

Space X Falcon 9 First Stage Landing Prediction

Assignment: Machine Learning Prediction

Estimated time needed: 60 minutes

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. In this lab, you will create a machine learning pipeline to predict if the first stage will land given the data from the preceding labs.

Several examples of an unsuccessful landing are shown here:

Most unsuccessful landings are planed. Space X; performs a controlled landing in the oceans.

Objectives

Perform exploratory Data Analysis and determine Training Labels

- create a column for the class
- Standardize the data
- Split into training data and test data
- -Find best Hyperparameter for SVM, Classification Trees and Logistic Regression
 - Find the method performs best using test data

Import Libraries and Define Auxiliary Functions

We will import the following libraries for the lab

```
In [3]: %%capture
    # Pandas is a software Library written for the Python programming Language for
    data manipulation and analysis.
    import pandas as pd
    # NumPy is a Library for the Python programming Language, adding support for
    Large, multi-dimensional arrays and matrices, along with a Large collection of
    high-level mathematical functions to operate on these arrays
    import numpy as np
    # Matplotlib is a plotting library for python and pyplot gives us a MatLab like
    plotting framework. We will use this in our plotter function to plot data.
    import matplotlib.pyplot as plt
    #Seaborn is a Python data visualization library based on matplotlib. It provides
    a high-level interface for drawing attractive and informative statistical
    graphics
    import seaborn as sns

!pip install -U scikit-learn
```

```
Ipip install -U js
Ipip install --upgrade scikit-learn

# Preprocessing allows us to standarsize our data
from sklearn import preprocessing
# Allows us to split our data into training and testing data
from sklearn.model_selection import train_test_split
# Allows us to test parameters of classification algorithms and find the best one
from sklearn.model_selection import GridSearchCV
# Logistic Regression classification algorithm
from sklearn.linear_model import LogisticRegression
# Support Vector Machine classification algorithm
from sklearn.svm import SVC
# Decision Tree classification algorithm
from sklearn.tree import DecisionTreeClassifier
# K Nearest Neighbors classification algorithm
from sklearn.neighbors import KNeighborsClassifier
```

This function is to plot the confusion matrix.

```
In [4]:
    def plot_confusion_matrix(y,y_predict):
        "this function plots the confusion matrix"
        from sklearn.metrics import confusion_matrix

        cm = confusion_matrix(y, y_predict)
        ax= plt.subplot()
        sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells
        ax.set_xlabel('Predicted labels')
        ax.set_ylabel('True labels')
        ax.set_title('Confusion Matrix');
        ax.xaxis.set_ticklabels(['did not land', 'land']);
        ax.yaxis.set_ticklabels(['did not land', 'landed'])
        plt.show()
```

Load the dataframe

Load the data

```
In [5]: import requests
import io
import pandas as pd

URL1 = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-
DS0321EN-SkillsNetwork/datasets/dataset_part_2.csv"
resp1 = requests.get(URL1)
text1 = io.StringIO(resp1.text)
data = pd.read_csv(text1)
```

```
In [6]: data.head()
```

Out[6]:	FlightNuml	oer	Date Bo	osterVersion	Payloa	dMass Orbit	LaunchSite	Outcome	Flight	
	0	1	2010- 06-04	Falcon 9	6104.9	959412 LEO	CCAFS SLC 40	None None		
	1	2	2012- 05-22	Falcon 9	525.0	000000 LEO	CCAFS SLC 40	None None		
	2	3	2013- 03-01	Falcon 9	677.0	000000 ISS	CCAFS SLC 40	None None		
	3	4	2013- 09-29	Falcon 9	500.0	000000 PO	VAFB SLC 4E	False Ocean		
	4	5	2013- 12-03	Falcon 9	3170.0	000000 GTO	CCAFS SLC 40	None None		
In [7]:	<pre>URL2 = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM- DS0321EN-SkillsNetwork/datasets/dataset_part_3.csv' resp2 = requests.get(URL2) text2 = io.BytesIO(resp2.content) X = pd.read_csv(text2)</pre>									
In [8]:	X.head(100)									
In [8]: Out[8]:		nber	PayloadN	/lass Flights	s Block	ReusedCoun	orbit_ES- L1	Orbit_GEO	Orbit	
		1. 0	Payload N 6104.959			ReusedCoun	L1	Orbit_GEO	Orbit	
	FlightNun			9412 1.0) 1.0		L1 0.0		Orbit	
	FlightNun 0	1.0	6104.959	9412 1.0 0000 1.0	1.0	0.0	L1 0.0 0.0 0.0	0.0	Orbit	
	FlightNum 0	1.0	6104.959 525.000	9412 1.0 0000 1.0 0000 1.0	1.0 1.0 1.0	0.0	L1 0.0 0.0 0.0 0.0 0.0 0.0	0.0	Orbit	
	FlightNum 0 1 2	1.0 2.0 3.0	6104.959 525.000 677.000	9412 1.0 0000 1.0 0000 1.0	1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0	L1 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	0.0 0.0 0.0	Orbit	
	FlightNum 0 1 2 3	1.0 2.0 3.0 4.0	6104.959 525.000 677.000 500.000	9412 1.0 0000 1.0 0000 1.0	1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0	L1 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	0.0 0.0 0.0 0.0	Orbit	
	FlightNum 0 1 2 3 4	1.0 2.0 3.0 4.0 5.0	6104.959 525.000 677.000 500.000	9412 1.0 0000 1.0 0000 1.0 0000 1.0 0000 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0	L1 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	0.0 0.0 0.0 0.0	Orbit	
	FlightNum 0 1 2 3 4 85	1.0 2.0 3.0 4.0 5.0	6104.959 525.000 677.000 500.000 3170.000	9412 1.0 0000 1.0 0000 1.0 0000 1.0 0000 1.0 	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0	L1 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	0.0 0.0 0.0 0.0 0.0	Orbit	
	FlightNum 0 1 2 3 4 85	1.0 2.0 3.0 4.0 5.0 86.0	6104.959 525.000 677.000 500.000 3170.000	9412 1.0 9000 1.0 9000 1.0 9000 1.0 9000 1.0 9000 2.0 9000 3.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0	0.0 0.0 0.0 0.0 2.0	L1 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	0.0 0.0 0.0 0.0 0.0 	Orbit	
	FlightNum 0 1 2 3 4 85 86 87 88	1.0 2.0 3.0 4.0 5.0 86.0 87.0 88.0	6104.959 525.000 677.000 500.000 3170.000 15400.000 15400.000 15400.000	9412 1.0 0000 1.0 0000 1.0 0000 1.0 0000 2.0 0000 3.0 0000 3.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 5.0 5.0	0.0 0.0 0.0 0.0 2.0 5.0 2.0	L1 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	Orbit	
	FlightNum 0 1 2 3 4 85 86 87 88	1.0 2.0 3.0 4.0 5.0 86.0 87.0	6104.959 525.000 677.000 500.000 3170.000 15400.000 15400.000	9412 1.0 0000 1.0 0000 1.0 0000 1.0 0000 2.0 0000 3.0 0000 3.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 5.0 5.0	0.0 0.0 0.0 0.0 2.0 2.0	L1 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	Orbit	

TASK 1

Create a NumPy array from the column Class in data, by applying the method to_numpy() then assign it to the variable Y ,make sure the output is a Pandas series (only one bracket df['name of column']).

```
In [9]: Y = data['Class'].to_numpy()
```

TASK 2

Standardize the data in X then reassign it to the variable X using the transform provided below.

```
We split the data into training and testing data using the function train_test_split.
```

The training data is divided into validation data, a second set used for training data; then the models are trained and hyperparameters are selected using the function **GridSearchCV**.

TASK 3

Use the function train_test_split to split the data X and Y into training and test data. Set the parameter test_size to 0.2 and random_state to 2. The training data and test data should be assigned to the following labels.

```
X_train, X_test, Y_train, Y_test
```

we can see we only have 18 test samples.

```
In [13]: Y_test.shape
Out[13]: (18,)
```

TASK 4

Create a logistic regression object then create a GridSearchCV object logreg_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters.

```
In [15]: parameters ={"C":[0.01,0.1,1],'penalty':['12'], 'solver':['lbfgs']}# L1 Lasso L2
    ridge
    lr=LogisticRegression()
```

We output the <code>GridSearchCV</code> object for logistic regression. We display the best parameters using the data attribute <code>best_params_</code> and the accuracy on the validation data using the data attribute <code>best_score_</code>.

```
tuned hpyerparameters :(best parameters) {'C': 1, 'penalty': '12', 'solver': 'lbfg
s'}
accuracy : 0.8196428571428571
```

TASK 5

Calculate the accuracy on the test data using the method score:

```
In [18]: logreg_cv.score(X_test, Y_test)
Out[18]: 0.8333333333333334
```

Lets look at the confusion matrix:

```
In [19]: yhat=logreg_cv.predict(X_test)
    plot_confusion_matrix(Y_test,yhat)
```


Examining the confusion matrix, we see that logistic regression can distinguish between the different classes. We see that the major problem is false positives.

TASK 6

Create a support vector machine object then create a **GridSearchCV** object **svm_cv** with cv - 10. Fit the object to find the best parameters from the dictionary **parameters**.

TASK 7

Calculate the accuracy on the test data using the method score:

```
In [ ]: svm_cv.score(X_test, Y_test)
```

We can plot the confusion matrix

```
In [ ]: yhat=svm_cv.predict(X_test)
   plot_confusion_matrix(Y_test,yhat)
```

TASK 8

Create a decision tree classifier object then create a **GridSearchCV** object **tree_cv** with cv = 10. Fit the object to find the best parameters from the dictionary parameters.

TASK 9

Calculate the accuracy of tree_cv on the test data using the method score :

```
In [ ]: tree_cv.score(X_test,Y_test)
```

We can plot the confusion matrix

```
In [ ]: yhat = tree_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```

TASK 10

Create a k nearest neighbors object then create a **GridSearchCV** object **knn_cv** with cv = 10. Fit the object to find the best parameters from the dictionary **parameters**.

```
KNN = KNeighborsClassifier()

In []: knn_cv = GridSearchCV(KNN, parameters, cv=10)
knn_cv.fit(X_train,Y_train)

In []: print("tuned hpyerparameters :(best parameters) ",knn_cv.best_params_)
print("accuracy :",knn_cv.best_score_)
```

TASK 11

Calculate the accuracy of knn_cv on the test data using the method score:

```
In [ ]: knn_cv.score(X_test,Y_test)
```

We can plot the confusion matrix

```
In [ ]: yhat = knn_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```

TASK 12

Find the method performs best:

Similar results from all algorithms.

Authors

Pratiksha Verma

Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description		
2022-11-09	1.0	Pratiksha Verma	Converted initial version to Jupyterlite		

IBM Corporation 2022. All rights reserved.