Introdução aos modelos DSGE

Solução de sistemas lineares com expectativas racionais e introdução ao Dynare

João Ricardo Costa Filho

Sobre modelos

Good ideas shine far more brightly when supported by good models

Avinash Dixit ("The making of Economic Policy", 1996, p. 17)

All models are wrong.

George Box

Models are to be used, not believed. **Henri Theil** ("Principles of Econometrics", 1971, p. vi)

Como resolver um sistema linear dinâmico com expectativas racionais?

Equações em diferenças: introdução

com uma variável

Trabalhemos com uma variáveis y tal que a sua dinâmica ao longo do tempo possa ser expressa da seguinte forma:

$$y_{t+1} = \rho y_t$$
.

Trabalhemos com uma variáveis y tal que a sua dinâmica ao longo do tempo possa ser expressa da seguinte forma:

$$y_{t+1} = \rho y_t$$
.

Solução:

$$y_{t+1}=\rho^{t+1}y_0.$$

Trabalhemos com uma variáveis y tal que a sua dinâmica ao longo do tempo possa ser expressa da seguinte forma:

$$y_{t+1} = \rho y_t$$
.

Solução:

$$y_{t+1} = \rho^{t+1} y_0.$$

Quantas soluções possíveis?

Trabalhemos com uma variáveis y tal que a sua dinâmica ao longo do tempo possa ser expressa da seguinte forma:

$$y_{t+1} = \rho y_t$$
.

Solução:

$$y_{t+1} = \rho^{t+1} y_0.$$

Quantas soluções possíveis? Infinitas, porque $\forall \rho$ temos infinitos y_0 .

Assuma agora que

$$y_{t+1} = \rho y_t, y_0 = \bar{y}.$$

Assuma agora que

$$y_{t+1} = \rho y_t, y_0 = \bar{y}.$$

Solução:

$$y_{t+1} = \rho^{t+1} y_0.$$

Quantas soluções possíveis?

Assuma agora que

$$y_{t+1} = \rho y_t, y_0 = \bar{y}.$$

Solução:

$$y_{t+1} = \rho^{t+1} y_0.$$

Quantas soluções possíveis? Apenas uma, porque $y_0=\bar{y}$ é dado.

Assuma agora que

$$y_{t+1} = \rho y_t, y_0 = \bar{y},$$

Assuma agora que

$$y_{t+1} = \rho y_t, y_0 = \bar{y},$$

 y_{t+1} não pode explodir (condição de transversalidade).

Assuma agora que

$$y_{t+1} = \rho y_t, y_0 = \bar{y},$$

 y_{t+1} não pode explodir (condição de transversalidade).

Solução:

$$y_{t+1} = \rho^{t+1} y_0.$$

Quantas soluções possíveis?

Assuma agora que

$$y_{t+1} = \rho y_t, y_0 = \bar{y},$$

 y_{t+1} não pode explodir (condição de transversalidade).

Solução:

$$y_{t+1} = \rho^{t+1} y_0.$$

Quantas soluções possíveis?

• |
ho|>1: a solução é explosiva a não ser que $y_0=0$.

Assuma agora que

$$y_{t+1} = \rho y_t, y_0 = \bar{y},$$

 y_{t+1} não pode explodir (condição de transversalidade).

Solução:

$$y_{t+1} = \rho^{t+1} y_0.$$

Quantas soluções possíveis?

- $|\rho| > 1$: a solução é explosiva a não ser que $y_0 = 0$.
- $|\rho| \le 1$: solução única.

Assuma agora que

$$y_{t+1} = \rho y_t$$
,

Assuma agora que

$$y_{t+1} = \rho y_t$$
,

 y_{t+1} não pode explodir (condição de transversalidade).

Assuma agora que

$$y_{t+1} = \rho y_t$$
,

 y_{t+1} não pode explodir (condição de transversalidade).

Solução:

$$y_{t+1} = \rho^{t+1} y_0.$$

Quantas soluções possíveis?

Assuma agora que

$$y_{t+1} = \rho y_t$$

 y_{t+1} não pode explodir (condição de transversalidade).

Solução:

$$y_{t+1} = \rho^{t+1} y_0.$$

Quantas soluções possíveis?

• |
ho|>1: a única solução é explosiva a não ser que $y_0=0$.

Assuma agora que

$$y_{t+1} = \rho y_t$$

 y_{t+1} não pode explodir (condição de transversalidade).

Solução:

$$y_{t+1} = \rho^{t+1} y_0.$$

Quantas soluções possíveis?

- $|\rho| > 1$: a única solução é explosiva a não ser que $y_0 = 0$.
- $|\rho| \leq 1$: infinitas soluções.

Condições "desejáveis":

- Condições "desejáveis":
 - Solução única.

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva
- Variáveis de estado (com valor inicial):

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva
- Variáveis de estado (com valor inicial):
 - $y_{t+1} = \rho y_t$, dado y_0 .

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva
- Variáveis de estado (com valor inicial):
 - $y_{t+1} = \rho y_t$, dado y_0 .
 - $|\rho| < 1$ para uma solução ser única e estável.

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva
- Variáveis de estado (com valor inicial):
 - $y_{t+1} = \rho y_t$, dado y_0 .
 - $|\rho| < 1$ para uma solução ser única e estável.
- Variáveis de controle (sem valor inicial:

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva
- Variáveis de estado (com valor inicial):
 - $y_{t+1} = \rho y_t$, dado y_0 .
 - $|\rho| < 1$ para uma solução ser única e estável.
- Variáveis de controle (sem valor inicial:
 - $y_{t+1} = \rho y_t$, y_0 é livre.

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva
- Variáveis de estado (com valor inicial):
 - $y_{t+1} = \rho y_t$, dado y_0 .
 - $|\rho| < 1$ para uma solução ser única e estável.
- Variáveis de controle (sem valor inicial:
 - $y_{t+1} = \rho y_t$, y_0 é livre.
 - $|\rho| \ge 1$ para uma solução ser única e estável.

Sistemas de equações em diferenças

Sistemas de equações em diferenças e estabilidade

Assuma agora que y é um vetor de dimentsão $n \times 1$ e F uma matrix de dimensão $n \times n$:

$$y_{t+1} = Fy_t$$
.

Analogamente à situação anterior onde $|\rho| < 1$, temos que O sistema é estável se, e somente se os **autovalores** da matrix F forem menores que 1.

C

Revisão: Autovetores e autovalores

Considere uma matriz quadrada A de tamanho n. O vetor v é um **autovetor** de A se, e somente, se:

$$Av = \lambda v$$
,

onde λ representa o seu **autovalor**.

Revisão: Autovetores e autovalores

Considere uma matriz quadrada A de tamanho n. O vetor v é um autovetor de A se, e somente, se:

$$Av = \lambda v$$

onde λ representa o seu **autovalor**.

■ Exemplo:
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -0.7071 \\ 0.7071 \end{bmatrix} = 1 \begin{bmatrix} -0.7071 \\ 0.7071 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0.7071 \\ 0.7071 \end{bmatrix} = 3 \begin{bmatrix} 0.7071 \\ 0.7071 \end{bmatrix}$$

Sistemas de equações em diferenças e estabilidade

Condições "desejáveis":

Sistemas de equações em diferenças e estabilidade

- Condições "desejáveis":
 - Solução única.

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva
- Variáveis de estado (com valor inicial):

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva
- Variáveis de estado (com valor inicial):
 - $y_{t+1} = Fy_t$, dado y_0 .

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva
- Variáveis de estado (com valor inicial):
 - $y_{t+1} = Fy_t$, dado y_0 .
 - $\lambda_j < 1, \forall j = 1, ..., n$, onde $\lambda = \text{eig}(F)$, para uma solução ser única e estável.

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva
- Variáveis de estado (com valor inicial):
 - $y_{t+1} = Fy_t$, dado y_0 .
 - $\lambda_j < 1, \forall j = 1, ..., n$, onde $\lambda = \text{eig}(F)$, para uma solução ser única e estável.
- Variáveis de controle (sem valor inicial:

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva
- Variáveis de estado (com valor inicial):
 - $y_{t+1} = Fy_t$, dado y_0 .
 - $\lambda_j < 1, \forall j = 1, ..., n$, onde $\lambda = \text{eig}(F)$, para uma solução ser única e estável.
- Variáveis de controle (sem valor inicial:
 - $y_{t+1} = Fy_t$, y_0 é livre.

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva
- Variáveis de estado (com valor inicial):
 - $y_{t+1} = Fy_t$, dado y_0 .
 - $\lambda_j < 1, \forall j = 1, ..., n$, onde $\lambda = \text{eig}(F)$, para uma solução ser única e estável.
- Variáveis de controle (sem valor inicial:
 - $y_{t+1} = Fy_t$, y_0 é livre.
 - $\lambda_j \geq 1, \forall j = 1, \ldots, n$, onde $\lambda = \text{eig}(F)$, para uma solução ser única e estável.

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva
- Variáveis de estado (com valor inicial):
 - $y_{t+1} = Fy_t$, dado y_0 .
 - $\lambda_j < 1, \forall j = 1, ..., n$, onde $\lambda = \text{eig}(F)$, para uma solução ser única e estável.
- Variáveis de controle (sem valor inicial:
 - $y_{t+1} = Fy_t$, y_0 é livre.
 - $\lambda_j \geq 1, \forall j = 1, ..., n$, onde $\lambda = \text{eig}(F)$, para uma solução ser única e estável.
- O sistema precisa ser explosivo.

- Condições "desejáveis":
 - Solução única.
 - Trajetória não-explosiva
- Variáveis de estado (com valor inicial):
 - $y_{t+1} = Fy_t$, dado y_0 .
 - $\lambda_j < 1, \forall j = 1, ..., n$, onde $\lambda = \text{eig}(F)$, para uma solução ser única e estável.
- Variáveis de controle (sem valor inicial:
 - $y_{t+1} = Fy_t$, y_0 é livre.
 - $\lambda_j \geq 1, \forall j = 1, ..., n$, onde $\lambda = \text{eig}(F)$, para uma solução ser única e estável.
- O sistema precisa ser explosivo.
 - A única solução é escolher $y_0 = 0_{n \times 1}$.

Expectativas racionais

Sistema linear de equações com expectativas racionais

$$AE_t [Y_{t+1}] = BY_t,$$

onde Y_t é um vetor $n+m\times 1$, e A e B são matrizes $n+m\times n+m$.

Sistema linear de equações com expectativas racionais

$$AE_t[Y_{t+1}] = BY_t,$$

onde Y_t é um vetor $n+m\times 1$, e A e B são matrizes $n+m\times n+m$. Assuma que podemos inverter A tal que

$$E_t\left[Y_{t+1}\right] = FY_t,$$

onde $F = A^{-1}B$.

Sistema linear de equações com expectativas racionais — RBC

$$\varphi \hat{h}_t + \sigma \hat{c}_t = \hat{A}_t + \alpha \left(\hat{k}_t - \hat{h}_t \right) \tag{1}$$

$$E_{t}\left[\hat{c}_{t+1} - \hat{c}_{t}\right] = \frac{1 - \beta (1 - \delta)}{\sigma} E_{t}\left[\hat{A}_{t+1} + (1 - \alpha) \left(\hat{h}_{t+1} - \hat{k}_{t+1}\right)\right]$$
(2)

$$\hat{k}_{t+1} = (1 - \delta)\hat{k}_t + \frac{\bar{y}}{\bar{k}} \left(\hat{A}_t + \alpha \hat{k}_t + (1 - \alpha) \hat{h}_t \right) - \frac{\bar{c}}{\bar{k}} \hat{c}_t \qquad (3)$$

$$\hat{A}_t = \rho_A \hat{A}_{t-1} + \varepsilon_t \tag{4}$$

Sistema linear de equações com expectativas racionais — RBC

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ \frac{1-\beta(1-\delta)(1-\alpha)}{\sigma} & 1 & -\frac{1-\beta(1-\delta)(1-\alpha)}{\sigma} & -\frac{1-\beta(1-\delta)}{\sigma} \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} E_t \begin{bmatrix} \hat{k}_{t+1} \\ \hat{h}_{t+1} \\ \hat{h}_{t+1} \\ \hat{A}_{t+1} \end{bmatrix} = \begin{bmatrix} \alpha & -\sigma & -(\phi+\alpha) & 0 \\ 1 & 0 & 0 & 0 \\ (1-\delta) + \frac{\bar{\gamma}\alpha}{\bar{k}} & -\frac{\bar{c}}{\bar{k}} & \frac{\bar{y}(1-\alpha)}{\bar{k}} & \frac{\bar{y}}{\bar{k}} \\ 0 & 0 & 0 & \rho_A \end{bmatrix} \begin{bmatrix} \hat{k}_t \\ \hat{c}_t \\ \hat{h}_t \\ \hat{A}_t \end{bmatrix}$$

Dois tipos de variáveis: **pré-determinadas** e **forward-looking** (ou jumping):

Dois tipos de variáveis: **pré-determinadas** e **forward-looking** (ou jumping):

$$\begin{bmatrix} x_{t+1} \\ E_t [z_{t+1}] \end{bmatrix} = F \begin{bmatrix} x_t \\ z_t \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} \begin{bmatrix} x_t \\ z_t \end{bmatrix},$$
 onde $F = A^{-1}B$.

Dois tipos de variáveis: **pré-determinadas** e **forward-looking** (ou jumping):

$$\begin{bmatrix} x_{t+1} \\ E_t [z_{t+1}] \end{bmatrix} = F \begin{bmatrix} x_t \\ z_t \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} \begin{bmatrix} x_t \\ z_t \end{bmatrix},$$
 onde $F = A^{-1}B$.

• x_{t+1} é um vetor $n \times 1$ de variáveis **pré-determinadas** (conhecidas em t), com $E_t[x_{t+1}] = x_{t+1}$.

Dois tipos de variáveis: **pré-determinadas** e **forward-looking** (ou jumping):

$$\begin{bmatrix} x_{t+1} \\ E_t[z_{t+1}] \end{bmatrix} = F \begin{bmatrix} x_t \\ z_t \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} \begin{bmatrix} x_t \\ z_t \end{bmatrix},$$
 onde $F = A^{-1}B$.

- - x_{t+1} é um vetor $n \times 1$ de variáveis **pré-determinadas** (conhecidas em t), com $E_t[x_{t+1}] = x_{t+1}$.
 - z_{t+1} é um vetor $m \times 1$ de variáveis **forward-looking**.
 - No modelo RBC:

Dois tipos de variáveis: **pré-determinadas** e **forward-looking** (ou jumping):

$$\begin{bmatrix} x_{t+1} \\ E_t[z_{t+1}] \end{bmatrix} = F \begin{bmatrix} x_t \\ z_t \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} \begin{bmatrix} x_t \\ z_t \end{bmatrix},$$
 onde $F = A^{-1}B$.

- x_{t+1} é um vetor $n \times 1$ de variáveis **pré-determinadas** (conhecidas em t), com $E_t[x_{t+1}] = x_{t+1}$.
- z_{t+1} é um vetor $m \times 1$ de variáveis **forward-looking**.
 - No modelo RBC:
 - \hat{k}_{t+1} é pré-determinado.

Dois tipos de variáveis: **pré-determinadas** e **forward-looking** (ou jumping):

$$\begin{bmatrix} x_{t+1} \\ E_t [z_{t+1}] \end{bmatrix} = F \begin{bmatrix} x_t \\ z_t \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} \begin{bmatrix} x_t \\ z_t \end{bmatrix},$$
 onde $F = A^{-1}B$.

- x_{t+1} é um vetor $n \times 1$ de variáveis **pré-determinadas** (conhecidas em t), com $E_t[x_{t+1}] = x_{t+1}$.
- z_{t+1} é um vetor $m \times 1$ de variáveis **forward-looking**.
 - No modelo RBC:
 - \hat{k}_{t+1} é pré-determinado.
 - \hat{c}_t , \hat{h}_t , \hat{A}_t são forward-looking.

Dois tipos de variáveis: **pré-determinadas** e **forward-looking** (ou jumping):

$$\begin{bmatrix} x_{t+1} \\ E_t [z_{t+1}] \end{bmatrix} = F \begin{bmatrix} x_t \\ z_t \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} \begin{bmatrix} x_t \\ z_t \end{bmatrix},$$
 onde $F = A^{-1}B$

- x_{t+1} é um vetor $n \times 1$ de variáveis **pré-determinadas** (conhecidas em t), com $E_t[x_{t+1}] = x_{t+1}$.
- z_{t+1} é um vetor $m \times 1$ de variáveis **forward-looking**.
 - No modelo RBC:
 - \hat{k}_{t+1} é pré-determinado.
 - \hat{c}_t , \hat{h}_t , \hat{A}_t são forward-looking.

Vamos diagonalizar a matriz $F = PDP^{-1}$.

Revisão: Decomposição de Jordan

Uma matriz quadrada A pode ser decomposta na forma diagonal dada por:

Revisão: Decomposição de Jordan

Uma matriz quadrada A pode ser decomposta na forma diagonal dada por:

$$A = PDP^{-1}$$
,

onde P é a matriz composta pelos **autovetores** de A e D é a matriz diagonal com os **autovalores** correspondentes:

$$P = \left[\begin{array}{cccc} v_1 & v_2 & \cdots & v_n \end{array} \right]$$

$$D = \left[\begin{array}{ccc} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{array} \right]$$

Revisão: Decomposição de Jordan

• $F = PDP^{-1}$, na qual D é a matriz diagonal cujos elementos $\lambda_1, \lambda_2, \dots, \lambda_n$ estão definidas em ordem crescente de valor absoluto. Temos que (a ordem dos autovalores não importa):

• $F = PDP^{-1}$, na qual D é a matriz diagonal cujos elementos $\lambda_1, \lambda_2, \dots, \lambda_n$ estão definidas em ordem crescente de valor absoluto. Temos que (a ordem dos autovalores não importa):

$$D = \left[\begin{array}{cc} \Lambda_1 & 0_{a \times b} \\ 0_{b \times a} & \Lambda_2 \end{array} \right].$$

• $F = PDP^{-1}$, na qual D é a matriz diagonal cujos elementos $\lambda_1, \lambda_2, \dots, \lambda_n$ estão definidas em ordem crescente de valor absoluto. Temos que (a ordem dos autovalores não importa):

$$D = \left[\begin{array}{cc} \Lambda_1 & 0_{\mathsf{a} \times \mathsf{b}} \\ 0_{\mathsf{b} \times \mathsf{a}} & \Lambda_2 \end{array} \right].$$

• Λ_1 é uma matriz diagonal de tamanho a com os autovalores menores que 1 (em módulo).

• $F = PDP^{-1}$, na qual D é a matriz diagonal cujos elementos $\lambda_1, \lambda_2, \dots, \lambda_n$ estão definidas em ordem crescente de valor absoluto. Temos que (a ordem dos autovalores não importa):

$$D = \left[\begin{array}{cc} \Lambda_1 & 0_{\mathsf{a} \times \mathsf{b}} \\ 0_{\mathsf{b} \times \mathsf{a}} & \Lambda_2 \end{array} \right].$$

- Λ_1 é uma matriz diagonal de tamanho a com os autovalores menores que 1 (em módulo).
- Λ_2 é uma matriz diagonal de tamanho b com os autovalores maiores do que 1 (em módulo).

• $F = PDP^{-1}$, na qual D é a matriz diagonal cujos elementos $\lambda_1, \lambda_2, \dots, \lambda_n$ estão definidas em ordem crescente de valor absoluto. Temos que (a ordem dos autovalores não importa):

$$D = \left[\begin{array}{cc} \Lambda_1 & 0_{\mathsf{a} \times \mathsf{b}} \\ 0_{\mathsf{b} \times \mathsf{a}} & \Lambda_2 \end{array} \right].$$

- Λ_1 é uma matriz diagonal de tamanho a com os autovalores menores que 1 (em módulo).
- Λ_2 é uma matriz diagonal de tamanho b com os autovalores maiores do que 1 (em módulo).
- a + b = m + n.

Reescrevendo o sistema, temos:

$$E_t\left[Y_{t+1}\right] = PDP^{-1}Y_t.$$

Reescrevendo o sistema, temos:

$$E_t[Y_{t+1}] = PDP^{-1}Y_t.$$

Ao multiplicarmos os dois lados da equação por P^{-1} :, obtemos:

$$P^{-1}E_t[Y_{t+1}] = DP^{-1}Y_t.$$

Reescrevendo o sistema, temos:

$$E_t [Y_{t+1}] = PDP^{-1}Y_t.$$

Ao multiplicarmos os dois lados da equação por P^{-1} :, obtemos:

$$P^{-1}E_t[Y_{t+1}] = DP^{-1}Y_t.$$

Defina $\tilde{Y}_t = P^{-1}Y_t$. Então temos que:

$$E_t\left[\tilde{Y}_{t+1}\right] = D\tilde{Y}_t.$$

Decompondo
$$P^{-1}=\left[\begin{array}{cc}P_{11}&P_{12}\\P_{21}&P_{22}\end{array}\right]$$
, temos:

Decompondo
$$P^{-1}=\begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}$$
, temos:
$$\begin{bmatrix} \tilde{x}_t \\ \tilde{z}_t \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{bmatrix} x_t \\ z_t \end{bmatrix}.$$

Decompondo
$$P^{-1}=\left[\begin{array}{cc}P_{11}&P_{12}\\P_{21}&P_{22}\end{array}\right]$$
, temos:
$$\left[\begin{array}{c}\tilde{x}_t\\\tilde{z}_t\end{array}\right]=\left[\begin{array}{cc}P_{11}&P_{12}\\P_{21}&P_{22}\end{array}\right]\left[\begin{array}{c}x_t\\z_t\end{array}\right].$$

Logo,

$$\begin{bmatrix} \tilde{x}_{t+1} \\ E_t [\tilde{z}_{t+1}] \end{bmatrix} = \begin{bmatrix} \Lambda_1 & 0_{a \times b} \\ 0_{b \times a} & \Lambda_2 \end{bmatrix} \begin{bmatrix} \tilde{x}_t \\ \tilde{z}_t \end{bmatrix}$$
 (5)

Condições de Blanchard and Kahn (1980)

 Se o número de autovalores maiores que 1 for igual ao número de variáveis forward-looking (b = n), então o sistema dinâmico tem equilíbrio único.

Condições de Blanchard and Kahn (1980)

- Se o número de autovalores maiores que 1 for igual ao número de variáveis forward-looking (b = n), então o sistema dinâmico tem equilíbrio único.
- Se (b = n), então o número de **variáveis pré-determinadas** é igual ao número de **autovalores menores que** 1 (a = m).

Sob as condições de Blanchard and Kahn (1980), podemos reescrever o sistema

$$\left[\begin{array}{c} \tilde{x}_{t+1} \\ E_t \left[\tilde{z}_{t+1}\right] \end{array}\right] = \left[\begin{array}{cc} \Lambda_1 & 0_{a \times b} \\ 0_{b \times a} & \Lambda_2 \end{array}\right] \left[\begin{array}{c} \tilde{x}_t \\ \tilde{z}_t \end{array}\right]$$

como dois sistemas separados para \hat{x}_t e \hat{z}_t :

Sob as condições de Blanchard and Kahn (1980), podemos reescrever o sistema

$$\left[\begin{array}{c} \tilde{x}_{t+1} \\ E_t \left[\tilde{z}_{t+1}\right] \end{array}\right] = \left[\begin{array}{cc} \Lambda_1 & 0_{a \times b} \\ 0_{b \times a} & \Lambda_2 \end{array}\right] \left[\begin{array}{c} \tilde{x}_t \\ \tilde{z}_t \end{array}\right]$$

como dois sistemas separados para \hat{x}_t e \hat{z}_t :

$$\tilde{x}_{t+1} = \Lambda_1 \tilde{x}_t
E_t \left[\tilde{z}_{t+1} \right] = \Lambda_2 \tilde{z}_t.$$
(6)

Sob as condições de Blanchard and Kahn (1980), podemos reescrever o sistema

$$\left[\begin{array}{c} \tilde{x}_{t+1} \\ E_t \left[\tilde{z}_{t+1}\right] \end{array}\right] = \left[\begin{array}{cc} \Lambda_1 & 0_{a \times b} \\ 0_{b \times a} & \Lambda_2 \end{array}\right] \left[\begin{array}{c} \tilde{x}_t \\ \tilde{z}_t \end{array}\right]$$

como dois sistemas separados para \hat{x}_t e \hat{z}_t :

$$\tilde{x}_{t+1} = \Lambda_1 \tilde{x}_t
E_t \left[\tilde{z}_{t+1} \right] = \Lambda_2 \tilde{z}_t.$$
(6)

 Como Λ₁ tem os autovalores menores que 1, o primeiro sistema é estável.

Sob as condições de Blanchard and Kahn (1980), podemos reescrever o sistema

$$\left[\begin{array}{c} \tilde{x}_{t+1} \\ E_t \left[\tilde{z}_{t+1}\right] \end{array}\right] = \left[\begin{array}{cc} \Lambda_1 & 0_{a \times b} \\ 0_{b \times a} & \Lambda_2 \end{array}\right] \left[\begin{array}{c} \tilde{x}_t \\ \tilde{z}_t \end{array}\right]$$

como dois sistemas separados para \hat{x}_t e \hat{z}_t :

$$\tilde{x}_{t+1} = \Lambda_1 \tilde{x}_t
E_t \left[\tilde{z}_{t+1} \right] = \Lambda_2 \tilde{z}_t.$$
(6)

- Como Λ₁ tem os autovalores menores que 1, o primeiro sistema é estável.
- Como Λ_2 tem os **autovalores maiores que** 1, o sistema é explosivo a menos que $\hat{z}_t = 0$.

Assuma $\tilde{z}_t = 0$ na parte **instável** do sistema representado pela equação (6):

$$\tilde{z}_t = P_{21}x_t + P_{22}z_t = 0_{m \times 1} \implies z_t = -P_{22}^{-1}P_{21}x_t.$$

Assuma $\tilde{z}_t = 0$ na parte **instável** do sistema representado pela equação (6):

$$\tilde{z}_t = P_{21}x_t + P_{22}z_t = 0_{m \times 1} \implies z_t = -P_{22}^{-1}P_{21}x_t.$$

Na parte **estável** do mesmo sistema, temos

$$x_{t+1} = F_{11}x_t + F_{12}z_t.$$

Assuma $\tilde{z}_t = 0$ na parte **instável** do sistema representado pela equação (6):

$$\tilde{z}_t = P_{21}x_t + P_{22}z_t = 0_{m \times 1} \implies z_t = -P_{22}^{-1}P_{21}x_t.$$

Na parte estável do mesmo sistema, temos

$$x_{t+1} = F_{11}x_t + F_{12}z_t.$$

Substituindo o resultado para z_t , obtemos:

$$x_{t+1} = (F_{11} - F_{12}P_{22}^{-1}P_{21})x_t.$$

1) Escreve o sistema considerando dois tipos de variáveis: **pré-determinadas** e **forward-looking**.

$$AE_{t}\left[Y_{t+1}\right] = BY_{t} \Rightarrow \begin{bmatrix} x_{t+1} \\ E_{t}\left[z_{t+1}\right] \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} \begin{bmatrix} x_{t} \\ z_{t} \end{bmatrix}$$
onde $F = A^{-1}B$.

 Escreve o sistema considerando dois tipos de variáveis: pré-determinadas e forward-looking.

$$AE_{t}[Y_{t+1}] = BY_{t} \Rightarrow \begin{bmatrix} x_{t+1} \\ E_{t}[z_{t+1}] \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} \begin{bmatrix} x_{t} \\ z_{t} \end{bmatrix}$$
onde $F = A^{-1}B$.

2) Faça a decomposição de Jordan (diagonalização) de $F = PDP^{-1}$, na qual

$$D = \left[\begin{array}{cc} \Lambda_1 & \mathbf{0}_{\mathsf{a} \times \mathsf{b}} \\ \mathbf{0}_{\mathsf{b} \times \mathsf{a}} & \Lambda_2 \end{array} \right] \quad P^{-1} = \left[\begin{array}{cc} P_{11} & P_{12} \\ P_{21} & P_{22} \end{array} \right].$$

3) Reescreva o sistema em termos de $\tilde{z}_t = P^{-1}z_t$ e $\tilde{x}_t = P^{-1}x_t$

$$\begin{bmatrix} \tilde{x}_{t+1} \\ E_t [\tilde{z}_{t+1}] \end{bmatrix} = \begin{bmatrix} \Lambda_1 & 0_{a \times b} \\ 0_{b \times a} & \Lambda_2 \end{bmatrix} \begin{bmatrix} \tilde{x}_t \\ \tilde{z}_t \end{bmatrix}.$$

3) Reescreva o sistema em termos de $\tilde{z}_t = P^{-1}z_t$ e $\tilde{x}_t = P^{-1}x_t$

$$\left[\begin{array}{c} \tilde{x}_{t+1} \\ E_t \left[\tilde{z}_{t+1}\right] \end{array}\right] = \left[\begin{array}{cc} \Lambda_1 & 0_{a \times b} \\ 0_{b \times a} & \Lambda_2 \end{array}\right] \left[\begin{array}{c} \tilde{x}_t \\ \tilde{z}_t \end{array}\right].$$

4) Se as condições de Blanchard and Kahn (1980) forem satisfeitas, há uma única solução não-explosiva:

$$x_{t+1} = (F_{11} - F_{12}P_{22}^{-1}P_{21}) x_t$$

$$z_t = -P_{22}^{-1}P_{21}x_t.$$

 Hipótese importante para satisfazer as conduções de Blanchard and Kahn (1980): a matriz A ser inversível. Klein (2000) utiliza a decomposição de Schur (decomposição QZ).

- Hipótese importante para satisfazer as conduções de Blanchard and Kahn (1980): a matriz A ser inversível. Klein (2000) utiliza a decomposição de Schur (decomposição QZ).
- Condições de Blanchard and Kahn (1980) não satisfeitas: o modelo tem múltiplos equilíbrios, raiz unitária, ...

Introdução ao Dynare

Recursos

- Dynare é um software para resolver e simular modelos econômicos.
 - Manual

Recursos

- Dynare é um software para resolver e simular modelos econômicos.
 - Manual
- Por enquanto, ele necessita de algum outro software como:
 - MATLAB.
 - OCTAVE.
 - A sintaxe é parecida, mas não igual.

Recursos

- Dynare é um software para resolver e simular modelos econômicos.
 - Manual
- Por enquanto, ele necessita de algum outro software como:
 - MATLAB.
 - OCTAVE.
 - A sintaxe é parecida, mas não igual.

1) Arquivo **.mod** (fundamentalmente, um arquivo de texto) que contém

1) Arquivo .mod (fundamentalmente, um arquivo de texto) que contém (i) a lista de variáveis,

1) Arquivo .mod (fundamentalmente, um arquivo de texto) que contém (i) a lista de variáveis, (ii) a lista de parâmetros,

1) Arquivo .mod (fundamentalmente, um arquivo de texto) que contém (i) a lista de variáveis, (ii) a lista de parâmetros, (iii) as equações do modelo

 Arquivo .mod (fundamentalmente, um arquivo de texto) que contém (i) a lista de variáveis, (ii) a lista de parâmetros, (iii) as equações do modelo e (iv) as funções computacionais a serem performadas (e.g. calcular o equilíbrio, simular IRFs).

- Arquivo .mod (fundamentalmente, um arquivo de texto) que contém (i) a lista de variáveis, (ii) a lista de parâmetros, (iii) as equações do modelo e (iv) as funções computacionais a serem performadas (e.g. calcular o equilíbrio, simular IRFs).
- 2) Usar o MATLAB/OCTAVE: **dynare yyyy.mod** (onde 'yyyy' é o nome do seu arquivo).

- Arquivo .mod (fundamentalmente, um arquivo de texto) que contém (i) a lista de variáveis, (ii) a lista de parâmetros, (iii) as equações do modelo e (iv) as funções computacionais a serem performadas (e.g. calcular o equilíbrio, simular IRFs).
- 2) Usar o MATLAB/OCTAVE: **dynare yyyy.mod** (onde 'yyyy' é o nome do seu arquivo).
- 3) O MATLAB/OCTAVE cria o arquivo '.m' com os resultados.

Blocos:

Variáveis endógenas.

- Variáveis endógenas.
- Variáveis exógenas.

- Variáveis endógenas.
- Variáveis exógenas.
- Parâmetros.

- Variáveis endógenas.
- Variáveis exógenas.
- Parâmetros.
- Modelo (e tipo).

- Variáveis endógenas.
- Variáveis exógenas.
- Parâmetros.
- Modelo (e tipo).
- Condições iniciais para encontrar o equilíbrio estacionário.

- Variáveis endógenas.
- Variáveis exógenas.
- Parâmetros.
- Modelo (e tipo).
- Condições iniciais para encontrar o equilíbrio estacionário.
- Definição dos choques.

- Variáveis endógenas.
- Variáveis exógenas.
- Parâmetros.
- Modelo (e tipo).
- Condições iniciais para encontrar o equilíbrio estacionário.
- Definição dos choques.
- Definição dos procedimentos a serem realizados (e.g. solução, simulação, IRFs, estimação de parâmetros).

Como escrever um modelo no Dynare? Três formas:

1) Escrever o modelo não-linear e o Dynare faz a linearização.

- 1) Escrever o modelo não-linear e o Dynare faz a linearização.
- 2) Escrever o modelo não-linear e o Dynare faz a log-linearização.

- 1) Escrever o modelo não-linear e o Dynare faz a linearização.
- 2) Escrever o modelo não-linear e o Dynare faz a log-linearização.
 - Importante: o Dynare apenas lineariza o modelo. Assim, é preciso redefinr as variáveis.

- 1) Escrever o modelo não-linear e o Dynare faz a linearização.
- 2) Escrever o modelo não-linear e o Dynare faz a log-linearização.
 - Importante: o Dynare apenas lineariza o modelo. Assim, é preciso redefinr as variáveis.
- 3) Escrever o modelo linear.

1) Escrever o modelo não-linear e o Dynare faz a linearização.

```
Y = A * (K(-1) ^alpha) * (L ^(1 - alpha));
```

1) Escrever o modelo não-linear e o Dynare faz a linearização.

```
Y = A * (K(-1) ^alpha) * (L ^(1 - alpha));
```

2) Escrever o modelo não-linear e o Dynare faz a log-linearização.

```
\exp(Y) = \exp(A) * (\exp(K(-1))^a ) * (\exp(L)^(1 - alpha));
```

1) Escrever o modelo não-linear e o Dynare faz a linearização.

```
Y = A * (K(-1) ^alpha) * (L ^(1 - alpha));
```

2) Escrever o modelo não-linear e o Dynare faz a log-linearização.

```
\exp(Y) = \exp(A) * (\exp(K(-1))^a \operatorname{lpha}) * (\exp(L)^(1 - \operatorname{alpha}));
```

3) Escrever o modelo linear.

```
Y = A + alpha * K(-1) + (1 - alpha) * L;
```

Dynare — **Timing**

O estoque de capital no modelo RBC é uma variável **pré-determinada**, portanto, ao escrevermos a sua lei de movimento $(\hat{k}_{t+1} = \hat{k}_t * (1 - \delta) + \hat{i}_t)$ no Dynare, temos que lembrar essa definição:

```
k = k(-1) * (1 - delta) + i;
```

Vamos às simulações!

Referências i

Blanchard, Olivier Jean, and Charles M Kahn. 1980. "The Solution of Linear Difference Models Under Rational Expectations." *Econometrica: Journal of the Econometric Society*, 1305–11.

Klein, Paul. 2000. "Using the Generalized Schur Form to Solve a Multivariate Linear Rational Expectations Model." *Journal of Economic Dynamics and Control* 24 (10): 1405–23.