Problem Set 2

Econ 40357 Financial Econometrics University of Notre Dame

Professor Nelson Mark

Fall 2020

1.

2. Let ϵ_t be a white noise error process and consider the following three models that Louie the researcher, says might be a reasonable model of p_t , the logarithm of stock prices

$$p_t = p_{t-1} + \epsilon_t \tag{1}$$

$$p_t = 0.5p_{t-1} + \epsilon_t \tag{2}$$

$$p_t = 0.8\epsilon_{t-1} + \epsilon_t \tag{3}$$

(a) What class of models are these examples of?

ARIMA or ARMA models. (1) is a driftless random walk, or ARIMA(0,1,0).

(2) is an AR(1), and (3) is an MA(1)

(b) Compute the first three autocorrelations for each of these models.

For (1): (1, 1, 1)

For (2): $(0.5, 0.5^2, 0.5^3) = (0.5, 0.25, 0.125)$

For (3): (0.488, 0, 0)

(c) From a theoretical perspective, which model is the best candidate for representing stock prices and give a short explanation why.

Model in (1). Efficient markets hypothesis

3. Louie the researcher estimates the following model for some returns data

$$r_t = 0.803r_{t-1} + 0.682r_{t-2} + \epsilon_t$$

where ϵ_t is a white noise error process. Is the process stationary? Write a couple of sentences about the implications of whether the process is stationary or not.

If it's nonstationary, the mean and variance doesn't exist. This creates problems for drawing inference from estimated coefficients, because the distributio theory that we know, only works for stationary time series .

4. The objective of any econometric modeling exercise is to find the model that most closely 'fits' the data. adding mor lags to an ARMA model will almost always lead to a better fit. Therefore, a large model will be best because it will fit the data more closely. Comment.

It depends on the purpose of the model. If it is to describe the dynamics of the data, then maybe yes, a more extensive model is appropriate. But if the objective is to forecast, then no. The greater the number of estimated parameters, the greater is the sampling variability impounded into the forecasts, thus degrading the accuracy of the forecasts

5. Use the Eviews workfile PS02.wf1, sheet entitled FF_3Factors. Mkt_rf is the monthly market excess return–value-weight return of all CRSP firms incorporated in the US and listed on the NYSE, AMEX, or NASDAQ that have a CRSP share code of 10 or 11 at the beginning of month t, good shares and price data at the beginning of t, and good return data for t minus the one-month Treasury bill rate (from Ibbotson Associates). For Mkt_rf, estimate an ARMA(2,2). Report the AIC, BIC, and HQIC for each model.

Note: the command: mkt_rf c ar(1 to 2) ma(1 to 2) (here). Eviews 'backcasts' the pre-sample observations. mkt_rf c mkt_rf(-1 to -2) ma(1 to 2) gives slightly different estimates.

- 6. Open the series mkt_rf. Click proc, automatic ARIMA forecasting. On the options tab, there is a choice of AIC, BIC, and HQIC. For each of these three ICs, run the automatic ARIMA and report the models suggested by AIC, BIC, and HQIC.
- 7. Estimate an ARMA(2,2) for mkt_rf on observations 1926M07 through 1999M12, then generate static forecasts from 2000M01 through 2019M07. Ask for plots of the forecasts and actuals. Submit the resulting graph that also shows Theil's U2 coefficient.

Note: what is Theil's U2? In the following, a is the actual.

$$U2 = sqrt(fpe2/ape2)$$
 fpe2 = sum (fpe*fpe)
 ape2 = sum (ape*ape)
 fpe = $(f(t)-a(t))/a(t-1)$
 ape = $(a(t-1)-a(t))/a(t-1)$

Dependent Variable: MKT_RF

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 09/14/20 Time: 08:36 Sample: 1926M07 2019M07 Included observations: 1117

Convergence achieved after 43 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
\mathbf{C}	0.662895	0.171489	3.865517	0.0001
AR(1)	-0.275547	0.082315	-3.347455	0.0008
AR(2)	-0.693134	0.048704	-14.23151	0.0000
MA(1)	0.394579	0.079919	4.937268	0.0000
MA(2)	0.743056	0.047696	15.57908	0.0000
SIGMASQ	27.59810	0.631378	43.71087	0.0000
R-squared	0.028394	Mean dependent var		0.662820
Adjusted R-squared	0.024022	S.D. dependent var		5.331988
S.E. of regression	5.267556	Akaike info criterion		6.166454
Sum squared resid	30827.08	Schwarz criterion		6.193411
Log likelihood	-3437.965	Hannan-Quinn criter.		6.176645
F-statistic	6.493634	Durbin-Watson stat		2.019666
Prob(F-statistic)	0.000006			
Inverted AR Roots	14+.82i	1482i		
Inverted MA Roots	20+.84i	2084i		

Automatic ARIMA Forecasting

Selected dependent variable: MKT_RF

Date: 09/14/20 Time: 08:47 Sample: 1926M07 2019M07 Included observations: 1117

Forecast length: 0

Number of estimated ARMA models: 25 Number of non-converged estimations: 0 Selected ARMA model: (4,4)(0,0)

AIC value: 6.16423432552

Automatic ARIMA Forecasting

Selected dependent variable: MKT_RF

Date: 09/14/20 Time: 08:49 Sample: 1926M07 2019M07 Included observations: 1117

Forecast length: 0

Number of estimated ARMA models: 25 Number of non-converged estimations: 0 Selected ARMA model: (0,1)(0,0)

SIC value: 6.19215386159

Automatic ARIMA Forecasting

Selected dependent variable: MKT_RF

Date: 09/14/20 Time: 08:49 Sample: 1926M07 2019M07 Included observations: 1117

Forecast length: 0

Number of estimated ARMA models: 25 Number of non-converged estimations: 0 Selected ARMA model: (2,2)(0,0)

HQ value: 6.17664461464