E-11		1.29E-14	3.21E-14
Malathion	1.61E-09		1.95E-05	4.08E-13		3.91E-16	9.75E-16
Methanol	1.08E-03		3.80E-09	5.31E-11		5.08E-14	1.27E-13
4-Nitrophenol	1.63E-08		2.04E-05	4.32E-12		4.14E-15	1.03E-14

Table 8C-9 (Continued)

	1 545-10	27.7	0 - 3+0 - 1	4-42E-10	1.96F-10	0 05E-10	2 025 50	3.0/E-10	4.2/E-11	1.04E-10	9.80E-11	1_37F-13	1 35E-12	1 72E 10	4 52E 10	1.USE-14	2.13E-13	2 72F-13	0 021 1/	7.00E	2.49E-10	5.31E-07 1.06E-13 1.02E-16			1.77E-10	00E-03 1.90E-09 1.82E-12	1.77E-12	3 535-10	7. 48-05	20-101
	4.07E-08	4.96F-08	07-276	01,101,0	9.74E-10	4.81E-10	5-67E-09								•					•				•		1.345.08 2.0	-	ın		- (
PAHS	Acenaphthalene	Acenaphthene	Renzo(a)nyrene		curysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Phenanthrene	Disciplination of the	Pyrelle	Parathion	Pentachlorobenzene	Phenol	Quinoline	Cinons	Supolia	letrachlorobenzene	Trichlorobenzene	Urea	Vonces	apola	INORGANICS	Antimony	Arsenic	Reryllin	Codmitte		copper	Mercury

6/24/91

Table 8C-10

Maximum Pollutant Concentration in Beef for the Resident-A and Resident-B Scenarios

CHILD MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	2.52E-18 3.03E-17 1.22E-17 2.13E-17 1.62E-18 8.96E-13 1.85E-16 6.97E-16 6.92E-15 7.09E-16 5.16E-15 5.16E-16 5.16E-16 5.16E-16 5.16E-16 5.16E-16 5.16E-16 5.16E-16 5.16E-16 5.16E-16 5.16E-16 5.16E-16 5.16E-16 5.16E-16 6.96E-17 6.96E-16 6.96E-17
ADULT MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	1.01E-18 4.89E-13 8.55E-15 9.25E-16 6.50E-19 7.41E-17 7.41E-17 7.41E-17 7.41E-17 7.41E-17 7.41E-17 7.41E-17 7.92E-16 7.41E-17 7.41E-17 7.92E-16 7.9
MAXIMUM CALCULATED CONC IN BEEFFAT mg/Kg	1.916-12
MAXIMUM CALCULATED CONC IN BEEF mg/Kg	2.11E-14 1.02E-13 1.72E-11 1.33E-14 1.36E-14 1.36E-14 1.55E-12 5.36E-11 1.55E-12 5.36E-14 5.36E-14 5.36E-14 7.51E-10 7.51E-10 7.51E-10 7.51E-10 7.51E-10 7.51E-11 7.51E-11 7.72E-14 7.72E-11 7.72E-11 7.72E-11 7.72E-11 7.72E-11 7.72E-11 7.72E-11 7.72E-11 7.72E-11 7.72E-11 7.72E-11 7.72E-11
TRANSFER COEFFICIENT BEEF Day/Kg	1.15E - 08 1.20E - 05 1.20E - 05 1.17E - 07 1.18E - 06 9.12E - 07 4.90E - 05 5.37E - 07 5.37E - 07 1.23E - 02 3.98E - 05 3.98E - 05
DIET UPTAKE BEEF Unitless	5.00E+00
MAXIMUM CALCULATED CONC IN DIET (beef) mg/Kg	1.42E-07 5.11E-10 6.55E-10 2.76E-06 1.17E-06 8.00E-07 1.15E-09 2.22E-07 3.46E-11 1.16E-10 5.75E-10 1.01E-03 3.40E-07 1.01E-03 3.40E-07 1.01E-03 1.01E-07 1.01E-07 1.01E-07 1.01E-07
	Acetonitrile Aldrin Atrazine Benzaldehyde Benzofuran Benzoro Acid Benzoritrile Carbazole 4.4-Chlorobiphenyl 4,4-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfone b.p-DDE p.p-DDT Dibenzofuran Disopropyl Methylphosphonate Dieldrin Disopropyl Methylphosphonate Dimethyl Methylphosphonate Dimethyl Methylphosphonate Dimethyl Methylphosphonate Dimethyl Methylphosphonate Disopropyl Methylphosphonate Dispersor

3.19E-14	2.55E-14 6.0E-13	1.61E-13	7.65E-13	1.48E-13	1.05E-14	2.91E-14	4.56E-14	2.47E-17	5.73E-16	1.65E-14	1.30E-18	3.08E-17	6.66E-17	1.92E-17	3.02E-14	1.31E-17		1.01E-13	1.13E-12	4.84E-15	8,18E-14	1.09E-08	8.24E-11
1.28E-14	1.02E-14	6.46E-14	3.07E-13	5.93E-14	4.22E-15	1.17E-14	1.83E-14	9.90E-18	2.30E-16	6.60E-15	5.22E-19	1,24E-17	2.67E-17	7,70E-18	1.21E-14	5.27E-18		4.06E-14	4.55E-13	1.94E-15	3,28E-14	4.36E-09	3.31E-11
2.67E-10	2.14E-10 5.34E-10	1.35E-09	6.41E-09	1.24E-09	8.81E-11	2.44E-10	3.82E-10	2.07E-13	4.80E-12	1.38E-10	1.09E-14	2.58E-13	5.58E-13	1.61E-13	2.53E-10	1.10E-13		8,49E-10	9.51E-09	4.06E-11	6.85E-10	9.11E-05	6.91E-07
2.95E-04	2.09E-04 6.61E-02	1.55E-02	7.94E-02	4.17E-03	6.03E-04	9.33E-04	3.80E-03	1.62E-04	3.02E-03	7.24E-07	2.69E-06	3.24E-05	5.89E-04	2.40E-04	2.69E-11	6.31E-07		1.00E-03	2.00E-03	1.00E-03	5.50E-04	1.00E-02	2.50E-01
6.99E-08	7.89E-08 6.25E-00	6.72E-09	6.22E-09	2.29E-08	1.13E-08	2.01E-08	7.75E-09	9.84E-11	1.23E-10	1.47E-05	3.13E-10	6.15E-10	7.31E-11	5.17E-11	7.24E-01	1.35E-08		6.55E-08	3.67E-07	3.13E-09	9.60E-08	7.03E-04	2.13E-07
PAHS Acenaphthalene	Acenaphthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Parathion	Pentachlorobenzene	Phenol	Quinoline	Supona	Tetrachlorobenzene	Trichlorobenzene	Urea	Vapona	INORGANICS	Antimony	Arsenic	Beryllium	Cadmium	Copper	Mercury

Table 8C-11

VOLUME II

Maximum Pollutant Concentration in Beef for the Farmer Scenario

CHILD MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	5.04E-17 6.07E-17 6.48E-16 6.48E-14 4.61E-14 7.26E-17 1.37E-17 1.37E-17 1.36E-17 1.42E-14 1.17E-16 1.17E-16 1.17E-16 1.17E-16 1.17E-16 1.17E-17 1.17E-17 1.17E-17 1.17E-17 1.17E-17 1.17E-17 1.17E-17 1.17E-17 1.17E-17 1.17E-17 1.17E-17 1.17E-17 1.17E-17 1.17E-17 1.17E-17 1.17E-17 1.17E-17
ADULT MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	2.02E-17 2.43E-12 2.60E-14 1.71E-12 1.85E-14 1.30E-17 1.68E-17 5.26E-13 5.68E-15 5.68E-15 5.68E-17 6.88E-17 6.88E-17 7.19E-16 7.84E-14 5.55E-14 7.18E-15 6.88E-17 7.18E-17
MAXIMUM CALCULATED CONC IN BEEFFAT mg/Kg	1.91E-12
MAXIMUM CALCULATED CONC IN BEEF mg/Kg	2.11E-12 1.72E-13 1.73E-14 1.73E-14 1.35E-14 1.15E-17 1.15E-17 1.15E-17 1.15E-17 1.15E-17 1.25E-17
TRANSFER COEFFICIENT BEEF Day/Kg	1.15E 08 6.31E 01 1.20E 05 1.59E 07 1.18E 06 9.12E 07 4.90E 05 5.37E 07 5.37E 07 5.37E 07 1.35E 06 3.98E 05 3.98E 07 7.12E 04 7.74E 07 7.14E 07 7.14E 07 7.14E 07 7.16E 07
DIET UPTAKE BEEF Unitless	5.00E+00
MAXIMUM CALCULATED CONC IN DIET (beef) mg/Kg	1.42E - 07 3.11E - 10 6.55E - 10 1.17E - 06 8.00E - 07 1.15E - 09 2.78E - 11 1.15E - 09 2.24E - 07 3.84E - 11 1.35E - 07 5.75E - 10 6.75E - 11 1.04E - 10 1.04E - 10 1.04E - 10 1.04E - 10 1.05E - 10 1.06E - 10
	Acetonitrile Acetonitrile Aldrin Atrazine Benzaldehyde Benzofuran Benzoic Acid Benzoir Acid Benzoir Acid Benzoir Acid Benzoirile 4-Chlorobiphenyl 4-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfone b.p.DDE p.p.DDE p.p.

Table 8C-11 (Continued)

Acenaphthalene 6.99E-08 2.95E-04 2.66E-13 5.56E-13 5.56E-13 5.56E-13 5.56E-13 5.56E-13 5.10E-13	PAHS				1	101
7.88E-08 2.09E-04 2.14E-10 5.13E-12 6.25E-09 6.25E-09 1.55E-09 1.24E-09 1.55E-09 1.55E-09 1.55E-14 2.01E-08 2.25E-08 4.17E-03 3.80E-03 3.80E-03 3.80E-14 1.53E-14 2.01E-09 3.80E-03 3.80E-03 3.80E-12 1.53E-14 2.01E-09 3.80E-14 1.53E-14 1.53E-09 1.00E-03 9.51E-09 9.10E-12 9.60E-08 5.50E-04 6.85E-14 6.55E-13 1.50E-14 1.00E-03 9.51E-09 9.10E-12 9.60E-08 5.50E-04 6.91E-10 6.9	aphthalene	6.99E-08	2.95E-04	2.67E-10	2.56E-13	6.38E-13
6.25E-09 6.61E-02 5.36E-09 7.75E-09 1.29E-12 6.72E-09 7.94E-02 6.41E-09 6.73E-09 1.59E-12 1.24E-09 6.73E-09 7.94E-02 6.44E-09 6.73E-09 1.19E-12 2.01E-08 9.33E-04 2.44E-10 2.01E-08 3.00E-03 3.02E-10 1.90E-12 1.23E-10 1.25E-04 1.09E-14 1.23E-10 1.25E-04 1.09E-14 1.51E-10 1.25E-04 1.00E-04 1.61E-13 1.25E-04 1.00E-04 1.61E-13 1.25E-08 1.00E-03 9.51E-09 9.10E-12 3.67E-07 1.00E-03 9.51E-09 9.10E-12 3.67E-07 1.00E-03 9.51E-09 9.10E-12 3.67E-07 1.00E-03 9.51E-09 9.10E-12 3.67E-08 1.00E-03 9.51E-09 9.10E-12 3.03E-04 1.00E-03 9.51E-09 9.10E-12 9.1	aphthene	7.89E-08	2.09E-04	2.14E-10	Z-05E-13	1 285-13
6, 72E-09 1, 55E-02 1, 35E-09 1, 124E-02 6, 41E-09 6, 13E-12 1, 13E-12 1, 13E-13 1, 13E-14 1, 13E-15 1, 13E-14 1, 13E-15 1, 13	o(a)pyrene	6.25E-09	6.61E-02	5.36E-09	5.135-12	202.1
acene 6.22E-09 7.94E-02 6.41E-09 6.13E-12 1.24E-09 1.19E-12 1.24E-10 1.24E-10 1.25E-09 1.25E-09 1.25E-09 1.25E-10 1.25E-	Sene	6.72E-09	1.55E-02	1.35E-09	1.296-12	3.225-12
2.29E-08 4,17E-03 1.24E-09 1.19E-12 1.13E-08 6.03E-04 8.81E-11 2.33E-14 2.01E-08 9.33E-04 2.44E-10 2.33E-13 2.01E-09 3.82E-10 3.82E-10 2.33E-13 7.75E-09 3.82E-10 3.66E-13 1.23E-11 1.62E-04 2.07E-13 4.59E-15 1.47E-05 2.69E-04 2.07E-13 4.59E-15 1.47E-05 2.69E-06 1.09E-14 1.04E-17 2.69E-06 1.09E-14 2.47E-16 2.47E-16 5.15E-10 3.24E-05 2.58E-13 5.24E-16 7.34E-11 2.40E-14 2.53E-16 1.04E-17 7.24E-01 2.58E-13 5.24E-16 2.42E-13 1.35E-03 6.31E-07 1.10E-13 1.05E-16 3.6E-03 1.00E-03 9.51E-09 9.51E-13 5.6E-04 2.00E-03 9.51E-09 9.10E-12 7.03E-04 6.85E-10 6.56E-13 7.03E-04 6.95E-10 9.11E-05 7.03E-04 6.91E-10 6.91E-10 7.03E-04 6.91E-10	oro(a h)anthracana	6.22F-00	7.94E-02	6.41E-09	6.13E-12	1.53E-11
1.13E-08 6.03E-04 8.81E-11 8.43E-14 2.01E-08 9.33E-04 2.44E-10 2.33E-13 2.01E-08 3.80E-03 3.82E-10 3.66E-13 3.84E-11 1.62E-04 2.07E-13 1.98E-16 1.23E-10 3.26E-03 4.80E-12 4.59E-16 1.47E-05 7.24E-07 1.38E-10 1.32E-13 2.69E-06 1.09E-14 1.04E-17 2.69E-06 1.09E-14 1.04E-17 3.13E-10 3.24E-05 2.58E-13 2.47E-16 5.31E-11 2.69E-04 5.58E-13 5.47E-16 5.31E-11 2.69E-04 1.61E-13 1.04E-17 7.24E-01 2.58E-13 5.47E-16 5.77E-11 2.59E-04 1.61E-13 1.05E-16 1.35E-08 6.31E-07 1.10E-13 1.05E-16 5.56E-08 1.00E-03 9.51E-09 9.10E-12 3.46E-07 2.50E-04 6.85E-10 3.88E-14 5.50E-04 6.85E-10 6.56E-13 5.50E-04 6.91E-07 6.91E-09 6.51E-10 6.51E-10 6.51E-10	conthone	2 29F-08	6.176-03	1.24E-09	1.19E-12	2.96E-12
2.33E-13 2.01E-08 9.33E-04 9.84E-11 1.62E-04 1.62E-04 1.62E-04 2.07E-13 1.62E-10 1.62E-04 2.07E-13 1.68E-10 1.62E-04 1.62E-04 2.07E-13 1.68E-10 1.62E-04 2.06E-03 2.66E-13 1.62E-10 2.66E-13 1.66E-13 2.66E-10 2.66E-10 2.66E-10 2.66E-10 3.67E-07 1.00E-03 2.00E-03 3.67E-07 1.00E-03 2.00E-03 2.00E-03 3.67E-07 1.00E-03 2.00E-03 3.67E-07 1.00E-03 2.00E-03 3.67E-09 2.00E-03 3.67E-09 2.00E-03 3.67E-09 2.00E-03 3.67E-07 2.66E-10 3.68E-14 3.68E-		4 477 00	6 OZE-0/	8 81E-11	8-43E-14	2.10E-13
2.01E-08 9.53E-04 2.44E-10 3.66E-13 7.75E-09 3.82E-10 2.07E-13 1.98E-16 9.34E-11 1.62E-04 2.07E-13 1.98E-16 1.25E-10 1.26E-07 1.38E-10 1.98E-16 1.47E-05 2.69E-06 1.09E-14 1.04E-17 2.69E-06 1.09E-14 1.04E-17 2.69E-10 3.24E-05 2.58E-13 2.45E-16 7.31E-11 2.40E-04 1.61E-13 2.42E-16 5.17E-11 2.40E-04 1.61E-13 2.42E-16 5.24E-01 2.58E-10 2.42E-16 1.35E-08 6.31E-07 1.10E-13 1.05E-16 3.6E-07 1.00E-03 9.51E-09 9.10E-12 3.6E-08 1.00E-03 9.51E-09 9.10E-12 3.6E-10 2.50E-04 6.85E-10 6.56E-13 6.55E-08 5.50E-04 6.85E-10 6.56E-13 7.03E-04 6.91E-07 6.91E-10 6.51E-10	rene	1.15E-US	0.035-04	2.00	2 225-12	5 R2F-13
7.75e-09 3.80E-03 3.82E-10 3.82E-10 9.84e-11 1.62e-04 2.07e-13 1.98e-16 1.23e-10 3.24e-05 1.38e-10 1.32e-13 1.47e-05 2.69e-06 1.09e-14 1.04e-17 3.13e-10 3.24e-05 2.58e-13 2.47e-16 5.15e-10 3.24e-05 2.58e-13 2.47e-16 7.31e-11 2.40e-04 1.61e-13 2.47e-16 5.89e-04 5.58e-13 2.47e-16 7.24e-01 2.59e-10 2.47e-16 1.35e-08 6.31e-07 1.10e-13 1.05e-16 6.55e-08 1.00e-03 8.49e-10 8.13e-13 3.6e-07 2.00e-03 4.06e-11 3.88e-14 3.6e-07 2.00e-03 4.06e-11 3.88e-14 5.06e-04 6.85e-10 6.56e-13 6.56e-13 7.03e-04 6.91e-07 6.91e-10 6.51e-10	anthrene	2.01E-08	9.55E-04	2.44E-10	7 772-17	0 125-13
9.84e-11 1.62e-04 2.07e-13 1.98e-16 1.23e-10 1.23e-10 1.23e-10 1.47e-05 1.38e-10 1.47e-05 1.48e-10 1.47e-05 1.47e-05 1.69e-06 1.09e-14 1.04e-17 1.32e-13 1.54e-16 1.04e-17 1.35e-10 1.54e-16 1.51e-11 1.55e-04 1.61e-13 1.54e-16 1.54e-16 1.54e-01 1.35e-01 1.35e-01 1.00e-03 9.51e-09 1.00e-12 1.55e-01 1.00e-03 9.51e-09 1.00e-12 1.00e-12 1.00e-03 9.51e-09 1.00e-12 1.00e-03 9.51e-09 1.00e-12 1.00e-03 9.51e-09 1.00e-03 9.55e-03 9.51e-09 1.00e-03 9.51e-09 9.55e-09 1.00e-03 9.51e-09 9.55e-09 9.55e-09 9.50e-04 9.55e-09 9.50e-04 9.55e-09 9.50e-04 9.55e-09 9.50e-04 9.55e-09 9.50e-04 9.5	94	7.75E-09	3.80E-03	3.82E-10	3.00E-13	7. 12. 7
1.23E-10 3.02E-03 4.80E-12 1.47E-05 3.13E-10 3.24E-07 1.38E-10 1.37E-13 1.32E-13 1.3	2 9	0 845-11	1-62E-04	2.07E-13	1.98E-16	4.94E-16
1,47E-05 3,13E-10 3,24E-07 1,38E-10 1,07E-17 2,69E-06 1,09E-14 1,04E-17 1,04E-17 2,69E-06 1,09E-14 2,58E-13 2,47E-16 2,47E-16 2,47E-16 2,40E-04 1,161E-13 2,40E-04 1,161E-13 2,40E-10 1,00E-03 3,14E-13 1,00E-03 3,14E-13 1,00E-03 3,14E-03 2,00E-13 3,14E-03 3,14E-03 2,10E-12 3,14E-03 2,13E-13 4,06E-11 3,18E-13 6,56E-13		1 275-10	\$ 025-03	4-80E-12	4.59E-15	1.15E-14
3.75E-10 2.69E-06 1.09E-14 1.04E-17 6.15E-10 3.24E-05 2.58E-13 2.47E-16 6.15E-11 2.40E-04 5.58E-13 5.34E-16 5.77E-11 2.40E-04 1.61E-13 1.54E-16 7.24E-01 2.69E-11 2.55E-10 2.47E-16 1.35E-08 6.31E-07 1.10E-13 1.05E-16 3.67E-07 1.00E-03 9.51E-09 9.10E-12 3.67E-07 2.00E-03 9.51E-09 9.10E-12 3.60E-08 5.50E-04 6.85E-10 6.56E-13 7.05E-06 5.50E-07 6.95E-10 6.56E-13 7.05E-06 5.50E-07 6.91E-07 6.51E-09 2.13E-07 6.91E-07 6.91E-07 6.51E-09	101 0001120116	1 775-05	7 2/E-07	1 38F-10	1.32E-13	3.29E-13
6.55E-08 6.55E-08 6.55E-08 6.55E-08 6.55E-08 6.55E-08 7.08E-04 7.08E-11 7.08E-03 7.08E-10 7.08E-11 7.08E-04 7.08E-13 7.08E-14 7.08E-16 7.08E-14 7.08E-16 7.0		1,475-05	20,742.0	2005-17	1 04F-17	2-60E-17
6.15E-10 5.24E-05 2.58E-13 7.31E-11 2.40E-04 1.61E-13 7.24E-01 2.40E-14 2.40E-14 2.40E-14 1.54E-16 2.42E-13 2.44E-10 2.44E-	ne	3.13E-10	2.69E-U6	41 - UVE - 14	1,01,0	4 145-14
7.31e-11 5.89e-04 5.58e-13 5.34e-10 5.17e-11 2.40e-04 1.61e-13 1.54e-16 7.24e-01 2.69e-11 2.53e-10 2.42e-13 1.35e-08 6.31e-07 1.10e-13 1.05e-16 3.67e-07 2.00e-03 9.51e-09 9.10e-12 3.57e-07 2.00e-03 9.51e-09 9.10e-12 7.05e-06 5.50e-04 6.85e-10 6.56e-13 7.05e-08 5.50e-04 6.85e-10 6.56e-13 7.05e-04 1.00e-03 9.11e-05 6.56e-13 7.05e-04 1.00e-03 9.11e-05 6.56e-13		6.15E-10	3,24E-05	2.58E-13	Z.4/E-10	0 100 10
5.77E-11 2.40E-04 1.61E-13 1.54E-16 7.24E-01 2.69E-11 2.55E-10 2.42E-13 1.05E-08 6.31E-07 1.10E-13 1.05E-16 1.05E-16 3.45E-09 2.60E-10 9.51E-09 9.51E-09 9.51E-09 7.03E-04 6.85E-10 6.51E-07 2.50E-03 9.51E-09 9.51E-09 3.88E-14 6.56E-13 6.56E-13 6.56E-13 6.51E-09 9.11E-05 6.56E-13 6.51E-10 6.91E-07 6.51E-10	orohenzene	7.316-11	5.89E-04	5.58E-13	5.34E-10	1.325-13
6.55e-08 1.00e-03 8.49e-10 2.42e-13 6.55e-08 1.00e-03 8.49e-10 8.13e-12 3.67e-07 2.00e-03 9.51e-09 9.10e-12 3.67e-07 2.00e-03 9.51e-09 9.10e-12 7.03e-04 6.85e-10 6.56e-13 7.03e-04 6.85e-10 6.56e-13 2.13e-07 2.50e-01 6.91e-07 6.61e-10		F 175.11	20 - 40E - 04	1.61E-13	1.54E-16	3.84E-16
6.55E-08 6.31E-07 1.10E-13 1.05E-16 1.35E-08 1.35E-08 1.00E-03 9.51E-09 9.10E-12 3.67E-07 1.00E-03 9.51E-09 9.10E-12 9.00E-03 5.05E-04 6.85E-10 6.56E-13 6.5	auazuado.	10.10	2 405-41	2 525-10	2.42F-13	6.03E-13
6.55E-08 1.00E-03 8.49E-10 8.13E-13 3.67E-07 2.00E-03 9.51E-09 9.10E-12 3.13E-09 1.00E-03 4.06E-11 5.50E-04 6.85E-10 6.56E-13 6.56E-13 2.13E-04 1.00E-02 9.11E-05 8.72E-08 2.13E-07 2.50E-01 6.91E-07 6.61E-10		(.24E-UI	7.075	K. JJE 10		/4 111
6.55E-08 1.00E-03 8.49E-10 8.13E-13 3.67E-07 2.00E-03 9.51E-09 9.10E-12 3.13E-09 1.00E-03 4.06E-11 3.88E-14 3.50E-08 5.50E-04 6.85E-10 6.56E-13 7.03E-04 1.00E-02 9.11E-05 8.72E-08 2.13E-07 2.50E-01 6.91E-07 6.61E-10		1.35E-08	6.31E-07	1.10E-13	1.05E-16	2.63E-10
6.55E-08 1.00E-03 8.49E-10 8.13E-13 3.67E-07 2.00E-03 9.51E-09 9.10E-12 3.13E-09 1.00E-03 4.06E-11 3.88E-14 5.05E-08 5.50E-04 6.85E-10 6.56E-13 7.03E-04 1.00E-02 9.11E-05 8.72E-08 2.13E-07 2.50E-01 6.91E-07 6.61E-10				1		0 075 43
3.67E-07 2.00E-03 9.51E-09 9.10E-12 3.13E-09 1.00E-03 4.06E-11 3.88E-14 3.88E-14 5.50E-08 5.50E-08 5.50E-04 6.85E-10 6.91E-05 8.72E-08 5.13E-07 2.13E-07 6.61E-10	>	6.55E-08	1.00E-03	8.49E-10	8.13E-13	2.035-12
3.13E-09 1.00E-03 4.06E-11 3.88E-14 5.68E-19 6.56E-13 6.56E-13 7.03E-04 1.00E-02 9.11E-05 8.72E-08 2.13E-07 2.50E-01 6.91E-07 6.61E-10		3.676-07	2.00E-03	9.51E-09	9.10E-12	2.2/E-11
9.60E-08 5.50E-04 6.85E-10 6.56E-13 7.03E-04 1.00E-02 9.11E-05 8.72E-08 2.13E-07 2.50E-01 6.91E-07 6.61E-10	<u> </u>	3 13F-09	1.00E-03	4.06E-11	3.88E-14	9.69E-14
7.03E-04 1.00E-02 9.11E-05 8.72E-08 2.13E-07 2.13E-07 2.50E-01 6.91E-07 6.61E-10	5	200	70-1011	4 85E-10	6.56E-13	1.64E-12
1.00E-02 9.11E-03 6.61E-10 2.50E-01 6.91E-07 6.61E-10		9.60E-US	2.50E-04	0.075	8 725-08	2 18F-07
2.50e-01 6.91e-07 6.61e-10		7.03E-04	1.00E-02	9.11E-U5	0.125-00	4 455.00
		2.13E-07	2.50E-01	6.91E-07	0.01E-10	1.035-07

DUF = Diet uptake factor, pollutant concentration ratio between farm product and feed. Specific to pollutant and product (unitless).

8C.5.1 Dioxins

The DUFs for dioxin were taken from current research that has investigated the feed/product pollutant relationship. Fries and Paustenbach (1990) reported a steady-state transfer ratio for dioxin of 5-to-1 between milk fat and dairy feed (dry weight), and between beef fat and cattle feed (dry weight). These DUFs were used to calculate dioxin concentrations in milk fat and beef fat.

8C.5.2 Other Pollutants

Concentrations for inorganics as well as all other organics were calculated in milk and beef. The DUFs for these pollutants were calculated by multiplying transfer coefficients (day/kg) by the daily feed intake, 22.45 kg/day (dairy cattle), and 13 kg/day (beef cattle). Transfer coefficients (TC) for the organics were derived using equations developed by Travis et al. (1988):

$$TC_{milk} = 10^{(-8.09 + Log K_{ow})}$$

 $TC_{beef} = 10^{(-7.6 + Log K_{ow})}$

The log K_{OW} can be found in Appendix 8B, Table 8B-1.

Transfer coefficients for the inorganics were identified by Baes et al. (1984) for dairy and beef cattle.

The calculated pollutant concentrations in milk and milk fat as well as daily intakes are summarized in Tables 8C-4 and 8C-5 (average levels) and Tables 8C-6 and 8C-7 (maximum levels). Beef and beef fat pollutant concentrations and daily intakes are

summarized in Tables 8C-8 and 8C-9 (average levels) and Tables 8C-10 and 8C-11 (maximum levels).

APPENDIX 8C

CITED REFERENCES

Baes, C., R.D. Sharp, A.L. Sjoreen, and R.W. Shor. 1984. "A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides Through Agriculture." Prepared by Oak Ridge National Laboratory for the U.S. Department of Energy, ORNL-5786.

Fries, G.F. and D.J. Paustenbach. 1990. "Evaluation of Potential Transmission of 2,3,7,8 - Tetrachlorodibenzo-p-Dioxin-Contaminated Incinerator Emissions to Humans Via Food." J. Toxicol Environ. Health 29:1-43.

Holton, G., C.G. Travis, E.L. Etmier, F.R. O'Donnell, D.M. Hetrick, and E. Dixon. 1984. "Multiple-Pathways Screening - Level Assessment of a Hazardous Waste Incineration Facility." Prepared for the U.S. EPA and the U.S. DOE by Oak Ridge National Laboratory, ORNL/TM 8652; DE 85000156.

Kabata-Pendias, A., and H. Pendias. 1985. <u>Trace Elements in Soils and Plants</u>. CRC Press, Inc., Boca Raton, Florida.

NRCC (National Research Council of Canada). 1978. "Effects of Arsenic in the Canadian Environment." NRCC/CNRC, Ottawa. Publication No. NRCC 15391 of the Environmental Secretariat.

Travis, C.C., and A.D. Arms. 1988. "Bioconcentration of organics in beef, milk, and vegetation." Environ. Sci. Technol. 22:271-274.

Travis, C.C., H.A. Hattemer-Frey, and A.D. Arms. 1988. "Relationship between dietary intake of organic chemicals and their concentrations in human adipose tissue and breast milk." <u>Arch. Environ. Contam. Toxicol</u>. 17:473.

APPENDIX 8D

CALCULATION OF THE ESTIMATED DAILY INTAKE FOR THE SOIL/DUST INGESTION ROUTE OF EXPOSURE

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Soil/Dust Ingestion Route of Exposure Adult, Resident-A Scenario

ORGANICS Acetonitrile Aldrin Atrazine Benzaldehyde Benzofuran Benzofuran Benzoic Acid Benzoic Acid Carbazole 4-Chlorobiphenyl 4-Chlorobiphenyl 4-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfone	CALCULATED	ESTIMATED		ESIIMAIED
enyl phenyl y (methyl sul fone y (methyl sul fone	SOIL SOIL	DAILY	CALCULATED CONC IN SOIL	DAILY INTAKE
itrile dehyde uran trile ole olbhenyl lorobiphenyl trobhenylmethylsulfone rophenylmethylsulfone	.1M mg/Kg	mg/Kg/day	.1M mg/Kg	mg/Kg/day
itrile ne n				
ne dehyde uran c Acid itrile ole cobjphenyl lorobjphenyl rophenylmethylsulfone	5.22E-09	7.45E-15	5.29E-09	7.56E-15
he Jehyde Lran trile cobjphenyl lorobjphenyl orophenylmethylsulfone rophenylmethylsulfone	5.60E-09	8.00E-15	5.68E-09	_
ichyde uran : Acid trile obiphenyl orobiphenyl orobiphenyl orobiphenyl	1.22E-09	1.75E-15	1.24E-09	1.77E-15
Iran itrile obiphenyl orobiphenyl ophenylmethylsulfone ophenylmethylsulfone	1.13E-06	1.61E-12	1.14E-06	-
trile lle obiphenyl orobiphenyl ophenylmethylsulfone ophenylmethylsulfone	2.16E-06	3.09E-12	2.19E-06	3.13E-12
trile ole orbiphenyl orobiphenyl ophenylmethylsulfone	5.43E-07	7.76E-13	5.51E-07	
ile obiphenyl orobiphenyl orphenylmethylsulfone ophenylmethylsulfoxide	5.22E-10	7.45E-16	5.29E-10	7.56E-16
obiphenyl orobiphenyl ophenylmethylsulfone ophenylmethylsulfoxide	1.04E-10	1.48E-16	1.05E-10	
orobiphenyl ophenylmethylsulfone ophenylmethylsulfoxide	3.66E-06	5.22E-12	3.71E-06	5.30E-12
ophenylmethylsulfone ophenylmethylsulfoxide	6.88E-08	9.83E-14	6.98E-08	9.97E-14
ophenylmethylsulfoxide	6.07E-07	8.67E-13	6.16E-07	
	7.48E-08		7.59E-08	1.08E-13
D.D-DDE	6.07E-10	8.67E-16	6.16E-10	8.80E-16
D. D-001	1.89E-09	2.70E-15	1.92E-09	2.74E-15
Dibenzofuran	1.08E-07		1.10E-07	1.57E-13
Dicyclopentadiene	2.47E-10		2.50E-10	3.57E-16
Dieldrin	1.15E-09	1.64E-15	1.16E-09	1.66E-15
Diisopropyl Methylphosphonate	1.92E-07	2.75E-13	1.95E-07	2.79E-13
3-Dimethylbenzene	3.21E-10	4.59E-16	3.26E-10	4.65E-16
Dimethyl Methylphosphonate	4.75E-06	6.78E-12	4.81E-06	6.88E-12
Dioxins/Furans (EPA TEFs)	6.41E-12	9.16E-18	6.51E-12	9.29E-18
Dithiane	1.95E-10	2.78E-16	1.97E-10	2.82E-16
2	1.11E-09	1.59E-15	1.13E-09	1.61E-15
Hexachlorobenzene	3.70E-09	5.29E-15	3.76E-09	5.37E-15
Hexachlorocyclopentadiene	1.03E-08	1.47E-14	1.05E-08	1.49E-14
Sodrin	2.90E-09	4.14E-15	2.94E-09	4.20E-15
Malathion	4.49E-09	6.41E-15	4.55E-09	6.51E-15
Methanol	2.12E-05	3.03E-11	2.15E-05	3.07E-11
4-Nitrophenol	4.66E-08	6.66E-14	4.73E-08	6.75E-14

Table 8D-1 (continued)

		6.20E-10 8.86E-16 1.68E-09 2.40E-15 5.94E-06 8.49E-12 2.64E-10 3.77E-16 1.92E-09 2.74E-15 7.07E-10 1.01E-15 3.76E-10 5.38E-16 8.07E-04 1.15E-09 5.03E-09 7.19E-15	9.89E-07 1.41E-12 5.59E-06 7.99E-12 5.72E-08 8.18E-14 8.76E-07 1.25E-12 5.25E-03 7.50E-09 1.76E-06 2.51E-12
rv rv ← ←		8.73E-16 6.3 2.36E-15 1.3 8.37E-12 5.3 2.70E-16 2.70E-15 1.0 9.95E-16 7.0 1.14E-09 8.7.08E-15 5.	1.39E-12 9. 7.88E-12 5. 8.06E-14 5. 1.23E-12 8. 7.39E-12 1.
5.39E-07 5.39E-07 1.08E-07 1.08E-07	1.08E-07 3.24E-07 1.08E-07 2.16E-07 1.08E-07	6.11E-10 1.65E-09 5.66E-10 2.60E-10 1.89E-09 6.97E-10 3.71E-10 7.95E-04	9.75E-07 5.51E-06 5.64E-08 8.64E-07 5.17E-03 1.73E-06
PANs Acenaphthalene Acenaphthene Benzo(a)pyrene Chrysene	Dibenzo(a,h)anthracene Fluoranthene Fluorene Phenanthrene Pyrene	Parathion Pentachlorobenzene Phenol Quinoline Supona Tetrachlorobenzene Trichlorobenzene Vapona	INORGANICS Antimony Arsenic Beryllium Cadmium Copper Lead Mercury

Annual average soil/dust ingestion rate (100 mg/day) Exposure frequency (365 days/year) Body weight (70 kg)

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Soil/Dust Ingestion Route of Exposure Adult, Resident-B Scenario

UM····· EDI ESTIMATED DAILY INTAKE mg/Kg/day	1.23E 2.88E 2.88E 2.68E 1.22E 1.23E
C SOIL CALCULATED ES CONC IN SOIL IM mg	8.60e-09 9.23e-09 2.23e-09 3.58e-06 8.95e-06 6.02e-06 1.23e-07 1.00e-09 3.11e-09 3.17e-07 5.29e-10 7.82e-06 1.83e-09 3.17e-07 5.29e-10 1.83e-09 5.10e-09 3.47e-07 5.29e-10 7.62e-06 7.66e-09 3.47e-07 5.29e-10 7.62e-06 5.10e-09 3.47e-07 5.29e-10 7.62e-06 5.10e-09 5.40e-09
soil EDI CULATED ESTIMATED ONC IN DAILY SOIL INTAKE .1M mg/Kg/day	1.21e. 7.28 4
C soil CALCULATED CONC IN SOIL .1M	8.47E-09 1.99E-09 1.83E-06 8.82E-07 1.69E-10 1.69E-10 1.22E-07 9.86E-10 1.26E-07 4.01E-10 1.86E-09 1.86E-10 1.86E-10 1.86E-10 1.86E-10 1.86E-10 1.86E-10 1.86E-10 1.86E-10 1.86E-10 2.13E-10 1.86E-10 1.86E-10 2.13E-10 1.86E-10 1.86E-10 2.13E-10 1.86E-10 2.13E-10 1.86E-10 1.86E-10 1.86E-10 2.13E-10 1.86E-10 1.8
	Acetonitrile Aldrin Atrazine Benzaldehyde Benzofuran Benzoic Acid Benzoic Acid Benzonitrile Carbazole 4-Chlorobiphenyl 4-Chlorobiphenyl 4-Chlorophenylmethylsulfone P.p-DDE P.p-DDE Dibenzofuran Dicyclopentadiene Disopropyl Methylphosphonate Dieldrin Diisopropyl Methylphosphonate Dimethyl Methylbenzene Dimethyl Methylphosphonate Dioxins/Furans (EPA TEFs) Dihtiane Endrin Hexachlorobenzene Hexachlorocyclopentadiene Isodrin Malathion Malathion Malathion Malathion Malathion Malathion Methanol

8D-3

Table 8D-2 (continued)

8.88E-07 8.88E-07 1.78E-07		1.78E-07 1.01E-09 2.73E-09 9.65E-06	6.04e-16 4.29e-10 6.15e-16 4.39e-15 3.11e-09 4.45e-15 1.62e-15 1.15e-09 1.64e-15 8.61e-16 6.12e-10 8.74e-16 1.85e-09 1.31e-03 1.87e-09 1.15e-14 8.17e-09 1.17e-14	2.26E-12 1.61E-06 2.29E-12 1.28E-11 9.09E-06 1.30E-11 1.31E-13 9.30E-08 1.33E-13 2.00E-12 1.42E-06 2.03E-12 1.20E-08 8.53E-03 1.22E-08 4.02E-12 2.85E-06 3.59E-12
8.75E-07 8.75E-07 1.76E-07 1.76E-07	1.76E-07 5.26E-07 1.76E-07	1.76E-07 9.93E-10 2.69E-09 9.51E-06	4.25E-10 3.07E-09 1.13E-09 6.03E-10 1.29E-03 8.06E-09	1.58e.06 8.96e.06 9.17e.08 1.40e.06 8.40e.03 2.81e.06
PANS Acenaphthalene Acenaphthene Benzo(a)pyrene Chrysene	Dibenzo(a,h)anthracene Fluoranthene Fluorene	Prienantiffere Parathion Pentachlorobenzene Phenol	Quinoline Supona Tetrachlorobenzene Trichlorobenzene Urea	INORGANICS Antimony Arsenic Beryllium Cadmium Copper Lead

Annual average soil/dust ingestion rate (100 mg/day) Exposure frequency (365 days/year) Body weight (70 kg)

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Soil/Dust Ingestion Route of Exposure Adult, Farmer Scenario

	C soil	3E	C soil	JM
	CALCULATED	ESTIMATED	CALCULATED	ESTIMATED
	SOIL	INTAKE	SOIL	INTAKE
	£.	mg/Kg/day	ML.	mg/Kg/day
	mg/Kg		mg/Kg	
ORGANICS				
Acetonitrile	5.06E-09	7.23E-15	5.14E-09	7.34E-15
Aldrin	5.44E-09	7.77E-15	5.52E-09	7.88E-15
Atrazine	1.19E-09	1.70E-15	1.20E-09	1.72E-15
Benzaldehyde	1.10E-06	1.57E-12	1.11E-06	1.59E-12
Benzofuran	2.10E-06	3.00E-12	2.13E-06	3.04E-12
Benzoic Acid	5.27E-07	7.53E-13	5.35E-07	7.64E-13
Benzonitrile	5.06E-10	7.23E-16	5.14E-10	7.34E-16
Carbazole	1.01E-10	1.44E-16	1.02E-10	1.46E-16
4-Chlorobiphenyl	3.55E-06	5.07E-12	3.60E-06	5.14E-12
4,4-Chlorobiphenyl	6.68E-08	9.55E-14	6.78E-08	9.68E-14
4-Chlorophenylmethylsulfone	5.89E-07	8.42E-13	5.98E-07	8.54E-13
4-Chlorophenylmethylsulfoxide	7.26E-08	1.04E-13	7.37E-08	1.05E-13
p,p-00E	5.89E-10	8.42E-16	5.98E-10	8.54E-16
p,p-001	1.83E-09	2.62E-15	1.86E-09	2.66E-15
Dibenzofuran	1.05E-07	1.50E-13	1.07E-07	1.52E-13
Dicyclopentadiene	2.39E-10	3.42E-16	2.43E-10	3.47E-16
Dieldrin	1.11E-09	1.59E-15	1.13E-09	1.61E-15
Diisopropyl Methylphosphonate	1.87E-07	2.67E-13	1.89E-07	2.71E-13
1,3-Dimethylbenzene	3.12E-10	4.45E-16	3.16E-10	4.52E-16
Dimethyl Methylphosphonate	4.61E-06	6.58E-12	4.67E-06	
Dioxins/Furans (EPA TEFs)	6.23E-12	8.89E-18	6.32E-12	9.02E-18
Dithiane	1.89E-10	2.70E-16	1.92E-10	2.74E-16
Endrin	1.08E-09	1.54E-15	1.09E-09	1.56E-15
Hexachlorobenzene	3.59E-09	5.13E-15	3.65E-09	5.21E-15
Hexachlorocyclopentadiene	1.00E-08	1.43E-14	1.01E-08	1,45E-14
Isodrin	2,81E-09	4.02E-15	2.85E-09	4.08E-15
Malathion	4.36E-09	6.23E-15	4.42E-09	6.32E-15
Methanol	2.06E-05	2.94E-11	2.09E-05	2.98E-11
4-Nitrophenol	4.52E-08	6.46E-14	4.59E-08	6.56E-14

8D-5

7.58E-13	7.58E-15	1.326-13	1,52E-15	1.526-15	4.56E-13	1.52E-13	3.04E-13	1.52E-13	8.60E-16	2.33E-15	8.24E-12	3.66E-16	2 AAE-15	700.0	9.60E-10	5.22E-16	1.12E-09	A 08E-15	20.00		1.37E-12	7.76E-12	7.94E-14	1.22E-12	7.28E-09	C1-377 C	1 2	2. IDE- 12
5.31E-07	5.31E-07	1.0/E-U/	1.07E-07	1.07E-07	3.19E-07	1.07E-07	2.13E-07	1.07E-07	6.02E-10	1.63E-09	5.77E-06	2 56F-10	4 045-00	1.000-109	6.86E-10	3.65E-10	7.83E-04	00-386 /	4.00E-07		9.60E-07	5.43E-06	5.56E-08	8.51E-07	5 00F-03	1 715.06	20101	1.50E-Ub
7.47E-13	7.47E-13	1.50E-13	1.50E-13	1.50E-13	4.49E-13	1.50E-13	3.00E-13	1.50F-13	8 48F-16	2 201-15	a 12E-12	2 415-14	2.010.0	2.62E-15	9.66E-16	5.15E-16	1 10F-09	7 000	0.00E-13		1.35E-12	7.65E-12	7.83E-14	1.20E-12	7 17E-00	2 / 01 / 0	Z. 40E 12	2.12E-12
5.23E-07	5.23E-07	1.05E-07	1.05E-07	1.05E-07	3.15E-07	1.05E-07	2, 10F-07	1 055-07	F 0/E-10	1 415.00	1.01E 07	0.072.00	Z.53E-10	1.83E-09	6.77E-10	3, 60F - 10	7 72E-04	200	4.81E-U9		9.46E-07	5,35E-06	5.48E-08	8 38F-07	20-22-03	J.06E-03	1.08E-U0	1.48E-06
PANS Acensuhthalene	Acenaphthene	Benzo(a)pyrene	Chrysene	Dibonio hlanthracene	Finoranthone	Fluorene	ot on other case	Phenalum ene	Pyrene	Parathion	Pentachlorobenzene	Phenol	Quinoline	Supona	Totrachlorohenzene	Tailot Japhonaono	I F I CRITOTODE I ZENE	orea	Vapona	INORGANICS	Antimony	Arcenic	millim			Copper	Lead	Mercury

Annual average soil/dust ingestion rate (100 mg/day) Exposure frequency (365 days/year) Body weight (70 kg)

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Soil/Dust Ingestion Route of Exposure Adult, Worker Scenario

MEDI ESTIMATED DAILY INTAKE mg/Kg/day	6.73E-15 1.46E-15 1.46E-15 7.00E-13 6.73E-16 1.34E-16 7.83E-14 7.83E-14 7.83E-14 7.83E-14 7.83E-14 7.83E-14 7.83E-16 1.48E-15 1.48E-15 6.12E-15 6.12E-15 7.77E-15 1.77E-15 6.77E-15 6.01E-16
CALCULATED ES CONC IN SOIL I SOIL I MB	7.64E-09 8.20E-09 1.78E-06 7.95E-07 7.95E-07 7.64E-10 1.52E-10 8.89E-07 1.01E-07 1.58E-07 2.82E-07 4.70E-09 1.58E-09 2.85E-00 6.95E-06 6.95E-06 6.95E-06 6.95E-06 6.95E-06 6.95E-06 6.95E-09 7.64E-09
GE EDI ESTIMATED DAILY INTAKE mg/Kg/day	6.63E-15 1.55E-15 1.55E-15 1.55E-15 6.90E-13 6.63E-16 1.37E-16 7.72E-14 7.72E-14 7.72E-14 7.72E-14 7.72E-14 7.72E-14 7.72E-14 7.72E-14 7.72E-14 7.72E-14 7.72E-14 7.72E-14 7.72E-14 7.72E-14 7.72E-14 7.72E-15 7.72E-14 7.72E-15 7.72E-14 7.72E-15 7.73E-15 7.7
Calculated Colculated	7.53E-09 8.08E-09 1.65E-09 7.84E-07 7.53E-10 1.50E-10 8.76E-07 1.08E-07 8.76E-07 1.56E-07 1.56E-07 2.73E-09 2.73E-09 2.73E-09 3.56E-07 4.63E-10 5.34E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.48E-09
	Acetonitrile Aldrin Atfazine Benzaldehyde Benzofuran Benzoir Acid Benzoir Acid Benzoir Acid Benzoir Acid Benzoir Acid A.4-Chlorobiphenyl 4,4-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfone b.p-DDT Dibenzofuran Dicyclopentadiene Dieldrin Disopropyl Methylphosphonate Dimethyl Methylbhosphonate Dimethyl Methylphosphonate Dimethyl Methylphosphonate Dimethyl Methylphosphonate Dimethyl Methylphosphonate Dimethyl Methylphosphonate Disopropyl Methylphosphonate Disopropyl Methylphosphonate Disopropyl Methylphosphonate Disopropyl Methylphosphonate Disopropyl Methylphosphonate Disopropyl Methylphosphonate Distopropyl Methylphosphonate Disopropyl Methylphosphonate Disopropyl Methylphosphonate Distopropyl Methylphosphonate Distopropyl Methylphosphonate Distopropyl Methylphosphonate Distopropyl Methylphosphonate Distopropyl Methylphosphonate Distoprophenol

8D-7

Table 8D-4 (continued)

PAHS				
Acenaphthalene	7.77E-07	6.85E-13	7.89E-07	6.95E-13
Acenaphthene	7.77E-07	6.85E-13	7.89E-07	6.95E-13
Benzo(a)pyrene	1.56E-07	1.37E-13	1.58E-07	1.39E-13
Chrysene	1.56E-07	1.37E-13	1.58E-07	1.39E-13
Dibenzo(a,h)anthracene	1.56E-07	1.37E-13	1.58E-07	1.39E-13
Fluoranthene	4.68E-07	4.12E-13	4.74E-07	4.18E-13
Fluorene	1.56E-07	1.37E-13	1.58E-07	1.39E-13
Phenanthrene	3.12E-07	2.75E-13	3.17E-07	2.79E-13
Pyrene	1.56E-07	1.37E-13	1.58E-07	1.39E-13
Parathion	8.82E-10	7.77E-16	8.95E-10	7.88E-16
Pentachlorobenzene	2.39E-09	2.10E-15	2.42E-09	2.13E-15
Phenol	8.45E-06	7.44E-12	8.58E-06	7.55E-12
Quinoline	3.76E-10	3.31E-16	3.81E-10	3.36E-16
Supona	2.73E-09	2.40E-15	2.77E-09	2.44E-15
Tetrachlorobenzene	1.01E-09	8.86E-16	1.02E-09	8.99E-16
Trichlorobenzene	5.36E-10	4.72E-16	5.43E-10	4.78E-16
Urea	1.15E-03	1.01E-09	1.16E-03	1.03E-09
Vapona	7.16E-09	6.30E-15	7.26E-09	6.39E-15
INORGANICS				
Antimony	1.41E-06	1.24E-12	1.43E-06	1.26E-12
Arsenic	7.96E-06	7.01E-12	8.07E-06	7.116-12
Beryllium	8.14E-08	7.17E-14	8.26E-08	7.28E-14
Cadmium	1.25E-06	1.10E-12	1.26E-06	1.116-12
Copper	7.47E-03	6.57E-09	7.57E-03	6.67E-09
Lead	2.50E-06	2.20E-12	2.54E-06	2.23E-12
Mercury	2.20E-06	1.94E-12	2.23E-06	1.97E-12

Annual average soil/dust ingestion rate (100 mg/day) Exposure frequency (225 days/year) Body weight (70 kg)

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Soil/Dust Ingestion Route of Exposure Child, Resident-A Scenario

MAXIMUM	CALCULATED ESTIMATED	1 6	- 6)								Ĭ			У		•	•		- '	M			•			N		•					4.73E-08 6.10E-13
	ESTIMATED C	INTAKE	(BD/6V/6m)		6.73E-14	7.23E-14	1.58E-14	1.46E-11	2.79E-11	7.01E-12	6.73E-15	1.34E-15	4.72E-11	8.88E-13	7.83E-12	9.65E-13	7.83E-15	2.44E-14	1.40E-12	3.18E-15	1.48E-14	2.48E-12	4.14E-15	6.12E-11	8.27E-17	2.51E-15	1.43E-14	4.78E-14	1.33E-13	3.74E-14	5.79E-14	2.74E-10	6.01E-13
AVERAGE	CALCULATED	SOIL	mg/Kg		5.22E-09	5.60E-09	1.22E-09	1.13E-06	2,16E-06	5.43E-07	5.22E-10	1.04E-10	3.66E-06	6.88E-08	6.07E-07	7.48E-08	6.07E-10	1.89E-09	1.08E-07	2.47E-10	1.15E-09	1.92E-07	3.21E-10	4.75E-06	6.41E-12	1,95E-10	1.11E-09	3.70E-09	1.03E-08	2.90E-09	4.49E-09	2.12E-05	4.66E-08
,				ORGANICS	Acetonitrile	Aldrin	Atrazine	Benzaldehyde	Benzofuran	Benzoic Acid	Benzonitrile	Carbazole	4-Chlorobiphenyl	4.4-Chlorobiphenyl	4-Chlorophenylmethylsulfone	4-Chlorophenylmethylsulfoxide	p,p-DDE	T00-0,0	Dibenzofuran	Dicyclopentadiene	Dieldrin	Diisopropyl Methylphosphonate	1,3-Dimethylbenzene	Dimethyl Methylphosphonate	Dioxins/Furans (EPA TEFs)	Dithiane	Endrin	Hexachlorobenzene	Hexachlorocyclopentadiene	Isodrin	Malathion	Methanol	4-Nitrophenol

Annual average soil/dust ingestion rate (200 mg/day) Exposure frequency (365 days/year) Body weight (15.5 kg)

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Soil/Dust Ingestion Route of Exposure Child, Resident-B Scenario

	Calculated Conc IN Soil Conc IN Soil Soil IN	EDI ESTIMATED DAILY INTAKE mg/Kg/day	C SOIL CALCULATED ES CONC IN I SOIL 1 1 1 mg	M EDI ESTIMATED DAILY INTAKE mg/Kg/day
Acetonitrile Aldrin Aldrin Atrazine Benzaldehyde Benzofuran Benzoritrile Carbazole 4-Chlorobiphenyl 4-Chlorobiphenyl 4-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfoxide p, p-DDE	8.47E-09 1.89E-09 1.89E-09 3.51E-06 8.82E-07 1.69E-10 1.76E-07 1.22E-07 1.76E-07	1.09E-13 2.35E-14 2.35E-14 2.35E-14 1.09E-14 1.27E-11 1.27E-11 2.40E-14 2.40E-14 4.03E-16 4.03E-16	8.60E-09 2.23E-09 2.23E-09 1.86E-06 3.57E-06 8.95E-07 1.13E-07 1.00E-06 1.13E-07 1.00E-06 1.78E-07 4.07E-10 1.89E-09 3.11E-07 4.07E-10 1.89E-09 3.11E-07 3.11E-07 4.07E-10	1.11e-13 2.60e-14 1.15e-13 1.50e-11 1.29e-12 1.36e-12 1.29e-14 1.29e-12 1.29e-12 1.36e-12 1.36e-12 1.36e-12 1.36e-12
Endrin Hexachlorobenzene Hexachlorocyclopentadiene Isodrin Malathion Methanol	1.81E-09 6.01E-09 1.67E-08 4.71E-09 7.29E-09 3.44E-05 7.57E-08	2.33E-14 7.76E-14 2.16E-13 6.08E-14 9.41E-14 4.44E-10	1.835-09 6.10E-09 1.70E-08 7.40E-09 3.49E-05 7.68E-08	2.35E-14 7.87E-14 2.19E-13 6.16E-14 9.55E-14 4.51E-10

6/24/91

8D-11

	8.88E-07 8.88E-07 1.78E-07 1.78E-07 5.34E-07 1.78E-07 5.34E-07
	1.13E-11 1.13E-11 2.27E-12 2.27E-12 6.79E-12 4.53E-12
rable &D-6 (continued)	8.75E-07 8.75E-07 1.76E-07 1.76E-07 5.26E-07 1.76E-07 3.25E-07
	PAHS Acenaphthalene Acenaphthene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene

PAHS				
Acenaphthalene	8.75E-07	1.13E-11	8.88E-07	1.15E-11
Acenaphthene	8.75E-07	1.13E-11	8.88E-07	1.15E-11
Benzo(a)pyrene	1.76E-07	2.27E-12	1.78E-07	2.30E-12
Chrysene	1.76E-07	2,27E-12	1.78E-07	2.30E-12
Dibenzo(a.h)anthracene	1.76E-07	2.27E-12	1.78E-07	2.30E-12
Fluoranthene	5.26E-07	6.79E-12	5.34E-07	6.89E-12
Fluorene	1.76E-07	2.27E-12	1.78E-07	2.30E-12
Phenanthrene	3.51E-07	4.53E-12	3.57E-07	4.60E-12
Pyrene	1.76E-07	2.27E-12	1.78E-07	2.30E-12
Parathion	9.93E-10	1.28E-14	1.01E-09	1.30E-14
Pentachlorobenzene	2.69E-09	3.47E-14	2.73E-09	3.52E-14
Phenol	9.51E-06	1.23E-10	9.65E-06	1.25E-10
Quinoline	4.23E-10	5,46E-15	4.29E-10	5.54E-15
Supona	3.07E-09	3.96E-14	3.11E-09	4.02E-14
Tetrachlorobenzene	1,13E-09	1.46E-14	1.15E-09	1.48E-14
Trichlorobenzene	6.03E-10	7.78E-15	6.12E-10	7.89E-15
Urea	1.29E-03	1.67E-08	1.31E-03	1.69E-08
Vapona	8.06E-09	1.04E-13	8.17E-09	1.05E-13
INORGANICS				
Antimony	1.58E-06	2.04E-11	1.61E-06	2.07E-11
Arsenic	8.96E-06	1.16E-10	9.09E-06	1.17E-10
Beryllium	9.17E-08	1.18E-12	9.30E-08	1.20E-12
Cadmium	1.40E-06	1.81E-11	1.42E-06	1.84E-11
Copper	8,40E-03	1.08E-07	8.53E-03	1.10E-07
Lead	2.81E-06	3.63E-11	2.85E-06	3.68E-11
Mercury	2.48E-06	3.20E-11	2.52E-06	3.25E-11

Annual average soil/dust ingestion rate (200 mg/day) Exposure frequency (365 days/year) Body weight (15.5 kg)

815C/A8d.51

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Soil/Dust Ingestion Route of Exposure Child, Farmer Scenario

ED S S S S S S S S S S S S S S S S S S S		C soil	ED I	C SOIL	EDI	
onitrile 5.06E-09 6 in 2.1n mg/kg mg/kg mg/kg sidehyde 5.44E-09 7 2.1ne 6 oic Acid 5.27E-07 6 oic Acid acole in 1.10E-06 2.00E-10 6 oic Acid acole in 1.01E-10 7 1.05E-07 7 1.05E-07 1.00E-08 1.00E-09 1.0		CALCULATED CONC IN SOIL	ESTIMATED DAILY INTAKE	CALCULATED CONC IN SOIL	ESTIMATED DAILY INTAKE	
onitrile in zine zine zine zine zine zine zine		.1M mg/Kg	mg/Kg/day	.1M mg/Kg	mg/Kg/day	
bit in the contrile contrile contrile contrile contrile contrile contrile contrile contrile control contrile contrile contrile contrile contrile contrile contrile contrile contrile control c						
te 1.08E-09 1.108E-09 1.10E-06 2.25.27E-07 6.25.20E-10 6.25.20E-08 8.25.20E-07 7.26E-08 7.26E-08 7.26E-07 7.26E	onitrile	5.06E-09	6.53E-14	5.14E-09	6.63E-14	
te 1.08E-09 1.10E-05 1.10E-05 1.10E-05 1.20E-10 6 5.06E-10 6 5.06E-10 6 5.06E-10 7.06E-08 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	<u>.</u>	5.44E-09	7.02E-14	5.52E-09	7.12E-14	
1.10E.06 5.27E.07 6.08E.08 7.08E.08 7.08E.08 7.08E.08 7.08E.09	zine	1.19E-09	1.53E-14	1.20E-09	1.55E-14	
2.10E.06 5.27E.07 6.68E.08 7.89E.07 7.89E.07 7.89E.07 7.89E.07 7.89E.07 7.89E.07 7.89E.07 7.89E.07 7.89E.07 7.89E.07 7.89E.07 7.89E.07 7.89E.07 7.89E.07 7.89E.07 7.89E.07 7.89E.07 7.89E.09 7.99E.09 7.99E.09 7.99E.09 7.99E.09 7.99E.09 7.99E.09 7.99E.09 7.9	ldehyde	1.10E-06	1.41E-11	1.11E-06	1.43E-11	
5.27E-07 5.06E-10 6.68E-10 6.68E-08 7.26E-08 7.26E-08 1.83E-07 1.83E-07 1.11E-09 1.11E-06 1.87E-10 1.87E-10 1.88E-10 1.08E-09 1.08E-09 2.31E-06 2.31E-06 3.59E-10 3.59E-09	ofuran	2.10E-06	2.71E-11	2.13E-06	2.75E-11	
5.06e-10 6.08e-00 5.08e-08 6.08e-08 7.26e-08 7.26e-08 7.26e-08 7.36e-08 7.36e-09 7.36e-09 7.36e-09 7.36e-09 7.36e-09 7.36e-09 7.36e-09 7.36e-09 7.36e-09 7.36e-09	oic Acid	5.27E-07	6.80E-12	5.35E-07	6.90E-12	
te 1.01E-10	onitrile	5.06E-10	6.53E-15	5.14E-10	6.63E-15	
3.55E.06 6.68E.08 7.26E.08 1.83E.09 1.05E.07 1.05E.07 1.11E.09 2.39E.10 3.12E.10 4.61E.06 6.23E.12 1.08E.09 1.08E.09 1.08E.09 2.36E.09 2.36E.09 2.36E.09 2.36E.09 2.36E.09 2.36E.09 2.36E.09 2.36E.09 2.36E.09 2.36E.09 2.36E.09	azole	1.01E-10	1.30E-15	1.02E-10	1.32E-15	
6.68E-08 5.89E-07 7.89E-07 7.83E-09 7.83E-09 7.83E-09 7.83E-07 7.83E-09	lorobiphenyl	3.55E-06	4.58E-11	3.60E-06	4.65E-11	
de 7.26E-08 9 7.36E-10 7.36E-10 7.36E-10 7.36E-10 7.39E-10 7.39E-1	Chlorobiphenyl	6.68E-08	8.62E-13	6.78E-08	8,75E-13	
de 7.26E-08 9 1.83E-09 1.05E-07 1.11E-09 1.11E-06 1.83E-10 2.35E-10 2.35E-10 2.35E-10 2.35E-09 1.00E-08 1.00E-09 1.00E-0	lorophenylmethylsulfone	5.89E-07	7.60E-12	5.98E-07	7.71E-12	
5.89E-10 1.83E-09 2.39E-07 1.11E-09 3.12E-10 5.81E-06 5.81E-06 1.08E-09 1.00E-08 1.00E-08 1.00E-09 1.00E-09 1.00E-09	lorophenylmethylsulfoxide	7.26E-08	9.37E-13	7.37E-08	9.51E-13	
1.83E-09 1.05E-07 1.05E-10 1.87E-10 3.12E-10 6.83E-10 1.08E-09 1.00E-08 1.00E-08 1.00E-08 1.00E-09		5.89E-10	7.60E-15	5.98E-10	7.71E-15	
1.05E-07 2.39E-10 1.87E-09 3.12E-10 4.61E-06 5.83E-10 1.08E-09 1.00E-08 1.00E-08 2.81E-09 2.66E-09	TOC	1.83E-09	2.37E-14	1.86E-09	2.40E-14	
2.39E-10 1.11E-09 3.51E-10 6.23E-10 1.89E-10 2.59E-09 1.00E-09 2.31E-09 2.31E-09 2.36E-09	nzofuran	1.05E-07	1.35E-12	1.07E-07	1.37E-12	
1.11E-09 3.12E-10 4.61E-06 5.23E-12 6.23E-12 1.89E-10 3.59E-09 1.00E-08 1.00E-08 2.81E-09 2.66E-09	clopentadiene	2.39E-10	3.09E-15	2.43E-10		
1.87E-07 3.12E-10 4.61E-06 6.23E-10 6.23E-12 8.59E-10 3.59E-09 1.00E-08 1.00E-08 2.81E-09 5.66E-09	drin	1.11E-09	1.44E-14	1.13E-09		
3.12E-10 4.61E-06 6.23E-12 1.08E-09 1.08E-09 1.00E-08 2.31E-09 4.00E-08	opropyl Methylphosphonate	1.87E-07	2.41E-12	1.89E-07	2.44E-12	
4.61E.06 5 6.23E-12 8 1.89E-10 1 1.08E-09 4 3.59E-09 4 1.00E-08 1 2.81E-09 3 4.36E-09 3) imethylbenzene	3.12E-10	4.02E-15	3.16E-10	4.08E-15	
(EPA TEFs) 6.23E-12 8 1.89E-10 2 1.08E-09 1 1.00E-09 4 ppentadiene 3.59E-09 5 4.36E-09 5	thyl Methylphosphonate	4.61E-06	5.94E-11	4.67E-06	6.03E-11	
1.89E-10 2 1.08E-09 1 1.08E-09 1 1.00E-09 4 1.00E-09 2 1.00E-09 3 0.36E-09 3	(EPA	6.23E-12	8.03E-17	6.32E-12		
1.08E-09 1 1.08E-09 1 1.00E-09 4 1.00E-08 1 1.00E-08 1 1.00E-09 3 1.0n 4.36E-09 5	iane	1.89E-10	2.44E-15	1.92E-10	2.47E-15	
0benzene 3.59E-09 4 0cyclopentadiene 1.00E-08 1 2.81E-09 3 4.36E-09 5	Ë	1.08E-09	1.39E-14	1.09E-09	1.41E-14	
ocyclopentadiene 1.00E-08 1 2.81E-09 3 4.36E-09 5	chlorobenzene	3.59E-09	4.64E-14	3.65E-09	4.70E-14	
2,81E-09 4,36E-09 2,06E-05	chlorocyclopentadiene	1.00E-08	1.29E-13	1.01E-08	1.31E-13	
4.36E-09	rin	2.81E-09	3.63E-14	2.85E-09	3.68E-14	
2 DAF-05	thion	4.36E-09	5.62E-14	4.42E-09	5.70E-14	
CO-2005	anot	2.06E-05	2.66E-10	2.09E-05	2.69E-10	
	trophenol	4.52E-08	5.84E-13	4.59E-08	5.92E-13	

8D-13

PAHS Accord the lene	5.23E-07	6.75E-12	5.31E-07	6.85E-12
Acenaphthene	5.23E-07	6.75E-12	5.31E-07	6.85E-12
Benzo(a)byrene	1.05E-07	1.35E-12	1.07E-07	1.5/E-12
Chrysene	1.05E-07	1.35E-12	1.0/E-0/	1.3/E-12
Dibenzo(a.h)anthracene	1.05E-07	1.35E-12	1.07E-07	1.5/E-12
Fluoranthene	3,15E-07	4.06E-12	3.19E-07	4. 12E - 12
Fluorene	1.05E-07	1.35E-12	1.07E-07	1.5/E-12
Phenanthrene	2.10E-07	2.71E-12	2.13E-07	2.75E-12
Pyrene	1.05E-07	1.35E-12	1.07E-07	1.5/E-12
Darathion	5.94E-10	7.66E-15	6.02E-10	7. (/E-15
pentachiorobenzene	1.61E-09	2.07E-14	1.63E-09	2.10E-14
phonol -	5.69E-06	7.34E-11	5.77E-06	7.44E-11
rileilor Suitabline	2.53E-10	3.26E-15	2.56E-10	3.31E-15
	1.83E-09	2.37E-14	1.86E-09	2.40E-14
Jupona Totachi orobonzene	6.77E-10	8.73E-15	6.86E-10	8.86E-15
Trickle obelicate	3.60F-10	4.65E-15	3.65E-10	4.72E-15
ונונטונסו מספוולפוופ	7 725.0%	0 OKF-09	7.83E-04	1.01E-08
Urea	100 170	4 245-47	ARE-NO	6.30E-14
Vapona	4.81E-UY	41 - 21 7 0	· · · · · ·	
INORGANICS			20.00	1 2/E-11
Antimony	9.46E-07	1.22E-11	9.60E-07	7 01F-11
Arsenic	5.35E-06	6.97E-11	00-304-0	7 175-13
Beryllium	5.48E-08	7.U/E-15	0.00E-00	100
Cadmium	8.38E-07	1.08E-11	0.015.07	4 57E-08
Copper	5.02E-03	6.48E-US	5.09E-05	200.00
Lead	1.68E-06	2.17E-11	1.71E-U6	4 O/E-11
Mercury	1.48E-06	1.916-11	1.50E-Uo	1 - 34E - 1

Annual average soil/dust ingestion rate (200 mg/day) Exposure frequency (365 days/year) Body weight (15.5 kg)

815C/A8d.51

APPENDIX 8E

CALCULATION OF THE ESTIMATED DAILY INTAKE FOR THE FISH INGESTION ROUTE OF EXPOSURE

APPENDIX 8E

CALCULATION OF THE ESTIMATED DAILY INTAKE FOR THE FISH INGESTION ROUTE OF EXPOSURE

The accumulation of substances in fish tissue involves the processes of bioconcentration and biomagnification. The bioconcentration of pollutants generally refers to the uptake of pollutants from water, primarily through passive transport across the gill membrane. Thus, the bioconcentration factor (BCF) describes the equilibrium between the pollutant concentration in the fish tissue and the pollutant concentration in the water. Bioaccumulation is similar to bioconcentration, however, bioaccumulation is a broader term that describes the uptake from both food and water (Clark et al., 1988). Biomagnification takes into account the relationship between the pollutant concentration in the fish tissue and the trophic transfer of pollutants. Thus, biomagnification refers to the accumulation of pollutants due to uptake of food through the food chain. Few data are presently available to verify pollutant uptake specific to biomagnification. Current investigations are attempting to address the contribution of biomagnification to total bioaccumulation (Connoly and Pedersen, 1988; McKay et al., 1986; Stevens, 1988). Most of the results are highly speculative.

Tissue pollutant concentrations increase until the rate of excretion is equal to the rate of uptake (i.e., a state of equilibrium is reached). At such a time, the body burden (fish tissue concentration) may be many times the concentration in the water. The BCF represents the ratio of pollutant concentration in tissue to the pollutant level in water at equilibrium.

BCFs were obtained for the pollutants of concern using the following procedure:

• The first step was to use BCFs currently recognized by the Environmental Protection Agency (EPA) for those pollutants of concern where available (EPA, 1989, 1987, 1986).

- If a BCF was not available through the EPA, additional sources (Verschueren, 1983; and Lyman et al., 1982) were searched for BCFs.
- For those organic chemicals for which no BCF was found, a BCF was calculated from the octanol-water partition coefficient (K_{ow}) and the soil adsorption coefficient (K_{oc}), where possible, using the following equations obtained from Lyman et al. (1982):

$$log BCF = 0.76 log K_{ow} - 0.23$$

 $log BCF = 1.119 log K_{oc} - 1.579$

Where a BCF was able to be calculated from both a K_{ow} and a K_{oc} , the most conservative value (the highest BCF) was chosen for the pollutant. The specified input range for K_{ow} and K_{oc} in the regression equations is 7.9 to 8.1 x 10^6 mL/g and <1 to 1.2×10^6 mL/g, respectively. If a K_{ow} for a particular chemical was below the input range (7.9) and no other alternative existed for deriving a BCF, 7.9 was used to derive a conservative estimate of the BCF.

There were eleven metals (aluminum, barium, boron, iron, lithium, magnesium, molybdenum, strontium, tin, titanium, and yttrium) for which BCFs were not available or could not be derived. However, the contribution of fish ingestion to the total carcinogenic risk varies from 4 to 15% for the various scenarios. In addition, the hazard index ranges from 5 to 6 orders of magnitude below one. Therefore, even if the BCFs for these chemicals are high, it is anticipated that their contribution to risk would be minimal.

A summary of the BCFs used for the pollutants of concern is presented in Table 8E-1. This table also presents where the BCFs were obtained or how they were derived.

At best, BCFs are approximations made through laboratory experiments, field studies, correlations with physico-chemical factors such as octanol/water partition coefficients, and models based on pollutant biokinetics coupled with fish metabolism (EPA, 1986). Normally, bioconcentration studies determine the average pollutant uptake as a function of the entire fish. However, for the evaluation of human exposure, consumption is generally restricted

Table 8E-1
Bioconcentration Factors (BCFs) Used for the Pollutants of Concern

Pollutant	BCF (L/kg)	Derivation ^a	References
ORGANICS			
Acetonitrile	0.06	OR	EPA, 1986
Aldrin	28	OR	EPA, 1986
Atrazine	0	OR	EPA, 1987
Benzaldehyde	8	$\log K_{ow} (1.48)$	Verschueren, 1983
Benzofuran	63	$\log K_{ow}$ (2.67)	Verschueren, 1983
Benzoic Acid	15.5	$\log K_{ow}$ (1.87)	Verschueren, 1983
Benzonitrile	9	$\log K_{ow} (1.56)$	Verschueren, 1983
Carbazole	186	$\log K_{ow}$ (3.29)	Verschueren, 1983
4-Chlorobiphenyl	590	OR	EPA, 1987
4,4-Chlorobiphenyl	215	OR	EPA, 1987
4-Chlorophenylmethylsulfone	6	K_{oc} (1.26)	Ebasco, 1990
4-Chlorophenylmethylsulfoxide	e 6	$\log K_{ow}$ (1.33)	Ebasco, 1990
p,p-DDE	51,000	OR	EPA,1986
p,p-DDT	54,000	OR	EPA, 1986
Dibenzofuran	796.5	$\log K_{ow} (4.12)$	HSDB, 1990
Dicyclopentadiene	31.8	$\log K_{ow}$ (2.28)	QSAR, 1989
Dieldrin	5,800	OR "	EPA, 1987
Diisopropyl Methylphosphona	te 12	$\log K_{ow} (1.73)$	Ebasco, 1990
1,3-Dimethylbenzene	159	$\log \mathbf{K}_{ow} (3.20)$	Verschueren, 1983
Dimethyl Methylphosphonate	2.8	$\log K_{ow} (0.9)^{b}$	Lyman, et al., 1982
Dioxins/Furans (EPA TEFs)	5,000	OR	EPA, 1986
Dithiane	2.8	$\log K_{ow} (0.9)^{b}$	Lyman et al., 1982
Endrin	680	OR " ` ´	EPA, 1987
Hexachlorobenzene	8,690	OR	EPA, 1986
Hexachlorocyclopentadiene	488	OR	EPA, 1987
Isodrin	52,000	$\log K_{ow} (6.51)$	Ebasco, 1990
Malathion	0	OR " ` ´	EPA, 1987
Methanol	2.8	$\log K_{ow} (0.9)^b$	Lyman et al., 1982
4-Nitrophenol	96	$\log K_{ow}$ (2.91)	EPA, 1989
PAHs		5 0 ()	•
Acenaphthalene	730	$\log K_{ow} (4.07)$	EPA, 1986
Acenaphthene	242	OR "``	EPA, 1986
Benzo(a)pyrene	930	OR	EPA, 1987
Chrysene	23,000	$K_{oc} (2.0E+05)$	EPA, 1986
Dibenzo(a,h)anthracene	520,000	K_{oc} (3.3E+06)	EPA, 1986

Table 8E-1 (continued)

Pollutant	BCF (L/kg)	Derivation ^a	References
Fluorene	1,300	OR	EPA, 1986
Phenanthrene	2,630	OR	EPA, 1986
Pyrene	5,100	$\log K_{ow} (5.18)$	EPA, 1986
Parathion	335	OR " `	EPA, 1987
Phenol	1.4	OR	EPA, 1986
Quinoline	21	$\log K_{ow} (2.03)$	Verschueren, 1983
Supona	136	$\log K_{ow}$ (3.11)	Ebasco, 1990
Trichlorobenzene	991	OR° ° `	EPA, 1987
Urea	2.8	$\log K_{ow} (0.9)^{b}$	Lyman et al., 1982
Vapona	7.0	log K _{ow}	Ebasco, 1990
INORGANICS			
Aluminum	NTA		
Arsenic	350	OR	EPA, 1989
Barium	NTA		
Beryllium	19	OR	EPA, 1986
Boron	NTA		
Cadmium	326	OR	EPA, 1979
Chromium (VI)	155	OR	EPA, 1989
Cobalt	20	OR	Lyman et al., 1982
Copper	1,183	OR	EPA, 1989
Iron	NTA		
Lithium	NTA		
Magnesium	NTA		
Molybdenum	NTA		-
Selenium	16	OR	EPA, 1986
Silver	3,080	OR	EPA, 1979
Strontium	NTA		
Tin	NTA		
Titanium	NTA		
Vanadium	10	OR	Lyman, et al., 1982
Yttrium	NTA		
Zinc	578	OR	EPA, 1989

Table 8E-1 (continued)

Key:

K_{oc} - Soil adsorption coefficient

K_{ow} - Octanol-water partition coefficient

NTA - Not available

OR - BCF obtained directly from reference

^aIf a BCF could not be obtained from the EPA (1989, 1987, 1986) or other reference documents (Lyman, et al., 1982; Verschueren, 1983), a BCF was calculated, where appropriate, using values listed in this column as described in this appendix.

^bBased on lower limitations of the regression equation.

The average of the BCFs for two trichlorobenzenes - 182 (1,2,4-trichlorobenzene), and 1800 (1,2,5-trichlorobenzene).

to the edible portion of the fish (i.e., with head, tail, and visceral mass removed). For this assessment, consumption of filleted fish was assumed.

The organic pollutants present in the fish tissue are concentrated in lipids (fatty materials) found in those tissues. Thus, organic pollutant levels within the tissue are directly related to lipid concentration. A fillet lipid content of 10% was used to calculate adult and child estimated daily intakes of organic pollutants.

Table 8E-2 presents the surface water contaminant concentrations, BCFs, and adult and child estimated daily intakes for the fish ingestion pathway.

Table 8E-2

Daily Exposure to the Pollutants of Concern Through the Fish Ingestion Route of Exposure Adult and Child - Resident-A, Resident-B, and Farmer Scenarios

CONCENTRAT. FACTOR DAILY DA mg/L INTAKE INT mg/kg/day mg/k	HILD MATED VILY TAKE Kg/day
ORGANICS	
Acetonitrile 1.05E-11 0.06 4.36E-18 9.	84E-18
Aldrin 5.66E-13 28 1.10E-16 2.	47E-16
Atrazine 1.32E-12 0 0.00E+00 0.	00E+00
	70E-13
	33E-12
	33E-13
	39E-16
	49E-16
	80E-12
	39E-14
4-Chlorophenylmethylsulfone 1.19E-09 6 4.94E-14 1.	11E-13
	36E-14
P,P-DDE 6.26E-14 51000 2.21E-14 4.	98E-14
	62E-13
1,015	30E-13
	16E-16
10112 10 3000 41072 13	06E-14 61E-14
	47E-16
	19E-13
	10E-17
	70E - 17
2.0	50E - 15
	24E - 14
	15E-15
	39E-13
	00E+00
	88E-12
	82E - 14
PAHs	
	10E-12
	27E - 13
	60E - 13
	99E-12
	93E-11
material and the state of the s	09E - 13
211 12 11	13E-12
7.	24E - 13
11.02.15	64E-16
	45E-13
11002 10 21 01302 17 11	44E-16 57E-15
	13E-15
	04E-11
	05E - 15

Table 8E-2 (continued)

INORGANICS				
Aluminum	3.10E-09		4 40- 44	7 77- 44
Arsenic	6.16E-10	3 50	1.49E-11	3.37E-11
Barium	1.40E-10			
Beryllium	5.84E-12	19	7.67E-15	1.73E-14
Boron	4.60E-09			
Cadmium	9-01E-11	326	2.03E-12	4.59E-12
Chromium (VI)	1.34E-12	155	1.43E-14	3.23E-14
Cobalt	1-26E-10	20	1.74E-13	3.92E-13
-	5.48E-07	1183	4.48E-08	1.01E-07
Copper Iron	7.61E-09			
Lithium	1.75E-11			
	2.27E-08			
Magnesium	1.76E-09			
Molybdenum	1.58E-09	16	1.75E-12	3.95E-12
Selenium	1.62E-11	3080	3.45E-12	7.79E-12
Silver		3000	3.432 12	
Strontium	5.84E-12			
Tin	1.32E-09			
Titanium	9.73E-12	10	2.58E-13	5.82E-13
Vanadium	3.73E-10	10	2.30E-13	J.02L 13
Yittrium	3.41E-12	F.70	1 045 10	2.39E-10
Zinc	2.65E-09	578	1.06E-10	2.396-10

Percent body lipid in fillet (10%) Adult fish ingestion rate (4.84 g/day) Child fish ingestion rate (2.42 g/day) Adult body weight (70 kg) Child body weight (15.5 kg)

APPENDIX 8E

CITED REFERENCES

Clark, T., K. Clark, S. Paterson, and D. Mackay. 1988. "Wildlife Monitoring, Modeling, and Fugacity." Environ. Sci. Technol., 22:120-127.

Connolly, J.P., and C.J. Pedersen. 1988. "A Thermodynamic-based Evaluation of Organic Chemical Accumulation in Aquatic Animals." <u>Environ. Sci. Technol.</u>, 22:99-103.

Ebasco Services, Inc. 1990. <u>Final Health Exposure Assessment for Rocky Mountain Arsenal Vol. II-III</u>. Version 4.1. Prepared for the U.S. Army Program Managers Office for the Rocky Mountain Arsenal Contamination Cleanup.

EPA (U.S. Environmental Protection Agency). 1979. <u>Water-Related Environmental Fate of 129 Priority Pollutants</u>. Volume I. Versar Incorporated. PB80-204373.

EPA (U.S. Environmental Protection Agency). 1986. <u>Superfund Public Health Evaluation Manual</u>. Office of Emergency and Remedial Response, Washington, D.C. OSWER Directive 9285.4-1.

EPA (U.S. Environmental Protection Agency). 1987. <u>Processes, Coefficients, and Models for Simulating Toxic Organics and Heavy Metals in Surface Waters</u>. EPA 600/3-87/015.

EPA (U.S. Environmental Protection Agency). 1989. <u>Assessing Human Health Risk from Chemically Contaminated Fish and Shell Fish - A Guidance Manual</u>. Office of Marine and Estuarine Protection, Office of Water Regulations and Standards. Washington DC.

HSDB (Hazardous Substances Database) 1990. National Library of Medicine (On-line).

Lyman, W.J., W.F. Reehl, and O.H. Rosenblatt. 1982. <u>Handbook of Chemical Property Estimation Methods</u>. McGraw-Hill Book Company, New York.

McKay, D., S. Paterson, and W.H. Schroeder. 1986. "Model Describing the Rates of Transfer Processes of Organic Chemicals Between Atmosphere and Water." <u>Environ. Sci. Technol.</u>,20(8):810-816.

QSAR. 1989. Montana State University, Numerical Technical Database Services, New York, NY.

Stevens, J.B. 1988. "Health Risk Assessment for the Proposed Resource Recovery Facility in Winona, Minnesota," Vol. I, <u>Polycholorinated Dioxins/Polychlorinated Furans</u>. Minnesota Pollution Control Agency.

VOLUME II

Verschueren, K. 1983. <u>Handbook of Environmental Data on Organic Chemicals</u>. Second Edition.

APPENDIX 8F

CALCULATION OF THE ESTIMATED DAILY INTAKE FOR THE DERMAL ABSORPTION ROUTE OF EXPOSURE

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Dermal Absorption Route of Exposure Adult, Resident-A Scenario

	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	ABSORPTION FACTOR	AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
UKGANIUS	2,41	2 455.00	1 000	2 7/15-15	2 785.15
Acetonitrile	2 805-09	2 8/5-09	1,005-01	2 0/5-15	2 005-15
Atration	6.115-10	6.20F-10	1.00F-01	6.42E-16	6.52E-16
Benzal dehyde	5.64E-07	5.72E-07	1.00E-01	5.93E-13	6.02E-13
Benzofuran	1.08E-06	1.10E-06	1.00E-01	1.14E-12	1.15E-12
Benzoic Acid	2.71E-07	2.75E-07	1.00E-01	2.85E-13	2.89E-13
Benzonitrile	2.61E-10	2.65E-10	1.00E-01	2.74E-16	2.78E-16
Carbazole	5.19E-11	5.27E-11	1.00E-01	5.46E-17	5.54E-17
4-chtorobipher:/	1.83E-06	1.85E-C6	1.00E-G1	1.92E-12	1.95E-12
4,4-Chlorobiphenyl	3.44E-08	3.49E-08	1.00E-01	3.62E-14	3.67E-14
4-Chlorophenylmethylsulfone	3.04E-07	3.08E-07	1.00E-01	3.19E-13	3.24E-13
4-Chlorophenylmethylsulfoxide	3.74E-08	3.79E-08	1.00E-01	3.93E-14	3.99E-14
p,p-DDE	3.04E-10	3.08E-10	1.00E-01	3.19E-16	3.24E-16
D, p-00T	9.45E-10	9.58E-10	1.00E-01	9.93E-16	1.01E-15
Dibenzofuran	5.41E-08	5.49E-08	1.00E-01	5.68E-14	5.77E-14
Dicyclopentadiene	1.23E-10	1.25E-10	1.00E-01	1.30E-16	1.31E-16
Dieldrin	5.73E-10	5.81E-10	1.00E-01	6.02E-16	6.11E-16
Diisopropyl Methylphosphonate	9.62E-08	9.76E-08	1.00E-01	1.01E-13	1.03E-13
1,3-Dimethylbenzene	1.61E-10	1.63E-10	1.00E-01	1.69E-16	1.71E-16
Dimethyl Methylphosphonate	2.37E-06	2.41E-06	1.00E-01	2.49E-12	2.53E-12
Dioxins/Furans (EPA TEFs)	3.21E-12	3.25E-12	1.00E-01	3.37E-18	3.42E-18
Dithiane	9.73E-11	9.87E-11	1.00E-01	1.02E-16	1.04E-16
Endrin	5.56E-10	5.64E-10	1.00E-01	5.84E-16	5.93E-16
Hexachlorobenzene	1.85E-09	1.88E-09	1.00E-01	1.95E-15	1.97E-15
Hexachlorocyclopentadiene	5.15E-09	5.23E-09	1.00E-01	5.41E-15	5.49E-15
Isodrin	1,45E-09	1.47E-09	1.00E-01	1.52E-15	1.55E-15
Malathion	2.24E-09	2.28E-09	1.00E-01	2.36E-15	2,39E-15
Methanol	1.06E-05	1.08E-05	1.00E-01	1.11E-11	1.13E-11
4-Nitrophenol	2.33E-08	2.36E-08	1.00E-01	2.45E-14	2.48E-14

Table 8F-1 (continued)

VOLUME II

	2.87E-13	2.87E-13	5.77E-14	5.77E-14	5.77E-14	1.73E-13	5.77E-14	1.15E-13	5.77E-14	3.26E-16	8.82E-16	3.12E-12	1.39E-16	1.01E-15	3.71E-16	1.98E-16	4.24E-10	2.64E-15		5.20E-14	2.94E-13	3.01E-15	4.60E-14	2.76E-10	9.23E-14	8.14E-14
	2.83E-13	2.83E-13	5.68E-14	5.68E-14	5.68E-14	1.70E-13	5.68E-14	1.14E-13	5.68E-14	3.21E-16	8.69E-16	3.08E-12	1.37E-16	9.93E-16	3.66E-16	1.95E-16	4.18E-10	2.61E-15		5.12E-14	2.90E-13	2.97E-15	4.54E-14	2.72E-10	9.10E-14	8.02E-14
	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01		1.00E-02	1,00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02
	2.73E-07	2.73E-07	5.49E-08	5.49E-08	5.49E-08	1.64E-07	5.49E-08	1.10E-07	5.49E-08	3.10E-10	8.39E-10	2.97E-06	1.32E-10	9.58E-10	3.53E-10	1.88E-10	4.03E-04	2.52E-09		4.94E-07	2.80E-06	2.86E-08	4.38E-07	2.62E-03	8.78E-07	7.74E-07
	2.69E-07	2.69E-07	5.41E-08	5.41E-08	5.41E-08	1.62E-07	5.41E-08	1.08E-07	5.41E-08	3.06E-10	8.27E-10	2.93E-06	1.30E-10	9.45E-10	3.48E-10	1.86E-10	3.98E-04	2,48E-09		4.87E-07	2.76E-06	2.82E-08	4.32E-07	2.59E-03	8.66E-07	7.63E-07
PAHS	Acenaphthalene	Acenaphthene	Benzo(a)pyrene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Parathion	Pentachlorobenzene	Phenot	Quinoline	Supona	Tetrachlorobenzene	Trichlorobenzene	Urea	Vapona	INORGANICS	Antimony	Arsenic	Beryllium	Cadmium	Copper	Lead	Mercury

Number of exposure events per year (117 days/yr) Exposed surface area (4,500 cm²) Skin adherence factor for soil (0.51 mg/cm²) Soil matrix factor (1.0) Body weight (70 kg)

the Pollutants of Concern Through the Dermal Absorption Route of Exposure Adult, Resident-B Scenario Average and Maximum Daily Exposure to

8F-3

4.66E-13 4.66E-13 9.37E-14 9.37E-14 9.37E-14 1.87E-13 9.37E-14 1.43E-15 5.29E-16 1.43E-15 6.03E-16 6.03E-16 6.89E-10	8.44E-14 4.78E-13 4.89E-15 7.48E-14 4.48E-10 1.50E-13
4.60E-13 4.60E-13 9.23E-14 9.23E-14 9.23E-14 1.85E-14 1.85E-14 1.41E-15 5.00E-12 5.00E-12 5.95E-16 6.79E-10 4.23E-15	8.32E-14 4.71E-13 4.82E-15 7.37E-14 4.42E-10 1.48E-13
1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01	1.006-02 1.006-02 1.006-02 1.006-02 1.006-02 1.006-02
4.44E-07 4.44E-07 8.91E-08 8.91E-08 2.67E-07 8.91E-08 1.78E-07 1.36E-09 4.83E-06 2.15E-10 1.56E-09 5.74E-10 6.55E-04	8.03E-07 4.54E-06 4.65E-08 7.12E-07 1.43E-06
4,38E-07 4,38E-07 8,79E-08 8,79E-08 8,79E-08 8,79E-08 1,76E-07 1,34E-09 4,03E-09	7.92E-07 4.48E-06 4.58E-08 7.01E-07 4.20E-03 1.41E-06
Acenaphthalene Acenaphthene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Tyrene Parathion Pentachlorobenzene Supona Trichlorobenzene Trichlorobenzene Urea	INORGANICS Antimony Arsenic Beryllium Cadmium Copper Lead Mercury

Number of exposure events per year (117 days/yr) Exposed surface area (4,500 cm²) Skin adherence factor for soil (0.51 mg/cm²) Soil matrix factor (1.0) Body weight (70 kg)

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Dermal Absorption Route of Exposure Adult, Farmer Scenario

	AVERAGE CALCULATED CONC IN SOIL . 2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	ABSORPTION FACTOR	AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
ORGANICS					
Acetonitrile	2.53E-09	2.57E-09	1.00E-01	1.30E-14	1.32E-14
Aldrin	2.72E-09	2.76E-09	1.00E-01	1.40E-14	1.42E-14
Atrazine	5.94E-10	6.02E-10	1.00E-01	3.06E-15	3.10E-15
Benzaldehyde	5.48E-07	5.56E-07	1.00E-01	2.82E-12	2.86E-12
Benzofuran	1.05E-06	1.07E-06	1.00E-01	5.41E-12	5.49E-12
Benzoic Acid	2.64E-07	2.67E-07	1.00E-01	1.36E-12	1.38E-12
Benzonitrile	2.53E-10	2.57E-10	1.00E-01	1.30E-15	1.32E-15
Carbazole	5.04E-11	5.12E-11	1.00E-01	2.60E-16	2.64E-16
4-Chlorobiphenyl	1.77E-06	1.80E-06	1.00E-01	9.14E-12	9.27E-12
4,4-Chlorobiphenyl	3.34E-08	3.39E-08	1.00E-01	1.72E-13	1.75E-13
4-Chlorophenylmethylsulfone	2.95E-07	2.99E-07	1.00E-01	1.52E-12	1.54E-12
4-Chlorophenylmethylsulfoxide	3.63E-08	3.68E-08	1.00E-01	1.87E-13	1.90E-13
p,p-00E	2.95E-10	2.99E-10	1.00E-01	1.52E-15	1.54E-15
D,0-001	9.17E-10	9.31E-10	1.00E-01	4.73E-15	4.79E-15
Dibenzofuran	5.25E-08	5.33E-08	1,00E-01	2.70E-13	2.74E-13
Dicyclopentadiene	1.20E-10	1.21E-10	1.00E-01	6.17E-16	6.26E-16
Dieldrin	5.56E-10	5.64E-10	1.00E-01	2.87E-15	2.91E-15
Diisopropyl Methylphosphonate	9.34E-08	9.47E-08	1.00E-01	4.81E-13	4.88E-13
1,3-Dimethylbenzene	1.56E-10	1.58E-10	1.00E-01	8.USE-16	8.155-16
Dimethyl Methylphosphonate	2.30E-06	2.34E-06	1.00E-01	1.19E-11	1.20E-11
Dioxins/Furans (EPA TEFs)	3.11E-12	3.16E-12	1.00E-01	1.60E-17	1.65E-1/
Dithiane	9.44E-11	9.58E-11	1.00E-01	4.86E-16	4.93E-16
Endrin	5.40E-10	5.47E-10	1,00E-01	2,78E-15	2.82E-15
Hexachlorobenzene	1.80E-09	1.82E-09	1.00E-01	9.26E-15	9.39E-15
Hexachlorocyclopentadiene	5.00E-09	5.07E-09	1.00E-01	2.58E-14	2.61E-14
Isodrin	1.41E-09	1.43E-09	1.00E-01	7.25E-15	7.35E-15
Malathion	2.18E-09	2.21E-09	1.00E-01	1.12E-14	1.14E-14
Methanol	1.03E-05	1.04E-05	1.00E-01	5.30E-11	5.38E-11
4-Nitrophenol	2.26E-08	2.29E-08	1.00E-01	1.17E-13	1.18E-13

8**F**-5

Table 8F-3 (continued)

VOLUME II

DAHS					
Acenaphthalene	2.61E-07	2.65E-07	1.00E-01	1.35E-12	1.37E-12
Acenaphthene	2.61E-07	2.65E-07	1.00E-01	1.35E-12	1.37E-12
Benzo(a)pyrene	5.25E-08	5.33E-08	1.00E-01	2.70E-13	2.74E-13
Chrysene	5.25E-08	5.33E-08	1.00E-01	2.70E-13	2.74E-13
Dibenzo(a,h)anthracene	5.25E-08	5.33E-08	1.00E-01	2.70E-13	2.74E-13
Fluoranthene	1.57E-07	1.60E-07	1.00E-01	8.10E-13	8.22E-13
Fluorene	5.25E-08	5.33E-08	1.00E-01	2.70E-13	2.74E-13
Phenanthrene	1.05E-07	1.07E-07	1.00E-01	5.41E-13	5.49E-13
Pyrene	5.25E-08	5.33E-08	1.00E-01	2.70E-13	2.74E-13
Parathion	2.97E-10	3.01E-10	1.00E-01	1.53E-15	1.55E-15
Pentachlorobenzene	8.03E-10	8.15E-10	1.00E-01	4.14E-15	4.20E-15
Phenot	2.84E-06	2.88E-06	1.00E-01	1.46E-11	1.49E-11
Quinoline	1.26E-10	1.28E-10	1.00E-01	6.51E-16	6.60E-16
Supona	9.17E-10	9.31E-10	1.00E-01	4.73E-15	4.79E-15
Tetrachlorobenzene	3.38E-10	3.43E-10	1.00E-01	1.74E-15	1.77E-15
Trichlorobenzene	1.80E-10	1.83E-10	1.00E-01	9.28E-16	9.41E-16
Urea	3.86E-04	3.92E-04	1.00E-01	1.99E-09	2.02E-09
Vapona	2.41E-09	2.44E-09	1.00E-01	1.24E-14	1.26E-14
INORGANICS					
Antimony	4.73E-07	4.80E-07	1.00E-02	2.44E-13	2.47E-13
Arsenic	2.68E-06	2.72E-06	1.00E-02	1.38E-12	1.40E-12
Beryllium	2.74E-08	2.78E-08	1.00E-02	1.41E-14	1.43E-14
Cadmium	4.19E-07	4.25E-07	1.00E-02	2.16E-13	2.19E-13
Copper	2.51E-03	2.55E-03	1.00E-02	1.29E-09	1.31E-09
Lead	8.40E-07	8.53E-07	1.00E-02	4.33E-13	4.39E-13
Mercury	7.41E-07	7.52E-07	1.00E-02	3.82E-13	3.87E-13

Number of exposure events per year (195 days/yr) Exposed surface area (4,500 cm²) Skin adherence factor for soil (1.5 mg/cm²) Soil matrix factor (1.0) Body weight (70 kg)

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Dermal Absorption Route of Exposure Adult, Worker Scenario

	•
MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day	1.40E-14 3.28E-15 3.03E-15 5.03E-12 1.46E-12 1.66E-12 1.63E-13 5.07E-15 5.07E-15 5.07E-15 5.16E-13 7.77E-15 7.77E-15 1.20E-14 7.77E-15 1.20E-14 7.77E-15 1.20E-14 7.77E-15
AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	1.38e 2.23e 3.23e 1.48e 1.28e 1.28e 1.38e 1.38e 1.60e 1.60e 1.28e 1.2e 1.2e 1.2e 1.2e 1.2e 1.2e 1.2e 1.2
ABSORPTION FACTOR	1.00
MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	3.82E - 09 8.95E - 10 8.95E - 10 1.58E - 05 3.82E - 07 3.82E - 10 7.61E - 11 7.61E - 11 7.61E - 11 7.61E - 11 7.61E - 11 7.92E - 08 7.92E - 08 8.39E - 10 1.41E - 07 7.52E - 08 8.14E - 10 8.14E - 10 7.54E - 06 3.25E - 10 7.55E - 09 3.25E - 09
AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	3.76E-09 4.04E-09 8.82E-10 8.14E-07 1.56E-06 3.76E-10 7.50E-11 2.64E-06 4.38E-10 1.36E-09 7.48E-10 8.27E-10 1.36E-06 4.63E-10 2.52E-10 2.52E-10 3.42E-06 7.44E-09 7.44E-09 7.44E-09 7.44E-09 7.56E-09 7.56E-09 7.56E-09 7.56E-09 7.56E-09 7.56E-09 7.56E-09 7.56E-09 7.56E-09 7.56E-09 7.56E-09
	Acetonitrile Addin Atdin Atrazine Benzaldehyde Benzofuran Benzofuran Benzoic Acid Benzoiritile Carbazole 4-Chlorobiphenyl 4-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfone 6-Chlorophenylmethylsulfone 7-DDE P.P.DDT Dibenzofuran Disopropyl Methylphosphonate Dieldrin Bieldrin Disopropyl Methylphosphonate Disopropyl

8F-7

815C/A8f.51

Acenanhthalone	100	₹ 04F-07	1.00E-01	1 7.25-12	
Acerdon charene	3.89E-07	1		31.374.	1.44E-12
Acenaphthene	3.89E-07	3.94E-07	1.00E-01	1.42E-12	1-44E-12
Benzo(a)pyrene	7.81E-08	7.92E-08	1.00E-01	2.86E-13	2.90E-13
Chrysene	7.81E-08	7.92E-08	1.00E-01	2.86E-13	2.90E-13
Dibenzo(a,h)anthracene	7.81E-08	7.92E-08	1.00E-01	2.86E-13	2.90E-13
Fluoranthene	2.34E-07	2,37E-07	1.00E-01	8.57E-13	8.69E-13
Fluorene	7.81E-08	7.92E-08	1.00E-01	2.86E-13	2.90E-13
Phenanthrene	1.56E-07	1.58E-07	1.00E-01	5.72E-13	5.80E-13
Pyrene	7.81E-08	7.92E-08	1.00E-01	2.86E-13	2.90E-13
Parathion	4.41E-10	4.48E-10	1.00E-01	1.62E-15	1.64E-15
Pentachlorobenzene	1.19E-09	1.21E-09	1.00E-01	4.37E-15	4.44E-15
Phenol	4.23E-06	4.29E-06	1.00E-01	1.55E-11	1.57E-11
Quinoline	1.88E-10	1.91E-10	1.00E-01	6.88E-16	6.98E-16
Supona	1.36E-09	1.38E-09	1.00E-01	5.00E-15	5.07E-15
Tetrachlorobenzene	5.03E-10	5.10E-10	1.00E-01	1.84E-15	1.87E-15
Trichlorobenzene	2.68E-10	2.72E-10	1.00E-01	9.81E-16	9.95E-16
Jrea	5.74E-04	5.82E-04	1.00E-01	2.10E-09	2.13E-09
Vapona	3.58E-09	3.63E-09	1.00E-01	1.31E-14	1.33E-14
INORGANICS					
Antimony	7.03E-07	7.14E-07	1.00E-02	2.58E-13	2.61E-13
Arsenic	3.98E-06	4.04E-06	1.00E-02	1.46E-12	1.48E-12
Beryllium	4.07E-08	4.13E-08	1.00E-02	1.49E-14	1.51E-14
Cadmium	6.23E-07	6.32E-07	1.00E-02	2.28E-13	2.32E-13
Copper	3.73E-03	3.79E-03	1.00E-02	1.37E-09	1.39E-09
Lead	1.25E-06	1.27E-06	1.00E-02	4.58E-13	4.64E-13
Mercury	1.10E-06	1.12E-06	1.00E-02	4.03E-13	4.09E-13

Number of exposure events per year (195 days/yr) Exposed surface area (3,200 cm²) Skin adherence factor for soil (1.5 mg/cm²) Soil matrix factor (1.0) Body weight (70 kg)

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Dermal Absorption Route of Exposure Child, Resident-A Scenario

MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day
ABSORPTION FACTOR
MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg
AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg

ORGANICS					
Acetonitrile	5.22E-09	5.29E-09	1.00E-01	2.29E-14	2.33E-14
Aldrin	5.60E-09	5.68E-09	1.00E-01	2.46E-14	2.50E-14
Atrazine	1.22E-09	1.24E-09	1.00E-01	5.37E-15	5.45E-15
Benzaldehyde	1.13E-06	1.14E-06	1.00E-01	4.96E-12	5.03E-12
Benzofuran	2.16E-06	2.19E-06	1.00E-01	9.51E-12	9.64E-12
Benzoic Acid	5.43E-07	5.51E-07	1.00E-01	2.39E-12	2.42E-12
Benzonitrile	5.22E-10	5.29E-10	1.00E-01	2.29E-15	2.33E-15
Carbazole	1.04E-10	1.05E-10	1.00E-01	4.57E-16	4.63E-16
4-Chiorobiphenyl	3.66E-06	3.71E-06	1.00E-01	1.61E-11	1.63E-11
4,4-Chlorobiphenyl	6.88E-08	6.98E-08	1.00E-01	3.02E-13	3.07E-13
4-Chlorophenylmethylsulfone	6.07E-07	6.16E-07	1.00E-01	2.67E-12	2.71E-12
4-Chlorophenylmethylsulfoxide	7.48E-08	7.59E-08	1.00E-01	3.29E-13	3.34E-13
p,p-DDE	6.07E-10	6.16E-10	1.00E-01	2.67E-15	2.71E-15
p,p-D01	1.89E-09	1.92E-09	1.00E-01	8.30E-15	8.42E-15
Dibenzofuran	1.08E-07	1.10E-07	1.00E-01	4.75E-13	4.82E-13
Dicyclopentadiene	2.47E-10	2.50E-10	1.00E-01	1.08E-15	1.10E-15
Dieldrin	1.15E-09	1.16E-09	1.00E-01	5.03E-15	5.11E-15
Diisopropyl Methylphosphonate	1.92E-07	1.95E-07	1.00E-01	8.45E-13	8.58E-13
1,3-Dimethylbenzene	3.21E-10	3.26E-10	1.00E-01	1.41E-15	1.43E-15
Dimethyl Methylphosphonate	4.75E-06	4.81E-06	1.00E-01	2.09E-11	2.12E-11
Dioxins/Furans (EPA TEFs)	6.41E-12	6.51E-12	1.00E-01	2.82E-17	2.86E-17
Dithiane	1.95E-10	1.97E-10	1.00E-01	8.55E-16	8.67E-16
Endrin	1.116-09	1.13E-09	1.00E-01	4.88E-15	4.96E-15
Hexachlorobenzene	3.70E-09	3.76E-09	1,00E-01	1.63E-14	1.65E-14
Hexachlorocyclopentadiene	1.03E-08	1.05E-08	1.00E-01	4.53E-14	4.59E-14
Isodrin	2.90E-09	2.94E-09	1.00E-01	1.27E-14	1.29E-14
Malathion	4.49E-09	4.55E-09	1.00E-01	1.97E-14	2.00E-14
Methanol	2.12E-05	2.15E-05	1.00E-01	9.32E-11	9.45E-11
4-Nitrophenol	4.66E-08	4.73E-08	1.00E-01	2.05E-13	2.08E-13

8F-9

6/24/91

PAHS			100	2777 43	2 LOE-12
Acenaphthalene	5.39E-07	5.46E-07	1,00E-01	21.3/6.12	21,204.2
Accephthone	5.39E-07	5.46E-07	1.00E-01	2.5/E-12	Z.40E-12
אכפו שלטו כוופו ופ	1 085-07	1 10F-07	1.00E-01	4.75E-13	4.82E-13
Benzo(a)pyrene	1001	105-07	1002-01	4. 75F-13	4.82E-13
Chrysene	1.08E-07	1001.0	200.4	755-12	/ R2E-13
Dibenzo(a.h)anthracene	1.08E-07	1.10E-07	10-300°	01 101	1,01
Flioranthana	3.24E-07	3.29E-07	1.00E-01	1-42E-12	1.44E-12
	1_08F-07	1.10E-07	1.00E-01	4.75E-13	4.82E-13
r (uoi erie	2 165.07	2 10F-07	1.00E-01	9.51E-13	9.64E-13
Phenanthrene	1 085.07	1 105-07	1.00F-01	4.75E-13	4.82E-13
Pyrene	1,005	A 20E-10	1 OOF - 01	2-69E-15	2.73E-15
Parathion	0 - 1 E	1 485-00	1 00F-01	7.27E-15	7.38E-15
Pentachlorobenzene	1.035-09	200	000.0	2 575-11	2 K1E-11
Phenol	5.86E-06	5.94E-UD	1000-01	7, 2,7	10.4
Orino ine	2.60E-10	2.64E-10	1.00E-01	1.14E-15	101-10
	1 89F-09	1.92E-09	1.00E-01	8.30E-15	8.42E-15
Supplied Total American	A 97F-10	7.07E-10	1.00E-01	3.06E-15	3.11E-15
Tellacillo operizere	3 71F-10	3.76E-10	1.00E-01	1.63E-15	1.65E-15
Flcn(oropenzene	7 95F - 04	8.07E-04	1.00E-01	3.49E-09	3.54E-09
olea olea		100	100	74 704 6	74 745 0
Vapona	4.96E-09	5.03E-09	1.00E-01	2.18E-14	2.21E-14
3211830011					
COLUMNICAL	O 757 07	0 905 07	1 005-03	7 285-12	7 455-14
Antimony	7.725-07	7.07E-07	1.005-02	2 107.	1,77
Arsenic	5.51E-06	5.59E-06	1.00E-02	2.45E-12	71-101-17
Recollism	5.64E-08	5.72E-08	1.00E-02	2.48E-14	2.52E-14
	8.64E-07	8.76E-07	1.00E-02	3.79E-13	3.85E-13
	5 175-03	5 25F-03	1_00F-02	2.27E-09	2.31E-09
cobbei	2012	70-372 4	1 005.02	7 415-12	7 725-13
Lead	1.735.00	1,70E-U0	- 00E-06	7,017	100 /
Mercury	1.53E-06	1.55E-U6	1.00E-02	0.718-13	0.001

Number of exposure events per year (195 days/yr) Exposed surface area (2,500 cm²) Skin adherence factor for soil (0.51 mg/cm²) Soil matrix factor (1.0) Body weight (15.5 kg) 6/24/91

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Dermal Absorption Route of Exposure Child, Resident-B Scenario

DAILY INTAKE mg/Kg/day	3.78E-14 4.06E-14 8.86E-15 8.17E-12 1.57E-11 7.52E-16 7.52E-16 7.52E-16 7.52E-16 7.83E-13 1.39E-15 1.39E-15 1.39E-15 1.39E-15 1.39E-15 1.39E-15 1.39E-16 1.39E-16 1.39E-17 1.54E-11 7.46E-14 7.46E-14 7.46E-14 7.56E-14 3.37E-13
AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	3.72E
ABSORPTION FACTOR	1.00E-01 1.0
MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg	8.60E-09 9.23E-09 2.02E-09 3.57E-06 8.95E-06 1.71E-10 1.00E-09 3.11E-09 1.78E-07 1.00E-09 3.17E-07 5.29E-10 1.88E-09 3.17E-07 4.07E-10 1.88E-09 3.17E-07 5.29E-10 1.83E-09 7.40E-09 7.40E-09 7.40E-09
AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg	8.47E-09 9.10E-09 1.99E-09 3.51E-06 8.47E-10 1.69E-07 1.22E-08
	Acetonitrile Aldrin Atrazine Benzaldehyde Benzofuran Benzoirale Benzoiritile Carbazole 4,4-Chlorobiphenyl 4,4-Chlorobiphenyl 6,0100000000000000000000000000000000000

	.00E-01 7.72E-13 7.83E-13 .00E-01 2.31E-12 2.35E-12 .00E-01 7.72E-13 7.83E-13 .00E-01 1.54E-12 1.57E-12 .00E-01 7.72E-13 7.83E-13 .00E-01 4.36E-15 4.24E-11 1.20E-14 1.20E-01 1.86E-15 1.89E-15 .00E-01 1.35E-15 1.89E-15 .00E-01 2.65E-15 2.69E-15 .00E-01 5.68E-09 5.76E-09	.00E-01 3.54E-14 3.59E-14 .00E-02 6.96E-13 7.06E-13 .00E-02 3.94E-12 3.99E-12 .00E-02 4.03E-14 4.09E-14 .00E-02 6.17E-13 6.25E-13 .00E-02 3.69E-09 3.75E-09 .00E-02 1.24E-12 1.25E-12 .00E-02 1.09E-12 1.11E-12
8.75E-07 8.88E-07 1.0 8.75E-07 8.88E-07 1.0 1.76E-07 1.78E-07 1.0	1.78E-07 5.34E-07 1.78E-07 1.78E-07 1.01E-09 2.73E-09 9.65E-06 4.29E-10 3.11E-09 1.15E-09 6.12E-10	8.17E-09 1 1.61E-06 1 9.09E-06 1 1.42E-06 1 8.53E-03 1 2.85E-06 1
PAHS Acenaphthalene Acenaphthene Benzo(a)pyrene	Dibenzo(a,h)anthracene Fluoranthene Fluorene Phenanthrene Pyrene Parathion Pentachlorobenzene Quinoline Supona Tetrachlorobenzene Trichlorobenzene	Vapona INORGANICS Antimony Arsenic Beryllium Cadmium Copper Lead

Number of exposure events per year (195 days/yr) Exposed surface area (2,500 cm²) Skin adherence factor for soil (0.51 mg/cm²) Soil matrix factor (1.0) Body weight (15.5 kg)

6/24/91

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Dermal Absorption Route of Exposure Child, Farmer Scenario

CA	AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg	ABSORPTION FACTOR	AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
ORGANICS					
Acetonitrile	5.06E-09	5.14E-09	1.00E-01	2.23E-14	2.26E-14
Aldrin	5.44E-09	5.52E-09	1.00E-01	2.39E-14	2.42E-14
Atrazine	1.19E-09	1.20E-09	1.00E-01	5.44-15	5.2%E-15
Benzaldehyde	1.10E-06	1.11E-06	1.00E-01	4.82E-12	4.88E-12
Benzofuran .	2.10E-06	2.13E-06	1.00E-01	9.23E-12	9.36E-12
Benzoic Acid	5.27E-07	5.35E-07	1.00E-01	2.32E-12	2.35E-12
Benzonitrile	5.06E-10	5.14E-10	1.00E-01	2.23E-15	2.26E-15
Carbazole	1.01E-10	1.02E-10	1.00E-01	4.43E-16	4.50E-16
4-Chlorobiphenyl	3.55E-06	3.60E-06	1.00E-01	1.56F-11	1.58E-11
4,4-Chlorobiphenyl	6.68E-08	6.78E-08	1.00E-01	2.94E-13	2.98E-13
4-Chlorophenylmethylsulfone	5.89E-07	5.98E-07	1.00E-01	2.59E-12	2.63E-12
4-Chlorophenylmethylsulfoxide	7.26E-08	7.37E-08	1.00E-01	3.19E-13	3.24E-13
p,p-DDE	5.89E-10	5.98E-10	1.00E-01	2.59E-15	2.63E-15
p,p-DDT	1.83E-09	1.86E-09	1.00E-01	8.06E-15	8,18E-15
Dibenzofuran	1.05E-07	1.07E-07	1.00E-01	4.61E-13	4.68E-13
Dicyclopentadiene	2.39E-10	2.43E-10	1.00E-01	1.05E-15	1.07E-15
Dieldrin	1.11E-09	1.13E-09	1.00E-01	4.89E-15	4.96E-15
Diisopropyl Methylphosphonate	1.87E-07	1.89E-07	1.00E-01	8.21E-13	8.33E-13
1,3-Dimethylbenzene	3.12E-10	3.16E-10	1.00E-01	1.37E-15	1.39E-15
Dimethyl Methylphosphonate	4.61E-06	4.67E-06	1.00E-01	2.02E-11	2.05E-11
Dioxins/Furans (EPA TEFs)	6.23E-12	6.32E-12	1.00E-01	2.74E-17	2.78E-17
Dithiane	1.89E-10	1.92E-10	1.00E-01	8.30E-16	8.42E-16
Endrin	1.08E-09	1.09E-09	1.00E-01	4.74E-15	4.81E-15
Hexachlorobenzene	3.59E-09	3.65E-09	1.00E-01	1.58E-14	1.60E-14
Hexachlorocyclopentadiene	1.00E-08	1.01E-08	1.00E-01	4.40E-14	4.46E-14
Isodrin	2.81E-09	2.85E-09	1.00E-01	1.24E-14	1.25E-14
Malathion	4.36E-09	4.42E-09	1.00E-01	1.92E-14	1.94E-14
Methanol	2.06E-05	2.09E-05	1.00E-01	9.05E-11	9.18E-11
4-Nitrophenol	4.52E-08	4.59E-08	1.00E-01	1.99E-13	2.02E-13

8F-13

2.33E-12 2.33E-12 4.68E-13 4.68E-13	4.68E-13 9.36E-13 4.68E-13 2.65E-15	7.16E-15 2.53E-11 1.13E-15 8.18E-15 3.02E-15 1.61E-15 3.44E-09	4.22E-13 2.39E-12 2.44E-14 3.74E-13 2.24E-09 7.49E-13
2.30E-12 2.30E-12 4.61E-13 4.61E-13	4.61E-13 4.61E-13 9.23E-13 4.61E-13	7.06E-15 2.50E-11 1.11E-15 2.97E-15 1.58E-15 3.39E-09	4.16e-13 2.35e-12 2.41e-14 3.68e-13 2.21e-09 7.39e-13
1.00E-01 1.00E-01 1.00E-01	1.00E-01 1.00E-01 1.00E-01	1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01	1.00e-02 1.00e-02 1.00e-02 1.00e-02 1.00e-02 1.00e-02
5.31E-07 5.31E-07 1.07E-07	1.0/E-U/ 3.19E-07 1.07E-07 2.13E-07 1.07E-07 6.02E-10	1.63E-09 5.77E-06 2.56E-10 1.86E-09 3.65E-10 7.83E-04	9.60E-07 5.43E-06 5.56E-08 8.51E-07 5.09E-03 1.71E-06
5.23E-07 5.23E-07 1.05E-07	1.05E-07 3.15E-07 1.05E-07 2.10E-07 1.05E-07 5.94E-10	1.61e-09 5.69e-06 2.53e-10 1.83e-09 1.87e-10 3.60e-10 7.72e-04	9.46E-07 5.35E-06 5.48E-08 8.38E-07 5.02E-03 1.68E-06
PAHS Acenaphthalene Acenaphthene Benzo(a)pyrene Chrysene	Dibenzo(a,h)anthracene Fluoranthene Fluorene Phenanthrene Pyrene	Pentachlorobenzene Phenol Quinoline Supona Tetrachlorobenzene Trichlorobenzene Urea	INORGANICS Antimony Arsenic Beryllium Cadmium Copper Lead Mercury

Number of exposure events per year (195 days/yr) Exposed surface area (2,500 cm²) Skin adherence factor for soil (0.51 mg/cm²) Soil matrix factor (1.0) Body weight (15.5 kg) 6/24/91

APPENDIX 8G

METHODOLOGY FOR CALCULATING ORGANIC POLLUTANT CONCENTRATIONS IN MOTHER'S MILK

APPENDIX 8G

METHODOLOGY FOR CALCULATING ORGANIC POLLUTANT CONCENTRATIONS IN MOTHER'S MILK

This appendix presents a discussion of the methods used to determine the organic pollutant concentrations in mother's milk. These concentrations are used in the calculation of the daily intakes of pollutants by infants through the consumption of mother's (i.e., breast) milk.

The concentration of dioxins in breast milk was calculated using the following equation that was developed for dioxins (Smith, 1987):

$$C_{DBMilk} = \frac{TEDI \times f_1 \times f_2}{f_3 \times k}$$

Where:

 C_{DBMilk} = Concentration of dioxins in breast milk (mg/kg).

TEDI = Total Estimated Daily Intake, the maximum daily intake of dioxins by the mother through all potential exposure routes (mg/kg/day).

 f_1 = Proportion of dioxins stored in body fat (unitless).

 f_2 = Proportion of breast milk that is fat (unitless).

 f_3 = Proportion of body weight that is fat (unitless).

 $k = Rate constant (days^{-1}).$

The maximum total estimated daily intake of the mother was used to estimate breast milk concentrations for dioxins as well as all other organics.

Values of 0.8, 0.04, and 0.3 were used for f_1 , f_2 , and f_3 , respectively (Smith, 1987). A rate constant of 3.27E-04 days⁻¹ was calculated as follows. Assuming a half-life ($t_{1/2}$) of dioxins in the human body of 2,120 days (ATSDR, 1989a):

$$k = \frac{\ln 2}{t_{1/2}}$$

The equation developed by Smith (1987) was applied to the other organic pollutants of concern using available information. Data were available on the half-lives of ten organics (in addition to dioxin) in humans and mammals. A half-life of 8 hours was used for acrylonitrile; the half-life of acrylonitrile in humans is reported to range from 7 to 8 hours (ATSDR, 1989b). A half-life of 3 hours was used for benzene; the half-life of benzene in humans is reported to range from 1 to 3 hours (Baselt, 1982). Half-lives in humans of 240 days and 120 days were used for DDE and DDT, respectively. These values are based on half-lives in rats of 24 days and 12 days for DDE and DDT, respectively (ATSDR, 1988a). An uncertainty factor of 10 was applied to the 24 and 12 day half-lives to account for the absence of human data. A half-life in humans of 45 hours was used for 1,1-dichloroethene This value is based on a half-life in rats (1,1-dichloroethene) and an unreported species (phenol) of 4.5 hours (ATSDR, 1988b; Baselt, 1982). An uncertainty factor of 10 was applied to the half-life of 4.5 hours to account for the absence of human data. A half-life of 266 days in humans was used for dieldrin (ATSDR, 1989c). A half-life of 60 days has been reported for hexachlorobenzene in humans (Baselt, 1982). This half-life also was assumed for all other semi-volatile chlorinated benzenes (i.e., trichlorobenzene, tetrachlorobenzene, and pentachlorobenzene). A half-life of 7.5 hours in humans was used for toluene (Baselt, 1982), whereas a half-life of 1.5 hours in humans was used for xylene (Baselt, 1982). For those semi-volatile organics, for which half-life data in humans or mammals were not available, the half-life of dieldrin (266 days) was used. The half-life of dieldrin is the longest half-life available for the semi-volatile, other than dioxin. Since there are few organics that would accumulate in breast milk to the extent of dioxin, it would be

overly conservative to apply the half-life for dioxins in humans to all semi-volatile organics. Thus, the next highest half-life (i.e., dieldrin) was used. The half-life for 1,1-dichloroethene of 45 hours in humans was applied to all volatile organics (as defined in Subsection 7.4.2) for which half-life data were not available. This is the longest half-life that is assumed for the volatile organics, which are being evaluated.

From the available or calculated half-lives, the following rate constants (k) were calculated: acrylonitrile (2.08E+00 day⁻¹); benzene (5.54E+00 day⁻¹); DDE (2.89E-03 day⁻¹); DDT (5.77E-03 day⁻¹); 1,1-dichloroethene, phenol, and those volatile organics for which insufficient half-life data were available (3.70E-01 day⁻¹); dieldrin, and those semi-volatile organics for which insufficient half-life data were available (2.61E-03 day⁻¹); trichlorobenzene, tetrachlorobenzene, pentachlorobenzene, and hexachlorobenzene (1.15E-02 day⁻¹); toluene (2.22E+00); and xylene (1.11E+01 day⁻¹). The proportion of these organics stored in body fat (f₁) was assumed to be the same as that of dioxin (0.8).

Tables 8G-1 through 8G-3 present pollutant concentrations in breast milk for the Resident-A, Resident-B, and Farmer scenarios, respectively.

Table 8G-1

Pollutant Concentrations in Breast Milk, Resident-A Scenario

ile rile rile rile in cid ile ile ile iphenyl obiphenyl obiphenyl cobiphenyl cobiphenyl cobiphenyl cobiphenyl cobiphenyl sulfone coroethen coroeth	11 mm imm internal in	Transfer factor (day) 2.89E-01 4.09E+01 1.92E-02 4.09E+01 1.92E-02 4.09E+01 4.09E+01 4.09E+01 4.09E+01 4.09E+01 2.89E-01 4.09E+01 4.09E+01 2.89E-01 4.09E+01 4.09E+01 2.89E-01 4.09E+01 4.09E+01 4.09E+01 2.89E-01 2.89E-01 4.09E+01 4.09E+01 4.09E+01 4.09E+01 7.09E+01	Maximum Breast milk Conc. Ig/kg 5.85E-12 1.04E-09 6.28E-14 1.17E-07 2.64E-14 1.17E-07 2.54E-14 1.20E-13 3.63E-09 7.87E-09 7.87E-09 7.87E-09 7.87E-11 1.08E-08 7.87E-11 1.34E-12 6.80E-13 6.25E-14 1.57E-12 5.56E-13 5.56E-13 7.87E-09 7.87E-14 1.34E-13 8.44E-16 5.35E-11	Maximum Estimated Daily Intake mg/kg/day Intake mg/kg/day Jude 5.20E-13 5.20E-13 5.28E-11 1.0E-11 1.0E-11 1.0FE-11 1.07E-11 1.07E
	5.29E-13 2.68E-12 8.57E-13 9.08E-12 2.88E-11 1.26E-11 1.09E-11 2.54E-09 2.54E-09	4.09E+01 4.09E+01 2.89E-01 9.24E+00 4.09E+01 4.09E+01 4.09E+01 2.89E-01	2.17E-11 1.10E-10 2.47E-13 8.39E-11 1.18E-10 5.14E-10 4.27E-06 7.32E-10 7.58E-12	1.93E-12 9.76E-12 2.20E-14 7.46E-12 1.05E-10 4.57E-11 3.79E-07 6.51E-11 6.74E-13

	10			
	Maximum	T	Maximum	Maximum
	Total	Breast milk	Breast milk	Estimated
	Daily Intake	Transfer	Conc.	Daily Intake
	(mg/kg/day)	Factor	mg/kg	mg/kg/day
PAHS		(day)		
Acenaphthalene	1.33E-09	4.09E+01	5.45E-08	4.85E-09
Acenaphthene	1.31E-09	4.09E+01	5.38E-08	4.78E-09
Benzo(a)pyrene	2.63E-10	4.09E+01	1.08E-08	9.59E-10
Chrysene	2,65E-10	4.09E+01	1.08E-08	9.63E-10
Dibenzo(a,h)anthracene	3.04E-10	4.09E+01	1.24E-08	1.10E-09
Fluoranthene	7.916-10	4.09E+01	3.24E-08	2.88E-09
Fluorene	2.65E-10	4.09E+01	1.08E-08	9.64E-10
Phenanthrene	5.28E-10	4.09E+01	2.16E-08	1.92E-09
Pyrene	2.64E-10	4.09E+01	1.08E-08	9.62E-10
Parathion	1.49E-12	4.09E+01	6.11E-11	5.43E-12
Pentachlorobenzene	4.10E-12	9.24E+00	3.796-11	3.37E-12
Phenol	i.óɔe-08	2.89E-01	4.76E-09	4.23E-10
Pyridine	1.22E-13	4.09E+01	5.01E-12	4.45E-13
Quinol ine	6.62E-13	4.09E+01	2.71E-11	2.41E-12
Styrene	2.55E-09	2.89E-01	7.35E-10	6.53E-11
Supona	4.62E-12	4.09E+01	1.89E-10	1.68E-11
Tetrachlorobenzene	1.79E-12	9.24E+00	1.65E-11	1.47E-12
Tetrachloroethene	1.42E-12	2.89E-01	4.11E-13	3.65E-14
Toluene	2.47E-13	4.81E-02	1.19E-14	1.05E-15
Trichlorobenzene	9.01E-13	9.24E+00	8.32E-12	7.40E-13
Trichloroethene	4.63E-12	2.89E-01	1.34E-12	1.19E-13
Urea	3.62E-05	4.09E+01	1.48E-03	1.32E-04
Vapona	1.27E-11	4.09E+01	5.18E-10	4.61E-11
Vinyl Chloride	2.56E-09	2.89E-01	7.38E-10	6.56E-11
Xylene	2.74E-12	9.62E-03	2.63E-14	2.34E-15

6/24/91

Table 8G-2

Pollutant Concentrations in Breast Milk, Resident-B Scenario

	DI Maximum Total Daily Intake (mg/kg/day)	TF Breast milk Transfer Factor	Maximum Breast milk Conc. mg/kg	Maximum Estimated Daily Intake mg/kg/day
ORGANICS		(day)	'	
Acetone	.02E-1	2.89E-01	1.16E-12	1.03E-13
Acetonitrile Acrylopitrile	2.33E-11	5.13F-02	1.24F-14	_
Aldrin	.82E-1	4.09E+01	3.61E-10	'n
Atrazine	7.19E-13	4.09E+01	2.94E-11	2
Benzaldehyde	7.77E-10	4.09E+01	3.18E-08	2.83E-(
Benzene	2.72E-13	1.92E-02	5.24E-15	4.
Benzoic Acid	3.33E-10	4.09E+01	1.36E-08	1.216-09
Benzonitrile	3.49E-13	4.09E+01	1.43E-11	-
e i pheny i	2.55E-10	4.09E+01	50,170	9.26E-10
Bromomethane	•	2.89E-01	5.37E-15	
Carbon Tetrachloride	3, 10F-13	2.89F-01	8.95E-14	7.96E-15
Chlorobenzene		2.89E-01	2.38E-14	8
	1.86E-09	4.09E+01	7.61E-08	6.76E-09
4,4-Chlorobiphenyl	3.4/E-11 5 275-12	4.09E+01	1.42E-U9	1.265-10
4-Chlorophenylmethylsulfone	64F-1	4.09E+01	1.90E-08	1.69E-09
4-Chlorophenylmethylsulfoxide	_	4.09E+01	2.26E-09	2.01E-10
p, p-00E	.17E-1	3.69E+01	1.17E-11	
p,p-UUI	1.12E-12 5 6/E-11	1.85E+U1	2.U/E-11	7.845-12
Dichlorobenzenes (total)	.3E-1	2.89E-01	2.66E-14	
1,4-Dichlorobenzene	.78E-1	2.89E-01	Ξ,	
	4.67E-13	2.89E-01	1.35E-13	1.20E-14
1.2-Dichloropopane	15E-1	2.89E-01		
Dicyclopentadiene	1.58E-13	4.09E+01	6.48E-12	5.76E-1
Dieldrin		4.09E+01	3.02E-10	2.68E-1
Ullsopropyl Methylphosphonate	1.77E-13	4.09E+01	7.25E-12	6.44E-13
Dimethyldisulfide	2.59E-10	4.09E+01	1.06E-08	9.41E-1
Dimethyl Methylphosphonate	8.06E-08	4.09E+01	3.30E-06	2.93E-0
Dithiane	1.926-13	4.09E+01	7.85E-12	6.98E-13
Endrin		4.09E+01	-	75E-1
Ethylbenzene	1.70E-13	2.89E-01	÷	_
Hexach orobenzene	2.02E-12	7.24E+UU	1.80E-11	1.65E-12
Isodrin	1.03E-11	4.09E+01	23E-1	3.76E-11
Malathion	2.35E-12	4.09E+01	9.60E-11	8.54E-12
Methanol	9.64E-08	4.09E+01	3.95E-06	3.51E-07
Methyl Chloride	5.03E-10	2.89E-UI	1 50F-10	1 3/5-11
4-Nitrophenol	2.65E-11	4.09E+01	1.09E-09	9.65E-11

	Id				
	Maximum	Ŧ	Maximum	Maximum	
	Total	Breast milk	Breast milk	Estimated	
	Daily Intake	Transfer	Conc.	Daily Intake	
	(mg/kg/day)	Factor	mg/kg	mg/kg/day	
PAHS		(day)			
Acenaphthalene	3.12E-10	4.09E+01	1.28E-08	1.14E-09	
Acenaphthene	2.83E-10	4.09E+01	1.16E-08	1.03E-09	
Benzo(a)pyrene	5.47E-11	4.09E+01	2.24E-09	1.99E-10	
Chrysene	5.69E-11	4.09E+01	2.33E-09	2.07E-10	
Dibenzo(a,h)anthracene	9.49E-11	4.09E+01	3.89E-09	3.45E-10	
Fluoranthene	1.71E-10	4.09E+01	7.02E-09	6.24E-10	
Fluorene	5.84E-11	4.09E+01	2.39E-09	2.12E-10	
Phenanthrene	1.14E-10	4.09E+01	4.65E-09	4.13E-10	
Pyrene	5.72E-11	4.09E+01	2.34E-09	2.08E-10	
Parathion	3.23E-13	4.09E+01	1.32E-11	1.18E-12	
Pentachlorobenzene	9.74E-13	9.24E+00	8.99E-12	7.99E-13	
Phenol	\$. 56E . 59	2.89E-01	1.92E-09	1.71e-10	
Pyridine	2,43E-14	4.09E+01	9.93E-13	8.83E-14	
Quinoline	1.81E-13	4.09E+01	7.416-12	6.58E-13	
Styrene	5.05E-10	2.89E-01	1.46E-10	1.30E-11	
Supona	1,02E-12	4.09E+01	4.16E-11	3.70E-12	
Tetrachlorobenzene	5.10E-13	9.24E+00	4.71E-12	4.19E-13	
Tetrachloroethene	2.82E-13	2.89E-01	8.15E-14	7.24E-15	
Toluene	4.89E-14	4.81E-02	2.35E-15	2.09E-16	
Trichlorobenzene	1.89E-13	9.24E+00	1.74E-12	1.55E-13	
Frichloroethene	9, 19E-13	2.89E-01	2.65E-13	2.36E-14	
Jrea	5.62E-05	4.09E+01	2.30E-03	2.04E-04	
Vapona	3.52E-12	4.09E+01	1.44E-10	1.28E-11	
/inyl Chloride	5.07E-10	2.89E-01	1.46E-10	1.30E-11	
(ylene	5.43E-13	9.62E-03	5.22E-15	4.64E-16	

Table 8G-3

VOLUME II

Pollutant Concentrations in Breast Milk, Farmer Scenario

ANICS Acetone Acetonitrile Actonitrile Actonitrile Actoritrile Actonitrile Actonitrile Actonitrile Actorioritrile Benzaldehyde Benzaldehyde Benzoic Acid Benzoic
Dioxins/Furans (EPA IEFS) Dithiane Endrin Ethylbenzene
Hexachlorobenzene Hexachlorocyclopentadiene Isodrin Malathion Methanol Methyl Chloride Methylene Chloride

m Maximum nik Estimated Daily Intake mg/kg/day		-08 2.65E-09			Ī	-09 7.04E-10		•				-	6	•	-	-10 2.27E-11	-	-	3	2	2	13				
Maximum Breast milk Conc. mg/kg		2.98E-08	2.35E-08	5.85E-09	4.89E-09	7.93E-09	1.50E-08	5.09E-09	9.52E-09	4.92E-09	2.69E-11	2.19E-1	6.00E-09	1.74E-12	1.74E-1	2.56E-1	8.34E-1	1.38E-	1.43E-1	4.12E-1	3.34E-	4.65E-	3.25E-03	2.58E-10	2.57E-10	9.15E-15
TF Breast milk Transfer Factor	(day)	4.09E+01	4.09E+01	4.09E+01	4.09E+01	4.09E+01	4.09E+01	4.09E+01	4.09E+01	4.09E+01	4.09E+01	9.24E+00	2.89E-01	4.09E+01	4.09E+01	2.89E-01	4.09E+01	9.24E+00	2.89E-01	4.81E-02	9.24E+00	2.89E-01	4.09E+01	4.09E+01	2.89E-01	9.62E-03
DI Maximum Total Daily Intake (mg/kg/day)		7.27E-10	5.74E-10	1.43E-10	1.20E-10	1.94E-10	3.65E-10	1.24E-10	2.32E-10	1.20E-10	6.57E-13	2.37E-12	2. USE-03	4.25E-14	4.26E-13	8.85E-10	2.04E-12	1.50E-12	4.95E-13	8.57E-14	3.62E-13	1.61E-12	7.93E-05	6.30E-12	8.89E-10	9.52E-13
	PAHS	Acenaphthalene	Acenaphthene	Benzo(a)pyrene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Parathion	Pentachlorobenzene	Phenol	Pyridine	Quinoline	Styrene	Supona	Tetrachlorobenzene	Tetrachloroethene	Toluene	Trichlorobenzene	Trichloroethene	Urea	Vapona	Vinyl Chloride	Xylene

APPENDIX 8G

CITED REFERENCES

ATSDR (Agency for Toxic Substances and Disease Registry). 1988a. <u>Toxicological Profile</u> for p,p/DDT, p,p/-DDE, p,p/-DDD. Draft. Prepared by Clement Associates.

ATSDR (Agency for Toxic Substances and Disease Registry). 1988b. <u>Toxicological Profile</u> for 1,1-Dichloroethene. Draft. Prepared by Clement Associates.

ATSDR (Agency for Toxic Substances and Disease Registry). 1989a. <u>Toxicological Profile</u> for 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Prepared by Syracuse Research Corporation. PB89-214522.

ATSDR (Agency for Toxic Substances and Disease Registry). 1989b. <u>Toxicological Profile</u> for Acrylonitrile. Draft. Prepared by Life Systems and Clement Associates.

ATSDR (Agency for Toxic Substances and Disease Registry). 1989c. <u>Toxicological Profile</u> for Aldrin/Dieldrin. Prepared by Dynamac Corporation.

Baselt, R.C. 1982. <u>Disposition of Toxic Drugs and Chemicals in Man</u>. 2nd edition. Biomedical Publications, Davis, CA.

Smith, A. H. 1987. "Infant Exposure Assessment for Breast Milk Dioxins and Furans Derived from Waste Incineration Emissions," <u>Risk Analysis</u> 7(3):347-353.

APPENDIX 8H CARCINOGENIC RISK FOR INDIVIDUALS UNDER ALL SCENARIOS

Carcinogenic Risk Through all Routes of Exposure for the Adult, Resident-A Scenario

	VEGETABLE INGESTION CARC. RISK	MILK INGESTION CARC. RISK	BEEF INGESTION CARC. RISK	SOIL/DUST INGESTION CARC. RISK	FISH INGESTION CARC. RISK	DERMAL EXPOSURE CARC. RISK	TOTAL ADULT CARC. RISK
Acrylonitrile Acrylonitrile Aldrin Benzene Carbazole Carbon Tetrachloride Chloroform P,P-DDE P,P-DDE 1,4-Dichloroethene 1,2-Dichloropropane Dictorin Dictorin Methyl Chloride Methylene Chloride	4.68E-11 NA 8.07E-17 S.07E-17 2.08E-14 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA S.50E-13 3.17E-20 NA NA NA NA NA NA NA NA NA NA NA NA NA	8.27E-14 NA 1.22E-20 NA 1.45E-17 1.06E-16 NA NA NA NA NA NA NA NA NA NA NA NA NA	1.24E-13 NA NA N	1.70E-15 NA 1.20E-18 1.20E-18 NA NA 6.86E-15 2.23E-14 NA NA N	NA 9.15E-14 2.00E-18 NA 1.98E-16 6.17E-16 NA NA 1.76E-14 9.24E-13 5.69E-15	4.76E-11 NA 8.66E-17 NA 7.91E-15 4.51E-14 NA NA N
PAHS Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Parathion Quinoline Styrene Tetrachloroethene Vapona Vinyl Chloride	4.05E-12 1.92E-11 5.76E-12 NA NA NA 1.86E-13	1.03E-12 3.60E-13 1.19E-12 NE 1.38E-17 NA NA NA NA	2.22E-13 9.85E-14 2.49E-13 NE 5.40E-18 NA NA 1.35E-18	1.62E-12 1.62E-12 1.62E-12 NE-15 NA NA NA 1.88E-15 NA	7.44E-13 1.86E-11 4.16E-10 NE-10 NA NA NA 1.23E-16 NA	1.20e-12 1.20e-12 1.20e-12 3.00e-15 NA NA 1.38e-15	8.87E-12 4.16E-11 4.26E-10 NE 3.86E-13 NA NA 1.89E-13
INORGANICS Arsenic Beryllium Cadmium Chromium (VI) Nickel	1.78E-11 4.09E-13 NA NA NA NA 1.58E-10	1.11E-11 6.67E-18 NA NA NA NA	1.45E-13 3.33E-16 NA NA NA NA	1.26E-11 3.17E-13 NA NA NA NA	2.39E-11 3.02E-14 NA NA NA A.62E-10	9.27E-12 2.33E-13 NA NA NA NA	7.47E-11 9.89E-13 NA NA NA NA

8H-1

Table 8H-2

Carcinogenic Risk Through all Routes of Exposure for the Adult, Resident-B Scenario

	VEGETABLE INGESTION CARC. RISK	MILK INGESTION CARC. RISK	BEEF INGESTION CARC. RISK	SOIL/DUST INGESTION CARC. RISK	FISH INGESTION CARC. RISK	DERMAL EXPOSURE CARC. RISK	TOTAL ADULT CARC. RISK
Acrylonitrile Aldrin Benzene Carbacole Carbacole Carbarole Carbon Tetrachloride Chloroform P, P-DDT 1, 4-Dichlorobenzene 1, 1-Dichloropenee Dieldrin Dioxins/Furans (EPA TEFs) Hexachlorobenzene Methyl Chloride Methyl Chloride Methylene Chloride PAHS Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Parathion Quinoline Styrene Tetrachloroethene Trichloroethene Vapona Vinyl Chloride Irichloroethene Vapona Vinyl Chloride Openzolium Cadmium Cadmium Chromium (VI)	7.58E-11 NA	1.03E-13 3.17E-20 NA NA 1.03E-17 4.78E-16 NA	8.276-14 1.226-20 1.226-20 1.456-17 1.066-16 1.0	2.02E-13 NA 4.41E-18 NA 4.38E-16 1.36E-15 2.64E-12 2.64E-12 2.64E-12 2.64E-12 2.64E-12 3.05E-14 NA NA N	NA 1.70E-15 NA NA 6.86E-15 2.23E-14 NA NA NA 1.23E-14 3.30E-14 4.16E-10 6.98E-16 NA NA NA NA NA NA NA NA NA NA NA NA NA	1. 49E - 13 NA 3. 24E - 18 NA 3. 22E - 16 1. 50E - 15 1. 50E - 12 1. 94E - 13 1. 94E - 13 1. 94E - 13	NA 1.35E-16 NA NA NA 8.03E-15 5.75E-14 NA NA NA NA NA NA NA NA NA NA NA NA NA
Total	Z.ZZE-10	1.406.11	1.1	1	2110	!	1

Carcinogenic Risk Through all Routes of Exposure for the Adult, Farmer Scenario

	VEGETABLE INGESTION CARC. RISK	MILK INGESTION CARC. RISK	BEEF INGESTION CARC. RISK	SOIL/DUST INGESTION CARC. RISK	FISH INGESTION CARC. RISK	DERMAL EXPOSURE CARC. RISK	TOTAL ADULT CARC. RISK
ACTYLONITRILE ALGRIN ALGRIN BENZENE Carbazole Carbazole Chloroform P.P-DDE P.P-DDE I,4-Dichlorobenzene i,i-uiciloroethene 1,2-Dichloropropane Diedrin Dioxins/Furans (EPA TEFs) Hexachlorobenzene Methyl Chloride Methyl Chloride PAHS Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene	3.92e-10 5.36e-10 1.66e-13 1.66e-13 1.26e-11 1.56e-11 1.70e-11 3.15e-11	1.10E-11 6.34E-19 NA NA N	1.65E-12 2.44E-19 2.90E-16 2.11E-15 NA NA 4.86E-14 6.47E-15 6.47E-15 NA NA NA NA NA 1.97E-12 4.45E-12	1.216-13 2.636-18 2.636-18 8.156-16 8.156-16 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA 1.70E-15 1.20E-18 NA NA NA NA NA NA NA NA NA NA NA NA NA	4,35e-13 9,56-13 9,44e-16 2,94e-15 1,40e-12 2,71e-14 4,40e-12 2,71e-14 1,40e-12 2,69e-12 5,69e-12	NA 4.05E-10 NA NA NA NA NA NA NA NA NA NA
Parathion Quinoline Styrene Tetrachloroethene Trichloroethene Vapona	2.20E-12 NA NA NA NA 5.43E-13	NE 2.76E-16 NA NA NA NA NA NA NA	1.08E-16 NA NA NA NA NA NA NA	3.96E-15 NA NA NA 1.82E-15 NA	NE 6.98E-16 NA NA NA 1.23E-16	1.43E-14 NA NA NA NA NA NA NA NA	S. 22E-12 NA NA NA NA S. 51E-13
INORGANICS Arsenic Beryllium Cadmium Chromium (VI) Nickel	1.36E-11 2.43E-13 NA NA NA NA	2.22E-10 1.33E-16 NA NA NA NA A	2.91E-12 6.67E-15 NA NA NA NA NA	1.22E-11 3.08E-13 NA NA NA NA 1.87E-11	2.39E-11 3.02E-14 NA NA NA NA A.62E-10	4.41E-11 1.11E-12 NA NA NA NA NA AA	3.19E-10 1.70E-12 NA NA NA NA

8H-3

6/24/91 815C/A8f.51

Table 8H-4

VOLUME II

Carcinogenic Risk Through all Routes of Exposure for the Adult, Worker Scenario

TOTAL WORKER CARC. RISK	8.59e-16 13 9.21e-17 14 2.01e-17 15 6.22e-15 15 6.22e-15 17 6.22e-15 17 76-13 17 76-13 17 76-13 17 76-14 1.08e-15 1.49e-14 1.39e-14 1.39e-14 1.39e-14 1.39e-14 1.39e-14 1.39e-14 1.39e-16 13 3.62e-11 3.62e-11	11 6.80E-10
DERMAL EXPOSURE CARC. RISK	2.16E-13 4.71E-18 4.68E-16 1.46E-15 1.34E-14 1.34E-12 2.82E-12 2.82E-12 2.82E-12 2.82E-12 2.82E-12 3.26E-15 NA NA NA NA NA NA NA NA NA NA	3.33E-11
SOIL/DUST INGESTION CARC. RISK	5.19E-14 1.13E-18 1.13E-18 3.50E-16 3.50E-16 5.28E-13 6.78E-13 1.70E-15 NA	8.01E-12
INHALATION CARC. RISK	8.59E-16 6.54E-13 1.47E-16 6.42E-16 6.42E-16 6.42E-16 1.42E-17 1.42E-15 1.15E-15 1.15E-15 1.08E-15 4.53E-12 4.53E-12 4.53E-12 2.15E-14 1.49E-16 1.4	6.39E-10
	Acrylonitrile Acrylonitrile Aldrin Benzene Carbazole Carbazole Carbon Tetrachloride Chloroform P, P-DDE P, P-DDE P, P-DDE 1, 4-Dichlorobenzene 1, 2-Dichlorobenzene Dioxins/Furans (EPA TEFs) Hexachlorobenzene Methyl Chloride Methyl Chloride PAHS Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Parathion Quinoline Styrene Trichloroethene Trichloroethene Trichloroethene Vapona Vinyl Chloride Vapona Vinyl Chloride Beryllium Cadmium (VI) Nickel	Total

Carcinogenic Risk Through all Routes of Exposure for the Child, Resident-A Scenario

	INHALATION CARC. RISK	VEGETABLE INGESTION CARC. RISK	MILK INGESTION CARC. RISK	BEEF INGESTION CARC. RISK	SOIL/DUST INGESTION CARC. RISK	FISH INGESTION CARC. RISK	DERMAL EXPOSURE CARC. RISK	TOTAL CHILD CARC. RISK
ORGANICS Acrionitrile Aldrin Benzene Carbazole Carbon Tetrachloride Chloroform P,P-DDE P,P-DDE 1,4-Dichlorobenzene 1,1-Dichloroethene 1,2-Dichloropropane Dicidrin Dicklorobenzene Hexachlorobenzene Methyl Chloride Methylene Chloride	9.47E-15 7.20E-15 1.29E-16 1.57E-16 6.56E-17 7.07E-15 1.56E-14 9.12E-14 7.48E-11 5.16E-13 1.19E-14	5.48E-12 NA 1.03E-17 1.03E-17 NA 7.24E-17 2.47E-15 NA NA NA NA NA NA NA NA NA NA NA NA NA	2.48E-13 NA 1.43E-20 NA NA 2.32E-17 2.16E-16 NA NA N	1.616-14 N A A 2.38E-21 NA A 2.06E-17 NA NA A A A A A A A A A A A A A A A A A	8.77E-14 NA 1.91E-18 1.90E-16 5.92E-16 NA NA N	3.00E-16 NA NA 1.21E-19 1.21E-19 3.93E-15 3.93E-15 5.46E-13 5.99E-15	5.98E-14 NA 1.30E-18 NA 1.30E-16 4.03E-16 NA NA NA NA NA NA NA NA NA NA NA NA NA	9.47E-15 1.31E-11 1.29E-15 1.71E-16 6.56E-15 7.07E-14 5.62E-14 9.12E-14 1.27E-14 6.51E-12 6.75E-11 7.87E-13 5.75E-11
PAHs Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Parathion Quinoline Styrene Tetrachloroethene Trichloroethene Vapona	4,99e-11 4,99e-11 6,99e-11 Ne 1,64e-13 1,52e-16 1,09e-13 2,43e-11	5.38E-13 7.37E-12 7.37E-13 NE-14 NA NA NA NA NA NA NA	4.65e-13 1.62e-13 5.38e-13 NA NA NA NA NA NA NA NA NA	4.34E-14 1.92E-14 4.86E-14 1.05E-18 NA NA NA NA NA NA	1.15E-12 1.15E-12 1.15E-12 NA NA NA 1.33E-15 NA	1.31E-13 3.27E-12 7.34E-11 1.23E-16 NA NA NA NA NA NA NA	7.81e-13 7.81e-13 7.81e-13 NA NA NA NA NA NA NA NA NA NA NA NA NA	5.30e-11 5.76e-11 1.27e-10 NE 2.92e-13 1.64e-13 1.52e-16 1.64e-15 2.43e-11
INORGANICS Arsenic Beryllium Cadmium Chromium (VI) Nickel	6.26E-09 3.59E-11 3.99E-10 4.00E-11 6.66E-11	2.50E-12 5.87E-14 NA NA NA 1.92E-11	5.01E-12 3.01E-18 NA NA NA NA	2.83E-14 6.50E-17 NA NA NA NA	8.89E-12 2.24E-13 NA NA NA NA	4.21E-12 5.32E-15 NA NA NA NA	6.06E-12 1.52E-13 NA NA NA NA	6.29e-09 3.63e-11 3.99e-10 4.00e-11 6.66e-11

8H-5

Carcinogenic Risk Through all Routes of Exposure for the Child, Resident-B Scenario

	INHALATION CARC. RISK	VEGETABLE INGESTION CARC. RISK	MILK INGESTION CARC. RISK	BEEF INGESTION CARC. RISK	SOIL/DUST INGESTION CARC. RISK	FISH INGESTION CARC. RISK	DERMAL EXPOSURE CARC, RISK	TOTAL CHILD CARC. RISK
ORGANICS								
Acrylonitrile	1.88E-15	MA	N.	NA A	AN	AN	MA	1_88F-15
Aldrin	1.43E-12	8.87E-12	2.48E-13	1.61E-14	1.43E-13	3.00E-16	9.71E-14	1.08E-11
Benzene	2.55E-16	Y.	NA	N.	Y.	N N	¥	2.55E-16
Carbazole	3.12E-17	1.61E-17	1.43E-20	2.38E-21	3.11E-18	2.12E-19	2.12E-18	5.27E-17
Carbon Tetrachloride	1.30E-15	¥:	NA A	NA	V.	N A	NA	1.30E-15
	7 10E-15	NA V	AN C	Y Y	YN .	YN.	NA	1.40E-15
D.D-DDT	0 66F-15	7 70E-17	2.32E-17	2.83E-18	3.09E-16	1.21E-15	2.11E-16	4.90E-15
1,4-Dichlorobenzene	4.48E-18	NA - NA	01 - 10E - 10 NA	Z.UOE-1/	7.02E-10	5.936-15	6.55E-16	1.92E-14
1,1-Dichioroethene	1.815-14	N.	Y N	V V	X 43	X 9	¥ <	4.40E-10
1,2-Dichloropropane	2.52E-15	NA	×	X X	Z Z	K &	Z Z	2 52F-15
Dieldrin	2.75E-13	1.15E-11	4.65E-15	4.73E-16	2.74E-14	1.21E-14	1.87E-14	1,18F-11
Dioxins/Furans (EPA TEFs)	1.09E-11	3.48E-13	1.84E-13	6.47E-14	1.44E-12	5.46E-13	9.81E-13	1.44E-11
Hexachlorobenzene	8.89E-14	3.56E-14	4.84E-16	6.30E-17	8.87E-15	5.99E-15	6.04E-15	1.46E-13
Methyl Chloride	1.02E-13	¥:	٧N	AN	N.	NA	AN	1.02E-13
PAHS	4.33E-15	Ψ.	AN A	NA V	¥.	Y.	NA NA	2.35E-15
Benzo(a)pyrene	O OUE.12	77 782 12	/ /57 43	******	170	,		
Chrysene	9 ONE-12	7 755-12	4.05E-13	4.34E-14	1.86E-12	1.31E-13	1.27E-12	1.41E-11
Dibenzo(a,h)anthracene	9.90E-12	7.71F-13	5 38E-13	1.925-14	1 84E-12	3.2/E-12	1.2/E-12	1.98E-11
Parathion	! ! !	2 2	7 TX	NF TA	1 - 00E - 12	- 14C · /	1.2/E-12	8.7/E-17
Quinoline	4.69E-14	8.17E-14	6.23E-18	1.05E-18	4.68F-15	1 23F-16	3 10F-15	1 47E-14
Styrene	3.26E-14	NA	NA	NA.	NA	A A	NA NA	3 26E-14
Tetrachloroethene	3.01E-17	NA	NA	Y.	Ž	Y Y	Z Z	3.01F-17
Trichloroethene	3.26E-16	NA	۸	NA.	N.	AN	AN	3.26F-16
Vapona	2.16E-14	4.63E-14	1.56E-18	2.63E-19	2.15E-15	2.17E-17	1.47E-15	7.15E-14
Vinyl chloride	4.83E-12	NA NA	NA	A'	NA	AN	NA	4.83E-12
INORGANICS								
Arsenic	1.24E-09	7.59F-13	5 01E-12	2 835-14	1 455.11	7. 21E-12	0 0/5,13	1 201 00
Beryllium	7.11E-12	1.22E-14	3.01E-18	6.50F-17	7 63F-13	5 325-15	7.045-12	7 7/5-12
Cadmium	7.90E-11	NA.	NA NA	AN	NA	NA C	7 P	7 OUE 11
Chromium (VI)	7.94E-12	NA	N	NA	X X	X X	¥	7.94E-12
Nickel	1.32E-11	NA N	NA	NA.	NA	N.	NA	1.32E-11
Total	1.40E-09	2.62E-11	6.61E-12	2.21E-13	2.20E-11	8.15E-11	1.50E-11	1.55E-09

Carcinogenic Risk Through all Routes of Exposure for the Child, Farmer Scenario

TOTAL CHILD CARC. RISK	3.29 7.38E-15 1.48E-16 2.28E-16 7.66E-15 7.66E-15 7.66E-15 7.66E-15 7.76E-15	2.30E-09 1.29E-11 1.39E-10 1.39E-11	2.88E-09
DERMAL EXPOSURE CARC. RISK	5.80E-14 NA NA N	5.88E-12 1.48E-13 NA NA NA	8.97E-12
FISH INGESTION CARC. RISK	3.00E-16 NA NA 1.21E-19 NA 1.21E-15 3.93E-15 NA NA NA 1.31E-13 3.27E-12 7.34E-11 NA NA NA NA NA NA NA NA NA NA	4.21E-12 5.32E-15 NA NA	8.15E-11
SOIL/DUST INGESTION CARC. RISK	8.52E-14 1.86E-18 1.85E-16 5.75E-16 5.75E-16 5.30E-17 1.11E-12 1.11E-12 1.29E-15 NA NA NA NA NA NA NA NA NA NA	8.64E-12 2.17E-13 NA NA	1.32E-11
BEEF INGESTION CARC. RISK	3.22E-13 NA 4.76E-20 NA NA 6.12E-16 1.29E-15 1.26E-15 1.26E-15 1.26E-15 1.26E-15 1.26E-15 1.26E-15 1.26E-15 1.26E-13 1.2	5.67E-13 1.30E-15 NA NA	4.42E-12
MILK INGESTION CARC. RISK	4.96E-12 2.86E-19 WA 4.53E-16 4.31E-15 9.58E-12 9.58E-12 1.08E-11 1.25E-12 1.25E-12 1.25E-12 1.25E-12 1.25E-12	1.00E-10 6.02E-17 NA NA	1.32E-10
VEGETABLE INGESTION CARC. RISK	8.99E-17 8.99E-17 NA 1.93E-16 2.79E-14 2.79E-14 2.59E-13 NA	3.51E-12 3.51E-14 NA NA	1.88E-10
INHALATION CARC. RISK	3.29E-15 2.50E-15 2.46E-17 2.46E-17 1.69E-15 1.69E-15 1.78E-13 1.78E-13 1.78E-11 1.74E-11	2.18E-09 1.25E-11 1.39E-10 1.39E-11	2.45E-09
	Acrylonitrile Aldrin Benzene Carbazole Carbazole Carbazole Carbazole Carbazole Chloroform P,P-DDE P,P-DDE 1,4-Dichlorobenzene 1,2-Dichloropropane Diedrin Dioxins/Furans (EPA TEFs) Hexachlorobenzene Methyl Chloride Methyl Chloride Methylene Chloride PAHS Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Parathion Quinoline Styrene Tetrachloroethene Vapona Vinyl Chloride	INORGANICS Arsenic Beryllium Cadmium Chromium (VI)	Total

8H-7

6/24/91

Table 8H-8

VOLUME II

Carcinogenic Risk Through all Routes of Exposure for the Infant, Resident-A Scenario

	INHALATION CARC. RISK	BREAST MILK INGESTION CARC. RISK	TOTAL INFANT CARC. RISK
Acrylonitrile Addrin Benzene Carbazole Carbazole Carbon Tetrachloride Chloroform P,P-DDE P,P-DDI 1,4-Dichlorobenzene 1,1-Dichloropene Dictlarin Dioxins/Furans (EPA TEFs) Hexachlorobenzene Methyl Chloride Methyl Chloride PAHS Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Parathion Quinoline Styrene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Vapona Vinyl Chloride Vapona Vinyl Chloride Cermium (VI) Nickel	6.20E-15 6.20E-15 7.71E-16 1.03E-16 1.03E-15 1.03E-15 1.03E-13 2.03E-11 3.27E-11 3.27E-11 3.27E-11 3.27E-11 1.59E-13 1.59E-13 1.59E-13 1.59E-13 2.51E-10 4.36E-11	4.30E-17 1.57E-11 2.65E-16 6.55E-16 6.37E-14 2.36E-19 5.46E-17 1.21E-14 7.22E-17 1.57E-10 1.58E-10 1.58E-10 1.58E-10 1.58E-10 1.58E-10 1.58E-10 1.51E-13 2.66E-17 1.91E-13 2.16E-12	6.24E-15 3.68E-16 4.37E-15 4.64E-15 5.64E-15 6.02E-14 6.02E-14 6.02E-14 7.84E-13 7.86E-13 7.86E-11
lotat	4.010 07	1.476.07	0.105.07

Carcinogenic Risk Through all Routes of Exposure for the Infant, Resident-B Scenario

	INHALATION CARC. RISK	BREAST MILK INGESTION CARC. RISK	TOTAL INFANT CARC. RISK
Acrylonitrile Aldrin Benzene Carbazole Carbazole Carbon Tetrachloride Chloroform P, P-DDF 1, 4-Dichlorobenzene 1, 1-Dichloroptene 1, 2-Dichloroptene Dieldrin Dioxins/Furans (EPA TEFs) Hexachlorobenzene Methyl Chloride Methylene Chloride Methylene Chloride Methylene Chloride PAHs Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Parathion Quinoline Styrene	1.23E-15 2.04E-17 8.51E-16 9.18E-16 9.18E-16 1.05E-15 1.05E-15 7.12E-12 7.12E-12 6.68E-12 6.48E-12 6.48E-12 7.15E-12 7.12E-12 7.12E-12 7.12E-12 7.12E-12 7.12E-12 7.12E-12 7.12E-12 7.12E-12 7.12E-12 7.12E-12 7.12E-12 7.12E-12 7.12E-12	8.54E-18 7.80E-12 1.93E-19 5.08E-17 1.20E-13 5.05E-15 5.08E-20 1.03E-16 5.14E-12 1.98E-10 3.78E-14 2.40E-17 1.43E-17 1.43E-17 1.43E-17 1.43E-17	1.24E-15 8.73E-12 7.05E-17 7.08E-15 1.52E-14 1.19E-14 1.19E-14 1.19E-14 1.58E-12 6.32E-11 6.33E-11 6.33E-11
Tetrachloroethene Trichloroethene Vapona Vinyl Chloride	1.97E-17 2.13E-16 1.41E-14 3.16E-12	5.28E-18 3.70E-18 5.30E-14 4.27E-13	2.49E-17 2.17E-16 6.71E-14 3.59E-12
INORGANICS Arsenic Beryllium Cadmium Chromium (VI)	8.12E-10 4.65E-12 5.17E-11 5.20E-12 8.65E-12	# # # # # # # # # # # # # # # # # # #	8.12E-10 4.65E-12 5.17E-11 5.20E-12 8.65E-12
Total	9.14E-10	3.36E-10	1.25E-09

8H-9

Table 8H-10

VOLUME II

Carcinogenic Risk Through all Routes of Exposure for the Infant, Farmer Scenario

INHALATION BREAST MILK TOTAL CARC. INGESTION INFANT RISK CARC. RISK RISK	2.15E-15 1.50E-17 2.17E-15 1.64E-12 4.80E-11 4.96E-11 2.92E-16 3.38E-19 2.93E-16 1.53E-17 1.53E-16 1.53E-17 1.53E-16 1.53E-17 1.53E-16 1.53E-17 1.53E-17 1.53E-17 1.53E-15 2.10E-18 1.31E-14 2.37E-14 3.55E-15 9.50E-15 1.31E-14 2.38E-16 2.08E-16 3.08E-16 2.39E-17 2.35E-17 2.37E-17 2.94E-15 3.06E-17 2.55E-17 4.33E-10 4.46E-10 1.25E-17 2.55E-17 2.55E-17 2.56E-17 2.55E-17 2.5
INHA C R	Acrylonitrile Aldrin Benzene Carbazole Carbazole Carbon Tetrachloride Chloroform P, P-DDT 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene Dieldrin Dioxins/Furans (EPA TEFs) Hexachlorobenzene Methyl Chloride Methyl Chloride Methylene Chloride Tetrachloroethene Styrene Trichloroethene Trichloroethene Vapona Vinyl Chloride Vapona Vinyl Chloride Styrene Trichloroethene Vapona Vinyl Chloride Vapona Vinyl Chloride

APPENDIX 9A DERIVATION OF SELECTED ORAL REFERENCE DOSES (RfDs)

APPENDIX 9A

DERIVATION OF SELECTED ORAL REFERENCE DOSES (RfDs)

In many instances it was necessary to derive an oral RfD from existing toxicity data. Chronic oral toxicity data were used, when available. In the absence of chronic data subchronic or acute oral toxicity data were used.

9A.1 Derivation from No-Observable-Adverse-Effect Levels (NOAELs)

In two cases (benzene and vinyl chloride) oral RfDs were calculated from NOAELS according to EPA guidelines (EPA, 1989). The RfD for benzene was based on a NOAEL of 1 mg/kg/day from a 26-week study in rats. The toxic endpoints manifested in the rats were leucopenia and erythrocytopenia (Wolfe et al., 1956). To extrapolate the oral RfD from the NOAEL, uncertainty factors (UFs) were included. The total UF of 1,000 was calculated by multiplying by 10 for each of the following categories: subchronic to chronic exposure, animal to humans, and human variation. The chronic RfD was then calculated by dividing the NOAEL by the UF of 1,000.

The RfD for vinyl chloride was based on a three-generational study in rats. In this case, a reported NOAEL of 0.13 mg/kg/day was established from a lifetime dietary study in rats, in which decreased survival and hepatotoxicity were the most sensitive toxic endpoints (Til et. al., 1983). An uncertainty factor of 100 was applied, 10 for extrapolating from animals to humans, and 10 for human variation.

9A.2 Derivation from Oral Lethality Data

In the absence of chronic and subchronic toxicity data, an oral LD_{50} was used to derive the chronic oral RfD. An LD_{50} is the dose that is lethal to 50% of the test animals. This process was used for many chemicals in the report (see Table 9A-1). The chronic oral RfD

Chemical	LD50 (mg/kg)	Test Species	Chronic Oral RfD (mg/kg/day)
Acrylonitrile	27	mouse	2.70E-04
Benzofuran	500	mouse	5.00E-02
Benzonitrile	800	cat, mouse	8.00E-03
Carbazole	500	rat	5.00E-03
4-Chlorobiphenyl	2,450	rat	2.45E-02
4,4'-Chlorobiphenyl	2,330	rat	2.33E-02
1,2-Dichloropropane	860	mouse	8.60E-03
1,3-Dimethylbenzene	5,000	rat	5.00E-02
Dimethylphosphate	8,714	rat	8.71E-02
Methyl Chloride	1,800	rat	2.50E-03
4-Nitrophenol	8,471	rat	8.47E-02

Reference: RTECS, 1990

was calculated by dividing the LD_{50} by an uncertainty factor (UF) of 100,000 in accordance with the approach developed by Layton et. al., (1987).

APPENDIX 9A

CITED REFERENCES

ATSDR (Agency for Toxic Substances and Disease Registry). 1989a. <u>Toxicological Profile for Benzene</u>. Prepared by Oak Ridge National Laboratory for ATSDR and USEPA. PBS9-209464.

ATSDR (Agency for Toxic Substances and Disease Registry). 1989b. <u>Toxicological Profile for Vinyl Chloride</u>. Prepared by Syracuse Research Corporation for ATSDR and USEPA, ATSDR/TP-88/25.

EPA (U.S. Environmental Protection Agency). 1989. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual - Part A. Interim Final Office of Solid Waste and Emergency Response. Washington, DC. OSWER Directive 9285.7-01a.

Layton, D.W., B.J. Mallon, D.H. Rosenblatt, and M.J. Small. 1987. "Deriving Allowable Daily Intakes for Systemic Toxicants Lacking Chronic Toxicity Data." Reg. Toxicol. Pharmacol. 7:96-112.

RTECS (Registry of Toxic Effects of Chemical Substances). 1990. Microfiche. National Institute for Occupational Safety and Health (NIOSH). July 1990.

Til, H.P., Immel, H.R. and V.J. Feron. 1983. Lifespan oral carcinogenicity study of vinyl chloride in rats. Final report. CIVO Institutes, TNO. Report No. V93.285/291099. (Cited in ATSDR, 1989b).

Wolf, M.A., V. K. Rowe, D.D. McCollister, R.L. Hollingsworth, and F. Oyen. 1956. Toxicological studies of certain alkylated benzenes and benzene. AMA Arch. Ind. Health 14:387 (cited in ATSDR, 1989a).

APPENDIX 9B

DERIVATION OF SELECTED INHALATION REFERENCE DOSES (RfDs)

7/19/91

APPENDIX 9B

DERIVATION OF SELECTED INHALATION REFERENCE DOSES (RfDs)

An inhalation RfD was derived for only one chemical, lithium, based on toxicity data. Lithium hydride was the only form of lithium for which inhalation toxicity data were available. Lithium hydride is intensely irritating and corrosive to the skin and mucous membranes; its TLV-TWA of 0.025 mg/m³ (ACGIH, 1986) is based on its irritant properties. However, concentrations of lithium hydride ranging from 0.025 to 0.10 mg/m³, associated with a tickling sensation in the nose and a mild nasal discharge, have been reported to be tolerated by workers continuously exposed (Clayton and Clayton, 1981).

Lithium would not be expected to be present as the hydride in stack emissions and there has been no evidence of industrial health hazards being associated with the inhalation of other forms of lithium (Clayton and Clayton, 1981). Therefore, the use of the TLV-TWA for lithium hydride in deriving an inhalation RfD for lithium would be expected to be overly conservative. However, in the absence of inhalation data for other forms of lithium, the upper limit of the tolerated range for lithium hydride (i.e., 0.10 mg/m³) was assumed to be an acceptable exposure level for workers for all other forms of lithium. Substituting this value as the "TLV-TWA" in the equation presented in Subsection 9.4.4, Table 9-3, an inhalation RfD for lithium of 1.0E-04 mg/kg/day was derived, which would be appropriate for the general public.

APPENDIX 9B

CITED REFERENCES

ACGIH (American Conference of Governmental Industrial Hygienists). 1986. <u>Documentation of the Threshold Limit Values and Biological Exposure Indices</u>, 5th ed., ACGIH, Cincinnati, OH. (including updated supplements).

Clayton, G.D. and F.E. Clayton. 1981. <u>Patty's Industrial Hygiene and Toxicology, Vol. I.</u> John Wiley and Sons. New York, New York.

APPENDIX 12A CITED REFERENCES

CITED REFERENCES FOR APPENDIX 5A

EPA (U.S. Environmental Protection Agency). 1989. <u>Guidance on Metals and HCI Controls from Hazardous Waste Incineration</u>, <u>Draft Final Report</u>. August, 1989.

Siebert, P.C., D.R. Alston, J.F. Walsh, and K.H. Jones, "Effects on Control Equipment and Operating Parameters on Municipal Solid Waste (MSW) Incinerator Trace Emissions." Paper 88-98.3 presented at the 81st Annual APCA Meeting, Dallas, Texas, 24 June 1988.

Siebert, P.C., D.R. Alston, and K.H. Jones, "Toxic Trace Pollutants from Incineration." Presented at the AIChE National Meeting, Philadelphia, Pennsylvania, 23 August 1989.

CITED REFERENCES FOR APPENDIX 7A

EPA (U.S. Environmental Protection Agency). 1986. Methodology for the Assessment of Health Risks Associated with Multiple Pathway Exposure to Municipal Waste Combustion Emissions. Environmental Criteria and Assessment Office, Cincinnati, OH.

EPA (U.S. Environmental Protection Agency). 1985. <u>Water Quality Assessment: A Screening Procedure for Toxic and Conventional Pollutants in Surface and Groundwater - Part I.</u> EPA 600/6-85/002a.

Koenig, N. 1990. Personal Communication. Adams County Parks Department.

Price, A. 1990. Personal Communication. USDA Soil Conservation Service, Denver, Colorado.

CITED REFERENCES FOR APPENDIX 8A

EPA (U.S. Environmental Protection Agency). 1986. Methodology for the Assessment of Health Risks Associated with Multiple Pathway Exposure to Municipal Waste Combustor Emissions, Draft. Environmental Criteria and Assessment Office, Cincinnati, OH.

Price, A. 1990. Personal Communication. Soil Conservation Service.

CITED REFERENCES FOR APPENDIX 8B

Baes, C., et al. 1984. "A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides Through Agriculture." Prepared by Oak Ridge National Laboratory for the U.S. Department of Energy. ORNL-5786.

Briggs, G., et al. 1982. "Relationships Between Lipophilicity and Root Uptake, and Translocation of Nonionized Chemicals by Barley." <u>Pesticide Science</u>, 13:495.

Ebasco Services, Inc. 1990. <u>Final Health Exposure Assessment for Rocky Mountain Arsenal, Volumes II and III, Toxicity Assessment.</u> Prepared for the U.S. Army Program Manager's Office for the Rocky Mountain Arsenal Contamination Cleanup. Version 4.1. Contract No. DAAA15-88-0024.

Ells, J. 1990. Personal Communication. Extension Vegetable Crops Specialist, Colorado State University.

Ennis, B. 1990. Personal Communication. Adams County Agricultural Extension.

EPA (U.S. Environmental Protection Agency). 1980. <u>Ambient Water Quality Criteria for Polynuclear Aromatic Hydrocarbons</u>. Office of Water Regulations and Standards. EPA 440/5-80-069.

EPA (U.S. Environmental Protection Agency). 1986. <u>Superfund Public Health Evaluation Manual</u>. Office of Emergency and Remedial Response. EPA 540/1-86-060.

EPA (U.S. Environmental Protection Agency). 1987. <u>Processes, Coefficients, and Models for Simulating Toxic Organics and Heavy Metals in Surface Waters</u>. EPA-600/3-87/015.

EPA (U.S. Environmental Protection Agency). 1989. <u>Assessing Human Health Risk from Chemically Contaminated Fish and Shellfish - A Guidance Manual</u>. Office of Marine and Estuarine Protection and the Office of Water Regulations and Standards. EPA-503/8-89-002.

Holton, G.A., C.G. Travis, E.L. Etnier, F.R. O'Donnell, D.M. Hetrick, and E. Dixon. 1984. <u>Multiple-Pathways Screening-Level Assessment of a Hazardous Waste Incineration Facility</u>. Prepared for the U.S. EPA and the U.S. DOE by Oak Ridge National Laboratory. ORNL/TM 8652; DE 85000156.

Howard, P.H. 1989. <u>Handbook of Environmental Fate and Exposure Data, Volume I.</u> Lewis Publishers, Michigan.

HSDB (Hazardous Substances Data Bank). 1990. National Library of Medicine. (On-line computer database.)

Kabata-Pendias, A. and H. Pendias. 1985. <u>Trace Elements in Soils and Plants</u>. CRC Press, Inc., Boca Raton, Florida.

Lyman, W., W. Reehl, and D. Rosenblatt. 1982. <u>Handbook of Chemical Property Estimation Methods</u>. McGraw-Hill Book Company, New York.

NCRP (National Council on Radiation Protection and Measurements). 1984. <u>Radiological Assessment: Predicting the Transport, Bioaccumulation, and Uptake by Man of Radionuclides Released to the Environment</u>. NCRP Report No. 76.

Price, A. 1990. Personal Communication. Soil Conservation Service.

QSAR. 1989. Montana State University, Numerical Technical Database Services, New York, NY.

Travis, C.C. and A.D. Arms. 1988. "Bioconcentration of Organics in Beef, Milk, and Vegetation." Environ. Sci. and Tech. 22:271-274.

Verschueren, K. 1983. <u>Handbook of Environmental Data on Organic Chemicals, second edition</u>. Van Nostrand Reinhold Company, New York.

CITED REFERENCES FOR APPENDIX 8C

Baes, C., et al. 1984. "A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides Through Agriculture." Prepared by Oak Ridge National Laboratory for the U.S. Department of Energy, ORNL-5786.

Fries, G. 1986. "Assessment of Potential Residues in Foods Derived from Animals Exposed to TCDD-Contaminated Soil." Presented at Dioxin 86.

Fries, G.F. and D.J. Paustenbach. 1990. "Evaluation of Potential Transmission of 2,3,7,8 - Tetrachlorodibenzo-p-Dioxin-Contaminated Incinerator Emissions to Humans Via Food." J. Toxicol Environ. Health 29:1-43.

Holton, G., et al. 1984. "Multiple-Pathways Screening - Level Assessment of a Hazardous Waste Incineration Facility." Prepared for the U.S. EPA and the U.S. DOE by Oak Ridge National Laboratory, ORNL/TM 8652; DE 85000156.

Kabata-Pendias, A., and H. Pendias. 1985. <u>Trace Elements in Soils and Plants</u>. CRC Press, Inc., Boca Raton, Florida.

Morris County Agricultural Extension Service, Memo from E. Milewski to C.J. Warren (Alaimo Engineering Co.). 2 January 1990.

810C/a12A 12A-3 7/19/91

NRCC (National Research Council of Canada). 1978. "Effects of Arsenic in the Canadian Environment." NRCC/CNRC, Ottawa. Publication No. NRCC 15391 of the Environmental Secretariat.

Travis, C.C., and A.D. Arms. 1988. "Bioconcentration of organics in beef, milk, and vegetation." Environ. Sci. Technol. 22:271-274.

CITED REFERENCES FOR APPENDIX 8E

Clark, T., K. Clark, S. Paterson, and D. Mackay. 1988. "Wildlife Monitoring, Modeling, and Fugacity." Environ. Sci. Technol., 22:120-127.

Connolly, J.P., and C.J. Pedersen. 1988. "A Thermodynamic-based Evaluation of Organic Chemical Accumulation in Aquatic Animals." <u>Environ. Sci. Technol.</u>, 22:99-103.

Ebasco Services, Inc. 1990. <u>Final Health Exposure Assessment for Rocky Mountain Arsenal Vol. II-III</u>. Version 4.1. Prepared for the U.S. Army Program Managers Office for the Rocky Mountain Arsenal Contamination Cleanup.

EPA (U.S. Environmental Protection Agency). 1979. <u>Water-Related Environmental Fate of 129 Priority Pollutants</u>. Volume I. Versar Incorporated. PB80-204373.

EPA (U.S. Environmental Protection Agency). 1986. <u>Superfund Public Health Evaluation Manual</u>. Office of Emergency and Remedial Response, Washington, D.C. OSWER Directive 9285.4-1.

EPA (U.S. Environmental Protection Agency). 1987. <u>Processes, Coefficients, and Models for Simulating Toxic Organics and Heavy Metals in Surface Waters</u>. EPA 600/3-87/015.

EPA (U.S. Environmental Protection Agency). 1989. <u>Assessing Human Health Risk from Chemically Contaminated Fish and Shell Fish - A Guidance Manual</u>. Office of Marine and Estuarine Protection, Office of Water Regulations and Standards. Washington DC.

HSDB (Hazardous Substances Database) 1990. National Library of Medicine (On-line).

Lyman, W.J., W.F. Reehl, and O.H. Rosenblatt. 1982. <u>Handbook of Chemical Property Estimation Methods</u>. McGraw-Hill Book Company, New York.

McKay, D., S. Paterson, and W.H. Schroeder. 1986. "Model Describing the Rates of Transfer Processes of Organic Chemicals Between Atmosphere and Water." <u>Environ. Sci. Technol.</u>,20(8):810-816.

QSAR. 1989. Montana State University, Numerical Technical Database Services, New York, NY.

Stevens, J.B. 1988. "Health Risk Assessment for the Proposed Resource Recovery Facility in Winona, Minnesota," Vol. I, <u>Polycholorinated Dioxins/Polychlorinated Furans</u>. Minnesota Pollution Control Agency.

Verschueren, K. 1983. <u>Handbook of Environmental Data on Organic Chemicals</u>. Second Edition.

CITED REFERENCES FOR APPENDIX 8G

ATSDR (Agency for Toxic Substances and Disease Registry). 1989a. <u>Toxicological Profile for 2,3,7,8-Tetrachlorodibenzo-p-dioxin</u>. Prepared by Syracuse Research Corporation. PB89-214522.

ATSDR (Agency for Toxic Substances and Disease Registry). 1989b. <u>Toxicological Profile</u> for Acrylonitrile. Draft. Prepared by Life Systems and Clement Associates.

ATSDR (Agency for Toxic Substances and Disease Registry). 1989c. <u>Toxicological Profile</u> for Aldrin/Dieldrin. Prepared by Dynamac Corporation.

ATSDR (Agency for Toxic Substances and Disease Registry). 1988a. <u>Toxicological Profile</u> for p.p/DDT, p.p/-DDE, p.p/-DDD. Draft. Prepared by Clement Associates.

ATSDR (Agency for Toxic Substances and Disease Registry). 1988b. <u>Toxicological Profile</u> for 1,1-Dichloroethene. Draft. Prepared by Clement Associates.

Baselt, R.C. 1982. <u>Disposition of Toxic Drugs and Chemicals in Man</u>. 2nd edition. Biomedical Publications, Davis, CA.

Smith, A. H. 1987. "Infant Exposure Assessment for Breast Milk Dioxins and Furans Derived from Waste Incineration Emissions," <u>Risk Analysis</u> 7(3):347-353.

CITED REFERENCES FOR APPENDIX 9A

ATSDR (Agency for Toxic Substances and Disease Registry). 1989a. <u>Toxicological Profile for Benzene</u>. Prepared by Oak Ridge National Laboratory for ATSDR and USEPA. PBS9-209464.

ATSDR (Agency for Toxic Substances and Disease Registry). 1989b. <u>Toxicological Profile</u> for Vinyl Chloride. Prepared by Syracuse Research Corporation for ATSDR and USEPA, ATSDR/TP-88/25.

EPA (U.S. Environmental Protection Agency). 1989. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual - Part A. Interim Final Office of Solid Waste and Emergency Response. Washington, DC. OSWER Directive 9285.7-01a.

Layton, D.W., B.J. Mallon, D.H. Rosenblatt, and M.J. Small. 1987. "Deriving Allowable Daily Intakes for Systemic Toxicants Lacking Chronic Toxicity Data." Reg. Toxicol. Pharmacol. 7:96-112.

RTECS (Registry of Toxic Effects of Chemical Substances). 1990. Microfiche. National Institute for Occupational Safety and Health (NIOSH). July 1990.

Til, H.P., Immel, H.R. and V.J. Feron. 1983. Lifespan oral carcinogenicity study of vinyl chloride in rats. Final report. CIVO Institutes, TNO. Report No. V93.285/291099. (Cited in ATSDR, 1989b).

Wolf, M.A., V. K. Rowe, D.D. McCollister, R.L. Hollingsworth, and F. Oyen. 1956. "Toxicological studies of certain alkylated benzenes and benzene." <u>AMA Arch. Ind. Health</u> 14:387 (cited in ATSDR, 1989b).

CITED REFERENCES FOR APPENDIX 9B

ACGIH (American Conference of Governmental Industrial Hygienists). 1986. <u>Documentation of the Threshold Limit Values and Biological Exposure Indices</u>, 5th ed., ACGIH, Cincinnati, OH. (including updated supplements).

Clayton, G.D. and F.E. Clayton. 1981. <u>Patty's Industrial Hygiene and Toxicology</u>, Vol. I. John Wiley and Sons. New York, New York.