Deep Learning for Persistence Diagrams

Mathieu Carrière 19/12/2017 DataShape Seminar

NN with depth $n \in \mathbb{N}^*$

$$\theta_k = (W_k \in \mathbb{R}^{d_{k+1} \times d_k}, \ b_k \in \mathbb{R}^{d_{k+1}}), \quad \sigma : x \mapsto \max(0, x) \text{ or } (1 + e^{-x})^{-1}$$

$$f_{\theta_k}^{(k)} : x \in \mathbb{R}^{d_k} \mapsto \sigma(W_k \cdot x + b_k) \in \mathbb{R}^{d_{k+1}}$$

Final classifier: $f_{\theta} = f_{\theta_n}^{(n)} \circ \cdots \circ f_{\theta_0}^{(0)}$

NN with depth $n \in \mathbb{N}^*$ \mathbb{R}^{d_0} $f_{\theta_0}^{(0)}$ $f_{\theta_1}^{(0)}$ \dots $f_{\theta_{n-1}}^{(n-1)}$ $f_{\theta_n}^{(n)}$ $f_{\theta_n}^{(n-1)}$

Goal: Minimize $\ell(\theta) = \sum_i \|f_{\theta}(x_i) - y_i\|_2^2$ w.r.t. θ

NN with depth $n \in \mathbb{N}^*$

Goal: Minimize $\ell(\theta) = \sum_i \|f_{\theta}(x_i) - y_i\|_2^2$ w.r.t. θ

Backpropagation: for each k:

- 1. compute $\nabla \ell(\theta_k)$ with chain rule 2. update $\theta_k := \theta_k \eta \nabla \ell(\theta_k)$

NN with depth $n \in \mathbb{N}^*$

Goal: Minimize $\ell(\theta) = \sum_i \|f_{\theta}(x_i) - y_i\|_2^2$ w.r.t. θ

Backpropagation: for each k:

- 1. compute $\nabla \ell(\theta_k)$ with chain rule 2. update $\theta_k := \theta_k \eta \nabla \ell(\theta_k)$

Requirement: $f_{\theta_k}^{(k)}$ needs to be differentiable w.r.t. θ_k and x

What about Persistence Diagrams?

NN require vectors

Map Persistence Diagrams to \mathbb{R}^d

- Y. Umeda, **Time Series Classification via Topological Data Analysis**, *Trans-actions of the Japanese Society for Artificial Intelligence*, 2017
- Z. Cang, G.W. Wei, **TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions**, *PLOS*, 2017

Map Persistence Diagrams to \mathbb{R}^d

- Y. Umeda, **Time Series Classification via Topological Data Analysis**, *Trans-actions of the Japanese Society for Artificial Intelligence*, 2017
- Z. Cang, G.W. Wei, **TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions**, *PLOS*, 2017

Add specific layer to handle Persistence Diagrams:

Map Persistence Diagrams to \mathbb{R}^d

- Y. Umeda, **Time Series Classification via Topological Data Analysis**, *Trans-actions of the Japanese Society for Artificial Intelligence*, 2017
- Z. Cang, G.W. Wei, **TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions**, *PLOS*, 2017

Add specific layer to handle Persistence Diagrams:

C. Hofer et al., Deep Learning with Topological Signatures, NIPS, 2017

See landscape as a 1D image:

B. Beaufils et al., 2018

Map Persistence Diagrams to \mathbb{R}^d

- Y. Umeda, **Time Series Classification via Topological Data Analysis**, *Trans-actions of the Japanese Society for Artificial Intelligence*, 2017
- Z. Cang, G.W. Wei, **TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions**, *PLOS*, 2017

Add specific layer to handle Persistence Diagrams:

C. Hofer et al., Deep Learning with Topological Signatures, NIPS, 2017

See landscape as a 1D image:

B. Beaufils et al., 2018

Use persistence as a new layer (?!):

J.Y. Liu et al., **Applying Topological Persistence in Convolutional Neural Network for Music Audio Signals**, *arXiv*, 2016

Z. Cang, G.W. Wei, TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, *PLOS*, 2017

Z. Cang, G.W. Wei, TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, *PLOS*, 2017

Protein Classification

Z. Cang, G.W. Wei, TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, *PLOS*, 2017

Table 2. Performance comparisons of TNet-MP and other methods.

Method	S350			S2648		
	n ^d	R_P	RMSE	n ^d	R_P	RMSE
TNet-MP-2	350	0.81	0.94	2648	0.77	0.94
STRUM ^b	350	0.79	0.98	2647	0.77	0.94
TNet-MP-1	350	0.74	1.07	2648	0.72	1.02
mCSM ^{b,c}	350	0.73	1.08	2643	0.69	1.07
INPS ^{b,c}	350	0.68	1.25	2648	0.56	1.26
PoPMuSiC 2.0 ^b	350	0.67	1.16	2647	0.61	1.17
PoPMuSiC 1.0 ^a	350	0.62	1.23	-	-	-
I-Mutant 3.0 ^b	338	0.53	1.35	2636	0.60	1.19
Dmutant ^a	350	0.48	1.38	-	-	-
Automute ^a	315	0.46	1.42	-	-	-
CUPSAT ^a	346	0.37	1.46	-	-	-
Eris ^a	334	0.35	1.49	-	-	-
I-Mutant 2.0 ^a	346	0.29	1.50	-	-	-

Comparison of Pearson correlation coefficients (R_P) and RMSEs (kcal/mol) of various methods on the prediction task of the "S350" set and 5-fold cross validation of the "S2648". TNet-MP-1 is our multichannel topological convolutional neural network model that solely utilizes topological information. TNet-MP-2 is our model that complements TNet-MP-1 with auxiliary features.

Z. Cang, G.W. Wei, TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, *PLOS*, 2017

^a Data directly obtained from Worth et al [89].

^b Data obtained from Quan et al [94].

^c The results reported in the publications are listed in the table. According to Ref. [94], the data from the online server has R_p (RMSE) of 0.59 (1.28) and 0.70 (1.13) for INPS and mCSM respectively in the task of S350 set.

^d Number of samples successfully processed.

Y. Umeda, **Time Series Classification via Topological Data Analysis**, *Transactions of the Japanese Society for Artificial Intelligence*, 2017

Time Series Classification

Rips PD of delay embedding + CNN

Y. Umeda, **Time Series Classification via Topological Data Analysis**, *Trans-actions of the Japanese Society for Artificial Intelligence*, 2017

Time Series Classification

Datasets	Gyro sensor	EEG dataset	EMG dataset	
	Accuracy			
method\validation	Leave one subject out [%]	10-fold[%]	Leave one subject out[%]	
SVM + statistical feature	67.6 ± 4.7	44.4 ± 19.8	15.0 ± 10.0	
SVM+Chaos feature	53.3 ± 7.1	55.2 ± 9.6	41.5 ± 25.9	
DTW + 1-NN	6.4 ± 5.1	72.4 ± 6.1	15.0 ± 10.0	
imaging CNN	18.9 ± 5.2	48.9 ± 4.2	10.0 ± 0	
SVM+Betti sequence	63.5 ± 11.3	66.7 ± 5.6	49.6 ± 18.2	
connected input 1-CNN+Betti sequence	79.8 ± 5.0	75.38 ± 5.7	74.4 ± 10.6	
parallel 1-CNN+Betti sequence	86.1 ± 7.2	-	76.4 ± 7.2	

Y. Umeda, **Time Series Classification via Topological Data Analysis**, *Trans-actions of the Japanese Society for Artificial Intelligence*, 2017

$$(\mu, \sigma) \mapsto s_{\mu, \sigma}(\mathcal{D}) = \sum_{p \in \mathcal{D}} \exp\left(-\frac{\|p - \mu\|_2^2}{\sigma^2}\right)$$
 is differentiable

$$s_{\mu,\sigma,\nu}((x_0,x_1)) = \begin{cases} e^{-\sigma_0^2(x_0-\mu_0)^2 - \sigma_1^2(x_1-\mu_1)^2} & x_1 \in [\nu,\infty) \\ e^{-\sigma_0^2(x_0-\mu_0)^2 - \sigma_1^2(\ln(\frac{x_1}{\nu}) + \nu - \mu_1)^2} & x_1 \in (0,\nu) \\ 0 & x_1 = 0 \end{cases}$$

$$s_{\boldsymbol{\mu},\boldsymbol{\sigma},\nu}((x_0,x_1)) = \begin{cases} e^{-\sigma_0^2(x_0-\mu_0)^2 - \sigma_1^2(x_1-\mu_1)^2} & x_1 \in [\nu,\infty) \\ e^{-\sigma_0^2(x_0-\mu_0)^2 - \sigma_1^2(\ln(\frac{x_1}{\nu}) + \nu - \mu_1)^2} & x_1 \in (0,\nu) \\ 0 & x_1 = 0 \end{cases}$$

Remark. Note that $s_{\mu,\sigma,\nu}$ is continuous in x_1 as

$$\lim_{x\to\nu}x=\lim_{x\to\nu}\ln\left(\frac{x}{\nu}\right)+\nu\quad \text{and}\quad \lim_{x_1\to0}s_{\boldsymbol{\mu},\boldsymbol{\sigma},\boldsymbol{\nu}}\big((x_0,x_1)\big)=0=s_{\mu,\sigma,\boldsymbol{\nu}}\big((x_0,0)\big)\ ,$$

and $s_{\mu,\sigma,\nu}$ is differentiable on $\mathbb{R} \times \mathbb{R}^+$, since

$$1 = \lim_{x \to \nu^+} \frac{\partial x_1}{\partial x_1}(x) \quad and \quad \lim_{x \to \nu^-} \frac{\partial \left(\ln\left(\frac{x_1}{\nu}\right) + \nu\right)}{\partial x_1}(x) = \lim_{x \to \nu^-} \frac{\nu}{x} = 1 .$$

$$s_{\mu,\sigma,\nu}((x_0,x_1)) = \begin{cases} e^{-\sigma_0^2(x_0-\mu_0)^2 - \sigma_1^2(x_1-\mu_1)^2} & x_1 \in [\nu,\infty) \\ e^{-\sigma_0^2(x_0-\mu_0)^2 - \sigma_1^2(\ln(\frac{x_1}{\nu}) + \nu - \mu_1)^2} & x_1 \in (0,\nu) \\ 0 & & & \end{cases}$$

Remark. Note that $s_{\mu,\sigma,\nu}$ is continuous in x_1 as

$$\lim_{x \to \nu} x = \lim_{x \to \nu} \ln \left(\frac{x}{\nu} \right) + \nu \quad and \quad \lim_{x_1 \to 0} s_{\mu, \sigma, \nu} \left((x_0, x_1) \right) =$$

and $s_{\mu,\sigma,\nu}$ is differentiable on $\mathbb{R} \times \mathbb{R}^+$, since

SHAME
$$(x) = \lim_{n \to \infty} \frac{\nu}{n} = 1.$$

$$1 = \lim_{x \to \nu^+} \frac{\partial x_1}{\partial x_1}(x) \quad and \quad \lim_{x \to \nu^-} \frac{\partial \left(\ln\left(\frac{x_1}{\nu}\right) + \nu\right)}{\partial x_1}(x) \bigcirc \lim_{x \to \nu^-} \frac{\nu}{x} = 1 \ .$$

2D Image Classification

	MPEG-7	Animal
‡Skeleton paths	86.7	67.9
[‡] Class segment sets	90.9	69.7
†ICS	96.6	78.4
[†] BCF	97.2	83.4
Ours	91.8	69.5

Social Network Classification

	reddit-5k	reddit-12k
GK [29] DGK [29]	$41.0 \\ 41.3$	$31.8 \\ 32.2$
PSCN [22] RF [4]	49.1 50.9	$41.3 \\ 42.7$
Ours (w/o essential) Ours (w/ essential)	49.1 54.5	38.5 46.1

The mysterious Persistence Layer

Audio Signal Classification

Idea: Use filters of early convolution layers to compute Persistence Landscapes in so-called Persistence Layer

But how to backpropagate??

J.Y. Liu et al., **Applying Topological Persistence in Convolutional Neural Network for Music Audio Signals**, *arXiv*, 2016

The mysterious Persistence Layer

Audio Signal Classification

A. How Back-propagation Works through the Persistence Layer

Persistence landscapes are constructed from piece-wise linear functions $f_{(b_i,d_i)}$. The values of $f_{(b,d)}$ are composed of linear functions of b and d in a birth-death pairs (b, d), as shown in Equation (1). A persistence landscape is simply a re-ordering of the function values in its sampled matrix form. Note that the deaths and births are all local extrema. For an element in a persistence landscape matrix, the back-propagation is done through the elements which own the birth or death value.

J.Y. Liu et al., Applying Topological Persistence in Convolutional Neural Network for Music Audio Signals, arXiv, 2016

Thank you!!