Eichfeldtheorie 1

Tim Jaschik

May 13, 2025

Abstract. – ...

Contents

1 Faserbündel

1.1 Definition

Definition EFT1-1-02-1 (Lokale triviale Faserung mit typischen Fasern auf Mfk). Seien E, M und F differenzierbare Mannigfaltikeiten und $\pi: E \to M$ eine differenzierbare Abbildung. Dann heißt (E, π, M) eine lokal triviale Faserung mit typischer Faser F, wenn es zu jedem $x \in M$ eine offene Umgebung U gibt und einen Diffeomorphismus $\varphi: \pi^{-1}(U) := E \mid U \to U \times F$, sodass

$$\begin{array}{ccc} E \mid U & \xrightarrow{\varphi} & U \times F \\ \pi \searrow & \swarrow pr_1 \\ & U \end{array}$$

kommutiert. Man spricht auch von der lokal trivialen Faserung $E \to M$ oder E.

Definition EFT1-1-02-10 (Bündelatlas für lokale triviale Faserungen).

Definition EFT1-1-02-11 (Faserkarte am Punkt x im Basisraum).

Definition EFT1-1-02-12 (Bündelkartenwechsel zwischen Bündelkarten).

Definition EFT1-1-02-13 (G-Faserbündel mit Liegruppen als Strukturgruppen).

Definition EFT1-1-02-14 (Prinzipalbüdel / Hauptfaserbündel).

Definition EFT1-1-02-16 ((Differenzierbare) (Lokale) Schnitte in lokal trivialen Faserungen).

Definition EFT1-1-02-17 (Raum der differenzierbaren lokalen Schnitte).

Definition EFT1-1-02-2 (Vektorraumbündel).

Definition EFT1-1-02-37 (Bündelmetrik auf Totalraum ist ein Schnitt in $\operatorname{Sym}^2(E)$, sodassgpw.positivdefinit).

Definition EFT1-1-02-40 (Vektorraumbündel vom endlichen Typ).

Definition EFT1-1-02-43 (Bündelisomorphismus).

Definition EFT1-1-02-44 (Trivialisierung von Totalraum).

Definition EFT1-1-02-45 (Vektorraumbündelabbildung über diff. Abbildungen zwischen Vektorraumbündeln).

Definition EFT1-1-02-46 (Vektorraumbündelisomorphismus).

Definition EFT1-1-02-48 (Induzierte Bündel durch Abbildungen).

Definition EFT1-1-02-54 (Induzierte Bündel bei Einbettungen von UnterMfk).

Definition EFT1-1-02-55 (Untervektorraumbündel).

Definition EFT1-1-02-63 (Reduktionen von Faserbündeln mit Strukturgruppe bzgl abgeschlossener Untergruppe).

Definition EFT1-1-02-7 (Lokale triviale Faserung als Tripel von Totalraum, Basisraum, Bündelprojektion mit typischen Fasern).

Definition EFT1-1-02-8 (Reale Fasern in lokal trivialen Faserungen).

Definition EFT1-1-02-9 (Bündelkarten für offene Teilmengen der Basis).

1.2 Example

Example EFT1-1-02-18 (Raum der diff. lokalen Schnitte in Kreuzprodukten).

Example EFT1-1-02-19 (Raum der diff. Lokalen Schnitte im Tangentialbündel).

Example EFT1-1-02-20 (Jedes Vektorraumbündel hat einen lokalen Schnitt x auf $O_x in E_x$).

Example EFT1-1-02-21 (Im Tangentialbündel existiert kein diff. Schnitt, der nirgends verschwindet).

Example EFT1-1-02-22 (S1 auf S1, z auf z^2 gibteskeinenSchnitt).

Example EFT1-1-02-29 (Bündelstruktur von Tangentialbündel als Ergebnis der Konstruktion von Präbündeln).

Example EFT1-1-02-3 (Projektion von Kreuzprodukt ist eine lokal triviale Faserung).

Example EFT1-1-02-30 (Präbündel zum GL-Prinzipalbündel).

Example EFT1-1-02-31 (Präbündel zum O(n)-Prinzipalbündel für Riemannische Mfk).

Example EFT1-1-02-33 (Hom-Raum für Homomorphismen zwischen Vektorraumbündeln sind Vektorraumbündel).

Example EFT1-1-02-34 (Mult).

Example EFT1-1-02-35 (Sym).

Example EFT1-1-02-36 (Alt).

Example EFT1-1-02-38 (Riemannische Metrik als Bündelmetrik im Tangentialbündel).

Example EFT1-1-02-39 (Gamma $(Alt^k(TM))$).

Example EFT1-1-02-4 (Tangentialbündel mit differenzierbarer Struktur ist Vektorraumbündel).

Example EFT1-1-02-41 (Tangentialbündel von S^n istvonendlichem Typ).

Example EFT1-1-02-47 (Differential von glatten Abbildungen zw. Tangentialbündel von Mfk ist eine Vektorraumbündelabbildung über glatte Abbildung f).

Example EFT1-1-02-5 (Vektorraumbündel zu S1).

Example EFT1-1-02-50 (Menge der Vektorfelder längs Kurven).

Example EFT1-1-02-51 (Vektorraumbündel bzgl Grassmann-Mfk).

Example EFT1-1-02-6 (Lokale triviale Faserung über S1).

Example EFT1-1-02-64 (Charakterisierung von orientierten Mfk).

1.3 Proposition

Proposition EFT1-1-02-28 (Für Präbündel (E,pi,M) existiert auf E genau einem Topologie und differenzierbare Struktur, sodass (E,pi,M) ein Faserbündel mit Strukturgruppe G wird und Präbündelkarten Bündelkarten werden).

Proposition EFT1-1-02-49 (Schnitte in induzierten Bündeln längs f).

Proposition EFT1-1-02-61 (Rang-Satz für Vektorraumhomomorphismen: Konstanter Rang impliziert ker und im sind Untervektorraumbündel).

Proposition EFT1-1-02-65 (Ehresmannscher Faserungssatz: Totalräume mit eigentlich regulären Abbildungen in zusammenhängenden Basisraum implizieren eine lokale triviale Faserung).

1.4 Corollar

Corollar EFT1-1-02-32 (Direkte Summe von Vektorraumbündeln ergeben Prävektorraumbündel).

Corollar EFT1-1-02-53 (Homotope Abbildungen in Faserbündel induzieren isomorphe Bündel).

Corollar EFT1-1-02-62 (Charakterisierung von Vektorraumbündeln von endlichem Typ).

1.5 Remark

Remark EFT1-1-02-15 (Beziehung zwischen Vektorraumbündeln und GL-Faserbündeln).

Remark EFT1-1-02-23 (Raum der diff Schnitte in Vektorraumbündeln ist der Vektorraum von glatten Abbildungen auf M).

Remark EFT1-1-02-24 (Für Bündelkarten in Vektorraumbündeln existieren k lokale Schnitte, die an jeder Stelle eine Basis der realen Faser bilden).

Remark EFT1-1-02-25 (k lokale Schnitte, die bei Punkt eine Basis der Faser bilden, induzieren eine Bündelkarte).

Remark EFT1-1-02-26 (Bündelkarten in G-Prinzipalbündeln induzieren lokale Schnitte).

Remark EFT1-1-02-27 (Präbündel mit Strukturgruppe G zu Liegruppe G, Mfk, (disj) Vereinigung von punktweise Mfk und Projektion).

Remark EFT1-1-02-52 (Bündelabbildungen bzgl induzierte Bündel).

Remark EFT1-1-02-56 (Untervektorraumbündel sind Vektorraumbündel).

Remark EFT1-1-02-57 (Quotienten-Räume bzgl Untervektorraumbündel sind Vektorraumbündel).

 ${\bf Remark\ EFT1\text{-}1\text{-}02\text{-}58\ (Untervektorraumbündel\ bzgl\ B\"{u}ndelmetrik)}.$

Remark EFT1-1-02-59 (Tangentialbündel von UnterMfk sind Untervektorraumbündel).

 ${\bf Remark\ EFT1\text{-}1\text{-}02\text{-}60\ (Normalenb "undel von UnterMfk)}.$