AVR Analog-to-Digital Convertor

Recall AVR Architecture

Simplified AVR Architecture

ATMega328P Architecture

AVR* ADC: Features

- 10-bit resolution, 8 multiplexed single ended input channels
- Up to 76.9kSPS (15kSPS at Maximum Resolution), 13 260us Conversion Time
- O V_{CC} ADC input voltage range (selectable 1.1V ADC reference voltage)
- Free running or single conversion mode
- Interrupt on ADC conversion complete

AVR ADC: Block Diagram

4 control/data registers:
 ADMUX, ADCSRA, ADCH/L

• 8-10 I/O pins: AVCC, AREF, ADCO-ADC7

ADC CONVERSION COMPLETE IRQ

AVR ADC: ADMUX

 Analog input channel can be selected by writing to the MUX[3:0] bits in ADMUX

Table 24-4. Input Channel Selections

MUX30	Single Ended Input
0000	ADC0
0001	ADC1
0010	ADC2
0011	ADC3
0100	ADC4
0101	ADC5
0110	ADC6
0111	ADC7
1000	ADC8 ⁽¹⁾
1001	(reserved)
1010	(reserved)
1011	(reserved)
1100	(reserved)
1101	(reserved)
1110	1.1V (V _{BG})
1111	0V (GND)

Note: 1. For Temperature Sensor.

CPE328: Embedded System (2/2021)

AVR ADC: ADMUX

- Voltage reference can be selected by writing to the REFS[1:0] bits in ADMUX
- Changes during conversion will not go in effect until this conversion is complete

Table 24-3. Voltage Reference Selections for ADC

REFS1	REFS0	Voltage Reference Selection
0	0	AREF, Internal V _{ref} turned off
0	1	AV _{CC} with external capacitor at AREF pin
1	0	Reserved
1	1	Internal 1.1V Voltage Reference with external capacitor at AREF pin

AVR ADC: ADMUX, ADCH/L

- ADC conversion result will be stored in ADC Data Registers, ADCH and ADCL
- The result is left adjusted when
 ADLAR = 1 and right adjusted when
 ADLAR = 0
- ADC data registers will be updated after ADCH is read (we may retrieve 8-bits value by reading ADCH and disregard ADCL when ADLAR = 1)

ADC CONVERSION COMPLETE IRQ

AVR ADC: ADMUX, ADCH/L

- ADC conversion result will be stored in ADC Data Registers, ADCH and ADCL
- The result is left adjusted when
 ADLAR = 1 and right adjusted when
 ADLAR = 0
- ADC data registers will be updated after ADCH is read (we may retrieve 8-bits value by reading ADCH and disregard ADCL when ADLAR = 1)

ADLAR = 0									
Bit	15	14	13	12	11	10	9	8	
(0x79)	_	_	_	_	_	_	ADC9	ADC8	ADCH
(0x78)	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

Bit	15	14	13	12	11	10	9	8	
(0x79)	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
(0x78)	ADC1	ADC0	_	-	_	-	-	_	ADCL
	7	6	5	4	3	2	1	0	•
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

$$ADC = \frac{V_{IN} \cdot 1024}{V_{REF}}$$

ADLAR = 1

AVR ADC: ADCSRA (Clock Source)

Table 24-5. ADC Prescaler Selections

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

- The ADC requires an input clock frequency between 50kHz and 200kHz to get maximum resolution
- ADC module contains a prescaler to generate ADC clock frequency from any CPU frequency. The prescaling is set by the ADPS[2:0] bits in ADCSRA

CPE328: Embedded System (2/2021)

AVR ADC: ADCSRA/B (Starting a conversion)

Table 24-6. ADC Auto Trigger Source Selections

ADTS2	ADTS1	ADTS0	Trigger Source
0	0	0	Free Running mode
0	0	1	Analog Comparator
0	1	0	External Interrupt Request 0
0	1	1	Timer/Counter0 Compare Match A
1	0	0	Timer/Counter0 Overflow
1	0	1	Timer/Counter1 Compare Match B
1	1	0	Timer/Counter1 Overflow
1	1	1	Timer/Counter1 Capture Event

1. Single Conversion

- set ADSC (ADC Start Conversion bit) to 1 to start each conversion
- ADSC will stay 1 while a conversion is in progress and will be cleared by hardware when it is completed

2. Auto Trigger

- set ADATE (ADC Auto Trigger Enable bit)
 to 1 to enable auto triggering mode
- ADTS (ADC Trigger Select bits) in ADCSRB can be used to select a trigger source

CPE328: Embedded System (2/2021)

Computer Engineering Department, KMUTT

AVR ADC: Timing

ADC Timing Diagram, First Conversion (Single Conversion Mode)

ADC Timing Diagram, Single Conversion

ADC Timing Diagram, Free Running Conversion

Table 24-1. ADC Conversion Time

Condition	Sample & Hold (Cycles from Start of Conversion)	Conversion Time (Cycles)
First conversion	13.5	25
Normal conversions, single ended	1.5	13
Auto Triggered conversions	2	13.5

AVR ADC: Timing

ADC Timing Diagram, Auto Triggered Conversion

New conversion will not be started if the trigger signal is still set after the conversion complete or if another positive edge occurs during conversion.

AVR ADC: Power Saving Consideration

PRR - Power Reduction Register

Write PRADC to 1 to shutdown the ADC. The ADC must be disabled before shut down. The analog comparator cannot use the ADC input MUX when the ADC is shut down.

DIDR0 - Digital Input Disable Register 0

Write these bit to logic 1 to disable the digital input buffer on the corresponding ADC pin when the digital input from this pin is not needed

Lab 5: AVR ADC Programming

- 1. Connect a circuit with an ATMega328P and MCP9700A (analog temperature sensor) and write a program to transmit the current ambient temperature to your PC using a serial port
- 2. Extend your program to display the current ambient temperature on the 16x2 alphanumeric LCD display in addition to transmiting through the serial port

