FeaturesExtr

January 22, 2024

```
[210]: from sklearn.preprocessing import StandardScaler
       from sklearn.decomposition import PCA
       import pandas as pd
       import matplotlib.pyplot as plt
       from latex import latexify, format_axes
       import numpy as np
       import tsfel
       from sklearn.tree import DecisionTreeClassifier
       from sklearn.tree import export_graphviz
       from sklearn import tree
       import graphviz
       from sklearn.metrics import classification_report, confusion_matrix, __
        →accuracy_score
       import seaborn as sns
       from MakeDataset import *
       %matplotlib inline
       # Retina
       %config InlineBackend.figure_format = 'retina'
```

0.0.1 Template for PCA Plotting

```
0.0.2 (a_x, a_y, a_z)
[212]: aXYZ_Xtrain = X_train[:, :, 0], X_train[:, :, 1], X_train[:, :, 2]
      0.0.3 (a_x^2 + a_y^2 + a_z^2)
[213]: X_train_TS = np.sum(np.square(X_train), axis = -1)
       X_test_TS = np.sum(np.square(X_test), axis = -1)
       X_val_TS = np.sum(np.square(X_val), axis = -1)
       print(X_train_TS.shape, X_test_TS.shape, X_val_TS.shape)
      (108, 500) (36, 500) (36, 500)
      0.0.4 DataFrame for (a_x^2 + a_y^2 + a_z^2) 108 timeseries
[229]: df = pd.DataFrame(X_train_TS)
[229]:
                  0
                                       2
                                                 3
                                                            4
                                                                      5
                                                                                 6
                            1
            1.056837
                       1.055002
                                 1.055806
                                            1.056825
                                                      1.056743
                                                                 1.058030
                                                                            1.059746
       0
       1
            1.083240
                       1.076504
                                 1.071849
                                            1.070542
                                                      1.073735
                                                                 1.069331
                                                                            1.065576
       2
            1.138189
                       1.118926
                                 1.010193
                                            0.908460
                                                      0.877500
                                                                 0.799665
                                                                            0.755336
       3
            1.181108
                       1.152283
                                 1.143152
                                            1.270364
                                                      1.238777
                                                                 1.149924
                                                                            1.015107
       4
            1.011227
                       1.017584
                                 1.013233
                                            1.011926
                                                      1.009752
                                                                 1.005219
                                                                            1.001461
       103
            2.865182
                       4.214804
                                 3.753230
                                            3.061401
                                                      2.623248
                                                                 2.179369
                                                                            1.739349
       104
            1.481487
                       1.741766
                                 1.863997
                                            2.701391
                                                      3.711884
                                                                 2.941636
                                                                            1.958033
       105
           1.059227
                       1.066083
                                 1.065851
                                            1.062518
                                                      1.058762
                                                                 1.059328
                                                                            1.061447
       106 0.822379
                                 0.860853
                       0.796867
                                            0.768546
                                                      0.678476
                                                                 0.590875
                                                                            0.531713
       107
            1.059330
                      1.024984
                                 0.890988
                                            1.011086
                                                      0.924324
                                                                 0.873101
                                                                           0.833131
                 7
                                                    490
                            8
                                       9
                                                               491
                                                                         492
       0
            1.056402
                       1.051561
                                 1.051040
                                               1.059888
                                                          1.052544
                                                                    1.056687
            1.070615
                       1.073486
                                 1.074425
                                               1.076160
                                                          1.072783
                                                                    1.070026
       1
       2
                                               1.131734
            0.604213
                       0.398809
                                 0.387867
                                                          1.211883
                                                                    1.395558
       3
            0.984543
                       1.273980
                                 1.684522
                                               0.621903
                                                          1.029622
                                                                    1.784374
       4
                                 1.007073
            1.005883
                       1.007562
                                               1.009191
                                                          1.006528
                                                                    1.004264
                                               0.356185
       103
           1.163332
                       0.690809
                                 0.565457
                                                          0.427389
                                                                    0.798711
            1.226824
       104
                       0.424725
                                 0.531432 ...
                                               0.933847
                                                          1.111377
                                                                    1.231115
       105
            1.058565
                       1.055911
                                 1.054685
                                               1.059269
                                                          1.056765
                                                                    1.065482
            0.612083
                       0.699120
                                 0.818263
                                               0.773623
                                                          0.715825
                                                                    0.680630
       106
                                               0.616638
       107
           0.642193
                       0.606104
                                 0.555885
                                                          0.569460
                                                                    0.593311
                  493
                            494
                                       495
                                                 496
                                                            497
                                                                      498
                                                                                 499
       0
            1.060374
                       1.060270
                                 1.057576
                                            1.050376
                                                      1.052854
                                                                 1.056003
                                                                            1.050580
       1
            1.066329
                       1.064303
                                 1.069655
                                            1.073976
                                                      1.075890
                                                                 1.078382
```

```
2
    1.574451 1.786266 2.000218 2.163595 2.539505 2.744447 2.195609
3
    1.807674 1.804153
4
    1.003962 1.007311 1.005560 0.999966 0.998143
                                              1.002371 1.010588
. .
103 1.197703 1.243965 0.946267 0.564336 0.293897
                                              0.148865 0.159150
104 0.981100 0.879569 0.951810 1.042146 1.437269
                                              1.472829 1.380977
105 1.075214 1.068180 1.058619 1.062407 1.066245
                                              1.065190 1.068413
106 0.717506 0.754631 0.822995 0.853608 0.882437
                                              0.884731 0.870595
107 0.642203 0.737246 0.780754 0.758168 0.791968 0.890852 1.053665
[108 rows x 500 columns]
```

0.0.5 Defining Named CLasses

```
[230]: classesN = {1 : 'WALKING', 2 : 'WALKING_UPSTAIRS', 3 : 'WALKING_DOWNSTAIRS', 4 :
       → 'SITTING', 5 : 'STANDING', 6 : 'LAYING'}
      namedLabel = [classesN[i] for i in y train]
      classesN
[230]: {1: 'WALKING',
       2: 'WALKING_UPSTAIRS',
       3: 'WALKING_DOWNSTAIRS',
```

4: 'SITTING'. 5: 'STANDING', 6: 'LAYING'}

0.0.6 Feature Extraction on the timeseries using TSFEL

```
[]: cfg = tsfel.get_features_by_domain()
     dataFrames = []
     for i in df.index:
        dataFrames.append(tsfel.time_series_features_extractor(cfg, df.iloc[i, :
      -1], fs = 50))
     dfN = pd.concat(dataFrames, axis = 0)
```

```
[232]: dfN["Labels"] = y train
       dfN["Subject"] = range(1, 109)
       dfN["Named_Subject"] = namedLabel
       dfN.to_csv("FeaturesTimeSeries.csv")
```

0.0.7 Featurized Time Series with 383 features

```
[247]: dfN
           O_Absolute energy O_Area under the curve O_Autocorrelation
[247]:
                  558.990647
                                           10.539676
       0
                                                             558.990647 \
       0
                  574.390274
                                           10.683732
                                                             574.390274
```

```
0
           786.923541
                                     11.328686
                                                        786.923541
0
           929.960228
                                     11.865417
                                                        929.960228
0
           504.910523
                                     10.018665
                                                        504.910523
. .
                                         •••
0
          1568.256890
                                     13.254750
                                                       1568.256890
0
           922.269555
                                     11.826549
                                                        922.269555
0
           567.123251
                                     10.618080
                                                        567.123251
0
           745.722170
                                     11.132367
                                                        745.722170
                                                        749.384758
0
           749.384758
                                     11.142791
    O_Average power
                     O Centroid O ECDF Percentile Count O
0
          56.123559
                        4.988923
                                                        99.0
                                                        99.0
0
          57.669706
                        4.977065
                                                        99.0
0
          79.008388
                        5.026153
0
          93.369501
                                                        99.0
                        5.165735
          50.693828
                                                        99.0
0
                        4.978145
                           •••
0
         157.455511
                        5.313609
                                                        99.0
                                                        99.0
0
          92.597345
                        4.866526
                                                        99.0
0
          56.940085
                        4.977900
0
          74.871704
                        4.944697
                                                        99.0
0
          75.239434
                        4.964639
                                                        99.0
    O_ECDF Percentile Count_1 O_ECDF Percentile_0 O_ECDF Percentile_1
0
                         399.0
                                            1.052052
                                                                  1.064478 \
0
                         399.0
                                            1.064356
                                                                  1.081232
                                            0.726070
0
                         399.0
                                                                  1.395558
0
                         399.0
                                            0.640615
                                                                  1.741832
0
                         399.0
                                            1.001615
                                                                  1.009949
0
                         399.0
                                            0.401499
                                                                  2.623248
0
                         399.0
                                            0.640476
                                                                  1.665380
0
                         399.0
                                            1.061659
                                                                  1.070245
0
                         399.0
                                            0.707780
                                                                  1.428686
0
                         399.0
                                            0.750677
                                                                  1.430162
    0_ECDF_0 ...
                 0
    0.002004
                              0.025006
                                                     0.037278 \
0
    0.002004 ...
                              0.025755
                                                     0.038662
0
    0.002004
                              0.999999
                                                     1.591255
    0.002004
                                                     2.832818
0
                              1.909505
0
    0.002004 ...
                              0.021207
                                                     0.032697
         ... ...
. .
0
    0.002004
                              8.614639
                                                    12.291892
    0.002004
0
                              2.112537
                                                     2.891478
0
    0.002004
                              0.023392
                                                     0.035887
    0.002004
                              0.934469
                                                     1.540069
```

```
O_Wavelet variance_5 O_Wavelet variance_6 O_Wavelet variance_7
       0
                       0.052396
                                             0.070251
                                                                   0.090653
       0
                       0.053818
                                             0.071138
                                                                   0.090822
       0
                       2.322541
                                             3.066285
                                                                   3.664628
       0
                       3.808026
                                                                   4.948531
                                             4.598930
       0
                       0.046494
                                             0.062523
                                                                   0.080705
                      14.178359
                                                                   10.140035
       0
                                            13.191980
      0
                       3.289327
                                             3.139391
                                                                   2.545833
      0
                       0.051075
                                             0.068907
                                                                   0.089307
       0
                       2.286965
                                             3.033829
                                                                   3.571527
       0
                       2.175698
                                             2.781563
                                                                   3.202756
           Labels
                                                               Subject
                                                  0.0
                                                            5
                                                                        \
       0
                       0.113484
                                                                      1
       0
                       0.113121
                                                  0.0
                                                            5
                                                            2
                                                  0.0
                                                                     3
       0
                       3.988167
                                                             3
       0
                       4.748614
                                                  0.0
                                                                     4
                       0.100957
                                                            6
                                                                      5
       0
                                                  0.0
       0
                       6.664172
                                                  0.0
                                                            3
                                                                   104
       0
                       1.786699
                                                  0.0
                                                                   105
                                                            1
      0
                       0.112172
                                                  0.0
                                                            5
                                                                   106
                                                            2
      0
                       3.743132
                                                  0.0
                                                                   107
                       3.294759
                                                  0.0
                                                                   108
                Named_Subject
       0
                     STANDING
       0
                     STANDING
       0
            WALKING_UPSTAIRS
       0
           WALKING_DOWNSTAIRS
       0
                       LAYING
      0
           WALKING_DOWNSTAIRS
      0
                      WALKING
       0
                     STANDING
            WALKING UPSTAIRS
       0
            WALKING_UPSTAIRS
       [108 rows x 386 columns]
[235]: for i, feature in enumerate(dfN.columns[:-3]):
           print(f"{i} -> {feature}")
      0 -> 0_Absolute energy
      1 -> 0_Area under the curve
```

1.027339

1.560717

0

0.002004 ...

- 2 -> 0_Autocorrelation
- 3 -> 0_Average power
- 4 -> 0_Centroid
- 5 -> 0_ECDF Percentile Count_0
- 6 -> 0_ECDF Percentile Count_1
- 7 -> 0_ECDF Percentile_0
- 8 -> 0_ECDF Percentile_1
- 9 -> 0_ECDF_0
- 10 -> 0_ECDF_1
- 11 -> 0_ECDF_2
- 12 -> 0_ECDF_3
- 13 -> 0_ECDF_4
- 14 -> 0_ECDF_5
- 15 -> 0_ECDF_6
- 16 -> 0_ECDF_7
- 17 -> 0_ECDF_8
- 18 -> 0_ECDF_9
- 19 -> 0_Entropy
- 20 -> 0_FFT mean coefficient_0
- 21 -> 0_FFT mean coefficient_1
- 22 -> 0_FFT mean coefficient_10
- 23 -> 0 FFT mean coefficient 100
- 24 -> 0_FFT mean coefficient_101
- 25 -> 0_FFT mean coefficient_102
- 26 -> 0_FFT mean coefficient_103
- 27 -> 0_FFT mean coefficient_104
- 28 -> 0_FFT mean coefficient_105
- 29 -> 0_FFT mean coefficient_106
- 30 -> 0_FFT mean coefficient_107
- 31 -> 0_FFT mean coefficient_108
- 32 -> 0_FFT mean coefficient_109
- 33 -> 0_FFT mean coefficient_11
- 34 -> 0_FFT mean coefficient_110
- 35 -> 0_FFT mean coefficient_111
- 36 -> 0_FFT mean coefficient_112
- 37 -> 0_FFT mean coefficient_113
- 38 -> 0_FFT mean coefficient_114
- 39 -> 0_FFT mean coefficient_115
- 40 -> 0_FFT mean coefficient_116
- 41 -> 0_FFT mean coefficient_117
- 42 -> 0_FFT mean coefficient_118
- 43 -> 0_FFT mean coefficient_119 44 -> 0_FFT mean coefficient_12
- 45 -> 0_FFT mean coefficient_120
- 46 -> 0_FFT mean coefficient_121
- 47 -> 0_FFT mean coefficient_122
- 48 -> 0_FFT mean coefficient_123
- 49 -> 0_FFT mean coefficient_124

```
50 -> 0_FFT mean coefficient_125
51 -> 0_FFT mean coefficient_126
52 -> 0_FFT mean coefficient_127
53 -> 0_FFT mean coefficient_128
54 -> 0 FFT mean coefficient 129
55 -> 0_FFT mean coefficient_13
56 -> 0 FFT mean coefficient 130
57 -> 0_FFT mean coefficient_131
58 -> 0_FFT mean coefficient_132
59 -> 0_FFT mean coefficient_133
60 -> 0_FFT mean coefficient_134
61 -> 0_FFT mean coefficient_135
62 -> 0_FFT mean coefficient_136
63 -> 0_FFT mean coefficient_137
64 -> 0_FFT mean coefficient_138
65 -> 0_FFT mean coefficient_139
66 -> 0_FFT mean coefficient_14
67 -> 0_FFT mean coefficient_140
68 -> 0_FFT mean coefficient_141
69 -> 0 FFT mean coefficient 142
70 -> 0_FFT mean coefficient_143
71 -> 0 FFT mean coefficient 144
72 -> 0_FFT mean coefficient_145
73 -> 0_FFT mean coefficient_146
74 -> 0_FFT mean coefficient_147
75 -> 0_FFT mean coefficient_148
76 -> 0_FFT mean coefficient_149
77 -> 0_FFT mean coefficient_15
78 -> 0_FFT mean coefficient_150
79 -> 0_FFT mean coefficient_151
80 -> 0_FFT mean coefficient_152
81 -> 0_FFT mean coefficient_153
82 -> 0_FFT mean coefficient_154
83 -> 0_FFT mean coefficient_155
84 -> 0 FFT mean coefficient 156
85 -> 0_FFT mean coefficient_157
86 -> 0_FFT mean coefficient_158
87 -> 0_FFT mean coefficient_159
88 -> 0_FFT mean coefficient_16
89 -> 0_FFT mean coefficient_160
90 -> 0_FFT mean coefficient_161
91 -> 0_FFT mean coefficient_162
92 -> 0_FFT mean coefficient_163
93 -> 0_FFT mean coefficient_164
94 -> 0_FFT mean coefficient_165
95 -> 0_FFT mean coefficient_166
96 -> 0_FFT mean coefficient_167
97 -> 0_FFT mean coefficient_168
```

98 -> 0_FFT mean coefficient_169 99 -> 0_FFT mean coefficient_17 100 -> 0_FFT mean coefficient_170 101 -> 0_FFT mean coefficient_171 102 -> 0 FFT mean coefficient 172 103 -> 0_FFT mean coefficient_173 104 -> 0 FFT mean coefficient 174 105 -> 0_FFT mean coefficient_175 106 -> 0_FFT mean coefficient_176 107 -> 0_FFT mean coefficient_177 108 -> 0_FFT mean coefficient_178 109 -> 0_FFT mean coefficient_179 110 -> 0_FFT mean coefficient_18 111 -> 0_FFT mean coefficient_180 112 -> 0_FFT mean coefficient_181 113 -> 0_FFT mean coefficient_182 114 -> 0_FFT mean coefficient_183 115 -> 0_FFT mean coefficient_184 116 -> 0_FFT mean coefficient_185 117 -> 0 FFT mean coefficient 186 118 -> 0_FFT mean coefficient_187 119 -> 0 FFT mean coefficient 188 120 -> 0_FFT mean coefficient_189 121 -> 0 FFT mean coefficient 19 122 -> 0_FFT mean coefficient_190 123 -> 0_FFT mean coefficient_191 124 -> 0_FFT mean coefficient_192 125 -> 0_FFT mean coefficient_193 126 -> 0_FFT mean coefficient_194 127 -> 0_FFT mean coefficient_195 128 -> 0_FFT mean coefficient_196 129 -> 0_FFT mean coefficient_197 130 -> 0_FFT mean coefficient_198 131 -> 0_FFT mean coefficient_199 132 -> 0 FFT mean coefficient 2 133 -> 0 FFT mean coefficient 20 134 -> 0 FFT mean coefficient 200 135 -> 0_FFT mean coefficient_201 136 -> 0_FFT mean coefficient_202 137 -> 0_FFT mean coefficient_203 138 -> 0_FFT mean coefficient_204 139 -> 0_FFT mean coefficient_205 140 -> 0_FFT mean coefficient_206 141 -> 0_FFT mean coefficient_207 142 -> 0_FFT mean coefficient_208 143 -> 0_FFT mean coefficient_209 144 -> 0_FFT mean coefficient_21 145 -> 0_FFT mean coefficient_210

```
146 -> 0_FFT mean coefficient_211
147 -> 0_FFT mean coefficient_212
148 -> 0_FFT mean coefficient_213
149 -> 0_FFT mean coefficient_214
150 -> 0 FFT mean coefficient 215
151 -> 0 FFT mean coefficient 216
152 -> 0 FFT mean coefficient 217
153 -> 0_FFT mean coefficient_218
154 -> 0_FFT mean coefficient_219
155 -> 0_FFT mean coefficient_22
156 -> 0_FFT mean coefficient_220
157 -> 0_FFT mean coefficient_221
158 -> 0_FFT mean coefficient_222
159 -> 0_FFT mean coefficient_223
160 -> 0_FFT mean coefficient_224
161 -> 0_FFT mean coefficient_225
162 -> 0_FFT mean coefficient_226
163 -> 0_FFT mean coefficient_227
164 -> 0_FFT mean coefficient_228
165 -> 0 FFT mean coefficient 229
166 -> 0 FFT mean coefficient 23
167 -> 0 FFT mean coefficient 230
168 -> 0_FFT mean coefficient_231
169 -> 0_FFT mean coefficient_232
170 -> 0_FFT mean coefficient_233
171 -> 0_FFT mean coefficient_234
172 -> 0_FFT mean coefficient_235
173 -> 0_FFT mean coefficient_236
174 -> 0_FFT mean coefficient_237
175 -> 0_FFT mean coefficient_238
176 -> 0_FFT mean coefficient_239
177 -> 0_FFT mean coefficient_24
178 -> 0_FFT mean coefficient_240
179 -> 0_FFT mean coefficient_241
180 -> 0 FFT mean coefficient 242
181 -> 0 FFT mean coefficient 243
182 -> 0 FFT mean coefficient 244
183 -> 0_FFT mean coefficient_245
184 -> 0_FFT mean coefficient_246
185 -> 0_FFT mean coefficient_247
186 -> 0_FFT mean coefficient_248
187 -> 0_FFT mean coefficient_249
188 -> 0_FFT mean coefficient_25
189 -> 0_FFT mean coefficient_26
190 -> 0_FFT mean coefficient_27
191 -> 0_FFT mean coefficient_28
192 -> 0_FFT mean coefficient_29
193 -> 0_FFT mean coefficient_3
```

194 -> 0_FFT mean coefficient_30 195 -> 0_FFT mean coefficient_31 196 -> 0_FFT mean coefficient_32 197 -> 0_FFT mean coefficient_33 198 -> 0 FFT mean coefficient 34 199 -> 0 FFT mean coefficient 35 200 -> 0 FFT mean coefficient 36 201 -> 0_FFT mean coefficient_37 202 -> 0_FFT mean coefficient_38 203 -> 0_FFT mean coefficient_39 204 -> 0_FFT mean coefficient_4 205 -> 0_FFT mean coefficient_40 206 -> 0_FFT mean coefficient_41 207 -> 0_FFT mean coefficient_42 208 -> 0_FFT mean coefficient_43 209 -> 0_FFT mean coefficient_44 210 -> 0_FFT mean coefficient_45 211 -> 0_FFT mean coefficient_46 212 -> 0_FFT mean coefficient_47 213 -> 0 FFT mean coefficient 48 214 -> 0_FFT mean coefficient_49 215 -> 0 FFT mean coefficient 5 216 -> 0_FFT mean coefficient_50 217 -> 0_FFT mean coefficient_51 218 -> 0_FFT mean coefficient_52 219 -> 0_FFT mean coefficient_53 220 -> 0_FFT mean coefficient_54 221 -> 0_FFT mean coefficient_55 222 -> 0_FFT mean coefficient_56 223 -> 0_FFT mean coefficient_57 224 -> 0_FFT mean coefficient_58 225 -> 0_FFT mean coefficient_59 226 -> 0_FFT mean coefficient_6 227 -> 0_FFT mean coefficient_60 228 -> 0 FFT mean coefficient 61 229 -> 0 FFT mean coefficient 62 230 -> 0 FFT mean coefficient 63 231 -> 0_FFT mean coefficient_64 232 -> 0_FFT mean coefficient_65 233 -> 0_FFT mean coefficient_66 234 -> 0_FFT mean coefficient_67 235 -> 0_FFT mean coefficient_68 236 -> 0_FFT mean coefficient_69 237 -> 0_FFT mean coefficient_7 238 -> 0_FFT mean coefficient_70 239 -> 0_FFT mean coefficient_71 240 -> 0_FFT mean coefficient_72 241 -> 0_FFT mean coefficient_73

```
242 -> 0_FFT mean coefficient_74
```

- 243 -> 0_FFT mean coefficient_75
- 244 -> 0_FFT mean coefficient_76
- 245 -> 0_FFT mean coefficient_77
- 246 -> 0_FFT mean coefficient_78
- 247 -> 0 FFT mean coefficient 79
- 248 -> 0 FFT mean coefficient 8
- 249 -> 0 FFT mean coefficient 80
- 250 -> 0_FFT mean coefficient_81
- 251 -> 0_FFT mean coefficient_82
- 252 -> 0_FFT mean coefficient_83
- 253 -> 0_FFT mean coefficient_84
- 254 -> 0_FFT mean coefficient_85
- 255 -> 0_FFT mean coefficient_86
- 256 -> 0 FFT mean coefficient 87
- 257 -> 0_FFT mean coefficient_88
- 258 -> 0_FFT mean coefficient_89
- 259 -> 0_FFT mean coefficient_9
- 260 -> 0_FFT mean coefficient_90
- 261 -> 0 FFT mean coefficient 91
- 262 -> 0 FFT mean coefficient 92
- 263 -> 0 FFT mean coefficient 93
- 264 -> 0_FFT mean coefficient_94
- 265 -> 0_FFT mean coefficient_95
- 266 -> 0_FFT mean coefficient_96
- 267 -> 0_FFT mean coefficient_97
- 268 -> 0_FFT mean coefficient_98
- 269 -> 0_FFT mean coefficient_99
- 270 -> 0_Fundamental frequency
- 271 -> 0_Histogram_0
- 272 -> 0_Histogram_1
- 273 -> 0_Histogram_2
- 274 -> 0_Histogram_3
- 275 -> 0_Histogram_4
- 276 -> 0 Histogram 5
- 277 -> 0_Histogram_6
- 278 -> 0 Histogram 7
- 279 -> 0_Histogram_8
- 280 -> 0_Histogram_9
- 281 -> 0_Human range energy
- 282 -> 0_Interquartile range
- 283 -> 0_Kurtosis
- 284 -> 0_LPCC_0
- 285 -> 0 LPCC 1
- 286 -> 0_LPCC_10
- 287 -> 0_LPCC_11
- 288 -> 0_LPCC_2
- 289 -> 0_LPCC_3

- 290 -> 0_LPCC_4
- 291 -> 0_LPCC_5
- 292 -> 0_LPCC_6
- 293 -> 0_LPCC_7
- 294 -> 0 LPCC 8
- 295 -> 0_LPCC_9
- 296 -> 0 MFCC 0
- 297 -> 0_MFCC_1
- 298 -> 0_MFCC_10
- 299 -> 0_MFCC_11
- 300 -> 0_MFCC_2
- 301 -> 0_MFCC_3
- 302 -> 0_MFCC_4
- 303 -> 0_MFCC_5
- 304 -> 0_MFCC_6
- 305 -> 0_MFCC_7
- 306 -> 0_MFCC_8
- 307 -> 0_MFCC_9
- 308 -> 0_Max
- 309 -> 0_Max power spectrum
- 310 -> 0_Maximum frequency
- 311 -> 0 Mean
- 312 -> 0_Mean absolute deviation
- 313 -> 0_Mean absolute diff
- 314 -> 0_Mean diff
- 315 -> 0_Median
- 316 -> 0_Median absolute deviation
- 317 -> 0_Median absolute diff
- 318 -> 0_Median diff
- 319 -> 0_Median frequency
- 320 -> 0_Min
- 321 -> 0_Negative turning points
- 322 -> 0_Neighbourhood peaks
- 323 -> 0_Peak to peak distance
- 324 -> O_Positive turning points
- 325 -> 0_Power bandwidth
- 326 -> 0 Root mean square
- 327 -> 0_Signal distance
- 328 -> 0_Skewness
- 329 -> 0_Slope
- 330 -> 0_Spectral centroid
- 331 -> 0_Spectral decrease
- 332 -> 0_Spectral distance
- 333 -> 0_Spectral entropy
- 334 -> 0_Spectral kurtosis
- 335 -> 0_Spectral positive turning points
- 336 -> 0_Spectral roll-off
- 337 -> 0_Spectral roll-on

- 338 -> 0_Spectral skewness
- 339 -> 0_Spectral slope
- 340 -> 0_Spectral spread
- 341 -> 0_Spectral variation
- 342 -> 0_Standard deviation
- 343 -> 0_Sum absolute diff
- 344 -> 0 Variance
- 345 -> 0_Wavelet absolute mean_0
- 346 -> 0 Wavelet absolute mean 1
- 347 -> 0_Wavelet absolute mean_2
- 348 -> 0_Wavelet absolute mean_3
- 349 -> 0_Wavelet absolute mean_4
- 350 -> 0_Wavelet absolute mean_5
- 351 -> 0_Wavelet absolute mean_6
- 352 -> 0_Wavelet absolute mean_7
- 353 -> 0_Wavelet absolute mean_8
- 354 -> 0_Wavelet energy_0
- 355 -> 0_Wavelet energy_1
- 356 -> 0_Wavelet energy_2
- 357 -> 0_Wavelet energy_3
- 358 -> 0_Wavelet energy_4
- 359 -> 0 Wavelet energy 5
- 360 -> 0_Wavelet energy_6
- 361 -> 0_Wavelet energy_7
- 362 -> 0_Wavelet energy_8
- 363 -> 0_Wavelet entropy
- 364 -> 0_Wavelet standard deviation_0
- 365 -> 0_Wavelet standard deviation_1
- 366 -> 0_Wavelet standard deviation_2
- 367 -> 0_Wavelet standard deviation_3
- 368 -> 0_Wavelet standard deviation_4
- 369 -> 0_Wavelet standard deviation_5
- 370 -> 0_Wavelet standard deviation_6
- 371 -> 0_Wavelet standard deviation_7
- 372 -> 0 Wavelet standard deviation 8
- 373 -> 0_Wavelet variance_0
- 374 -> 0 Wavelet variance 1
- 375 -> 0_Wavelet variance_2
- 376 -> 0_Wavelet variance_3
- 377 -> 0_Wavelet variance_4
- 378 -> 0_Wavelet variance_5
- 379 -> 0_Wavelet variance_6
- 380 -> 0_Wavelet variance_7
- 381 -> 0_Wavelet variance_8
- 382 -> 0_Zero crossing rate

0.1 Power Bandwidth

[344]: FeaturePlot(dfN, idx = 325)

0.2 Signal Distance

[312]: FeaturePlot(dfN, idx = 327)

0.3 Negative Turning Point

[310]: FeaturePlot(dfN, idx = 321)

0.4 Maximum Frequency

[309]: FeaturePlot(dfN, idx = 310)

0.5 Area under Curve

[240]: FeaturePlot(dfN, feature = features_sel[0])

0.6 Mean

[241]: FeaturePlot(dfN, feature = features_sel[1])

0.7 Variance

[242]: FeaturePlot(dfN, feature = features_sel[2])

0.8 TIME SERIES PEAK-TO-PEAK DISTANCE

[243]: FeaturePlot(dfN, feature = features_sel[3])

0.9 Mean Absolute Deviation

[244]: FeaturePlot(dfN, feature = features_sel[4])

0.9.1 Our Selected Features

- Mean
- Area under Curve
- Peak-to-Peak Distance
- Variance
- Mean Absolute Deviation
- Maximum Frequency > Newly Added
- 0_Power bandwidth
- 0_Spectral centroid
- 0_Spectral decrease
- 0_Spectral distance
- 0_Spectral entropy
- \bullet 0_Spectral kurtosis
- 0_Spectral positive turning points
- 0_Spectral roll-off
- 0_Spectral roll-on
- 0_Spectral skewness
- 0_Spectral slope
- 0_Spectral spread
- 0_Spectral variation

0.9.2 Let's add some spectral features too to the 5 already selected -> 18 Featured Data

```
[345]: f_sel = ["0_Area under the curve", "0_Mean", "0_Variance", "0_Peak to peak_
        ⇔distance", "0_Mean absolute deviation", "0_Power bandwidth", "0_Spectral_
        ocentroid", "0_Spectral decrease", "0_Spectral distance", "0_Spectral ocentropy", "0_Spectral kurtosis", "0_Spectral positive turning points", □
        ⇔"0_Spectral roll-off", "0_Spectral roll-on", "0_Spectral skewness",⊔
        ⇔"0_Spectral slope", "0_Spectral spread", "0_Spectral variation", "Labels", □
        dfFeat = dfN[f_sel]
       dfFeat
[345]:
           O_Area under the curve
                                      O_Mean O_Variance O_Peak to peak distance
       0
                         10.539676 1.058197
                                                 0.000441
                                                                            0.276308
       0
                         10.683732 1.072680
                                                 0.000440
                                                                            0.302652
                         11.328686
                                                                           2.951101
       0
                                    1.139029
                                                 0.279613
       0
                         11.865417 1.191914
                                                 0.442988
                                                                            2.853736
       0
                         10.018665
                                    1.005892
                                                 0.000026
                                                                            0.042222
                         13.254750 1.331151
       0
                                                1.370835
                                                                            4.655614
       0
                         11.826549 1.187985
                                                 0.436927
                                                                            3.625210
       0
                         10.618080 1.066065
                                                 0.000026
                                                                           0.031092
       0
                         11.132367
                                    1.117178
                                                 0.246346
                                                                            2.492894
       0
                         11.142791
                                   1.118466
                                                                            2.180257
                                                 0.250806
           O_Mean absolute deviation O_Power bandwidth O_Spectral centroid
       0
                             0.010246
                                                 6.212425
                                                                       0.639077 \
       0
                             0.011577
                                                 9.018036
                                                                       0.850078
       0
                             0.380676
                                                 5.410822
                                                                       3.887285
       0
                             0.537075
                                                 6.212425
                                                                       4.521254
       0
                             0.004001
                                                13.827655
                                                                       0.281477
       0
                             0.995919
                                                 5.010020
                                                                       4.916563
       0
                             0.507468
                                                 8.216433
                                                                       5.361472
       0
                             0.004030
                                                12.825651
                                                                       0.275996
       0
                             0.382848
                                                 3.406814
                                                                       3.119947
       0
                             0.382529
                                                 5.410822
                                                                       3.392079
           O_Spectral decrease O_Spectral distance O_Spectral entropy
       0
                     -46.590172
                                        -70826.079944
                                                                  0.727967
       0
                     -41.721346
                                        -71473.612034
                                                                  0.781145
       0
                      -2.433189
                                      -169599.425066
                                                                  0.547602 ...
       0
                      -1.803868
                                       -204731.964203
                                                                  0.592184 ...
                                        -63806.084893
       0
                   -151.116426
                                                                  0.806408 ...
                                                                  0.565975 ...
```

-294434.103156

-1.218502

```
0
               -2.037178
                                -167545.154695
                                                             0.492424
0
             -158.072078
                                                             0.818778
                                 -67537.987024
0
               -2.902698
                                -160379.192325
                                                             0.469127
0
               -2.718273
                                -163036.885100
                                                             0.501480
    O_Spectral positive turning points O_Spectral roll-off
0
                                     73.0
                                                       4.809619
0
                                     72.0
                                                       6.513026
0
                                     78.0
                                                      15.531062
0
                                     80.0
                                                      16.132265
                                     79.0
0
                                                       0.000000
0
                                     78.0
                                                      16.332665
                                     81.0
0
                                                      16.533066
0
                                     87.0
                                                       0.000000
0
                                     81.0
                                                      12.725451
0
                                     74.0
                                                      12.024048
                         0_Spectral skewness
                                                 0_Spectral slope
    0_Spectral roll-on
0
                    0.0
                                      4.906914
                                                         -0.000905
0
                    0.0
                                      4.151249
                                                         -0.000889
0
                    0.0
                                      1.869257
                                                         -0.000657
0
                    0.0
                                      1.632312
                                                         -0.000608
0
                    0.0
                                      7.583021
                                                         -0.000933
                                                           •••
0
                    0.0
                                      1.444425
                                                         -0.000578
                    0.0
0
                                      1.054264
                                                         -0.000544
0
                    0.0
                                      7.708759
                                                         -0.000933
0
                    0.0
                                      1.982978
                                                         -0.000716
0
                    0.0
                                      1.739971
                                                         -0.000695
                                                         Subject
    0_Spectral spread
                         0_Spectral variation
                                                 Labels
              2.304270
                                                      5
0
                                      0.903439
                                                                1
                                                                    \
                                                      5
                                                                2
0
              2.828170
                                      0.951706
                                                      2
0
              5.062929
                                      0.735493
                                                                3
0
              5.077597
                                      0.698450
                                                      3
                                                                4
                                                      6
0
              1.753868
                                      0.851520
                                                                5
0
              5.130396
                                      0.469507
                                                      3
                                                              104
              5.306712
0
                                      0.819865
                                                      1
                                                              105
0
              1.746586
                                                      5
                                                              106
                                      0.950194
                                                      2
0
              4.165671
                                      0.738380
                                                              107
0
              4.187673
                                      0.750399
                                                              108
         Named_Subject
0
               STANDING
0
               STANDING
```

```
0
             WALKING_UPSTAIRS
           WALKING_DOWNSTAIRS
       0
       0
                       LAYING
       . .
       0
           WALKING_DOWNSTAIRS
       0
                      WALKING
       0
                     STANDING
       0
             WALKING_UPSTAIRS
             WALKING_UPSTAIRS
       [108 rows x 21 columns]
      0.9.3 PCA on 18 Featured Data
[347]: scaler = StandardScaler()
       X_scaled = scaler.fit_transform(dfFeat.iloc[:, :-3])
       model = PCA(n_components = 2)
       X_trainFeat_2D = model.fit_transform(X_scaled)
       dfPCAFeat = pd.DataFrame(X_trainFeat_2D)
       dfPCAFeat["Labels"] = y_train
       dfPCAFeat
[347]:
                   0
                             1 Labels
           -2.119269 1.516116
                                     5
                                     5
       1
          -1.979877 1.739336
       2
           2.746499 0.798706
                                     2
       3
          3.579078 -0.146838
                                     3
         -4.607082 -0.719782
                                     6
                                     3
       103 6.670144 -2.509504
       104 3.678577 0.154650
                                     1
       105 -4.411194 -1.856612
                                     5
       106 2.263685 0.657534
                                     2
       107 2.115628 1.393518
                                     2
       [108 rows x 3 columns]
```

0.10 18 Featured Data PCA to 2D

```
[348]: PCA_Plot(dfPCAFeat)
```


0.10.1 Extracting DataFrame for our 5 featurized Data

0.10.2 Featurized DataFrame

```
[263]: dfNewFeaturized = dfN[features_sel]
       dfNewFeaturized
[263]:
                                                0_{Variance}
           O_Area under the curve
                                       0_Mean
                                                             O_Peak to peak distance
       0
                          10.539676
                                     1.058197
                                                  0.000441
                                                                              0.276308
                                                  0.000440
       0
                          10.683732
                                     1.072680
                                                                              0.302652
       0
                          11.328686
                                     1.139029
                                                  0.279613
                                                                              2.951101
                          11.865417
                                                  0.442988
                                                                              2.853736
       0
                                     1.191914
       0
                          10.018665
                                     1.005892
                                                  0.000026
                                                                              0.042222
       0
                          13.254750
                                     1.331151
                                                  1.370835
                                                                              4.655614
       0
                          11.826549
                                     1.187985
                                                  0.436927
                                                                              3.625210
       0
                          10.618080
                                     1.066065
                                                  0.000026
                                                                              0.031092
       0
                          11.132367
                                      1.117178
                                                  0.246346
                                                                              2.492894
       0
                          11.142791
                                     1.118466
                                                  0.250806
                                                                              2.180257
           0_Mean absolute deviation
                                        Labels
                                                 Subject
                                                                Named_Subject
       0
                              0.010246
                                              5
                                                                      STANDING
                                                        1
       0
                              0.011577
                                              5
                                                        2
                                                                      STANDING
                                              2
                                                        3
       0
                                                             WALKING_UPSTAIRS
                              0.380676
                                                        4
                                                           WALKING_DOWNSTAIRS
       0
                              0.537075
                                              3
       0
                                              6
                                                        5
                              0.004001
                                                                        LAYING
```

```
0.995919
                                      3
                                                  WALKING DOWNSTAIRS
0
                                             104
                                             105
0
                      0.507468
                                      1
                                                              WALKING
0
                                      5
                                             106
                      0.004030
                                                             STANDING
0
                      0.382848
                                      2
                                             107
                                                     WALKING_UPSTAIRS
                                      2
                                             108
                                                     WALKING_UPSTAIRS
                      0.382529
```

[108 rows x 8 columns]

0.10.3 PCA on our chosen 5 Featurized Data

```
[330]: scaler = StandardScaler()
       X_scaled = scaler.fit_transform(dfNewFeaturized.iloc[:, :-3])
       model = PCA(n_components = 2)
       X_trainOurF_2D = model.fit_transform(X_scaled)
       dfPCAFeat = pd.DataFrame(X_trainFeat_2D)
       dfPCAFeat["Labels"] = y_train
       dfPCAFeat
[330]:
                   0
                             1 Labels
           -2.408634 1.329825
          -2.039138 1.697191
                                     5
       1
       2
                                     2
           2.543982 0.746600
       3
           3.471005 -0.131893
                                     3
           -4.349947 -0.661725
                                     6
       . .
       103 6.572669 -2.406062
                                     3
       104 3.731875 0.248615
                                     1
       105 -4.227187 -1.883089
                                     5
       106 1.883058 0.470228
                                     2
       107 1.891408 1.328787
                                     2
       [108 rows x 3 columns]
[252]: dfPCAOurF = pd.DataFrame(X_trainOurF_2D)
       dfPCAOurF["Labels"] = y_train
       dfPCAOurF
[252]:
                   0
                             1 Labels
           -1.591114 -0.091353
                                     5
                                     5
       1
          -1.427712 -0.222992
       2
           0.880008 -0.234883
                                     2
       3
           1.874859 -0.287865
                                     3
          -2.220049 0.391626
                                     6
       103 5.704453 0.657241
                                     3
       104 1.976794 -0.320237
                                     1
```

```
      105 -1.580248 -0.149378
      5

      106 0.502482 -0.098926
      2

      107 0.439838 -0.079656
      2
```

[108 rows x 3 columns]

0.11 5 Featurized PCA datapoints

[254]: PCA_Plot(dfPCAOurF)

0.11.1 PCA on our raw timeseries data

0.128133

2.955462

-0.008648

2.803362

1

2

```
[251]: scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X_train_TS)
    model = PCA(n_components = 2)
    X_train_2D = model.fit_transform(X_scaled)

[255]: dfPCA = pd.DataFrame(X_train_2D)
    dfPCA["Labels"] = y_train
    dfPCA
[255]: 0     1     Labels
    0     0.171000     -0.058009     5
```

5

2

```
3
     2.856289
               -7.198528
                                3
4
     0.192954
               -0.168915
                                6
. .
103 6.098028
                                3
               41.782163
104 -4.212006
                8.896049
                                1
105 0.105575
                0.038338
                                5
106 2.634434
                0.671926
                                2
                                2
107 4.157850
                2.671812
```

[108 rows x 3 columns]

0.12 Raw Timeseries PCA datapoints

[256]: PCA_Plot(dfPCA)

0.12.1 PCA on entire 383 Featurized Data

```
[257]: scaler = StandardScaler()
    X_scaled = scaler.fit_transform(dfN.iloc[:, :-3])
    model = PCA(n_components = 2)
    X_trainF_2D = model.fit_transform(X_scaled)

[258]: dfPCAF = pd.DataFrame(X_trainF_2D)
    dfPCAF["Labels"] = y_train
    dfPCAF
```

```
[258]:
                                 Labels
                    0
                               1
       0
            -9.656330 1.259515
                                       5
            -9.507877
                                       5
       1
                       1.189473
       2
             0.904597 -3.530496
                                       2
       3
             9.379393 -3.324217
                                       3
           -10.632995
                       2.040261
                                       6
           34.743740
                       3.095295
                                       3
       103
       104
           14.424106 -3.185719
                                       1
       105 -10.430969 1.901364
                                       5
                                       2
       106 -0.354879 -4.074157
                                       2
       107 -0.018798 -4.441626
```

[108 rows x 3 columns]

0.13 383 Featurized PCA Datapoints

[259]: PCA_Plot(dfPCAF)

1 TESTING PART

- 1.1 dfNewFeaturized has 5 selected features and dfFeat has 18 selected features
- 1.2 Template Funtion to Featurize a Dataset

```
[260]: def Featuriser(XTimeSeries, YTimeSeries, features):
    cfg = tsfel.get_features_by_domain()
    df = pd.DataFrame(XTimeSeries)
    dataFrames = []
    for i in df.index:
        dataFrames.append(tsfel.time_series_features_extractor(cfg, df.iloc[i,:
        ], fs = 50))
    dfN = pd.concat(dataFrames, axis = 0)
    dfN["Labels"] = YTimeSeries
    namedLabel = [classesN[i] for i in YTimeSeries]
    dfN["Named_Subject"] = namedLabel
    dfN["Subject"] = range(1, len(XTimeSeries) + 1)
    dfNFeaturized = dfN[features]
    return dfNFeaturized
```

1.2.1 The features we wish to select for our dataframe

1.2.2 Featurizing the TEST dataset for our chosen 5 features

```
[ ]: dfNF_test = Featuriser(X_test_TS, y_test, features_sel)
```

- 1.3 Decision Tree Classifier on our 5 Featurized Data
- 1.4 Classifier for 5 Featured dfNewFeaturized

```
[264]: model = DecisionTreeClassifier()
clfg = model.fit(dfNewFeaturized.iloc[:, :-3], dfNewFeaturized.iloc[:, 5])
y_pred = clfg.predict(dfNF_test.iloc[:, :-3])
```

```
y_pred
```

```
[264]: array([3, 3, 6, 2, 6, 5, 6, 1, 2, 3, 5, 6, 2, 5, 2, 4, 5, 5, 1, 6, 5, 1, 2, 5, 2, 1, 2, 4, 3, 6, 4, 6, 4, 2, 3, 1])
```

```
[265]: y_test
```

1.4.1 Accuracy Score for decision tree classifier on TEST data trained on our 5 featurized dataset

```
[266]: accuracy_score(y_test, y_pred)
```

[266]: 0.72222222222222

1.4.2 Classification Report for decision tree classifier on TEST data trained on our 5 featurized dataset

```
[267]: print(classification_report(y_test, y_pred, labels = np.unique(y_pred)))
```

	precision	recall	f1-score	support
1	0.80	0.67	0.73	6
2	0.50	0.67	0.57	6
3	0.80	0.67	0.73	6
4	0.75	0.50	0.60	6
5	0.86	1.00	0.92	6
6	0.71	0.83	0.77	6
accuracy			0.72	36
macro avg	0.74	0.72	0.72	36
weighted avg	0.74	0.72	0.72	36

1.4.3 Confusion Matrix for the above prediction

[270]:		WALKING	WALKING_UPSTAIRS	WALKING_DOWNSTAIRS	SITTING	
7	WALKING	4	2	0	0	\
7	WALKING_UPSTAIRS	1	4	1	0	
7	WALKING_DOWNSTAIRS	0	2	4	0	
(SITTING	0	0	0	3	

STANDING	0		0	0	0
LAYING	0		0	0	1
	STANDING	IAVING			
	STANDING	LAIING			
WALKING	0	0			
WALKING_UPSTAIRS	0	0			
WALKING_DOWNSTAIRS	0	0			
SITTING	1	2			
STANDING	6	0			
LAYING	0	5			

1.5 Template Code for Displaying Confusion Matrix

```
[271]: | ## flag = 1 for a single plot and 0 for subplots for 2 - 8 depths
      def confMatrix(dataFrame, flag = 1, accuracies = None):
          if flag:
              plt.figure(figsize = (6, 6))
              ax = sns.heatmap(dataFrame, annot = True, cmap = "PuBu")
              plt.setp(ax.get_xticklabels(), rotation = 45, fontsize = 8)
              plt.setp(ax.get_yticklabels(), fontsize = 8)
              plt.ylabel("True label", fontsize = 18)
              plt.xlabel("Predicted label", fontsize = 18)
              plt.title(f"Accuracy = {accuracy_score(y_test, y_pred)*100: .4f}%", __
        plt.show()
          else:
              fig, axes = plt.subplots(3, 3, figsize = (25, 25))
              axes = axes.flatten()
              for i, df in enumerate(dataFrame):
                  ax = sns.heatmap(df, annot = True, ax = axes[i], cbar = False, cmapu
        ⇒= "PuBu")
                  plt.setp(ax.get_xticklabels(), rotation = 45, fontsize = 6)
                  plt.setp(ax.get_yticklabels(), fontsize = 8)
                  ax.set_title(f"Depth = {i + 2}\nAccuracy = {accuracies[i] * 100: .
        4f, fontsize = 10)
                  ax.set_ylabel("True label", fontsize = 12)
                  ax.set_xlabel("Predicted label", fontsize = 12)
              plt.delaxes(axes[7])
              plt.delaxes(axes[8])
              plt.tight_layout()
              plt.subplots_adjust(wspace = 1.1, hspace = 1.1)
              plt.show()
```

1.5.1 Confusion Matrix for the model trained on our 5-featured Dataset

[272]: confMatrix(df_cm, flag = 1)

1.5.2 Fetching the Connfusion Matrices, Class Reports, Accuracies for Depth (2-8) Tree on 5-Featurized Data

```
y_pred = clfg.predict(dfNF_test.iloc[:, :-3])

pred, actual = y_pred, y_test

cm = confusion_matrix(actual, pred)

confusion_matrices.append(pd.DataFrame(cm, index = [classT for classT in_u])
classes], columns = [classT for classT in classes]))
    class_reports.append(classification_report(actual, pred, labels = np.
unique(pred)))
    class_reports_dict.append(classification_report(actual, pred, labels = np.
unique(pred), output_dict = True))
accuracies.append(accuracy_score(actual, pred))
```

1.5.3 7 Confusion Matrices for 5-Featurized Data

```
[274]: confMatrix(confusion_matrices, flag = 0, accuracies = accuracies)
```


1.6 Decision Tree Classifier on RAW TimeSeries Data X_train_TS

[285]: WALKING WALKING_UPSTAIRS WALKING_DOWNSTAIRS SITTING WALKING 3 1 1 1 1

WALKING_UPSTAIRS	2	1	1	1
WALKING_DOWNSTAIRS	0	3	2	1
SITTING	0	0	0	4
STANDING	0	0	0	1
LAYING	0	0	0	5

	STANDING	LAYING
WALKING	0	0
WALKING_UPSTAIRS	1	0
WALKING_DOWNSTAIRS	0	0
SITTING	0	2
STANDING	5	0
LAYING	0	1

1.6.1 Confusion Matrix for the model trained on RAW TimeSeries Data

[286]: confMatrix(df_cm1, flag = 1)

1.6.2 Fetching the Connfusion Matrices, Class Reports, Accuracies for Depth (2-8) Tree on Raw Time Series Data

```
[280]: confusion_matrices1, class_reports1, class_reports_dict1, accuracies1 = [], [],

o[], []

for i in range(2, 9):

   model = DecisionTreeClassifier(max_depth = i,random_state=42)

   clfg = model.fit(X_train_TS, y_train)

   y_pred = clfg.predict(X_test_TS)

   pred, actual = y_pred, y_test
```

```
cm = confusion_matrix(actual, pred)

confusion_matrices1.append(pd.DataFrame(cm, index = [classT for classT in_
classes], columns = [classT for classT in classes]))

class_reports1.append(classification_report(actual, pred, labels = np.
class_reports_dict1.append(classification_report(actual, pred, labels = np.
class_reports_dict1.append(classification_report(actual, pred, labels = np.
class_reports_dict1.append(accuracy_score(actual, pred))
```

1.6.3 7 Confusion Matrices for Raw Time Series Data

[281]: confMatrix(confusion_matrices1, flag = 0, accuracies = accuracies1)

1.7 Accuracy Comparison for both RAW TimeSeries and 5-Featurized Data


```
[291]: plt.scatter(accuracies, accuracies1, marker = "x", color = "deeppink", s = 30)
    plt.xlabel("Accuracies for Decision Tree on Featurized Data")
    plt.ylabel("Accuracies for Decision Tree on Raw Data")
    plt.grid()
```


1.8 Now same for 18 Featured dfFeat

1.8.1 Firstly Featurize the Test Dataset according to the 18 features

1.8.2 Accuracy Score for decision tree classifier on TEST data trained on our 18 featurized dataset

```
[356]: accuracy_score(y_test, y_pred)
```

[356]: 0.583333333333333334

1.8.3 Classification Report for decision tree classifier on TEST data trained on our 18 featurized dataset

```
print(classification_report(y_test, y_pred, labels = np.unique(y_pred)))
                     precision
                                  recall f1-score
                                                      support
                  1
                          0.75
                                    0.50
                                               0.60
                                                            6
                  2
                                                            6
                          0.25
                                    0.33
                                               0.29
                  3
                                    0.50
                                                            6
                          0.50
                                               0.50
                          0.57
                                    0.67
                                               0.62
                                                            6
                  5
                          1.00
                                    0.67
                                               0.80
                                                            6
                  6
                          0.71
                                    0.83
                                               0.77
                                                            6
                                               0.58
                                                           36
          accuracy
         macro avg
                          0.63
                                    0.58
                                               0.60
                                                           36
      weighted avg
                          0.63
                                    0.58
                                               0.60
                                                           36
[358]: cm = confusion_matrix(y_test, y_pred)
       df_cm = pd.DataFrame(cm, index = [classT for classT in classes], columns =__
        →[classT for classT in classes])
[359]: confMatrix(df_cm, flag = 1)
```


1.8.4 Fetching the Connfusion Matrices, Class Reports, Accuracies for Depth (2-8) Tree on 18-Featurized Data

```
[360]: confusion_matrices, class_reports, class_reports_dict, accuracies = [], [], [], [], []

for i in range(2, 9):

   model = DecisionTreeClassifier(max_depth = i, random_state = 42)

   clfg = model.fit(dfFeat.iloc[:, :-3], dfFeat.iloc[:, 18])

   y_pred = clfg.predict(dfNF_test.iloc[:, :-3])

pred, actual = y_pred, y_test
```

```
cm = confusion_matrix(actual, pred)

confusion_matrices.append(pd.DataFrame(cm, index = [classT for classT in_
classes], columns = [classT for classT in classes]))

class_reports.append(classification_report(actual, pred, labels = np.
class_reports_dict.append(classification_report(actual, pred, labels = np.
class_reports_dict.append(classification_report(actual, pred, labels = np.
class_reports_dict.append(accuracy_score(actual, pred))
```

1.8.5 7 Confusion Matrices for 18-Featurized Data

[361]: confMatrix(confusion_matrices, flag = 0, accuracies = accuracies)

1.9 Accuracy Comparison for both RAW TimeSeries and 18-Featurized Data

```
[362]: plt.plot(range(2, 9), accuracies1, color = "r", marker = "o")
   plt.plot(range(2, 9), accuracies, color = "g", marker = "s")
   plt.xlabel("Decision Tree Depth")
   plt.ylabel("Accuracies")
   plt.title("Accuracy Variation of Test-Train vs. Depth")
   plt.legend(["Raw Data", "Featurized Data"])
   plt.grid()
```


1.10 The 5 - Featured dfNewFeaturized is better than the 18 - Featured dfFeat that had spectral features included too