Folien zur Vorlesung Grundlagen systemnahes Programmieren Wintersemester 2016 (Teil 1)

Prof. Dr. Franz Korf

Franz.Korf@haw-hamburg.de

Kapitel 1: Einführung

Gliederung

- > Steckbriefe
- > Formalien und Kommentare
- Inhalt der Vorlesung
- Zusammenfassung

Die Folien zu dieser Vorlesung basieren auf Ausarbeitungen von

- ➤ Heiner Heitmann
- > Reinhard Baran
- Andreas Meisel

"Steckbrief" von Franz Korf

Beruflicher Werdegang

Informatik Studium in Aachen & Promotion in Oldenburg

> HW, SW, Formale Verifikation, Anwendungen

Fujitsu Siemens Computers (Paderborn)

- ➤ ASIC Design Prozess, System und RTL Simulation (VHDL, Verilog, C), Synthese, Simulationsumgebungen
- Embedded SW
- OEM / ODM Entwicklung

Hochschule für Angewandte Wissenschaften in Hamburg

- Lehre in der Informatik
- ➤ Embedded Systems, RTOS, R-ETH, Time-Triggered Systems, FAUST, Kommunikationssysteme in Auto,

CoRE (http://core.informatik.haw-hamburg.de/en/)

ORE (Communication over Realtime Ethernet)

- Kommunikationslösungen für zeitkritische Anwendungen auf Basis der Ethernet-Technologie
- Backbone-Infrastruktur für die Kommunikation in Fahrzeugen
- Simulation, Analyse, Bewertung von RT Ethernet Netzwerken
- Fahrzeuge als Element des IoT
- > RT Ethernet basierte Steuergeräte
- Automotive Anwendungen
- Interdisziplinäre Aufgaben

"Steckbrief" von Ihnen

- ➤ Wie steht es mit dem Java Wissen?
- ➤ Haben Sie bereits C Erfahrungen?
- ➤ Wer hat in den Semesterferien programmiert?
- ➤ Wer hat in C programmiert?
- ➤ Wer ist im zweiten Semester?
- ➤ Wer hat Zugriff auf einen privaten Rechner?
- ➤ Werden Sie aufgrund von Erfahrungen aus dem ersten Semester das zweite Semester "anders angehen"?
- ➤ Wer arbeitet parallel zum Studium (>10 Std./Wo)?

Ziele und Wünsche für diese Veranstaltung

Von mir

- Mit Freude lernen und Erlerntes behalten.
- Sie arbeiten aus sich heraus
- Sie haben folgende Erfolgsfaktoren erfahren:
 - Strukturierte Vorgehensweise
 - denken diskutieren programmieren : so kommt an schnelle an Ziel
- > Themengebiete, dies Sie am Ende des Kurs beherrschen sollten:
 - systemnahe Programmierung
 - prozeduralen Programmiersprachen am Beispiel von C
 - Sie können Probleme in C lösen
 - Transferleistung: Inhalte aus den Programmiervorlesungen des ersten Semesters in die C Welt retten und erfolgreich umsetzen

Von Ihnen

> ???

Kapitel 1: Einführung

Gliederung

- > Steckbriefe
- Formalien und Kommentare

- > Inhalt der Vorlesung
- Zusammenfassung

Freie Übungszeiten im TI Labor

s. HomePage des Labors

Sprechstunde

- nach Vereinbarung
- > Sprechen Sie mich direkt an (nach der Vorlesung, im Praktikum, ...)

Bitte nutzen Sie die Mailing Liste zu dieser Veranstaltung

Feedback:

- Feedback ist entscheidend
- ➤ Kommentare, Kritik, Verbesserungsvorschläge jeglicher Art sind stets willkommen. Schicken Sie mir eine E-Mail, sprechen Sie mich direkt an, ...

Tutorium

- Daniel Sarnow bietet ein Tutorium zu diese Veranstaltung an
- Sehr gute Ergänzung zur Vorlesung
- Entscheidende Hilfe bei der Vorbereitung des Praktikums

Unterlagen zur Vorlesung, zum Praktikum und zum Tutorium

- > stehen unter EMIL zur Veranstaltung Grundlagen Systemnahen Programmierens (GS/GSP) im Netz
- Emil Kennwort ist GSP

Praktikum

- ➤ Anwesenheitspflicht
- ➤ Anmeldung sollte schon erledigt sein (sonst sprechen Sie mich)
- ► Je zwei Personen arbeiten zusammen
- ➤ Kein Schnelltest, aber Versuche müssen vorbereitet werden!
 - Vorbereitung muss am Anfang des Praktikumstermins vorliegen.
 Details: Sie Aufgabenstellung
 - Stichprobenartige Überprüfung der Ausarbeitungen.
 - ➤ Versuch darf nicht durchgeführt werden, wenn Ausarbeitung fehlt oder nicht erklärt werden kann. Schlechte Ausarbeitungen müssen im Praktikum verbessert werden.
 - ➤ Die Aufgabe sollte fast fertig sein, dann gibt es immer noch genug zu tun.

Praktikum (Fortsetzung)

- Erfolgreiche Abgabe der Praktikumsaufgaben
 - ➤ Die Vorbereitung am Tag vor dem Praktikum via e-mail an Daniel Sarnow und mich schicken. Schicken Sie auch eine Kopie an Ihren Praktikumspartner.
 - ➤ Alle Quellen müssen zitiert werden (Bücher, Zusammenarbeit, ...)
 - Diskussion der Aufgabe mit den Veranstaltern.
 - Sie müssen die Aufgabe im Detail erklären können.
 - ➤ Halten Sie die Abgabetermine in Ihrem eigenen Interesse ein.

Praktikum (Fortsetzung)

- >Struktur des Codes
 - > Der Code hat einen Datei-**Header**, der u.a. folgende Informationen enthält:
 - > Praktikum (z.B. GSP)
 - > Semester (z.B. WS2016)
 - Namen der Team-Mitglieder mit Matrikel-Nr.
 - > Aufgaben-Nr. (z.B. Aufgabe A1)
 - Der Code ist gut kommentiert. Gerne auch DoxyGen.
 - > Der Code ist gut **strukturiert**.
 - Der Code weist einen einheitlichen und durchgängigen Coding-Style auf (insbesondere konsequente Sichtformatierung/Einrückung). Ein Coding Style steht unter Emil.
 - Ohne Coding Style kein erfolgreiche Abgabe der Aufgabe

Coding Style – generelle Regeln

Keep it simple.

Diese Regel besagt zum Beispiel: Verwenden Sie keine komplexen Sprachkonstrukte, wenn einfache auch zum Ziel führen.

Don't be clever.

Diese Regel besagt zum Beispiel: Verwenden Sie nur bei Bedarf die Tricks, die Sie vielleicht gerade erst gelernt haben. Nicht jeder kennt diese Tricks.

Be explicit – write your program for people.

- C Programme werden nicht nur von C Experten gelesen und gewartet. Schreiben Sie Programme so, dass andere Personen dieses leicht lesen und verstehen können – dann können Sie Ihr Programm auch nach einem Jahr noch leicht lesen und verstehen.
- Verständliche Programme beeindrucken, unverständliche Programme schrecken ab.

Coding Style – weiteres Vorgehen

- Unter Emil steht ein Coding Style, der auf Ihre Situation im Praktikum ausgelegt ist.
- Lesen Sie diese Folien stets vor der Programmierung.
- Gehen Sie Ihr Programm am Ende nochmals mit Blick auf den Coding Style durch.
- Ergebnis: Nach der dritten Aufgabe beherrschen Sie die technischen Aspekte des Coding Styles.

Modulprüfung

- ➤ Voraussetzung (PVL): Praktikum bestanden
- ➤ Eine benotete Prüfung, die aus zwei Teilen besteht:
 - > Fragenteil
 - > Prüfung am Rechner, Lösung einer Programmieraufgabe

Herausforderung

➤ Selbstständige Lösung einer Programmieraufgabe

Empfehlungen

- ➤ Arbeiten Sie aktiv an der Lösung der Praktikumsaufgabe
- ➤Wer die Aufgaben nicht selbst löst, bekommt in der Programmierprüfung Probleme!
- >Schreiben Sie jede Woche ein zusätzliches C Programm!

Literatur & Software

- ➤ C Literatur Ihrer Wahl, z.B.
 - Joachim Groll, Ulrich Bröckl, Manfred Dausmann:
 C als erste Programmiersprache: Vom Einsteiger zum Profi,
 (6. Auflage), Teubner, 2008
 - ➤ B.W. Kernighan, D.M. Ritchie: Programmieren in C, (2. Auflage), Hanser, 1990
 - ➤ J. Wolf: C von A bis Z, Galileo Press
 - Carsten Vogt: C für Java-Programmierer, Hanser, 2007.

Literatur & Software (Fortsetzung)

- Grundlagenbücher zu Embedded Programming
 - Michael J. Pont: Embedded C, Addison-Wesley
 - Michael J. Pont: Patterns for Time-Triggered Embedded Systems, Addison-Wesley.
 Den Time-Triggered Teil brauchen Sie nicht.
 - Ralf Jesse: ARM Cortex-M3 Mikrocontroller, Einstieg in die Praxis, mitp, 2014
 - Mark Fisher: ARM Cortex-M3 Cookbook, Packt-Publishing, 2016

➤ Aufgrund der Menge des Inhalts, verwenden Sie diese Bücher für diese Vorlesung als Nachschlagewerke.

Literatur & Software (Fortsetzung)

- ➤ Unterlagen für Mikrocontroller STM32F4-Series (STM32F417ZGT6)
 - ➤ Reference manual http://www.st.com/st-web-ui/static/active/en/resource/technical/document/reference_manual/DM0003
 1020.pdf
 - ARM Cortex-M4 Processor: Technical Reference Manual http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439d/DDI0439D_cortex m4 processor r0p1 trm.pdf

≽s. Emil

Ein Zitat

Goethe: "Denn wir behalten von unseren Studien am Ende nur das, was wir praktisch anwenden."

Daraus ergibt sich

- > Nehmen Sie an der Vorlesung und am Praktikum aktiv teil.
- Arbeiten Sie die Vorlesung sofort nach.
- Selbststudium ist mehr als wichtig.
- > Bereiten Sie sich intensiv auf das Praktikum vor.
- > Erstellen Sie Ihre persönliche Mitschrift.
- Rechnen / programmieren Sie Beispiele durch.

Tipp: Praktikum, Klausur und Vorlesung sind eng miteinander verbunden.

Kapitel 1: Einführung

Gliederung

- > Steckbriefe
- > Formalien und Kommentare
- ➤ Inhalt der Vorlesung

Zusammenfassung

Inhalt der Vorlesung

Voraussetzungen:

- ➤Inhalte der Veranstaltungen: Programmieren I und Programmiertechnik
- ➤ Inhalte der Veranstaltung: Grundkurs Technische Informatik
 - Grundlegende Funktionsweise von Computern.
 - Welchen Zweck haben Speicher, CPU, Busse, IO-Einheiten?
 - > Adressierungsarten
 - **>** ...

Inhalt der Vorlesung (Fortsetzung)

Themengebiete:

- Methoden und Techniken zur prozeduralen und maschinennahen Programmierung
- Embedded Programming
- ➤ Relevante Konzepte der hardwarenahen Programmiersprache C, die für systemnahe Programmierung relevant sind.
- C Projekte: Verwaltung, Modultechnik, Bibliotheken, Standardbibliotheken
- > elementare Zeitaspekte

Das Laborsystem

Zielsystem (Target)

➤ Crossentwicklung

➤ Target:

> Experimentierboard, Kein Betriebssystem, Kein Massenspeicher

➤ Host:

▶ PC mit Editor, Compiler und Linker für ARM-CPU

Crossentwicklung

Zielsystem (Target)

- ➤ Editor, Compiler, Linker, Debugger, Bibliotheken .. liegen auf dem Host
- > Software wird auf dem Host erzeugt, dann auf das Target geladen und dort ausgeführt
- ➤ Debugging: Die Software läuft auf dem Target, der Debugger läuft auf dem Host. Interface zur Steuerung der SW auf dem Target durch den Debugger auf dem Host.

Kapitel 1: Einführung

Zusammenfassung