mlPEA User Manual

(version 1.0)

- mIPEA is a user-friendly and multi-functionality platform specifically tailored to the needs of streamlined processing of m⁶A-Seq data in a reference genome-free manner. By taking advantage of machine learning (ML) algorithms, mIPEA enhanced the m⁶A-Seq data analysis by constructing robust computational models for identifying high-quality transcripts and high-confidence m⁶A-modified regions.
- mlPEA comprises four functional modules: Data Preprocessing, Transcriptome Construction, m⁶A
 Calling, and Functional Exploration.
- mlPEA was powered with an advanced packaging technology, which enables compatibility and portability.
- mlPEA project is hosted on http://github.com/cma2015/mlPEA
- mlPEA docker image is available at http://hub.docker.com/r/malab/mlpea

m⁶A Calling Module

This module provides step-by-step functions required for epitranscriptome reads mapping and identification of RNA modifications.

Align Reads to Assembled Transcriptome

Bowtie2 is wrapped to align epitranscriptome reads to assembled transcriptome.

Tools	Description	Input	Output	Time (test data)	Reference
Bowtie2	Bowtie2 is a short read aligner which achieves a combination of high speed, sensitivity and accuracy by combining the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms, therefore bowtie2 is suitable for large genomes	Epitranscriptome sequencing reads in FASTQ format and assembled transcriptome sequences in FASTA format	Read alignments in SAM/BAM format	~15 mins	(Grabherr et al., 2011)

Identify RNA Modifications

Identify RNA Modifications implements three pipelines.

Tools	Description	Input	Output	Time (test data)	Reference
Peak Calling	Using the SlidingWindow algorithm to identify regions with statistically significant enrichment of m ⁶ A signals compared to the background.	Assembled transcripts in FASTA format; Reads coverage file in IP and input sample; Total mapped reads number in IP and input sample	The enriched peak region matrix in BED format	~10 mins	(Zhai <i>et al</i> , 2018)
Merge Biological Replicates	Obtain consistent RNA modifications among multiple biological replicates.	Peak regions for biological replicates	Consistent peak regions among multiple biological replicates in BED format	~1 mins	in-house scripts
Machine Learning- based Peak Screening	All peaks derived from the assembled transcripts are designated as positive samples and utilized as input for the weakly supervised learning framework to facilitate model training.	Assembled transcripts in FASTA format; The enriched peak region matrix in BED format	High condfidence Peak region in BED format	~6mins	(Huang et al, 2021; Song et al, 2024)

Align Reads to Assembled Transcriptome

In this function, clean reads are aligned to high-quality assembled transcripts using **Bowtie2**, with the *de novo* assembled transcriptome serving as the reference.

Input

- Epitranscriptome sequencing reads in FASTQ format
- Assembled transcripts in FASTA format

Output

- Alignment reaults in BAM format
- Alignment summary file generated by bowtie2
- Reads coverage summary in TXT format generated by BEDtools

How to use this function

Peak Calling

In this function, peak calling was performed using **PEA**, which used the SlidingWindow algorithm to identify regions with statistically significant enrichment of m^6A signals compared to the background.

Input

- Input the assembled transcript file: assembled transcripts in FASTA format
- Input the reads coverage files: Reads coverage file in IP and input sample in TXT format
- **Input the alignment summary file:** Total mapped reads number in IP and input sample in TXT format

Output

• The enriched peak region matrix in BED format

How to use this function

Merge Biological Replicates

In this function, mIPEA obtained consistent RNA modifications among multiple biological replicates.

Input

• Peak regions for biological replicates

Output

• Consistent peak regions among multiple biological replicates in BED format

How to use this function

Machine Learning-based Peak Screening

All peaks derived from the assembled transcripts are designated as positive samples and utilized as input for the weakly supervised learning framework to facilitate model training.

Input

- Input the assembled transcripts file: assembled transcripts in FASTA format
- Input the peak region file: The enriched peak region matrix in BED format

Output

• High condfidence Peak region in BED format

How to use this function

