Plan semanal del taller T2_CDI_Virtual_Horario: Miércoles 5:00pm a 7:00pm

 Fian Semanar der taner 12_CDI_Virtual_Horario. Miercoles 5.00pm a 7.00pm		
1. Nombre del tutor	Marco Guillermo Salazar Vega	
2. Taller	T2: CDI Virtual Miércoles 5:00pm a 7:00pm	
3. Horario		
a) Fecha	Miércoles 09 de agosto del 2023	
b) Semana	Semana #3 (del 07 de agosto al 11 de agosto)	
c) Sesión	Sesión 02	
4. Contenido	a) Cálculo de límites (trigonométricos y al infinito)	
5. Referencias	Material propio (Libro Límites Marco Salazar Vega)	
6. Descripción general de	Se realiza un pequeño repaso de los temas vistos en la semana anterior	
las actividades a realizar	para aclarar dudas. Seguidamente, se realizará una serie de ejercicios	
	relacionados con los temas indicados en el punto 4. Finalmente, se asignan dos ejercicios para que los estudiantes resuelvan en un horario	
	fuera del taller.	
7. Apoyos educativos	No aplica.	
, , , , , , , , , , , , , , , , , ,	110 aprilod.	
	-	

```
FI 0/0
                     Ejercicio: \lim_{d \to -1} \frac{\sqrt{3d^2 - 5d - 2} - \sqrt{1 - 5d}}{\sqrt{d^2 - d} - \sqrt{3 - d^2}}
                       \lim_{d \to -1} \frac{\sqrt{3d^2 - 5d - 2} - \sqrt{1 - 5d}}{\sqrt{d^2 - d} - \sqrt{3 - d^2}} \cdot \frac{(\sqrt{3d^2 - 5d - 2} + \sqrt{1 - 5d})}{(\sqrt{3d^2 - 5d - 2} + \sqrt{1 - 5d})} \cdot \frac{(\sqrt{d^2 - d} + \sqrt{3 - d^2})}{(\sqrt{d^2 - d} + \sqrt{3 - d^2})}
                       d->-1
\frac{d=-1}{d+1=0} = \lim_{d\to -1} \frac{\left[ (3d^2-5d-2) - (1-5d) \right] \left[ \sqrt{3d^2-5d-2} + \sqrt{1-5d^2} \right]}{\left[ \sqrt{3}d^2-5d-2 + \sqrt{1-5d^2} \right]}
                = \lim_{d \to -1} \frac{[3d^2 - 5d - 2 - 1 + 5d][\sqrt{d^2 - d} + \sqrt{3 - d^2}]}{[\sqrt{3}d^2 - 5d - 2 + \sqrt{1 - 5d}]}
                                        (3d^2-3)[\sqrt{d^2-d}+\sqrt{3-d^2}]

(2d^2-d-3)[\sqrt{3}d^2-5d-2+\sqrt{1-5}d]
                 = lim
                                                                                                                                                       2d^2 - d - 3
                      d->-1
                 = \lim_{x \to 0} 3(d^2-1)[\sqrt{d^2-d^2} + \sqrt{3-d^2}]
                                       (2d-3)(d+1)[\sqrt{3}d^2-5d-2+\sqrt{1-5}d^2]
                      d->-1
                      lim 3(d-1)(d+1) [ \( \sqrt{d^2-d'} + \sqrt{3-d^2'} \) d-3-1 (2d-3) (d+1) [ \( \sqrt{3d^2-5d-2'} + \sqrt{1-5d'} \)]
                      -12\f2
-10\f6
                          213
```

1) Cálculo de límites

Límites trigonométricos

En este tipo de límites es conveniente transformar todas las expresiones trigonométricas a expresiones en términos de senos y cosenos. Recordemos las siguientes propiedades:

En general, recordemos que:

$$\lim_{x \to 0} \cos(x) = 1$$

Por otra parte, si en la resolución del límite aparecen expresiones como $1-\cos(x)$ o bien $\cos(x)-1$, se recomienda multiplicar por la expresión $\frac{1+\cos(x)}{1+\cos(x)}$ o bien $\frac{\cos(x)+1}{\cos(x)+1}$, respectivamente, para utilizar la identidad trigonométrica $\sin^2(x)=1-\cos^2(x)$.

Del mismo modo, si en la resolución del límite, aparecen expresiones como $\frac{\operatorname{sen}(h(x))}{\operatorname{h}(x)}$, con h una función arbitraria, se recomienda multiplicar por la expresión $\frac{h(x)}{h(x)}$, para así utilizar alguna de las siguientes propiedades:

$$\lim_{x \to 0} \frac{\operatorname{sen}(h(x))}{h(x)} = 1$$

$$\lim_{x \to 0} \frac{h(x)}{\operatorname{sen}(h(x))} = 1$$

Otras propiedades que pueden ser de utilidad son las siguientes (con h(x) una función arbitraria):

$$\lim_{x \to 0} \frac{\cos(h(x)) - 1}{h(x)} = 0$$

$$\prod_{x \to 0} \frac{1 - \cos(h(x))}{h(x)} = 0$$

7 FI %

```
Eyemplo #: \lim_{x \to 0} \frac{\sin^2(4x)}{1 - \cos(3x)}
                                                            R/\frac{32}{9}
             \frac{S_{en}(4x) \cdot S_{en}(4x)}{1 - (05(3x))} \cdot \frac{(1 + (05(3x)))}{(1 + (05(3x)))}
                                                                              Sen2(x) + (03(x)=1
lim
X->0
                                                                              \Rightarrow 5en<sup>2</sup>(x) = 1- (05<sup>2</sup>(x)
                Sen(4x) · Sen(4x) (1+ (05(3x))
1- Cos2(3x)
= lim
  1-0
                 Sen (4x) . Sen (4x) (1+ (05 (3x))
= 1im
                               Sen<sup>2</sup> (3x)
  X->()
                <u>Senl4x) · Senl4x) (1 + Cos(3x))</u>
Sen l3x) · Senl3x)
                                                                                         \frac{Sen(f(x))}{f(x)} = 1
= lim
                                                                               im
                                                                               X-70
   X-20
              4x. Sent4x). 4x. Sen (4x) (1+ Cos (3x))
= |im
                        3x \cdot 5ent3x) · 3x \cdot 5ent3x)
   x-> 0
              4x · 4x (1 + Cos (3x))
= lim
                    3x \cdot 3x
   X-2()
             16x2 (1+ (05(3x))
9x2
= lim
   X->0
= 16 (1+ Coslo))
```

= lim 16 (1+ Cos(3x))
$= \lim_{x \to 0} \frac{16(1 + \cos(3x))}{9}$
1 20
= <u>16·2</u>
= <u>16·2</u> 9
= 32
$=$ $\frac{32}{9}$
•

```
FI %
Ejemplo #2: \lim_{x \to 0} \frac{x \cdot \sin(7x)}{1 - \sqrt{\cos(x)}}
                                                            R/ 28
          x \cdot Sen(7x) \cdot (1 + \sqrt{Gs(x)})
1 - \sqrt{Gs(x)} \cdot (1 + \sqrt{Gs(x)})
lim
x->0
              x \cdot Sen(7x) \cdot (1 + \sqrt{Cos(x)}) \cdot (1 + Cos(x))
= \lim
  X->0
                       1- (05(x)
                                                         (1+ Cos(x))
            x · Sen(7x) · (1+ \(\text{Cos(x)}\)) (1+ (0s(x))
= \lim_{m \to \infty}
                                  1- (05°(x)
   X-> 0
                x. Sen (7x). (1+ (Os(x)) (1+ (Os(x))
= \lim_{m \to \infty}
                                  Sen^{2}(x)
    X->0
               x · Sen (7x) · (1 + \(\sigma \) (1 + (\sigma \) (1 + (\sigma \) (1 + (\sigma \))
= \lim
    X->0
                            Sen(7x) · (It (Cos(x)) (It (cos(x))
= 1im
    X->0
                                  Sen(x) · Sen(x)
                                                                               Sen (f(x)) = 1
                      (1+ (Cos(x)) (1+ (os(x))
= \lim_{n \to \infty} 
                                                                      X->0
                         Sen(x) · Sen(x)
    X-> 0
= lim 7 (1+ \(\tag{Cos(x)}\) (1+ \(\tag{Cos(x)}\))
                                                                              Senlflx)
                                                                      くつの
   X-> 0
= 7(1+1)(1+1) = 28
```

```
FI 0/0
Ejemplo #3: \lim_{x \to \pi/3} \frac{\text{sen}(3x)}{1 - 2\cos(x)}
                                                    R/-\sqrt{3}
                             Sea u= x-II
                                                          Como X-> IT
\chi = \underline{T}
                               =) u + \underline{\pi} = x entonces u \to 0
\Rightarrow x - \underline{\pi} = 0
lim
4->0
Sen (atp) = Sen (a) · Cos(p) + Sen (p) · Cos(x) V
(Os(\alpha+\beta)=(Os(\alpha)\cdot Cos(\beta)\mp Sen(\alpha)\cdot Sen(\beta))
                  Sen 13u) · Cost 17) + Sent 17) · Cos (3u)
= |im
               1-2 [Cos(u)·Cos ] - Sen (u) · Sen ] 1 3
   U->0
                       \frac{-5\mathrm{en}(3u)+0}{\pm(0s(u)-\sqrt{3})}
= lim
 4-76
                     - Sen (3u)
· Coslu) + V3 Senlu)
= lim
   4-20
```

Límites al infinito Sean $a \in \mathbb{R}$, f y g funciones tales que $\lim_{x \to a} f(x) = k$, con $k \in \mathbb{R}$ y $\lim_{x \to a} g(x) = \pm \infty$, entonces $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$ Si p es una función polinomial tal que $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x^1 + a_0 x^0$, entonces $\lim_{x\to\pm\infty} a_n x^n$ Si r es una función racional tal que $r(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0 x^0}{b_m x^m + b_{m-1} x^{m-1} + \ldots + b_1 x^1 + b_0 x^0}$, entonces: $\lim_{x\to\pm\infty}\frac{a_nx^n}{b_mx^m}$ lim im X-)-100

Como
$$x \rightarrow -\infty$$
, se tiene $|2x| = -2x$

$$= \lim_{\chi \to +\infty} \frac{\chi}{\chi^2 + \chi} - 2\chi$$

$$= -\frac{1}{2}$$

$$\lim_{\chi \to +\infty} \sqrt{\chi^2 + \chi} - \sqrt{\chi^2 + 9} \qquad \text{Rv} \frac{1}{2}$$

$$\lim_{\chi \to +\infty} \sqrt{\chi^2 + \chi} - \sqrt{\chi^2 + 9} \qquad (\sqrt{\chi^2 + \chi} + \sqrt{\chi^2 + 9})$$

$$= \lim_{\chi \to +\infty} \frac{(\chi^2 + \chi) - (\chi^2 + 9)}{(\sqrt{\chi^2 + \chi} + \sqrt{\chi^2 + 9})}$$

$$= \lim_{\chi \to +\infty} \frac{\chi^2 + \chi - \chi^2 - 9}{(\sqrt{\chi^2 + \chi} + \sqrt{\chi^2 + 9})}$$

$$= \lim_{\chi \to +\infty} \frac{\chi}{(\sqrt{\chi^2 + \chi} + \sqrt{\chi^2 + 9})}$$

$$= \lim_{\chi \to +\infty} \frac{\chi - 9}{(\sqrt{\chi^2 + \chi} + \sqrt{\chi^2 + 9})}$$

$$= \lim_{\chi \to +\infty} \frac{\chi - 9}{(\sqrt{\chi^2 + \chi} + \sqrt{\chi^2 + 9})}$$

$$= \lim_{\chi \to +\infty} \frac{\chi - 9}{(\sqrt{\chi^2 + \chi} + \sqrt{\chi^2 + 9})}$$

$$= \lim_{\chi \to +\infty} \frac{\chi - 9}{(\sqrt{\chi^2 + \chi} + \sqrt{\chi^2 + 9})}$$

$$= \lim_{\chi \to +\infty} \frac{\chi - 9}{(\sqrt{\chi^2 + \chi} + \sqrt{\chi^2 + 9})}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x^2} + \sqrt{x^2}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{|x| + |x|}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}}$$

$$= \lim_{x \to +\infty} \frac{x - 9}{\sqrt{x + x}$$

Ejemplo #3:
$$\lim_{x\to -\infty} 2x + \sqrt{4x^2 + 5x - 3}$$
 R/ $\frac{-5}{4}$

$$R/\frac{-5}{4}$$

$$\lim_{x \to -\infty} 2x + \sqrt{4x^2 + 5x - 3} \cdot \frac{(2x - \sqrt{4x^2 + 5x - 3})}{(2x - \sqrt{4x^2 + 5x - 3})}$$

$$= \lim_{x \to -\infty} \frac{4x^2 - (4x^2 + 5x - 3)}{(2x - \sqrt{4x^2 + 5x - 3})}$$

=
$$\lim_{x \to -\infty} \frac{4x^2 - 4x^2 - 5x + 3}{(2x - \sqrt{4x^2 + 5x - 3})}$$

$$= \lim_{x \to -\infty} \frac{-5x+3}{2x - \left(x^2 + \frac{1}{4} + \frac{5}{4} - \frac{3}{4}\right)}$$

$$= \lim_{x \to -\infty} \frac{-5x + 3}{2x - \sqrt{4x^2}}$$

$$= \lim_{x \to -\infty} \frac{-5x+3}{2x-12x1}$$

Como
$$x \rightarrow -\infty$$
, entonces $|2x| = -2x$

$$= \lim_{x \to -\infty} \frac{-5x + 3}{2x - -2x}$$

$$= \lim_{x \to -\infty} \frac{-5x + 3}{4x}$$

$$= \lim_{X \to -\infty} x \left(\frac{-5x + 3}{x} \right)$$

$$= \lim_{X \to -\infty} x \left(\frac{-5x + 3}{x} \right)$$

$$= \lim_{\chi \to -\infty} \frac{\chi \left(-5 + 3\right)}{4\chi}$$

$$= \lim_{\chi \to -\infty} \frac{-5\chi}{4\chi}$$

Ejercicios Adicionales:

Como tarea, realice los siguientes ejercicios:

Ejercicio #1: calcule el valor de los siguientes límites trigonométricos:

- $\lim_{x \to 0} \frac{1 \sqrt{\cos(x)}}{x \cdot \tan(x)}$
- $R/\frac{1}{4}$
- $-\lim_{x \to \pi/4} \frac{\operatorname{sen}(x) \cos(x)}{1 \tan(x)}$
- $R/\frac{-1}{\sqrt{2}}$

Ejercicio #2: calcule el valor de los siguientes limites al infinito:

- $\lim_{x \to -\infty} 4x + \sqrt{16x^2 3x}$ R/ $\frac{3}{8}$
- $\lim_{u \to -\infty} \frac{\sqrt{u^2 + 1} + \sqrt{u^2 u}}{u}$
 - R/-2