

Flavor Asymmetry in Hyperons and Drell-Yan Processes *

E.M.Henley [†]

*Department of Physics and Institute for Nuclear Theory ,University of Washington,
Box 351560, Seattle, WA 98195, USA*

Abstract

SU(3), baryon octets and a meson cloud model are compared for the flavor asymmetry of sea quarks in the Σ^+ , as an example. Large differences are found, especially between SU(3) and the meson cloud model. We suggest Drell-Yan measurements of $\Sigma^+ - p$ and $\Sigma^+ - d$ to test the prediction of various models. We use the meson cloud model to predict both valence and sea quark distributions.

*This report is based on work carried out with M. Alberg, T. Falter, X. Ji, and A.W. Thomas

[†]Supported in part by the DOE

The predicted [1] and measured [2], [3] flavor asymmetry of the proton, e.g., \bar{d} / \bar{u} or $(\bar{d} - \bar{u})$ have awakened considerable interest. A simple explanation first proposed by A. Thomas [1] was in terms of the pion sea surrounding the quarks in the proton. Since a proton consists of uud quarks surrounded by a π^0 or udd quarks surrounded by a $\pi^+(u\bar{d})$, an excess of \bar{d} over \bar{u} is to be expected. This model has been examined quantitatively [4] and can explain the Gottfried sum rule deficiency [5] and the $(\bar{d} - \bar{u})$ measured in Drell-Yan p-p collisions [2], [3]. We have examined the expected flavor asymmetry of Σ^\pm baryons. [6] We find large differences between the expected asymmetry on (1) the basis of SU(3), (2) a baryon octet \otimes meson octet model, and (3) the meson cloud model. Thus, a measurement of the sea asymmetry via the Drell-Yan reactions $\Sigma^\pm + p \rightarrow \Sigma^p m + d \rightarrow l^+ + l^- + X$ can be used to differentiate between the models.

I will use the Σ^+ to illustrate the thesis. It is very easy to understand the difference between SU(3) and the meson cloud model. In SU(3) we have $u\bar{u}$ in the $p \Rightarrow u\bar{u}$ in the Σ^+ , $d\bar{d}$ in the $p \Rightarrow s\bar{s}$ in the Σ^+ , $s\bar{s}$ in the $p \Rightarrow d\bar{d}$ in the Σ^+ . Thus, we have $\frac{\bar{d}}{\bar{u}}(\Sigma^+) = \frac{\bar{s}}{\bar{u}}(p)$ in SU(3). On the other hand, one expects a larger \bar{d}/\bar{u} ratio in the Σ^+ than in the proton in the meson cloud model because Σ^+ can decompose into $\Sigma^+\pi^0$, $\Sigma^0\pi^+$, $\Lambda^0\pi^+$, and $p\bar{K}^0$, where all but the first case ($\Sigma^+\pi^0$) correspond to an excess of \bar{d} quarks.

At $x \sim 0.2$, the measured ratio $\bar{u}/\bar{d} \approx 1/2$ [2] (or $2/3$ [3]); also $\frac{\bar{s}}{\bar{u}+\bar{d}}(p) \approx 1/4$. This gives $\frac{\bar{d}}{\bar{u}}(\Sigma^+) = \frac{\bar{s}}{\bar{u}}(p) \sim 0.7$ in SU(3); this value is < 1 , in contrast to the meson cloud model.

We have also examined a proton made up of a baryon octet \otimes a meson octet with a ratio of SU(3) couplings F/D = 0.6. A summary is presented in table I for $x \simeq 0.2$.

TABLES

TABLE I. Predicted and measured flavor ratios. The experimental column refers to the proton; all other ones are predictions for the Σ^+ .

Flavor ratios	Experim.	SU(3)	Octets	Meson Cloud
$\frac{\bar{u}}{d}(p), \frac{\bar{u}}{\bar{s}}(\Sigma^+)$	$\frac{1}{2}(\frac{2}{3})$	$\frac{1}{2}(\frac{2}{3})$	0.29	$\sim \frac{1}{2}$
$\frac{\bar{s}}{\bar{u}+d}(p), \frac{\bar{d}}{\bar{u}+\bar{s}}(\Sigma^+)$	$\sim \frac{1}{4}$	$\sim \frac{1}{4}$	0.42	~ 0.1
$\frac{\bar{u}}{d}(\Sigma^+)$?	$\sim \frac{4}{3}$	0.54	~ 0.3

Deviations from SU(3) symmetry can also be expected in the distribution function of valence quarks [6]. For instance, on the basis of a quark-diquark model, we predict that $\frac{s}{u}(\Sigma^+)$ is more than three times as large as the SU(3) value at $x \sim 0.7$.

Appropriate for this conference in honor of Josef Speth's 60th birthday, we have used the Sullivan process to compute the valence and sea quark distribution functions in the Σ^+ . We have

$$\Sigma^+ = \sqrt{Z}[\Sigma_{bare}^+ + \sum \int dy d^2 k_\perp \phi_{BM}(y, k_\perp^2) B(y, \vec{k}_\perp) M(1-y, -\vec{k}_\perp)] \quad , \quad (1)$$

with $M = \pi^+, \pi^0, \bar{K}^0$ and $B = \Lambda^0, \Sigma^0, \Sigma^+, p$.

We carry out our calculation in the infinite momentum frame with time ordered perturbation theory [4] and pseudoscalar coupling. We neglect masses above 1700 MeV and thus do not consider $\Delta\bar{K}$ states. We have respected the necessary symmetries. [4] For instance, we have

$$q(\Sigma^+, x) = \sqrt{Z}(q_{bare} + \delta q) \quad , \quad (2)$$

with

$$\delta q(\Sigma^+, x) = \sum \int_x^1 f_{MB}(y) q_M\left(\frac{x}{y}\right) \frac{dy}{y} + \int_x^1 f_{BM}(y) q_B\left(\frac{x}{y}\right) \frac{dy}{y} \quad , \quad (3)$$

and require

$$f_{MB}(y) = f_{BM}(y) \quad (4)$$

In order to take finite sizes into account, we introduce Gaussian form factors with the size set by $\Lambda = 1.08 GeV$ [4]. We have studied the dependence of our results on Λ ; the changes are quantitative, but not qualitative. Coupling constants are taken from Dumbrajs, Koch, and Pilkhun. [7] We assume that 20% of the mesons' momenta are carried by sea quarks.

F

or the s quark distribution in the \bar{K}^0, Λ^0 , and Σ , we take both SU(3) and a shifted distribution which takes the higher mass of the s quark into account.

For the proton, we find that our calculation with the omission of the Δ and higher mass (e.g., vector) mesons gives an acceptable fits for the $(\bar{d} - \bar{u})$ experimental data. [3] However, \bar{d}/\bar{u} shows no decrease at higher values of x , contrary to experiment; see, however [8]

The results of our calculation are shown in the following figures. Fig. 1 shows the momentum fraction carried by u and \bar{u} quarks; Figs. 2 and 3 are the same for s and d quarks; Figs. 4 and 5 show the valence quark momentum distributions. Figs. 6 and 7 show \bar{d}/\bar{u} and $(\bar{d} - \bar{u})$ distributions. Fig. 8 is the momentum fraction $x(\bar{d} - \bar{u})$. Figs. 9 and 10 compare the Σ^+ and proton $\bar{r} \equiv \bar{d}/\bar{u}$ and $(\bar{d} - \bar{u})$. It is readily apparent that $(\bar{d} - \bar{u})$ is larger in the Σ^+ than in the proton. The ratio $\bar{r} \equiv \bar{d}/\bar{u}$ in the Σ^+ vs. p is seen to begin at approximately 1 at small x and to climb to 2 at $x \sim 0.35$.

In conclusion, the ratio $\bar{r} \equiv \bar{d}/\bar{u}$ in the Σ^+ may be < 1 , as in (SU(3) or > 1 as in the meson cloud model. We have calculated both $q(x)$ and $\bar{q}(x)$ in the meson cloud model and have confirmed that $\bar{r}(\Sigma^+) > \bar{r}(p)$ in this model.

REFERENCES

- [1] A.W. Thomas, Phys. Lett. **B126** (1983) 97
- [2] NA51 Collabor.; A. Baldit et al, Phys. Lett. **B332** (1994) 244
- [3] E866 Collabor.; E.A. Hawker et al, Phys. Rev. Lett. **80**(1998) 3715
- [4] J. Speth and A.W. Thomas, Adv. Nucl. Phys. **24** (1998) 84, ed., J.W. Negele and E. Vogt (Plenum Press, New York)
- [5] NMC Collabor.; P. Amaudruz et al, Phys. Rev. Lett. **66** (1991) 2712 and Pjphys. Lett. **B295** (1992) 159
- [6] M. Alberg et al., Phys. Lett. **B389** (1996) 367
- [7] O. Dumbrajs, R. Koch, and H. Pilkhun, Nuc. Phys. **B216** (1983) 277
- [8] W. Melnitchouk, J. Speth, and A. W. Thomas, , hep-ph 9806255, June 4, 1998.

List of Figures

Fig. 1. Momentum fraction carried by sea u and \bar{u} quarks. The dashed curve here and elsewhere corresponds to the bare sea.

Fig. 2. Momentum fraction carried by sea s and \bar{s} quarks.

Fig. 3. Momentum fraction carried by sea d quarks. The figure for \bar{d} quarks is similar.

Fig. 4. Momentum fraction carried by valence u quarks.

Fig. 5. Momentum fraction carried by valence s quarks.

Fig. 6. The distribution of the ratio \bar{d}/\bar{u} .

Fig. 7. The distribution $(\bar{d} - \bar{u})$ for the Σ^+ .

Fig. 8. The momentum fraction x $(\bar{d} - \bar{u})$.

Fig. 9. The ratio $\bar{r}(\Sigma^+)/\bar{r}(p)$.

Fig. 10. The ratio $(\bar{d} - \bar{u})(\Sigma^+)/(\bar{d} - \bar{u})(p)$.

This figure "fig1-1.png" is available in "png" format from:

<http://arXiv.org/ps/nucl-th/9806104v1>

This figure "fig1-2.png" is available in "png" format from:

<http://arXiv.org/ps/nucl-th/9806104v1>

This figure "fig1-3.png" is available in "png" format from:

<http://arXiv.org/ps/nucl-th/9806104v1>

This figure "fig1-4.png" is available in "png" format from:

<http://arXiv.org/ps/nucl-th/9806104v1>

This figure "fig1-5.png" is available in "png" format from:

<http://arXiv.org/ps/nucl-th/9806104v1>

This figure "fig1-6.png" is available in "png" format from:

<http://arXiv.org/ps/nucl-th/9806104v1>

This figure "fig1-7.png" is available in "png" format from:

<http://arXiv.org/ps/nucl-th/9806104v1>