Implementation of "Deformation Transfer for Triangle Meshes"

By

Jasmin Hoffmann Michael Käser

Objective Source Target Given

Reference

- Source and target mesh
- Pose(s) of the source mesh

Goal

Transfer the source's pose to the target mesh

General approach

Starting from user provided markers, a correspondence mapping between the source and target triangles is created.

This mapping is used to **transfer the deformation** of the source mesh to the target mesh.

Both steps are formulated as a **minimization problem**.

Core Idea: Position-independ Triangle Deformation

Triangle face of vertices a,b,c described without position as matrix $V_i \in \mathbb{R}^{3\times 3}$.

The normal vertex **d** enables lateral movement of the face.

$$V_{i} = \left[\vec{b} - \vec{a}, \vec{c} - \vec{a}, \vec{d} - \vec{a}\right] \qquad \vec{d} = \vec{a} + \frac{\left(\vec{b} - \vec{a}\right) \times \left(\vec{c} - \vec{a}\right)}{\sqrt{\left|\left(\vec{b} - \vec{a}\right) \times \left(\vec{c} - \vec{a}\right)\right|}}$$

 \mathbf{T}_{i} is the triangle transformation from \mathbf{V}_{i} to $\tilde{\mathbf{V}}_{i}$

$$\widetilde{V}_i = T_i \cdot V_i \longrightarrow T_i = \widetilde{V}_i V_i^{-1}$$

Correspondence

- Mapping between source and target triangle faces
- User-defined markers fixate the mapping
- Transforms source into a shape like the target
- Minimization problem of cost functions,
 solved for deformed vertices ṽ

$$\tilde{v} = \min_{\tilde{v_1}...\tilde{v_n}} (w_s E_s + w_I E_I + w_C E_C)$$

subject to m-markers

$$\tilde{v}_{s_k} = m_k, \ k \in 1...m$$

Correspondence: Cost Components

Smoothness Cost	Transformation difference between adjacent triangles should be small	$E_S(v_1v_n) = \sum_{i=1}^{ T } \sum_{j \in adj(i)} T_i - T_j _F^2$
Identity Cost	Try to retain the source shape	$E_I(v_1v_n) = \sum_{i=1}^{ T } T_i - I _F^2$
Closest Points Cost	Add pulling force towards target shape	$E_C(v_1v_n, c_1c_n) = \sum_{i=1}^n v_i - c_i ^2$

Correspondence: Progressive Closest Point

Problem:

Initially no closest points available (or no "good guess")

Solution:

- 1. First iteration ignores closest points
- 2. Progressively update closest points and increase the weight \mathbf{w}_c

$$\tilde{v} = \min_{\tilde{v_1}...\tilde{v_n}} (w_s E_s + w_I E_I + w_C E_C)$$

Steps:

- Paper (5 steps): w_C = [0, 1....5000]
- We (8 steps): $W_C = [0, 10, 50, 250, 1000, 2000, 3000, 5000]$

Sparse Vector Expansion from Triangle Transformation to Mesh Transformation

Sparse vector expansion:

• Expand T_i with $\tilde{\mathbf{V}}_i \in \mathbf{R}^{3x3}$ to sparse mesh equation \hat{T}_i with $\mathbf{x} \in \mathbf{R}^{3xN}$.

Rearrange cost function to be able to be solved with a **least-squares approach**.

$$T_i = \widetilde{V}V^{-1} \quad \xrightarrow{\text{Expand to } x} \quad \hat{T}_i = x\hat{V}^{-1}$$

$$\sum_{i=1}^{m} \left\| x \hat{V}^{-1} - C_i \right\|_F^2 = \left\| A x^T - b \right\|_F^2$$

Solving for Deformation

Deformed mesh is the least square solution of the weighted combination of each cost matrix A_1, A_2, A_3 .

Least-Squares solved with LU-Decomposition of:

$$E = w_S E_S + w_I E_I + w_C E_C$$

$$\widetilde{x} = \underset{x}{\operatorname{arg\,min}} \left\| \begin{pmatrix} w_I A_I \\ w_S A_S \\ w_C A_C \end{pmatrix} x^T - \begin{pmatrix} w_I b_I \\ w_S b_S \\ w_C b_C \end{pmatrix} \right\|_F^2$$

$$A^{\top}A\tilde{x} = A^{\top}c$$

Compromise: Closest points

Paper

Our approximation

Triangle Matching

We now have the deformed source mesh and the target mesh.

To map source to target triangles, we

- Compare the centroids of deformed source and target triangles
- Match compatible triangles with closest centroids
 - Compatible if angle between their normals is < 90°
- Iterate over both source and target mesh to find a match for each triangle
 - Triangle mapping is many-to-many

Deformation Transfer

We have

a mapping between source and target triangles.

Now we want to

transfer a deformation from source to target mesh.

The deformation of the target triangles should be similar to the deformation of the mapped source triangles.

$$\min_{\mathbf{\tilde{v}}_1...\mathbf{\tilde{v}}_n} \quad \sum_{i=1}^{|M|} \left\| \mathbf{S}_{s_j} - \mathbf{T}_{t_j} \right\|_F^2$$

Runtime

Horse/Camel ~ 1 min

- Horse 8431 Vertices 16843 faces
- Camel 21887 Vertices 43814 Faces

Cat/Dog < 15 seconds

- Cat 398 Vertices 794 faces
- Dog 485 Vertices 960 faces

Original paper

• Sumner, R.W. and Popović, J., 2004. Deformation transfer for triangle meshes. *ACM Transactions on graphics (TOG)*, 23(3), pp.399-405.

Interactive Models

https://mickare.de/dff/deformation/

Appendix

How to improve Closest Point

- 1. Get k closest target vertices **p** via KD-Tree from source vertex **s**
- 2. For each triangle face **f** at **p**
 - a. Check if angle to face normal $n_f < 90^\circ$
 - b. Compute intersection p' of face normal n_f from s to the plane of f
 - c. Clip point **p**' to plane boundaries of **f**
- Choose closest p'

Rearranging the Frobenius Norm

Sum of Frobenius Norms

$$\sum_{k} \|Z_{k}\|_{F}^{2} = \sum_{k} z_{k1}^{2} + z_{k2}^{2} + \dots + z_{kl}^{2}$$

$$= (z_{11}^{2} + z_{12}^{2} + \dots + z_{1l}^{2}) + (z_{21}^{2} + z_{22}^{2} + \dots + z_{2l}^{2}) + \dots + (z_{k1}^{2} + z_{k2}^{2} + \dots + z_{kl}^{2})$$

$$= \left\|\sum_{k} Z_{k}\right\|_{F}^{2}$$

Transposing the Frobenius Norm

$$||Z||_F^2 = z_1^2 + z_2^2 + \dots + z_l^2 = ||Z_k^T||_F^2$$

Libraries

Numpy

Scipy

Plotly

PyWavefront

PyYAML

tqdm

- Matrix & Math

- Sparse Matrices, LU decomposition, KD Tree

- Plotting

- Model Loading

- Markers and Poses

- Progress bar (printing in terminal)

Increasing w_C to quickly

Problem Restatement

Rewrite as system of **linear equations**

Solve via **LU decomposition**(scipy.sparse.linalg.splu)

$$\min_{\tilde{v}_1...\tilde{v}_n} \sum_{j=1}^{|M|} ||S_{s_j} - T_{t_j}||_F^2$$

$$\downarrow \downarrow$$

$$\tilde{x} = \arg\min_{x} ||Ax - b||_F^2$$

$$\downarrow \downarrow$$

$$A^{\top} A \tilde{x} = A^{\top} c$$

Problem Restatement

Merge separate terms to a **single** Frobenius norm

Move **marker vertices** as constants to b

Rewrite as system of linear equations

Solve via **LU decomposition** (scipy.sparse.linalg.splu).

$$\tilde{v} = \min_{\tilde{v}_1...\tilde{v}_n} (w_s E_s + w_I E_I + w_C E_C)$$

$$\tilde{x} = \arg\min_{x} ||Ax - b||_F^2$$

$$\tilde{z} = \arg\min_{x} \left\| \begin{pmatrix} w_S A_S \\ w_I A_I \\ w_C A_C \end{pmatrix} x^\top - \begin{pmatrix} w_S b_S \\ w_I b_I \\ w_C b_C \end{pmatrix} \right\|_F^2$$

$$A^\top A \tilde{x} = A^\top c$$

Correspondence

- 1. Transform source mesh to match user-defined markers in target mesh
 - a. Use identity cost and smoothness cost
- 2. Search for closest points (vertices) in the target
- 3. Transform source mesh again from start
 - a. Additionally use closest points cost
- 4. Repeat from step 2

