BIRKBECK, UNIVERSITY OF LONDON

Computer Systems Coursework1

BARAN BULUTTEKIN

I have read and understood the sections of plagiarism in the College Policy on assessment offences and confirm that the work is my own, with the work of others clearly acknowledged.

I give my permission to submit my report to the plagiarism testing database that the College is using and test it using plagiarism detection software, search engines or meta-searching software.

Answers

1. First

```
(a) 1 LOAD r3, M
2 LOAD r0, #1
3 LOAD r1, #1
4 LOAD r2, #1
5 SUB r3, r3, #1
6 ADD r4, r1, r0
7 MUL r4, r4, r2
8 LOAD r0, r1
9 LOAD r1, r2
10 LOAD r2, r4
11 BNE 5, r3, #3 // jump to instruction 5 if r3 not equal to 3
12 STOR M, r2
```

where # indicates immediate addressing and BNE stands for "branch if not equal"

- (b) other point
- (c) The table 1 is an example of referenced LATEX elements.

	IF	ID	IW	RR	EX	WB	Comments
1	2	3	4	5	6	7	This is a long explanation
$\parallel 2 \mid$	7	78	5415	5	6	7	
3	545	778	7507	5	6	7	
$\parallel 4 \mid$	545	18744	7560				
5	88	788	6344				
6	88	788	6344				

Table 1: Table to test captions and labels

2. 15 ns =
$$15 \times 10^{-9}$$
 seconds
85 ns = 85×10^{-9} seconds
10 ms = 1×10^{-2} seconds

Probability of being in main memory is 0.7 and cache hit ratio is 0.4. Therefore time to load is: $0.7 \times 1 \times 10^{-2} + 0.3 \times (0.4 \times 15 \times 10^{-9} + 0.6 \times 85 \times 10^{-9})$

$$0.7 \times 1 \times 10^{-2} + 0.3 \times (0.4 \times 15 \times 10^{-9} + 0.6 \times 85 \times 10^{-9})$$