Relación ejercicios tema 1 2024

Ignacio Fernández Contreras

ifcau3z@uma.es

Planificación de Proyectos y Análisis de Riesgos. E.T.S Informática.

1. Ejercicio 1

a) Maximizar $x_1 + 5x_2$, S.A.

$$-2x_1 + x_2 \le 4,$$

$$-x_1 + x_2 \le 1,$$

$$2x_1 + x_2 \le 6,$$

$$x_1, x_2 \ge 0.$$

Resolución por el método gráfico

Paso 1: Despejamos x_2 en todas las restricciones para obtener un par de puntos y poder trazar las rectas correspondientes.

Primera restricción:

Segunda restricción:

Puntos:
$$x_2 \le 4 + 2x_1 \qquad x_2 \le 1 + x_1$$

$$x_1 = 0 \quad \Rightarrow \quad x_2 = 4, \qquad x_1 = 0 \quad \Rightarrow \quad x_2 = 1,$$

$$x_1 = 1 \quad \Rightarrow \quad x_2 = 6. \qquad x_1 = 4 \quad \Rightarrow \quad x_2 = 5.$$

Tercera restricción:

ricción: Puntos:
$$x_1 = 0 \quad \Rightarrow \quad x_2 = 6,$$

$$x_2 \le 6 - 2x_1 \qquad \qquad x_1 = 2 \quad \Rightarrow \quad x_2 = 2.$$

Dibujamos la gráfica con las rectas obtenidas:

Dibujar una recta con valor función objetivo constante

Puntos:

$$x_1 + 5x_2 \quad \Rightarrow \quad x_2 = -\frac{x_1}{5}$$

$$x_1 = 0 \Rightarrow x_2 = 0,$$

 $x_1 = 5 \Rightarrow x_2 = -1.$

Una vez obtenidos los puntos, trazamos las paralelas a esta recta objetivo.

Hacemos lo mismo, haciendo una paralela sobre la recta original (z_0) en cada uno de los puntos de corte de nuestra región.

Obteniendo los siguientes puntos:

$$B = \begin{pmatrix} \frac{1}{2}, 0 \end{pmatrix}$$

$$C = (3,0)$$

$$D = \begin{pmatrix} \frac{4}{3}, \frac{5}{3} \end{pmatrix}$$

Donde obtenemos la siguiente tabla, con los puntos de corte de la sección:

	(x_1, x_2)	$z = x_1 + 5x_2$
В	$\left(\frac{1}{2},0\right)$	$z = \frac{1}{2}$
$\overline{\mathbf{C}}$	(3, 0)	z = 3
D	$\left(\frac{5}{3},\frac{8}{3}\right)$	$z = \frac{5}{3} + 5\frac{8}{3} = 15$

Este problema tiene una única solución óptima, donde el valor objetivo es 15 en el punto de corte $(\frac{5}{3}, \frac{8}{3})$.

Resolución por el método SIMPLEX

Maximizar:

$$z = x_1 + 5x_2 + 0S_1 + 0S_2 + 0S_3$$

Sujeto a las siguientes restricciones:

$$-2x_1 + x_2 + S_1 + 0S_2 + 0S_3 = 4$$
$$x_1 + x_2 + 0S_1 + S_2 + 0S_3 = 3$$
$$2x_1 + x_2 + 0S_1 + 0S_2 + S_3 = 6$$

	Cj	1	5	0	0	0	
$\overline{\mathrm{Cb}}$	Base	x1	x2	S1	S2	S3	R
0	S1	-2	1	1	0	0	4
0	S2	1	1	0	1	0	3
0	S3	2	1	0	0	1	6
	Z	-1	-5	0	0	0	0

- Condición de parada: No para, dado que hay valores negativos en la fila Z.
- Entra: x_2 (posee el valor más bajo en su columna).
- Sale: S₂ (al hacer la división entre el valor correspondiente en cada fila de la columna pivote entre R, cogemos el valor estrictamente positivo más pequeño).

It.1	Cj	1	5	I -	0	0	
Cb	Base	x1	x2	S1	S2	S3	R
0	S1	-1	0	1	-1	0	3
5	X2	-1	1	0	1	0	1
0	S3	3	0	0	-1	1	5
	Z	-6	0	0	5	0	5

- Condición de parada: No para, dado que hay valores negativos en la fila Z.
- Entra: x_1 (posee el valor más bajo en su columna).
- Sale: S_3 (al hacer la división entre el valor correspondiente en cada fila de la columna pivote entre R, cogemos el valor estrictamente positivo más pequeño).

It.2	Cj	1	5	0	0	0	
Cb	Base	x1	x2	S1	S2	S3	R
0							14/3
5	X2	0					8/3
1	X1	1	0	0	-1/3	1/3	5/3
	Z	0	0	0	3	2	15

Solución óptima en Z=15, con valores:

$$x_1 = 5/3$$

 $x_2 = 8/3$
 $S_1 = 14/3$
 $S_2 = 0$
 $S_3 = 0$

b) Minimizar $x_1 - x_2$, S.A.

$$x_1 + x_2 \le 4,$$

 $2x_1 - x_2 \ge 1,$
 $x_2 \le 2,$
 $x_1, x_2 \ge 0.$

Resolución por el método gráfico

Paso 1: Despejamos x_2 en todas las restricciones para obtener un par de puntos y poder trazar las rectas correspondientes.

Dibujar una recta con valor función objetivo constante

$$x_1 = 0 \quad \Rightarrow \quad x_2 = 0,$$

$$x_1 = 4 \quad \Rightarrow \quad x_2 = 4.$$

$$x_1 - x_2 \quad \Rightarrow \quad x_2 = x_1$$

Una vez obtenidos los puntos, trazamos las paralelas a esta recta objetivo.

Hacemos lo mismo, haciendo una paralela sobre la recta original (z_0) en cada uno de los puntos de corte de nuestra región.

Obteniendo los siguientes puntos:

$$A = \begin{pmatrix} \frac{1}{2}, 0 \end{pmatrix}$$
$$B = \begin{pmatrix} 3, 0 \end{pmatrix}$$
$$C = \begin{pmatrix} \frac{4}{3}, \frac{5}{3} \end{pmatrix}$$

Donde obtenemos la siguiente tabla, con los puntos de corte de la sección:

	(x_1, x_2)	$z = x_1 - x_2$
В	$(\frac{1}{2},0)$	$z = \frac{1}{2}$
$\overline{\mathbf{C}}$	(3, 0)	z = 3
D	$\left(\frac{4}{2},\frac{5}{2}\right)$	$z = \frac{4}{2} - \frac{5}{2} = -\frac{1}{2}$

Cuadro 1. Valores de (x_1, x_2) y su correspondiente $z = x_1 - x_2$

Este problema tiene una única solución óptima, donde el valor objetivo es 3 en el punto de corte $\left(\frac{1}{2},0\right)$.

Resolución por el método SIMPLEX

Minimizar:

$$z = 0x_1 + 0x_2 + 0S_1 + 0S_2 + 0S_3 + A1$$

Sujeto a las siguientes restricciones:

- $x_1 + x_2 + S_1 + 0S_2 + 0S_3 + 0A1 = 3$
- $2x_1 x_2 + 0S_1 + S_2 + 0S_3 + A1 = 1$
- $0x_1 + x_2 + 0S_1 + 0S_2 + S_3 + 0A1 = 2$

Matriz inicial primera fase:

F1 T1	Cj	0	0	0	0	0	1	
Cb	Base	x1	x2	S1	S2	S3	A1	R
0	S1	1	1	1	0	0	0	3
1	S2	2	-1	0	-1	0	1	1
0	S3	0	1	0	0	1	0	2
	Z	2	-1	0	-1	0	0	1

- Condición de parada: No para, dado que hay valores negativos en la fila Z.
- Entra: x_1 (posee el valor más bajo en su columna).
- Sale: A_1 (al hacer la división entre el valor correspondiente en cada fila de la columna pivote entre R, cogemos el valor estrictamente positivo más pequeño).

Iteración 1:

ſ	F1 T1	Cj	0	0	0	0	0	1	
ſ	$^{\mathrm{Cb}}$	Base	x1	x2	S1	S2	S3	A1	R
ſ	0	S1	0	3/2	1	1/2	0	-1/2	5/2
ſ	0	X1	1	-1/2	0	-1/2	0	1/2	1/2
Ī	0	S3	0	1	0	0	1	0	2
		Z	0	0	0	0	0	-1	0

Acaba la primera fase Matriz segunda fase:

F1 T1	Cj	1	-1	0	0	0	
Cb	Base	x1	x2	S1	S2	S3	R
0	S1	0	3/2	1	1/2	0	5/2
1	X1	1	-1/2	0	-1/2	0	1/2
0	S3	0	1	0	0	1	2
	Z	0	1/2	0	-1/2	0	1/2

- Condición de parada: No para, dado que hay valores negativos en la fila Z.
- Entra: X_2 (posee el valor más bajo en su columna).
- Sale: S_1 (al hacer la división entre el valor correspondiente en cada fila de la columna pivote entre R, cogemos el valor estrictamente positivo más pequeño).
- El elemento pivote es 1/2

Solución óptima en Z = -1/3, con valores:

F1 T1	Cj	1	-1	0	0	0	
Cb	Base	x1	x2	S1	S2	S3	R
-1	X2	0	1	2/3	1/3	0	5/3
1	X1	1	0	1/3	-1/3	0	4/3
0	S3	0	0	-2/3	-1/3	1	1/3
	Z	0	0	-1/3	-2/3	0	-1/3

$$x_1 = 4/3$$

$$x_2 = 5/3$$

$$S_1 = 0$$

$$S_2 = 0$$

$$S_3 = 1/3$$

c) Maximizar $x_1 + x_2$, S.A.

$$-x_1 + x_2 \le 1, x_1 + x_2 \ge 3, x_1 - 2x_2 \le 4, x_1 \ge 0,$$

 x_2 r.n.s (no restringida en signo).

Resolución por el método gráfico

Paso 1: Despejamos x_2 en todas las restricciones para obtener un par de puntos y poder trazar las rectas correspondientes.

Dibujar una recta con valor función objetivo constante

Puntos:
$$x_1=0 \quad \Rightarrow \quad x_2=0,$$

$$x_1+x_2 \quad \Rightarrow \quad x_2=-x_1 \qquad \qquad x_1=3 \quad \Rightarrow \quad x_2=-3.$$

Una vez obtenidos los puntos, trazamos las paralelas a esta recta objetivo.

Hacemos lo mismo, haciendo una paralela sobre la recta original (z_0) en cada uno de los puntos de corte de nuestra región.

Obteniendo los siguientes puntos:

$$A = (0, -3)$$

$$B = (0,1)$$

$$C = (1, 2)$$

$$D = (\frac{10}{3}, -\frac{1}{3})$$

Donde obtenemos la siguiente tabla, con los puntos de corte de la sección:

Este problema no tiene una única solución óptima, una de sus posibles soluciones es donde el valor objetivo es 3 en el punto de corte (0,-3)

	(x_1, x_2)	$z = x_1 + x_2$
A	(0, -3)	z = -3
В	(0, 1)	z = 1
\mathbf{C}	(1, 2)	z = 1 + 2 = 3
D	$\left(\frac{10}{3}, -\frac{1}{3}\right)$	$z = \frac{10}{3} - \frac{1}{3} = \frac{9}{3} = 3$

Resolución por el método SIMPLEX

Maximizar:

$$z = x_1 + x_2 + 0S_1 + 0S_2 + 0S_3$$

Sujeto a las siguientes restricciones:

- $-x_1 + x_2 + S_1 + 0S_2 + 0S_3 + 0A1 = 1$
- $x_1 + x_2 + 0S_1 + S_2 + 0S_3 + A1 = 3$
- $1x_1 2x_2 + 0S_1 + 0S_2 + S_3 + 0A1 = 4$

	Cj	1	1	0	0	0	
Cb	Base	x1	x2	S1	S2	S3	R
0	S1	-1	1	1	0	0	1
0	S2	1	1	0	1	0	3
0	S3	1	-2	0	0	1	4
	Z	-1	-1	0	0	0	0

- Condición de parada: No para, dado que hay valores negativos en la fila Z.
- Entra: x_1 (posee el valor más bajo en su columna).
- Sale: S_2 (al hacer la división entre el valor correspondiente en cada fila de la columna pivote entre R, cogemos el valor estrictamente positivo más pequeño).

Iteración 1:

	Cj	1	1	0	0	0	
Cb	Base	x1	x2	S1	S2	S3	R
0	S1	0	2	1	1	0	4
1	X1	1	1	0	1	0	3
0	S3	0	-3	0	-1	1	1
	Z	0	0	0	1	0	3

Nos encontramos en un punto óptimo y hay variables no básicas con costes reducidos igual a 0, por lo que existen múltiples valores para las variables de decisión que permiten obtener el valor óptimo de z=3, los cuáles están contenidos en el segmento de la recta $x_1+x_2=3$, una de las soluciones es:

$$x_1 = 3$$

$$x_2 = 0$$

$$S_1 = 4$$

$$x_2 = 0$$

$$S_1 = 4$$

$$S_2 = 0$$

$$S_3 = 1$$

$$S_3 = 1$$

2. Ejercicio 5

Considere el siguiente problema:

Maximizar
$$z = x_1 - 2x_2 + 3x_3$$
,
S.A. $x_1 + x_2 + x_3 \le 10$,
 $x_1 - x_2 \le 5$,
 $x_1 - 3x_2 \le 5$,
 $x_1, x_2, x_3 \ge 0$.

2.1. Resuelva este problema mediante el método del simplex.

Restricciones:

■ 1X1 + 1X2 + 1X3 + 1S1 + 0S2 + 0S3 = 10 ■ 1X1 - 1X2 + 0X3 + 0S1 + 1S2 + 0S3 = 5 ■ 1X1 + 0X2 - 1X3 + 0S1 + 0S2 + 1S3 = 5

	Cj	1	-2	3	0	0	0	
Cb	Base	X1	X2	Х3	S1	S2	S3	R
0	S1	1	1	1	1	0	0	10
0	S2	1	-1	0	0	1	0	5
0	S3	1	0	-1	0	0	1	5
	Z	-1	2	-3	0	0	0	0

- Condición de parada: No para, dado que hay valores negativos en la fila Z.
- Entra: x_3 (posee el valor más bajo en su columna).
- Sale: S_1 (al hacer la división entre el valor correspondiente en cada fila de la columna pivote entre R, cogemos el valor estrictamente positivo más pequeño).

${\rm IT}\ 1$	Cj	1	-2	3	0	0	0	
Cb	Base	X1	X2	Х3	S1	S2	S3	R
3	Х3	1	1	1	1	0	0	10
0	S2	1	-1	0	0	1	0	5
0	S3	2	1	0	1	0	1	15
	Z	2	5	0	3	0	0	30

Solución óptima en Z=30, con valores:

$$x_1 = 0$$

 $x_2 = 0$
 $x_3 = 10$
 $S_1 = 0$
 $S_2 = 5$
 $S_3 = 15$