1- Introduction to the R language

Alex Sanchez, Miriam Mota, Ricardo Gonzalo and Mireia Ferrer

Statistics and Bioinformatics Unit. Vall d'Hebron Institut de Recerca

Readme

- License: Creative Commons
 Attribution-NonCommercial-ShareAlike 4.0 International
 License http://creativecommons.org/licenses/by-nc-sa/4.0/
- You are free to:
 - Share : copy and redistribute the material
 - Adapt : rebuild and transform the material
- Under the following conditions:
 - Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made.
 - NonCommercial: You may not use this work for commercial purposes.
 - Share Alike: If you remix, transform, or build upon this work, you must distribute your contributions under the same license to this one

Introduction to R

Outline

- A first contact with R & Rstudio.
 - How does one work with R
- A primer of data import
 - Reading data into R
- A primer of communication
 - R Notebooks and RMarkdown

A first contact with R, Rstudio and the tidyverse

What is R?

- R is a language and environment for statistical computing and graphics.
- R provides a wide variety of statistical and graphical techniques, and is highly extensible.
- It compiles and runs on a wide variety of UNIX platforms and similar systems Windows and MacOS.

R PRO's (why you are here!)

- The system is
 - free (as in free beer)
 - It's platform independent
 - It is constantly improving (2 new versions/year)
- It is a statistical tool
 - Implements almost every statistical method that exists
 - Great graphics (Examples)
 - Simple reporting tools
 - Also state-of-the-art in Bioinformatics through the Bioconductor Project.
- Programming language
 - Easy to automate repetitive tasks (Example_1.1)
 - Possibility to create user friendly web interfaces with a moderate effort. (Examples)

R CON's

- R is mainly used issuing commands from a console
 - less user friendly than almost any other statistical tool you may know.
- Constantly having new versions may affect our projects
- Not necessarily the best language nor suitable for every existing task

How is R used

- Traditionally R was used from an Operating System console ("Terminal")
- This is an intimidating approach for many users
- A variety of options exist to decrease the learning curve.
 - Use a supportive development environment such as Rstudio
 - Use an interface to Statistical tools, such as Rcommander or ::DeduceR** allowing to concetrate an Statistics, not in commands

A raw R console in linux

```
alex@DESKTOP-DH5G1PA: ~
                                                                                                ×
 expres \leftarrow c(1.02,3.1, 0.8, 1.4,2)
 expres
[1] 1.02 3.10 0.80 1.40 2.00
 logExp <- log(expres)
 sigExp1 <- t.test(logExp)
 sigExp1
       One Sample t-test
data: logExp
 = 1.6276, df = 4, p-value = 0.1789
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.2763764 1.0594486
sample estimates:
mean of x
0.3915361
```

An "enhanced" console: Rstudio

Something that is not a console: Rcommander

Using R

Commands, Objects and Functions

- Shortly, using R consists of
 - Working with objects using commands and functions

Variables and data types

- Data managed in R . . .
 - is stored as variables
- Variables can be of distinct types
 - Numerical
 - numeric (13.7)
 - int (3)
 - Character
 - "R is cute"
 - Factors
 - A,B,C,D
 - WT, Mut

R packages

- R can be used for many different types of data processing and analysis from distinct fields, besides statistics such as Ecology, Omics Sciences, Psychology etc.
- All these capabilities are not present from the begining because most of them will never be used by most users.
- Instead, thay can be added when needed by
 - installing and
 - 2 loading the appropriate packages.

Installing and loading packages

We want to analyze some data using cox proportional hazards model.

```
res.cox <- coxph(Surv(time, status) ~ sex, data = lung)
```

```
Error in coxph(Surv(time, status) ~ sex, data = lung)
: could not find function "coxph"
```

We need to install and load the package before we can use it.

```
install.packages("survival")
library(survival)
res.cox <- coxph(Surv(time, status) ~ sex, data = lung)</pre>
```

The tidyverse

- The tidyverse is an opinionated collection of R packages designed for data science.
- All packages share an underlying design philosophy, grammar, and data structures.
- The complete tidyverse collection can be installed with:

```
install.packages("tidyverse")
```

https://www.tidyverse.org/

Getting data into R

Importing data with Rstudio

- The easiest way to get data into R is to click on the import Datasets button.
- Alternatively R code can be written using functions from Base R or the tidyverse
 - Base R functions start with read.: read.table, read.csv
 - tidyverse functions start with read_: read_delim, read_csv or read_excel

Reading Excel or csv files

- Files can be read from any location, let it be a physical support or a web site.
- To read files from disk be sure to indicate their location.
- Alternatively the default working directory can be set to the folder where the file is located.
- Assume files Diabetes.xls and Osteoporosis.csv have been downloaded from url https://github.com/uebvhir/uebvhir. github.io/blob/master/datasets to a sub-folder named datasets
- Start setting the default directory to the folder where you have saved the datasets folder.
 - Session --> Set Working directory --> To source file location...
- Import the diabetes.xls and the osteoporosis.csv file

Reading Excel or csv files (continued)

The code generated for reading the files can be reused any time changing the file name if needed.

```
# Read Excel file
library(readxl)
diabetes <- read_excel("datasets/diabetes.xls")</pre>
```

Reading text files

- Text files may require that more information is provided about delimiters, decimal dign, locale (language) or page encoding (UTFB for Mac or Linux vs ISO-8859-1 for Windows).
- All options can be selected from the rstudio importer

Interlude: Summarizing data

Once a dataset is available it is easy to "have a look at it"

```
head(diabetes)
str(diabetes)
summary (diabetes)
```

Dynamic output with Rmarkdown

Reproducible research with R notebooks

- R and Rstudio are strongly involved in promoting reproducibility and reproducible research.
- This is implemented in R notebooks
- A notebook combines
 - Natural language text, e.g. describing what we are doing in our own words.
 - R code with the instructions needed to do the data management or the analysis.
 - The output of the analysis

Creating Notebooks

- A notebook can be created in Rstudio with
 - File --> New File --> R Notebook
- The notebook contains example text and code so it is straightforwoard to adapt it to your analysis.
- To produce an html file with text, code and output:
 - Press the button "Preview"
 - Or Select "Knitr to Html"

Your turn

Exercise

- Select a dataset with which you wish to work along the course.
- Read it into R
 - How many variables are there in it
 - What are their types
- Try to summarize it briefly
- Create an R notebook to encapsulate all your steps and share it with somebody.