Learning Distributed Document Representations for Multi-Label Document Categorization

Nitish Gupta

B.Tech - M.Tech Dual Degree
Thesis Defense
Electrical Engineering
IIT Kanpur

May 16, 2015

Outline

- Multi-Label Document Categorization
- Related Work
 - Text Representations
 - Learning Algorithms
- Oistributed Word Representations
- Learning Distributed Document Representations
- Ocument Categorization Algorithm
- Results
- Conclusion and Future Work

Text Documents usually belong to more than one conceptual class.
 For E.g. an article on Music Piracy

- Text Documents usually belong to more than one conceptual class.
 For E.g. an article on Music Piracy
- Task of assigning documents to one or more predefined categories is called Multi-Label Document Categorization

- Text Documents usually belong to more than one conceptual class.
 For E.g. an article on Music Piracy
- Task of assigning documents to one or more predefined categories is called Multi-Label Document Categorization
- Wide range real-world applications :
 - Web-page tagging
 - Medical Patient Record Management
 - Wikipedia Article Management
 - Document Recommendation etc.

- Text Documents usually belong to more than one conceptual class.
 For E.g. an article on Music Piracy
- Task of assigning documents to one or more predefined categories is called Multi-Label Document Categorization
- Wide range real-world applications :
 - Web-page tagging
 - Medical Patient Record Management
 - Wikipedia Article Management
 - Document Recommendation etc.
- Multi-label classification belongs to a general class of supervised learning algorithms where:

- Text Documents usually belong to more than one conceptual class.
 For E.g. an article on Music Piracy
- Task of assigning documents to one or more predefined categories is called Multi-Label Document Categorization
- Wide range real-world applications :
 - Web-page tagging
 - Medical Patient Record Management
 - Wikipedia Article Management
 - Document Recommendation etc.
- Multi-label classification belongs to a general class of supervised learning algorithms where:
 - \bullet Training instances in the form of document-category pairs are used to learn a classifier ${\cal H}$

- Text Documents usually belong to more than one conceptual class.
 For E.g. an article on Music Piracy
- Task of assigning documents to one or more predefined categories is called Multi-Label Document Categorization
- Wide range real-world applications :
 - Web-page tagging
 - Medical Patient Record Management
 - Wikipedia Article Management
 - Document Recommendation etc.
- Multi-label classification belongs to a general class of supervised learning algorithms where:
 - \bullet Training instances in the form of document-category pairs are used to learn a classifier ${\cal H}$
 - ullet Learned classifier ${\cal H}$ is used to assign categories to new test documents

Given,

ullet A set of documents $D=\{d_1,\ldots,d_{|D|}\}$

Given,

- ullet A set of documents $D=\{d_1,\ldots,d_{|D|}\}$
- A set of categories $C = \{c_1, \dots, c_{|C|}\}$

Given,

- ullet A set of documents $D=\{d_1,\ldots,d_{|D|}\}$
- A set of categories $C = \{c_1, \dots, c_{|C|}\}$
- ullet Training data for n (n < |D|) documents, $\mathcal{T} = \{\textit{I}_{\textit{d}_1}, \dots, \textit{I}_{\textit{d}_n}\}$

Given,

- ullet A set of documents $D=\{d_1,\ldots,d_{|D|}\}$
- A set of categories $C = \{c_1, \dots, c_{|C|}\}$
- Training data for n (n < |D|) documents, $\mathcal{T} = \{l_{d_1}, \ldots, l_{d_n}\}$ Each label vector $l_{d_i} \in \{0,1\}^{|C|}$ denotes relevance of categories to the document d_i

Given,

- ullet A set of documents $D=\{d_1,\ldots,d_{|D|}\}$
- A set of categories $C = \{c_1, \dots, c_{|C|}\}$
- Training data for n (n < |D|) documents, $\mathcal{T} = \{l_{d_1}, \ldots, l_{d_n}\}$ Each label vector $l_{d_i} \in \{0,1\}^{|C|}$ denotes relevance of categories to the document d_i

Example:

Documents	Sports	Music	Arts	Technology	Literature	Politics
d_1	0	0	1	0	1	0
d_2	0	1	1	0	0	1
d_3^-	1	0	0	1	0	1
d_4	x	×	×	×	×	×
d ₅	×	×	×	×	×	×

Given,

- A set of documents $D = \{d_1, \dots, d_{|D|}\}$
- A set of categories $C = \{c_1, \dots, c_{|C|}\}$
- Training data for n (n < |D|) documents, $\mathcal{T} = \{l_{d_1}, \ldots, l_{d_n}\}$ Each label vector $l_{d_i} \in \{0,1\}^{|C|}$ denotes relevance of categories to the document d_i

Example:

Documents	Sports	Music	Arts	Technology	Literature	Politics
d_1	0	0	1	0	1	0
d_2	0	1	1	0	0	1
$d\bar{3}$	1	0	0	1	0	1
d_{Δ}	×	×	×	×	×	x
d ₅	×	×	×	×	×	×

Using \mathcal{T} , D and C the learning algorithm learns a multi-label classifier \mathcal{H} to estimate category label vectors, I_{d_i} (j > n) for the test documents.

Document Categorization task has the following two components :

 $\textbf{9} \ \textit{Learning Document Representations}: \ \textit{Representing text documents using numerical vectors that are inputs to the multi-label classifier} \ \mathcal{H}$

- $\begin{tabular}{ll} \textbf{Q} Learning Document Representations} : Representing text documents using numerical vectors that are inputs to the multi-label classifier \mathcal{H} \\ \end{tabular}$
 - Each document $d_i \in D$ is represented using a vector $v_{d_i} \in \mathbb{R}^k$

- $\begin{tabular}{ll} \textbf{Q} Learning Document Representations} : Representing text documents using numerical vectors that are inputs to the multi-label classifier \mathcal{H} \\ \end{tabular}$
 - ullet Each document $d_i \in D$ is represented using a vector $v_{d_i} \in \mathbb{R}^k$
 - Vectors (v_{d_i}) should encode the semantic content of the documents

- $\textbf{9} \ \textit{Learning Document Representations}: \ \textit{Representing text documents using numerical vectors that are inputs to the multi-label classifier} \ \mathcal{H}$
 - ullet Each document $d_i \in D$ is represented using a vector $v_{d_i} \in \mathbb{R}^k$
 - Vectors (v_{d_i}) should encode the semantic content of the documents
 - Encoding documents in a k-dimensional space using such representation is called the Vector Space Model

- $\textbf{9} \ \textit{Learning Document Representations}: \ \textit{Representing text documents using numerical vectors that are inputs to the multi-label classifier} \ \mathcal{H}$
 - ullet Each document $d_i \in D$ is represented using a vector $oldsymbol{v}_{d_i} \in \mathbb{R}^k$
 - Vectors (v_{d_i}) should encode the semantic content of the documents
 - Encoding documents in a k-dimensional space using such representation is called the Vector Space Model
 - The complete document set D can be represented by a document representation matrix $\mathbf{D} \in \mathbb{R}^{k \times |D|}$

Document Categorization task has the following two components :

- $\textbf{ 0} \ \textit{Learning Document Representations}: \ \textit{Representing text documents using numerical vectors that are inputs to the multi-label classifier \mathcal{H} }$
 - Each document $d_i \in D$ is represented using a vector $v_{d_i} \in \mathbb{R}^k$
 - Vectors (v_{d_i}) should encode the semantic content of the documents
 - Encoding documents in a k-dimensional space using such representation is called the Vector Space Model
 - The complete document set D can be represented by a document representation matrix $\mathbf{D} \in \mathbb{R}^{k \times |D|}$

In this thesis, we focus on learning efficient document representations, D

Document Categorization task has the following two components :

- $\textbf{ 0} \ \textit{Learning Document Representations}: \ \textit{Representing text documents using numerical vectors that are inputs to the multi-label classifier \mathcal{H} }$
 - Each document $d_i \in D$ is represented using a vector $v_{d_i} \in \mathbb{R}^k$
 - Vectors (v_{d_i}) should encode the semantic content of the documents
 - Encoding documents in a k-dimensional space using such representation is called the Vector Space Model
 - The complete document set D can be represented by a document representation matrix $\mathbf{D} \in \mathbb{R}^{k \times |D|}$

In this thesis, we focus on learning efficient document representations, D

ullet Learning Algorithm : Algorithm to learn the multi-label classifier ${\cal H}$

Learning Multiple Binary Classifiers :

• Learning Multiple Binary Classifiers:

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Learning Multiple Binary Classifiers:
 Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments
 - Logistic Regression

- Learning Multiple Binary Classifiers:
 Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments
 - Logistic Regression
 - Support Vector Machines (SVM)

Learning Multiple Binary Classifiers :

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks

Learning Multiple Binary Classifiers :

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks
- Naive Bayes

- Learning Multiple Binary Classifiers: Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments
 - Logistic Regression
 - Support Vector Machines (SVM)
 - Neural Networks
 - Naive Bayes
- Learning Single Joint Classifier :

Learning Multiple Binary Classifiers :

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks
- Naive Bayes
- Learning Single Joint Classifier :

Learning Multiple Binary Classifiers :

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks
- Naive Bayes
- Learning Single Joint Classifier :

Algorithms that jointly assign all the categories to a document d_i , i.e. estimate the complete label vector I_{d_i} using a single classifier

• k-Nearest Neighbor (k-NN)

Learning Multiple Binary Classifiers :

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks
- Naive Bayes
- 2 Learning Single Joint Classifier:

- k-Nearest Neighbor (k-NN)
- Linear Least Square Fit

Learning Multiple Binary Classifiers :

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks
- Naive Bayes
- 2 Learning Single Joint Classifier:

- k-Nearest Neighbor (k-NN)
- Linear Least Square Fit
- Decision Trees

Learning Multiple Binary Classifiers :

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks
- Naive Bayes
- 2 Learning Single Joint Classifier:

- k-Nearest Neighbor (k-NN)
- Linear Least Square Fit
- Decision Trees
- Generative Probabilistic Models

Background on Text Representation

Bag of Words Model

Bag of Words Model

ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$

Bag of Words Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- \bullet Each element in v_{d_i} denotes presence/absence of each word

Bag of Words Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms

Bag of Words Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms
 - Term Frequency (tf)
 - Inverse Document Frequency (idf)
 - ullet Term Frequency Inverse Document Frequency ($\emph{tf-idf}$): $\emph{tf} \times \emph{idf}$

Bag of Words Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms
 - Term Frequency (tf)
 - Inverse Document Frequency (idf)
 - ullet Term Frequency Inverse Document Frequency ($\emph{tf-idf}$) : $\emph{tf} \times \emph{idf}$

Bag of Words Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms
 - Term Frequency (tf)
 - Inverse Document Frequency (idf)
 - ullet Term Frequency Inverse Document Frequency ($\emph{tf-idf}$) : $\emph{tf} \times \emph{idf}$

Drawbacks of the Bag-of-Words model

High-dimensionality

Bag of Words Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms
 - Term Frequency (tf)
 - Inverse Document Frequency (idf)
 - ullet Term Frequency Inverse Document Frequency (*tf-idf*) : tf imes idf

- High-dimensionality
- Sparsity

Bag of Words Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms
 - Term Frequency (tf)
 - Inverse Document Frequency (idf)
 - ullet Term Frequency Inverse Document Frequency (tf-idf) : tf imes idf

- High-dimensionality
- Sparsity
- Inability to encode word contexts

Bag of Words Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms
 - Term Frequency (tf)
 - Inverse Document Frequency (idf)
 - ullet Term Frequency Inverse Document Frequency (*tf-idf*) : tf imes idf

- High-dimensionality
- Sparsity
- Inability to encode word contexts
- Ignores word order

Techniques to deal with sparsity and high-dimensionality in BOW

Techniques to deal with sparsity and high-dimensionality in BOW

Information Gain

$$G(t) = -\sum_{i=1}^{|C|} P(c_i) \log P(c_i) + P(t) \sum_{i=1}^{|C|} P(c_i|t) \log P(c_i|t) + P(\sim t) \sum_{i=1}^{|C|} P(c_i|\sim t) \log P(c_i|\sim t)$$
(1)

Techniques to deal with sparsity and high-dimensionality in BOW

Information Gain

$$G(t) = -\sum_{i=1}^{|C|} P(c_i) \log P(c_i) + P(t) \sum_{i=1}^{|C|} P(c_i|t) \log P(c_i|t) + P(\sim t) \sum_{i=1}^{|C|} P(c_i|\sim t) \log P(c_i|\sim t)$$
 (1)

Mutual Information

$$I(t,c) = \log \frac{P(t \wedge c)}{P(t) \times P(c)}, \qquad I_{avg}(t) = \sum_{i=1}^{|C|} P(c_i)I(t,c_i)$$
 (2)

Techniques to deal with sparsity and high-dimensionality in BOW

Information Gain

$$G(t) = -\sum_{i=1}^{|C|} P(c_i) \log P(c_i) + P(t) \sum_{i=1}^{|C|} P(c_i|t) \log P(c_i|t) + P(\sim t) \sum_{i=1}^{|C|} P(c_i|\sim t) \log P(c_i|\sim t)$$
(1)

Mutual Information

$$I(t,c) = \log \frac{P(t \wedge c)}{P(t) \times P(c)}, \qquad I_{avg}(t) = \sum_{i=1}^{|C|} P(c_i)I(t,c_i)$$
 (2)

• Latent Semantic Indexing (LSI)

$$X = TSD^{T}$$
 (3)

Representation of each word w_i using vector $v_{w_i} \in \mathbb{R}^k$ $(k \in [50, 300])$

Representation of each word w_i using vector $v_{w_i} \in \mathbb{R}^k$ $(k \in [50, 300])$

Representation of each word w_i using vector $v_{w_i} \in \mathbb{R}^k$ $(k \in [50, 300])$

Need for Distributed Word Representations

Curse of Dimensionality

Representation of each word w_i using vector $v_{w_i} \in \mathbb{R}^k$ $(k \in [50, 300])$

- Curse of Dimensionality
 - One-hot representations grow with the size of vocabulary

Representation of each word w_i using vector $v_{w_i} \in \mathbb{R}^k$ $(k \in [50, 300])$

- Curse of Dimensionality
 - One-hot representations grow with the size of vocabulary
 - Parameters in language modeling grow exponentially with the size of vocabulary

Representation of each word w_i using vector $v_{w_i} \in \mathbb{R}^k$ $(k \in [50, 300])$

- Curse of Dimensionality
 - One-hot representations grow with the size of vocabulary
 - Parameters in language modeling grow exponentially with the size of vocabulary
- No Word Similarity Measure

Representation of each word w_i using vector $v_{w_i} \in \mathbb{R}^k$ $(k \in [50, 300])$

- Curse of Dimensionality
 - One-hot representations grow with the size of vocabulary
 - Parameters in language modeling grow exponentially with the size of vocabulary
- No Word Similarity Measure
 - One-hot representations are orthogonal representations

Representation of each word w_i using vector $v_{w_i} \in \mathbb{R}^k$ $(k \in [50, 300])$

- Curse of Dimensionality
 - One-hot representations grow with the size of vocabulary
 - Parameters in language modeling grow exponentially with the size of vocabulary
- No Word Similarity Measure
 - One-hot representations are orthogonal representations
 - Cannot capture semantic similarity between words

Bengio et al. [2] developed Neural Probabilistic Language Model (NPLM) to learn

Distributed word vectors

- Distributed word vectors
- A probability function that, using these word vectors, learns a statistical model of language

- Distributed word vectors
- A probability function that, using these word vectors, learns a statistical model of language

- Distributed word vectors
- A probability function that, using these word vectors, learns a statistical model of language

$$P(w_t|w_1^{t-1}) \approx P(w_t|w_{t-n+1}^{t-1})$$
 (4)

- Distributed word vectors
- A probability function that, using these word vectors, learns a statistical model of language

$$P(w_t|w_1^{t-1}) \approx P(w_t|w_{t-n+1}^{t-1})$$
 (4)

$$y = b + U \tanh(d + Hx), \quad y \in \mathbb{R}^{|V|}$$
 (5)

- Distributed word vectors
- A probability function that, using these word vectors, learns a statistical model of language

$$P(w_t|w_1^{t-1}) \approx P(w_t|w_{t-n+1}^{t-1})$$
 (4)

$$y = b + U tanh(d + Hx), \quad y \in \mathbb{R}^{|V|}$$
 (5)

$$P(w_t = i | w_{t-1}, \dots, w_{t-n+1}) = \frac{e^{y_{w_t}}}{\sum_i e^{y_i}}$$
 (6)

Log-Linear Models for learning distributed word vectors are proposed in Mikolov et al. [10]. These models use word vectors to predict other words in the context.

Log-Linear Models for learning distributed word vectors are proposed in Mikolov et al. [10]. These models use word vectors to predict other words in the context.

Log-Linear Models for learning distributed word vectors are proposed in Mikolov et al. [10]. These models use word vectors to predict other words in the context.

$$h = w_{t-k} + \ldots + w_{t-1} + w_{t+1} + \cdots + w_{t+k}$$
 (7)

Log-Linear Models for learning distributed word vectors are proposed in Mikolov et al. [10]. These models use word vectors to predict other words in the context.

$$h = w_{t-k} + \ldots + w_{t-1} + w_{t+1} + \cdots + w_{t+k}$$
 (7)

$$y = b + Uh, \quad y \in \mathbb{R}^{|V|} \tag{8}$$

Log-Linear Models for learning distributed word vectors are proposed in Mikolov et al. [10]. These models use word vectors to predict other words in the context.

$$h = w_{t-k} + \ldots + w_{t-1} + w_{t+1} + \cdots + w_{t+k}$$
 (7)

$$y = b + Uh, \quad y \in \mathbb{R}^{|V|} \tag{8}$$

$$P(w_t|w_{t-k},...,w_{t+k}) = \frac{e^{y_{w_t}}}{\sum_i e^{y_i}}$$
 (9)

Log-Linear Models for learning distributed word vectors are proposed in Mikolov et al. [10]. These models use word vectors to predict other words in the context.

Continuous Bag-of-Words Model

Skip-Gram Model

$$h = w_{t-k} + \ldots + w_{t-1} + w_{t+1} + \cdots + w_{t+k}$$
 (7)

$$y = b + Uh, \quad y \in \mathbb{R}^{|V|} \tag{8}$$

$$P(w_t|w_{t-k},...,w_{t+k}) = \frac{e^{y_{w_t}}}{\sum_i e^{y_i}}$$
 (9)

Log-Linear Models for learning distributed word vectors are proposed in Mikolov et al. [10]. These models use word vectors to predict other words in the context.

Continuous Bag-of-Words Model

Skip-Gram Model

$$h = w_{t-k} + \ldots + w_{t-1} + w_{t+1} + \cdots + w_{t+k}$$
 (7)

$$y = b + Uh, \quad y \in \mathbb{R}^{|V|} \tag{8}$$

$$P(w_t|w_{t-k},...,w_{t+k}) = \frac{e^{y_{w_t}}}{\sum_i e^{y_i}}$$
 (9)

$$P(w_{t+j}|w_t) = \frac{e^{(v_{w_t} \cdot v_{w_{t+j}})}}{\sum_{j} e^{(v_{w_t} \cdot v_{w_j})}}$$
(10)

Distributed Document Representations

Motivation for learning distributed document representations

Motivation for learning distributed document representations

 Traditional representations do not encode semantic similarity between documents. Therefore, cannot handle synonyms

- Traditional representations do not encode semantic similarity between documents. Therefore, cannot handle synonyms
- Orawbacks in BOW like sparsity, high-dimensionality, inability to encode context information and consider word ordering

- Traditional representations do not encode semantic similarity between documents. Therefore, cannot handle synonyms
- Orawbacks in BOW like sparsity, high-dimensionality, inability to encode context information and consider word ordering
- Compositionality of word vectors beyond weighted average [12, 18, 17, 6, 11] is not simple

- Traditional representations do not encode semantic similarity between documents. Therefore, cannot handle synonyms
- Orawbacks in BOW like sparsity, high-dimensionality, inability to encode context information and consider word ordering
- Compositionality of word vectors beyond weighted average [12, 18, 17, 6, 11] is not simple
- Socher et al. [16] propose a Recursive Tensor Neural Network (RTNN) to compose word vectors for learning sentence representations using the parse-tree of the sentence in a bottom-up fashion

- Traditional representations do not encode semantic similarity between documents. Therefore, cannot handle synonyms
- Orawbacks in BOW like sparsity, high-dimensionality, inability to encode context information and consider word ordering
- Compositionality of word vectors beyond weighted average [12, 18, 17, 6, 11] is not simple
- Socher et al. [16] propose a Recursive Tensor Neural Network (RTNN) to compose word vectors for learning sentence representations using the parse-tree of the sentence in a bottom-up fashion
 - Parsing, a computationally expensive step required for each sentence

- Traditional representations do not encode semantic similarity between documents. Therefore, cannot handle synonyms
- Orawbacks in BOW like sparsity, high-dimensionality, inability to encode context information and consider word ordering
- Compositionality of word vectors beyond weighted average [12, 18, 17, 6, 11] is not simple
- Socher et al. [16] propose a Recursive Tensor Neural Network (RTNN) to compose word vectors for learning sentence representations using the parse-tree of the sentence in a bottom-up fashion
 - Parsing, a computationally expensive step required for each sentence
 - Composing sentence vectors to represent documents is not straight-forward

Inspired by the log-linear models to learn word vectors, we present model, to learn universal distributed representations for documents and words

Inspired by the log-linear models to learn word vectors, we present model, to learn universal distributed representations for documents and words

Hypothesis

Document Representations that encode semantic content of the document should be able to predict words in the document

Inspired by the log-linear models to learn word vectors, we present model, to learn universal distributed representations for documents and words

Hypothesis

Document Representations that encode semantic content of the document should be able to predict words in the document

Our model,

Inspired by the log-linear models to learn word vectors, we present model, to learn universal distributed representations for documents and words

Hypothesis

Document Representations that encode semantic content of the document should be able to predict words in the document

Our model,

 Learns distributed representations for document (and words) that encode the different semantic content in the documents

Inspired by the log-linear models to learn word vectors, we present model, to learn universal distributed representations for documents and words

Hypothesis

Document Representations that encode semantic content of the document should be able to predict words in the document

Our model,

- Learns distributed representations for document (and words) that encode the different semantic content in the documents
- **②** Embeds documents and words in the same k-dimensional space such that semantically similar entities have similar vector representations

We present an unsupervised neural network model that,

We present an unsupervised neural network model that,

● Represents each document $d_i \in D$ by a vector $\mathbf{v}_i^D \in \mathbb{R}^k$ Vectors are stored as columns of the matrix $\mathbf{D} = \left[\mathbf{v}_1^D, \dots, \mathbf{v}_{|D|}^D\right] \in \mathbb{R}^{k \times |D|}$

We present an unsupervised neural network model that,

- **Q** Represents each document $d_i \in D$ by a vector $\mathbf{v}_i^D \in \mathbb{R}^k$ Vectors are stored as columns of the matrix $\mathbf{D} = \left[\mathbf{v}_1^D, \dots, \mathbf{v}_{|D|}^D\right] \in \mathbb{R}^{k \times |D|}$
- ② Each word $w_i \in W$, is represented by a vector $\mathbf{v}_i^W \in \mathbb{R}^k$ Vectors are stored as columns of the matrix $\mathbf{W} = \left[\mathbf{v}_1^W, \dots, \mathbf{v}_{|V|}^W\right] \in \mathbb{R}^{k \times |V|}$

We present an unsupervised neural network model that,

- **②** Each word $w_i \in W$, is represented by a vector $\mathbf{v}_i^W \in \mathbb{R}^k$ Vectors are stored as columns of the matrix $\mathbf{W} = \left[\mathbf{v}_1^W, \dots, \mathbf{v}_{|V|}^W\right] \in \mathbb{R}^{k \times |V|}$
- **3** Given a sequence of words, $(w_{t-c}, \ldots, w_{t+c})$ in document d_i , estimates

$$p(w_t|d_i, w_{t-c}, \ldots, w_{t-1}, w_{t+1}, \ldots, w_{t+c})$$

We present an unsupervised neural network model that,

- Represents each document $d_i \in D$ by a vector $\mathbf{v}_i^D \in \mathbb{R}^k$ Vectors are stored as columns of the matrix $\mathbf{D} = \left[\mathbf{v}_1^D, \dots, \mathbf{v}_{|D|}^D\right] \in \mathbb{R}^{k \times |D|}$
- ② Each word $w_i \in W$, is represented by a vector $\mathbf{v}_i^W \in \mathbb{R}^k$ Vectors are stored as columns of the matrix $\mathbf{W} = \left[\mathbf{v}_1^W, \dots, \mathbf{v}_{|V|}^W\right] \in \mathbb{R}^{k \times |V|}$
- **3** Given a sequence of words, $(w_{t-c}, \ldots, w_{t+c})$ in document d_i , estimates

$$p(w_t|d_i, w_{t-c}, \ldots, w_{t-1}, w_{t+1}, \ldots, w_{t+c})$$

 $\textbf{ Maximizes the probability of predicting the words correctly to learn } D \text{ and } W \\ \text{ and the parameters of the probability function}$

Context Representation:

$$h_c = v_{d_i}^D + \lambda_{t-c} v_{w_{t-c}}^W + \dots + \lambda_{t-1} v_{w_{t-1}}^W + \lambda_{t+1} v_{w_{t+1}}^W + \dots + \lambda_{t+c} v_{w_{t+c}}^W$$
(11)

Context Representation:

$$h_c = v_{d_i}^D + \lambda_{t-c} v_{w_{t-c}}^W + \dots + \lambda_{t-1} v_{w_{t-1}}^W + \lambda_{t+1} v_{w_{t+1}}^W + \dots + \lambda_{t+c} v_{w_{t+c}}^W$$
(11)

Probability Estimation:

$$s_{w_i} = \sigma(v_{w_i}^W \cdot h_c), \quad \sigma(x) = \frac{1}{1 + e^{-x}}$$
 (12)

$$p(w_t|d_i, w_{t-c}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+c}) = \frac{e^{s_{w_t}}}{\sum_{i \in V} e^{s_{w_i}}}$$
(13)

 Training data $\mathcal{T} = \{d_i^{(m)}, w_{t-c}^{(m)}, \ldots, w_{t+c}^{(m)}\}_{m=1}^{m=M}$

- **1** Training data $\mathcal{T} = \{d_i^{(m)}, w_{t-c}^{(m)}, \dots, w_{t+c}^{(m)}\}_{m=1}^{m=M}$
- ② Learn optimum parameter set $\Theta=(\mathrm{D},\mathrm{W},\Lambda)$, i.e. document and word vectors and the neural network weights Λ

- **1** Training data $\mathcal{T} = \{d_i^{(m)}, w_{t-c}^{(m)}, \dots, w_{t+c}^{(m)}\}_{m=1}^{m=M}$
- ② Learn optimum parameter set $\Theta=(\mathrm{D},\mathrm{W},\Lambda)$, i.e. document and word vectors and the neural network weights Λ
- **9** Maximize average log-probability of predicting w_t correctly in each sequence in $\mathcal T$

$$\hat{\Theta} = \underset{\Theta}{\text{arg max}} \ I(\mathcal{T}, \Theta) \tag{14}$$

$$I(\mathcal{T},\Theta) = \frac{1}{M} \sum_{m=1}^{M} \log \left[p(w_t^{(m)} | d_i^{(m)}, w_{t-c}^{(m)}, \dots, w_{t-1}^{(m)}, w_{t+1}^{(m)}, \dots, w_{t+c}^{(m)}) \right]$$
 (15)

- **1** Training data $\mathcal{T} = \{d_i^{(m)}, w_{t-c}^{(m)}, \dots, w_{t+c}^{(m)}\}_{m=1}^{m=M}$
- 2 Learn optimum parameter set $\Theta=(\mathrm{D},\mathrm{W},\Lambda)$, i.e. document and word vectors and the neural network weights Λ
- lacktriangledown Maximize average log-probability of predicting w_t correctly in each sequence in $\mathcal T$

$$\hat{\Theta} = \underset{\Theta}{\text{arg max}} \ I(\mathcal{T}, \Theta) \tag{14}$$

$$I(\mathcal{T},\Theta) = \frac{1}{M} \sum_{m=1}^{M} \log \left[p(w_t^{(m)} | d_i^{(m)}, w_{t-c}^{(m)}, \dots, w_{t-1}^{(m)}, w_{t+1}^{(m)}, \dots, w_{t+c}^{(m)}) \right]$$
 (15)

Use Stochastic Gradient Descent (SGD) to update parameters

$$\theta_i^{(x)} = \theta_i^{(x-1)} + \gamma \frac{\partial I(\mathcal{T}, \Theta)}{\partial \theta_i}$$
 (16)

- **①** Soft-max computation is expensive, $\mathcal{O}(V)$
- Speed-ups using Hierarchical soft-max [15] and Importance sampling to approximate the likelihood gradient [3, 1]

- **①** Soft-max computation is expensive, $\mathcal{O}(V)$
- Speed-ups using Hierarchical soft-max [15] and Importance sampling to approximate the likelihood gradient [3, 1]
 - Finding well-performing trees in Hierarchical soft-max is not trivial

- **9** Soft-max computation is expensive, $\mathcal{O}(V)$
- Speed-ups using Hierarchical soft-max [15] and Importance sampling to approximate the likelihood gradient [3, 1]
 - Finding well-performing trees in Hierarchical soft-max is not trivial
 - Importance sampling suffers from stability issues

17 / 42

- **①** Soft-max computation is expensive, $\mathcal{O}(V)$
- Speed-ups using Hierarchical soft-max [15] and Importance sampling to approximate the likelihood gradient [3, 1]
 - Finding well-performing trees in Hierarchical soft-max is not trivial
 - Importance sampling suffers from stability issues
- Noise Contrastive Estimation (NCE) [8] fits unnormalized probabilities

- **①** Soft-max computation is expensive, $\mathcal{O}(V)$
- Speed-ups using Hierarchical soft-max [15] and Importance sampling to approximate the likelihood gradient [3, 1]
 - Finding well-performing trees in Hierarchical soft-max is not trivial
 - Importance sampling suffers from stability issues
- Noise Contrastive Estimation (NCE) [8] fits unnormalized probabilities
 - Reduces the problem of probability density estimation to probabilistic binary classification

- **①** Soft-max computation is expensive, $\mathcal{O}(V)$
- Speed-ups using Hierarchical soft-max [15] and Importance sampling to approximate the likelihood gradient [3, 1]
 - Finding well-performing trees in Hierarchical soft-max is not trivial
 - Importance sampling suffers from stability issues
- Noise Contrastive Estimation (NCE) [8] fits unnormalized probabilities
 - Reduces the problem of probability density estimation to probabilistic binary classification
 - Adaptation to NPLM [14] and learning word embeddings [13] show significant training time speed-ups

lacksquare Given a sequence of words (w_{t-c},\ldots,w_{t+c}) in document d_i

- **①** Given a sequence of words $(w_{t-c}, \ldots, w_{t+c})$ in document d_i
 - Earlier objective : Maximize $p(w_t|d_i, w_{t-c}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+c})$

- Given a sequence of words $(w_{t-c}, \ldots, w_{t+c})$ in document d_i
 - Earlier objective : Maximize $p(w_t|d_i, w_{t-c}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+c})$
 - New objective : Build binary classifier to distinguish between correct middle word w_t and random corrupt word

- Given a sequence of words $(w_{t-c}, \ldots, w_{t+c})$ in document d_i
 - Earlier objective : Maximize $p(w_t|d_i, w_{t-c}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+c})$
 - New objective: Build binary classifier to distinguish between correct middle word w_t and random corrupt word

For NCE Binary Classification Objective:

- Given a sequence of words $(w_{t-c}, \ldots, w_{t+c})$ in document d_i
 - Earlier objective : Maximize $p(w_t|d_i, w_{t-c}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+c})$
 - New objective: Build binary classifier to distinguish between correct middle word w_t and random corrupt word

For NCE Binary Classification Objective:

 $\textbf{ New labeled training data}: \ \mathcal{T}=\{d_i^{(m)},w_{t-c}^{(m)},\ldots,w_{t+c}^{(m)},Y^{(m)}=1\}_{m=1}^{m=M}$

- **①** Given a sequence of words $(w_{t-c}, \ldots, w_{t+c})$ in document d_i
 - Earlier objective : Maximize $p(w_t|d_i, w_{t-c}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+c})$
 - New objective: Build binary classifier to distinguish between correct middle word w_t and random corrupt word

For NCE Binary Classification Objective:

- $\textbf{ New labeled training data}: \ \mathcal{T}=\{d_i^{(m)},w_{t-c}^{(m)},\ldots,w_{t+c}^{(m)},Y^{(m)}=1\}_{m=1}^{m=M}$
- For every positive training sequence, n negative training sequences introduced where,

- **①** Given a sequence of words $(w_{t-c}, \ldots, w_{t+c})$ in document d_i
 - Earlier objective : Maximize $p(w_t|d_i, w_{t-c}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+c})$
 - New objective: Build binary classifier to distinguish between correct middle word w_t and random corrupt word

For NCE Binary Classification Objective:

- $\textbf{ 0} \text{ New labeled training data}: \ \mathcal{T}=\{d_i^{(m)},w_{t-c}^{(m)},\ldots,w_{t+c}^{(m)},Y^{(m)}=1\}_{m=1}^{m=M}$
- For every positive training sequence, n negative training sequences introduced where,
 - The observed middle word w_t is replaced by a corrupt word w_x drawn from a noise distribution $P_n(w)$

- Given a sequence of words $(w_{t-c}, \ldots, w_{t+c})$ in document d_i
 - Earlier objective : Maximize $p(w_t|d_i, w_{t-c}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+c})$
 - New objective: Build binary classifier to distinguish between correct middle word w_t and random corrupt word

For NCE Binary Classification Objective:

- \bullet New labeled training data : $\mathcal{T}=\{d_i^{(m)},w_{t-c}^{(m)},\dots,w_{t+c}^{(m)},Y^{(m)}=1\}_{m=1}^{m=M}$
- For every positive training sequence, n negative training sequences introduced where,
 - The observed middle word w_t is replaced by a corrupt word w_x drawn from a noise distribution $P_n(w)$
 - The label for the negative sequence is Y = 0

- **①** Given a sequence of words $(w_{t-c}, \ldots, w_{t+c})$ in document d_i
 - Earlier objective : Maximize $p(w_t|d_i, w_{t-c}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+c})$
 - New objective: Build binary classifier to distinguish between correct middle word w_t and random corrupt word

For NCE Binary Classification Objective:

- \bullet New labeled training data : $\mathcal{T}=\{d_i^{(m)},w_{t-c}^{(m)},\dots,w_{t+c}^{(m)},Y^{(m)}=1\}_{m=1}^{m=M}$
- For every positive training sequence, n negative training sequences introduced where,
 - The observed middle word w_t is replaced by a corrupt word w_x drawn from a noise distribution $P_n(w)$
 - The label for the negative sequence is Y = 0
- $\textbf{ Omplete training data}: \ \mathcal{T} = \{d_i^{(m)}, w_{t-c}^{(m)}, \ldots, w_{t+c}^{(m)}, Y^{(m)}\}_{m=1}^{m=M+nM}$

Given a sequence of words $(w_{t-c}, \ldots, w_{t+c})$ in document d_i , our new objective is to predict whether the sequence is legitimate

Given a sequence of words $(w_{t-c}, \ldots, w_{t+c})$ in document d_i , our new objective is to predict whether the sequence is legitimate

We build a probabilistic binary classifier to predict the label Y

Given a sequence of words $(w_{t-c}, \ldots, w_{t+c})$ in document d_i , our new objective is to predict whether the sequence is legitimate

ullet We build a probabilistic binary classifier to predict the label Y

$$P(Y=1|d_i, w_{t-c}, \dots, w_{t+c}, \Theta) = \sigma(\mathbf{v}_{w_t}^W \cdot h_c)$$
(17)

Given a sequence of words $(w_{t-c}, \ldots, w_{t+c})$ in document d_i , our new objective is to predict whether the sequence is legitimate

• We build a probabilistic binary classifier to predict the label Y

$$P(Y = 1|d_i, w_{t-c}, \dots, w_{t+c}, \Theta) = \sigma(v_{w_t}^W \cdot h_c)$$
(17)

$$P(Y = 0 | d_i, w_{t-c}, \dots, w_{t+c}, \Theta) = 1 - \sigma(v_{w_t}^W \cdot h_c)$$
 (18)

Given a sequence of words $(w_{t-c}, \ldots, w_{t+c})$ in document d_i , our new objective is to predict whether the sequence is legitimate

• We build a probabilistic binary classifier to predict the label Y

$$P(Y = 1|d_i, w_{t-c}, \dots, w_{t+c}, \Theta) = \sigma(v_{w_t}^W \cdot h_c)$$
(17)

$$P(Y = 0 | d_i, w_{t-c}, \dots, w_{t+c}, \Theta) = 1 - \sigma(v_{w_t}^W \cdot h_c)$$
 (18)

$$P(Y|d_i, w_{t-c}, \dots, w_{t+c}, \Theta) = [\sigma(v_{w_t}^W \cdot h_c)]^Y [1 - \sigma(v_{w_t}^W \cdot h_c)]^{1-Y}$$
(19)

Learning Objective with NCE

Given the training data $\mathcal{T} = \{d_i^{(m)}, w_{t-c}^{(m)}, \dots, w_{t+c}^{(m)}, Y^{(m)}\}_{m=1}^{m=M+nM}$, we maximize the log-likelihood of observing it

 Y_m is the predicted label

 $P_{\Theta}(Y_m)$ is a shorthand notation for $P(Y_m|d_i^{(m)},w_{t-c}^{(m)},\ldots,w_{t+c}^{(m)},\Theta)$

Learning Objective with NCE

Given the training data $\mathcal{T} = \{d_i^{(m)}, w_{t-c}^{(m)}, \dots, w_{t+c}^{(m)}, Y^{(m)}\}_{m=1}^{m=M+nM}$, we maximize the log-likelihood of observing it

$$\hat{\Theta} = \underset{\Theta}{\text{arg max}} \ I(\mathcal{T}, \Theta) \tag{20}$$

$$I(\mathcal{T},\Theta) = \sum_{m=1}^{M+nM} \log P_{\Theta}(Y_m = Y^{(m)})$$
 (21)

 Y_m is the predicted label

 $P_{\Theta}(Y_m)$ is a shorthand notation for $P(Y_m|d_i^{(m)}, w_{t-c}^{(m)}, \dots, w_{t+c}^{(m)}, \Theta)$

Learning Objective with NCE

Given the training data $\mathcal{T} = \{d_i^{(m)}, w_{t-c}^{(m)}, \dots, w_{t+c}^{(m)}, Y^{(m)}\}_{m=1}^{m=M+nM}$, we maximize the log-likelihood of observing it

$$\hat{\Theta} = \underset{\Theta}{\text{arg max}} \ I(\mathcal{T}, \Theta) \tag{20}$$

$$I(\mathcal{T},\Theta) = \sum_{m=1}^{M+nM} \log P_{\Theta}(Y_m = Y^{(m)})$$
 (21)

The logarithm of the probability estimate is given by,

$$\log P_{\Theta}(Y_m = Y^{(m)}) = Y^{(m)} \log \sigma(v_{w_t^{(m)}}^W \cdot h_c^{(m)}) + (1 - Y^{(m)}) \log(1 - \sigma(v_{w_t^{(m)}}^W \cdot h_c^{(m)}))$$
(22)

 $P_{\Theta}(Y_m)$ is a shorthand notation for $P(Y_m|d_i^{(m)}, w_{t-c}^{(m)}, \dots, w_{t+c}^{(m)}, \Theta)$ Y_m is the predicted label

We use SGD to learn parameters i.e. document and word vectors and the neural network weights

$$\theta_i^{(x)} = \theta_i^{(x-1)} + \gamma \frac{\partial I(\mathcal{T}, \Theta)}{\partial \theta_i}$$
 (23)

We use SGD to learn parameters i.e. document and word vectors and the neural network weights

$$\theta_i^{(x)} = \theta_i^{(x-1)} + \gamma \frac{\partial I(\mathcal{T}, \Theta)}{\partial \theta_i}$$
 (23)

We use SGD to learn parameters i.e. document and word vectors and the neural network weights

$$\theta_i^{(x)} = \theta_i^{(x-1)} + \gamma \frac{\partial I(\mathcal{T}, \Theta)}{\partial \theta_i}$$
 (23)

$$\frac{\partial \log P_{\Theta}(Y_m = Y^{(m)})}{\partial \theta} = \left[Y^{(m)} \frac{1}{\sigma(d^{(m)})} - (1 - Y^{(m)}) \frac{1}{(1 - \sigma(d^{(m)}))} \right] \frac{\partial \sigma(d^{(m)})}{\partial \theta}$$
(24)

We use SGD to learn parameters i.e. document and word vectors and the neural network weights

$$\theta_i^{(x)} = \theta_i^{(x-1)} + \gamma \frac{\partial I(\mathcal{T}, \Theta)}{\partial \theta_i}$$
 (23)

$$\frac{\partial \log P_{\Theta}(Y_m = Y^{(m)})}{\partial \theta} = \left[Y^{(m)} \frac{1}{\sigma(d^{(m)})} - (1 - Y^{(m)}) \frac{1}{(1 - \sigma(d^{(m)}))} \right] \frac{\partial \sigma(d^{(m)})}{\partial \theta}$$
(24)

$$\frac{\partial \log P_{\Theta}(Y_{m} = Y^{(m)})}{\partial \theta} = \left[Y^{(m)} \frac{1}{\sigma(d^{(m)})} - (1 - Y^{(m)}) \frac{1}{(1 - \sigma(d^{(m)}))} \right] \left[\sigma(d^{(m)})(1 - \sigma(d^{(m)})) \right] \frac{\partial d^{(m)}}{\partial \theta}$$
(25)

We use SGD to learn parameters i.e. document and word vectors and the neural network weights

$$\theta_i^{(x)} = \theta_i^{(x-1)} + \gamma \frac{\partial I(\mathcal{T}, \Theta)}{\partial \theta_i}$$
 (23)

$$\frac{\partial \log P_{\Theta}(Y_m = Y^{(m)})}{\partial \theta} = \left[Y^{(m)} \frac{1}{\sigma(d^{(m)})} - (1 - Y^{(m)}) \frac{1}{(1 - \sigma(d^{(m)}))} \right] \frac{\partial \sigma(d^{(m)})}{\partial \theta}$$
(24)

$$\frac{\partial \log P_{\Theta}(Y_m = Y^{(m)})}{\partial \theta} = \left[Y^{(m)} \frac{1}{\sigma(d^{(m)})} - (1 - Y^{(m)}) \frac{1}{(1 - \sigma(d^{(m)}))} \right] \left[\sigma(d^{(m)})(1 - \sigma(d^{(m)})) \right] \frac{\partial d^{(m)}}{\partial \theta}$$
(25)

$$\frac{\partial \log P_{\Theta}(Y_m = Y^{(m)})}{\partial \theta} = \left[Y^{(m)} - \sigma(d^{(m)}) \right] \frac{\partial d^{(m)}}{\partial \theta}$$
 (26)

We use SGD to learn parameters i.e. document and word vectors and the neural network weights

$$\theta_i^{(x)} = \theta_i^{(x-1)} + \gamma \frac{\partial I(\mathcal{T}, \Theta)}{\partial \theta_i}$$
 (23)

$$\frac{\partial \log P_{\Theta}(Y_m = Y^{(m)})}{\partial \theta} = \left[Y^{(m)} \frac{1}{\sigma(d^{(m)})} - (1 - Y^{(m)}) \frac{1}{(1 - \sigma(d^{(m)}))} \right] \frac{\partial \sigma(d^{(m)})}{\partial \theta}$$
(24)

$$\frac{\partial \log P_{\Theta}(Y_{m} = Y^{(m)})}{\partial \theta} = \left[Y^{(m)} \frac{1}{\sigma(d^{(m)})} - (1 - Y^{(m)}) \frac{1}{(1 - \sigma(d^{(m)}))}\right] \left[\sigma(d^{(m)})(1 - \sigma(d^{(m)}))\right] \frac{\partial d^{(m)}}{\partial \theta}$$
(25)

$$\frac{\partial \log P_{\Theta}(Y_m = Y^{(m)})}{\partial \theta} = \left[Y^{(m)} - \sigma(d^{(m)}) \right] \frac{\partial d^{(m)}}{\partial \theta}$$
 (26)

$$\frac{\partial \log P_{\Theta}(Y_m = Y^{(m)})}{\partial \theta} = \left[Y^{(m)} - \sigma(\mathbf{v}_{\mathbf{w}_t^{(m)}}^W \cdot h_c^{(m)}) \right] \frac{\partial(\mathbf{v}_{\mathbf{w}_t^{(m)}}^W \cdot h_c^{(m)})}{\partial \theta}$$
(27)

Document Vector :

Document Vector :

$$(\mathbf{v}_{d_{i}^{(m)}}^{D})^{(i+1)} = (\mathbf{v}_{d_{i}^{(m)}}^{D})^{(i)} + \gamma \left[(Y^{(m)} - \sigma(\mathbf{v}_{w_{t}^{(m)}}^{W} \cdot h_{c}^{(m)})) \mathbf{v}_{w_{t}^{(m)}}^{W} - \beta \mathbf{v}_{d_{i}^{(m)}}^{D} \right]$$
 (28)

Middle Word Vector :

Document Vector :

$$\left(\mathbf{v}_{d_{i}^{(m)}}^{D}\right)^{(i+1)} = \left(\mathbf{v}_{d_{i}^{(m)}}^{D}\right)^{(i)} + \gamma \left[\left(Y^{(m)} - \sigma(\mathbf{v}_{w_{t}^{(m)}}^{W} \cdot h_{c}^{(m)})\right) \mathbf{v}_{w_{t}^{(m)}}^{W} - \beta \mathbf{v}_{d_{i}^{(m)}}^{D} \right]$$
(28)

Middle Word Vector :

$$(\mathbf{v}_{w_{t}^{(m)}}^{W})^{(i+1)} = (\mathbf{v}_{w_{t}^{(m)}}^{W})^{(i)} + \gamma \left[(\mathbf{Y}^{(m)} - \sigma(\mathbf{v}_{w_{t}^{(m)}}^{W} \cdot \mathbf{h}_{c}^{(m)})) \mathbf{h}_{c}^{(m)} - \beta \mathbf{v}_{w_{t}^{(m)}}^{W} \right]$$
 (29)

Context Word Vectors :

$$(\mathbf{v}_{w_{t+j}^{(m)}}^{W})^{(i+1)} = (\mathbf{v}_{w_{t+j}^{(m)}}^{W})^{(i)} + \gamma \left[(\mathbf{Y}^{(m)} - \sigma(\mathbf{v}_{w_{t}^{(m)}}^{W} \cdot \mathbf{h}_{c}^{(m)})) \lambda_{t+j} \mathbf{v}_{w_{t}^{(m)}}^{W} - \beta \mathbf{v}_{w_{t+j}^{(m)}}^{W} \right]$$
 (30)

Document Vector :

$$(\mathbf{v}_{d_i^{(m)}}^D)^{(i+1)} = (\mathbf{v}_{d_i^{(m)}}^D)^{(i)} + \gamma \left[(Y^{(m)} - \sigma(\mathbf{v}_{w_t^{(m)}}^W \cdot h_c^{(m)})) \mathbf{v}_{w_t^{(m)}}^W - \beta \mathbf{v}_{d_i^{(m)}}^D \right]$$
 (28)

Middle Word Vector :

$$\left(\mathbf{v}_{w_{t}^{(m)}}^{W}\right)^{(i+1)} = \left(\mathbf{v}_{w_{t}^{(m)}}^{W}\right)^{(i)} + \gamma \left[\left(Y^{(m)} - \sigma(\mathbf{v}_{w_{t}^{(m)}}^{W} \cdot h_{c}^{(m)})\right) h_{c}^{(m)} - \beta \mathbf{v}_{w_{t}^{(m)}}^{W} \right]$$
(29)

Context Word Vectors :

$$(\mathbf{v}_{w_{t+j}^{(m)}}^{W})^{(i+1)} = (\mathbf{v}_{w_{t+j}^{(m)}}^{W})^{(i)} + \gamma \left[(\mathbf{Y}^{(m)} - \sigma(\mathbf{v}_{w_{t}^{(m)}}^{W} \cdot h_{c}^{(m)})) \lambda_{t+j} \mathbf{v}_{w_{t}^{(m)}}^{W} - \beta \mathbf{v}_{w_{t+j}^{(m)}}^{W} \right]$$
 (30)

Neural Network Weights :

$$\lambda_{t+j}^{(i+1)} = \lambda_{t+j}^{(i)} + \gamma \left[(Y^{(m)} - \sigma(\mathbf{v}_{w_t^{(m)}}^W \cdot h_c^{(m)})) (\mathbf{v}_{w_t^{(m)}}^W \cdot \mathbf{v}_{w_{t+j}^{(m)}}^W) - \beta \lambda_{t+j} \right]$$
(31)

- 1: **Input:** D, k, c, n, β , γ , epochs
- 2: Output: Document Vectors D, Word Vectors W

- 1: **Input:** D, k, c, n, β , γ , epochs 2: Output: Document Vectors D, Word Vectors W

- 3: $V \leftarrow Extractfrom(D)$ 4: $D \leftarrow random(\mathbb{R}^{k \times |D|})$ 5: $W \leftarrow random(\mathbb{R}^{k \times |V|})$
- 6: $\mathcal{T} \leftarrow Extractfrom(D, c, n)$
- 7: $\Lambda \leftarrow \mathbf{1}^{2c}$

 $\triangleright |\mathcal{T}| = M + nM$ \triangleright 2*c*-sized vector of 1s

```
1: Input: D, k, c, n, \beta, \gamma, epochs

2: Output: Document Vectors D, Word Vectors W

3: V \leftarrow Extractfrom(D)

4: D \leftarrow random(\mathbb{R}^{k \times |D|})

5: W \leftarrow random(\mathbb{R}^{k \times |V|})

6: \mathcal{T} \leftarrow Extractfrom(D, c, n) \triangleright |\mathcal{T}| = M + nM

7: \Lambda \leftarrow \mathbf{1}^{2c} \triangleright 2c-sized vector of 1s

8: while epochs \geq 1 do

9: for all \{d_i, w_{t-c}, \dots, w_{t+c}, Y\} \in \mathcal{T} do

10: h_c \leftarrow v_d^D + \lambda_{t-c} v_{w_{t-c}}^W + \dots + \lambda_{t+c} v_{w_{t+c}}^W
```

```
1: Input: D, k, c, n, \beta, \gamma, epochs

2: Output: Document Vectors D, Word Vectors W

3: V \leftarrow Extractfrom(D)

4: D \leftarrow random(\mathbb{R}^{k \times |D|})

5: W \leftarrow random(\mathbb{R}^{k \times |V|})

6: \mathcal{T} \leftarrow Extractfrom(D, c, n)

7: \Lambda \leftarrow \mathbf{1}^{2c}

8: while epochs \geq 1 do

9: for all \{d_i, w_{t-c}, \dots, w_{t+c}, Y\} \in \mathcal{T} do

10: h_c \leftarrow v_{d_i}^D + \lambda_{t-c} v_{w_{t-c}}^W + \dots + \lambda_{t+c} v_{w_{t+c}}^W
```

 $\mathbf{v}_{d}^{D} \leftarrow \mathbf{v}_{d}^{D} + \gamma \left[(\mathbf{Y} - \sigma(\mathbf{v}_{w_{t}}^{W} \cdot \mathbf{h}_{c})) \mathbf{v}_{w_{t}}^{W} - \beta \mathbf{v}_{d}^{D} \right]$

11:

 $\triangleright |\mathcal{T}| = M + nM$

 \triangleright 2*c*-sized vector of 1s

```
1: Input: D, k, c, n, \beta, \gamma, epochs

2: Output: Document Vectors D, Word Vectors W

3: V \leftarrow Extractfrom(D)

4: D \leftarrow random(\mathbb{R}^{k \times |D|})

5: W \leftarrow random(\mathbb{R}^{k \times |V|})

6: \mathcal{T} \leftarrow Extractfrom(D, c, n)

7: \Lambda \leftarrow \mathbf{1}^{2c}

8: while epochs \geq 1 do

9: for all \{d_i, w_{t-c}, \dots, w_{t+c}, Y\} \in \mathcal{T} do

10: h_c \leftarrow v_{d_i}^D + \lambda_{t-c} v_{w_{t-c}}^W + \dots + \lambda_{t+c} v_{w_{t+c}}^W

11: v_{d_i}^D \leftarrow v_{d_i}^D + \gamma \left[ (Y - \sigma(v_{w_t}^W, h_c)) v_{w_t}^W - \beta v_{d_i}^D \right]
```

 $\mathbf{v}_{wc}^W \leftarrow \mathbf{v}_{wc}^W + \gamma \left[(Y - \sigma(\mathbf{v}_{wc}^W \cdot h_c)) h_c - \beta \mathbf{v}_{wc}^W \right]$

 $ho |\mathcal{T}| = M + nM$ ho 2c-sized vector of 1s

12:

```
1: Input: D. k. c. n. \beta. \gamma. epochs
  2: Output: Document Vectors D, Word Vectors W
  3: V \leftarrow Extractfrom(D)
  4: D \leftarrow random(\mathbb{R}^{k \times |D|})
  5: W \leftarrow random(\mathbb{R}^{k \times |V|})
  6: \mathcal{T} \leftarrow Extractfrom(D, c, n)
                                                                                                                                                                   \triangleright |\mathcal{T}| = M + nM
  7: \Lambda \leftarrow \mathbf{1}^{2c}
                                                                                                                                                      \triangleright 2c-sized vector of 1s
        while epochs > 1 do
  g.
                for all \{d_i, w_{t-c}, \dots, w_{t+c}, Y\} \in \mathcal{T} do
                       h_c \leftarrow \mathbf{v}_{d}^D + \lambda_{t-c} \mathbf{v}_{w_t}^W + \ldots + \lambda_{t+c} \mathbf{v}_{w_{t+c}}^W
10:
                       \mathbf{v}_{d.}^{D} \leftarrow \mathbf{v}_{d.}^{D} + \gamma \left[ (Y - \sigma(\mathbf{v}_{w_{t}}^{W} \cdot h_{c})) \mathbf{v}_{w_{t}}^{W} - \beta \mathbf{v}_{d.}^{D} \right]
11:
                       \mathbf{v}_{wc}^W \leftarrow \mathbf{v}_{wc}^W + \gamma \left[ (Y - \sigma(\mathbf{v}_{wc}^W \cdot h_c)) h_c - \beta \mathbf{v}_{wc}^W \right]
12.
                       for all i \in \{t - c, ..., t - 1, t + 1, ..., t + c\} do
13:
                              \mathbf{v}_{w,...}^W \leftarrow \mathbf{v}_{w,...}^W + \gamma \left[ (Y - \sigma(\mathbf{v}_{w,\cdot}^W \cdot h_c)) \lambda_{t+j} \mathbf{v}_{w,\cdot}^W - \beta \mathbf{v}_{w,...}^W \right]
14.
```

```
1: Input: D. k. c. n. \beta. \gamma. epochs
  2: Output: Document Vectors D, Word Vectors W
  3: V \leftarrow Extractfrom(D)
  4: D \leftarrow random(\mathbb{R}^{k \times |D|})
  5: W \leftarrow random(\mathbb{R}^{k \times |V|})
  6: \mathcal{T} \leftarrow Extractfrom(D, c, n)
                                                                                                                                                                   \triangleright |\mathcal{T}| = M + nM
  7: \Lambda \leftarrow \mathbf{1}^{2c}
                                                                                                                                                      \triangleright 2c-sized vector of 1s
        while epochs > 1 do
  g.
                for all \{d_i, w_{t-c}, \ldots, w_{t+c}, Y\} \in \mathcal{T} do
                       h_c \leftarrow \mathbf{v}_d^D + \lambda_{t-c} \mathbf{v}_{w_t}^W + \ldots + \lambda_{t+c} \mathbf{v}_{w_{t+c}}^W
10:
                       \mathbf{v}_{d.}^{D} \leftarrow \mathbf{v}_{d.}^{D} + \gamma \left[ (Y - \sigma(\mathbf{v}_{w_{t}}^{W} \cdot h_{c})) \mathbf{v}_{w_{t}}^{W} - \beta \mathbf{v}_{d.}^{D} \right]
11:
                       \mathbf{v}_{wc}^W \leftarrow \mathbf{v}_{wc}^W + \gamma \left[ (Y - \sigma(\mathbf{v}_{wc}^W \cdot h_c)) h_c - \beta \mathbf{v}_{wc}^W \right]
12.
                       for all i \in \{t - c, ..., t - 1, t + 1, ..., t + c\} do
13:
                              \mathbf{v}_{w_{t+1}}^W \leftarrow \mathbf{v}_{w_{t+1}}^W + \gamma \left[ (Y - \sigma(\mathbf{v}_{w_t}^W \cdot h_c)) \lambda_{t+j} \mathbf{v}_{w_t}^W - \beta \mathbf{v}_{w_{t+1}}^W \right]
14.
```

 $\lambda_{t+j} \leftarrow \lambda_{t+j} + \gamma \left[(Y - \sigma(\mathbf{v}_{w_t}^W \cdot h_c))(\mathbf{v}_{w_t}^W \cdot \mathbf{v}_{w_{t+1}}^W) - \beta \lambda_{t+j} \right]$

15:

```
1: Input: D. k. c. n. \beta. \gamma. epochs
  2: Output: Document Vectors D, Word Vectors W
  3: V \leftarrow Extractfrom(D)
  4: D \leftarrow random(\mathbb{R}^{k \times |D|})
  5: W \leftarrow random(\mathbb{R}^{k \times |V|})
  6: \mathcal{T} \leftarrow Extractfrom(D, c, n)
                                                                                                                                                                 \triangleright |\mathcal{T}| = M + nM
  7. A ← 12c
                                                                                                                                                    \triangleright 2c-sized vector of 1s
        while epochs > 1 do
  g.
                for all \{d_i, w_{t-c}, \ldots, w_{t+c}, Y\} \in \mathcal{T} do
                       h_c \leftarrow \mathbf{v}_d^D + \lambda_{t-c} \mathbf{v}_w^W + \ldots + \lambda_{t+c} \mathbf{v}_{w_{t-c}}^W
10:
                       \mathbf{v}_{d.}^{D} \leftarrow \mathbf{v}_{d.}^{D} + \gamma \left[ (Y - \sigma(\mathbf{v}_{w_{t}}^{W} \cdot h_{c})) \mathbf{v}_{w_{t}}^{W} - \beta \mathbf{v}_{d.}^{D} \right]
11:
                       \mathbf{v}_{wc}^W \leftarrow \mathbf{v}_{wc}^W + \gamma \left[ (Y - \sigma(\mathbf{v}_{wc}^W \cdot h_c)) h_c - \beta \mathbf{v}_{wc}^W \right]
12:
                       for all i \in \{t - c, ..., t - 1, t + 1, ..., t + c\} do
13:
                              \mathbf{v}_{w_{t+1}}^W \leftarrow \mathbf{v}_{w_{t+1}}^W + \gamma \left[ (Y - \sigma(\mathbf{v}_{w_t}^W \cdot h_c)) \lambda_{t+i} \mathbf{v}_{w_t}^W - \beta \mathbf{v}_{w_{t+1}}^W \right]
14.
                              \lambda_{t+j} \leftarrow \lambda_{t+j} + \gamma \left[ (Y - \sigma(\mathbf{v}_{w_t}^W \cdot h_c))(\mathbf{v}_{w_t}^W \cdot \mathbf{v}_{w_{t+i}}^W) - \beta \lambda_{t+j} \right]
15:
16.
                       epochs \leftarrow epochs - 1
17: return D, W
```

23 / 42

Embedding Dimensionality (k)

- Embedding Dimensionality (k)
- Window Size (c)

- Embedding Dimensionality (k)
- Window Size (c)
- \odot Number of Negative Samples (n)

- Embedding Dimensionality (k)
- Window Size (c)
- Number of Negative Samples (n)
- Number of Epochs (epochs)

- Embedding Dimensionality (k)
- Window Size (c)
- Number of Negative Samples (n)
- Number of Epochs (epochs)
- **1** Learning Rate (γ)

- Embedding Dimensionality (k)
- Window Size (c)
- Number of Negative Samples (n)
- Number of Epochs (epochs)
- **1** Learning Rate (γ)
- **1** Regularization Constant (β)

Document Categorization using Logistic Regression

Given,

① Set of documents, $D = \{d_1, \dots, d_{|D|}\}$

Given,

- lacksquare Set of documents, $D = \{d_1, \dots, d_{|D|}\}$
- **3** Set of categories, $C = \{c_1, \dots, c_{|C|}\}$

Given,

- $\textbf{ 0} \ \, \mathsf{Set} \ \, \mathsf{of} \ \, \mathsf{documents}, \ \, D = \{d_1, \dots, d_{|D|}\}$
- ② Set of categories, $C = \{c_1, \ldots, c_{|C|}\}$
- ① Training Data, $\mathcal{T} = \{d_i^{(m)}, c_j^{(m)}, y^{(m)}\}_{m=1}^{m=T}$, $y^{(m)} \in \{0, 1\}$

Given,

- $\textbf{ 9 Set of documents, } D = \{d_1, \dots, d_{|D|}\}$
- ② Set of categories, $C = \{c_1, \ldots, c_{|C|}\}$
- ① Training Data, $\mathcal{T} = \{d_i^{(m)}, c_j^{(m)}, y^{(m)}\}_{m=1}^{m=T}$, $y^{(m)} \in \{0, 1\}$

The task is to assign categories to a new document d_x To model document category relation, we

Given,

- $\textbf{ 9 Set of documents, } D = \{d_1, \dots, d_{|D|}\}$
- ② Set of categories, $C = \{c_1, \ldots, c_{|C|}\}$
- ① Training Data, $\mathcal{T} = \{d_i^{(m)}, c_j^{(m)}, y^{(m)}\}_{m=1}^{m=T}$, $y^{(m)} \in \{0, 1\}$

The task is to assign categories to a new document d_x To model document category relation, we

Given,

- $\textbf{ 9 Set of documents, } D = \{d_1, \dots, d_{|D|}\}$
- ② Set of categories, $C = \{c_1, \ldots, c_{|C|}\}$
- **3** Training Data, $\mathcal{T} = \{d_i^{(m)}, c_j^{(m)}, y^{(m)}\}_{m=1}^{m=T}$, $y^{(m)} \in \{0, 1\}$

The task is to assign categories to a new document d_x To model document category relation, we

- Learn a probabilistic logistic classifier to assign categories

Given document category pair, $\{d_i, c_j\}$,

Given document category pair, $\{d_i, c_j\}$,

ullet We build a probabilistic logistic classifier to predict the label y

Given document category pair, $\{d_i, c_j\}$,

ullet We build a probabilistic logistic classifier to predict the label y

$$P(y = 1|d_i, c_j, D, C) = \sigma(\mathbf{v}_{d_i}^D \cdot \mathbf{v}_{c_j}^C)$$
(32)

Given document category pair, $\{d_i, c_j\}$,

ullet We build a probabilistic logistic classifier to predict the label y

$$P(y = 1|d_i, c_j, D, C) = \sigma(\mathbf{v}_{d_i}^D \cdot \mathbf{v}_{c_j}^C)$$
(32)

$$P(y = 0|d_i, c_j, D, C) = 1 - \sigma(\mathbf{v}_{d_i}^D \cdot \mathbf{v}_{c_j}^C)$$
(33)

Given document category pair, $\{d_i, c_j\}$,

We build a probabilistic logistic classifier to predict the label y

$$P(y = 1|d_i, c_j, D, C) = \sigma(\mathbf{v}_{d_i}^D \cdot \mathbf{v}_{c_i}^C)$$
(32)

$$P(y = 0|d_i, c_j, D, C) = 1 - \sigma(\mathbf{v}_{d_i}^D \cdot \mathbf{v}_{c_j}^C)$$
(33)

$$P(y|d_i, c_j, \mathbf{D}, \mathbf{C}) = \sigma(\mathbf{v}_{d_i}^D \cdot \mathbf{v}_{c_j}^C)^y (1 - \sigma(\mathbf{v}_{d_i}^D \cdot \mathbf{v}_{c_j}^C))^{1-y}$$
(34)

Given document category pair, $\{d_i, c_j\}$,

We build a probabilistic logistic classifier to predict the label y

$$P(y = 1|d_i, c_j, D, C) = \sigma(\mathbf{v}_{d_i}^D \cdot \mathbf{v}_{c_i}^C)$$
(32)

$$P(y = 0|d_i, c_j, \mathbf{D}, \mathbf{C}) = 1 - \sigma(\mathbf{v}_{d_i}^D \cdot \mathbf{v}_{c_j}^C)$$
(33)

$$P(y|d_i, c_j, \mathbf{D}, \mathbf{C}) = \sigma(\mathbf{v}_{d_i}^D \cdot \mathbf{v}_{c_j}^C)^y (1 - \sigma(\mathbf{v}_{d_i}^D \cdot \mathbf{v}_{c_j}^C))^{1-y}$$
(34)

$$\log P(y|d_i, c_j, \mathbf{D}, \mathbf{C}) = y \log \sigma(\mathbf{v}_{d_i}^D \cdot \mathbf{v}_{c_j}^C) + (1 - y) \log(1 - \sigma(\mathbf{v}_{d_i}^D \cdot \mathbf{v}_{c_j}^C)) \quad (35)$$

Learning Category Embeddings

Given the training data $\mathcal{T} = \{d_i^{(m)}, c_j^{(m)}, y^{(m)}\}_{m=1}^{m=T}$, learn category embeddings $(\Theta = C)$ by maximizing log-likelihood of training data

 $P_{D,C}(y_m = y^{(m)})$ is a shorthand notation for $P(y_m = y^{(m)}|d_i, c_j, D, C)$ y_m is the predicted label

Learning Category Embeddings

Given the training data $\mathcal{T} = \{d_i^{(m)}, c_i^{(m)}, y^{(m)}\}_{m=1}^{m=T}$, learn category embeddings $(\Theta = C)$ by maximizing log-likelihood of training data

$$\hat{\Theta} = \underset{\Theta}{\text{arg max}} \ I(\mathcal{T}, \Theta) \tag{36}$$

$$I(\mathcal{T},\Theta) = \sum_{m=1}^{T} \log P_{D,C}(y_m = y^{(m)})$$
(37)

 $P_{D,C}(y_m = y^{(m)})$ is a shorthand notation for $P(y_m = y^{(m)}|d_i, c_i, D, C)$ y_m is the predicted label

Learning Category Embeddings

Given the training data $\mathcal{T}=\{d_i^{(m)},c_j^{(m)},y^{(m)}\}_{m=1}^{m=T}$, learn category embeddings $(\Theta=C)$ by maximizing log-likelihood of training data

$$\hat{\Theta} = \underset{\Theta}{\text{arg max}} \ I(\mathcal{T}, \Theta) \tag{36}$$

$$I(\mathcal{T},\Theta) = \sum_{m=1}^{T} \log P_{D,C}(y_m = y^{(m)})$$
(37)

Similar to learning document embeddings, category embeddings updates are given by,

$$(\mathbf{v}_{c_{j}^{(m)}}^{C})^{(i+1)} = (\mathbf{v}_{c_{j}^{(m)}}^{C})^{(i)} + \gamma \left[(\mathbf{y}^{(m)} - \sigma(\mathbf{v}_{d_{i}^{(m)}}^{D} \cdot \mathbf{v}_{c_{j}^{(m)}}^{C})) \mathbf{v}_{d_{i}^{(m)}}^{D} - \beta \mathbf{v}_{c_{j}^{(m)}}^{C} \right]$$
 (38)

 $P_{\mathrm{D,C}}(y_m = y^{(m)})$ is a shorthand notation for $P(y_m = y^{(m)} | d_i, c_j, \mathrm{D,C})$ y_m is the predicted label

Algorithm for learning Document Representations

Algorithm 1 Learning Category Vector Representations

- 1: **Input:** D, C, \mathcal{T} , k, β , γ
- 2: Output: Category Vectors C
- 3: $C \leftarrow random(\mathbb{R}^{k \times |C|})$
- 4: while not converged do
- 5: for all $\{d_i, c_j, y\} \in \mathcal{T}$ do
- 6: $\mathbf{v}_{c_j}^{\mathsf{C}} \leftarrow \mathbf{v}_{c_j}^{\mathsf{C}} + \gamma \left[(y \sigma(\mathbf{v}_{d_i}^{\mathsf{D}} \cdot \mathbf{v}_{c_j}^{\mathsf{C}})) \mathbf{v}_{d_i}^{\mathsf{D}} \beta \mathbf{v}_{c_j}^{\mathsf{C}} \right]$
- 7: return C

lacktriangledown Predicting relation between a document-category tuple is $\mathcal{O}(1)$

- lacktriangledown Predicting relation between a document-category tuple is $\mathcal{O}(1)$
- Learns embeddings for categories in the same space as words and documents

- lacktriangledown Predicting relation between a document-category tuple is $\mathcal{O}(1)$
- Learns embeddings for categories in the same space as words and documents
- Though learns multiple category vectors, exploits the low-rank structure in the document-category relation

29 / 42

- lacktriangledown Predicting relation between a document-category tuple is $\mathcal{O}(1)$
- Learns embeddings for categories in the same space as words and documents
- Though learns multiple category vectors, exploits the low-rank structure in the document-category relation
- Easy incorporation of additional relational data of documents for more accurate categorization as shown in Gupta and Singh [7]

- lacktriangledown Predicting relation between a document-category tuple is $\mathcal{O}(1)$
- Learns embeddings for categories in the same space as words and documents
- Though learns multiple category vectors, exploits the low-rank structure in the document-category relation
- Easy incorporation of additional relational data of documents for more accurate categorization as shown in Gupta and Singh [7]
- Usage of SGD makes algorithm completely online

Performance Evaluation: Datasets

• Reuters-21578 : Standard dataset for categorization evaluation

	D	<i>C</i>	V	Data Points	Sparsity
Train Set	7,767	90	39,853	9,585	0.0137
Test Set	3,019	90	39,853	3,745	0.0138

Performance Evaluation: Datasets

Reuters-21578 : Standard dataset for categorization evaluation

	D	<i>C</i>	V	Data Points	Sparsity
Train Set	7,767	90	39,853	9,585	0.0137
Test Set	3,019	90	39,853	3,745	0.0138

Wikipedia Datasets: Extracted for 4 top categories

•	D	<i>C</i>	V	Data Points	Sparsity
Physics	4,229	2,999	81,614	14,070	0.0010
Biology	1,604	2,051	63,767	5,908	0.0018
Sports	1,529	2,829	59,058	3,745	0.0008
Mathematics	1,193	1,519	43,398	3,916	0.0013

 Evaluation Criteria: Micro-averaged F1 score is used to evaluate performance. Micro-averaging considers all predictions equally across categories

- Evaluation Criteria: Micro-averaged F1 score is used to evaluate performance. Micro-averaging considers all predictions equally across categories
- Capitalization in words is preserved

- Evaluation Criteria: Micro-averaged F1 score is used to evaluate performance. Micro-averaging considers all predictions equally across categories
- Capitalization in words is preserved
- Numbers are converted to '\num'

- Evaluation Criteria: Micro-averaged F1 score is used to evaluate performance. Micro-averaging considers all predictions equally across categories
- Capitalization in words is preserved
- Numbers are converted to '\num'
- Words occurring less than 5 times ignored

- Evaluation Criteria: Micro-averaged F1 score is used to evaluate performance. Micro-averaging considers all predictions equally across categories
- Capitalization in words is preserved
- Numbers are converted to '\num'
- Words occurring less than 5 times ignored
- **9** Elements of document and word vectors are initialized by drawing uniformly from $\left[-\frac{1}{k},\frac{1}{k}\right]$

- Evaluation Criteria: Micro-averaged F1 score is used to evaluate performance. Micro-averaging considers all predictions equally across categories
- Capitalization in words is preserved
- Numbers are converted to '\num'
- Words occurring less than 5 times ignored
- **Solution** Elements of document and word vectors are initialized by drawing uniformly from $\left[-\frac{1}{k},\frac{1}{k}\right]$
- Hyper-parameters are fixed using performance on the validation set

- Evaluation Criteria: Micro-averaged F1 score is used to evaluate performance. Micro-averaging considers all predictions equally across categories
- Capitalization in words is preserved
- Numbers are converted to '\num'
- Words occurring less than 5 times ignored
- **9** Elements of document and word vectors are initialized by drawing uniformly from $\left[-\frac{1}{k},\frac{1}{k}\right]$
- Hyper-parameters are fixed using performance on the validation set
- Noise Distribution for NCE is chosen as $P_n(w) \sim U(w)^{\frac{3}{4}}$

- Evaluation Criteria: Micro-averaged F1 score is used to evaluate performance. Micro-averaging considers all predictions equally across categories
- Capitalization in words is preserved
- Numbers are converted to '\num'
- Words occurring less than 5 times ignored
- **③** Elements of document and word vectors are initialized by drawing uniformly from $\left[-\frac{1}{k},\frac{1}{k}\right]$
- Myper-parameters are fixed using performance on the validation set
- Noise Distribution for NCE is chosen as $P_n(w) \sim U(w)^{\frac{3}{4}}$

For document categorization evaluation, 80% of the documents are used for training and the rest are equally divided for test and validation purposes

1 Bag-of-Words: Most widely used representation with *tf-idf* weighing

Bag-of-Words: Most widely used representation with tf-idf weighing

• Latent Semantic Indexing : Most effective dimensionality reduction technique for text

- Bag-of-Words: Most widely used representation with tf-idf weighing
- Latent Semantic Indexing : Most effective dimensionality reduction technique for text
- Word Vector Averaging : Document representation by averaging word vectors with tf-idf weighting

- Bag-of-Words: Most widely used representation with tf-idf weighing
- Latent Semantic Indexing : Most effective dimensionality reduction technique for text
- Word Vector Averaging : Document representation by averaging word vectors with tf-idf weighting
- Probabilistic Matrix Factorization : Simple matrix factorization of the document-category relation matrix

Document Categorization Performance Evaluation Reuters-21578

Reuters-21578	Р	R	F1
BOW LSI-100 WordVecAvg	77.8 84.8 94.1	91.5 96.7 88.1	84.1 90.4 91.0
SVM (poly) [9] SVM (rbf) [9] CMLF (CRF) [5] Binary-MFoM [4] MC-MFoM [4]	- - - -	- - - -	86.0 86.4 87.0 88.4 88.8
Our Model (no weight)	92.1	86.1	89.0
Our Model (with weights)	94.1	89.3	91.7

Precision/Recall/F1 for Document Categorization on Reuters-21578

Document Categorization Performance Evaluation Reuters-21578

Reuters-21578	Р	R	F1
BOW	77.8	91.5	84.1
LSI-100	84.8	96.7	90.4
WordVecAvg	94.1	88.1	91.0
SVM (poly) [9]	-	-	86.0
SVM (rbf) [9]	-	-	86.4
CMLF (CRF) [5]	-	-	87.0
Binary-MFoM [4]	-	-	88.4
MC-MFoM [4]	-	-	88.8
Our Model (no weight)	92.1	86.1	89.0
Our Model (with weights)	94.1	89.3	91.7

Precision/Recall/F1 for Document Categorization on Reuters-21578

Document Categorization Performance Evaluation Physics - Wikipedia

Physics (Wikipedia)	Р	R	F1	
BOW LSI-100 WordVecAvg	87.8 83.4 91.0	70.1 69.5 59.1	77.9 75.8 71.7	
Our Model (no weights)	86.1	64.6	73.8	
Our Model (with weights)	88.6	72.4	79.7	

Precision/Recall/F1 for Document Categorization on Physics dataset

Document Categorization Performance Evaluation Physics - Wikipedia

Physics (Wikipedia)	Р	R	F1
BOW LSI-100 WordVecAvg	83.4	70.1 69.5 59.1	77.9 75.8 71.7
Our Model (no weights)	86.1	64.6	73.8
Our Model (with weights)	88.6	72.4	79.7

Precision/Recall/F1 for Document Categorization on Physics dataset

Document Categorization Performance Evaluation Biology - Wikipedia

Biology (Wikipedia)	Р	R	F1
BOW	90.3	59.5	69.0
LSI-100	82.1	51.6	63.4
WordVecAvg	79.4	50.4	61.6
Our Model (no weights)	80.3	53.8	64.4
Our Model (with weights)	79.7	59.0	67.8

Precision/Recall/F1 for Document Categorization on Biology dataset

Document Categorization Performance Evaluation Biology - Wikipedia

Biology (Wikipedia)	Р	R	F1		
BOW	90.3	59.5	69.0		
LSI-100	82.1	51.6	63.4		
WordVecAvg	79.4	50.4	61.6		
Our Model (no weights)	80.3	53.8	64.4		
Our Model (with weights)	79.7	59.0	67.8		

Precision/Recall/F1 for Document Categorization on Biology dataset

Document Categorization Performance Evaluation Mathematics - Wikipedia

Mathematics (Wikipedia)	Р	R	F1
BOW LSI-100 WordVecAvg	89.7	65.1 50.3 40.3	65.3 64.4 55.7
Our Model (no weights)	78.4	57.4	66.3
Our Model (with weights)	85.3	56.8	68.2

Precision/Recall/F1 for Document Categorization on Mathematics dataset

Document Categorization Performance Evaluation Mathematics - Wikipedia

Mathematics (Wikipedia)	Р	R	F1
BOW LSI-100 WordVecAvg	65.6 89.7 90.5	65.1 50.3 40.3	65.3 64.4 55.7
Our Model (no weights)	78.4	57.4	66.3
Our Model (with weights)	85.3	56.8	68.2

Precision/Recall/F1 for Document Categorization on Mathematics dataset

Document Categorization Performance Evaluation Sports - Wikipedia

Sports (Wikipedia)	Р	R	F1	
BOW LSI-100 WordVecAvg	91.2	41.3 40.1 37.5	56.9 55.7 51.4	
Our Model (no weights)	80.5	40.1	53.6	
Our Model (with weights)	82.1	44.0	57.3	

Precision/Recall/F1 for Document Categorization on Sports dataset

Document Categorization Performance Evaluation Sports - Wikipedia

Sports (Wikipedia)	Р	R	F1
BOW LSI-100 WordVecAvg	91.2	41.3 40.1 37.5	56.9 55.7 51.4
Our Model (no weights)	80.5	40.1	53.6
Our Model (with weights)	82.1	44.0	57.3

Precision/Recall/F1 for Document Categorization on Sports dataset

Imputing Missing Categories in Wikipedia

- Real-life databases contain missing information
- Wikipedia is a large-scale database with non-expert annotators

We evaluate our model on imputing missing categories in the Wikipedia datasets

	Physics			Biology			Mathematics			Sports			Combined		
	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1
PMF	73.0	64.3	68.4	72.1	47.5	57.3	41.6	58.2	48.5	51.3	35.6	42.0	63.0	54.8	58.
LSI-100	59.5	82.3	69.0	49.9	71.6	58.8	47.1	73.0	57.3	43.1	68.2	52.8	52.5	76.3	62.
BOW	76.1	79.4	77.7	69.7	67.7	68.7	70.9	63.5	67.0	64.8	49.3	56.0	72.5	69.4	70.
WordVecAvg	88.0	63.5	73.8	80.7	50.3	61.9	71.8	46.7	56.6	87.2	35.4	50.3	84.2	53.4	65.4
Our Model (without weights)	88.6	69.1	77.7	80.5	55.3	65.6	74.3	53.1	61.9	84.7	40.2	54.5	85.4	58.5	69.
Our Model (with weights)	89.9	74.5	81.5	84.9	63.8	72.9	79.9	60.7	69.0	81.1	45.6	58.4	86.3	65.2	74.

Estimating Similarity between Categories and Words

- ullet We embed words, document and categories in the same k-dimensional space
- This allows us to estimate similarity between entities non directly related

Category

Evolutionary Biology Statistical Mechanics Thermodynamics Trade Money-FX Virology Neurobiology Physical Exercise Algebra Theoretical Physicists Mathematical Physics Sports Venues Indian Mathematics

Nearest Neighbors

gene, phylogenetics, speciation, ancestor, Darwin, lineage, evolutionary, interbreeding ergodicity, Eigenstate, Universality, DMFT, Markovian, Parisi, Combinatorics Convection, ecosystem, Enthalpy, Joule, calorimetric, compressible, Thermodynamic import, Pledges, Tariff, Trade, competitiveness, toll, billion, basket, Ditch, Worldwide Borrowing, franc, banker, Currency, banks, nervous, sideways, Markets, FORWARD nucleoside, ribozyme, adenoviruses, Virology, retroviruses, poliovirus, Viroid purinergic, cyclase, vertebral, Ehrlich, nexus, steroid, lean, gendered, reticular Fitness, aerobics, metabolic, workout, Exercise, Stretching, pelvic, Physiology, fibers subalgebra, Algebras, nilpotent, adjoints, octonions, bicommutant, diagonalizable Dipankar, DSc, Hubert, Aneesur, Uri, Ignaz, Chia, Stig, Diderot, Dannie covectors, pseudotensor, spacelike, dyadic, Curl, torque, contractions, wavefunctions stadion, decoration, tracks, seating, buildings, parcourse, architectural, arenas, circular utkrama, ecliptic, Siddhanta, Hellenistic, Brahmi, sexagesimal, scribe, Islamic, Sanskrit

- We presented an unsupervised neural network model that
 - Jointly learns fixed-length low-dimensional distributed vector representations for documents and words
 - Encode semantic content of words and documents in these representations

- We presented an unsupervised neural network model that
 - Jointly learns fixed-length low-dimensional distributed vector representations for documents and words
 - Encode semantic content of words and documents in these representations
- We overcome some of the problems with the bag-of-words representations

- We presented an unsupervised neural network model that
 - Jointly learns fixed-length low-dimensional distributed vector representations for documents and words
 - Encode semantic content of words and documents in these representations
- We overcome some of the problems with the bag-of-words representations
- Our model is a log-linear model that uses NCE

- We presented an unsupervised neural network model that
 - Jointly learns fixed-length low-dimensional distributed vector representations for documents and words
 - Encode semantic content of words and documents in these representations
- We overcome some of the problems with the bag-of-words representations
- Our model is a log-linear model that uses NCE
- We improve state-of-the-art results on multi-label document categorization
 - On the Reuters-21578 dataset we improve by 3.26%
 - On the Reuters-21578 dataset we improve over BOW by 9%

- We presented an unsupervised neural network model that
 - Jointly learns fixed-length low-dimensional distributed vector representations for documents and words
 - Encode semantic content of words and documents in these representations
- We overcome some of the problems with the bag-of-words representations
- Our model is a log-linear model that uses NCE
- We improve state-of-the-art results on multi-label document categorization
 - On the Reuters-21578 dataset we improve by 3.26%
 - On the Reuters-21578 dataset we improve over BOW by 9%
- We show the best performance on imputing missing categories in Wikipedia

- We presented an unsupervised neural network model that
 - Jointly learns fixed-length low-dimensional distributed vector representations for documents and words
 - Encode semantic content of words and documents in these representations
- We overcome some of the problems with the bag-of-words representations
- Our model is a log-linear model that uses NCE
- We improve state-of-the-art results on multi-label document categorization
 - On the Reuters-21578 dataset we improve by 3.26%
 - On the Reuters-21578 dataset we improve over BOW by 9%
- We show the best performance on imputing missing categories in Wikipedia
- Learned distributed representations allow semantic similarity estimation

Future Work

Improving compositionality of Word Vectors

Future Work

Improving compositionality of Word Vectors

Joint Document Representation Learning and Document Categorization

Future Work

Improving compositionality of Word Vectors

Oint Document Representation Learning and Document Categorization

Supervised Multi-view Relational Learning

References I

- Y. Bengio and J.-S. Senecal. Adaptive importance sampling to accelerate training of a neural probabilistic language model. Neural Networks, IEEE Transactions on, 19(4):713–722, 2008.
- [2] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model. The Journal of Machine Learning Research, 3:1137–1155, 2003.
- [3] Y. Bengio, J.-S. Senécal, et al. Quick training of probabilistic neural nets by importance sampling. In AISTATS Conference. 2003.
- [4] S. Gao, W. Wu, C.-H. Lee, and T.-S. Chua. A mfom learning approach to robust multiclass multi-label text categorization. In *Proceedings of the twenty-first international conference on Machine learning*, page 42. ACM, 2004.
- [5] N. Ghamrawi and A. McCallum. Collective multi-label classification. In Proceedings of the 14th ACM international conference on Information and knowledge management, pages 195–200. ACM, 2005.
- [6] E. Grefenstette, G. Dinu, Y.-Z. Zhang, M. Sadrzadeh, and M. Baroni. Multi-step regression learning for compositional distributional semantics. arXiv preprint arXiv:1301.6939, 2013.
- [7] N. Gupta and S. Singh. Collectively embedding multi-relational data for predicting user preferences. arXiv preprint arXiv:1504.06165, 2015.
- [8] M. U. Gutmann and A. Hyvärinen. Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. The Journal of Machine Learning Research, 13(1):307–361, 2012.
- [9] T. Joachims. Text categorization with support vector machines: Learning with many relevant features. Springer, 1998.
- [10] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

References II

- [11] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In *Advances in Neural Information Processing Systems*, pages 3111–3119, 2013.
- [12] J. Mitchell and M. Lapata. Composition in distributional models of semantics. Cognitive science, 34(8): 1388–1429, 2010.
- [13] A. Mnih and K. Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive estimation. In Advances in Neural Information Processing Systems, pages 2265–2273, 2013.
- [14] A. Mnih and Y. W. Teh. A fast and simple algorithm for training neural probabilistic language models. arXiv preprint arXiv:1206.6426, 2012.
- [15] F. Morin and Y. Bengio. Hierarchical probabilistic neural network language model. In Proceedings of the international workshop on artificial intelligence and statistics, pages 246–252. Citeseer, 2005.
- [16] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In *Proceedings of the conference on* empirical methods in natural language processing (EMNLP), volume 1631, page 1642. Citeseer, 2013.
- [17] A. Yessenalina and C. Cardie. Compositional matrix-space models for sentiment analysis. In *Proceedings* of the Conference on Empirical Methods in Natural Language Processing, pages 172–182. Association for Computational Linguistics, 2011.
- [18] F. M. Zanzotto, I. Korkontzelos, F. Fallucchi, and S. Manandhar. Estimating linear models for compositional distributional semantics. In *Proceedings of the 23rd International Conference on Computational Linguistics*, pages 1263–1271. Association for Computational Linguistics, 2010.