Dostrajanie zapytania w problemie odpowiedzi na pytania na podstawie informacji wizualnej.

promotor dr inż. Jacek Komorowski

Emilia Zawadzka-Gosk

Numer albumu: 01183161

Cel pracy

- Wskazanie fragmentu obrazu zawierającego odpowiedź na pytanie zadane w języku naturalnym.
- Zainspirowany "Toloka Visual Question Answering Challenge" https://toloka.ai/challenges/wsdm2023/

Pytanie: Which is different from the group?

Koordynaty: 409, 172, 432, 206

Pytanie: What do we drive for

personal use?

Koordynaty: 161, 181, 569, 367

Zaproponowane rozwiązanie

Pytanie: "Where do we look to see time"

- 1. Detekcja obiektów zrealizowana za pomocą modelu DETR
- 2. Opis obszarów wykrytych w poprzednim kroku za pomocą modelu VisionEncoder-DecoderModel
- 3. Ocena przez model językowy GPT-2

Strategie tworzenia zapytań do modelu GPT-2

1. Stały prompt:

"Does the sentence contain the answer for the question?"

2. Stały prompt zawierający przykłady:

"Does the sentence contain the answer for the question? Question: What animal is fluffy and furry?; Sentence: the cat sleeps on a windowsill; Answer:yes

Does the sentence contain the answer for the question?

Question: What can be used to cut bread?; Sentence: a person on a bike; Answer:no

Does the sentence contain the answer for the question?"

3. Soft-prompt:

Tensor o rozmiarze 10x1024

Schemat konstruowania promptu z użyciem soft-promptu.

Dostrojenie zapytania, a dostrojenie modelu

	soft-prompt tuning	fine-tuning
Liczba parametrów	10240	345M
Liczba epok	3	1
Czas trwania 1 epoki	1 godz.	3 godz.
Całkowity czas treningu	1 godz. 3 godz.	3 godz. 3 godz.

Porównanie procesów dostrajania soft-promptu i całego modelu językowego GPT-2.

Wyniki

Zastosowane rozwiązanie	Dokładność na zbiorze walidacyjnym
Prefix bez przykładów	0%
Prefix (2 przykłady)	14%
Prefix (4 przykłady)	18,7%
Dostrajanie zapytania (prompt-tuning)	77%
Dostrajanie modelu (fine-tuning)	81,9%

Zaproponowany w projekcie prompt-tuning uzyskał dokładność na zbiorze walidacyjnym o 5% niższą, jednak liczba parametrów w przypadku trenowania soft-promptu jest o cztery rzędy wielkości niższa, co ma istotny wpływ na zapotrzebowanie obliczeniowe eksperymentu.

Wyniki

Detekcja obiektów (DETR)

Opis obiektów (VisionEncoderDecoderModel) oraz wybór właściwej odpowiedzi (GPT-2)

a white fire hydrant sitting on the side of a road

a yellow fire hydrant sitting on the side of a road

a sign that is on the side of a building

What can we use to see time?

Dziękuję