Embedded System

Ngô Lam Trung
Department of Computer Engineering
School of Information and Communication Technology (SoICT)
Hanoi University of Science and Technology
E-mail: trungnl@soict.hust.edu.vn

ES, NLT 2024

Chương 2: Phần cứng của hệ nhúng

■ What are the "things" on these boards?

Chương 2. Tổ chức phần cứng hệ nhúng

- □ 2.1 Linh kiện điện tử
- 2.2 Tổ chức cơ bản của hệ nhúng
- 2.3 Ví dụ: Board 8051 PRO, STM32F4

2.1. Linh kiện điện tử

- □ 2.1.1 Các linh kiện cơ bản
- □ 2.1.2 Mạch tích hợp (IC)
- □ 2.1.3 Thiết bị và dụng cụ

2.1.1 Linh kiện cơ bản

□ Các linh kiện điện tử:

- Diện trở (Resistors)
- Tụ điện (Capacitors)
- Cuộn cảm (Inductors)
- Di-ốt (Diodes)
- Thạch anh (Crystal)

Điện trở

Ký hiệu và các loại điện trở

6

ES, NLT 2024

Resistors

Ví dụ sử dụng:

Điện trở treo (pull-up) cho nút bấm

Biến trở (potentiometer)

7 **ES, NLT 2024**

Capacitors

Capacitors

Cách đọc giá trị

Capacitors

Capacitance Conversion Values						
Microfarads (μF)		Nanofarads (nF)] [Picofarads (pF)		
0.000001 µF	↔	0.001 nF	→	1 pF		
0.00001 µF	↔	0.01 nF	↔	10 pF		
0.0001 µF	↔	0.1 nF	↔	100 pF		
0.001 µF	↔	1 nF	↔	1,000 pF		
0.01 µF	↔	10 nf	↔	10,000 pF		
0.1 µF	↔	100 nF	↔	100,000 pF		
1 µF	↔	1,000 nF	↔	1,000,000 pF		
10 µF	↔	10,000 nF	↔	10,000,000 pF		
100 μF	↔	100,000 nF	↔	100,000,000 pF		

Max. Operating Voltage

Code	Max. Voltage
1H	50∨
2A	100∨
2T	150V
2D	200V
2E	250∨
2G	400∨
2J	630∨

Tolerance

Code	Percentage	
В	± 0.1 pF	
С	±0.25 pF	
D	±0.5 pF	
F	±1%	
G	±2%	
н	±3%	
J	±5%	
K	±10%	
M	±20%	
Z	+80%, -20%	

Inductors

Surface mount Inductors

ES, NLT 2024

Diodes

Diode:

Power diode (1N4004)

- Hoạt động:
 - Nếu $U_A > U_K$ thì $I_{AK} > 0$, Diode làm việc ở chế độ Thông
 - Nếu $U_A \le U_K$ thì $I_{AK} = 0$, Diode làm việc ở chế độ Tắt

Diodes

Ví dụ sử dụng:

Mạch cầu chỉnh lưu (bridge rectifier)

Diodes Zener và Schotky

 $\pm 5V$ LED LED 🛨 🎖 Zener V_{IN} v_{out}

ES, NLT 2024

Crystal (bộ tạo dao động)

Tạo dao động với tần số ổn định, đưa vào mạch tạo xung để CPU hoạt động

ES, NLT 2024

2.1.2 Mạch tích hợp (IC)

- □ IC nguồn
- □ Bộ xử lý, vi điều khiển (MCU)
- Bộ nhớ
- Cảm biến
- IC ghép nối
- □ IC chức năng
- **...**

2.1.3 Các thiết bị và dụng cụ

- Một số thiết bị:
 - Mạch nạp và debug
 - Đồng hồ vạn năng
 - Máy hiện sóng
 - Bộ nguồn
 - Máy hàn
 - Các dụng cụ

2.2.4. Programmers/Debuggers

□ Nhiều chuẩn nạp: JTAG, ISP, ...

□ Đị kèm công cụ (programmer, debugger) và phụ thuộc

các dòng vi điều khiến.

Multimeter

Do lường các đại lượng vật lý: điện áp, dòng điện, điện trở, điện dung, điện cảm, đặc biệt là kiểm tra kết nối đường mạch (đo thông)

Oscilloscope

- □ Hiện thị dạng sóng tín hiệu (waveforms)
- □ Băng thông (bandwidth): 20Mhz, 100Mhz, ...
- Ví dụ: Tektronik TDS5104
 - 1 GHz bandwidth, 4 channels
 - 5 GSs (giga samples/s)

ı C

d XP

How to use an oscilloscope? Video: (Tektronik tutorial)

http://www.youtube.com/watch?v=tzndcBJu-Ns&list=PLF6BB1B46F7AD8751

Power supply

Bộ tạo nguồn chuẩn

Batteries & Acquy

AC-DC Adapter
Input: AC 100-240V
Output: DC 5V/6V/9V, ...
500mA/1A/2A, ...

Alkaline
Zinc-carbon
Lithium (Li-ion)
Nickel-cadmium
(NiCd)
Nickel metal
hydride (NiMH)
Lead-based

Mỏ hàn

□ How to solder?

Các dụng cụ

Construction tools

Breadboard

Phần mềm mô phỏng:

- □ Ví dụ: Proteus, Multisim,...
- Tính năng:
 - Thiết kế mô phỏng sơ đồ nguyên lý
 - Thư viện linh kiện: microcontrollers, logic gates, resistor, capacitor, button, led, 7 seg, LCD, v.v...
 - Mô phỏng nạp chương trình
 - Chạy mô phỏng
- Tham khảo: YouTube Proteus tutorials

Phần mềm mô phỏng Proteus

Phần mềm thiết kế Altium/Protel

□ Khả năng:

- Thiết kế sơ đồ nguyên lý (schematics)
- Thiết kế mạch in (PCB)
- Cung cấp thư viện linh kiện (pinout, footprint) đồ sộ

2.2. Tổ chức cơ bản của hệ nhúng

- □ 2.2.1 Hệ trung tâm
 - CPU và bộ nhớ
 - Mạch reset
 - Mạch nguồn
 - Mạch tạo dao động
- □ 2.2.2 Các ngoại vi
 - Vào ra tín hiệu số
 - Truyền thông và lưu trữ dữ liệu
 - Ghép nối tín hiệu tương tự

2.2.1 Hệ trung tâm

- Gồm CPU cùng các thành phần cần thiết tạo thành module tính toán và thực thi chương trình.
- Có thể được thiết kế rời, hoặc tích hợp cùng board mạch của cả hệ thống.
 - Ví dụ: Arduino: hệ trung tâm thiết kế rời
- CPU: thường sử dụng bộ vi điều khiển (MCU) tích hợp cả CPU, bộ nhớ, và một số ngoại vi cơ bản.
- Bộ nhớ: có thể tích hợp sẵn trên MCU, hoặc ghép nối riêng thêm bên ngoài.
- □ VD: chip STM32F429ZGT6
 - CPU ARM Cortex-M4 tốc độ max 180 MHz
 - Tích hợp sẵn 1 MB ROM và 260 KB SRAM

Cho phép ghép nối thêm DRAM ngoài

2.2.1. Power Source

- Tạo điện áp phù hợp và ổn định cho mạch hoạt động
- Ví dụ: AC-DC Adapter
 - ı Biến áp
 - Mạch chỉnh lưu
 - Mạch ổn áp

Power Source

- Thường dùng IC ổn áp để tạo điện áp ổn định.
- Một số IC thông dụng: 7805/7809, LM317/1117,

Mạch dao động

- Tạo xung nhịp cho mạch hoạt động
 - I CPU
 - Real-time clock, USB IC, Ethernet IC,...
- Bộ dao động nội (Internal Osc.)
- Bộ dao động ngoại (External Osc.): Thường dùng thạch anh tạo dao động với tần số ổn định.

Mach Reset

- □ Tín hiệu reset:
 - Bắt buộc phải có cho mọi CPU/MCU
 - Điều khiển bởi mạch reset bên ngoài, hoặc tích hợp sẵn
- Khi có tín hiệu reset: CPU được khởi tạo trạng thái an toàn để hoạt động
 - Thanh ghi PC: trỏ vào Reset vector
 - Các thanh ghi khác: về giá trị mặc định (xem đặc tả của CPU)
- Nguyên tắc: khi mạch được cấp nguồn, điện áp ở chân reset được giữ ở mức cao hoặc thấp trong khoảng thời gian T reset.
 - Thực hiện: dùng 1 tụ điện.

Reset when Power on

Reset

- Ví dụ thiết kế mạch reset
- Mạch reset ngoài tín hiệu mức cao + nút bấm

2.2.2 Các mạch ngoại vi

- □ Digital interface: switch, button, LED, LCD,...
- □ Communication: UART, SPI, I2C, USB,...
- Analog interface: DAC, ADC,...

Ghép nối Switch, Button

- Switch: bật/tắt tín hiệu và giữ cố định
- Button: bật/tắt tín hiệu tạm thời
- Hiện tượng nảy phím
 - Chống nảy phím bằng phần cứng
 - Chống nảy phím bằng phần mềm

Ghép nối LED

Ghép nối LED 7 thanh

- Led 7 thanh: nguyên lý gồm các thanh Led đơn (a,b,c,d,e,f,g,dp)
- □2 loại:
 - I AC (Anode Common),
 - CC (Cathode Common)
- Ghép nối điều khiển:
 - Điều khiển trực tiếp mã
 7 thanh
 - Sử dụng bộ giải mã BCD-7 thanh (74247)

Cách ly quang học

Cách ly quang học

Ghép nối Relay

□ Điều khiển đóng cắt Rơ-le

ES, NLT 2024

2.2.5. Các chuẩn giao tiếp, truyền thông

- □ Giao tiếp RS232
- □ Giao tiếp SPI
- □ Giao tiếp I2C
- □ Giao tiếp USB

RS232

- Serial Communication
- UART (Universal Asynchronous Receiver and Transmitter)
- Full Duplex

SPI

- SPI (Serial Peripheral Interface)
 - Giao tiếp giữa MCU MCUs
 - Giao tiếp giữa MCU Devices (EEPROM, display,...)
- Phân chia vai trò Master và Slave

MOSI = Master Out Slave In MISO = Master In Slave Out SCK = Serial Clock SS = Slave Select

USB

- USB=Universal Serial Bus
- □ Giao tiếp nối tiếp đa năng
- □ Đường truyền tín hiệu vi sai

- □ Nhiều kiểu connectors:
 - Type A, B; Male/Female

Chân	Tên	Mô tả	Mầu
1	VBUS	+5 VDC	Red
2	D-	Data -	White
3	D+	Data +	Green
4	GND	Ground	Black

Ghép nối tín hiệu tương tư

- Các hệ thống đo lường luôn sử dụng cảm biến để chuyển đại lượng cần đo về dạng tín hiệu điện.
- Hệ nhúng đo độ lớn tín hiệu điện bằng ADC (Analog to Digital Converter).
- □ 2 kiểu ADC:
 - Dùng module ADC có sẵn trên MCU
 - Dùng chip ADC chuyên dụng

Ví dụ ghép nối với ADC có sẵn trên MCU

Sử dụng ADC có sẵn của trên chip ATmega8 đo 2 đại lượng:

cường độ sáng, thông qua điện áp trên quang trở.

□ Điện áp trên biến trở.

LCD1

LDR:877

888 m

LM016L

Ví dụ ghép nối chip ADC chuyên dụng

2.3 Case study: board phát triển 8051 PRO

□ CPU: 89S52, 11.0592MHz, 8 KB ROM, 256 Bytes RAM

45

Bài tập

- □ Tìm hiểu datasheet STM32F429
- Cài đặt môi trường làm việc
 - STM32CubeIDE
 - STM32CubeF4

