Visualization of Iris dataset

Simple Linear Regression

Simple Log-Linear Regression

Negative Binomial Regression

Poisson Regression

Gamma Regression

RMSE among models

```
1 RMSE_lin <- sqrt(mean((testing$Petal.Width - testing$lr.model)^2))
2 RMSE_lol <- sqrt(mean((testing$Petal.Width - testing$log.lin.model)^2))
3 RMSE_poi <- sqrt(mean((testing$Petal.Width - testing$pois.model)^2))
4 RMSE_nbi <- sqrt(mean((testing$Petal.Width - testing$pois.model)^2))
5 RMSE_gam <- sqrt(mean((testing$Petal.Width - testing$nodel)^2))
6
7 RMSE_gam <- sqrt(mean((testing$Petal.Width - testing$gam.model)^2))
8 colnames(RMSE) <- c("Linear", "Log-Linear", "Poisson", "Negative Binomial", "Gamma")
9 rownames(RMSE) <- 'RMSE'
10 RMSE</pre>
```

	Linear	Log-Linear	Poisson	Negative Binomial	Gamma
RMSE	0.49	1.48	0.74	0.74	1.20

Nonparametric Kernel Regression

Nonparametric Smoothing Splines Regression

Scatterplot - Nonparametric Smoothing Splines regression model

References

The R Project for Statistical Computing:

https://www.r-project.org/