11/04/2023 Evening

Corporate Office: Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Memory Based Answers & Solutions for

Time : 3 hrs. M.M. : 300

JEE (Main)-2023 (Online) Phase-2

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) The Test Booklet consists of 90 questions. The maximum marks are 300.
- (3) There are **three** parts in the question paper consisting of **Physics, Chemistry** and **Mathematics** having 30 questions in each part of equal weightage. Each part (subject) has two sections.
 - (i) **Section-A:** This section contains 20 multiple choice questions which have only one correct answer. Each question carries **4 marks** for correct answer and **-1 mark** for wrong answer.
 - (ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and -1 mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- Density (p) of a body depends on the force applied (F), its speed (v) and time of motion (t) by the relation $\rho = KF^a v^b t^c$, where K is a dimensionless constant. Then
 - (1) a = 1, b = -4, c = -2
 - (2) a = 2, b = -4, c = -1
 - (3) a = -1, b = -4, c = 2
 - (4) a = 1, b = 4, c = -2

Answer (1)

Sol.
$$[ML^{-3}] = [MLT^{-2}]^a[LT^{-1}]^b[T]^c$$

= $[M^aL^{a+b}T^{-2a-b+c}]$

$$a = 1$$
,

$$a + b = -3$$
,

$$\Rightarrow b = -4$$
.

also
$$-2a - b + c = 0$$

$$c = -2$$

- In which of the following process, the internal 2. energy of gas remains constant.
 - (1) Isothermal
- (2) Isochoric
- (3) Isobaric
- (4) Adiabatic

Answer (1)

Sol. $T = \text{constant} \Rightarrow U = \text{constant}$

- A particle is projected at an angle of 30° with ground with speed 40 m/s. The speed of particle after two seconds is (use $g = 10 \text{ m/s}^2$)
 - (1) $20\sqrt{2}$ m/s
- (2) $20\sqrt{3}$ m/s
- (3) 20 m/s
- (4) $10\sqrt{3}$ m/s

Answer (2)

Sol. At t = 2 particle is at maximum height moving with 40cos30° m/s.

- Potential at the surface of a uniformly charged nonconducting sphere is V. Then the potential at its centre is
 - (1) 0

- (3) 2V

Answer (4)

Sol.
$$V = \frac{KQ}{2R^3} (3R^2 - r^2)$$
 at $r = R \Rightarrow V = \left(\frac{KQ}{R}\right)$

at
$$r = R \Rightarrow V = \left(\frac{KQ}{R}\right)^{-1}$$

at
$$r = 0$$
, $V_0 = \frac{3KQ}{2R} = \left(\frac{3V}{2}\right)$

- If $\vec{A} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ and $\vec{A} \vec{B} = 2\hat{j}$, then find $|\vec{B}|$.
 - (1) 3

(2) $3\sqrt{3}$

(3) 2

(4) $\sqrt{3}$

Answer (1)

Sol.
$$(2\hat{i} + 3\hat{j} + 2\hat{k}) - \vec{B} = 2\hat{j}$$

$$\Rightarrow \vec{B} = 2\hat{i} + \hat{j} + 2\hat{k}$$

$$\Rightarrow |\vec{B}| = 3$$

The resultant gate is 6.

- (1) NAND
- (2) NOR
- (3) OR
- (4) AND

Answer (4)

Sol.
$$(A+B)$$
 $(A\cdot B) = (A\cdot AB) + B\cdot (AB)$

$$= AB + AB$$

= (AB)

For the given circuit diagram, find the current *I*.

- (1) $\frac{5}{16}$ A
- (2) $\frac{5}{48}$ A
- (3) $\frac{5}{12}$ A
- (4) $\frac{1}{16}$ A

Answer (3)

Sol.
$$i_{\text{battery}} = \frac{10}{2} = 5 \text{ A}$$

$$I = i_{\text{battery}} \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{2} = \frac{5}{12} \text{ A}$$

- 8. If a nucleus is divided in ratio of 1: 21/3, then find ratio of velocity of the parts is
 - (1) 2

- $(2) 2^{1/3}$
- $(3) 2^{2/3}$
- $(4) 2^{-1/3}$

Answer (2)

Sol. From conservation of momentum,

$$m_0 \vec{v}_1 + 2^{1/3} m_0 \vec{v}_2 = 0$$

$$\Rightarrow \left| \frac{\vec{v}_1}{\vec{v}_2} \right| = 2^{1/3}$$

If electric field (\vec{E}) at an instant is $6.6\hat{j}$ N/C and the EM wave is propagating along positive x-direction then \vec{B} at that instant is given by

(1)
$$2.2 \times 10^{-8} \hat{k} \text{ T}$$

(2)
$$-2.2 \times 10^{-8} \hat{k} \text{ T}$$

(3)
$$-0.5 \times 10^{-8} \hat{k} \text{ T}$$
 (4) $19.8 \times 10^{8} \hat{k} \text{ T}$

(4)
$$19.8 \times 10^8 \hat{k}$$
 T

Answer (1)

Sol.
$$\left| \vec{E} \right| = C \left| \vec{B} \right|$$

$$\left| \vec{B} \right| = \frac{6.6}{3 \times 10^8} = 2.2 \times 10^{-8} \text{ T}$$

Also
$$\hat{E} \times \hat{B} = \hat{C}$$

10. Find average speed of N₂ at 27°C.

- (1) 476 m/s
- (2) 470 m/s
- (3) 480 m/s
- (4) 490 m/s

Answer (1)

Sol.
$$\overline{v} = \sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8 \times 8.314 \times 300}{3.14 \times 28 \times 10^{-3}}} = 476 \text{ m/s}$$

- 11. A charge particle is projected inside along the axis of long solenoid, then
 - (a) Path will be straight line
 - (b) There is no effect of magnetic field on charge
 - (c) Path will be parabolic
 - (d) Path will be circular
 - (1) a, d
- (2) a, b
- (3) b, d
- (4) a, b, d

Answer (2)

Sol.
$$\vec{F} = q\vec{v} \times \vec{B} = 0$$

- 12. Six identical small liquid drops are mixed together to form a bigger drop. The terminal velocity of bigger drop if terminal velocity of small drop is 10 m/s, will be
 - (1) $10 \times (6)^{\frac{1}{3}}$ m/s (2) $10 \times (6)^{\frac{2}{3}}$ m/s
 - (3) $5 \times (3)^{\frac{2}{3}}$ m/s (4) $10 \times (6)^3$ m/s

Answer (2)

Sol.
$$R = 6^{1/3}r$$

Also,
$$\frac{v_b}{v_s} = \frac{R^2}{r^2}$$
 (:: $v_T \propto (\text{Radius})^2$)

$$V_b = 10 \times (6)^{2/3}$$

13. A parallel plate capacitor C connected with a battery of voltage V_0 . A close gaussian surface is shown by dotted boundary as shown. The electric flux through the surface is

Answer (2)

Sol.
$$\phi = \frac{Q}{\epsilon_0} = \frac{CV_0}{\epsilon_0}$$

- 14. A satellite is moving around earth surface. How much minimum speed should be increased so that it escapes from earth surface? (g = acceleration due to gravity, R = radius of earth)
 - (1) $2\sqrt{gR}$
- (2) $(\sqrt{2}-1)\sqrt{gR}$
- (3) $\sqrt{\frac{gR}{2}}$ (4) $(\sqrt{3}-1)\sqrt{gR}$

Answer (2)

Sol.
$$v_{\text{circular}} = \sqrt{\frac{GM}{R}} = \sqrt{gR}$$
; $\Delta v = (\sqrt{2} - 1)\sqrt{gR}$

$$v_{\text{escape}} = \sqrt{\frac{2GM}{R}} = \sqrt{2gR}$$

- 15. A: Moving magnet in conducting pipe slows down.
 - R: Because eddy current is formed.
 - (1) A is correct, R is wrong
 - (2) A and R both are wrong
 - (3) A and R both are correct
 - (4) A is wrong, R is correct

Answer (3)

- Sol. Moving magnet in conducting pipe causes change in flux and hence induced emf. This emf causes eddy current in conducting pipe in such a way that it tries to oppose the change in flux, therefore magnet slows down.
- A source of sound is moving away from a stationary observer with constant velocity 40 m/s. Find frequency heard by observer, if original frequency of source is 400 Hz and speed of sound in air is 360 m/s
 - (1) 330 Hz
- (2) 320 Hz
- (3) 360 Hz
- (4) 280 Hz

Answer (3)

Sol.
$$f = 400 \left(\frac{360}{360 + 40} \right) = 360 \text{ Hz}$$

17. Find emf induces across the faces of given cube.

- (1) 2*V*
- (3) 8V

(2) 4*V* (4) 6*V*

Answer (1)

Sol. $\epsilon_{ind} = Bv\ell$

$$\varepsilon_{\text{ind}} = 1(8)(0.25)$$

 $\varepsilon_{ind} = 2 \text{ volt}$

- 18.
- 19.
- 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. A body is rotating with kinetic energy *E*. If angular velocity of body is increased to three times of initial angular velocity then kinetic energy becomes *nE*. Find *n*.

Answer (9)

Sol. K.E. =
$$\frac{1}{2}I\omega^2 = E$$

$$E_{\rm f} = \frac{1}{2}I(3\omega)^2 = 9 \times \left(\frac{1}{2}I\omega^2\right)$$

$$E_f = 9E$$

22. Find power delivered by *F* at *t* = 10 s. Body start from rest.

Answer (30)

- **Sol.** $F 0.5 \text{ g sin} 30^{\circ} = 0.5 \text{ } a \Rightarrow F = 0.5 + 2.5 = 3 \text{ N}$ $v_{10} = u + at \Rightarrow v_{10} = 0 + 1(10) = 10 \text{ m/s}$ $P_{10} = Fv = 30 \text{ w}$
- 23. A ray of light is incident on a plane mirror as shown in figure. Find the deviation of ray (in degree and clockwise direction).

Answer (240)

Sol. $\delta = 180^{\circ} + 60^{\circ} = 240^{\circ}$ (clockwise)

24. Proton and electrons have equal kinetic energy, the ratio of de Broglie wavelength of proton and electron is $\frac{1}{x}$. Find x. (Mass of proton = 1849 times mass of electron)

Answer (43)

Sol.
$$P = \sqrt{2Km}$$

$$\lambda = \frac{h}{P}$$

$$\frac{\lambda_p}{\lambda_e} = \frac{P_e}{P_p} = \sqrt{\frac{2Km_e}{2Km_p}} = \sqrt{\frac{m_e}{m_p}} = \sqrt{\frac{1}{1849}} = \frac{1}{43}$$

25. Energy of hydrogen in ground state is -13.6 eV. The energy of He⁺ in first exited state is -13.6x. Find the value of x.

Answer (1)

Sol. For He+

$$E = \frac{-13.6Z^2}{2^2} = \frac{-13.6 \times 4}{4} = -13.6 \text{ eV}$$

- 26.
- 27.
- 28.
- 29.
- 30.

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 1. Which of the following has minimum boiling point?
 - (1) Na

(2) K

(3) Rb

(4) Cs

Answer (4)

- **Sol.** Cs has minimum boiling point as boiling point of alkali metals decreases down the group.
- Which of the following has maximum number of l.p. at central atom?
 - (1) CIO_3^-
- (2) SF₄
- (3) XeF₄
- (4) I_3^-

Answer (4)

Sol.

From the structures of the given species, it can be clearly seen that I_3^- has maximum number of lone pairs at central atom

Statement-1: Sulphides are converted into oxide first.

Statement-2: Because oxides can be reduced easily.

- (1) Only 1st is correct
- (2) Only 2nd is correct
- (3) Both are correct
- (4) Both are incorrect

Answer (3)

- **Sol.** Sulphide ores are roasted for conversion to oxides before reduction. Oxides can be easily reduced as compared to sulphides.
- 4. Red ppt. by Benedict solution is
 - (1) Glucose
 - (2) RNA
 - (3) DNA
 - (4) Sucrose

Answer (1)

Sol. Benedict solution oxidises aldoses and ketoses to gluconic acid and itself gets reduced to red ppt. of Cu₂O.

Glucose + Benedict solution →

DNA, RNA and Sucrose do not react with Benedict solution.

- 5. $\left[\text{Fe} \left(\text{H}_2 \text{O} \right)_6 \right]^{+3}$, $\left[\text{Fe} \left(\text{CN} \right)_6 \right]^{-3}$ magnetic spin only magnetic moment is respectively
 - (1) 8.87 and 6.92
- (2) 5.98 and 1.732
- (3) 6.92 and 6.92
- (4) 3.87 and 1.732

Answer (2)

Sol. Both complexes have d^5 configuration

$$\left[\text{Fe} \left(\text{H}_{2} \text{O} \right)_{6} \right]^{+3} \rightarrow \text{ 5 unpaired electrons}$$

$$\mu = \sqrt{35} \, \text{B.M.}$$

$$\lceil \text{Fe}(\text{CN})_6 \rceil^{-3} \rightarrow 1 \text{ unpaired electron}$$

$$\mu = \sqrt{3} \, \text{B. M.}$$

- Statement 1 : Nylon-6 is made by Caprolactum
 Statement 2 : LDP is made by TiCl₄ & Al(Et)₃
 - (1) Only 1st is correct
- (2) Only 2nd is correct
- (3) Both are correct
- (4) Both are incorrect

Answer (1)

- **Sol.** TiCl₄ + Al(Et)₃ is used as a catalyst in preparation HDP
- 7. Consider the following change:

$$\left[\text{NiBr}_2 \text{Cl}_2 \right]^{2-} \longrightarrow \left[\text{PtCl}_2 \text{Br}_2 \right]^{2-}$$

During the above change, which of the following properties does not change?

- (1) Geometrical isomerism
- (2) Structure
- (3) Optical activity
- (4) Splitting energy

Answer (3)

Sol. $\left[\text{NiBr}_2 \text{Cl}_2 \right]^{2-} \longrightarrow \text{This complex species is}$ tetrahedral as $\text{Br}^{\ominus} \& \text{Cl}^{\ominus}$ are weak field ligands.

 $[PtBr_2Cl_2]^{2-}$ As Pt belongs to 5d series, this complex species is square planar.

Splitting energy will be different as central atom is different.

Both the complex species are optically inactive.

 $\left[\mathrm{NiBr_2Cl_2}\right]^{2-}, \text{ being tetrahedral does not show G.I.}$

 $\left[\text{PtBr}_2 \text{Cl}_2 \right]^{2-}$ shows two G.I.

8. $A \xrightarrow{K} B$

Follows first order kinetics w.r.t. A and B, Both i.e. $r = K[A]^{1}[B]^{1}$

r	[A]	[B]
20	0.1	0.5
(X)	0.4	0.5
40	(0.8)	(Y)

Find out "K" and "Y"

- (1) 80, 2
- (2) 80, 1
- (3) 80, 0.125
- (4) 40, 0.125

Answer (3)

Sol. [A] : 4 times \Rightarrow rate 4 times

$$\Rightarrow X = 80$$

9.
$$\frac{\text{NaNO}_2}{\text{HCI}} \times \frac{\text{HNO}_3}{\text{HOO}_3} \times \frac{(\text{NH}_4)_2 \text{S}}{\text{major}} Z$$

Compound Z is

Answer (2)

Sol.
$$NaNO_2$$
HCI or HNO_2
 X
 NO_2
 OH
 OH
 $(NH_4)_2S$
 H_2N
 OH
 OH

- 10. What is the chemical formula of freon gas?
 - (1) $C_2CI_2F_4$
- (2) $C_2F_2H_4$
- (3) CHF₃
- (4) CCI₂F₂

Answer (4)

Sol. The chemical formula of freon gas is CCl₂F₂.

- 11. 2 gm of x is present in 1 mole of H_2O . Find the mass % of x.
 - (1) 10%
- (2) 20%
- (3) 5%
- (4) 7%

Answer (1)

Sol. Mass % of $x = \frac{2}{20} \times 100 = 10$

12. Assertion: CI $CH_3 \xrightarrow[\Lambda_2 H_4/KOH]{} CH_3$

- Assertion and Reason both are correct and Reason is correct explanation of Assertion
- (2) Assertion and Reason both are correct but the Reason is not correct explanation of Assertion
- (3) Assertion and Reason both are incorrect
- (4) Assertion is incorrect and reason is correct statement

Answer (4)

Because heating in the presence of base results in elimination

- 13. Glucose is added in 100 gm of water. Lowering in vapor pressure is 0.2 mm Hg. Vapour pressure of pure water is 54.2 mm Hg. Then weight of glucose is
 - (1) 3.70 gm
- (2) 4.92 gm
- (3) 6.73 gm
- (4) 8.74 gm

Answer (1)

$$\frac{0.2}{54} = \frac{n_{\text{glucose}}}{(100/18)}$$

$$n_{\rm glucose} = \frac{0.2}{54} \times \frac{100}{18}$$

Mass of glucose =
$$\frac{0.2}{54} \times \frac{100}{18} \times 180 = 3.70 \text{ gm}$$

 Which of the following will not give precipitate with AqNO₃(aq.)

Answer (2)

Sol. Compounds which result in the formation of stable carbocation intermediate will give precipitate with aq. AgNO₃

$$\xrightarrow{\text{Br}} \xrightarrow{\text{AgNO}_3(\text{aq})} \xrightarrow{\text{Wery unstable}}$$

Benzylic carbocation (stablized by resonance)

- 15. Least stable Hydride is
 - (1) HF
- (2) LiH
- (3) BeH₂
- (4) NaH

Answer (3)

- **Sol.** BeH₂ is least stable as it has significant covalent character and is an electron-deficient hydride.
- 16. Find the root mean square velocity for Nitrogen gas at 27°C (in m/sec)
 - (1) 426
- (2) 517
- (3) 327
- (4) 646

Answer (2)

Sol.
$$v = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3 \times 8.314 \times 300}{28 \times 10^{-3}}}$$

= 516.95
= 517 m/sec

17. Assertion (A): Glycine react with Cl₂ in the presence of red P to give optically active compound Reason (R): Compound containing two chiral centres is always optically active

- (1) Both (A) & (R) are correct & (R) is the correct explanation of (A)
- (2) Both (A) & (R) are correct & (R) is not the correct explanation of (A)
- (3) (A) is correct, (R) is incorrect statement
- (4) (A) & (R), both are incorrect

Answer (3)

Sol.
$$H_2N - CH_2 - COOH \xrightarrow{RedP} H_2N - \overset{*}{C}H - COOH$$

Contain chiral centre

18.

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. How many of the following are intensive properties?
Gibbs free energy, E^o_{cell}, Volume, Molarity

Answer (02.00)

- **Sol.** E_{cell} and molarity are intensive properties. But Gibbs Free Energy and Volume are extensive properties.
- 22. 2-Chloro-1-butene HCl → Number of Isomeric product possible are?

(excluding rearranged products)

Answer (03.00)

(i)
$$C - C - C - C$$
 (2)

(ii)
$$C - C - C - C$$
 (1)

Total 3 Isomers

23. When 2 gm magnesium reacts with excess of HCl and H_2 gas is produced then the volume of H_2 gas produced is ____ \times 10⁻² liter at STP? (Nearest Integer)

Answer (187)

Sol. Mg + 2HCl
$$\rightarrow$$
 MgCl₂ + H₂(g)

$$\frac{2}{24} \times 22.4$$
= 1.87 L
 187×10^{-2} L

24.
$$P_4 + SOCl_2 \longrightarrow 4PCl_3 + x SO_2 + y S_2Cl_2$$

 $x + y is ______$

Answer (6)

Sol.
$$P_4 + 8SOCl_2 \longrightarrow 4PCl_3 + 4SO_2 + 2S_2Cl_2$$

 $x = 4$
 $y = 2$
 $x + y = 6$

- 25.
- 26.
- 27.
- 28.
- 29.
- 30.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- Using all he letters of the word MATHS, then rank of the word THAMS is
 - (1) 101
- (2) 102
- (3) 103
- (4) 104

Answer (3)

Sol. 5 2 1 3 4 THAMS

4 1 0 0 0 4! 3! 2! 1! 0!

- \therefore Rank = 4 × 4! + 1 × 3! + 1 = 96 + 6 + 1 = 103
- 2. $\begin{vmatrix} x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2 \end{vmatrix} = \frac{9}{8} (103x+81), \text{ then } \lambda \text{ and } \frac{\lambda}{3}$

- (1) $4x^2 + 24x 27 = 0$
- (2) $4x^2 24x + 27 = 0$
- (3) $4x^2 24x 27 = 0$
- $(4) 4x^2 + 24x + 27 = 0$

Answer (2)

Sol. Put x = 0 in the given equation

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda^2 \end{vmatrix} = \frac{9}{8} \times 81$$

$$\Rightarrow \lambda^3 = \frac{\left(3\right)^6}{2^3}$$

$$\lambda = \frac{9}{2}$$

$$\Rightarrow \frac{\lambda}{3} = \frac{3}{2}$$

$$x^2 - \left(\frac{9}{2} + \frac{3}{2}\right)x + \frac{9}{2} \times \frac{3}{2} = 0$$

$$4x^2 - 24x + 27 = 0$$

- $\frac{dy}{dx} + \frac{5}{x(1+x^5)}y = \frac{(1+x^5)^2}{x^7}$. If y(1) = 2, then the value of y(2) is
 - $\frac{693}{128}$ (1)
- $\frac{637}{128}$ (3)
- 627

Answer (1)

Sol. I.F.
$$= e^{\int \frac{5}{x(1+x^5)} dx} = e^{\int \frac{5x^{-6}}{(x^{-5}+1)} dx}$$

$$= e^{-\ln(x^{-5}+1)} = \frac{1}{x^{-5}+1} = \frac{x^5}{x^5+1}$$

$$y \cdot \frac{x^5}{x^5 + 1} = \int \frac{(1 + x^5)^2}{x^7} \cdot \frac{x^5}{(1 + x^5)} dx$$

$$=\int \frac{(1+x^5)}{x^2} dx$$

$$=\frac{-1}{x}+\frac{x^4}{4}+C$$

$$y(1) = 2 \implies 2\left(\frac{1}{2}\right) = -1 + \frac{1}{4} + C$$

$$\Rightarrow C = \frac{7}{4}$$

Put x = 2

$$\Rightarrow y\left(\frac{32}{33}\right) = \frac{-1}{2} + 4 + \frac{7}{4}$$

$$\Rightarrow y = \frac{693}{128}$$

The domain of the function $f(x) = \frac{1}{\sqrt{|x|^2 - 3[x] - 10}}$

- (1) $(-\infty, 3] \cup [6, \infty)$ (2) $(-\infty, -2) \cup (2, \infty)$
- (3) $(-\infty, 3] \cup [5, \infty)$
 - (4) $(-\infty, -2) \cup [6, \infty)$

Answer (4)

Sol. $[x]^2 - 3[x] - 10 > 0$

$$([x]+2)([x]-5)>0$$

$$[x] < -2 \text{ OR } [x] > 5$$

$$[x] \le -3 \text{ OR } [x] \ge 6$$

$$x < -2$$
 OR $x \ge 6$

$$x \in (-\infty, -2) \cup [6, \infty)$$

- 5. Let mean and variance of the data 1, 2, 4, 5, *x*, *y* are 5 and 10 respectively. Then mean deviation about the mean of data is
 - (1) $\frac{8}{3}$

(2) $\frac{7}{2}$

(3) $\frac{5}{6}$

(4) $\frac{7}{6}$

Answer (1)

Sol.
$$12 + x + y = 30 \implies x + y = 18$$

and
$$\frac{x^2 + y^2 + 46}{6} - (5)^2 = 10$$

$$\therefore \frac{x^2 + y^2 + 46}{6} = 10 + 25$$
$$x^2 + y^2 = 164$$

$$x = 10, y = 8$$

Now, mean deviation about mean

$$=\frac{4+3+1+0+5+3}{6}=\frac{16}{6}=\frac{8}{3}$$

- 6. If a + b + c + d = 11 (a, b, c, d > 0) then maximum value of $a^5b^3c^2d = 3750\beta$ the β is
 - (1) 90
- (2) 115
- (3) 120
- (4) 85

Answer (1)

Sol. Assume numbers to be

$$\frac{a}{5}, \frac{a}{5}, \frac{a}{5}, \frac{a}{5}, \frac{a}{5}, \frac{b}{5}, \frac{b}{3}, \frac{b}{3}, \frac{c}{2}, \frac{c}{2}, d.$$

Now apply AM ≥ GM

$$\frac{\frac{a}{5} + \frac{a}{5} + \frac{a}{5} + \frac{a}{5} + \frac{a}{5} + \frac{b}{5} + \frac{b}{3} + \frac{b}{3} + \frac{b}{3} + \frac{c}{2} + \frac{c}{2} + d}{11} \ge \left(\frac{a^5b^3c^2d}{5^53^32^21}\right)^{\frac{1}{11}}$$

$$a^5b^3c^2d \le 5^53^32^2$$

$$\therefore \text{ Max of } a^5b^3c^2d = 5^53^32^2 = 3,37,500$$
$$= 90 \times 3750$$

$$\Rightarrow \beta = 90$$

- 7. $\left(\frac{4x}{5} \frac{5}{2x}\right)^{2022}$ then (1011)th term from end is equal to (1024) times (1011)th term from starting then |x| is
 - (1) $\frac{16}{7}$
- (2) $\frac{16}{5}$
- (3) $\frac{5}{16}$
- (4) $\frac{8}{5}$

Answer (3)

Sol. 1011th term from end = 1011 term from beginning

$$\therefore r = 1010 \qquad \left(\frac{5}{2x} - \frac{4x}{5}\right)^{2022}$$

$$T_{1011} = {}^{2022}C_{1010} \left(\frac{5}{2x}\right)^{1012} \left(\frac{4x}{5}\right)^{1010}$$

1011 term from starting $\left(\frac{4x}{5} - \frac{5}{2x}\right)^{2022}$

$$T_{1011} = {}^{2022}C_{1010} \left(\frac{4x}{5}\right)^{1012} \left(\frac{5}{2x}\right)^{1010}$$

Now

$$^{2022}C_{1010}\left(\frac{5}{2x}\right)^{1012}\left(\frac{4x}{5}\right)^{1010} = 1024$$

$$^{2022}C_{1010} \left(\frac{4x}{5}\right)^{1012} \left(\frac{5}{2x}\right)^{1010}$$

$$\left(\frac{5\times5}{2x\times4x}\right)^2=2^{10}$$

$$\frac{25}{8x^2} = 2^5$$

$$x^2 = \frac{25}{2^8}$$

$$\left|x\right| = \frac{5}{2^4}$$

- 8. A circle with center at (2, 0) and maximum radius "r" is inscribed in the ellipse $\frac{x^2}{36} + \frac{y^2}{9} = 1$. The value
 - of 12*r*² is (1) 108
- (2) 172
- (3) 83
- (4) 92

Answer (4)

Sol. Equation of normal at $P(6\cos\theta, 3\sin\theta)$ is $(6\sec\theta)x - (3\csc\theta)y = 27$

It passes through (2, 0)

$$12 \sec \theta = 27$$

$$\cos\theta = \frac{4}{9}, \ \sin\theta = \frac{\sqrt{65}}{9}$$

$$P\left(\frac{8}{3}, \frac{\sqrt{65}}{3}\right)$$

$$r = \sqrt{\left(\frac{8}{3} - 2\right)^2 + \left(\frac{\sqrt{65}}{3}\right)^2} = \frac{\sqrt{69}}{3}$$

$$12r^2 = 12 \times \frac{69}{9} = 92$$

9. $f: R \to R$ be a continuous non-constant function

and
$$\int_{0}^{\pi/2} f(\sin 2x) . \sin x \, dx + \alpha \int_{0}^{\pi/4} f(\cos 2x) . \cos x \, dx = 0$$

then α is equal to

- (1) $\sqrt{2}$
- (2) $\sqrt{3}$
- (3) $-\sqrt{2}$
- (4) $-\sqrt{3}$

Answer (3)

Sol.
$$\int_{0}^{\pi/2} f(\sin 2x) \sin x \, dx + \alpha \int_{0}^{\pi/4} f(\cos 2x) . \cos x \, dx = 0$$

$$\int_{0}^{\pi/4} f(\sin 2x) \sin x \, dx + \int_{\pi/4}^{\pi/2} f(\sin 2x) \sin x \, dx + \alpha \int_{0}^{\pi/4} f(\cos 2x) \cos x \, dx = 0$$

Here
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$

Let
$$x = t + \frac{\pi}{4}$$

$$\Rightarrow \int_{0}^{\pi/4} f(\cos 2x) \sin\left(\frac{\pi}{4} - x\right) dx + \int_{0}^{\pi/4} f(\cos 2t) \sin\left(t + \frac{\pi}{4}\right) dx$$

$$+\alpha \int_{0}^{\pi/4} f(\cos 2x)$$

 $\cos x \, dx = 0$

$$\Rightarrow \int_{0}^{\pi/4} f(\cos 2x) \left\{ \sin \left(\frac{\pi}{4} - x \right) + \sin \left(x + \frac{\pi}{4} \right) + \alpha \cos x \right\} dx = 0$$

$$\Rightarrow \int_{0}^{\pi/4} f(\cos 2x) \left\{ \left(\left(\sqrt{2} + \alpha \right) \cos x \right) \right\} dx = 0$$

$$\therefore \quad \left(\sqrt{2} + \alpha\right) \int_{0}^{\pi/4} f(\cos 2x) . \cos x \, dx = 0$$

- \therefore $f(\cos 2x)$ and $\cos x$ is not zero in $\left(0, \frac{\pi}{4}\right)$.
- $\therefore \quad \sqrt{2} + \alpha = 0$
- $\Rightarrow \alpha = -\sqrt{2}$.
- 10. If the ratio of three consecutive terms is 1:3:5 in the expansion of $(1 + x)^{n+2}$. Then sum of consecutive terms is
 - (1) 41

(2) 64

(3) 63

(4) 43

Answer (3)

Sol.
$$^{n+2}C_{r-1}: {}^{n+2}C_r: {}^{n+2}C_{r+1}:: 1: 3: 5$$

$$\therefore \frac{(n+2)!}{(r-1)!(n-r+3)!} \times \frac{r!(n+2-r)!}{(n+2)!} = \frac{1}{3}$$

$$\Rightarrow \frac{r}{(n-r+3)} = \frac{1}{3} \Rightarrow n-r+3 = 3r$$

$$n = 4r - 3$$
 ...(

and
$$\frac{(n+1)!}{r!(n+2-r)!} \times \frac{(r+1)!(n-r+1)!}{(n+2)!} = \frac{3}{5}$$

$$\Rightarrow \frac{(r+1)}{n+2-r} = \frac{3}{5}$$

$$\Rightarrow$$
 5r + 5 = 3n + 6 - 3r

$$\Rightarrow 8r - 1 = 3n$$
 ...(ii)

By (i) and (ii)

$$4r-3=\frac{8r-1}{3}$$

$$\Rightarrow 4r = 8 \Rightarrow r = 2$$

$$n = 5$$

$$\therefore$$
 Sum = ${}^{7}C_{1} + {}^{7}C_{2} + {}^{7}C_{3} = 7 + 21 + 35 = 63$

- 11. The converse of the statement $(\sim p \land q) \Rightarrow r$ is
 - (1) $r \Rightarrow (\sim p \land q)$
- (2) $r \Rightarrow (p \lor \sim q)$
- (3) $\sim r \Rightarrow (p \lor \sim q)$
- $(4) \sim r \Rightarrow (\sim p \land a)$

Answer (1)

Sol. Converse of $(\sim p \land q) \Rightarrow r$ is

$$r \Rightarrow (\sim p \land q)$$

12. If \vec{a} , \vec{b} , \vec{c} , \vec{b} are coplanar reactor then value of $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ is

(1)
$$\left[\vec{b} \ \vec{d} \ \vec{c}\right] + \left[\vec{a} \ \vec{d} \ \vec{b}\right] + \left[\vec{a} \ \vec{d} \ \vec{c}\right]$$

(2)
$$\begin{bmatrix} \vec{b} \ \vec{d} \ \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{d} \end{bmatrix} + \begin{bmatrix} \vec{a} \ \vec{d} \ \vec{c} \end{bmatrix}$$

(3)
$$\begin{bmatrix} \vec{b} \ \vec{c} \ \vec{d} \end{bmatrix} + \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{d} \end{bmatrix} + \begin{bmatrix} \vec{a} \ \vec{d} \ \vec{c} \end{bmatrix}$$

(4)
$$\begin{bmatrix} \vec{b} \ \vec{c} \ \vec{d} \end{bmatrix} + \begin{bmatrix} \vec{a} \ \vec{d} \ \vec{b} \end{bmatrix} + \begin{bmatrix} \vec{a} \ \vec{d} \ \vec{c} \end{bmatrix}$$

Answer (3)

Sol.
$$\begin{bmatrix} \vec{b} - \vec{a} & \vec{c} - \vec{a} & \vec{d} - \vec{a} \end{bmatrix} = 0$$

$$(\vec{b}-\vec{a})\cdot((\vec{c}-\vec{a})\times(\vec{d}-\vec{a}))=0$$

$$(\vec{b} - \vec{a}) \cdot (\vec{c} \times \vec{d} - \vec{c} \times \vec{a} - \vec{a} \times \vec{d}) = 0$$

$$\begin{bmatrix} \vec{b} \ \vec{c} \ \vec{d} \end{bmatrix} - \begin{bmatrix} \vec{b} \ \vec{c} \ \vec{a} \end{bmatrix} - \begin{bmatrix} \vec{b} \ \vec{a} \ \vec{d} \end{bmatrix} - \begin{bmatrix} \vec{a} \ \vec{c} \ \vec{d} \end{bmatrix} = 0$$

$$\therefore \quad \left[\vec{a} \ \vec{b} \ \vec{c} \ \right] = \left[\vec{b} \ \vec{c} \ \vec{d} \right] - \left[\vec{b} \ \vec{a} \ \vec{d} \right] - \left[\vec{a} \cdot \vec{c} \ \vec{d} \right]$$

13. $f(x) = \begin{cases} e^{\min(x^2, \alpha x^3)}, & x \in (0, 1) \\ e^{[x-\ln x]}, & x \in [1, 2) \end{cases}$ then find $\int_0^2 x f(x) dx$

(1)
$$2e - \frac{1}{2}$$
 (2) $2e + \frac{1}{2}$

(2)
$$2e + \frac{1}{2}$$

(3)
$$4e - \frac{1}{2}$$

(4)
$$4e + \frac{1}{2}$$

Answer (1)

Sol. $f(x) = \begin{cases} e^{x^2}, & x \in (0, 1) \\ e, & x \in [1, 2) \end{cases}$

$$\int_{0}^{2} xf(x)dx = \int_{0}^{1} x \cdot e^{x^{2}} dx + \int_{1}^{2} x \times e \ dx$$

$$x^2 = t$$

$$2xdx = dt$$

$$=\frac{1}{2}\int\limits_{0}^{1}e^{t}dt+e\int\limits_{1}^{2}xdx$$

$$= \frac{1}{2} \left[e^t \right]_0^1 + e \left[\frac{x^2}{2} \right]_1^2$$

$$=\frac{1}{2}\times(e-1)+\frac{3}{2}e$$

$$=2e^{\frac{-1}{2}}$$

14. The area between the curve $y = 2x^2 + 1$ and tangent to it at (1, 3) and x + y = 1 is

- $(1) \frac{1}{15}$
- (2) $\frac{1}{60}$
- (3) $\frac{4}{15}$
- (4) $\frac{8}{3}$

Answer (3)

Sol.

 $\frac{y+3}{2} = 2x+1$ Tangent at (1, 3) y = 4x - 1

$$\therefore \text{ Area}
\int_{0}^{2/5} \left(2x^{2} + 1 - (1 - x)\right) dx + \int_{2/5}^{1} \left(2x^{2} + 1\right) - (4x - 1) dx
= \int_{0}^{2/5} \left(2x^{2} + x\right) dx + \int_{2/5}^{1} \left(2x^{2} - 4x + 2\right) dx
= \left(\frac{2x^{3}}{3} + \frac{x^{2}}{2}\right)_{0}^{2/5} + \left[\frac{2x^{3}}{3} - \frac{4x^{2}}{2} + 2x\right]_{2/5}^{1}
= \frac{92}{750} + \frac{144}{1000} = \frac{368 + 432}{3000} = \frac{800}{3000} = \frac{4}{15}$$

15. Angle between line $x = \frac{y-1}{2} = \frac{z-3}{r}$ and plane $x + \frac{y-1}{r} = \frac{z-3}{r}$ 2y + 3z + 4 = 0 is $\cos^{-1}\sqrt{\frac{5}{14}}$ then point of intersection of line and plane is

(1)
$$(-15, -23, -11)$$
 (2) $\left(\frac{15}{7}, \frac{-23}{7}, \frac{11}{7}\right)$

(3)
$$(15, 23, 11)$$
 $(4) \left(\frac{-15}{7}, \frac{-23}{7}, \frac{11}{7}\right)$

Answer (4)

Sol.
$$\sin \theta = \frac{1 + 4 + 3r}{\sqrt{14}\sqrt{5 + r^2}}$$

$$\cos^{-1}\frac{\sqrt{5}}{\sqrt{14}} = \sin^{-1}\frac{3}{\sqrt{14}} = \sin^{-1}\left(\frac{5+3r}{\sqrt{14}\sqrt{5+r^2}}\right)$$

$$\frac{3}{\sqrt{14}} = \frac{5+3r}{\left(\sqrt{5+r^2}\right)\sqrt{14}}$$

$$3\sqrt{5+r^2} = 5+3r$$

$$9(5 + r^2) = 25 + 9r^2 + 30r$$

$$\Rightarrow$$
 45 = 25 + 30r

$$\Rightarrow$$
 30 $r = 30$

$$r=\frac{2}{3}$$

Let the point on line is P(3k, 6k + 1, 2k + 3)

$$3k + 12k + 2 + 6k + 9 + 4 = 0$$

$$\Rightarrow$$
 21 $k = -15$

$$\Rightarrow k = -\frac{5}{7}$$

$$\therefore P\left(\frac{-15}{7}, \frac{-23}{7}, \frac{11}{7}\right)$$

16.

17.

18.

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. If $e^{8x} - e^{6x} - 3e^{4x} - e^{2x} + 1 = 0$, then number of solutions of above equation is

Answer (2)

Sol.
$$e^{8x} - e^{6x} - 3e^{4x} - e^{2x} + 1 = 0$$
,

$$\Rightarrow \left(e^{4x} + \frac{1}{e^{4x}}\right) - \left(e^{2x} + \frac{1}{e^{2x}}\right) = 0$$

$$\Rightarrow \left(e^{2x} + \frac{1}{e^{2x}}\right)^2 - \left(e^{2x} + \frac{1}{e^{2x}}\right) = 5$$

$$\Rightarrow t^2 - t - 5 = 0$$

$$t=\frac{1\pm\sqrt{1+20}}{2}$$

$$=\frac{1\pm\sqrt{21}}{2}$$

$$\frac{1-\sqrt{21}}{2}$$
 is rejected

$$\therefore t = \frac{1+\sqrt{21}}{2}$$

$$\Rightarrow$$
 $e^{2x} + \frac{1}{e^{2x}} = \frac{1 + \sqrt{21}}{2} \Rightarrow 2$ values of e^{2x} possible

∴ 2 real solution

22. If f(1) + f(2) = f(4) - 1 and a function from A to B is defined where $A = \{1, 2, 3, 4, 5\}$, $B = \{1, 2, 3, 4, 5, 6\}$. Find the numbers of function with such relation.

Answer (360)

Sol.
$$f(4) = f(1) + f(2) + 1$$

$$\Rightarrow$$
 $f(1) + f(2) + 1 \le 6$

$$f(1) + f(2) \le 5$$

Possible cases

$$1 \{1,2,3,4\} \rightarrow 4$$

$$2 \{1,2,3\} \rightarrow 3$$

$$3 \{1,2\} \rightarrow 2$$

$$4 \quad \{1\} \qquad \rightarrow \quad \frac{1}{10}$$

f(5), f(3) can be filled in 6 ways

Total functions = $10 \times 6 \times 6 = 360$

23. For a biased coin, the probability of getting head is $\frac{1}{4}$. It is tossed n times till we get head. Given a quadratic equation $64x^2 + 2nx + 1 = 0$. If the probability that the quadratic equation has no real roots is $\frac{P}{Q}$ (where P and Q are coprime), then the value of Q - P is

Answer (2187)

Sol.
$$(2n)^2 - 4 \times 64 < 0 \Rightarrow n < 8 \Rightarrow n \le 7$$

Required probability

$$= \frac{1}{4} + \frac{3}{4} \cdot \frac{1}{4} + \left(\frac{3}{4}\right)^2 \cdot \frac{1}{4} + \dots + \left(\frac{3}{4}\right)^6 \cdot \frac{1}{4}$$

$$=\frac{1}{4}\frac{\left(1-\left(\frac{3}{4}\right)^{7}\right)}{1-\frac{3}{4}}=\frac{4^{7}-3^{7}}{4^{7}}=\frac{P}{Q}$$

$$Q - P = 3^7 = 2187$$

24.

25.

26.

27.

28.

29.

30.