COMP2611: Computer Organization

Arithmetic Logic Unit II

- ☐ You will learn the following in this tutorial:
 - ☐ Multiplication, Booth algorithm
 - □ Division
 - □ Floating point arithmetic

Arithmetic Logic Unit II

Review of Arithmetic logic Units

- Multiplication
- Booth Algorithm
- Division
- Floating Point Arithmetic

Exercises

- **□** 32-bit ALU
- **☐** Two registers:
 - Multiplicand register: 32 bits
 - Product register: 64 bits(right half also used for storing multiplier)

□ Operations:

- □ The right half of the product register is initialized to the multiplier, and its left half is initialized to 0
- □ The two right-shifts at each step for version 2 are combined into only a single right-shift because the product and multiplier registers have been combined

□ Let's consider multiplying 0010₂ and 0110₂

	Conven	tion	Booth	L	
Multiplicand		0010		0010	
Multiplier	x	0110		0110	
	+	0000	+	0000	shift
	+	0010	_	0010	subtract
	+	0010	+	0000	shift
	+	0000	+	0010	add
Product	=	0001100	=	0001100	

Idea of Booth Algorithm

- □ Looks at two bits of multiplier at a time from right to left
- ☐ Assume that shifts are much faster than adds
- ☐ Basic idea to speed up the calculation: avoid unnecessary additions

□ Multiplication of two signed numbers +2 and +6 (0010 and 0110)

Multiplier

Iteration	Multiplicand (M)	Product (P)	Remark
0		0000 0110 0	Initial state
4		0000 011 <mark>0 0</mark>	No operation
1		0000 0011 0	P = P >> 1
2	0010	1110 001 <mark>1 0</mark>	Left(P) = Left(P) - M
		1111 0001 1	P = P >> 1
3		1111 0001 1	No operation
		1111 1000 1	P = P >> 1
4		0001 100 <mark>0 1</mark>	Left(P) = Left(P) + M
		0000 1100 0	P = P >> 1

- □ 32-bit ALU
- **☐** Two registers:
 - □ Divisor register: 32 bits
 - □ Remainder register: 64 bits(right half also used for storing quotient)

□ Operations:

- □ 32-bit divisor is always subtracted from the left half of remainder register
 - The result is written back to the left half of the remainder register
- □ The right half of the remainder register is initialized with the dividend
 - Left shift remainder register by one before starting
- □ The new order of the operations in the loop is that the remainder register will be **shifted left one time too many**
 - Thus, <u>final correction step:</u> must <u>right shift back only the</u> remainder in the left half of the remainder register

- □ Example: $9.999_{10} \times 10^1 + 1.610_{10} \times 10^{-1}$
- Assumptions:
 - □ Significand size = 4 decimal digits
 - \Box Exponent size = 2 decimal digits

Algorithm:

- 1. Align the decimal point of the number that has the smaller exponent
 - \square e.g. $1.610_{10} \times 10^{-1}$ becomes $0.016_{10} \times 10^{1}$
- 2. Add the significands of the two numbers together
 - \Box e.g. $9.999_{10} \times 10^1 + 0.016_{10} \times 10^1 = 10.015_{10} \times 10^1$
- 3. Normalize the sum
 - \Box e.g. $10.015_{10} \times 10^1$ becomes $1.0015_{10} \times 10^2$
- 4. Round the normalized sum
 - \Box e.g. 1.0015₁₀ x 10² becomes 1.002₁₀ x 10²

- □ Example: $(1.110_{10} \times 10^{10}) \times (9.200_{10} \times 10^{-5})$
- □ Assumptions:
 - □ Significand size = 4 decimal digits
 - Exponent size = 2 decimal digits

Algorithm:

- Add the exponents together,
 - > new exponent = 10 + (-5) = 5
- 2. Multiply the significands together
 - \rightarrow new significand = $1.110_{10} \times 9.200_{10} = 10.212_{10}$
- 3. Normalize the product,
 - \rightarrow 10.212₁₀ x 10⁵ \Rightarrow 1.0212₁₀ x 10⁶
- 4. Round the product
 - \rightarrow 1.0212₁₀ x 10⁶ \Rightarrow 1.021₁₀ x 10⁶
- 5. Find the sign of the product
 - \rightarrow +1.021₁₀ x 10⁶

Arithmetic Logic Unit II

Review of Arithmetic logic Units

- Multiplication
- Booth Algorithm
- Division
- Floating Point Arithmetic

Exercises

□ Question 1: According to the multiplication hardware – refined version, do multiplication of two unsigned number 5 x 7 (0101 and 0111), fill in the table below.

Iteration	Multiplicand (M)	Product (P)	Remark
0			Initial state
1	0101		
2			
3			
4			

□ Question 2: According to Booth algorithm, do multiplication of two signed number +2 and -3 (0010 and 1101), fill in the table below.

Iteration	Multiplicand (M)	Product (P)	Remark
0			Initial state
1	0010		
2			
3			
4			

□ Question 3: According to the division hardware – improved version. Divide 8 (1000) by 3 (0011), fill in the table below.

Iteration	Divisor (D)	Remainder (R)	Remark
0			Initial state
1			
2	0011		
3			
4			
extra			

Question 4: Add 0.25_{10} and -0.875_{10} in binary according to the algorithm (Assume for simplicity that we only keep 4 bits of precision)

Question 5: Multiply 0.125_{10} and -0.625_{10} in binary according to the algorithm (Assume for simplicity that we only keep 4 bits of precision)

- □ Today we have reviewed:
 - ☐ Multiplication, Booth algorithm
 - Division
 - □ Floating point arithmetic