

RC522 RFID Module

Übersicht

In dieser Lektion lernen Sie, wie man das RC522 RFID-Modul mit dem UNO R3 verbindet. Dieses Modul benutzt die SPI- (Serial Peripheral Interface) Schnittstelle, um mit Mikrocontrollern wie dem Raspberry Pi, Arduino oder Beagle Board zu kommunizieren.

Benötigte Bauteile:

- (1) x Elegoo Uno R3
- (1) x RC522 RFID module
- (7) x W-M Kabel (Weiblich zu Männlich DuPont Jumper Kabel)

Einführung in die Komponenten

RC522

- Das MFRC522 ist ein hochintegriertes Lese-/Schreibgerät zur kontaktlosen Kommunikation bei 13,56 MHz. Der MFRC522-Chip unterstützt ISO 14443A und den MIFARE® Modus.
- Der Sendeteil des MFRC522-Chips kann eine Antenne zur Kommunikation mit ISO/ IEC 14443A bzw. MIFARE® Karten und Transpondern betreiben, ohne dass diese Karten eine externe Stromversorgung benötigen. Der Empfangsteil beinhaltet einen Schaltkreis zur Demodulierung und Entschlüsselung des Signals von ISO/IEC 14443A/MIFARE® kompatiblen Karten und Transpondern. Der digitale Teil übernimmt die komplette Modulierung und Fehlererkennung (Parity & CRC). Es werden MIFARE® Classic (z.B. MIFARE® Standard) Produkte unterstützt. Der Chip unterstützt kontaktlose Kommunikation mit Übertragrungsraten mit bis zu 848 kBit/s in beide Richtungen.
- Verschiedene Schnittstellen sind verfügbar:
 - •SPI interface
 - •Serielles UART (ähnlich wie RS232)
 - •12C Schnittstelle.
- Die Abbildung unten zeigt eine typisches Schaltdiagram zur Verbindung des MFRC522s unter Verwendung einer externen Antenne.

Code

- Nach dem Verbinden der Komponenten öffnen Sie bitte den Sketch im Code-Ordner unter "MF-RC522_RFID" und laden ihn auf Ihr UNO Board hoch. Bei Fragen zum Hochladen eines Sketches schauen Sie sich bitte Lektion 5 in Teil 1
- Bevor Sie diesen Sketch hochladen können, müssen Sie die "rfid"-Bibliothek installiert haben. Sonst wird sich Ihr Sketch nicht hochladen lassen.
- Für Hinweise wie man eine Bibliothek einbindet, gehen Sie zurück zu Lektion 5 in Teil 1.

Signal	MFRC522 Reader/PCD Pin	Arduino Uno	Arduino Mega	Pin	Arduino Leonardo/Micro Pin	Pin
		Pin	Pin			
RST/Reset	RST	9	5	D9	RESET/ICSP-5	RST
SPI SS	SDA (SS)	10	53	D10	10	10
SPI MOSI	MOSI	11 / ICSP-4	51	D11	ICSP-4	16
SPI MISO	MIS0	12 / ICSP-1	50	D12	ICSP-1	14
SPI SCK	SCK	13 / ICSP-3	52	D13	ICSP-3	15

Die SPI-Pins befinden sich je nach Modul an unterschiedlicher Stelle und Sie müssen eventuell im Code kleine Anpassungen an der Pinbelegung vornehmen.

#define RST_PIN	9	// Configurable, see typical pin layout above
#define SS_PIN	10	// Configurable, see typical pin layout above

```
if ( ! mfrc522.PICC_IsNewCardPresent() || ! mfrc522.PICC_ReadCardSerial() ) { return; }
```

[Boolean Operators] Beschreibung

- Logisches NICHT führt zu true, wenn der Operand falsch ist und umgekehrt.
- Öffnen Sie den Seriellen Monitor:

Klicken Sie auf das Symbol des Seriellen Monitors, um ihn zu öffnen. Die grundlegenden Informationen zum Seriellen Monitor haben Sie in Lektion 4 in Teil 2.

