

Modal Détection de muons

04/04/2025

Malo Tamalet Arpad Schaeffer

INTRODUCTION

- **Objectif**: Détection expérimentale des muons issus du rayonnement cosmique.
- Intérêt: Comprendre et caractériser les détecteurs utilisés en physique des particules

Sommaire

1 THÉORIE ET FONCTIONNEMENT DES INSTRUMENTS

MANIPULATIONS, AVANCEMENT ET RÉSULTATS INTERMÉDIAIRES

) PLANIFICATION DES MESURES FUTURES ET PISTES D'AMÉLIORATION

01.1 Origine et propriétés des muons cosmiques 🗯

- Particules élémentaires chargées
- Interaction avec l'atmosphère
- Distribution énergétique

01.2 Principe du scintillateur organique plastique 🗯

- Mécanisme
 - Passage d'un muon : excitation
 - Désexcitation : émission
 - Transmission

01.3 Photomultiplicateur (PMT) >====

- Objectif: Conversion photon → signal électrique
- Mécanisme
 - Photocathode: transformation photon → électron (effet photoélectrique)
 - Multiplication électronique (dynodes) (G 10⁷)
 - Anode: collecte finale des électrons → impulsion électrique mesurable

Ecole Polytechnique : Département de physique

- RC
- Amplificateur
- Visualisation

Sommaire

O1 THÉORIE ET FONCTIONNEMENT DES INSTRUMENTS

02

MANIPULATIONS, AVANCEMENT ET RÉSULTATS INTERMÉDIAIRES

03

PLANIFICATION DES MESURES FUTURES ET PISTES D'AMÉLIORATION

- 3 Couches superposées + PMT + Haute Tension
- RC, Oscilloscope, Compteur

- Acquisition et modélisation
 - Channel 1:τ = 4.2 ns

 \circ Channel 2: $\tau = 6.8$ ns

 \circ Channel 3: $\tau = 5.1$ ns

02.3 Optimisation >====

- Objectif: trouver un seuil discriminant les signaux de muons par rapport au bruit
 - Variation de la Haute Tension
 - Variation du Treshold (seuil)
- → Compte du nombre d'incidence

Faible seuil: bruit

→ Seuil optimal: plateau stable

Seuil élevé : perte

Détecteur 1

Détecteur 2

Détecteur 3

- Pas de réel plateau observé
- Mauvaise modélisation
- Beaucoup de bruit

Sommaire

THÉORIE ET FONCTIONNEMENT DES INSTRUMENTS

MANIPULATIONS, AVANCEMENT ET RÉSULTATS INTERMÉDIAIRES

03

PLANIFICATION DES MESURES FUTURES ET PISTES D'AMÉLIORATION

- Trouver un treshold optimal
- Détection de coïncidences
- Caractérisation des muons

CONCLUSION

Ecole Polytechnique : Département de physique