PROCESAREA SEMNALELOR CURS 04

CONTINUARE TRANFORMATA FOURIER, ALIERE

Cristian Rusu

CUPRINS

- recapitulare
- procesul de eşantionare
- aliere
- referințe bibliografice

DFT pentru un vector x:

$$X = Fx$$

- F se numește matricea Fourier
- X se numește transformata Fourier a lui x
- în anumite situații vedeți $\mathbf{X} = \mathcal{F}(\mathbf{x})$
- complexitatea $O(n^2)$
- FFT

$$X = FFT(x)$$

- se numeşte transformarea Fourier rapidă
- FFT e echivalent cu DFT, dar FFT e mai rapid
- complexitatea $O(n \log_2 n)$

- matricea Fourier F
 - este liniară, este pătrată, este complexă, este unitară
 - inversa este $\mathbf{F}^{-1} = \mathbf{F}^H$ (transpus și complex conjugat)
 - Fx este FFT(x), $F^{-1}x = F^{H}x$ este IFFT(x)
 - ambele operații sunt $O(n \log_2 n)$
 - Fx ar fi trebuit să fie???
 - $F^{-1}x$ ar fi trebuit să fie ???

- matricea Fourier F
 - este liniară, este pătrată, este complexă, este unitară
 - inversa este $\mathbf{F}^{-1} = \mathbf{F}^H$ (transpus și complex conjugat)
 - Fx este FFT(x), $F^{-1}x = F^{H}x$ este IFFT(x)
 - pentru a garanta $\mathbf{F}^H \mathbf{F} = \mathbf{I}$ avem:

. folosim
$$\frac{1}{\sqrt{n}}\mathbf{F}$$
 și $\frac{1}{\sqrt{n}}\mathbf{F}^H$

- . sau folosim \mathbf{F} și $\frac{1}{n}\mathbf{F}^H$
- pentru a verifica unitaritatea: $\|\mathbf{abs}(\mathbf{F}^H\mathbf{F}) \mathbf{I}\| \leq \epsilon$
- **F** conservă energia: $\|\mathbf{F}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$
- ambele operații sunt $O(n \log_2 n)$
 - Fx ar fi trebuit să fie $O(n^2)$
 - $\mathbf{F}^{-1}\mathbf{x}$ ar fi trebuit să fie $O(n^3)$

- matricea Fourier F
 - este liniară, este pătrată, este complexă, este unitară
 - inversa este $\mathbf{F}^{-1} = \mathbf{F}^H$ (transpus și complex conjugat)
 - Fx este FFT(x), $F^{-1}x = F^{H}x$ este IFFT(x)
 - ambele operații sunt $O(n \log_2 n)$
 - Fx ar fi trebuit să fie $O(n^2)$
 - $\mathbf{F}^{-1}\mathbf{x}$ ar fi trebuit să fie $O(n^3)$
- pentru noi, x este un vector real
 - $\mathcal{F}(\mathbf{x})$ este în general complex (asta nu ne convine mereu)
 - atunci $\mathcal{F}(\mathbf{x})$ are o simetrie
 - prima componentă Fourier este media
 - unele limbaje de programare au RFFT (FFT pentru x real)
 - cel mai mult ne interesează abs $(\mathcal{F}(\mathbf{x}))$

ideea de transformare

ideea de transformare: cazul Fourier

ideea: este mai ușor să rezolvi problema într-un alt domeniu atenție: inclusiv operația de transformare trebuie să fie ușoară (aici domină)

ideea de transformare: cazul Laplace (foarte folositor în inginerie)

legătura în Fourier și Laplace?

ideea de transformare: cazul Laplace (foarte folositor în inginerie)

Fourier este un caz special de Laplace când $s=j\omega$

PROCESUL DE EȘANTIONARE

funcția/fenomenul din realitate f(t), cu o frecvență naturală f_0 Hz

la t = 0,
$$f(t)$$
?
la t = 0.005, $f(t)$?
la t = 0.01, $f(t)$?
$$f(0.005)$$

$$f(0.005)$$

algoritmul/aparatul care eșantionează cu viteza $f_{\rm s}$ Hz

| f[0] la momentul t = 0 | f[1] la momentul t = 0.005 | f[2] la momentul t = 0.01

întrebare fundamentală:

ce relație trebuie să fie între f_0 și f_s că să nu pierdem nimic din f(t)?

REPREZENTAREA ÎN FRECVENȚĂ

Source: (Lyons 2004)

REPREZENTAREA ÎN FRECVENȚĂ

cum determin frecvenţa semnalului în funcţie de eşantioane?

$$x[n] = A \sin(2\pi f_0 n t_s), f_0 = 1, A = 1.0, n t_s = 0 : 2, samples = 40$$

$$1.00$$

$$0.75$$

$$0.50$$

$$-0.25$$

$$-0.50$$

$$-0.75$$

$$-1.00$$

$$0.00$$

$$0.25$$

$$0.00$$

$$0.25$$

$$0.00$$

$$0.25$$

$$0.00$$

$$0.25$$

$$0.00$$

$$0.25$$

$$0.50$$

$$0.75$$

$$1.00$$

$$1.25$$

$$1.50$$

$$1.75$$

$$2.00$$
Time
perioadă
$$x = \frac{40}{2} \times \frac{2}{40} = 20 \times 0.05 = 1s \implies f_0 = 1$$
Hz

există o infinitate de sinusoide care trec prin cele 8 puncte!

ALIERE

fenomenul de aliere (aliasing) apare când:

$$x[n] = \sin(2\pi f_0 n t_s) = \sin(2\pi (f_0 + k f_s) n t_s)$$

• rezultatul fundamental: fie frecvenţa de eşantionare f_s (eşantioane / secundă) şi k un număr întreg nenul. Atunci nu putem distinge eşantioanele unei sinusoide de frecvenţă f_0 Hz de eşantioanele unei siunsoide de $f_0 + kf_s$ Hz.

ALIERE (DEMONSTRAȚIE)

• fie semnalul continuu $x(t) = \sin(2\pi f_0 t)$ cu frecvența f_0 pe care îl eșantionăm cu o rată de f_s eșantioane pe secundă la perioade de timp constante $t_s = \frac{1}{f_s} \; (0t_s, 1t_s, 2t_s, 3t_s, \ldots)$:

$$x[0] = \sin(2\pi 0t_s)$$

$$x[1] = \sin(2\pi 1t_s)$$

$$x[2] = \sin(2\pi 2t_s)$$

$$x[3] = \sin(2\pi 3t_s)$$

$$\vdots$$

$$x[n] = \sin(2\pi nt_s)$$

• astfel încât eșantionul x[n] are valoarea sinusoide originale la momentul $nt_{\rm s}$

ALIERE (DEMONSTRAȚIE)

• ştim că $sin(\alpha) = sin(\alpha + 2\pi m)$, cu m întreg, deci avem:

$$x[n] = \sin(2\pi f_0 n t_s) = \sin(2\pi f_0 n t_s + 2\pi m)$$
$$= \sin\left(2\pi \left(f_0 + \frac{m}{n t_s}\right) n t_s\right)$$

• fie m = kn a.î. putem înlocui fracția cu k:

$$x[n] = \sin\left(2\pi\left(f_0 + \frac{k}{t_s}\right)nt_s\right)$$

• apoi folosind $f_s = \frac{1}{t_s}$ relația devine:

$$x[n] = \sin(2\pi f_0 n t_s) = \sin\left(2\pi \left(f_0 + k f_s\right) n t_s\right)$$

• aliasing: $f_0 = 1, f_s = 7, k = 1 \implies f = f_0 + kf_s = 8$

$$x[0] = 0.00$$
 $x[1] = 0.78$
 $x[2] = 0.97$
 $x[3] = 0.43$
 $x[4] = -0.43$
 $x[5] = -0.97$
 $x[6] = -0.78$
 $x[7] = -0.00$
 $x[7] = 0.00$
 $x[7] = 0.00$

semnalul $f_0=7\,$ kHz eşantionat cu $f_s=6\,$ kHz produce o secvenţă a cărui spectru reprezintă simultan semnalele (tonurile): 1 kHz, 7 kHz, 13 kHz, 19 kHz ...

• semnalele limitate în bandă sunt semnalele a căror amplitudine spectrală este nulă în afara intervalului $[-B \ Hz, +B \ Hz]$

semnalul continuu este discretizat apărând duplicatele în frecvență

• semnalele limitate în bandă sunt semnalele a căror amplitudine spectrală este nulă în afara intervalului $[-B \ Hz, +B \ Hz]$

semnalul continuu este discretizat apărând duplicatele în frecvență

• frecvența de eșantionare $f_s \ge 2B$ este criteriul Nyquist de eșantionare, rezultat din teorema Nyquist-Shannon, ce asigură separarea duplicatelor în domeniul frecvenței

eşantionare sub frecvenţa Nyquist

ZGOMOT

ZGOMOT

spectru cu zgomot

Source: (Lyons 2004)

ZGOMOT

eliminarea zgomotului

REFERINȚE BIBLIOGRAFICE GENERALE

- A. V. Oppenheim şi R. W. Schafer, Discrete-time signal processing, Pearson, 2014
- R. G. Lyons, Understanding digital signal processing, Prentice Hall, 2004
- S. Mallat, A wavelet tour of signal processing: the sparse way, Academic Press, 2008