Program #4: Database Design and Implementation

Due Date: December 6th, 2021, at the beginning of class

 $\frac{\mathrm{Danny}\;\mathrm{Ryngler} - \mathtt{dryngler@email.arizona.edu}}{\mathrm{James}\;\mathrm{O'Connell} - \mathtt{oconnellj2@email.arizona.edu}}$

1 Conceptual Database Design

2 Logical database design

Customer <u>cust_id</u> first_name last_name Appointment app_id cust_id service_id app_date success Xact <u>xact_id</u> app_id Service service_id fee name years_valid Document docid service_id cust_id | issue_date expiration_date Job jid title salary Employee eid jid did $first_name$ last_name Department did name

3 Normalization analysis

Customer:

 $cust_id \rightarrow first_name$

 $cust_id \rightarrow last_name$

1NF: Becasue its attributes are not set-valued.

2NF: Every non-prime attribute is fully functionally dependent upon every CK.

3NF + BCNF: In both FDs cust_id is a super key of the relation.

Appointment:

 $app_id \rightarrow cust_id$

app_id→service_id

app_id→app_app_date

 $app_id \rightarrow success$

1NF: Becasue its attributes are not set-valued.

2NF: Every non-prime attribute is fully functionally dependent upon every CK.

3NF + BCNF: In both FDs app_id is a super key of the relation.

Xact:

 $xact_id \rightarrow app_id$

 $xact_id \rightarrow fee$

1NF: Becasue its attributes are not set-valued.

2NF: Every non-prime attribute is fully functionally dependent upon every CK.

3NF + BCNF: In both FDs xact_id is a super key of the relation.

Service:

service_id→name

 $service_id \rightarrow fee$

service_id \rightarrow years_valid

1NF: Becasue its attributes are not set-valued.

2NF: Every non-prime attribute is fully functionally dependent upon every CK.

3NF + BCNF: In both FDs <u>service_id</u> is a super key of the relation.

Document:

doc_id→service_id

doc_id→cust_id

doc_id→expiration_date

1NF: Becasue its attributes are not set-valued.

2NF: Every non-prime attribute is fully functionally dependent upon every CK.

3NF + BCNF: In both FDs doc_id is a super key of the relation.

Job:

 $jid \rightarrow title$

jid→salary

1NF: Becasue its attributes are not set-valued.

2NF: Every non-prime attribute is fully functionally dependent upon every CK.

3NF + BCNF: In both FDs jid is a super key of the relation.

Employee:

eid→jid

 $eid \rightarrow did$

eid→first_name

 $eid \rightarrow last_name$

1NF: Becasue its attributes are not set-valued.

2NF: Every non-prime attribute is fully functionally dependent upon every CK.

3NF + BCNF: In both FDs eid is a super key of the relation.

Department:

 $\overline{\text{did}}\rightarrow\text{name}$

1NF: Becasue its attributes are not set-valued.

2NF: Every non-prime attribute is fully functionally dependent upon every CK.

3NF + BCNF: In both FDs did is a super key of the relation.

4 Query description

SELECT salary
FROM Job, Employee
WHERE Job.jid = Employee.jid
AND Employee.first_name = '%s'
AND Employee.last_name = '%s'

Our self–designed query answers the question: "What is the salary of a given Employee". Given the first and last name from the user and by preforming a join on the Employee and Job relations, we are able to determine the answer to this question. The utility of the query allows users to get insight into the people that work at the DMV.