Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук

Рабочий протокол и отчёт по лабораторной работе № 7

Свиридов Фёдор, Александр Слободнюк, Владимир Попов

«Проверка закона Бойля-Мариотта»

Цель работы.

Исследовать изотермический процесс

Исходные данные.

Пусть S - площадь цилиндра, а l - высота, на которой находится поршень. Применяя модель идеального газа для воздуха, получаем:

$$PV = \frac{m}{\mu}RT$$

$$P = \frac{\rho V_0}{\mu}RT \cdot \frac{1}{V}$$

$$P = \frac{\rho S l_0}{\mu}RT \cdot \frac{1}{Sl}$$

$$P = \frac{\rho l_0}{\mu}RT \cdot \frac{1}{l}$$

При $l_0=35$ (см) у нас $P=P_0$ (P_0 - атмосферное давление), поэтому в итоге:

$$\Delta P(l) = A \cdot \frac{1}{l} - P_0$$

, где ΔP - давление над атмосферным; $A=\frac{\rho l_0}{\mu}RT.$

Таким образом, ожидаемый коэффициент A для $T=28\ ^{\circ}C$ равен

$$A = \frac{1, 2 \cdot 35 \cdot 8, 31 \cdot 302}{29 \cdot 10^{-3} \cdot 10^{3}} \approx 3635 \ (\kappa \Pi a \cdot cm)$$

Результаты прямых измерений.

$T = 28 ^{\circ}C$		$T = 33 ^{\circ}C$		$T = 39 ^{\circ}C$		
l, cm	ΔP , к Πa	l, cm	ΔP , к Πa	_	l, см	ΔP , к Πa
35	0	35	0	_	35	0
34	2,2	34	2,4		34	1,3
33	4,7	33	5,3		33	4,0
32	7,9	32	8,7		32	7,0
31	11,5	31	12,4		31	11,5
30	15,4	30	16,6		30	15,4
29	20,5	29	21,3		29	19,8
28	26,0	28	27,5		28	25,8
27	32,0	27	33,2		27	34,0
	•	26	41,0		26	43,0

Обработка результатов.

Изотермы при разных температурах

Выводы и анализ результатов.

Мы измерили