15 February 2018
Take home Paper 1 : Two hours — NO Calculator

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

[Ma:	ximum mark: 5]	
	$f(x) = a(x-h)^2 + k$. The vertex of the graph of f is at $(2,3)$ and the graph passes $(1,7)$.	
(a)	Write down the value of h and of k .	
(b)	Find the value of a .	

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all questions in the boxes provided. Working may be continued below the lines if necessary.

1. [Maximum mark: 5]

The following diagram shows a right-angled triangle, ABC, where $\sin A = \frac{5}{13}$.

- (a) Show that $\cos A = \frac{12}{13}$. [2]
- (b) Find $\cos 2A$. [3]

Turn over

3. [Maximum mark: 6]

The following diagram shows the graph of y = f(x), for $-4 \le x \le 5$.

- (a) Write down the value of
 - (i) f(-3);
 - (ii) $f^{-1}(1)$. [2]
- (b) Find the domain of f^{-1} . [2]
- (c) On the grid above, sketch the graph of f^{-1} . [2]

Turn over

4.	[Махітит	mark:	67
~P.o	INIUXIIIIUIII	man.	v_I

- (a) Write down the value of
 - (i) $\log_3 27$;
 - (ii) $\log_8 \frac{1}{8}$;
 - (iii) $\log_{16} 4$.

[3]

(b) Hence, solve $\log_3 27 + \log_8 \frac{1}{8} - \log_{16} 4 = \log_4 x$.

[3]

 		•••••
 		• • • • • • • • • • • • • • • • • • • •
 		• • • • • • • • • • • • • • • • • • • •
 •		• • • • • • • • • • • • • • • • • • • •
 	• • • • • • • • • • • • • • • • • • • •	
 	• • • • • • • • • • • • • • • • • • • •	
 	• • • • • • • • • • • • • • • • • • • •	

λŦ:	1 / / C/N /	CONTRACTOR	DENICHTEN/VV
v	14/5/iV	IAIME/SPL	/ENG/TZ0/XX

4.	[Ма	eximum mark: 6]	
	(a)	Write the expression $3 \ln 2 - \ln 4$ in the form $\ln k$, where $k \in \mathbb{Z}$.	[3]
-	(b)	Hence or otherwise, solve $3 \ln 2 - \ln 4 = -\ln x$.	[3]
		,	
		, Territorium in amerikan in dierraterikan in der haterikan in der haterikan in der haterikan in der haterikan -	•
	į		
			ļ

5 .	[Maximum	mark:	67

Celeste wishes to hire a taxicab from a company which has a large number of taxicabs. The taxicabs are randomly assigned by the company.

The probability that a taxicab is yellow is 0.4.

The probability that a taxicab is a Fiat is 0.3.

The probability that a taxicab is yellow or a Fiat is 0.6.

Find the probability that the taxicab hired by Celeste is **not** a yellow Fiat.

	•
Γ	
ŀ	
	•
	·
	en e

5. [Maximum mark: 6]

Let $f(x) = p + \frac{9}{x-q}$, for $x \ne q$. The line x = 3 is a vertical asymptote to the graph of f.

(a) Write down the value of q.

[l]

The graph of f has a y-intercept at (0, 4).

(b) Find the value of p.

[4]

(c) Write down the equation of the horizontal asymptote of the graph of f.

[1]

				•	•		٠	·	•	•	•		•	·	•	•	• •	•	•	•	•	•	•		•	•	•	*	•	٠.	•	٠	•	•	•	•	•	•	• •		٠	•	٠.	•	•	٠	•	•	•	•	•	* 1		٠	•	•	٠.		•		
						, ,		•							٠	, .				•	•					•	•																		•																
	•	•	;	٠, ٠		•	٠.	•	•	,		,	•	٠,	. ,		•	. ,	•		٠.	•		-		,	•		•	•	٠	•			•	ı		٠.		•	,•	. ;		;		;			:	•	·	. :		;			. :	• •			
							•											•						•							,														•				•												
		r	•				٠				•			r	. ,			•		•										•		4			:										•	٠,			•					,			, ,	,	,		
	٠.		. ,		٠			. ,						•	, ,			•									٠,									•		•						•									,					٠.			
	. ,		. ,	, ,													•	•				•	•																	•			,					•			٠.					. ,					
						•	•								•	,																• .									٠ ،				. ,			,											1	٠	
,	• •	•		٠	•				•						•							•					, ,		•			٠.										•				•									٠,	,					
							٠.			,	٠									. ,				•					•				•			٠.										•			. ,												
			, ,			,			,																																								•												

Do **NOT** write solutions on this page.

SECTION B

Answer **all** questions in the answer booklet provided. Please start each question on a new page.

8. [*Maximum mark: 15*]

Let $f(x) = 3x^2 - 6x + p$. The equation f(x) = 0 has two equal roots.

- (a) (i) Write down the **value** of the discriminant.
 - (ii) Hence, show that p = 3.

[3]

The graph of f has its vertex on the x-axis.

(b) Find the coordinates of the vertex of the graph of f.

[4]

(c) Write down the solution of f(x) = 0.

[1]

- (d) The function can be written in the form $f(x) = a(x-h)^2 + k$. Write down the value of
 - (i) a;
 - (ii) h;

(iii) k.

[3]

(e) The graph of a function g is obtained from the graph of f by a reflection of f in the x-axis, followed by a translation by the vector $\begin{pmatrix} 0 \\ 6 \end{pmatrix}$. Find g, giving your answer in the form $g(x) = Ax^2 + Bx + C$.

Do NOT write solutions on this page.

9. [Maximum mark: 14]

Bill and Andrea play two games of tennis. The probability that Bill wins the first game is $\frac{4}{5}$. If Bill wins the first game, the probability that he wins the second game is $\frac{5}{6}$. If Bill loses the first game, the probability that he wins the second game is $\frac{2}{3}$.

(a) Copy and complete the following tree diagram. (Do not write on this page.)

[3]

- (b) Find the probability that Bill wins the first game and Andrea wins the second game. [2]
- (c) Find the probability that Bill wins at least one game. [4]
- (d) Given that Bill wins at least one game, find the probability that he wins both games. [5]

Do **NOT** write solutions on this page.

10. [Maximum mark: 15]

The sides of a square are 16 cm in length. The midpoints of the sides of this square are joined to form a new square and four triangles (diagram 1). The process is repeated twice, as shown in diagrams 2 and 3.

diagram 1

diagram 2

diagram 3

Let x_n denote the length of one of the equal sides of each new triangle. Let A_n denote the area of each new triangle.

The following table gives the values of x_n and A_n , for $1 \le n \le 3$. Copy and complete (a) the table. (Do not write on this page.)

[4]

п	1	2	3
X_n	8		4
A_n	32	16	

(b) The process described above is repeated. Find A_6 .

[4]

[7]

(c) Consider an initial square of side length kcm. The process described above is repeated indefinitely. The total area of the shaded regions is $k \text{cm}^2$. Find the value of k.