inesscase-linear-regression-model

April 11, 2024

#Jamboore Education - BusinessCase

```
[337]: # importing libraries -
       import pandas as pd
       import numpy as np
       import matplotlib.pyplot as plt
       import seaborn as sns
       from statsmodels.stats.outliers_influence import variance_inflation_factor
       from statsmodels.tools.tools import add_constant
       from statsmodels.api import OLS
       from sklearn.model_selection import train_test_split
       from sklearn.linear_model import LinearRegression
       from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
       # reading the data file -
       df=pd.read_csv('Jamboree_Admission.csv')
       df.head()
[337]:
          Serial No.
                      GRE Score
                                 TOEFL Score
                                              University Rating
                                                                  SOP
                                                                       LOR
                                                                              CGPA
                            337
                                                                  4.5
                                                                        4.5
                                                                             9.65
                   1
                                          118
                   2
                            324
                                          107
                                                               4
                                                                        4.5 8.87
       1
                                                                  4.0
       2
                   3
                            316
                                          104
                                                               3
                                                                  3.0
                                                                        3.5 8.00
       3
                   4
                            322
                                                               3
                                                                  3.5
                                                                        2.5 8.67
                                          110
                   5
                            314
                                                                  2.0
                                                                        3.0 8.21
                                          103
          Research Chance of Admit
       0
                                0.92
                 1
                 1
                                0.76
       1
                                0.72
       2
                 1
       3
                 1
                                0.80
                                0.65
[338]: df.shape
[338]: (500, 9)
[339]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Serial No.	500 non-null	int64
1	GRE Score	500 non-null	int64
2	TOEFL Score	500 non-null	int64
3	University Rating	500 non-null	int64
4	SOP	500 non-null	float64
5	LOR	500 non-null	float64
6	CGPA	500 non-null	float64
7	Research	500 non-null	int64
8	Chance of Admit	500 non-null	float64
_		/ - >	

 ${\tt dtypes: float64(4), int64(5)}$

memory usage: 35.3 KB

```
[340]: #Dropping the unique row identifier df.drop(columns=['Serial No.'], inplace=True)
```

```
[341]: #Checking any duplicate data is present.
df.duplicated().sum()
```

[341]: 0

Let's check the statistical information of the data

There are no NULL values in the data.

```
[342]: df.describe()
```

[342]:		GRE Score	TOEFL Score	University Rating	SOP	LOR	\
	count	500.000000	500.000000	500.000000	500.000000	500.00000	
	mean	316.472000	107.192000	3.114000	3.374000	3.48400	
	std	11.295148	6.081868	1.143512	0.991004	0.92545	
	min	290.000000	92.000000	1.000000	1.000000	1.00000	
	25%	308.000000	103.000000	2.000000	2.500000	3.00000	
	50%	317.000000	107.000000	3.000000	3.500000	3.50000	
	75%	325.000000	112.000000	4.000000	4.000000	4.00000	
	max	340.000000	120.000000	5.000000	5.000000	5.00000	
		CGPA	Research	Chance of Admit			
	count	500.000000	500.000000	500.00000			

	CGPA	Research	Chance of Admit
count	500.000000	500.000000	500.00000
mean	8.576440	0.560000	0.72174
std	0.604813	0.496884	0.14114
min	6.800000	0.000000	0.34000
25%	8.127500	0.000000	0.63000
50%	8.560000	1.000000	0.72000

```
75% 9.040000 1.000000 0.82000
max 9.920000 1.000000 0.97000
```

As we can see the mean values and 50% percentile(i.e.,median) values are almost same, then we can say there might be no outliers in the data.

```
[343]: sns.histplot(df['GRE Score'], kde=True)
plt.title('Distribution of GRE Scores')
plt.show()
```



```
[344]: sns.histplot(df['TOEFL Score'], kde=True)
plt.title('Distribution of TOEFL Scores')
plt.show()
```

Distribution of TOEFL Scores


```
[345]: plt.figure(figsize=(10, 6))
sns.boxplot(df['TOEFL Score'])
plt.title('Boxplot of TOEFL Score')
plt.show()
```



```
[347]: df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 500 entries, 0 to 499
      Data columns (total 8 columns):
       #
           Column
                              Non-Null Count
                                               Dtype
                                               ____
           GRE Score
       0
                              500 non-null
                                               int64
           TOEFL Score
                              500 non-null
                                               int64
       1
       2
           University Rating 500 non-null
                                               int64
       3
           SOP
                              500 non-null
                                               float64
                              500 non-null
                                               float64
       4
           LOR
       5
           CGPA
                              500 non-null
                                               float64
       6
                              500 non-null
                                               int64
           Research
           Chance of Admit
                              500 non-null
                                               float64
      dtypes: float64(4), int64(4)
      memory usage: 31.4 KB
[348]: plt.figure(figsize=(8,10))
       sns.boxplot(df['University Rating'])
       plt.title('Boxplot of Continuous Variables')
       plt.show()
```


From the visual analysis also, we can conclude that there are no outliers in the data.

```
[349]: sns.pairplot(df) plt.show()
```



```
[350]: plt.figure(figsize=(10, 8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f", linewidths=0.5)
plt.title('Correlation Heatmap')
plt.show()
```


From the above plots, we can see many features are correlated highly,i.e., 1)GRE Score vs TOEFL Score, 2)GRE Score vs CGPA, 3)TOEFL Score vs CGPA, 4)CGPA vs Chance of Admit

[351]:	[351]: df.head()								
[351]:		GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	\
	0	337	118	4	4.5	4.5	9.65	1	
	1	324	107	4	4.0	4.5	8.87	1	
	2	316	104	3	3.0	3.5	8.00	1	
	3	322	110	3	3.5	2.5	8.67	1	
	4	314	103	2	2.0	3.0	8.21	0	
		Chance of	Admit						
	0		0.92						
	1		0.76						
	2		0.72						

```
#Creating LinearRegression Model
      Splitting the training and testing dataset
[352]: X = df.iloc[:, :-1]
       y = df.iloc[:, -1]
       X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
        →random_state=40)
[353]: # Linear Regression
       model = LinearRegression()
       model.fit(X_train, y_train)
[353]: LinearRegression()
[354]: # Get the model coefficients
       coefficients = model.coef
       # Get the column names
       column_names = X_train.columns
       # Create a DataFrame to display coefficients with column names
       coefficients_df = pd.DataFrame({'Feature': column names, 'Coefficient':__
        ⇔coefficients})
       print("Model Coefficients:")
       print(coefficients_df)
      Model Coefficients:
                   Feature Coefficient
      0
                 GRE Score
                                0.002004
      1
               TOEFL Score
                                0.003258
      2
        University Rating
                                0.005675
      3
                       SOP
                                0.002400
      4
                      LOR
                                0.016894
      5
                      CGPA
                                0.111939
      6
                  Research
                                0.019461
[355]: model.score(X_train,y_train)
[355]: 0.8279743197944157
[359]: def adj_r2(y_true, y_pred, n, p):
           r_squared = r2_score(y_true, y_pred)
           adjusted_r_squared = 1 - ((1 - r_squared) * (n - 1) / (n - p - 1))
```

3

4

0.80

0.65

```
return adjusted_r_squared
adj_r2(y_test,y_test_pred,len(y_test),X_train.shape[1])
```

[359]: 0.7762693627975559

Train MAE: 0.041995840770610984
Test MAE: 0.045225659905628775
Train RMSE: 0.058708507866976706
Test RMSE: 0.0629453227125008
Train R2 Score: 0.8279743197944157
Test R2 Score: 0.7920887007815671

Train Adjusted R2 Score: 0.8249024326478874 Test Adjusted R2 Score: 0.7762693627975559

Assumptions of Linear Regression

1 Checking Multilinearity and removing the featrues having high VIF Score by setting threshold for R2 Score and VIF score.

```
r2_score = model.score(X_train[cols2],y_train)
         vif_sc = vif.iloc[0]["vif"]
         fea = vif.iloc[0]["feature"]
         if (vif_sc<vif_thr) or (r2_score<r2_thr):</pre>
           break
         else:
           X_train.drop(columns = fea,inplace=True)
           feat_removed.append(fea)
[363]: r2_score
[363]: 0.7483007447755545
[364]:
       vif
[364]:
                    feature
                                    vif
                        SOP
                              33.009489
       2
       3
                       LOR
                              29.564419
       0
                TOEFL Score 21.498294
       1 University Rating 19.372848
                   Research
                               2.896241
[365]: feat_removed
[365]: ['GRE Score', 'CGPA']
      Removed the features of GRE Score, CGPA as their VIF Score is high.
[366]: vif.feature.values
[366]: array(['SOP', 'LOR', 'TOEFL Score', 'University Rating', 'Research'],
             dtype=object)
[367]:
      vif
[367]:
                    feature
                                    vif
                        SOP
                             33.009489
       2
       3
                       LOR
                              29.564419
       0
                TOEFL Score 21.498294
         University Rating 19.372848
                   Research
                               2.896241
      #Checking Normality of Residuals
[368]: residuals = y_train - y_train_pred
```

```
[369]: import seaborn as sns
sns.histplot(residuals)
plt.show()
```



```
[370]: #USing Shapiro test to check the normality
from scipy.stats import shapiro
res = shapiro(residuals)
res.statistic
```

[370]: 0.9305607676506042

As the statistic is very high, the residuals are normally distributed. #Check for Heteroskedasticity

```
[371]: sns.scatterplot(x = y_train_pred , y = residuals)
```

[371]: <Axes: ylabel='Chance of Admit '>


```
[372]: #Goldfeld-Quandt Test #check for heteroskadasticity
#HO = Data is Homoskadastic
from statsmodels.stats.api import het_goldfeldquandt
het_goldfeldquandt(y_train,X_train)
```

[372]: (0.9449806443259853, 0.653427792165528, 'increasing')

As p_value is greater than 0.05, we cannot reject null. Hence, Data is Homoskadastic. #The mean of residuals should be nearly zero

[373]: residuals.mean()

[373]: 1.9831358777366858e-16

We can see that the mean of the residuals is nearly 0.

#Checking Linearity of variables (no pattern in the residual plot)

```
[374]: # Calculate residuals
    train_residuals = y_train - y_train_pred
    test_residuals = y_test - y_test_pred

# Plot residual plots
```

```
plt.figure(figsize=(10, 6))
plt.scatter(y_train_pred, train_residuals, color='blue', label='Training Data')
plt.scatter(y_test_pred, test_residuals, color='green', label='Testing Data')
plt.axhline(y=0, color='red', linestyle='--')
plt.title('Residual Plot')
plt.xlabel('Fitted Values (Predicted)')
plt.ylabel('Residuals')
plt.legend()
plt.show()
```


We can see the residuals do not follow any pattern

Actionable Insights:

- 1. Variables with higher coefficients have a stronger impact on the admission decision. For example, As GRE scores have a high coefficient, it suggests that higher GRE scores significantly increase the chances of admission.
- 2. We should consider incorporating additional relevant data sources to improve the model's predictive performance. This could include data on extracurricular activities, internships, personal statements, or letters of recommendation.

Recommendations:

1. We can implement the model on Jamboree's website to provide students with personalized insights into their chances of admission to IVY league colleges.

- 2. We can offer a user-friendly interface where students can input their academic credentials and receive an estimated probability of admission based on the model's predictions.
- 3. We can also rovide explanations and recommendations to students on how they can improve their chances of admission based on the model's insights.