Задача А. 17 стульев

 Имя входного файла:
 trader.in

 Имя выходного файла:
 trader.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Остап Бендер снова пытается получить причитающиеся драгоценности, но на этот раз они были заперты в шкатулке, для открытия которой необходимо иметь N ключей. По закономерной случайности каждый из ключей был спрятан в одном из N стульев, распроданных на недавнем аукционе. После аукциона эти стулья были развезены в N городов.

И вот теперь Остап решился на новую безумную затею: заехать в каждый из городов и, провернув в каждом из них аферу, выкрасть необходимые ключи. Чтобы избежать конфликтов с недоброжелателями, Остап не хочет больше одного раза появляться в какомлибо городе. Также у Остапа есть список цен за проезд между каждой парой городов. Изначально Остап находится в городе под номером 1 и после посещения всех городов может незаметно скрыться из этой страны.

Помогите Остапу найти порядок посещения городов, при котором ему потребуется потратить как можно меньше средств на странствия, и тогда, возможно, он поделится с Вами добытыми бриллиантами.

Формат входного файла

Первая строка содержит единственное число N — количество городов ($1 \le N \le 17$).

Следующие N строк содержат по N целых неотрицательных чисел. j-тое число в i-той строке означает стоимость проезда из города i в город j ($0 \le a_{ij} \le 100$). Если $a_{ij} > 0$, то проезд стоит a_{ij} рублей, иначе — это означает, что из города i в j невозможно проехать напрямую.

Формат выходного файла

В первой строке выведите минимальную сумму денег, необходимую для посещения всех городов Остапом. В следующей строке выведите N чисел — порядок посещения городов, при котором эта сумма достигается. Если затею Остапа невозможно вывести, то в единственной строке выходного файла выведите число -1.

Примеры

trader.in	trader.out
3	8
0 3 2	1 3 2
3 0 6	
2 6 0	
5	20
0 6 4 0 0	1 3 2 5 4
6 0 7 0 7	
4 7 0 0 0	
0 0 0 0 2	
0 7 0 2 0	

Задача В. Симпатичные узоры

 Имя входного файла:
 tilings.in

 Имя выходного файла:
 tilings.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Компания BrokenTiles планирует заняться выкладыванием во дворах у состоятельных клиентов узор из черных и белых плиток, каждая из которых имеет размер 1×1 метр. Известно, что дворы всех состоятельных людей имеют наиболее модную на сегодня форму прямоугольника $M \times N$ метров.

Однако при составлении финансового плана у директора этой организации появилось целых две серьезных проблемы: во первых, каждый новый клиент очевидно захочет, чтобы узор, выложенный у него во дворе, отличался от узоров всех остальных клиентов этой фирмы, а во вторых, этот узор должен быть симпатичным.

Как показало исследование, узор является симпатичным, если в нем нигде не встречается квадрата 2×2 метра, полностью покрытого плитками одного цвета.

Для составления финансового плана директору необходимо узнать, сколько клиентов он сможет обслужить, прежде чем симпатичные узоры данного размера закончатся. Помогите ему!

Формат входного файла

На первой строке входного файла находятся два положительных целых числа, разделенные пробелом — M и N ($1 \le M \times N \le 30$).

Формат выходного файла

Выведите в выходной файл единственное число — количество различных симпатичных узоров, которые можно выложить во дворе размера $M \times N$. Узоры, получающиеся друг из друга сдвигом, поворотом или отражением считаются различными.

Примеры

tilings.in	tilings.out
1 1	2
1 2	4
4 1	16
2 3	50

Задача С. Леденящая игра

 Имя входного файла:
 game.in

 Имя выходного файла:
 game.out

 Ограничение по времени:
 3 секунды

 Ограничение по памяти:
 256 мегабайт

Чтобы попасть в команду к Шкиперу пингвин должен пройти ряд испытаний: полоса препятствий от Шкипера, спарринг с Рико, расшифровка кода от Прапора и задача от Ковальски.

Вы, пингвин-новобранец успешно дошли до последнего испытания. Ковальски предлагает вам сыграть в следующую игру. Вам дается m наборов разноцветных льдинок, каждая одного из n цветов. Различные цвета обозначаются различными прописными буквами латинского алфавита. Вы можете взять какое-то подмножество этих наборов при условии, что льдинка каждого цвета будет встречаться не более одного раза в этом подмножестве. Пусть вы выбрали k наборов с индексами $i_1, i_2, \ldots i_k$, тогда ваш выигрыш составляет $\sum_{i=1}^k l_{ij} - k$ баллов, где l_{ij} —количество льдинок в наборе i_j .

Ковальски требует найти подмножество с макимальным количество баллов.

От вас требуется найти любое подмножество, подходящее под условия Ковальски.

Формат входного файла

В первой строке входного файла находится число n ($1 \le n \le 17$) — количество различных цветов. Вторая строка входного файла содержит число m ($1 \le m \le 200000$) — количество различных наборов льдинок. В следующих m строках перечислены сами наборы. Набор с номером i задаётся строкой из первых n строчных латинских букв. Длина каждой строки не больше 17 символов.

Формат выходного файла

В первой строке выходного файла выведите k — количество наборов в ответе. Во второй строке выходного файла выведите k чисел — индексы наборов, входящих в ответ, в произвольном порядке.

Примеры

game.in	game.out
1	0
3	
aaa	
aaaa	
a	
1	0
2	
aaa	
aaaa	
3	1
3	2
aba	
ab	
С	

Задача D. Прочные замощения

 Имя входного файла:
 solid.in

 Имя выходного файла:
 solid.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Замощение прямоугольника $m \times n$ доминошками 2×1 будем называть прочным, если не существует прямой, пересекающей внутренность прямоугольника $m \times n$ и не пересекающей внутренность ни одной доминошки. Например, приведенные на иллюстрации замощения (a) и (b) — прочные, а замощения (c) и (d) — нет.

А сколько существует прочных замощений прямоугольника $m \times n$?

Формат входного файла

В первой строке два натуральных числа m и n $(1 \le m \le 8; 1 \le n \le 16)$ — ширина и высота прямоугольника.

Формат выходного файла

Выведите одно число — количество прочных замощений данного прямоугольника.

Примеры

solid.in	solid.out
2 2	0
5 6	6

Note

Приведем все прочные замощения прямоугольника 5 × 6:

Задача Е. Длинные домино

Имя входного файла: longdominoes.in Имя выходного файла: longdominoes.out

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Найдите количество способов замостить прямоугольник $m \times n$ доминошками размерами 3×1 . Каждая доминошка должна лежать полностью внутри прямоугольника. Никакие две доминошки не должны накладываться друг на друга. Доминошки могут быть ориентированы как горизонтально, так и вертикально.

Формат входного файла

В единственной строке входного файла даны два целых числа m и n $(1 \leq m \leq 9, 1 \leq n \leq 30).$

Формат выходного файла

В выходной файл выведите единственное число — количество способов замостить прямоугольник $n \times m$ доминошками.

Примеры

longdominoes.in	longdominoes.out
3 3	2
3 10	28