Algebra 6.173

Michael Vaughan-Lee

July 2013

Algebra 6.173 has presentation

$$\langle a, b, c | ca - bab, cb - \omega baa, pa, pb, pc, class 3 \rangle$$
.

If L is a descendant of 6.173 of order p^7 then the commutator structure of L is the same as that of one of the p+2 algebras with presentations 7.106 and 7.107 from the list of nilpotent Lie algebras of dimension 7 over \mathbb{Z}_p . So we can assume that L has the following commutator relations

$$ca = bab, cb = \omega baa, baab = \lambda baaa, babb = \mu baaa$$

for some parameters λ, μ .

If we let $C = \langle c \rangle + L^2$ then, if a', b', c' are the images of a, b, c under an automorphism of L, we have

$$a' = \alpha a + \beta b \operatorname{mod} C,$$

$$b' = \pm (\omega \beta a + \alpha b) \operatorname{mod} C,$$

$$c' = (\alpha^2 - \omega \beta^2) c \operatorname{mod} L^3$$

for some α, β which are not both zero. It follows that

$$[b', a', a', a'] = \pm (\alpha^2 - \omega \beta^2)(\alpha^2 + 2\alpha\beta\lambda + \beta^2\mu)[b, a, a, a],$$

$$[b', a', a', b'] = (\alpha^2 - \omega \beta^2)(\omega\alpha\beta + \alpha^2\lambda + \omega\beta^2\lambda + \alpha\beta\mu)[b, a, a, a],$$

$$[b', a', b', b'] = \pm (\alpha^2 - \omega\beta^2)(\omega^2\beta^2 + 2\omega\alpha\beta\lambda + \alpha^2\mu)[b, a, a, a].$$

So provided $\alpha^2 + 2\alpha\beta\lambda + \beta^2\mu \neq 0$ the effect of this automorphism is to transform the parameters λ, μ to

$$\frac{\pm(\omega\alpha\beta + \alpha^2\lambda + \omega\beta^2\lambda + \alpha\beta\mu)}{\alpha^2 + 2\alpha\beta\lambda + \beta^2\mu}, \frac{\omega^2\beta^2 + 2\omega\alpha\beta\lambda + \alpha^2\mu}{\alpha^2 + 2\alpha\beta\lambda + \beta^2\mu}.$$

There are p+2 orbits of pairs λ , μ under this action.

We pick a set representative pairs λ, μ for these orbits, and get the following presentations for the descendants of 6.173 of order p^7 :

 $\langle a, b, c | ca-bab, cb-\omega baa, baab-\lambda baaa, babb-\mu baaa, pa-ybaaa, pb-zbaaa, pc-tbaaa, class 4 \rangle$.

For each pair λ, μ we compute the subgroup of the automorphism group which fixes λ, μ , and compute its action on the parameters y, z, \dot{t} . It turns out that we need to treat the pair $\lambda = \mu = 0$ separately from the other pairs.

If $\lambda = \mu = 0$. Then the subgroup of the automorphism group we need to consider maps a, b, c to a', b', c' where

$$a' = \alpha a,$$

$$b' = \pm \alpha b + \varepsilon c,$$

$$c' = \alpha^2 c,$$

with $b'a'a'a' = \pm \alpha^4 baaa$.

In all other cases we can assume that if $pc \neq 0$ then pa = pb = 0. A MAGMA program to compute a set of representatives for the parameters λ, μ, y, z, t is given in notes 6.173.m.