§1 Tutorial 2019-11-01. Normal Subgroups and Quotient Groups

§1.1 Normal Subgroups

 $N \subseteq G$ is <u>normal</u> if gN = Ng, $\forall g \in G$. Equivalently $gNg^{-1} \subseteq N$ and $gNg^{-1} = N$.

$$gNg^{-1} = \{gng^{-1} : n \in N\}$$

Prooving that gNg^{-1} is a subgroup.

Identity: $e \in N \Rightarrow$

$$geg^{-1} = gg^{-1} = e \in gNg^{-1}$$

Inverses: $gng^{-1} \in gNg^{-1}$. $(gng^{-1})^{-1} = gn^{-1}g^{-1}$. $n \in N$ so $gn^{-1}g^{-1} \in gNg^{-1}$

Closure: $gn_1g^{-1}, gn_2g^{-1} \in gNg^{-1}$

$$gn_1g^{-1}gn_2g^{-1} = gn_1n_2g^{-1}$$

 $n_1 n_2 \in N$ so $g n_1 n_2 g^{-1} \in g N g^{-1} \checkmark$

§1.2 Quotient Groups

Let $N \subseteq G$ be a normal subgroup. Then G/N is a group with the operation (aN)(bN) = (ab)N

Example 1.1

Let
$$G = \mathbb{Z}$$
. Let $N = 24\mathbb{Z} = \{0, 24, 48, \dots\}$. $\mathbb{Z}/24\mathbb{Z} \cong \mathbb{Z}_{24}$

Example 1.2

 $D_8 = \{id, r, \dots, r^7, s, sr, \dots, sr^7\}$

 $N = \langle r^4 \rangle = \{id, r^4\}$ is a normal subgroup.

 $|D_8/N|=16/2=8.$ Finding all the cosets of N :

 $id \cdot N$, sN

 $r \cdot N$, srN

 $r^2 \cdot N$, $sr^2 N$

 $r^3 \cdot N$, $sr^3 N$

Exercise 1.3. Let G be a cyclic group where $G = \langle a \rangle$. Show that G/N is cyclic.

Claim: $G/N = \langle aN \rangle$.

Let $bN \in G/N$. $b \in G$, so $b = a^k$ for some k. $bN = a^k N = (aN)^k \Rightarrow g/N = \langle aN \rangle$.

Remark 1.4. Let G be a group, and $H, K \subseteq G$ be subgroups of G such that $H \subseteq K \subseteq G$. Then H being normal in K and K being normal in G does NOT imply that H is normal in G.

Example 1.5

Consider the following:

$$D_4 = \{id, r, r^2, r^3, \mu_1, \mu_2, \mu_3, \mu_4\}$$
$$K = \{id, \mu_1, \mu_3, r^2\}$$
$$H = \{id, \mu_1\}$$

Show that K is normal in D_4 , and that H is normal in K, but that H is not normal in D_4 .

Note 1.6. Tips for determining wether or not H is normal in G:

- 1. If G abelian, then all of its subgroups must be normal.
- 2. If G is simple, then it has no normal non-trivial proper subgroups.
- 3. If [G:H]=2, then H is normal (we proved this in a previous assignment).
- 4. If all else fails, compute

 $[D_4:K]=2$ so K is normal in D_4 . [K:H]=4/2=2 so H is normal in K.

Now to show that H is not normal in D_4 with a counter example.

$$\mu_1 = (24)$$

$$H = \{(), (24)\}$$

$$r = (1234) \in D_4$$

$$rH = \{(1234, (12)(34)\}$$

$$Hr = \{(1234), (14)(23)\}$$

Therefore $rH \neq Hr \Rightarrow H$ is not normal in D_4 .

Exercise. Let G be a group, and $N \subseteq G$ be a normal subgroup. Let $gN \in G/N$.

(a) Show that |gN| = n in G/N where n is the smallest natural number such that $g^n \in N$.

Observe that $(gN)^n = g^nN = eN \Leftrightarrow g^n \in N$. Therefore the order of (gN) is the smallest of $n \in \mathbb{N}$ such that $g^n \in N$.

(b) Give an example where |gN| in G/N is strictly smaller that |g| in G.

Let
$$G = \mathbb{Z}_4 = \{0, 1, 2, 3\}$$

Let
$$N = \langle 2 \rangle = \{0, 2\}$$

Elements of G/N:

$$0 + N = \{0, 2\} = 2 + N$$
$$1 + N = \{1, 3\} = 3 + N$$

$$\mathbb{Z}/3\mathbb{Z} =$$
 $0 + 3\mathbb{Z} = \{0, 3\}$
 $1 + 3\mathbb{Z} = \{1, 4\}$
 $2 + 3\mathbb{Z} = \{2, 5\}$