Stats 270, Homework 1

Due date: January 21

1. In the Bernoulli-Laplace model, we start with two boxes and m particles in each box. Among the 2m particles there are b black particles and w white particles and b < w. At each time step, one particle is selected uniformly at random from each box, and the two particles are exchanged. If we let X_n be the number of black particles in the first box, then $\{X_n\}$ is a Markov chain.

- (a) What is the state-space of $\{X_n\}$?
- (b) Write down one-step transition probabilities of $\{X_n\}$.
- (c) Is $\{X_n\}$ irreducible?
- 2. Let $\{X_n\}_{n\geq 0}$ be a homogeneous Markov chain with state space Ω and transition probability matrix \mathbf{P} . Let τ be the first time n for which $X_n \neq X_0$, where $\tau = +\infty$ if $X_n = X_0$ for all $n \geq 0$. Express $\mathrm{E}[\tau \mid X_0 = i]$ in terms of p_{ii} .
- 3. Let $\{X_n\}_{n\geq 0}$ be a homogeneous Markov chain with state space $\Omega=\{1,2,3,4\}$ and transition matrix

$$\mathbf{P} = \begin{pmatrix} 0.2 & 0.3 & 0.5 & 0 \\ 0 & 0.2 & 0.3 & 0.5 \\ 0.5 & 0 & 0.2 & 0.3 \\ 0.3 & 0.5 & 0 & 0.2 \end{pmatrix}.$$

Use the first step analysis to compute the probability that when starting from state 1, the chain hits state 3 before it hits state 4?

4. Write a routine to simulate realizations of the gambler's ruin chain $\{X_n\}$ with probabilities $p_{i,i+1} = p$, $p_{i,i-1} = q$, p+q=1. The routine should stop simulations as soon as you hit one of the absorbing states. Your input will consist of an initial state i, state space size N = a + b, and probability of increasing gambler's fortune p. The routine should return a vector of Markov chain states until absorption.

- (a) Provide the source code in any computer language of your choice and output of your routine in the form of 5 random realizations of the Markov chain for input parameters N = 10, i = 3, and p = 0.27.
- (b) Use your simulation routine to estimate the probability of reaching the largest state N=10 starting at state 5, u(5,p), for probabilities $p_{i,i+1}=p=0.1,0.2,\ldots,0.9$. Turn in a graph with estimated u(5,p) plotted against p. In your graph, include values u(5,p) computed using the formulae that we derived in class.