

Algebra

Alessandro D'Andrea

33. Basi e coordinate in spazi vettoriali qualsiasi

Richiami

- Il concetto di base è definito in qualsiasi spazio vettoriale, non necessariamente in Kⁿ
- ▶ Le basi servono a fornire coordinate di ogni vettore
- Se ogni vettore può essere individuate dalle sue coordinate, dovremmo essere in grado di descrivere le applicazioni lineari per mezzo di matrici
- Oggi: Un esempio di applicazione lineare tra spazi vettoriali diversi da Kⁿ
- Come si può associare una matrice a un'applicazione lineare in una situazione più generale di quella finora trattata

Matrici in un nuovo contesto

La maggior parte degli esercizi visti finora vive negli spazi vettoriali K^n . Abbiamo visto singoli esempi di altri spazi vettoriali.

In questa lezione vi mostro un esempio di natura diversa, e vi racconto le difficoltà che si trovano nel descrivere un'applicazione lineare per mezzo di matrici.

Nelle prossime lezioni daremo delle istruzioni precise per associare matrici ad applicazioni lineari, e vedremo come il risultato dipende dalle scelte fatte. Affronteremo poi il cosiddetto *problema della diagonalizzabilità*.

Uno sp. vettoriale di dim. infinita

Consideriamo l'insieme $\mathcal S$ delle successioni a valori reali. Il tipico elemento di $\mathcal S$ è una successione $\mathbf a=(a_1,a_2,a_3,\ldots,a_n,\ldots)$, dove ogni a_i è un elemento di $\mathbb R$.

Gli elementi a_i possono non seguire alcuna legge particolare, se non quella di essere i coefficienti di **a**.

L'insieme ${\mathcal S}$ possiede una naturale nozione di somma coefficiente per coefficiente:

$$\mathbf{a} = (a_1, a_2, a_3, \dots, a_n, \dots)$$

$$\mathbf{b} = (b_1, b_2, b_3, \dots, b_n, \dots)$$

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n, \dots)$$

sappiamo anche come moltiplicare un elemento di ${\mathcal S}$ per un numero reale

$$\lambda \mathbf{a} = (\lambda a_1, \lambda a_2, \dots, \lambda a_n, \dots)$$

Un operatore lineare su S

Con queste operazioni, \mathcal{S} è uno spazio vettoriale reale, di dimensione infinita.

Possiamo considerare l'operatore di shift $T: \mathcal{S} \to \mathcal{S}$ definito da

$$T(\mathbf{a}) = (a_2, a_3, \dots, a_{n+1}, \dots).$$

Ad esempio,

$$T(1,2,3,...) = (2,3,4,...).$$

Si vede, facilmente, che T è un'applicazione lineare. E' preferibile non cercare di associare una matrice ad un'applicazione lineare tra spazi vettoriali di dimensione infinita.

Successioni di Fibonacci

Consideriamo ora il sottoinsieme \mathcal{F} di \mathcal{S} composto da tutte quelle successioni $\mathbf{a}=(a_1,a_2,\dots)$ tali che

$$a_3 = a_2 + a_1$$
 $a_4 = a_3 + a_2$
...
 $a_{n+2} = a_{n+1} + a_n$

Appartengono, ad esempio, a \mathcal{F} le successioni

$$(0,0,0,0,0,0,\dots)$$

 $(1,1,2,3,5,8,13,21,\dots)$
 $(3,-2,1,-1,0,-1,-1,\dots)$

$\mathcal{F} \subset \mathcal{S}$ è un sottospazio

E' facile osservare che \mathcal{F} è un sottospazio vettoriale di \mathcal{S} :

- ▶ $(0,0,0,...) \in \mathcal{F};$
- ▶ se $\mathbf{a}, \mathbf{b} \in \mathcal{F}$, allora $\mathbf{a} + \mathbf{b} \in \mathcal{F}$;
 - Se $a_{n+2} = a_{n+1} + a_n$ e $b_{n+2} = b_{n+1} + b_n$, allora $a_{n+2} + b_{n+2} = (a_{n+1} + b_{n+1}) + (a_n + b_n)$
- ▶ se $\mathbf{a} \in \mathcal{F}$ e $\lambda \in \mathbb{R}$; allora $\lambda \mathbf{a} \in \mathcal{F}$.
 - Se $a_{n+2} = a_{n+1} + a_n$, allora $\lambda a_{n+2} = \lambda a_{n+1} + \lambda a_n$

Che dimensione ha \mathcal{F} ?

Informalmente, la dimensione di uno spazio vettoriale è il numero minimo di parametri necessari a descriverne gli elementi (attraverso una parametrizzazione lineare).

In questo caso, se conosciamo i primi due coefficienti a_1 , a_2 di un elemento $\mathbf{a} \in \mathcal{F}$, conosciamo anche tutti gli altri!

Una base di \mathcal{F}

Se vogliamo fare le cose per bene, dobbiamo esibire una base di \mathcal{F} .

Le successioni

$$\mathbf{u} = (1, 0, 1, 1, 2, 3, 5, 8, 13, \dots)$$

$$\mathbf{v} = (0, 1, 1, 2, 3, 5, 8, 13, 21, \dots)$$

costituiscono una base di \mathcal{F} . In effetti:

- ► sono linearmente indipendenti;
 - Se $\alpha \mathbf{u} + \beta \mathbf{v} = \mathbf{0}$, allora i suoi primi due coefficienti α, β devono annullarsi
- ightharpoonup generano \mathcal{F} .
 - Se a = (a₁, a₂, ...) ∈ F, allora a₁u + a₂v è anch'esso un elemento di F, e i suoi primi due coefficienti coincidono con quelli di a. Ma allora a = a₁u + a₂v.

Lo spazio vettoriale ${\mathcal F}$ sembra di dimensione infinita, ma in realtà ha dimensione 2.

Qual è la matrice di *T*?

L'applicazione lineare di shift $T:\mathcal{S}\to\mathcal{S}$ manda elementi di \mathcal{F} in elementi di \mathcal{F} . La restrizione di T a \mathcal{F} è un'applicazione lineare da uno spazio di dimensione 2 in se stesso.

Come faccio a descriverla con una matrice?

Ricordate che nel caso di un'applicazione lineare $F: \mathbb{R}^2 \to \mathbb{R}^2$, la matrice associata ad F si ottiene scrivendo per colonna i valori F(1,0) e F(0,1).

- ▶ Perché proprio F(1,0) e F(0,1)?
- Se i valori non sono elementi di \mathbb{R}^n , ma di uno spazio vettoriale qualsiasi, che scrivo nelle colonne?

Dobbiamo scegliere delle basi!

- ▶ Perché proprio F(1,0) e F(0,1)?
- Se i valori non sono elementi di \mathbb{R}^n , ma di uno spazio vettoriale qualsiasi, che scrivo nelle colonne?

Scegliamo (1,0) e (0,1) perché è una base di \mathbb{R}^2 su cui è facile mettersi d'accordo. Potremmo scegliere una qualsiasi altra base e, a patto di comunicare quale base si sia scelta, conoscere i valori che F assume sugli elementi di tale base permetterebbe comunque di ricostruire F su ogni altro elemento.

Se i valori appartengono a uno spazio vettoriale che non è un \mathbb{R}^n , ho bisogno di una procedura che traduca gli elementi dello spazio vettoriale in termini numerici. Conosciamo già una tale procedura: è quella di calcolare le coordinate di un vettore in una base prescritta.

Ingredienti

In conclusione, per scrivere la matrice associata ad $F: U \rightarrow V$ lineare, abbiamo bisogno di:

- ▶ una base di U, sulla quale calcolare l'azione di F
- ▶ una base di *V*, per tradurre i vettori di *V* in termini numerici

Scriviamo per bene le istruzioni. Abbiamo

- due spazi vettoriali di dimensione finita U, V
- un'applicazione lineare F : U → V
- \blacktriangleright una base u_1, \ldots, u_m di U
- ightharpoonup una base v_1, \ldots, v_n di V

Ingredienti:

- ▶ due spazi vettoriali di dimensione finita *U*, *V*
- ▶ un'applicazione lineare $F: U \rightarrow V$
- ▶ una base u_1, \ldots, u_m di U
- ▶ una base v_1, \ldots, v_n di V

Produciamo una matrice nel seguente modo:

- ▶ Calcoliamo $F(u_1), ..., F(u_m)$, che sono elementi di V.
- ▶ Esprimiamo ciascun $F(u_j) \in V$ come combinazione lineare della base v_1, \ldots, v_n dello spazio vettoriale V:

$$F(u_j)=a_{1j}v_1+\ldots+a_{nj}v_n.$$

Scriviamo i numeri a_{1j},..., a_{nj} nella j-esima colonna della matrice.

In questo modo, otteniamo una matrice $n \times m$.

Matrice associata ad F

La matrice si indica con il simbolo $[F]_{\nu_1,\dots,\nu_n}^{u_1,\dots,u_m}$ per ricordare la sua dipendenza dalla scelta delle due basi. Se abbiamo dato un nome alle due basi, ad esempio se

$$\mathcal{B}: U_1, \ldots, U_m$$

 $\mathcal{C}: V_1, \ldots, V_n$

possiamo allora usare la notazione più snella $[F]_{\mathcal{C}}^{\mathcal{B}}$.

Facciamo un esempio: se $U = \mathbb{R}^m$, $V = \mathbb{R}^n$ e

$$\mathcal{E}_m:(1,0,\dots,0),\dots,(0,\dots,0,1)$$

$$\mathcal{E}_n: (1,0,\ldots,0),\ldots,(0,\ldots,0,1)$$
 sono basi diverse!

allora la matrice $n \times m$ $[F]_{\mathcal{E}_n}^{\mathcal{E}_m} = [F]$ è la matrice che abbiamo finora associato all'applicazione lineare F!!!

Un esempio

Vediamo un esempio esplicito, e torniamo all'applicazione di shift T definita sullo spazio vettoriale \mathcal{F} una cui base era data da

$$\mathbf{u} = (1, 0, 1, 1, 2, 3, 5, 8, 13, \dots)$$

$$\mathbf{v} = (0, 1, 1, 2, 3, 5, 8, 13, 21, \dots)$$

Si vede subito che $T(\mathbf{u}) = \mathbf{v}$, mentre $T(\mathbf{v}) = \mathbf{u} + \mathbf{v}$.

Per associare a $T: \mathcal{F} \to \mathcal{F}$ una matrice, dobbiamo scegliere una base dello spazio vettoriale di partenza e una dello spazio vettoriale di arrivo. Si tratta dello stesso spazio vettoriale, e siamo autorizzati a scegliere la stessa base $\mathcal{B}: \mathbf{u}, \mathbf{v}$. Allora

$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

Impareremo, nelle prossime lezioni, a comprendere e utilizzare anche queste matrici.