Procesy stochastyczne Zestaw zadań nr 3

18 listopada 2018

Zadanie 1. Niech T będzie momentem stopu względem pewnej filtracji $\{\mathcal{F}_n\}_{n\in T}$, $T=\mathbb{N}$. Które z następujących zmiennych losowych są również momentami stopu względem tej filtracji?

- T + c, c > 0,
- T c, c > 0,
- \bullet T^2

Zadanie 2. Niech T, S będą momentami stopu takimi, że $S \leq T$ prawie na pewno. Wykaż, że $\mathcal{F}_S \subset \mathcal{F}_T$.

Zadanie 3. Niech S, T będą momentami stopu. Udowodnij, że zachodzi $\mathcal{F}_{\min\{T,S\}} = \mathcal{F}_T \cap \mathcal{F}_S$.

Zadanie 4. Niech T, S będą momentami stopu. Czy momentem stopu jest zmienna losowa T + S lub T - S?

Zadanie 5. Niech $\{T_n\}$ będzie ciągiem momentów stopu. Udowodnij, że momentami stopu są również następujące zmienne losowe:

- $\sup_n T_n$,
- $\inf_n T_n$,
- $\liminf_n T_n$,
- $\limsup_{n} T_n$.

Zadanie 6. Niech $0 < T_1 < T_2 < \cdots < T_n < \ldots$ będzie rosnącym do nieskończoności ciągiem momentów stopu o skończonych wartościach. Niech $N_t = \sum_{i=1}^{\infty} \mathbf{1}_{\{i \geqslant T_i\}}$. Niech ponadto $\{U_i\}_{i \in \mathbb{N}}$ będzie ciągiem niezależnych zmiennych losowych takim, że jest on niezależny od procesu N. Załóżmy, że $\sup_i \mathbb{E}|U_i| < \infty$ oraz $\mathbb{E}U_i = 0$ dla dowolnego i. Udowodnij, że wtedy proces

$$Z_t = \sum_{i=1}^{\infty} U_i \mathbf{1}_{\{t \geqslant T_i\}}$$

jest martyngałem.

Zadanie 7. Niech S, T będą momentami Markowa i niech Z będzie całkowalną zmienną losową na pewnej przestrzeni probabilistycznej z miarą \mathbb{P} . Wykaż, że na zbiorze $\{T \leq S\}$ \mathbb{P} - prawie na pewno zachodzi

$$\mathbb{E}(Z|\mathcal{F}_{\mathcal{T}}) = \mathbb{E}(Z|\mathcal{F}_{\min\{T,S\}}).$$

Definicja 1. Niech będzie dana przestrzeń probabilistyczna $(\Omega, \mathcal{F}, \mathbb{P})$ z filtracją $\{\mathcal{F}_t\}_{t\in T}$. Momentem stopu względem tej filtracji nazywamy zmienną losową $T \colon \Omega \to T \cup \infty$ taką, że dla dowolnego $t \in T$ zachodzi

$$\{T \leqslant t\} \in \mathcal{F}_t.$$

Zadanie 8. Niech $T: \Omega \to [0, \infty]$ będzie momentem stopu względem filtracji $\{\mathcal{F}_t\}_{t\in[0,\infty]}$. Dla jakich $\alpha \in \mathbb{R}$ istnieje niepusty podzbiór $T_\alpha \subset [0,\infty]$ taki, że $S = \log(\alpha T)$ jest momentem stopu względem filtracji $\{\mathcal{F}_t\}_{t\in[0,\infty]}$. Podaj postać T_α .

Zadanie 9. Niech będzie dana przestrzeń probabilistyczna $(\Omega, \mathcal{F}, \mathbb{P})$ z filtracją zupełną $\{\mathcal{F}_n\}$. Niech T, S będą dwoma momentami Markowa o skończonych wartościach takimi, że istnieje $t_0 \ge 0$, takie, że $\mathbb{P}(T \ge t_0) = \mathbb{P}(S \ge t_0) = 1$. Niech $A \in \mathcal{F}_{t_0}$. Sprawdź, czy momentem stopu jest zmienna losowa

$$U = T \cdot \mathbf{1}_A + S \cdot \mathbf{1}_{A'}$$

względem podanej filtracji.