Statistical methods: Homework 6

Cameron McIntyre

October 2018

1 4.3.2

(a) Let 0 < a < b. Which number is larger?

$$\int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} \text{ or } \int_{-b}^{-a} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}}$$

Answer: The two quantities are equal. We rely on the symmetry about 0 of the normal distribution to show this.

Consider only $f(z) = e^{-\frac{z^2}{2}}$. For any number a we can show that f(-a) = f(a).

$$f(-a) = e^{-\frac{(-a)^2}{2}} = e^{-\frac{(-1)^2 a^2}{2}} = e^{-\frac{(1 \cdot a^2)}{2}} = f(a)$$

Therefore,

$$\int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} = P(a < Z < b) = 1 - (P(Z < a) + P(Z > b))$$

$$= 1 - (P(Z > -a) + P(Z < -b))(by \ symmetry)$$

$$= P(-b < Z < -a)$$

$$= \int_{-b}^{-a} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}}$$

(b) Let a > 0. Which number is larger?

$$\int_{a}^{a+1} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \text{ or } \int_{a-\frac{1}{2}}^{a+\frac{1}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$

Answer:

 $\int_{a-\frac{1}{2}}^{a+\frac{1}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \text{ is the larger quantity.}$

Consider only $f(z) = e^{-\frac{z^2}{2}}$

Then, $f'(z) = -ze^{-\frac{z^2}{2}}$, Clearly $f'(z) < 0 \ \forall \ z > 0$.

Now(a+1-a) = 1 and also $(a+\frac{1}{2}-(a-\frac{1}{2}))=1$ Therefore the integrals are over the same length domain.

But, $f(a+\epsilon) < f(a)$ because f'(a) < 0. Therefore the normal function is always less over the interval [a,a+1], compared to $[a-\frac{1}{2},a+\frac{1}{2}]$.

So we can then conclude

$$\int_{a}^{a+1} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} < \int_{a-\frac{1}{2}}^{a+\frac{1}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$