A Dynamic Programming-based MCMC Framework for Solving DCOPs with GPUs

Ferdinando Fioretto¹⁽²⁾ (joint work with)

William Yeoh² and Enrico Pontelli²

¹ University of Michigan ² New Mexico State University

Introduction GPUs DMCMC Results Conclusions

Distributed Discrete Optimization with Preferences

GPUs

• Every new desktop/laptop is now equipped with a graphic processing unit (GPU).

- GPU = Massively Parallel Architecture.
- For most of their life, such GPUs are idle.
- General Purpose GPU applications:

Deep Learning

Numerical Analysis
MathWorks MATLAB

Outline

Introduction

• GPUs

• D-MCMC

Results

Conclusions

Multi-Agent Constraint Optimization

- A *DCOP* is a tuple $\langle X, D, F, A, \alpha \rangle$, where:
 - *X* is a set of variables.
 - *D* is a set of finite domains for each variable.
 - *F* is a set of constraints between variables.
 - *A* is a set of agents, controlling the variables in *X*.
 - α is a mapping from variables to agents.

Xa	x_b	U			
0	0	3			
0	1	20			
1	0	2			
_1	1	5			

Multi-Agent Constraint Optimization

- A *DCOP* is a tuple $\langle X, D, F, A, \alpha \rangle$, where:
 - *X* is a set of variables.
 - *D* is a set of finite domains for each variable.
 - *F* is a set of constraints between variables.
 - *A* is a set of agents, controlling the variables in *X*.
 - α is a mapping from variables to agents.

Multi-Agent Constraint Optimization

- A *DCOP* is a tuple $\langle X, D, F, A, \alpha \rangle$, where:
 - *X* is a set of variables.
 - *D* is a set of finite domains for each variable.
 - *F* is a set of constraints between variables.
 - *A* is a set of agents, controlling the variables in *X*.
 - α is a mapping from variables to agents.
 - GOAL: Find a utility maximal assignment.

$$\mathbf{x}^* = \arg \max_{\mathbf{x}} \mathbf{F}(\mathbf{x})$$

$$= \arg \max_{\mathbf{x}} \sum_{f \in \mathbf{F}} f(\mathbf{x}|_{\text{scope}(f)})$$

Introduction GPUs DMCMC Results Conclusions

MCMC Sampling

- MCMC algorithms approximate probability distributions.
- They use a proposal distribution to generate a sequence of samples $z^{(1)}$, $z^{(2)}$, ... which forms a Marokv Chain.
- The quality of the sample improves as a function of the number of steps.

MCMC Sampling

- MCMC sampling algorithms can be used to solve DCOPs. [Nguyen et al., AAMAS 2013]
- MCMC Sampling algorithms can be used to solve the Maximum A Posteriori (MAP) estimation problem.
- The authors provide a mapping from solving a DCOP to solving a MAP.

Graphical Processing Units (GPUs)

- A GPU is a massive parallel architecture:
 - Thousands of multi-threaded computing cores.
 - Very high memory bandwidths.
 - ~80% of transistors devoted to data processing rather than caching.

However:

- GPU cores are slower than CPU cores.
- GPU memories have different sizes and access times.
- GPU programming is more challenging and time consuming.

Execution Model

- A **Thread** is the basic parallel unit.
- Identified by a Thread ID.
- Threads are organized into Blocks.
- Several Streaming Multiprocessors,
 (SD) scheduled in parallel.
- Single Instruction Multiple Thread (SIMT) parallel model.

Memory Hierarchy

• The GPU memory architecture is rather involved.

- Registers
 - Fastest.
 - Only accessible by a thread.
 - Lifetime of a thread.
- Shared memory
 - Fast.
 - Accessible by all threads in a block.
- Global memory
 - High access latency
 - Potential of traffic congestion.

Host

Device

Host

ost Device

cudaMalloc(&deviceV, sizeV);

data

Global Memory

cudaMemcpy(deviceV, hostV, sizeV, ...)

Host

cudaKernel<nThreads, nBlocks>()

Device

Host

Device

cudaMemcpy(hostV, deviceV, sizeV, ...)

Global Memory

D-MCMC: Related Work

[Nguyen et al. AAMAS-2013]

D-Gibbs Sampling

```
Algorithm 1: Gibbs(z_1,\ldots,z_n)

1 for i=1 to n do

2 | z_i^0 \leftarrow \text{Initialize}(z_i)

3 end

4 for t=1 to S do

5 | for i=1 to n do

6 | z_i^t \leftarrow \text{Sample}(P(z_i \mid z_1^t,\ldots,z_{i-1}^t,z_{i+1}^{t-1},\ldots,z_n^{t-1}))

7 | end

8 end
```

- Computing the normalizing constant can be expensive.
- A lots of sample to converge.

DMCMC

- Each agent controls several variables.
- Given values for its boundary variables each agent can solve its local sub-problem independently from other agents.

DMCMC

- Each agent controls several variables.
- Given values for its boundary variables.
- Find a solution for the local sub-problem using MCMC algorithms: Gibbs sampling and Metropolis–Hastings.

Joint utility table

	E	3i		L1		
	x ₁	X ₂	X ₃	X ₄	X ₅	U
	0	0 0		2	5	21
,	0	1	2	1	4	20
	0	2	3	5	1	32

DMCMC: Local Sampling Process

3 Level of Parallelism

DMCMC: Local Sampling Process

3 Level of Parallelism

DMCMC: Local Sampling Process

3 Level of Parallelism

Algorithm design and data structure

• Ensure data accesses are coalesced.

- Minimize the accesses to the **global memory**.
 - Padding Utility Tables' rows; Perfect hashing.

Results

Main results:

2500

5000

Number of samples (S)

Runtime: GPU-MCMC algorithms are > 1 order of magnitude faster than CPU-MCMC ones.

10000

0.6

10

2500

5000

Number of samples (S)

Quality: GPU-Gibbs dominates MGM2 for S>100; GPU-MH solutions quality comparable to those of MGM2

0.5

0.1

10

10000

Results

Meeting Scheduling

$$S = 100; R = 10$$

$ \mathcal{A} $	5		10		25		50					
	wct	st	quality									
DPOP	125.39	94.98	1661	oot	oot	-	oot	oot	-	oot	oot	-
MGM	7.435	0.435	1379	11.910	0.446	2766	24.211	0.417	6692	45.771	0.462	13802
MGM2	8.939	0.979	1389	23.903	1.526	2783	56.035	1.629	7116	112.54	1.788	14145
$Gibbs_{CPU}$	6.146	1.101	1638	12.093	1.190	3.319	31.031	1.347	8344	62.411	1.489	16577
$Gibbs_{GPU}$	0.162	0.033	1635	0.301	0.034	3338	0.708	0.041	8344	1.416	0.048	16550
MH_{CPU}	0.561	0.113	1131	1.091	0.121	2775	2.281	0.176	6921	3.921	0.185	12112
MH_{GPU}	0.047	0.014	1143	0.102	0.016	2663	0.196	0.017	6925	0.360	0.022	11856

Main results:

• Gibbs on GPU is up to 2 order of magnitude faster than MGM(2) and finds solutions of higher quality.

Introduction GPUs DMCMC Results Conclusions

Conclusions

- Exploit GPU-style parallelism from DP-based DCOPs resolution methods and MCMC sampling.
- **D-MCMC framework**: Decomposes a DCOP into independent sub-problems that can be sampled in parallel with GPUs.
- D-MCMC with Gibbs produces high quality solutions with runtimes up to 2 order of magnitude faster than other state-of-the art incomplete solvers.

• Future Work:

- Exploit similar techniques to solve WCSPs.
- Extend the proposed method using memory bounded solutions.

Thank you!

References

- [1] D. T. Nguyen, W. Yeoh, and H. C. Lau, "Distributed Gibbs: A Memory-Bounded Sampling-Based DCOP Algorithm, AAMAS, 2013.
- [2] F. Fioretto, T. Le, E. Pontelli, W. Yeoh, and T. Son, "Exploiting GPUs in Solving (Distributed) Constraint Optimization Problems with Dynamic Programming", CP, 2015.

