Verifying the LLVM

Steve Zdancewic

DeepSpec Summer School 2017

Vminus Operational Semantics

- Only 5 kinds of instructions:
 - Binary arithmetic
 - Memory Load
 - Memory Store
 - Terminators
 - Phi nodes
- What is the state of a Vminus program?

Subtlety of Phi Nodes

Phi-Nodes admit "cyclic" dependencies:

```
pred:
....
br loop

loop:
%x = $\phi[0;\text{pred}][y;\text{loop}]$
%y = $\phi[1;\text{pred}][x;\text{loop}]$
%b = %x ≤ %y
br %b loop exit
```

Semantics of Phi Nodes

• The value of the RHS of a phi-defined uid is relative to the state at the entry to the block.

• Option 1:

- Require all phi nodes to be at the beginning of the block
- Execute them "atomically, in parallel"
- (Original Vellvm followed this model)

• Option 2:

- Keep track of the state upon entry to the block
- Calculate the RHS of phi nodes relative to the entry state
- (Vminus follows this model)

VminusOpsem.v

VMINUS OPERATIONAL SEMANTICS

Key SSA Invariant

```
entry:
    \mathbf{r}_0 = \dots
                                                                      Definition of r_2.
   br r<sub>0</sub> loop exit
                                                                      Uses of r_2.
loop:
    r_3 = \phi[0;entry][r_5;loop]
   \mathbf{r}_4 = \mathbf{r}_1 \times \mathbf{r}_2
   \mathbf{r}_5 = \mathbf{r}_3 + \mathbf{r}_4
   r_6 = r_5 \ge 100
   br r<sub>6</sub> loop exit
exit:
   r_7 = \phi[0;entry][r_5;loop]
   r_8 = r_1 \times r_2
   \mathbf{r}_9 = \mathbf{r}_7 + \mathbf{r}_8
   ret r<sub>9</sub>
```

Key SSA Invariant

```
entry:
     \mathbf{r}_0 = \dots
    br r<sub>0</sub> loop exit
loop:
    r_3 = \phi[0;entry][r_5;loop]
    \mathbf{r}_4 = \mathbf{r}_1 \times \mathbf{r}_2
    \mathbf{r}_5 = \mathbf{r}_3 + \mathbf{r}_4
    r_6 = r_5 \ge 100
    br r<sub>6</sub> loop exit
exit:
    r_7 = \phi[0;entry][r_5;loop]
   \mathbf{r}_8 = \mathbf{r}_1 \times \mathbf{r}_2
    \mathbf{r}_9 = \mathbf{r}_7 + \mathbf{r}_8
    ret ro
```

Definition of r_2 .

Uses of r₂.

The definition of a variable must *dominate* its uses.

Defining SSA Variable Scope

Graph: g corresponds to a "fine grained" CFG

Nodes: program points (maybe more than one per block)

Edges: "fallthroughs", jump and branch instructions

Distinguished entry

Paths

Reachability

- Paths:Path g a d [a;b;d]
- Reachability:Reachable g x
- Domination:Dom g b c

iff every path from e to c goes through b.

- Paths:Path g a d [a;b;d]
- Reachability:Reachable g x
- Domination:

 Dom g b c

iff every path from e to c goes through b.

- Paths:Path g a d [a;b;d]
- Reachability:Reachable g x
- Domination:

 Dom g b c

iff every path from e to c goes through b.

another path

- Paths:Path g a d [a;b;d]
- Reachability:

 Reachable g x
- Domination:Dom g b c

Nodes dominated by b.

Strict Domination

- Paths:Path g a d [a;b;d]
- Reachability:Reachable g x
- Domination:Dom g b c
- Strict Domination: SDom g b c

Nodes strictly dominated by b.

Domination Tree

Order the reachable nodes by (immediate) dominators, you get a tree:

Control-flow Analysis

Goal: Identify the loops and nesting structure of the CFG.

- An edge in the graph
 is a back edge if the
 target node dominates
 the source node.
- A loop contains at least one back edge.

Dominator Trees

- Domination is transitive:
 - if A dominates B and B dominates C then A dominates C
- Domination is anti-symmetric:
 - if A dominates B and B dominates A then A = B
- Every flow graph has a dominator tree
 - The Hasse diagram of the dominates relation

Dominator Dataflow Analysis

- Let Dom[n] = {m | m dominates n}
- We can define Dom[n] as a forward dataflow analysis.
 - Using the framework we saw earlier: Dom[n] = out[n] where:
- "A node B is dominated by another node A if A dominates all of the predecessors of B."

```
- in[n] := \bigcap_{n' \in pred[n]} out[n']
```

"Every node dominates itself."

```
- out[n] := in[n] \cup {n}
```

- Formally: \mathcal{L} = set of nodes ordered by \subseteq
 - $T = \{all nodes\}$
 - $F_n(x) = x \cup \{n\}$
 - \square is \cap
- Easy to show monotonicity and that F_n distributes over meet.
 - Bounded set of variables: so algorithm terminates

Improving the Algorithm

- Dom[b] contains just those nodes along the path in the dominator tree from the root to b:
 - e.g. Dom[8] = {1,2,4,8}, Dom[7] = {1,2,4,5,7}
 - There is a lot of sharing among the nodes
- More efficient way to represent Dom sets is to store the dominator tree.
 - doms[b] = immediate dominator of b
 - doms[8] = 4, doms[7] = 5
- To compute Dom[b] walk through doms[b]
- Need to efficiently compute intersections of Dom[a] and Dom[b]
 - Traverse up tree, looking for least common ancestor:
 - $Dom[8] \cap Dom[7] = Dom[4]$
- See: "A Simple, Fast Dominance Algorithm" Cooper, Harvey, and Kennedy

Completing Control-flow Analysis

- Dominator analysis identifies back edges:
 - Edge n → h where h dominates n
- Each back edge has a natural loop:
 - h is the header
 - All nodes reachable from h that also reach n without going through h

- {n' | n is reachable from n' in G − {h}} \cup {h}
- Two loops may share the same header: merge them

- Nesting structure of loops is determined by set inclusion
 - Can be used to build the control tree

Example Natural Loops

Uses of Control-flow Information

- Loop nesting depth plays an important role in optimization heuristics.
 - Deeply nested loops pay off the most for optimization.
- Need to know loop headers / back edges for doing
 - loop invariant code motion
 - loop unrolling

Dominator Algorithm Tradeoffs

Dominator Algorithm Tradeoffs

Dom.v

Kildall.v

DomKildall.v

DOMINATORS

Safety Properties

A well-formed program never accesses undefined variables.

```
If \vdash f and f \vdash \sigma_0 \mapsto^* \sigma then \sigma is not stuck.

\vdash f program f is well formed program state f \vdash \sigma \mapsto^* \sigma = 0
```

Initialization:

If
$$\vdash$$
 f then wf(f, σ_0).

• Preservation:

```
If \vdash f and f \vdash \sigma \mapsto \sigma' and wf(f, \sigma) then wf(f, \sigma')
```

• Progress:

```
If \vdash f and wf(f, \sigma) then f \vdash \sigma \mapsto \sigma'
```

Safety Properties

A well-formed program never accesses undefined variables.

```
If \vdash f and f \vdash \sigma_0 \mapsto^* \sigma then \sigma is not stuck.

\vdash f program f is well formed \sigma program state f \vdash \sigma \mapsto^* \sigma \text{ evaluation of } f
```

Initialization:

If
$$\vdash$$
 f then wf(f, σ_0).

Preservation:

```
If \vdash f and f \vdash \sigma \mapsto \sigma' and wf(f, \sigma) then wf(f, \sigma')
```

• Progress:

```
If \vdash f and wf(f, \sigma) then done(f,\sigma) or stuck(f,\sigma) or f \vdash \sigma \mapsto \sigma'
```

Well-formed States

```
entry:
           \mathbf{r}_0 = \dots
           r_1 = \dots
           \mathbf{r}_2 = \dots
           br r<sub>0</sub> loop exit
       loop:
           r_3 = \phi[0;entry][r_5;loop]
           \mathbf{r}_4 = \mathbf{r}_1 \times \mathbf{r}_2
рс
       \mathbf{r}_5 = \mathbf{r}_3 + \mathbf{r}_4
           r_6 = r_5 \ge 100
          br r<sub>6</sub> loop exit
       exit:
           r_7 = \phi[0;entry][r_5;loop]
          \mathbf{r}_8 = \mathbf{r}_1 \times \mathbf{r}_2
           \mathbf{r}_9 = \mathbf{r}_7 + \mathbf{r}_8
           ret ro
```

```
State \sigma is:

pc = program counter

\delta = local values
```

Well-formed States (Roughly)

```
entry:
    br r<sub>0</sub> loop exit
loop:
   \mathbf{r}_3 = \phi[0; \text{entry}][\mathbf{r}_5; \text{loop}]
    \mathbf{r}_4 = \mathbf{r}_1 \times \mathbf{r}_2
   \mathbf{r}_5 = \mathbf{r}_3 + \mathbf{r}_4
    r_6 = r_5 \ge 100
    br r<sub>6</sub> loop exit
exit:
    r_7 = \phi[0;entry][r_5;loop]
    \mathbf{r}_8 = \mathbf{r}_1 \times \mathbf{r}_2
    r_0 = r_7 + r_8
    ret ra
```

```
State \sigma is:

pc = program counter

\delta = local values
```

sdom(f,pc) = variable defns. that *strictly dominate* pc.

Well-formed States (Roughly)

```
entry:
           br r<sub>0</sub> loop exit
       loop:
          \mathbf{r}_3 = \phi[0; \text{entry}][\mathbf{r}_5; \text{loop}]
           \mathbf{r}_4 = \mathbf{r}_1 \times \mathbf{r}_2
рс
           \mathbf{r}_5 = \mathbf{r}_3 + \mathbf{r}_4
           r_6 = r_5 \ge 100
           br r<sub>6</sub> loop exit
       exit:
           r_7 = \phi[0;entry][r_5;loop]
           \mathbf{r}_8 = \mathbf{r}_1 \times \mathbf{r}_2
           r_0 = r_7 + r_8
           ret ra
```

State σ contains: pc = program counter $\delta = local values$ mem = memory sdom(f,pc) = variable defns.that *strictly dominate* pc.

```
wf(g,\sigma) = 
∀r∈sdom(f,pc). ∃v. \delta(r) = \lfloor v \rfloor
```

"All variables in scope are initialized."

VminusStatics.v

VMINUS STATIC SEMANTICS