### **Project Phase 2**

TRAINING, TESTING AND VALIDATION OF A PREDICTION MODEL

Mohammed Zeeshan Ali Yachen Chang Shreya Chauhan Shivangi Jagdishkumar Bhavsar

#### **PHASE - 1 Conclusion**

- EDA performed on selected variables
- Independent Variable Attrition Flag
- Variables Selected in Phase 1 Gender, Income Category,
   Education Level, Credit Limit, Average Utilisation Ratio, Customer
   Age and Total Revolving Balance.

#### Phase - 2

### Model Prediction

- Logistic Regression
- Naive Bayes
- MLP Classifier
- Decision Tree
- Random Forest
- K-Nearest Neighbours

### **Ratio Validation Set**



#### MOHAMMED ZEESHAN ALI

|   | Customer<br>Age | Gender    | Dependent<br>count | Education<br>Level | Marital<br>Status | Income<br>Category | Card<br>Category | Months on book | Total<br>Relationship<br>Count | Months<br>Inactive<br>12 mon | Contacts<br>Count 12<br>mon | Credit<br>Limit | Total<br>Revolving<br>Bal | Avg<br>Open To<br>Buy | Total<br>Amt     | Total        | Total       | Total<br>Ct      | Ava                         |
|---|-----------------|-----------|--------------------|--------------------|-------------------|--------------------|------------------|----------------|--------------------------------|------------------------------|-----------------------------|-----------------|---------------------------|-----------------------|------------------|--------------|-------------|------------------|-----------------------------|
| 0 | -0.165303       | 1.060450  | 0.502930           | -0.052591          | -0.627821         | -0.574286          | -0.259421        | 0.384693       | 0.764216                       | -1.326581                    | 0.493176                    | 0.446482        | -0.473010                 | 0.488756              | Chng<br>Q4<br>Q1 | Trans<br>Amt | Trans<br>Ct | Chng<br>Q4<br>Q1 | Avg<br>Utilization<br>Ratio |
| 1 | 0.333665        | -0.942996 | 2.042620           | -0.597627          | 0.727945          | 0.754831           | -0.259421        | 1.010705       | 1.407582                       | -1.326581                    | -0.411025                   | -0.041297       | -0.366240                 | -0.008473             |                  |              |             |                  |                             |
| 2 | 0.583148        | 1.060450  | 0.502930           | -0.597627          | -0.627821         | 0.090272           | -0.259421        | 0.009085       | 0.120850                       | -1.326581                    | -2.219428                   | -0.573399       | -1.426578                 | -0.445445             |                  |              |             |                  |                             |
| 3 | -0.789013       | -0.942996 | 1.272775           | -0.052591          | 2.083712          | 0.754831           | -0.259421        | -0.241319      | -0.522516                      | 1.640990                     | -1.315226                   | -0.584947       | 1.662392                  | -0.733755             | 1.335            | 1144         | 42          | 1.625            | 0.061                       |
| 4 | -0.789013       | 1.060450  | 0.502930           | 1.037482           | -0.627821         | -0.574286          | -0.259421        | -1.868951      | 0.764216                       | -1.326581                    | -2.219428                   | -0.430640       | -1.426578                 | -0.302720             |                  |              |             |                  |                             |
| 5 | -0.290045       | 1.060450  | -0.266915          | -0.597627          | -0.627821         | -1.238845          | -0.259421        | 0.009085       | -0.522516                      | -1.326581                    | -0.411025                   | -0.508289       | 0.103794                  | -0.517468             | 1.541            | 1291         | 33          | 3.714            | 0.105                       |
| 6 | 0.583148        | 1.060450  | 1.272775           | 1.582518           | -0.627821         | -1.903404          | 1.183948         | 1.261109       | 1.407582                       | -1.326581                    | 0.493176                    | 2.846880        | 1.351900                  | 2.725078              | 2.594            | 1887         | 20          | 2.333            | 0.000                       |
| 7 | -1.786948       | 1.060450  | -1.806605          | -0.052591          | 2.083712          | -0.574286          | 4.070686         | -1.117736      | -1.165882                      | -0.337391                    | -0.411025                   | 2.249118        | 0.286653                  | 2.222901              |                  |              |             |                  | 0.700                       |
| 8 | -1.163238       | 1.060450  | 0.502930           | 1.037482           | 0.727945          | -0.574286          | -0.259421        | 0.009085       | 0.764216                       | -0.337391                    | -2.219428                   | 1.509036        | 1.662392                  | 1.359732              | 1.405            | 1171         | 20          | 2.333            | 0.760                       |
| 9 | 0.208923        | 1.060450  | -0.266915          | -0.597627          | 0.727945          | 0.090272           | -0.259421        | 0.009085       | 1.407582                       | 0.651799                     | 0.493176                    | 0.332648        | 0.631509                  | 0.275988              | 2.175            | 816          | 28          | 2.500            | 0.000                       |
|   |                 |           |                    |                    |                   |                    |                  |                |                                |                              |                             |                 |                           |                       |                  |              |             |                  |                             |

### **Logistic Regression**

```
#Normalization
import numpy as np
                                                                                   from sklearn import preprocessing
import pandas as pd
                                                                                   norm = preprocessing.StandardScaler()
#Load the data
                                                                                   ndf = norm.fit transform(x)
                                                                                   x=pd.DataFrame(ndf,index=x.index,columns=x.columns)
df = pd.read csv("/Users/zee/Desktop/Data Pedro/BankChurners set for EDA.csv")
                                                                                   x.head(10)
#Label Encoding
                                                                                   from sklearn.model selection import train test split
from sklearn.preprocessing import LabelEncoder
                                                                                   x train,x test,y train,y test = train test split(x,y,test size=0.20,random state=100)
                                                                                   x train2,x val,y train2,y val = train test split(x train,y train,test size=0.10,random state=100)
for c in df.columns:
    le = LabelEncoder()
                                                                                   from sklearn.metrics import accuracy score
                                                                                   from sklearn.model selection import cross val score
    if df.dtypes[c] == object:
        le.fit(df[c].astype(str))
                                                                                   from sklearn.Linear model import LogisticRegression
        df[c] = le.transform(df[c].astype(str))
                                                                                   clf = LogisticRegression(random state=101)
                                                                                   clf.fit(x train2,y train2)
                                                                                   predictions = clf.predict(x val)
                                                                                   print("Accuracy of Naive Bayes is :- ", accuracy score(y val, predictions))
x = df.drop("Attrition Flag", axis=1)
                                                                                   scores1 = cross val score(clf,x train2,y train2,scoring='accuracy')
y = df["Attrition Flag"]
                                                                                   print('The Accuracy of Naive Bayes is {0:.1f}%'.format(np.mean(scores1)*100))
```

The Accuracy of Logistic Regression is 90.2%

#### **MLP Classifier**

```
from sklearn.neural_network import MLPClassifier
ML = MLPClassifier()
Clf2 = ML.fit(x_train2,y_train2)
predictionn3 = ML.predict(x_val)
print("Accuracy of MLP Classifier is :- ", accuracy_score(y_val,predictionn3))
scores4 = cross_val_score(Clf2,x_train2,y_train2,scoring='accuracy')
print('The accuracy of MLP Classifier is {0:.1f}%'.format(np.mean(scores4)*100))
```

The accuracy of MLP Classifier is 93.5%

#### **ANALYSIS**

 Neural Network's MLP Classifier is more accurate than Logistic Regression as a model for prediction

 The accuracies obtained are best explained with the fact that there are strong relationships between different variables in the given dataset

#### **Random Forest**

```
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
X train, X test, Y train, Y test=train test split(X,Y,test size=0.2,random state=100)
X_train2,X_val,Y_train2,Y_val=train_test_split(X_train, Y_train, test_size=0.1, random_state=100)
from sklearn.ensemble import RandomForestClassifier
     classifiers = [[RandomForestClassifier(), 'Random Forest']
score list=[]
roc auc list=[]
cross val list=[]
for classifier in classifiers:
    model=classifier[0]
    model.fit(X_train,Y_train)
    model name=classifier[1]
    prediction=model.predict(X_test)
     scores=model.score(X_test,Y_test)
    cross_val=cross_val_score(model,X_test,Y_test).mean()
    roc auc = roc auc score(Y test, prediction)
    score list.append(scores)
    cross val list.append(cross val)
    roc auc list.append(roc auc)
    print(model_name,"Cross Validation Score :"+str(round(cross_val*100,2))+'%')
```

Random Forest Score :95.45%
Random Forest Cross Validation Score :93.08%

### **K-Nearest Neighbours**

```
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
X train, X test, Y train, Y test=train test split(X,Y,test size=0.2,random state=100)
X_train2,X_val,Y_train2,Y_val=train_test_split(X_train, Y_train, test_size=0.1, random_state=100)
from sklearn.neighbors import KNeighborsClassifier
     classifiers = [KNeighborsClassifier(), 'K-Nearest Neighbours']
score list=[]
roc_auc_list=[]
cross val list=[]
for classifier in classifiers:
    model=classifier[0]
    model.fit(X_train,Y_train)
    model name=classifier[1]
    prediction=model.predict(X_test)
     scores=model.score(X test,Y test)
    cross_val=cross_val_score(model,X_test,Y_test).mean()
    roc_auc = roc_auc_score(Y_test, prediction)
    score list.append(scores)
    cross_val_list.append(cross_val)
    roc auc list.append(roc auc)
    print(model_name, "Cross Validation Score :"+str(round(cross_val*100,2))+'%')
```

K-Nearest Neighbours Score :90.16% K-Nearest Neighbours Cross Validation Score :89.08%

#### **Summary**

Random forest classifier is more accuracy than K-Nearest Neighbours

The models without applying cross validation are all higher than the validated models

### **Naive Bayes**

```
In [9]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.10,random_state=42)
         x_train2,x_val,y_train2,y_val = train_test_split(x_train,y_train,test_size=0.10,random_state=42)
In [10]: from sklearn.metrics import accuracy_score
         from sklearn.model_selection import cross_val_score
In [11]: from sklearn.naive_bayes import GaussianNB
         NB = GaussianNB()
         NB.fit(x_train2,y_train2)
         predictions2 = NB.predict(x_val)
         print("Accuracy of Naive Bayes is :- ", accuracy_score(y_val,predictions2))
         scores1 = cross_val_score(NB,x_train2,y_train2,scoring='accuracy')
         print('The Accuracy of Naive Bayes is {0:.1f}%'.format(np.mean(scores1)*100))
         Accuracy of Naive Bayes is :- 0.8704720087815587
         The Accuracy of Naive Bayes is 88.7%
```

#### The Accuracy of Naive Bayes is 88.7%

#### **Decision Tree**

```
In [48]: from sklearn.tree import DecisionTreeClassifier
         clf2 = DecisionTreeClassifier()
In [49]: from sklearn.tree import DecisionTreeClassifier
         clf = DecisionTreeClassifier(random_state=100)
         clf = clf.fit(x_train,y_train)
In [50]: y_pred = clf.predict(x_test)
In [47]: from sklearn import metrics
         print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
         print('The Accuracy of Decision Tree is {0:.1f}%'.format(np.mean(scores1)*100))
         Accuracy: 0.9377470355731226
         The Accuracy of DecisionTree is 93.7%
```

The Accuracy of DecisionTree is 93.7%

#### Shreya Chauhan

#### **Summary**

• Decision Tree Model is showing more accuracy than Naive Bayes model

 Decision Tree Model is so far the best model for prediction that is 93. 7% accuracy

#### Shivangi J Bhavsar

# Logistic regression for,

Attributes such, Customer age , Attrition flag , Total revolving balance



# Result set of Logistics Regression process



#### Shivangi J Bhavsar

The significance between attrited customer and revolving balance.



One the confidence interval of .05%, fro the attitated customer the highest revolving balance is 2475 \$, which is on higher side that indicates that, the one who has not capability to repay credit card bills, are being churned from bank customer list.

# **Analysis result for linear regression**

 After checking the accuracy of model, the data was split in the ratio of 6:2 for training and testing purpose.

 From the result of examples set, the avg confidence of existing customer is .837 where for attrited customer .163

Where as average customer age is 46 and revolvning balance is 1157
 \$. Though the attitation in example data set is nearly 15 % from entire tested data set . which clearly indicates that , revolving balance is logically related with the churning of customer

#### **Decision tree for attributes**



## Analysis conclusion from decision tree algorithm:

When , total revolving balance is above \$ 2000 the percentage of attrited customer is higher in compare to lower balance .

While total revolving balance is less then \$ 100, the attrition ratio is half the total number of existing customers for such balance.

#### **Summary**

The total revolving balance has direct association with churning rate .

As more and more customer are taking the option of goig into revolving balance, they are affecting their credit score and that ultimately, makes them to leave customer

There for to avoid churning due to such factors, bank should focus on the interest rate and paying capability of customers.

#### **Accuracy Results**

Logistic Regression

90.2%

Naive Bayes

88.7%

MLP Classifier

93.5%

Random Forest

92.93%

K-Nearest Neighbours

89.08%

Decision Tree

93.7%

## **Decision Tree**

The Best Model

