60	-J	O	_	0	_
_					

15m 1645

PTO/SB/21 (09-06)
Approved for use through 03/31/2007. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Application At the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

		Application Number	09/900,766-Conf. #7699				
TRANSMITT	AL	Filing Date 7,125,53	July 6, 2001				
FORM		First Named Inventor	Göran Forsberg				
		Art Unit	1645				
(to be used for all correspondence after	initial filing)	Examiner Name	P. A. Duffy				
Total Number of Pages in This Submiss	ion 85	Attorney Docket Number	HO-P02188US0				
ENCLOSURES (Check all that apply)							
Fee Transmittal Form	Drawing(s)		After Allowance Communication to TC				
Fee Attached	Licensing-rela	ated Papers	Appeal Communication to Board of Appeals and Interferences				
Amendment/Reply	Petition		Appeal Communication to TC (Appeal Notice, Brief, Reply Brief)				
After Final	Petition to Co Provisional A		Proprietary Information				
Affidavits/declaration(s) Power of Atto Change of Co		rney, Revocation rrespondence Address	Status Letter				
Extension of Time Request	Terminal Disc	claimer	X Other Enclosure(s) (please Identify below):				
Express Abandonment Request	Request for Refund		Certified Copy of Priority Document No. 0102327-4, filed June 28, 2001				
Information Disclosure Statement	CD, Number of CD(s)		Certificate of Express Mailing Return Receipt Postcard				
X Certified Copy of Priority Document(s)	Landscape Table on CD						
Reply to Missing Parts/ Incomplete Application	Remarks						
Reply to Missing Parts under 37 CFR 1.52 or 1.53							
<u> </u>	······································						
SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT							
FULBRIGHT & JAWORSKI L.L.P. Signature							
Organization ()							

Reg. No.

40,612

Printed name

Date

David L. Fox

February 16, 2007

cation No. (if known): 09/900,766

Attorney Docket No.: HO-P02188US0

Certificate of Express Mailing Under 37 CFR 1.10

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail, Airbill No. EV 866220437 US in an envelope addressed to:

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

on	February 16, 2007		
	Date		

svitlana and	erson
Signature	
Svitlana Ande	rson
Typed or printed name of pers	on signing Certificate
	(713) 651-5567
Registration Number, if applicable	Telephone Number

Note: Each paper must have its own certificate of mailing, or this certificate must identify each submitted paper.

Transmittal (1 page)
Certified Copy of Priority Document No. 0102327-4, filed June 28, 2001
Return Receipt Postcard

Intyg Certificate

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

- (71) Sökande Active Biotech AB, Lund SE Applicant (s)
- (21) Patentansökningsnummer 0102327-4 Patent application number
- (86) Ingivningsdatum 2001-06-28
 Date of filing

Stockholm, 2006-12-06

För Patent- och registreringsverket For the Patent- and Registration Office

Christina Liljeberg

Avgift Fee 1

170:-

æ,

+46 40 260516

Ink. t. Patent- och reg.verket

2001 **-**06- 2 8

1

Huyudfaxen Kassan

A NOVEL ENGINEERED SUPERANTIGEN FOR HUMAN THERAPY

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to the field of immunology and proliferative diseases, such as cancer.

More particularly, it relates to compositions and methods 5 of use, wherein the compositions comprise superantigens that have been modified to reduce seroreactivity.

Related Art

Superantigens (SAg's) constitute a group of bacte-[0002] rial and viral proteins that are extremely efficient in 10 activating a large fraction of the T-cell population. Superantigens bind directly to the major histocompatibility complex (MHC) without being processed. In fact, the superantigens bind unprocessed outside the antigen-

binding groove on the MHC class II molecules, thereby 15 avoiding most of the polymorphism in the conventional peptide-binding site. The mechanism of binding depends on the superantigen binding to the T-cell receptor (TCR) in the VB chain, instead of binding to the hypervariable 20

loops of the T-cell receptor (TCR). [0003] Staphylococcal enterotoxins (SEs) are a homologous group of superantigens, with regard to both structure and function (Papageorgiou et al., 2000). They are known to

be the major cause of food poisoning and toxic shock syn-

25 drome in humans.

30

[0004] A novel SAg-based tumor therapeutic approach has been developed for the adjuvant treatment of solid tumors. It utilizes both main arms of the immune system by incorporating the Fab part of a tumor-specific monoclonal antibody and a T-cell activating SAg in a single recombinant fusion protein. Fab-SAg proteins bound to tumor cells can trigger SAg-activated cytotoxic T-cells to kill the tumor cells directly by superantigen antibody-dependent cell mediated cytotoxicity, SADCC. In

25

30

35

Ink. t. Patent- och reg.verket

→ PV

2001 -06- 2 8

Huvudfaxen Kassan

2

addition, activated T-cells produce tumoricidal and proinflammatory cytokines counteracting the problems of tumor heterogeneity, and macromolecular uptake, respectively.

Superantigen-based tumor therapeutics have had 100051 5 some success, however, one clinical problem that needs to be addressed is the activation of the systemic immune system. Fusion proteins with wildtype SEA have been investigated in clinical trials of colorectal and pancreatic cancer (Alpaugh et al., 1998). Even though 10 encouraging results were obtained, limitations have been observed. Firstly, the product was very toxic. Secondly, preformed antibodies against the superantigens in the patients made the dosing complex. In addition, the product was immunogenic. Therefore repeated cycles of thera-15

py was only possible in a limited number of patients. Until the present invention, SAg-based therapies were dose-limiting. The present invention is the first to modify a superantigen resulting in decreased seroreac-20 tivity with retained superantigen activity; thus, the

present invention is novel and non-obvious.

Brief Summary of the Invention

The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilised as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realised by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of

10

15

20

35

+46 40 260516

Ink. t. Patent- och reg.verket

2001 -06- 2 8

Huvudfaxen Kassan

3

the invention, both as to its organisation and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention. In the present invention, it is provided a conju-100081 gate comprising a bacterial superantigen and an antibody moiety, wherein the superantigen is a low titer superantigen comprising regions A to E, which region A is a TCR binding site, and regions B to E determine the binding to MHC class II molecules; and the DNA sequence coding for the superantigen is substituted so that no more than 15 amino acid residues in region A are replaced with different amino acids, such that the substituted superantigen has reduced seroreactivity compared to the superantigen from which it is derived; and wherein the antibody moiety is a full length antibody or any other molecule binding antibody active fragment, which is directed against a cancer-associated cell surface structure. Examples of superantigens include, but are not limited to a staphylococcal enterotoxin (SE), a Streptococcus pyogenes exotoxin (SPE), a Staphylococcus aureus toxic shock-syndrome toxin (TSST-1), a streptococcal mitogenic exotoxin

exotoxin (SPE), a Staphylococcus aureus toxic shock-syndrome toxin (TSST-1), a streptococcal mitogenic exotoxin (SME) and a streptococcal superantigen (SSA). In specific embodiments, the staphylococcal enterotoxin is staphylococcal enterotoxin A (SEA) or staphylococcal enterotoxin E (SEE).

[0009] In specific embodiments, the amino acid residue positions in region A to be replaced are selected from the group consisting of 20, 21, 24, 27, 173 and 204. It is also contemplated that region C may comprise substitutions in no more than 15 amino acid residues. These substitutions may occur at the amino acid residue positions of 79, 81, 83 and 84. Yet further, region E may

+46 40 260516

Ink. t. Patent- och reg.verket

2001-06-28

4

Huvudfaxen Kassan

comprise substitutions of no more than 15 amino acid residues, in which a substitution may occur at amino acid residue position 227.

In another embodiment of the present invention, it is provided a conjugate comprising a bacterial superanti-5 gen and an antibody moiety, wherein the superantigen is a low titer superantigen comprising regions A to E, which region A is a TCR binding site, and regions B to E determine the binding to MHC class II molecules; and the amino acid sequence of the superantigen is substituted so that 10 no more than 15 amino acid residues in region B are replaced with different amino acids, such that the substituted superantigen has reduced seroreactivity compared to the superantigen from which it is derived; and wherein the antibody moiety is a full length antibody or any 15 other molecule binding antibody active fragment, which is directed against a cancer-associated cell surface structure. Specifically, the amino acid residue positions in region B to be replaced may be selected from the group 20 consisting of 34, 35, 39, 40, 41, 42, 44, 45 and 49. Another embodiment of the present invention, provides a conjugate comprising a bacterial superantigen and an antibody moiety, wherein the superantigen is a low titer superantigen comprising regions A to E, which region A is a TCR binding site, and regions B to E deter-25 mine the binding to MHC class II molecules; and the amino acid sequence of the superantigen is substituted so that no more than 15 amino acid residues in region C are replaced with different amino acids, such that the substituted superantigen has reduced seroreactivity compared 30 to the superantiqen from which it is derived; and wherein the antibody moiety is a full length antibody or any other molecule binding antibody active fragment, which is directed against a cancer-associated cell surface structure. In specific embodiments the cancer is selected from 35 the group consisting of lung, breast, colon, kidney, pancreatic, ovarian, stomach, cervix and prostate cancer.

30

35

Ink. t. Patent- och reg.verket

→ PV

2001-05-28

Huvudfaxen Kassan

5

The amino acid residue positions in region C to be replaced are selected from the group consisting of 74, 75, 78, 79, 81, 83 and 84.

[0012] Examples of superantigens include, but are not limited to staphylococcal enterotoxin (SE), a Streptococcus pyogenes exotoxin (SPE), a Staphylococcus aureus toxic shock-associated toxin (TSST-1), a streptococcal mitogenic exotoxin (SME) and a streptococcal superantigen (SSA). In specific embodiments, the staphylococcal

enterotoxin is staphylococcal enterotoxin A (SEA) or staphylococcal enterotoxin E (SEE).

[0013] In specific embodiments, the conjugate may further comprise substitutions of no more than 15 amino acid residues in region A. The substitutions in region A may

- occur at the amino acid residue positions 20, 21, 24, 27, 173 or 204. Yet further, the conjugate may comprise substitutions of no more than 15 amino acid residues in region E. More particularly, the substitution of region E may occur at amino acid residue position 227.
- 20 [0014] In a further specific embodiment, the conjugate may comprise the SEE amino acid sequence including the substitutions of R20G, N21T, S24G, R27K, K79E, K81E, K83S, K84S and D227S or the SEE amino acid sequence including the substitutions of R20G, N21T, S24G, R27K,
- 25 K79E, K81E, K83S, K84S and D227A. Yet further, the conjugate may comprise the amino acid sequence of SEQ ID NO: 2.

[0015] In further embodiments, the conjugate may comprise an antibody moiety, for example, but not limited to the Fab fragment. Specific Fab fragments may include C215Fab or 5T4Fab.

[0016] Yet further, the conjugate may also comprise a cytokine, such as interleukin. In specific embodiments, the interleukin is IL2 or a derivative thereof having essentially the same biological activity of native IL2.

[0017] Another embodiment comprises a conjugate comprising a bacterial superantigen and an antibody moiety,

10

15

20

25

30

0

+46 40 260516

Ink. t. Patent- och reg.verket

→ PV

2001 -06- 2 8

Huvudfaxen Kassan

6 wherein the superantigen is a low titer superantigen comprising regions A to E, which region A is a TCR binding site, and regions B to E determine the binding to MHC class II molecules; and the amino acid sequence of the superantigen is substituted so that no more than 15 amino acid residues in region D are replaced with different amino acids, such that the substituted superantigen has reduced seroreactivity compared to the superantigen from which it is derived; and wherein the antibody moiety is a full length antibody or any other molecule binding antibody active fragment, which is directed against a cancerassociated cell surface structure. The amino acid residue positions in region D to be replaced are selected from the group consisting of 187, 188, 189 and 190. In another embodiment, it is provided a conjugate [0018]comprising a bacterial superantigen and an antibody moiety, wherein the superantigen is a low titer superantigen comprising regions A to E, which region A is a TCR binding site, and regions B to E determine the binding to MHC class II molecules; and the amino acid sequence of the superantigen is substituted so that no

sequence of the superantigen is substituted so that no more than 15 amino acid residues in region E are replaced with different amino acids, such that the substituted superantigen has reduced seroreactivity compared to the superantigen from which it is derived; and wherein the antibody moiety is a full length antibody or any other molecule binding antibody active fragment, which is directed against a cancer-associated cell surface structure. In specific embodiments the staphylococcal enterotoxin is staphylococcal enterotoxin A (SEA) or staphylococcal enterotoxin E (SEE). Also, the amino acid residue positions in region E to be replaced are selected from the group consisting of 217, 220, 222, 223, 225 and 227. [0019] In a specific embodiment, the conjugate further

comprises substitutions of no more than 15 amino acid residues in region A. Specifically, the substitutions in

10

Ink. t. Patent- och reg.verket

→ PV

2001 -06- 28

Huyudfoxen Kassan

7

region A may occur at the amino acid residue positions of 20, 21, 24, 27, 173 and 204.

[0020] In another specific embodiment, the conjugate further comprises substitutions of no more than 15 amino acid residues in region B in which the substitutions may occur at the amino acid residue positions of 34, 35, 39, 40, 41, 42, 44, 45 and 49.

[0021] Yet further, the conjugate may comprise substitutions of no more than 15 amino acid residues in region C. Specifically, the substitutions in region C occurs at the

amino acid residue positions of 74, 75, 78, 79, 81, 83 and 84. Also, the conjugate may further comprise substitutions of no more than 15 amino acid residues in region D, in which the substitutions may occur at the amino acid

15 residue positions of 187, 188, 189 and 190.

[0022] In other specific embodiment, it is provided a pharmaceutical composition comprising a therapeutically effective amount of a conjugate, wherein said conjugate comprises a bacterial superantigen and an antibody

20 moiety, wherein the superantigen is a low titer superantigen comprising regions A to E, which region A is a TCR binding site, and regions B to E determine the binding to MHC class II molecules; and the amino acid sequence of the superantigen is substituted so that no

25 more than 15 amino acid residues in region C are replaced with different amino acids, such that the substituted superantigen has reduced seroreactivity compared to the superantigen from which it is derived; and wherein the antibody moiety is a full length antibody or any other

molecule binding antibody active fragment, which is directed against a cancer-associated cell surface structure. Specifically, the amino acid residue positions in region C to be replaced are selected from the group consisting of 74, 75, 78, 79, 81, 83 and 84.

35 [0023] In further embodiments, the pharmaceutical composition may comprise a conjugate comprising substitutions of no more than 15 amino acid residues in region A, in

10

15

+46 40 260516

Ink. t. Patent- och reg.verket

→ PV

2001 -06- 2 8

Huvudfaxen Kassan

8

which the substitutions in region A occur at the amino acid residue positions of 20, 21, 24, 27, 173 and 204. Yet further, the pharmaceutical composition may also comprise substitutions of no more than 15 amino acid residues in region E. Specifically, the substitution of region E may be at amino acid residue position 227. [0024] In specific embodiments, the pharmaceutical composition may comprise a conjugate comprising the SEE amino acid sequence (SEQ ID NO: ID NO: 7) as well as the additional substitutions of R20G, N21T, S24G, R27K, K79E, K81E, K83S, K84S and D227S.

[0025] In another specific embodiment, the pharmaceutical composition may comprise the SEE amino acid sequence (SEQ ID NO: ID NO: 7) as well as the additional substitutions of R20G, N21T, S24G, R27K, K79E, K81E, K83S, K84S and D227A. Yet further, the pharmaceutical composition comprises a conjugate that has the amino acid sequence of SEQ ID NO: 1.

In further specific embodiments, the pharmaceu-[0026] tical composition comprises an antibody moiety, for 20 example a Fab fragment. Specifically, the Fab fragment is C215Fab or 5T4Fab. The pharmaceutical composition may further comprise a cytokine, such as an interleukin. The interleukin may be IL2 or a derivative thereof having essentially the same biological activity of native IL2. 25 Another embodiment of the present invention includes a method of treating cancer in a mammal by activation of the immune system of said mammal comprising administering to said mammal a therapeutically effective 30 amount of a conjugate, wherein said conjugate comprises a bacterial superantigen and an antibody moiety, wherein the superantiqen is a low titer superantigen comprising regions A to E, which region A is a TCR binding site, and regions B to E determine the binding to MHC class II molecules; and the amino acid sequence of the superanti-35 gen is substituted so that no more than 15 amino acid residues in region C are replaced with different amino

35

·:--:

+46 40 260516

Ink, t. Patent- och reg.verket

→ PV

2001 -06- 28

Huyudfaxen Kassan

acids, such that the substituted superantigen has reduced seroreactivity compared to the superantigen from which it is derived; and wherein the antibody moiety is a full length antibody or any other molecule binding antibody active fragment, which is directed against a cancer-5 associated cell surface structure. Examples of cancer include, but are not limited to lung, breast, colon, kidney, pancreatic, ovarian, stomach, cervix and prostate cancer. Specifically, the amino acid residue positions in region C to be replaced are selected from the group con-10 sisting of 74, 75, 78, 79, 81, 83 and 84. In further embodiments, region A may also comprise substitutions of no more than 15 amino acid residues, in which the substitutions occur at the amino acid residue positions of 20, 21, 24, 27, 173 and 204. Also, region E 15 may further comprise substitutions of no more than 15 amino acid residues. Specifically, a substitution of region E may be at amino acid residue position 227. The conjugate may comprise the SEE amino acid sequence (SEQ ID NO: ID NO: 7) as well as the additional substitutions 20 of R20G, N21T, S24G, R27K, K79E, K81E, K83S, K84S and D227S or the substitutions of R20G, N21T, S24G, R27K, K79E, K81E, K83S, K84S and D227A. Yet further, the con-

jugate has the amino acid sequence of SEQ ID NO: 1. BRIEF DESCRIPTION OF THE DRAWINGS 25

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.

FIG. 1 shows peptide fragments recognized by human [0030] anti-SEA that were identified from a pepsin-digest of SEA/E-18 eluted from an anti-SEA column. The fragments were identified both before and after purification using reversed phase HPLC coupled to a mass spectrometer (MS). Fragments found in the digest at the same retention time

Ink. t. Patent- och reg.verket

→ PV

2001 -06- 2 8

Huvudfaxen Kassan

10

both before and after affinity purification were considered as positives.

[0031] FIG. 2 is the seven different peptides identified, displayed as lines above the amino acid sequence for

- SEA/E-120. Characters in light gray indicate which residues have been altered in SEA/E-120 compared to SEA/E-18.
 [0032] FIG. 3 is a structural sequence alignment of SEA, SED and SEH used as templates to construct the comparative computer model of SEA/E-18. Structural conserved
- regions are marked with black boxes.

 [0033] FIG. 4 is a multiple sequence alignment of SEA,

 SEE, SEA/E-18 and SEA/E-120. Displayed as lines above the alignment are the five different regions A-E within which all the substitutions in SEA/E-120 holds.
- 15 [0034] FIG. 5 is a SEA/E-18 model (in black) superimposed on to SEA (1SXT, in gray).
 - [0035] FIG. 6 is the regions of SEA/E-18 that correspond to the identified seroreactivity peptides.
 - [0036] FIG. 7 is a Scintillation Proximity Assay (SPA)
- that measured the specific binding of ¹²⁵I human anti-SEA bound to C215FabSEA, C215FabSEA/E-18, -65, -97, -109, -110, -113 or -120 on biotin conjugated anti-mouseF(ab)₂ on streptavidin PVT beads.
- [0037] FIG. 8A and FIG. 8B illustrate the ability to mediate tumor directed cytotoxicity. FIG. 8A illustrates the cytotoxicity as measured in a superantigen antibody dependent cellular cytotoxicity assay, SADCC. FIG. 8B shows the efficiency of superantigens to mediate T cell killing of MHC class II expressing cells results in sys-
- temic cytotoxicity that could cause side effects measured in a Superantigen dependent cellular cytotoxicity assay, SDCC. All new chimeras lowered their effect in the SDCC with at least 1log and with as much as 3log for C215FabSEA/E-120.
- 35 [0038] FIG. 9 is the ribbon diagram of the SEA/E-120 model. The side chains of residues G20, T21, G24 and K27 are marked in dark gray, side chains of residues S34,

+46 40 260516

Ink. t. Patent- och reg.verket

→ PV

2001-98-28

Huvudlaxen Kassan

11

S39, S40, E41, K42, A44, T49, T74, A75, S78, E79, E81, S83 and S84 are marked in gray, side chains of residues T217, S220, T222, S223, S225 are marked in black and the side chain of residue S227 are marked in light gray.

5 [0039] FIG. 10 is an amino acid sequence of 5T4FabSEA/E-120 (SEQ ID NO: 1) with the variable parts from the murine 5T4 antibody and the constant parts from the murine C242 antibody. Positions 1-458 is chain A and positions 459-672 is chain B.

10 DETAILED DESCRIPTION OF THE INVENTION

[0040] It is readily apparent to one skilled in the art that various embodiments and modifications may be made to the invention disclosed in this Application without departing from the scope and spirit of the invention.

- 15 [0041] As used herein the specification, "a" or "an" may mean one or more. As used herein in the claim(s), when used in conjunction with the word "comprising", the words "a" or "an" may mean one or more than one. As used herein "another" may mean at least a second or more.
- 20 [0042] The term "antibody" as used herein, refers to an immunoglobulin molecule, which is able to specifically bind to a specific epitope on an antigen. As used herein, an antibody is intended to refer broadly to any immunologic binding agent such as IgG, IgM, IgA, IgD and IgE.
- Antibodies can be intact immunoglobulins derived from natural sources or from recombinant sources and can be immunoactive portions of intact immunoglobulins. The antibodies in the present invention may exist in a variety of forms including, for example, polyclonal
- antibodies, monoclonal antibodies, Fv, Fab and F(ab)₂, as well as single chain antibodies and humanized antibodies (Harlow et al., 1988; Bird et al., 1988).
 - [0043] The term "antigen" as used herein is defined as a molecule that provokes an immune response. This immune response may involve antibody production, the activation of specific immunologically-competent cells, or both. An antigen can be derived from organisms, subunits of pro-

D

35

10

15

lymphocytes.

+46 40 260516

Ink. t. Patent- och reg vorket

→ PV

2001 -06- 2 명

12

Huvudfoxen Kassan

teins/antigens, killed or inactivated whole cells or lysates. Therefore, a skilled artisan realizes that any macromolecule, including virtually all proteins, can serve as antigens. Furthermore, antigens can be derived from recombinant DNA

The term "cancer" as used herein is defined as a [0044] proliferative disease or a malignant neoplasm (tumor). Examples include but are not limited to, breast cancer, prostate cancer, ovarian cancer, cervical cancer, skin cancer, pancreatic cancer, colorectal cancer and lung cancer.

The term "conjugate" as used herein is defined 100451 as a fusion protein of a superantigen or a variant of a superantigen fused or conjugated to an antibody or a fragment of an antibody.

The term "immunogenic" or "immunogenicity" as used herein is defined as a substance or a molecule that evokes an immune response.

The term "major histocompatibility complex", or 20 "MHC", as used herein is defined as a specific cluster of genes, many of which encode evolutionarily related cell surface proteins involved in antigen presentation, which are among the most important determinants of histocompatibility. Class I MHC, or MHC-I, function mainly in antigen presentation to CD8 T lymphocytes. Class II MHC, or 25 MHC-II, function mainly in antigen presentation to CD4 T

The term "seroreactive", "seroreaction" or [0048]"seroreactivity" as used herein is defined as a reaction or action occurring as a result of serum or sera. One 30 skilled in the art realizes that the serum or sera of a patient or animal contains neutralizing antibodies or preformed antibodies or endogenous antibodies to a variety of antigens or molecules. Thus, seroreactivity relates to the reaction of neutralizing antibodies in the 35 serum.

10

20

25

30

35

+46 40 260516

Ink. t. Patent- och reg, verket

→ PV

2001-05-28

Huvudfaxen Kassan

13

[0049] The term "superantigen" as used herein is defined as a class of molecules that stimulate a subset of T-cells by binding to MHC class II molecules and V β domains of T-cell receptors, stimulating the activation of T-cells expressing particular V β V gene segments. [0050] The term "T-cell receptor" as used herein is defined as a receptor that consists of a disulfide-linked heterodimer of the highly variable α or β chains expressed at the cell membrane as a complex with the invariant CD3 chains. T-cells carrying this type of receptor are often called $\alpha:\beta$ T-cells. An alternative receptor made up of variable γ and δ chains is expressed CD3 on a subset of T-cells.

[0051] The term "therapeutically effective" as used herein is defined as the amount of the pharmaceutical composition that is effective at treating a disease or a condition.

The term "variant" or "variants" as used herein 100521 refers to proteins or peptides that differ from a reference protein or peptide respectively. Variants in this sense are described below and elsewhere in the present disclosure in greater detail. For example, changes in the nucleic acid sequence of the variant may be silent, i.e., they may not alter the amino acids encoded by the nucleic acid sequence. Where alterations are limited to silent changes of this type a variant will encode a peptide with the same amino acid sequence as the reference peptide. Changes in the nucleic acid sequence of the variant may alter the amino acid sequence of a peptide encoded by the reference nucleic acid sequence. Such nucleic acid changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the peptide encoded by the reference sequence, as discussed below. Generally, differences in amino acid sequences are limited so that the sequences of the reference and the variant are closely similar overall and, in many regions, identical. A variant and reference peptide may differ in amino

a

D

+46 40 260516

Ink. t. Patent- och reg.verkat

2001 -08- 28

Huvudfaxen Kassan

14

acid sequence by one or more substitutions, additions, deletions, fusions and truncations, which may be present in any combination. A variant may also be a fragment of a peptide of the invention that differs from a reference peptide sequence by being shorter than the reference sequence, such as by a terminal or internal deletion. Another variant of a peptide of the invention also includes a peptide which retains essentially the same function or activity as such peptide. A variant may also be (i) one in which one or more of the amino acid resi-10 dues are substituted with a conserved or non-conserved amino acid residue and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the 15 mature peptide is fused with another compound, such as a compound to increase the half-life of the peptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature peptide, 20 such as a leader or secretory sequence or a sequence which is employed for purification of the mature peptide. Variants may be made by mutagenesis techniques, including those applied to nucleic acids, amino acids, cells or organisms, or may be made by recombinant means. All such 25 variants defined above are deemed to be within the scope of those skilled in the art from the teachings herein and

The term "biological activity" as used herein refers to an intrinsic property of a specific molecule, e.g. activation of certain cells or binding to certain receptors. The definition, as used herein, is primarily qualitative rather than quantitative.

I. Modification of Superantigens

from the art.

30

35

[0053] The present invention is drawn to modifying superantigens by lowering their immunogenicity by reducing their seroreactivity. One skilled in the art is cognizant

Ink. t. Patent- och reg.verket

→ PV

2001-06-28

15

Huvudfoxen Kassan

that seroreactivity refers to the reaction of molecules or antigens with neutralizing antibodies in the sera. Specifically the present invention is drawn to a conjugate comprising a bacterial superantigen and an antibody moiety, wherein the superantigen is a low titer super-5 antigen comprising regions A to E, which region A is a TCR binding site, and regions B to E determine the binding to MHC class II molecules; and the amino acid sequence of the superantigen is substituted so that no more than 15 amino acid residues in region A to B are 10 replaced with different amino acids, such that the substituted superantigen has reduced seroreactivity compared to the superantigen from which it is derived; and wherein the antibody moiety is a full length antibody or any other molecule binding antibody active fragment, which is 15 directed against a cancer-associated cell surface structure.

A. Superantigens

The bacterial superantigens that are contemplated [0054] for use in the present invention include, but are not 20 limited to a staphylococcal enterotoxin (SE), a Streptococcus pyogenes exotoxin (SPE), a Staphylococcus aureus toxic shock-associated toxin (TSST-1), a streptococcal mitogenic exotoxin (SME) and a streptococcal superantigen (SSA). One of skill in the art realizes that the three 25 dimensional structures of the above listed superantigens can be obtained from the Protein Data Bank (PDB, www.rcsb.org). Yet further, one skilled in the art can obtain the nucleic acid sequences and the amino acid sequences of the above listed superantigens and other 30 superantigens from GenBank (http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html). In specific embodiments, the superantigen is a low [0055] titer superantigen. It is known and understood by those of skill in the art that the sera of humans normally con-35 tain high titers of antibodies against superantigens. For the staphylococcal superantigens, for instance, the rela-

2018/04

30

35

+46 40 260516

Ink, t. Patent- och reg.verket

2001 -06- 2 8

Huvudiaxen Kassan

16

tive titers are TSST-1 > SEB > SEC-1 > SEC2 > SEA > SED > SEE. One skilled in the art realizes that these relative titers indicate immunogenicity problems and problems with seroreactivity or problems with neutralizing antibodies.

5 Thus, the present invention contemplates using a low titer superantigen, such as SEA or SEE to avoid the seroreactivity of parenterally administered superantigens.

[0056] Yet further, it is clearly known and understood
that the protein sequences and immunological crossreactivity of the superantigens or staphylococcal
enterotoxins are divided into two related groups. One
group consists of SEA, SEE, SED and SEH. The second group
is SPEA, SEC, SEB and SSA. Thus, the present invention
also contemplates the use of low titer superantigens to
decrease or eliminate the cross-reactivity of the present invention with high titer or endogenous antibodies
against staphylococcal enterotoxins.

B. Variants of Superantigens

[0057] Amino acid sequence variants of the superantigen proteins can be substitutional, insertional or deletion variants. These variants may be purified according to known methods, such as precipitation (e.g., ammonium sulfate), HPLC, ion exchange chromatography, affinity chromatography (including immunoaffinity chromatography) or various size separations (sedimentation, gel electrophoresis, gel filtration).

[0058] Substitutional variants or replacement variants typically contain the exchange of one amino acid for another at one or more sites within the protein. Substitutions can be conservative, that is, one amino acid is replaced with one of similar shape and charge. Conservative substitutions are well known in the art and include, for example, the changes of: alanine to serine; arginine to lysine; asparagine to glutamine or histidine; aspartate to glutamate; cysteine to serine; glutamine to asparagine; glutamate to aspartate; glycine to proline;

10

15

30

35

Ink. t. Patent- och reg.verket 2001 -05- 2 8

→ PV

17

Huvudfaxen Kassan

histidine to asparagine or glutamine; isoleucine to leucine or valine; leucine to valine or isoleucine; lysine to arginine; methionine to leucine or isoleucine; phenylalanine to tyrosine, leucine or methionine; serine to threonine; threonine to serine; tryptophan to tyrosine; tyrosine to tryptophan or phenylalanine; and valine to isoleucine or leucine.

It is thus contemplated by the inventors that various changes may be made in the DNA sequences of genes without appreciable loss of the biological utility or activity of the proteins, as discussed below. The activity being the induction of the T-cell responses to result in cytotoxicity of the tumor cells. Yet further, the affinity of the superantigen for the MHC class II molecules is decreased with minimal effects on the cytotoxicity of the superantigen.

In making such changes, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood 20 in the art (Kyte and Doolittle, 1982). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, sub-25 strates, receptors, DNA, antibodies, antigens, and the like.

Each amino acid has been assigned a hydropathic [0061] index on the basis of their hydrophobicity and charge characteristics (Kyte and Doolittle, 1982), these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

30

35

o

+46 40 260516

Ink. t. Patent- och reg.verket

→ PV

7001 -06- 2 8

18

Huvudfaxen Kassan

It is known in the art that certain amino acids 100621 may be substituted by other amino acids having a similar hydropathic index or score and still result in a protein with similar biological activity, i.e., still obtain a biological functionally equivalent protein. In making such changes, the substitution of amino acids whose hydropathic indices are within ±2 is preferred, those which are within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred.

It is also understood in the art that the substi-10 [60063] tution of like amino acids can be made effectively on the basis of hydrophilicity. U.S. Patent 4,554,101, incorporated herein by reference, states that the greatest local average hydrophilicity of a protein, as governed by the

hydrophilicity of its adjacent amino acids, correlates 15 with a biological property of the protein. As detailed in US Patent 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate $(+3.0 \pm 1)$; gluta-

20 mate $(+3.0 \pm 1)$; serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5 ± 1) ; alanine (-0.5); histidine *-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5);

25 tryptophan (-3.4).

> It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtains a biologically equivalent and immunologically equivalent protein. In such changes, the substitution of amino acids whose hydrophilicity values are within ±2 is preferred, those that are within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred.

C. Fusion Proteins

A specialized kind of insertional variant is the fusion protein. This molecule generally has all or a substantial portion of the native molecule, linked at the N-

10

20

25

30

35

Ink. t. Patent- och reg.verket

→ PV

2001-05-28

19

Huvudlatten Kussan

or C-terminus, to all or a portion of a second polypeptide. For example, a fusion protein of the present invention includes the addition of an immunologically active domain, such as an antibody fragment, to target specific tumor cells.

Yet further, inclusion of a cleavage site at or near the fusion junction will facilitate removal of the extraneous polypeptide after purification. Other useful fusions include linking of functional domains, such as active sites from enzymes, glycosylation domains, other cellular targeting signals or transmembrane regions.

D. Domain Switching

An interesting series of variants can be created 100671 by substituting homologous regions of various proteins.

This is known, in certain contexts, as "domain 15 switching."

[0068] Domain switching involves the generation of chimeric molecules using different but, in this case, related polypeptides. By comparing various SAg proteins, one can make predictions as to the functionally significant regions of these molecules. It is possible, then, to switch related domains of these molecules in an effort to determine the criticality of these regions to SAg function. These molecules may have additional value in that these "chimeras" can be distinguished from natural mole-

E. Purification of Proteins

cules, while possibly providing the same function.

It will be desirable to purify the SAg or variants thereof. Protein purification techniques are well known to those of skill in the art. These techniques involve, at one level, the crude fractionation of the cellular milieu to peptide and non-peptide fractions. Having separated the protein from other proteins, the protein of interest may be further purified using chromatographic and electrophoretic techniques to achieve partial or complete purification (or purification to homogeneity). Analytical methods particularly suited to the preparation of

30

35

Ink. t. Patent- och reg.verket

→ PV

2001 -05- 28

Huvudiaxen Kassan

20

a pure peptide are ion-exchange chromatography, exclusion chromatography; polyacrylamide gel electrophoresis; iso-electric focusing. A particularly efficient method of purifying peptides is fast protein liquid chromatography or even HPLC.

[0070] Certain aspects of the present invention concern the purification, and in particular embodiments, the substantial purification, of an encoded protein or peptide. The term "purified protein or peptide" as used

10 herein, is intended to refer to a composition, isolatable from other components, wherein the protein or peptide is purified to any degree relative to its naturally-obtainable state. A purified protein or peptide therefore also refers to a protein or peptide, free from the environment in which it may naturally occur.

[0071] Generally, "purified" will refer to a protein or peptide composition that has been subjected to fractionation to remove various other components, and which composition substantially retains its expressed biological

activity. Where the term "substantially purified" is used, this designation will refer to a composition in which the protein or peptide forms the major component of the composition, such as constituting about 50%, about 60%, about 70%, about 80%, about 90%, about 95% or more of the proteins in the composition.

[0072] Various methods for quantifying the degree of purification of the protein or peptide will be known to those of skill in the art in light of the present disclosure. These include, for example, determining the specific activity of an active fraction, or assessing the amount of polypeptides within a fraction by SDS/PAGE analysis. A preferred method for assessing the purity of a fraction is to calculate the specific activity of the fraction, to compare it to the specific activity of the initial extract, and to thus calculate the degree of purity, herein assessed by a "-fold purification number." The actual units used to represent the amount of activity

D

+46 40 260516

Ink. t. Patent- och reg.verket

2091 **-05- 2 8**

Huvudiaxen Kassan

21

will, of course, be dependent upon the particular assay technique chosen to follow the purification and whether or not the expressed protein or peptide exhibits a detectable activity.

- Various techniques suitable for use in protein 5 purification will be well known to those of skill in the art. These include, for example, precipitation with ammonium sulphate, PEG, antibodies and the like or by heat denaturation, followed by centrifugation; chromatography steps such as ion exchange, gel filtration, reverse 10 phase, hydroxylapatite and affinity chromatography; isoelectric focusing; gel electrophoresis; and combinations of such and other techniques. As is generally known in the art, it is believed that the order of conducting the various purification steps may be changed, or that cer-15 tain steps may be omitted, and still result in a suitable method for the preparation of a substantially purified
- [0074] It is known that the migration of a polypeptide can vary, sometimes significantly, with different conditions of SDS/PAGE (Capaldi et al., 1977). It will therefore be appreciated that under differing electrophoresis conditions, the apparent molecular weights of purified or partially purified expression products may vary.

protein or peptide.

dilution of the sample.

а

25

30

35

[0075] High Performance Liquid Chromatography (HPLC) is characterised by a very rapid separation with extraordinary resolution of peaks. This is achieved by the use of very fine particles and high pressure to maintain an adequate flow rate. Separation can be accomplished in a matter of minutes, or at most an hour. Moreover, only a very small volume of the sample is needed because the particles are so small and close-packed that the void volume is a very small fraction of the bed volume. Also, the concentration of the sample need not be very great because the bands are so narrow that there is very little

a

20

25

30

35

+46 40 260516

Ink. t. Patent- och reg.verket

2001 -96- 2 8

Huvudlaxen Kassan

22

Gel chromatography, or molecular sieve chromatography, is a special type of partition chromatography that is based on molecular size. The theory behind gel chromatography is that the column, which is prepared with tiny particles of an inert substance that contain small 5 pores, separates larger molecules from smaller molecules as they pass through or around the pores, depending on their size. As long as the material of which the particles are made does not adsorb the molecules, the sole factor determining rate of flow is the size. Hence, mole-10 cules are eluted from the column in decreasing size, so long as the shape is relatively constant. Gel chromatography is unsurpassed for separating molecules of different size because separation is independent of all other factors such as pH, ionic strength, temperature, etc. 15 There also is virtually no adsorption, less zone spreading and the elution volume is related in a simple matter to molecular weight.

[MO77] Affinity Chromatography is a chromatographic procedure that relies on the specific affinity between a substance to be isolated and a molecule that it can specifically bind to. This is a receptor-ligand type interaction. The column material is synthesised by covalently coupling one of the binding partners to an insoluble matrix. The column material is then able to specifically adsorb the substance from the solution. Elution occurs by changing the conditions to those in which binding will not occur (alter pH, ionic strength, temperature, etc.).

F. Mutagenesis of Variants

[0078] The present invention contemplates that modification of the affinity of the superantigen for the MHC class II molecules may decrease the toxicity of the superantigen. Thus, the decreased affinity for the MHC class II molecules results in decreased seroreactivity or decreased reaction with neutralizing antibodies or endogenous or preformed antibodies.

25

30

→ PV

+46 40 260516

2001 **-**06**- 2 8**

Huvudiaxen Kassan

23

In specific embodiments mutagenesis will be 100791 employed to modify the region of the superantigen that determines binding to the MHC class II molecules. Mutagenesis will be accomplished by a variety of standard, mutagenic procedures. Mutation is the process whereby 5 changes occur in the quantity or structure of an organism. Mutation can involve modification of the nucleotide sequence of a single gene, blocks of genes or whole chromosome. Changes in single genes may be the consequence of point mutations, which involve the removal, addition or 10 substitution of a single nucleotide base within a DNA sequence, or they may be the consequence of changes involving the insertion or deletion of large numbers of nucleotides.

15 [0080] One particularly useful mutagenesis technique is alanine scanning mutagenesis in which a number of residues are substituted individually with the amino acid alanine so that the effects of losing side-chain interactions can be determined, while minimizing the risk of large-scale perturbations in protein conformation (Cunningham et al., 1989).

In recent years, techniques for estimating the equilibrium constant for ligand binding using minuscule amounts of protein have been developed (U.S. Patents 5,221,605 and 5,238,808). The ability to perform functional assays with small amounts of material can be exploited to develop highly efficient, in vitro methodologies for the saturation mutagenesis of antibodies. The inventors bypassed cloning steps by combining PCR mutagenesis with coupled in vitro transcription/translation for the high throughput generation of protein mutants. Here, the PCR products are used directly as the template for the in vitro transcription/translation of the mutant single chain antibodies. Because of the high efficiency with which all 19 amino acid substitutions can be generated and analyzed in this way, it is now possible to perform saturation mutagenesis on numerous residues of

2 101 -05- 2 8

Huvudlaxen Kassan

24

interest, a process that can be described as in vitro scanning saturation mutagenesis (Burks et al., 1997). In vitro scanning saturation mutagenesis provides a rapid method for obtaining a large amount of structurefunction information including: (i) identification of 5 residues that modulate ligand binding specificity, (ii) a better understanding of ligand binding based on the identification of those amino acids that retain activity and those that abolish activity at a given location, (iii) an evaluation of the overall plasticity of an 10 active site or protein subdomain, (iv) identification of amino acid substitutions that result in increased binding.

Structure-guided site-specific mutagenesis repre-[8800] sents a powerful tool for the dissection and engineering 15 of protein-ligand interactions (Wells, 1996, Braisted et al., 1996). The technique provides for the preparation and testing of sequence variants by introducing one or more nucleotide sequence changes into a selected DNA.

Site-specific mutagenesis uses specific oligo-[0084] 20 nucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent, unmodified nucleotides. In this way, a primer sequence is provided with sufficient size and complexity to form a stable duplex on both sides of the deletion 25 junction being traversed. A primer of about 17 to 25 nucleotides in length is preferred, with about 5 to 10 residues on both sides of the junction of the sequence being altered.

The technique typically employs a bacteriophage vector that exists in both a single-stranded and doublestranded form. Vectors useful in site-directed mutagenesis include vectors such as the M13 phage. These phage vectors are commercially available and their use is generally well known to those skilled in the art. Double-35 stranded plasmids are also routinely employed in site-

30

10

25

30

+46 40 260516

Ink. t. Palant- och rag, verket

→ PV

2001-93-28

Huvudfexen Kassan

25

directed mutagenesis, which eliminates the step of transferring the gene of interest from a phage to a plasmid. In general, one first obtains a single-stranded vector, or melts two strands of a double-stranded vector, which includes within its sequence a DNA sequence encoding the desired protein or genetic element. An oligonucleotide primer bearing the desired mutated sequence, synthetically prepared, is then annealed with the singlestranded DNA preparation, taking into account the degree of mismatch when selecting hybridisation conditions. The hybridized product is subjected to DNA polymerising enzymes such as E. coli polymerase I (Klenow fragment) in order to complete the synthesis of the mutation-bearing strand. Thus, a heteroduplex is formed, wherein one strand encodes the original non-mutated sequence, and the 15 second strand bears the desired mutation. This heteroduplex vector is then used to transform appropriate host cells, such as E. coli cells, and clones are selected that include recombinant vectors bearing the mutated sequence arrangement. 20

Comprehensive information on the functional significance and information content of a given residue of protein can best be obtained by saturation mutagenesis in which all 19 amino acid substitutions are examined. The shortcoming of this approach is that the logistics of multiresidue saturation mutagenesis are daunting (Warren et al., 1996, Brown et al., 1996; Zeng et al., 1996; Burton and Barbas, 1994; Yelton et al., 1995; Jackson et al., 1995; Short et al., 1995; Wong et al., 1996; Hilton et al., 1996). Hundreds, and possibly even thousands, of site specific mutants must be studied. However, improved techniques make production and rapid screening of mutants much more straightforward. See also, U.S. Patents 5,798,208 and 5,830,650, for a description of "walkthrough" mutagenesis. 35

Other methods of site-directed mutagenesis are disclosed in U.S. Patents 5,220,007; 5,284,760;

30

35

Ink. t. Patent- och reg.verket

→ PV

2 31 -05- 2 8

Huvudfaxen Kassan

26

5,354,670; 5,366,878; 5,389,514; 5,635,377; and 5,789,166.

[0089] In addition to the biological functional equivalents that are produced using mutagenesis techniques

discussed above, the present inventors also contemplate that structurally similar compounds may be formulated to mimic the key portions of the superantigen or conjugate of the present invention. Such compounds, which may be termed peptidomimetics, may be used in the same manner

10 as the conjugates of the invention and, hence, also are functional equivalents.

[0090] Certain mimetics that mimic elements of protein secondary and tertiary structure are described in Johnson et al. (1993). The underlying rationale behind the use of peptide mimetics is that the peptide backbone of proteins exists chiefly to orient amino acid side chains in such a way as to facilitate molecular interactions, such as those of antibody and/or antigen. A peptide mimetic is thus designed to permit molecular interactions similar to the natural molecule.

[0091] Some successful applications of the peptide mimetic concept have focused on mimetics of β -turns within proteins, which are known to be highly antigenic. Likely β -turn structure within a polypeptide can be predicted by computer-based algorithms, as discussed herein. Once the component amino acids of the turn are determined, mimetics can be constructed to achieve a similar spatial orientation of the essential elements of the amino acid side chains.

[0092] Other approaches have focused on the use of small, multidisulfide-containing proteins as attractive structural templates for producing biologically active conformations that mimic the binding sites of large proteins. Vita et al. (1998). A structural motif that appears to be evolutionarily conserved in certain toxins is small (30-40 amino acids), stable, and high permissive for mutation. This motif is composed of a beta sheet and an

15

20

25

30

35

+46 40 260516

2001 -06- 2 8

→ PV

Huvudfaxen Kassan

27

alpha helix bridged in the interior core by three disulfides.

[0093] Beta II turns have been mimicked successfully using cyclic L-pentapeptides and those with D-amino acids (Weisshoff et al., 1999). Also, Johannesson et al. (1999) report on bicyclic tripeptides with reverse turn inducing properties.

[0094] Methods for generating specific structures have been disclosed in the art. For example, alpha-helix mimetics are disclosed in U.S. Patents 5,446,128; 5,710,245; 5,840,833; and 5,859,184. Theses structures render the peptide or protein more thermally stable, also increase resistance to proteolytic degradation. Six, seven, eleven, twelve, thirteen and fourteen membered

ring structures are disclosed.

[0095] Methods for generating conformationally restricted beta turns and beta bulges are described, for example, in U.S. Patents 5,440,013; 5,618,914; and 5,670,155. Betaturns permit changed side substituents without having changes in corresponding backbone conformation, and have appropriate termini for incorporation into peptides by standard synthesis procedures. Other types of mimetic turns include reverse and gamma turns. Reverse turn mimetics are disclosed in U.S. Patents 5,475,085 and 5,929,237, and gamma turn mimetics are described in US

G. Expression of the Superantigens

Patents 5,672,681 and 5,674,976.

[0096] The present invention also involves the use of expression vectors and host cells. These expression vectors, which have been genetically engineered to contain the nucleic acid sequence of the conjugates, are introduced or transformed into host cells to produce the conjugates of the present invention.

[0097] Host cells can be genetically engineered to incorporate nucleic acid sequences and express peptides of the present invention. Introduction of nucleic acid sequences into the host cell can be affected by calcium phosphate

15

20

25

30

35

.:*:

+46 40 260516

Ink. t. Palant- och reg, verket

→ PV

2001 -06- 2 8

Huvudfaxen Kassan

28

transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction, infection or other methods. Such methods are described in many standard laboratory manuals, such as Davis, et al., BASIC METHODS IN MOLECU-LAR BIOLOGY, (1986) and Sambrook, et al., MOLECULAR CLON-ING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989). Representative examples of appropriate host cells 10 [8@00] include bacterial cells, such as streptococci, staphylococci, E. coli, streptomyces and Bacillus subtilis cells; fungal cells, such as yeast cells and aspergillus cells; insect cells such as Drosophila S2 and Spodoptera Sf9

cells; animal cells such as CHO, COS, HeLa, C127, 3T3,

BHK, 293 and Bowes melanoma cells. II. Cancer treatment

In the present invention, a superantigen is con-[0099] jugated to an antibody or a fragment of an antibody to target and destroy cancer cells. Examples of cancer include, but are not limited to lung, breast, colon, kidney, pancreatic, ovarian, stomach, cervix and prostate cancer.

[00100] In one aspect of the present invention, the tumor cell must bear some marker that is amenable to targeting, i.e., is not present on the majority of other cells. Many tumor markers exist and any of these may be suitable for targeting in the context of the present invention. Specific targets of the present invention include antibodies. The antibodies that are contemplated in the present invention include, but are not limited to the Fab fragment. Examples of the Fab fragment include C215Fab or 5T4Fab. In addition to Fab, other common tumor markers include carcinoembryonic antigen, prostate specific antigen, urinary tumor associated antigen, fetal antigen, tyrosinase (p97), gp68, TAG-72, HMFG, Sialyl Lewis

→ PV Ink. t. Patent- och reg.vcrket

2001-09-28

Huvudfaxen Kassan

29

Antigen, MucA, MucB, PLAP, estrogen receptor, laminin receptor, erb B and p155.

[00101] Another aspect of the present invention is to use an immune stimulating molecule as an agent, or more preferably in conjunction with another agent, such as for

- ferably in conjunction with another agent, such as for example, a cytokines such as for example IL-2, IL-4, IL-12, GM-CSF, tumor necrosis factor; interferons alpha, beta, and gamma; F42K and other cytokine analogs; a chemokine such as for example MIP-1, MIP-1beta, MCP-1,
- 10 RANTES, IL-8; or a growth factor such as for example FLT3 ligand. The stimulating molecule may be conjugated to the conjugate of the present invention or administered as an adjuvant in combination with the conjugate of the present invention.
- 15 [00102] One particular cytokine contemplated for use in the present invention is IL2 or a derivative have essentially the same biological activity of the native IL2.

 Interleukin-2 (IL-2), originally designated T-cell growth factor I, is a highly proficient inducer of T-cell proli-
- feration and is a growth factor for all subpopulations of T-lymphocytes. IL-2 is an antigen independent proliferation factor that induces cell cycle progression in resting cells and thus allows clonal expansion of activated T-lymphocytes. Since freshly isolated leukemic
- cells also secrete IL2 and respond to it IL2 may function as an autocrine growth modulator for these cells capable of worsening ATL. IL2 also promotes the proliferation of activated B-cells although this requires the presence of additional factors, for example, IL4. In vitro IL2 also
- additional factors, for example, IL4. In vitro IL2 also stimulates the growth of oligodendroglial cells. Due to its effects on T-cells and B-cells IL2 is a central regulator of immune responses. It also plays a role in anti-inflammatory reactions, in hematopoiesis and in tumor surveillance. IL-2 stimulates the synthesis of IFN-γ in
- peripheral leukocytes and also induces the secretion of IL-1 , TNF- α and TNF- β . The induction of the secretion of tumoricidal cytokines, apart from the activity in the

25

30

35

+46 40 260516

Ink. t. Palent- och reg.verket

→ PV

2001-06-28

Huvudfaxen Kassan

30

expansion of LAK cells, (lymphokine-activated killer cells) are probably the main factors responsible for the antitumor activity of IL2.

[00103] It is contemplated that the present invention may be administered to a patient that is suffering from cancer or a proliferative disease. The amount administered to the patient is a therapeutically effective amount or an amount that results in treatment of the cancer or disease. Administration of the conjugate may be via a parenteral or alimentary route. Exemplary alimentary routes include, but are not limited to oral, rectal, sublingual and buccal. Exemplary parenteral routes include, but are not limited to intraperitoneal, intravenous, subcutaneous, intramuscular, intradermal, intratumoral, and intravascular. 15

III. Pharmaceutical Compositions

[00104] The compounds of the present invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.

[00105] The pharmaceutical forms suitable for injectable 20 use include sterile aqueous solutions and/or dispersions; formulations including sesame oil, peanut oil and/or aqueous propylene glycol; and/or sterile powders for the extemporaneous preparation of sterile injectable solu-

tions and/or dispersions. In all cases the form must be sterile and/or must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and/or storage and/or must be preserved against the contaminating action of microorganisms, such as bacteria and/or fungi.

[00106] Solutions of the active compounds as free base and/or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and/or mixtures thereof and/or in oils. Under ordinary conditions of

0

o

+46 40 260516 Ink. t. Patent- och reg. verket

2891 -86- 2 8

→ PV

Huvudlaxen Kassan

31

storage and/or use, these preparations contain a preservative to prevent the growth of microorganisms.

[00107] The conjugate of the present invention can be formulated into a composition in a neutral and/or salt form.

- Pharmaceutically acceptable salts, include the acid addition salts (formed with the free amino groups of the protein) and/or which are formed with inorganic acids such as, for example, hydrochloric and/or phosphoric acids, and/or such organic acids as acetic, oxalic, tartaric,
- nandelic, and/or the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, and/or ferric hydroxides, and/or such organic bases as isopropylamine, trimethylamine, histidine, procaine
- and/or the like. In terms of using peptide therapeutics as active ingredients, the technology of U.S. Patents 4,608.251; 4,601,903; 4,599,231; 4,599,230; 4,596,792; and/or 4,578,770, each incorporated herein by reference, may be used.
- 20 [00108] The carrier can also be a solvent and/or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and/or liquid polyethylene glycol, and/or the like), suitable mixtures thereof, and/or vegetable oils. The proper
- fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and/or by the use of surfactants. The prevention of the action of microorganisms can be brought about by various anti-
- bacterial and/or antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and/or the like. In many cases, it will be preferable to include isotonic agents, for example, sugars and/or sodium chloride. Prolonged absorption of the injectable
- compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and/or gelatin.

+46 40 260516

Ink. t. Palant- och rag.varket

7991 -96- 2 8

Huvud!axen Kassan

32

[00109] Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are pre-5 pared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and/or the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable 10 solutions, the preferred methods of preparation are vacuum-drying and/or freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. The preparation of more, and/or highly, 15 concentrated solutions for direct injection is also contemplated, where the use of DMSO as solvent is envisioned to result in extremely rapid penetration, delivering high concentrations of the active agents to a small area.

20 [00110] Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and/or in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, but drug release capsules and/or the like can also be employed.

[00111] For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and/or the liquid diluent first rendered isotonic with sufficient saline and/or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and/or intraperitoneal administration. In this connection, sterile aqueous media which can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage could be dissolved in 1 ml of isotonic NaCl solution and/or either added to 1000 ml

u)

30

35

25

30

+46 40 260516

like t. Palante och regiverkat

→ PV

2001-08-28

Huvudiaxen Kassan

33

of hypodermoclysis fluid and/or injected at the proposed site of infusion, (see for example, "Remington's Pharmaceutical Sciences" 15th Edition, pages 1035-1038 and/or 1570-1580). Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject.

[00112] The active conjugate and/or agents may be formulated within a therapeutic mixture to comprise 10 about 0.0001 to 1.0 milligrams, and/or about 0.001 to 0.1 milligrams, and/or about 0.1 to 1.0 and/or even about 10 milligrams per dose and/or so. Multiple doses can also be administered.

[00113] In addition to the compounds formulated for paren-15 teral administration, such as intravenous, intraarticular and/or intramuscular injection, other pharmaceutically acceptable forms include, e.g., tablets and/or other solids for oral administration; liposomal formulations;

time release capsules; and/or any other form currently 20 used, including cremes.

[00114] One may also use masal solutions and/or sprays, aerosols and/or inhalants in the present invention. Nasal solutions are usually aqueous solutions designed to be

administered to the nasal passages in drops and/or sprays. Nasal solutions are prepared so that they are similar in many respects to masal secretions, so that normal ciliary action is maintained. Thus, the aqueous nasal solutions usually are isotonic and/or slightly buffered to maintain a pH of 5.5 to 6.5. In addition,

antimicrobial preservatives, similar to those used in ophthalmic preparations, and/or appropriate drug stabilisers, if required, may be included in the formulation. Various commercial masal preparations are known and/or

include, for example, antibiotics and/or antihistamines 35 and/or are used for asthma prophylaxis.

5

10

30

35

0

NB .

Ink. t. Patent- och regiverket

→ PV

2001-06-28

Huvudlaxen Kassan

34

(00115) Additional formulations which are suitable for other modes of administration include vaginal suppositories and/or pessaries. A rectal pessary and/or suppository may also be used. Suppositories are solid dosage forms of various weights and/or shapes, usually medicated, for insertion into the rectum, vagina and/or the urethra. After insertion, suppositories soften, melt and/or dissolve in the cavity fluids. In general, for suppositories, traditional binders and/or carriers may include, for example, polyalkylene glycols and/or triglycerides; such suppositories may be formed from mixtures containing the active ingredient in the range of 0.5% to 10%, preferably 1%-2%.

[00116] Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of 15 mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate and/or the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations and/or powders. In certain defined embodi-20 ments, oral pharmaceutical compositions will comprise an inert diluent and/or assimilable edible carrier, and/or they may be enclosed in hard and/or soft shell gelatin capsule, and/or they may be compressed into tablets, and/or they may be incorporated directly with the food of 25 the diet. For oral therapeutic administration, the active compounds may be incorporated with excipients and/or used in the form of ingestible tablets, buccal tables,

troches, capsules, elixirs, suspensions, syrups, wafers, and/or the like. Such compositions and/or preparations should contain at least 0.1% of active compound. The percentage of the compositions and/or preparations may, of course, be varied and/or may conveniently be between about 2 to about 75% of the weight of the unit, and/or preferably between 25-60%. The amount of active compounds in such therapeutically useful compositions is such that

a suitable dosage will be obtained.

Ink. t. Patent- och regiverket

2001-08-28

→ PV

Huvudlaxen Kassan

35

[00117] The tablets, troches, pills, capsules and/or the like may also contain the following: a binder, as gum tragacanth, acacia, cornstarch, and/or gelatin; excipients, such as dicalcium phosphate; a disintegrating agent, such as corn starch, potato starch, alginic acid 5 and/or the like; a lubricant, such as magnesium stearate; and/or a sweetening agent, such as sucrose, lactose and/ or saccharin may be added and/or a flavoring agent, such as peppermint, oil of wintergreen, and/or cherry flavouring. When the dosage unit form is a capsule, it may con-10 tain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings and/or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, and/or capsules may be coated with shellac, sugar and/or both. A 15 syrup of elixir may contain the active compounds sucrose as a sweetening agent methyl and/or propylparabens as preservatives, a dye and/or flavoring, such as cherry and/or orange flavor.

[00118] In certain embodiments, the use of lipid formula-20 tions and/or nanocapsules is contemplated for the introduction of a conjugate/or agents, and/or gene therapy vectors, including both wild-type and/or antisense vectors, into host cells.

[00119] Nanocapsules can generally entrap compounds in a 25 stable and/or reproducible way. To avoid side effects due to intracellular polymeric overloading, such ultrafine particles (sized around 0.1 μm) should be designed using polymers able to be degraded in vivo. Biodegradable polyalkyl-cyanoacrylate nanoparticles that meet these 30 requirements are contemplated for use in the present invention, and/or such particles may be easily made. [00120] In an embodiment of the invention, the conjugate may be associated with a lipid. The conjugates associated with a lipid may be encapsulated in the aqueous interior 35 of a liposome, interspersed within the lipid bilayer of a liposome, attached to a liposome via a linking molecule

10

25

+46 40 260516

Ink. t. Patent- och reg.verket

→ PV

2001-05-28

Huvudlaxen Kassan

36

that is associated with both the liposome and the oligonucleotide, entrapped in a liposome, complexed with a
liposome, dispersed in a solution containing a lipid,
mixed with a lipid, combined with a lipid, contained as
a suspension in a lipid, contained or complexed with a
micelle, or otherwise associated with a lipid. The lipid
or lipid/conjugate associated compositions of the present
invention are not limited to any particular structure in
solution. For example, they may be present in a bilayer
structure, as micelles, or with a collapsed structure.
They may also simply be interspersed in a solution, possibly forming aggregates which are not uniform in either
size or shape.

[00121] Lipids are fatty substances which may be naturally occurring or synthetic lipids. For example, lipids
include the fatty droplets that naturally occur in the
cytoplasm as well as the class of compounds which are
well known to those of skill in the art which contain
long-chain aliphatic hydrocarbons and their derivatives,

20 such as fatty acids, alcohols, amines, amino alcohols, and aldehydes.

[00122] Phospholipids may be used for preparing the liposomes according to the present invention and may carry a net positive, negative, or neutral charge. Diacetyl phosphate can be employed to confer a negative charge on the liposomes, and stearylamine can be used to confer a positive charge on the liposomes. The liposomes can be made of one or more phospholipids.

[00123] A neutrally charged lipid can comprise a lipid with no charge, a substantially uncharged lipid, or a lipid mixture with equal number of positive and negative charges. Suitable phospholipids include phosphatidyl cholines and others that are well known to those of skill in the art.

35 [00124] Lipids suitable for use according to the present invention can be obtained from commercial sources. For example, dimyristyl phosphatidylcholine ("DMPC") can be

35

Ink. t. Palant- och mo.vorket

2001 -06- 2 8

Huvudfaxen Kassan

37

obtained from Sigma Chemical Co., dicetyl phosphate ("DCP") is obtained from K & K Laboratories (Plainview, NY); cholesterol ("Chol") is obtained from Calbiochem-Behring; dimyristyl phosphatidylglycerol ("DMPG") and other lipids may be obtained from Avanti Polar Lipids, Inc. (Birmingham, Ala.). Stock solutions of lipids in chloroform or chloroform/methanol can be stored at about -20°C. Preferably, chloroform is used as the only solvent since it is more readily evaporated than methanol.

10 [00125] Phospholipids from natural sources, such as egg or soybean phosphatidylcholine, brain phosphatidic acid, brain or plant phosphatidylinositol, heart cardiolipin and plant or bacterial phosphatidylethanolamine are preferably not used as the primary phosphatide, i.e., constituting 50% or more of the total phosphatide composi-

tion, because of the instability and leakiness of the resulting liposomes.

[00126] Phospholipids can form a variety of structures other than liposomes when dispersed in water, depending on the molar ratio of lipid to water. At low ratios the liposome is the preferred structure. The physical characteristics of liposomes depend on pH, ionic strength and/or the presence of divalent cations. Liposomes can show low permeability to ionic and/or polar substances, but at elevated temperatures undergo a phase transition which

markedly alters their permeability. The phase transition involves a change from a closely packed, ordered structure, known as the gel state, to a loosely packed, lessordered structure, known as the fluid state. This occurs at a characteristic phase-transition temperature and/or results in an increase in permeability to ions, sugars and/or drugs.

[00127] Liposomes interact with cells via four different mechanisms: Endocytosis by phagocytic cells of the reticuloendothelial system such as macrophages and/or neutrophils; adsorption to the cell surface, either by nonspecific weak hydrophobic and/or electrostatic forces,

15

+46 40 260516

liket Falso- od immediat

→ PV

2001-00-28

Hovuelle en de leen

38

and/or by specific interactions with cell-surface components; fusion with the plasma cell membrane by insertion of the lipid bilayer of the liposome into the plasma membrane, with simultaneous release of liposomal contents into the cytoplasm; and/or by transfer of liposomal lipids to cellular and/or subcellular membranes, and/or vice versa, without any association of the liposome contents. Varying the liposome formulation can alter which mechanism is operative, although more than one may operate at the same time.

[00128] Liposome-mediated oligonucleotide delivery and expression of foreign DNA in vitro has been very successful. Wong et al., (1980) demonstrated the feasibility of liposome-mediated delivery and expression of foreign DNA in cultured chick embryo, HeLa and hepatoma cells. Nicolau et al., (1987) accomplished successful liposome-mediated gene transfer in rats after intravenous injection.

[00129] In certain embodiments of the invention, the lipid may be associated with a hemagglutinating virus (HVJ). 20 This has been shown to facilitate fusion with the cell membrane and promote cell entry of liposome-encapsulated DNA (Kaneda et al., 1989). In other embodiments, the lipid may be complexed or employed in conjunction with nuclear non-histone chromosomal proteins (HMG-1) (Kato et 25 al., 1991). In yet further embodiments, the lipid may be complexed or employed in conjunction with both HVJ and HMG-1. In that such expression vectors have been successfully employed in transfer and expression of an oligonucleotide in vitro and in vivo, then they are applicable 30 for the present invention. Where a bacterial promoter is employed in the DNA construct, it also will be desirable to include within the liposome an appropriate bacterial polymerase.

35 [00130] Liposomes used according to the present invention can be made by different methods. The size of the liposomes varies depending on the method of synthesis. A

o

Ink. t. Palent- och reg.verket

→ PV

2001-93-28

Huvudiaxen Kassan

39

liposome suspended in an aqueous solution is generally in the shape of a spherical vesicle, having one or more concentric layers of lipid bilayer molecules. Each layer consists of a parallel array of molecules represented by the formula XY, wherein X is a hydrophilic moiety and Y is a hydrophobic moiety. In aqueous suspension, the concentric layers are arranged such that the hydrophilic moieties tend to remain in contact with an aqueous phase and the hydrophobic regions tend to self-associate. For example, when aqueous phases are present both within and 10 without the liposome, the lipid molecules may form a bilayer, known as a lamella, of the arrangement XY-YX. Aggregates of lipids may form when the hydrophilic and hydrophobic parts of more than one lipid molecule become associated with each other. The size and shape of these 15 aggregates will depend upon many different variables, such as the nature of the solvent and the presence of other compounds in the solution. [00131] Liposomes within the scope of the present invention can be prepared in accordance with known laboratory 20 techniques. In one preferred embodiment, liposomes are prepared by mixing liposomal lipids, in a solvent in a container, e.g., a glass, pear-shaped flask. The container should have a volume ten-times greater than the volume of the expected suspension of liposomes. Using a 25 rotary evaporator, the solvent is removed at approximately 40°C under negative pressure. The solvent normally is removed within about 5 min. to 2 hours, depending on the desired volume of the liposomes. The composition can be dried further in a desiccator under vacuum. The dried 30 lipids generally are discarded after about 1 week because of a tendency to deteriorate with time. [00132] Dried lipids can be hydrated at approximately 25-50 mM phospholipid in sterile, pyrogen-free water by shaking until all the lipid film is resuspended. The 35

aqueous liposomes can be then separated into aliquots,

10

30

35

+46 40 260516

Ink. t. Patent- ook ron vorket

→ PV

2001 -03- 2 8

Huvudlaxen Kassan

40

each placed in a vial, lyophilized and sealed under vacuum.

[00133] In the alternative, liposomes can be prepared in accordance with other known laboratory procedures: the method of Bangham et al., (1965), the contents of which are incorporated herein by reference; the method of Gregoriadis, as described in DRUG CARRIERS IN BIOLOGY AND MEDICINE, G. Gregoriadis ed. (1979) pp. 287-341, the contents of which are incorporated herein by reference; and the reverse-phase evaporation method as described by Szoka and Papahadjopoulos (1978). The aforementioned methods differ in their respective abilities to entrap aqueous material and their respective aqueous space-tolipid ratios.

[00134] The dried lipids or lyophilized liposomes prepared 15 as described above may be dehydrated and reconstituted in a solution of inhibitory peptide and diluted to an appropriate concentration with an suitable solvent, e.g., DPBS. The mixture is then vigorously shaken in a vortex mixer. Unencapsulated nucleic acid is removed by centri-20 fugation at 29,000 x g and the liposomal pellets washed. The washed liposomes are resuspended at an appropriate total phospholipid concentration, e.g., about 50-200 mM. The amount of nucleic acid encapsulated can be determined in accordance with standard methods. After determination 25 of the amount of nucleic acid encapsulated in the liposome preparation, the liposomes may be diluted to appropriate concentrations and stored at 4°C until use.

[00135] A pharmaceutical composition comprising the liposomes will usually include a sterile, pharmaceutically acceptable carrier or diluent, such as water or saline solution.

IV. EXAMPLES

[00136] The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent

Ink. t. Patent- och reg.verket 2001 -06- 2 8

→ PV

41

Huyudfaxen Kassan

techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in 5 the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention. Example 1

In vitro Mutagenesis 10

[00137] The different superantigen variants were made using a Polymerase Chain Reaction (PCR) based method. [00138] Briefly, the PCR products contained two unique restriction enzyme sites, one in each end. For the subcloning procedure, pUCl9 (GIBCO BRL Life Technologies,

- 15 Middlesex, U.K.) was used, prepared according to QIAprep Spin Miniprep Kit Protocol (QIAGEN, Hilden, Germany). Point mutations not affecting the amino acid sequence were included to facilitate further analyses. The PCR
- reaction was performed on Perkin Elmer Gene Amp PCR 20 system 2400 with Tag DNA Polymerase and appropriate PCR buffer containing 15mM MgCl2 (Roche Molecular Biochemicals, Basel, Switzerland). The PCR products and vectors were cleaved overnight with appropriate restriction
- enzymes. They were purified using electrophoresis in a 1% 25 agarose gel (GIBCO BRL Life Technologies) containing 0.5µg/ml Ethidiumbromide (Sigma-Aldrich, Steinheim, Germany) in TAE buffer (Sigma-Aldrich). The DNA containing fragment was excised from the gel and extracted 30
 - using the CONSERT™ Rapid Gel Extraction System (GIBCO BRL Life Technologies). Vector and insert were ligated (T4 DNA ligase, Roche Molecular Biochemicals) at room temperature for 3-4 hours. The ligation mixture was transformed into the Escherchia coli strain DH5a (GIBCO BRL
- Life Technologies) according to instructions enclosed 35 with the cells. Positive clones were verified using DNA sequencing. Correct sequences were cleaved out with

Ink. t. Patent- och reg.verket

→ PV

2001 -06- 2 8

Huvudfaxen Kassan

42

RSTII/HindIII at 37°C overnight and ligated in the expression vector (Dohlsten et al., 1994). The variable parts of the Fab were changed for C215 to suit the inhouse animal models. The construct was finally electroporated into the Escherchia coli K12 strain UL635 (xyl-7,

ara-14, T4R, ΔοπρΤ). Example 2 Identification of human anit-SEA binding regions [00139] Regions recognized by human anti-SEA were identified from a pepsin-digest of SEA or a chimeric variant of 10 SEA and SEE, SEA/E-18, previously described as SEE/A-A (Antonsson et al., 1997) with the substitution D227A. [00140] Each superantigen was incubated with 0.5 % pepsin 10mM HCl, 150mM NaCl (w/w) for 60 minutes at 37°C. The peptide mixture was neutralized with 2M Tris-HCl pH 8.0 15 and applied on a 1 ml HiTrap column (Amersham Pharmacia Biotech, Uppsala, Sweden) with immobilized human anti-SEA. PBS, 8.1mM Na₂HPO₄, 1.5mM KH₂PO₄, 137mM NaCl, 2.7mM KCl, pH 7.3 was used as washing buffer and the antibody binding fragments were eluted using 0.1M acetic acid pH 20 3.0. The fragments were identified both before and after purification using HPLC coupled to a mass spectrometer (MS) (FIG.1). The chromatography was carried out on a C18 column (2x250mm) (VYDAC^m, Hesperia, California, USA) using a linear gradient from 10 to 60 % acetonitrile in 25 0.1 % triflouroacetic acid over 30 min at 40°C. Mass determination was carried out using electrospray MS (Finnigan LCQ, Thermoquest, San Jose, California, USA). Fragments found in the digest at the same retention time

dered as positives (FIG.2).

Example 3

30

35

0

Molecular modeling

[00141] The chimeric superantigen SEA/E-18 was based upon the SEE sequence except for four amino acid residues close to the N-terminus that were from SEA and one

both before and after affinity purification were consi-

15

Ink. t. Patent- och reg.verket

→ PV

2001 -06- 2 8

Huvudfaxen Kassan

43

substitution in the C-terminal part D227A (FIG. 3 and FIG. 4) (Antonsson et al., 1997).

[00142] Briefly, three-dimensional structures of superantigens with much higher sequence identity to SEE that were available from the PBD were used as templates to construct a homology model of SEAE-18, i.e., SEA (IESF, Shard et al., 1SKT, Sundstrom et al 1996 A), SED (Sundstrom et al., 1996 B) and SEH (IENF) (Hakansson et al., 2000). SEA was most similar to SEE with a sequence identity of 60 % and

10 identity of 80%. SED had a sequence identity of 60% and SEH 50% to SEE.

[00143] The model construction was performed using the HOMOLOGY module in the INSIGHTII software (MSI, San Diego). Structures for the three superantigens SEA, SED and SEH were aligned and structural conserved regions

(SCRs) were determined (FIG. 3). These regions typically mapped to regular secondary structures in the molecules. The raw sequence for SEA/E-18 were loaded and threaded over the SCRs from the SEA structure (FIG. 5). The 1SXT

co-ordinates for SEA was used except for the first nine residues in the N-terminus where 1ESF was used. The regions between the SCRs were in most cases flexible loop areas and were built from SEA and SED. Most of the loops were built from SEA except for residues Gln19, Ile140,

Asp141, Lys142, Ser189, Gly191, Asp200, Pro206, Asp207 and Leu224, which were built from SED. Some areas within the SCRs showed greater sequence similarity with SED and were therefore built using SED as structural template (Ile37, Glu49, Asn50, Thr51, Leu52, Ser195 and Thr218)

(FIG.3).

(FIG.3).
[00144] Due to the fact that SEA was used as structural template for most of the residues in SEA/E-18 no problems with overlapping side chains occurred. Splice points before and after the SCRs were repaired. First the substituted side chains were relaxed and then energy minimisation and molecular dynamics simulations relaxed all side chains within the SCRs using standard protocols in

0

•

10

+46 40 260516

Ink. t. Patent- och reg.verket

→ PV

2001 -06- 2 8

Huvudfaxen Kassan

44

HOMOLOGY. Loop areas were relaxed one at a time using first 1000 steps of energy minimization followed by 1000 steps of molecular dynamics. This refinement protocol was applied first on the loop side chains and then on all atoms in the loop. For all simulations the CVFF force field with a force constant of 100 kcal/Å2 were used using a time step of 2 fs.

[00145] The final model was tested for bad regions using the PROSTAT module in INSIGHTII. No bad regions were detected. The interior of the protein packed well with no significant difference compared to SEA. All residues end up in allowed regions in a ramachandran plot. Superposition of 1SXT with the model yielded a RMSD of 0.4Å when

Ca atoms were compared. The main difference between the two structures is seen in the $\beta 9-\beta 10$ loop (residues His187-Thr193) (FIG. 5).

[00146] New models of new superantigens variants were constructed using the SEA/E-18 model as a template. The specific amino acid residues were changed directly on the

20 model. The most favorable side chain conformation was selected using a simple steric-hindrance search followed by a short energy minimization.

Example 4

Culturing and purification

25 [00147] The C215FabSEA/E chimeras were expressed as fusion proteins in the E. coli K12 strain UL635 using a plasmid with an IPTG induced Lac UV-5 promoter and a kanamycin resistance gene.

[00148] Briefly, bacteria from frozen (-70°) stock solution in 20% glycerol were incubated at 25°C for 22-24 h in shaker flasks containing (per liter) 2.5 g of (NH₄)₂SO₄, 3 g of KH₂PO₄, 2 g of K₂HPO₄, 0.5 g of sodium citrate, 1 g of MgSO₄·H₂O, 0.05 g of kanamycin, 12 g of glucose monohydrate and 1 ml of trace element solution however without Na₂MoO₄·2H₂O. The cells were grown to an Abs₆₂₀ of 2-3 and 10 ml of the cultivation medium was used to inoculate a 1 liter fermenter (Belach Bioteknik,

25

30

35

Tween 20, pH 5.0.

+46 40 260516

Ink. t. Patent- och reg.verket

→ PV

2091 -06- 2 8

Huvudfaxen Kassan

45

Sweden) with a starting volume of 800 ml. The fermenter medium contained (per liter) 2.5 g of (NH4)2SO4, 9 g of K_2HPO_4 , 6 g of K_2HPO_4 , 0.5 g of sodium citrate, 1 g of $MgSO_4-7H_2O$, 0.05 g of kanamycin, 23.1 g of glucose monohydrate and 1 ml of trace element solution as above. The pH was kept constant at 7.0 by titration of 25% NH3, the aeration was 1 liter/minute and the temperature 25°C. During batch phase the dissolved 02 was kept at 30% by regulating the agitation from 400 rpm to 2000 rpm and during the fed-batch by regulating the feed of glucose 10 (60% w/v). Product formation was induced when the Absorbance at 620 nm was 45 by adding 0.1 mM isopropyl- β -D-thiogalactopyranoside (IPTG). After fermentation the cells were removed by centrifugation at -20°C prior to 15 purification.

[00149] The purification procedure was divided into three steps. First DNA was removed from the culture supernatant by 0.19 % Polyethyleneimine (w/v) in 0.2M NaCl, pH 7.4, using a peristaltic pump with a flow rate of 12 ml/min.

After centrifugation at 7500 x g for 30min, the superna-20 tant was collected.

[00150] It was applied on a 60ml protein-G Sepharose 4, fast flow column (Amersham Pharmacia Biotech) with a flow rate of 14 ml/min. The column was washed using PBS and elution was performed with 100mM acetic acid, 0.025% Tween 20, pH 3.0. The eluted product was collected and the pH was adjusted to 1/5 units below the theoretical isoelectric point with 1 M NaOH, filtrated (0.2μm) and diluted four times with 0.025% Tween 20. Degraded variants were removed using ion-exchange chromatography. The ionic strength of the sample was adjusted to 2mS/cm and the column used was a SP-Sepharose-HP, Hiload 16/10 (Amersham Pharmacia Biotech). The elution was performed with a flow of 4.0 ml/mih for 50 min using a linear gradient from 0-55% buffer B, 100mM NaAc, 400mM NaCl, 0.025% Tween 20, pH 5.0 in buffer A, 10mM NaAc, 0.025%

Ink. t. Patent- och reg.verket

2001 -06- 28

Huvudfaxen Kassan

46

Example 5

Seroractivity

[00151] The reactivity between the superantigen variants and human anti-SEA was measured in a Scintillation

Proximity Assay (SPA). 5

[00152] In a microtiter plate (OptiPlate, Packard Instruments) streptavidin coated PVT beads, 150µg beads/well (Amersham Pharmacia Biotech) were incubated for 30 min at room temperature with biotin conjugated F(ab)₂ fragments

of anti-Mouse IgG, 3 μ g/mg beads. The beads were preincu-10 bated with C215Fab conjugated Superantigens in a 1:2 dilution series, where the highest final concentration in the wells were 40 nM. Finally they were incubated with 1 nM 125I conjugated affinity purified human anti-SEA anti-

bodies and the amount of -scintillation was measured in 15 a Top-Counter (Packard Instruments).

[00153] The human anti-SEA reactivity for the Superantigen variants was also measured in an Enzyme-Linked Immunosorbent Assay, ELISA (Cavallin et al., 2000). The results

were similar to the ones obtained in the SPA. 20

Example 6

25

30

0

Biological function

[00154] The ability to induce superantigen antibody dependent cellular cytotoxicity, SADCC and superantigen dependent cellular cytotoxicity, SDCC was compared in a standard 4h 51Cr-release assay.

[00155] Briefly, the targets that were used for the SDCC were the human B-cell lymphoma Raji cells and the targets for SADCC were human colorectal carcinoma Colo205 cells.

The cells were labeled with 51Cr and diluted to a concentration of 50000 cells/ml to the V-shaped microtiter wells. As effector cells, a SEA reactive human T-cell line, were used at an effector to target ratio of 45:1 for the SADCC and 30:1 for the SDCC. Sag variants were added in concentrations from 10-9-10-16M for the SADCC and 35 from 10⁻⁷-10⁻¹⁴M for the SDCC. Supernatants were collected and the release of 51Cr was measured in a TopCount

1nk. t. Patent- och reg.verket

→ PV

2001 -06- 2 8

Huyudfaxen Kassan

47

(Packard Instruments). The percentage of specific cytotoxicity was calculated as 100 x [(cpm experimental release - cpm background release)/(cpm total release - cpm background release)].

5 Example 7

Identification of antibody spitopss [00156] In the patients, pre-existing antibodies against superantigens have complicated their clinical application, requiring adjustment of their dosing in therapy (Alpaugh et al., 1998). Another approach to limit the

impact of preformed antibodies was to modify the region of the superantigen responsible for T-cell receptor binding (Antonsson, et al., 1997). However, the present invention has further improved the therapeutic potential

of superantigens by using genetic engineering to remove the antibody epitopes of the superantigen.

[00157] It was found that SEE displayed a strong reduction in antibody reactivity compared to SEA (Antonsson et al., 1997). Unfortunately, with this reduction there was

also a remarkable decrease in tumor killing properties when fused to a tumor reactive Fab (Antonsson et al., 1997). Therefore chimeric constructs of SEA and SEE were investigated. When introducing the corresponding amino acids from SEA in four positions in the TCR-binding

region of SEE, the desired properties were obtained.

These substitutions; Arg20Gly, Asn21Thr, Ser24Gly and Arg27Lys (region A) in SEE, resulted in the chimera SEA/E-18 (FIG. 4) (Antonsson et al., 1997). This chimera displayed more than a 50% reduction in antibody reacti-

vity, as in SEE, while retaining the efficient level of cytotoxicity, as in SEA. Additionally, to decrease the affinity between the Superantigen and MHC class II, which reduce the SDCC and thereby improve the therapeutic window, SEA/E-18 also contain the substitution Asp227Ala (Abrahmsén et al., 1995).

[00158] To further decrease the ability of human anti-SEA to recognize SEA/E-18, the antibody binding epitopes

2001 -06- 2 8

Ink. t. Patent- och reg.verket

Huvudfaxen Kassan

48

within the superantigens were determined. Peptide/fragments from a partial pepsin digest of either SEAwt or SEA/E-18 were captured using immobilized anti-SEA antibodies. After purification, the peptide sequences were identified using LC-MS (FIG. 1). Thereby potential areas 5 involved in antibody recognition were localised in the amino acid sequence. Notably, most of the recovered peptides were located around regions known to be interacting with MHC class II (Abrahmsén et al., 1995) (FIG. 2 and FIG. 6). The three dimensional structure of SEA (Schad et 10 al., 1995; Sundström et al., 1996) and a computer model of SEA/E-18 (FIG. 5), based on the crystal-structure of SEA (Schad et al., 1995; Sundström et al., 1996 A), was used to locate the surface exposed residues within the identified peptides. The following residues were identi-15 fied as exposed and potential candidates in the antibody binding epitopes: Glu34, Lys35, Glu39, Asn40, Lys41, Glu42, Asp44, Asp45, Glu49, Lys74, Asp75, Asn78, Lys79, Lys81, Lys83, Lys84, Asp173, His187, Ser189, Glu190, Gln204, Lys217, Asn220, Glu222, Asn223, His225 and Asp227 20 (Table 1). [00159] These residues were subsequently substituted to reduce the binding to antibodies. New computer models

[00159] These residues were subsequently substituted to reduce the binding to antibodies. New computer models with further improved SAg variants were continuously made to confirm and compare the results acquired with the latter. Specifically the influence of side chains was studied and changes effecting the stability of the protein were identified.

Example 8

25

- Modification of the Superantigen to reduce peroreactivity [00160] The levels of antibody binding of the identified residues were characterized initially by two to six simultaneous substitutions in SEA/E-18. Thereby the SAg variants SEA/E-62 (Lys217Thr, Asn220Ala, Glu222Thr,
- Asn223Ala, His225Ala) (region E), SEA/E-63 (Ser189Asp, Glu190Ala) (region D), SEA/E-64 (Glu34Lys, Lys35Glu, Glu39Lys, Asn40Ser, Lys41Glu, Glu42Lys) (region B),

2001 -06- 2 8

Ink. t. Patent- och reg.verket

PV

Huvudfaxen Kassan

49

SEA/E-65 (Lys79Glu, Lys81Glu, Lys83Glu, Lys84Glu) (region C), SEA/E-74 (Asp44Ala, Asp45Ala, Glu49Thr) (region B) and SEA/E-75 (Lys74Thr, Asp75Ala, Asn78Ser) (region C) were obtained (Table 1, FIG.4).

[00161] To investigate if the anti-SEA antibodies from a 5 human IgG-pool could recognize the different SAg variants, a Scintillation Proximity Assay (SPA) was developed. The modified variants were all recognized to a lower extent compared to SEA/E-18 (Table1). The most sub-

stantial reduction in binding was caused by the substi-10 tutions made in SEA/E-65. In the SPA analysis, a reduction with more than 40% was observed (FIG.7). However, many replacements also generated a reduction in production level of E. coli and in addition, the biological

activity was occasionally decreased as well. By scru-15 tinising the replacements we could identify the responsible residues within each variant and exclude or modify them to achieve better properties. Generally, the production level was increased by hydrophilic replacements compared to more hydrophobic ones. 20

[00162] The reduction in antibody binding was synergisti increased when the variants were combined, as in SEA/E-91 composing of SEA/E-63, SEA/E-65 and a modified SEA/E-74 (with wildtype Asp45) (Table 1). The variant with the

most outstanding result in the SPA analysis with a bind-25 ing reduction of nearly 70% compared to SEA/E-18 was SEA/E-110, a combination of SEA/E-63, SEA/E-75 and modified SEA/E-62 (SEA/E-97), SEA/E-64 (SEA/E-108), SEA/E-65 (SEA/E-84), and SEA/E-74 (wt Asp45) (FIG.7,

table 1). The modifications responsible for most of the 30 reduction in antibody binding were within SEA/E-109 (Glu34Ser, Glu39Ser, Asn40Ser, Lys41Glu, Glu42Lys, Asp44Ala, Glu49Thr, Lys74Thr, Asp75Ala, Asn78Ser, Lys79Glu, Lys81Glu, Lys83Ser, Lys84Ser) a combination of SEA/E-75 and modified SEA/E-64 (SEA/E-108), SEA/E-65 35

(SEA/E-84) and SEA/E-74 (wt Asp45). This is because the

+46 40 260516

Ink. t. Patent- och reg.verket

→ PV

2001-06-28

Huvudfaxen Kassan

50

superantigen variants, containing those substitutions, all displayed a good reduction in the SPA analysis.
[00163] Thus, the residues substituted in SEA/E-62, SEA/E-64, SEA/E-65 and SEA/E-74 resulted in between 20 and 40% reduction in antibody reactivity, compared to SEA/E-18 (Table 1).

Ink. t. Patent- och reg.

2001 -06- 2 8

Huvudfaxen Kassı

EX K13 E13 WAR POLI (EXZ DAD DAS ELS K70 D1) 677 K73 MET A P N T D A T T T A T A A A T T D A T T T A T A	Table 1	-i					,			•	-		-	-	-	_	_	_	_	-	_	_		-	_		<u></u>		<u>≯</u>	Vietd	Seroreactivity	Sance spec	SDC
1		X	-		700	_ <u>z</u>	77	700	<u> </u>	<u>8</u>	2	5 087	<u> </u>	8 X 8	K83	3	512	H H	7 818	18 818	19 E19	<u>8</u>	<u>X</u>	17 982	<u>2</u>	<u>z</u>	M C 22	229 0.	<u> </u>	E E	(9 man)		
	$\neg \tau$	5	;†		+	;+	+	+	4	+	- -	+	-	+	\downarrow		\perp	Ļ	1	+	-	\vdash	-	\vdash	\vdash	\vdash	-	 		£.0	% 86	9.0	-
	SEAF-21								_									•					-			<u> </u>		٠		2	717	<u>-</u>	0.0
S	SEAE-62						_!			;	\dashv	.	4	1	1	,		< ¹ ·	- '	1	_	_	- •	i	. ,	+	•	. 0	<u>. </u>	0.8	93%	~	_
S	SEATE-97	•				-					<u> </u>							≪	-	-	+	ı	-	, ,	,	<u> </u>))	,	<u> </u>		96%	-	0.5
S	AE-63	!				 	:	<u> </u>										∢ .		<u> </u>						÷		•		28.0	, 88 8,88	9.0	9.
S	- A/E-84		<u> </u>				_											∢	<u>- ا</u>	. 1		i		1	÷	+	j	i				6	0
1		_	,†	: ,	÷-	-	i İ.	!	1	<u>!</u>	1	· -	<u> </u>	 	i		<u> </u>	4	_	_						_		_		<u> </u>	e 	; 	_
1	휴 : 홈	60			··				÷		+	Ī	٠ ١	┿		. 6		1 ◀	1 -	1	<u>.</u>			<u> </u>	-	· :		_	∢	9.	879	-	5 —
1	A/E-05						1							-		4 (-		<u>-</u>				÷		•	ι	-	- ∢	73	62%	- i	<u>-</u>
1	AVE-90			;				į		1	+	-	4	+	- +	<u></u>		<	- 1	1	1	- 1	·i	+	+	i	1	!	<	18.0	7,89 1	_	_
	WE-84				i	<u> </u>	<u>.</u>					i	ш,	- 	+	ဟ [ါ]		⋖	- 1 1	i T.	<u>.</u>		!	_	l •	-		-		28.5	. %ce	9.6	
	A/E-88												_ <u>-</u> -			_	⋖	⋖						- ;	+				_	42.0	. %08	_	6
	A/E-74								-	k	<u> </u>		+	i	1		!	4		-+	+		+	· 1	+	Ť		i	:	12.0	7,97	-	0
S E K A T T A S E E S S A T T B T S T S S S S S S S	A/E-91	!	1	<u> </u>	<u>. </u>		_	_					ا ت	┵	- i	w ;	_	<u>م</u>			╌┼		+	ı	1	+	-	+		009	88%	. 5	_
S S E K A T T A S E E S S A T T T S T S S S S O	A/E-75	<u> </u>	Ī	: -	-	<u>!</u>		<u> </u>		<u> </u>								∢ '												6.0	43%	-	2
S S E K A T T A S E E S S A T T T S T S S S S S S S S S S S S	A/E-93								_		i		\dashv		-+	!_	÷		4	= ¹	+		1,5	· i •	<u>ا</u> د	 	100	8		9	%A2		0
S E K A T T A T A T C A T A T A T C A T C A T C A T C A T C A T T T S T S T S T T S T C	VE-107				İ	;	<u>;</u> 	- i		1	<u>.</u> !	- 	+	· 	- -	-	4		<u> </u>			-,-	<u> </u>	- i -	. j «	.	s s	(3)	60	14.0	%68 %68	6	•
S S E K A T T A E E S A T T F T T F T T F F T F	VB-153	L	<u>.</u>	i	I	<u> </u>	<u>:</u>	ļ		<u> </u>	· ;		- -		÷	_	-+					 .	<u> </u>	- -	-	-	,T	٠,	4	0.2	404		01
S S E K A T T A S E E S S A T T S T S T S S O O O O O O O O O O O O	€.109	တ		9		- i		ا به	- !	<u> </u>	:	_	\dashv		+		+		<u> </u>	<u></u> '	÷	÷	+	1 6	"	 	60	. 07	100	90	32%	0.0	
8 8 8 8 7 7 8 7 8 8 8 7 9 8 8 8 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9	A/E.110		. :	CO	øj	m j	٧	اله	į.	-	÷	- i	+	<u> </u>	- +		+		_ '	<u>.</u>	<u> </u>	1	+	+) «	- -	, w	60	700	2.0	48%	9'0	_
S S S E K A T T A S E E S S A T T S S S S 600 92% 3 S S E K A T T A S E E S S A T T S S S S 600 92% 3 S S E K A T T A S E E S S A T T S T S S S S S S S S S S S S S	AE-116	!		φ!	60	w i	<u>고!</u>	4		-	FI	₹	<u></u>		-+	_	+	1	<u>.</u>		<u> </u>	+		<u> </u>	, i e		΄ α	0	်မ	20	#0\$ 	90	
s s s s k k A T T A S E E S S S S S S S S S S S S S S S S	A/E-118			S	Ŋ	ш	¥ .	4			<u>-</u>		-									,			· ·	· -	6	v	်တ	0.00	98%		- i
s s s s s k k A T T A s s s s s s s s s s s s s s s s	AÆ 118		i	ωį	9	cu		<u> </u>	- 1	-	-	1	+	÷	- 	+	1	<u>.</u>	<u> </u>	<u> </u>	<u> </u>	-	<u>.</u>	╁,	. 0	-	်တ	S	S	30.0	388	- C	_
s s s s s s s s s s s s s s s s s s s	A/E-120		i	63	ø,	Ш	+	⋖ .	L	⊢İ	_		+			- 1	<u> </u>	+		<u>i</u>		-	i	- Þ		† ,	1 60	l to	8	.0.7	*500 *500		
ls s s s k A t t A t t t t	A/E-121			ω .	ω '	ш·		⋖ .		- (- 1	-+-									<u>'</u>			- - -	<u> </u>	. ! -	w	' W	S	12.0		-	릐
	The bic	s jegi	ੂ ਫ਼ਿ	acti	s yi		Feer Seer	Sel S	9 5		<u>၂</u> ပို့ နို		Zab/das	SEA		1 8 E	설등	# # # # # # #	e S. €		ar ar ar ar ar ar ar ar ar ar ar ar ar a		SOS	[양물	F \$	e va	le le le le le le le le le le le le le l	for e	valt ex	ating perim	g the nents made	widh	
			<u>.</u>	9. 1		₹ 4	מאלו	ر الم		- -	Ş	3	3	Š		1		l I															_

Ink. t. Patent- och reg.verket

→ PV

2001 -06- 2 8

Huvudfaxen Kossan

52

Example 9

Replacements affecting the production levels [0164] As indicated above, some of the substitutions on the superantigen surface resulted in decreased levels of production in E. coli. Many combinations of such replace-5 ments were not even possible to produce. Therefore, it was decided to investigate alternative modifications of those residues apparently causing a reduction in the yield. Substitutions that affected the yield without decreasing the binding to the antibodies were not further 10 investigated. Instead the wildtype residues were used. [0165] In the initial set of superantigen variants, residue Lys35 in SEA/E-64 was affecting the level of expression negatively. When using the wild type residue in position 35 along with serin substitutions of Glu34 and 15 Glu 39, resulting in SAg variant SEA/E-108, there was an increase in yiled from 23mg/l to 30mg/l. The reduction in antibody reactivity was however maintained. When introducing the glutamic acid substitutions of residues Lys79, Lys81, Lys 83 and Lys 84 in SEA/E-65, this resulted in a 20 production level of only 1.5mg/l. Due to the fact that the effect in antibody reactivity was decreased with 43% compared to SEA/E-18, effort was made to identify better replacements. The best combination, in respect of both yield and reduced antibody reactivity, was found to be 25 SEA/E-84 with serin residues in position 83 and 84 and preserved glutamic acid in positions 79 and 81 (Table 1). The production level was increased ten times and the antibody reactivity was reduced with 41% compared to sEA/E-18 (Table 1). The production level was increased 30 tenn times and the antibody reactivity was reduced with 41% compared to SEA/E-18 (Table 1). The production level was also decreased more than tenfold with the replacements Lys217Thr, Asn220Ala, Glu222Thr, Asn223Ala, His225Ala and Asp227Ala in SEA/E-62, to 1.0mg/l. How-35 ever, by replacing the alanine substitutions for serin

+46 40 260516

Ink. t. Patent- och reg.verket 2001 -06- 28

→ PV

Huvudfaxen Kassan

53

residues, resulting in SEA/E-97, production yields of 48mg/ml were obtained (Table 1).

[0166] Interestingly, when combining SEA/E-65 with more variants, such as SEA/E-63 and modified SEA/E-74, as in SEA/E-91, the low production level was reversed to 12mg/l 5 (Table 1). On the other hand there was only an expression level of superantigen variant SEA/E-110 of 0.5mg/l and 14mg/l, respectively. The production level of SEA/E-110 was however increased to 30mg/l when removing the substitutions Aspl74Ala, His87Ala, Ser188Thr, Ser189Asp, 10 Glu190Ala and Gln204TAhr creating SEA(E-120 (Table 1). [0167] Introducing a large number of substitutions within the superantigen may lead to problems with E. coli expression. There are at least three different mechanisms for this; decreased thermodynamic, destroyed natural 15 folding pathway or newly introduced proteolytic sites. Though the aim with this study was to remove antigenic epitopes on the surface, which most likely would not interfere with any major structural backbones, there was always a possibility that the new structures were depend-20 ing on other residues than the wild type construct, for maintaining their stability. Therefore, new computer models were constantly made to predict or confirm the location of the substituted residues within the new structure. This way we could identify the responsible 25 residues within the early superantigen variants causing problems with for instance expression levels and accomplish improved variants with either wild type residues or better substitutions (Table 1).

[0168] In conclusion, to accomplish a better level of 30 production, the following residues Lys83, Lys84, Asn220, Asn223, His225 and Asp227 should be substituted to serin, not alanine. Additionally, to avoid a reduction in expression levels, the residues Lys35, Asp173, his187,

Ser188, Ser189, Glu190 and Gln204 should be conserved. 35

15

0

→ PV

+46 40 260516

Ink. t. Patent- och reg.verket

2001 -06- 28

Huvudfaxen Kassan

54

Example 10

Evaluation of biological function within the different Sac variants

[0169] Because the superantigens were primarily designed for tumor therapy (Dohlsten et al., 1994), it was important to avoid replacements decreasing tumor directed cytotoxicity within the novel superantigen variants. The ability to mediate this tumor directed cytotoxicity were therefore measured for all new superantigen variants in a SADCC assay (Fig. 3). In addition, the efficiency of

a SADCC assay (Fig. 3). In addition, the efficiency of superantigens to mediate T cell killing of MHC class II expressing cells results in systemic cytotoxicity that could cause side effects measured in a SDCC assay (FIG.

3). For clinical use, the SDCC should most likely be low to increase the therapeutic window.

[0170] Most of the initial set of SAg variants had the same level of tumor specific cytotoxic potency as SEA/E-18 (Table 1). The exceptions were SEA/E-75 with the replacements Lys74Thr, Asp75Ala and Asn78Ser which was

decreased tenfold and SEA/E-64, with the replacements Glu34Lys, Lys35Glu, Glu39Lys, Asn40Ser, Lys41Glu and Glu42Lys, which was decreased fivefold compared to SEA/E-18 (Tablel). Interestingly, the decreased activity in SEA/E-75 was only observed in this variant, in combina-

tion with further substitutions for example in SEA/E-109 full activity was detected (table1). In addition the SDCC activity was unchanged in SEA/E-75 compared to SEA/E-18. The substitutions Lys74Thr, Asp75Ala and Asn78Ser were therefore likely to disturb the interactions important for the antibody dependent cytotoxicity alone.

[0171] The majority of the superantigen variants described herein did show a clear reduction in SDCC. A slight decrease in SDCC activity was observed for the initial variants SEA/E-62, SEA/E-63, SEA/E-64, SEA/E-65 and

35 SEA/E-74 in comparison with SEA/E-18.

[0172] All the superantigen variants contained the substituted residue Asp227Ala or Ser. This substitution was

10

+46 40 260516

Ink. t. Patent- och reg.verket

→ PV

2001-06-28

Huvudfaxen Kassan

55

known to reduce the affinity to MHC class II 100 times and thereby the SDCC activity (Abrahmsén et al., 1995). However, since SAg variant SEA/E-109, with the N-terminal substitutions, showed a greater decrease compared to SEA/E-18 than SEA/E-113, with the C-terminal substitutions, this indicated that within SEA/E-109 additional residues have been changed that are important for the SDCC and most likely bind to MHC class II (FIG.8). [0173] Thus, the residues that caused the greatest reduction were Lys79Ser and Lys81Ser in SEA/E-83 and the substitution Asp45Ala in SEA/E-74. Most of these substitutions are located around the residues that have previously been shown to interact with MHC class II (Abrahmsén et al., 1995).

Example 11 15

Design of a novel superantigen variant [0174] In order to design the optimal superantigen

variant, all favorable substitutions were combined leading to the superior SEA/E-120 (FIG.4 and FIG 9).

[0175] First, all favorable modifications in the C-ter-20 minal i.e., residues Asp173Ala, Ser189Thr, Glu190Ala, Lys217Thr, Asn220Ser, Glu222Thr, Asn223Ser, His225Ser and Asp227Ser together with Gln204Thr were assembled forming

SAg variant SEA/E-113. This variant exhibited the expected reduction in anti-SEA reactivity and acceptable levels 25 of expression but with a somewhat decreased biological activity (Table 1, FIG. 7 and FIG. 8A and FIG. 8B). All favorable substitutions in the N-terminal i.e., residues Glu34Ser, Glu39Ser, Asn40Ser, Lys41Glu, Glu42Lys,

Asp44Ala, Glu49T, Lys74T, Asn78Ser, Lys79Glu, Lys81Glu, 30 Lys83Ser and Lys84Ser were assembled into SEA/E-109. A remarkable decrease in anti-SEA reactivity was observed for this superantigen variant along with a high level of expression and even improved biological profile (Table 1,

FIG. 7 and FIG. 8A and FIG. 8B). However, when creating 35 the combination of these two variants SEA/E-113 and SEA/E-109 in SEA/E-110, there was a dramatic loss of both

Ink. t. Paterit- och ren verket

2001-06-28

Huvudfaxen Kassan

56

yield and biological function (Table1). The biological potency was fully recovered when wild type residues Ser189, Glu190 and Gln204 were used again in SEA/E-115 (Table1), but production levels were still at a low

level. Molecular modeling of this variant suggested that residues Aspl73, Hisl87 and Serl88, could be important for the stabilization of the fold and subsequently resulting in higher yields.

[0176] Several different combinations were made to evaluate these residues, resulting in SEA/E-118, SEA/E-119, SEA/E-120, SEA/E-121 and SEA/E-122 (Table1). Best production was obtained with SEA/E-120 with wild type residues in all three positions. Together with formerly made SEA/E-21, SEA/E-74, SEA/E-97, SEA/E-108 and SEA/E-109,

these were the only SAg variants reaching expression levels of more than 20mg/l (Table 1). No significant differences in regard of biological activity or antibody reactivity were observed between the variants.

Design of a novel conjugate

20 [0177] SEA/E-120 was genetically fused to the Fab moiety of the tumor reactive antibody that is 5T4 (Dohlsten et al., 1994) (FIG. 10).

[0178] The antigen of 5T4 is expressed on a variety of different tumors, such as non-small cell lung cancer,

breast cancer, renal cell cancer, pancreatic cancer, ovarian cancer and colon cancer. Substitutions in the wildtype sequence of 5T4 were also made to accomplish higher yields. In the Heavy chain; His41Pro, Ser44Gly, Ile69Thr and Vall13Gly and in the Light chain; Phel0Ser,

30 Thr45Lys, Ile63Ser, Phe73Leu, Thr77Ser, Leu78Val and Leu83Ala.

[0179] Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can

35 be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not

10

0

+46 40 260516

Ink. t. Patent- och reg.verket

→ PV

2001 -06- 2 8

Huvudfaxen Kassan

57

intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herain may be utilised according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

15 [0180] One of skill in the art readily appreciates that the present invention is well adapted to carry out the objectives and obtain the ends and advantages mentioned as well as those inherent therein. Compositions, methods, procedures and techniques described herein are presently representative of the preferred embodiments and are intended to be exemplary and are not intended as limitations of the scope. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention or defined by the scope of the pending claims.

Ink. t. Patent- och reg.verket

→ PV

2001-06-28

Huvudfaxen Kassan

58

REFERENCES CITED

[0181] All patents and publications mentioned in the specification are indicative of the level of those skilled in the art to which the invention pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was speci-fically and individually indicated to be incorporated by reference.

- U.S. Patent 4,554,101
- 10 U.S. Patent 5,221,605
 - U.S. Patent 5,238,808
 - U.S. Patent 5,798,208
 - U.S. Patent 5,830,650
 - U.S. Patent 5,220,007
- 15 U.S. Patent 5,284,760
 - U.S. Patent 5,354,670
 - U.S. Patent 5,366,878
 - U.S. Patent 5,389,514
 - U.S. Patent 5,635,377
- 20 U.S. Patent 5,789,166
 - U.S. Patent 5,446,128
 - U.S. Patent 5,710,245
 - U.S. Patent 5,840,833
 - U.S. Patent 5,859,184
- 25 U.S. Patents 5,440,013
 - U.S. Patent 5,618,914
 - U.S. Patent 5,670,155
 - U.S. Patent 5,475,085
 - U.S. Patent 5,929,237
- 30 U.S. Patent 5,672,681
 - U.S. Patent 5,674,976
 - U.S. Patents 4,608,251
 - U.S. Patent 4,601,903
 - U.S. Patent 4,599,231
- 35 U.S. Patent 4,599,230
 - U.S. Patent 4,596,792
 - U.S. Patent 4,578,770

2001 -06- 2 8

Huvudfaxen Kassan

59

Abrahmsén L., et al. EMBO J. 14:2978-86, 1995.

Alpaugh R. K., et al. Clin Cancer Res. 4:1903-14, 1998.

Antonsson P., et al. J Immunol 158:4245-51, 1997.

Bangham et al., J. Mol. Biol., 13:238-252, 1965.

- Bird et al., Science. 242:423-6,1988.
 Braisted et al, Proc Natl Acad Sci U S A. 93(12):5688-92, 1996.
 Burks et al., Proc Natl Acad Sci U S A. 94(2):412-7,
- Capaldi et al., Biochem. Biophys. Res. Comm., 76:425, 1977.
 Cavallin A., et al. J Biol Chem. 275:1665-72, 2000.
 Cunningham et al., Science. 244(4908):1081-5, 1989.
 Davis et al., Basic Methods in Molecular Biology, 1986
- Dohlsten M., et al. Proc Natl Acad Sci U.S.A. 91:8945-9, 1994.

 DRUG CARRIERS IN BIOLOGY AND MEDICINE, G. Gregoriadis ed.

Hakansson, M. et al. J Mol Biol. 302:527-37, 2000.

(1979) pp. 287-341.

- 20 Harlow, et al. Antibodies: A Laboratory Manual, 1988.
 Johannesson et al., J. Med. Chem. 42:601-608, 1999.
 Kaneda et al., J Biol Chem., 264(21):12126-12129, 1989.
 Kato et al., J Biol Chem., 266(6):3361-3364, 1991.
 Nicolau et al., Methods Enzymol., 149:157-176, 1987.
- Papageorgiou A. C. et al. Trends in Microbiology 8: 369-375, 2000.
 Remington's Pharmaceutical Sciences, 15th Edition,
 Chapter 61, pages 1035-1038 and 1570-1580.

Sambrook et. al., In: Molecular Cloning: A Laboratory

- 30 Manual, 2d Ed.,1989.

 Schad E. M., et al. EMBO J. 14:3292-3301, 1995.

 Short et al., J Biol Chem. 270(48):28541-50, 1995.

 Sundstrom M, et al. EMBO J. 15:6832-40, 1996 A.

 Sundstrom M., et al. J Biol Chem 271:32212-16, 1996 B.
- 35 Szoka and Papahadjopoulos, Proc. Natl. Acad. Sci.,
 75:4194-4198, 1978.
 Vita et al., Biopolymers 47:93-100, 1998.

→ PV

5

+46 40 260516

Ink. t. Patent- och reg.verket

2001-06-28

Huyudfaxon Kassan

60

Warren et al., Biochemistry 35(27):8855-62, 1996.
Weisshoff et al., Eur. J. Biochem. 259:776-788, 1999.
Wells et al., Methods. 10(1):126-34, 1996.
Wong et al., Gene, 10:87-94, 1980.
Yelton et al., J Immunol. 155(4):1994-2004, 1995.

15

20

25

30

35

۵

Ink. t. Patent- och reg.verket

→ PV

2001-06-28

61

Huvudfaxen Kassan

CLAIMS

A conjugate comprising a bacterial superantigen
 and an antibody moiety, wherein

the amino acid sequence of the superantigen comprises regions A to E, which region A is within the TCR binding site and determines the binding to TCR, and regions B to E determine binding to MHC Class II molecules,

the amino acid sequence of the superantigen has been substituted so that one or more amino acid residues in any of the regions A to E have been replaced with one or more different amino acid residues, such that the substituted superantigen has reduced seroreactivity compared to the superantigen from which it has been derived,

and wherein the antibody moiety is a full length antibody or any other antigen binding antibody active fragment, which is directed against a cancer-associated cell surface structure.

- 2. A conjugate according to claim 1, wherein the superantigen is a staphylococcal enterotoxin (SE), a Streptococcus pyogenes exotoxin (SPE), a Staphylococcus aureus toxic shock-syndrome toxin (TSST-1), a streptococcal mitogenic exotoxin (SME) or a streptococcal superantigen (SSA).
- 3. A conjugate according to claim 2 wherein the superantigen is Staphylococcal enterotoxin A (SEA) or E (SEE).
- 4. A conjugate according to claim 3, in which one or more of the amino acid residues at position 79, 81, 83 and 84 within region C of SEE have been replaced.
- 5. A conjugate according to claim 4, in which one or more of the amino acid residues at position 20, 21, 24, 27, 173 and 204 within region A and 227 within region E of SEE have additionally been replaced.

10

30

35

0

Ink. t. Patent- och reg.verket

→ PV

2001 -06- 2 8

Huvudfaxen Kassan

- 6. A conjugate according to claim 5, in which one or more of the amino acid residues at position 34, 35, 39, 40, 41, 42, 44, 45, 49 within region B of SEE and/or at position 74, 75, 78 within region C of SEE and/or at position 187, 188, 189, 190 within region D of SEE and/or at position 217, 220, 222, 223, 225 within region E of SEE have additionally been replaced.
- 7. A conjugate according to claim 6, wherein the following amino acid residues replacement have been introduced in the SEE sequence: R20G, N21T, S24G, R27K, K79E, K81E, K83S, K84S and D227S (or A).
 - 8. A conjugate according to claim 6, wherein the superantigen has the amino acid sequence depicted in SEQ ID NO: 2 (SEA/E-120).
- 9. A conjugate according to any one of the preceding 15 claims, wherein the antibody moiety is a Fab fragment.
 - 10. A conjugate according to claim 9, wherein the antibody moiety is C215Fab.
- 11. A conjugate according to claim 9, wherein the antibody moiety is 5T4Fab. 20
 - 12. A conjugate according to claim 1, which has the amino acid sequence depicted in SEQ ID NO: 1.
 - 13. A conjugate according to any one of the preceding claims further comprising a cytokine.
- 14. A conjugate according to claim 13, wherein the 25 cytokine is an interleukin.
 - 15. A conjugate according to claim 14, wherein the interleukin is IL2 or a derivative thereof having essentially the same biological activity of native IL2.
 - 16. A conjugate according to any one of the preceding claims for use in the treatment of cancer.
 - 17. A conjugate as claimed in claim 16, wherein the cancer is selected from the group consisting of lung, breast, colon, kidney, pancreatic, ovarian, stomach, cervix and prostate cancer.

15

20

25

30

35

+46 40 260516

Ink. t. Patent- och reg.verket

2001-06-28

Huvudfaxen Kassan

63

- 18. Use of a conjugate according to any one of claims 1 to 15 for the manufacture of a medicament for treating cancer.
- 19. Use according to claim 18, wherein the medicament is for intravenous administration.
- 20. A pharmaceutical composition comprising, as active ingredient, a therapeutically effective amount of a conjugate according to any one of claims 1 to 15.
- 21. A composition according to claim 20, wherein the active ingredient comprises a cytokine.
 - 22. A composition according to claim 21, wherein the cytokine is part of the conjugate.
 - 23. A composition according to claim 21, wherein the cytokine is present as an unconjugated component, in a combined preparation for simultaneous, separate or sequential use in anticancer therapy.
 - 24. A composition according to any of claims 21 to 23, wherein the superantigen has the amino acid sequence of SEQ ID NO:2, the antibody moiety is C215Fab and the cytokine is IL2 or a derivative thereof having essentially the same biological activity of native IL2.
 - 25. A composition according to any of claims 21 to 23, wherein the superantigen has the amino acid sequence of SEQ ID NO:2, the antibody moiety is 5T4Fab and the cytokine is IL2 or a derivative thereof having essentially the same biological activity of native IL2.
 - 26. A method of treating cancer in a mammal by activation of the immune system of said mammal, which method comprises administering to the mammal a therapeutically effective amount of a conjugate comprising a superantigen and an antibody moiety, wherein

the superantigen comprises regions A to E, which region A is within the TCR binding site and determines the binding to TCR, and regions B to E determine binding to MHC Class II molecules,

the amino acid sequence of the superantigen has been substituted so that one or more amino acid residues in

15

30

0

+46 40 260516

→ PV Ink. t. Patent- och reg.verket

2001 -06- 2 8

Huvudlaxen Kassan

64

any of the regions A to E have been replaced with one or more different amino acid residues, such that the substituted superantigen has reduced seroreactivity compared to the superantigen from which it has been derived,

and wherein the antibody moiety is a full length antibody or any other antigen binding antibody active fragment, which is directed against a cancer-associated cell surface structure.

- 27. The method of claim 26, wherein the superantigen is a staphylococcal enterotoxin (SE), a Streptococcus pyogenes exotoxin (SPE), a Staphylococcus aureus toxic shock-syndrome toxin (TSST-1), a streptococcal mitogenic exotoxin (SME) or a streptococcal superantigen (SSA).
 - 28. The method of claim 27, wherein the superantigen is Staphylococcal enterotoxin A (SEA) or E (SEE).
 - 29. The method of claim 28, in which one or more of the amino acid residues at position 79, 81, 83 and 84 within region C of SEE have been replaced.
- 30. The method of claim 29, in which one or more of the amino acid residues at position 20, 21, 24, 27, 173 and 204 within region A and 227 within region E of SEE have additionally been replaced.
 - 31. The method of claim 30, in which one or more of the amino acid residues at position 34, 35, 39, 40, 41,
- 42, 44, 45, 49 within region B of SEE and/or at position 74, 75, 78 within region C of SEE and/or at position 187, 188, 189, 190 within region D of SEE and/or at position 217, 220, 222, 223, 225 within region E of SEE have additionally been replaced.
 - 32. The method of claim 31, wherein the following amino acid residues replacement have been introduced in the SEE sequence: R20G, N21T, S24G, R27K, K79E, K81E, K83S, K84S and D227S(or A).
- 33. The method of claim 32, wherein the superantigen 35 has the amino acid sequence depicted in SEQ ID NO: 2 (SEA/E-120).

→ PV

+46 40 260516

Ink. t. Patent- och reg.verket

2001-06-28

Huvudfaxen Kassan

- 34. The method of claim 33, wherein the antibody moiety is a Fab fragment.
- 35. The method of claim 34, wherein the antibody moiety is C215Fab.
- 36. The method of claim 34, wherein the antibody moiety is 5T4Fab.
 - 37. The method according to claim 26, wherein the conjugate has the amino acid sequence depicted in SEQ ID NO: 1.
- 38. The method of any one of claims 26 to 37, 10 further comprising a cytokine.
 - 39. The method of claim 38, wherein the cytokine is an interleukin.
- 40. The method of claim 39, wherein the interleukin is IL2 or a derivative thereof having essentially the 15 same biological activity of native IL2.
 - 41. A method according to any one of the preceding claims wherein the cancer is selected from the group consisting of lung, breast, colon, kidney, pancreatic,
- ovarian, stomach, cervix and prostate cancer. 20

+46 40 260516

Ink. t. Patent- och reg.verket

→ PV

2001 -06- 28

Huvudfaxen Kassan

66

ABSTRACT

The present invention relates to compositions and methods of use, wherein the composition comprises a conjugate of a bacterial superantigen and an antibody moiety. More particularly, the bacterial superantigen has been modified to decrease seroreactivity with retained superantigen activity.

Elected for publication: Fig. 10

→ PV

+46 40 260516

1

Ink. t. Patent- och reg.verket

2001-06-28

Huvudfaxen Kassan

SEQUENCE LISTING

<110> FORSBERG, GORAN ERLANDSSON, EVA Antonsson, Per WALSE, BJORN

<120> A NOVEL ENGINEERED SUPERANTIGEN FOR HUMAN THERAPY

<130> 2010137

<140> TBA

<141> 2001-06-20

<160> 7

<170> PatentIn version 3.0

<210> 1

<211> 672

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(673)

<223> Conjugate protein

<400> 1

0

Glu Val Gln Leu Gln Gln Ser Gly Pro Asp Leu Val Lys Pro Gly Ala 10

Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ser Phe Thr Gly Tyr

Tyr Met His Trp Val Lys Gln Ser Pro Gly Lys Gly Leu Glu Trp Ile

Gly Arg Ile Asn Pro Asn Asn Gly Val Thr Leu Tyr Asn Gla Lys Phe 60

Lys Asp Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Thr Thr Ala Tyr

Met Glu Leu Arg Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 90

Ala Arg Ser Thr Met Ile Thr Asn Tyr Val Met Asp Tyr Trp Gly Gln 105

Gly Thr Ser Val Thr Val Ser Ser Ala Lys Thr Thr Pro Pro Ser Val 120

Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met Val Thr

Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr 160 155 150

Ink. t. Patent- och reg.

2

AWAPATIAIT AB

Huvudfaxen Kass

2001 -06- 2

Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser 185 Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Ser Gly Gly Pro Ser Glu Lys Ser Glu Glu Ile Asn Glu Lys Asp Leu Arg Lys Ser Glu Leu Gln Gly Thr Ala Leu Gly Asn Leu Lys Gln Ile Tyr Tyr Tyr Asn Ser Lys Ala Ile Thr Ser Ser Glu Lys Ser Ala Asp Gln Phe Leu Thr Asn Thr Leu Leu Phe Lys Gly Phe Phe Thr Gly His Pro Trp 280 Tyr Asn Asp Leu Leu Val Asp Leu Gly Ser Thr Ala Ala Thr Ser Glu Tyr Glu Gly Ser Ser Val Asp Lou Tyr Gly Ala Tyr Tyr Gly Tyr Gln Cys Ala Gly Gly Thr Pro Asn Lys Thr Ala Cys Met Tyr Gly Gly Val Thr Leu His Asp Asn Asn Arg Leu Thr Glu Glu Lys Lys Val Pro Ile Asn Leu Trp Ile Asp Gly Lys Gln Thr Thr Val Pro Ile Asp Lys Val Lys Thr Ser Lys Lys Glu Val Thr Val Glu Glu Leu Asp Leu Gln Ala Arg His Tyr Leu His Gly Lys Phe Gly Leu Tyr Asn Ser Asp Ser Phe Gly Gly Lys Val Gln Arg Gly Leu Ile Val Phe His Ser Ser Glu Gly Ser Thr Val Ser Tyr Asp Leu Phe Asp Ala Gln Gly Gln Tyr Pro Asp 420 Thr Leu Leu Arg Ile Tyr Arg Asp Asn Thr Thr Ile Ser Ser Thr Ser 440 Leu Ser Ile Ser Leu Tyr Leu Tyr Thr Thr Ser Ile Val Met Thr Gln 455 Thr Pro Thr Ser Leu Leu Val Ser Ala Gly Asp Arg Val Thr Ile Thr

Cys Lys Ala Ser Gln Ser Val Ser Asn Asp Val Ala Trp Tyr Gln Gln

3

Ink. t. Patent- och reg.ver-

2001-06-28

Huvudfoxen Kassan

485 490 495

Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Ser Tyr Thr Ser Ser Arg
500 505 510

Tyr Ala Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Tyr Gly Thr Asp
515 520 525

Phe Thr Leu Thr Ile Ser Ser Val Gln Ala Glu Asp Ala Ala Val Tyr 530 535 540

Phe Cys Gln Gln Asp Tyr Asn Ser Pro Pro Thr Phe Gly Gly Gly Thr

Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe 565 570 575

Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys 580 585 590

Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile
595 600 605

Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln 610 620

Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr 625 630 635

Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His 645 650 655

Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Ser

<210> 2

. 0

a

<211> 233

<212> PRT

<213> Artificial Sequence

<220>

<221> Peptide

<222> (1)..(233)

<223> Chimeric Protein

<400> 2

Ser Glu Lys Ser Glu Glu Ile Asn Glu Lys Asp Leu Arg Lys Lys Ser 1 5 10 15

Glu Leu Gln Gly Thr Ala Leu Gly Asn Leu Lys Gln Ile Tyr Tyr Tyr 20 25 30

Asn Ser Lys Ala Ile Thr Ser Ser Glu Lys Ser Ala Asp Gln Phe Leu 35 40 45

Thr Asn Thr Leu Leu Phe Lys Gly Phe Phe Thr Gly His Pro Trp Tyr 50 55 60

Asn Asp Leu Leu Val Asp Leu Gly Ser Thr Ala Ala Thr Ser Glu Tyr

+46 40 260516

4

Ink. t. Patent- och reg ver

2001 -05- **2 8**

Huvudfaxen Kassan

```
75
                         70
65
```

Glu Gly Ser Ser Val Asp Leu Tyr Gly Ala Tyr Tyr Gly Tyr Gln Cys

Ala Gly Gly Thr Pro Asn Lys Thr Ala Cys Met Tyr Gly Gly Val Thr

Leu His Asp Asn Asn Arg Leu Thr Glu Glu Lys Lys Val Pro Ile Asn

Leu Trp Ile Asp Gly Lys Gln Thr Thr Val Pro Ile Asp Lys Val Lys

Thr Ser Lys Lys Glu Val Thr Val Gln Glu Leu Asp Leu Gln Ala Arg

His Tyr Leu His Gly Lys Phe Gly Leu Tyr Asn Ser Asp Ser Phe Gly

Gly Lys Val Gln Arg Gly Leu Ile Val Phe His Ser Ser Glu Gly Ser

Thr Val Ser Tyr Asp Leu Phe Asp Ala Gln Gly Gln Tyr Pro Asp Thr

Leu Leu Arg Ile Tyr Arg Asp Asn Thr Thr Ile Ser Ser Thr Ser Leu 215

Ser Ile Ser Leu Tyr Leu Tyr Thr Thr 230

<210> 3

0

<211> 233

<212> PRT

<213> Artificial Sequence

<220>

<221> peptide

<222> (1)..(233)

<223> Chimeric Protein

<400> 3

Ser Glu Lys Ser Glu Glu Ile Asn Glu Lys Asp Leu Arg Lys Lys Ser

Glu Leu Gln Gly Thr Ala Leu Gly Asn Lou Lys Gln Ile Tyr Tyr

Asn Glu Lys Ala Ile Thr Glu Asn Lys Glu Ser Asp Asp Gln Phe Leu

Glu Asn Thr Leu Leu Phe Lys Gly Phe Phe Thr Gly His Pro Trp Tyr

Asn Asp Leu Leu Val Asp Leu Gly Ser Lys Asp Ala Thr Asn Lys Tyr

Lys Gly Lys Lys Val Asp Leu Tyr Gly Ala Tyr Tyr Gly Tyr Gln Cys

95

85

5

90

Ink. t. Patent- och reg.verket

2001 -06- 2 B

Huvudfaxen Kassan

Ala Gly Gly Thr Pro Asn Lys Thr Ala Cys Met Tyr Gly Gly Val Thr

Leu His Asp Asn Asn Arg Leu Thr Glu Glu Lys Lys Val Pro Ile Asn

120

Leu Trp Ile Asp Gly Lys Gln Thr Thr Val Pro Ile Asp Lys Val Lys

Thr Ser Lys Lys Glu Val Thr Val Gln Glu Leu Asp Leu Gln Ala Arg 150

His Tyr Leu His Gly Lys Phe Gly Leu Tyr Asn Ser Asp Ser Phe Gly

Gly Lys Val Gln Arg Gly Leu Ile Val Phe His Ser Ser Glu Gly Ser

Thr Val Ser Tyr Asp Leu Phe Asp Ala Gln Gly Gln Tyr Pro Asp Thr

Leu Leu Arg Ile Tyr Arg Asp Asn Lys Thr Ile Asn Ser Glu Asn Leu

His Ile Ala Leu Tyr Leu Tyr Thr Thr

<210> 4

U

<211> 233

<212> PRT

<213> Staphylococcus sp.

<400> 4

Ser Glu Lys Ser Glu Glu Ile Asn Glu Lys Asp Leu Arg Lys Lys Ser 10

Glu Leu Gln Gly Thr Ala Leu Gly Asn Leu Lys Gln Ile Tyr Tyr

Asn Glu Lys Ala Lys Thr Glu Asn Lys Glu Ser His Asp Gln Phe Leu

Gln His Thr Ile Leu Phe Lys Gly Phe Phe Thr Asp His Ser Trp Tyx

Asn Asp Leu Leu Val Asp Phe Asp Ser Lys Asp Ile Val Asp Lys Tyr

Lys Gly Lys Lys Val Asp Leu Tyr Gly Ala Tyr Tyr Gly Tyr Gln Cys

Ala Gly Gly Thr Pro Asn Lys Thr Ala Cys Met Tyr Gly Gly Val Thr

Leu His Asp Asn Asn Arg Leu Thr Glu Glu Lys Lys Val Pro Ile Asn

Leu Trp Leu Asp Gly Lys Gln Asn Thr Val Pro Leu Glu Thr Val Lys

146 46 66631

6

AWAPATIANT AB

Ink. t. Patent- och reg.v 2001 -06- 2 &

Huvudlaxen Kass

130 135 140

Thr Asn Lys Lys Asn Val Thr Val Glu Leu Asp Leu Gln Ala Arg 145 150 155 160

Arg Tyr Leu Gln Glu Lys Tyr Asn Leu Tyr Asn Ser Asp Val Phe Asp 165 170 175

Gly Lys Val Gln Arg Gly Lou Ile Val Phe His Thr Ser Thr Glu Pro 180 185 190

Ser Val Asn Tyr Asp Leu Phe Gly Ala Gln Gly Gln Tyr Ser Asn Thr 195 200 205

Leu Leu Arg Ile Tyr Arg Asp Asn Lys Thr Ile Asn Ser Glu Asm Met 210 215 220

His Ile Asp Ile Tyr Leu Tyr Thr Ser 225 230

<210> 5

O

0

<211> 203

<212> PRT

<213> Staphylococcus sp.

<400> 5

Ala Leu His Lys Lys Ser Glu Leu Ser Ser Thr Ala Leu Asn Asn Met
1 5 10 15

Lys His Ser Tyr Ala Asp Ala Asn Pro Ile Ile Gly Ala Asn Lys Ser 20 25 30

Thr Gly Asp Gln Phe Leu Glu Asn Thr Leu Leu Tyr Lys Ala Phe Phe

Leu Leu Ile Asn Phe Asn Ser Ala Glu Met Ala Gln His Phe Lys Ser 50 55 60

Lys Asn Val Asp Val Tyr Ala Ile Arg Tyr Ala Ala Ala Cys Arg Thr 65 70 75 80

Ala Cys Thr Tyr Gly Gly Val Thr Pro His Ala Gly Asn Ala Leu Lys 85 90 95

Ala Arg Lys Lys Ile Pro Ile Asn Leu Trp Ile Ile Gly Val Gln Lys
100 105 110

Glu Val Ser Leu Asp Lys Val Gln Thr Asp Lys Lys Asn Val Thr Val 115 120 125

Gln Glu Leu Asp Ala Gln Ala Arg Arg Tyr Leu Gln Lys Asp Leu Lys 130 135 140

Leu Tyr Asn Ala Ile Gln Arg Gly Lys Leu Glu Pho Asp Ser Ala Ala 145 150 155 160

Ala Ser Lys Val Ser Tyr Asp Leu Phe Asp Val Ala Gly Asp Phe Pro 165 170 175

Glu Lys Gln Leu Arg Ile Tyr Ser Asp Asn Lys Thr Leu Ser Thr Glu

7

Ink. t. Patent- och reg.verk 2001 -06- 2 8

→ PV

Huvudfaxen Kassan

190 185 180

His Leu His Ile Asp Ile Tyr Leu Tyr Glu Ala

<210> 6

<211> 217

<212> PRT

<213> Staphylococcus sp.

<400> 6

0

O

Glu Asp Leu His Asp Lys Ser Glu Leu Thr Asp Leu Ala Leu Ala Asn

Ala Tyr Gly Gln Tyr Asn His Pro Phe Ile Lys Glu Asn Ile Lys Ser

Asp Glu Ile Ser Gly Glu Lys Asp Leu Ile Phe Arg Asn Gln Gly Asp

Ser Cly Asn Asp Leu Arg Val Lys Phe Ala Thr Ala Asp Leu Ala Gln

Lys Phe Lys Asn Lys Asn Val Asp Ile Tyr Gly Ala Ser Phe Tyr Tyr

Lys Cys Glu Lys Ile Ser Glu Asn Ile Ser Glu Cys Leu Tyr Gly Gly

Thr Thr Leu Asn Ser Glu Lys Leu Ala Gln Glu Arg Val Ile Gly Ala

Asn Val Trp Val Asp Gly Ile Gln Lys Glu Thr Glu Leu Ile Arg Thr

Asn Lys Lys Asn Val Thr Leu Gln Glu Leu Asp Ile Lys Ile Arg Lys

Ile Leu Ser Asp Lys Tyr Lys Ile Tyr Tyr Lys Asp Ser Glu Ile Ser

Lys Gly Leu Ile Glu Phe Asp Met Lys Thr Pro Arg Asp Tyr Ser Phe

Asp Ile Tyr Asp Leu Lys Gly Glu Asn Asp Tyr Glu Ile Asp Lys Ile 185

Tyr Glu Asp Asn Lys Thr Leu Lys Ser Asp Asp Ile Ser His Ile Asp 200

Val Asn Leu Tyr Thr Lys Lys Lys Val 215 210

<210>

<211> 233

<212> PRT

<213> Staphylococcus sp.

<400> 7

O"

8

Ink. t. Patent- och rc 2001 -85- 2 Huvudfaxen Ko

Ser Glu Lys Ser Glu Glu Ile Asn Glu Lys Asp Leu Arg Lys Lys Ser 1 5 10 15

Glu Leu Gln Arg Asn Ala Leu Ser Asn Leu Arg Gln Ile Tyr Tyr Tyr 20 25 30

Asn Glu Lys Ala Ile Thr Glu Asn Lys Glu Ser Asp Asp Gln Phe Leu 35 40 45

Glu Asn Thr Leu Leu Phe Lys Gly Phe Phe Thr Gly His Pro Trp Tyr 50 55 60

Asn Asp Leu Leu Val Asp Leu Gly Ser Lys Asp Ala Thr Asn Lys Tyr 65 70 75 80

Lys Gly Lys Lys Val Asp Leu Tyr Gly Ala Tyr Tyr Gly Tyr Gln Cys 85 90 95

Ala Gly Gly Thr Pro Asn Lys Thr Ala Cys Met Tyr Gly Gly Val Thr

Leu His Asp Asn Asn Arg Leu Thr Glu Glu Lys Lys Val Pro Ile Asn 115 120 125

Leu Trp Ile Asp Gly Lys Gln Thr Thr Val Pro Ile Asp Lys Val Lys
130 135 140

Thr Ser Lys Lys Glu Val Thr Val Gln Glu Leu Asp Leu Gln Ala Arg 145 150 155 160

His Tyr Leu His Gly Lys Phe Gly Leu Tyr Asn Ser Asp Ser Phe Gly 165 170 175

Gly Lys Val Gln Arg Gly Leu Ile Val Phe His Ser Ser Glu Gly Ser

Thr Val Ser Tyr Asp Leu Phe Asp Ala Gln Gly Gln Tyr Pro Asp Thr

Leu Leu Arg Ile Tyr Arg Asp Asn Lys Thr Ile Asn Ser Glu Asn Leu 210 215 220

His Ile Asp Leu Tyr Leu Tyr Thr Thr 225 230

Ink. t. Patent- och reg.verket

2001 -06- 2 8

Huvudfaxen Kassan

V

AWAPATIATT AB

+46 40 260516

Ink. t. Patent- och reg.verke

2001 -05- 2 8

Huvudlaxen Kassan

PV

Ink. t. Patent- och reg.verket

2001 -06- 2 8

Huvudfaxen Kassan

EKAKTENKESHDQF ALHKKSELSSTALNNMKHSYADA---NPIIGANKSTGDOF --EKAITENKESDDOF <u>FIDLHOKSELTDLALANAYGOY</u>NHPFIK<u>ENIKSDEISGEKDL</u> : SEKSEEINEKDLRKKSELQGTALGNLKQIYYYN-Sekseetnendlrkkselogtalgnlkotytyn SEAE18 の西田 SEQ ID NO: 3 S SEQ ID NO: 4 S SEQ ID NO: 5 S SEQ ID NO: 6

--ndenvkfatadlaqkfknknvdiygasfyykcē Lentllekgfetghpwxndllvdlgskdatnkykgkkvdlygayygyqa <u>LOHTILFKGFFTDHSWYNDLLVDFDSKDIVDKYKGKKVDLYGAYYGYQCA</u> -----|LLINFNSAEMAQHFKSKNVDVYAIRYAAAG LENTLLYKAFF---IFRNOGDSG

SEAE18:

SEA SED SEH

GGFPNKTACMYGGVTLHDNNRLTEEKKVPINLWIDGKQNTVFLETVKTNK ---rtactyggvtph<mark>a</mark>gnalkarkkipinlwiigvokevs**ldk**votdk KISENISECLYGGTTLM-SEKLAQERVIGANVWVDGIQKETE--LIRTNK SEAE18: GGTPNKTACMYGGVTLHDNNRLTEEKKVPINLWIDGKQTTVPIDKVKTSK SEA SED

SEH

--AIQRGKLEFDS**A**AASKV**S**YD KNVTIQELDIKIRKILSDKYKIYY---KDSEISKGLIEFDMKTPRDYSFD SEAE18: KEVTVQELDLQARHYLHGKFGLYNSDSFGGKVQRGLIVFHSSEGSTVSYD KNVTVOELDLOARRYLOEKYNLYNSDVFDGKVORGLIVFHTSTEPSVNYD KNVTVQELDAQARRYLQKOLKLYN SEA SED SEH

LFGAQGQYSNTLLRIYRDNKTINSENM-HIDIYLYTS SEAE18: LEDAÇGQYPDTLLRIYRDNKTINSEN-LHIALYLYTT

IYDLKGENDYEIDKIYEDNKTLKSDDI**S**HIDVNLYTKKV Lfdvagdfpekolriysdnktlsteh-thidiylyeh SED SEX

0

ø

Ink. t. Patent- och reg.verket

2001 -06- 2 8

Kassan

rg 60 rg 60 rg 60 rd 60	LT 120 LT 120 LT 120 LT 120 **	VQ 180 .VQ 180 .VQ 180 **	Huvudfaxen Ko
SEKSEEINEKDLRKKSELQGTALGNLKQIYYYNSKAITSSEKSADQFLTNTLLFKGFFTG SEKSEEINEKDLRKKSELQGTALGNLKQIYYYNEKAITENKESDDQFLENTLLFKGFFTG SEKSEEINEKDLRKKSELQRNALSNLRQIYYYNEKAITENKESDDQFLENTLLFKGFFTG SEKSEEINEKDLRKKSELQGTALGNLKQIYYYNEKAKTENKESHDQFLQHTILFKGFFTD	PWYNDLLVDLGSTAATSEYEGSSVOLYGAYYGYQCAGGTPNKTACMYGGVTLHDNNRLT HPWYNDLLVDLGSKDATNKYKGKKVVLYGAYYGYQCAGGTPNKTACMYGGVTLHDNNRLT HPWYNDLLVDLGSKDATNKYKGKKVVLYGAYYGYQCAGGTPNKTACMYGGVTLHDNNRLT HSWYNDLLVDFDSKDIVDKYKGKKVVLYGAYYGYQCAGGTPNKTACMYGGVTLHDNNRLT	EEKKVPINLWIDGKQTTVPIDKVKTSKKEVTVQELDLQARHYLHGKFGLYNSDSFGGKVQ EEKKVPINLWIDGKQTTVPIDKVKTSKKEVTVQELDLQARHYLHGKFGLYNSDSFGGKVQ EEKKVPINLWIDGKQTTVPIDKVKTSKKEVTVQELDLQARHYLHGKFGLYNSDSFGGKVQ EEKKVPINLWLDGKQNTVPLETVKTNKKNVTVQELDLQARHYLHGKFGLYNSDSFGGKVQ ************************************	FIG. 4
SEA/E-120 SEA/E-18 SEE SEA	SEA/E-120 SEA/E-18 SEE SEE	SEA/E-120 SEA/E-18 SEE SEA SEA/E-120 SEA/E-18 SEE SEE	
N N N N N N N N N N N N N N N N N N N			

Ink. t. Patent- och rcg.verke

2001 -06- 2 8

Huvudlaxen Kassan

FIG. 5

înk. t. Patent- och reg.verke 2001-06-28

Huvudfaxen Kousan

Ink. t. Patent- och reg.verk

2001 -05- 2 8

Huvudiaxen Kassan

Ink. t. Patent- och reg.verket

2001 -06- 2 8

Huvudlaxen Kassan

Ink. t. Patent- och reg.verket

2001 -06- 2 8

Huvudfaxon Kassan

<u>ල</u>

Ink. t. Patent- och rcg.vcrket

2001 -05- 2 8

Huvudlaxen Kassan

		5T4 V	5T4 Variable Heavy chain	Heavy	chain					
VO: 1 1-50	EVQLQ	aassõ	LVKPG	ASVKI	SCKAS	GYSFT		GYYMH WVKQS PGKGL	PGKGL	EWIGR
51-100	INPNN	GVTLY	INPNN GVTLY NOKFK DKATL TVDKS STTAY	DKATL	TVDKS	STTAY C2	MELRS 42 Cor	AN MELRS LTSED SAVYY CA	SAVYY eavy ch	CARST ain
101-150	MITNY	VMDYW	MITNY VMDYW GOGTS VTVSS AKTTP	VTVSS	AKTTP	PSVYP	PSVYP LAPGS	AAQTN	SMVTL	GCLVK
151-200	GYFPE	PVTVT	WNSGS	LSSGV	LSSGV HTFPA VLQSD LYTLS SSVTV PSSTW SEA/E-120	OLOSD	LYTLS SI	SSVTV	PSSTW 0	PSETV
201-250	TCNVA		HPASS TKVDK KIVPR	KIVPR		DSGGP SEKSE	EINEK	EINEK DLRKK	SELQG	TALGN
251-300	LKQIY	YYNSK	AITSS	EKSAD	ł	QFLTN TLLFK GFFTG HPWYN DLLVD LGSTA	GFFTG	HPWYN	DELVD	LGSTA
301-350	ATSEY	EGSSV	DLYGA	YYGYQ	CAGGT	PNKTA	CMYGG	PNKTA CMYGG VTLHD	NNRLT	ЕЕККУ
351-400	PINLW	IDGKQ	TTVPI	DKVKT	•	SKKEV TVQEL DLQAR HYLHG KFGLY	DLQAR	HYLHG	KFGLY	NSDSF
401-450	GGKVQ	GGKVQ RGLIV	FHSSE	GSTVS ST4 V	GSTVS YDLED AQGQY PDTI ST4 Variable Light chain	AQGQY Light c	PDTLL hain	RIYRD	NTTIS	STSLS
451-500	ISLYL	YTTSI	VMTQT	PTSLL	PISLL VSAGD RVIIT	RVTIT	CKASQ		SVSND VAWYQ	QKPGQ
501-550	SPKLL	ISYTS	SPKLL ISYTS SRYAG VPDRF	VPDRF	SGS	GY GTDFT LTISS VOAED AAVYF C242 Constant Light chain	LTISS stant Li	VOAED	AAVYF in	СООРУ
551-600	NSPPT	FGGGT		RADAA	KLEIK RADAA PTVSI	FPPSS	EQLTS	GGASV	VCFLN	NFYPK
601-650	DINVK	¥KIDG	WKIDG SERON GVLNS WIDOD SKDST YSMSS TLTLT KDEYE RHNSY	GVLNS	WIDQD	SKDST	YSMSS	TLTLT	KDEYE	RHNSY
651-672	TCEAT	HKTST		SPIVK SFNRN ES	ES					

FIG. 10

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

fects in the images include but are not limited to the items checked:
BLACK BORDERS
Mage cut off at top, bottom or sides
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.