Végtelen számosságok*

2003. december 19.

1. Számosságok egyenlősége, összehasonlítása

Egy A és egy B halmazról akkor mondjuk, hogy egyenlő számosságúak, ha létezik olyan $f:A\to B$ függvény, mely elemeik között kölcsönösen egyértelmű megfeleltetést létesít. Jelölése: |A|=|B|.

Akkor mondjuk, hogy az A halmaz számossága legalább akkora, mint a B halmazé (jelölése $|A| \geq |B|$) ha van A-nak olyan részhalmaza, mely B-vel egyenlő számosságú.

Belátható (végtelen számosságok esetén nem triviális), hogy ha $|A| \geq |B|$ és $|A| \leq |B|$, akkor |A| = |B| teljesül. Ha tehát B elemeihez egy f_1 függvény A különböző elemeit rendeli (tehát $|B| \leq |A|$) és A elemeihez egy f_2 függvény B különböző elemeit rendeli (tehát $|A| \leq |B|$), akkor létezik olyan f_3 függvény is, mely A és B elemei között kölcsönösen egyértelmű megfeleltetést létesít.

Akkor mondjuk, hogy az A halmaz számossága nagyobb, mint a B halmazé (jelölése |A| > |B|), ha $|A| \ge |B|$ és $|A| \ne |B|$ egyaránt teljesül.

Egy A halmaz $v\acute{e}ges$ $(sz\acute{a}moss\acute{a}g\acute{u})$, ha van olyan véges k szám, hogy A és az $\{1,2,\ldots,k\}$ halmazok egyenlő számosságúak. Ilyenkor azt írhatjuk, hogy |A|=k. Egy halmaz $v\acute{e}gtelen$ $(sz\acute{a}moss\acute{a}g\acute{u})$, ha nem véges számosságú.

2. Megszámlálhatóan végtelen halmazok

Egy halmaz megszámlálhatóan végtelen számosságú (vagy röviden megszámlálható), ha a természetes számok $\mathbb{N}=\{1,2,\ldots\}$ halmazával egyenlő számosságú. Ez a fentiek szerint épp azt jelenti, hogy az elemei sorbarendezhetőek, hiszen a sorbarendezés éppen egy kölcsönösen egyértelmű megfeleltetést jelent a halmaz elemei és \mathbb{N} elemei között (minden elemhez a "sorszámát" rendeljük).

A nemnegatív számok $H = \{0, 1, \ldots\}$ halmaza például megszámlálható (a $|H| = |\mathbb{N}|$ belátásához használjuk az f(n) = n + 1 függvényt, vagyis legyen 0 az első elem, 1 a második elem stb.).

Mint ez a példa is mutatja, a végtelen halmazok körében lehetséges, hogy egy halmaz és annak egy valódi részhalmaza egyenlő számosságú legyen. A példából általában is felismerhetjük az alábbi állítást:

1. állítás: Ha A megszámlálható és a tőle diszjunkt B halmaz véges, akkor $A \cup B$ is megszámlálható.

^{*}Összeállította Csima Judit, Recski András, Salamon Gábor, Sali Attila, Simonyi Gábor és Szeszlér Dávid. © BME Számítástudományi és Információelméleti Tanszék, 2003.

Bizonyítás: Ha A megszámlálható, akkor elemei sorbarendezhetőek: $A = \{a_1, a_2, \ldots\}$. Legyen |B| = k, legyenek B elemei b_1, b_2, \ldots, b_k . Ekkor $b_1, b_2, \ldots, b_k, \ a_1, a_2, \ldots$ (vagyis az a felsorolás, melynek i-ik eleme b_i , ha $i \leq k$, ill. i-ik eleme a_{i-k} , ha i > k) épp $A \cup B$ elemeit adja meg. \square

Ezt röviden úgy mondjuk, hogy megszámlálható plusz véges egyenlő megszámlálható. Ahhoz, hogy precíz jelentése legyen két számosság összegének, be kell látni a következőt:

2. állítás: A diszjunkt A, B halmazok egyesítésének s számossága csak A és B számosságától függ, vagyis ha A és B helyére a velük egyenlő számosságá A', ill. B' halmazokat tesszük úgy, hogy A' és B' diszjunktak, akkor utóbbiak egyesítésének a számossága is s lesz.

Bizonyitás: Ha van olyan f_1 függvény, mely A és A' elemei között, és olyan f_2 függvény, mely B és B' elemei között teremt kölcsönösen egyértelmű megfeleltetést, akkor $A \cup B$ és $A' \cup B'$ között az az f függvény teszi meg ezt, melynek definíciója:

$$f(x) = \begin{cases} f_1(x), & \text{ha } x \in A \\ f_2(x), & \text{ha } x \in B \end{cases}$$

A páros számok halmaza is megszámlálható (használjuk az f(n) = 2n függvényt). Ebből a példából általában is felismerhetjük a következő állítást:

3. állítás: Ha véges sok (mondjuk k darab) diszjunkt A_i halmazunk van és mindegyik megszámlálható, akkor $A = \bigcup_{i=1}^k A_i$ is megszámlálható.

Bizonyitás: Az A halmaz elemeit úgy soroljuk fel, hogy először minden halmaz első elemét, azután minden halmaz második elemét stb. vesszük. Formálisan az egyes halmazok elemeit kettős indexszel látjuk el, vagyis legyen minden $i=1,2,\ldots,k$ értékre $A_i=\{a_{i1},a_{i2},a_{i3},\ldots\}$. Ezután $A=\{b_1,b_2,\ldots\}$, ahol a t indexű b_t elemet az alábbi módon definiáljuk: ha $t-1=\alpha k+\beta, 0\leq \beta < k$ (vagyis legyen β a t-1 szám k-val való osztásakor keletkező maradék), akkor $b_t=a_{\beta+1,\alpha+1}.$ \square

Ezt röviden úgy mondjuk, hogy végesszer megszámlálható egyenlő megszámlálható. Ahhoz persze, hogy precíz jelentése legyen két számosság szorzatának, itt is további (a 2. állításhoz hasonló) állításokat kellene belátni.

Nem ennyire magától értetődő, de igaz a következő is:

4. állítás: Ha megszámlálható sok diszjunkt A_i halmazunk van és mindegyik megszámlálható, akkor az egyesítésük, vagyis a $B = \bigcup_{i=1}^{\infty} A_i$ halmaz is megszámlálható.

Bizonyítás: Jelöljük az egyes halmazok elemeit kettős indexszel

$$A_1 = \{a_{11}, a_{12}, a_{13}, a_{14}, \ldots\}$$

$$A_2 = \{a_{21}, a_{22}, a_{23}, a_{24}, \ldots\}$$

$$A_3 = \{a_{31}, a_{32}, a_{33}, a_{34}, \ldots\}$$

÷

majd az

 $a_{11}, a_{12}, a_{21}, a_{31}, a_{22}, a_{13}, a_{14}, a_{23}, a_{32}, \dots$

sorrendben (egy képzeletbeli kígyóvonal mentén, ld. az ábrát) feleltessük megBelemeit $\mathbb N$ elemeinek. \square

5. állítás: A racionális számok \mathbb{Q} halmaza megszámlálható.

Bizonyítás: Helyezzük az $A_1 = \{0,1,-1,2,-2,\ldots\}$ halmazba az összes egész számot, az $A_2 = \{\frac{1}{2},-\frac{1}{2},\frac{3}{2},-\frac{3}{2},\ldots\}$ halmazba az összes olyan törtet, melynek a nevezője 2 és már nem egyszerűsíthető, az $A_3 = \{\frac{1}{3},-\frac{1}{3},\frac{2}{3},-\frac{2}{3},\frac{4}{3},-\frac{4}{3},\ldots\}$ -ba az összes olyan törtet, melynek a nevezője 3 és már nem egyszerűsíthető stb. Ezek megszámlálhatóak, hisz elemeiket fel tudjuk sorolni. Így megszámlálható sok diszjunkt A_i halmazhoz jutunk, melyek egyesítése épp $\mathbb Q$, tehát alkalmazhatjuk a 4. állítást. \square

- 6. állítás: № összes véges részhalmazainak a halmaza is megszámlálható.
- Az állításra két bizonyítást is bemutatunk.
- 1. bizonyítás: Helyezzük egy B_k halmazba azon véges részhalmazokat, melyek legnagyobb eleme k. Minden k-ra B_k véges. Ezek után $\mathbb N$ összes véges részhalmazát fel tudjuk sorolni úgy, hogy először B_1 , majd B_2 , majd B_3 , stb. elemeit soroljuk fel (az egyes B_i -ken belül tetszőleges sorrendben. \square
- 2. bizonyítás: Rendeljük az $\mathbb N$ valamely $H=\{h_1,h_2,\ldots,h_t\}$ véges részhalmazához (ahol az elemeket növekvő sorrendben soroltuk fel) a $2^{h_1}\cdot 3^{h_2}\cdot \ldots \cdot p_t^{h_t}$ egész számot, ahol p_i jelöli az i-edik prímszámot. A prímtényezőkre bontás egyértelműsége miatt így különböző részhalmazokhoz különböző egész számokat rendeltünk, tehát a vizsgált halmaz számossága legfeljebb megszámlálható. Kisebb viszont nem lehet, hisz az $\mathbb N$ halmaznak már egyelemű részhalmaza is megszámlálható sok van. \square

3. Kontínuum számosságú halmazok

Az eddig látott összes végtelen halmaz megszámlálható volt. Természetes kérdés, hogy van-e olyan végtelen halmaz, melynek a számossága nagyobb ennél.

7. állítás: $A\ (0,1)$ intervallumba tartozó összes valós szám H halmaza megszámlálhatónál nagyobb számosságú.

Bizonyítás: Ez a |H| számosság legalább megszámlálható (hisz H tartalmazza például a nyilvánvalóan megszámlálható $\{\frac{1}{2},\frac{1}{3},\frac{1}{4},\ldots\}$ részhalmazt). Indirekt tegyük fel, hogy H megszámlálható, vagyis elemeit valamilyen (v_1,v_2,\ldots)

sorrendbe rendezhetjük. Minden ilyen v_i egy 0 és 1 közötti valós szám, felírható tehát végtelen tizedestörtként $0, v_{i1}v_{i2}v_{i3}\dots$ alakban¹. Az indirekt feltevés szerint tehát a

 $0, v_{11}v_{12}v_{13} \dots$ $0, v_{21}v_{22}v_{23} \dots$ $0, v_{31}v_{32}v_{33} \dots$:

sorozat H minden elemét tartalmazná. A táblázat "átlója" mentén végighaladva készítsünk egy olyan w valós számot, melynek $w=0, w_1w_2w_3\ldots$ tizedestört alakjához úgy jutunk, hogy ha $v_{ii}=1$ volt, akkor legyen $w_i=2$, ha pedig $v_{ii}\neq 1$ volt, akkor legyen $w_i=1$. Ez a w szám biztos nem szerepelhetett a fenti táblázatban, hisz bármely j-re elmondható, hogy a v_j szám j-edik tizedesjegye különbözik a w szám j-edik tizedesjegyétől. Mivel így nem minden 0 és 1 közötti valós szám szerepel a felsorolásban, ellentmondáshoz jutunk, tehát |H| nem lehet megszámlálható. \square

Ennek a (G. Cantor-tól származó) ún. átlós módszernek a segítségével azonnal adódik, hogy a valós számok $\mathbb R$ halmazának a számossága megszámlálhatónál nagyobb, hiszen $\mathbb R$ tartalmazza a (0,1) intervallumot. Ezt a számosságot kontínuum számosságnak (vagy röviden kontínuumnak) hívjuk.

8. állítás: Legyen A egy véges vagy megszámlálhatóan végtelen halmaz, B pedig egy tőle diszjunkt, kontínuum számosságú halmaz. Ekkor $|A \cup B| = |B|$.

Bizonyítás: Legyen B_1 a B-nek egy megszámlálhatóan végtelen részhalmaza (ilyen nyilván létezik, hisz ha tetszőlegesen kiválasztjuk B egyik elemét, majd a maradékból egy másodikat stb., akkor véges sok lépés alatt B nem fogyhat el). Álljon a B_2 halmaz B azon elemeiből, melyek nincsenek B_1 -ben. Az 1. és 3. állítások alapján tudjuk, hogy $|A \cup B_1| = |B_1|$, tehát létezik egy f függvény, mely $A \cup B_1$ elemeit kölcsönösen egyértelműen B_1 -re képezi. Ekkor az

$$f_0(x) = \begin{cases} f(x), & \text{ha } x \in A \cup B_1 \\ x, & \text{ha } x \in B_2 \end{cases}$$

függvény $A \cup B$ elemeit fogja kölcsönösen egyértelműen B-reképezni. \Box

Vegyük észre, hogy a bizonyításban csak azt használtuk ki, hogy B-nek van megszámlálható részhalmaza, tehát a 8. állítás tetszőleges (A-tól diszjunkt, legalább megszámlálhatóan végtelen) B halmazra érvényes. Mivel a másik irány nyilvánvaló, kimondhatjuk, hogy egy halmaz akkor és csak akkor végtelen, ha van olyan valódi részhalmaza, mellyel azonos számosságú.

9. állítás: Kontinuum számosságú

- (1) a 7. állításban szereplő H halmaz (ill. általában bármely egynél több számot tartalmazó intervallum), valamint
- (2) a sík (ill. általában bármely véges n számra az n-dimenziós valós tér) pontjainak halmaza (így speciálisan a komplex számok $\mathbb C$ halmaza is, hisz annak elemei az ismert módon megfeleltethetőek a sík pontjainak).

 $^{^1{\}rm Ez}$ az felírás nem egyértelmű, pl. $0,5000=0,4999\ldots$. Az egyértelműség végett zárjuk ki azt a felírási módot, ahol egy idő után csupa kilences következik.

Bizonyítás: (1) Legyen H'=(a,b) egy nyílt intervallum, ahol a < b. Ennek elemeit az $x \mapsto \frac{\pi(x-a)}{b-a} - \frac{\pi}{2}$ függvény kölcsönösen egyértelműen átviszi a $(-\pi/2,\pi/2)$ intervallumba, amelyet pedig az $y \mapsto \operatorname{arc} \operatorname{tg} y$ függvény kölcsönösen egyértelműen átvisz az \mathbb{R} -be. Így beláttuk, hogy \mathbb{R} és (a,b) számossága ugyanakkora. Ha az intervallum egyik vagy mindkét végpontját is hozzá kell vennünk H'-höz, akkor a 8. állítást alkalmazzuk.

(2) Legyenek az n-dimenziós tér pontjai (x_1,x_2,\ldots,x_n) alakban adottak. A bizonyítás (1) pontjában látott módszer alkalmazásával először kölcsönösen egyértelmű megfeleltetést létesítünk a tér és azon része között, ahol minden x_i koordináta a (0,1) intervallumba esik, majd a 7. állítás bizonyításának lábjegyzetében szereplő megjegyzés szerint tegyük egyértelművé ezen valós számok felírását. Ezután a k darab valós számot fésüljük össze egyetlen valós számmá, ahhoz hasonlóan, ahogy a 3. állítás bizonyításában egyesítettünk k darab megszámlálható sorozatot. Ezzel még csak azt láttuk be, hogy a tér pontjainak halmaza legfeljebb kontínuum számosságú, de a \geq irány nyilvánvaló. \square

Vegyük észre, hogy ha v véges, m megszámlálható és k kontínuum számosság, akkor összegükre, ill. szorzatukra a $v+m=m+m=m,\ v+k=m+k=k+k=k,\ vm=mm=m$ és vk=mk=kk=k egyenlőségek teljesülnek; mind az összeadás, mind a szorzás egyszerűen a maximum képzése.

4. Halmazok hatványhalmazai

Egy H halmaz összes részhalmazának halmazát H hatványhalmazának nevezzük. Például $\{a,b\}$ hatványhalmaza az $\{\emptyset,\{a\},\{b\},\{a,b\}\}$. Vegyük észre, hogy ha |H|=v véges, akkor hatványhalmaza 2^v elemű. Ez indokolja, hogy H hatványhalmazát 2^H -val jelöljük.

10. állítás: Végtelen halmazok esetén is teljesül a $|H| < |2^H|$ reláció.

Bizonyítás: A $|H| \leq |2^H|$ állítás nyilvánvaló, mivel minden $a \in H$ esetén $\{a\} \in 2^H$, vagyis az $a \mapsto \{a\}$ kölcsönösen egyértelmű megfeleltetés H elemei és H egyelemű részhalmazai között. Indirekt tegyük fel, hogy léteznék olyan $f: H \to 2^H$ függvény, mely a két halmaz között kölcsönösen egyértelmű leképezést teremt.

H elemeit két csoportba fogjuk osztani. Nevezzünk egy $x \in H$ elemet pirosnak, ha $x \in f(x)$ teljesül (vagyis x piros, ha benne van az f szerinti képében, ami H-nak egy részhalmaza), és kéknek, ha $x \notin f(x)$. (Gondoljuk végig, hogy pl. az $f^{-1}(\emptyset)$ elem biztos kék és az $f^{-1}(H)$ elem biztos piros.) Jelölje P és K az összes piros, ill. kék elem halmazát.

Mivel $K \subseteq H$, ezért $K \in 2^H$, tehát létezik egy $k = f^{-1}(K)$ elem H-ban. Ez nem lehet piros (mert akkor $k \in f(k) = K$ miatt K tartalmazna egy piros elemet is), de kék sem lehet, hisz akkor $k \notin f(k) = K$ miatt pirosnak definiáltuk volna. A kapott ellentmondás bizonyítja állításunkat. \square

E tételből azonnal következik, hogy nincs "legnagyobb" számosság, hisz bármely számosságú H halmazhoz létezik egy nála nagyobb számosságú 2^H halmazis.

11. állítás: Megszámlálható halmaz hatványhalmaza épp kontínuum számosságú.

Bizonyitás: A (végtelen) tizedestörtek mintájára a kettes számrendszerben is definiálható egy olyan írásmód, melyben pl. $\overline{0,1}$ vagyis $\overline{0,10000...}$ az $\frac{1}{2},\overline{0,01}$ vagyis $\overline{0,010000...}$ az $\frac{1}{4}$ törtet jelöli. Gondoljuk végig, hogy pl. $\frac{1}{3}=\overline{0,0101011...}$ vagy $\frac{1}{5}=\overline{0,001100110011...}$ Amely számokra ez az írásmód nem egyértelmű (pl. $\overline{0,1000...}=\overline{0,01111...}$), ott tekintsük mindkét lehetőséget.

Így a (0,1) intervallumba tartozó valós számok halmazának minden eleméhez hozzárendeltünk egy vagy két $\overline{0,a_1a_2...}$ felírást, vagyis egy vagy két darab (a_1,a_2,\ldots) 0-1 sorozatot. Az összes ilyen sorozatok halmaza tehát kontínuum számosságú. Minden ilyen sorozat egyértelműen meghatározza a természetes számok $\mathbb N$ halmazának azt az X_a részhalmazát, melyben $j\in X_a$ akkor és csak akkor teljesül, ha $a_j=1$, és minden részhalmaz pontosan egyféle ilyen sorozatból áll elő. Ezzel beláttuk, hogy a $2^{\mathbb N}$ számossága kontínuum. \square

Georg Cantor alapozta meg a halmazelméletet 1874 és 1897 közötti dolgozataiban; az itt ismertetett alapfogalmak és tételek jó része tőle származik. Ő az \aleph jelet (kimondva: alef), a héber ábécé első betűjét vezette be a számosságok jelölésére. A megszámlálható számosságot \aleph_0 -val, a rákövetkezőt \aleph_1 -gyel, majd rekurzívan minden k esetén az \aleph_k -ra rákövetkezőt \aleph_{k+1} -gyel jelölte. A 10. Állítás szerint tehát minden k-ra teljesül, hogy ha K számossága K, akkor $|2^K| > K$. (Nem foglalkozunk a "rákövetkező" kifejezés pontos magyarázatával.)

Ugyancsak Cantor fogalmazta meg az ún. kontínuumhipotézist, mely szerint a kontínuum számosság épp \aleph_1 (vagyis ha egy végtelen számosság kisebb a kontínuumnál, akkor az szükségképp megszámlálható)².

Csak a huszadik században derült ki, hogy ez a sejtés se nem igaz, se nem hamis, hanem eldönthetetlen: Ha a halmazelmélet axiomatikus felépítése során a szokásos axiómákhoz e hipotézis igazságát vagy hamisságát, mint további axiómát hozzávesszük, akkor két olyan axiómarendszert kapunk, melyek persze egymást kizárják, de egyikük sem tartalmaz ellentmondást.

 $^{^2}$ Hasonlóan az általánosított kontínuumhipotézis szerint tetszőleges k-ra teljesül, hogy haXszámossága \aleph_k , akkor $|2^X|=\aleph_{k+1}$.