

Satellite Workshop

The stressor reactivity (SR) score: Basic methods and two use cases

Lara Puhlmann

Leibniz Institute for Resilience Research

Horizon 2020 European Union funding for Research & Innovation

Lets talk about stress

Capturing Resilience Dynamics

Resilience – outcome-based operationalization

Possibility 1: identify resilience factors

Possibility 2: identify resilience processes

Possibility 3: quantify resilience to life events

Possibility 4: quantify effects of resilience interventions

Resilience – outcome-based operationalization

Possibility 1: identify resilience factors

Possibility 2: identify resilience processes

Possibility 3: quantify resilience to life events

Possibility 4: quantify effects of resilience interventions

Basic methods

- E & P assessments (in different study designs)
- E-P-line building
- Different SR versions (for different analyses)

Prospective longitudinal studies And a generic solution for E and P monitoring

FIGURE 1 | Example design scheme employing the FRESHMO paradigm in combination with repeated assessment of resilience factors. Every 3 months (T1, T2, ...), exposure to macrostressors (life events, LEs) and microstressors (daily hassles, DHs) is assessed via self-report using online questionnaires. At the same online monitoring surveys, mental health problems P are reported. Every 1.5 years (B0, B1, B2, ...), subjects complete a testing battery for resilience factors.

Our studies

- LORA (Kalisch et al., 2021; Chmitorz et al., 2021)
- MARP (Kalisch et al., 2021)
- COVID samples
 - MARP-COVID
 - LORA-COVID (Ahrens et al., 2021)
 - DynaCORE-L (Bögemann et al., 2023)
 - DynaCORE-C (https://osf.io/5xq9p/#!), N=15790 (Veer et al., 2021)
 - HEROES (Petri-Romão, preprint)
- DynaMORE
 - DynaM-OBS (Wackerhagen et al., 2022)
 - DynaM-INT (Bögemann et al., 2023)

References

- Kalisch, R., Köber, G., Binder, H., Ahrens, K. F., Basten, U., Chmitorz, A., ... & Engen, H. (2021). The frequent stressor and mental health
 monitoring-paradigm: a proposal for the operationalization and measurement of resilience and the identification of resilience processes in
 longitudinal observational studies. Frontiers in Psychology, 12, 710493.
- Chmitorz, A., Neumann, R. J., Kollmann, B., Ahrens, K. F., Öhlschläger, S., Goldbach, N., ... & Reif, A. (2021). Longitudinal determination of resilience in humans to identify mechanisms of resilience to modern-life stressors: the longitudinal resilience assessment (LORA) study. *European archives of psychiatry and clinical neuroscience*, 271, 1035-1051
- Ahrens, K. F., Neumann, R. J., Kollmann, B., Brokelmann, J., Von Werthern, N. M., Malyshau, A., ... & Reif, A. (2021). Impact of COVID-19 lockdown on mental health in Germany: longitudinal observation of different mental health trajectories and protective factors. *Translational psychiatry*, 11(1), 392.
- Bögemann, S. A., Puhlmann, L. M., Wackerhagen, C., Zerban, M., Riepenhausen, A., Köber, G., ... & Kalisch, R. (2023). Psychological Resilience Factors and Their Association With Weekly Stressor Reactivity During the COVID-19 Outbreak in Europe: Prospective Longitudinal Study. JMIR Mental Health, 10(1), e46518.
- Petri-Romão, P., Puhlmann, L., Martínez-Alés, G., Martínez-Morata, I., Moreno-Küstner, B., Fernández-Jiménez, E., ... & Mediavilla13, R. (2023). Occupational resilience factors among healthcare workers during the COVID-19 pandemic: a 2-year prospective cohort study. OSF Preprints. October, 11.
- Veer, I. M., Riepenhausen, A., Zerban, M., Wackerhagen, C., Puhlmann, L. M., Engen, H., ... & Kalisch, R. (2021). Psycho-social factors associated with mental resilience in the Corona lockdown. *Translational psychiatry*, 11(1), 67.
- Wackerhagen, C., Veer, I., van Leeuwen, J., Bögemann, S., Mor, N., Puhlmann, L., ... & Walter, H. (2022). Study protocol description: Dynamic Modelling of Resilience-Observational Study (DynaM-OBS).
- Bögemann, S. A., Riepenhausen, A., Puhlmann, L. M. C., Bar, S., Hermsen, E. J. C., Mituniewicz, J., ... & Walter, H. (2023). Investigating two
 mobile just-in-time adaptive interventions to foster psychological resilience: research protocol of the DynaM-INT study. *BMC psychology*,
 11(1), 245.

Our studies

- LORA (Kalisch et al., 2021; Chmitorz et al., 2021)
- MARP (Kalisch et al., 2021)
- COVID samples
 - MARP-COVID
 - LORA-COVID (Ahrens et al., 2021)
 - DynaCORE-L (Bögemann et al., 2023)
 - DynaCORE-C (https://osf.io/5xq9p/#!), N=15790 (Veer et al., 2021)
 - HEROES (Petri-Romão, preprint)
- DynaMORE
 - DynaM-OBS (Wackerhagen et al., 2022)
 - DynaM-INT (Bögemann et al., 2023)

The longitudinal resilience assessment (LORA) study

Resilience in the general population

- Inclusion age: 18-50 yrs
- N=1191 healthy participants
- N=738 complete datasets at year 3

FIGURE 1 | Example design scheme employing the FRESHMO paradigm in combination with repeated assessment of resilience factors. Every 3 months (T1, T2, ...), exposure to macrostressors (life events, LEs) and microstressors (daily hassles, DHs) is assessed via self-report using online questionnaires. At the same online monitoring surveys, mental health problems P are reported. Every 1.5 years (B0, B1, B2, ...), subjects complete a testing battery for resilience factors.

Basic methods

- E & P assessments (in different study designs)
- E-P-line building
- Different SR versions

Basic methods

- E & P assessments (in different study designs)
- E-P-line building
- Different SR versions

The longitudinal resilience assessment (LORA) study

Resilience in the general population

- Inclusion age: 18-50 yrs
- N=1191 healthy participants
- N=738 complete datasets at year 3

Note. NP battery: neuropsychological testing battery.

The longitudinal resilience assessment (LORA) study

Resilience in the general population

- Inclusion age: 18-50 yrs
- N=1191 healthy participants
- N=738 complete datasets at year 3

Table 1 (a) Questionnaires and (b) neuropsychological tests used in the LORA study

(a) Questionnaires					
Торіс	Questionnaire	В	F	3m	#1
Mental health	General health questionnaire-28 (GHQ-28) [18, 19]	х	х	х	28
	Health questionnaire for patients (PHQ-D) [20, 21]	X	X		16
	Mini international neuropsychiatric interview (M.I.N.I.) [16, 17]	X	X		
Micro- and macrostressors					
History of critical life events	Life events checklist from LHC (adapted from Canli et al. [22])	X	x	x	27
Daily hassles	Mainz Inventory of Microstressors (MIMS) [23, 24]	X	X	X	58
Childhood Trauma	Childhood trauma questionnaire (CTQ) [26, 27]	X	X		25
Perceived stress	Perceived stress scale (PSS) [28]; unpublished translation by A. Büss- ing, University of Witten/Herdecke	x	x	X	10
Maltreatment and abuse	Maltreatment and abuse chronology of exposure (MACE) [29]		X		18
Trauma	Harvard trauma questionnaire (HTQ) [30]		x		35
Psychological variables					

...

Chmitorz et al., 2021

Mainz Resilience Project (MARP)

Transition from adolescence (school, family life) to adulthood (work life)

- Inclusion age: 18 19 yrs
- Significant past adverse life events (>=3)
- N=167

FIGURE 1 Example design scheme employing the FRESHMO paradigm in combination with repeated assessment of resilience factors. Every 3 months (T1, T2, ...), exposure to macrostressors (life events, LEs) and microstressors (daily hassles, DHs) is assessed via self-report using online questionnaires. At the same online monitoring surveys, mental health problems P are reported. Every 1.5 years (B0, B1, B2, ...), subjects complete a testing battery for resilience factors.

MARP COVID

Transition from adolescence (school, family life) to adulthood (work life)

- Inclusion age: 18 19 yrs
- Significant past adverse life events (>=3)
- N=167

MARP study

MARP-COVID study extension

MARP COVID

Outcome

- Mental health problems (P):
 - General Health Questionnaire-28
- Stressor exposure (E)
 - Daily hassles
 - Corona hassles

Types of stressor exposure (E)

Daily hassles

Discrimination or mobbing by another person (including social media)

Problem with a pet (eg, diseases, bad behavior)

Covid hassles

Corona-related media coverage

Not being able to perform leisure activities.

Data variance

E (DHs)

D	$(\Box \Box)$	
		IW)

	Mean + SD	ICC	SD (within)	Range (within)
DynaC ORE-L	43.8 ± 20.4	0.65	11.0	-42.5 - 44.7
Lora COVID	45.6 ± 23.6	0.75	10.6	-41 - 114
MARP	52.9± 27	0.52	16.6	-59.5 - 69.3
LORA	61.5± 29.0	0.38	16.3	-119 - 262

	Mean + SD	ICC	SD (within)	Range (within)
DynaC ORE-L	14.4 ± 5.9	0.69	2.97	-13.3- 13.3
Lora COVID	16.6 ± 8.66	0.54	5.30	-24.5 – 33-7
MARP	23.14 ± 11.8	0.35	8.53	-29.6 - 32.8
LORA	19.6 ± 9.67	0.33	7.18	-27.1 - 54.3

LORA COVID

Ahrens et al., 2021

DynaCORE-L

	Assessment	Т	0	Follow-Up 1	Follow-Up 2	Follow-Up 3	Follow-Up 4	Follow-Up 5
	Weeks since BL	(0	1	2	3	4	5
	Resilience Factor measures							
RF Types	RF Style (RF _S) RF Trait (RF _T) RF Mode (RF _M)	PA _S OPT _T REC _S PSS _S CSS _M BC _S	PAC _M GSE _M PSS _M	PA _M PAC _M GSE _M PSS _M BC _M	PA _M PAC _M GSE _M PSS _M BC _M	PA _M PAC _M GSE _M PSS _M BC _M	PA _M PAC _M GSE _M PSS _M BC _M	PA _M PAC _M GSE _M PSS _M BC _M
		NEU _T			Avera	ge weekly mode		

Bögemann et al., 2023

SR score based on other symptom measures

PCA Component loadings		Component
STS		.61
	ProQoL: CF/STS	.59
	ProQoL: CF/Burnout	.53

N= 569 psychotherapists during the COVID pandemic

Abbreviations: STS, Secondary Trauma Stress Scale; CF/STS, Compassion Fatigue/Secondary Trauma Stress Scale; ProQoL marks scales of the Professional Quality of Life Questionnaire

Zerban, Puhlmann et al., 2024

Key: relationship between stressor exposure and mental health

FRESHMO paradigm: frequent stressor and menta

→ Stressors affect mental

Basic methods

- E & P assessments (in different study designs)
 - E & P measures (according to sample)
 - Measurement spacing (feasibility, research question)
- E-P-line building
- Different SR versions

Basic methods

- E & P assessments (in different study designs)
 - E & P measures (according to sample)
 - Measurement spacing (feasibility, research question)
- E-P-line building
- Different SR versions

Linear vs non-linear line

Choose the best fitting line (based on model comparison)

Contribution of different stressors?

Basic methods

- E & P assessments (in different study designs)
 - E & P measures (according to sample)
 - Measurement spacing (feasibility, research question)
- E-P-line building
 - non-linearity (quadratic)
 - conceptual / data driven
- Different SR versions

Basic methods

- E & P assessments (in different study designs)
 - E & P measures (according to sample)
 - Measurement spacing (feasibility, research question)
- E-P-line building
 - non-linearity (quadratic)
 - conceptual / data driven
- Different SR versions

Resilience Processes independent of life events

The **Lo**ngitudinal **R**esilience **A**ssessment (LORA) Study

Resilience in the general population

- Inclusion age: 18-50 yrs
 - N=738 complete datasets
 - Data collection 2016-2022

Online monitoring:

Mental health problems Stressors (major life events, daily hassles)

Stressor reactivity (SR) score

M = month

B0

SR

- long-term
- sliding window
- single timpoint

Data variance

SR sliding window

	ICC	SD (within)	Range (within)
DynaC ORE-L	0.89	0.38	-1.61 - 1.76
Lora COVID	0.74	0.46	- 2.6 - 2.53
MARP	0.70	0.48	-1.81 - 2.53
LORA	0.67	0.53	-3.13 - 3.69

SR single TP

	ICC	SD (within)	Range (within)
DynaC ORE-L	0.65	0.54	-2.14 - 2.62
Lora COVID	0.51	0.63	-2.96- 4.46

Resilience Processes independent of life events

The **Lo**ngitudinal **R**esilience **A**ssessment (LORA) Study

Resilience in the general population

- Inclusion age: 18-50 yrs
 - N=738 complete datasets
 - Data collection 2016-2022

Online monitoring:

Mental health problems
Stressors (major life events, daily hassles)

Stressor reactivity (SR) score

B0

SR

- long-term → long term RFs
- sliding window → smoothed time series
- single timpoint → time series, covariance

Which factors are Resilience Factors (RFs)?

Baseline RF predicting SR over 3 years

Resilience Processes independent of life events

The **Lo**ngitudinal **R**esilience **A**ssessment (LORA) Study

Resilience in the general population

- Inclusion age: 18-50 yrs
- N=738 complete datasets
- Data collection 2016-2022

Online monitoring:

Mental health problems Stressors (major life events, daily hassles)

Stressor reactivity (SR) score

SR

B0

- long-term → long term RFs
- sliding window → smoothed time series
- single timpoint → time series, covariance

RF → **SR**: Stable or variable association?

β RF \rightarrow SR in separate regressions

RF → **SR**: Stable or variable association?

RFs

reappraisal (CERQ)

reappraisal (COPE)

Cogn. flexibility Positive

Positive affect

Optimism

RFs

Active coping

Perc. social support

General self

Internal locus of control

efficacy

More variable RFs...

β / regression -0.3 **-**-0.4

...to more stable RFs

Resilience Processes independent of life events

The **Lo**ngitudinal **R**esilience **A**ssessment (LORA) Study

Resilience in the general population

- Inclusion age: 18-50 yrs
 - N=738 complete datasets
- Data collection 2016-2022

Updating RF measurements improves association

 $\beta RF \rightarrow SR$ in separate regressions

Resilience factors

Weakening of RF → SR association per sliding window

0.005 -

0.000 -

Puhlmann, Ahrens, et al., in prep

Updating RF measurements improves association

Updating: $SR_{M21-M27} = \beta_1 SR_{M03-M09} + \beta_2 RF_{B0} + \beta_3 RF_{B1}$

Controlling for covariates age + gender + ctq + lifetime life events

Resilience – outcome-based operationalization

Possibility 1: identify resilience factors

Possibility 2: identify resilience processes

Possibility 3: quantify resilience to life events

Possibility 4: quantify effects of resilience interventions

MARP COVID

Transition from adolescence (school, family life) to adulthood (work life)

- Inclusion age: 18 19 yrs
- Significant past adverse life events (>=3)
- N=167

MARP study

MARP-COVID study extension

E and P vary longitudinally across stressful phases

Mental health problems (P)

Stressor exposure (E)

P~Eline

Stressor reactivity (SR)

E and P vary longitudinally across stressful phases

- Design: Prospective cohort study. Three waves: 2020, 2021, and 2022.
- Participants: HCWs aged 18 years or more working in Spain.
 - Wave 1 = 2,300 people; Wave 2 = 1,800 people; Wave 3 = 600 people. Participants with all assessment waves = 330.

Mental health problems (P) Stressor exposure (E) Stressor reactivity (SR)

→ The SR score successfully accounts for systematic changes in E

Wave 1 (Apr-Jun 2020)Wave 2 (Jan-Mar 2021)Wave 3 (Mar-May 2022)

Assessment wave

Wave 1 (Apr-Jun 2020)Wave 2 (Jan-Mar 2021)Wave 3 (Mar-May 2022)

Assessment wave

Wave 1 (Apr-Jun 2020)Wave 2 (Jan-Mar 2021)Wave 3 (Mar-May 2022)

Assessment wave

Petri-Romão, Puhlmann, et al., 2023

RESPOND

10th Resilience Symposium, 24-09-2024

E and P vary longitudinally across stressful phases

	Wave 2 (Ja	an-Mar 2021)	Wave 3 (M	lar-May 2022)
	Crude B (95% CI)	Adjusted B (95% CI)	Crude B (95% CI)	Adjusted B (95% CI)
Prioritization instructions	-0.03 (-0.28, 0.22)	0.02 (-0.23, 0.27)	0.06 (-0.29, 0.42)	0.08 (-0.29, 0.44)
Support from colleagues	-0.24 (-0.35, -0.14)	-0.25 (-0.35, -0.14)	-0.12 (-0.25, 0.02)	-0.14 (-0.28, 0)
Trust in the workplace	-0.13 (-0.2, -0.05)	-0.11 (-0.19, -0.03)	-0.12 (-0.22, -0.02)	-0.15 (-0.25, -0.04)

Note. Estimates were adjusted for age and gender (adjusted Bs)

Petri-Romão, Puhlmann, et al., 2023

RESPOND

Basic methods

- E & P assessments (in different study designs)
 - E & P measures (according to sample)
 - Measurement spacing (feasibility, research question)
- E-P-line building
 - non-linearity (quadratic)
 - conceptual / data driven

Different SR versions

- long-term / phases
- sliding window
- single timepoint
 - → different analyses

Special thanks to:

Collaborators

Kira Ahrens
Charlotte Schenk
Rebecca Neumann
Bianca Kollmann
Michael Pflichta
Andreas Reif
Oliver Tüscher
Jennifer Piloth
Göran Köber
Ulrike Basten
Michelle Wessa
Michèle Wessa
Anita Schick

RG Kalisch

Prof Raffael Kalisch
Elena Andres
Manuela Götz
Maximilian Lückel
Benjamin Meyer
Papoula Petri-Romao
Martina Thiele
Kenneth SL Yuen
Matthias Zerban
Haakon Engen

Horizon 2020 European Union funding for Research & Innovation

Further references

Kalisch, R., Köber, G., Binder, H., Ahrens, K. F., Basten, U., Chmitorz, A., ... & Engen, H. (2021). The frequent stressor and mental health monitoring-paradigm: a proposal for the operationalization and measurement of resilience and the identification of resilience processes in longitudinal observational studies. *Frontiers in Psychology*, *12*, 710493.

Ahrens, K. F., Neumann, R. J., Kollmann, B., Brokelmann, J., Von Werthern, N. M., Malyshau, A., ... & Reif, A. (2021). Impact of COVID-19 lockdown on mental health in Germany: longitudinal observation of different mental health trajectories and protective factors. *Translational psychiatry*, *11*(1), 392.

Zerban, M.*, Puhlmann, L.M.C.*, Lassri, D., Fonagy, P., Montague, P.R., Kiselnikova, N., Lorenzini, N., Desatnik, A., Kalisch, R., & Nolte, T. (2023). What Helps the Helpers? Resilience and Risk Factors for General and Profession-Specific Mental Health Problems in Psychotherapists during the COVID-19 Pandemic. *Frontiers in Psychology*, *14*, 1272199.

Bögemann, S.A.*, Puhlmann, L.M.C.*, Wackerhagen, C.*, Zerban, M.*, et al. (2023) Psychological resilience factors and their association with weekly stressor reactivity during the COVID-19 outbreak in Europe. *JMIR Mental Health*, *10*(1), e46518

Petri-Romão, P.*, Puhlmann, L.M.C.*, Martínez-Alés, G., Martínez-Morata, I., Moreno-Küstner, B., Fernández-Jiménez, E., ... & Mediavilla, R. Occupational resilience factors among healthcare workers during the COVID-19 pandemic: a 2-year prospective cohort study. doi:10.31219/osf.io/8pf52