











## Overiew of the Topics:

- Programming Models
- DaCe + SoftHier
- Outlook For Next Weeks





AI Accelerators and Programming Models





### **AI Accelerators – An Overview of Hardware Features**

| Accelerator           | Cache    | Programmable NoC | Explicit Memory Levels | Dedicated MMU | Oversubscription to PEs | Double Precision Suppport |
|-----------------------|----------|------------------|------------------------|---------------|-------------------------|---------------------------|
| Nvidia A100           | <b>√</b> | ×                | 2                      | <b>√</b>      | <b>√</b>                | <b>√</b>                  |
| Nvidia H100           | <b>√</b> | <b>√</b> *       | 2                      | <b>√</b>      | <b>√</b>                | <b>√</b>                  |
| Ascend 910B           | ×        | ×                | 3                      | <b>√</b>      | ×                       | ×                         |
| Graphcore IPU Mk2     | ×        | <b>√</b>         | 2                      | ×             | <b>√</b>                | ×                         |
| AMD VC2802**          | ×        | <b>√</b>         | 2                      | ×             | ×                       | ×                         |
| Microsoft Maia 100*** | ×        | ?                | ?                      | <b>√</b>      | ?                       | ×                         |
| Cerebras WSE-2        | ×        | <b>√</b>         | 2                      | ×             | ×                       | ×                         |
| Intel Gaudi v3        | <b>√</b> | ×                | 2                      | <b>√</b>      | <b>√</b>                | ×                         |
| AWS Trainium2         | ×        | ×                | 2                      | <b>√</b>      | ×                       | ×                         |

Information collected from available white-papers, official tutorials and HotChips presentations.





#### **AI Accelerators**

- TPU is not there because I found nothing on the low-level programming of TPUs.
- Only see how to write in Hight Level Operator (HLO) IR for Accelerated Linear Algebra (XLA) DL compiler used as backend for JAX and TensorFlow.





## **Programming Models: High-Level IRs:**

- A data-flow graph consisting of operations and input/outputs.
- Not really different a graph of consisting of ONNX operators. It is a variant of MLIR. Looks like this:

```
func @add_tensors(%arg0: tensor, %arg1: tensor) -> tensor {
%0 = "mhlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor
return %0 : tensor
}
```

**Abstracting Away Complexity – Method 1**: Provide a list of Operations on Tensors + Efficient Implementations for them

Google TPU only supports this, most AI accelerators support this









https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-hardware/trainium2.html

















https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/nki/programming\_model.html#nki-programming-model



https://bbs.huaweicloud.com/blogs/10 6229





- Provides a tile-based programming interface similar to Triton named NKI
- No low-level programming interface for other computational units.

**Abstracting Away Complexity – Method 1**: Provide a list of Operations on Tensors + Efficient Implementations for them





# **Programming Models**

 Betting on providing efficient implementations for specific tensor operations, or betting on tile-based languages.





### **Triton**

- Load tiles and describe computation on tiles.
- Hopefully Triton back end + transformations will come-up with the most efficient way to move the memory

**Abstracting Away Complexity – Method 2**: Tile-Based language + a lot of memory movement optimizations





#### **Triton**

- Tiled-based CUDA Wrapper (+embedded DSL in Python to generate Triton IR and into LLVM IR to ptx)
- Example stencil kernel.





#### Microsoft Maia 100

From the hotchips presentation. Looks like Maia will have a model similar to asynchronous tasks, dependencies will be satisfied using semaphores.







### **Microsoft Maia 100**

It also plans to provide Triton as a programming model

**Abstracting Away Complexity – Method 3**: Asynchronous Tasks Based Language?





#### **Intel Gaudi 3**

- It provides TPC language for low-level programming of the device
- Almost identical to CUDA with more intrinsics. It exposes warp (vector processor) more than the thread.

Abstracting Away Complexity – Method 4: Copy CUDA





# **Graphcore:**

- Provide poplar C++ API to create a dataflow graph consisting of tensor operations and input-output depdencies.
- Looks like SDFG with library-nodes only.
- The operation implementation uses a BSP-like model, the communication is implicitly generated using tiles. (It describes how computation is mapped to cores using a tile abstraction)
- Inter-PE communication is facilitated by the compiler (derived from tiling in form of graph partitioning).
- For more explicit control they provide assembly for their ISA.
  - The bulk-synchronous parallel model of execution. This decomposes the runtime execution into three phases: local compute, global synchronisation, and data exchange.
  - The graph representation of computations. The Poplar graph programming framework operates on a computational graph where vertices represent operations and edges represent the input and output data.







# **Graphcore**

Abstracting Away Complexity – Method 5: Graph-based language + Graph-partitioning





#### **AMD FPGAs**

- Super low-level
- Super chaotic report
- Looks like assembly with some wrappers
- Inter-PE communication through an API similar to streams
- Provides a dataflow graph abstraction for operators

**Abstracting Away Complexity – Method 6**: Just Don't?





## **Asynchronous Memory Pipelines**

Pipeline as a FIFO Queue following producer-consumer pattern (asynchronous).

```
cuda::pipeline<cuda::thread scope thread> pipe = cuda::make pipeline();
        cuda::memcpy async(&smem[stage][threadIdx.x], &src[idx], sizeof(int), pipe);
            pipe.producer commit();
        for (...) {
            cuda::pipeline consumer wait prior<num stages - 1>(pipe);
             syncthreads();
10
            compute();
11
12
              syncthreads();
13
            pipe.consumer release();
14
15
            pipe.producer acquire();
16
            cuda::memcpy async(&smem[stage][threadIdx.x], &src[idx], sizeof(int), pipe);
17
18
            pipe.producer commit();
19
20
            stage = (stage + 1) % num stages;
21
22
   }
```







## **Asynchronous DMA Engine:**

Tensor cores are now asynchronous too.

One TMA per SM to asynchronously move memory.

| Arch   | Precision                                        | Programmability             | Mode  |
|--------|--------------------------------------------------|-----------------------------|-------|
| Ampere | FP16,BF16,<br>TF32,FP64,<br>INT8,INT4,Binary     | C: wmma<br>PTX: mma, mma.sp | Sync  |
| Ada    | FP16,BF16,FP8,<br>TF32,FP64,<br>INT8,INT4,Binary | C: wmma<br>PTX:mma, mma.sp  | Sync  |
| Hopper | FP16,BF16,FP8,TF32,<br>FP64,INT8,Binary          | P1X: mma, mma.sp            | Sync  |
|        | 11 04,11 V10,Dillary                             | PTX: wgmma, wgmma.sp        | ASync |





# **Asynchronous DMA Engine:**

 CuTe / CUTLASS provides convenient ptx wrappers for common optimizations such as memory swizzling, and calls to tensor cores / TMA.

**Abstracting Away Complexity – Method 7**: Providing Assembly Wrappers for Common Use-cases





## **Asynchronous DMA Engine:**

- TMA without high-level wrappers and only with ptx wrappers:
- Create, and copy tensor map
- Create many barriers, semaphores
- Async copies, set barriers, wait on barriers

•••

**Abstracting Away Complexity – Method 7**: Even more convenient(?) assembly wrappers



# **My Take on Programming Models:**

- If I were to design a programming language I would only treat asynchronous tasks (defined over tiles)
   with input and output dependencies and construct a graph of asynchronous tasks.
- Graph IRs are technically asynchronous. The dependencies are expressed as edges. The compiler or transformations need to find optimal memory movement pattern.

DaCe + SoftHier









# **Expressing NoCs in SDFGs:**

In my opinion, the best way of expressing NoC communication is using streams.





## **Expressing NoCs in SDFGs:**

- In my opinion, the best way of expressing NoC communication is using streams.
- Stream abstraction used in SDFGs is a FIFO queue with multiple senders and one receiver.
- How to transform SDFGs?
  - Designed a transformation that transforms a subgraph to use streams using a BSP-model-like description



[0:32, 0:32]

[0:256:32, 0:256:32]

[0:M:256, 0:N:256]





Tiled GEMM computing GEMM for the tile of size

tmp[BY][BX] += A[BY][TK] @ B[TK][BY]

0:BY:MMU\_M, 0:BX:MMU\_N

0:K:TK

Input is a BSP-model based description of the algorithm running inside.

- 1. Initial data dist (which core owns data)
- 2. Communication scheme between cores
- 3. Synchronization (if necessary in the architecture)



Tiled GEMM computing GEMM for the tile of size

tmp[BY][BX] += A[BY][TK] @ B[TK][BY]

0:K:TK

0:BY:MMU\_M, 0:BX:MMU\_N

0:M:BY, 0:N:BX



#### 1. Initial distribution:

sA and sB are 2 dimensions streams, both of size [N][N], N=NX=NY

A[i \* tileSize][((i+j) % N) \* tileSize] 
$$\rightarrow$$
 sA[i][(i+j)%N][:][:] B[((i+j) % N) \* tileSize][j \* tileSize]  $\rightarrow$  sB[(i+j)%N][j][:][:]

#### 2. Compute:

localA = sA.pop(), localB = sB.pop()
tmp += localA \* localB

#### 3. Communication

LocalA[:][:]  $\rightarrow$  sA[i][(j+N-1)%N][:][:] LocalB[:][:]  $\rightarrow$  sB[(i+N-1)%N][j][:][:]

# 4. Synchronization Yes|No depending on the architecture





0:M:BY, 0:N:BX

#### @spcl **●**@spcl\_eth

No issues in part 1

- 2. Compute: localA = sA.pop(), localB = sB.pop()tmp += localA \* localB
- 3. Communication

LocalA[:][:]  $\rightarrow$  sA[i][(j+N-1)%N][:][:] LocalB[:][:]  $\rightarrow$  sB[(i+N-1)%N][j][:][:]

4. Synchronization Yes|No depending on the architecture



Assume NumCoreY == NumCoreX and BY == TK == BX

Tiled GEMM computing GEMM for the tile of size

tmp[BY][BX] +=A[BY][TK] @ B[TK][BY]



0:N:1

y=0:M:BY, x=0:N:BX

0:K:TK

0:N:1

**GEMM** 

#### No issues in part 1

# 0:BY:MMU\_M, 0:BX:MMU\_N 0:K:TK

0:N:1

**GEMM** 

Assume
NumCoreY == NumCoreX
and BY == TK == BX

Tiled GEMM computing GEMM for the tile of

size

tmp[BY][BX] +=

A[BY][TK] @ B[TK][BY]

#### 2. Compute:

localA = sA.pop(), localB = sB.pop()
tmp += localA \* localB

#### 3. Communication

LocalA[:][:]  $\rightarrow$  sA[i][(j+N-1)%N][:][:] LocalB[:][:]  $\rightarrow$  sB[(i+N-1)%N][j][:][:]

No issues in part 4

What if need to transfer only a subset?

The description should support an update. (In stencil, for example, only communicate the halo ranges, update the local boundary of the local data)

0:K:TK

0:BY:MMU\_M, 0:BX:MMU\_N

0:M:BY, 0:N:BX



#### **ETH** zürich

#### 1. Initial distribution:

sA and sB are 2 dimensions streams, both of size [N][N], N=NX=NY,

- $A[i * tileSize][((i+j) \% N) * tileSize] \rightarrow sA[i][(i+j)\%N][:][:]$
- $B[((i+j) \% N) * tileSize][j * tileSize] \rightarrow sB[(i+j)\%N][j][:][:]$

#### 2. Loop Range

#### 2. Compute:

localA = sA.pop(), localB = sB.pop()
tmp += localA \* localB

#### 3. Communication

LocalA[:][:]  $\rightarrow$  sA[i][(j+N-1)%N][:][:]

LocalB[:][:]  $\rightarrow$  sB[(i+N-1)%N][j][:][:]

4. Synchronization

Generated as a library node on a 3<sup>rd</sup> state or as a loop property



canon init







- Scalar → MMU Pass (Pattern detection + Reading Tasklet ASTs), working for couple of patterns
- Scalar → Vector Unit Pass (Pattern detection + Reading Tasklet ASTs), works for couple of patterns, need to
  extend patterns later as necessary
- GEMM Input Type information is added to access nodes which is used by the controller to apply the correct ExplicitMemoryMove transformation
- Passing "input purpose" to SDFGs using access nodes manually (done)
- Automating this information by extending Scalar → MMU Pass (mostly done)
- Pass to insert memory movement between different computational units (under work)





## **Outlook / TODOs:**

- Work further on transformations
- Extend cube unit parts of the code-gen





## **My Take on Programming Models:**

Sketched how it could look like. Many considerations are necessary. Message buffers, supporting out-of-order messages, low-level implementation of completions of one-sided communication.

```
kernel vadd<N>(in A[N*1024], in B[N*1024], inout C[N*1024]){
        decl id = PEs<N>
        decl TS = 1024
        a1 = reserve(localB[1024], TCM)
        a2 = reserve(localA[1024], TCM)
        a3 = reserve(localC[1024], TCM)
        l1 = a1.then(load(in:A[i*TS:(i+1)*TS], out:localA[:]))
        l2 = a2.then(load(in:B[i*TS:(i+1)*TS], out:localB[:]))
        t1 = join(l1, l2).then(add(in:localA[:], in:localB[:], out:localC[:]))
10
        s1, r1 = t1.then(send(to:(i+N-1)%N, in:localC[:], out:localC[:]))
11
        c1 = r1.then(store(in:localC[:], out:C[i*TS:(i+1)*TS]))
12
        return c1
13 }
14
15
    . . .
16
    vadd kernel = vadd < N > (A, B, C)
    vadd kernel.wait()
```