Subject: CS336, Lecture 2, Pytorch, Resource Accounting

Date: from July 26, 2025 to August 12, 2025

Contents

CS336, Lecture 2, Pytorch, Resource Accounting

Youtube: Stanford CS336 Language Modeling from Scratch, Lecture 2: Pytorch, Resource Accounting.

Introduction

本节主要讲解内存计算问题,首先介绍了 float 32, float 16 等数据类型. 随后介绍 PyTorch 中的 tensor 这一重要的数据类型. 最后举例介绍了在模型训练中各个部分所需要的计算量,并介绍了浮点运算利用率这一指标以衡量硬件计算效率. 重点如下:

- 1. 在 PyTorch 中 tensor 是对已分配内存的指针,很多操作无需新占用内存
- 2. 大型矩阵乘法在深度学习所需计算量最大
- 3. 浮点运算利用率 MFU = actual FLOP/s promised FLOP/s
- 4. 前向传播所需计算量: $2 \times (\text{\# tokens}) \times (\text{\# parameters})$
- 5. 反向传播所需计算量: $4 \times (\# \text{ tokens}) \times (\# \text{ parameters})$

Memory Accounting

Basic Knowledge - Floating-point

Bit. 二进制位(binary digit),是信息的最小单位.

Byte. 字节(Byte, B), 1 Byte = 8 Bit. 1 KB = 1024 byte, 1 MB = 1024 KB, 1 GB = 1024 MB

float 32. 也被称为 fp32 或 single precision 或 full precision^a. 一个 float 32 表示的数需要 4 bytes = 32 bits. 第1位表示正负(0 正 1 负),中间8位表示指数,后23位储存有效数位. 如图1所示,符号位为 0,表示"+",指数从右往左计算,为 $2^2+2^3+2^4+2^5+2^6=124$,需要减去偏移量 127 得 -3,尾数部分根据归一化法实际为 $1+2^{-2}=1.25$,故最终得到表示的 10 进制数为 $(+1)\times 1.25\times 2^{-3}=0.15625$.

Figure 1: Float 32

float 16. 也被称为 fp16 或 half precision,需要 2 bytes. 但是其动态范围(dynamic range)小,容易造成上溢(overflow)和下溢 b (underflow),因此不适合表示过大和过小的数.

Figure 2: Float 16

bfloat16. 即 brain floating point,由 Google Brain 于 2018 年提出,其使用与 fp16 相同的内存但有 fp32 相同的动态范围. 由于在深度学习中更关注动态范围,因此在前馈计算中常用. 但事实表明存储优化器状态和参数仍需要 fp32.

Figure 3: bfloat 16

fp8. 由 Nvidia 于 2022 年提出,其可以动态调配精度和动态范围侧重,在 H100 中支持.

mixed precision training. 在深度学习训练中,对于 pipline 中各个部分(如前向传播、反向传播、优化器等)所需要的最低精度可能不同,例如使用 float 32 用于计算 attention,使用 bfloat 16 计算前向传播.

 a full precision 这一说法有时会产生误解,在科学计算中 fp32 精度并不算高,但在深度学习中已然足够. b 例如 1e-8 使用 fp16 表示是 0.

Compute Accounting

Tensor

Tensor 是深度学习中重要的数据类型,在 PyTorch 中 tensor 实际上是已对分配内存的指针(pointer),在内存中看起来实际上像一个长数组,例如图4 所示的 4×4 tensor 按照 stride [1] 方向展开就像图5 所示的长数组.

Figure 4: 4×4 An tensor example, where tensor.stride[0] = 4

Figure 5: Tensor in stride[1] direction

在索引 tensor 中元素 (x,y)时,只需要在图5 所示的长数组中找到第 N 个元素即可,索引计算方式为a:

$$N = x \times \text{stride}[1] + y \times \text{stride}[0] \tag{1}$$

在 PyTorch 中,很多对于 tensor 的操作实际上只是在创建新的视图(view),而无需重新分配内存,这被称为切片(slice),详见 Slicing, Indexing, and Masking.

Note 1. 大部分对 tensor 的操作默认其是连续的(contiguous),即按照图5 的方式按顺序连续索引,但例如转置(tensor.t()/tensor.transpose(1, 0))和原 tensor 共享内存,导致在图5 中"跳跃"进行遍历,因此其不连续(non-contiguous),导致报错.

[&]quot;注意这里 tensor 和数组中索引都是从 0 开始

Create Tensor

计算量取决于所使用的硬件(CPU / GPU). 例如使用 float 32 创建一 32×32 的 tensor 所需要的计算量为 $32 \times 32 \times 4 = 4096$ bytes. 由于大型矩阵在 cpu 与 gpu 之间的转移非常消耗内存和计算量,因此最好直接使用 torch.·(·,·,device = "cuda:0") 进行创建.

```
# how to create data on gpu>
# 1. create data on cpu and then move it to gpu
x = torch.zeros(32, 32)
y = x.to("cuda:0")
assert y.device == torch.device("cuda", 0)

# 2. create data directly on gpu
z = torch.zeros(32, 32, device = "cuda:0")
```

Tensor Operations flops

一次浮点数运算(**FLOP**, floating-point operation)是指一次基本计算,包括加法("+")和乘法($"\times"$). 注意区分如下两个简写:

- 1. **FLOPs.** floating-point operations,用以衡量计算量^a.
- 2. **FLOP/s.** floating-point operations per second,用以衡量硬件计算速度^b.

Example 1 (Linear Model). 对于如下一个简单的线性模型(矩阵乘法),由于最终矩阵有 $B \times K$ 个元素,计算每个元素需要 D 次乘法和 D 次加法,因此计算量为

$$2 \times B \times D \times K$$
 FLOPs.

```
if torch.accelerator.is_available():
    device = torch.accelerator.current_accelerator()
    x = toch.ones(B, D, device = device)
    z = toch.ones(D, K, device = device)
    y = x @ w
```

此线性模型中,B为数据量,(DK)为参数量,因此前向传播过程中计算量约为

$$2 \times (\text{# tokens or # data points}) \times (\text{# parameters})$$
 (2)

Example 2 (Other Operations). 1. 两个 $m \times n$ 矩阵相加需要 mn FLOPs

- 2. 对于 $m \times n$ 矩阵的逐元素(elementwise)运算需要 O(mn) FLOPs
- 3. 一般来说深度学习中计算量消耗最大的就是矩阵乘法运算

Model FLOPs utilization(MFU). 一般来说实际运算中硬件的 FLOP/s 都达不到生产商标注的 FLOP/s, 二者的比值被称为浮点运算利用率:

$$MFU = \frac{\text{actual FLOP/s}}{\text{promised FLOP/s}}$$
 (3)

MFU 通常难以接近 90%,因为在使用中还有一部分性能用于通信等开销. MFU 大于 50% 被认为硬件表现较好,且当矩阵乘法占据计算量的主导时 MFU 会变大.

[&]quot;训练 GPT-3 需要 3.13×10^{23} FLOPs, GPT-4 需要 3×10^{25} FLOPs.

^bFLOP/s 取决于硬件和数据类型,例如 H100 ≫ A100, bfloat 16 ≫ float 32. FLOP/s 也会写为FLOPS.

Gradients

考虑一个简单的线性模型:

- Model: data $x(B \times D) w_1(D \times D) \rightarrow h_1 w_2(D \times K) \rightarrow h_2 \rightarrow loss$
- Loss: $\frac{1}{2}(xw-5)^2$
- Activation: $h_1 = xw_1, h_2 = h_1w_2$

前向传播所需要的计算量为

$$2 \times B \times D \times D + 2 \times B \times K \times D = 2 \times (\text{\# tokens}) \times (\text{\# parameters})$$
 (4)

在反向传播中,以计算 w_2 的梯度 $\operatorname{grad}(w_2) = \frac{\operatorname{d loss}}{\operatorname{d} w_2}$ 为例:

$$grad(w_2)[j,k] = \sum_{i=1}^{B} h_1[i,j] \times grad(h_2)[i,k]$$
 (5)

因此计算量为 $2 \times B \times D \times K$.

同理 $\operatorname{grad}(h_1) = \sum_{k=1}^K w_2[i,j] \times \operatorname{grad}(h_2[i,k])$,计算量为 $2 \times B \times D \times K$,总计算量为

$$4 \times B \times D \times K = 4 \times (\text{\# tokens}) \times (\text{\# parameters})$$
 (6)

First updated: 24 January, 2025 Last updated: 12 May, 2025

References