Implementation of Lexical Analysis

CS143

Lecture 4

Tips on Building Large Systems

KISS (Keep It Simple, Stupid!)

Don't optimize prematurely

Design systems that can be tested

 It is easier to modify a working system than to get a system working

Outline

Specifying lexical structure using regular expressions

- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions

Notation

There is variation in regular expression notation

```
• At least one A: A^+ \equiv AA^*
```

• Union:
$$A + B \equiv A \mid B$$

• Option:
$$A + \varepsilon \equiv A$$
?

• Range:
$$a'+b'+...+z' \equiv [a-z]$$

Excluded range:

complement of
$$[a-z] \equiv [^a-z]$$

Lexical Specification → **Regex in five steps**

- 1. Write a regex for each token
 - Number = digit +
 - Keyword = 'if' + 'else' + ...
 - Identifier = letter (letter + digit)*
 - OpenPar = '('
 - •

Lexical Specification → **Regex in five steps**

2. Construct R, matching all lexemes for all tokens

$$R = Keyword + Identifier + Number + ...$$

= $R_1 + R_2 + ...$

(This step is done automatically by tools like flex)

Lexical Specification → **Regex in five steps**

3. Let input be $x_1...x_n$ For $1 \le i \le n$ check $x_1...x_i \in L(R)$

4. If success, then we know that

$$X_1...X_i \in L(R_i)$$
 for some j

5. Take $x_1...x_i$ as token, and go to (3) for next token.

Ambiguity 1

There are ambiguities in the algorithm

- How much input is used? What if
 - $X_1...X_i \in L(R)$ and also
 - $X_1...X_K \in L(R)$

- Rule: Pick longest possible string in L(R)
 - Pick k if k > i
 - The "maximal munch"

Ambiguity 2

- Which token is used? What if
 - $X_1...X_i \in L(R_i)$ and also
 - $X_1 \dots X_i \in L(R_k)$

- Rule: use rule listed first
 - Pick j if j < k
 - E.g., treat "if" as a keyword, not an identifier

Error Handling

- What if No rule matches a prefix of input?
- Problem: Can't just get stuck
- Solution:

Error Handling

- What if No rule matches a prefix of input?
- Problem: Can't just get stuck ...
- Solution:
 - Write a rule or regex for matching all "bad" strings
 - Put it last (lowest priority)

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve
 - To handle errors
- Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 sol: [matches longest possible and highest priority]
 - To handle errors
- Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 sol: [matches longest possible and highest priority]
 - To handle errors
 sol: [define a regex for all erroneous or bad string]

- Regular expressions = specification
- Finite automata = implementation

- A finite automaton consists of
 - —An input alphabet ∑
 - A finite set of states S
 - A start state n
 - —A set of accepting(final) states F ⊆ S
 - —A set of transitions state → input state

Transition

$$s_1 \rightarrow a s_2$$

Transition

$$s_1 \rightarrow a s_2$$

Is read

In state s₁ on input "a" go to state s₂

Transition

$$s_1 \rightarrow a s_2$$

Is read
 In state s₁ on input "a" go to state s₂

If end of input and in accepting state => accept

Transition

$$s_1 \rightarrow a s_2$$

Is read
 In state s₁ on input "a" go to state s₂

If end of input and in accepting state => accept

Otherwise => reject

Finite Automata State Graphs

A state

The start state

An accepting state

A transition

A finite automaton that accepts only "1"

A finite automaton that accepts only "1"

Accept

State	Input
Α	^1
В	1^

A finite automaton that accepts only "1"

Reject

State	Input
Α	^0

A finite automaton that accepts only "1"

Another Simple Example

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: {0,1}

Another Simple Example

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: {0,1}

And Another Example

- Alphabet {0,1}
- What language does this recognize?

Epsilon Moves in NFAs

• Another kind of transition: ε-moves

Machine can move from state A to state B without reading input

Only exist in NFAs

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - Exactly one transition per input per state
 - -No ε-moves
- Nondeterministic Finite Automata (NFA)
 - Can have zero, one, or multiple transitions for one input in a given state
 - —Can have ε-moves

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - —Whether to make ε-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

An NFA can get into multiple states

State

Rule: NFA accepts if it can get to a final state

Acceptance of NFAs

An NFA can get into multiple states

• State: {A} {A,B} {A,B,C}

Rule: NFA accepts if it can get to a final state

NFA vs. DFA (1)

 NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are faster to execute
 - There are no choices to consider

NFA vs. DFA (2)

For a given language NFA can be simpler than DFA

DFA can be exponentially larger than NFA

Convert Regular Expressions to Finite Automata

High-level sketch

Convert Regular Expressions to NFA (1)

- For each kind of regex, define an equivalent NFA
 - Notation: NFA for regex M

• For ε

For input a

Convert Regular Expressions to NFA (2)

For AB

• For A + B

Convert Regular Expressions to NFA (3)

• For **A***

Example of RegExp to NFA conversion

Consider the regular expression

$$(1+0)*1$$

The NFA is

NFA to DFA. Remark

An NFA may be in many states at any time

How many different states?

 If there are N states, the NFA must be in some subset of those N states

NFA vs. DFA (2)

For a given language NFA can be simpler than DFA

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbol"
 - For every transition $S_i \rightarrow a S_k$ define T[i,a] = k

Table Implementation of a DFA

Table Implementation of a DFA

	0	1
S	Т	U
Т	Т	U
J	Т	U

Implementation (Cont.)

 NFA -> DFA conversion is at the heart of tools such as flex

But, DFAs can be huge

 In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations