Accelerated, Parallel and PROXimal coordinate descent

Olivier Fercoq, olivier.fercoq@ed.ac.uk and Peter Richtárik, peter.richtarik@ed.ac.uk

Problem

Minimize for $x \in \mathbb{R}^N$ the composite function F

$$\min_{x \in \mathbb{R}^N} \{ F(x) = f(x) + \psi(x) \}$$

- $f: \mathbb{R}^N \to \mathbb{R}$, convex, differentiable, not strongly convex
- $\psi: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$, convex, separable

$$\psi(x) = \sum_{i=1}^{n} \psi_i(x^{(i)})$$

Examples: $\lambda \|x\|_1$, $I_{[0,1]^n}(x)$, $\lambda \sum_{i=1}^n \|x^{(i)}\|_2$

Coordinate descent

- At each iteration, one solves a 1-dimensional optimization problem
- Very cheap iterations: for sparse problems, less than the cost of summing two vectors
- Many iterations are required
- Famous in machine learning: L_1 -regularised least squares, support vector machines, non-negative factorization...
- Convergence in O(1/k): we bring it to $O(1/k^2)$ and we update several coordinates in parallel

APPROX

Pick $z_0 \in \text{dom} \psi$, set $\tau = \mathbf{E}[|\hat{S}|], \theta_0 = \frac{\tau}{n}, u_0 = 0$ for k > 0 do

Generate a random set of coordinates $S_k \sim S$ for $i \in S_k$ do

$$t_{k}^{(i)} = \arg\min_{t \in \mathbb{R}^{N_{i}}} \langle \nabla_{i} f(\theta_{k}^{2} u_{k} + z_{k}), t \rangle$$

$$+ \frac{n\theta_{k} \beta L_{i}}{\|t\|_{C}^{2}} + \psi_{i}(z_{i}^{(i)} - z_{i}^{(i)})$$

for
$$i \in S_k$$
 do
$$t_k^{(i)} = \underset{t \in \mathbb{R}^{N_i}}{\min} \langle \nabla_i f(\theta_k^2 u_k + z_k), t \rangle$$

$$+ \frac{n\theta_k \beta L_i}{2\tau} ||t||_{(i)}^2 + \psi_i(z_k^{(i)} + t)$$

$$z_{k+1}^{(i)} \leftarrow z_k^{(i)} + t_k^{(i)}$$

$$u_{k+1}^{(i)} \leftarrow u_k^{(i)} - \frac{1 - \frac{n}{\tau} \theta_k}{\theta^2} t_k^{(i)}$$
Theorem. Suppose that $(f, \hat{S}) \sim \text{ESO}(\beta, w)$.

$$E[F(x_k) - F(x_*)] \leq \frac{4n^2}{(k\tau + n)^2} C$$

$$where $C = (1 - \frac{\tau}{n})(F(x_0) - F(x_*)) + \frac{\beta}{2} ||x_0 - x_*||_w^2$$$

end for

end for

OUTPUT: $\theta_k^2 u_{k+1} + z_{k+1}$

Parallel

Assume:

• f is partially separable of degree ω :

$$f(x) = \sum_{j=1}^{m} f_j(x)$$

 f_i depends on at most ω coordinates

• ∇f coordinatewise Lipschitz: $\forall x \in \mathbb{R}^N, t \in \mathbb{R}^{N_i}$,

$$\|\nabla_i f(x + U_i t) - \nabla_i f(x)\|_{(i)}^* \le L_i \|t\|_{(i)}$$

- S is a τ -nice sampling: If $|S| = \tau$, then $\mathbf{P}(\hat{S} = S) = \frac{1}{(n)}$
- $\beta = 1 + \frac{(\omega 1)(\tau 1)}{\max\{1, n 1\}}$

Then for all $x, h \in \mathbb{R}^N$, $(f, \hat{S}) \sim ESO(\beta, L)$ [4]:

$$\mathbf{E}\left[f(x+h_{[\hat{S}]})\right] \le f(x) + \frac{\tau}{n} \left(\langle \nabla f(x), h \rangle + \frac{\beta}{2} \|h\|_L^2 \right)$$

Proximal

Lemma. For all $k \geq 0$

$$\theta_k^2 u_{k+1} + z_{k+1} = \sum_{l=0}^k \gamma_k^l z_l$$

where $\gamma_k^0, \gamma_k^1, \dots, \gamma_k^k \ge 0$ and $\sum_{l=0}^k \gamma_k^l = 1$ $\Rightarrow \theta_k^2 u_{k+1} + z_{k+1} \in \text{dom} \psi$, $\theta_k^2 u_k + z_k \in \text{dom} \psi$

Accelerated

Theorem. Suppose that $(f, \hat{S}) \sim ESO(\beta, w)$.

$$\mathbf{E}[F(x_k) - F(x_*)] \le \frac{4n^2}{(k\tau + n)^2}C$$

For $\varepsilon > 0$, we obtain an ε -solution in expectation after at most

$$k \ge \frac{2n}{\tau} \sqrt{\frac{(1 - \frac{\tau}{n})(F(x_0) - F(x_*)) + \frac{\beta}{2} \|x_0 - x_*\|_L^2}{\varepsilon}}$$

L_1 -regularised L_1 regression

Dorothea dataset: $m=800, N=100,000, \omega=6,061,$ $\tau = 4, \epsilon = 0.1 \text{ (smoothing [3])}$

$$F(x) = ||Ax - b||_1 + ||x||_1$$

Comparison of algorithms: $||Ax - b||_1 + ||x||_1$

Support Vector Machines

Malicious URL dataset: $m=2,396,130,\,N=3,231,961,\,m{ au}=1$

$$F(x) = \frac{1}{2N} \sum_{i=1}^{m} \left(\sum_{i=1}^{N} b_i A_{ji} x_i \right)^2 - \frac{1}{N} \sum_{i=1}^{N} x_i + I_{[0,1]^N}(x)$$

One order of magnitude faster for the dual SVM

Conclusion

- First accelerated, parallel and proximal coordinate descent method
- Needs to be able to compute $\nabla_i f(\theta_k^2 u_k + z_k)$ without actually summing the 2 vectors: this includes quadratics, smoothed L_1 norm and logistic regression
- Very promising numerical experiments on machine learning problems: several times faster than the state of the art
- Perspectives:
 - Nonuniform samplings
 - Line search
 - Universal algorithms
 - Adaboost

Acknowledgement

EPSRC grant EP/I017127/1 (Mathematics for Vast Digital Resources), EPSRC grant EP/G036136/1 and the Scottish Funding Council (NAIS), EPSRC grant EP/K02325X/1 (Accelerated Coordinate Descent Methods for Big Data Problems) and Simons Institute for the Theory of Computing.

References

- Olivier Fercoq and Peter Richtárik. Accelerated, parallel and proximal coordinate descent. Preprint arXiv:1312.5799, 2013.
- [2] Olivier Fercoq and Peter Richtárik. Smooth minimization of nonsmooth functions by parallel coordinate descent. Preprint arXiv:1309.5885, 2013.
- Yurii Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming, 103:127–152, 2005.
- Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data optimization problems. Preprint arXiv:1212.0873, 2012.
- Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. Journal of Machine Learning Research, 14:567-599.