# Álgebra Tensorial: Ejercicios de Clase

# Semana 1.

**Ejercicio 1.1.** Demuestre que existen tensores en  $\mathbb{C}^2 \otimes \mathbb{C}^2$  que no son de rango 1, y caracterice los tensores totalmente descomponibles en  $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$  (es decir, encuentre las ecuaciones que satisfacen los coeficientes de los vectores de rango 1).

**Ejercicio 1.2.** Teniendo en cuenta que para X, Y y Z variables aleatorias discretas, con  $X \in \{1, \dots a\}$ ,  $Y \in \{1, \dots b\}$  y  $Z \in \{1, \dots c\}$ , se puede construir un tensor de formato  $a \times b \times c$ , definido en una base, por los coeficientes

$$T_{ijk} = \mathbb{P}\{X = i, Y = j, Z = k\}$$

para  $1 \le i \le a, 1 \le j \le b$  y  $1 \le k \le c$ . ¿Es verdad que el tensor  $T_{ijk}$  es de rango 1 si y sólo si las variables son independientes?

**Ejercicio 1.3.** Sean U y V espacios vectoriales complejos de dimensión finita. Caracterice los tensores totalmente descomponibles en  $U^* \otimes V$  (es decir, encuentre las ecuaciones que satisfacen los vectores de rango 1).

Ejercicio 1.4. Demuestre que para dos espacios vectoriales complejos U y V, el isomorfismo canónico

$$\operatorname{Hom}(U,V) \xrightarrow{\varphi^{-1}} U^* \otimes V$$

manda las transformaciones lineales con rango  $\leq k$  (i.e los  $T \in \text{Hom}(U, V)$  con  $\dim(\text{im}(T)) \leq k$ ) a los tensores que son suma k o menos tensores descomponibles.

**Ejercicio 1.5.** Demuestre que para todo entero k, el conjunto  $\{T \in U^* \otimes V : R(T) \leq k\}$  es un conjunto cerrado con la norma euclidea.

**Ejercicio 1.6.** Demuestre que para U, V y W espacios vectoriales complejos de dimensión finita, existen los siguientes isomorfismos canónicos:

- (a)  $U \otimes (V \otimes W) \cong (U \otimes V) \otimes W$
- (b)  $U \otimes v \cong V \otimes U$
- (c)  $(U \otimes V)^* \cong U^* \otimes V^* \otimes W$

### Semana 2.

Ejercicio 2.1. Sean V y U espacios vectoriales de dimensión finita. Demuestre que el isomorfismo canónico  $U^* \otimes V \stackrel{\varphi}{\cong} \operatorname{Hom}(U,V)$  da una correspondencia biunívoca entre el conjunto de tensores con rango menor a k,  $\{T \in U^* \otimes V : R(T) \leq k\} \subseteq U^* \otimes V$ , con el conjunto de transformaciones lineales  $T \in \operatorname{Hom}(U,v)$  tales que el determinante de todos sus menores de tamaño  $(k+1) \times (k+1)$  es igual a 0. Es decir:

 $\left\{\,T\in V^{\,*}\otimes U:R(T)\leqslant k\,\right\} \stackrel{\varphi}{\longleftrightarrow} \left\{\,T\in \mathrm{Hom}(V,U): \text{ las menores } (k+1)\times (k+1) \text{ de } T \text{ se desvanecen}\,\right\}.$ 

Ejercicio 2.2. Demostrar el teorema de Strassen

$$\begin{split} \hat{M}_{2,2,2} = & (\alpha_1^1 + \alpha_2^2) \otimes (\beta_1^1 + \beta_2^2) \otimes (c_1^1 + c_2^2) + \\ & (\alpha_1^2 + \alpha_2^2) \otimes \qquad \beta_1^1 \quad \otimes (c_1^2 - c_2^2) + \\ & \alpha_1^1 \quad \otimes (\beta_2^1 - \beta_2^2) \otimes (c_2^1 + c_2^2) + \\ & \alpha_2^2 \quad \otimes (\beta_1^2 - \beta_1^1) \otimes (c_1^2 + c_1^1) + \\ & (\alpha_1^1 + \alpha_2^1) \otimes \quad \beta_2^2 \quad \otimes (c_2^1 - c_1^1) + \\ & (\alpha_1^2 - \alpha_1^1) \otimes (\beta_1^1 + \beta_2^1) \otimes \quad c_2^2 \quad + \\ & (\alpha_2^1 - \alpha_2^2) \otimes (\beta_1^2 + \beta_2^2) \otimes \quad c_1^1 \end{split}$$

Y use el teorema para calcular el producto de  $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix}$ .

# Semana 3.

Ejercicio 3.1. ¿Cómo reconocer una suma directa? Sea  $(U, \rho_U)$  una representación de G y sean  $V_1, V_2 \subseteq U$  subespacios invariantes, de dimensiones  $d_1$  y  $d_2$  respectivamente.

1. Verifique que

$$V_i, \rho_i : G \longrightarrow GL(V_i)$$
  
 $g \longmapsto \rho_U(g)_{\upharpoonright V_i}$ 

es una representación de  $G[(V_1, \rho_1), (V_2, \rho_2)].$ 

- 2.  $(U, \rho_U) \cong (V_1, \rho_1) \bigoplus (V_2, \rho_2)$  si y solo si: Existe una base  $B = \{\overrightarrow{a_1}, \dots, \overrightarrow{a_{d_1}}, \overrightarrow{b_1}, \dots, \overrightarrow{b_{d_2}}\}$  de U tal que
  - a)  $B_1 := \{\overrightarrow{a_1}, \dots, \overrightarrow{a_{d_1}}\}$  es una base de  $V_1$ .
  - b)  $B_2 := \{\overrightarrow{b_1}, \dots, \overrightarrow{b_{d_2}}\}$  es una base de  $V_2$ .
  - c)  $\forall g \in G$ , se tiene la siguiente igualdad:

$$[\rho_{V_1}(g)]_B = \begin{pmatrix} [\rho_{V_1}(g)]_{B_1} & 0\\ 0 & [\rho_{V_2}(g)]_{B_2} \end{pmatrix}$$

Ejercicio 3.2. Sea  $S_3 \subset U = \langle e_1, e_2, e_3 \rangle$ 

$$\rho: S_3 \longrightarrow GL(U)$$
$$\sigma \longmapsto (e_i \mapsto e_{\sigma(i)})$$

- 1. Demuestre que  $V_1 = \langle e_1 + e_2 + e_3 \rangle$  y  $V_2 = \{a_1e_1 + a_2e_2 + a_3e_3 : a_1 + a_2 + a_3 = 0\}$  son subespacios invariantes.
- 2. Demuestre que  $U \cong V_1 \bigoplus V_2$ .
- 3. Demuestre que  $V_2$  no tiene subespacios invariantes propios no triviales, es decir es una representación irreducible.

**Ejercicio 3.3.** Fije bases  $B_A = \{\overrightarrow{a_1}, \dots, \overrightarrow{a_{d_A}}\}$  del espacio vectorial  $A, B_B = \{\overrightarrow{b_1}, \dots, \overrightarrow{b_{d_B}}\}$  del espacio vectorial  $B, B_C = \langle \overrightarrow{a_i} \otimes \overrightarrow{b_j} : i \in \{1, ..., d_A\}, j \in \{1, ..., d_B\} \rangle$  de  $A \otimes B$ . ¿Cómo es  $[T_{(g_A, g_B)}]_{B_C}$  en términos de  $[g_A]_{B_A}$  y  $[g_B]_{B_B}$ ?

#### Ejercicio 3.4.

**Lema 3.1.** (Sym<sup>k</sup>(V),  $\mu$ ) satisface la siguiente propiedad universal:



Esto es, para todo espacio vectorial W y para todo T k-lineal y simétrica, existe una única  $\varphi$  lineal tal que  $\varphi \circ \mu = T$ . Es decir,  $\varphi(v_1 \cdot v_2 \cdot \ldots \cdot v_k) = T(v_1, \ldots, v_k)$ . Más aún, esta propiedad universal determina  $(\operatorname{Sym}^k(V), \mu)$  de manera única módulo isomorfismo.

- 1. Demuestre el lema.
- 2. Para  $V = \langle e_1, e_2 \rangle$ , calcule Sym<sup>3</sup>(V).

# Semana 4.

**Ejercicio 4.1.** Dado V un espacio vectorial de dimensión n, muestre que si  $F \in Sym^k(V)$  entonces, el rango de Waring de F,  $R_w(F)$ , cumple que  $R_w(F) \leq {k+n-1 \choose k}$ .

Ejercicio 4.2. (Ejercicio 2.5.2.1 de [1]) Sean A, B, C espacios vectoriales de dimensión, a, b, c respectivamente, y sea  $M_{a,b,c}$  es el tensor de multiplicación de matrices correspondiente, muestre que, visto como una forma trilineal en bases dadas,  $M_{a,b,c}$  manda una tripla de matrices (X,Y,Z) en tr(XYZ), y es por lo tanto invariante bajo cambios de base en A, B y C. Muestre además que la familia de algoritmos de nueve parámetros para  $M_{2,2,2}$  es la acción de  $SL(A) \times SL(B) \times SL(C)$  sobre la expresión del tensor. (La acción de escalares multiplicados por la identidad no afectara expresión de manera significativa pues identificamos  $\lambda v \otimes w = v \otimes (\lambda w)$  para un escalar  $\lambda$ ).

Ejercicio 4.3. (Ejercicio 2.6.6.3 de [1]) Dado  $F \in Sym^k(V)$ , sea  $F_{s,k-s} \in Sym^s(V) \otimes Sym^{k-s}(V)$  su polarización parcial se define por : si  $F = v_1^k + \ldots + v_n^k$  entonces  $F_{s,k-s} = v_1^s \otimes v_1^{k-s} + \ldots + v_n^s \otimes v_n^{k-s}$ . Sea  $\underline{R}_w(F)$  el border rank simétrico de F. Muestre que si  $\underline{R}_w(F) \leqslant k$ , entonces  $rango(F_{s,k-s})$  como aplicación lineal de  $Sym^s(V)^*$  en  $Sym^{k-s}(V)$  cumple que  $rango(F_{s,k-s}) \leqslant k$  para todo s.

Ejercicio 4.4. Pruebe el siguiente lema.

Lema 4.1. Existe una única función lineal

$$\pi_{sgn}: V^{\otimes k} \longrightarrow V^{\otimes k} \tag{1}$$

tal que  $\pi_{sgn}(v_1 \otimes ... \otimes v_k) = \frac{1}{k!} \sum_{\sigma \in S_k} sgn(\sigma)[v_{\sigma(1)} \otimes ... \otimes v_{\sigma(k)}]$ . Además, se cumple que

- 1. Si  $T \in V \otimes k$  es alternante, entonces  $\pi_{sqn}(T) = T$ .
- 2.  $Im(\pi_{sgn}) = \{T \in V^{\otimes k} : \sigma(T) = sgn(\sigma)T\}.$

**Ejercicio 4.5.** Sea  $\bigwedge$  la transformación canónica,  $\bigwedge: V^k \longrightarrow \bigwedge^k(V)$ . Muestre el siguiente lema.

#### Lema 4.2.

- 1.  $\bigwedge$  es k-lineal y alternante.
- 2. Dada  $T:V^k\longrightarrow W$  multilineal y alternante, existe una única transformación lineal  $\varphi: \bigwedge^k(V) \longrightarrow W$  que conmuta el siguiente diagrama



## Ejercicio 4.6.

(a) Demuestre el siguiente lema

**Lema 4.3.**  $\bigwedge^k(V)$  tiene una base dada por  $\{e_{i_1} \wedge ... \wedge e_{i_k} : 1 \leq i_1 < i_2 < .. < i_k \leq n\}$  con n = dim(V), y por lo tanto  $dim(\bigwedge^k(V)) = \binom{n}{k}$ .

- (b) Escriba  $v_1 \wedge ... \wedge v_k$  en la base descrita en el lema, es decir,  $v_1 \wedge ... \wedge v_k = \sum_{\substack{I \subseteq [n] \\ |I| = k}} C_I e_{i_1} \wedge ... e_{i_k}$
- (c) Muestre que  $v_1 \wedge ... \wedge v_k = 0$  si y solo si  $\{v_1, ... v_k\}$  es un conjunto linealmente dependiente en V. **Ejercicio 4.7.** (Ejercicio 2.6.10 de [1])
  - 1. Muestre que el subespacio  $\bigwedge^k(V) \subset V^{\otimes k}$  es invariante bajo la acción de GL(V).
  - 2. Dado v un espacio vectorial de dimensión n, como consecuencia del Lema 4.3, muestre que  $\bigwedge^n(V) \cong \mathbb{C}, \bigwedge^l(V) = 0$  para l > n y Sym<sup>3</sup>  $V \otimes \bigwedge^3 V \neq V^{\otimes 3}$  para n > 1.
  - 3. Se<br/>a $\alpha \in V^*$  y  $T \in V^{\otimes k},$  denotamos por  $\alpha^{\rfloor}T$ a la contracción de<br/>  $\alpha$  con T, definida en descomponibles por

$$V^* \times V^{\otimes k} \longrightarrow V^{\otimes k-1}$$

$$\alpha \times (v_1 \otimes \ldots \otimes v_k) \mapsto \alpha^{\rfloor} (v_1 \otimes \ldots \otimes v_k) = \alpha(v_1) v_2 \otimes \ldots \otimes v_k$$

Calcule explicitamente  $\alpha^{\downarrow}(v_1v_2...v_k)$  y muestre que es, en efecto, un elemento de Sym<sup>k-1</sup> V y de manera similar para  $\alpha^{\downarrow}(v_1 \wedge v_2 \wedge ... \wedge v_k)$ .

- 4. Muestre que la composición  $\alpha^{J} \circ \alpha^{J} : \bigwedge^{k} V \longrightarrow \bigwedge^{k-2} V$  es el mapa 0.
- 5. Muestre que si  $V=A\otimes B$  entonces existe una descomposición inducida en suma directa

$$\bigwedge\nolimits^k V = \bigwedge\nolimits^k A \oplus (\bigwedge\nolimits^{k-1} A \otimes \bigwedge\nolimits^1 B) \oplus \ldots \oplus (\bigwedge\nolimits^1 A \otimes \bigwedge\nolimits^{k-1} B) \oplus \bigwedge\nolimits^k B$$

de  $\bigwedge^k V$ como  $GL(A) \otimes GL(B)$ -módulo.

6. Muestre que un subespacio  $A \subset V$  determina una filtración inducida bien definida de  $\bigwedge^k V$  dada por  $\bigwedge^k A \subset \bigwedge^{k-1} A \wedge \bigwedge^1 V \subset \bigwedge^{k-2} A \wedge \bigwedge^2 V \subset ... \subset \bigwedge^k V$ . Si  $P_A = \{g \in GL(V) : g \cdot v \in A \mid v \in A\}$  entonces cada filtrando es un  $P_A$ -submódulo.

- 7. Muestre que si V está equipado con una forma volumétrica, es decir, un elemento  $\phi \in \bigwedge^n V$  no cero, entonces se tiene una identificación  $\bigwedge^k V \cong \bigwedge^{n-k} V^*$ .
- 8. Muestre que  $V^* \cong \bigwedge^{n-1} V \otimes \bigwedge^n V^*$  como GL(V)—módulos.
- 9. Muestre que las álgebras tensorial, simétrica y exterior son asociativas.

**Ejercicio 4.8.** (Ejercicio 2.6.12 de [1]). Sea  $f: V \longrightarrow V$ , con  $n = \dim(V)$ ,  $f^{\wedge n}: \bigwedge^n V \longrightarrow \bigwedge^n V$  se llama el determinante de f

- 1. Verifique que si f tiene rango n-1 entonces  $f^{\wedge n-1}$  tiene rango 1, y si  $rango(f) \leq n-2$  entonces  $f^{\wedge n-1}$  es cero.
- 2. Más generalmente, muestre que si f tiene rango r entonces  $f^{s}$  tiene rango  $\binom{r}{s}$ .
- 3. Muestre que los autovalores de  $f^{\wedge k}$  son los productos de k de los autovalores de f
- 4. Dado  $f:V\longrightarrow V$ , con  $n=\dim(V),\ f^{n}:\bigwedge^nV\longrightarrow \bigwedge^nV$  es una transformación lineal de un espacio de dimensión 1 en sí mismo y por lo tanto es una multiplicación por un escalar, muestre que si escogemos una base para representar f con una matriz, entonces el determinante de dicha matriz es el escalar que representa a  $f^{n}$ .
- 5. Dado  $f: V \longrightarrow V$  asuma que V admite una base de autovectores de f, muestre que  $\bigwedge^k V$  admite una base de autovectores de  $f^{\wedge k}$  y encuentre los autovalores y autovectores de  $f^{\wedge k}$  en términos de los de f. En particular muestre que el coeficiente  $t^{n-k}$  de det(f-tI), el polinomio característico de f, es  $(-1)^k tr(f^{\wedge k})$ , donde  $tr(f^{\wedge k})$  es la suma de los autovalores de  $f^{\wedge k}$ .
- 6. Sea  $f: V \longrightarrow W$  invertible con dim(V) = dim(W) = n, verifique que  $f^{\wedge n-1} = f^{-1} \otimes det(f)$ .
- 7. Fije  $det \in \bigwedge^n V^*$ . Sea

$$SL(V) = \{g \in GL(V) : g \cdot det = det\}$$

Muestre que SL(V) es un grupo, este es llamado el grupo lineal especial. Muestre que si uno fija una base  $\alpha^1,...,\alpha^n$  de  $V^*$  tal que  $det=\alpha^1\wedge...\wedge\alpha^n$  y usa esta base y su dual para escribir los  $g:V\longrightarrow V$  como matrices  $n\times n$  entonces SL(V) corresponde con las matrices de determinante 1.

- 8. Dados E, F espacios vectoriales n-dimensionales, fije  $\Omega \in \bigwedge^n E^* \otimes \bigwedge^n F$ , dado que  $dim(\bigwedge^n E^* \otimes \bigwedge^n F) = 1$ ,  $\Omega$  es único salvo un factor de escala. Dado  $f: V \longrightarrow W$  es posible escribir  $f^{\wedge n} = c_f \Omega$  para algún escalar  $c_f$ . Muestre que si uno escoge bases  $e_1, ... e_n$  para  $E \setminus f_1, ... f_n$  para F tal que  $\Omega = e_1 \wedge ... \wedge e_n \otimes f_1 \wedge ... \wedge f_n$  y expresa f como una matriz  $M_f$  respecto a estas bases, entonces  $c_f = det(M_f)$ .
- 9. Muestre que  $\Omega$  determina un vector  $\Omega^* \in \bigwedge^n F^* \otimes \bigwedge^n E$  dado por  $<\Omega, \Omega^*>=1$ . Recuerde que  $f:V\longrightarrow W$  determina un mapa lineal  $f^T:W^*\longrightarrow V^*$ . Use  $\Omega^*$  para definir  $det_{f^T}$ , muestre que  $det_f=det_{f^T}$ .

**Ejercicio 4.9.** Muestres que  $\bigwedge^k (T:U\longrightarrow V)=\bigwedge^k T:\bigwedge^k U\longrightarrow \bigwedge^k V$  es un funtor de la categoría de espacios vectoriales en si misma.

**Ejercicio 4.10.** Sean A, B, C espacios vercotiales con bases  $a_1, a_1; b_1, b_2yc_1, c_2$  respectivamente, y sea

$$S = a_1 \otimes b_1 \otimes c_1 + a_2 \otimes b_1 \otimes c_1 + a_1 \otimes b_2 \otimes c_1 + a_1 \otimes b_1 \otimes c_2$$

- (a) Muestre que  $R(S) \ge 3$ .
- (b) Verifique que ocurre en  $V_1 \otimes V_2 \otimes ... \otimes V_k$  para  $k \geq 3$  con  $dim(V_i) > 1$ .

**Ejercicio 4.11.** Verifique que  $\{T \in V_1 \otimes ... \otimes V_k : \underline{R}(T) \leq s\}$  es un conjunto cerrado en  $V_1 \otimes ... \otimes V_k$ .

# Referencias

| [1] | Joseph M Landsberg. | Tensors: | geometry and applications. | Representation theo | ry, 381(402):3, 2012. |
|-----|---------------------|----------|----------------------------|---------------------|-----------------------|
|     |                     |          |                            |                     |                       |