Home Work 4 - Problem 5 Algorithms

Rory Flynn, Balaviknesh Sekar

University of Colorado Denver

November 23, 2018

Home Work 4: Problem 5: Thickness

Let G be a simple undirected graph with n vertices labeled 1, 2, ..., n. The graph $G[r_1, r_2, ..., r_n]$ is the graph obtained from G by replacing vertex i with K_{r_i} and connecting all possible vertices in neighboring complete graphs. So, for example, $G[1,1,...,1]=G,\,K_2[2,2]=K_4$, $K_2[m,n]=K_{m+n}$, and $K_1[n]=K_n$. Using R and igraph:

```
\begin{array}{ll} g \leftarrow & make\_empty\_graph(directed=F) + \\ & vertices(1:3) + \\ & edge(c(1:3,1:3)) \\ & plot(g) \end{array}
```


Problem

The independence number $\alpha(G)$ of a graph G is the size of the largest set of independent (mutually nonadjacent) vertices in G. Prove that $\chi(G) \geq \frac{|V(G)|}{\alpha(G)}$.

Proof.

Let a_1 be the largest set of independent (mutually nonadjacent) vertices in G. Then there is a set ! a_1 the members of which are by definition not in a_1 but are agent to a member of a_1 .

The set $!a_1$ can be sub divided in to set of independent vertices none of wich can be lager than a_1 or smaller than 1.

It fallows that the maximum number of subsets is then $\frac{|V(G)|}{\alpha(G)}$.

Note that for a correct coloring all members of an independent set can share one color(they are not adjacent), no two sets can share a color however (their nodes are adjacent).

Thus the chromatic number must be greater or equal the number of independent sub sets.

Therefore
$$\chi(G) \ge \frac{|V(G)|}{\alpha(G)}$$
.

Part b

If G is a graph with n vertices, prove that $\alpha(G)=\alpha(G[r_1,r_2,...,r_n]),$ where each $r_i\in N.$

Proof.

Find both the chromatic number and thickness of $\mathrm{C}_3[2,2,2]$ and prove that your answers are correct.

Part d

Find both the chromatic number and thickness of $\mathrm{C}_5[2,2,2,2]$ and prove that your answers are correct.

Part e

Find both the chromatic number and thickness of $\mathrm{C}_n[2,2,...,2]$ and prove that your answers are correct.

Part f

Find both the chromatic number and thickness of $\mathrm{C}_5[3,3,3,3,3]$ and prove that your answers are correct.

Find both the chromatic number and thickness of $\mathrm{C}_5[4,4,4,4,3]$ and prove that your answers are correct.

Part h

Find both the chromatic number and thickness of $\mathrm{C}_7[4,4,4,4,4,4]$ and prove that your answers are correct.