第二章 基数与选择公理

无穷! 从未有其他问题能如此震撼人类的精神; 从未有其他观念能如此激励人类的理智, 让它结出丰硕的果实; 也从未有其他概念比无穷更需要澄清……

大卫·希尔伯特

2.1 ZF 中基数概念

我们用自然数计数时,在回答"多少"的同时,也给被计数对象排出了一个次序。所以,在有穷的情况下,表示"多少"的基数与表示"次序"的序数是同一的。自然数既是序数也是基数。

在无穷的情况下它们并不同一。我们已经看到,良序集 $\{0 < 1 < 2 < \cdots < \omega\}$ 的序型是 $\omega + 1$ (事实上它就是序数 $\omega + 1$),但是这同样的集合,如果我们将 ω 排在最前面,即, $\{\omega < 0 < 1 \cdots \}$,这个良序集的序型却是 ω 。也就是说序型为 $\omega + 1$ 的集合,却只有" ω "个元素。所以并不是所有无穷序数都表示基数。

另一个更重要的问题是,我们只能保证每个良序集被一个唯一的序数"计数"(定理1.4.19),除非我们相信任意集合都可以被良序化,不是每个集合都能有一个序数与其对应。而每个集合都可良序化的信念等价于一个新的公理,即选择公理。现有的公理不保证这一点。

在没有选择公理的情形下,我们首先讨论一些有关集合基数的概念,看 看能走多远。

2.1.1 等势

定义 2.1.1. 如果存在一个以集合 X 为定义域,以集合 Y 为值域的双射,就称集合 X 和 Y 是 等势的,用符号表示为 |X| = |Y|。

如果存在集合 X 到集合 Y 内的单射,就称X 的势小于等于 Y 的势。表示为 $|X| \leq |Y|$ 。 $|X| \leq |Y|$ 意味着存在 Y 的子集 Z 使得 |X| = |Z|。

|X| < |Y| 表示 $|X| \le |Y|$ 但是并非 |X| = |Y|。

练习 2.1.2. |X| < |Y| 并不等价于存在 Y 的真子集 Z 使得 |X| = |Z|。

练习 2.1.3. 对任意集合 X,Y,定义 $X \sim Y$ 当且仅当 |X| = |Y|。证明 \sim 是一个"等价关系"。

直观上, < 应该是一个偏序, 传递性是显然的。但反对称性却并不是平凡的结果。

定理 2.1.4 (康托-伯恩斯坦定理). 如果 $|X| \leq |Y|$ 并且 $|Y| \leq |X|$,则 |X| = |Y|。

证明. 因为 $|X| \le |Y|$,故存在由 X 到 Y 的单射: $f: X \to Y$; 又 $|Y| \le |X|$,所以存在由 Y 到 X 的单射: $g: Y \to X$ 。我们归纳定义两个集合的 X_n 和 Y_n 如下:

$$X_0 = X$$
 $Y_0 = Y;$
 $X_{n+1} = g[Y_n]$ $Y_{n+1} = f[X_n].$ (2.1)

注意到,对任意 $n \in \omega$, $X_{n+1} \subseteq X_n$, $Y_{n+1} \subseteq Y_n$ 。所以,我们可以做如下定义:对任意 $n \in \omega$,

$$\overline{X}_n = X_n - X_{n+1} \qquad \overline{Y}_n = Y_n - Y_{n+1};
X' = \bigcap_{n \in \omega} X_n \qquad Y' = \bigcap_{n \in \omega} Y_n.$$
(2.2)

(1) 首先, \overline{X}_n ,X'是 X 的一个划分。即, \overline{X}_n ,X' 两两互不相交,并且 $X = X' \cup \bigcup_{n \in \omega} \overline{X}_n$ 。同样 \overline{Y}_n ,Y' 也 Y 的划分。

- (i) 如果 $x \in X'$, 则对任意 $n \in \omega$, $x \in X_n$, 所以 $x \notin \overline{X}_n$ 。如果 n < m, 则 $X_m \subseteq X_{n+1}$,所以 $X_m \cap \overline{X}_n = \emptyset$ 。
- (ii) 如果 $x \notin X'$, 则存在 n, $x \notin X_n$, 令 n_0 为最小的这样的 n, 则由于 $X' \subseteq X$, 所以 $n_0 > 0$, 所以 $x \in X_{n_0} X_{n_0+1} = \overline{X}_{n_0}$ 。
 - (2) 对任意 $n \in \omega$, $f[\overline{X}_n] = \overline{Y}_{n+1}$, $g[\overline{Y}_n] = \overline{X}_{n+1}$ 。 并且 f[X'] = Y'。
- (i) $f[\overline{X}_n] = f[X_n X_{n+1}]$, 由于 f 是单射,所以这又等于 $f[X_n] f[X_{n+1}]$,后者就是 \overline{Y}_{n+1} 。

(ii)

$$f[X'] = f[X_0 - \bigcup_{n \in \omega} \overline{X}_n]$$

$$= Y_1 - \bigcup_{n \in \omega} \overline{Y}_{n+1}$$

$$= (Y_1 \cup (Y_0 - Y_1)) - ((Y_0 - Y_1) \cup \bigcup_{n \in \omega} \overline{Y}_{n+1})$$

$$= (Y_0 \cup Y_1) - (\overline{Y}_0 \cup \bigcup_{n \in \omega} \overline{Y}_{n+1})$$

$$= Y_0 - \bigcup_{n \in \omega} \overline{Y}_n$$

$$= Y'.$$

(3) 定义 $h: X \to Y$ 为

$$h(x) = \begin{cases} f(x) & x \in X'; \\ f(x) & x \in \overline{X}_{2n}; \\ g^{-1}(x) & x \in \overline{X}_{2n+1}. \end{cases}$$
 (2.3)

由 (1), dom(h) = X; 由 (1) 和 (2), ran(h) = Y; 由于 f, g 都是单射,所以 h 是单射。总结起来,h 是 X 到 Y 的双射。

练习 2.1.5. 如果 $|X| \leq |Y|$,

(1) 容易定义一个满射 $f: Y \to X$ 。所以如果 $|Y| \ge |X|$,则存在 Y 到 X 满射。

(2) 以上命题的逆命题是否成立呢?即,如果存在满射 $f: Y \to X$,是否一定有 $|Y| \ge |X|$ 呢?事实上,现有的公理不能证明这一点,这需要选择 公理。

定理 **2.1.6.** $|\mathbb{N}| = |\mathbb{Q}| < |\mathbb{R}|$ 。

定义 2.1.7. 对任意集合 X,

- (1) 如果存在 $n \in \omega$,使得 |X| = |n|,就称 X 为有穷的;
- (2) 如果对任意 $n \in \omega$ 都有 $|X| \ge |n|$, 称 X 为无穷的;
- (3) 如果 $|X| = |\omega|$,就称 X 是可数的或可数无穷的;
- (4) 有穷的或可数的集合称为至多可数的;
- (5) 不是可数的无穷集合称为不可数的。

练习 2.1.8 (鸽笼原理). ¹ 如果 X 是有穷的,则不存在 X 到它的真子集 $Y \subsetneq X$ 上的双射。

注记 2.1.9. 根据鸽笼原理(练习2.1.8),如果 X 是有穷集合,则对 X 的任意 真子集 Y, $|Y| \neq |X|$ 。那这个命题的逆命题,即,如果对 X 的任意真子集 Y, $|Y| \neq |X|$,则 X 是有穷集合,是否成立?现有的公理不能证明这一点,这需要选择公理。条件"不与自己的真子集等势"也被称为**戴德金有穷**。在 **ZF** 下,每个有穷集都是戴德金有穷的,而要证明每个戴德金有穷的集合都是有穷的,则需要选择公理。

我们定义有穷用到了自然数的概念。以下介绍几种有穷的定义,可以避免使用自然数。

命题 2.1.10. 以下命题等价:

- (1) 集合 X 是有穷的。
- (2) 存在 X 上的线序 \leq 满足 X 的每一非空子集在 \leq 下有最大元和最小元。
 - (3) X 的每一非空子集族都有 \subseteq 关系下的极大元。

¹通常也会称为"抽屉原理"或"鸟巢原理"。

证明. (1) \Leftrightarrow (2)。如果 X 有穷,则 $X = \{x_0, x_1, \cdots, x_n\}$,0,1,…n 是自然数。定义 X 上的关系为: $x_m \leq x_n$ 当且仅当 $m \leq n$,则 \leq 是线序,并且 X 的每个子集都有最大最小元。反之,如果 X 满足条件,则 X 有最小元,令 X 的最小元为 x_0 ,而 $X - \{x_0\}$ 也有最小元,令其为 x_1 ,如此,令 x_{n+1} 为 $X - \{x_0, x_1, \cdots, x_n\}$ 的最小元。由于 X 有最大元,故总存在 m,使得 $X - \{x_0, x_1, \cdots, x_m\} = \emptyset$,即 $X = \{x_0, x_1, \cdots, x_m\}$ 。

(1) \Leftrightarrow (3)。如果 X 有穷,则存在 m,|X| = m。如果 $\mathcal{F} \subseteq \mathcal{P}(X)$ 是 X 的子集族,则对任意 $Y \in \mathcal{F}$, $|Y| \leq m$ 。因此,存在一个 $Y \in \mathcal{F}$,对任意 $X \in \mathcal{F}$,都有 $|X| \leq |Y|$,令 |Y| = n,则满足 |Y| = n 的 Y 是 \mathcal{F} 的极大元。 反过来,如果 X 无穷,则 $\mathcal{F} = \{Y \subseteq X \mid Y$ 是有穷的} 没有极大元。

练习 2.1.11. 如果 X, Y 都是可数的,则 $X \cup Y$ 是可数的。【不妨假设 $X \cap Y \neq \emptyset$,定义函数 $f: X \cup Y \to \omega$ 为 $f(x_n) = 2n$, $f(y_n) = 2n + 1$,这是 $X \cup Y$ 到 ω 的单射。】

定理 2.1.12. 有理数 $\mathbb Q$ 是可数的,实数 $\mathbb R$ 是不可数的。

引理 2.1.13. 如果 α 是一个可数极限序数,则存在函数 $f: \omega \to \alpha$ 满足:

- (1) 如果n < m, 则 f(n) < f(m);
- (2) $\bigcup \operatorname{ran}(f) = \alpha_{\circ}$

证明. 令 $h: \omega \to \alpha$ 是双射。我们递归定义 f 如下: f(0) = h(0); 如果 f(n) 已经定义,令 k 为最小的自然数使得 h(k) > f(n)。这样的 k 一定存在: 因为 ω 是无穷的,而 $f(0) < \cdots < f(n)$ 只有穷个元素。令 f(n+1) = h(k)。

f 显然是保序的。我们只需证明对任意 $\beta < \alpha$,存在 $n \in \omega$, $f(n) > \beta$ 。 假设 $\beta = h(k)$,由 f 的构造可以看出,对任意 $k \in \omega$, $f(k) \geq h(k)$ 。如果 f(k) = h(k),则令 n = k + 1, $f(n) > h(k) = \beta$ 。

注记 2.1.14. 注意到(2)不意味着 f 是满射,但它等价于 f 的值域在 α 中是 无界的。这样的映射称为"共尾映射"。

定理 2.1.15. 一个序数是 α 是至多可数的, 当且仅当存在 \mathbb{R} 的子集 A, ot(A) = α 。

证明. 首先,假设 $A \subseteq \mathbb{R}$ 并且 $ot(A) = \alpha$,即 $A = \{a_{\beta} \mid \beta < \alpha\}$,并且 $a_{\beta} < a_{\gamma}$ 当且仅当 $\beta < \gamma$ 。对任意 $\beta < \alpha$,令 $I_{\beta} = (a_{\beta}, a_{\beta+1})$ 为实数的区间。如果 $\alpha = \eta + 1$ 是后继序数,则令 $I_{\eta} = (a_{\eta}, a_{\eta} + 1)$ 。这样的区间只有可数多,但 $\beta \mapsto I_{\beta}$ 是 α 到这些区间的双射,所以 α 是可数的。

反过来,假设 α 至多可数。我们对 α 施归纳证明。如果 $\alpha = \eta + 1$, $Y \subseteq \mathbb{R}$ 并且 $ot(Y) = \eta$ 。由于 (\mathbb{R} , <) 与区间 (0, 1) 同构,我们不妨假设 $Y \subseteq (0, 1)$,这样的话 $Y \cup \{1\}$ 的序型就是 α 。

如果 α 是极限序数。根据引理2.1.13,令 $f:\omega\to\alpha$ 为保序函数,并且 $\bigcup \operatorname{ran}(f)=\alpha$ 。对任意 $n\in\omega$,考虑 α 中的区间 $J_n=(f(n),f(n+1))$ 以及 $\mathbb R$ 中的区间 $I_n=(n,n+1)$ 。根据归纳假设,对任意 n,存在 $X_n\subseteq I_n$,ot $(X_n)=\operatorname{ot}(J_n)$ 。于是, $X=\bigcup_{n\in\omega}X_n\subseteq\mathbb R$,并且 ot $(X)=\alpha$ 。

练习 2.1.16. 证明:如果 X 是无穷序数的集合,则 $|X| < |\sup X|$ 。

2.1.2 基数

我们定义了任意集合 X,Y 之间的一个等价关系 |X| = |Y|,以及它们之间的偏序关系: $|X| \le |Y|$ 。但是,我们并没有定义 |X| 是什么。早期的数学家,例如弗雷格,曾尝试将 |X| 定义为一个等价类:

$$|X| = [X]_{\sim} = \{Y \mid |Y| = |X|\},\tag{2.4}$$

并将 |X| 称为"X 的基数"。但这个定义有一个问题,那就是如果 $X \neq \emptyset$, $[X]_{\sim}$ 是一个真类。为了避免这样的问题,以下定义使用了所谓的"司各特技巧"(Scott's trick)。

定义 2.1.17. 对任意集合 X,

(1) *X* 的基数是以下集合:

$$\{Y \mid |Y| = |X| \land \forall Z(|Z| = |X| \rightarrow \operatorname{rank}(Y) \le \operatorname{rank}(Z))\}. \tag{2.5}$$

X 的基数记作 |X|。

(2) 一个集合 α 是基数,如果存在集合 X, α 是 X 的基数。

- (3) 令 α , β 为基数,则 α < β 当且仅当存在集合 X, Y, $|X| = \alpha$, $|Y| = \beta$, 并且 |X| < |Y|, 或者,等价地,存在单射 $f: X \to Y$, 但不存在单射 $f: Y \to X$ 。
- 注记 2.1.18. ◆ 对比定义2.1.1,在那里 |X| = |Y|,以及 $|X| \le |Y|$ 是集合 X, Y 之间的一个关系,|X|, |Y| 本身没有定义。
- 而在目前定义中,|X| 被定义为另一个集合,是一个具体的对象。更具体地说,|X| 是与 X 等势的集合中秩最小的那些集合组成的类,这个类显然是一个集合。注意到,对每个集合 X ,X 的基数是唯一的。
- 如果 α 是 X 的基数,并且如果 Y 与 X 等势,则 α 也是 Y 的基数,所以基数的定义与 X 的选取无关。
- 这里定义的 < 关系是集合 α 与集合 β 之间的关系,当然,这个关系是利用定义2.1.1中的 |X| < |Y| 来定义的。

康托的以下定理证明不存在最大的基数。

定理 2.1.19. 对任意集合 X, $|X| < |\mathcal{P}(X)|$ 。

证明. 显然, $|X| \leq |\mathcal{P}(X)|$,因为函数 $f(x) = \{x\}$ 是 X 到 $\mathcal{P}(X)$ 的单射。以下用反证法证明 $|X \neq |\mathcal{P}(X)|$ 。反设存在双射 $f: X \to \mathcal{P}(X)$,令

$$Y = \{ x \in X \mid x \notin f(x) \}$$
 (2.6)

则 $Y \in \mathcal{P}(X)$,因此存在 $z \in X$, f(z) = Y 。但是, $z \in Y$ 当且仅当 $z \in \{x \in X \mid x \notin f(x)\}$ 当且仅当 $z \notin f(z)$ 当且仅当 $z \notin Y$,矛盾。

引理 2.1.20. 令 C 是基数的集合,则 C 在基数大小的偏序关系 < 下有一个上界: 存在基数 α ,对任意 $b \in C$, $b \le \alpha$ 。

证明. 对任意 $\mathfrak{b} \in C$, 令

$$f(\mathfrak{b}) = \min\{\operatorname{rank}(X) \mid |X| = \mathfrak{b}\},\tag{2.7}$$

则 f 是定义在 C 上的函数,其值域是序数的子集。令 $\delta = \bigcup \operatorname{ran}(f)$ 。对任意这样的集合 $X: |X| = \mathfrak{b}$, $\operatorname{rank}(X) = f(\mathfrak{b})$,都有 $X \subseteq V_{\delta}$ 。令 $\mathfrak{a} = |V_{\delta}|$,则对任意 $\mathfrak{b} \in C$, $\mathfrak{b} \leq \alpha$ 。

推论 2.1.21. 全体基数的类是一个真类。

证明. 如果全体基数是一个集合,则根据引理2.1.20,存在最大的基数。这与 定理2.1.19矛盾。 □

注记 2.1.22. 定义2.1.17有几个明显的问题。

- α < β 是一个偏序,但不是线序。我们无法证明任意两个基数都是可比的。
 - $|\emptyset| = \{\emptyset\}$, 即,空集的基数是 1,而不是 0。

2.1.3 冯·诺伊曼基数

在上一章,我们证明了每个良序集 X 都与唯一的一个序数 α 同构,此时, $|X| = |\alpha|$,即,每个良序集都与一个序数等势。另一方面,在本章一开的讨论中,我们又看到,对于无穷的良序集,与其等势的序数往往不止一个。但序数上的良序告诉我们,这些序数中有最小的,这就引出了以下定义:

- (1) 我们定义X 的冯·诺伊曼基数为与 X 等势的最小的序数 λ ,记作 $Card(X) = \lambda$ 。
 - (2) 一个序数 λ 是冯·诺伊曼基数当且仅当存在良序集 X, $\lambda = Card(X)$ 。
- **练习 2.1.24.** 对任意序数 λ , λ 是冯·诺伊曼基数当且仅当 λ = Card(λ)。满足等值式右边性质的序数称为**前段序数**。
- 练习 2.1.25. 每个自然数 n 都是冯·诺伊曼基数; ω 是冯·诺伊曼基数。

今后,我们一般用希腊字母 κ, λ, \ldots 表示冯·诺伊曼基数。

练习 2.1.26. 如果 κ 是冯·诺伊曼基数,且 $\kappa \geq \omega$,则 κ 是极限序数。

引理 2.1.27. 如果 λ , κ 是冯·诺伊曼基数, 则 $|\lambda| < |\kappa|$ 当且仅当 $\lambda < \kappa$ 。即,对于冯·诺伊曼基数 λ , κ ,作为集合,它们基数上的偏序关系,与作为序数,它们的大小 < 关系是一致的。

证明. 如果 $\lambda < \kappa$,则 λ 是 κ 的真前段,所以 $\mathrm{id}: \lambda \to \kappa$ 是单射,并且不可能是双射。

反过来,如果 $|\lambda| < |gk|$,而 $\lambda \not\prec \kappa$,则必有 $\kappa \le \lambda$ 。但这是不可能的:如果 $\kappa = \lambda$,则 $|\kappa| = |\lambda|$ 。如果 $\kappa < \lambda$,则前面已证 $|\kappa| < |\lambda|$ 。

康托定理2.1.19保证了没有最大的基数,而习题1.5.38则保证不存在最大的冯·诺伊曼基数。

引理 2.1.28. 对任意集合 X, X 的 Hartogs 是一个冯·诺伊曼基数。

引理 2.1.29. 如果 K 是冯·诺伊曼基数的集合,则 $\alpha = \bigcup K$ 是 冯·诺伊曼基数。

证明. 如果 $\beta < \alpha$, 即 $\beta \in \alpha$, 则存在 $\kappa \in X$, $\beta < \kappa \le \alpha$, 所以 $\beta < \kappa = |\kappa \le |\alpha$, 根据命题 **??** (3), α 是基数。

根据定理2.1.28, 我们可以定义:

定义 2.1.30. 对任何基数 κ , κ^+ 是大于 κ 的最小基数 λ 。如果 $\lambda = \kappa^+$,则 λ 称为后继基数。如果 $\lambda \geq \omega$ 并且不是后继基数,则称为极限基数。

练习 2.1.31. 假设 α 是序数,则

- $(1) \quad |\alpha| \le \alpha < |\alpha|^+;$
- (2) 如果 κ 是基数,则 $\alpha < \kappa^+$ 当且仅当 $|\alpha| < \kappa^+$ 。

定义 2.1.32. 我们递归定义类函数 $\aleph: \mathbb{O} \to \mathbb{O}$ 为:

- (1) $\aleph(0) = \omega$;
- (2) ℵ(α+1) = ℵ(α)⁺ (注意,此处为基数的后继);
- (3) 对极限序数 γ , $\aleph(\gamma) = \bigcup \{\aleph(\alpha) \mid \alpha < \gamma\}$ 。

通常我们将 $\aleph(\alpha)$ 记作 \aleph_{α} ,例如 $\omega = \aleph_0$,第一个不可数基数是 \aleph_1 ,接下来是 \aleph_2 等等。同时, \aleph_{α} 也经常写作 ω_{α} ,例如, $\omega = \omega_0$, ω_1 , ω_2 ……。它们之间没有区别。

以下引理表明, \aleph_{α} 恰好是"第 α 个无穷基数"。

引理 2.1.33. (1) 对任意 α , \aleph_{α} 是无穷基数;

- (2) 对任意无穷基数 κ , 存在 α , 使得 $\kappa = \aleph_{\alpha}$ 。
- 证明.(1)对α用超穷归纳可得。
- (2) 显然,对任意 β , $\beta \leq \aleph_{\beta}$ 。因此,对任意基数 κ ,存在 β ,例如 $\beta = \kappa + 1$,使得 $\kappa < \aleph_{\beta}$ 。这样,我们就只需证明

对任意 $\kappa < \aleph_{\beta}$,存在 α ,使得 $\kappa = \aleph_{\alpha}$.

而这可以对 β 应用归超穷纳得到: $\beta = 0$ 时显然; 若 $\beta = \gamma + 1$ 为后继序数,则此时 $\kappa \leq \aleph_{\gamma}$ 。如果 $\kappa = \aleph_{\gamma}$,则命题已得证; 如果 $\kappa < \aleph_{\gamma}$,则根据归纳假设,有 α , $\kappa = \aleph_{\alpha}$; 若 β 为极限序数,则有 $\gamma < \beta$, $\kappa < \aleph_{\gamma}$,根据归纳假设,亦有 α , $\kappa = \aleph_{\alpha}$ 。

定义 2.1.34. 如果类函数 $F: \mathbb{O} \to \mathbb{O}$ 满足:

- (1) $\alpha \leq \beta$ 蕴涵 $F(\alpha) \leq F(\beta)$;
- (2) 对任意极限序数 ξ , $F(\xi) = \bigcup \{F(\beta) \mid \beta < \xi\}$,

就称 F 是连续的。

例 2.1.35. 给定 α , $F(\gamma) = \alpha + \gamma$, $F(\gamma) = \alpha \cdot \gamma$, $F(\gamma) = \alpha^{\gamma}$ 都是连续的。

定理 2.1.36. 如果 $F: \mathbb{O} \to \mathbb{O}$ 是严格递增的,并且是连续的,则对任意序数 α , 存在 $\epsilon > \alpha$, $F(\epsilon) = \epsilon$ 。即,F 有任意大的不动点。

证明. 留作练习。

例 2.1.37. $\aleph: \mathbb{O} \to \mathbb{O}$ 是连续且严格递增的。所以对任意序数 α ,有一个序数 $\epsilon > \alpha$, $\aleph_{\epsilon} = \epsilon$ 。

2.1.4 选择公理

我们对任意集合 X, Y 定义了等势,或者说"基数相等":|X| = |Y|,但只对可良序化的集合 X 定义了它的"基数",即与 X "基数相等"的前段序数 λ 。对