Unit V Computer Arithmetic

Addition and Subtraction

Operation	Add	Subtract Magnitudes						
Operation	Magnitudes	When A > B	When A < B	When A = B				
(+A) + (+B)	+(A+B)							
(+A) + (-B)		+ (A - B)	- (B - A)	+ (A - B)				
(-A) + (+B)		- (A - B)	+ (B - A)	+ (A - B)				
(-A) + (-B)	-(A+B)							
(+A) - (+B)		+ (A - B)	- (B - A)	+ (A - B)				
(+A) - (-B)	+(A+B)							
(-A) - (+B)	-(A+B)							
(-A) - (-B)		- (A - B)	+ (B - A)	+ (A - B)				

Flowchart for Addition & Subtraction

Hardware for signed magnitude addition and subtraction

Addition and subtraction with Signed 2's Complement data

Figure 10-3 Hardware for signed-2's complement addition and subtraction.

Algoritham

Figure 10-4 Algorithm for adding and subtracting numbers in signed-2's complement representation.

Multiplication

► Traditional way of binary multiplication

Hardware for multiply operation

Perform 23 x 19

Multiplicand B = 10111	E	Α	Q	SC
Multiplier in Q	0	00000	10011	101
Q _n = 1; add B		10111		
First partial product	0	10111		
Shift right EAQ	0	01011	11001	100
Q _n = 1; add B		10111		
Second partial product	1	00010		
Shift right EAQ	0	10001	01100	011
$Q_n = 0$; shift right EAQ	0	01000	10110	010
$Q_n = 0$; shift right EAQ	0	00100	01011	001
Q _n = 1; add B		10111		
Fifth partial product	0	11011		
Shift right EAQ	0	01101	10101	000
Final product in AQ = 0110110101				

Booth Multiplication Algorithm

Multiply (-9) x (-13) using Booth Algorithm

Q_n	Q_{n+1}	$\frac{BR}{BR} = 10111$ $\overline{BR} + 1 = 01001$	AC	QR	Q_{n+1}	SC
		Initial	00000	10011	0	101
1	0	Subtract BR	01001			
			01001			
		ashr	00100	11001	1	100
1	1	ashr	00010	01100	1	011
0	1	Add BR	10111			
			11001			
		ashr	11100	10110	0	010
0	0	ashr	11110	01011	0	001
1	0	Subtract BR	01001			
			00111			
		ashr	00011	10101	1	000

Array Multiplier

Figure 10-10 4-bit by 3-bit array multiplier.

Division Algoritham

- Initially, the dividend is in A & Q and the divisor is in B
- Sign of result is transferred into Q, to be the part of quotient
- Then a constant is set into the SC to specify the number of bits in the quotient
- Since an operand must be saved with its sign, one bit of the word will be inhabited by the sign, and the magnitude will be composed of n -1 bits
- The condition of divide-overflow is checked by subtracting the divisor in B from the half of bits of the dividend stored in A
- If A ≥ B, DVF is set and the operation is terminated before time
- If A < B, no overflow condition occurs and so the value of the dividend is reestablished by adding B to A
- The division of the magnitudes starts by shl dividend in AQ to left in the high-order bit shifted into E. (Note: If shifted a bit into E is equal to 1, and we know that EA > B as EA comprises a 1 followed by n -1 bits whereas B comprises only n -1 bits). In this case, B must be subtracted from EA, and 1 should insert into Q, for the quotient bit
- If the shift-left operation (shl) inserts a 0 into E, the divisor is subtracted by adding its 2's complement value and the carry is moved into E. If E = 1, it means that A ≥ B; thus, Q, is set to 1. If E = 0, it means that A < B and the original number is reimposed by adding B into A</p>

Divisor $B = 10001$,		11		
	E	A	Q	SC
Dividend: shl EAQ add B + 1	0	01110 11100 01111	00000	5
E = 1 Set $Q_n = 1$ shl EAQ Add $\overline{B} + 1$	1 1 0	01011 01011 10110 01111	00001 00010	4
E = 1 Set $Q_n = 1$ sh! EAQ Add $\overline{B} + 1$	1 1 0	00101 00101 01010 01111	00011 00110	3
$E = 0$; leave $Q_n = 0$ Add B	0	11001 10001	00110	
Restore remainder shl EAQ Add B + 1	1 0	01010 10100 01111	01100	2
E = 1 Set $Q_n = 1$ shl EAQ Add $\overline{B} + 1$	1 1 0	00011 00011 00110 01111	01101 11010	1
$E = 0$; leave $Q_n = 0$ Add B	0	10101 10001	11010	
Restore remainder Neglect E Remainder in A:	1	00110	11010	0
Quotient in Q:			11010	

Figure 10-12 Example of binary division with digital hardware.

Divide Overflow

When the dividend is twice as long as the divisor, the condition for overflow can be stated as follows: A divide-overflow condition occurs if the high-order half bits of the dividend constitute a number greater than or equal to the divisor. Another problem associated with division is the fact that a division by zero must be avoided. The divide-overflow condition takes care of this condition as well. This occurs because any dividend will be greater than or equal to a divisor which is equal to zero. Overflow condition is usually detected when a special flip-flop is set. We will call it a divide-overflow flip-flop and label it DVF.

Figure 10-13 Flowchart for divide operation. Divide operation Dividend in AQ Divisor in B Divide magnitudes $Q_s + A_s \bigoplus B_s$ $SC \leftarrow n - 1$ shl EAQ = 0 $EA \leftarrow A + \overline{B} + 1$ $A \leftarrow A + \overline{B} + 1$ $EA \leftarrow A + \overline{B} + 1$ $A \ge B$ $A \le B$ $A \ge B$ $A < B \psi = 0$ $EA \leftarrow A + B$ $Q_n \leftarrow 1$ $EA \leftarrow A + B$ $EA \leftarrow A + B$ $DVF \leftarrow 0$ $DVF \leftarrow 1$ $SC \leftarrow SC - 1$ 9h () END END (Divide overflow) (Quotient is in Q remainder is in A)

Floating Point Arithmatic

- Many high-level programming languages have a facility for specifying floatingpoint numbers. The most common way is to specify them by a real declaration statement as opposed to fixed-point numbers, which are specified by an integer declaration statement.
- A floatingpoint number in computer registers consists of two parts: a mantissa m and an exponent e. The two parts represent a number obtained from multiplying m times a radix r raised to the value of e; thus
- mx(r^e)
- ▶ 537.25 is represented in a register with m = 53725 and e = 3 and is interpreted to represent the floating-point number
- ▶ .53725 X 10[^]3
- A floating-point number is normalized if the most significant digit of the mantissa is nonzero. In this way the mantissa contains the maximum possible number of significant digits. A zero cannot be normalized because it does not have a nonzero digit. It is represented in floating-point by all 0' sin the mantissa and exponent.

Registers for floating, point arithmetic operations.

▶ There are three registers, BR, AC, and QR. Each register is subdivided into two parts. The mantissa part has the same uppercase letter symbols as in fixed-point representation. The exponent part uses the corresponding lowercase letter symbol.

Floating point addition and subtraction

- ▶ During addition or subtraction, the two floating-point operands are in AC and BR. The sum or difference is formed in the AC. The algorithm can be divided into four consecutive parts:
- ▶ 1. Check for zeros.
- 2. Align the mantissas.
- 3. Add or subtract the mantissas.
- 4. Normalize the result.

multiplication of two floating-point no.s

- ▶ 1. Check for zeros.
- 2. Add the exponents.
- ▶ 3. Multiply the mantissas.
- ▶ 4. Normalize the product.

Division of Floating point no.s

- ▶ 1. Check for zeros.
- ▶ 2. Initialize registers and evaluate the sign.
- ▶ 3. Align the dividend.
- ▶ 4. Subtract the exponents.
- ▶ 5. Divide the mantissas.

BCD Adder

If codes are illegal or carry is generated in the group then we add 0110 to that particular group

- ► Two BCD digits are applied to 4-bit binary adder which produce result ranging from 0 to 19 i.e. 9 + 9 + 1 = 19
- Output sum of two decimal numbers must be represented in BCD.
- Problem is to find rule by which binary number is to be converted to correct BCD

BCD Adder

	Binary Sum				BCD Sum					
K	Z ₈	Z_4	Z_2	Z_1	С	S ₈	S ₄	S ₂	S ₁	Decimal
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9

	Binary Sum					BCD Sum				
K	Z ₈	Z_4	Z_2	Z_1	С	S ₈	S ₄	S ₂	S ₁	Decimal
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

BCD Adder

Decimal Arithmetic Circuit

Figure 10-19 One stage of a decimal arithmetic unit.

Three ways of decimal addition

(a) Parallel decimal addition: 624 + 879 = 1503

(b) Digit-serial, bit-parallel decimal addition

(c) All serial decimal addition

Figure 10-21 Registers for decimal arithmetic multiplication and division.

Figure 10-22 Flowchart for decimal multiplication.

Decimal Division

Figure 10-23 Flowchart for decimal division.