Globat Power
Analysis: Energy,
Economics, and
Emissions

Mid-Term Presentation Kevin Shao - Mar 11, 2025

Project Overview & Research Questions

Overview:

- Integrate global power plant data with socioeconomic, emissions, and policy indicators.
- Research Questions:
 - How does a country's renewable power plant capacity share correlate with its CO₂ emissions (or carbon intensity) over time?
 - Do countries with stronger green growth policies show lower fossilfuel capacity and higher renewables share?

Data Sources & Integration

- Data Sources:
 - Global Power Plant Database
 - World Bank WDI (socioeconomic & emissions data)
 - IEA World Energy Balances
 - OECD Green Growth Indicators (policy)
- Integration Process:
 - Standardize country codes/names
 - Aggregate plant-level data by fuel type
 - Merge with country-level indicators

Table	Rows	Columns	
world_bank	37,511	67	
iea_balances	6,832	59	
oecd_greengrowth	677,449	6	
power_plants	34,936	13	
country_capacity	167	3	

EDA

- Visualizations:
 - Bar charts of power plant counts by country
 - Capacity breakdown by fuel type
 - Geospatial mapping of power plant distribution
 - Time series of key World Bank indicators

Simple Analysis & Findings

- Key Analysis:
 - Correlation analyses (e.g., renewable capacity ratio vs. energy use)
 - Basic regression results (simple OLS models)
- Findings:
 - Preliminary relationships are weak (low R² values)
 - Indications that fossil fuel share might influence energy use

Number	of	rows	with	all	valid	da	ata:	125		
					01	S	Rear	ression	Results	

Dep. Variable:	energy_2005	R-squared:	0.063
Model:	0LS	Adj. R-squared:	0.048
Method:	Least Squares	F-statistic:	4.108
Date:	Sun, 23 Feb 2025	Prob (F-statistic):	0.0188
Time:	14:20:24	Log-Likelihood:	-1175.0
No. Observations:	125	AIC:	2356.
Df Residuals:	122	BIC:	2365.
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	3056.8785	435.309	7.022	0.000	2195.141	3918.616
renewable_ratio	-1965.4141	834.444	-2.355	0.020	-3617.280	-313.548
gdp_2005	5.849e-10	4.14e-10	1.415	0.160	-2.34e-10	1.4e-09
Omnibus:		99.074	Durbin-Wats	on:		2.095
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	71	5.011

Omnibus:	99.074	Durbin-Watson:	2.095
Prob(Omnibus):	0.000	Jarque-Bera (JB):	715.011
Skew:	2.832	Prob(JB):	5.46e-156
Kurtosis:	13.256	Cond. No.	2.35e+12

Notes:

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.35e+12. This might indicate that there are strong multicollinearity or other numerical problems.

Advanced Panel Data Analysis

Methodology:

- Two-way Fixed Effects (FE) and Random Effects (RE) models
- Hausman test to compare FE and RE specifications

• Key Results:

- FE model (using varying variables like GDP and fossil_share)
- RE model note the challenges with time-invariant variables like renewable_ratio
- Hausman test results (showing unobserved, time invariant factors matters)

==	Hausman	Test	Compariso	on	===
			Model	Co	ompariso

	FE	RE
Dep. Variable	energy_use	energy_use
Estimator	Panel0LS	RandomEffects
No. Observations	4523	4523
Cov. Est.	Clustered	Unadjusted
R-squared	0.0057	0.0197
R-Squared (Within)	-0.0026	0.0081
R-Squared (Between)	-0.3263	0.2143
R-Squared (Overall)	-0.3100	0.2073
F-statistic	12.554	30.212
P-value (F-stat)	0.0000	0.0000
	========	
gdp	-3.187e-11	2.87e-10
	(-0.2695)	(8.5899)
fossil_share	-9.0111	6.8144
	(-0.9054)	(4.0822)
renewable_ratio		0.0080
_		(1.873e-05)
Effects	Entity	
	Time	

Dep. Variable:		energy_use	R-squared:				0.0197
Estimator:	Ran	domEffects	R-squared	(Between):			0.2143
No. Observations	:	4523	R-squared	(Within):			0.0081
Date:	Mon, M	ar 10 2025	R-squared	(Overall):			0.2073
Time:		23:29:45	Log-likelih	nood		-3	.728e+04
Cov. Estimator:		Unadjusted					
			F-statistic	c:			30.212
Entities:		125	P-value				0.0000
Avg Obs:		36.184	Distributio	on:		F	(3,4520)
Min Obs:		4.0000					
Max Obs:		46.000	F-statistic	c (robust):			30.212
			P-value				0.0000
Time periods:		46	Distributio	on:		F	(3,4520)
Avg Obs:		98.326					
Min Obs:		22.000					
Max Obs:		124.00					
		Parame	ter Estimates	5			
	Parameter	Std. Err.	T–stat	P-value	Lower	CI	Upper C
gdp	2.87e-10	3.341e-11	8.5899	0.0000	2.215e-	10	3.525e-1
fossil_share	6.8144	1.6693	4.0822	0.0000	3.54	18	10.08
renewable_ratio	0.0080	427.48	1.873e-05	1.0000	-838.	06	838.0

Dep. Variable:		energy_use	R-squar			0.0057
Estimator:		Panel0LS		ed (Betweer		-0.3263
No. Observations:		4523		ed (Within)		-0.0026
Date:	Mon	, Mar 10 2025	R-squar	ed (Overall	.):	-0.3100
Time:		23:29:45	Log-lik	elihood		-3.686e+04
Cov. Estimator:		Clustered				
			F-stati	stic:		12.554
Entities:		125	P-value			0.0000
Avg Obs:		36.184	Distrib	ution:		F(2,4351)
Min Obs:		4.0000				
Max Obs:		46.000	F-stati	stic (robus	t):	0.4455
			P-value			0.6405
Time periods:		46	Distrib	ution:		F(2,4351)
Avg Obs:		98.326				
Min Obs:		22.000				
Max Obs:		124.00				
		Paramete	er Estimat	es		
Para	meter	Std. Err.	T–stat	P-value	Lower CI	Upper Cl
3-1-	7e-11	1.182e-10	-0.2695	0.7875	-2.636e-10	1.999e-10

Key Insights & Policy Implications

• Insights:

- Economic size (GDP) and fossil fuel share significantly relate to energy use.
- Policy indicator (environment-related tax) shows promise for further exploration.

• Implications:

- Findings can inform policymakers on how economic and energy mix factors affect emissions.
- There is potential to identify best practices for reducing fossil fuel dependency.

Next Steps

- Next Steps in Analysis:
 - Refine panel regression models (including CO₂ emissions and other policy indicators).
 - Conduct additional robustness checks and diagnostics (e.g., tests for serial correlation).
 - Extend the analysis to answer the full research questions:
 - Explore the relationship between renewable capacity share and ${\rm CO_2}$ emissions (total and per GDP).
 - Delve deeper into the impact of green growth policies on energy mix.
- Final Deliverables:
 - Cleaned merged dataset
 - Comprehensive analysis report
 - Interactive dashboards/visualizations for stakeholders

Project Status & Roadmap

- Current Status:
 - Data integration, EDA, simple analysis, and initial advanced panel regressions have been completed.
- Am I addressing my proposal questions?
 - Partially. The current work lays the groundwork by addressing economic and energy mix relationships.
 - The next phase will directly integrate CO₂ emission data to answer the key research questions on renewable share vs. emissions.

- Roadmap:
 - Finalize model specifications
 - Incorporate CO₂ and policy analysis in detail
 - Prepare final report and recommendations

- 1. Data Integration & EDA 🗹
- 2. Simple Analysis 🗹
- 3. Advanced Panel Analysis
- 3a. Detailed Policy Analysis (NS)
- 4. Incorporate CO2 Emission Data (NS)
- 5. Model Refinement (Upcoming)
- Deliverables (Upcoming)