

Parallel Data Mining

Team 2 – Flash Coders
Team Research Investigation
Presentation 3

Foundations of Parallel Computing
Dec 2014

Agenda

- Overview & Computational Problem
- Sequential Program
- Parallel Program
- Demo
- Strong Scaling
- Weak Scaling
- Future Work
- Lesson learned

Overview of Topic

Computational Problem

Gradient descent can take a long time to converge with many training examples, and when it does it may not have found the global optimum

Figure from Vasilis Vryniotis. http://blog.datumbox.com/tuning-the-learning-rate-in-gradient-descent/. Accessed Sept 14, 2014.

Sequential Algorithm I

Linear/logistic regression cost function:

What if m equals 500 million training examples!

$$\min_{\theta} J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2}$$

- Algorithm
 - Randomly initialize heta
 - Repeat until convergence (for all j=0,1,...,n):

$$\theta_j = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^i) - y^i) x_j^i$$

Sequential Algorithm II

- Predicted output is then $h_{\theta}(x^i)$ with trained parameters θ
 - Linear Regression:

$$h_{\theta}(x^i) = \sum_{j=1}^n \theta^i x^i$$

Logistic Regression

$$z = \sum_{j=1}^{n} \theta^{i} x^{i}$$

$$h_{\theta}(x^{i}) = \frac{1}{(1 + e^{-z})}$$

Class Design

Allows for different data encodings like SVM_light

Big Data – Suspicious URLs

Instances: 2396130

Attributes: 3231961

Example Instance (anonymized data):

+1 4:0.0414938 5:0.0689655 6:0.176471 26:1 54:1 56:1 62:1 64:1 66:1 68:1 70:1 72:1 933:1 4346:1 65800:1 155153:1 155154:1 155155:1 155166:1 155170:1 155174:1 155175:1 155176:1 155177:1 155178:1 155180:1 155181:1 155182:1 155183:1 158035:1 159867:1 1284698:1 1288308:1 2112946:1 2134415:1

Sequential & Parallel Program

Demo

Strong Scaling

Strong Scaling on Cluster Nodes

Records	Workers	T (msec)	Accuracy	Speedup	Efficiency
30,000	Seq	28972	94.278		
	1	29039	94.278	0.9977	0.9977
	2	15642	94.086	1.8522	0.9261
	3	12547	92.100	2.3091	0.7697
	4	11655	94.031	2.4858	0.6215
	5	8803	93.211	3.2912	0.6582
	6	8494	93.472	3.4109	0.5685
	7	7645	93.887	3.7897	0.5414
	8	7611	92.925	3.8066	0.4758
50,000	Seq	48882	93.507		
	1	49058	93.507	0.9964	0.9964
	2	26406	93.650	1.8512	0.9256
	3	18282	92.293	2.6738	0.8913
	4	14811	93.982	3.3004	0.8251
	5	13950	93.644	3.5041	0.7008
	6	12954	93.450	3.7735	0.6289
	7	7545	93.344	6.4787	0.9255
	8	9755	93.170	5.0110	0.6264

Records	Workers	T (msec)	Accuracy	Speedup	Efficiency
75,000	Seq	75692	91.827		
	1	75746	91.827	0.9993	0.9993
	2	37761	92.621	2.0045	1.0023
	3	26769	93.152	2.8276	0.9425
	4	23610	93.874	3.2059	0.8015
	5	16816	93.111	4.5012	0.9002
	6	15370	93.308	4.9247	0.8208
	7	16654	93.717	4.5450	0.6493
	8	15105	93.079	5.0111	0.6264
100,000	Seq	88290	93.345		
	1	88037	93.345	1.0029	1.0029
	2	51384	92.962	1.7182	0.8591
	3	35328	93.294	2.4992	0.8331
	4	30375	93.834	2.9067	0.7267
	5	27204	93.348	3.2455	0.6491
	6	19429	93.065	4.5442	0.7574
	7	18598	93.729	4.7473	0.6782
	8	16565	93.337	5.3299	0.6662
200,000	Seq	179828	92.799		
	1	179243	92.799	1.0033	1.0033
	2	95628	92.674	1.8805	0.9402
	3	66983	91.938	2.6847	0.8949
	4	50253	93.322	3.5785	0.8946
	5	43535	92.802	4.1307	0.8261
	6	38787	93.318	4.6363	0.7727
	7	31036	93.158	5.7942	0.8277
	8	29632	93.516	6.0687	0.7586

Strong Scaling on Cluster Nodes

Strong Scaling Results

- As the number of workers increases, the problem size for each worker node (N/W) decreases but internode communication remains constant
- This decreases the ratio of computation to communication – not ideal for strong scaling
- BUT: strong scaling allows us to perform regression on datasets that wouldn't otherwise fit in memory – 1 node of tardis (~8GB memory) dies on full dataset but 10 nodes handle it easily

Weak Scaling

Weak Scaling on Cluster Nodes

Records	Records	Workers	T (msec)	Accuracy	Sizeup	Efficiency
25,000		Seq	28568	93.387		
	x1	1	28906	93.387	0.9883	0.9883
	x2	2	26793	93.419	2.1577	1.0789
	х3	3	30348	93.584	2.6486	0.8829
	x4	4	29952	93.403	4.0529	1.0132
	x5	5	32246	93.275	4.6443	0.9289
	х6	6	32058	93.466	6.0352	1.0059
	x7	7	28062	93.209	7.9968	1.1424
	x8	8	27570	93.261	8.1428	1.0178
50,000		Seq	46793	93.670		
	x1	1	46964	93.670	0.9964	0.9964
	x2	2	55050	92.942	1.7062	0.8531
	х3	3	51582	92.588	3.2017	1.0672
	x4	4	51522	92.881	4.0047	1.0012
	x5	5	52049	93.148	4.9494	0.9899
	х6	6	52391	92.600	5.9608	0.9935
	x7	7	53376	92.976	6.8708	0.9815
	x8	8	53342	92.939	8.0051	1.0006

Records	Records	Workers	T (msec)	Accuracy	Sizeup	Efficiency
100,000		Seq	86291	94.134		
	x1	1	86348	94.134	0.9993	0.9993
	x2	2	89994	93.673	1.9190	0.9595
	x3	3	97665	93.153	2.7644	0.9215
	x4	4	98436	92.629	3.9687	0.9922
	x5	5	102178	92.965	4.8169	0.9634
	х6	6	100589	93.209	6.0948	1.0158
	x7	7	102744	93.298	6.8532	0.9790
	x8	8	103819	93.090	7.9172	0.9896
150,000		Seq	131592	93.334		
	x1	1	131428	93.334	1.0012	1.0012
	x2	2	144903	92.788	1.8140	0.9070
	x3	3	145440	93.355	2.9889	0.9963
	x4	4	149426	92.427	3.8933	0.9733
	x5	5	147138	93.058	5.0778	1.0156
	х6	6	152049	93.043	5.8062	0.9677
	x7	7	151443	93.043	7.0280	1.0040
	x8	8	150240	92.815	8.0641	1.0080
200,000		Seq	165862	93.323		
	x1	1	165546	93.323	1.0019	1.0019
	x2	2	169329	93.830	1.9553	0.9777
	x3	3	188334	93.075	2.6973	0.8991
	x4	4	193105	92.660	3.9012	0.9753
	x5	5	191880	92.949	5.0319	1.0064
	x6	6	191667	92.546	6.0067	1.0011
	x7	7	194444	92.951	6.9000	0.9857
	x8	8	195472	92.807	7.9579	0.9947

Weak Scaling on Cluster Nodes

Weak Scaling Results

- The cluster parallel program does require tight coupling on each iteration
- As opposed to in strong scaling, in weak scaling here the amount of computation to communication remains almost the same
 - The internode communication required increases only slightly by adding another worker
- This leads to good weak scaling results

Current Work: SGD

- Parallel Stochastic Gradient Descent
 - 97.4% accuracy on 2396130 records using all 3231962 features
 - 4496247 msec (~1hr) for 1 million iterations most data was NEVER seen prior to classification
 - 95.8% accuracy in ~7 minutes (20,000 iterations)
 - Parallelized over weight update step
 - Only significant for millions of features
 - SGD doesn't use regularization so there is a risk of overfitting the data

Current Work: Mini-Batches

Note: $w = \theta$

$$w_t = \underset{w \in \Omega}{\operatorname{argmin}} \left[\phi_{I_t}(w) + \frac{\gamma_t}{2} \|w - w_{t-1}\|_2^2 \right]$$

$$\underset{\text{General logistic regression}}{\operatorname{General logistic regression}} \left[\underset{\text{beginning and smaller at the end}}{\operatorname{Batch Penalty - w has}} \right]$$

- Prevents divergence from previous consensus found
- Limits dramatic changes of parameter w over batch iterations

Current Work: Mini-Batches

Mini-Batch Gradient Descent on all data in 50 batches / 50 features:

Logistic regression took 341.475 seconds in 15000 iterations
Init: Cost 0.6587 Sq Error 0.2124
Final: Cost 0.1744 Sq Error 0.0455
Number of features with bias term: 51
Classification took 0.035 seconds

-1 1
-1 301667 19184
1 8854 150085
Accuracy: 94.156%
Precision: 88.667%

Recall: 94.429%

- Can't compare directly with strong/weak scaling does less iterations to converge
- Three different parameters to optimize batch size, batch cost, batch iterations
- Found that too small of a batch size leads to poor accuracy
- Further research required

Future Work I

- Tuning parameters optimal parameters not obvious:
 - Seed: random restarts
 - Alpha: learning rate
 - Epsilon: convergence threshold
 - Steps: number of iterations
 - Threshold: class decision parameter
 - Lambda: regularization parameter
 - Records: amount of data
 - Features: number of features
 - Batched: number of batches
 - Gamma: batch cost
 - Biter: iterations for one batch
 - Test: percent of training examples set aside

Future Work II

- Feature selection to only use the best of the
 ~3 million features
- Automatic parameter selection using validation set
- Parameters that change over time

Lessons Learned

- Tuple space does not like ~3 million features being transferred twice per iteration
- Ex:
 - 50 features: Logistic regression took 13.346 seconds in 100 iterations (73% accuracy)
 - 3,231,962 features: Logistic regression took438.815 seconds in 100 iterations (66% accuracy)
 - 3,000% increase
- Version control (should have used it)

References

- Sameer Singh, Jeremy Kubica, Scott Larsen and Daria Sorokina. 2009. Parallel Large Scale Feature Selection for Logistic Regression. In *Proceedings of 2009 Society for Industrial and Applied Mathematics* (SIAM) Data Mining, SIAM, Philadelphia, PA, USA, 1172-1183. URL:http://epubs.siam.org/doi/pdf/10.1137/1.9781611972795.100
- Haoruo Peng, Ding Liang, and C. Choi. Evaluating parallel logistic regression models. In *Proceedings of the 2013 IEEE International Conference on Big Data*, pp 119-126, 6-9 Oct 2013.
 URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6691743 &isnumber=6690588
- Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J. Smola. 2014. Efficient mini-batch training for stochastic optimization. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining* (KDD '14). ACM, New York, NY, USA, 661-670.
 URL:http://dl.acm.org/citation.cfm?id=2623330.2623612&coll=DL&dl=AC M&CFID=415399891&CFTOKEN=69514427
- Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. 2009. Identifying suspicious URLs: an application of large-scale online learning. In *Proceedings of the 26th Annual International Conference on Machine Learning* (ICML '09). ACM, New York, NY, USA, 681-688.
 URL:http://cseweb.ucsd.edu/~savage/papers/ICML09.pdf

Further References

- Michele Banko and Eric Brill. 2001. Scaling to very very large corpora for natural language disambiguation. In Proceedings of the 39th Annual Meeting on Association for Computational Linguistics (ACL '01). Association for Computational Linguistics, Stroudsburg, PA, USA, 26-33. URL: http://dl.acm.org/citation.cfm?id=1073017
- Mohammed Javeed Zaki. 1999. Parallel and Distributed Data Mining: An Introduction. In Revised Papers from Large-Scale Parallel Data Mining, Workshop on Large-Scale Parallel KDD Systems, SIGKDD, Mohammed Javeed Zaki and Ching-Tien Ho (Eds.). Springer-Verlag, London, UK, UK, 1-23. URL: http://dl.acm.org/citation.cfm?id=744383
- Andrew Ng. Machine Learning course materials, Coursera. https://www.coursera.org/course/ml. Accessed September 10, 2014.

Code:

https://github.com/rcmccartney/parallel_regression

Questions