1 Exercise 4.9

We are given 3 machines that are identical i.e. same processing power, with n jobs that need to be processed. Each job j takes p_j processing time. Each machine can process at most one job at a time. And the processing time is independent on the job itself.

The goal is to assign the jobs to the three machines in such a way that the maximum load of the three machines is minimized. That is, let S_i denote the set of jobs assigned to machine i (i = 1, 2, 3), where the objective is: minimize $\max\{\sum_{j \in S_1} p_j, \sum_{j \in S_2} p_j, \sum_{j \in S_3} p_j\}$.

We can solve this problem by a Dynamic Program. Consider the following sub-problem. Given:

- Let job i be, $i \in \{1, ..., n\}$
- Let v_1 be $v_1 \in \{0, ..., \frac{1}{3} \sum_{i=1}^{n} p_i\}$
- Let v_2 be $v_2 \in \{0, ..., \frac{1}{3} \sum_{i=1}^{n} p_i\}$

Then there exists, or we need to make, a set $S_m \subseteq \{1,...,i\}$ for machine every machine m with $|S_m| = k$ and $v = \sum_{j \in S_m} p_j$. In other words, for every machine check if we can process exactly $\frac{1}{3}$ items, as we want to minimize the maximum, we check if the sum of the processed jobs are also of a third of the weight. Next, we have the following function:

$$F(i, v_1, v_2) = \begin{cases} 1 & \text{if, } \exists S_1 \subseteq \{1, ..., k\}, \ S_2 \subseteq \{1, ..., i - k\} \\ \text{such that sum of each subset equals } v_1 and v_2 \\ 0 & \text{otherwise.} \end{cases}$$

Now that we have identified the sub-problem and the function, we follow with the initialization of the algorithm, the recursion and the final output.

Algorithm 1 Dynamic program

Initialization:

for
$$l$$
 in $\{1, ..., m-1\}$ do $\mathcal{O}(m-1)$
for v in $\{0, ..., B = \frac{1}{3} \sum_{j} p_{j}\}$ do $\mathcal{O}(B)$ $v = 0$ or $v = p_{1}$: $\mathcal{O}(1)$
 $F(l, 1, v, k) = 1$ $\mathcal{O}(1)$
 $F(l, 1, v, k) = 0$ $\mathcal{O}(1)$

Algorithm 2 Recursion

```
for m in \{1, ..., m-1\} do \mathcal{O}(m-1)

for i in \{2, ..., n\} do \mathcal{O}(n-1)

for v in \{0, ..., B\} do \mathcal{O}(B)

if p_i > v: then \mathcal{O}(1)

F(m, i, v, k) = F(m, i-1, v, k) \mathcal{O}(1)

end if

if p_i \le v: then \mathcal{O}(1)

F(m, i, v, k) = F(m, i-1, v, k) or F(m, i-1, v-p_i, k-1) \mathcal{O}(1)

end if

end for

end for

update*
```

end for

Output:

You want to return F(l, n, v, k) = 1 ($\mathcal{O}(1)$) where v is the largest. Once you know the set, we can update* the new list of possible for jobs for the next iteration.

For example, whatever we get for S_1 we remove it from the set of all possible jobs, $S_n = S_n \setminus S_l$, and change $n = |S_n| - |S_l|$. Once we did this, we move on to the next machine. Eventually, once the $(m-1)^{th}$ loop is done, you are finished. You will have a set left that can be used for the last machine m.

We see that the Running Time of the initialization, the recursion and the output totals to $:TR(m-1\times B)+TR(m-1\times n-1\times B)+TR(1)$. Hence, we can say that our running time $TR(n)\in\mathcal{O}(mnB)$, with $B=\frac{1}{3}\sum_{j\in S_n}p_jmax$ i.e., the highest value that of the possible processing times of job j.

Then the input size is $\mathcal{O}(n + n \log(max_{\forall j}p_j))$. Which is the size of the array and the time it takes to 'program' each value of the array. The algorithm run in pseudo-polynomial time, as the running time of the algorithm is also

dependent the values of the array, the $\max_{\forall j} p_j$.