DADS7305: MLOPs Northeastern University

Instructor: Ramin Mohammadi

September 7, 2025

These materials have been prepared and sourced for the course **MLOPs** at Northeastern University. Every effort has been made to provide proper citations and credit for all referenced works.

If you believe any material has been inadequately cited or requires correction, please contact me at:

r.mohammadi@northeastern.edu

Thank you for your understanding and collaboration.

DADS7305 : MLOPs Lecture 7 - Data Journey

Data Journey and Data Storage

Data Journey

Outline

- ► The data journey
- Accounting for data and model evolution
- ► Intro to ML metadata
- Using ML metadata to track changes

DADS7305 : MLOPs Lecture 7 - Data Journey

The data journey

DADS7305 : MLOPs Lecture 7 - Data Journey

Data Transformation

- ► Data transforms as it flows through the process
- ► Interpreting model results requires understanding data transformation

6/61

DADS7305 : MLOPs Lecture 7 - Data Journey

Artifacts and the ML pipeline

- Artifacts are created as the components of the ML pipeline execute
- Artifacts include all of the data and objects which are produced by the pipeline components
- ► This includes the data, in different stages of transformation, the schema, the model itself, metrics, etc.

DADS7305 : MLOPs Lecture 7 - Data Journey

Data provenance and lineage

- ► The chain of transformations that led to the creation of a particular artifact.
- Important for debugging and reproducibility.

DADS7305 : MLOPs Lecture 7 - Data Journey

Data provenance: Why it matters

Helps with debugging and understanding the ML pipeline:

Inspect artifacts at each point in the training process

Trace back through a training run

Compare training runs

Data lineage: data protection regulation

- Organizations must closely track and organize personal data
- ▶ Data lineage is extremely important for regulatory compliance

DADS7305 : MLOPs Lecture 7 - Data Journey

Data provenance: Interpreting results

Data transformations sequence leading to predictions

Understanding the model as it evolves through runs

Data versioning

- ▶ Data pipeline management is a major challenge
- Machine learning requires reproducibility
- Code versioning: GitHub and similar code repositories
- ▶ Environment versioning: Docker, Terraform, and similar
- Data versioning:
 - Version control of datasets
 - Examples: DVC, Git-LFS

DADS7305 : MLOPs Lecture 7 - Data Journey

Data Journey and Data Storage

Intro to ML Metadata

DADS7305 : MLOPs Lecture 7 - Data Journey

Metadata: Tracking artifacts and pipeline changes

DADS7305 : MLOPs Lecture 7 - Data Journey

Ordinary ML data pipeline

DADS7305 : MLOPs Lecture 7 - Data Journey

Metadata: Tracking progress

DADS7305 : MLOPs Lecture 7 - Data Journey

Metadata: TFX component architecture

- Driver:
 - Supplies required metadata to executor
- Executor:
 - Place to code the functionality of component
- Publisher:
 - Stores result into metadata

DADS7305 : MLOPs Lecture 7 - Data Journey 17/61

ML Metadata library

- ▶ Tracks metadata flowing between components in pipeline
- Supports multiple storage backends

DADS7305 : MLOPs Lecture 7 - Data Journey

ML Metadata terminology

Units	Types	Relationships		
Artifact	ArtifactType	Event		
Execution	ExecutionType	Attribution		
Context	ContextType	Association		

DADS7305 : MLOPs Lecture 7 - Data Journey 19/61

Metadata stored

DADS7305 : MLOPs Lecture 7 - Data Journey 20/61

Inside MetadataStore

DADS7305 : MLOPs Lecture 7 - Data Journey 21/61

Other benefits of ML Metadata

Verify the inputs used in an execution

List all artifacts

Compare artifacts

Key points

- ► ML metadata:
 - Architecture and nomenclature
 - Tracking metadata flowing between components in pipeline

DADS7305 : MLOPs Lecture 7 - Data Journey 23/61

Evolving Data

Schema Development

DADS7305 : MLOPs Lecture 7 - Data Journey

Outline

- ► Develop enterprise schema environments
- lteratively generate and maintain enterprise data schemas

DADS7305 : MLOPs Lecture 7 - Data Journey

Review: Recall Schema

DADS7305 : MLOPs Lecture 7 - Data Journey

Iterative schema development and evolution

DADS7305 : MLOPs Lecture 7 - Data Journey 27/61

Reliability during data evolution

Platform needs to be resilient to disruptions from:

Software

User configurations

Execution environments

Scalability during data evolution

Platform must scale during:

High data volume during training

Variable request traffic during serving

Anomaly detection during data evolution

Platform designed with these principles:

Easy to detect anomalies

Data errors treated same as code bugs

Update data schema

Schema inspection during data evolution

Looking at schema versions to track data evolution

Schema can drive other automated processes

Evolving Data

Schema Environments

DADS7305 : MLOPs Lecture 7 - Data Journey 32/61

Multiple schema versions

DADS7305 : MLOPs Lecture 7 - Data Journey

Maintaining varieties of schema

Business use-case needs to support data from different sources.

Data evolves rapidly

Is anomaly part of accepted type of data?

Anomaly: No labels in serving dataset

	Anomaly sho	ort description	Anomaly	long	description
Feature name					
'Cover_Type'		Out-of-range values	Unexpectedly small value: 0.		

DADS7305 : MLOPs Lecture 7 - Data Journey

Schema environments

- ▶ Customize the schema for each environment
- Example: Add or remove label in schema based on type of dataset

DADS7305 : MLOPs Lecture 7 - Data Journey

Key points

- lteratively update and fine-tune schema to adapt to evolving data
- ► How to deal with scalability and anomalies
- ▶ Set schema environments to detect anomalies in serving requests

DADS7305 : MLOPs Lecture 7 - Data Journey

Enterprise Data Storage

Feature Stores

DADS7305 : MLOPs Lecture 7 - Data Journey

Feature stores

DADS7305 : MLOPs Lecture 7 - Data Journey 39/61

Feature stores

Many modeling problems use identical or similar features

Feature engineering Feature Store Model development

DADS7305 : MLOPs Lecture 7 - Data Journey

Feature stores

Avoid duplication

Control access

Purge

Offline feature processing

DADS7305 : MLOPs Lecture 7 - Data Journey 42/61

Offline feature usage

Low latency access to features

Features difficult to compute online

Precompute and store for low latency access

Features for online serving - Batch

Loading history

- Simple and efficient
- Works well for features to only be updated every few hours or once a day
- Same data is used for training and serving

DADS7305 : MLOPs Lecture 7 - Data Journey

Feature store: key aspects

- ▶ Managing feature data from a single person to large enterprises
- Scalable and performant access to feature data in training and serving
- Provide consistent and point-in-time correct access to feature data
- ▶ Enable discovery, documentation, and insights into your features

DADS7305 : MLOPs Lecture 7 - Data Journey

Enterprise Data Storage

Data Warehouse

DADS7305 : MLOPs Lecture 7 - Data Journey 46/61

Data Warehouse

Aggregates data sources

Processed and analyzed

Read optimized

Not real time

Follows schema

Key features of data warehouse

Data Warehouse

Timely access to data

Enhanced data quality and consistency

investment

High return on Increased query and system performance

Comparison with databases

Data warehouse	Database
Online analytical processing (OLAP)	Online transactional processing (OLTP)
Data is refreshed from source systems	Data is available real-time
Stores historical and current data	Stores only current data
Data size can scale to ¿= terabytes	Data size can scale to gigabytes
Queries are complex, used for analysis	Queries are simple, used for transactions
Queries are long running jobs	Queries executed almost in real-time
Tables need not be normalized	Tables normalized for efficiency

DADS7305 : MLOPs Lecture 7 - Data Journey

Enterprise Data Storage

Data Lakes

Data Lakes

DADS7305 : MLOPs Lecture 7 - Data Journey 52/61

Comparison with data warehouse

	Data warehouses	Data lakes
Data Structure	Processed	Raw
Purpose of data	Currently in use	Not yet determined
Users	Business professionals	Data scientists
Accessibility	More complicated and costly to make changes	Highly accessible and quick to update

DADS7305 : MLOPs Lecture 7 - Data Journey 53/61

LLM Data Storage

Vector Stores

DADS7305 : MLOPs Lecture 7 - Data Journey

Vector stores: foundation of retrieval

- Vector stores are specialized databases optimized for similarity search over high-dimensional vectors
- Used in Retrieval-Augmented Generation (RAG) to find contextually relevant documents or chunks
- ▶ Store embeddings derived from text, images, or other modalities
- ► Enable fast, approximate nearest-neighbor (ANN) search

DADS7305 : MLOPs Lecture 7 - Data Journey

How vector stores are used in LLM pipelines

- Input documents are chunked and embedded using a model (e.g., SentenceTransformers, OpenAI, LLaMA)
- ▶ Embeddings are stored in a vector database alongside metadata
- At query time, the user input is embedded and matched against stored vectors
- Matched chunks are retrieved and passed to the LLM for context-aware generation

DADS7305 : MLOPs Lecture 7 - Data Journey

Popular vector databases

- FAISS Facebook's open-source library for efficient similarity search; supports CPU/GPU
- ▶ Pinecone Fully managed vector DB with metadata filtering and scaling
- Weaviate Open-source, schema-aware, supports hybrid search (text + vector)
- Chroma Lightweight, fast local vector store; ideal for prototyping

DADS7305 : MLOPs Lecture 7 - Data Journey

Key considerations for vector store design

- Scalability Can it handle millions of vectors efficiently?
- Index type Flat, HNSW, IVF, PQ tradeoff between speed and accuracy
- ▶ Filtering Support for metadata filtering alongside vector similarity
- ▶ Latency Query performance matters in production LLM applications
- ► Freshness How easily can new documents be added or deleted?

DADS7305 : MLOPs Lecture 7 - Data Journey

Labs for This Week

Objective

Briefly describe the learning goal for this week's lab(s).

Lab Activities:

- ► Lab 1: [MLMD] [MLMD Tutorial]
- ▶ Lab 2: [TFX] [TFX Tutorial]

Submission Deadline: [Before the next class]

- ► Assignment 5: [MLMD] [Create a metadata store of your choice]
- ► Assignment 5: [TFX] [Create a TFX pipeline of your choice]

DADS7305 : MLOPs Lecture 7 - Data Journey

Reading Materials

This Week's Theme

Topic focus: [People + Al Guidebook - Data Collection + Evaluation.pdf]

You should use the worksheet related to this pdf to your project and submit it when its requested.

Required Readings:

 [On the Reliable Detection of Concept Drift from Streaming Unlabeled Data]

Be prepared to discuss highlights and open questions in class.

DADS7305 : MLOPs Lecture 7 - Data Journey

Sources

 ${\sf Deep Learning. AI}$

The People + Al Guidebook