

1.A. INTRODUKTION

- Ny teknologi (och data) i kollektivtrafik
 - Automated fare collection (AFC)
 - Entry-only (Stockholm), påstigande data
 - Entry-exit (London/Paris), avstigande data
 - Andra: AVL, vehicle weighing systems (flöde data)

- OD matriser är viktiga för
 - T. ex., planering av kollektivtrafik (Ait-Ali, Eliasson et al. 2020)

Métro in Paris, photo By Pierre-Yves Beaudouin - Own work, CC BY-SA 3.0, Wikimedia Commons

1.B. PROBLEM

- Tillgänglig data (inkl. entry-only systems)
 - Påstigande
- Ytterligare data
 - Avstigande (entry-exit systems)
 - Flöde (i vissa länkar)
 - Snitt reseavstånd

- Fråga?
 - ➤ Vad är det marginella värdet av ytterligare data för (dynamisk) OD estimering?

2.A. MODELLERING (ENTROPI)

$$\begin{cases} \max_{n \geq 0} - \sum_{ijt} (n_{ij}^t \log(n_{ij}^t) - n_{ij}^t) \\ \sum_{j} n_{ij}^t = 0_i^t \; ; \; \forall i, \forall t \quad (1.1) \\ \sum_{j} n_{ij}^{t-\tau_{ij}} = D_j^t \; ; \; \forall t, \forall j \in \Delta \quad (1.2) \\ \sum_{i} n_{ij}^{t-\tau_{ij}} = F_l^t \; ; \forall t, \forall l \in L \quad (1.3) \\ \sum_{j \geq l} n_{ij}^t n_{ij}^t d_{ij} \\ \sum_{i \leq l} n_{ij}^t n_{ij}^t d_{ij} = \bar{d} \quad (1.4) \end{cases}$$
 Snitt reseavstånd
$$n_{ii}^t = 0 \; ; \; \forall i \qquad \text{Alla reser!}$$

Entropi (att maximera)

Påstigande

Avstigande

Flöde

2.B. ESTIMERING (RELAXATION)

OD estimering

$$n_{ij}^{t} = e^{\lambda_{it} + \theta d_{ij} + \varphi_{lt} + \mu_{j,t+\tau_{ij}}}$$
$$= e^{\lambda_{it}} e^{\theta d_{ij}} e^{\varphi_{lt}} e^{\mu_{j,t+\tau_{ij}}}$$

Exempel på iteration (för att estimera multiplikatorer)

Villkor	Lagrangian multiplier(s)
(1.1) påstigande	$\lambda_{it}; \ \forall i, \forall t$
(1.2) avstigande	$\mu_{jt};\;,\forall t,\forall j\in\Delta$
(1.3) länkflöde	$\varphi_{lt}; \ \forall t, \forall l \in L$
(1.4) snitt reseavstånd	θ

2.C. VÄRDERING (RMSE)

Avstigande (per station och tidsintervall)

$$RMSE_{dest} = \frac{\sqrt{\Sigma_{jt} (\widehat{D}_{j}^{t} - D_{j}^{t})^{2}}}{\sqrt{\Sigma_{jt} (D_{j}^{t})^{2}}}$$

Flöde (per länk och tidsintervall)

$$RMSE_{link} = \frac{\sqrt{\sum_{lt} (\hat{F}_l^t - F_l^t)^2}}{\sqrt{\sum_{lt} (F_l^t)^2}}$$

Estimerad avstigande

$$\widehat{D}_j^t = \sum_i n_{ij}^{t-\tau_{ij}}$$

Estimerad flöde

$$\widehat{F}_l^t = \sum_{\substack{i < l \\ i > l}} n_{ij}^{t - \tau_{ij}}$$

3.A. FALLSTUDIE - LONDON PICCADILLY LINJE

3.B. INDATA – PÅ/AVSTIGANDE (PER STATION)

3.B. INDATA – PÅ/AVSTIGANDE (PER TIDSINTERVALL)

3.B. INDATA – FLÖDE

Flöde (per tidsintervall) i 3 länkar (högst belastade)

3.B. INDATA – ÖVRIGA

• Tidtabell (dvs. frekvens eller turtäthet)

	Peak	Off-peak
Main	5/2 min (24 turer per timme)	5 min (12 turer per timme)
Branches	5 min (12 turer per timme)	10 min (6 turer per timme)

Snitt reseavstånd

Time period	Tidsperiod	Average travel distance (km per pax)
Morning (peak)	7.00 – 10.00	9.7
Midday (off-peak)	10.00 - 16.00	8.6
Afternoon (peak)	16.00 – 19.00	9.1

3.C. RESULTAT (AVSTIGANDE)

- Variation av RMSE-dest (in %)
 - Med avstigande data från en destination station (till)
 - 2 modeller (med och utan **reseavstånd** data)
 - 3 olika tidsperioder

Några insikter

- Mer (<u>påstigande</u>) data betyder **INTE** mer pålitlig (<u>destination</u>) estimering, **undantaget** är
 - Morgonsrusningstid
 - · Ytterligare data om reseavstånd
- Generellt kan estimering förbättras bara efter en mängd specifika data har använts.

3.C. RESULTAT (AVSTIGANDE)

- Variation av RMSE-dest (in %)
 - Med **flöde data** från en länk (till)
 - Utan reseavstånd data (pga. beräkningstider)
 - 3 olika tidsperioder
- Några insikter
 - Mer (<u>flöde</u>) data betyder **INTE** mer pålitlig (<u>destination</u>) estimering
 - Viktigt at välja vilka data och mängder som leder till bäst acceptabel estimering

3.D. RESULTAT (FLÖDE)

- Variation av RMSE-link (in %)
 - Med avstigande data från en destination station (till)
 - 2 modeller och 3 olika tidsperioder

Några insikter

- Mer (<u>påstigande</u>) data betyder INTE mer pålitlig (<u>flöde</u>) estimering, undantaget är
- Generellt förbättras INTE (<u>flöde</u>) estimering även med alla (påstigande) data

3.D. RESULTAT (FLÖDE)

- Variation av RMSE-link (in %)
 - Med **flöde data** från en länk (till)
 - 3 modeller och 3 olika tidsperioder

Några insikter

- Mer (<u>flöde</u>) data betyder **generellt** mer pålitlig (<u>länk</u>) estimering (utan övriga ytterligare data)
- Marginell värde (av flöde data) minskar när mer övriga ytterligare (t.ex. reseavstånd eller/och påstigande) data har redan använts

4.A. HIGHLIGHTS

- Entropi maximering-baserat estimering av dynamiska OD matriser
- Marginell v\u00e4rdering
 - Av ytterligare data om avstigande, flöde (i vissa länkar) och snitt reseavstånd
 - För estimering av avstigande och länkflöde
- London Piccadilly linje som fallstudie med 3 olika tidsperioder

4.A. FRAMTIDA ARBETE

- Några insikter för framtida arbete
 - Mer policy-relaterade mått (t. ex. optimal frekvens) i stället för RMSE
 - Andra ytterligare data och OD estimering modeller i stället för entropi-max
 - Modell f\u00f6r b\u00e4ttre datainsamling strategier (t. ex. f\u00f6r estimering av resandet)

