1 Números Reais (Soluções)

- 1. a) $\frac{x^2}{4}$
 - b) *x*
 - c) $\frac{1}{x}$
 - d) |x|
 - e) *x*
 - f) 2^{x+2}
 - g) $2^{x(x+2)}$
 - h) \sqrt{x}
 - i) $\sqrt{x^2 4}$
 - $j) \quad \sqrt{x(x+1)} + x$
 - $k) \log(x)$
 - 1) $2\log(x^2+x^{-2})$.
- 2. a) $x = 1 \lor x \ge 2$
 - b) $-2 \le x \le 1$
 - c) $-1 \le x \le 1$
 - $d) \ x \le 0 \lor x = 1$
 - e) $x = -4 \lor x = 2$
 - f) $x = 1 \lor x = 2$
 - g) $x < -1 \lor 0 \le x < 1 \lor x > 1$
 - h) $x = 1 \lor x = -1$
 - i) $0 < x < 1 \lor x < -1$
 - j) x < 0

- k) $x \ge 2 \lor x \le -\frac{2}{3}$
- 1) $x \le 1$
- m) $-2 \le x \le 2$
- n) $-2 \le x < 1 \lor 1 < x \le 2$
- o) x < 0
- p) x = 0
- q) $0 < x \le 1$
- r) $x \le -2 \lor x \ge 2$.
- 3. a) $]-1,+\infty[$
 - b) $]0, +\infty[$
 - c) [-4, 1]
 - d) $]-\infty, -2] \cup \{1\} \cup [2, +\infty[$
 - e) $[-2, -1] \cup [1, 2]$
 - f) $\{-1\} \cup [0,2]$
 - g) [-2,2]
 - h) $]-1,0] \cup]1,+\infty]$
 - i) $]-\infty, -1] \cup \{0\} \cup [1, 3[$.
- 4. a) Verdadeira; b) Falsa; c) Falsa; d) Falsa; e) Verdadeira; f) Falsa;
 - g) Verdadeira; h) Verdadeira; i) Falsa; j) Falsa; k) Verdadeira; l) Falsa;
 - m) Verdadeira.
- 5. a) $1+3+\cdots+(2n-1)=n^2$, $\forall n \in \mathbb{N}_1$:

Para n = 1, temos $2 \cdot 1 - 1 = 1$, que é uma proposição verdadeira.

Hipótese de indução: para certo $n \in \mathbb{N}_1$, temos $1 + 3 + \cdots + (2n - 1) = n^2$.

Tese (a provar): $1 + 3 + \cdots + (2n - 1) + (2(n + 1) - 1) = (n + 1)^2$.

Usando a hipótese de indução, temos:

$$1+3+\cdots+(2n-1)+(2(n+1)-1)=n^2+(2n+2-1)=n^2+2n+1=(n+1)^2$$

como queríamos mostrar.

b) $\frac{1}{1.2} + \frac{1}{2.3} + \ldots + \frac{1}{n(n+1)} = \frac{n}{n+1}$, para $n \in \mathbb{N}_1$:

Para n=1, temos $\frac{1}{1.2}=\frac{1}{1+1}\Leftrightarrow \frac{1}{2}=\frac{1}{2}$, que é uma proposição verdadeira.

Hipótese de indução: para certo $n \in \mathbb{N}_1$, temos $\frac{1}{1.2} + \frac{1}{2.3} + \ldots + \frac{1}{n(n+1)} = \frac{n}{n+1}$.

Tese (a provar): $\frac{1}{1.2} + \frac{1}{2.3} + \ldots + \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} = \frac{n+1}{n+2}$.

Usando a hipótese de indução, temos:

$$\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$$

$$= \frac{n(n+2) + 1}{(n+1)(n+2)} = \frac{n^2 + 2n + 1}{(n+1)(n+2)}$$

$$= \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2}.$$

como queríamos mostrar.

6. b) Dado $a \in \mathbb{R}$, $(a-1)(1+a+\cdots+a^n)=a^{n+1}-1$, para qualquer $n \in \mathbb{N}$:

Para n=0, a condição acima fica a-1=a-1 que é uma proposição verdadeira. Hipótese de indução: para certo $n \in \mathbb{N}$, $(a-1)(1+a+\cdots+a^n)=a^{n+1}-1$. Tese: $(a-1)(1+a+\cdots+a^n+a^{n+1})=a^{n+2}-1$.

Simplificando o lado esquerdo da igualdade acima, temos que

$$(a-1)(1+a+\cdots+a^{n+1})=(a-1)(1+a+\cdots+a^n)+(a-1)a^{n+1}.$$

Usando a hipótese de indução, temos agora

$$(a-1)(1+a+\cdots+a^{n+1}) = a^{n+1} - 1 + (a-1)a^{n+1}$$
$$= a^{n+1} - 1 + a^{n+2} - a^{n+1}$$
$$= a^{n+2} - 1,$$

como queríamos demonstrar.

c) $\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$, para qualquer $n \in \mathbb{N}$:

Para n = 0, a condição fica $0 = 1 - \frac{1}{1!} \Leftrightarrow 0 = 0$, que é uma proposição verdadeira. Hipótese de indução: para certo $n \in \mathbb{N}$, $\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$.

Tese: $\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n}{(n+1)!} + \frac{n+1}{(n+2)!} = 1 - \frac{1}{(n+2)!}$.

Usando a hipótese de indução,

$$\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+1)!} + \frac{n+1}{(n+2)!} = \left(1 - \frac{1}{(n+1)!}\right) + \left(\frac{n+1}{(n+2)!}\right)$$
$$= 1 - \frac{n+2-n-1}{(n+2)!}$$
$$= 1 - \frac{1}{(n+2)!}$$

como queríamos mostrar.

7. a) $(n + 2)! \ge 2^{2n}$, para qualquer $n \in \mathbb{N}_1$:

Para n = 1, temos que $3! \ge 4$ que é uma proposição verdadeira.

Hipótese de indução: para certo $n \in \mathbb{N}$ com $n \in \mathbb{N}_1$, temos $(n + 2)! \ge 2^{2n}$.

Tese: $(n+3)! \ge 2^{2n+2}$.

Temos que $(n+3)! \ge 2^{2n+2} \Leftrightarrow (n+3)(n+2)! \ge 4 \cdot 2^{2n}$. Como, por hipótese de indução, $(n+2)! \ge 2^{2n}$ e, para $n \ge 1$, $n+3 \ge 4 > 0$, temos então que

$$(n+3)(n+2)! \ge 4 \cdot 2^{2n}$$

como queríamos mostrar.

b) $2n-3 < 2^{n-2}$, para todo o natural $n \ge 5$:

Para n=5, temos que $10-3<2^3 \Leftrightarrow 7<8$, que é uma proposição verdadeira.

Hipótese de indução: para certo $n \in \mathbb{N}$ com $n \ge 5$, temos $2n - 3 < 2^{n-2}$.

Tese: $2(n+1) - 3 < 2^{(n+1)-2}$.

Desenvolvendo o lado esquerdo da desigualdade acima e usando a hipótese, temos

$$2(n+1) - 3 = 2n + 2 - 3 = (2n - 3) + 2 < 2^{n-2} + 2$$
,

Como, para $n \ge 5$, temos $2 < 2^{n-2}$, conclui-se que $2^{n-2} + 2 < 2^{n-2} + 2^{n-2} = 2 \cdot 2^{n-2} = 2^{n-1}$. Logo

$$2(n+1)-3<2^{n-1}$$
.

c) $7^n - 1$ é divisível por 6 para qualquer $n \in \mathbb{N}_1$:

Para n = 1, temos $7^1 - 1 = 6$, que é divisível por 6.

Hipótese de indução: para certo $n \in \mathbb{N}_1$, $7^n - 1$ é divisível por 6. Isto significa que existe $k \in \mathbb{N}_1$ tal que $6k = 7^n - 1$.

Tese: $7^{n+1} - 1$ é divisível por 6, isto é, existe um natural positivo j tal que $7^{n+1} - 1 = 6j$.

Então:

$$7^{n+1} - 1 = 7 \cdot 7^n - 1 = 7(7^n - 1 + 1) - 1 = 7(6k + 1) - 1 = 6 \cdot 7k + 7 - 1 = 6(7k + 1)$$

em que na terceira igualdade usámos a hipótese de indução. Demonstrámos então a tese com j = 7k + 1.

8. Sendo a > -1 e $n \in \mathbb{N}$, $(1 + a)^n \ge 1 + na$:

Para n=0, a condição fica $(1+a)^0 \ge 1 \Leftrightarrow 1 \ge 1$, que é uma proposição verdadeira.

Hipótese de indução: para certo $n \in \mathbb{N}$, $(1 + a)^n \ge 1 + na$.

Tese: $(1+a)^{n+1} \ge 1 + (n+1)a$.

Desenvolvendo o lado esquerdo e usando a hipótese de indução, temos que

$$(1+a)^{n+1} = (1+a)^n (1+a) \ge (1+na)(1+a).$$

Como

$$(1 + na)(1 + a) = 1 + a + na + na^2 = 1 + (n + 1)a + na^2 \ge 1 + (n + 1)a$$

uma vez que $na^2 \ge 0$, temos agora $(1+a)^{n+1} \ge 1 + (n+1)a$, como queríamos mostrar.

9. a) Vamos ver que $P(n) \Rightarrow P(n+1)$, ou seja, que se $n^2 + 3n + 1$ é par, também $(n+1)^2 + 3(n+1) + 1$ é par. Temos

$$(n+1)^2 + 3(n+1) + 1 = n^2 + 2n + 1 + 3n + 3 + 1 = (n^2 + 3n + 1) + 2n + 4.$$

Assumindo que $n^2 + 3n + 1$ é par, como 2n + 4 = 2(n+2) é também par, conclui-se que $(n+1)^2 + 3(n+1) + 1$ sendo uma soma de números pares será par.

- b) Não.
- c) Indução. . . (Como acima: se $n^2 + 3n + 1$ é ímpar, $(n + 1)^2 + 3(n + 1) + 1$ será uma soma de um número ímpar com um número par, e será portanto ímpar. Mas neste caso P(0) é verdadeira: 1 é ímpar.)
- 12. Para n = 1, temos $u_1 = \sqrt{2^1 1} = 1$.

Hipótese de indução: para certo $n \in \mathbb{N}$, $u_n = \sqrt{2^n - 1}$.

Tese:
$$u_{n+1} = \sqrt{2^{n+1} - 1}$$
.

Temos por hipótese, $u_n^2 = 2^n - 1$. Assim, usando a fórmula de recorrência,

$$u_{n+1} = \sqrt{2u_n^2 + 1} = \sqrt{2(2^n - 1) + 1} = \sqrt{2^{n+1} - 2 + 1} = \sqrt{2^{n+1} - 1},$$

como queríamos mostrar.

13. Seja $n \in \mathbb{N}$ ímpar, com n = 2k+1, para algum $k \in \mathbb{N}$. Então, $n^2 = (2k+1)^2 = 4k^2+4k+1$ é ímpar, uma vez que $4k^2+4k$ é par para qualquer k.

Conclui-se que se n^2 é par, n também será.

- 14. Sejam $x, y \in \mathbb{Q}$, ou seja $x = \frac{p}{q}$, $y = \frac{r}{s}$, com $p, q, r, s \in \mathbb{Z}$. Então, $-x = \frac{-p}{q}$, $x^{-1} = \frac{q}{p}$, $x + y = \frac{p}{q} + \frac{r}{s} = \frac{ps + rq}{qs}$, $\log o x$, x^{-1} , $x + y \in \mathbb{Q}$.
- 15. Seja $x \ne 0$ um racional e y um irracional. Se x + y fosse racional, uma vez que a soma e a subtracção de dois racionais é também racional, teriamos que (x + y) x seria racional. Mas (x + y) x = y, logo y seria racional, o que contradiz a hipótese. Conclui-se que x + y é irracional.

Para mostrar que x - y, xy e y/x são irracionais, a prova é semelhante (usando o facto da soma, divisão e multiplicação de racionais ser racional).

Sendo x e y irracionais, a sua soma, diferença, produto e quociente podem ser ou não ser irracionais. Por exemplo: com $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$,

$$\sqrt{2} + \sqrt{2} = 2\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}, \quad \sqrt{2} + (-\sqrt{2}) = 0 \in \mathbb{Q}, \quad \sqrt{2}\sqrt{2} = 2 \in \mathbb{Q}, \text{ etc}$$

- 16. a) $A =]-\infty, -\frac{4}{3}] \cup [4, +\infty[, \log_2 A \cap B] = [-3, -\frac{4}{3}] \cup \{4\}.$
 - b) $\sup A$ não existe, porque A não é majorado; $\min(A \cap B) = -3$, $\max(A \cap B) = 4$; $\inf(A \cap B \cap C) = -3$, $\sup(A \cap B \cap C) = -\frac{4}{3}$, $\min(A \cap B \cap C)$ não existe, porque $-3 \notin A \cap B \cap C$.
- 17. A = R⁺ \ {1}: sup A, max A não existem, uma vez que A não é majorado; inf A = 0 ∉ A, logo min A não existe.
 sup A ∪ B (e max A ∪ B) não existem, porque A ∪ B não é majorado; inf A ∪ B = min A ∪ B = -1.
- 18. A =]1, e]: Majorantes de A: $[e, +\infty[$, Minorantes de A: $]-\infty, 1]$, $\sup A = e = \max A$, $\inf A = 1$, $\min A$ não existe, porque $1 \notin A$. $B = \left\{1 \frac{(-1)^n}{n}, n \in \mathbb{N}_1\right\}$: Majorantes de B: $[2, +\infty[$, Minorantes de B: $]-\infty, \frac{1}{2}]$, $\sup B = \max B = 2$, $\inf B = \min B = \frac{1}{2}$.
- 19. a) $x^2 + 2|x| > 3 \Leftrightarrow |x|^2 + 2|x| 3 > 0 \Leftrightarrow |x| > 1 \lor |x| < -3 \Leftrightarrow x < -1 \lor x > 1$. Assim, $A =]-\infty, -1[\cup]1, +\infty[$.
 - b) inf A não existe, porque A não é minorado; $A \cap B = \left[1, \sqrt{2}\right[: \min A \cap B, \max A \cap B \in \max A \cap B \cap \mathbb{Q} \text{ não existem e inf } A \cap B \cap \mathbb{Q} = 1;$ max C não existe; max $B \setminus C$ não existe.
- 20. a) $A =]-\infty, -2] \cup [1, +\infty[.$
 - b) $A \cap B = \{-2\} \cup [1,2]$: $\min A \cap B = -2$, $\max A \cap B = 2$. $A \cap B \cap (\mathbb{R} \setminus \mathbb{Q}) = [1,2] \cap (\mathbb{R} \setminus \mathbb{Q})$: $\sup A \cap B \cap (\mathbb{R} \setminus \mathbb{Q}) = [1,2] \cap (\mathbb{R} \setminus$
- 21. b) $A \cap B = \begin{bmatrix} -1 + \sqrt{2}, 3 \end{bmatrix} \cap \mathbb{Q}$: $\sup A \cap B = 3$, $\max A \cap B = 3$, uma vez que $3 \in A \cap B$, $\inf A \cap B = -1 + \sqrt{2}$, $\min A \cap B$ não existe, porque $-1 + \sqrt{2} \notin A \cap B$. $C = \left\{ \frac{1}{k^2} : k \in \mathbb{N}_1 \right\}$: $\sup C = \max C = 1$ (porque $1 \in C$ e 1 é majorante), $\inf C = 0$, $\min C$ não existe porque $0 \notin C$.

22. b) $A \cap C = \left[-\frac{1}{2}, 0\right] \cup [1, +\infty[\cap \mathbb{Q}: Majorantes de <math>A \cap C: \emptyset$.

 $B = \{x : \text{sen } x = 0\} = \{k\pi : k \in \mathbb{Z}\}, \text{logo } B \cap C = \{0\}, \text{ uma vez que } k\pi \notin \mathbb{Q}, \text{ para } k \neq 0. \text{ Majorantes de } B \cap C = [0, +\infty[.$

sup A não existe, inf $A \cap C = -1/2$, min $A \cap C = -1/2$, min B não existe, porque B não é minorado, min $B \cap C = 0$.

23. a) Começamos por notar que

$$\frac{x^4 - 4}{|x - 1|} \le 0 \Leftrightarrow \frac{(x^2 - 2)(x^2 + 2)}{|x - 1|} \le 0$$

$$\Leftrightarrow x^2 - 2 \le 0 \land |x - 1| \ne 0 \quad \text{(porque } x^2 + 2 > 0 \text{ e } |x - 1| \ge 0\text{)}$$

$$\Leftrightarrow x \in \left[-\sqrt{2}, \sqrt{2}\right] \setminus \{1\}.$$

Então,

$$A = \left\{ x \in \mathbb{R} : x \ge 0 \ \land \ x \in \left[-\sqrt{2}, \sqrt{2} \right] \setminus \{1\} \right\} = \left[0, \sqrt{2} \right] \setminus \{1\}.$$

Relativamente a B começamos por notar que se existe um $k \in \mathbb{N}$ tal que $kx \notin \mathbb{Q}$ então $x \notin \mathbb{Q}$ pois, caso contrário, $kx \in \mathbb{Q}$ para todo o $k \in \mathbb{N}$. Portanto $B \subset \mathbb{R} \setminus \mathbb{Q}$. Reciprocamente, se $x \in \mathbb{R} \setminus \mathbb{Q}$ então $1 \cdot x = x \notin \mathbb{Q}$. Portanto B é de facto o conjunto dos números irracionais positivos.

b) Notamos que $A \setminus B = ([0, \sqrt{2}] \setminus \{1\}) \cap \mathbb{Q}$. Então,

$$\sup A = \sup A \setminus B = \sqrt{2} = \max A,$$

$$\inf A = \inf A \setminus B = 0 = \min A = \min A \setminus B.$$

 $A \setminus B$ não tem máximo pois sup $A \setminus B = \sqrt{2} \notin \mathbb{Q}$.

24. a)

$$\frac{x^2 - 2}{|x| - 1} \le 0 \Leftrightarrow (x^2 < 2 \land |x| > 1) \lor (x^2 \ge 2 \land |x| < 1)$$
$$\Leftrightarrow -\sqrt{2} < x < \sqrt{2} \land (x < -1 \lor x > 1),$$

uma vez que $|x|<1\Rightarrow x^2<1$, logo $x^2\geq 2 \land |x|<1$ é impossível. Assim, $A=\left[-\sqrt{2},-1\right]\cup\left[1,\sqrt{2}\right]$.

b) $A \cap \mathbb{Q} = (] - \sqrt{2}, -1[\cup]1, \sqrt{2}[) \cap \mathbb{Q}$. $\sup A \cap \mathbb{Q} = \sqrt{2} \notin A \cap \mathbb{Q}$, $\log o A \cap \mathbb{Q}$ não tem máximo, $\inf A \cap \mathbb{Q} = -\sqrt{2} \notin A \cap \mathbb{Q}$, $\log o A \cap \mathbb{Q}$ não tem mínimo.

 $B = \{2^{n/2} : n \in \mathbb{N}_1\}$. inf $B = \min B = \sqrt{2}$, sup B e $\max B$ não existem, porque B não é majorado.

 $B \cap \mathbb{Q}$: temos $2^{n/2} \in \mathbb{Q}$ sse n é par, ou seja, $B \cap \mathbb{Q} = \{2^n : n \in \mathbb{N}_1\}$. inf $B \cap \mathbb{Q} = \min B \cap \mathbb{Q} = 2$, sup $B \cap \mathbb{Q}$ e max $B \cap \mathbb{Q}$ não existem, porque B não é majorado.

- 25. Se m é majorante de A e $m \neq \sup A$ então $m > \sup A$. Tem-se $x \leq \sup A < m$, para qualquer $x \in A$, logo, para $0 < \epsilon < m \sup A$, $V_{\epsilon}(m) \cap A = \emptyset$.
- 26. Se B é majorado e $A \subset B$, então A é majorado e qualquer majorante de B é majorante de A (directamente da definição de majorante). Por outro lado $A \neq \emptyset \land A \subset B \Rightarrow B \neq \emptyset$. Logo como A e B são majorados e não-vazios, o axioma do supremo garante que sup A e sup B existem. Como sup B é majorante de B será também majorante de A, logo sup $A \leq \sup B$.
- 27. a) $x \in U \Rightarrow x \leq \sup U < \sup V$.
 - b) Se para qualquer $y \in V$, $y \le \sup U$, então $\sup U$ é majorante de V e seria $\sup U \ge \sup V$.
- 28. b) $\sup A > \inf V \wedge \sup B > \inf A$, por exemplo:

$$A = [0, 1], B = [\frac{1}{2}, 2] : A \cap B \neq \emptyset;$$

$$A = [0,1] \cap \mathbb{Q}, B = [\frac{1}{2},2] \cap \mathbb{R} \setminus \mathbb{Q} : A \cap B = \emptyset.$$