

Class 13- Multiple Regression Model Estimation (Part III)

Pedram Jahangiry

Nothing to do with y

Including irrelevant variables in a regression model (overspecification)

 x_3

is an irrelevant variable:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$

Because we do not know that $\beta_3=0$, we are inclined to estimate the equation including x_3 :

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3$$

including one or more irrelevant variables in a multiple regression model, or overspecifying the model, does not affect the unbiasedness of the OLS estimators.

However, it can have undesirable effects on the variances of the OLS estimators. (How? Use Venn Diagram)

 $\beta_3 = 0$ in the population, i.e. X_3 has no

partial effect on y

Omitting relevant variables (Underspecification)

is a relevant variable:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

$$\hat{y} = \widehat{\beta_0} + \widehat{\beta_1} x_1 + \widehat{\beta_2} x_2$$

deal
$$\widehat{y} = \widehat{\beta_0} + \widehat{\beta_1} x_1 + \widehat{\beta_2} x_2$$

True model contains x_1 and x_2

This estimated model should be used

But due to our ignorance or data availability, this estimated model (x₂ is omitted) is used This is an underspecified model.

Is there any problem? (use Venn Diagram)

Omitting relevant variables – Calculating the bias

$$x_2 = \delta_0 + \delta_1 x_1 + v$$

If
$$x_1$$
 and x_2 are correlated, assume a linear regression relationship between them

$$\Rightarrow \underline{y} = \beta_0 + \beta_1 \underline{x}_1 + \beta_2 (\delta_0 + \delta_1 \underline{x}_1 + v) + u$$

$$\boldsymbol{\beta} = (\beta_0 + \beta_2 \delta_0) + (\beta_1 + \beta_2 \delta_1) x_1 + (\beta_2 v + u)$$

If y is only regressed on x₁ this will be the new intercept

If y is only regressed on
$$x_1$$
, this will be the new slope on x_1

Error term
$$\xi(\vec{\beta}_{\bullet}) = \xi(\vec{\beta}_{\bullet} + \vec{\beta}_{\bullet})$$

$$\xi(\vec{\beta}_{\bullet}) = \beta_{\bullet} \quad \neq \beta_{\bullet}$$

$$\sqrt{E(\hat{\beta}_{i})} = \beta_{i}$$

Omitted Variable Bias

What is the bias in $\widetilde{\beta_1}$?

$$\underline{E(\widetilde{\beta}_{1})} = E(\widehat{\beta}_{1} + \widehat{\beta}_{2}\widetilde{\delta}_{1}) = E(\widehat{\beta}_{1}) + E(\widehat{\beta}_{2})\widetilde{\delta}_{1}$$

$$= \underline{\beta}_{1} + \underline{\beta}_{2}\widetilde{\delta}_{1}$$

$$= \underline{\beta}_{1} + \underline{\beta}_{2}\widetilde{\delta}_{1}$$

Bz: effe

which implies the bias in $\widetilde{\beta}_1$ is

$$Bias(\widetilde{\beta}_1) = E(\widetilde{\beta}_1) - \beta_1 = \beta_2 \widetilde{\delta}_1$$

.

if x_1 and x_2 are uncorrelated in the sample, then $\widetilde{\beta}_1$ is unbiased.

Direction of the bias:

TABLE 3 2 Summary of Bias in $\tilde{\beta}_1$ When x_2 Is Omitted in Estimating Equation (3.40)

		$\operatorname{Corr}(x_1,x_2)<0$
$\beta_2 > 0$	Positive bias	Negative bias
$\beta_2 < 0$	Negative bias	Positive bias

Example: Omitting ability in a wage equation

$$wage = \beta_0 + \beta_1 eduo + \beta_2 ubil + u$$

$$abil = \delta_0 + \delta_1 educ + v$$

$$wage = (\beta_0 + \beta_2 \delta_0) + (\beta_1 + \beta_2 \delta_1) educ + (\beta_2 v + u)$$

The return to education eta_1 will be <u>overestimated</u> because $eta_2\delta_1>0$. It will look as if people with many years of

education earn very high wages, but this is partly due to the fact that people with more education are also more able

on average.

When is there no omitted variable bias?

(on a ready) water a (8.3%) Example: Omitting ability in a wage equation

EXAMPLE 3.6

Hourly Wage Equation

Suppose the model $log(wage) = \beta_0 + \beta_1 educ + \beta_2 abil + u$ satisfies Assumptions MLR.1 through MLR.4. The data set in WAGE1 does not contain data on ability, so we estimate β_1 from the simple regression

$$\log(wage) = .584 + .083 educ$$

$$n = 526, R^2 = .186.$$
[3.47]

This is the result from only a single sample, so we cannot say that (0.83) is greater than β_1 ; the true return to education could be lower or higher than 8.3% (and we will never know for sure). Nevertheless, we know that the average of the estimates across all random samples would be too large.

β, βz are unbiased 00 but Var(β;) 4 j=1,2

Average standardized test score of school

Expenditures for teachers

Expenditures for instructional materials

Other expenditures

 $avgscore = \beta_0 + \beta_1 teachexp + \beta_2 matexp + \beta_3 othexp + \dots$

The different expenditure categories will be **strongly correlated** because if a school has a lot of resources it will spend a lot on everything. As a consequence, sampling variance of the estimated effects will be large.

→ What is the trade off here if we drop one of the explanatory variables (for example *othexp*)?

Discussion of the multicollinearity problem

Detecting multicollinearity

>- Multicollinearity may be detected through Variance Inflation Factors:

$$VIF_j = 1/(1 - R_j^2)$$

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)} \qquad Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j} VIII$$

As an arbitrary rule of thumb, the variance inflation factor should not be larger than 10

VIF = 3
educ
X

VIF = 4

OFC

X2

