

Soutenance Projet OC P5 DS: Segmentez des clients d'un site e-commerce

Candidat: David CAPELLE
Mentor: Nicolas MICHEL
Evaluateur: D. Lecoeuche

28/10/2021

Formation 100% Pôle Emploi

Plan de la soutenance

- Problématique et présentation de la démarche
- Présentation du nettoyage des données, du feature engineering et de l'analyse exploratoire des données
- Présentation des pistes de modélisation testées
 - Synthèse sur les métriques de qualité du clustering
 - Choix du modèle
 - Signification métier des clusters
- Conclusion, améliorations et limites

Problématique du projet

- Aider les équipes d'Olist à comprendre les différents types d'utilisateurs.
- Utilisation de méthodes non supervisées pour regrouper des clients avec des profils similaires (segmentation client).
- La segmentation doit être facilement exploitable par l'équipe marketing.
- Définir un contrat de maintenance établissant les périodes de mise à jour des segments clientèle.

Démarche pour le choix du modèle de clustering

- Pour chaque modèle de clustering testé :
 - Détermination des paramètres du modèle (nombre clusters,...).
 - Entraînement du modèle avec les paramètres.
 - Visualisation T-SNE 2D et 3D interactif avec les labels des clusters déterminés par le modèle.
- Choix final du meilleur modèle selon les critères :
 - Techniques : coefficient de silhouette et distance inter-cluster
 - Métier : tailles des clusters, nombre de cluster
 - => évaluation de la facilité d'exploitaion / maintenance
- Détermination de la stabilité temporelle des clusters.

Pistes de modélisation

- <u>Préliminaire</u>: Analyse RFM avec la prise en compte des catégories de produit (22 variables en entrée).
- Piste de modélisation (Hypothèse 1): modélisation à partir de 22 variables issues du feature engineering, avec les catégories de produit
 - But : segmentation comportementale du client en intégrant la dimension produit
- <u>NB</u>: une autre piste est étudiée (Hypothèse 2) dans un notebook séparé, avec 12 variables en entrée, sans les catégories produit :
 - But : vérifier si la prise en compte des catégories produit ne fausse pas le clustering(poids des variables produit)
 - Cette analyse est présentée en annexes, mais pas dans la présentation.

Présentation des jeux de données

- 9 jeux de données issues du site e-commerce Olist :
 - Données client couvrant 23 mois de 2016 à 2018.
 - Contenu :
 - Commandes client (99441)
 - Clients (99441)
 - Moyens de Paiement
 - Avis client
 - Géolocalisation
 - Lignes de commandes
 - Produits
 - Catégories de produit
 - Revendeurs
- Le jeu de données des revendeurs n'est pas utilisé dans ce projet.

Feature engineering - Variables essentielles (1/2)

- Merge des 7 tables principales pour créer un dataset orienté commandes.
- Création d'un dataset orienté client avec 12 nouvelles variables :
 - nb_orders : nbre d'achat par client
 - mean_payment_sequential : nbre moyen de moyen paiement.
 - mean_review_score : score moyen avis client.
 - mean_payment_installments : nbre moyen échéances paiement.
 - mean_delivery_days : délai moyen de livraison en jour.
 - favorite_purchase_month : numéro mois d'achat favori en moyenne.
 - favorite_purchase_hour : heure favorite d'achat en moyenne.
 - mean_nb_items : nbre d'articles moyen commandés par client.
 - order_mean_delay : délai moyen d'achat en jours par client.
 - freight_ratio : ratio moyen des frais de livraison sur la dépenses d'achat (en %).
 - mean_price_order : dépense moyenne d'achat par client.
 - harvesine_distance : éloignement du client du site e-commerce Olist.

Feature engineering - Catégories de produit (2/2)

- Création de 10 variables Catégories de produit :
 - Création de regroupements de catégories .
 - Mesure le pourcentage d'achat client d'une catégorie de produit donnée par rapport à l'ensemble des catégories .
- Regroupement des catégories de produit :
 - books_cds_media : biens culturels
 - fashion_clothing_accessories : vêtements, mode
 - flowers_gifts : fleurs, cadeaux
 - groceries_food_drink : épicerie, boissons
 - health_beauty : santé / beauté
 - home_furniture : fourniture pour la maison
 - other : produits non classés dans les autres catégories
 - sport : articles de sport
 - technology : biens high-tech
 - toys_baby : jouets / produits bébé

Nettoyage des données - Traitement valeurs manquantes

- Traitement des valeurs quantitatives :
 - Imputation valeur 1 si présence valeurs NaN pour les variables sur les échéances et moyens de paiement.
 - => Taille du jeu de données : (110197 lignes, 23 variables)
 Proportion NaN : 0,06 %
- Traitement des valeurs date :
 - Suppression des valeurs NaN pour les dates de livraison client.
 - => Taille du jeu de données : (110189 lignes, 23 variables) Proportion NaN : 0.06 %
- Traitement des valeurs qualitatives :
 - Imputation de la valeur « other » si présence valeurs NaN dans les catégories de produit.
 - => Taille du jeu de données : (110189 lignes, 23 variables)
 Proportion NaN : 0.06 %

Nettoyage des données - Traitement des outliers

- Traitement des outliers valeurs aberrantes :
 - Remplacement des valeurs 0 par 1 pour la variable moyenne du nombre d'échéances de paiement.
- Traitement des outliers analyse valeurs atypiques :
 - Suppression des valeurs atypiques par la méthode interquartile pour les variables « mean_delivery_days » et « mean_price_order »
 - => Après feature engineering et agrégation données par client, taille du jeu de données : (92234 lignes, 30 variables) Proportion de NaN : 0 %

Analyse exploratoire des données Analyse univariée – Principaux enseignements

Analyse des variables:

- Les clients commandent 1 seul article en général.
- Les clients dépensent assez peu entre 60 et 180 real en moyenne.
- Paiement avec un seul moyen de paiement (carte crédit).
- Les clients sont assez satisfaits (score entre 4 et 5).
- Les clients paient en 1 jusqu'à 4 échéances de paiement.
- En moyenne, le délai de livraison est de 10 jours.
- Panier moyen constitué d'un seule catégorie de produit.
- Les clients achètent rarement plus de 1 article.

Analyse exploratoire des donnéesAnalyse univariée – Distribution variable « mean_price_order »

Analyse exploratoire des données

Analyse multivariée - Matrice des corrélations

Piste de modélisation – Etape préliminaire Pré-requis et Analyse RFM

- Pré-requis : échantillonnage du dataset sur une période de 3 mois, soit 21 % des données d'origine. Contraintes de ressources système (CPU et mémoire).
- Calcul des scores R, F, et M (note de 1 à 4).
- Affectation des segments RFM par sous-ensemble des scores RFM.
- Analyse de la qualité de la segmentation clientèle proposée par RFM par visualisation T-SNE 2D et 3D avec labels segments RFM.
- => L'analyse RFM ne permet pas de distinguer des regroupements distincts par rapport aux segments RFM.
- => Tentative de détermination de clusters plus précis par clustering non supervisé.

Analyse RFM *Décomposition des segments RFM*

Analyse RFM - Visualisation T-SNE 2D

Analyse RFM - Visualisation T-SNE 3D

Piste de modélisation – Hypothèse 1 - Principes Méthode de clustering K-means

- Modélisation la plus simple avec 22 variables en entrée (ajout catégories de produit).
- Standardisation des données.
- Détermination du nombre de clusters :
 - Par la méthode du coude en visuel => K entre 6 et 7.
 - Par la méthode du coude basée sur le score de distorsion

$$=> K = 8$$

En trouvant le score de silhouette optimal

=> K = 7 pour un score de silhouette moyen = 0.4109

Choix du nombre de clusters = 7

Hypothèse 1 - Visualisation T-SNE 2D *Modélisation de clustering K-means*

Hypothèse 1 – Visualisation T-SNE 3D *Méthode de clustering K-means*

Piste de modélisation – Hypothèse 1 - Principes Méthode de clustering DBSCAN

- Modélisation la plus simple avec 22 variables en entrée.
- Standardisation des données.
- Détermination des paramètres :
 - Pour min_samples, application de la règle 2*dimensions
 - => min_samples = 44
 - Pour epsilon (eps), application de la méthode des plus proches voisins
 - => eps environ 0,3
 - De manière empirique, calcul du score de silhouette optimal en calculant plusieurs modèle DBSCAN pour déterminer K et eps.
 - => K = 9, eps = 0.54 pour un score de silhouette moyen = 0.413

Choix du nombre de clusters = 9 avec 594 points de bruit.

Hypothèse 1 - Visualisation T-SNE 2D *Modélisation de clustering DBSCAN*

Hypothèse 1 – Visualisation T-SNE 3D *Méthode de clustering DBSCAN*

Piste de modélisation – Hypothèse 1 - Principes Méthode de clustering hiérarchique (agglomerative clustering)

- Modélisation la plus simple avec 22 variables en entrée.
- Standardisation des données.
- Détermination des paramètres :
 - Détermination du nombre de clusters K avec le dendrogram

- Calcul du score moyen de silhouette avec K = 5, 6 et 7
- => score de silhouette moyen optimal (0.41) pour K = 7

Choix du nombre de clusters = 7.

Piste de modélisation – Hypothèse 1 - Dendrogram *Méthode de clustering hiérarchique (agglomerative clustering)*

Hypothèse 1 - Visualisation T-SNE 2D

Modélisation de clustering hiérarchique (agglomerative clustering)

Hypothèse 1 – Visualisation T-SNE 3D

Méthode de clustering hiérarchique (agglomerative clsutering)

Piste de modélisation – Hypothèse 1 Qualité du clustering – Facteur de forme (coeff silhouette)

Sur le coefficient de silhouette, le modèle DBSCAN à 9 clusters présente le meilleur coefficient moyen de silhouette, même si tous les modèles sont pratiquement à égalité.

Piste de modélisation – Hypothèse 1 - K-means Qualité du clustering – Représentation graphique facteur forme

Piste de modélisation – Hypothèse 1 Qualité du clustering – Séparation des clusters

- Pour le modèles DBSCAN, la visualisation T-SNE 2D/3D montre des clusters peu marqués, avec du bruit.
- Les modèle K-means et clustering hiérarchique présentent pratiquement un clustering identique à la visualisation.
- => Même si le modèle hiérarchique est à égalité sur le critère score de silhouette, le modèle k-means à 7 clusters est considéré comme le meilleur choix sur ce critère, le clustering hiérarchique mobilisant beaucoup plus de ressources (CPU et mémoire).

Piste de modélisation – Hypothèse 1 - K-means Qualité du clustering – Graphique distance inter-clusters

Piste de modélisation – Hypothèse 1 Qualité du clustering – Homogénéité des tailles de clusters

- Sur ce critère, le modèle DBSCAN à 9 clusters est écarté (petits clusters, difficulté d'exploiter et maintenir 9 clusters).
- Les modèles K-means et clustering hiérarchique présente un homogénéité dans les tailles des clusters.

Modèle	Taille cluster 0	Taille cluster 1	Taille cluster 2	Taille cluster 3	Taille cluster 4	Taille cluster 5	Taille cluster 6	Taille cluster 7	Taille cluster 8
K-means	1688	3869	5387	2274	2838	1981	1707		
DBSCAN	1679	5328	3834	2242	2790	168	1650	517	942
Agglomerative clustering	5443	1952	3868	2818	2273	1696	1694		

=> Choix final: le modèle K-means est retenu.

Hypothèse 1 - Modèle K-means à 7 clusters Signification métier des clusters (1/2)

Hypothèse 1 - Modèle K-means à 7 clusters Signification métier des clusters (2/2)

- Cluster 0 : clients achetant des fleurs et cadeaux, meilleurs clients en termes de dépenses d'achat, privilégiant des frais de livraison réduits.
- Cluster 1 : clients achetant des produits technologiques, client peu dépensiers, acceptant des frais de livraison élevés.
- Cluster 2 : clients achetant des fournitures pour la maison, clients peu actifs (fréquence et dépenses d'achat).
- Cluster 3 : clients achetant des produits de santé/beauté, clients peu actifs (fréquence et dépenses d'achat).
- Cluster 4 : clients achetant des produits peu courants (catégorie 'other'), clients à surveiller, marchés de niche.
- Cluster 5 : clients achetant 3 catégories de produit de grande consommation.
 Clients prometteurs ,clients peu actifs (fréquence et dépenses d'achat).
- Cluster 6 : clients achetant des articles de sports, clients peu actifs (fréquence et dépenses d'achat)

Hypothèse 1 - Modèle K-means à 3 clusters

Evaluation de la stabilité temporelle du clustering (1/2)

Méthode :

- Evaluation du score de silhouette sur 3 mois glissants par pas de 1 mois sur 5 mois.
- Période initiale : 3 mois (du janvier à mars 2018).

Résultats :

- Mise à jour des clusters après le 4ème mois, sans perte sur le score silhouette.
- Le pas 4 correspond à la période mai, juin, juillet 2018 => à partir du mois de mai, le score de silhouette se dégrade nettement (environ perte de 19%).

=> Le modèle k-means à 7 clusters est relativement limitée dans le temps.

Hypothèse 2 - Modèle K-means à 7 clusters

Evaluation de la stabilité temporelle du clustering (2/2)

Conclusion – Améliorations - Limites

- Au final, la modélisation K-means avec 7 clusters montre :
 - un score de silhouette moyen (0,41).
 - une stabilité du clustering limité dans le temps.
 - des profils client peu définis

- Compte tenu de la modélisation sur une période initiale de 3 mois, il est difficile de généraliser ces modèles en production.
- Il manque des informations dans le jeu de données (sexe, âge, profil socio-professionnel, ...).
- Dans l'annexe, la piste de modélisation 2 (sans les catégories de produit) montre des résultats dégradés sur le score de si lhouette, la stabilité du clustering.

Annexes

Annexe 1 : PCA – cercle corrélations - 1er plan factoriel

Annexe 2 : PCA – cercle corrélations - 2ème plan factoriel

Annexe 3 : PCA – cercle corrélations – 3ème plan factoriel

Annexe 4 : Piste modélisation – hyp 2 (slide 42 à 60)

PCA – Cercle de corrélations 1^{er} plan factoriel

PCA – Cercle de corrélations 2ème plan factoriel

PCA – Cercle des corrélations 3ème plan factoriel

Piste de modélisation – Hypothèse 2 - Principes Méthode de clustering K-means

- Modélisation la plus simple avec 12 variables en entrée.
- Standardisation des données.
- Détermination du nombre de clusters :
 - Par la méthode du coude en visuel => K entre 3 et 5.
 - Par la méthode du coude basée sur le score de distorsion

$$=> K = 4$$

En trouvant le score de silhouette optimal

=> K = 3 pour un score de silhouette moyen = 0.3263

Choix du nombre de clusters = 3

Hypothèse 2 - Visualisation T-SNE 2D *Modélisation de clustering K-means*

Hypothèse 2 – Visualisation T-SNE 3D *Méthode de clustering K-means*

Piste de modélisation – Hypothèse 2 - Principes Méthode de clustering DBSCAN

- Modélisation la plus simple avec 12 variables en entrée.
- Standardisation des données.
- Détermination des paramètres :
 - Pour min_samples, application de la règle 2*dimensions
 - => min_samples = 24
 - Pour epsilon (eps), application de la méthode des plus proches voisins
 - => eps environ 0,3
 - De manière empirique, calcul du score de silhouette optimal en calculant plusieurs modèle DBSCAN pour déterminer K et eps.
 - => K = 3, eps = 0.5 pour un score de silhouette moyen = 0.252

Choix du nombre de clusters = 3 avec 31 points de bruit.

Hypothèse 2 - Visualisation T-SNE 2D *Modélisation de clustering DBSCAN*

Hypothèse 2 – Visualisation T-SNE 3D *Méthode de clustering DBSCAN*

Piste de modélisation – Hypothèse 2 - Principes Méthode de clustering hiérarchique (agglomerative clustering)

- Modélisation la plus simple avec 12 variables en entrée.
- Standardisation des données.
- Détermination des paramètres :
 - Détermination du nombre de clusters K avec le dendrogram
 - => K = 3 ou 5
 - Calcul du score moyen de silhouette avec K = 3 et K = 5
 - => pour K = 3, score de silhouette moyen = 0.307
 - => pour K = 5, score de silhouette moyen = 0.288

Choix du nombre de clusters = 3.

Piste de modélisation – Hypothèse 2 - Dendrogram *Méthode de clustering hiérarchique (agglomerative clustering)*

Hypothèse 2 - Visualisation T-SNE 2D Modélisation de clustering hiérarchique (agglomerative clustering)

Hypothèse 2 – Visualisation T-SNE 3D

Méthode de clustering hiérarchique (agglomerative clsutering)

Piste de modélisation – Hypothèse 2 Qualité du clustering – Facteur de forme (coeff silhouette)

Sur le coefficient de silhouette, le modèle K-means à 3 clusters présente le meilleur coefficient moyen de silhouette.

Piste de modélisation – Hypothèse 2 - K-means Qualité du clustering – Représentation graphique facteur forme

Piste de modélisation – Hypothèse 2 Qualité du clustering – Séparation des clusters

- Pour le modèle clustering hiérarchique, la visualisation T-SNE
 2D/3D montre des clusters peu marqués.
- Pour le modèle DBSCAN, le clusters semblent plus distincts à la visualisation.
- => Compte tenu du score de silhouette (critère principal), le modèle k-means à 3 clusters est considéré comme le meilleur choix sur ce critère (voir graphe des distances inter-clusters.

Piste de modélisation – Hypothèse 2 - K-means Qualité du clustering – Graphique distance inter-clusters

Piste de modélisation – Hypothèse 2 Qualité du clustering – Homogénéité des tailles de clusters

Sur ce critère, le modèle DBSCAN à 3 clusters est le meilleur modèle (homogénéité presque parfaite des tailles de clusters).

Modèle	Taille cluster 0	Taille cluster 1	Taille cluster 2
K-means	6086	9686	3972
DBSCAN	6236	6672	6805
Agglomerative clustering	9899	5843	4002

=> Choix final pour la piste de modélisation 1 : le modèle K-means est retenu (meilleur modèle sur 2 critères sur 3).

Hypothèse 2 - Modèle K-means à 3 clusters Signification métier des clusters (1/2)

Hypothèse 2 - Modèle K-means à 3 clusters Signification métier des clusters (2/2)

Cluster 0 :

- Clients satisfaits (score avis client)
- Clients qui achètent peu souvent = clients peu actifs
- Clients livrés en environ 13 jours

Cluster 1 :

- Clients très satisfaits.
- Clients fidèles (fréquence d'achat tous les 28 jours en moyenne sur la période).
- Clients livrés en environ 13 jours.

Cluster 2 :

- Client très insatisfaits.
- Clients prometteurs (fréquence d'achat tous les 39 jours en moyenne sur la période).
- Clients livrés en environ 25 jours.
- => Il n'y a pas de profils de clientèle très marqués avec ce modèle de clustering.
- => La piste de modélisation 2 va intégrer les catégories de produit pour essayer de faire un clustering plus précis.

Hypothèse 2 - Modèle K-means à 3 clusters

Evaluation de la stabilité temporelle du clustering (1/2)

Méthode :

- Evaluation du score de silhouette sur 5 mois glissants par pas de 1 mois.
- Période initiale : 3 mois (du janvier à mars 2018).

Résultats :

- Mise à jour du clustering tous les 2 mois
- => perte de 6,2 % sur le score de silhouette à partir du pas 2 (période mars-avril-mai 2018)

=> Le modèle k-means à 3 clusters n'est pas stable dans le temps.

Hypothèse 1 - Modèle K-means à 3 clusters Evaluation de la stabilité temporelle du clustering (2/2)

