

Statistics and Learning

Julien Bect

(julien.bect@centralesupelec.fr)

Teaching: CentraleSupélec / dept. of Statistics and Signal Processing

Research: Laboratory of Signals and Systems (L2S)

J. Bect & L. Le Brusquet — 1A — Statistics and Learning

Lecture 7/9

Classification: logistic regression. Risk, hyper-parameters and model selection.

In this lecture you will learn how to...

- Classify using logistic regression.
- Define relevant performance measures for classifiers.
- Estimate a risk (generalization error).
- Choose the value of hyper-parameters, select a model.

- 1 Classification : régression logistique
 - 1.1 Objectifs
 - 1.2 Modèle linéaire pour la classification
 - 1.3 Estimation des coefficients β
 - 1.4 Evaluation des performances & choix de δ_0
- 2 Risk, hyper-parameters and model selection
 - 2.1 Estimation of the risk (generalization error)
 - 2.2 Hyper-parameters, model selection

- 1 Classification : régression logistique
 - 1.1 Objectifs
 - 1.2 Modèle linéaire pour la classification
 - 1.3 Estimation des coefficients β
 - 1.4 Evaluation des performances & choix de δ_0

- 2 Risk, hyper-parameters and model selectior
 - 2.1 Estimation of the risk (generalization error)
 - 2.2 Hyper-parameters, model selection

- 1 Classification : régression logistique
 - 1.1 Objectifs
 - 1.2 Modèle linéaire pour la classification
 - 1.3 Estimation des coefficients β
 - 1.4 Evaluation des performances & choix de δ_0

- 2 Risk, hyper-parameters and model selection
 - 2.1 Estimation of the risk (generalization error)
 - 2.2 Hyper-parameters, model selectior

Exemple avec 2 variables explicatives

Données utilisées pour l'apprentissage du classifieur :

- $(X_1, Y_1), \ldots, (X_n, Y_n),$
- ▶ ici $X_i \in \mathbb{R}^2$, $Y_i \in \{0,1\}$ (« 1 » associé au label « Positif », « 0 » au label « Négatif »)

Résultat : un classifieur

On cherche à obtenir $h: x \mapsto 0$ or 1

In this lecture you will learn how to...

- construire des classifieurs à l'aide de la régression logistique
- définir et évaluer la capacité de généralisation
- identifier les degrés de liberté
- comparer des classifieurs

Cadre mathématique

- $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \mathcal{Y}$
- $ightharpoonup \mathcal{X} \subset \mathbb{R}^p$
- $\mathcal{Y} = \{0, 1\}$
 - sauf mention explicite, on s'intéresse à la classification binaire
- \blacktriangleright $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{iid}}{\sim} P^{X,Y}$

- 1 Classification : régression logistique
 - 1.1 Objectifs
 - 1.2 Modèle linéaire pour la classification
 - 1.3 Estimation des coefficients β
 - 1.4 Evaluation des performances & choix de δ_0

- 2 Risk, hyper-parameters and model selection
 - 2.1 Estimation of the risk (generalization error)
 - 2.2 Hyper-parameters, model selection

Régression logistique

Malgré le mot « régression », il s'agit d'une méthode de classification (« régression sur des variables discrètes »)

Classification binaire

Rappel. Si on connaissait $P^{X,Y}$, on pourrait calculer, pour une fonction de perte donnée, la fonction de classification optimale.

Approche suivie. modéliser $P^{Y|X}$

lci
$$Y|X \sim Bernouilli$$
 donc : seule $P^{Y|X}(Y=1|X=x)$ est à modéliser.

Modèle

$$\mathrm{P}_{\beta}^{Y|X}(Y=1|X=x) = \frac{\exp\left(\beta_0 + \beta^\top x\right)}{1 + \exp\left(\beta_0 + \beta^\top x\right)}$$

Remarque : et donc
$$\operatorname{P}_{\beta}^{Y|X}(Y=0|X=x)=\frac{1}{1+\exp\left(eta_0+eta^{\top}x\right)}$$

Fonction logit

$$ext{logit}: [0,1] o \mathbb{R}$$
 $p \mapsto ext{ln}\left(rac{p}{1-p}
ight)$

On a:
$$logit(P_{\beta}^{Y|X}(Y=1|X=x)) = \beta_0 + \beta^{\top}x$$

■ logit réalise une transformation : proba $p \in [0,1] \longleftrightarrow \beta_0 + \beta^\top x \in \mathbb{R}$

Remarque : équivalence avec une fonction de perte calculée à partir de la divergence de Kullback-Leibler.

Cas particulier d'un cadre plus large (GLM)

- $ightharpoonup Y|X \sim Bernouilli(\mathbb{E}_{\beta}(Y|X))$
- ▶ $\mathbb{E}_{\beta}(Y|X)$ s'écrit sous la forme $g(\mathbb{E}_{\beta}(Y|X)) = \beta_0 + \beta^{\top}X$ (with g = logit)
- le modèle de RL est un cas particulier du modèle GLM (g s'appelle la fonction de lien)

Remarque : tout comme l'est le modèle linéaire gaussien :

- \triangleright $Y|X \sim \mathcal{N}(\beta_0 + \beta^\top X, \sigma^2)$
- $ightharpoonup g\left(\mathbb{E}_{\beta}(Y|X)\right) = \beta_0 + \beta^{\top}X \text{ with } g = \mathrm{Id}$

La RL conduit à des prédictions $P_{\beta}^{Y|X}(Y=1|X=x) \in [0,1]$

Pour faire une prédiction dans $\mathcal{Y} = \{0, 1\}$

Soit $\delta_0 \in [0,1]$ (seuil de décision)

On construit la fonction de décision :

$$h_{\delta_0}: \ \mathcal{X} \rightarrow \{0,1\}$$

$$x \mapsto \begin{cases} 1 & \text{if } P_{\beta}^{Y|X}(Y=1|X=x) \geq \delta_0 \\ 0 & \text{if } P_{\beta}^{Y|X}(Y=1|X=x) < \delta_0 \end{cases}$$

$$P_{\beta}^{Y|X}(Y=1|X=x) = \delta_0 \iff \beta_0 + \beta^\top x = \mathrm{logit}^{-1}(\delta_0)$$
 ** séparation : hyperplan de \mathcal{X}

Proposition

Pour la fonction de perte $L(y, \tilde{y}) = \mathbb{1}_{\{y \neq \tilde{y}\}}$:

- Le risque $R(h_{\delta_0}) = \mathbb{E}(L(Y, h_{\delta_0}))$ est la probabilité de mauvais classement
- Le minimum de $R(h_{\delta_0})$ par rapport à δ_0 est atteint en $\delta_0 = 0.5$

1 – Classification : régression logistique

- 1.1 Objectifs
- 1.2 Modèle linéaire pour la classification
- 1.3 Estimation des coefficients β
- 1.4 Evaluation des performances & choix de δ_0

2 - Risk, hyper-parameters and model selection

- 2.1 Estimation of the risk (generalization error)
- 2.2 Hyper-parameters, model selection

Estimateur du maximum de vraisemblance

Allègement des notations :
$$x \to \begin{pmatrix} 1 \\ x \end{pmatrix}$$
 et $\beta \to \begin{pmatrix} \beta_0 \\ \beta \end{pmatrix}$

$$\mathbb{P}^{Y|X}_{\beta}(Y=1|X=x) = \frac{\exp\left(\beta^\top x\right)}{1+\exp\left(\beta^\top x\right)}$$

Vraisemblance

la log-vraisemblance s'écrit :

$$\ell(\beta) = \ln \mathcal{L}(\beta; \underline{x}, \underline{y})$$

=
$$\sum_{i=1}^{n} y_i \beta^{\top} x_i - (1 - y_i) \ln(1 + \exp(\beta^{\top} x_i))$$

Maximisation de $\ell(\beta)$

Elle s'effectue en recherchant β tel que $\nabla_{\beta}\ell(\beta) = 0$ algorithme de Newton-Raphson

11/41

Algorithme de Newton-Raphson

Soit $\phi : \mathbb{R} \to \mathbb{R}$. On cherche β tel que $\phi(\beta) = 0$ L'algorithme de Newton-Raphson est itératif :

▶ initialization : $\beta^{(0)}$

• récurrence : $\beta^{(k+1)} = \beta^{(k)} - \frac{\phi(\beta^{(k)})}{\phi'(\beta^{(k)})}$

Maximisation de $\ell(\beta)$

Newton-Raphson avec $\phi: \mathbb{R}^{p+1} \to \mathbb{R}^{p+1}$:

Même algorithme avec :

- $ightharpoonup \phi o
 abla_{eta} \ell$

D'où la récurrence :

$$\beta^{(k+1)} = \beta^{(k)} - \left[\nabla_{\beta}^{2} \ell \left(\beta^{(k)} \right) \right]^{-1} \nabla_{\beta} \ell \left(\beta^{(k)} \right)$$

L'algorithme peut diverger \rightarrow en pratique on diminue le pas :

$$\beta^{(k+1)} = \beta^{(k)} - \rho_n \left[\nabla_{\beta}^2 \ell \left(\beta^{(k)} \right) \right]^{-1} \nabla_{\beta} \ell \left(\beta^{(k)} \right)$$

with $\rho_n > 0$

- 1 Classification : régression logistique
 - 1.1 Objectifs
 - 1.2 Modèle linéaire pour la classification
 - 1.3 Estimation des coefficients β
 - 1.4 Evaluation des performances & choix de δ_0

- 2 Risk, hyper-parameters and model selection
 - 2.1 Estimation of the risk (generalization error)
 - 2.2 Hyper-parameters, model selectior

RL sur l'exemple avec 2 variables explicatives

Erreurs de prédiction :

- prédire « Positif » un objet de classe « Négatif »
- prédire « Négatif » un objet de classe « Positif »

Matrice de confusion & grandeurs dérivées

	Réalité	Réalité
	Négatif (N)	Positif (P)
Prédiction	Vrais Négatifs	Faux Négatifs
Négatif	(VN)	(FN)
Prédiction	Faux Positifs	Vrais Positifs
Positif	(FP)	(VP)

Taux de Vrais Positifs

$$TVP = \frac{VP}{P} = \frac{VP}{VP + FN}$$

Egalement appelé sensibilité

Taux de Vrais Négatifs

$$TVN = \frac{VN}{N} = \frac{VN}{VN + FP}$$

Egalement appelé spécificité

Compromis Taux de Vrais Négatifs / Taux de Vrais Positifs

Si l'étiquette « Positif » correspond à un « défaut » :

- ► 1 TVP est le taux de non-détections
- \triangleright 1 TVN est le taux de fausses alarmes

Dans ce cas:

- le TVP est généralement la grandeur à privilégier
- exemple : détection d'une maladie

Moyen d'action.

Le choix de la valeur de δ_0 influe sur le compromis TVN/TVP :

- ightharpoonup rappel : $h_{\delta_0}=1$ if $\mathrm{P}_{\beta}^{Y|X}(Y=1|X=x)\geq \delta_0$
- \blacktriangleright quand $\delta_0 \nearrow$, $TVN \nearrow$, and $TVP \searrow$

Influence de δ_0

Courbe ROC (Receiver Operating Characteristic)

- un outil d'aide à la décision (choix de δ_0)
- ▶ un outil de comparaison de classifieurs
- ▶ grandeur dérivée : AUC = Area Under Curve

Gérer le cas où p est grand (grande dimension)

On pénalise directement la log-vraisemblance par une pénalité :

- $L_2 : \hat{\beta} = \arg\max_{\beta} (\ell(\beta) \lambda \|\beta\|_1)$

Gérer le cas multi-classes

Lorsque le nombre de classes est ≥ 3 , on parle de classification multi-classes

Soit $\{0, 1, \dots, K\}$ l'ensemble des K + 1 labels (K + 1 classes).

On réalise K RL binaires en considérant une classe (ici « 0 ») comme référence :

$$\begin{cases} & \ln\left(\frac{\mathrm{P}(Y=1|X=x)}{\mathrm{P}(Y=0|X=x)}\right) &= \beta_{1,0} + \beta_{1}^{\top}x \\ & \vdots \\ & \ln\left(\frac{\mathrm{P}(Y=K|X=x)}{\mathrm{P}(Y=0|X=x)}\right) &= \beta_{K,0} + \beta_{K}^{\top}x \end{cases}$$

- 1 Classification : régression logistique
 - 1.1 Objectifs
 - 1.2 Modèle linéaire pour la classification
 - 1.3 Estimation des coefficients β
 - 1.4 Evaluation des performances & choix de δ_0

- 2 Risk, hyper-parameters and model selection
 - 2.1 Estimation of the risk (generalization error)
 - 2.2 Hyper-parameters, model selection

- 1 Classification : régression logistique
 - 1.1 Objectifs
 - 1.2 Modèle linéaire pour la classification
 - 1.3 Estimation des coefficients β
 - 1.4 Evaluation des performances & choix de δ_0

- 2 Risk, hyper-parameters and model selection
 - 2.1 Estimation of the risk (generalization error)
 - 2.2 Hyper-parameters, model selectior

Problem

Back to the general setting (regression/classification).

Let \hat{h} be a predictor $\mathcal{X} \to \mathcal{Y}$ learned from data :

$$\hat{h}(x) = \hat{h}(x; (X_1, Y_1), \ldots, (X_n, Y_n)) = \hat{h}(x; \underline{X}, \underline{Y}).$$

Recall that, given a loss function L, we define the risk, or generalisation error :

$$\mathcal{R}(\hat{h}) = \mathbb{E}\left(L(Y, \hat{h}(X)) \mid \underline{X}, \underline{Y}\right)$$
$$= \iint_{\mathcal{X} \times \mathcal{Y}} L(y, \hat{h}(x)) P^{X,Y}(dx, dy).$$

Examples.
$$L(y, \tilde{y}) = (y - \tilde{y})^2$$
, $L(y, \tilde{y}) = |y - \tilde{y}|$, $L(y, \tilde{y}) = \mathbb{1}_{y \neq \tilde{y}}$, ...

Problem

How can we estimate this risk (which depends on $P^{X,Y}$)?

Refresher: empirical risk

We call empirical risk the risk

$$\widehat{\mathscr{R}}_n = \iint_{\mathcal{X} \times \mathcal{Y}} L(y, \, \hat{h}(x)) \, \hat{P}_n(\mathrm{d}x, \mathrm{d}y) = \frac{1}{n} \sum_{i=1}^n L(Y_i, \, \hat{h}(X_i))$$

computed with $P^{X,Y}$ equal to $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i,Y_i}$.

Question

Is this empirical risk $\widehat{\mathcal{R}}_n$, in general, a "good" estimator of the true risk $\mathcal{R}(\hat{h})$?

the data is used twice!

Intuition: It is « risky » to estimate the risk from the error observed on the same data already used to construct \hat{h} ...

Zoom on an illuminating special case

Consider the case of "ordinary" linear regression :

- $h(x) = \beta_0 + \beta_1 x^{(1)} + \ldots + \beta_p x^{(p)},$
- quadratic loss : $L(y, \tilde{y}) = (y \tilde{y})^2$,
- ▶ $p+1 \le n$ and $\underline{X}^{\top}\underline{X}$ an a.s. invertible $(p+1) \times (p+1)$ matrix.

Empirical risk minimization : $\hat{\beta} = (\underline{X}^{\top}\underline{X})^{-1} \underline{X}^{\top}\underline{Y}$.

Remark : link between $\hat{\mathcal{R}}_n$ and the coefficient R^2 of determination :

$$R^{2} = 1 - \frac{\text{RSS}(\hat{\beta})}{\text{TSS}} = 1 - \frac{\sum_{i=1}^{n} \left(Y_{i} - \hat{\beta}^{T} X_{i}\right)^{2}}{\sum_{i=1}^{n} \left(Y_{i} - \bar{Y}\right)^{2}}$$
$$= 1 - \frac{\widehat{\mathcal{R}}_{n}}{\widehat{\mathbb{V}}_{n}(Y)} \quad \text{with } \widehat{\mathbb{V}}_{n}(Y) = \frac{1}{n} \sum_{i=1}^{n} \left(Y_{i} - \bar{Y}\right)^{2}.$$

Consider the generalization error wrt responses only:

$$\widetilde{\mathscr{R}}_n = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n\left(\frac{\widetilde{\mathbf{Y}}_i}{i} - \hat{\beta}^{\top}X_i\right)^2 \mid \underline{X},\underline{Y}\right),$$

with, for all i, \widetilde{Y}_i and Y_i iid conditionnally to \underline{X} .

Proposition

Assume that the unknown distribution $P^{X,Y}$ is such that $Y_i = \beta^\top X_i + \varepsilon_i$, with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$, independent of X_i . Then $\mathbb{E}\left(\widetilde{\mathscr{R}}_n\right) = \sigma^2\left(1 + \frac{p+1}{n}\right)$,

$$\mathbb{E}\left(\widehat{\mathscr{R}}_{n}\right) = \sigma^{2}\left(1 - \frac{p+1}{n}\right).$$

Interpretation. On average, the empirical risk under-estimates the generalization error :

$$\mathbb{E}\left(\widehat{\mathscr{R}}_{n}-\widehat{\mathscr{R}}_{n}\right) = 2\frac{p+1}{n}\sigma^{2} > 0.$$

Another way of looking at this result. Set

$$\eta = \frac{p+1}{n} = \frac{\text{number of coefficients}}{\text{sample size}}$$

Then

$$\frac{\mathbb{E}\left(\widetilde{\mathscr{R}}_{n}\right)}{\mathbb{E}\left(\widehat{\mathscr{R}}_{n}\right)} = \frac{1+\eta}{1-\eta} \xrightarrow[\eta\to 1]{} +\infty.$$

Proof. Let us compute first $\mathbb{E}\left(\widetilde{\mathscr{R}}_n \mid \underline{X}\right)$ with (reminder)

$$\widetilde{\mathscr{R}}_n = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n\left(\widetilde{Y}_i - \hat{\beta}^{\top}X_i\right)^2 \mid \underline{X},\underline{Y}\right).$$

We have $\mathbb{E}\left(\widetilde{Y}_i \mid \underline{X}\right) = \mathbb{E}\left(\hat{\beta}^\top X_i \mid \underline{X}\right) = \beta^\top X_i$, therefore

$$\mathbb{E}\left(\widetilde{\mathscr{R}}_{n} \mid \underline{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{V}\left(\widetilde{Y}_{i} - \hat{\beta}^{\top} X_{i} \mid \underline{X}\right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\underbrace{\mathbb{V}\left(\widetilde{Y}_{i} \mid \underline{X}\right)}_{-\sigma^{2}} + \underbrace{\mathbb{V}\left(\hat{\beta}^{\top} X_{i} \mid \underline{X}\right)}_{=\mathscr{R}} \right).$$

We already know that $\mathbb{V}\left(\hat{\beta}\mid\underline{X}\right)=\sigma^2\left(\underline{X}^{\top}\underline{X}\right)^{-1}$. Therefore :

$$\begin{split} \circledast &= \mathbb{V}\left(\hat{\beta}^{\top} X_{i} \mid \underline{X}\right) \\ &= X_{i}^{\top} \mathbb{V}\left(\hat{\beta} \mid \underline{X}\right) X_{i} \\ &= \sigma^{2} X_{i}^{\top} \left(\underline{X}^{\top} \underline{X}\right)^{-1} X_{i} \\ &= \sigma^{2} \operatorname{tr}\left(\left(\underline{X}^{\top} \underline{X}\right)^{-1} X_{i} X_{i}^{\top}\right). \end{split}$$

By noting that $\underline{X}^{\top}\underline{X} = \sum_{i} X_{i}X_{i}^{\top}$, we get :

$$\sum_{i} \mathbb{V} \left(\hat{\beta}^{\top} X_{i} \mid \underline{X} \right) = \sigma^{2} \operatorname{tr} \left(\left(\underline{X}^{\top} \underline{X} \right)^{-1} \sum_{i} X_{i} X_{i}^{\top} \right)$$
$$= \sigma^{2} \operatorname{tr} \left(I_{p+1} \right) = \sigma^{2} \left(p+1 \right).$$

Thus, we have :

$$\mathbb{E}\left(\widetilde{\mathcal{R}}_{n} \mid \underline{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \left(\underbrace{\mathbb{V}\left(\widetilde{Y}_{i} \mid \underline{X}\right)}_{=\sigma^{2}} + \underbrace{\mathbb{V}\left(\widehat{\beta}^{\top}X_{i} \mid \underline{X}\right)}_{=\circledast} \right)$$
$$= \sigma^{2} + \sigma^{2} \frac{p+1}{n} = \sigma^{2} \left(1 + \frac{p+1}{n}\right).$$

Hence the result : $\mathbb{E}\left(\widetilde{\mathscr{R}}_{n}\right) = \sigma^{2}\left(1 + \frac{p+1}{n}\right)$.

Prove the second inequality,

$$\mathbb{E}\left(\widehat{\mathscr{R}}_{n}\right) = \sigma^{2}\left(1 - \frac{p+1}{n}\right),\,$$

using Student's theorem (see lecture #6).

Training set and test set

Conclusion/extrapolation. The empirical risk is in general

- a downward-biased estimator of the risk,
- \triangleright with a bias that is increasing when $p \nearrow$.

Solution: split the data in two sets

- **training** data : used to construct \hat{h} ,
- test data: used to estimate the generalization error.

Example:

training (e.g., 80%)

test (20%)

Exemple "Ozone" (cont'd from lecture #6)

Goal : predict the ozone concentation on day t+1 from data available on day t

"Ozone" example: 70/30

All 7 explanatory variables and their 21 interactions are used.

Result from 10 random splits, 70% / 30% :

R^2	$\hat{\mathscr{R}}_{n}$	$\hat{\mathscr{R}}_n^{test}$
0.77185	345.1	573.32
0.76831	371.41	496.03
0.77292	343.96	608.62
0.76093	350.53	606.14
0.78584	345.45	669.66
0.75459	399.9	476.61
0.71367	343.72	643.72
0.77689	377.32	524.74
0.8176	317.83	695.86
0.79784	373.18	554.25

Lecture outline

- 1 Classification : régression logistique
 - 1.1 Objectifs
 - 1.2 Modèle linéaire pour la classification
 - 1.3 Estimation des coefficients eta
 - 1.4 Evaluation des performances & choix de δ_0

- 2 Risk, hyper-parameters and model selection
 - 2.1 Estimation of the risk (generalization error)
 - 2.2 Hyper-parameters, model selection

Problem #1: choosing a « good » family $\mathscr H$

Example. Selection of k variables among p. Let $J \subset \{1, \dots p\}$:

$$h(x) = \beta_0 + \sum_{j \in J} \beta_j x^{(j)}.$$

■ Defines a family \mathcal{H}_J with $k_J = \text{card}(J) + 1$ parameters.

Example. Polynomial (linear!) model in $x \in \mathbb{R}$, degree $\leq J$:

$$h(x) = \beta_0 + \beta_1 x + \ldots + \beta_J x^J.$$

 \longrightarrow Defines a family \mathcal{H}_J with $k_J = J + 1$ parameters.

Problem: model selection

How to choose the family \mathcal{H}_J (and, in particular, its « size » k_J)?

Remark : replace h(x) with $\ln \frac{h(x)}{1-h(x)}$ for logistic regression.

Problem #2 : choosing a regularization hyper-parameter

Most methods require some "tuning"...

ightharpoonup Ridge/LASSO regression : $\hat{eta}= \operatorname{argmin} \hat{\mathcal{R}}_{n,\lambda}^{\mathsf{pen}}$, avec

$$\hat{\mathscr{R}}_{n,\lambda}^{\mathsf{pen}}(eta) \,=\, \hat{\mathscr{R}}_{n}(eta) + \frac{\lambda}{\lambda} \sum_{j} \left| eta_{j}
ight|^{q}, \quad q \in \{1,2\},$$

 \triangleright Choosing the number k of neighboors in a k-NN model :

$$h(x) = \frac{1}{k} \sum_{i \in \mathcal{V}_{n,k}(x)} y_i,$$

with $V_{n,k}(x)$ the indices of the k nearest neighboors of x.

Problem: calibration

How to "tune" the value of such hyperparameters?

Over-fitting: beware!

Idea

Choose the family \mathcal{H}_J , or the hyperparameter λ , in order to minimize (an estimation of) the generalization error.

Example. Polynomial regression in $x \in \mathbb{R}$, degree $\leq J$:

$$h(x) = \beta_0 + \beta_1 x + \ldots + \beta_J x^J,$$

with J = 2, 5, 8, 11.

Recall that, in linear regression, the empirical risk has a downward bias proportional to the number of parameters in the model.

Example: polynomial regression

Understanding over-fitting: simulations

Blue : empirical risk $\hat{\mathcal{R}}_n$ / Red : error on the test set

Figure from Hastie, Tibshirani & Friedman (2017). The Elements of Statistical Learning (12th edition), Springer.

Let's recapitulate...

Problem. We want to estimate the error to choose \mathscr{H} or λ but. . .

- ▶ it should be done neither on the training data (over-fitting problem),
- nor on the test data
 - (bias in the final estimation of the generalization error).

Solution: validation set

Idea: split the data in three sets

- ▶ training data : construct \hat{h} with given \mathcal{H}/λ ,
- ightharpoonup validation set : choose \mathcal{H} , λ , etc.
- **test** data : estimate the generalization error.

Simple validation (hold-out)

training (e.g., 60%)

validation (e.g., 20%)

test (e.g., 20%)

Better validation: the cross validation method

k-fold cross-validation, here with k = 4:

 \blacksquare the error is averaged over the k validation sets.

Special case: leave-one-out cross validation

ightharpoonup k = n blocks (of size n/k = 1).

"Ozone" example : LASSO / choice of λ

- Predictor: LASSO regression using all variables and their interactions
- \triangleright $\hat{\lambda}$ obtained by CV (LOO)

"Ozone" example: variable selection

- Predictor obtained by the ordinary least squares method, on an increasing number of variables (linear terms first, then interactions)
- Validation error : LOO cross validation

Final remark : another approach to model selection

Assumption : parametric statistical models \mathcal{M}_j for $P^{Y|X}$.

Denote by $\hat{\theta}_{j}^{\text{MLE}}$ the MLE of θ in model \mathcal{M}_{j} .

Then it AIC criterion can also be used for model selection:

$$\hat{j} = \operatorname{argmin} \operatorname{AIC}(j), \qquad \operatorname{AIC}(j) = -2 \ln \mathcal{L}\left(\hat{\theta}_{j}^{\mathsf{MLE}}; \underline{X}, \underline{Y}\right) + 2k_{j},$$

with k_j the number of parameters in model \mathcal{M}_j .

"Ozone" exemple : AIC

 Predictor obtained by the ordinary least squares method, on an increasing number of variables (linear terms first, then interactions)

