Consider the following anova program and its output. Note that the least significant difference test has more power than the t-test.

```
data ;
input trt $ y @@ ;
datalines;
       A O
              A 2
A 6
                      A 8
                            A 11
A 4
       A 13
              A 1
                      A 8
                            A O
в о
       B 2
              В 3
                      B 1
                            B 18
B 4
       B 14
              B 9
                      B 1
                            B 9
C 13
       C 10
              C 18
                      C 5
                            C 23
C 12
       C 5
              C 16
                      C 1
                            C 20
proc anova ;
model y = trt;
means trt / lsd ttest ;
                               Analysis of Variance
                       Sum of Squares
                                            Mean Square
    Source
               DF
                                                             F Value
                                                                         Pr > F
    Model
                2
                         293.60000000
                                           146.80000000
                                                                3.98
                                                                         0.0305
                                            36.8555556
               27
                         995.10000000
    Error
                        1288.70000000
    Total
                R-Square
                              Coeff Var
                                             Root MSE
                                                             Y Mean
                0.227826
                              76.846553
                                             6.070878
                                                           7.900000
                DF
                            Anova SS
                                           Mean Square
                                                            F Value
                                                                        Pr > F
     Source
     TRT
                        293.60000000
                                          146.80000000
                                                                        0.0305
                 2
                                                               3.98
                                  Mean Response
             TRT
                       N
                                Mean Y
                                            95% CI MIN
                                                            95% CI MAX
                                              1.360937
                                                              9.239063
                      10
                              5.300000
             Α
             В
                      10
                              6.100000
                                              2.160937
                                                             10.039063
                                                             16.239063
             C
                      10
                             12.300000
                                              8.360937
                        Least Significant Difference Test
  TRT
         TRT
                  Delta Y
                              95% CI MIN
                                             95% CI MAX
                                                            t Value
                                                                       Pr > |t|
                -0.800000
                               -6.370677
                                               4.770677
                                                                         0.7705
  Α
         В
                                                              -0.29
  Α
         C
                -7.000000
                              -12.570677
                                              -1.429323
                                                              -2.58
                                                                         0.0157 *
  В
         Α
                 0.800000
                               -4.770677
                                               6.370677
                                                               0.29
                                                                         0.7705
  В
                 -6.200000
                              -11.770677
                                              -0.629323
                                                                         0.0305 *
         C
                                                              -2.28
  С
                 7.000000
                                1.429323
                                              12.570677
                                                               2.58
                                                                         0.0157 *
         Α
  C
                 6.200000
                                0.629323
                                              11.770677
                                                               2.28
                                                                         0.0305 *
         В
                                Two Sample t-Test
  TRT
         TRT
                  Delta Y
                              95% CI MIN
                                             95% CI MAX
                                                            t Value
                                                                       Pr > |t|
                -0.800000
                                                                         0.7466
                               -5.922307
                                               4.322307
                                                              -0.33
  Α
         В
  Α
         С
                -7.000000
                              -12.664270
                                              -1.335730
                                                              -2.60
                                                                         0.0182 *
                                                                         0.7466
  В
         Α
                 0.800000
                               -4.322307
                                               5.922307
                                                               0.33
  В
         С
                 -6.200000
                              -12.467653
                                               0.067653
                                                              -2.08
                                                                         0.0523
  С
                 7.000000
                                1.335730
                                              12.664270
                                                               2.60
                                                                         0.0182
         Α
  С
                 6.200000
                               -0.067653
                                              12.467653
                                                                         0.0523
         В
                                                               2.08
```

Let us take a closer look at the analysis of variance table.

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	293.60000000	146.80000000	3.98	0.0305
Error	27	995.10000000	36.8555556		
Total	29	1288.70000000			

This is how the values are computed.

Source	$_{ m DF}$	Sum of Squares	Mean Square	F-value	p-value
Model	p-1	SSR	MSR = SSR/(p-1)	$F^* = MSR/MSE$	$1 - F(F^*, p - 1, n - p)$
Error	n-p	SSE	MSE = SSE/(n-p)		
Total	n-1	SST			

In the above table, n is the number of observations and p is the number of model parameters including the intercept term if there is one. The sums of squares are computed as follows where y are observed values and \hat{y} are values predicted by the model.

$$SSR = \sum (\hat{y}_i - \bar{y})^2$$
$$SSE = \sum (y_i - \hat{y}_i)^2$$
$$SST = \sum (y_i - \bar{y})^2$$

The p-value in the anova table is used for checking that the regression model is better than the mean of all the data \bar{y} . The null hypothesis is that the model is no better than the mean, that is

$$H_0: SSE = SST$$

Under H_0 we have SSR = 0 hence MSR = 0 and

$$H_0: F^* = 0$$

Recall that the p-value is (loosely) the probability that H_0 is true. Hence for small p-values, reject H_0 and conclude that the regression model is better than the mean.

Let us take a closer look at the mean response table.

Mean Response

TRT	N	Mean Y	95% CI MIN	95% CI MAX
Α	10	5.300000	1.360937	9.239063
В	10	6.100000	2.160937	10.039063
С	10	12.300000	8.360937	16.239063

Recall that the confidence interval for a treatment mean is

$$\bar{y} \pm t(1 - \alpha/2, \text{dfe}) \times \text{SE}, \quad \text{SE} = \sqrt{\frac{\text{MSE}}{n}}$$

where SE is standard error and MSE (mean square error) is estimated model variance. From the analysis of variance table at the top of the output we have

Source	DF	Sum of Squares	Mean Square
Error	27	995.10000000	36.8555556

Hence

$$dfe = 27$$
, $MSE = 36.85555556$

The confidence interval for the mean of treatment A can be checked by typing the following into R.

```
ybar = 5.3
n = 10
MSE = 36.85555556
dfe = 27
alpha = 0.05
SE = sqrt(MSE / n)
t = qt(1 - alpha/2, dfe) * SE
ybar - t
ybar + t
```

R prints the following results.

- [1] 1.360937 [1] 9.239063
- The R results match the mean response table for treatment A.

TRT	N	Mean Y	95% CI MIN	95% CI MAX
٨	10	E 300000	1 360037	0 230063

Let us take a closer look at the first line of the least significant difference table.

Least Significant Difference Test

```
TRT TRT Delta Y 95% CI MIN 95% CI MAX t Value Pr > |t| A B -0.800000 -6.370677 4.770677 -0.29 0.7705
```

The least significant difference of two treatment means \bar{y}_A and \bar{y}_B is

LSD =
$$t(1 - \alpha/2, \text{dfe}) \times \text{SE}$$
, SE = $\sqrt{\text{MSE} \times \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}$

The corresponding confidence interval is

$$(\bar{y}_A - \bar{y}_B) \pm \text{LSD}$$

The confidence interval in the LSD table can be checked by typing the following into R.

```
ybarA = 5.3

ybarB = 6.1

nA = 10

nB = 10

MSE = 36.85555556

dfe = 27

alpha = 0.05

SE = sqrt(MSE * (1/nA + 1/nB))

LSD = qt(1 - alpha/2, dfe) * SE

ybarA - ybarB - LSD

ybarA - ybarB + LSD
```

R prints the following results.

- [1] -6.370677
- [1] 4.770677

The R results match the confidence interval in the LSD table.

```
TRT TRT Delta Y 95% CI MIN 95% CI MAX t Value Pr > |t| A B -0.800000 -6.370677 4.770677 -0.29 0.7705
```

Let us take a closer look at the first line of the t-test table.

Two Sample t-Test

TRT	TRT	Delta Y	95% CI MIN	95% CI MAX	t Value	Pr > t
Α	В	-0.800000	-5.922307	4.322307	-0.33	0.7466

The t-test confidence interval is

$$(\bar{y}_A - \bar{y}_B) \pm t(1 - \alpha/2, \text{dfe}) \times \text{SE}$$

where

SE =
$$\sqrt{\frac{\text{SSE}}{\text{dfe}} \times \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}$$
, SSE = $\sum (y_A - \bar{y}_A)^2 + \sum (y_B - \bar{y}_B)^2$

and

$$dfe = n_A + n_B - 2$$

The confidence interval can be checked by typing the following into R.

```
yA = c(6,0,2,8,11,4,13,1,8,0)

yB = c(0,2,3,1,18,4,14,9,1,9)

nA = length(yA)

nB = length(yB)

dfe = nA + nB - 2

SSE = var(yA) * (nA - 1) + var(yB) * (nB - 1)

MSE = SSE / dfe

SE = sqrt(MSE * (1/nA + 1/nB))

alpha = 0.05

t = qt(1 - alpha/2, dfe) * SE

mean(yA) - mean(yB) - t

mean(yA) - mean(yB) + t
```

R prints the following result which matches the above t-test table.

- [1] -5.922307
- [1] 4.322307

R's t-test function gives the same result.

```
t.test(yA,yB,var.equal=TRUE)
Two Sample t-test
data: yA and yB
t = -0.32812, df = 18, p-value = 0.7466
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.922307  4.322307
```