INTEGRALI IMPROPRI

Esercizi svolti

1. Usando la definizione, calcolare i seguenti integrali impropri:

(a)
$$\int_{1}^{+\infty} \frac{x}{\sqrt{(x^2+5)^3}} dx$$
;

(b)
$$\int_0^{+\infty} \frac{\arctan x}{1+x^2} dx ;$$

(c)
$$\int_0^{+\infty} \left(x^3 \left(8 + x^4 \right)^{-5/3} + 2xe^{-x} \right) dx$$
;

(d)
$$\int_{1/2}^{+\infty} \frac{1}{\sqrt{2x}(2x+1)} dx$$
;

(e)
$$\int_0^{+\infty} \frac{9x+8}{(x+2)(x^2+1)} dx$$
.

2. Verificare la convergenza del seguente integrale improprio e calcolarne il valore:

$$\int_{-1}^{1} \frac{1}{\sqrt{|x|}(x-4)} \, \mathrm{d}x .$$

3. Calcolare $\int_2^{+\infty} \frac{x}{(\sqrt{x^2+3})^n} dx$ per il più piccolo valore di $n \in \mathbb{N}$ per cui l'integrale converge.

4. (a) Determinare tutti i valori di $a, b \in \mathbb{R}$ per i quali $\int_0^{+\infty} \frac{1}{x^a (4+9x)^{b+1}} dx$ converge.

(b) Calcolare
$$\int_0^{+\infty} \frac{1}{\sqrt{x(4+9x)}} dx$$
.

5. Discutere la convergenza dei seguenti integrali impropri.

(a)
$$\int_0^{+\infty} \frac{|x^2 - 2x - 3| - x^2 - 2x - 3}{x^{\alpha}} dx$$

(b)
$$\int_{4}^{5} \frac{1-3x}{\sqrt{x}-2} \, \mathrm{d}x$$

6. Determinare per quali $\alpha \in \mathbb{R}$ converge il seguente integrale improprio e calcolarlo per $\alpha = 0$:

$$\int_2^3 \frac{x[\sin(x-2)]^\alpha}{\sqrt{x^2-4}} \, \mathrm{d}x$$

7. (a) Dire per quali valori di $a \in \mathbb{R}$ converge $\int_a^{+\infty} \frac{1}{(x-2)\sqrt{|x-3|}} \, dx .$

(b) Calcolare l'integrale precedente per a = 6.

8. Studiare la convergenza assoluta del seguente integrale improprio :

$$\int_0^{+\infty} \frac{\sin x}{x^2 + x + 1} \, \mathrm{d}x$$

9. Discutere la convergenza dei seguenti integrali impropri:

(a)
$$\int_0^1 \frac{\log(1+\sqrt{x})}{\sin x} \, \mathrm{d}x$$

(b)
$$\int_{3}^{+\infty} \frac{x}{\sqrt{x^2 - 3}\sqrt{2x + 3}} dx$$

10. Data la funzione $f(x) = \frac{1-\cos x}{x^2 \log(1+\sqrt[3]{x})}$, studiarne il comportamento nell'origine e determinarne la parte principale.

Studiare quindi la convergenza dell' integrale improprio :

$$\int_0^{+\infty} f(x) \, \mathrm{d}x .$$

CORREZIONE

1. (a) Per definizione di integrale improprio:

$$\int_{1}^{+\infty} \frac{x}{\sqrt{(x^2+5)^3}} \, dx = \lim_{t \to +\infty} \int_{1}^{t} \frac{x}{\sqrt{(x^2+5)^3}} \, dx$$

Svolgiamo l'integrale indefinito:

$$\int \frac{x}{\sqrt{(x^2+5)^3}} dx = \frac{1}{2} \cdot \int 2x \cdot (x^2+5)^{-\frac{3}{2}} dx =$$

$$= \frac{1}{2} \cdot \frac{(x^2+5)^{-\frac{1}{2}}}{-\frac{1}{2}} + c = -\frac{1}{\sqrt{x^2+5}} + c$$

Dunque:

$$\int_{1}^{+\infty} \frac{x}{\sqrt{(x^2+5)^3}} \, \mathrm{d}x = \lim_{t \to +\infty} \left[-\frac{1}{\sqrt{x^2+5}} \right]_{1}^{t} = \lim_{t \to +\infty} \left(-\frac{1}{\sqrt{t^2+5}} + \frac{1}{\sqrt{6}} \right) = \frac{1}{\sqrt{6}}$$

(b)
$$\int \frac{\arctan x}{1+x^2} dx = \int (\arctan x)(\arctan x)' dx = \frac{1}{2}\arctan^2 x + c$$

Pertanto:

$$\int_0^{+\infty} \frac{\arctan x}{1+x^2} \, dx = \lim_{t \to +\infty} \int_0^t \frac{\arctan x}{1+x^2} \, dx = \frac{1}{2} \lim_{t \to +\infty} \left(\arctan^2 t - 0\right) = \frac{\pi^2}{8}$$

(c) Calcoliamo l'integrale indefinito sfruttandone la linearità e la formula di integrazione per parti:

$$\int \left(x^3(8+x^4)^{-\frac{5}{3}} + 2xe^{-x}\right) dx = \int x^3(8+x^4)^{-\frac{5}{3}} dx + 2\int xe^{-x} dx =$$

$$= \frac{1}{4} \int 4x^3(8+x^4)^{-\frac{5}{3}} dx + 2\int xe^{-x} dx =$$

$$= \frac{1}{4} \frac{(8+x^4)^{-\frac{2}{3}}}{-\frac{2}{3}} + 2\left(-x \cdot e^{-x} - \int (-e^{-x}) dx\right) = -\frac{3}{8} \frac{1}{\sqrt[3]{(8+x^4)^2}} - 2x \cdot e^{-x} - 2e^{-x} + c$$

Calcoliamo ora l'integrale improprio:

$$\int_0^{+\infty} \left(x^3 (8 + x^4)^{-\frac{5}{3}} + 2xe^{-x} \right) dx = \lim_{t \to +\infty} \int_0^t \left(x^3 (8 + x^4)^{-\frac{5}{3}} + 2xe^{-x} \right) dx = \lim_{t \to +\infty} \left[-\frac{3}{8} \frac{1}{\sqrt[3]{(8 + t^4)^2}} - 2 \cdot e^{-t} (t + 1) + \frac{3}{8} \cdot \frac{1}{4} + 2 \right] = \frac{3}{32} + 2 = \frac{67}{32}.$$

(Si ricordi che $\lim_{t\to +\infty}e^{-t}(t+1)=\lim_{t\to +\infty}\frac{t+1}{e^t}=0$, in quanto il denominatore ha ordine di infinito superiore al numeratore).

(d) Per risolvere l'integrale indefinito, effettuiamo la sostituzione $\sqrt{2x}=t$, da cui $2x=t^2$, e infine dx=t dt.

Dunque:

$$\int \frac{1}{\sqrt{2x}(2x+1)} \, \mathrm{d}x \ = \int \frac{1}{t(t^2+1)} \cdot t \, \mathrm{d}t \ = \int \frac{1}{t^2+1} \, \mathrm{d}t \ = \arctan t + c = \arctan \sqrt{2x} + c$$

Passiamo ora al calcolo dell' integrale improprio:

$$\int_{1/2}^{+\infty} \frac{1}{\sqrt{2x}(2x+1)} dx = \lim_{b \to +\infty} \int_{1/2}^{b} \frac{1}{\sqrt{2x}(2x+1)} dx =$$

$$= \lim_{b \to +\infty} \left[\arctan \sqrt{2x} \right]_{\frac{1}{2}}^{b} = \lim_{b \to +\infty} \left[\arctan \sqrt{2b} - \arctan 1 \right] = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

(e) Per calcolare l'integrale indefinito, dobbiamo risolvere un integrale di funzione razionale, il cui denominatore è già scomposto nel prodotto di fattori irriducibili.

Ricorriamo alla decomposizione in fratti semplici.

$$\frac{9x+8}{(x+2)(x^2+1)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+1} =$$

$$= \frac{A(x^2+1) + (Bx+C)(x+2)}{(x+2)(x^2+1)} = \frac{(A+B)x^2 + (2B+C)x + A + 2C}{(x+2)(x^2+1)}$$

Uguagliando i polinomi a numeratore della prima e dell'ultima frazione, si ottiene il sistema:

$$\begin{cases} A+B &= 0 \\ 2B+C &= 9 \\ A+2C &= 8 \end{cases} \iff \begin{cases} A &= -2 \\ B &= 2 \\ C &= 5 \end{cases}$$

Pertanto:

$$\int \frac{9x+8}{(x+2)(x^2+1)} dx = \int \left(\frac{-2}{x+2} + \frac{2x+5}{x^2+1}\right) dx =$$

$$= \int \frac{-2}{x+2} dx + \int \frac{2x+5}{x^2+1} dx = \int \frac{-2}{x+2} dx + \int \frac{2x}{x^2+1} dx + \int \frac{5}{x^2+1} dx =$$

$$= -2\log|x+2| + \log(x^2+1) + 5\arctan x + c = \log(x^2+1) - \log(x+2)^2 + 5\arctan x + c$$

Per il calcolo dell' integrale improprio :

$$\int_0^{+\infty} \frac{9x+8}{(x+2)(x^2+1)} dx = \lim_{t \to +\infty} \int_0^t \frac{9x+8}{(x+2)(x^2+1)} dx =$$

$$= \lim_{t \to +\infty} \left[\log \frac{x^2+1}{(x+2)^2} + 5 \arctan x \right]_0^t =$$

$$= \lim_{t \to +\infty} \left[\log \frac{t^2+1}{(t+2)^2} + 5 \arctan t - \log \frac{1}{4} \right] =$$

$$= \log 1 + 5\frac{\pi}{2} + \log 4 = \log 4 + \frac{5\pi}{2}.$$

2.
$$\int_{-1}^{1} \frac{1}{\sqrt{|x|}(x-4)} dx = \int_{-1}^{0} \frac{1}{\sqrt{-x}(x-4)} dx + \int_{0}^{1} \frac{1}{\sqrt{x}(x-4)} dx$$

I due integrali impropri convergono entrambi, perché, per $x \to 0$,

$$\frac{1}{\sqrt{|x|}(x-4)} \sim \frac{-1}{4\sqrt{|x|}}$$

e i due integrali impropri $\int_{-1}^{0} \frac{1}{\sqrt{-x}} dx$ e $\int_{0}^{1} \frac{1}{\sqrt{x}} dx$ sono convergenti.

Calcoliamo il primo integrale indefinito, con la sostituzione $\sqrt{-x}=t$, da cui $x=-t^2$, dx=-2t dt:

$$\int \frac{1}{\sqrt{-x}(x-4)} \, \mathrm{d}x = \int \frac{1}{t(-t^2-4)} (-2t) \, \mathrm{d}t = 2 \int \frac{1}{t^2+4} \, \mathrm{d}t = \arctan \frac{t}{2} + c = \arctan \frac{\sqrt{-x}}{2} + c$$

Calcoliamo il secondo integrale indefinito, con la sostituzione $\sqrt{x}=t$:

$$\int \frac{1}{\sqrt{x}(x-4)} \, \mathrm{d}x = \int \frac{1}{t(t^2-4)} 2t \, \mathrm{d}t = 2 \int \frac{1}{(t-2)(t+2)} \, \mathrm{d}t = \frac{1}{2} \int \left(\frac{1}{t-2} - \frac{1}{t+2}\right) \, \mathrm{d}t = \frac{1}{2} \log \left|\frac{t-2}{t+2}\right| + c = \frac{1}{2} \log \left|\frac{\sqrt{x}-2}{\sqrt{x}+2}\right| + c$$

Pertanto:

$$\int_{-1}^{1} \frac{1}{\sqrt{|x|}(x-4)} dx = \lim_{a \to 0^{-}} \int_{-1}^{a} \frac{1}{\sqrt{-x}(x-4)} dx + \lim_{b \to 0^{+}} \int_{b}^{1} \frac{1}{\sqrt{x}(x-4)} dx =$$

$$= \lim_{a \to 0^{-}} \left(\arctan \frac{\sqrt{-a}}{2} - \arctan \frac{1}{2} \right) + \frac{1}{2} \lim_{b \to 0^{+}} \left(\log \frac{1}{3} - \log \left| \frac{\sqrt{b} - 2}{\sqrt{b} + 2} \right| \right) = -\frac{1}{2} \log 3 - \arctan \frac{1}{2}.$$

3. Per $x \to +\infty$ si ha

$$\frac{x}{(\sqrt{x^2+3})^n} \sim \frac{1}{x^{n-1}}$$

quindi l'integrale converge se n-1>1, cioè se n>2. Pertanto il più piccolo valore di $n\in\mathbb{N}$ per cui l'integrale converge è n=3. In tal caso:

$$\int \frac{x}{(\sqrt{x^2+3})^3} \, \mathrm{d}x = \frac{1}{2} \int 2x(x^2+3)^{-3/2} \, \mathrm{d}x = -\frac{1}{\sqrt{x^2+3}} + c.$$

Dunque:

$$\int_{2}^{+\infty} \frac{x}{\sqrt{(x^2+3)^3}} \, \mathrm{d}x \ = \lim_{b \to +\infty} \int_{2}^{b} \frac{x}{\sqrt{(x^2+3)^3}} \, \mathrm{d}x \ = -\lim_{b \to +\infty} \left(\frac{1}{\sqrt{b^2+3}} - \frac{1}{\sqrt{7}} \right) = \frac{1}{\sqrt{7}}.$$

4. (a) Per $x \to 0^+$ si ha

$$\frac{1}{x^a(4+9x)^{b+1}} \sim \frac{1}{4^{b+1}x^a}$$

quindi l'integrale converge in un intorno destro di x = 0 se a < 1.

Per $x \to +\infty$ si ha

$$\frac{1}{x^a(4+9x)^{b+1}} \sim \frac{1}{9^{b+1}x^{a+b+1}}$$

quindi l'integrale converge se a + b + 1 > 1, cioè se b > -a.

Globalmente l'integrale converge per a < 1 e b > -a.

(b)
$$\int_0^{+\infty} \frac{1}{\sqrt{x}(4+9x)} \, dx = \int_0^{+\infty} \frac{1}{t(4+9t^2)} \, 2t \, dt = 2 \lim_{b \to +\infty} \int_0^b \frac{1}{4+9t^2} \, dt = 2 \lim_{b \to +\infty} \left[\frac{1}{6} \arctan \frac{3t}{2} \right]_0^b = \frac{1}{3} \lim_{b \to +\infty} \arctan \frac{3b}{2} = \frac{\pi}{6}.$$

5. (a) $\int_0^{+\infty} \frac{|x^2 - 2x - 3| - x^2 - 2x - 3}{x^{\alpha}} dx = \int_0^3 \left(\frac{-2}{x^{\alpha - 2}}\right) dx + \int_3^{+\infty} \left(\frac{-4x - 6}{x^{\alpha}}\right) dx$.

L'integrale $\int_0^3 \left(\frac{-2}{x^{\alpha-2}}\right) dx$ converge per $\alpha < 3$ mentre l'integrale $\int_3^{+\infty} \left(\frac{-4x-6}{x^{\alpha}}\right) dx$ converge per $\alpha > 2$.

Pertanto l'integrale $\int_0^{+\infty} \frac{|x^2 - 2x - 3| - x^2 - 2x - 3}{x^{\alpha}} dx$ converge per $\alpha \in]2,3[$.

(b) $\int_{4}^{5} \frac{1-3x}{\sqrt{x}-2} dx = \int_{4}^{5} \frac{(1-3x)(\sqrt{x}+2)}{x-4} dx$.

Per $x \to 4$, si ha: $\frac{(1-3x)(\sqrt{x}+2)}{x-4} \sim \frac{-44}{x-4}$. Poiché l'integrale improprio $\int_4^5 \frac{1}{x-4} \, \mathrm{d}x$ diverge, anche l'integrale di partenza diverge.

6. Per $x \to 2^+$ si ha $\frac{x[\sin{(x-2)}]^{\alpha}}{\sqrt{x^2-4}} \sim \frac{2(x-2)^{\frac{\alpha}{2}}}{2(x-2)^{\frac{1}{2}}} = \frac{1}{(x-2)^{\frac{1}{2}-\alpha}}$, quindi l'integrale $\int_2^3 \frac{x[\sin{(x-2)}]^{\alpha}}{\sqrt{x^2-4}} dx$ converge se $\alpha > -\frac{1}{2}$.

Per $\alpha = 0$ dobbiamo calcolare:

$$\int_{2}^{3} \frac{x}{\sqrt{x^{2} - 4}} dx = \lim_{t \to 2^{+}} \int_{t}^{3} \frac{x}{\sqrt{x^{2} - 4}} dx = \lim_{t \to 2^{+}} \left[\sqrt{x^{2} - 4} \right]_{t}^{3} = \lim_{t \to 2^{+}} (\sqrt{5} - \sqrt{t^{2} - 4}) = \sqrt{5}.$$

- 7. (a) Se $a \leq 2$, l'integrale diverge, data la presenza del fattore $\frac{1}{x-2}$. Se a>2, l'integrale converge perché il fattore $\frac{1}{\sqrt{|x-3|}}$ non dà problemi di integrazione impropria (al finito), mentre all'infinito la frazione integranda si comporta come $\frac{1}{x^{3/2}}$ e dunque converge.
 - (b) Per a=6 , mediante la sostituzione $\sqrt{x-3}=t$ l'integrale diventa:

$$\int_{6}^{+\infty} \frac{1}{(x-2)\sqrt{x-3}} \, \mathrm{d}x \ = \int_{\sqrt{3}}^{+\infty} \frac{2t}{(1+t^2)t} \, \mathrm{d}t \ = 2 \int_{\sqrt{3}}^{+\infty} \frac{1}{1+t^2} \, \mathrm{d}t \ = 2 \lim_{b \to +\infty} \int_{\sqrt{3}}^{b} \frac{1}{1+t^2} \, \mathrm{d}t \ = 2 \lim_{b \to +\infty} (\arctan b - \arctan \sqrt{3}) = \frac{\pi}{3}.$$

8. Dobbiamo studiare la convergenza dell'integrale improprio:

$$\int_0^{+\infty} \frac{|\sin x|}{x^2 + x + 1} \, \mathrm{d}x$$

Utilizziamo il criterio del confronto. Osserviamo che $\frac{|\sin x|}{x^2+x+1} \leq \frac{1}{x^2+x+1}$, e che l'integrale improprio

$$\int_0^{+\infty} \frac{1}{x^2 + x + 1} \, \mathrm{d}x \ = \int_0^1 \frac{1}{x^2 + x + 1} \, \mathrm{d}x \ + \int_1^{+\infty} \frac{1}{x^2 + x + 1} \, \mathrm{d}x$$

è convergente. Infatti , il primo addendo non è un integrale improprio; quanto al secondo addendo, per $x \to +\infty$, $\frac{1}{x^2+x+1} \sim \frac{1}{x^2}$ e l'integrale improprio $\int_1^{+\infty} \frac{1}{x^2} \, \mathrm{d}x$ converge.

Pertanto il nostro integrale $\int_0^{+\infty} \frac{\sin x}{x^2 + x + 1} dx$ converge assolutamente.

9. (a) Nell'intervallo [0,1] la funzione integranda $f(x) = \frac{\log(1+\sqrt{x})}{\sin x}$ presenta solo la singolarità in x=0. Per capire il comportamento di f(x) in x=0, utilizziamo le seguenti equivalenze, valide per $x\to 0^+$:

$$\log(1+\sqrt{x}) \sim \sqrt{x} \ \wedge \sin x \sim x \implies \frac{\log(1+\sqrt{x})}{\sin x} \sim \frac{1}{\sqrt{x}}.$$

Poiché l'integrale improprio $\int_0^1 \frac{1}{\sqrt{x}} dx$ converge, per il criterio del confronto asintotico converge anche il nostro integrale $\int_0^1 \frac{\log(1+\sqrt{x})}{\sin x} dx$ (si osservi che, per $x \in [0,1]$, $\sin x \ge 0$ e dunque $f(x) \ge 0$ e si può applicare il criterio del confronto asintotico).

(b) Nell'intervallo $[3, +\infty[$ la funzione integranda $f(x) = \frac{x}{\sqrt{x^2 - 3} \sqrt{2x + 3}}$ non presenta singolarità, ed è positiva. Pertanto conta solo il suo comportamento per $x \to +\infty$. Ora, per $x \to +\infty$:

$$\frac{x}{\sqrt{x^2 - 3}\sqrt{2x + 3}} \sim \frac{x}{x\sqrt{2x}} = \frac{1}{\sqrt{2x}}$$

Poiché l'integrale improprio $\int_3^{+\infty} \frac{1}{\sqrt{x}} dx$ diverge, anche l'integrale di partenza $\int_3^{+\infty} \frac{x}{\sqrt{x^2 - 3}\sqrt{2x + 2}} dx$ risulta divergente.

10. Per $x \to 0$, si ha:

$$1 - \cos x \sim \frac{x^2}{2} \ \land \ \log(1 + \sqrt[3]{x}) \sim \sqrt[3]{x} \implies \frac{1 - \cos x}{x^2 \log(1 + \sqrt[3]{x})} \sim \frac{x^2/2}{x^2 \sqrt[3]{x}} = \frac{1}{2\sqrt[3]{x}}.$$

Dunque, per $x \to 0$, f(x) ha ordine di infinito $\frac{1}{3}$, e la sua parte principale è la funzione $g(x) = \frac{1}{2\sqrt[3]{x}}$.

Prima di studiare la convergenza dell'integrale improprio, osserviamo che , per $x \in \mathbb{R}_+$, $f(x) \geq 0$. Inoltre:

$$\int_0^{+\infty} \frac{1 - \cos x}{x^2 \log(1 + \sqrt[3]{x})} \, \mathrm{d}x \ = \int_0^{\beta} \frac{1 - \cos x}{x^2 \log(1 + \sqrt[3]{x})} \, \mathrm{d}x \ + \int_{\beta}^{+\infty} \frac{1 - \cos x}{x^2 \log(1 + \sqrt[3]{x})} \, \mathrm{d}x \ , \ \forall \beta \in \mathbb{R}_+ \ .$$

In base allo studio fatto in precedenza, possiamo affermare che il primo addendo converge, perché, per $x\to 0$, $f(x)\sim g(x)$ e l'integrale improprio $\int_0^\beta g(x)\;\mathrm{d}x\;$ è convergente.

Per studiare la convergenza del secondo addendo $\int_{\beta}^{+\infty} \frac{1-\cos x}{x^2 \log(1+\sqrt[3]{x})} \, dx$, utilizziamo il criterio del confronto :

$$\frac{1 - \cos x}{x^2 \log(1 + \sqrt[3]{x})} \leq \frac{2}{x^2 \log(1 + \sqrt[3]{x})} \leq \frac{2}{x^2} \ ,$$

per β abbastanza grande (deve essere $\beta > (e-1)^3$). Poiché l'integrale improprio $\int_{\beta}^{+\infty} \frac{1}{x^2} dx$ converge, anche il secondo addendo converge.

Pertanto l'integrale di partenza $\int_0^{+\infty} \frac{1-\cos x}{x^2 \log(1+\sqrt[3]{x})} dx$ è convergente.