FCIS - Ain Shams University

Subject: CHW 160 Intro. to Computers

Exam: (Final) 10/1/2018 Year: (1st year) undergraduate

finger.

Examiners: Dr. Walaa Gad

Dr. Yasmine Afify

Offering Dept.: Computer Systems Academic year: 1st term 2017-2018

Duration: 3 hours

A	nswer ALL questions (The total marks: 105)			
Calculators are NOT allowed				
1*	Question. Fill in the spaces marks:10			
1.	A CPU's word size is important because it determines which			
2.	1 Gigabyte = Kilobytes.			
3.	The four-step process of fetch, decode, execute, and store is called a(n):			
4.	is the first operation of the information-processing cycle, and enables the			
	computer to accept data.			
5.	create archives by storing files in a special format.			
6.	RAM stands for			
7.	is a replacement of people by machines and computers.			
8.	is the unit responsible for performing Arithmetic and Logic operations.			
9.	entered into the computer for processing through the use of input devices			
	such as a keyboard or mouse.			
10	is set of tests to confirm that both the computer and its peripheral devices are			
	working properly.			
2 nd	Question. True/False marks:15			
1.	RAM is a small unit of fast memory built into the processor to improve performance.			
2.	The front panel includes power switch, drive activity light and power-on light.			
3.	A connector is a physical receptacle where the user can plug a peripheral device into the			
	computer.			
4.	The information-processing cycle consists of three basic operations: input, processing, and			
	output.			
5.	Data transfer rates for communication devices (modems) are measured in bits per second.			
6.	Data storage is measured in bytes.			
7.	The CPU is made up of the control unit and the ALU.			
8.	The control unit performs calculations and logical operations.			
9.	A key matrix is a chart that tells the processor what key has been pressed.			
10.	A virtual keyboard appears on a touch-sensitive screen and accepts input with a stylus or			

11. Virtual memory uses a portion of RAM to extend the hard disk.

- 12. The user interface allows the user to application programs.
- 13. Backup software creates a mirror image of the entire hard drive.
- 14. Disk cleanup utilities find and resolve disk file storage problems.
- 15. Application software is made up of two main parts: the operating system and system utilities.

3rd Question.		marks:2	marks:20	
1.	Convert (50) ₁₀ to binary.	(marks:	2)	
2.	Convert (10001) ₂ to a representation using a base-3 number	(marks:	2)	
3.	Convert (11101001001001) ₂ to hexadecimal.	(marks:	2)	
4.	What is the result of multiplying (AC) ₁₆ by 2 in binary	(marks:	: 2)	
5.	Convert unsigned (11001) ₂ into decimal.	(marks:	: 2)	
6.	Convert signed (11001) ₂ using the 2's complement notation into decimal.	(marks:	2)	
7.	Add the two hexadecimal numbers (3A45) ₁₆ and (2E71) ₁₆ .	(marks:	2)	
8.	How many bits are needed to store an address to a memory with 4K locations?	(marks:	3)	
9.	How many different values can be represented in 8 bits in each of the follounsigned, sign magnitude, and two's complement representations? Mention range of values in each case			

4th Question

marks: 20

- 1. Draw a flowchart for a program that reads numbers and outputs the square of each input number until the user enters zero. (marks: 10)
- 2. Differentiate between:

(marks: 10)

- a. Second and third generation languages.
- b. Compiler and interpreter.
- c. Static and dynamic testing.
- d. Logic and syntax errors.
- e. Source and object program.

5th Question

marks: 20

1. Re-write following program using C++ switch-case statement

(marks: 10)

```
int nStars;
cin >> nStars;
if (nStars >= 5 && nStars <= 7)
   cout << "Excellent hotel";
else if (nStars >= 3)
   cout << "Good hotel";
else
   cout << "Not recommended";</pre>
```

```
2. Correct the following program which displays the first N Fibonacci sequence values: 0, 1,
   1, 2, 3, 5, 8, 13, 21, 34, 55, ...
                                                          (marks: 10)
  int N, first, second;
  for (i = 1; i < N; N++)
     next = first + second;
     cin << next , '\t';
     second = next;
     first = second;
6th Question. Display the output
                                                         marks: 20
A. int n1 =8, n2 =4, x = 1;
                                 B. int x = 2, sum = 0;
   while ((x*n1) % n2 != 0)
                                     while (x \le 18)
                                           sum += x * 3;
         x++;
   cout << n1 * x;
                                     cout << sum;
C. bool x = 43 \% 2 >= 0; D. int n = 3, m = 4, result = 0;
                                     for (int i =1; i <= m; i++)
   if (x)
                                           result += n;
        cout << "AB";
   else
                                           cout << result;
     cout << "XY";
E. int i = 1, j = 2, k = 3;
                                F. int s = 2, n = 5;
   if (i >= j)
                                     s *= n - 3;
   if (i > k)
                                     (s >= 4) ?
                                     cout << 'A' :
         cout << 'X';
                                     cout << 'B';
   else
        cout << 'Y';
                                 H. int i, n = 3;
G. int i, j;
   for (i = 4; i >= 1; i--)
                                     for (i= 1; i <= n*n; i++)
                                     {
   {
    for (j = 1; j \le i; j++)
                                           cout << i;
         cout << '*';
                                           if (i % n == 0)
                                           cout << endl;
          cout << endl;
                                     }
   }
                                 J. int x = 4;
I. char k = 'B';
                                     if (x = 12)
   int i = 5;
                                     cout << 'A';
```

With Our Best Wishes. Dr. Walaa Gad Dr. Wasmine Afify

cout << 'B';

.do {

cout << ++k;

} while (--i >= 3);