This page (<a href="https://learning.edx.org/course/course-v1:IMTx+NET04x+3T2018/block-v1:IMTx+NET04x+3T2018+type@sequential+block@72339263ecff451aa4d9af290f97c31b">https://learning.edx.org/course/course-v1:IMTx+NET04x+3T2018/block-v1:IMTx+NET04x+3T2018+type@sequential+block@72339263ecff451aa4d9af290f97c31b</a>) is currently offline. However, because the site uses Cloudflare's Always Online™ technology you can continue to surf a snapshot of the site. We will keep checking in the background and, as soon as the site comes back, you will automatically be served the live version. Always Online™ is powered by Cloudflare | Hide this Alert</a>

IMTx NET04x
Advanced Algorithmics and Graph Theory with Python

<u>Help</u> sa

sandipan\_dey ▼

Course <u>Progress</u> <u>Discussion</u> <u>Syllabus</u>

☆ Course / Part 3: Shortest Paths, Min-Heaps, Algorithmic Complexity / Quiz 3

Previous
Next >

Quiz 3

□ Bookmark this page

## Quiz 3

6/6 points (graded)

1. Which of the following statements apply to Dijkstra's algorithm? (2 correct answers)

| It is a traversal algorithm that explores vertices by increasing the distance from an initial vertex.                                |
|--------------------------------------------------------------------------------------------------------------------------------------|
| It is an algorithm that outputs the size of the input graph.                                                                         |
| It is an algorithm that is guaranteed to output the shortest paths from an initial vertex when input graph weights are non-negative. |
| It is an algorithm that only operates on trees.                                                                                      |
| <b>✓</b>                                                                                                                             |
| 2. What is the maximum number of iterations in Dijkstra's algorithm when applied to a graph with an order of $n$ ?                   |
| $\bigcirc n/2.$                                                                                                                      |
| left $n$ .                                                                                                                           |
| $\bigcap n\left(n-1 ight)/2$                                                                                                         |
|                                                                                                                                      |

3. What is the routing table obtained using the Dijkstra algorithm from vertex  $\boldsymbol{0}$  on the following graph?



 $igwedge \mathcal{O}\left(n^2
ight)$ 

Only the second row of the table is shown. The first row is [0, 1, 2, 3, 4].

| Only the second row of the table is shown. The first row is $[0, 1, 2, 3, 4]$ . |  |
|---------------------------------------------------------------------------------|--|
| igcup [undefined,2,0,2,2]                                                       |  |
|                                                                                 |  |
| igorup [undefined,2,0,0,2]                                                      |  |
|                                                                                 |  |
| igcup [undefined,2,1,0,2]                                                       |  |
|                                                                                 |  |

4. Given an input size n, the complexity of an algorithm is exactly  $3n^2+4n+17$  elementary operations. Which of the following big-O notations are valid (multiple answers are correct)? (hint: recall that  $O\left(\right)$  means that it is "at most of the order of" so it holds that  $n=O\left(n^5\right)$  for example)

| $igcup \mathcal{O}\left(n ight)$                     |  |  |
|------------------------------------------------------|--|--|
| $\bigcirc \mathcal{O}\left(n\log\left(n ight) ight)$ |  |  |
|                                                      |  |  |

| onsider an alge                  | orithm that operates on graphs.                                      | . The number of elementary operations it requires is exactly the  | number of   |
|----------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|-------------|
| es in the graph                  | n. What is the complexity of the a                                   | algorithm, expressed as a function of the order $n$ of the graph? |             |
| Since it depe                    | nds on the number of edges, it o                                     | cannot be defined.                                                |             |
| $\mathcal{O}\left( n ight)$      |                                                                      |                                                                   |             |
| $\mathcal{O}\left(n^2 ight)$     |                                                                      |                                                                   |             |
| •                                |                                                                      |                                                                   |             |
|                                  |                                                                      |                                                                   |             |
| onsider a min-<br>eplace or remo | heap with $(key, value)$ couples<br>ove) to obtain the configuration | s $(A,5),(B,3),(C,7)$ . What is the minimum number of opera       | tions (add- |
|                                  |                                                                      | (D,0),(C,I)?                                                      |             |
|                                  | ,                                                                    | $(B, \delta), (C, T)$ ?                                           |             |
| )2                               | ,                                                                    | (B, 8), (C, 1)?                                                   |             |
|                                  | ,                                                                    | (B, 8), (C, 1)?                                                   |             |
|                                  |                                                                      | (B, 8), (C, 1)?                                                   |             |
|                                  |                                                                      | (B, 8), (C, 1)?                                                   |             |
| 3                                |                                                                      | (B, 8), (C, 1):                                                   |             |
| 3                                |                                                                      | (B, 8), (C, 1):                                                   |             |
| 3                                |                                                                      | $(\mathcal{D}, \delta)$ , $(\mathcal{C}, I)$ ?                    |             |
| 3<br>4<br>Submit                 |                                                                      | $(B, \delta), (C, I)$ ?                                           |             |
| 3<br>4<br>Submit                 | displayed within the problem                                         |                                                                   |             |
| 3<br>4<br>Submit                 |                                                                      |                                                                   |             |
| 3<br>4<br>Submit                 |                                                                      | Next >                                                            |             |



## $\operatorname{\mathsf{edX}}$

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

**Careers** 

News

## Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

## Connect

Blog

Contact Us

Help Center

Media Kit

<u>Donate</u>















© 2020 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>