13/12/24
Séminaire SPACE
Tours

Des pontitions mon-croisées à l'étude des sous
quoupes paraboliques des groupes de tresses
Complexes.

I. Partitions mon vroisées.

II. Groupes de reflexions complexes (bien engendrés) et monivides duant III. Sons groupes paraboliques.

I J. Parlilions mon oroisée.

- · Une possition d'un ensemble X pot une famille $P=(u)_{u\in P} \in P(X) \not = leble que <math>L L u = X$. On pose $P_{\alpha}(X)$ l'ensemble des possitions de X.
- · L'ensemble Pa(X) et ordonné par Mafirmement

 P(Q=) VUEP, FVEQ lu CV

 "Serparlier de Q 594 des réunions de partier de P".
- · Parlition = relation d'equivalence (x~y=) x y sont dans la mère).

Prop: (Pa(X), <) and un <u>Vreillis</u>: pour P,Q & Pd(X), l'ensemble {P,Q} anchot - un sup PvQ (la "relation d'equivalence engendrée par PetQ") - un inf P1Q (parlies = intersection mon vide d'une parlie de P et d'une parlie de Q).

Kreweron 72 A' parlir d'ici, XSI.

Del: Une partition $P \in P_{\sigma}(X)$ et <u>mon oroisée</u> si $\forall u, v \in P$, on a Conv (u) \cap Conv (v) $\neq \emptyset =$ u = v. On pose $N \subset P(X)$ l'ensemble du partition mon oroisée

Ex: X=44 3 t 1 est une possibilion croisée

[1

du complement on dodent un "produit partiel" Vs. t ENCP(X), sot est définis: t \(\), auquel con sot:= svt. du produit partiel on définit un ménoide. M= < NPC(X) | st=u si s-t=u) t Smots en NPCXI}/{= indute par les relations}.

du monoide en deduit un groupe

G=G(17)=NRCX)LINPCXI-1/relation+ xx== x=1>. $Ex:X=\mu_3$. M= (abc Al ab= bc = ca= A)+ GOV = (abc | ab = bc = ca) = (a,b| aba = bab) le groupe de Birmon Ko Lee 98? Théo: (Benis Pigne Midd OZ) Si X= µm, GM) elle groupe de trens à mbrins. 3] Incurs, on du groupe symphique.
On considére $G_m = G([O_1m-1]) \simeq G(\mu_m)$. On a alon une application $G_m = Pa(\mu_m)$ envoyant G sur l'ensemble de ses orbits Poin $\sigma \in \sigma$ (σ) el la longuem minimule d'un produit de transpositions exprimants. On munifor d'un ordre visa $\sigma \leq z = 160 + 16 = (z) = 1(z)$. Ompose $C=(0\cdots m-1)$, (l(c)=m) of $I(c)=\{\sigma\mid \sigma\leq c\}\neq G_m$. Théo (Benis Digre Mibelo2)

[a redniction de fà I(c) induit un isomorphisme (I(c), \leq) \simeq NCP(un), \leq).

[de plus, on a $f(\sigma^*c) = f(\sigma)$. -> en parlialier (I(c), E) est un treillis. Common generaliser!

3

II. Groupes de reflexions complexes (bien-engendrés) et mono ides duanx 1) Groupes de rellixions complexes Vom C-espail veuloniel de dimension m. r EGL(V) et une reflexion si order/Loo et codém Kerter-1)=1. Del: WEGL(V) est un groupe de reflexions complexe sil est simi et engendré par des reflexions. Ompose VV= {v EV | w.v=v +w-EV3 Walt bion engenché s'il sent el ve engendré par codim (VW) reflexion. Ex: Em -> mahicos de permulation (dimiV=m, m-1 reflexions). - proupe diedral 5 -> (01) pro (5m0). (dim V=2 2 reflexions).
- (01), (10), (0i) (dim V=2, 3 reflexions). Onpore X=V- {hyperplans anocics oux reflexions de W}.

Del: B(W):= Th(X/W) le groupe de knevres de W. $X(G_m) = \{(x_1, ..., x_m) | i \neq j = \} x_i \neq x_j \}.$ $X(G_m) = \{ensemble de m points dems (?).$ Where! Del: «w E West régulier s': la un verteur propre dans X. l'- Un <u>élément</u> de Coxetes est un élément regulier d'ordre maximal Dans Gm, (1 ··· m) -> (Emi, ..., 1) ulum vertem propre.

2) Monoide dual. Lous les demonts de Coxetes Soul conjugués dans W. On fixe W bien engendré et T= { reflexions de W}. Pan $w \in W$, on pare $l_{\tau}(w) = l_{\sigma}u$ and minimale dum mot all expriment w. $u \leq v = l_{\tau}(u) + l_{\tau}(v) = l_{\tau}(v)$. Pan CEW un elevent de Coxete, I(c) = {w | w < c}. (ona l(c) = dim (w)).

On munit I(c) d'un produit parliel par

5 · f = u si sf = u et l(s/+ l(t) = l(w) Def: Monoide dual MW et le monoide définit par ce produit partiell groupe dual OW — groupe ca re depend pas du droix de c à isom oplième pres.

Theo: (Brady Watt, Benio, Bessis Conon) Si Wat bien augendré, et CEV et Coxeter, alor [IC) ed un troillis, MW ed un monoide de Gamide, et G(W) = B(W) + G26 +624 Psmisodismi. Bil Parlihons mon croisées généralisées. Forh de cette idée, on pose NCPW:= I(c).
Prop: (altW):= NCP(W)= II di+dm, ou du...dn soul les degrés de W.
Reine Prop: (Brooky Walt DI). NCP (FR IM)) ~ { PENCP (Plzm) / - P= P}. (over ordre redreint). Prop. (6.23). NCP(G(d Im)) ~ {PENCP(udm) | &d P=P} (2 NCP(2 Im)) Prop: (Bamislanan O4) NCP(Geen) = {PENCP(Mem-1, UP) | P\0 ENCP(Mem-1) }

Ee (P\0) = P\0)

= {PENCP(Mem-1, UO1) | P\0 ENCP(G(EMm-1))}. 11 Definitions paraboliques. Pour SENCRWI, empose Pir(s) = { + | + Ls} MWs = (Div(s)) + G(Ws = (Div(s)). Del: Ses groupes de la forme G(V)s soul les sous groupes panalactiques standands. Les sous groupes paralloliques soul les conjençués des sous groupes paraboliques tendants. Prop: -L'image de GWs deun Walt boyw | Vv E Ker (5-1), w.v=v}, un sous groupe pondrolique, el ona GWs \sigma GWo) G(Gg)5 ~ G(G5) x G(G3). 2] I monsections conjuguent positifs minimoux. Théo (Conzales Moneses Manine 22, G24) To pul que sont W. les son groupes paraboliques ropologiques de B(W) Soul stables par l'interesection.

15

- identifier les paraboliques topologiques et ceux issus d'une strudure de Garride V (strudure différentie pour Gonzalez Perezo, Planin. Pronoide oluvel pour mour). ?? - Poutre que $\forall x \in G(W)$, $\exists PC(x)$ parabolique minimal pour \subseteq contenant x. - Par un argument général, en deduire le Heorène sur l'intersection Con montrer que la clôtures paraboliques existent, il suffit de montres la propriété de preservation des support. leure: G(W) & n G(W) = G(W)(SAH): Ser paraboliques standards sout staldes pan intersection. On peul donc definis SPC(x) la cloture panoholique shandand, et conjectures que pour de hour x (eg x E17(W)), SPC(x) = PC(x). Del: Omdit are (G(W), $\Pi(W)$) preserve le support si $\forall x \in \Pi(W)$ $\forall x \in G(W)$ believe d' $\forall x \in \Pi(W)$, on a $\forall x' \in \Pi(W)$ $\forall x \in \Pi(W)$. Theo (Conzalez Monesos Manin 22) Si ona presenation du support, alors les clotures Tranaholiques existent. Prop. Pour a l'ixè il sull'I de lester la propriété de presenshion du support John un conjuguent parilif minimal. La ETT(W) tel que d'a d ETT(W) et amon dévisen stribéed ne repette cette propriété Theo (G24) Soit or onec SPC(x)= G(W)s. Sided un conjugurant ponilifminimal de x along int $-d \le 5$ ded un conjugurant ponilifminimal de s. SPC(x)= SPC(x). $-d \le 5$, $\Delta \in G(S)$ et $SPC(x) = SPC(x^2)$. Emparlialier, (5(W), 17(W)) preserve le support la preme estan cas par cas dre pore son en grand lenne technique Tome": $\forall s \in NCP(W)$, $\exists A(\overline{s}) = Ro(s) \subseteq ... \subseteq Rn(\overline{s}) = A \setminus A(\overline{s})$ $\forall a \in R(\overline{s})$, $b \leq s$, on a $\exists d \in R(\overline{s}) = A \setminus A(\overline{s})$ $\exists d \in R(\overline{s}) = A \setminus A(\overline{s})$

16