Solution 1

Step 1

We are given the prediction rule is defined as:

$$(2x_1 - x_2 - 6)$$

To find the decision boundary we set the prediction rule equal to zero:

$$2x_1 - x_2 - 6 = 0$$
 or $x_2 = 2x_1 - 6$

We can rearrange this to express x_2 in terms of x_1 :

$$x_2 = 2x_1 - 6$$

Step 2

Find the point (x_1, x_2) where the decision boundary intersects the x_1 axis (i.e. $x_2 = 0$):

$$x_2 = 2x_1 - 6 \rightarrow 0 = 2x_1 - 6 \rightarrow 2x_1 = 6 \rightarrow x_1 = 3$$

Hence, the decision boundary intersects the x_1 axis at (3,0)

Step 3

Find the point (x_1, x_2) where the decision boundary intersects the x_2 axis (i.e. $x_1 = 0$):

$$x_2 = 2x_1 - 6 \rightarrow x_2 = 2(0) - 6 \rightarrow 2x_2 = -6$$

Hence, the decision boundary intersects the x_1 axis at (0,6)

Step 4

Test prediction rule at the point (0,0) to determine the classification above the decision boundary.

$$2x_1 - x_2 - 6 \rightarrow 2(0) - 0 - 6 \rightarrow -6$$

It follows that, $2x_1 - x_2 - 6 < 0$ at (0,0) and this area above the decision boundary will be classified as negative.

Step 5

Visualize the decision boundary:

 \therefore The decision boundary is the line $x_2 = 2x_1 - 6$, which intersects the x_1 axis at (3,0) and the x_2 axis at (0,-6). The region below this line is classified as positive, and the region above it is classified as negative.

Solution 2 (a)
∴ The statement: The data set is linearly separable. is definitely true . The Perceptron algorithm will convergethe data is linearly separable and we are given: it converges after making k updates.
Solution 2 (b)
∴ The statement: If the process were repeated with a different random permutation, it would again converge is definitely true . Since the Perceptron algorithm will converge regardless of order.
Solution 2 (c)
∴ The statement: If the process were repeated with a different random permutation, it would again converge after making k updates is possibly false . The number of updates required for convergence can change depending on the order of data.
Solution 2 (d)

 \therefore The statement: k is at most n is **possibly false**. The number of updates k can exceed the number of data points n.

Solution 3

Step 1

A point (x, y) is misclassified when:

$$y(w \cdot x + b) \le 0$$

The Perceptron algorithm tells us to update w and b when a point is misclassified as the following:

$$w = w + yx$$
 and $b = b + y$

Step 2

We are given the following:

- \bullet Perceptron algorithm performs p+q updates before converging
- p updates on data points with label $y_i = -1$
- q updates on data points with label $y_i = +1$

Step 3

Let the initial bias be b = 0. Each time a misclassified point is encountered, the bias is updated by adding the label y_i .

- For each of the p negative examples $(y_i = -1)$, the bias decreases by 1: total change is -p
- For each of the q positive examples $(y_i = 1)$, the bias increases by 1: total change is q

 \therefore The final value of the parameter b is q - p.

Solution 4 (a)

Step 1

Given:

- SVM classifier in \mathbb{R}^2
- Weight vector w = (3, 4)
- Bias term b = -12

The prediction rule would then be defined as:

$$(3x_1 + 4x_2 - 12)$$

Step 2

Find the point (x_1, x_2) where the decision boundary intersects the x_1 axis (i.e. $x_2 = 0$):

$$3x_1 + 4(0) - 12 = 0 \rightarrow 3x_1 = 12 \rightarrow x_1 = 4$$

Hence, the decision boundary intersects the x_1 axis at (4,0)

Step 3

Find the point (x_1, x_2) where the decision boundary intersects the x_2 axis (i.e. $x_1 = 0$):

$$3(0) + 4x_2 - 12 = 0 \rightarrow 4x_2 = 12 \rightarrow x_2 = 3$$

Hence, the decision boundary intersects the x_2 axis at (0,3)

Step 4

Test prediction rule at the point (0,0) to determine the classification below the decision boundary.

$$3(0) + 4(0) - 12 = -12$$

It follows that $3x_1 + 4x_2 - 12 < 0$ at (0,0), and so this region below the decision boundary will be classified as negative.

Step 5

Visualize the decision boundary:

Solution 4 (b)

Step 1

The margin boundaries are defined as:

$$w \cdot x + b = 1$$
 (positive margin boundary) (1)

$$w \cdot x + b = -1$$
 (negative margin boundary) (2)

Remember the prediction rule would then is defined as:

$$(3x_1 + 4x_2 - 12)$$

Step 2

Solve for right hand boundary $((3x_1 + 4x_2 - 13))$:

Find the point (x_1, x_2) where the right hand boundary intersects the x_1 axis (i.e. $x_2 = 0$):

$$3x_1 + 4(0) - 13 = 0 \rightarrow 3x_1 = 13 \rightarrow x_1 = \frac{13}{3}$$

Hence, the right hand boundary intersects the x_1 axis at $(\frac{13}{3}, 0)$.

Now, find the point (x_1, x_2) where the right hand boundary intersects the x_2 axis (i.e. $x_1 = 0$):

$$3(0) + 4x_2 - 13 = 0 \rightarrow 4x_2 = 13 \rightarrow x_2 = \frac{13}{4}$$

Hence, the right hand boundary intersects the x_2 axis at $\left(0, \frac{13}{4}\right)$.

Step 3

Solve for left hand boundary $((3x_1 + 4x_2 - 11))$:

Find the point (x_1, x_2) where the left hand boundary intersects the x_1 axis (i.e. $x_2 = 0$):

$$3x_1 + 4(0) - 11 = 0 \rightarrow 3x_1 = 11 \rightarrow x_1 = \frac{11}{3}$$

Hence, the left hand boundary intersects the x_1 axis at $(\frac{11}{3},0)$.

Now, find the point (x_1, x_2) where the left hand boundary intersects the x_2 axis (i.e. $x_1 = 0$):

$$3(0) + 4x_2 - 11 = 0 \rightarrow 4x_2 = 11 \rightarrow x_2 = \frac{11}{4}$$

Hence, the left hand boundary intersects the x_2 axis at $\left(0, \frac{11}{4}\right)$.

Step 4

Visualize the left hand and right hand boundaries:

Solution 4 (c)

Step 1

The margin of an SVM classifier is defined below where ||w||, the Euclidean norm of the weight vector:

Margin =
$$\frac{2}{||w||} = \frac{2}{\sqrt{w_1^2 + w_2^2}}$$

Step 2

Calculate the margin:

$$Margin = \frac{2}{||w||}$$

$$= \frac{2}{\sqrt{3^2 + 4^2}}$$

$$= \frac{2}{\sqrt{25}}$$

$$= \frac{2}{5}$$

$$= 0.4$$

... The margin of this SVM classifier is $\frac{2}{5}$ or 0.4 units.

Solution 4 (d)

Step 1
Use visulization from Solution 4 (a) and plot the point (2,2):

 \therefore The point (2,2) would be classified as positive.

Solution 5 (a)

Step 1

Support vectors (α_i) are the training points that lie exactly on the margin. However, we are told the decision boundary was obtained upon running *soft-margin SVM*. The soft-margin support vectors include the following points:

- points inside margin
- points that are misclassified
- points on the margin

Step 2

The slack variables for the points circled are as follows:

- \bullet points inside margin: α_1 and α_2 with slack variable values of approximately 0.5
- points that are misclassified: α_3 and α_4 with slack variable values of $\alpha_3 \approx 1.5$ and $\alpha_4 \approx 2.5$
- points on the margin: α_5 , α_6 , and α_7 with slack variable values of approximately 0

 \therefore the support vectors have been marked in **Step 1** and corresponding slack variable values have been indicated in **Step 2**.

Solution 5 (b)

Step 1

We know that increasing or decreasing the factor C or penalty weight has the following effects:

- ullet decreasing C the margin will grow in size and will allow for more misclassified points
- \bullet increasing C the margin will shrink in size and fewer mistakes will be allowed

 \therefore increasing the factor C will shrink the margin and fewer mistakes will be allowed.

Solution 6	(\mathbf{a})
------------	----------------

... The statement: Each α_i is either 0 or 1. is **possibly false**. A training point may be misclassified more than once, in which case its corresponding α_i would be incremented multiple times and exceed 1.

Solution 6 (b)

... The statement: $\sum_i \alpha_i = k$ is **definitely true**. The algorithm performs k total updates, and each update increases one of the α_i by exactly 1, so the sum of all α_i must equal k.

Solution 6 (c)

 \therefore The statement: α has at most k nonzero coordinates. is **definitely true**. Since only the points that were misclassified at least once are updated, and there are k updates in total, at most k different α_i can be nonzero.

Solution 6 (d)

 \therefore The statement: The training data must be linearly separable. is **definitely true**. The Perceptron algorithm is guaranteed to converge only when the data is linearly separable. Since it converged in k updates, the data must be separable.