# TEAC AN-300 NOISE REDUCTION UNIT SERVICE MANUAL



#### TEAC CORPORATION

TEAC CORPORATION OF AMERICA

TEAC TONBAND-ANLAGEN

VERTRIEBS GmbH

TEAC HONGKONG LIMITED

SALES OFFICE SHINIUKU BLDG. 1-8-1, NISHLSHINIUKU, TOKYO PHONE (03) 343-5151. 7733 TELEGRAPH ROAD, MONTEBELLO, CALIFORNIA 90640 PHONE (213), 726-0303

6200 WIESBADEN-ERBENHEIM EGERSTRASSE 2 WEST GERMANY

PHONE (06121) 74225-74228

#### 1. GENERAL DESCRIPTION

The TEAC AN-300 is a 4 Channel DOLBY "B" system NOISE REDUCTION UNIT designed for use with any quality tape deck having independent INPUT and OUTPUT LEVEL controls. Each DOLBY circuit is employed for recording or playback with its operating mode selected by a change over switch. Unit operation and service is extremely simple and easy.

This manual describes the adjustment, inspection and calibration procedure to be accomplished by service engineers. Explanations which duplicate those in the owners instruction manual, and detailed circuit theory operation have been omitted. Refer to the owners instruction manual for complete operating instructions,

In the event difficulties are encountered during complex adjustment or repair, contact the nearest TEAC Factory Service Center or Field Office.

- INDEX —

- 1. GENERAL DESCRIPTION
- 2. SERVICE DATA
- 3. PRECAUTION
- 4. EQUIPMENT REQUIRED
- 5. LINEARITY CHARACTERISTIC CHECK
- 6. GAIN-LAW ADJUSTMENT
- 7. LEVEL METER CALIBRATION
- 8. CALIBRATION OSCILLATOR LEVEL ADJ.
- 9. MULTIPLEX FILTER ADJ.
- 10. RECORD/PLAYBACK FREQUENCY RESPONSE CHECK SCHEMATIC DIAGRAM
- 11. OVERALL PERFORMANCE CHECK
- 12. PARTIAL DISASSEMBLY
- 13. PARTS LOCATION
- 14. TROUBLE SHOOTING
  PACKING FOR SHIPMENT
  WIRING DIAGRAM
  PC BOARD
  EXPLODED VIEW AND PARTS LIST

#### 2. SERVICE DATA

|                      | SPECIFICATIONS                                      | DESCRIPTION                                | CONDITION                                                           |
|----------------------|-----------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------|
| RECORD<br>SECTION:   | Frequency Response                                  | 10kHz: +10dB ±1dB<br>1kHz: 5.5dB ±1dB      | Measured at level -40dB<br>below specified Input level.             |
|                      | **                                                  | 20Hz∿15kHz, ±1dB<br>20Hz∿20kHz, ±1dB       | Measured at specified Input level. With MPX FILTER SW OUT position. |
|                      | Record Input<br>Sensitivity<br>(LINE INPUT jacks)   | 100mV ±1dB                                 |                                                                     |
|                      | INPUT Impedance                                     | 70kΩ or more                               |                                                                     |
|                      | Record Output Level<br>(Record Output jacks)        | 300mV                                      | Load impedance $50 k\Omega$ or more                                 |
|                      | Harmonic Distortion                                 | 0.2% or less                               | With Frequency lkHz                                                 |
|                      | Multiplex Filter                                    | 19kHz, -30dB or<br>more<br>38kHz, -25dB or | With DOLBY NR SW OUTPUT position                                    |
|                      | Signal-to-Noise Ratio                               | more 65dB or higher                        | With INPUT jacks Shorted                                            |
|                      | Channel Separation                                  | 55dB or less                               | With Frequency 1kHz<br>INPUT jacks with 5.6KΩ connect               |
|                      | GAIN Adj. Sensitivity                               | 10dB ±0.25dB                               |                                                                     |
|                      | LAW Adj. Sensitivity                                | 2dB ±0.25dB                                |                                                                     |
| PLAYBACK<br>SECTION: | Frequency Response                                  | 10kHz, -10dB ±1dB<br>1kHz, -5.5dB ±1dB     | Measured at level -40dB below specified Input level.                |
|                      |                                                     | 20Hz∿15kHz, ±1dB<br>20Hz∿20kHz, ±1dB       | Specified Input level. With MPX FILTER SW OUT position              |
|                      | Playback Input<br>Sensitivity<br>(TAPE INPUT jacks) | 100mV ±1dB                                 |                                                                     |
|                      | INPUT Impedance                                     | 70kΩ or more                               |                                                                     |
|                      | Playback Output level (MONITOR OUTPUT jack)         |                                            | Load Impedance 50kΩ or more                                         |

|                  | SPECIFICATIONS                       | DESCRIPTION                                                                            | CONDITION                                            |
|------------------|--------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|
| Cont.            | Harmonic Distortion                  | 0.2% or less                                                                           | With Frequency 1kHz                                  |
|                  | Low Pass Filter                      | 20kHz, OdB<br>35kHz, -3dB<br>100kHz, -50dB or<br>more                                  | With MPX FILTER SW OUT position                      |
|                  | Signal-to-Noise Ratio                | 65dB or higher                                                                         | INPUT jack Shorted                                   |
|                  | Channel Separation                   | 60dB or less                                                                           | With Frequency 1kHz<br>INPUT jack With 5.6KΩ connect |
| POWER<br>SUPPLY: | AC INPUT Voltage  AC INPUT Frequency | 100V 10%<br>117V 10%<br>100,117,220,240V<br>(With Voltage<br>Selector SW)<br>50Hz 60Hz | AN-300D<br>AN-300A<br>AN-300F                        |
| 1                | AC OUTLET                            | 500W(MAX.)                                                                             | Power unswitched                                     |
|                  | Power Consumption                    | 13W                                                                                    |                                                      |

#### NOTE

As a result of countinuing changes and improvements during the production run, minor differences may be found between early and later machines. Refer to manual change sheets for information concerning modifications.

Should you have any questions concerning this manual, please contact Instruction Manual Project Department. Your query will receive personal attention.

Address: TEAC Corporation
Sales Office
Instruction Manual Project Dept.
Shinjuku Building
1-8-1, Nishi-Shinjuku,
Shinjuku-ku, Tokyo,
Japan

#### 3. PRECAUTION

The AN-300 is particularly susceptible to induced hum, VTVM readings may be affected, therefore when making measurements observe the waveshapes at the VTVM with an oscilloscope. Ascertain that the waveshapes are clean and free of induced hum.

When making measurements at the TEST POINTS, the recommended and most convenient probe is MIYAMA #300, parts No. 57244040 IC-Clip. If this probe is not available use an insulated mini alligator Clip. Do not allow the clip to short the test points to adjacent components.

Vibration may cause the adjustable potentiometers (VR) of the AN-300 to move thereby upsetting the adjustments. After performing the adjustment procedures always secure the adjustable components with a drop of locking paint such as LOCTITE.

#### 4. EQUIPMENT REQUIRED

Audio Frequency Oscillator:

Oscilloscope:

Attenuator: Resistor:

AC VTVM:

Adjustment Driver:

Head Tools:

20Hz ∿ 50kHz General purpose

0  $\sim$  9 dB in 0.5 dB steps 4.7kΩ, 1 Watt

Input impedance  $100k\Omega$  or higher

Frequency Response 20Hz ∿ 50kHz

Non inductive

General



#### 5. LINEARITY CHARACTERISTIC CHECK

#### a) GENERAL-

The linearity characteristics of the AN-300 vary with the level and frequency of the applied signal. The signal during record mode of operation is compressed, the playback signal is expanded by exactly the same amount.

Linearity characteristics are adjusted in the playback mode. Since the same circuitry is utilized for recording and playback, only one adjustment is required, that is to say if the linearity characteristics are properly adjusted in the playback mode, they will also be adjusted for the record mode of operation.

To insure perfect performance, procedures are given for checking the frequency response and linearity characteristics in both record and playback modes.

The operational characteristics of the DOLBY "B" type noise reduction system are determined by the GAIN-LAW adjustments. Multiplex filter characteristics, signal noise ratio checks etc. are outlined elsewhere in this manual.

#### SPECIAL NOTE

GAIN- The low level signal linearity variation characteristic is determined by the GAIN adjustment. This will be set at 10 dB in step 7 below. We refer to this adjustment as "GAIN" and it is a critical determining factor in the overall performance of the DOLBY "B" type noise reduction system.

LAW- After adjusting the GAIN, in step 8 below we will adjust the FET operation threshold level with the LAW volume adjustment. In the DOLBY "B" type system this characteristic is called LAW and is set at 2 dB ±0.25 dB. Again this is a critical adjustment and must be performed accuratedly if optimum noise reduction is to be attained.

Proceed to the next page for the "GAIN-LAW ADJUSTMENT"

#### 6. GAIN-LAW ADJUSTMENT

#### b) PREPARATIONS -

1. Set the controls of the AN-300 as outlined below:

OUTPUT LEVEL Control ... MAX. Counter clockwise INPUT LEVEL Control ... MAX. clockwise

2. Set the LAW adjustments on the DOLBY PROCESSOR PC Board as follows:

VR - 101 ····· L Channel 1 and 3 VR - 102 ···· R Channel 2 and 4 for MAX. counter-clockwise (CCW)

3. Short the test points with a jumper wire as outlined below:

FET GATE NO.29 $\sim$ 35 ··· L Channel 1 and 3 FET GATE NO.30 $\sim$ 35 ··· R Channel 2 and 4

The purpose of shorting these points together is to pinch off (disable) the FET.

4. Connect the VTVM to the test point listed below and chassis ground:

CAL POINT NO.25 · · · L Channel 1 and 3 CAL POINT NO.26 · · · R Channel 2 and 4

- 5. Apply a 5 kHz signal from the audio oscillator, with the VTVM connected as directed in step 4 above. Set the attenuator to obtain an indication on the VTVM of 3 mV. Begin the adjustment with the L channel.
- 6. Remove the VTVM from CAL POINT NO.25,26 and connect it to the REC OUTPUT jacks. The VTVM indication at this point should be considered 0 dB.
- 7. Place the DOLBY NR switch to the  $\overline{\text{IN}}$  position. Adjust the GAIN volume to obtain a +10 dB ( $\pm 0.25$  dB) indication on the VTVM. This is the low level signal linearity change adjustment.

GAIN VR - 103 ···· L Channel 1 and 3 GAIN VR - 104 ···· R Channel 2 and 4

8. Disconnect the jumper leads installed in step 3. Now adjust the LAW volume to obtain a 2 dB ( $\pm 0.26$  dB) decrease from the indication obtained in step 7.

LAW VR - 101 ····· Channel 1 and 3 LAW VR - 102 ····· Channel 2 and 4

This adjustment determines the FET operating threshold level.

9. After making the above adjustments, secure all VR with locking paint.

#### GAIN-LAW ADJUSTMENT LOCATIONS







#### 7. LEVEL METER CALIBRATION

a) GENERAL -

The DOLBY level in the AN-300 is set at 100mV as measured at the CAL POINT on the DOLBY PROCESSOR PC Board. The following procedures are used to adjust the AN-300 caliblation meter sensitivity and accuracy.

- b) PREPARATIONS -
  - 1. Set the AN-300 controls as outlined below:



- 2. Connect the VTVM between CAL POINT of the DOLBY PROCESSOR PC Board and chassis ground. Set the attenuator for -30 dB.
- 3. Set the VR on the METER amplifier PC Board as below:

VR - 401,402 ··· Channel 1 and 2 VR - 403,404 ··· Channel 3 and 4 Set for all VR MAX. counter-clockwise

- 4. Apply a 400 Hz signal from the Audio oscillator, adjust the attenuator to obtain a reading of 100 mV.
- 5. Adjust all VR to obtain 0 VU (CAL Position) on the meter of the AN-300.

VR - 401 · · · Channel 1 VR - 402 · · · Channel 2 VR - 403 · · · Channel 3 VR - 404 · · · Channel 4

6. After making the above adjustments, secure all VR with locking paint.

#### LEVEL METER ADJUSTMENT LOCATIONS







#### 8. CALIBRATION OSCILLATOR LEVEL ADJUSTMENT

#### a) GENERAL-

The AN-300 has an internal calibration oscillator to enable you to properly calibrate the AN-300 to the associated tape deck. In this step the oscillator output level will be adjusted.

#### b) PREPARATIONS --

1. Set the controls of the AN-300 as outlined below:

INPUT SW — LINE

MODE SW — REC

DOLBY NR — IN

MPX FILTER — OUT

CAL TONE SW — IN

- 2. Connect the VTVM across TP#12 (OSC PC Board on the bottom of the AN-300) and chassis ground 35.
- 3. Adjust the VR-301 (OSC PC Board) to obtain a 100 mV indication on the VTVM. This single adjustment takes care of all 4 channels.





#### 9. MULTIPLEX FILTER ADJUSTMENT

#### a) GENERAL

When an FM tuner is used as a program source the action of the AN-300 could be affected by a multiplex leak carrier. The AN-300 incorporates an internal MPX filter to bypass the leak carrier.

#### b) PREPARATIONS-

1. Set AN-300 controls as follow:

| INPUT SW I       | LINE      |         |   |
|------------------|-----------|---------|---|
| MODE SW R        | REC       | MONITOR |   |
| DOLBY NR ——— C   | OUT       |         |   |
| MPX FILTER ——— I | IN NORMAI | SOURCE  | 3 |
| CAL TONE C       | OUT (I)   | l.      |   |

INPUT LEVEL Control · · · MAX. clockwise

- 2. Set the audio oscillator frequency at 400 Hz. Adjust signal level with attenuator to obtain an indication at the VTVM of -10 dB (0.244 mV). Begin procedure with the L channel.
- 3. Set oscillator frequency to 19 kHz  $\pm 10\%$ . Signal level is not changed. Adjust L-103/104 for a minimum indication at the VTVM.
- 4. Attenuation of the 19 kHz signal should be greater then 30 dB (7.74 mV) as compared to the original reading.
- 5. When optimum adjustment is obtained, secure L-103/104 with Locking Paint.





#### 10. RECORD/PLAYBACK FREQUENCY RESPONSE CHECK

a) GENERAL-

Assuming the foregoing CAIN-LAW adjustments have been carefully performed and satisfactory results obtained on the accuracy checks, the frequency response for both record and playback operation sould conform to the charted specification.

The following checks are used to determine overall performance of the AN-300 and may be usefull when trouble shooting.

| <br>. RECORD | <b>ERFOLIENCY</b> | RESPONSE | CHECK- |
|--------------|-------------------|----------|--------|

b) PREPARATIONS-

1. Set the AN-300 controls as outlined below:

| INPUT SW LINE                     | MON.   | ITOR —— |
|-----------------------------------|--------|---------|
| $MODE SW \longrightarrow REC$     |        |         |
| MPX FILTER → OUT                  | NORMAL | SOURCE  |
| DOLBY SW IN                       | (П)    |         |
| CAL TONE SW $\longrightarrow$ OUT |        |         |

OUTPUT LEVEL Control · · · MAX. counterclockwise INPUT LEVEL Control · · · MAX. clockwise

- 2. Apply a 400 Hz signal from the AF socillator, set AF oscillator output level to obtain a center indication(CAL position) on the meter of the AN-300. The voltage at the INPUT jacks will be the DOLBY reference level.
- c) PROCEDURES —

With equipment connected as shown in Fig.10-3 and the setting in accordance with "Preparations", measure the frequency response for each input level (see RECORD FREQUENCY RESPONSE CURVE).



-Fig. 10-1 Frequency Response Curve--Record-

#### b) PREPARATIONS

1. Set the controls of the AN-300 as outlined below:

| INPUT SW   |              | TAPE |
|------------|--------------|------|
| MODE SW    | · —          | PLAY |
| MPX FILTER | <del>-</del> | OUT  |
| DOLBY NR S | ₩            | IN   |
| CAL TONE S | W            | OUT  |



PLAY CAL VR ..... MAX. clockwise OUTPUT LEVEL Control ... MAX. clockwise

2. Apply a 400 Hz signal from the Audio oscillator, set oscillator output level to obtain a center indication on the meter of the AN-300 (CAL position).

#### c) PROCEDURES-

With equipment connected as shown in Fig. 10-4, setting in accordance with "Preparations", measure the frequency response for each input level.



-Fig. 10-2 Frequency Response Curve--Playback-



-Fig. 10-4 Connection Diagram

-Record-

-Playback-

#### 11. OVERALL PERFORMANCE CHECK

PREPARATIONS:

1. Set the controls of the AN-300 as outlined below:



- 2. Set the audio oscillator for 400 Hz, adjust output attenuators for a 0 VU (CAL) indication on the AN-300 VU meters #1 and #2.
- 3. Adjust the front PLAY CAL #1 for a 0 VU reading on rear VU meter #3. Adjust the front PLAY CAL #2 for a 0 VU reading on rear VU meter #4.
- 4. With all VU meters indicating 0 VU, the VTVM should indicate 300 milivolts. If these readings are not obtained, perform the alignment procedures described elsewhere in this Manual.
- 5. Considering the 300 mV in step 4 to represent 0 dB, sweep the frequencies from 20 Hz to 20 kHz. The output should remain flat as shown in Fig.11-2.
- 6. Decreasing the input level in 10 dB steps, sweep the frequencies at each range and compare the VTVM reading with the chart in Fig.11-2.
- 7. An overall response check can be accomplished as follows: With the audio oscillator 30 dB (9.48 mV) down from its level in step 3, set it for 5 kHz. Note the VTVM reading, then switch the DOLBY NR switch (front) to OUT. The reading should decrease 10 dB,  $\pm 1.25$  dB, and then return to the former level when the DOLBY NR switch is placed IN.

NOTE: Do not take level readings from the AN-300 VU meters except in step 3 and 4 above. Use a VTVM to determine responses in these checks.

#### CONNECTION PROCEDURE-

1. Connect the Audio Oscillator to both Front channels (#1 & #2) LINE jacks.

2. Connect the Front channel (#1 & #2) REC jacks to the Rear channel (#3 & #4) TAPE jacks with short pin-jack cords.

NOTE: Refer to the TEAC DECIBEL TABLE on last page for obtaining conversion of millivolts to dB if your meter does not provide a dB scale.







#### 13. PARTS LOCATION





NOTE: For ordering parts refer to the exploded view of the PARTS LIST An accompanying listing provides the correct part numbers.

#### 14. TROUBLE SHOOTING

#### NOTE

The following guide lists specific difficulties that could occur in the AN-300

Several possible causes are listed for each malfuncton. Visually inspect the unit for any damage such as broken or burned components or wiring; loose connections; etc.

The AN-300 Noise Reduction Unit employs conventional solid state circuitry and is designed to provide extended trouble free operation if operated in accordance with the operating instructions.

The following difficulties may occur as a result of improper calibration or incorrect operation and do not represent equipment malfunctions.

\* Loss of high frequencies when playing tapes.

DOLBY switch is IN, but the tape is not Dolby-encoded.

If non-Dolby tapes are played back through the AN-300 with the DOLBY switch at the IN position a noticeable loss of high frequencies will occur. No benefits are drived in this case, for no noise reduction is achieved unless the tape is recorded and play back through the AN-300. Therefore, when playing non-Dolby-encoded tapes the DOLBY switch should always be in the OUT position.

\* Sound is abnormal when using the Dolby process.

If the AN-300 is properly calibrated to your tape deck, no change in frequency response will occur. The Dolby system does not limit or affect overall freq. response. Only the inherent tape noise and hiss are affected. The complete absence of hiss and noise may cause you to feel that some high frequencies have been lost, but this is not the case.

However if the play or record calibrations are improperly accomplished a degradation of sound quality will result. Since the record/playback expansion/compression levels must be exactly opposite to achieve maximum noise reduction, proper calibration and operating procedures are of paramount importance.

If sound quality seems poor or abnormal, recheck the calibration adjustments as outlined in the Instruction Manual.

The following are malfunctions that may occur as a result of component failure.

\* Symptom — VU meter indications are sluggish although the AN-300 operates normally.

PROBABLE CAUSES: Defective transistor, Q401 $_{\circ}$ 404 or associated components of meter amplifier PC board assembly #5724478.

Variable resistors VR-401~404 improperly adjusted. See Adjustment Location of manual.

\* Symptom — REC-CAL. oscillator output is incorrect and VR-301 will not adjust properly.

PROBABLE CAUSES: Defective transistor,  $Q303\sim307$  or associated components of PC board assy #57244740.

- \* Symptom No playback audio, level meters deflect, control at 'maximum'.

  PROBABLE CAUSES: Defective transistor, Q113\Q115
  of Dolby amplifier PC board assy #57245150
  (57245160) or associated components.
- \* Symptom Playback tape deck meter deflect, but the AN-300 meters do not move and no audio is heard.

  PROBABLE CAUSES: Defective transistor, Q101~Q111 or associated components of Dolby amplifier PC board assy #57245150 (57245160).
- \* Symptom Tape deck will not "record", AN-300 VU meters deflect but no signal is present at tape deck.

  PROBABLE CAUSES:
  - 1. Three head tape decks, check setting or tape deck monitor switch, must be in source position.

If VU meters of tape deck deflect but recording does not occur, tape deck is defective.
 If VU meters of tape deck do not move even with

3. If VU meters of tape deck do not move even with monitor switch in source position, check for defective transistor Q113~Q115 or associated circuitry of Dolby amplifier PC board assy #57245150 (57245160).

#### 15. PAKING FOR SHIPMENT

If the unit is to be returned to a TEAC Factory Service Center for repair, carefully pack as shown below.



#### DOLBY PROCESSOR PC BOARD



### METER AND OSCILLATOR PC BOARDS



#### METER -



### EXPLODED VIEW AND PARTS LIST

#### REPLACEMENT INFORMATION

Replacement part are available through your nearest TEAC dealer or directly from the TEAC office. Changes are constantly being made to make TEAC products better and more reliable. Therefore, when ordering parts, always include the following information:

MODEL SERIAL NO. REF NO. PART NO. DESCRIPTION

#### NOTICE OF MARKET MODEL IDENTIFICATION ABBREVIATIATIONS

DM For only domestic (Japan) market decks.

EX For all export versions except TCA or Japan.

TCA For TCA (US) versions only.

# EXPLODED VIEW DIAGRAM AN-300



### PARTS LIST AN-300 BREAKDOWN

| REF.     | TEAC                 |                                             | 1.a.t | 2nd   |
|----------|----------------------|---------------------------------------------|-------|-------|
| NO.      | PARTS NO.            | DESCRIPTION                                 | lst   | 2114  |
| 1        | 57244800             | Chassis, Main (Assy)                        |       |       |
| 2        | 57244870             | Panel, Front (Assy)                         |       |       |
| 3        | 57244830             | Bonnet                                      |       |       |
| 4        | 57244900             | Cover, Bottom                               | . *   |       |
| 5        | 57245150             | PC Board Assy, Dolby Ampl. (A) 2SK30DA      |       | •     |
| 6        | 57244780             | PC Board Assy, Level Meter                  |       |       |
| 7        | 57245160             | PC Board Assy, Dolby Ampl. (B) 2SD30DB      |       |       |
| 8        | 57244740             | PC Board Assy, Oscillator (400Hz)           |       |       |
| 9        | 50581410             | Meter, Level                                |       |       |
| 10       | 57244810             | Transformer, Power (DM, TCA)                |       |       |
|          | 57244820             | Transformer, Power (EX Only)                |       | •     |
| 11       | 50430190             | Jack, Pin, US 4P                            |       |       |
| 12       | 50924500             | Fuse Holder                                 |       |       |
| 13       | 50431151             | Outlet, AC                                  |       |       |
| 14       | 50276810             | Grommet, Cord                               |       |       |
| 15       | 50454071             | Post, Grounding                             |       |       |
| 16       | 50927611             | Voltage Selector                            |       |       |
| 17       | 50551320             | Capacitor, Elec., 1000 50V                  |       |       |
| 18       | 50936690             | SW, Lever (Monitor source)                  |       |       |
| 19       | 50936960             | SW, Lever (DOLBY NR)                        |       | 4 - 1 |
| 20       | 50937580             | SW, Lever (MPX Filter, Input)               |       |       |
| 21       | 50447300             | SW, Lever (MODE, CAL Tone) SW, Push (Power) |       |       |
| 22       | 50444500<br>57243880 | VR, Single 100k(B) (PLAY CAL)               |       |       |
| 23<br>24 | 50937270             | Push Button (POWER)                         |       |       |
| 24<br>25 | 50937270             | Push Button (Recording check)               |       |       |
| 26       | 57244910             | SW, Push (Recording check)                  |       |       |
| 27       | 50253840             | Knob, B-25B (INPUT Level, OUTPUT Level)     |       |       |
| 28       | 50283830             | Mount Foot                                  | a.    |       |
| 29       | 57240380             | Knob, Lever SW                              |       |       |
| 30       | 50937220             | Sheet, Lever SW                             |       |       |
| 31       | 57244940             | VR, Single (INPUT Level) 100k(B)            |       |       |
| 32       | 57244950             | VR, Single (OUTPUT Level) 10k(B)            |       |       |

## DOLBY PROCESSOR AMPLIFIER CIRCUIT PARTS

| CIRCUIT<br>REF.NO.     | TEAC PARTS NO.       | DESCRIPTION                | lst | 2nd  |
|------------------------|----------------------|----------------------------|-----|------|
|                        | 57245150             | PC Board Assy, A (2SK30DA) |     |      |
| •                      | 57245160             | PC Board Assy, B (2SK30DB) |     |      |
| CAF                    | ACITORS              |                            |     |      |
| ALL CAPACITORS         | IN MICROFA           | RADS UNLESS                |     |      |
| OTHERWISE NOTEL        |                      |                            |     |      |
|                        |                      |                            |     | ,    |
| C101/102               | 50554540             | Elec. 1                    | ,   |      |
| C103/104·123∿4         | 50554050             | Elec. 10 16V               | -   |      |
| C105/106               | 50596330             | Polyst. 1500p *            |     |      |
| C107/108               | 50596290             | Polyst. 1000p *            |     |      |
| C109/110               | 50596400             | Polyst. 3000p *            |     |      |
| C111/112               | 50596160             | Polyst. 300p *             |     |      |
| C113∿116               | 50592600             | Polyst. 3000p **           |     |      |
| C117/118               | 50592530             | Polyst. 1500p **           |     |      |
| C119∿122·127∿8         | 50554010             | Elec. 47 16V               |     | -    |
| C125/126               | 50554030             | Elec. 47 6.3V              |     |      |
| C129/130               | 50554020             |                            |     |      |
| C131∿134               | 50548270             | , ,                        |     |      |
| C135/136               | 50594850             | Mylar .033 *(1%)           |     |      |
| C137/138               | 50594810             | Mylar .0047 *(1%)          |     |      |
| C139/140·143∿4         | 50546810             | Tantalum 10 16V            |     |      |
| C141/142·163∿4         | 50548520             | Mylar 0.1                  |     |      |
| C145/146·149∿0         | 50554050             | Elec. 10 16V               |     |      |
| C147/148               | 50543510             | Mica 33p                   |     |      |
| C151/152·157∿8         | 50554050             | Elec. 10 16V               |     |      |
| C153/154               | 50595600             | Mylar .33 *(10%)           |     | \$ 5 |
| C155/156               | 50548940             | Mylar .0082 **             |     |      |
| C159∿162               | 50546810             | Tantalum 10 16V            |     |      |
| C165/166               | 50543310             | Mica 10p                   |     |      |
| ,                      |                      |                            |     |      |
|                        | DIODES               |                            |     |      |
|                        | DIODE2               |                            |     |      |
| D1-01                  | E0/22000             | 7                          |     |      |
| D101<br>D103~108·113~4 | 50422880<br>50422440 |                            |     |      |
| •                      |                      | Silicon S3016-R            |     |      |
| D109∿112               | 50422130             | Germanium IN60             |     |      |
|                        |                      |                            |     |      |
|                        | COILS                |                            |     |      |
|                        |                      |                            |     |      |
| L101/102               | 57244760             | 43mH                       |     |      |
| L103/104               | 50566650             | 23mH                       | 1   |      |

# DOLBY PROCESSOR AMPLIFIER CIRCUIT PARTS, con't

| CIRCUIT<br>REF.NO.                | TEAC                 | DESCRIPTION  |   | lst | 2nd |
|-----------------------------------|----------------------|--------------|---|-----|-----|
|                                   |                      |              |   |     |     |
| 211                               | ICON TRANS           | 1510KS       |   |     |     |
| 0101/102·105∿0                    | 50424100             | 2SC1000(GR)  |   |     |     |
| Q103/104·111∿2                    | 50424110             | 2SA493 (GR)  |   |     |     |
| 0113~120 • 123~4                  | 50424100             | 2SC1000(GR)  |   |     | į   |
| Q121/122                          | 57240981             | FET 2SD30DA  |   |     |     |
| 0125/126·135∿8                    | 50424110             | 2SA493(GR)   |   |     |     |
| Q127~134                          | 50424100             | 2SC1000 (GR) |   |     |     |
|                                   |                      |              |   |     |     |
| CAR                               | BON RESIST           | ORS          |   |     |     |
|                                   |                      |              |   |     |     |
| ALL RESISTORS I                   |                      |              |   |     |     |
| 1/4 WATT UNLESS                   | OTHERWISE            | NOTED.       |   |     |     |
| R101/102·179∿0                    | E0573340             | E C1-        |   |     |     |
| R101/102·1/9·00<br>R103/104·163~4 | 50573240<br>50573180 | 56k<br>33k   |   |     |     |
| R105/104·103·04<br>R105/106       | 50573180             | 220k         | * | f   |     |
| R103/108                          | 50573300             | 100k         |   |     |     |
| R107/108<br>R109∿112              | 50572920             | 2.7k         |   | ·   |     |
| R113~116·121~4                    | 50572960             | 3.9k         |   |     | ·   |
| R117/118·125~6                    | 50572600             | 120          |   |     |     |
| R119/120                          | 50572980             | 4.7k         |   |     |     |
| R127/128·133~4                    | 50573020             | 6.8k         |   |     |     |
| R129/130                          | 50572940             | 3.3k         |   |     |     |
| R131/132                          | 50573120             | 18k          |   |     |     |
| R135/136·173∿6                    | 50572580             | 100          |   |     |     |
| R137/138·177∿8                    | 50573040             | 8.2k         |   |     |     |
| R139/140·161∿2                    | 50572820             | 1k           |   |     |     |
| R141/142                          | 50571120             | 18k          |   |     |     |
| R143/144·203∿4                    | 50572860             | 1.5k         |   |     |     |
| R145/146                          | 50573220             | 47k          |   |     |     |
| R147/148·159∿0                    | 50529970             | 150k 2%      |   |     |     |
| R149/150                          | 50259950             | 390k 2%      |   |     |     |
| R151/152                          | 50571230             | 51k          |   |     |     |
| R153/154                          | 50573140             | 22k          |   |     |     |
| R155/156                          | 50570940             | 3.3k         |   |     |     |
| R157/158·                         | 50573000             | 5.6k         |   |     |     |
| R165/166                          | 50529980             | 3k 1%        |   |     |     |
| R167/168                          | 50529990             | 1.5k 1%      |   |     |     |
| R169 172                          | 50573460             | 470k         |   |     |     |
| R181/182                          | 50573270             | 75k          |   |     |     |
| R183 186 · 219 · 0                | 50573180             | 33k          |   |     |     |
| R187/188·221~2                    | 50572580             | 100          |   |     |     |
| R189/190·249∿0                    | 50572920             | 2.7k         |   | 1   |     |

# DOLBY PROCESSOR AMPLIFIER CIRCUIT PARTS, con't

| REF.NO. PARTS NO. DESCRIPTION  R191/192 50573200 39k R193/194 50529960 3.3k 1% R195/196·215~6 50573060 10k |   |
|------------------------------------------------------------------------------------------------------------|---|
| R193/194 50529960 3.3k 1%                                                                                  |   |
|                                                                                                            |   |
| D105/106.21506 50572060 10k                                                                                |   |
|                                                                                                            |   |
| R197·199/200 50572800 820                                                                                  |   |
| R201/202·243~4 50572760 560                                                                                |   |
| R205/206 50573580 1.5M                                                                                     |   |
| R207/208 50573540 1M                                                                                       | • |
| R209/210·245∿6 50573100 15k                                                                                |   |
| R211/212·251∿2 50572660 220                                                                                |   |
| R213/214·217∿8 50573040 8.2k                                                                               |   |
| R223/224·247∿8 50572900 2.2k                                                                               |   |
| R225/226 50572520 56                                                                                       |   |
| R227/228·237∿8 50573000 10k                                                                                |   |
| R229/230 50573140 22k                                                                                      |   |
| R231/232 50573080 12k                                                                                      |   |
| R233/234·239∿0 50573010 6.2k                                                                               |   |
| R235/236·241∿2 50573000 5.6k                                                                               |   |
| R253/254·261∿2 50572780 680                                                                                |   |
| R255/256·263·4 50572980 4.7k                                                                               |   |
| R257/258·265∿6 50573100 15k                                                                                | , |
| R259/260 50572660 220                                                                                      |   |
| R267/268 50572820 1k                                                                                       | • |
| R269∿272 50573400 270k                                                                                     |   |
|                                                                                                            |   |
| POTENTIOMETER                                                                                              |   |
| VR101/102 50533530 1kΩ B                                                                                   |   |
| VR103/104 50533440 470Ω B                                                                                  |   |

### OSCILLATOR AMPLIFIER CIRCUIT PARTS

| CIRCUIT         | TEAC       |                      | lst | 2nd                   |
|-----------------|------------|----------------------|-----|-----------------------|
| REF.NO.         | PARTS NO.  | DESCRIPTION          | 15. | 2110                  |
|                 | 57244740   | PC Board Assy        | ,   |                       |
| CAP             | ACITORS    |                      |     |                       |
| ALL CAPACITORS  | IN MICROFA | RADS UNLESS          |     |                       |
| OTHERWISE NOTED | (*50V 10%  | ) <b>.</b>           | ,   |                       |
| C301∿304        | 50542230   | Seramic 0.01 500V DC |     | and the second second |
| C305/306        | 50554620   | Elec. 470 35V        |     |                       |
| C307            | 50554400   | Elec. 470 16V        |     |                       |
| C308·312        | 50548290   | Mylar 0.022 *        | ,   |                       |
| C309            | 50548270   | Mylar 0.047 *        |     |                       |
| C310            | 50595640   | Mylar 0.47 *         |     |                       |
| C311            | 50548520   | Mylar 0.1 *          |     |                       |
| C313            | 50595600   | Mylar 0.33 *         |     |                       |
| C314            | 50548420   | Mylar 0.015 *        |     |                       |
| C315            | 50554050   | Elec. 10 16V         |     |                       |
| C316            | 50554540   | Elec. 1 50V          |     |                       |
| DIO             | DES        |                      |     |                       |
| D301∿304        | 50422850   | Silicon SIB01-04     |     |                       |
| D305            | 50422860   | Zener 02Z8.2A        |     |                       |
| D306            | 50422870   | Zener 02Z6.2A        |     |                       |
| D307∿309        | 50422440   | Silicon S3016-R      | '   |                       |
| COI             |            |                      |     |                       |
| L301            | 57244750   | OSC 250mH            |     |                       |
|                 | ICON TRANS |                      |     |                       |
| Q301            | 50424190   | 2SD235(0)            | Ť   |                       |
| Q302 · 307      | 50424440   | 2SC733(BL)           |     |                       |
| Q303            | 50424110   | 2SA493 (GR)          |     |                       |
| Q304            | 50423840   | FET 2SD30(Y)         |     |                       |
| Q305;306        | 50423510   | 2SC733(Y)            |     |                       |
|                 | BON RESIST |                      | ,   |                       |
| ALL RESISTORS I |            |                      |     |                       |
| 1/4 WATT UNLESS |            |                      |     | ·                     |
| R301            | 50578460   | 33 2W                |     |                       |
| R302/303        | 50574780   | 680 1/2W             |     |                       |
| R304·306/307    | 50572980   | 4.7k                 |     |                       |
| R305            | 50572620   | 150                  | ·   |                       |
| R308·312√314    | 50573540   | 1M                   |     |                       |
| R309            | 50572660   | 220                  | ,   |                       |
| R310·318√9·321  | 50573300   | 100k                 |     |                       |
| R311            | 50572880   | 1.8k                 |     |                       |
| R313            | 50573220   | 47k                  |     |                       |
| R315            | 50574180   | 2.2M 1/2W            |     |                       |
| R316            | 50573140   | 22k                  |     |                       |
| R317            | 50573340   | 150k                 |     |                       |
| R320            | 50572920   | 2.7k                 |     |                       |
|                 | ENTIOMETER |                      |     |                       |
| VR301           | 50533480   | 10kΩ B               | I   | 1                     |

## METER AMPLIFIER CIRCUIT PARTS

|           | ,                           |  |
|-----------|-----------------------------|--|
| CIRCUIT   | TEAC                        |  |
| REF.NO.   | PARTS NO. DESCRIPTION       |  |
|           | 57244780 PC Board Assy      |  |
| C401~408  | 50554540 Elec. 1µF 50V      |  |
| Q401~404  | 50424440 Silicon 2SC733(BL) |  |
| R401∿408  | 50573320 120kΩ 5% 1/4W      |  |
| R409∿412  | 50573180 33kΩ 5% 1/4W       |  |
| R413∿416  | 50572940 3.3kΩ 5% 1/4W      |  |
| R417∿420  | 50513910 560Ω 5% 1/4W       |  |
| R421∿424  | 50572700 330Ω 5% 1/4W       |  |
| R425∿428  | 50513990 56kΩ 5% 1/4W       |  |
| VR401~404 | 50533490 VR 100kΩ B         |  |

### WIRING DIAGRAM



#### SCHEMATIC DIAGRAMS







#### TEAC DECIBEL TABLE

| $\Gamma_{1}$ | 774   | 0 db  | 1                | .774 | 0 db  |                  | .774         | 0 db       | 1 1              | .774       | 0 db       | 1        | .774  | 0 db       | 1     | .774 | 0 db         | 1                | .774  | 0 db | 1 1   | 179.         | 126.         | 89.4 | 63.2         |
|--------------|-------|-------|------------------|------|-------|------------------|--------------|------------|------------------|------------|------------|----------|-------|------------|-------|------|--------------|------------------|-------|------|-------|--------------|--------------|------|--------------|
| <u> </u>     |       | 1     | <del> `-</del> - |      | 10 00 | <del>  '</del> - |              |            | <del>  -</del> - |            | 0 00       | <u> </u> | .,,,4 | 0 00       |       | .774 | 0 00         | <del>  '</del> - | 600Ω  | 0 00 |       | 32Ω          | 16Ω          | [8Ω] | 4Ω           |
| .94          | .730  | 120.5 | 9.44             | 7.30 | 100.5 | 94.4             | 73.0         | 80.5       | 944              |            | 60.5       |          | 7 20  | 40 =       | l., , | 72.0 | 20. 5        |                  |       | ۱    |       | -            | -            | 83.9 | 59.6         |
| .89          |       |       | 8.91             | 6.90 | 100.5 | 89.1             | 69.0         | 81         | 891              | 730<br>690 | 61         | 9.44     | 7.30  | 40.5       | 94.4  | 73.0 | 20.5         | .944             | .730  | 0.5  | .891  | 169<br>159   | 119<br>112   | 79.3 | 56.3         |
| .84          |       | 121.5 | 8.41             | 6.51 | 101.5 | 84.1             | 65.1         | 81.5       | 841              | 651        |            | 8.41     | 6.51  | 41.5       | 84.1  |      | 21.5         | .841             | .651  | 1.5  | .708  | 150          | 106          | 74.9 | 53.1         |
| .79          |       |       | 7.94             | 6.15 | 102   | 79.4             | 61.5         | 82         | 794              | 615        | 62         | 7.94     | 6.15  | 42         | 79.4  | 61.5 | 22           | .794             | .615  | 2    | .631  | 142          | 100          | 70.7 | 50.2         |
| .75          | .580  | 122.5 | 7.50             | 5.80 | 102.5 | 75.0             | 58.0         | 82.5       | 750              | 580        | 62.5       | 7.50     | 5.80  | 42.5       | 75.0  | 58.0 | 22.5         | .750             | .580  | 2.5  | .562  | 134          | 94.5         | 66.7 | 47.3         |
| .70          | 548   | 123   | 7.07             | 5.48 | 103   | 70.7             | 54.8         | 83         | 707              | 548        | 63         | 7.07     | 5.48  | 43         | 70.7  | 54.8 | 23           | .707             | .548  | 3    | .501  | 126          | 89.3         | 63.0 | 44.7         |
| .668         | .517  | 123.5 | 6.68             | 5.17 | 103.5 | 66.8             | 51.7         | 83.5       | 668              | 517        | 63.5       | 6.68     | 5.17  | 43.5       | 66.8  | 51.7 | 23.5         | .668             | .517  | 3.5  | .447  | 119          | 84.3         | 59.4 | 42.2         |
| .630         |       | 124   | 6.30             | 4.88 | 104   | 63.0             | 48.8         | 84         | 630              | 488        | 64         | 6.30     |       | 44         | 63.0  | 48.8 | 24           | .530             | .488  | 4    | .398  | 113          | 79.5         | 56.1 | 39.8         |
| .590         |       | 124.5 | 5.96             | 4.61 | 104.5 | 59.6             | 46.1         | 84.5       | 596              | 461        | 64.5       | 5.96     |       | 44.5       | 59.6  | 46.1 | 24.5         | .596             | .461  | 4.5  | . 355 | 106          | 75.1         | 53.0 | 37.6<br>35.5 |
| .562         | .435  | 125   | 5.62             | 4.35 | 105   | 56.2             | 43.5         | 85         | 562              | 435        | 65         | 5.62     | 4.35  | 45         | 56.2  | 43.5 | 25           | .562             | .435  | 5    | .316  | 100          | 70.9         | 50.0 | 33.3         |
| . 53         | . 411 | 125.5 | 5.31             | 4.11 | 105.5 | 53.1             | 41.1         | 85.5       | 531              | 411        | 65.5       | 5.31     | 4.11  | 45.5       | 53.1  | 41.1 | 25.5         | .531             | .411  | 5.5  | .282  | 94.9         | 67.0         | 47.3 | 33.5         |
| .50          |       | 126   | 5.01             | 3.88 | 106   | 50.1             | 38.8         | 86         | 501              | 388        | 66         |          | 3.88  | 46         | 50.1  |      | 26           | -501             | .388  | 6    | .251  | 89.6         | 63.2         | 44.6 | 31.7         |
| .473         | . 366 | 126.5 | 4.73             | 3.66 | 106.5 | 47.3             | 36.6         | 86.5       | 473              | 366        | 66.5       | 4.73     | 3.66  | 46.5       | 47.3  | 36.6 | 26.5         | .473             | .366  | 6.5  | . 224 | 84.5         | 59.6         | 42.1 | 29.9         |
| .446         |       | 127   | 4.46             | 3.45 | 107   | 44.6             | 34.5         | 87         | 446              | 345        | 67         | 4.46     | 3.45  | 47         | 44.6  | 34.5 | 27           | .446             | .345  | 7    | .199  | 79.7         | 56.2         | 39.7 | 28.1         |
| .422         |       | 127.5 |                  | 3.26 | 107.5 | 42.2             | 32.6         | 87.5       | 422              | 326        | 67.5       | 4.22     | 3.26  | 47.5       | 42.2  | 32.6 | 27.5         | .422             | . 326 | 7.5  | .178  | 75.3         | 53.1         | 37.5 | 26.6         |
| .398         |       | 128   | 3.98             | 3.08 | 108   | 39.8             | 30.8         | . 88       | 398              | 308        | 68         |          | 3.08  | 48         | 39.8  | 30.8 | 28           | .398             | . 308 | 8    | .158  | 71.1         | 50.2         | 35.4 | 23.7         |
| .376         |       | 128.5 | 3.76             | 2.90 | 108.5 | 37.6             | 29.0         | 88.5       | 376              | 290        |            | 3.76     | 2.90  | 48.5       | 37.6  | 29.0 | 28.5         | .376             | .290  | 8.5  | .141  | 67.0         | 47.3         | 31.5 | 22.3         |
| .335         |       | 129.5 | 3.54             | 2.74 | 109.5 | 35.4             | 27.4<br>25.9 | 89<br>89.5 | 354<br>335       | 274<br>259 | 69<br>69.5 | 3.54     | 2.74  | 49<br>49.5 | 35.4  | 27.4 | 29<br>29.5   | .354             | .274  | 9.5  | .125  | 63.3         | 44.7<br>42.2 | 29.8 | 21.1         |
| .316         |       | 130   |                  | 2.44 | 110   | 31.6             |              | 90         | 316              | 244        | 70         | 3.16     | 2.44  | 50         | 31.6  | 24.4 | 30           | .335             | .259  | 10   | .112  | 59.8<br>56.4 | 39.8         | 28.1 | 19.9         |
| 1.0          | .2    | 1,00  | 0.10             | 2.4. | 1     | 01.0             | 247          | 50         | 010              | 247        | ,,         | 0.10     | 2.44  | 30         | 01.0  | 24.4 | 00           | .510             | .244  | ,,,  | .100  | 30.4         | 39.0         |      | )            |
| . 298        |       | 130.5 | 2.98             |      | 110.5 | 29.8             | 23.2         | 90.5       | 298              | 232        | 70.5       | 2.98     | 2.32  | 50.5       | 29.8  | 23.2 | 30.5         | .298             | .232  | 10.5 | .0891 | 53.6         | 37.0         | 26.7 | 18.9         |
| .281         | .218  | 131   | 2.81             |      | 111   | 28.1             | 21.8         | 91         | 281              | 218        | 71         | 2.81     | 2.18  | 51         | 28.1  | 21.8 | 31           | . 281            | .218  | 11   | .0794 | 50.3         | 35,5         | 25.1 | 17.8         |
| .265         |       | 131.5 |                  |      | 111.5 | 26.5             | 20.5         | 91.5       | 265              | 205        | 71.5       | 2.65     | 2.05  | 51.5       | 26.5  |      | 31.5         | .265             | . 205 | 11.5 | .0708 | 47.3         | 33.4         | 23.6 | 15.8         |
| .251         | .194  | 132   | 2.51             | 1.94 | 112   | 25.1             | 19.4         | 92         | 251              | 194        | 72         | 2.51     | 1.94  | 52         | 25.1  | 19.4 | 32           | . 251            | .194  | 12   | .0631 | 44.8         | 31.6<br>29.8 | 21.0 | 14.9         |
| .223         |       | 133   | 2.23             | 1.83 | 112.5 | 23.7             | 18.3<br>17.3 | 92.5<br>93 | 237<br>223       | 183<br>173 | 72.5       | 2.23     | 1.83  | 52.5<br>53 | 23.7  | 17.3 | 32.5         | .237             | .183  | 12.5 | .0562 | 42.3         | 28.2         | 19.9 | 14.1         |
| .211         | .163  | 133.5 | 2.11             | 1.63 | 113.5 | 21.1             | 16.3         | 93.5       | 211              | 163        |            | 2.11     | 1.63  | 53.5       | 21.1  | 16.3 | 33.5         | .211             | .163  | 13.5 | .0447 | 37.6         | 26.6         | 18.7 | 13.3         |
| 199          |       | 134   | 1.99             | 1.54 | 114   | 19.9             | 15.4         | 94         | 199              | 154        | 74         | 1.99     | 1.54  | 54         | 19.9  | 15.4 | 34           | .199             | 154   | 14   | .0398 | 35.6         | 25.1         | 17.7 | 12.6         |
| .188         | .145  | 134.5 | 1.88             | 1.45 | 114.5 | 18.8             | 14.5         | 94.5       | 188              | 145        |            | 1.88     | 1.45  | 54.5       |       | 14.5 | 34.5         | .188             | .145  | 14.5 | .0355 | 33.5         | 23.6         | 16.7 | 11.8         |
| .177         | .137  | 135   | 1.77             | 1.37 | 115   | 17.7             | 13.7         | 95         | 177              | 137        | 75         | 1.77     | 1.37  | 55         | 17.7  | 13.7 | 35           | .177             | . 137 | 15   | .0316 | 31.6         | 22.3         | 15.7 | 11.2         |
| .168         | .130  | 135.5 | 1.68             | 1.30 | 115.5 | 16.8             | 13.0         | 95.5       | 168              | ,,,,       | 76 6       | 1 00     |       |            | 10.0  | 10.0 | ,, ,         | 7.00             | 120   |      | 0000  |              | 21.2         | 14.9 | 10.6         |
| .158         | .122  | 136   | 1.58             | 1.22 | 116   | 15.8             | 12.2         | 96         | 158              | 130<br>122 | 75.5<br>76 | 1.68     | 1.30  | 55.5<br>56 |       | 13.0 | 35.5<br>36   | .168             | .130  | 15.5 | .0282 | 30.0<br>28.2 | 19.9         | 14.0 | 9.55         |
| .150         | .116  |       | 1.50             | 1.16 | 116.5 | 15.8             | 11.6         | 96.5       | 150              | 116        |            | 1.50     | 1.16  | 56.5       | 15.8  | 11.6 | 36.5         | .150             | .116  | 16.5 | .0231 | 26.8         | 18.9         | 13.3 | 9.46         |
| .141         | .109  | 137   | 1.41             | 1.09 | 117   | 14.1             | 10.9         | 97         | 141              | 109        | 77         | 1.41     | 1.09  | 57         | 14.1  | 10.9 | 37           | .141             | .109  | 17   | .0199 | 25.2         | 17.8         | 12.5 | 8.89         |
| .133         | .103  |       | 1.33             | 1.03 | 117.5 | 13.3             | 10.3         | 97.5       | 133              | 103        |            | 1.33     | 1.03  |            | 13.3  | 10.3 | 37.5         | .133             | .103  | 17.5 | .0178 | 23.8         | 16.8         | 11.8 | 8.40         |
| :125         | .097  | 138   | 1.25             | .975 | 118   | 12.5             | 9.75         | 98         | 125              | 97.5       | 78         | 1.25     | 975   | 58         | 12.5  | 9.75 | 38           | .125             | .097  | 18   | .0158 | 22.4         | 15.8         | 11.1 | 7.91         |
| .119         | .092  |       | 1.19             | .921 | 118.5 | 11.9             | 9.21         | 98.5       | 119              | 92.1       | 78.5       | 1.19     | 921   | 58.5       | 11.9  | 9.21 | 38.5         | .119             | .092  | 18.5 | .0141 | 21.2         | 15.0         | 10.6 | 7.51         |
| .112         |       | 139   | 1.12             | .869 | 119   | 11.2             | 8.69         | 99         | 112              | 86.9       | 79         | 1.12     | 899   | 59         | 11.2  | 8.69 | 39           | .112             | .086  | 19   | .0125 | 19.9         | 14.0         | 9.89 | 7.02         |
| .106         |       | 139.5 | 1.06             | .820 | 119.5 | 10.6             | 8.20         | 99.5       | 106              | 82.0       | 79.5       | 1.06     | 820   | 59.5       | 10.6  | 8.20 | 39.5         | .106             | .082  | 19.5 | .0112 | 18.9         | 13.4         | 9.43 | 6.28         |
| .100         | .077  | 140   | 1.00             | .774 | 120   | 10.0             | 7.74         | 100        | 100              | 77.4       | 80         | 1.00     | 774   | 60         | 10.0  | 7.74 | 40           | .100             | .077  | 20   | .0100 | 17.8         | 12.5         | 8.85 | 0.20         |
|              | 1     |       |                  |      |       |                  | ١ ا          | ]          |                  |            |            |          |       |            |       |      |              |                  |       | 1    | POWER |              |              | mV   | mv           |
| μV           | μV    | - db  | μV               | μV   | db    | μV               | μV           | db         | μV               | μV         | - ap       | mV       | mV    | — db       | m∨    | mV   | — <b>ф</b> ь | ν                | V     | - db | RATIO | l mV         | mV           | 1    | لستبيل       |

|                      |        |       | Rei                | ationsl              | hip b  | etwe  | en d               | ecibel               | s, cu  | rren  | ts, vo             | ltage                | and    | pow   | er ra   | tios.                |        |                |                    |
|----------------------|--------|-------|--------------------|----------------------|--------|-------|--------------------|----------------------|--------|-------|--------------------|----------------------|--------|-------|---------|----------------------|--------|----------------|--------------------|
| Decibel<br>(Voltage) | Loss   | Gain  | Decibel<br>(Power) | Decibel<br>(Voltage) | Loss   | Gain  | Decibel<br>(Power) | Decibel<br>(Voltage) | Loss   | Gain  | Decibel<br>(Power) | Decibel<br>(Voltage) | Loss   | Gain  | Decibel | Decibel<br>(Voltage) | Loss   | Gain           | Decibel<br>(Power) |
| .0                   | 1.0000 | 1.000 | .0                 | 4.0                  | .6310  | 1.555 | 2.00               | 8.0                  | .3981  | 2.512 | 4.00               | 12.0                 | .2512  | 3.981 | 6.00    | 16.0                 | .1585  | 6.310          | 8.00               |
| . 1                  | ,9886  | 1.012 | . 05               | .1                   | .6237  | 1.603 | .05                | .1                   | .3936  | 2.541 | . 05               | .1                   | .2483  | 4.027 | . 05    | . 1                  | 1567   | 6.383          | .05                |
| . 2                  | .9772  | 1.023 | .10                | . 2                  | .6166  | 1.622 | .10                | .2                   | .3890  | 2.570 | .10                | .2                   | . 2455 | 4.074 | .10     | . 2                  | .1549  | 6.457          | .10                |
| .3                   | .9661  | 1.035 | . 15               | .3                   | .6095  | 1.641 | . 15               | .3                   | .3846  | 2.600 | .15                | .3                   | . 2427 | 4.121 | . 15    | .3                   | .1531  | 6.531          | . 15               |
| 4                    | .9550  | 1.047 | . 20               | .4                   | .6026  | 1.660 | . 20               | .4                   | .3802  | 2.630 | . 20               | -4                   | .2399  | 4.169 | . 20    | .4                   | .1514  | 6.607          | . 20               |
| .5                   | .9441  | 1.059 | . 25               | .5                   | .5957  | 1.679 | . 25               | .5                   | .3758  | 2.661 | . 25               | . ,5                 | . 2371 | 4.217 | . 25    | .5                   | .1496  | 6.683          | . 25               |
| .6                   | .9333  | 1.072 | .30                | 6                    | .5888  | 1.698 | .30                | .6                   | .3715  | 2.692 | .30                | .6                   | .2344  | 4.266 | .30     | .6                   | .1479  | 6.761          | . 30               |
| . 7                  | .9226  | 1.084 | . 35               | .7                   | .5821  | 1.718 | . 35               | .7                   | .3673  | 2.723 | . 35               | .7                   | . 2317 | 4.315 | . 35    | .7                   | .1462  | 6.839          | . 35               |
| .8                   | .9120  | 1.096 | .40                | .8                   | .5754  | 1.738 | . 40               | .8                   | .3631  | 2.754 | .40                | .8                   | . 2291 | 4.365 | . 40    | 8                    | .1445  | 6.918          | .40                |
| . 9                  | .9016  | 1.109 | . 45               | .9                   | .5679  | 1 758 | .45                | .9                   | .3589  | 2.786 | .45                | .9                   | .2265  | 4.416 | . 45    | .9                   | .1429  | 6.998          | . 45               |
| 1.0                  | .8913  | 1.122 | . 50               | 5.0                  | .5623  | 1.778 | . 50               | 9.0                  | .3541  | 2.817 | . 50               | 13.0                 | .2239  | 4.467 | . 50    | 17.0                 | .1413  | 7.070          | . 50<br>. 55       |
| . 1                  | .8810  | 1.135 | . 55               | .1                   | .5559  | 1.799 | . 55               | .1                   | .3508  | 2.851 | .55                | .1                   | .2213  | 4.519 | . 55    | . 1                  | .1396  | 7.161          | .60                |
| .2                   | .8710  | 1.148 | . 60               | . 2                  | .5495  | 1.820 | .60                | .2                   | .3467  | 2.884 | .60                | .2                   | .2188  | 4.571 | . 60    | 2                    | .1380  | 7.244          | .65                |
| . 3                  | .8610  | 1.161 | .65                | .3                   | .5433  | 1.841 | .65                | .3                   | .3428  | 2.917 | .65                | .3                   | .2163  | 4.624 | . 65    | .3                   | .1365  | 7.328          | .70                |
| . 4                  | .8511  | 1.175 | .70                | .4                   | .5370  | 1.862 | .70                | .4                   | . 3388 | 2.951 | .70                | .4                   | . 2138 | 4.677 | . 70    | .4                   | .1349  | 7.413          | .75                |
| . 5                  | .8414  | 1.189 | .75                | .5                   | .5309  | 1.884 | .75                | . 5                  | .3350  | 2.985 | .75                | .5                   | . 2113 | 4.732 | . 75    | .5                   | .1334  | 7. 499         | .80                |
| .6                   | .8318  | 1.202 | .80                | .6                   | .5248  | 1.905 | . 80               | .6                   | . 3311 | 3.020 | . 80               | .6                   | . 2089 | 4.786 | . 80    | .6                   | .1318  | 7.586          | .85                |
| .7                   | .8222  | 1.216 | . 85               | .7                   | .5188  | 1.928 | . 85               | .7                   | .3273  | 3.055 | . 85               | .7                   | .2045  | 4.842 | . 85    | .7                   | .1303  | 7.674          | .90                |
| .8                   | .8128  | 1.230 | .90                | .8                   | .5129  | 1.960 | .90                | .8                   | .3236  | 3.090 | . 90               | .8                   | . 2042 | 4.898 | . 90    | .8                   | .1288  | 7.762          | .95                |
| .9                   | .8035  | 1.245 | .95                | .9                   | .5070  | 1.972 | .95                | .9                   | . 3199 | 3.126 | .95                | .9                   | .2018  | 4.955 | . 95    | .9                   | .1274  | 7.852          | .50                |
| 2.0                  | .7943  | 1.259 | 1.00               | 6.0                  | .5012  | 1.995 | 3.00               | 10.0                 | .3162  | 3.162 | 5.00               | 14.0                 | .1995  | 5.012 | 7.00    | 18.0                 | . 1259 | 7.943          | 9.00<br>.05        |
| . 1                  | .7852  | 1.274 | . 05               | .1                   | . 4955 | 2.018 | . 05               | . 1                  | .3126  | 3.199 | . 05               | .1                   | .1972  | 5.070 | . 05    | . 1                  | .1245  | 8.035          | .10                |
| . 2                  | .7762  | 1.288 | .10                | .2                   | .4898  | 2.042 | .10                | .2                   | .3090  | 3.236 | .10                | .2                   | .1950  | 5.129 | . 10    | .2                   | .1230  | 8.128          | .15                |
| . 3                  | .7684  | 1.303 | . 15               | .3                   | .4842  | 2.065 | .15                | .3                   | . 3055 | 3.273 | . 15               | .3                   | .1928  | 5.188 | . 15    | . 3                  | .1216  | 8.222          | . 20               |
| . 4                  | .7586  | 1.316 | . 20               | . 4                  | . 4785 | 2.089 | . 20               | .4                   | .3020  | 3.311 | . 20               | .4                   | . 1905 | 5.248 | . 20    | .4                   | .1202  | 8.318          | . 25               |
| .5                   |        | 1.334 | .25                | .5                   | .4732  | 2.113 | . 25               | .5                   | . 2985 | 3.350 | . 25               | .5                   | .1884  | 5.309 | . 25    | .5                   | .1189  | 8.414          | . 30               |
| . 6                  | .7413  | 1.349 | .30                | .6                   | .4677  | 2.138 | .30                | .6                   | . 2951 | 3.388 | . 30               | .6                   | .1862  | 5.370 | .30     | .6                   | .1175  | 8.511<br>8.610 | , 35               |
| . 7                  | .7328  | 1.365 | .35                | ] .7                 | .4624  | 2.163 | . 35               | .7                   | .2917  | 3.428 | . 35               | .7                   | .1841  | 5,433 | . 35    | .7                   | .1161  | 8.710          | . 40               |
| . 8                  | .7244  | 1.380 | .40                | .8                   | . 4571 | 2.188 | .40                | .8                   | .2884  | 3.467 | .40                | .8                   | .1820  | 5.495 | . 40    | .8                   | .1148  | 8.811          | .45                |
| .9                   | .7161  | 1.396 | .45                | .9                   | .4519  | 2.213 | .45                | .9                   | . 2851 | 3.508 | ,45                | .9                   | . 1799 | 5.559 | . 45    | .9                   | .1135  | 8.011          |                    |
| 3.0                  | .7073  | 1.413 | .50                | 7.0                  | .4467  | 2.239 | .50                | 11.0                 | . 2818 | 3.548 | .50                | 15.0                 | . 1778 | 5.623 | . 50    | 19.0                 | .1122  | 8.913          | .50<br>.55         |
| . 1                  | .6998  | 1.429 | .55                | .1                   | .4416  | 2.265 | . 55               | .1                   | .2786  | 3.589 | .55                | ] .1                 | .1758  | 5.689 | .55     | .1                   | .1109  | 9.016          | .60                |
| . 2                  |        | 1.445 | .60                | .2                   | .4365  | 2.291 | . 60               | .2                   | . 2754 | 3.631 | .60                | .2                   | .1738  | 5.754 | . 60    | .2                   | .1096  | 9.120          | .65                |
| . 3                  | .6839  | 1.462 | . 65               | .3                   | .4315  | 2.317 | . 65               | .3                   | . 2723 | 3.673 | .65                | .3                   | .1718  | 5.821 | . 65    | . 3                  | .1084  | 9.226          | .70                |
| . 4                  |        | 1.479 | .70                | . 4                  | .4266  | 2.344 | .70                | .4                   | .2692  | 3.715 | .70                | .4                   | . 1698 | 5.888 | . 70    | .4                   | .1072  | 9.333          | .75                |
| . 5                  | .6683  | 1.496 | .75                | .5                   | . 4217 | 2.371 | .75                | .5                   | .2661  | 3.756 | .75                | .5                   | .1679  | 5,957 | .75     | .5                   | .1059  | 9.441          | .80                |
| .6                   | .6607  | 1.514 | .80                | .6                   | .4169  | 2.399 | .,80 ,             | .6                   | .2630  | 3.802 | .80                | .6                   | .1660  | 6.026 | . 80    | .6                   | .1047  | 9.550          | .85                |
| .7                   | . 6531 | 1.531 | . 85               | .7                   | . 4121 | 2.427 | . 85               | .7                   | . 2600 | 3.846 | . 85               | .7                   | .1641  | 6,095 | . 85    | .7                   | .1035  | .9.661         |                    |
| .8                   |        | 1.549 | .90                | .8                   | .4074  | 2.455 | .90                | .8                   | . 2570 | 3.890 | .90                | .8                   | .1622  | 6.166 | . 90    | .8                   | .1023  | 9.772          | 95                 |
| .9                   | .6383  | 1.567 | . 95               | .9                   | .4027  | 2.483 | .95                | .9                   | . 2541 | 3.936 | .95                | .9                   | .1603  | 6,237 | .95     | .9                   | .1012  | 9.886          | .95                |

| .8                   |                                 | 1.549                 | .95 | .8 | .4074                                                            | 2.455                               | .95  | .8                                                                   | .2570  |  |  |
|----------------------|---------------------------------|-----------------------|-----|----|------------------------------------------------------------------|-------------------------------------|------|----------------------------------------------------------------------|--------|--|--|
| Decibel<br>(Voltage) |                                 | Lo                    |     |    |                                                                  | Gain                                |      | Dec<br>(Pov                                                          | ibel . |  |  |
| 20.0                 |                                 | .10                   | 000 |    |                                                                  | 10.00                               |      |                                                                      |        |  |  |
|                      | as poir<br>left.<br>Thu<br>10 1 | 0-20 Db.<br>at one st |     | t  | Use the sas 0-20 I point one right. Thus since 10 Db.=3 30 Db.=3 | Db., but s<br>step to<br>ce<br>.162 | hift | This column<br>repeats every<br>10 Db.<br>instead of<br>every 23 Db. |        |  |  |