Flavour Mixing Effects in the Direct Detection of Dark Matter

Anja Beck

Lehrstuhl für Theoretische Physik IV Fakultät Physik Technische Universität Dortmund

1. August 2017

Flavour Mixing Effects in the Direct Detection of Dark Matter

Effects in the

Dunkle Materie

-07-27

Verwendete

Neue Wechsel

viikuiig

litoratur

Abbildung: Energieverteilung im Universum (ESA, Planck Colaboration 2013)

Flavour Mixing Effects in the Direct Detection of Dark Matter Einführung

Dunkle Materie

└─Dunkle Materie

Menschen schauen schon immer in den Himmel. Dunkle Materie als Lösung für zu schnelle Galaxien. Großteil dessen was das Universums ausmacht ist unbekannt.

Flavour Mixing Effects in the Direct Detection of Dark Matter Anja Beck

Direct Detection

Einführung

Flavour-Mischun

Verwendeter

Formalismus

wirkung

Fraehnisse

.

Abbildung: Direct Detection: Streuung eines DM-Teilchens am Atomkern.

Direct Detection

Effects in the

Direct Detection

Flavour-

Mischung

of Dark Matter Anja Beck

Die Massen-Eigenzustände sind nicht gleich den Flavour-Eigenzuständen.

$$\mathcal{L}^{(\mathsf{mass})} = -rac{v}{\sqrt{2}} \left[ar{\mathcal{E}}_L \lambda^e \mathcal{E}_R + ar{\mathcal{D}}_L \lambda^d \mathcal{D}_R + ar{\mathcal{U}}_L \lambda^u \mathcal{U}_R + \mathsf{h.c.}
ight]$$

Teilchen-Multipletts diagonalisiert:

• Massenterme werden durch unitäre Rotation der

$$E_L o S_e E_L \qquad E_R o R_e E_R$$

Flavour-Mischung

Ursprung

 $\bar{E}_I \lambda^e E_R \rightarrow \bar{E}_I S_e^{\dagger} \lambda^e R_e E_R$

$$ar{U}_{\!I} \gamma^\mu D_{\!I}
ightarrow ar{U}_{\!I} \gamma^\mu S_a^\dagger S_d D_{\!I}$$

Matter Flavour-Mischung -Flavour-Mischung

Flavour Mixing Effects in the Direct Detection of Dark

 Massenterme werden durch unitäre Rotation der Teilchen-Multipletts diagonalisiert: $E_L \rightarrow S_a E_L$ $E_R \rightarrow R_a E_R$ $\tilde{E}_1 \lambda^a E_D \rightarrow \tilde{E}_1 S^{\dagger} \lambda^a R_a E_D$ · Dadurch verändert sich der Strom $\bar{U}_i \gamma^{\mu} D_i \rightarrow \bar{U}_i \gamma^{\mu} S_i^{\dagger} S_i D_i$

Flavour-Figurauständen

Die Massen-Eigenzustände sind nicht gleich den

 $\mathcal{L}^{(mass)} = -\frac{v}{-m} \left[\tilde{E}_L \lambda^a E_R + \tilde{D}_L \lambda^d D_R + \tilde{U}_L \lambda^u U_R + h.c. \right]$

Flavour-Mischung

4/20

$$V_{\mathsf{CKM}} = \begin{pmatrix} 0.974 & 0.225 & 0.004 \\ 0.220 & 0.995 & 0.041 \\ 0.008 & 0.040 & 1.009 \end{pmatrix}$$

• Hinweis, dass die Mischung häufig vernachlässigt wird.

xing the ction otter	Formalismus Operatoren	
:k	Unchirale Operatoren: $R_{1,q}=(\bar\chi\gamma_\mu\chi)(\bar q\gamma^\mu q) \qquad \qquad R_{3,q}=(\bar\chi\gamma_\mu\chi)(\bar q\gamma^\mu\gamma_5 q)$	
er Is	$R_{2,q}=(ar{\chi}\gamma_{\mu}\gamma_{5}\chi)(ar{q}\gamma^{\mu}q)$ $R_{4,q}=(ar{\chi}\gamma_{\mu}\gamma_{5}\chi)(ar{q}\gamma^{\mu}\gamma_{5}q)$ Chirale Operatoren:	
	$Q_{1ij} = (\bar{\chi}\gamma_{\mu}\tilde{\tau}^{3}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}\tau^{3}Q_{L}^{j}) \qquad Q_{5ij} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\tilde{\tau}^{3}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}\tau^{3}Q_{L}^{j})$ $Q_{2ij} = (\bar{\chi}\gamma_{\mu}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{j}) \qquad Q_{6ij} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{j})$ $Q_{3ij} = (\bar{\chi}\gamma_{\mu}\chi)(\bar{U}_{R}^{i}\gamma^{\mu}U_{R}^{j}) \qquad Q_{7ij} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{U}_{R}^{i}\gamma^{\mu}U_{R}^{j})$ $Q_{4ij} = (\bar{\chi}\gamma_{\mu}\chi)(\bar{D}_{R}^{i}\gamma^{\mu}D_{R}^{j}) \qquad Q_{8ij} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{D}_{R}^{i}\gamma^{\mu}D_{R}^{j})$	
	Ziel: Drücke die Koeffizienten der unchiralen Operatoren in Abhängigkeit der Koeffizienten der chiralen Operatoren aus.	

2017-07-27 $R_{2,q} = (\tilde{\chi}\gamma_{\mu}\gamma_5\chi)(\tilde{q}\gamma^{\mu}q)$ -Verwendeter Formalismus Chirale Operatoren: $Q_{k\bar{q}} = (\bar{\chi}\gamma_{\mu}\bar{\tau}^3\chi)(\bar{Q}_L^i\gamma^{\mu}\tau^3Q_L^i)$ $Q_{k\bar{q}} = (\bar{\chi}\gamma_{\mu}\gamma_5\bar{\tau}^3\chi)(\bar{Q}_L^i\gamma^{\mu}\tau^3Q_L^i)$ $Q_{2ij} = (\tilde{\chi}\gamma_{\mu}\chi)(\tilde{Q}_L^i\gamma^{\mu}Q_L^i)$ $Q_{1ij} = (\tilde{\chi}\gamma_{\mu}\chi)(\tilde{U}_{R}^{i}\gamma^{\mu}U_{R}^{i})$ $Q_{4j} = (\tilde{\chi}\gamma_{\mu}\chi)(\tilde{D}_{R}^{j}\gamma^{\mu}D_{R}^{j})$ -Formalismus Ziel: Drücke die Koeffizienten der unchiralen Operatoren in Abhängigkeit der Koeffizienten der chiralen Operatoren aus.

Flavour Mixing Effects in the Direct Detection of Dark

Matter

Formalismus

 $R_{3,q} = (\tilde{\chi}\gamma_{\mu}\chi)(\tilde{q}\gamma^{\mu}\gamma_5 q)$

 $R_{4,q} = (\bar{\chi}\gamma_{\mu}\gamma_5\chi)(\bar{q}\gamma^{\mu}\gamma_5q)$

 $Q_{6ij} = (\tilde{\chi}\gamma_{\mu}\gamma_{5}\chi)(\tilde{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{j})$

 $Q_{7ij} = (\tilde{\chi}\gamma_{\mu}\gamma_{5}\chi)(\tilde{U}_{R}^{i}\gamma^{\mu}U_{R}^{j})$

 $Q_{k\bar{j}} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{D}_{R}^{i}\gamma^{\mu}D_{R}^{j})$

Unchirale Operatoren:

 $R_{1,q} = (\tilde{\chi}\gamma_{\mu}\chi)(\tilde{q}\gamma^{\mu}q)$

Flavour Mix

Effects in tl

Direct Detect

of Dark Mat

Verwendeter Formalismus

Anja Becl

Verwendeter Formalismus

Einfügen der CKM-Matrix:

Effects in the

8/20

und rechtshändigen Projektoren:

Umschreiben der chiralen Teilchen-Multipletts mit den links-

$$\begin{split} \bar{Q}_L^i \gamma^\mu Q_L^j &= \frac{1}{2} (\bar{u} \gamma^\mu u \delta_{iu} \delta_{ij} + V_{id}^* V_{jd} \bar{d} \gamma^\mu d + V_{is}^* V_{js} \bar{s} \gamma^\mu s) \\ &- \frac{1}{2} (\bar{u} \gamma^\mu \gamma_5 u \delta_{iu} \delta_{ij} + V_{id}^* V_{jd} \bar{d} \gamma^\mu \gamma_5 d + V_{is}^* V_{js} \bar{s} \gamma^\mu \gamma_5 s) \end{split}$$

Identifikation der nicht-chiralen Operatoren:

$$egin{aligned} Q_{2ij} &= rac{1}{2}(R_{1u}\delta_{iu}\delta_{ij} + V_{id}^*V_{jd}R_{1d} + V_{is}^*V_{js}R_{1s}) \ &- rac{1}{2}(R_{3u}\delta_{iu}\delta_{ij} + V_{id}^*V_{jd}R_{3d} + V_{is}^*V_{js}R_{3s}) \end{aligned}$$

-Formalismus

-Verwendeter Formalismus

Verwendeter Formalismus

Aufstellen des Lagrangian:

$$\sum_{l,q} K_{l,q} R_{l,q} \stackrel{!}{=} \sum_{m,i,j} C_{mij} Q_{mij}$$

Nach dem Umsortieren der rechten Seite nach $R_{l,a}$ liefert ein Koeffizienten-Vergleich die Abhängigkeiten $K_{l,q}(C_{mii})$.

Flavour Mixing Neue Wechselwirkung Effects in the Direct Detection of Dark Matter Anja Beck • Neue U(1)-Symmetrie mit Eichboson Z' [1] • Unter der neuen Wechselwirkung geladene Teilchen: Neue Wechsel-• Leptonen der zweiten und dritten Generation wirkung Neue Quarks • Dunkle Materie [2] • Ein paar Worte zu $L_{\mu} - L_{\tau}$.

Effects in the

Neue Wechselwirkung

Kopplung der neuen Quarks an die SM-Quarks

Neue Wechsel-

wirkung

Neue Wechselwirkung

Direct Detection

Flavour Mixing

Effects in the

Neue Wechselwirkung

Anja Beck

Abbildung: $B \to K \mu \bar{\mu}$ bzw. $B_s \to \Phi \mu \bar{\mu}$

Neue Wechselwirkung

Erklärung seltener *B*-Zerfälle

Abbildung: $b \to s \mu \bar{\mu}$

Beschreibung mit Z'-Austausch:

$$H=rac{Y_{Qb}Y_{Qs}^*}{2m_{O}^2}(ar{s}_{ extsf{L}}\gamma_{\mu}b_{ extsf{L}})(ar{\mu}\gamma^{\mu}\mu)-rac{Y_{Db}Y_{Ds}^*}{2m_{D}^2}(ar{s}_{ extsf{R}}\gamma_{\mu}b_{ extsf{R}})(ar{\mu}\gamma^{\mu}\mu)$$

Beschränkung der Masse auf:

$$m_{Q,D}pprox 25\, ext{TeV}\sqrt{ ext{Re}\left(Y_{(Q,D)b}Y_{(Q,D)s}
ight)}$$

Flavour Mixing Effects in the Direct Detection of Dark 2017-07-27 Matter Neue Wechselwirkung -Neue Wechselwirkung

Effects in the Direct Detection of Dark Matter Anja Beck

Flavour Mixing

Neue Wechselwirkung

Loop-Diagramm zur Streuung am Atomkern

Neue Wechselwirkung

Flavour Mixing Effects in the Direct Detection of Dark 2017-07-27 Matter Neue Wechselwirkung -Neue Wechselwirkung

 $(C = q_{\chi} \frac{Y_{Qb} Y_{Qs}^*}{2m_Q})$:

Mögliche chirale Wechselwirkungen

 $Q_{2sb} = C(ar{\chi}\gamma_{\mu}\chi)(ar{Q}_{L}^{2}\gamma^{\mu}Q_{L}^{3})$ $Q_{6sb} = C(\bar{\chi}\gamma_{\mu}\gamma_5\chi)(\bar{Q}_I^2\gamma^{\mu}Q_I^3)$

Nicht-chirale Wechselwirkungen:

 $+\text{Re}(V_{cd}^*V_{td}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{d}\gamma^{\mu}d)$

Abbildung: Tree-Wechselwirkung zur

 $+\text{Re}(V_{cs}^*V_{ts}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{s}\gamma^{\mu}s)$ Streuung DM am Atomkern. $-\text{Re}(V_{cd}^*V_{td}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{d}\gamma^{\mu}\gamma_5d)$ $-\text{Re}(V_{cs}^*V_{ts}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{s}\gamma^{\mu}\gamma_5 s)$

$$\sigma_{0,\mathrm{tree}} = rac{\mu_{A\chi}^2}{A^2\pi} \Big| Z \cdot \mathsf{Re}(V_{cd}^* V_{td} C) + (A - Z) \cdot 2 \cdot \mathsf{Re}(V_{cd}^* V_{td} C) \Big|^2$$

Flavour Mixing Effects in the Direct Detection of Dark -27 Matter -07 -Ergebnisse

-Direct Detection mit Flavour-Mischung

 $Q_{2ab} = C(\tilde{\chi}\gamma_{\mu}\chi)(\tilde{Q}_{i}^{2}\gamma^{\mu}Q_{i}^{2})$

Direct Detection mit Flavour-Mischung

 $\sigma_{0,\text{tree}} = \frac{\mu_{A_Y}^2}{A^2} \left| Z \cdot \text{Re}(V_{cd}^* V_{td} C) + (A - Z) \cdot 2 \cdot \text{Re}(V_{cd}^* V_{td} C) \right|^2$

Direct Detection mit Flavour-Mischung

Anja Beck

Ergebnisse

Abbildung: Tree-Wechselwirkung zur Streuung DM am Atomkern. Mögliche chirale Wechselwirkungen $(C = q_{\chi} \frac{Y_{Qb} Y_{Qs}^*}{2m_Q})$:

$$Q_{2sb} = C(\bar{\chi}\gamma_{\mu}\chi)(\bar{Q}_{L}^{2}\gamma^{\mu}Q_{L}^{3})$$

$$Q_{6sb} = C(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{Q}_{L}^{2}\gamma^{\mu}Q_{L}^{3})$$

Nicht-chirale Wechselwirkungen:

$$\begin{split} + & \operatorname{Re}(V_{cd}^* V_{td} C) \quad (\bar{\chi} \gamma_{\mu} \chi) (\bar{d} \gamma^{\mu} d) \\ + & \operatorname{Re}(V_{cs}^* V_{ts} C) \quad (\bar{\chi} \gamma_{\mu} \chi) (\bar{s} \gamma^{\mu} s) \\ - & \operatorname{Re}(V_{cd}^* V_{td} C) \quad (\bar{\chi} \gamma_{\mu} \chi) (\bar{d} \gamma^{\mu} \gamma_5 d) \\ - & \operatorname{Re}(V_{cs}^* V_{ts} C) \quad (\bar{\chi} \gamma_{\mu} \chi) (\bar{s} \gamma^{\mu} \gamma_5 s) \end{split}$$

$$\sigma_{0,\mathsf{tree}} = rac{\mu_{A\chi}^2}{A^2\pi} \Big| Z \cdot \mathsf{Re}(V_{cd}^* V_{td} C) + (A - Z) \cdot 2 \cdot \mathsf{Re}(V_{cd}^* V_{td} C) \Big|^2$$

Flavour Mixing Effects in the Direct Detection of Dark -27 Matter -07 -Ergebnisse

-Direct Detection mit Flavour-Mischung

 $\sigma_{0,\text{tree}} = \frac{\mu_{A_Y}^2}{A^2} \left| Z \cdot \text{Re}(V_{cd}^* V_{td} C) + (A - Z) \cdot 2 \cdot \text{Re}(V_{cd}^* V_{td} C) \right|^2$

Direct Detection mit Flavour-Mischung

 $Q_{2ab} = C(\tilde{\chi}\gamma_{\mu}\chi)(\tilde{Q}_{i}^{2}\gamma^{\mu}Q_{i}^{2})$

Abbildung: Tree-Wechselwirkung zur Streuung DM am Atomkern. Mögliche chirale Wechselwirkungen $(C = q_{\chi} \frac{Y_{Qb} Y_{Qs}^*}{2m_Q})$:

$$Q_{2sb} = C(\bar{\chi}\gamma_{\mu}\chi)(\bar{Q}_{L}^{2}\gamma^{\mu}Q_{L}^{3})$$

$$Q_{6sb} = C(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{Q}_{L}^{2}\gamma^{\mu}Q_{L}^{3})$$

Nicht-chirale Wechselwirkungen:

$$\begin{split} + & \operatorname{Re}(V_{cd}^* V_{td} C) \quad (\bar{\chi} \gamma_{\mu} \chi) (\bar{d} \gamma^{\mu} d) \\ + & \operatorname{Re}(V_{cs}^* V_{ts} C) \quad (\bar{\chi} \gamma_{\mu} \chi) (\bar{s} \gamma^{\mu} s) \\ - & \operatorname{Re}(V_{cd}^* V_{td} C) \quad (\bar{\chi} \gamma_{\mu} \chi) (\bar{d} \gamma^{\mu} \gamma_5 d) \\ - & \operatorname{Re}(V_{cs}^* V_{ts} C) \quad (\bar{\chi} \gamma_{\mu} \chi) (\bar{s} \gamma^{\mu} \gamma_5 s) \end{split}$$

$$\sigma_{0,\mathsf{tree}} = rac{\mu_{A\chi}^2}{A^2\pi} \Big| Z \cdot \mathsf{Re}(V_{cd}^* V_{td} C) + (A - Z) \cdot 2 \cdot \mathsf{Re}(V_{cd}^* V_{td} C) \Big|^2$$

Flavour Mixing Effects in the Direct Detection of Dark -07-27 Matter -Ergebnisse

-Direct Detection mit Flavour-Mischung

Direct Detection mit Flavour-Mischung

 $\sigma_{0,\text{tree}} = \frac{\mu_{A_Y}^2}{A^2} \left| Z \cdot \text{Re}(V_{cd}^* V_{td} C) + (A - Z) \cdot 2 \cdot \text{Re}(V_{cd}^* V_{td} C) \right|^2$

Einschränkung aus den B-Zerfällen 1 Real- und Imaginärteil von *C* variabel

Flavour Mixing

Ergebnisse

-Einschränkung aus den B-Zerfällen 1

Effects in the

Einschränkung aus den B-Zerfällen 1 Real- und Imaginärteil von *C* variabel

Einschränkung aus den B-Zerfällen 1 Real- und Imaginärteil von C variabel

-Einschränkung aus den B-Zerfällen 1

Einschränkung aus den B-Zerfällen 2 Fester Realteil, variabler Imaginärteil

Effects in the

Einschränkung aus den B-Zerfällen 2

10²

 m_{χ} in GeV

 10^{3}

Fester Realteil, variabler Imaginärteil

 10^{1}

Flavour Mixing Effects in the Direct Detection of Dark
Matter
Ergebnisse
Einschränkung aus den *B*-Zerfällen 2

 10^{0}

Flavour Mixing Effects in the Direct Detection of Dark Matter

Anja Beck

Einschränkung aus der Relic Density

Flavour Mixing Effects in the Direct Detection of Dark 2017-07-27 Matter -Ergebnisse

Einschränkung aus der Relic Density

-Einschränkung aus der Relic Density

Flavour Mixing Effects in the Direct Detection of Dark Matter

Anja Beck

Einführur

Flavour-Mischun

Verwendeter Formalismus

Neue Wechsel

wirkung

Ergebnisse

Einschränkung aus der Relic Density

Flavour Mixing Effects in the Direct Detection of Dark
Matter
Ergebnisse
Fineshränkung aus der Relig Density

-07-27

Matter

-Ergebnisse

Anja Beck

Flavour Mixing

Effects in the

Literatur

W. Altmannshofer, S. Gori, M. Pospelov und I. Yavin. Dressing $L_{\mu} - L_{\tau}$ in Color. 2016. arXiv: 1403.1269v3 [hep-ph].

W. Altmannshofer, S. Gori, S. Profumo und F. S. Queiroz. Explaining Dark Matter and B Decay Anomalies with an $L_{\mu} - L_{\tau}$ Model. 2017. arXiv: 1609.04026v2 [hep-ph].

-Bibliographie

Flavour Mixing Effects in the Direct Detection of Dark