An active learning framework to optimize training of deep models with human-in-the-loop

Training with less labels

Humayun Irshad, Lead Scientist Figure Eight

HOW BIG IS BIG DATA?

2.7 Zetabytes (that's 27 with 21 Os after it) of data exist in the digital universe today.

By 2020 analysts predict the amount of data will be 50x what it is today.

In 2012 90% of all the data that existed in our entire history had been created in the previous 2 years.

Every 2 days we create as much information as we did from the beginning of time up to 2003.

We need to find better and more efficient ways to label and use our data

Supervised Learning

Data

Predictive Modeling

Data is abundant but labeling is expensive figure

Pre-training: cheap large datasets on related domain

figure eight

Smart Labeling

Why Active Learning?

Model Convergence

Cheap Labeling

Model Generalization

Once & for all

Entire Dataset Labeling

Application to Parking Sign Recognition

Active Learning Framework

Can I park here?

Drivers spend a lot of time deciphering parking rules

- Create traffic jams
- Endanger pedestrians safety
- Harm transportation environment
- High rate of parking tickets

Structuring The Data

Online street-level imagery provides opportunities for developing new vision based algorithm

Detect, classify and localize parking meters

Transferring the parking rules from images to maps

Street-level image collection and visualization

Google street-view, Microsoft Streetside,
Mapjack, EveryScape and ...

Google Street-View

- 9 directional camera for 360 degree views at the height of 2.5 - 3 meters
- multiple GPS units for positioning3G/GSM/Wi-Fi antennas for scanning
- 3G/GSM and Wi-Fi hotspots

Developing computer vision models

It is a challenging task!

- **Appearance information**
 - different shapes, color and dimensions
 - contains a lot of text
 - Inter-class and intra-class

- varying illumination
- Pose and viewpoint
- Occlusion

Confusion with man-made object

Making sense of a messy world

Data Collection and Annotation

figure eight

Download and split panoramas into chips

Fine-tune the model & Identify where model is not performing well

Label the images for Parking Sign

Human

Machine

Data Collection

1. Download and Split Panoramas into Chips

Data Collection

2. Launch a Review Job to select Chips

Data Collection

3. Launch a Labeling Job to Box Parking Signs

Figure Eight Image Annotation Toolbox

Figure Eight Human-In-The-Loop AI platform

Public Dataset

San Francisco street-level imagery

- Train Images
 - 0 1559 images
 - 0 2257 parking sign annotations
- Validation Images
 - 0 375 images
 - 0 606 parking sign annotations

www.figure-eight.com/datasets/

Building Deep Models for Parking Sign Recognition

YOLO vs SSD

Active Learning Approach used for Selection of Training Data

You Look Only Once (YOLO)

Used Darknet-19 classification model

- Mostly 3 x 3 filters
- Used batch normalization
- 19 convolutional layers & 5 maxpooling layers
- Initial trained on ImageNet (1000 categories)

Transfer Learning / Fine Tuning

 Remove last layer and replace with 3 x 3 convolutional layer with 1024 filters followed by 1 x 1 convolutional layer with the number of output

Type	Filters	Size/Stride	Output	
Convolutional	32	3×3	224×224	
Maxpool	0.00	$2 \times 2/2$	112 × 112	
Convolutional	64	3×3	112 × 112	
Maxpool	12500	$2 \times 2/2$	56×56	
Convolutional	128	3×3	56×56	
Convolutional	64	1 × 1	56×56	
Convolutional	128	3 × 3	56 × 56	
Maxpool	3333	2 × 2/2	28×28	
Convolutional	256	3 × 3	28×28	
Convolutional	128	1 × 1	28×28	
Convolutional	256	3 × 3	28×28	
Maxpool	0101000	$2 \times 2/2$	14 × 14	
Convolutional	512	3×3	14 × 14	
Convolutional	256	1 × 1	14 × 14	
Convolutional	512	3×3	14 × 14	
Convolutional	256	1 × 1	14 × 14	
Convolutional	512	3×3	14 × 14	
Maxpool	199.60	$2 \times 2/2$	7 × 7	
Convolutional	1024	3×3	7 × 7	
Convolutional	512	1 × 1	7 × 7	
Convolutional	1024	3 × 3	7 × 7	
Convolutional	512	1 × 1	7 × 7	
Convolutional	1024	3 × 3	7 × 7	
Convolutional	1000	1 × 1	7 × 7	
Avgpool Softmax		Global	1000	

Epoch is 160

Single Shot Detector (SSD)

Multi-scale feature maps for detection

Single Shot Detector (SSD)

Apply on top of each conv feature map a set of filters that predict object with different aspect ratios and class categories

Active Learning Framework

Image Selection and Crowding Labeling

Split Images into three subset and select images for labeling and training the model

- High Confidence images which have confidence above 80%
 - O Select 20% images from the lowest confidence score
- Low Confidence images which have confidence below 80%
 - Select 60% images from highest confidence score
- No Prediction images which have no parking sign
 - O Select 20% images randomly

Active Learning Framework with Object Detection

Training Sets

Selection of new images in training set using active learning framework

Dataset	No. of Imag	ges	No. of Annotations		
	New Addition	Total	New Addition	Total	
Test Set	-	375	_	606	
Training Set 1	509	509	704	704	
Training Set 2	98	607	137	841	
Training Set 3	380	987	589	1430	
Training Set 4	550	1537	796	2226	
Training Set 5	530	2067	893	3119	
Training Set 6	400	2467	618	3737	
Training Set 7	433	2900	707	4444	

Results

Parking Sign detection results on test set after each iteration of Active Learning Framework

Active Learning Iterations	TP	FN	FP	Recall	Precision	F-Score	IoU
1	397	209	115	0.66	0.78	0.71	0.47
2	413	193	40	0.68	0.91	0.78	0.48
3	417	189	28	0.69	0.94	0.79	0.52
4	452	154	22	0.75	0.95	0.84	0.59
5	493	113	51	0.81	0.91	0.86	0.63
6	477	129	39	0.79	0.92	0.85	0.63
7	476	130	26	0.79	0.95	0.86	0.63

Active Learning Framework Performance

Decrease in model loss and increase in model accuracy

SSD Predictions

Challenging cases

How well does the model work on new data?

Automated Parking Rules Extraction

"NO PARKING AM o12 NOON TUESDAY STREET CLEANING"

"2 HOUR PARKING TO MON THRU SAT EXCEPT VEHICLES WITH PERMITS AREA PARK AT 90 DEGREES"

Improving text analysis results through crowdsourcing

Detect text bounding boxes

Extracting text for each box

Add missing boxes and edit text by crowdsourcing

Re-train text analysis model using new labeled textboxes

Final Remarks

- Find challenging cases where system fails to accurately detect
- Reduce the redundancy in training data
- Save time and cost for labeling training data
- Improve the model training by better generalization

Thank

figure eight