```
In [1]:    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt

In [2]:    data_df = pd. read_csv('supermarket_sales.csv')
    data_df
```

Out[2]:

•	Invoid I		Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Total	
	0	750- 67- 8428	А	Yangon	Member	Female	Health and beauty	74.69	7	548.9715	1/5
	1	226- 31- 3081	С	Naypyitaw	Normal	Female	Electronic accessories	15.28	5	80.2200	3/8
	2	631- 41- 3108	А	Yangon	Normal	Male	Home and lifestyle	46.33	7	340.5255	3/3
	3	123- 19- 1176	А	Yangon	Member	Male	Health and beauty	58.22	8	489.0480	1/27
	4	373- 73- 7910	А	Yangon	Normal	Male	Sports and travel	86.31	7	634.3785	2/{
	•••										
	995	233- 67- 5758	С	Naypyitaw	Normal	Male	Health and beauty	40.35	1	42.3675	1/29
	996	303- 96- 2227	В	Mandalay	Normal	Female	Home and lifestyle	97.38	10	1022.4900	3/2
	997	727- 02- 1313	А	Yangon	Member	Male	Food and beverages	31.84	1	33.4320	2/9
	998	347- 56- 2442	А	Yangon	Normal	Male	Home and lifestyle	65.82	1	69.1110	2/22
9	999	849- 09- 3807	А	Yangon	Member	Female	Fashion accessories	88.34	7	649.2990	2/18

1000 rows × 16 columns

Rating	gross income	gross margin percentage	cogs	Total	Quantity	Unit price	
1000.00000	1000.000000	1.000000e+03	1000.00000	1000.000000	1000.000000	1000.000000	count
6.97270	15.379369	4.761905e+00	307.58738	322.966749	5.510000	55.672130	mean
1.71858	11.708825	6.131498e-14	234.17651	245.885335	2.923431	26.494628	std
4.00000	0.508500	4.761905e+00	10.17000	10.678500	1.000000	10.080000	min
5.50000	5.924875	4.761905e+00	118.49750	124.422375	3.000000	32.875000	25%
7.00000	12.088000	4.761905e+00	241.76000	253.848000	5.000000	55.230000	50%
8.50000	22.445250	4.761905e+00	448.90500	471.350250	8.000000	77.935000	75%
10.00000	49.650000	4.761905e+00	993.00000	1042.650000	10.000000	99.960000	max

#	Column	Non-Null Count	ртуре		
0	Invoice ID	1000 non-null	object		
1	Branch	1000 non-null	object		
2	City	1000 non-null	object		
3	Customer type	1000 non-null	object		
4	Gender	1000 non-nu11	object		
5	Product line	1000 non-null	object		
6	Unit price	1000 non-null	float64		
7	Quantity	1000 non-nu11	int64		
8	Total	1000 non-null	float64		
9	Date	1000 non-null	object		
10	Time	1000 non-nu11	object		
11	Payment	1000 non-nu11	object		
12	cogs	1000 non-null	float64		
13	gross margin percentage	1000 non-null	float64		
14	gross income	1000 non-null	float64		
15	Rating	1000 non-null	float64		
dtyp	es: float64(6), int64(1),	object(9)			

Prepocessing

memory usage: 125.1+ KB

```
In [5]: ## For attribute 'Time' and 'Date'
from pandas import DatetimeIndex as dt
day_of_week = pd. to_datetime(data_df['Date']). dt. dayofweek
data_df['Date'] = day_of_week

hour = pd. to_datetime(data_df['Time']). dt. strftime('%H'). astype('float')
hour_cat = pd. cut(hour, bins=[0.0, 12.0, 16.0, 18.0, np. inf], labels=[1,2,3,4])
data_df['Time'] = hour_cat

data_df
```

0 1	F - 7	
()	151	0
out	IフI	

	Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Total	Dat
	750- 0 67- 8428	А	Yangon	Member	Female	Health and beauty	74.69	7	548.9715	
	226- 1 31- 3081	С	Naypyitaw	Normal	Female	Electronic accessories	15.28	5	80.2200	
	631- 2 41- 3108	А	Yangon	Normal	Male	Home and lifestyle	46.33	7	340.5255	
	123- 3 19- 1176	А	Yangon	Member	Male	Health and beauty	58.22	8	489.0480	
	373- 4 73- 7910	А	Yangon	Normal	Male	Sports and travel	86.31	7	634.3785	
										
99	233- 67- 5758	С	Naypyitaw	Normal	Male	Health and beauty	40.35	1	42.3675	
99	303- 96- 2227	В	Mandalay	Normal	Female	Home and lifestyle	97.38	10	1022.4900	
99	727- 07 02- 1313	А	Yangon	Member	Male	Food and beverages	31.84	1	33.4320	
99	347- 56- 2442	А	Yangon	Normal	Male	Home and lifestyle	65.82	1	69.1110	
99	849- 09- 3807	А	Yangon	Member	Female	Fashion accessories	88.34	7	649.2990	

1000 rows × 16 columns

```
In [6]: data_df. to_csv('data.csv', index=False)
In [7]: from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import StandardScaler, OneHotEncoder, OrdinalEncoder
    from sklearn.compose import ColumnTransformer
    from sklearn.model_selection import train_test_split

# Atrribute 'Invoice ID' and 'gross margin percentage' are useless for training and
    X_df = data_df.drop(labels=['Invoice ID', 'gross margin percentage'], axis=1)

num_attribute = ['Unit price', 'Quantity', 'Total', 'cogs', 'gross income', 'Rating'
    cat_lhot_attribute = ['Branch', 'City', 'Product line', 'Date', 'Time', 'Payment']
    cat_ordin_attribute = ['Customer type', 'Gender']

pre_pipeline = ColumnTransformer([('num', StandardScaler(), num_attribute),
```

```
('cat_1hot', OneHotEncoder(), cat_1hot_attribute),
                               ('cat_ordin', OrdinalEncoder(), cat_ordin_attribute
train, test = train_test_split(X_df,
                            test size=0.2,
                            random state=8) ## In this project, all random states
train prepared = pre pipeline. fit transform(train)
test_prepared = pre_pipeline. transform(test)
'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday
        'Morning', 'Afternoon', 'Evening', 'Night', 'Cash', 'Credit card', 'Ewallet',
        'Customer type', 'Gender']
train_prepared_df = pd. DataFrame(train_prepared,
                              columns=Column)
test_prepared_df = pd. DataFrame(test_prepared,
                              columns=Column)
train prepared df
```

Out[7]:

:		Unit price	Quantity	Total	cogs	gross income	Rating	Branch A	Branch B	Branch C	M
	0	0.360863	-0.504378	-0.189186	-0.189186	-0.189186	0.430554	1.0	0.0	0.0	
	1	-0.798463	-1.178004	-1.005079	-1.005079	-1.005079	-0.154338	0.0	0.0	1.0	
	2	-0.924559	0.842875	-0.258357	-0.258357	-0.258357	0.430554	0.0	1.0	0.0	
	3	-0.228586	-1.514817	-1.083733	-1.083733	-1.083733	-1.499590	0.0	0.0	1.0	
	4	1.183684	-1.178004	-0.553150	-0.553150	-0.553150	0.723000	0.0	0.0	1.0	
	•••										
	795	-1.502716	-1.178004	-1.165649	-1.165649	-1.165649	-1.558079	0.0	1.0	0.0	
	796	1.233369	0.169249	0.959175	0.959175	0.959175	1.073935	0.0	1.0	0.0	
	797	1.497606	0.842875	1.950657	1.950657	1.950657	1.249403	0.0	0.0	1.0	
	798	-0.248159	-0.841191	-0.673255	-0.673255	-0.673255	0.489043	0.0	1.0	0.0	
	799	-1.229823	0.169249	-0.725648	-0.725648	-0.725648	0.372064	0.0	1.0	0.0	

800 rows × 34 columns

Problem 2: Train a multiple linear regression with and without Lasso regularization to predict gross income.

In [9]: # Problem 2: Train a multiple linear regression with and without Lasso regularizatio from sklearn.linear model import LinearRegression, Lasso

```
X_train = train_prepared_df[['Unit price', 'Quantity',
                                'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturd
                                 'Morning', 'Afternoon', 'Evening', 'Night',
'Electronic accessories', 'Fashion accessories', 'Food and bev
          t_train = train_prepared_df['gross income'].copy()
          lin_reg = LinearRegression()
          lasso_reg = Lasso()
          from sklearn.model selection import GridSearchCV, RandomizedSearchCV
In [10]:
          import joblib
          ## Linear regression without Lasso regularization
          lin_reg. fit (X_train, t_train)
          joblib. dump(lin_reg, 'Model/lin_reg_problem2.pk1')
          ['Model/lin_reg_problem2.pk1']
Out[10]:
          ## Linear regression with Lasso regularization
In [11]:
          lasso_reg. get_params()
          {'alpha': 1.0,
Out[11]:
           'copy_X': True,
           'fit intercept': True,
           'max_iter': 1000,
           'normalize': 'deprecated',
           'positive': False,
           'precompute': False,
           'random state': None,
           'selection': 'cyclic',
           'tol': 0.0001,
           'warm start': False}
In [12]: from scipy.stats import expon
          lamb = np. linspace (0.001, 0.2, 1000)
          lamb_distribution = expon(scale = 1/10)
          param_grid = {'alpha': lamb}
          param_distribution = {'alpha': lamb_distribution}
          gridcv lasso = GridSearchCV(lasso reg,
                                    param grid=param grid,
                                    cv = 10,
                                    scoring='neg_mean_squared_error')
          randomcv lasso = RandomizedSearchCV(lasso reg,
                                               param_distributions=param_distribution,
                                               cv = 10,
                                               random state=8,
                                               scoring='neg mean squared error')
In [13]:
          gridcv_lasso.fit(X_train, t_train)
          gridcv_lasso.best_params_
          {'alpha': 0.0049839839839839846}
Out[13]:
          randomcv_lasso.fit(X_train, t_train)
In [14]:
          randomcv_lasso.best_params_
          {'alpha': 0.0011464268599014138}
Out[14]:
```

from sklearn.model_selection import train_test_split

```
In [15]: ## Choose the result from GridsearchCV
    joblib. dump(gridcv_lasso. best_estimator_, 'Model/lasso_reg_grid_problem2.pkl')
    joblib. dump(randomcv_lasso. best_estimator_, 'Model/lasso_reg_random_problem2.pkl')
Out[15]: ['Model/lasso_reg_random_problem2.pkl']
```

Problem 3: Train a multiple linear regression with and without Lasso regularization to predict Unit price.

```
# Problem 3: Train a multiple linear regression with and without Lasso regularizatio
In [16]:
         'Morning', 'Afternoon', 'Evening', 'Night',
                              'Electronic accessories', 'Fashion accessories', 'Food and bev
         t train = train prepared df['Unit price'].copy()
         lin_reg = LinearRegression()
         lasso_reg = Lasso()
         ## Linear regression without Lasso regularization
In [17]:
         lin_reg. fit (X_train, t_train)
         joblib. dump(lin_reg, 'Model/lin_reg_problem3.pkl')
         ['Model/lin_reg_problem3.pk1']
Out[17]:
In [18]:
         ## Linear regression without Lasso regularization
         param_grid = {'alpha': lamb}
         param_distribution = {'alpha': lamb_distribution}
         gridcv_lasso = GridSearchCV(lasso_reg,
                                 param grid=param grid,
                                 cv = 10,
                                 scoring='neg_mean_squared_error')
         randomcv_lasso = RandomizedSearchCV(lasso_reg,
                                           param distributions=param distribution,
                                           cv = 10,
                                           random state=8,
                                           scoring='neg mean squared error')
         gridcv_lasso.fit(X_train, t_train)
In [19]:
         gridcv_lasso.best_params_
         {'alpha': 0.006179179179179179}
Out[19]:
In [20]:
         randomcv lasso. fit (X train, t train)
         randomcv_lasso.best_params_
         {'alpha': 0.0011464268599014138}
Out[20]:
         ## Choose the result from RandomsearchCV because of more accurate alpha
In [21]:
         joblib. dump(gridcv_lasso. best_estimator_, 'Model/lasso_reg_grid_problem3.pkl')
         joblib. dump (randomcv lasso. best estimator, 'Model/lasso reg random problem3.pkl')
         ['Model/lasso_reg_random_problem3.pk1']
Out[21]:
```

Problem 4

```
In [22]: # Problem 4:
          # Train a logistic regression to classify gender and study the relationship between
          # Namely, explain the relationship between gender, product line, payment and gross i
          # To study this relationship, consider all the interaction attribution of degree 2.
          from sklearn.linear_model import LogisticRegression
          from sklearn.preprocessing import PolynomialFeatures
          X_train = train_prepared_df[['Electronic accessories', 'Fashion accessories', 'Food
                               'Cash', 'Credit card', 'Ewallet',
                                'gross income']]. to_numpy()
          X_train = X_train[np. where(train_prepared_df['Branch C']==1)]
          t_train = train_prepared_df['Gender']. to_numpy()
          t_train = t_train[np. where(train_prepared_df['Branch C']==1)]
          X_train.shape, t_train.shape
          ((270, 10), (270,))
Out[22]:
         pipe = Pipeline([('poly_feature', PolynomialFeatures(degree=2, interaction_only=Tru
In [23]:
                          ('log_reg', LogisticRegression(fit_intercept=True))])
In [24]:
         pipe. fit(X_train, t_train)
Out[24]:
                 Pipeline
           ▶ PolynomialFeatures
           ► LogisticRegression
          joblib. dump(pipe, 'Model/pipeline_problem4.pkl')
In [25]:
          ['Model/pipeline problem4.pk1']
Out[25]:
         Problem 5
In [26]:
         # Train a logistic regression to classify customer type and study the relationship b
          # Namely, explain the relationship between customer type, gender, day and timeslot f
          # To study this relationship, consider all the interaction attribution of degree 2.
```

```
Out[28]:
            ▶ PolynomialFeatures
            ► LogisticRegression
          joblib. dump(pipe, 'Model/pipeline_problem5.pkl')
In [29]:
          ['Model/pipeline problem5.pk1']
Out[29]:
```

Pipeline

Problem 6: Train a classifier to predict the day of purchase

```
train prepared df. index
In [30]:
         RangeIndex(start=0, stop=800, step=1)
Out[30]:
         # Problem 6: Train a classifier to predict the day of purchase
In [31]:
         ## In problem 6, we don't want to apply one hot encoder on attribute 'Date', so we k
         ## and do the prepocessing again.
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         num_attribute = ['Unit price', 'Quantity', 'Total', 'cogs', 'gross income', 'Rating'
         cat_lhot_attribute = ['Branch', 'City', 'Product line', 'Time', 'Payment']
         cat_ordin_attribute = ['Customer type', 'Gender']
         pre pipeline problem6 = ColumnTransformer([('num', StandardScaler(), num attribute),
                                         ('cat_1hot', OneHotEncoder(), cat_1hot_attribute),
                                         ('cat_ordin', OrdinalEncoder(), cat_ordin_attribute
         X = X_df. drop('Date', axis=1)
         t = X_df['Date'].copy()
         X_train, X_test, t_train, t_test = train_test_split(X, t,
                                                           test_size=0.2,
                                                           random state=8,
                                                           stratify=t)
         X train prepared = pre pipeline problem6. fit transform(X train)
         X_test_prepared = pre_pipeline_problem6. transform(X_test)
         'Electronic accessories', 'Fashion accessories', 'Food and beverages', 'He
                  'Morning', 'Afternoon', 'Evening', 'Night',
                  'Cash', 'Credit card', 'Ewallet',
                  'Customer type', 'Gender']
         X_train_df = pd. DataFrame(X_train_prepared, columns=Column)
         X_test_df = pd. DataFrame(X_test_prepared, columns=Column)
In [32]: | X_train_df. to_csv('Problem 6 data/X_train.csv', index=False)
         X_test_df. to_csv('Problem 6 data/X_test.csv', index=False)
         t_train.to_csv('Problem 6 data/t_train.csv', index=False)
         t_test. to_csv('Problem 6 data/t_test.csv', index=False)
         ## First model: LogisticRegression Classifier with Ridge regularization
In [33]:
```

```
log_reg = LogisticRegression(multi_class='multinomial', penalty='12')
          log_reg. get_params()
          {'C': 1.0,
Out[33]:
           'class_weight': None,
           'dual': False,
           'fit_intercept': True,
           'intercept scaling': 1,
           '11_ratio': None,
           'max_iter': 100,
           'multi_class': 'multinomial',
           'n_jobs': None,
           'penalty': '12',
           'random_state': None,
           'solver': 'lbfgs',
           'tol': 0.0001,
           'verbose': 0,
           'warm start': False}
         C = np. linspace(0.1, 100, 1000)
In [34]:
          param_grid = {'C': C}
          gridcv_log_reg = GridSearchCV(log_reg,
                                        param_grid=param_grid,
                                        cv = 10,
                                        scoring='accuracy')
In [35]:
          gridcv_log_reg. fit(X_train_prepared, t_train)
Out[35]:
                      GridSearchCV
           ▶ estimator: LogisticRegression
                   ► LogisticRegression
          gridcv_log_reg. best_params_
In [36]:
          {'C': 0.7000000000000001}
Out[36]:
          joblib. dump(gridcv_log_reg. best_estimator_, 'Model/log_reg_problem6.pkl')
In [37]:
          ['Model/log_reg_problem6.pkl']
Out[37]:
In [38]:
          ## Second model: Decisiontree Classifier
          tree = DecisionTreeClassifier()
          tree. get_params()
          {'ccp alpha': 0.0,
Out[38]:
           'class_weight': None,
          'criterion': 'gini',
           'max_depth': None,
           'max features': None,
           'max_leaf_nodes': None,
           'min impurity decrease': 0.0,
           'min_samples_leaf': 1,
           'min_samples_split': 2,
           'min weight fraction leaf': 0.0,
           'random_state': None,
           'splitter': 'best'}
          max_depth = list(range(1, 31))
In [39]:
          param_grid = {'criterion': ['gini', "entropy", "log_loss"],
```

```
'min_samples_split': list(range(1,10)),
                       'min samples leaf': list(range(2,10))}
         gridcv_tree = GridSearchCV(tree,
                                    param grid=param grid,
                                    scoring='accuracy',
                                    cv = 10
In [40]: gridcv_tree.fit(X_train_prepared, t_train)
         /apps/python/3.10/lib/python3.10/site-packages/sklearn/model_selection/_validation.p
         y:378: FitFailedWarning:
         7200 fits failed out of a total of 64800.
         The score on these train-test partitions for these parameters will be set to nan.
         If these failures are not expected, you can try to debug them by setting error_score
         ='raise'.
         Below are more details about the failures:
         7200 fits failed with the following error:
         Traceback (most recent call last):
           File "/apps/python/3.10/lib/python3.10/site-packages/sklearn/model_selection/_vali
         dation.py", line 686, in _fit_and_score
              estimator.fit(X_train, y_train, **fit_params)
           File "/apps/python/3.10/lib/python3.10/site-packages/sklearn/tree/_classes.py", li
         ne 969, in fit
             super().fit(
           File "/apps/python/3.10/lib/python3.10/site-packages/sklearn/tree/_classes.py", 1i
         ne 265, in fit
             check scalar (
           File "/apps/python/3.10/lib/python3.10/site-packages/sklearn/utils/validation.py",
         line 1480, in check scalar
             raise ValueError(
         ValueError: min_samples_split == 1, must be \geq= 2.
           warnings.warn(some fits failed message, FitFailedWarning)
         /apps/python/3.10/lib/python3.10/site-packages/sklearn/model_selection/_search.py:95
         3: UserWarning: One or more of the test scores are non-finite: [ nan 0.1625 0.16
         25 ... 0.1475 0.14625 0.1475 ]
           warnings.warn(
                        GridSearchCV
Out[40]:
           estimator: DecisionTreeClassifier
                   ▶ DecisionTreeClassifier
In [41]:
         gridcv_tree.best_params_
          {'criterion': 'entropy',
Out[41]:
           max_depth': 11,
          'min_samples_leaf': 5,
          'min_samples_split': 3}
         joblib. dump(gridcv tree. best estimator, 'Model/tree problem6.pkl')
In [42]:
         ['Model/tree_problem6.pkl']
Out[42]:
         ## Third model: Randomforest Classifier
In [43]:
         random forest = RandomForestClassifier()
         random forest. get params()
```

'max_depth': max_depth,

```
{'bootstrap': True,
Out[43]:
            ccp_alpha': 0.0,
           'class_weight': None,
           'criterion': 'gini',
           'max depth': None,
           'max_features': 'sqrt',
           'max_leaf_nodes': None,
           'max_samples': None,
           'min_impurity_decrease': 0.0,
           'min_samples_leaf': 1,
           'min_samples_split': 2,
           'min_weight_fraction_leaf': 0.0,
           'n_estimators': 100,
           'n jobs': None,
           'oob_score': False,
           'random_state': None,
           'verbose': 0,
           'warm_start': False}
In [44]:
          num_of_tree = np. arange(50, 501, 50)
          param_grid = {'criterion': ["gini", "entropy", "log_loss"],
                       'n estimators': num_of_tree}
          gridcv_random_forest = GridSearchCV(random_forest,
                                              param_grid=param_grid,
                                              cv = 10,
                                              scoring='accuracy')
          gridcv_random_forest.fit(X_train_prepared, t_train)
In [45]:
                         GridSearchCV
Out[45]:
           ▶ estimator: RandomForestClassifier
                   ▶ RandomForestClassifier
          gridcv_random_forest.best_params_
In [46]:
          {'criterion': 'log_loss', 'n_estimators': 200}
Out[46]:
          joblib. dump(gridcv_random_forest.best_estimator_, 'Model/random_forest_problem6.pkl'
In [47]:
          ['Model/random_forest_problem6.pkl']
Out[47]:
 In [ ]:
```