第5章 交流-直流变换技术

- 晶闸管单相可控整流电路
- 电感滤波的不控整流电路
- 电感滤波的晶闸管可控整流和有源逆变电路
- 电容滤波的不控整流电路
- 整流电路的谐波和功率因数

■ 整流电路:

出现最早的电力电子电路,将交流电变为直流电。

■ 整流电路的分类:

- 按组成的器件可分为不可控、半控、全控三种。
- 按电路结构可分为桥式电路和零式电路。
- 按交流输入相数分为单相电路、三相和多相电路。

■ 分析方法

- 电力电子电路中存在非线性的电力电子器件,决定了电力电子电路是非线性电路。
- 若将器件看作理想开关,则可将电力电子电路简化 为分段线性电路,分段进行分析计算。

整流电路的一般结构

5.1 晶闸管单相半波可控整流电路

1、电阻性负载

- 在*u*₂正半周承受正向电 压,得到触发脉冲即导通, 当*u*₂过零时关断。
- 电阻负载的特点:电压与 电流成正比,两者波形相 同。

单相半波可控整流电路及波形

几个重要的基本概念:

- 控制角α:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,也称触发角。
- 导通角:晶闸管在一个电源周期中处于通态的电角度,用θ表示。
- 移相:改变控制角a的大小,即改变触发脉冲电压出现的相位,称为移相。通过移相可以控制输出整流电压的大小,所以把通过改变控制角调节输出整流电压的方式称为移相控制。
- 同步:要使输出整流电压稳定,要求每个周期的控制角都相同。为此,要求整流信号和电源电压在频率和相位上要协调配合,这种相互协调配合的关系,称为同步。

2.电感性负载

- 特点:电感对电流变化有抗拒作用,使得流过电感的电流不能发生突变。电流变化时,产生感应电动势e,其极性阻碍电流的变化。
- 电感的存在,使晶闸管关断的阳极电压条件为e_L+u₂<0。u_d波形出现了负值部分,从而使输出电压平均值减小。同时延长了晶闸管的导通时间。
- 如果ωL>10R, φ=π/2, 正负面 积近似相等, U_d≈0, 此时直流平 均电流I_d≈U/R也将很小,负载得 不到所需功率。为避免U_d太小,在 整流电路的负载两端并联续流二 极管

带阻感负载单相半波可控整 流电路及波形

5.2 电感滤波的不控整流电路

- 电路的特点:
 - 三相电压源为Y型接法
 - 二极管全桥结构

- 管子序号:?
 - 上管135
 - ▶ 下管 462

共阳极组:阳极连接在一起的3个二级管

自然转换点:二极管由截止转为开始导通的时刻点。

- 任何时刻,电路中只有两个二极管导通,上、下组各一个,分别对应阳极所接交流电压值最高的一个,和阴极所接交流电压值最低的一个。
- 自然转换点:上—R S T;下—U V W

1.电路工作情况

在红线区段(30°):

- u_A最高 , u_B最低 ,
 二极管D1(上管)
 和D6(下管)导通
- 电流路径: a⁺→ D1
 →负载→ D6 →b⁻
- $\mathbf{u}_{d} = \mathbf{u}_{A} \mathbf{u}_{B} = \mathbf{u}_{AB}$

在蓝线区段: u_d=?

2、电量计算: (1) 输出电压U_d=?

①整流电路输出电压平均值和谐波:

整流电路输出电压是非正弦的时间周期函数。 ॥ 包含直流分量和多次谐波分量。将 ॥ 用傅里叶级数表示:

$$u_d = U_d + \sum_{n=1}^{\infty} a_n \sin n\omega t + \sum_{n=1}^{\infty} b_n \cos n\omega t = U_d + \sum_{n=1}^{\infty} C_n \cos(n\omega t - \theta_n)$$

式中

$$c_n^2 = a_n^2 + b_n^2$$

$$\theta_n = tg^{-1} \frac{a_n}{b_n}$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} u_d \sin n\omega t d\omega t$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} u_d \cos n\omega t d\omega t$$

$$U_d = \frac{1}{2\pi} \int_0^{2\pi} u_d d\omega t$$

各脉动区间 u_d 的变化规律相同: u_d 中不含奇次谐波; 偶次谐波中最低为六次; 高 次谐波为六的整数倍:

$$U_{d} = \frac{1}{2\pi} \int_{0}^{2\pi} u_{d} d\omega t = \frac{3}{\pi} \int_{\pi/6}^{\pi/2} u_{AB} d\omega t = \frac{3}{\pi} \int_{\pi/6}^{\pi/2} \sqrt{6} U_{2} \sin(\omega t + \frac{\pi}{6}) d\omega t = \frac{3\sqrt{6}}{\pi} U_{2}$$

$$6 c^{\pi/2} / \pi$$

$$a_n = \frac{6}{\pi} \int_{\pi/6}^{\pi/2} \sqrt{6} U_2 \sin(\omega t + \frac{\pi}{6}) \sin n\omega t d\omega t$$

$$b_n = \frac{6}{\pi} \int_{\pi/6}^{\pi/2} \sqrt{6} U_2 \sin(\omega t + \frac{\pi}{6}) \cos n\omega t d\omega t$$

式中n=6k, k=1,2,3...

(2) 输入电流 I =?

②线电流有效值
$$I_A = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} i_A^2 d\omega t}$$

Id=?

$$i_{A} = i_{D1} - i_{D4} = \begin{cases} I_{d} & (\pi / 6 < \omega t < 5\pi / 6) \\ 0 & (5\pi / 6 < \omega t < 7\pi / 6, 11\pi / 6 < \omega t < 13\pi / 6) \\ -I_{d} & (7\pi / 6 < \omega t < 11\pi / 6) \end{cases}$$

$$I_A = \sqrt{\frac{1}{2\pi} \left[I_d^2 \times \frac{2\pi}{3} + \left(-I_d \right)^2 \times \frac{2\pi}{3} \right]} = \sqrt{\frac{2}{3}} I_d = 0.816 I_d$$

③线电流基波有效值:

利用傅里叶级数展开ia

$$i_A = \frac{2\sqrt{3}}{\pi} I_d \left(\sin wt - \frac{1}{5} \sin 5wt - \frac{1}{7} \sin 7wt + \dots + \frac{1}{n} \sin nwt \right)$$

$$= I_{A1m} \sin wt - I_{A5m} \sin 5wt - I_{A7m} \sin 7wt + \dots + I_{Anm} \sin nwt$$
基波

读

线电流基波幅值 $I_{A1m} = \frac{2\sqrt{3}}{-}I_d$

线电流基波有效值 $I_{A1} = \frac{I_{A1m}}{\sqrt{2}} = \frac{\sqrt{6}}{\pi} I_d = 0.78I_d$

④二极管电流平均值(以D1为例):

$$I_{D0} = \frac{1}{2\pi} \int_0^{2\pi} i_{D1} d\omega t$$

$$i_{D1} = \begin{cases} I_d & (\pi/6 < \omega t < 5\pi/6) \\ 0 & (5\pi/6 < \omega t < 13\pi/6) \end{cases}$$

$$I_{D0} = \frac{1}{2\pi} I_d \times \frac{2\pi}{3} = \frac{I_d}{3}$$

$$I_{D0} = \frac{1}{2\pi} I_d \times \frac{2\pi}{3} = \frac{I_d}{3}$$

240° OFF 120° ON

⑤ 二极管端压(以器件 D₁ 为例):

当 D_1 导通时,其端压为二极管通态电压。当 D_3 导通时, $u_{PO}=u_{BO}$,因此其端压为 u_{AB} 。当 D_5 导通时, $u_{PO}=u_{CO}$,因此其端压为 u_{AC} 。如图 5.2(h)所示。

$$u_{\text{Dl}} = \begin{cases} U_{T0} &, & \mathbf{D}_1$$
导通时 ON $u_{\text{Dl}} = \begin{cases} u_{AB} &, & \mathbf{D}_3$ 导通时 $u_{AC} &, & \mathbf{D}_5$ 导通时

二极管端压峰值
$$U_{\text{Tm}} = U_{\text{Rm}} = \sqrt{6}U_2$$
 (5.19)

要求: 1. 学会画波形

2. 计算(有效值,平均值等)

5.3 电感滤波的晶闸管可控整流和有源逆变电路

5.3.1 理想条件下晶闸管三相桥式整流电路性能分析

- 变压器和线路漏感Labc=0
- L_d 很大
- SCR代替D
 - 复习:SCR的开通条件?SCR的关断条件?

晶闸管三相桥式整流电路的特点

- (1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。
- (2)对触发脉冲的要求:
 - 按T1-T2-T3-T4-T5-T6的顺序,相位依次差60°。
 - 共阴极组T1、T3、T5的脉冲依次差120°, 共阳极组T4、T6、 T2也依次差120°。
 - 同一相的上下两个桥臂,即T1与T4,T3与T6,T5与T2,脉冲相差180°。

1、 带大电感性负载时的工作情况控制角

1)a=0时的工作情况分析

- 由于电感的作用, 使得负载电流波形 变得平直,当电感 足够大的时候,负 载电流的波形可似 为一条水平线。
- 晶闸管T₁导通段, i_{T1}波形由负载电流 波i_d波形决定,与 u_d波形不同
- g=0时,器件的通 断与课本5.1节电 感滤波的不控整流 电路相似,输出波 形及主电路计算也 一样。

2)控制角a > 0时的工作情况分析

- 给出了变压器 二次侧a相电 流、i_d波形。

三相桥式全控整流电路带大电感性负载 a = 30° 时的波形

a≤60°时 当电感足够大的时候 , i_d的波形可近似为 一条水平线。

- a>60°时,由于负载
 电感的自感电动势的作用,u_d波形会出现负的部分。
- a=90°,若电感足够大,正负面积相等, 平均值近似为零。带电感性负载时,三相桥式全控整流电路的α角移相范围为90°。

输出平均电压U。

$$U_{d} = \frac{1}{2\pi} \int_{0}^{2\pi} u_{d}^{2} d\omega t = \frac{3}{\pi} \int_{\pi/6+\alpha}^{\pi/2+\alpha} \sqrt{6} U_{2} \sin(\omega t + \frac{\pi}{6}) d\omega t$$

$$=\frac{3\sqrt{6}}{\pi}U_{2}\cos\alpha = U_{d0}\cos\alpha$$
 ! $\Rightarrow U_{d0} = (3\sqrt{6}/\pi)U_{2}$

结论:调节控制角可以改变U_d=0~U_{d0},或=-U_{d0}~0

图 5.8 三相桥式整流电路的控制特性

分界点:

 u_{AB}

60度

$$\alpha = \frac{\pi}{2}$$

O. (rad)

整流或逆变

5.3.2 带电阻负载时的工作情况

■ 当时形对负波波一连。当时形对负波形形形形形形形形形形形形形形,连续阻 ia ua状也连续。

三相桥式全控整流电路带电阻负载*a*=0°时的波形

三相桥式全控整流电路带电阻负载a=30°时的波形

三相桥式全控整流电路带电阻负载a=60°时的波形

T1 T2电流回零自然关断

三相桥式全控整流电路带电阻负载 a=90° 时的波形

定量分析

 当整流输出电压连续时(即带电感性负载时, 或带电阻负载a≤60°时)的平均值为:

$$U_{\mathbf{d}} = \frac{1}{\frac{\pi}{3}} \int_{\frac{\pi}{3} + \alpha}^{\frac{2\pi}{3} + \alpha} \sqrt{6} U_2 \sin \omega t d(\omega t) = 2.34 U_2 \cos \alpha$$

■ 带电阻负载且a >60°时,整流电压平均值为:

$$U_{d} = \frac{3}{\pi} \int_{\frac{\pi}{3} + \alpha}^{\pi} \sqrt{6} U_{2} \sin \omega t d(\omega t) = 2.34 U_{2} \left[1 + \cos(\frac{\pi}{3} + \alpha) \right]$$

■ 输出电流平均值为 : I_d=U_d / R

5.3.3 有源逆变电路

- 逆变(Invertion):把直流电转变成交流电, 整流的逆过程。
- 逆变电路(Inverter):把直流电逆变成交流电的电路。
 - 有源逆变电路:交流侧和电网连接。
 - 以电网为负载,将直流电能转换为三相交流电能并回输到 电网。
 - 无源逆变电路:变流电路的交流侧不与电网联接, 而直接接到负载。
- 对于可控整流电路,满足一定条件就可工作于有源逆变,其电路形式未变,只是电路工作条件转变。既工作在整流状态又工作在逆变状态,称为变流电路。

1、三相有源逆变电路 $U_d < 0$ 情况怎么样?

有源逆变

输入: E_d (直流); 输出: i_A, i_B, i_C (交流);

负载: U_{ABC}

太阳能/风能 并网发电

■ 由于晶闸管的单向导电性,Id方向不变

$$I_{\rm d} = \frac{E_{\rm d} + U_{\rm d}}{R_{\Sigma}} = \frac{E_{\rm d} + U_{\rm d0} \cos \alpha}{R_{\Sigma}}$$

- R_{Σ} 很小,为了防止两电动势顺向串联, U_{d} 应为负值,且 $|E_{d}|> |U_{d}|$,才能把电能从直流侧送到交流侧,实现逆变。
- U_{c} 可通过改变 α 来进行调节,逆变状态时 U_{c} 为负值, α 在 90°~180°间。

2、有源逆变的条件

- 从上述分析中,可以归纳出产生逆变的条件有二:
 - 直流侧必须外接与直流电流同方向(晶闸管导通方向一致)的直流电源E,其数值要稍大于U_d,才能提供逆变能量。
 - 晶闸管的控制角 $\alpha > \pi/2$,使U_d为负值。

- 有源逆变和整流的区别:控制角 α 不同
 - 0<α < n/2 时,电路工作在整流状态。</p>
 - п/2< α < п时, 电路工作在有源逆变状态。</p>
- 可沿用整流的办法来处理逆变时有关波形与参数计算等 各项问题。
 - 控制角α以自然换向点作为计量起始点。

3、逆变失败与最小逆变角的限制

- 1)逆变失败(逆变颠覆)
- 逆变时,一旦换相失败,外接直流电源就会通过晶闸管电路短路,或使变流器的输出平均电压和直流电动势变成顺向串联,形成很大短路电流。

2)逆变失败的原因

- (1)触发电路工作不正常,晶闸管无法正常换流, u_d>0,与E顺串
 - 脉冲丢失
 - 脉冲延时
- (2)触发脉冲正常,晶闸管故障
- (3)交流电源故障
 - 交流电源缺相、突然消失,但反电势E_d仍存在,导通元件仍能继续导通,I_d=E_d/R很大
- (4)换相时间不足
 - 逆变时允许采用的最小逆变角β的限制:βmin一般取 30°~35°

5.4 电容滤波的不可控整流电路

- 在交—直—交变频器、不间断电源、开关电源等应用场合中,大量应用。
- 最常用的是单相桥和三相桥两种接法。
- 由于电路中的电力电子器件采用整流二极管, 故也称这类电路为二极管整流电路。

5.4.1 电容滤波的单相不可控整流电路

- 在u_S正半周, u_S>u_d (δ≤ωt ≤ θ + δ) 时, D₁和D₃导通, u_d=u_S, 交流电源向电容充电, 同时向负载R供电。
- 在u_S负半周, |u_S|>u_d
 (π+δ≤ωt ≤ π + θ + δ) 时,
 D₂和D₄导通, u_d=-u_S。
- 在u_S正或负半周, |u_S| < u_d
 (θ+δ≤ωt ≤ π + δ 和π
 +θ+δ≤ωt ≤ 2 π + δ) 时, 二
 极管均不导通, 电容C向R放电,
 提供负载所需电流。

C很大:RC>>T_s

載电流
$$u_s(t)$$
 $u_s(t)$ u_c u_c u_c u_c u_d u_d u_c u_d u_d

$\mathbf{Hi}_{D}=0$ 二极管导通角 θ 与起始相位角 δ 的关系:

$$\tan(\delta + \theta) = -R\omega C$$

$$\theta = \pi - \delta - \arctan(R\omega C)$$

$$\sin(\delta + \theta) = R\omega C / \sqrt{1 + (R\omega C)^2}$$

- RC越大,导通角越小,起始角接近90度处,整流输出直流电压越高。
- 当RC无穷大时:U_D=U_m, 导通角接近零度

2. 二极管均截止模式 $(\theta + \delta \leq \omega t \leq \pi + \delta)$

在 $\omega t = \theta + \delta$ 时 $i_D = 0$,二极管 D_1 、 D_3 截止

电容 C 向负载 R 供电 U_{C1} 开始按指数规律下降

$$u_{\rm C} = u_{\rm d} = U_{\rm m} \sin(\delta + \theta) e^{-\frac{\omega t - \theta - \delta}{R\omega C}}$$

整流波形的周期为 π , 当 $\omega t = \pi + \delta$

 u_C 应该衰减到 $\omega t = \delta$ 时的 U_{C0}

$$U_{\rm m}\sin(\delta) = U_{\rm m}\sin(\delta + \theta)e^{-\frac{\omega l - \theta}{R\omega C}}$$

$$= U_{\rm m} \frac{R\omega C}{\sqrt{1 + (R\omega C)^2}} e^{-\frac{\arctan(R\omega C) + \delta}{R\omega C}}$$

$$U_{\rm m}\sin(\delta) = U_{\rm m}\sin(\delta + \theta)e^{-\frac{\omega t - \theta}{R\omega C}}$$

$$=U_{\rm m} \frac{R\omega C}{\sqrt{1+(R\omega C)^2}} e^{-\frac{\arctan(R\omega C)+\delta}{R\omega C}}$$

求出起始导电角 δ

$$\frac{R\omega C}{\sqrt{1+(R\omega C)^2}}e^{-\frac{\arctan(R\omega C)+\delta}{R\omega C}} = \sin \delta$$

输出电压由2部分组成

$$U_{\rm d} = \frac{1}{\pi} \int_{\delta}^{\theta+\delta} U_{\rm m} \sin(\omega t) d(\omega t) + \frac{1}{\pi} \int_{\theta+\delta}^{\pi+\delta} U_{\rm m} \sin(\theta+\delta) e^{-\frac{\omega t - \theta - \delta}{R\omega C}} d(\omega t)$$

$$= \frac{2U_{\rm m}}{\pi} \sin \frac{\theta}{2} \left[\sin(\delta + \frac{1}{2}\theta) + R\omega C \cos(\delta + \frac{1}{2}\theta) \right]$$

$$U_{\rm d}/U_{\rm m}$$

$$180^{\circ}$$

$$U_{\rm d}/U_{\rm m}$$

$$120^{\circ}$$

$$90^{\circ}$$

$$45^{\circ}$$

$$15^{\circ}$$

$$40^{\circ}$$

$$44^{\circ}$$

$$21^{\circ}$$

$$14^{\circ}$$

$$R\omega C$$

$$42$$

 ∞

在设计时根据负载的情况选择电容C值,使RC≥(1.5~2.0)Ts, 此时输出电压为: Ud≈0.9 Um。δ≈51.7°, θ≈44°。

表 5.1 起始导电角 δ 、导电角 θ 、 $U_{\rm d}/U_{\rm m}$ 与 $R\omega C$ 函数关系

$R\omega C$	0	1	5	10	40	100	500	∞
	(C=0, 电阻负载)							(空载)
δ°	0	14.5	40.3	51.7	69	75.3	83.7	90
θ°	180	120.5	61	44	22.5	14.3	5.4	0
$U_{\rm d}/U_{\rm m}$	0.64	0.68	0.83	0.90	0.96	0.98	0.99	1

若C=0, 电阻性负载, 由(5.67), (5.71)和(5.72)式得到

$$\delta=0^{\circ}$$
, $\theta=180^{\circ}$, $U_{\rm d}=2/\pi\cdot U_{\rm m}=0.64U_{\rm m}$

若 $R = \infty$, 空载, 则

$$\delta = 90^{\circ}$$
 , $\theta = 0^{\circ}$, $U_{\rm d} = U_{\rm m}$

5.5 整流电路的谐波和功率因数

 随着电力电子技术的发展,其应用日益广泛, 由此带来的谐波(harmonics)和无功(reactive power)问题日益严重,引起了关注。

■ 谐波:输入端电流形状:THD

- 无功:输入端电流与电源电压的相位

电容整流

■ 无功的危害:

- 导致设备容量增加。
- 使设备和线路的损耗增加。
- 线路压降增大,冲击性负载使电压剧烈波动。

谐波的危害:

- 降低设备的效率。
- 影响用电设备的正常工作。
- 引起电网局部的谐振, 使谐波放大,加剧危害。
- 导致继电保护和自动 装置的误动作。
- 对通信系统造成干扰。

5.5.1 谐波

■ 正弦波电压可表示为:

$$u(t) = \sqrt{2}U\sin(\omega t + \varphi_u)$$

- 对于非正弦波电压, 满足狄里赫利条件, $u(\omega t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos n\omega t + b_n \sin n\omega t)$ 可分解为傅里叶级数:
- 或

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} u(\omega t) d\omega t$$

$$u(\omega t) = a_0 + \sum_{n=1}^{\infty} c_n \sin(n\omega t + \varphi_u) \qquad a_n = \frac{1}{\pi} \int_0^{2\pi} u(\omega t) \cos n\omega t d\omega t$$

$$c_n = \sqrt{a_n^2 + b_n^2} \qquad b_n = \frac{1}{\pi} \int_0^{2\pi} u(\omega t) \sin n\omega t d\omega t$$

$$\varphi_u = \arctan(a_n / b_n)$$

$$u(\omega t) = a_0 + \sum_{n=1}^{\infty} c_n \sin(n\omega t + \varphi_u)$$

- 基波(fundamental)——频率与工频相同的分量
- 谐波——频率为基波频率大于1整数倍的分量
- 谐波次数——谐波频率和基波频率的整数比
- 电流总谐波含量 (Total Harmonic distortion)

$$THD = \sqrt{\sum_{n=2}^{\infty} \left(\frac{I_n}{I_1}\right)^2}$$

- ξ电流波形正弦因数,表征电流对正弦的偏离度

$$\xi = \frac{I_1}{I} = \frac{I_1}{\sqrt{I_1^2 + \sum_{n=2}^{\infty} I_n^2}} = \frac{1}{\sqrt{1 + \sum_{n=2}^{\infty} \left(\frac{I_n}{I_1}\right)^2}} = \frac{1}{\sqrt{1 + THD^2}}$$

5.5.2 功率因数

1、在正弦电路中

$$u = u_1 = \sqrt{2}U_1 \sin \omega t$$
$$i = i_1 = \sqrt{2}I_1 \sin(\omega t - \phi_1)$$

■ 瞬时功率定义:

$$p = p_{1} = u_{1}i_{1}$$

$$= 2U_{1}I_{1}\sin \omega t \sin(\omega t - \phi_{1})$$

$$= 2U_{1}I_{1}[\cos \phi_{1} - \cos(2\omega t - \phi_{1})]$$

$$= P_{1} - S_{1}\cos(2\omega t - \phi_{1})$$

$$= P_{dc} + P_{ac}$$

- S₁为基波表观功率
- P₁为基波有功功率

瞬时功率
$$p = p_1 = P_1 - S_1 \cos(2\omega t - \phi_1) = P_{dc} + P_{ac}$$

正弦电路的有功功率就是 其平均功率:

$$P = \frac{1}{T} \int_0^T p dt = \frac{1}{T} \int_0^T P_{dc} dt + \frac{1}{T} \int_0^T P_{ac} dt = U_1 I_1 \cos \phi_1 = P_{dc} = P$$

- 视在功率: S=S₁=U₁I₁
- 无功功率:

$$Q=Q_1=U_1I_1\sin\varphi$$

■ 功率因数定义为有功功率和视在功率的比

$$\lambda = \frac{P}{S} = \frac{\frac{1}{T} \int_0^T p dt}{\sqrt{\frac{1}{T} \int_0^T u^2 dt} \cdot \sqrt{\frac{1}{T} \int_0^T i^2 dt}}$$

正弦电路的功率因数(也称位移因数)由电压和电流的相位差φ,决定:

$$\lambda = \frac{P}{S} = \cos \phi_1$$

■ 有功功率、无功功率和表观功率的关系

$$S^2 = P^2 + Q^2$$

2、非正弦电路中的情况

- 有功功率、视在功率、功率因数的定义均和正 弦电路相同,功率因数仍由式 $\lambda = P/S$ 定义。
- 不考虑电压畸变,研究电压为正弦波、电流为 非正弦波的情况有很大的实际意义。

例子:相控整流电路 控制角a>0

$$u = u_1 = \sqrt{2}U_1 \sin \omega t$$

$$i = I_1 \sin(\omega t - \phi_1)$$

$$+ \sum_{n=1}^{\infty} I_{nm} \sin(\omega t - \phi_n) \Big|_{n=3,5,7,9,\cdots}$$

■ 基波电流幅值

$$I_{1m} = \frac{\pi}{4}I_d = \sqrt{2}I_1$$

■ 式中I₁为基波电流有效值

$$I = \sqrt{I_1^2 + I_3^2 + I_5^2 + I_7^2 + \cdots}$$

$$p_1 = u_1 i_1$$

■ 基波瞬时功率

$$= \sqrt{2}U_1 \sin \omega t \sqrt{2}I_1 \sin(\omega t - \phi_1)$$

$$= P_1 - S_1 \cos(2\omega t - \phi_1)$$

■ 表观功率

$$S = UI = U_1I = U_1\sqrt{I_1^2 + I_3^2 + I_5^2 + I_7^2 + \cdots}$$

■ 有功功率

$$P = \lambda S$$

问题: 谐波能够做有功吗?

■ 功率因数为:

$$\lambda = \frac{P}{S} = \frac{UI_1 \cos \phi_1}{UI} = \frac{I_1}{I} \cos \phi_1 = \xi \cos \phi_1$$

- 正弦因数—— $\xi = I_1/I$, 即基波电流有效值和总电流有效值之比 , 表征电流对正弦的偏离度。
- 位移因数(基波功率因数)——cosφ₁
- 网侧功率因数 λ 由基波位移因数cosφ₁和电流 波形正弦因数ξ共同决定的。

非正弦电路的无功功率

- 无功功率Q反映了能量的流动和交换,是变流设备的重要技术指标。
- 尚无被广泛接受的科学而权威的定义。课本中 定义无功功率:

$$Q = \sqrt{S^2 - P^2} = S\sqrt{1 - \lambda^2}$$

5.5.3 基波相位移φ₁与控制角α的关系

- 电感滤波的单相和三相桥式整流电路的基波相 位移φ₁等于控制角α
 - $\Phi_1 = \alpha$
- 相控整流电路的缺点:
 - 深控下(α→π/2)的整流电路,功率因数很低,意味 着输出有功功率降低,而每相电网吸取的基波无功 功率Q₁却相应增大。
- 对有源逆变电路:
 - 控制角α越小功率因数也越低,最大控制角α_m不能过低

5.5.4 脉波数m对功率因数 λ 的影响

对 m=2 的单相桥式整流电路,基波电流有效值为

$$I_1 = \frac{I_{\rm lm}}{\sqrt{2}} = \frac{2\sqrt{2}}{\pi}I_{\rm d}$$

而电流有效值

$$I = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} i^2 d\omega t} = I_{\rm d}$$
 电流波形正弦因数 $\xi = \frac{I_1}{I} = \frac{2\sqrt{2}}{\pi} = 0.9$

$$\xi = \frac{I_1}{I} = \frac{2\sqrt{2}}{\pi} = 0.9$$

对三相桥式整流电路_(m=6) 电流波形正弦因数为

$$\xi = \frac{I_{\text{Al}}}{I_{\text{A}}} = \frac{\sqrt{6}I_{\text{d}}}{\pi} / \sqrt{\frac{2}{3}}I_{\text{d}} = \frac{3}{\pi} = 0.955$$

结论: 随着脉波数 m 值的提高入端电流 电流波形正弦因数 と 也接近于 1,

在 m 值较高的电路可近似为: $\lambda \approx \cos \phi$

双桥串联12脉波相控整流电路

5.5.5 电流谐波对电网的不良影响

■ 三相全桥整流电路入端电流

$$i_{A} = I_{Alm}(\sin \omega t - \frac{1}{5}\sin 5\omega t - \frac{1}{7}\sin 7\omega t + \dots + \frac{1}{n}\sin n\omega t)$$

网侧高次谐波电流的存在,使电路产生畸变功率 D,

增加了电路的无功功率 Q

入端电流(电力污染):

关心无功和谐波

电路各种功率可分别表示为:

基波无功功率

$$Q_1 = S_1 \sin \phi_1$$

基波表现功率

$$S_1 = U_1 I_1 = \sqrt{P_1^2 + Q_1^2}$$

畸变功率

$$D = U\sqrt{I_2^2 + I_3^2 + \dots + I_n^2} = U_1 I_1 K_H = S_1 K_H$$

总表观功率

$$S = UI = U_1 I_1 \sqrt{1 + K_H^2} = S_1 \sqrt{1 + K_H^2} = \sqrt{P_1^2 + Q_1^2 + D^2}$$

$$=\sqrt{P_1^2+Q^2}$$

式中:

$$K_{H} = THD$$

总无功功率

$$Q = \sqrt{Q_1^2 + D^2}$$

低功率因数的危害

无功危害:

增大传递功率,装置容量扩大,线路损耗大等

谐波危害:

危机电力设备(如电容,变压器),电磁干扰,附近振荡等

高功率因数整流技术

解决办法:

5.6 谐波抑制的措施和提高功率因数的途径

1、谐波抑制的措施

- 减少整流装置的谐波输出
 - 对整流装置——谐波源采取必要的技术措施:如采用①增加整流装置相数;②PWM整流器;③有源功率因数校正器(APFC)等。
- 减少谐波对公用电网的影响。
 - 对非线性负载产生的谐波安装滤波器,包括无源滤波器和有源电力滤波器,限制谐波源注入公用电网的谐波电流,把电网谐波电压控制在允许范围内。

- 2、提高功率因数 $\lambda = \xi \cos \Phi_1$ 的途径
- 消除电流波形中的谐波畸变成分,使基波因数 ξ=1,实现电流波形正弦化;
- 使电流与电压同相位,使位移因数(基波功率 因数) cos Φ₁=1。大体可分成两个类型:一是 补偿法;二是校正法。

作业

- 251页:
- **5-1**; 5-2; 5-6

