

Centrality & Community Detection

Dzień 4

Centrality algorithms

- Degree Centrality
- Closeness Centrality
- Betweenness Centrality

Degree Centrality

 ilość wierzchołków wchodzących + wychodzących z wierzchołka (stopień wierzchołka)

Closeness Centrality

 odwrotność sumy odległości wierzchołka do wszystkich pozostałych

$$C(u) = \frac{1}{\sum_{v=1}^{n-1} d(u,v)} \qquad C_{norm}(u) = \frac{n-1}{\sum_{v=1}^{n-1} d(u,v)}$$

- n ilość wierzchołków
- v kolejne wierzchołki
- d(u,v) odległość między wierzchołkami u i v

Closeness Centrality

- Szukanie wpływowych części sieci
 - influencerzy na FB/IG
 - terroryści
 - sieci neuronowe
- szybkość czasu przesyłki

Betweenness Centrality

- Liczymy najkrótsze drogi między wszystkimi wierzchołkami
- Jeżeli przez wierzchołek przechodzi dużo takich połączeń to ma wysoki wskaźnik
- Szukanie "mostów" w grafie
- najpopularniejszy ≠ najważniejszy

Betweenness Centrality

- u wierzchołek
- p ilość najkrótszych ścieżek w grafie
- p(u) ilość najkrótszych ścieżek
 przechodzących przez u

$$B(u) = \sum_{s \neq u \neq t} \frac{p(u)}{p}$$

Node D Calculation

Pairs with Shortest Paths Through D	Total Possible Shortest Paths for That Pair	% of Total Through D (1/Total)
A, E	1	1
B, E	1	1
C, E	1	1
В, С	2 (through D & A)	0.5
Betweenness Score		3.5

Community Detection

k-means clustering

k-średnich

k-średnich

- algorytm NIEgrafowy
- grupowanie punktów w k klastrów
- algorytm deterministyczny

k-średnich

- 1. wybieramy k przypadkowych centroidów
- przypisujemy punkty do najbliższych centroidów
- 3. ustawiamy centroidy na środek klastrów
- 4. powtarzamy kroki 2 i 3, aż układ jest stabilny

