NAME: Final version 012

# **MAT-181 FINAL TAKE-HOME EXAM**

This exam is to be taken without discussion or correspondance with any human. Please show work!

| question | available points | earned points |
|----------|------------------|---------------|
| 1        | 10               |               |
| 2        | 15               |               |
| 3        | 10               |               |
| 4        | 10               |               |
| 5        | 10               |               |
| 6        | 10               |               |
| 7        | 15               |               |
| 8        | 20               |               |
| EC       | 5                |               |
| EC       | 5                |               |
| Total    | 100              |               |

#### 1. (10 Points)



For each description below, choose which histogram best fits (I, II, III, or IV). Each histogram should be used once.

- (a) The distribution of ages at a skilled nursing facility, where most of the patients are elderly but a few are quite young.
- (b) The distribution of hours that students studied for an exam when about half of students studied a lot and a similar number of students studied very little.
- (c) The distribution of annual income for school employees where a high percentage of employees are entry-level teachers and only a few are high-paid administrators.
- (d) The distribution of lengths of newborn babies

#### 2. (15 Points)

In a deck of strange cards, there are 582 cards. Each card has an image and a color. The amounts are shown in the table below.

|        | green | pink | red | teal | violet | Total |
|--------|-------|------|-----|------|--------|-------|
| dog    | 27    | 28   | 46  | 26   | 14     | 141   |
| flower | 23    | 49   | 39  | 36   | 18     | 165   |
| horn   | 41    | 19   | 24  | 12   | 16     | 112   |
| quilt  | 10    | 13   | 50  | 44   | 47     | 164   |
| Total  | 101   | 109  | 159 | 118  | 95     | 582   |

(a) What is the probability a random card is a quilt?

(b) What is the probability a random card is green given it is a flower?

(c) What is the probability a random card is either a horn or green (or both)?

(d) Is a dog or a horn more likely to be violet?

(e) What is the probability a random card is a dog given it is teal?

(f) What is the probability a random card is violet?

(g) What is the probability a random card is both a flower and violet?

### 3. (10 points)

A farm produces 4 types of fruit: *A*, *B*, *C*, and *D*. The fruits' masses follow normal distributions, with parameters dependent on the type of fruit.

| Type of fruit | Mean mass (g) | Standard deviation of mass (g) |
|---------------|---------------|--------------------------------|
| Α             | 145           | 10                             |
| В             | 117           | 8                              |
| C             | 106           | 14                             |
| D             | 122           | 6                              |

One specimen of each type is weighed. The results are shown below.

| Type of fruit | ruit   Mass of specimen (g) |  |
|---------------|-----------------------------|--|
| Α             | 126.8                       |  |
| В             | 118.9                       |  |
| C             | 97.74                       |  |
| D             | 122.6                       |  |

Which specimen is the most unusually small (relative to others of its type)?

### 4. (10 points)

A tree's leaves were found to be normally distributed with a mean of 144 millimeters and a standard deviation of 8.2 millimeters. If you pick a random leaf from that tree, what is the probability the length is between 136 and 159.9 millimeters?

## 5. (10 points)

A species of duck is known to have a mean weight of 278.5 grams and a standard deviation of 24 grams. A researcher plans to measure the weights of 144 of these ducks sampled randomly. What is the probability the **sample mean** will be between 276.5 and 279 grams?

### 6. (10 points)

An ornithologist wishes to characterize the average body mass of *Piranga olivacea*. She randomly samples 21 adults of *Piranga olivacea*, resulting in a sample mean of 38.75 grams and a sample standard deviation of 4.05 grams. Determine a 95% confidence interval of the true population mean.

| 7 | /15 | points) |
|---|-----|---------|
|   | ιıυ | DUILIO  |

A student is taking a multiple choice test with 900 questions. Each question has 5 choices. You want to detect whether the student does significantly better than random guessing, so you decide to run a hypothesis test with a significance level of 0.05.

Then, the student takes the test and gets 202 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses.
- (c) Determine the test statistic (z or t), draw a sketch, and determine the p-value.

- (d) Decide whether we reject or retain the null hypothesis.
- (e) Did the student do significantly better than random guessing?

8. (20 points) [Note: this question uses 2 pages.] You have collected the following data:

| X           | У           | xy          |
|-------------|-------------|-------------|
| 58          | 4.2         |             |
| 16          | 1.3         |             |
| 41          | 1.3         |             |
| 97          | 5.6         |             |
| 60          | 3.7         |             |
| 87          | 3.9         |             |
| 84          | 3.7         |             |
| $\sum X =$  | $\sum y =$  | $\sum xy =$ |
| $\bar{X} =$ | $\bar{y} =$ |             |
| S., -       | S., -       |             |

- (a) Complete the table.
- (b) Calculate the correlation coefficient (r) using the formula below.

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

(c) The least-squares regression line will be represented as y = a + bx. Determine the parameters (*b* and *a*) using the formulas below.

$$b=r\frac{s_y}{s_x}$$

$$a = \bar{y} - b\bar{x}$$

(d) Write the equation of the regression line (using the calculated values of *a* and *b*.)

(e) Please plot the data and a corresponding regression line.



### 9. (Extra credit: 5 points)

Let each trial have a chance of success p = 0.25. If 147 trials occur, what is the probability of getting more than 26 but at most 37 successes?

In other words, let  $X \sim \text{Bin}(n = 147, p = 0.25)$  and find  $P(26 < X \le 37)$ .

Use a normal approximation along with the continuity correction.

### 10. (Extra credit: 5 points)

A null hypothesis claims a population has a mean  $\mu$  = 170. You decide to run two-tail test on a sample of size n = 10 using a significance level  $\alpha$  = 0.1.

You then collect the sample:

| 167.6 |       |       |       |       |
|-------|-------|-------|-------|-------|
| 182.9 | 171.3 | 189.4 | 182.3 | 174.8 |
|       |       |       |       |       |

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?