Chapter 3

Ideals and Positive

Functionals

Problem 1. Let a, b be normal elements of a C*-algebra A, and c an element of A such that ac = cb. Show that $a^*c = cb^*$.

Solution. Consider the C*-algebra $M_2(A)$ and two elements in $M_2(A)$:

$$d = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, d' = \begin{pmatrix} 0 & c \\ 0 & 0 \end{pmatrix}.$$

Then d is normal and commutes with d'. By Fuglede's theorem (Problem 8, Chapter 2), d^* commutes with d'. This is exactly what we need to prove.

Problem 2. Let τ be a positive linear functional on A.

- (a) If I is a closed ideal in A, show that $I \subseteq \ker(\tau)$ if and only if $I \subseteq \ker(\varphi_{\tau})$.
- (b) We say τ is faithful if $\tau(a) = 0 \Rightarrow a = 0$ for all $a \in A^+$. Show that if τ is faithful, then the GNS representation (H_τ, φ_τ) is faithful.
- (c) Suppose that α is an automorphism of A such that $\tau(\alpha(a)) = \tau(a)$ for all $a \in A$. Define a unitary on H_{τ} by setting $u(a + N_{\tau}) = \alpha(a) + N_{\tau}$, $(a \in A)$. Show that $\varphi_{\tau}(\alpha(a)) = u\varphi_{\tau}(a)u^*$, $(a \in A)$.

Solution. (a) For $a \in A$, $\varphi_{\tau}(a) = 0$ if and only if $ab \in N_{\tau} = \{x \in A : \tau(x^*x) = 0\}$ for all $b \in A$, or equivalently, $\tau(b^*a^*ab) = 0$ for all $b \in A$.

If $I \subseteq \ker(\tau)$, then for $a \in I, b \in A$, we have $b^*a^*ab \in I$, so $\tau(b^*a^*ab) = 0$. Conversely, if $I \subseteq \ker(\varphi_{\tau})$, then for $a \in I_+$, we have $\tau(u_{\lambda}a^{1/2}a^{1/2}u_{\lambda}) = 0$ for an approximate unit (u_{λ}) for A. Since τ is continuous, $\tau(a) = 0$ for all $a \in I_+$, and thus for all $a \in I$.

- (b) $I := \ker(\varphi_{\tau})$ is a closed ideal in A, so by (a), $I \subseteq \ker(\tau)$. Suppose $a \in I$, then $a^*a \in I$, so $\tau(a^*a) = 0$, which by faithfulness implies that $a^*a = 0$. So I = 0.
- (c) We only need to check the identity on a dense subspace of H_{τ} . Note that u is definitely a unitary, since u is a bijective isometry by the assumption.

For any $b \in A$, $u\varphi_{\tau}(a)u^*(b+N_{\tau}) = u\varphi_{\tau}(a)(\alpha^{-1}(b)+N_{\tau}) = u(a\alpha^{-1}(b)+N_{\tau}) = \alpha(a)b+N_{\tau} = \varphi_{\tau}(\alpha(a))(b+N_{\tau})$. Therefore, $\varphi_{\tau}(\alpha(a)) = u\varphi_{\tau}(a)u^*$ for all $a \in A$.

Problem 3. If $\varphi: A \to B$ is a positive linear map between C*-algebras, show that φ is necessarily bounded.

Solution. If φ is not bounded, then

$$\sup\{\|\varphi(a)\| : a \in A_+, \|a\| \le 1\} = \infty.$$

Suppose $a_n \in A_+$, $||a_n|| \le 1$ and $||\varphi(a_n)|| \ge 4^n$. Consider $a = \sum_{n \ge n} a_n/2^n$, then a is a positive element in A and $||a|| \le 1$. Since $a \ge a_n/2^n$, we have $\varphi(a) \ge \varphi(a_n)/2^n \ge 0$, and thus $||\varphi(a)|| \ge ||\varphi(a_n)||/2^n = 2^n$ for all $n \ge 1$, which is impossible.

Another proof comes from a functorial argument and fundamental theorems in functional analysis. Such a φ gives rise to a map $S(B) \to S(A), \tau \mapsto \tau \circ \varphi$. Since we know a positive linear functional is necessarily bounded, and every bounded linear functional on a C*-algebra can be written as a linear combination of 4 states, we actually get a map $B^* \to A^*, \tau \mapsto \tau \circ \varphi$.

Now it is an easy exercise to prove that φ is bounded. One can use the closed graph theorem, or principle of uniform boundedness. This completes the proof.

Problem 4. Suppose that A is unital. Let α be an automorphism of A such that $\alpha^2 = \mathrm{id}_A$. Define B to be the set of all matrices

$$c = \begin{pmatrix} a & b \\ \alpha(b) & \alpha(a) \end{pmatrix},$$

where $a, b \in A$. Show that B is a C*-subalgebra of $M_2(A)$. Define a map $\varphi : A \to B$ by setting

$$\varphi(a) = \begin{pmatrix} a & 0 \\ 0 & \alpha(a) \end{pmatrix}.$$

Show that φ is an injective *-homomorphism. We can thus identify A as a C*-subalgebra of B. If we set $u=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then u is a self-adjoint unitary and B=A+Au. if C is any unital C*-algebra with a self-adjoint unitary element v, and $\psi:A\to C$ is a *-homomorphism such that

$$\psi(\alpha(a)) = v\psi(a)v^* \quad (a \in A),$$

show that there is a unique *-homomorphism $\psi': B \to C$ extending ψ such that $\psi'(u) = v$.

Solution. It is easy to check that B is a C*-subalgebra of $M_2(A)$ and φ is an injective *-homomorphism.

It is also easy to check that u is a self-adjoint unitary and B = A + Au.

Now prove the universal property of B. For $a \in A \subseteq B$, define $\psi'(a) = \psi(a)$, or more precisely, it should be:

$$\psi'\begin{pmatrix} a & 0 \\ 0 & \alpha(a) \end{pmatrix} = \psi(a), \quad \forall a \in A.$$

It extends to B as:

$$\psi'(\varphi(a) + \varphi(b)u) = \psi(a) + \psi(b)v, \quad \forall a, b \in A.$$

The uniqueness comes from the fact that B = A + Au.

Problem 5. An element a of A^+ is *strictly positive* if the hereditary C*-subalgebra of A generated by a is A itself, that is, if $\overline{aAa} = A$.

- (a) Show that if A is unital, then $a \in A^+$ is strictly positive if and only if a is invertible.
- (b) If H is a Hilbert space, show that a positive compact operator on H is strictly positive in K(H) if and only if it has dense range.
- (c) Show that if a is strictly positive in A, then $\tau(a) > 0$ for all non-zero positive linear functionals τ on A.

Solution. (a) If a is invertible, then $1 \in \overline{aAa}$, and \overline{aAa} must contain the hereditary C*-subalgebra generated by 1 which is $\overline{1A1} = A$, so a is strictly positive.

Conversely, if a is strictly positive, then $1 \in \overline{aAa}$, so there exists some $b \in A$ such that ||1 - aba|| < 1. This implies that aba is invertible, so a is invertible.

(b) Recall that a positive compact operator always has the form

$$a = 0 \oplus \sum_{n \geqslant 1}^{\infty} \lambda_n(x_n \otimes x_n),$$

where $(x_n)_{n\geqslant 1}$ is an orthonormal basis for $\ker(a)^{\perp}$, x_n is a unit eigenvector of a corresponding to λ_n , $\lambda_n > 0$, and for any given r > 0, there is finitely many λ_n greater than r, counting with multiplicities. Then it is clear that a has dense range if and only if $\ker(a) = 0$. More precisely, the closure of the range of a is the closed linear span of $(x_n)_{n\geqslant 1}$, i.e. $\ker(a)^{\perp}$.

If a has dense range, then $(x_n)_{n\geqslant 1}$ is an orthonormal basis of H. For any rank-one operator b, it can be written as $e\otimes f$, i.e. $b(x)=\langle x,f\rangle e$. Approximate e,f by finite linear combinations of (x_n) , b can be approximated in operator norm by finite linear combinations of operators of the form $x_n\otimes x_m$. However,

$$x_n \otimes x_m = \frac{1}{\lambda_m \lambda_n} a(x_n \otimes x_m) a,$$

so $x_n \otimes x_m \in \overline{aAa}$, where A = K(H). So \overline{aAa} contains every rank-one operator and thus equals A.

Conversely, if $x \in \ker(a), x \neq 0$, then for every operator of the form $aba, b \in A$, it must map x to 0. So does every operator in \overline{aAa} . Clearly K(H) is not such an algebra, so $\overline{aAa} \neq A$.

(c) If $\tau(a)=0$ for some positive linear functional τ on A, then by the fact that $0\leqslant a^{1/2}ba^{1/2}\leqslant \|b\|a$ when $b\geqslant 0$, we know that $\tau(a^{1/2}Aa^{1/2})=0$. But $aAa\subseteq a^{1/2}Aa^{1/2}$, so $\tau=0$.

Problem 6. We say that A is σ -unital if it admits a sequence $(u_n)_{n=1}^{\infty}$ which is an approximate unit for A.

- (a) Let a be strictly positive element of A, and set $u_n = a(a + 1/n)^{-1}$ for each positive integer n. Show that (u_n) is an approximate unit for A.
- (b) If $(u_n)_{n=1}^{\infty}$ is an approximate unit for A, show that $a = \sum_{n=1}^{\infty} u_n/2^n$ is a strictly positive element of A.

Thus, A is σ -unital if and only if it admits a strictly positive element.

Solution. (a) Set $g_n(t) = t^2/(t+1/n)^{-1}$, $t \ge 0$. By Dini's theorem, g_n converges to the identity function uniformly on every compact subset of $[0, \infty)$, so $a = \lim_{n \to \infty} au_n = \lim_{n \to \infty} u_n a$. Then for every element of the form $aba, b \in A$, we know that

$$aba = \lim_{n \to \infty} abau_n = \lim_{n \to \infty} u_n aba,$$

and then by approximation, $(u_n)_{n\geqslant 1}$ is an approximate unit.

(b) Denote the hereditary C*-subalgebra which a generates by B. Since $0 \le u_n \le 2^n a$, we have $u_n \in B$. Since B is hereditary, $u_n c u_n \in B$ for all $c \in A$. Let $n \to \infty$, then $c \in B$, so B = A and a is strictly positive.

Problem 7. Let Ω be a locally compact Hausdorff space. Show that $C_0(\Omega)$ admits an approximate unit $(p_n)_{n=1}^{\infty}$, where all the p_n are projections, if and only if Ω is the union of a sequence of compact open sets. Deduce that if a C*-algebra A admits a strictly positive element a such that $\sigma(a) \setminus \{0\}$ is discrete, then A admits an approximate unit $(p_n)_{n=1}^{\infty}$ consisting of projections.

Solution. If Ω is the union of a sequence of compact open sets $\Omega = \bigcup_{n\geqslant 1} A_n$, then $p_n = \chi_{B_n}$ belongs to $C_0(\Omega)$, where $B_n = \bigcup_{k=1}^n A_k$. Such a sequence (p_n) is an approximate unit, because if $f \in C_0(\Omega)$, for any $\varepsilon > 0$, there exists a compact $K \subseteq \Omega$ such that $|f| < \varepsilon$ on K^c . By compactness of K, it is covered by finitely many A_n , so it is contained in B_n for all sufficiently large n. By choice of K, $||p_n f - f|| \leqslant \varepsilon$.

Conversely, if $C_0(\Omega)$ admits an approximate unit consisting of projections $(p_n)_{n=1}^{\infty}$, then each p_n can be written as χ_{B_n} where B_n are compact open sets. If $\Omega \neq \bigcup_{n\geqslant 1} B_n$, say $x\notin \bigcup_{n\geqslant 1} B_n$, then by Urysohn's lemma, there is a function $f\in C_0(\Omega)$ such that f(x)=1. Clearly $||p_nf-f||\geqslant 1$, which is a contradiction. Hence $\Omega=\bigcup_{n\geqslant 1} B_n$ is the union of a sequence of compact open sets.

The (not necessarily unital) C*-subalgebra $C^*(a)$ generated by a is isomorphic to $C_0(\sigma(a) \setminus \{0\})$, so $C^*(a)$ admits an approximate unit consisting of projections. However, a is strictly positive, so by the same argument in Problem 6(a), this approximate unit is also one for A.

Problem 8. Let $z: \mathbb{T} \to \mathbb{C}$ be the inclusion map. Let $\theta \in [0,1]$. Show that there is a unique automorphism α of $C(\mathbb{T})$ such that $\alpha(z) = e^{i2\pi\theta}z$. Define the faithful positive linear functional $\tau: C(\mathbb{T}) \to \mathbb{C}$ by setting $\tau(f) = \int f dm$ where m is normalized arc length on \mathbb{T} . Show that $\tau(\alpha(f)) = \tau(f)$ for all $f \in C(\mathbb{T})$. Deduce from Problem 2 in Chapter 3 that there is a unitary v on the Hilbert space H_{τ} such that $\varphi_{\tau}(\alpha(f)) = v\varphi_{\tau}(f)v^*$ for all $f \in C(\mathbb{T})$. Let u be the unitary $\varphi_{\tau}(z)$. Show that $vu = e^{i2\pi\theta}uv$. If θ is irrational, the C*-algebra A_{θ} generated by u and v is called an *irrational rotation* algebra, and A_{θ} can be shown to be simple.

Solution. Since z generates the whole $C(\mathbb{T})$, so the uniqueness of α is obvious. For any $f \in C(\mathbb{T})$, the automorphism is given explicitly by $\alpha(f)(\zeta) = f(e^{i2\pi\theta}\zeta)$. Since the measure m is invariant under the transformation $z \mapsto e^{i2\pi\theta}z$, $\tau(\alpha(f)) = \tau(f)$ for all $f \in C(\mathbb{T})$. Actually, if we view \mathbb{T} as the unit interval (with its end points pinned together), m is the usual Borel measure, and α is translating the variable by θ .

Problem 2(c) asserts that for the GNS representation $(H_{\tau}, \varphi_{\tau})$ corresponding to τ , there is a unitary v on H_{τ} such that $\varphi_{\tau}(\alpha(f)) = v\varphi_{\tau}(f)v^*$ for all $f \in C(\mathbb{T})$. Since z is a unitary in $C(\mathbb{T})$, $u := \varphi_{\tau}(z)$ must be a unitary on H_{τ} . For $f \in C(\mathbb{T})$,

$$vu(f + N_{\tau}) = v(zf + N_{\tau}) = \alpha(zf) + N_{\tau},$$

and

$$uv(f + N_{\tau}) = z\alpha(f) + N_{\tau},$$

so $vu = e^{i2\pi\theta}uv$.

Actually more can be said. The GNS representation in this problem is simple. H_{τ} is $L^2(\mathbb{T})$, and φ_{τ} is the multiplication operator. So u is multiplication by z, and v is translating by θ (or rotating by $2\pi\theta$). This is a representation of the irrational rotation algebra.

Problem 9. Let m be normalized Haar measure on \mathbb{T} . If $\lambda \in \mathbb{C}, |\lambda| < 1$, define $\tau_{\lambda} : H^1 \to \mathbb{C}$ by setting

$$\tau_{\lambda}(f) = \int \frac{f(w)}{1 - \lambda \overline{w}} dm(w) \quad (f \in H^1).$$

Show that $\tau_{\lambda} \in (H^1)^*$. By expanding $(1 - \lambda \overline{w})^{-1}$ in a power series, show that $\tau_{\lambda}(f) = \sum_{n=0}^{\infty} \hat{f}(n)\lambda^n$. Deduce that the function

$$\tilde{f}: \text{int } \mathbb{D} \to \mathbb{C}, \ \lambda \mapsto \tau_{\lambda}(f),$$

is holomorphic, where int $\mathbb{D} = \{\lambda \in \mathbb{C} : |\lambda| < 1\}$. If $f, g \in H^2$, show that $fg \in H^1$ and $\tau_{\lambda}(fg) = \tau_{\lambda}(f)\tau_{\lambda}(g)$.

Solution. Whenever $w \in \mathbb{T}$, $|(1 - \lambda \overline{w})^{-1}| \leq (1 - |\lambda|)^{-1}$, so $|\tau_{\lambda}(f)| \leq (1 - |\lambda|)^{-1} ||f||$ and $\tau_{\lambda} \in (H^1)^*$.

Whenever $|\lambda| < 1$,

$$(1 - \lambda \overline{w})^{-1} = \sum_{n=0}^{\infty} \overline{w}^n \lambda^n \quad (w \in \mathbb{T}).$$

Therefore,

$$\tau_{\lambda}(f) = \int f(w) \sum_{n=0}^{\infty} \overline{w}^{n} \lambda^{n} dm(w)$$
$$= \sum_{n=0}^{\infty} \int f(w) \overline{w}^{n} dm(w) \lambda^{n}$$
$$= \sum_{n=0}^{\infty} \hat{f}(n) \lambda^{n}.$$

Here the interchange of the summation and the integral is justified by the DCT and the estimation in the beginning.

Since $f \in H^1$, all $\hat{f}(n)$ are bounded, so the convergence radius of \tilde{f} at $\lambda = 0$ is at least 1, which proves that \tilde{f} is holomorphic in int \mathbb{D} .

If $f, g \in H^2$, then there exist two sequences of analytic trigonometric polynomials $(\varphi_n), (\psi_n)$ converging to f, g in L^2 norm, respectively. Then $\varphi_n \psi_n$ converges to fg in L^1 norm, and the Fourier coefficients of $\varphi_n \psi_n$ also converge to those of fg. Since $\widehat{\varphi_n \psi_n} = \widehat{\varphi_n} * \widehat{\psi_n}$, where * is the convolution, it is clear that $\varphi_n \psi_n \in H^1$, so its limit $fg \in H^1$.

The identity $\tau_{\lambda}(fg) = \tau_{\lambda}(f)\tau_{\lambda}(g)$ also follows from a similar argument. The coefficients of the product of two power series behave exactly the same way as convolution, so we only need to prove that $\widehat{fg} = \widehat{f} * \widehat{g}$, which also follows by letting $n \to \infty$ in the case of φ_n, ψ_n .

Problem 10. If $f: \operatorname{int} \mathbb{D} \to \mathbb{C}$ is an analytic function and 0 < r < 1, define $f_r \in C(\mathbb{T})$ by setting $f_r(\lambda) = f(r\lambda)$. Set $||f||_2 = \sup_{0 < r < 1} ||f_r||_2$, and let $H^2(\mathbb{D})$ denote the set of all analytic functions $f: \operatorname{int} \mathbb{D} \to \mathbb{C}$ such that $||f||_2 < \infty$. If $f \in H^2(\mathbb{D})$, show that $||f||_2 = \sqrt{\sum_{n=0}^{\infty} |\lambda_n|^2}$, where $f(\lambda) = \sum_{n=0}^{\infty} \lambda_n \lambda^n$ is the Taylor series expansion of f. Show that $H^2(\mathbb{D})$ is a Hilbert space with inner product $\langle f, g \rangle = \sum_{n=0}^{\infty} \lambda_n \overline{\mu_n}$, where $\lambda_n = f^{(n)}(0)/n!$ and $\mu_n = g^{(n)}(0)/n!$ (the operations are pointwise-defined), and show also that the map

$$H^2 \to H^2(\mathbb{D}), \quad f \mapsto \tilde{f},$$

is a unitary operator. (Thus, the elements of H^2 can be interpreted as analytic functions on int \mathbb{D} satisfying a growth condition approaching the boundary. A similar interpretation can be given for the other H^p -spaces.)

Solution.
$$f_r(\lambda) = \sum_{n=0}^{\infty} \lambda_n r^n \lambda^n$$
, so

$$||f_r||_2^2 = \int_{\mathbb{T}} \sum_{n=0}^{\infty} \lambda_n r^n \lambda^n \cdot \sum_{m=0}^{\infty} \overline{\lambda}_m r^m \overline{\lambda}^m d\lambda$$
$$= \sum_{n=0}^{\infty} |\lambda_n|^2 r^{2n}.$$

The norm is monotonely increasing with r, so $||f||_2 = \sum_{n=0}^{\infty} |\lambda_n|^2$.

We only need to prove that $H^2(\mathbb{D})$ is complete with the given inner product. If (f_n) is a Cauchy sequence in $H^2(\mathbb{D})$, we write $f_n(\lambda) = \sum_{k=0}^{\infty} \lambda_{nk} \lambda^k$, corresponding to an element in $l^2(\mathbb{N})$, i.e. $a_n = (\lambda_{nk})_{k\geqslant 0}$. Since $l^2(\mathbb{N})$ is complete, a_n converges to $a = (c_k)_{k\geqslant 0}$. This element in l^2 corresponds to a power series $f(\lambda) = \sum_{k=0}^{\infty} c_k \lambda^k$, which is holomorphic in int \mathbb{D} , since c_k must be bounded, leading to the convergence radius $\geqslant 1$. The formula for the norm in $H^2(\mathbb{D})$ now shows that f_n converges to f in this norm.

The last statement follows from what we have proved in this problem and in Problem 9.

Problem 11. Show that if φ is a function in $L^{\infty}(\mathbb{T})$ not almost everywhere zero, then either T_{φ} or T_{φ}^* is injective. Deduce that T_{φ} is invertible if and only if it is a Fredholm operator of index zero.

Solution. T_{φ} is the Toeplitz operator with symbol φ . If $f \in \ker T_{\varphi}, g \in \ker T_{\varphi}^*$, then $\varphi f \perp H^2, \overline{\varphi} g \perp H^2$. Note that $\varphi f \perp H^2 \Rightarrow \overline{\varphi f} \in H^2$, since $\widehat{\varphi f}(n) = \overline{\widehat{\varphi f}(-n)}$ and thus $(H^2)^{\perp} = \{f \in L^2 : \widehat{f}(n) = 0, \forall n \geq 0\}$. We have proved in Problem 9 that the product of two H^2 functions lie in H^1 , so $\varphi f \overline{g}, \overline{\varphi f} g \in H^1$. Any function in H^1 whose conjugate also lies in H^1 must be constant (Lemma 3.5.1), so $\varphi f \overline{g}$ is constant. Moreover, by examing the zeroth Fourier coefficient, $\varphi f \overline{g} = 0$. (One can see this from the expression of the zeroth Fourier coefficient, which is the inner product of φf and g.)

Now by the assumption on φ and Theorem 3.5.4, the set $\{f=0\} \cup \{g=0\}$ has positive measure, so f=0 or g=0. This proves the first statement.

For the second statement, if T_{φ} is a Fredholm operator of index zero, then $\dim \ker T_{\varphi} = \dim \ker T_{\varphi}^*$, so both of them are 0. So T_{φ} is bijective, and thus invertible. The reverse direction is obvious.