Foundation to Data Science

SARFARAZ JAMAL-17093 ASSIGNMENT 1

Problem Statement

- Given a data set of 30 features, the project aims to accurately predict the popularity of news articles of the news outlet Mashable.
- It is a binary classification problem with Low Popularity and High Popularity as the two class labels.

Data Understanding

- The data provided consists of 30 explanatory variables and 1 target variable.
- It includes 2000 samples.

Data Understanding

Summary Table

S.No	Column	Description
	1 n_tokens_title	Number of words in the title
	2 num_hrefs	Number of links
	3 num_self_hrefs	Number of links to other articles published by Mashable
	4 num_imgs	Number of images
	5 num_videos	Number of videos
	6 average_token_length	Average length of the words in the content
	7 num_keywords	Number of keywords in the metadata
	8 data_channel_is_lifestyle	Is data channel 'Lifestyle'?
	9 data_channel_is_entertainment	Is data channel 'Entertainment'?
	10 data_channel_is_bus	Is data channel 'Business'?
	11 data_channel_is_socmed	Is data channel 'Social Media'?
	12 self_reference_min_shares	Min. shares of referenced articles in Mashable
	13 self_reference_max_shares	Max. shares of referenced articles in Mashable
	14 self_reference_avg_sharess	Avg. shares of referenced articles in Mashable
	15 weekday_is_monday	Was the article published on a Monday?
	16 weekday_is_tuesday	Was the article published on a Tuesday?
	17 weekday_is_wednesday	Was the article published on a Wednesday?
	18 weekday_is_thursday	Was the article published on a Thursday?
	19 weekday_is_friday	Was the article published on a Friday?
	20 weekday_is_saturday	Was the article published on a Saturday?
	21 weekday_is_sunday	Was the article published on a Sunday?
	22 is_weekend	Was the article published on the weekend?
	23 global_subjectivity	Text subjectivity
	24 global_sentiment_polarity	Text sentiment polarity
	25 global_rate_positive_words	Rate of positive words in the content
	26 global_rate_negative_words	Rate of negative words in the content
	27 title_subjectivity	Title subjectivity
	28 title_sentiment_polarity	Title polarity
	29 abs_title_subjectivity	Absolute subjectivity level
	30 abs_title_sentiment_polarity	Absolute polarity level
	31 Popularity	High or Low (target)

Data Understanding Missing Values

 No Missing Values were found in the data

Data Understanding Correlation Matrix

 No significant correlation was found between attributes

Data Understanding Class Imbalance

• Significant class imbalance between class labels

Data Preparation

- The data was split into **training and testing** sets, with **1400 samples** as training data and the remaining **600 samples** as testing data.
- The training data was further split into **training and validation** sets to in order to evaluate models locally before final submission. The ratio was **90% training and 10% validation**
- The column "row ID" was removed. All other columns were included in model training
- The data was further divided into predictive features and target feature (X and y)
- The y variable was converted into a binary variable with 1 being "Low" and 0 being "High".

• Total 8 attempts were made and the summary is as follows:

Submission No	Score	Comments
1	0.69444	Default Decision Tree
2	0.81666	max_depth = 1
3	0.81666	max_depth=2
4	0.8111	max_depth =3
		max_depth = 3,
5	0.81666	min_samples_leaf = 60
6	0.81666	ccp_alpha = 0.004
7	0.78333	Default KNN
8	0.81111	leaf_size =1, n_neighbors=27, p=1

Decision Trees with max_depth and min_sample_leaf tuning

 Plotting different Depths and Minimum Sample Leafs against F-Scores, we find that the optimal depth is 2 and optimal minimum leaf size is 60

Decision Trees with max_depth=2 and min_sample_leaf=60

• The F-score in the final testing data was 0.81666

Decision Trees with ccp_alpha tuning

 The graph suggests the optimal value of ccp_alpha is 0.04 onwards.

Decision Trees with ccp_alpha = 0.004

• The F-score in the final testing data was 0.81666

K-nearest neighbours with leaf_size =1, n_neighbors=27, p=1

- The classification report based on validation data is as follows.
- The F-score in the final testing data was 0.81666

Links

• https://www.kaggle.com/sarfarazjamal/sarfarazjamal17093assignment1/notebook?script
VersionId=89410172

Thank You