Semestrale zum Elektronikpraktikum WS02/03 Prof. P. Böni

Dienstag, 28.01.02, 16:00 Uhr, Hörsaal 1

1. Aufgabe: Tiefpaß (5P)

Skizzieren Sie die Übertragungsfunktion $A(\omega) = U_a/U_e$ und die Phasenverschiebung ϕ zwischen U_a und U_e der Schaltung in Abb. 1 als Funktion der Frequenz! Bei welcher Frequenz ist A = -3dB? Wie groß ist die Phasenverschiebung in diesem Punkt? Wie fällt $A(\omega)$ für Frequenzen $\omega > \omega_{-3}$ dB ab (in dB/Oktave oder dB/Dekade)?

Abb. 1

2. Aufgabe: Differenzverstärker (10P)

Betrachten Sie den Differenzverstärker in Abb. 2 (Hinweis: Symmetrie beachten!).

- a) Ruhepunkt: Nehmen Sie zunächst an, daß beide Eingänge mit Ground verbunden sind $(U_e^+ = U_e^- = 0)$. Berechnen Sie die Emitterspannung U_E , die Ströme I_{tail} , I_C und die Ausgangsspannung U_a .
- b) Differenzverstärkung: Nehmen Sie ein reines Differenzsignal an $(U_e^+ = -U_e^- = \frac{U_e}{2} \sin(\omega t))$. Wie verhält sich das Potential an Punkt 'A'? Wie groß ist der effektive Emitter-Widerstand? Vergessen Sie klein- r_e nicht. Wie groß ist die Differenzverstärkung $G_{diff} = U_a/U_e$?
- c) Gleichtakt (common mode): Nehmen Sie ein reines Gleichtaktsignal an $(U_e^+ = U_e^-)$. Wie läßt sich die Schaltung durch Symmetriebetrachtung aufteilen (Skizze)? Wie groß ist jetzt der effektive Emitterwiderstand? Wie groß ist die Gleichtaktverstärkung?
- d) Bei Differenzverstärkern wird R_{tail} oft durch eine Stromquelle ersetzt? Was gewinnt man dadurch?

Abb. 2

3. Aufgabe: Operationsverstärker (8P):

Zeichnen Sie folgende Schaltungen mit idealen Operationsverstärkern:

- a) Spannungsfolger (Impedanzwandler), Verstärkung G = 1.
- b) Nicht invertierender Vertärker, G = 10.
- c) Invertierender Verstärker, G=-10, Eingangsimpedanz = $10k\Omega$.
- d) Integrator, Integrationszeitkonstante $\tau = 1s$. (d.h. $U_{out} = \tau \times \int U_{in}(t)dt$).

4. Aufgabe (6P)

Ihr Oszilloskop hat eine definierte Eingangsimpedanz von $1M \parallel 20pF$. Durch einen 10:1 Tastkopf wird die Signalamplitude um 20dB abgeschwächt (Abb. 2). R ist ein Widerstand im Tastkopf, $C_K = 100pF$ ist die Kapazität des Tastkopfkabels.

- a) Welchen Wert hat R?
- b) Damit das Teilungsverhältnis frequenzunabhängig wird, müssen Sie eine geeignete Kapazität C_{comp} so anbringen, daß parallel zum ohmschen Spannungsteiler ein kapazitiver Spannungsteiler mit gleichem Teilungsverhältnis liegt. Welchen Wert hat die Kapazitat C_{comp} und wie ist sie anzubringrn?
- c) Wie groß ist der Eingangswiderstand und die Eingangskapazität des 10:1 Tastkopfs?
- d) Welche Vorteile bringt der 10:1 Tastkopf (vergleichen Sie dessen Eingangswiderstand und Kapazität mit einem 1:1 Tastkopf)?

Abb. 3