Theorem 4-2

If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

Given: $\angle B \cong \angle C$ Prove: $\overline{AB} \cong \overline{AC}$

Plan for Proof: You can show that \overline{AB} and \overline{AC} are corresponding parts of congruent triangles. Draw the bisector of $\angle A$ as your auxiliary line, show that $\angle ADB \cong \angle ADC$, and use ASA.

Corollary

An equiangular triangle is also equilateral.

Notice that Theorem 4-2 is the converse of Theorem 4-1, and the corollary of Theorem 4-2 is the converse of Corollary 1 of Theorem 4-1.

Classroom Exercises

- 1. If $\triangle AOD$ is isosceles, with $\overline{OA} \cong \overline{OD}$, then $\angle \frac{?}{} \cong \angle \frac{?}{}$.
- 2. If $\triangle BOC$ is isosceles, with $\overline{OB} \cong \overline{OC}$, then $\angle \underline{?} \cong \angle \underline{?}$.
- 3. If $\triangle AOD$ is an isosceles right triangle with right $\triangle AOD$, then the measure of $\triangle A$ is $\frac{?}{}$.

4. Given the triangles at the right, which of the following can you conclude are true?

a.
$$\angle D \cong \angle R$$

b.
$$\overline{DE} \cong \overline{DF}$$

c.
$$\overline{DF} \cong \overline{RT}$$

d.
$$\angle E \cong \angle F$$

e.
$$\angle E \cong \angle S$$

$$f. \ \angle S \cong \angle T$$

Given the two congruent angles, name two segments that must be congruent.

5.
$$\angle 1 \cong \angle 2$$

7.
$$\angle 5 \cong \angle 6$$

8. Is the statement " $\overline{MK} \cong \overline{NK}$ if and only if $\angle 3 \cong \angle 4$ " true or false?

- 9. Explain how Corollary 1 follows from Theorem 4-1.
- 10. Explain how Corollary 2 follows from Corollary 1.
- 11. Explain how Corollary 3 follows from Theorem 4-1.
- 12. Explain how the Corollary follows from Theorem 4-2.