Cota inferior

Professora:

Fátima L. S. Nunes

· Algoritmos de ordenação que já conhecemos:

- · Algoritmos de ordenação que já conhecemos:
 - Insertion Sort (Ordenação por Inserção)
 - Selection Sort (Ordenação por Seleção)
 - Bubble Sort (Ordenação pelo método da Bolha)
 - MergeSort (Ordenação por intercalação)
 - QuickSort (Ordenação rápida)
 - HeapSort (Ordenação por monte)

- · Algoritmos de ordenação que já conhecemos:
 - Insertion Sort (Ordenação por Inserção)
 - Selection Sort (Ordenação por Seleção)
 - Bubble Sort (Ordenação pelo método da Bolha)
 - MergeSort (Ordenação por intercalação)
 - QuickSort (Ordenação rápida)
 - HeapSort (Ordenação por monte)

Quais suas complexidades?

- Algoritmos de ordenação que já conhecemos:
 - Insertion Sort (Ordenação por Inserção) O(n²)
 - Selection Sort (Ordenação por Seleção) O(n²)
 - Bubble Sort (Ordenação pelo método da Bolha) O(n²)
 - MergeSort (Ordenação por intercalação) O(n lg n)
 - QuickSort (Ordenação rápida) O(n lg n) no caso médio
 - HeapSort (Ordenação por monte) O(n lg n)

Quais suas complexidades?

- Algoritmos compartilham uma propriedade interessante:
 - sequência ordenada que determinam se baseia somente em comparações entre os elementos de entrada.
 - por isso, são chamados e ordenação por comparação.
 - veremos que qualquer ordenação por comparação deve efetuar Ω(n lg n) comparações no pior caso para ordenar n elementos.
 - O que significa isso?

- Veremos que ualquer ordenação por comparação deve efetuar Ω(n lg n) comparações no pior caso para ordenar *n* elementos.
 - O que significa isso?
 - o *MergeSort* e o *HeapSort* são algoritmos assintoticamente ótimos: não existe nenhuma ordenação por comparação que seja mais rápida por mais de um fator constante.

Limites inferiores para ordenação

- Ordenação por comparação:
 - •usamos apenas comparações entre elementos para obter informações de ordem sobre uma sequência de entrada $\langle a_1, a_2, ..., a_n \rangle$
 - •dados dois elementos de entrada a_i e a_j , usamos um testes para determinar sua ordem relativa no conjunto de dados:

$$a_i < a_j, a_i \le a_j, a_i = a_j, a_i \ge a_j, a_i > a_j.$$

Limites inferiores para ordenação

- Ordenação por comparação:
 - •vamos supor que todos os elementos são distintos \Rightarrow eliminam-se comparações $a_i = a_i$
 - as demais comparações são equivalentes porque produzem a mesma informação: ordem relativa de a_i e a_j
 - Então, supomos que todas as comparações são do tipo a_i ≤ a_i

Modelo de árvore de decisão

- Ordenações por comparação podem ser vistas como árvores de decisão:
 - árvore binária cheia que representa as comparações executadas pelo algoritmo sobre uma entrada de dados de tamanho n;
 - outros aspectos do algoritmo são ignorados.

• cada nó da árvore é anotado por i:j para i,j no intervalo $1 \le i, j \le n$;

Modelo de árvore de decisão

 Ordenações por comparação podem ser vistas como árvores de decisão:

• cada folha é anotada por uma permutação $< \pi(1), \pi(2), ...,$ π(3)>: decisões após as comparações executadas pelo algoritmo.

execução do algoritmo: traçar um caminho deste a raiz até

um nó folha

Modelo de árvore de decisão

- Ao final do algoritmo por comparação, sempre se atingirá uma folha:
- Condições necessárias para algoritmo estar correto:
 - cada uma das n! permutações sobre n elementos deve aparecer como uma das folhas da árvore de decisão;

cada uma das folhas deve ser acessível por um caminho a

partir da raiz.

Limite inferior para o pior caso

- Dada uma árvore de decisão, qual seria o tamanho do pior caso para um algoritmo de ordenação por comparação?
 - tamanho do caminho mais longo deste a raiz até qualquer uma de suas folhas.
 - Então: número de comparações do pior caso = altura da árvore.

 Limite inferior sobre a altura de todas as árvores de decisão em que cada permutação aparece como uma folha acessível é um limite inferior sobre o tempo de execução do algoritmo

2:3

1:3

<3,1,2

1:3

<2,3,1

<3,2,2

Limite inferior para o pior caso

Teorema:

Qualquer algoritmo de ordenação por comparação exige $\Omega(n \mid g \mid n)$ comparações no pior caso.

Prova:

- a partir do exposto anteriormente, basta determinar a altura de uma árvore de decisão em que cada permutação aparece como uma folha acessível.
- considerando uma árvore de altura b com I folhas acessíveis:
 - cada uma das n! permutações da entrada aparece como alguma folha ⇒ temos n! ≤ I;
 - árvore binária de altura h tem no máximo 2^h folhas;
 - então: n! ≤ I ≤ 2^h
 - $h \ge lg(n!) = \Omega(n lg n)$

Limite inferior para o pior caso

Corolário:

O HeapSort e o MergeSort são ordenações por comparação assintoticamente ótimas

Prova:

 Os tempos O(n lg n) limites superiores para o HeapSort e o MergeSort correspondem ao limite inferior Ω(n lg n) do pior caso do teorema anterior.

Referências

 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest & Clifford Stein. Algoritmos - Tradução da 2a. Edição Americana. Editora Campus, 2002.

Cota inferior

Professora:

Fátima L. S. Nunes

