Dot-product

Dot-product of two *D*-vectors is sum of product of corresponding entries:

$$\mathbf{u} \cdot \mathbf{v} = \sum_{k \in D} \mathbf{u}[k] \ \mathbf{v}[k]$$

Example: For traditional vectors $\mathbf{u} = [u_1, \dots, u_n]$ and $\mathbf{v} = [v_1, \dots, v_n]$,

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2+\cdots+u_nv_n$$

Output is a scalar, not a vector Dot-product sometimes called *scalar product*.

Dot-product

Example: Dot-product of [1, 1, 1, 1, 1] and [10, 20, 0, 40, -100]:

	1		1		_		_		1			
•	10		20		0		40		-100			
	10	+	20	+	0	+	40	+	(-100)	=	-30	

Quiz: Dot-product

Quiz: Write a procedure list_dot(u, v) with the following spec:

- ▶ input: equal-length lists u and v of field elements
- output: the dot-product of u and v interpreted as vectors

Hint: Use the $sum(\cdot)$ procedure together with a list comprehension.

Quiz: Dot-product

Quiz: Write a procedure list_dot(u, v) with the following spec:

- ▶ input: equal-length lists u and v of field elements
- output: the dot-product of u and v interpreted as vectors

Hint: Use the $sum(\cdot)$ procedure together with a list comprehension.

Answer:

```
def list_dot(u, v): return sum([u[i]*v[i] for i in range(len(u))])
or
def list_dot(u, v): return sum([a*b for (a,b) in zip(u,v)])
```

Dot-product: Total cost or benefit

Suppose *D* consists of four main ingredients of beer:

$$D = \{ barley, hops, yeast, water \}$$

A *cost* vector maps each food to a price per unit amount:

$$cost = \{barley : \$0.5, hops : \$0.5, yeast : \$.28/g, water : \$0.05\}$$

A *quantity* vector maps each food to an amount (e.g. measured in pounds). $quantity = \{barley: 0.5 \ lbs, \ hops: 0.2 \ oz, \ yeast: 2.5 \ g, \ water: 10 \ gallons\}$

The total cost is the dot-product of *cost* with *quantity*:

$$cost \cdot quantity = \$0.5 \cdot 0.5 + \$0.5 \cdot 0.2 + \$0.28 \cdot 2.5 + \$0.05 \cdot 10 = \$1.55$$

A *value* vector maps each food to its caloric content per pound:

$$\textit{value} = \{ \mathsf{barley} : \mathsf{544}, \mathsf{hops} : \mathsf{101}, \mathsf{yeast} : \mathsf{83}, \mathsf{water} : \mathsf{0} \}$$

The total calories represented by a pint of beer is the dot-product of *value* with *quantity*:

$$value \cdot quantity = 544 \cdot 0.5 + 101 \cdot 0.5 + 83 \cdot 2.5 + 0 \cdot 10 = 530$$

Example: A sensor node consist of hardware components, e.g.

- ► CPU
- radio
- ▶ temperature sensor
- memory

Battery-driven and remotely located so we care about energy usage.

Suppose we know the current draw for each hardware component. Represent it as a D-vector with $D = \{radio, sensor, memory, CPU\}$

 $\textbf{rate} = \{\textit{radio}: 500\text{mA}, \textit{sensor}: 250\text{mA}, \textit{memory}: 100\text{mA}, \textit{CPU}: 300\text{mA}\}$

Have a test period during which we know how long each component was working. Represent as another D vector:

 $\mathbf{duration} = \{\mathit{radio}: 0.2\mathsf{s}, \mathit{sensor}: 0.5\mathsf{s}, \mathit{memory}: 1.0\mathsf{s}, \mathit{CPU}: 1.0\mathsf{s}\}$

Total milliampere-seconds:

duration · rate

Turns out: We can only measure average current drawn by the sensor node over a period

Goal: calculate how much current is drawn by each hardware component.

Challenge: Cannot simply turn on memory without turning on CPU. **Idea:**

- ▶ Run several tests on sensor node in which we measure total current flow
- ▶ In each test period, we know the duration each hardware component is turned on. For example,

```
\begin{aligned} & \textbf{duration}_1 = \{ \textit{radio} : 0.2 \text{s}, \textit{sensor} : 0.5 \text{s}, \textit{memory} : 1.0 \text{s}, \textit{CPU} : 1.0 \text{s} \} \\ & \textbf{duration}_2 = \{ \textit{radio} : 0 \text{s}, \textit{sensor} : 0.1 \text{s}, \textit{memory} : 0.2 \text{s}, \textit{CPU} : 0.5 \text{s} \} \\ & \textbf{duration}_3 = \{ \textit{radio} : .4 \text{s}, \textit{sensor} : 0 \text{s}, \textit{memory} : 0.2 \text{s}, \textit{CPU} : 1.0 \text{s} \} \end{aligned}
```

- ▶ In each test period, we know the total current flow: $\beta_1 = 1, \beta_2 = 0.75, \beta_3 = .6$
- ▶ Use data to calculate current for each hardware component.

A linear equation is an equation of the form

$$\mathbf{a} \cdot \mathbf{x} = \beta$$

where **a** is a vector, β is a scalar, and **x** is a vector of variables.

In sensor-node problem, we have linear equations of the form

$$\mathbf{duration}_i \cdot \mathbf{rate} = \beta_i$$

where rate is a vector of variables.

Questions:

- ► Can we find numbers for the entries of **rate** such that the equations hold?
- ▶ If we do, does this guarantee that we have correctly calculated the current draw for each component?

More general questions:

▶ Is there an algorithm for solving a *system of linear equations*?

$$\mathbf{a}_{1} \cdot \mathbf{x} = \beta_{1}$$

$$\mathbf{a}_{2} \cdot \mathbf{x} = \beta_{2}$$

$$\vdots$$

$$\mathbf{a}_{m} \cdot \mathbf{x} = \beta_{m}$$

- ▶ How can we know whether there is only one solution?
- What if our data are slightly inaccurate?

These questions motivate much of what is coming in future weeks.

Dot-product: Measuring similarity: Comparing voting records

Can use dot-product to measure similarity between vectors.

Upcoming lab:

▶ Represent each senator's voting record as a vector:

$$[+1, +1, 0, -1]$$

$$+1 = \textit{In favor}, \ 0 = \textit{not voting}, \ -1 = \textit{against}$$

- ▶ Dot-product $[+1, +1, 0, -1] \cdot [-1, -1, -1, +1]$
 - very positive if the two senators tend to agree,
 - very negative if two voting records tend to disagree.

Want to search for a short audio clip (the *needle*) in a longer audio segment (the *haystack*).

Want to search for a short audio clip (the *needle*) in a longer audio segment (the *haystack*).

Want to search for a short audio clip (the *needle*) in a longer audio segment (the *haystack*).

- ▶ To compare two equal-length sequences of samples, use dot-product: $\sum_{i=1}^{n} \mathbf{u}[i] \mathbf{v}[i]$.
- ▶ Term i in this sum is positive if $\mathbf{u}[i]$ and $\mathbf{v}[i]$ have the same sign, and negative if they have opposite signs.
- The greater the agreement, the greater the value of the dot-product.

Back to needle-in-a-haystack:

If you suspect you know where the needle is..

٠.	if you suspect you know where the needle is																						
	5	-6	9	-9	-5	-9	-5	5	-8	-5	-9	9	8	-5	-9	6	-2	-4	-9	-1	-1	-9	-3
											2	7	4	-3	0	-1	-6	4	5	-8	-9		

If you don't have any idea where to find the needle, compute lots of dot-products!

2 7 4 -3 0 -1 -6 4 5 -8 -9 5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 2 7 4 -3 0 -1 -6 4 5 -8 -9 5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 2 7 4 -3 0 -1 -6 4 5 -8 -9	y C	Ju u	OII	t IIa	IVC C	iiiy i	uca	VVIIV	C1 C 1	.0 111	iiu t	116 1	iccc	11C, '	COIII	pute	iou	01	uot-	· Pi O	uuci	.J:	
5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 2 7 4 -3 0 -1 -6 4 5 -8 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 5 -6 9 -9 -5 -9 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -1 -1 -2 -4 -9 -1 -1 -1 -1 -2 -4 -9 -1 -1 -1 -1 -2 -4	5	-6	9	-9	-5	-9	-5	5	-8	-5	-9	9	8	-5	-9	6	-2	-4	-9	-1	-1	-9	-3
2 7 4 -3 0 -1 -6 4 5 -8 -9 5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 2 7 4 -3 0 -1 -6 4 5 -8 -9 5 -6 9 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 2 7 4 -3 0 -1 -6 4 5 -8 -9 5 -6 9 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -1 5 -6 9 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 <td< td=""><td>2</td><td>7</td><td>4</td><td>-3</td><td>0</td><td>-1</td><td>-6</td><td>4</td><td>5</td><td>-8</td><td>-9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	2	7	4	-3	0	-1	-6	4	5	-8	-9												
5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 2 7 4 -3 0 -1 -6 4 5 -8 -9 -9 -9 -1	5	-6	9	-9	-5	-9	-5	5	-8	-5	-9	9	8	-5	-9	6	-2	-4	-9	-1	-1	-9	-3
2 7 4 -3 0 -1 -6 4 5 -8 -9 5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1		2	7	4	-3	0	-1	-6	4	5	-8	-9											
2 7 4 -3 0 -1 -6 4 5 -8 -9 5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1	$\overline{}$									i	i		_						_			_	
5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 <td>5</td> <td>-6</td> <td>9</td> <td>-9</td> <td>-5</td> <td>-9</td> <td>-5</td> <td>5</td> <td>-8</td> <td>-5</td> <td>-9</td> <td>9</td> <td></td> <td>В -</td> <td>5 -</td> <td>9 6</td> <td>-2</td> <td>-4</td> <td>-9</td> <td>-1</td> <td>. -:</td> <td>L -9</td> <td>9 -3</td>	5	-6	9	-9	-5	-9	-5	5	-8	-5	-9	9		В -	5 -	9 6	-2	-4	-9	-1	. -:	L -9	9 -3
2 7 4 -3 0 -1 -6 4 5 -8 -9 5 -6 9 -9 -5 -9 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -1 2 7 4 -3 0 -1 -6 4 5 -8 -9 5 -6 9 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 2 7 4 -3 0 -1 -6 4 5 -8 -9 5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1			2	7	4	-3	0	-1	-6	4	5	-8	-9	9									
5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 <td>5</td> <td>-6</td> <td>9</td> <td>-9</td> <td>-5</td> <td>-9</td> <td>-5</td> <td>5</td> <td>-8</td> <td>-5</td> <td>-9</td> <td>9</td> <td>8</td> <td>-5</td> <td>-9</td> <td>6</td> <td>-2</td> <td>-4</td> <td>-9</td> <td>-1</td> <td>-1</td> <td>-9</td> <td>-3</td>	5	-6	9	-9	-5	-9	-5	5	-8	-5	-9	9	8	-5	-9	6	-2	-4	-9	-1	-1	-9	-3
2 7 4 -3 0 -1 -6 4 5 -8 -9 5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 2 7 4 -3 0 -1 -6 4 5 -8 -9 5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1				2	7	4	-3	0	-1	-6	4	5	-8	-9									
5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 2 7 4 -3 0 -1 -6 4 5 -8 -9 5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1	5	-6	9	-9	-5	-9	-5	5	-8	-5	-9	9	8	-5	-9	6	-2	-4	-9	-1	-1	-9	-3
2 7 4 -3 0 -1 -6 4 5 -8 -9 5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1					2	7	4	-3	0	-1	-6	4	5	-8	-9								
5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1	5	-6	9	-9	-5	-9	-5	5	-8	-5	-9	9	8	-5	-9	6	-2	-4	-9	-1	-1	-9	-3
						2	7	4	-3	0	-1	-6	4	5	-8	-9							
2 7 4 -3 0 -1 -6 4 5 -8 -9	5	-6	9	-9	-5	-9	-5	5	-8	-5	-9	9	8	-5	-9	6	-2	-4	-9	-1	:	L -9	9 -3
				-			2	7	4	-3	0	-1	-6	4	5	-8	-9						

Seems like a lot of dot-products—too much computation—but there is a shortcut... The *Fast Fourier Transform*.