PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-040893

(43) Date of publication of application: 13.02.1996

(51)Int.CI.

A61K 31/365 A61K 31/365 A61K 31/365 A61K 31/365 // C07D313/00 C07D493/04

(21)Application number : 06-204054

(71)Applicant: TAKEDA CHEM IND LTD

(22)Date of filing:

30.08.1994

(72)Inventor: YOSHIMURA KOJI

YAMANE MICHIYO HARADA SETSUO

(30)Priority

Priority number : **05215599**

Priority date: 31.08.1993

Priority country: JP

06112649

26.05.1994

JP

(54) INTERLEUKIN-1 PRODUCTION INHIBITOR

(57) Abstract:

PURPOSE: To provide an interleukin-1 production inhibitor effective for therapy or prevention of, e.g. diseases caused by overproduction of IL-1, e.g. chronic articular rheumatism, osteoporosis, sepsis or psoriasis, asthma or IL-1 dependence such as myelocytic leukemia and for immunosuppression in organ transplantation. CONSTITUTION: This inhibitor contains a compound (salt) of formula I (A...B is formula II or formula III; R1 is H, a lower alkyl or a lower acyl; R2 is H or a halogen; R3 is a lower alkyl; R4 is H or a lower acyl). As this compound, the compound of formula IV, etc., is exemplified. In addition, this inhibitor is administrated

preferably in an amount of about 0.02μg/kg to 2mg/kg per day on the compound (salt) base in the case of injection or about 5μg/kg to 500mg/kg per day in the case of oral administration.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-40893

(43)公開日 平成8年(1996)2月13日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
A 6 1 K 31/365	ABA			
	ABG			
	ABJ			
	AED			
// CO7D 313/00				
		審查請求	未請求 請求引	頂の数8 OL (全8頁) 最終頁に続く
(21)出願番号	特顧平6-204054		(71) 出額人	000002934
				武田薬品工業株式会社
(22)出顧日	平成6年(1994)8月	30日		大阪府大阪市中央区道修町四丁目1番1号
			(72) 発明者	吉村 浩二
(31)優先権主張番号	特顏平5-215599			大阪府豊能郡豊能町新光風台4丁目4番地
(32) 優先日	平5 (1993) 8 月31日		4	Ø11
(33)優先權主張国	日本 (JP)		(72)発明者	山根 美千代
(31)優先権主張番号	特顯平6-112649			大阪府淡木市穂積台6番11号
(32)優先日	平6 (1994) 5 月26日		(72)発明者	原田 節夫
(33)優先権主張国	日本 (JP)			兵庫県川西市清和台西2丁目3番地の31
(00) 56) 51			(74)代理人	弁理士 浅井 八寿夫 (外3名)
				•

(54) 【発明の名称】 インターロイキン-1 産生抑制剤

(57)【要約】

【目的】 I L-1 の産生抑制剤の提供。

【構成】一般式

【化1】

(式中、R1は水素原子、低級アルキルまたは低級アシル基を、R2は水素原子またはハロゲン原子を、R3は低級アルキル基を、R4は水素原子または低級アシル基を 【化2】

A---B12

それぞれ示す。)で表される化合物またはその塩を含有してなるインターロイキン-1産生抑制剤。

11000

【効果】 I L-1 過剰産生に伴う疾病、たとえば慢性関節リウマチや骨粗鬆症などの治療に利用し得る。

【特許請求の範囲】 【請求項1.】一般式 【化1】

それぞれ示す。) で表される化合物またはその塩を含有してなるインターロイキン-1産生抑制剤。

【請求項2】 R1がメチルである請求項1 記載の抑制 剤。

【請求項3】 R2が塩素原子である請求項1 記載の抑制 剤。

【請求項4】 R3がメチルである請求項1 記載の抑制 剤。

【請求項5】一般式 【化3】

(式中、R1は水素原子、低級アルキルまたは低級アシル基を、R2は水素原子またはハロゲン原子を、R3は低級アルキル基を、R4は水素原子または低級アシル基をそれぞれ示す。)で表わされる化合物またはその塩を含有してなる請求項1記載の抑制剤。

【請求項6】一般式 【化4】

$$R_10 \xrightarrow{R_2} 0 \xrightarrow{R_3} 0$$

(式中、R1は水索原子、低級アルキルまたは低級アシル基を、R2は水索原子またはハロゲン原子を、R3は低級アルキル基を、R4は水索原子または低級アシル基をそれぞれ示す。)で表わされる化合物またはその塩を含有してなる請求項1記載の抑制剤。

【請求項7】一般式

(式中、RIは水素原子、低級アルキルまたは低級アシル基を、R2は水素原子またはハロゲン原子を、R3は低級アルキル基を、R4は水素原子または低級アシル基を【化2】

または

【化5】

で表わされる化合物またはその塩を含有してなる請求項 5 記載の抑制剤。

【請求項8】一般式【化6】

で表わされる化合物またはその塩を含有してなる請求項 6 記載の抑制剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はインターロイキン-1産 生抑制剤に関する。

[0002]

【従来の技術】インターロイキン-1 (IL-1と略称する) は刺激を受けた単球やマクロファージをはじめ、種々の生体内細胞によって産生・分泌されるサイトカインで、免疫および炎症反応における重要なメディエーターであると考えられている。この因子は免疫系細胞(例えばT細胞、B細胞)、炎症系細胞(単球、多核白血球)、結合組織系細胞(例えば、滑膜細胞、繊維芽細胞、軟骨細胞)、中枢神経系細胞(視床下部、星状細胞)および肝細胞、血管内皮細胞等に働いて、それぞれの細胞機能を昴進する。その結果、TやBリンパ細胞の分化および増殖、IL-2やコロニー刺激因子(CS

F) など他のリンホカインの産生増強、結合組織におい てはコラゲナーゼの産生、肝臓においては急性期タンパ ク質の産生、その他骨吸収の促進などの多彩な生理作用 が発現する [M. Martinら、トレンズ インファーマコロ ジカル サイエンス (Trends in Pharmacological Scie nces), 第9巻171頁(1988)]。最近では、I L-6、IL-8、TNFなどの炎症性サイトカインの 産生誘導にも関与していることが分かってきている〔赤 星透ら、炎症、第11巻117頁(1991)]。IL -1の過剰産生が原因と考えられている疾病としては慢 性関節リウマチ、骨粗鬆症、敗血症、炎症性腸疾患、イ ンスリン依存性糖尿病、動脈硬化、乾鮮、喘息、アルコ ール性肝炎などが、また I L-1 依存性疾病としては骨 髄性白血病が知られており、さらに組織や臓器などの移 植の拒絶反応においても I L-1 が重要な働きをしてい ることが知られている (ニュー イングランド ジャー ナル オブ メディシン (New England]ournal of Medi cine)、第328巻106頁(1993)]。これらの ことから、IL-1産生を抑制する物質が見出されれ ぱ、IL-1産生過剰を原因とする上記のような疾病や I L-1 依存性腫瘍の治療および予防用薬剤、ならびに 臓器移植の際の免疫抑制剤等の開発につながると思われ る。これまでに、ステロイド剤が I L-1 の産生を抑制 することが知られているが [セルラル イムノロジー (Celluar.Immunol.),第69巻235頁(198 2)]、副作用の点で使用が制限されている。従って、 非ステロイド性の I L-1 産生抑制剤に期待が寄せられ ている。一方、14員環マクロライド誘導体の一種であ るLL-Z1640-2は原虫 (Tetrahymena pyriform is) の増殖と運動を阻害する物質として分離され [Elle stadら、ジャーナル オブ オーガニック ケミストリ - (J. Org. Chem.), 第43卷2339頁 (197 8)]、同じくその一種であるラディシコール (モノル

A.---B (2 9 11 12 9 0 H

それぞれ示す。)で表される化合物またはその塩を含有してなるインターロイキン-1産生抑制剤、特に(2)R1がメチルである上記(1)記載の抑制剤、(3)Rが塩素原子である上記(1)記載の抑制剤、(4)Rがメチルである上記(1)記載の抑制剤、(5)一般式【化9】

デンとも称される)は抗カビ剤として分離されている [Delmotte6、ネイチャー (Nature)、第171巻344頁(1953)]。ラディシコールはトランキライザー作用 [McCapra6、テトラヘドロン レター (Tetrahe dron Letter)、第15巻869頁(1964)]やsrcガン遺伝子で形質転換した3Y1細胞の形態を正常復帰させる活性を持つ事が報告されている [Kwon6、キャンサーリサーチ (Cancer Research),第52巻6926頁(1992)]。

[0003]

【発明が解決しようとする課題】本発明は、IL-1産生を抑制する物質を提供しようとするものであり、該物質はIL-1産生過剰を原因とする疾病やIL-1依存性腫瘍等の治療薬および予防薬および臓器移植の際の免疫抑制剤の開発につながると思われる。

[0004]

【課題を解決するための手段】本発明者らは上記事情に 鑑み鋭意研究を進めた結果、ある種の14員環マクロラ イド誘導体が優れたIL-1産生抑制活性を持つことを 見いだし、本発明を完成するに至った。すなわち本発明 は、(1)一般式(1)

【化7】

(式中、R1は水素原子、低級アルキルまたは低級アシル基を、R2は水素原子またはハロゲン原子を、R3は低級アルキル基を、R4は水素原子または低級アシル基を【化8】

または

(式中、R1は水素原子、低級アルキルまたは低級アシル基を、R2は水素原子またはハロゲン原子を、R3は低級アルキル基を、R4は水素原子または低級アシル基をそれぞれ示す。)で表わされる化合物またはその塩を含有してなる上記(1)記載の抑制剤、(6)一般式

【化10】

(式中、RIは水素原子、低級アルキルまたは低級アシル基を、R2は水素原子またはハロゲン原子を、R3は低級アルキル基を、R4は水素原子または低級アシル基をそれぞれ示す。)で表わされる化合物またはその塩を含有してなる上記(1)記載の抑制剤、(7)一般式【化11】

で表わされる化合物またはその塩を含有してなる上記 (5) 記載の抑制剤、および (8) 一般式 【化12】

で表わされる化合物またはその塩を含有してなる上記 (6) 記載の抑制剤に関するものである。

【0005】一般式(1)中、RIおよびR4で表される 低級アシルとしては、脂肪族アシルが好ましく、例えば 直鎖または分枝鎖状CI-5のアルキルカルボニル基

(例、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル) が挙げられる。R2で表されるハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられるが、特に塩素が好ましい。R3で表される低級アルキル基としては、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチルなどの直鎖または分枝鎖状C1-5アルキル基が挙げられる。上記塩としては、薬理学的に許容し得る無機塩基との塩(例、ナトリウム、カリウムなどのアルカリ金属塩)、有機塩基との塩

(例、トリエチルアミン塩、ジイソプロピルアミン塩)、塩基性アミノ酸との塩(例、リジン塩、アルギニン塩)などが挙げられる。一般式(1)の化合物のうち、式(2)

【化13】

で表される化合物は、LL-Z1640-2と称され、 前述のとおり文献記載の公知化合物である。また、次式 (3)

【化14】

で表される化合物はラディシコール(またはモノルデ ン) と称され、前述のとおりやはり文献記載の公知化合 物である。一般式 (1) の化合物またはその塩は、後述 の実施例でも示されるとおり、顕著な I L-1 産生抑制 作用を示す。一般式 (1) の化合物またはその塩は I L -1 のいずれのサプタイプ (α、β) の産生も抑制す る。従って、IL-1の過剰産生に伴う疾病、たとえば 慢性関節リウマチ、骨粗鬆症、敗血症、炎症性腸疾患、 インスリン依存性糖尿病、動脈硬化、乾鮮、喘息、アル コール性肝炎や I L-1 依存性の骨髄性白血病などの予 防や治療に用い得る。また、炎症やアレルギー、感染症 などによる発熱に対する解熱剤としても用いうる。さら に移植の拒絶反応においても [L-1 が重要な働きをし ていることが知られていることから、臓器移植の際の免 疫抑制剤としても用いられる。また、一般式 (1) の化 合物またはその塩は、IL-1産生機構の解明などの研. 究用試薬としても有用である。

【0006】一般式(1)の化合物は低毒性であるので 安全に使用することができる。本発明の I L-1 産生抑 制剤は上記疾病等の予防治療に用いられるが、その対象 動物としては温血哺乳動物が挙げられ、その例として は、マウス、ネコ、ウシ、ヒツジ、ヤギ、ブタ、ウサ ギ、ヒトなどが挙げられる。該投与は非経口的あるいは 経口的のいずれの方法も実施し得る。非経口的には例え ば注射剤、座剤などによる投与が、また経口的には錠 剤、カプセル剤などによる投与が挙げられる。投用低 は、その投用方法や治療目的などを考慮して適宜に選択 されるが、要は正常な状態での I L-1 量にくらべて、 その量が高い対象に対し、正常値に復するように投与す ればよい。例えば、ヒトの場合、正常者の血漿中のIL -1 β の平均値が約4 5 pg/ml であるのに対し、慢性関 節リウマチ患者の血漿中 I L-1 β 量は約98pg/mlと 2倍以上の過剰産生が認められており(ランセント (L ancent) II, 706頁, 1988年)、このよう

な正常値を目標に投与することができる。具体的に、例 えば注射投与して用いる場合には、一般式(1)の化合 物またはその薬理学的に許容し得る塩を1日当り約0. 02μg/kg~2mg/kg程度を、経口投与として 用いる場合には1日当たり約5μg/kg~500mg /kg程度を投与するのが好ましい。本発明の I L-1 産生抑制剤は、投与対象や対象疾病などを考慮して適宜 の製剤として利用される。本製剤を非経口液剤として調 製する場合は、一般式 (1) の化合物またはその薬理学 的に許容し得る塩を水性溶剤(例、蒸留水)、水溶液溶 剤(例、生理食塩水、リンゲル液)、油性溶剤(例、ゴ マ油、オリーブ油) 等の溶剤、または所望により溶解補 助剤(例、サリチル酸ナトリウム)、緩衝液(例、クエ ン酸ナトリウム、グリセリン)、等張化剤(例、ブドウ 糖、転化糖)、安定剤(例:ヒト血清アルプミン、ポリ エチレングリコール)、保存剤(例、ベンジルアルコー ル、フェノール)、無痛化剤(例、塩化ベンザルコニウ ム、塩酸プロカイン)等の添加剤と共に用いられる。該 水溶液におけるpHは、約3~8に、さらに好ましくは 約5~7に調整される。本pH調整剤としては、例えば 希酸 (例、希塩酸) や希アルカリ (例、希水酸化ナトリ ウム、希炭酸水素ナトリウム) などが挙げられる。本発 明の製剤を注射剤として調製する場合、その担体とし て、例えば、蒸留水、ヒト血清アルブミン含有生理食塩 水などが挙げられる。坐剤として調製する場合、その担 体として、例えば、飽和トリグリセライド、水素添加ト リグリセライド、ゼラチン、グリセリン、ラウリル硫酸 ナトリウムなどの油性基剤、ポリエチレングリコール油 性基剤、白ろうなどが挙げられる。

【0007】経口剤として調製する場合その担体として は、製剤素材として慣用の各種有機あるいは無機担体物 質が用いられ、固形製剤における賦形剤、滑沢剤、結合 剤、崩壊剤:液状製剤における溶解補助剤、懸濁化剤、 乳化剤、安定剤、粘稠剤などとして配合される。また必 要に応じて、防腐剤、抗酸化剤、着色剤、甘味剤などの 製剤添加物を用いることもできる。賦形剤としては、例 えば乳糖、白糖、D-マンニトール、デンプン、結晶セ ルロース、軽質無水ケイ酸などが挙げられる。滑沢剤と しては、例えばステアリン酸マグネシウム、ステアリン 酸カルシウム、タルク、コロイドシリカなどが挙げられ る。結合剤としては、例えば結晶セルロース、白糖、D -マンニトール、デキストリン、ヒドロキシプロピルセ ルロース、ヒドロキシプロピルメチルセルロース、ポリ ビニルピロリドンなどが挙げられる。崩壊剤としては、 例えばデンプン、カルボキシメチルセルロース (CM C)、カルボキシメチルセルロースカルシウム、クロス カルメロースナトリウム、カルボキシメチルスターチナ トリウムなどが挙げられる。溶解補助剤としては、例え はポリエチレングリコール、プロピレングリコール、D -マンニトール、安息香酸ベンジル、エタノール、トリ

スアミノメタン、コレステロール、トリエタノールアミ ン、炭酸ナトリウム、クエン酸ナトリウムなどが挙げら れる。懸濁化剤としては、例えばステアリルトリエタノ ールアミン、ラウリル硫酸ナトリウム、ラウリルアミノ プロピオン酸、レシチン、塩化ベンザルコニウム、塩化 ベンゼトニウム、モノステアリン酸グリセリンなどの界 面活性剤;例えばポリビニルアルコール、ポリビニルピ ロリドン、カルボキシメチルセルロースナトリウム、メ チルセルロース、ヒドロキシメチルセルロース、ヒドロ キシエチルセルロース、ヒドロキシプロピルセルロース などの親水性高分子などが挙げられる。粘稠剤として は、アラビアゴム、トラガント、CMCナトリウム、メ チルセルロース、結晶セルロース、アルギン酸塩などが 挙げられる。防腐剤としては、例えばパラオキシ安息香 酸エステル類、安息香酸エステル類、デヒドロ酢酸、ソ ルピン酸などが挙げられる。抗酸化剤としては、例えば 亜硫酸塩、アスコルビン酸などが挙げられる。上記のよ うな、本発明の製剤を製造するにあたっては、この技術 分野の常套手段を採用すればよい。本発明の製剤を投与 するに際しては、1日1回投与でもよいし、間歇的に例 えば1週間に1回程度投与する方法も挙げられる。ま た、徐放性剤に成形して投与してもよい。該徐放性剤と しては、マイクロカプセル、埋め込み剤などが挙げられ る。特に、徐放剤に成形したものを、皮下に埋め込むこ とにより、長時間にわたり主薬の効果を発揮せしめるよ うにするのが好ましい。

[0008]

【実施例】以下に実施例を挙げて、本発明を具体的に説 明するが、これによって本発明が限定されるものではな

実施例1. ヒト単球由来、THP-1細胞におけるIL -1産生抑制

ヒト単球由来細胞株、THP-1 [インターナショナル ジャーナル キャンサー (International Journal Can cer) 第26巻171頁 (1980)] を10%FCS (ウシ胎仔血清) を含むRPMI-1640培地で培養 した。 5×10⁵/m I となるようにTHP-1細胞を 播種し、リポ多糖(LPS)(終濃度100μg/m l) を加え、IL-1産生を刺激すると同時にラディシ コールまたはLL-Z1640-2を加え、8時間、3 7℃で5%CO2存在下で培養した。Endresらの方法 【クリニカル イムノロジー アンド イムノパソロジ — (Clinical Immunology and Immunopathology) 第4 9巻424頁 (1988)] によって、IL-1を抽出 し I L-1 α および I L-1 β の産生量を市販のE I A キット (CAYMAN社) を用いて求めた。 表1に示す ように、ラディシコールおよびLL-21640-2は Ι L-1 α および Ι L-1 β の産生を抑制した。 【0009】実施例2. マウス腹腔細胞に対する I L-

1 産生抑制効果

C3H/Heマウス (日本チャールズリバー) に2.5% グリコーゲン含有リン酸生理食塩緩衝液 (PBS) (0.5 ml) を腹腔内投与して3日後にRPMI-1640 培地を注入し、腹腔細胞を採取した。本腹腔細胞は40-60%のマクロファージが含まれていることが報告されている [熊谷ら、医学のあゆみ第110巻、611頁 (1979)]。こうして得た細胞を 3×10^{6} 細胞/mIとなるように播種し、LPS (終濃度 10

μg/ml)を加え、IL-1産生を刺激すると同時に ラディシコールまたはLL-Z1640-2を加え、3 7℃で5%CO2存在下で培養した。実施例1と同様の 方法でIL-1αを抽出し、市販のEIAキット (Genz yme社)を用いてマウス腹腔細胞のIL-1α産生量を 求めた。 [表1] に示すように、ラディシコールおよび LL-Z1640-2はIL-1αの産生を抑制した。 【表1】

IL-1産生抑制作用

	I C ** (nM)						
	THP-	マウス腹腔細胞					
	[L-1α	IL-1β	I L - 1 a				
ラディシコール	88	120	170				
LL-Z1640-2	61	97	. 86				

【0010】実施例3. THP-1細胞に対するIL-1 *B* 転写の抑制

THP-1細胞にリポ多糖(LPS)(終濃度 100 μ g/ml)を添加すると同時にラディシコールまたは LL-Z1640-2を終濃度が500 ng/mlとなるように添加した。また、薬剤無処理および溶媒に用いたメタノールを添加したものをコントロールとして用いた。3時間培養後の細胞をPBSで2度洗浄し、RNA調製に用いた。RNAの抽出はRNA抽出キット(ファルマシア社)を用いた。得られた全RNA(10 μ g)を用い、Maniatisらの方法(モレキュラー クローニング(Molecular cloning);実験手引書)に従い、電気 泳動を行い、泳動終了後にナイロンフィルター(ハイボンド-N、アマシャム社)にトランスファーした。フィ

ルターを80℃、2時間加熱することによりRNAを固定した。ヒトIL-1βcDNAあるいはヒトβアクチンcDNAをRTG DNAラベリングキット(ファルマシア社)を用いて放射線標識したものをプロープとして用い、上述のフィルターを用いてハイブリダイゼーションを行った(Maniatis ら、モレキュラー バイオロジー(Molecular cloning);実験手引書(A Laboratory Manual)]。ハイブリダイゼーションの解析はバイオイメージアナライザーBAS2000(富士写真フィルム株式会社)を用い、β-アクチンmRNAを内部標準として補正したIL-1βmRNAの相対比を求めた。〔表2〕に示すように、これらの化合物は転写レベルでIL-1βの産生を抑制していることが明らかになった。【表2】

11.-1 転复物制作用

処 理	IL-1βmRNA*			
無処理	1.2%			
+LPS	128 %			
+LPS+メタノール	100 %			
+LPS+LL-Z1640-2	0.1%			
+LPS+ラディシコール	45.9%			

* βーアクチンmRNAを内部標準として補正した。

【0011】実施例4.ラットに対する解熱効果 SDラット(7週令雄性Jcl:1群6匹使用)にLPS (シグマ社;生理食塩水溶液)1.25μg/kgを静脈内投与し、投与後3時間から6時間まで1時間間隔で直腸温度を測定した。LL-Z1640-2(5%アラビアゴム溶液に懸濁)はLPS投与1時間前に経口投与を行った。薬物の効果は非治療対照群から検体投与群の 体温の差を指標にし、有意差検定(Dunnett's test)を行い評価した。その結果LL-Z1640-2の12. 5mg/kg,経口投与時はLPSによる発熱体温に対して明瞭な解熱効果を示さなかったが、50mg/kg,経口投与時ではLPS投与後5時間および6時間後の発熱体温を有意に下げた〔表3〕。

【表3】 .

1.1.-21640-2の解験効果

サンプル	LL-Z1640-2					体 温 (で)					
	投与量(mg/kg)					1時間後	投与時	3時間後	4時間後	5時間後	6時間後
コントロール	0	平		均	值	37. 93	37. 87	38. 28	38. 73	39. 13	39, 17
		极	牌	具	楚	0.061	- 0. 128	0. 130	0. 071	0.088	0. 123
1	1 2. 5	平		均	位	37. 93	37. 97	38. 55	28. 97	39. 22	39. 03
		禄	雌	問	差	0.071	0. 123	0. 123	0. 189	0.119	0. 126
		יב	' - D	-~	の笠	0.00	0. 10	0. 27	0. 24	0.09	-0.14
2	50	平		均	值	37.93	37. 68	38. 05	38. 25	38. 57	38. 63
		標	推	凯	嫠	0.076	0.060	0. 123	0.112	0. 120	0. 123
		עב	10	-12	の差	0.00	-0.19	-0. 23	-0.48	-0.56	-0.54

【0012】実施例5.マウス腹腔細胞に対する [L-1β産生抑制効果

実施例2と同様に調製したマウス腹腔細胞を3×1 Φ 細胞/m!となるように播種し、LPS (終濃度 10 µ g/m l) を加えて l L-1 産生を刺激すると同時にL L-Z1640-2を加え、5%CO 2存在下37℃で 培養した。実施例1と同様の方法でIL-1βを抽出 し、市販のEIAキット (PreSeptive社) を用いてマウ

LL-Z16.40-2

乳糖

コーンスターチ

ステアリン酸マグネシウム

ス腹腔細胞のIL-1β産生量を求めた。その結果、L L-Z1640-2はIL-1β産生を抑制し、そのI C50は250nMであった。

【0013】製剤例1

下記に示す処方の全成分を均一に混和し、ゼラチンカプ セルに充填し、カプセル1個当たり30mgのLL-Z 1640-2を含有するカプセル剤を製造する。

ターチと混和し、混合物を圧縮成型し、錠剤1個当たり

30mgのラディシコールを含有する錠剤を製造する。

LL-21640-2とカルポキシメチルセルロースナ

トリウムを乳鉢中で均一に混和し、サッカリンナトリウ

ムを精製水に溶かした液を少しずつ加えてよくかき混ぜ

る。安息香酸ナトリウム10%水溶液1mlを加え、精

製水で全量を100mlとし、100mlあたり300

mgのLL-Z1640-2を含有する懸濁剤を製造す

30 mg

100mg

40 mg

10 mg

1カプセル 180mg

【0014】製剤例2

ラディシコールとステアリン酸マグネシウムを可溶性デ ンプンの水溶液で顆粒化し、乾燥後、乳糖及びコーンス

ラディシコール

乳糖

コーンスターチ

可溶性デンプン

ステアリン酸マグネシウム

30 mg

65mg

30 mg

35 mg

20 mg

1錠 180mg

る。

【0015】製剤例3

LL-Z1640-2を30%(w/v)ポリエチレング リコール400を含む生理食塩水に溶解してLL-21 640-2の0.05%溶液を調製し、滅菌濾過後パイ アルに30mlずつ分注し、パイアル1個当たり15m gのLL-Z1640-2を含有する注射剤を製造す る。

【0016】製剤例4

LL-Z1640-2

カルボキシメチルセルロースナトリウム

サッカリンナトリウム

安息香酸ナトリウム

0.3g

0.04g

0. 1 g

100ml

[0017] 【発明の効果】一般式(1)で表される化合物またはそ の塩、たとえばLL-Z1640-2やラディシコール は I L-1 産生抑制作用を有するので、炎症や発熱など

2. 0 g

全低

のIL-1産生過剰を原因とする疾病やIL-1依存性 腫瘍を治療および予防する薬剤あるいは臓器移植の際の 免疫抑制剤として使用可能である。

フロントページの続き

(51) Int. Cl.⁶

識別記号

宁内整理番号

FΙ

技術表示箇所

C 0 7 D 493/04 1 1 1