2017 Fall EE203001 Linear Algebra - Midterm 3

1. (16%) Consider the matrix
$$\mathbf{A}=\begin{bmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}$$

- (a) (8%) Find a Singular Value Decomposition (SVD) of A
- (b) (5%) Use the result of (a) to find the pseudoinverse of A

(c) (3%) Let
$$\mathbf{b} = \begin{bmatrix} 0 \\ \sqrt{6} \\ 0 \end{bmatrix}$$
. Find the least square solution $\hat{\mathbf{x}}$ for $A\hat{\mathbf{x}} = \mathbf{b}$

2. (18%) Let T be a linear transformation on
$$\mathbb{R}^2$$
 defined by $T(x) = (x_1 - x_2, 2x_1 + 3x_2)^T$.
Let $\mathbf{w}_1 = (-1, 1)^T$, $\mathbf{w}_2 = (-2, 1)^T$, $\mathbf{e}_1 = (1, 0)^T$ and $\mathbf{e}_2 = (0, 1)^T$.

- (a) (4%) Prove that T is a linear transformation.
- (b) (3%) Find the matrix A representing T with respect to the standard basis e.
- (c) (3%) Find the change basis of matrix M from input basis \boldsymbol{e} to output basis \boldsymbol{w}
- (d) (4%) Find the matrix B representing T with respect to w.
- (e) (4%) Find the matrix C representing T from input basis e to output basis w.

3. (16%) Let matrix
$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 2 & c \end{bmatrix}$$

- (a) (4%) What are the values of c such that A is a PD matrix?
- (b) (4%) Given c=4 in A, find the LU decomposition of A. Use the LU decomposition to find the sum of squares for $x^T A x$.
- (c) (8%) Please find the axes of the tilted ellipse $4x^2 + 4xy + 4y^2 = 1$. (Hint: Find the sum of squares based on principal axis theorem)

- (a) (5%) Is the matrix $A=\begin{bmatrix} -2 & -1 \\ -1 & -2 \end{bmatrix}$ similar to the matrix $B=\begin{bmatrix} 1 & 2 \\ -4 & -5 \end{bmatrix}$? Please find the matrix M such that $B=M^{-1}AM$.
- (b) (3%) If the matrix C is also similar to matrix A with matrix $M = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$. What are the eigenvectors of matrix C?
- (c) (6%) If the matrix $E = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is similar to the matrix $D = \begin{bmatrix} 6 & 1 \\ -1 & 4 \end{bmatrix}$, find the relationship between a, b, c, d. (Use a and b to express c and d)
- (d) (4%) Use the Jordan form of the matrix D to solve $\frac{d}{dt}\mathbf{u} = J\mathbf{u}$, starting from $\mathbf{u}(0) = (3,4)$.

5. (14%) An $n \times n$ Walsh matrix W_n is a symmetric matrix consisting of length n orthogonal Walsh codes and is defined recursively as:

$$W_{2n} = \left[\begin{array}{cc} W_n & W_n \\ W_n & \widetilde{W_n} \end{array} \right].$$

Given
$$W_1 = \begin{bmatrix} 1 \end{bmatrix}$$
 and $A = \begin{bmatrix} 7.5 & -2.5 & -5 & 1 \\ -2.5 & 7.5 & 1 & -5 \\ -5 & 1 & 7.5 & -2.5 \\ 1 & -5 & -2.5 & 7.5 \end{bmatrix}$:

- (a) (6%) Please find W_4 and its 4-point Fourier transform. (Note: $\widetilde{1} = -1$ and $\widetilde{-1} = 1$).
- (b) (4%) Please decompose A into the form of $\mathbb{R}^T\mathbb{R}$ (Hint: left multiply A by W_4).
- $\begin{bmatrix} -4 & 17 & 2 & -9 \\ -10 & 2 & 18 & -5 \\ 2 & -9 & -5 & 19 \end{bmatrix}$ (c) (4%) From (b), we know A is a PD matrix. Is C=a PD matrix?

Please explain.

(Hint: the sum of PD matrices is also a PD matrix)

6. (18%) Given a real $n \times n$ matrix A

Assume that A is symmetric $(A^T = A)$:

- (a) (2%) Find the number of negative pivots of AA^{T} .
- (b) (3%) If all the eigenvalues of A are equal to λ , what is the dimension of $N(A \lambda I)$?
- (c) (4%) Find A in (b). (Hint: Start from the result in (b))

Assume that A is skew-symmetric $(A^T = -A)$:

- (d) (2%) Given a complex vector \mathbf{z} , find the real part of $\mathbf{z}^H A \mathbf{z}$.
- (e) (3%) Show that all the eigenvalues of A are pure imaginary. (Hint: Use the result in (d))
- (f) (4%) Assume that A is also an orthogonal matrix, its eigenvalues have special properties. Find the eigenvalues and det(A) for even n.