Orientação de uma Superfície Fluxo e Integral de superfície de 2.ª espécie Teorema do Divergente Teorema de Stokes

Análise Matemática III Integrais de superfície de 2.ª espécie

Ricardo Moura

Escola Naval

16 de dezembro de 2021

Orientação de uma Superfície

Uma superfície é dita orientável se pudermos definir um vetor \mathbf{N} , um vetor normal, para cada ponto de forma que estes vetores variem continuamente sobre S.

Uma superfície orientada tem sempre dois lados distintos (dentro e fora ou cima e baixo). Considera-se positivo ou quando aponta para cima ou quando aponta para fora, respetivamente, para superfícies abertas e fechadas.

Orientação de uma Superfície

Estando perante uma superfície regular S parametrizada por $\mathbf{r}(u, v)$, os vetores normais serão dados por

$$N = r_u \times r_v$$

е

$$\mathbf{N} = \mathbf{r}_{v} \times \mathbf{r}_{u} = -\mathbf{r}_{u} \times \mathbf{r}_{v}$$

e os seus vetores unitários serão dados por

$$\mathbf{n} = \frac{\mathbf{r}_u \times \mathbf{r}_v}{||\mathbf{r}_u \times \mathbf{r}_v||}$$

e

$$\mathbf{n} = \frac{\mathbf{r}_{v} \times \mathbf{r}_{u}}{||\mathbf{r}_{v} \times \mathbf{r}_{u}||} = -\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{||\mathbf{r}_{u} \times \mathbf{r}_{v}||}$$

Se submergirmos uma superfície num fluído, que possui um campo de velocidades contínuo **F**, a quantidade de fluído que atravessa essa região por unidade de tempo pode ser calculada através desse campo de velocidades e através do vetor normal associado à superfície.

$$\Delta V = (\text{Área da base})(\text{altura}) = \Delta S \mathbf{F}_n$$

Definição

Seja $\mathbf{F}(x, y, z) = (M, N, P)$, onde M, N e Q têm derivadas parciais de primeira ordem contínuas numa superfície S orientada pelo vetor unitário normal \mathbf{n} , o fluxo de \mathbf{F} através de S é dado por

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dS.$$

Definição

Seja $\mathbf{F}(x, y, z) = (M, N, P)$, onde M, N e Q têm derivadas parciais de primeira ordem contínuas numa superfície S orientada pelo vetor unitário normal \mathbf{n} , o fluxo de \mathbf{F} através de S é dado por

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dS.$$

Nota: Tendo em conta de que $dS = ||\mathbf{r}_u \times \mathbf{r}_v|| dA$, então

$$\iint_{S} \mathbf{F}.\mathbf{n} dS = \iint_{S} \mathbf{F} \cdot \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{||\mathbf{r}_{u} \times \mathbf{r}_{v}||} ||\mathbf{r}_{u} \times \mathbf{r}_{v}|| dA = \iint_{S} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA$$

Definição

Seja $\mathbf{F}(x, y, z) = (M, N, P)$, onde M, N e Q têm derivadas parciais de primeira ordem contínuas numa superfície S orientada pelo vetor unitário normal \mathbf{n} , o fluxo de \mathbf{F} através de S é dado por

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dS.$$

Nota2: Se $\rho(x,y,z)$ for a densidade do fluído, então $\iint_S \rho \mathbf{F} \cdot \mathbf{n} dS$ representa a massa do fluído que escoa através da superfície S por unidade de tempo.

Exemplo

Seja S definida por $z=4-x^2-y^2$ acima de xOy, orientada positivamente. Determine a taxa de escoamento da massa fluída através de S, para um fluído com densidade contante k que escoa sob o efeito do campo vetorial $\mathbf{F}(x,y,z)=(x,y,z)$.

$$\mathbf{r}(x,y) = (x, y, 4-x^2-y^2), -2 \le x \le 2, -\sqrt{2-x^2} \le y \le \sqrt{2-x^2}$$

Resolução 1: Considere-se

$$\mathbf{r}(x,y) = (x,y,4-x^2-y^2), -2 \le x \le 2, -\sqrt{2-x^2} \le y \le \sqrt{2-x^2}$$

Temos

$$\mathbf{r}_{x}=(1,0,-2x)$$

е

$$\mathbf{r}_y = (0, 1, -2y),$$

logo

$$\mathbf{r}_{x}\times\mathbf{r}_{y}=(2x,2y,1).$$

Repare-se que a componente z do vetor normal de S é positivo, logo está a apontar para cima(positivo).

Resolução 1:

Portanto, a taxa de escoamento da massa fluída é calculada da seguinte forma:

$$\iint_{S} k(x, y, 4 - x^2 - y^2) \cdot (2x, 2y, 1) dA$$

Resolução 1:

Portanto, a taxa de escoamento da massa fluída é calculada da seguinte forma:

$$\iint_{S} k(x, y, 4 - x^{2} - y^{2}) \cdot (2x, 2y, 1) dA$$

$$= k \iint_{S} 4 + x^{2} + y^{2} dA = k \int_{0}^{2\pi} \int_{0}^{2} (4 + \rho^{2}) \rho d\rho d\theta = 24k\pi,$$

notando que foi necessário recorrer à mudança de coordenadas.

Resolução 2: Considere-se $\mathbf{r}(\rho,\theta)=(\rho\cos(\theta),\rho\sin(\theta),4-\rho^2), 0\leq\theta\leq2\pi,0\leq\rho\leq2$

Resolução 2: Considere-se

$$\mathbf{r}(\rho,\theta) = (\rho\cos(\theta),\rho\sin(\theta),4-\rho^2), 0 \le \theta \le 2\pi, 0 \le \rho \le 2$$

Temos

$$\mathbf{r}_{\rho} = (\cos(\theta), \sin(\theta), -2\rho)$$

е

$$\mathbf{r}_{\theta} = (-\rho \sin(\theta), \rho \cos(\theta), 0),$$

logo

$$\mathbf{r}_{\rho} \times \mathbf{r}_{\theta} = (2\rho^2 \cos(\theta), 2\rho^2 \sin(\theta), \rho).$$

Repare-se que a componente z do vetor normal de S também é positiva, logo está a apontar para cima(positiva).

Resolução 2:

Portanto, a taxa de escoamento da massa fluída é calculada da seguinte forma:

$$\iint_{S} k(\rho\cos(\theta), \rho\sin(\theta), 4 - \rho^{2}) \cdot (2\rho^{2}\cos(\theta), 2\rho^{2}\sin(\theta), \rho) dA$$

Resolução 2:

Portanto, a taxa de escoamento da massa fluída é calculada da seguinte forma:

$$\iint_{S} k(\rho \cos(\theta), \rho \sin(\theta), 4 - \rho^{2}) \cdot (2\rho^{2} \cos(\theta), 2\rho^{2} \sin(\theta), \rho) dA$$
$$= k \int_{0}^{2\pi} \int_{0}^{2} 4\rho + \rho^{3} d\rho d\theta = 24k\pi,$$

notando que não foi necessário recorrer à mudança de coordenadas, mas foi como se o tivéssemos feito aquando da parametrização.

Exemplo

Determine o fluxo sobre a esfera S descrita por

$$x^2 + y^2 + z^2 = a^2,$$

onde **F** é um campo vetorial (inverso do quadrado) definido por

$$\mathbf{F} = \frac{kq}{||\mathbf{v}||^2} \frac{\mathbf{v}}{||\mathbf{v}||},$$

onde k e q são constantes e $\mathbf{v} = (x, y, z)$. Considere S orientada pela normal apontando para o exterior.

Resolução:
$$\mathbf{r}(u, v) = (a \sin(u) \cos(v), a \sin(u) \sin(v), a \cos(u)), u \in [0, \pi], v \in [0, 2\pi]$$

$$\mathbf{r}_{u} \times \mathbf{r}_{v} = a^{2}(\sin^{2}(u)\sin(v), \sin^{2}(u)\sin(v), \sin(u)\cos(u))$$

$$\mathbf{F}(\mathbf{r}(u, v)) = \frac{kq\mathbf{r}(u, v)}{||\mathbf{r}(u, v)||^{3}} = \frac{kq}{a^{2}}(\sin(u)\cos(v), \sin(u)\sin(v), \cos(u))$$

$$\mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) = kq\sin(u)$$

Logo, o fluxo é dado por $\iint_{S} \mathbf{F} \cdot \mathbf{n} dS = \int_{0}^{2\pi} \int_{0}^{\pi} kq \sin(u) du dv = 4\pi kq, \text{ independente do raio da esfera.}$

Nota: Se **E** for um campo elétrico, em conjunto com as Leis de Coulomb, temos uma das leis básicas da eletrostática, a Lei de Gauss:

$$\iint_{S} \mathbf{E} \cdot \mathbf{n} dS = 4\pi kq$$

onde q é uma carga localizada no centro da esfera e k é a constante de Coulomb. Esta lei é mais genérica, para superfícies que contenham a origem do referencial e que q esteja no interior.

Teorema 1: Teorema do Divergente

Seja R uma região sólida limitada por S, uma superfície fechada, orientada para fora, seja \mathbf{F} um campo vetorial cujas componentes tem derivadas parciais contínuas em R, então

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dS = \iiint_{R} div \mathbf{F} dV.$$

Exemplo

Seja R o sólido limitado pelos planos coordenados e por 2x + 2y + z = 6 e $\mathbf{F}(x,y,z) = (x,y^2,z)$. Calcule $\iint_S \mathbf{F.n}dS$, onde \mathbf{n} aponta para fora e S é a fronteira do sólido.

Exemplo

Seja R o sólido limitado pelos planos coordenados e por 2x + 2y + z = 6 e $\mathbf{F}(x, y, z) = (x, y^2, z)$. Calcule $\iint_S \mathbf{F.n} dS$, onde \mathbf{n} aponta para fora e S é a fronteira do sólido.

Seria necessário calcular quatro integrais de superfície, mas pelo teorema do divergente,

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dS = \iiint_{R} div \mathbf{F} dV = \int_{0}^{3} \int_{0}^{3-y} \int_{0}^{6-2x-2y} \nabla \cdot \mathbf{F} dz dy dx = \frac{63}{2}$$

Exemplo

Verifique o teorema do divergente para o sólido limitado pelo paraboloide $z = 4 - x^2 - y^2$ e o plano xOy, considerando

$$\mathbf{F}(x,y,z) = 2z\mathbf{e}_1 + x\mathbf{e}_2 + y^2\mathbf{e}_3.$$

Nota: O divergente num ponto (x_0, y_0, z_0) na realidade representa o fluxo por unidade de volume nesse ponto, e pode ser classificado como fonte, se $div \mathbf{F} > 0$, sorvedouro/sumidouro, se $div \mathbf{F} < 0$, e quando é igual a zero classifica-se como incompressível. Na hidrodinâmica, a fonte é o local onde o fluído é inserido na região e sumidouro é o local onde o fluído é retirado da região.

A versão tridimensional do Teorema de Green é apresentada através o Teorema de Stokes.

Da mesma forma que o Teorema de Green relaciona um integral de linha de 2.ª espécie com um integral duplo, o Teorema de Stokes relaciona um integral de linha de 2.ª espécie com um integral de superfície de 2.ª espécie.

Teorema 2: Teorema de Stokes

Seja S uma superfície orientada com vetor normal unitário \mathbf{n} , cuja fronteira é uma curva fechada simples e regular (ou seccionalmente), com orientação positiva em relação a \mathbf{n} , seja \mathbf{F} um campo vetorial cujas componentes têm derivadas parciais contínuas sobre o região aberta S e C, então

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\mathbf{rot} \ \mathbf{F}) \cdot \mathbf{n} \ dS$$

Exemplo

Seja C o triângulo orientado, contido em 2x + 2y + z = 6, efetuando a interseção deste plano, alternadamente, com os planos ordenados. Calcule $\int_C \mathbf{F} \cdot d\mathbf{r}$, para $\mathbf{F} = (-y^2, z, x)$. [R:-9]

Exemplo

Verifique o Teorema de Stokes para $\mathbf{F}(x,y,z)=2z\mathbf{i}+x\mathbf{j}+y^2\mathbf{k}$, onde S é a superfície do paraboloide $z=4-x^2-y^2$ e C é a interseção de S com o plano xOy. [R:4 π]

Nota: É possível chamar ao produto interno de um rotacional num ponto P_0 pela normal à superfície

rot
$$F(P_0) \cdot n$$

a densidade de circulação de ${\bf F}$ em P_0 na direção de ${\bf n}$. Ou seja, este valor irá atingir a máxima densidade de circulação quando ${\bf n}$ estiver na mesma direção de ${\bf F}(P_0)$, concluindo que quando perante um fluxo constante de um fluído a densidade de circulação deste atingirá um máximo quando estiver na direção do rotacional.

