1 Field Extensions II

Definition 1 (Smallest subring/subfield). Let L: K with $K \subseteq L$.

- (i) When $\alpha \in L$, we denote by $K[\alpha]$ the smallest subring of L containing K and α , and by $K(\alpha)$ the smallest subfield of L containing K and α ;
- (ii) More generally, when $A \subseteq L$, we denote by K[A] the smallest subring of L containing K and A, and by K(A) the smallest subfield of L containing K and A.

Then

$$K[\alpha] = \left\{ \sum_{i=0}^{d} c_i \alpha^i : d \in \mathbb{Z}_{\leq 0}, \ c_0, \dots, c_d \in K \right\}$$
$$K(\alpha) = \left\{ f/g : f, g \in K[\alpha], g \neq 0 \right\}.$$

Definition 2 (Algebraic/transcendental element). Suppose that L: K is a field extension with $K \subseteq L$ and $\alpha \in L$.

- (i) We say α is algebraic over K if $\exists f_{\not\equiv 0} \in K[t]$ such that $f(\alpha) = 0$.
- (ii) If α is not algebraic over K, then we say α is transcendental over K.
- (iii) When every element of L is algebraic over K, we say that L is algebraic over K.

Definition 3 (Evaluation map). Suppose that L:K is a field extension with $K\subseteq L$, and that $\alpha\in L$. We define the *evaluation map* $E_{\alpha}:K[t]\to L$ by putting $E_{\alpha}(f)=f(\alpha)$ for each $f\in K[t]$.

Definition 4 (Minimal polynomial). Suppose that L: K is a field extension with $K \subseteq L$, and suppose that $\alpha \in L$ is algebraic over K. Then the minimal polynomial of α over K is the unique monic polynomial μ_{α}^{K} such that $\ker(E_{\alpha}) = (\mu_{\alpha}^{K})$.

Lemma 1.1. 1. μ_{α}^{K} is irreducible over K;

- 2. If $f \in K[t]$ such that $f(\alpha) = 0$, then $\mu_{\alpha}^{K} \mid f$;
- 3. If $f \in K[t]$ such that $f(\alpha) = 0$ and f is irreducible over K, then $\exists k \in K$ such that $f = k\mu_{\alpha}^{K}$.

Theorem 1.2. Let L: K with $K \subseteq L$, and suppose that $\alpha \in L$ is algebraic over K.

- (i) $K[\alpha]$ is a field, and $K[\alpha] = K(\alpha)$;
- (ii) If $n = \deg \mu_{\alpha}^{K}$, then $\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$ is a basis for $K(\alpha)$ over $K \ (\Longrightarrow [K(\alpha) : K] = \deg \mu_{\alpha}^{K})$.

Theorem 1.3 (Rational Root Theorem). Let $\frac{p}{q}$ be a root of $f = a_0 t^n + \dots + a_{n-1} t^{n-1} + a_n$, for $a_j \in \mathbb{Z}$, where p and q are coprime. Then $p \mid a_n$ and $q \mid a_0$.

Note: If α is transcendental over K, then $K(\alpha) \cong K(x)$ (where x is a formal variable).

Corollary 1. Let L: K with $K \subseteq L$, and suppose that $\alpha \in L$ is algebraic over K. Then every element of $K(\alpha)$ is algebraic over K.

Corollary 2. Let L: K with $K \subseteq L$. Then $[L:K] < \infty \iff L = K(\alpha_1, \ldots, \alpha_n)$ for $\alpha_i \in L$.

Theorem 1.4. Let L: K be a field extension, and define

$$L^{\text{alg}} = \{ \alpha \in L : \alpha \text{ is algebraic over } K \}.$$

Then L^{alg} is a subfield of L.