第4次习题课

一阶电路

拿出纸、笔、计算器

Principles of Electric Circuits Recitation 4 Tsinghua University 2023

复习

$$u_C(0^+) = u_C(0^-)$$

$$i_L(0^+)=i_L(0^-)$$

小结: 求电路初值的步骤

(a) 由换路前的稳态电路求 $u_{C}(0^{-})$ 和 $i_{L}(0^{-})$

0⁻ 电路 (电阻电路) (电容C开路、电感L短路)

- (b) 应用换路定理求 $u_C(0^+)$ 和 $i_L(0^+)$ $u_C(0^+) = u_C(0^-)$
- (c) 画 0^+ 时刻的等效电阻电路 $i_L(0^+)=i_L(0^-)$
 - *保留电路拓扑结构
 - ** 用独立电压源替代电容C、用独立电流源替代电感L
 - *** 独立电压源值为 $u_{\mathcal{C}}(0^+)$ 、独立电流源值为 $i_{\mathcal{L}}(0^+)$
- (d) 由0+电路(电阻电路) 求电路中其余支路量0+时刻的值

- 适用于: $f(t) = f(\infty) + [f(0^+) f(\infty)]e^{-\frac{t}{\tau}} t > 0$
 - 时间常数>0
 - 时间常数、初值、终值比较容易求的场合
 - ·直流激励或正弦激励→→L15
 - 可用于求电路任意支路的电压或电流

强制分量/非齐次特解 自由分量/齐次通解
$$u_C(t) = u_C(\infty) + [u_C(0^+) - u_C(\infty)] e^{-\frac{t}{\tau}}$$
 数学(部分物理)视角 方程视角
$$= \left[u_C(\infty) - u_C(\infty) e^{-\frac{t}{\tau}} \right] + u_C(0^+) e^{-\frac{t}{\tau}}$$
 电路视角 能量视角

单选题 1分

计算电感电路的时间常数 $\tau = \underline{\hspace{1cm} s}$

2.4

单选题 1分

图中R为由电阻构成的二端口网络,上图 U_c 的全响应为 $U_s+(U_0-U_s)e^{\frac{t}{\tau}}$ 。若改变外部电源输入如下图所示,的全响应为:

$$\mathbf{B} \quad 2U_{\mathrm{S}} + \left(U_{\mathrm{0}} - 2U_{\mathrm{S}}\right) \mathrm{e}^{-\frac{t}{\tau}}$$

$$2U_{\rm S} \, {\rm e}^{-\frac{t}{\tau}}$$

$$2U_{\rm S} + \left(U_{\rm 0} - U_{\rm S}\right) e^{-\frac{t}{\tau}}$$

$$\begin{array}{c|c}
k(t=0) \\
\hline
 & \underline{i} \\
C & \underline{i} \\
 & \underline{u}_{C}
\end{array}$$

单选题 1分

换路前已达稳态, $i_c(0^+) = A$ (红包)

1. 求: $i_1(0^+), i_2(0^+), i_3(0^+)$ 。

2. 确定时间常数

t=0时, K闭合

求: i_R , 定性画曲线。

t=0时,闭合开关求i。

Principles of Electric Circuits Recitation 4 Tsinghua University 2023

□■雨课堂

5. 求 $i_C(t)$.

Principles of Electric Circuits Recitation 4 Tsinghua University 2023

雨课堂 Rain Classroom

《第4次习题课》

Principles of Electric Circuits Recitation 4 Tsinghua University 2023

雨课堂 Rain Classroom 6. 二端口N的传输参数矩阵为 $T = \begin{bmatrix} 2 & 8\Omega \\ 0.5 & S & 2.5 \end{bmatrix}$ t=0时刻闭合开关,已知 $u_c(0-)=1V$,求 $u_c(t)$ 。

能用三要素的两个层次

- 如果时间常数小于0, 齐次通解就发散, 无 所谓稳态, 不可能有三要素
- 如果时间常数大于0,但是激励项对应的特解不存在稳态表达式,有三要素,但求不出稳态,也不行

7.
$$u_C(0^-)=0$$
, 求 $u_C(t)$ 。

注:这个题的方法(暂时)和课堂讲的三要素不一样,请大家自学一下教材附录C(表C1)。通过这个题,可以完整体会动态电路的标准求解过程,同时为L14 预留伏笔。

特解

$$\frac{1}{2\sqrt{2}}\sin\left(2t-\frac{\pi}{4}\right)$$

$$\frac{1}{2\sqrt{2}}\sin\left(2t-\frac{\pi}{4}\right)+0.25e^{-2t}$$

期中考试

每题成绩今天下午给出 不反馈答卷 如果感觉成绩有问题,请单独联系我

下面讲一下2-7题

Principles of Electric Circuits Recitation 4 Tsinghua University 2023