- 1) A process for preparing (meth)acrylic esters (F) containing urethane groups by
- c) reacting an alcohol (C) containing urethane groups with (meth)acrylic acid or an ester of (meth)acrylic acid with a saturated alcohol (D), and

31

d) if desired, working up the reaction mixture from c), which comprises

conducting the reaction c) in the presence of an enzyme (E).

10

- A process as claimed in claim 1, wherein the enzyme (E) is a lipase, esterase or protease.
- 3) A process as claimed in claim 1 or 2, wherein the conversion in stage c) is set to at least 95%.
 - 4) A process as claimed in any of the preceding claims, wherein the reaction c) is conducted at from 20 to 80°C.
- A process as claimed in any of the preceding claims, wherein the alcohol (C) containing urethane groups is obtainable by
 - a) reacting an amine (A) with a carbonate (B), and
 - b) if desired, working up the reaction mixture obtainable from a).

25

6) A process as claimed in claim 5, wherein the alcohol (C) containing urethane groups is obtainable by a reaction thus

$$R^{3}$$
 $N-H$
 R^{4}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}

30

in which

	R³, R˚	independently are hydrogen, C ₁ –C ₁₈ alkyl, C ₂ –C ₁₈ alkyl uninterrupted or interrupted by one or more oxygen and/or sulfur atoms and/or by one or more substituted or unsubstituted imino groups, or are C ₂ –C ₁₈ alkenyl, C ₆ –C ₁₂ aryl, C ₅ –C ₁₂ cycloalkyl or a five- to six-membered heterocycle containing oxygen,
5		nitrogen and/or sulfur atoms, it being possible for each of the radicals stated to be substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles, or are a group of the formula -[X _i] _k -H,
10	Y	is C_2 - C_{20} alkylene or C_5 - C_{12} cycloalkylene or is C_2 - C_{20} alkylene which is interrupted by one or more oxygen and/or sulfur atoms and/or by one or more substituted or unsubstituted imino groups and/or by one or more cycloalkyl, -(CO)-, -O(CO)O-, -(NH)(CO)O-, -O(CO)(NH)-, -O(CO)- or -(CO)O- groups, it being possible for each of the radicals stated to be substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles,
15	k	is a number from 1 to 50, and
20	Xi	for i = 1 to k can be selected independently from the group consisting of $-CH_2-CH_2-O$, $-CH_2-CH_2-N(H)$, $-CH_2-CH_2-N(H)$, $-CH_2-CH(NH_2)$, $-CH_2-CH(NHCHO)$, $-CH_2-CH(CH_3)O$, $-CH(CH_3)CH_2-O$, $-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2$
25 7)	(Meth)	acrylic esters containing urethane groups and obtainable by
30	a)	reacting a polyethyleneimine, a hydrogenated polyacrylonitrile, a straight-chain, branched or dendritic polymer having amino functions or an at least partly hydrolyzed poly-N-vinylformamide having a weight-average molecular weight M_w of from 200 to 1 000 000 with a carbonate (B) at a temperature of from 0 to 120°C,
	b)	if desired, working up the reaction mixture obtainable from a),
35	c)	reacting the reaction mixture from a) or b) with (meth)acrylic acid or with an ester of (meth)acrylic acid with a saturated alcohol (D) in the presence of an

enzyme (E), and

d) if desired, working up the reaction mixture from c).