

High Performance Computing

Shared Memory Parallel CPU & OpenMP

Computer Eng., KMITL Assoc. Prof. Dr. Surin. K.

Moore's Law

Figure 3.2: **Progress** of maximum arithmetic performance (open circles) and peak theoretical memory bandwidth (filled circles) for Intel processors since 1994. The fastest processor in terms of clock frequency is shown for each year. (Data collected by Jan Treibig.)

Number of systems versus core count

Microprocessor trends

Individual processors are many core (and often heterogeneous) processors.

Intel SCC Processor

Intel® Xeon® processor

AMD ATI RV770

IBM Cell

NVIDIA Tesla C1060

ARM MPCORE

Source: OpenCL tutorial, Gaster, Howes, Mattson, and Lokhmotov, HiPEAC 2011

NUMA: Intel Sandy Bridge

CPU architecture (Intel Sandy Bridge)

MUMA: Intel Quick Assist Technology

NUMA: Intel Quick Assist Technology

NUMA: AMD Epyc

Monolithic Die

EPYC MCM

32C Die Cost

1.0X

4 x 8C Die Cost

 $0.59X^{1}$

OpenMP

Compiler notes: Other

Linux and OS X with gcc:

for the Bash shell

- > gcc -fopenmp foo.c
- > export OMP_NUM_THREADS=4
- >./a.out

OpenMP & NUMA

OpenMP & NUMA

System RAM

Example: Medium-grained loop parallelism Number of systems versus core count

Figure 5.1: An example for medium-grained parallelism: The iterations of a loop are distributed to two processors P1 and P2 (in shared memory) for concurrent execution.

5.2.2 Functional parallelism Example: Master-worker scheme

Figure 5.13: Load imbalance with few (one in this case) "laggers": A lot of resources are underutilized (hatched areas).

Figure 5.14: Load imbalance with few (one in this case) "speeders": Underutilization may be acceptable.

Latency vs Bandwidth

$$B_{\rm m} = {{
m memory bandwidth [GWords/sec]} \over {
m peak performance [GFlops/sec]}} = {b_{
m max} \over P_{
m max}}$$

Latency vs Bandwidth

data path	balance [W/F]
cache	0.5-1.0
machine (memory)	0.03-0.5
interconnect (high speed)	0.001-0.02
interconnect (GBit ethernet)	0.0001-0.0007
disk (or disk subsystem)	0.0001-0.01

Table 3.1: Typical balance values for operations limited by different transfer paths. In case of network and disk connections, the peak performance of typical dual-socket compute nodes was taken as a basis.

1 CPU core

Figure 1.19: Simplified diagram of control/data flow in a (multi-)pipelined microprocessor without SMT. White boxes in the execution units denote pipeline bubbles (stall cycles). Graphics by courtesy of Intel.

Hardware performance counters Per Core

1	CPU Cycles	8721026107
2	Retired Instructions	21036052778
3	Average number of retired instructions per cycle	2.398151
4	L2 Misses	101822
5	Bus Memory Transactions	54413
6	Average MB/s requested by L2	2.241689
7	Average Bus Bandwidth (MB/s)	1.197943
8	Retired Loads	694058538
9	Retired Stores	199529719
10	Retired FP Operations	7134186664
11	Average MFLOP/s	1225.702566
12	Full Pipe Bubbles in Main Pipe	3565110974
13	Percent stall/bubble cycles	40.642963

Figure 1.12: Timing diagram on the influence of cache misses and subsequent latency penalties for a vector norm loop. The penalty occurs on each new miss.

Figure 1.13: Computation and data transfer can be overlapped much better with prefetching. In this example, two outstanding prefetches are required to hide latency completely.

4.5 Networks

Point-to-point connections

Whatever the underlying hardware may be, the communication characteristics of a single point-to-point connection can usually be described by a simple model: Assuming that the total transfer time for a message of size *N* [bytes] is composed of latency and streaming parts,

$$T = T_{\ell} + \frac{N}{B} \tag{4.1}$$

and B being the maximum (asymptotic) network bandwidth in MBytes/sec, the effective bandwidth is

$$B_{\text{eff}} = \frac{N}{T_{\ell} + \frac{N}{R}} \ . \tag{4.2}$$

4.5 Networks

Figure 4.10: Fit of the model for effective bandwidth (4.2) to data measured on a GigE network. The fit cannot accurately reproduce the measured value of T_{ℓ} (see text). $N_{1/2}$ is the message length at which half of the saturation bandwidth is reached (dashed line).

small messages 10³ B_{eff} [MBytes/sec] 10² large messages 10 - T₁ = 4.14 μ s, B = 827 MBytes/sec $- - T_1 = 20.8 \,\mu s$, B = 1320 MBytes/sec 10⁰ $T_1 = 4.14 \mu s$, B = 1320 MBytes/sec measured (IB) 10 10² 10⁵ 10⁶ 10³ 10⁴ 10¹ N [Bytes]

4.5 Networks

Figure 4.11: Fits of the model for effective bandwidth (4.2) to data measured on a DDR InfiniBand network. "Good" fits for asymptotic bandwidth (dotted-dashed) and latency (dashed) are shown separately, together with a fit function that unifies both (solid).

4.5 Networks

Figure 4.10: Fit of the model for effective bandwidth (4.2) to data measured on a GigH work. The fit cannot accurately reproduce the measured value of T_{ℓ} (see text). $N_{1/2}$ is message length at which half of the saturation bandwidth is reached (dashed line).

Figure 4.11: Fits of the model for effective bandwidth (4.2) to data measured on a DDR InfiniBand network. "Good" fits for asymptotic bandwidth (dotted-dashed) and latency (dashed) are shown separately, together with a fit function that unifies both (solid).