What are sequences?

D A sequence of elements in S is a function $f : \mathbb{N} \to S$. We view it as an ordered list (a_1, a_2, \ldots) , where $a_i = f(i)$.

Eg $(1, 2, 3, 4, 5 \cdots)$. Better to write as (n). !!

- $(\frac{1}{n})$ means $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)$.
- (a) = (a, a, a, ...) is called a constant sequence.
- We can define a sequence by a rule: $a_n = n$ th decimal digit, in the decimal representation of $\sqrt{2}$.

We may not know the exact value of a_n , but it is well-defined.

- We can define (a_n) recursively: $a_1 = a_2 = 1$, $a_{n+2} = a_{n+1} + a_n$, $\forall n$.
- D Let us call the part $a_k, a_{k+1}, a_{k+2}, \cdots$ of (a_n) , a tail of (a_n) .

- Q Suppose $a_n = \frac{1}{n}$ is the <u>purchase capacity</u> of 1 rupee on *n*th day.
 - What will be the purchase capacity of a rupee <u>ultimately?</u> 0.
 - It means, given any positive number ϵ , there comes a day m such that, then onwards the purchase capacity of the rupee is less than ϵ .
 - That is, $\forall \epsilon > 0$, $\exists m$ such that $a_n < \epsilon$, for each $n \ge m$.
 - That is, the set $B_{\epsilon}(0)$ contains a tail of (a_n) , namely, a_m, a_{m+1}, \ldots
 - In short, each $B_{\epsilon}(0)$ contains a tail of (a_n) .
- D We say $a_n \to a$ if each $B_{\epsilon}(a)$ contains a tail of (a_n) . That is, if

 $\forall \epsilon > 0, \ \exists m \in \mathbb{N} \quad \text{s.t.} \quad a_n \in B_{\epsilon}(a), \text{ for each } n \geq m.$

In this case, we say a is the limit of (a_n) and (a_n) converges to a.

Eg Take $a_n = \frac{1}{n}$. View them as the height some lines.

• Does $B_{\frac{1}{2}}(0)$ contain a tail? Yes. a_3, a_4, \ldots

• Does $B_{\frac{1}{6}}(0)$ contain a tail? Yes. a_6, a_7, \ldots

• Take $a_n = \frac{1}{n}$.

- Does $B_{\epsilon}(0)$ contain a tail? Yes. For $n \geq [\frac{1}{\epsilon}] + 1$. !! So $\frac{1}{n} \to 0$.
- D We also write $\lim_{n\to\infty} a_n = a$ to mean that $a_n\to a$. Divergent means not convergent. Note that $a_n\in B_\epsilon(a)$ means $|a_n-a|<\epsilon$.

Eg a) Fix
$$a>0$$
. Then $a_n=\frac{a}{n}\to 0$. How? Let $\epsilon>0$. Then $a_n\in B_\epsilon(0)$, for all $n>m=\left[\frac{a}{\epsilon}\right]$. Will $m=\left[\frac{a}{\epsilon}\right]+4$ work?

b) Take $a_n=a$. Then $a_n\to a$. How? Let $\epsilon>0$. Then $a_n\in B_\epsilon(a)$, for all n>m=1.

c) Take $a_n=n$. Can we find $a\in\mathbb{R}$ s.t. each $B_{\alpha}(a)$ contains a tail? No.

Suppose there is such an a. Then each $B_{\alpha}(a)$ contains a tail. In particular, $B_1(a)$ contains a tail. So it contains infinitely many integers. But that cannot happen as $B_1(a)$ has length 2. So (a_n) is divergent.

d) Take $a_n = (-1)^n$. Can we find $a \in \mathbb{R}$ s.t. each $B_{\alpha}(a)$ contains a tail? No. $B_{0.1}(a)$ has length 0.2. It cannot contain a tail, as a tail contains two distinct integers.

e) Let
$$a_n = \frac{2n+5}{3n+1}$$
. Then $a_n \to \frac{2}{3}$. This is so, as

$$\left|\frac{2}{3} - \frac{2n+5}{3n+1}\right| = \frac{13}{9n+3} < \frac{13}{9n} < \frac{2}{n} < \epsilon$$

for $n > \left[\frac{2}{\epsilon}\right]$.

R Let
$$a_n \to a$$
 and fix $c \in \mathbb{R}$. Then $ca_n \to ca$.!!

 $R(a_n)$ converges to a iff a tail of (a_n) converges to a.

$$D a_n \rightarrow I$$
 means $a_n \rightarrow I$ is not true.

Applying definition

- So, some $B_{\epsilon}(I)$ does not contain any tail.
- That is, $\exists \epsilon > 0$ s.t. $B_{\epsilon}(I)$ misses infinitely many terms of (a_n) .

R: uniqueness of limit Let
$$a_n \to I$$
 and $a_n \to k$. Then $I = k$.

Po Assume that $l \neq k$. Put $\epsilon = |l - k|/2$. As $a_n \to l$, $\exists m \text{ s.t. } a_m, a_{m+1}, \ldots \in B_{\epsilon}(l)$. So $a_m, a_{m+1}, \ldots \notin B_{\epsilon}(k)$, as $B_{\epsilon}(l) \cap B_{\epsilon}(k) = \emptyset$.

So, $B_{\epsilon}(k)$ misses infinitely many terms of (a_n) . So $a_n \rightarrow k$. $\Rightarrow \Leftarrow$

I do not know. Should the new sequence be convergent?

Algebra of limits 9

R Let $a_n \to a$ and $b_n \to b$. Then $(a_n + b_n) \to (a + b)$. !!

R Let $a_n \to a$ and $b_n \to b$. Then $(a_n b_n) \to ab$.

Po Recall: convergent implies bounded. Take $M > |a_n|, |b_n|, |a|, |b|$.

As $a_n \to a$, $\exists n_0$ s.t. $|a_n - a| < \frac{\epsilon}{2M}$ for each $n \ge n_0$.

As $b_n \to b$, $\exists n_1$ s.t. $|b_n - b| < \frac{\epsilon}{2M}$ for each $n \ge n_1$. Then

$$|a_nb_n-ab|\leq |a_n-a||b_n|+|a||b_n-b|\leq \frac{\epsilon}{2M}M+M\frac{\epsilon}{2M}=\epsilon,$$

for each $n \geq \max\{n_0, n_1\}$.

R Let $a_n \to a$. If a > 0, then (a_n) has a positive tail. Furthermore, if a_n are nonzero, then $\frac{1}{a_n} \to \frac{1}{a}$. !!

R Let $a_n \to a$, $a_n \ge 0$ and $k \in \mathbb{N}$. Then $a \ge 0$ and $\sqrt[k]{a_n} \to \sqrt[k]{a}$.!!

Ex Let $a_n \to a$. Then $|a_n| \to |a|$. The converse is not true.

Ex Show that $a_n, b_n \rightarrow a$ iff $(a_1, b_1, a_2, b_2, \ldots) \rightarrow a$.

R: ratio test Let $a_n \neq 0$ for each n. Suppose that $\lim \left|\frac{a_{n+1}}{a_n}\right| = a$. Then $a < 1 \Rightarrow a_n \to 0$ and $a > 1 \Rightarrow (a_n)$ is divergent.

Po Let
$$a < 1$$
. As $\left| \frac{a_{n+1}}{a_n} \right| \to a$, $\exists m \text{ s.t. } \left| \frac{a_{n+1}}{a_n} \right| < \frac{1+a}{2} = r \text{ (say)}$, for each $n \ge m$. So $0 < |a_{m+k}| < |a_m| r^k$. So $|a_{m+k}| \overset{\text{sandwich}}{\to} 0$. So $a_{m+k} \to 0$. So $a_n \to 0$.

Other one follows as
$$a_n \rightarrow 0$$
.

Eg Take $a_n = \frac{5^n}{n!}$. Then $a_n \to 0$ as $\left| \frac{a_{n+1}}{a_n} \right| = \frac{5}{n+1} \to 0$. Alternately

$$n > 5 \Rightarrow \frac{5^n}{n!} = \frac{5^5}{5!} \cdot \frac{5}{6} \cdot \frac{5}{7} \cdot \cdots \cdot \frac{5}{n} \le \frac{5^5}{5!} \cdot \left(\frac{5}{6}\right)^{n-5} \to 0.$$

D We say (a_n) is increasing if $a_n \le a_{n+1}$, $\forall n$. We say it is strictly increasing if $a_n < a_{n+1}$, $\forall n$. Decreasing and strictly decreasing sequences are defined similarly. These are called monotone sequences.

Eg (n) and $(\frac{1}{n})$ are monotone. $((-1)^n)$ is not monotone.

Q Take $a_n = -\frac{1}{n}$. Then $\lim_{n \to \infty} a_n = 0 = \text{lub}\{-1, -\frac{1}{2}, \ldots\}$. In general?

Monotone convergence theorem(MCT) Let $a_n \uparrow$ (increasing), bounded above. Put $A = \{a_1, a_2, \ldots\}$. Then $A \neq \emptyset$, bounded above and $a_n \to \text{lub } A$.

Po It is easy to show that A is nonempty and bounded above. Let $a = \operatorname{lub} A$. Let $\epsilon > 0$. So $a - \epsilon$ is not an upper bound of A. So, $\exists m$ s.t. $a - \epsilon < a_m$. So $a - \epsilon \le a_m \le a_{m+1} \le \cdots \le a$. That is, $a_{n_0}, a_{n_0+1}, \ldots \in B_{\epsilon}(a)$. So $a_n \to a$.

• So a monotone sequence is convergent iff it is bounded.

C Let $a_n \downarrow$ (decreasing), bounded below. Then $a_n \rightarrow \mathsf{glb}\{a_1, a_2, \ldots\}$.

Eg Take $a_1 = 1$ and $a_{n+1} = \frac{3a_n + 7}{5}$, for $n \in \mathbb{N}$. Convergent? Technique check if (a_n) is monotone and bounded.

Notice: $a_1 < a_2$. Also $a_n \le a_{n+1} \Rightarrow \frac{3a_n + 7}{5} \le \frac{3a_{n+1} + 7}{5}$.

So $a_n \uparrow$, by induction. Also $a_n \le 4$, by induction.

Hence by MCT, (a_n) converges. Let $a_n \to I$. So $I = \frac{3l+7}{5}$. So $I = \frac{7}{2}$.

• Wrong to use the last step, directly. Try $a_1 = 1$, $a_{n+1} = 3a_n + 7$.

Eg Take $a_n = (1 + \frac{1}{n})^n$. We show that (a_n) is convergent. Note that

$$\frac{\binom{n}{k}}{n^k} = \frac{n(n-1)\cdots(n-k+1)}{n^k k!} = \frac{1(1-\frac{1}{n})\cdots(1-\frac{k-1}{n})}{k!} \le \frac{\binom{n+1}{k}}{(n+1)^k}, \frac{1}{k!}.$$

 $\exp x$ 13

Also, we have

$$1 + \frac{\binom{n}{1}}{n} + \frac{\binom{n}{2}}{n^2} + \frac{\binom{n}{3}}{n^3} + \dots + \frac{\binom{n}{n}}{n^n} \le 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} < 3.$$

By MCT, (a_n) is convergent. The limit is called e. Argue $e \in (2,3)$.

Eg Fix
$$x > 0$$
. Put $m = [x] + 1$. So $\rho := \frac{x}{m} < 1$. Consider $A_n = \sum_{k=1}^n \frac{x^k}{k!}$.

Then
$$A_{m+k} - A_m = \frac{x^{m+1}}{(m+1)!} + \dots + \frac{x^{m+k}}{(m+k)!}$$

$$\leq \frac{x^m}{m!} \left(\rho + \dots + \rho^k \right) \leq \frac{x^m}{m!} \left(\frac{1}{1 - \rho} \right),$$

a fixed number, for all n.

As $A_n \uparrow$ and bounded above, By MCT, (A_n) is convergent. The limit is called $\exp(x)$.

Subsequences 14

Ex Do the exercise about exp(x) from the notes.

D We define $\ln x$ as the inverse function of $\exp x$. That is, for x > 0, define $\ln x = a$ where $\exp a = x$. We define $x^b = \exp(b \ln x)$, for x > 0, $b \in \mathbb{R}$.

D Let $n_1 < n_2 < \cdots$ be some natural numbers. Then we call (a_{n_k}) a subsequence of (a_n) . It's terms are $a_{n_1}, a_{n_2}, a_{n_3}, \cdots$.

Eg (2n) is a subsequence of (n). So is $2, 3, 5, \cdots$ (prime numbers).

- $1, 1, 2, 3, 4, 5, \cdots$ is not a subsequence, as the original sequence does not have two 1's.
- $1, 2, 4, 3, 5, 6, \cdots$ is not a subsequence, as the order of 3 and 4 in the original sequence is not preserved.

R Let $a_n \to I$ and (a_{n_k}) be a subsequence. View (a_{n_k}) as a new sequence (b_k) . Then $\lim_{k \to \infty} b_k = I$

Then $\lim_{k\to\infty}b_k=I$.

Po If $B_{\epsilon}(I)$ contains a tail of (a_n) , then it will also contain a tail of the subsequence (b_k) .

Note. One of the following is sufficient to prove that (a_n) is divergent.

- a) (a_n) has a divergent subsequence.
- b) (a_n) has two subsequences converging to two different limits.
- c) $\binom{a_n}{a_n}$ is not bounded.

Eg Take $a_n = \sin n$. Convergent? Assume that it converges to l. Use $\sin(2n + 1) = \sin 2n \cos 1 + (1 - 2\sin^2 n) \sin 1$ to get $l \neq 0$. Use $\sin(n+1) + \sin(n-1) = 2\sin n \cos 1$ to get l = 0. $\Rightarrow \Leftarrow$

• Persons p_1, p_2, p_3, \ldots want to watch a movie. Their seats have heights h_i .

All seats are in one line facing the screen.

- Can p_2 watch the movie? No, as p_4 has a higher seat.
- Let W be the set of persons who can watch the movie. W is finite or not.
- If $W = \{p_{k_1}, \dots, p_{k_n}\}$, take $n_0 > k_1, \dots, k_n$. If $W = \emptyset$, take $n_0 = 1$.
- Is $p_{n_0} \in W$? No. So, \exists a higher seat in front. That is, $\exists n_1 > n_0$ s.t. $h_{n_1} > h_{n_0}$. Is $p_{n_1} \in W$? So, $\exists n_2 > n_1$ s.t. $h_{n_2} > h_{n_1}$. Continue.
- We get $h_{n_0} < h_{n_1} < h_{n_2} < \cdots$, an _____ subsequence of (h_n) .

- Assume that $W = \{p_{n_1}, p_{n_2}, ...\}$ is infinite, where $n_1 < n_2 < \cdots$.
- Then $h_{n_1} \geq h_{n_2} \geq \cdots$, as they all can watch the movie.
 - In either case, the sequence (h_n) has a monotone subsequence.

Monotone subsequence theorem (MST)

- a) If $a_n \ge 0$, then (a_n) has a monotone subsequence.
- b) If $a_n < 0$, then (a_n) has a monotone subsequence.
- c) Every sequence of real numbers has a monotone subsequence.

Bolzano-Weierstrass theorem Every bounded sequence in \mathbb{R} has a convergent subsequence.

Application $(\sin n)$ has a convergent subsequence.

Cauchy Sequence

than 1 among them.

terms have a distance $\langle \epsilon \rangle$ among them'. That is, $\forall \epsilon > 0$, $\exists n_0$ s.t. $|a_n - a_m| < \epsilon$ for each $m, n \ge n_0$. Eg Is $(-1)^n$ Cauchy? No, as there is no tail in which, terms have distance less

D A sequence (a_n) is called Cauchy if 'for each $\epsilon > 0$, there is a tail in which

18

• Is
$$(\frac{1}{n})$$
 Cauchy? Yes. Let $\epsilon > 0$. Choose $k \in \mathbb{N}$ s.t. $\frac{1}{k} < \epsilon$. From k th term onwards, the distance among the terms is always less than ϵ .

$$0 \qquad \frac{1}{k+1} \; \frac{1}{k} \quad \epsilon$$

R If (a_n) is Cauchy, then (a_n) is bounded. !!

R: Cauchy criterion. (a_n) is convergent iff (a_n) is Cauchy. !!

Eg Take $a_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$. Is it convergent? No. How? Because, it is not Cauchy. How? Ok. Take $\epsilon=\frac{1}{3}$. Can we find a n_0 s.t. $|a_n-a_m|<\epsilon$ for each $m,n\geq n_0$? Suppose, we can. Then we have $|a_{2n_0}-a_{n_0}|<\frac{1}{3}$. But, $|a_{2n_0}-a_{n_0}|=\frac{1}{n_0+1}+\cdots+\frac{1}{2n_0}>\frac{1}{2}$. $\Rightarrow \Leftarrow$

D
$$(a_n)$$
 is contractive if $\exists c \in (0,1)$ s.t. $|a_{n+2} - a_{n+1}| \le c|a_{n+1} - a_n|, \forall n$.

R A contractive sequence is Cauchy. Hence it is convergent.!!

Eg Take $a_1 = 2$, $a_{n+1} = 2 + \frac{1}{a_n}$. Convergent? Note that

$$|a_{n+2}-a_{n+1}|=\left|\frac{1}{a_{n+1}}-\frac{1}{a_n}\right|=\left|\frac{|a_{n+1}-a_n|}{a_{n+1}a_n}\right|\leq \frac{1}{4}|a_{n+1}-a_n|.$$

So, it is convergent. The limit l must satisfy $l^2-2l-1=0$. So $l=1+\sqrt{2}$ or $l=1-\sqrt{2}$. As $a_n\geq 2$, we get $l\geq 2$. So $l=1+\sqrt{2}$.