实验一 网络实验入门

- 1. 在实验中用 console 线配置路由器或交换机时,请分别写出使用超级终端和相关软件的操作过程。
- 2. 请利用 display current-configuration 命令,写出你所在组的路由器 R1 和 R2 中以太口 (E0/0、E0/1) 和串口 (S0/0) 所对应的实际接口 (例如 GE0/0、S4/0...) 编号。
- 3. 请写出将路由器或交换机某一接口重新启动(关闭,然后开启)的命令
- 4. 在 PCA 上启动 Wireshark 软件截获报文,将上网线与之连接,访问 FTP 服务器 (ftp: //10.111.1.29); 从 Wireshark 截获的报文中任意选一个 ftp 报文,并进行分析,填写下表:

此报文类型		
此报文的基本信息	(数据报文列表窗口中的	
"Information"项的	内容)	
Ethernet II 协议树	Source 字段值	
中	Destination 字段值	
Internet Protocol	Source 字段值	
协议树中 Destination 字段值		
传输层协议树中	Source Port 字段值	
Destination Port 字段值		
应用层协议树 协议名称		
	所包含的字段名	

5. 写出实验中所遇到的故障和解决办法,评论和建议。

实验二 数据链路层实验

1.	在网络课程学习中,802.3 和 ETHERNET II 规定了以太网 MAC 层的报文格式分为 7 字节的前导符、1 字节的起始符、6 字节的目的 MAC 地址、6 字节的源 MAC 地址、2 字节的类型、数据字段和 4 字节的数据校验字段。对于选中的报文,缺少哪些字段,为什么?
2.	查看交换机的 MAC 地址表, 结果为:
	1)、解释 MAC 地址表中各字段的含义?
	2)、这个实验能够说明 MAC 地址表的学习是来源于数据帧的源 MAC 地址而非目的 MAC 地址吗?如果能,为什么?如果不能,试给出一个验证方法。
3.	广播风暴实验 观察了广播风暴后,在两台交换机上都配置启用生成树协议。请问是否还能观察到广播风 暴?为什么?
4.	配置了端口聚合后,请问是否还能观察到广播风暴?为什么?

5.	模拟链路故障,	将连接两台	ì交换机的一	根网	线拔掉或者	将被聚合	的某个端口	shutdown,	检
	查网络两端是否	仍能联通,	并解释为什	么?	体会其链路	备份的作品	₹。		

6. 在 VLAN 实验中,实验中的计算机能否通讯,请将结果填入下表:

		Ping 命令	能否 ping 通
同一VLAN 中	ping		
不同 VLAN 中	ping		

$\overline{}$	가다 않는 나는 나는 나는 사는 사는 어떤 나는 가니 다 그 이	ᄑᄀᄪᄀᇄᇄᇄᄓᅼᇚᇋᇎ
7	冲突域和广播域各有哪些端口?	- 四音 I VIAN に信いて

8. 根据跨交换机 VLAN 的实验中的报文截获结果填写下表:

转发过程	源 MAC 地址	目的 MAC 地址	源 IP 地址	目的 IP 地址	VLAN ID
PCA->S1		i.			
S1->S2					
S2->PCC					

9. 请查看交换机 S1 的 MAC 地址表,填写下表,并进一步体会交换机 MAC 地址表的学习和 转发。

MAC 地址	对应的主机	VLAN ID	State	端口号	AGING TIME
		ii.			
				_	

10. 继续前面的实验,如图 2-12,对两台交换机的 E0/13 端口进行设置;执行 PCB ping PCD,观察能否 ping 通,为什么?

修改两个交换机的 E0/13 端口的配置(**禁止将 vlan3 配置为 tagged**),使 PCB 和 PCD 能够 ping 通,结合各计算机截获报文综合分析,结果填入表-3。

转发过程	源 MAC 地址	目的 MAC 地址	源 IP 地址	目的IP地址	VLAN ID
PCB->S1		iii.			
S1->S2					
S2->PCD					

11.	与步骤八比较,	截获的报文有何不同?	请结合	VLAN	端口分类和	PVID	的作用,	解释这种
	情况下,报文料	发的过程。						

12.	根据 R1 上的 debug 显示信息,	画出 LCP 协议在协商过程中的状态转移图(事件驱动、	<u>状态</u>
	转移)。		

13	根据 debug	显示信息.	画出 PPP 协议 PAP 验证过程的状态转移图
10.	TIX I/B UCUUS	31K/31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_ IBI LU I I I

14. 根据 debug 显示信息,画出 PPP 协议的 CHAP 验证的状态转移图。

15. 设计型实验(选作)

- 一个公司需要组建局域网,公司主要有财务、人事、工程、研发、市场等部门,每个部门人数都不超过 20 人,另外公司还有一些公共服务器。请给出设计方案,并提供实验验证。要求满足:
- 1) 所有部门不能互相访问;
- 2) 每个部门都可以访问公共服务器。

实验三 网络层实验

1.根据 4.6 中步骤 1, 写出 tracert 命令用到了 IP 协议报文的哪几个字段?

2.根据 4.6 中步骤 2 回答:观察 PC A 和 PC B 能否 ping 通,结合截获报文分析原因。

3.根据 4.6 中步骤 3 填写下表:

Destination/Mask	Protocol	Pre	Cost	Nexthop	Interface

4. (1)按照**实验 2 的 5.5 节**(PPP 协议实验)图 17 配置路由器,两个路由器相互 ping,看能否 ping 通。根据 R1 上的 debug 显示信息,画出 IPCP 协议在协商过程中的状态转移图(<u>事件驱动、</u>状态转移)。

(2) 将路由器 R2 的接口 S0/0 的 IP 地址改为 10.0.0.1/24,两台路由器能否 ping 通?并解释为什么?注意体会 IPCP 协议的特点。(查看 IPCP 协议协商过程的 debug 信息)

5	根据	5 6	中步骤	5.
J.	· 11X 1/13	\mathcal{I}	・1・1 / リカバ	J :

- (1) 在截获报文中,有_____个 ARP 报文,_____个 ICMP:Echo 报文,_____个 ICMP:Echo Reply 报文,_____个 IP 报文。
- (2)据 ping 命令执行过程的分析,将本属于同一个数据报文信息的报文截取出来,例如下列的报文,从信息栏中可以看出,报文 1、2、3、4属于同一数据段。

1 (192.192.169.10	192.192.169.20	ICMP	Echo (pinq) request		
2 (192.192.169.10	192.192.169.20	ΙP	Fragmented IP protocol	(proto=ICMP 0x01,	off=80)
3 (192.192.169.10	192.192.169.20	IP	Fragmented IP protocol	(proto=ICMP 0x01,	off=160)
4 (192.192.169.10	192.192.169.20	IP	Fragmented IP protocol	(proto=ICMP 0x01,	off=240)

将第一个 ICMP Request 的报文分片信息填写下表。

字段名称	分片序号 1	分片序号 2	分片序号3	分片序号 4
"Identification"字段值				
"Flag"字段值				
"Frame offset"字段值				
传输的数据量				

分析表格内容,根据 IP 首部字段设置,体会分片过程。

(3) ping 的数据部分为 300 字节,路由器的以太网端口 MTU 设为 100 字节。回送请求报文为何被分片为 4 片而不是 3 片?数据部分长度为多少时报文正好被分为 3 片?

实验 6 第二节 静态路由和默认路由配置实验

- 6. 在 R1 上 ping 各台计算机,看是否能够 ping 通?通过在 R1 上查看路由表,分析其原因?
- 7. 配置完静态路由后, R1 是否能够 ping 通各台计算机?请说明这条路由项的含义。
- 8. 在配置默认路由后,观察 R1 的路由表,说明和步骤一的路由表有什么不同,R1 是否能够 ping 通各台计算机。为什么称之为缺省路由?

9. 链路层和网络层综合型实验(VLAN 间路由实验结果分析)

根据跨交换机 VLAN 间路由实验(PCC ping PCD)所截获报文,对整个网络层和数据链路层的报文转发过程进行分析。

约定如下:数据帧中的 MAC 地址对: (目的 MAC 地址,源 MAC 地址) 数据报中的 IP 地址对: (目的 IP 地址,源 IP 地址)

图 1

图 2

IP:192.168.2.10/24 IP:192.168.3.10/24 IP:192.168.2.11/24 IP:192.168.3.11/24 网关: 192.168.2.1 网关: 192.168.3.1 网关: 192.168.3.1

图 3

STEP 1

- ➤ PCC 发送的第一个报文类型是什么?为什么?
- ➤ 包含该报文数据帧中的 VLAN id、MAC 和 IP 地址对是: VLAN id=___MAC: (ff.ff.ff.ff.ff.ff,MAC_PCC)
 IP: (192.168.2.1,192.168.2.11)

STEP 2

- ➤ S2 收到数据帧后,对其 MAC 地址表的操作是:
- ➤ S2 根据接收数据帧的端口所属 VLAN,在其中插 VLAN id=______的 标签,并向除接收端口外的所有 VLAN2 端口转发这个数据帧。

STEP 3

- ➤ S1 收到数据帧后,对其 MAC 地址表的操作是:
- > S1 将 ARP 报文交付给网络层,S1 对其 arp 表的操作是:
- ➤ S1 发送的包含 ARP Reply 报文的数据帧中: (MAC_PCC, MAC_ VLAN 2) (192.168.2.11,192.168.2.1); VLAN id=___

STEP 4

- ▶ S2 收到数据帧后,对其 MAC 地址 表的操作是:
- ➤ S2 收到的数据帧后,根据 VLAN 标签和_______表,决定向端口_____转发该数据帧;

图 5

图 6

 IP:192.168.2.10/24
 IP:192.168.3.10/24
 IP:192.168.2.11/24
 IP:192.168.3.11/24

 网关:
 192.168.2.1
 网关:
 192.168.3.1

 IP:192.168.2.11/24
 IP:192.168.3.11/24

 IP:192.168.3.1
 IP:192.168.3.1

图 7

IP:192.168.2.10/24 IP:192.168.3.10/24 IP:192.168.2.11/24 IP:192.168.3.11/24 网关: 192.168.2.1 网关: 192.168.3.1 网关: 192.168.3.1

图 8

S1 E0/13 E0/13 S2

E0/14 E0/24 E0/1 E0/24

VLAN2: VLAN3: 192.168.2.1/24 192..68.3.1/24 Vlan2 ARP Reply Vlan3

PCA PCB PCC PCD

IP:192.168.2.10/24 IP:192.168.3.10/24 IP:192.168.2.11/24 IP:192.168.3.11/24 网关: 192.168.2.1 网关: 192.168.3.1 网关: 192.168.2.1 网关: 192.168.3.1

STEP 5

- ➤ PCC 收到 ARP Reply 报文,更新其 ARP 缓存,显示 ARP 缓存的命令: 显示的内容:

STEP 6

- ➤ S2 收到数据帧,根据其接收端口,添加 VLAN2 标签;根据目的 MAC,查找 MAC 地址表;将数据帧由___端口转发给 S1。
- ➤ S2 转发的数据帧中: VLAN id=__ MAC: (______, ____) IP: (______, ____)

STEP7

- > S1 收到 S2 转发的数据帧,交付网络层,根据目的 IP 地址,查路由表,将报文路由到 int vlan 3,准备通过数据链路层交付给 PCD;

STEP 8

- ➤ S2 收到 S1 转发的数据帧,根据其 VLAN id=___,向除接收端口外的所有 属于 VLAN__的端口转发该数据帧;

STEP 9

- ➤ PCD 收到 S2 转发的数据帧, 更新其 ARP 缓存, 其 ARP 缓存的内容是:
- ▶ PCD 发送包含 ARP reply 报文的数据帧中; VLAN id=_____MAC: (_______, _____)IP: (_______, ______)

 IP:192.168.2.10/24
 IP:192.168.3.10/24
 IP:192.168.2.11/24
 IP:192.168.3.11/24

 网关:
 192.168.2.1
 网关:
 192.168.3.1

图 10

图 11

图 12

图 14

STEP 10

- ➤ S2 收到数据帧,根据其接收端口,添加 VLAN____ 的标签; 根据目的 MAC,查找 MAC 地址表;将数据帧由____端口转发给 S1。
- ➤ S2 转发的数据帧中: VLAN id=__ MAC: (______, _____) IP: (______, _____)

STEP 11

- ➤ S1 收到数据帧,提交到网络层,更新其 ARP 表;
- ➤ S1 对包含 ICMP Echo Request 报文 的数据帧的 VLAN 标签进行替换,由 VLAN id=__变为 VLAN id=__。封装 的数据帧中: VLAN id=___

MAC: (,	
IP: (,	_	

▶ 查找 MAC 地址表,由__端口发送。

STEP 12

- ➤ S2 收到 S1 转发的数据帧,根据其 VLAN id 和目的 MAC 地址,向___端 口转发该数据帧;
- ➤ 同时, S2 根据端口____是___类型端口, 去掉 VLAN 标签, 从端口转发该帧。

STEP 13

➤ PCD 收到包含 ICMP Echo R	equest
报文的数据帧,发送包含 ICMP	Echo
Reply 报文的数据帧: VLAN id=	
MAC: (,)
IP: ()

STEP 14

- ➤ S2 收到数据帧,根据其接收端口,添加 VLAN____ 的标签;根据目的MAC,查找MAC地址表;将数据帧由___端口转发给S1。
 ➤ S2 转发的数据帧中: VLAN id=

图 15

IP:192.168.2.10/24 IP:192.168.3.10/24 IP:192.168.2.11/24 阿夫: 192.168.2.1 阿夫: 192.168.3.1 阿夫: 192.168.2.1 阿夫: 192.168.3.1 阿夫: 192.168.3.1

STEP 15

- > S1 收到 S2 转发的数据帧,交付网络层,根据目的 IP 地址,查路由表,将报文路由到 int vlan2,准备通过数据链路层交付给 PCC;

STEP 16

- ➤ S2 收到 S1 转发的数据帧,根据其 VLAN id 和目的 MAC 地址,向___端 口转发该数据帧;
- ➤ 同时, S2 根据端口_____是___类型端口, 去掉 VLAN 标签, 从端口转发该帧。

这样,PCC 收到 S2 转发的包含 ICMP Echo Reply 报文的数据帧。第一轮 ICMP 询问和应答过程结束。

10. 设计型实验

如图,某公司要建设公司网络,从网络服务商处租用了一个 C 类地址 202.108.100.*/24,接 网络服务商路由器的地址如图所示,请给出设计方案,满足如下要求:

- 1) 网络划分子网数越多越好,但每个子网的主机数大于15台;
- 2) 所有用户都能上网,即要求所有主机都能 ping 通网络服务商路由器的 E0/0 口。 提示:如图所示,划分好子网后,在路由器和三层交换机上要配置静态路由。

实验四 OSPF 协议分析

1	杏看 R2 的	OSPF 的邻接信息.	写出其命令和显示的结果:
т.	<u> </u>		—) III 77 III V 1 II III 1 II 1 II 1 II 1

2. 将 R1 的 router id 更改为 3.3.3.3, 写出其命令。显示 OSPF 的概要信息, 查看此更改是 否生效。如果没有生效, 如何使其生效?

3.6.1 OSPF 协议报文格式

3. 分析截获的报文,可以看到 OSPF 的五种协议报文,请写出这五种协议报文的名称。 并选择一条 Hello 报文,写出整个报文的结构(OSPF 首部及 Hello 报文体)。

4. 分析 OSPF 协议的头部, OSPF 协议中 Router ID 的作用是什么? 它是如何产生的?

5.	分析截获的一条 LSUpdate 报文,写出该报文的首部,并写出该报文中有几条 LSA? 以及相应 LSA 的种类。
3.6.2	链路状态信息交互过程
	结合截获的报文和 DD 报文中的字段(MS, I, M),写出 DD 主从关系的协商过程和协商结果。
7.	结合截获的报文和 DD 报文中的字段(MS, I, M, Seq),写出 LSA 摘要信息交互的过程,并描述其隐含确认与可靠传输机制是如何起作用的。
8.	结合截获的一组相关的 LSR、LSU 和 LSAck 报文,具体描述 OSPF 协议报文交互过程中确保可靠传输的机制。

3.6.3	邻居状态机
-------	-------

9. 请根据 debug 显示信息, 画出 R1 上的 OSPF 邻居状态转移图。

4.6 OSPF 协议链路状态描述

10. 请写出图中的网络有几种网络类型? R2 发出的所有 Update 报文中共包含几种类型的 LSA,具体类型是什么?

11. 在 4.6.1 节步骤 2 中,请按照第一类 LSA 信息,填写下表

名称	数值	意义
type		
link id		
Link data		
metric		

12. 在 4.6.2 节步骤 2 中,请写出所显示的一个完整的第二类 LSA 的信息。

13. 在 4.6.3 节步骤 2 中,请写出此时这个广播网络的 DR 和 BDR,以及各台设备的 Router ID 和优先级,写出查看这些信息的命令。并解释为什么?

14. 任 4.6.3 节步骤 3 中, 重新启动指定路田器 DR 的 OSPF 进程后, 与出此后的 DR、BDR、DRother 路由器的名称, 并解释为什么?
15. 在 4.6.4 节步骤 9 中, 请根据 debug 显示信息, 画出 R1 上所有 OSPF 邻居路由器的邻居 状态转移图。
5.6 区域划分及 LSA 的种类 16. 在 5.6 节步骤 4 中,请写出这两条 3 类 LSA 对应的路由信息(网段、子网掩码、下一跳)的内容。
17. 在 5.6 节步骤 5 中,会发现多了一条到 4.4.4.0/24 的 OSPF_ASE 路由,请写出这条路由信息: Destination/Mask Proto Pref Metric Nexthop Interface
18. 请写出显示区域 0 和区域 1 中四类和五类 LSA 的命令,并比较在区域 0 和区域 1 中四类和五类 LSA 的异同点,并解释为什么?
19. 请写出如何由上面的四类和五类 LSA,在 S2 上得到 OSPF_ASE 路由 4.4.4.0/24。

20. 请总结以下五类的 LSA 的生成者、所描述的路由和传递范围

	生成者	所描述的路由	传递范围
Router LSA			
Network LSA			
Net-summary LSA			
Asbr-Summary-LSA			
AS-Extermal-LSA			

6.6 SPF 的计算过程分析

21. 在 6.6 节的步骤 2 中,请参照以上配置,写出 R2 和 S2 上的配置命令:

22. 以 R2 为根计算最短路径树,填写到网络中各点的下一跳以及 OSPF metric 值,

22: 5/ R2 / J K / J	异取应时任例, 英马到四组下任息的下	则以及 OSFT HELLE 直,
目的	下一跳(路径)	OSPF Metric
交换机 S1		
TransNet 40.1.1.0/24		
路由器 R1		
Stubnet 20.1.1.0/24		
TransNet 30.1.1.0/24		
交换机 S2		
TransNet 10.1.1.0/24		

再画出相应的最短路径树。

23. 请结合所做的实验思考, OSPF 为什么是无自环的? (区域内、区域间)

实验五 BGP 协议实验

- 1. 查看 R1 和 R2 的路由表,注入路由信息前,是否有对方 loopback 的路由信息? 注入路由信息后,是否有对方 loopback 的路由信息? 为什么?
- 2. [R2]ping -a 4.4.4.4 5.5.5.5 能否 ping 通? 如果不用 ping 命令的-a 参数是否能 ping 通?为什么?
- 3. 把所截报文命名为 BGP1-学号,并上传到服务器。根据截获的 BGP 报文的顺序和结构,填写下表。

110	. 0			
报文 序号	报文种类	源地址及端口 号	目的地址及端口号	报文的作用

- 4. 思考题:在实验截获的报文中是否有 NOTIFICATION 报文?为什么?
- 5. 写出一个 Update 报文的完整结构,并指出报文中路由信息所携带的路由属性。

6.	在 2.6	5 节步	╒骤 4,	,观察	对截获的	句 BGP	的 NOT	TIFICAT	ΓΙΟΝ ‡	设文 ,	将字段	值填入剪	实验报	设 告中。	
7.	思考	题: 山	比时,	观察	到 R1 Ź	发来 NC)TIFICA	ATION	报文,	检测	到是什	么错误?			
				步骤: 节的实		从 debu	g 信息「	中分析	BGP 协	议的状	、 态机,	画出具	体的	犬态转护	英图。
步 邻	骤三 居 R1	将 F 的状	R1 的 态变》	e1 接口 为	□与 S1		0/1 相连	E,不 用	给 R1	的 e1	接口配	为 置 ip 地: 为		 生 S1 上 _	观察

4.5 BGP 的路由聚合

9.	步骤 1	在上一	节的基	础上,在 R1	上添加两个	loopback,	(192.168.0.1/24	和	192.168.1.1/24	1)
分	·别将他们引	入 BGF	路由	(如图-7)。	观察 R2 的	路由表。				
		R2 获得	身两条:	新路由为						

- **10. 步骤 2** 在 R1 上配置路由聚合,然后再观察路由表与配置路由聚合之前的路由表有何不同之处。
 - (1) 同时通告聚合路由和具体路由,请描述 R2 上路由表的变化。
 - (2) 只通告聚合路由,请描述 R2 上路由表的变化。用 R2 ping 192.168.0.1 或 192.168.1.1,是否能 ping 通?
- **11. 步骤 3** 在路由聚合完成后取消参与聚合的某个 Loopback 接口,观察各路由表分别有什么变化?体会路由聚合都有什么作用?

5.5 BGP 的基本路由属性分析

12. 将各路由的 ORIGIN 和 AS-PATH 属性值填入下表:

Destination/Mask	Origin	Path

分析上表中 ORIGIN 属性和 PATH 属性的含义。

13.	先观察 S1 上的到 5.0.0.0 和 4.0.0.0 网段的路由的下一跳分别为和和 并分析原因.
65	BGP 的路由策略
	观察 R2 的路由表,是否有 5.0.0.0 网段的路由? 观察 R1 的路由表的变化,是否还有 4.0.0.0 网段的路由?
15.	观察 R1 的 BGP 路由表信息,是否还有 6.0.0.0 网段的路由: S1 通告给 R1 的路由的 med 值为:。
7.5	BGP 的同步机制
(1	BGP 不同步引起的问题及一些解决方法)查看 R1 和 R2 的路由表,是否有对方 loopback 的路由信息?为什么?在 R1 和 R2 上以本的 loopback 为源地址 ping 对方的 loopback 地址。能否 ping 通?为什么?
	(2)在 S2 上分别配置到 5.5.5.5/8 网段、下一跳为 3.1.1.1 和 4.4.4.4/8 网段、下一跳为 2.1.1.2 萨态路由信息,在 R1 上以 5.5.5.5 为源地址 ping 4.4.4.4,能否 ping 通?为什么?
((3) 试分析 BGP 不同步引起的问题。

实验六 组播实验

IP 组播基础实验

1.	请写出组播 IP 地址 239.1.1.1 对应的组播 MAC 地址,并根据组播 MAC 地址映射原理,写	引出
	与 239.1.1.1 映射成同样组播 MAC 地址的所有组播 IP 地址。	

2.	接收端 PCB 打开命令行窗口,输入"netsh interface ip show joins",以及输入"netsh interface
	ip show ipnet",写出相关的结果。体会主机 IP 模块接收列表和数据链路层的接收列表的作
	用。

3. 分析 PCC 的 Wireshark 软件截获的报文,查看其中是否有组播报文?并解释为什么?

IGMP 协议实验

- 4. 查看 PC 机上截获的 IGMP 报文,写出查询器选举的结果。
- 5. 请写出 IGMP 协议的版本号、查询时间、最大响应时间和加入的组播组数量。
- 6. 在 PCB 和 PCC 上停止接收组播报文,分析截获的 IGMP 报文,写出截获的 IGMP 报文的类型和相应的一个具体报文。以及组查询报文中 Multicast Address 字段的不同值所代表的意义是什么?
- 7. 结合实验原理分析截获报文,比较在 PCB 和 PCC 上停止接收组播报文后,IGMP 协议的工作有何不同?

PIMDM 协议实验

断言机制的工作过程。

	TIVIDIVI 的收失验
8.	根据上面报文中的 Holdtime 字段值和邻居信息表中的 Expires 列,试说明 Hello 报文中 Holdtime 字段的作用
9.	如果 PIM-DM 协议没有嫁接和嫁接应答机制,PCC 能收到组播报文吗?为什么?
10.	步骤 11 配置完成后,所有主机运行组播测试软件,组播源 PCA 点击发送组播数据,PCB。PCC 和 PCD 点击接收组播数据。通过查看组播路由表,写出组播有源树。
11.	如果将 S1 和 S2 之间链路的 OSPF cost 值设置为 500。查看各设备的组播路由表,写出此时的组播有源树,比较两个有源树的不同之处,体会单播路由在 RPF 转发和有源树生成中的作用。

12. 步骤 12 继续前面的实验,取消 S1 和 S2 之间链路 OSPF cost 值的设置,组播源 PCA 发送组播数据,其它主机接收组播数据,分析 PCC 截获的报文,写出 Assert 报文的结构,简述

13.	步骤 14 当 PCC 停止接收组播数据报文, PCB 接收组播数据会受到影响吗?请分析 PCD 截获的报文,结合具体报文,简述剪枝否决机制的工作过程。
	PIMSM 协议实验
14.	请写出在 R2 查看 RP 的命令和显示的结果,并与各台 PC 截获的 PIM Bootstrap 报文进行比较。写出一个具体的 PIM Bootstrap 报文,体会 RP 信息的发布过程。
15.	根据 PCD 截获的报文,分别写出一个具体的 PIM Join 报文和 Prune 报文,并画出此时的组播共享树。
	日本人子が、
16.	试结合截获的报文,写出 Register 和 Register-stop 报文的结构,并分析 PIM-SM 协议中 Register 和 Register-stop 报文对的作用。

18. 试通过分析 PCB 和 PCD 截获的报文,结合查看 S1 的组播路由表,体会 RPT 到 SPT 切换的整个过程(包括创建 SPT 树和剪枝 RPT 树)。画出切换前后的 SPT 树和 RPT 树。

实验七 IPv6 实验

- 1. 3.5 节步骤 2 中,请思考下面问题: 主机加入到组播组中的过程是什么?
- 2. 3.5 节步骤 3 中, 仔细观察 PC1 与 RT1 之间的交互报文, 回答下述问题:
- 1) 为什么报文中的"next header"采用 hop-by-hop 的选项?
- 2) 为什么跳数被限制为1?
- 3) 在 "Hop-by-Hop" 选项中,有一个 "Padn",它的作用是什么?
- 3. 3.5 节步骤 4 中, 仔细观察 Router Solicitation 的报文, 回答下述问题:
- 1) 在前面的 multicast listener report 报文中,报文的跳数限制为1,而在这里,同样是主机发给路由器的报文,为什么跳数却采用255?
- 2) 报文中的 ICMP 选项中的 "source link-layer address" 的作用是什么?
- 4. 3.5 节步骤 6 中, 仔细观察 Router Advertisement 的报文, 回答下述问题:
- 1) "Cur hop limit"的含义是什么?
- 2) 报文中"lifetime"的含义是什么?

3)	"reachable time"的含义是什么?	
4)	"retransmit time"的含义是什么?	
5)	这里为什么会有"source link-layer"地址呢?	
5.	4.4 节步骤 2 中,路由 ::1 和 2001::各代表什么意思?并通过 IPv4 中的相关路由举明。	例说
6.	4.4 节步骤 2 中,为什么会有 2007::2 这条主机路由?	
7.	5.4 节步骤 1 中,记录邻居状态的变化过程。	
8.	5.4 节步骤 1 中,结合截获报文和邻居状态变化,简述 On-link 地址解析的全过程。	

9.	5.4 节步骤 1 中,写出截获的 neighbor solicitation 和 neighbor advertisement 报文中 ICMPv6 部分的结构和相应的字段值。
10.	邻居缓存表中每一个表项都有一个"状态"字段(Windows 称之为"类型"),其中"延迟"(Delay)和"探测"(Probe)状态是不容易看到的,请你设计一个小实验,能够通过这个实验看到这两种状态。
11.	5.4 节步骤 2 中,分析截获的报文,对比 on-link 实验,比较 on-link 和 off-link 的不同。
12.	5.4 节步骤 2 中, 查看截获的 neighbor advertisement 报文, 请解释其中 flags 域中的 router、solicited、overfide 字段的作用是什么?

13.	6.6 节步骤 5 中, 步 LSDB 的过程。	根据所捕获的报文,	简述路由器在启动	OSPFv3 后建立邻接	关系及同
14.		查看 OSPFv3 的 Hello ,报文中县			,
15.		查看 R1 的 LSDB,[OSPFv3 为什么要增加 F用。			

实验八 MPLS 技术实验

1.	实验 2.6 步骤二中,请参照 LSRB 和 RT1 的配置,完成其它路由器和交换机的配置,同时写出 LSRA 和 RT2 的启动 ospf 的配置命令。
2.	完成配置之后,用 Ping 命令测试或者检查各路由器的路由信息,此时在 RT1 上 Ping 10.0.1.1 是否能 Ping 通?
3.	在 MPLS 基本配置实验中,请参照 LSRB 配置,写出在 LSRC 上启动 mpls 和 LDP 的命令。
4.	请别说明在 LSRA、LSRB、LSRC 上的输出的调试信息中黑体字的含义: (1) LSRA 调试信息中黑体字的含义:
	(2) LSRB 调试信息中黑体字的含义:
	(3) LSRC 调试信息中黑体字的含义:
5.	根据以上信息画出各 LSR 上的 FTN 和 ILM 映射表?

6. 根据以上信息描述出完整的报文转发过程?

7. 找出相应 LSRB 与 LSRA 的 Hello Messager 进行分析,并填写以下表格:

7. 1人山7	THE ESTED - J ESTERI	The Hello Messager #11 71 1/11;	7/2/3/18/11:
		LDP 版本号	
	DDII 31 347	PDU 长度	
	PDU 头部	LDP 标识符	
		标记空间标识符	
		Hello 消息的标识	
	Hello 消息头部	Hello 消息的长度	
		消息的消息 ID	
		Common Hello TLV	
	第一个 TLV	TLV 长度	
LDP	第一个ILV	Hold Time	
Hello		T和R比特	
消息		传输地址 TLV	
	第二个 TLV	TLV 的长度	
		本端传输地址	
		配置序列号 TLV	
	第三个 TLV	TLV 的长度	
		本端的配置序列号	

8. 分析 LSRA 发给 LSRB 的 Initialization 消息:

		版本号	
_	DII 关如	PDU 长度	
F	PDU 首部	LDP 标识符	
		标记空间标识符	
		消息类型:	
	消息头部	消息的长度	
		消息的消息 ID	
		Common Session Parameters	
		TLV	
Initialization		TLV 长度	
消息	Common	本端 LDP 版本号	
	Session	Keep Alive Time	
	Parameters TLV	A 位	
		D位	
		最大允许 PDU 长度	
		建立连接的 LDP 实体地址	

9. 分析 LSRA 发给 LSRB 的 Address Message 的 PDU:

		版本号	
D	DU 首部	PDU 长度	
r	DO ELEB	LDP 标识符	
		标记空间标识符	
		消息类型:	
	消息头部	消息的长度	
		消息的消息 ID	
A 11 \\\		TLV 类型	
Address 消 息	Address List	TLV 长度	
泛		随后的地址列表定义	
	TLV		
		LSRA 的接口 IP 地址	

10. 请分析 LSRA 发给 LSRB 的包含 Label Mapping 消息的 PDU。

实验九 MPLS VPN 实验

1.	在 MPLS VPN 实验中,请写出在路由器 PE2 启动 MPLS 的命令:
2.	在 MPLS VPN 实验步骤四中,请同学根据以上配置信息,写出 PE2 的配置命令(PE-CE 间的配置):
3.	在步骤五中,请根据 PE1 的配置信息,写出 PE2 的配置命令(PE-PE 间的配置):

4. 请写出 MPLS VPN RD 和 VPN Target 属性的作用,以及其在报文中的描述。

5.	请结合截获的报文,	描述 BGP/MPLS VPN	控制信息建立过程,	以及其中主要报文的结构。

6. 请结合截获的报文,基于 MPLS VPN 的数据报文转发过程,以及报文中主要的 MPLS 标签 结构。

7.	跨域MPLS vpn 实验中,配置MPLS 协议、MPLS LDP 协议完成后,写出各设备的 display mpls lsp 的结果。
8.	PE 上配置 VPN 后,写出 VPN 的状态显示结果。
9.	写出 as200-rr 上的 BGP 协议配置。
10.	全部配置完成后,写出 CE2 的路由表。

11	对照问题 1	中显示的标签转发表,	描述网络跨域传递标签	VPNv4 路由的过程。
11.	- \(\cdot \) \(\	1 36/3113/313/34/3/3/3/3/		

12. 描述跨域 MPLS VPN 数据转发的过程。

实验十 网络管理实验

1. 打开截获的报文,选中一条 get 报文,回答下面问题: 此报文的类型字段值是,它表示此报文属于 snmp 定义的哪种协议数据单。 此报文的请求标识符字段的值为,请说明它的作用。并找到 与其对应的相应报文,其报文编号为。 2. 简要分析网管程序读取被管设备信息的过程。								
在 MII	B 中的标	截获的报文。识符识什么	?					是什么?它
4. 找到第		et 报文和与非						
报文类型	类型	Request ID	Object ident		Object ider		Object ident	
	代码		标识符	值	标识符	值	标识符	值
Get								
Response								
		中,找到对i IP 定义的各						o
PDU 类型		PDU 类型名				作用		
0	,,,							
1								
2								
3								
4								
	加拉文		7.# 怎么坛					
	•			填 扫下衣		主计片自		
字段名	5	字段长度	,		子权	表达信息		
	-							
	•	文中企业字段		o	它的作用	是什么?		
请写出 H3C	公司在 N	MIB 中的结点	点为			o		
8. 找到"打			•					
这些报文是	在 MIB 权	付上检索信息	、的过程,此	比过程使用:	最多的 PD	U 类型是	什么? 在检	索过程中起
了什么作用	?							

9. ASN. 1 基本编码规则的分析,以第一条 get 报文为例,选中此报文用 TLV 方法进行编码,并填写下表:

٦١٨,			S	NMP ‡	B文的 TLV 编码	
字段	字段表达信息				编码	
Message-T						
Message-L						
Message-V						
	•	_		Mes	sage-V 字段	
	字段	=======================================	字段表达信息	息		编码
Version	T					
Version	L					
	V					
	T					
Community	L					
	V					
	Т					
Get PDU	L					
	Get-PDU	J-V				
			Get-PDU-V 字段			
		字段			字段表达信息	编码
Request	-id	T				
1			L			
			<i>I</i>			
			Γ			
Error-st	atus	L				
			/			
	ndex		Γ			
Error-i						
			<i>I</i>			
			Γ			
		I				
			Т			
			L			
Variable-b		v D: 1	N	T		
		VarBind	Name	L		
				V		
			Value	T		
				L		

¹⁰ 网络拓扑发现实验中,断开一台交换机,网络拓扑有何变化? 网管软件有何变化? 双击拓扑中的此交换机,看有什么变化。

实验十一 综合组网实验

1,	根据组网图,配置生成树协议和链路聚合。并写出相关命令:
2、	请写出核心路由器和核心交换机中的指定路由器和备份指定路由器,并说明为什么?
3、	写出访问控制列表的相关命令:
4、	将路由器 R1 的 E0/1 接口断掉,截获并分析 Trap 报文,写出报文的字段名和字段值然后重新连接,通过网络管理服务器查看路由器状态。

5、每台设备上配置专用的网络管理地址有什么好处?