

## **DMET 901 – Computer Vision**

# Image Transformation and Filtering

Seif Eldawlatly

#### Introduction

- Image preprocessing has two goals
  - Suppress information that is not relevant (Noise,...)
  - Enhance information that is relevant (Edges, ....)
- Three topics
  - Transformations





Noise Filtering





• Edge Detection





#### **Transformations**

- Gray-scale Transformations
  - A transform T of the original brightness p from the scale  $\left[p_0,p_k\right]$  into the brightness q from a new scale  $\left[q_0,q_k\right]$

$$q = T(p)$$

• Example: Increase the contrast



**Original Image** 



**Increase Contrast** 

Examples of simple operations on gray-scale images: Change Brightness



$$q = T(p) = \begin{cases} 0, & \text{if } p \le 100\\ \frac{255}{155}(p-100), & \text{if } p > 100 \end{cases}$$



$$q = T(p) = \begin{cases} 0, & \text{if } p \le 100 \\ \frac{255}{155}(p-100), & \text{if } p > 100 \end{cases} \qquad q = T(p) = \begin{cases} \frac{1}{100}(205p - 5000), & \text{if } p \le 100 \\ 255, & \text{if } p > 100 \end{cases}$$

• Examples of simple operations on gray-scale images: Change Brightness



• Examples of simple operations on gray-scale images: Change Contrast



Bright becomes brighter, Dark becomes darker



Bright becomes darker, Dark becomes brighter

• Examples of simple operations on gray-scale images:







**New Intensity** 

- Key idea: Images are redundant, a bad pixel can be replaced by a local average
- Examples:
  - Averaging
  - Averaging with limited data validity
  - Averaging using a rotating mask
  - Median filter

Averaging Filter

$$h_1 = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

| 4  | 8               | 6 | 11 | 8  |
|----|-----------------|---|----|----|
| 10 | <del>\$</del> h | 9 | 7  | 10 |
| 6  | 3               | 6 | 4  | 3  |
| 9  | 5               | 7 | 9  | 8  |
| 12 | 2               | 5 | 7  | 4  |

5x5 Noisy Image

| 6 | 7 | 7 |  |
|---|---|---|--|
| 7 | 6 | 7 |  |
| 6 | 5 | 6 |  |
|   |   |   |  |

Filtered Image

#### Convolution

- The integral of the product of two functions after one is reversed and shifted
- In mathematical terms for discrete functions

$$f(i,j) = \sum_{(m,n) \in O} \sum_{i=0}^{\infty} g(i-m,j-n)h(m,n)$$

where h is the convolution mask, g is the original image and O defines the size of the mask

- Both noise filtering and edge detection depend on the idea of convolution
- The dimensions of the filter are always odd so that there is always a central pixel

### Convolution

#### Example

$$f(2,2) = \frac{1}{16} [4 \times 1 + 10 \times 2 + 6 \times 1 + 8 \times 2 + 5 \times 4 + 3 \times 2 + 6 \times 1 + 9 \times 2 + 6 \times 1] = 6.375$$

$$f(2,3) = \frac{1}{16} [8 \times 1 + 5 \times 2 + 3 \times 1 + 6 \times 2 + 9 \times 4 + 6 \times 2 + 11 \times 1 + 7 \times 2 + 4 \times 1] = 6.875$$
11

Weighted Averaging Filter

$$h_2 = \frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

More weight for central pixel

$$h_2 = \frac{1}{10} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} \qquad h_3 = \frac{1}{16} \begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{vmatrix}$$

More weight for central pixel and the 4 neighbors

Main Disadvantage of Averaging Filters: Blurring

Because of considering pixels in the average that may have different properties than the processed pixel



**Original Image** 



**Noisy Image** 



Filtered Image

- Averaging with limited data validity
  - Previous filters were linear
  - To avoid blurring, this method is based on the idea that the calculated average should be computed only from points in the neighborhood that satisfy certain condition
  - This makes such filter non-linear

$$h(i,j) = \begin{cases} 1 & for \ g(m+i,n+j) \in [\min,\max] \\ 0 & otherwise \end{cases}$$

- Averaging using a rotating mask
  - Searches for the homogeneous part of the processed pixel neighborhood to avoid blurring
  - A brightness dispersion  $\sigma^2$  is used as the region homogeneity measure

$$\sigma^2 = \frac{1}{n} \left( \sum_{(i,j) \in R} \left( g(i,j) - \frac{1}{n} \sum_{(i,j) \in R} g(i,j) \right)^2 \right)$$

- To search for the most homogenous part of the neighborhood, the dispersion for all possible mask rotations is calculated
- The position of least dispersion is considered as the best filter for the processed pixel

Example: Consider a 3x3 filter



- Rotating Mask Algorithm
  - 1. Consider each image pixel (i, j)
  - 2. Calculate the dispersion for all possible mask rotations around the pixel (i, j) according to the given equation
  - 3. Choose the mask with minimum dispersion
  - 4. Assign to pixel (i, j) in the output image the average brightness in the chosen mask

Example

**Noisy Image** 







**Filtered using Rotating Mask** 

3 x 3 Filter





- Median Filter
  - In a set of ordered values, the median is the central pixel



Works very well with salt and pepper noise

Median Filter

**Original Image** 



**Noisy Image** 



Filtered Image



**Noisy Image** 

Filtered using Rotating Mask



Filtered using Median Filter



Disadvantage: Damages thin lines

Disadvantage of Median Filter: Damages thin lines

| 0 | 255 | 0 | 0 | 0 |
|---|-----|---|---|---|
| 0 | 255 | 0 | 0 | 0 |
| 0 | 255 | 0 | 0 | 0 |
| 0 | 255 | 0 | 0 | 0 |
| 0 | 255 | 0 | 0 | 0 |

| 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

Image with a 1-pixel wide white line

Filtered using 3x3 median filter