

Experiment 2.3

K-Nearest Neighbors

Student Name: Ayush Kumar Pathak UID:20BCS4990

Branch: CSE Section/Group:20BCS_WM_601-A

Semester: 5th

Subject Name: Machine Learning Lab Subject Code: CSP-317

1. Aim/Overview of the practical:

Apply KNN classifier on iris dataset.

2. Source Code:

	da	ta_p	oath = " <u>/cont</u>	cent/drive/M	lyDrive/ML La	b/Iris.csv"	+ Code	+ Text
2]	import pandas as pd import numpy as np							
3]	df	df = pd.read_csv(data_path)						
4]	df	.hea	ad()					
		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	10:
	0	1	5.1	3.5	1.4	0.2	Iris-setosa	
	1	2	4.9	3.0	1.4	0.2	Iris-setosa	
	2	3	4.7	3.2	1.3	0.2	Iris-setosa	
	3	4	4.6	3.1	1.5	0.2	Iris-setosa	
		5	5.0	3.6	1.4	0.2	Iris-setosa	

Discover. Learn. Empower.

Discover. Learn. Empower.

```
[6] ## Apply the KNN algorithm for classification

[7] from sklearn.neighbors import KNeighborsClassifier as KNN

[20] knn = KNN()
knn.fit(X_train, y_train)
pred = knn.predict(X_test)

[23] ## Applly metrics to find the accuracy scores
from sklearn.metrics import accuracy_score, confusion_matrix

[23] accuracy_score(pred, y_test)
## it gave 96% of accuracy
0.966666666666667

[25] confusion_matrix(pred, y_test)
array([[10, 0, 0],
[0, 12, 0],
[0, 1, 7]])
```

Learning outcomes (What I have learnt):

- 1. Learn about the KNN algorithm
- 2. Learn to perform the KNN algorithm on iris dataset
- 3. Learnt about the exploratory data analysis
- 4. Learn to optimize the Model
- 5. Got the clear concept of KNN classifier

Evaluation Grid:

Sr. No.	Parameters	Marks Obtained	Maximum Marks
1.	Student Performance (Conduct of experiment) objectives/Outcomes.		12
2.	Viva Voce		10

CHANDIGARH UNIVERSITY Discover. Learn. Empower.

3.	Submission of Work Sheet (Record)	8
	Total	30