МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №3

по дисциплине «Основы профессиональной деятельности»

Вариант № 3104

Выполнил:

Студент группы Р3131 Дворкин Борис Александрович

Преподаватель:

Клименков Сергей Викторович

Содержание

Текст задания	3
Описание программы	4
Таблица трассировки	
Вывод	
<u>DBIBU</u> Д	0

Текст задания

Восстановить текст заданного варианта программы, определить предназначение и описание программы, определить область представления и ОДЗ исходных данных и результата, выполнить трассировку программы.

Адрес	Код команды	Мнемоника	Комментарии						
2DE	02F5	arr_first_elem	Адрес первого элемента						
2DF	A000	arr_last_elem	Адрес текущего элемента (начиная с последнего)						
2E0	E000	arr_length	Количество элементов массива						
2E1	E000	result	Результат						
2E2	AF40	LD #0x40	Прямая загрузка 040 -> АС						
2E3	0680	SWAB	Обмен ст. и мл. байтов в АС						
2E4	0500	ASL	Арифметический сдвиг АС влево						
2E5	EEFB	ST IP-5	Прямое относительное сохранение AC -> M (2E1)						
2E6	AF05	LD #0x05	Прямая загрузка 005 -> АС						
2E7	EEF8	ST IP-8	Прямое относительное сохранение AC -> M (2E0)						
2E8	AEF5	LD IP-B	Прямая относительная загрузка 02F5 -> AC						
2E9	EEF5	ST IP-B	Прямое относительное сохранение AC -> M (2DE)						
2EA	AAF4	LD (IP-C)+	Косвенная относительная автоинкрементная загрузка: 3н(2DE) += 1; 3н(2DE) -> AC						
2EB	0480	ROR	Циклический сдвиг АС вправо						
2EC	F401	BCS IP+1	Если C==1, то IP+1+1 -> IP						
2ED	CE04	BR IP+4	IP+4+1 -> IP						
2EE	0400	ROL	Циклический сдвиг АС влево						
2EF	7EF1	CMP IP-F	Прямое относительное сравнение АС-М(2Е1)						
2F0	F801	BLT IP+1	Если N⊕V==1, то IP+1+1 -> IP						
2F1	EEEF	ST IP-11	Прямое относительное сохранение AC -> M (2E0)						
2F2	82E0	LOOP 0x2E0	M(2E0) - 1 -> M(2E0); Если (2E0) <= 0, то IP + 1 -> IP						
2F3	CEF6	BR IP-A	Переход IP-A+1 -> IP						
2F4	0100	HLT	Останов						
2F5	0B01								
2F6	F200								
2F7	0580		"Элементы массива"						
2F8	0000								
2F9	0480								

Описание программы

Программа находит максимальный нечётный элемент массива и сохраняет информацию о нём в биты ячейки результата. Формула результата:

$$_{\text{MEM(2E1)}} = \sum_{i=0}^{\text{MEM(2E0)}} \begin{cases} 2^i \text{ если MEM } (2F5+i) \vdots 2 \\ 0 \text{ если MEM } (2F5+i) \vdots 2 \end{cases}$$

Область представления

- 🛮 arr_first_elem, arr_last_elem, arr_length, result 16-ти разрядные целые числа в прямом коде.
- arr[i] 16-ти разрядные целые числа в дополнительном коде

Область допустимых значений

- \square arr_length \in [1; 2⁷-1]
- 2 result ϵ [1, 3, 5, ..., $2^{15} 1$]
- \square arr_first_elem \in [0; 2DE arr_length] \cup [2F5; 7FF arr_length]
- □ arr_last_elem ε [arr_first_elem; arr_first_elem + arr_length 1]
- \square Элементы массива arr[i] ϵ [-32768; 32767] (т. е. [-2¹⁵; 2¹⁵-1])

Расположение данных в памяти

- 2DE, 2DF, 2E0, 2F5, 2F6, 2F7, 2F8, 2F9 исходные данные;
- 2DE промежуточный результат;
- 2E1 итоговый результат;
- 2E2 2F4 команды.

Адреса первой и последней выполняемой команды

- 🛮 Адрес первой команды: 2E2
- Адрес последней команды: 2F4

Таблица трассировки

Значения:

Arr[0] = 0xFFFF, Arr[1] = 0xEDAA, Arr[2] = 0x0771, Arr[3] = 0xBAAB, Arr[4] = 0x6666, $arr_length = 5$, $arr_first_elem = 0x02F5$

		,	,		,	,				,		
Адр		IP		AR	DR		BR				Адр	Знчн
2E2	AF40	2E2	0000	000	0000	000	0000	0000	004	0100		
2E2	AF40	2E3		2E2	0040	000	0040	0040	000	0000		
2E3	0680	2E4	0680	2E3	0680	000	02E3	4000	000	0000		
2E4	0500	2E5	0500	2E4	4000	000	02E4	8000	00A	1010		
2E5	EEFB	2E6	EEFB	2E1	8000	000	FFFB	8000	00A	1010	2E1	8000
2E6	AF05	2E7	AF05	2E6	0005	000	0005	0005	000	0000		
2E7		2E8	EEF8	2E0	0005	000	FFF8	0005	000	0000	2E0	0005
2E8	AEF5	2E9	AEF5	2DE	02F5	000	FFF5	02F5	000	0000		
2E9	EEF5	2EA	EEF5	2DF	02F5	000	FFF5	02F5	000	0000	2DF	02F5
2EA	AAF4	2EB	AAF4	2F5	FFFF	000	FFF4	FFFF	800	1000	2DF	02F6
2EB	0480	2EC	0480	2EB	0480	000	02EB	7FFF	003	0011		
2EC	F401	2EE	F401	2EC	F401	000	0001	7FFF	003	0011		
2EE	0400	2EF	0400	2EE	0400	000	02EE	FFFF	00A	1010		
2EF	7EF1	2F0	7EF1	2E1	8000	000	FFF1	FFFF	001	0001		
2F0	F801	2F1	F801	2F0	F801	000	02F0	FFFF	001	0001		
2F1	EEEF	2F2	EEEF	2E1	FFFF	000	FFEF	FFFF	001	0001	2E1	FFFF
2F2	82E0	2F3	82E0	2E0	0004	000	0003	FFFF	001	0001	2E0	0004
2F3	CEF6	2EA	CEF6	2F3	02EA	000	FFF6	FFFF	001	0001		
2EA	AAF4	2EB	AAF4	2F6	EDAA	000	FFF4	EDAA	009	1001	2DF	02F7
2EB	0480	2EC	0480	2EB	0480	000	02EB	F6D5	00A	1010		
2EC	F401	2ED	F401	2EC	F401	000	02EC	F6D5	00A	1010		
2ED	CE04	2F2	CE04	2ED	02F2	000	0004	F6D5	00A	1010		
2F2	82E0	2F3	82E0	2E0	0003	000	0002	F6D5	00A	1010	2E0	0003
2F3	CEF6	2EA	CEF6	2F3	02EA	000	FFF6	F6D5	00A	1010		
2EA	AAF4	2EB	AAF4	2F7	0771	000	FFF4	0771	000	0000	2DF	02F8
2EB	0480	2EC	0480	2EB	0480	000	02EB	03B8	003	0011		
2EC	F401	2EE	F401	2EC	F401	000	0001	03B8	003	0011		
2EE	0400	2EF	0400	2EE	0400	000	02EE	0771	000	0000		
2EF	7EF1	2F0	7EF1	2E1	FFFF	000	FFF1	0771	000	0000		
2F0	F801	2F1	F801	2F0	F801	000	02F0	0771	000	0000		
2F1	EEEF	2F2	EEEF	2E1	0771	000	FFEF	0771	000	0000	2E1	0771
2F2	82E0	2F3	82E0	2E0	0002	000	0001	0771	000	0000	2E0	0002
2F3	CEF6	2EA	CEF6	2F3	02EA	000	FFF6	0771	000	0000		
2EA	AAF4	2EB	AAF4	2F8	BAAB	000	FFF4	BAAB	800	1000	2DF	02F9
2EB	0480	2EC	0480	2EB	0480	000	02EB	5D55	003	0011		
2EC	F401	2EE	F401	2EC			0001			0011		
	0400	2EF			0400		02EE		00A	1010		
2EF	7EF1	2F0		2E1	0771		FFF1	BAAB	009	1001		
2F0	F801	2F2		2F0	F801	000	0001	BAAB	009	1001		
				2E0	0001		0000		009	1001	2E0	0001
		2EA	CEF6							1001	-	
2EA		2EB	AAF4		6666		FFF4			0001	2DF	02FA
	0480	2EC		2EB	0480		02EB	B333	00A	1010		
	F401	2ED		2EC	F401	000	02EC	B333	00A	1010		
	CE04	2F2	CE04		02F2		0004		00A	1010		
2ED					P-1-	500	JUU T		J 02 1	1-0-0	1	1
	82E0	2F4	82E0	2E0	0000	000	FFFF	B333	00A	1010	2E0	0000

Вывод

Во время выполнения лабораторной работы я научился работать в БЭВМ с массивами, ветвлением и циклами. Я изучил прямую и косвенную адресацию и цикл выполнения таких команд, как LOOP и JUMP.