Модуль 2. Основы реляционных БД

12.05.2016

Введение в базы данных. Мяснов А., Савин И., 2016 г.

Содержание модуля

- Введение в реляционную модель данных, преимущества
- Aхитектура ANSI/SPARC
- Запросы к SQL-базам данных: UNION, JOIN
- Триггеры и хранимые процедуры

Понятие модели данных

- Модель данных
 - Понятия (объекты)
 - Операторы
 - Описание структуры и доступа к данным
- Общая характеристика модели данных (Кристофер Дейт)
 - Структурная часть
 - Манипуляционная часть
 - Ограничения целостности
- Смешение и разделение понятий
 - Реляционная и SQL модели данных

Реляционная модель данных

- Сложно и просто
 - Математический аппарат
 - Простые формализмы
- Структурная часть
 - Набор понятий, родовая структура
- Манипуляционная часть
 - Операции на данными
- Ограничения целостности
 - Средства поддержания структуры и содержимого БД в соответствии модели данных

- Тип данных
 - Все элементы типизированы
 - Аналогично понятию типа в ЯП:
 - Множество значений
 - Операции
 - Литералы
 - Целочисленные типы данных:
 - Данные с дробной частью:
 - Строковые:
 - Календарные:
 - Другие:
 - NULL

- Домен
 - Базовый тип данных
 - Логическое выражение над элементом базового типа
 - Подмножество значений типа данных
 - Примеры:

- Атрибут
 - Именованая характеристика свойство сущности
 - Определяется на некотором типе данных или домене
 - Примеры:

- Кортеж
 - Множество упорядоченных триплетов: имя атрибута, типа данных или домен, значение
 - Примеры:

- Схема отношения, схема БД
 - Схема отношения именованное множество упорядоченных пар: имя атрибута, тип данных или домен
 - Примеры:

- Схема отношения, схема БД
 - Схема БД множество именованных схем отношений
 - Примеры:

- Отношение
 - Тело отношения множество кортежей, соответсвующих схеме отношения
 - Значение отношения пара множеств: схема отношения, тело отношения

- Интуитивная интерпретация
 - Таблицы, столбцы, строки, поля

- Свойства отношений
 - Отсутствие кортежей дубликатов вытекает из определения тела отношения как множества кортежей
 - Отсутствие упорядоченности кортежей
 - Формально из множественной природы отношений
 - На практике эффективно
 - Отсутствие упорядоченности атрибутов
 - Аналогично упорядоченности кортежей
 - Атомарность значений атрибутов
 - Условность
 - Схема отношения принадлежит первой нормальной форме

РМД. Манипуляционная часть

- Механизмы
 - Реляционная алгебра
 - Реляционное исчисление
 - DML SQL
 - Примеры:

РМД. Ограничения целостности

- Целостность сущности
- Целостность ссылок

РМД. Целостность сущности

- Кортежи должны быть отличимы. Почему?
- Понятие потенциального ключа:
 - Минимальное подмножество множества атрибутов отношения такое, что для любого кортежа отношения набор значений отличается от другого
 Свойства потенциального ключа:
 - Уникальность
 - Минимальность
- Виды ключей по количеству атрибутов
 - Простые
 - Составные

РМД. Целостность сущности

- Практическое значение
 - В таблице не должно быть повторяющихся записей
 - SQL?
 - Ключ идентифицирует кортеж/строку таблицы
 - SQL?
 - Атрибуты, входящие в состав ключа не могут содержать неопределенных значений
 - SQL?

РМД. Внешний ключ

- Специальный атрибут (набор атрибутов) отношения такой, что значения данного атрибута (набора) в некотором отношении будут соответствовать значениям атрибутов первичного ключа некоторого отношения
- Можно сказать, что множество значений внешнего ключа некоторого отношения R2 является нестрогим подмножеством множества значений потенциального ключа некоторого отношения R1
- Терминология: в приведенном выше примере отношение R1 называют главным/целевым/родительским (master), R2 – подчиненным (slave)
 - Примеры:

РМД. Внешний ключ

• Примеры:

РМД. Ссылочная целостность

- Для каждого указанного значения внешнего ключа должен найтись кортеж в отношении, на которое ссылается набор атрибутов внешнего ключа
- SQL: Или значения внешнего ключа должны быть неопределенными
 (NULL)
- Способы поддержания ссылочной целостности:
 - Блокировка операции;
 - Указание NULL;
 - Каскадное удаление.

РМД. Преимущества

- Контроль целостности данных;
- Гибкость: выборка, изменение схемы;
- Физическая и логическая независимость;
- Разработка прикладных программ;
- Основа небольшое число интуитивно понятных абстракций;
- Теоретическим базисом реляционного подхода к организации баз данных служит простой и мощный математический аппарат теории множеств и математической логики;
- Декларативные языки определения и манипулирования данными;
- Средства разграничения доступа.

РМД. Недостатки

- Производительность;
- Большое количество таблиц в реальных БД;
- Сложность поддержки;
- Некоторые предметные области плохо представляются в форме отношений;
- Разработка прикладных программ
- Репликация.

Архитектура ANSI SPARC

- Определяет принцип организации СУБД (не обязательно РМД)
- Цель: введение уровней абстракции для пользователей и архитекторов
 БД
 - Разные группы пользователей ИС должны иметь разные представления данных
 - Пользователи должны быть абстрагированы от физической и логической организации данных
 - Администраторы БД должны иметь возможность вносить изменения в схему данных без учета особенностей физического хранения данных
 - Внутренняя структура БД не должна зависеть от физических аспектов хранения информации

Архитектура ANSI SPARC

- Уровни и функции
 - 1. Внешний уровень пользовательские представления
 - 2. Концептуальный уровень логическая структура БД
 - 3. Внутренний уровень аспекты физической реализации
- Логическая независимость защищенность внешних схем от изменений, вносимых в концептуальную схему. Сохранение представлений внешнего уровня при изменении схемы данных.
- Физическая независимость защищенность концептуальной схемы от изменений, вносимых во внутреннюю схему. Файловые системы и системные функции, организация хранения данных, настройки и внутренние структуры данных.

Запросы из нескольких таблиц. Виды соединений

- Оператор SELECT возвращает результат соединения, если обращается к нескольким источникам данных
 - Таблицы
 - Представления
 - Результаты оператора SELECT подзапрос
- Результат соединения нестрогое подмножество декартова произведения результатов выборок из нескольких источников

Запросы из нескольких таблиц. Виды соединений

- Декартово произведение: CROSS JOIN
- Внутреннее соединение: INNER JOIN
- Левое и правое внешнее соединение: LEFT OUTER JOIN, RIGHT OUTER
 JOIN
- Полное внешнее соединение: FULL OUTER JOIN
- Естественное соединение: NATURAL JOIN

Запросы из нескольких таблиц. Виды

соединений

• Базовый пример

Запросы из нескольких таблиц. Декартово произведение

- Количество строк в соединении равно произведению количества строк в соединяемых результатах
- Декартово произведение получается в результате любого запроса, содержащего более одного источника и не имеющего ограничивающих условий
 - Пример
- Зачем?

Запросы из нескольких таблиц. Тетасоединение

- Результат тета-соединения содержит кортежи из декартова произведения, удовлетворяющие некоторому условию
- В языке SQL операция тета-соединения INNER JOIN (внутреннее соединение), NATURAL JOIN
- Частный случай соединение по эквивалентности эквисоединение
 - Примеры

Запросы из нескольких таблиц. Левое, правое внешние соединения

- Результат левого внешнего соединения содержит кортежи из внутреннего соединения источников и не вошедшие во внутреннее соединение кортежи левого источника
- Атрибуты в кортежах, которые не имеют совпадений по общим столбцам заполняются неопределенными значениями
- Правые внешние соединения...
 - Примеры

Запросы из нескольких таблиц. Полное внешнее соединение

- Результат полного внешнего соединения содержит кортежи:
 - из внутреннего соединения источников,
 - не вошедшие во внутреннее соединение кортежи левого источника,
 - не вошедшие во внутреннее соединение кортежи правого источника.
- Атрибуты в кортежах, которые не имеют совпадений по общим столбцам заполняются неопределенными значениями
 - Примеры

Запросы из нескольких таблиц. Объединение

- Результат объединения кортежи из каждого источника
- Если добавлено ключевое слово ALL, то не выполняется проверка на уникальность кортежей в результирующем объединении
- Выборки из источников должны совпадать по атрибутам
 - Примеры

Процедурные расширения SQL

- SQL/PSM
 - Операторы SQL/DDL, SQL/DML
 - Определения и вызовы функций и процедур
 - Управляющие конструкции, состояния
- Вычислительно полный язык

Процедурные расширения SQL

- Использование:
 - Хранимые процедуры
 - Триггеры
- Вариативность
 - Индивидуальность языка каждой СУБД
 - Типизация, назначение прав
 - Организация выполнения

Хранимые процедуры

- Принципы работы
 - Исполняются сервером БД
 - Могут осуществлять изменение данных и структуры БД
 - Могут возвращать работы данных аналогично оператору SELECT
 - Однократно компилируются
 - Могут кэшировать планы исполнения, результаты
- Терминология
 - Пользовательские функции
 - "Нативные" хранимые процедуры
 - Процедуры, реализуемые на языках общего назначения

Хранимые процедуры

- Преимущества:
 - Производительность
 - Организация поддержки целостности
 - Скрытие структуры данных
 - Модульность
 - Безопасность
 - Использование общего кода при работе с БД нескольких приложений

Хранимые процедуры

- Недостатки:
 - Разделение бизнес-логики
 - Меньшая языковая выразительность процедурных расширений SQL
 - Непереносимость
 - Погружение в особенности СУБД
 - Отладка
 - Версионирование

Триггеры

- Обработка событий
- Момент вызова: до и после операций с предметной таблицей
- Инициирующие операции:
 - Вставка
 - Изменение
 - Удаление

Триггеры

- Особенности работы триггеров:
 - Могут быть инициированы изменением схемы или данных
 - Могут выполняться для каждой строки или для всего блока
 - Могут содержать дополнительные условия исполнения
 - Возможности использования старых и новых значений
 - Вызов процедур, инициирование триггеров
 - Транзакционность и сохранение состояния
 - Последовательность исполнения

Триггеры

- Варианты использования:
 - Проверка данных
 - Поддержка согласованности
 - Журналирование и аудит
 - Запуск процедур не связанных с обработкой данных
- Недостатки
 - Непрозрачность
 - Сложность отладки
 - Производительность
 - Глобальность