SAKETH RAM BOMMARAJU 21BCE9825

```
In [102]:
               import numpy as np
               import pandas as
               pd import seaborn
               import matplotlib.pyplot as plt
In [103]:
               data=pd.read_csv("Employee-Attrition.csv")
In [104]:
               data.head()
Out[104]:
                                                   Depa
                Age Attrition
                              BusinessTravel DailyF
                                Travel_Rarely
                 41
                        Yes
                                                    Res
                                                1
                                                  Devel
                 49
                         No Travel_Frequently
                                                    Res
                                                  Devel
                 37
             2
                         Yes
                                Travel_Rarely
                                                    Res
                                                  Devel
             3
                 33
                         No Travel_Frequently
                                                    Res
                                                  Development
                 27
                         No
                                Travel_Rarely
            5 rows × 35 columns
In [105]:
               data.tail()
```

Development

5 rows × 35 columns

In [106]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

#	Column	Non-Nul	l Count	Dtype
0	Age		n-null	int64
1	Attrition		n-null	object
2	BusinessTravel		n-null	object
3	DailyRate		n-null	int64
4	Department		n-null	object
5	DistanceFromHome	1470 no		int64
6	Education		n-null	int64
7	EducationField		n-null	object
8	EmployeeCount		n-null	int64
9	EmployeeNumber		n-null	int64
10	EnvironmentSatisfaction		n-null	int64
	Gender		n-null	object
	HourlyRate		n-null	int64
	JobInvolvement	1470 no		int64
	JobLevel	1470 no	n-null	int64
	JobRole	1470 no	n-null	object
	JobSatisfaction	1470 no		int64
17	MaritalStatus	1470 no		object
18	MonthlyIncome	1470 no	n-null	int64
19	MonthlyRate	1470 no	n-null	int64
20	NumCompaniesWorked	1470 no	n-null	int64
21	Over18	1470 no	n-null	object
22	OverTime	1470 no	n-null	object
23	PercentSalaryHike	1470 no	n-null	int64
24	PerformanceRating	1470 no	n-null	int64
25	RelationshipSatisfaction	1470 no	n-null	int64
26	StandardHours	1470 no	n-null	int64
27	StockOptionLevel	1470 no	n-null	int64
28	TotalWorkingYears	1470 no	n-null	int64
29	TrainingTimesLastYear	1470 no	n-null	int64
30	WorkLifeBalance	1470 no	n-null	int64
31	YearsAtCompany	1470 no	n-null	int64
32	YearsInCurrentRole	1470 no	n-null	int64
33	YearsSinceLastPromotion	1470 no	n-null	int64
34	YearsWithCurrManager	1470 no	n-null	int64
1+ ,,,,	aos: int6/(26) object(9)			

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

In [107]: | data.describe()

Out[107]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNu
count 1	470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.00
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.86
std	9.135373	403.509100	8.106864	1.024165	0.0	602.02
min	18.000000	102.000000	1.000000	1.000000	1.0	1.00
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.25
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.50
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.75
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.00

8 rows × 26 columns

Handling Null

Values

In [108]: data.isnull().any()

Out[108]: Age

False Attrition False BusinessTravel False DailyRate False Department False DistanceFromHome False Education False EducationField False EmployeeCount False EmployeeNumber False EnvironmentSatisfaction False Gender False HourlyRate False JobInvolvement False JobLevel False JobRole False JobSatisfaction False MaritalStatus False MonthlyIncome False MonthlyRate False NumCompaniesWorked False Over18 False OverTime False PercentSalaryHike False PerformanceRating False RelationshipSatisfaction False StandardHours False StockOptionLevel False TotalWorkingYears False TrainingTimesLastYear False WorkLifeBalance False YearsAtCompany False YearsInCurrentRole False YearsSinceLastPromotion False YearsWithCurrManager False dtype: bool

```
In [109]: | data.isnull().sum()
Out[109]: Age
                                         0
           Attrition
                                         0
           BusinessTravel
                                         0
                                         0
           DailyRate
                                         0
           Department
                                         0
           DistanceFromHome
                                         0
           Education
                                         0
           EducationField
           EmployeeCount
                                         0
                                         0
           EmployeeNumber
           EnvironmentSatisfaction
                                         0
                                         0
           Gender
           HourlyRate
                                         0
                                         0
           JobInvolvement
           JobLevel
                                         0
                                         0
           JobRole
           JobSatisfaction
                                         0
                                         0
           MaritalStatus
           MonthlyIncome
                                         0
           MonthlyRate
                                         0
          NumCompaniesWorked
                                         0
           Over18
                                         0
                                         0
           OverTime
           PercentSalaryHike
                                         0
                                         0
           PerformanceRating
                                         0
           RelationshipSatisfaction
           StandardHours
                                         0
                                         0
           StockOptionLevel
                                         0
           TotalWorkingYears
           TrainingTimesLastYear
                                         0
                                         0
           WorkLifeBalance
                                        0
           YearsAtCompany
           YearsInCurrentRole
                                         0
                                        0
           YearsSinceLastPromotion
           YearsWithCurrManager
                                         0
           dtype: int64
In [110]: | cor=data.corr()
```

Out[105]:

```
In [111]:
                                     fig=plt.figure(figsize=(18,18
                                     sns.heatmap(cor,annot=True)
   Out[111]: <AxesSubplot:>
                                                  Age - 1 0.011-0.00170.21
                                                                                  -0.01 0.01 0.024 0.03 <mark>0.51-</mark>0.004<mark>9 0.5 0</mark>.028 0.3 0.00360.00190.054
                                                                                                                                                                 -0.02-0.021 0.31 0.21 0.22 0.2
                                             DailyRate -0.011 1 -0.005-0.011
                                                                                                                                                       0.042 0.0150.0025-0.038-0.0340.0099-0.033-0.02
                                                                                  0.051 0.018 0.023 0.046 0.003 0.0310.0077-0.032 0.038 0.0230.00040.007
                                    DistanceFromHome 0.00170.005 1
                                                                                   .033-0.016 0.0310.00880.00530.00370.0170.027-0.029 0.04 0.0270.0066
                                                                                                                                                        0.0450.00460.037-0.0270.00950.019 0.01 0.014
                                            Education - 0.21 -0.017 0.021
                                                                                   042-0.027 0.017 0.042 0.1 -0.0110.095-0.026 0.13 -0.011-0.0250.009
                                                                                                                                                         018 0.15 -0.0250.00980.069 0.06 0.054 0.069
                                        EmployeeCount
                                                                                                                                                                                                                  - 0.8
                                      EmployeeNumber - -0.01-0.051 0.033 0.042
                                                                                      0.018 0.0350.00690.019-0.046-0.0150.0130.00130.013-0.02 -0.07
                                                                                                                                                       0.062-0.014 0.024 0.01 -0.0110.00840.0090.009
                                EnvironmentSatisfaction - 0.01 0.018-0.016-0.027
                                                                                        1 -0.05-0.00819.00120.00620.00630.038 0.013-0.032 -0.03 0.0077
                                                                                                                                                       .00340.00270.0190.0280.00150.0180.016-0.005
                                                                                  0.035 -0.05 1 0.043 -0.028-0.071-0.016-0.015 0.022-0.009-10.00270.0013
                                           HourlyRate -0.024 0.023 0.031 0.017
                                                                                                                                                        0.05-0.002-0.008-0.0046-0.02-0.024-0.027-0.02
                                                       0.03 0.0460.00880.042
                                                                                   .00690.00830.043 1 -0.013-0.021-0.015-0.016 0.015-0.017-0.029 0.034
                                                                                                                                                       0.022-0.00550.015-0.015-0.0210.0087-0.024 0.026
                                                                                                                                                                                                                   - 0.6
                                                                                  0.0190.00120.028-0.013 1 0.001<mark>9 0.95</mark> 0.04 0.14 -0.035-0.021 0.022
                                                                                                                                                       0.014 <mark>0.78 -</mark>0.018 0.038 <mark>0.53 0.39 0.35 0.38</mark>
                                                       0.51 0.0030.0053 0.1
                                              JobLevel
                                                                                                                                                       0.011 -0.02-0.00580.0190.00340.00230.018-0.028
                                        MonthlyIncome
                                                        0.5 0.0077-0.017 0.09
                                                                                  0.77 -0.022 0.031 0.51 0.36 0.34 0.34
                                                                                                                                                        .034 0.0260.0015 0.008-0.024-0.0130.00160.03
                                                      -0.028-0.032 0.027 -0.02
                                                                                   .013 0.038-0.015-0.016 0.040.000640.035 1 0.0180.00640.00980.004
                                          MonthlyRate
                                                                                   .00130.013 0.022 0.015 0.14 -0.056 0.15 0.018 1 -0.01 -0.014 0.053
                                                                                                                                                       0.03 0.24 -0.0660.0084-0.12-0.091-0.037 -0.11
                                 NumCompaniesWorked
                                                        0.3 0.038-0.029 0.13
                                     PercentSalaryHike -0.00360.023 0.04 -0.01
                                                                                  0.013-0.0320.00910.017-0.035 0.02 -0.0270.0064-0.01 1 0.77 -0.04
                                                                                                                                                        00750.0210.00520.00330.0360.00150.022-0.012
                                     PerformanceRating -0.0019.000470.027-0.025
                                                                                  0.02 -0.03-0.00220.029-0.0210.0023-0.0170.00980.014 0.77 1 -0.03
                                                                                                                                                        00350.00670.0160.00260.00340.035 0.018 0.023
                                RelationshipSatisfaction -0.0540.00780.00660.009
                                                                                   0.07 0.00770.00130.034 0.022-0.0120.0260.00410.053 -0.04 -0.031
                                                                                                                                                        .046 0.0240.0025 0.02 0.019-0.015 0.0330.000
                                        StandardHours
                                      StockOptionLevel -0.038 0.042 0.045 0.018
                                                                                  0.01 0.0110.00410.015 0.051 0.014 0.025
                                                                                                                                                                                                                   0.2
                                                                                 -0.0140.00230.00230.0055<mark>0.78</mark> -0.02 <mark>0.77</mark> 0.026 <mark>0.24 -</mark>0.0210.00670.024
                                                       0.68 0.0150.0046 0.15
                                                                                                                                                             1 -0.0360.001 0.63 0.46 0.4 0.46
                                  TrainingTimesLastYear -- 0.020.00250.037-0.029
                                                                                  0.024-0.0190.00850.015-0.0180.00580.0220.00150.0660.00520.0160.002
                                                                                                                                                       0.011-0.036 1 0.0280.00360.00540.00240.004
                                                      -0.021-0.038-0.0270.009
                                                                                  0.01 0.0280.00460.015 0.038-0.0190.031 0.0080.00840.00318.0026 0.02
                                                                                                                                                        00410.001 0.028 1 0.012 0.05 0.00890.002
                                                                                  0.0110.0015-0.02-0.021 0.53-0.0038 0.51-0.024-0.12-0.0360.00340.019
                                                                                                                                                                 0.00360.012 1 0.76 0.62 0.77
                                                       0.31 -0.0340.00950.069
                                       YearsAtCompany -
                                                                                                                                                                                                                   - 0.0
                                                                                   00840.018-0.0240.008<mark>7 0.39-</mark>0.002<mark>3 0.36</mark>-0.013-0.0910.00150.035-0.015
                                     YearsInCurrentRole
                                                                                  0.009 0.016-0.027-0.024 0.35 -0.018 0.34 0.00160.037-0.022 0.018 0.033
                                YearsSinceLastPromotion - 0.22 -0.033 0.01 0.054
                                                                                                                                                       0.014
                                                                                                                                                            0.4 -0.002 D.0089
                                  YearsWithCurrManager
             rtment Educ Educ
DistanceFrom ation
               Home
Sales
                                    2
                                             Lif
earch &
8
Lif opment
earch &
2
5pment
earch &
3
Lif opment
earch &
2
```

1465	36	No Travel_Frequently	884	Research & Development	23	2
1466	39	No Travel_Rarely	613	Research & Development	6	1
1467	27	No Travel_Rarely	155	Research & Development	4	3
1468	49	No Travel_Frequently	1023	Sales	2	3
1469	34	No Travel_Rarely	628	Research &	8	3

Outliers

```
In [112]: sns.boxplot(data["Age"])
```

/opt/anaconda3/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From v ersion 0.12, the only valid positional argument will be `data`, and pa ssing other arguments without an explicit keyword will result in an er ror or misinterpretation.

warnings.warn(Out[112]:

<AxesSubplot:xlabel='Age'>

In [113]: sns.boxplot(data["DailyRate"])

/opt/anaconda3/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From v ersion 0.12, the only valid positional argument will be `data`, and pa ssing other arguments without an explicit keyword will result in an er ror or misinterpretation.

warnings.warn(

Out[113]: <AxesSubplot:xlabel='DailyRate'>

In [114]: data.describe()

Out[114]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNu
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.00
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.86
std	9.135373	403.509100	8.106864	1.024165	0.0	602.02
min	18.000000	102.000000	1.000000	1.000000	1.0	1.00
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.25
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.50
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.75
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.00

8 rows × 26 columns

In [115]: data.head()

Out[115]:

Depa

Res Devel

Res Devel

Res

Devel

Res

Development

5 rows × 35 columns

```
fig, axes = plt.subplots(2,2)
sns.boxplot(data=data["YearsInCurrentRole"],ax=axes[0,0])
sns.boxplot(data=data["YearsSinceLastPromotion"],ax=axes[0,1])
sns.boxplot(data=data["YearsWithCurrManager"],ax=axes[1,0])
sns.boxplot(data=data["WorkLifeBalance"],ax=axes[1,1])
```

Out[116]: <AxesSubplot:>

Age Attrition BusinessTravel DailyRate 41 Yes Travel_Rarely 1102 279 49 No Travel_Frequently 1 2 37 Yes Travel_Rarely 1373 No Travel_Frequently 33 1392 27 Travel_Rarely 591 rtment Ed Educ

rtment Ed DistanceFro uc mHome at io n

Sales 1 2 Lif

earch &

8

1

Lif opment earch &

2

opment earch &

3

4

Lif opment earch &

2

```
27/09/2023,
20:52
```

```
fig, axes = plt.subplots(2,2)
sns.boxplot(data=data["DistanceFromHome"],ax=axes[0,0])
sns.boxplot(data=data["TotalWorkingYears"],ax=axes[0,1])
sns.boxplot(data=data["HourlyRate"],ax=axes[1,0])
sns.boxplot(data=data["YearsAtCompany"],ax=axes[1,1])
```

Out[117]: <AxesSubplot:>

Handling the Outliers

```
In [118]:
            YearsInCurrentRole q1 = data.YearsInCurrentRole.quantile(0.25)
            YearsInCurrentRole q3 = data.YearsInCurrentRole.quantile(0.75)
            IQR YearsInCurrentRole=YearsInCurrentRole q3-YearsInCurrentRole q1
            upperlimit YearsInCurrentRole=YearsInCurrentRole q3+1.5*IQR YearsInCu
            rre lower_limit_YearsInCurrentRole
            =YearsInCurrentRole_ql-1.5*IQR_YearsInCur
            median_YearsInCurrentRole=data["YearsInCurrentRole"].median()
            data['YearsInCurrentRole'] = np.where(
                 (data['YearsInCurrentRole'] >
                upperlimit YearsInCurrentRole), median YearsInCurrentRole,
                data['YearsInCurrentRole']
In [119]:
            YearsSinceLastPromotion_ql =
            data.YearsSinceLastPromotion.quantile(0.25)
            YearsSinceLastPromotion_q3 =
            data.YearsSinceLastPromotion.quantile(0.75)
            IQR_YearsSinceLastPromotion=YearsSinceLastPromotion_q3-YearsSinceLast
            upperlimit YearsSinceLastPromotion=YearsSinceLastPromotion q3+1.5*IQR
             Ye lower_limit_YearsSinceLastPromotion
            =YearsSinceLastPromotion_q1-1.5*IQR_
            median YearsSinceLastPromotion=data["YearsSinceLastPromotion"].median
             () data['YearsSinceLastPromotion'] = np.where(
                 (data['YearsSinceLastPromotion'] >
                upperlimit_YearsSinceLastPromotio median_YearsSinceLastPromotion,
                data['YearsSinceLastPromotion']
In [120]:
            YearsWithCurrManager_q1 = data.YearsWithCurrManager.quantile(0.25)
            YearsWithCurrManager_q3 = data.YearsWithCurrManager.quantile(0.75)
            IQR YearsWithCurrManager=YearsWithCurrManager q3-YearsWithCurrManager
            _q1
            upperlimit_YearsWithCurrManager=YearsWithCurrManager_q3+1.5*IQR_Years
            Wit lower_limit_YearsWithCurrManager
            =YearsWithCurrManager q1-1.5*IQR YearsW
            median YearsWithCurrManager=data["YearsWithCurrManager"].median()
            data['YearsWithCurrManager'] = np.where(
                 (data['YearsWithCurrManager'] >
                upperlimit_YearsWithCurrManager), median_YearsWithCurrManager,
                data['YearsWithCurrManager']
            )
In [121]:
            TotalWorkingYears_q1 = data.TotalWorkingYears.quantile(0.25)
            TotalWorkingYears_q3 = data.TotalWorkingYears.quantile(0.75)
            IQR_TotalWorkingYears=TotalWorkingYears_q3-TotalWorkingYears_q1
            upperlimit TotalWorkingYears=TotalWorkingYears q3+1.5*IQR TotalWorkin
            lower limit TotalWorkingYears=TotalWorkingYears q1-1.5*IQR TotalWorki
            ngY median TotalWorkingYears=data["TotalWorkingYears"].median()
            data['TotalWorkingYears'] = np.where(
                 (data['TotalWorkingYears'] >
                upperlimit_TotalWorkingYears), median_TotalWorkingYears,
                data['TotalWorkingYears']
            )
```

```
fig, axes = plt.subplots(2,2)
sns.boxplot(data=data["YearsWithCurrManager"],ax=axes[0,0])
sns.boxplot(data=data["TotalWorkingYears"],ax=axes[0,1])
sns.boxplot(data=data["YearsSinceLastPromotion"],ax=axes[1,0])
sns.boxplot(data=data["YearsAtCompany"],ax=axes[1,1])
```

Out[123]: <AxesSubplot:>


```
In [124]: data.head()
```

Depa

Res Devel

Res Devel

Res Devel

Res

Development

5 rows × 35 columns

```
In [125]: data.drop("EducationField",axis=1,inplace=True)
```

```
In [126]:
                data.head()
                                                          Age Attrition
                                                                          BusinessTravel DailyRate
Out[126]:
                                                          Department DistanceFromHome Education Empl
                                                                                              1102
                                                        0
                                                            41
                                                                    Yes
                                                                            Travel_Rarely
                                                        Sales 1
                                                                    2
                                                            Research &
                                                     279
                1 49
                           No Travel_Frequently
                                                                                        8
                                                                                                   1
                                                          Development
                                                            Research &
                2 37
                           Yes
                                   Travel_Rarely
                                                    1373
                                                                                        2
                                                                                                   2
                                                          Development
                                                            Research &
                           No Travel_Frequently
                                                    1392
                3 33
                                                                                        3
                                                          Development
                                                            Research &
                                                     591
                                                                                        2
                4 27
                           No
                                   Travel_Rarely
                                                                                                   1
                                                          Development
             5 rows × 34 columns
                                                       array(['Travel Rarely',
In [127]:
                data["BusinessTravel"].unique()
Out[127]:
```

Splitting the data

27

Travel_Rarely

```
In [128]:
               y=data["Attrition"]
                                                     y.head()
In [129]:
                                                   0
                                                         Yes
Out[129]:
                                                   1
                                                          No
                                                   2
                                                         Yes
                                                   3
                                                          No
                                                          No
                                                   Name: Attrition, dtype: object
In [130]:
               data.drop("Attrition", axis=1, inplace=True)
In [131]:
               data.head()
Out[131]:
                                                   Depa
                      BusinessTravel DailyRat
                Age
             0
                 41
                        Travel_Rarely
                                                    R
                                        1102
                                                   e
                 49 Travel_Frequently
                                         279
             1
                                                   D
                                                   e
             2
                 37
                        Travel_Rarely
                                        1373
                                                   ٧
                                                  ι
                 33 Travel_Frequently
             3
                                        1392
```

R e

591

27.05-2023. D e e v e l	21BCE9074-ASG-4a40931beef541416ac26ef01bad0448063ce3f1be85de0f4b04359d46cf5f1c0 - Jupyter Notebook D e v e
R	Res
e	Develo
s	pment

5 rows × 33 columns

Encoding

```
In [132]:
             from sklearn.preprocessing import LabelEncoder
In [133]:
             le=LabelEncoder()
In [134]:
             data["BusinessTravel"]=le.fit transform(data["BusinessTravel"])
In [135]:
             data["Department"]=le.fit transform(data["Department"])
In [136]:
             data["Gender"]=le.fit transform(data["Gender"])
In [137]:
             y=le.fit transform(y)
In [138]:
                                           array([1, 0, 1, ..., 0, 0, 0])
Out[138]:
In [139]:
             data["JobRole"]=le.fit transform(data["JobRole"])
In [140]:
             data["Over18"]=le.fit transform(data["Over18"])
In [141]:
             data["MaritalStatus"]=le.fit_transform(data["MaritalStatus"])
In [142]:
             data["OverTime"]=le.fit transform(data["OverTime"])
```

```
In [143]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 33 columns):

#	Column	Non-Null Count Dtype
0	Age	1470 non-null int64
1	BusinessTravel	1470 non-null int64
2	DailyRate	1470 non-null int64
3	Department	1470 non-null int64
4	DistanceFromHome	1470 non-null int64
5	Education	1470 non-null int64
6	EmployeeCount	1470 non-null int64
7	EmployeeNumber	1470 non-null int64
8	EnvironmentSatisfaction	1470 non-null int64
9	Gender	1470 non-null int64
10	HourlyRate	1470 non-null int64
11	JobInvolvement	1470 non-null int64
12	JobLevel	1470 non-null int64
13	JobRole	1470 non-null int64
14	JobSatisfaction	1470 non-null int64
15	MaritalStatus	1470 non-null int64
16	MonthlyIncome	1470 non-null int64
17	MonthlyRate	1470 non-null int64
18	NumCompaniesWorked	1470 non-null int64
19	Over18	1470 non-null int64
20	OverTime	1470 non-null int64
21	PercentSalaryHike	1470 non-null int64
22	PerformanceRating	1470 non-null int64
23	RelationshipSatisfaction	1470 non-null int64
24	StandardHours	1470 non-null int64
25	StockOptionLevel	1470 non-null int64
26	TotalWorkingYears	1470 non-null float64
27	TrainingTimesLastYear	1470 non-null int64
28	WorkLifeBalance	1470 non-null int64
29	YearsAtCompany	1470 non-null float64
30	YearsInCurrentRole	1470 non-null float64
	YearsSinceLastPromotion	1470 non-null float64
32	YearsWithCurrManager	1470 non-null float64
. .		

dtypes: float64(5), int64(28)
memory usage: 379.1 KB

Train Test Split

Featuring Scaling

```
In [146]: from sklearn.preprocessing import StandardScaler
```

```
In [148]: x_train=sc.fit_transform(x_train)

In [149]: x_test=sc.fit_transform(x_test)
```

Building the model

Multi Linear Regression

```
In [150]:
             from sklearn.linear model import LinearRegression
In [151]:
             lr = LinearRegression()
In [152]:
             lr.fit(x train,y train)
                                          Linearkegression()
Out[152]:
In [153]:
             lr.coef #slope(m)
Out[153]: array([-3.54940447e-02, 7.88352347e-05, -1.70825038e-02, 3.46389690e
          -02,
                  2.44612841e-02, 3.65668214e-03, -2.50667542e-16, -9.46820520e
          -03,
                 -4.11203734e-02, 1.06338881e-02, -2.97662154e-03, -3.84864283e
          -02,
                 -1.52927977e-02, -1.57839139e-02, -3.67252862e-02, 3.35765928e
          -02,
                 -5.90043558e-03, 5.81099165e-03, 3.78471890e-02, -6.93889390e
          -18,
                  9.55263279e-02, -2.55800078e-02, 2.01844797e-02, -2.64773510e
          -02,
                  2.60208521e-18, -1.79286106e-02, -3.30529386e-02, -1.09247807e
          -02,
                 -3.10631611e-02, -2.47887717e-02, -1.10177742e-02, 2.11897289e
          -02,
                 -6.60823991e-031)
In [154]:
             lr.intercept #(c)
Out[154]:
In [155]:
             y pred = lr.predict(x test)
```

In [156] | Y_pred

-02,	6.66728668e-02,	4.49620331e-02,	3.30502696e-01,	9.74393000e
·	5.51447175e-01,	1.52212203e-01,	3.58819339e-01,	3.66371593e
-01,	2.47091987e-01,	5.86970935e-02,	1.28678988e-01,	2.80584025e
-01,	7.21059443e-02,	-8.07006907e-02,	3.39791632e-01,	8.25270203e
-02,	2.20338157e-01,	2.47703594e-01,	4.97067397e-01,	1.36010592e
-01,	2.88153807e-01,	4.61306498e-02,	4.52544344e-01,	-8.24037634e
-02,	2.26796295e-01,	1.42129836e-02,	1.62111340e-01,	2.32246950e
-01,	9.12503556e-02,	1.18866795e-01,	2.12735292e-01,	-2.69559828e
-02,	4.53611463e-02,	1.09618223e-01,	2.64436901e-02,	2.32180310e
-01,	1.63285101e-01,	2.42669261e-01,	5.44757533e-01,	1.25881866e

```
in [157]
y_test
Ο,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
         0,
                0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
         0,
                1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
         0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
         0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
         1,
                1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
         1,
                0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
         0,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
         0,
                1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
         0,
                0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
         0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,
         0,
                0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
         0,
                0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
         1,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
         0,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
         0,
                1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
         0,
                0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
         0,
                0])
```

Logistic Regression

```
In [162]: | y_pred
Out[162]: array([ 1.30302477e-01,
                                  2.17626230e-01,
                                                  3.46282415e-01,
                                                                    5.41382549e
          -03,
                  4.99292896e-01, 1.01628868e-01, 3.44742777e-01,
                                                                   1.23994945e
          -01,
                 -1.60694945e-01, 4.02435622e-01, 1.44159172e-01,
                                                                   2.67416840e
          -01,
                 -4.62559536e-02, 5.58671849e-01, 2.81858700e-01,
                                                                   1.53537792e
          -02,
                  1.78573363e-01,
                                  2.77532834e-01, 9.37121052e-02,
                                                                   2.17571624e
          -01,
                  2.65936178e-01, 1.41499184e-02, 8.36251186e-02, 9.58849826e
          -02,
                  5.09869963e-01, 2.94764240e-01, 7.85819529e-02, 1.26647773e
          -01,
                  5.05518902e-01, 8.48456917e-02, -7.97229275e-02, 2.15516993e
          -02,
                  1.08079105e-01, 3.65998400e-01, 1.24517362e-01, 5.13682786e
          -02,
                  1.06749689e-01, 6.07640778e-02, 6.66425313e-02, 4.81312859e
```

```
In [163]: | y_test
Ο,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
          0,
                0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
         0,
                1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
         0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
         0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
         1,
                1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
         1,
                0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
         0,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
         0,
                1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
         0,
                0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
         0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,
         0,
                0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
         0,
                0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
         1,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
         0,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
         0,
                1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
         0,
                0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
         1,
                0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
          0,
                0])
```

0.8820861678004536

Confusion Matrix

Ridge and Lasso

```
In [166]:
             from sklearn.linear model import Ridge
             from sklearn.model selection import GridSearchCV
In [167]:
             rg=Ridge()
In [168]:
             parametres={"alpha":[1,2,3,5,10,20,30,40,60,70,80,90]}
             ridgecv=GridSearchCV(rg, parametres, scoring="neg mean squared error", c
            v=5 ridgecv.fit(x train,y train)
Out[168]: GridSearchCV(cv=5, estimator=Ridge(),
                       param grid={'alpha': [1, 2, 3, 5, 10, 20, 30, 40, 60, 70,
          80, 901},
                       scoring='neg mean squared error')
In [169]:
             print(ridgecv.best params)
          {'alpha': 90}
In [170]:
             print(ridgecv.best score )
          -0.11390621139234183
In [171]:
             y pred rg=ridgecv.predict(x test)
In [172]:
            y pred rg
Out[172]: array([ 1.34413485e-01,
                                   2.22561818e-01, 3.41692977e-01,
                                                                      3.88209867e
          -03,
                  4.84617338e-01, 1.16361483e-01, 3.30449743e-01,
                                                                     1.27358807e
          -01,
                 -1.34442619e-01, 3.77692888e-01, 1.33001445e-01,
                                                                      2.69898751e
          -01,
                 -2.54707392e-02, 5.25771894e-01, 2.67543514e-01,
                                                                      2.78725024e
          -02,
                  1.82233111e-01,
                                   2.78896415e-01, 9.12689699e-02,
                                                                      2.11494641e
          -01,
                  2.70103341e-01,
                                   8.44922044e-03, 8.74746722e-02,
                                                                      1.05348798e
          -01,
                  4.87749940e-01, 2.83080512e-01, 8.80556209e-02,
                                                                     1.23817268e
          -01,
                  4.82185624e-01, 9.34824523e-02, -7.16448509e-02,
                                                                      4.07003104e
          -02,
                  1.08437994e-01, 3.42151399e-01, 1.22270929e-01,
                                                                     6.85889862e
          -02,
                  1.06690533e-01, 7.08689637e-02, 7.51570276e-02, 6.05829413e
```

```
In [173]: | y_test
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
         0,
                0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
         0,
                1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
         0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
         0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
         1,
                1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
         1,
                0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
         0,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
         0,
                1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
         0,
                0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
         0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,
         0,
                0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
         0,
                0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
         1,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
         0,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
         0,
                1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
         0,
                0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
         1,
                0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
         0,
                01)
```

```
In [174]:
```

```
from sklearn import metrics
print(metrics.r2_score(y_test,y_pred_rg))
print(metrics.r2_score(y_train,ridgecv.predict(x_train)))
```

0.21073458438815873

0.2061567210285108

Lasso

```
In [175]:

from sklearn.linear_model import Lasso
from sklearn.model_selection import GridSearchCV
```

```
In [176]: la=Ridge()
```

```
21BCE9074-ASG-4a40931beef541416ac26ef01bad0448063cc3f1be85de0f4b04359d46cf5f1c0 - Jupyter
Notebook
27/09/2023,
20:52
 In [177]:
               parametres={"alpha":[1,2,3,5,10,20,30,40,60,70,80,90]}
               ridgecv=GridSearchCV(la,parametres,scoring="neg mean squared error",c
               v=5 ridgecv.fit(x train,y train)
 Out[177]: GridSearchCV(cv=5, estimator=Ridge(),
                          param_grid={'alpha': [1, 2, 3, 5, 10, 20, 30, 40, 60, 70,
             80, 901},
                          scoring='neg mean squared error')
  In [178]: print(ridgecv.best_params_)
             {'alpha': 90}
 In [179]: |print(ridgecv.best_score_)
             -0.11390621139234183
  In [180]: | y pred_la=ridgecv.predict(x_test)
 In [181]: y pred la
                     /.5U31/32Ze-U2, 1.6/6466/3e-U1, 1.16585544e-U1, 1.U/15/8U8e
                                                -1.84689359e-02, 1.86217544e-01,
                                         -01,
                                                 1.16586463e-01, 4.67201201e
                                         -02,
                                                  1.11060472e-01, 2.27053971e-01,
                                         -02,
                                                  -7.00247692e-02, -5.81070776e
                                         -01,
                                                  2.03141688e-01, 4.69029664e-02,
                                         -01,
                                                  1.31525768e-01, 5.66738022e
                                         -01,
                                                  2.41883060e-02, -3.41250985e-02,
                                                 -1.13904557e-01, 2.18572744e
                                         -01,
                                                  2.60568042e-01, 1.65533667e-01,
                                         -01,
                                                  -5.94078459e-05, 2.60009384e
                                         -01,
                                                  4.20709666e-01, 3.71031267e-01,
                                                  1.70250288e-01, 4.03052216e
                                         -01,
                                                  4.67312765e-01, 1.98845366e-01,
                                                  1.55005619e-01, 3.41505080e
                                                  2.20024496e-01, 1.40989758e-01,
                                                  1.97796963e-01, 2.57841889e
                                                  2.99122317e-01, 9.24907038e-03,
                                                  1.39162817e-01, -1.13916709e
  In [182]:
               from sklearn import metrics
```

In [182]: from sklearn import metrics print(metrics.r2_score(y_test,y_pred_la)) print(metrics.r2_score(y_train,ridgecv.predict(x_train)))

0.21073458438815873 0.2061567210285108

Decision Tree

27/09/2023, 20:52 21BCE9074-ASG-4a40931beef541416ac26ef01bad0448063cc3f1be85de0f4b04359d46cf5f1c0 - Jupyter Notebook

In [185]: pred=dtc.predict(x_test)

```
In [186]: pred
```

```
0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0,
             0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
        0,
             0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0,
             0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
        0,
             0,
             1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
        0,
             0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0,
             0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
        0,
             0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        1,
             0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
        1,
             0,
             0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
        1,
             0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0,
        0,
             0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0,
        0,
             0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,
        1,
             0,
             0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
        0,
             0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
        0,
             0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
        0,
             0])
```

```
In [187]
<u>y_test</u>
Ο,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
          0,
                0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
          0,
                1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
          0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
          0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
          1,
                1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
          1,
                0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
          0,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
          0,
                1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
          0,
                0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
          0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,
          0,
                0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
          0,
                0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
          1,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
          0,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
          0,
                1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
          0,
                0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
          1,
                0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
          0,
                0])
In [188]:
            #Accuracy score
            from sklearn.metrics import
            accuracy_score,confusion_matrix,classificati
In [189]:
            accuracy score(y test,pred)
                                        0.1007333032310322
Out[189]:
            confusion_matrix(y_test,pred) array([[320, 31],
In [190]:
Out[190]:
                                               [ 52, 18]])
```

```
In [191]:
pd.crosstab(y_test.pred)
```

Out[191]:

col_0 0 1

row_0

o 320 51

1 52 18

```
In [192]: print(classification_report(y_test,pred))
```

	precision	recall	f1-score	support	
0	0.86 0.26	0.86 0.26	0.86	371 70	
accuracy macro avg weighted avg	0.56 0.77	0.56 0.77	0.77 0.56 0.77	441 441 441	

```
In [193]: probability=dtc.predict proba(x test)[:,1]
```

```
In [194]: # roc_curve
    fpr,tpr,threshsholds = roc_curve(y_test,probability)
```

```
In [195]: plt.plot(fpr,tpr)
    plt.xlabel('FPR')
    plt.ylabel('TPR')
    plt.title('ROC
    CURVE') plt.show()
```


Out[124]:

Age Attrition BusinessTravel DailyRat

0	41	Yes	Travel_Rarely	
			,	1102
1	49	No	Travel_Frequently	279
2	37	Yes	Travel_Rarely	1373
3	33	No	Travel_Frequently	1392

1

591

in [191]; pd.crosstab(y_test.pred)

```
4
                       27
                                  No
                                           Travel_Rarely
  rtment Ed Educ
DistanceFro uc
      mHome at
                 io
                  n
Sales
              1 2
                        Lif
earch &
8
Lif opment
earch &
2
2
5pment
earch &
3
Lif opment
earch &
2
 rtment Ed Emp
DistanceFro uc loye
mHome at eCo
                 io
                     un
                  n
              1 2
Sales
earch &
8
1
opment
earch &
2
2
5pment
earch &
3
pment
earch &
2
```