এইস এস সি পদার্থবিজ্ঞান

অধ্যায়-১০: আদর্শ গ্যাস ও গ্যাসের গতিতত্ত্ব

প্রায় ১১ কোনো একদিন ল্যাবরেটরিতে সিপ্ত ও শৃক্ষ বার আর্দ্রতা মাপক যন্ত্রের শৃক্ষ বান্ধের পাঠ 30°C এবং সিপ্ত বান্ধের পাঠ 28°C পাওয়া গেল। ভিন্ন ভিন্ন তাপমাত্রায় সম্পৃত্ত জলীয় বাম্পচাপ ও প্রেইসারের উৎপাদকের মান নিচের সারণি-১ এ প্রদত্ত হলো:

সারণি-১

তাপমাত্রা	সম্পৃত্ত ভালীয় বাচ্পচাপ (m Hg)	গ্রেইসারের উৎপাদক
26°C	25.21 × 10 ⁻³	1.69
28°C	28.35×10^{-3}	1.67
29°C	29.93 × 10 ⁻³	1.66
30°C	31.83×10^{-3}	1.65

/DT. (AT. 2039/

ক. সংরক্ষণশীল বলের সংজ্ঞা দাও।

 স্থিতিস্থাপক সীমা ও স্থিতিস্থাপক ক্লান্তির মধ্যে প্রধান পার্থক্য কী?

গ্রলাবরেটরিতে ঐ দিন আপেন্ধিক আর্দ্রতা কত ছিল নির্ণয় কর।

ঘ. যদি ঐ দিন তাপমাত্রা হঠাৎ 1°C হ্রাস পায় তবে শিশিরাজেকর পরিবর্তন কীরুপ হবে তা গাণিতিকভাবে বিশ্লেষণ কর।

১নং প্রশ্নের উত্তর

ক্র একটি বন্ধু পূর্ণ চক্র সম্পন্ন করে তার আদি অবস্থানে ফিরে আসলে বন্ধুটির ওপর যে বল ছারা সম্পাদিত কাজের পরিমাণ শূন্য হয়, সেই বলকে সংরক্ষণশীল বল বলে। যেমন— মহাকর্ষজ বল।

যে মানের বল পর্যন্ত কোন বস্তু পূর্ণ স্থিতিস্থাপক থাকে, তাকে স্থিতিস্থাপক সীমা বলে। আবার কোন তারের উপর ক্রমাণত পীড়নের দুত ব্রাস-বৃদ্ধি করলে বস্তুর স্থিতিস্থাপকতা ব্রাস পায় এবং বল অপসারণের সাথে সাথে বস্তু আগের অবস্থা ফিরে পায় না, কিছুটা দেরি হয়। বস্তুর এই অবস্থাকে স্থিতিস্থাপক ক্লান্তি বলে। তখন অসহ ভারের চেয়ে কম ভারে এমনকি স্থিতিস্থাপক সীমার মধ্যেই তারটি ছিড়ে যেতে পারে।

স্থিতিস্থাপক সীমা এবং স্থিতিস্থাপক ক্লান্তির প্রধান পার্থক্য হল— স্থিতিস্থাপক সীমার ক্ষেত্রে এই সীমা অতিক্রম করলে বস্তুর স্থিতিস্থাপকতা ধর্ম বিলুপ্ত হয় এবং তা পরবর্তীতে আর ফিরে পায় না। কিন্তু স্থিতিস্থাপক ক্লান্তিতে বস্তু সাময়িকভাবে তার স্থিতিস্থাপক ধর্ম হারায় কিন্তু কিছু সময় পরে আবার স্থিতিস্থাপক ধর্ম ফিরে পায়।

হা দেওয়া আছে,

শুষ্ক বান্ধের পাঠে, $\theta_1 = 30^{\circ}$ C সিক্ত বান্ধের পাঠ, $\theta_2 = 28^{\circ}$ C

30°C তাপমাত্রায় প্লেইসারের উৎপাদক, G = 1.65মনে করি.

শিশিরাজ্ক = 0

শিশিরাজ্ঞে সম্পৃত্ত জলীয় বাম্প চাপ = f θ_1 তাপমাত্রায় সম্পৃত্ত জলীয় বাম্প চাপ, $F = 31.83 \times 10^{-3}$ mHg আমরা জানি.

$$\theta_1 - \theta = G (\theta_1 - \theta_2)$$
 $\exists 1, \ \theta = \theta_1 - G (\theta_1 - \theta_2)$
 $= 30 - 1.65 (30 - 28)$
 $= 30 - 3.3$
 $= 26.7^{\circ}C$

এখন, (28-26) C° = 2 C° তাপমাত্রা বৃদ্ধিতে সম্পৃক্ত বাষ্পচাপ বৃদ্ধি = $(28.35-25.21)\times 10^{-3}$ m Hg = 3.14×10^{-3} m Hg

 $0.7 \, \mathrm{C}^\circ$ তাপমাত্রা বৃন্ধিতে সম্পৃক্ত বাষ্পচাপ বৃন্ধি = $\frac{3.14 \times 10^{-3} \times 0.7}{2}$

 $= 1.099 \times 10^{-3}$ m Hg

∴ 26.7°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্প চাপ, f = 25.21 × 10⁻³ + 1.099 × 10⁻³ = 26.309 × 10⁻³ mHg

 \therefore আপেন্ধিক আর্ম্রতা, $=\frac{f}{F} \times 100\%$ $=\frac{26.309 \times 10^{-3}}{31.83 \times 10^{-3}} \times 100\%$ $=82.65\% \, (Ans.)$

যে তাপমাত্রায় কোনো স্থানের বায়ু উপস্থিত জলীয় বাম্প দ্বারা সম্পৃক্ত হয়ে শিশির জমতে শুরু করে তাকে শিশিরাজক বলে। শিশিরাজক বায়ুতে উপস্থিত জলীয় বাম্পের পরিমাণের ওপর নির্ভর করে। তাপমাত্রার ওপর নির্ভর করে না। তাপমাত্রা কমতে কমতে শিশিরাজক যাওয়া পর্যন্ত যদি জলীয় বাম্পের পরিমানের কোনো পরিবর্তন না হয় তবে শিশিরাজকর কোনো পরিবর্তন হবে না। এক্ষেত্রে বায়ুর তাপমাত্রা 30°C এবং শিশিরাজক 26.7°C। বায়ুর তাপমাত্রা 1°C কমায় জলীয় বাম্পের পরিমাণের কোনো পরিবর্তন হয় নি। ফলে শিশিরাজকর কোনো পরিবর্তন হয় নি। ফলে শিশিরাজকর কোনো পরিবর্তন হয় নি। ফলে শিশিরাজকর কোনো পরিবর্তন হয়ে না। তবে পরীক্ষাণারে অল্প পরিমাণ বায়ু নিয়ে এর তাপমাত্রা হঠাৎ 1°C কমানো হলে সামান্য পরিমাণ বাম্পকণা সুপ্ততাপ ছেড়ে দিয়ে শিশিরে পরিণত হতে পারে। ফলে মোট জলীয় বাম্পের পরিমাণ কমে যাবে। তখন শিশিরাজক আরো নিচে নেমে যাবে।

প্রর ≥ একটি বায়ুপূর্ণ বেলুনকে একটি স্তদের 40.81m গভীরতায় নিয়ে যাওয়ায় সেটি 1 লিটার আয়তন ধারণ করল। স্তদের তলদেশে বেলুনে আরও 1 লিটার বায়ু প্রবেশ করিয়ে ছেড়ে দেওয়া হলে। বায়ুমন্ডলের চাপ 10⁵ Nm⁻², পানির ঘনত 10³ kgm⁻³ এবং g = 9.804 ms² 1

ক্র প্রমাণ চাপ কী?

খ. সমোক্ষ প্রক্রিয়া বলতে কী বুঝ?

ণ্. নিমজ্জনের পূর্বে উদ্দীপকের বেলুনের আয়তন কত ছিল?

 বেলুনের সর্বোচ্চ প্রসারণের ক্ষমতা ৯ লিটার। পানির উপরিতলে বেলুনটি অক্ষত অবস্থায় পৌছাবে কী? বিগ্লেষণপূর্বক মতামত দাও।

8

২ নং প্রশ্নের উত্তর

ক্র সমূদ্র পৃষ্ঠে 45° অক্ষাংশে 0°C তাপমাত্রায় 760 mm বিশৃদ্ধ পারদ স্তম্ভের চাপকে প্রমাণ চাপ বলা হয়।

পাত্রের দেয়াল তাপ সুপরিবাহী এবং গ্যাসের সংকোচন বা প্রসারণ ধীরে ধীরে সংগঠিত হলে গ্যাস পরিবেশকে তাপ দেয় অথবা পরিবেশ হতে তাপ গ্রহণ করে। ফলে তাপমাত্রা অপরিবর্তিত থাকে। এতে গ্যাসের চাপ ও আয়তন পরিবর্তিত হয়। তাপগতীয় এ প্রক্রিয়াকে সমোক্ষ প্রক্রিয়া বলে।

মনে করি, নিমজ্জনের পূর্বে বেলুনের আয়তন ছিল = V_1 হলের তলদেশে বেলুনের প্রারম্ভিক আয়তন, $V_2 = 1$ L হলের গভীরতা, h = 40.81 m হলের উপরিতলে চাপ, $P_1 = 10^5$ N·m⁻² হলের তলদেশে চাপ, $P_2 = P_1 + h\rho g$

বয়েলের সূত্রানুসারে,
$$P_1V_1 = P_2V_2$$
বা, $P_1V_1 = (P_1 + h\rho g)V_2$

$$\therefore V_1 = \frac{(P_1 + h\rho g)V_2}{P_1}$$

$$= \frac{10^5 \text{ N} \cdot \text{m}^{-2} + 40.81 \text{ m} \times 10^3 \text{ kg} \cdot \text{m}^{-3} \times 9.8 \text{ m} \cdot \text{s}^{-2}}{10^5 \text{ N} \cdot \text{m}^{-2}} \times 1 \text{ L}$$
= 5 L

অতএব, নিমজ্জনের পূর্বে উদ্দীপকের বেুলুনের আয়তন 5 L ছিল। (Ans.)

ম ব্রুদের তলদেশে বেলুনটির নতুন আয়তন, $V_1 = (1 \text{ L} + 1 \text{ L}) = 2 \text{ L}$ ধরি, পৃষ্ঠ দেশে আসলে বেলুনের আয়তন = V_2

$$P_2V_2 = P_1V_1$$

$$V_2 = \frac{P_1V_1}{P_2} = \frac{(P_2 + h\rho g)V_1}{P_2}$$

$$= \frac{10^5 \text{ N} \cdot \text{m}^{-2} + 40.81 \text{ m} \times 10^3 \text{ kg} \cdot \text{m}^{-3} \times 9.8 \text{ m} \cdot \text{s}^{-2}}{10^5 \text{ N} \cdot \text{m}^{-2}} \times 2\text{L}$$

$$= 10 \text{ L} > 9 \text{ L}$$

সুতরাং পানির উপরিতলে বেলুনটি অক্ষত অবস্থায় পৌছাবে না। বেলুনটি ফেটে যাবে।

প্রাথান তার প্রধান বিভাগের প্রধান স্যার অফিস কক্ষে প্রবেশ করে দেখতে পেলেন হাইগ্রোমিটারের শুল্ক বাল্বের পাঠ 30°C এবং ঐদিন আপেক্ষিক আর্দ্রতা ছিল 75%। তিনি এসি চালু করে কক্ষের তাপমাত্রা 23°C-এ নামিয়ে নিলেন। তখন আর্দ্র বাল্বের পাঠ 14.76°C। (প্রেইসারের তালিকায় 30°C এবং 23°C এ প্রেইসারের উৎপাদক যথাক্রমে G = 1.65 এবং G = 1.74। রেনোর তালিকায় 30°C, 23°C, 8°C এবং 9°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ যথাক্রমে 29.92 mm, 20.24 mm, 8.29 mm এবং 9.22 mm পারদ চাপ।

AT. CAT. 2019/

- ক্র স্বাধীনতার মাত্রা কী?
- থ. একই তাপমাত্রায় ভিন্ন ভিন্ন এক মোল গ্যাসের ক্ষেত্রে গড় গতিশক্তি ধ্রবক থাকে-ব্যাখ্যা কর।
- গ. ঐ দিন সন্ধ্যায় বায়ুর তাপমাত্রা 23°C-এ নেমে এলে বায়ুস্থ জলীয় বান্সের কত অংশ ঘণীভূত হবে?
- ঘ. কক্ষের ভিতর এসি চালু করায় বিভাগীয় প্রধান স্যার আরাম বোধ করেন কেন? উদ্দীপকের আলোকে গাণিতিকভাবে ব্যাখ্যা কর।

৩নং প্রশ্নের উত্তর

কানো গতিশীল সিস্টেম অবাধে বা স্বাধীনভাবে যতগুলো গতির অধিকারী হতে পারে তাকে ঐ গতিশীল সিস্টেমের স্বাধীনতার মাত্রা বলে অথবা কোনো গতিশীল সংস্থার অবস্থা বা অবস্থান নির্দিষ্টভাবে প্রকাশের জন্য যতগুলো স্থানান্তেকর প্রয়োজন হয় তাকে ঐ গতিশীল সংস্থার স্বাতন্ত্র মাত্রা বা স্বাধীনতার মাত্রা বলে।

যা এক মোল কোনো গ্যাসের গড় গতিশক্তি E হলে,

$$E = \frac{3}{2}RT$$

যেখানে, R সার্বজনীন গ্যাস ধ্বক এবং তাপমাত্রা T। এখানে দেখা যায় যে ভিন্ন ভিন্ন এক মোল গ্যাসের গড় গতিশক্তি শুধু তাপমাত্রার উপর নির্ভর করে। অর্থাৎ $E \propto T$ । আবার ভিন্ন ভিন্ন গ্যাসের এক মোলে 6.022×10^{23} টি অনু থাকে।

সূতরাং, নির্দিষ্ট সংখ্যক অনু বিবেচনা করলে, তাপমাত্রা স্থির থাকলে ভিন্ন ভিন্ন এক মোল গ্যাসের ক্ষেত্রে গড় গতিশক্তি ধুব থাকে।

গ্র দেওয়া আছে,

শুষ্ক বান্ধের পাঠ বা বায়ুর তাপমাত্রা 30°C 30°C তাপমাত্রায় সম্পৃত্ত জলীয় বাম্পের চাপ, F = 29.92 mmআপেক্ষিক আর্দ্রতা, R = 75% = 0.75শিশিরাক্তেক সম্পৃত্ত জ্লীয় বাম্পের চাপ, f = ? আমরা জানি,

$$R = \frac{f}{F}$$

∴ f = R × F = 0.75 × 29.92 mm = 22.44 mm সন্ধ্যায় বায়ুর তাপমাত্রা, 23°C 23°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ 20.24 mm সম্পৃক্ত জলীয় বাম্পের চাপের পরিবর্তন, 22.44 mm – 20.24 mm = 2.2 mm

জলীয় বাস্পের ভরের পরিবর্তন জলীয় বাস্পের চাপের পরিবর্তন শিশিরাঙ্কে সঃ জঃ বাস্পের ভর = শিশিরাঙ্কে সঃ জঃ বাস্পের চাপ

ঘনীভূত জলীয় বাম্পের ভর = $\frac{2.2 \text{ mm}}{12.44 \text{ mm}} = 9.8\%$ সূতরাং ঘনীভূত জলীয় বাম্পের পরিমাণ 9.8% (Ans.)

এসি চালু করার পরে,
শুক্ক বারের পাঠ, $\theta_1 = 23^{\circ}$ C
আর্দ্র বারের পাঠ, $\theta_2 = 14.76^{\circ}$ C
23°C তাপমাত্রায় প্লেইসারের উৎপাদক, G = 1.74শিশিরাক্তক θ হলে, $\theta = \theta_1 - G(\theta_1 - \theta_2)$

= 23 - 1.74 (23 - 14.76) = 8.66°C

আবার, ৪°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পের চাপ 8.92 mm (Hg) 9°C তাপমাত্রা সম্পৃক্ত জলীয় বাষ্পের চাপ 9.22 mm (Hg)

∴ 1 C° তাপমাত্রা বৃদ্ধিতে সম্পৃত্ত জলীয় বাম্পের চাপ বৃদ্ধি = (9.22 – 8.92) mm (Hg) = 0.3 mm (Hg)

∴ 0.66 °C তাপমাত্রা বৃদ্ধিতে সম্পৃক্ত জলীয় বাঞ্পের চাপ বৃদ্ধি = 0.3 × 0.66 = 0.198 mm (Hg)

∴ 8.66°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ, f = (8.92 + 0.198) mm (Hg) = 9.118 mm (Hg) এবং বায়ৢর তাপমাত্রা 23°C এ সম্পৃক্ত জলীয় বাম্পের চাপ, F = 20.24 mm (Hg)

ঐ স্থানের পরিবর্তিত আপেক্ষিক আর্দ্রতা R হলে,

$$R = \frac{f}{F} \times 100\%$$
$$= \frac{9.118}{20.24} \times 100\%$$
$$= 45\%$$

সূতরাং, এসি চালু করার পরে তাপমাত্রা ও আপেক্ষিক আর্দ্রতা উভয়ই দ্রাস পাওয়ায় বিভাগীয় প্রধান স্যার আরাম বোধ করেন।

প্রনা ১৪ কোনো গ্যাস অণুর ব্যাস 3 × 10⁻¹⁰ m এবং প্রতি ঘন্দ্র সেন্টিমিটারে অণুর সংখ্যা 6 × 10³⁰। স্বাভাবিক তাপমাত্রা ও চাপে অণুগুলোর মূলগড় বর্গবেগ 500ms⁻¹।

/বা বেল ২০১৬/

ক. আপেঞ্চিক আর্দ্রতা কী?

খ. পরম আর্দ্রতা বৃন্ধির সাথে গ্যাসীয় অণুর গড় বর্গবেগও বৃন্ধি, পায়— ব্যাখ্যা কর।

গ. N.T.P তে গ্যাসের ঘনত নির্ণয় কর। ৩

ঘ় উদ্দীপকের তথ্য থেকে প্রতি সেকেন্ডে সংঘটিত সংঘর্ষের সংখ্যা-কোন ক্ষেত্রে বেশি? ক্লসিয়াস ও বোল্জম্যানের সমীকরণ ব্যবহার করে তুলনা কর।

৪নং প্রশ্নের উত্তর

ক্র কোনো স্থানে নির্দিষ্ট আয়তনের বায়ুতে উপস্থিত জলীয় বাষ্ণের ভর ও বায়ুর তাপমাত্রায় ঐ আয়তনের বায়ুর সম্পৃক্ত জলীয় বাষ্ণের ভরের অনুপাতকে ঐ স্থানের আপেক্ষিক আর্দ্রতা বলে। যা জলীয় বাচ্পের ঘনত বায়ুর ঘনত অপেক্ষা কম। তাই বায়ুর পরম আর্দ্রতা বৃন্ধি পেলে অর্থাৎ বায়ুতে জলীবাচ্পের পরিমাণ বৃন্ধি পেলে বায়ুর ঘনত্ব প্রাস পায়। আমরা জানি, গ্যাস অণুর গড় বর্গবেগ,

$$\overline{c^2} = \frac{3P}{\rho}$$

সমীকরণ থেকে দেখা যায়, চাপ স্থীর থাকলে গ্যাস অণুর গড় বর্গবেগ চাপের ব্যাস্তানুপাতিক। এজন্য বায়ুর পরম আর্দ্রতা বৃদ্ধিতে গ্যাস অণুর গড় বৰ্গবৈগ ৰৃদ্ধি পায়।

্য এখানে,

গ্যাস অণুগুলোর মূল গড় বর্গ বেগ, $\sqrt{c^2} = c = 500 \text{ m} \cdot \text{s}^{-1}$ গ্যানের চাপ, P = 101325 N·m⁻² গ্যানের ঘনত্ব, $\rho = ?$

আমরা জানি,
$$c = \sqrt{\frac{3P}{\rho}}$$

বা, $\rho = \frac{3P}{c^2}$
বা, $\rho = \frac{3 \times 101325}{(500)^2}$
 $\therefore \rho = 1.2159 \text{ kg·m}^{-3} \text{ (Ans.)}$

হ দেওয়া আছে,

গ্যাস অণুর ব্যাস $\sigma = 3 \times 10^{-10} \,\mathrm{m}$ একক আয়তনে অণুর সংখ্যা $n=6 imes 10^{20}~{
m cm}^{-3}=6 imes 10^{26}~{
m m}^{-3}$ ।

স্থাভাবিক তাপমাত্রা ও চাপে অণুগুলোর মূল গড় বর্গবেগ 500 m·s⁻¹।

ক্লসিয়াসের পশ্বতিতে, গড়মুক্ত পথ
$$\lambda_C = \frac{1}{n\pi\sigma^2}$$

$$= \frac{1}{6 \times 10^{26} \times 3.1416 \times (3 \times 10^{-10})^2}$$
$$= 5.89 \times 10^{-9} \text{ m}$$

বোলজ্ম্যানের পন্ধতিতে,
$$\lambda_B = \frac{3}{4n\pi\sigma^2} = \frac{3}{4} \times \lambda_C$$

$$=\frac{3}{4} \times 5.89 \times 10^{-9} \,\mathrm{m}$$

$$= 4.42 \times 10^{-9} \text{ m}$$

কোনো অণুর একক সময়ে অতিক্রান্ত দূরত্ব,

 $l = vt = ct = 500 \text{ m} \cdot \text{s}^{-1} \times 1\text{s} = 500 \text{ m}$

কোনো অণু । দূরত্ব অতিক্রম করতে N সংখ্যক ধাক্কা খায় তবে গড় মুক্ত পথ, $\lambda = \frac{I}{N}$

ৰা,
$$N = \frac{l}{\lambda}$$

্রক্রসিয়াসের পম্পতিতে ধাক্কা সংখ্যা, $N_C = \frac{I}{\lambda_C} = \frac{500 \text{ m}}{5.89 \times 10^{-9} \text{ m}}$ $= 8.48 \times 10^{10} \, \text{fb}$

বোলজম্যানের পশ্বতিতে ধাক্কার সংখ্যা, $N_B = \frac{I}{\lambda_B} = \frac{500 \text{ m}}{4.42 \times 10^{-9} \text{ m}}$ = 1.13 × 10¹¹ ਿ

সুতরাং বলা যায়, বোলজ্ম্যানের সমীকরণ অনুযায়ী প্রতি সেকেন্ডে ধার্ক্কার সংখ্যা ক্রসিয়াসের সমীকরণ অনুযায়ী ধার্ক্কার সংখ্যা অপেক্ষা বেশি।

প্রাচ ▶ ৫ 2 cm³ আয়তনের দুটি অভিন্ন পাত্র A ও B । A পাত্রে O₂ ও B পাত্রে N2 নিয়ে নিচের চিত্রে প্রদর্শিত চাপ পাওয়া গেল :

 $^{\circ}P = 3 \times 10^{5} \text{ Nm}^{-2} P = 3.66 \times 10^{5} \text{ Nm}^{-2}$

ক. শিশিরাজ্ঞ কাকে বলে?

খ, একই আয়তনের দুটি বায়ুপূর্ণ বেলুনকে ভিন্ন তাপমাত্রায় রাখলে কি ঘটবে? ব্যাখ্যা কর।

গ. A পাত্রে গ্যাসের গতিশক্তি কত?

পাত্র A ও পাত্র B এর মধ্যে কোনটি বেশি উত্তপ্ত হবে— গাণিতিক বিশ্লেষণ করে মতামত দাও।

৫ নং প্রশ্নের উত্তর

ক যে তাপমাত্রায় কোনো স্থানের বায়ু উপস্থিত জলীয় বাষ্প দ্বারা সম্পৃত্ত হয়ে শিশির জমতে শুরু করে তাকে শিশিরাভক বলে।

থা একই আয়তনের দুটি বায়ুপূর্ণ বেলুনকে ভিন্ন তাপমাত্রায় রাখলে $rac{V_2}{T_c}$ $=rac{V_1}{T_1}$ সূত্রানুসারে বেশি তাপমাত্রার বেলুনের আয়তন বেশি হবে, কারণ উভয়ক্ষেত্রে চাপ বায়ুমন্ডলীয় চাপের সমান হবে।

প দেওয়া আছে.

A পাত্রের আয়তন, V = 2 cm³ = 2 × 10⁻⁶m³ এবং চাপ, P = 3 × 10⁵ Nm⁻²

∴ A পাত্রে গ্যাসের গতিশক্তি
$$E_A = \frac{3}{2} PV$$

$$= \frac{3}{2} \times 3 \times 10^5 \ Nm^{-2} \times 10^{-6} m^3$$

$$= 0.9 J$$

থা পাত্র B এর ক্ষেত্রে, চাপ, P = 3.66 × 10⁵ Nm⁻² এবং আয়তন, V = 2 × 10⁻⁶m³

পাত্র B এর গ্যাসের গতিশক্তি = $\frac{3}{2}$ PV = $1.5 \times 3.66 \times 10^5$ Nm $^{-2} \times 2 \times 10^{-6}$ m 3

এই গতিশক্তি তাপর্পে দেখা দিবে, যা স্বস্থ পাত্রকে উত্তপ্ত করবে। যদি N2 গ্যাসের পাত্রের মোট গতিশক্তি O2 পাত্রের তুলনায় বেশি, কিন্তু উদ্দীপকে তাদের মোল সংখ্যা অনুপস্থিত। তাই তাদের তাপমাত্রা নির্ণয় অসম্ভব। উভয় ক্ষেত্রে nmole গ্যাস বিবেচনা করলে,

$$P_A V_A = n R T_A$$

$$P_B V_B = n R T_B$$

$$\therefore \frac{P_A}{P_B} \cdot \frac{V_A}{V_B} = \frac{T_A}{T_B}$$

$$\exists I, \frac{T_A}{T_B} = \frac{P_A}{P_B}$$

$$= \frac{3}{3.66}$$

 $T_B > T_A$;

অতএব, সমপরিমাণ গ্যাস বিবেচনা করলে B পাত্রটি বেশি উত্তপ্ত হবে। প্রশ্ন ▶ঙ একটি গ্যাস সিলিভারের আয়তন 1.5 m³। সিলিভারটিতে 27° C তাপমাত্রায় কোনো গ্যাসের 30×10^{25} টি অণু আবন্ধ আছে। গ্যাস অণুর ব্যাস 25 × 10⁻¹⁰ m । পরবর্তীতে উক্ত গ্যাসপূর্ণ সিলিভারটি

সমআয়তনের অপর একটি খালি সিলিভারের সাথে যুক্ত করা হল। 19. (41. 2029)

ক. আদর্শ গ্যাস কাকে বলে?

ণ্যাসের গতিতত্ত্ব বয়েলের সূত্রকে সমর্থন করে— ব্যাখ্যা কর।২

সিলিভারে আবন্ধ গ্যাসের গতিশক্তি নির্ণয় কর।

খালি সিলিভার যুক্ত করায় গ্যাসের অণুর গড় মুক্ত পথের পরিবর্তন হবে কিনা গাণিতিক বিশ্লেষণপূর্বক মতামত দাও।8

৬নং প্রশ্নের উত্তর

🐼 যে সকল গ্যাস সকল তাপমাত্রা ও চাপে বয়েলের সূত্র ও চার্লসের lat. বো. ২০১৫/ সূত্র মেনে চলে তাদেরকে আদর্শ গ্যাস বলে।

থ গ্যাসের গতিতত্ত্ব অনুসারে,

$$PV = \frac{1}{3} \, mN \, \overline{c^2}$$

যেহেতু, $\overline{c^2} \propto T$ সেহেতু স্থির তাপমাত্রায় নির্দিষ্ট ভরের গ্যাসের জন্য,

$$\frac{1}{3} \, m N \, \overline{c^2} = {\bf A}^{3} \, |$$

অতএৰ, PV = ধ্ৰুব

$$\therefore P \propto \frac{1}{V}$$

অর্থাৎ স্থির তাপমাত্রায় নির্দিষ্ট ভরের গ্যাসের চাপ এর আয়তনের ব্যস্তানুপাতিক। এটাই বয়েলের সূত্র। অতএব, গ্যাসের গতিতত্ত্ব বয়েলের সূত্রকে সমর্থন করে।

এখানে.

P = গ্যামের চাপ

m = অণুর ভর

V = গ্যাসের আয়তন

N = মোট অনুর সংখ্যা

c = অণুর মূল গড় বর্গবেগ।

প দেওয়া আছে,

তাপমাত্রা, $T = 27^{\circ}\text{C} = (273 + 27) \text{ K} = 300 \text{ K}$ অণুর সংখ্যা, $N = 30 \times 10^{25}$ বোল্টজম্যান ধ্রুবক, $k = 1.38 \times 10^{-23} \text{ J-K}^{-1}$ গতিশক্তি, E = ?

আমরা জানি,

$$E = N \times \frac{3}{2} kT$$

= 30 × 10²⁵ × 1.5 × 1.38 × 10⁻²³ × 300
= 1.863 × 10⁶ J (Ans.)

ব দেওয়া আছে,

গ্যাসপূর্ণ সিলিভারের আয়তন, $V_1 = 1.5 \text{ m}^3$ অণুর ব্যাস, $\sigma = 25 \times 10^{-10} \text{ m}$

খালি সিলিভারের সাথে যুক্ত করার পর আয়তন, $V_2 = 2V_1$ প্রাথমিক অবস্থায় একক আয়তনে অণু সংখ্যা, $n_1 = \frac{N}{V_1}$

শেষ অবস্থায় একক আয়তনে অণু সংখ্যা, $n_2 = \frac{N}{V_2} = \frac{N}{2V}$

আমরা জানি, $\lambda = \frac{1}{\sqrt{2}\pi\sigma^2 n}$

অণুর ব্যাস, σ ধুব বলে $\lambda \propto \frac{1}{n}$

প্রথমে ও শেষে গড়মুক্ত পথ যথাক্রমে λ_1 ও λ_2 হলে,

$$\frac{\lambda_2}{\lambda_1} = \frac{n_1}{n_2} = \frac{N}{V_1} \times \frac{2V_1}{N} = 2$$

 $\lambda_2 = 2\lambda_1$

অতএব, খালি সিলিভার যুক্ত করায় গ্যাসের অণুর গড় মুক্তপথ দ্বিগুণ হবে।

প্রস্ন ▶ ৭ কোনো একদিন রাজশাহীর তাপমাত্রা 35°C এবং আপেঞ্চিক আর্দ্রতা 50%। একই সময়ে কক্সবাজারে স্থাপিত একটি হাইগ্রোমিটারের শুষ্ক থার্মোমিটারের পাঠ 35°C এবং আর্দ্র থার্মোমিটারের পাঠ 30°C। 35°C তাপমাত্রায় প্লেইসারের উৎপাদক এর মান 1.60। 26°C, 28°C এবং 35°C তাপমাত্রায় সম্পৃত্ত জলীয়বাজ্পের চাপ যথাক্রমে 25.21, 28.35 এবং 42.16 mm পারদ। /দি. বো. ২০১৬/

- ক. স্থিতিস্থাপক গুণাডক কাকে বলে?
- খ, সব দোলক সরল দোলক নয়-ব্যাখ্যা কর।
- উদ্দীপক অনুসারে কক্সবাজারের শিশিরাজ্ঞ নির্ণয় কর।
- ঘ. একই তাপমাত্রা হওয়া সত্ত্বেও রাজশাহীর চেয়ে কক্সবাজারে কোনো ব্যক্তির অধিক অস্বস্তি অনুভব করার কারণ কী–গাণিতিক বিশ্লেষণপূর্বক মতামত দাও।

৭নং প্রয়ের উত্তর

ক স্থিতিস্থাপক সীমার মধ্যে কোনো বন্ধুর পীড়ন ও বিকৃতির অনুপাত একটি ধুবসংখ্যা। এই ধুব সংখ্যাকে ঐ বন্ধুর উপাদানের স্থিতিস্থাপক গুনাংক বলে।

একটি ক্ষুদ্র ভারী বস্তুকে ওজনহীন পাকহীন অপ্রসারণশীল নমনীয় সূতার সাহায্যে কোনো দৃঢ় অবলয়ন হতে ঝুলিয়ে দিলে যদি তা বিনা বাধায় অল্প বিস্তারে (4°) এদিক ওদিক দুলতে পারে তবে তাকে সরল দোলক বলে। একটি দোলকে এ সকল শর্ত পুরণ হলেই সেটি সরল দোলক হবে, অন্যথায় যেমন: বিস্তার অনেক বড় হলে সেটি দোলক হলেও সরল দোলক হবে না।

্যা দেয়া আছে,

শুষ্ক থার্মোমিটারের পাঠ, $\theta_1 = 35^{\circ}$ C আর্দ্র থার্মোমিটারের পাঠ, $\theta_2 = 30^{\circ}$ C গ্রেইসারের উৎপাদক, G = 1.60শিশিরাংক, $\theta = ?$

আমরা জানি, $\theta = \theta_1 - G(\theta_1 - \theta_2)$ = 35°C - 1.60(35°C - 30°C) = 27°C (Ans.)

ম দেয়া আছে.

রাজশাহীর আপেক্ষিক আর্দ্রতা, $R_1 = 50\%$

কক্সবাজার বায়ুর তাপমাত্রায় সম্পৃত্ত জলীয়বাম্পের চাপ,

F = 42.16 mm পারদ

'ণ' অংশ হতে পাই, কক্সবাজারে শিশিরাংক, θ = 27°C

∴ শিশিরাংকে সম্পৃত্ত জলীয়বাম্পের চাপ = 26°C তাপমাত্রায় সম্পৃত্ত বাম্পচাপ + 1°C তাপমাত্রা পরিবর্তনে বাম্প চাপের বৃশ্বি ।

$$f = 25.21 + \frac{28.35 - 25.21}{2} \times 1$$

= 26.78 mm পারদ

 \therefore কক্সবাজারে আপেন্দিক আর্দ্রতা, $R_2 = \frac{f}{F} \times 100\%$

$$=\frac{26.78}{42.10} \times 100\% = 63.52\%$$

যেহেতু $R_1 > R_1$ । অর্থাৎ রাজশাহী ও কক্সবাজারের তাপমাত্রা এক থাকলেও কক্সবাজারের আপেক্ষিক আর্দ্রতা বেশি। এ কারণে কক্সবাজারে কোনো ব্যক্তির শরীর থেকে নির্গত ঘাম কম শুকাবে এবং ঘাম বাম্পায়নের জন্য কক্সবাজারে কম সুপ্ত তাপের প্রয়োজন হবে। তাই রাজশাহীর তুলনায় কক্সবাজারের ব্যক্তির শরীর কম তাপ হারাবে। অর্থাৎ গরম অনুভূত হবে। ফলে কক্সবাজারে ব্যক্তি অধিক অস্বস্থি অনুভব করবে।

回訓▶৮

$$P_x = 4 \times 10^{5} \text{N} - \text{m}^{2}$$

$$V_x = 4 \text{ litre}$$

$$T_x = 600 \text{ k}$$

$$P_y = 8 \times 10^5 \text{N} - \text{m}^2$$

$$V_y = 8 \text{ litre}$$

$$T_y = 650 \text{ k}$$

$$Y$$

চিত্রে X ও Y সিলিভারে কিছু গ্যাস আছে। যাদের ঘনত্ব p kg/m³ এবং ভর সমান।

ক্ৰ ঝণাত্মক কাজ কাকে বলে?

- খ্ সকল হারমোনিকই উপসুর কিন্তু সকল উপসুর হারমোনিক? নয়। ব্যাখ্যা কর।
- গ. X ও Y সিলিভারের গ্যাসের গড় বর্গমূল বেপের তুলনা কর। ৩
- ঘ. X ও Y পাত্র দৃটিকে একটি নল দ্বারা যুক্ত করা হলে গ্যাসের অণুগুলি X পাত্র হতে Y পাত্রে যাবে কি? তোমার উত্তরের সপক্ষে যুক্তি দাও।

🔯 কোনো বস্তুর ওপর বল প্রয়োগের ফলে বলের বিপরীত দিকে বস্তুর সরণ ঘটলে বা বলের বিপরীত দিকে সরণের উপাংশ থাকলে তাহলে বল ও সরণের উপাংশের গুণফলকে ঝণাত্মক কাজ বলে।

🔯 কোনো স্বরে যেসব বিভিন্ন সুর থাকে, তাদের মধ্যে যে সুরের কম্পান্তক সবচেয়ে কম, তাকে মূল সুর বলে। অন্যান্য সুর যাদের কম্পান্তক মূল সূরের কম্পান্তেকর চেয়ে বেশি, তাদেরকে উপসূর বলা হয়। আবার, উপসুরগুলোর কম্পাডক যদি মূল সুরের কম্পাডেকর সরল গুণিতক হয়, তাহলে সেই সকল উপসূরকে হারমোনিক বলে। এ কারণেই সকল হারমোনিক উপসূর হলেও সকল উপসূর হারমোনিক নয়।

ত্তা দেওয়া আছে,

X সিলিভারে গ্যাসের চাপ, $P_x = 4 \times 10^5 \text{ N} \cdot \text{m}^{-2}$

Y সিলিভারে গ্যাসের চাপ, $P_{\rm y}=8\times 10^5~{
m N\cdot m^{-2}}$

বের করতে হবে, এদের গড় বর্গমূল বেগের তুলনা বা অনুপাত,

$$\sqrt{\overline{C_x^2}} : \sqrt{\overline{C_y^2}} = ?$$

গ্যাসম্বয়ের ঘনত্ব সমান বিধায় এরা মূলত একই গ্যাস অর্থাৎ গ্রাম আণবিক ভর M এর মান উভয়ক্ষেত্রে সমান

ভাষরা জানি,
$$\sqrt{\overline{C_y}^2} = \sqrt{\frac{3P_x}{\rho}}$$
 এবং $\sqrt{\overline{C_y}^2} = \sqrt{\frac{3P_y}{\rho}}$
 $\therefore \frac{\sqrt{\overline{C_y}^2}}{\sqrt{\overline{C_y}^2}} = \sqrt{\frac{P_x}{P_y}} = \sqrt{\frac{4 \times 10^5 \text{ N} \cdot \text{m}^{-2}}{8 \times 10^5 \text{ N} \cdot \text{m}^{-2}}} = 0.707$
 $\therefore \sqrt{\overline{C_y}^2} > \sqrt{\overline{C_x}^2}$

অতএব, Y সিলিভারের গ্যাসের গড় বর্গমূল বেগের মান বেশি

🔯 দুটি পাত্রের মধ্যে গ্যামের আদান প্রদান নির্ভর করে গ্যামের চাপের উপর। যেহেতু Y পাত্রে গ্যাসের চাপ বেশি তাই Y পাত্র থেকে গ্যাস X পাত্রে পমন করবে যতক্ষণ না উভয় পাত্রের চাপ সমান হয়। চাপ সমান হওয়ার পর গতিতত্ত্ব অনুসারে উভয় পাত্রের অণুগুলো ইতন্তত বিক্ষিওতাবে ছোটাছটি করতে থাকবে ফলে উভয় পাত্রের মধ্যে অণুর গমনাগমন ঘটতে প্রাক্তে।

2141 > b

দৃটি ভিন্ন পাত্রে সংরক্ষিত 325 gm এবং 288 gm ভরের 10 mole করে যথাক্রমে X গ্যাস ও Y গ্যাস এর জন্য দুটি P – V লেখ অংকিত আছে।

- অপেক্ষিক আর্দ্রতার সংজ্ঞা লিখ।
- খ. কৃষ্টিয়ায় কোনো একদিন সন্ধ্যায় শিশিরাংক 15°C বলতে কি ব্ৰা?
- গ. উদ্দীপক অনুযায়ী গ্যাসদ্বয়ের আয়তনের তুলনা $(V_1:V_2)$
- পাত্র দুটির মুখ একই সময়ে খুলে দিলে কোন পাত্রটি আগে খালি হবে- গাণিতিকভাবে বিশ্লেষণ কর।

৯নং প্রশ্নের উত্তর

🚰 নির্দিন্ট তাপমাত্রায় নির্দিন্ট আয়তনের বায়ুতে উপস্থিত জলীয় বাম্পের ভর এবং ঐ তাপমাত্রায় ঐ স্থানের বায়ুকে সম্পৃত্ত করতে প্রয়োজনীয় জলীয় বাষ্পের ভরের অনুপাতকে ঐ স্থানের অপেক্ষিক আৰ্দ্ৰতা বলে।

🗃 কুষ্টিয়ায় কোন একদিন সন্ধ্যায় শিশিরাঙ্ক 15°C বলতে বুঝায়, ঐ স্থানে 15°C তাপমাত্রায় উপস্থিত জলীয় বাষ্প দ্বারা উক্ত স্থানের বায়ু সম্পুত্ত হবে এবং তা ঘনীভূত হয়ে শিশির জমতে শুরু করবে।

ল দেওয়া আছে.

প্রথম পাত্রে,

গ্যাসের তাপমাত্রা, $T_1 = 305 \text{ K}$ গ্যান্সের চাপ, P1 = 15 kPa আয়তন, V,

দ্বিতীয় পাত্রে,

গ্যান্সের তাপমাত্রা, $T_2 = 405 \; {
m K}$ গ্যানের চাপ, $P_2 = 21 \text{ kPa}$ আয়তন, V,

আমরা জানি

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$
 [ে মোলসংখ্যা সমান] বা, $\frac{V_1}{V_2} = \frac{P_2T_1}{P_1T_2}$ বা, $\frac{V_1}{V_2} = \frac{21 \times 305}{15 \times 405}$ বা, V_1 है $V_2 = 427$ ই 405 (Ans.)

হা জানা আছে,

তাহলে,
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

বা, $\frac{15V_1}{305} = \frac{21V_2}{405}$
বা, $\frac{V_1}{V_2} = \frac{305 \times 21}{405 \times 15}$
আবার,

লেখচিত্ৰ হতে, ১ম গ্যাসের ক্ষেত্রে, $P_1 = 15kPa$ $T_1 = 305 \text{ K}$ তর, m₁ = 325 gm ২য় গ্যাসের ক্ষেত্রে, $P_1 = 21 \text{ kPa}$ $T_2 = 405 \text{ K}$ ভর, m₂ = 288 gm

$$=\frac{K}{\sqrt{m_{/V}}}$$

$$\therefore \frac{r_1}{r_2} = \sqrt{\frac{(m_2/V_2)}{(m_1/V_1)}} = \sqrt{\frac{m_2}{m_1} \cdot \frac{V_1}{V_2}}$$

$$= \sqrt{\left(\frac{288}{328}\right) \times \frac{305 \times 21}{405 \times 15}} \left[\therefore \frac{V_1}{V_2}$$
 এর মান বসিয়ে $\right]$

$$r_1 = 0.96 \times r_2$$

$$\therefore r_1 < r_2$$
থাহেতু $r \propto \frac{1}{r}$ তাই $t_2 < t_1$

থেহেতু $r \propto \frac{1}{t}$ তাই $t_2 < t_1$

অতএব, ২য় পাত্রটি দুত নিঃশেষ হবে।

প্রস়▶১০ নিচের চিত্রে A ও B দৃটি পাত্রে একটির মধ্যে নাইট্রোজেন গ্যাস ও অপরটিতে একটি অজানা গ্যাস রয়েছে।

চাপ,
$$P = 42 \text{ MPa}$$
 $c_{rms} = 1500 \text{ ms}^{-1}$
 $V = 10^{-3}\text{m}^3$
 $n = 2 \text{ mole}$

P = 52 MPa $c_{rms} = 1600 \text{ ms}^{-1}$ $V = 10^{-3} \text{m}^3$ n = 2 mole পাত্ৰ-B

15. CAT. 2014/

- ক, আদর্শ গ্যাস কাকে বলে?
- গ্যাসের ক্ষেত্রে ঘনত্ব বনাম তাপমাত্রা লেখচিত্রের প্রকৃতি কেমন ব্যাখ্যা কর।
- S.T.P তে পাত্র-B তে রক্ষিত ণ্যাসের গতিশক্তি নির্ণয় কর।
- কোন পাত্রে জানা গ্যাসটি আছে বলে তুমি মনে কর? উদ্দীপকের তথ্য হতে তোমার গাণিতিকভাবে মতামত দাও।

🕏 যেসব গ্যাস সকল তাপমাত্রা ও চাপে বয়েলের সূত্র ও চার্লসের সূত্র পূর্ণরূপে মেনে চলে তাদেরকে আদর্শ গ্যাস বলে।

🛂 স্থির চাপে গ্যাসের ঘনত্ব এর পরম তাপমাত্রার ব্যস্তানুপাতিক। গ্যাসের ঘনত ho এবং পরম তাপমাত্রা T এর মধ্যে সম্পর্ক হলো, $ho imes rac{1}{T}$ preceiveএই সমীকরণ হতে দেখা যায় তাপমাত্রা বৃদ্ধি পেলে ঘনত্ব কমে। লেখচিত্রটি হবে নিমন্ত্রপ–

্য এখানে, মোলার গ্যাস ধ্বক, $R = 8.314 \ \mathrm{J \cdot mol^{-1} \ K^{-1}}$ STP তে তাপমাত্রা, T=273 K মোল সংখ্যা, n=2 mol পাত্র B তে রক্ষিত গ্যাসের অণুগুলোর গতিশস্তি E হলে

$$E = \frac{3}{2} n RT = \frac{3}{2} \times 2 \text{ mol} \times 8.314 \text{ J·mol}^{-1} \cdot \text{K}^{-1} \times 273 \text{ K}$$

= 6809.166 J

STP তে পাত্র B তে রক্ষিত গ্যাসের গতিশক্তি 6809.166 J (Ans.)

ঘ উদ্দীপক হতে পাই, A পাত্রে গ্যাসের

 $P_1 = 42 \text{ MPa} = 42 \times 10^6 \text{ Pa}$

আয়তন, V₁ = 10⁻³ m³

মোল সংখ্যা, n=2 mol

মূল গড় বৰ্গবৈগ, C_{rms} = 1500 m·s⁻¹

আমরা জানি, $P_1V_1 = nRT_1$

$$\therefore RT_1 = \frac{P_1V_1}{n} = \frac{42 \times 10^6 \times 10^{-3}}{2} = 21 \times 10^3 \text{ J·mol}^{-1}$$

$$\therefore C_{\text{rms}_1} = \sqrt{\frac{3 RT_1}{M_1}}$$

$$\exists 1, (1500)^2 = \frac{3 \times 21 \times 10^3}{M_1}$$

∴
$$C_{\text{rms}_1} = \sqrt{\frac{3 K I_1}{M_1}}$$

 $\boxed{41, (1500)^2 = \frac{3 \times 21 \times 10^3}{M_1}}$

 $M_1 = 0.028 \text{ kg} = 28 \text{ gm}$

∴ A পাত্রে রক্ষিত গ্যাসের গ্রাম আনবিক ভর = 28 gm

অনুরূপভাবে পাওয়া যায়, B পাত্রে রক্ষিত গ্যাসের গ্রাম আনবিক ভর = 30.47 gm

আমরা জানি, নাইট্রোজেন গ্যাসের গ্রাম আনবিক ভর 28 gm এবং A পাত্রে রক্ষিত গ্যাসের গ্রাম আনবিক ভরও 28 gm.

অতএব A পাত্রে নাইট্রোজেন গ্যাস আছে।

প্রশ্ন ১১১ নির্দিষ্ট তাপমাত্রায় কোনো অক্সিজেন গ্যাস অণুর গড় বর্ণবেগের বর্ণমূল মান 11.2 kms⁻¹। ঘনত্বের পরিবর্তন না করে গ্যাসকে এমনভাবে ঠান্ডা করা হল যেন এর চাপ অর্ধেক হয়।

15 (M. 2030)

ক, সার্বজনীন গ্যাস ধ্রবক কাকে বলে?

বলের ঘাতের বৈশিষ্ট্য কি কি?

গ. ঠান্ডা করার পরে অক্সিজেন গ্যাস অণুর শেষ গড় বর্গবেণের বর্গমূল মান কত?

ঘ. নাইট্রোজেন অণুর গড় বর্গবেগের বর্গমূল মান 27°C তাপমাত্রায় অক্সিজেন অণুর গড় বর্গবেণের বর্গমূল মানের সমান হতে হলে, তাপমাত্রার ধারণা থেকে গাণিতিক বিশ্লেষণ कद्र ।

১১ নং প্রশ্নের উত্তর

ক এক মোল আদর্শ গ্যাসের জন্য PVIT একটি ধুব সংখ্যা। সকল আদর্শ গ্যাসের জন্য এর মান একই হয় বলে একে সার্বজনীন গ্যাস ধ্বক বলে। এর মান 8,314 J-mol-1-K-1।

বা বলের ঘাত হলো বলের মান ও ক্রিয়াকালের গুণফল। এর একক N·s বা kg·m·s[া]। এটি বস্তুর ভরবেণের পরিবর্তনের সমান। এর মাত্রা MLT⁻¹। এগুলোই বলের ঘাতের বৈশিষ্ট্য।

প্র দেওয়া আছে,

গড় বৰ্ণবেগের বৰ্ণমূলের আদি মান, $\sqrt{c_1^2} = 11.2 \; {
m km s}^{-1}$ আদি চাপ P_1 হলে পরিবর্তিত চাপ, $P_2 = P_1/2$

বের করতে হবে, গড় বর্গবেণের বর্গমূলের পরিবর্তিত মান, $\sqrt{c_{\gamma}^{-2}}=?$ আমরা পাই, $\sqrt{c_1^2} = \sqrt{\frac{3P_1}{\rho}}$ এবং $\sqrt{c_2^2} = \sqrt{\frac{3P_2}{\rho}}$

$$\therefore \frac{\sqrt{\overline{c_2}^2}}{\sqrt{\overline{c_1}^2}} = \sqrt{\frac{3P_2}{\rho}} \times \sqrt{\frac{\rho}{3P_1}} = \sqrt{\frac{P_2}{P_1}} = \sqrt{\frac{P_1}{2P_1}} = 0.707$$

 $\therefore \sqrt{c_2^2} = 0.707 \times \sqrt{c_1^2} = 0.707 \times 11.2 \text{ km·s}^{-1} = 7.92 \text{ km·s}^{-1} \text{ (Ans.)}$

ম অক্সিজেনের মোলার আণবিক ভর, $M_1 = 32~\mathrm{gm}$ নাইট্রোজেনের মোলার আণবিক ভর, $M_2=28~\mathrm{gm}$

ৰগাঁৰেগের বৰ্গমূল,
$$\sqrt{\frac{2}{c_1^2}} = \sqrt{\frac{3RT_1}{M_1}}$$

এবং 🔈 তাপমাত্রায় নাইট্রোজেন অণুর গড় বর্গবেগের বর্গমূল,

$$\sqrt{c_2^{-2}}=\sqrt{\frac{3RT_2}{M_2}}$$
 প্রসমতে, $\sqrt{c_2^{-2}}=\sqrt{c_1^{-2}}$ বা, $\sqrt{\frac{3RT_2}{M_2}}=\sqrt{\frac{3RT_1}{M_1}}$ বা, $\frac{T_2}{M_2}=\frac{T_1}{M_1}$

$$T_2 = \frac{T_1}{M_1} \times M_2 = 300 \text{ K} \times \frac{28}{32} = 262.5 \text{ K}$$

সূতরাং 262.5 K বা, -10°C তাপমাত্রায় নাইট্রোজেন অণুর গড় বর্গবেগের বর্গমূল মান 27°C তাপমাত্রায় অক্সিজেন অণুর গড় বর্গবেগের বর্গমূল মানের সমান হবে।

প্রবার্টি সিলিভারে 127°C তাপমাত্রা ও 72 cm পারদ চাপে 3 gm হিলিয়াম গ্যাস রাখা আছে। একই পরিমাণ হিলিয়াম গ্যাস অপর একটি সিলিভারে STP তে রাখা হল। 15. (11. 2019)

ক. পরবর্গ কম্পন কাকে বলে?

বক্রপথে ব্যাংকিং প্রয়োজন কেন? ব্যাখ্যা কর।

গ্রপ্তম সিলিভারে গ্যাসের আয়তন হিসাব কর।

ঘ় সিলিভার দুটিতে গ্যাসের গতিশক্তি নির্ণয় পূর্বক তাপমাত্রা তলনা করে ফলাফল বিশ্লেষণ কর।

১২ নং প্রশ্নের উত্তর

ক্ত কোনো স্পন্দনক্ষম বস্তু যখন অন্য কোনো পর্যাবৃত্ত বলের প্রভাবে কাঁপতে থাকে তখন তার কম্পনকে পরবশ কম্পন বা আরোপিত কম্পন বলে।

🛂 প্রয়োজনীয় কেন্দ্রমুখী বলের যোগান দেওয়ার জন্য বক্রপথে ব্যাংকিং প্রয়োজন। মোটর বা বেলগাড়ি যখন বাঁক নেয় তখন বাঁকা পথে ঘুরার জন্য একটা কেন্দ্রমুখী বলের প্রয়োজন হয়। এ কেন্দ্রমুখী বল পাওয়া না গেলে গাড়ি গতি জড়তার কারণে বাঁকাপথের স্পর্শক বরাবর চলে যাবে। অনেক সময় গাড়ি উল্টে পড়ে গিয়ে দুর্ঘটনায় পতিত হয়। এই দুর্ঘটনা প্রতিহত করার জন্যই বক্রপথে ব্যাংকিং প্রয়োজন।

🗿 ১ম সিলিভারের ক্ষেত্রে,

চাপ,
$$P = 72$$
 cm পারদ = $0.72 \times 13596 \times 9.8$ Pa = 9.593×10^4 Pa

তাপমাত্রা, T = 127°C = (127 + 273) K = 400 K হিলিয়াম গ্যাসের ভর, $m=3~\mathrm{gm}$ হিলিয়ামের আণবিক ভর, M = 4 gm/mol

.: হিলিয়ামের মোল সংখ্যা, $n = \frac{m}{M} = 0.75 \text{ mol}$ গ্যাসের আয়তন, V = ? আমরা জানি,

$$PV = nTR$$

$$\therefore V = \frac{nRT}{P} = \frac{0.75 \times 8.314 \times 400}{9.593 \times 10^4}$$

$$= 2.6 \times 10^{-2} \text{ m}^3 \text{ (Ans.)}$$

য় উদ্দীপক হতে পাই,

১ম সিলিভারে গ্যাসের তাপমাত্রা, $T_1 = 127^{\circ}\text{C} = 400 \text{ K}$ STP তে ২য় সিলিভারের গ্যাসের তাপমাত্রা, $T_2 = 273 \text{ K}$ হিলিয়ামের মোল সংখ্যা, n = 0.75 mol

১ম সিলিভারে গ্যাসের গতিশক্তি, $E_1 = \frac{3}{2} nRT_1$

=
$$1.5 \times 0.75 \times 8.31 \times 400$$

= 3.74×10^3 J

২য় সিলিভারে গ্যাসের গতিশক্তি, $E_2 = \frac{3}{2} nRT_2$

=
$$1.5 \times 0.75 \times 8.14 \times 273$$

= 2.55×10^3 J

লক্ষ্য করি, $T_1 > T_2$ এবং $E_1 > E_2$

অতএব, ১ম সিলিভারে গ্যাসের তাপমাত্রা ২য় সিলিভারে গ্যাসের তাপমাত্রার চেয়ে বেশি হওয়ায় ১ম সিলিভারে গ্যাসের অণুগুলার গতিশক্তি ২য় সিলিভারে গ্যাসের গতিশক্তি অপেন্ধা বেশি।

প্রসা>১০ একদিন হাইগ্রোমিটারের পাঠ নিতে গিয়ে দেখা গেল শুক্ত ও আর্দ্র বালবের তাপমাত্রা যথাক্রমে 20°C এবং 12.8°C। 20°C তাপমাত্রায় গ্লেইসারের উৎপাদক 1.79। 7°C, 8°C ও 20°C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ যথাক্রমে 7.5 × 10⁻³, 8.1 × 10⁻³ ও 17.4 × 10⁻³ পারদচাপ।

/চ. বে! ২০১৬/

ক, প্রমাণ চাপ কী?

খ. গ্যাস ও বাম্পের মধ্যে দৃটি পার্থক্য লেখ।

গ্র জ দিনের শিশিরাজ্ঞ নির্ণয় কর।

আপেক্ষিক আর্দ্রতা নির্ণয়পূর্বক আবহাওয়ার পূর্বাভাস বিশ্লেষণ
 কর।
 ৪

১৩নং প্রগ্নের উত্তর

ক সমৃত্রপৃষ্ঠে 45° অক্ষাংশে 0°C তাপমাত্রার 760 mm বিশুল্ধ পারদস্তস্কে চাপকে প্রমাণ চাপ ধরা হয়।

বি কোনো পদার্থের তাপমাত্রা এর ক্রান্তি তাপমাত্রা অপেক্ষা কম হলে
তাকে বান্প বলে। আর কোনো পদার্থের তাপমাত্রা এর ক্রান্তি তাপমাত্রা
অপেক্ষা অধিক হলে তাকে গ্যাস বলে। তাপমাত্রা ঠিক রেখে গ্যাসকে
শুধু চাপ প্রয়োগে তরলে পরিণত করা যায় না, বাম্পকে তরলে পরিণত
করা যায়।

্র দেয়া আছে,

শুষ্ক বান্তের তাপমাত্রা, $\theta_1 = 20^{\circ}$ C আর্দ্র বান্তের তাপমাত্রা, $\theta_2 = 12.8^{\circ}$ C 20° C এ গ্লেইসার উৎপাদক, G = 1.79 শিশিরাঙ্ক, $\theta = ?$

জানা আছে.

$$\theta = \theta_1 - G(\theta_1 - \theta_2)$$

= 20 - 1.79 (20 - 12.8)
= 7.112°C

সূতরাং ঐ দিনের শিশিরাজ্ক 7.112°C। (Ans.)

8°C এ সম্পৃক্ত জলীয় বাম্পের চাপ 8.1 × 10⁻³ m HgP 7°C এ সম্পৃক্ত জলীয় বাম্পের চাপ 7.5 × 10⁻³ m HgP ∴1 °C বৃন্ধিতে সম্পৃক্ত জলীয় বাম্পচাপ বৃন্ধি 0.6 × 10⁻³ m HgP 0.112 °C বৃন্ধিতে সম্পৃক্ত জলীয় বাম্পচাপ বৃন্ধি 0.0672 × 10⁻³ m HgP

∴ শিশিরাডক 7.112°C এ সম্পৃত্ত জলীয় বাচ্প চাপ, f = (7.5 + 0.0672) × 10⁻³ m HgP = 7.5672 × 10⁻³ m HgP

বায়ুর তাপমাত্রা 20°C এ জলীয় বাম্প চাপ, $F = 17.4 \times 10^{-3}$ m HgP আমরা জানি,

আপেঞ্চিক আর্ন্রতা,
$$R = \frac{f}{F} \times 100\% = \frac{7.5672 \times 10^{-3} \text{ m HgP}}{17.4 \times 10^{-3} \text{ m HgP}}$$

= 43.49%

আপেন্ধিক আর্দ্রতা 43.49%। তাই বলা যায় ঐ দিন ঐ স্থানের আবহাওয়া শুষ্ক ও রৌদ্রোজ্বল থাকবে।

প্রশা>১৪ একজন আবহাওয়াবিদ দৈনিক প্রতিবেদন তৈরির জন্য কোনো একদিন ঢাকা ও রাজশাহীতে স্থাপিত দুটি সিক্ত ও শুষ্ক বালব আর্দ্রতামাপক যন্ত্রের মাধ্যমে নিচের উপাত্তগুলো সংগ্রহ করলেন:

স্থান	শুষ্ক বালব থাৰ্মো পাঠ	সিক্ত বালব থার্মো পাঠ	বায়ুর তাপমাত্রায় শ্লেসিয়ারের উৎপাদক
ঢাকা	28.6°C	20°C	1.664
রাজশাহী	32.5°C	22°C	1.625

[14°C, 16°C, 28°C, 30°C, 32°C, 34°C তাপমাত্রায় সম্পৃত্ত জলীয়বাম্প চাপ যথাক্রমে 11.99, 13.63, 28.35, 31.83, 35.66 এবং 39.90 mm Hg]

নিচের প্রশ্নগুলোর উত্তর দাও :

15. 641. 20301

9

ক, আদর্শ গ্যাস কী?

থ. একক চাপে এক মোল কোনো গ্যাসের আয়তন বনাম পরম তাপমাত্রা লেখচিত্রের ঢাল কী নির্দেশ করে?

গ্য, ঐ দিনে ঢাকার শিশিরাংক কত ছিল?

 উপরোক্ত তথ্যমতে কোন ব্যক্তি কোপায় অধিকতর স্বস্তিবোধ করবেন? গাণিতিকভাবে ব্যাখ্যা কর।

১৪ নং প্রয়ের উত্তর

ক্র যে সকল গ্যাস সকল তাপমাত্রা ও চাপে বয়েল ও চার্লসের সূত্র মেনে চলে, তাদেরকে আদর্শ গ্যাস বলে।

আমরা জানি, PV = nRT

$$P=1$$
 এবং $n=1$ অলে, $V=RT$ বা, $\frac{dV}{dT}=R$

সূতরাং একক চাপে এক মোল কোনো গ্যাসের আয়তন বনাম পরম তাপমাত্রা লেখচিত্রের ঢাল আদর্শ গ্যাস ধ্রুবক নির্দেশ করে।

্র দেওয়া আছে,

ঢাকায় শুচ্ছ বান্ধের তাপমাত্রা, $\theta_1 = 28.6^{\circ}$ C এবং আর্দ্র বান্ধের তাপমাত্রা, $\theta_2 = 20^{\circ}$ C বায়ুর তাপমাত্রায় গ্লেসিয়াসের উৎপাদক, G = 1.664শিশিরাংক θ হলে, $\theta = \theta_1 - G(\theta_1 - \theta_2)$ = 28.6° C - 1.664 (28.6° C $- 20^{\circ}$ C) = 14.29° C (Ans.)

য়া ঢাকায় শিশিরাংকে (14.29°C) সম্পৃক্ত বাম্পচাপ,

$$f = 11.99 + \frac{(13.63 - 11.99) \times 0.29}{2} \text{ mm HgP}$$

= 12.228 mm HgP

বায়ুর তাপমাত্রায় (28.6°C) সম্পৃত্ত বাধ্প চাপ,

$$F = 28.35 + \frac{(31.83 - 28.35) \times 0.6}{2}$$
 mm HgP

= 29.394 mm HgP

়: ঢাকায় আপেন্দিক আদ্রতা, $R = \frac{f}{F} = \frac{12.228}{29.394} \times 100\% = 41.6\%$ রাজশাহীতে শিশিরাংক, $\theta = \theta_1 - G(\theta_1 - \theta_2)$

রাজশাহীতে বায়ুর তাপমাত্রায় (32.5°C) সম্পৃক্ত বাষ্প চাপ,

$$F' = 35.66 + \frac{(39.90 - 35.66) \times 0.5}{2} \text{ mm HgP}$$

= 36.72 mmHgP

শিশিরাংকে (15.437°C) সম্পৃত্ত বাষ্প চাপ,

$$f' = 11.99 + \frac{(13.63 - 11.99) \times 1.4375}{2} \text{ mm HgP}$$

= 13.169 mmHgP

:. রাজশাহীতে আপেক্ষিক আর্দ্রতা, $R' = \frac{f'}{F'} \times 100\% = \frac{13.169}{36.72} \times 100\% = 35.86\%$

এ রূপ কম আপেন্দিক আর্দ্রতায় ঘাম হয় না বরং ত্বক শুক্ত হয়ে পড়ে।
ফলে শরীর চর্চর করে। যেহেতু রাজশাহীর আপেন্দি আর্দ্রতা তুলনামূলক
কম তাই রাজশাহীতে ত্বক বেশি শুক্ষ হবে। শুক্ত ত্বকও অম্বন্ধির
কারণ। সূতরাং বলা যায় ঐ ব্যাক্তি ঢাকা অধিকতর ম্বন্ধি বোধ করবেন।

প্রশা ১১৫ কোনো ঘরের তাপমাত্রা 32°C, শিশিরাংক 14°C এবং আপেক্ষিক আর্দ্রতা 48%। ঐ সময় ঘরের বাইরে তাপমাত্রা 11°C ও আপেক্ষিক আর্দ্রতা 70%। 32°C ও 11°C তাপমাত্রায় সম্পৃত্ত জলীয় বাম্পের চাপ যথাক্রমে 33.6 mmHg ও 9.8 mmHg 32°C-এ প্লেইসারের ধ্রুবক 1.63।

সিল্লে বেং ২০১৭/

ক. মূল গড় বৰ্গ বেগ কাকে বলে?

- প্রমাণ চাপ নির্ণয়ে বিশুল্ব পারদ স্তম্ভের প্রয়োজনীয়তা ব্যাখ্যা
 কর।
- ঐ ঘরে ঝুলানো আর্দ্র ও শৃষ্ক বাল্ব হাইগ্রোমিটারে আর্দ্র বাল্ব
 থার্মোমিটার কত পাঠ দেখাবে?
- যদি ঘরের একটি জানালা খুলে দেয়া হয় তাহলে জলীয় বাষ্প কোন দিকে চলাচল করবে গাণিতিক বিশ্লেষণসহ মন্তব্য কর।

১৫নং প্রশ্নের উত্তর

ক গ্যাসানুসমূহের বেণের বর্ণের গড় মানের বর্ণমূলকে গড় বর্গবেগের বর্ণমূল বা মূল গড় বর্গবেগ বলে।

প্র প্রমাণ চাপ নির্ণয়ের ক্ষেত্রে 45° অক্ষাংশে 273K তাপমাত্রায় উল্লছভাবে অবস্থিত 760 mm উচ্চতাবিশিষ্ট শৃষ্ক ও বিশৃন্ধ পারদ স্তম্ভ ব্যবহার করা হয়। এর প্রয়োজনীয়তাগুলো হলোঃ

- পারদ তুলনামূলকভাবে অধিক ঘনতের হওয়া একই উচ্চতায় অধিক চাপ প্রয়োগ করতে সক্ষম।
- পারদের বাম্পচাপ কম হওয়ায় বায়ুমগুলীয় চাপের খুব সামান্য পরিবর্তন হলেও পাঠ নেওয়া সহজ।
- iii. পারদ ব্যবহার করে 273 K তাপমাত্রার কমেও বায়ুমঙলীয় চাপ পরিমাপ করা সম্ভব।

প্র দেওয়া আছে, ছরের তাপমাত্রা, $\theta_1 = 32^{\circ}$ C শিশিরাংক, $\theta = 14^{\circ}$ C 32° C-এ গ্লেইসারের ধ্বক 1.63। আর্দ্র বাবের পাঠ, $\theta_2 = ?$ আমরা জানি,

$$\theta_1 - \theta = G(\theta_1 - \theta_2)$$

বা, 32°C – 14°C = 1.63(32°C – θ_2)

$$\overline{\text{q1}}$$
, $32^{\circ}\text{C} - \theta_2 = \frac{18^{\circ}\text{C}}{1.63} = 11.04^{\circ}\text{C}$

:. $\theta_2 = 32^{\circ}\text{C} - 11.04^{\circ}\text{C} = 20.96^{\circ}\text{C}$ (Ans.)

য ঘরের ভিতরে

32°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ, $F_1=33.6~\mathrm{mm}$ Hg আপেক্ষিক আর্দ্রতা, $R_1=48\%=0.48$

শিশিরাংকে সম্পৃত্ত জলীয় বাচ্পের চাপ f_1 হলে আপেক্ষিক আর্দ্রতা, $R_1=rac{f_1}{F_1}$

 $f_1 = R_1 \times F_1 = 0.48 \times 33.6 \text{ mm Hg} = 16.128 \text{ mm Hg}$

ঘরের বাইরে

 11° C তাপমাত্রায় সম্পৃত্ত জলীয় বাম্পের চাপ, $F_2 = 9.8 \text{ mm Hg}$ আপেন্দিক আর্দ্রতা, $R_2 = 70\% = 0.70$

শিশিরাংকে সম্পৃত্ত জলীয় বাম্পের চাপ 🏂 হলে আপেক্ষিক আর্দ্রতা,

$$R_2 = \frac{f_2}{F_2}$$

 $\therefore f_2 = R_2 \times F_2$

 $= 0.70 \times 9.8 \text{ mm Hg}$

= 6.86 mm Hg

স্বাভাবিক অবস্থায় জলীয় বাচ্প উচ্চ চাপের স্থান হতে নিম্ন চাপেই স্থানের দিকে প্রবাহিত হয়।

যেহেতু f₁ > f₂ সুতরাং জলীয়বাচ্প ঘরের ভেতর থেকে বাইরে বের হবে।

থার ►১৬ বিজ্ঞানের ছাত্রী জৃতি আর্দ্রতা মাপক যান্তের সাহায্যে দুপুরের

তাপমাত্রা পেল 32°C। ঐ দিনের শিশিরাংক 10°C জেনে সে আপেক্ষিক

আর্দ্রতা পেল 75%। আবার ঐ দিন সন্ধ্যায় বায়ুর তাপমাত্রা দেখতে
পেল 20°C। (10°C তাপমাত্রার সম্পৃক্ত বাচ্প চাপ 9.22 × 10⁻³ m Hg.

20°C এ সম্পৃক্ত বাহ্প চাপ 17.54 × 10⁻³ m Hg)।

/সি. বো. ২০১৬/

ক. ভেষ্টর বিভাজন কী?

ব. মহাকর্ষ বিভবের মান ঋণাত্মক হয় কেন?

 উদ্দীপকের আলোকে দুপুরের বায়ুর তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ বের কর।

জুতির মনে হলো দুপুরের তুলনায় সন্ধ্যায় তাড়াতাড়ি ঘায়
শুকাজে

উদ্দীপকের আলোকে গাণিতিকভাবে মতায়ত
বিশ্লেষণ কর।

১৬নং প্রশ্নের উত্তর

ক একটি ভেক্টরকে যদি দুই বা ততোধিক ভেক্টরে এমনভাবে বিভক্ত করা হয় যাদের লব্দি মূল ভেক্টরের সমান হয়, তবে এই বিভক্তকরণ প্রক্রিয়াকে ভেক্টর বিভাজন বলে।

দুটি বন্ধুর মধ্যে সর্বদা আকর্ষণ বল বিদামান থাকায় একক ভরের বন্ধুকে বৃহৎ ভরসম্পন্ন বন্ধুর দিকে নিতে বহিঃশক্তি বা বাইরের কোনো এজেন্টকে প্রকৃতপক্ষে কোনো কাজ করতে হয় না। বহিঃম্থ এজেন্ট কর্তৃক কৃত কাজ ধনাত্মক। এক্ষেত্রে বহিঃম্থ এজেন্টকে কোনো কাজ করতে হয় না। উপরত্তু মহাকর্ষ বলের দ্বারা কাজ হয়। সূত্রাং এক্ষেত্রে সম্পন্ন কাজ হবে ঋণাত্মক। কাজেই কোনো বন্ধু কর্তৃক সৃষ্ট মহাক্ষীয় ক্ষেত্রের কোনো বিন্দুতে বিভবের মান সর্বদা ঋণাত্মক।

দুপুরে আপেক্ষিক আদ্রতা, R = 75% শিশিরাংকে জলীয় বাষ্পচাপ, $f = 9.22 \times 10^{-3}$ m Hg বায়ুর তাপমাত্রায় সম্পৃক্ত বায়ুর চাপ, F = ? আমরা জানি, আপেক্ষিক আদ্রতা,

$$R = \frac{f}{F} \times 100\%$$

বা, $75 = \frac{f}{F} \times 100$
বা, $F = \frac{f}{75} \times 100 = \frac{9.22 \times 10^{-3} \text{ m Hg}}{75} \times 100$
= $12.29 \times 10^{-3} \text{ m Hg (Ans.)}$

য দেওয়া আছে,

 20° C তাপমাত্রায় সম্পৃক্ত বাম্পচাপ = 17.54×10^{-3} m Hg 10° C তাপমাত্রায় সম্পৃক্ত বাম্পচাপ = 9.22×10^{-3} m Hg

∴ সন্ধ্যায় আপেন্ধিক আর্দ্রতা =
$$\frac{9.22 \times 10^{-3}}{17.54 \times 10^{-3}} \times 100\%$$

= 52.565%

52.565 < 75 .

আপেক্ষিক আর্দ্রতা কমেছে।

বি.দ্র: এজন্য তাড়াতাড়ি ঘাম শুকাচ্ছিল।

(প্রদত্ত তথ্যে ভুল আছে। বায়ুর তাপমাত্রা 32°C এ সম্পক্ত বাষ্পচাপ 35.66 × 10⁻³ m Hg এবং শিশিরাক্ত 10°C হলে আপেন্ধিক আর্দ্রতা হবে 25.8%, কিন্তু এ ক্ষেত্রে আপেক্ষিক আর্দ্রতা দেয়া আছে 75% যা সঠিক নয়। 25.8% আপেক্ষিক আর্দ্রতায় ঘাম হওয়ার প্রশ্নই উঠে না। সম্পায় তাপমাত্রা 20°C হলে যদি শিশিরাজ্ঞ্ক অপরিবর্তিত থাকে তবে আপেঞ্চিক আর্দ্রতা বৃদ্ধি পাবে কিন্তু এ তাপমাত্রা তো শীতকালের তাপমাত্রা, এ তাপমাত্রায় ঘাম হয় না, এটা আমাদের শরীরের জন্য খ্রবই আরামদায়ক)

প্রনা ১১৭ আবির পদার্থবিজ্ঞান গবেষনাগারে 5.7 × 10 m³ আয়তনের 3g নাইট্রোজেন গ্যাসকে 0.64m পারদ স্তম্ভ চাপ ও 39°C তাপমাত্রা থেকে প্রমাণ চাপ ও তাপমাত্রায় রূপান্তর করলো। এতে গ্যাসে আয়তন ও গতিশক্তি উভয়ের পরিবর্তন হলো। নেহাল বললো গ্যাসের আয়তন ও গতিশক্তি উভয়ই হ্রাস পেয়েছে। নাইট্রোজেনের গ্রাম আণবিক ভর 28g এবং R = 8.31 JK-1mol-1. M. (1. 2030)

ক, আদর্শ গ্যাস কাকে বলে?

কোনো স্থানে বাতাসের আপেক্ষিক আর্দ্রতা 70% বলতে কী

ণ্ প্রমাণ চাপ ও তাপমাত্রায় গ্যাসটির আয়তন নির্ণয় কর।

নেহালের বক্তব্য কী সঠিক ছিল? গাণিতিক বিশ্লেষণের মাধ্যমে মভামত দাও।

১৭ নং প্রয়ের উত্তর

🚳 যে সকল গ্যাস সকল তাপমাত্রা ও চাপে বয়েল ও চার্লসের সূত্র মেনে চলে, তাদেরকে আদর্শ গ্যাস বলে।

📆 কোনো স্থানে বাতাসের আপেঞ্চিক আর্দ্রতা 70% বলতে বুঝায়, ঐ তাপমাত্রায় ঐ স্থানের বাতাসকে সম্পৃত্ত করতে সর্বোচ্চ যে পরিমাণ জলীয় বাষ্প দরকার তার শতকরা 70 ভাগ জলীয় বাষ্প ঐ মুহূর্তে ঐ স্থানের বায়ুতে রয়েছে।

দৈওয়া আছে, আদি আয়তন, $V_1 = 5.7 \times 10^{-4} \text{ m}^3$ আদি চাপ, $P_1 = 0.64 \text{ m HgP}$ আদি তাপমাত্রা, $T_1 = 39^{\circ}\text{C} = (39 + 273) \text{ K} = 312 \text{ K}$ চুড়ান্ত চাপ, P2 = 0.76 m HgP চূড়ান্ত তাপমাত্রা, $T_2 = 273 \text{ K}$ বের করতে হবে, চূড়ান্ত আয়তন, $V_2=?$ আমরা জানি, $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$

$$V_2 = \frac{P_1 V_1 T_2}{P_2 T_1}$$

$$= \frac{0.64 \text{ m} \times 5.7 \times 10^{-4} \text{ m}^3 \times 273 \text{ K}}{0.76 \text{ m} \times 312 \text{ K}}$$

$$= 4.2 \times 10^{-4} \text{ m}^3 \text{ (Ans.)}$$

য়ে থেকেডু 4.2 × 10⁻⁴ m³ < 5.7 × 10⁻⁴ m³ সূতরাং গ্যাসটির আয়তন হ্রাস পেয়েছে।

T পরম তাপমাত্রায় n মোল গ্যাসের গতিশক্তি, $E = \frac{3}{2}nRT$

n (মোল সংখ্যা) অপরিবর্তিত থাকলে, $E \propto T$ উদ্দীপকের ঘটনায়, গ্যাসের ভর তথা মোল সংখ্যা (n) অপরিবর্তিত। সূতরাং পরম তাপমাত্রার স্থাসে ($T_1 = 312 \text{ K}$ হতে $T_2 = 273 \text{ K}$) গতিশক্তিও হ্রাস পাবে। এই গতিশক্তির পরিবর্তন

$$\Delta E_k = \frac{3}{2} \, nRT_1 - \frac{3}{2} \, nRT_2$$

$$= \frac{3}{2} \, nR \, (T_1 - T_2) \quad [এখানে, মোট, n = \frac{3}{28} \, mole]$$

$$= \frac{3}{2} \times \frac{3}{28} \times 8.314 \times (312 - 273)$$

$$= 52.11 \, J$$
অর্থাৎ নেহালের বস্তব্য সঠিক।

প্রর ১১৮ একজন ছাত্র পরীক্ষাগারে স্থির চাপে প্রমাণ তাপমাত্রার কিছু পরিমাণ O2 গ্যাসের তাপমাত্রা বৃদ্ধি করায় গ্যাসের আয়তন দ্বিগুণ হল। এতে তার বন্ধু মন্তব্য করল পরীক্ষাধীন গ্যাসের অণুগুলোর গড় বৰ্গবেগও দ্বিগুণ হবে। N. CAT. 2019/

ক্ বলের ঘাত কাকে বলে?

একটি ভারী স্থির বস্তু ও হালকা গতিশীল বস্তুর স্থিতিস্থাপক সংঘর্ষে তাদের বেগের পরিবর্তন ব্যাখ্যা

চূড়ান্ত তাপমাত্রা নির্ণয় করো।

গাণিতিক বিশ্লেষণের মাধ্যমে তার বন্ধুর মন্তব্যের যথার্থতা যাচাই করো।

১৮ নং প্রহার উত্তর

ক বল ও বলের ক্রিয়াকালের গুণফলকে বলের ঘাত বলে।

💵 গতিশীল হালকা বস্তু ও স্থির ভারী বস্তুর মধ্যবতী স্থিতিস্থাপক সংঘর্ষের ফলে হালকা বস্তুটি তার পূর্বের বেগ নিয়ে বিপরীত দিকে ফিরে আসবে। হালকা বস্তুটির সংঘর্ষের পূর্বে ও পরে বেণ যথাক্রমে 🕡 ও 🗸 হলে, $v = \frac{m-M}{m+M} \times u$; $m \ll M$ হলে, $v \simeq -u$ ৷ বাস্তবে দেখা যায় যে, হালকা টেনিস বল দ্বারা শক্ত দেয়ালে আঘাত করলে বলটি আগের বেগ নিয়ে বিপরীত দিকে ফিরে আসে। মূলত খুব ভারী অসাড় বস্তুর সাথে হালকা বস্তুর স্থিতিস্থাপক সংঘর্ষে এ ধরনের ঘটনা ঘটে।

🚮 ধরা যাক, গ্যাসের আদি আয়তন, V_1 সূতরাং শেষ আয়তন, $V_2 = 2V_1$ আদি তাপমাত্রা, $T_1 = 273 \text{ K}$ চুড়ান্ত তাপমাত্রা, $T_2 = ?$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\therefore T_2 = \frac{V_2}{V_1} \times T_1 = \frac{2V_1}{V_1} \times 273 \text{ K}$$
= 546 K (Ans.)

য় দেওয়া আছে,

আদি তাপমাত্রা, $T_1 = 273 \text{ K}$ O2 এর আণবিক ভর, M = 32 gm = 32 × 10-3 kg সার্বজনীন গ্যাস ধ্রুবক, $R = 8.316 \text{ J·K}^{-1} \cdot \text{mole}^{-1}$

∴ O₂ গ্যাসের গড় বর্গবেগ, $\overline{c_1}^2 = \frac{3RT_1}{M}$

তাপমাত্রা বৃদ্ধি করা হলে, চুড়ান্ত তাপমাত্রা, $T_2 = 546 \text{ K}$

∴ O₂ গ্যান্সের গড় বর্গবেগ, $\overline{c_2}^2 = \frac{3RT_2}{M}$

$$\frac{\overline{c_2}^2}{\overline{c_1}^2} = \frac{T_2}{T_1} = \frac{546 \text{ K}}{273 \text{ K}} = 2$$

অর্থাৎ $c_2^2 = 2c_1^2$

অতএব, বন্ধুর মন্তব্য অর্থাৎ তাপমাত্রা বাড়ানোতে গড় বর্গবেগও দ্বিগুণ হবে কথাটি সঠিক।

প্রন ১৯৯ 3 cm³ আয়তনের দুটি অভিন্ন পাত্র A ও B। A-পাত্রে O₂ এবং B-পাত্রে N_2 গ্যাস নিয়ে চিত্রে প্রদর্শিত চাপ পাওয়া গেল। $P = 4 \times 10^5 \text{ Nm}^{-2}$ $P = 4.7 \times 10^5 \text{ Nm}^{-2}$

N. CAT. 2034/

- ক, হুকের সূত্র লিখ।
- খ. ইয়ং এর গুণাভক Y = 2 × 10¹¹ Nm⁻² বলতে কী বুঝ?
- A-পাত্রের গ্যাসের গতিশক্তি নির্ণয় কর।
- ম ও B পাত্রের মধ্যে কোনটি বেশি উত্তপ্ত হবে? গাণিতিক বিশ্লেষণের মাধ্যমে তোমার মতামত প্রদান কর।
 ৪

হুকের সূত্র: স্থিতিস্থাপক সীমার মধ্যে বস্তুর পীড়ন এর বিকৃতির সমানুপাতিক।

ইয়ং এর গুণাংক, $Y=2\times 10^{11}~{\rm N\cdot m^{-2}}$ বলতে বোঝায় 1 ${\rm m^2}$ প্রস্থাছেদের ক্ষেত্রফল বিশিষ্ট কোনো পদার্থের দৈর্ঘ্য বরাবর $2\times 10^{11}~{\rm N}$ বল প্রয়োগ করা হলে এর দৈর্ঘ্য বৃদ্ধি আদি দৈর্ঘ্যের সমান হবে।

ত্র উদ্দীপক হতে পাই.

A পাত্রের গ্যাসের চাপ, $P = 4 \times 10^5 \text{ N·m}^{-2}$ A পাত্রের আয়তন, $V = 3 \text{ cm}^3 = 3 \times 10^{-6} \text{ m}^3$ A পাত্রের গ্যাসের গতিশক্তি, E = ?

আমরা জানি,

$$E = \frac{3}{2}PV$$
=\frac{3}{2} \times 4 \times 10^5 \times 3 \times 10^{-6}
= 1.8 J (Ans.)

দেয়া আছে, (উভয় পাত্রে মোল সংখ্যা সমান কি না বলা নেই)

A পাত্রের গ্যাসের চাপ, $P_{\rm A}=4\times10^5~{
m N\cdot m^{-2}}$ B পাত্রের গ্যাসের চাপ, $P_{\rm B}=4.7\times10^5~{
m N\cdot m^{-2}}$

A পাত্রের আয়তন = B পাত্রের আয়তন = Vযদি প্রতিটি পাত্রের গ্যাসের মোল সংখ্যা = n হয়
ধরি A পাত্রের গ্যাসের তাপমাত্রা = T_A এবং B পাত্রের গ্যাসের তাপমাত্রা = T_B আমরা জানি,

 $P_AV = nRT_A \dots (i)$

এবং $P_BV = nRT_B$ (ii)

(i) ÷ (ii) নং সমীকরণ হতে পাই,

$$\frac{P_{\rm A}}{P_{\rm B}} = \frac{T_{\rm A}}{T_{\rm B}}$$

বা, $\frac{4 \times 10^5}{4.7 \times 10^5} = \frac{T_{\rm A}}{T_{\rm B}}$
বা, $T_{\rm B} = 1.175 \, T_{\rm A}$
সূতরাং $T_{\rm B} > T_{\rm A}$

অতএব, B পাত্রটি বেশি উত্তপ্ত।

প্রন ১২০ একদিন শৃষ্ক ও সিক্ত বার হাইগ্রোমিটারে পাঠ যথাক্রমে 20°C এবং 12.8°C পাওয়া গেল। 20°C তাপমাত্রায় গ্লেসিয়ারের উৎপাদক 1.79। 7°C, 8°C এবং 20°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পচাপ যথাক্রমে 7.5 × 10⁻³, 8.1 × 10⁻³ এবং 17 4 × 10⁻³ m HgP।

/য় বো ২০১৫/

ক. গ্যাসের ক্ষেত্রে বয়েলের সূত্র বিবৃত কর।

খ. চলমান অবস্থায় গাড়ির চাকার চাপ বৃদ্ধি পায় কেন?

গ্, ঐ দিনের শিশিরাংক কত?

২০নং প্রশ্নের উত্তর

ক বয়েলের সূত্র: স্থির তাপমাত্রায় কোনো গ্যাসের আয়তন এর চাপের ব্যস্তানুপাতিক।

ব চলমান অবস্থায় গাড়ির চাকার অভ্যন্তরে সমআয়তন প্রক্রিয়া চলে। এতে চাকার অভ্যন্তরে গ্যাসের আয়তন বৃদ্ধি পায় না। চাকার সাথে রাস্তার ঘর্ষণের ফলে চাকায় যে তাপ উৎপন্ন হয় তার কিছু অংশ গ্যাসে

প্রবেশ করে, এছাড়া গাড়ির গতিশক্তির সামান্য অংশ গ্যাসের তাপশক্তির্পে দেখা দেয়। $\Delta Q = \Delta U + \Delta W$ সূত্রানুসারে, এক্ষেত্রে $\Delta W = 0$ (কারণ গ্যাসের প্রসারণ ঘটে না, $\Delta W = P\Delta V = P \times 0 = 0$), তাই $\Delta Q = \Delta U$ হয়। এই তাপশক্তির কারণে গ্যাসের তাপমাত্রা বৃদ্ধি পায়। তখন দ্পির আয়তনে চাপের সূত্রানুসারে $\left(\frac{P_1}{T_1} = \frac{P_2}{T_2}\right)$ গ্যাসের চাপ বৃদ্ধি পায়। এ কারণে চলমান অবস্থায় গাড়ির চাকার চাপ বৃদ্ধি পায়।

38(গ) নং সৃজনশীল প্রয়োত্তরের অনুরূপ। উত্তর: 7.112°C।

য় $(8-7)^6$ C = 1° C এর জন্য সম্পৃক্ত জলীয় বাষ্পচাপের পার্থক্য = $(8.1-7.5)\times 10^{-3}$ = 0.6×10^{-3} পারদচাপ।

0.112°C এর জন্য বাষ্পচাপের বৃদ্ধি = 0.0672 × 10⁻³ পারদচাপ

∴ শিশিরাজ্ঞ = 7.112°C [(গ) উত্তর: থেকে]

∴ শিশিরাজ্ঞ 7.112°C এ সম্পৃক্ত জলীয় বাম্প চাপ.

 $f = (7.5 + 0.0672) \times 10^{-3}$ = 7.5672×10^{-3} Hg

বায়ুর তাপমাত্রা 20°C এ জলীয় বাষ্প চাপ, $F = 17.4 \times 10^{-3}$ mHg. আমরা জানি,

আপেক্ষিক আর্দ্রতা, $R = \frac{f}{F} \times 100\%$

= 43.49%

আপেক্ষিক আর্দ্রতা 43.49%। তাই বলা যায় ঐ দিন ঐ স্থানের আবহাওয়া শৃষ্ক ও রৌদ্রোজ্বল থাকবে।

প্রা >২১ পদার্থবিজ্ঞান ল্যাবে একদল ছাত্র লক্ষ্য করল বিশুন্থ পানিপূর্ণ পাত্রে বায়ু বুদবুদ তলদেশ থেকে পৃষ্ঠদেশে আসার ফলে আয়তন 1.1 গুণ হয়। পরীক্ষার এক পর্যায়ে একজন ছাত্র পানিতে অন্য একটি তরল মিশ্রিত করায় পানির ঘনত বেড়ে দ্বিগুণ হয়ে যায়। (বায়ু মণ্ডলের চাপ 10⁵ N·m⁻²) /ব বো ২০১৭

ক. শিশিরাংক কি?

খ. সম্পৃক্ত বাষ্পচাপই কোনো স্থানে সর্বাপেক্ষা বেশি এর যথার্থতা নিখ।

গ. পানির তাপমাত্রা ধ্রুব থাকলে পাত্রটির উচ্চতা কত?

ঘ. তরল মিশ্রিত করার পর পৃষ্ঠদেশে আসা বুদবুদগুলোর আয়তনের কোনোর্প পরিবর্তন হবে কী না গাণিতিক বিশ্লেষণপূর্বক মতামত দাও।

২১ নং প্রশ্নের উত্তর

ত্র যে তাপমাত্রায় কোনো স্থানের বায়ু উপস্থিত জলীয় বাহ্প দ্বারা সম্পুক্ত হয়ে শিশির জমতে শুরু করে তাকে শিশিরাহক বলে।

নির্দিষ্ট তাপমাত্রায় সম্পৃত্ত বাষ্প যে চাপ দেয় তাকে সম্পৃত্ত বাষ্পচাপ বলে। কোনো স্থান বাষ্প দ্বারা সম্পৃত্ত হলে সেখানে নতুন করে বাষ্প বায়ুর সাথে মিশে যেতে পারে না। অর্থাৎ, কোনো স্থান বাষ্প দ্বারা সম্পৃত্ত হলে সেখানে সর্বাধিক পরিমাণ জলীয়বাষ্প উপস্থিত থাকে, আবার বাষ্পচাপ বায়ুতে উপস্থিত জলীয় বাষ্পের সমানুপাতিক। তাই সম্পৃত্ত বাষ্পচাপই কোনো স্থানে সর্বাপেক্ষা বেশি।

🎕 দেওয়া আছে,

বায়ুমণ্ডলের চাপ = $10^5 \, \text{N} \cdot \text{m}^{-2}$ পাত্রের তলদেশের আয়তন, $V_1 = V$ (ধরি) পাত্রের পৃষ্ঠদেশের আয়তন, $V_2 = 1.1V$ পানির ঘনত, $\rho = 10^3 \, \text{kg} \cdot \text{m}^{-3}$ অভিকর্ষজ তুরণ, $g = 9.8 \, \text{m} \cdot \text{s}^{-2}$ পাত্রের গভীরতা h = ?

পাত্রের তলদেশের চাপ, $P_1=$ বায়ুমন্ডলের চাপ +h গভীরতার পানির চাপ \sim বা, $P_1=10^5+h\rho g$

আমরা জানি, $P_1V_1=P_2V_2$ বা, $(10^5+h\rho g)V=10^5\times 1.1V$ [বুদবুদ পানির উপরিতলে আসে, তাই $P_2=10^5~{\rm Nm}^{-3}$]

য় 'গ' অংশ হতে পাই,

পাত্রের গভীরতা, h = 1.02 m

উদ্দীপক হতে পাই,

পাত্রের পৃষ্ঠদেশের চাপ, $P_2=10^5~{
m N\cdot m}^{-2}$ পাত্রের তলদেশের আয়তন = V_1 পাত্রের পৃষ্ঠদেশের আয়তন, $V_2=?$

পানির ঘনত্ব তরল মিশ্রণের পর হয়, $ho' = 2\rho$ $= 2 \times 10^3 \ {\rm kg \cdot m^{-3}}$

অভিকর্মজ ত্বরণ, g = 9.8 m·s⁻² আমরা জানি,

 $P_1V_1 = P_2V_2$ বা, $(10^5 + h\rho'g)V_I = 10^5 \times V_2$ বা, $V_2 = \frac{10^5 + 1.02 \times 2 \times 10^3 \times 9.8}{10^5} V_I$ [ধরি, তরলের উচ্চতা সমান থাকে]

অতএব, তরলটি মিশ্রিত করায় উপরে উঠে আসা বুদবুদের আয়তনের শতকরা পরিবর্তন = $\frac{1.2-1.1}{1.1} \times 100\%$

=9.1%

অর্থাৎ, পানির ঘনত্ব বৃদ্ধি করলে পৃষ্ঠদেশে আসা বুদবুদগুলোর আয়তন পূর্বের আয়তনের তুলনায় 9.1% বৃদ্ধি পাবে।

প্ররা >>> কোনো একটি পরীক্ষণের জাঞ্চলংয়ের আবদ্ধ বায়ুর তাপমাত্রা 19°C ও শিশিরাভক 7.4°C পাওয়া গেল। শৈতপ্রবাহে ঐ স্থানের তাপমাত্রা কমে 15°C হলো। 7°C, 8°C ও 19°C তাপমাত্রায় ঐ সম্পুক্ত জলীয় বাস্পের চাপ যথাক্রমে 7.5, 8.2 এবং 16.5 mm পারদ।

A. CAT. 2036/

ক. সেকেন্ড দোলক কাকে বলে?

- পুষম দুতিতে সরল পথে চলমান বস্তুর ত্বরণ থাকে না অথচ বৃত্তাকার পথে সুষম দুতিতে চলমান বস্তুর ত্বরণ থাকে— ব্যাখ্যা কর।
- গ. জাফলংয়ের বায়ুর আপেঞ্চিক আর্দ্রতা নির্ণয় কর।
- তাপমাত্রার পরিবর্তনে ঐ স্থানের আবন্ধ বায়ুর শিশিরাভক পরিবর্তিত হবে কিনা গাণিতিক বিল্লেষণের সাহায়্যে মতামত দাও।

২২নং প্রশ্নের উত্তর

🐼 যে সরল দোলকের দোলনকাল দুই সেকেন্ড, তাকে সেকেন্ড দোলক বলে।

বিশ একটি ভেক্টর রাশি আর এ বেগের পরিবর্তনের হারকেই বলা হয় তুরণ বা মন্দন। আবার মান অথবা দিকের পরিবর্তনের সাপেক্ষে ভেক্টর রাশির পরিবর্তন ঘটে।

যখন কোনো বন্তু সুষম দুতিতে সরল পথে চলমান থাকে তখন বেগের মান ও দিক দুটোই অপরিবর্তিত থাকে তাই তখন কোনো ত্বরণ থাকে না। আবার সুষম দুতিতে বৃত্তাকার পথে চলমান বন্তুর বেগের মান অপরিবর্তিত থাকলেও প্রতিনিয়ত তার দিক পরিবর্তিত হয় অর্থাৎ বেগের পরিবর্তন হয় তাই তখন তার ত্বরণ থাকে।

গ্র ৪ °C তাপমাত্রায় সম্পৃত্ত বাম্প চাপ 8.2 mm Hg 7°C তাপমাত্রায় সম্পৃত্ত বাম্প চাপ 7.5 mm Hg ∴ I C° তাপমাত্রা বৃদ্ধিতে সম্পৃক্ত বাষ্পচাপের বৃদ্ধি 0.7 mm Hg (7.4–7)C° বা 0.4C° তাপমাত্রা বৃদ্ধিতে সম্পৃক্ত বাষ্পের চাপ বৃদ্ধি = 0.7 × 0.4/mm Hg

= 0.28 mm Hg ∴ শিশিরাজ্ঞ্ক 7.4°C তাপমাত্রায় সম্পৃত্ত জলীয় বাস্পের চাপ, f = (7.5 + 0.28) mm Hg = 7.78 mm Hg

আবার, 19° C তাপমাত্রায় সম্পৃত্ত জলীয় বাম্পের চাপ, $F=16.5 \; \mathrm{mm} \; \mathrm{Hg}$

আমরা জানি, আপেচ্ছিক আর্দ্রতা, $R = \frac{f}{F} \times 100\% = \frac{7.78}{16.5} \times 100\%$ = 47.15%

.. জাফলং-এর বায়ুর আপেন্ধিক আর্দ্রতা, 47.15% (Ans.)

থি শিশিরাংকের সংজ্ঞা থেকে আমরা জানি, যে তাপমাত্রায় বায়ুতে উপস্থিত জলীয় বাষ্প দ্বারা সম্পৃত্ত হয়ে শিশির জমতে শুরু করে তাকে শিশিরাংক বলে। সূতরাং শিশিরাংক বায়ুর তাপমাত্রার উপর নির্ভরশীল নয়, বায়ুতে উপস্থিত জলীয় বাজ্পের পরিমাণের উপর নির্ভরশীল। বায়ুতে উপস্থিত জলীয় বাজ্পের পরিমাণে অপরিবর্তিত রেখে বায়ুর তাপমাত্রা দ্রাস (শিশিরাংক থেকে কম নয়) বা বৃদ্ধি করা হলে শিশিরাংকের কোনো পরিবর্তন হয় না। যেহেতু শৈত প্রবাহের ফলে বায়ুর তাপমাত্রা দ্রাস পেয়েছে কিন্তু আবদ্ধ স্থানের জলীয় বাজ্পের কোনোরূপ পরিবর্তন হয়নি, তাই বলা যায় শিশিরাংকের কোনো রূপ পরিবর্তন হয়নি।

প্রশা ১০ স্বাভাবিক তাপমাত্রা ও চাপে 1 mole করে দৃটি গ্যাস একই আয়তনের ছিপিযুক্ত দৃটি পাত্রে রক্ষিত আছে। গ্যাস দৃটির আণবিক ভর যথাক্রমে 2gm ও 32 gm. পাত্র দৃটির মুখের ছিপি একই সাথে খুলে দেয়া হলো। [অ্যাভোগেড্রোর সংখ্যা = 6.023 × 10²³ এবং R = 8.31 Jole mole ¹K ¹] /ব বো ২০১৪/

ক. পরম আর্দ্রতা কাকে বলে?

খ. তাপমাত্রা বৃশ্বিতে গ্যাসের সান্দ্রতা বৃশ্বি পায় — ব্যাখ্যা কর।

গ, দ্বিতীয় পাত্রের গ্যাসের গড় গতিশক্তি হিসাব কর।

ঘ. পাত্র দুটি একই সাথে খালি হতে হলে দ্বিতীয় পাত্রের তাপমাত্রার কির্প পরিবর্তন হবে — গাণিতিক বিশ্লেষণ এর সাহায়্যো লিখ।

২৩ নং প্রয়ের উত্তর

ক কোনো স্থানের বাতাসে প্রতি ঘনমিটারে যে পরিমাণ জলীয় বাষ্প আছে তাকে ঐ স্থানের পরম আর্দ্রতা বলে।

গ্যাসের অণুগুলো সবদিকেই এলোমেলোভাবে চলাচল কর্তে পারে এবং এদের মধ্যে সংঘর্ষ ঘটে। গ্যাস অণুগুলোর মধ্যে দূরত্ব অনেক বেশি হওয়ায় আন্তঃআণবিক বল নেই বললেই চলে। তাপমাত্রা বৃদ্ধি পেলে অণুসমূহের গড় বেগ বৃদ্ধি পায়, ফলে সংঘর্ষও বাড়ে। সংঘর্ষ বাড়ার কারণে বিভিন্ন স্তরের প্রবাহে বাধার পরিমাণ বৃদ্ধি পায়। অর্থাৎ সাম্ভতা বৃদ্ধি পায়।

প্রতিশক্তি বলতে প্রতিটি গ্যাস অণুর গড় গতিশক্তি বুঝানো হয়েছে।

২য় পাত্রের প্রতি মোল গ্যাসের গতিশক্তি,

$$E = \frac{3}{2}RT$$
= 1.5 × 8.314 J·mol⁻¹·K⁻¹ × 273 K
= 3404.583 J·mol⁻¹

সূতরাং প্রতিটি গ্যাস অণুর গড় গতিশক্তি $= rac{E}{N_A}$

 $= \frac{3404.583 \text{ J} \cdot \text{mol}^{-1}}{6.023 \times 10^{23} \text{ mol}^{-1}} = 5.65 \times 10^{-21} \text{ J (Ans.)}$

ত্ব পাত্র দূটি হতে গ্যাস ব্যাপনের মাধ্যমে বের হবে। ব্যাপন হার সমান হলেই একই সময়ে পাত্র দৃটি খালি হবে। আর ব্যাপন হার নির্ভর করে বর্গমূল গড় বর্গবেগের উপর।

উদ্দীপকের তথ্য হতে পাই,

১ম পাত্রের গ্যাসের আণবিক ভর, $M_1=2~\mathrm{g}=0.002~\mathrm{kg}$

২য় পাত্রের গ্যাসের আণবিক ভর, $M_2 = 32 \text{ g} = 0.032 \text{ kg}$

১ম পাত্রের গ্যাসের তাপমাত্রা, $T_1 = 273 \text{ K}$

মোলার গ্যাস ধ্বক, R = 8.31 J-mol⁻¹-K⁻¹

২য় পাত্রের গ্যাসের তাপমাত্রা, $T_2 = ?$

১ম ও ২য় পাত্রের গ্যাসের বর্ণমূল গড় বর্গবেগ যথাক্রমে c_1 ও c_2 হলে,

c1 = c2 হতে হৰে।

$$\therefore \sqrt{\frac{3RT_1}{M_1}} = \sqrt{\frac{3RT_2}{M_2}}$$
বা, $\frac{T_1}{M_1} = \frac{T_2}{M_2}$

$$\P_1$$
, $T_2 = \frac{M_2}{M_1} \times T_1 = \frac{0.032}{0.002} \times 273 = 4368 \text{ K}$

২ ২য় পাত্রের গ্যাসের তাপমাত্রা বাড়াতে হবে (4368 – 273) K = 4095 K = 4095°C

সূতরাং পাত্র দুটি একই সাথে খালি হতে হলে দ্বিতীয় পাত্রের তাপমাত্রা 4095°C বাড়াতে হবে।

প্রস,▶২৪ 30m গভীর একটি পুকুরের তলদেশের তাপমাত্রা 5°C. তলদেশে অবস্থিত একটি বায়ু বুদবুদের ব্যাস 10cm. পুকুরের উপরিতলের তাপমাত্রা 30°C এবং ঐ স্থানের শিশিরাংক 7.25°C, 7°C, 8°C, 28°C এবং 32°C তাপমাত্রায় সম্পুক্ত বাষ্পচাপ যথাক্রমে 7.5mm Hg, 8.2 mm Hg, 29.6mm Hg 의학 33.06mm Hg.

[রাজশাহী ক্যাতেট কলেজ]

ক, শিশিরাংক কাকে বলে?

কানো স্থানের পরম আর্দ্রতা ও আপেক্ষিক আর্দ্রতা একই নয়

গ, উদ্দীপকে উল্লিখিত বাযুর আপেক্ষিক আর্দ্রতা নির্ণয় করো 🖟

ঘ. বায়ু বুদবুদটি তলদেশ থেকে পুকুরের উপরিতলে উঠে আসলে বুদবুদটির আয়তনের কী কোনো পরিবর্তন হবে? গাণিতিক যুক্তিসহকারে বিশ্লেষণ করো।

২৪ নং প্রশ্নের উত্তর

🐼 যে তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ু উপস্থিত জলীয় বাষ্প দ্বারা সম্পুত্ত হয় তাকে ঐ স্থানের শিশিরাজ্ঞ বলে।

ব কোনো স্থানের পরম আর্দ্রতা হলো ঐ স্থানের বায়ুতে প্রতি ঘনমিটারে কী পরিমাণ জলীয় বাষ্প আছে সেটা। অর্থাৎ পরম আর্দ্রতার একক kgm⁻³। অপরদিকে, আপেক্ষিক আর্দ্রতা হলো একটি আনুপাতিক হিসাব। নির্দিষ্ট তাপমাত্রায় কোনো স্থানে যে পরিমাণে জলীয় বাম্প আছে এবং সর্বোচ্চ যে পরিমাণ জলীয় বাচ্প থাকতে পারে— এ দু'য়ের অনুপাতকে ঐ স্থানের আপেক্ষিক আর্দ্রতা বলে। একে শতকরায় প্রকাশ করা হয় বলে কোনো ভৌত একক নেই। তবে ব্যবহারিক ক্ষেত্রে পরম আর্দ্রতার চেয়ে আপেক্ষিক আর্দ্রতা বেশি ব্যবহৃত হয়। আপেক্ষিক আর্দ্রতা দ্বারা সংশ্লিষ্ট স্থানের আবহাওয়ার পূর্বাভাস দেওয়া যায়।

থা দেওয়া আছে, বায়ুর তাপমাত্রা 30°C এবং শিশিরাংক 7.25°C

7°C, 8°C, 28°C এবং 32°C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ যথাক্রমে 7.5mm Hg, 8.2mm Hg, 29.6mm Hg এবং 33.06mm Hg ।

∴ বায়ুর তাপমাত্রায় সম্পৃক্ত বাম্পচাপ, F = 29.6 + 33.06

= 31.33 mm Hg

শিশিরাংকে সম্পৃত্ত বাম্পচাপ, $f = 7.5 + (8.2 - 7.5) \times 0.25$ = 7.675 mm Hg

∴ আপেন্দিক আর্দ্রতা, R =
$$\frac{f}{F}$$
 × 100%
= $\frac{7.675}{31.33}$ × 100% = 24.5% (Ans.)

র প্রদত্ত উপাত্ত মতে,

পুকুরের তলদেশে তাপমাত্রা,
$$T_1 = (5 + 273)K$$

= 278K

এবং উপরিতলে তাপমাত্রা, $T_2 = (30 + 273)K = 303K$ পুকুরের উপরিতলে বুদবুদের ওপর চাপ P2 = 101325 Pa হলে,

তলদেশে চাপ $P_1 = P_2 + hpg = (101325 + 30 \times 1000 \times 9.8)Pa$ = 395325 Pa

পুকুরের তলদেশে এবং পৃষ্ঠদেশে বুদবুদের আয়তন যথাক্রমে 🗸 এবং

$$\begin{aligned} \frac{P_1 V_1}{T_1} &= \frac{P_2 V_2}{T_2} \\ \hline \blacktriangleleft 1, \ \frac{V_2}{V_1} &= \frac{P_1 T_2}{P_2 T_1} \\ &= \frac{395325 \times 303}{101325 \times 278} = 4.2524 \end{aligned}$$

বা, V₂ = 4.2524 V₁ ∴ V₂ ≠ V₁

সূতরাং, বায়ু বুদবুদটি তলদেশ থেকে পুকুরের উপরিতলে উঠে আসলে বুদবুদটি আয়তনে পূর্বের তুলনায় 4.2524 গুণ হবে।

의원(**>** 국 () $P = 0.52 \times 10^5$ $P = 0.45 \times 10^5$ $P = 0.42 \times 10^{3}$ $C_{\text{rms}} = 1500 \text{ ms}^{-1}$ $C_{rms} = 1600 \text{ ms}^{-1}$ $C_{\text{rms}} = 2054 \text{ ms}^{-1}$ $V = 1 \text{m}^3$ $V = 1m^3$ $V = Im^3$ n = 2 molen = 2 molen = 2 mole

> পাত্ৰ-B পাত্ৰ-C /कराभुत्रशर्धे भार्तम कार्रकरें करनज,

ক, আদর্শ গ্যাস কাকে বলে?

পাত-A

অনুপ্রস্থ ও অনুদৈর্ঘ্য তরজোর মধ্যে পার্থক্য আলোচনা করে। ।

গ. STP তে B পাত্রের গ্যাসের গতিশক্তি নির্ণয় করো :

ঘ, কোন পাত্রন্বয়ে পরিচিত গ্যাস রয়েছে? উদ্দীপক অনুসারে গাণিতিক বিশ্লেষণের মাধ্যমে তোমার মতামত দাও।

২৫ নং প্রশ্নের উত্তর

ক যে সকল গ্যাস সকল তাপমাত্রা ও চাপে বয়েল ও চার্লসের সূত্র মেনে চলে, তাদেরকে আদর্শ গ্যাস বলে।

অণুপ্রস্থ তরজা	অণুদৈর্ঘ্য তরজা	
 এই তরজা জড় মাধ্যমের কণাগুলির কম্পনের দিক তরজা প্রবাহের দিকের সমকোণী হয়। 	কণাগুলির কম্পনের দিক	
 তরজা প্রবাহে মাধ্যমে তরজা শীর্ষ এবং তরজা পাদ সৃষ্টি হয়। 		
iii. মাধ্যমে এর সমবর্তন বা পোলারায়ণ ঘটে।	 মাধ্যমে এর সমবর্তন বা পোলারায়ণ ঘটে না। 	

প্র ১০(গ)নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: 78 kJ

য় ১০(ঘ)নং সূজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: A পাত্রের গ্যাসের আণবিক ভর, M_A = 28. B পাত্রের গ্যাসের আণবিক ভর, M_B = 30.468 C পাত্রের গ্যাসের আণবিক ভর, M_C = 16 সূতরাং A পাত্রে পরিচিত গ্যাস N2 রয়েছে।

প্রশা>২৬ কোনো একটি নির্দিষ্ট দিনে জনাব রহিম সিত্ত ও শৃষ্ক বাস্থ হাইগ্রোমিটার ব্যবহার করে ঢাকা ও রংপুরের আবহাওয়া পর্যবেক্ষণ করলেন এবং নিয়োক্ত তথাসমহ সংগ্রহ করলেন—

স্থান	শৃষ্ক বার হাইগ্রোমিটার রিডিং	THE PARTY DESCRIPTION OF THE PARTY OF THE PA	বায়ুর তাপমাত্রায় গ্লেসিয়ার ধুবক
ঢাকা	28.6°C	20°C	1.664
রংপুর	32.5°C	22°C	1.625

/बरपुत्र कारकरे व्यवस् तरपुत्र/

- ক. পৃষ্ঠটান কাকে বলে?
- থ. শক্তির সমবিভাজন নীতি বলতে তুমি কী বোঝ?
- গ্রংপুরের শিশিরাংক নির্ণয় করো।
- ঘ, উদ্দীপক অনুযায়ী জনাব রহিম কোন কোন শহরে বেশি অস্বন্তি অনুভব করবেন— তোমার মতামত গাণিতিকভাবে বিশ্লেষণ করো। ৪

২৬ নং প্রশ্নের উত্তর

কা কোনো তরল পৃষ্ঠের উপর যদি একটি রেখা কল্পনা করা হয় তবে ঐ রেখার প্রতি একক দৈর্ঘ্যে রেখার সাথে লম্বভাবে এবং পৃষ্ঠের স্পর্শর্প রেখার উভয় পাশে যে বল ক্রিয়া করে তাকে ঐ তরলের পৃষ্ঠটান বলে।

বা কোনো গতীয় সংস্থার মোট শক্তি তাপীয় সাম্যাবস্থায় প্রতিটি স্বাধীনতার মাত্রার মধ্যে সমভাবে বন্টিত হয় এবং প্রতিটি স্বাধীনতার মাত্রার শক্তির পরিমাণ = $\frac{1}{2}$ kT।

এখন আমরা এই সূত্রটিকে গ্যাস অণুর ক্ষেত্রে প্রয়োগ করবো। আমরা জানি, এক পারমাণবিক গ্যাসের একটি অণুর স্বাধীনতার মাত্রা 3। অতএব, এই সূত্রানুষায়ী একটি অণুর গড় শক্তি $=\frac{3}{2}\,\mathrm{kT}$ । দ্বিপারমাণবিক গ্যাসের একটি অণুর স্বাধীনতার মাত্রা 5, অতএব প্রতিটি অণুর গড়শক্তি $=\frac{5}{2}\,\mathrm{kT}$ ।

শিশিরাংক = ৪ হলে,
$$\theta = \theta_1 - G(\theta_1 - \theta_2)$$

$$= 32.5^\circ - 1.625(32.5 - 22)$$

$$= 17.06^\circ C \text{ (Ans.)}$$
দেওয়া আছে,
রংপুরে,
শৃষ্কবান্থ রিডিং, $\theta_1 = 32.5^\circ C$
সিন্ত বান্থ রিডিং, $\theta_2 = 22^\circ C$
গ্রেসিয়ারের ধ্রুবক, $G = 1.625$

ঢ়া ঢাকার শিশিরাংক = θ , শুক্ষবান্ব রিডিং = θ_1 এবং সিপ্ত বান্ব রিডিং = θ_2 হলে,

যেহেতু শৃষ্ক বাল্ব থার্মোমিটার বায়ুমগুলের তাপমাত্রা নির্দেশ করে,

∴ ঢাকার, বায়ৢয়ভলের তাপমাত্রা = 28.6°C রংপুরের বায়ৢয়ভলের তাপমাত্রা = 32.5°C ঢাকার শিশিরাংক = 14.3°C রংপুরের শিশিরাংক = 17.06°C ['গ' হতে]

धदा याक,

ঢাকায়, শিশিরাংকে বায়ুচাপ = 14.3° C তাপমাত্রায় বায়ুচাপ = $f_{14.3}$

বায়ুমণ্ডলের তাপমাত্রায় বায়ুচাপ = 28.6° C তাপমাত্রায় বায়ুচাপ = $F_{28.6}$ রংপুরে, শিশিরাংকে বায়ুচাপ = 17.06° C তাপমাত্রায় বায়ুচাপ = $f_{17.06}$

বায়ুমণ্ডলের তাপমাত্রায় বায়ুচাপ = 32.5°C তাপমাত্রায় বায়ুচাপ = $F_{32.5}$ এখন,

ঢাকার আপেক্ষিক আর্দ্রতা,

$$R_D = rac{\cdot}{4}$$
 শিশিরাংকে বায়ুচাপ $\frac{\cdot}{4}$ বায়ুমন্ডলের তাপমাত্রায় বায়ুচাপ $\frac{f_{14.3}}{F_{28.6}}$

অনুরপভাবে, রংপুরের আপেক্ষিক আর্দ্রতা,

$$R_{R} = \frac{f_{17.06}}{F_{32.5}}$$

$$\therefore \frac{R_{D}}{R_{R}} = \frac{f_{14.3}}{F_{28.6}} \times \frac{F_{32.5}}{f_{17.06}}$$

যেহেতু, উদ্দীপক' হতে 14.3°C, 17.06°C, 28.6°C এবং 32.5°C তাপমাত্রায় বায়ুচাপ জানা যায় না, অতএব, এখান থেকে কোন অঞ্চলে আপেক্ষিক আর্দ্রতা বেশি তা জানা সম্ভব নয়। ফলে প্রদত্ত উদ্দীপক হতে কোন অঞ্চলে জনাব রহিম বেশি অস্বস্তি অনুভব করবেন তা বের করা সম্ভব নয়।

প্রস্থা ১২৭ আদর্শ তাপমাত্রা ও চাপে নাইট্রোজেন এর ঘনত 1.25 kgm⁻¹ /ফেনী গার্কস ক্রাডেট ক্রমতা/

- ক, প্রমশ্ন্য তাপমাত্রা কি?
- খ, আদর্শ তাপমাত্রা ও চাপ বলতে কী বৃঝ?
- গ, উপরের গ্যাসটির rms বেগ বের কর।
- য় যদি গ্যাসটির তাপমাত্রা আদর্শ তাপমাত্রা থেকে 100°C কর:

 হয় তাহলে তার rms বেগ কি পরিমাণ বৃদ্ধি পাবে?

 8

২৭ নং প্রয়ের উত্তর

শিথর চাপে কোনো গ্যাসের আয়তন থৈ তাপমাত্রায় শূন্য হয় সেই তাপমাত্রাকে পরম শূন্য তাপমাত্রা বলা হয়।

র যে তাপমাত্রায় পানি, জলীয়বাচপ ও বরফ পরস্পর সহাবস্থান অর্থাৎ পানি এর ভৌত অবস্থার তিনটি রূপেই অবস্থান করে, তাকে আদর্শ তাপমাত্রা (0°C) বলে।

আদর্শ তাপমাত্রায় যে পরিমাণ চাপে পারদ স্তন্তের উচ্চতা 76cm হয়, তাকে আদর্শ চাপ বলে।

গ দেওয়া আছে,

চাপ, P = 101325 Pa

খনত, ρ = 1.25 kgm⁻³

গ্যানের rms বেগ, C_{rms} = ?

আমরা জানি,
$$C_{rms} = \sqrt{\frac{3P}{\rho}}$$

$$= \sqrt{\frac{3 \times 101326}{1.25}}$$

$$= 493.13 \text{ ms}^{-1} \text{ (Ans.)}$$

প্রথম অবস্থায় তাপমাত্রা, $T_1 = 273 \, \text{K}$ পরিবর্তিত অবস্থায় তাপমাত্রা, $T_2 = 100 \, ^{\circ} \text{C}$

ৰোতত অৰম্থায় তাপমাতা, T₂ = 100°C = (100 + 273) K = 373K

প্রথমাবস্থায় ও পরিবর্তিত অবস্থায় ${
m rms}$ বেগ যথাক্রমে ${
m C}_{{
m rms}_1}$ এবং ${
m C}_{{
m rms}_2}$, হলে,

$$\frac{C_{tmin_2}}{C_{tmin_1}} = \frac{\sqrt{\frac{3RT_1}{M}}}{\sqrt{\frac{3RT_1}{M}}} = \sqrt{\frac{T_2}{T_1}} = \sqrt{\frac{373K}{273K}} = 1.169$$

$$= 116.9\% = 100\% + 16.9\%$$

সূতরাং যদি গ্যাসটির তাপমাত্রা আদর্শ তাপমাত্রা থেকে 100°C করা হয় তাহলে এর rms বেগ 16.9% বৃদ্ধি পাবে।

প্রা ১২৮ কোনো নির্দিষ্ট দিনে একটি আর্দ্র ও শুষ্ক হাইগ্রোমিটারের পাঠ নিম্নের ছকে দেয়া হলো:

স্থান	শৃষ্ক পার্মোমিটারের পাঠ	আর্দ্র থার্মোমিটারের পাঠ	ৰায়ুর তাপমাত্রায় গ্রেসিয়ারের ধ্রুবর্ক
কুমিল্লা	32.5°C	22°C	1.625
সিলেট	28.6°C	20°C	1.664

14°C, 16°C, 28°C, 30°C, 32°C এবং 34°C তাপমাত্রায় সম্পৃত্ত বাম্পচাপ যথাক্রমে 11.99, 13.63, 28.35, 31.83, 35.66 এবং 39.90 mm Hg. (ফৌজমার্যাট স্থাডেট বালের স্টেটাম) ক, সম্পন্ত বাম্পচাপ কী?

খ, 'কোনো নির্দিষ্ট স্থানের শিশিরাংক 20°C' বলতে কী বোঝ? ব্যাখ্যা করোঁ।

প, কুমিল্লার বায়ুর শিশিরাংক নির্ণয় করো।

 ছ. উদ্দীপকের অনুসারে, কোন স্থানটি বেশি আরামদায়কং গাণিতিক বিশ্লেষণ করো।

২৮ নং প্রশ্নের উত্তর

নির্দিন্ট তাপমাত্রায় বাষ্প সর্বোচ্চ যে চাপ দিতে পারে বা নির্দিন্ট তাপমাত্রায় কোনো আবন্দ্ধ স্থানে সর্বোচ্চ যে পরিমাণ বাষ্প ধারণ করতে পারে সেই পরিমাণ বাষ্প যে চাপ দেয় তাকে সম্পৃত্ত বাষ্পচাপ বলে।

বা কোনো স্থানের শিশিরাংক 20°C বলতে বোঝায়, ঐ স্থানের তাপমাত্রা নেমে 20°C-এ উপনীত হলে ঐ স্থানের বায়ু এর মধ্যস্থিত জলীয় বাক্ষ্প দ্বারা সম্পুক্ত হবে, অর্থাৎ তখন আপেক্ষিক আর্দ্রতা হবে 100%।

্বা দেওয়া আছে, কুমিল্লায় হাইগ্রোমিটারে,

শুষ্ক থার্মোমিটারের পাঠ, $\theta_1 = 32.5^{\circ}\mathrm{C}$

এবং আর্দ্র থার্মেমিটারের পাঠ, $\theta_2 = 22^{\circ}$ C

বায়ুর তাপমাত্রায় প্লেসিয়ারের ধুবক, C = 1.625

বের করতে হবে, শিশিরাংক, θ = ? আমরা জানি,

$$\theta = \theta_1 - G(\theta_1 - \theta_2)$$

= 32.5 - 1.625(32.5 - 22)
= 15.44°C (Ans.)

্রা দেওয়া আছে, 14°C এবং 16°C তাপমাত্রায় সম্পৃত্ত বাষ্পচাপ 11.99 এবং 13.63 mm Hg

.: 2°C তাপমাত্রা পার্থক্যে সম্পৃক্ত বাষ্পচাপ বৃদ্ধি পায় = (13.63 – 11.99) = 1.64 mm Hg

∴ (15.44° – 14°)C = 1.44°C তাপমাত্রা পার্থক্যে সম্পৃক্ত বাম্পচাপ বৃদ্ধি পায় = $\frac{1.64 \text{ mm Hg} \times 1.44}{2}$ = 1.1808 mm Hg

∴ কুমিল্লার শিশিরাংকে (15.44°C) সম্পৃক্ত বাষ্পচাপ,

f = (11.99 + 1.1808) mm Hg = 13.17 mm Hg

∴ কৃমিলায় বায়ৣর তাপমাত্রায় (32.5°C) সম্পৃক্ত বাষ্পচাপ,

$$F = 35.66 + (39.90 - 35.66) \times \frac{32.5 - 32}{34 - 32}$$
$$= 36.72 \text{ mm Hg}$$

∴ কুমিরায় আপেন্দিক আর্গ্রতা, $R = \frac{f}{F} \times 100\% = \frac{13.17}{36.72} \times 100\%$ = 35.87%

সিলেটের শিশিরাংক, $\theta = 28.6 - 1.664(28.6 - 20)$ = 14.29

এবং শিশিরাংকে সম্পুত্ত বাষ্পচাপ,

$$f' = 11.99 + (13.63 - 11.99) \times \frac{14.29 - 14}{16 - 14}$$

= 12.23 mm Hg

সিলেটে বায়ুর তাপমাত্রায় (28.6°C) সম্পৃক্ত বাষ্পচাপ,

$$F' = 28.35 + (31.83 - 28.35) \times \frac{28.6 - 28}{30 - 28}$$

= 29.394 mm Hg

∴ সিলেটে আপেন্দিক আর্দ্রতা, R' =
$$\frac{f'}{F'} \times 100\%$$

= $\frac{12.23 \text{ mm Hg}}{29.394 \text{ mm Hg}} \times 100\% = 41.6\%$

লক্ষ করি, 35.87% < 41.6% অর্থাৎ কুমিল্লায় আপেক্ষিক আর্দ্রতা < সিলেটে আপেক্ষিক আর্দ্রতা, তাই কুমিল্লায় অবস্থানকারী কোনো ব্যক্তির দেহের ঘাম সিলেটের তুলনায় তাড়াতাড়ি শুকাবে। এ কারণে বসবাসের জন্য কুমিল্লা বেশি আরামদায়ক হবে।

প্রনা>২৯ 20°C তাপমাত্রা ও 15 atm চাপে একটি সিলিভারে 12L অক্সিজেন গ্যাস আছে। তাপমাত্রা 35°C এ উন্নীত করা হলো এবং আয়তন কমিয়ে 10.5 L করা হলো। আদর্শ গ্যাস বিবেচনা কর।

(रहिनाम कार्राएक करना

ক, আর্দ্রতা কী?

খ্রপরম আর্দ্রতা ও আপেক্ষিক আর্দ্রতার মধ্যে সম্পর্ক ব্যাখ্যা কর।২

গ, গ্যাসের বায়ুমন্ডলীয় শেষ চাপ কত হবে?

ঘ, এখানে কাজ সম্পন্ন হয়েছে কীং গাণিতিক যুক্তি দাও। ৪ ২৯ নং প্রশ্নের উত্তর

ক্য কোন স্থানের বায়ুতে কতটুকু জলীয় বাষ্প আছে অর্থাৎ বায়ু কতটুকু শৃষ্ক বা ভেজা তার নির্দেশককে বায়ুর আর্ম্রতা বলে।

বি কোনো আবন্ধ স্থানের বাতাসে যে পরিমাণ জলীয়বাচ্প উপস্থিত আছে তাকে ঐ স্থানের পরম আর্দ্রতা বলে। আবার কোনো স্থানের আপেন্দিক আর্দ্রতা হচ্ছে ঐ স্থানের পরম আর্দ্রতা ও ঐ স্থানের বায়ুকে সম্পৃক্ত করতে যে পরিমাণ জলীয় বাষ্প দরকার তার ভরের অনুপাত। অর্থাৎ

আপেন্দিক আর্দ্রতা = পরম আর্দ্রতা সম্পৃত্ত জলীয় বাব্দে ভর × 100%

এখানে, আদি চাপ, $P_1 = 15$ atm আদি আয়তন, $V_1 = 12L$ আদি তাপমাত্রা, $T_1 = 293K$ শেষ আয়তন, $V_2 = 10.5L$ শেষ চাপ, $P_3 = ?$

ত্বন,

$$T_1V_1^{\gamma-1}$$

= 293 × (12)^{1.4-1}
= 791.66
এবং
 $T_2V_2^{\gamma-1}$
= 308 × (10.5)^{0.4}
= 789

এথানে, আদি চাপ, $T_1 = 293 \, \mathrm{K}$ আদি আয়তন, $V_1 = 12 \, \mathrm{L}$ শেষ তাপমাত্রা, $T_2 = 308 \, \mathrm{K}$ শেষ আয়তন, $V_3 = 10.5 \, \mathrm{L}^+$ অক্সিজেন গ্যাসের জন্য, $\gamma = 1.4$

অর্থাৎ $T_1 V_1^{(r)} = T_2 V_2^{(r)}$ অর্থাৎ সিন্টেমটি বুন্ধতাপীয়। বুন্ধতাপীয় প্রক্রিয়ায় কৃতকাজ সিন্টেমের
অন্তঃস্থ শক্তি পরিবর্তনের সমান।

$$\therefore dW = -dU$$

$$= -nC_v dT$$

ছি পরমাণুক গ্যাসের জন্য, $C_v = \frac{5}{2}R$

বা, dW =
$$-\frac{PV}{RT} \times C_v dT$$

= $-\frac{15 \times 101325 \times 12 \times 10^{-3}}{8.314 \times 293} \times \frac{5}{2} R \times 15$
= $-2334.3 J$

কাজ ঝণাত্মক অর্থাৎ সিম্টেমের উপর কাজ সম্পাদিত হয়েছে।

প্রন >০০ কোনো একদিন ঢাকায় আর্দ্রতা মাপক যত্তে শৃষ্ক ভারের পাঠ
25°C এবং শিশিরাংক 10.5°C। ঐ একই দিনে চউপ্রামের বায়ুর
তাপমাত্রা ঢাকার বায়ুর তাপমাত্রার সমান এবং আপেন্ধিক আর্দ্রতা
70%। 24°C ও 26°C তাপমাত্রায় প্লেইসারের উৎপাদক যথাক্রমে 1.72
ও 1.69। 17°C, 19°C ও 25°C তাপমাত্রায় সম্পৃত্ত জলীয় বাষ্প চাপ
যথাক্রমে 14.52mmHgP, 16.46mmHgP ও 23.69mmHgP.

(मण्डेत राज्य स्टामण, जाका)

- ক, স্বাধীনতার মাত্রা কী?
- আর্দ্রতা মাপক যল্পের সাহায্যে কীভাবে আবহাওয়ার পূর্বাভাস পাওয়া যায় —ব্যাখ্যা কর।
- গ্র ঢাকায় আর্দ্রতামাপক যন্ত্রের সিত্ত বাল্বের পাঠ কত?
- ঘ, ঢাকা ও চট্টগ্রামের শিশিরাংক একই হবে কীনা-গাণিতিকভাবে বিশ্লেষণ কর।

ক একটি বস্তুর গতিশীল অবস্থা বা অবস্থান সম্পূর্ণরূপে প্রকাশ করার জন্য যত সংখ্যক স্বাধীন চলরাশির প্রয়োজন হয় তাকে স্বাধীনতার মাত্রা বলে।

থ আর্দ্রতা মাপক যন্তের দুই থার্মোমিটারের পাঠের ব্যবধান থেকে জানা যায—

- বেশি হলে বায়ু তথা আবহাওয়া শৃষ্ক i
- ২. কম হলে বায়ু আর্দ্র।
- ধীরে ধীরে কমলে বৃষ্টির সম্ভাবনা রয়েছে।
- হঠাৎ কমলে ঝড়ের সম্ভাবনা রয়েছে।

👣 ১৫(গ)নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: 16.4956°C -

মুট্টগ্রামে শিশিরাংকে সম্পৃত্ত জলীয় বাম্পের চাপ, f হলে আপেঞ্চিক আর্দ্রতা, $R = \frac{f}{F} \times 100\%$ ।

দেওয়া আছে, 17°C ও 19°C তাপমাত্রায় সম্পৃক্ত জ্লীয় বাম্পের চাপ যথাক্রমে 14.52 HgP ও 16.46 mm HgP

- ∴ (16.46 14.52) = 1.94 mm HgP চাপ পরিবর্তন হয় 19 17
 = 2°C তাপমাত্রার পার্থক্যের জন্য।
- ∴ (16.583 16.46) = 0.123 mmHgP চাপ পরিবর্তন হবে 2×0.123 1.94 = 0.127°C তাপমাত্রার পার্থক্যের জন্য।
- ∴ চট্টগ্রামের শিশিরাংক 19 + 0.127 = 19.127°C
 কিপু ঢাকায় শিশিরাংক 10.5°C, যা চট্টগ্রামের শিশিরাংক হতে ভিন্ন।
 অর্থাৎ ঢাকা চট্টগ্রামের শিশিরাংক একই হবে না।

প্রশা > ৩১

मिन	বায়ুর তাপমাত্রা	আঃ আর্ম্রতা	সম্পৃত্ত বাম্প চাপ
রবিবার	15°C	50%	0.1546 m m HgP
সোমবার	20°C	75%	0.198 m.m HgP

কোনো এক স্থানে এই দুই দিনেই সন্ধ্যায় তাপমাত্রা প্রাস পেয়ে 10°C হলো। 10°C সম্পৃত্ত জলীয় বাচ্প চাপ 10.5 × 10⁻³mmHgP.

[िकारूननिमा नुन म्कून এङ करनक]

- ক. বয়েলের সূত্র বিবৃত কর?
- তাপমাত্রার পরিবর্তনে গ্যাসের সান্দ্রতার কি পরিবর্তন ঘটে
 সমীকরণসহ আলোচনা কর।
- গ, রবিবার বাতাসে উপস্থিত জলীয় বাষ্প চাপ কত?
- ঘ, বায়ুস্থ জলীয় বাল্পে ঘনীভৃত অংশের পরিমাণ কোনদিন বেশি
 হবে?

৩১ নং প্রশ্নের উত্তর

ক স্থির তাপমাত্রায় নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন তার উপর প্রযুক্ত চাপের ব্যাস্তানুপাতিক। তাপমাত্রা বৃন্ধির সাথে সাথে গ্যাসের সান্দ্রতা বৃন্ধি পায়। গ্যাসের সান্দ্রতা সহগ তার কেলভিন তাপমাত্রার বর্গমূলের সমানুপাতিক।

া n ∞ √T

অপরদিকে গ্যাসের অণুগুলো থাকে তরলের তুলনায় অনেক আলগাভাবে
বাধা। অর্থাৎ, গ্যাসের অনুগুলোর মধ্যে আন্তঃআনবিক আকর্ষণ কম খুবই
নগণ্য থাকে এবং অণুগুলো প্রায় মুক্ত অবস্থায় বিচরণ করে ও এদের
মধ্যে একটি ইতন্তত গতি বিরাজ করে। তাপমাত্রা বৃন্ধির ফলে এদের
ইতন্তত গতি অত্যন্ত বেড়ে যায়। ধীরণতির স্তরের কিছু অণু দ্রুতগতির
ন্তরে যায়। ফলে দুতগতি স্তরের অণুগুলোর গড় দ্রুতি হাস পায়। আবার
এই ইতন্তত গতির ফলে দুতগতি স্তরের কিছু অণু ধীরণতির স্তরে চলে
যায়। এতে ধীরণতি স্তরের অণুগুলোর গড় দ্রুতি বৃন্ধি পায়। এর ফলে
দুই স্তরের মধ্যকার আপেক্ষিক গতি হাস পায় তথা সান্দ্রতা বৃন্ধি পায়।

গ জানা আছে.

আঃ আর্দ্রতা = বায়ুর তাপমাত্রার উপস্থিত জলীয় বাম্পের চাপ বায়ুর তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ

15°C তাপমাত্রায় উপস্থিত বায়ুস্থ জলীয় বাঞ্পের চাপ 15°C তাপমাত্রায় সম্পুক্ত জলীয় বাঞ্পের চাপ

R =
$$\frac{f}{F} \times 100\%$$
বা, $0.5 = \frac{f}{0.1546}$
বা, $f = 0.1546 \times 0.5$
= 0.0773 mmHgP

এখানে,
15°C তাপমাত্রায় সম্পৃত্ত জলীয়
বাম্পের চাপ,
 $F = 0.1546$ mm.HgP
আপেক্ষিক আর্দ্রতা,
 $R = 50\% = 0.5$
15°C তাপমাত্রায় উপস্থিত বায়ুস্থ
জলীয় বাম্পের চাপ, $f = ?$

ব কোনো দিনের তাপমাত্রা কমে গেলে কত অংশ ঘনীভূত হবে তা নির্ধারণ করা হয় বায়ুর তাপমাত্রায় বায়ুস্থ জলীয় বাষ্পচাপ ও ঐ দিন শিশিরাক্ষেক সম্পৃক্ত জলীয় বাষ্পচাপের পার্থক্য থেকে।

উল্লিখিত দুই দিনে সন্ধ্যায় তাপমাত্রা প্রাস পায় এবং 10°C হয়। ধরা যাক, 10°C তাপমাত্রায় বায়ু জলীয়বাম্প দ্বারা সম্পৃক্ত হয়। রবিবার,

দিনের তাপমাত্রায় বায়ুস্থ জলীয় বাম্পচাপ, f = 0.0773 mmHgP ['গ' হতে প্রাপ্ত]

সন্ধ্যার তাপমাত্রায় (10°C) সম্পৃত্ত জলীয় বাম্পচাপ, $F_{10} = 10.5 \times 10^{-3}$ mmHgP

 $\therefore \Delta f_1 = f_1 - F_{10} = (0.0773 - 10.5 \times 10^{-3}) \text{ mmHgP} = 0.0668 \text{ mmHgP}$

সোমবার, দিনের তাপমাত্রায় আঃ আর্দ্রতা, R = 75% = 0.75 সম্পৃত্ত জলীয় বাষ্পচাপ, F = 0.198 mm HgP এবং বাযুস্থ জলীয় বাষ্পচাপ, f₂ হলে,

$$R = \frac{f_2}{F}$$

বা, $f_2 = R \times F = 0.75 \times 0.198$ = 0.1485 mmHgP

আবার সম্প্যার তাপমাত্রায় (10°C) সম্পৃক্ত জ্লীয় বাষ্পচাপ, F10

$$\triangle Af_2 = f_2 - F_{10} = 0.1485 - 10.5 \times 10^{-3}$$

= 0.138 mmHgP

এখানে, $\Delta f_2 > \Delta f_1$

সূতরাং, রবিবারের থেকে সোমবারের সন্ধ্যায় জলীয় বাষ্পচাপের পার্থক্য বেশি। অর্থাৎ রবিবার হতে সোমবারে সন্ধ্যায় বেশি পরিমান জলীয় বাষ্প বায়ু হতে মুক্ত হয়েছে বা ঘনীভূত হয়েছে বিধায় বাষ্পচাপ সোমবার বেশি খ্রাস পেয়েছে।

অতএব উপরোক্ত গাণিতিক বিশ্লেষণ অনুযায়ী বলা যাচ্ছে যে সোমবার বায়ুস্থ জলীয়বান্দের ঘনীভূত অংশের পরিমাণ বেশি। প্রশ্ন ১০১ অনিক তার শিক্ষকের সাথে গবেষণাগারে একটি গ্যাসের ধর্ম নিয়ে কাজ করছিল। স্বাভাবিক চাপ ও তাপমাত্রায় তারা গ্যাসটির অণুগুলোর মূল গড় বর্গ বেগ পরিমাপ করলো 500 ms⁻¹ ইলেকট্রন অণুবীক্ষণ যন্ত্রে গ্যাসের একটি অণুর ব্যাসার্ধ পেল 2 × 10⁻¹⁰m.

(वाइॅंडिग्राम म्कूम क्षक करनण, शिविम, छाका)

- ক, বাস্তব গ্যাস কাকে বলে?
- শ. উদ্দীপকের গ্যাসটির ঘনত নির্ণয় কর।
- ঘ, গ্যাস অণুগুলোর পরপর দুটি সংঘর্ষের মধ্যে সময় ব্যবধান কেমন হবে— গাণিতিক বিশ্লেষণসহ তোমার মতামত দাও। ৪

৩২ নং প্রশ্নের উত্তর

ক যে গ্যাস সকল তাপমাত্রা ও চাপে বয়েল ও চার্লসের সূত্র যুগপৎ মেনে চলে না তাকে বাস্তব গ্যাস বলে।

বায়ুতে বিদ্যামন জলীয় বাষ্প সম্পৃক্ত হয়। তাপমাত্রায় নির্দিষ্ট পরিমাণ বায়ুতে বিদ্যামন জলীয় বাষ্প সম্পৃক্ত হয়। তাপমাত্রা বৃদ্ধিতে যেহেতু জলীয় বাষ্পের পরিমাণ বৃদ্ধি পায় না সেহেতু আবন্ধ স্থানের তাপমাত্রা বৃদ্ধিতে শিশিরান্তেকর কোনো পরিবর্তন হবে না, শিশিরান্তক একই থাকবে।

গ্ৰ জানা আছে,

$$C = \sqrt{\frac{3P}{\rho}}$$
 $rac{3p}{C^2} = \frac{3 \times 101325}{500^2}$
 $= 1.2159 \text{ kg.m}^{-3}$

গড় মুক্ত পথ, $\lambda = \frac{1}{n\pi\sigma}$ এখানে, গ্যাসটির rms $C_{r,m,s} = \sqrt{\frac{3RT}{M}}$ এখানে, গ্যাসটির rms $C_{r,m,s} = 500 \, \mathrm{r}$ অণুর ব্যাস, σ দুটি সংঘর্ষের ব্যবধান, t = ? গ' হতে ঘনত kgm $^{-3}$

এখানে, গ্যাসটির rms বেগ, $C_{r,m,s}=500~{\rm ms}^{-1}$ অপুর ব্যাস, $\sigma=4\times10^{-10}~{\rm m}$ দুটি সংঘর্ষের মধ্যবতী সময় ব্যবধান, t=? 'গ' হতে ঘনত্ব, $\rho=1.2159$ kgm⁻³

এখন একক আয়তনে অপুর সংখ্যা, $n=\frac{\rho\times N_A}{M}$ $\left[\because$ আয়তন, $V=\frac{M}{\rho}\right]$ $=\frac{1.2159\times 6.023\times 10^{23}}{0.02724}$ $=2.688\times 10^{25}~\text{m}^{-3}$

$$\lambda = \frac{1}{\sqrt{2} \times 2.688 \times 10^{25} \times \pi \times (4 \times 10^{-10})^2} = 5.23 \times 10^{-8} \text{ m}$$

.:, দুটি সংঘর্ষের মধ্যবতী সময় ব্যবধান, $t=\frac{\lambda}{C_{r.m.s}}=\frac{5.23\times 10^{-8}~\text{m}}{500~\text{ms}^{-1}}$ = $1.04\times 10^{-10}~\text{s}$ (Ans.)

প্রমা>০০ একটি ক্লিনিকে একজন রোগীর ব্যবহারের জন্য 10⁻²m³ আয়তনবিশিউ এবং 300°C সহনশীল মাত্রার একটি অক্সিজেন সিলিভার 27°C তাপমাত্রায় সরবরাহ করা হল। কিছু পরিমাণ অক্সিজেন কমে যাওয়ার পর চাপ কমে 1.3 × 10⁵Nm⁻² হলো।

(बावाडेक डेंक्सा घटना करमान, जाका)

- ক, তাংক্ষণিক বেগ কী?
- থ, বেগের মান সমান থাকলেও একটি গতিশীল কণার তুরণ থাকতে পারে— ব্যাখ্যা করো।
- গ, অক্সিজেনের আদিচাপ 2.5 × $10^5 \, \mathrm{Nm}^{-2}$ হলে সিলিন্ডারের কী পরিমাণ অক্সিজেন কমে গেল তা নির্ণয় করে।
- ঘ, সিলিভারে চাপ অপরিবর্তিত রেখে এতে $2\times 10^{-1} \mathrm{m}^3$ অক্সিজেন প্রবেশ করালে সিলিভারটি ব্যবহার করা নিরাপদ হবে কিনা? ৪

৩৩ নং প্রশ্নের উত্তর

ক কোনো গতিশীল বস্তুর কোনো বিশেষ মুহূর্তের বেগকে ঐ মুহূর্তের তাৎক্ষণিক বেগ বলে। ক্ষুদ্রাতিকুত্র সময়ের ব্যবধানে সরণের হার দ্বারা তাৎক্ষণিক বেগ নির্ণয় করা হয়।

আমরা জানি, ভেইরের মান অথবা দিক অথবা উভয়ের পরিবর্তনে ভেইর পরিবর্তীত হয়। বেগ হচ্ছে ভেইর রাশি। সুতরাং মান পরিবর্তন না হলেও দিকের পরিবর্তনে বেগ পরিবর্তীত হবে। সমদুতিতে বক্তপথে চলার সময় বেগের মান পরিবর্তীত না হলেও দিকের পরিবর্তন হয়। আর বেগের পরিবর্তনের হারকে ত্বরণ বলে। সুতরাং আমরা বলতে পারি, সরল পথে সমদুতিতে চলমান কোনো বস্তুর ত্বরণ না থাকলেও বক্ত পথে সমদুতিতে চলমান বস্তুর ত্বরণ থাকে।

ৰা প্ৰাথমিক অবস্থায়, $P_1V = \frac{W_1}{M}RT$ ৰা, $\frac{W_1}{M} = \frac{P_1V}{RT}...$ (i)

শেষ অবস্থায়, $P_2V = \frac{W_2}{M}RT$ ৰা, $\frac{W_2}{M} = \frac{P_2V}{RT}...$ (ii)

থেহেতু $W_1 > W_2$ তাই (i) – (ii) \Rightarrow $\frac{W_1 - W_2}{M} = \frac{(P_1 - P_2)V}{RT}$ ৰা, $W_1 - W_2 = \frac{(P_1 - P_2)V \times M}{RT}$ $= \frac{(2.5 - 1.3) \times 10^5 \times 10^{-2} \times 32 \times 10^{-3}}{8.314 \times 300}$

এখানে,
সিলিভারের আয়তন, $V = 10^{-2} \text{m}^3$ সিলিভারের আদি চাপ, $P = 2.5 \times 10^5 \text{ Nm}^{-2}$ তাপমাত্রা, T = 27 + 273 = 300 Kগ্যাসপ্তবক, $R = 8.31 \text{J mol}^{-1} \text{K}^{-1}$ শেষ চাপ, $P_2 = 1.3 \times 10^5$ Nm^{-2} অক্সিজেনের আপবিক ভর, $M = 32 \text{g} = 32 \times 10^{-3} \text{ kg}$

় অক্সিজেন বের হয়ে যায় 0.01539 kg (Ans.)

সিলিভারের চাপ অপরিবর্তিত রেখে 2 × 10⁻³m³ গ্যাস প্রবেশ করলে এর ভর বৃশ্বি পাবে।

এখন, PV = nRT

= 0.01539 kg

বা,
$$PV = \frac{W}{M}RT$$

∴ W ∝ V

অর্থাৎ দ্বিগুণ আয়তনের বেশি গ্যাস প্রবেশ করানোর ফলে ভর দ্বিগুণ বেড়ে যাবে। অর্থাৎ মোট ভর 3 গুণ হবে।

এখন,
$$\frac{V_2}{V_1} = \frac{T_2}{T_1}$$

বা, $T_2 = \frac{V_2}{V_1} \times T_1$

এখন, একই পাত্রে পূর্বের তুলনায় 3 গুণ বেশি গ্যাস রয়েছে।

$$T_2 = 3 \times (273 + 27)$$

= 900 K

অর্থাৎ তাপমাত্রা বেড়ে (900 – 273)K = 627K বা $627^{\circ}C$ হবে। অর্থাৎ সিলিন্ডারটি নিরাপদ নয়।

প্রনা ► 08 একটি গ্যাস সিলিভারের আয়তন 1.5m³। সিলিভারটিতে 27°C তাপমাত্রায় কোনো গ্যাসের 30 × 10²⁵ টি অণু আবন্ধ আছে। গ্যাস অণুর ব্যাস 25 × 10⁻¹⁰ m. পরবর্তীতে উক্ত গ্যাসপূর্ণ সিলিভারটি সমআয়তনের অপর একটি খালি সিলিভারের সাথে যুক্ত করা হল।

(इंगजिनिशांतिः इंडेनिजातिभित्रि म्कून वाड करनवा, गावा)

- ক. শিশিরাডক কি?
- খ. গ্যাসের গতিতত্ত্ব বয়েলের সূত্রকে সমর্থন করে –ব্যাখ্যা কর। ২
- গ্র সিলিভারে আবন্ধ গ্যাসের গতিশক্তি নির্ণয় কর।
- ঘ. খালি সিলিভারটি যুক্ত করায় গ্যাসের অণুর গড় মুক্ত পথের পরিবর্তন

হবে কিনা— গাণিতিকভাবে বিশ্লেষণপূর্বক মতামত দাও।

৩৪ নং প্রলের উত্তর

ক যে তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ু উপস্থিত জলীয় বাষ্প দারা সম্পুক্ত হয় তাকে ঐ বায়ুর শিশিরাক্ষ বলে।

য ৬ (খ) নং সূজনশীল প্রশ্নোত্তর দুইব্য।

🜃 ৬ (গ) নং সৃজনদীল প্রশ্লোতর দ্রন্টব্য।

ঘ ৬ (ঘ) নং সৃজনশীল প্রশ্লোত্তর দ্রুষ্টব্য।

থানা > তে একটি বায়ুপূর্ণ বেলুনকে একটি প্রদের 40.81 m গভীরতায় নিয়ে যাওয়ায় সেটি 1 লিটার আয়তন ধারণ করল। প্রদের তলদেশে বেলুনে আরও 1 লিটার বায়ু প্রবেশ করিয়ে, ছেড়ে দেওয়া হলে বায়ুমন্ডলের চাপ 10⁵Nm², পানির ঘনত্ব 10³ kgm³ এবং g = 9.804 ms²।

/বীরপ্রেপ্ত নূর মোহাম্যদ পাবলিক কলেল।

ক, শিশিরাজ্ঞক কাকে বলে?

খ. কোনো একদিন ঢাকার আপেক্ষিক আদ্রতা ৪5% বলতে কি বোঝায়?

গ্রনিমজ্জনের পূর্বে উদ্দীপকের বেলুনের আয়তন কত ছিল?

 বেলুনের সর্বোচ্চ প্রসারণের ক্ষমতা 9 লিটার। পানির উপরিতলে বেলুনটি অক্ষত অবস্থায় পৌছাবে কী? গাণিতিক বিশ্লেষণপূর্বক মতামত দাও।

৩৫ নং প্রশ্নের উত্তর

ক যে তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ু উপস্থিত জলীয় বাষ্প দ্বারা সম্পৃক্ত হয় তাকে ঐ বায়ুর শিশিরাঙ্ক বলে।

ত্ব ঢাকায় বাতাসের আপেক্ষিক আর্দ্রতা ৪5% বলতে বুঝায় কোনো নির্দিষ্ট সময় ঢাকার বায়ুতে সর্বোচ্চ যে পরিমাণ বাষ্প ধারণ করতে পারে ঐ সময় তার শতকরা ৪5 ভাগ জলীয় বাষ্প ঢাকার বায়ুতে উপুস্থিত আছে।

이 의자,

$$P_1V_1 = P_2 + V_2$$

 $\Rightarrow V_1 = \frac{P_2 V_2}{P_1}$
 $= \frac{499938 \times 1}{1 \times 10^5}$
 $= 4.999 L$
 $= 5L$

এখানে,

স্থাদের গভীরতা, h = 40.81 mবায়ুমন্ডলের চাপ, $P_1 = 10^5 \text{Nm}^{-1}$ স্থাদের তলদেশে চাপ, $P_2 = P_1 + \text{hpg}$ $= 1 \times 10^5 + (40.81 \times 10^3 \times 9.8)$ $= 499938 \text{ Nm}^{-2}$ স্থাদের তলদেশে আয়তন, $V_2 = 1 \text{ L}$ নিমজ্জনের পূর্বে বেলুনের আয়তন = স্থাদের উপরিতলে আয়তন, $V_1 = ?$

য 'গ' হতে পাই, পানির উপরিতলে আয়তন, $V_1 = 5L$ এবং হ্রদের তলদেশে আয়তন, $V_2 = 1L$ অর্থাৎ হ্রদের তলদেশ থেকে উপরে উঠে আসার ফলে

আয়তন বৃদ্ধির অনুপাত, $\frac{V_1}{V_2} = 5$

এখন হদের তলদেশে নিয়ে আরও 1 L বায়ু প্রবেশ করালে আয়তন হয় (1+1)L=2L

পানির উপরিতলে আসলে এই আয়তন হবে 5 × 2L = 10 L

কিন্তু উদ্দীপক হতে বেলুনের সর্বোচ্চ প্রসারণ ক্ষমতা 9L। অর্থাৎ পানির উপরিতলে বেলুনটি অক্ষত পৌছাবে না।

প্রা ▶০৬ A ও B দৃটি ঘনাকৃতির পাত্র, প্রতিটি বাহুর দৈর্ঘ্য যথাক্রমে 2m ও 3m । পাত্র দৃটি যথাক্রমে 5 × 10⁵Pa ও 4 × 10⁵ Pa চাপে O₂ গ্যাস দ্বারা পূর্ণ করা হয়েছে। /দিনাজপুর সরকারি কলেজ, দিনাজপুর

ক, পরম আর্দ্রতা কী?

খ, কোন স্থানের বায়ুর আপেক্ষিক আর্দ্রতা জেনে আবহাওয়ার পূর্বাভাস দেয়া যায়— ব্যাখ্যা করো। গ. A পাত্রে গ্যাসের মূল গড় বর্গ বেগ 1.5 × 10⁵ms⁻¹ খলে গ্যাসটির ভব কতে?

 ঘ. কোন পাত্রে গ্যাসের গতিশক্তি বেশি হবে তা যুক্তিসহ বিশ্লেষণ করো।

৩৬ নং প্রশ্নের উত্তর

ক্র কোনো স্থানের বাতাসে প্রতি ঘনমিটারে যে পরিমাণ জলীয় বাষ্প আছে তাকে ঐ স্থানের পরম আর্দ্রতা বলে।

কোনো স্থানের আপেক্ষিক আর্ন্রতার উপর আবহাওয়ার পূর্বাভাস
 দেয়া সম্ভব।

আপেন্দিক আর্ন্রতা ধীরে ধীরে বাড়লে আবহাওয়া আর্দ্র থাকবে।
 অর্থাৎ বৃষ্টিপাত হবে।

আপেক্ষিক আর্দ্রতা কম হলে আবহাওয়া শৃষ্ক থাকবে।

আপেক্ষিক আর্ন্রতা হঠাৎ বেড়ে গেলে ঝড় আসতে পারে।

ি
$$\overline{C} = \sqrt{\frac{3P}{\rho}} = \sqrt{\frac{3P}{m_{/_V}}}$$
 দেওয়া আছে, A পাত্রের একটি বাহু, $a = 2m$
 \therefore A পাত্রের আয়তন, $V_A = 2^3$
 $= 8m^3$

A পাত্রে চাপ, $P_A = 5 \times 10^5 \, Pa$
 $= \frac{3 \times 5 \times 10^5 \times 8}{(1.5 \times 10^5)^2} = 0.000533 \, kg$
 $= 0.533 \, g \, (Ans.)$

য A পাত্রের গতিশক্তি,
$$E_A = \frac{3}{2} P_A V_A$$

$$= \frac{3}{2} \times 5 \times 10^5 \times 2^3$$

$$= 6 \text{ MJ}$$
B পাত্রের গতিশক্তি, $E_B = \frac{3}{2} P_B V_B$

$$= \frac{3}{2} \times 4 \times 10^5 \times 3^3$$

$$= 16.2 \text{ MJ}$$

∴ E_B > E_A অতএব, B পাত্রের গ্যাসের গতিশক্তি A পাত্রের তুলনায় বেশি।

প্রমা > ৩৭ একটি প্রদের তলদেশের পানির তাপমাত্রা 14°C। প্রদটির তলদেশ থেকে পৃষ্ঠে আসার ফলে একটি বায়ু বুদবুদের ব্যাস দ্বিপূপ হয়। প্রদের পৃষ্ঠের বায়ুচাপ 10⁵Nm⁻², তাপমাত্রা 35°C এবং প্রদের তলদেশে বুদবুদের আয়তন 1 cm³।

এক শার্থীন কলেল, চাইগাদ/

ক. প্রমাণ চাপ কী?

খ. চট্টগ্রামের শিশিরাজ্ঞ 15°C বলতে কী বুঝ?

গ্র. প্রদের পানির তাপমাত্রা ধ্রব হলে এর গভীরতা নির্ণয় কর। ত

প্রদের শানর তাশমাত্রা ধ্বুব হলে এর গভারতা নিশয় কর।
 উদ্দীপকের আলোকে বুদবুদের আয়তনের পরিবর্তন হবে কী?
 গাণিতিক বিশ্লেষণে মতামত দাও।

৩৭ নং প্রশ্নের উত্তর

ক্ষ সমুদ্র পৃষ্ঠে 45° অক্ষাংশে 0°C তাপমাত্রায় উল্লম্বভাবে অবস্থিত 760 mm উচ্চতা বিশিক্ট শুক্ষ ও বিশুস্থ পারদ স্তম্ভের চাপকে প্রমাণ চাপ বলা হয়।

বায়ুর শিশিরাংক 15°C বলতে বৃঝায়, বায়ুর তাপমাত্রা প্রাস পেয়ে 15°C এ উপনীত হলে বায়ুস্থ জলীয় বাচ্প দারা চট্টগ্রামের বায়ু সম্পৃত্ত হবে অর্থাৎ 15°C তাপমাত্রায় আপেক্ষিক আর্দ্রতা হবে (100%) ফলে উক্ত স্থানে জলীয় বাচ্প শিশির কণা আকারে ঝরে পড়তে শুরু করবে।

পা এখানে, ভ্রদের পৃষ্ঠে বায়ুচাপ, P₁ = 10⁵Nm⁻² পানির ঘনত্ব, ρ = 10³kgm⁻³ ভ্রদের গভীরতা, h = ? আমরা জানি, আয়তন ∞ (ব্যাস)³ তাই ব্যাস দ্বিপুণ হলে আয়তন আটগুণ হয়। অর্থাৎ, V_1 ও V_2 যথাক্রমে প্রদের পৃষ্ঠদেশে ও তলদেশে বুদবুদের আয়তন হলে, $V_1=8V_2$

হদের তলদেশে চাপ P, হলে,

 $P_2 = P_1 + h\rho g$(i) [তাপমাত্রা ধ্ব বিবেচনা করে] আবার, তাপমাত্রা ধ্ব থাকলে,

$$P_1V_1 = P_2V_2$$

বা, $P_1 \times 8V_2 = P_2V_2$
বা, $P_2 = 8P_1$(ii)
(i) ও (ii) হতে পাই, $8P_1 = P_1 + h\rho g$
বা, $7P_1 = h\rho g$
বা, $h = \frac{7P_1}{\rho g}$

 $h = \frac{\rho g}{10^3 \text{kgm}^{-3} \times 9.8 \text{ms}^{-2}}$ = 71.428 m (Ans.)

এখানে, হ্রদের পৃষ্ঠে বায়ুচাপ, $P_1 = 10^5 \text{Nm}^{-2}$ তাপমাত্রা, $T_1 = 35^{\circ}\text{C} = 308 \text{K}$ হ্রদের তলদেশে বায়ুচাপ, $P_2 = 8P_1$ ['গ' হতে]
তাপমাত্রা, $T_2 = 14^{\circ}\text{C} = 287 \text{K}$ আয়তন, $V_2 = 1 \text{cm}^3$

হ্রদের পৃষ্ঠে আয়তন V, হলে,

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$| V_1 = \frac{T_1}{T_2} \times \frac{P_2}{P_1} \times V_2$$

$$= \frac{308}{287} \times \frac{8P_1}{P_1} \times 1 \text{ cm}^3$$

$$= 8.585 \text{ cm}^3 \neq V_2$$

অতএব, উদ্দীপকের আলোকে বুদবুদের আয়তন পরিবর্তন হবে।

প্রনা > ৩৮ পরীক্ষাগারে সুমনা STP-তে একই আয়তনের দৃটি সিলিভারের প্রথমটি 16gm অক্সিজেন ও দ্বিতীয়টি 2gm হাইড্রোজেন দিয়ে পূর্ণ করলো। তারপর সিলিভার দৃটি হাতে নিয়ে সুমনা অনুভব করলো, 'একটির তুলনায় অপরটি হালকা এবং তার মনে হলো, হালকা গ্যাসটির গড় বর্গবেগের বর্গমূলের মান বেশি হবে'।

| হালি ক্রম্ন ক্রেল্ড, ঢাকা,

ক. আপেন্ধিক আর্দ্রতা কাকে বলে?

খ. শীতের রাতে শিশির পড়ে কেন? ব্যাখ্যা কর।

গ্রপ্রথম সিলিভারে রক্ষিত গ্যাসটির গতিশক্তি নির্ণয় কর।

ঘ় উদ্দীপক অনুসারে উল্লেখিত তথ্য দুটির সত্যতা গাণিতিকভাবে যাচাই কর।

৩৮ নং প্রশ্নের উত্তর

ক কোনো নির্দিষ্ট তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ুতে যে পরিমাণ জলীয় বাষ্প থাকে এবং ঐ তাপমাত্রায় ঐ আয়তনের বায়ুকে সম্পৃক্ত করতে যে পরিমাণ জলীয় বাষ্পের প্রয়োজন হয় তাদের অনুপাতকে আপেক্ষিক আর্দ্রতা বলে।

শীতের সকালে ঘাসের ওপর বিন্দু বিন্দু পানি জমে থাকতে দেখা যায়। এগুলোকে শিশির বলে। শীতকালে দিন ও রাতে যথেষ্ট তাপমাত্রার পার্থক্য পরিলক্ষিত হয়। দিনের বেলায় সূর্যের তাপে ভূ-পৃষ্ঠ ও সংলগ্ন বায়ু উত্তপ্ত হয়। এ সময় বায়ু জলীয় বাষ্প দ্বারা অসম্পৃক্ত থাকে। কিন্তু রাতের বেলায় ভূ-পৃষ্ঠ তাপ বিকিরণ করে ধীরে ধীরে শীতল হতে থাকে। তাপ বিকিরণের হার সব বস্তুর সমান নয়। ঘাস পাতা ইত্যাদির তাপু বিকিরণের হার বেশি বলে এগুলো বেশি শীতল হয় এবং সাথে সাথে সংলগ্ন বায়ুকেও শীতল করে। এগুলোর তাপমাত্রা শিশিরান্তেকর নিচে নেমে গেলে জলীয় বাষ্প ঘনীভূত হয়ে এগুলোর গায়ে বিন্দু বিন্দু আকারে জমা হয়।

্য দেওয়া আছে,

অক্সিজেনের ভর, m=16~gm জানা আছে, STP তে তাপমাত্রা, T=273~K অক্সিজেনের আণবিক ভর, $M=32~gm/~mol^{-1}$ সাবর্জনীন গ্যাস ধুবক, $R=8.31 J K^{-1}~mol^{-1}$ বের করতে হবে, অক্সিজেনের মোট গতিশক্তি, E=? আমরা জানি,

E =
$$\frac{3}{2}$$
 nRT = $\frac{3}{2}$ $\frac{m}{M}$ RT
= $\frac{3}{2} \times \frac{16}{32} \times 8.31 \times 273$
= 1701.4725 J (Ans.)

ঘ উদ্দীপক অনুসারে,

প্রথম সিলিভারে অক্সিজেনের ভর, m₁ = 16gm দ্বিতীয় সিলিভারে হাইড্রোজেনের ভর, m₂ = 2gm

থেকেড, m1 > m2

সূতরাং, প্রথম সিলিভারটি দ্বিতীয় সিলিভার অপেকা ভারী অনুভূত হবে। জানা আছে,

সার্বজনীন গ্যাস ধ্বক, R = 8.31 JK-1 mol-1

STP তে তাপমাত্রা, T = 273 K

অক্সিজেনের আণবিক ভর, M1 = 32 gm/mol

হাইড্রোজেনের আণবিক ভর, M2 = 2 gm/mol

ধরা যাক, STP-তে অক্সিজেন ও হাইড্রোজেনের বর্গমূল গড় বর্গবেগ যথাক্রমে C₁ ও C₂

$$\therefore C_1 = \sqrt{\frac{3RT}{M_1}} = \sqrt{\frac{3 \times 8.31 \times 273}{32 \times 10^{-3}}}$$

বা, C₁ = 461.177 ms⁻¹

এবং
$$C_2 = \sqrt{\frac{3RT}{M_2}} = \sqrt{\frac{3 \times 8.31 \times 273}{2 \times 10^{-3}}} = 1844,707 \text{ ms}^{-1}$$

যেহেতু, C2 > C1

সূতরাং হালকা গ্যাসটির গড় বর্গ বেগের বর্গমূল মান বেশি হবে।

প্রনা > ০৯ চট্টগ্রামের কর্ণফুলী টানেল অর্থনীতির দিগন্ত উন্মোচনের এক নতুন স্বপ্ন। এর নির্মান কাজ পর্যবেক্ষনের জন্য একজন প্রযুদ্ভিবিদ 35m গভীরে টানেলের নিকট পৌছান এবং সেখানে সৃষ্ট 0.2m³ আয়তনের একট বুদবুদ পানির পৃষ্ঠে আসায় আয়তন বৃদ্ধি পায়। কিন্তু নদীর তলদেশ হতে একই আয়তনের অপর একটি বুদবুদ পৃষ্ঠে আসায় তার আয়তন পৃষ্ঠে অবস্থিত প্রথম বুদবুদের আয়তনের দ্বিগুণ হয়। স্বাভাবিক বায়ু চাপে পানি স্থির এবং তাপমাত্রা ধ্রুব ছিল।

/ঘাইনাস্টোদ কলেজ/

ক, শিশিরাংক কাকে বলে?

খ, ঢাকার আপেন্ধিক আর্দ্রতা 70% বলতে কী বোঝায়? ব্যাখ্যা

গ. প্রথম বুদবুদটি পানির উপরি পৃষ্ঠে আসলে আয়তন কত হয়

ঘ, টানেল টিউবটি নদীর অর্ধেক গভীরতায় স্থাপিত কিনা? গাণিতিকভাবে ব্যাখ্যা কর।

৩৯ নং প্রশ্নের উত্তর

ক যে তাপমাত্রায় একটি নির্দিন্ট আয়তনের বায়ু উপস্থিত জলীয় বাচ্প দ্বারা সম্পুত্ত হয় তাকে ঐ বায়ুর শিশিরাক্তক বলে।

ত্র ঢাকায় বাতাসের আপেক্ষিক আর্দ্রতা 70% বলতে বুঝায় কোনো নির্দিষ্ট সময় ঢাকার বায়ুতে সর্বোচ্চ যে পরিমাণ বাষ্প ধারণ করতে পারে ঐ সময় তার শতকরা 70 ভাগ জলীয় বাষ্প ঢাকার বায়ুতে উপস্থিত আছে। 4

এখন,

$$P_1V_1 = P_2V_2$$

বা, $V_1 = \frac{P_2V_2}{P_1}$
 $= \frac{444325 \times 0.2}{101325}$
 $= 0.877 \text{ m}^3 \text{ (Ans.)}$

এখানে. উপরিতলে চাপ, $P_1 = 101325 \text{ Nm}^{-2}$ গভীরতা, h = 35 m h গভীরতায় চাপ. $P_2 = P_1 + h \rho g$ $= 101325 + 35 \times 1 \times 10^{3} \times 9.8$ = 444325 Nm⁻² h গভীরতায় আয়তন, V₂ = 0.2 m³ উপরিতলে আয়তন, $V_1 = ?$

ঘ

এখন, $P_1V_1 = P_2V_2$ $\P_1 V_1 = (P_1 + h \rho g) V_2$ বা, 101325 × 1.754 = $(101325 + hpg) \times 0.2$ বা, hpg + 101325 = 888620.25 $41, h = \frac{787295.25}{1 \times 10^3 \times 9.8}$ = 80.34 m

এখানে. ধরি, নদীর গভীরতা = h 'গ' হতে উপরিতলে ১ম বুদবুদের আয়তন. = 0.877 m³ উপরিতলে ২য় বুদবুদের আয়তন, $V_1 = 2 \times 0.877 = 1.754 \text{ m}^3$ h গভীরতার আয়তন, V₂=0.2 m³ উপরিতলে চাপ, P₁ = 101325 h গভীরতায় চাপ, P2=P1+hpg

কিন্ত টানেলটি 35m গভীরতায় অবস্থিত। এর দ্বিগুণ = (35 x 2) m = 70 m। দেখা যাচ্ছে যে নদীর গভীরতা 80.34 m হলে ২য় বুদবুদের আয়তন ১ম বুদবুদের আয়তনের দ্বিগুণ হয়। অর্থাৎ টানেল টিউবটি নদীর অর্ধেক গড়ীরতায় স্থাপিত না।

প্রশ ▶8০

A বিন্দুর রেখাটি এক মোল অক্সিজেন ও B রেখাটি এক মোল (यामयवी कारिनस्य के कलान) গ্যাস নির্দেশ করে।

ক, অন্টক কাকে বলে?

খ, কোনো স্থানের আপেক্ষিক আর্দ্রতা 70% বলতে কী বোঝায়ং ২

গ. চিত্রে A এবং B বিন্দৃতে চাপের অনুপাত কত?

ঘ. A বিন্দৃতে গ্যাসের মোট গতিশক্তি B বিন্দৃতে গ্যাসের মোট ণতিশক্তির অর্ধেক। গাণিতিক ভাবে সত্যতা নিরুপণ করে। ৪

৪০ নং প্ররের উত্তর

ক স্বরে উপস্থিত কোনো উপসুরের কম্পাভক মূলসুরের কম্পভেকর সরল গণিতক হলে ঐ উপস্রকে অম্টক বলে।

বা কোনো স্থানের আপেক্ষিক আর্দ্রতা 70% বলতে বোঝা যায়, বায়ুর তাপমাত্রায় ঐ স্থানের বায়ুকে সম্পুক্ত করতে যে পরিমাণ জলীয়বাচ্প প্রয়োজন তার শতকরা 70 ভাগ জলীয় বাষ্প ঐ স্থানের বায়ুতে আছে। সুতরাং, ঐ মুহূর্তে তখন বৃষ্টি হওয়ার সম্ভাবনা কম। বৃষ্টি হওয়ার জন্য আপেক্ষিক আর্দ্রতা 100% হতে হবে।

ু এখানে,

A বিন্দুতে— আয়তন, V_A = 3m³ তাপমাত্রা, T_A = 300K ধরি, চাপ = P_A B বিন্দুতে, আয়তন, $V_B = 2m^3$ তাপমাত্রা, T_B = 600K

ধরি, চাপ = P_B বের করতে হবে, $\frac{P_{\Delta}}{P_{\alpha}}$ = ? আমরা জানি, $P_A = \frac{n_A R T_A}{V_A}$ $\overline{A}, P_A = \frac{RT_A}{V_A} \dots (i) [\because n = 1 \text{ mole}]$ বা, $P_B = \frac{RT_B}{V_B}$(ii) [: n = 1 mole] (i) + (ii) করে পাই, $\overline{q}_{1}, \quad \frac{P_{A}}{P_{B}} = \frac{300}{3} \times \frac{2}{600}$

PV = nRT

 $P_B = \frac{n_B R T_B}{V_B}$

 $\frac{P_A}{P_B} = \frac{\frac{RT_A}{V_A}}{\frac{RT_B}{V_A}} = \frac{T_A}{V_A} \times \frac{V_B}{T_B}$

.. P_A: P_B = 1:3 (Ans.) व वयात. A বিন্দুতে, তাপমাত্রা, T_A = 300 K মোল সংখ্যা, n_A = I mole B বিন্দুতে, তাপমাত্রা, T_B = 600 K মোল সংখ্যা, n = 1 mole

জানা আছে, মোলার গ্যাস ধ্রবক, R = 8.316 Jmol ¹K ¹ A বিন্দুতে মোট গতিশস্তি,

$$E_{k_A} = \frac{3}{2} n_A RT_A$$

$$= \frac{3}{2} \times 1 \times 8.316 \times 300$$

$$= 3.74 \times 10^3 J$$

B বিন্দুতে মোট গতিশক্তি,

$$E_{k_B} = \frac{3}{2} n_B RT_B$$

$$= \frac{3}{2} \times 1 \times 8.316 \times 600$$

$$= 7.48 \times 10^3 J$$
এখন, $\frac{E_{k_A}}{E_{k_B}} = \frac{3.74 \times 10^3 J}{7.48 \times 10^3 J}$

$$All for each of the form of$$

বা,
$$E_{k_A} = \frac{1}{2} \times E_{k_B}$$

∴ A বিন্দুতে মোট গতিশক্তি = $\frac{1}{2} \times B$ বিন্দুতে গতিশক্তি। অর্থাৎ A বিন্দুতে মোট গতিশক্তি B বিন্দুতে মোট গতিশক্তির অর্ধেক।

প্ররা▶৪১ 27°C তাপমাত্রায় একটি ঘর্ষণহীন পিস্টনযুক্ত সিলিভারে 1mole O2 গ্যাস আছে। (कामिताबाम का। कैनरभक्ते भागात करमकः, नारकैत।

ক, শিশিরাংক কাকে বলে? খ, প্রাসের গতিপথের সর্বোচ্চ বিন্দুতে বেগ একমাত্রিক কেন ব্যাখ্যা কর।

গ, ঐ তাপমাত্রায় O2 গ্যাস এর মূল গড় বর্গ নির্ণয় কর।

ঘ, তাপমাত্রা সেলসিয়াস স্কেলে পূর্বের দ্বিগুণ করলে গতিশক্তি ছিগুণ হবে কী-না গাণিতিক বিশ্লেষণ দাও।

ক যে তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ু উপস্থিত জলীয় বাষ্প দ্বারা সম্পুক্ত হয় তাকে ঐ বায়ুর শিশিরাজ্ঞ বলে।

বা প্রাসের গতিপথের সর্বোচ্চ উচ্চতায় বেগের উলম্ব উপাংশ শূন্য হয়ে যাওয়ায় শৃধুমাত্র আনুভূমিক উপাংশ থাকে। তাই প্রাসের গতিপথের সর্বোচ্চ বিন্দুতে বেগ একমাত্রিক।

া মোল গ্যাসের জন্য PV = RT এবং PV =
$$\frac{1}{3}$$
 mN \overline{C}^2

$$\therefore \frac{1}{3}$$
 mN \overline{C}^2 = RT
বা, $\overline{C}^2 = \frac{3RT}{mN} = \frac{3RT}{M}$ [mN = এক মোল গ্যাসের ভর = M]
বা, $\sqrt{\overline{C}^2} = \sqrt{\frac{3RT}{M}}$

$$= \sqrt{\frac{3 \times 8.314 \times 300}{32 \times 10^{-3}}}$$

= 483.56 ms⁻¹ (Ans.)

V

$$1$$
 mole গ্যাসের অণুর গতিশক্তি, $E_k = \frac{3}{2}$ RT অর্থাৎ, $E_k \propto T$. [:: $R = \xi$ ব] .: $\frac{E_{k_2}}{E_{k_1}} = \frac{T_2}{T_1} = \frac{327}{300}$ বা, $E_{k_2} = 1.09$ E_{k_1}

প্রাথমিক তাপমাত্রা,

$$T_1 = 27^{\circ}C = 300K$$
গতিশক্তি, = E_{k_1}
পরবর্তী, তাপমাত্রা, $T_2 = 2 \times 27^{\circ}C$
= $54^{\circ}C$
= $327K$
গতিশক্তি = E_{k_2}

অতএব, সেলসিয়াস স্কেলে তাপমাত্রা পূর্বের দ্বিগুণ করলে গতিশক্তি দ্বিগুণ হবে না।

প্র# ▶ 8২ কোনো ঘরের তাপমাত্রা 32°C এবং শিশিরাংক 16° C এবং আপেঞ্চিক আর্দ্রতা 50%। ঐ সময়ে দরের বাইরের তাপমাত্রা 12°C ও আপেক্ষিক আর্দ্রতা 75%। 32°C ও 12°C তাপমাত্রায় সম্পুত্ত জলীয় বাষ্প চাপ যথাক্রমে 33,5mm Hg ও 9.5 mm Hg । 32°C তাপমাত্রায় গ্লেইসারের উৎপাদক 1.63। [बारमारमय त्योवाहिनी शुक्त वाड करमान, युगना)

- ক, শন্তির সমবিভাজন, নীতিটি বিবৃতি কর।
- খ. মেঘ মুক্ত আকাশ শিশির জমার জন্য সহায়ক কেন?
- গ উদ্দীপকে বর্ণিত ঘরে একটি হাইগ্রোমিটারের আর্দ্র বান্থ থার্মোমিটার কত পাঠ দেখাবে?
- ঘ. যদি ঘরের জানালো খুলে দেওয়া হয় তবে জলীয় বাষ্প কোন দিকে চলাচল করবে? গাণিতিক বিশ্লেষণ দাও।

৪২ নং প্রশ্নের উত্তর

🐯 শক্তির সমবিভাজন নীতিটি হলো— তাপীয় সাম্যবস্থায় আছে এমন গভীয় সিস্টেমের মোট শক্তি বিভিন্ন স্বাধীনতার মাত্রার ভেতর সমভাবে বণ্টিত হয় এবং প্রত্যেক স্বাধীনতার মাত্রা পিছু শক্তির পরিমাণ হয় 🕇 kT।

🛂 দিনের বেলায় সূর্যের তাপে ভূপৃষ্ঠ সংলগ্ন বাতাস গরম থাকে এবং জলীয় বাষ্প দ্বারা অসম্পৃত্ত থাকে। মেঘমুক্ত রাত্রিতে ভূপৃষ্ঠ তাপ বিকিরণ করে ঠান্ডা হতে থাকে এবং পরিশেষে এমন একটি তাপমাত্রায় উপনীত হয় যখন ৰাতাস জলীয় ৰাষ্প সম্পৃক্ত হয় এবং জলীয় বাষ্প ঘনীভূত হয়ে শিশির জমে।

কিবু আকাশ মেঘাচ্ছর থাকলে ভূপৃষ্ঠ তাপ বিকিরণ করে ঠান্ডা হতে পারে না। কারণ মেঘ তাপরোধী পদার্থ বলে ভূপৃষ্ঠ হতে বিকিরণজনিত তাপ পরিবাহিত হতে পারে না। ফলে ভূপৃষ্ঠ ঠান্ডা হয় না এবং শিশির জমে না।

ন ১৫(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: 22.184°C.

ত্ত ১৫(ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

উত্তর : ঘরের ভেতরে জলীয় বাম্পচাপ বাইরের তুলনায় বেশি তাই জলীয়বাষ্প ঘরের ভেতর থেকে বাইরে যাবে।

알레 ▶8♡

X ভার যুক্ত সংযোগ নলটির আয়তন নগন্য। B পাত্রের আয়তন A পাত্রের আয়তনের 5 গুণ। ভারু বন্ধ অবস্থায় A ও B পাত্রের গ্যাসের তাপমাত্রা ও চাপ যথাক্রমে 300 K ও 400 K এবং 5 × 10⁵ Pa ও (भाजात क्यांकेनरमचे भावनिक स्कून এक करमक, जाका)

- ক, আপেন্ধিক আর্দ্রতা কী?
- খ. গ্রীষাকালে দোলক ঘড়ি ধীরে চলে এবং শীতকালে দুত চলে
- গ, বাম্ব কব্দ অবস্থায় B পাত্রের গ্যাসের অণুর মূল গড় বর্গবৈগ কভ?
- ঘ. পাত্রন্বয়ের তাপমাত্রার পরিবর্তন না করে, বাহুটি খুলে দিয়ে ব্যবস্থাটির গ্যাসের চাপ নির্ণয় করা যাবে কি না– ব্যাখ্যা করো।

৪৩ নং প্রশ্নের উত্তর

ক কোনো নির্দিষ্ট তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ুতে যে পরিমাণ জলীয় বাষ্প থাকে এবং ঐ তাপমাত্রায় ঐ আয়তনের বায়কে সম্পুক্ত করতে যে পরিমাণ জলীয় বাম্পের প্রয়োজন হয় তাদের অনুপাতকে আপেক্ষিক আর্দ্রতা বলে।

য আমরাজানি, দোলকের দোলনকালের সমীকরণ, T = 2π 🔨 কোনো নির্দিষ্ট স্থানে অভিকর্মজ তুরণ g এর মান ধ্রুব। তাই L এর মান পরিবর্তনে T এর মান পরিবর্তিত হয়। গ্রীষ্মকালে দোলকের দৈর্ঘ্য বৃদ্ধি পাওয়ায় দোলনকাল বেড়ে যায়। এ কারণে গ্রীষ্মকালে অধিক তাপমাত্রার কারণে দোলকঘড়ি ধীরে চলে। আবার শীতকালে দোলকের দৈর্ঘ্য হ্রাস পাওয়ায় দোলনকাল হ্রাস পায়। ফলে শীতকালে দোলক ঘড়ি দুত চলে।

র্বা বাল্প বন্ধ অবস্থায় B পাত্রের গ্যাসের অণুর বর্ণমূল গড় বর্ণবেগ, C_{rms} २८ल,

$$C_{\text{ems}} = \sqrt{\frac{3RT}{M}}$$

= $\sqrt{\frac{3 \times 8.314 \times 400}{32 \times 10^{-3}}}$
= 558.37 ms⁻¹ (Ans.)

এখানে,

B পাত্রের তাপমাত্রা,
$$T = 400 \text{ K}$$

অক্সিজেনের মোলার ভর, $M = 32g$
 $= 32 \times 10^{-3} \text{ kg}$

মোলার গ্যাস ধ্রুবক, $R = 8.314 \text{ Jmol}^{-1} \text{K}^{-1}$

ত এখানে,

A পাত্রের আয়তন, $V_A = V$

B পাত্রের আয়তন V_B = 5V

 $[:: V_B = 5V_A]$

A পাত্রের তাপমাত্রা, T_A = 300 K

B পাত্রের তাপমাত্রা, T_B = 400 K

A পাত্ৰের চাপ, P_A = 5 × 10⁵ Pa

B পাত্রের চাপ, P_B = 10⁵ Pa

মনে করি, A পাত্রে O_2 এর মোল সংখ্যা = n_A

B পাত্তে O2 এর মোল সংখ্যা = nB

মনে করি, মিশ্রণের চাপ ও তাপমাত্রা যথাক্রমে P ও T। আদর্শ গ্যাস সমীকরণ থেকে পাই.

$$P_A V_A = n_A R T$$

$$\P_A n_A = \frac{P_A V_A}{R T}$$

$$= \frac{5 \times 10^5 \times V}{R \times 300}$$

$$= \frac{5V}{3R} \times 1000$$

$$= \frac{5000}{3R} V \dots (i)$$

$$P_BV_B = n_BRT$$

$$\exists t, n_B = \frac{P_BV_B}{RT}$$

$$= \frac{10^5 \times 5V}{400 \times R}$$

$$= \frac{5000V}{4R}$$
(ii)

যেহেতু সমস্ত সিস্টেমটির আয়তন অপরিবর্তিত থাকে। সেহেতু মোট কৃতকাজ শুন্য।

$$\therefore n_A C_V \Delta T_A = n_B C_V \Delta T_B$$

$$\P_A$$
, $n_A (T - T_A) = n_B (T_B - T)$

$$(n_A + n_B) T = n_A T_A + n_B T_B$$

dO = du + dw, dw = 0 তাই অভ্যন্তরীণ শক্তি = du এবং du = Cvdt মিশ্রণে আদর্শ গ্যাস সমীকরণ ব্যবহার করে পাই

$$PV_T = nRT [V_T = মোট আয়তন]$$

$$\P(V_A + V_B) = (n_A + n_B) RT$$

$$R = (n_A + n_B) R \frac{n_A T_A + n_B T_B}{(n_A + n_B)}$$

$$\overline{\mathbf{q}}, \ \mathbf{P} = \frac{\mathbf{n_A} \mathbf{T_A} + \mathbf{n_B} \mathbf{T_B}}{6 \mathbf{V}} \mathbf{R}$$

$$\frac{5000}{3R} V \times 300 + \frac{5000}{4R} V \times 400$$

$$\frac{5 \times 10^{5} V}{R} + \frac{5 \times 10^{5} V}{R} \times R$$

$$\frac{1}{4} = \frac{5 \times 10^{5} V}{6} + \frac{5 \times 10^{5} V}{R} \times R$$

$$\frac{1}{4} = \frac{5 \times 10^{5} + 5 \times 10^{5}}{6}$$

 $P = 1.67 \times 10^5 \text{ Pa}$

অতএব, ভার খুলে দেওয়ার পর ব্যবস্থাটির চাপ নির্ণয় করা যাবে এবং তা হবে 1.67 × 105 Pa I

প্রশ্ন ▶88 2cm³ আয়তনের দুটি অভিন্ন পাত্র A ও B। A পাত্রে 1 mole O₂ গ্যাস আছে যার চাপ 3 × 10⁵ Nm⁻² এবং B পাত্রে 1 mole N₂ গ্যাস আছে যার চাপ 3.66 × 10⁵ Nm⁻²

[पागुदा मदकादि प्रदिना करनज)

ক. মূল গড় বৰ্গবেগ কি?

খ, গ্যাসের গতিতত্ত্ব থেকে কিভাবে চার্লসের সূত্র পাওয়া যায়-ব্যাখ্যা কর।

· গ. B পাত্রে গ্যাসের গতিশক্তি কত?

ঘ. A ও B পাত্রের মধ্যে কোনটি বেশি উত্তপ্ত হবে গাণিতিক বিশ্লেষণের মাধ্যমে দেখাও।

৪৪ নং প্রশ্নের উত্তর

ক গ্যাস অণুণুলোর বেগের বর্ণের গড়মানের বর্ণমূলকে মূল গড় বৰ্গবেগ বলে।

গ্রাসের গতিতত্ত্ব থেকে জানা যায়,

 $PV = \frac{1}{2}m NC^{-2}$; যেখানে m হলো প্রতিটি গ্যাস অণুর ভর এবং N হলো মোট অণুর সংখ্যা।

আবার,
$$C = \sqrt{\frac{3RT}{M}}$$
, M গ্যাসের আণবিক ভর,

$$\therefore PV = \frac{1}{3} \, mN \, \left(\frac{3RT}{M} \right)$$

বা, PV = nRT

যদি গ্যাসের পরিমাণ (n) ধুব হয় এবং গ্যাসটিকে স্থির চাপে (P) রাখা হয়, তবে

 $V \propto T$

অর্থাৎ স্থির চাপে নির্দিষ্ট পরিমাণ কোনো আদর্শ গ্যাসের আয়তন এর পরম তাপমাত্রার সমাণুপাতিক এটাই চার্লসের সূত্র।

গ্রা ১৯(গ) নং সূজনশীল প্রশ্নোতরের অনুরূপ। উত্তর : 1.098 J।

১৯(ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

27 >80

/ठाउँधाय कार्यनत्यर्पे भावनिक कलना, ठाउँधाय/

ক, বয়েলের সূত্রটি লিখো।

 বায়তে জ্লীয় বাচ্পের পরিমাণ কমে গেলে সিস্ত বার থার্মোমিটারের পাঠ ব্রাস পায়— ব্যাখ্যা করো।

গ্রপ্রমাণ চাপে A পাত্রের আয়তন কত হবে?

ঘ. A ও B পাত্রের গ্যাসের C_{rms} বেগের তুলনা করো।

৪৫ নং প্রশ্নের উত্তর

ক্র তাপমাত্রা স্থির থাকলে নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন এর চাপের বিপরীত অনুপাতে পরিবর্তিত হয়।

য়া আর্দ্রতামাপক যন্তে সিম্ভ মসলিন/লিনেন থেকে পানির বাম্পায়নের জন্য সিত্ত বাব্বে কম তাপমাত্রা দেখা যায়। বায়ুতে জলীয় বাম্পের পরিমাণ কমে গেলে পানির বাম্পায়নের হার বেড়ে যায়। ফলে সিত্ত বান্ব থার্মোমিটারের তাপমাত্রা হ্রাস পায়।

PV = nRT =
$$\frac{mRT}{M}$$

$$V = \frac{mRT}{PM}$$

$$= \frac{5 \times 8.314 \times 299}{101325 \times 32}$$

$$= 3.8334 \times 10^{-3} \text{ m}^{3}$$

$$= 3833.4 \text{ cm}^{3} \text{ (Ans.)}$$

য় জানা আছে,

$$\overline{C}_{rms} = \sqrt{\frac{3RT}{M}}$$

$$\therefore \overline{C}_A = \sqrt{\frac{3RT}{M_A}}$$

$$\overline{C}_B = \sqrt{\frac{3RT_B}{M_B}}$$

দেয়া আছে A MICO. গ্যাসের ভর, m = 5g তাপমাত্রা, T = 26°C = 299Kআণবিক ভর, M = 32g প্রমাণ চাপ, P = 101325 Pa

এখানে. A পাত্রের গ্যাসের তাপমাত্রা, $T_A = 2^{\circ}C = 299K$ B পাত্রের গ্যাসের তাপমাত্রা, $T_B = 26^{\circ}C = 299K$ O, এর আণবিক ভর, $M_A = 32 \text{ gm mol}^{-1}$ N, গ্যাসের আণবিক ভর, $M_B = 28 \text{ gm mol}^{-1}$

$$\therefore \frac{\overline{C}_A}{\overline{C}_B} = \sqrt{\frac{T_A}{T_B} \cdot \frac{M_B}{M_A}}$$

$$= \sqrt{1 \times \frac{28}{32}}$$

$$= \sqrt{\frac{7}{8}}$$

$$= \frac{\sqrt{7}}{2\sqrt{2}}$$

$$= 0.93 < 1$$

$$\therefore \overline{C}_A < \overline{C}_B$$

অতএব, B পাত্রের গ্যাসের $C_{r,m,s}$ বেগের মান A পাত্রের গ্যাসের তুলনায় বৃহত্তর।

প্রনা > 85 একটি প্রদের তলদেশ থেকে পানির উপরিতলে আসার ফলে বায়ু বুদবুদের ব্যাস 5 গুণ হয়। প্রদের পৃষ্ঠে বায়ুচাপ 1.013×10⁵pa পানির ঘনত 10³kgm⁻³। তাপমাত্রা স্থির বিবেচনা করা হল।

(এम ७ এम शंत्रगांन त्यहैनात कल्ला, जाका)

2

- ক, সান্দ্ৰ বল কী?
- খ. সান্দ্রতাঙ্কের মাত্রা বের করো?
- গ, উদ্দীপকের হ্রদের গভীরতা নির্ণয় করো।
- ঘ. যদি প্রদের তলদেশ ও পৃষ্ঠদেশের তাপমাত্রা যথাক্রমে 20°C ও 40°C হয়, তবে বুদবুদের আয়তনের পরিবর্তন কীর্প হবে, গাণিতিক বিশ্লেষণের মাধ্যমে দেখাও।

৪৬ নং প্রশ্নের উত্তর

ক্র প্রবাহীর একটি স্তর অপর স্তরের সংস্পর্শে থেকে চলার চেফা করলে এবং কোনো বস্তু কোনো প্রবাহীর মধ্যদিয়ে গতিশীল হলে বা হওয়ার চেফা করলে গতির বিপরীতে যে বাধা বলের উদ্ভব হয় তাকে সান্দ্র বল বলে।

য আমরা জানি, সান্দ্রতাঙ্ক,
$$\eta = \frac{F dy}{A dy}$$

∴ মাত্রা সমীকরণ,
$$[\eta] = \frac{\overline{\mathsf{ae}} \times \overline{\mathsf{p}}_3 \overline{\mathsf{sg}}}{\overline{\mathsf{ce}} \overline{\mathsf{sa}} \overline{\mathsf{se}} \times \overline{\mathsf{ce}} \overline{\mathsf{se}}}$$

$$= \frac{MLT^{-2} \times L}{L^2 \times LT^{-1}}$$

$$= \frac{MLT^{-2} \times L \times T}{L^3} = ML^{-1}T^{-1}$$

📆 ২১(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: 1.28 km

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\Rightarrow \frac{V_2}{V_1}$$

$$= \frac{P_1T_2}{P_2T_1}$$

$$= \frac{P_{atm} + hpg}{P_{atm}} \times \frac{313}{293}$$

$$= \frac{101300 + 1281 \times 1000 \times 9.8}{101300} \times \frac{313}{293}$$

$$= 133.5$$

তলদেশে তাপমাত্রা, $T_1=20^{\circ}C=293K$ উপরিতলে তাপমাত্রা, $T_2=40^{\circ}C=313K$ বায়ুর চাপ, $P_{atm}=1.013\times 10^{5}\,Pa$

 $V_2 = 133.5 V_1$

পানির উপরিতলে বুদবুদের আয়তন তলদেশের আয়তন অপেক্ষা
 133.5 গুণ বেশি হবে। (Ans.)

প্রনা ≥৪৭ নিচের চিত্রে পাত্র দৃটি লক্ষ করো এবং প্রশ্নগুলোর উত্তর দাও:

ক, মোলার গ্যাস ধ্রুবক কী?

খ কাদা শরীরে লেগে থাকে কেন? ব্যাখ্যা করো।

গ. ১ম পাত্রের গ্যাসের গতিশক্তি নির্ণয় করো।

ঘ. কোন পাত্রটি বেশি গরম হবে
 গাণিতিক বিশ্লেষণ পূর্বক
 মতামত দাও।
 ৪

৪৭ নং প্রশ্নের উত্তর

ক্র স্থির চাপে ১ক মোল আদর্শ কোনো গ্যাসের তাপমাত্রা IK বৃস্থি করলে গ্যাস কর্তৃক যে পরিমাণ কাজ সম্পন্ন হয়, তাই মোলার গ্যাস ধ্রবক।

শুকনো মাটি ও মানব দেহের মধ্যবর্তী আসঞ্জন বল কম কিন্তু মাটিতে পানি মিশালে মানবদেহের সাথে পানিযুক্ত মাটি বা কাদা মাটির আসঞ্জন বল বৃদ্ধি পায়। তাই কাদা শরীরে মাথলে লেগে থাকে।

্রা ১৯(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: 1.824 J [1 mol

১৯(ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: প্রত্যেক পাত্রে i mole গ্যাস আছে বিবেচনা করলে ২য় পাত্রটি বেশি উত্তপ্ত হবে।]

প্রনে ১৪৮ একদিন রাজশাহীতে আর্দ্রতা মাপক যন্তের শুষ্ক বার থার্মোমিটার এবং সিক্ত বার থার্মোমিটার পাঠ যথাক্রমে 30°C এবং 28°C পাওয়া গেল, 26°C, 28°C ও 30°C তাপমাত্রায় সম্পৃক্ত জলীয়বাজ্পের চাপ যথাক্রমে 25.25 × 10⁻³ mHgP, 28.45 × 10⁻³ mHgP, 31.85 × 10⁻³ mHgP এবং 30°C তাপমাত্রায় গ্লেইসারের ধ্রুবক 1.65.

[मिछे भसं, फिजी करनण, आवामादी।

ক, শক্তির সমবিভাজন নীতি কী?

রুম্বতাপীয় পরিবর্তনের তাপমাত্রার পরিবর্তন ঘটে কেন
 ব্যাখ্যা করো।

গ, ঐদিন রাজশাহীর শিশিরাঙ্ক কত ছিল।

ঘ. ঐদিন রাজশাহীর লোকজন অন্বত্তি অনুভব করেছিল কিনা—
 গাণিতিক যুক্তিসহ ব্যাখ্যা করে।

৪৮ নং প্রশ্নের উত্তর

ক শক্তির সমবিভাজন নীতিটি হলো— তাপীয় সাম্যবস্থায় আছে এমন গতীয় সিস্টেমের মোট শক্তি বিভিন্ন স্বাধীনতার মাত্রার ভেতর সমভাবে বণ্টিত হয় এবং প্রত্যেক স্বাধীনতার মাত্রা পিছু শক্তির পরিমাণ হয় 🖟 kT ।

রুন্ধতাপীয় পরিবর্তনে পরিবেশের সাথে সিস্টেমের কোন তাপের আদান-প্রদান হয় না। তাই বুন্ধতাপীয় প্রসারণে কাজ করার জন্য গ্যাসের অভ্যন্তরীণ শক্তির একটি অংশ ব্যয় হয় এবং তাপমাত্রা হ্রাস পায়। আবার একইভাবে বুন্ধতাপীয় সংকোচনে গ্যাসের উপরে কৃতকাজ অভ্যন্তরীণ শক্তি বৃন্ধি করে এবং গ্যাসের তাপমাত্রা বৃন্ধি পায়। তাই বুন্ধতাপীয় পরিবর্তনে তাপমাত্রার পরিবর্তন ঘটে।

🜃 ১৪(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: 26.7°C

🛂 ১৪(ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: আপেক্ষিক আর্দ্রতা ৪2.79%। অতএব, অম্বস্তিবোধ হবে।

প্রশ্ন ▶ 88 10 × 10³Pa বায়ুর চাপে 200 × 10⁶cm³ আয়তনের বেলুনকে হিলিয়াম গ্যাস ভরে ছেড়ে দেওয়া হলো। বেলুনটি আকাশের দিকে উড়ে যায় এবং এটি 260 × 10⁶cm³ আয়তন পর্যন্ত সম্প্রসারিত হয়।

/शृतुमग्राम मतकाति कामक, किर्मातशक/

- ক, পরম আর্দ্রতা কাকে বলে?
- খ, শক্তির সমবিভাজন নীতি ব্যাখ্যা করো।
- গ. তাপমাত্রা স্থির আছে ধরে নিয়ে আকাশে বেলুনের অবস্থানে বায়মন্ডলের চাপ নির্ণয় করো।
- ঘ্র গ্যাসটির চাপ-আয়তন পরিবর্তনের সম্পর্ক লেখচিত্রের মাধ্যমে বিশ্লেষণ করো।

ক্র কোনো স্থানের বাতাসে প্রতি ঘনমিটারে যে পরিমাণ জলীয় বাচ্প আছে তাকে ঐ স্থানের পরম আর্দ্রতা বলে।

কোনো গতীয় সিন্টেমের মোট শক্তি তাপীয় সাম্যাবস্থায় প্রতিটি স্বাধীনতার মাত্রার মধ্যে সমভাবে বন্টিত হয় এবং প্রতিটি স্বাধীনতার মাত্রার শক্তির পরিমাণ = $\frac{1}{2}$ kT, যেখানে, k = বোল্টজম্যানের ধ্বুবক। এখন আমরা এই সূত্রটিকে গ্যাস অণুর ক্ষেত্রে প্রয়োগ করবো। আমরা জানি, এক পারমাণবিক গ্যাসের একটি অণুর স্বাধীনতার মাত্রা 3। অতএব, এই সূত্রান্যায়ী একটি অণুর গড় শক্তি = $\frac{3}{2}$ kT। স্থিপারমাণবিক গ্যাসের একটি অণুর স্বাধীনতার মাত্রা 5, অতএব প্রতিটি অণুর গড়শক্তি = $\frac{5}{2}$ kT।

া
$$P_1V_1 = P_2V_2$$
 $\therefore P_2 = \frac{P_1V_1}{V_2}$
 $= \frac{10 \times 10^3 \times 200 \times 10^6}{260 \times 10^6}$
 $= 7.69 \times 10^3 \, Pa \, (Ans.)$
(েশ্য আছে, আদি চাপ, $P_1 = 10 \times 10^3 \, Pa$ আদি আয়তন, $V_1 = 200 \times 10^6 \, cm^3$

ঘ স্থির তাপমাত্রায়, PV = ধ্রুবক

∴ P ∝ 1/V

গ্যাসটির চাপ ও আয়তনের সম্পর্ক হবে চিত্র এর মত।
 অর্থাৎ, চাপ বাড়লে আয়তন কমবে, চাপ কমলে
 আয়তন বাড়বে।

আবার, যেহেতু চাপ ও আয়তনের গুণফল ।
সর্বদা ধ্রুবক থাকে, তাই চাপ ও আয়তনের pv
গুণফল চাপ বা আয়তন পরিবর্তনের সাথে _____
পরিবর্তিত হবে না যা চিত্র-২ এ দেখানো
হয়েছে।

প্রা ►৫০ চিত্রে দুটি পাত্রে A ও B দুটি গ্যাস রক্ষিত আছে যাদের আয়তন যথাক্রমে 2V এবং 4V ও মোল সংখ্যা যথাক্রমে 4 mole এবং 2 mole । উভয়ের চাপ সমান এবং B এর আণবিক ভর A এর আণবিক ভর অপেক্ষা 36 গুণ ভারি।

$$n = 4$$
mole $n = 2$ mole
$$\begin{bmatrix}
A \\
2V
\end{bmatrix}$$
 P
 P

(सप कविनावृदस्का मतकाति गरिना करनज, (भाषानधक्ष)

- ক. শব্তির সমবিভাজন নীতি কাকে বলে?
- খ. গ্যাসের গতিতত্ত্ব থেকে কীভাবে চার্লসের সূত্র পাওয়া যায়? ব্যাখ্যা করো।
- গ. A গ্যাসটির গড় গতিশক্তি ও মোট গতিশক্তির পরিমাণ নির্ণয় করো যখন তাপমাত্রা 27°C।
- উদ্দীপকে গ্যাসদ্বয়ের গড় বর্গমূল মান সমান হবে কি-না
 গাণিতিভাবে বিশ্লেষণ করো।

 ৪

৫০ নং প্রশ্নের উত্তর

ক শক্তির সমবিভাজন নীতিটি হলো— তাপীয় সাম্যবস্থায় আছে এমন গতীয় সিস্টেমের মোট শক্তি বিভিন্ন স্বাধীনতার মাত্রার ভেতর সমভাবে বণ্টিত হয় এবং প্রত্যেক স্বাধীনতার মাত্রা পিছু শক্তির পরিমাণ হয় $\frac{1}{2}\,{
m kT}$ ।

থা গ্যাসের গতিতত্ত্বের সমীকরণ, E = (3/2)RT থেকে আমরা জানি, গ্যাস অণুর গতিশক্তি কেলভিনে প্রকাশিত তাপমাত্রার সমানুপাতিক। অর্থাৎ E ∝ T

ৰা,
$$\frac{1}{2}MC^2 \propto T$$

বা, $\frac{1}{2}MC^2 = kT$ [এখানে k একটি ধ্বক]

সূতরাং সমীকরণ PV = $\frac{1}{3}$ MC² থেকে আমরা পাই,

$$PV = \frac{1}{3}MC^2 = \frac{2}{3} \times \frac{1}{2}MC^2 = \frac{2}{3}kT$$

সুতরাং স্থির চাপে নির্দিষ্ট ভরের গ্যাসের আয়তন এর কেলভিন তাপমাত্রার সমানুপাতিক। এটাই চার্লসের সূত্র।

া মোট গতিশন্তি,
$$E = \frac{3}{2} nRT$$

$$= \frac{3}{2} \times 4 \times 8.314 \times 300$$

$$= 14.965 \text{ kJ}$$
(দেয়া আছে,
তাপমাত্রা, $T = 27^{\circ}C$

$$= 300K$$

একটি অপুর গড় গতিশক্তি, $E' = \frac{3}{2}kT$ $= \frac{3}{2} \times 1.38 \times 10^{-23} \times 300$ $= 6.21 \times 10^{-21} \text{ J (Ans.)}$

গ্যাসের গতিতত্ত্ব থেকে পাই, $C = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3PV}{nM}}$ এখানে, $A \text{ গ্যাসের আয়তন, } V_A = 2V$ $A \text{ গ্যাসের আয়তন, } V_B = 4V$ $A \text{ গ্যাসের মোল সংখ্যা, } n_A = 4$ $C_B = \sqrt{\frac{3P_BV_B}{n_BM_B}}$ $\frac{C_A}{C_B} = \sqrt{\frac{P_A}{P_B}} \frac{V_A}{V_B} \frac{n_B}{n_A} \frac{M_B}{M_A}$ $\frac{C_B}{C_B} = \sqrt{\frac{1 \times \frac{2}{A} \times \frac{2}{A} \times 36}}$ $\frac{1 \times \frac{2}{A} \times \frac{2}{A} \times 36}$

∴ C_A = 3C_B
অতএব, গ্যাসদ্বয়ের বর্গমূল গড় বর্গবেগ সমান নয় বরং A গ্যাসের
r.m.s, B গ্যাসের তিন গুণ।

প্রম ►৫১ একটি বায়ুপূর্ণ বেলুনকে একটি প্রদের 40.81 m গভীরতায়
নিয়ে যাওয়ায় সেটি 1 লিটার আয়তন ধারণ করল। প্রদের তলদেশে
বেলুনে আরও 1 লিটার বায়ু প্রবেশ করিয়ে ছেড়ে দেওয়া হলো
বায়ুমগুলের চাপ 10⁵ Nm⁻², পানির ঘনত 10³ kgm⁻³ এবং g = 9.804 ms⁻².

/আহমাদ উদ্দিন শাহ্ পিশু নিকেতন স্কুল ও কলেজ, গাইবান্ধা/

- ক, ভূ-স্থির উপগ্রহ কী?
- খ, গাইবান্ধার বাতাসের আর্দ্রতা 55% বলতে কী বোঝায়?
- গ্. নিমজ্জনের পূর্বে উদ্দীপকের বেলুনের আয়তন কত ছিল?
- বেলুনের সর্বোচ্চ ক্ষমতা 9 লিটার হলে বেলুনটি পানির উপরিতলে অক্ষত অবস্থায় পৌছাবে— গাণিতিকভাবে তোমার মতামত দাও?

 ৪

ক্র যদি পৃথিবীর আবর্তনের সাথে মিলিয়ে একই কৌণিক গতিতে একটি কৃত্রিম উপগ্রহ গতিশীল হয়, তবে তা পৃথিবীকে 24 ঘণ্টায় একবার প্রদক্ষিণ করবে কিন্তু পৃথিবীর থেকে একজন পর্যবেক্ষকের কাছে স্থির মনে হবে। এরপ কৃত্রিম উপগ্রহকে ভূস্থির উপগ্রহ বলে।

পাইবান্ধার বাতাসের আর্দ্রতা 55% বলতে বোঝায়, কোনো নির্দিষ্ট সময় গাইবান্ধার বায়ুতে সর্বোচ্চ যে পরিমাণ বাহ্প ধারণ করতে পারে ঐ সময় তার শতকরা 55 ভাগ জলীয় বাহ্প গাইবান্ধার বায়ুতে উপস্থিত আছে।

ব ২(গ) নং সৃজনশীল প্রশ্লোত্তর দ্রুইব্য। উত্তর: 5 Litres

য ২(ঘ) নং সৃজনশীল প্রশ্নোত্তর দ্রুইব্য। উত্তর: অক্ষত থাকবে না।

প্ররা > ৫২ একটি প্রদের পানির পৃষ্ঠদেশে বায়ুর চাপ 105N.m⁻²। প্রদের তলদেশ হতে একটি বুদবুদ আসার ফলে এর আয়তন আট গুণ হয়ে যায়। ক্যান্টনফেট কলেক, মণোর/

ক, প্রমাণ চাপ কাকে বলে?

 কানো স্থানে বাতাসের আপেক্ষিক আর্দ্রতা 70% বলতে কী বোঝায়?

গ. উদ্দীপকের <u>হ</u>দের গভীরতা নির্ণয় করো।

ঘ. ব্রদের তলদেশে বুদবুদের আয়তন ছিগুণ করা হলে পৃষ্ঠদেশে বুদবুদের আয়তন কত পরিবর্তন হতো তা গাণিতিকভাবে ব্যাখ্যা করো।

৫২ নং প্রশ্নের উত্তর

ক সমুদ্র পৃষ্ঠে 45° অক্ষাংশে 0°C তাপমাত্রায় উল্লছভাবে অবস্থিত 760 mm উচ্চতা বিশিষ্ট শৃষ্ক ও বিশৃষ্ধ পারদ স্তম্ভের চাপকে প্রমাণ চাপ বলা হয়।

কোনো স্থানের আপেক্ষিক আর্দ্রতা 70% বলতে বোঝা যায়, বায়ুর তাপমাত্রায় ঐ স্থানের বায়ুকে সম্পৃক্ত করতে যে পরিমাণ জলীয়বাষ্প প্রয়োজন তার শতকরা 70 ভাগ জলীয় বাষ্প ঐ স্থানের বায়ুতে আছে। সূতরাং, ঐ মুহূর্তে তখন বৃষ্টি হওয়ার সম্ভাবনা কম। বৃষ্টি হতে আরো দুই তিনদিন সময় লাগবে। বৃষ্টি হওয়ার জন্য আপেক্ষিক আর্দ্রতা 100% হতে হবে।

বা ২১(গ) নং সৃজনশীল প্রশ্নোতরের অনুরূপ। উত্তর: 71.43m।

বা,
$$(P_{atm} + h\rho g)2V = P_{atm} \times V_2$$

বা, $(P_{atm} + h\rho g)2V = P_{atm} \times V_2$
বা, $V_2 = \left(1 + \frac{h\rho g}{P_{atm}}\right)2V$
$$= \left(1 + \frac{71.43 \times 10^3 \times 9.8}{10^5}\right)2V$$

$$= 16V$$

তলাদেশে,
চাপ, $P_1 = P_{atm} + h\rho g$
আয়তন, $V_1 = 2V$
উপরিত্দে,
চাপ, $P_2 = P_{atm}$
আয়তন, $V_2 = ?$

অতএব, আয়তন বৃদ্ধি = $\frac{16V}{2V}$ = 8 গুণ।

অর্থাৎ, এক্ষেত্রেও আয়তন পূর্বের সমান অনুপাতে বৃন্ধি পাবে।

প্রনা ▶ ৫৩ আবির পদার্থ বিজ্ঞান গবেষণাগারে 5.7 × 10⁻⁴m³ আয়তনের 3g নাইট্রোজেন- গ্যাসকে 0.64 m পারদ স্তম্ভ চাপ ও 39°C তাপমাত্রা থেকে প্রমাণ চাপ ও তাপমাত্রায় রূপান্তর করল। এতে গ্যাসের আয়তন ও গতিশক্তি উভয়ের পরিবর্তন হলো। নেহাল বলল গ্যাসের আয়তন ও গতিশক্তি উভয়ই হ্রাস পেয়েছে। নাইট্রোজেনের গ্রাম আণবিক ভর 28g এবং R = 8.31 JK⁻¹ mol⁻¹। /ফাটেইল জাউনামেট গাবলিক সুক্রম এক বনেলা/

ক, আদর্শ গ্যাস কাকে বলে?

 খ. কোনো স্থানে বাতাসের আপেক্ষিক আদ্রতা 70% বলতে কী বোঝায়? ণ, প্রমাণ চাপ ও তাপমাত্রায় গ্যাসটির আয়তন নির্ণয় করো। ত ঘ, নেহালের বক্তব্য কী সঠিক ছিল? গাণিতিক বিশ্লেষণের মাধ্যমে

৫৩ নং প্রশ্নের উত্তর দ্রন্টব্য

১৭ নং সৃজনশীল প্রশ্নোত্তর দ্রুউব্য।

মতামত দাও।

প্রয় ► ৫৪ A ও B দুটি হ্রদ। A হ্রদের তলদেশ হতে একটি বায়ুর বুদবুদ উপরিপৃষ্ঠে আসলে এর ব্যাস 4 গুণ হয়। এতে বায়ুমণ্ডলীর চাপ 10⁵Pa। বায়ুর তাপমাত্রা 18.6°C এবং আ: আর্দ্রতা 52.4%। অন্য একটি হ্রদ B তে বায়ুর তাপমাত্রা একই হলেও শিশিরাংক 7.4°C। 7°C, 8°C 18°C ও 19°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ যথাক্রমে 7.5 × 10⁻³ mm, 8.2 × 10⁻³ mm, 15.6 × 10⁻³ mm এবং 16.5 × 10⁻³ mm পারদ চাপ।

/শাহজালান সিটি কলেজ, সিলেটা

ক, স্থিতিস্থাপক ক্লান্তি,কাকে বলে?

খ. কোন স্প্রিং এর স্প্রিং ধ্রবক 10 Nm⁻¹ বলতে কী বোঝং ২

গ. উদ্দীপকের A হ্রদের গভীরতা নির্ণয় করো।

ঘ্ উদ্দীপকের কোন হুদটিতে একজন মানুষ অধিক স্বস্তিবোধ করবেং গাণিতিক বিশ্লেষণের সাহায্যে দেখাও। 8

৫৪ নং প্রশ্নের উত্তর

ক্ষি স্থিতিস্থাপক সীমার মধ্যেও কোনো বস্তুতে বা তারে অনেকক্ষণ যাবৎ পীড়নের হ্রাস-বৃদ্ধি করলে বস্তুর স্থিতিস্থাপক ধর্মের অবনতি ঘটে। তখন অসহ ভার অপেকা কম ভারে তারটি বা বস্তুটি ছিড়ে যেতে পারে। বস্তু বা তারের এ অবস্থা হলো স্থিতিস্থাপক ক্লান্তি।

্ব একটি স্প্রিং-এর স্প্রিং ধ্রুবক 10 Nm⁻¹ বলতে বোঝায়, একে এর সাম্যাবস্থান থেকে 1m প্রসারিত করতে 10N বল প্রয়োজন হবে।

র দেওয়া আছে,

P হাদের উপরিতলে বায়ুর চাপ, $P_1 = 10^5 \, \text{Nm}^{-2}$ পানির ঘনত, $\rho = 1000 \, \text{kgm}^{-3}$

ধরি, P হ্রদের গভীরতা h m এবং তলদেশে বায়ু বুদবুদের ব্যাস d2 m

.. প্রদের উপরিতলে বুদবুদের ব্যাস, $d_1 = 4d_2$ m সদের তলদেশে বুদবুদের চাপ, $P_2 = (P_1 + hpg) \text{ Nm}^{-2}$ প্রদের উপরিতলে বুদবুদের আয়তন, $V_1 = \frac{1}{6}\pi d_1^3$

হ্রদের তলদেশে বুদবুদের আয়তন, $V_2 = \frac{1}{6} \times \pi d_2^3$

আমরা জানি, P₁V₁= P₂V₂

$$41, P_1 \times \frac{1}{6}\pi d_1^3 = (P_1 + hpg) \times \frac{1}{6}\pi d_2^3$$

$$\overline{\mathbf{q}}_{1}, \ P_{1} \times \frac{1}{6}\pi \times (4d_{2})^{3} = (P_{1} + hpg) \times \frac{1}{6}\pi d_{2}^{3}$$

বা, $P_1 \times 64 = P_1 + hpg$

বা, hpg = 63P2

$$h = \frac{63P_2}{\rho g} = \frac{63 \times 10^5}{1000 \times 9.8} = 642.8571 \text{m (Ans.)}$$

থ এখানে, A হদের আপেক্ষিক আর্দ্রতা, R_A = 52.4%

B হ্রদে, বায়ুর তাপমাত্রা = 18.6°C

B হ্রদে শিশিরাঙ্ক = 7.4°C

 7° C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ = 7.5×10^{-3} m HgP 8° C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ = 8.2×10^{-3} m HgP

∴ 1°C বৃদ্ধিতে সম্পুত্ত জলীয় বাম্পের চাপ বৃদ্ধি

= $\{(8.2 - 7.5) \times 10^{-3} \times 0.4 \text{m}\}$ = $0.28 \times 10^{-3} \text{m HgP}$

∴ শিশিরাজে (7.4°C) সম্পৃত্ত জলীয় বাষ্প চাপ (7.5 + 0.28) × 10⁻³m HgP

 \P , $f = 7.78 \times 10^{-3} \text{m HgP}$

আবার, 18°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পচাপ 15.6 × 10⁻³m HgP 19°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্প চাপ 16.5 × 10⁻³m HgP I°C তাপমাত্রায় বৃদ্ধিতে সম্পৃক্ত জলীয় বাষ্প চাপ বৃদ্ধি

 $= (16.5 - 15.6) \times 10^{-3} \text{m HgP}$

∴ 0.6°C তাপমাত্রায় বৃশ্বিতে সম্পৃক্ত জলীয় বাষ্প চাপ বৃশ্বি

= $\{(16.5 - 15.6) \times 10^{-3} \times 0.6\}g$ = $0.54 \times 10^{-3} \text{m HgP}$

: বায়ুর তাপমাত্রায় (18.6°C) সম্পৃক্ত জলীয় বাষ্প চাপ

F = $(15.6 + 0.54) \times 10^{-3}$ m $= 16.14 \times 10^{-3}$ m HgP

∴ B হ্রদে আপেন্দিক আর্দ্রতা $R_Q = \frac{f}{F} \times 100\%$

$$= \frac{7.78 \times 10^{-3}}{16.14 \times 10^{-3}} \times 100\%$$
$$= 48.2\%$$

যেহেতু A হ্রদের আপেক্ষিক আর্দ্রতা B হ্রদের চেয়ে বেশি। সূতরাং, B হ্রদে বেশি দ্বস্তিবোধ হবে।

প্রা > ৫৫ একজন ছাত্র পরীক্ষাগারে স্থির চাপে প্রমাণ তাপমাত্রার কিছু পরিমাণ O₂ গ্যাসের তাপমাত্রা বৃদ্ধি করায় গ্যাসের আয়তন দ্বিগুণ হল। এতে তার বন্ধু মন্তব্য করল পরীক্ষাধীন গ্যাসের অণুগুলার গড় বর্গবেগও দ্বিগুণ হবে।

/ব্যাগী কুল এক কলেল, রাজগাহী/

ক্ বলের ঘাত কাকে বলে?

খ, একটি ভারী স্থির ও হালকা গতিশীল বস্তুর স্থিতিস্থাপক সংঘর্ষে তাদের বেণের পরিবর্তন ব্যাখ্যা করো।

প, চূড়ান্ত তাপমাত্রা নির্ণয় করো।

ঘ, গাণিতিক বিশ্লেষণের মাধ্যমে তার বন্ধুর মন্তব্যের যথার্থতা যাচাই করো। ৪

৫৫ নং প্রয়ের উত্তর

অতি অল্প সময়ে কোন বস্তুর ওপর প্রযুক্ত বল এবং সময়ের গুণফলকে বলের ঘাত বলে।

সংঘর্ষের পর হালকা বন্ধু ও ভারী বন্ধুর বেগ, যথাক্রমে, v₁₁ ও v₂₁ হলে,

$$\begin{aligned} \mathbf{v}_{1f} &= \left(\frac{\mathbf{m}_1 - \mathbf{m}_2}{\mathbf{m}_1 + \mathbf{m}_2}\right) \mathbf{v}_{ie} + \left(\frac{2\mathbf{m}_2}{\mathbf{m}_1 + \mathbf{m}_2}\right) \mathbf{v}_{2i} \\ \mathbf{v}_{2f} &= \left(\frac{2\mathbf{m}_1}{\mathbf{m}_1 + \mathbf{m}_2}\right) \mathbf{v}_{ie} + \left(\frac{\mathbf{m}_2 - \mathbf{m}_1}{\mathbf{m}_1 + \mathbf{m}_2}\right) \mathbf{v}_{2i} \end{aligned}$$

v_{2i} = 0 এবং m₂ >> m₁ হলে,

 $v_{1f} = -v_{1i}$ এবং $v_{2f} = 0$

অর্থাৎ, একটি হালকা বস্তু দ্বারা একটি খুব ভারী বস্তুকে আঘাত করলে হালকা বস্তুটি একই বেগে বিপরীত দিকে ফিরে আসবে এবং ভারী স্থির বস্তুটি স্থিরই থেকে যাবে। একটি স্থিতিস্থাপক রাবারের বল দ্বারা একটি বড় পাথরে আঘাত করলে বলটি একই বেগে ফিরে আসে এবং পাথরটি স্থিরই থেকে যায়

- বা ১৮(গ) নং সৃজনশীল প্রশ্লোতর দ্রফীব্য ।
- য ১৮(ঘ) নং সৃজনশীল প্রশ্নোত্তর দুইব্য।

প্রশ > ৫৬ কোনো ঘরের তাপমাত্রা 30°C, শিশিরাংক 14°C এবং আপেক্ষিক আর্দ্রতা 48%। ঐ সময় ঘরের বাইরে তাপমাত্রা 11°C ও আপেক্ষিক আর্দ্রতা 70%। 32°C ও 11°C তাপমাত্রায় সম্পৃত্ত জলীয় বাম্পের চাপ যথাক্রমে 33.6 mmHg ও 9.8mmHg, 32°C গ্লেইসারে ধ্বক 1.63।

/অফ্রণী স্কুল এড কলেজ, রাজশাহী/

ক, মূল গড় বৰ্গবেগ কাকে বলে?

- খ. প্রমাণ চাপ নির্ণয়ে বিশুন্ধ পারদ স্তম্ভের প্রয়োজনীয়তা ব্যাখ্যা করো।
- শুলানো আর্দ্র ও শুক্ষ বার হাইগ্রোমিটারে আর্দ্র বার থার্মোমিটার কত পাঠ দেখাবে?
- যদি ঘরের একটি জানালা খুলে দেয়া হয় আহলে জুলীয় বাষ্প কোন দিকে চলাচল করবে গাণিতিক বিশ্লেষণসহ মন্তব্য করে। ।

৫৬ নং প্রশ্নের উত্তর

ক গ্যাস অনুগুলোর বেগের বর্গের গড়মানের বর্গমূলকে মূল গড় বর্গবেগ বলে।

প্রমাণ চাপ নির্ণয়ের ক্ষেত্রে 45° অক্ষাংশে 273 K তাপমাত্রায় উল্লম্বভাবে অবস্থিত 760 mm উচ্চতাবিশিষ্ট শৃষ্ক ও বিশৃষ্ধ পারদ স্তম্ভ ব্যবহার করা হয়। এর প্রয়োজনীয়তাগুলো হলো:

 পারদ তুলনামূলকভাবে অধিক ঘনত্বের হওয়া একই উচ্চতায় অধিক চাপ প্রয়োগ করতে সক্ষম।

 পারদের বাম্পচাপ কম হওয়ায় বায়ৄয়ড়লীয় চাপের খুব সামান্য পরিবর্তন হলেও পাঠ নেওয়া সহজ।

iii. পারদ ব্যবহার করে 273 K তাপমাত্রার কমেও বায়ুমণ্ডলীয় চাপ পরিমাপ করা সম্ভব।

গ ১৫(গ)নং সৃজনশীল প্রশ্নোত্তর দুউব্য।

ঘ ১৫(ঘ)নং সৃজনশীল প্রশ্লোতর দ্রফীব্য।

প্রনা>৫৭ একদিন দুপুর বেলা সুমনের কক্ষে বায়ুর তাপমাত্রা 35°C এবং আপেন্ধিক আর্দ্রতা ছিল 70%, সুমন কক্ষে প্রবেশ করে তাপমাত্রা 25°C তে নামিয়ে নিলেন। ওই দিনের শিশিরান্তক ছিল 13.3°C।35°C, 25°C, 13°C এবং 12°C তাপমাত্রায় সম্পৃক্ত জলীয়বাম্পের চাপ যথাক্রমে 32.6 cm Hg, 20.4 cm Hg, 11.6 cm Hg, 10.8 cm Hg.

|जानामावाम कार्ग्येनरभन्छे भावनिक म्कृत এस करभन, भिरमछै|

ক. প্রমাণ চাপ কাকে বলে?

খ. প্রমশূন্য তাপমাত্রায় গ্যাস অণুগুলোর গতিশক্তি কীর্প হবে? ব্যাখ্যা কর।

উদ্দীপকে উল্লিখিত দিনে সন্ধ্যায় বায়ৢর তাপমাতা 25°C-এ
নেমে এলে বায়ুস্থ জলীয়বাস্পে কত অংশ ঘনীভূত হবে নির্ণয়
কর।

ভ. 'কক্ষের ভেতর প্রবেশ করে সুমন আরাম বোধ করবেন'—
 ভদ্দীপকের আলোকে গাণিতিক ব্যাখ্যা দাও।

৫৭ নং প্রশ্নের উত্তর

ক্র সমূদ্র পৃষ্ঠে 45° অক্নাংশে 0°C তাপমাত্রায় উল্লয়ভাবে অবস্থিত 760 mm উচ্চতা বিশিক্ট শৃষ্ক ও বিশৃন্ধ পারদ স্তম্ভের চাপকে প্রমাণ চাপ বলা হয়।

পরমশূন্য তাপমাত্রায় গ্যাসের গতিশক্তি শূন্য হয় বলে পরমশূন্য তাপমাত্রায় গ্যাসের সকল অণু স্থির থাকে। আমরা জানি, T কেলজিন তাপমাত্রায় প্রতি মোল গ্যাসের গতিশক্তি = $\frac{3}{2}$ RT। পরমশূন্য তাপমাত্রায় T=0 K, এক্ষেত্রে গতিশক্তি = $\frac{3}{2}$ $\times R \times 0 = 0$ J। অর্থাৎ পরমশূন্য (0 K) তাপমাত্রায় গ্যাসের সকল অণু স্থির থাকে।

প্র ৩(গ)নং সৃজনশীল প্রশ্নোত্তর অনুরূপ। উত্তর: 10.6%।

য ৩(ঘ)নং সৃজনশীল প্রশ্নোত্তর অনুরূপ।

প্রশ্ন ▶ ৫৮ কোনো একদিন বায়ুর তাপমাত্রা 22°C এবং আপেক্ষিক আর্দ্রতা 60%। 12°C ও 22°C তাপমাত্রায় সম্পৃক্ত জলীয় বাব্পের চাপ যথাক্রমে 10.5 × 10³ m এবং 19.8 × 10⁻³ m এবং 19.8 × 10⁻³ m পারদ।

/সরকারি শহীদ বুলবুল করেজ, পাবনা/

ক. গড়মুক্ত পথ কী?

ব. মেঘলা রাত্রি অপেক্ষা মেঘহীন রাত্রি শিশির জমার জন্য সহায়ক
কেন?

গ্র উদ্দীপকের বায়ুর শিশিরাংক নির্ণয় করো।

ঘ. যদি ঐ স্থানের তাপমাত্রা প্রাস পেয়ে 12°C হয় তবে বায়ৢর জলীয় বাস্পের কত অংশ ঘনীভূত হবে?

পরপর দৃটি সংঘর্ষের মধ্যবতী সময়ে একটি গ্যাস অণু গড়ে যে দূরত্ব অতিক্রম করে তাকে গড় মুক্তপথ বলে।

দিনের বেলায় সূর্যের তাপে ভূপৃষ্ঠ সংলগ্ন বাতাস গরম থাকে এবং জলীয় বাচ্প দ্বারা অসম্পৃত্ত থাকে। মেঘহীন রাত্রিতে ভূপৃষ্ঠ তাপ বিকিরণ করে ঠান্ডা হতে থাকে এবং পরিশেষে এমন একটি তাপমাত্রায় উপনীত হয় যখন বাতাস জলীয় বাচ্প সম্পৃত্ত হয় এবং জলীয় বাচ্প ঘনীভূত হয়ে শিশির জমে।

কিন্তু আকাশ মেঘাচ্ছন্ন থাকলে ভূপৃষ্ঠ তাপ বিকিরণ করে গ্রন্থা হতে পারে না। কারণ মেঘ তাপরোধী পদার্থ বলে ভূপৃষ্ঠ হতে বিকিরণজনিত তাপ পরিবাহিত হতে পারে না। ফলে ভূপৃষ্ঠ গ্রন্থা হয় না এবং শিশির জমে না।

শিশিরাংকে সম্পৃত্ত জলীয় বাজের চাপ = f হলে,

$$R = \frac{f}{F}$$
 দেওয়া আছে, আপেক্ষিক আর্দ্রতা, $R = 60\% = 0.6$ কক্ষ তাপমাত্রা = 22° C এ বাষ্পচাপ, $F = 19.8 \times 10^{-3}$ m এখন, দেওয়া আছে,

 12° C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ = 10.5×10^{-3} m

 $\cdot \cdot \cdot 19.8 \times 10^{-3} - 10.5 \times 10^{-3} = 9.3 \times 10^{-3} \text{ m}$ বাচ্পচাপের পরিবর্তনের জন্য তাপমাত্রার পরিবর্তন = $(22-12)^{\circ}$ C = 10° C

∴ 1m বাষ্পচাপের পরিবর্তনের জন্য তাপমাত্রার পরিবর্তন = 10/9.3 × 10⁻³

 \therefore 19.8 \times 10⁻³ – 11.88 \times 10⁻³ = 7.92 \times 10⁻³ m বাহ্পচাপ পরিবর্তনের জন্য তাপমাত্রার পরিবর্তন = $\frac{10 \times 7.92 \times 10^{-3}}{9.3 \times 10^{-3}}$ = 8.52°C

∴ শিশিরাংক = (22 – 8.52)°C = 13.48°C.

য 'গ' হতে পাই, শিশিরাংক = 13.48°C

আমরাজানি, শিশিরাংক হলো সেই তাপমাত্রা যেই তাপমাত্রায় বায়ু জ্বনীয়বাচ্প দ্বারা সম্পুক্ত হয়।

সুতরাং, উদ্দীপকে উদ্লিখিত দিনে বায়ু 13.48°C তাপমাত্রাতেই সম্পৃক্ত হবে এবং আপেক্ষিক আর্দ্রতা হবে 100%।

অর্থাৎ, বায়ুর তাপমাত্রা কমে 12°C হলে বায়ুস্থ জ্বলীয় বাম্পের শতকরা 100 ভাগ ঘনীভূত হবে।

প্রশ্ন ▶ ৫৯ বান্দরবানে কোনো একদিনের তাপমাত্রা 31°C এবং আ: আর্দ্রতা 5C.45%। একসময় তাপমাত্রা করে গিয়ে 14°C এ উপনীত হলো। বৃষ্টিপাত বন্ধ হওয়ার কিছু সময় পর তাপমাত্রা বৃদ্ধি পেয়ে 24°C হলো। এ সময় বায়ুস্থ জলীয় বাম্পের পরিমাণ 20% বৃদ্ধি পেল।

14°C	তাপমাত্রায়	সম্পূত্ত	বাষ্পচাপ	= 11.99 mm HgP
24°C			7	= 22.38 mm HgP
30°C	300	99.	31	= 31.83 mm HgP
32°C		**	*	= 35.66 mm HgP
200000				बान्सद्रवास भदकाति करन

ক. অসম্পৃক্ত বাষ্পচাপ কি?

খ. প্রদের তলদেশ হতে পৃষ্ঠে আসার ফলে বুদবুদের আয়তন বৃদ্ধি পায় কেন?

গ, বৃষ্টিপাতের ফলে জলীয়বাম্পের কত অংশ ঘনীভূত হলো?

ঘ. তাপমাত্রা যখন 24°C এ উন্নীত হলো তখনকার আ:আর্দ্রতা কত হবে? গাণিতিকভাবে বিশ্লেষণ কর।

৫৯ নং প্রহার উত্তর

ক কোনো নির্দিষ্ট তাপমাত্রায় কোনো আবন্ধ স্থানের বায়ুতে উপস্থিত জলীয়বাচ্প দ্বারা বায়ু অসম্পৃত্ত হলে সে বাচ্প যে পরিমাণ চাপ দেয় তাকে অসম্পৃত্ত বাচ্পচাপ বলে। থা গ্যাসের সমন্বয় সূত্র হতে আমরা জানি, $\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}=$ ধুবক অর্থাৎ, $\frac{PV}{T}=$ ধুবক

ধুব তাপমাত্রার ক্ষেত্রে, PV = ধুবক

অর্থাৎ গ্যাসের আয়তন চাপের ব্যাস্তানুপাতিক। যেহেত্, পানির পৃষ্ঠ থেকে যত নিচে যাওয়া যায় চাপ তত বাড়তে থাকে, এ জন্য পানির নিচে যেতে থাকলে গ্যাসের আয়তন কমতে থাকে। বিপরীতক্রমে জলাশয়ের তলদেশ থেকে বুদবুদ উপরে উঠে আসতে থাকলে চাপ হ্রাস পাওয়ায় বুদবুদের আয়তন বাড়ে।

গ বায়ুর তাপমাত্রায় (31°C) সম্পৃক্ত বাচ্পচাপ,

$$F = \frac{31.83 + 35.66}{2} = 33.745 \text{ mm HgP}$$

আপেক্ষিক আর্দ্রতা, R = 50.45% = 0.5045

$$\therefore R = \frac{f}{F}$$

বা, $f = F \times R$

= 33.745 × 0.5045 = 17.024 mm HgP

∴ শিশিরাঙেক সম্পৃত্ত বাষ্পচাপ, f = 17.02435 mm HgP 14°C তাপমাত্রায় সম্পৃত্ত বাষ্পচাপ, f' = 11.99 mm HgP সুতরাং বৃষ্টিপাতের ফলে বায়ুস্থ জলীয় বাম্পের ঘনীভূত হলো —

$$=\frac{f-f'}{f}$$
 অংশ
$$=\frac{17.02435-11.99}{17.02435}$$
 অংশ
$$=0.2957$$
 অংশ বা 29.57% (Ans.)

কৃষ্টিপাত শেষ হওয়ার কয়েক ঘণ্টা পর, শিশিরাক্তেক সম্পৃত্ত বাম্পচাপ, $f = 14^{\circ}$ C তাপমাত্রায় সম্পৃত্ত বাম্পচাপ $\times 120\%$ = $11.99 \text{ nmHgP} \times 1.20 = 14.388 \text{ mm HgP}$

কিন্তু তখন বায়ুর তাপমাত্রায় (24°C) সম্পৃত্ত বাম্পচাপ,

F = 22.38 mm HgP

সূতরাং তখনকার আপেক্ষিক আর্দ্রতা, $R = \frac{1}{F} \times 100\%$ $= \frac{14.388}{22.38} \times 100\%$ = 64.29% (Aps.)

প্রা ►৩০ জামাল পদার্থবিজ্ঞান গবেষণাগারে 5.7 × 10⁻⁴m³ আয়তনের 3g নাইট্রোজেন গ্যাসকে 0.64 m পারদ স্তম্ভ চাপ ও 39°C তাপমাত্রা থেকে প্রমাণ চাপ ও তাপমাত্রায় রূপান্তর করল। এতে গ্যাসের আয়তন ও গতিশক্তি উভয়ের পরিবর্তন হলো। নেহাল বললো গ্যাসের আয়তন ও গতিশক্তি উভয়ই প্রাস পেয়েছে। নাইট্রোজেনের গ্রাম আণবিক ভর 28 g এবং R = 8.31 JK⁻¹mol⁻¹।

ক. আদর্শ গ্যাস কাকে বলে?

atamesa a anavavasa

খ. কোনো স্থানে বাতাসের আপেক্ষিক আর্দ্রতা 70% বলতে কী বুঝায়?

গ্রপ্রমাণ চাপ ও তাপমাত্রায় গ্যাসটির আয়তন নির্ণয় করো।

ঘ. নেহালের বস্তুব্য কী সঠিক ছিল? গাণিতিক বিশ্লেষণের মাধ্যমে সিন্ধান্ত দাও।

৬০ নং প্রশ্নের উত্তর

১৭ নং সৃজনশীল প্রশ্নের উত্তর দুউব্য

প্রর ►৬১ কোনো একটি পরীক্ষণে জাফলংয়ের আবন্ধ বায়ুর তাপমাত্রা
19°C ও 7.4°C শিশিরাংক পাওয়া গেল। শৈত্যপ্রবাহে ঐ স্থানের
তাপমাত্রা কমে 15°C হলো। 7°C, 8°C ও 19°C তাপমাত্রায় ঐ সম্পৃত্ত
জলীয় বাম্পের চাপ যথাক্রমে 7.5, 8.2 এবং 16.5 mm পারদ।

(मधीपुर मतकाति करमछ)

- ক, বাস্তব গ্যাস কাকে বলে?
- খ. গ্যাসের ক্ষেত্রে ঘনত্র বনাম তাপমাত্রা লেখচিত্রের প্রকৃতি ব্যাখ্যা করো।
- ণ, জাফলংয়ের বায়ুর আপেক্ষিক আর্দ্রতা নির্ণয় করো।
- ঘ. তাপমাত্রার পরিবর্তনে ঐ স্থানের আবদ্ধ বায়ুর শিশিরাংক পরিবর্তিত হবে কিনা
 লাণিতিক বিশ্লেষণের মাধ্যমে মতামত দাও।

যে গ্যাস সকল তাপমাত্রা ও চাপে বয়েল ও চার্লসের সূত্র য়ৄগপৎ মেনে চলে না তাকে বাস্তব গ্যাস বলে।

আমরা জানি, দ্পির চাপে গ্যাসের ঘনত এর পরম তাপমাত্রার ব্যস্তানুপাতিক। গ্যাসের ঘনত ρ এবং পরম তাপমাত্রা T এর মধ্যে সম্পর্ক হলো, $\rho \propto \frac{1}{T}$ । এই সমীকরণ হতে দেখা যায় তাপমাত্রা বৃদ্ধি পেলে ঘনত কমে। ফলে ঘনত বনাম তাপমাত্রা লেখাটি x ও y অক্ষকে ছেদকারী সরলরেখা হবে। লেখচিত্রটি হবে নিয়র্প—

- গ ২২ (গ) নং সৃজনশীল প্রশ্নোত্তর দ্রম্ভব্য।
- য ২২ (ঘ) নং সৃজনশীল প্রশ্লোতর দুউব্য।

প্রা ▶৬২ একদিন দুপুরে বায়ুর তাপমাত্রা ছিল 30°C এবং ঐ দিনের দিশিরাংক এবং আপেক্ষিক আর্দ্রতা ছিল যথাক্রমে 17°C এবং "5%। প্রান্তি দেখল ঐ দিন সন্ধ্যায় বায়ুর তাপমাত্রা 22°C। 17°C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ 13.63 × 10⁻³mHg এবং 22°C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ 19.83 × 10⁻³mHg।

/ক্ষরবাজ্যর সরকারি মহিলা কলেজা

- ক. অবস্থান ভেক্টরের সংজ্ঞা দাও।
- খ. গ্রীষ্মকালে দোলক ঘড়ি ধীরে চলে কেন?
- গ, দুপুরে উত্ত স্থানের সম্পৃত্ত বাম্পচাপ কত?
- য়, প্রান্তির মনে হলো দুপুরের তুলনায় সন্ধ্যায় তাড়াতাভি ঘাম শুকাচ্ছে —উদ্দীপকের আলোকে কথাটির সত্যতা যাচাই করো। ৪ ৬২ নং প্রশ্নের উত্তর

ক্র প্রসঞ্জ কাঠামোর মূল বিন্দুর সাপেক্ষে কোনো বিন্দুর অবস্থান যে ভেক্টরের স হায্যে নির্ণয় বা নির্দেশ করা হয় তাকে অবস্থান ভেক্টর বলে।

য সরল দোলকের দোলনকালের সমীকরণ, $T=2\pi\sqrt{\frac{L}{g}}$ অনুসারে, $T \propto \sqrt{L}$, অর্থাৎ কোনো সরলদোলকের কার্যকরী দৈর্ঘ্য বেড়ে গেলে দোলনকাল বেড়ে যায়। অর্থাৎ দোলকটি ধীরে চলবে। দোলক ঘড়ি ধাতুর তৈরি হওয়ায় তা গ্রীষ্মকালে তাপমাত্রা বৃদ্ধি পেলে দৈর্ঘ্যে বৃদ্ধি ঘটে। আর তাই সরলদোলকের সূত্রানুযায়ী দোলনকাল ও বেড়ে যায় অর্থাৎ দোলক ঘড়ি ধীরে চলে।

গ ১৬(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

উखद्र : 18.17 × 10⁻³mHg।

য ১৬(ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: আর্দ্রতা কমে যাওয়ায় দুত ঘাম শুকায়।

প্রশ্ন ► ৬০ কোনো একদিন একটি ঘরের ভিতরের তাপমাত্রা 25°C ও আপেন্দিক আর্দ্রতা 65%। ঐদিন বাহিরের তাপমাত্রা 15°C ও আপেন্দিক আর্দ্রতা 80%। 25°C ও 15°C তাপমাত্রায় সম্পৃত্ত জলীয় বাম্পচাপ যথাক্রমে 20 × 10⁻³m পারদ চাপ ও 10 × 10⁻³m পারদ চাপ।

/आत. हि. क मारि. म्कून क्रड करनकः रशुजा/

ক. পরম শুন্য তাপমাত্রা কাকে বলে?

খ. কোনো স্থানের তাপমাত্রা 25°C এবং শিশিরাংক 15°C বলতে কী বোঝ?

ণ, ঘরের ভিতরের বাচ্পের চাপ নির্ণয় কর।

ঘ. ঘরের জানালা খুলে দিলে বাষ্প ঘরে ঢুকবে না বাহিরে যাবে গাণিতিক বিশ্লেষণের মাধ্যমে মতামত দাও। ৪

৬৩ নং প্রশ্নের উত্তর

ক্রি প্রির চাপে কোনো গ্যাসের আয়তন যে তাপমাত্রায় শূন্য হয় সেই তাপমাত্রাকে পরম শূন্য তাপমাত্রা বলা হয়।

কানো স্থানের তাপমাত্রা 25°C বলতে বোঝায় উদ্ভ স্থানে 25°C এর বেশি তাপমাত্রার কোনো বস্তু তাপ হারাবে এবং এর কম তাপমাত্রার কোনো বস্তু পরিবেশ থেকে তাপ গ্রহণ করবে।

কোনো স্থানের শিশিরাংক। 15°C বলতে বোঝায় ঐ স্থানের তাপমাত্রা
15°C করা হলে উক্ত স্থানে বিদ্যমান জলীয়বাচ্প দ্বারা ঐ স্থান সম্পৃক্ত হবে।
সদ্মিলিতভাবে কোনো স্থানের তাপমাত্রা ও শিশিরাংক যথাক্রমে 25°C
ও 15°C বলতে বুঝানো যায় যে; ঐ স্থানের আপেক্ষিক আর্দ্রতা 100%
এর কম এবং তাপমাত্রা (25 – 15)°C = 10°C নিচে নামলে ঐ স্থানের
বায়ু জলীয় বাচ্প দ্বারা সম্পৃক্ত হবে।

গ ঘরের ভিতরে,

25°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পচাপ, F = 20 × 10⁻³m HgP আপেক্ষিক আদ্রতা, R = 65%

বাম্পের চাপ, f = ? আমরা জানি,

$$R = \frac{f}{F} \times 100\%$$

বা,
$$65\% = \frac{f}{F} \times 100\%$$

$$41, \quad f = \frac{65}{100} \times 20 \times 10^{-3} \text{m HgP}$$

$$f = 0.013 \text{ m HgP}$$

য এখানে,

2

15°C তাপমাত্রায় সম্পৃত্ত জলীয় বাম্পচাপ, F = 10 × 10⁻³m HgP আপেক্ষিক আদ্রতা, R = 80%

আমরা জানি,
$$R = \frac{f'}{F} \times 100\%$$

∴ বাইরের তাপমাত্রায় (15°C) বায়ুতে বাম্পের চাপ;

$$f' = \frac{R \times F}{100\%} = \frac{80\% \times 10 \times 10^{-3}}{100\%} = 0.008 \text{m HgP}$$

যেহেতু, 0.013 m HgP > 0.008m HgP ঘরের বায়ুতে বাম্পের চাপ > ঘরের বাইরের বায়ুতে বাম্পের চাপ। সূতরাং, ঘরের ভেতর থেকে বাইরে বাম্প গমন করবে।

প্রা ► ৬৪ 1020 kgin⁻³ ঘনতের লবণ পানি ছারা পূর্ণ একটি প্রদের তলদেশ থেকে উপরিতলে আসার ফলে একটি বায়ু বুদবুদের আয়তন দ্বিগুণ হয়। স্বাভাবিক বায়ুমন্ডলীয় চাপ 10⁵pa। /বাঞ্চাবাড়ীয়া সরকারি কলেজ/

ক. সম্পৃত্ত বাষ্পচাপ কী?

খ. শীতকালে আমাদের শরীরের কোমল অংশ ফেটে যায় কেন তা ব্যাখ্যা কর।

গ, হ্রদটির গভীরতা নির্ণয় কর?

 উদ্দীপকের প্রদটি শুধু পানি দ্বারা পূর্ণ থাকলে সর্বোচ্চ দেড়গুণ প্রসারণশীল দুই লিটার আয়তনের একটি বেলুনকে প্রদটির তলদেশ হতে উপরিতলে নিয়ে আসা সম্ভব হবে কী? গাণিতিক যুক্তি দাও।

৬৪ নং প্রশ্নের উত্তর

ক নির্দিষ্ট তাপমাত্রায় বাম্প সর্বোচ্চ যে চাপ দিতে পারে বা নির্দিষ্ট তাপমাত্রায় কোনো আবন্ধ স্থানে সর্বোচ্চ যে পরিমাণ বাম্প ধারণ করতে পারে সেই পরিমাণ বাম্প যে চাপ দেয় তাকে সম্পৃক্ত বাম্প চাপ বলে। বা শীতকালে বায়ুর আপেন্দিক আর্দ্রতা কম থাকে অর্থাৎ বায়ুতে জলীয় বান্দের পরিমাণ কম থাকে। তাই শরীরের চামড়ার জলীয় অংশ শুকিয়ে যায়। কোমল অংশ সব সময় ভেজা থাকে। ফলে সেখানে বাম্পায়ন বেশি হয় এবং দূত শুকিয়ে যায় এবং চামড়া সংকৃচিত হয়। সংকৃচিত হবার জন্য শরীরের কোমল অংশের ভেতরে ও বাইরের চাপের বৈষম্যের জন্য ফেটে যায়।

ধরি, প্রদের গভীরতা = h
h গভীরতায় বুদবুদের আয়তন, $V_1 = V$ প্রদের উপরিতলে বুদবুদের আয়তন, $V_2 = 2V$ স্বাভাবিক বায়ুমন্ডলীয় চাপ, $P_2 = 10^5$ Pa
h গভীরতায় বায়ুর চাপ, $P_1 = P_2 + h\rho g$ লবণ পানির ঘনত, $\rho = 1020 \text{ kgm}^{-3}$ আমরা জানি,

$$P_1V_1 = P_2V_2$$

বা,
$$(P_2 + h\rho g) V = P_2 \times 2V$$

$$\P1$$
, $P_2 + h \rho g = 2P_2$

ৰা, $hpg = P_2$

বা,
$$h = \frac{P_2}{\rho g} = \frac{10^5}{1020 \times 9.8} = 10.004 \text{m (Ans.)}$$

য় শুধু পানি থাকলে এর ঘনত্ব, pw = 1000 kg/m³

h = 10.004 m ('গ' হতে পাই)

তরলের পৃষ্ঠতলে চাপ, P2 = 10⁵ N/m²

আয়তনের অনুপাত, $\frac{V_2}{V_1} = ?$

তাপমাত্রা স্থির থাকলে,

 $P_2V_2 = P_1V_1$

$$\boxed{1, \left(\frac{V_2}{V_1}\right) = \left(\frac{P_1}{P_2}\right) = \left(\frac{1.98 \times 10^5}{105}\right) = 1.98}$$

লক্ষ করি, $\left(\frac{V_2}{V_1}\right) > 1.5$

যেহেতু বেলুনটি তরলের উপরিতলে আসলে আয়তন প্রসারণ দেড়গুণের বেশি। তাই একে হ্রদের উপরিতলে আনা সম্ভবণনা।

প্রশ্ন ১৬৫ 6 লিটার সর্বোচ্চ ধারণক্ষমতা সম্পন্ন একটি বেলুন 20° সেলসিয়াস তাপমাত্রায় নির্দিষ্ট পরিমাণ গ্যাস দ্বারা পূর্ণ করা হয় তখন এর চাপ 3atm। পরবর্তীতে বেলুনটিকে 35° সেলসিয়াস তাপমাত্রার খোলা মাঠে ওড়াতে গেলে ফেটে যায়।

[भिरताकभूत मतकाति गरिना करनक, भिरताकभूत]

- ক. শিশিরাংক কাকে বলে?
- খ. "হুদকম্প ও গ্রহের আবর্তন কালিক পর্যায়ক্রম" ব্যাখ্যা কর। ২
- গ্র উদ্দীপকের আলোকে বেলুনটির শেষ চাপ নির্ণয় কর।
- বেলুনটিতে 5 লিটার গ্যাস দ্বারা পূর্ণ করা হলে ফাটবে কিনা?
 গাণিতিকভাবে বিশ্লেষণ কর।

৬৫ নং প্রশ্নের উত্তর

ক্র যে তাপমাক্রায় একটি নির্দিষ্ট আয়তনের বায়ু উপস্থিত জলীয় বাচ্প দ্বারা সম্পৃত্ত হয় তাকে ঐ বায়ুর শিশিরাঙ্ক বলে।

ব কালিক পর্যায়ক্রম হলো সেই সকল ঘটনা যা একটি নির্দিষ্ট সময় পর পর পুনরাবৃত্তি ঘটে।

প্রতি মিনিটে স্তদকম্প 70-72 বার। অর্থাৎ প্রতি 0.83 সেকেন্ড পর পর স্থুদকম্পের পুনরাবৃত্তি ঘটে।

আবার প্রতিটি গ্রহ নির্দিষ্ট সময়ে সূর্যের চারিদিকে একবার ঘুরে আসে। যেমন পৃথিবী সূর্যের চারিদিকে 365 দিনে একবার ঘুরে আসে। অর্থাৎ একটি নির্দিষ্ট সময় পর গ্রহের আবর্তনের পুনরাবৃত্তি ঘটে। সূতরাং "হৃদকম্প ও গ্রহের আবর্তন কালিক পর্যায়ক্রম।" গু আমরা জানি,

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$
বা, $P_2 = \frac{P_1T_2}{T_1}$
বা, $P_2 = \frac{3 \times 308}{293}$
 $\therefore P_2 = 3.15$ atm

এখানে, আদি তাপমাত্রা,
 $T_1 = 20^{\circ}\text{C} = (273 + 20) \text{ K} = 293 \text{ K}$
আদি চাপ, $P_1 = 3$ atm
শেষ তাপমাত্রা, $T_2 = 35^{\circ}\text{C}$
 $= (273 + 35) \text{ K}$
 $= 308 \text{ K}$

∴ বেলুনটির শেষ চাপ 3.15 atm (Ans.)

ছা জানা আছে, $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ বা, $\left(\frac{V_2}{V_1}\right) = \frac{P_1}{T_1} \times \frac{T_2}{P_2}$ $= \frac{3}{100} \times \frac{308}{100}$

এখানে, প্রাথমিক অবস্থায় T₁ = 20°C = 293 K P₁ = 3 atm V₁ = 5 L

∴ V₂ = 1.00113 × 5
I, V₂ = 5.0056 < 6L</p>

মাঠের ক্ষেত্রে, T₂ = 35°C = 308 K P₂ = 3.15 atm

লক্ষ করি, বেলুনটিকে মাঠে নিয়ে গেলে এর আয়তন তেমন বৃদ্ধি পায় না। তাই এবার এটি ফাটবে না।

প্ররা 🕨 ৬৬

উপরের ছবিতে বায়ুভর্তি সমান আয়তনের দুটি পাত্র দেখানো হয়েছে। একটি নগন্য আয়তনের টিউব দিয়ে এরা যুক্ত আছে।

/वृत्मावन मत्रकाति करमञ्ज, शविशक्ता

ক, আদর্শ গ্যাস কাকে বলে?

খ, আকাশ মেঘলা থাকলে শিশির পড়ে না কেন?

গ্র যদি বায়ুর চাপ 1.01 × 10⁵Nm⁻² হয়, তবে A পাত্রে 25g আনবিক ভরের গ্যাসের আয়তন নির্ণয় কর।

ঘ. উদ্দীপকের A পাত্রকে 0°C তাপমাত্রায় ঠান্ডা করলে এবং একই সাথে B পাত্রকে 100°C তাপমাত্রায় গরম করলে কোনো পাত্রের গ্যাসের চাপ বায়ুমন্ডলীয় চাপের সমান হবে কি— বিয়েষণ করো। A ও B গ্যাসের আদি চাপ 81.77 kPa। 8

৬৬ নং প্রয়ের উত্তর

ক যে সকল গ্যাস সকল তাপমাত্রা ও চাপে বয়েল ও চার্লসের সূত্র মেনে চলে, তাদেরকে আদর্শ গ্যাস বলে।

আকাশ মেঘলা থাকলে পৃথিবী হতে বিকীর্ণ তাপ মেঘ ভেদ করে মহাকাশে চলে যেতে পারে না। ফলে পৃথিবীর তাপমাত্রাও কমতে পারে না, অপরিবর্তিত থাকে। এর ফলে তাপমাত্রা কমে শিশিরাঙকে পৌছতে পারে না এবং শিশিরও পড়ে না।

5

PV = nRT =
$$\frac{m}{M}$$
 RT

$$\therefore V = \frac{mRT}{MP}$$

$$= \frac{2.9 \times 10^{-3} \times 8.316 \times 301}{25 \times 10^{-3} \times 1.01 \times 10^{5}}$$
= 2.87 L. (Ans.)

এখানে, A পাত্রে, গ্যাসের ভর, m = 2.9×10^{-3} kg গ্যাসের আণবিক ভর, M = 25×10^{-3} kg. ভাপমাত্রা, T = 28° C = 301 K চাপ, P = 1.01×10^{5} Pa য় এখানে দেওয়া আছে,

A পাত্রের, আদি চাপ, PA = 81.77 kPa

আদি তাপমাত্রা, $T_A = 28$ °C

= 301 K

শেষ তাপমাত্রা, $T_A' = 0$ °C

= 273 K.

B পাত্রের, আদি চাপ, P_B = 81.77 kPa আদি তাপমাত্রা, T_B = 28°C = 301 K শেষ তাপমাত্রা, T_B' = 100°C = 373 K

∴ A গ্যাসের শেষ চাপ = P_A' হলে,

$$\frac{P_A}{T_A} = \frac{P_A'}{T_A'}$$

$$\Rightarrow P_A' = \frac{T_A'}{T_A} \times P_A = \frac{273}{301} \times 81.77 \text{ kPa}$$

= 74.16 kPa

অনুরূপভাবে, B গ্যাসের শেষ চাপ,

$$\Rightarrow$$
 P_B' = $\frac{T_{B}'}{T_{B}} \times P_{B} = \frac{373}{301} \times 81.77 \text{ kPa}$
= 101.329 kPa
= বায়ুমন্তলীয় চাপ

অতএব A গ্যাসের তাপমাত্রা ()° তে নামালে চাপ বায়ুমগুলীয় চাপের সমান হবে না। তবে B গ্যাসের তাপমাত্রা 100°C এ উন্নীত করলে চাপ বায়ুমন্ডলীয় চাপের সমান হবে।

প্রস়>৬৭ কোনো গ্যাস অণুর ব্যাস 3 × 10⁻¹⁰m এবং প্রতি ঘন সেন্টিমিটারে অণুর সংখ্যা $6 imes 10^{20}$ টি। শ্বাভাবিক তাপমাত্রা ও চাপে অণুগুলোর মূলগড় বর্গ বেপ 500 ms⁻¹।

|क्रमण्डमा पूर्व बामारचा म्कून खा। इ करमञा।

ক, আদর্শ গ্যাস কাকে বলে?

খ, পরম আর্দ্রতা বৃদ্ধির সাথে গ্যাসীয় অণুর গড় বর্ণবেগও বৃদ্ধি পায়- ব্যাখ্যা কর।

গ. N.T.P তে গ্যাসের ঘনত্ব নির্ণয় কর।

য়, উদ্দীপকের তথ্য থেকে প্রতি সেকেন্ডে সংঘটিত সংঘর্ষের সংখ্যা কোন ক্ষেত্রে বেশি? ক্লসিয়াস ও বোলজম্যানের সমীকরণ ব্যবহার করে লিখ।

৬৭ নং প্রশ্নের উত্তর

তে যে সকল গাসে সকল তাপমাত্রা ও চাপে বয়েল ও চার্লসের সূত্র মেনে চলে, তাদেরকে আদর্শ গ্যাস বলে।

খে কোনো সময় কোনো স্থানের একক আয়তনের বায়ুতে যে পরিমাণ জলীয় বাহ্প থাকে তাকে ঐ বায়ুর পরম আর্দ্রতা বলে।

ণ্যাসের তাপমাত্রা বৃদ্ধির সাথে সাথে এর জলীয় বাষ্প ধারণ ক্ষমতাও বৃদ্ধি পায়। আর জলীয় বাম্পের পরিমাণ বাড়লে পরম আদ্রতাও সমাণুপাতে বৃদ্ধি পায়। যেহেতু পরম আর্দ্রতা তাপমাত্রার সাথে বাড়ে,

 $\sqrt{rac{3
m RT}{
m M}}$ সূত্রানুসারে গ্যাস অণুর গড় বর্গবেগ ও বৃদ্ধি পায়

প্র ৪(গ) নং সৃজনশীল প্রগ্নোত্তর দ্রুষ্টব্য।

য় ৪(ঘ) নং সূজনশীল প্রশ্নোত্তর দ্রম্টব্য।

প্রয় ১৬৮ কোনো স্থানে কোনো একদিনের বায়ুর তাপমাত্রা 19°C ও শিশিরাজ্ঞক 7.4°C। শৈত্যের ফলে তাপমাত্রা কমে 15°C হলো। 17°C. 8° C ও 19° C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ যথাক্রমে $7.5 \times 10^{-3} \mathrm{m}$. 8.2 × 10⁻³m ও 16.5 × 10⁻³m পারদ। *বিরিশান মডেন স্কুল এক কলেবা/*

ক, শিশিরাজ্ঞ কাকে বলে?

খ, সিক্ত ও শৃষ্ক বালব হাইগ্রোমিটারের সাহায্যে আবহাওয়ার পূর্বাভাস দেয়া যায়?

গ. উক্ত স্থানের বায়ুর আপেক্ষিক আর্দ্রতা কত?

ঘ, তাপমাত্রার পরিবর্তনের জন্য উক্ত স্থানের শিশিরাভেকর কোন পরিবর্তন হবে কী? বিশ্লেষণ কর।

৬৮ নং প্রশ্নের উত্তর

🐼 যে তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ু উপস্থিত জলীয় বাষ্প দ্বারা সম্পৃত্ত হয় তাকে ঐ বায়ুর শিশিরাজ্ঞ বলে।

🛂 সিত্ত শৃষ্ক বাৰ হাইগ্ৰোমিটার এর সাহায্যে সিত্ত ও শৃষ্ক বাৰ রিডিং নিয়ে প্লেসিয়ারের ধ্রুবক ব্যবহার করে ঐ স্থানের শিশিরাজ্ঞ নির্ণয় করা সম্ভব। পরবর্তীতে রেনোর তালিকা হতে এই শিশিরাঙ্কে এবং শৃষ্ক বাল্ব তাপমাত্রায় বায়ুচাপ নির্ণয় করে ঐ স্থানের আপেঞ্চিক আর্দ্রতা বের করা সম্ভব হবে। এই আপেন্ধিক আর্দ্রতা ব্যবহার করে আবহাওয়ার পূর্বাডাস দেয়া যায়। উদাহরণস্থরূপ- যদি কোন স্থানের আপেন্দিক আর্দ্রতা হঠাৎ কমে যায়, তবে তা থেকে ঝড়ের পর্বাভাস দেয়া যেতে পারে।

👣 ২২ (গ) নং সৃজনশীল প্রশ্নোত্তর দ্রুইব্য ।

🔃 ২২ (ঘ) নং সৃজনশীল প্রশ্নোত্তর দ্রম্ভব্য।

প্রনা>৬৯ প্রমাণ তাপমাত্রা ও চাপে কোন গ্যাসের ঘনত 1.4kgm⁻³। তার একটি বুদবুদ 93m গভীরতা সম্পন্ন লেকের তলদেশ হতে উপরিতলে আসল। লেকের উপরিপৃষ্ঠে বায়ুমণ্ডলীয় চাপ 76 cmHgP।

(राक्षा (रामिरकमिम्राम भएकम करमण)

ক, স্বাধীনতার মাত্রা কী?

খ্য শক্তির সমবিভাজন নীতি ব্যাখ্যা কর।

উদ্দীপকের গ্যাসটির বর্গমূল গড় বর্গ বেগ নির্ণয় কর।

ঘ. বুদবুদের আয়তনের শতকরা পরিবর্তন গাণিতিকভাবে বিশ্লেষণ

৬৯ নং প্রশ্নের উত্তর

큟 একটি বস্তুর গতিশীল অবস্থা বা অবস্থান সম্পূর্ণরূপে প্রকাশ করার জন্য যত সংখ্যক দ্বাধীন চলরাশির প্রয়োজন হয় তাকে স্বাধীনতার মাত্রা বলে।

🔃 কোনো গভীয় সিস্টেমের মোট শক্তি তাপীয় সাম্যাবস্থায় প্রতিটি স্বাধীনতার মাত্রার মধ্যে সমভাবে বন্টিত হয় এবং প্রতিটি স্বাধীনতার মাত্রার শক্তির পরিমাণ = $\frac{1}{2}$ kT।

এখন আমরা এই সূত্রটিকে গ্যাস অপুর ক্ষেত্রে প্রয়োগ করবো। আমরা জানি, এক পারমাণবিক প্যাসের একটি অণুর দ্বাধীনতার মাত্রা 3। অতএব, এই সূত্রানুযায়ী একটি অণুর গড় গতিশক্তি = $\frac{3}{2}$ kT । ছিপারমাণবিক গ্যাসের একটি অণুর স্বাধীনতার মাত্রা 5, অতএব প্রতিটি অণুর গড় গতিশক্তি = $\frac{3}{2}$ kT ।

🚮 গ্যাসটির বর্গমূল গড় বর্গ বেগ,

$$C_{rms} = \sqrt{\frac{3P}{\rho}}$$

= $\sqrt{\frac{3 \times 101325}{1.4}}$
= 466 ms⁻¹ (Ans.)

দেওয়া আছে. ঘনত, p = 1.4 kg/m প্রমাণ চাপ, P = 76 cmHgP = 101325 Pa

যা পানির তলদেশ ও উপরিপৃষ্ঠে আয়তন যথাক্রমে V, ও V, হলে, $P_1V_1 = P_2V_2$

$$\Rightarrow V_1(P_{atm} + h\rho g) - P_{atm}V_2$$

$$\Rightarrow V_1\left(1 + \frac{h\rho g}{P_{atm}}\right) = V_2$$

$$\Rightarrow V_1 \left(\iota + \frac{93 \times 1000 \times 9.8}{101325} \right) = V_2$$

$$V_2 = 10V_1$$

= $V_1 + 9V_1$
= $V_1 + V_1 \times 900\%$

O

অতএব, বুদবুদের আয়তন শতকরা 900 ভাগ বৃদ্ধি পাবে।

পানির উপরিপৃষ্ঠে চাপ, $P_2 = P_{atm} = বায়ুমণ্ডলীয় চাপ$ = 76 cm HgP = 10!325 Pa পানির তলদেশে চাপ,

 $P_1 = P_{atm} + h\rho g$ যেখানে h = পানির গভীরতা,

p = পানির ঘনত্ব

চিত্রে কোনো গ্যাসের জন্য P বনাম V লেখচিত্র দেওয়া আছে। গ্যাসটির ভর 2kg এবং গ্রাম পারমাণবিক ভর 2gm ।

ক, প্রমাণ চাপ কি?

খ, অস্থিতিস্থাপক সংঘর্ষে গ্যাসের গতিতত্ত্বের স্বীকার্য প্রয়োজ্য रम् कि ना वााचा कर ।

গ, Y বিন্দুতে গ্যাসটির তাপমাত্রা কত?

ঘ, X, Y এবং Z কোন বিন্দুতে তাপমাত্রার মান কভ হবে--গাণিতিকভাবে তুলনামূলক বিশ্লেষণ করো।

৭০ নং প্রশ্নের উত্তর

🐼 সমুদ্র পৃষ্ঠে 45° অক্ষাংশে 0°C তাপমাত্রায় উল্লম্বভাবে অবস্থিত 760 mm উচ্চতা বিশিষ্ট শৃষ্ক ও বিশৃষ্ধ পারদ স্তম্ভের চাপকে প্রমাণ চাপ वला হয়।

🔃 অস্থিতিস্থাপক সংঘর্ষে গ্যাসের গতি তত্ত্বের স্বীকার্য প্রযোজ্য হয় না। কারণ, অস্থিতিস্থাপক সংঘর্ষে গ্যাসাণুর গতিশক্তি সংরক্ষিত থাকে না। গ্যাসের গতিতত্ত্বের দ্বীকার্য অনুসারে, গ্যাসের প্রতিটি অণুর গতিশক্তি সমান হবে এবং অণুসমূহ স্থিতিস্থাপক ফলে অণু-অণু, অণু ও দেয়ালের মধ্যে যে সংঘর্ষ ঘটে তা স্থিতিস্থাপক হওয়া ৰাঞ্ছনীয়। না হলে গ্যাসের গতিতত্ত্বের স্বীকার্য প্রযোজা হয় না।

ত্র এথানে, গ্যাসের ভর, m = 2kg গ্যাসের গ্রাম পারমাণবিক ভর, $m = 2g = 2 \times 10^{-3} \text{ kg}$

Y বিন্দুতে চাপ, P=8 atm

 $= 8 \times 101325 \text{ Nm}^{-2}$ $= 810600 \text{ Nm}^{-2}$

Y বিন্দুতে আয়তন, V = 8 m³

∴ Y বিপুতে তাপমাত্রা, T=?

আমরা জানি, PV = nRT

বা, PV =
$$\frac{m}{M}$$
 RT
বা, T = $\frac{MPV}{mR}$
= $\frac{2 \times 10^{-3} \times 810600 \times 8}{2 \times 8.314}$
= 780 K (Ans.)

য় Y বিন্দুতে, T_y = 780 K

$$P_y = 8 \text{ atm}$$

$$V_y = 8 \text{ m}^3$$

X বিন্দুতে, $P_x = 4$ atm

$$V_x = 8atm$$

$$T_x = ?$$

এখন,
$$\frac{P_x V_x}{T_x} = \frac{P_y V_y}{T_y}$$

$$T_x = \frac{P_y}{P_y}$$

$$= \frac{780 \times 4}{8}$$

$$= 390 \text{ K}$$

Z বিন্দুতে,
$$P_z = 8atm$$
 $V_Z = 4m^3$
 $T_Z = ?$

$$\therefore \frac{P_y V_y}{T_z} = \frac{P_y V_y}{T_y}$$
বা, $T_z = \frac{T_y V_z}{V_y}$

$$= \frac{780 \times 4}{8}$$

$$= 390 \text{ K}$$
অর্থাৎ, $T_x = T_z$

উল্লেখ্য, $P_zV_z = 8 \times 4 = P_xV_x$ অর্থাৎ XY একটি সমোঞ্চ প্রক্রিয়া।

 $T_y > T_x$, $T_y > T_z$ 43? $T_x = T_z$

প্রর ▶৭১ কোনো একদিন রাজশাহীর তাপমাত্রা 30°C এবং আপেন্দিক আর্দ্রতা 60%। একই সময়ে কক্সবাজারে স্থাপিত একটি হাইগ্রোমিটারের শৃষ্ক থার্মোমিটারের পাঠ 30°C এবং আর্দ্র থার্মোমিটারের পাঠ 28°C। 30°C তাপমাত্রায় গ্লেইসারের উৎপাদক এর মান 1.65 । 26°C, 28°C এবং 30°C তাপমাত্রায় সম্পুত্ত জলীয় বাজ্পের চাপ যথাক্রমে 25.21, 28.35 এবং 38.16mm পারদ।

/७: आषुत्र ताञ्जाक भिजैमिमिशान करमञ, शरभात,

ক, পার্কিং কক্ষপথ কী?

থ. টেলিযোগাযোগের ক্ষেত্রে ভূ-স্থির উপগ্রহ ব্যবহার করা হয় কেন?

ণ, উদ্দীপক অনুসারে কক্সবাজারের শিশিরাঙ্ক নির্ণয় কর।

একই তাপমাত্রা হওয়া সত্ত্বেও রাজশাহীর চেয়ে কক্সবাজারে কোনো ব্যক্তির অধিক অমন্তি অনুভব করার কারণ কি-গাণিতিক বিশ্লেষণপূর্বক মতামত দাও।

৭১ নং প্রয়ের উত্তর

ক পৃথিবী পৃষ্ঠ হতে নিৰ্দিষ্ট উচ্চতায় অবস্থিত যে কক্ষপথে কোনো কৃত্রিম উপগ্রহ আবর্তন করতে থাকলে ভূপষ্ঠের সাপেক্ষে এটি সর্বদাই স্থির মনে হবে, তাকে অর্থাৎ ভ্-স্থির উপগ্রহের কক্ষপথকে পার্কিং কক্ষপথ বলে।

🔞 টেলিযোগাযোগের ক্ষেত্রে ভূপৃষ্ঠ হতে যে সিগন্যালসমূহ আসে তাদেরকে উপগ্রহ গ্রহণ করে এবং উপযুক্ত স্থানে প্রেরণ করে। ভূম্থির উপগ্রহ ব্যবহার না করলে সময়ের সাথে সিগন্যালের উৎসের সাথে স্যাটেলাইটের দূরত্ব ক্রমশ পরিবর্তন হতো। ফলে উৎস হতে স্যাটেলাইটে সিগন্যাল প্রেরণের প্রযুক্তি আরও উন্নত হতে হতো। সেই সাথে উৎস হতে অধিক দূরত্বে সিগন্যাল পাঠানো আরো ব্যয়সাপেক্ষ এবং সিগন্যালের শক্তির অপচয় বেড়ে যেতো। এ কারণে, ভূস্থির উপগ্রহ ব্যবহার করা হয়।

প ৭ (গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

উত্তর : 26.7°C

য় ৭ (ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

উন্তর : আঃ আর্দ্রতা 68.94% > 60% তাই অম্বস্তিবোধ হবে।

পদার্থবিজ্ঞান

দশম অধ্যায় : আদর্শ গ্যাস ও গ্যাসের গতিতত্ত্ব	অক্সিজেনের আয়তন কত? (প্রয়োগ) ③ 1.2 × 10 ⁻² m³ ④ 1.6 × 10 ⁻² m³ ④ 2.2 × 10 ⁻² m³ ④ 2.8 × 10 ⁻² m³
৩৫৮. যেসব গ্যাস গতিতত্ত্বের মৌলিক স্বীকার্যসমূহ মেনে চলে তাকে কী বলে? (আন)	৩৬৭, বয়েলের সূত্রানুসারে P বনাম $rac{1}{V}$ লেখচিত্র
🚳 ৰাম্ভৰ গ্যাস 🏽 🕲 অনাদৰ্শ গ্যাস	(कमन रू.व? (अनुधारन) /कार्यन्यरके करनवर स्थार/
প্রাকৃতিক গ্যাসপ্রাদর্শ গ্যাস	® \$\\
৩৫৯. দ্বি-পারমাণবিক গ্যাস অণুর স্বাধীনতার মাত্রা	4
कराणि? (खान) / <i>(खाना भवकावि करनकः (खाना)</i>	$\rightarrow P \rightarrow P$
⊕ ২ ⊚ ∘	<u> </u>
® 8	
৩৬০. এক পরমাণু হিপিয়াম গ্যাস অণুর স্বাধীনতার	→ P
भोजी कु ँ? /कान्डिनरभन्ने भारतिक मूक्त व करमञ, तरभूव/ (क) 1 (च) 2	৩৬৮. নিচের কোন লেখচিত্রটি বয়েলের সূত্র সমর্থন
	क्दि? /श्रम क्य क्रमण, जन्म/
ঞ্জ 3	$P \mid Q \mid Q \mid V \mid Q \mid Q \mid Q \mid Q \mid Q \mid Q \mid Q$
্তির নারতন্ত্র ও ঘনত ব্যক্তির নারতন্ত্র ও ঘনত	• / • /
আয়তন, তাপমাত্রা ও ঘনত্ব	V V T
আয়তন, ভর ও তাপমাত্রা	P P
জ আয়তন, তাপমাত্রা ও চাপ 🔞	® / ® / 0
৩৬২. PV = K এই সমীকরণটি সাধারণভাবে কোন	
সূত্রের প্রকাশ? (প্রয়োগ)	৩৬৯, তাপমাত্রা স্থির থাকলে নির্দিষ্ট ভরের গ্যাদের
📵 চার্লসের সূত্র	আরতন (V) বনাম চাপ (P) এর শেখচিত্রের
⊚ বয়েলের সূত্র	প্রকৃতি কোনটি? (অনুধারন) /বারিশাল সর্বারি মহিশা
তাপের সূত্র	बरमण, रसियाम/
আদর্শ গ্যাস সমীকরণ	(a) ∨↑ (b) ∨↑ (b)
৩৬৩. 1 atm = কড? (প্রয়োগ)	
	$0 \longrightarrow P 0 \longrightarrow P$
 1.01325 × 10⁵ Pa® সঁবগুলো 	,
৩৬৪. বয়েলের সূত্রটি কড সালে,আবিস্কৃত হয়? (জান)	⊕ V↑\
⊕ ১৫৬২⊕ ১৬৬২	
৩ ১৮৬২ 0 ১৮৬২ 0 ১৮৯১ 0	$O \longrightarrow P$ $O \longrightarrow P$
৩৬৫. স্থির উম্বতায় কত চাপ প্রয়োগ করলে একটি	৩৭০. পানির ত্রৈধ বিন্দুর চাপ কতঃ (ঋন)
গ্যাসের আয়তন এর স্বাভাবিক চাপে আয়তনের	③ 3.58 mm HgP ④ 5.58 mHgP
4 गूर्ण श्रद्ध (श्रायाण)	
③ 2.35 × 10 ⁴ Nm ⁻² ③ 2.53 × 10 ⁴ Nm ⁻²	সম্ভাব্য বেশের মধ্যে কীরুপ সম্পর্ক দেখা যায়?
① 1.35 × 10 ⁴ Nm ⁻² ② 1.53 × 10 ⁴ Nm ⁻² ③	(अनुशासन)
৩৬৬. যদি R = 8.31 JK ⁻¹ mol ⁻¹ হয় তবে 72 cm	(4) c _{rima} < c _{av} > c _{in} (6) c _{rima} > c _{av} < c _{in}
পারদ চাপে এবং 27°C তাপমাত্রায় 20g	

(f) $c_{rms} > c_{av} > c_m$ (g) $c_{to} > c_{rms} > c_{av}$

৩৭২	. N.T.P তে হাইয়ে বৰ্গবেগ নিৰ্ণয় কৱ	হাজেন অপুগুলোর মূল । N.T.P. তে হাইছোডে	গড় লনেব	/मतकाति क्य क
67	ঘনত 0.088 km ⁻³			⊛ /
8		③ 1.84 kms ^{−1}		
	① 1.88 kms ⁻¹	1.86 kms ⁻¹	0	l my 🧳
999		ও চাপে হাইড্রোজেন	অণর	
		विन क्रम बरमाव, जाका/	- C. A.	•
		® 1845 ms ⁻¹	0	
		® 465.1 ms ⁻¹	0	
998		গ্যাসের তাপমাত্রা T এর	मर्था	৩৮০, অসম্পৃক্ত বাহ্ হলে নিচের
35	সম্পর্ক কোনটিঃ (জার		14.	<i>थम समझ स</i> न
	er versämmennam	5 1 0	1,2	f > F
	4		2 0	① f <f< td=""></f<>
	$\mathfrak{T} \lambda \propto \frac{1}{T^2}$	(1) A a +	0	৩৮১. কখন শিশির
		V 1	\$5	📵 মেঘমুত্ত
७५०		গ্যাসের চাপ P-এর	H(4)	প্রিম্বলার
	সম্পর্ক কোনটিঃ (ব	AND THE STREET		৩৮২, প্রায় সকল
		λ∝ ½		পরিলব্দিত হয়
	\mathfrak{T} $\lambda \neq \frac{1}{P^2}$	a . 1		i. निम्न চারে
				ii. निम्न घनए
996		নের গড় মুক্তপথের সমী	क्राप	iii. নিম্ন তাপ
*	কোনটি? (জন)			নিচের কোনটি
3	$\Re \lambda = \frac{1}{2}$	$\lambda = \frac{3}{4\pi\sigma^2 n}$		i e ii
	√2πσ²r	4πσ n		1 18 iii
390	$\mathfrak{I} = \frac{1}{4\pi\sigma^2 n}$	\mathfrak{G} $\lambda = \frac{1}{n\pi\sigma^2}$	0	৩৮৩. আদর্শ গ্যাস
	11		er vo	হলো—(অনুধাৰ
011	ा. गाउनाच जनूच नुग सनारकत अस्थार्क नि	গড় বর্গবেগের সাথে চা চের কোনটি? (অনুধানন)	10	i. বয়েলের
				iii. চাপের স্
		$\bigcirc C = \frac{3P}{Q}$		নিচের কোনটি
	P	(3D	N ₂₂	i e ii
	$\bigcirc C = \frac{1}{2}$	$ C = \sqrt{\frac{3P}{\rho}} $	•	iii V ii 🐑
096	. কোনটির মূল গড়	বর্গবেগের সাথে তাপম	াতার	৩৮৪. একটি আবস্থ
	সম্পর্ক প্রকাশ করে	? (অনুধাৰন)		C এবং মূল গ
- 1		33		AND STATE IN A
	(a) C = M	\odot C = $\sqrt{\frac{3RT}{M}}$		i. C>C
	\bigcirc C-RT		0	iii. Č <c< td=""></c<>
	9 C-M	O C-VM	11000	নিচের কোনটি
690		ক থাকে তবে P এর :		இ i வே
	PV यद अम्लक	নিচের কোনটি? তেন	धारन)	(f) ii v3 iii

৩৮৫. গ্যাসের অণুর গড় মৃক্ত পথ অণুর— (অনুধানন)	গে-লুসাকের সৃত্র আভোগেড্রোর সৃত্র
 মোট দূরত্বকে মোট কণার সংখ্যা দ্বারা 	৩৯০. গ্যাসটির চূড়ান্ত তাপমাত্রা কত?
ভাগ করে পাওয়া যায়	⑤ −172°C ⑥ 90°C
ii. পর পর দুটি ধাক্কার মধ্যবতী দূরত্ব 🔹	@ 101°C ® 636°C ③
iii. পথগুলো পরস্পর সমান হয়	৩৯১. পর্বতের চূড়ায় ভাত রান্না বেশ কঠিন কারণ—
নিচের কোনটি সঠিক?	(जनुषायन) /मिनाकपुत मतकाति सर्वना कट्टमार मिनाकपुत/
® i 19 ii ● i 19 iii	i. বায়ুর চাপ বেশি
· 🔞 ii g ii 🔞 i' i g ii 🚳	ii. বায়ুর চাপ কম
৩৮৬. অসম্পৃক্ত চাম্প চাপের ক্ষেত্রে প্রযোজ্য—	iii. পানির ম্ফুটনাংক কম
(क्रिकेचद्र नक्ष्ण) /यारेकिशान ग्कुन ७ करमण, राजिकिन, ठाका/	নিচের কোনটি সঠিক?
i. তাপ বাড়ালে সম্পৃক্ত হয়	இ ர்ரேய் இ ய்ரேய்
ii. বয়েল ও চার্লসের সূত্র মেনে চলে	® i Siii
iii. ঠাণ্ডা করতে থাকলে ধীরে ধীরে চাপ কমে	উদ্দীপকটি পড়ে ৩৯২ ও ৩৯৩ নং প্রশ্নের উত্তর দাও:
নিচের কোনটি সঠিক?	কোনো গ্যাসের তিনটি অপুর বেগ যথাক্রমে 15m ⁻¹ , 20
இ ர்பே இ ந்போ	ms ⁻¹ এবং 25 ms ⁻¹ গ্যাসের অণুসমূহের ক্ষেত্রে গড়
😙 i 🐨 ii ii 🕲 i, ii 🕲 iii 🤇	বেগ, গড় বৰ্গ ও মূল গড় বৰ্গবেগ তিনটি গুরুত্বপূর্ণ
৩৮৭. বায়ুর তাপমাত্রা শিশিরাভেকর নিচে নামতে পারে	ধারণা। এ রাশিগুলো পরস্পর সম্পর্কিত।
কারণ—— (উচ্চতর দক্তা)	৩৯২, উদ্দীপকের রাশিগুলোর সম্পর্ক— (অনুধানন)
i. বায়ু বিকিরণ প্রক্রিয়ায় তাপ বর্জন করে	1/2
ii. শীতল ও পরম বায়ুর মিশ্রণ	i. $c = \sqrt{c^2}$ ii. $c^2 = \sqrt{c^2}$
 রুম্বতাপীয় প্রক্রিয়ায় চাপের দ্রুত পরিবর্তন 	iii. $\bar{c} < \sqrt{c^2}$
নিচের কোনটি সঠিক?	নিচের কোনটি সঠিক?
® i ଓ ii ⑨ ii ৩ ii ⑩	@ i & ii @ ii & iii
® i,ii 8 ii ®	📵 մ ଓ iii" 💮 i, ii ଓ iii 🏻 🗿
৩৮৮, নির্দিষ্ট তাপমাত্রায় কোনো স্থানের পরম	৩৯৩. গ্যাসটির গড় বর্গবেগ কত? (প্রয়োগ)
আৰ্দ্ৰতা 0.002kg/m³ হলে— (অনুধাৰন)	● 20.41 ms ⁻¹ ● 30.21 ms ⁻¹
i. ঐ স্থানের প্রতি ঘন মিটার বায়ুতে 0.002	(1) 416.67 m ² s ⁻² (1) 416.67 ms ⁻¹
kg জলীয় বাম্প আছে	উদ্দীপকটি পড়ে ৩৯৪ ও ৩৯৫ নং প্রশ্নে উত্তর দাও:
ii. ঐ স্থানের প্রতি ঘন সেমি, বায়ুতে 0.002	সম-আয়তনের পানি ও একটি তরল প্দার্থের ভর
mg জলীয় বাষ্প আছে	যথাক্রমে 0.3 kg এবং 0.2 kg। তাদের একই
 ঐ তাপমাত্রায় ঐ স্থানের বায়ুর জলীয় 	ক্যালরিমিটারে পর পর রেখে 50°C থেকে 30°C এ
বাষ্প ধারণ ক্ষমতা 0.0025 kg/m³ হলে ঐ	শীতল করতে যথাক্রমে 600s এবং 300s সময় লাগে।
স্থানের আপেক্ষিক আর্ম্রতা ৪০%	ক্যালরিমিটারের উপাদানের তাপ ধারকত্ব 42JK ⁻¹
নিচের কোনটি সঠিক?	৩৯৪, ক্যালরিমিটার ও পানি কর্তৃক তাপ দ্রাসের হার
® i®ii * ® i®iii	কত? (প্রয়োগ)
® ii © iii ® i, ii © iii ®	⊕ 43.4Js ⁻¹ ⊕ 44.4W □
উদ্দীপকটি পড়ে ৩৮৯-৩৯১ নং প্রন্নের উত্তর দাও :	⊕ 45.4 W , ⊕ 46.4W . •
30°C তাপমাত্রায় একটি গ্যাসকে স্থির চাপে উত্তপ্ত	৩৯৫. তরপটির আপেক্ষিক তাপ কত নির্ণীত হবে?
করে আয়তন তিনগুণ করা হলো।	(ब्बान) ③ 3035 Jkg ⁻¹ K ⁻¹ ④ 3045 Jkg ⁻¹ K ⁻¹
৩৮৯, উদ্দীপকটি নিচের কোন সূত্রকে সমর্থন করে?	⑨ 3055 Jkg ⁻¹ K ⁻¹ ⑨ 3065 Jkg ⁻¹ K ⁻¹ ◎
🐵 বয়েলের সূত্র 💿 চার্লস এর সূত্র	C 2002 Mg K Cy 2003 JKg K