- Recall: Let F be a field.
- Definition: $f(x) \in F[x]$ is said to be irreducible if f(x) cannot be factored into polynomials g(x), $h(x) \in F[x]$, where $1 \le deg(g(x))$, $deg(h(x)) \le deg(f(x)) 1$.
- Proposition: Let $p(x),q(x) \in D[x]$ where D is an integral domain. Then deg(p(x)q(x)) = deg(p(x)) + deg(q(x)),
- Proposition: Let M be an ideal of a commutative ring R with identity. Then M is maximal if and only if R/M is a field.
- Proposition: Every ideal of F[x] has the form $\langle f(x) \rangle$ for some $f(x) \in F[x]$.
- Theorem: Let F be a field and $f(x) \in F[x]$. Then $\{f(x)\}$ is a maximalideal if and only if f(x) is irreducible.
- Proof: (\Rightarrow) Suppose f(x) is not irreducible over F, i.e $\exists g(x)$, $h(x) \in F(x)$ s.t. f(x) = g(x)h(x) and $1 \le deg(g(x))$, deg(h(x)) < deg(f(x)). We want to show that $\exists I \triangleleft F$ such that $\langle f(x) \rangle \not\in I \not\subseteq F(x)$.

Let $I = \langle g(x) \rangle$. Since $f(x) = g(x)h(x) \in \langle g(x) \rangle$, then $\langle f(x) \rangle \in \langle g(x) \rangle$. Then by the above proposition, every polynomial in $\langle f(x) \rangle$ has degree larger than deglf(x)) and larger than deglg(x). Therefore, $g(x) \notin \langle f(x) \rangle$ and so $\langle f(x) \rangle \not\subseteq \langle g(x) \rangle$. Therefore, every polynomial in $\langle g(x) \rangle has$ degree at least deglg(x) and at least 1. So $\langle g(x) \rangle$ does not contain polynomials of degree 0, and so $\langle g(x) \rangle \not\subseteq F[x]$. Therefore one direction of the proof is complete.

(€) Suppose f(x) is irreducible over F. Let I 4 F[x] such that

- $\langle f(x) \rangle \subset I \subset F[x]$ We want to show that $I = \langle f(x) \rangle$ or I = F[x]. Then $I = \langle g(x) \rangle$ for some $g(x) \in F[x]$. Since $f(x) \in \langle g(x) \rangle$, then f(x) = r(x)g(x) for some $r(x) \in F[x]$. Since f(x) is irreducible, then either deglr(x) = 0 or deg(g(x)) = 0.
- Case 1: If deg(r(x)) = 0, then r(x) = b for some $b \neq 0 \in F$ and so $g(x) = b^{-1}f(x) \in \langle f(x) \rangle$, thus $\langle f(x) \rangle = \langle g(x) \rangle = 1$.
- Case 2: If deg(g(x)) = 0, then g(x) = c for some $c \neq oeF$ and so $c^{-1}c \in \langle g(x) \rangle$ and so $\langle g(x) \rangle = F(x)$.
- Therefore, (flx)) is a maximal ideal of F[x].
- Corollary: Let F be a field and let $f(x) \in F[x]$. Then $F[x]/\langle f(x) \rangle$ is a field if and only if f(x) is irreducible over F.
- Corollary: Let F be a field and p(x) is an irreducible polynomial on F. If p(x) | a(x)b(x), then p(x)|a(x) or p(x)|b(x).
- Proof: Suppose a(x)b(x) = r(x)p(x) for some $r(x) \in F(x)$. Then in $F(x)/\langle p(x)\rangle$, $(a(x) + \langle p(x)\rangle)(b(x) + \langle p(x)\rangle) = a(x)b(x) + \langle p(x)\rangle = \langle p(x)\rangle$. Then $F(x)/\langle p(x)\rangle$ is a field so if has no zero divisors. Therefore
 - $a(x) + \langle p(x) \rangle = 0 + \langle p(x) \rangle$ or $b(x) + \langle p(x) \rangle = 0 + \langle p(x) \rangle$, and so p(x) | a(x) | b(x). $a(x) + \langle p(x) \rangle = 0 + \langle p(x) \rangle$ $a(x) + \langle p(x) \rangle = 0 + \langle p(x) \rangle = 0 + \langle p(x) \rangle$ $a(x) + \langle p(x) \rangle = 0 +$
- Example: Construct a finite field of order 9.

The tool that we use is F[x]/(p(x)) where p(x) is a polynomial over F. We know that we will have elements of the form $a + \langle p(x) \rangle$ for all $a \in F$. We can take \mathbb{Z}_3 because $9 = 3^2$. Now we need a

x3+1 which is

irreducible in \mathbb{Z}_3 .

polynomial p(x) that is irreducible in F(x). We can have $0+\langle x^3+1\rangle$, $1+\langle x^3+1\rangle$, $2+\langle x^3+1\rangle$, $x+\langle x^3+1\rangle$, $x+\langle x^3+1\rangle$, $x+\langle x^3+1\rangle$, $x^2+\langle x^3+1\rangle$, $x^2+\langle x^3+1\rangle$, $x^2+\langle x^3+1\rangle$, $x^2+\langle x^3+1\rangle$, ... Any distinct in $\mathbb{Z}_3[x]/\langle x^3+1\rangle$ has the form $ax^2+bx+c+\langle x^3+1\rangle$, where $a_1b_1c\in \mathbb{Z}_3$. This means we have 3^3 different choices. So deg(p(x))=2 is needed.