

Identifying Equivalent Relation Paths in Knowledge Graphs

Sameh K. Mohamed, Emir Muñoz, Vít Nováček, Pierre-Yves Vandenbussche

Language, Data and Knowledge (LDK) Conference. Galway, Ireland. 18~21 June 2017

Agenda

- Knowledge Graphs
- Relation Path Equivalence
- Search of Δ-Equivalences
 - Path extension Extraction
 - Subgraph extraction
 - Building connecting Paths
 - Ranking candidate paths
- Experiments & Results
- Conclusions
- Future work

Knowledge Graphs (KGs)

- Graph representation of knowledge bases, where entities are represented by nodes and relations are represented by edges between them
- Commonly, KGs model facts as Subject-Predicate-Object (SPO) triples.
- A sequence of connected edges in a knowledge graph is called path

Figure 1: Example of a knowledge graph about people living in Galway, Ireland

Knowledge Graph Paths

- Relation path is a graph path represented as a sequence of its relations.
- Paths can be navigated in both directions using inverses of relations

Figure 2: Sample of paths connecting Bob to Ireland from knowledge graph at Fig. 1

Knowledge Graph Paths

- Relation paths are an important feature, that can be used for:
 - Expressing properties of entities
 - Automatic inference of new facts
 - Learning new relation rules

Figure 1: Example of a knowledge graph about people living in Galway, Ireland

Equivalence of Relation Paths

Two paths are equivalent if and only if they have the same path extension.

$$P1 \equiv P2 \text{ iff } PEXT(P1) = PEXT(P2)$$

where **PEXT**(P) is the set of node pairs that are connected with path P.

Path 1 have the following semantic:

"A person X who has child studying in a school in a city located in a country Y"

Finding Equivalence of a Relation Path

SEARCH OF EQUIVALENT RELATION PATHS PROBLEM

Given: a knowledge graph \mathcal{G} , relation path query Q, integer k, depth d**Find:** top-k equivalent relation paths of max. length 2d for Q in \mathcal{G} according to a ranking function $Rank_Q(P)$, for all $P \in \mathcal{C}$ set of candidates.

Challenges:

- Extracting path extension is a complex process
- Finding an equivalent relation path require trying combination of all possible path, which is a complex process.
- Knowledge incompleteness affect representation of paths in knowledge graphs, that equivalent paths can have different extension

Proposed Solution:

• A technique for finding approximate equivalences of a relation path using a sample of path extension instances

Search Approximate Equivalences of a path (1)

We query approximate equivalences of a relation path using a 4 phases procedure:

- 1. Extracting sample of path extension
- 2. Extracting Subgraphs of extension instances
- 3. Build connecting between domain and range nodes of path extension
- 4. Ranking Candidate connecting paths

Figure 2: Flow diagram of the process of retrieving approximate equivalences of a query path "Q"

Search Approximate Equivalences of a path (2)

- (1) Extracting sample of path extension
 - Finding middle path entities
 - Walk from middle points to both domain and range nodes
 - Combine reached domain and range nodes starting from same middle node.

Search Approximate Equivalences of a path (3)

- (2) Extracting subgraphs of path extension instances
 - We use constrained Depth-First-Search (DFS)

Figure 1: Example of a knowledge graph about people living in Galway, Ireland

Search Approximate Equivalences of a path (3)

(3) Build connecting paths between domain and range nodes

```
Algorithm 2 (ConnectingPaths: Connecting Paths Extraction)

Input: v_1, v_2 nodes, depth d, knowledge graph \mathcal{G}

Output: \mathcal{C} list of connecting paths between v_1 and v_2

1: \mathcal{G}_1, \mathcal{G}_2 \leftarrow \operatorname{Graph}^d(\mathcal{G}, v_1), \operatorname{Graph}^d(\mathcal{G}, v_2)

2: T_1, T_2 \leftarrow \{v \mid u, v \in V_{\mathcal{G}_1} \wedge \mathbf{I}_{\mathcal{G}_1}(P(u \leadsto v))\}, \{w \mid y, w \in V_{\mathcal{G}_2} \wedge \mathbf{I}_{\mathcal{G}_2}(P(y \leadsto w))\}

3: for t \in T_1 \cap T_2 do

4: for P_1 \in \{P \mid u \in V_{\mathcal{G}_1} \wedge \mathbf{I}_{\mathcal{G}_1}(P(u \leadsto t))\} do

5: for P_2 \in \{P \mid v \in V_{\mathcal{G}_2} \wedge \mathbf{I}_{\mathcal{G}_2}(P(v \leadsto t))\} do

6: \mathcal{C}.append(P_1 \oplus \operatorname{Inverse}(P_2))

7: return \mathcal{C}
```


Fig. 3: Generation of connecting paths from the path extension of query Q.

Search Approximate Equivalences of a path (4)

(4) Ranking candidate relation paths

Rank extracted connecting paths using the following tri-criteria ranking function:

$$Rank_Q(P) = \alpha \underbrace{\frac{|\mathsf{PEXT}_{\mathcal{G}}(P)|}{|\mathsf{PEXT}_{\mathcal{G}}(Q)|}}_{\mathsf{CR-1}} + \beta \underbrace{\frac{\sigma(P)}{max\{\sigma(P_i): P_i \in \mathcal{C}\}}}_{\mathsf{CR-2}} + \gamma \underbrace{\frac{|Q| - |P|}{max\{|Q|, |P|\}}}_{\mathsf{CR3}},$$
 Similarity with Query Path Frequency Among Candidate Paths Path Length

where α , β , γ are configurable parameters.

Experimental setup

GOAL: Find ranked Δ -equivalences for a given query path

We experimented our approach on 4 datasets:

- NELL
- DBpedia
- YAGO3
- WordNet

Table 1: Statistics of knowledge graphs used in our experiments.

	NELL	DBpedia	YAGO3	WordNet
#Entities - $ V $	1.2M	1.2M	2.6M	10K
#Relations - Σ_E	520	644	36	18
#Triples - $ E $	3.8M	4M	5.5M	141K

Results (1)

Queries from DBpedia dataset

Query	$Rank_Q(P)$	CR-1	CR-2	CR-3	
$Query~B.1:~\langle wasBornIn, isLocatedIn \rangle$	Time ca. 1	Time ca. 118 min. 1000^b insta		nstances	
$\langle wasBornIn, isLocatedIn, isLocatedIn^{-1}, isLocatedIn \rangle$	1.276	0.776	1.000	-0.500	
⟨isCitizenOf⟩	1.025	0.016	0.001	0.500	
(isPoliticianOf)	0.517	0.013	0.001	0.500	
\(\langle\text{livesIn}\rangle	0.514	0.007	0.000	0.500	
$\langle hasGender, hasGender^{-1}, isPoliticianOf \rangle$	0.507	0.332	0.243	-0.333	
Query B.2: $\langle actedIn, directed^{-1} \rangle$	Time ca. 1	Time ca. 193 min.		1000^b instances	
$\langle actedIn, isLocatedIn, isLocatedIn^{-1}, directed^{-1} \rangle$	1.360	0.860	1.000	-0.500	
$\langle hasGender, hasGender^{-1} angle$	0.587	0.583	0.004	0.000	
$\langle actedIn, actedIn^{-1}, actedIn, directed^{-1} \rangle$	0.524	0.674	0.350	-0.500	
$\langle \epsilon angle^a$	0.518	0.018	0.000	0.500	
(isMarriedTo)	0.503	0.003	0.000	0.500	

Results (2)

Queries from Yago dataset

Query	$Rank_Q(P)$	CR-1	CR-2	Cr-3	
Query C.1: $\langle artist, bandMember \rangle$	Time ca. 58 min.		1000^b instances		
\langle artist,associatedMusicalArtist $^{-1}$,associatedBand,bandMember \rangle	1.435	0.935	1.000	-0.500	
$\langle \text{artist,associatedBand}^{-1}, \text{associatedMusicalArtist,bandMember} \rangle$	1.429	0.935	0.994	-0.500	
$\langle \text{artist,associatedBand}^{-1}, \text{associatedMusicalArtist,associatedBand}^{-1} \rangle$	0.953	0.524	0.929	-0.500	
$\langle \text{artist,associatedMusicalArtist}^{-1}, \text{associatedBand,associatedMusicalArtist}^{-1} \rangle$	0.952	0.524	0.928	-0.500	
$\langle genre, instrument, instrument^{-1}, genre^{-1} \rangle$	0.736	0.432	0.804	-0.500	
${ m Query~C.2:~\langle academicAdvisor, almaMater angle}$	Time ca. 80 min. 33		335 ins	5 instances	
\langle academicAdvisor,birthPlace,birthPlace $^{-1}$,almaMater \rangle	1.080	0.580	1.000	-0.500	
$\langle academicAdvisor, deathPlace, birthPlace^{-1}, almaMater \rangle$	0.846	0.575	0.771	-0.500	
(almaMater)	0.641	0.121	0.020	0.500	
$\langle \text{academicAdvisor,deathPlace,deathPlace}^{-1}, \text{almaMater} \rangle$	0.587	0.620	0.467	-0.500	
$\langle notableStudent^{-1}, almaMater angle$	0.540	0.459	0.081	0.000	

Results (3)

Queries from NELL dataset

Query	$Rank_Q(P)$	Cr-1	Cr-2	Cr-3
$Query~A.1:~\langle {\sf riverEmptiesIntoRiver,riverFlowsThroughCity} \rangle$	Time ca. 53.2 min.		519 instances	
$\langle \text{cityLiesOnRiver}^{-1}, \text{generalizations,generalizations}^{-1} \rangle$	1.342	0.688	0.987	-0.333
$\langle riverFlowsThroughCity,generalizations,generalizations^{-1} \rangle$	1.337	0.688	0.982	-0.333
$\langle \text{cityLiesOnRiver}^{-1}, \text{generalizations,generalizations}^{-1}, \text{generalizations}^{-1} \rangle$	1.192	0.692	1.000	-0.500
$\langle riverFlowsThroughCity, generalizations, generalizations^{-1}, generalizations^{-1} \rangle$	1.189	0.692	0.997	-0.500
$\langle riverEmptiesIntoRiver, cityLiesOnRiver^{-1} \rangle$	1.015	0.996	0.019	0.000
$\boxed{\mathrm{Query}\ A.2:\ \langle athlete Plays For Team, team Home Stadium, stadium Located In City \rangle}$	Time ca.	35 min.	326 ins	stances
\langle athletePlaysForTeam,generalizations,generalizations $^{-1}$,citySportsTeams $^{-1}\rangle$	1.404	0.770	0.884	-0.250
$\langle athletePlaysForTeam, generalizations, generalizations^{-1}, teamPlaysInCity \rangle$	1.353	0.764	0.839	-0.250
$\langle \text{teamMember}^{-1}, \text{generalizations}, \text{generalizations}^{-1}, \text{citySportsTeams}^{-1} \rangle$	1.264	0.739	0.775	-0.250
$\langle athletePlaysForTeam, teamPlaysAgainstTeam^{-1}, teamPlaysAgainstTeam^{-1}, citySportsTeams^{-1} \rangle$	1.249	0.531	0.969	-0.250
$\langle {\sf teamMember}^{-1}, {\sf generalizations}, {\sf generalizations}^{-1}, {\sf teamPlaysInCity} \rangle$	1.244	0.733	0.761	-0.250

Conclusions

Our proposed technique for identifying equivalences of a relation path that achieves the following:

- Address the complexity of finding strict equivalences by using samples of path extensions
- Query and rank approximately equivalent paths depending on multiple ranking criteria.

Future work

- Association rule mining by querying singular relation paths
- 2. Knowledge embedding to latent feature models using path similarities

Figure 1: Example of a knowledge graph about people living in Galway, Ireland

Insight

Questions?

Thank you