B 2 R 3 A 0 3 B A C 2 0 1 4

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2014

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

المسدة: 04 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (05 نقاط)

في الفضاء المنسوب إلى المعلم المتعامد المتجانس $O; \overline{i}, \overline{j}, \overline{k}$. نعتبر النقط: (2;1;-1) ، (0;1;1;-2) و (0;-2;3) و (1;1;-2) و المستوي (P) المعرف بالمعادلة الديكارتية: (0;-2;3) المطلوب: أجب بصحيح أو خطأ مع تبرير الإجابة في كل حالة من الحالات التالية:

- النقط A ، B و C تعين مستويا.
- (P) المستقيم (AC) محتوى في المستوي (2
- (ACD) هي معادلة للمستوي x-2y-z-1=0 (3
- $\left(AC\right)$ هو تمثیل وسیطي للمستقیم $\begin{cases} x=2t\\ y=-2+3t & t\in\mathbb{R} \end{cases} (4z)$
 - $\frac{3}{2}$ المسافة بين النقطة D والمستوي (P) تساوي (5
- (P) هي المسقط العمودي للنقطة $E\left(-2;-1;1\right)$ على (6
- $\overline{AM} \cdot \overline{CM} = 0$: مطح الكرة ذات المركز D و نصف القطر $\frac{\sqrt{6}}{2}$ هو مجموعة النقط M من الفضاء التي تحقق D) سطح الكرة ذات المركز

التمرين الثاني: (05 نقاط)

- $(z-1-2i)(z^2-2(1+\sqrt{3})z+5+2\sqrt{3})=0$ المعادلة التالية: z=0 المعادلة التالية: z=0
- يب: $D \circ C \circ B \circ A$ (2) لاحقاتها على الترتيب: $D \circ C \circ B \circ A$ (2)

$$z_D = 1 - 2i$$
 g $z_C = 1 + \sqrt{3} - i$ ($z_B = 1 + \sqrt{3} + i$) ($z_A = 1 + 2i$)

أ) بيّن أنّ: AB = CD و (AD) يوازي (BC)

ABCD بحقق أن $\frac{z_B + z_D}{2} \neq \frac{z_A + z_C}{2}$ ثم استنتج طبیعة الرباعي (ب

$$\frac{z_D - z_B}{z_A - z_B} = \sqrt{3} e^{i\frac{\pi}{2}}$$
 : (1) بین ان (1)

استنج أن D هي صورة A بتشابه مباشر مركزه B يطلب تعيين نسبته وزاويته.

C ، B ، A قائم وأن النقط A قائم وأن النقط C ، B ، C و C تنتمي إلى دائرة يطلب تحديد مركزها ونصف قطرها.

ج) استنتج إنشاء للرباعي ABCD

B 2 R 4 A 0 4 B A C 2 0 1 4

التمرين الثالث: (04 نقاط)

- . نعتبر المعادلة (E): 54 (E) عددان صحيحان x نعتبر المعادلة (E)
 - PGCD(2013,1962) احسب (أ
 - \cdot ب استنتج أنّ المعادلة (E) تقبل حلو (E)
 - x = 0[6] فإن: (E) فإن: (x,y) حلا للمعادلة (E) فإن: (ح)
 - (E) معادلة على معادلة (x_0, y_0) عيث $74 < x_0 < 80$ عيث (x_0, y_0) عادلة (د) استنتج علاً خاصنا
- (E) نرمز بالرمز d إلى القاسم المشترك الأكبر للعددين x و y حيث (x,y) حل للمعادلة (2) ما هي القيم الممكنة للعدد d?
 - PGCD(a,b)=18 و a=654b=18 و a=a=654b=18 و a=a=654b=18 و a=a=654b=18

التمرين الرابع: (06 نقاط)

- $g(x) = (2-x)e^x 1$ الدالة العددية المعرفة على $\mathbb R$ كما يلي: $g(x) = (2-x)e^x 1$
 - 1) ادرس تغيرات الدالة ع
- $1,8 < \beta < 1,9$ و $\alpha < -1,1$ و $\beta = 0$ حيث $\beta = 0$ و $\beta = 0$ في $\beta = 0$ في $\beta = 0$ حيث أن للمعادلة: $\beta = 0$ في $\beta = 0$ علان م
 - \mathbb{R} على g(x) استنتج إشارة
- الدالة العددية المعرفة على \mathbb{R} كما يلي: $f(x) = \frac{e^x 1}{e^x x}$ كما يلي: $f(x) = \frac{e^x 1}{e^x x}$ كما يلي: $f(x) = \frac{e^x 1}{e^x x}$ الدالة العددية المعرفة على $f(x) = \frac{e^x 1}{e^x x}$ الدالة العددية المعرفة على $f(x) = \frac{e^x 1}{e^x x}$ الدالة العددية المعرفة على المعر
 - 1) احسب نهایة الدالة f عند ∞ و عند ∞ و فسر النتیجتین هندسیا .
- 2) بیّن أنّه من أجل كل عدد حقیقي $x: \frac{g(x)}{\left(e^x-x\right)^2}: x$ واستنتج اتجاه تغیر الدالة f ثم شكل جدول تغیر اتها.
 - $f(\beta)$ و $f(\alpha)$ و استنتج حصرا للعددين $f(\alpha) = \frac{1}{\alpha 1}$ و (3)
 - (C_f) ثم ارسم المنحنى (4)
 - 5) ٦ عدد حقيقي أكبر أو يساوي 1
 - $a(\lambda) = \int_{1}^{\lambda} [f(x)-1] dx$ حيث: $a(\lambda)$ حيث (أ
 - $+\infty$ احسب نهایة $\alpha(\lambda)$ عندما یؤول λ إلى ∞

الموضوع الثاني

التمرين الأول: (05 نقاط)

 $(O; \vec{u}, \vec{v})$ المستوي منسوب إلى المعلم المتعامد المتجانس

b=-1+2i و a=-2+6i و النقطتان اللتان لاحقتاهما على الترتيب: a=-2+6i

- 1) اكتب العدد المركب i+i على شكل أسى .
- $z'=\sqrt{2}\;e^{irac{\pi}{4}}z+2$: ديث z' التحويل النقطي الذي يرفق بكل نقطة M لاحقتها $z'=\sqrt{2}\;e^{irac{\pi}{4}}z+2$
- أ) D النقطة ذات اللحقة d حيث d=2i، جد لاحقة النقطة D' صورة D' بالتحويل D' ماذا تستنتج؟
 - S بين أن: $z'-d=\sqrt{2}e^{i\frac{\pi}{4}}(z-d)$ واستنج طبيعة وعناصر التحويل
 - 3x + 5y = 11: (Δ) (3) المستقيم ذو المعادلة:
 - أ) تحقّق أنّ النقطة (-3;4) تنتمي إلى (Δ) ثم عين نقط (Δ) التي إحداثياتها أعدادا صحيحة.
 - ب) M_0' صورة M_0 بالتحويل M_0 . بيّن أن المستقيمين M_0' و M_0' متعامدان.
 - x (4 عددان صحیحان من المجال [-5;5]. عین مجموعة النقط M(x;y) من المستوي بحیث یکون x (4 المستقیمان (BM') و (BM') متعامدین، حیث M' هی صورة M بالتحویل (BM')

التمرين الثاني: (04.5 نقاط)

الدالة العددية f معرفة على $[O;+\infty]$ كما يلي : $\frac{2x^2}{x+4}$: كما يلي : $O;+\infty$ المنحنى الممثل للدالة f في المستوي المنسوب إلى المعلم المتعامد المتجانس $O;\overline{i},\overline{j}$ كما هو مبين في الشكل أدناه.

- 1) بين أن الدالة / منز ايدة تماما.
- $U_{n+1} = f(U_n)$: n عدد طبيعي عدد طبيعي $U_0 = 3$ عدد المعرفة بـــ : $U_0 = 3$
 - y = x المستقيم الذي معادلته (Δ)
 - أ) باستعمال المنحنى (C_f) والمستقيم (Δ) مثّل، على حامل محور الفواصل، الحدود: U_1 ، U_2 ، U_1 ، U_0 دون حسابها .
 - ب) ضع تخمينا حول اتجاه تغير المنتالية (U_n) وتقاربها.
 - $0 \le U_n \le 3$! n عدد طبیعي n ! $n \le U_n \le 3$) أ) بر هن بالتراجع أنه من أجل كل عدد طبیعي (U_n) متناقصة .
 - ج) استنتج أن (U_n) متقاربة.
 - اً) ادرس إشارة العدد $7U_{n+1}-6U_n$ واستنتج أنّه من أجل كل (4 $0 \le U_{n+1} \le \frac{6}{7}U_n$ و عدد طبیعي عدد طبیعي

التمرين الثالث: (05 نقاط)

A(1;1;3) المستقيم الذي يشمل النقطة المتعامد المتجانس $(0;\vec{i},\vec{j},\vec{k})$ المستقيم الذي يشمل النقطة

$$\begin{cases} x+z=0 \\ y=3 \end{cases}$$
 in the last integral of the last integral (\Delta'). It is a simple of the last integral of the

- (Δ') و (Δ) جد تمثیلا وسیطیا لکل من المستقیمین (Δ) و (Δ)
 - (Δ) بيّن أن (Δ) و (Δ') ليسا من نفس المستوي.
- 2x + y + 2z 3 = 0 هي: (P) هي: (Δ) و يوازي (Δ) . بيّن أن معادلة المستوي الذي يشمل (Δ') و يوازي (Δ')
- (P) والمستوي M نقطة كيفية من المستقيم (Δ) ، حيث $t \in \mathbb{R}$ حيث M(1+t;1+2t;3-2t) (4
 - قيم المستقيم (P) عين إحداثيات النقطة A' المسقط العمودي للنقطة A على المستقيم أو أ(P) عن إحداثيات النقطة (P)
 - (Δ) الذي يشمل A' ويوازي (Δ'')
 - B(1;3;-1) بيّن أن (Δ') و (Δ') يتقاطعان في النقطة
 - $f(t) = BM^2$: كما يلي \mathbb{R} كما الدالة العددية المعرفة على f(6)
 - $f(t) = 9t^2 24t + 20$ (i)
 - $f(t_0)$ و t_0 يطلب تعيين $f(t_0)$ و صغری معری و تقبل قيمة حدية صغری و بين أنّ $f(t_0)$
 - $d = \sqrt{f(t_0)}$ أَن مُقَقَ الْ (جـ)

التمرين الرابع: (05.5 نقاط)

- $f(x) = (1 + 2 \ln x)(-1 + \ln x)$: $= (1 + 2 \ln x)(-1 + \ln x)$: $= (1 + 2 \ln x)(-1 + \ln x)$
- $\left(O;\vec{t},\vec{f}\right)$ المنحنى الممثل للدالة f في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(C_{f}\right)$
 - أ) ادرس تغيرات الدالة f
- بعد) اكتب معلالمة المماسي ((C_f) المنحذي ((C_f) في النقطة ذات الفاصلة e (حيث e أساس اللوغاريتم النيبري).
 - $[0;e^2]$ على المجال ((C_f)) على المجال عين فواصل ثم ارسم ((C_f)) على المجال ((C_f)) على المجال (ج
 - $g(x) = 1 \ln x$: با g(2) الدالة العددية المعرفة على المجال $g(x) = 1 \ln x$
 - (Cg) تمثيلها البياني في المعلم السابق.
 - أ) ادرس تغيرات الدالة ج
 - $]0;e^2]$ على المجال $[C_8]$ على المجال $[C_8]$ على المجال و $[C_8]$
 - $h(x) = x(\ln x)^2 2x \ln x + 2x$:... $]0;+\infty[$ المعرفة على المعرفة على المجال $[0;+\infty[$ المعرفة على المعرفة على المجال $[0;+\infty[$
 -]0;+ ∞ [على $x\mapsto (\ln x)^2$ على أh'(x) على أh'(x) على أ
 - $\int_{\frac{1}{a}}^{e} [f(x) g(x)] dx : 1$

دورة: جوان 2014 المدة: 4 سا و30 د

اختبار مادة: الرياضيات الشعبة: رياضيات

عدد الصفحات 05

الإجابة النموذجية

العلامة		عناصر الإجابة (الموضــوع الأول)
مجموع	مجزأة	•
		التمرين الأول: (05 نقاط)
	0.5+0.25	صحيح لأنّ الشعاعين \overrightarrow{AB} و \overrightarrow{AC} غير مرتبطين خطيا
	0,25×2	كا خطأ \mathbb{V} ن النقطة A \mathbb{V} تتتمي إلى (P)
	0,5+0,25	3) صحيح لأنّ إحداثيات النقط B، A و C تحقق المعادلة
		صحیح لأنّ إحداثیات A و C تحقق الجملة أو لأن $\overrightarrow{AC} = -$ و إحداثیات C تحقق A
05	0,75+0.25	$\vec{U}\left(2;3;-4 ight)$ الجملة ، حيث $\vec{U}\left(2;3;-4 ight)$
		خطأ لأنّ المسافة بين D و P تساوي $\frac{2}{3}$
	0,5+0,25	3
	0,5+0,25	صحيح لأنّ $E \in (P)$ و \overrightarrow{EC} ناظمي للمستوي (P)
	0.25 ×2	AC خطأ لأنّ D ليست منتصف القطعة AC
		التمرين الثاني: (05 نقاط)
	0,25×4	$Z_3 = 1 + \sqrt{3} - i$ ، $Z_2 = 1 + \sqrt{3} + i$ ، $Z_1 = 1 + 2i$ ، الحلول هي $\Delta = 4i^2$ (1)
	0,5×2	$ (BC)//(AD)$ و $ z_D - z_A = CD$ ومنه $ z_D - z_A = z_D - z_C = 2$ و $ z_B - z_A = z_D - z_C = 2$
	0,25×3	ب) $\frac{Z_B + Z_D}{2} \neq \frac{Z_A + Z_C}{2}$ والرباعي هو شبه منحرف متساوي الساقين
	0,75	$z_D - z_B = \sqrt{3} \times e^{irac{z_D^2}{2}}$ (أ $z_A - z_B$) نبيان أنّ: $z_A - z_B$
05	0,5	$\ldots \frac{\pi}{2}$ ومنه D صورة A بتشابه مباشر نسبته $\sqrt{3}$ وراويته $z_{\scriptscriptstyle D} - z_{\scriptscriptstyle B} = \sqrt{3} imes e^{irac{\pi}{2}} (z_{\scriptscriptstyle A} - z_{\scriptscriptstyle B})$
	0,25	ب) المثلث ADB قائم في B
	*400	$\widehat{ABD} = \widehat{ACD} = \frac{\pi}{2}$ الأن: AD و C تنتمي إلى الدائرة (γ) التي قطرها AD
	0.5	نصف القطر $r=2$ والمركز $\Omega(1;0)$
		$y=1$ إنشاء $ABCD$: نعلم A و B ؛ B هي نقطة تقاطع (γ) والمستقيم ذي المعادلة $y=1$
	0.25	و C هي تقاطع (γ) والمستقيم ذي المعادلة $y=-1$ ؛ فاصلة كل من B و C موجبة
		التمرين الثالث: (04 نقاط)
	0,5	$PGCD(2013,1962) = 3 (1)$
04	0,25	ب) PGCD(2013,1962)=3 يقسم 54 إذن للمعادلة حلولا
		ج) (E) تكافئ (E) =671x ومنه 671x ومنه 671x و 6 أولي مع 671 إذن 1/x أي
	0,5	رحسب مبرهنة غوص) $X\equiv 0$
	0,5	$(x_0, y_0) = (78,80)$
	1	$(k \in \mathbb{Z}) \; y = 80 + 671k$ و $x = 78 + 654k$ حلول المعادلة هي الثنائيات (x,y) حيث

تابع الإجابة النموذجية وسلم التنقيط لمادة: الرياضيات امتحان: البكالوريا الشعبة: رياضيات المدة: 4سا و 30د دورة: 2014

العلامة		7
مجموع	مجزأة	عناصر الإجابة
	0.5	$d \in \{1, 2, 3, 6, 9, 18\}$ من قواسم 18 إذن $d \in \{1, 2, 3, 6, 9, 18\}$ من قواسم 18 المناف
	0.75	اب $b=1422+12078 p$ و $b=1422+12078 p$
		التمرين الرابع: (06 نقاط)
	2×0,25	$\lim_{x \to +\infty} g(x) = -\infty \lim_{x \to +\infty} g(x) = -1 (1)$
	0,5	$x>1$ لما $g'(x)<0$ و $g'(x)<0$ لما $g'(x)\geq 0$ ، $g'(x)=(1-x)e^x$
	0,25	جدول التغير ات:
06		g(x)=0 مستمرة ومتز ايدة تماما على $g(x)=0$ و $g(x)=0$ و $g(x)=0$ مستمرة ومتز ايدة تماما على مسلم
	0,75	حل وحيد $lpha$ في المجال [1; ∞ -[،بنفس الطريقة نبين للمعادلة حل وحيّد \hat{eta} في المجال $[0.001]$
	0,25	$g(-1,1) \simeq 0.032$ ، $g(-1,2) \simeq -0.036$: ψ $-1,2 < \alpha < -1,1$
		$g(1,9) \simeq -0.33$ ، $g(1,8) \simeq 0.21$ کُن: $1.8 < \beta < 1.9$
	0,25	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0,75	ا $y=0$ و $y=1$ و $y=0$ مستقیمان مقاربان معادلتاهما $y=0$ و $y=0$ السلام و $y=0$ مستقیمان مقاربان معادلتاهما $y=0$
	0,25	$f'(x) = \frac{g(x)}{\left(e^x - x\right)^2} \left(2 \right)$
	0,25	ا متناقصة تمامًا على كل من $[lpha, eta] = [eta, +\infty[$ و متزايدة تمامًا على كل من $[lpha, eta] = [eta, +\infty[$
	0,25	جدول التغيرات:
	3×0,25	
	0,5	رسم (C_f) رسم (C_f) رسم (1) =1
		4 3 2 1 0 1 2 3 x
	0,25	$a(\lambda) = \int_{1}^{\lambda} (f(x) - 1) dx = \left[\ln \left(1 - x e^{-x} \right) \right]_{1}^{\lambda} \qquad (5)$
	0,25	$= \ln\left(1 - \lambda e^{-\lambda}\right) - \ln\left(e - 1\right) + 1$
	0,25	$\lim_{\lambda \to +\infty} \left(-\lambda e^{-\lambda} \right) = 0$ کُن $\lim_{\lambda \to +\infty} a(\lambda) = 1 - \ln(e-1)$ (ب
		2370

العلامة		/ 15th tt) 11 by 11-
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الأول: (05 نقاط)
	0,5	
	0,25×2	D) ا) لاحقة النقطة D' هي D' إذن النقطة D صامدة بالتحويل D' مركز D'
	0,5	$z'-d=\sqrt{2} imes e^{irac{\pi}{4}}\left(z-d ight)$ ب z' تبیان أن
	0,5	$rac{\pi}{4}$ تشابه مباشر مرکزه D نسبته $\sqrt{2}$ وزاویته S
0.5	0,25	$M_{0}\left(-3;4 ight)$ التحقق من أن النقطة $M_{0}\left(-3;4 ight)$ تنتمي إلى $M_{0}\left(-3;4 ight)$
05	0,75	$k\in\mathbb{Z}/M$ (5 $k-3$; $-3k+4$): النقط التي إحداثياتها صحيحة
	0,25	$M_0\left(-3;4 ight)$ هي $M_0\left(-5;1 ight)$ هي $M_0\left(-3;4 ight)$ هي اين اين اين اين اين اين اين اين اين اي
	0,75	\dots (\overrightarrow{BA} . $\overrightarrow{BM_0'}=0$ أو $\arg(\frac{Z_{M_0'}-Z_B}{Z_A-Z_B})=\frac{\pi}{2}$) متعامدان ((BA) متعامدان ((BA)
	0,5	$\begin{cases} 3x + 5y = 11 \\ -5 \le x \le 5 \end{cases}$ المستقيمان (BA) و (BA) متعامدان إذن $SA = -5 \le x \le 5$
	0,5	$igl(-5 \le y \le 5igl)$ النقط المطلوبة هي $M_0\left(-3;4 ight)$ و $M_1\left(2;1 ight)$ النقط المطاوبة المطلوبة
		التمرين الثاني: (04.5 نقاط)
	0,5	رے ہے ہے: $f'(x) = \frac{8x}{(x+4)^2} \ge 0$ (1) ابن الدالة f متز ایدة تماما علی $f'(x) = \frac{8x}{(x+4)^2} \ge 0$
		(أو باستعمال المنحنى المرفق)
04.5	0,5	2) أ) تمثيل الحدود:
	0,5	ب) التخمين: (U_n) متناقصة ومتقاربة نحو الصفر (U_n) محققة $0 \le U_0 \le 3$ (أ (3
	0,5	$f(0) \leq f(U_n) \leq f(3)$ ومنه $0 \leq U_n \leq 3$ نفرض $0 \leq U_n \leq 3$
		$f(3) = \frac{18}{7} < 3$ ومنه $0 \le U_{n+1} \le 3$ ومنه $0 \le U_{n+1} \le 3$
		$0 \! \leq \! U_n \! \leq \! 3$ י גע ואט און $0 \! \leq \! U_n \! \leq \! 3$ י גע ואט איז
	0.5	U_{n+1} (0 \leq U_n \leq 3 0 \leq 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4 $<$ 4
		ومنه $(U_{_{n}})$ متناقصة.
	0.5	ج) متناقصة ومحدودة من الأسفل فهي متقاربة $(U_{_{n}})$ (ج
		: ومنه نستنج أن $0 \le U_n \le 3$ لأن $0 \le U_{n+1} - 6U_n = \frac{8U_n(U_n - 3)}{U_n + 4} \le 0$ ومنه نستنج أن (4
	0.5	$\dots 0 \le U_{n+1} \le \frac{6}{7}U_n$

تابع الإجابة النموذجية وسلم التنقيط لمادة: الرياضيات امتحان: البكالوريا الشعبة: رياضيات المدة: 4سا و 30د دورة: 2014

العلامة		عناصر الإجابة
مجموع	مجزأة	حاصر الإجابة
	0,75	ب) البرهان بالتراجع على أن: $0 \le U_n \le 3\left(\frac{6}{7}\right)^n$: بالبرهان بالتراجع على أن: $0 \le U_n \le 3\left(\frac{6}{7}\right)^n$
	0.25	$\lim_{n\to +\infty} U_n = 0$ إذن $0 < \frac{6}{7} \le 1$ يا يا $\lim_{n\to +\infty} \left(\frac{6}{7}\right)^n = 0$ ج
		التمرين الثالث: (05 نقاط)
	0,5	$x=1+t$ $t\in\mathbb{R}$ حيث $x=1+t$ $y=1+2t$ هو: Δ هو: Δ مثيل وسيطي للمستقيم Δ هو: Δ
	0,5	$x=-t'$ نمثیل وسیطی للمستقیم (Δ') هو: $x=-t'$ حیث $z=t'$
	0.75	(Δ') و (Δ') ليسا من نفس المستوي لأنهما غير متوازيين وغير متقاطعين
05	0.75	و موجه بالشعاعين $u(-1;2;-2)$ و موجه بالشعاعين $u(-1;2;-2)$ و $u(0;3;0)$ نعين شعاعا $u(0;3;0)$ و موجه بالشعاعين $u(0;3;0)$
5.0000000000000000000000000000000000000	0.75	$2x+y+2z-3=0$ ناظمیا \vec{n} لے (P) أو نكتب تمثیلا وسیطیا له ثم نستنج المعادلة (P) المعادلة (P)
	0.5	d=2 هي $d=2$ المسافة بين $d=0$ من $d=0$ هي $d=0$
	0,5	هي نقطة تقاطع (P) مع المستقيم الذي يشمل A و يعامد $A'\left(\frac{-1}{3};\frac{1}{3};\frac{5}{3}\right)$ أ (5)
	0.25	$x = -\frac{1}{3} + \lambda$ $y = \frac{1}{3} + 2\lambda ; \lambda \in \mathbb{R}$ $z = \frac{5}{3} - 2\lambda$ (Δ') $z = \frac{5}{3} - 2\lambda$
	0.5	$ \qquad \qquad (\Delta') \cap (\Delta')' = \{B(1,3,-1)\} \ (\because)$
	0.25	$f(t) = BM^2 = 9t^2 - 24t + 20 $ (5 (6)
	0.25	$f(t_0) = 4$ ، $t_0 = \frac{4}{3}$ ومنه $f'(t) = 18t - 24$ (ب
	0.25	$d = 2 = \sqrt{f(t_0)} (\Rightarrow)$

تابع الإجابة النموذجية وسلم التنقيط لمادة: الرياضيات امتحان: البكالوريا الشعبة: رياضيات المدة: 4سا و 30د دورة: 2014

العلامة		Tale VIII and to
مجموع	مجزأة	عناصر الإجابة
		التمرين الرابع: (05.5 نقاط)
	0,25×2	$\lim_{x \to +\infty} f(x) = +\infty \cdot \lim_{x \to -\infty} f(x) = +\infty (1)$
	0.5	$f'(x) = \frac{-1 + 4 \ln x}{x}$
		X
	0.25	$0 - e^{rac{1}{4}} + \infty : f'(x)$ اشارة ($f'(x)$
	0.25	جدول التغيرات :
	0.5	$y = \frac{3}{e}x - 3$: (Δ) معادلة المماس (ب
	0,25×2	$\dots \qquad x = \frac{1}{\sqrt{e}} g x = e (\Rightarrow$
05.5	0.50	(C_f) (C_f)
	0,75	2) أ) تغيرات الدالة g
	0,25	$f(x) - g(x) = 2(\ln x - 1)(\ln x + 1)$ الوضع النسبي للمنحنبين
	0,25	$0+e^{-1}-e+ullet \infty$: الإشارة : $0+e^{-1}-e$
	0,25	\ldots ر $\left[rac{1}{e};e ight]$ في كل من $\left[e;+\infty ight]$ و $\left[e;+\infty ight]$ و $\left[C_{_{f}} ight)$ أسفل $\left(C_{_{g}} ight)$ في $\left(C_{_{g}} ight)$
	0,25	رسم (C_g) :
	0.25	$x\mapsto (\ln x)^2$ ومنه h دالة أصلية للدالة $h'(x)=(\ln x)^2$ (أ (3)
	0.5	$\int_{\frac{1}{e}}^{e} \left[f(x) - g(x) \right] dx = 2 \int_{\frac{1}{e}}^{e} \left[(\ln x)^2 - 1 \right] dx = 2 \left[h(x) - x \right]_{\frac{1}{e}}^{e} = -\frac{8}{e} (\because $