Chapter 3: Hubs

A First Course in Network Science

Outline

- Centrality measures
- Centrality distributions
- The friendship paradox
- Ultra-small worlds
- Robustness
- Core decomposition

Real networks are heterogeneous

Some nodes (and links) are much more important (central) than others!

Centrality measures

- Centrality: measure of importance of a node
- Measures:
 - 1. Degree
 - 2. Closeness
 - 3. Betweenness

Degree

• Degree of a node: number of neighbors of the node

$$k_i$$
 = number of neighbors of node i

- High-degree nodes are called hubs
- Average degree of the network:

$$\langle k \rangle = \frac{\sum_{i} k_{i}}{N} = \frac{2L}{N}$$

```
G.degree(2) # returns the degree of node 2
G.degree() # dict with the degree of all nodes of G
```

Closeness

Idea: a node is the more central the closer it is to the other nodes, on average

$$g_i = \frac{1}{\sum_{j \neq i} \ell_{ij}}$$

where ℓ_{ij} is the distance between nodes *i* and *j*

Betweenness

Idea: a node is the more central the more often it is crossed by paths

$$b_i = \sum_{h \neq j \neq i} \frac{\sigma_{hj}(i)}{\sigma_{hj}}$$

 σ_{hj} = number of shortest paths from h to j

 $\sigma_{hj}(i)$ = number of shortest paths from h to j running through i

Betweenness

Hubs usually have high betweenness, but there can be nodes with high betweenness that are not hubs

Betweenness

- Betweenness can be easily extended to links
- Link betweenness: fraction of shortest paths among all possible node pairs that pass through the link

Centrality distributions

- On small networks it makes sense to ask which nodes or links are most important
- On large networks it does not

- Solution: statistical approach
- Instead of focusing on individual nodes and links, we consider classes of nodes and links with similar properties

Centrality distributions

Histogram

- n_k = number of nodes with degree k
- $f_k = \frac{n_k}{N} = \text{frequency of degree } k$

Centrality distributions

Histogram

- When $N \to \infty$, f_k becomes the **probability** p_k of having degree k
- p_k versus k is the **probability distribution** of node degree

Cumulative distributions

- If the variable is *not integer* (e.g., betweenness), the range of the variable is divided into intervals (bins) and we count how many values fall in each interval
- Cumulative distribution P(x): probability that the variable takes values larger than x as a function of x
- How to compute it: by summing the frequencies of the variable inside the intervals to the right of x

$$P(x) = \sum_{v \ge x} f_v$$

Logarithmic scale

- Question: how to plot a probability distribution if the variable spans a large range of values, from small to (very) large?
- Answer: use the logarithmic scale
- How to do it: report the logarithms of the values on the xand y-axes

$$\log_{10} 10 = 1$$

$$\log_{10} 1,000 = \log_{10} 10^3 = 3$$

$$\log_{10} 1,000,000 = \log_{10} 10^6 = 6$$

Discrete distributions

Integer variable X, population n

 n_k = number of events with X=k

Probability that variable X takes value k

$$P(X=k) = \frac{n_k}{n} \longrightarrow \sum_k P(X=k) = 1$$

Continuous distributions

Continuous variable X

Probability that variable takes value in the range [a, b]

$$Pr[a \leq X \leq b] = \int_a^b P(x) dx$$
 Probability density

$$Pr[x_{min} \le X \le x_{max}] = \int_{x_{min}}^{x_{max}} P(x)dx = 1$$

Gaussian (or normal) distribution: $P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

 $\mu =$ mean, expectation

standard deviation

Applications: infinite!

- 1) Statistics of errors
- 2) Central limit theorem
- 3) Diffusion
- 4) (some) social statistics
- 5) Etc.

Poissonian distribution:
$$P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

 λ = mean, expectation

- 1) Poisson process
- 2) Radioactive decay (number of events)
- 3) DNA mutations
- 4) Birth-death processes
- 5) Number of goals in soccer games
- 6) Etc.

Exponential distribution: $P(x) = \lambda e^{-\lambda x}$ $(x \ge 0)$

 λ = rate parameter

- 1) Inter-event times of Poisson process
- 2) Radioactive decay (time until decay)
- 3) Queuing theory
- 4) Physics: gas in uniform gravitational field
- 5) Etc.

Uniform distribution:
$$P(x) = \frac{1}{b-a}$$

$$(x \in [a,b])$$

- 1) P-value distribution in statistics
- 2) Random number generators
- 3) Etc.

Power law distribution:
$$P(x) = \frac{\alpha - 1}{x_{min}} \left(\frac{x}{x_{min}}\right)^{-\alpha} \quad (x \ge x_{min})$$

 $\alpha = {\sf exponent}$

- 1) Critical phenomena
- 2) Wealth distribution
- 3) Earthquakes
- 4) Forest fires
- 5) Human dynamics
- 6) Network degree distributions
- 7) Hydrology: rainfalls
- 8) Etc.

Lognormal distribution:
$$P(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\log x - \mu)^2}{2\sigma^2}}$$
 $(x > 0)$

 $\mu = ext{location parameter}$

 $\sigma=$ scale parameter

- 1) Multiplicative processes
- 2) City size
- 3) Paper citations
- 4) Language size
- 5) Blood pressure
- 6) Reliability analysis
- 7) Etc.

The log-scale on the x-axis, the y-axis, or both, may facilitate the identification of a distribution

Gaussian

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\log P(x) = -\log(\sigma\sqrt{2\pi}) - \frac{(x-\mu)^2}{2\sigma^2}$$

On a log-lin diagram a Gaussian looks like a parabola!

Gaussian distribution

Exponential

$$P(x) = \lambda e^{-\lambda x}$$

$$\log P(x) = \log \lambda - \lambda x$$

On a log-lin diagram an exponential looks like a straight line!

Exponential distribution

Power law

$$P(x) = \frac{\alpha - 1}{x_{min}} \left(\frac{x}{x_{min}}\right)^{-\alpha}$$

$$\log P(x) = \log \left(\frac{\alpha - 1}{x_{min}}\right) - \alpha \log x + \alpha \log x_{min}$$

On a log-log diagram a power law looks like a straight line!

Power law distribution

Lognormal

$$P(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\log x - \mu)^2}{2\sigma^2}}$$

$$\log P(x) = -\log x - \log(\sigma\sqrt{2\pi}) - \frac{(\log x - \mu)^2}{2\sigma^2}$$

On a log-log diagram a lognormal looks like a parabola!

Lognormal distribution

Distributions are generally noisy on the tail: events are rare!

$$P^{>}(x) = \int_{x}^{x_{max}} P(x') dx'$$

$$P^{<}(x) = \int_{x_{min}}^{x} P(x') dx' = 1 - P^{>}(x)$$

The integration averages fluctuations out, reducing the noise

The cumulative of an exponential is still an exponential!

$$P_{exp}^{>}(x) = \int_{x}^{\infty} \lambda e^{-\lambda x'} dx' = \left[-e^{-\lambda x'} \right]_{x}^{\infty} = e^{-\lambda x}$$

The cumulative of a power law is still a power law but with exponent lpha-1

$$P_{power}^{>}(x) = \int_{x}^{\infty} Cx'^{-\alpha} dx' = \left[\frac{Cx'^{1-\alpha}}{1-\alpha} \right]_{x}^{\infty} = \frac{Cx^{-(\alpha-1)}}{\alpha-1}$$

Exponential distribution

Power law distribution

Degree distributions

Heavy-tail distributions: the variable goes from small to large values

Degree distributions

• The heterogeneity parameter K says how broad the distribution is:

$$\kappa = \frac{\langle k^2 \rangle}{\langle k \rangle^2}$$

$$\langle k \rangle = \frac{\sum_i k_i}{N} = \frac{2L}{N}; \langle k^2 \rangle = \frac{\sum_i k_i^2}{N}$$

• If most degrees have the same value, say k_0 :

$$\langle k \rangle \approx k_0, \langle k^2 \rangle \approx k_0^2 \Longrightarrow \kappa \approx 1$$

• If the distribution is very heterogeneous: $\kappa \gg 1$

Betweenness distributions

Heavy-tail distribution: the variable goes from small to large values

Degree centrality

Network	$Nodes \ (N)$	$\operatorname{Links} (L)$	Average degree $(\langle k \rangle)$	Maximum degree (k_{max})	Heterogeneity parameter (κ)
Facebook Northwestern Univ.	10,567	488,337	92.4	2,105	1.8
IMDB movies and stars	563,443	921,160	3.3	800	5.4
IMDB co-stars	252,999	1,015,187	8.0	456	4.6
Twitter US politics	18,470	$48,\!365$	2.6	204	8.3
Enron Email	36,692	367,662	10.0	1,383	14.0
Wikipedia math	15,220	194,103	12.8	5,171	38.2
Internet routers	190,914	607,610	6.4	1,071	6.0
US air transportation	546	2,781	10.2	153	5.3
World air transportation	3,179	18,617	11.7	246	5.5
Yeast protein interactions	1,870	2,277	2.4	56	2.7
C. elegans brain	297	2,345	7.9	134	2.7
Everglades ecological food web	69	916	13.3	63	2.2

- By choosing *nodes at random*, Tom has **the same chance** to be picked as everybody else
- By choosing links at random, Tom has a higher chance to be picked than everybody else

By following links, the chance to hit a hub increases

- Average degree of a node = **2.29**
- Average degree of the neighbors of a node = 2.83 > 2.29
- Our friends have more friends than we do, on average (friendship paradox)

• Question: Where does the friendship paradox come from?

• Answer:

- 1. By averaging the degree of the nodes, we pick them at random
- 2. By averaging the degree of the neighbors, we choose them by following links: nodes with degree *k* will be counted *k* times, which inflates the average
- The more hubs, the stronger the effect

Ultra-small worlds

- In real networks, many shortest paths go through hubs
- Example: air transportation
- There may be no routes between airport A and B (if they are small), but it may be possible to go from A to B via a hub airport C
- The small-world property is typical of most networks of interest: if the network has hubs, paths are ultra-short (ultra-small world)

Ultra-small worlds

Shortest-path length distribution

- A system is robust if the failure of some of its components does not affect its function
- Question: how can we define the robustness of a network?
- Answer: we remove nodes and/or links and see what happens to its structure
- Key point: connectedness
- If the Internet were not connected, it would be impossible to transmit signals (e.g., emails) between routers in different components

- Robustness test: checking how the connectedness of the network is affected as more and more nodes are removed
- How to do it: plot the relative size S of the largest connected component as a function of the fraction of removed nodes
- We suppose that the network is initially connected: there is only one component and S=1
- As more and more nodes (and their links) are removed, the network is progressively broken up into components and S goes down

- Two strategies:
 - 1. Random failures: nodes break down randomly, so they are all chosen with the same probability
 - 2. Attacks: hubs are deliberately targeted the larger the degree, the higher the probability of removing the node
- In the first approach, we remove a fraction f of nodes, chosen at random
- In the second approach, we remove the fraction *f* of nodes with largest degree, from the one with largest degree downwards

Conclusion: real networks are robust against random failures but fragile against targeted attacks!

Core decomposition

- Core: dense part of the network, with high-degree nodes
- Core decomposition: procedure to identify denser and denser cores, by removing nodes of progressively higher degree. If we remove all nodes with degree k-1 or lower, the remaining portion of the network is called k-core
- k-core decomposition procedure: start with k=0
 - 1. Recursively remove all nodes with degree k, until none are left
 - 2. The set of removed nodes is the k-th shell, while the remaining ones form the (k+1)-core
 - 3. If there is no node left, terminate. Otherwise, increment k by one and repeat from step 1

Core decomposition

Core decomposition

Core decomposition helps to visualize large networks, by pruning low-degree nodes and showing only the densest parts

```
nx.core_number(G)  # return dict with core number of each node
nx.k_shell(G,k)  # subnetwork induced by nodes in k-shell
nx.k_core(G,k)  # subnetwork induced by nodes in k-core
nx.k_core(G)  # innermost (max-degree) core subnetwork
```