State Farm Project Model 1

July 29, 2019

1 State Farm Classification Project: Model 1

```
In [1]: import pandas as pd
        import numpy as np
       from sklearn.model_selection import cross_validate, train_test_split, GridSearchCV
       from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, r
       %matplotlib inline
        import matplotlib.pyplot as plt
        from sklearn import metrics
In [2]: import xgboost as xgb
        from xgboost.sklearn import XGBClassifier
In [3]: train = pd.read_csv("exercise_02_train.csv")
In [4]: train.head()
Out [4]:
                                       x2
                                                 x3
                                                                       x5
                            x1
                                                                                 x6
            0.198560
                     74.425320
                                67.627745 -3.095111 -6.822327
                                                                19.048071 -0.362378
        1 -29.662621
                    24.320711 -48.205182
                                          1.430339 -6.552206
                                                                 4.263074 6.551412
         15.493759 -66.160459
                                50.512903 -2.265792 14.428578
                                                                 2.509323 -6.707536
        3 -19.837651 33.210943
                                53.405563 1.079462 11.364251
                                                                -1.064581 9.308857
          11.896655 -26.717872 -17.758176 1.692017 21.553537
                                                                -5.852097 -0.857435
                                      x9 ...
                                                   x91
                                                             x92
                                                                      x93
                                                                                x94
                 x7
                            x8
                                                                      asia -1.093926
       0 -10.699174 -22.699791 -1.561262 ...
                                              0.800948
                                                       1.553846
                       1.245095 2.246814 ...
                                              2.031707 7.544422
                                                                      asia -3.659541
            3.820842 -11.100833 -1.459825 ... -0.992474 1.385799
                                                                  america 1.299144
                    14.552959 -2.012755 ... -1.157845
           9.266076
                                                        6.036804
                                                                      asia 0.521396
                     18.075272 -1.404618 ... -3.045511 -1.719337
        4 -2.186940
                                                                      asia 1.526071
                 x95
                            x96
                                      x97
                                                 x98
                                                           x99
                                                                У
                     26.238591
          16.202557
                                -2.125570
                                            9.644466
                                                      1.237667
          29.674259 -15.141647 -36.030599
                                            5.820376
                                                      1.952183
          33.018090 -19.914894
                                26.212736
                                            2.372690 0.558988
            9.664095 -27.197636
                                19.221130 13.382712 0.214462
        4 -25.608326 33.383803 -5.703269 -11.023730 -1.191319
```

[5 rows x 101 columns]

```
In [5]: def unique(list1,getList = False):
            # insert the list to the set
            list_set = set(list1)
            # convert the set to the list
            unique_list = (list(list_set))
            for x in unique_list:
                print(x)
            if getList == True:
                return unique_list
        unique(train.dtypes)
float64
int64
object
In [6]: predictCols = list(train)
        predictCols.remove('y')
In [7]: for col in predictCols:
            if train[col].dtype in [np.float64,np.int64]:
                #print(col)
                train[col].fillna(train[col].mean(skipna = True), inplace=True)
In [8]: # Ensure no remaining na's
        numericCols = train.select_dtypes(include='number').columns
        naVals = train[numericCols].isna().sum().sort_values()
        naVals.sum()
Out[8]: 0
In [9]: objectCols = train.select_dtypes(include='object').columns
        print(objectCols)
Index(['x34', 'x35', 'x41', 'x45', 'x68', 'x93'], dtype='object')
In [10]: train.x34.fillna(train.x34.mode()[0], inplace=True)
         uniqueX34_train = unique(train['x34'],True)
Toyota
bmw
volkswagon
tesla
ford
Honda
chrystler
```

```
mercades
chevrolet
nissan
In [11]: train.x35.replace(['thurday', 'thur'], ['thursday', 'thursday'], inplace=True)
         train.x35.replace(['wed'], ['wednesday'], inplace=True)
         train.x35.replace(['fri'], ['friday'], inplace=True)
         train.x35.fillna(train.x35.mode()[0], inplace=True)
         unique(train['x35'])
thursday
tuesday
monday
friday
wednesday
In [12]: # Convert currency column to float, remove nan's
         train['x41'] = train['x41'].astype(str)
         train['x41'] = train['x41'].map(lambda x: x.lstrip('$'))
         train['x41'] = train['x41'].astype(np.float16)
         train['x41'].fillna(0, inplace=True) # probably safer to replace nan's with 0, not me
         print(train['x41'].isna().sum())
0
In [13]: # Convert percentage column to float, remove nan's
         train['x45'] = train['x45'].astype(str)
         train['x45'] = train['x45'].map(lambda x: x.rstrip('%'))
         train['x45'] = train['x45'].astype(np.float16)
         train['x45'].fillna(train['x45'].mean(skipna = True), inplace=True) # since very few
         print(train['x41'].isna().sum())
0
In [14]: # Month Column
         train.x68.replace(['Dev'], ['Dec'], inplace=True) # because I'm OCD
         train.x68.replace(['sept.'], ['Sep'], inplace=True)
         train.x68.replace(['January'], ['Jan'], inplace=True)
         train.x68.replace(['July'], ['Jul'], inplace=True)
         train.x68.fillna(train.x68.mode()[0], inplace=True)
         unique(train['x68'])
```

```
Jun
May
Feb
Aug
Oct
Mar
Jan
Nov
Apr
Sep
Dec
Jul
In [15]: # Region
         train.x93.replace(['euorpe'], ['europe'], inplace=True)
         train = train[pd.isna(train['x93']) == False]
         print(train['x93'].isna().sum())
         # Region seems significant, and there's only 7 NA's, so remove rows with this as NA
0
In [16]: # Check if target has na's
         print(train['y'].isna().sum())
0
In [17]: train = pd.get_dummies(train)
In [18]: # Ensure we converted all non-numeric columns to numeric
         train.select_dtypes(include='object').columns
Out[18]: Index([], dtype='object')
In [19]: train.describe()
Out[19]:
                           x0
                                         x1
                                                        x2
                                                                       x3
                                                                                     x4
                39993.000000
                               39993.000000
                                             39993.000000
                                                            39993.000000
                                                                           39993.000000
         count
         mean
                    3.447752
                                  -7.788416
                                                  1.704644
                                                               -0.072832
                                                                               0.121980
         std
                   16.245334
                                  37.012224
                                                 38.382930
                                                                1.503022
                                                                              16.289301
         min
                  -60.113902
                                -157.341119
                                               -163.339956
                                                               -6.276969
                                                                             -61.632319
         25%
                   -7.595295
                                 -32.731869
                                                -24.141082
                                                               -1.087780
                                                                             -10.896141
         50%
                    3.446322
                                  -7.987507
                                                  1.959477
                                                               -0.062721
                                                                               0.105307
         75%
                    14.266326
                                  16.848201
                                                 27.511371
                                                                0.940330
                                                                              11.076726
                   75.311659
                                 153.469221
                                                154.051060
                                                                5.837559
                                                                              65.949709
         max
                           x5
                                         x6
                                                        x7
                                                                       8x
                                                                                     x9
                                                                                         \
```

```
39993.000000
                      39993.000000
                                     39993.000000
                                                     39993.000000
                                                                    39993.000000
count
          -0.607009
                           0.035852
                                         -0.052430
                                                        -2.911144
                                                                       -0.024524
mean
std
           15.583132
                           9.040667
                                          6.952184
                                                        13.148182
                                                                        2.939696
min
         -62.808995
                         -35.060656
                                        -26.736717
                                                       -53.735586
                                                                      -11.497395
                                                       -11.722590
25%
         -11.181510
                          -6.089227
                                         -4.746572
                                                                       -2.003827
50%
           -0.576660
                          0.044975
                                         -0.037833
                                                        -2.940961
                                                                       -0.054184
75%
           9.954957
                           6.100325
                                          4.636585
                                                         5.857648
                                                                        1.954809
max
          63.424046
                          45.053946
                                         34.267792
                                                        66.936936
                                                                       11.271939
                            x68_Jul
                                           x68_Jun
                                                          x68_Mar
                                                                         x68_May
                      39993.000000
                                     39993.000000
                                                     39993.000000
                                                                    39993.000000
count
mean
                           0.277199
                                          0.231516
                                                         0.010777
                                                                        0.119221
                                                         0.103252
std
                           0.447621
                                          0.421806
                                                                        0.324052
min
                           0.000000
                                          0.000000
                                                         0.000000
                                                                        0.000000
25%
                           0.00000
                                          0.000000
                                                         0.000000
                                                                        0.00000
50%
                           0.000000
                                          0.000000
                                                         0.000000
                                                                        0.000000
75%
                           1.000000
                                          0.00000
                                                         0.000000
                                                                        0.00000
                                          1.000000
                                                         1.000000
                                                                        1.000000
                           1.000000
max
                                                      x93 america
             x68_Nov
                            x68 Oct
                                           x68_Sep
                                                                        x93 asia
                                      39993.000000
                                                     39993.000000
                                                                    39993.000000
count
       39993.000000
                      39993.000000
           0.003776
                           0.022604
                                          0.087140
                                                         0.078289
                                                                        0.885555
mean
std
           0.061331
                          0.148639
                                          0.282044
                                                         0.268629
                                                                        0.318355
min
           0.000000
                          0.000000
                                          0.000000
                                                         0.000000
                                                                        0.000000
25%
                           0.000000
                                          0.000000
                                                         0.000000
           0.000000
                                                                        1.000000
50%
                                          0.00000
                                                         0.00000
           0.000000
                          0.000000
                                                                        1.000000
75%
           0.000000
                          0.000000
                                          0.000000
                                                         0.000000
                                                                        1.000000
max
            1.000000
                           1.000000
                                          1.000000
                                                         1.000000
                                                                        1.000000
         x93_europe
       39993.000000
count
           0.036156
mean
std
           0.186681
min
           0.000000
25%
           0.000000
50%
           0.000000
75%
           0.000000
            1.000000
max
```

[8 rows x 127 columns]

1.1 Now check class imbalance

```
0 31851

1 8142

Name: y, dtype: int64

% oF Training Set with Positives: 20%

% oF Training Set with Negatives: 80%
```

1.1.1 This class imbalance is not too bad, so we don't need to do resampling...

In []:

1.2 Now check correlation

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x24fec000b38>

1.3 Clearly, no columns in the data set are highly correlated, so no need to remove.

2 Now can send to XGBoost

```
In [23]: # Train test split
         y = train.y
         train = train.drop(['y'], axis=1)
In [24]: X_train, X_test, y_train, y_test = train_test_split(train, y, test_size=.2, random_state
In [25]: dtrain = xgb.DMatrix(X_train)
         dtest = xgb.DMatrix(X_test)
In [26]: # First XGboost attempt, leaving most parameters as default
         model = xgb.XGBClassifier(booster='gbtree',objective ='binary:logistic',max_depth = 5
                                   min_child_weight = 1,n_estimators = 500,seed = 1,n_jobs = 1
         model.fit(X_train,y_train)
Out[26]: XGBClassifier(base score=0.5, booster='gbtree', colsample_bylevel=1,
                colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.1,
                max_delta_step=0, max_depth=5, min_child_weight=1, missing=None,
                n_estimators=500, n_jobs=12, nthread=None,
                objective='binary:logistic', random_state=0, reg_alpha=0,
                reg_lambda=1, scale_pos_weight=1, seed=1, silent=None, subsample=1,
                verbosity=1)
In [27]: pred_train = model.predict(X_train)
        pred_test = model.predict(X_test)
In [28]: # evaluate predictions
         test_accuracy = accuracy_score(y_test, pred_test)
         print("Test Accuracy: %.2f%%" % (test_accuracy * 100.0))
Test Accuracy: 97.01%
In [29]: cm = confusion_matrix(y_test, pred_test)
         sns.set(font_scale=1.4)#for label size
         sns.heatmap(cm, annot=True,fmt='g',annot_kws={"size": 16})# font size
```

Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x24febe589b0>

2.0.1 Many more false negatives than false postives...probably due to the class imbalance 0's to 1's in the training set heavily weighted toward 0's (80%)

```
In []:
```

```
In [46]: # Tune max_depth and min_child_weight, since these have the highest impact on the mod
         param_test1 = {
          'max_depth':range(5,12,1),
          'min_child_weight':range(1,6,1)
         gsearch1 = GridSearchCV(estimator = XGBClassifier(booster='gbtree',objective ='binary
                                   n_{estimators} = 500, seed = 1, n_{jobs} = 12),
          param_grid = param_test1, scoring='roc_auc',n_jobs=4,iid=False, cv=5)
         gsearch1.fit(X_train,y_train)
Out[46]: GridSearchCV(cv=5, error_score='raise-deprecating',
                estimator=XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
                colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.1,
                max_delta_step=0, max_depth=10, min_child_weight=1, missing=None,
                n_estimators=500, n_jobs=4, nthread=None,
                objective='binary:logistic', random_state=0, reg_alpha=0,
                reg_lambda=1, scale_pos_weight=1, seed=1, silent=None, subsample=1,
                verbosity=1),
```

```
fit_params=None, iid=False, n_jobs=4,
                param_grid={'max_depth': range(5, 12), 'min_child_weight': range(1, 6)},
                pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
                scoring='roc_auc', verbose=0)
In [47]: gsearch1.best_params_, gsearch1.best_score_
Out[47]: ({'max depth': 8, 'min child weight': 4}, 0.9892715407729563)
In [44]: # Tune max_depth and min_child_weight, since these have the highest impact on the mod
         param test2 = {
          'n_estimators':range(100,600,100),
          'learning rate': [0.07,0.08,0.09,0.1,0.11,0.12,0.13]
         }
         gsearch2 = GridSearchCV(estimator = XGBClassifier(booster='gbtree',objective ='binary
                                   min_child_weight = 1,n_estimators = 500,seed = 1,n_jobs = 4
         param_grid = param_test2, scoring='roc_auc',n_jobs=4,iid=False, cv=5)
         gsearch2.fit(X_train,y_train)
Out[44]: GridSearchCV(cv=5, error_score='raise-deprecating',
                estimator=XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
                colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.1,
                max_delta_step=0, max_depth=7, min_child_weight=1, missing=None,
                n_estimators=500, n_jobs=4, nthread=None,
                objective='binary:logistic', random_state=0, reg_alpha=0,
                reg_lambda=1, scale_pos_weight=1, seed=1, silent=None, subsample=1,
                verbosity=1),
                fit_params=None, iid=False, n_jobs=4,
                param_grid={'n_estimators': range(100, 600, 100), 'learning_rate': [0.07, 0.08
                pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
                scoring='roc_auc', verbose=0)
In [45]: gsearch2.best_params_, gsearch2.best_score_
Out [45]: ({'learning_rate': 0.1, 'n_estimators': 500}, 0.9892144265557844)
2.1 Now attempt to understand feature importance
```

```
In [30]: xgb.plot_importance(model)
         plt.rcParams['figure.figsize'] = [5, 5]
         plt.show()
```



```
In [31]: columns = model.get_booster().get_score(importance_type="gain")
In [32]: dframe = pd.DataFrame([columns])
         dframe = dframe.T
         dframe.index.names = ['Feature Name']
         dframe.columns = ['Importance']
         dframe.sort_values(['Importance'],ascending = False)
Out[32]:
                       Importance
         Feature Name
         x75
                        34.724857
         x97
                        32.805042
         x37
                        28.269208
                        24.789958
         x35_thursday
         x58
                        24.267436
         x41
                        23.591614
         x53
                        23.122496
                        21.670210
         x99
         x66
                        21.234005
         x83
                         18.777649
         x51
                        18.483428
                         16.935363
         x12
         x44
                        16.617990
         x50
                        16.508720
         x1
                        16.345584
         x63
                         16.297937
```

x40	16.162018
x78	15.747694
x21	15.613956
x5	15.381603
x3	15.074353
x10	14.805315
x96	13.945939
x70	13.843800
x2	13.234008
x71	13.082727
x45	12.516872
x56	11.985151
x19	11.566486
x72	11.439885
 х6	1.786068
x89 x98	1.749735
x90 x91	1.748289
	1.741379
x65	1.719907
x81	1.716288
x9	1.670220
x46	1.648257
x62	1.643576
x31	1.638202
x88	1.629320
x87	1.565456
x67	1.532457
x14	1.532142
x17	1.527966
x52	1.520013
x54	1.495932
x36	1.477934
x29	1.394242
x13	1.390530
x60	1.369393
x34_Toyota	1.272307
x32	1.248057
x68_Dec	1.236412
x59	1.182015
x93_asia	1.165440
x34_Honda	1.105440
_	1.039672
x35_friday	
x68_Mar	1.027684
x34_bmw	0.983792

[113 rows x 1 columns]

```
In [37]: from numpy import sort
         from sklearn.feature_selection import SelectFromModel
         thresholds = sort(model.feature_importances_)
         for thresh in thresholds:
             # select features using threshold
             selection = SelectFromModel(model, threshold=thresh, prefit=True)
             select_X_train = selection.transform(X_train)
             # train model
             selection_model = XGBClassifier(booster='gbtree',objective = 'binary:logistic',max
                                   min_child_weight = 1,n_estimators = 500,seed = 1,n_jobs = 1
                                   learning_rate = 0.1)
             selection_model.fit(select_X_train, y_train)
             # eval model
             select_X_test = selection.transform(X_test)
             y_pred = selection_model.predict(select_X_test)
             predictions = [round(value) for value in y_pred]
             accuracy = accuracy_score(y_test, predictions)
             print("Thresh=%.3f, n=%d, Accuracy: %.2f%%" % (thresh, select_X_train.shape[1], a
Thresh=0.000, n=126, Accuracy: 97.90%
Thresh=0.001, n=113, Accuracy: 97.91%
Thresh=0.001, n=112, Accuracy: 97.85%
Thresh=0.001, n=111, Accuracy: 97.90%
Thresh=0.001, n=110, Accuracy: 97.90%
Thresh=0.001, n=109, Accuracy: 97.81%
Thresh=0.001, n=108, Accuracy: 97.72%
Thresh=0.001, n=107, Accuracy: 98.05%
Thresh=0.001, n=106, Accuracy: 98.05%
Thresh=0.001, n=105, Accuracy: 97.84%
Thresh=0.002, n=104, Accuracy: 97.90%
Thresh=0.002, n=103, Accuracy: 97.86%
Thresh=0.002, n=102, Accuracy: 97.90%
Thresh=0.002, n=101, Accuracy: 97.87%
Thresh=0.002, n=100, Accuracy: 97.85%
Thresh=0.002, n=99, Accuracy: 97.96%
```

```
Thresh=0.002, n=98, Accuracy: 97.90%
Thresh=0.002, n=97, Accuracy: 98.07%
Thresh=0.002, n=96, Accuracy: 97.91%
Thresh=0.002, n=95, Accuracy: 97.79%
Thresh=0.002, n=94, Accuracy: 97.82%
Thresh=0.002, n=93, Accuracy: 97.77%
Thresh=0.002, n=92, Accuracy: 97.85%
Thresh=0.002, n=91, Accuracy: 97.81%
Thresh=0.002, n=90, Accuracy: 97.87%
Thresh=0.002, n=89, Accuracy: 97.81%
Thresh=0.002, n=88, Accuracy: 97.86%
Thresh=0.002, n=87, Accuracy: 98.00%
Thresh=0.002, n=86, Accuracy: 97.94%
Thresh=0.002, n=85, Accuracy: 97.97%
Thresh=0.002, n=84, Accuracy: 97.89%
Thresh=0.002, n=83, Accuracy: 98.00%
Thresh=0.002, n=82, Accuracy: 97.95%
Thresh=0.002, n=81, Accuracy: 97.97%
Thresh=0.002, n=80, Accuracy: 97.85%
Thresh=0.002, n=79, Accuracy: 97.96%
Thresh=0.002, n=78, Accuracy: 97.84%
Thresh=0.002, n=77, Accuracy: 97.85%
Thresh=0.002, n=76, Accuracy: 98.01%
Thresh=0.002, n=75, Accuracy: 98.05%
Thresh=0.002, n=74, Accuracy: 97.99%
Thresh=0.002, n=73, Accuracy: 97.94%
Thresh=0.002, n=72, Accuracy: 98.11%
Thresh=0.002, n=71, Accuracy: 98.12%
Thresh=0.002, n=70, Accuracy: 98.04%
Thresh=0.002, n=69, Accuracy: 98.05%
Thresh=0.002, n=68, Accuracy: 98.12%
Thresh=0.003, n=67, Accuracy: 97.99%
Thresh=0.003, n=66, Accuracy: 97.97%
Thresh=0.003, n=65, Accuracy: 98.00%
Thresh=0.003, n=64, Accuracy: 97.97%
Thresh=0.003, n=63, Accuracy: 98.19%
Thresh=0.003, n=62, Accuracy: 98.05%
Thresh=0.003, n=61, Accuracy: 98.12%
Thresh=0.003, n=60, Accuracy: 98.15%
Thresh=0.003, n=59, Accuracy: 98.12%
Thresh=0.006, n=58, Accuracy: 98.25%
Thresh=0.006, n=57, Accuracy: 97.95%
Thresh=0.006, n=56, Accuracy: 98.19%
Thresh=0.006, n=55, Accuracy: 98.02%
Thresh=0.007, n=54, Accuracy: 98.02%
Thresh=0.007, n=53, Accuracy: 97.92%
Thresh=0.007, n=52, Accuracy: 98.00%
Thresh=0.008, n=51, Accuracy: 98.01%
```

```
Thresh=0.008, n=50, Accuracy: 97.94%
Thresh=0.008, n=49, Accuracy: 97.94%
Thresh=0.009, n=48, Accuracy: 97.72%
Thresh=0.009, n=47, Accuracy: 97.59%
Thresh=0.009, n=46, Accuracy: 97.61%
Thresh=0.010, n=45, Accuracy: 97.64%
Thresh=0.010, n=44, Accuracy: 97.54%
Thresh=0.010, n=43, Accuracy: 97.34%
Thresh=0.010, n=42, Accuracy: 97.56%
Thresh=0.010, n=41, Accuracy: 97.42%
Thresh=0.010, n=40, Accuracy: 97.32%
Thresh=0.011, n=39, Accuracy: 96.94%
Thresh=0.011, n=38, Accuracy: 96.86%
Thresh=0.011, n=37, Accuracy: 96.81%
Thresh=0.012, n=36, Accuracy: 96.57%
Thresh=0.012, n=35, Accuracy: 96.44%
Thresh=0.012, n=34, Accuracy: 96.37%
Thresh=0.013, n=33, Accuracy: 96.44%
Thresh=0.013, n=32, Accuracy: 95.92%
Thresh=0.013, n=31, Accuracy: 95.85%
Thresh=0.013, n=30, Accuracy: 95.79%
Thresh=0.013, n=29, Accuracy: 95.55%
Thresh=0.014, n=28, Accuracy: 95.46%
Thresh=0.014, n=27, Accuracy: 95.12%
Thresh=0.015, n=26, Accuracy: 94.82%
Thresh=0.015, n=25, Accuracy: 94.89%
Thresh=0.016, n=24, Accuracy: 94.59%
Thresh=0.016, n=23, Accuracy: 94.25%
Thresh=0.017, n=22, Accuracy: 94.01%
Thresh=0.017, n=21, Accuracy: 93.71%
Thresh=0.017, n=20, Accuracy: 93.57%
Thresh=0.018, n=19, Accuracy: 92.95%
Thresh=0.018, n=18, Accuracy: 92.26%
Thresh=0.018, n=17, Accuracy: 91.76%
Thresh=0.019, n=16, Accuracy: 91.07%
Thresh=0.019, n=15, Accuracy: 90.44%
Thresh=0.019, n=14, Accuracy: 89.46%
Thresh=0.019, n=13, Accuracy: 88.65%
Thresh=0.019, n=12, Accuracy: 88.00%
Thresh=0.021, n=11, Accuracy: 86.91%
Thresh=0.021, n=10, Accuracy: 86.22%
Thresh=0.024, n=9, Accuracy: 85.05%
Thresh=0.025, n=8, Accuracy: 83.59%
Thresh=0.026, n=7, Accuracy: 82.34%
Thresh=0.027, n=6, Accuracy: 80.84%
Thresh=0.028, n=5, Accuracy: 80.04%
Thresh=0.028, n=4, Accuracy: 79.58%
Thresh=0.032, n=3, Accuracy: 79.42%
```

```
Thresh=0.037, n=2, Accuracy: 79.10%
Thresh=0.039, n=1, Accuracy: 79.50%
```

2.1.1 This shows that only a few features (<30) are really being used in the trees, and we can probably reduce the required dataset for this model considerably.

In []:

2.2 Finally, pre-process the test set, and calculate the final prediction

```
In [33]: test = pd.read_csv("exercise_02_test.csv")
In [34]: len(test.index)
Out[34]: 10000
In [35]: predictCols = list(test)
         for col in predictCols:
             if test[col].dtype in [np.float64,np.int64]:
                 test[col].fillna(test[col].mean(skipna = True), inplace=True)
In [36]: # Ensure all values in test.34 are in train.34 - i.e. no alternate spellings
         any(elem in unique(test.x34,True) for elem in uniqueX34_train)
bmw
Toyota
volkswagon
tesla
ford
nan
Honda
chrystler
mercades
chevrolet
nissan
Out[36]: True
In [37]: # Output is true, so all values in test. X34 are a subset of train. x34
In [38]: unique(test.x35)
         test.x35.replace(['thurday', 'thur'], ['thursday', 'thursday'], inplace=True)
         test.x35.replace(['wed'], ['wednesday'], inplace=True)
         test.x35.replace(['fri'], ['friday'], inplace=True)
         test.x35.fillna(test.x35.mode()[0], inplace=True)
```

```
tuesday
fri
wed
monday
thurday
friday
wednesday
thur
In [39]: # Convert currency column to float, remove nan's
         test['x41'] = test['x41'].astype(str)
         test['x41'] = test['x41'].map(lambda x: x.lstrip('$'))
         test['x41'] = test['x41'].astype(np.float16)
         test['x41'].fillna(0, inplace=True) # probably safer to replace nan's with 0, not mea
In [40]: # Convert percentage column to float, remove nan's
         test['x45'] = test['x45'].astype(str)
         test['x45'] = test['x45'].map(lambda x: x.rstrip('%'))
         test['x45'] = test['x45'].astype(np.float16)
         test['x45'].fillna(train['x45'].mean(skipna = True), inplace=True) # since very few u
In [41]: unique(test.x68)
         # Month Column
         test.x68.replace(['Dev'], ['Dec'], inplace=True) # because I'm OCD
         test.x68.replace(['sept.'], ['Sep'], inplace=True)
         test.x68.replace(['January'], ['Jan'], inplace=True)
         test.x68.replace(['July'], ['Jul'], inplace=True)
         test.x68.fillna(test.x68.mode()[0], inplace=True)
nan
Jun
May
Feb
Aug
sept.
Oct
Mar
Dev
January
July
Nov
Apr
In [43]: # Region
         test.x93.replace(['euorpe'], ['europe'], inplace=True)
         test.x93.fillna(test.x93.mode()[0], inplace=True)
         print(test['x93'].isna().sum())
```

2.3 Now retrain the model with the final hyperparameters using the full training set

2.4 Now generate the final test output

```
In [48]: final_y = model.predict_proba(test) # return class probabilities
In [49]: final_y = final_y[:,1] # return only the probability of the 1's class
In [50]: np.savetxt("results1.csv", final_y, delimiter = ",")
```