Basic Computer Hardware Concepts

https://onlinequestions.org/

Event code: 16279

Learning goals

- Understand the basic idea behind the von Neuman architecture.
- Know the following components: RAM, ROM(firmware/BIOS), CPU, GPU, Data bus, I/O Peripherals (e.g. Disk, USB, Network adapter).
- Understand at a high level their roles and how they interact in data transfer and processing.

Von Neuman architecture - basics

- Basic architecture of a computer https://www.youtube.com/watch?v=Z5JC9Ve1sfl&ab channel=TomScott
- CPU
 - Contains Control Unit, ALU, Registers (Program Counter PC, Instruction Register IR, Accumulator)
 - Fetch decode execute cycle
 - Fetch: PC to bus -> data to IR
 - Decode: Interprets data in the Instruction register
 - Execute: Control Unit + ALU perform operations and bus read/write instructions
- Memory
 - Stores data and instructions; byte addressable through address bus
 - Maps digital address to memory locations
 - Volatile, wiped when power off.
- Bus
 - Address bus: selects memory/IO address
 - Data bus: carries data/instruction
 - Control lines: e.g. for read/write distinction
- I/O
 - Devices interface via bus.
 - Special memory-mapped "registers" that map to certain addresses
 - CPU performs read/write to these addresses

Hardware overview

- Motherboard
- CPU
- RAM
- Firmware/bios (not shown)
- Display adapter (GPU)
- Peripherals
 - USB/Network connectors
 - Hard disk (HDD)
 - Solid State Disk (SSD)
- Power supply

Motherboard

- Connects everything and provides the BIOS and IO
 - BUS
 - Set of parallel wires that connect components
 - Data transport between components
 - CPU connector
 - Central processor (the actual computer)
 - Fast bus connection
 - DRAM memory slots
 - Volatile working memory
 - Fast bus connection
 - AGP/PCI slots
 - Extra hardware extension (e.g. GPU)
 - Fast bus connection or
 - Shared memory
 - Peripheral connectors (ATX IDE USB)
 - Slow bus connection
 - To and from devices

CPU – central processing unit

- The actual "computer"
- Performs the instructions of your program
- Reads and writes data to RAM, and IO ports, using the BUS
- Fetches (reads) instructions from RAM
- Modern CPUs in fact contain multiple CPUs in one:
 - Cores

RAM – random access memory

- Working memory of your computer
- Volatile, when power goes off, memory is wiped
- Stores application data to work with
- Stores instructions for CPU (programs)

Display adapter - GPU

- The display adapter (or GPU: graphics processing unit) is a piece of specialized peripheral hardware
- Provides a graphics memory for display
 - A **frame buffer** containing pixels in R(ed)G(reen)B(lue) color format
 - Usually 8 bits per color, e.g., Full HD = 1920x1280 pixels =7200kB ~ 7mb
 - This is shown on your screen and is send through the HDMI cable
- Provides memory for fast retrieval of data
 - Stores textures: bitmap images
 - Stores data: neural networks, matrices
- Provides parallel processing for fast pixel operations
 - Many simple processors (e.g. Tensor Cores) that perform fast linear algebra
 - Used for 3D rendering in e.g. game
 - Used for Neural network training and calculations

Other Peripherals – Input – Output

- Most other hardware is for input output
- I/O bus types
 - Serial (bit-stream line): USB and PCI Express
 - old Parallel (8 bit line) busses (lots of hardware sync problems at high speeds)
 - PIC Express using multiple bit-stream lanes
- Disks
 - Hard disks: spinning magnetic disks on which a file system is stored
 - Solid state disks: non-volatile memory on which a file system is stored
 - USB disks: nonvolatile removable memory on which a file system is stored
- Network controllers
 - Wired LAN: hardware for sending and receiving digital signals over a wire
 - Wireless LAN: hardware for sending and receiving digital signals over the air
 - Bluetooth: low-power point to point hardware for sending and receiving digital signals over the air
- Mouse and keyboard
 - The usual ☺

Firmware and booting

- Non volatile memory containing code and data to configure and start up the computer.
- The firmware's job is to initialize hardware to a usable state and then find, load and run your OS from a drive.
- 1. Power-on
 - CPU fetches it's first instruction from a fixed address, the **reset vector** (0xFFFFFFF0 on x86 hardware)
 - The motherboard bus controller chip (hardware) maps the Firmware to this address
- 2. Firmware hardware initialization
 - Initializes the minimal hardware: RAM, CPU state and disk IO
- 3. Execution of bootloader
 - Looks for a bootloader in the Master Boot Record (executable file on the disk at a predestinate place on the disk)
 - Load the bootloader in memory
 - BIOS executes a CPU jump to bootloader code and executes it.
- 4. Loading and execution of OS
 - Bootloader prepares CPU for OS
 - Bootloader finds the OS kernel file on the disk
 - · Loads the kernel file
 - Jumps to OS kernel code
- Your operating system starts! (next Lecture)