R documentation

of 'marginal.Rd'

March 14, 2011

marginal

Functions which operates on marginals

Description

Density, distribution function, quantile function, random generation, interpolation, expectations and transformations of marginals obtained by inla or inla.hyperpar().

Usage

```
inla.dmarginal = function(x, marginal, log = FALSE)
inla.pmarginal = function(q, marginal, normalize = TRUE)
inla.qmarginal = function(p, marginal, len = 1024)
inla.rmarginal = function(marginal, log = FALSE, extrapolate = 0.0)
inla.smarginal = function(fun, marginal, ...)
inla.tmarginal = function(fun, marginal, n, h.diff, ...)

These functions computes the density (\code{dmarginal}),
the distribution function (\code{pmarginal}),
the quantile function (\code{qmarginal}),
random generation (\code{rmarginal}),
spline smoothing (\code{smarginal}),
computes expected values (\code{emarginal}),
and transforms the marginal (\code{tmarginal}).
```

Arguments

marginal	A marginal object from either inla or inla.hyperpar(), which is either
	list $(x=c(), y=c())$ with density values y at locations x, or a matrix $(,n,2)$
	for which the density values are the second column and the locations in the first
	column.
fun	A (vectorised) function like function $(x) \exp(x)$ to compute the expectation against, or which define the transformation new = fun(old)
Х	Evaluation points

2 marginal

q	Quantiles
р	Probabilities
n	The number of observations. If length(n) > 1, the length is taken to be the number required. For inla.marginal.transform, its the number of points to use in the new density.
h.diff	$The step-length for the numerical differentiation inside \verb inla.marginal.transform \\$
	Further arguments to be passed to function which expectation is to be computed.
log	Return density or interpolated density in log-scale?
normalize	Renormalise the density after interpolation?
len	Number of locations used to interpolate the distribution function.

Value

inla.smarginal returns list=c(x=c(), y=c()) of interpolated values do extrapolation using the factor given, whereas the remaining function returns what they say they should do.

Author(s)

```
Havard Rue < hrue@math.ntnu.no>
```

See Also

```
inla, inla. hyperpar
```

Examples

```
## a simple linear regression example
n = 10
x = rnorm(n)
sd = 0.1
y = 1+x + rnorm(n, sd=sd)
res = inla(y \sim 1 + x, data = data.frame(x,y),
           control.data=list(initial = log(1/sd^2), fixed=TRUE))
\#\# chose a marginal and compare the with the results computed by the
## inla-program
r = res$summary.fixed["x",]
m = res\$marginals.fixed\$x
\#\# compute the the density for \exp(r), version 1
r.exp = inla.tmarginal(exp, m)
## or version 2
r.exp = inla.tmarginal(function(x) exp(x), m)
\#\# to plot the marginal, we use the inla.smarginal, which interpolates (in
## log-scale). Compare with some samples.
plot(inla.smarginal(m), type="l")
s = inla.rmarginal(1000, m)
hist(inla.rmarginal(1000, m), add=TRUE, prob=TRUE)
lines(density(s), lty=2)
m1 = inla.emarginal(function(x) x^1, m)
m2 = inla.emarginal(function(x) x^2, m)
stdev = sqrt(m2 - m1^2)
```

marginal 3

```
q = inla.qmarginal(c(0.025,0.975), m)

## inla-program results
print(r)

## inla.marginal-results (they shouldn't be perfect!)
print(c(mean=m1, sd=stdev, "0.025quant" = q[1], "0.975quant" = q[2]))
```

Index

```
dmarginal (marginal), 1
emarginal (marginal), 1
inla, 2
inla.dmarginal(marginal), 1
inla.emarginal(marginal), 1
inla.expectation(marginal), 1
inla.hyperpar, 2
inla.marginal(marginal), 1
inla.pmarginal(marginal), 1
inla.qmarginal(marginal), 1
inla.rmarginal(marginal), 1
inla.smarginal(marginal), 1
inla.spline(marginal), 1
inla.tmarginal(marginal), 1
marginal, 1
pmarginal (marginal), 1
qmarginal (marginal), 1
rmarginal (marginal), 1
smarginal (marginal), 1
```