Analisi III

Riassunto da: "Analisi Matematica 2 - Claudio Canuto, Anita Tabacco"

Corso di Laurea in Fisica - Corso A Università degli studi di Torino, Torino Settembre 2024

Indice

1	Successioni di funzioni	2		
	1.1 Limiti di successioni	2		
2	Serie di funzioni			
	2.1 Serie di potenze in \mathbb{C}	6		

1 Successioni di funzioni

$$A \subseteq \mathbb{R} \text{ (o } \mathbb{C}), \quad f_n : A \to \mathbb{R} \text{ (o } \mathbb{C}), \quad n \in \mathbb{N}$$

$$N \to \{\text{f.ni definite su } A\}$$

$$n \mapsto f_n$$

Vogliamo studiare come si comporta $(f_n)_n$ quando $n \to +\infty$.

1.1 Limiti di successioni

- Definizione: Convergenza puntuale

Diciamo che la successione di funzioni $(f_n)_n$, $f_n:A\subseteq\mathbb{R}\to\mathbb{R}$ (o \mathbb{C}) converge puntualmente (o semplicemente) a una funzione f sull'insieme $E\subseteq A$ se

$$\forall x \in E, \quad \lim_{n \to +\infty} f_n(x) = f(x)$$

Notiamo che quest'ultimo limite è un limite di successione numerica, quindi

$$\forall x \in E, \quad \forall \varepsilon > 0 \quad \exists \bar{n} = \bar{n}(\varepsilon, x) \quad \text{t.c.} \quad |f_n(x) - f(x)| < \varepsilon, \quad \forall n \ge \bar{n}$$

$Definizione:\ Convergenza\ uniforme$

Diciamo che la successione di funzioni $(f_n)_n$, $f_n:A\to\mathbb{R}$ (o \mathbb{C}) converge uniformemente su $E\subseteq A$ alla funzione $f:E\to\mathbb{R}$ se

$$\forall \varepsilon > 0 \quad \exists \bar{n} = \bar{n}(\varepsilon) \text{ t.c. } |f_n(x) - f(x)| < \varepsilon \quad \forall n \geq \bar{n}$$

equivalentemente

$$\forall \varepsilon > 0 \quad \exists \bar{n} = \bar{n}(\varepsilon) \text{ t.c. } \sup |f_n(x) - f(x)| < \varepsilon \quad \forall n \ge \bar{n}$$

dove l'estremo superiore viene denominato α_n successione positiva (≥ 0):

$$\forall \varepsilon > 0 \quad \exists \bar{n} = \bar{n}(\varepsilon) \text{ t.c. } 0 \leq \alpha_n < \varepsilon \quad \forall n \geq \bar{n}$$

opure

esempio 1		
esempio 2		
esempio 3		
1		

Teorema 1 - La convergenza unifore preserva la continuità

Sia $(f_n)_n$ una successione di funzioni $f_n:A\subseteq\mathbb{R}\to\mathbb{R}$ (o \mathbb{C}) tali che

- (H1) f_n sono funzioni continue su $E \subseteq A$,
- (H2) f_n converge uniformemente a f su E

allora f è continua su E

dimostrazione

La tesi è

$$\forall x_0 \in E, \quad \lim_{x \to x_0} f(x) = f(x_0)$$

ovvero che

$$\forall x_0 \in E \qquad \forall \varepsilon > 0 \ \exists \delta = \delta(x_0, \varepsilon) \ \text{t.c.} \ |f(x) - f(x_0)| < \varepsilon \qquad \forall x \in (x_0 - \delta, x_0 + \delta) \cap E$$

 $\bullet\,$ Da (H2) convergenza uniforme sappiamo che $\lim_{n\to+\infty}\alpha_n=0$ quindi

$$\exists \hat{n} = \hat{n}(\varepsilon) : \alpha_n = \sup |(f_n(x) - f(x))| < \frac{\varepsilon}{3} \quad \forall n \ge \hat{n}$$

• Da (H1) abbiamo invece la continuità di $f_{\hat{n}}$ in x_0 :

$$\exists \delta = \delta(x_0, \varepsilon) : |f_{\hat{n}}(x) - f_{\hat{n}}(x_0)| < \frac{\varepsilon}{3} \ \forall x \in I_{\delta}$$

Ora utilizzando la riscrittura

$$|f(x) - f(x_0)| = |f(x) - f_{\hat{n}}(x) + f_{\hat{n}}(x) - f_{\hat{n}}(x_0) + f_{\hat{n}}(x_0) - f(x_0)|$$

$$\leq |f(x) - f_{\hat{n}}(x)| + |f_{\hat{n}}(x) - f_{\hat{n}}(x_0)| + |f_{\hat{n}}(x_0) - f(x_0)|$$

$$= \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Teorema 2 - Passa al limite sotto integrale

Sia $(f_n)_n$ una successione di funzioni $f_n:[a,b]\to\mathbb{R}$ tale che

- (H1) f_n sono funzioni continue su [a, b],
- (H2) f_n converge uniformemente su [a, b]

allora

$$\lim_{n \to +\infty} \int_a^b f_n(x) \ dx = \int_a^b \lim_{n \to +\infty} f_n(x) = \int_a^b f(x) \ dx$$

dimostrazione

Dal **Teorema 1** sappiamo che f è continua su [a,b] e perciò è integrabile è

$$\int_{a}^{b} f(x) \, dx$$

è ben definito.

Vogliamo dimostrare che

$$\lim_{n \to +\infty} \int_{a}^{b} f_n(x) \, dx = \int_{a}^{b} f(x) \, dx$$

ovvero che

$$\forall \varepsilon > 0 \ \exists \tilde{n} = \tilde{n}(\varepsilon) : |I_n - I| < \varepsilon \ \forall n \ge \tilde{n}$$

Utilizziamo la disugualianza

$$|I_n - I| = \left| \int_a^b f_n - \int_a^b f \right| = \left| \int_a^b f_n - f \right|$$

$$\leq \int_a^b |f_n - f|$$

$$\leq \int_a^b \alpha_n = \alpha_n (b - a)$$

e poiché per (H2) si ha $\alpha_n \to 0$

$$\exists \tilde{n} : \alpha_n(b-a) < \varepsilon \ \forall n \ge \tilde{n}$$

- esempio 4 —

Teorema-

Sia $(f_n)_n$, $f_n: A \subseteq \mathbb{R} \to \mathbb{R}$ (o \mathbb{C}) tale che

- f_n converga uniformemente a f in $E \subseteq A$,
- f_n siano continue sulla chiusura di E: \bar{E}

allora si ha che f_n converge uniformemente a f su \bar{E} .

2 Serie di funzioni

Presa $(f_n)_n$ successione di funzioni, $f_n:A\subseteq\mathbb{R}\to\mathbb{R}$ (o \mathbb{C}), chiamiamo

$$\sum_{n} f_n(x)$$

serie di funzioni. Definiamo

$$S_N = \sum_{n=1}^N f_n(x)$$

successione delle ridotte.

Convergenza della serie Diciamo che la serie converge (puntualmente o uniformemente) su un insieme $E \subseteq A$ se lo fa la successione delle ridotte. Si andrà quindi a studiare il limite di S_N che chiamiamo somma della serie.

Teorema 1S-

Data $f: A \subseteq \mathbb{R} \to \mathbb{R}$, se

- f_n continue su $E \subseteq A$;
- $\sum_n f_n$ converge uniformemente su $E \subseteq A$ alla somma S(x)

Allora S(x) è continua su E.

Teorema 2S

Data $f: A \subseteq \mathbb{R} \to \mathbb{R}$ e $E = [a, b] \subseteq \mathbb{R}$, se

- f_n continue su $E \subseteq A$;
- $\sum_n f_n$ converge uniformemente su $E \subseteq A$ alla somma S(x)

Allora

$$\int_{a}^{b} \sum f_{n}(x)dx = \sum \int_{a}^{b} f_{n}(x)dx$$

Definizione:

 $I_s = \left\{ x \text{ la serie considerata } \sum f_n(x) \text{converge semplicemente} \right\}$

per la serie $\sum x^n$ si ha che $I_s = (-1,1)$

 $I_a = \left\{ x \text{ la serie considerata } \sum |f_n(x)| \text{ converge semplicemente} \right\}$

Teorema: m-test o criterio di convergenza totale

Date

- $(f_n)_n$ successione di funzioni su $E \subseteq \mathbb{R}$ (o in \mathbb{C});
- $(m_n)_n \subseteq \mathbb{R}$ successione di numeri reali positivi.

tali che

 $(H1) |f_n(x)| \le m_n \ \forall x \in E, \ \forall n;$

$$(H2) \sum m_n(x) < +\infty.$$

Allora la serie $\sum f_n(x)$ converge assolutamente in ongi punto di E è uniformemente su E \Longrightarrow la serie converge totalmente.

Teorema 3S-

Data $f: A \subseteq \mathbb{R} \to \mathbb{R}$ (o \mathbb{C}). Se

- $\sum_n f_n$ converge uniformemente su E,
- f_n sono continue su \bar{E}

allora $\sum_n f_n$ converge uniformemente su \bar{E} .

2.1 Serie di potenze in $\mathbb C$

Intendiamo con serie di potenze in \mathbb{C} un espressione del tipo

$$\sum_{n\geq 0} a_n (z-z_0)^n$$

dove $(a_n)_n$ è una successione di numeri complessi, $z_0 \in \mathbb{C}$ è il *centro* e z è la variabile complessa. I concetti di convergenza si estendono sostituendo il modulo al valore assoluto nelle relative definizioni. In campo complesso l'intervallo di convergenza viene sostituito da un **disco di convergenza**.

La successione delle ridotte $S_N(z)$ è un polinomio di grado N a variabile complessa.

Teorema: disco di convergenza

Data una serie di potenze in \mathbb{C} , $\sum_{n\geq 0} a_n(z-z_0)^n$, esiste $R\geq 0$ detto raggio dei convergenze della serie tale che

- 1. La serie converge assolutamente in $D_R(z_0) = \{z \in \mathbb{C} : |z z_0| < R\},\$
- 2. la serie non converge semplicemente in $\mathbb{C} \setminus \overline{D_R(z_0)}$,

$$D_R(z_0) \subseteq I_a \subseteq I_s \subseteq \overline{D_R(z_0)}$$

3. la serie **converge uniformemente** su ogni $\overline{D_r(z_0)}$ con $r \in (0, R)$.

dimostrazione

Per prima cosa sappiamo che $z_0 \in I_s$ quindi $I_s \neq \emptyset$.

Definiamo

$$R := \sup\{|z - z_0| : z \in I_s\}$$

Ora andiamo a studiare quando R si annulla e quando è maggiore di zero:

• R = 0 Se R è nullo il punto z_0 corrisoponde all'insieme I_s :

$$\{z_0\} = I_s$$

La serie converge solo in un punto dove si riduce al primo termine a_0 , quindi $I_a = I_s$.

• R > 0 e $r \in (0, R)$.

Avendo definito R come il raggio dell'insieme I_s di centro z_0 , il punto 2 è subito dimostrato.

– considero $z_1:|z_1-z_0|\in(r,R)$. Si ha che $z_1\in I_s$ ovvero

$$\sum_{n\geq 0} a_n (z_1 - z_0)^n \quad \text{convergente in } \mathbb{C}$$

$$\implies \lim_{n \to +\infty} a_n (z_1 - z_0)^n = 0$$

$$\Longrightarrow \exists \tilde{n} : |a_n(z_1 - z_0)^n| < 1 \ \forall n \ge \tilde{n}$$

– considero $\overline{z\in \overline{D_r(z_0)}}$. Vogliamo usare l'm-test per dedurre la convergenza assoluta in ongi $\overline{D_r(z_0)}$ e la convergeza uniforme in $D_r(z_0)$.

Vogliamo maggiorare

$$|a_n(z_1-z_0)^n|$$

con un numero m_n tale che $\sum m_n < +\infty \ \forall t \in \overline{D_r(z_0)}$:

$$|a_n||(z_1-z_0)^n| \le |a_n|r^n \frac{|(z_1-z_0)^n|}{|(z_1-z_0)^n|} \le \frac{1\cdot r^n}{|(z_1-z_0)^n|} = \left(\frac{r}{|z_1-z_0|}\right)^n$$

(se
$$n > \tilde{n}$$
)

ma $z_1 \in D_R(z_0) \setminus \overline{D_r(z_0)}, |z - z_0| \in (r, R)$ e

$$m_n := \left(\frac{r}{|z_1 - z_0|}\right)^n$$

è indipendente da z e permette di applicare l'm-test so ogni $\overline{D_r(z_0)}$ con $r \in (0, R)$. \Longrightarrow ho convergenza assoluta su ogni $\overline{D_r(z_0)}$ e assoluta in ogni punto di ogni $\overline{D_r(z_0)}$ \Longrightarrow ho convergenza assoluta in $\overline{D_R(z_0)}$

corollario

La somma di una serie di potenze di raggio R è una funzione continua in ogni punto di $\overline{D_R(z_0)}$.

dimostrazione

- $f_n(z_0) = a_n(z z_0)^n$ sono tutte funzioni continue (in \mathbb{C}),
- $\bullet \mbox{ se } z \in D_R(z_0)$ allora $|z-z_0| = r \in [0,R),$ allora

 $z \in \overline{D_r(z_0)}$ su cui abbiamo converg. uniforme \implies continuità della somma.

Teorema del rapporto e della radice-

Data la serie $\sum_n a_n (z-z_0)^n$ se esiste uno tra questi limiti

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| \qquad \lim_{n \to +\infty} \sqrt[n]{|a_n|}$$

e vale $L \geq 0$ allora

$$R = \begin{cases} +\infty & \text{se} \quad L = 0\\ \frac{1}{L} & \text{se} \quad L \in (0, +\infty)\\ 0 & \text{se} \quad L = +\infty \end{cases}$$

Non è detto che i limiti esistano, ma sappiamo che entrambe le serie ammettono un limite inferiore e uno superiore e si può dimostrare la formula di Hadamard

$$R = \left(\lim_{n \to +\infty} \sqrt[n]{|a_n|}\right)^{-1}$$