

planetmath.org

Math for the people, by the people.

compact groups are unimodular

 ${\bf Canonical\ name} \quad {\bf CompactGroups Are Unimodular}$

Date of creation 2013-03-22 17:58:23 Last modified on 2013-03-22 17:58:23 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 4

Author asteroid (17536)

Entry type Theorem
Classification msc 22C05
Classification msc 28C10

Theorem - If G is a compact Hausdorff topological group, then G is unimodular, i.e. it's left and right Haar measures coincide.

Proof:

Let Δ denote the modular function of G. It is enough to prove that Δ is constant and equal to 1, since this proves that every left Haar measure is right invariant.

Since Δ is continuous and G is compact, $\Delta(G)$ is a compact subset of \mathbb{R}^+ . In particular, $\Delta(G)$ is a bounded subset of \mathbb{R}^+ .

But if Δ is not identically one, then there is a $t \in G$ such that $\Delta(t) > 1$ (recall that Δ is an homomorphism). Hence, $\Delta(t^n) = \Delta(t)^n \longrightarrow \infty$ as $n \in \mathbb{N}$ increases, which is a contradiction since $\Delta(G)$ is bounded. \square