Prodotto righe per colonne e operazioni sulle righe/colonne

L'operazione di prodotto di righe per colonne è compatibile con le operazioni vettoriali sulle righe e sulle colonne, specificamente: per ogni tre righe a, a', a'' $(1 \times n)$, tre colonne b, b', b'' $(n \times 1)$, e numero reale r, si ha

- (1) (a' + a'')b = a'b + a''b
- (2) a(b' + b'') = ab' + ab''
- (3) (r a)b = r (ab) = a(r b)

(La (1) si prova come segue. Il 1° mebro e il 2° membro, per definizione, sono

$$\sum_{i=1}^{n} (a' + a'')_i b_i = \sum_{i=1}^{n} (a'_i + a''_i) b_i,$$

$$\sum_{i=1}^{n} a_i' b_i + \sum_{i=1}^{n} a_i'' b_i;$$

sono uguali per la proprietà commutativa della somma e la proprietà distributiva. Analogamente per la (2). Si lascia al lettore di provare la (3).)

Da queste proprietà segue che più in generale per ogni tre righe a, a', a'' $(1 \times m)$, matrice B $(m \times n)$, tre colonne c, c', c'' $(n \times 1)$, e numero reale r, si ha

- (1) (a' + a'')B = a'B + a''B
- (2) B(c' + c'') = Bc' + Bc''
- (3) B(rc) = r(Bc), (ra)B = r(aB).

Vederemo un poco più avanti come queste proprietà giochino nello studio dei sottospazi.

Insieme delle soluzioni di un sistema lineare - Esempi

Alcune equazioni lineari in 2 incognite

Consideriamo alcune equazioni lineari in 2 incognite x, y

$$ax + by = c$$

con a, b, c costanti in \mathbb{R} ; ricordiamo che una soluzione dell'equazione è una coppia di numeri reali che sostituiti ordinatamente ad x e y rende vero l'uguale. Per ciascuna equazione, descriviamo l'insieme delle soluzioni in termini vettoriali. Fissato un riferimento nel piano, identifichiamo coppie ordinate con vettori rappresentati da segmnenti orientati uscenti dall'origine.

$$(2.1) x + y = 0;$$

per ogni valore di una delle incognite, ad esempio la x, esiste uno ed un solo valore dell'altra, nell'esempio la y, che rende vero l'uguale;

le soluzioni dell'equazione sono date dalla regola

$$y = -x e x$$
 libera;

sono le coppie

$$\begin{bmatrix} x \\ -x \end{bmatrix} = x \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad (x \in \mathbb{R});$$

formano il sottospazio Span $\left\{ \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$, con base $\begin{bmatrix} 1\\-1 \end{bmatrix}$,

rappresentato da una retta vettoriale per l'origine, con un suo riferimento

$$(2.1')$$
 $x = 0;$

le soluzioni dell'equazione sono date dalla regola

$$x = 0$$
 e y libera;

sono le coppie

$$\left[\begin{array}{c} 0\\y\end{array}\right]=y\left[\begin{array}{c} 0\\1\end{array}\right] \qquad (y\in\mathbb{R});$$

formano ...

$$(2.1'')$$
 $x + y = 1;$

le soluzioni sono le coppie

$$\begin{bmatrix} x \\ -x+1 \end{bmatrix} = x \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \qquad (x \in \mathbb{R});$$

formano l'insieme $\text{Span}\{\left[\begin{array}{c}1\\-1\end{array}\right]\}+\left[\begin{array}{c}0\\1\end{array}\right],$ che non è un sottospazio,

rappresentato dalla somma di una retta vettoriale e di un vettore fisso.

Un'equazione e un sistema lineari in 3 Incognite

Consideriamo un'equazione lineare e un sistema lineare in 3 incognite x,y,z e descriviamo l'insieme delle soluzioni in termini vettoriali. Fissato un riferimento nello spazio, identifichiamo terne ordinate con vettori rappresentati da segmenti orientati uscenti dall'origine.

$$(3.1) x + y + z = 0;$$

per ogni valore di due delle incognite, ad esempio la y e la z, esiste uno ed un solo valore della terza, nell'esempio la x, che rende vero l'uguale; le soluzioni dell'equazione sono date dalla regola

$$x = -y - z$$
 e y, z libere;

sono le terne

$$\begin{bmatrix} -y - z \\ y \\ z \end{bmatrix} = y \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \qquad (y, z \in \mathbb{R});$$

formano il sottospazio Span
$$\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$$
, con base $\begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix}$,

rappresentato da un piano vettoriale per l'origine, con un suo riferimento.

Cambiando la scelta delle due incognite libere, si dà un'altra descrizione dello spazio delle soluzioni, che porta ad un'altra base.

(3,2)
$$\begin{cases} x + y + z = 0 \\ x + 2y + 3z = 0 \end{cases}$$

applichiamo la procedura di eliminazione

$$\left[\begin{array}{cc|c}1&1&1&0\\1&2&3&0\end{array}\right]\longrightarrow\left[\begin{array}{cc|c}1&1&1&0\\0&1&2&0\end{array}\right]\longrightarrow\left[\begin{array}{cc|c}1&0&-1&0\\0&1&2&0\end{array}\right]$$

otteniamo il sistema equivalente

$$\begin{cases} x - z = 0 \\ y + 2z = 0 \end{cases}$$

le soluzioni del sistema sono date dalla regola

$$x=z, y=-2z, e z$$
 libera;

sono le terne

$$\begin{bmatrix} z \\ -2z \\ z \end{bmatrix} = z \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \qquad (z \in \mathbb{R}),$$

formano il sottospazio Span
$$\left\{ \begin{bmatrix} 1\\-2\\1 \end{bmatrix} \right\}$$
, con base $\begin{bmatrix} 1\\-2\\1 \end{bmatrix}$,

rappresentato da una retta vettoriale per l'origine, con un suo riferimento.

Un sistema lineare in 4 incognite.

Consideriamo li sistema lineare nelle incognite x_1, x_2, x_3, x_4

$$\begin{cases}
 x_1 + x_2 + x_3 + x_4 = 0 \\
 x_1 + 2x_2 + 3x_3 + 4x_4 = 0
\end{cases}$$

applichiamo la procedura di eliminazione

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 4 & 0 \end{array}\right] \longrightarrow \left[\begin{array}{ccc|c} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 & 0 \end{array}\right] \longrightarrow \left[\begin{array}{ccc|c} 1 & 0 & -1 & -2 & 0 \\ 0 & 1 & 2 & 3 & 0 \end{array}\right]$$

otteniamo il sistema equivalente

$$\begin{cases} x_1 - x_3 - 2x_4 = 0 \\ x_2 + 2x_3 + 3x_4 = 0 \end{cases}$$

le soluzioni del sistema sono date dalla regola

$$x_1 = x_3 + 2x_4$$

$$x_1 = -2x_3 - 3x_4$$

$$x_3 \text{ libera}$$

$$x_3 \text{ libera}$$

sono le quaterne

$$\begin{bmatrix} x_3 + 2x_4 \\ -2x_3 - 3x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix} = x_3\bar{s}_3 + x_4\bar{s}_4 \qquad (x_3, x_4 \in \mathbb{R}),$$

formano il sottospazio Span $\{\bar{s}_3, \bar{s}_4\}$, con base \bar{s}_3, \bar{s}_4 ,

Sistemi lineari omogenei e sottospazi

Abbiamo visto che l'insieme delle soluzioni dell'equazione x+y=1 nelle incoignite x, y non è un sottospazio di \mathbb{R}^2 , ma si può dedurre dall'insieme delle soluzioni di x+y=0, che è un sottospazio. Questo fatto particolare è un'istanza di un fatto generale.

Definizione. Un sistema lineare si dice "omogeneo" se tutte le equazioni del sistema hanno termine noto nullo, cioè è del tipo

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n &= 0 \\ \vdots &, \text{ in breve } Ax = \underline{0}. \\ a_{m1}x_1 + \dots + a_{mn}x_n &= 0 \end{cases}$$

Proposizione. L'insieme delle soluzioni di un sistema lineare omogeneo $Ax = \underline{0}$ è un sottospazio di \mathbb{R}^n (A matrice $m \times n$).

Dimostrazione. (1) Se $s', s'' \in \mathbb{R}^n$ sono due soluzioni, allora anche s' + s'' è una soluzione. Infatti, da $As' = \underline{0}$ e $As'' = \underline{0}$, sommando termine a termine, si ottiene $As' + As'' = \underline{0} + \underline{0}$, da cui $A(s' + s'') = \underline{0}$. (2) Se $r \in \mathbb{R}$ e $s \in \mathbb{R}^n$ è una soluzione, allora

anche rs è una soluzione. Infatti, da As = 0, moltiplicando entrambi i membri per r, si ottiene r(As) = r0, da cui A(rs) = 0. (3) 0 è una soluzione. Infatti A0 = 0.

L'insieme delle soluzioni di un sistema lineare non omogeneo non è mai un sottospazio ma, tranne nel caso in cui sia vuoto, si può sempre identificare, come insieme, con un sottospazio.

Proposizione. Se un sistema lineare Ax = b ha una soluzione s^* , allora le soluzioni di Ax = b sono tutti e soli i vettori del tipo

$$s^* + v$$

dove v varia fra le soluzioni el sistema lineare omogeneo Ax = 0. In breve, indicati con \mathcal{S} e con \mathcal{S}_0 gli insieme delle soluzioni di Ax = b e di $Ax = \underline{0}$:

$$\mathcal{S} = s^* + \mathcal{S}_0.$$

Dimostrazione. (1) Da una parte, se v una soluzione di Ax = 0, allora $s^* + v$ è una soluzione di Ax = b. Infatti, da $As^* = b$ e Av = 0, sommando membro a membro, si ha $As^* + Av = b + \underline{0}$, da cui $A(s^* + v) = b$. (2) Dall'altra, se s è una soluzione di Ax = b, allora s si può scrivere $s = s^* + (s - s^*)$ e $s - s^*$ è una soluzione di Ax = 0.

Definzione. Diciamo "spazio nullo" di una matrice A, ed indichiamo con $\mathcal{N}(A)$, lo spazio delle soluzioni del sistema lineare omogeneo Ax = 0; in simboli, indicato con n il numero delle colonne di A,

$$\mathcal{N}(A) = \{ x \in \mathbb{R}^n : Ax = \underline{0} \}.$$

Dimensione dello spazio nullo di una matrice

Abbiamo visto nei vari esempi che applicando una procedura di eliminazione a un sistema lineare omgeneo si trova una descrizione delle soluzioni che porta ad identificare una base dello spazio delle soluzioni. Un'analisi attenta della procedura porta a stabilire una relazione generale fra le dimensioni dello spazio riga e colonna di una matrice, cioè il rango di una matrice, e la dimensione dello spazio nullo della matrice.

Teorema 1. Data una matrice A con n colonne c_1, \ldots, c_n , si consideri il sistema lineare omogeneo $Ax = \underline{0}$ nelle n incognite x_1, \ldots, x_n . Se le r colonne c_{i_1}, \ldots, c_{i_r} sono una base di $\mathcal{C}(A)$, allora

- (1) ciascuna delle r incognite x_{i_1}, \ldots, x_{i_r} è funzione delle altre n-r incognite, che sono libere:
- (2) le n-r soluzioni ottenute assegnando a una incognita libera 1 e alle altre 0 sono una base dello spazio delle soluzioni.
- $\dim(\mathcal{N}(A)) = n r(A)$. \longrightarrow Mumbers solutions = (3)

Dimostrazione, qualche aspetto.

(1) Il sistema lineare omogeneo si scrive Fighe indipendenti

$$x_1c_1 + \cdots + x_nc_n = 0.$$

equivalentemente, posto $I = \{i_1, \dots, i_r\},\$

 $X_1 + X_2 + X_1 = 0$ $X_1 = -X_1 - X_3 = -X_2 - 2x_2$ $X_2 + 2X_3 - 1X_4 = 0$ $X_1 + X_3 = X_2 + 2x_3$ $X_3 = X_1 - X_2$

$$\sum_{i \in I} x_i c_i = -\sum_{j \notin I} x_j c_j;$$

essendo c_i $(i \in I)$ una base di $\mathcal{C}(A)$, per ogni sequenza di valori delle x_i $(j \notin I)$, esiste un'unica sequenza di valori delle x_i $(i \in I)$ che assieme alla prima sequenza dà una soluzione dell'equazione.

(3) Per la (2) si ha $\dim(\mathcal{N}(A)) = n - r = n - \dim(\mathcal{C}(A)) = n - r(A).$

Il teorema descrive teoricamente come la procedura di eliminazione, applicata a una sequenza di colonne base di $\mathcal{C}(A)$, porta ad identificare una base di $\mathcal{N}(A)$ e trae una conseguenza dulla dimensione. L'utilità pratica del Teorema consiste nel permettere di calcolare la dimensione di $\mathcal{N}(A)$ senza doverne determinare una base. (Esistono forme più fini del Teorema che hanno anche altre utilità).

Esempio (1).

$$A = \left[\begin{array}{ccccc} 1 & 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 4 & 5 \end{array} \right]$$

le 2 righe di A sono indipendenti, $r(A) = \dim(\mathcal{R}(A)) = 2$, quindi $\dim(\mathcal{N}(A)) = 5 - 2 = 3;$

$$A = \begin{bmatrix} 1 & 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 & 1 \\ 1 & 2 & 5 & 4 & 1 \\ 2 & 1 & 4 & 5 & 1 \\ 0 & 1 & 2 & 1 & 1 \end{bmatrix}$$

Abbiamo trovato (cfr. es. p.49) che r(A) = 3, quindi

$$\dim(\mathcal{N}(A)) = 5 - 3 = 2.$$

Per la matrice trasposta

$$A^{T} = \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 2 & 1 & 1 \\ 1 & 5 & 4 & 2 \\ 2 & 4 & 5 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

si ha $r(A^T) = r(A) = 3$, quindi

$$\dim(\mathcal{N}(A^T)) = 4 - 3 = 1.$$

 $X_1+X_3+X_4+X_5=0$

10121

$$\dim(\mathcal{N}(A^{T})) = 4 - 3 = 1.$$

$$\dim(\mathcal{N}(A^{T})) = 4 - 3 = 1.$$

$$0 \mid 2 \mid 0$$

$$0 \mid 0 \mid 0$$

$$0 \mid$$