

CSAI 253 PROJECT

TEAM MEMBERS

NAME	ID	SECTION
Amr Yasser	202301043	5
Amr Mahmoud	202300491	2
Momen Mahmoud	202300971	2
Aya Ayoub	202300348	2

Team:

Machine Not Learning

Team Email:

s-amr.anwar@zewailcity.edu.eg

TASKS WORKLOAD

TASK	DONE BY
Data Loading & Cleaning	All
EDA: Visualize data distributions using histograms, box plots, and scatter plots.	Amr Yasser
EDA: Identify correlations between features.	Amr Yasser
EDA: Explore potential relationships between features and the target variable.	Amr Yasser
FE: Create new features or transform existing ones if necessary.	Amr Yasser
FE: Handle categorical variables using appropriate encoding techniques.	Amr Mahmoud
FE: Choose 20 most important features to work with.	Momen
FE: Scale numerical features if required.	Aya
MI: K-Nearest Neighbors (KNN) & evaluate its performance & compare it with different models.	Aya
MI: Logistic Regression & evaluate its performance & compare it with different models.	Amr Yasser
MI: SVM & evaluate its performance & compare it with different models.	Amr Mahmoud
MI: Random Forest & evaluate its performance & compare it with different models.	Momen
Stacking Ensembling technique	Momen

1. Problem statement

Network intrusion detection:

- Objective: Our objective is to develop four different machine learning models capable of classifying network connections as either normal or anomalous. Anomalous connections reveal malicious activities and potential threats.
- **Significance:** Detecting anomalous connections is crucial for protecting military networks from intrusions and cyberattacks.

2. Data Exploration

Exploratory Data Analysis (EDA)

Visualized numerical features using histograms

Histograms of Numerical Features

• Visualized numerical features using boxplots

Box Plots of Numerical Features

Visualized key numerical features' relation using scatter/pair plots

1.00

0.75

0.25

- 0.00

- -0.25

- -0.50

-0.75

• Visualized the key numerical features' relation using the correlation matrix

Visualized the relation between numerical features and the target using box plots

Visualized categorical features using count plots

Count Plots for Categorical Features

Visualized categorical features using pie charts

Summarize key insights from the exploratory data analysis.

Data Preprocessing

Data Handling:

- Missing values: Dataset contained no missing values
- Columns: Divided columns into numerical and categorical
- Target Variable: class
- Validations: Validated the protocol column to ensure it only contains a single valid element and not a list of elements
- Outliers: Detected outliers using Interquartile Range (IQR), then
 handled them using winsorization algorithms. We compared before and
 after handling them using histograms and boxplots, for example, with the
 source_bytes column:

Before:

After:

- **Inconsistencies:** Fixed inconsistencies by grouping similar columns into rate, count, binary, and categorical.
 - Rate: We ensured all rates are between 1 and 0 (.clip(lower=0, upper=1)
 - **Count:** We ensured all counts are a positive number (>= 0)
 - Binary: We ensured all binary is either 1 or 0 (.isin([0, 1]))
 - Categorical: We ensured all categoricals are lowercase and removed any unnecessary spaces (.str.lower().str.strip())

Feature Engineering:

- **New Features**: We created 3 new features:
 - Aggregated Error Rate: This feature is calculated as the mean of four error-related columns, providing a consolidated metric for overall network error behavior.
 - Log Transformations: The np.log1p function is used on source_bytes and destination_bytes to mitigate skewness and make these features more suitable for modeling.
 - Connection Intensity: This derived feature captures the rate of connections relative to the connection time, potentially highlighting abnormal activity.

Categorical Features Splitting:

We separated the categorical features into:

- X: All features without target class
- y: The target class

Then we used train_test_split to split them into:

- **X_train, y_train:** 80% of the data was used for training the models
- **X_test**, **y_test**: 20% of the data was used for testing the models

Encoding Techniques:

- Label Encoding
 - Applied to categorical features (connection_status, protocol, service_type) using sklearn's LabelEncoder
 - Created a separate encoder instance for each categorical feature to maintain independent mapping
 - Stored all encoders in a dictionary for potential inverse transformation or future reference
 - Handled unknown values in test set by replacing them with the most frequent value from the training set
 - Performed mutual information feature selection before final encoding to ensure only informative features are retained
 - Encoded the target variable 'class' for classification using LabelEncoder().fit_transform()

- Applied the same trained encoders to both training and test sets to ensure consistent transformation
- Used feature selection based on mutual information to identify and select only relevant categorical features

& One-Hot encoding:

- Used **label encoding** with the target **class**, and then fit it on the training target using .fit_transform(y_train)
- Used One-Hot encoding with the rest of the features, and then fit it on the training data using

```
.fit transform(X train[categorical features])
```

- Gave the new encoded features meaningful names using
 .get_feature_names_out(categorical_features), and
 then turned them into DataFrames so that they have column
 names and row indexes to match the original data.
- Made sure X_train and X_test have the **same columns** by identifying any missing columns and adding them to X_test with all **values set to 0**, and then we **reordered** X_test to match X_train.


```
#one hot encoding
one_hot_encoder = OneHotEncoder(sparse_output=False, drop='first', handle_unknown='ignore')

X_train_encoded = one_hot_encoder.fit_transform(X_train[categorical_features])
X_test_encoded = one_hot_encoder.transform(X_test[categorical_features])
encoded_feature_names = one_hot_encoder.get_feature_names_out(categorical_features)

X_train_encoded_df = pd.DataFrame(X_train_encoded, columns=encoded_feature_names, index=X_train.index)
X_test_encoded_df = pd.DataFrame(X_test_encoded, columns=encoded_feature_names, index=X_test.index)

#make sure x test and x train have same columns
missing_cols = set(X_train_encoded_df.columns) - set(X_test_encoded_df.columns)
for col in missing_cols:
    X_test_encoded_df[col] = 0  #add missing
```

Normalization:

- We normalized the data in Non Tree-based models using StandardScaler to ensure that all features contribute equally, as

 Non Tree-based models are sensitive to the range of the features.
- Not normalizing the data in Tree-based models is better for efficiency since they rank each row either way whether it's between a range or not.

• Feature Selection:

 In order to choose the 20 most important features, we compared trained an initial Random Forest model to use Recursive Feature Elimination (RFE) and extract the desired features:

['source_bytes', 'connection_intensity', 'log_source_bytes',
'connection_status', 'connection_count',
'destination_same_server_rate', 'destination_host_count',
'destination_host_server_count', 'log_destination_bytes',
'destination_same_source_port_rate', 'server_request_count',
'destination_different_server_rate', 'destination_bytes',
'service_type', 'destination_server_different_host_rate', 'protocol',
'authentication_status', 'server_different_host_rate',
'connection_time', 'syn_error_rate']

Numerical Features Scaling:

- Before scaling there was 544 (Anomaly), while on the other hand,
 the (Normal) was 13800.
- We used SMOTE to upscale the minority features (Anomaly) in our target column "class".
- The final result 10750 (Anomaly), 10750 (Normal), showing that we now have a balanced column resulting in no bias when training.

• Feature Selection Techniques:

Due to the nature of One-Hot encoding, many new columns are added, to combat this, we used each of the following Feature Selection Techniques:

- Redundant Feature Elimination (RFE)
- Correlation Matrix Selection
- Variance Thresholding
- SMOTE


```
from sklearn.ensemble import RandomForestClassifier
# Use label-encoded training features and target
X = X_{train1.copy()}
y = y_train1.copy()
# Train Random Forest model
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X, y)
# Get feature importances
importances = rf_model.feature_importances_
feature_names = X.columns
# Create DataFrame and select top 20
importance_df = pd.DataFrame({
     'Feature': feature_names,
     'Importance': importances
}).sort_values(by='Importance', ascending=False)
top_20_features = importance_df.head(20)['Feature'].tolist()
# Filter train/test sets
X_train = X_train1[top_20_features].copy()
X_test = X_test[top_20_features].copy()
print("Top 20 selected features:")
print(top_20_features)
from imblearn.over_sampling import SMOTE
smote = SMOTE(random_state=42)
X_train_resampled, y_train_resampled = smote.fit_resample(X_train_scaled_df, y_train1)
from sklearn.feature_selection import VarianceThreshold
var_thresh = VarianceThreshold(threshold=0.01)
X_train_selected = var_thresh.fit_transform(X_train_resampled)
X_test_selected = var_thresh.transform(X_test_scaled_df)
selected_feature_names = X_train_scaled_df.columns[var_thresh.get_support()]
X_train_selected_df = pd.DataFrame(X_train_selected, columns=selected_feature_names)
X_test_selected_df = pd.DataFrame(X_test_selected, columns=selected_feature_names)
X_test_selected_df = X_test_selected_df.reset_index(drop=True)
y_test = pd.Series(y_test).reset_index(drop=True)
#final train and test datasets
data_train_final = pd.concat([X_train_selected_df, pd.Series(y_train_resampled, hame='class')], axis=1<mark>)</mark>
data_test_final = pd.concat([X_test_selected_df, pd.Series(y_test, name='class')], axis=1)
```


Model Selection and Implementation

Model Selection and Implementation:

- 1. Random Forest:
- 2. KNN:
- 3. SVM:
- 4. Logistic Regression:
- 5. Decision Tree:
- 6. XGBoost:

1. Random Forest

Why:

- Handles high-dimensional data well (important post one-hot encoding).
- Not sensitive to feature scaling.
- Deals well with imbalanced datasets (especially with class weighting or balanced subsampling).
- Provides feature importance, helping analyze your features further.

Use Case:

- Dataset has a mix of encoded categorical and numerical features.
- It's robust, interpretable, and resistant to overfitting due to ensembling.

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.utils.class_weight import compute_class_weight

class_weights = compute_class_weight(class_weight='balanced', y=data_train_final['class'])
weights = dict(zip([0,1], class_weights))

#train random forest
rf_model = RandomForestClassifier(class_weight=weights, random_state=42)
rf_model.fit(data_train_final.drop(columns='class'), data_train_final['class'])

#predict
y_pred_rf = rf_model.predict(data_test_final.drop(columns='class'))

#calculate
print("Random Forest Model Performance:")
print(f"Accuracy: {accuracy_score(data_test_final['class'], y_pred_rf)}")
print(classification_report(data_test_final['class'], y_pred_rf))
print("\nConfusion_matrix(data_test_final['class'], y_pred_rf))
print(confusion_matrix(data_test_final['class'], y_pred_rf))
```


2. K-Nearest Neighbors (KNN)

Why:

- Simple, intuitive baseline.
- Makes no assumptions about the data distribution.
- Learns non-linear patterns well (especially in clean datasets).

Challenges:

- Sensitive to high dimensionality (due to one-hot encoding).
- Needs feature scaling (like StandardScaler).
- Slower with large datasets.

Use Case:

- Good benchmark to compare how more complex models perform.
- Can help identify if local patterns exist in your feature space.

```
from sklearn.neighbors import KNeighborsClassifier

#train KNN
knn_model = KNeighborsClassifier()
knn_model.fit(data_train_final.drop(columns='class'), data_train_final['class'])

#predict
y_pred_knn = knn_model.predict(data_test_final.drop(columns='class'))

#calculate
print("KNN Model Performance:")
print(f"Accuracy: {accuracy_score(data_test_final['class'], y_pred_knn)}")
print("\nClassification Report:")
print(classification_report(data_test_final['class'], y_pred_knn))
print("\nConfusion Matrix:")
print(confusion_matrix(data_test_final['class'], y_pred_knn))
```


3. Support Vector Machine (SVM)

Why:

- Effective in high-dimensional spaces.
- Works well for clear margin of separation between classes.
- Powerful for non-linear classification with kernel tricks.

Challenges:

- Not scalable for very large datasets.
- Needs careful tuning (kernel, C, gamma).
- Requires feature scaling.

Use Case:

- My dataset is well-prepared, and relatively balanced after SMOTE.
- A powerful classifier that's sensitive to decision boundaries.

```
param_grid = {
    'C': [0.1, 1, 5, 7, 10], # try more values for finer tuning 'gamma': ['scale', 0.01, 0.001], # 'scale' is usually a good default 'kernel': ['rbf', 'linear', 'poly'] # try different kernel types
svm = SVC(random_state=42)
grid_search = GridSearchCV(estimator=svm, param_grid=param_grid, cv=5, scoring='accuracy', n_jobs=-1, verbose=1)
grid_search.fit(data_train_final.drop(columns='class'),    data_train_final['class'])
best_svm_model = grid_search.best_estimator_
#predict with best model
y_pred_svm = best_svm_model.predict(data_test_final.drop(columns='class'))
#evaluate
print("SVM Model Performance:")
print(f"Best Parameters: {grid_search.best_params_}")
print(f"Accuracy: {accuracy_score(data_test_final['class'], y_pred_svm)}")
print("\nClassification Report:")
print(classification_report(data_test_final['class'], y_pred_svm))
print("\nConfusion Matrix:")
print(confusion_matrix(data_test_final['class'], y_pred_svm))
```


4. Logistic Regression

Why:

- Fast, interpretable, and mathematically elegant.
- Ideal if your classes are linearly separable (or nearly so).
- Works great with dummy or one-hot encoding.

Challenges:

- Can underperform if data is non-linear.
- Assumes independent features.

Use Case:

- It's a baseline model.
- Useful for checking how far complex models go beyond linear separation.

```
from sklearn.linear_model import LogisticRegressionCV

#train logistic regression
logreg_model = LogisticRegression(random_state=42)
logreg_model.fit(data_train_final.drop(columns='class'), data_train_final['class'])

#predict
y_pred_logreg = logreg_model.predict(data_test_final.drop(columns='class'))

#calculate
print("Logistic Regression Model Performance:")
print(f"Accuracy: {accuracy_score(data_test_final['class'], y_pred_logreg)}")
print("\nClassification_report(data_test_final['class'], y_pred_logreg))
print("\nConfusion_matrix(data_test_final['class'], y_pred_logreg))
```


5. Decision Tree

Why:

- Easy to understand.
- Handles both categorical and numerical features.
- No need for scaling or dummy encoding (though we've already encoded which is still fine).

Challenges:

- Prone to overfitting.
- Lower performance than ensemble models.

Use Case:

- It's a transparent model that gives insight into the data.
- Acts as a base learner for other models (like Random Forest and XGBoost).

```
#train decision tree
dt_model = DecisionTreeClassifier(random_state=42)
dt_model.fit(data_train_final.drop(columns='class'), data_train_final['class'])

#predict
y_pred_dt = dt_model.predict(data_test_final.drop(columns='class'))

#calculate
print("Decision Tree Model Performance:")
print(f"Accuracy: {accuracy_score(data_test_final['class'], y_pred_dt)}")
print("\nClassification_report(data_test_final['class'], y_pred_dt))
print("\nConfusion Matrix:")
print(confusion_matrix(data_test_final['class'], y_pred_dt))
```


6. XGBoost (Extreme Gradient Boosting)

Why:

- Highly efficient boosted tree algorithm.
- Handles missing data, outliers, and imbalance well.
- Built-in regularization which helps avoid overfitting.
- Best for tabular data in most Kaggle competitions. (we're practicing)

Use Case:

- Data is already preprocessed and balanced which is ideal for XGBoost.
- Pushing for high accuracy, while managing generalization.

```
import xgboost as xgb
classes = np.array([0, 1])
class_weights = compute_class_weight(class_weight='balanced', classes=classes, y=data_train_final['class'])
weights = dict(zip(classes, class_weights))
sample_weights = data_train_final['class'].map(weights)
xgb_model = xgb.XGBClassifier(
   objective='binary:logistic',
    use_label_encoder=False,
    eval_metric='logloss',
    random_state=42
xgb_model.fit(
   data_train_final.drop(columns='class'),
    data_train_final['class'],
    sample_weight=sample_weights
y_pred_xgb = xgb_model.predict(data_test_final.drop(columns='class'))
print("XGBoost Model Performance:")
print(f"Accuracy: {accuracy_score(data_test_final['class'], y_pred_xgb)}")
print("\nClassification Report:")
print(classification_report(data_test_final['class'], y_pred_xgb))
print("\nConfusion Matrix:")
print(confusion_matrix(data_test_final['class'], y_pred_xgb))
```


Model Evaluation (One-Hot Encoding)

Random Forest: Random forest best performed with an overall accuracy of 0.9979

- 1. The classification report showed that:
- Class 0 had: Precision=1. Recall= 0.95, and F1-score= 0.97
- Class 1 had: Precision=1, Recall= 1, and F1-score= 1
- 2. The **Confusion Matrix** showed that:
- True Negatives(TN) = 111, True Positives(TP) = 2691
- False Negatives(FN) = 0, False Positives(FP) = 6

Random Forest Model Performance: Accuracy: 0.9978632478632479					
Classification Report:					
F	recision	recall	f1-score	support	
ø	1.00	0.05	0.97	117	
9	1.00	0.95	0.97	117	
1	1.00	1.00	1.00	2691	
accuracy			1.00	2808	
macro avg	1.00	0.97	0.99	2808	
weighted avg	1.00	1.00	1.00	2808	
Confusion Matri [[111 6] [0 2691]]	ix:				

KNN: The K-Nearest Neighbors (KNN) model achieved an overall accuracy of 0.9954.

- 1. The classification report showed that:
- Class 0 had: Precision = 0.93, Recall = 0.97, and F1-score = 0.95
- Class 1 had: Precision = 1.00, Recall = 1.00, and F1-score = 1.00
- 2. The confusion matrix showed that:
- True Negatives(TN) = 113, True Positives(TP) = 2682
- False Negatives(FN) = 9, False Positives(FP) = 4

KNN Model Performance: Accuracy: 0.9953703703703				
Classification	Report: precision	recall	f1-score	support
0 1	0.93 1.00	0.97 1.00	0.95 1.00	117 2691
accuracy macro avg weighted avg	0.96 1.00	0.98 1.00	1.00 0.97 1.00	2808 2808 2808
Confusion Matr [[113	ix:			

SVM: SVM performed with an overall accuracy of 99.64%

- 1. The classification report showed that:
- Class 0 had: Precision = 0.94, Recall = 0.97, and F1-score = 0.96
- Class 1 had: **Precision = 1.00**, **Recall = 1.00**, and **F1-score = 1.00**
- 1. The confusion matrix showed that:
- True Negatives(TN) = 2684, True Positives (TP) = 114
- False Negatives(FN) = 7, False Positives (FP) = 3

```
Fitting 5 folds for each of 30 candidates, totalling 150 fits
SVM Model Performance:
Best Parameters: {'C': 10, 'gamma': 0.01, 'kernel': 'rbf'}
Accuracy: 0.9964387464387464
Classification Report:
              precision
                           recall f1-score
                                               support
           0
                   0.94
                             0.97
                                       0.96
                                                   117
                   1.00
           1
                             1.00
                                       1.00
                                                  2691
    accuracy
                                       1.00
                                                  2808
                                       0.98
   macro avg
                   0.97
                             0.99
                                                  2808
weighted avg
                   1.00
                                       1.00
                             1.00
                                                  2808
Confusion Matrix:
[[ 114
   7 2684]]
```


Logistic Regression: Logistic Regression performed with an overall accuracy of 98.04%

- 1. The classification report showed that:
- Class 0 had: Precision = 0.7, Recall = 0.93, and F1-score = 0.80
- Class 1 had: Precision = 1.00, Recall = 0.98, and F1-score = 0.99
- 2. The confusion matrix showed that:
- True Negatives(TN) = 109, True Positives (TP) = 2644
- False Negatives(FN) = 47, False Positives (FP) = 8

Logistic Regression Model Performance:					
Accuracy: 0.9	80413105413	1054			
,					
Classificatio	n Report:				
	precision	recall	f1-score	support	
0	0.70	0.93	0.80	117	
1	1.00	0.98	0.99	2691	
-	1.00	0.50	0.55	2001	
accuracy			0.98	2808	
macro avg	0.85	0.96	0.89	2808	
weighted avg	0.98	0.98	0.98	2808	
Confusion Mat	rix:				
[[109 8]					
[47 2644]]					

Decision Tree: Logistic Regression performed with an overall accuracy of 99.75%

- 1. The classification report showed that:
- Class 0 had: **Precision = 0.98**, **Recall = 0.96**, and **F1-score = 0.97**
- Class 1 had: Precision = 1.00, Recall = 1.00, and F1-score = 1.00
- 2. The confusion matrix showed that:
- True Negatives(TN) = 112, True Positives (TP) = 2689
- False Negatives(FN) = 2, False Positives (FP) = 5

Decision Tree Model Performance: Accuracy: 0.9975071225071225					
Classification Report: precision recall f1-score support					
0 1	0.98 1.00	0.96 1.00	0.97 1.00	117 2691	
accuracy macro avg weighted avg	0.99 1.00	0.98 1.00	1.00 0.98 1.00	2808 2808 2808	
Confusion Matrix: [[112					

XGBoost: Logistic Regression performed with an overall accuracy of 99.82%

- 1. The classification report showed that:
- Class 0 had: Precision = 0.99, Recall = 0.97, and F1-score = 0.98
- Class 1 had: Precision = 1.00, Recall = 1.00, and F1-score = 1.00
- 2. The confusion matrix showed that:
- True Negatives(TN) = 2690, True Positives (TP) = 113
- False Negatives(FN) = 1, False Positives (FP) = 4

XGBoost Model Performance:						
Accuracy: 0.9	Accuracy: 0.9982193732193733					
Classificatio	n Report:					
	precision	recall	f1-score	support		
0	0.99	0.97	0.98	117		
1	1.00	1.00	1.00	2691		
accuracy			1.00	2808		
macro avg	0.99	0.98	0.99	2808		
weighted avg	1.00	1.00	1.00	2808		
Confusion Mat [[113						

Model Evaluation (Label Encoding)

Random Forest: Random forest best performed with an overall accuracy of 99.75%

- 3. The classification report showed that:
- Class 0 had: Precision=0.99. Recall= 0.95, and F1-score= 0.97
- Class 1 had: Precision=1, Recall= 1, and F1-score= 1
- 4. The Confusion Matrix showed that:
- True Negatives(TN) = 111, True Positives(TP) = 6
- False Negatives(FN) = 1, False Positives(FP) = 2690

```
Random Forest Model Performance:
Accuracy: 0.9975071225071225
Classification Report:
            precision recall f1-score support
               0.99
                        0.95
                                   0.97
         0
                                             117
                1.00
                        1.00
                                  1.00
                                            2691
                                   1.00
                                            2808
   accuracy
              0.99 0.97 0.98
1.00 1.00 1.00
                                            2808
  macro avg
weighted avg
                                            2808
Confusion Matrix:
[[ 111
    1 2690]]
```


KNN: The K-Nearest Neighbors (KNN) model achieved an overall accuracy of 99.43%

- 3. The classification report showed that:
- Class 0 had: Precision = 0.92, Recall = 0.95, and F1-score = 0.93
- Class 1 had: Precision = 1.00, Recall = 1.00, and F1-score = 1.00
- 4. The confusion matrix showed that:
- True Negatives(TN) = 111, True Positives(TP) = 6
- False Negatives(FN) = 10, False Positives(FP) = 2681

```
KNN Model Performance:
Accuracy: 0.9943019943019943
Classification Report:
              precision
                           recall f1-score
                                              support
           0
                   0.92
                             0.95
                                       0.93
                                                  117
           1
                             1.00
                  1.00
                                       1.00
                                                 2691
                                       0.99
                                                 2808
    accuracy
   macro avg
                   0.96
                             0.97
                                       0.96
                                                 2808
weighted avg
                             0.99
                                       0.99
                                                 2808
                   0.99
Confusion Matrix:
[[ 111 6]
   10 2681]]
```


SVM: SVM performed with an overall **accuracy** of **99.57%**

- 2. The classification report showed that:
- Class 0 had: Precision = 0.95, Recall = 0.95, and F1-score = 0.95
- Class 1 had: **Precision = 1.00**, **Recall = 1.00**, and **F1-score = 1.00**
- 2. The confusion matrix showed that:
- True Negatives(TN) = 111, True Positives (TP) = 6
- False Negatives(FN) = 6, False Positives (FP) = 2685

```
Fitting 5 folds for each of 30 candidates, totalling 150 fits
SVM Model Performance:
Best Parameters based on Accuracy: {'C': 10, 'gamma': 'scale', 'kernel': 'rbf'}
Accuracy: 0.9957264957264957
Classification Report:
             precision recall f1-score
                                             support
          0
                  0.95
                            0.95
                                      0.95
                                                117
                            1.00
                  1.00
                                      1.00
                                               2691
                                      1.00
                                               2808
    accuracy
                 0.97
                                      0.97
                            0.97
                                               2808
   macro avg
                 1.00
                                     1.00
                                               2808
weighted avg
                            1.00
Confusion Matrix:
[[ 111
        6]
  6 2685]]
```


Logistic Regression: Logistic Regression performed with an overall **accuracy of 96.79%**

- 3. The classification report showed that:
- Class 0 had: Precision = 0.57, Recall = 0.92, and F1-score = 0.71
- Class 1 had: Precision = 1.00, Recall = 0.97, and F1-score = 0.98
- 4. The confusion matrix showed that:
- True Negatives(TN) = 108, True Positives (TP) = 9
- False Negatives(FN) = 81, False Positives (FP) = 2610

Logistic Regression Model Performance: Accuracy: 0.967948717948718						
Classification Report: precision recall f1-score support						
0 1	0.57 1.00	0.92 0.97	0.71 0.98	117 2691		
accuracy macro avg weighted avg	0.78 0.98	0.95 0.97	0.97 0.84 0.97	2808 2808 2808		
Confusion Matrix: [[108						

Decision Tree: Logistic Regression performed with an overall accuracy of 99.60%

- 3. The classification report showed that:
- Class 0 had: Precision = 0.96, Recall = 0.95, and F1-score = 0.95
- Class 1 had: Precision = 1.00, Recall = 1.00, and F1-score = 1.00
- 4. The confusion matrix showed that:
- True Negatives(TN) = 111, True Positives (TP) = 6
- False Negatives(FN) = 5, False Positives (FP) = 2686

Decision Tree Model Performance: Accuracy: 0.9960826210826211					
Classification Report: precision recall f1-score support					
Ø 1	0.96 1.00	0.95 1.00	0.95 1.00	117 2691	
accuracy			1.00	2808	
macro avg	0.98	0.97			
weighted avg	1.00	1.00	1.00	2808	
Confusion Mat [[111 6] [5 2686]]	rix:				

XGBoost: Logistic Regression performed with an overall accuracy of 99.67%

- 3. The classification report showed that:
- Class 0 had: Precision = 0.97, Recall = 0.95, and F1-score = 0.96
- Class 1 had: Precision = 1.00, Recall = 1.00, and F1-score = 1.00
- 4. The confusion matrix showed that:
- True Negatives(TN) = 111, True Positives (TP) = 6
- False Negatives(FN) = 3, False Positives (FP) = 2688

XGBoost Model Performance: Accuracy: 0.9967948717948718				
Classification R pr	eport: ecision	recall	f1-score	support
0 1	0.97 1.00	0.95 1.00	0.96 1.00	117 2691
accuracy macro avg weighted avg	0.99 1.00	0.97 1.00	1.00 0.98 1.00	2808 2808 2808
Confusion Matrix [[111	:			

Conclusion:

The XGBoost model has the best accuracy, precision, recall, and F-1 scores out of the 6 models. However, the winner is Random Forest since its confusion matrix showed false negative(FN) =0 which is the least out of all the models alongside the second best accuracy, precision, recall, and F-1 score. Given the nature of our field, false negatives (undetected intrusions) are intolerable thus we must pick the least false negatives out of the models.

Ensembling Technique:

Stacking:

- Stacking using Random forest, SVM, and Decision tree, with Random Forest
 as the meta-model showed performance measures the same as using only
 Random forest.
- This shows that these 6 false positives are either borderline or noisy or mislabeled as class 1 instead of class 0.
- Choosing to pursue 100% accuracy will either reduce real-world generalizability
 or cause overfitting which isn't worth it as all false negatives are 0 and all true
 positives are correctly classified given the nature of the dataset.

```
Stacking Model Performance:
Accuracy: 0.9978632478632479
Classification Report:
             precision recall f1-score
                                             support
                            0.95
                                      0.97
          0
                  1.00
                                                 117
                            1.00
                                                2691
                  1.00
                                      1.00
                                      1.00
                                                2808
   accuracy
                  1.00
                            0.97
                                      0.99
                                                2808
  macro avg
                                                2808
weighted avg
                  1.00
                            1.00
                                      1.00
Confusion Matrix:
[[ 111
    0 2691]]
```


Conclusion

- To summarize, we used **IQR** to detect outliers and **Winsorization** to handle them.
- Handled data **inconsistencies** by making sure columns conform to a specific range.
- Applied log transformation to deal with skewed data by compressing larger values and expanding smaller ones.
- Split the data first into 80% training and 20% testing data.
- Applied **Mutual Information** to find whether current categorical columns affect the target column (class) or not.
- Applied encoding techniques like Label Encoding and One-Hot Encoding.
- Normalized the dataset using StandardScaler which is important for non-tree based models.
- Used a set of **Feature Selection** techniques like:
- 1. Variance Thresholding
- 2. Mutual Information (MI)
- 3. Lasso Regression
- 4. Redundant Feature Selection (RFE)
- 5. Correlation Matrix Selection
- Handled target column data imbalance using **imblearn's SMOTE** technique After finishing all of pre and post processing along with encoding, it was time to train the initial models.
 - 1. Trained KNN to determine the linear separability of the data.
 - 2. Trained Logistic Regression to determine the complexity of the data
 - 3. Trained **SVM** to determine whether this data has a **clear margin of separation** or not while implementing **Grid Search** to optimize the hyperparameters.
 - 4. Trained **Decision Tree** as it's the **baseline** for the upcoming training models
 - Trained Random Forest to determine the extent the best models can reach
 - 6. Trained **XGBoost** as a final model to reach a **concrete judgment** on the data and the best model for its nature.
 - Ran RFE after training the initial Random Forest model to remove useless columns not affecting the outcome.

- Trained the final model which is an ensembling (stacking) model; Using base models of Random Forest, Decision Tree, SVM and Random Forest as my meta-model which showed the same performance measures as Random Forest.
- To verify our conclusion, we trained a final stacking model with Random Forest,
 Decision Tree, SVM as the base models with XGBoost as the meta-model which also showed the same performance. This proved that our hypothesis was correct.

Conclusion:

The best performing model reached a confusion matrix of [[111 6] [0 2691]]

Which highlights how there are **zero** false negatives, where this is sought after in this field of network intrusion. The other 6 false positives are either **borderline** or **noisy** or **mislabeled** as class 1 instead of class 0

Choosing to pursue **100%** accuracy will either reduce real-world **generalizability** or cause **overfitting** which isn't worth it as all false negatives are 0 and all true positives are correctly classified given the nature of the dataset.
