

Actinide Abundances Using New Uranium Lines

Shivani P. Shah^{1,2}, Rana Ezzeddine^{1,2}, Alex Ji^{2,3}, Terese Hansen^{2,4}, Marcio Catelan^{2,5}, Timothy Beers^{2,6}, Rebecca Surman^{2,6}, Erika Holmbeck

University of Florida, 2. JINA-CEE, 3. University of Chicago, 4. Stockholm University, 5. Pontificia Universidad Catolica de Chile,
 University of Notre Dame, 7. Carnegie Observatories

Uranium: An important *r*-process element, but difficult to detect!

- Uranium (U) is the heaviest stable element produced in the universe and belongs to the actinide group of elements.
- ❖ It's abundance is sensitive to the physical conditions of the enrichment event.
- Additionally, U is radioactive offering the opportunity to estimate the age of the enrichment event.
- \bullet However, of the ~100 *r*-process enhanced stars discovered so far, U has been detected in only ~6.
 - The canonical absorption line used is heavily blended.

Sample Stars: J0954, J2038, HE1523, CS31082
Instrument: Keck/HIRES, MIKE/Magellan, UVES/VLT, UVES/VLT
Resolving Power: > 60,000

Signal-to-Noise Ratio: > 150
Radiative transfer code: MOOG (Sneden) (https://github.com/alexji/moog17scat)
Model Atmosphere: 1D ATLAS9 (Castelli and Kurucz)

Linelist: linemake (https://github.com/vmplacco/linemake)

Spectroscopic analysis: Spectroscopy Made Harder (https://github.com/eholmbeck/smhr-rpa)

Mean U abundance using 3859, 4050 and 4090 Å absorption lines comparable to literature abundances from 3859 Å line.

Age estimates of the stars using radioactivity of U and Th. First age-estimates using multiple U lines!