de repaso - Polinomios, ecuaciones e inecuaciones

1) Factoriza y halla las raíces de los siguientes polinomios:

(a)
$$4x^5 + 3x^3 - x$$

(b)
$$x^3 - 4x^2 + 2x$$

(c)
$$x^5 - 3x^3 - 4x$$

(d)
$$3x^5 + x^4 - 9x^3 - 9x^2 - 2x$$

(e)
$$x^4 - 3x^2 + 2$$

(d)
$$3x^5 + x^4 - 9x^3 - 9x^2 - 2x$$

(e) $x^4 - 3x^2 + 2$
(f) $36x^4 - 12x^3 - 3x^2 + \frac{2}{3}x + \frac{1}{9}$

2) Determina el valor de m para que x=-1 sea raíz de $3x^3-2x^2+mx+7$

3) Halla m para que $3x^4 - 5x^2 + mx - 7$ sea divisible entre (x + 1).

Construye en un polinomio de grado 2 cuyas raíces sean $x_1 = 0$ y $x_2 = \frac{1}{2}$.

5) Sean los polinomios $A(x) = 18x^3 + 9x^2 - 2x - 1$ y $B(x) = 6x^2 + x - 1$, comprueba que la división A(x):B(x) es exacta. Utiliza el resultado para factorizar el polinomio A(x).

6) Opera y simplifica el resultado en caso de ser posible:

(a)
$$\frac{1}{x} + \frac{x}{x+2} - \frac{x+6}{x^2+2x} =$$

(b)
$$x \cdot \left(\frac{x+2}{x^2-1} : \frac{x^2+8x}{x+1}\right) =$$

(c)
$$x - \frac{2}{x+2} - \frac{x+10}{x^2-4} =$$

(a)
$$\frac{1}{x} + \frac{x}{x+2} - \frac{x+6}{x^2+2x} =$$
 (c) $x - \frac{2}{x+2} - \frac{x+10}{x^2-4} =$ (b) $x \cdot \left(\frac{x+2}{x^2-1} : \frac{x^2+8x}{x+1}\right) =$ (d) $\frac{1}{x} - \left(\frac{x+1}{x^2} : \frac{(x+1)^2}{x}\right) =$

7) Resuelve las siguientes ecuaciones racionales (recuerda comprobar las soluciones):

(a)
$$\frac{x^2+1}{x+1}-1=\frac{x^2-2x+1}{x^2-1}$$

(b)
$$\frac{x}{\sqrt{2}} + \frac{\sqrt{2}}{x} = \sqrt{2}x$$

(c)
$$\frac{20}{3} - \frac{x-1}{x+1} = 2 + \frac{14}{3x}$$

(c)
$$\frac{20}{3} - \frac{x-1}{x+1} = 2 + \frac{14}{3x}$$

(d) $\frac{x-2}{x-1} = \frac{x^2}{(x-1)(x-2)} - \frac{x-1}{2-x}$

 $\it Nota$: para el apartado d) ten en cuenta que 2-x=-(x-2).

8) Resuelve las siguientes ecuaciones irracionales (recuerda comprobar las soluciones):

(a)
$$\sqrt{3x^2 - 11} + 5 = x^2$$

(b)
$$2 \cdot \sqrt{\frac{3}{4} + \frac{1}{4x}} - \frac{1}{x} = 1$$

(c)
$$\sqrt{2x} + \sqrt{5x - 6} - 4 = 0$$

(c)
$$\sqrt{2x} + \sqrt{5x - 6} - 4 = 0$$

(d) $3\sqrt{x - 2} + \sqrt{x + 1} = 3 + 2\sqrt{x - 2}$

9) Resuelve las siguientes ecuaciones exponenciales obteniendo bases iguales a ambos lados de la igualdad:

(a)
$$3^{x-1} = \frac{1}{\sqrt{3}}$$

(b)
$$\frac{3^{3x-2}}{3^{x+3}} = 81$$

(c)
$$5^{x^2-5x-6} = 1$$

(d)
$$\sqrt{7^x} = \frac{1}{49}$$

(e) $2^x \cdot 5^x = 0, 1$

(e)
$$2^x \cdot 5^x = 0, 1$$

(f)
$$e^{3x+4} = \sqrt{e^{-3x+4}}$$

Nota: En el apartado b) y e) aplica las propiedades de las potencias para juntar la expresión en una única potencia. Para el apartado d) eleva primero al cuadrado.

10) Resuelve las siguientes ecuaciones logarítmicas:

(a)
$$2\log x - \log(x+6) = 3\log 2$$

(b)
$$\ln(x-1) + \ln(x+6) = \ln(3x+2)$$

(c)
$$\log_3 \sqrt{4x+5} - \log_3 \sqrt{x} = 1$$

(a)
$$2 \log x - \log(x+6) = 3 \log 2$$

 (b) $\ln(x-1) + \ln(x+6) = \ln(3x+2)$
 (c) $\log_3 \sqrt{4x+5} - \log_3 \sqrt{x} = 1$
 (d) $\log(x^2 + 3x + 36) = 1 + \log(x+3)$

11) Resuelve las siguientes inecuaciones:

(a)
$$1 - x^2 + 4x \ge x^2 + x + 2$$

(a)
$$1 - x^2 + 4x \ge x^2 + x + 2$$

(b) $x(x-1) - 2(x+2) < x(x+1)$
(c) $x^4 + x^2 \ge 2$
(d) $\frac{2x+3}{1-x} \le -1$
(e) $\frac{x^2 + 2x + 1}{x+3} \ge 0$

(c)
$$x^4 + x^2 \ge 2$$

$$(\mathsf{d})\frac{2x+3}{1-x} \le -1$$

(e)
$$\frac{x^2 + 2x + 1}{x + 3} \ge 0$$