Exercises(11) April 30, 2024

- 1. (7 points) Show that the Inverse Function Theorem by the Implicit Function Theorem.
- 2. (7 points) Let $f: \mathbb{R}^2 \to \mathbb{R}$ belong to class $C^1(\mathbb{R}^2, \mathbb{R})$. Show that f is not injective (one-to-one).
- 3. (10 points) For each of the following, find all (local) extremum values of f subject to the given constraints
 - (a) f(x, y, z) = xy, $x^2 + y^2 + z^2 = 1$ and x + y + z = 0;
 - (b) f(x, y, z, w) = 3x + y + w, $3x^2 + y + 4z^3 = 1$ and $-x^3 + 3z^4 + w = 0$.
- 4. (6 points) Let $F: \mathbb{R}^2 \to \mathbb{R}$ be defined by $F(x,y) = y^2 x$. Show that there does not exist a function ϕ defined on a neighborhood W of 0 such that $F(x,\phi(x)) = 0$ for all $x \in W$.