MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Spring 2006 Physics 8.04 Assignment #10 page 1 of 2 Due Thursday, May 11 at 4pm Vuletic

1. **Operators and the HO** (30 points)

- Let $|0\rangle$ be the normalized ground state of the harmonic oscillator, defined by $\hat{a}|0\rangle = 0$ and
- $\langle 0|0\rangle$ = 1, where \hat{a} is the lowering (or annihilation) operator and \hat{a}^+ is the raising (or creation) operator.
- a) (5 points) Show that the length of the unnormalized *n*-th eigenstate $|\tilde{n}\rangle$, defined by

$$|\widetilde{n}\rangle = (a^+)^n |0\rangle$$
, is given by $\sqrt{n!}$.

- b) (5 points) As a consequence of a), the normalized *n*-th eigenstate $|n\rangle$ is given by
- $|n\rangle = \frac{1}{\sqrt{n!}} (a^+)^n |0\rangle$. Verify that the eigenstates are orthonormal, i.e. show that $\langle n|m\rangle = \delta_{nm}$.
- c) (5 points) Show that $\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$ and $\hat{a}^+|n\rangle = \sqrt{n+1}|n+1\rangle$.
- d) (5 points) Define an operator \hat{n} by $\hat{n} = \hat{a}^{\dagger} \hat{a}$. Show that \hat{n} is a Hermitian operator.

Consequently, \hat{n} represents a measurable quantity. Calculate $\hat{n}|n\rangle$. What is the physical quantity that \hat{n} represents? What are the eigenvalues and eigenstates of \hat{n} ?

- e) (5 points) Express \hat{x} and \hat{p} in terms of \hat{a} and \hat{a}^+ . Calculate $\langle m|\hat{x}|n\rangle$ and $\langle m|\hat{p}|n\rangle$, and show that they vanish unless $m=n\pm1$.
- f) (5 points) Express \hat{x}^2 and \hat{p}^2 in terms of \hat{a} and \hat{a}^+ . Show that in the *n*-th eigenstate of the harmonic oscillator the uncertainty product of *x* and *p* is given by $\Delta x \Delta p = \frac{\hbar}{2}(2n+1)$.

2. Coherent states of the HO (40 points)

A state $|\alpha\rangle$ that obeys the eigenequation $\hat{a}|\alpha\rangle = \alpha|\alpha\rangle$ with an arbitrary complex number α , is called a coherent state.

- a) (5 points) Show that $\hat{a}(\hat{a}^+)^n |0\rangle = n(\hat{a}^+)^{n-1} |0\rangle$.
- b) (10 points) Show that the coherent state may be written in the form $|\alpha\rangle = C \exp(\alpha \hat{a}^+)|0\rangle$,

where C is a normalization constant. The operator $\exp(\alpha \hat{a}^+)$ is defined in terms of its Taylor expansion.

- c) (5 points) Calculate the normalization constant *C*.
- d) (10 points) Expand the coherent state in terms of the normalized eigenstates $|n\rangle$, and calculate the probability of finding the HO in the *n*-th eigenstate (or equivalently, of finding *n* quanta in the system). You should obtain the Poisson distribution.
- e) (10 points) Calculate the average number of quanta $\langle n \rangle = \langle \alpha | \hat{n} | \alpha \rangle$ in the coherent state.

The coherent states are the closest quantum mechanical analog to classical states with a well-defined amplitude and phase. They are used, e.g., in the quantum mechanical description of the light field emitted

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Spring 2006 Physics 8.04 Assignment #10 page 2 of 2 Due Thursday, May 11 at 4pm Vuletic

by a laser or radiofrequency oscillator. The coherent states are also the appropriate states for describing a classical harmonic oscillator with a large average quantum number $\langle n \rangle$.

3. **Projection operator** (10 points)

Let $|n\rangle$ denote the eigenstate of a Hermitian operator. The operator $\hat{P}_n = |n\rangle\langle n|$ is called the projection operator. Show that $\hat{P}_m\hat{P}_n = \delta_{mn}\hat{P}_n$. Using the expansion of an arbitrary state into eigenstates $|n\rangle$ of a Hermitian operator, show that $\sum_n \hat{P}_n = \hat{1}$, where $\hat{1}$ is the unity operator.

4. Particle in angular momentum eigenstate (20 points)

A particle is in an eigenstate $|l,m\rangle$ of L^2 and L_z .

a) (10 points) Show that in this case $\langle L_x \rangle = \langle L_y \rangle = 0$.

b) (10 points) Show that
$$\langle L_x^2 \rangle = \langle L_y^2 \rangle = \frac{\hbar^2 l(l+1) - \hbar^2 m^2}{2}$$
.

Hints: For part a), use L_+ and L_- . For part b), use $\mathbf{L}^2 = L_x^2 + L_y^2 + L_z^2$.