Computability Theory VI Church-Turing Thesis

Qingshui Xue

Shanghai Jiao Tong University

Nov. 9, 2015

CHURCH-TURING THESIS

Fundamental Question

How do computation models characterize the informal notion of effective computability?

Fundamental Result

Theorem. The set of functions definable (the Turing Machine Model, the URM Model) is precisely the set of functions definable in the Recursive Function Model.

Church-Turing Thesis

Church-Turing Thesis.

The functions definable in all computation models are the same. They are precisely the computable functions.

Church-Turing Thesis

Church-Turing Thesis.

The functions definable in all computation models are the same. They are precisely the computable functions.

- 1. Church believed that all computable functions are λ -definable.
- 2. Kleene termed it Church Thesis.
- 3. Gödel accepted it only after he saw Turing's equivalence proof.
- 4. Church-Turing Thesis is now universally accepted.

Computable Function

Let \mathcal{C} be the set of all computable functions.

Let C_n be the set of all n-ary computable functions.

Power of Church-Turing Thesis

No one has come up with a computable function that is not in \mathcal{C} .

When you are convincing people of your model of computation, you are constructing an effective translation from a well-known computation model to your model.

Use of Church-Turing Thesis

Church-Turing Thesis allows us to give an informal argument for the computability of a function.

We will make use of a computable function without explicitly defining it.

Comment on Church-Turing Thesis

CTT and Physical Implementation

- Deterministic Turing Machines are physically implementable. This is the well-known von Neumann Architecture.
- Are quantum computers physically implementable? Can a quantum computer compute more? Can it compute more efficiently?

Comment on Church-Turing Thesis

CTT and Physical Implementation

- Deterministic Turing Machines are physically implementable. This is the well-known von Neumann Architecture.
- Are quantum computers physically implementable? Can a quantum computer compute more? Can it compute more efficiently?

CTT, is it a Law of Nature or a Wisdom of Human?

Synopsis

- 1. Gödel Encoding (section 4.1)
- 2. URM is Recursive (Appendix of chapter 5)

GÖDEL ENCODING

Everything is number!

Godel's Insight

The set of syntactical objects of a formal system is denumerable.

Godel's Insight

The set of syntactical objects of a formal system is denumerable.

More importantly, every syntactical object can be coded up effectively by a number in such a way that a unique syntactical object can be recovered from the number.

Godel's Insight

The set of syntactical objects of a formal system is denumerable.

More importantly, every syntactical object can be coded up effectively by a number in such a way that a unique syntactical object can be recovered from the number.

This is the crucial technique Gödel used in his proof of the Incompleteness Theorem.

Enumeration

An enumeration of a set X is a surjection $g : \mathbb{N} \to X$; this is often represented by writing $\{x_0, x_1, x_2, \ldots\}$.

It is an enumeration without repetition if g is injective.

Denumeration

A set X is denumerable if there is a bijection $f: X \to \mathbb{N}$. (denumerate = denote + enumerate)

Denumeration

A set X is denumerable if there is a bijection $f: X \to \mathbb{N}$. (denumerate = denote + enumerate)

Let X be a set of "finite objects".

Then X is effectively denumerable if there is a bijection $f: X \to \mathbb{N}$ such that both f and f^{-1} are computable.

Fact. $\mathbb{N}\times\mathbb{N}$ is effectively denumerable.

Fact. $\mathbb{N} \times \mathbb{N}$ is effectively denumerable.

Proof. A bijection $\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is defined by

$$\pi(m,n) \stackrel{\text{def}}{=} 2^m(2n+1)-1,$$

$$\pi^{-1}(I) \stackrel{\text{def}}{=} (\pi_1(I), \pi_2(I)),$$

where

$$\pi_1(x) \stackrel{\text{def}}{=} (x+1)_1,$$
 $\pi_2(x) \stackrel{\text{def}}{=} ((x+1)/2^{\pi_1(x)}-1)/2.$

Fact. $\mathbb{N}^+ \times \mathbb{N}^+ \times \mathbb{N}^+$ is effectively denumerable.

Fact. $\mathbb{N}^+ \times \mathbb{N}^+ \times \mathbb{N}^+$ is effectively denumerable.

Proof. A bijection $\zeta: \mathbb{N}^+ \times \mathbb{N}^+ \times \mathbb{N}^+ \to \mathbb{N}$ is defined by

$$\zeta(m, n, q) \stackrel{\text{def}}{=} \pi(\pi(m-1, n-1), q-1),
\zeta^{-1}(I) \stackrel{\text{def}}{=} (\pi_1(\pi_1(I)) + 1, \pi_2(\pi_1(I)) + 1, \pi_2(I) + 1).$$

Fact. $\bigcup_{k>0} \mathbb{N}^k$ is effectively denumerable.

Proof. A bijection $\tau: \bigcup_{k>0} \mathbb{N}^k \to \mathbb{N}$ is defined by

$$\tau(a_1,\ldots,a_k) \stackrel{\text{def}}{=} 2^{a_1} + 2^{a_1+a_2+1} + 2^{a_1+a_2+a_3+2} + \ldots + 2^{a_1+a_2+a_3+\ldots,a_k+k-1} - 1.$$

Now given x it is easy to find $b_1 < b_2 < \ldots < b_k$ such that

$$2^{b_1} + 2^{b_2} + 2^{b_3} + \ldots + 2^{b_k} = x + 1.$$

It is then clear how to calculate $a_1, a_2, a_3, \ldots, a_k$. Details are next.

A number $x \in \mathbb{N}$ has a unique expression as

$$x = \sum_{i=0}^{\infty} \alpha_i 2^i,$$

where α_i is either 0 or 1 for all $i \geq 0$.

1. The function $\alpha(i, x) = \alpha_i$ is primitive recursive:

$$\alpha(i,x)=\operatorname{rm}(2,\operatorname{qt}(2^i,x)).$$

2. The function $\ell(x) = if x > 0$ then k else 0 is primitive recursive:

$$\ell(x) = \sum_{i < x} \alpha(i, x).$$

3. If x > 0 then it has a unique expression as

$$x = 2^{b_1} + 2^{b_2} + \ldots + 2^{b_k},$$

where $1 \le k$ and $0 \le b_1 < b_2 < ... < b_k$.

The function $b(i, x) = if(x > 0) \land (1 \le i \le \ell(x))$ then b_i else 0 is primitive recursive:

$$b(i,x) = \begin{cases} \mu y < x \left(\sum_{k \le y} \alpha(k,x) = i \right), & \text{if } (x > 0) \land (1 \le i \le \ell(x)); \\ 0, & \text{otherwise.} \end{cases}$$

4. If x > 0 then it has a unique expression as

$$X = 2^{a_1} + 2^{a_1+a_2+1} + \ldots + 2^{a_l+a_2+\ldots+a_k+k-1}$$
.

The function $\mathbf{a}(i, x) = a_i$ is primitive recursive:

$$a(i,x) = b(i,x), \text{ if } i = 0 \text{ or } i = 1,$$

 $a(i+1,x) = (b(i+1,x)\dot{-}b(i,x))\dot{-}1, \text{ if } i \ge 1.$

We conclude that $a_1, a_2, a_3, \dots, a_k$ can be calculated by primitive recursive functions.

Encoding Program

Let \mathcal{I} be the set of all instructions.

Let \mathcal{P} be the set of all programs.

The objects in \mathcal{I} , and \mathcal{P} as well, are "finite objects".

Encoding Program

Theorem. \mathcal{I} is effectively denumerable.

Proof. The bijection $\beta: \mathcal{I} \to \mathbb{N}$ is defined as follows:

$$eta(Z(n)) = 4(n-1),$$
 $eta(S(n)) = 4(n-1)+1,$
 $eta(T(m,n)) = 4\pi(m-1,n-1)+2,$
 $eta(J(m,n,q)) = 4\zeta(m,n,q)+3.$

The converse β^{-1} is easy.

Encoding Program

Theorem. \mathcal{P} is effectively denumerable.

Proof. The bijection $\gamma: \mathcal{P} \to \mathbb{N}$ is defined as follows:

$$\gamma(P) = \tau(\beta(I_1), \ldots, \beta(I_s)),$$

assuming $P = I_1, \ldots, I_s$.

The converse γ^{-1} is obvious.

Gödel Number of Program

The value $\gamma(P)$ is called the Gödel number of P.

Gödel Number of Program

The value $\gamma(P)$ is called the Gödel number of P.

$$P_n$$
 = the programme with Godel index n
= $\gamma^{-1}(n)$

Gödel Number of Program

The value $\gamma(P)$ is called the Gödel number of P.

$$P_n$$
 = the programme with Godel index n
= $\gamma^{-1}(n)$

We shall fix this particular encoding function γ throughout.

Example

Let P be the program T(1,3), S(4), Z(6).

Example

Let P be the program T(1,3), S(4), Z(6).

$$\beta(T(1,3)) = 18$$

 $\beta(S(4)) = 13$
 $\beta(Z(6)) = 20$

Let P be the program T(1,3), S(4), Z(6).

$$eta(T(1,3)) = 18$$
 $eta(S(4)) = 13$
 $eta(Z(6)) = 20$
 $\gamma(P) = 2^{18} + 2^{32} + 2^{53} - 1$

$$4127 = 2^5 + 2^{12} - 1$$
.

$$4127 = 2^5 + 2^{12} - 1$$
.

$$\beta(I_1) = 4 + 1$$

 $\beta(I_2) = 4\pi(1,0) + 2$

$$4127 = 2^5 + 2^{12} - 1$$
.

$$\beta(I_1) = 4 + 1$$

 $\beta(I_2) = 4\pi(1,0) + 2$

So
$$P_{4127}$$
 is $S(2)$; $T(2,1)$.

URM IS RECURSIVE

Kleene's Proof

Kleene demonstrated how to prove that machine computable functions are recursive functions.

The states of the computation of the program $P_e(\tilde{x})$ can be described by a configuration and an instruction number.

The states of the computation of the program $P_e(\tilde{x})$ can be described by a configuration and an instruction number.

A state can be coded up by the number

$$\sigma = \pi(\mathbf{c}, \mathbf{j}),$$

where *c* is the configuration that codes up the current values in the registers

$$c=2^{r_1}3^{r_2}\ldots=\prod_{i>1}p_i^{r_i},$$

and *j* is the next instruction number.

To describe the changes of the states of $P_e(\tilde{x})$, we introduce three (n+2)-ary functions:

```
c_n(e, \widetilde{x}, t) = \text{the configuration after } t \text{ steps of } P_e(\widetilde{x}),
j_n(e, \widetilde{x}, t) = \text{the number of the next instruction after } t \text{ steps}
of P_e(\widetilde{x}) \text{ (it is 0 if } P_e(\widetilde{x}) \text{ stops in } t \text{ or less steps)},
\sigma_n(e, \widetilde{x}, t) = \pi(c_n(e, \widetilde{x}, t), j_n(e, \widetilde{x}, t)).
```

To describe the changes of the states of $P_e(\tilde{x})$, we introduce three (n+2)-ary functions:

```
c_n(e, \widetilde{x}, t) = \text{the configuration after } t \text{ steps of } P_e(\widetilde{x}),
j_n(e, \widetilde{x}, t) = \text{the number of the next instruction after } t \text{ steps}
of P_e(\widetilde{x}) \text{ (it is 0 if } P_e(\widetilde{x}) \text{ stops in } t \text{ or less steps)},
\sigma_n(e, \widetilde{x}, t) = \pi(c_n(e, \widetilde{x}, t), j_n(e, \widetilde{x}, t)).
```

If σ_n is primitive recursive, then c_n, j_n are primitive recursive!

If the computation of $P_e(\tilde{x})$ stops, it does so in

$$\mu t(\mathbf{j}_n(e,\widetilde{x},t)=0)$$

steps.

If the computation of $P_e(\tilde{x})$ stops, it does so in

$$\mu t(\mathbf{j}_n(\mathbf{e},\widetilde{\mathbf{x}},t)=\mathbf{0})$$

steps.

Then the final configuration is

$$c_n(e, \widetilde{x}, \mu t(j_n(e, \widetilde{x}, t) = 0)).$$

If the computation of $P_e(\tilde{x})$ stops, it does so in

$$\mu t(\mathbf{j}_n(\mathbf{e},\widetilde{\mathbf{x}},t)=\mathbf{0})$$

steps.

Then the final configuration is

$$c_n(e, \widetilde{x}, \mu t(j_n(e, \widetilde{x}, t) = 0)).$$

We conclude that the value of the computation $P_e(\tilde{x})$ is

$$(c_n(e, \widetilde{x}, \mu t(j_n(e, \widetilde{x}, t) = 0)))_1.$$

The function σ_n can be defined as follows:

$$\sigma_n(e, \widetilde{x}, 0) = \pi(2^{x_1} 3^{x_2} \dots p_n^{x_n}, 1),$$

$$\sigma_n(e, \widetilde{x}, t + 1) = \pi(\text{config}(e, \sigma_n(e, \widetilde{x}, t)), \text{next}(e, \sigma_n(e, \widetilde{x}, t))),$$

where $\operatorname{config}(e,\pi(c,j))$ is the new configuration, and $\operatorname{next}(e,\pi(c,j))$ is the number of the next instruction, after the j-th instruction has been executed upon c.

```
ln(e) = the number of instructions in P_e;
  gn(e,j) = \begin{cases} the code of I_j in P_e, & if 1 \leq j \leq ln(e), \\ 0, & otherwise. \end{cases}
 ch(c, z) = the resulting configuration when the
                          configuration c is operated on by the
                          instruction with code number z.
v(c, j, z) = \begin{cases} \text{the number } j' \text{ of the next instruction} \\ \text{when the configuration } c \text{ is operated} \\ \text{on by the } j \text{th instruction with code } z, \\ 0 \\ \text{if } i = 0 \end{cases}
                                                                                                   if i = 0.
```

$$\mathsf{config}(\boldsymbol{e},\sigma) \ = \ \left\{ \begin{array}{ll} \mathsf{ch}(\pi_1(\sigma),\mathsf{gn}(\boldsymbol{e},\pi_2(\sigma))), & \text{if } 1 \leq \pi_2(\sigma) \leq \mathsf{ln}(\boldsymbol{e}), \\ \pi_1(\sigma), & \text{otherwise}. \end{array} \right.$$

$$\mathsf{config}(\boldsymbol{e},\sigma) \ = \ \left\{ \begin{array}{ll} \mathsf{ch}(\pi_1(\sigma),\mathsf{gn}(\boldsymbol{e},\pi_2(\sigma))), & \text{if } 1 \leq \pi_2(\sigma) \leq \mathsf{ln}(\boldsymbol{e}), \\ \pi_1(\sigma), & \text{otherwise}. \end{array} \right.$$

$$\mathsf{next}(\boldsymbol{e},\sigma) = \left\{ \begin{array}{ll} \mathsf{v}(\pi_1(\sigma),\pi_2(\sigma),\mathsf{gn}(\boldsymbol{e},\pi_2(\sigma))), & \text{if } 1 \leq \pi_2(\sigma) \leq \mathsf{ln}(\boldsymbol{e}), \\ 0, & \text{otherwise}. \end{array} \right.$$

Proof in Detail (In, gn)

$$ln(e)$$
 = the number of instructions in P_e ;
$$gn(e,j) = \begin{cases} the code of I_j in P_e, & \text{if } 1 \leq j \leq ln(e), \\ 0, & \text{otherwise.} \end{cases}$$

Both functions are primitive recursive since

$$\begin{array}{rcl} \ln(e) & = & \ell(e+1), \\ \operatorname{gn}(e,j) & = & \operatorname{a}(j,e+1). \end{array}$$

The following function

ch(c, z) = the resulting configuration when the configuration c is operated on by the instruction with code number z.

is primitive recursive if

$$\mathsf{ch}(c,z) \ = \ \begin{cases} \ \mathsf{zero}(c,\mathsf{u}(z)), & \text{if } \mathsf{rm}(4,z) = 0, \\ \ \mathsf{succ}(c,\mathsf{u}(z)), & \text{if } \mathsf{rm}(4,z) = 1, \\ \ \mathsf{tran}(c,\mathsf{u}_1(z),\mathsf{u}_2(z)), & \text{if } \mathsf{rm}(4,z) = 2, \\ \ c, & \text{if } \mathsf{rm}(4,z) = 3. \end{cases}$$

$$u(z) = m$$
 whenever $z = \beta(Z(m))$ or $z = \beta(S(m))$:
 $u(z) = qt(4, z) + 1$.

$$\operatorname{u}(z)=m$$
 whenever $z=eta(Z(m))$ or $z=eta(S(m))$:
$$\operatorname{u}(z)=\operatorname{qt}(4,z)+1.$$

$$\operatorname{u}_1(z)=m_1 \text{ and } \operatorname{u}_2(z)=m_2 \text{ whenever } z=eta(T(m_1,m_2))$$
:
$$\operatorname{u}_1(z)=\pi_1(\operatorname{qt}(4,z))+1,$$

$$\operatorname{u}_2(z)=\pi_2(\operatorname{qt}(4,z))+1.$$

The change in the configuration c effected by instruction Z(m):

$$zero(c, m) = qt(p_m^{(c)_m}, c).$$

The change in the configuration c effected by instruction Z(m):

$$zero(c, m) = qt(p_m^{(c)_m}, c).$$

The change in the configuration c effected by instruction S(m):

$$succ(c, m) = p_m c$$
.

The change in the configuration c effected by instruction Z(m):

$$zero(c, m) = qt(p_m^{(c)_m}, c).$$

The change in the configuration c effected by instruction S(m):

$$succ(c, m) = p_m c$$
.

The change in the configuration c effected by instruction T(m, n):

$$tran(c, m, n) = qt(p_n^{(c)_n}, p_n^{(c)_m}c).$$

The following function

$$\mathbf{v}(c,j,z) = \left\{ egin{array}{ll} \text{the number } j' \text{ of the next instruction} \\ \text{when the configuration } c \text{ is operated} & \text{if } j > 0, \\ \text{on by the } j \text{th instruction with code } z, \\ 0, & \text{if } j = 0. \end{array} \right.$$

is primitive recursive if

$$\mathsf{v}(c,j,z) \ = \ \begin{cases} j+1, & \text{if } \mathsf{rm}(4,z) \neq 3, \\ j+1, & \text{if } \mathsf{rm}(4,z) = 3 \ \land \ (c)_{\mathsf{v}_1(z)} \neq (c)_{\mathsf{v}_2(z)}, \\ \mathsf{v}_3(z), & \text{if } \mathsf{rm}(4,z) = 3 \ \land \ (c)_{\mathsf{v}_1(z)} = (c)_{\mathsf{v}_2(z)}. \end{cases}$$

$$v_1(z)=m_1 \text{ and } v_2(z)=m_2 \text{ and } v_3(z)=q \text{ if } z=eta(J(m_1,m_2,q)):$$

$$v_1(z)=\pi_1(\pi_1(\operatorname{qt}(4,z)))+1, \\ v_2(z)=\pi_2(\pi_1(\operatorname{qt}(4,z)))+1, \\ v_3(z)=\pi_2(\operatorname{qt}(4,z))+1.$$

We can now define the function config(_, _) by

$$\mathsf{config}(\boldsymbol{e},\sigma) \ = \ \left\{ \begin{array}{ll} \mathsf{ch}(\pi_1(\sigma),\mathsf{gn}(\boldsymbol{e},\pi_2(\sigma))), & \text{if } 1 \leq \pi_2(\sigma) \leq \mathsf{ln}(\boldsymbol{e}), \\ \pi_1(\sigma), & \text{otherwise}. \end{array} \right.$$

and the function next(_, _) by

$$\mathsf{next}(\boldsymbol{e},\sigma) \ = \ \left\{ \begin{array}{ll} \mathsf{v}(\pi_1(\sigma),\pi_2(\sigma),\mathsf{gn}(\boldsymbol{e},\pi_2(\sigma))), & \text{if } 1 \leq \pi_2(\sigma) \leq \mathsf{ln}(\boldsymbol{e}), \\ \mathsf{0}, & \text{otherwise}. \end{array} \right.$$

We conclude that the functions c_n, j_n, σ_n are primitive recursive.