TALEN

				Problem-ekvation
Naturliga tal	\mathbb{N}	Positiva heltal	$\{1,2,3,\dots\}$	x + 2 = 0
			Notera att det är svensk konvention att inkludera 0	
Hela tal	\mathbb{Z}		$\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$	2x = 1
Rationella tal	\mathbb{Q}	Bråktal, $\frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$	$\{\ldots, -\frac{1}{2}, \ldots, 0, \ldots, \frac{1}{2}, \ldots\}$	$x^2 = 2$
Reella tal	\mathbb{R}	Rationella, irrationella	$\{\ldots,-\sqrt{2},\ldots,0,\ldots,\sqrt{2},\ldots\}$	$x^2 = -1$
Komplexa tal	\mathbb{C}	$a+bi, i=\sqrt{-1}$		
Kvaternioner	THT			

Räkneregler

Kommutativa lagen	x + y = y + x, xy = yx	
Associativa lagen	(x + y) + z = x + (y + z), x(yz) = (xy)z	
Distributiva lagen	x(y+z) = xy + xz	
Additiv invers	$x + y = 0 \Rightarrow y = -x$	ej för \mathbb{N}
Multiplikativ invers	$x - y = 1 \Rightarrow y = x^{-1}$	ej för \mathbb{N}, \mathbb{Z}
Olikheter	$x < y, x < z \Rightarrow y < z$	ej för \mathbb{C}

För komplexa tal gäller samma räkneregler som för reella tal, med skillnaden att oliketer saknas.

För $\mathbb N$ har vi aritmetikens huvudsats: Om $n \in \mathbb N$ så finns exakt <u>en</u> faktorisering i primtal så att $n = P_1 * \cdots * P_k$. Exempelvis är 52 = 2 * 2 * 13 det enda sättet att faktorisera 52 med enbart primfaktorer.

\ddot{A} R $\sqrt{2}$ IRRATIONELLT?

Ja: bevis: anta att $\sqrt{2}$ är rationellt.

$$\sqrt{2} = \frac{n}{m}$$
$$2 = \frac{n^2}{m^2}$$
$$2m^2 = n^2$$

VL: udda antal faktorer 2 HL: jämnt antal faktorer 2

Detta leder till en måtsägelse, d.v.s $\sqrt{2}$ är irrationellt.

Vad skiljer \mathbb{Q} och \mathbb{R} ?

- \mathbb{Q} alla decimaltal med periodisk utveckling
- \mathbb{R} alla decimaltal (exempelvis har $\sqrt{2}$ ingen periodisk utveckling)

 $\mathbb R$ är således en komplettering till $\mathbb Q$ som lägger till irrationela tal så som $\sqrt{2}$ och $\pi.$ $\mathbb R$ är fullständig.

En följd
$$\{x_i\} = \{x_1, x_2, \dots\}$$
 är konvergent om $|x_j - x_k| \to 0$ om $j, k \to \infty$.

Att $\mathbb R$ är fullständig betyder att $\{x_i\}$ $x_i \in \mathbb R$ är konvergent. D.v.s det finns \overline{x} så att $|\overline{x} - x_j|$ $\overline{x} \in \mathbb R \to 0$.

Kan vi uppskata π allt bättre?

$$\left. \begin{array}{c} 3 \\ 3,1 \\ 3,14 \\ 3,141 \\ 3,1415 \\ 3,14159 \\ 3,141592 \\ \dots \end{array} \right\} \text{Rationella}$$

$$\pi \qquad \left. \right\} \text{Irrationell}$$

MER OM TAL

Komplexa tal

Komplexa tal har samma räkneregler som för \mathbb{R} . De kan skrivas på rektangulär form x+iy där i betäcknar något som $i^2=-1$. De komplexa talen betecknas $\mathbb{C}=\{x+iy,x,y\in\mathbb{R}\}$. De består av en realdel, Re(a+bi)=a, och en imaginärdel, Im(a+bi)=b.

Det komplexa talet z=a+bi har en spegling a-iy. Denna spegling kallas vanligtvis för konjugat och betecknas \overline{z} .

EXEMPEL: ÄR $\frac{1}{1+i}$ KOMPLEXT?

$$\frac{1}{1+i} = \underbrace{\frac{1-i}{(1+i)(1-i)}}_{\text{förläng med } \overline{z} \Rightarrow \text{ reellt tal}}$$

$$= \frac{1-i}{1^2+i^2}$$

$$= \frac{1-i}{2}$$

$$= \frac{1}{2} - \frac{1}{2}i$$

Svar: Ja, $\frac{1}{1+i}$ är komplext.

Polär form

Ett komplext tal z kan alternativt skrivas med ett anvstånd till origon och en vinkel.

$$a + bi = |z| \cos \theta + i |z| \sin \theta$$
$$= |z| (\cos \theta + i \sin \theta)$$
$$= e^{i\theta} * e^{i\varphi}$$
$$= e^{i(\theta + \varphi)}$$

Eulers formel

$$cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Exempel: Skriv z=1+i på polär form

Geometrisk lösning:

$$\theta = 45 = \frac{\pi}{4}$$

$$|z| = \sqrt{2}$$

$$1 + i = \sqrt{2} * e^{i\frac{\pi}{4}}$$

$$|z|(\cos\theta + i\sin\theta) = |z|e^{i\theta}$$

$$= re^{i\theta}$$

$$= |z|e^{i*arg(z)}$$

$$= \sqrt{2}e^{i\frac{\pi}{4}}$$

arg(z)är vinkeln tillzför den positiva realaxeln och $\mid z\mid$ är beloppet alt. absolutbeloppet.

Svar: $\sqrt{2}e^{i\frac{\pi}{4}}$

Algebraisk lösning:

$$x = \mid z \mid \cos \theta = 1 \ y = \mid z \mid \sin \theta = 1$$

$$\frac{1}{1} = \frac{|z|\cos\theta}{|z|\sin\theta} = \tan\theta = 1$$

$$\theta = \frac{\pi}{4}, \frac{\pi}{4} + \pi$$

Notera att lösningen $\frac{\pi}{4}+\pi$ är orimlig då detta skulle innebära att realdelen skulle vara negativ, något vi vet inte gäller då den i uppgiften är 1.

$$\mid z \mid = \sqrt{a^2 + b^2} = \sqrt{2}$$

Svar: $\sqrt{2}e^{i\frac{\pi}{4}}$

SAMMANFATTNING

Ett komplex tal kan skrivas på rektangulär form, a+bi där $a,b\in\mathbb{Q}$. Det kan även skrivas på polär form, $re^{i\theta}$ där r är absolutbeloppet. Realdelen a fås genom $r\cos\theta$ och imaginärdelen b genom $r\sin\theta$. θ är vinkeln från den positiva x-axeln och kan fås genom arctan $\frac{b}{a}+n+\pi$ där $-\frac{\pi}{2}<\arctan x<\frac{\pi}{2}$.

$$e^{i\theta} = \cos \theta + i \sin \theta$$

$$e^{-i\theta} = \cos \theta - i \sin \theta$$

$$\overline{zw} = \overline{z} * \overline{w}$$

$$\frac{\overline{z}}{\overline{w}} = \frac{\overline{z}}{\overline{w}}$$

$$|z|^2 = z\overline{z}$$

$$|z| * |w| = |zw|$$

$$\frac{z}{w} = \frac{z\overline{w}}{\overline{w}\overline{w}} = \frac{z\overline{w}}{|w|^2}$$

$$\frac{r_1 e^{i\theta}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$