EGZAMIN, TOPOLOGIA I, 08.02.23.

UWAGA: Rozwiązanie każdego zadania należy napisać na oddzielnej kartce. Każdą kartkę z rozwiązaniami należy podpisać podając imię i nazwisko, numer indeksu oraz numer grupy lub nazwisko prowadzącego ćwiczenia. Dla wszystkich odpowiedzi należy podać uzasadnienie.

1. Dla liczb wymiernych $q \in Q \cap (-1,1)$ niech $I_q = \{(q,t) \in R^2 \mid |t| \leq q\}$. Niech

$$X = \bigcup_{q \in Q \cap (-1,1)} I_q \ \cup \ ([-1,1] \times \{0\}) \cup \ ([-1,1] \times \{1\})$$

(A.) Udowodnić, że X jest zbiorem spójnym.

(B.) Udowodnić, że X nie jest zbiorem łukowo spójnym.

2. Niech $X = \{(x, y) \in \mathbb{R}^2 \mid x = 1/n , -1/n < y < 1/n, n = 1, 2, ...\}$

- (A.) Czy zbiór X jest przestrzenią zupełną jako podzbiór (R^2,d_k) (d_k metryka kolejowa). Jesli tak nie jest to proszę sprawdzić czy zbiór X z topologią generowaną przez metrykę d_k jest przestrzenią topologiczną metryzowalną w sposób zupełny.
- (B.) Czy X jest przestrzenią zupełną jako podzbiór (R^2, d_r) (d_r metryka rzeka). Jesli tak nie jest to proszę sprawdzić czy zbiór X z topologią generowaną przez metrykę d_r jest przestrzenią topologiczną metryzowalną w sposób zupełny.
- 3. Niech F będzie zbiorem domkniętym i brzegowym zawartym w odcinku [0,1]. Dla $q\in Q$ zdefiniujmy podzbiór płaszczyzny euklidesowej

$$K_q = \{(cos2\pi(t+q), sin2\pi(t+q)) \mid t \in F\} \subset S^1.$$

Niech

$$K = \bigcup_{q \in Q} K_q$$

Udowodnić, że istnieje prosta L w R^2 przechodząca przez punkt (0,0)taka, że $L\cap K=\emptyset.$

4. (A.) Niech X będzie przestrzenią topologiczną, I odcinkiem domkniętym [0,1]. Rozważmy przestrzeń $X\times I$ oraz jej podzbiór $A=(X\times\{0\})\cup(X\times\{1\})$. Pokazać, że przestrzeń ilorazowa Y=X/A jest łukowo spójna.

(B.) Udowodnić, że Y nie jest przestrzenią ściągalną.

Wskazówka do części (B). Np. wystarczy pokazać, że istnieje odwzorowanie $S^1 \to Y$, które nie jest homotopijne z odwzorowaniem stałym.

EGZAMIN, TOPOLOGIA I - TEORIA, 08.02.23

UWAGA: Nie ma potrzeby pisania każdego dowodu/definicji na oddzielnej kartce. Każdą kartkę z rozwiązaniami podpisujemy podając: imię i nazwisko, numer indeksu, numer grupy ćwiczeniowej i nazwisko prowadzącego.

- **7** I. a). Podaj definicję przestrzeni topologicznej. Podaj (i krótko uzasadnij) przykład dwóch topologii w zbiorze X, \mathcal{T} i \mathcal{T}' takich, że przekształcenie identycznościowe $id:(X,\mathcal{T})\to (X,\mathcal{T}')$ jest ciągłe, natomiast $id:(X,\mathcal{T}')\to (X,\mathcal{T}')$ nie jest odwzorowaniem ciągłym.
 - b). Podaj definicję zwartości przestrzeni topologicznej.
- c). Udowodnij, że jeśli (X, \mathcal{T}) jest przestrzenią zwartą oraz $K \subset X$ jest zwartym podzbiorem w X to K jest podzbiorem domkniętym w X.
- 6 II. a). Podaj definicję przestrzeni topologicznej ośrodkowej.
- * b). Podaj przykład przestrzeni topologicznej ośrodkowej, która nie ma bazy przeliczalnej.
- c). Niech (X, \mathcal{T}) będzie przestrzenią topologiczną. Udowodnij, że jeśli (X, \mathcal{T}) ma bazę przeliczalną to jest przestrzenią ośrodkową.
- **7** III. Niech (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) , (W, \mathcal{T}_W) , (Z, \mathcal{T}_Z) będą przestrzeniami topologicznymi, a $f: X \to Y$, $g, g': Y \to W$, $h: W \to Z$ odwzorowaniami ciągłymi.
 - a). Podaj definicję homotopii pomiędzy odwzorowaniami g i g'.
 - b). Podaj definicję homotopijnej równoważności przestrzeni topologicznych. Podaj, wraz z krótkim uzasadnieniem, przykład dwóch przestrzeni topologicznych, które są homotopijnie równoważne ale nie są homeomorficzne.
 - c). Udowodnij, że jeśli g jest homotopijne z g' to zarówno $g\circ f$ jest homotopijne z $g'\circ f$ jak i $h\circ g$ jest homotopijne z $h\circ g'$.