

Dose de remédio	Efetividade		Dose de remédio	Efetividade	Pred	
2	-6		2	-6	-2.82	
8	4		8	4	2.54	
12	5	\rightarrow	12	5	2.54	
16	-5		16	-5	-2.31	

Dose de remédio	Efetividade
2	-6
8	4
12	5
16	-5

$$Y \approx f(X)$$

Hiperparam valor λ γ ε

Tree Depth

Trees

Hiperparam	valor
λ	0
γ	0
3	0.3
Tree Depth	2
Trees	2

$$f(x) = 0.5$$

Hiperparam	valor
λ	0
γ	0
ε	0.3
Tree Depth	2
Trees	2

$$f(x) = 0.5 + \epsilon \times 28$$

Hiperparam	valor
λ	0
γ	0
ε	0.3
Tree Depth	2
Trees	2

$$f(x) = 0.5 + \epsilon \times 2 + \epsilon \times 2 = 0.5$$

Exemplo 1: 01-exemplo-hiperparemtro-sql.R

Hiperparam	valor	Dose de remédio	Efetividade	Pred
λ (regularization)	0	2	-6	-2.82
γ (loss_reduction)	0	8	4	2.54
ε (learn_rate)	0.3	12	5	2.54
tree_depth	2	16	-5	-2.31
trees	2			

Dose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

Dose de remédio	Efetividade	Pred	f(x) = 0 $f(x) = 0$ $f(x) = 0$
2	-6	-2.82	$f(x) = 0.5 + 0.3 \times 0.5 + 0.3$
8	4	2.54	
12	5	2.54	
16	-5	-2.31	

$$\sum L(y_i, f(x_i))$$

	Dose de remédio	Efetividade	Pred	$f(x) = 0.5 \pm 0.0 \times 600 \pm 0.0 \times 600$
-	2	-6	-2.82	$f(x) = 0.5 + 0.3 \times 0.3$
	8	4	2.54	
	12	5	2.54	
	16	-5	-2.31	
			£	
) ,1	$J(Y_i)$, /	(χ_i)

Dose de remédio	Efetividade	Pred	$f(x) = 0.5 + 0.3 \times 0.3$
2	-6	-2.82	$I(X) = 0.5 + 0.3 \times 10^{-4} + 0.3$
8	4	2.54	
12	5	2.54	
16	-5	-2.31	

$$\sum L(y_i, f(x_i))$$

$$\sum_{i=1}^{\infty} (y_i - f(x_i))^2$$

RMSE Regressão Normal Mínimos quadrados

Dose de remédio	Efetividade	Pred	$f(x) = 0.5 + 0.3 \times 0.0 + 0.3 \times 0.0$
2	-6	-2.82	
8	4	2.54	
12	5	2.54	
$\sum I$	-5 L(y _i	-2.31	$\sum_{i \in \mathbb{Z}} (y_i - (\beta_o + \beta_1 x_i))^2$ (x_i) $= \sum_{i \in \mathbb{Z}} (y_i - (\beta_o + \beta_1 x_i))^2$ $= \sum_{i \in \mathbb{Z}} (x_i)$

Dose de remédio	Efetividade	Pred	$f(x) = 0.5 + 0.3 \times 0.3$	
2	-6	-2.82	$I(X) = 0.5 + 0.3 \times 0.0 + 0.3 \times 0.0$	
8	4	2.54		
12	5	2.54		
16	-5	-2.31	$\sum (y_i - (y_i - y_i))$)2
$\sum I$	$L(y_i)$, <i>f</i>	$f(x_i)$	

UMA árvore de decisão

Dose de remédio	Efetividade	Pred	$f(x) = 0.5 + 0.0 \times 600 + 0.0 \times 600$	
2	-6	-2.82	$f(x) = 0.5 + 0.3 \times 0.0 + 0.3 \times 0.0$	
8	4	2.54		
12	5	2.54		
16	-5	-2.31	$\sum (y_i - (y_i - (y_i - y_i))^2$	2
$\sum I$	$L(y_i)$, <i>f</i>	$f(x_i)$	

UMA árvore de decisão

Dose de remédio	Efetividade		f(x)
2	-6	-2.82	1(X)
8	4	2.54	
12	5	2.54	
16	-5	-2.31	

 $= 0.5 + 0.3 \times 0.$

UMA árvore de decisão

Minimiza a variância de Y dentro de cada folha (bloco preto).

Dose de remédio	Efetividade	Pred	$f(x) = 0.5 \pm 0.0 \times 600$					
2	-6	-2.82	$f(x) = 0.5 + 0.3 \times 60 + 0.3 \times 60$					
8	4	2.54						
12	5	2.54						
16	-5	-2.31						
UMA ár	vore o	de d	ecisão 💮 💮					
Minimiza a variância de Y dentro de								
cada folha (bi	loco preto)	•						
		7. —	$\frac{1}{\sqrt{2}}$					
Λ.1		" ~ -						
Al	.goritmo	Ga	nancioso" (greedy)					

→ Variância

Dose de remédio	Efetividade	Pred	f1(x) = 0.5
2	-6	-2.82	II(X) = 0.5
8	4	2.54	$f2(x) \cap F = 0$
12	5	2.54	$f2(x) = 0.5 + 0.3 \times 0.0$
16	-5	-2.31	$f3(x) = 0.5 + 0.3 \times 60 + 0.3 \times 60$

Dose de remédio	Efetividade	Pred	f1(x) = 0.5
2	-6	-2.82	II(X) = 0.5
8	4	2.54	$f2(x) = f1(x) + 0.3 \times 0$
12	5	2.54	
16	-5	-2.31	$f3(x) = f2(x) + 0.3 \times 6$

Dose de remédio	Efetividade	Pred	f1(x) = 0.5
2	-6	-2.82	II(X) = 0.3
8	4	2.54	$f2(x) = f1(x) + 0.3 \times 0$
12	5	2.54	
16	-5	-2.31	$f3(x) = f2(x) + 0.3 \times 0.00$
			` <u>a</u>

Dose de remédio	Efetividade	Pred	f1(x) = 0.5	
2	-6	-2.82	$\Pi(X) = 0.3$	
8	4	2.54	$f2(x) = f1(x) + 0.3 \times 0$	
12	5	2.54		
16	-5	-2.31	f3(x) = f2(x) + c	0.3 × C

Passo 1:

$$\sum (y_i - f_1(x_i))^2$$

Dose de remédio	Efetividade	Pred	f(x) = 0.5
2	-6	-2.82	f1(x) = 0.5
8	4	2.54	$f2(x) = f1(x) + 0.3 \times 0$
12	5	2.54	$12(X) = 11(X) + 0.3 \times 10^{-1}$
16	-5	-2.31	f3(x) = f2(x)

Passo 1:

$$L = \sum (y_i - 0.5)^2$$

...nada para otimizar! Próximo...

+ 0.3×C

Dose de remédio	Efetividade	Pred	f1(x) = 0.5
2	-6	-2.82	II(X) = 0.5
8	4	2.54	$f2(x) = f1(x) + 0.3 \times \Box$
12	5	2.54	$\frac{12(X) - 11(X) + 0.3 \times \Box}{2}$
16	-5	-2.31	f3(x) = f2(x)

$$L = \sum (y_i - f_2(x_i))^2$$

+ 0.3×

	Dose de remédio	Efetividade	Pred	f1(x) = 0.5
•	2	-6	-2.82	II(X) = 0.5
	8	4	2.54	$f2(x) = f1(x) + 0.3 \times 0$
	12	5	2.54	$\frac{12(X)}{2} = \frac{11(X)}{2} + 0.3 \times \frac{12}{2}$
	16	-5	-2.31	f3(x) = f2(x)

$$L = \sum (y_i - f_1(x_i) - 0.3)^2$$

+ 0.3 × 🗖

Dose de remédio	Efetividade	Pred	$f1/\sqrt{1-c}$
2	-6	-2.82	f1(x) = 0.5
8	4	2.54	$f2(x) = f1(x) + 0.3 \times 0$
12	5	2.54	$12(X) - 11(X) + 0.3 \times C$
16	-5	-2.31	f3(x) = f2(x)

$$L = \sum (y_i - f_3(x_i))^2$$

+ 0.3×

Dose de remédio	Efetividade	Pred	f1(x) = 0.5
2	-6	-2.82	f1(x) = 0.5
8	4	2.54	$f2(x) = f1(x) + 0.3 \times 0.5$
12	5	2.54	$\frac{12(X)}{2} = 11(X) + 0.3 \times \Box$
16	-5	-2.31	f3(x) = f2(x)

$$L = \sum (y_i - f_2(x_i) - 0.3)^2$$

+ 0.3×□

	Dose de remédio	Efetividade	Pred	f1/y $ 0$ F
•	2	-6	-2.82	f1(x) = 0.5
	8	4	2.54	f2(y) = f1(y) + aax = f
	12	5	2.54	$f2(x) = f1(x) + 0.3 \times c$
	16	-5	-2.31	f3(x) = f2(x)

$$L = \sum (y_i - f_2(x_i)) - 0.3$$
Erro
Resíduo

+ 0.3×□

Dose de remédio	Efetividade	Pred	f1/x = 0.5
2	-6	-2.82	f1(x) = 0.5
8	4	2.54	f2(y) = f1(y) + aax
12	5	2.54	$f2(x) = f1(x) + 0.3 \times 0$
16	-5	-2.31	f3(x) = f2(x)

$$L = \sum_{i} (r_i)^{-0.3} (r_i)^2$$

$$Erro$$
Resíduo

+ 0.3×**□**

Dose de remédio	Efetividade	Pred	f1(x) = 0
2	-6	-2.82	f1(x) = 0.5
8	4	2.54	$f2(x) = f1(x) + 0.3 \times 0$
12	5	2.54	$12(X) - 11(X) + 0.3 \times 0$
16	-5	-2.31	f3(x) = f2(x)

$$L = \sum (x_i)^2 - 0.3 \quad \text{Erro}$$

$$\sum (y_i - f(x_i))^2 \quad \text{Erro}$$
Resíduo

+ 0.3×C

Dose de remédio	Efetividade	Pred	f1(x) = 0.5	_	
2	-6	-2.82	II(X) = 0.)	
8	4	2.54	f2(y) = f1	(x)+ 0.3×C	Q
12	5	2.54	$\frac{12(X)}{2} = 110$	(X) + 0.3 X L	
16	-5	-2.31	f3(x) =	f2(x)	+ 0.3 ×

Passo m:

$$L = \sum (r_i^{m-1} - 0.3)^2$$

$$Erro$$
Resíduo

$$n(x) = \sum_{b=1}^{\infty} fb(x)$$

Dose de remédio	Efetividade	Pred	f1(x) = 0.	5	
2	-6	-2.82	TI(X) = 0.	3	
8	4	2.54	$f_3(x) = f_1$	(x)+ 0.3×C	
12	5	2.54	12(X) = 11	$(x) + 0.3 \times \Box$	
16	-5	-2.31	f3(x) =	f2(x)	+ 0.3×

Passo m:

$$L = \sum (r_i^{m-1} - 0.3)^2$$

$$Erro$$
Resíduo

$$fm(x) = \sum_{b=1}^{m} fb(x)$$

Modelo final:
Gigantesca soma
de case_whens

Dose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

O valor ótimo de cada árvore

 $minimizar L(y, f_{-1} + f)$

Dose de remédio	Efetividade	Pred	
2	-6	-2.82	
8	4	2.54	O valor ótimo
12	5	2.54	O vaioi otiiiio
16	-5	-2.31	Por exemplo $\sum (y_i - (f_{-1}(x_i) + f(x_i)))^2$
minim	izar L(j	y, f_{-1}	+ <i>f</i>)

de cada árvore

Dose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

O valor ótimo de cada árvore

minimizar
$$L(y, f_{-1} + f) \approx L(y, f_{-1}) + L'(y, f_{-1})f + \frac{1}{2}L''(y, f_{-1})f^2$$

Expansão de Taylor (!!!) de segunda ordem

Dose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

O valor ótimo de cada árvore

minimizar
$$L(y, f_{-1} + f) \approx L(y, f_{-1}) + L'(y, f_{-1})f + \frac{1}{2}L''(y, f_{-1})f^{2}$$
 G
 H

Expansão de Taylor (!!!) de segunda ordem

se de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

O valor ótimo de cada árvore

$$\frac{\mathrm{d}}{\mathrm{d}f} \left[Gf + \frac{1}{2}Hf^2 \right] = 0 \qquad \qquad f = -\frac{G}{H}$$

Derivar e igualar a zero Estratégia consagrada de achar o mínimo

ose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

O valor ótimo de cada árvore

Se...

$$L(y, f_{-1} + f) = \sum (y_i - (f_{-1}(x_i) + f(x_i)))^2$$

$$G = -2\sum (y_i - f_{-1}(x_i))$$
 $f = \frac{\sum (y_i - f_{-1}(x_i))}{n}$
 $E...$
 $H = n$

$$f = -\frac{G}{H}$$

Dose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

O valor ótimo de cada árvore

Se...

$$L(y, f_{-1} + f) = \sum (y_i - (f_{-1}(x_i) + f(x_i)))^2$$

$$G = -2\sum (y_i - f_{-1}(x_i)) \qquad \qquad f = \frac{\sum resíduos}{\#resíduos}$$

$$\mathbf{E}...$$

$$H = n$$

$$f = -\frac{G}{H}$$

-5

-2.31

O valor ótimo de cada árvore

Se...

16

$$L(y, f_{-1} + f) = \sum (y_i - (f_{-1}(x_i) + f(x_i)))^2$$

$$G = -\sum (y_i - f_{-1}(x_i))$$

$$H = n$$

$$f = \frac{\sum resíduos}{\# resíduos}$$

$$f = -\frac{G}{H}$$

-5

-2.31

O valor ótimo de cada árvore

Se...

16

$$L(y, f_{-1} + f) = \sum (y_i - (f_{-1}(x_i) + f(x_i)))^2$$

 $\sum resíduos$

$$G = -\sum (y_i - f_{-1}(x_i))$$

$$H = n$$

$$f = -\frac{G}{H}$$

Se...

$$f = \frac{\sum resíduos}{\# resíduos}$$

$$L(y, f_{-1} + f) \approx -\frac{1}{2} \frac{(\sum residuos)^2}{\#residuos}$$

$$f = -rac{G}{H}$$

Dose de remédio Efetividade Pred 2 -6 -2.82 8 4 2.54 12 5 2.54

A loss de cada árvore

Se...

16

$$f = \frac{\sum resíduos}{\#resíduos}$$

-5

-2.31

Então...

$$L(y, f_{-1} + f) \approx \frac{1}{2} \frac{(\sum resíduos)^2}{\#resíduos}$$

$$f = -\frac{G}{H}$$

>

A loss de cada árvore

Se...

16

$$f = \frac{\sum resíduos}{\#resíduos}$$

-5

Então...

-2.31

$$L(y, f_{-1} + f) \approx \frac{(\sum residuos)^2}{\#residuos}$$

Similaridade "similarity score"

Dose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

 $minimizar L(y, f_{-1} + f)$

Dose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

$$minimizar L(y, f_{-1} + f) + \lambda f^2 + \gamma T$$

Dose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

$$minimizar L(y, f_{-1} + f) + \lambda f^2 + \chi T$$

Dose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

$$minimizar L(y, f_{-1} + f) + \lambda f^2$$

Dose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.3

$$f =$$

Dose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

$$minimizar L(y, f_{-1} + f) + \lambda \sqrt{\frac{2}{2}}$$

Dose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

$$f = \mathbf{A}$$

$$predição = \frac{\sum resíduos}{\#resíduos + \lambda}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Dose de remédio	Efetividade	Pred
2	-6	0.5
8	4	0.5
12	5	0.5
16	-5	0.5

$$f(x) = 0.5$$

$$\sum_{i} (y_i - f(x_i))^2 = (0.5 - (-6))^2 + (0.5 - 4)^2 + (0.5 - 5)^2 + (0.5 - (-5))^2$$

Dose de remédio	Efetividade	Pred
2	-6	-1.45
8	4	1.70
12	5	1.70
16	-5	-1.15

$$f(x) = 0.5 + \epsilon \times 9$$

$$\sum_{i} (y_i - f(x_i))^2 = (-1.45 - (-6))^2 + (1.7 - 4)^2 + (1.7 - 5)^2 + (-1.15 - (-5))^2$$

Dose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

$$f(x) = 0.5 + \epsilon \times 9 + \epsilon \times 9 + \epsilon$$

$$\sum_{i} (y_i - f(x_i))^2 = (-2.82 - (-6))^2 + (2.54 - 4)^2 + (2.54 - 5)^2 + (-2.31 - (-5))^2$$

Dose de remédio	Efetividade	Pred
2	-6	-2.82
8	4	2.54
12	5	2.54
16	-5	-2.31

$$f(x) = 0.5 + \epsilon \times 2 + \epsilon \times 2 = 0.5$$

Ao R!

λ

γ

3

Tree Depth

$$f(x) = 0.5 + \epsilon \times 2 + \epsilon \times 2 = 1$$

Y

γ

3

Tree Depth

$$f(x) = 0.5 + \epsilon \times \frac{1}{2} + \epsilon \times \frac{1}{2}$$

"Learning Rate"

)

γ

3

0.3

Tree Depth

Hiperparam valor

$$f(x) = 0.5$$

γ

ε 0.3

Tree Depth

Trees

Hora da primeira árvore

$$f(x) = 0.5$$

3

Trees 2

0.3

$$residuo_i = y_i - f(x_i)$$

$$f(x) = 0.5$$

3

Trees 2

0.3

$residuo_i = y_i - f(x_i)$

$$residuo_1 = -6 - 0.5 = -6.5$$

 $residuo_2 = 4 - 0.5 = 3.5$
 $residuo_3 = 5 - 0.5 = 4.5$
 $residuo_4 = -5 - 0.5 = -5.5$

-6.5, 3.5, 4.5, -5.5

λ

γ

3

0.3

Tree Depth

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

)

γ

ε 0.3

Tree Depth

Trees 2

$$Similaridade = \frac{(\sum residuos)^2}{\#residuos + \lambda}$$

"Regularization Parameter"

$$f(x) = 0.5$$

-6.5, 3.5, 4.5, -5.5

0 0.3 3

Tree Depth

Trees

Similaridade =

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparam valor

f(x) = 0.5

Similaridade = 4

-6.5, 3.5, 4.5, -5.5

0 0.3 3

Tree Depth

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

$$f(x) = 0.5$$

$$Similaridade_{esq} = -----=$$

$$Similaridade_{dir} = -----=$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

$$f(x) = 0.5$$

3

0.3

$$Similaridade_{esq} = \frac{(-6.5)^2}{1+0} = 42.25$$

$$Similaridade_{dir} = \frac{(3.5 + 4.5 - 5.5)^2}{3 + 0} = 2.08$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

$$f(x) = 0.5$$

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

$$f(x) = 0.5$$

$$Gain =$$

Pergunta	Gain
Dose < 5	

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparamvalor
$$λ$$
 0 $γ$ $ε$ 0.3

$$f(x) = 0.5$$

$$Similaridade_{esq} = -----= =$$

$$Similaridade_{dir} = -----= =$$

Pergunta	Gain
Dose < 5	40.33
Dose < 10	

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparam valor λ 0 γ ε 0.3

$$f(x) = 0.5$$

Tree Depth

Similaridade_{esq} =
$$\frac{(-6.5 + 3.5)^2}{2 + 0}$$
 = 4.5

Similaridade_{dir} =
$$\frac{(4.5 - 5.5)^2}{2 + 0} = 0.5$$

Pergunta	Gain
Dose < 5	40.33
Dose < 10	

$$Gain =$$

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$
$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparam	valor
λ	0
γ	
3	0.3

$$f(x) = 0.5$$

Pergunta	Gain
Dose < 5	40.33
Dose < 10	1
Dose < 15	

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparam valor λ 0 γ ε 0.3

$$f(x) = 0.5$$

Trees 2

Similaridade_{esq} =
$$\frac{(-6.5 + 3.5 + 4.5)^2}{3 + 0} = 0.75$$

Similaridade_{dir} =
$$\frac{(-5.5)^2}{1+0}$$
 = 30.25

$$Gain = 30.25 + 0.75 - 4 = 27$$

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparam valor λ 0 γ ε 0.3

Trees

$$f(x) = 0.5$$

Similaridade_{esq} =
$$\frac{(3.5)^2}{1+0}$$
 = 12.25

Similaridade_{dir} =
$$\frac{(4.5 - 5.5)^2}{2 + 0} = 0.5$$

Pergunta	Gain
Dose < 10	10.67
Dose < 15	

$$Gain = 12.25 + 0.5 - 2.08 = 10.67$$

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparam valor λ 0 γ ε 0.3

$$f(x) = 0.5$$

Similaridade_{esq} =
$$\frac{(+3.5 + 4.5)^2}{2 + 0}$$
 = 32

Similaridade_{dir} =
$$\frac{(-5.5)^2}{1+0}$$
 = 30.25

Pergunta	Gain
Dose < 10	10.67
Dose < 15	60.17

$$Gain = 30.25 + 32 - 2.08 = 60.17$$

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparam	valor
λ	0
γ	
3	0.3
Tree Depth	(2)
Trees	2

$$f(x) = 0.5$$

Similaridade_{esq} =
$$\frac{(+3.5 + 4.5)^2}{2 + 0}$$
 = 32

Similaridade_{dir} =
$$\frac{(-5.5)^2}{1+0}$$
 = 30.25

Pergunta	Gain
Dose < 10	10.67
Dose < 15	60.17

$$Gain = 30.25 + 32 - 2.08 = 60.17$$

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparam	valor
λ	0
γ	
8	0.3
Tree Depth	2
Trees	2

Hiperparam	valor
λ	0
γ	
3	0.3
Tree Depth	2
Trees	2

Hora da poda

XGBoost usa o Gain para fazer a poda das árvores.

"gamma": nota de corte para o Gain. Se gain – γ for positivo, então não poda!

Hiperparam	valor
λ	0
γ	50
8	0.3
Tree Depth	2
Trees	2
A !	į

Se gain – γ for positivo, então não poda!

Hiperparam	valor
λ	0
γ	50
8	0.3
Tree Depth	2
Trees	2

OBSERVAÇÃO: o gain do primeiro nó é menor que 50, indicando para podar. Porém o ramo filho não foi podado, por isso não podamos o pai também.

> Se $gain - \gamma$ for positivo, então não poda!

-6.5, 3.5, 4.5, -5.5

Gain = 60.17 Dose < 15

3.5, 4.5

3.5, 4.5, -5.5

-5.5

Hiperparam	valor	f(:
λ	0	•
γ	70	
3	0.3	
Tree Depth	2	
Trees	2	
5		

20

10

Dose de remédio

Efetividade

-5

Se gain – γ for positivo, então não poda!

-6.5, 3.5, 4.5, -5.5

Tiperparam	vaio.
λ	0
γ	70
3	0.3
Tree Depth	2
Trees	2

Se $gain - \gamma$ for positivo, então não poda!

Hiperparam	valor
λ	0
γ	50
3	0.3
Tree Depth	2
Trees	2

Hora das predições

Ou "escoragem"

Hiperparam	valor
λ	0
γ	50
3	0.3
Tree Depth	2
Trees	2

f(x₁)

Hiperparam	valor
λ	0
γ	50
3	0.3
Tree Depth	2

Dose de remédio

Trees

$$f(x) = 0.5 + 0.3 \times 0.00$$

$$f(2) = 0.5 + 0.3 \times$$

$$predição = \frac{\sum resíduos}{\#resíduos + \lambda}$$

Hiperparamvalorλ0γ50ε0.3

$$f(x) = 0.5 + 0.3 \times 0.5$$

$$f(2) = 0.5 + 0.3 \times -6.5$$

$$predição = \frac{\sum resíduos}{\#resíduos + \lambda}$$

Hiperparam	valor
λ	0
γ	50
3	0.3
Tree Depth	2

$$f(x) = 0.5 + 0.3 \times 0.00$$

$$f(2) = 0.5 + 0.3 \times -6.5 = -1.45$$

Hiperparam	valor
λ	0
γ	50
8	0.3

Tree Depth

$$f(x) = 0.5 + 0.3 \times 0.5$$

$$f(2) = 0.5 + 0.3 \times -6.5 = -1.45$$

 $f(x_2) = 0.5 + 0.3 \times 6.5 = -1.45$
 $f(x_3) = 0.5 + 0.3 \times 6.5 = -1.45$

Hiperparam	valor
λ	0
γ	50
8	0.3

$$f(x) = 0.5 + 0.3 \times 0.5$$

$$f(2) = 0.5 + 0.3 \times -6.5 = -1.45$$

 $f(8) = 0.5 + 0.3 \times$
 $f(12) = 0.5 + 0.3 \times$

Hiperparam	valor
λ	0
γ	50
3	0.3

$$f(x) = 0.5 + 0.3 \times 0.5$$

$$f(2) = 0.5 + 0.3 \times -6.5 = -1.56$$

 $f(8) = 0.5 + 0.3 \times 4 = 1.7$
 $f(12) = 0.5 + 0.3 \times 4 = 1.7$

Hiperparam	valor
λ	0
γ	50
8	0.3
Tree Depth	2

$$f(x) = 0.5 + 0.3 \times 0.5$$

$$f(2) = 0.5 + 0.3 \times -6.5 = -1.45$$

 $f(8) = 0.5 + 0.3 \times 4 = 1.7$
 $f(12) = 0.5 + 0.3 \times 4 = 1.7$
 $f(16) = 0.5 + 0.3 \times$

Hiperparam	valor
λ	0
γ	50
8	0.3

$$f(x) = 0.5 + 0.3 \times 0.5$$

$$f(2) = 0.5 + 0.3 \times -6.5 = -1.45$$

 $f(8) = 0.5 + 0.3 \times 4 = 1.7$
 $f(12) = 0.5 + 0.3 \times 4 = 1.7$
 $f(16) = 0.5 + 0.3 \times -5.5 = -1.15$

$$predição = \frac{-5.5}{1+0} = -5.5$$

Hiperparam	valor
λ	0
γ	50
3	0.3

Tree Depth

$$f(x) = 0.5 + 0.3 \times 0.5$$

$$f(2) = 0.5 + 0.3 \times -6.5 = -1.45$$

 $f(8) = 0.5 + 0.3 \times 4 = 1.7$
 $f(12) = 0.5 + 0.3 \times 4 = 1.7$
 $f(16) = 0.5 + 0.3 \times -5.5 = -1.15$

4.44,2.3,3.3,-3.85	

f(x) = 0.5 -	+ 0.3 × -
--------------	------------------

Trees 2

Hora da segunda árvore

	>

Hiperparam	valor
λ	0

(sim salamin...)

 $f(x) = 0.5 + 0.3 \times \Box$

Hiperparam	valor
λ	0
γ	50
3	0.3
Tree Depth	2
Trees	2

$$f1(x) = 0.5$$

$$f2(x) = 0.5 + 0.3 \times 0.00$$

$$f3(x) = 0.5 + 0.3 \times 0.00 + 0.3 \times 0.000$$

Hiperparam	valor
λ	0
γ	50
3	0.3
Tree Depth	2
Trees	2
_	

$$f1(x) = 0.5$$

$$f2(x) = f1(x) + 0.3 \times 0.00$$

$$f3(x) = f2(x) + 0.3 \times 6$$

$$f(x) = 0.5$$

Hiperparam valor 20 0.3 3

$$f(x) = 0.5$$

$$4+1$$

$$Similaridade_{esq} = \frac{(-6.5)^2}{3+1} = 21.125$$

Similaridade_{dir} =
$$\frac{(3.5 + 4.5 - 5.5)^2}{1 + 1}$$
 = 3.125

$$laridade_{dir} = \frac{(3.5 + 4.5 - 5.5)^{-1}}{1 + 1} = 3.125$$

Dose < 15

-6.5, 3.5, 4.5, -5.5

Dose < 5

-6.5

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

Gain = 3.125 + 21.125 - 3.2 = 21.05

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparamvalorλ1γ20ε0.3

Gain = 3 + 0.33 - 3.2

Similaridade_{esq} =
$$\frac{(-6.5 + 3.5)^2}{2 + 1}$$
 = 3

Similaridade_{dir} =
$$\frac{(4.5 - 5.5)^2}{2 + 1}$$
 = 0.33

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparamvalorλ1γ20ε0.3

$$f(x) = 0.5$$

Similaridade_{esq} =
$$\frac{(-6.5 + 3.5 + 4.5)^2}{3 + 1}$$
 = 0.56

$$Similaridade_{dir} = \frac{(-5.5)^2}{1+1} = 15.12$$

$$Gain = 15.12 + 0.56 - 3.2 = 12.48$$

idade	1		0	
Efetividade O				
-5		Ö		φ
)	10	20
		Dose	de ren	nédio

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Trees

Gains menores, mais fáceis de podar!

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparamvalorλ1γ20ε0.3

$$f(x) = 0.5 + 0.3 \times 0.5$$

Além disso, os scores também diminuíram...

Hiperparam	valor
λ	0
γ	20
8	0.3
Tree Depth	2
Trees	2

Regressão

$$\frac{(\sum residuos)^2}{\#residuos + \lambda}$$

$$\frac{\sum residuos}{\#residuos + \lambda}$$

$$f(x) = 0.5 + \frac{1}{2}$$

Classificação

$$\frac{(\sum residuos)^2}{\sum p(1-p) + \lambda}$$

$$\frac{\sum residuos}{\sum p(1-p) + \lambda}$$

$$\log\left(\frac{f(x)}{1-f(x)}\right) = 0.0 + \frac{1}{1-f(x)}$$

Hiperparam	valor
λ	0
γ	20
ε	0.3
Tree Depth	2
Trees	2

$$og\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

No caso de classificação, vamos trocar f() por p() para relacionar com o fato de que estamos calculando probabilidades.

Hiperparam	valor
λ	0
γ	20
8	0.3
Tree Depth	2
Trees	2

$$og\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

No caso de classificação, vamos trocar f() por p() para relacionar com o fato de que estamos calculando probabilidades.

E uma rápida revisão sobre as função logística:

$$\log\left(\frac{p(x)}{1-p(x)}\right) = x$$

Logaritmo da chance, ou log-odds, ou logit

Hiperparam	valor
λ	0
γ	20
8	0.3
Tree Depth	2
Trees	2

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

No caso de classificação, vamos trocar f() por p() para relacionar com o fato de que estamos calculando probabilidades.

E uma rápida revisão sobre as função logística:

ou log-odds,

ou logit

$$\log \left(\frac{p(x)}{1 - p(x)}\right) = x$$
inversa
$$p(x) = \frac{1}{1 + e^{-x}}$$
Logaritmo da chance,

Função logística, ou sigmoide

Hiperparam	valor
λ	0
γ	20
ε	0.3

$$og\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$residuo = y - p(x)$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

Hiperparam	valor
λ	0
γ	20
٤	0.3

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

0.5,0.5,-0.5

$$Gain =$$

Similaridade =
$$\frac{(\sum residuos)^2}{\sum p(1-p) + \lambda}$$
 p(x) =

$$p(x) = \frac{1}{1 + e^{-x}}$$

Hiperparamvalor
$$λ$$
 0 $γ$ 20 $ε$ 0.3

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$\log \left(\frac{p(2)}{1 - p(2)} \right) = 0.0$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

Hiperparamvalor
$$λ$$
0 $γ$ 20 $ε$ 0.3Tree Depth2

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

-0.5

Hiperparamvalor
$$λ$$
0 $γ$ 20 $ε$ 0.3

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$\log \left(\frac{p(2)}{1-p(2)}\right) = 0.0 + 0.3 \times (-2) = -0.6$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

Hiperparamvalor
$$λ$$
0 $γ$ 20 $ε$ 0.3

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$\log \left(\frac{p(2)}{1-p(2)}\right) = 0.0 + 0.3 \times (-2) = -0.6$$

$$p(2) = \frac{1}{1 + e^{-(-0.6)}} = 0.354$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

Hiperparamvalor
$$λ$$
0 $γ$ 20 $ε$ 0.3

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$\log \left(\frac{p(2)}{1-p(2)}\right) = 0.0 + 0.3 \times (-2) = -0.6$$

$$p(2) = \frac{1}{1 + e^{-(-0.6)}} = 0.354$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

Hiperparamvalor
$$λ$$
0 $γ$ 20 $ε$ 0.3

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$\log \left(\frac{p(2)}{1-p(2)}\right) = 0.0 + 0.3 \times (-2)$$

$$\log \left(\frac{p(8)}{1 - p(8)} \right) = 0.0 + 0.3 \times 2$$

$$\log \left(\frac{p(12)}{1-p(12)}\right) = 0.0 + 0.3 \times 2$$

$$\log \left(\frac{p(16)}{1 - p(16)} \right) = 0.0 + 0.3 \times (-2)$$

$$\frac{-0.5}{0.5(1-0.5)+0} = -2$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$\log \left(\frac{p(2)}{1-p(2)}\right) = 0.0 + 0.3 \times (-2) = -0.6$$

$$\log \left(\frac{p(8)}{1-p(8)}\right) = 0.0 + 0.3 \times 2 = 0.6$$

$$\log \left(\frac{p(12)}{1-p(12)}\right) = 0.0 + 0.3 \times 2 = 0.6$$

$$\log \left(\frac{p(16)}{1-p(16)}\right) = 0.0 + 0.3 \times (-2) = -0.6$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

$$\log \left(\frac{p(x)}{1 - p(x)} \right) = 0.0 + 0.3 \times 0.0$$

$$p(2) = \frac{1}{1 + e^{-(-0.6)}} = 0.35$$

$$p(8) = \frac{1}{1 + e^{-(0.6)}} = 0.65$$

$$p(12) = \frac{1}{1 + e^{-(0.6)}} = 0.65$$

$$p(16) = \frac{1}{1 + e^{-(-0.6)}} = 0.35$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

Dose de remédio	Curou	Pred	f(x) =
2	Não	0.256	I(X) =
8	Sim	0.744	
12	Sim	0.744	
16	Não	0.256	

$$\sum L(y_i, f(x_i))$$

Deviance Regressão Logística Binary Cross-entropy

$$\longrightarrow \sum (y_i \log(f(x_i)) + (1 - y_i) \log(1 - f(x_i)))$$

 $0.5 + 0.3 \times 0.0 + 0.3 \times 0.0$

ose de remédio	Curou	Pred
2	Não	0.256
8	Sim	0.744
12	Sim	0.744
16	Não	0.256

$$\sum L(y_i, f)$$

$$\sum (y_i \log(y_i))$$

Learning Task Parameters

Specify the learning task and the corresponding learning objective. The objective options are below:

- objective [default=reg:squarederror]
 - reg:squarederror: regression with squared loss.
 - reg:squaredlogerror: regression with squared log loss $\frac{1}{2}[log(pred+1)-log(label+1)]^2$. All input labels are required to be greater than -1. Also, see metric rmsle for possible issue with this objective.
 - o reg:logistic:logistic regression
 - o binary:logistic:logistic regression for binary classification, output probability
 - binary:logitraw: logistic regression for binary classification, output score before logistic transformation
 - binary:hinge: hinge loss for binary classification. This makes predictions of 0 or 1, rather than producing probabilities.
 - o count:poisson -poisson regression for count data, output mean of poisson distribution
 - max_delta_step is set to 0.7 by default in poisson regression (used to safeguard optimization)
 - o survival:cox: Cox regression for right censored survival time data (negative values are

Últimos dois hiperparâmetros

Hiperparam	valor
λ (regularization)	0
γ (loss_reduction)	0
ε (learn_rate)	0.3
tree depth	2
trees	2
sample_size	0.5
mtry	

sample_size: proporção de linhas sorteadas para cada árvore

	Pred	Curou	Dose de remédio	
\sim 00	0.256	Não	2	•
	0.256	Não	16	
	Pred	Curou	Dose de remédio	
	0.256	Não	2	
	0.744	Sim	8	

Últimos dois hiperparâmetros

Hiperparam	valor
λ (regularization)	0
γ (loss_reduction)	0
ε (learn_rate)	0.3
tree depth	2
trees	2
sample_size	0.5
mtry	2

mtry: número de colunas sorteadas para cada árvore

Pred	Curou	x 3	x 1	
0.256	Não	3	2	•
0.256	Não	5	16	
Pred	Curou	x16	x 3	
0.256	Não	3	2	
0.744	Sim	2	8	

Exercício: 03-exercício-classif.R

Hiperparam	valor	Dose de remédio	Curou	Pred
λ (regularization)	0	2	Não	0.256
γ (loss_reduction)	0	8	Sim	0.744
ε (learn_rate)	0.3	12	Sim	0.744
tree depth	2	16	Não	0.256
trees	2			