Projekt 7: Wstęp do spintroniki - tranzystor spinowy

Kacper Połuszejko, 412183

1 Precesja spinu w zewnętrznym polu magnetycznym

Rys. 1: Relacja dyspersji dla $\vec{B}=(0,0,0)$ (po lewej), oraz $\vec{B}=(B,0,0)$. (Oś y - E[eV])

Rys. 2: Relacja dyspersji dla $\vec{B}=(0,B,0)$ (po lewej), oraz $\vec{B}=(0,0,B)$. (Oś y - E[eV])

Rys. 3: Koduktancja w funkcji energii padającego elektronuj dla B=1T.

Rys. 4: Zależne od spinu współczynniki transmisji w funkcji pola magnetycznego B_y . Wyniki dla $B_z=0.1T$ oraz E=5meV.

Rys. 5: Rozkład gęstości elektronów o spinie up i down w nanodrucie. Wyniki dla $B_y=0.6T,\,B_z=0.1T$ oraz E=5meV.

Rys. 6: Rozkład gęstości spinów s_x, s_y, s_z w nanodrucie. Wyniki dla $B_y = 0.6T, B_z = 0.1T$ oraz E = 5meV.

2 Tranzystor spinowy oparty na ferromagnetycznych paskach

Rys. 7: Relacja dyspersji E(k) dla $B_{ext}=0$ (po lewej). Powiększenie w zakresie [2,8]meV (po prawej).

Rys. 8: Wykres konduktancji w funkcji zewnętrznego pola magnetycznego B_{ext} . Wyniki dla E=4.1meV.

Komentarz: Naprawdę nie wiem czemu ten wykres wyszedł tak a nie inaczej. Przeglądałem swój kod bardzo długo i bardzo dokładnie i nie wiem, gdzie jest błąd.

3 Tranzystor spinowy oparty na oddziaływaniu spin-orbita

Rys. 9: Relacja dyspersji E(k) z uwzględnieniem oddziaływania spin-orbita. (oś y - E[eV])

Rys. 10: Konduktancja w funkcji energii padającego elektronu. Wyniki z uwzględnieniem oddziaływania spinorbita.

Rys. 11: Zależne od spinu współczynniki transmisji w funkcji parametru $\alpha[eVm]$ oddziaływania SOC. Wyniki dla E=5meV.

Rys. 12: Zależna od spinu konduktancja oraz konduktancja całkowita w funkcji parametru $\alpha[eVm]$ oddziaływania SOC. Wyniki dla E=5meV, kolejno od lewej dla P=0.2, P=0.4 oraz P=1.

 $\mathbf{Rys.}$ 13: Zależna od spinu gęstość ładunku w nanourządzeniu. Wyniki dla $\mathbf{E}=5$ meV.

 $\mathbf{Rys.}$ 14: Gęstość spinu w nanourządzeniu. Wyniki dla 5meV.