(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2003-46797 (P2003-46797A)

(43)公開日 平成15年2月14日(2003.2.14)

(51) Int. Cl. 7	7			FI			テーマコード(参考)			
H 0 4 N	1/60			B41J	5/30		Z	2C087		
B 4 1 J	5/30			G 0 6 T	1/00	200	D	5B050		
G 0 6 T	1/00	200				5 1 0		5B057		
		510		H 0 4 N	5/76		E	5C052		
H 0 4 N	1/46				1/40		D	5C053		
	審査請求	未請求 請求項の数17	OL			(全 I	٤4 €	₹)	最終頁に続く	
(21)出願番号	特願2001-236755 (P2001-236755)			(71)出願人	000002369					
	•				セイコ	ーエプソ	ン株	式会社		
(22)出願日	平成13年8月3日(2001.8.3)			東京都新宿区西新宿2丁目4番1号					卧1号	
				(72)発明者	中見	至宏				
	•	• **						丁目3番	5号 セイコー	
					エプソ	ン株式会	社内			
				(74)代理人	110000	028				
					特許業	務法人	明成[国際特語	午事務所	
				•••			•		最終頁に続く	

(54) 【発明の名称】画像ファイルの生成

(57)【要約】

画像処理時における画像処理条件を含まな 【課題】 い画像ファイルに対して所望の画像処理条件を付加する こと。

【解決手段】CPU200は、メモリカードMCまたは 接続ケーブルCVを介して受け取った画像ファイルの画 像データを表示装置20の表示画面上に表示する。CP U200は、入力装置240を介して入力された色空間 パラメータ、および、色補正パラメータを反映した画像 データをオリジナルの画像データと共に表示装置20の 表示画面上に表示する。CPU200は、設定された色 空間パラメータおよび色補正パラメータの適用要求を検 出すると、設定された色空間パラメータおよび色補正パ ラメータを画像処理制御情報として、画像ファイルに付 加する。

【特許請求の範囲】

【請求項1】 画像処理装置における画像データの処理 条件を指定する画像処理制御情報を含む画像ファイルを 生成する画像ファイル生成装置であって、

入力された画像データを表示する原画像データ表示手段

前記画像処理装置において前記画像データに対して実行 すべき画像処理条件を設定する画像処理条件設定手段

前記設定された画像処理条件を反映した画像データを表 10 示する反映画像データ表示手段と、

前記表示されている反映画像データに対して設定されて いる画像処理条件を選択する画像処理条件選択手段と、 前記選択された画像処理条件に基づいて前記画像処理制 御情報を生成する画像処理制御情報生成手段と、

前記生成された画像処理制御情報と前記画像データとを 関連付けて格納する画像ファイルを生成する画像ファイ ル生成手段とを備える画像ファイル生成装置。

【請求項2】 請求項1に記載の画像ファイル生成装置 において.

前記画像処理条件設定手段は、設定された画像処理条件 を表示する画像処理条件表示手段を含む画像ファイル生 成装置。

【請求項3】 請求項2に記載の画像ファイル生成装置 において、

前記画像処理条件設定手段によって設定される画像処理 条件は、少なくとも色空間変換処理条件、および色補正 処理条件のいずれか一方を含む画像ファイル生成装置。

【請求項4】 請求項1に記載の画像ファイル生成装置 はさらに、

撮像シーンに応じて、予め複数の画像処理パラメータが 組み合わされたシーン別処理条件を格納する記憶装置を 備え、

前記画像処理条件設定手段によって設定される画像処理 条件は、前記シーン別処理条件である画像ファイル生成 装置。

【請求項5】 請求項3または請求項4に記載の画像フ ァイル生成装置において、

前記原画像データ表示手段と前記反映画像データ表示手 段は、前記画像データと、前記画像処理条件を反映させ 40 た画像データとを同一画面上に並列表示する画像ファイ ル生成装置。

【請求項6】請求項5に記載の画像ファイル生成装置は さらに、

前記設定された画像処理条件を反映した前記画像データ を、前記設定された画像処理条件の表示と共に印刷する 印刷手段を備える画像ファイル生成装置。

【請求項7】 画像処理装置における画像データの処理 条件を指定する画像処理制御情報を含む画像ファイルを 生成する画像ファイル生成装置であって、

生成時の生成情報を伴う画像データを入力する画像デー タ入力手段と、

前記生成情報を解析する画像データ解析手段と、

前記解析の結果に基づき、前記画像処理装置における前 記画像データに対する画像処理の条件を指定する画像処 理制御情報を生成する画像処理制御情報生成手段と、

前記生成された画像処理制御情報と前記画像データとを 関連付けて格納する画像ファイルを生成する画像ファイ ル生成手段とを備える画像ファイル生成装置。

【請求項8】 請求項7に記載の画像ファイル生成装置 において、

前記生成情報には、前記画像データを生成した撮像装置 の機種情報が含まれており、

前記画像処理制御情報は、前記機種情報と画像出力装置 との組み合わせに応じて生成される画像ファイル生成装

【請求項9】 請求項7または請求項8に記載の画像フ ァイル生成装置において、

前記生成情報には、前記画像データ生成時における撮像 20 意図を示す情報が含まれており、

前記画像処理制御情報は、前記撮像意図を示す情報に基 づいて生成される画像ファイル生成装置。

【請求項10】 請求項9に記載の画像ファイル生成装 置において、

前記撮像意図を示す情報は、前記撮像装置において設定 された撮像シーンである画像ファイル生成装置。

【請求項11】 請求項7ないし請求項10のいずれか に記載の画像ファイル生成装置において、

前記画像処理制御情報には、色空間情報と色補正情報と 30 が含まれている画像ファイル生成装置。

【請求項12】 請求項7ないし請求項10のいずれか に記載の画像ファイル生成装置において、

前記画像データは、画像データ部と撮影情報を格納する Exifデータ部とを有するExifデータであり、 前記生成情報は、前記Exifデータ部に含まれている 撮影情報である画像ファイル生成装置。

【請求項13】 請求項7に記載の画像ファイル生成装 置はさらに、

前記画像データに対して任意の画像処理条件を設定する 画像処理条件設定手段を備え、

前記画像処理制御情報は、前記解析された生成情報に加 えて、前記設定された画像処理条件に基づいて生成され る画像ファイル生成装置。

【請求項14】画像ファイル生成プログラムであって、 画像データを入力する機能と、

表示装置の表示画面上に、前記入力された画像データに 対する画像処理条件を設定するための画像処理条件設定 領域を形成する機能と、

前記表示画面上に、前記入力された画像データを表示す 50 る原画像表示領域を形成する機能と、

前記表示画面上に、前記原画像表示領域に隣接して、前 記設定された画像処理条件を反映させた画像データを表 示する反映画像表示領域を形成する機能と、

前記反映画像表示領域に表示されている画像データに対する画像処理条件が選択された場合には、前記設定された画像処理条件に基づいて画像処理装置における前記画像データの処理条件を指定する画像処理制御情報を生成する機能と、

前記生成された画像処理制御情報と前記画像データとを 関連付けて格納する画像ファイルを生成する機能とをコ 10 ンピュータによって実現させる画像ファイル生成プログ ラム

【請求項15】請求項14に記載の画像ファイル生成プログラムにおいて、

前記画像処理条件として設定される条件には、色空間変 換条件と色補正条件とが含まれ、

前記反映画像表示領域は、前記設定された色空間変換条件を反映する第1の反映画像表示領域と、前記設定された色補正条件を反映する第2の反映画像表示領域とを含む画像ファイル生成プログラム。

【請求項16】請求項15に記載の画像ファイル生成プログラムはさらに、

前記設定された画像処理条件を反映した前記画像データを、前記設定された画像処理条件の表示と共に印刷する機能をコンピュータによって実現させる画像ファイル生成プログラム。

【請求項17】画像ファイル生成プログラムであって、 生成された撮像装置の機種情報、および生成時における 撮像条件の少なくともいずれか一方を生成条件として含 む画像データを入力する機能と、

前記生成条件を解析する機能と、

前記解析された生成条件に基づいて、画像処理装置における前記画像データに対する画像処理条件を指定する画像処理制御情報を生成する機能と、

前記生成された画像処理制御情報と前記画像データとを 関連付けて格納する画像ファイルを生成する機能とをコ ンピュータによって実現させる画像ファイル生成プログ ラム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、既存の画像データ に対して付加情報を付加して画像ファイルを生成する画 像ファイル生成技術に関する。

[0002]

【従来の技術】画像データと、画像処理装置における画像データの画像処理条件とを含む画像ファイルを生成可能な撮像装置、および、この撮像装置にて生成された画像ファイルを用いて画像処理を実行可能なプリンタが実用化されている。かかる撮像装置を用いれば、撮影時に プリンタにおける可望の画像処理を指定することが

できるので、画像データを出力する際に画像処理条件を 指定することなく所望の画像処理、あるいは、適切な画 像処理が施された画像データを出力することができる。

[0003]

【発明が解決しようとする課題】しかしながら、上記の利点を得るためには、画像データと共に画像処理条件を含む画像ファイルを生成可能な撮像装置によって生成された画像ファイルを用いなければならないという問題があった。すなわち、画像データと共に画像処理条件を含む画像ファイルを生成できない撮像装置を用いて撮影した画像ファイルを用いる場合、あるいは、上記の画像ファイルを用いた画像出力システムが実用化される前に生成された画像データを用いる場合には、上記の利点を得ることができない。

【0004】本発明は、上記問題を解決するためになされたものであり、画像処理時における画像処理条件を含まない画像ファイルに対して所望の画像処理条件を付加することを目的とする。

[0005]

【課題を解決するための手段およびその作用・効果】上 記課題を解決するために本発明の第1の態様は、画像処 理装置における画像データの処理条件を指定する画像処 理制御情報を含む画像ファイルを生成する画像ファイル 生成装置を提供する。本発明の第1の態様に係る画像フ ァイル生成装置は、入力された画像データを表示する原 画像データ表示手段と、前記画像処理装置において前記 画像データに対して実行すべき画像処理条件を設定する 画像処理条件設定手段と、前記設定された画像処理条件 を反映した画像データを表示する反映画像データ表示手 30 段と、前記表示されている反映画像データに対して設定 されている画像処理条件を選択する画像処理条件選択手 段と、前記選択された画像処理条件に基づいて前記画像 処理制御情報を生成する画像処理制御情報生成手段と、 前記生成された画像処理制御情報と前記画像データとを 関連付けて格納する画像ファイルを生成する画像ファイ ル生成手段とを備えることを特徴とする。

【0006】本発明の第1の態様に係る画像ファイル生成装置によれば、入力された画像データと、画像データに対する画像処理制御情報とを関連付けて格納する画像ファイルを生成することができる。すなわち。画像処理時における画像処理条件を含まない画像ファイルに対して所望の画像処理条件を付加することができる。したがって、元々、画像処理制御情報を有していない画像ファイルであっても、画像処理制御情報を備えることが可能となり、画像処理制御情報を参照して画像処理を実行する画像処理装置において、画像処理条件を指定して画像処理を実行させることができる。

像ファイルを用いて画像処理を実行可能なプリンタが実 【0007】本発明の第1の態様に係る画像ファイル生 用化されている。かかる撮像装置を用いれば、撮影時 成装置において、前記画像処理条件設定手段は、設定さ に、プリンタにおける所望の画像処理を指定することが 50 れた画像処理条件を表示する画像処理条件表示手段を含 20.

んでも良い。また、前記画像処理条件設定手段によって 設定される画像処理条件は、少なくとも色空間変換処理 条件、および色補正処理条件のいずれか一方を含んでも 良い。かかる場合には、画像処理装置において、色空間 情報により、画像データを忠実に再現させることが可能 となり、また、色補正情報により画像データを好みに合 わせて出力させることができる。

【0008】本発明の第1の態様に係る画像ファイル生成装置はさらに、撮像シーンに応じて、予め複数の画像処理パラメータが組み合わされたシーン別処理条件を格納する記憶装置を備え、前記画像処理条件設定手段によって設定される画像処理条件は、前記シーン別処理条件であっても良い。かかる場合には、撮影シーンを選択することにより、簡便に画像処理条件を設定することができる。

【0009】本発明の第1の態様に係る画像ファイル生成装置において、前記原画像データ表示手段と前記反映画像データ表示手段は、前記画像データと、前記画像処理条件を反映させた画像データとを同一画面上に並列表示しても良い。かかる場合には、画像処理条件が反映された画像データを参照して、画像処理条件をより適切に設定することができる。

【0010】本発明の第1の態様に係る画像ファイル生成装置はさらに、前記設定された画像処理条件を反映した前記画像データを、前記設定された画像処理条件の表示と共に印刷する印刷手段を備えても良い。かかる場合には、出力された画像データと、画像処理条件との関係を容易に確認することができる。

【0011】本発明の第2の態様は、画像処理装置における画像データの処理条件を指定する画像処理制御情報 30を含む画像ファイルを生成する画像ファイル生成装置を提供する。本発明の第2の態様に係る画像ファイル生成装置は、生成時の生成情報を伴う画像データを入力する画像データ入力手段と、前記生成情報を解析する画像データ解析手段と、前記解析の結果に基づき、前記画像処理装置における前記画像データに対する画像処理制御情報を指定する画像処理制御情報を生成する画像処理制御情報と前記画像データとを関連付けて格納する画像ファイルを生成する画像ファイル生成手段とを備えることを特徴とす 40る。

【0012】本発明の第2の態様に係る画像ファイル生成装置によれば、画像データの生成情報に基づいて、画像データに対する適切な画像処理制御情報を生成し、画像処理時における画像処理条件を含まない画像ファイルに対して所望の画像処理条件を付加することができる。したがって、元々、画像処理制御情報を有していない画像ファイルであっても、画像処理制御情報を備えることが可能となり、画像処理制御情報を参照して画像処理を実行する画像処理装置において、画像処理条件を指定し

て画像処理を実行させることができる、また、画像処理 制御情報を生成するにあたり、ユーザの負担を軽減する ことができる。

【0013】本発明の第2の態様に係る画像ファイル生 成装置において、前記生成情報には、前記画像データを 生成した撮像装置の機種情報が含まれており、前記画像 処理制御情報は、前記機種情報と画像出力装置との組み 合わせに応じて生成されても良い。撮像装置の機種情報 によって機種固有の画像処理制御情報を適用することが できる。また、前記生成情報には、前記画像データ生成 時における撮像意図を示す情報が含まれており、前記画 像処理制御情報は、前記撮像意図を示す情報に基づいて 生成されても良く、前記撮像意図を示す情報は、前記撮 像装置において設定された撮像シーンであっても良い。 撮像意図によって撮像者の意図する画像処理制御情報を 生成し、画像処理装置において撮像者の意図する画像処 理を実行させることができる。また、撮像意図が撮像シ ーンである場合には、撮像シーンに適応した画像処理を 画像処理装置において実行させることができる。

【0014】本発明の第2の態様に係る画像ファイル生成装置において、前記画像処理制御情報には、色空間情報と色補正情報とが含まれていても良い。画像処理装置において、色空間情報により、画像データを忠実に再現させることが可能となり、また、色補正情報により画像データを好みに合わせて出力させることができる。また、前記画像データは、画像データ部と撮影情報をあするExifデータ部とを有するExifデータであり、前記生成情報は、前記Exifデータ部に含まれている撮影情報であっても良い。Exifデータには、撮影条件、機種情報等が含まれているので、これら情報を利用することにより、より適切な画像処理制御情報を生成することができる。

【0015】本発明の第2の態様に係る画像ファイル生成装置はさらに、前記画像データに対して任意の画像処理条件を設定する画像処理条件設定手段を備え、前記画像処理制御情報は、前記解析された生成情報に加えて、前記設定された画像処理条件に基づいて生成されても良い。かかる場合には、撮像条件等に基づき生成された画像処理制御情報に変更を加え、画像処理制御情報をより適切に設定することができる。

【0016】本発明の第3の態様は、画像ファイル生成プログラムを提供する。本発明の第3の態様に係る画像ファイル生成プログラムは、画像データを入力する機能と、表示装置の表示画面上に、前記入力された画像データに対する画像処理条件を設定するための画像処理条件設定領域を形成する機能と、前記表示画面上に、前記入力された画像データを表示する原画像表示領域を形成する機能と、前記設定された画像処理条件を反映させた画像データを表示する反映画像表示領域を形成する機能と、

前記反映画像表示領域に表示されている画像データに対する画像処理条件が選択された場合には、前記設定された画像処理条件に基づいて画像処理装置における前記画像データの処理条件を指定する画像処理制御情報を生成する機能と、前記生成された画像処理制御情報と前記画像データとを関連付けて格納する画像ファイルを生成する機能とをコンピュータによって実現させることを特徴

【0017】本発明の第3の態様に係る画像ファイル生成プログラムによれば、原画像と反映画像とを比較しつ 10つ、より適切な画像処理制御情報を生成することができる。また、画像処理制御情報を生成するために、有用なユーザインターフェースを表示することができる。

とする。

【0018】本発明の第3の態様に係る画像ファイル生成プログラムにおいて、前記画像処理条件として設定される条件には、色空間変換条件と色補正条件とが含まれ、前記反映画像表示領域は、前記設定された色空間変換条件を反映する第1の反映画像表示領域と、前記設定された色補正条件を反映する第2の反映画像表示領域とを含んでも良い。かかる場合には、原画像と、色空間変20換済みの画像と、色補正済みの画像とを対比観察することができる。なお、第2の反映画像表示領域には、色空間変換済みの画像に対して色補正を施した画像が表示されても良い。

【0019】本発明の第3の態様に係る画像ファイル生成プログラムはさらに、前記設定された画像処理条件を反映した前記画像データを、前記設定された画像処理条件の表示と共に印刷する機能をコンピュータによって実現させても良い。かかる場合には、設定された画像処理制御情報の効果を印刷結果に基づいて確認することができ、画像処理条件をより適切に設定することができる。

【0020】本発明の第4の態様は、画像ファイル生成プログラムを提供する。本発明の第4の態様に係る画像ファイル生成プログラムは、生成された撮像装置の機種情報、および生成時における撮像条件の少なくともいずれか一方を生成条件として含む画像データを入力する機能と、前記生成条件を解析する機能と、前記解析された生成条件に基づいて、画像処理装置における前記画像データに対する画像処理条件を指定する画像処理制御情報を生成する機能と、前記生成された画像処理制御情報を生成する機能と、前記生成された画像処理制御情報とも前記画像データとを関連付けて格納する画像ファイルを生成する機能とをコンピュータによって実現させることを特徴とする。

【0021】本発明の第4の態様に係る画像ファイル生成プログラムによれば、本発明の第2の態様に係る画像ファイル生成装置と同様の作用効果を得ることができる。また、本発明の第4の態様に係る画像ファイル生成プログラムは、本発明の第2の態様に係る画像ファイル生成装置と同様にして種々の態様によって実現され得る。

[0022]

【発明の実施の形態】以下、本発明に係る画像ファイル 生成装置について以下の順序にて図面を参照しつつ、実 施例に基づいて説明する。

A. 画像ファイル生成装置を含む画像ファイル生成システムの構成:

- B. 画像ファイルの構成:
- C. 画像ファイル生成処理:
- D. その他の実施例:

【0023】A. 画像ファイル生成装置を含む画像ファイル生成システムの構成:本実施例に係る画像ファイル生成装置を含む画像ファイル生成システムの構成について図1を参照して説明する。図1は本実施例に係る画像ファイル生成装置を含む画像ファイル生成システムの一例を示す説明図である。

【0024】画像ファイル生成システム10は、画像処 理条件を付加すべき画像データを生成する入力装置とし てのディジタルスチルカメラ12、ディジタルスチルカ メラ12にて生成された画像データを用いて後述する画 像ファイル生成処理を実行する画像ファイル生成装置と してのパーソナルコンピュータPC、パーソナルコンピ ュータPCにおいて設定された画像処理条件に基づく画 像処理結果を確認するための出力装置としてのカラープ リンタ30を備えている。本実施例に係る画像ファイル 生成装置において画像ファイルを生成するために用いら れ得る画像データ(画像ファイル)は、ディジタルスチ ルカメラ12から接続ケーブルCVまたはメモリカード MCを介して、パーソナルコンピュータPCに入力され た画像データである。また、本実施例に係る画像ファイ ル生成装置において用いられ得る画像ファイルを生成す るための画像データは、図示しないネットワーク等を介 して、予めパーソナルコンピュータPCの記憶装置、例 えば、ハードディスクに格納されている画像データであ

【0025】画像ファイル生成装置としては、パーソナ ルコンピュータPCの他に、例えば、画像ファイル生成 機能を備えるスタンドアローン型のプリンタも用いられ 得る。また、出力装置としては、プリンタ30の他に、 CRTディスプレイ、LCDディスプレイ等の表示装 置、プロジェクタ等が用いられ得る。以下の説明では、 パーソナルコンピュータPCと接続されて用いられるカ ラープリンタ30を出力装置として用いるものとする。 【0026】パーソナルコンピュータPCは、一般的に 用いられているタイプのコンピュータであり、本発明に 係る画像ファイル生成プログラムを実行するCPU20 0、CPU200における演算結果、画像データ等を一 時的に格納するRAM210、画像ファイル生成プログ ラムを格納するハードディスクドライブ (HDD) 22 0、CPU200における演算結果、画像データ等を表 50 示するための表示装置230、コマンド、数値等を入力

20.

するためのキーボード、マウスといた入力装置240を 備えている。パーソナルコンピュータPCは、メモリカ ードMCを装着するためのカードスロット250、ディ ジタルスチルカメラ12等からの接続ケーブルCVを接 続するための入出力端子255を備えている。

【0027】パーソナルコンピュータPCにおいて実行 される画像ファイル生成処理は、表示装置230の表示 画面上に表示されるグラフィカルユーザインターフェー ス(GUI)を介して視覚的に実行される。

【0028】ディジタルスチルカメラ12は、CCDや 10 光電子倍増管を用いて光の情報をアナログ電気信号に変 換し、得られたアナログ電気信号をA/Dコンバータを 用いてディジタル信号化することによりディジタルな画 像データを生成するカメラである。生成されたディジタ ル画像データは、通常、記憶装置としてのメモリカード MCに保存される。ディジタルスチルカメラ12におけ る画像データの保存形式としては、JPEG形式が一般 的であるが、この他にもTIFF形式、GIF形式、B MP形式、RAWデータ形式等の保存形式が用いられ得 る。

【0029】ディジタルスチルカメラ12において生成 された画像データは、通常、ディジタルスチルカメラ用 の画像ファイルフォーマット規格(Exif)に従ったデー タ構造を有している。Exifファイルの仕様は、電子情報 技術産業協会(JEITA)によって定められている。 【0030】B. 画像ファイルの構成:図2を参照し て、本実施例に係る画像ファイル生成装置によって生成 される画像ファイルの概略構成について説明する。な お、本実施例中におけるファイルの構造、データの構 造、格納領域といった用語は、ファイルまたはデータ等 30 が記憶装置内に格納された状態におけるファイルまたは データのイメージを意味するものである。図2はExifフ ァイルフォーマットに従う、本実施例にて生成される画 像ファイルの内部構成の一例を概念的に示す説明図であ

【0031】図2に示すように、Exifファイルフォーマ ットに従う画像ファイルGFは、JPEG形式の画像デ ータを格納するJPEG画像データ格納領域111と、 格納されているJPEG画像データに関する各種情報を 格納する付属情報格納領域112とを備えている。付属 40 情報格納領域112には、撮影日時、露出、シャッター 速度等といったJPEG画像の撮影条件に関する撮影時 情報、JPEG画像データ格納領域111に格納されて、 いるJPEG画像のサムネイル画像データがTIFF形 式にて格納されている。さらに、付属情報格納領域11 2は、DSC製造者に開放されている未定義領域である Makernoteデータ格納領域113を備えており、本実施 例における画像ファイル生成処理において付加される画 像処理制御情報CIは、Makernoteデータ格納領域1.1 3に格納される。すなわち、本実施例において生成され 50

る画像ファイルGFは、Makernoteデータ格納領域11 3に画像処理制御情報CIを備える点で、通常のExif形 式の画像ファイルと相違する。なお、当業者にとって周 知であるように、Exif形式のファイルでは、各データを 特定するためにタグが用いられており、Makernoteデー タ格納領域113に格納されているデータに対してはタ グ名としてMakernoteが割り当てられ、Makernoteタグと 呼ばれている。

【0032】Makernoteデータ格納領域113の詳細な データ構造について図3および図4を参照して説明す る。図3は本実施例において生成される画像ファイルG FのMakernoteデータ格納領域113のデータ構造を示 す説明図である。図4は本実施例において生成される画 像ファイルGFのMakernoteデータ格納領域113内に 定義されているPrintMatchingデータ格納領域114を 示す説明図である。

【0033】本実施例に係る画像ファイルGFのMakern oteデータ格納領域113 (画像処理制御データ格納領 域)もまた、タグによって格納されているデータを識別 できる構成を備えており、画像処理制御情報CIにはPr intMatchingのタグが割り当てられている。Makernoteデ ータ格納領域113の各タグは、Makernoteデータ格納 領域113のトップアドレスからのオフセット値でポイ ンタにより指定される。Makernoteデータ格納領域11 3には、トップアドレスにメーカー名(6バイト)、続 いて予約領域 (2バイト)、ローカルタグのエントリ数 (2バイト)、各ローカルタグオフセット(12バイ ト)の情報が格納されている。メーカー名の後には、文 字終端列を示す00x0の終端コードが付されている。

【0034】PrintMatchingデータ格納領域114(画 像処理制御パラメータ格納部)には、PrintMatchingパ ラメータが格納されていることを示すPrintMatching識 別子、指定されているパラメータ数を示すパラメータ指 定数、予めパラメータ毎に割り振られているパラメータ 番号を指定(識別)する値が格納されるパラメータ番 号、指定されたパラメータ番号のパラメータの設定値が 格納されているパラメータ設定値の情報が格納されてい る。パラメータ番号は、例えば、2バイトの領域に格納 される情報であり、パラメータ設定値は、4バイトの領 域に格納される情報である。出力装置側では、このPrin tMatchingタグを指標として画像処理制御情報CI(各 パラメータ値)を取得することができる。

【0035】なお、本実施例に係る画像ファイル生成装 置において用いられ得る画像ファイルは、Exif画像ファ イルEGFに限られず、ディジタルビデオカメラ、スキ ャナ等の入力装置によっても生成された画像ファイルを も用いることができる。

【0036】C. 画像ファイル生成処理:本実施例に係 る画像ファイル生成装置(パーソナルコンピュータP C) にて実行される画像ファイル生成処理について図5

~図9を参照して説明する。図5はパーソナルコンピュータPCにて実行される画像ファイル生成処理の処理ルーチンを示すフローチャートである。図6は画像ファイル生成処理の中の画像処理設定処理の処理ルーチンを示すフローチャートである。図7は原画像ファイルを開いた際に、表示装置230の表示画面上に現れる画像表示画面の例を示す説明図である。図8は本実施例に従う画像ファイル生成処理において、色空間情報を設定する際に表示装置230の表示画面上に現れる設定画面の例を示す説明図である。図9は本実施例に従う画像ファイル 10生成処理において、色補正情報を設定する際に表示装置230の表示画面上に現れる設定画面の例を示す説明図である。

11

【0037】本処理ルーチンは、入力装置240を介して実行要求がなされることにより開始される。なお、本処理ルーチンでは、説明を簡単にするため、処理対象の画像データはJPEG画像データであるものとする。CPU200は、入力装置240を介して任意のJPEG画像データが選択されると、選択されたJPEG画像データをRGB画像データに変換して、図6に示すように203つの画像を含む基本ダイアログ40を表示装置230上に表示する(ステップS100)。表示装置230が表示可能な画像データはRGB画像データであるのに対して、JPEG画像データは、通常、YCbCr色空間で表される画像データであるため、画像データの色空間をYCbCr色空間からRGB色空間に変換するのである。

【0038】基本ダイアログ40は、オリジナル画像OGを表示する原画像表示領域41、色空間変換処理後の色変換済画像CSを表示する色空間変換画像表示領域42、色補正処理後の色補正済画像CEを表示する色補正画像表示領域43を備える表示態様を有している。このような表示態様を採ることにより、オリジナル画像に対する、色空間変換処理、並びに色補正処理の効果を容易に確認することができる。なお、画像データを開いた初期状態では、いずれの表示領域41、42、43においても、オリジナル画像OGが表示されている。

【0039】CPU200は、色空間および色補正の設定を行うための画像処理設定処理の要求がなされたか否かを判定する(ステップS110)。CPU200は、例えば、入力装置240を介して、ツールバー上の「画像処理設定」ボタン44(図6参照)がクリックされた場合には、画像処理設定処理の要求が発生したものと判定する。CPU200は、画像処理設定処理の要求がなされたと判定した場合には(ステップS110:Yes)、画像処理設定処理を実行する(ステップS120)。CPU200は、画像処理設定処理の要求がなされなかったと判定した場合には(ステップS110:No)、待機する。

【0040】図6~図9を参照して、画像処理設定処理 50 アログ51に表示されているプレビューボタン510が

について説明する。画像処理設定処理は、図8および図9に示す画像処理設定ダイアログ50を表示させて行われる。画像処理設定ダイアログ50は、ダイアログ50上に表示されている「色空間」501のタブを入力装置240によってクリックすることによって、色空間設定項目サブダイアログ51を表示し(図8の表示状態)、ダイアログ50上に表示されている「色補正」502のタブを入力装置240によってクリックすることによって、色補正設定項目サブダイアログ52を表示する(図9の表示状態)。なお、本実施例では、画像処理設定ボタン44がクリックされた場合には、先ず、色空間設定項目サブダイアログ51がダイアログ50上に表示される。

12

【0041】図8、図9に示すダイアログ50の左側には、オリジナルプレビュー画像POGを表示するオリジナル画像表示領域503、色空間変換処理を反映した色空間変換済プレビュー画像PCSを表示する色変換画像表示領域504、および色補正処理を反映した色補正済プレビュー画像PCEを表示する色補正画像表示領域505が区画形成されている。

【0042】CPU200は、色空間設定要求がなされたか否かを判定する(ステップS1210)。既述のように、本実施例では、画像処理設定ボタン44がクリックされた場合には、先ず、色空間設定項目サブダイアログ502がクリックされない限り、CPU200は色空間設定要求がなされたものと判定する。CPU200は、色空間設定要求がなされたと判定した場合には(ステップS1210:Yes)、色空間設定要求がなされたと判定した場合には(ステップS1210:Yes)、色空間設定要求がなされたと判定した場合には(ステップS1210:No)、CPU200は、後述する色補正設定処理(ステップS12

【0043】色空間設定項目サブダイアログ51は、正のRGB画像データに対するガンマ補正処理に用いるべきガンマ値を設定するガンマ補正に用いるべきマイナスガンマ値を設定するマイナスガンマ値設定項512、負のRGB画像データをクリッピングすることなく利用する(有効とする)か否かの指定を行う負値処理設定項513、色空間変換に用いる色変換マトリクスのマトリクス値を設定するマトリクス設定項514を有している。色空間設定処理では、これらの設定項に、各パラメータ値を、直接数値を入力することにより、あるいは、数値選択を行うことにより実行される。

【0044】 CPU200は、色空間設定画像のプレビュー要求が発生するまで待機する (ステップS1230:No)。 CPU200は、色空間設定項目サブダイアログ51に表示されているプレビューボタン510が

14 ード11は、例えば、記念撮影

入力装置240によってクリックされると、プレビュー要求が発生したものと判定する。CPU200は、色空間設定画像のプレビュー要求の発生を検出すると(ステップS1230:Yes)、設定された色空間パラメータ値を反映した画像を、色変換画像表示領域504、および色補正画像表示領域505に表示する(ステップが、設定されたパラメータ値の適用(確定)を意味する。なお、本実施例では、色空間パラメータ値を反映する際には、設定されたパラメータ値によって、オリジナルの画像データの値を入力値として用い、かかる入力値に対して開い、かかる入力値になって、カリジナルの画像データの値を入力値として用い、かかる入力値に対力を設定されたパラメータ値が反映された表示画像を表示する。

【0045】色補正タブ502がクリックされると、CPU200は、色補正タブ502の色補正設定処理を実行する(ステップS1250)。CPU200は、色補正タブ502のクリックを検出すると、色補正設定項目サブダイアログ50上に表示させる。色補正設定項目サブダイアログ50上に表示させる。色補正設定項目サブダイアログ52は、自動補正設定項521、手動補正設定項522、設定値一覧表示項523を有している。色補正設定処理では、シャドウポイント、ハイライトポイント、コントラスト、明るさ、RGBカラーバランス、RGBオフセット量、彩度、適用強度、記憶色といったパラメータの値が設定される。これら各パラメータの設定値は、各撮影条件(撮影シーン)に最適化された補正モードを選択して自動的に、あるいは、設定項目を任意に選択して手動で設定される。

【0046】補正モードには、例えば、図10に示すよ 30 うな各モードがある。図10は、補正モード、各パラメ ータ、補正モードを指定する数値の組み合わせの一例を 示す説明図である。各補正モードに対するコントラス ト、明るさといった項目は、自動補正の結果として得ら れる画質の状態をわかりやすく示しており、選択された 補正モードを実現するために、各項目に対して単数、ま たは、複数のパラメータ値が設定される。補正モード1 は、例えば、標準的な撮影条件(生成条件)に対する色 補正に適し、補正モード2は、例えば、人物撮影の撮影 条件に対する色補正に適し、補正モード3は、例えば、 風景撮影の撮影条件に対する色補正に適し、補正モード 4は、例えば、夕景撮影の撮影条件に対する色補正に適 し、補正モード5は、例えば、夜景撮影の撮影条件に対 する色補正に適し、補正モード6は、例えば、花を撮影 した撮影条件に対する色補正に適する。補正モード7 は、例えば、マクロ的な撮影条件に対する補正に適し、 補正モード8は、例えば、スポーツをしている人物を撮 影した撮影条件に対する補正に適し、補正モード9は、 例えば、逆光下での撮影条件に対する補正に適し、補正 モード10は、例えば、紅葉を撮影した撮影条件に対す 50

る補正に適し、補正モード11は、例えば、記念撮影を 撮影した撮影条件に対する補正に適する。

【0047】補正モードを選択する自動補正の設定は、自動補正設定項521を介して実行される。自動補正時には、設定された各パラメータ値の適用レベルを設定することもできる。任意のパラメータ値の手動設定は、手動補正設定項522を介して実行され、補正モードにより選択されたパラメータの値を変更するために、あるいは、補正モードを利用することなく任意のパラメータに対して所望のパラメータ値を設定するために実行される。こうして設定された各パラメータの設定値は、設定値一覧表示項523に表示される。

【0048】補正モードが選択された場合、任意のパラ メータ値が設定された場合には、CPU200は、その 都度、設定された色補正パラメータ値を反映した画像 を、色補正画像表示領域505に表示する(ステップS 1260)。CPU200は、色補正の設定が終了する まてステップS1250~ステップS1260を繰り返 し実行する(ステップS1270:No)。すなわち、 20. CPU200は、色補正パラメータ値が変更される毎 に、色補正画像表示領域505に表示されている画像を 再描画する。なお、色補正パラメータ値を反映する際に も、設定されたパラメータ値によって、オリジナルの画 像データの値そのものは変更されず、オリジナルの画像 データの値を入力値として用い、かかる入力値に対して 設定された色空間パラメータ値を適用することによって 色空間画像を得て、次に、色空間画像のデータ値を入力 値として用い、色補正パラメータ値を適用することによ って色補正画像を表示する。

【0049】CPU200は、色補正の設定の終了、すなわち、画像処理設定処理の終了を検出すると(ステップS1270:Yes)、画像処理設定ダイアログ50を閉じて、本処理ルーチンを終了して、図5に示す処理ルーチンに戻る。CPU200は、画像処理設定ダイアログ50に表示されている実行ボタン506が入力装置240によってクリックされると、色補正の設定の終了を検出する。

【0050】図5に戻って説明を続けると、CPU200は、画像処理設定処理にて設定された各パラメータ値を反映して、色空間変換画像表示領域42、および色補正画像表示領域43の画像を再描写し、基本ダイアログ40を表示装置20上に再表示する(ステップS130)。CPU200は、画像処理設定処理にて設定された各パラメータ値の組み合わせを1つの画像処理条件(画像処理条件ファイル)としてHDD220に格納する。格納に際しては、任意のファイル名を新規に付与したり、既存のファイル名を利用して既存の画像処理条件に上書きするようにしても良い。

【0051】CPU200は、画像ファイルGFの生成 要求が発生したか否かを判定する(ステップS15 10

40

50

.

0)。画像ファイルGFの生成要求は、例えば、基本ダイアログ40のツールバー上に表示されるファイル保存コマンド45が入力装置240を介してクリックされると発生する。CPU200は、画像ファイルGFの生成要求が発生したと判定した場合には(ステップS150:Yes)、オリジナルの画像データと設定された画像処理条件とを関連付けて画像ファイルGFを生成する(ステップS160)。より具体的には、図2ないし図4を参照して説明したように、オリジナル画像データ(画像ファイル)のMakernote格納領域に113に、画像処理条件を画像処理制御情報CIとして書き込む。したがって、画像データと画像処理制御情報CIとは、相互に関連付けられて1つの画像ファイルGF内に含まれる。

【0052】CPU200は、画像ファイルGFの生成要求が発生しなかったと判定した場合には(ステップS150:No)、画像ファイルGFを生成しない。CPU200は、印刷要求が発生したか否かを判定する(ステップS170)。本実施例では、パーソナルコンピュータPCはプリンタ30と接続されているのて、画像処20理設定処理によって設定された画像処理条件を反映した結果を、プリンタ30からの出力画像によって確認することができる。

【0053】 CPU200は、印刷要求が発生したと判定した場合には(ステップS170:Yes)、印刷処理を実行して(ステップS180)、本処理ルーチンを終了する。印刷要求は、例えば、基本ダイアログ40のツールバー上に表示される印刷コマンド47が入力装置240を介してクリックされると発生する。CPU200は、印刷要求が発生したと判定した場合には(ステップS170:No)、本処理ルーチンを終了する。

【0054】印刷処理に際しては、オリジナル画像、色空間変換済画像、色補正済画像の3画像を1枚の用紙に印刷することができる。また、色空間変換済画像、および画像補整済画像については、両画像の印刷場所の近傍に設定されたパラメータ値を印刷するようにできる。

【0055】CPU200は、印刷処理を実行する際には、設定された画像処理条件を反映した画像データを、例えば、HDD220、RAM210上のワークスペースにドットマトリクス展開し、プリンタ30に対しては、ラスタデータとして送出する。

【0056】ここで、本実施例に係る画像ファイル生成装置において生成された画像ファイルGFから画像処理制御情報CIを解釈して画像処理を実行可能な画像処理制御装置、例えば、パーソナルコンピュータPC、または、プリンタ30における画像処理、印刷処理について、画像ファイルGFに含まれる画像処理制御情報CIがどのように用いられるかを中心に図11を参照して簡単に説明する。図11は本実施例に従う画像ファイルを用いて画像処理可能な画像処理装置における画像処理の

流れを示すブロック図である。 【0057】画像処理装置70は、画像ファイルGFを取り込むと、画像データの色空間をYCbCr色空間からRGB色空間に変換する。画像処理装置70は、負値処理制御情報CI(色空間パラメータ)の中で、負値処理パラメータを参照して、YCbCrデータを用いて、多変でである。サイナスデータを表現である。は、マイナスデータをがりが負値有効を示している場合には、マイナスデータを、そのまま有効値として用い、負値処理パラメータが負値無効を示して出まる場合には、マイナスデータを、例えば、sRGB色空間の表色域外のデータで、の色空間、例えば、sRGB色空間が0~255

【0058】画像処理装置70は、画像処理制御情報CI(色空間パラメータ)の中からガンマ値、マイナスガンマ値(負値有効の場合)、マトリクス値を参照して、RGBデータに対しガンマ補正処理、色空間変換処理を実行する。色空間変換処理は、3×3マトリクス(M)を用いて、RGBデータをXYZデータに変換し、その後、再度、他のマトリクスの逆マトリクスを用いてXYZデータをRGBデータに変換することによって実行される。

の値で定義される場合には、sRGB色空間の表色域を

超える256以上の正のデータも含まれる。

【0059】画像処理装置70は、画像処理制御情報CIの中から色補正パラメータを参照して、色空間変換処理が実行された画像データに対して、画像調整処理を実行する。画像調整処理に当たっては、補正モードを解釈することにより、あるいは、直接指定されたパラメータ値を用いて、画像データの入力値に対する出力値が調整される。

【0060】画像処理装置70は、画像調整が施された画像データに対して印刷処理を実行する。印刷処理では、ハーフトーン処理、RGBデータをCMYKデータへ変換する処理が実行される。画像処理装置70は、最後に、得られた画像データをラスタデータとしてプリンタに対して出力する。

【0061】以上説明したように本実施例に係る画像ファイル生成装置によれば、画像処理時における画像処理条件を指定する画像処理制御情報CIを有していない画像ファイルに対して、画像処理制御情報CIを付加することができる。したがって、画像処理制御情報CIを解釈して画像処理を実行可能な画像処理装置において、所望の画像処理を実行させることができる画像ファイルGFを生成することができる。

【0062】本実施例に係る画像ファイル生成装置は、 画像ファイルGFに付加すべき画像処理制御情報CI (画像処理条件)を設定するに際して、オリジナル画像 20

18

OG、色変換済画像CS、および色補正済画像CE、さ らに、オリジナルプレビュー画像POG、色変換済プレ 「ビュー画像PCS、および色補正済プレビュー画像PC Eを同時に表示するので、パラメータ値の変更に伴う画 像処理効果を参考にしながら、色空間パラメータ、色補 正パラメータの値を設定することができる。

【0063】その他の実施例:上記実施例では、処理対 象の画像ファイルGFが有しているExif情報を考慮する ことなく、各パラメータ値を決定し、画像処理制御情報 CIを設定したが、処理対象の画像ファイルGFからEx 10 if情報を読み込み、解析し、解析したExif情報に基づい て画像処理制御情報CIを設定しても良い。例えば、Ex if情報に含まれる各パラメータの値と、画像処理制御情 報CIにて設定される各パラメータの値とを予め対応付 けて記憶装置に格納しておき、読み込んだExif情報を解 析して、適切な色空間パラメータの値、および色補正パ ラメータの値を記憶装置から取得して、あるいは、随時 生成して自動的に設定するようにしても良い。かかる場 合には、パーソナルコンピュータPCを経由することな く、スタンドアローン型のプリンタにおいても、画像フ ァイルGFに対して画像処理制御情報CIを付加するこ とができる。

【0064】あるいは、ディジタルスチルカメラ12側 にて設定された撮影モードがExifデータとして記録され ている場合には、記録されている撮影モードを解析して 得た撮影モードに適した補正モードがCPU200によ って選択されるようにしても良い。かかる場合には、撮 影モードに応じた画像処理制御情報CIを生成すること ができるので、画像データの再現性をより撮影者の意図 に近づけることができる画像ファイルを生成することが 30

【0065】また、Exif情報に基づいて設定した色空間 パラメータの値、および色補正パラメータの値を反映し た画像を表示し、表示された画像をベースにして、さら に、色空間パラメータの値、および色補正パラメータの 値を変更するようにしても良い。かかる場合には、Exif 情報を参酌することによって、大まかな画像処理条件が 設定されるので、細かな設定だけを調整することによっ て、所望の効果を得られる画像処理条件を容易に得るこ とができる。

【0066】さらに、プリンタを始めとする画像処理装 置における画像処理条件にとどまらず、プリンタ30の 印刷条件(プリンタドライバのパラメータ値)を設定し ても良い。かかる場合には、プリンタ30は、出力制御 情報CIに基づいて設定されるので、ユーザはプリンタ ドライバの設定画面において印刷媒体の種類、解像度、 印刷方向といった印刷条件を設定する必要がない。ま た、ユーザによって画像データに対して不適切な印刷条 件が設定されるおそれがなくなり、不適切な印刷条件の 設定に起因する印刷品質の低下を防止することができ

る。したがって、ユーザは、画像ファイルの生成者が意 図する印刷結果をより確実に得ることができる。

【0067】また、上記各実施例では、画像ファイルG F内に1つの出力装置に対する画像処理制御情報CIを 付加する例を用いて説明したが、画像ファイルGF内に 異なる出力特性を有する複数の出力装置に対する出力制 御情報を格納するようにしても良い。かかる場合には、 それぞれの出力装置が自己を指定するPrintMatchingデ ータを1つの画像ファイルGFから識別して取得する機 能(構成要素)を備えることにより、取得したPrintMat chingデータに基づいて画像データGDの画像処理およ び画像出力制御を実行することができる。したがって、 複数の出力形態において、適切な画像出力状態を制御す ることができる。

【0068】以上、実施例に基づき本発明に係る画像フ ァイル生成装置を説明してきたが、上記した発明の実施 の形態は、本発明の理解を容易にするためのものであ り、本発明を限定するものではない。本発明は、その趣 旨並びに特許請求の範囲を逸脱することなく、変更、改 良され得ると共に、本発明にはその等価物が含まれるこ とはもちろんである。

【0069】上記実施例では、色空間パラメータとして ガンマ値、および色空間マトリクス、負値処理といった パラメータを用い、色補正パラメータとして、シャドゥ ポイント、ハイライトポイント、コントラストといった パラメータを用いているが、これら設定パラメータにど のようなパラメータを用いるかは任意の決定事項であ

【0070】また、図10の表に例示した各パラメータ の値は、あくまでも例示に過ぎず、この値によって本願 に係る発明が制限されることはない。

【0071】上記実施例では、撮像装置としてディジタ ルスチルカメラ12を用いて説明したが、この他にもス キャナ、ディジタルビデオカメラ等が用いられ得る。ま た、出力装置としては、プリンタの他、液晶ディスプレ イ、CRTディスプレイ、プロジェクタ等が用いられ得

【0072】上記実施例では、画像ファイルGFの具体 例としてExif形式のファイルを例にとって説明したが、 40 本発明に係る画像ファイル生成装置において用いられ得 る画像ファイルの形式はこれに限られない。すなわち、 出力装置によって出力されるべき画像データと、画像処 理装置における画像データの画像処理条件を指定する画 像処理制御情報CIとを含むことができるファイルであ れば良い。このようなファイルであれば、画像ファイル・ 生成装置において画像データと画像処理制御情報CIと を含む画像ファイルを生成することができるからであ

【0073】なお、画像データと出力装置制御情報CI とが含まれる画像ファイルGFには、画像処理制御情報 CIとを関連付ける関連付けデータを生成し、画像デー

の表示画面上に現れる画像表示画面の例を示す説明図である。 【図8】本実施例に従う画像ファイル生成処理において、色空間情報を設定する際に表示装置230の表示画面上に現れる設定画面の例を示す説明図である。

20

タと画像処理制御情報CIとをそれぞれ独立したファイルに格納し、画像処理の際に関連付けデータを参照して画像データと画像処理制御情報CIとを関連付け可能なファイルも含まれる。かかる場合には、画像データと画像処理制御情報CIとが別ファイルに格納されているものの、画像処理制御情報CIを利用する画像処理の時点では、画像データおよび画像処理制御情報CIとが一体不可分の関係にあり、実質的に同一のファイルに格納されている場合と同様に機能するからである。すなわち、少なくとも画像処理の時点において、画像データと画像処理制御情報CIとが関連付けられて用いられる態様は、本実施例における画像ファイルGFに含まれる。

【図9】本実施例に従う画像ファイル生成処理において、色補正情報を設定する際に表示装置230の表示画面上に現れる設定画面の例を示す説明図である。

【図10】補正モード、各パラメータ、補正モードを指 10 定する数値の組み合わせの一例を示す説明図である。

【図11】本実施例に従う画像ファイルを用いて画像処理可能な画像処理制御装置における画像処理の流れを示すプロック図である。

【図面の簡単な説明】

【図1】本実施例に係る画像ファイル生成装置を含む画像ファイル生成システムの一例を示す説明図である。

【図2】Exifファイルフォーマットに従う、本実施例にて生成される画像ファイルの内部構成の一例を概念的に示す説明図である。

【図3】本実施例において生成される画像ファイルGF 20 oMakernoteデータ格納領域113oデータ構造を示す説明図である。

【図4】本実施例において生成される画像ファイルGFのMakernoteデータ格納領域113内に定義されているPrintMatchingデータ格納領域114を示す説明図である。

【図5】パーソナルコンピュータPCにて実行される画像ファイル生成処理の処理ルーチンを示すフローチャートである。

【図 6 】画像ファイル生成処理の中の画像処理設定処理 の処理ルーチンを示すフローチャートである。

【図7】原画像ファイルを開いた際に、表示装置230

【符号の説明】

10…画像ファイル生成システム

12…ディジタルスチルカメラ

20…表示装置

200 ··· CPU

2 1 0 ··· R AM

0 220···HDD

240…入力装置

2.50…スロット

255…入出力端子

GF…画像ファイル (Exifファイル)

111…JPEG画像データ格納領域

112…付属情報格納領域

113 ···Makernote格納領域

114…PrintPerfectタグ

30…プリンタ

30 CV…接続ケーブル

MC…メモリカード

PC…パーソナルコンピュータ

【図1】

[図6]

画像処理設定処理 【図5】 . 【図4】 色空間設定要求? -\$1220 起助 Yes 情報の意味 オフセット PrintMatching識別子 S100 色空間設定処理 0 PIM Version情報 8 選択されたJPEG画像を RGB画像に変換して表示 S1230 Reserve 12 色空間プレビュー要求? パラメータ指定数 14 第1パラメータ番号 16 S1240 面像処理股定処理要求? 第1パラメータ設定値 18 PrintMatching データ格納領域 設定された色空間を反映した画像を表示 第2パラメータ番号 22 S120 Yes 第2パラメータ設定値 24 画像処理設定処理 第3パラメータ番号 28 色袖正設定免理 -\$130 第3パラメータ設定値 30 S1260 表示面像を再搭面 設定された色補正を反映した画像を表示 第nパラメータ設定値 n-2 第nパラメータ番号 設定された色空間および色補正のパラメー 画像処理条件として記憶装置に格納 n 設定終了? Yes 国像ファイル生成要求? リターン 画像データと設定された画像処理条件とを 関連付けて画像ファイルを生成 S170 印刷要求? -S180 Yes 印刷処理

終了

【図7】

【図9】

【図10】

モード	コントラスト	明るさ	カラーバランス	彩度	シャープネス	記憶色	ノイズ除去
1	標準	標準	標準	標準	標準	オフ	オフ
2	やや軟調	やや明るく	標準	やや低く	さ な 弱く	肌色	オフ
3	やや硬調	標準	標準	やや高く	やや強く	空·緑	オフ
4	標準	暗く	オフ	標準	やや弱く	赤	オン
5	標準	暗く	オフ	標準	標準	オフ	オン
6	やや軟調	やや明るく	弱く	やや高く	標準	緑	オフ
7	標準	標準	弱く	標準	強く	オフ	オフ
8	硬質	標準	標準	やや高く	強く	オフ	オフ
9	やや軟調	明るく	標準	標準	標準	オフ	オフ
10	標準	標準	標準	高く	やや強く	赤	オフ
11	標準	やや明るく	標準	標準	やや強く	肌色	オフ

【図11】

テーマコード(参考)

Z 5 C O 7 7

H 5C079

FΙ

H 0 4 N

1/46

5/91

フロントページの続き

(51) Int. Cl. 7	識別記号							
H04N 5	5/76							
	/91							
Fターム(参考)	2C087	AB01	BA03	BA07	BD31	BD36		
			CB20					
	5B050	BA10	CA07	DA04	EA09	EA10		
		FA02	FA03	GA08				
	5B057	AA11	BA02	CA01	CA08	CA12		
		CA16	CB01	CB08	CB12	CB16		
		CC01	CE17	CH08				
	5C052	AA12	AB03	CC06	DD02	FA02		
		FA03	FA06	FC06	FC08	FD13		
	5C053	FA04	FA07	LA03				
	5C077	LL19	MP08	PP32	PP33	PP34		
		PP37	PQ12	PQ23	SS06	TT02		
	5C079	HB01	HB03	HB04	HB05	HB12		
		LB02	MAO4	MA11	MA17	NA03		
		PA03	PA05					