0.0.1

#regresjon #funksjonsdrøfting #omgjøring av enheter

Usain Bolt har verdensrekorden for 100 m sprint. I tabellen under ser du hva tidtakeren viste ved hver 10. meter under dette rekordløpet.

a) I figuren under har vi brukt datasettet fra tabellen til å utføre regresjon med et fjerdegradspolynom. Hva er det som er helt feil med denne tilnærmingen?

- b) I datasettet kan vi legge til et punkt som vil hjelpe med å korrigere feilen poengtert i a). Hvilket punkt er dette?
- c) Bruk regresjon med et fjerdegradspolynom på datasettet fra b).
- d) Ut ifra funksjonen du fant i c), hva var toppfarten til Bolt under dette løpet?
- e) Bruk datasettet fra b) til å finne gjennomsnittsfarten til Bolt for $t \in [0, 1.89]$ og for $t \in [1.89, 9.58]$. Sammenlikn disse hastighetene med svaret fra oppgave d), og drøft årsaken til ulikhetene/likhetene.

0.0.2

modellering # areal # derivasjon

Gitt et rektangel med omkrets O, og la x være den éne sidelengden.

- a) Finn uttrykket til funksjonen A(x), som viser aralet til rektangelet.
- b) Hvilken form har rektangelet når arealet er størst?

0.0.3

0.0.4

#logaritmer #overslag

Momentmagnitudeskalaen er en skala som brukes til å representere styrken på jordskjelv. Hvis S er det målte seismiske momentet til jordskjelvet, er massemagnituden M_w gitt som¹

$$M_w = \frac{2}{3}\log S - 10.7$$

Energien som jordskjelvet utløser er tilnærmet proporsjonal med S.

Gitt to jordskjelv, jordskjelv A og jordskjelv B, med henholdsvis seismisk moment S_A og S_B . Si videre at proporsjonalitetskonstanten for energi utløst av det seismiske momentet er likt for begge jordskjelvene. Hvis jordskjelv A er målt til 1 mer enn jordskjelv B på momentmagnitudeskalaen, hva er da forholdet mellom energi utløst av jordskjelv A og energi utløst av jordskjelv B?

¹Kilde: Wikipedia.

0.0.5

Du skal prøve å kaste en ball så langt som mulig langs et flatt strekke. Posisjonen ballen har idét den forlater handen din setter du til (0,0). Ved å anta at tyngdekraften deretter er den eneste kraften som virker på ballen, er posisjonen til ballen godt tilnærmet ved uttrykket

$$\vec{p}_{q}(t) = \vec{v}t - [0, 5t^{2}]$$

hvor $\vec{v} = [v_0 \cos \theta, v_0 \sin \theta]$ er hastighetsvektoren til ballen idét den forlot handen, og t er antall tidsenheter etter at ballen har forlatt handen. Idét ballen forlater handen din har den farten v_0 , \vec{v} danner vinkelen θ med horisontallinjen.

Ut ifra $\vec{p_g}$, hvilken verdi må θ ha for at kastet skal bli lengst mulig?