第三章 三极管放大电路基础

序号 学号 姓名

一、填空题

1	基本放大电路的三种组态分别是:放大电路、放大电
	路和放大电路,其中射极(或电压)跟随器是组态。
2	双极型晶体管(BJT)的类型有和
	晶体管的 PN 结偏置电压决定。当晶体管工作在放大模式时,要求晶体管的
	集电结(CBJ)电压偏置,发射结(EBJ)电压偏置。
3	依据双极型晶体管(BJT)的直流偏置电压情况,它的工作模式可以分为三种
	基本工作状态(模式):即、和截止状态。
4	放大电路有两种工作状态, 当 v _i =0 时电路的状态称为态, 有交流
	信号 v _i 输入时,放大电路的工作状态称为态。在态情况下,
	晶体管各极电压、电流均包含分量和分量。放大器的输入电阻
	越,就越能从前级信号源获得较大的电信号;输出电阻越,放
	大器带负载能力就越强。
5	由 NPN 三极管组成的共射单管放大电路中,如果静态工作点设置过高,则
	易出现(截止,饱和)失真,此时波型将出现(顶部,底部)失真,
	为了减小这种失真,可调整电路中的(Rc, Rb),并使其(增大,
	减小)。
6	电压跟随器(射极输出器)具有恒小于1、接近于1,和
	同相,并具有高和低的特点。

二、简答题

- 1、放大电路中为何设立静态工作点?静态工作点的高、低对电路有何影响?
- 2、已知 NPN 型三极管的输入—输出特性曲线如图 1 所示,当
 - (1) $U_{\text{BE}}=0.7\text{V}$, $U_{\text{CE}}=6\text{V}$, $I_{\text{C}}=?$
 - (2) $I_B=50\mu A$, $U_{CE}=5V$, $I_C=?$
 - (3) U_{CE} =6V, U_{BE} 从 0.7V 变到 0.75V 时,求 I_B 和 I_C 的变化量,此时的 β =?

图 1

3、晶体管电路如图 2 所示,试确定各晶体管的 β 值。

4、在图 3 所示的电路中,假设晶体管的 β 无限大,且 $|V_{BE}|$ = 0.7V 。试确定各图中标注的电压、电流值。

5、在图 4 所示的电路中,假设晶体管工作在放大模式,并且晶体管的 β 为无限大,试确定各图中所对应标注的电压、电流值。

三、分析计算题

1、双极型晶体管的放大电路如图 5 所示。 已知电路中 $R_S=10K\Omega$, $R_1=30K\Omega$, $R_2=20K\Omega$, $R_E=2K\Omega$, $R_C=2K\Omega$, $R_L=2K\Omega$, 发射极的直流电流 $I_E=1mA$, 假设晶体管的参数为 $V_{BE}=0.7V$, $r_{bb'}($ 或 $r_x)=0$, β=200。

 $C_B=1\mu F$, $C_C=C_E=\infty$ 。 热电压 $V_T=25mV$, 试回 答:

- (2) 求输入阻抗 R_i 和输出阻抗 R_o ;
- (3) 计算该放大器的电压增益 $A_V = v_o/v_s$;

- 2、双极型晶体管构成共基放大器电路的交流通路如图
- 6 所示。 电路中已知 $R_{\scriptscriptstyle S}=100\Omega$, $R_{\scriptscriptstyle E}=200\Omega$,

 $R_C=2K\Omega$, $R_L=2K\Omega$ 。 假设晶体管的参数为 $r_{be}(\vec{u}r_\pi)=2K\Omega$, $\beta=100$ 。 电容 $C_C=1\mu F$ 对中频信

号呈短路。试回答:

- (1) 画出放大器的交流小信号等效模型电路;
- (2) 求输入阻抗 R_i 和输出阻抗 R_a ;
- (3) 计算该放大器的中频电压增益 $A_V = v_o/v_s$;
- 3、在图 7 所示的共集放大器电路中,晶体管的 β 值在 20~200 范围内变化。当 β 分别等

于 20 和 200 时, 试求:

- (1) 基极直流电压 V_B ,发射极的直流电压 V_E 和直流电流 I_E ;
- (2) 放大器的输入阻抗 R_i ;
- (3) 放大器的电压增益 $\frac{v_o}{v_s}$ 。

- 4、放大电路如图 8 所示。已知 BJT 的 β =80, R_b=300k, Rc=2k, V_{CC}=+12V,求:
- (1) 放大电路的 Q 点。此时 BJT 工作在哪个区域?
- (2) 当 Rb=100k 时,放大电路的 Q 点。此时 BJT 工作在哪个区域? (忽略 BJT 的饱和 压降)

- 5、图 9 中画出了图 8 放大电路中 BJT 的输出特性及交、直流负载线, 试求:
- (1) 电源电压 VCC, 静态电流 I_{BQ} 、 I_{CQ} 和管压降 V_{CEQ} 的值;
- (2) 电阻 R_b 、 R_C 的值;
- (3) 输出电压的最大不失真幅度;
- (4) 要使该电路能不失真地放大,基极正弦电流的最大幅值是多少?

图 9