Katholieke Universiteit Leuven Departement Wiskunde Nicolas Daans 13.12.2024

Extra oefeningen: Axiomatische verzamelingenleer

We werken in de signatuur \mathcal{L}_{\in} met één binair relatiesymbool \in en geen andere niet-logische symbolen. We noemen een \mathcal{L}_{\in} -structuur een universum. Herinner je de verschillende axioma(schema)'s van Zermelo-Fraenkel verzamelingenleer (in de volgorde als in het handboek):

(1) Extensionaliteit	(4) Unie	(7) Oneindigheid
(2) Comprehensie	(5) Machtsverzameling	(8) Fundering
(3) Paarvorming	(6) Vervanging	(9) Keuzeaxioma

We noteren ZF^{-1} voor axioma(schema)'s 1 tot en met 7. Herinner je (Example 6.2.9 in het handboek) ook de definitie van de von Neumann hiërarchie in een universum \mathcal{U} dat een model is van ZF^{-} :

- $V_0 = \emptyset$,
- $V_{\alpha+1} = \mathcal{P}(V_{\alpha}),$
- $V_{\lambda} = \bigcup_{\alpha < \lambda} V_{\alpha}$ voor een limit ordinal λ .

Oefening 1. Stel Z^0 the theorie bestaande uit axioma(schema)'s 1 tot en met 5. Toon het volgende aan:

- (a) Stel \mathcal{U} een universum dat een model is van ZF^- . Toon dat $V_\omega \subseteq U$ een deel-structuur induceert van \mathcal{U} die een model is van Z^0 en waarin elke set eindig is
- (b) Stel \mathcal{V} een universum dat model is van Z^0 en waarin elke set eindig is. Toon dat het axiomaschema Vervanging (6) geldig is in \mathcal{V} .
- (c) Besluit dat (indien ZF⁻ een model heeft) er een universum bestaat dat een model is van axioma's 1 tot en met 6, maar niet van 7.