

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E APLICADAS

LISTA 4 parte 2

Aluno: Ronaldo Luiz de Freitas Santos Matrícula: 20.1.8113

Disciplina: CSI693- Avaliação de Desempenho de Sistemas

Professor(a): Alexandre Magno de Sousa

Questão 1

Item a) Faça o diagrama de estados para a ocupação dos canais na célula quando dois canais são reservados exclusivamente para chamadas que são transferidas. Qual é a probabilidade de perda de chamadas na célula (isto é quando chamadas que chegam são descartadas)? Qual é a taxa de perda? Qual é o número médio de canais utilizados?

Variáveis:

$$\lambda = 125$$

$$\lambda_{\text{Transf}} = 50$$

$$\lambda_{\text{total}} = 175$$

$$\mu = 30$$

Diagrama:

Resolvendo via Markov com equações lineares

$$\lambda_{\text{total}} * P_0 = \lambda * P_1$$

$$\lambda_{\text{total}} * P_1 + \mu * P_1 = \lambda * P_0 + \mu_2 * P_2$$

$$\lambda_{\text{total}} * P_2 + \mu_2 * P_2 = \lambda * P_1 + \mu_3 * P_3$$

$$\lambda_{\text{total}} * P_3 + \mu_3 * P_3 = \lambda * P_2 + \mu_4 * P_4$$

$$\lambda_{\text{total}} * P_4 + \mu_4 * P_4 = \lambda * P_3 + \mu_5 * P_5$$

$$\lambda_{\text{total}} * P_5 + \mu_5 * P_5 = \lambda * P_4 + \mu_6 * P_6$$

$$\lambda_{\text{total}} * P_6 + \mu_6 * P_6 = \lambda * P_5 + \mu_7 * P_7$$

$$\lambda_{\text{total}} * P_7 + \mu_7 * P_7 = \lambda * P_6 + \mu_8 * P_8$$

$$\lambda_{\text{transf}} * P_8 + \mu_8 * P_8 = \lambda * P_7 + \mu_9 * P_9$$

$$\lambda_{\text{transf}} * P_9 + \mu_9 * P_9 = \lambda_{\text{transf}} * P_8 + \mu_{10} * P_{10}$$

$$\mu_{10} * P_4 = \lambda_{\text{transf}} * P_9$$

-	P_0	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}
P_0	-175	30	0	0	0	0	0	0	0	0	0
P_1	175	-205	60	0	0	0	0	0	0	0	0
P_2	0	175	-235	90	0	0	0	0	0	0	0
P_3	0	0	175	-265	120	0	0	0	0	0	0
P_4	0	0	0	175	-295	150	0	0	0	0	0
P_5	0	0	0	0	175	-325	180	0	0	0	0
P_6	0	0	0	0	0	175	-355	210	0	0	0
P_7	0	0	0	0	0	0	175	-385	240	0	0
P_8	0	0	0	0	0	0	0	175	-290	270	0
P_9	0	0	0	0	0	0	0	0	50	-320	300
P_{10}	1	1	1	1	1	1	1	1	1	1	1

Tabela 1. Tabela de resolução via sistemas lineares letra a

```
Probabilidades item A via Markov:
P0 = 0.0033
P1 = 0.0193
P2 = 0.0563
P3 = 0.1095
P4 = 0.1596
P5 = 0.1862
P6 = 0.1811
P7 = 0.1569
P8 = 0.1100
P9 = 0.0204
P10 = 0.0034
```

Figura 1. Terminal contendo a resolução do Item A via Markov

Resolvendo via Birth death

Variáveis:

$$P_0 = \left[1 + \sum_{k=0}^{\infty} \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}}\right]^{-1}$$

E P_k para cada k, através da equação:

$$P_k = \left[1 + \sum_{k=0}^{\infty} \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}}\right]^{-1} * \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}}$$

É possível encontrar os seguintes resultados:

```
Probabilidades item A via Birth-Death:
P0 = 0.0033
P1 = 0.0193
P2 = 0.0563
P3 = 0.1095
P4 = 0.1596
P5 = 0.1862
P6 = 0.1811
P7 = 0.1509
P8 = 0.1100
P9 = 0.0204
P10 = 0.0034
```

Figura 2. Terminal contendo a resolução do Item A via Birth-Death

Logo pode-se validar os resultados com maior confiabilidade.

 Qual é a probabilidade de perda de chamadas na célula (isto é quando chamadas que chegam são descartadas)?

$$P_{\text{Perda}} = P_8 + P_{10}$$

 $P_{\text{Perda}} = 0.1100 + 0.0033$
 $P_{\text{Perda}} = 11.33\%$

• Qual é a taxa de perda?

$$\begin{split} T_{\text{perda}} &= \lambda * P_8 + \lambda_{\text{transf}} * P_{10} \\ T_{\text{perda}} &= 125 * 0.1100 + 50 * 0.0033 \\ T_{\text{perda}} &= 13.8775 \end{split}$$

• Qual é o número médio de canais utilizados

$$E[n] = \sum_{n=1}^{\infty} nP_n$$

 $E[n] = \sum_{n=1}^{10} nP_n$
 $E[n] = 5.25$

Item b) Faça o diagrama de estados para a ocupação dos canais na célula quando nenhum canal é reservado para chamadas de transferência. Qual é a taxa de perda? Qual é a probabilidade de perda de chamadas na célula? Qual é o número médio de canais utilizados? Diferente da modelagem que deve ser realizada em (a), para esse caso, uma fila M/M/m/B pode ser utilizada validar seu modelo Birth-Death Process.

```
Variáveis: \lambda = 125
```

$$\mu = 30$$

Diagrama:

Resolvendo via Markov

$$\lambda * P_0 = \lambda * P_1$$

$$\lambda * P_1 + \mu * P_1 = \lambda * P_0 + \mu_2 * P_2$$

$$\lambda * P_2 + \mu_2 * P_2 = \lambda * P_1 + \mu_3 * P_3$$

$$\lambda * P_3 + \mu_3 * P_3 = \lambda * P_2 + \mu_4 * P_4$$

$$\lambda * P_4 + \mu_4 * P_4 = \lambda * P_3 + \mu_5 * P_5$$

$$\lambda * P_5 + \mu_5 * P_5 = \lambda * P_4 + \mu_6 * P_6$$

$$\lambda * P_6 + \mu_6 * P_6 = \lambda * P_5 + \mu_7 * P_7$$

$$\lambda * P_7 + \mu_7 * P_7 = \lambda * P_6 + \mu_8 * P_8$$

$$\lambda * P_8 + \mu_8 * P_8 = \lambda * P_7 + \mu_9 * P_9$$

$$\lambda * P_9 + \mu_9 * P_9 = \lambda * P_8 + \mu_{10} * P_{10}$$

$$\mu_{10} * P_4 = \lambda * P_9$$

-	P_0	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}
P_0	-175	30	0	0	0	0	0	0	0	0	0
P_1	175	-205	60	0	0	0	0	0	0	0	0
P_2	0	175	-235	90	0	0	0	0	0	0	0
P_3	0	0	175	-265	120	0	0	0	0	0	0
P_4	0	0	0	175	-295	150	0	0	0	0	0
P_5	0	0	0	0	175	-325	180	0	0	0	0
P_6	0	0	0	0	0	175	-355	210	0	0	0
P_7	0	0	0	0	0	0	175	-385	240	0	0
P_8	0	0	0	0	0	0	0	175	-415	270	0
P_9	0	0	0	0	0	0	0	0	175	-445	300
P_{10}	1	1	1	1	1	1	1	1	1	1	1

Tabela 2. Tabela de resolução via sistemas lineares letra b

Resolvendo via Birth death

Variáveis:

Calculando P_0 pela equação:

E P_k para cada k, através da equação: É possível encontrar os seguintes resultados:

```
Probabilidades item B via Markov:
P0 = 0.0030
P1 = 0.0177
P2 = 0.0517
P3 = 0.1005
P4 = 0.1466
P5 = 0.1710
P6 = 0.1662
P7 = 0.1385
P8 = 0.1010
P9 = 0.0655
P10 = 0.0382
```

Figura 3. Terminal contendo a resolução do Item B via Markov

$$P_0 = \left[1 + \sum_{k=0}^{\infty} \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}}\right]^{-1}$$

Resolvendo via M/M/10/10

É possível encontrar os seguintes resultados: $P_0 = 0.0030$

 $P_1 = 0.0177$

 $P_2 = 0.0516$

 $P_3 = 0.1005$

 $P_4 = 0.1465$

 $P_5 = 0.1709$

 $P_6 = 0.1662$

 $P_7 = 0.1385$

 $P_8 = 0.1010$

 $P_9 = 0.0654$

 $P_{10} = 0.0381$

• Qual é a probabilidade de perda de chamadas na célula (isto é quando chamadas que chegam são descartadas)?

 $P_{\text{Perda}} = P_{10}$

 $P_{\text{Perda}} = 0.0381$

 $P_{\text{Perda}} = 3.81\%$

• Qual é a taxa de perda?

 $T_{\text{perda}} = \lambda * P_{10}$

 $T_{\text{perda}} = 125 * 0.1100 + 50 * 0.0033$

 $T_{\rm perda} = 13.8775$

• Qual é o número médio de canais utilizados

 $E[n] = \sum_{n=1}^{\infty} nP_n$ $E[n] = \sum_{n=1}^{10} nP_n$

E[n] = 5.61

$$P_k = \left[1 + \sum_{k=0}^{\infty} \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}}\right]^{-1} * \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}}$$

Figura 4. Terminal contendo a resolução do Item B via Birth-Death

Questão 2

Para esse exercício temos que:

$$\lambda = 15$$

Como s = 2,5 min

$$\mu = \frac{1}{s}$$

$$\mu = \frac{60}{2.5}$$

$$\mu = 24$$

Item a) Qual é a quantidade de clientes aguardando para abastecer?

Item b) Qual é o tempo médio de espera na fila?

$$E[w] = \rho \frac{\frac{1}{\mu^2}}{(1-\rho)^2}$$

$$E[w] = 0.625 \frac{\frac{1}{24^2}}{(1-0.625)^2}$$

$$E[w] = 0,0694 \text{ min}$$

Item c) Qual é o tempo médio que os clientes gastam no posto de combustível?

$$E[r] = \frac{\frac{1}{\mu}}{(1-\rho)}$$

$$E[r] = \frac{\frac{1}{24}}{(1-0,625)}$$

$$E[r] = \frac{0,0416}{0,375}$$

$$E[r] = 0,1109 \text{ min}$$

Item d) Qual é a quantidade média de clientes no posto de combustível?

Item e) Qual é a probabilidade de que o Sr. Raimundo esteja ocioso?

$$p_0 = 1 - \rho$$

$$p_0 = 1 - 0,675$$

$$p_0 = 0.375$$

Item f) Qual é a probabilidade de que o Sr. Raimundo ter clientes esperando para abastecer?

Para calcular essa probabilidade tem que calcular a probabilidade de ter 2 ou mais clientes no sistema:

$$P_n >= \rho^n$$

$$P_n >= 0,675^1$$

$$P_n >= 0,675$$