Branch-and-bound Python Example (Accompanying Lesson 14)

1 Today...

• This example is part of Lesson 14, Branch-and-bound.

2 Branch-and-bound Example

Solve the following IP using branch-and-bound.

$$\begin{array}{ll} \text{(P1)} & z_{IP}^* = \max 8x + 7y \\ \text{s.t.} & -18x + 38y \leq 133 \\ & 13x + 11y \leq 125 \\ & 10x - 8y \leq 55 \\ & x, y \in \mathbb{Z}^{\geq 0} \end{array} \hspace{0.5cm} \begin{array}{ll} \text{example of} \\ \text{B Q B} & \text{notes} \end{array}$$

- Use Python to solve LP relaxations of subproblems
- plooded to Blackboro

- \bullet Branching Rules
 - Always select the active node with the largest upperbound for branching.
 - \circ Branch on x if it is fractional. Otherwise branch on y.
- Book-keeping
 - Keep track of the:
 - \diamond incumbent solution \underline{x} ,
 - \diamond global lower bound \underline{z} , and
 - ♦ list of active nodes.
 - Draw the branch-and-bound tree:
 - \diamond Record the local upper bound (z) and relaxed optimal solution (x) for each subproblem.
 - ♦ Label each edge with the constraint that is added to form the child subproblem.
 - ♦ X-out fathomed nodes. Circle incumbent solution nodes.
 - Use the provided diagram to illustrate the (relaxed) feasible region of each subproblem.

incumbent solution \underline{x}

global lower bound \underline{z}

active nodes

•		