Análisis Matemático II.

Osorio Sarabio Alexis Fernando.

13 de septiembre de 2022

1. Primer Parcial.

Problema 1.1.

Sea X un conjunto. Pruebe que un conjunto $\mathcal{F} \subseteq 2^X$ es una σ -álgebra sobre X si y sólo si cumple las siguientes condiciones:

- a) $X \in \mathcal{F}$
- b) \mathcal{F} es cerrado bajo complementos, es decir, si $A \in \mathcal{F}$, entonces $X A \in \mathcal{F}$.
- c) \mathcal{F} es cerrado bajo uniones numerables.

Demostración:

Supongamos que \mathcal{F} es una σ -álgebra. Con esto ya tenemos que \mathcal{F} es cerrado bajo complementos y bajo uniones numerables, solo falta ver que $X \in \mathcal{F}$. Para mostrar esto, tomemos un elemetro $A \in \mathcal{F}$, luego $X - A \in \mathcal{F}$ y, como \mathcal{F} es cerrado bajo uniones, tenemos que $X = A \cup (X - A) \in \mathcal{F}$.

Ahora supongamos que las condiciones (a), (b) y (c) se cumplen. Ya tenemos que \mathcal{F} tiene identidad, que es X, y que es cerrado bajo uniones numerables, solo nos falta probar que es cerrado bajo la diferencia simetrica Δ y bajo la interseccion \cap . Sean $A, B \in \mathcal{F}$. Por el inciso (b) tenemos $X - A \in \mathcal{F}$ y $X - B \in \mathcal{F}$. Ahora, observemos que

$$X - A \cap B = (X - A) \cup (X - B) \in \mathcal{F}$$

Que junto con el inciso (b) resulta en $A \cap B \in \mathcal{F}$. De aqui tambien concluimos que \mathcal{F} es cerrado bajo la diferencia de conjuntos, puesto que $A - B = A \cap (X - B)$. Ahora, observando la definicion de diferencia simetrica

$$A \mathrel{\vartriangle} B = (A - B) \cup (B - A)$$

Tenemos que es resultado de operaciones cerradas en \mathcal{F} , luego $A \triangle B \in \mathcal{F}$. Con esto finalmente obtenemos lo deceado, \mathcal{F} es una σ -álgebra.

Sea X un conjunto no numerable y sea \mathcal{G} el conjunto de todos los subconjunto unipuntuales de X, es decir

$$\mathcal{G} := \{ \{t\} : t \in X \}$$

Describa la σ -álgebra generada por \mathcal{G} .

Solución: Primero denotemos a la sigma algebra generada por \mathcal{G} como $\sigma(\mathcal{G})$. Considere al conjunto

$$\mathcal{F} := \{ A \subseteq X : A \text{ es numerable o } X - A \text{ es numerable.} \}$$

Mostraremos que esta es la σ -álgebra que estamos buscando. Primero probemos que en principio \mathcal{F} es una sigma algebra.

- i. Tenemos que $X \in \mathcal{F}$ desde que $X X = \emptyset$
- ii. Tomemos un $A \in \mathcal{F}$, entonces ii.1 Si A es numerable, entonces X-A tiene complemento numerable, luego $X-A \in \mathcal{F}$. ii.1 Si A tiene complemento numerable, entonces X-A es numerable, luego $X-A \in \mathcal{F}$.
- iii. Sea $\{A_n\}_{n\in\mathbb{N}}$ una sucesión sobre \mathcal{F} . Sea $I:=\{i\in\mathbb{N}:A_i\text{ es numerable}\}$ y sea $K:=\{k\in\mathbb{N}:A_k\text{ tiene complemento numerable}\}$, entonces tenemos que $\cup_{i\in I}A_i$ es numerable y $X-\cup_{k\in K}A_k=\cap_{k\in K}(X-A_k)$ tambien es numerable, por lo cual $\cup_{i\in I}A_i$, $\cup_{k\in K}A_k\in\mathcal{F}$, luego

$$\bigcup_{n\in\mathbb{N}} A_n = \left(\bigcup_{i\in I} A_i\right) \cup \left(\bigcup_{k\in K} A_k\right) \in \mathcal{F}$$

Por i, ii, iii y por el problema (1.1) tenemos que \mathcal{F} es una σ - álgebra.

Claramente $\mathcal{G} \subseteq \mathcal{F}$, luego $\sigma(\mathcal{G}) \subseteq \mathcal{F}$. Veamos la otra contención. Sea \mathcal{H} una σ -álgebra que contenga a \mathcal{G} y tomemos $A \in \mathcal{F}$, entonces tenemos 2 posibilidades:

- I. A es numerable, por lo tanto $A = \bigcup_{k \in \mathbb{N}} \{t_k\}$ en donde cada $\{t_k\} \in \mathcal{G} \subseteq \mathcal{H}$, luego $A \in \mathcal{H}$.
- II. X-A es numerable, entonces, con un razonamiento similar al del inciso (I), tenemos que $(X-A) \in \mathcal{H}$, luego $A \in \mathcal{H}$

Por ser A arbitrario, tenemos que $\mathcal{F} \subseteq \mathcal{H}$, y como la misma \mathcal{H} fue una σ -álgebra que contiene a \mathcal{G} arbitraria se concluye que $\mathcal{F} \subseteq \sigma(\mathcal{G})$, con lo que obtenemos nuestro resultado.

$$\mathcal{F} = \sigma(\mathcal{G})$$

Describa el algebra de Borel cuando (X, τ) son los irracionales con la métrica heredada por \mathbb{R} .

Solución: Afirmamos que $\mathscr{B}(\mathbb{I})$ es generada por el conjunto $\mathcal{G} := \{(a, \infty) \cap \mathbb{I} : a \in \mathbb{R}\}$. A esta ultima σ -álgebra la denotaremos como $\sigma(\mathcal{G})$. Para ver las igualdades considere a $a, b \in \mathbb{R}$

1.
$$[b, \infty) \cap \mathbb{I} = \bigcap_{n \in \mathbb{N}} (b - \frac{1}{n}, \infty) \in \sigma(\mathcal{G})$$

2.
$$(a,b) \cap \mathbb{I} = (a,\infty) \cap \mathbb{I} \setminus [b,\infty) \cap \mathbb{I} \in \sigma(\mathcal{G})$$

3. Sea A un abierto en \mathbb{I} . Sabemos que A lo podemos representar como la union de una sucesión de intevalos de la forma $(a_n, b_n) \cap \mathbb{I}$, con $a_n, b_n \in \mathbb{R}$, por lo que $A \in \sigma(\mathcal{G})$.

Por (3) se tiene que $\sigma(\mathcal{G})$ contiene a la topologia τ de \mathbb{I} , pero $\mathscr{B}(\mathbb{I})$ es la mínima σ -álgebra con esta propiedad, por lo tanto $\mathscr{B}(\mathbb{I}) \subseteq \sigma(\mathcal{G})$. Por otra parte, $\mathscr{B}(\mathbb{I})$ es una σ -álgebra que contiene a \mathcal{G} , por lo cual $\sigma(\mathcal{G}) \subseteq \mathscr{B}(\mathbb{I})$, con lo que finalmente obtenemos nuestro resultado.

$$\mathscr{B}(\mathbb{I}) = \sigma(\mathcal{G})$$

Problema 1.4.

Demuestre que la σ -álgebra del eje real extendido se genera por los rayos de la forma $(a, \infty]$ con $a \in \mathbb{R}$.

Demostración: Denotemos como $\mathcal{G} := \{(a, \infty] : a \in \mathbb{R}\}$ y $\sigma(\mathcal{G})$ la σ -álgebra que genera. Observemos que $\sigma(\mathcal{G}) \subseteq \mathscr{B}(\overline{\mathbb{R}})$ desde el echo $\mathcal{G} \subseteq \mathscr{B}(\overline{\mathbb{R}})$. Ahora veremos la otra contención. Para esto considere a $a, b \in \mathbb{R}$.

$$i. [b, \infty) = \bigcap_{n \in \mathbb{N}} (b - \frac{1}{n}, \infty) \in \sigma(\mathcal{G})$$

$$ii. (a, b) = (a, \infty) \setminus [b, \infty) \in \sigma(\mathcal{G})$$

iii. Tomemos un $A\subseteq\overline{\mathbb{R}}$ abierto, entonces

- iii.1 Supongamos que el abierto tiene la forma $A = [-\infty, a)$ para algun $a \in \mathbb{R}$. Por (i) ya tenemos que $[a, \infty) \in \sigma(\mathcal{G})$, luego se tiene que $[-\infty, a) = [a, \infty]^C \in \sigma(\mathcal{G})$.
- iii.2 Ahora, si A es un abierto en $\overline{\mathbb{R}}$, entonces lo podemos expresar como la union de una sucesión de la forma (a_n, b_n) con $a_n, b_n \in \mathbb{R}$, luego $A \in \sigma(\mathcal{G})$.

El punto (iii) nos dice que todo abierto en $\overline{\mathbb{R}}$ esta en $\sigma(\mathcal{G})$, por lo tanto $\mathscr{B}(\overline{\mathbb{R}}) \subseteq \sigma(\mathcal{G})$, con lo que obtenemos nuestro resultado.

$$\mathscr{B}(\overline{\mathbb{R}}) = \sigma(\mathcal{G})$$

- a) Demostrar que la definición de medida interior de un conjunto $A \subseteq E$ no depende de la medida del cuadrado que contenga a A.
- b) Lo mismo es cierto para \mathbb{R}^n .

Demostración: Sean E_1 , E_2 rectangulos que contienen a A. Supongamos que $E_1 \subseteq E_2$. Probaremos que $m(E_1) - \mu^*(E_1 - A) = m(E_2) - \mu^*(E_2 - A)$.

Recordemos que $\mu^*(E_1 - A) = \inf\{\sum_k m(P_k) : E_1 - A \subseteq \bigcup_k P_k\}$. Por ser el infimo, dado $\epsilon > 0$, existe una sucesión $\{P_k\}$ en E_1 tal que

$$E_1 - A \subseteq \bigcup_k P_k \text{ y } \mu^*(E_1 - A) \le \sum_k m(P_k) < \mu^*(E_1 - A) + \epsilon$$

Ahora considere $\{Q_k\}$ sucesión en E_2 definida como $Q_k = P_k \cap E_2$, entonces tenemos que

$$\sum_{k} m(Q_k) \le \sum_{k} m(P_k) \quad y \quad \le E_2 - A \subseteq (E_2 - E_1) \cup \bigcup_{k} Q_k$$

 E_1 y E_2 son rectangulos, luego $E_2 - E_1$ es un conjunto elemental, luego podemos escribir $E_2 - E_1 = \bigcup_{i=1}^n R_i$ con R_i rectangulos disjuntos, por lo cual podemos escribir

$$E_2 - A \subseteq \left(\bigcup_{i=1}^n R_i\right) \cup \left(\bigcup_k Q_k\right)$$

Ademas, como $E_1 \subset E_2$, tenemos que $\sum_{i=1}^n R_i = \tilde{m}(E_2 - E_1) = m(E_2) - m(E_1)$. Con esto obtenemos lo siguiente

$$\mu^*(E_2 - A) \le \sum_k Q_k + m(E_2) - m(E_1)$$

$$\Rightarrow \mu^*(E_2 - A) + m(E_1) \le \sum_k Q_k + m(E_2) \le \sum_k m(P_k) + m(E_2) < \mu^*(E_1) + \epsilon + m(E_2)$$

$$\therefore \mu^*(E_2 - A) + m(E_1) \le \mu^*(E_1) + m(E_2)$$

La otra desigualdad se demuestra de manera similar, con lo cual obtenemos nuestro resultado.

En el caso de que $E_2 \nsubseteq E_1$ y $E_1 \nsubseteq E_2$, solo es necesario observar que $A \subseteq E_1 \cap E_2$, que tambien es un rectangulo, luego aplicamos la parte anterior y por transitividad obtenemos el resultado.

Ver si la medida $\mu_*(A)$ es equivalente a sup $\left\{\sum_k m(Q_k) : Q_k \text{ rectrangulo}, \bigcup_k Q_k \subseteq A.\right\}$

Respuesta: En lo general no. Para ver esto consideremos a la suceción $\{Q_k\}$ definida como

$$Q_k = \left[0, \frac{1}{k}\right] \times [0, 1]$$
 para todo $k \in \mathbb{N}$

Podemos observar que $\bigcup_k Q_k \subset [0,1] \times [0,1]$, pero mientras que $m([0,1] \times [0,1]) = 1$, por otro lado se tiene que

$$\sum_{k} m(Q_k) = \sum_{k} \frac{1}{k}$$

Que es una serie que diverge, lo cual contradice nuestra conjetura.

Agreguemosle una hipotesis extra; supongamos que los Q_k son disjuntos a pares. Mostraremos que con esta hipotesis la igualdad se cumple. Denotemos a

$$\alpha := \sup \left\{ \sum_{k} m(Q_k) : Q_k \text{ rectangulos disjuntos}, \cup_k Q_k \subseteq A \right\}$$

Recordemos que, por ser los Q_k rectangulos, tenemos que

$$\mu_*(\cup_k Q_k) = \sum_k m(Q_k) \dots (1)$$

Por otra parte

$$\bigcup_{k} Q_{k} \subseteq A \implies E - A \subseteq \bigcup_{k} Q_{k} \implies \mu^{*}(E - A) \le \mu^{*}(\bigcup_{k} Q_{k}) \implies 1 - \mu^{*}(\bigcup_{k} Q_{k}) \le 1 - \mu^{*}(E - A) \implies \mu_{*}(\bigcup_{k} Q_{k}) \le \mu_{*}(A)$$

Que por (1) tenemos que

$$\sum_{k} m(Q_k) \le \mu_*(A)$$

De donde se sigue que $\alpha \leq \mu_*(A)$. Por otro lado

$$\mu_*(A) = 1 - \mu^*(E - A) = 1 - \inf\{\sum_k m(Q_k) : E - A \subseteq \cup_k Q_k\} = 1 + \sup\{-\sum_k m(Q_k) : E - A \subseteq \cup_k Q_k\} = \sup\{\mu_*(E - \cup_k Q_k) : E - \cup_k Q_k \subset A\}$$

En particular, podemos decir que $E - \bigcup_k Q_k = P_k$, con P_k rectangulos disjuntos, pero entonces

$$\mu_*(E - \cup_k Q_k) = \mu_*(\cup_k P_k) = \sum_k m(P_k)$$

De donde, por la definicion de α , obtenemos

$$\mu_*(A) \le \alpha :: \mu_*(A) = \alpha$$

¿Puede dar un ejemplo donde $\mu_*(A) < \mu^*(A)$?

Respuesta: Concentremonos en la medida de Lebesgue. Definamos sobre $\mathbb R$ la realción \sim como:

$$x \sim y \iff x - y \in \mathbb{Q}$$

Esta es una relación de equivalencia puesto que

- i. $x-x=0\in\mathbb{Q}, \sim \text{es reflexiva}.$
- ii. Si $x-y \in \mathbb{Q}$, entonces $-(x-y)=y-x \in \mathbb{Q}$, \sim es simetrica.
- iii. Sean $x, y, z \in \mathbb{R}$ tales que $x \sim y$ y $y \sim z$, entonces existen $s, t \in \mathbb{Q}$ tales que x y = s y y z = t, luego $x z = (x y) + (y z) = s t \in \mathbb{Q}$, \sim es transitiva.

Notemos que cada clase de equivalencia tiene la forma $\mathbb{Q} + x$ para lagun $x \in \mathbb{R}$. Ahora, usando el axioma de elección podemos formar el conjunto E, subconjunto del (0,1), que contiene solo un representante de cada clase y solo contiene a dichos elementos, mostraremos que este conjunto no es lebesgue medible.

Sea $\{r_n\}$ una enumeración de los racionales en (-1,1) y para cada $n\in\mathbb{N}$ definamos $E_n:=E+r_n$. Observemos que

- (a) Los conjuntos E_n son disjuntos. En efecto, si $E_m \cap E_n \neq \emptyset$, entonces existen $e, e' \in E$ tales que $e + r_m = e' + r_n$ o equivalente $e - e' = r_n - r_m$ de donde se sigue $e \sim e'$, por lo cual e = e' y m = n.
- (b) $\cup_n E_n$ esta contenido en (-1, 2). Esto se sigue de que $E \subseteq (0, 1)$ y de que cada r_n esta contenido en (-1, 1).
- (c) $(0,1) \subseteq \bigcup_n E_n$. Tomemos $x \in (0,1)$ y sea $e \in E$ tal que $x \sim e$. Entonces x - e es un racional perteneciente a (-1,1), asi que tiene la forma de $x - e = r_n$ para algun $n \in \mathbb{N}$, luego $x = e + r_n \in E_n$ de donde se sigue nuestra afirmación.

Supongamos que E es medible, entonces cada E_n es medible y por (a), se tiene que

$$\lambda(\cup_n E_n) = \sum_n \lambda(E_n)$$

Mas aun, como λ es invariante ante traslaciones (vease problema 12), tenemos que $\lambda(E) = \lambda(E_n)$. Ahora, si $\lambda(E) = 0$, entonces $\lambda(\cup_n E_n) = 0$ que contradice a (c). Si $\lambda(E) > 0$, entonces $\lambda(\cup_n E_n) = \infty$ contradiciendo (b). Por lo tanto E no es medible. Como consecuencia se tiene que

$$\lambda_*(E) < \lambda^*(E)$$

Sea E el cuadrado unitario, probar que

- (a) Todo subconjunto abierto de E es medible.
- (b) Todo subconjunto cerrado de E es medible.
- (c) Todo conjunto formado por una cantidad contable de uniones, intersecciones y complementos de conjuntos abiertos o cerrados es medible.

Demostración: En esta ocasión d denotara la metrica inducida por la norma infinito.

(a) Tomemos $A \subset E$ abierto. Si $A = \emptyset$, entonces podemos verlo como $A = (a, a) \times (a, a)$, para algun $a \in [0, 1]$, luego A es medible, con medida cero.

Ahora supongamos que $A \neq \emptyset$. Como E es cerrado $A \neq E$, luego $E - A \neq \emptyset$. A es abierto, entonces para todo $x \in A$ la distancia d(x, E - A) > 0. Por otra parte $\mathbb{Q} \times \mathbb{Q} \cap E$ es denso en E, luego $\mathbb{Q} \times \mathbb{Q} \cap A$ es denso en A. Sea $\{q_n\}$ una enumeración de $\mathbb{Q} \times \mathbb{Q} \cap A$, entonces para todo $n \in \mathbb{N}$ $d(q_n, E - A) > 0$, que por el bien de la simplisidad a esta distancia la llamaremos d_n . Teniendo en cuenta lo anterior consideremos la familia de abiertos $\{Q_n\}$ definida como

$$Q_n = (q_n - d_n, q_n + d_n) \times (q_n - d_n, q_n + d_n)$$
 para todo $n \in \mathbb{N}$

Por la definición de la familia tenemos que $\bigcup_n Q_n \subseteq A$. Ahora tomemos $x \in A$. Entonces existe $\epsilon > 0$ tal que $d(x, E - A) = \epsilon$, pero $\mathbb{Q} \times \mathbb{Q} \cup A$ es denso en A, luego existe q_n tal que $d(x, q_n) < \epsilon/2$, luego $x \in Q_n$; como x fue arbitrario, se tiene que $A \subseteq \bigcup_n Q_n$.

$$A = \bigcup_{n} Q_n$$

Así que podemos ver a este abierto como una union numerable de rectangulos, que son conjuntos medibles, luego A es medible y como A fue un abierto arbitrario, obtenemos (a).

- (b) Sea $C \subseteq E$ cerrado, entonces E C es abierto y por el inciso (a) E C es medible. Como el sistema de conjuntos medibles forma un σ -anillo tenemos que E C tambien es medible.
- (c) Sea $B \subseteq E$ un conjunto formado por una cantidad a lo mas numerable de uniones, intersecciones y complementos de conjuntos abiertos o cerrados. Por (a) y (b), se Puede decir que B esta formado por una contidad a lo mas numerable de uniones, intersecciones y complementos de conjuntos medibles, por lo cual B tambien es medible.

Pruebe que el conjunto de los numeros racionales en el eje real es medible, con medida cero.

Prueba: Notemos que, cualquier conjunto $A \subseteq \mathbb{R}$ con $\lambda^*(A) = 0$ es medible. Esto es consecuencia inmediata de la desiguialdad $0 \le \lambda_*(A) \le \lambda^*(A)$. Ahora bien, para toda $t \in \mathbb{R}$ tenemos $\lambda^*(\{t\}) = 0$, luego $\{t\}$ es medible con $\lambda(\{t\}) = 0$. Sea $\{q_n\}$ una enumeración de los racionales en el eje real, entonces $\{q_n\}$ es medible para todo $n \in \mathbb{N}$. Más aun, como $\mathbb{Q} = \bigcup_n \{q_n\}$, entonces \mathbb{Q} es medible y

$$\lambda(\mathbb{Q}) = \sum_{n} \lambda(\{q_n\}) = 0$$

Problema 1.11

Pruebe que el conjunto de Cantor es medible, con medida cero.

Prueba: Denotemos como F al conjunto de Cantor y como F_n las respectivas particiones para formarlo. Sabemos que cada F_n es un conjunto elemental, ademas

Para todo
$$n \in \mathbb{N} \ \lambda(F_n) = \left(\frac{2}{3}\right)^n$$
 (1)

Para todo
$$n \in \mathbb{N}$$
 $F_{n+1} \subseteq F_n$ (2)

$$F = \bigcap_{n} F_{n} \tag{3}$$

Por (3) tenemos que el conjunto de Cantor es la intersección numerable de conjuntos elementales, por lo cual es medible. Más aun, (1) y (3) nos dicen que es la intersección de una suceción decresiente de conjuntos medibles, por lo tanto

$$\lambda(F) = \lambda(\cap_n F_n) = \lim_{n \to \infty} \lambda(F_n) = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$$

Problema 1.12

Pruebe que todo conjunto de medida positiva en el intervalo [0,1] contiene un par de puntos cuya distancia es un numero racional.

Prueba: Primero probaremos que λ es invariante ante traslaciones. Sea $T:\mathbb{R}\to\mathbb{R}$ función definida como

$$T(x) := x + t$$
 para alguna $t \in \mathbb{R}$

Ya tenemos que T es biyectiva y que conserva distancias. Veremos que T conserva intervalos, o mejor dicho, si I=(a,b) entonces T(I)=(a+t,b+t). Sea $I=(a,b)\subset\mathbb{R}$

$$y \in T(I)$$

$$\Leftrightarrow \exists x \in (a, b) \text{ tal que } y = x + t$$

$$\Leftrightarrow \exists x \in (a, b) \text{ tal que } y - t = x$$

$$\Leftrightarrow a < y - t < b$$

$$\Leftrightarrow a + t < y < b + t$$

$$\Leftrightarrow y \in (a + t, b + t)$$

$$(4)$$

Por lo tanto T(I) = (a + t, b + t). Con esto tambien podemos ver que

$$\lambda(a,b) = b - a = (b+t) - (a+t) = \lambda(T(a,b))$$

Para mostrar la invarianza ante traslaciones, debemos mostrar que $\lambda^*(A) = \lambda(T(A))$ para toda $A \subset \mathbb{R}$. Sea $\epsilon > 0$, entonces existe $\{Q_k\}$ sucesión de intervalos tal que

$$A \subseteq \bigcup_k Q_k \ \ y \ \ \lambda^*(A) \le \sum_k m(Q_k) < \lambda^*(A) + \epsilon$$

Por la contención mostrada tenemos que $T(A) \subseteq T(\bigcup_k Q_k) = \bigcup_k T(Q_k)$, asi que

$$\lambda^*(T(A)) \le \sum_k m(T(Q_k)) = \sum_k m(Q_k) < \lambda^*(A) + \epsilon$$

Luego, por ser ϵ arbitrario, se tiene que $\lambda^*(T(A)) \leq \lambda^*(A)$. Por otra parte, dado $\epsilon > 0$ existe $\{P_k\}$ sucesión de intervalos tal que

$$T(A) \subseteq \bigcup_k P_k \ \ y \ \ \lambda^*(T(A)) \le \sum_k m(P_k) < \lambda^*(T(A)) + \epsilon$$

T es biyectiva, entonces $A = T^{-1}T(A) \subseteq \bigcup_k T^{-1}(P_k)$, luego

$$\lambda^*(A) \le \sum_k \lambda^*(T^{-1}(P_k)) = \sum_k m(p_k) < \lambda^*(T(A)) + \epsilon$$

Por ser ϵ arbitrario, se tiene que $\lambda^*(A) \leq \lambda^*(T(A))$. Por lo tanto $\lambda^*(A) = \lambda^*(T(A))$. Ahora solo falta mostrar que la traslación de un conjunto medible es medible. Sea $A \subset \mathbb{R}$ medible, entonces existe $B \subset \mathbb{R}$ elemental tal que

$$\lambda^*(A\triangle B) < \epsilon$$

B es elemental, luego tiene la forma $B = \bigcup_{k=1}^{n} Q_k$ con Q_k intervalos. Ya demostramos que $T(Q_k)$ es un intervalo. Observe que

$$T(B) = T(\bigcup_{k=1}^{n} Q_k) = \bigcup_{k=1}^{n} T(Q_k)$$

T(B) es un conjunto elemental. Con esto tenemos que

$$\lambda^*(T(A)\triangle T(B)) = \lambda^*(T(A\triangle B)) = \lambda^*(A\triangle B) < \epsilon$$

Por lo tanto T(A) es medible y por nuestro resultado anterior tenemos que

$$\lambda(A) = \lambda(T(A))$$

Ahora demostraremos nuestro ejercicio. Sea $A \subseteq [0,1]$ medible con $\lambda(A) > 0$ Sea $\{q_n\}$ una enumeración de $\mathbb{Q} \cap [0,1]$. Para cada $n \in \mathbb{N}$ definamos

$$A_n = T_{q_n}(A) = A + q_n$$

Como ya demostramos, estos conjuntos son medibles con $\lambda(A_n) = \lambda(A)$. Sea $t \in A_n$, entonces existe $a \in A$ tal que $t = a + q_n$; como $a, q_n \in [0, 1]$, entonces tenemos que $t \in [0, 2]$, luego $A_n \subseteq [0, 2]$ para todo $n \in \mathbb{N}$, luego $\bigcup_n A_n \subseteq [0, 2]$, por lo tanto $\lambda(\bigcup_n A_n) \leq 2$. Supongamos que $\{A_n\}$ es una sucesión disjunta, entonces por definicion de medida tenemos que

$$\lambda(\cup_n A_n) = \sum_n \lambda(A_n) = \sum_n \lambda(A) = \infty$$

Lo cual no puede ser, luego existen $m, n \in \mathbb{N}$ tales que $A_m \cap A_n \leq \emptyset$. Sea $r \in A_m \cap A_n$, entonces existen $a_m \in A_m$ y $a_n \in A_n$ tales que $a_m + q_m = a_n + q_n$, luego

$$|a_m - a_n| = |q_n - q_m| \in \mathbb{Q}$$

Problema 1.13

Sea X un conjunto. Pongamos $\mathcal{F} := 2^X$ y definamos la función $\mu : \mathcal{F} \to [0, \infty]$ como

$$\mu(A) = \begin{cases} \infty & \text{si A es infinito.} \\ |A| & \text{si A es finito.} \end{cases}$$

Muestre que μ es una medida.

Demostración: Por hipotesis ya tenemos que μ es no negativa definida sobre $\mathcal{F}=2^X$ que es una σ -álgebra. Ademas

$$\mu(\emptyset) = |\emptyset| = 0$$

Solo falta ver que μ es aditiva. Sean $A_1, \ldots, A_n \in \mathcal{F}$ disjuntos, entonces tenemos dos casos

(a) Existe $k \in \{1, ..., n\}$ tal que A_k es infinito, luego $\bigcup_{i=1}^n A_i$ es infinito y

$$\sum_{i=1}^{n} \mu(A_i) = \mu(A_k) + \sum_{i \le k}^{n} \mu(A_i) = \infty + \sum_{i \le k}^{n} \mu(A_i) = \infty = \mu\left(\bigcup_{i=1}^{n} Q_i\right)$$

(b) A_i es finito para toda $i \in \{1, ..., n\}$. Como los A_i son disjuntos, tenemos

$$\sum_{i=1}^{n} \mu(A_i) = \sum_{i=1}^{n} |A_i| = \left| \bigcup_{i=1}^{n} A_i \right| = \mu\left(\bigcup_{i=1}^{n} A_i\right)$$

En cualquier caso μ es aditiva.

Sea X un conjunto, $\mathcal{F} = 2^X$ y $x_0 \in X$. Definamos $\mu : \mathcal{F} \to [0, \infty]$ como

$$\mu(A) = \begin{cases} 1 & \text{si } x_0 \in A \\ 0 & \text{si } x_0 \in A \end{cases}$$

Pruebe que μ es una medida.

Por hipotesis μ es no negativa. Como $x_0 \notin \emptyset$ tenemos $\mu(\emptyset) = 0$. Solo falta mostrar que μ es aditiva. Sea $P_1, \ldots, P_n \in \mathcal{F}$ conjuntos disjuntos, entonces tenemos los casos

(a) Para todo $i \in \{1, ..., n\}$ $x_0 \notin P_i$, luego $x_0 \notin \bigcup_{i=i}^n P_i$ y

$$\sum_{i=1}^{n} \mu(P_i) = 0 = \mu\left(\bigcup_{i=1}^{n} P_i\right)$$

(b) Por ser disjuntos, existe un unico $k \in \{1, ..., n\}$ tal que $x_0 \in P_k$, luego $x_0 \in \bigcup_{i=1}^n P_i$ y

$$\sum_{i=1}^{n} \mu(P_i) = \mu(P_k) = 1 = \mu\left(\bigcup_{i=1}^{n} P_i\right)$$

En cualquier caso, μ es aditiva.

Problema 1.15

Sea X un conjunto no numerable. Definamos $N := \{B \subset X : B \text{ es a lo mas numerable}\}$. Como ya hemos visto, la colección $\mathcal{F} = \{A \subset X : A \in N \text{ o } X - A \in N\}$ es una sigma-álgebra sobre X. Definamos a $\mu : \mathcal{F} \to [0, \infty]$ como

$$\mu(A) := \begin{cases} 0 & \text{si } A \in N \\ \infty & \text{si } X - A \in N \end{cases}$$

Pruebe que μ es una medida.

Ya tenemos que μ es no negativa. Como $\emptyset \in N$, entonces $\mu(\emptyset) = 0$. Veremos que μ es aditiva. Sean $A_1, \ldots, A_n \in \mathcal{F}$ disjuntos, entonces

i) Si para todo $i \in \{1, ..., n\}$ se tiene que $A_i \in N$, entonces $\bigcup_{i=1}^n A_i \in N$, luego

$$\sum_{i=1}^{n} \mu(A_i) = 0 = \mu\left(\bigcup_{i=1}^{n} A_i\right)$$

ii) Si existe $k \in \{1, ..., n\}$ tal que $X - A_k \in N$, entonces $X - \bigcup_{i=1}^n A_i = \bigcap_{i=1}^n (X - A_i) = A_k \cap (\bigcap_{i \neq k}^n A_i) \in N$, luego

$$\sum_{i=1}^{n} \mu(A_i) = \mu(A_k) = \infty = \mu\left(\bigcup_{i=1}^{n} A_i\right)$$

Problema 1.17.

Sea $X = \{x_1, x_2, ...\}$ un conjunto a lo mas numerable y sean $P_1, P_2, ...$ numeros positivos tales que

$$\sum_{i=1}^{\infty} P_i = 1$$

Sobre 2^X definimos la medida μ como

$$\mu(A) := \sum_{i=1}^{\infty} \chi_{x_i}(A) P_i$$
 para todo $A \subseteq X$

Probar que μ es σ -aditiva, con $\mu(X) = 1$.

Prueba: Por hipotesis μ es no negativa, ademas $x \notin \emptyset$ para todo $x \in X$, luego $\mu(\emptyset) = 0$. Falta demostrar que μ es σ -aditiva. Sea $\{A_n\}$ una suceción de conjuntos disjuntos sobre 2^X y definamos la familia $\{I_k\}$ como

$$I_k := \{ i \in \mathbb{N} : x_i \in A_k \}$$

Entonces los I_k 's son disjuntos, más aun

$$\mu(A_k) = \sum_{i \in I_k} P_i \implies \mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{i \in I} P_i$$

Donde $I = \bigcup_{k=1}^{\infty} I_k$. De la ultima igualdad se tiene que

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{i \in I} P_i = \sum_{k=1}^{\infty} \left(\sum_{i \in I_k} P_i\right) = \sum_{k=1}^{\infty} \mu(A_k)$$

Por lo tanto μ es σ -aditiva.

Problema 1.18.

Sea $X := \mathbb{Q} \cap [0,1]$ y sea \mathscr{S}_{μ} el conjunto de todas las intersecciones de X con subsintervalos cerrados, abiertos, semiabierto y conjuntos unipuntuales del [0,1]. Probar que \mathscr{S}_{μ} es semianillo.

Sobre \mathscr{S}_{μ} definimos μ como $\mu(A_{ab}) := b - a$. Probar que μ es aditiva, pero no σ -aditiva.

Prueba: Veamos que \mathscr{S}_{μ} es un semianillo.

- (a) Desde que $[i,i] \cap X = \emptyset$ tenemos que $\emptyset \in \mathscr{S}_{\mu}$.
- (b) Tomemmos $A, B \in \mathscr{S}_{\mu}$, entonces existen $a_1, a_2, b_1, b_2 \in [0, 1]$ tales que $A = (a_1, a_2) \cap X$ y $B = (b_1, b_2) \cap X$, entonces se tine que

$$A \cap B = [(a_1, a_2) \cap X] \cap [(b_1, b_2) \cap X] = [(a_1, a_2) \cap (b_1, b_2)] \cap X \in \mathscr{S}_{\mu}$$

(c) Sean $A, A_1 \in \mathscr{S}_{\mu}$ con $A_1 \subseteq A$, entonces $A = (a_1, a_2) \cap X$ y $A_1 = (s, t)$ con $a_1 \leq s \leq t \leq a_2$. Consideremos $A_2 = (a_1, s)$ y $A_3 = (t, a_3)$. Observemos que

$$A = [(a_1, s) \cup (s, t) \cup (t, a_2)] \cap X$$

= $[(s, t) \cap X] \cup [(a_1, s) \cap X] \cup [(t, a_2) \cap X]$
= $\bigcup_{i=1}^{3} A_i$

Por lo tanto \mathscr{S}_{μ} es un semianillo. Ahora veremos que μ no es σ aditiva. Primero notemos que X es numerable ya que $X = Q \cap [0, 1]$. Sea $\{\}$

Problema 1.19

Sea (X, \mathcal{F}, μ) un espacio con medida, entonces las siguientes condiciones son equivalentes

- a) Existe una sucesión $\{A_i\}$ de conjuntos medibles tales que $\mu(A_i) < \infty$ para todo $i \in \mathbb{N}$ y $X = \bigcup_i A_i$
- b) Existe una sucesión creciente $\{B_i\}$ de conjuntos medibles tales que $\mu(B_i) < \infty$ para todo $i \in \mathbb{N}$ y $X = \bigcup_i B_i$
- c) Existe una sucesión $\{C_i\}$ de conjuntos disjuntos medibles tales que $\mu(C_i) < \infty$ para todo $i \in \mathbb{N}$ y $X = \bigcup_i C_i$

Demostración:

Si (a) entonces (b).

Consideremos la sucesión $\{B_i\}$ definida como $B_i = \bigcup_{k=1}^i A_i$. Cada B_i esta formado por la union finita de conjuntos medibles, luego cada B_i es medible. Claramente esta sucesión es creciente, con $\mu(B_i) \leq \sum_{k=1}^i \mu(A_i) < \infty$. Ademas $\bigcup_i B_i = \bigcup_i A_i = X$, con lo que obtenemos la implicación.

Si (b) entonces (c).

Consideremos la sucesión $\{C_i\}$ definida como $C_1 = B_1$, $C_i = B_i - B_{i-1}$. Cada C_i es la diferencia de dos conjuntos medibles, luego cada C_i es medible. Entonces esta sucesión es una sucesión de conjuntos disjuntos medibles con $\mu(C_i) \leq \mu(B_i) < \infty$ ya que $C_i \subseteq B_i$. Ademas $\bigcup_i C_i = \bigcup_i B_i = X$, con lo que obtenemos esta implicación.

Como claramente (c) implica (a), tenemos nuestro resultado.

Probar que $(-\infty, c)$ generan el álgebra de borel.

Prueba: Sea $\mathcal{G} := \{(-\infty, c) : c \in \mathbb{R}\}\ y \ \sigma(\mathcal{G})$ la σ -álgebra que genera. Notemos que $\mathcal{G} \subseteq \mathcal{B}(\mathbb{R})$, luego $\sigma(\mathcal{G}) \subseteq \mathcal{B}(\mathbb{R})$. Veamos la otra contención.

i)
$$(-\infty, c] = \bigcap_n (-\infty, c + \frac{1}{n})$$
 entonces $(-\infty, c] \in \sigma(\mathcal{G})$

$$(a,b) = (-\infty,a]^C \cap (-\infty,b) \text{ entonces } (a,b) \in \sigma(\mathcal{G})$$

- iii) Sea $A \subseteq \mathbb{R}$ un abierto, entonces A puede ser representado como la union de una sucesión de intervalos abiertos de la forma (a_n, b_n) , luego $A \in \sigma(\mathcal{G})$.
- De (iii) tenemos que $\sigma(\mathcal{G})$ contiene a todos los abiertos de \mathbb{R} , luego $\mathscr{B}(\mathbb{R}) \subseteq \sigma(\mathcal{G})$. Finalmente

$$\mathscr{B}(\mathbb{R}) = \sigma(\mathcal{G})$$

Problema 1.21

Sean M, N conjuntos no vacios. Sea $f: M \to N$ función. Sea $\mathcal{M} \subseteq 2^M$ y sea

$$f(\mathcal{M}) := \{ f(A) \subset N : A \in \mathcal{M} \}$$

Además se
a $\mathcal{N}\subseteq 2^N$ y sea

$$f^{-1}(\mathcal{N}) := \{ f^{-1}(B) \subseteq M : B \in \mathcal{N} \}$$

Pruebe que

- a) Si \mathcal{N} es un anillo, entonces $f^{-1}(\mathcal{N})$ es un anillo.
- b) Si \mathcal{N} es un álgebra, $f^{-1}(\mathcal{N})$ también lo es.
- c) Si \mathcal{N} es una B-álgebra, entonces $f^{-1}(\mathcal{N})$ también lo es.
- d) $\mathscr{R}(f^{-1}(\mathcal{N})) = f^{-1}(\mathscr{R}(\mathcal{N}))$
- e) $\mathscr{B}(f^{-1}(\mathcal{N})) = f^{-1}(\mathscr{B}(\mathcal{N}))$

Demostración:

a) $\mathcal N$ es un anillo, luego $\mathcal N\neq\emptyset$ y dados $A,B\in\mathcal N$ se tiene que

$$A \cap B \in \mathcal{N} \ \text{y} \ A \triangle B \in \mathcal{N}$$

entonces

- i) $f^{-1}(N)$ es no vacio.
- ii) Dados $f^{-1}(A), f^{-1}(B) \in f^{-1}(N)$ se tiene, por propiedades de la imagen inversa, que $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) \in f^{-1}(N)$ y $f^{-1}(A) \triangle f^{-1}(B) = f^{-1}(A \triangle B) \in f^{-1}(N)$.

Por (i) y (ii) obtenemos que $f^{-1}(\mathcal{N})$ es un anillo.

b) \mathcal{N} es un algebra, luego \mathcal{N} tiene identidad. Llamemosle E. Sea $f^{-1}(A) \in f^{-1}(\mathcal{N})$, entonces

$$f^{-1}(A) \cap f^{-1}(E) = f^{-1}(A \cap E) = f^{-1}(A)$$

 $f^{-1}(\mathcal{N})$ tiene identidad, y por (a), $f^{-1}(\mathcal{N})$ es un algebra.

c) \mathcal{N} es una B-álgebra, entonces \mathcal{N} es cerrado bajo uniones numerables. Sea $\{f^{-1}(A_n)\}$ una sucesión sobre $f^{-1}(\mathcal{N})$, entonces

$$\bigcup_{n=1}^{\infty} f^{-1}(A_n) = f^{-1}\left(\bigcup_{n=1}^{\infty} A_n\right) \in f^{-1}(\mathcal{N})$$

Por lo tanto $f^{-1}(\mathcal{N})$ es una B-álgebra.

d) Por (a) tenemos que $f^{-1}(\mathscr{R}(\mathcal{N}))$ es un anillo. Más aun, como $\mathcal{N} \subseteq \mathscr{R}(\mathcal{N})$ tenemos que $f^{-1}(\mathcal{N}) \subseteq f^{-1}(\mathscr{R}(\mathcal{N}))$, por lo tanto $\mathscr{R}(f^{-1}(\mathcal{N})) \subseteq f^{-1}(\mathscr{R}(\mathcal{N}))$. Ahora veamos la otra contención. Tomemos en cuenta el conjunto

$$D := \{ A \subseteq N : f^{-1}(A) \in \mathcal{R}(f^{-1}(\mathcal{N})) \}$$

- 1) Ya tenemos que $\mathcal{N} \subseteq D$, por lo tanto $D \neq \emptyset$
- 2) Tomemos $A, B \in D$, entonces tenemos que $f^{-1}(A), f^{-1}(B) \in \mathcal{R}(f^{-1}(\mathcal{N}))$, luego $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B) \in \mathcal{R}(f^{-1}(\mathcal{N}))$ por lo tanto $A \cap B \in D$.
- 3) Nuevamente tomemos $A, B \in D$, entonces $f^{-1}(A), f^{-1}(B) \in \mathcal{R}(f^{-1}(\mathcal{N}))$, luego $f^{-1}(A \triangle B) = f^{-1}(A) \triangle f^{-1}(B) \in \mathcal{R}(f^{-1}(\mathcal{N}))$ por lo tanto $A \triangle B \in D$.

Por 1, 2 y 3 tenemos que D es un anillo que contiene a N, por lo tanto contiene a $\mathscr{R}(\mathcal{N})$. Por la definición de D se concluye que $f^{-1}(\mathscr{R}(\mathcal{N})) \subseteq \mathscr{R}(f^{-1}(\mathcal{N}))$ obteniendo el resultado deseado.

(e) Por (c) se tiene que $f^{-1}(\mathcal{B}(\mathcal{N}))$ es una B-álgebra. Más aun como $\mathcal{N} \subseteq \mathcal{B}(\mathcal{N})$, se tiene que $f^{-1}(\mathcal{N}) \subseteq f^{-1}(\mathcal{B}(\mathcal{N}))$ por lo tanto $\mathcal{B}(f^{-1}(\mathcal{N})) \subseteq f^{-1}(\mathcal{B}(\mathcal{N}))$. Veamos la otra contención. Consideremos el conjunto

$$D := \{ A \subseteq N : f^{-1}(A) \in \mathcal{B}(f^{-1}(\mathcal{N})) \}$$

De manera similar al inciso (d), de demuestra que D es un anillo que contiene a \mathcal{N} . $\mathscr{B}(\mathcal{N})$ es irreducible, luego tiene identidad E. Más aun $f^{-1}(E) \in \mathscr{B}(f^{-1}(\mathcal{N}))$, luego D tiene identidad. Ahora consideremos $\{A_n\}$ sucesión sobre D, entonces $f^{-1}(A_n) \in \mathscr{B}(f^{-1}(\mathcal{N}))$ para todo $n \in \mathbb{N}$, luego, por estar dentro de una B-álgebra, se tiene que

$$f^{-1}\left(\bigcup_{n} A_{n}\right) = \bigcup_{n} f^{-1}(A_{n}) \in \mathscr{B}(f^{-1}(\mathcal{N}))$$

Por lo tanto $\cup_n A_n \in D$. De lo anterior concluimos que D es una B-álgebra que contiene a \mathcal{N} , por lo tanto contiene a $\mathcal{B}(\mathcal{N})$. Por la definición de D obtenemos que $f^{-1}(\mathcal{B}(\mathcal{N})) \subseteq \mathcal{B}(f^{-1}(\mathcal{N}))$, obteniendo así nuestro resultado $\mathcal{B}(f^{-1}(\mathcal{N}))$.

Problema 1.22.

Considere el teorema \star .

- a) Probar que las f_n 's estan bien definidas.
- b) ¿Que pasa para f < 0?

Demostración: Observemos la definición de cada f_n :

$$f_n(x) = \frac{m}{n}$$
 si $\frac{m}{n} \le f(x) \le \frac{m+1}{n}$

De esta definicion obtenemos que

$$\frac{m}{n} \le f(x) \le \frac{m+1}{n} \Leftrightarrow m \le nf(x) \le m+1 \Leftrightarrow m = \lfloor nf(x) \rfloor$$

Luego podemos redefinir a los f_n 's como

$$f_n = \frac{\lfloor f(x) \rfloor}{n}$$

b) Para la parte negariva solo falta cambiar la función piso | · | por la funcion techo [·]

$$f_n = \frac{\lceil f(x) \rceil}{n}$$

Problema 1.23

Una medida se dice completa si todo subconjunto de un conjunto de medida cero es medible. Probar que la extención de Lebesgue de cualquier medida m es completa.

Prueba: Sea $m: \mathscr{S}_m \to [0, \infty)$ una medida. Sea $\mu: \mathscr{R}(\mathscr{S}_m) \to [0, \infty)$ la extensión de m a $\mathscr{R}(\mathscr{S}_m)$. Consideremos $A \in \mathscr{R}(\mathscr{S}_m)$ tal que $\mu(A) = 0$ y tomemos $A' \subseteq A$. Entonces, como $\mu^*(A) = \mu(A) = 0$ y $0 \le \mu^*(A') \le \mu^*(A)$ se tiene que $\mu^*(A') = 0$. Ahora tomemos $\phi \in \mathscr{R}(\mathscr{S}_m)$ elemental, entonces

$$\mu^*(A'\triangle\phi) \le \mu^*(A) = 0 < \epsilon$$

Para todo $\epsilon > 0$, por lo tanto $A' \in \mathcal{R}(\mathcal{S}_m)$

Demuestre que la función de Dirichlet

$$f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{I} \end{cases}$$

No tiene integral de Riemman sobre cualquier intervalo [a, b], pero si tiene integral de Lebesgue sobre cualquier conjunto A medible con valor cero.

- i) Si investigamos la integral de Riemman sobre f tenemos que, para cualquier intervalo [a,b] de \mathbb{R} , el supremo de las sumas inferiores es igual a 1, mientras que el infimo de las sumas superiores es igual a 0, luego f no tiene integral de Riemman.
 - ii) Tomemos $A \subset \mathbb{R}$ medible. Como f es simple, la integral de Lebesgue esta dada por

$$\int_{A} f \ d\lambda = 1 \cdot \lambda(A \cap \mathbb{Q}) + 0 \cdot \lambda(A \cap \mathbb{I})$$

Como $A \cap \mathbb{Q}$ es un conjunto de medida cero, tenemos que

$$\int_{A} f \ d\lambda = 0$$

Problema 1.25

Sea A = [0, 1]. Encuentre la integral de Lebesgue sobre A de la función

$$f(x) = \begin{cases} \frac{1}{q} & \text{si } x = \frac{p}{q} \in \mathbb{Q} \\ 1 & \text{si } x \in \mathbb{I} \end{cases}$$

Solución: Consideremos la familia $\{A_n\}$ definida como

$$A_0 := \{ x \in A : f(x) = 1 \} \ y \ A_n := \left\{ x \in [0, 1] : f(x) = \frac{1}{n} \right\}$$

De la definición de f, tenemos que

$$A_0 = [0,1] \cap \mathbb{I}, \quad A_n = Q_n \cap [0,1] \quad \text{donde} \quad Q_n := \left\{ \frac{z}{n} : z \in \mathbb{Z} \right\}$$

Notemos que la familia $\{A_n\}$ es un partición del intervalo [0,1], entonces podemos calcular la integral de la siguiete manera

$$\int_{A} f \, d\lambda = \sum_{n=0}^{\infty} y_n \lambda(A_n) = 1 \cdot \lambda(A_0) + \sum_{n=1}^{\infty} \frac{1}{n} \cdot \lambda(A_n)$$

A la hora de medir los conjuntos, tenemos que $\lambda(A_0) = \lambda([0,1] - [0,1] \cap \mathbb{Q}) = \lambda([0,1]) = 1$, mientras que $\lambda(A_n) \leq \lambda(\mathbb{Q}) = 0$ por lo cual $\lambda(A_n) = 0$, finalmente obtenemos que

$$\int_{A} f \ d\lambda = 1$$

Demuestre que

i) Si f es integrable sobre un conjunto A de medida cero, entonces

$$\int_A f \ d\mu = 0$$

ii) Si f es integrable sobre A, entonces

$$\int_A f \ d\mu = \int_{A'} f \ d\mu =$$

Para cada $A' \subseteq A$ medible tal que $\mu(A - A') = 0$

i) Demostración: De la continuidad absoluta de la integral tenemos que, dado $\epsilon>0$ existe $\delta>0$ tal que para todo $E\subseteq A$ con $\mu(E)<\delta$ se tiene que $|\int_E f\ d\mu|<\epsilon$. En este caso, si tomamos E=A, tenemos que $\mu(E)=0<\delta$, luego $|\int_A f\ d\mu|<\epsilon$ para todo $\epsilon>0$, luego

$$\int_A f \ d\mu = 0$$

ii) Notemos que $\{A', A - A'\}$ es una partición de conjuntos medibles del conjunto A, luego, aplicando propiedades de la integral y el inciso (i), tenemos que

$$\int_{A} f \ d\mu = \int_{A'} f \ d\mu + \int_{A-A'} f \ d\mu = \int_{A'} f \ d\mu$$

Problema 1.27

Demuestre que

i) Si f es no negativa e integrable sobre A, entonces

$$\int_A f \ d\mu \ge 0$$

ii) Si f y g son integrables sobre A y $f \leq g$ salvo un conjunto de medida cero, entonces

$$\int_A f \ d\mu \le \int_A g \ d\mu$$

iii) Si fes integrable sobre A y $m \leq f \leq M$ salvo un conjunto de medida cero, entonces

$$m \cdot \mu(A) \le \int_A f \ d\mu \le M \cdot \mu(A)$$

Demostración: i) f es no negativa c.t.p. en A, es decir, f(x)geq0 c.t.p. en A, luego, por el teorema 3, pagina 297 del Kolmogorov tenemos que

$$\int_{A} f \ d\mu \ge 0$$

ii) $f \leq g$ en A salvo un conjunto de medida cero, luego $0 \leq g - f$ salvo un conjunto de medida cero. Aplicando (i) tenemos que $0 \leq \int_A (g - f) \ d\mu = \int_A g \ d\mu - \int_A f \ d\mu$ por lo cual

$$\int_A f \ d\mu \le \int_A g \ d\mu$$

iii) $m \leq f$ salvo un conjunto de medida cero, entonces por (ii) tenemos que

$$\int_A m \ d\mu \le \int_A f \ d\mu$$

pero $\int_A m \ d\mu = m \int_A 1 \cdot d\mu = m\mu(A)$. Similarmente obtenemos el otro lado de la desigualdad para obtener finalmente nuestro resultado.

$$m \cdot \mu(A) \le \int_A f \ d\mu \le M \cdot \mu(A)$$

Problema 1.28

Demuestre que $\int_A f \ d\mu$ existe si y solo si $\int_A |f| \ d\mu$ existe.

Demostración: Supongamos que |f| es integrable sobre A. Como fleq|f|, tenemos, por el teorema 3, pagina 297 del Kolmogorov, que f es integrable sobre A.

Ahora supongamos que f es integrable, entonces podemos analizar 2 casos

- i) f es simple. Sean $\{y_n\}$ los vaores de f y $A_n = f^{-1}(y_n)$ entonces la serie $\sum_n y_n \mu(A_n)$, converge absolutamente, esto es $\sum_n |y_n| \mu(A_n)$ converge. Pero desde que $\{|y_n|\}$ son los valores de |f|, se tiene que |f| tambien es integrable.
- ii) f no es simple, entonces existe $\{f_n\}$ sucesión de funciones simples que convergen uniformemente a f en A, y ademas

$$\int_{A} f \ d\mu = \lim_{n \to \infty} \int_{A} f_n \ d\mu$$

Por (i), para cada $n \in \mathbb{N}$ $\int_A f_n d\mu$ existe, luego $\int_A |f_n| d\mu$ también existe. Además como $f_n \to f$ se tiene que $|f_n| \to |f|$, de donde concluimos que

$$\lim_{n \to \infty} \int_A |f_n| \ d\mu = \int_A f \ d\mu$$

2. Segundo Parcial.

Problema 2.1

Sea (X, \mathscr{A}) un espacio medible y sea $\phi : \mathscr{A} \longrightarrow (-\infty, +\infty)$ una carga. Pruebe que existe una constante M > 0 tal que $|\phi(E)| \leq M$ para todo $E \in \mathscr{A}$.

Solución: ϕ es una carga que toma valores en $(-\infty, +\infty)$, esto implica que $-\infty < \phi(E) < +\infty$ para todo $E \in \mathscr{A}$. Tomemos una descomposición de Hahn (X^+, X^-) , y consideremos las variaciones ϕ^+ y ϕ^- ; dado $E \in \mathscr{A}$ tenemos que

$$\phi^{+}(E) = \phi(E \cap X^{+}) < \infty \& \phi^{-}(E) = \phi(E \cap X^{-}) < \infty$$

de donde se sigue que

$$|\phi|(E) < \infty$$
 paratodo $E \in \mathscr{A}$

Ahora, considere $M = |\phi|(X)$ y nuevamente tomemos $E \in \mathcal{A}$, vemos que

$$|\phi(E)| = |\phi^{+}(E) - \phi^{-}(E)| \le |\phi^{+}(E) + \phi^{-}(E)| = |\phi|(E) \le |\phi|(E) + |\phi|(X - E) = |\phi|(X)$$

Así, como E fue arbitrario, se tiene el resultado.

$$|\phi(E)| \le M$$

Problema 2.2

De un ejemplo de 2 descomposiciones de Hahn de un espacio X.

Solución:

Considere a X = [-1, 1] con el algebra de borel y la carga ϕ definida por

$$\phi(A) := \int_A x \, dx$$

entonces podemos definir las descomposiciónes

$$X_1^+ = [0, 1], \ X_1^- = [-1, 0) \& X_2^+ = [0, 1), \ X_2^- = [-1, 0]$$

Problema 2.3

Pruebe que la carga ϕ es identicamente cero si es absolutamente continua y singular respecto a una medida μ .

Solución: Denotemos como X al especio y como $\mathscr A$ su algebra. Por definición de carga singular existe un $A\subseteq X$ tal que

$$\mu(A)=0$$
 & $\phi(B)=0$ paratodo $B\subseteq X-A,\ B\in\mathscr{A}$

También tenemos que $\mu(D) = 0$ para todo $D \subseteq A$ con $D \in \mathscr{A}$, luego $\phi(D) = 0$ para todo $D \subseteq A$, $D \in \mathscr{A}$. Ahora consideremos a $D \in \mathscr{A}$ arbitrario, por lo dicho anteriormente se tiene

$$\phi(D) = \phi((D \cap (X - A)) \cup (D \cap A)) = \phi(D \cap (X - A)) + \phi(D \cap A) = 0 + 0 = 0$$

 ϕ es identicamente cero.

Problema 2.4

Pruebe que:

- a) Toda carga absolutamente continua es continua.
- b) Toda carga discreta es singular.

Solución: Trabajaremos en un espacio de medible (X, \mathcal{A}, μ) .

- a) La definición una carga ϕ absolutamente continua nos dice que dado $A \in \mathcal{A}$, si $\mu(A) = 0$ entonces $\phi(A) = 0$, esto en particular se cumple para conjuntos de un solo elemento de medida cero, por lo tanto ϕ es continua.
- b) Si la carga ϕ es discreta, entonces esta concentrada en un conjunto finito o numerable de medida cero. En particular esta concentrada en un conjunto de medida cero, luego es singular.

Problema 2.5

Pruebe que si una carga ϕ es absolutamente continua (respecto a una medida μ), tambien lo seran sus variaciones positiva, negativa y total.

Solución: Consideremos el espacio de medida (X, \mathcal{A}, μ) . Sea (X^+, X^-) la descomposición de Hahn que determina las variaciones positiva y negativa. Tomemos $A \in \mathcal{A}$ talque $\mu(A) = 0$ entonces $\mu(A \cap X^+) = 0$ y $\mu(A \cap X^-) = 0$, luego

$$\phi^{+}(A) = \phi(A \cap X^{+}) = 0$$
$$\phi^{-}(A) = \phi(A \cap X^{-}) = 0$$
$$|\phi|(A) = \phi^{+}(A) + \phi^{-}(A) = 0$$

Como A fue un conjunto de medida cero arbitrario, tenemos que las variaciones positiva, negativa y total también son absolutamente continuas.

Pruebe que el producto directo de dos anillos (o σ -anillos) no necesariamente es un anillo (o σ -anillo).

Solución: Observemos al producto directo del álgebra de Borel con sigo misma $\mathscr{B}(\mathbb{R}) \times \mathscr{B}(\mathbb{R})$. Veremos que este producto no es cerrado ante complementos.

Considere el cuadrado unitario $[0,1] \times [0,1]$. Desde que $[0,1] \in \mathcal{B}(\mathbb{R})$, el cuadrado unitario esta en el producto directo de las álgebras. Ahora supongamos que podemos escribir $([0,1] \times [0,1])^C = A \times B$, con $A,B \in \mathcal{B}(\mathbb{R})$. Entonces, para $(x,\frac{1}{2}) \in A \times \{\frac{1}{2}\}$ se tiene

$$\left(x, \frac{1}{2}\right) \in ([0, 1] \times [0, 1])^C \iff x \in [0, 1]^C$$

luego, por nuestra suposición, necesariamente $A \subseteq [0,1]^C$. Pero entonces para todo $y \in [0,1]^C$ tenemos

$$\left(\frac{1}{2}, y\right) \in ([0, 1] \times [0, 1])^C \text{ pero } \left(\frac{1}{2}, y\right) \notin A \times B$$

luego ese complemento no se puede escribir como el producto cartesiano de los elementos del producto directo, por lo tanto $\mathscr{B}(\mathbb{R}) \times \mathscr{B}(\mathbb{R})$ no es un anillo.

Problema 2.7

Sea $A = [-1, 1] \times [-1, 1]$ y sea

$$f(x,y) = \frac{xy}{(x^2 + y^2)^2}$$

Pruebe que

- a) Las integrales iteradas de f existen y son iguales.
- b) La doble integral de f no existe.

Solución:

a) Primero evaluemos a $\int_{-1}^{1} f(x,y) dx$. Si y=0, entonces f(x,y)=0 para todo $x\in [-1,1]-\{0\}$, luego $\int_{-1}^{1} f(x,y) dx=0$. Si $y\neq 0$ entonces

$$\int_{-1}^{1} f(x,y) \, dx = \int_{-1}^{1} \frac{xy}{(x^2 + y^2)^2} \, dx = y \int_{-1}^{1} \frac{x}{(x^2 + y^2)^2} \, dx$$

Note que la función que esta dentro de la integral es una función impar que esta siendo integrada sobre un intervalo simetrico al cero, luego $\int_{-1}^{1} f(x,y) dx = 0$. Por lo anterior

 $\int_{-1}^{1} f(x, y) \, dx = 0 \text{ para todo } y \in [-1, 1].$

El mismo tratamiento se aplica para demostrar que $\int_{-1}^{1} f(x, y) dy = 0$ para todo $x \in [-1, 1]$. Con esto tenemos que

$$\int_{-1}^{1} \left(\int_{-1}^{1} f(x, y) \, dx \right) dy = 0 = \int_{-1}^{1} \left(\int_{-1}^{1} f(x, y) \, dy \right) dx$$

con lo cual obtenemos el primer resultado.

b) Recordemos que una función f es integrable si y sólo si |f| es integrable. Supongamos que $\int_{-1}^{1} \int_{-1}^{1} |f(x,y)| \, dx \, dy$ existe. Como la función a integrar es no negativa en todo el dominio de integración, la desigualdad

$$\int_A |f| \geq \int_B |f|$$

 $(A = [1, -1] \times [1, -1])$, se cumple para cualquier $B \subseteq A$ donde |f| sea integrable. Prestemosle atención a $[\epsilon, 1] \times [\epsilon, 1]$ con $0 < \epsilon \le 1$, entonces, con las sustituciones

$$\theta_1 = arcSin(\frac{\epsilon}{\sqrt{1+\epsilon^2}}) \& \theta_2 = arcSin(\frac{1}{\sqrt{1+\epsilon^2}})$$

y cambiando a coordenadas polares tenemos que

$$\int_{-1}^{1} \int_{-1}^{1} |f(x,y)| \, dx \, dy > \int_{\epsilon}^{1} \int_{\epsilon}^{1} |f(x,y)| \, dx \, dy > \int_{\epsilon}^{1} \int_{\epsilon}^{1} \frac{xy}{(x^{2} + y^{2})^{2}} \, dx =$$

$$= \int_{\sqrt{2}\epsilon}^{1} \int_{\theta_{1}}^{\theta_{2}} \frac{\sin \theta \cos \theta}{r} \, d\theta \, dr = \int_{\sqrt{2}\epsilon}^{1} \frac{dr}{r} \int_{\theta_{1}}^{\theta_{2}} \sin \theta \cos \theta \, d\theta = \left(\sin^{2} \theta_{2} - \sin^{2} \theta_{1}\right) \int_{\sqrt{2}\epsilon}^{1} \frac{dr}{r} =$$

$$= \left(\frac{1 - \epsilon^{2}}{1 + \epsilon^{2}}\right) \left(\ln(1) - \ln(\sqrt{2}\epsilon)\right) = \left(\frac{1 - \epsilon^{2}}{1 + \epsilon^{2}}\right) \ln\left(\frac{1}{\sqrt{2}\epsilon}\right)$$

Como vemos, la ultima funcion tiende a infinito cuando $\epsilon \to 0$, luego nuestra integral no es acotada contradiciendo nuestra suposición, así $\int_{-1}^{1} \int_{-1}^{1} |f(x,y)| \, dx \, dy$ no existe, por lo tanto $\int_{-1}^{1} \int_{-1}^{1} f(x,y) \, dx \, dy$ tampoco.

Problema 2.8

Sea $A = [0, 1] \times [0, 1]$ y sea

$$f = \begin{cases} 2^{2n} & if \ x \in \left[\frac{1}{2^n}, \frac{1}{2^{n-1}}\right), \ y \in \left[\frac{1}{2^n}, \frac{1}{2^{n-1}}\right) \\ -2^{2n+1} & if \ x \in \left[\frac{1}{2^{n+1}}, \frac{1}{2^n}\right), \ y \in \left[\frac{1}{2^n}, \frac{1}{2^{n-1}}\right) \\ 0 & \text{en otro caso.} \end{cases}$$

Muestre que las integrales iteradas existen, pero no son iguales.

Primero notemos que $\left\{\left[\frac{1}{2^n},\frac{1}{2^{n-1}}\right]\right\}$ es una partición para (0,1), tambien notemos que $\int_A f = \int_{int(A)} f$.

Dado $y \in (0,1)$, existe $k \in \mathbb{N}$ tal que $y \in \left[\frac{1}{2^k}, \frac{1}{2^{k-1}}\right)$, luego

$$\int_0^1 f(x,y) \, dx = \sum_{n=1}^\infty \int_{\frac{1}{2^n}}^{\frac{1}{2^{n-1}}} f(x,y) \, dx = \int_{\frac{1}{2^k}}^{\frac{1}{2^{k-1}}} 2^{2k} \, dx - \int_{\frac{1}{2^{k+1}}}^{\frac{1}{2^k}} 2^{2k+1} \, dx = 2^{2k} \left(\frac{1}{2^{k-1}} - \frac{1}{2^k}\right) - 2^{2k+1} \left(\frac{1}{2^k} - \frac{1}{2^{k+1}}\right) = 2^{k+1} - 2^k - 2^{k+1} + 2^k = 0$$

Luego tenemos que

$$\int_0^1 \left(\int_0^1 f(x, y) \, dx \right) \, dy = \int_0^1 0 \, dy = 0$$

Por otro lado, si $x \in (0,1)$ entonces $x \in \left[\frac{1}{2^k}, \frac{1}{2^{k-1}}\right)$ para algun $k \in \mathbb{N}$. Si k=1

$$\int_0^1 f(x,y) \, dy = \sum_{n=1}^\infty \int_{\frac{1}{2^n}}^{\frac{1}{2^{n-1}}} f(x,y) \, dy = \int_{\frac{1}{2}}^1 2^2 \, dy = 4(1 - \frac{1}{2}) = 2$$

Si k > 1

$$\int_{0}^{1} f(x,y) \, dy = \sum_{n=1}^{\infty} \int_{\frac{1}{2^{n}}}^{\frac{1}{2^{n-1}}} f(x,y) \, dy = \int_{\frac{1}{2^{k}}}^{\frac{1}{2^{k-1}}} 2^{2k} \, dy + \int_{\frac{1}{2^{k-1}}}^{\frac{1}{2^{k-1}-1}} 2^{2(k-1)+1} \, dy = \int_{\frac{1}{2^{k}}}^{\frac{1}{2^{k-1}}} 2^{2k} \, dy - \int_{\frac{1}{2^{k-1}}}^{\frac{1}{2^{k-2}}} 2^{2k-1} \, dy = 2^{2k} \left(\frac{1}{2^{k-1}} - \frac{1}{2^{k}} \right) - 2^{2k-1} \left(\frac{1}{2^{k-2}} - \frac{1}{2^{k-1}} \right) = 2^{k+1} - 2^{k} - 2^{k+1} + 2^{k} = 0$$

Con lo anterior obtenemos

$$\int_0^1 \left(\int_0^1 f(x, y) \, dy \right) \, dx = \int_{\frac{1}{2}}^1 2 \, dx = 1$$

Que es el resultado deseado.

Muestre que la existencia de cualquiera de las integrales

$$\int_{X} \left(\int_{A_x} |f(x,y)| \ d\mu_y \right) d\mu_x, \quad \int_{Y} \left(\int_{A_y} |f(x,y)| \ d\mu_x \right) d\mu_y$$

implica la existencia de la integral de f y la igualdad de las integrales iteradas.

Solución: Sea A el dominio de integración, supongamos que la primera de las integrales existe y llamemosle M a su valor. Para cada $n \in \mathbb{N}$ defina la función

$$f_n(x,y) := \min\{|f(x,y)|, n\}$$

Entonces cada una de estas funciones es medible y acotada (por 0 y n), luego cada una es integrable. Por su construcción, cada un de estas funciones cumple con $f_n(x,y) \leq f(x,y)$, para todo $(x,y) \in A$, luego, con el teorema de Fubini tenemos

$$\int_{A} f_n(x,y) d\mu = \int_{X} \left(\int_{A_n} f_n(x,y) d\mu_y \right) d\mu_x \le M$$

También notemos que $\{f_n\}$ es una sucesión de funciones no decresientes que satisface $\lim_n f(x,y) = |f(x,y)|$ para todo $(x,y) \in A$; el teorema de Levi implica que |f| es finito en casi todas partes de A y que es integrable sobre A, luego f es integrable sobre A. Ahora, usando el teorema de Fubini se obtiene

$$\int_X \left(\int_{A_x} f(x, y) \, d\mu_y \right) d\mu_x = \int_A f(x, y) \, d\mu = \int_Y \left(\int_{A_y} f(x, y) \, d\mu_x \right) d\mu_y$$

Las integrales iteradas son iguales.

Problema 2.10

Muestre que el teorema de Fubini se sigue cumpliendo para medidas σ -aditivas.

Solución: Sean (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) espacios σ -aditivos con las medidas tales como se establecieron el el teorema de Fubini. Entonces se puede escribir

$$X = \bigcup_{n=1}^{\infty} A_n \& Y = \bigcup_{n=1}^{\infty} B_n$$

Con $\{A_n\}$ una sucesión de conjuntos disjuntos tales que $\forall n \in \mathbb{N}, A_n \in \mathscr{A} \& \mu(A_n) < \infty$, de igual manera para $\{B_n\}$. Luego tenemos la identidad

$$X \times Y = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} A_n \times B_k$$

Como $\mu \times \nu(A_n \times B_k) = \mu(A_n)\nu(B_k) < \infty$ se cumple para todo $n, k \in \mathbb{N}$ y por el echo de que conjuntos numerables es numerable, tenemos que $\mu \times \nu$ es σ -finita. Por lo anterior, considere $\{C_n\}$ sucesión de conjuntos disjuntos tales que para todo $n \in \mathbb{N}$ $\mu \times \nu(C_n) < \infty$ y $X \times Y = \bigcup_{n=1}^{\infty} C_n$, Entonces podemos construir la sucesión $\{D_n\}$ tomando $D_n = \bigcup_{k=1}^n C_n$ para cada $n \in \mathbb{N}$. $\{D_n\}$ es una sucesión creciente donde cada miembro tiene medida finita, luego el teorema de Fubini se cumple para cada D_n . Utilizando el teorema de Levi que podemos escribir

$$\int_{A} f = \lim_{n \to \infty} \int_{A \cap D_n} f = \lim_{n \to \infty} \int_{(A \cap D_n)_x} \left(\int_{(A \cap D_n)_y} f \, dx \right) \, dy$$

De donde

$$\int_{A_x} \left(\int_{A_y} f \, dx \right) \, dy =$$

$$\lim_{n \to \infty} \int_{(A \cap D_n)_x} \left(\int_{(A \cap D_n)_y} f \, dx \right) \, dy = \lim_{n \to \infty} \int_{(A \cap D_n)_y} \left(\int_{(A \cap D_n)_x} f \, dy \right) \, dx =$$

$$= \int_{A_y} \left(\int_{A_x} f \, dy \right) \, dx$$

Finalmente obtenemos el resultado deseado.

$$\int_{A_x} \left(\int_{A_y} f \, dx \right) \, dy = \int_A f = \int_{A_y} \left(\int_{A_x} f \, dy \right) \, dx$$

3. Tercer Parcial.

Problema 3.1

Sea Φ una función de variaciones acotadas con dos diferentes representaciones $\Phi = v - g$, $\Phi = v' - g'$ en terminos de funciones no decrecientes v, g, v' y g' (de un ejemplo). Pruebe que

$$\int_{a}^{b} f \, dv - \int_{a}^{b} f \, dg = \int_{a}^{b} f \, dv' - \int_{a}^{b} f \, dg'$$

Prueba: Para el ejemplo, basta con considerar a una funcion h de variaciones acotadas no decreciente, entonces

$$\Phi = v - g = v - g + (h - h) = (v + h) - (g + h)$$

Ahora, pasando a la prueba, como v, g, v', g' son funciones no decresientes continuas por la izquierda, podemos considerar las medidas de Lebesgue-Stieltjes $\mu_v, \mu_g, \mu_{v'}, \mu_{g'}$. Ahora, definamos las medidas $\mu_1 := \mu_v + \mu_{g'}$ y $\mu_2 := \mu_g + \mu_{v'}$ y consideremos el conjunto

$$S := \{ A \in \mathscr{B}([a,b)) : \mu_1(A) = \mu_2(A) \}$$

Observemos que

$$\mu_v([c,d)) - \mu_g([c,d)) = v(d) - v(c) - g(d) + g(c) = (v-g)(d) - (v-g)(c)$$

$$= \Phi(d) - \Phi(c) = (v'-g')(d) - (v'-g')(c)$$

$$= \mu_{v'}([c,d)) - \mu_{g'}([c,d))$$

De donde obtenemos que $\mu_1([c,d)) = \mu_2([c,d))$. En particular $[a,b) \in S$. Ahora tomemos $A \in S$, entonces

$$\mu_1([a,b) - A) = \mu_1([a,b)) - \mu_1(A) = \mu_2([a,b)) - \mu_2(A) = \mu_1([a,b) - A)$$

De donde $[a,b)-A\in S$. Si $\{A_n\}$ es una sucesión disjunta sobre S, entonces

$$\mu_1(\cup_n A_n) = \sum_n \mu_1(A_n) = \sum_n \mu_2(A_n) = \mu_2(\cup_n A_n)$$

Luego $\cup_n A_n \in S$. Hemos demostrado que S es una σ -álgebra sobre [a,b) por lo cual $\mathscr{B}([a,b)) \subseteq S$. Como ya tenemos la otra contensión, se concluye que

$$\mathscr{B}([a,b)) = S \dots (1)$$

Ahora consideremos a la funcion f. Si $f=\chi_A$ para algun $A\in \mathscr{B}([a,b)),$ por (1) tenemos que

$$\int_{a}^{b} f \ d\mu_{v} + \int_{a}^{b} f \ d\mu_{g'} = \mu_{v}(A) + \mu_{g'}(A) = \mu_{1}(A) = \mu_{2}(A)$$
$$= \mu_{g}(A) + \mu_{v'}(A) = \int_{a}^{b} f \ d\mu_{g} + \int_{a}^{b} f \ d\mu_{v'}$$

De donde se sigue que, para funcines caracteristicas, $\int f d\mu_v - \int f d\mu_g = \int f d\mu_{v'} - \int f d\mu_{g'}$. El resultado se mantiene para funciones simples porque estas son combinaciones lineales de funciones caracteristicas. Ahora tomemos f como función medible, entonces existe $\{f_n\}$ sucesión de funciones simples tal que lím $_n f_n = f$. Luego, por el teorema de convergencia monotona

$$\int_{a}^{b} f \, d\mu_{v} - \int_{a}^{b} f \, d\mu_{g} = \lim_{n \to \infty} \int_{a}^{b} f_{n} \, d\mu_{v} - \lim_{n \to \infty} \int_{a}^{b} f_{n} \, d\mu_{g}$$

$$= \lim_{n \to \infty} \left(\int_{a}^{b} f_{n} \, d\mu_{v} - \int_{a}^{b} f_{n} \, d\mu_{g} \right)$$

$$= \lim_{n \to \infty} \left(\int_{a}^{b} f_{n} \, d\mu_{v'} - \int_{a}^{b} f_{n} \, d\mu_{g'} \right) = \int_{a}^{b} f \, d\mu_{v'} - \int_{a}^{b} f \, d\mu_{g'}$$

Problema 3.2

Encuentre la media y la varianza de la variable aleatoria ξ con densidad de probabilidad

$$p(x) = \frac{1}{2}e^{-|x|} - \infty < x < \infty$$

Solución: La media de ξ esta dada por la integral

$$E\xi = \int_{-\infty}^{\infty} xp(x) \ dx = \int_{-\infty}^{\infty} \frac{1}{2} xe^{-|x|} \ dx$$

El argumento de la integral $v(x) = 1/2xe^{-|x|}$ es una función impar ya que

$$v(-x) = \frac{1}{2}(-x)e^{-|-x|} = -\frac{1}{2}xe^{-|x|} = -v(x)$$

Por lo tanto $E\xi = 0$. Para la varianza tenemos que

$$D\xi = \int_{-\infty}^{\infty} (x - E\xi)^2 p(x) \ dx = \int_{-\infty}^{\infty} \frac{1}{2} x^2 e^{-|x|} \ dx$$

La función $u(x) = \frac{1}{2}x^2e^{-|x|}$ es par porque

$$u(-x) = \frac{1}{2}(-x)^2 e^{-|-x|} = \frac{1}{2}x^2 e^{-|x|} = u(x)$$

Por lo tanto

$$D\xi = \int_{-\infty}^{\infty} \frac{1}{2} x^2 e^{-|x|} dx = \int_{0}^{\infty} x^2 e^{-x} dx$$
$$= \lim_{x \to \infty} (2 - (x^2 + 2x + 2)e^{-x}) = 2$$

Sea ξ una variable aleatoria con densidad de probabilidad

$$p(x) = \frac{1}{\pi(1+x^2)} - \infty < x < \infty$$

Pruebe que $E\xi$ y $D\xi$ no existen.

Solución: Intentemos calcular $E\xi$. Haciendo el cambio de variable $u=1+x^2$ tenemos que

$$\frac{1}{\pi} \int \frac{x}{1+x^2} dx = \frac{1}{2\pi} \int \frac{du}{u} = \frac{1}{2\pi} \ln u + c = \frac{1}{2\pi} \ln(1+x^2) + c$$

Entonces

$$E\xi = \lim_{x \to \infty} \frac{1}{2\pi} \ln(1+x^2) - \lim_{x \to -\infty} \frac{1}{2\pi} \ln(1+x^2) = +\infty - \infty$$

Que no esta definido, luego $E\xi$ no existe. Como consecuencia se tiene que $D\xi$ tampoco existe.

Problema 3.5

Pruebe que si f es continua en [a, b], la integral de Riemann-Stieltjes

$$\int_a^b f \ d\Phi$$

no depende de los valores que toma Φ en sus puntos de discontinuidad en (a,b).

Prueba: Como Φ es continua por la izquierda en el cerrado [a,b], el conjunto de discontinuidades de Φ es a lo mas numerable. Llamemos a dicho conjunto D. Tomemos $a \in \mathbb{R}$ y definamos la función $\Phi_a : [a,b] \to \mathbb{R}$ como

$$\Phi_a(x) := \begin{cases} \Phi(x) & \text{si } x \in [a, b] - D \\ a & \text{si } x \in D \end{cases}$$

Ahora definamos $u(x) = \Phi(x) - \Phi_a(x)$. Entonces

$$u(x) := \begin{cases} \Phi(x) - a & \text{si } D \\ 0 & \text{si } x \in [a, b] - D \end{cases}$$

u(x) es de variaciones acotadas, entonces podemos hablar de su integral de Riemann-Stieltjes. Por la formula (13) pagina 367 del Kolmogorov se tiene que

$$\int_a^b f \ du = \int_a^b f \ d\Phi - \int_a^b f \ d\Phi_a$$

Además, el conjunto $B := \{x \in [a, b] : u(x) \neq 0\} \subseteq D$, por lo cual B es a lo mas numerable. Se sigue del teorema 3 pagina 369 del Kolmogorov que

$$\int_{a}^{b} f \ du = 0$$

Por lo tanto

$$\int_a^b f \ d\Phi = \int_a^b f \ d\Phi_a$$

Como a fue arbitrario, se sigue el resultado.

Problema 3.6

Sea $\{\Phi_n\}$ una sucesión igual a la del teorema 4 pagina 370 del Kolmogorov, y sea $\{f_n\}$ una sucesión de funciones continuas en [a,b] que convergen uniformemente a f. Pruebe que

$$\lim_{n \to \infty} \int_a^b f_n \ d\Phi_n = \int_a^b f \ d\Phi$$

Prueba: Observemos los siguientes calculos

$$\begin{split} \left| \int_{a}^{b} f_{n} \ d\Phi_{n} - \int_{a}^{b} f \ d\Phi \right| &= \left| \int_{a}^{b} f_{n} \ d\Phi_{n} - \int_{a}^{b} f \ d\Phi_{n} + \int_{a}^{b} f \ d\Phi_{n} - \int_{a}^{b} f \ d\Phi \right| \\ &= \left| \int_{a}^{b} (f_{n} - f) \ d\Phi_{n} + \int_{a}^{b} f \ d(\Phi_{n} - \Phi) \right| \\ &\leq \left| \int_{a}^{b} (f_{n} - f) \ d\Phi_{n} \right| + \left| \int_{a}^{b} f \ d(\Phi_{n} - \Phi) \right| \\ &\leq \max_{x \in [a,b]} \{ |(f_{n} - f)(x)| \} V_{a}^{b}(\Phi_{n}) + \max_{x \in [a,b]} \{ |f(x)| \} V_{a}^{b}(\Phi_{n} - \Phi) \end{split}$$

Las hipotesis nos dicen que $V_a^b(\Phi_n - \Phi) \to 0$, $|f_n - f| \to 0$ ambas cuando $n \to \infty$. Como consecuencia

$$\lim_{n \to \infty} \left| \int_a^b f_n \ d\Phi_n - \int_a^b f \ d\Phi \right| = 0$$

De donde se sigue nuestro resultado.

Problema 3.7

Sea $p \in [1, \infty)$. Determine cuándo la desigualdad de Minkowski se convierte en una igualdad.

Respuesta: Podemos analizar este problema separandolo en dos casos. Nota: En esta demostración usaremos el siguiente resultado: Sean $u,v:X\to [0,\infty)$ son funciones integralbles sobre X tales que $u\le v$ salvo una conjunto de medida cero. Si $\int_X u\ d\mu=\int_X v\ d\mu$, entonces

u = v salvo un conjunto de medidad cero.

Caso p=1: Las funciones |f+g| y |f|+|g| son no negativas en todo su dominio. Además tenemos que

$$\int_{X} |f + g| \ d\mu = \int_{X} |f| \ d\mu + \int_{X} |g| \ d\mu \iff \int_{X} |f + g| \ d\mu = \int_{X} (|f| + |g|) \ d\mu$$

De la ecuación del lado derecho obtenemos que la igualdad de las integrales ocurre si y solo si f = g salvo en un conjunto de medida cero.

Caso 1 : Para analizar este caso, primero veremos cuando se cumple la igualdad en la desigualdad de Holder.

Sean $f \in L^p$ y $g \in L^q$ con 1/p + 1/q = 1. Recordemos que la desigualdad de Holder tiene la forma $||fg||_1 \le ||f||_p ||g||_p$. Si $||f||_p ||g||_p = 0$, entonces $0 \le ||fg||_1 \le ||f||_p ||g||_p = 0$, luego ocurre la igualdad. Supongamos que $||f||_p ||g||_p > 0$. Sabemos que la desigualdad de Young es equivalente a

$$\exp\left(\frac{1}{p}p\ln a + \frac{1}{q}q\ln b\right) \le \frac{1}{p}\exp(p\ln a) + \frac{1}{q}\exp(q\ln b) \cdot \cdot \cdot (1)$$

Como la función exp es estrictamente convexa, tenemos que la igualdad ocurre si y solamente si x = y, o equivalente, $a^p = b^q$. Por otro lado, otra consecuencia de la convexidad de la función exp es que la desigualdad

$$x^t y^{1-t} \le tx + (1-t)y$$

Se cumple para todo $x, y \in \mathbb{R}$ y $t \in [0, 1]$. Si aplicamos las sustituciones $x = |f|^p / ||f||_p^p$, $y = |g|^q / ||g||_q^q$ y t = 1/p tenemos que

$$\frac{|f|}{\|f\|_{p}} \cdot \frac{|g|}{\|g\|_{q}} \le \frac{1}{p} \left(\frac{|f|}{\|f\|_{p}}\right)^{p} + \frac{1}{q} \left(\frac{|g|}{\|g\|_{q}}\right)^{q} \cdot \cdot \cdot (2)$$

Integrando ambos lados de la desigualdad sobre de X se tiene que

$$\int_{Y} \frac{|f|}{\|f\|_{p}} \cdot \frac{|g|}{\|g\|_{q}} d\mu \leq \frac{1}{p} \int_{Y} \left(\frac{|f|}{\|f\|_{p}}\right)^{p} d\mu + \frac{1}{q} \int_{Y} \left(\frac{|g|}{\|g\|_{q}}\right)^{q} d\mu$$

Que es equivalente a la desigualdad de Holder. De esto obtenemos que la igualdad en la desigualdad de Holder se cumple si y solamente si (**) es una igualdad, esta a su vez se cumple si y solamente si

$$\frac{|f|^p}{\|f\|_p^p} = \frac{|g|^q}{\|g\|_q^q}$$

Ahora regresemos a la desigualdad de Minkowski. Si la igualdad se cumple entonces

$$||f||_p + ||g||_p = ||f + g|| \le |||f| + |g||_p = ||f||_p + ||g||_p \cdots (3)$$

Por lo cual $||f+g||_p = |||f|+|g|||_p$ es equivalente al caso de la igualdad de Minkowski. Como

$$|f+g|^p \le (|f|+|g|)^p = |f|(|f|+|g|)^{p-1} + |g|(|f|+|g|)^{p-1}$$

Se cumple para p > 1 tenemos que (3) se cumple si y sólo si |f + g| = |f| + |g|. Ahora, retomando la desigualdad (4) y aplicando la desigualdad de Holder a $|f|(|f| + |g|)^{p-1}$ y $|g|(|f| + |g|)^{p-1}$ se tiene que

$$\begin{split} \int_X |f+g|^p \ d\mu & \leq \int_X |f| (|f|+|g|)^{p-1} \ d\mu + \int_X |g| (|f|+|g|)^{p-1} \ d\mu \\ & \leq \left(\left(\int_X |f|^p \ d\mu \right)^{\frac{1}{p}} + \left(\int_X |g|^p \ d\mu \right)^{\frac{1}{p}} \right) \left(\int_X |f+g|^{q(p-1)} \ d\mu \right)^{\frac{1}{q}} \end{split}$$

Desigualdad que es equivalente a la desigualdad de Minkowski. Con esto tenemos que la igualdad ocurre si y sólo si ocurre la igualdad en la desigualdad de Holder utilizada, Por lo tanto, la igualdad de Minkowski ocurre si y sólo si

$$\frac{|f|^p}{\|f\|_p^p} = \frac{|f+g|^p}{\|f+g\|_p^p} \quad y \quad \frac{|g|^p}{\|g\|_p^p} = \frac{|f+g|^p}{\|f+g\|_p^p}$$

Por lo tanto la igualdad de Minkowski ocurre si y sólo si

$$\frac{|f|^p}{\|f\|_p^p} = \frac{|g|^p}{\|g\|_p^p}$$

Prolema 3.8

Sean (X, \mathcal{F}, μ) un espacio de medida, $p \in [1, \infty)$ y $\{f_n\}$ una sucesión en $L^p(X, \mu, \mathbb{C}), g \in L^p(X, \mu, \mathbb{C})$ tales que $||f_n - g||_p \to 0$. Demuestre que $f_n \stackrel{\mu}{\to} g$.

Demostración: Tomemos $\epsilon > 0$ y consideremos el conjunto A definido como

$$A := \{ x \in X : |f_n - g| \ge \epsilon \}$$

Notemos que la definición de A es equivalente a $A = \{x \in X : |f_n - g|^p \ge \epsilon^p\}$. Entonces, por la desigualdad de Chebyshev se tiene que

$$\mu(A) \le \frac{1}{\epsilon^p} \int_X |f_n - g|^p d\mu = \frac{1}{\epsilon^p} (\|f_n - g\|_p)^p$$

Desde que por hipotesis $||f_n - g|| \to 0$ cuando $n \to \infty$ y al ser ϵ arbitrario pero fijo, tenemos que

$$\frac{1}{\epsilon^p}(\|f_n - g\|_p)^p \to 0 \text{ cuando } n \to \infty$$

De donde $\mu(A) \to 0$ cuando $n \to \infty$. Al ser ϵ arbitrario se concluye que $f_n \stackrel{\mu}{\rightharpoonup} g$.

Escriba la definición de la pseudonorma $\|\cdot\|_{\infty}$ y demuestre que esta cumple la propiedad subaditiva.

Sea $f \in L^{\infty}(X)$. Definimos la pseudonorma $\|\cdot\|_{\infty}$ como

$$||f||_{\infty} = \operatorname{ess sup} |f|$$

Tomemos $f, g \in L^{\infty}(X)$, entonces, para toda $x \in X$, a ecepción de un conjunto de medida cero en cada caso, tenemos que

$$|f(x)| \le ||f||_{\infty} \text{ y } |g(x)| \le ||f||_{\infty}$$

Ademas, la desigualdad del triangulo nos dice que $|(f+g)(x)| \le |f(x)| + |g(x)|$ para toda $x \in X$, luego se tiene que, para toda $x \in X$ a ecepción de un conjunto de medida cero

$$|(f+g)(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$

De donde obtenemos la propiedad buscada

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$$

Problema 3.10

Sea (X, \mathcal{F}, μ) un espacio de medida finita y sean $p_1, p_2 \in [1, \infty]$ tales que $p_1 < p_2$. Demuestre que para cada f en $\mathcal{M}(X, \mathcal{F}, [0, \infty])$

$$||f||_{p_1} \le c||f||_{p_2}$$

donde c es una constante que solo depende de $\mu(X)$, p_1 y p_2 (hay que encontrar esta constante). Compare los siguientes conjuntos (ponga \subseteq o \supseteq).

$$L^{p_1}(X, \mathcal{F}, \mu, [0, \infty])$$
 $L^{p_2}(X, \mathcal{F}, \mu, [0, \infty])$

Primer caso: Supongamos que $1 \le p_1 < p_2 < \infty$. Notemos que

$$\frac{p_1}{p_2} + \frac{p_2 - p_1}{p_2} = \frac{p_1 p_2 + p_2 (p_2 - p_1)}{p_2^2} = 1$$

Es decir p_2/p_1 y $p_2/(p_2-p_1)$ son exponentes conjugados, luego es valido aplicar la desigualdad de Holder de la siguiente manera

$$||f||_{p_1}^{p_1} = \int_X |f|^{p_1} \cdot 1 \, d\mu \leq \left(\int_X (|f|^{p_1})^{\frac{p_2}{p_1}} \, d\mu \right)^{\frac{p_1}{p_2}} \left(\int_X 1^{\frac{p_2}{p_2 - p_1}} \, d\mu \right)^{\frac{p_2 - p_1}{p_2}}$$
$$= \left(\int_X |f|^{p_2} \, d\mu \right)^{\frac{p_1}{p_2}} \mu(X)^{\frac{p_2 - p_1}{p_2}} = ||f||_{p_2}^{p_1} \mu(X)^{\frac{p_2 - p_1}{p_2}}$$

Tomando raiz p_1 en ambos lados de la desigualdad obtenemos lo deseado

$$||f||_{p_1} \le \mu(X)^{\left(\frac{1}{p_1} - \frac{1}{p_2}\right)} ||f||_{p_2}$$

Ahora supongamos que $1 \le p_1 < p_2 = \infty$. Por definición de $\|\cdot\|_{\infty}$ tenemos que

$$|f| \le ||f||_{\infty}$$
 c.t.p.

entonces el conjunto $B:=\{x\in X:|f(x)|>\|f\|_{\infty}\}$ tiene una medida $\mu(B)=0$. Luego se tiene que

$$||f||_{p_1}^{p_1} = \int_{X-B} |f|^{p_1} d\mu + \int_B |f|^{p_1} d\mu = \int_{X-B} |f|^{p_1} d\mu$$

$$\leq \int_{X-B} ||f||_{\infty}^{p_1} d\mu \leq \int_X ||f||_{\infty}^{p_1} d\mu$$

$$= \mu(X) ||f||_{\infty}^{p_1}$$

Nuevamente, obteniendo raíz p_1 obtenemos el resultado deseado.

$$||f||_{p_1} \le \mu(X)^{\frac{1}{p_1}} ||f||_{\infty}$$

En el caso de las contenciones tenemos que $L^{p_1}(X, \mathcal{F}, \mu, [0, \infty]) \supseteq L^{p_2}(X, \mathcal{F}, \mu, [0, \infty])$, esto debido a que la existencia de $||f||_{p_2}$, junto a las desigualdades mostradas, junto al teorema 3, pagina 297 del Kolmogorov, implican la existencia de $||f||_{p_1}$.

Problema 3.11

Sea (X, \mathcal{F}, μ) un espacio de medida tal que $\mu(X) = 1$, sean $p_1, p_2 \in [1, \infty]$ tales que $p_1 < p_2$ y sea $f \in L^{p_2}(X, \mu, \mathbb{C})$. Demuestre que $f \in L^{p_1}(X, \mu, \mathbb{C})$ y

$$||f||_{p_1} \le ||f||_{p_2}$$

Supongamos $1 \le p_1 < p_2 < \infty$. Del ejercicio 3.10 tenemos que $||f||_{p_1} \le \mu(X)^{\left(\frac{1}{p_1} - \frac{1}{p_2}\right)} ||f||_{p_2}$. Sustituyendo $\mu(X) = 1$ tenemos que

$$||f||_{p_1} \le ||f||_{p_2}$$

Ahora supongamos que $1 \le p_1 < p_2 = \infty$. Del ejercicio 3.10 tenemos que $||f||_{p_1} \le \mu(X)^{\frac{1}{p_1}} ||f||_{\infty}$. Sustituyendo $\mu(X) = 1$ tenemos que

$$||f||_{p_1} \le ||f||_{\infty}$$

Problema 3.12

Sea (X, \mathcal{F}, μ) un espacio de medida finita y sea $f \in L^{\infty}(X, \mu)$. Demuestre que

$$\lim_{p \to \infty} ||f||_p = ||f||_{\infty}$$

Demostración: Si $||f||_{\infty} = 0$, el resultado se cumple de manera inmediata. Si $||f||_{\infty} = \infty$ entonces f es infinito en toda X a ecepción de un conjunto de medida cero, luego $||f||_p = \infty$. Supongamos que $0 < ||f||_{\infty} < \infty$ y definamos $M := ||f||_{\infty}$. Sea $\epsilon > 0$. Consideremos al conjunto $S := \{x \in X : |f(x)| \ge M - \epsilon\}$, entonces $\mu(D) > 0$ por definición de $||\cdot||_{\infty}$ y $\mu(D) < \infty$ por la hipotesis de medida finita. La designaldad

$$||f||_p = \left(\int_X |f|^p \ d\mu\right)^{\frac{1}{p}} \ge \left(\int_D (M - \epsilon)^p \ d\mu\right)^{\frac{1}{p}} = (M - \epsilon)\mu(D)^{\frac{1}{p}}$$

Se mantiene para todo $p \in [1, \infty)$. Ademas $\mu(D)^{\frac{1}{p}} \to 1$ cuando $p \to \infty$, por lo tanto, como ϵ fue arbitrario, tenemos que

$$\lim_{p \to \infty} ||f||_p \ge M$$

Ahora tomemos $\delta>0$ y consideremos la función $F:X\to [0,\infty]$ definida como

$$F(x) := \frac{|f(x)|}{M + \delta}$$

Notemos que $0 \leq F \leq M/(M+\delta) < 1~\mu$ c.t.p., luego se tiene que

$$\int_X F^p \ d\mu \le \int_X \left(\frac{M}{M+\delta}\right)^p \ d\mu = \left(\frac{M}{M+\delta}\right)^p \mu(X)$$

Como $\left(\frac{M}{M+\delta}\right)^p \to 0$ cuando $p \to \infty$, vemos que con un p suficientemente grande $\int_X F^p \ d\mu \le 1$. Pero además

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}} = (M+\delta) \left(\int_X F^p d\mu\right)^{\frac{1}{p}}$$

Así que, para un p suficientemente grande se tiene que $||f||_p \le M + \delta$, luego, al ser δ arbitrario concluimos

$$\lim_{p \to \infty} ||f||_p \le M$$

Con lo cual obtenemos el resultado deseado.

Problema 3.13

Sea (X, \mathcal{F}, μ) un espacio con medida. Demuestre que el espacio $L^{\infty}(X, \mathcal{F}, \mu, \mathbb{C})$ es completo.

Demostración: Tomemos $\{F_n\}$ sucesión regular de Cauchy en $L^{\infty}(X, \mathcal{F}, \mu, \mathbb{C})$. Para cada $n \in \mathbb{N}$ elegimos $f_n \in F_n$. Entonces tenemos que

ess sup
$$|f_n - f_{n+1}| = ||f_n - f_{n+1}|| \le 2^{-n-1}$$

Definamos los conjuntos

$$L_n := \{ x \in X : |f_n - f_{n+1}| \ge 2^{-n} \}, M = \bigcup_{n=1}^{\infty} L_n, y Y = X - M$$

Entonces $\mu(M) = 0$ y, para cada $x \in Y$ y $n \in \mathbb{N}$, tenemos que

$$|f_n(x) - f_{n+1}(x)| \le 2^{-n-1}$$

Luego, para cada $x \in Y$ la sucesión $\{f_n(x)\}$ esta sobre \mathbb{R} y es de cauchy, por lo tanto converge. Con esto consideremos a la función $g: X \to \mathbb{R}$ definida como

$$g(x) = \begin{cases} \lim_{n \to \infty} f_n(x) & \text{si } x \in Y \\ 0 & \text{si } x \in M \end{cases}$$

Entonces para cada $x \in B$ y cualesquiera $n, m \in \mathbb{N}$ con $n \leq m$ se cumple $|f_n(x) - f_m(x)| \leq 2^{-n}$. Pasando al límite cuando $m \to \infty$ obtenemos

$$|f_n(x) - g(x)| \le 2^{-n}$$

Por lo tanto

$$\mathcal{N}_{\infty}(f_n-g) \leq 2^{-n}$$

Esto implica que $\mathcal{N}_{\infty}(g) \leq \mathcal{N}_{\infty}(f_n) + 1/2^n$. Pongamos $G := g + \mathcal{Z}$. Entonces $G \in L^{\infty}$ y $||G - F_n|| \leq 2^{-n}$, que es el resultado que deseabamos.

Problema 3.14

Sea $\{f_n\}$ una sucesión en $L^1(X, \mathcal{F}, \mu, \mathbb{C})$ y sea $g \in L^1(X, \mathcal{F}, \mu, \mathbb{C})$. Supongamos que $||f_n - g||_1 \to 0$. Muestre que existe una sucesión estrictamente creciente $v : \mathbb{N} \to \mathbb{N}$ tal que $f_{v(p)} \stackrel{\mu-c.t.p}{\longrightarrow} g$.

Prueba: Para realizar este ejercicio necesitaremos de los siguietes lemas.

Lema 1: Sea $(V, \|\cdot\|)$ un espacio normado. Entonces toda sucesión de Cauchy tiene una subsucesión regular de Cauchy.

Prueba: Tomemos $\{x_n\}$ sucesión de Cauchy. Para este lema basta con encontrar $\{n_k\}$ sucesión de naturales creciente tal que $\{x_{n_k}\}$ es sucesión regular de Cauchy. Construiremos esta sucesión de forma inductiva. Fijemos $\epsilon_1 = 1/4 = 2^{-1-1}$, entonces existe $N_1 \in \mathbb{N}$ tal que $\|x_i - x_j\| < \epsilon_1 = 2^{-1-1}$ para todo $i, j \geq N_1$. Tomemos $n_1 = N_1$. Ahora tomemos $\epsilon_2 = 1/8 = 2^{-2-1}$, entonces existe $N_2 \in \mathbb{N}$ tal que $\|x_i - x_j\| < \epsilon_2 = 2^{-2-1}$ para todo $i, j \geq N_2$. Tomemos $n_2 = N_2$, entonces como $N_2 \leq N_1$ se tiene que $\|x_{n_2} - x_{n_1}\| < 2^{-1-1}$. Siguiendo este procedimiento, supongamos que tenemos definido n_k , entonces, siendo $\epsilon_{k+1} = 2^{-k-2}$ generamos, al igual de como lo hicimos con N_1 y N_2 , a N_{k+1} . Entonces $\|x_{n_{k+1}} - x_{n_k}\| < 2^{-k-1}$ desde que $N_{k+1} \leq N_k$. Finalmente $\{n_k\}$ es la sucesión de naturales que buscabamos, o equivalente, $\{x_{n_k}\}$ es una sucesión regular de Cauchy.

Lema 2: Si $f_n: X \to [-\infty, \infty]$ es medible para todo $n \in \mathbb{N}$, entonces las funciones

$$g(x) = \inf_{n>k} f_n(x)$$
 y $h(x) = \liminf_{n\to\infty} f_n(x)$

Son medibles.

Prueba: Para ver el caso de q basta notar que

$$g^{-1}[-\infty, t) = \bigcup_{n=k}^{\infty} f_n^{-1}[-\infty, t)$$

Como cada f_n es medible, se tiene que $\bigcup_{n\geq k} f_n^{-1}[-\infty,t)$ pertenece al álgebra de X, luego, como ya hemos probado que los rayos de la forma $[-\infty,t)$ generan al álgebra del eje real extendido, se tiene que g es medible. De manera similar se demuestra que la funcion $\sup_{n\geq k} f_n(x)$ es medible.

Para el caso de h solo necesitamos ver que

$$h(x) = \sup_{k} (\inf_{n \ge k} f_n(x))$$

Luego aplicamos el resultado anterior y obtenemos que h tambien es medible.

Lema 3 (Lema de Fatou): Sea $\{f_n\}$ una sicesión de funciones no negativas medibles, entonces

$$\int_{X} \left(\liminf_{n \to \infty} f_n \right) d\mu \le \liminf_{n \to \infty} \int_{X} f_n d\mu$$

Prueba: Sea $h(x) = \liminf_{n \to \infty} f_n(x)$. Definamos las funciones $g_k(x) := \inf_{n \ge k} f_n(x)$. Entonces, por la difinición de lím inf,

$$h(x) = \lim_{k \to \infty} g_k(x)$$

Por el lema 2, las funciones g_k son medibles y la sucesión $\{g_k\}$ es creciente. Aplicamos el teorema de convergencia monótona a esta sucesión

$$\int_X h \ d\mu = \lim_{k \to \infty} \int_X g_k \ d\mu$$

Por la definición de g_k y por la definición de ínfimo tenemos que para todo $n \ge k$ y para todo $x \in X$ $f_n(x) \ge g_k(x)$. Por la monotonía de la integral respecto a la función

Para todo
$$n \ge k$$
 $\int_X f_n d\mu \ge \int_X g_k d\mu$

En otras palabras, hemos demostrado que $\int g_k$ es una cota inferior del conjunto $\{\int f_n : n \geq k\}$, luego

$$\inf_{n\geq k} \int_X f_n \ d\mu \geq \int_X g_k \ d\mu$$

Finalmente pasamos al límite cuando k tiende a infinito para obtener nuestro resultado.

$$\liminf_{n\to\infty} \int_X f_n \ d\mu = \lim_{k\to\infty} \inf_{n\geq k} \int_X f_n \ d\mu \leq \lim_{k\to\infty} \int_X g_k \ d\mu = \int_X h \ d\mu$$

Retomando nuestro ejercicio, por el lema 1 $\{f_n\}$ tiene una subsucesión regular de Cauchy, es decir, existe $\{n_k\}$ sucesion de naturales tal que $||f_{n_k+1}-f_{n_k}||_1 < 2^{-k}$. Definamos

$$g_k := \sum_{i=1}^k |f_{n_i+1} - f_{n_i}| \text{ y } g := \lim_{k \to \infty} g_k$$

Entonces, por la desigualdad de Minkowski tenemos que $||g_k||_1 < 1$ para todo $k \in \mathbb{N}$. Por lo tanto, al aplicar el lema 3 a la sucesión $\{g_k\}$ tenemos que $||g||_1 \le 1$, luego $g(x) < \infty$ en todo X a ecepción de un conjunto de medida cero (llamemos a este conjunto B), por lo tanto la serie

$$f_{n_1}(x) + \sum_{i=1}^{\infty} (f_{n_{i+1}}(x) - f_{n_i}(x)) =: h(x)$$

Converge en X-B. Definamos la funcion $f:X\to\mathcal{R}$ como

$$f(x) := \begin{cases} h(x) & \text{si } x \in X - B \\ 0 & \text{si } x \in B \end{cases}$$

Desde que $f_{n_1} + \sum_{i=1}^{k-1} (f_{n_i+1} - f_{n_i}) = f_{n_k}$ se tiene que

$$f(x) = \lim_{i \to \infty} f_{n_i}(x)$$
 para todo $x \in X - B$

Con esto hemos probado que f es una función que es el limite puntual de $\{f_{n_i}\}$ para todo X - B. Como $\{f_{n_i}\}$ es una subsucesión de $\{f_n\}$ se sigue que $f \to g$ casi en todas partes, de donde se sigue el resultado deseado.

Problema 3.15

Sea $f \in \mathcal{SM}(X, \mathcal{F}, \mathbb{C})$ y sea $1 \leq p < \infty$. Demuestre que

$$\mu(\lbrace x \in X : f(x) \neq 0 \rbrace) < \infty \iff ||f||_p < \infty$$

Demostración: Definamos a $D := \{x \in X : f(x) \neq 0\}$. f es una función simple y medible, entonces existe $\{A_1, \ldots, A_n\}$ partición de conjuntos medibles de X tal que

$$f = \sum_{k=1}^{n} c_k \chi_{A_i}$$

De donde tenemos que $A_k = f^{-1}(c_k)$. Si $c_k \neq 0$, entonces $A_k \subseteq D$. Mas aun

$$D = \bigcup_{i \in I} A_i \text{ donde } I := \{ i \in \{1, \dots, n\} : c_i \neq 0 \} \cdots (1)$$

Aplicando la definición de integral para una función simple obtenemos

$$\int_X |f|^p d\mu = \sum_{k=1}^n (c_k)^p \mu(A_k) = \sum_{k \in I} (c_k)^p \mu(A_k) \dots (2)$$

Supongamos que $\mu(D) < \infty$. De (1) tenemos que $\mu(A_i) < \infty$ para todo $i \in I$, luego, la ultima suma de (2) es finita, de donde se sigue $||f||_p < \infty$.

Ahora supongamos que $||f||_p < \infty$, entonces de (2) tenemos que $\mu(A_i) < \infty$ para todo $i \in I$, pero $D = \bigcup_{i \in I} A_i$ y ademas los A_i 's son disjuntos, luego

$$\mu(D) = \sum_{i \in I} \mu(A_i) < \infty$$

Problema 3.16

Sea (X,τ) un espacio topológico de Hausdorff localmente compacto, sea $\mathcal{F} \subseteq 2^X$ una σ -álgebra que contiene a todos los conjuntos de Borel y sea $\mu : \mathcal{F} \to [0,\infty]$ una medida regular. Demuestre que para todo $p \in [1,\infty)$ el conjunto $C_c(X,\mathbb{C})$ es denso en $L^1(X,\mu,\mathbb{C})$.

Demostración: Para esta preba necesitaremos de si siguiete lema (mas precisamente, necesitaremos un corolario del mismo).

Definición: Sea X un espacio topológico. Decimos que X es normal si para cada par $A, B \subset X$ cerrados disjuntos existen $V(A), V(B) \subset X$ abiertos disjuntas tales que $A \subset V(A)$ y $B \subset V(B)$.

Lema de Urysohn: Si A, B son conjuntos cerrados disjuntos en un espacio normal X, entonces existe una función continua $f: X \to [0,1]$ tal que para todo $a \in A$, f(a) = 0 y para todo $b \in B$, f(b) = 1

Prueba: Consideremos al conjunto

$$D := [0,1] \cap \left\{ \frac{z}{2^n} : z \in \mathbb{Z} \ \text{y} \ n \in \mathbb{N} \right\}$$

Construiremos una sucesión de abiertos $\{U_q\}$ con los subindices $q \in D$. Primero pongamos a $U_1 = X$. Desde que X es normal, existen vecindades abiertas disjuntas U(A) y V(B). Tomemos a $U_0 = U(A)$. Notemos que $\overline{U_0} \cap B = \emptyset$ o equivalente $\overline{U_0}$ esta contenido en el abierto X - B. Desde que X es normal, existe un conjuto abierto (que llamaremos $U_{1/2}$) tal que

$$\overline{U_0} \subset U_{1/2} \subset \overline{U_{1/2}} \subset X - B$$

Continuamos de manera inductiva. Desde que que $\overline{U_0}$ y $X-U_{1/2}$ son cerrados disjuntos, creamos $U_{1/4}$ entre U_0 y $U_{1/2}$, de la misma manera creamos $U_{3/4}$ entre $U_{1/2}$ y X-B, luego creamos $U_{1/8}, U_{3/8}$, etc. Con esta construcción tenemos que $\{U_q\}$ es una sucesión de conjutos abiertos tales que

- i) Para cada $q \in D$, $A \subset U_q$
- ii) $B \subset U_1$ y para cada q < 1, $B \cap U_q = \emptyset$
- iii) Para cada $p,q \in D$ con p < q, tenemos que $U_p \subset U_q$

Ahora consideremos la función $f: X \to [0,1]$ definida como

$$f(x) := \inf\{q \in D : x \in U_q\}$$

Esta función esta bien definida ya que cada elemento de X esta contenido en algun U_q , por lo menos en $U_1 = X$. Por la propiedad (i), f es cero en A, y por la propiedad (ii), f es 1 en B. Solo queda probar que f es continua. Para esto necesitaremos de las siguientes afirmaciones

- a) Si f(x) > q entonces $x \notin \overline{U_q}$. En efecto, definamos a $D(x) := \{q \in D : x \in U_q\}$, entonces $f(x) = \inf D(x)$. Si f(x) > q, entonces, por propiedades del infimo, existe $p \in D$ tal que $q , luego <math>x \notin U_p$. Pero por la propiedad (iii) $\overline{U_q} \subset U_p$, por lo tanto $x \notin \overline{U_q}$
- b) Si f(x) < q entonces $x \in U_q$. Se sigue de la probiedad (iii).

Ahora probaremos la continuidad de f. Para esto solo sera necesario mostrar que las preimagenes $f^{-1}(a,1]$ y $f^{-1}[0,b)$ son abiertas en X. Suponga que $f(x) \in (a,1]$. Tomemos q tal que a < q < f(x) y consideremos el conjunto abierto $V = X - \overline{U_q}$, entonces por (a) $x \in V$, asi que V es una vecindad de x. Si $y \in V$, entonces por (b) tenemos que $f(y) \in (a,1]$. Por lo tanto $f^{-1}(a,1] = V$ que es un abierto.

Ahora supongamos que $f(x) \in [0, b)$. Tomemos q tal que f(x) < q < b. Por (b) tenemos $x \in U_q$, que por ser abierto, tenemos que es vecindad de x. Tomemos $y \in U_q$, entonces de la definición de f se sigue que $f(y) \le q$. Por lo tanto $f^{-1}[0, b) = U_q$ que es un abierto. Con esto terminamos nuestra prueba.

Corolario de Urysohn: Sean X un espacio de Hausdorff localmente compacto, K un compacto en X y U un abierto en X tal que $K \subset U$. Entonces existe una función $f \in C_c(X, [0, 1])$ tal que $\chi_k \leq f$ y supp $(f) \subset U$.

Ahora demostraremos nuestro ejercicio. Primero verificaremos que $C_c(X,\mathbb{C})$ es un subconjunto de $L^p(X,\mu)$. Si $f \in C_c(X,\mathbb{C})$, entonces f es acotada y

$$||f||_p^p \le \mu(\operatorname{supp}(f))||f||_{infty}^p$$

Ahora veamos que $C_c(X, \mathbb{C})$ es denso en $L^p(X, \mu)$. De Çompletitud de los espacios L^p " de las notas de Maximeko, sabemos que el conjunto

$$\mathcal{S} = \{ f : f \text{ es simple, medible y } \mu(\{x \in X : f(x) \neq 0\}) < \infty \}$$

es denso en L^p . Además cada función de la clase S es una combinación lineal de funciones características de conjuntos de medida finita. Entonces, si para cada funcion característica

 χ_A , $\mu(A) < \infty$ logramos encontrar un $f \in C_c(X, \mathbb{C})$ tal que $||f - \chi_A||_p < \epsilon$ para ϵ positivo arbitrario, habremos terminado.

Sea $A \in \mathcal{F}$ tal que $\mu(A) < \infty$. Tomemos $\epsilon > 0$ y pongamos $\delta = (\epsilon/2)^p/2$. Con la hipótesis de que μ es regular, encontramos un compacto K y un abierto V tales Que

$$K \subset A \subset V, \ \mu(K) > \mu(A) - \delta \ y \ \mu(V) < \mu(A) + \delta$$

Aplicando el corolario de Urysohn encontramos una función $f \in C_c(X, [0, 1])$ tal que $\chi_K \leq f$ y supp $(f) \subset V$. Entonces

$$||f - \chi_A||_p \le ||f - \chi_K||_p + ||\chi_K - \chi_A||_p$$

$$\le \mu(V - K)^{\frac{1}{p}} + \mu(A - K)^{\frac{1}{p}}$$

$$< 2(2\delta)^{\frac{1}{p}} = \epsilon$$

Que es lo que estabamos buscando.