CONSTANTES

Constante de Avogadro = $6.02 \times 10^{23} \text{ mol}^{-1}$

Constante de Faraday (F) = $9,65 \times 10^{4} \text{ C} \cdot \text{mol}^{-1} = 9,65 \times 10^{4} \text{ A} \cdot \text{s} \cdot \text{mol}^{-1} = 9,65 \times 10^{4} \text{ J} \cdot \text{V}^{-1} \cdot \text{mol}^{-1}$

Volume molar de gás ideal = 22.4 L (CNTP) Carga elementar = $1,602 \times 10^{-19} C$

Constante dos gases (*R*) = 8.21×10^{-2} atm · L · K⁻¹ · mol ⁻¹ = 8.31 J · K⁻¹ · mol ⁻¹ = 1.98 cal · K⁻¹ · mol ⁻¹ =

62,4 mmHg \cdot L \cdot K $^{-1}$ \cdot mol $^{-1}$

Constante gravitacional (g) = $9.81 \,\mathrm{m \cdot s^{-2}}$

DEFINIÇÕES

Pressão de 1 atm = $760 \text{ mmHg} = 101325 \text{ N} \cdot \text{m}^{-2} = 760 \text{ Torr}$

 $1 J = 1 N \cdot m = 1 kg \cdot m^2 \cdot s^{-2}; \quad 1 pm = 1 \times 10^{-12} m; \quad 1 eV = 1,602 \times 10^{-19} J$

Condições normais de temperatura e pressão (CNTP): 0 °C e 760 mmHg

Condições ambientes: 25 °C e 1 atm

Condições-padrão: 25 °C e 1 atm; concentração das soluções = $1 \text{ mol} \cdot \text{L}^{-1}$ (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (CM) = circuito metálico. (conc) = concentrado.

(ua) = unidades arbitrárias. [A] = concentração da espécie química A em mol·L⁻¹.

MASSAS MOLARES

Elemento Químico	Número Atômico	$\begin{array}{c} \textbf{Massa Molar} \\ \left(g \cdot \text{mol}^{-1} \right) \end{array}$	Elemento Químico	Número Atômico	
Н	1	1,01	Ti	22	47,87
В	5	10,81	Cr	24	52,00
C	6	12,01	Ni	28	58,69
N	7	14,01	Cu	29	63,55
0	8	16,00	Zn	30	65,38
F	9	19,00	As	33	74,92
Na	11	22,99	Se	34	78,96
Mg	12	24,31	Ag	47	107,90
Αĺ	13	26,98	Sn	50	118,70
P	15	30,97	Te	52	127,60
S	16	32,07	I	53	126,90
Cℓ	17	35,45	Xe	54	131,30
Ar	18	39,95	Au	79	197,00
K	19	39,10	U	92	238,00

Questão 1 . Metanol (CH ₃ OH) e água deur respectivamente, nas condições ambientes. A r				
 I. Imediatamente após a mistura das duas sub II. Após o equilíbrio, observa-se uma fase ún HOD. III. Se for adicionado um cubo de D₂O(s) à mi 	ica que contém as seguintes substâncias:			
	-	ru irquruu.		
Assinale a opção que contém a(s) afirmação(õe	es) CORRETA(S).			
A () Apenas I D () Apenas III	B() Apenas I e II E() Todas	C () Apenas II		
Questão 2. Considere os seguintes compostos:				
I. CH ₃ CH ₂ OH IV. H ₃ PO ₄	II. CH₃CH₂COOCH₃ V. POCℓ₃	III. HCℓ		
Assinale a opção que contém os produtos que de fósforo.	podem ser formados pela reação de ácido	acético com pentacloreto		
A () Apenas I, III e IV D () Apenas II e V	B() Apenas I e IV E() Apenas III e V	C () Apenas II e III		
Questão 3. Nas condições ambientes são feitas	s as seguintes afirmações sobre o ácido ta	ırtárico:		
 I. É um sólido cristalino. II. É solúvel em tetracloreto de carbono. III. É um ácido monoprótico quando em solu IV. Combina-se com íons metálicos quando 				
Das afirmações acima, está(ão) CORRETA(S)	apenas			
A() I e II. D() III e IV.	B () I e IV. E () IV.	C() II e III.		
Questão 4 . Considere que 1 mol de uma substância sólida está em equilíbrio com seu respectivo líquido na temperatura de fusão de -183 °C e a 1 atm. Sabendo que a variação de entalpia de fusão dessa substância é 6,0 kJ · mol $^{-1}$, assinale a opção que apresenta a variação de entropia, em J · K $^{-1}$ · mol $^{-1}$.				
$\mathbf{A}() -20 \qquad \mathbf{B}() -33$	$\mathbf{C}() + 50$ $\mathbf{D}() + 67$	E () + 100		
Questão 5 . Assinale a opção que contém $o(s)$ produto (s) formado (s) durante o aquecimento de uma mistura de Cu_2O e Cu_2S , em atmosfera inerte.				
A () CuSO ₄ D () Cu e SO ₃	B () Cu ₂ SO ₃ E () CuO e CuS	C() Cu e SO ₂		
Questão 6 . Assinale a opção que contém o momento angular do elétron na 5ª órbita do átomo de hidrogênio, segundo o modelo atômico de Bohr.				
A () $h/2π$ D () 2,5 $h/π$	$\begin{array}{ccc} \mathbf{B} () & \mathbf{h}/\pi \\ \mathbf{E} () & 5 \mathbf{h}/\pi \end{array}$	C () 2,5 h/2 π		

Questão 9. Assinale a opção que apresenta o elemento químico com o número CORRETO de nêutrons.				
$\mathbf{A}(\) {}^{19}_{9}\mathbf{F} \text{tem zero nêutrons.}$	$\mathbf{B}(\) \frac{^{24}}{^{12}}\mathrm{Mg} \ \ \mathrm{te}$	em 24 nêutrons.		
\mathbf{C} () $\frac{197}{79}$ Au tem 79 nêutrons.	$\mathbf{D}(\) {}^{75}_{33}\mathrm{As} \mathrm{te}$	em 108 nêutrons.		
\mathbf{E} () \mathbf{e}_{92}^{238} U tem 146 nêutrons.				
Questão 10. A pressão de vapor de proporcional à	uma solução ideal contendo um solu	uto não-volátil dissolvido é diretamente		
 A() fração molar do soluto. B() fração molar do solvente. C() pressão osmótica do soluto. D() molaridade, em mol·L⁻¹, d E() molalidade, em mol·kg⁻¹, o 	o solvente. do solvente.			
		, contido em um cilindro indeformável n relação a este sistema, são feitas as		
II. Se pressão for exercida sobre oIII. Se o sistema for aquecido independentemente da naturez		éculas do gás aumenta. ade média das moléculas aumenta,		
Das afirmações acima, está(ão) ERR	ADA(S) apenas			
A () I e II. D () II e IV.	B () I, III e IV. E () IV.	C() II e III.		
Questão 12 . Considere três cubos maciços de 2 cm de aresta, constituídos, respectivamente, de Cr, Ni e Ti puros. Os três cubos são aquecidos até 80 °C e cada cubo é introduzido em um béquer contendo 50 g de água a 10 °C. Com base nas informações constantes da tabela abaixo, assinale a opção que apresenta a relação CORRETA entre as temperaturas dos cubos, quando o conteúdo de cada béquer atingir o equilíbrio térmico.				
Substância	Massa específica (g · cm ⁻³)	Calor específico $(J \cdot g^{-1} \cdot K^{-1})$		
H ₂ O	1,00	4,18		
Ti Cr	4,54 7,18	0,52 0,45		
Ni	8,90	0,44		
${f A}$ () $T_{Cr} > T_{Ni} > T_{Ti}$. ${f D}$ () $T_{Ti} > T_{Cr} > T_{Ni}$.	${f B}(\) \ T_{{ m N}i} = T_{{ m T}i} > T_{{ m Cr}}.$ ${f E}(\) \ T_{{ m T}i} > T_{{ m Cr}} = T_{{ m N}i}.$	$C()$ $T_{Ni} > T_{Cr} > T_{Ti}$.		

 $\mathbf{B}(\) \quad \mathbf{O}^{-} \qquad \qquad \mathbf{C}(\) \quad \mathbf{O}_{2}^{-} \qquad \qquad \mathbf{D}(\) \quad \mathbf{H}_{2}\mathbf{O}$

C() + 2 D() + 3

 $\textbf{Questão 8}. \ Assinale \ a \ opção \ que \ contém \ o \ número \ de \ oxidação \ do \ crômio \ no \ composto \ [Cr(NH_3)_4C\ell_2]^+.$

 $\mathbf{E}(\) \quad \mathbf{H}^{\scriptscriptstyle +}$

 $\mathbf{E}() + 4$

Questão 7. Assinale a opção que contém a base conjugada de OH-.

 $\mathbf{B}(\) + 1$

 ${\bf A}$ () ${\bf O}^{2-}$

A() Zero

Questão 13. Considere a reação química genérica $A \rightarrow B + C$. A concentração do reagente [A] foi acompanhada ao longo do tempo, conforme apresentada na tabela que também registra os logaritmos neperianos (ℓn) desses valores e os respectivos recíprocos (1/[A]).

t (s)	$[A] (mol \cdot L^{-1})$	ℓn [A]	1/[A] (L · mol ⁻¹)
0	0,90	-0,11	1,11
100	0,63	-0,46	1,59
200	0,43	-0,84	2,33
300	0,30	-1,20	3,33
400	0,21	- 1,56	4,76
500	0,14	-1,97	7,14
600	0,10	-2,30	10,00

Assinale a opção que contém a constante de velocidade CORRETA desta reação.

 \mathbf{A} () $4 \times 10^{-3} \, \mathrm{s}^{-1}$ C() $4 \times 10^{-3} \text{ L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$ E() $4 \times 10^{3} \text{ mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1}$ ${f B}$ () 4 x 10 $^{-3}$ mol · L $^{-1}$ · s $^{-1}$ ${f D}$ () 4 x 10 3 s $^{-1}$

Questão 14. São feitas as seguintes comparações de valores de p K_a de compostos orgânicos:

I. $pK_a(CH_3COOH) > pK_a(C\ell CH_2COOH)$

 $pK_a(F_3CCOOH) > pK_a(C\ell_3CCOOH)$ П.

III. $pK_a(CH_3CH_2CHC\ell COOH) > pK_a(CH_3CHC\ell CH_2COOH)$

Das comparações acima, está(ão) CORRETA(S) apenas

A() I. **B**() I, II e III. C() I e III.

D() II.

E() II e III.

Questão 15. São feitas as seguintes afirmações sobre o que Joule demonstrou em seus experimentos do século XIX:

I. A relação entre calor e trabalho é fixa.

Existe um equivalente mecânico do calor. II.

O calor pode ser medido.

Das afirmações acima, está(ão) CORRETA(S) apenas

A() I.

B() I, II e III.

C() I e III.

D() II.

E() II e III.

Questão 16. Joseph Black (1728-1799), médico, químico e físico escocês, conceituou o calor específico. Esta conceituação teve importantes aplicações práticas, dentre elas a máquina a vapor, desenvolvida pelo engenheiro escocês James Watt (1736-1819). Que componente do motor a vapor desenvolvido por Watt revolucionou seu uso e aplicação?

Boiler ou fervedor **A**()

Bomba de recalque **B**()

C() Caldeira

D() Condensador

E() Turbina a vapor

Questão 17. Assinale a opção que contém a concentração (em mol · L ⁻¹) de um íon genérico M⁺, quando se adiciona um composto iônico MX sólido até a saturação a uma solução aquosa $5 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1} \text{ em PX}$. Dado $K_{ps(MX)} = 5 \times 10^{-12}$.

A() 2.3×10^{-6}

B() 1.0×10^{-7}

 \mathbf{C} () 2,3 x 10⁻⁸

 \mathbf{D} () 1.0 x 10⁻⁹

Questão 18. Con	sidere os seguintes c	ompostos:		
I. álcoois	II. aldeídos	III. carbono particula	do (negro de fumo)	IV. cetonas
Dos componentes	s acima, é (são) prod	uto(s) da combustão inco	mpleta do n-octano com	ar atmosférico apenas
A () I e II. D () III.		B () I e IV. E () IV.	C ()	II e III.
Questão 19. Con	sidere a reação do te	traborato de sódio:		
Na ₂	$B_4O_7 . 10H_2O(s) +$	$+ H_2SO_4(aq) \rightarrow 4B(OI)$	$H)_3(aq) + Na_2SO_4(aq)$	$+5H_2O(\ell)$
Em relação ao pro	oduto da reação B(C	OH) ₃ são feitas as seguin	tes afirmações:	
· ·	um ácido de Brönsto uma base de Arrhen			
III. O produto o	da primeira ionização	o do $B(OH)_3(aq)$ é o BC	$O(OH)_2^-(aq).$	
Das afirmações a	cima, está(ão) CORF	RETA(S) apenas		
A () I.	B () I e III	. C () II.	D () II e II	I. E () III.
Questão 20. Con seguintes afirmaç		a combustível alcalina	(hidrogênio-oxigênio) so	obre a qual são feitas as
é menor qu II. O combusti alimenta o o III. Sendo o po	e a força eletromotri: ível (hidrogênio gaso catodo dessa célula e tencial padrão dessa de energia livre de	z da célula. oso) é injetado no compa detroquímica. célula galvânica igual a	rtimento do anodo e um $1,229 V_{EPH}$ (volt na esca	dispositivo eletroquímico fluxo de oxigênio gasoso ala padrão do hidrogênio), a redox atuante é igual a
Das afirmações a	cima, está(ão) CORF	RETA(S) apenas		
A () I.	B () I, II e II	I. C() Ie III	D () II.	E () II e III.
CADERNO DE AS QUESTÕE	SOLUÇÕES. S NUMÉRICAS		SENVOLVIDAS AT	R RESPONDIDAS NO É O FINAL, COM
Questão 21. O di	óxido de potássio ter	n várias aplicações, entre	e as quais, a	
		io (g) na presença de águ (g) para oxigênio (g).	1a.	

Apresente as equações químicas balanceadas que representam as reações descritas nos itens acima.

(c) absorção de dióxido de carbono (g) na presença de H₂O com formação de oxigênio (g).

Questão 22. São descritos dois experimentos:

- I. Ovo cozido em água fervente teve sua casca quebrada, de modo que parte de sua clara permaneceu em contato com esta água, na qual a seguir foi também imerso um objeto polido de prata. Após um certo período de tempo, observou-se o escurecimento desse objeto, que foi retirado da água e lavado.
- II. Em um béquer, foi aquecida água até a fervura e adicionada uma colher das de sopa de cloreto de sódio. A seguir, esta solução foi transferida para um béquer revestido com papel alumínio. O objeto de prata utilizado no experimento I foi então imerso nesta solução e retirado após alguns minutos.

Em relação a esses experimentos:

- (a) apresente a equação global que representa a reação química ocorrida na superfície do objeto de prata no experimento I e calcule a diferença de potencial elétrico da reação química.
- (b) preveja a aparência do objeto de prata após a realização do segundo experimento.
- (c) apresente a equação global da reação química envolvida no experimento II e sua diferença de potencial elétrico.

Dados:
$$Ag_2S(s) + 2e^- \rightleftharpoons 2Ag(s) + S^{2-}(aq)$$
 $E^\circ = -0,691V$ $O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(\ell)$ $E^\circ = 1,229V$ $Al^{3+}(aq) + 3e^- \rightleftharpoons Al(s)$ $E^\circ = -1,662V$ $Ag_2S(s) + 2H^+(aq) + 2e^- \rightleftharpoons 2Ag(s) + H_2S(g)$ $E^\circ = -0,037V$

Questão 23. Apresente as equações que representam as reações químicas de nitração do tolueno, na presença de ácido sulfúrico, levando a seus isômeros. Indique o percentual de ocorrência de cada isômero e seus respectivos estados físicos, nas condições-padrão.

Questão 24. Escreva a reação de combustão completa de um hidrocarboneto genérico $(C_{\alpha}H_{\beta})$ com ar atmosférico. Considere a presença do nitrogênio gasoso no balanço estequiométrico da reação e expresse os coeficientes estequiométricos dessa reação em função de α e β .

Questão 25. Em um processo de eletrodeposição, níquel metálico é eletrodepositado no catodo de uma célula eletrolítica e permanece coeso e aderido a esse eletrodo. Sabendo que a massa específica do níquel metálico $(\rho_{\text{Ni},25} \, ^{\circ}\text{C})$ é igual a 8,9 x 10^3 kg · m $^{-3}$ e que a espessura total da camada eletrodepositada, medida no final do processo, foi de 2,0 x 10^{-6} m, calcule a densidade de corrente aplicada (admitida constante), expressa em A · m $^{-2}$, considerando nesse processo uma eficiência de corrente de eletrodeposição de 100% e um tempo de operação total de 900 s.

Questão 26. Água líquida neutra (pH = 7,0), inicialmente isenta de espécies químicas dissolvidas, é mantida em um recipiente de vidro aberto e em contato com a atmosfera ambiente sob temperatura constante. Admitindo-se que a pressão parcial do oxigênio atmosférico seja igual a 0,2 atm e sabendo-se que esse gás é solúvel em $H_2O(\ell)$ e que o sistema está em equilíbrio à temperatura de 25 °C, pedem-se:

- (a) escrever a equação química balanceada da semirreação que representa o processo de redução de oxigênio gasoso em meio de água líquida neutra e aerada.
- (b) determinar o potencial de eletrodo (V_{EPH}), à temperatura de 25 °C, da semirreação obtida no item (a), considerando as condições estabelecidas no enunciado desta questão.
- (c) determinar o valor numérico, expresso em kJ \cdot mol $^{-1}$, da variação de energia livre de Gibbs padrão (ΔG^{o}) da semirreação eletroquímica do item (a).

São dados:
$$E^{o}_{O_2/OH^-} = 0,401 \ V_{EPH} \qquad \qquad V_{EPH} = volt \ na \ escala \ padrão \ do \ hidrogênio$$

$$log = \ell \ n/2,303 \qquad \qquad 0,2 = 10^{(0,30-1)}$$

Questão 27. Considere uma mistura gasosa constituída de C_3H_8 , CO e CH_4 . A combustão, em excesso de oxigênio, de 50 mL dessa mistura gasosa forneceu 70 mL de $CO_2(g)$. Determine o valor numérico do percentual de C_3H_8 na mistura gasosa.

Questão 28. O ácido nítrico reage com metais, podendo liberar os seguintes produtos: NO (que pode ser posteriormente oxidado na presença do ar), N_2O , NO_2 ou NH_3 (que reage posteriormente com HNO_3 , formando NH_4NO_3). A formação desses produtos depende da concentração do ácido, da natureza do metal e da temperatura da reação.

Escreva qual(is) dos produtos citados acima é(são) formado(s) nas seguintes condições:

- (a) $Zn(s) + HNO_3$ muito diluído (~2%)
- (b) $\operatorname{Zn}(s) + \operatorname{HNO}_3 \operatorname{diluído}(\sim 10\%)$
- (c) $Zn(s) + HNO_3$ concentrado
- (d) $Sn(s) + HNO_3$ diluído
- (e) $Sn(s) + HNO_3$ concentrado

Questão 29. Considere os seguintes dados:

Entalpia de vaporização da água a 25 °C: $\Delta_{vap}H = 44 \text{ kJ} \cdot \text{mol}^{-1}$

Massa específica da água a 25 °C: $\rho_{H_2O} = 1.0 \,\mathrm{g \cdot cm^{-3}}$

Temperaturas de ebulição a 1 bar:

$$T_{eb,H,O} = 100$$
 °C; $T_{eb,H,S} = -60$ °C; $T_{eb,H,Se} = -41$ °C e $T_{eb,H,Te} = -2$ °C

Com base nestas informações:

- (a) determine o valor numérico da energia liberada, em J, durante a precipitação pluviométrica de 20 mm de chuva sobre uma área de (10 x 10) km².
- (b) justifique, em termos moleculares, por que H_2O apresenta T_{eb} muito maior que outros calcogenetos de hidrogênio.
- (c) como se relaciona, em termos moleculares, a elevada T_{eb,H_2O} com a quantidade de energia liberada durante uma precipitação pluviométrica?

Questão 30. Velocidades inciais (v_i) de decomposição de peróxido de hidrogênio foram determinadas em três experimentos (A, B e C), conduzidos na presença de I $\bar{}(aq)$ sob as mesmas condições, mas com diferentes concentrações iniciais de peróxido ($[H_2O_2]_i$), de acordo com os dados abaixo:

Experimento	$[H_2O_2]_i$ (mol · L $^{-1}$)	$v_i (10^{-3} \text{ mol} \cdot L^{-1} \cdot s^{-1})$
A	0,750	2,745
В	0,500	1,830
C	0,250	0,915

Com base nestes dados, para a reação de decomposição do peróxido de hidrogênio:

- (a) escreva a equação estequiométrica que representa a reação.
- (b) indique a ordem desta reação.
- (c) escreva a lei de velocidade da reação.
- (d) determine o valor numérico da constante de velocidade, k.
- (e) indique a função do I⁻(aq) na reação.