	Exercise 1.	
	Forward map:	
9	TOWE STATE OF	
	$Z^{n+1} = \frac{1}{2}Z^n + 1 + E^n$	
5		
5	where $=$ " $\sim \mathcal{N}(0,1)$	
E E	= ~ N(0,1)	
5	· Observation of art	
9	Observation Operator:	
5	$Y^n = Z^n + \sqrt{2} z^n$	
8	where $\Sigma^{n} \sim \mathcal{N}(0,1)$	
5		
3	Assume Zo ~ N(-1,2)	
3		
3	(l')	
6	Prediction: What is the distribution of Z1?	
9	We have following rules for distributions.	
(5)	$X \sim \mathcal{N}(a,b)$	
(9	$\forall X N N (\forall a, \alpha^2 b)$	
(3)	$x + x \sim \mathcal{N}(\alpha + \alpha, b)$	
(9	$X + Y \sim N(a+c,b+d)$ Ly when $cov(bd) = 0$	
	$Z_1 = \frac{1}{2}Z^{\circ} + 1 + E^{\circ}$	
	2	
6		
5		
100		

		1
		6
	Zo ~ N(-1,2)	0 6
	$\frac{1}{2}$ $\mathbb{Z}_0 \sim \mathcal{N}\left(\frac{-1}{2}, \frac{1}{2}\right)$	6
		6
	$\frac{1}{2}Z_0 + 1 N N \left(\frac{1}{2}, \frac{1}{2}\right)$	•
	$\frac{1}{2}$ $Z_0 + 1 + \tilde{Z}_0 \sim \mathcal{N}\left(\frac{1}{2}, \frac{3}{2}\right)$	
		6
	$Z_1 \sim \mathcal{N}\left(\frac{1}{2}, \frac{3}{2}\right)$	0
	(ii')	
	Filtering: What is the distribution of 7,	
	Conditioned on 4, = 2?	
	forward mean = $m^f = \frac{1}{2}$	
	forward variance = V = 3	0
-		
-	We have to find Kalmain Gain first:	
	Var FZ, 1	
-	Kalmain Gain = K = Var [7,] var [7,] + var [5,2]	
-		
	J2 & a observation noise	
-	$\Sigma^{\circ} \sim \Lambda^{\circ}(0,1)$	
-	√2£" N N(0,2)	0
-		

100000		
(0	2/-	
	$K = \frac{3/2}{3/2 + 2} = \frac{3}{7}$	
	3/2 + 2 7	
	Now, we need to update our analysis mean	
	and variance.	
	$m^a = m^f - \frac{3}{7} \left(m^f - y_{obs} \right)$	
	7 (11, 10.65)	
1		
	$=\frac{1}{2}-\frac{3}{4}(\frac{1}{2}-2)$	
,	= 8 7	
	= 0	,
	+	
4		
7	Va = Vf(1-K)	
4	Va = V (1 - K)	
9		
	$=\frac{3}{2}\left(1-\frac{3}{7}\right)$	
9	2 (7)	
5	,	
	2 6 7	
	7	
G-		
6-	-11	
6	$Z'1Y'=2 \sim \mathcal{N}\left(\frac{8}{7},\frac{6}{7}\right)$	
45	7 7	
6		
6		
-		
10		
9		
9		
-		
5		

(ili) Emoothing: What is the distribution of Zo Conditioned on 1/1 = 2 ? We can use Bayes theorem to gind P(Z°/Y') P(Z°/Y,=2) = P(7/,=2/Z°)P(Z°) $P(Y_1=2)$ Y, = Z, + 12 E = 1 Zo +1 + E"+ 52 E' let $\mathcal{E} = \vec{E} + \vec{D} \vec{Z}'$ as they both are constants and have Guarrian distribution -E N N(0,3) Y1 = 1/2 70 + 1 + E As y, is Guarsian so y, 170 is also Quassian distorbuted.

Y1/Z0=2 = 12+1+& NN(22+1,3) P(4,=2/2022) & exp (-1 (1/2+1-2)2) P(4=2/2027) deup (127-4) P(41=2/20=2)P(Zo=2) & exp (A) - (1/22-1)2 (Z+1)2 let $\varphi(\bar{x}) = \frac{(1/2 \bar{x} - 1)^2 + (2+1)^2}{4} = 0$ P(Y122/2027)P(7027) & exp(-Q(7)) As exp(- $\phi(z)$) follows guassian distribution 80, 0 $\varphi(z) = \frac{\alpha m(z-m)^2}{2V} + C$ From above equation we can see that Q'(m) = 0 $O''(Z) = V^{-1}$ for any Z. Equation O after derivation 0'(Z) = 7Z + 1 =0

		10
		5
	$\varphi'(m) = 0$	0 =
		6
	$m_2 - \frac{4}{7}$	•
	,	
	-///2) 7	
	$\rho''(z) = \frac{7}{12}$	1
	. 12	
	$V = \frac{12}{7}$	
	7 11 2 10 (-4 12)	0
	Foly, =2 ~ N (=4, 4)	
	(iv)	
	(10)	
	$Z^{n+1} = \alpha Z^n + \beta Z^n$	
	ZZVZIPI	
	Zo ~ N (m,1)., Y,= y	
		0
	Pseudocode:	
	13 charcone	
	For distribution of 7,	
	$mean - Z_1 = \alpha *m$	
	$V\alpha Y - Z_1 = \alpha^2 + \beta^2$	
	return (mean_Z, var-Z,)	
4	For distribution of Z1/4/34	
	Var-obs-noise = 2	
	$k = (var_{-} \neq_{1} / (var_{+} \neq_{1} + var_{-}obs_{-}noise))$	0
	(mark) (mark)	

-	mean_2, - y, = mean_2, - k (mean-2, -y)	1
	var-Z1-Y1 = Var-Z1 (1-K)	-
	return (mean_21-41) var-21-41)	-
		-
,		
		-
		1
		1
,		
9		
,		
,		