

Department of Geography

GEO 812 Getting started with R for Spatial Analysis

Session 1: Data exploration

Peter Ranacher, Nico Neureiter September 2023

Learning objectives

You are able to

- perform basic operations in R
- transform and explore data in the tidyverse
- visualize data with ggplot

What is R?

R is a programming language and software environment for statistical analysis. R is widely used in science, since it is open, independent and free.

The architecture of R

RStudio projects

RStudio projects provide a **compartmentalized**, simple **framework** for analyses, making it straightforward to divide your work into multiple contexts, each with their own working directory, workspace, history, and source documents.

So before we start, create a new project.

R coding basics: assign values to objects

R coding basics: call a function

Specify arguments by name

$$seq(from = 1, to = 10)$$

Specify arguments by position

Naming things in R

- Names consist of a combination of letters, numbers and _ and .
- Must start with a letter.
- Are case sensitive.

```
some_name ≠ Some_Name ≠ SOME_NAME
```

The tidyverse

Collection of R packages for data science

Common design philosophy, grammar, and data structure

Install and load packages

install.packages("tidyverse")
library(tidyverse)

Data frames (tibbles)

Observations of of a phenomenon with several variables

columns are variables

survived	sex	age	passengerClass
yes	female	29	1st
yes	male	1	1st
no	female	2	1st
no	male	30	1st
no	female	25	1st

phenomenon

here: survival status of the passengers of the Titanic

Keep your data frames tidy!

- Each variable has its own column.
- Each observation has its own row.
- 3. Each value must has its own cell.

Get some data

install.packages("carData")

library(carData)

titanic_survival <- as_tibble(TitanicSurvival)</pre>

sleep times and weights for a set of mammals msleep

Transforming data

- filter() observations by their values
- arrange() the rows and order the observations
- select() variables by their names
- mutate() the data and create new variables from existing ones
- collapse many values down to a single value and SUMMarise()the data

We can do the above on the entire dataset or group_by() a group.

filter()

Filter all passengers on the Titanic older than 25.

filter(titanic_survival, age > 25)

survived	sex	age	passengerClass
yes	female	29	1st
yes	male	1	1st
no	female	2	1st
no	male	30	1st
no	female	25	1st

survived	sex	age	passengerClass
yes	female	29	1st
no	male	30	1st

Operators for comparison

Filter all passengers who are exactly 25 years old.

Filter all passengers who are younger than or exactly 25 years old.

Operator	description
==	equal
! =	not equal
<	less than
<=	less than or equal
>	greater than
>=	greater than or equal

Logical operators

Logical operators	description
&	logical AND
	logical OR
!	logical NOT

Combining filters and logical operators

Filter all carnivores or omnivores.

```
filter(msleep, vore == "carni" | vore == "omni")
```

Filter all carnivores that sleep longer than 11 hours.

```
filter(msleep, vore == "carni" & sleep_total > 11)
```

Filter all rows with valid sleep values.

```
filter(msleep, !is.na(sleep_total))
```


select()

Select only data about survival and age.

select(titanic_survival, survived, age)

survived	sex	age	passengerClass
yes	female	29	1st
yes	male	1	1st
no	female	2	1st
no	male	30	1st
no	female	25	1st

survived	age
yes	29
yes	1
no	2
no	30
no	25

arrange()

Order the titanic survival data by age in ascending order.

arrange(titanic_survival, age)

Order the titanic survival data by age in descending order.

arrange(titanic_survival, desc(age))

survived	sex	age	passengerClass
yes	female	29	1st
yes	male	1	1st
no	female	2	1st
no	male	30	1st
no	female	25	1st

survived	sex	age	passengerClass
yes	male	1	1st
no	female	2	1st
no	female	25	1st
yes	female	29	1st
no	male	30	1st

mutate()

Compute the ratio between REM sleep and total sleep in the mammal sleep data and assign it to a new variable.

mutate(msleep, rem_ratio = sleep_rem / sleep_total)

name	 sleep_total	sleep_rem
Owl monkey	 17	1.8
Cow	 4	0.7
Dog	 10.1	2.9

name	 sleep_total	sleep_rem	rem_ratio
Owl monkey	 17	1.8	0.106
Cow	 4	0.7	0.175
Dog	 10.1	2.9	0.287

summarise()

Compute the mean age of passengers on the Titanic removing NA values.

summarise(titanic_survival, mean_age = mean(age, na.rm = TRUE))

survived	sex	age	passengerClass
yes	female	29	1st
yes	male	1	1st
no	female	2	1st
no	male	30	1st
no	female	25	1st

mean_age 29.9

group by()and summarise()

Group the data by passenger class, and compute the mean age of passengers per class.

survived	sex	age	passengerClass
yes	female	29	1st
yes	male	1	1st
no	female	2	1st
no	male	30	1st
no	female	25	1st

passengerClass	mean_age
1st	39.2
2nd	29.5
3rd	24.8

Useful summary functions

Measures of location

$$mean(x)$$
, $median(x)$

Measures of spread

$$sd(x)$$
, $IQR(x)$, $mad(x)$

Measures of rank

$$min(x)$$
, quantile(x, 0.95), $max(x)$

$$first(x)$$
, $nth(x, 2)$, $last(x)$

Counts and proportions of logical values

$$n()$$
, $n_{distinct(x)}$, $sum(x>10)$

Joining data

- Merge data from two or more data frames into one.
- A unique key specifies which rows are joined.

Taking apart and joining back

Add the row number as a unique key to the Titanic data.

```
titanic_survival <- mutate(titanic_survival, id = row_number())
```

Split the data in two data frames.

```
a <- select(titanic_survival, age, sex, id)
b <- select(titanic_survival, survived, passengerClass, id)</pre>
```

Then put them back together again.

```
left_join(a, b, by = "id")
```


data %>%

function1(column1) %>%

function2(column2, column3)

take the value on the left

%>%

pass it to the right as an argument

Transform and plot in one go using pipes

Group the data, compute the mean sleep per group and plot.

Plotting data with ggplot2

creates a plot object

how are variables mapped to visuals?

Scatter plots

Plot the relationship between total and REM sleep

```
ggplot(data = msleep) +
  geom_point(mapping = aes(x = sleep_total, y = sleep_rem))
```


Changing the aesthetics

Color code different vores.

```
color
```

```
ggplot(data = msleep) +
  geom_point(mapping = aes(sleep_total, sleep_rem, color = vore))
```

Change the size of the dots proportional to the body weight. siZe

```
ggplot(data = msleep) +
  geom_point(mapping = aes(sleep_total, sleep_rem, size = bodywt))
```

Bar plots

Plot the number of passengers per class on the Titanic.

Under the hood, the function

- groups the data per passenger class
- counts the number of entries per class
- plots the count

Changing the aesthetics of bar plots

Color code the bars with passenger class.

```
ggplot(data = titanic_survival) +
 geom_bar(mapping = aes(passengerClass, fill = passengerClass))
```

Color code the bars with survival status.

```
ggplot(data = titanic_survival) +
 geom_bar(mapping = aes(passengerClass, fill = survived))
```

Cheat sheets

<u>Data transformation with dplyr :: Cheatsheet</u>

<u>Data visualization with ggplot2</u> :: Cheat Sheet

Learning objectives revisited

You are able to

- perform basic operations in R
- transform and explore data in the tidyverse
- visualize data with ggplot2

Exercises

- Load the gapminder package, which provides values for life expectancy, GDP per capita, and population.
- The data set contains data from multiple decades. Extract the data from the most recent year available.
- 3. Which 5 countries have the highest life-expectancy (in the most recent year)?
- Which continent has the highest absolute GDP? Which has the highest GDP 4. per capita? Beware that different countries have different population size.
- 5. Create a plot that shows GDP and life expectancy in different countries.
- 6. Add another visual variable (color, size, shape,...) to the plot (decide yourself what attribute of the data you want to show).