Discrete-time Fourier Transform

Review of Continuous-Time Fourier Transform (CTFT)

□ CTFT:

$$X_a(j\Omega) = \int_{-\infty}^{\infty} x_a(t)e^{-j\Omega t}dt$$

Fourier Spectrum
Or Spectrum

☐ Inverse CTFT:

$$x_a(t) = \int_{-\infty}^{\infty} X_a(j\Omega) e^{j\Omega t} d\Omega$$

$$x_a(t) \stackrel{\text{CTFT}}{\longleftrightarrow} X_a(j\Omega)$$

Fourier Series Representation

☐ Discrete case

Fourier Series Representation

☐ Discrete case

Discrete-time Fourier Transform

☐ From Fourier series to DTFT

Discrete-time Fourier Transform

☐ From Fourier series to DTFT

Discrete-Time Fourier Transform

☐ The frequency domain representation of discrete time sequence is the discrete-time Fourier transform (DTFT)

 \Box This transform maps a time-domain sequence into a continuous function of the frequency variable ω

Discrete-Time Fourier Transform

□ Discrete-Time Fourier Transform (DTFT)

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

 ω is a continuous variable in the range of $-\infty < \omega < \infty$

☐ Inverse DTFT

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Why one is sum and the other integral?

Eigenfunctions for LTI Systems

□ Complex exponential sequences are eigenfunctions of LTI systems

Eigenfunctions for LTI Systems

 \Box $H(e^{j\omega})$ is the frequency response of the system since it determines the change in complex magnitude of $e^{j\omega}$

☐ Frequency response of the ideal delay system

☐ An alternative method to determine the frequency response

☐ Sinusoidal input

Periodic Property of Frequency Response

Discrete-time Fourier Transform

 \square Verify x[n]=x[n]

Discrete-time Fourier Transform

 \square Verify x[n]=x[n]

$$\Delta(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \delta[n]e^{-j\omega n} = \sum_{n=0}^{\infty} e^{-j\omega n} = 1$$

Discrete-time Fourier Transform

 $\square X(e^{j\omega})$ is a complex function of the real variable ω , and can be written as

$$X(e^{j\omega}) = X_{\rm re}(e^{j\omega}) + jX_{\rm im}(e^{j\omega})$$

 $\Box X(e^{j\omega})$ can alternatively be expressed as

$$X(e^{j\omega}) = |X(e^{j\omega})|e^{j\theta(\omega)}$$

where, $\theta(\omega) = \arg\{X(e^{j\omega})\}$

- $\triangleright |X(e^{j\omega})|$ is called the magnitude function
- $\triangleright \theta(\omega)$ is called the phase function

DTFT

- $\Box X(e^{j\omega})$ is a complex function of the real variable ω $X(e^{j\omega}) = X_{\rm re}(e^{j\omega}) + jX_{\rm im}(e^{j\omega})$
- $\square X(e^{j\omega})$ can alternatively be expressed as

$$X(e^{j\omega}) = |X(e^{j\omega})|e^{j\theta(\omega)}$$

- where, $\theta(\omega) = \arg\{X(e^{j\omega})\}\$
- $\triangleright |X(e^{j\omega})|$ is called the magnitude function
- $\triangleright \theta(\omega)$ is called the phase function
- $|X(e^{j\omega})|$ and $\theta(\omega)$ are also called magnitude and phase spectra

□ For a causal sequence $x[n] = \alpha^n \mu[n]$, $|\alpha| < 1$ Its DTFT is given by

□ For a causal sequence $x[n] = \alpha^n \mu[n]$, $|\alpha| < 1$ Its DTFT is given by

$$X(e^{j\omega}) = \sum_{n=0}^{\infty} \alpha^n e^{-j\omega n} = \sum_{n=0}^{\infty} (\alpha e^{-j\omega})^n = \frac{1}{1 - \alpha e^{-j\omega}}$$
as $|\alpha e^{-j\omega}| = |\alpha| < 1$

Recall:
$$1 + q + q^2 + \dots + q^{\infty} = \frac{1}{1 - q}$$
 for $|q| < 1$

☐ Find the inverse DTFT of

$$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le |\omega| \le \omega_c \\ 0, & \omega_c \le |\omega| \le \pi \end{cases}$$

☐ Find the inverse DTFT of

$$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le |\omega| \le \omega_c \\ 0, & \omega_c \le |\omega| \le \pi \end{cases}$$

Symmetry Property of DTFT

□ For a real sequence x[n], $|X(e^{j\omega})|$ and $X_{re}(e^{j\omega})$ are even functions of ω , $\theta(\omega)$ and $X_{im}(e^{j\omega})$ are odd functions of ω

☐ Proof:

Symmetry Property of DTFT

□ For a real sequence x[n], $|X(e^{j\omega})|$ and $X_{re}(e^{j\omega})$ are even functions of ω, θ(ω) and $X_{im}(e^{j\omega})$ are odd functions of ω

$$\square$$
 Proof: $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$

$$X(e^{-j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{j\omega n} = \left\{\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}\right\}^{*}$$
$$= X^{*}(e^{j\omega})$$

$$\square |X(e^{j\omega})| = |X(e^{-j\omega})| \text{ and } \theta(\omega) = -\theta(-\omega)$$

Periodic Property of DTFT

□ Proof:

$$X(e^{j(\omega+2k\pi)}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j(\omega+2k\pi)n}$$
$$= \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = X(e^{j\omega})$$

☐ The magnitude and phase of DTFT of

$$X(e^{j\omega}) = \frac{1}{1 - 0.5e^{-j\omega}}$$

$$\theta(\omega) = -\theta(-\omega)$$

"Window"

DTFT:

DTFT:

$$W(e^{j\omega}) = \sum_{k=-\infty}^{\infty} w[n]e^{-j\omega k} = \sum_{k=-N}^{N} e^{-j\omega k}$$
$$= e^{-j\omega N} (1 + e^{j\omega} + e^{j2\omega} + \dots + e^{j2N\omega})$$

Recall:
$$1 + q + q^2 + \dots + q^M = \frac{1 - q^{M+1}}{1 - q}$$
 $q = e^{j\omega}$ $M = 2N$

$$W(e^{j\omega}) = e^{-j\omega N} \left(1 + e^{j\omega} + e^{j2\omega} + \dots + e^{j2N\omega} \right)$$

$$=e^{-j\omega N}\,\frac{1-e^{j\omega(2N+1)}}{1-e^{j\omega}}$$

$$= \frac{e^{-j\omega N} - e^{j\omega N}e^{j\omega}}{1 - e^{j\omega}} \left(\times \frac{e^{-j\frac{\omega}{2}}}{e^{-j\frac{\omega}{2}}} \right)$$

$$\times \frac{e^{-j\frac{\omega}{2}}}{e^{-j\frac{\omega}{2}}}$$

Periodic Sinc

$$=\frac{e^{-j\omega\left(N+\frac{1}{2}\right)}-e^{j\omega\left(N+\frac{1}{2}\right)}}{e^{-j\frac{\omega}{2}}-e^{j\frac{\omega}{2}}}=\frac{\sin\left(\omega\left(N+\frac{1}{2}\right)\right)}{\sin\left(\frac{\omega}{2}\right)}$$

$$W(e^{j\omega}) = \frac{\sin\left(\omega\left(N + \frac{1}{2}\right)\right)}{\sin\left(\frac{\omega}{2}\right)} \longrightarrow 2N+1 \text{ as } \omega \longrightarrow 0$$

Linearity & Periodicity

□ Linearity:

$$g[n] \leftrightarrow G(e^{j\omega}) \text{ and } h[n] \leftrightarrow H(e^{j\omega})$$

 $\alpha g[n] + \beta h[n] \leftrightarrow \alpha G(e^{j\omega}) + \beta H(e^{j\omega})$

$$\Box \text{ Periodicity: } X(e^{j(\omega+2\pi)}) = X(e^{j\omega})$$

Time Reversal

☐ Time reversal:

Let
$$x[n] \leftrightarrow X(e^{j\omega})$$

Then $x[-n] \leftrightarrow X(e^{-j\omega}) = X^*(e^{j\omega})$
if $x[n]$ is real

If x[n]=x[-n] and x[n] is real, then

$$X(e^{j\omega}) = X^*(e^{j\omega}) \to X(e^{j\omega})$$
 is real

$$\square$$
 Q: Suppose $x[n] \leftrightarrow X(e^{j\omega})$,

$$x[n] \in \mathcal{R}eal$$

$$\rightarrow$$
 ? $\leftrightarrow \mathcal{R}e\{X(e^{j\omega})\}$

A: Decompose x[n] to even and odd functions

$$x[n] = x_{e}[n] + x_{o}[n],$$

where

$$x_{e}[n] = \frac{1}{2}(x[n] + x[-n])$$

$$x_{o}[n] = \frac{1}{2}(x[n] - x[-n])$$

$$x_{\mathrm{e}}[n] \leftrightarrow X_{\mathrm{e}}(e^{j\omega}) = \frac{1}{2} \left(X(e^{j\omega}) + X(e^{-j\omega}) \right)$$

$$= \frac{1}{2} \left(X(e^{j\omega}) + X^*(e^{j\omega}) \right) = \mathcal{R}e \left\{ X(e^{j\omega}) \right\}$$

$$x_{\mathrm{o}}[n] \leftrightarrow X_{\mathrm{o}}\left(e^{j\omega}\right) = \frac{1}{2}\left(X\left(e^{j\omega}\right) - X^{*}\left(e^{-j\omega}\right)\right) = j\mathcal{I}m\left\{X\left(e^{j\omega}\right)\right\}$$

Symmetry Relations If x[n] is real

Sequence	Discrete-Time Fourier Transform
x[n]	$X(e^{j\omega})$
$x_{\text{ev}}[n]$	$X_{\rm re}(e^{j\omega})$
$x_{od}[n]$	$jX_{\rm im}(e^{j\omega})$
Conjugate Symmetric	$X(e^{j\omega}) = X^*(e^{-j\omega})$
	$X_{\rm re}(e^{j\omega}) = X_{\rm re}(e^{-j\omega})$
	$X_{\rm im}(e^{j\omega}) = -X_{\rm im}(e^{-j\omega})$
	$ X(e^{j\omega}) = X(e^{-j\omega}) $
	$\arg\{X(e^{j\omega})\} = -\arg\{X(e^{-j\omega})\}$

Symmetry	Relations	
	Relations If x[n]	is complex

Sequence	Discrete-Time Fourier Transform
x[n]	$X(e^{j\omega})$
x[-n]	$X(e^{-j\omega})$
$x^*[-n]$	$X^*(e^{j\omega})$
$x^*[n]$	$X^*(e^{-j\omega})$
$x_{\rm re}[n]$	$X_{\rm cs}(e^{j\omega}) = \frac{1}{2} \{ X(e^{j\omega}) + X^*(e^{-j\omega}) \}$
$jx_{\text{im}}[n]$	$X_{\mathrm{ca}}(e^{j\omega}) = \frac{1}{2} \{ X(e^{j\omega}) - X^*(e^{-j\omega}) \}$
$x_{cs}[n]$	$X_{ m re}(e^{j\omega})$
$x_{ca}[n]$	$jX_{\mathrm{im}}(e^{j\omega})$

Time & Frequency Shifting

☐ Time and Frequency Shifting

Let
$$x[n] \leftrightarrow X(e^{j\omega})$$

Then $x[n-n_d] \leftrightarrow e^{-j\omega n_d}X(e^{j\omega})$
 $e^{j\omega_0 n}x[n] \leftrightarrow X(e^{j(\omega-\omega_0)})$

What is the DTFT of:

What is the DTFT of:

$$W(e^{j\omega}) = \frac{\sin\left((\omega - \pi)\left(N + \frac{1}{2}\right)\right)}{\sin\left(\frac{\omega - \pi}{2}\right)}$$

Differentiation in Frequency

□ Differentiation in frequency

Let
$$x[n] \leftrightarrow X(e^{j\omega})$$

Then $nx[n] \leftrightarrow j \frac{dX(e^{j\omega})}{d\omega}$

Differentiation in Frequency

□ Differentiation in frequency

Let
$$x[n] \leftrightarrow X(e^{j\omega})$$

Then $nx[n] \leftrightarrow j \frac{dX(e^{j\omega})}{\omega d\omega}$

Proof:
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Differentiate both side to get $\frac{dX(e^{j\omega})}{d\omega} = \sum_{n=-\infty}^{\infty} -jnx[n]e^{-j\omega n}$

Multiply both side by j, we get $j \frac{dX(e^{j\omega})}{d\omega} = \sum_{n=-\infty}^{\infty} nx[n]e^{-j\omega n}$

 \Box Determine DTFT $Y(e^{j\omega})$ of

$$y[n] = (n+1)\alpha^n \mu[n], \qquad |\alpha| < 1$$

 \Box Determine DTFT $Y(e^{j\omega})$ of

$$y[n] = (n+1)\alpha^n \mu[n], \qquad |\alpha| < 1$$

- \Box Let $x[n] = \alpha^n \mu[n]$, $|\alpha| < 1$
- ☐ We can therefore write

$$y[n] = nx[n] + x[n]$$

 \square From example 2, we have known that the DTFT of x[n] is given by

$$X(e^{j\omega}) = \frac{1}{1 - \alpha e^{-j\omega}}$$

Using the differentiation in frequency, we observe that DTFT of nx[n] is given by,

$$j\frac{dX(e^{j\omega})}{d\omega} = j\frac{d}{d\omega}\left(\frac{1}{1-\alpha e^{-j\omega}}\right) = \frac{\alpha e^{-j\omega}}{(1-\alpha e^{-j\omega})^2}$$

□ Next, using linear property of DTFT, we arrive at

$$Y(e^{j\omega}) = \frac{\alpha e^{-j\omega}}{(1 - \alpha e^{-j\omega})^2} + \frac{1}{1 - \alpha e^{-j\omega}}$$
$$= \frac{1}{(1 - \alpha e^{-j\omega})^2}$$

Convolution & Modulation Theorem

□ Convolution

Let
$$x[n] \leftrightarrow X(e^{j\omega})$$
 and $h[n] \leftrightarrow H(e^{j\omega})$

If
$$y[n] = x[n] \otimes h[n]$$

Then $y[n] \leftrightarrow Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$

■ Modulation

If
$$y[n] = x[n]h[n]$$

Then $y[n] \leftrightarrow Y(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) H(e^{j(\omega-\theta)}) d\theta$

Linear Convolution Using DTFT

- □ Linear convolution y[n] of the sequence x[n] and h[n] can be performed as follows:
 - Compute the DTFTs $X(e^{j\omega})$ and $H(e^{j\omega})$ of the sequences x[n] and h[n], respectively
 - Form DTFT $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$
 - Compute the IDTFT y[n] of $Y(e^{j\omega})$

Parseval's Theorem

☐ Parseval's theorem

Let
$$x[n] \leftrightarrow X(e^{j\omega})$$
 $h[n] \leftrightarrow H(e^{j\omega})$
Then $\sum_{n=-\infty}^{\infty} x[n]h^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})H^*(e^{j\omega})d\omega$
 $\sum_{n=-\infty}^{\infty} x[n]h^*[n] = \sum_{n=-\infty}^{\infty} x[n] \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} H^*(e^{j\omega})e^{-j\omega n}d\omega\right)$
 $= \frac{1}{2\pi} \int_{-\pi}^{\pi} H^*(e^{j\omega}) X(e^{j\omega})d\omega$
 $= \frac{1}{2\pi} \int_{-\pi}^{\pi} H^*(e^{j\omega}) X(e^{j\omega})d\omega$

Energy & Energy Density Spectrum

- \Box Energy: $E_g = \sum_{-\infty}^{\infty} |x[n]|^2$
- \square According to Parseval's theorem, when h[n] = x[n],

$$E_g = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \sum_{n=-\infty}^{\infty} x[n] x^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2$$

☐ Energy density spectrum:

$$S_{xx} = \int_{-\pi}^{\pi} |X(e^{j\omega})|^2$$

Energy Density Spectrum

□ Example – Compute the energy of the sequence

$$h_{LP}[n] = \frac{\sin(\omega_c n)}{\pi n}, \quad -\infty < n < \infty$$

☐ Here

$$\sum_{n=-\infty}^{\infty} |h_{LP}[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_{LP}(e^{j\omega})|^2 d\omega$$

where

$$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le |\omega| \le \omega_c \\ 0, & \omega_c \le |\omega| \le \pi \end{cases}$$

Therefore:
$$\sum_{n=-\infty}^{\infty} |h_{LP}[n]|^2 = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} d\omega = \frac{\omega_c}{\pi} < \infty$$

TABLE 2.2 FOURIER TRANSFORM THEOREMS

Seq	ne	n	20
SCU	uc	111	-

$$x[n]$$
 $y[n]$

Fourier Transform

$$X(e^{j\omega})$$

$$Y(e^{j\omega})$$

1.
$$ax[n] + by[n]$$

2.
$$x[n-n_d]$$
 (n_d an integer)

3.
$$e^{j\omega_0 n}x[n]$$

4.
$$x[-n]$$

5.
$$nx[n]$$

6.
$$x[n] * y[n]$$

7.
$$x[n]y[n]$$

$$aX(e^{j\omega})+bY(e^{j\omega})$$

$$e^{-j\omega n_d}X(e^{j\omega})$$

$$X(e^{j(\omega-\omega_0)})$$

$$X(e^{-j\omega})$$

$$X^*(e^{j\omega})$$
 if $x[n]$ real.

$$j\frac{dX(e^{j\omega})}{d\omega}$$

$$X(e^{j\omega})Y(e^{j\omega})$$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$$

Parseval's theorem:

8.
$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

9.
$$\sum_{n=-\infty}^{\infty} x[n] y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) Y^*(e^{j\omega}) d\omega$$