UNIVERSITY OF COLORADO - BOULDER Department of Mechanical Engineering

MCEN 6228 - Robust Multivariable Control

Homework #2 (Assigned: 1/24, Due: 1/30 at 5pm)

- 1. Find the singular value decompositions (SVDs) of the following:
 - (a) $A = [2 1 \ 2].$
 - (b) The $m \times n$ matrix of zeros, $\mathbf{O}_{m \times n}$.
 - (c) A general $\mathbf{x} \neq 0 \in \mathbb{R}^n$ (in terms of \mathbf{x} and $\|\mathbf{x}\|$)
- 2. The *condition number* of a matrix is defined by

$$\operatorname{cond}(G) = \bar{\sigma}(G)/\sigma(G).$$

The condition number of a matrix (or of a transfer function of a plant plotted as a function of frequency) is a measure of the difficulty in inverting the matrix (i.e., controlling the plant). If G and K are square, invertible complex matrices, prove the following using the submultiplicative property $\bar{\sigma}(GK) \leq \bar{\sigma}(G)\bar{\sigma}(K)$ of the matrix 2-norm, $\|\cdot\|_2 = \bar{\sigma}(\cdot)$ and the identity $\bar{\sigma}(G^{-1}) = 1/\sigma(G)$. (Hint: $GG^{-1} = I$).

- (a) $\bar{\sigma}(GK) \leq \bar{\sigma}(KG) \operatorname{cond}(G)$
- (b) $\underline{\sigma}(GK) \ge \underline{\sigma}(KG)/\text{cond}(G)$