- Partitionnement du plan en régions à partir de points
 - Répond à un problème majeur de la géométrie :
 - Représentation de relations de distance entre objets et de phénomènes de croissance
 - ex:
 - · pour modéliser cristaux ou autres structures,
 - · pour planifier mouvement
 - · Pour rechercher les plus proches voisins
 - Rq: présence à l'état naturel: carapace de tortue, cou réticulé de girafe ...
 - ⇒Diagrammes de proximité
 - Voronoï mathématicien russe le 1er à formaliser cette notion
 - ⇒Diagrammes de Voronoï
 - Delaunay a continué ces travaux

Diagramme de Voronoï

- Soit le plan E², on définit un ensemble de n **sites** (points de E²).
- Un **site** est un point privilégié de E²
- On note $S_n = \{q_1, q_2, ..., q_n\}$ un ensemble de n **sites** de E^2 .
- On considère l'ensemble d'indice I tel que I = {1, 2, ..., n}
- Les sites sont dits en "position générale ":
 - Il ne peut y avoir 3 sites alignés
 - Il ne peut y avoir plus de 3 sites sur un même cercle

 E^2

Diagramme de Voronoï

- On considère deux sites q_i et q_i de E².
- On considère $d(q_i, q_i)$ la distance Euclidienne entre les sites q_i et q_i .
- Alors la médiatrice du segment [q_i, q_j], notée M{i, j}, est le lieu des points de E² à égal distance de q_i et de q_i

Diagramme de Voronoï

- On définit le ½ **espace** associé à q_i et q_i par:
 - h_{ij} = { $z \in E^2 / d(z, q_i) \le d(z, q_j)$ }, cad, les points de E^2 plus près de q_i que de q_j
 - On a donc: $E^2 = h_{ij} \cup h_{ji}$ et $h_{ij} \cap h_{ji} = M\{i, j\}$

- Diagramme de Voronoï
 - Quelles sont les questions que l'on peut se poser ?
 - Étant donné un point quelconque z de E², quel est le site de S_n le plus proche de z ?
 - Étant donné un site q_i de S_n, quels sont les sites de S_n {q_i} " les plus proches " de q_i?
 - Quel est le plus proche voisin de q_i?
 - La réponse à ces questions est donnée par le diagramme de Voronoï

- Diagramme de Voronoï
 - Quel est le site le plus proche de Z ?
 - Quels sont les sites " les plus proches " de q₁₃ ?
 - Quel est le site le plus proche de q₁ ?

- Diagramme de Voronoï
 - La **cellule** ou le polygone de Voronoï associé au site q_i se note V_i où :

• v est un sommet de Voronoï, intersection des médiatrices

- Diagramme de Voronoï
 - cellule ou le polygone de Voronoï associé au site qi:

$$Vi = \bigcap_{j \in I - \left\{i\right\}} h_{ij}$$

• C'est donc l'intersection de tous les demi-plans contenant q_i.

• V_i est donc la région de E² où les points sont plus proches de q_i que tous les autres sites de S_n.

- Diagramme de Voronoï (suite)
 - Propriétés des cellules de Voronoï
 - Quel que soit i ∈ à I, V_i est convexe
 <u>Preuve</u> : 1 cellule est l'intersection de ½ plans
 - V_i est un polygone, éventuellement non "fermé" constitué d'arêtes. Ces arêtes sont des segments des médiatrices M{i, j}
 - Chaque arête de la frontière d'une cellule est partagée par exactement 2 cellules.

Polygone non "fermé" /
Cas q_i est şur enveloppe convexe

- Diagramme de Voronoï (suite)
 - Propriétés des cellules de Voronoï
 - Chaque sommet v de Voronoï est le point de rencontre d'exactement 3 médiatrices.

Preuve

- Soit v le point de rencontre de k médiatrices e₁, ..., e_k avec k > 1.
- Les médiatrices sont ordonnées de manière polaire autour de v.
 On peut donc associer une cellule par secteur polaire
- v est donc équidistant de k sites
 - Si k ≥ 4, v est le centre du cercle circonscrit aux k sites. Impossible car les points sont en position générale.
 - Si k < 3, il y a au moins 1 cellule dégénérée (contient 2 sites) et non convexe (le point v ne peut donc exister)
- D'où k = 3

- Diagramme de Voronoï (suite)
 - Propriétés des cellules de Voronoï
 - Corollaire: Chaque sommet v_i de Voronoï est le centre du cercle circonscrit à exactement 3 sites dont q_i.
 - C'est un cercle de Voronoï, noté C(v). Son intérieur est noté $\dot{D}(v)$
 - Théorème: Pour tout sommet v de V_i,
 - $\dot{D}(v)$ ne contient aucun autre site
 - S' il existait un site q_4 à l'intérieur de \vec{D} (ν) alors q_4 serait plus près de v que v n'est près de q_1 , q_2 , q_3
 - v appartiendrait alors à V₄ et pas à V₁ ∩ V₂ ∩ V₃ comme c'est le cas ici.

- Diagramme de Voronoï (suite)
 - Propriétés des cellules de Voronoï

Ce sont des cellules de Voronoï

V_i n'est pas une cellule de Voronoï

https://www.cgal.org/

- Diagramme de Voronoï (suite)
 - Propriétés des cellules de Voronoï
 - Rôle de l'enveloppe convexe
 - V_i est non bornée si et seulement si q_i est sur la frontière de l'enveloppe convexe de S_n.

- Diagramme de Voronoï de S_n
 - Le diagramme de Voronoï de S_n est l'ensemble des cellules de Voronoï de S_n.

$$DV(S_{\scriptscriptstyle n}) = \bigcup_{i \in I} V_{\scriptscriptstyle i}$$

- C'est donc une subdivision convexe de E² comportant n faces.
 - Les faces sont des cellules de Voronoï associées à chaque site
 - Les arêtes sont des segments de médiatrices des sites q₁,...,q_n.
 - Les sommets sont de degré 3 (sommets de Voronoï) et sont le centre de cercles circonscrits à exactement à 3 sites.

- Diagramme de Voronoï de S_n
 - Le DV de S_n est un graphe planaire de degré 3 :
 - · ayant n faces
 - $2(n-1) nb_{ec}$ sommets $(nb_{ec}$ est le nombre de sites sur l'enveloppe convexe)
 - $3(n-1) nb_{ec}$ arêtes

- Diagramme de Voronoï de S_n
 - Démonstration
 - $n_f + n_s n_a = 2$ (Euler)
 - $n_s = n + 1$ avec n = nb de sites
 - car toutes les arêtes " infinies " sont reliées à un sommet de Voronoï à l'infini (ν_∞).
 - n_f = n (autant de faces que de sites)
 - D'où n + $n_s n_a = 1$

Graphe planaire connecté auquel on peut appliquer la formule d'Euler

- Diagramme de Voronoï de S_n
 - Démonstration (suite)
 - Si on relie par une flèche verte chaque site aux arêtes de la cellule associée
 - Comme chaque arête est commune à deux faces
 - On a 2 n_a flèches vertes
 - Si on relie par une flèche rouge chaque site aux sommets de la cellule associée
 - On a (nb_{ec} + 3 n_s)flèches rouges

1 polygone à *m* sommets a *m* arêtes ⇔ Nb flèches rouges = nb flèches vertes

- Diagramme de Voronoï de S_n
 - On a donc:

•
$$2 n_a = nb_{ec} + 3 n_s$$

•
$$n_s + n - n_a = 1 \Leftrightarrow n_s = 1 - n + n_a$$

- D'où
 - $2 n_a = nb_{ec} + 3 3n + 3 n_a$
 - D'où $n_a = 3n nb_{ec} 3 = 3 (n 1) nb_{ec}$
- $n_a = n_s + n 1 \Leftrightarrow n_s = n_a n + 1$
- $n_s = 3n 3 nb_{ec} n + 1$
- $n_s = 2(n-1) nb_{ec}$
- Donc le nombre de sommets et d'arêtes ne dépendent que du nombre de sites total (n) et du nombre de sites sur l'enveloppe convexe de S_n (nb_{ec)}.

- Diagramme de Voronoï de S_n
 - Algorithmes de construction
 - L'intersection commune d'un ensemble de n ½ plans peut être calculée en O(n log(n)) => pour une cellule de Voronoï
 - ⇒Si on a n cellules alors complexité O(n² log(n))
 - Algorithme de division et fusion (Shamos 75) en O(nlog(n))
 - Algorithme de Fortune (87): Algorithme de balayage (O(nlog(n) => optimal car pb de tri de n nombres est réductible au problème de calcul de diagramme de Voronoï)
 - Balayage du plan par une ligne horizontale l
 - Information maintenue = parties du diagramme de Voronoï (dont leurs sites sont au dessus de l) ne peuvent être changées par les sites au dessous de l

- Diagramme de Voronoï de S_n
 - Division et fusion : Principe

- Diagramme de Voronoï de S_n
 - Division et fusion : Procédure VOR(S_n)

```
\begin{array}{l} \text{si n} = 1 \\ \text{VOR}(S_n) = \text{point} \\ \text{si n} = 2 \\ \text{VOR}(S_n) = \text{médiatrice} \\ \text{si n} = 3 \\ \text{VOR}(S_n) \text{ dont le sommet= intersection de 3 médiatrices} \\ \text{Sinon} \\ \text{Trier } S_n \text{ en fonction des x} \\ S_1 = S_n \ / \ 2 \\ S_2 = S_n \ - \ S_1 \\ \text{DV}_1 = \text{VOR}(S_1) \\ \text{DV}_2 = \text{VOR}(S_2) \\ \text{Fusion}(\text{DV}_1, \text{DV}_2) \end{array}
```


Diagramme de Voronoï de S_n

• Monotonie : définition a'1/

Ligne brisée = suite monotone identique à la suite monotone de ses projetés sur d ⇒Ligne brisée est monotone / d ⇒Ligne brisée non monotone / verticale

Ligne brisée = suite monotone différente de la suite monotone de ses projetés sur d => Ligne brisée non monotone par rapport à d

Diagramme de Voronoï de S_n

fusion

La ligne de fusion est monotone par rapport à la direction Δ (ici, Δ est une droite verticale)

- ⇒on ne revient jamais en arrière
- ⇒On ne teste qu'une seule fois chaque cellule de chaque côté

(si k segments => k tests à droite + k tests à gauche = 2k avec k égal au pire à n/2 (n: nb de sites)

 \Leftrightarrow 2 * n/2 => n \Leftrightarrow fusion linéaire (O(n)))

- Diagramme de Voronoï de S_n
 - fusion
 - Sens de parcours des cellules candidates à la fusion pour minimiser le nombre de tests et obtenir une fusion en O(n)

- Diagramme de Voronoï de S_n
 - Fusion Initialisation
 - P_L = pt gauche de l'EC(S₁)
 - P_R = pt droit de l'EC(S₂)
 - e = médiatrice (P_L, P_R) depuis l'infini
 - v = point à l'infini
 - e_L = première arête de la frontière de V(P_L) dans le sens CW
 - e_R = première arête de la frontière de V(P_R) dans le sens CCW

- Diagramme de Voronoï de S_n
 - fusion

- Diagramme de Voronoï de S_n
 - Exemple de déroulement de l'algo de fusion

- Diagramme de Voronoï de S_n
 - Exemple de déroulement de l'algo de fusion

• Diagramme de Voronoï de S_n

• Exemple de déroulement de l'algo de fusion

• Diagramme de Voronoï de S_n

• Exemple de déroulement de l'algo de fusion

- Diagramme de Voronoï de S_n
 - Exemple de déroulement de l'algo de fusion

- Diagramme de Voronoï de S_n
 - Exemple de déroulement de l'algo de fusion

- Diagramme de Voronoï de S_n
 - Exemple de déroulement de l'algo de fusion

- Diagramme de Voronoï de S_n
 - Exemple de déroulement de l'algo de fusion

- Diagramme de Voronoï de S_n
 - Exemple de déroulement de l'algo de fusion

- Diagramme de Voronoï de S_n
 - Exemple de déroulement de l'algo de fusion

Diagramme de Voronoï de S_n

fusion

• Diagramme de Voronoï de S_n

fusion

