Exploring Password Authenticated Key Exchange Algorithms

Final Year Project Screencast

Sam Leonard

Supervisor: Bernardo Magri

Table of contents

1. Introduction

2. Context

3. Demo

Intro

Motivation

Traditional Authentication

Motivation

PAKEs are a radically different solution to this problem.

- the password never leaves a user's device
- $\boldsymbol{\cdot}$ an eavesdropper cannot learn enough information to attack the protocol
- both the server and client are authenticated with each other

Project Summary

- implemented AuCPace in Rust
- · contributed the implementation back to open-source
- · created an example application of AuCPace running on real hardware

Context

What are PAKEs?

Elliptic Curves

$$y^2 = x^3 - 2x - 1 \text{ over } \mathbb{R}$$

Point addition

P!

Neutral element \mathcal{O} Inverse element -P

Addition P + Q"Chord rule"

Doubling P + P"Tangent rule"

Finite Fields

clock maths

Elliptic Curves Over Finite Fields

dotty curves

AuCPace

Augmented Composable what now?

Demo

Conclusion

I did a thing!

