# Metody Obliczeniowe w Nauce i Technice

# Rozwiązywanie układów równań metodami bezpośrednimi

# I. Dane techniczne sprzętu

Obliczenia zostały wykonane na komputerze o następujących parametrach:

Procesor: AMD Ryzen 7 4700U (8 rdzeni, 8 wątków),

Pamięć RAM: 16 GB 3200 MHz

# II. Zadanie 1

# 1. Wprowadzenie

# 1.1. Opis problemu

Dany jest układ równań liniowych Ax = b. Macierz A składa się z elementów, wyznaczanych zgodnie z poniższym wzorem:

$$\begin{cases} a_{1,j} = 1 \\ a_{i,j} = \frac{1}{i+j-1} \; \mathrm{dla} \; i \neq 1 \end{cases} \quad \mathrm{gdzie} \; i,j = 1,\ldots,n$$

(1.1.1.)

Za wektor x przyjęta miała zostać dowolna n-elementowa permutacja liczb ze zbioru  $\{-1,1\}$ , a następnie, wykorzystując wektor x, obliczony miał zostać wektor b.

W kolejnym kroku, dla znanych wartości macierzy A oraz wektora b (takich, jak otrzymane w poprzednim kroku zadania) obliczony miał zostać wektor x. Tak obliczony wektor x miał zostać następnie porównany z zadanym wcześniej wektorem x i sprawdzone miały zostać błędy zaokrągleń. Obliczenia miały zostać przeprowadzone dla różnych rozmiarów układu równań (różnych wartości n). Na koniec, należało sprawdzić uwarunkowanie analizowanego układu równań.

# 2. Kryterium pomiaru błędu

#### 2.1. Norma maksimum

Jako kryterium, według którego wyznaczałem wartości błędów dla obliczonego wektora x, porównując go ze wcześniej zadanym wektorem x, skorzystałem z normy maksimum. Błąd był zatem wyznaczany jako maksymalna wartość spośród wartości bezwzględnych różnic kolejnych współrzędnych wektorów. Sposób wyznaczania błędu można zapisać, przy pomocy wzoru:

$$\max_{i=1,\dots,n}\{|x_i-\overline{x_i}|\}$$

gdzie:

 $x_i - i$ . współrzędna wyznaczonego wektora  $x_i$ 

 $\overline{x_i} - i$ . współrzędna zadanego wektora x.

(1.2.1.)

# 3. Opracowanie zagadnienia

## 3.1. Metoda postępowania

Program zastosowany do rozwiązania problemu napisałem w języku Python. Korzystałem z biblioteki numpy, która pozwala na użycie liczb zmiennoprzecinkowych o różnej precyzji. Wykorzystałem zmienne 2 różnych precyzji: float32 oraz float64 (odpowiednio 32-bitowy oraz 64-bitowy) do wyznaczenia znanych wartości macierzy A oraz wektora b. Obliczenia przeprowadzałem dla kolejnych wartości n z przedziału 2-200. Przyjęty wektor x miał postać  $x=[-1,1,-1,1,-1,\dots]$ , czyli składał się z na przemian występujących wartości -1 oraz 1.

## 3.2. Wartości błędów oraz czasy obliczeń wektora x

#### 3.2.1. Wykresy błędów obliczeń

Poniżej umieściłem wykresy błędów obliczeń dla zmiennych typu float32 oraz float64.

Jak możemy zauważyć, początkowo błędy rosną szybko i systematycznie (widać to dokładnie na wykresie w skali logarytmicznej), a więc zwiększanie wartości n powoduje wzrost błędów.

Możemy także zauważyć, że przy wartości n wynoszącej 8 dla typu float32 oraz 13 dla typu float64, wartości błędów przestają tak gwałtownie rosnąć, a błędy są coraz bardziej losowe (jest to rezultat złego uwarunkowania).

Również dla n < 13 widzimy, że błędy dla zmiennych typu float32 są większe niż dla zmiennych typu float64. Dla większych wartości n ta tendencja już nie występuje.

#### • Wykres w skali liniowej dla n=2,...,200 (wartości błędów)



Rys. 1.3.2.1. Wykres błędów dla n od 2 do 200 (skala liniowa)

#### • Wykres w skali logarytmicznej dla n=2,...,200 (wartości błędów)



Rys. 1.3.2.2. Wykres błędów dla n od 2 do 200 (skala logarytmiczna)

#### • Wykres w skali liniowej dla n = 2, ..., 20 (wartości błędów)



Rys. 1.3.2.3. Wykres błędów dla n od 2 do 20 (skala liniowa)

#### • Wykres w skali logarytmicznej dla n = 2, ..., 20 (wartości błędów)



Rys. 1.3.2.4. Wykres błędów dla n od 2 do 20 (skala logarytmiczna)

#### 3.2.2. Wykres czasów obliczeń

Poniżej umieściłem wykres czasów obliczeń dla zmiennych typu float32 oraz float64.

Pomiaru czasu wykonałem, przy pomocy funkcji perf\_counter z bibilioteki time w Pythonie, pozwalającą na pomiar czasu z bardzo wysoką precyzją.

Ponieważ algorytm eliminacji Gaussa ma złożoność wielomianową (dokł.  $O(n^3)$ ), obserwujemy wykres o kształcie zgodnym z oczekiwaniami. Widzimy, że zwiększanie wartości n powoduje wzrost czasu obliczeń. W przypadku zmiennych obu precyzji, wzrost czasu obliczeń jest bardzo zbliżony.



Rys. 1.3.2.5. Wykres czasów obliczeń wektora dla n od 2 do 200 (skala liniowa)

# 3.2.3. Zestawienie błędów oraz czasów obliczeń

W tabeli zamieszczonej niżej znajdują się błędy oraz czasy obliczeń dla typów float32 oraz float64. W pierwszej tabeli umieściłem rezultaty dla wartości n od 2 do 50, natomiast w kolejnej, znajdują się wartości dla  $n=10,20,\dots,200$ .

| Wartość n | B           | łędy        | Czasy       | Czasy obliczeń [s] |  |  |
|-----------|-------------|-------------|-------------|--------------------|--|--|
|           | float32     | float64     | float32     | float64            |  |  |
| 2         | 0,00000E+00 | 0,00000E+00 | 1,78000E-04 | 1,50100E-04        |  |  |
| 3         | 2,08616E-06 | 0,00000E+00 | 9,38000E-05 | 6,11000E-05        |  |  |
| 4         | 1,19209E-07 | 2,36478E-13 | 5,34000E-05 | 3,92000E-05        |  |  |
| 5         | 2,15411E-04 | 6,51357E-12 | 3,10500E-04 | 5,79000E-05        |  |  |
| 6         | 2,23271E-02 | 2,48666E-10 | 9,59000E-05 | 7,66000E-05        |  |  |
| 7         | 2,25690E-01 | 9,43695E-09 | 2,36500E-04 | 9,63000E-05        |  |  |
| 8         | 6,13139E+00 | 7,98740E-08 | 1,48600E-04 | 1,50600E-04        |  |  |
| 9         | 1,36161E+01 | 3,42392E-07 | 2,16700E-04 | 1,87600E-04        |  |  |
| 10        | 6,49310E+00 | 1,05293E-04 | 2,64600E-04 | 2,20000E-04        |  |  |
| 11        | 8,97018E+00 | 7,64796E-03 | 3,01200E-04 | 2,69700E-04        |  |  |
| 12        | 1,39067E+01 | 7,19864E-01 | 5,89900E-04 | 3,05200E-04        |  |  |
| 13        | 7,66610E+01 | 1,25322E+01 | 5,74200E-04 | 3,53300E-04        |  |  |
| 14        | 3,12784E+00 | 1,19926E+01 | 4,90200E-04 | 4,02200E-04        |  |  |
| 15        | 7,34302E+00 | 9,06911E+00 | 5,48200E-04 | 4,59500E-04        |  |  |
| 16        | 9,04856E+00 | 1,56372E+01 | 6,01500E-04 | 5,15300E-04        |  |  |
| 17        | 1,33554E+01 | 1,44139E+01 | 6,74800E-04 | 5,78000E-04        |  |  |
| 18        | 5,02067E+01 | 1,35004E+01 | 7,36700E-04 | 6,46100E-04        |  |  |
| 19        | 2,79621E+01 | 5,21564E+01 | 8,27800E-04 | 7,08800E-04        |  |  |
| 20        | 9,07050E+00 | 4,03456E+02 | 9,15300E-04 | 7,86200E-04        |  |  |
| 21        | 2,95725E+01 | 3,50990E+01 | 9,89100E-04 | 8,48700E-04        |  |  |
| 22        | 1,10628E+01 | 3,17171E+01 | 1,15410E-03 | 9,28700E-04        |  |  |
| 23        | 2,59931E+01 | 2,82740E+01 | 1,67490E-03 | 1,00560E-03        |  |  |
| 24        | 8,16652E+01 | 5,61458E+01 | 1,36310E-03 | 1,08240E-03        |  |  |
| 25        | 1,07535E+01 | 1,08448E+02 | 1,42840E-03 | 1,15010E-03        |  |  |
| 26        | 1,68614E+01 | 4,41860E+01 | 1,56570E-03 | 1,24360E-03        |  |  |
| 27        | 1,29021E+01 | 4,92055E+01 | 1,69770E-03 | 1,34110E-03        |  |  |
| 28        | 4,82137E+01 | 6,22804E+02 | 1,92070E-03 | 1,42380E-03        |  |  |
| 29        | 8,50908E+01 | 2,09196E+02 | 2,03660E-03 | 1,48840E-03        |  |  |
| 30        | 1,90770E+02 | 7,30665E+01 | 2,19170E-03 | 1,59920E-03        |  |  |
| 31        | 1,89783E+02 | 9,16385E+01 | 2,28950E-03 | 1,67000E-03        |  |  |
| 32        | 1,97260E+02 | 3,50967E+01 | 2,40160E-03 | 3,07380E-03        |  |  |
| 33        | 5,00214E+01 | 3,39045E+01 | 2,56700E-03 | 1,82230E-03        |  |  |
| 34        | 2,33014E+01 | 2,27654E+02 | 2,70620E-03 | 1,96270E-03        |  |  |
| 35        | 2,18943E+01 | 2,10305E+02 | 3,07700E-03 | 2,02460E-03        |  |  |
| 36        | 1,89606E+01 | 1,30375E+02 | 3,10980E-03 | 2,12520E-03        |  |  |
| 37        | 2,23685E+01 | 1,65740E+02 | 3,22980E-03 | 2,20270E-03        |  |  |

| <i>38</i> | 8,90380E+02 | 1,61622E+02 | 3,36600E-03 | 2,29870E-03 |
|-----------|-------------|-------------|-------------|-------------|
| <b>39</b> | 2,31892E+03 | 6,09164E+01 | 3,51470E-03 | 2,46900E-03 |
| 40        | 8,61740E+01 | 8,95872E+01 | 6,77080E-03 | 2,55320E-03 |
| 41        | 2,10694E+02 | 2,25021E+02 | 3,72290E-03 | 2,65580E-03 |
| 42        | 7,98876E+01 | 1,22925E+02 | 3,95280E-03 | 2,77260E-03 |
| 43        | 3,73795E+01 | 1,28931E+02 | 4,13090E-03 | 2,89570E-03 |
| 44        | 2,38405E+01 | 1,60580E+02 | 4,65210E-03 | 3,41920E-03 |
| 45        | 1,47576E+01 | 1,67700E+02 | 4,57760E-03 | 3,16530E-03 |
| 46        | 2,48722E+01 | 3,37335E+02 | 4,70960E-03 | 3,27980E-03 |
| 47        | 2,51772E+01 | 2,15019E+03 | 4,99200E-03 | 3,42120E-03 |
| 48        | 3,91334E+01 | 5,85814E+02 | 5,79060E-03 | 3,73410E-03 |
| 49        | 3,86557E+01 | 1,95478E+03 | 6,16150E-03 | 3,75340E-03 |
| <i>50</i> | 5,36307E+04 | 8,68574E+01 | 5,69230E-03 | 3,88320E-03 |

Tabela. 1.3.2.1. Błędy obliczeń oraz czasy obliczeń dla zmiennych typu float32 oraz float64 dla n od 2 do 50

| Wartość n | Błędy       |             | Czasy ob    | oliczeń [s] |
|-----------|-------------|-------------|-------------|-------------|
|           | float32     | float64     | float32     | float64     |
| 10        | 6,49310E+00 | 1,05293E-04 | 2,64600E-04 | 2,20000E-04 |
| 20        | 9,07050E+00 | 4,03456E+02 | 9,15300E-04 | 7,86200E-04 |
| 30        | 1,90770E+02 | 7,30665E+01 | 2,19170E-03 | 1,59920E-03 |
| 40        | 8,61740E+01 | 8,95872E+01 | 6,77080E-03 | 2,55320E-03 |
| <b>50</b> | 5,36307E+04 | 8,68574E+01 | 5,69230E-03 | 3,88320E-03 |
| 60        | 7,35694E+02 | 8,12254E+01 | 6,52800E-03 | 6,92140E-03 |
| 70        | 9,47871E+01 | 3,31843E+02 | 7,48450E-03 | 9,43840E-03 |
| 80        | 3,42387E+01 | 1,48167E+02 | 9,05910E-03 | 9,45060E-03 |
| 90        | 1,55563E+02 | 4,49830E+02 | 1,18283E-02 | 1,34759E-02 |
| 100       | 3,64353E+03 | 1,16070E+03 | 1,72337E-02 | 1,54185E-02 |
| 110       | 2,52172E+02 | 3,99993E+02 | 1,76586E-02 | 1,96668E-02 |
| 120       | 2,40383E+02 | 6,11717E+02 | 2,07530E-02 | 2,14355E-02 |
| 130       | 1,11719E+02 | 6,00331E+02 | 3,24732E-02 | 2,82663E-02 |
| 140       | 2,14922E+02 | 1,87185E+03 | 2,94651E-02 | 3,35882E-02 |
| 150       | 1,49628E+02 | 1,03845E+03 | 3,64063E-02 | 3,95805E-02 |
| 160       | 1,59070E+03 | 2,11011E+03 | 4,02386E-02 | 4,31207E-02 |
| 170       | 2,69813E+02 | 3,28303E+03 | 4,36442E-02 | 5,60826E-02 |
| 180       | 2,45832E+02 | 2,00272E+03 | 5,13689E-02 | 5,32187E-02 |
| 190       | 3,55095E+02 | 7,11754E+02 | 5,18677E-02 | 5,28184E-02 |
| 200       | 1,45109E+03 | 6,23205E+02 | 7,06219E-02 | 5,96166E-02 |

Tabela. 1.3.2.2. Błędy obliczeń oraz czasy obliczeń dla zmiennych typu float32 oraz float64 dla wybranych wartości n

# III. Zadanie 2

# 1. Wprowadzenie

# 1.1. Opis problemu

Problem jest analogiczny do tego z zadania 1. W tym przypadku jednak obliczenia należało wykonać dla macierzy zdanej wzorem:

$$\begin{cases} a_{1,j}=1\\ a_{i,j}=\frac{1}{i+j-1} \text{ dla } i\neq 1 \end{cases} \quad \text{gdzie } i,j=1,\ldots,n$$

# 2. Kryterium pomiaru błędu

Analogicznie, jak w zadaniu 1., do pomiaru błędu wykorzystałem normę maksimum, opisaną w punkcie 2.1.

# 3. Opracowanie zagadnienia

# 3.1. Metoda postępowania

Postępowanie jest analogiczne, jak w poprzednim zadaniu.

# 3.2. Wartości błędów oraz czasy obliczeń wektora x

# 3.2.1. Wykresy błędów obliczeń

Poniżej umieściłem wykresy błędów obliczeń dla zmiennych typu float32 oraz float64.

Jak możemy zauważyć, wartości błędów dla zmiennych typu float32 rosną znacznie szybciej niż dla bardziej dokładnego typu, jakim jest float64. Analizując wykres w skali logarytmicznej, możemy dojść do wniosku, że największy wpływ na błąd ma w tym przypadku błąd zaokrąglenia, związany faktem, iż typ 32-bitowy jest w stanie pomieścić mniej cyfr liczby niż typ 64-bitowy.

#### • Wykres w skali liniowej dla n = 2, ..., 1000 (wartości błędów)



Rys. 2.3.2.1. Wykres błędów dla n od 2 do 1000 (skala liniowa)

#### • Wykres w skali logarytmicznej dla n = 2, ..., 1000 (wartości błędów)



Rys. 2.3.2.2. Wykres błędów dla n od 2 do 1000 (skala logarytmiczna)

#### 3.2.2. Wykres czasów obliczeń

Poniżej umieściłem wykresy czasów obliczeń dla zmiennych typu float32 oraz float64. Możemy zauważyć, że czas obliczeń dla zmiennych typu float64 rośnie nieznacznie szybciej niż czas obliczeń dla zmiennych typu float32.



Rys. 2.3.2.3. Wykres czasów obliczeń wektora dla n od 2 do 1000 (skala liniowa)

#### 3.2.3. Zestawienie błędów oraz czasów obliczeń

Tak, jak poprzednio, zamieściłem poniżej 2 tabele. W pierwszej z nich znajdują się rezultaty dla n od 2 do 50, a w drugiej dla n=10,20,...,1000.

Widzimy, że w przypadku tego układu równań, precyzja uzyskanych wyników jest bardzo wysoka, a błędy, dla zmiennych typu float64 są rzędu  $10^{-10}$  dla n=1000.

Podobnie, jak widzieliśmy na wykresach, możemy zobaczyć w poniższych tabelach, że błędy dla typu float32 są znacznie większe niż dla float64.

| Wartość n | Błę         | dy          | Czasy obliczeń [s] |             |  |
|-----------|-------------|-------------|--------------------|-------------|--|
|           | float32     | float64     | float32            | float64     |  |
| 2         | 0,00000E+00 | 0,00000E+00 | 1,74100E-04        | 5,95000E-05 |  |
| 3         | 1,19209E-07 | 2,22045E-16 | 6,37000E-05        | 3,16000E-05 |  |
| 4         | 1,19209E-07 | 2,22045E-16 | 2,56900E-04        | 4,75000E-05 |  |
| 5         | 1,19209E-07 | 3,33067E-16 | 1,06400E-04        | 6,15999E-05 |  |
| 6         | 2,98023E-07 | 6,66134E-16 | 2,52300E-04        | 7,48000E-05 |  |
| 7         | 1,07288E-06 | 1,33227E-15 | 1,59900E-04        | 1,00000E-04 |  |
| 8         | 1,19209E-06 | 3,77476E-15 | 2,66500E-04        | 1,20000E-04 |  |
| 9         | 1,07288E-06 | 2,66454E-15 | 2,26000E-04        | 1,44700E-04 |  |
| 10        | 3,09944E-06 | 1,66533E-15 | 2,57600E-04        | 1,74700E-04 |  |
| 11        | 2,74181E-06 | 2,44249E-15 | 3,20200E-04        | 2,08800E-04 |  |
| 12        | 5,12600E-06 | 1,17684E-14 | 3,51100E-04        | 2,48500E-04 |  |
| 13        | 6,67572E-06 | 1,24345E-14 | 4,16700E-04        | 2,80400E-04 |  |
| 14        | 7,33137E-06 | 1,28786E-14 | 4,59100E-04        | 3,23600E-04 |  |
| 15        | 7,45058E-06 | 1,62093E-14 | 5,30400E-04        | 3,70800E-04 |  |
| 16        | 5,48363E-06 | 2,02061E-14 | 5,98200E-04        | 4,13400E-04 |  |
| 17        | 5,90086E-06 | 2,02061E-14 | 1,09120E-03        | 7,71300E-04 |  |
| 18        | 6,19888E-06 | 2,02061E-14 | 7,46000E-04        | 5,20200E-04 |  |
| 19        | 5,60284E-06 | 2,15383E-14 | 8,04200E-04        | 6,01000E-04 |  |
| 20        | 9,05991E-06 | 2,46470E-14 | 9,00700E-04        | 6,29800E-04 |  |
| 21        | 1,09076E-05 | 2,13163E-14 | 1,10970E-03        | 6,86200E-04 |  |
| 22        | 1,54376E-05 | 2,62013E-14 | 1,06950E-03        | 7,60500E-04 |  |
| 23        | 1,79410E-05 | 2,19824E-14 | 1,14450E-03        | 8,23900E-04 |  |
| 24        | 1,77026E-05 | 1,79856E-14 | 1,25290E-03        | 8,91200E-04 |  |
| 25        | 1,50800E-05 | 1,73195E-14 | 1,34860E-03        | 9,62000E-04 |  |
| 26        | 1,85370E-05 | 2,06501E-14 | 1,47110E-03        | 1,68230E-03 |  |
| 27        | 1,60933E-05 | 1,86517E-14 | 1,62280E-03        | 1,15790E-03 |  |
| 28        | 1,51396E-05 | 5,32907E-14 | 1,71940E-03        | 1,19680E-03 |  |
| 29        | 2,49147E-05 | 5,92859E-14 | 1,85050E-03        | 1,27810E-03 |  |
| 30        | 2,69413E-05 | 4,86278E-14 | 1,98870E-03        | 1,36730E-03 |  |
| 31        | 2,38419E-05 | 5,63993E-14 | 2,07120E-03        | 1,45790E-03 |  |
| 32        | 1,50800E-05 | 6,99441E-14 | 2,20550E-03        | 1,55600E-03 |  |
| 33        | 1,87159E-05 | 6,70575E-14 | 2,37570E-03        | 1,64720E-03 |  |
| 34        | 1,88947E-05 | 6,86118E-14 | 2,48180E-03        | 1,75830E-03 |  |

| <i>35</i> | 2,06232E-05 | 6,32827E-14 | 2,62870E-03 | 1,87310E-03 |
|-----------|-------------|-------------|-------------|-------------|
| <i>36</i> | 3,51667E-05 | 8,68194E-14 | 2,73580E-03 | 1,94680E-03 |
| <i>37</i> | 3,89814E-05 | 8,28226E-14 | 2,84780E-03 | 2,06210E-03 |
| <i>38</i> | 3,86834E-05 | 8,06022E-14 | 2,94480E-03 | 2,17700E-03 |
| <i>39</i> | 4,26173E-05 | 7,79377E-14 | 3,13440E-03 | 2,29750E-03 |
| 40        | 4,81009E-05 | 1,14575E-13 | 3,18870E-03 | 2,40890E-03 |
| 41        | 3,65973E-05 | 1,18350E-13 | 3,30430E-03 | 2,54280E-03 |
| 42        | 4,17233E-05 | 1,12577E-13 | 3,41730E-03 | 2,66170E-03 |
| 43        | 4,46439E-05 | 1,01696E-13 | 3,67600E-03 | 2,76450E-03 |
| 44        | 3,97563E-05 | 9,01501E-14 | 3,61130E-03 | 2,92660E-03 |
| 45        | 3,87430E-05 | 8,90399E-14 | 3,69970E-03 | 3,06020E-03 |
| 46        | 3,80278E-05 | 1,00142E-13 | 3,86640E-03 | 3,15420E-03 |
| 47        | 7,11083E-05 | 1,30562E-13 | 3,92760E-03 | 3,25540E-03 |
| 48        | 7,12872E-05 | 1,35447E-13 | 3,97190E-03 | 3,46820E-03 |
| 49        | 7,00355E-05 | 1,44329E-13 | 4,02670E-03 | 3,60400E-03 |
| <i>50</i> | 6,89626E-05 | 1,58762E-13 | 4,09260E-03 | 3,70790E-03 |

Tabela. 2.3.2.1. Błędy obliczeń oraz czasy obliczeń dla zmiennych typu float32 oraz float64 dla n od 2 do 50

| Wartość n | Błę         | dy          | Czasy obliczeń [s] |             |  |
|-----------|-------------|-------------|--------------------|-------------|--|
|           | float32     | float64     | float32            | float64     |  |
| 10        | 3,09944E-06 | 1,66533E-15 | 2,57600E-04        | 1,74700E-04 |  |
| 20        | 9,05991E-06 | 2,46470E-14 | 9,00700E-04        | 6,29800E-04 |  |
| 30        | 2,69413E-05 | 4,86278E-14 | 1,98870E-03        | 1,36730E-03 |  |
| 40        | 4,81009E-05 | 1,14575E-13 | 3,18870E-03        | 2,40890E-03 |  |
| 50        | 6,89626E-05 | 1,58762E-13 | 4,09260E-03        | 3,70790E-03 |  |
| 60        | 1,42455E-04 | 2,82219E-13 | 5,25230E-03        | 5,38240E-03 |  |
| 70        | 1,80244E-04 | 2,95097E-13 | 7,09080E-03        | 7,18400E-03 |  |
| 80        | 2,23160E-04 | 6,05405E-13 | 9,84090E-03        | 1,61244E-02 |  |
| 90        | 3,96729E-04 | 7,64944E-13 | 1,17429E-02        | 1,19620E-02 |  |
| 100       | 2,39253E-04 | 6,66356E-13 | 1,46599E-02        | 1,44197E-02 |  |
| 110       | 5,50270E-04 | 1,09135E-12 | 1,74612E-02        | 1,86574E-02 |  |
| 120       | 5,17368E-04 | 1,54921E-12 | 2,07903E-02        | 2,15357E-02 |  |
| 130       | 4,42505E-04 | 2,03171E-12 | 2,46388E-02        | 2,57459E-02 |  |
| 140       | 9,00149E-04 | 2,34979E-12 | 2,90119E-02        | 2,93386E-02 |  |
| 150       | 1,06287E-03 | 2,71927E-12 | 3,35653E-02        | 3,40270E-02 |  |
| 160       | 1,28424E-03 | 3,06777E-12 | 3,71981E-02        | 3,83313E-02 |  |
| 170       | 1,03962E-03 | 3,78164E-12 | 4,13680E-02        | 4,55012E-02 |  |
| 180       | 1,52260E-03 | 7,36389E-12 | 4,64739E-02        | 4,98907E-02 |  |
| 190       | 1,52230E-03 | 1,27474E-11 | 5,34163E-02        | 5,61359E-02 |  |
| 200       | 1,32161E-03 | 7,40141E-12 | 5,81756E-02        | 6,10271E-02 |  |
| 210       | 1,61588E-03 | 6,33660E-12 | 6,41573E-02        | 1,09911E-01 |  |
| 220       | 2,66176E-03 | 9,67382E-12 | 7,13544E-02        | 7,40662E-02 |  |

| 220        | 2 622255 02 | 0.625625.12 | 7 720115 02 | 9 12014E 02 |
|------------|-------------|-------------|-------------|-------------|
| 230        | 2,62225E-03 | 9,63563E-12 | 7,73911E-02 | 8,12914E-02 |
| 240        | 3,48222E-03 | 3,39551E-11 | 8,31322E-02 | 8,71378E-02 |
| 250        | 7,21061E-03 | 1,19489E-11 | 9,01861E-02 | 9,56079E-02 |
| 260        | 6,09314E-03 | 1,20146E-11 | 1,01057E-01 | 1,04386E-01 |
| 270        | 7,09951E-03 | 1,39913E-11 | 1,09156E-01 | 1,11682E-01 |
| 280        | 8,37910E-03 | 1,82390E-11 | 1,18793E-01 | 1,18469E-01 |
| 290        | 7,87926E-03 | 1,81293E-11 | 2,08085E-01 | 1,28729E-01 |
| 300        | 6,05166E-03 | 1,61569E-11 | 2,26490E-01 | 1,39097E-01 |
| 310        | 5,38850E-03 | 2,48538E-11 | 1,44480E-01 | 1,46560E-01 |
| 320        | 6,55508E-03 | 2,10798E-11 | 1,58387E-01 | 1,55864E-01 |
| 330        | 6,01542E-03 | 2,23239E-11 | 1,64071E-01 | 1,66097E-01 |
| 340        | 9,28736E-03 | 2,64875E-11 | 1,73982E-01 | 1,75937E-01 |
| <i>350</i> | 9,25851E-03 | 2,95032E-11 | 1,88230E-01 | 1,88266E-01 |
| <i>360</i> | 8,40700E-03 | 3,35394E-11 | 1,97515E-01 | 2,02155E-01 |
| <i>370</i> | 1,36150E-02 | 7,83917E-11 | 2,09257E-01 | 2,11126E-01 |
| 380        | 2,56299E-02 | 3,27554E-11 | 2,16701E-01 | 2,26467E-01 |
| <i>390</i> | 1,12166E-02 | 3,09579E-11 | 2,44709E-01 | 2,37690E-01 |
| 400        | 1,00420E-02 | 3,07980E-11 | 2,39471E-01 | 2,46412E-01 |
| 410        | 2,05065E-02 | 5,90625E-11 | 2,51722E-01 | 2,62503E-01 |
| 420        | 8,88050E-03 | 5,94864E-11 | 2,63573E-01 | 2,74497E-01 |
| 430        | 1,01371E-02 | 5,12252E-11 | 2,77592E-01 | 2,84134E-01 |
| 440        | 4,16006E-02 | 4,85401E-11 | 2,92100E-01 | 5,22363E-01 |
| 450        | 1,82307E-02 | 5,32649E-11 | 3,02449E-01 | 3,14028E-01 |
| 460        | 1,69836E-02 | 8,38405E-11 | 3,19738E-01 | 3,43021E-01 |
| 470        | 2,95831E-02 | 8,46363E-11 | 3,31911E-01 | 3,56129E-01 |
| 480        | 3,15993E-02 | 8,14848E-11 | 3,45695E-01 | 3,57356E-01 |
| 490        | 3,06851E-02 | 9,15774E-11 | 3,59174E-01 | 3,74397E-01 |
| <i>500</i> | 4,88498E-02 | 8,35336E-11 | 4,05794E-01 | 4,09326E-01 |
| 510        | 3,02368E-02 | 8,35230E-11 | 4,13446E-01 | 4,30374E-01 |
| <i>520</i> | 3,42228E-02 | 9,65339E-11 | 4,38744E-01 | 4,49918E-01 |
| <i>530</i> | 3,49417E-02 | 9,33689E-11 | 7,28471E-01 | 5,08703E-01 |
| 540        | 3,52759E-02 | 9,83602E-11 | 7,85946E-01 | 5,10017E-01 |
| <i>550</i> | 2,97016E-02 | 9,71608E-11 | 4,89035E-01 | 5,64683E-01 |
| <i>560</i> | 4,09895E-02 | 9,12349E-11 | 5,05779E-01 | 6,96234E-01 |
| <i>570</i> | 4,66715E-02 | 1,13612E-10 | 5,78660E-01 | 5,85365E-01 |
| 580        | 3,60584E-02 | 1,28495E-10 | 5,42826E-01 | 5,61790E-01 |
| <i>590</i> | 4,45862E-02 | 1,40937E-10 | 5,61921E-01 | 5,85325E-01 |
| 600        | 4,79606E-02 | 1,45622E-10 | 5,76467E-01 | 6,09448E-01 |
| 610        | 4,81807E-02 | 1,54724E-10 | 6,01616E-01 | 6,23640E-01 |
| <i>620</i> | 4,73846E-02 | 1,62676E-10 | 6,23037E-01 | 6,42347E-01 |
| 630        | 5,38290E-02 | 1,56057E-10 | 6,37883E-01 | 8,01456E-01 |
| 640        | 5,24223E-02 | 1,67288E-10 | 6,54278E-01 | 6,91846E-01 |
| <i>650</i> | 5,25954E-02 | 1,93682E-10 | 6,81229E-01 | 7,32659E-01 |
|            |             |             |             |             |

| 660        | 4,97413E-02 | 1,94400E-10 | 7,36774E-01 | 8,45765E-01 |
|------------|-------------|-------------|-------------|-------------|
| 670        | 4,89950E-02 | 1,87749E-10 | 7,22289E-01 | 7,78185E-01 |
| 680        | 4,17688E-02 | 2,02220E-10 | 7,48775E-01 | 7,93708E-01 |
| 690        | 5,78067E-02 | 2,40790E-10 | 7,73034E-01 | 8,31766E-01 |
| 700        | 5,72882E-02 | 2,46197E-10 | 7,98683E-01 | 8,94591E-01 |
| 710        | 5,17297E-02 | 1,94855E-10 | 8,19292E-01 | 8,73469E-01 |
| 720        | 6,35980E-02 | 2,04504E-10 | 1,35197E+00 | 1,00894E+00 |
| 730        | 5,96901E-02 | 2,28981E-10 | 1,23902E+00 | 9,30998E-01 |
| 740        | 6,39697E-02 | 2,39025E-10 | 1,39944E+00 | 9,88552E-01 |
| <i>750</i> | 8,28730E-02 | 2,48677E-10 | 1,11665E+00 | 1,08335E+00 |
| 760        | 7,62937E-02 | 2,57833E-10 | 1,24164E+00 | 1,11469E+00 |
| 770        | 7,84360E-02 | 2,34042E-10 | 1,57744E+00 | 1,24025E+00 |
| 780        | 7,95535E-02 | 2,16878E-10 | 9,98805E-01 | 1,17451E+00 |
| <i>790</i> | 7,37031E-02 | 1,99789E-10 | 1,18690E+00 | 1,11112E+00 |
| 800        | 1,22942E-01 | 2,05613E-10 | 1,05526E+00 | 1,32790E+00 |
| 810        | 1,18775E-01 | 1,97877E-10 | 1,07703E+00 | 1,22251E+00 |
| 820        | 1,18538E-01 | 2,92372E-10 | 1,10220E+00 | 1,25525E+00 |
| 830        | 1,18863E-01 | 2,03915E-10 | 1,13116E+00 | 1,25146E+00 |
| 840        | 1,11367E-01 | 5,03265E-10 | 1,17090E+00 | 1,29110E+00 |
| <i>850</i> | 1,12429E-01 | 5,38007E-10 | 2,06095E+00 | 1,36295E+00 |
| 860        | 1,28093E-01 | 6,19778E-10 | 1,41105E+00 | 1,68462E+00 |
| <i>870</i> | 1,28139E-01 | 6,42228E-10 | 1,37653E+00 | 1,42411E+00 |
| 880        | 1,40869E-01 | 6,24781E-10 | 1,33024E+00 | 1,42236E+00 |
| 890        | 1,43160E-01 | 5,98529E-10 | 1,37088E+00 | 1,93357E+00 |
| 900        | 1,53491E-01 | 6,16808E-10 | 1,49063E+00 | 1,49869E+00 |
| 910        | 1,53055E-01 | 6,30607E-10 | 1,46744E+00 | 1,54886E+00 |
| 920        | 1,44771E-01 | 6,06946E-10 | 1,53195E+00 | 1,63226E+00 |
| 930        | 1,39402E-01 | 5,95191E-10 | 1,60400E+00 | 1,72821E+00 |
| 940        | 1,60239E-01 | 6,22290E-10 | 1,62127E+00 | 1,97248E+00 |
| 950        | 1,57657E-01 | 5,64138E-10 | 1,51160E+00 | 1,71269E+00 |
| 960        | 1,58314E-01 | 5,66319E-10 | 1,57146E+00 | 1,77149E+00 |
| 970        | 2,22140E-01 | 6,14678E-10 | 1,56714E+00 | 2,06428E+00 |
| 980        | 2,15633E-01 | 5,71850E-10 | 2,14974E+00 | 2,02594E+00 |
| 990        | 2,21205E-01 | 5,85801E-10 | 1,65329E+00 | 2,01783E+00 |
| 1000       | 2,30827E-01 | 5,61129E-10 | 1,95173E+00 | 1,94663E+00 |
|            |             |             |             |             |

Tabela. 2.3.2.2. Błędy obliczeń oraz czasy obliczeń dla zmiennych typu float32 oraz float64 (dla wybranych wartości n – z krokiem równym 10)

# 3.3. Współczynnik uwarunkowania macierzy A

# 3.3.1. Sposób wyznaczania współczynnika uwarunkowania

Współczynnik uwarunkowania określa, w jakim stopniu błąd reprezentacji danych wejściowych wpływa na błąd wyniku. Jeżeli wskaźnik uwarunkowania dla danego problemu jest duży, wówczas nawet niewielki błąd danych może spowodować, że wynik

będzie znacznie odbiegał od przewidywanego. Wskaźnik uwarunkowania oblicza się ze wzoru:

$$\kappa(A) = \|A^{-1}\| \cdot \|A\| \tag{2.3.1.}$$

Norma jest określona poniższym wzorem:

$$||A|| = \max_{1 < i < n} \sum_{j=1}^{n} |a_{i,j}|$$
(2.3.2.)

# 3.3.2. Porównanie współczynników uwarunkowania macierzy A z zadania 1 i zadania 2

Zamieszczona niżej tabela przedstawia współczynniki uwarunkowania dla macierzy A wyznaczanej zgodnie ze wzorem z zadania 1 oraz dla macierzy A wyznaczanej zgodnie ze wzorem z zadania 2. Od razu daje się zauważyć znaczącą różnicę w wartościach współczynników uwarunkowania, które są dużo mniejsze dla macierzy A z 2. zadania. Poniżej zamieszczam jedynie część wyznaczonych współczynników.

| n  | Zadanie 1   | Zadanie 2   | n  | Zadanie 1   | Zadanie 2   | n  | Zadanie 1   | Zadanie 2   |
|----|-------------|-------------|----|-------------|-------------|----|-------------|-------------|
| 2  | 8,00000E+00 | 1,00000E+00 | 21 | 2,96931E+11 | 8,69862E+00 | 40 | 6,43340E+12 | 1,63764E+01 |
| 3  | 2,16000E+02 | 1,44444E+00 | 22 | 7,79582E+11 | 9,09968E+00 | 41 | 2,90544E+12 | 1,67829E+01 |
| 4  | 2,88000E+03 | 1,83333E+00 | 23 | 4,61263E+11 | 9,50547E+00 | 42 | 5,36701E+12 | 1,71869E+01 |
| 5  | 2,80000E+04 | 2,23333E+00 | 24 | 5,02202E+11 | 9,91063E+00 | 43 | 1,93906E+12 | 1,75900E+01 |
| 6  | 2,26800E+05 | 2,64444E+00 | 25 | 1,08204E+12 | 1,03106E+01 | 44 | 3,01970E+12 | 1,79962E+01 |
| 7  | 1,62994E+06 | 3,03175E+00 | 26 | 2,37439E+12 | 1,07194E+01 | 45 | 4,26510E+12 | 1,83985E+01 |
| 8  | 1,28621E+07 | 3,44841E+00 | 27 | 1,80712E+13 | 1,11216E+01 | 46 | 9,78917E+11 | 1,88043E+01 |
| 9  | 1,12000E+08 | 3,84921E+00 | 28 | 4,15528E+12 | 1,15263E+01 | 47 | 1,92949E+12 | 1,92087E+01 |
| 10 | 8,84144E+08 | 4,24921E+00 | 29 | 5,50325E+11 | 1,19319E+01 | 48 | 2,73769E+12 | 1,96114E+01 |
| 11 | 6,47379E+09 | 4,65943E+00 | 30 | 6,48358E+11 | 1,23319E+01 | 49 | 4,32417E+12 | 2,00177E+01 |
| 12 | 4,40794E+10 | 5,05522E+00 | 31 | 3,32009E+12 | 1,27404E+01 | 50 | 6,65140E+12 | 2,04205E+01 |
| 13 | 1,34767E+11 | 5,46548E+00 | 32 | 1,22792E+12 | 1,31434E+01 | 51 | 3,13840E+12 | 2,08257E+01 |
| 14 | 2,45922E+11 | 5,86890E+00 | 33 | 8,30490E+11 | 1,35474E+01 | 52 | 5,00816E+12 | 2,12304E+01 |
| 15 | 1,73331E+11 | 6,26890E+00 | 34 | 7,68770E+11 | 1,39533E+01 | 53 | 3,98528E+12 | 2,16329E+01 |
| 16 | 1,08497E+11 | 6,67840E+00 | 35 | 6,30767E+12 | 1,43542E+01 | 54 | 1,26295E+13 | 2,20392E+01 |
| 17 | 3,04549E+11 | 7,07762E+00 | 36 | 1,81944E+12 | 1,47616E+01 | 55 | 2,46712E+12 | 2,24425E+01 |
| 18 | 1,18749E+14 | 7,48503E+00 | 37 | 8,38998E+11 | 1,51652E+01 | 56 | 2,74004E+12 | 2,28472E+01 |
| 19 | 3,75040E+11 | 7,88957E+00 | 38 | 7,17348E+12 | 1,55687E+01 | 57 | 6,79513E+12 | 2,32521E+01 |
| 20 | 4,00389E+11 | 8,28957E+00 | 39 | 1,24365E+12 | 1,59747E+01 | 58 | 3,00048E+12 | 2,36544E+01 |

Tabela. 2.3.3.1. Współczynniki uwarunkowania dla macierzy A wyznaczanej zgodnie ze wzorem z zadania 1. i ze wzorem z zadania 2 (dla kilku początkowych wartości n)

| n   | Zadanie 1   | Zadanie 2   | n   | Zadanie 1   | Zadanie 2   | n   | Zadanie 1   | Zadanie 2   |
|-----|-------------|-------------|-----|-------------|-------------|-----|-------------|-------------|
| 10  | 8,84144E+08 | 4,24921E+00 | 340 | 2,52550E+17 | 1,37682E+02 | 670 | 6,62228E+18 | 2,71119E+02 |
| 20  | 4,00389E+11 | 8,28957E+00 | 350 | 4,28359E+17 | 1,41726E+02 | 680 | 1,28387E+19 | 2,75163E+02 |
| 30  | 6,48358E+11 | 1,23319E+01 | 360 | 5,29475E+17 | 1,45770E+02 | 690 | 2,66420E+19 | 2,79206E+02 |
| 40  | 6,43340E+12 | 1,63764E+01 | 370 | 6,16960E+18 | 1,49813E+02 | 700 | 7,96390E+18 | 2,83250E+02 |
| 50  | 6,65140E+12 | 2,04205E+01 | 380 | 1,85949E+18 | 1,53857E+02 | 710 | 8,76645E+18 | 2,87294E+02 |
| 60  | 1,91277E+12 | 2,44643E+01 | 390 | 1,26700E+18 | 1,57900E+02 | 720 | 2,43024E+19 | 2,91337E+02 |
| 70  | 6,87856E+12 | 2,85080E+01 | 400 | 5,06710E+17 | 1,61944E+02 | 730 | 2,19940E+19 | 2,95381E+02 |
| 80  | 4,41797E+13 | 3,25516E+01 | 410 | 3,42004E+17 | 1,65987E+02 | 740 | 4,05406E+19 | 2,99424E+02 |
| 90  | 2,86268E+14 | 3,65951E+01 | 420 | 8,85094E+17 | 1,70031E+02 | 750 | 1,31106E+20 | 3,03468E+02 |
| 100 | 7,46831E+14 | 4,06386E+01 | 430 | 3,13041E+18 | 1,74075E+02 | 760 | 4,52782E+19 | 3,07511E+02 |
| 110 | 5,35821E+14 | 4,46821E+01 | 440 | 2,39454E+18 | 1,78118E+02 | 770 | 2,23405E+19 | 3,11555E+02 |
| 120 | 1,50129E+15 | 4,87255E+01 | 450 | 9,23405E+18 | 1,82162E+02 | 780 | 1,53696E+20 | 3,15598E+02 |
| 130 | 3,47045E+15 | 5,27689E+01 | 460 | 1,22746E+19 | 1,86205E+02 | 790 | 4,73322E+19 | 3,19642E+02 |
| 140 | 2,34611E+16 | 5,68123E+01 | 470 | 3,34273E+18 | 1,90249E+02 | 800 | 1,02868E+19 | 3,23685E+02 |
| 150 | 1,40673E+15 | 6,08557E+01 | 480 | 2,99323E+18 | 1,94292E+02 | 810 | 4,03284E+19 | 3,27729E+02 |
| 160 | 4,73426E+15 | 6,48990E+01 | 490 | 1,83593E+18 | 1,98335E+02 | 820 | 2,70011E+19 | 3,31772E+02 |
| 170 | 8,51919E+15 | 6,89424E+01 | 500 | 3,42394E+18 | 2,02379E+02 | 830 | 4,06246E+19 | 3,35816E+02 |
| 180 | 4,64865E+15 | 7,29858E+01 | 510 | 1,73858E+18 | 2,06423E+02 | 840 | 1,14711E+19 | 3,39859E+02 |
| 190 | 5,34432E+16 | 7,70294E+01 | 520 | 3,06089E+18 | 2,10466E+02 | 850 | 2,22567E+19 | 3,43903E+02 |
| 200 | 7,51498E+16 | 8,10731E+01 | 530 | 1,10364E+19 | 2,14510E+02 | 860 | 1,03201E+19 | 3,47947E+02 |
| 210 | 7,36444E+16 | 8,51167E+01 | 540 | 6,30345E+18 | 2,18553E+02 | 870 | 5,27869E+19 | 3,51990E+02 |
| 220 | 3,09559E+16 | 8,91603E+01 | 550 | 7,39458E+18 | 2,22597E+02 | 880 | 1,86871E+19 | 3,56034E+02 |
| 230 | 8,46179E+16 | 9,32039E+01 | 560 | 4,01798E+18 | 2,26640E+02 | 890 | 2,95950E+20 | 3,60077E+02 |
| 240 | 1,87751E+17 | 9,72475E+01 | 570 | 5,70955E+18 | 2,30684E+02 | 900 | 7,08279E+19 | 3,64121E+02 |
| 250 | 1,34425E+17 | 1,01291E+02 | 580 | 6,88610E+18 | 2,34728E+02 | 910 | 4,53498E+19 | 3,68164E+02 |
| 260 | 1,06838E+17 | 1,05335E+02 | 590 | 2,27712E+20 | 2,38771E+02 | 920 | 2,88811E+19 | 3,72208E+02 |
| 270 | 1,81752E+17 | 1,09378E+02 | 600 | 7,36899E+18 | 2,42815E+02 | 930 | 1,38620E+20 | 3,76251E+02 |
| 280 | 1,96058E+17 | 1,13422E+02 | 610 | 6,66865E+19 | 2,46858E+02 | 940 | 8,88390E+19 | 3,80295E+02 |
| 290 | 7,19266E+16 | 1,17465E+02 | 620 | 1,47464E+19 | 2,50902E+02 | 950 | 1,69609E+19 | 3,84338E+02 |
| 300 | 2,14647E+17 | 1,21509E+02 | 630 | 1,75335E+19 | 2,54945E+02 | 960 | 9,96844E+20 | 3,88382E+02 |
| 310 | 3,62165E+17 | 1,25552E+02 | 640 | 4,63929E+18 | 2,58989E+02 | 970 | 1,83984E+19 | 3,92425E+02 |
| 320 | 1,91498E+17 | 1,29595E+02 | 650 | 1,83601E+19 | 2,63032E+02 | 980 | 3,09142E+19 | 3,96469E+02 |
| 330 | 3,56232E+17 | 1,33639E+02 | 660 | 1,21621E+19 | 2,67076E+02 | 990 | 1,01627E+20 | 4,00512E+02 |

Tabela. 2.3.3.2. Współczynniki uwarunkowania dla macierzy A wyznaczanej zgodnie ze wzorem z zadania 1. i ze wzorem z zadania 2 (dla wybranych wartości n – z krokiem równym 10)

# 3.3.3. Wykresy wartości współczynników uwarunkowania macierzy A z zadania 1 i zadania 2

Na wykresach dokładnie widzimy, że uwarunkowanie macierzy A, w przypadku problemu z 1. zadania, jest znacznie gorsze niż w przypadku macierzy z zadania 2.

#### Wykres w skali liniowej



Rys. 2.3.3.1. Wykres współczynników uwarunkowania w zależności od n dla macierzy A z zadania 1 i z zadania 2. (w skali liniowej)

#### Wykres w skali logarytmicznej



Rys. 2.3.3.2. Wykres współczynników uwarunkowania w zależności od n dla macierzy A z zadania 1 i z zadania 2. (w skali logarytmicznej)

# IV. Zadanie 3

# 1. Wprowadzenie

# 1.1. Opis problemu

Problem polegał na powtórzeniu eksperymentu z zadań poprzednich. Macierz *A*, która została mi przydzielona w zadaniu indywidualnym, wypełniana jest zgodnie z poniższymi wzorami:

$$\begin{cases} a_{1,j} = k \\ a_{i,i+1} = \frac{1}{i+m} \\ a_{i,i-1} = \frac{k}{1+m+i} \text{ dla } i > 1 \\ a_{i,j} = \frac{1}{i+j-1} \text{ dla } j < i-1 \text{ oraz } j > i+1 \end{cases}$$
 gdzie  $i, j = 1, ..., n$  (3.1.1.)

Parametry, dla których przeprowadzałem analizę, są równe: k = 8, m = 3.

W kolejnym kroku należało rozwiązać układ równań metodą przeznaczoną do rozwiązywania układów z macierzą trójdiagonalną. Wykorzystałem do tego celu algorytm Thomasa. Po wykonaniu obliczeń, należało porównać błędy oraz czasy obliczeń i złożoność pamięciową dla metody Gaussa i metody Thomasa. Na koniec należało opisać, w jaki sposób w metodzie dla układów z macierzą trójdiagonalną (Thomasa) przechowywana i wykorzystywana była macierz A.

# 2. Kryterium pomiaru błędu

Analogicznie, jak w zadaniu 1., do pomiaru błędu wykorzystałem normę maksimum, opisaną w punkcie **2.1.**.

# 3. Opracowanie - metoda Gaussa

# 3.1. Metoda postępowania

Postępowanie jest analogiczne, jak w poprzednim zadaniu.

# 3.2. Wartości błędów oraz czasy obliczeń wektora x

#### 3.2.1. Wykresy błędów obliczeń

Poniżej umieściłem wykresy błędów obliczeń dla zmiennych typu float32 oraz float64.

Co ciekawe, w przeciwieństwie do układów równań z poprzednich zadań, w przypadku układu równań z tego zadania, nie obserwujemy dużych wartości błędów pomiaru, a błędy prawie nie zwiększają się podczas zwiększania wartości n (poza typem float32, dla którego, w przypadku, gdy n ma wartość mniejszą niż ok. 10, błędy są zauważalnie mniejsze niż dla większych wartości n).

#### • Wykres w skali liniowej dla n = 2, ..., 1000 (wartości błędów)



Rys. 3.3.2.1. Wykres błędów dla n od 2 do 1000 (skala liniowa)

#### • Wykres w skali logarytmicznej dla n = 2, ..., 1000 (wartości błędów)



Rys. 3.3.2.2. Wykres błędów dla n od 2 do 1000 (skala logarytmiczna)

# 3.2.2. Wykres czasów obliczeń

Poniżej umieściłem wykres czasów obliczeń dla zmiennych typu float32 oraz float64.



Rys. 3.3.2.3. Wykres czasów obliczeń wektora dla n od 2 do 1000 (skala liniowa)

# 3.2.3. Zestawienie błędów oraz czasów obliczeń

Zestawienie analogiczne, jak w poprzednich zadaniach.

| Wartość n | Błędy       |             | Czasy ob    | oliczeń [s] |
|-----------|-------------|-------------|-------------|-------------|
|           | float32     | float64     | float32     | float64     |
| 2         | 5,96046E-08 | 2,22045E-16 | 8,21000E-05 | 2,35900E-04 |
| 3         | 5,96046E-08 | 2,22045E-16 | 4,58000E-05 | 3,66000E-05 |
| 4         | 5,96046E-08 | 0,00000E+00 | 5,41999E-05 | 4,36000E-05 |
| 5         | 5,96046E-08 | 1,11022E-16 | 1,15800E-04 | 5,90000E-05 |
| 6         | 5,96046E-08 | 1,11022E-16 | 1,04600E-04 | 7,65000E-05 |
| 7         | 5,96046E-08 | 1,11022E-16 | 1,19800E-04 | 9,75000E-05 |
| 8         | 1,19209E-07 | 2,22045E-16 | 1,59400E-04 | 1,22500E-04 |
| 9         | 1,19209E-07 | 2,22045E-16 | 1,89100E-04 | 1,46800E-04 |
| 10        | 1,19209E-07 | 2,22045E-16 | 2,25000E-04 | 1,90800E-04 |
| 11        | 1,19209E-07 | 2,22045E-16 | 2,64100E-04 | 2,07100E-04 |
| 12        | 1,19209E-07 | 2,22045E-16 | 3,50700E-04 | 1,09560E-03 |
| 13        | 1,19209E-07 | 2,22045E-16 | 3,60400E-04 | 6,68300E-04 |
| 14        | 1,19209E-07 | 2,22045E-16 | 4,20200E-04 | 5,24400E-04 |
| 15        | 1,19209E-07 | 2,22045E-16 | 4,62400E-04 | 3,59400E-04 |
| 16        | 1,19209E-07 | 2,22045E-16 | 5,25200E-04 | 4,13700E-04 |
| 17        | 1,19209E-07 | 2,22045E-16 | 5,90400E-04 | 4,51600E-04 |
| 18        | 1,19209E-07 | 2,22045E-16 | 6,62500E-04 | 5,08800E-04 |
| 19        | 1,19209E-07 | 2,22045E-16 | 7,22200E-04 | 5,54600E-04 |

| 20        | 1,19209E-07 | 2,22045E-16 | 7,93500E-04 | 6,15000E-04 |
|-----------|-------------|-------------|-------------|-------------|
| 21        | 1,19209E-07 | 2,22045E-16 | 8,69600E-04 | 6,78600E-04 |
| 22        | 1,19209E-07 | 2,22045E-16 | 9,54400E-04 | 7,44200E-04 |
| 23        | 1,19209E-07 | 2,22045E-16 | 1,03890E-03 | 8,46900E-04 |
| 24        | 1,19209E-07 | 2,22045E-16 | 1,12920E-03 | 8,81500E-04 |
| 25        | 1,19209E-07 | 2,22045E-16 | 1,22370E-03 | 9,42900E-04 |
| 26        | 1,19209E-07 | 2,22045E-16 | 1,31290E-03 | 1,02150E-03 |
| 27        | 1,19209E-07 | 2,22045E-16 | 1,44230E-03 | 1,10110E-03 |
| 28        | 1,19209E-07 | 2,22045E-16 | 1,52750E-03 | 1,74530E-03 |
| 29        | 1,19209E-07 | 2,22045E-16 | 1,61900E-03 | 1,28480E-03 |
| <i>30</i> | 1,19209E-07 | 2,22045E-16 | 1,72070E-03 | 1,36430E-03 |
| <b>31</b> | 1,19209E-07 | 2,22045E-16 | 1,80720E-03 | 1,44840E-03 |
| <i>32</i> | 1,19209E-07 | 2,22045E-16 | 2,63490E-03 | 1,54390E-03 |
| <i>33</i> | 1,19209E-07 | 2,22045E-16 | 2,04530E-03 | 1,64150E-03 |
| 34        | 1,19209E-07 | 2,22045E-16 | 2,13410E-03 | 2,14780E-03 |
| <i>35</i> | 1,19209E-07 | 2,22045E-16 | 2,18810E-03 | 1,84060E-03 |
| <i>36</i> | 1,19209E-07 | 2,22045E-16 | 2,29020E-03 | 2,27220E-03 |
| <i>37</i> | 1,19209E-07 | 2,22045E-16 | 2,37730E-03 | 2,62470E-03 |
| <i>38</i> | 1,19209E-07 | 2,22045E-16 | 3,71220E-03 | 2,35330E-03 |
| <i>39</i> | 1,19209E-07 | 2,22045E-16 | 2,56530E-03 | 2,52580E-03 |
| 40        | 1,19209E-07 | 2,22045E-16 | 2,64220E-03 | 2,67600E-03 |
| 41        | 1,19209E-07 | 2,22045E-16 | 2,73410E-03 | 3,60990E-03 |
| 42        | 1,19209E-07 | 2,22045E-16 | 3,37210E-03 | 3,69010E-03 |
| 43        | 1,19209E-07 | 2,22045E-16 | 2,96190E-03 | 3,52150E-03 |
| 44        | 1,19209E-07 | 2,22045E-16 | 3,02590E-03 | 3,31400E-03 |
| 45        | 1,19209E-07 | 2,22045E-16 | 3,14360E-03 | 4,02870E-03 |
| 46        | 1,19209E-07 | 2,22045E-16 | 3,24700E-03 | 3,68660E-03 |
| 47        | 1,19209E-07 | 2,22045E-16 | 3,38210E-03 | 3,81360E-03 |
| 48        | 1,19209E-07 | 2,22045E-16 | 3,49280E-03 | 4,54540E-03 |
| 49        | 1,19209E-07 | 2,22045E-16 | 3,56710E-03 | 4,10540E-03 |
| <i>50</i> | 1,19209E-07 | 2,22045E-16 | 3,74930E-03 | 4,60720E-03 |
|           |             |             |             |             |

Tabela. 3.3.2.1. Błędy obliczeń oraz czasy obliczeń dla zmiennych typu float32 oraz float64 dla n od 2 do 50

| Wartość n | Błędy       |             | Czasy obliczeń [s] |             |
|-----------|-------------|-------------|--------------------|-------------|
|           | float32     | float64     | float32            | float64     |
| 10        | 1,19209E-07 | 2,22045E-16 | 2,25000E-04        | 1,90800E-04 |
| 20        | 1,19209E-07 | 2,22045E-16 | 7,93500E-04        | 6,15000E-04 |
| 30        | 1,19209E-07 | 2,22045E-16 | 1,72070E-03        | 1,36430E-03 |
| 40        | 1,19209E-07 | 2,22045E-16 | 2,64220E-03        | 2,67600E-03 |
| 50        | 1,19209E-07 | 2,22045E-16 | 3,74930E-03        | 4,60720E-03 |
| 60        | 1,19209E-07 | 2,22045E-16 | 5,83960E-03        | 7,39700E-03 |

| 70         | 1,19209E-07 | 2,22045E-16 | 8,51460E-03 | 8,86390E-03 |
|------------|-------------|-------------|-------------|-------------|
| 80         | 1,19209E-07 | 2,22045E-16 | 9,34410E-03 | 1,13430E-02 |
| 90         | 1,19209E-07 | 2,22045E-16 | 1,31407E-02 | 1,47140E-02 |
| 100        | 1,19209E-07 | 2,22045E-16 | 1,60161E-02 | 1,67948E-02 |
| 110        | 1,19209E-07 | 2,22045E-16 | 1,83809E-02 | 1,73482E-02 |
| 120        | 1,19209E-07 | 2,22045E-16 | 2,04542E-02 | 2,13167E-02 |
| 130        | 1,19209E-07 | 2,22045E-16 | 3,14027E-02 | 2,61231E-02 |
| 140        | 1,19209E-07 | 2,22045E-16 | 3,07505E-02 | 3,07386E-02 |
| 150        | 1,19209E-07 | 2,22045E-16 | 3,45924E-02 | 3,43230E-02 |
| 160        | 1,19209E-07 | 2,22045E-16 | 3,70527E-02 | 4,07765E-02 |
| 170        | 1,19209E-07 | 2,22045E-16 | 4,20562E-02 | 4,55039E-02 |
| 180        | 1,19209E-07 | 2,22045E-16 | 5,86973E-02 | 5,21414E-02 |
| 190        | 1,19209E-07 | 2,22045E-16 | 6,19700E-02 | 5,78914E-02 |
| 200        | 1,19209E-07 | 2,22045E-16 | 5,88024E-02 | 7,41898E-02 |
| 210        | 1,19209E-07 | 2,22045E-16 | 7,27634E-02 | 1,11487E-01 |
| 220        | 1,19209E-07 | 2,22045E-16 | 7,11401E-02 | 7,38127E-02 |
| 230        | 1,19209E-07 | 2,22045E-16 | 8,43123E-02 | 8,28308E-02 |
| 240        | 1,19209E-07 | 2,22045E-16 | 1,08106E-01 | 9,07845E-02 |
| 250        | 1,19209E-07 | 2,22045E-16 | 1,02971E-01 | 9,77232E-02 |
| 260        | 1,19209E-07 | 2,22045E-16 | 1,11831E-01 | 1,10419E-01 |
| 270        | 1,19209E-07 | 2,22045E-16 | 1,18583E-01 | 1,15844E-01 |
| 280        | 1,19209E-07 | 2,22045E-16 | 1,23957E-01 | 1,31394E-01 |
| 290        | 1,19209E-07 | 2,22045E-16 | 1,29309E-01 | 1,30849E-01 |
| 300        | 1,19209E-07 | 2,22045E-16 | 1,35311E-01 | 1,38532E-01 |
| 310        | 1,19209E-07 | 2,22045E-16 | 1,45284E-01 | 1,56630E-01 |
| 320        | 1,19209E-07 | 2,22045E-16 | 1,93595E-01 | 1,58330E-01 |
| 330        | 1,19209E-07 | 2,22045E-16 | 1,71929E-01 | 3,25335E-01 |
| 340        | 1,19209E-07 | 2,22045E-16 | 1,75094E-01 | 1,93688E-01 |
| <i>350</i> | 1,19209E-07 | 2,22045E-16 | 1,85913E-01 | 1,98233E-01 |
| 360        | 1,19209E-07 | 2,22045E-16 | 2,00081E-01 | 2,40707E-01 |
| <i>370</i> | 1,19209E-07 | 2,22045E-16 | 2,39972E-01 | 2,43660E-01 |
| 380        | 1,19209E-07 | 2,22045E-16 | 2,57242E-01 | 2,61225E-01 |
| <i>390</i> | 1,19209E-07 | 2,22045E-16 | 2,59038E-01 | 2,85941E-01 |
| 400        | 1,19209E-07 | 2,22045E-16 | 2,52562E-01 | 3,05322E-01 |
| 410        | 1,19209E-07 | 2,22045E-16 | 2,57162E-01 | 2,69309E-01 |
| 420        | 1,19209E-07 | 2,22045E-16 | 2,74124E-01 | 2,93408E-01 |
| 430        | 1,19209E-07 | 2,22045E-16 | 2,92561E-01 | 3,10820E-01 |
| 440        | 1,19209E-07 | 2,22045E-16 | 3,38445E-01 | 3,42340E-01 |
| 450        | 1,19209E-07 | 2,22045E-16 | 3,23623E-01 | 3,88103E-01 |
| 460        | 1,19209E-07 | 2,22045E-16 | 3,30436E-01 | 3,39052E-01 |
| 470        | 1,19209E-07 | 2,22045E-16 | 5,64744E-01 | 4,17346E-01 |
| 480        | 1,19209E-07 | 2,22045E-16 | 3,60234E-01 | 3,79329E-01 |
| 490        | 1,19209E-07 | 2,22045E-16 | 4,01550E-01 | 3,82906E-01 |

| 500        | 1 102005 07 | 2 220455 46 | 4 503405 04 | 4 244 COE 04 |
|------------|-------------|-------------|-------------|--------------|
| 500        | 1,19209E-07 | 2,22045E-16 | 4,59319E-01 | 4,31169E-01  |
| 510        | 1,19209E-07 | 2,22045E-16 | 4,28259E-01 | 4,44989E-01  |
| 520        | 1,19209E-07 | 2,22045E-16 | 4,58980E-01 | 5,29650E-01  |
| 530        | 1,19209E-07 | 2,22045E-16 | 4,68509E-01 | 5,03599E-01  |
| 540        | 1,19209E-07 | 2,22045E-16 | 4,77920E-01 | 5,03953E-01  |
| <i>550</i> | 1,19209E-07 | 2,22045E-16 | 5,44689E-01 | 5,68508E-01  |
| 560        | 1,19209E-07 | 2,22045E-16 | 5,16716E-01 | 5,66093E-01  |
| <i>570</i> | 1,19209E-07 | 2,22045E-16 | 5,52870E-01 | 5,53725E-01  |
| 580        | 1,19209E-07 | 2,22045E-16 | 5,83176E-01 | 5,78484E-01  |
| <i>590</i> | 1,19209E-07 | 2,22045E-16 | 5,75634E-01 | 6,04284E-01  |
| 600        | 1,19209E-07 | 2,22045E-16 | 6,37170E-01 | 6,15530E-01  |
| 610        | 1,19209E-07 | 2,22045E-16 | 7,67394E-01 | 7,22885E-01  |
| <i>620</i> | 1,19209E-07 | 2,22045E-16 | 6,45199E-01 | 6,55394E-01  |
| 630        | 1,19209E-07 | 2,22045E-16 | 6,54242E-01 | 7,49449E-01  |
| 640        | 1,19209E-07 | 2,22045E-16 | 6,66884E-01 | 7,78847E-01  |
| <i>650</i> | 1,19209E-07 | 2,22045E-16 | 8,52443E-01 | 7,75036E-01  |
| 660        | 1,19209E-07 | 2,22045E-16 | 7,90636E-01 | 8,38506E-01  |
| <i>670</i> | 1,19209E-07 | 2,22045E-16 | 7,68024E-01 | 8,29010E-01  |
| 680        | 1,19209E-07 | 2,22045E-16 | 8,37850E-01 | 8,98554E-01  |
| 690        | 1,19209E-07 | 2,22045E-16 | 1,10295E+00 | 1,00198E+00  |
| 700        | 1,19209E-07 | 2,22045E-16 | 8,15787E-01 | 9,24854E-01  |
| 710        | 1,19209E-07 | 2,22045E-16 | 1,02844E+00 | 9,35564E-01  |
| <i>720</i> | 1,19209E-07 | 2,22045E-16 | 8,95238E-01 | 1,08849E+00  |
| 730        | 1,19209E-07 | 2,22045E-16 | 1,02171E+00 | 9,78753E-01  |
| 740        | 1,19209E-07 | 2,22045E-16 | 1,02056E+00 | 1,05533E+00  |
| <i>750</i> | 1,19209E-07 | 2,22045E-16 | 1,05992E+00 | 1,03361E+00  |
| 760        | 1,19209E-07 | 2,22045E-16 | 1,46612E+00 | 1,09825E+00  |
| 770        | 1,19209E-07 | 2,22045E-16 | 1,69424E+00 | 1,18374E+00  |
| 780        | 1,19209E-07 | 2,22045E-16 | 1,93668E+00 | 1,23504E+00  |
| <i>790</i> | 1,19209E-07 | 2,22045E-16 | 1,60002E+00 | 1,33355E+00  |
| 800        | 1,19209E-07 | 2,22045E-16 | 1,59697E+00 | 1,41799E+00  |
| 810        | 1,19209E-07 | 2,22045E-16 | 1,20966E+00 | 1,58083E+00  |
| <i>820</i> | 1,19209E-07 | 2,22045E-16 | 1,39861E+00 | 1,33899E+00  |
| <i>830</i> | 1,19209E-07 | 2,22045E-16 | 1,39600E+00 | 1,47889E+00  |
| 840        | 1,19209E-07 | 2,22045E-16 | 1,30398E+00 | 1,47437E+00  |
| <i>850</i> | 1,19209E-07 | 2,22045E-16 | 1,21457E+00 | 1,44457E+00  |
| 860        | 1,19209E-07 | 2,22045E-16 | 1,30091E+00 | 1,43296E+00  |
| <i>870</i> | 1,19209E-07 | 2,22045E-16 | 1,41761E+00 | 1,60017E+00  |
| 880        | 1,19209E-07 | 2,22045E-16 | 1,30790E+00 | 1,76560E+00  |
| <i>890</i> | 1,19209E-07 | 2,22045E-16 | 1,58148E+00 | 2,02234E+00  |
| 900        | 1,19209E-07 | 2,22045E-16 | 1,49879E+00 | 1,62767E+00  |
| 910        | 1,19209E-07 | 2,22045E-16 | 1,90974E+00 | 1,75279E+00  |
| 920        | 1,19209E-07 | 2,22045E-16 | 1,88906E+00 | 1,72541E+00  |

| 930  | 1,19209E-07 | 2,22045E-16 | 1,58597E+00 | 1,89134E+00 |
|------|-------------|-------------|-------------|-------------|
| 940  | 1,19209E-07 | 2,22045E-16 | 1,62797E+00 | 2,26113E+00 |
| 950  | 1,19209E-07 | 2,22045E-16 | 2,00039E+00 | 1,91401E+00 |
| 960  | 1,19209E-07 | 2,22045E-16 | 2,98223E+00 | 1,92512E+00 |
| 970  | 1,19209E-07 | 2,22045E-16 | 2,95095E+00 | 2,38744E+00 |
| 980  | 1,19209E-07 | 2,22045E-16 | 1,85997E+00 | 2,15919E+00 |
| 990  | 1,19209E-07 | 2,22045E-16 | 1,95067E+00 | 2,14066E+00 |
| 1000 | 1,19209E-07 | 2,22045E-16 | 1,89137E+00 | 2,10026E+00 |

Tabela. 3.3.2.2. Błędy obliczeń oraz czasy obliczeń dla zmiennych typu float32 oraz float64 (dla wybranych wartości n – z krokiem równym 10)

# 4. Opracowanie - metoda Thomasa

## 4.1. Metoda postępowania

Do obliczenia wektora x, wykorzystuję algorytm Thomasa, który działa analogicznie do eliminacji Gaussa. Algorytm ten wykorzystuje fakt, iż poza trzema głównymi przekątnymi, pozostałe wartości w macierzy są zerami. Algorytm Thomasa, zamiast iterować po wszystkich wierszach pod główną przekątną, operuje jedynie na wartości głównej przekątnej i wartości z przekątnej pod nią (z tej samej kolumny). Dzięki temu, dla każdego pivota (kolejnej wartości z przekątnej głównej) wykonane zostanie O(1) operacji, a ponieważ przekątna główna ma n elementów, finalnie złożoność obliczeniowa algorytmu Thomasa jest rzędu O(n) (a więc jest dużo niższa niż złożoność algorytmu Gaussa, który działa ze złożonością  $O(n^3)$ ).

# 4.2. Sposób przechowywania i wykorzystania macierzy A

W przypadku metody dla macierzy trójdiagonalnej (metody Thomasa), zdecydowałem się na przechowywanie macierzy w postaci 2-wymiarowej tablicy o n wierszach i 3 kolumnach, gdzie 2. kolumna odpowiada głównej przekątnej macierzy A, 1. kolumna odpowiada przekątnej pod główną przekątną, a 3. kolumna – przekątnej nad główną przekątną. Ponieważ algorytm Thomasa wykonuje obliczenia jedynie na wartości głównej przekątnej macierzy oraz wartości, która znajduje się pod nią, zmodyfikowałem algorytm Thomasa tak, aby wykonywał te operacje na reprezentacji macierzy w postaci tablicy o wymiarach  $n \times 3$ .

Takie podejście pozwala na zmniejszenie złożoności pamięciowej do O(n), nawet wtedy, gdy do złożoności pamięciowej wliczamy pamięć potrzebną na reprezentację macierzy A.

Jeżeli do złożoności pamięciowej nie wliczalibyśmy pamięci potrzebnej na reprezentację elementów układu równań (macierzy A oraz wektor b), wówczas również standardowa implementacja algorytmu Thomasa, operująca na macierzy A o wymiarach  $n \times n$  miałaby złożoność pamięciową rzędu O(n), ponieważ nie jest konieczne kopiowanie całej macierzy A do wykonania obliczeń (przy założeniu, że dane wejściowe nie powinny zostać zmodyfikowane podczas obliczania rozwiązania układu równań). W przypadku metody Gaussa konieczne jest utworzenie kopii macierzy A, przez co ma ona złożoność pamięciową rzędu  $O(n^2)$ .

# 4.3. Wartości błędów oraz czasy obliczeń wektora x

#### 4.3.1. Wykresy błędów obliczeń

Wykresy błędów są takie same jak dla metody Gaussa.

• Wykres w skali liniowej dla n = 2, ..., 1000 (wartości błędów)



Rys. 3.4.2.1. Wykres błędów dla n od 2 do 1000 (skala liniowa)

• Wykres w skali logarytmicznej dla n = 2, ..., 1000 (wartości błędów)



Rys. 3.4.2.2. Wykres błędów dla n od 2 do 1000 (skala logarytmiczna)

#### 4.3.2. Wykres czasów obliczeń

Możemy zauważyć, że zwiększanie wartości n prowadzi do zwiększania czasu obliczeń. Widzimy również, że trend jest zgodny z oczekiwanym i czas obliczeń rośnie liniowo (poza pojedynczymi przypadkami, w których czas obliczeń znacznie odstaje od

głównego trendu). Na zamieszczonym na następnej stronie wykresie regresji liniowej (Rys. 3.4.2.4.) widać, że różnice w czasie obliczeń między obydwoma typami zmiennych, dla których przeprowadzałem analizę, są bardzo niewielkie.

#### • Wykres czasów obliczeń dla n = 2, ..., 1000



Rys. 3.4.2.3. Wykres czasów obliczeń wektora dla n od 2 do 1000 (skala liniowa)

#### • Wykres regresji liniowej czasów obliczeń dla n=2,...,1000



Rys. 3.4.2.4. Wykres regresji liniowej czasów obliczeń wektora dla n od 2 do 1000 (skala liniowa)

#### 4.3.3. Zestawienie błędów oraz czasów obliczeń

Zestawienie analogiczne, jak w poprzednich zadaniach.

Jak możemy zauważyć, czas obliczeń jest bardzo niewielki i nawet dla n równego 1000 wynosi ok.  $1\mathrm{ms}$ .

| Wartość n | Błędy       |             | Czasy obliczeń [s] |             |  |
|-----------|-------------|-------------|--------------------|-------------|--|
|           | float32     | float64     | float32            | float64     |  |
| 2         | 5,96046E-08 | 2,22045E-16 | 1,53000E-05        | 8,70001E-06 |  |
| 3         | 5,96046E-08 | 2,22045E-16 | 1,01000E-05        | 8,00000E-06 |  |
| 4         | 5,96046E-08 | 0,00000E+00 | 1,15000E-05        | 9,50001E-06 |  |
| 5         | 5,96046E-08 | 1,11022E-16 | 1,33000E-05        | 1,12000E-05 |  |
| 6         | 5,96046E-08 | 1,11022E-16 | 1,56000E-05        | 1,48000E-05 |  |
| 7         | 5,96046E-08 | 1,11022E-16 | 1,81000E-05        | 2,80000E-05 |  |
| 8         | 1,19209E-07 | 2,22045E-16 | 2,07000E-05        | 1,76000E-05 |  |
| 9         | 1,19209E-07 | 2,22045E-16 | 2,23001E-05        | 2,01000E-05 |  |
| 10        | 1,19209E-07 | 2,22045E-16 | 2,41000E-05        | 2,14000E-05 |  |
| 11        | 1,19209E-07 | 2,22045E-16 | 2,72000E-05        | 2,27000E-05 |  |
| 12        | 1,19209E-07 | 2,22045E-16 | 2,83000E-05        | 2,41000E-05 |  |
| 13        | 1,19209E-07 | 2,22045E-16 | 3,08000E-05        | 3,20000E-05 |  |
| 14        | 1,19209E-07 | 2,22045E-16 | 3,66000E-05        | 2,80000E-05 |  |
| 15        | 1,19209E-07 | 2,22045E-16 | 3,53000E-05        | 2,84000E-05 |  |
| 16        | 1,19209E-07 | 2,22045E-16 | 3,76000E-05        | 3,07000E-05 |  |
| 17        | 1,19209E-07 | 2,22045E-16 | 3,97000E-05        | 3,19000E-05 |  |
| 18        | 1,19209E-07 | 2,22045E-16 | 4,15000E-05        | 1,00200E-04 |  |
| 19        | 1,19209E-07 | 2,22045E-16 | 4,62000E-05        | 1,06700E-04 |  |
| 20        | 1,19209E-07 | 2,22045E-16 | 5,30000E-05        | 4,14000E-05 |  |
| 21        | 1,19209E-07 | 2,22045E-16 | 4,79000E-05        | 3,93000E-05 |  |
| 22        | 1,19209E-07 | 2,22045E-16 | 5,01000E-05        | 4,12000E-05 |  |
| 23        | 1,19209E-07 | 2,22045E-16 | 5,30000E-05        | 4,26000E-05 |  |
| 24        | 1,19209E-07 | 2,22045E-16 | 5,46000E-05        | 4,51000E-05 |  |
| 25        | 1,19209E-07 | 2,22045E-16 | 5,72000E-05        | 4,79000E-05 |  |
| 26        | 1,19209E-07 | 2,22045E-16 | 5,90000E-05        | 4,91000E-05 |  |
| 27        | 1,19209E-07 | 2,22045E-16 | 6,34000E-05        | 5,10000E-05 |  |
| 28        | 1,19209E-07 | 2,22045E-16 | 6,46000E-05        | 1,17000E-04 |  |
| 29        | 1,19209E-07 | 2,22045E-16 | 6,67000E-05        | 5,51000E-05 |  |
| 30        | 1,19209E-07 | 2,22045E-16 | 7,15000E-05        | 5,35000E-05 |  |
| 31        | 1,19209E-07 | 2,22045E-16 | 7,26000E-05        | 5,92000E-05 |  |
| 32        | 1,19209E-07 | 2,22045E-16 | 7,30000E-05        | 5,81000E-05 |  |
| <i>33</i> | 1,19209E-07 | 2,22045E-16 | 7,55000E-05        | 6,60000E-05 |  |
| 34        | 1,19209E-07 | 2,22045E-16 | 7,86000E-05        | 6,34000E-05 |  |
| <i>35</i> | 1,19209E-07 | 2,22045E-16 | 8,31000E-05        | 6,41000E-05 |  |
| 36        | 1,19209E-07 | 2,22045E-16 | 8,34000E-05        | 6,66000E-05 |  |
| 37        | 1,19209E-07 | 2,22045E-16 | 8,79000E-05        | 6,85000E-05 |  |
| <i>38</i> | 1,19209E-07 | 2,22045E-16 | 8,68000E-05        | 7,12000E-05 |  |
| 39        | 1,19209E-07 | 2,22045E-16 | 9,35000E-05        | 7,21000E-05 |  |
| 40        | 1,19209E-07 | 2,22045E-16 | 8,84000E-05        | 7,47000E-05 |  |
| 41        | 1,19209E-07 | 2,22045E-16 | 9,14001E-05        | 7,58000E-05 |  |
| 42        | 1,19209E-07 | 2,22045E-16 | 9,27000E-05        | 7,73000E-05 |  |

| 43 | 1,19209E-07 | 2,22045E-16 | 9,37000E-05 | 7,94000E-05 |
|----|-------------|-------------|-------------|-------------|
| 44 | 1,19209E-07 | 2,22045E-16 | 9,63000E-05 | 8,14000E-05 |
| 45 | 1,19209E-07 | 2,22045E-16 | 1,02600E-04 | 8,51000E-05 |
| 46 | 1,19209E-07 | 2,22045E-16 | 1,02700E-04 | 8,58000E-05 |
| 47 | 1,19209E-07 | 2,22045E-16 | 1,03400E-04 | 8,59000E-05 |
| 48 | 1,19209E-07 | 2,22045E-16 | 1,05400E-04 | 9,00000E-05 |
| 49 | 1,19209E-07 | 2,22045E-16 | 1,08000E-04 | 9,01000E-05 |
| 50 | 1,19209E-07 | 2,22045E-16 | 1,08500E-04 | 9,29000E-05 |

Tabela. 3.4.2.1. Błędy obliczeń oraz czasy obliczeń dla zmiennych typu float32 oraz float64 dla n od 2 do 50

| Wartość n | ość n       |             | Czasy ob    | oliczeń [s] |
|-----------|-------------|-------------|-------------|-------------|
|           | float32     | float64     | float32     | float64     |
| 10        | 1,19209E-07 | 2,22045E-16 | 2,41000E-05 | 2,14000E-05 |
| 20        | 1,19209E-07 | 2,22045E-16 | 5,30000E-05 | 4,14000E-05 |
| 30        | 1,19209E-07 | 2,22045E-16 | 7,15000E-05 | 5,35000E-05 |
| 40        | 1,19209E-07 | 2,22045E-16 | 8,84000E-05 | 7,47000E-05 |
| 50        | 1,19209E-07 | 2,22045E-16 | 1,08500E-04 | 9,29000E-05 |
| 60        | 1,19209E-07 | 2,22045E-16 | 1,30800E-04 | 1,12800E-04 |
| 70        | 1,19209E-07 | 2,22045E-16 | 1,49300E-04 | 1,28700E-04 |
| 80        | 1,19209E-07 | 2,22045E-16 | 1,75000E-04 | 1,84900E-04 |
| 90        | 1,19209E-07 | 2,22045E-16 | 1,83400E-04 | 1,69900E-04 |
| 100       | 1,19209E-07 | 2,22045E-16 | 4,99300E-04 | 1,81600E-04 |
| 110       | 1,19209E-07 | 2,22045E-16 | 4,78800E-04 | 2,04800E-04 |
| 120       | 1,19209E-07 | 2,22045E-16 | 2,35500E-04 | 2,21000E-04 |
| 130       | 1,19209E-07 | 2,22045E-16 | 5,15600E-04 | 2,49800E-04 |
| 140       | 1,19209E-07 | 2,22045E-16 | 5,34300E-04 | 5,62700E-04 |
| 150       | 1,19209E-07 | 2,22045E-16 | 2,61200E-04 | 2,79700E-04 |
| 160       | 1,19209E-07 | 2,22045E-16 | 3,98900E-04 | 2,82400E-04 |
| 170       | 1,19209E-07 | 2,22045E-16 | 3,36500E-04 | 4,16600E-04 |
| 180       | 1,19209E-07 | 2,22045E-16 | 3,29300E-04 | 3,79400E-04 |
| 190       | 1,19209E-07 | 2,22045E-16 | 3,75000E-04 | 3,82200E-04 |
| 200       | 1,19209E-07 | 2,22045E-16 | 6,56400E-04 | 7,97900E-04 |
| 210       | 1,19209E-07 | 2,22045E-16 | 8,33900E-04 | 3,81200E-04 |
| 220       | 1,19209E-07 | 2,22045E-16 | 4,13700E-04 | 4,26200E-04 |
| 230       | 1,19209E-07 | 2,22045E-16 | 4,40400E-04 | 4,21500E-04 |
| 240       | 1,19209E-07 | 2,22045E-16 | 5,07400E-04 | 4,33500E-04 |
| 250       | 1,19209E-07 | 2,22045E-16 | 5,32100E-04 | 5,60300E-04 |
| 260       | 1,19209E-07 | 2,22045E-16 | 5,01200E-04 | 4,92300E-04 |
| 270       | 1,19209E-07 | 2,22045E-16 | 5,26700E-04 | 1,11790E-03 |
| 280       | 1,19209E-07 | 2,22045E-16 | 7,63700E-04 | 5,20600E-04 |
| 290       | 1,19209E-07 | 2,22045E-16 | 5,40400E-04 | 1,00190E-03 |
| 300       | 1,19209E-07 | 2,22045E-16 | 6,52200E-04 | 7,80200E-04 |

| 310        | 1,19209E-07 | 2,22045E-16 | 7,37900E-04 | 6,89100E-04 |
|------------|-------------|-------------|-------------|-------------|
| 320        | 1,19209E-07 | 2,22045E-16 | 5,57100E-04 | 5,76000E-04 |
| 330        | 1,19209E-07 | 2,22045E-16 | 1,26820E-03 | 5,96300E-04 |
| 340        | 1,19209E-07 | 2,22045E-16 | 5,98400E-04 | 6,22100E-04 |
| <i>350</i> | 1,19209E-07 | 2,22045E-16 | 8,79700E-04 | 6,31900E-04 |
| 360        | 1,19209E-07 | 2,22045E-16 | 8,24000E-04 | 1,21830E-03 |
| <i>370</i> | •           | •           | •           | ·           |
|            | 1,19209E-07 | 2,22045E-16 | 6,47900E-04 | 6,72000E-04 |
| 380        | 1,19209E-07 | 2,22045E-16 | 8,60300E-04 | 6,93600E-04 |
| 390        | 1,19209E-07 | 2,22045E-16 | 1,09580E-03 | 1,36040E-03 |
| 400        | 1,19209E-07 | 2,22045E-16 | 7,37600E-04 | 1,47180E-03 |
| 410        | 1,19209E-07 | 2,22045E-16 | 7,18100E-04 | 7,62500E-04 |
| 420        | 1,19209E-07 | 2,22045E-16 | 7,44000E-04 | 8,05800E-04 |
| 430        | 1,19209E-07 | 2,22045E-16 | 1,09430E-03 | 8,08800E-04 |
| 440        | 1,19209E-07 | 2,22045E-16 | 1,35160E-03 | 8,19800E-04 |
| 450        | 1,19209E-07 | 2,22045E-16 | 7,84600E-04 | 1,48960E-03 |
| 460        | 1,19209E-07 | 2,22045E-16 | 1,37500E-03 | 8,15800E-04 |
| 470        | 1,19209E-07 | 2,22045E-16 | 1,09130E-03 | 1,71020E-03 |
| 480        | 1,19209E-07 | 2,22045E-16 | 8,78800E-04 | 8,71500E-04 |
| 490        | 1,19209E-07 | 2,22045E-16 | 8,72000E-04 | 9,86800E-04 |
| <i>500</i> | 1,19209E-07 | 2,22045E-16 | 8,90100E-04 | 1,46290E-03 |
| 510        | 1,19209E-07 | 2,22045E-16 | 1,49350E-03 | 1,56860E-03 |
| <i>520</i> | 1,19209E-07 | 2,22045E-16 | 9,80300E-04 | 9,61600E-04 |
| <i>530</i> | 1,19209E-07 | 2,22045E-16 | 9,30400E-04 | 1,18760E-03 |
| <i>540</i> | 1,19209E-07 | 2,22045E-16 | 9,88400E-04 | 1,33240E-03 |
| <i>550</i> | 1,19209E-07 | 2,22045E-16 | 1,02060E-03 | 1,00300E-03 |
| <i>560</i> | 1,19209E-07 | 2,22045E-16 | 9,96700E-04 | 1,82020E-03 |
| <i>570</i> | 1,19209E-07 | 2,22045E-16 | 1,19450E-03 | 1,06370E-03 |
| <i>580</i> | 1,19209E-07 | 2,22045E-16 | 1,46000E-03 | 1,04640E-03 |
| <i>590</i> | 1,19209E-07 | 2,22045E-16 | 1,16840E-03 | 1,07410E-03 |
| 600        | 1,19209E-07 | 2,22045E-16 | 1,15140E-03 | 1,11260E-03 |
| 610        | 1,19209E-07 | 2,22045E-16 | 1,64040E-03 | 1,11630E-03 |
| <i>620</i> | 1,19209E-07 | 2,22045E-16 | 1,36050E-03 | 1,25990E-03 |
| <i>630</i> | 1,19209E-07 | 2,22045E-16 | 1,22880E-03 | 1,19040E-03 |
| 640        | 1,19209E-07 | 2,22045E-16 | 1,55190E-03 | 1,30860E-03 |
| <i>650</i> | 1,19209E-07 | 2,22045E-16 | 1,71030E-03 | 1,37180E-03 |
| 660        | 1,19209E-07 | 2,22045E-16 | 1,41370E-03 | 1,21010E-03 |
| <i>670</i> | 1,19209E-07 | 2,22045E-16 | 1,31800E-03 | 1,22570E-03 |
| 680        | 1,19209E-07 | 2,22045E-16 | 1,40220E-03 | 1,35100E-03 |
| 690        | 1,19209E-07 | 2,22045E-16 | 1,66670E-03 | 1,58010E-03 |
| 700        | 1,19209E-07 | 2,22045E-16 | 1,23470E-03 | 1,32260E-03 |
| 710        | 1,19209E-07 | 2,22045E-16 | 1,47610E-03 | 2,18380E-03 |
| 720        | 1,19209E-07 | 2,22045E-16 | 1,27470E-03 | 1,38130E-03 |
| 730        | 1,19209E-07 | 2,22045E-16 | 1,28690E-03 | 1,35620E-03 |
|            |             |             |             |             |

| 740        | 1,19209E-07 | 2,22045E-16 | 1,32360E-03 | 1,37920E-03 |
|------------|-------------|-------------|-------------|-------------|
| <i>750</i> | 1,19209E-07 | 2,22045E-16 | 1,33860E-03 | 1,45460E-03 |
| 760        | 1,19209E-07 | 2,22045E-16 | 1,46800E-03 | 1,79890E-03 |
| <i>770</i> | 1,19209E-07 | 2,22045E-16 | 1,42670E-03 | 1,45260E-03 |
| <i>780</i> | 1,19209E-07 | 2,22045E-16 | 1,94400E-03 | 1,52470E-03 |
| <i>790</i> | 1,19209E-07 | 2,22045E-16 | 1,42190E-03 | 1,52800E-03 |
| 800        | 1,19209E-07 | 2,22045E-16 | 1,44880E-03 | 1,42640E-03 |
| 810        | 1,19209E-07 | 2,22045E-16 | 1,47740E-03 | 1,64100E-03 |
| <i>820</i> | 1,19209E-07 | 2,22045E-16 | 1,53350E-03 | 1,51100E-03 |
| <i>830</i> | 1,19209E-07 | 2,22045E-16 | 2,25220E-03 | 1,58450E-03 |
| 840        | 1,19209E-07 | 2,22045E-16 | 2,55990E-03 | 1,53380E-03 |
| <i>850</i> | 1,19209E-07 | 2,22045E-16 | 1,52280E-03 | 1,61080E-03 |
| 860        | 1,19209E-07 | 2,22045E-16 | 1,50710E-03 | 1,65590E-03 |
| <i>870</i> | 1,19209E-07 | 2,22045E-16 | 1,55130E-03 | 1,53610E-03 |
| 880        | 1,19209E-07 | 2,22045E-16 | 1,53630E-03 | 1,60300E-03 |
| <i>890</i> | 1,19209E-07 | 2,22045E-16 | 1,64500E-03 | 1,77890E-03 |
| 900        | 1,19209E-07 | 2,22045E-16 | 2,03620E-03 | 1,67880E-03 |
| 910        | 1,19209E-07 | 2,22045E-16 | 1,60920E-03 | 1,76480E-03 |
| 920        | 1,19209E-07 | 2,22045E-16 | 1,95680E-03 | 1,97750E-03 |
| 930        | 1,19209E-07 | 2,22045E-16 | 1,67120E-03 | 2,24420E-03 |
| 940        | 1,19209E-07 | 2,22045E-16 | 1,70050E-03 | 1,65940E-03 |
| 950        | 1,19209E-07 | 2,22045E-16 | 1,84590E-03 | 1,62350E-03 |
| 960        | 1,19209E-07 | 2,22045E-16 | 1,68280E-03 | 1,60740E-03 |
| 970        | 1,19209E-07 | 2,22045E-16 | 1,94510E-03 | 1,68190E-03 |
| 980        | 1,19209E-07 | 2,22045E-16 | 2,10380E-03 | 1,95430E-03 |
| 990        | 1,19209E-07 | 2,22045E-16 | 1,71970E-03 | 1,73120E-03 |
| 1000       | 1,19209E-07 | 2,22045E-16 | 1,82860E-03 | 1,74710E-03 |
|            |             |             | ·           |             |

Tabela. 3.4.2.2. Błędy obliczeń oraz czasy obliczeń dla zmiennych typu float32 oraz float64 dla wybranych wartości n

# 5. Porównanie metody Gaussa i metody Thomasa

# 5.1. Porównanie błędów

#### 5.1.1. Wykres błędów



Rys. 3.5.1.1. Wykres błędów obliczeń dla metody Gaussa i metody Thomasa

#### 5.1.2. Zestawienie błędów

Zamieszczone niżej tabele zawierają porównanie błędów obliczeń wartości wektora x, przy pomocy metody Gaussa oraz metody Thomasa. Jak możemy łatwo zauważyć, błędy są takie same dla obu metod obliczania rozwiązania układu równań.

| Wartość n      | Floa        | Float32 Float64 |             | at64        |
|----------------|-------------|-----------------|-------------|-------------|
| , , al 1030 II | Gauss       | Thomas          | Gauss       | Thomas      |
| 2              | 5,96046E-08 | 5,96046E-08     | 2,22045E-16 | 2,22045E-16 |
| 3              | 5,96046E-08 | 5,96046E-08     | 2,22045E-16 | 2,22045E-16 |
| 4              | 5,96046E-08 | 5,96046E-08     | 0,00000E+00 | 0,00000E+00 |
| 5              | 5,96046E-08 | 5,96046E-08     | 1,11022E-16 | 1,11022E-16 |
| 6              | 5,96046E-08 | 5,96046E-08     | 1,11022E-16 | 1,11022E-16 |
| 7              | 5,96046E-08 | 5,96046E-08     | 1,11022E-16 | 1,11022E-16 |
| 8              | 1,19209E-07 | 1,19209E-07     | 2,22045E-16 | 2,22045E-16 |
| 9              | 1,19209E-07 | 1,19209E-07     | 2,22045E-16 | 2,22045E-16 |
| 10             | 1,19209E-07 | 1,19209E-07     | 2,22045E-16 | 2,22045E-16 |
| 11             | 1,19209E-07 | 1,19209E-07     | 2,22045E-16 | 2,22045E-16 |
| 12             | 1,19209E-07 | 1,19209E-07     | 2,22045E-16 | 2,22045E-16 |
| 13             | 1,19209E-07 | 1,19209E-07     | 2,22045E-16 | 2,22045E-16 |
| 14             | 1,19209E-07 | 1,19209E-07     | 2,22045E-16 | 2,22045E-16 |
| 15             | 1,19209E-07 | 1,19209E-07     | 2,22045E-16 | 2,22045E-16 |
| 16             | 1,19209E-07 | 1,19209E-07     | 2,22045E-16 | 2,22045E-16 |
| 17             | 1,19209E-07 | 1,19209E-07     | 2,22045E-16 | 2,22045E-16 |
| 18             | 1,19209E-07 | 1,19209E-07     | 2,22045E-16 | 2,22045E-16 |

| 19        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
|-----------|-------------|-------------|-------------|-------------|
| 20        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 21        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 22        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 23        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 24        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 25        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 26        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 27        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 28        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 29        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| <i>30</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 31        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| <i>32</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| <i>33</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 34        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| <i>35</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| <i>36</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| <i>37</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| <i>38</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| <i>39</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 40        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 41        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 42        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 43        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 44        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 45        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 46        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 47        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 48        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 49        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 50        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |

Tabela. 3.5.1.1. Porównanie błędów obliczeń wykonanych, przy pomocy metody Gaussa oraz metody Thomasa dla n od 2 do 50

| Wartość n | Float32     |             | Float64     |             |
|-----------|-------------|-------------|-------------|-------------|
|           | Gauss       | Thomas      | Gauss       | Thomas      |
| 10        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 20        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 30        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 40        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 50        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 60        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |

| 70         | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
|------------|-------------|-------------|-------------|-------------|
| 80         | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 90         | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 100        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 110        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 120        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 130        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 140        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 150        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 160        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 170        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 180        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 190        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 200        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 210        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 220        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 230        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 240        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 250        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 260        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 270        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 280        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 290        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| <i>300</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 310        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 320        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 330        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 340        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| <i>350</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 360        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| <i>370</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 380        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 390        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 400        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 410        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 420        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 430        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 440        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 450        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 460        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 470        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 480        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 490        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |

| 510         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           520         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           530         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           540         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           550         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           560         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           570         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           570         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           580         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           600         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           611         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           612         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           613         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | 500        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------|-------------|-------------|
| 520         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           530         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           540         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           550         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           560         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           570         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           580         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           600         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           610         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           620         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           630         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           640         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           650         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 |            |             |             |             | ·           |
| 530         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           540         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           550         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           560         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           570         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           580         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           590         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           600         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           610         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           620         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           640         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           650         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           660         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 |            | •           |             | ,           | -           |
| 540         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           550         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           560         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           570         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           580         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           590         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           600         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           610         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           620         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           630         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           640         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           650         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           660         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 |            | •           |             |             | ·           |
| 550         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           560         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           570         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           580         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           590         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           600         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           610         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           620         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           630         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           640         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           650         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           660         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           670         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 |            |             |             |             |             |
| 560         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           570         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           580         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           590         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           600         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           610         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           620         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           630         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           640         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           650         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           670         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           680         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           690         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 |            |             | •           |             | ·           |
| 570         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           580         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           590         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           600         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           610         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           620         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           630         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           640         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           650         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           660         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           670         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           680         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           690         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 |            | -           |             |             | -           |
| 580         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           590         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           600         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           610         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           620         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           630         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           640         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           650         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           660         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           670         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           680         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           690         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           700         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 |            | •           | •           | •           |             |
| 590         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           600         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           610         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           620         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           630         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           640         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           650         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           660         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           670         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           680         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           690         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           790         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 |            | -           |             |             | -           |
| 600         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           610         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           620         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           630         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           640         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           650         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           660         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           670         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           680         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           690         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           790         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           790         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 |            |             |             |             | ·           |
| 610         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           620         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           630         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           640         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           650         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           660         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           670         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           680         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           690         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           700         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           720         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           730         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 |            |             |             |             |             |
| 620         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           630         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           640         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           650         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           660         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           670         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           680         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           690         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           700         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | 600        | •           | •           | •           | -           |
| 630         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           640         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           650         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           660         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           670         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           680         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           690         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           700         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           720         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           730         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           740         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | 610        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 |             |
| 640         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           650         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           660         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           670         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           680         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           690         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           700         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           720         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           730         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           740         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           750         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | 620        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 650         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           660         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           670         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           680         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           690         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           700         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | 630        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 660         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           670         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           680         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           690         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           700         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           720         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           730         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           740         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           750         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | 640        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 670         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           680         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           690         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           700         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           720         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           730         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           740         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           750         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           750         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           760         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           770         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           780         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | <i>650</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 680         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           690         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           700         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           720         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           730         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           740         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           750         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           760         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           770         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           780         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           790         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           800         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | 660        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 690         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           700         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           720         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           730         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           740         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           750         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           760         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           770         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           780         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           790         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           800         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           810         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | <i>670</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 700         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           720         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           730         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           740         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           750         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           760         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           770         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           780         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           790         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           800         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           810         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           820         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | 680        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 710         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           720         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           730         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           740         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           750         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           760         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           770         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           780         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           790         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           800         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           810         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           820         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           840         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | 690        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 720         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           730         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           740         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           750         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           760         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           770         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           780         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           790         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           800         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           810         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           820         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           830         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           840         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | 700        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 730         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           740         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           750         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           760         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           770         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           780         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           800         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           810         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           820         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           830         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           840         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           850         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           860         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | 710        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 740         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           750         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           760         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           770         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           780         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           790         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           800         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           810         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           820         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           830         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           840         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           850         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           860         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | 720        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 750         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           760         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           770         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           780         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           790         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           800         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           810         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           820         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           830         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           840         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           850         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           860         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16           870         1,19209E-07         1,19209E-07         2,22045E-16         2,22045E-16 | <i>730</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 760       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         770       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         780       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         790       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         800       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         810       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         820       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         830       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         840       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         850       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         860       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         870       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         890       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         900       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16                                             | 740        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 770       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         780       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         790       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         800       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         810       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         820       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         830       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         840       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         850       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         860       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         870       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         880       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         890       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         900       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16                                             | <i>750</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 780       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         790       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         800       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         810       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         820       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         830       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         840       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         850       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         860       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         870       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         880       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         890       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         900       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         910       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16                                             | <i>760</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 790       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         800       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         810       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         820       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         830       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         840       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         850       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         860       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         870       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         880       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         890       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         900       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         910       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16                                                                                                                                 | <i>770</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 8001,19209E-071,19209E-072,22045E-162,22045E-168101,19209E-071,19209E-072,22045E-162,22045E-168201,19209E-071,19209E-072,22045E-162,22045E-168301,19209E-071,19209E-072,22045E-162,22045E-168401,19209E-071,19209E-072,22045E-162,22045E-168501,19209E-071,19209E-072,22045E-162,22045E-168601,19209E-071,19209E-072,22045E-162,22045E-168701,19209E-071,19209E-072,22045E-162,22045E-168801,19209E-071,19209E-072,22045E-162,22045E-168901,19209E-071,19209E-072,22045E-162,22045E-169001,19209E-071,19209E-072,22045E-162,22045E-169101,19209E-071,19209E-072,22045E-162,22045E-169101,19209E-071,19209E-072,22045E-162,22045E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 780        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 810       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         820       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         830       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         840       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         850       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         860       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         870       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         880       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         890       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         900       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         910       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16                                                                                                                                                                                                                                                                                                         | <i>790</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 820       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         830       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         840       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         850       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         860       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         870       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         880       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         890       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         900       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         910       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16                                                                                                                                                                                                                                                                                                                                                                                             | 800        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 830       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         840       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         850       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         860       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         870       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         880       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         890       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         900       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         910       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>810</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 840       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         850       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         860       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         870       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         880       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         890       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         900       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         910       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>820</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 850       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         860       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         870       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         880       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         890       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         900       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         910       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 830        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 860       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         870       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         880       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         890       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         900       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         910       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 840        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 870       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         880       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         890       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         900       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         910       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>850</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 880       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         890       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         900       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         910       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 860        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 890       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         900       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         910       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>870</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 900       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16         910       1,19209E-07       1,19209E-07       2,22045E-16       2,22045E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 880        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| <b>910</b> 1,19209E-07 1,19209E-07 2,22045E-16 2,22045E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>890</i> | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 900        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| <b>920</b> 1 19209F-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 910        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 1,132032 07 1,132032 07 2,220 132 10 2,220 132 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 920        | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |

| 930  | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
|------|-------------|-------------|-------------|-------------|
| 940  | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 950  | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 960  | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 970  | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 980  | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 990  | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |
| 1000 | 1,19209E-07 | 1,19209E-07 | 2,22045E-16 | 2,22045E-16 |

Tabela. 3.5.1.2. Porównanie błędów obliczeń wykonanych, przy pomocy metody Gaussa oraz metody Thomasa dla wybranych wartości n

#### 5.2. Porównanie czasów obliczeń

#### 5.2.1. Wykres czasów obliczeń

Na poniższym wykresie możemy zauważyć, że czas, potrzebny na obliczenie rozwiązania, przy pomocy metody Gaussa, jest znacznie wyższy niż dla metody Thomasa.



Rys. 3.5.2.1. Wykres czasów obliczeń dla metody Gaussa i metody Thomasa

#### 5.2.2. Zestawienie czasów obliczeń

Zamieszczone niżej tabele zawierają porównanie czasów obliczeń wartości wektora x, przy pomocy metody Gaussa oraz metody Thomasa. Widzimy, że czasy obliczeń są znacznie mniejsze w przypadku metody Thomasa niż w przypadku metody Gaussa.

| Wartość n                               | Float32     |             | Float64     |             |  |
|-----------------------------------------|-------------|-------------|-------------|-------------|--|
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Gauss       | Thomas      | Gauss       | Thomas      |  |
| 2                                       | 7,41000E-05 | 1,53000E-05 | 7,02000E-05 | 8,70001E-06 |  |
| 3                                       | 3,88000E-05 | 1,01000E-05 | 3,69000E-05 | 8,00000E-06 |  |
| 4                                       | 4,91000E-05 | 1,15000E-05 | 4,69000E-05 | 9,50001E-06 |  |

| 5         | 6 620005 05 | 1 220005 05 | 6 20000E 0E | 1 120005 05 |
|-----------|-------------|-------------|-------------|-------------|
|           | 6,62000E-05 | 1,33000E-05 | 6,28000E-05 | 1,12000E-05 |
| 6         | 8,75000E-05 | 1,56000E-05 | 8,34000E-05 | 1,48000E-05 |
| 7         | 1,11000E-04 | 1,81000E-05 | 1,09500E-04 | 2,80000E-05 |
| 8         | 1,75600E-04 | 2,07000E-05 | 1,30400E-04 | 1,76000E-05 |
| 9         | 1,77500E-04 | 2,23001E-05 | 1,60200E-04 | 2,01000E-05 |
| 10        | 2,10800E-04 | 2,41000E-05 | 1,90800E-04 | 2,14000E-05 |
| 11        | 2,49400E-04 | 2,72000E-05 | 2,56400E-04 | 2,27000E-05 |
| 12        | 2,87800E-04 | 2,83000E-05 | 2,73500E-04 | 2,41000E-05 |
| 13        | 3,31400E-04 | 3,08000E-05 | 3,10800E-04 | 3,20000E-05 |
| 14        | 3,80800E-04 | 3,66000E-05 | 3,59400E-04 | 2,80000E-05 |
| 15        | 4,27000E-04 | 3,53000E-05 | 4,03000E-04 | 2,84000E-05 |
| 16        | 4,79900E-04 | 3,76000E-05 | 4,57400E-04 | 3,07000E-05 |
| <b>17</b> | 5,40900E-04 | 3,97000E-05 | 5,11400E-04 | 3,19000E-05 |
| 18        | 6,01500E-04 | 4,15000E-05 | 6,29400E-04 | 1,00200E-04 |
| 19        | 6,57800E-04 | 4,62000E-05 | 6,86800E-04 | 1,06700E-04 |
| 20        | 7,23400E-04 | 5,30000E-05 | 6,83700E-04 | 4,14000E-05 |
| 21        | 7,93500E-04 | 4,79000E-05 | 7,47100E-04 | 3,93000E-05 |
| 22        | 8,58300E-04 | 5,01000E-05 | 8,27800E-04 | 4,12000E-05 |
| 23        | 9,49400E-04 | 5,30000E-05 | 8,98500E-04 | 4,26000E-05 |
| 24        | 1,03880E-03 | 5,46000E-05 | 9,73000E-04 | 4,51000E-05 |
| 25        | 1,12410E-03 | 5,72000E-05 | 1,04540E-03 | 4,79000E-05 |
| 26        | 1,22720E-03 | 5,90000E-05 | 1,13000E-03 | 4,91000E-05 |
| 27        | 2,09140E-03 | 6,34000E-05 | 1,27400E-03 | 5,10000E-05 |
| 28        | 1,39380E-03 | 6,46000E-05 | 1,32420E-03 | 1,17000E-04 |
| 29        | 1,43440E-03 | 6,67000E-05 | 2,18100E-03 | 5,51000E-05 |
| <i>30</i> | 1,57150E-03 | 7,15000E-05 | 1,57540E-03 | 5,35000E-05 |
| 31        | 1,65830E-03 | 7,26000E-05 | 1,66420E-03 | 5,92000E-05 |
| <i>32</i> | 1,75910E-03 | 7,30000E-05 | 1,75510E-03 | 5,81000E-05 |
| <i>33</i> | 1,85300E-03 | 7,55000E-05 | 1,85240E-03 | 6,60000E-05 |
| 34        | 1,95560E-03 | 7,86000E-05 | 2,23740E-03 | 6,34000E-05 |
| <i>35</i> | 2,05280E-03 | 8,31000E-05 | 2,18570E-03 | 6,41000E-05 |
| 36        | 2,21190E-03 | 8,34000E-05 | 2,31480E-03 | 6,66000E-05 |
| <i>37</i> | 2,87680E-03 | 8,79000E-05 | 2,42630E-03 | 6,85000E-05 |
| 38        | 2,41280E-03 | 8,68000E-05 | 2,48860E-03 | 7,12000E-05 |
| <i>39</i> | 2,49760E-03 | 9,35000E-05 | 2,59010E-03 | 7,21000E-05 |
| 40        | 2,64650E-03 | 8,84000E-05 | 3,67200E-03 | 7,47000E-05 |
| 41        | 2,78100E-03 | 9,14001E-05 | 3,21540E-03 | 7,58000E-05 |
| 42        | 2,88570E-03 | 9,27000E-05 | 3,07380E-03 | 7,73000E-05 |
| 43        | 3,11910E-03 | 9,37000E-05 | 3,98110E-03 | 7,94000E-05 |
| 44        | 3,19010E-03 | 9,63000E-05 | 3,49620E-03 | 8,14000E-05 |
| 45        | 3,40070E-03 | 1,02600E-04 | 3,77800E-03 | 8,51000E-05 |
| 46        | 3,56120E-03 | 1,02700E-04 | 3,75860E-03 | 8,58000E-05 |
| 47        | 4,33770E-03 | 1,03400E-04 | 4,00420E-03 | 8,59000E-05 |
|           | ,           | ,           | ,           | ,           |

| 48        | 3,85500E-03 | 1,05400E-04 | 4,18870E-03 | 9,00000E-05 |
|-----------|-------------|-------------|-------------|-------------|
| 49        | 3,98970E-03 | 1,08000E-04 | 4,27380E-03 | 9,01000E-05 |
| <i>50</i> | 4,14360E-03 | 1,08500E-04 | 4,41140E-03 | 9,29000E-05 |

Tabela. 3.5.2.1. Porównanie czasów obliczeń wykonanych, przy pomocy metody Gaussa oraz metody Thomasa dla n od 2 do 50

| Wartość n      | Floa        | at32        | Floa        | at64        |
|----------------|-------------|-------------|-------------|-------------|
| v v ai 103c 11 | Gauss       | Thomas      | Gauss       | Thomas      |
| 10             | 2,10800E-04 | 2,41000E-05 | 1,90800E-04 | 2,14000E-05 |
| 20             | 7,23400E-04 | 5,30000E-05 | 6,83700E-04 | 4,14000E-05 |
| 30             | 1,57150E-03 | 7,15000E-05 | 1,57540E-03 | 5,35000E-05 |
| 40             | 2,64650E-03 | 8,84000E-05 | 3,67200E-03 | 7,47000E-05 |
| 50             | 4,14360E-03 | 1,08500E-04 | 4,41140E-03 | 9,29000E-05 |
| 60             | 5,73890E-03 | 1,30800E-04 | 7,04340E-03 | 1,12800E-04 |
| 70             | 7,75910E-03 | 1,49300E-04 | 9,07850E-03 | 1,28700E-04 |
| 80             | 1,13291E-02 | 1,75000E-04 | 1,25529E-02 | 1,84900E-04 |
| 90             | 1,51905E-02 | 1,83400E-04 | 1,43951E-02 | 1,69900E-04 |
| 100            | 2,01641E-02 | 4,99300E-04 | 1,74800E-02 | 1,81600E-04 |
| 110            | 2,34124E-02 | 4,78800E-04 | 2,65391E-02 | 2,04800E-04 |
| 120            | 2,63565E-02 | 2,35500E-04 | 2,49036E-02 | 2,21000E-04 |
| 130            | 3,13424E-02 | 5,15600E-04 | 2,66652E-02 | 2,49800E-04 |
| 140            | 3,01656E-02 | 5,34300E-04 | 3,12507E-02 | 5,62700E-04 |
| 150            | 3,62754E-02 | 2,61200E-04 | 3,53771E-02 | 2,79700E-04 |
| 160            | 3,75964E-02 | 3,98900E-04 | 4,08156E-02 | 2,82400E-04 |
| 170            | 4,63417E-02 | 3,36500E-04 | 6,88484E-02 | 4,16600E-04 |
| 180            | 5,03562E-02 | 3,29300E-04 | 5,41935E-02 | 3,79400E-04 |
| 190            | 5,32774E-02 | 3,75000E-04 | 8,20399E-02 | 3,82200E-04 |
| 200            | 8,56384E-02 | 6,56400E-04 | 6,38361E-02 | 7,97900E-04 |
| 210            | 8,01512E-02 | 8,33900E-04 | 8,10938E-02 | 3,81200E-04 |
| 220            | 7,38307E-02 | 4,13700E-04 | 8,51794E-02 | 4,26200E-04 |
| 230            | 7,59897E-02 | 4,40400E-04 | 8,72320E-02 | 4,21500E-04 |
| 240            | 1,02568E-01 | 5,07400E-04 | 9,35662E-02 | 4,33500E-04 |
| 250            | 9,17816E-02 | 5,32100E-04 | 9,93175E-02 | 5,60300E-04 |
| 260            | 1,17067E-01 | 5,01200E-04 | 1,41569E-01 | 4,92300E-04 |
| 270            | 1,12517E-01 | 5,26700E-04 | 1,23564E-01 | 1,11790E-03 |
| 280            | 1,25545E-01 | 7,63700E-04 | 1,26625E-01 | 5,20600E-04 |
| 290            | 1,31573E-01 | 5,40400E-04 | 1,50695E-01 | 1,00190E-03 |
| 300            | 1,41425E-01 | 6,52200E-04 | 1,64000E-01 | 7,80200E-04 |
| 310            | 1,57737E-01 | 7,37900E-04 | 2,05493E-01 | 6,89100E-04 |
| 320            | 1,65185E-01 | 5,57100E-04 | 1,69843E-01 | 5,76000E-04 |
| 330            | 1,81844E-01 | 1,26820E-03 | 2,50754E-01 | 5,96300E-04 |
| 340            | 2,12430E-01 | 5,98400E-04 | 1,83735E-01 | 6,22100E-04 |
| 350            | 2,22750E-01 | 8,79700E-04 | 2,48476E-01 | 6,31900E-04 |
| 360            | 2,10539E-01 | 8,24000E-04 | 2,43575E-01 | 1,21830E-03 |

| 370        | 3,03939E-01 | 6,47900E-04 | 2,22262E-01 | 6,72000E-04 |
|------------|-------------|-------------|-------------|-------------|
| 380        | 2,50125E-01 | 8,60300E-04 | 2,45353E-01 | 6,93600E-04 |
| <i>390</i> | 3,53874E-01 | 1,09580E-03 | <u> </u>    | 1,36040E-03 |
|            | -           |             | 2,68285E-01 | -           |
| 400        | 2,64385E-01 | 7,37600E-04 | 3,21330E-01 | 1,47180E-03 |
| 410        | 3,06013E-01 | 7,18100E-04 | 3,44674E-01 | 7,62500E-04 |
| 420        | 2,81783E-01 | 7,44000E-04 | 3,59876E-01 | 8,05800E-04 |
| 430        | 3,38754E-01 | 1,09430E-03 | 3,26118E-01 | 8,08800E-04 |
| 440        | 3,17356E-01 | 1,35160E-03 | 3,69378E-01 | 8,19800E-04 |
| 450        | 3,40313E-01 | 7,84600E-04 | 4,37868E-01 | 1,48960E-03 |
| 460        | 3,51540E-01 | 1,37500E-03 | 4,20451E-01 | 8,15800E-04 |
| 470        | 4,23218E-01 | 1,09130E-03 | 5,14559E-01 | 1,71020E-03 |
| 480        | 4,15822E-01 | 8,78800E-04 | 3,71192E-01 | 8,71500E-04 |
| 490        | 4,34649E-01 | 8,72000E-04 | 3,89376E-01 | 9,86800E-04 |
| 500        | 4,46886E-01 | 8,90100E-04 | 4,32060E-01 | 1,46290E-03 |
| 510        | 4,47406E-01 | 1,49350E-03 | 4,89592E-01 | 1,56860E-03 |
| <i>520</i> | 5,27370E-01 | 9,80300E-04 | 5,03666E-01 | 9,61600E-04 |
| 530        | 4,65749E-01 | 9,30400E-04 | 5,11963E-01 | 1,18760E-03 |
| 540        | 5,20053E-01 | 9,88400E-04 | 5,23115E-01 | 1,33240E-03 |
| <i>550</i> | 5,87305E-01 | 1,02060E-03 | 5,80048E-01 | 1,00300E-03 |
| <i>560</i> | 5,56563E-01 | 9,96700E-04 | 6,00284E-01 | 1,82020E-03 |
| <i>570</i> | 5,60072E-01 | 1,19450E-03 | 6,49349E-01 | 1,06370E-03 |
| 580        | 8,49493E-01 | 1,46000E-03 | 6,45805E-01 | 1,04640E-03 |
| <i>590</i> | 6,59042E-01 | 1,16840E-03 | 7,25801E-01 | 1,07410E-03 |
| 600        | 6,05102E-01 | 1,15140E-03 | 7,07998E-01 | 1,11260E-03 |
| 610        | 6,30925E-01 | 1,64040E-03 | 7,25617E-01 | 1,11630E-03 |
| <i>620</i> | 7,06556E-01 | 1,36050E-03 | 7,31183E-01 | 1,25990E-03 |
| <i>630</i> | 7,59314E-01 | 1,22880E-03 | 7,56421E-01 | 1,19040E-03 |
| 640        | 7,56769E-01 | 1,55190E-03 | 8,28667E-01 | 1,30860E-03 |
| <i>650</i> | 9,39254E-01 | 1,71030E-03 | 7,72385E-01 | 1,37180E-03 |
| 660        | 8,22976E-01 | 1,41370E-03 | 9,03050E-01 | 1,21010E-03 |
| <i>670</i> | 9,33651E-01 | 1,31800E-03 | 8,74084E-01 | 1,22570E-03 |
| 680        | 8,80824E-01 | 1,40220E-03 | 9,06008E-01 | 1,35100E-03 |
| 690        | 8,69731E-01 | 1,66670E-03 | 9,24168E-01 | 1,58010E-03 |
| 700        | 9,16313E-01 | 1,23470E-03 | 8,89989E-01 | 1,32260E-03 |
| 710        | 8,90448E-01 | 1,47610E-03 | 9,24021E-01 | 2,18380E-03 |
| 720        | 9,25209E-01 | 1,27470E-03 | 9,46974E-01 | 1,38130E-03 |
| 730        | 1,04118E+00 | 1,28690E-03 | 9,56116E-01 | 1,35620E-03 |
| 740        | 1,13799E+00 | 1,32360E-03 | 1,04737E+00 | 1,37920E-03 |
| <i>750</i> | 1,11428E+00 | 1,33860E-03 | 1,08061E+00 | 1,45460E-03 |
| 760        | 1,13539E+00 | 1,46800E-03 | 1,11429E+00 | 1,79890E-03 |
| 770        | 1,13535E+00 | 1,42670E-03 | 1,14851E+00 | 1,45260E-03 |
| 780        | 1,03858E+00 | 1,94400E-03 | 1,24892E+00 | 1,52470E-03 |
| 790        | 1,07057E+00 | 1,42190E-03 | 1,14111E+00 | 1,52800E-03 |
|            | l           |             |             |             |

| 800        | 1,29916E+00 | 1,44880E-03 | 1,21413E+00 | 1,42640E-03 |
|------------|-------------|-------------|-------------|-------------|
| <i>810</i> | 1,22670E+00 | 1,47740E-03 | 1,30507E+00 | 1,64100E-03 |
| <i>820</i> | 1,41156E+00 | 1,53350E-03 | 1,26447E+00 | 1,51100E-03 |
| <i>830</i> | 1,34588E+00 | 2,25220E-03 | 1,34658E+00 | 1,58450E-03 |
| 840        | 1,38322E+00 | 2,55990E-03 | 1,63426E+00 | 1,53380E-03 |
| <i>850</i> | 1,41046E+00 | 1,52280E-03 | 1,42073E+00 | 1,61080E-03 |
| 860        | 1,47977E+00 | 1,50710E-03 | 1,47813E+00 | 1,65590E-03 |
| <i>870</i> | 1,92159E+00 | 1,55130E-03 | 1,45812E+00 | 1,53610E-03 |
| 880        | 1,34058E+00 | 1,53630E-03 | 1,63679E+00 | 1,60300E-03 |
| <i>890</i> | 1,36769E+00 | 1,64500E-03 | 1,56911E+00 | 1,77890E-03 |
| 900        | 1,40482E+00 | 2,03620E-03 | 1,75300E+00 | 1,67880E-03 |
| 910        | 1,47295E+00 | 1,60920E-03 | 1,76326E+00 | 1,76480E-03 |
| 920        | 1,50498E+00 | 1,95680E-03 | 1,79466E+00 | 1,97750E-03 |
| 930        | 1,67924E+00 | 1,67120E-03 | 1,80288E+00 | 2,24420E-03 |
| 940        | 1,58390E+00 | 1,70050E-03 | 1,86970E+00 | 1,65940E-03 |
| 950        | 1,80059E+00 | 1,84590E-03 | 1,89618E+00 | 1,62350E-03 |
| 960        | 1,60552E+00 | 1,68280E-03 | 1,99279E+00 | 1,60740E-03 |
| 970        | 1,82383E+00 | 1,94510E-03 | 2,06034E+00 | 1,68190E-03 |
| 980        | 1,91251E+00 | 2,10380E-03 | 2,00543E+00 | 1,95430E-03 |
| 990        | 1,78292E+00 | 1,71970E-03 | 2,26398E+00 | 1,73120E-03 |
| 1000       | 1,99905E+00 | 1,82860E-03 | 2,17676E+00 | 1,74710E-03 |
|            |             |             |             |             |

Tabela. 3.5.2.2. Porównanie czasów obliczeń wykonanych, przy pomocy metody Gaussa oraz metody Thomasa dla wybranych wartości n

# V. Wnioski

- Przeprowadzona analiza pokazała, jak niebagatelne znaczenie ma uwarunkowanie problemu, które w znaczący sposób wpływa na dokładność uzyskiwanych wyników,
- Bardzo duży wpływ na dokładność wyniku mają także błędy zaokrągleń, spowodowane niewystarczającą precyzją zastosowanego typu zmiennych. Mogliśmy dokładnie zaobserwować na wykresie Rys. 2.3.2.1., jak bardzo różniące się od siebie rozwiązania otrzymujemy dla zmiennych typu float32 oraz dla zmiennych float64.
- Metoda Gaussa pozwala na stosunkowo łatwe wyznaczanie rozwiązania układu równań, jednakże ma wysoką złożoność obliczeniową oraz pamięciową,
- Metoda Thomasa pozwala na bardzo szybkie obliczenie rozwiązania układu równań, a także wykorzystuje mniej pamięci, jednakże może być zastosowana wyłącznie dla szczególnego typu układu równań, w którym wszystkie wartości poza leżącymi na głównej przekątnej, przekątnej pod nią oraz nad nią, muszą mieć wartość równą 0.