

Triple Integrals in Spherical Coordinates

In this section, we will learn how to:

Convert rectangular coordinates to spherical ones and use this to evaluate triple integrals.

SPHERICAL COORDINATE SYSTEM

Another useful coordinate system in three dimensions is the spherical coordinate system.

 It simplifies the evaluation of triple integrals over regions bounded by spheres or cones.

SPHERICAL COORDINATES

The spherical coordinates (ρ, θ, Φ) of a point P in space are shown.

- $\rho = |OP|$ is the distance from the origin to P.
- θ is the same angle as in cylindrical coordinates.
- Φ is the angle between the positive z-axis and the line segment OP.

SPHERICAL COORDINATES

Note that:

$$\rho \geq 0$$

$$0 \le \phi \le \pi$$

SPHERICAL COORDINATE SYSTEM

The spherical coordinate system is especially useful in problems where there is symmetry about a point, and the origin is placed at this point.

SPHERE

For example, the sphere with center the origin and radius c has the simple equation $\rho = c$.

 This is the reason for the name "spherical" coordinates.

HALF-PLANE

The graph of the equation $\theta = c$ is a vertical half-plane.

HALF-CONE

The equation $\Phi = c$ represents a half-cone with the z-axis as its axis.

SPHERICAL & RECTANGULAR COORDINATES

The relationship between rectangular and spherical coordinates can be seen from this figure.

SPHERICAL & RECTANGULAR COORDINATES

From triangles *OPQ* and *OPP'*, we have:

$$z = \rho \cos \Phi$$

 $r = \rho \sin \Phi$

• However, $x = r \cos \theta$ $y = r \sin \theta$

SPH. & RECT. COORDINATES Equations 1 So, to convert from spherical to rectangular coordinates, we use the equations

$$x = \rho \sin \Phi \cos \theta$$
$$y = \rho \sin \Phi \sin \theta$$
$$z = \rho \cos \Phi$$

SPH. & RECT. COORDINATES Equation 2 Also, the distance formula shows that:

$$\rho^2 = x^2 + y^2 + z^2$$

 We use this equation in converting from rectangular to spherical coordinates.

SPH. & RECT. COORDINATES Example 1 The point $(2, \pi/4, \pi/3)$ is given in spherical coordinates.

Plot the point and find its rectangular coordinates.

SPH. & RECT. COORDINATES Example 1 We plot the point as shown.

SPH. & RECT. COORDINATES

Example 1

From Equations 1, we have:

$$x = \rho \sin\phi \cos\theta = 2\sin\frac{\pi}{3}\cos\frac{\pi}{4} = 2\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right) = \sqrt{\frac{3}{2}}$$

$$x = \rho \sin \phi \sin \theta = 2 \sin \frac{\pi}{3} \sin \frac{\pi}{4} = 2 \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{\sqrt{2}}\right) = \sqrt{\frac{3}{2}}$$

$$z = \rho \cos \phi = 2 \cos \frac{\pi}{3} = 2(\frac{1}{2}) = 1$$

SPH. & RECT. COORDINATES Example 1 Thus, the point $(2, \pi/4, \pi/3)$ is

$$\left(\sqrt{3/2},\sqrt{3/2},1\right)$$

in rectangular coordinates.

SPH. & RECT. COORDINATES

Example 2

The point $(0,2\sqrt{3},-2)$ is given in rectangular coordinates.

Find spherical coordinates for the point.

From Equation 2, we have:

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

$$= \sqrt{0 + 12 + 4}$$

$$= 4$$

SPH. & RECT. COORDINATES

Example 2

So, Equations 1 give:

$$\cos \phi = \frac{z}{\rho} = \frac{-2}{4} = -\frac{1}{2} \qquad \phi = \frac{2\pi}{3}$$

$$\cos\theta = \frac{x}{\rho \sin\phi} = 0 \qquad \theta = \frac{\pi}{2}$$

• Note that $\theta \neq 3\pi/2$ because

$$y = 2\sqrt{3} > 0$$

SPH. & RECT. COORDINATES Example 2 Therefore, spherical coordinates of the given point are:

 $(4, \pi/2, 2\pi/3)$

EVALUATING TRIPLE INTEGRALS WITH SPH. COORDS.

In the spherical coordinate system, the counterpart of a rectangular box is a spherical wedge

$$E = \{(\rho, \theta, \phi) | a \le \rho \le b, \alpha \le \theta \le \beta, c \le \phi \le d\}$$
 where:

$$a \ge 0$$
, $\beta - \alpha \le 2\pi$, $d - c \le \pi$

EVALUATING TRIPLE INTEGRALS

Although we defined triple integrals by dividing solids into small boxes, it can be shown that dividing a solid into small spherical wedges always gives the same result.

EVALUATING TRIPLE INTEGRALS

Thus, we divide E into smaller spherical wedges E_{ijk} by means of equally spaced spheres $\rho = \rho_i$, half-planes $\theta = \theta_j$, and half-cones $\Phi = \Phi_k$.

EVALUATING TRIPLE INTEGRALS

However, that sum is a Riemann sum for the function

$$F(\rho,\theta,\phi)$$

- = $f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)\rho^2 \sin \phi$
 - So, we have arrived at the following formula for triple integration in spherical coordinates.

TRIPLE INTGN. IN SPH. COORDS. Formula 3

$$\iiint_{E} f(x, y, z) dV =$$

$$\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f\left(\rho \sin\phi \cos\theta, \rho \sin\phi \sin\theta, \rho \cos\phi\right) \rho^{2} \sin\phi \, d\rho \, d\theta \, d\phi$$

where *E* is a spherical wedge given by:

$$E = \left\{ \left(\rho, \theta, \phi \right) \middle| a \le \rho \le b, \alpha \le \theta \le \beta, c \le \phi \le d \right\}$$

Formula 3 says that we convert a triple integral from rectangular coordinates to spherical coordinates by writing:

$$x = \rho \sin \Phi \cos \theta$$
$$y = \rho \sin \Phi \sin \theta$$
$$z = \rho \cos \Phi$$

That is done by:

 Using the appropriate limits of integration.

Replacing dV by
 ρ² sin Φ dρ dθ dΦ.

The formula can be extended to include more general spherical regions such as:

$$E = \left\{ (\rho, \theta, \phi) \middle| \alpha \le \theta \le \beta, c \le \phi \le d, g_1(\theta, \phi) \le \rho \le g_2(\theta, \phi) \right\}$$

• The formula is the same as in Formula 3 except that the limits of integration for ρ are $g_1(\theta, \Phi)$ and $g_2(\theta, \Phi)$.

Usually, spherical coordinates are used in triple integrals when surfaces such as cones and spheres form the boundary of the region of integration.

TRIPLE INTGN. IN SPH. COORDS. Example 3 Evaluate

$$\iiint_{B} e^{\left(x^2+y^2+z^2\right)^{3/2}} dV$$

where B is the unit ball:

$$B = \left\{ (x, y, z) \left| x^2 + y^2 + z^2 \le 1 \right\} \right\}$$

TRIPLE INTGN. IN SPH. COORDS. Example 3
As the boundary of *B* is a sphere, we use spherical coordinates:

$$B = \left\{ \left(\rho, \theta, \phi \right) \middle| 0 \le \rho \le 1, 0 \le \theta \le 2\pi, 0 \le \phi \le \pi \right\}$$

In addition, spherical coordinates are appropriate because:

$$x^2 + y^2 + z^2 = \rho^2$$

TRIPLE INTGN. IN SPH. COORDS. Example 3 So, Formula 3 gives:

$$\iiint_{B} e^{(x^{2}+y^{2}+z^{2})^{3/2}} dV$$

$$= \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{1} e^{(\rho^{2})^{3/2}} \rho^{2} \sin \phi \, d\rho \, d\theta \, d\phi$$

$$= \int_{0}^{\pi} \sin \phi \, d\phi \int_{0}^{2\pi} d\theta \int_{0}^{1} \rho^{2} e^{\rho^{3}} d\rho$$

$$= \left[-\cos \phi \right]_{0}^{\pi} (2\pi) \left[\frac{1}{3} e^{\rho^{3}} \right]_{0}^{1} = \frac{4}{3}\pi (e-1)$$

It would have been extremely awkward to evaluate the integral in Example 3 without spherical coordinates.

In rectangular coordinates, the iterated integral would have been:

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{-\sqrt{1-x^2-y^2}}^{\sqrt{1-x^2-y^2}} e^{(x^2+y^2+z^2)^{3/2}} dz dy dx$$

TRIPLE INTGN. IN SPH. COORDS. Example 4

Use spherical coordinates to find the volume of the solid that lies:

Above the cone

$$z = \sqrt{x^2 + y^2}$$

Below the sphere $x^2 + y^2 + z^2 = z$

TRIPLE INTGN. IN SPH. COORDS. Example 4 Notice that the sphere passes through the origin and has center (0, 0, ½).

 We write its equation in spherical coordinates as:

$$\rho^2 = \rho \cos \Phi$$
 or
$$\rho = \cos \Phi$$

TRIPLE INTGN. IN SPH. COORDS. Example 4 The equation of the cone can be written as:

$$\rho \cos \phi = \sqrt{\rho^2 \sin^2 \phi \cos^2 \theta + \rho^2 \sin^2 \phi \sin^2 \theta}$$
$$= \rho \sin \phi$$

This gives:

$$\sin \Phi = \cos \Phi$$

or

$$\Phi = \pi/4$$

TRIPLE INTGN. IN SPH. COORDS. Example 4
Thus, the description of the solid *E*in spherical coordinates is:

$$E = \left\{ \left(\rho, \theta, \phi \right) \middle| 0 \le \theta \le 2\pi, 0 \le \phi \le \pi / 4, 0 \le \rho \le \cos \phi \right\}$$

TRIPLE INTGN. IN SPH. COORDS. Example 4 The figure shows how E is swept out if we integrate first with respect to ρ , then Φ , and then θ .

TRIPLE INTGN. IN SPH. COORDS. Example 4 The volume of *E* is:

$$V(E) = \iiint_E dV = \int_0^{2\pi} \int_0^{\pi/4} \int_0^{\cos\phi} \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta$$

$$= \int_0^{2\pi} d\theta \int_0^{\pi/4} \sin\phi \left[\frac{\rho^3}{3} \right]_{\rho=0}^{\rho=\cos\phi} d\phi$$

$$= \frac{2\pi}{3} \int_0^{\pi/4} \sin\phi \cos^3\phi \, d\phi$$

$$= \frac{2\pi}{3} \left[-\frac{\cos^4 \phi}{4} \right]_0^{\pi/4} = \frac{\pi}{8}$$

This figure gives another look (this time drawn by Maple) at the solid of Example 4.

