${\bf Table~1.~Temperature~and~Directional~Dependent~Aerosols~added~to~the~POSEIDON~Aerosol~Database}$

Chemical Formula (1)	Reference (2)	Polymorph (3)	T (K) (4)	Direction (5)	Notes (6)	(Min, Max) μm (7)
Hibonite						
CaAl ₁₂ O ₁₉	H. Mutschke et al. (2002) ^D	Crystal		Extraordinary (E c)	Natural	(2.00,30)
CaAl ₁₂ O ₁₉	H. Mutschke et al. (2002)D	Crystal		Ordinary (E⊥c)	Natural	(2.00,30)
Corundum						
Al_2O_3	B. Begemann et al. (1997) ^D	Amorphous			Compact	(7.81, 30)
Al ₂ O ₃	B. Begemann et al. (1997) ^D	Amorphous			Porous	(7.81, 30)
Al_2O_3	S. Zeidler et al. (2013) ^D	α Crystal	300K	Extraordinary $(E c)$	Synthetic	(6.67,30)
Al_2O_3	S. Zeidler et al. (2013) ^D	α Crystal	551K	Extraordinary $(E \parallel c)$	Synthetic	(6.67,30)
Al_2O_3	S. Zeidler et al. (2013) ^D	α Crystal	738K	Extraordinary (E c)	Synthetic	(6.67,30)
Al_2O_3	S. Zeidler et al. (2013) ^D	α Crystal	928K	Extrardinary (E c)	Synthetic	(6.67,30)
Al ₂ O ₃	S. Zeidler et al. (2013) ^D	α Crystal	300K	Ordinary (E⊥c)	Synthetic	(6.67,30)
Al ₂ O ₃	S. Zeidler et al. (2013) ^D S. Zeidler et al. (2013) ^D	α Crystal	551K	Ordinary (E±c)	Synthetic	(6.67,30)
Al ₂ O ₃ Al ₂ O ₃	S. Zeidler et al. (2013) S. Zeidler et al. (2013)	α Crystal α Crystal	738K 928K	Ordinary (E⊥c) Ordinary (E⊥c)	Synthetic Synthetic	(6.67,30) (6.67,30)
	5. Zeidier et al. (2010)	a Crystai	32011	Ordinary (Exc)	Бупенсенс	(0.01,30)
Spinel MgAl ₂ O ₄	D. Fabian et al. (2001b) ^D	Crystal			Natural	(2, 30)
MgAl ₂ O ₄	D. Fabian et al. (2001b) ^D	Crystal	1223K		Natural, Annealed	(1.67, 30)
MgAl ₂ O ₄	S. Zeidler et al. (2013) ^D	Crystal	10K		Synthetic	(7.70, 30)
MgAl ₂ O ₄	S. Zeidler et al. (2013) ^D	Crystal	100K		Synthetic	(7.70, 30)
MgAl ₂ O ₄	S. Zeidler et al. (2013) ^D	Crystal	300K		Synthetic	(6.71, 30)
MgAl ₂ O ₄	S. Zeidler et al. (2013) ^D	Crystal	551K		Synthetic	(6.71, 30)
$_{\mathrm{MgAl_2O_4}}^{2}$	S. Zeidler et al. (2013) ^D	Crystal	738K		Synthetic	(6.71, 30)
$MgAl_2O_4$	S. Zeidler et al. (2013) ^D	Crystal	928K		Synthetic	(6.71, 30)
Fayalite						
${ m Fe}_2{ m SiO}_4$	D. Fabian et al. (2001a) D	Crystal		$E\ z\ ((E\ c^*)$	Synthetic	(2, 30)
$\text{Fe}_2 \text{SiO}_4$	D. Fabian et al. (2001a) ^D	Crystal		$E y (E b^*)$	Synthetic	(2, 30)
$\text{Fe}_2 \text{SiO}_4$	D. Fabian et al. (2001a) ^D	Crystal		$E\ x(E\ a^*)$	Synthetic	(2, 30)
Titanium Dioxide	_					
${ m TiO}_2$	T. Posch et al. (2003)	Anatase Crystal		Extraordinary $(E c)$		(2, 30)
	S. Zeidler et al. (2011) ^D					
${ m TiO}_2$	T. Posch et al. (2003) ^D	Anatase Crystal		Ordinary (E⊥c)		(2, 30)
m.o	S. Zeidler et al. $(2011)^{D}$ T. Posch et al. $(2003)^{D}$	B G		F		(0.45.00)
${ m TiO}_2$	S. Zeidler et al. (2011) ^D	Rutile Crystal		Extraordinary (E c)		(0.47, 30)
${ m TiO}_2$	T. Posch et al. (2003) ^D	Rutile Crystal		Ordinary (E⊥c)		(0.47, 30)
- 2	S. Zeidler et al. (2011) ^D	,				(= -,,
${ m TiO}_2$	T. Posch et al. (2003) ^D	Brookite Crystal		$E\ z\ (E\ c^*)$		(2, 30)
	S. Zeidler et al. (2011) ^D					
${ m TiO}_2$	T. Posch et al. (2003) ^D	Brookite Crystal		$E y (E b^*)$		(2, 30)
	S. Zeidler et al. (2011) ^D					
${ m TiO}_2$	T. Posch et al. (2003) ^D	Brookite Crystal		$E\ x\ (E\ a^*)$		(2, 30)
	S. Zeidler et al. (2011) ^D					
Silicon Dioxide						
SiO ₂	S. Zeidler et al. (2013) ^D S. Zeidler et al. (2013) ^D	α Quartz Crystal	300K	Extraordinary (E c)	Natural (Brazil)	(6.26,30)
SiO ₂	S. Zeidler et al. (2013) ^D S. Zeidler et al. (2013) ^D	α Quartz Crystal	551K	Extraordinary (E c)	Natural (Brazil)	(6.26,30)
SiO ₂ SiO ₂	S. Zeidler et al. (2013) ^D	α Quartz Crystal α Quartz Crystal	738K 833K	Extraordinary (E c) Extraordinary (E c)	Natural (Brazil) Natural (Brazil)	(6.26,30) (6.26,30)
SiO ₂	S. Zeidler et al. (2013) S. Zeidler et al. (2013) D	β Quartz Crystal	928K	Extraordinary (E c)	Natural (Brazil)	(6.26,30)
SiO ₂	S. Zeidler et al. (2013) ^D	α Quartz Crystal	300K	Ordinary (E⊥c)	Natural (Brazil)	(6.26,30)
SiO ₂	S. Zeidler et al. (2013) ^D	α Quartz Crystal	551K	Ordinary (E±c)	Natural (Brazil)	(6.26,30)
SiO ₂	S. Zeidler et al. (2013) ^D	α Quartz Crystal	738K	Ordinary (E⊥c)	Natural (Brazil)	(6.26,30)
SiO ₂	S. Zeidler et al. (2013) ^D	α Quartz Crystal	833K	Ordinary (E⊥c)	Natural (Brazil)	(6.26,30)
${ m SiO}_2$	S. Zeidler et al. (2013) ^D	β Quartz Crystal	928K	Ordinary (E⊥c)	Natural (Brazil)	(6.26,30)
${ m SiO}_2$	D. D. S. Meneses et al. (2014)	α Quartz Crystal	295K	A2-symmetry (E c)	Cut Crystal	(6.67,30)
SiO_2	D. D. S. Meneses et al. (2014)	α Quartz Crystal	295K	E-symmetry (E \perp c)	Cut Crystal	(6.67,30)
SiO_2	D. D. S. Meneses et al. (2014)	α Quartz Crystal	346K	E-symmetry (E \perp c)	Cut Crystal	(6.67,30)
SiO_2	D. D. S. Meneses et al. (2014)	α Quartz Crystal	480K	E-symmetry (E⊥c)	Cut Crystal	(6.67,30)
SiO ₂	D. D. S. Meneses et al. (2014)	α Quartz Crystal	600K	E-symmetry (E⊥c)	Cut Crystal	(6.67,30)
SiO ₂	D. D. S. Meneses et al. (2014)	α Quartz Crystal	705K	E-symmetry (E \perp c)	Cut Crystal	(6.67,30)
SiO ₂	D. D. S. Meneses et al. (2014)D. D. S. Meneses et al. (2014)	α Quartz Crystal	790K	E-symmetry (E \(\)c)	Cut Crystal	(6.67,30)
SiO ₂	D. D. S. Meneses et al. (2014) D. D. S. Meneses et al. (2014)	β Quartz Crystal β Quartz Crystal	1010K 1125K	E-symmetry (E⊥c) E-symmetry (E⊥c)	Cut Crystal Cut Crystal	(6.67,30) (6.67,30)
SiO ₂ SiO ₂	D. D. S. Meneses et al. (2014) D. D. S. Meneses et al. (2014)	β Quartz Crystal β Quartz Crystal	1170K	E-symmetry (E⊥c) E-symmetry (E⊥c)	Cut Crystal Cut Crystal	(6.67,30)
SiO ₂	D. D. S. Meneses et al. (2014) D. D. S. Meneses et al. (2014)	β Quartz Crystal β Quartz Crystal	1310K	E-symmetry (E±c)	Cut Crystal	(6.67,30)
	D. D. S. Meneses et al. (2014)	β Quartz Crystal	1394K	E-symmetry (E±c)	Cut Crystal	(6.67,30)
SiOo				-,		(,-0)
SiO ₂ SiO ₂	, ,		1520K	E-symmetry (E⊥c)	Cut Crystal	(6.67,30)
$_{ m SiO_2}$ $_{ m SiO_2}$ $_{ m SiO_2}$	D. D. S. Meneses et al. (2014) D. D. S. Meneses et al. (2014) D. D. S. Meneses et al. (2014)	β Quartz Crystal β Quartz Crystal	1520K 1590K	E-symmetry (E⊥c) E-symmetry (E⊥c)	Cut Crystal Cut Crystal	(6.67,30) (6.67,30)
$_{ m SiO_2}$	D. D. S. Meneses et al. (2014)	β Quartz Crystal				

Table 1 continued

Table 1 (continued)

Chemical Formula (1)	Reference (2)	Polymorph (3)	T (K) (4)	Direction (5)	Notes (6)	(Min, Max) μn (7)
SiO_2	D. D. S. Meneses et al. (2014)	β Cristobalite Crystal	1880K	E-symmetry (E⊥c)	Cut Crystal	(6.67,30)
SiO ₂	S. E. Moran et al. (2024)	β Tridymite Crystal	295K		Extrapolated	(0.30,15)
SiO ₂	S. E. Moran et al. (2024)	β Tridymite Crystal	500K		Extrapolated	(0.30, 15)
SiO ₂	S. E. Moran et al. (2024)	α Cristobalite Crystal	295K		Extrapolated	(0.30, 15)
Olivine						
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	295K	B1U (E c)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	546K	B1U (E c)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	950K	B1U (E c)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1102K	B1U (E c)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1147K	B1U (E c)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1431K	B1U (E c)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1518K	B1U (E c)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1648K	B1U (E c)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1742K	B1U (E c)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1809K	B1U (E c)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	295K	B2U (E b)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	547K	B2U (E b)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	720K	B2U (E b)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	946K	B2U (E b)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1122K	B2U (E b)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	$1303 \mathrm{K}$	B2U (E b)	Synthetic	(2.5,30)
${ m Mg}_2{ m SiO}_4$	M. Eckes et al. (2013)	Crystal	1417K	B2U (E b)	Synthetic	(2.5,30)
${ m Mg}_2{ m SiO}_4$	M. Eckes et al. (2013)	Crystal	$1535\mathrm{K}$	B2U (E b)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1617K	B2U (E b)	Synthetic	(2.5,30)
${ m Mg}_2{ m SiO}_4$	M. Eckes et al. (2013)	Crystal	1818K	B2U (E b)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	295K	B3U (E a)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	602K	B3U (E a)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	757K	B3U (E a)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	918K	B3U (E a)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1055K	B3U (E a)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1131K	B3U (E a)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1256K	B3U (E a)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1503K	B3U (E a)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1793K	B3U (E a)	Synthetic	(2.5,30)
Mg_2SiO_4	M. Eckes et al. (2013)	Crystal	1948K	B3U (E a)	Synthetic	(2.5,30)
$Mg_{1.9}Fe_{0.1}SiO_4$	S. Zeidler et al. (2015) ^D	Crystal		E z (E a)	Natural (Stubachtal)	(2,30)
$Mg_{1.9}Fe_{0.1}SiO_4$	S. Zeidler et al. (2015) ^D	Crystal		E y (E b)	Natural (Stubachtal)	(2,30)
$Mg_{1.9}Fe_{0.1}SiO_4$	S. Zeidler et al. (2015) ^D	Crystal		$E\ x\ (E\ c)$	Natural (Stubachtal)	(2,30)
$Mg_{1.72}Fe_{0.21}SiO_4$	S. Zeidler et al. (2015) ^D	Crystal		$E\ z\ (E\ a)$	Natural (San Carlos)	(0.32, 6.99)
$Mg_{1.72}Fe_{0.21}SiO_4$	S. Zeidler et al. (2015) ^D	Crystal		E y (E b)	Natural (San Carlos)	(0.32, 6.99)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015) ^D	Crystal		$E\ x\ (E\ c)$	Natural (San Carlos)	(0.32, 6.99)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015) ^D	Crystal	10K	E z (E a)	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015) ^D	Crystal	100K	$E\ z\ (E\ a)$	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015) ^D	Crystal	200K	$E\ z\ (E\ a)$	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015)	Crystal	300K	$E\ z\ (E\ a)$	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015)	Crystal	551K	$E\ z\ (E\ a)$	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015)	Crystal	738K	E z (E a)	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015)	Crystal	928K	E z (E a)	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015)	Crystal	10K	E y (E b)	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015)	Crystal	$100 \mathrm{K}$	E y (E b)	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015) ^D	Crystal	$200 \mathrm{K}$	E y (E b)	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015) ^D	Crystal	300K	E y (E b)	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015) ^D	Crystal	551K	E y (E b)	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015)	Crystal	738K	E y (E b)	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015) ^D	Crystal	928K	E y (E b)	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015) ^D	Crystal	10K	E x (E c)	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015) ^D	Crystal	$100 \mathrm{K}$	$E\ x\ (E\ c)$	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015) ^D	Crystal	$200 \mathrm{K}$	$E\ x\ (E\ c)$	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015) ^D	Crystal	300K	$E\ x\ (E\ c)$	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015) ^D	Crystal	551K	E x (E c)	Natural (San Carlos)	(6.71,30)
$\mathrm{Mg}_{1.72}\mathrm{Fe}_{0.21}\mathrm{SiO}_4$	S. Zeidler et al. (2015) ^D	Crystal	738K	E x (E c)	Natural (San Carlos)	(6.71,30)
$Mg_{1.72}Fe_{0.21}SiO_4$	S. Zeidler et al. (2015) ^D	Crystal	928K	E x (E c)	Natural (San Carlos)	(6.71,30)
Orthoenstatite						
Mg _{0.92} Fe _{0.09} SiO ₃	S. Zeidler et al. (2015) ^D	Crystal	10K	E z (E c)	Natural (Burma)	(6.71,30)
Mg _{0.92} Fe _{0.09} SiO ₃	S. Zeidler et al. (2015) ^D	Crystal	100K	E z (E c)	Natural (Burma)	(6.71,30)
Mg _{0.92} Fe _{0.09} SiO ₃	S. Zeidler et al. (2015) S. Zeidler et al. (2015)	Crystal	200K	E z (E c)	Natural (Burma)	(6.71,30)
Mg _{0.92} Fe _{0.09} SiO ₃ Mg _{0.92} Fe _{0.09} SiO ₃	S. Zeidler et al. (2015) S. Zeidler et al. (2015)	Crystal	300K	E z (E c) E z (E c)	Natural (Burma) Natural (Burma)	(6.71,30)
	S. Zeidler et al. (2015) S. Zeidler et al. (2015)					(6.71,30)
Mg _{0.92} Fe _{0.09} SiO ₃	S. Zeidler et al. (2015) ^D S. Zeidler et al. (2015) ^D	Crystal	551K	E z (E c)	Natural (Burma)	
Mg _{0.92} Fe _{0.09} SiO ₃		Crystal	738K	E z (E c)	Natural (Burma)	(6.71,30)
Mg _{0.92} Fe _{0.09} SiO ₃	S. Zeidler et al. (2015) ^D	Crystal	928K	E z (E c)	Natural (Burma)	(6.71,30)
$Mg_{0.92}Fe_{0.09}SiO_3$	S. Zeidler et al. (2015) ^D	Crystal	10K	E y (E a)	Natural (Burma)	(6.71,30)
$\mathrm{Mg_{0.92}Fe_{0.09}SiO_{3}}$	S. Zeidler et al. (2015) ^D S. Zeidler et al. (2015) ^D	Crystal	100K	E y (E a)	Natural (Burma)	(6.71,30)
$Mg_{0.92}Fe_{0.09}SiO_3$		Crystal	200K	E y (E a)	Natural (Burma)	(6.71,30)

Table 1 continued

Table 1 (continued)

Chemical Formula	Reference	Polymorph	T (K)	Direction	Notes	(Min, Max) µm
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Mg _{0.92} Fe _{0.09} SiO ₃	S. Zeidler et al. (2015) ^D	Crystal	300K	E y (E a)	Natural (Burma)	(6.71,30)
$Mg_{0.92}Fe_{0.09}SiO_3$	S. Zeidler et al. (2015) ^D	Crystal	551K	E y (E a)	Natural (Burma)	(6.71,30)
$Mg_{0.92}Fe_{0.09}SiO_3$	S. Zeidler et al. $(2015)^{D}$	Crystal	738K	E y (E a)	Natural (Burma)	(6.71,30)
$Mg_{0.92}Fe_{0.09}SiO_3$	S. Zeidler et al. $(2015)^{D}$	Crystal	928K	E y (E a)	Natural (Burma)	(6.71,30)
$Mg_{0.92}Fe_{0.09}SiO_3$	S. Zeidler et al. $(2015)^{D}$	Crystal	10K	E x (E b)	Natural (Burma)	(6.71,30)
$Mg_{0.92}Fe_{0.09}SiO_3$	S. Zeidler et al. $(2015)^{D}$	Crystal	100K	E x (E b)	Natural (Burma)	(6.71,30)
$Mg_{0.92}Fe_{0.09}SiO_3$	S. Zeidler et al. $(2015)^{D}$	Crystal	200K	E x (E b)	Natural (Burma)	(6.71,30)
$Mg_{0.92}Fe_{0.09}SiO_3$	S. Zeidler et al. $(2015)^{D}$	Crystal	300K	E x (E b)	Natural (Burma)	(6.71,30)
$Mg_{0.92}Fe_{0.09}SiO_3$	S. Zeidler et al. $(2015)^{D}$	Crystal	551K	E x (E b)	Natural (Burma)	(6.71,30)
$Mg_{0.92}Fe_{0.09}SiO_3$	S. Zeidler et al. (2015) ^D	Crystal	738K	$E\ x\ (E\ b)$	Natural (Burma)	(6.71,30)
$Mg_{0.92}Fe_{0.09}SiO_3$	S. Zeidler et al. (2015) ^D	Crystal	928K	E x (E b)	Natural (Burma)	(6.71,30)

Note—Aerosol refractive indices, alongside pre-computed Mie properties, added to the aerosol database featured in E. Mullens et al. (2024). Groups of aerosols: Hibonite, Corundum, Spinel, Fayalite, Titanium Dioxide, Silicon Dioxide, Olivine, Orthoenstatite. Chemical formula (1), reference to where refractive index data is from (2), polymorph (3), temperature (if applicable, 4), direction (if applicable, 5), notes (5), and minimum and maximum wavelength of refractive index (where the absolute minimum and maximum of the precomputed aerosol database is 0.2 and 30 µm, 6). Drefers to refractive indices that can be found on the Database of Optical Constants for Cosmic Dust (DOCCD, https://www2.astro.uni-jena.de/Laboratory/OCDB/index.html). Note that special care must be taken for determining which notation correlates to $\mathbb{E}[a,b,c]$ for (orthorhombic) biaxial crystals. For the Mg₂SiO₄ refractive indices from M. Eckes et al. (2013), it is defined that B1U = $\mathbb{E}[c, B2U = \mathbb{E}[b, B3U = \mathbb{E}[a]]$ (pers comm., D. D. S. Meneses). For the Mg_{1.72}Fe_{0.21}SiO₄ refractive indices $\mathbb{E}[x=\mathbb{E}[c]]$ (assumed to be the same for Mg_{1.9}Fe_{0.1}SiO₄) and for the Mg_{0.92}Fe_{0.09}SiO₃ refractive indices $\mathbb{E}[x=\mathbb{E}[b]]$ as defined on DOCCD. *We assume that both Fe₂SiO₄ in D. Fabian et al. (2001a) and TiO₂, Brookie in T. Posch et al. (2003) follow the same D_{2h} symmetry group as Mg₂SiO₄ (M. Eckes et al. 2013) and that $\mathbb{E}[x=\mathbb{E}[x]]$ be $\mathbb{E}[x]$ be $\mathbb{E}[$

REFERENCES

28

- 6 Begemann, B., Dorschner, J., Henning, T., et al. 1997, ApJ,
- ⁷ 476, 199, doi: 10.1086/303597
- 8 Eckes, M., Gibert, B., De Sousa Meneses, D., Malki, M., &
- Echegut, P. 2013, Physics and Chemistry of Minerals, 40,
- 287, doi: 10.1007/s00269-013-0570-z
- ¹¹ Fabian, D., Henning, T., Jäger, C., et al. 2001a, A&A, 378,
- 228, doi: 10.1051/0004-6361:20011196
- ¹³ Fabian, D., Posch, T., Mutschke, H., Kerschbaum, F., &
- Dorschner, J. 2001b, A&A, 373, 1125,
- doi: 10.1051/0004-6361:20010657
- ¹⁶ Meneses, D. D. S., Eckes, M., del Campo, L., & Echegut, P.
- 2014, Journal of Physics: Condensed Matter, 26, 255402,
- doi: 10.1088/0953-8984/26/25/255402

- Moran, S. E., Marley, M. S., & Crossley, S. D. 2024, arXiv
- e-prints, arXiv:2408.00698,
- doi: 10.48550/arXiv.2408.00698
- Mullens, E., Lewis, N. K., & MacDonald, R. J. 2024, arXiv
 - e-prints, arXiv:2410.19253,
- doi: 10.48550/arXiv.2410.19253
- Mutschke, H., Posch, T., Fabian, D., & Dorschner, J. 2002,
 - A&A, 392, 1047, doi: 10.1051/0004-6361:20021072
- 27 Posch, T., Kerschbaum, F., Fabian, D., et al. 2003, ApJS,
 - 149, 437, doi: 10.1086/379167
- ²⁹ Zeidler, S., Mutschke, H., & Posch, T. 2015, ApJ, 798, 125,
- doi: 10.1088/0004-637X/798/2/125
- ³¹ Zeidler, S., Posch, T., & Mutschke, H. 2013, A&A, 553,
- A81, doi: 10.1051/0004-6361/201220459
- ³³ Zeidler, S., Posch, T., Mutschke, H., Richter, H., &
 - Wehrhan, O. 2011, A&A, 526, A68,
- doi: 10.1051/0004-6361/201015219