Arithmetic Progression Problems 61 to 70

Shiv Shankar Dayal

February 11, 2020

61. 25 trees are planted in a straight line at intervals of 5 meters. To water them the gardener must bring water for each tree separately from a well 10 meters from the first tree. How far he will have to travel to water all the trees beginning with the first if he starts from the well.

Solution Since the gardener starts from the well.

 \therefore Distance covered to water first tree = 10m

Distance covered to water second tree = 10 + 15 = 25m

Distance covered to water third tree = 15 + 20 = 35m

Distance covered to water third tree = 20 + 25 = 45m

.. Total distance covered to water all trees

$$= 10 + 25 + 35 + 45 + \dots \text{ to } 25 \text{ terms}$$

$$= 10 + (25 + 35 + 45 + \dots \text{ to } 24 \text{ terms})$$

$$= 10 + \frac{24}{2}[2.25 + (24 - 1)10]$$

$$= 10 + 12.280 = 10 + 3360 = 3370m$$

62. If a be the first term of an A.P. and the sum of its first p terms is equal to zero, show that the sum of the next q terms is $-\frac{a(p+q)}{p-1} \cdot q$

Solution: Let d be the common difference and S_p be the sum of first p terms. Given,

$$S_{p} = \frac{p}{2}[2a + (p-1)d] = 0$$

$$\therefore p \neq 0, \ \therefore 2a + (p-1)d = 0$$

$$\therefore d = -\frac{2a}{p-1}$$

Now,

Sum of next
$$q$$
 terms $=$ Sum of first $(p+q)$ terms $-$ Sum of first p terms
$$= S_{p+q} - S_p = S_{p+q} - 0$$

$$= \frac{p+q}{2} [2a + (p+q-1)d]$$

$$= \frac{p+q}{2} \left[2a + (p+q-1) \cdot \left(-\frac{2a}{p-1} \right) \right]$$

$$= \frac{p+q}{2} 2a \left(1 - \frac{p+1-1}{p-1} \right)$$

$$= -\frac{a(p+q)}{p-1} \cdot q$$

63. The sum of the first p terms of an A.P. is equal to the sum of its first q terms, prove that the sum of its first (p+q) terms is zero.

Solution: Let the first term be a and common difference be d. Now given,

$$S_{p} = S_{q}$$

$$\frac{p}{2}[2a + (p-1)d] = \frac{q}{2}[2a + (q-1)d]$$

$$2ap + p(p-1)d = 2aq + q(q-1)d$$

$$2a(p-q) + (p^{2} - p - q^{2} + q)d = 0$$

$$2a(p-q) + [(p^{2} - q^{2}) - (p-q)]d = 0$$

$$2a + (p+q-1)d = 0$$

$$S_{p+q} = \frac{p+q}{2}[2a + (p+q-1)d] = 0$$

64. Prove that the sum of latter half of 2n terms of a series in A.P. is equal to the one third of the sum of first 3n terms.

Solution: Sum of latter half of 2n terms $= S_{2n} - S_n$. Let a be the first term and d be the common difference. Then,

$$S_{2n} - S_n = \frac{2n}{2} [2a + (2n - 1)d] - \frac{n}{2} [2a + (n - 1)d]$$

$$= \frac{n}{2} [4a + 2(2n - 1)d - 2a - (n - 1)d]$$

$$= \frac{n}{2} [2a + (3n - 1)d]$$

$$= \frac{1}{3} \frac{3n}{2} [2a + (3n - 1)d]$$

$$= \frac{1}{3} S_{3n}$$

65. If $S_1, S_2, S_3, \ldots, S_p$ be the sum of n terms of arithmetic progressions whose first terms are respectively $1, 2, 3, \ldots$ and common differences are $1, 2, 3, \ldots$ prove that

$$S_1 + S_2 + S_3 + \ldots + S_p = \frac{np}{4}(n+1)(p+1)$$

Solution:

$$S_{1} = \frac{n}{2}[2.1 + (n-1).1] = \frac{n(n+1)}{2}.1$$

$$S_{2} = \frac{n}{2}[2.2 + (n-1).2] = \frac{n(n+1)}{2}.2$$

$$S_{3} = \frac{n}{2}[2.3 + (n-1).3] = \frac{n(n+1)}{2}.3$$
...
$$S_{p} = \frac{n}{2}[2.p + (n-1).p] = \frac{n(n+1)}{2}.p$$

$$S_{1} + S_{2} + S_{3} + \dots + S_{p} = \frac{n(n+1)}{2}[1 + 2 + 3 + \dots + p]$$

$$S_{1} + S_{2} + S_{3} + \dots + S_{p} = \frac{n(n+1)}{2}\frac{p(p+1)}{2} = \frac{np}{4}(n+1)(p+1)$$

66. If a, b and c be the sum of p, q and r terms respectively of an A.P., prove that

$$\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$$

Solution: Let x be the first term and d be the common difference of the A.P. Given,

$$a = \frac{p}{2}[2x + (p-1)d] \Rightarrow \frac{a}{p} = x + \frac{p-1}{2}d$$
 (1)

$$b = \frac{q}{2}[2x + (q - 1)d] \Rightarrow \frac{b}{q} = x + \frac{q - 1}{2}d$$
 (2)

$$c = \frac{r}{2}[2x + (r-1)d] \Rightarrow \frac{c}{r} = x + \frac{r-1}{2}d$$
 (3)

Multiplying (1) by (q-r), (2) by (r-p) and (3) by (p-q) and adding,

$$\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) = \left(x + \frac{q-1}{d}\right)(q-r) + \left(x + \frac{q-1}{2}\right)(r-p) + \left(x + \frac{r-1}{2}\right)(p-q)$$

$$= x[q-r+r-p+p-q] + \frac{d}{2}[(q-r)(p-1) + (r-p)(q-q) + (p-q)(r-1)]$$

$$= 0$$

67. If the sum of m terms of an A.P. is equal to half the sum of (m+n) terms and is also equal to half the sum of (m+p) terms, prove that $(m+n)\left(\frac{1}{m}-\frac{1}{p}\right)=(m+p)\left(\frac{1}{m}-\frac{1}{n}\right)$

Solution: Let a be the first term and d be the common difference of the A.P.

According to question, $S_m = \frac{1}{2}S_{m+n}$

$$\frac{m}{2}[2a + (m-1)d] = \frac{m+n}{2}[2a + (m+n-1)d] \tag{1}$$

Let 2a + (m-1)d = x, then from (1) we have

$$2mx = (m+n)(x+nd) \Rightarrow 2mx - mx - nx = (m+n)nd$$

$$x(m-n) = (m+n)nd (2)$$

Also,

$$S_m = \frac{1}{2} S_{m+p}$$

Replacing n by p in (2)

$$x(m-p) = (m+p)pd (3)$$

Dividing (2) by (3), we get

$$\frac{m-n}{m-p} = \frac{(m+n)n}{(m+p)p}$$

$$(m+n)(m-p)n = (m+p)(m-n)p$$

Dividing both sides by mnp

$$(m+n)\left(\frac{1}{p} - \frac{1}{m} = (m+p)\left(\frac{1}{n} - \frac{1}{m}\right)\right)$$
$$(m+n)\left(\frac{1}{m} - \frac{1}{n}\right) = (m+p)\left(\frac{1}{m} - \frac{1}{n}\right)$$

68. If there are (2n+1) terms in an A.P., then prove that the ratio of sum of odd terms and the sum of even terms is n+1:n.

Solution: Let the A.P. be
$$a, a+d, a+2d, \ldots, a+2nd$$

Sum of its odd terms $= a+(a+2d)+(a+4d)+\ldots+(a+2nd)$

$$= \frac{n+1}{2}[2a+(n+1-1).2d] = (n+1)(a+nd)$$
Sum of even terms $= (a+d)+(a+3d)+\ldots+(a+(2n-1)d)$

$$= \frac{n}{2}[2(a+d)+(n-1)d] = n(a+nd)$$

$$\therefore \frac{\text{Sum of odd terms}}{\text{Sum of even terms}} = \frac{n+1}{n}$$

69. The sum of n terms of two series in A.P. are in the ration (3n-13): (5n+21). Find the ratio of their 24th terms.

Solution: Let a_1 and a_2 be the first terms and d_1 and d_2 be the common differences of the two series in A.P. Now, ratio of 24th terms

$$=\frac{a_1+23d_1}{a_2+23d_2}\tag{1}$$

Ratio of sum of n terms

$$\frac{\frac{n}{2}[2a_1 + (n-1)d_1]}{\frac{n}{2}[2a_2 + (n-1)d_2]} = \frac{3n-13}{5n+21}$$
$$\frac{2a_1 + (n-1)d_1}{2a_2 + (n-1)d_2} = \frac{3n-13}{5n+21}$$

Putting n = 47, we get

$$\frac{2a_1 + 46d_1}{2a_2 + 46d_2} = \frac{3.47 - 13}{5.47 + 21}$$
$$\frac{a_1 + 23d_1}{a_2 + 23d_2} = \frac{1}{2}$$

Therefore, from (1) we get the ratio of 24th terms as $\frac{1}{2}$

70. If the *m*th term of an A.P. is $\frac{1}{n}$ and *n*th term of an A.P. is $\frac{1}{m}$ then prove that the sum to *mn* terms is $\frac{mn+1}{2}$

Solution: Let a be the first term and d be the common difference of the A.P.

$$t_m = a + (m-1)d = \frac{1}{n} \tag{1}$$

$$t_n = a + (n-1)d = \frac{1}{m} \tag{2}$$

Subtracting (1) from (2), we get

$$(n-m)d = \frac{1}{m} - \frac{1}{n} = \frac{n-m}{mn}$$
$$d = \frac{1}{mn}$$

Substituting the value of d in (1), we get

$$a + (m-1)\frac{1}{mn} = \frac{1}{n}$$

$$a = \frac{1}{n}(1 - \frac{m-1}{m}) = \frac{1}{mn}$$

$$S_{mn} = \frac{mn}{2}[2a + (mn-1)d]$$

Substituting the value of d, we get

$$= \frac{mn}{2} \left(\frac{2}{mn} + (mn - 1) \frac{1}{mn} \right)$$
$$= \frac{mn + 1}{2}$$