Grau en Enginyeria en Tecnologies Aeroespacials Propulsió, curs 2019 – 2020

PROJECT

Team-Work (maximum 4 people) Deadline: May 21st 2020

Description

Consider a too-spool turbofan with convergent nozzles, as depicted in the figure below, and the operational condition of cruise at $M_0 = 0.85$ and 11000 m.

The following component efficiencies will be assumed:

π_d	η_f	η_{LPC}	η_{HPC}	π_b	η_b	η_{HPT}	η_{LPT}	η_{mH}	η_{mL}
0.98	0.89	0.88	0.86	0.96	0.99	0.91	0.92	0.993	0.997

Assuming a turbine inlet temperature $T_{t4} = 1450 \, K$, and the air, gas and fuel properties $\gamma_c = 1.4$, $\gamma_t = 1.3$, $R_g = 287 \, \text{J/(kg K)}$, $h = 43 \, \text{MJ/kg}$, the following is requested:

- 1. Find a set of parameters α , π_f , π_{LPC} , π_{HPC} that give reasonably good values of both the specific thrust F/\dot{m} and specific impulse I_{sp} .
- 2. Analyze and plot the sensibility of F/\dot{m} and I_{sp} to small variations of each parameter in a range about its nominal value, keeping constant the rest of them.
- 3. According to the results of question 2), select a new set of values for α , π_f , π_{LPC} , π_{HPC} , and compute the gain of F/\dot{m} and I_{Sp} .
- 4. Compute the gain of I_{sp} that would be obtained if any of the nozzles (or both) is modified in order to achieve both exhaust flows matched to ambient pressure.
- 5. If all the parameters are kept constant, except for the fan pressure ratio π_f , that is free to vary in a certain range, compute the propulsive efficiency η_p and the exhaust velocities of each flow u_9 and u_{19} as a function of π_f , considering both nozzles matched to ambient pressure, as done in question 4).