The E-M Algorithm

Biostatistics 615/815 Lecture 18

Last Lecture: The Simplex Method

- General method for optimization
 - Makes few assumptions about function
- Crawls towards minimum
- Some recommendations
 - Multiple starting points
 - Restart maximization at proposed solution

Summary: The Simplex Method

multiple contraction

Other Strategies for Multidimensional Optimization

- Most strategies will define a series of vectors or lines through parameter space
- Estimate of minimum improved by adding an optimal multiple of each vector
- Some intuitive choices might be:
 - The function gradient
 - Unit vectors along one dimension

The key is to right angle turns!

Most methods that use derivatives don't simply optimize function along current gradient or the unit vectors ...

Today ...

- The E-M algorithm
 - General algorithm for missing data problems
 - Requires "specialization" to the problem at hand
 - Frequently applied to mixture distributions

The E-M Algorithm

- Original Citation
 - Dempster, Laird and Rubin (1977)
 J Royal Statistical Society (B) 39:1-38
 - Cited in over 6,082 research articles
- For comparison
 - Nelder and Mead (1965)Computer Journal 7: 308-313
 - Cited in over 6,762 research articles

The Basic E-M Strategy

- X = (Y, Z)
 - Complete data X (eg. what we'd like to have!)
 - Observed data Y (eg. individual observations)
 - Missing data Z
 (eg. class assignments)
- The algorithm
 - Use estimated parameters to infer Z
 - Update estimated parameters using Y and Z
 - Repeat until convergence

The E-M Algorithm

- Consider a set of starting parameters
- Use these to "estimate" the missing data
- Use "complete" data to update parameters
- Repeat as necessary

Setting for the E-M Algorithm...

- Problem is simpler to solve for complete data
 - Maximum likelihood estimates can be calculated using standard methods
- Estimates of mixture parameters could be obtained in straightforward manner if the origin of each observation is known...

Filling In Missing Data

 The missing data is the group assignment for each observation

- Complete data generated by assigning observations to groups
 - Probabilistically
 - We will use "fractional" assignments

Classification Probabilities

$$\Pr(Z_i = j \mid x_i, \boldsymbol{\pi}, \boldsymbol{\varphi}, \boldsymbol{\eta}) = \frac{\pi_j f(x_i \mid \phi_j, \boldsymbol{\eta})}{\sum_l \pi_l f(x_i \mid \phi_l, \boldsymbol{\eta})}$$

- Results from the application of Bayes' theorem
- Implemented in classprob() function

C Code: Updating Group Memberships

Updating Mixture Proportions

$$\pi_i = \frac{\Pr(Z_i = j \mid x_i, \boldsymbol{\pi}, \boldsymbol{\varphi}, \boldsymbol{\eta})}{n}$$

"Count" the observations assigned to each group

C Code: Updating Mixture Proportions

```
void update_prob(int n, double * data,
                  int k, double * prob,
                  double ** class_prob)
   int i, j;
   for (int j = 0; j < k; j++)
      prob[j] = 0.0;
      for (int i = 0; i < n; i++)</pre>
         prob[j] += class prob[i][j];
      prob[j] /= n;
```

Updating Component Means

$$\hat{\mu}_{j} = \frac{\sum_{i} x_{i} \Pr(Z_{i} = j \mid x_{i}, \boldsymbol{\pi}, \boldsymbol{\varphi}, \boldsymbol{\eta})}{\sum_{i} \Pr(Z_{i} = j \mid x_{i}, \boldsymbol{\pi}, \boldsymbol{\varphi}, \boldsymbol{\eta})}$$

$$= \frac{\sum_{i} x_{i} \Pr(Z_{i} = j \mid x_{i}, \boldsymbol{\pi}, \boldsymbol{\varphi}, \boldsymbol{\eta})}{n \pi_{j}}$$

- Calculate weighted mean for group
- Weights are probabilities of group membership

C Code: Update Component Means

```
void update_mean(int n, double * data,
                  int k, double * prob, double * mean,
                 double ** class prob)
   int i, j;
   for (int j = 0; j < k; j++)
      mean[j] = 0.0;
      for (int i = 0; i < n; i++)</pre>
         mean[j] += data[i] * class prob[i][j];
      mean[j] /= n * prob[j] + TINY;
```

Updating Component Variances

$$\hat{\sigma}_i^2 = \frac{\sum_i (x_i - \mu_i)^2 \Pr(Z_i = j \mid x_i, \boldsymbol{\pi}, \boldsymbol{\varphi}, \boldsymbol{\eta})}{n\pi_j}$$

- Calculate weighted sum of squared differences
- Weights are probabilities of group membership

C Code: Update Component Std Deviations

```
void update_sd(int n, double * data,
               int k, double * prob, double * mean, double * sd,
               double ** class_prob)
   int i, i;
   for (int j = 0; j < k; j++)
      sd[j] = 0.0;
      for (int i = 0; i < n; i++)
         sd[j] += square(data[i] - mean[j]) * class prob[i][j];
      sd[j] /= (n * prob[j] + TINY);
      sd[j] = sqrt(sd[j]);
```

C Code: Update Mixture

```
void update_parameters
    (int n, double * data,
        int k, double * prob, double * mean, double * sd,
        double ** class_prob)
{
    // First, we update the mixture proportions
    update_prob(n, data, k, prob, class_prob);

    // Next, update the mean for each component
    update_mean(n, data, k, prob, mean, class_prob);

    // Finally, update the standard deviation
    update_sd(n, data, k, prob, mean, sd, class_prob);
}
```

E-M Algorithm For Mixtures

- 1. "Guesstimate" starting parameters
- 2. Use Bayes' theorem to calculate group assignment probabilities
- Update parameters using estimated assignments
- 4. Repeat steps 2 and 3 until likelihood is stable

C Code: The E-M Algorithm

```
double em(int n, double * data,
          int k, double * prob, double * mean, double * sd,
          double eps)
   double llk = 0, prev llk = 0;
   double ** class prob = alloc matrix(n, k);
   start em(n, data, k, prob, mean, sd);
   do {
      prev_llk = llk;
      update class prob(n, data, k, prob, mean, sd, class prob);
     update parameters(n, data, k, prob, mean, sd, class prob);
      llk = mixLLK(n, data, k, prob, mean, sd);
   } while (!check tol(llk, prev llk, eps));
   return 11k;
```

Picking Starting Parameters

- Mixing proportions
 - Assumed equal
- Means for each group
 - Pick one observation as the group mean
- Variances for each group
 - Use overall variance

C Code: Picking Starting Parameters

```
void start em(int n, double * data,
              int k, double * prob, double * mean, double * sd)
   int i, j; double mean1 = 0.0, sd1 = 0.0;
   for (i = 0; i < n; i++)
      mean1 += data[i];
   mean1 /= n;
   for (i = 0; i < n; i++)
      sd1 += square(data[i] - mean1);
   sd1 = sqrt(sd1 / n);
   for (j = 0; j < k; j++)
      prob[j] = 1.0 / k;
      mean[j] = data[rand() % n];
      sd[j] = sd1;
```

Example Application Old Faithful Eruptions (n = 272)

Old Faithful Eruptions

Using Simplex Method A Mixture of Two Normals

- Fit 5 parameters
 - Proportion in the first component
 - Two means
 - Two variances
- Required about ~700 evaluations
 - First component contributes 0.34841 of mixture
 - Means are 2.0186 and 4.2734
 - Variances are 0.055517 and 0.19102
 - Maximum log-likelihood = -276.36

Using Simplex Method A Mixture of Two Normals

- Fit 5 parameters
 - Proportion in 1st component, 2 means, 2 variances
- 44/50 runs found minimum
- Required about ~700 evaluations
 - First component contributes 0.348 of mixture
 - Means are 2.018 and 4.273
 - Variances are 0.055 and 0.191
 - Maximum log-likelihood = -276.36

Using E-M Algorithm A Mixture of Two Normals

- Fit 5 parameters
- 50/50 runs found maximum
- Required about ~25 evaluations
 - First component contributes 0.348 of mixture
 - Means are 2.018 and 4.273
 - Variances are 0.055 and 0.191
 - Maximum log-likelihood = -276.36

Two Components

Simplex Method: A Mixture of Three Normals

- Fit 8 parameters
 - 2 proportions, 3 means, 3 variances
- Required about ~1400 evaluations
 - Found best solution in 7/50 runs
 - Other solutions effectively included only 2 components
- The best solutions ...
 - Components contributing .339, 0.512 and 0.149
 - Component means are 2.002, 4.401 and 3.727
 - Variances are 0.0455, 0.106, 0.2959
 - Maximum log-likelihood = -267.89

Three Components

6

Duration (mins)

2

E-M Algorithm: A Mixture of Three Normals

- Fit 8 parameters
 - 2 proportions, 3 means, 3 variances
- Required about ~150 evaluations
 - Found log-likelihood of ~267.89 in 42/50 runs
 - Found log-likelihood of ~263.91 in 7/50 runs
- The best solutions ...
 - Components contributing .160, 0.195 and 0.644
 - Component means are 1.856, 2.182 and 4.289
 - Variances are 0.00766, 0.0709 and 0.172
 - Maximum log-likelihood = -263.91

Three Components

Convergence for E-M Algorithm

LogLikelihood

Convergence for E-M Algorithm

Mixture Means

E-M Algorithm: A Mixture of Four Normals

- Fit 11 parameters
 - 3 proportions, 4 means, 4 variances
- Required about ~300 evaluations
 - Found log-likelihood of ~267.89 in 1/50 runs
 - Found log-likelihood of ~263.91 in 2/50 runs
 - Found log-likelihood of ~257.46 in 47/50 runs
- "Appears" more reliable than with 3 components

Four Components

Old Faithful Eruptions

Today ...

- The E-M algorithm
- Missing data formulation
- Application to mixture distributions
 - Consider multiple starting points

Further Reading

 There is a nice discussion of the E-M algorithm, with application to mixtures at:

http://en.wikipedia.org/wiki/EM_algorithm