Rank-67107 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_2 + X_1^2 X_3 + X_0 X_2^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(8)$ is -1859841459

General information

Number of lines	6
Number of points	89
Number of singular points	1
Number of Eckardt points	1
Number of double points	6
Number of single points	39
Number of points off lines	43
Number of Hesse planes	0
Number of axes	0
Type of points on lines	96
Type of lines on points	$3, 2^6, 1^{39}, 0^{43}$

Singular Points

The surface has 1 singular points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 6 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{74} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{74} = \mathbf{Pl}(1, 0, 1, 0, 0, 1)_{665}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4672} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4672} = \mathbf{Pl}(0, 0, 0, 0, 0, 1)_{649}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{72} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{72} = \mathbf{Pl}(0, 0, 0, 0, 1, 0)_{81}$$

$$\ell_{4} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4744} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4744} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_{1}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{656} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{656} = \mathbf{Pl}(0, 1, 0, 0, 1, 0)_{89}$$

Rank of lines: (0, 74, 4672, 72, 4744, 656)

Rank of points on Klein quadric: (0, 665, 649, 81, 1, 89)

Eckardt Points

The surface has 1 Eckardt points: $0: P_3 = \mathbf{P}(0, 0, 0, 1) = \mathbf{P}(0, 0, 0, 1).$

Double Points

The surface has 6 Double points: The double points on the surface are:

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_1$$

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_3$$

$$P_{19} = (0, 1, 1, 0) = \ell_1 \cap \ell_2$$

 $P_{12} = (1, 0, 1, 0) = \ell_1 \cap \ell_5$ $P_2 = (0, 0, 1, 0) = \ell_2 \cap \ell_4$

Single Points

The surface has 39 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_6 = (2,1,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_7 = (3,1,0,0) \ \text{lies on line} \ \ell_0 \\ 2: \ P_8 = (4,1,0,0) \ \text{lies on line} \ \ell_0 \\ 3: \ P_9 = (5,1,0,0) \ \text{lies on line} \ \ell_0 \\ 4: \ P_{10} = (6,1,0,0) \ \text{lies on line} \ \ell_0 \\ 5: \ P_{11} = (7,1,0,0) \ \text{lies on line} \ \ell_0 \\ 6: \ P_{27} = (0,2,1,0) \ \text{lies on line} \ \ell_2 \\ 7: \ P_{30} = (3,2,1,0) \ \text{lies on line} \ \ell_1 \\ 8: \ P_{35} = (0,3,1,0) \ \text{lies on line} \ \ell_2 \\ 9: \ P_{37} = (2,3,1,0) \ \text{lies on line} \ \ell_1 \\ 10: \ P_{43} = (0,4,1,0) \ \text{lies on line} \ \ell_2 \\ 11: \ P_{48} = (5,4,1,0) \ \text{lies on line} \ \ell_1 \\ 12: \ P_{51} = (0,5,1,0) \ \text{lies on line} \ \ell_2 \\ 13: \ P_{55} = (4,5,1,0) \ \text{lies on line} \ \ell_1 \\ 14: \ P_{59} = (0,6,1,0) \ \text{lies on line} \ \ell_2 \end{array}$

15: $P_{66} = (7, 6, 1, 0)$ lies on line ℓ_1 16: $P_{67} = (0, 7, 1, 0)$ lies on line ℓ_2 17: $P_{73} = (6, 7, 1, 0)$ lies on line ℓ_1 18: $P_{75} = (1, 0, 0, 1)$ lies on line ℓ_3 19: $P_{76} = (2, 0, 0, 1)$ lies on line ℓ_3 20: $P_{77} = (3, 0, 0, 1)$ lies on line ℓ_3 21: $P_{78} = (4, 0, 0, 1)$ lies on line ℓ_3 22: $P_{79} = (5, 0, 0, 1)$ lies on line ℓ_3 23: $P_{80} = (6, 0, 0, 1)$ lies on line ℓ_3 24: $P_{81} = (7, 0, 0, 1)$ lies on line ℓ_3 25: $P_{138} = (0, 0, 1, 1)$ lies on line ℓ_4 26: $P_{139} = (1, 0, 1, 1)$ lies on line ℓ_4 27: $P_{201} = (0, 0, 2, 1)$ lies on line ℓ_4 28: $P_{203} = (2, 0, 2, 1)$ lies on line ℓ_5 29: $P_{265} = (0, 0, 3, 1)$ lies on line ℓ_4

```
\begin{array}{lll} 30: \ P_{268} = (3,0,3,1) \ \text{lies on line} \ \ell_5 \\ 31: \ P_{329} = (0,0,4,1) \ \text{lies on line} \ \ell_4 \\ 32: \ P_{333} = (4,0,4,1) \ \text{lies on line} \ \ell_5 \\ 33: \ P_{393} = (0,0,5,1) \ \text{lies on line} \ \ell_4 \\ 34: \ P_{398} = (5,0,5,1) \ \text{lies on line} \ \ell_5 \\ 34: \ P_{398} = (5,0,5,1) \ \text{lies on line} \ \ell_5 \\ 35: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 36: \ P_{521} = (0,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \ell_5 \\ 38: \ P_{528} = (7,0,7,1) \ \text{lies on line} \ \text
```

The single points on the surface are:

Points on surface but on no line

The surface has 43 points not on any line: The points on the surface but not on lines are:

```
0: P_4 = (1, 1, 1, 1)
                                                                  22: P_{389} = (4,7,4,1)
1: P_{158} = (5, 2, 1, 1)
                                                                  23: P_{392} = (7,7,4,1)
2: P_{159} = (6, 2, 1, 1)
                                                                  24: P_{410} = (1, 2, 5, 1)
3: P_{172} = (3,4,1,1)
                                                                  25: P_{415} = (6, 2, 5, 1)
4: P_{175} = (6, 4, 1, 1)
                                                                  26: P_{436} = (3, 5, 5, 1)
5: P_{196} = (3, 7, 1, 1)
                                                                  27: P_{446} = (5, 6, 5, 1)
6: P_{198} = (5, 7, 1, 1)
                                                                  28: P_{447} = (6, 6, 5, 1)
7: P_{213} = (4, 1, 2, 1)
                                                                  29: P_{450} = (1, 7, 5, 1)
                                                                  30: P_{452} = (3,7,5,1)
8: P_{216} = (7, 1, 2, 1)
9: P_{224} = (7, 2, 2, 1)
                                                                  31: P_{474} = (1, 2, 6, 1)
10: P_{235} = (2, 4, 2, 1)
                                                                  32: P_{478} = (5, 2, 6, 1)
11: P_{237} = (4, 4, 2, 1)
                                                                  33: P_{484} = (3, 3, 6, 1)
                                                                  34: P_{487} = (6, 3, 6, 1)
12: P_{295} = (6, 3, 3, 1)
13: P_{298} = (1, 4, 3, 1)
                                                                  35: P_{490} = (1, 4, 6, 1)
14: P_{303} = (6, 4, 3, 1)
                                                                  36: P_{492} = (3,4,6,1)
15: P_{308} = (3, 5, 3, 1)
                                                                  37: P_{510} = (5, 6, 6, 1)
16: P_{310} = (5, 5, 3, 1)
                                                                  38: P_{531} = (2, 1, 7, 1)
17: P_{322} = (1,7,3,1)
                                                                  39: P_{533} = (4,1,7,1)
18: P_{326} = (5, 7, 3, 1)
                                                                  40: P_{539} = (2, 2, 7, 1)
                                                                  41: P_{544} = (7, 2, 7, 1)
19: P_{339} = (2, 1, 4, 1)
20: P_{344} = (7, 1, 4, 1)
                                                                  42: P_{581} = (4,7,7,1)
21: P_{363} = (2, 4, 4, 1)
```

Line Intersection Graph

	012345
0	011100
1	101001
2	110010
3	100011
4	001101
5	$\begin{array}{c} 011100 \\ 10101 \\ 110010 \\ 100011 \\ 001101 \\ 010110 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_5	P_1	P_0

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_5
in point	P_5	P_{19}	P_{12}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_4
in point	P_1	P_{19}	P_2

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5
in point	P_0	P_3	P_3

Line 4 intersects

Line	ℓ_2	ℓ_3	ℓ_5
in point	P_2	P_3	P_3

Line 5 intersects

Line	ℓ_1	ℓ_3	ℓ_4
in point	P_{12}	P_3	P_3

The surface has 89 points: The points on the surface are:

$0: P_0 = (1,0,0,0)$	$30: P_{79} = (5,0,0,1)$	$60: P_{344} = (7, 1, 4, 1)$
$1: P_1 = (0, 1, 0, 0)$	$31: P_{80} = (6,0,0,1)$	$61: P_{363} = (2,4,4,1)$
$2: P_2 = (0, 0, 1, 0)$	$32: P_{81} = (7,0,0,1)$	$62: P_{389} = (4,7,4,1)$
$3: P_3 = (0,0,0,1)$	$33: P_{138} = (0,0,1,1)$	$63: P_{392} = (7,7,4,1)$
$4: P_4 = (1, 1, 1, 1)$	$34: P_{139} = (1,0,1,1)$	$64: P_{393} = (0, 0, 5, 1)$
$5: P_5 = (1, 1, 0, 0)$	$35: P_{158} = (5, 2, 1, 1)$	$65: P_{398} = (5, 0, 5, 1)$
$6: P_6 = (2, 1, 0, 0)$	$36: P_{159} = (6, 2, 1, 1)$	$66: P_{410} = (1, 2, 5, 1)$
$7: P_7 = (3, 1, 0, 0)$	$37: P_{172} = (3, 4, 1, 1)$	$67: P_{415} = (6, 2, 5, 1)$
$8: P_8 = (4, 1, 0, 0)$	$38: P_{175} = (6, 4, 1, 1)$	$68: P_{436} = (3, 5, 5, 1)$
$9: P_9 = (5, 1, 0, 0)$	$39: P_{196} = (3, 7, 1, 1)$	$69: P_{446} = (5, 6, 5, 1)$
$10: P_{10} = (6, 1, 0, 0)$	$40: P_{198} = (5, 7, 1, 1)$	$70: P_{447} = (6, 6, 5, 1)$
$11: P_{11} = (7, 1, 0, 0)$	$41: P_{201} = (0, 0, 2, 1)$	$71: P_{450} = (1, 7, 5, 1)$
$12: P_{12} = (1, 0, 1, 0)$	$42: P_{203} = (2, 0, 2, 1)$	$72: P_{452} = (3, 7, 5, 1)$
$13: P_{19} = (0, 1, 1, 0)$	$43: P_{213} = (4, 1, 2, 1)$	$73: P_{457} = (0,0,6,1)$
$14: P_{27} = (0, 2, 1, 0)$	$44: P_{216} = (7, 1, 2, 1)$	$74: P_{463} = (6,0,6,1)$
$15: P_{30} = (3, 2, 1, 0)$	$45: P_{224} = (7, 2, 2, 1)$	75: $P_{474} = (1, 2, 6, 1)$
$16: P_{35} = (0, 3, 1, 0)$	$46: P_{235} = (2, 4, 2, 1)$	$76: P_{478} = (5, 2, 6, 1)$
$17: P_{37} = (2, 3, 1, 0)$	$47: P_{237} = (4, 4, 2, 1)$	$77: P_{484} = (3, 3, 6, 1)$
$18: P_{43} = (0, 4, 1, 0)$	$48: P_{265} = (0,0,3,1)$	$78: P_{487} = (6, 3, 6, 1)$
$19: P_{48} = (5, 4, 1, 0)$	$49: P_{268} = (3,0,3,1)$	$79: P_{490} = (1, 4, 6, 1)$
$20: P_{51} = (0, 5, 1, 0)$	$50: P_{295} = (6, 3, 3, 1)$	$80: P_{492} = (3, 4, 6, 1)$
$21: P_{55} = (4, 5, 1, 0)$	$51: P_{298} = (1, 4, 3, 1)$	$81: P_{510} = (5, 6, 6, 1)$
$22: P_{59} = (0, 6, 1, 0)$	$52: P_{303} = (6, 4, 3, 1)$	$82: P_{521} = (0, 0, 7, 1)$
$23: P_{66} = (7, 6, 1, 0)$	$53: P_{308} = (3, 5, 3, 1)$	$83: P_{528} = (7,0,7,1)$
$24: P_{67} = (0, 7, 1, 0)$	$54: P_{310} = (5, 5, 3, 1)$	$84: P_{531} = (2, 1, 7, 1)$
$25: P_{73} = (6,7,1,0)$	$55: P_{322} = (1,7,3,1)$	$85: P_{533} = (4, 1, 7, 1)$
$26: P_{75} = (1,0,0,1)$	$56: P_{326} = (5, 7, 3, 1)$	$86: P_{539} = (2, 2, 7, 1)$
$27: P_{76} = (2,0,0,1)$	$57: P_{329} = (0, 0, 4, 1)$	$87: P_{544} = (7, 2, 7, 1)$
$28: P_{77} = (3,0,0,1)$	$58: P_{333} = (4,0,4,1)$	$88: P_{581} = (4,7,7,1)$
$29: P_{78} = (4, 0, 0, 1)$	$59: P_{339} = (2, 1, 4, 1)$, , , ,