PoET: Polarimeters for Energetic Transients

Mark McConnell (UNH)
Scott Barthelmy (GSFC)
Joe Hill (USRA)

POET Science Team

Lorella Angelini	Taka Sakamoto
Matthew Baring	Bing Zhang
Peter Bloser	Kunihoto Ioka
Brian Dennis	Takashi Nakamura
Gordon Emslie	Yamazaki Ryo
Alice Harding	Kenji Toma
Dieter Hartmann	Zuefeng Wu
Phil Kaaret	Jochen Greiner
Robin Morris	Wojtek Hajdas
Jim Ryan	Gottfried Kanbach
Don Kniffen	Nicholas Produit
Anita Krishnamurthi	Toru Tamagawa

QuickTime™ and a TIFF (Uncompressed) decompresse are peeded to see this picture QuickTime™ and a FF (Uncompressed) decompressor QuickTime™ and a TIFF (Uncompressed) decompresso are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTimeTM and a TIFF (Uncompressed) decompressor are needed to see this picture.

Overview

- **GRB** Polarimetry Science
- POET mission
 - **GRAPE**
 - **EP**
- **POET Performance**
- What Now?

Quest for the holy grail

X-ray polarimetry will be a valuable diagnostic of high magnetic field geometry and strong gravity.....

Weisskopf et al.

☞ P=19.2% ±1.0%

@ 0 156°

Other Measurements

- Intercosmos (Tindo)
 - Solar Flares
- Rhessi (Coburn & Boggs)
 - **GRB 021206**
- BATSE Albedo Polarimetry System (Willis)
 - ☞ GRB 930131 P>35%
 - GRB 960924 P>50%
- INTEGRAL (2 groups)
 - 2σ result
 - 98±33%

Current Status

- Recent instruments have not been optimised for polarimetry...
 - ...or never launched
- Gazillion papers describing the importance
- Need a way to break the cycle
 - new techniques have lowered the technical barriers

Observed Prompt GRB Properties

- High variability: ~ms
- Prompt Spectrum:
- Huge release of energy: ~10⁵¹ erg
- Relativistic process to avoid pairproduction opacity paradigm
- Achromatic steepening implies GRB jet

Standard Fireball Model

- Explains the late afterglow observations well
- Debates for prompt emission on-going
 - Internal shock model solves the rapid variability problem
 - Energy has to be extracted from KE of shells
 - Low efficiency
 - Requires additional mechanisms

Synchrotron Emission

Cannon-ball model

Cannon balls ejected from central engine
Inverse Compton scattering of ambient photons
Unclear how the cannon balls would survive accⁿ
over large dynamic range and Lorentz factors

GRB Unknowns

- Unknown Fire Ball content
 - Kinetic energy or magnetically dominated
- Unknown location of 'where' the prompt emission is produced
 - Internal Shocks favored
 - External Shocks
- Unknown dissipation mechanism
 - Shocks
 - Magnetic reconnection
- Unknown radiation mechanism
 - Synchrotron
 - Comptonization
 - **Etc**

Motivation for POET

- What is the magnetic structure of the jets?
- What is the geometric structure of GRB jets?
- What is the prompt radiation mechanism of GRBs?

Physical Model

Geometric model

Waxman, Nature, 2003

Polarization Predictions

- The theories on the GRB production mechanism can be constrained by different degrees of linear polarization (P):
 - → P>~80% Generally difficult to achieve within synchrotron emission models. Could be Compton scattering jet viewed from outside the edge of the jet
 - 20%<P<60% is predicted if synchrotron emission in an ordered B-field or as a result of viewing the burst from near the edge of the jet</p>
 - Low degrees of polarization can be expected can be expected from hydrodynamical models in which the random magnetic fields are generated in the shocks with an on-beam viewing geometry

POET - Proposed SMEX Mission

POET - larimeters for nergetic ransients

Institutional Responsibilities
University of New Hampshire
PI : Mark McConnell
GRAPE Instrument
Universities Space Research Association
Deputy PI : Joanne Hill
LEP Instrument
Goddard Space Flight Center
Mission Scientist: Scott Barthelmy
Mission Operations Center (MOC)
POET Data Center (PDC)
Data Archive (HEASARC)
Charles S. Draper Laboratory
Project Management
Mission and Systems Engineering
Safety and Mission Assurance
ATK Space, Inc
Spacecraft Bus
Observatory Integration and Test

Inetitutional Pagnancibilities

POET Science Goals

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

POET GRB Science

POET will answer questions about GRBs that can only be answered by X-ray and Gamma-ray polarisation measurements

- What is the composition of GRBs?
- What is the prompt radiation mechanism?
- What is the small-scale geometry of the prompt emission region?

POET Characteristics

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

POET Characteristics

POET Instrument Suite

LEP Parameters			
Polarimetry	2-15 keV		
Detectors	Ne:CO ₂ :CH ₃ NO ₂ Gas (8)		
Spectroscopy	2-15 keV		
Field-of-View	\pm 44 $^{\circ}$ (non-imaging)		

GRAPE Parameters		
Polarimetry	60-500 keV	
Detectors	BGO/plastic scintillator (62)	
Spectroscopy	15 keV - 1 MeV	
Detectors	NaI(TI) scintillator (2)	
Field-of-View	\pm 60 $^{\circ}$ (non-imaging)	

X-ray and Gamma-ray Polarimeters

- Capitalize on: correlation between the incident photon electric field vector and the photoelectron emission direction or scattered photon direction
- Fit function to the angular distribution

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

Modulation Factor, μ:

$$\mu = \frac{N_{\text{max}} - N_{\text{min}}}{N_{\text{max}} + N_{\text{min}}} = \frac{B}{2A + B}$$

GRAPE Prototype

Based on use of flat panel

2 Mine 2008

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

2008 Nanjing GRB

Grape Performance

Legere et al., Proc. SPIE, 5898, 413 (2005)

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. $\begin{array}{c} {\sf QuickTime^{TM}} \ {\sf and} \ {\sf a} \\ {\sf TIFF} \ ({\sf LZW}) \ {\sf decompressor} \\ {\sf are} \ {\sf needed} \ {\sf to} \ {\sf see} \ {\sf this} \ {\sf picture}. \end{array}$

$$\mu = 33\%@69 \text{keV}$$

$$\mu = 44\% @129 \text{keV}$$

Wide FoV and offaxis uniformity

GRAPE Engineering Balloon Flight

Balloon
flight of an
engineering
prototype on
June 21,
2007.

Measured background with (preliminary) simulated background.

POET-GRAPE

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

The TPC Polarimeter

- GEM with strip readout
 - Track images formed by time-projection by binning arrival times
- Resolution is (largely) independent of the active depth
 - Max depth determined only by degree of X-ray beam collimation

Prototype TPC Polarimeter Results

Strip number

→ Time

Polarization Phase	Measured Parameters		
	Modulation (%) Phase (degrees)		χ _ν ²
unpolarized	0.49 ± 0.54	44.6 ± 28.7	1.2
0°	45.0 ± 1.1	0.3 ± 0.6	1.1
45°	45.3 ± 1.1	45.2 ± 0.6	1.0
90°	44.7 ± 1.1	-89.9 ± 0.6	1.4

- Uniform response
- Modulation consistent with gas pixel detectors
- Unit QE possible

Wide FoV Prototype

Parameter	Value
Active Element	Ne: CO ₂ : CH ₃ NO ₂
Active Volume	24 x 24 x 24 cm ³
Pressure	780 Torr
Energy Range	2-15 keV
Energy Resolution	38% at 6keV
μ @ 6 keV	45%
Field of View	±44°
Mass	28.5 kg
Power (peak/ave)	33/31 W
Data Volume	248 MB/day
Temperature Range	$25 \pm 1^{\circ}$ C / -10 to 50 $^{\circ}$ C
Peak Sensitivity	~3.5 keV

27th June 2008

2008 Nan

Mission Concept

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Mission Parameters		
Launch Date	May, 2012	
Launch Vehicle	Standard SMEX	
Orbit	600 km, 28.5° incl.	
Mission Lifetime	2+ years	
Pointing Mode	Zenith-pointed	
Snin Rate	15 _{rpm}	

TIFF (Uncompressed) decompre are needed to see this picture

POET Spacecraft

IFF (Uncompressed) decompressor are needed to see this picture.

POET Mission Operations

POET Performance

TIFF (Uncompressed) decompressor are needed to see this picture.

TIFF (Uncompressed) decompressor are needed to see this picture.

# GRBs S/N>5		# GRBs Ep	
LEP	99%	<10keV	20%
GRAPE	80%	<20 keV	50%
LEP+GRAPE	78%	0.2-1 MeV	~100%

27th June 2008

Distinguish GRB Models

What is the GRB radiation mechanism?

GRAPE and LEP will independently measure Π above and below E_{peak}

LI	ΕP	GR	APE
GRBs	MDP	GRBs	MDP
8	10%	6	8%
40	25%	40	20%
*72	50%	62	51%

POET was not selected for Phase A so now what?....

- Improve readiness of GRAPE
 - Balloon flight
- Improve readiness of LEP
 - MidSTAR-2 GRBP (~2011)
 - GEMS in Phase-A (Gravity and Extreme Magnetism SMEX)
- Look for new opportunities
 - e.g. Space Station

The GRBP: A payload for MidStar 2

Area: 144 cm²

Depth: 5 cm

FoV: 1 steradian

Gas: Ne:CO₂:CS₂

Pressure: 1 atm

MDP averaged from 2 - 10 keV

MidSTAR-2

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. USNA Project
High risk Low-cost
Make a scientific measurement
Several GRBs in 2 yr lifetime
Low cost proof-of-concept
Launch ~2011

Prototype Detector Design

GRBP Prototype

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Prototype chamber

HV Power Supplies

27th June 2008

2008 Nanjing

(mBAT - Mini BAT 1/8 scale)

mBAT Parameters		
Energy Range	15-150 keV	
FoV	~2 str partial coding	
Spatial Resolution	~3 arcmin	
Spectral Resolution	~7 keV	
Position Notice	~4 arcmin in 20 sec	

Solar Flare Science

QuickTime™ and a TIFF (Uncompressed) decompresso are needed to see this picture.

- How does the Sun release such large quantities of energy in a Solar Flare?
- How does the Sun accelerate electrons and lons with such high efficiency?
- POET will determine the angular beaming of electrons
- Polarimetry measures the electron beaming.
- Models predict 20-30% polarization.

Energy Band (keV)	23 July 2002 (X4.8) ∆t = 60 s	M5 flare Δt = 300 s
50-500	2.3%	27%
50-100	3.6%	43%
100-200	3.4%	40%
200-500	4.9%	62%

GRAPE will measure polarization direction and magnitude of Solar Flares to answer these questions

zooo manjing okb conference

Pulsar Science

X-ray polarimetry is the only way to distinguish between the two leading models of accretion flow onto highly

magnetized neutron stars.

Intensity (top), polarization position angle (middle) and degree of polarization (bottom) vs. phase predicted by different models for the Crab pulsar. All reproduce the intensity profile. Only polarization measurements can uniquely differentiate between models.

	LEP (2-10 keV)	
	MDP in MDP in 10 ksec 1ksec	
CRAB	4 %	8%
1/10 CRAB	8%	15%

onference