The equidistribution of nilsequences

The equidistribution of nilsequences

James Leng

October 18, 2023

The equidistribution of nilsequences

James Leng

• What can we say about $r_k(N)$, the largest subset of $[N] := \{0, 1, \dots, N-1\}$ that does not contain a k-term arithmetic progression with nonzero common difference?

The equidistribution of nilsequences

- What can we say about $r_k(N)$, the largest subset of $[N] := \{0, 1, ..., N-1\}$ that does not contain a k-term arithmetic progression with nonzero common difference?
- What about polynomial progressions?

The equidistribution of nilsequences

- What can we say about $r_k(N)$, the largest subset of $[N] := \{0, 1, ..., N-1\}$ that does not contain a k-term arithmetic progression with nonzero common difference?
- What about polynomial progressions?
- How many primes in arithmetic progressions are there in [N]?

The equidistribution of nilsequences

- What can we say about $r_k(N)$, the largest subset of $[N] := \{0, 1, ..., N-1\}$ that does not contain a k-term arithmetic progression with nonzero common difference?
- What about polynomial progressions?
- How many primes in arithmetic progressions are there in [N]?
- Each of these problems involve the *nilpotent Hardy-Littlewood method*, a generalization of the *Hardy-Littlewood Circle method*.

The equidistribution of nilsequences

lames Leng

■ Let $F : \mathbb{R}^d/\mathbb{Z}^d \to \mathbb{C}$ be smooth, and $\alpha \in \mathbb{R}^d$.

The equidistribution of nilsequences

- Let $F : \mathbb{R}^d/\mathbb{Z}^d \to \mathbb{C}$ be smooth, and $\alpha \in \mathbb{R}^d$.
- Consider $F(\alpha n)$. We say that $F(\alpha n)$ is δ -equidistributed on scale N if

$$\left|\mathbb{E}_{n\in[N]}:=\frac{1}{N}\sum_{n=0}^{N-1}F(n\alpha)-\int_{\mathbb{R}^d/\mathbb{Z}^d}F(x)dx\right|<\delta\|F\|_{Lip}.$$

The equidistribution of nilsequences

James Leng

- Let $F : \mathbb{R}^d/\mathbb{Z}^d \to \mathbb{C}$ be smooth, and $\alpha \in \mathbb{R}^d$.
- Consider $F(\alpha n)$. We say that $F(\alpha n)$ is δ -equidistributed on scale N if

$$\left|\mathbb{E}_{n\in[N]}:=\frac{1}{N}\sum_{n=0}^{N-1}F(n\alpha)-\int_{\mathbb{R}^d/\mathbb{Z}^d}F(x)dx\right|<\delta\|F\|_{Lip}.$$

• We wish $F(\alpha n)$ to be *equidistributed* since $F(\alpha n)$ equidistributed behaves *randomly*, so is *easy* to study.

The equidistribution of nilsequences

James Leng

• We wish to "approximate" $F(\alpha n)$ (possibly along progressions) by well-behaved objects.

The equidistribution of nilsequences

- We wish to "approximate" $F(\alpha n)$ (possibly along progressions) by well-behaved objects.
- These well-behaved objects are of the form $\tilde{F}(\alpha'n)$ where α' is "very equidistributed" along a rational subgroup $\mathbb{R}^d/\mathbb{Z}^d$.

The equidistribution of nilsequences

James Leng

■ Suppose $||F||_{Lip} = 1$.

The equidistribution of nilsequences

- Suppose $||F||_{Lip} = 1$.
- If $F(\alpha n)$ is δ -equidistributed, then we are good.

The equidistribution of nilsequences

James Leng

- Suppose $||F||_{Lip} = 1$.
- If $F(\alpha n)$ is δ -equidistributed, then we are good.
- Otherwise, we may Fourier approximate

$$F(\alpha n) = \sum_{\xi \in \mathbb{Z}^d, |\xi| \le ||F||_{Lip}\delta^{-1-o(1)}} a_{\xi} e(\xi \cdot (\alpha n)) + O(\delta^{1+o(1)})$$

with $|a_{\xi}| \leq 1$.

The equidistribution of nilsequences

lames Leng

- Suppose $||F||_{Lip} = 1$.
- If $F(\alpha n)$ is δ -equidistributed, then we are good.
- Otherwise, we may Fourier approximate

$$F(\alpha n) = \sum_{\xi \in \mathbb{Z}^d, |\xi| \le ||F||_{Lip}\delta^{-1-o(1)}} a_{\xi} e(\xi \cdot (\alpha n)) + O(\delta^{1+o(1)})$$

with $|a_{\xi}| \leq 1$.

■ Thus, there exists some nonzero ξ such that $\mathbb{E}_{n \in [N]} e(\xi \cdot \alpha n) \geq \delta^{O(d)}$. This rearranges to $\|\xi \cdot \alpha\|_{\mathbb{R}/\mathbb{Z}} \leq \frac{\delta^{-O(d)}}{N}$.

The equidistribution of nilsequences

lames Leng

So we may write $\alpha = \epsilon + \alpha' + \gamma$ where $\|\epsilon\|_{\mathbb{R}/\mathbb{Z}} \ll \frac{\delta^{-O(d)}}{N}$, α' lies on a *subgroup* of $\mathbb{R}^d/\mathbb{Z}^d$ (that is $\delta^{-1-o(1)}$ -rational), and γ is periodic modulo $\delta^{-1+o(1)}$.

The equidistribution of nilsequences

- So we may write $\alpha = \epsilon + \alpha' + \gamma$ where $\|\epsilon\|_{\mathbb{R}/\mathbb{Z}} \ll \frac{\delta^{-O(d)}}{N}$, α' lies on a *subgroup* of $\mathbb{R}^d/\mathbb{Z}^d$ (that is $\delta^{-1-o(1)}$ -rational), and γ is periodic modulo $\delta^{-1+o(1)}$.
- Let q be the period of γ .

The equidistribution of nilsequences

- So we may write $\alpha = \epsilon + \alpha' + \gamma$ where $\|\epsilon\|_{\mathbb{R}/\mathbb{Z}} \ll \frac{\delta^{-O(d)}}{N}$, α' lies on a *subgroup* of $\mathbb{R}^d/\mathbb{Z}^d$ (that is $\delta^{-1-o(1)}$ -rational), and γ is periodic modulo $\delta^{-1+o(1)}$.
- Let q be the period of γ .
- Along arithmetic progressions of common difference q and length $\delta^{O(d)}$, $F(\alpha n)$ can be approximated by $F(\epsilon_0 + \alpha' n)$ for some constant ϵ_0 .

The equidistribution of nilsequences

- So we may write $\alpha = \epsilon + \alpha' + \gamma$ where $\|\epsilon\|_{\mathbb{R}/\mathbb{Z}} \ll \frac{\delta^{-O(d)}}{N}$, α' lies on a *subgroup* of $\mathbb{R}^d/\mathbb{Z}^d$ (that is $\delta^{-1-o(1)}$ -rational), and γ is periodic modulo $\delta^{-1+o(1)}$.
- Let q be the period of γ .
- Along arithmetic progressions of common difference q and length $\delta^{O(d)}$, $F(\alpha n)$ can be approximated by $F(\epsilon_0 + \alpha' n)$ for some constant ϵ_0 .
- We can thus restrict this to the subgroup that α' lies in.

The equidistribution of nilsequences

- So we may write $\alpha = \epsilon + \alpha' + \gamma$ where $\|\epsilon\|_{\mathbb{R}/\mathbb{Z}} \ll \frac{\delta^{-O(d)}}{N}$, α' lies on a *subgroup* of $\mathbb{R}^d/\mathbb{Z}^d$ (that is $\delta^{-1-o(1)}$ -rational), and γ is periodic modulo $\delta^{-1+o(1)}$.
- Let q be the period of γ .
- Along arithmetic progressions of common difference q and length $\delta^{O(d)}$, $F(\alpha n)$ can be approximated by $F(\epsilon_0 + \alpha' n)$ for some constant ϵ_0 .
- We can thus restrict this to the subgroup that α' lies in.

The equidistribution of nilsequences

James Leng

■ The Lipschitz constant of F increases by $\delta^{-1-o(1)}$,

The equidistribution of nilsequences

James Leng

- The Lipschitz constant of F increases by $\delta^{-1-o(1)}$,
- Thus, in order to still keep similar approximation of

$$\left|\mathbb{E}_{n\in[N]}F(\alpha n)-\int F(x)dx\right|\ll\delta$$

we would need to decrease the scale of equidistribution from δ to $\delta^{2+o(1)}$.

The equidistribution of nilsequences

James Leng

- The Lipschitz constant of F increases by $\delta^{-1-o(1)}$,
- Thus, in order to still keep similar approximation of

$$\left|\mathbb{E}_{n\in[N]}F(\alpha n)-\int F(x)dx\right|\ll\delta$$

we would need to decrease the scale of equidistribution from δ to $\delta^{2+o(1)}$.

■ Under an iteration, this would produce at best bounds of the shape δ^{2^d} since $\delta \mapsto \delta^2$ iterates to δ^{2^d} .

The equidistribution of nilsequences

James Leng

- The Lipschitz constant of F increases by $\delta^{-1-o(1)}$,
- Thus, in order to still keep similar approximation of

$$\left|\mathbb{E}_{n\in[N]}F(\alpha n)-\int F(x)dx\right|\ll\delta$$

we would need to decrease the scale of equidistribution from δ to $\delta^{2+o(1)}$.

- Under an iteration, this would produce at best bounds of the shape δ^{2^d} since $\delta \mapsto \delta^2$ iterates to δ^{2^d} .
- Can we do better than this? Can we produce bounds single exponential in dimensions, i.e. $\delta^{O(d)^{O(1)}}$?

The equidistribution of nilsequences

James Lens

■ Obstacle is "induction on dimensions."

The equidistribution of nilsequences

- Obstacle is "induction on dimensions."
- Something like $\delta \mapsto \delta^2$ is not allowed under iteration, since this iterates to δ^{2^d} .

The equidistribution of nilsequences

- Obstacle is "induction on dimensions."
- Something like $\delta \mapsto \delta^2$ is not allowed under iteration, since this iterates to δ^{2^d} .
- This process produces an equiditribution theory for the sequence (αn) rather than the sequence $F(\alpha n)$.

The equidistribution of nilsequences

James Leng

■ If we define (αn) to be δ -equidistributed if for every Lipschitz function F such that

$$\left|\frac{1}{N}\sum_{n=0}^{N-1}F(n\alpha)-\int_{\mathbb{R}^d/\mathbb{Z}^d}F(x)dx\right|<\delta\|F\|_{Lip}$$

a similar process to the work above would produce a factorization $\alpha = \epsilon + \alpha' + \gamma$ where α' is $\delta^{O(d)^{O(d)}}$ -equidistrubted on a subgroup for *every* Lipschitz function on the subgroup.

The equidistribution of nilsequences

James Leng

• If we define (αn) to be δ -equidistributed if for every Lipschitz function F such that

$$\left|\frac{1}{N}\sum_{n=0}^{N-1}F(n\alpha)-\int_{\mathbb{R}^d/\mathbb{Z}^d}F(x)dx\right|<\delta\|F\|_{Lip}$$

a similar process to the work above would produce a factorization $\alpha = \epsilon + \alpha' + \gamma$ where α' is $\delta^{\mathcal{O}(d)^{\mathcal{O}(d)}}$ -equidistrubted on a subgroup for *every* Lipschitz function on the subgroup.

■ Such a factorization result is known as a Ratner-type factorization theorem in the literature.

The equidistribution of nilsequences

James Lene

As we decrease the dimension, we increase the Lipschitz constant.

The equidistribution of nilsequences

James Lens

- As we decrease the dimension, we increase the Lipschitz constant.
- This causes the number of complex exponentials we consider in the Fourier approximation to increase by a lot.

The equidistribution of nilsequences

- As we decrease the dimension, we increase the Lipschitz constant.
- This causes the number of complex exponentials we consider in the Fourier approximation to increase by a lot.
- However, if we work with a single Lipschitz function, we can forget about the function and just work with the Fourier approximation.

The equidistribution of nilsequences

- As we decrease the dimension, we increase the Lipschitz constant.
- This causes the number of complex exponentials we consider in the Fourier approximation to increase by a lot.
- However, if we work with a single Lipschitz function, we can forget about the function and just work with the Fourier approximation.
- If we do that, the number of complex exponentials we consider in fact decreases.

The equidistribution of nilsequences

- As we decrease the dimension, we increase the Lipschitz constant.
- This causes the number of complex exponentials we consider in the Fourier approximation to increase by a lot.
- However, if we work with a single Lipschitz function, we can forget about the function and just work with the Fourier approximation.
- If we do that, the number of complex exponentials we consider in fact *decreases*.
- Thus, one can prove an approximation result with bounds single exponential in dimension.

Main question

The equidistribution of nilsequences

Question

What is the analogue of this heuristic in other contexts?

For instance, what can we say if instead of $\mathbb{R}^d/\mathbb{Z}^d$, we work with G/Γ where G is a Lie group, Γ a discrete cocompact subgroup (meaning that G/Γ is compact)?

Main theorem (informal version)

The equidistribution of nilsequences

James Leng

Theorem (L. 2023+)

There is such an analogue in the case where G is nilpotent (connected and simply connected), and Γ a discrete cocompact subgroup.

We say G is s-step nilpotent if we take s+1 commutators $[G, [G, \cdots, [G, G]]] = id$.

Main theorem (informal version)

The equidistribution of nilsequences

James Leng

Theorem (L. 2023+)

There is such an analogue in the case where G is nilpotent (connected and simply connected), and Γ a discrete cocompact subgroup.

We say G is s-step nilpotent if we take s+1 commutators $[G, [G, \cdots, [G, G]]] = id$. We will see applications of this theorem in arithmetic combinatorics later.

Example of nilpotent Lie group: Heisenberg group

The equidistribution of nilsequences

Simplest nontrivial example of a nilpotent Lie group is a Heisenberg group:

$$G=egin{pmatrix}1&\mathbb{R}&\mathbb{R}\0&1&\mathbb{R}\0&0&1\end{pmatrix}$$

$$\Gamma = egin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} \ 0 & 1 & \mathbb{Z} \ 0 & 0 & 1 \end{pmatrix}$$

Here, G is two-step nilpotent and admits the *lower* central series $G_0 = G_1 = G$, $G_i = [G_{i-1}, G]$.

The equidistribution of nilsequences

James Leng

A Lipschitz function F on G/Γ evaluated at an orbit $g^n\Gamma$ is referred to as a *nilsequence*. If G and Γ are as above, and we let

$$g = \begin{pmatrix} 1 & \alpha & 0 \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{pmatrix}, g^n = \begin{pmatrix} 1 & \alpha n & \binom{n}{2} \alpha \beta \\ 0 & 1 & \beta n \\ 0 & 0 & 1 \end{pmatrix}$$

 G/Γ admits a parametrization in $(-1/2,1/2]^3$ as $(\{\alpha n\},\{\beta n\},\{\binom{n}{2}\alpha\beta-[\alpha n]\beta n\})$ where $\{x\}=x-[x]$, where [x] is the nearest integer to x with $\{x\}\in(-1/2,1/2]$.

The equidistribution of nilsequences

James Leng

Thus, when we Fourier expand $F(g^n\Gamma)$ with respect to that parametrization, we obtain *bracket polynomials* as opposed to characters.

$$e(k[\alpha n]\{\beta n\} + k\binom{n}{2}\alpha\beta + \ell\alpha n + m\beta n).$$

The equidistribution of nilsequences

James Leng

Thus, when we Fourier expand $F(g^n\Gamma)$ with respect to that parametrization, we obtain *bracket polynomials* as opposed to characters.

$$e(k[\alpha n]\{\beta n\} + k\binom{n}{2}\alpha\beta + \ell\alpha n + m\beta n).$$

These bracket polynomials are *nilcharacters* (to be defined formally later).

The equidistribution of nilsequences

James Leng

■ In the one-step case (i.e. $\mathbb{R}^d/\mathbb{Z}^d$ case), it was an equidistribution theory for characters, that is, understanding sums of the form $\mathbb{E}_{n\in[N]}e(\alpha n)$ that led to an equidistribution theory for general Lipschitz functions.

The equidistribution of nilsequences

- In the one-step case (i.e. $\mathbb{R}^d/\mathbb{Z}^d$ case), it was an equidistribution theory for characters, that is, understanding sums of the form $\mathbb{E}_{n\in[N]}e(\alpha n)$ that led to an equidistribution theory for general Lipschitz functions.
- In view of this, we shall aim to develop an equidistribution theory of *nilcharacters*.

The equidistribution of nilsequences

James Leng

We will assume G is s-step nilpotent, Γ discrete cocompact.

The equidistribution of nilsequences

lames Leng

We will assume G is s-step nilpotent, Γ discrete cocompact. Consider the *lower central series filtration* $(G_i)_{i=0}^{\infty}$ with $G_0 = G_i = G$, $G_{i+1} = [G_i, G]$.

The equidistribution of nilsequences

lames Leng

We will assume G is s-step nilpotent, Γ discrete cocompact. Consider the lower central series filtration $(G_i)_{i=0}^{\infty}$ with $G_0 = G_i = G$, $G_{i+1} = [G_i, G]$. It is also equippied with a Mal'cev basis $(X_i)_{i=1}^d$ respecting the filtration, which are elements of the Lie algebra of G satisfying

$$[X_i, X_j] \in \mathsf{Span}_{\mathbb{Q}}(X_{\mathsf{max}(i,j)+1}, \dots, X_d).$$

The equidistribution of nilsequences

We will assume G is s-step nilpotent, Γ discrete cocompact. Consider the lower central series filtration $(G_i)_{i=0}^{\infty}$ with $G_0 = G_i = G$, $G_{i+1} = [G_i, G]$. It is also equippied with a Mal'cev basis $(X_i)_{i=1}^d$ respecting the filtration, which are elements of the Lie algebra of G satisfying

$$[X_i, X_j] \in \mathsf{Span}_{\mathbb{Q}}(X_{\mathsf{max}(i,j)+1}, \dots, X_d).$$

The *complexity* of the Mal'cev basis, denoted M, is the largest *height* of elements a_{iik} where

$$[X_i,X_j]=\sum_k a_{ijk}X_k.$$

The equidistribution of nilsequences

We will assume G is s-step nilpotent, Γ discrete cocompact. Consider the *lower central series filtration* $(G_i)_{i=0}^{\infty}$ with $G_0 = G_i = G$, $G_{i+1} = [G_i, G]$. It is also equippied with a *Mal'cev basis* $(X_i)_{i=1}^d$ respecting the *filtration*, which are elements of the Lie algebra of G satisfying

$$[X_i, X_j] \in \mathsf{Span}_{\mathbb{Q}}(X_{\mathsf{max}(i,j)+1}, \dots, X_d).$$

The *complexity* of the Mal'cev basis, denoted M, is the largest *height* of elements a_{iik} where

$$[X_i,X_j]=\sum_i a_{ijk}X_k.$$

Furthermore, the elements $\prod_{i=1}^{d} \exp(t_i X_i)$ with $t_i \in \mathbb{R}$ generate G uniquely and when $t_i \in \mathbb{Z}$ generate G

Definition of horizontal character

The equidistribution of nilsequences

James Leng

A horizontal character is a homomorphism $\eta: G/\Gamma \to \mathbb{R}/\mathbb{Z}$ which annihilates [G,G].

Definition of horizontal character

The equidistribution of nilsequences

James Leng

A horizontal character is a homomorphism $\eta: G/\Gamma \to \mathbb{R}/\mathbb{Z}$ which annihilates [G,G]. By invoking Mal'cev coordinates, we may *represent* η as a vector k in \mathbb{Z}^d .

Definition of horizontal character

The equidistribution of nilsequences

James Leng

A horizontal character is a homomorphism $\eta: G/\Gamma \to \mathbb{R}/\mathbb{Z}$ which annihilates [G,G]. By invoking Mal'cev coordinates, we may *represent* η as a vector k in \mathbb{Z}^d . The *modulus* is then the largest component of k.

Previous results on quantifying nilsequence equidistribution

The equidistribution of nilsequences

James Len

Theorem (Green-Tao)

If $F: G/\Gamma$ is Lipschitz, and

$$\left| \mathbb{E}_{n \in [N]} F(g^n \Gamma) - \int_{G/\Gamma} F(x) dx \right| \ge \delta \|F\|_{Lip}$$

then there exists a nonzero horizontal character η of modulus at most $(\delta/M)^{-O(d)^{O(d)^{O(1)}}}$ such that

$$\|\eta(g)\|_{\mathbb{R}/\mathbb{Z}} \ll (\delta/M)^{-O(d)^{O(d)^{O(1)}}}/N.$$

Notes on Green-Tao's theorem

The equidistribution of nilsequences

James Lens

■ Theorem works for more general *polynomial* sequences with respect to the filtration.

Notes on Green-Tao's theorem

The equidistribution of nilsequences

- Theorem works for more general *polynomial* sequences with respect to the filtration.
- If *G* is degree two or step one, then bounds are single exponential in dimension.

Nilcharacter

The equidistribution of nilsequences

James Leng

Given a continuous homomorphism $\xi: G_s/\Gamma_s \to \mathbb{R}/\mathbb{Z}$, we define a *nilcharacter* of frequency ξ to be a Lipschitz function $F: G/\Gamma \to \mathbb{C}$ satisfying $F(g_s x) = e(\xi(g_s))F(x)$ (think, bracket polynomial with s iterated/nested brackets.)

The equidistribution of nilsequences

James Leng

• We can again iterate to obtain a similar Ratner-type factorization theorem $g^n = \epsilon(n)g_1(n)\gamma(n)$, but now with bounds double exponential in dimension, even in the one-step case.

The equidistribution of nilsequences

James Lene

- We can again iterate to obtain a similar Ratner-type factorization theorem $g^n = \epsilon(n)g_1(n)\gamma(n)$, but now with bounds double exponential in dimension, even in the one-step case.
- Since nilcharacters have integral zero, we may iterate this result to obtain a slightly stronger equidistribution theorem in this case.

The equidistribution of nilsequences

- We can again iterate to obtain a similar Ratner-type factorization theorem $g^n = \epsilon(n)g_1(n)\gamma(n)$, but now with bounds double exponential in dimension, even in the one-step case.
- Since nilcharacters have integral zero, we may iterate this result to obtain a slightly stronger equidistribution theorem in this case.
- Unfortunately, inserting this result to the Fourier expanded nilcharacters in the two-step case doesn't do any better; the extra parameter, complexity, increases too fast.

The equidistribution of nilsequences

James Lens

- We can again iterate to obtain a similar Ratner-type factorization theorem $g^n = \epsilon(n)g_1(n)\gamma(n)$, but now with bounds double exponential in dimension, even in the one-step case.
- Since nilcharacters have integral zero, we may iterate this result to obtain a slightly stronger equidistribution theorem in this case.
- Unfortunately, inserting this result to the Fourier expanded nilcharacters in the two-step case doesn't do any better; the extra parameter, complexity, increases too fast.
- induction on dimensions is a huge issue everywhere.

The equidistribution of nilsequences

James Lene

Why should we expect such a theory with bounds single exponential in dimension?

The equidistribution of nilsequences

- Why should we expect such a theory with bounds single exponential in dimension?
- Green and Tao show that degree two bracket polynomials are "morally equivalent" to quadratic functions on large generalized arithmetic progressions.

The equidistribution of nilsequences

- Why should we expect such a theory with bounds single exponential in dimension?
- Green and Tao show that degree two bracket polynomials are "morally equivalent" to quadratic functions on large generalized arithmetic progressions.
- In 2010, Gowers and Wolf apply an equidistribution theory for quadratic functions on generalized arithmetic progressions to the *true complexity problem*.

The equidistribution of nilsequences

lames Leng

Let
$$[\vec{N}] = [N_1] \times [N_2] \times \cdots \times [N_d]$$
. Let $q(\vec{n}) = \sum_{ij} \alpha_{ij} n_i n_j$. We wish to study exponential sums $\mathbb{E}_{\vec{n} \in [\vec{N}]} e(q(\vec{n}))$.

The equidistribution of nilsequences

James Leng

Let
$$[\vec{N}] = [N_1] \times [N_2] \times \cdots \times [N_d]$$
. Let $q(\vec{n}) = \sum_{ij} \alpha_{ij} n_i n_j$. We wish to study exponential sums

$$\mathbb{E}_{\vec{n}\in[\vec{N}]}e(q(\vec{n})).$$

The conclusion is that there exists some integer $q \ll \delta^{-O(d)^{O(1)}}$ such that

$$\|q\alpha_{ij}\|_{\mathbb{R}/\mathbb{Z}}\ll rac{\delta^{-O(d)^{O(1)}}}{N_iN_i}.$$

The equidistribution of nilsequences

James Leng

Let
$$[\vec{N}] = [N_1] \times [N_2] \times \cdots \times [N_d]$$
. Let $q(\vec{n}) = \sum_{ij} \alpha_{ij} n_i n_j$. We wish to study exponential sums

$$\mathbb{E}_{\vec{n} \in [\vec{N}]} e(q(\vec{n})).$$

The conclusion is that there exists some integer $q \ll \delta^{-O(d)^{O(1)}}$ such that

$$\|q\alpha_{ij}\|_{\mathbb{R}/\mathbb{Z}}\ll rac{\delta^{-O(d)^{O(1)}}}{N_iN_i}.$$

Bounds are good (single exponential in dimension).

Approaches

The equidistribution of nilsequences

James Leng

Can we generalize this approach using the Gowers-Wolf equidistribution theory framework (develop a "quadratic geometry of numbers")?

Approaches

The equidistribution of nilsequences

- Can we generalize this approach using the Gowers-Wolf equidistribution theory framework (develop a "quadratic geometry of numbers")?
- Can we understand this approach in terms of nilmanifolds?

The equidistribution of nilsequences

James Leng

• We will assume G/Γ to be a s-step nilpotent Lie group of degree k, dimension d, and complexity M.

The equidistribution of nilsequences

- We will assume G/Γ to be a s-step nilpotent Lie group of degree k, dimension d, and complexity M.
- $F: G/\Gamma \to \mathbb{C}$ will be a *nilcharacter* of frequency ξ with $|\xi| \le (\delta/M)^{-1}$ (with δ some parameter). That is, $F(g_s x) = e(\xi(g_s))F(x)$ for $g_s \in G_{(s)}$.

The equidistribution of nilsequences

- We will assume G/Γ to be a s-step nilpotent Lie group of degree k, dimension d, and complexity M.
- $F: G/\Gamma \to \mathbb{C}$ will be a *nilcharacter* of frequency ξ with $|\xi| \leq (\delta/M)^{-1}$ (with δ some parameter). That is, $F(g_s x) = e(\xi(g_s))F(x)$ for $g_s \in G_{(s)}$.
- If $\eta: G/\Gamma \to \mathbb{R}/\mathbb{Z}$ is a horizontal character, we identify it (via Mal'cev coordinates) with a vector $\vec{k} \in \mathbb{Z}^d$, so we may lift it to some $\tilde{\eta}: G \to \mathbb{R}$.

The equidistribution of nilsequences

- We will assume G/Γ to be a s-step nilpotent Lie group of degree k, dimension d, and complexity M.
- $F: G/\Gamma \to \mathbb{C}$ will be a *nilcharacter* of frequency ξ with $|\xi| \le (\delta/M)^{-1}$ (with δ some parameter). That is, $F(g_s x) = e(\xi(g_s))F(x)$ for $g_s \in G_{(s)}$.
- If $\eta: G/\Gamma \to \mathbb{R}/\mathbb{Z}$ is a horizontal character, we identify it (via Mal'cev coordinates) with a vector $\vec{k} \in \mathbb{Z}^d$, so we may lift it to some $\tilde{\eta}: G \to \mathbb{R}$.
- We say that $w \in G$ is *orthogonal* to η if $\tilde{\eta}(w) = 0$.

The equidistribution of nilsequences

- We can define notions of linear independent of horizontal characters by identifying them with vectors in \mathbb{Z}^d .
- By identifying $w \in \Gamma$ with a vector $k \in \mathbb{Z}^d$, we can also define modulus, and linear independence of w.

The equidistribution of nilsequences

James Leng

Theorem

Let $\delta > 0$ and N an integer. Suppose

$$|\mathbb{E}_{n\in[N]}F(g^n\Gamma)|\geq \delta.$$

Then either $N \ll (\delta/M)^{-O_s(d)^{O_s(1)}}$ or there exists linearly independent horizontal characters η_1, \ldots, η_r of modulus at most $(\delta/M)^{-O_s(d)^{O_s(1)}}$ such that

$$\|\eta_j \circ g\|_{\mathbb{R}/\mathbb{Z}} \leq \frac{(\delta/M)^{-O_s(d)^{O_s(1)}}}{N}$$

and if w_i are orthogonal to η_i , $\xi([w_1, \dots, w_s]) = 0$.

Statement of the Main Theorem, s = 2

The equidistribution of nilsequences

Theorem

Let $\delta > 0$ and N an integer. Suppose G is two-step and

$$|\mathbb{E}_{n\in[N]}F(g^n\Gamma)|\geq \delta.$$

Then either $N \ll (\delta/M)^{-O(d)^{O(1)}}$ or there exists linearly independent horizontal characters η_1, \ldots, η_r of modulus at most $(\delta/M)^{-O(d)^{O(1)}}$, and $w_1, \ldots, w_{d-r} \in \Gamma$ linearly independent and orthogonal to all of the η_i 's and modulus at most $(\delta/M)^{-O(d)^{O(1)}}$ such that

$$\|\eta_j \circ g\|_{\mathbb{R}/\mathbb{Z}}, \|\xi([w_i,g])\|_{\mathbb{R}/\mathbb{Z}} \ll \frac{(\delta/M)^{-O(d)^{O(1)}}}{N}.$$

14 P 1 P 1 E P 1 E P 1 C

Remark, s = 2

The equidistribution of nilsequences

James Leng

If we let $\tilde{G}=G/\mathrm{ker}(\xi)$, then

$$H := \{ g \in \tilde{G} : \eta_i(g) = 0, \xi([w_i, g]) = 0 \forall i \}$$

is abelian. This is because if $g, h \in H$, then it suffices to check that [g, h] = 0. This follows since $\eta_i(g) = 0$ implies that g can be written $\pmod{[G, G]}$ as a combination of w_i 's.

Remark, s = 2

The equidistribution of nilsequences

James Len

If we let $\tilde{G} = G/\mathrm{ker}(\xi)$, then

$$H:=\{g\in \tilde{G}: \eta_i(g)=0, \xi([w_i,g])=0\forall i\}$$

is abelian. This is because if $g,h\in H$, then it suffices to check that [g,h]=0. This follows since $\eta_i(g)=0$ implies that g can be written (mod [G,G]) as a combination of w_i 's. In fact, the map $(x,y)\mapsto \xi([x,y])$ is a *symplectic form* (after quotienting by degeneracies) and the theorem states that g morally lies in a Lagrangian (or rather *isotropic*) subspace with respect to the symplectic form.

Slogan

The equidistribution of nilsequences

James Leng

Theorem (Informal version)

If $F(g(n)\Gamma)$ is a nilcharacter of step s and

$$|\mathbb{E}_n F(g(n)\Gamma) - \int F| \geq \delta$$

then F is "morally" a nilsequence of step s-1 (with bounds single exponential in dimension).

The equidistribution of nilsequences

James Leng

In 2022, L. showed:

Theorem

Let $P(x), Q(x) \in \mathbb{Z}[x]$ be two linearly independent polynomials with P(0) = Q(0) = 0. Suppose $A \subseteq \mathbb{Z}_N$ lacks a progression of the form

$$(x, x + P(y), x + Q(y), x + P(y) + Q(y))$$
. Then

$$|A| \ll_{P,Q} \frac{N}{\log_{m_{P,Q}}(N)}.$$

Here, $\log_{m_{P,Q}}(N)$ is an iterated logarithm with $m_{P,Q}$ times.

The equidistribution of nilsequences

James Leng

Inserting this equidistribution theorem yields

Theorem (L, 2023+)

Let P(x), $Q(x) \in \mathbb{Z}[x]$ be two linearly independent polynomials with P(0) = Q(0) = 0. Suppose $A \subseteq \mathbb{Z}_N$ lacks a progression of the form (x, x + P(y), x + Q(y), x + P(y) + Q(y)). Then

$$|A| \ll_{P,Q} \frac{N}{\exp(\log(N)^{c_{P,Q}})}.$$

The equidistribution of nilsequences

James Len

In 2023, Peluse, Sah, and Sawhney showed:

Theorem

Suppose a subset $A \subseteq [N]$ lacks a progression of the form $(x, x + y^2 - 1, x + 2(y^2 - 1))$. Then

$$|A| \ll \frac{N}{\log_m(N)}$$

(with $m \approx 200$).

The equidistribution of nilsequences In 2023, Peluse, Sah, and Sawhney showed:

Theorem

Suppose a subset $A \subseteq [N]$ lacks a progression of the form $(x, x + y^2 - 1, x + 2(y^2 - 1))$. Then

$$|A| \ll \frac{N}{\log_m(N)}$$

(with $m \approx 200$).

They remark that a similar application of the equidistribution result would yield

$$|A| \ll_{P,Q} \frac{N}{\exp(\log\log(N)^c)}.$$

The equidistribution of nilsequences

lames Leng

In 2010, Green-Tao-Ziegler showed:

Theorem

Suppose $||f||_{U^{s+1}([N])} \ge \delta$. Then there exists a nilsequence $F(g^n\Gamma)$ of dimension $D(\delta)$ and complexity $M(\delta)$ such that

$$|\langle f, F(g^n\Gamma)\rangle| \geq c(\delta).$$

The equidistribution of nilsequences

James Leng

In 2010, Sanders shows that if s=2, we may take $D(\delta) = \log(1/\delta)^{O(1)}$, $M(\delta) = O(1)$, and $c(\delta) = \exp(-\log(1/\delta)^{O(1)})$.

The equidistribution of nilsequences

- In 2010, Sanders shows that if s=2, we may take $D(\delta) = \log(1/\delta)^{O(1)}$, $M(\delta) = O(1)$, and $c(\delta) = \exp(-\log(1/\delta)^{O(1)})$.
- In 2018, Manners shows that we may generally take $D(\delta) = \delta^{-O_s(1)}$, $M(\delta) = \exp\exp(\delta^{-O_s(1)})$, and $c(\delta) = \exp(-\exp(\delta^{-O_s(1)}))$.

The equidistribution of nilsequences

- In 2010, Sanders shows that if s=2, we may take $D(\delta) = \log(1/\delta)^{O(1)}$, $M(\delta) = O(1)$, and $c(\delta) = \exp(-\log(1/\delta)^{O(1)})$.
- In 2018, Manners shows that we may generally take $D(\delta) = \delta^{-O_s(1)}$, $M(\delta) = \exp\exp(\delta^{-O_s(1)})$, and $c(\delta) = \exp(-\exp(\delta^{-O_s(1)}))$.
- In the case of s=3, Manners shows that we may take $M(\delta)=\exp(\delta^{-O(1)})$ and $c(\delta)=\exp(-\delta^{-O(1)})$.

The equidistribution of nilsequences

We can show:

Theorem (L., 2023+)

In the case of s=3, we can take $M(\delta)=O(1)$, $D(\delta)=\exp(O(\log\log(1/\delta)^2))$, and $c(\delta)=\exp(-\exp(O(\log\log(1/\delta)^2)))$.

The equidistribution of nilsequences

Let
$$\phi(n) = \alpha n^2 + \sum_i \alpha_i n [\beta_i n]$$
.

The equidistribution of nilsequences

James Leng

Let $\phi(n) = \alpha n^2 + \sum_i \alpha_i n [\beta_i n]$. Assume for simplicity that $e(\phi(n+N)) = e(\phi(n))$ with N prime and α_i, β_i have denominator N.

The equidistribution of nilsequences

James Leng

Let $\phi(n) = \alpha n^2 + \sum_i \alpha_i n[\beta_i n]$. Assume for simplicity that $e(\phi(n+N)) = e(\phi(n))$ with N prime and α_i, β_i have denominator N. We wish to study what happens when

$$|\mathbb{E}_{n\in\mathbb{Z}_N}e(\phi(n))|\geq \delta.$$

The equidistribution of nilsequences

Let $\phi(n) = \alpha n^2 + \sum_i \alpha_i n[\beta_i n]$. Assume for simplicity that $e(\phi(n+N)) = e(\phi(n))$ with N prime and α_i, β_i have denominator N. We wish to study what happens when

$$|\mathbb{E}_{n\in\mathbb{Z}_N}e(\phi(n))|\geq \delta.$$

Applying van der Corput gives that there exists $\delta^{O(1)}N$ many $h \in \mathbb{Z}_N$ such that

$$|\mathbb{E}_{n\in\mathbb{Z}_N}e(\phi(n+h)-\phi(n))|\geq \delta^{O(1)}.$$

The equidistribution of nilsequences

James Leng

Let $\phi(n) = \alpha n^2 + \sum_i \alpha_i n[\beta_i n]$. Assume for simplicity that $e(\phi(n+N)) = e(\phi(n))$ with N prime and α_i, β_i have denominator N. We wish to study what happens when

$$|\mathbb{E}_{n\in\mathbb{Z}_N}e(\phi(n))|\geq \delta.$$

Applying van der Corput gives that there exists $\delta^{O(1)}N$ many $h \in \mathbb{Z}_N$ such that

$$|\mathbb{E}_{n\in\mathbb{Z}_N}e(\phi(n+h)-\phi(n))|\geq \delta^{O(1)}.$$

Let us analyze $\phi(n+h)$.

The equidistribution of nilsequences

lames I en

We can write

$$\alpha(n+h)[\beta(n+h)] = \alpha n[\beta(n+h)] + \alpha h[\beta(n+h)]$$

But how do we deal with $[\beta(n+h)]$?

The equidistribution of nilsequences

James Len

$$\alpha(n+h)[\beta(n+h)] = \alpha n[\beta(n+h)] + \alpha h[\beta(n+h)]$$

But how do we deal with $[\beta(n+h)]$? We write

$$\alpha n[\beta(n+h)] \equiv \alpha n[\beta n] + \alpha n[\beta h]$$

$$+\{\alpha n\}(\{\beta n\} + \{\beta h\} - \{\beta(n+h)\}).$$

The equidistribution of nilsequences

James Ler

We can write

$$\alpha(n+h)[\beta(n+h)] = \alpha n[\beta(n+h)] + \alpha h[\beta(n+h)]$$

But how do we deal with $[\beta(n+h)]$? We write

$$\alpha n[\beta(n+h)] \equiv \alpha n[\beta n] + \alpha n[\beta h]$$

$$+\{\alpha n\}(\{\beta n\}+\{\beta h\}-\{\beta(n+h)\}).$$

The function $e(\{\alpha n\}\{\beta n\})$ can be written as $F(\{\alpha n\}, \{\beta n\})$ where F(x, y) = e(xy). F is not defined on $(\mathbb{R}/\mathbb{Z})^2$, but if we approximate F with a *smoothed* out version of F near the boundary of $(-1/2, 1/2]^2$, it will be!

The equidistribution of nilsequences

James Len

We may thus Fourier approximate the smoothed out \tilde{F} to obtain

$$ilde{\mathcal{F}}(x,y) = \sum_{|\eta| \leq \delta^{-1}} a_{\eta} e(\eta \cdot (x,y)) + \mathcal{O}_{L^{\infty}[\mathbb{T}^2]}(\delta)$$

with $|a_{\eta}| \leq 1$ assuming that α, β are denominator N, we have

$$F(\{\alpha n\}, \{\beta n\}) = \sum_{|\eta| < \delta^{-1}} a_{\eta} e(\eta \cdot (\alpha n, \beta n)) + O_{L^{1}[N]}(\delta).$$

The equidistribution of nilsequences Thus, $e(\{\alpha n\}(\{\beta n\} + \{\beta h\} - \{\beta (n+h)\}))$ is lower order and may be Fourier expanded into linear phases. One can show that

$$e(\phi(n+h)-\phi(n))=e(\sum_{i=1}^d \alpha_i n\{\beta_i h\}-\beta_i n\{\alpha_i h\}+\beta nh).$$

Thus, letting $a = (\alpha_i, -\beta_i)$ and $\alpha = (\{\beta_i h\}, \{\alpha_i n\})$, we have

$$|\mathbb{E}_{n\in[N]}e(an\cdot\{\alpha h\}+\beta nh)|\geq \delta^{O(d)^{O(1)}}.$$

This implies that

$$\|\beta h + a \cdot \{\alpha h\}\|_{\mathbb{R}/\mathbb{Z}} \leq \frac{\delta^{-O(d)^{O(1)}}}{N}.$$

The equidistribution of nilsequences

James Leng

• (Side note: the manipulations above are morally equivalent to operations in Green and Tao's proof involving the joining $G \times_{G_2} G$).

The equidistribution of nilsequences

lames Leng

- (Side note: the manipulations above are morally equivalent to operations in Green and Tao's proof involving the joining $G \times_{G_2} G$).
- Green and Tao show that either $|a| \ll \delta^{-O(d)^{O(1)}}/N$, or that there exists some character $\eta \ll \delta^{-O(d)^{O(1)}}$ such that $\|\eta \cdot \alpha\| \ll \frac{\delta^{-O(d)^{O(1)}}}{N}$.

The equidistribution of nilsequences

lames Leng

- (Side note: the manipulations above are morally equivalent to operations in Green and Tao's proof involving the joining $G \times_{G_2} G$).
- Green and Tao show that either $|a| \ll \delta^{-O(d)^{O(1)}}/N$, or that there exists some character $\eta \ll \delta^{-O(d)^{O(1)}}$ such that $\|\eta \cdot \alpha\| \ll \frac{\delta^{-O(d)^{O(1)}}}{N}$.
- Can we do better?

The equidistribution of nilsequences

lames Leng

- (Side note: the manipulations above are morally equivalent to operations in Green and Tao's proof involving the joining $G \times_{G_2} G$).
- Green and Tao show that either $|a| \ll \delta^{-O(d)^{O(1)}}/N$, or that there exists some character $\eta \ll \delta^{-O(d)^{O(1)}}$ such that $\|\eta \cdot \alpha\| \ll \frac{\delta^{-O(d)^{O(1)}}}{N}$.
- Can we do better?
- Gowers-Wolf suggests that we may be able to.

The equidistribution of nilsequences

James Len

Lemma

Let $\frac{1}{10} > \delta > 0$ and N be a prime. Suppose $\alpha, a \in \mathbb{R}^d$ are of denominator N, $|a| \leq \delta^{-1}$,

$$\|\beta + a \cdot \{\alpha h\}\|_{\mathbb{R}/\mathbb{Z}} = 0$$

for δN many $h \in [N]$. The either $N \ll \delta^{-O(d)^{O(1)}}$ or else there exists linearly independent w_1, \ldots, w_r and $\eta_1, \ldots, \eta_{d-r}$ in \mathbb{Z}^d with size at most $\delta^{-O(d)^{O(1)}}$ such that $\langle w_i, \eta_j \rangle = 0$ and

$$\|\eta_i \cdot \alpha\|_{\mathbb{R}/\mathbb{Z}} = 0, \ |w_i \cdot a| = 0.$$

Description of Proof

The equidistribution of nilsequences

James Leng

■ Tao has a simple proof (in the denominator *N* case) using Minkowski's second theorem. This does not generalize so simply.

Description of Proof

The equidistribution of nilsequences

- Tao has a simple proof (in the denominator *N* case) using Minkowski's second theorem. This does not generalize so simply.
- L.'s proof is quite intricate, at one point involving an iteration

$$(\delta_{j}, M_{j}, K_{j}, N_{j}, L_{j}, q_{j})$$

$$= (\delta_{j-1}/4, M_{j-1}, (2q_{j-1}K_{1}/2^{d})^{O(jd^{2})}, N_{j-1}/(L_{j-1}q_{j-1}),$$

$$jL_{j-1}(\delta_{j-1}/2^{d}M)^{-O(d)}, (\delta_{j-1}/2^{d}M)^{-O(d)}q_{j-1}).$$

The equidistribution of nilsequences

James Leng

■ One can use similar ideas for the proof with the bracket polynomial $\sum_i \alpha_i n[\beta_i n^2]$, and it would still work.

The equidistribution of nilsequences

- One can use similar ideas for the proof with the bracket polynomial $\sum_i \alpha_i n[\beta_i n^2]$, and it would still work.
- It is possible (though extremely painful) to rewrite this proof using purely bracket polynomial formalism.

The equidistribution of nilsequences

- One can use similar ideas for the proof with the bracket polynomial $\sum_i \alpha_i n[\beta_i n^2]$, and it would still work.
- It is possible (though extremely painful) to rewrite this proof using purely bracket polynomial formalism.
- Is it possible to improve the upper bounds for $r_5(N)$, the size of the largest subset of [N] which avoids 5-term arithmetic progressions?

The equidistribution of nilsequences

- One can use similar ideas for the proof with the bracket polynomial $\sum_i \alpha_i n[\beta_i n^2]$, and it would still work.
- It is possible (though extremely painful) to rewrite this proof using purely bracket polynomial formalism.
- Is it possible to improve the upper bounds for $r_5(N)$, the size of the largest subset of [N] which avoids 5-term arithmetic progressions?
- Is it possible to improve $U^{s+1}(\mathbb{Z}/N\mathbb{Z})$ inverse theorem for all s?

Thank you!

The equidistribution of nilsequences