MATH-3012-D HW 09

Vidit Dharmendra Pokharna

TOTAL POINTS

40 / 40

QUESTION 1

1 Q1 13 / 13

√ + 13 pts *correct*

QUESTION 2

2 Q2 13 / 13

√ + 13 pts Correct

QUESTION 3

3 **C 14 / 14**

✓ - 0 pts Complete

8)	(a)
	7-6-5-4-3 = 2520
	2520/2 = [1260]
	(b) (/2) (n) (n-1) (n-m)
9)	(a) Graph I has four yestices that have degree 3.
	This is two for graph 2, but they form a cycle:
	This is not true for graph I, and therefore they
	are not somerphic
	(b) There is a matching of vertices
	babedef
	V Y X W U Z
	This means they are isomorphic
?n)	(a) If Gi = (V, E) and Gilva, E) are isomorphic,
	the function F: V, -> Vz preserves the adjacones
	matrix. Since G, and G, as well as G, and G,
	share V, and 1/2, the function of applies to
	Gi, Gr and can be used to prove isomorphism.
	*
	(b) They are not somorphic because there is no
	way to match vertices. In both graphs, each
	Vertex 15 an acent is connected to vartices directly
	move to ideal idealise the new in it is
	5 vertices is directly opposte in graph land 2.
	This, these graphs are not even complements
	because of their connection to the vertices directly
	S versices is directly apposte in graph land 2. This, these graphs are not even complements because of their connection to the versices directly next to each vertex.

1 Q1 13 / 13

√ + 13 pts correct

7) (a) order vertices -> n! · any cycle can be traversed n ways > fin! = (n-1)! # of cycles -> (m-1)! (b) · K edge -disjoint cycles
· # of edges covered by k is kn
· # of edges total is n(n-1)/2
· kn = n(n-1)/2 -> k = (n-1)/2 (21-1)/2=10 (c) (19-1)/2=|9| Proof by induction 21) · Buse care: n=5 -> cocyle of G is pentagon, which has a hamiltonian Gycle, as shown below. ja a b > c + d > e + a · Inductive step: Assume cocycle of ch has Hamiltonian cycle for k 25. We will show this is true for Chen. Asisume x, y are nonadjacent vertices in (k+1.

cleg(x) and deg(y) are K+1-3= K+2.

deg(x)+deg(y) = 2k+4. We also know that

2k+4 > k+1 for nonadjacent vertices.

This means 2k-k21+4 -> K25. Thus, for n25,

the cocycle of cn has a Hamiltonian cycle. 2 Q2 13 / 13

√ + 13 pts Correct

3 **C 14 / 14**

√ - 0 pts Complete