Differential Geometry Notes

Daniel Halmrast

October 6, 2017

Smooth Functions

Definition. Given a smooth manifold M, a function $f: M \to \mathbb{R}$ is said to be smooth(or C^{∞}) iff:

 $\forall (U, \phi) \text{ charts on } M, f \circ \phi^{-1} : \mathbb{R}^n \to \mathbb{R} \text{ is a smooth } (C^{\infty}) \text{ function.}$

Remark. Note that you only have to check smoothness against one atlas, not necessarily all in the smooth structure.

Smooth Maps

Now, let's generalize this to maps between manifolds.

Definition. Given two smooth manifolds M and N, a map $f: M \to N$ is said to be smoothiff:

 $\forall p \in M$, there exist charts (U, ϕ) on M and (V, τ) on N such that $p \in U$, $f(p) \in V$, and the map $\tau \circ f \circ \phi^{-1} : \mathbb{R}^m \to \mathbb{R}^n$ is smooth.

Basically, f has to be compatible with the coordinate charts at p and f(p).