30/6/2073	hefix Sun
To	day's queter- If at first you don't succeed TRY TRY TRY AGAIN
	Today's content
	O Prefix Cum O Problems of Prefix Sum.
	metil Sim.

Civen Navay elements & Orgrenes. For each query -
colculate sim of all eliminates in range [6, F].
Note: - L & R are modices such that LC=R
1 <= N2QL=105
antio7: l-3 6 2 4 5 2 8 -9 3 1]
Queries idea -> for every query, calculate the
<u>L</u> <u>R</u> <u>Any</u> <u>q</u>
3 7 10 #psendo rode
1 3 12 Yord fun (au, N) E
0 4 14 Q & take i/p [no of queu'es] 7 7 -9
3 (0 > 0) E
C, n = take i/p To: o(Q*N)
S (10()) Sun =0
for (i=l; \'z=r; \mathcal{U}+) \\ Sum t= arr (i);
munt (sun);
}
}

٥	Cuiven houan Carket team scores for first 10 aven of hatting. After every over, total score is governas:		
	overs: 1 2 3 4 5 6 7 8 9 10		
	<u>Ch</u> : { 2 8 14 &9 31 49 65 79 88 973		
	Total rund scored mitte last over = 97-88 = 9 Score[10]-Score[9]		
	Total runs scored ni 7th over = 65-49 z 16 Score [7] - score [6]		
	Total runs scored in 6th to 10th over = 97-31=66 Score[10]-Score[6-1]		
	Total runs scored in overs 3 rd to 6th = 49-8=41 Score [6] - score [3-1]		
	Total runs scored from it over to jth over = score [i-1]		
	J		

édea : store cumulative sun / prefix sun
aufio): [-3 6 2 4 5 2 8 -9 3] o 1 2 3 4 5 6 7 8 9 psim(10): [-3 3 5 9 14 16 24 15 18 19]
psm(10): (-3 3 5 9 14 16 24 15 18 19]
Anericy L $\frac{L}{4}$ $\frac{R}{8}$ $\frac{Am}{8}$ $\frac{1}{9}$ $\frac{1}{8}$ $\frac{1}{9}$
[l n s psum[r] -psum[l-i]] y l==0, psum[r]
[psm(i) = sm of all the eliments from moles 0 to i]

```
# How to calculate prefix array.
     8 3 -2 4 5 69
psm[0] = au(0) = 3
psm(1) = au (0) + au (1)
psm[1) = psun[0) + au[1]
psm(2) = au[0] + au[1] + au[2]
psim[2] = psim[i] tau[2]
psm[3] = au [0] + au (i] + au [2] + au[3]
psun[3] = psun[2] + au(3)
psun[i] = psun[i-1] + au(i)
# pseudo code
    psun(0) = au(0)
                                      TC:0(N)
                                      SC:0 (N)
   for (1=1 to N-1) {
psun(i) = psun(i-1) + aux(i);
```

```
Psendo code for @1
   void fum ( au , N) &
       psun (N];
      psum [0] = an [0];

for i⇒ 1 to N-1 &

psum[i] = psum[i-1] + an[i)
                                                     M
        y = no of queries.
       while ( y >0) E
           l, & = take ifp.
          Celse & pruit (psum (ri)-psum [e-1]);
       - 3
   TC: 0 (N+Q)
   Sc: 0 (N)
```

Can we modify the it's away!					
arfied: [-3 6 2 4 5 2 2 -9 3]] 1 0 1 2 3 4 5 6 7 8 9 are [10]: [-3 3 5 9 14 16 24 15 18 19]					
for J→1 to N-1 E					
an (i) = an (i-1) + an (i)					
3					
ddvantage: So is ofthnized					
douantage: so is oftenized Disadvantage: initial elements will be lost.					

Of Morgan, Adelle J Equilibrium mour Coiver a away eliments, court no of Equilibrium An wider i is earld to be El if: Sun of all elements - Sun of all elements on left of i'm wider on right of i'm wider Note: $ij \hat{v} = 0$, leftsum = 0 if c= N-1, englitsum = 0 -1 3 ohn 2 L 0 -7 -6 -1 1 -3 0 RS > Sun[0, i-1] [1-11, N-1] 0 1 - - i-1 i i+1 PSun[i-1] PSun[i] - PSun[i]

```
psun[L,R] => psun[R] - psun[L'-1]
            psm [iti, N-1] = psm (N-1] - psm [itx-x]
                           = psm [N-1] -psm(i).
          logic & pseudo code
             Use prefix Sim.
            { psum(i-1) = = psum [N-1] - psum(i) }
                                         molex
                  check this for every
             mit countEl (arr, N) &
                [4]mlg
                psun [o] = arcol
                for i+ 1 to N-1 &
                                                      11
                    Eilm + [1:1]m2d = [i]m2d
                Count = 0
TC: OCN)
                for (1=0; 1 < N; 147) &
Sc:0(H) 0(1)
                  if (psun[i-1] == psun [N-1] -psun[i])
                          count ++;
                                                          N
TODO
when
                 retur count;
```

8	Civen 11 away eliments 2 Q queries. For each query l to r. Finist court of even muncher ni given range.
	Eg antiol: { 2 4 3 7 9 8 6 3 4 9] + 0 1 2 3 4 5 6 7 8 9
	<u>Aven'es</u> <u>Brutyoice</u> : For every query, it easte from <u>L</u> R even ros.
	4 8 3 3 9 3 Vaid fur (are, N) € 0 4 2
	white (q>0) € q; e, x = i/p
	Count = 0. Tc: 0 (Q*N) Sc:0 (1) Count + 0. for (i= l; i= n; i+1) { count + +;
	print (count);
	3

<u>Ofthnization</u>	
arrio]: {2 4 3 7 9	86349]
wen odd	
arc[10]: El 1 0 0 0	
Psum: 5122223	
Court of even nos = pSun from l to v	[N] - psin(l-1)]
l=0, x=4 -> psum[4]]-psunfort)0
for is 0 to N-1 {	aufo] = aufo]/2)==0?
for is 0 to N-1 {	Lou is 1 to N-1 f.
3	1:0;
for i → 1 to N-1 { arr(i) + = arr[i-1] }	au (1) + = au (14);

