Conservation decisions with exact algorithm solvers

Jeffrey Hanson

How do we bend the curve?

Data → Information → Plan → Outcome

How do we bend the curve?

Framing conservation as a decision science problem

- Goal: what is our vision for the future?
- Objective: what quantity are we maximizing/minimizing to help achieve the goal?
- Constraints: what things must our solution do to help achieve the goal?
- <u>Decisions</u>: what actions could we do to maximize/minimize the objective?

Heuristic algorithm

Meta-heuristic algorithms

Exact algorithms

Different solutions

Different solutions

Different solutions

Exact algorithm solvers

- Open source and commercial solvers available (e.g., Gurobi, IBM CPLEX, CBC, HiGHS, SYMPHONY)
- Automatically select algorithms for different problems (e.g., presolve, simplex, barrier, branch-and-bound)
- Broadly speaking have similar functionality, but have different implementations of the underlying algorithms, and have different performance for different kinds of problems

Exact algorithm solvers

- Solve multiple problem types:
 - linear programming (LP) = continuous decision variables

- integer programming (IP/ILP) = binary/integer decision variables
- mixed integer linear programming (MILP) = continuous + binary/integer decision variables

Case studies

Scheduling plane flights to reduce fuel and operational costs

Keeping ATMs stocked with cash, while minimizing costs

Basketball game schedules

For more examples, see https://www.gurobi.com/case_studies/

Conservation examples

Nature Conservancy of Canada for land acquisition

Waitt Institute to help Government of Montserrat

Scottish Government for marine spatial planning in Rockall Bank

McKinsey Consulting

USGS to prioritize recovery areas in Hawaii

Reserve selection as optimization

- Goal: conserve biodiversity
- Objective: min. # of islands
- Constraints: sufficient habitat for each species
- <u>Decisions</u>: create a reserve on an island or not?

1 2 3 4 5 6 7 8 9

Min €:	+1	+1	+1	+1	+1	+1	+1	+1	+1	
			+1							≥ 1
(J-1)							+1	+1		≥ 1
			+1	+1						≥ 1
A.	+1									≥ 1
29. 29. 20.		+1		+1	+1	+1			+1	≥ 1
	1	2	3	4	5	6	7	8	9	

Reserve selection as optimization

- Goal: conserve biodiversity
- Objective: min. # of islands
- Constraints: sufficient habitat for each species
- <u>Decisions</u>: create a reserve on an island or not?

prioritizr R package

Objective what makes the solution better?

<u>Data</u> Biodiversity Land use

Economic Social

Mathematical optimization problem

Constraints

what must the solution do?

Input to solver

Solve problem

Maps Metrics

Hanson et al. 2020 CRAN

Better solutions

Faster too!

Project data

Cost data

\$

\$\$

\$\$\$

\$0

100%

Cost data

Project data

Cost data

Cost data

Budget \$\$\$

New Zealand case study

- Projects for 62 imperilled bird species
- 1,218 different actions
- Many actions shared between projects for different species
- oppr R package on CRAN

 Exact algorithms always generated the best prioritizations

- Ranking and heuristic algorithms sometimes produced optimal prioritizations
- Ranking and heuristic algorithm sometimes produced sub-optimal prioritizations

- Ranking and heuristic algorithms sometimes produced worse prioritizations than randomly allocating funds
- Ranking and heuristic algorithms often had large amounts of unspent funding, meaning less guidance for decision making

Case-study: Sandwich

- Goal: Best sandwich experience
- Objective: Maximize taste
- Constraints:
 - must have 2 slices of bread,
 - total calories for the meal must not be too high,
 - total cost of ingredients must not exceed budget
- Decisions: which ingredients shall I use?

Blue Plate MAYONNAISE

+3 +1

+1 +50 +20 +40 +3 +1 +8 -1 Constraint 1: must 2 bread slices +1 +0 +0 +0 +0 +0 +0 +0 =1

Constraint 2: calories (C per serving) +70 +145 +380 +299 +15 +680 +24 43

Maximize taste:

≤235

=1

Constraint 2: calories (C per serving)

+0

+24

=1

≤235

Maximize taste: +1 +50 +20 +40 +3 +1 +8

Constraints 2--3

+0

+0

+0

+0 +0

+0 +0 +0 +1 +0 +0

+0 +1

Constraint 4: mayo + lettuce combination

+0

+20

≥0

Performance for phylogenetic diversity

- Exact algorithms generated prioritizations within a feasible period of time
- Heuristic and ranking algorithms are faster
- It might be worth waiting worth ~15 seconds if it means you could potentially save millions of \$\$\$

Table: Average run time for generating prioritizations under different budgets

Algorithm	Average run time (seconds)
Exact	16.2
Heuristic	1.19
Ranking	1.5

NB. Heuristic and ranking algorithms coded in C++ for performance, so if you're using R, these timings would be much higher

Performance for total expected persistence

- Simulated dataset
 - 40 conservation projects
 - 80 management actions
 - 50 species
 - Performance of exact algorithm solver is pretty much the same for simple problems

Table: Average run time for generating prioritizations under different budgets

Algorithm	Average run time (seconds)
Exact	1.6
Heuristic	1.48
Ranking	1.18

NB. Heuristic and ranking algorithms coded in C++ for performance, so if you're using R, these timings would be much higher