

Unidad 3: BBDD relacionales

BBDD01, Sesión 8: Álgebra relacional Cálculo relacional

Ignacio Olmeda
Josefa Gómez
Daniel Rodríguez García
Iván González Diego
Dept. Ciencias de la Computación
Universidad de Alcalá

INDICE

- Algebra relacional
- Algebra relacional extendida
- Modificación de la base de datos
- Vistas
- Cálculo relacional de tuplas
- Cálculo relacional de dominios.

Referencias: Silberschatz 4^a Ed. pp 53-82

Lenguajes de consulta

Dos tipos:

- Procedimentales ⇒ usuario especifica las operaciones a realizar
 - Algebra relacional
- No procedimentales ⇒ usuario describe "lo que necesita", no el modo de conseguirlo.
 - Cálculo relacional de tuplas y el de dominios
- Lenguaje también incluye componentes para modificación de la base de datos.

Algebra relacional

El resultado de cualquier operación (monaria o binaria) es una nueva relación → operaciones cerradas → se pueden componer

- Seis operadores básicos
 - Selección
 - Proyección
 - Unión
 - Diferencia de conjuntos
 - Producto Cartesiano
 - Renombrado

.

Operación selección

- Notación: σ_p(r)
- p se llama predicado de la selección
- Se define como:

$$\sigma_{p}(\mathbf{r}) = \{t \mid t \in \mathbf{r} \ \mathbf{y} \ p(t)\}$$

Donde p es una expresión lógica= Términos lógicos conectados por ∧ (**and**), ∨ (**or**), ¬ (**not**) Cada término es:

<a tributo> o o constante> donde op es: =, \neq , >, \geq . <. \leq

- Comparación implicando a un valor nulo ⇒ falsa
- Ejemplo:

Operación selección

Ejemplo: Información sobre prestamos de la sucursal de Navacerrada

prestamo

número-préstamo	nombre-sucursal	importe
P-11	Collado Mediano	900
P-14	Centro	1.500
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300
P-17	Centro	1.000
P-23	Moralzarzal	2.000
P-93	Becerril	500

σ nombre_sucursal="Navacerrada" (prestamo)

número-préstamo	nombre-sucursal	importe
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300

Operación proyección

Notación: $\Pi_{A1, A2, ..., Ak}$ (r) donde A_1 , A_2 son atributos y r es la relación

El resultado es una relación de k columnas eliminando de R las que no están en la lista

- Las filas duplicadas se eliminan. Son conjuntos
- Ejemplo: Importe de cada uno de los préstamos

prestamo

número-préstamo	nombre-sucursal	importe
P-11	Collado Mediano	900
P-14	Centro	1.500
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300
P-17	Centro	1.000
P-23	Moralzarzal	2.000
P-93	Becerril	500

 $\Pi_{\text{numero_prestamo,importe}}$ (prestamo)

número-préstamo	importe
P-11	900
P-14	1.500
P-15	1.500
P-16	1.300
P-17	1.000
P-23	2.000
P-93	500

Composición de operaciones relacionales

Resultado de una operación relacional es otra relación Se pueden componer expresiones

Ejemplo:

Encontrar los clientes que viven en Peguerinos

 $\Pi_{\text{nombre_cliente}}$ ($\sigma_{\text{ciudad_cliente="Pequerinos"}}$ (cliente))

Operación unión

Notación: r ∪ s

Se define como:

$$r \cup s = \{t \mid t \in r \circ t \in s\}$$

- Para r ∪ s sea válida → r y s compatibles:
 - 1. r, s debe tener el mismo número de atributos
 - 2. El dominio de los atributos debe de ser compatible
- No hay valores duplicados

Ejemplo: Nombre de todos los clientes, ya sea que tengan un préstamo o una cuenta

 $\Pi_{\text{nombre cliente}}$ (prestatario) $\cup \Pi_{\text{nombre cliente}}$ (impositor)

Operación unión

prestatario

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

impositor

nombre cliente	número cuenta
Abril	C-102
Gómez	C-101
González	C-201
González	C-217
López	C-222
Rupérez	C-215
Santos	C-305

 $\Pi_{nombre_cliente}$ (prestatario) \cup $\Pi_{nombre_cliente}$ (impositor)

Operación diferencia de conjuntos

6

۸ <i>۱</i> – ۱ –	-: 4	
Nota	cion	r - s

Definido como: $r - s = \{t \mid t \in r \ y \ t \notin s\}$

Las relaciones deben de ser **compatibles**

Ejemplo: Clientes que tienen un préstamo pero no una cuenta impositor prestatario

nombre cliente	número cuenta
Abril	C-102
Gómez	C-101
González	C-201
González	C-217
López	C-222
Rupérez	C-215
Santos	C-305

número préstamo
P-16
P-93
P-15
P-14
P-17
P-11
P-23
P-17

 $\Pi_{\text{nombre_cliente}}$ (prestatario) - $\Pi_{\text{nombre_cliente}}$ (impositor)

nombre-cliente
Abril
González
Rupérez

- Notación r x s
- Se define como:

$$rxs = \{tq \mid t \in r \ \boldsymbol{y} \ q \in s\}$$

- Argumentos de producto cartesiano
- Si r tiene a atributos y s tiene b atributos → r x s tiene a+b con nombre, el de los atributos originales
- Ejemplo:

r = prestatario x prestamo

- (prestatario.nombre-cliente, prestatario.númeropréstamo,préstamo.nombresucursal, préstamo.número-préstamo, préstamo.importe)
- Si hay n_1 tuplas en r y n_2 tuplas en s, el resultado es n_1*n_2 tuplas.

Ļ		

prestamo x prestatario

nombre-cliente	prestatario.número-préstamo	préstamo.número-préstamo	nombre-sucursal	importe
Santos	P-17	P-11	Collado Mediano	900
Santos	P-17	P-14	Centro	1.500
Santos	P-17	P-15	Navacerrada	1.500
Santos	P-17	P-16	Navacerrada	1.300
Santos	P-17	P-17	Centro	1.000
Santos	P-17	P-23	Moralzarzal	2.000
Santos	P-17	P-93	Becerril	500
Gómez	P-23	P-11	Collado Mediano	900
Gómez	P-23	P-14	Centro	1.500
Gómez	P-23	P-15	Navacerrada	1.500
Gómez	P-23	P-16	Navacerrada	1.300
Gómez	P-23	P-17	Centro	1.000
Gómez	P-23	P-23	Moralzarzal	2.000
Gómez	P-23	P-93	Becerril	500
López	P-15	P-11	Collado Mediano	900
López	P-15	P-14	Centro	1.500
López	P-15	P-15	Navacerrada	1.500
López	P-15	P-16	Navacerrada	1.300
López	P-15	P-17	Centro	1.000
López	P-15	P-23	Moralzarzal	2.000
López	P-15	P-93	Becerril	500
	•••		•••	
Valdivieso	P-17	P-11	Collado Mediano	900
Valdivieso	P-17	P-14	Centro	1.500
Valdivieso	P-17	P-15	Navacerrada	1.500
Valdivieso	P-17	P-16	Navacerrada	1.300
Valdivieso	P-17	P-17	Centro	1.000
Valdivieso	P-17	P-23	Moralzarzal	2.000
Valdivieso	P-17	P-93	Becerril	500
Fernández	P-16	P-11	Collado Mediano	900
Fernández	P-16	P-14	Centro	1.500
Fernández	P-16	P-15	Navacerrada	1.500
Fernández	P-16	P-16	Navacerrada	1.300
Fernández	P-16	P-17	Centro	1.000
Fernández	P-16	P-23	Moralzarzal	2.000
Fernández	P-16	P-93	Becerril	500

• 1º - producto cartesiano

$$\sigma_{\text{nombre-sucursal} = \text{``Navacerrada''}}(prestatario \times pr\'{e}stamo)$$

2º -Seleccionar solo los de "Navacerrada"

nombre-cliente	prestatario.número-préstamo	préstamo.número-préstamo	nombre-sucursal	importe
Santos	P-17	P-15	Navacerrada	1.500
Santos	P-17	P-16	Navacerrada	1.300
Gómez	P-23	P-15	Navacerrada	1.500
Gómez	P-23	P-16	Navacerrada	1.300
López	P-15	P-15	Navacerrada	1.500
López	P-15	P-16	Navacerrada	1.300
Sotoca	P-14	P-15	Navacerrada	1.500
Sotoca	P-14	P-16	Navacerrada	1.300
Pérez	P-93	P-15	Navacerrada	1.500
Pérez	P-93	P-16	Navacerrada	1.300
Gómez	P-11	P-15	Navacerrada	1.500
Gómez	P-11	P-16	Navacerrada	1.300
Valdivieso	P-17	P-15	Navacerrada	1.500
Valdivieso	P-17	P-16	Navacerrada	1.300
Fernández	P-16	P-15	Navacerrada	1.500
Fernández	P-16	P-16	Navacerrada	1.300


```
\sigma_{prestatario.n\'umero-pr\'estamo} = pr\'estamo.n\'umero-pr\'estamo 
 (<math>\sigma_{nombre-sucursal} = \text{``Navacestada''} (prestatario \times pr\'estamo))
```

• 4º - Proyección para eliminar los atributos no necesarios

```
\Pi_{nombre-cliente} (\sigma_{prestatario.n\'umero-pr\'estamo} = pr\'estamo.n\'umero-pr\'estamo (\sigma_{nombre-sucursal} = \text{"Navacentada"} (prestatario \times pr\'estamo)))
```

nombre-cliente

Férnandez López

Operación renombrado

- Permite poner nombres a los resultados de las expresiones del álgebra relacional
- Permite referir a una relación por más de un nombre Ejemplo:

$$\rho_{x}(E)$$
 o $X \leftarrow E(esto es asignación)$

Devuelve resultado de la expresión E bajo el nombre X Si la expresión E tiene n atributos, entonces

$$\rho_{X (A1, A2, ..., An)}(E)$$
 o $X(A1,A2, An) \leftarrow E$

Devuelve el resultado de la expresión E bajo el nombre X y con los atributos renombrados como A1, A2,, An.

Operación renombrado

impositor

Impositor		
número-cuenta	nombre-sucursal	saldo
C-101	Centro	500
C-215	Becerril	700
C-102	Navacerrada	400
C-305	Collado Mediano	350
C-201	Galapagar	900
C-222	Moralzarzal	700
C-217	Galapagar	750

- 1º Calcular una relación intermedia que contiene todos los saldos que no son el máximo.
- 2º Realizar la diferencia entre la proyección del saldo de las cuentas y esta relación intermedia
- 3º Renombrar

Operación renombrado

$$\Pi_{cuenta.saldo} \left(\sigma_{cuenta.saldo < d.saldo} \left(cuenta \times \rho_d \left(cuenta \right) \right) \right)$$

saldo
500
400
700
750
350

2º - Calcular el máximo

$$\Pi_{saldo}$$
 (cuenta) – $\Pi_{cuenta.saldo}$ ($\sigma_{cuenta.saldo} < \sigma_{cuenta.saldo}$ (cuenta × ρ_d (cuenta)))

saldo 900

3º Renombrar

$$\rho_{\text{maximo_saldo (máximo)}}$$
 ($\Pi_{\text{saldo (cuenta)}} - \Pi_{\text{cuenta.saldo (ocuenta.saldo (ocu$

Expresiones del algebra relacional

- $E_1 \cup E_2$
- E₁ E₂
- E₁ x E₂
- σ_p (E₁), P un predicado sobre atributos de E₁
- $\Pi_s(E_1)$, S es una lista de atributos de E_1
- ρ_x (E₁), x es el nuevo nombre para el resultado E₁

Operaciones adicionales

No dan más potencia, pero simplifican las expresiones

- Intersección de conjuntos
- Reunión natural
- División
- Asignación.

Se pueden expresar en función de las anteriores

Operación intersección

Definido como:

$$\blacksquare$$
 r \cap s ={ t | t \in r y t \in s }

- rys han de ser compatibles (para la unión):
 - r, s tienen el mismo número de atributos
 - Los atributos de r y s tienen el mismo dominio
- Advertid: $r \cap s = r (r s)$

Operación intersección

Ejemplo: Nombre de clientes que tienen préstamos y cuentas prestatario impositor

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

nombre cliente	número cuenta
Abril	C-102
Gómez	C-101
González	C-201
González	C-217
López	C-222
Rupérez	C-215
Santos	C-305

 $\Pi_{nombre\text{-}cliente}$ (prestatario) $\cap \Pi_{nombre\text{-}cliente}$ (impositor)

Gómez Pérez Santos

Operación reunión natural

Notación: r ⋈ s

Sean r y s relaciones con esquema R y S respectivamente Entonces, $r \bowtie s$ es una relación en el esquema R \cup S obtenida como:

- Considerar tuplas t_r de r y t_s de s.
- Si t_r y t_s tienen el mismo valor en cada uno de los atributos de R \cap S, añadir una tupla t al resultado donde
 - t tiene el mismo valor que t_r en r
 - t tiene el mismo valor que t_s en s

Ejemplo:

$$R = (A, B, C, D)$$

 $S = (E, B, D)$

- Esquema resultante = (A, B, C, D, E)
- r ⋈ s se define como:

$$\prod_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B = s.B} \land_{r.D = s.D} (r \ x \ s))$$

Operación reunión natural

Definición formal: dos relaciones r(R) y s(S), $r \bowtie s$ es una relación del esquema R U S definida por:

$$r \bowtie s = \prod_{R \cup S} (\sigma_{r.A_1 = s.A_1 \land r.A_2 = s.A_2 \land \dots \land r.A_n = s.A_n} (r \times s)$$

donde
$$R \cap S = \{A_1, A_2, \dots, A_n\}$$

Es asociativa:

 \blacksquare Si $R \cap S = \emptyset$, \Rightarrow $r \bowtie s = r \times s$

Operación reunión natural

Ejemplo: Información de todos los préstamos, especificando el nombre del cliente.

prestatario

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

prestamo

número-préstamo	importe
P-11	900
P-14	1.500
P-15	1.500
P-16	1.300
P-17	1.000
P-23	2.000
P-93	500

 $\Pi_{nombre\text{-}cliente, n\'umero\text{-}pr\'estamo, importe}$ (prestatario \bowtie pr\'estamo)

nombre-cliente	número-préstamo	importe
Fernández	P-16	1.300
Gómez	P-23	2.000
Gómez	P-11	900
López	P-15	1.500
Pérez	P-93	500
Santos	P-17	1.000
Sotoca	P-14	1.500
Valdivieso	P-17	1.000

Operación reunión zeta

Notación: $r \bowtie_{\theta} s$

Combina selección y producto cartesiano en una operación.

$$r \bowtie_{\theta} s = \sigma_{\theta} (r x s)$$

Sea r y s relaciones en esquemas R and S respectivamente cuando

•
$$R = (A_1, ..., A_m, B_1, ..., B_n)$$

•
$$S = (B_1, ..., B_n)$$

El resultado de $r \div s$ es una relación del esquema $R - S = (A_1, ..., A_m)$ Una tupla t está en $r \div s$ si se cumple:

Se puede definir en términos del álgebra relacional

$$r \div s = \prod_{R-S} (r) - \prod_{R-S} ((\prod_{R-S} (r) \times s) - (r))$$

Ejemplo: los clientes que tengan abierta una cuenta en todas las sucursales ubicadas en Arganzuela

sucursal

nombre de la sucursal	ciudad de la sucursal	activos
Galapagar	Arganzuela	7.500
Centro	Arganzuela	9.000.000
Becerril	Aluche	2.000
Segovia	Cerceda	3.700.000
Navacerrada	Aluche	1.700.000
Navas de la Asunción	Alcalá de Henares	1.500
Moralzarzal	La Granja	2.500
Collado Mediano	Aluche	8.000.000

■ 1) Sucursales de Arganzuela

$$r_1 = \Pi_{nombre\text{-}sucursal} \left(\sigma_{ciudad\text{-}sucursal\text{ = "Arganzuela"}} \left(sucursal \right) \right)$$

nombre-sucursal
Centro
Galapagar

2) Sucursal de los clientes que tienen cuenta

impositor

Impositor			
nombre cliente	número cuenta		
Abril	C-102		
Gómez	C-101		
González	C-201		
González	C-217		
López	C-222		
Rupérez	C-215		
Santos	C-305		

cuenta

número-cuenta	nombre-sucursal	saldo
C-101	Centro	500
C-215	Becerril	700
C-102	Navacerrada	400
C-305	Collado Mediano	350
C-201	Galapagar	900
C-222	Moralzarzal	700
C-217	Galapagar	750

$$r_2 = \Pi_{nombre\text{-}cliente, nombre\text{-}sucursal}(impositor \bowtie cuenta)$$

nombre-cliente	nombre-sucursal
Abril	Collado Mediano
Gómez	Becerril
González	Centro
González	Galapagar
López	Navacerrada
Rupérez	Moralzarzal
Santos	Galapagar
Valdivieso	Navacerrada

3) todos los clientes que tengan abierta una cuenta en todas las sucursales ubicadas en Arganzuela

nombre-cliente	nombre-sucursal
Abril	Collado Mediano
Gómez	Becerril
González	Centro
González	Galapagar
López	Navacerrada
Rupérez	Moralzarzal
Santos	Galapagar
Valdivieso	Navacerrada

nombre-sucursal
Centro
Galapagar

$$\begin{array}{l} \Pi_{nombre\text{-}cliente,\ nombre\text{-}sucursal}(impositor\bowtie cuenta) \\ \div \Pi_{nombre\text{-}sucursal}\left(\sigma_{ciudad\text{-}sucursal= \text{``Arganzuela"}}(sucursal)\right) \end{array}$$

El resultado es una tupla: González en el esquema nombre_cliente

Operación de asignación

- Escribir consulta como un programa secuencial consistiendo de
 - Una serie de asignaciones
 - Seguidos por una expresión cuyo valor se muestra como un resultado de una consulta
- Asignación se debe de realizar a una variable temporal
- Ejemplo: escribir r ÷ s como

temp1
$$\leftarrow \Pi_{R-S}$$
 (r)
temp2 $\leftarrow \Pi_{R-S}$ ((temp1 x s) $-\Pi_{R-S,S}$ (r))
result = temp1 $-$ temp2

 El resultado de la derecha de ← se asigna a la variable relación temporal de la izquierda.

Operaciones del algebra relacional extendida

- Proyección generalizada
- Funciones agregadas
- Reunión externa

Proyección generalizada

Extiende la operación de proyección permitiendo funciones aritméticas en la lista de proyección

$$\prod_{\mathsf{F1},\mathsf{F2},\ldots,\mathsf{Fn}}(\mathsf{E})$$

- E expresión del álgebra relacional
- Cada F₁, F₂, ..., F_n son expresiones aritméticas que involucran constantes y atributos en el esquema de E
- *Ejemplo:* Informacion_credito

nombre-cliente	límite	saldo-crédito	
Gómez	2.000	400	
López	1.500	1.500	
Pérez	2.000	1.750	
Santos	6.000	700	

∏nombre-cliente, limite – saldo-credito as crédito-disponible (informacion_credito) nombre-cliente | c

nombre-cliente	crédito-disponible
Gómez	1.600
López	0
Pérez	250
Santos	5.300

Funciones agregadas y operaciones

avg: valor medio

min: valor mínimo

max: valor máximo

sum: suma de valores

count: número de valores

Operación agregada en el álgebra relacional

- E es una expresión
- G₁, G₂ ..., G_n lista de atributos en los cuales se agrupa (puede ser vacío)
- Cada F_i es una función agregada
- cada A_i es un nombre de atributo

Funciones agregadas y operaciones

Ejemplo:

trabajo-por-horas

nombre-empleado	nombre-sucursal	sueldo
González	Centro	1.500
Díaz	Centro	1.300
Jiménez	Centro	2.500
Catalán	Leganés	1.600
Cana	Leganés	1.500
Cascallar	Navacerrada	5.300
Fernández	Navacerrada	1.500
Ribera	Navacerrada	1.300

 $G_{\text{sum}(sueldo)}(trabajo-por-horas)$

Resultado: una tupla de valor 16.500

Funciones agregadas y operaciones

 $G_{count-distinct(nombre-sucursal)}(trabajo-por-horas)$

- Resultado: una tupla de valor 3
- Realizar grupos por nombre_sucursal

nombre-empleado	nombre-sucursal	sueldo
González	Centro	1.500
Díaz	Centro	1.300
Jiménez	Centro	2.500
Catalán	Leganés	1.600
Cana	Leganés	1.500
Cascallar	Navacerrada	5.300
Fernández	Navacerrada	1.500
Ribera	Navacerrada	1.300

nombre-sucursal $\mathcal{G}_{sum(sueldo)}$ (trabajo-por-horas)

nombre-sucursal	suma de sueldos
Centro	5.300
Leganés	3.100
Navacerrada	8.100

Funciones agregadas

Resultado de agregación no tiene nombre

- Se puede usar la operación de renombramiento
- Se puede permitir el renombramiento de una función agregada

nombre-sucursal $G_{sum}(sueldo)$ as suma-sueldo, max(sueldo) as sueldo-máximo (trabajo-por-horas)

nombre-sucursal	suma-sueldo	sueldo-máximo
Centro	5.300	2.500
Leganés	3.100	1.600
Navacerrada	8.100	5.300

Reunión externa

- Realiza la reunión y añade las tuplas de una relación que no coincide con el atributo de la reunión
- Usa valores nulos (null):
 - null significa valor desconocido o que no existe
 - todas las comparaciones en que interviene null son false por definición
- Por la izquierda, por la derecha y completa

Reunión externa

Ejemplo empleado

nombre-empleado	calle	ciudad
Segura	Tebeo	La Loma
Domínguez	Viaducto	Villaconejos
Gómez	Bailén	Alcorcón
Valdivieso	Fuencarral	Móstoles

trabajo-a-tiempo-completo

nombre-empleado	nombre-sucursal	sueldo
Segura	Majadahonda	1.500
Domínguez	Majadahonda	1.300
Barea	Fuenlabrada	5.300
Valdivieso	Fuenlabrada	1.500

■ Reunión empleado ⋈ trabajo-a-tiempo-completo

nombre-empleado	calle	ciudad	nombre-sucursal	sueldo
Segura	Tebeo	La Loma	Majadahonda	1.500
Domínguez	Viaducto	Villaconejos	Majadahonda	1.300
Valdivieso	Fuencarral	Móstoles	Fuenlabrada	1.500

R externa completa (⋈) empleado ⋈ trabajo-a-tiempo-completo

nombre-empleado	calle	ciudad	nombre-sucursal	sueldo
Segura	Tebeo	La Loma Villaconejos Móstoles Alcorcón nulo	Majadahonda	1.500
Domínguez	Viaducto		Majadahonda	1.300
Valdivieso	Fuencarral		Fuenlabrada	1.500
Gómez	Bailén		<i>nulo</i>	nulo
Barea	nulo		Fuenlabrada	5.300

Reunión externa

Reunión externa por la izquierda: (⋈) trabaio-a-tiempo-completo

empleado

nombre-empleado	calle	ciudad
Segura	Tebeo	La Loma
Domínguez	Viaducto	Villaconejos
Gómez	Bailén	Alcorcón
Valdivieso	Fuencarral	Móstoles

uavajv-a-uc	CiO	
nombre-empleado	nombre-sucursal	sueldo
Segura	Majadahonda	1.500
Domínguez	Majadahonda	1.300
Barea	Fuenlabrada	5.300
Valdivieso	Fuenlabrada	1.500

empleado ≥ trabajo-a-tiempo-completo

nombre-empleado	calle	ciudad	nombre-sucursal	sueldo
Segura	Tebeo	La Loma	Majadahonda	1.500
Domínguez	Viaducto	Villaconejos	Majadahonda	1.300
Valdivieso	Fuencarral	Móstoles	Fuenlabrada	1.500
Gómez	Bailén	Alcorcón	<i>nulo</i>	nulo

Reunión externa por la derecha (⋈)

nombre-empleado	calle	ciudad	nombre-sucursal	sueldo
Segura	Tebeo	La Loma	Majadahonda	1.500
Domínguez	Viaducto	Villaconejos	Majadahonda	1.300
Valdivieso	Fuencarral	Móstoles	Fuenlabrada	1.500
Barea	nulo	nulo	Fuenlabrada	5.300

Valores nulos

- Es posible tener valores nulos en ciertas tuplas para ciertos atributos
- null significa valor desconocido o que no existe
- El resultado de una expresión aritmética que conlleva null es null.
- Las funciones agregadas ignoran esos valores
- Para eliminación de duplicados y agrupamiento, null se trata como otro valor y dos nulos son el mismo valor.

Valores nulos

- Comparaciones con valor nulo devuelven nulo
- Operadores OR, AND, NOT null = unknown:
 - OR: (unknown **or** true) = true, (unknown **or** false) = unknown (unknown **or** unknown) = unknown
 - AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown
 - *NOT*: (*not* unknown) = unknown
 - En SQL "P is unknown" puede ser true si P es unknown
- lacksquare $\sigma_{D}(\mathbf{E})$ si p es falso o unknown no añade la tupla
- Reunión como la selección
- Proyección como otro valor
- Unión, Intersección, Diferencia como otro valor

Valores nulos

- Tuplas duplicadas con valores nulos como en la proyección
- En operaciones agregadas ⇒ se borran los nulos antes de la agregación

Reunión externa

- Como las operaciones de reunión.
- Excepto con las tuplas que no aparecen en el resultado
- Se añaden con nulos dependiendo si es: izquierda, derecha o total.

Borrado, Inserción y Modificación

$$r \leftarrow r - E$$

donde r es la relación y E una expresión Sólo se pueden borrar tuplas enteras. No valores de atributos Ejemplo:

$$impositor \leftarrow impositor - \sigma_{nombre-cliente}$$

= $_{\text{G\'omez}}$ $(impositor)$

Inserción:

$$r \leftarrow r \cup E$$

Ejemplo:

 $cuenta \leftarrow cuenta \cup \{(C-973, «Navacerrada», 1200)\}$ $impositor \leftarrow impositor \cup \{(«Gómez», C-973)\}$

Borrado, Inserción y Modificación

Modificación:

$$r \leftarrow \Pi_{F_1, F_2, \dots, F_n}(r)$$

donde F_i son expresiones que involucran constantes y atributos de r

Para varias tuplas de r:

$$r \leftarrow \Pi_{F_1, F_2, \dots, F_n} (\sigma_P(r)) \cup (r - \sigma_P(r))$$

Ejemplo:

$$cuenta \leftarrow \Pi_{nombre-sucursal, n\'imero-cuenta, saldo, saldo * 1.05} (cuenta)$$

cuenta
$$\leftarrow \Pi_{NS, NC, saldo * 1.06} (\sigma_{saldo > 10000} (cuenta)) \cup$$

cuenta $\leftarrow \Pi_{NS, NC, saldo * 1.05} (\sigma_{saldo \le 10000} (cuenta))$

- Hasta ahora se ha operado en el nivel lógico (relaciones)
- En algunos casos no es deseable que todos los usuarios vean todo el modelo lógico de la base de datos
- Vista: relación que no forma parte del modelo conceptual pero que se hace visible al usuario como una relación virtual

create view v as <Expresión de consulta>

donde < Expresión de consulta > es cualquier expresión de consulta legal del álgebra relacional.

create view todos-los-clientes as

 $\Pi_{nombre-sucursal, nombre-cliente}$ (impositor \bowtie cuenta) $\cup \Pi_{nombre-sucursal, nombre-cliente}$ (prestatario \bowtie préstamo)

Una vez creada, se puede utilizar

$$\Pi_{nombre\text{-}cliente} (\sigma_{nombre\text{-}sucursal} = \text{``Navaceitada''} (todos\text{-}los\text{-}clientes))$$

- No se guarda el resultado
- Se guarda la definición de la vista
- Algunos SBGD permiten guardar el resultado ⇒ vistas materializadas/mantenimiento de vistas/instantanea/snapshot
- lacktriangle Actualizaciones sobre vistas \Rightarrow sobre las relaciones reales

```
create view préstamo-sucursal as \Pi_{nombre-sucursal, número-préstamo} (préstamo) préstamo-sucursal ← préstamo-sucursal ← préstamo-sucursal ← <math>P-37, «Navacerrada»)}
```

- Se puede permitir, pero la tupla sería:(P-37,Navacerrada,null)
- No se puede permitir

Otro problema:

create view información-crédito as

 $\Pi_{nombre\text{-}cliente, importe}(prestatario \bowtie préstamo)$

 $información-crédito \leftarrow información-crédito$ $\cup \{(\text{«González»}, 1900)\}$

- Habría que insertar: (González, nulo) y (nulo, nulo, 1900)
- No se consigue la tupla deseada (González,1900)
- Generalmente no se permite actualización sobre vistas
- Se puede definir vistas sobre otras vistas, pero sin recursividad

create view todos-los-clientes as

```
\Pi_{nombre-sucursal, nombre-cliente} (impositor \bowtie cuenta) \cup \Pi_{nombre-sucursal, nombre-cliente} (prestatario \bowtie préstamo)
```

create view cliente-navacerrada as

 $\Pi_{nombre\text{-}cliente}(\sigma_{nombre\text{-}sucursal} = \text{``Navace}\Piada'')$ (todos-los-clientes))

Procedimiento expansión de vistas

 $\sigma_{nombre\text{-}cliente = \text{"Martin"}}(cliente\text{-}navacerrada)$

 $\sigma_{nombre\text{-}cliente} = \text{``Martin''} (\Pi_{nombre\text{-}cliente} (\sigma_{nombre\text{-}sucursal} = \text{``Navaceitada''} (todos\text{-}los\text{-}clientes)))$

 $\sigma_{nombre\text{-}cliente} = {}_{\text{*Martin}} (\Pi_{nombre\text{-}cliente} (\sigma_{nombre\text{-}sucursal} = {}_{\text{*Navace}_{\Pi}ada}) (\Pi_{nombre\text{-}sucursal, nombre\text{-}cliente} (impositor \bowtie cuenta) \cup \Pi_{nombre\text{-}sucursal, nombre\text{-}cliente} (prestatario \bowtie préstamo))))$

Lenguaje de consultas no procedimental

$$\{t \mid P(t)\}$$

- Todas las tuplas t que cumplen el predicado P
- t[A] ,valor de la tupla en el atributo A
- t∈r, tupla t contenida en la relación r
- Ejemplo:

```
\{t \mid t \in pr\'{e}stamo \land t[importe] > 1200\}
```

■ Constructor $\exists \Rightarrow \exists t \in r(Q(t))$

```
\{t \mid \exists \ s \in pr\'{e}stamo \ (t[n\'{u}mero-pr\'{e}stamo] \\ = s[n\'{u}mero-pr\'{e}stamo] \land s[importe] > 1200)\}
```

La tupla t tiene solo el atributo numero_prestamo

Operador ∧ (y) Préstamos de Navacerrada

```
\{t \mid \exists \ s \in prestatario \ (t[número-préstamo] = s[número-préstamo] \land \exists \ u \in préstamo \ (u[número-préstamo] = s[número-préstamo] \land u[nombre-sucursal] = «Navacerrada»))\}
```

Operador v (o): Nombre de todos los clientes (impositores y prestatarios)

```
\{t \mid \exists \ s \in prestatario \ (t[nombre-cliente] = s[nombre-cliente]) \lor \exists \ u \in impositor \ (t[nombre-cliente] = u[nombre-cliente])\}
```

• Operador ¬ (no): Nombre de los clientes que no tienen préstamos

```
\{t \mid \exists u \in impositor (t[nombre-cliente] = u[nombre-cliente]) \land \neg \exists s \in prestatario (t[nombre-cliente] = s[nombre-cliente])\}
```


- Consultas con dos relaciones.
 - Operador \Rightarrow , $P \Rightarrow Q$ equivale $a \neg (P) \lor Q$
 - Constructor ∀

$$\forall t \in r(Q(t))$$

- Determinar todos los clientes que tienen una cuenta en todas las sucursales de Arganzuela.
- Reformulado, determinar los clientes tales que no existe una sucursal en Arganzuela, en la cual no tengan cuenta

```
\{t \mid \exists \ r \in cliente \ (r[nombre-cliente] \}
= t[nombre-cliente] \land (\forall \ u \in sucursal \ (u[ciudad-sucursal] = \text{`Arganzuela"} \Rightarrow \exists \ s \in impositor \ (t[nombre-cliente] = s[nombre-cliente] \land \exists \ w
∈ cuenta \ (w[número-cuenta] = s[número-cuenta] \land w[nombre-sucursal] = u[nombre-sucursal]))))
```

Diapositiva 52

Para Determinar todos los clientes que tienen una cuenta en todas las sucursales de Arganzuela. Es decir, no existe una sucursal en Arganzuela para la que no tengan cuenta Rpr; 28/03/2011

$$\{t \mid P(t)\}$$

P es una fórmula

 $t \in pr\acute{e}stamo \land \exists s \in cliente (t[nombre-sucursal] = s[nombre-sucursal])$

- t es una variable libre
- s es una variable ligada (con ∃ ó ∀)
- Las fórmulas se construyen con átomos:
 - S∈ r
 - s[x] op u[y], donde op es operador comparación.
 - s[x] op cte , donde cte es un valor del dominios de x
- Fórmulas con formulas son fórmulas: P₁ ∧ P₂

Las expresiones del cáculo relacional pueden generar expresiones infinitas

$$\{t \mid \neg (t \in pr\acute{e}stamo)\}\$$

- Infinitas tuplas que no están en préstamo ⇒ dominio de la fórmula , dom(P)
- dom(P) ⇒ conjunto de todos los valores a los que P hace referencia

$$dom(t \in pr\acute{e}stamo \land t[importe] > 1200)$$

- dom(¬ (t ∈ préstamo)), conjunto de todos los valores que aparecen en préstamo
- {t | P(t)} es segura, si todos los valores que aparecen en el resultado pertenecen a dom(P)

Cálculo relacional de dominios

- Utiliza variables dominio ⇒ los valores del dominio de los atributos
- Relacionado con el cálculo relacional de tuplas

$$\{\langle x_1, x_2, ..., x_n \rangle \mid P(x_1, x_2, ..., x_n)\}$$

- $x_1, x_2, ..., x_n$ son variable dominio y P una fórmula
- Ejemplos:

$$\{ < p, s, i > | < p, s, i > \in pr\'{e}stamo \land i > 1200 \}$$

$$\{ | \exists s, i (< p, s, i > \in pr\'{e}stamo \land i > 1200) \}$$

Cálculo relacional de dominios

```
\{ < n, c > | \exists l \ (< n, p > \in prestatario \land \exists s \ (< p, s, i > \in préstamo \land s = «Navacerrada»)) \}
\{ < n > | \exists p \ (< n, p > \in prestatario \land \exists s, i \ (< p, s, i > \in préstamo \land s = «Navacerrada»)) \land \exists c \ (< n, c > \in impositor \land \exists s, i \ (< c, s, i > \in cuenta \land s = «Navacerrada»)) \}
\{ < c > | \exists s, t \ (< c, s, t > \in cliente) \land \forall x, y, z \ (< x, y, z > \in sucursal) \land y = «Arganzuela» \Rightarrow \exists a, b \ (< x, a, b > \in cuenta \land (< c, a > \in impositor)) \}
```


Cálculo relacional de dominios

- Todos los valores que aparecen en las tuplas de la expresión son valores de dom(P).
- 2. Para cada subfórmula «existe» de la forma $\exists x$ $(P_1(x))$, la subfórmula es cierta si y sólo si hay un valor x en $dom(P_1)$ tal que $P_1(x)$ es verdadero.
- 3. Para cada subfórmula «para todo» de la forma ∀ x (P₁(x)), la subfórmula es verdadera si y sólo si P₁(x) es verdadero para todos los valores x de dom(P₁).