main_proj5

Group 8 April 24, 2018

```
packages.used <- c("readxl", "ggplot2", "caret", "reshape2", "randomForest",</pre>
                "xgboost", "pROC", "e1071", "InformationValue", "devtools", "nnet")
# check packages that need to be installed.
packages.needed <- setdiff(packages.used,</pre>
                            intersect(installed.packages()[,1],
                                      packages.used))
# install additional packages
if(length(packages.needed) > 0) {
  install.packages(packages.needed,dependencies = TRUE,
 repos = 'http://cran.us.r-project.org')
library(readxl)
library(ggplot2)
library(caret)
## Loading required package: lattice
library(reshape2)
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
library(xgboost)
library(pROC)
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
library(e1071)
library(InformationValue)
##
## Attaching package: 'InformationValue'
## The following objects are masked from 'package:caret':
```

```
##
## confusionMatrix, precision, sensitivity, specificity
library(devtools)
library(nnet)
```

Step 0: Specify directories.

Set the working directory to the data folder. Specify the training and the testing set. For data without an independent test/validation set, you need to create your own testing data by random subsampling. In order to obain reproducible results, set.seed() whenever randomization is used.

```
#setwd("")
# here replace it with your own path or manually set it in RStudio to where this rmd file is located.
```

Provide directories for raw images. Training set and test set should be in different subfolders.

```
#data <- read_xls("../data/data.xls", sheet = "Data", range = "A1:Y30002")
#data <- apply(data,2,as.numeric)
#data <- as.data.frame(data)

#set.seed(04182018)
#test_idx <- sample(1:30000,6000)
#train_idx <- setdiff(1:30000, test_idx)
#train <- data[train_idx,]
#test <- data[test_idx,]

#write.csv(train, "train.csv")
##write.csv(test, "test.csv")

train <- read.csv("../data/train.csv")
train <- read.csv("../data/test.csv")

train <- train[,-1]
test <- test[,-1]</pre>
```

Step 1: Set up controls for evaluation experiments.

In this chunk, ,we have a set of controls for the evaluation experiments.

- (T/F) cross-validation on the training set
- (number) K, the number of CV folds
- (T/F) run evaluation on an independent test set

```
run.cv=FALSE # do not run cross-validation on the training set
K <- 5 # number of CV folds
run.test=TRUE # run evaluation on an independent test set</pre>
```

Using cross-validation or independent test set evaluation, we compare the performance of different classifiers or classifiers with different specifications.

Step 2: Process training and testing data.

```
train$X4[which(train$X4!=1)] <- 2 # other marital status merged to unmarried
train$Y <- as.factor(train$Y)</pre>
```

```
test$X4[which(test$X4!=1)] <- 2 # other marital status merged to unmarried
test$Y <- as.factor(test$Y)

#train_new <- train[,c("X1","X5","X24","X25","Y")]
#test_new <- test[,c("X1","X5","X24","X25","Y")]

#write.csv(train_new,file = "train_new.csv")
#write.csv(test_new,file = "test_new.csv")</pre>
```

Step 3: Train classification models with training data.

Five different models are used to make prediction on wether a credict card client will default based on related information.

Model 1: Support Vector Machine

```
train \leftarrow train[,c(1,2,4,5,12:17,18:24)]
test \leftarrow test[,c(1,2,4,5,12:17,18:24)]
transform_df <- function(df){</pre>
  colnames(df) <- c("X1","X2","X4","X5","X12","X13","X14","X15","X16","X17","X18","X19","X20","X21","X2
  df$X2 1 \leftarrow ifelse(df$X2==1,1,0)
  df$X2_2 <- ifelse(df$X2==2,1,0)</pre>
  df$X4_1 <- ifelse(df$X4==1,1,0)
  df$X4_2 <- ifelse(df$X4==2,1,0)
  df \leftarrow df[,-c(2:3)]
  scaled_df <- scale(df[,-15])</pre>
  scaled_df <- cbind(scaled_df,df[,15])</pre>
  colnames(scaled_df)[ncol(scaled_df)] <- "Y"</pre>
  return(scaled_df)
}
train_scaled <- transform_df(train)</pre>
test_scaled <-transform_df(test)</pre>
# Corss Validation
# linear SVM
if(run.cv){
  tuned_lin <- tune.svm(as.factor(Y)~., data = as.data.frame(train_scaled),</pre>
                             cost = 10^{(-4:4)}, kernel = "linear",
                             tunecontrol = tune.control(cross = 5))
  best_par_lin <- tuned_lin$best.parameters</pre>
} else{
  best_par_lin <- 0.1
}
```

```
# RBF kernal SVM
if(run.cv){
  tuned_RBF <- tune.svm(as.factor(Y)~., data = as.data.frame(train_scaled),</pre>
                         gamma = 10^{(-4:4)}, cost = 10^{(-6:2)},
                         kernel = "radial",
                         tunecontrol = tune.control(cross = 5))
  best_par_RBF <- tuned_RBF$best.parameters</pre>
} else{
  best_par_RBF <- c(10,0.001)
load("../app/model_linear.rda")
#model_linear <- sum(as.factor(Y)~.,data = train_scaled,</pre>
                        cost = best_par_lin,kernel = #"linear")
pred_linear <- predict(model_linear,test_scaled[,-ncol(test_scaled)])</pre>
err_lin <- mean(pred_linear!=as.numeric(test$Y))</pre>
#err_lin
#RBF kernel SVM with soft margin
load("../app/model_RBF.rda")
#model_RBF <- sum(as.factor(Y)~., data = train_scaled,</pre>
                   cost = best_par_RBF[1], gamma = best_par_RBF[2], kernel = #"radial")
time1 <- system.time(pred_RBF <- predict(model_RBF, test_scaled[,-ncol(test_scaled)]))</pre>
err_RBFSVM <- mean(pred_RBF!=test$Y)</pre>
cat("error:",err RBFSVM,"\n")
## error: 0.2216667
cat("time:",time1[3])
## time: 27.86
Model 2: Random Forest
Data preprocessing
df <- read.csv('.../data/data.csv', skip=1) #Read the data</pre>
df \leftarrow df[,-1]
df$default.payment.next.month <- as.factor(df$default.payment.next.month)</pre>
#Convert target variable to factor type
df$ID <- NULL #Remove extraneous variables</pre>
Model building
```

#Split data into training and test sets

test.i <- sample(1:nrow(df), .2*nrow(df), replace=FALSE)</pre>

set.seed(04182018)

test.data <- df[test.i,]
train.data <- df[-test.i,]</pre>

```
#Build random forest tuning grid
rf_tune <- expand.grid(mtry=2,
                        ntree = seq(100, 1000, by = 250))
rf_tune$accuracy <- numeric(nrow(rf_tune))</pre>
#Tune parameters to find best model
if(run.cv){
  for(i in 1:nrow(rf_tune)){
        our.rf <- randomForest(default.payment.next.month ~.,</pre>
                                 data=train.data, na.action = na.omit,
                                 mtry=rf_tune$mtry[i],
                                 ntree=rf_tune$ntree[i])
        rf.preds <- predict(our.rf, test.data)</pre>
        rf_tune$accuracy[i] <- mean(rf.preds == test.data$default.payment.next.month, na.rm = TRUE)
best_rf_params <- rf_tune[which.max(rf_tune$accuracy),]</pre>
} else{
 best_rf_params \leftarrow c(2,600)
}
load("../app/model_rf.rda")
#final_rf <- randomForest(default.payment.next.month ~.,</pre>
#
                                  data=train.data, na.action = na.omit,
#
                                  mtry=best_rf_params[1],
#
                                  ntree=best_rf_params[2])
time2 <- system.time(rf.pred_final <- predict(final_rf, test.data))</pre>
err_rf <- mean(rf.pred_final!=test.data$default.payment.next.month)</pre>
cat("error:",err_rf,"\n")
## error: 0.1856667
cat("time:",time2)
## time: 2.87 0.03 2.92 NA NA
```

Model 3: Xgboost

```
if(run.cv){
set.seed(04182018)
for(i in 1:nrow(xgb.tune)){
        t1 = Sys.time()
        print(paste('Starting iteration', i, 'of', nrow(xgb.tune), ':'))
        param_list <- list(max_depth=xgb.tune$max_depth[i],</pre>
                            eta=xgb.tune$eta[i],
                            gamma = xgb.tune$gamma[i],
                            silent=1,
                            nthread=2,
                            objective='multi:softmax')
        model <- xgb.cv(data = as.matrix(df.features),</pre>
                         nrounds = 50,
                         nfold = 5,
                         metrics = list("merror"),
                         label = df.target,
                         params = param_list,
                         num_class = 4)
        # Takes mean of 10 training rounds with highest classification rate
        xgb.tune$accuracy[i] <- 1-(mean(sort(model$evaluation_log$test_merror_mean)[1:10]))</pre>
        t2 = Sys.time()
        print(paste('Iteration', i, 'took :', (t2-t1), 'seconds'))
}
# Show best parameters
best_gb_params <- xgb.tune[which.max(xgb.tune$accuracy),]</pre>
best_gb_params
} else{
    load("../app/model_xgb.rda")
\#model \leftarrow xgboost(data = as.matrix(df.features), label = as.numeric(df.target)-1,
                   nrounds = 100, objective = "multi:softmax", num class = 2)
test.data <- apply(test.data, 2, function(x) as.numeric(x))</pre>
test_Dmat <- xgb.DMatrix(as.matrix(test.data[,-ncol(test.data)]))</pre>
time3 <- system.time(pred_xgb <- predict(model,test_Dmat))</pre>
err_xgb <- mean(pred_xgb!=test.data[,ncol(test.data)])</pre>
cat("error:",err_xgb,"\n")
## error: 0.1223333
cat("time:",time3)
## time: 0.31 0 0.06 NA NA
```

Model 4: Logistic Regression

```
# Establish common downstream variables
classColumn <- "Y"
```

```
badIndicator <- 1</pre>
goodIndicator <- 0</pre>
montonicConstraint <- "No"</pre>
# Training data
dataTrainingSample <- read.csv("../data/train.csv")</pre>
dataTrainingSample <- dataTrainingSample[1:5999,]</pre>
dataTrainingSample <- as.data.frame(dataTrainingSample)</pre>
# Testing data
dataTestingSample <- read.csv("../data/test.csv")</pre>
dataTestingSample <- as.data.frame(dataTestingSample)</pre>
# Get totals for downstream
numberOfObservations <- nrow(dataTrainingSample)</pre>
numberOfBads <- nrow(dataTrainingSample[dataTrainingSample[,classColumn]==badIndicator,])</pre>
numberOfGoods <- numberOfObservations-numberOfBads</pre>
# Create tons of model combinations
Variables <- c("X1","X2","X3","X4","X5","X6","X7","X8","X9","X10","X11","X12",
            "X13", "X14", "X15", "X16", "X17", "X18", "X19", "X20", "X21", "X22", "X23")
logisticSummary <- matrix(0, nrow = 1, ncol = 14)</pre>
colnames(logisticSummary) <- c("Variables", "Formula", "Var1", "Var2", "Var3", "Var4", "Var5", "Var6",</pre>
logisticSummary <- as.data.frame(logisticSummary)</pre>
logisticModels <- NULL</pre>
for (i in (1:length(Variables)))
  Vars <- 1
  temp <- logisticSummary
  FORMULA <- pasteO(classColumn, " ~ ", Variables[i])</pre>
  MODEL <- glm(as.formula(FORMULA), data=dataTrainingSample, family=binomial(link="logit"))
  PREDICTED <- plogis(predict(MODEL, dataTestingSample))</pre>
  temp[1,"AUC"] <- auc(dataTestingSample[,classColumn],PREDICTED)</pre>
  temp[1,"P < 0.05"] <- length(which(as.numeric(coef(summary(MODEL))[,4]) < 0.05))-(Vars+1)
  if (temp[1,"P < 0.05"]==0)
    temp[1,"Variables"] <- 1</pre>
    temp[1,"Var1"] <- Variables[i]</pre>
    temp[1, "Formula"] <- FORMULA</pre>
    logisticModels <- rbind(logisticModels, temp)</pre>
    variablesSublist1 <- Variables[which(Variables*,in*,c(Variables[i])==FALSE)]</pre>
    for (j in (1:length(variablesSublist1)))
      temp <- logisticSummary
      Vars <- 2
```

```
FORMULA <- paste0(classColumn, " ~ ", Variables[i], " + ", variablesSublist1[j])
      MODEL <- glm(as.formula(FORMULA), data=dataTrainingSample, family=binomial(link="logit"))
      PREDICTED <- plogis(predict(MODEL, dataTestingSample))</pre>
      temp[1,"AUC"] <- auc(dataTestingSample[,classColumn],PREDICTED)</pre>
      temp[1,"P < 0.05"] <- length(which(as.numeric(coef(summary(MODEL))[,4]) < 0.05))-(Vars+1)
      if (temp[1,"P < 0.05"]==0)
        temp[1,"Variables"] <- 2</pre>
        temp[1,"Var1"] <- Variables[i]</pre>
        temp[1,"Var2"] <- variablesSublist1[j]</pre>
        temp[1, "Formula"] <- FORMULA</pre>
        logisticModels <- rbind(logisticModels, temp)</pre>
        variablesSublist2 <- Variables[which(Variables%in%c(Variables[i], variablesSublist1[j])==FALSE)</pre>
        for (k in (1:length(variablesSublist2)))
          temp <- logisticSummary
          Vars < -3
          FORMULA <- pasteO(classColumn, " ~ ", Variables[i], " + ", variablesSublist1[j], " + ", varia
          MODEL <- glm(as.formula(FORMULA), data=dataTrainingSample, family=binomial(link="logit"))
          PREDICTED <- plogis(predict(MODEL, dataTestingSample))</pre>
          temp[1,"AUC"] <- auc(dataTestingSample[,classColumn],PREDICTED)</pre>
          temp[1,"P < 0.05"] <- length(which(as.numeric(coef(summary(MODEL))[,4]) < 0.05)) - (Vars+1)
          if (temp[1,"P < 0.05"]==0)
            temp[1,"Variables"] <- 3</pre>
            temp[1,"Var1"] <- Variables[i]</pre>
             temp[1,"Var2"] <- variablesSublist1[j]</pre>
             temp[1,"Var3"] <- variablesSublist2[k]</pre>
             temp[1, "Formula"] <- FORMULA</pre>
             logisticModels <- rbind(logisticModels, temp)</pre>
          }
        }
      }
    }
  }
# Order from least to most predictive
logisticModels <- logisticModels[order(logisticModels$AUC),]</pre>
```

```
tail(logisticModels)
                            Formula Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8
##
        Variables
## 25
                3 Y \sim X1 + X6 + X9
                                                             0
                                                                        0
                                                                             0
                                       Х1
                                            Х6
                                                 Х9
## 69
                3 Y \sim X1 + X9 + X6
                                       Х1
                                            Х9
                                                 Х6
                                                        0
                                                             0
                                                                   0
                                                                        0
                                                                             0
## 241
                3 Y \sim X6 + X1 + X9
                                       Х6
                                            Х1
                                                 Х9
                                                        0
                                                             0
                                                                  0
                                                                        0
                                                                             0
## 305
                3 Y \sim X6 + X9 + X1
                                       Х6
                                            Х9
                                                 Х1
                                                        0
                                                             0
                                                                  0
                                                                        0
                                                                             0
                                                 Х6
                                                                        0
                                                                             0
## 1081
                3 Y \sim X9 + X1 + X6
                                       Х9
                                            Х1
                                                        0
                                                             0
                                                                  0
## 1109
                3 Y \sim X9 + X6 + X1
                                       Х9
                                            Х6
                                                 X1
                                                        0
                                                             0
                                                                        0
                                                                             0
##
        Var9 Var10
                          AUC P < 0.05
## 25
                 0 0.7289305
           0
                                      0
## 69
           0
                 0 0.7289305
                                      0
## 241
                 0 0.7289305
                                      0
           0
## 305
           0
                 0 0.7289305
                                      0
           0
                                      0
## 1081
                 0 0.7289305
## 1109
           0
                 0 0.7289305
                                      0
fit <- glm(default.payment.next.month~LIMIT_BAL+PAY_0+PAY_5,data = train.data,family = binomial("logit"
time4 <- system.time(pred_log <- predict(fit,newdata = as.data.frame(test.data[,-ncol(test.data)]),type
pred_log <- ifelse(pred_log>0.5,1,0)
err_log <- mean(pred_log!=test.data[,ncol(test.data)])</pre>
cat("error:",err_log,"\n")
## error: 0.1918333
cat("time:",time4)
```

Model 5: Neural Network

time: 0.03 0 0.04 NA NA

```
options(warn = -1)
# This is required for the nnet package
dataTestingSample$Y <- as.factor(dataTestingSample$Y)</pre>
# Plug in everything to a neural network
FORMULA <- logisticModels[nrow(logisticModels), "Formula"]</pre>
MODEL <- nnet(as.formula(FORMULA), data=dataTrainingSample, size = 2, rang = 0.1,decay = 5e-4, maxit =
## # weights: 11
## initial value 1388.647330
## iter 10 value 1046.756065
## final value 1046.750403
## converged
time5 <- system.time(dataTestingSample$PREDICTION <- predict(MODEL, dataTestingSample[,-which(colnames(
dataTestingSample$PREDICTION[dataTestingSample$PREDICTION>0.5]<-1
dataTestingSample$PREDICTION[dataTestingSample$PREDICTION<=0.5]<-0
#dataTestingSample$PREDICTION == dataTestingSample$Y
err_nn <- sum(dataTestingSample$PREDICTION != dataTestingSample$Y)/nrow(dataTestingSample)
cat("error:",err_nn,"\n")
## error: 0.2216667
```

cat("time:",time5)

time: 0.04 0 0.04 NA NA

 $Reference: \ https://gist.githubusercontent.com/Peque/41a9e20d6687f2f3108d/raw/85e14f3a292e126f1454864427e3a189c2fe33f3/nnet_plot_update.r$

Shiny App

Homepage

Introduction – Read Me

Algorithms Evaluation – Algorithms Introductions

Algorithms Evaluation

Multiple Predictions

Note: User can upload a csv data with a certain format (based on the tutorial given in the Shiny App), we can provide the prediction results.

Data uploading page and tutorial

Show the table uploaded by user

Show the prediction results

Individual prediction

Note: User can fulfill the information of a customer, we will give out the prediction result for this customer based on the information given.

