

Interactive analysis of codon usage in prokaryotes

Predicting protein expressivity

Kristian Vlahoviček Zagreb University Croatia

Synonymous codon usage

Deinococcus radiodurans

Haemophilus influenzae

CU bias in microbial genomes

- Synonymous codons used differently
 - Between different species
 - GC content and AA composition
 - Within a single genome
 - "optimaly" encoded genes choose codons compatible to tRNA abundance and mRNA folding
 - Ribosomal proteins
 - Elongation factors
 - Chaperones
 - Background selection for "lifestyle specific" functions

'Measuring' Codon Usage

Take an ORF, count 64 frequencies, one for each codon

Single sequence Whole genome Reference sequence set

Compare CU distributions Calculate 'distance'

Measuring Codon Usage

Predicted expressivity

- Distance to genomic mean vs. distance to the reference set
 - 'good' codons ensure optimal expression rates
 - Synechocystis sp.: photosynthesis genes
 - M. janaschii: methanogenesis genes
 - D. radiodurans: membrane and detox proteins

- https://github.com/BioinfoHR/coRdon
- Work in progress
- Analysis of large-scale data
- Loads collections of .fasta files
 - Annotated or not
- Calculates codon frequencies
- Calculates distances
- Good for metagenomic data analysis

INCA – interactive codon usage analyzer

Download

http://www.bioinfo.hr/research/inca/inca-registration/inca-download/

- Download version 2.1
- Unzip to Desktop
- Start INCA2
- Open file genomes/NC_000913.ffn

INCA Demo cont'd

- Go to gene browser
- Filter genes by keyword 'ribosomal'
- Select all ribosomal protein genes
- Add them to reference set
- Visualize the scatterplot
 - Select different preset methods
 - Compare MILC and Karlin&Mrazek plots

More tricks

- Visualize codon usage frequencies in the reference set and the whole genome
- View expression prediction binned by COG categories
 - Go to Groups/bins
 - Select Categories on X axis
 - Select MELP on Y axis

Are you into over-expression?

- Fetch a file from <u>http://hex.bioinfo.hr/~kristian/my_overex</u> <u>pression_target.txt</u>
- Paste into optimizer
 - Notice the very rare codons!
- Optimize towards the reference set
- Optimize towards all genes
- Synthesize, clone into *E. coli*, over-express and compare ©

