Ashley Scillitoe

Postdoctoral researcher with experience in high-fidelity CFD methods for turbomachinery, data-driven turbulence modelling, and uncertainty quantification. 12 Drayson Mews
London, W8 4LY $\gg +44 \ (0)7926 \ 251 \ 138$ \bowtie ashleyscillitoe@googlemail.com \bigcirc ascillitoe.com

Experience

Academic

2010

- 2018-present Research Associate, Data-Centric Aeronautics, The Alan Turing Institute, UK.
 - Exploring data-driven turbulence modelling, with machine learning used to learn the flow physics in high fidelity simulations, in order to augment turbulence models.
 - Using dimension reduction techniques and conjugate heat transfer simulations to design turbomachinery temperature probes in collaboration with Rolls-Royce.
 - Created rapid flowfield estimation frameworks using deep learning and dimension reduction.

2019-present **Developer**, Effective Quadratures, UK.

Developing machine learning capabilities in equadratures; an open source python library using polynomials for surrogate modelling, sensitivity analysis, and uncertainty quantification.

- 2017-2018 Research Associate, University of Cambridge/Rolls Royce plc, UK.
 - Built upon PhD work in order to extend Rolls-Royce's high fidelity CFD capability to compressible flows.
 - Implemented a turbulence modelling uncertainty quantification framework in the code.

2013-2017 PhD - Towards Predictive Eddy Resolving Simulations for Gas Turbine Compressors, *University of Cambridge*, UK.

Supervised by Professor Paul Tucker. Supported by Rolls-Royce Aerospace.

- Examined the application of Large Eddy Simulation (LES) to modern gas turbine compressors.
- A novel self-adaptive smoothing scheme, advanced sub-grid scale models, unsteady boundary conditions and other extensions developed in the Rolls-Royce CFD software.
- High fidelity LES used to study the complex flow physics in compressors, with findings informing compressor-specific turbulence modelling strategies.
- Procured over £44,000 in HPC resource grants in order to run HPC simulations.

2011 Research Assistant, University of Manchester, UK.

Built upon MEng dissertation work, designing a propulsion system for a Hexrotor MAV. Designed a static thrust test rig and DAQ system. CAD and rapid prototyping (SLA) used frequently.

Industry

2011-2012 Aerodynamics Intern, AgustaWestland Ltd, Yeovil, UK.

A one year internship split between two departments:

- o 4 Months Wind Tunnel Test Department
 - Supported drag reduction testing for the AW159. Assisted with instrument calibration, model checks, preparation and rigging, tunnel operation, data acquisition and analysis.
 - Responsible for the production of test schedules, H&S documentation, and final test reports.
- o 8 Months Fuselage Aerodynamics Department
 - Used CFD to investigate the application of exhaust shrouds on aircraft ventilation systems.
 - Produced an in-depth design guide, and acted as a consultant to Hyde Engineering Ltd for the design of two new aircraft cooling systems.

2010 Systems Engineering Summer Intern, Thales Air Defence Ltd, Belfast, UK.

Created a Matlab/Simulink identification platform to identify black-box mathematical models of dynamical systems. This was then used to analyse and pre-process flight trial data.

Knowledge Transfer

2019-present Workshop Leader, Effective Quadratures, UK.

Prepare and run workshops on statistics and machine learning for engineers at the Culham Centre for Fusion Energy, Rolls-Royce, NPL, McLaren Automotive, Siemens, \mathbb{R}^2 Data Labs and others.

2020-present Mentor, Google Summer of Code, Worldwide.

Mentor students on open source code development projects as part of GSoC.

2016-2019 PhD/Undergrad Supervision, University of Cambridge, UK.

Supervised for the ThermoFluids course and numerous undergraduate projects, co-supervised PhD projects, and assisted in running CFD and flow visualisation labs.

Conference Organisation

2020, 2021 Programme Committee, CFDML Workshop at ISC 2020 and 2021, Virtual.

2015 **Deputy Coordinator**, Fluids Energy Turbo Expo 2015, Cambridge, UK.

Computing Skills

Languages HPC in Fortran with MPI/OpenMP/Coarrays, C++, Python, LATEX, HTML/CSS.

CFD Tools Pointwise, Gambit, Gmsh, Ansys Flu-Other Tools Git, Travis CI, Matlab, Inkscape, MS ent, SU2, OpenFOAM, Paraview. Office, SGE cluster config., Solidworks.

Education

2008-2013 MEng (Hons) Aerospace Engineering - 1st Class, University of Manchester, UK. Graduated top of class with an 84% average. Elected student representative.

2001-2008 Fortismere School, London, UK.

A levels Maths (A), Physics (A), Chemistry (B), Geography (B). GCSEs 10 (7A, 2B, 1C) including Maths (A) and English (A).

Interests and Hobbies

Societies Active Affiliate of RAeS and AIAA.

Sport Competitive road cyclist, ski mountaineer, and qualified swimming teacher.

Publications

A selection of relevant publications are shown below. For a complete list, please see ascillitoe.com.

- 2021 Scillitoe, A., Seshadri, P., Girolami, M. "Uncertainty Quantification for Data-Driven Turbulence Modelling with Mondrian Forests". *J. Comput. Phys.*
- 2020 Scillitoe, A., Ubald, B., Seshadri, P., Shahpar, S. "Design space exploration of stagnation temperature probes through dimension reducing subspaces". *Proc. of ASME Turbo Expo.*
- 2019 Scillitoe, A., Tucker, P. G., Adami, P. "Large Eddy Simulation of Boundary Layer Transition Mechanisms in Gas-Turbine Compressor Cascades". *ASME. J. Turbomach.*
- 2016 Scillitoe, A., Tucker, P. G., Adami, P. "Numerical Investigation of Three-Dimensional Separation in an Axial Flow Compressor...". ASME. J. Turbomach.