Scilab Textbook Companion for Fluid Mechanics and Turbomachines by M. M. Das¹

Created by P. Isaiarasan

B.E

Mechanical Engineering

BANNARI AMMAN INSTITUTE OF TECHNOLOGY, TAMILNADU

College Teacher Dr. V. Parthiban Cross-Checked by Chaya Ravindra

January 30, 2015

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fluid Mechanics and Turbomachines

Author: M. M. Das

Publisher: Prentice Hall, New Delhi

Edition: 1

Year: 2008

ISBN: 978-81-203-3523-3

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	et of Scilab Codes	5
1	Fluid Properties	10
2	Fluid Pressure and its measurement	14
3	Hydrostatic Forces on surfaces	21
4	Buoyancy and Floatation	26
5	Kinematics of Fluid Flow	30
6	Dynamics of Fluid Flow	33
7	Flow Through Pipes	38
8	Flow Through Orifices and Mouthpieces	45
9	Flow over Notches and weirs	51
10	Open Channel Flow	56
11	Laminar Flow	66
12	Turbulant Flow	70
13	Boundary Layer in Incompressible Flow	73
14	Dimensional Analysis and Modelling Investigation	75

15 Compressible Flow	80
16 Flow of Fluid around submerged objects	86
17 Impact of Jets	91
18 TurbomachinesHydraulic Turbines	96
19 Centrifugal Pumps	107
20 Reciprocating Pumps	116
21 Miscellaneous Fluid	121

List of Scilab Codes

Exa 1.1	Example													10
Exa 1.3	Example													10
Exa 1.4	Example													11
Exa 1.5	Example													11
Exa 1.6	Example													12
Exa 1.7	Example													12
Exa 1.8	Example													13
Exa 2.1	Example													14
Exa 2.2	Example													15
Exa 2.3	Example													15
Exa 2.4	Example													16
Exa 2.5	Example													17
Exa 2.6	Example													17
Exa 2.7	Example													18
Exa 2.8	Example													19
Exa 2.9	Example													19
Exa 3.2	Example													21
Exa 3.3	Example													21
Exa 3.4	Example													22
Exa 3.5	Example													23
Exa 3.6	Example													23
Exa 3.7	Example													24
Exa 4.1	Example													26
Exa 4.3	Example													27
Exa 4.4	Example													27
Exa 4.5	Example													28
Exa 4.6	Example													28
Exa 4.7	Example													29

Exa 5.1	Example																						30
Exa 5.2	Example																						31
Exa 5.10	Example																						31
Exa 6.3	Example																						33
Exa 6.4	Example																						34
Exa 6.5	Example																						34
Exa 6.6	Example																						35
Exa 6.7	Example																						35
Exa 6.8	Example																						36
Exa 7.1	Example																						38
Exa 7.3	Example																						39
Exa 7.6	Example																						39
Exa 7.9	Example																						40
Exa 7.12	Example																						40
Exa 7.13	Example																						41
Exa 7.14	Example																						42
Exa 7.15	Example																						42
Exa 7.16	Example																						43
Exa 8.1	Example																						45
Exa 8.2	Example																						46
Exa 8.3	Example																						46
Exa 8.4	Example																						47
Exa 8.6	Example																						48
Exa 8.7	Example																						48
Exa 8.8	Example																						49
Exa 8.9	Example																						49
Exa 9.1	Example																						51
Exa 9.2	Example																						51
Exa 9.3	Example																						52
Exa 9.4	Example																						52
Exa 9.5	Example																						53
Exa 9.8	Example																						54
Exa 9.9	Example																						54
Exa 9.10	Example																						55
Exa 10.1	Example																						56
Exa 10.2	Example																						56
Exa 10.3	Example	•				•		•	•				•			•	•	•	•				57
Exa 10.4	Example	•	•	-	•	•	•	•	•	•	•	•	•	•	- '	•	•	•	٠	•	•	•	58

Exa 10.5	Example												58
Exa 10.6	Example												59
Exa 10.7	Example												59
Exa 10.8	Example												60
Exa 10.11	Example												60
$\mathrm{Exa}\ 10.12$	Example												61
$\mathrm{Exa}\ 10.13$	Example												62
$\mathrm{Exa}\ 10.14$	Example												62
Exa 10.16	Example												63
$\mathrm{Exa}\ 10.17$	Example												63
Exa 10.22	Example												64
$\mathrm{Exa}\ 10.23$	Example												64
Exa 11.1	Example												66
Exa 11.2	Example												67
Exa 11.3	Example				 								67
Exa 11.4	Example				 								68
Exa 11.5	Example				 								68
Exa 11.6	Example				 								69
Exa 12.1	Example												70
Exa 12.4	Example				 								70
Exa 12.5	Example												71
Exa 13.2	Example												73
Exa 13.3	Example												74
Exa 14.6	Example				 								75
Exa 14.7	Example												76
Exa 14.8	Example												76
Exa 14.9	Example												77
Exa 14.10	Example												77
Exa 14.11	Example												78
Exa 14.12	Example												78
Exa 14.13	Example												79
Exa 15.1	Example												80
Exa 15.2	Example												81
Exa 15.3	Example				 								81
Exa 15.4	Example												82
Exa 15.5	Example												82
Exa 15.6	Example												83
Exa 15.7	Example												83

Exa 15.8	Example												84
Exa 15.9	Example												84
Exa 16.1	Example												86
Exa 16.3	Example												87
Exa 16.4	Example												87
Exa 16.5	Example												88
Exa 16.6	Example												88
Exa 17.1	Example												91
Exa 17.2	Example												91
Exa 17.3	Example												92
Exa 17.4	Example												92
Exa 17.5	Example												93
Exa 17.6	Example												93
Exa 17.7	Example												94
Exa 17.11	Example												94
Exa 17.12	Example												95
Exa 18.1	Example												96
Exa 18.2	Example												97
Exa 18.3	Example												98
Exa 18.4	Example												98
Exa 18.5	Example												99
Exa 18.6	Example												100
Exa 18.7	Example												100
Exa 18.8	Example												101
Exa 18.9	Example												102
Exa 18.10	Example												102
Exa 18.11	Example												103
Exa 18.14	Example												104
Exa 18.15	Example												105
Exa 18.16	Example												105
Exa 19.1	Example												107
Exa 19.2	Example												108
Exa 19.3	Example												109
Exa 19.4	Example												109
Exa 19.5	Example												110
Exa 19.6	Example												110
Exa 19.7	Example												111
Exa 19.8	Example												112

Exa 19.9	Example													112
Exa 19.10	Example													113
Exa 19.11	Example													114
Exa 19.12	Example													114
Exa 20.1	Example													116
Exa 20.2	Example													117
Exa 20.3	Example													117
Exa 20.4	Example													118
Exa 20.5	Example													119
Exa 20.6	Example													120
Exa 21.2	Example													121
Exa 21.3	Example													122
Exa 21.4	Example													122
Exa 21.7	Example													123
Exa 21.9	Example													123
Exa 21.10	Example													124
Exa 21.11	Example													124
Exa 21.12	Example													125
Exa 21.13	Example													125
Eva 21 14	Example													126

Fluid Properties

Scilab code Exa 1.1 Example

```
1 // Finding Specific weight, Density, Specific Gravity
2 //Given
3 V = 1/1000;
                                   //volume in m<sup>3</sup>
4 w = 9.6;
                              //weight in Newton
5 g=9.81;
                              //gravitational force in m/s
6 //To Find
7 spwt=w/V;
                              //Specific weight in N/m<sup>3</sup>
                                 //density in kg/m<sup>3</sup>
8 rho=spwt/g;
9 spgr=rho/1000;
                             //Specific gravity no units
10 disp("specific weight = "+string(spwt)+" N/m^3");
11 disp("density = "+string(rho)+" kg/m<sup>3</sup>");
12 disp("specific gravity = "+string(spgr)+" no unit");
```

Scilab code Exa 1.3 Example

```
//Finding of Viscosity
//Given
dy=0.025*10^-3; //distance in meter

tu=0.5; //velocity in m/s
tu=1.471; //shear stress in N/m^2
//To Find
mu=tau*dy/du; //viscosity in Ns/m^2
mu1=mu*10; // Viscosity in poise
disp("viscosity ="+string(mu)+" in Ns/m^2");
disp("Viscosity ="+string(mu1)+" in poise")
```

Scilab code Exa 1.4 Example

```
1 //Finding of Diameter of water droplet
2 //Given
3 \text{ st} = 0.716;
                                 //Surface Tension in N/m
                                 //Pressure in N/m<sup>2</sup>
4 p=0.147*10^4;
5 //To Find
6 d=4*st/p;
                                 //Dia in meter
7 d1=d*10^2;
                                 //Dia in centimeter
                                 // Dia in millimeter
8 d2=d*10^3;
9 disp("Diameter ="+string(d)+" meter");
10 disp("Diameter ="+string(d1)+" Centi meter");
11 disp("Diameter ="+string(d2)+" Milli meter");
```

Scilab code Exa 1.5 Example

```
1 //Finding of Shear Stress
2 //Given
```

Scilab code Exa 1.6 Example

```
//Finding of increase of Pressure
//Given
k=2.07*10^6; // Bulk Modulus in KN/m^2
dv=0.01; //Change in Volume
//To Find
p=k*(dv); // Change in pressure
disp(" Increase in Pressure ="+string(p)+" KN/m^2");
```

Scilab code Exa 1.7 Example

```
1 //Finding of Cappilary rise
2 //Given
3 d=0.03*10^-2; //Diameter in meter
```

Scilab code Exa 1.8 Example

```
1 // Finding of Kinematic Viscosity
2 // Given
3 tau=0.2158;
                                    //Shear stress in N/m<sup>2</sup>
                                //Velocity Gradient in sec
4 \text{ vg=0.218};
      ^{\hat{}}-1
                                    //Density in Kg/m<sup>3</sup>;
5 rho=959.5;
6 //To Find
7 mu=tau*1/vg;
8 disp("Dynamic Viscosity ="+string(mu)+" Ns/m^2");
9 nu=mu/rho;
10 disp("Kinematic Viscosity ="+string(nu)+" m<sup>2</sup>/sec");
11 nu1=nu*10<sup>4</sup>;
12 disp(" Knematic Viscosity ="+string(nu1)+" cm^2/sec"
      );
13 nu2=nu1*10^-4;
14 disp("Kinematic Viscosity ="+string(nu2)+" strokes")
```

Fluid Pressure and its measurement

Scilab code Exa 2.1 Example

```
1 // Finding of Pressure Intensity
2 // Given
3 p=73.575*10^4; //Pressure in N/mm^2
4 Patm=76;
                           //Density in kg/m<sup>3</sup>
5 \text{ rho} = 1000;
6 spgr=13.6;
                            //Gravitational force in m/s
7 g=9.81;
8 //To Find
9 //Gauge units
10 P1=p/(rho*g);
11 P2=p/(spgr*rho*g);
12 // Absolute units
13 P3=(Patm*spgr)/100;
14 P4=(Patm*spgr*rho*g)/100;
15 P5=P2/10000;
16 P6=p+P5;
17 P7 = 75 + P5;
18 P8=5.5147+(Patm/100);
```

```
disp("Gauge Units");
disp("Pressure ="+string(P1)+" meter of water");
disp("Pressure ="+string(P2)+" meter of mercury");
disp("Pressure ="+string(P3)+" meter of water");
disp("Pressure ="+string(P5)+" N/cm^2");
disp("Pressure ="+string(P7)+" meter of water");
disp("Pressure ="+string(P8)+" meter of Mercury");
```

Scilab code Exa 2.2 Example

```
1 //Finding of Depth of Water
2 // Given
                                      //pressure intensity
3 p=100.5525*10^4;
       in N/m^2
4 spgr=1.025;
                                 //Specific gravity
5 \text{ rho} = 1000;
                                 //Density of water in kg/
     m^3
6 g=9.81;
                                 //Gravitational force due
       to acceleration in m/sec^2
7 \text{ w=rho*g};
8 //To Find
9 h=p/w;
10 disp("Depth of Water = "+string(h)+" m");
```

Scilab code Exa 2.3 Example

```
1 //Finding of Height
```

```
2 //Given
3 p=4.9*10^4;
                           //Pressure intensity in N/mm<sup>2</sup>
4 rho=1000;
                           //Density of water in kg/m<sup>3</sup>
                           //gravitational force in m/sec
5 g=9.81;
      ^{\hat{}}2
6 spgr=0.8;
                           //Specific gravity of oil
7 w=rho*g;
8 w1=rho*g*spgr;
9 //To Find
10 h=p/w;
11 h1=p/w1;
12 disp("Height of water ="+string(h)+" m");
13 disp("Height of oil ="+string(h1)+" m");
```

Scilab code Exa 2.4 Example

```
1 //Finding of Pressure intensity
2 //Given
                             //Specific gravity of oil
3 spgr=0.8;
4 spgr1=1.5;
5 rho=1000;
                             //Density of water in Kg/m<sup>3</sup>
6 \text{ g=9.81};
                             //Gravitational force m/s^2
7 h1=2;
                              //Depth in meter
8 //To Find
9 w=rho*g*spgr;
                              //Pressure at the interface
10 p=w*h1;
11 disp("Pressure Intensity ="+string(p)+" N/m^2");
12 \text{ w1=rho*g*spgr1};
13 p1=1.5969+w1;
14 disp("Pressure Intensity at Bottom ="+string(p1)+" N
      /m^2");
```

Scilab code Exa 2.5 Example

```
1 // Finding of Pressure
2 // Given
                            //\operatorname{specific} gravity of liquid
3 spgr1=0.8;
                            //specific gravity of
4 spgr2=13.6;
     mercury
                            //height in left limb in
5 h1=0.6;
     meter
                            //height in right limb in
6 h2=0.15;
     meter
                            //gravitaional force in m/s
7 g=9.81;
      ^2
8 rho1=spgr1*1000;
                           //density of liquid in Kg/m
      ^3
9 rho2=spgr2*1000; //density of mecury in Kg/m
     ^3
10 p=10.13;
11 //To Find
12 p1=(rho2*g*h2)-(rho1*g*h1);
13 disp("Pressure at A = "+string(p1) + "N/m^2");
14 p2=p1/100+p;
15 disp("Absolute Pressure "+string(p2)+" N/cm^2")
```

Scilab code Exa 2.6 Example

```
1 //Finding of Pressure difference
2 //Given
3 P1=10.8*10^4;
                        //Pressure in N/mm<sup>2</sup>
4 P2=17.16*10^4;
5 \text{ rho} = 1000;
                          //Density in kg/m<sup>3</sup>
6 g=9.81;
                        //Gravitational force in m/s^2
7 spgr1=1.594;
8 spgr2=13.6;
9 spgr3=0.8;
10 z1=4;
                           //height in meter
11 //To Find
12 left=P1+((spgr1*rho*g)*z1)+(spgr2*rho*g);
13 right=((spgr3*rho*g)*1.5)+P2;
14 h=left/(12*right);
15 h1=h*100;
16 disp("Height ="+string(h)+" meter of mercury");
17 disp("Height ="+string(h1)+" centimeter of mercury")
```

Scilab code Exa 2.7 Example

```
1 //Finding of Pressure
2 //Given
3 //Left Limb
4 h=0.6;
5 rho=1000;
6 g=9.81;
7 //Right Limb
8 h1=0.45;
9 spgr1=13.6;
10 h2=0.30;
11 spgr2=0.88;
12 //To Find
13 P=(h1*spgr1)+(h2*spgr2)-(h);
14 disp("Pressure is ="+string(P)+" cm of water");
```

```
15 p1=P*rho*g;
16 disp("Pressure is = "+string(p1)+" N/m^2");
```

Scilab code Exa 2.8 Example

```
//Finding of Elevation
//Given
//At Sea level
p=760; //pressure in mm of mercury
frho=1000; //Density in kg/m^3
spgr=13.6;
g=9.81; //gravitational force in m/sec^2
p1=(p/1000)*rho*g*spgr;
//At Mountain
p2=735;
p3=(p2/1000)*rho*g*spgr;
rho1=1.2;
//To Find
h=(p1-p3)/(rho1*g);
disp("Elevation is ="+string(h)+" meter");
```

Scilab code Exa 2.9 Example

```
1 //Finding of Pressure and Temperature
2 //Given
3 h=18.288; //Height in kilometer
4 t0=288.15;
```

Hydrostatic Forces on surfaces

Scilab code Exa 3.2 Example

```
//Finding of Total Pressure
//Given
d=1.5;
y1=2;
rho=1000;
g=9.81;
//To Find
Ig=(%pi*d^4)/64;
Ay=(%pi/4)*d^2;
P=Ay*rho*g*y1;
Ycp=(Ig/Ay)+y1;
disp("P="+string(P)+" Newtons");
disp("Ycp ="+string(Ycp)+" meter");
```

Scilab code Exa 3.3 Example

```
//Finding of Totoal Pressure , Depth of centre
//given
depth depth
```

Scilab code Exa 3.4 Example

```
//Finding of Total Pressure , Depth of pressure
//Given
b=5;
h=5;
spgr=0.8;
rho=800;
g=9.81;
y1=(1+(5/3));
//To Find
Ig=(b*h^3)/36;
Ay=(1/2)*b*h;
P=Ay*rho*g*y1;
Ycp=(Ig/(Ay*y1))+y1;
disp("P= "+string(P)+" Newtons");
disp("Ycp ="+string(Ycp)+" meter");
```

Scilab code Exa 3.5 Example

```
1 //Finding of Total Pressure, Depth of pressure
2 //Given
3 T=4;
4 rho=1000;
5 g=9.81;
6 1=2;
7 b=1/2;
8 y1=2;
9 y2=1/3;
10 //To Find
11 A = (6/2) *1;
12 A1=(1*b);
13 A2=1*5;
14 y3 = ((A1*y1) + (2*A2*y2))/(A1+2*A2);
15 P=rho*g*A*y3; disp(y3);
16 Ig=(1^2+(4*1*T)+T^2)/(36*(1+T));
17 Ycp = (Ig/(A*y3)) + y3;
18 disp("P= "+string(P)+" Newtons");
19 disp("Ycp ="+string(Ycp)+" meter");
```

Scilab code Exa 3.6 Example

```
1 //Finding of Total Pressure , Depth of pressure
2 //Given
3 spgr=0.9;
4 rho=900;
```

```
5 rho1=1000;
6 spgr1=0.6;
7 g=9.81;
8 y1=spgr*(2/3);
9 y2=spgr+(spgr1/2);
10 y3=spgr+((spgr1/3)*2);
11 //To Find
12 P1=rho*g*spgr;
13 P2=P1+(rho1*spgr1*g);
14 P=(0.5*P1*spgr*1.5)+(((P1+P2)/2)*spgr1*1.5);
15 disp("P ="+string(P)+" Newton");
16 P3=P2-P1;
17 Ycp=((P1*y1)+(P2*y2)+(P3*y3))/P;
18 disp("Ycp ="+string(Ycp)+" meter");
```

Scilab code Exa 3.7 Example

```
1 //Finding of Total Pressure
2 //Given
3 BC=2;
4 d=2;
5 y1=2.5;
6 \text{ rho} = 1000;
7 g=9.81;
8 //To Find
9 Ig=(1*BC^3)/2;
10 Ay = ((1*BC^3)/2)*y1;
11 Px=Ay*rho*g/2;
12 Ycp = (Ig/Ay) + y1;
13 Py=((2*1.5)*(\%pi/4)*d^2)*rho*g;
14 disp("Px= "+string(Px)+" Newtons");
15 disp("Ycp ="+string(Ycp)+" meter");
16 disp("Py= "+string(Py)+" Newtons");
```

Buoyancy and Floatation

Scilab code Exa 4.1 Example

```
1 // Finding of water displaced and position of centre
      buoyancy
2 // Given
3 1=2;
4 h=1.5;
5 b=4;
6 v=1*b*h;
7 spgr=0.7;
8 \text{ rho} = 700;
9 rho1=1000;
10 g=9.81;
11 w=rho*g*v;
12 //To Find
13 wd=w/(rho1*g);
14 disp("Water Displaced = "+string(wd)+" m^3");
15 h1=wd/(1*b);
16 h2=h1/2;
17 disp("Positin of Centre Buoyancy = "+string(h2)+" m"
      );
```

Scilab code Exa 4.3 Example

```
1 //Finding of volume and specific gravity
2 //given
                           //In Air in Newton
3 \quad w = 490.5;
                           //In Water in Newton
4 \text{ w1} = 196.2;
5 \text{ rho} = 1000;
6 g=9.81;
7 rho1=5000;
8 //To Find
9 wd = w - w1;
10 vd=wd/(rho*g);
11 rho2=(w/g)/vd;
12 spgr=rho1/(rho*3);
13 disp("Volume = "+string(rho2)+" Kg/m^3");
14 disp("Specific Gravity is="+string(spgr)+" No
      units")
```

Scilab code Exa 4.4 Example

```
// Finding of Mass, Density, Specific Gravity
// Given
v=2*1*3;
w=3924;
rho=1000;
g=9.81;
wd=rho*g*v;
w1=w+wd;
```

```
9 m=w1/g;
10 rho1=m/v;
11 spgr=rho1/rho;
12 disp("Mass is = "+string(m)+" Kg");
13 disp("Density is = "+string(rho1)+" Kg/m^3");
14 disp("Specific Gravity = "+string(spgr)+" No units")
```

Scilab code Exa 4.5 Example

```
//Finding of Density
//Given
h1=0.4;
h2=0.6;
rho=1000;
rho1=13600;
g=9.81;
wd=rho*0.6;
md=rho1*0.4;
rho2=wd+md;
disp("Density is = "+string(rho2)+" Kg/m^3");
```

Scilab code Exa 4.6 Example

```
1 //Finding of Weight and Metacentric height
2 //Given
3 l=4;
4 b=2;
```

```
5 h=1;
6 d=0.6;
7 v=1*b*d;
8 rho=1000;
9 g=9.81;
10 //To Find
11 wd=rho*g*v;
12 disp("Weight of the body ="+string(wd)+" Newtons");
13 I=(1*b^3)/12;
14 h1=h/2;
15 d1=d/2;
16 h2=h1-d1;
17 mh=(I/v)-h2;
18 disp("Metacentric Height ="+string(mh)+" meter");
```

Scilab code Exa 4.7 Example

```
//Finding pf Metacentric Height
//Given
desa;
h=2;
spgr=0.7;
h1=h*spgr;
pi=3.14;
//To Find
h2=h/2;
h3=h1/2;
h4=h2-h3;
mh=(pi*d^4)/64;
vwd=(pi*d^2*h1)/4;
mg=(mh/vwd)-h4;
disp("Metacentric Height is ="+string(mg)+" meter");
```

Kinematics of Fluid Flow

Scilab code Exa 5.1 Example

```
1 //Finding of velocity and discharge
2 //Given
3 d1=0.4;
4 r1=d1/2;
5 d2=0.2;
6 \text{ r2=d2/2};
7 v1=5;
8 \text{ pi=3.14};
9 //To Find
10 a1=(pi*r1^2);
11 a2=(pi*r2^2);
12 v2=(a1*v1)/a2;
13 q2=a2*v2;
14 disp("Velocity at section -2 = "+string(v2) + "m/
      second");
15 disp("Discharge ="+string(q2)+"m^3/seconds");
```

Scilab code Exa 5.2 Example

```
1 //Finding of Discharge and velocity
2 //Given
3 d1=0.4;
4 d2=0.3;
5 d3=0.2;
6 \text{ pi=} 3.14;
7 //To Find
8 q1=(pi/4)*d1^2*3;
9 q2=(pi/4)*d2^2*2;
10 q3=q1-q2;
11 v3=q3/((pi/4)*d3^2);
12 disp("Discharge at section - 1="+string(q1)+" m^3/sec
13 disp("Discharge at section -2 = "+string(q2) + "m^3/sec
14 disp("Discharge at section - 3="+string(q3)+" m^3/sec
     ");
15 disp("velocity at section - 3 ="+string(v3)+" m/sec")
```

Scilab code Exa 5.10 Example

```
//Finding of convective acceleration
//Given
v1=2.5;
v2=16;
```

Dynamics of Fluid Flow

Scilab code Exa 6.3 Example

```
//Finding of Discharge
//Given
d1=30;
d2=15;
hom=10;
cod=0.98;
pi=3.14;
g=9.81;
//To Find
a1=(pi/4)*d1^2;
a2=(pi/4)*d2^2;
h=hom*(12.6);
q=(cod*a1*a2*(2*100*g*h)^(1/2))/((a1^2-a2^2)^(1/2));
q1=q/1000;
disp("Discharge ="+string(q1)+" m^3/sec");
```

Scilab code Exa 6.4 Example

```
//Finding of Discharge
//Given
d1=30;
d2=15;
hom=30;
cod=0.98;
g=9.81;
pi=3.14;
//To Find
a1=(pi/4)*d1^2;
a2=(pi/4)*d2^2;
h=hom*(12.6);
q=(cod*a1*a2*(2*100*g*h)^(1/2))/((a1^2-a2^2)^(1/2));
q1=q/1000;
disp("Discharge ="+string(q1)+" m^3/sec");
```

Scilab code Exa 6.5 Example

```
1 // Finding of Rate of flow
2 // Given
3 d1=30;
4 d2=15;
5 hom=30;
6 cod=0.98;
7 g=9.81;
8 pi=3.14;
```

```
9 //To Find
10 a1=(pi/4)*d1^2;
11 a2=(pi/4)*d2^2;
12 h=hom*((13.6/0.8)-1);
13 q=(cod*a1*a2*(2*100*g*h)^(1/2))/((a1^2-a2^2)^(1/2));
14 q1=q/1000;
15 disp("Discharge ="+string(q1)+" m^3/sec");
```

Scilab code Exa 6.6 Example

```
1 //Finding of Pressure Difference
2 // Given
3 g=9.81;
4 spgr=0.9;
5 spgr1=13.6;
6 \text{ rho} = 1000;
7 rho1=spgr*1000*g;
8 \text{ zd} = 0.3;
9 \text{ gd} = 25;
10 x=(spgr1/spgr)-1;
11 x1 = ((gd*x)/100) + zd;
12 //To find
13 pd=x1*rho1; disp(x1);
14 disp("Pressure Difference ="+string(pd)+" N/m^2");
15 pd1=pd/10000;
16 disp("Pressure Difference ="+string(pd1)+" N/cm<sup>2</sup>");
```

Scilab code Exa 6.7 Example

```
1 //Finding of Rate Of Flow
2 // Given
3 d1=15;
4 d2=30;
5 \text{ hm} = 50;
6 spgr=0.9;
7 spgr1=13.6;
8 \text{ cod} = 0.64;
9 g=9.81;
10 //To Find
11 A0 = (\%pi/4)*d1^2;
12 A1=(\%pi/4)*d2^2;
13 h=((spgr1/spgr)-1)*hm;
14 x=(A0*A1)/sqrt(A1^2-A0^2);
15 y=sqrt(2*g*h);
16 q = cod * x * y;
17 disp(" Discharge ="+string(q)+" cm^3/sec");
18 q1=q/100;
19 disp(" Discharge ="+string(q1)+" ltr/sec");
```

Scilab code Exa 6.8 Example

```
1 //Fiding of Discharge
2 //Given
3 d1=0.3;
4 pd=0.06;
5 g=9.81;
6 cv=0.98;
7 //To Find
8 vc=sqrt(2*g*pd)*cv;
9 V=0.8*vc;
10 A=(%pi/4)*d1^2;
11 q=V*A;
```

```
12 disp(" Discharge ="+string(q)+" m^3/\sec");
```

Chapter 7

Flow Through Pipes

Scilab code Exa 7.1 Example

```
//Finding of Loss of Head
//Given
q1=200;
d1=150;
d2=300;
g=9.81;
//To Find
v1=200*(4/%pi)*(100/150)^2;
disp(v1);
v2=200*(4/%pi)*(100/300)^2;
disp(v2);
h=((v1-v2)^2)/20*g;
h1=h/1000;
disp(" Loss of Head ="+string(h1)+" meter of water");
```

Scilab code Exa 7.3 Example

```
//Finding of Discharge
//Given
delta = 0.3;
1=400;
f=0.00225;
h=5;
g=9.81;
//To Find
x=(h*2*g*d)/(f*1);
v=sqrt(x);
disp(v);
A=(%pi/4)*d^2;
q=A*v;disp(A);
disp(" Discharge ="+string(q)+" m^3/sec");
```

Scilab code Exa 7.6 Example

```
1 // Finding of Head
2 // Giiven
3 f=0.032;
4 1=400;
5 d=0.3;
6 q=0.3;
7 g=9.81;
8 //TO find
9 A=(%pi/4)*d^2
```

```
10 V=q/A;
11 v1=(V^2);
12 x=1.5+(f*1/d);
13 y=v1/(2*g);
14 H=x*y;
15 disp("Difference in water level ="+string(H)+" meter
")
```

Scilab code Exa 7.9 Example

```
1 //Finding of Equivalent Diameter
2 // Given
3 L=1400;
4 L1=800;
5 L2 = 400;
6 L3=200;
7 D1 = 0.6;
8 D2=0.4;
9 D3 = 0.2;
10 //To Find
11 a=L1/(D1)^5; disp(a);
12 b=L2/(D2)^5; disp(b);
13 c=L3/(D3)^5; disp(c);
14 d=(a+b+c); disp(d);
15 d1=d<sup>1</sup>/5;
16 D=L/d1;
17 disp("Diameter ="+string(D)+" meter");
```

Scilab code Exa 7.12 Example

```
1 //Finding of Maximum Power Outlet
2 //Given
3 d=0.4;
4 1 = 400;
5 \text{ H}=420;
6 \text{ rho} = 1000;
7 f = 0.025;
8 g=9.81;
9 \text{ pi} = 3.14;
10 //To Find
11 h=H/3;
12 h1=(f*1*100)/(2*g*d);
13 v=sqrt(h/h1);disp(h); disp(h1);
14 a=(pi/4)*d^2;
15 q=a*v;
16 h3=H-h; disp(h3);
17 p=(rho*g*q*h3)/1000;
18 disp(" Maximum Power Outlet ="+string(p)+" KW");
```

Scilab code Exa 7.13 Example

```
//Finding of Rise of Pressure
//Given
1=2000;
d=0.6;
v=2;
c=1420;
t=20;
rho=1000;
//To Find
p=(rho*l*v)/t
pl=p/10000;
disp("Rise of Pressure ="+string(p1)+"N/cm^2");
```

Scilab code Exa 7.14 Example

```
//Finding of Rise of Pressure
//Given
1 = 2000;
4 d = 0.6;
v = 2;
t = 20;
k = 19.62*10^8;
rho = 1000;
//To Find
c = sqrt(k/rho);
p = rho*v*c
p = p/10000;
disp("Rise of Pressure ="+string(p1)+"N/cm^2");
```

Scilab code Exa 7.15 Example

```
9 E=19.62*10^10;
10 //To Find
11 a=(1/k)+(d/(t*E));
12 b=(1/rho)*a;
13 c=sqrt(b);
14 p=2/c;
15 p1=p/10000;
16 fc=((p*d)/(2*t))/10000;
17 f1=((p*d)/(4*t))/10000;
18 disp("Rise of Pressure ="+string(p1)+"N/cm^2");
19 disp("Circumferential stress ="+string(fc)+" N/m^2");
20 disp("Longitudinal stress ="+string(f1)+" N/m^2");
```

Scilab code Exa 7.16 Example

```
1 // Finding of Maximum rise of water level, velocity,
      Time of occurance
2 // Given
3 d=4;
4 d1=1;
5 1 = 150;
6 q = 2;
7 g=9.81;
8 //To Find
9 a1=(\%pi/4)*d^2;
10 a2=(\%pi/4)*d1^2;
11 v=q/a2;
12 a=(1*a2)/(g*a1);
13 b=sqrt(a);
14 h = v * b;
15 c=(1*a1)/(g*a2);
16 d=sqrt(c);
```

```
17 t=(%pi/2)*d;
18 v1=v*(a2/a1);
19 disp("Maximum rise of water ="+string(h)+" meter");
20 disp("Time taken ="+string(t)+" seconds");
21 disp("Maximum Velocity ="+string(v1)+" m/sec");
```

Chapter 8

Flow Through Orifices and Mouthpieces

Scilab code Exa 8.1 Example

```
//Finding of Actual Discharge, velocity
//Given
deloo.05;
H=12;
Cd=0.6;
Cv=0.98;
g=9.81;
//To Find
a=(%pi/4)*d^2;
v=sqrt(2*g*H);
q=Cd*a*v;
V=Cv*v;
disp("Actual Discharge ="+string(q)+" m^3/sec");
disp("Actual Velocity ="+string(V)+" m/sec");
```

Scilab code Exa 8.2 Example

```
//Finding of Coefficient of Discharge
//Given
d=0.03;
H=1.5;
Ad=2.35*10^-3;
g=9.81;
//To Find
a=(%pi/4)*d^2;
b=sqrt(2*g*H);
Td=b*a;
Cd=Ad/Td;
disp(" Coefficient of Discharge ="+string(Cd)+" No units");
```

Scilab code Exa 8.3 Example

```
1 //Finding of Cv, Cc
2 //Given
3 H=0.6;
4 x=0.1;
5 y=0.0045;
6 Cd=0.6;
7 //To Find
8 a=sqrt(4*y*H);
9 Cv=x/a;
10 Cc=Cd/Cv;
```

```
11 disp("Cv ="+string(Cv)+" No units");
12 disp("Cc ="+string(Cc)+" No units");
```

Scilab code Exa 8.4 Example

```
1 // Finding of Cv, Cd, Cc
2 // Given
3 \text{ H=5};
4 d1=0.1;
5 d2=2;
6 t = 30;
7 h=0.45;
8 x = 1;
9 g=9.81;
10 y = 0.052;
11 H=5;
12 //To Find
13 A1=(\%pi/4)*d2^2;
14 Aq=(A1*h)/t;
15 A2=(\%pi/4)*d1^2;
16 b=sqrt(2*g*H);
17 Tq=A2*b;
18 Cd=Aq/Tq;
19 c = sqrt(4*y*H);
20 \text{ Cv=x/c};
21 Cc=Cd/Cv;
22 disp(" Cd ="+string(Cd)+" No units");
23 disp(" Cv ="+string(Cv)+" No units");
24 disp(" Cc ="+string(Cc)+" No units");
```

Scilab code Exa 8.6 Example

```
//Finding of Dischage through Rectangular orifice
//Given
H1=4;
H2=6;
Cd=0.62;
g=9.81;
//To Find
a=H2^(3/2)-H1^(3/2);
b=sqrt(2*g);
q=Cd*2*b*a;
disp("Dischage through Rectangular orifice ="+string (q)+" m^3/sec");
```

Scilab code Exa 8.7 Example

```
//Finding of Dischage through a fully submersed
Orifice
//Given
b=2;
H=0.8;
H1=2.5;
H2=3;
Cd=0.6;
g=9.81;
//To Find
a=sqrt(2*g*H);
```

Scilab code Exa 8.8 Example

```
//Dischage through Orifice
//Given
b=1.5;
H1=3.2;
H2=2;
H3=2.4;
Cd=0.62;
g=9.81;
//To Find
a=H3^(3/2)-H2^(3/2);
q1=(2/3)*Cd*b*sqrt(2*g)*a;
q2=Cd*b*(H1-H3)*sqrt(2*g*H3);
q3=q1+q2;
disp("Dischage through Orifice ="+string(q3)+" m^3/sec");
```

Scilab code Exa 8.9 Example

```
1 //Finding of Time Taken
2 //Given
3 d1=3;
4 d2=0.4;
5 H1=4;
```

Chapter 9

Flow over Notches and weirs

Scilab code Exa 9.1 Example

```
//Finding of Discharge through rectangular Notch
//Given
H=0.4;
L=3;
Cd=0.6;
g=9.81;
//To Find
q=(2/3)*Cd*L*sqrt(2*g)*H^(3/2);
disp("Discharge through rectangular Notch ="+string(q)+" m^3/sec");
```

Scilab code Exa 9.2 Example

```
1 //Finding of Height
2 //Given
```

```
3 q=1.5;
4 Cd=0.6;
5 L=5;
6 g=9.81;
7 //To Find
8 H=q/((2/3)*Cd*L*sqrt(2*g));
9 H1=H^(2/3);
10 Z=q-H1; disp(H1);
11 disp("Height ="+string(Z)+" meter");
```

Scilab code Exa 9.3 Example

```
//Finding of Position of Apex of Notch
//Given
q=0.20;
d=1;
theta=90;
Cd=0.62;
g=9.81;
//To Find
b=(theta/2);
H=q/((8/15)*Cd*sqrt(2*g)*tan(b));
H1=H^(2/5);
p=d-H1;
disp("Position of Apex of Notch ="+string(p)+" meter");
```

Scilab code Exa 9.4 Example

```
1 // Finding of discharge through Trapezoidal Notch
2 //Given
3 \text{ H=0.3};
4 Cd1=0.62;
5 \text{ Cd2=0.6};
6 d=0.4;
7 w1=1.2;
8 \text{ w} 2 = 0.5;
9 h = 0.4;
10 g=9.81;
11 //To Find
12 theta=((w1-w2)/2)/h; disp(theta);
13 q1=((2/3)*Cd1*sqrt(2*g)*H^(3/2));
q2=((8/15)*Cd2*sqrt(2*g)*theta*H^(5/2));
15 q=q1+q2; disp(q1); disp(q2);
16 disp("discharge through Trapezoidal Notch ="+string(
      q) + "m^3/sec");
```

Scilab code Exa 9.5 Example

```
//Finding of Percentage Error in Discharge
//Given
Cd=0.6;
q=40000;
L=0.5;
H=0.2;
g=9.81;
//To Find
H1=q/((2/3)*Cd*L*sqrt(2*g));
H2=H1^(2/3);
H3=H2/100;
dq=(3/2)*(H/H3)*100;
disp("Percentage Error in Discharge ="+string(dq)+"
```

Scilab code Exa 9.8 Example

```
1  //Finding of Discharge over a Cipolletti weir
2  //Given
3  L=1.8;
4  H=1.2;
5  Cd=0.632;
6  //To Find
7  q=1.866*L*H^(3/2);
8  disp("Discharge over a Cipolletti weir ="+string(q)+" m^3/sec");
```

Scilab code Exa 9.9 Example

```
1 //Finding of Dischage
2 //Given
3 Cd1=0.6;
4 Cd2=0.8;
5 L=3.5;
6 g=9.81;
7 H1=0.3;
8 H2=0.15;
9 //To Find
10 q1=((2/3)*Cd1*L*sqrt(2*g)*(H1-H2)^(3/2));
11 q2=Cd2*L*H2*sqrt(2*g*(H1-H2));
12 q3=q1+q2;
13 disp("Dischage ="+string(q3)+" m^3/sec");
```

Scilab code Exa 9.10 Example

```
1 //Finding of Discharge
2 //Given
3 L=5.4;
4 n=6;
5 H=0.45;
6 //To Find
7 q=1.84*(L-(0.1*n*H))*H^(3/2);
8 disp("Discharge ="+string(q)+" m^3/sec");
```

Chapter 10

Open Channel Flow

Scilab code Exa 10.1 Example

```
//Finding of velocity of flow and discharge
//Given
c=50;
sb=1/3000;
R=10/9;
a=10;
//To Find
b=R*sb;
v=c*sqrt(b);
q=a*v;
disp("Velocity of flow ="+string(v)+" m/sec");
disp("Discharge ="+string(q)+" m^3/sec");
```

Scilab code Exa 10.2 Example

```
//Finding of bed slope and conveyance of channel
//Given
q=0.15;
B=.70;
y=.40;
C=60;
A=B*y;
P=B+(2*y);
R=(A/P);
//To Find
sb=((q^2)*(P))/((A^3)*C^2)
K=A*C*sqrt(R);
disp("Bed of slope ="+string(sb)+" no units");
disp("conveyance of channel ="+string(K)+" m^3/sec");
;
```

Scilab code Exa 10.3 Example

```
//Finding of discharge through trapezoidal channel
//Given
B=6;
z=1/3;
C=60;
y=3;
sb=1/5000;
//To Find
A=(B+z*y)*y;
P=B+(2*y*sqrt(1+z^2));
R=A/P;
q=A*C*sqrt(R*sb);
disp("Discharge through Trapezoidal channel ="+
string(q)+" m^3/sec");
```

Scilab code Exa 10.4 Example

```
//Finding of Bottom slope, Conveyance
//Given
q=0.1;
B=0.6;
y=0.3;
A=B*y;
n=0.013;
P=1.2;
R=A/P;
//To Find
b=((q^2)*(P))/((A^3)*B^2)
K=A*B*sqrt(R);
disp("Bed of slope ="+string(b)+" no units");
disp("conveyance of channel ="+string(K)+" m^3/sec");
;
```

Scilab code Exa 10.5 Example

```
1 //Finding of Bed slope of Trapezoidal channel
2 //Given
3 B=6;
4 y=3;
5 z=3/4;
6 q=30;
7 A=(B+(z*y))*y;
8 P=B+(2*y)*sqrt(1+z^2);
```

```
9 R=(A/P);
10 n=0.0158;
11 //To Find
12 sb=((q^2)*n^2)/((A^2)*(R^(4/3)));
13 disp("Bed slope of Trapezoidal channel ="+string(sb) +" no units");
```

Scilab code Exa 10.6 Example

```
1 //Finding of discharge through triangular channel
2 //Given
3 y=4;
4 theta=60;
5 b=theta/2;
6 n=0.0182;
7 sb=1/1000;
8 T=2*tan(b)*y;z=tan(b); disp(z);
9 A=0.5*T*y;
10 P=2*sqrt(y^2+(y*tan(b))^2);
11 R=A/P;disp(A);disp(P);disp(R);
12 //To Find
13 q=A*(1/n)*(R)^2/3*(sb)^1/2;
14 disp("discharge through triangular channel ="+string (q)+" m^3/sec");
```

Scilab code Exa 10.7 Example

```
1 //Finding of Diameter of circular channel 2 //Given
```

```
3 q=1;
4 n=0.02;
5 sb=1/10000;
6 //To Find
7 q=((%pi/8)*(1/n)*(1/sb)^(1/2)*(1/4)^(2/3));
8 D=(8/%pi)*n*(1/sb)^(-0.5)*(4)^(2/3);
9 D1=(D)^(3/8);
10 disp("Diameter of Circular Pipe ="+string(D)+" meter");
```

Scilab code Exa 10.8 Example

```
//Finding of Dimemsions
//Given
q=0.5;
sb=1/3000;
c=60;
n=0.015;
//To Find
y=q/(2*c*(1/2)^(0.5)*(sb)^(1/2));
y1=y^(2/5);
b=2*y1;
y2=q/(2*(1/n)*(1/2)^(2/3)*(sb)^(1/2));
y3=(y2)^(3/8);
b1=2*y3;
disp("Economical Dimensions ="+string(b)+" meter");
disp("Economical Dimensions ="+string(b1)+" meter");
```

Scilab code Exa 10.11 Example

```
//Finding of Slope
//Given
z=1;
y=0.225;
c=50;
q=0.04;
//To Find
A=z*y^2;
P=2*sqrt(2)*y;
x=sqrt(0.225/(2*sqrt(2)));
sb=q/(A*c*x);
sb1=sb^(2);
disp("Slope ="+string(sb1)+" no units");
```

Scilab code Exa 10.12 Example

```
1 //Finding of C and f
2 //Given
3 n=0.012;
4 d=0.5;
5 w=2;
6 g=9.81;
7 //To Find
8 A=w*d;
9 P=2+(w*d);
10 R=P/A;
11 C=(1/n)*(R)^(1/6);
12 f=sqrt((8*g)/(C^2));
13 disp("C="+string(C)+" m/sec");
14 disp("f ="+string(f)+" no units");
```

Scilab code Exa 10.13 Example

```
//Finding of Normal Depth
//Given
w=6;
q=5;
sb=0.006;
n=0.014;
B=6;
//To Find
a=(q/(B^(8/3)*sb^(1/2)))^(3/5);
b=(1+(0.855)*((q/B^(8/3)*sb^(1/2)))^(3/5));
y=a*b;
disp("Normal Depth ="+string(y)+" meter");
```

Scilab code Exa 10.14 Example

```
1 //Finding of velocity , Dischage
2 //Given
3 z=1.5;
4 sb=0.0003;
5 B=10;
6 n=0.012;
7 y=3;
8 //To Find
9 A=(B+(z*y))*y;
10 P=B+(2*y)*sqrt(1+z^2);
11 R=A/P;
```

```
12 v=(1/n)*R^(2/3)*sb^(1/2);
13 q=A*v;
14 disp("Velocity ="+string(v)+" m/sec^2");
15 disp("Discharge ="+string(q)+" m^3/sec");
```

Scilab code Exa 10.16 Example

```
1 //Finding of specific energy
2 //Given
3 B=4;
4 y=2.5;
5 q=8;
6 g=9.81;
7 //To Find
8 A=B*y;
9 v=q/A;
10 E=y+(v^2/(2*g));
11 disp(" Specific Energy ="+string(E)+" meter of water ");
```

Scilab code Exa 10.17 Example

```
//Finding of Critical depth, velocity, Minimum
Specific energy
//Given
Q=18;
B=6;
q=Q/B;
g=9.81;
```

Scilab code Exa 10.22 Example

```
//Finding of Water surface Slope
//Given
sb=1/4000;
sf=.00004;
T=10;
B=10;
g=9.81;
y=1.5;
v=1;
//To Find
A=B*y;
z=(sb-sf)/(1-((q^2*T)/(g*A^3)));
disp("Water surface slope ="+string(z)+"no units")
```

Scilab code Exa 10.23 Example

```
1 //Finding of discharge at section -1
```

```
2 //Given
3 T=30;
4 dy=0.06;
5 dt=3600;
6 dx=1000;
7 q2=35;
8 //To Find
9 q1=q2+((T*dy)/dt)*dx;
10 disp("Discharge at section-1 ="+string(q1)+" m^3/sec");
```

Chapter 11

Laminar Flow

Scilab code Exa 11.1 Example

```
1 //Finding of Pressure Difference
2 //Given
3 mu=0.09;
4 spgr=0.8;
5 rho=800;
6 D=0.08;
7 L=15;
8 //To Find
9 A=(%pi/4)*D^2;
10 q=(50/10)*(1/rho);
11 v=q/A;
12 p=(128*mu*q*L)/(%pi*D^4);
13 p1=p/10000;
14 disp(" Pressure Difference ="+string(p1)+" N/cm^2");
```

Scilab code Exa 11.2 Example

```
//Finding of Pressure Drop
//Given
mu=0.15;
spgr=.9;
rho=900;
D=.055;
L=325;
R=D/2;
q=.0037;
//To Find
P=(128*mu*q*L)/(%pi*D^4);
p1=P/100;
x=(p1/L)*R;
x1=x*10^4;
disp("Pressure Drop ="+string(x1)+" N/m^2")
```

Scilab code Exa 11.3 Example

```
15 disp("Reynolds Number ="+string(R)+" N/m<sup>3</sup>");
```

Scilab code Exa 11.4 Example

```
//Finding of Power Required
//Given
L=100;
p=0.1;
mu=0.1;
mu=0.8;
//To Find
A=(%pi/4)*D^2;
v=q/A;
p=(32*q*mu*v*L)/D^2;
P=p/100;
disp("Power Required ="+string(P)+" KiloWatts");
```

Scilab code Exa 11.5 Example

```
10 dp1=-dp;
11 V=(B^2/(12*mu))*(-dp);
12 q=A*V;
13 x=(-dp*(B/2))
14 disp(" Pressuure Gradient ="+string(dp1)+" N/m^2 per meter");
15 disp(" Avg velocity ="+string(V)+" m/sec");
16 disp(" Shear at wall ="+string(x)+" N//m^2");
```

Scilab code Exa 11.6 Example

```
//Finding of Pressure Gradient , Shear at wall
//Given
D=15;
f=0.05;
r=4;
tau=0.01962;
//To Find
R=64/f;
dp=-(tau*(2/r));
dp1=-dp;
r1=D/2;
tau2=(tau*r1)/r;
disp("Pressure Gradient ="+string(dp1)+" N/m^3");
disp("Shear at wall ="+string(tau2)+" N/cm^2");
```

Chapter 12

Turbulant Flow

Scilab code Exa 12.1 Example

```
1 //Finding the type of boundary
2 //Given
3 ks=0.20*10^-3;
4 tau=7.848;
5 nu=0.01*10^-4;
6 rho=1000;
7 //To Find
8 v=sqrt(tau/rho);
9 R=(v*ks)/nu;
10 disp("R ="+string(R)+" no units");
11 if(R>4);
12 if(R<60);
13 disp("Flow is Transitional");</pre>
```

Scilab code Exa 12.4 Example

```
1 //Finding of Power Lost
2 //Given
3 D=0.6;
4 L=1000;
5 Q=0.6;
6 \text{ ks} = 0.003;
7 \text{ rho} = 1000;
8 g=9.81;
9 c = 50;
10 //To Find
11 //For Turbulant Flow
12 A = (\%pi/4) * D^2;
13 a=2*log(3.71*(D/ks));
14 b=sqrt(a);
15 v=Q/A;
16 f = 1/c;
17 Hf = (f*L*v^2)/(2*g*D);
18 P=(rho*g*Q*Hf)/1000;
19 disp(" Power Lost ="+string(P)+" Kilowatt");
```

Scilab code Exa 12.5 Example

```
1 //Finding of Friction Factor
2 //Given
3 D=0.1;
4 ks=0.0025;
5 v=2;
6 v1=10^-6;
7 //To Find
8 //case-1
9 R=(v*D)/v1;
10 fa=(1.785*log10(R))-1.424;
11 a=(fa)^2;
```

```
12 f1=1/a;
13 //case-2
14 fb=2*log10((3.71*D)/ks);
15 b=(fb)^2;
16 f2=1/b;
17 //Case-3
18 fc=-(2*log10((ks/3.71*D)+(5.186/R^(0.89))));
19 c=(fc)^2;
20 f3=1/c;
21 disp(" Friction Factor for");
22 disp("Smooth Turbulent flow ="+string(f1)+" no units ");
23 disp("Rough Turbulent flow ="+string(f2)+" no units ");
24 disp("Smooth and Rough Turbulent flow ="+string(f3)+" no units ");
```

Boundary Layer in Incompressible Flow

Scilab code Exa 13.2 Example

```
1 // Finding of Boundary layer thickness, Drag Force
2 //Given
3 x=1;
4 L=1.5;
5 b=1.2;
6 \text{ vs} = 0.25;
7 \text{ mu} = 0.001;
8 \text{ rho} = 1000;
9 x2=1.2;
10 L2=1.2;
11 //To Find
12 A = L * b;
13 R=(rho*vs*x)/mu;
14 t=(5.477*x)/sqrt(R);
15 tau = (0.365*mu*vs*sqrt(R))/x;
16 R1=(rho*vs*L)/mu;
17 Cd=1.46/sqrt(R1);
```

```
18 Fd=(1/2)*Cd*rho*(vs)^2*A;
19 disp("Boundary Layer Thickness ="+string(t)+" meter"
    );
20 disp("Drag Force ="+string(Fd)+" Newtons");
```

Scilab code Exa 13.3 Example

```
1 //Finding of //Finding of Boundary layer thickness,
       Drag Force
2 // Given
3 x=1.5;
4 L=2;
5 b=1.4;
6 \text{ vs} = 0.2;
7 \text{ mu} = 0.001;
8 \text{ rho} = 1000;
9 //To Find
10 A=L*b;
11 R=(rho*vs*x)/mu;
12 t=(4.64*x)/sqrt(R);
13 t1=t*1000;
14 tau = (0.323*mu*vs*sqrt(R))/x;
15 R1=(rho*vs*L)/mu;
16 \text{ Cd} = 1.292/\text{sqrt}(R);
17 Fd=(1/2)*Cd*rho*(vs)^2*(2*A);
18 disp("Co-efficient of Drag ="+string(Cd)+" no units"
      )
19 disp("Boundary Layer Thickness ="+string(t1)+"
      millimeter");
20 disp("Drag Force ="+string(Fd)+" Newtons");
```

Dimensional Analysis and Modelling Investigation

Scilab code Exa 14.6 Example

```
//Finding of velocity , discharge of prototype
//Given
qm=2;
vm=1.5;
lp=36;
lm=1;
//To Find
vp=sqrt(lp/lm)*vm;
qp=(lp/lm)^2*(vp/vm)*qm;
disp("Velocity of Prototype ="+string(vp)+" m/sec");
disp("Dischage of Prototype ="+string(qp)+" m^3/sec");
```

Scilab code Exa 14.7 Example

```
1 //Finding of Velocity of Prototype
2 // Given
3 \text{ vm} = 30;
4 \text{ lm} = 100;
5 lp=1;
6 Am = 0.018*10^-4;
7 Ap=0.012*10^-4;
8 rho1=1030;
9 \text{ rho} 2 = 1.24;
10 Fm = 60;
11 //To Find
12 vp = (Ap/Am) * (1p/lm) * vm;
13 Fp=Fm*(lm/lp)^2*(vp/vm)^2*(rho1/rho2);
14 disp("Velocity of Prototype ="+string(vp)+" m/sec");
15 disp("Resistance of Prototype ="+string(Fp)+" Newton
      ");
```

Scilab code Exa 14.8 Example

```
1 //Finding of Velocity of Model
2 //Given
3 vp=20;
4 lm=1;
5 lp=15;
6 rho1=1024;
7 rho2=1000;
8 Fp=600;
9 Fm=0.12;
10 //To Find
11 vm=sqrt(lm/lp)*vp;
12 Fp=Fm*(lm/lp)^2*(vp/vm)^2*(rho1/rho2);
```

```
13 disp("Velocity of Prototype ="+string(vm)+" m/sec");
14 disp("Resistance of Prototype ="+string(Fp)+" Newton
");
```

Scilab code Exa 14.9 Example

```
//Finding of discharge through Model
//Given
A=50;
B=10;
C=sqrt(10);
Qp=1.5;
//To Find
D=A*B; disp(D);
Qm=(D)*(1/C);
Qm1=Qp/Qm;
disp(" Discharge Through Model ="+string(Qm1)+" m^3/sec");
```

Scilab code Exa 14.10 Example

```
1 // Finding of "n" of the Model
2 // Given
3 Lm=1;
4 Lp=64;
5 Np=0.02;
6 // To Find
7 A=sqrt(Lp/Lm);
8 Nm=A*(Lm/Lp)^(2/3)*Np;
```

Scilab code Exa 14.11 Example

```
//Finding of Qm.Nm
//Given
Qp=3000;
Np=0.025;
L1=1000;
L2=100;
//To Find
B=sqrt(L2);
Qm=Qp/(L1*L2*B);
Nm=(Qp/Qm)*1/(((L1*L2*(L2)^(2/3))/Np)*B*sqrt(1/L1));
disp(" Qm ="+string(Qm)+" m^3/sec");
disp(" Nm ="+string(Nm)+" No units");
```

Scilab code Exa 14.12 Example

```
1 //Finding of (Vm/Vp) and (Np/Nm)
2 //Given
3 L1=1/5000;
4 L2=1/256;
5 Qr=1/(2*10^7);
6 //To Find
7 Vr=(1/L1)*(1/L2)*Qr;
8 Nr=Vr*((L2)^-(2/3)*(L2)^-(1/2)*(1/L1)^-(1/2));
9 disp("Vm/Vp ="+string(Vr)+" m/sec");
```

```
10 disp("Np/Nm ="+string(Nr)+" No units");
```

Scilab code Exa 14.13 Example

```
//Finding of Qm,Lm,Hm
//Given
Lp=16;
Lm=1;
Hp=4;
L1=150;
H1=7.2;
H2=16;
//To Find
Hm=H1*(Lm/Lp);
Im=L1*(Lm/Lp);
Qm=(Lp/Lm)^2*(Hp/H2)^(1/2);
disp("Lm ="+string(Hm)+" meter");
disp("Qm ="+string(Qm)+" m^3/sec");
```

Compressible Flow

Scilab code Exa 15.1 Example

```
1 //Finding of Velocities
2 //Given
3 T1 = 293;
4 T2 = 293;
5 P1 = 40;
6 P2=35;
7 R = 287;
8 A1=30*10^-4;
9 A2=15*10^-4;
10 Q = 0.15;
11 //To Find
12 rho1=P1/(R*T1);
13 V1=Q/(A1*rho1*10000);
14 \text{ rho2=P2/(R*T2)};
15 V2=Q/(A2*rho2*10000);
16 disp("Velocity at Section -1 = "+string(V1) + "m/sec");
17 disp("Velocity at Section -2 = "+string(V2) + "m/sec");
```

Scilab code Exa 15.2 Example

```
1 //Finding of Speed of Sound waves
2 //Given
3 k=1.4;
4 R=287;
5 T=293;
6 //To Find
7 C=sqrt(k*R*T);
8 C1=C*(18/5);
9 disp("Speed of Sound waves ="+string(C1)+" Km/hr");
```

Scilab code Exa 15.3 Example

```
1 //Finding of Mach Number
2 //Given
3 k=1.4;
4 R=287;
5 T=288;
6 V=900;
7 //To Find
8 C=sqrt(k*R*T);
9 C1=C*(18/5);
10 disp("Speed of Sound waves ="+string(C1)+" Km/hr");
11 M=V/C1;
12 disp("Mach Number = "+string(M)+" No units");
```

Scilab code Exa 15.4 Example

```
1 //Finding of Speed
2 //Given
3 k=1.4;
4 R=287;
5 T=233;
6 M=1.8;
7 //To Find
8 C=sqrt(k*R*T);
9 C1=C*(18/5);
10 V=C1*M;
11 disp("Speed of Aeroplane ="+string(V)+" Km/hr");
```

Scilab code Exa 15.5 Example

```
//Finding of Velocity of Projectile
//Given
theta=30;
k=1.4;
R=287;
T=268;
//To Find
Ma=sin(theta);
C=sqrt(k*R*T);
V=Ma*C;
disp("Velocity of Projectile ="+string(V)+" m/sec");
```

Scilab code Exa 15.6 Example

```
//Finding of Mach Number and Mach Angle
//Given
k=1.4;
R=287;
T=263;
V=1200;
//To Find
C=sqrt(k*R*T);
Ma=V/C;
alpha=asind(1/Ma);
disp("Mach Number ="+string(Ma)+" No units");
disp("Mach Angle ="+string(alpha)+" Degrees");
```

Scilab code Exa 15.7 Example

```
1 //Finding of Mach's Number
2 //Given
3 k=1.4;
4 R=287;
5 T=273;
6 T1=273-15;
7 v=900;
8 p1=8*10^4;
9 //To Find
10 V=v*(5/18);
11 C=sqrt(k*R*T);
```

```
12 Ma=V/C;
13 ps=p1*((1+((k-1)/2)*Ma^2)^(k/(k-1)));
14 Ps=ps*10^-4;
15 Ts=T1*((1+((k-1)/2)*Ma^2));
16 rho=ps/(R*T);
17 t=Ts-T;
18 disp("Mach Number ="+string(Ma)+" No Units");
19 disp("Density ="+string(rho)+" Kg/m^3");
20 disp("Pressure ="+string(Ps)+" N/cm^2");
21 disp("Temperature ="+string(t)+" celcius")
```

Scilab code Exa 15.8 Example

```
1 //Finding of velocity at the outlet of a nozzle
2 //Given
3 k=1.4;
4 P1=294.3;
5 P2=137.34;
6 T1=303;
7 R=287;
8 //To Find
9 rho=P1/(R*T1);
10 V2=sqrt((2*k/(k-1))*(P1/rho)*(1-(P2/P1)^((k-1)/k)));
11 disp("velocity at the outlet of a nozzle ="+string(V2)+" m/sec");
```

Scilab code Exa 15.9 Example

```
1 //Finding of Mass Flow Rate
```

```
2 // Given
     3 D1 = 0.4;
     4 D2=0.2;
     5 P1=27.468*10^4;
     6 P2=25.506*10^4;
     7 T1 = 293;
    8 \text{ k=1.4};
    9 R = 287;
10 //To Find
11 A1=(\%pi/4)*D1^2;
12 A2 = (\%pi/4) *D2^2;
13 rho1=P1/(R*T1);
14 rho2=((rho1^(1.4)*P2)/P1)^(1/1.4);
15 m=rho2*A2*sqrt((2*k/(k-1))*(P1/rho1)*(1-(P2/P1)^((k-1))*(P1/rho1)*(1-(P2/P1))^((k-1))*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/rho1)*(P1/r
                                       -1/k)))/(1-(P2/P1)^(2/k))*(A2/A1)^2);
16 disp("Mass Flow Rate ="+string(m)+" Kg/sec");
```

Flow of Fluid around submerged objects

Scilab code Exa 16.1 Example

```
1 // Finding of Lift, Drag, Power Required
2 // Given
3 \quad A=4;
4 V = 40*(5/18);
5 Cd1=0.8;
6 Cd2=0.2;
7 \text{ rho} = 1.25;
8 //To Find
9 FL=Cd1*A*rho*((V^2)/2);
10 Fd=Cd2*A*rho*((V^2)/2);
11 F=sqrt(FL^2+Fd^2);
12 P=Fd*V;
13 P1=P/1000;
14 theta=(FL/Fd);
15 theta1=(tan(theta))^-1;
16 disp("Lift Force ="+string(FL)+" Newton");
17 disp("Power Required ="+string(P1)+" Kilo Watts");
```

```
18 disp("Drag Force ="+string(Fd)+" Newton");
19 disp("Resultant Force ="+string(F)+" Newton");
20 disp("Angle of Flow Direction ="+string(theta1)+" degrees");
```

Scilab code Exa 16.3 Example

```
1 //Finding of Diameter
2 //Given
3 W=80*9.81;
4 Fd=80*9.81;
5 V=25;
6 Cd=0.5;
7 rho=1.25;
8 //To Find
9 D=(2*Fd)/(Cd*rho*(V^2)*(4/%pi));
10 D1=sqrt(D);
11 disp("Diameter ="+string(D1)+" meter");
```

Scilab code Exa 16.4 Example

```
1 //Finding of Coefficient of Lift ,Drag
2 //Given
3 A=25;
4 P=588.6*(7/10);
5 FL=19620;
6 V=200*(5/18);
7 rho=1000;
8 FD=7416;
```

```
9  //To Find
10  FD=(P*1000)/(V);
11  Cd=(FD*2)/(rho*A*(V^2));
12  Cl=(FL*2)/(rho*A*(V^2));
13  disp("Coefficient Of Lift ="+string(Cl)+" No Units");
14  disp("Coefficient Of Drag ="+string(Cd)+" No Units");
```

Scilab code Exa 16.5 Example

```
//Finding of Weight
//Given
D=0.05;
v=1.5*10^-4;
V=10;
rho=1.25;
Cd=0.5;
//TO Find
A=(%pi/4)*D^2;
Fd=Cd*rho*A*((V^2)/2);
disp("Weight of the ball ="+string(Fd)+" Newtons");
```

Scilab code Exa 16.6 Example

```
4 D=2;
5 A = 2 * 10;
6 R=D/2;
7 N = 300;
8 L=10;
9 Cd = 0.65;
10 \text{ Cl} = 3.4;
11 rho=1000;
12 //To find
13 Vp = (\%pi*D*N)/60;
14 // case 1
15 C=2*(\%pi)*R*Vp;
16 disp("Circulation ="+string(C)+" m^2/sce");
17 // case 2
18 Fl=rho*V*L*C;
19 disp("Theoretical Lift ="+string(F1)+" Newtons");
20 // case 3
21 si=C/(4*(\%pi)*V*R);
22 \text{ theta1} = (180 + si);
23 theta2=(360-si);
24 disp("theta ="+string(theta1)+" Degrees");
25 disp("theta ="+string(theta2)+" Degrees");
\frac{26}{\cos 2} = \frac{1}{\cos 2}
27 FL=0.5*rho*A*V^2*C1;
28 disp("Lift Force ="+string(FL)+" Newtons");
29 / \cos 4
30 FD=0.5*rho*A*(V^2)*Cd;
31 disp("Drag Force ="+string(FD)+" Newtons");
32 // case 5
33 F=sqrt((FL^2)+(FD^2));
34 disp("Resultant Force ="+string(F)+" Newtons");
35 // case 6
36 theta=1/tan(FL/FD);
37 disp("Direction ="+string(theta)+" Degrees");
38 // case 7
39 C1 = 4*(\%pi)*V*R;
40 Vp=C1/(2*(%pi)*R);
41 N=(Vp*60)/(2*(%pi));
```

 $\operatorname{disp}("\operatorname{Speed} = "+\operatorname{string}(N) + "\operatorname{rpm}");$

Impact of Jets

Scilab code Exa 17.1 Example

```
1 //Finding of Force exerted
2 //Given
3 rho=1000;
4 d=0.04;
5 V=25;
6 //To Find
7 A=(%pi/4)*d^2;
8 P=rho*A*V^2;
9 disp("Force Exerted ="+string(P)+" Newtons");
```

Scilab code Exa 17.2 Example

```
1 //Finding of Discharge
2 //Given
3 rho=1000;
```

```
4 d=0.05;
5 P=1226.25;
6 //To Find
7 A=(%pi/4)*d^2;
8 V=P/(rho*A);
9 V1=sqrt(V);
10 Q=A*V1;
11 disp("Discharge ="+string(Q)+" m^3/sec");
```

Scilab code Exa 17.3 Example

```
1 //Finding of Force Exerted
2 //Given
3 rho=1000;
4 d=0.15;
5 V=25;
6 //To Find
7 A=(%pi/4)*d^2;
8 P=rho*A*V^2*sin(%pi/6);
9 disp("Force Exerted ="+string(P)+" Newtons");
```

Scilab code Exa 17.4 Example

```
1 //Finding of Force Exerted
2 //Given
3 rho=1000;
4 d=0.04;
5 V=35;
6 theta=180-125;
```

```
7 //To FInd
8 A=(%pi/4)*d^2;
9 Fx=2*rho*A*V^2;
10 disp("Force Exerted ="+string(Fx)+" Newtons");
```

Scilab code Exa 17.5 Example

```
//Finding of Force Exerted
//Given
rho=1000;
d=0.07;
V=25;
theta=20;
theta2=15;
//To Find
A=(%pi/4)*d^2
Fx=rho*A*V^2*(sin(%pi/9)+cos(%pi/12));
Fy=rho*A*V^2*(sin(%pi/9)-sin(%pi/12));
disp("Fx ="+string(Fx)+" Newtons");
disp("Fy ="+string(Fy)+" Newtons");
```

Scilab code Exa 17.6 Example

```
1 // Finding of inclination
2 rho=1000;
3 d=0.03;
4 V=16;
5 w=125;
6 // To Find
```

```
7 A=(%pi/4)*d^2;
8 P=rho*A*V^2;
9 Q=P*(16/32);
10 theta=asin((rho*A*V^2)/w);
11 disp("Inclination ="+string(theta)+" degrees");
```

Scilab code Exa 17.7 Example

```
//Finding of Vane Angle
//Given
V=40;
u=20;
alpha=30;
b=90;
u1=20;
//TO Find
theta=atand((V*sin(%pi/6))/((V*cos(%pi/6))-u));
V=((V*sin(%pi/6))/(sin(theta)));
pi=acosd(u1/Vr);
disp("Vane angle at Inlet ="+string(theta)+" Degrees ");
disp("Vane angle at Outlet ="+string(pi)+" Degrees");
```

Scilab code Exa 17.11 Example

```
1 //Finding of Propelling Force, Work Done , Efficiency
2 //Given
3 Cv=0.97;
```

```
4 g=9.81;
5 H=6;
6 rho=1000;
7 u=4;
8 d=0.15;
9 //To Find
10 V=Cv*sqrt(2*g*H);
11 A=(%pi/4)*d^2;
12 P=rho*A*(V+u)*V;
13 W=P*u;
14 E=(2*u*V)/(u+V)^2;
15 E1=E*100;
16 disp("Propelling Force ="+string(P)+" Newtons");
17 disp("Work Done ="+string(W)+" N-m");
18 disp("Efficiency ="+string(E1)+" Percentage");
```

Scilab code Exa 17.12 Example

```
//Finding of Propelling Force, Efficiency
//Given
u=35*(5/18);
V=25;
a=0.04;
rho=1000;
//To Find
P=rho*a*(V+u)*V;
E=(2*u)/(V+(2*u));
U=1=E*100;
disp("Propelling Force ="+string(P)+" Newtons");
disp("Efficiency ="+string(E1)+" No Units");
```

TurbomachinesHydraulic Turbines

Scilab code Exa 18.1 Example

```
1 //Finding of Power delivered, Efficiency
2 //Given
3 u=35;
4 Q = 1;
5 \text{ theta=10};
6 \text{ H} = 270;
7 Cv = 0.98;
8 g=9.81;
9 \text{ rho} = 1000;
10 //To Find
11 V=Cv*sqrt(2*g*H);
12 Vr = V - u;
13 Vw1 = Vr * cos(\%pi/18) - u;
14 W=rho*(Q*(V+Vw1)*u);
15 P=W/1000;
16 E=(2*(V+Vw1)*u)/V^2;
17 E1=E*100;
```

Scilab code Exa 18.2 Example

```
1 //Finding of D,d number of jets
2 // Given
3 E=0.86;
4 Dr = 10;
5 Cv = 0.98;
6 a=0.45;
7 Sp=735.75*1000;
8 H = 200;
9 g=9.81;
10 N = 800;
11 rho=1000;
12 //To Find
13 V = Cv * sqrt (2*g*H);
14 u=V*a;
15 D = (60*u)/(\%pi*N);
16 d = (D/10);
17 Q1=(\%pi/4)*(d^2)*V;
18 Q2=1/((E*rho*g*H)/Sp);
19 j=Q2/Q1;disp(Q2);
20 disp("D= "+string(D)+" meter");
21 disp("d= "+string(d)+" meter");
22 disp("Number of Jets ="+string(j)+" nos");
```

Scilab code Exa 18.3 Example

```
1 // Finding of Power , Efficiency
2 // Given
3 D=0.8;
4 N = 1000;
5 a=15;
6 \quad Q = 0.15;
7 Cv = 0.98;
8 \text{ rho} = 1000,
9 g=9.81;
10 H = 400;
11 //To Find
12 u = (\%pi*D*N)/60;
13 V=Cv*sqrt(2*g*H);
14 P=(rho*g*Q*H)/1000;
15 E=2*(V-u)*(1+\cos(\%pi/12))*u
16 E1 = (E/V^2) *100;
17 disp("Power available ="+string(P)+" Kilo watts");
18 disp("Hydraulic efficiency ="+string(E1)+"
      percentage");
```

Scilab code Exa 18.4 Example

```
1 //Finding of Power delivered , Efficiency
2 //Given
3 Q=1.8;
4 theta=12;
5 Hg=450;
6 H=300;
7 hf=Hg/3;
8 Cv=0.98;
9 g=9.81;
```

```
10  a=0.46;
11  rho=1000;
12  //To Find
13  V=Cv*sqrt(2*g*H);
14  u=a*V;
15  Vr=V-u; disp(V);
16  Vw1=Vr*cos(%pi/15)-u;
17  W=rho*(Q*(V+Vw1)*u);
18  P=W/1000; disp(V);
19  E=(2*(V+Vw1)*u)/V^2;
20  E1=E*100;
21  disp("Power delivered ="+string(P)+" Kilo watts");
22  disp("Hydraulic Efficiency ="+string(E1)+" percentage");
```

Scilab code Exa 18.5 Example

```
1 // Finding of Power Developed , Force Exerted
2 //Given
3 d=0.13;
4 a=15;
5 \text{ H} = 400;
6 Cv = 0.97;
7 b=0.45;
8 g=9.81;
9 \text{ rho} = 1000;
10 //To Find
11 A = (\%pi/4)*d^2;
12 \ u=b*sqrt(2*g*H);
13 V=0.97*sqrt(2*g*H);
14 Vr1=0.8*(V-u);
15 Vw1=u-(Vr1*cos(\%pi/15));
16 Fx=rho*A*V*(V-Vw1);
```

```
17 P=(Fx*u)/1000;
18 disp("Force Exerted ="+string(Fx)+" Newton");
19 disp("Power developed ="+string(P)+" Kilo Watts");
```

Scilab code Exa 18.6 Example

```
//Finding of Discharge, Width
//Given
Discharge, Width
Discharge
Discharge, Width

Discharge, Width
Discharge, Width

Discharge, Width

Provided High Strain of Strain of Strain

Misser of Discharge, Width

Discharge, Width
```

Scilab code Exa 18.7 Example

```
1 //Finding of Discharge, Power developed, Efficiency
2 //Given
3 N=500;
4 H=100;
5 D=1;
6 A=35;
7 a=15;
8 b=60;
9 Vw1=0;
```

```
10 g=9.81;
11 rho=1000;
12 //To Find
13 u=(%pi*D*N)/60;
14 Vw=(tan(%pi/3)*u)/1.464;
15 Vf=Vw*tan(%pi/12);
16 Q=A*Vf;
17 P=(rho*g*Vw*u)/1000;
18 E=((Vw*u)/(g*H))*100;
19 disp("Discharge ="+string(Q)+" m^3/sec");
20 disp("Power Developed ="+string(P)+" Kilo Watts");
21 disp("Efficiency ="+string(E)+" Percentage");
```

Scilab code Exa 18.8 Example

```
1 // Finding of Power developed, Outlet Vane Angle,
      Speed
2 //Given
3 H = 100;
4 D=.675;
5 D1=0.5
6 B=0.15;
7 B1 = .225;
8 g=9.81;
9 \text{ rho} = 1000;
10 Vf = 3;
11 Vw = 3;
12 //To Find
13 u=Vf/tan(%pi/15);
14 N=1/((\%pi*D)/(u*60));
15 u1=u*(D1/D); disp(Vf);
16 Vf1 = (D*B*Vf)/(0.15*B1);
17 z=atand(Vf1/u1);
18 P = (rho * \%pi * B * D1 * Vf * Vw * u) / 10000;
19 disp("Speed ="+string(N)+" rpm");
```

```
20 disp("Power Developed ="+string(P)+" Kilo Watts");
21 disp("Outlet Vane Angle ="+string(z)+" degrees");
```

Scilab code Exa 18.9 Example

```
1 //Finding of Work Done ,Vane Angles
2 // Given
3 D=0.5;
4 D1=1;
5 \text{ Vw1=0};
6 \text{ Vf} = 3;
7 \text{ Vf1}=3;
8 g=9.81;
9 \text{ rho} = 1000;
10 N = 250;
11 //To Find
12 u = (\%pi*D*N)/60;
13 u1 = (\%pi*D1*N)/60;
14 Vw=Vf/tan(%pi/12);
15 a=atand(Vf/(Vw-u));
16 b=atand(Vf1/u1);
17 W=(Vw*u)/g;
18 E=(W/10);
19 disp("Inlet Vane Angle ="+string(a)+" degrees");
20 disp("Outlet Vane Angle ="+string(b)+" degrees");
21 disp("Work Done ="+string(W)+" N-m/N");
22 disp("Efficiency ="+string(E)+" Percentage");
```

Scilab code Exa 18.10 Example

```
1 // Finding of Vane Angle , Head , Velocity , Efficiency
2 //Given
3 u=12;
4 D=0.8;
5 D1=1;
6 Vw1=0;
7 Hout=1;
8 \ Vw = 12;
9 \text{ Vf} = 3;
10 g=9.81;
11 //To Find
12 a=atand(Vf/Vw);
13 V=sqrt(Vw^2+Vf^2);
14 u1 = (D1/D) * u;
15 V1=u1*tan(\%pi/9);
16 H=((V1^2/(2*g))+1)+((Vw*u)/g);
17 E=((Vw*u)/(g*H))*100;
18 disp("Absolute Velocity ="+string(V)+" m/sec");
19 disp("Vane Angle ="+string(a)+" degrees");
20 disp("Efficiency ="+string(E)+" Percentage");
```

Scilab code Exa 18.11 Example

```
1 //Finding of Angle ,Diameter ,Width
2 //Given
3 E=0.75;
4 P=147.15;
5 H=8;
6 N=200;
7 Vw1=0;
8 Cv=0.3;
9 g=9.81;
10 rho=1000;
```

```
//To Find
u=Cv*sqrt(2*g*H);
Vf=0.96*sqrt(2*g*H);
E1=0.8;
Vw=(E1*g*H)/u;
a=atand(Vf/Vw);
b=atand(Vf/(Vw-u));
P=(60*u)/(%pi*N);
Q=(E1*P*1000)/(E*rho*Vw*u);
B=Q/(%pi*D*Vf);
disp("Diameter ="+string(D)+" meter");
disp("Inlet angle ="+string(a)+" degrees");
disp("Outlet angle ="+string(b)+" degrees");
disp("Width ="+string(B)+" meter");
```

Scilab code Exa 18.14 Example

```
//Finding of Pressure Head , Efficiency
//Given
Di=0.8;
Do=1.2;
V2=3;
L=8;
y=2;
Hs=6;
g=9.81;
//To Find
Q=(%pi/4)*Do^2*V2;
V1=Q/((%pi/4)*Di^2);
a=(V1^2/(2*g))-(V2^2/(2*g));
b=0.25*(V2^2/(2*g));
```

```
15  P=10.3-Hs-a-b;
16  E=(a-b)/(V1^2/(2*g));
17  E1=E*100; disp(V1);
18  disp("Pressure Head ="+string(P)+" meter of water");
19  disp("Efficiency ="+string(E1)+" Percentage");
```

Scilab code Exa 18.15 Example

```
//Finding of Speed ,Power developed
//Given
P1=8000;
In N1=90;
In H1=25;
In H2=15;
In H2=15
```

Scilab code Exa 18.16 Example

```
1 //Finding of Specific speed, Power generated
2 //Given
3 H=30;
4 N=300;
5 Q=10;
6 E=0.9;
7 g=9.81;
```

Centrifugal Pumps

Scilab code Exa 19.1 Example

```
1 //Finding of workdone
2 //Given
3 D1 = .6;
4 D=0.3;
5 a=20;
6 b=30;
7 N = 1000;
8 g=9.81;
9 \ Vw = 0;
10 rho=1000;
11 //To Find
12 u = (\%pi*D*N)/60;
13 u1 = (\%pi*D1*N)/60;
14 Vf=u*tan(\%pi/9);
15 Vw1 = (u1*tan(\%pi/6)-Vf)/tan(\%pi/6);
16 W = (Vw1 * u1)/g;
17 disp("Work Done ="+string(W)+" N-m/N");
```

Scilab code Exa 19.2 Example

```
1 //Finding of vane angle , Work done , Efficiency
2 //Given
3 D1=0.6;
4 D=0.3;
5 a=30;
6 b=0.05;
7 N = 1200;
8 g=9.81;
9 Hm = 75;
10 Vf = 3;
11 rho=1000;
12 B1=1;
13 //To Find
14 u = (\%pi*D*N)/60;
15 u1 = (\%pi*D1*N)/60;
16 \ Q = \%pi*D1*B1*Vf;
17 a=atand(Vf/u); disp(u1);
18 Vw1=((u1*tan(%pi/6))-Vf)/tan(%pi/6);
19 W = (rho*g*Q*u1*Vw1)/g;
20 \text{ W1=W/1000};
21 E=((g*Hm)/(u1*Vw1))*100;
22 disp("Vane Angle ="+string(a)+" degrees");
23 disp("Work Done ="+string(W1)+" KW/sec");
24 disp("Manometric Efficiency ="+string(E)+"
      Percentage");
```

Scilab code Exa 19.3 Example

```
//Finding of Workdone
//Given
D1=0.3;
D=0.15;
a=30;
b=25;
N=1450;
g=9.81;
//To Find
u=(%pi*D1*N)/60;
u1=(%pi*D*N)/60;
Vf=u*tan(%pi/6);
Vy1=(-u1*tan(%pi/7)+Vf)/tan(%pi/7);
W=(Vw1*u1)/g;
disp("Work Done ="+string(W)+" Nm/N");
```

Scilab code Exa 19.4 Example

```
1 //Finding of Vane Angle
2 //Given
3 N=1450;
4 Hm=23;
5 D1=0.25;
6 B1=0.05;
7 Emano=0.75;
8 g=9.81;
9 Q=1.25;
10 //To Find
11 u=(%pi*D1*N)/60;
12 Vw1=(Emano*u)/(g*Hm);
13 z=u-Vw1;
```

```
14  Vf1=z*tan(%pi/6);
15  Vf1=Q/(%pi*D1*B1);
16  a=Vf1/(u-Vw1);
17  b=atand(a);
18  disp("Vane Angle ="+string(b)+" degrees");
```

Scilab code Exa 19.5 Example

```
1 //Finding of Discharge
2 // Given
3 N = 1000;
4 Hm = 15;
5 D1 = 0.3;
6 B1 = 0.05;
7 a=30;
8 \quad \text{Emano} = 0.92;
9 g=9.81;
10 //To Find
11 u = (\%pi*D1*N)/60;
12 Vw1 = (Emano*u)/(g*Hm);
13 z=u-Vw1;
14 Vf1=z*tan(%pi/6);
15 Q=%pi*D1*B1*Vf1;
16 disp("Discharge ="+string(Q)+" m^3/sec");
```

Scilab code Exa 19.6 Example

```
1 // Finding of Power Required2 // Given
```

```
3 Q=0.03;
4 H=18.25;
5 L=90;
6 dp=0.1;
7 E=0.75;
8 f=0.04;
9 g=9.81;
10 rho=1000;
11 //Given
12 V=Q/((%pi/4)*dp^2);
13 loss=(f*L*V^2)/(2*g*dp);
14 a=V^2/(2*g);
15 Hm=H+loss+a;
16 SP=(rho*g*Q*Hm)/(E*1000);
17 disp("Power required ="+string(SP)+" Kilowatts");
```

Scilab code Exa 19.7 Example

```
1 //Finding of Minimum Speed
2 //Given
3 Hm=7.5;
4 D1=1;
5 D=0.5;
6 g=9.81;
7 //To Find
8 u=(4/3)*(Hm*2*g);
9 u1=sqrt(u);
10 N=(60*u1)/(4*%pi);
11 disp(" u="+string(u1)+" m/sec");
12 disp("Minimum Speed ="+string(N)+" rpm");
```

Scilab code Exa 19.8 Example

```
//Finding of Mininmum Speed
//Given
D=0.3;
D=0.3;
Indicate the proof of the pr
```

Scilab code Exa 19.9 Example

```
1 //Finding of Manometric head
2 //Given
3 D1=0.4;
4 B1=0.025;
5 Q=0.06;
6 N=1000;
7 a=30;
8 g=9.81;
9 Emano=0.8;
10 //To Find
11 u=(%pi*D1*N)/60;
```

```
12  Vf = Q / (%pi * D1 * B1);
13  Vw1 = (-Vf * tan (%pi / 6) + u);
14  H = (Vw1 * u) / g;
15  Hm = (Emano * u * Vw1) / g;
16  Hm1 = 2 * Hm;
17  disp("Head Developed =" + string(Hm1) + " meter");
```

Scilab code Exa 19.10 Example

```
1 //Finding of Head, Shaft Power
2 // Given
3 n=3;
4 D1=0.4;
5 B1=0.025;
6 a=30;
7 \quad A = 0.15;
8 \quad A1 = 0.0267;
9 Emano = 0.85;
10 E=0.75;
11 \quad Q=0.06;
12 N = 1200;
13 g=9.81;
14 rho=1000;
15 //To Find
16 V=Q/A1; disp(V);
17 u = (\%pi*D1*N)/60;
18 Vw1 = (u*tan(\%pi/6) - V)/tan(\%pi/6);
19 Hm = (Emano * u * Vw1)/g;
20 \text{Hm1} = 3 * \text{Hm};
21 SP=(rho*g*Q*Hm1)/(1000*E);
22 disp("Head ="+string(Hm1)+" meter");
23 disp("Shaft Power ="+string(SP)+" Kilo watts");
```

Scilab code Exa 19.11 Example

```
//Finding of Number of pumps
//Given
H=156;
N=1000;
Ns=20;
Q=0.15;
//To Find
Hm=(N*sqrt(Q))/Ns;
Hm1=(Hm)^(4/3);
pumps=(H/Hm1);
disp("Number of Pumps ="+string(pumps)+" Nos");
```

Scilab code Exa 19.12 Example

```
1 //Finding of Head Discharge , Ratio of Power
2 //Given
3 Q1=0.035;
4 H1=25;
5 D1=0.5;
6 N1=1200;
7 D2=0.3;
8 N2=2000;
9 //To Find
10 H=(D2*N2*sqrt(H1))/(D1*N1);
11 H2=H^2;
12 Q=(Q1*D2^3*N2)/(D1^3*N1);
```

```
13 Pr=(D1/D2)^5*(N1/N2)^3;
14 disp("Head ="+string(H2)+" meter");
15 disp("Discharge ="+string(Q)+" m^3/sec");
16 disp("Power Ratio ="+string(Pr)+" No Units");
```

Chapter 20

Reciprocating Pumps

Scilab code Exa 20.1 Example

```
1 // Finding of theoretical discharge, Coefficient of
      Discharge , Slip
2 // Given
3 N = 30;
4 Qac=0.012;
5 d=0.25;
6 L = 0.5;
7 //To Find
8 A = (\%pi/4)*d^2;
9 Qth = (A*L*N)/60;
10 S=Qth-Qac;
11 Cd=Qac/Qth;
12 S1 = ((Qth - Qac)/Qth) *100;
13 disp("Theoretical Discharge ="+string(Qth)+" m^3/sec
14 disp("Co efficient of Discharge ="+string(Cd)+" No
      Units");
15 disp("Slip ="+string(S)+" m^3/\sec");
16 disp("Percentage Slip ="+string(S1)+" No Units");
```

Scilab code Exa 20.2 Example

```
1 //Finding of Slip ,Power required
2 // Given
3 N = 50;
4 Qac=0.015;
5 L=0.4;
6 D=0.25;
7 \text{ hd} = 25;
8 \text{ hs}=4;
9 \text{ rho} = 1000;
10 g=9.81;
11 //To Find
12 A = (\%pi/4) *D^2;
13 Qth=(2*A*L*N)/60;
14 S=Qth-Qac;
15 P=((2*rho*g*A*L*N)*(hs+hd))/60000;
16 disp("Slip ="+string(S)+" m^3.sec");
17 disp("Power required ="+string(P)+" Kilo Watts");
```

Scilab code Exa 20.3 Example

```
1 //Finding of Pressure Head
2 //Given
3 D=0.15;
4 L=0.3;
5 hs=4;
```

```
6 N=40;
7 l=5;
8 ds=0.1;
9 p=10.3;
10 g=9.81;
11 //To Find
12 A=(%pi/4)*D^2;
13 a=(%pi/4)*(ds)^2;
14 r=L/2;
15 Z=(2*%pi*N)/60;
16 ha=(1/g)*(A/a)*r*Z^2;
17 disp("Pressure Head ="+string(ha)+" meter");
```

Scilab code Exa 20.4 Example

```
1 //Finding of Qth ,Pth ,ha
2 // Given
3 D=0.15;
4 L=0.3;
5 N = 50;
6 \text{ H=} 25;
7 1d=22;
8 dd=0.1;
9 Qac=0.0042;
10 rho=1000;
11 g=9.81;
12 //To Find
13 A = (\%pi/4)*D^2;
14 a = (\%pi/4)*(dd)^2;
15 Z = (2 * \%pi * N) / 60;
16 r=L/2;
17 Qth = (A*L*N)/60;
18 Pth=(rho*g*Qth*H)/1000;
```

```
19 S1=((Qth-Qac)/Qth)*100;
20 ha=(ld/g)*(A/a)*r*Z^2;
21 disp("Qth ="+string(Qth)+" m^3/sec");
22 disp("Pth ="+string(Pth)+" Kilo Watts");
23 disp("ha ="+string(ha)+" meter");
```

Scilab code Exa 20.5 Example

```
1 //Finding of Pmax , Pressure at begining and end of
      Stroke
2 // Given
3 D=0.2;
4 L=0.4;
51=6;
6 \, ds = 0.1;
7 \text{ hs} = 3.5;
8 H=10.3;
9 N = 35;
10 g=9.81;
11 //To Find
12 A = (\%pi/4) * D^2;
13 a=(\%pi/4)*(ds)^2;
14 r=L/2;
15 Z=(2*\%pi*N)/60;
16 Pmax=(1/g)*(A/a)*r*Z^2;
17 P=hs+Pmax;
18 P1=H-P;
19 disp("Pmax ="+string(Pmax)+" meter");
20 disp("Pressure at Begining ="+string(P)+" meter");
21 disp("Pressure at End ="+string(P1)+" meter");
```

Scilab code Exa 20.6 Example

```
1 // Finding of Maximum Speed
2 // Given
3 D=0.125;
4 L=0.3;
5 \text{ hs} = 4.5;
6 \, ds = 0.075;
71=6.8;
8 h=2.6;
9 g=9.81;
10 H = 10.3;
11 //TO Find
12 A = (\%pi/4)*D^2;
13 a=(\%pi/4)*(ds)^2;
14 r=L/2;
15 \text{ ha=H-h-hs};
16 Z=(ha*g*a)/(1*A*r);
17 Z1=sqrt(Z);
18 N = (Z1*60)/(2*\%pi);
19 disp("Maximum Speed ="+string(N)+" rpm");
```

Chapter 21

Miscellaneous Fluid

Scilab code Exa 21.2 Example

```
1 // Finding of Force, Power, strokes
2 //Given
3 d1=0.3;
4 d2=0.15;
5 W = 600;
6 d=1.2;
7 s=0.25;
8 //To Find
9 A1=(\%pi/4)*d1^2;
10 A2 = (\%pi/4)*d2^2;
11 F = (A1/A2) *W;
12 W1=W*(d/1200);
13 P=W1/1000;
14 S=(A1/A2)*(d/s);
15 disp("Force ="+string(F)+" Newtons");
16 disp("Power required ="+string(P)+" Kilo Watts");
17 disp("Number of strokes ="+string(S)+" No units");
```

Scilab code Exa 21.3 Example

```
1 //Finding of Efficiency
2 //Given
3 W=0.03;
4 \text{ rho} = 1000;
5 g=9.81;
6 \quad w = 0.003;
7 \text{ H1}=4;
8 \text{ H2=18};
9 //To Find
10 W1 = rho * g * W;
11 w1=rho*g*w;
12 E1=(w1*H2)/(W1*H1)*100;
13 E2=(w1*(H2-H1))/((W1-w1)*H1)*100;
14 disp("D Aubuissons Efficiency ="+string(E1)+"
      percentage");
15 disp("Rankine Efficiency ="+string(E2)+" percentage"
      );
```

Scilab code Exa 21.4 Example

```
1 //Finding of Power, Working ,Idle Period
2 //Given
3 H=12;
4 t=100;
5 W=98100;
6 v=0.6;
```

```
7 w=981*12;
8 //To Find
9 P=w/1000;
10 T1=H/v;
11 T2=100-T1;
12 disp("Power Required ="+string(P)+" Kilo watt");
13 disp("Time for working ="+string(T1)+" seconds");
14 disp("Idle Time ="+string(T2)+" seconds");
```

Scilab code Exa 21.7 Example

```
1 //Finding of Volume ,Diameter
2 //Given
3 L=44145;
4 H=10;
5 E=0.55;
6 P=490.5*10^4;
7 //To Find
8 W=L*H;
9 F=P*(%pi/4);
10 Energy=F*5;
11 d=W/(Energy*E);
12 d1=d^(.33);
13 V=((%pi/4)*d1^2)*(5*d1);
14 disp("Diameter ="+string(d1)+" meter");
15 disp("Volume ="+string(V)+" m^3");
```

Scilab code Exa 21.9 Example

```
1 //Finding of Pressure intensity
2 //Given
3 P=17;
4 D=12;
5 d=5;
6 //To Find
7 A=(%pi/4)*D^2;
8 a=(%pi/4)*d^2;
9 p=(A/a)*P;
10 disp("Pressure Intensity ="+string(p)+" N/cm^2");
```

Scilab code Exa 21.10 Example

```
1 //Finding of Diameter
2 //Given
3 D=25;
4 P1=25;
5 P2=120;
6 //To Find
7 A=(%pi/4)*D^2;
8 d=(A*P1)/P2;
9 d1=sqrt(d);
10 disp("Diameter ="+string(d1)+" centimeter");
```

Scilab code Exa 21.11 Example

```
1 //Finding of load on Ram
2 //Given
3 D=0.2;
```

```
4 L=6;
5 p=588.6*10^4;
6 //To Find
7 A=(%pi/4)*D^2;
8 W=p*A;
9 capacity=W*L;
10 disp("Load ="+string(W)+" Newtons");
11 disp("Capacity of the accumulator ="+string(capacity )+" N-m");
```

Scilab code Exa 21.12 Example

```
//Finding of Pressure of water
//Given
W=490500;
Fr=39240;
d=40;
//To Find
A=(%pi/4)*d^2;
Wu=W+Fr;
P1=Wu/A;
Wd=W-Fr;
P2=Wd/A;
disp("Pressure while moving up ="+string(P1)+" N/cm^2");
disp("Pressure while moving down ="+string(P2)+" N/cm^2");
```

Scilab code Exa 21.13 Example

```
1 //Finding of Power delivered
2 //Given
3 L = (588600 - (588600 * 4) / 100);
4 d=35;
5 1=5;
6 q = 0.008;
7 t1=2.5*60;
8 \text{ rho} = 1000;
9 g=9.81;
10 //To Find
11 A = (\%pi/4)*d^2;
12 P=L/A;
13 P1=P*10<sup>4</sup>;
14 \text{ H=P1/(rho*g)};
15 W1 = q *1000 * g * H;
16 \quad W2=L*1/t1;
17 W3 = W1 + W2;
18 \quad W4 = W3 / 1000;
19 disp("Power Delivered ="+string(W4)+" Kilo Watts");
```

Scilab code Exa 21.14 Example

```
1 //Finding of Efficiency ,Slip
2 //Given
3 Nb=780;
4 Na=800;
5 //To Find
6 E=Nb/Na;
7 E1=E*100;
8 S=100-E1;
9 disp("Efficiency ="+string(E1)+" percentage");
10 disp("Slip ="+string(S)+" Percentage");
```