JCCC Rec'd PCT/PTO 27 MAY 2005

Sequence Listing.ST25 SEQUENCE LISTING

<110>	Ptacek, Louis Fu, Ying-Hui Jones, Christo					
<120>	Casein Kinase I Delta and Casein Kinase I Epsilon and Sleep in Humans					
<130>	1321.2.82p					
<160>	12					
<170>	PatentIn versi	on 3.2				
<210> <211> <212> <213>	1 2030 DNA Homo sapiens		·			
<400> gcgcga	1 tggc ggcggctcct	ttaggcagct	gaaaggggat	ttaggcccgg	aagatccgag	60
tccatc	cgcg gcggggagag	ggcaagcggg	accggtaggg	gccggagcag	cggcggcggc	120
gctcgg	actg tcccatccgc	cccgtattga	ggcgctggga	gcggcggggc	gacaggaaag	180
cgatgg	tgaa agcggggccg	tgaggggggc	ggagccggga	gccggacccg	cagtagcggc	240
agcagc	ggcg ccgcctccca	gagttcagac	ccaggaagcg	gccgggaggg	caggagcgaa	300
tcgggc	cgcc gccgccatgg	agctgagagt	cgggaacagg	taccggctgg	gccggaagat	360
cggcag	cggc tccttcggag	acatctatct	cggtacggac	attgctgcag	gagaagaggt	420
tgccat	caag cttgaatgtg	tcaaaaccaa	acaccctcag	ctccacattg	.agagcaaaat	480
ctacaa	gatg atgcagggag	gagtgggcat	ccccaccatc	agatggtgcg	gggcagaggg	540
ggacta	caac gtcatggtga	tggagctgct	ggggccaagc	ctggaggacc	tcttcaactt	600
ctgctc	cagg aaattcagcc	tcaaaaccgt	cctgctgctt	gctgaccaaa	tgatcagtcg	660
catcga	atac attcattcaa	agaacttcat	ccaccgggat	gtgaagccag	acaacttcct	720
catggg	cctg gggaagaagg	gcaacctggt	gtacatcatc	gacttcgggc	tggccaagaa	780
gtaccg	ggat gcacgcaccc	accagcacat	cccctatcgt	gagaacaaga	acctcacggg	840
gacggc	gcgg tacgcctcca	tcaacacgca	ccttggaatt	gaacaatccc	gaagagatga	900
cttgga	gtct ctgggctacg	tgctaatgta	cttcaacctg	ggctctctcc	cctggcaggg	960
gctgaa	ggct gccaccaaga	gacagaaata	cgaaaggatt	agcgagaaga	aaatgtccac	1020
ccccat	cgaa gtgttgtgta	aaggctaccc	ttccgaattt	gccacatacc	tgaatttctg	1080
ccgttc	cttg cgttttgacg	acaagcctga	ctactcgtac	ctgcggcagc	ttttccggaa	1140
tctgtt	ccat cgccagggct	tctcctatga	ctacgtgttc	gactggaaca	tgctcaaatt	1200
tggtgc	cagc cgggccgccg	atgacgccga	gcgggagcgc	agggaccgag	aggagcggct	1260
gagaca	ctcg cggaacccgg	ctacccgcgg	cctcccttcc	acagcctccg	gccgcctgcg	1320
ggggac	gcag gaagtggctc	ccccacacc	cctcacccct	acctcacaca	cggctaacac	1380
ctccc	ccgg cccgtctccg	gcatggagag	agagcggaaa Page 1	gtgagtatgc	ggctgcaccg	1440

cggggccccc gtcaacatct cct	cgtccga cctcacaggc	cgacaagata	cctctcgcat	1500
gtccacctca cagattcctg gtc	gggtggc ttccagtggt	cttcagtctg	tcgtgcaccg	1560
atgagaactc tccttattgc tgt	gaagggc agacaatgca	tggctgatct	actctgttac	1620
caatggcttt actagtgaca cgt	ccccgg tctaggatcg	aaatgttaac	accgggagct	1680
ctccaggcca ctcacccagc gac	gctcgtg ggggaaacat	actaaacgga	cagactccaa	1740
gagctgccac cgctggggct gca	ctgcggc ccccacgtg	aactcggttg	taacggggct	1800
gggaagaaaa gcagagagag aat	tgcagag aatcagactc	cttttccagg	gcctcagctc	1860
cctccagtgg tggccgccct gta	ctccctg acgattccac	tgtaactacc	aatcttctac	1920
ttggttaaga cagttttgta tca	ttttgct aaaaattatt	ggcttaaatc	tgtgtaaaga	1980
aaaaaaaaaa aaaaaaaaaa aaa	aaaaaaa aaaaaaaaa	aaaaaaaaa		2030
<210> 2 <211> 2106 <212> DNA <213> Homo sapiens <400> 2				
gcgcgatggc ggcggctcct tta	ggcagct gaaaggggat	ttaggcccgg	aagatccgag	60
tccatccgcg gcggggagag ggc	aagcggg accggtaggg	gccggagcag	cggcggcggc	120
gctcggactg tcccatccgc ccc	gtattga ggcgctggga	gcggcggggc	gacaggaaag	180
cgatggtgaa agcggggccg tga	ggggggc ggagccggga	gccggacccg	cagtagcggc	240
agcagcggcg ccgcctccca gag	ttcagac ccaggaagcg	gccgggaggg	caggagcgaa	300
tcgggccgcc gccgccatgg ago	tgagagt cgggaacagg	taccggctgg	gccggaagat	360
cggcagcggc tccttcggag aca	tctatct cggtacggac	attgctgcag	gagaagaggt	420
tgccatcaag cttgaatgtg tca	aaaccaa acaccctcag	ctccacattg	agagcaaaat	480
ctacaagatg atgcagggag gag	tgggcat ccccaccatc	agatggtgcg	gggcagaggg	540
ggactacaac gtcatggtga tgg	agctgct ggggccaagc	ctggaggacc	tcttcaactt	600
ctgctccagg aaattcagcc tca	aaaccgt cctgctgctt	gctgaccaaa	tgatcagtcg	660
catcgaatac attcattcaa aga	acttcat ccaccgggat	gtgaagccag	acaacttcct	720
catgggcctg gggaagaagg gca	acctggt gtacatcatc	gacttcgggc	tggccaagaa	780
gtaccgggat gcacgcaccc acc	agcacat cccctatcgt	gagaacaaga	acctcacggg	840
gacggcgcgg tacgcctcca tca	acacgca ccttggaatt	gaacaatccc	gaagagatga	900
cttggagtct ctgggctacg tgc	taatgta cttcaacctg	ggctctctcc	cctggcaggg	960
gctgaaggct gccaccaaga gac	agaaata cgaaaggatt	agcgagaaga	aaatgtccac	1020
ccccatcgaa gtgttgtgta aag	gctaccc ttccgaattt	gccacatacc	tgaatttctg	1080
ccgttccttg cgttttgacg aca	agcctga ctactcgtac	ctgcggcagc	ttttccggaa	1140
tctgttccat cgccagggct tct	cctatga ctacgtgttc	gactggaaca	tgctcaaatt	1200

Sequence Listing.ST25 tggtgccagc cgggccgccg atgacgccga gcgggagcgc agggaccgag aggagcggct 1260 gagacactcg cggaacccgg ctacccgcgg cctcccttcc acagcctccg gccgcctgcg 1320 ggggacgcag gaagtggctc cccccacacc cctcacccct acctcacaca cggctaacac 1380 1440 ctcccccgg cccgtctccg gcatggagag agagcggaaa gtgagtatgc ggctgcaccg 1500 cggggccccc gtcaacatct cctcgtccga cctcacaggc cgacaagata cctctcgcat gtccacctca cagaatagca ttcctttcga acaccacggc aagtagctgc tcgtctccca 1560 1620 tcggaaggca gcactggatt cctggtcggg tggcttccag tggtcttcag tctgtcgtgc accgatgaga actctcctta ttgctgtgaa gggcagacaa tgcatggctg atctactctg 1680 ttaccaatgg ctttactagt gacacgtccc ccggtctagg atcgaaatgt taacaccggg 1740 agctctccag gccactcacc cagcgacgct cgtgggggaa acatactaaa cggacagact 1800 ccaagagctg ccaccgctgg ggctgcactg cggccccca cgtgaactcg gttgtaacgg 1860 ggctgggaag aaaagcagag agagaattgc agagaatcag actccttttc cagggcctca 1920 gctccctcca gtggtggccg ccctgtactc cctgacgatt ccactgtaac taccaatctt 1980 ctacttggtt aagacagttt tgtatcattt tgctaaaaat tattggctta aatctgtgta 2040 2100 2106 aaaaaa <210> 3 415 PRT Homo sapiens <400> Met Glu Leu Arg Val Gly Asn Arg Tyr Arg Leu Gly Arg Lys Ile Gly 10 15 Ser Gly Ser Phe Gly Asp Ile Tyr Leu Gly Thr Asp Ile Ala Ala Gly 20 25 30 Glu Glu Val Ala Ile Lys Leu Glu Cys Val Lys Thr Lys His Pro Gln 35 40 45Leu His Ile Glu Ser Lys Ile Tyr Lys Met Met Gln Gly Gly Val Gly 50 60Ile Pro Thr Ile Arg Trp Cys Gly Ala Glu Gly Asp Tyr Asn Val Met 65 70 75 80 Val Met Glu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asn Phe Cys 85 90 95 Ser Arg Lys Phe Ser Leu Lys Thr Val Leu Leu Leu Ala Asp Gln Met 100 105 110

Sequence Listing.ST25
Ile Ser Arg Ile Glu Tyr Ile His Ser Lys Asn Phe Ile His Arg Asp
115 120 125 Val Lys Pro Asp Asn Phe Leu Met Gly Leu Gly Lys Lys Gly Asn Leu 130 140 Val Tyr Ile Ile Asp Phe Gly Leu Ala Lys Lys Tyr Arg Asp Ala Arg 145 150 155 160 Thr His Gln His Ile Pro Tyr Arg Glu Asn Lys Asn Leu Thr Gly Thr 165 170 175 Ala Arg Tyr Ala Ser Ile Asn Thr His Leu Gly Ile Glu Gln Ser Arg 180 185 190 Arg Asp Asp Leu Glu Ser Leu Gly Tyr Val Leu Met Tyr Phe Asn Leu
195 200 Gly Ser Leu Pro Trp Gln Gly Leu Lys Ala Ala Thr Lys Arg Gln Lys 210 220 Tyr Glu Arg Ile Ser Glu Lys Lys Met Ser Thr Pro Ile Glu Val Leu 225 230 235 240 Cys Lys Gly Tyr Pro Ser Glu Phe Ala Thr Tyr Leu Asn Phe Cys Arg 245 250 255 Ser Leu Arg Phe Asp Asp Lys Pro Asp Tyr Ser Tyr Leu Arg Gln Leu 260 265 270 Phe Arg Asn Leu Phe His Arg Gln Gly Phe Ser Tyr Asp Tyr Val Phe 275 280 285 Asp Trp Asn Met Leu Lys Phe Gly Ala Ser Arg Ala Ala Asp Asp Ala 290 295 300 Glu Arg Glu Arg Asp Arg Glu Glu Arg Leu Arg His Ser Arg Asn 305 310 315 Pro Ala Thr Arg Gly Leu Pro Ser Thr Ala Ser Gly Arg Leu Arg Gly 325 330 335 Thr Gln Glu Val Ala Pro Pro Thr Pro Leu Thr Pro Thr Ser His Thr 340 345 350 . Ala Asn Thr Ser Pro Arg Pro Val Ser Gly Met Glu Arg Glu Arg Lys 355 360 365 Val Ser Met Arg Leu His Arg Gly Ala Pro Val Asn Ile Ser Ser Ser 370 380

Sequence Listing.ST25
Asp Leu Thr Gly Arg Gln Asp Thr Ser Arg Met Ser Thr Ser Gln Ile
385 390 395 400

Pro Gly Arg Val Ala Ser Ser Gly Leu Gln Ser Val Val His Arg 405 410 415

<210> 4

<211> 409

<212> PRT <213> Homo sapiens

<400> 4

Met Glu Leu Arg Val Gly Asn Arg Tyr Arg Leu Gly Arg Lys Ile Gly
1 10 15

Ser Gly Ser Phe Gly Asp Ile Tyr Leu Gly Thr Asp Ile Ala Ala Gly 20 25 30

Glu Glu Val Ala Ile Lys Leu Glu Cys Val Lys Thr Lys His Pro Gln
35 40 45

Leu His Ile Glu Ser Lys Ile Tyr Lys Met Met Gln Gly Gly Val Gly 50 60

Ile Pro Thr Ile Arg Trp Cys Gly Ala Glu Gly Asp Tyr Asn Val Met 65 70 75 80

Val Met Glu Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asn Phe Cys 85 90 95

Ser Arg Lys Phe Ser Leu Lys Thr Val Leu Leu Leu Ala Asp Gln Met 100 105 110

Ile Ser Arg Ile Glu Tyr Ile His Ser Lys Asn Phe Ile His Arg Asp 115 120 125

Val Lys Pro Asp Asn Phe Leu Met Gly Leu Gly Lys Lys Gly Asn Leu 130 140

Val Tyr Ile Ile Asp Phe Gly Leu Ala Lys Lys Tyr Arg Asp Ala Arg 145 150 155 160

Thr His Gln His Ile Pro Tyr Arg Glu Asn Lys Asn Leu Thr Gly Thr 165 170 175

Ala Arg Tyr Ala Ser Ile Asn Thr His Leu Gly Ile Glu Gln Ser Arg 180 185 190

Arg Asp Asp Leu Glu Ser Leu Gly Tyr Val Leu Met Tyr Phe Asn Leu 195 200 205

Gly Ser Leu Pro Trp Gln Gly Leu Lys Ala Ala Thr Lys Arg Gln Lys Page 5

210 Tyr Glu Arg Ile Ser Glu Lys Lys Met Ser Thr Pro Ile Glu Val Leu 225 230 235 240 Cys Lys Gly Tyr Pro Ser Glu Phe Ala Thr Tyr Leu Asn Phe Cys Arg 245 250 255 Ser Leu Arg Phe Asp Asp Lys Pro Asp Tyr Ser Tyr Leu Arg Gln Leu 260 265 270 Phe Arg Asn Leu Phe His Arg Gln Gly Phe Ser Tyr Asp Tyr Val Phe 275 280 285 Asp Trp Asn Met Leu Lys Phe Gly Ala Ser Arg Ala Ala Asp Asp Ala 290 295 300 Glu Arg Glu Arg Arg Asp Arg Glu Glu Arg Leu Arg His Ser Arg Asn 305 310 315 Pro Ala Thr Arg Gly Leu Pro Ser Thr Ala Ser Gly Arg Leu Arg Gly 325 330 335 Thr Gln Glu Val Ala Pro Pro Thr Pro Leu Thr Pro Thr Ser His Thr 340 345 350 Ala Asn Thr Ser Pro Arg Pro Val Ser Gly Met Glu Arg Glu Arg Lys 355 360Val Ser Met Arg Leu His Arg Gly Ala Pro Val Asn Ile Ser Ser Ser 370 375 380 Asp Leu Thr Gly Arg Gln Asp Thr Ser Arg Met Ser Thr Ser Gln Asn 385 390 395 400 Ser Ile Pro Phe Glu His His Gly Lys 405

<210> <211>	5 2030	
<212> <213>	DNA	sapiens

<400> 5
gcgcgatggc ggcggctcct ttaggcagct gaaaggggat ttaggcccgg aagatccgag 60
tccatccgcg gcggggagag ggcaagcggg accggtaggg gccggagcag cggcggggc 120
gctcggactg tcccatccgc cccgtattga ggcgctggga gcggcggggc gacaggaaag 180
cgatggtgaa agcggggccg tgaggggggc ggagccggga gccggacccg cagtagcggc 240
agcagcggcg ccgcctcca gagttcagac ccaggaagcg gccgggaggg caggagcgaa 300
tcgggccgcc gccgccatgg agctgagagt cgggaacagg taccggctgg gccggaagat 360

cggcagcggc	tccttcggag	acatctatct	cggtacggac	attgctgcag	gagaagaggt	420
tgccatcaag	cttgaatgtg	tcaaagccaa	acaccctcag	ctccacattg	agagcaaaat	480
ctacaagatg	atgcagggag	gagtgggcat	ccccaccatc	agatggtgcg	gggcagaggg	540
ggactacaac	gtcatggtga	tggagctgct	ggggccaagc	ctggaggacc	tcttcaactt	600
ctgctccagg	aaattcagcc	tcaaaaccgt	cctgctgctt	gctgaccaaa	tgatcagtcg	660
catcgaatac	attcattcaa	agaacttcat	ccaccgggat	gtgaagccag	acaacttcct	720
catgggcctg	gggaagaagg	gcaacctggt	gtacatcatc	gacttcgggc	tggccaagaa	780
gtaccgggat	gcacgcaccc	accagcacat	cccctatcgt	gagaacaaga	acctcacggg	840
gacggcgcgg	tacgcctcca	tcaacacgca	ccttggaatt	gaacaatccc	gaagagatga	900
cttggagtct	ctgggctacg	tgctaatgta	cttcaacctg	ggctctctcc	cctggcaggg	960
gctgaaggct	gccaccaaga	gacagaaata	cgaaaggatt	agcgagaaga	aaatgtccac	1020
ccccatcgaa	gtgttgtgta	aaggctaccc	ttccgaattt	gccacatacc	tgaatttctg	1080
ccgttccttg	cgttttgacg	acaagcctga	ctactcgtac	ctgcggcagc	ttttccggaa	1140
tctgttccat	cgccagggct	tctcctatga	ctacgtgttc	gactggaaca	tgctcaaatt	1200
tggtgccagc	cgggccgccg	atgacgccga	gcgggagcgc	agggaccgag	aggagcggct	1260
gagacactcg	cggaacccgg	ctacccgcgg	cctcccttcc	acagcctccg	gccgcctgcg	1320
ggggacgcag	gaagtggctc	ccccacacc	cctcacccct	acctcacaca	cggctaacac	1380
ctcccccgg	cccgtctccg	gcatggagag	agagcggaaa	gtgagtatgc	ggctgcaccg	1440
cggggccccc	gtcaacatct	cctcgtccga	cctcacaggc	cgacaagata	cctctcgcat	1500
gtccacctca	cagattcctg	gtcgggtggc	ttccagtggt	cttcagtctg	tcgtgcaccg	1560
atgagaactc	tccttattgc	tgtgaagggc	agacaatgca	tggctgatct	actctgttac	1620
caatggcttt	actagtgaca	cgtcccccgg	tctaggatcg	aaatgttaac	accgggagct	1680
ctccaggcca	ctcacccagc	gacgctcgtg	ggggaaacat	actaaacgga	cagactccaa	1740
gagctgccac	cgctggggct	gcactgcggc	ccccacgtg	aactcggttg	taacggggct	1800
gggaagaaaa	gcagagagag	aattgcagag	aatcagactc	cttttccagg	gcctcagctc	1860
cctccagtgg	tggccgccct	gtactccctg	acgattccac	tgtaactacc	aatcttctac	1920
ttggttaaga	cagttttgta	tcattttgct	aaaaattatt	ggcttaaatc	tgtgtaaaga	1980
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa		2030

<210> 6 <211> 2106 <212> DNA

<400> 6
gcgcgatggc ggcggctcct ttaggcagct gaaaggggat ttaggcccgg aagatccgag 60
tccatccgcg gcggggagag ggcaagcggg accggtaggg gccggagcag cggcggcggc 120

<212> DNA <213> Homo sapiens

gctcggactg	tcccatccgc	cccgtattga	ggcgctggga	gcggcggggc	gacaggaaag	180
cgatggtgaa	agcggggccg	tgaggggggc	ggagccggga	gccggacccg	cagtagcggc	240
agcagcggcg	ccgcctccca	gagttcagac	ccaggaagcg	gccgggaggg	caggagcgaa	300
tcgggccgcc	gccgccatgg	agctgagagt	cgggaacagg	taccggctgg	gccggaagat	360
cggcagcggc	tccttcggag	acatctatct	cggtacggac	attgctgcag	gagaagaggt	420
tgccatcaag	cttgaatgtg	tcaaagccaa	acaccctcag	ctccacattg	agagcaaaat	480
ctacaagatg	atgcagggag	gagtgggcat	ccccaccatc	agatggtgcg	gggcagaggg	540
ggactacaac	gtcatggtga	tggagctgct	ggggccaagc	ctggaggacc	tcttcaactt	600
ctgctccagg	aaattcagcc	tcaaaaccgt	cctgctgctt	gctgaccaaa	tgatcagtcg	660
catcgaatac	attcattcaa	agaacttcat	ccaccgggat	gtgaagccag	acaacttcct	720
catgggcctg	gggaagaagg	gcaacctggt	gtacatcatc	gacttcgggc	tggccaagaa	780
gtaccgggat	gcacgcaccc	accagcacat	cccctatcgt	gagaacaaga	acctcacggg	840
gacggcgcgg	tacgcctcca	tcaacacgca	ccttggaatt	gaacaatccc	gaagagatga	900
cttggagtct	ctgggctacg	tgctaatgta	cttcaacctg	ggctctctcc	cctggcaggg	960
gctgaaggct	gccaccaaga	gacagaaata	cgaaaggatt	agcgagaaga	aaatgtccac	1020
ccccatcgaa	gtgttgtgta	aaggctaccc	ttccgaattt	gccacatacc	tgaatttctg	1080
ccgttccttg	cgttttgacg	acaagcctga	ctactcgtac	ctgcggcagc	ttttccggaa	1140
tctgttccat	cgccagggct	tctcctatga	ctacgtgttc	gactggaaca	tgctcaaatt	1200
tggtgccagc	cgggccgccg	atgacgccga	gcgggagcgc	agggaccgag	aggagcggct	1260
gagacactcg	cggaacccgg	ctacccgcgg	cctcccttcc	acagcctccg	gccgcctgcg	1320
ggggacgcag	gaagtggctc	ccccacacc	cctcacccct	acctcacaca	cggctaacac	1380
ctcccccgg	cccgtctccg	gcatggagag	agagcggaaa	gtgagtatgc	ggctgcaccg	1440
cggggccccc	gtcaacatct	cctcgtccga	cctcacaggc	cgacaagata	cctctcgcat	1500
gtccacctca	cagaatagca	ttcctttcga	acaccacggc	aagtagctgc	tcgtctccca	1560
tcggaaggca	gcactggatt	cctggtcggg	tggcttccag	tggtcttcag	tctgtcgtgc	1620
accgatgaga	actctcctta	ttgctgtgaa	gggcagacaa	tgcatggctg	atctactctg	1680
ttaccaatgg	ctttactagt	gacacgtccc	ccggtctagg	atcgaaatgt	taacaccggg	1740
agctctccag	gccactcacc	cagcgacgct	cgtgggggaa	acatactaaa	cggacagact	1800
ccaagagctg	ccaccgctgg	ggctgcactg	cggcccccca	cgtgaactcg	gttgtaacgg	1860
ggctgggaag	aaaagcagag	agagaattgc	agagaatcag	actccttttc	cagggcctca	1920
gctccctcca	gtggtggccg	ccctgtactc	cctgacgatt	ccactgtaac	taccaatctt	1980
ctacttggtt	aagacagttt	tgtatcattt	tgctaaaaat	tattggctta	aatctgtgta	2040
aagaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2100
aaaaaa						2106

<210> <211> 415 Homo sapiens <400> Met Glu Leu Arg Val Gly Asn Arg Tyr Arg Leu Gly Arg Lys Ile Gly 10 15 Ser Gly Ser Phe Gly Asp Ile Tyr Leu Gly Thr Asp Ile Ala Ala Gly
20 25 30 Glu Glu Val Ala Ile Lys Leu Glu Cys Val Lys Ala Lys His Pro Gln
35 40 45 Leu His Ile Glu Ser Lys Ile Tyr Lys Met Met Gln Gly Gly Val Gly 50 60 Ile Pro Thr Ile Arg Trp Cys Gly Ala Glu Gly Asp Tyr Asn Val Met 65 70 75 80 Val Met Glu Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asn Phe Cys 85 90 95 Ser Arg Lys Phe Ser Leu Lys Thr Val Leu Leu Ala Asp Gln Met 100 105 110 Ile Ser Arg Ile Glu Tyr Ile His Ser Lys Asn Phe Ile His Arg Asp 115 120 125 Val Lys Pro Asp Asn Phe Leu Met Gly Leu Gly Lys Lys Gly Asn Leu 130 140 Val Tyr Ile Ile Asp Phe Gly Leu Ala Lys Lys Tyr Arg Asp Ala Arg 145 150 155 160 Thr His Gln His Ile Pro Tyr Arg Glu Asn Lys Asn Leu Thr Gly Thr 165 170 175 Ala Arg Tyr Ala Ser Ile Asn Thr His Leu Gly Ile Glu Gln Ser Arg 180 185 190 Arg Asp Asp Leu Glu Ser Leu Gly Tyr Val Leu Met Tyr Phe Asn Leu 195 200 205 Gly Ser Leu Pro Trp Gln Gly Leu Lys Ala Ala Thr Lys Arg Gln Lys 210 220 Tyr Glu Arg Ile Ser Glu Lys Lys Met Ser Thr Pro Ile Glu Val Leu 225 230 235 240 Sequence Listing.ST25
Cys Lys Gly Tyr Pro Ser Glu Phe Ala Thr Tyr Leu Asn Phe Cys Arg
245 250 255 Ser Leu Arg Phe Asp Asp Lys Pro Asp Tyr Ser Tyr Leu Arg Gln Leu 260 265 270 Phe Arg Asn Leu Phe His Arg Gln Gly Phe Ser Tyr Asp Tyr Val Phe 275 280 285 Asp Trp Asn Met Leu Lys Phe Gly Ala Ser Arg Ala Ala Asp Asp Ala 290 295 300 Glu Arg Glu Arg Arg Asp Arg Glu Glu Arg Leu Arg His Ser Arg Asn 305 310 315 320 Pro Ala Thr Arg Gly Leu Pro Ser Thr Ala Ser Gly Arg Leu Arg Gly 325 330 335 Thr Gln Glu Val Ala Pro Pro Thr Pro Leu Thr Pro Thr Ser His Thr 340 345 350 Ala Asn Thr Ser Pro Arg Pro Val Ser Gly Met Glu Arg Glu Arg Lys 355 360 Val Ser Met Arg Leu His Arg Gly Ala Pro Val Asn Ile Ser Ser Ser 370 380 Asp Leu Thr Gly Arg Gln Asp Thr Ser Arg Met Ser Thr Ser Gln Ile 385 390 395 Pro Gly Arg Val Ala Ser Ser Gly Leu Gln Ser Val Val His Arg 405 410 415 <210> <211> 409 **PRT** Homo sapiens Met Glu Leu Arg Val Gly Asn Arg Tyr Arg Leu Gly Arg Lys Ile Gly 10 15 Ser Gly Ser Phe Gly Asp Ile Tyr Leu Gly Thr Asp Ile Ala Ala Gly
20 25 30 Glu Glu Val Ala Ile Lys Leu Glu Cys Val Lys Ala Lys His Pro Gln 35 40 45 Leu His Ile Glu Ser Lys Ile Tyr Lys Met Met Gln Gly Gly Val Gly 50 60

Ile Pro Thr Ile Arg Trp Cys Gly Ala Glu Gly Asp Tyr Asn Val Met

Val Met Glu Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asn Phe Cys 85 90 95 Ser Arg Lys Phe Ser Leu Lys Thr Val Leu Leu Leu Ala Asp Gln Met 100 105 110 Ile Ser Arg Ile Glu Tyr Ile His Ser Lys Asn Phe Ile His Arg Asp 115 120 125 Val Lys Pro Asp Asn Phe Leu Met Gly Leu Gly Lys Lys Gly Asn Leu 130 140 Val Tyr Ile Ile Asp Phe Gly Leu Ala Lys Lys Tyr Arg Asp Ala Arg 145 150 155 160 Thr His Gln His Ile Pro Tyr Arg Glu Asn Lys Asn Leu Thr Gly Thr 165 170 175 Ala Arg Tyr Ala Ser Ile Asn Thr His Leu Gly Ile Glu Gln Ser Arg 180 185 190 Arg Asp Asp Leu Glu Ser Leu Gly Tyr Val Leu Met Tyr Phe Asn Leu
195 200 205 Gly Ser Leu Pro Trp Gln Gly Leu Lys Ala Ala Thr Lys Arg Gln Lys 210 220 Tyr Glu Arg Ile Ser Glu Lys Lys Met Ser Thr Pro Ile Glu Val Leu 225 230 235 240 Cys Lys Gly Tyr Pro Ser Glu Phe Ala Thr Tyr Leu Asn Phe Cys Arg 245 250 255 Ser Leu Arg Phe Asp Asp Lys Pro Asp Tyr Ser Tyr Leu Arg Gln Leu 260 265 270 Phe Arg Asn Leu Phe His Arg Gln Gly Phe Ser Tyr Asp Tyr Val Phe 275 280 285 Asp Trp Asn Met Leu Lys Phe Gly Ala Ser Arg Ala Ala Asp Asp Ala 290 295 300 Glu Arg Glu Arg Arg Asp Arg Glu Glu Arg Leu Arg His Ser Arg Asn 305 310 315 Pro Ala Thr Arg Gly Leu Pro Ser Thr Ala Ser Gly Arg Leu Arg Gly 325 330 335 Thr Gln Glu Val Ala Pro Pro Thr Pro Leu Thr Pro Thr Ser His Thr

Sequence Listing.ST25 345 350

340

Ala Asn Thr Ser Pro Arg Pro Val Ser Gly Met Glu Arg Glu Arg Lys 355 360 365

Val Ser Met Arg Leu His Arg Gly Ala Pro Val Asn Ile Ser Ser Ser 370 380

Asp Leu Thr Gly Arg Gln Asp Thr Ser Arg Met Ser Thr Ser Gln Asn 385 390 395 400

Ser Ile Pro Phe Glu His His Gly Lys 405

<210> 9 <211> 1559 <212> DNA

<213> Homo sapiens

<400> 9

60 ccgagcggag cgcggcggcg gcggcggcgg cggcggctgg gccgggagag gctggcgcgc 120 cgggcggctc cgcgaatcct ccggcatccg ccccggcggg ccgcccccgc ccgcggcagc 180 cccccgagca gtggcccggc atcggcgcct tcccggcggg caagagtgag ccatggagct 240 300 acgtgtgggg aacaagtacc gcctgggacg gaagatcggg agcgggtcct tcggagatat 360 ctacctgggt gccaacatcg cctctggtga ggaagtcgcc atcaagctgg agtgtgtgaa 420 gacaaagcac ccccagctgc acatcgagag caagttctac aagatgatgc agggtggcgt 480 ggggatcccg tccatcaagt ggtgcggagc tgagggcgac tacaacgtga tggtcatgga gctgctgggg cctagcctcg aggacctgtt caacttctgt tcccgcaaat tcagcctcaa 540 gacggtgctg ctcttggccg accagatgat cagccgcatc gagtatatcc actccaagaa 600 660 cttcatccac cgggacgtca agcccgacaa cttcctcatg gggctgggga agaagggcaa cctggtctac atcatcgact tcggcctggc caagaagtac cgggacgccc gcacccacca 720 gcacattccc taccgggaaa acaagaacct gaccggcacg gcccgctacg cttccatcaa 780 840 cacgcacctg ggcattgagc aaagccgtcg agatgacctg gagagcctgg gctacgtgct 900 catgtacttc aacctgggct ccctgccctg gcaggggctc aaagcagcca ccaagcgcca gaagtatgaa cggatcagcg agaagaagat gtcaacgccc atcgaggtcc tctgcaaagg 960 ctatccctcc gaattctcaa catacctcaa cttctgccgc tccctgcggt ttgacgacaa 1020 1080 gcccgactac tcttacctac gtcagctctt ccgcaacctc ttccaccggc agggcttctc ctatgactac gtctttgact ggaacatgct gaaattcggt gcagcccgga atcccgagga 1140 1200 tgtggaccgg gagcggcgag aacacgaacg cgaggagagg atgggggcagc tacgggggtc cgcgacccga gccctgcccc ctggcccacc cacgggggcc actgccaacc ggctccgcag 1260 tgccgccgag cccgtggctt ccacgccagc ctcccgcatc cagccggctg gcaatacttc 1320 Page 12

tcccagagcg	atctcgcggg	tcgaccggga	gaggaaggtg	agtatgaggc	tgcacagggg	1380
tgcgcccgcc	aacgtctcct	cctcagacct	cactgggcgg	caagaggtct	cccggatccc	1440
agcctcacag	acaagtgtgc	catttgacca	tctcgggaag	tgaggagagc	ccccattgga	1500
ccagtgtttg	cttagtgtct	tcactgtatt	ttctttaaaa	aaaaaaaaa	aaaaaaaa	1559

<210> 10

<211> 416

<212> PKT <213> Homo sapiens

<400> 10

Met Glu Leu Arg Val Gly Asn Lys Tyr Arg Leu Gly Arg Lys Ile Gly
1 10 15

Ser Gly Ser Phe Gly Asp Ile Tyr Leu Gly Ala Asn Ile Ala Ser Gly 20 25 30

Glu Glu Val Ala Ile Lys Leu Glu Cys Val Lys Thr Lys His Pro Gln 35 40 45

Leu His Ile Glu Ser Lys Phe Tyr Lys Met Met Gln Gly Gly Val Gly 50 60

Ile Pro Ser Ile Lys Trp Cys Gly Ala Glu Gly Asp Tyr Asn Val Met 65 70 75 80

Val Met Glu Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asn Phe Cys 85 90 95

Ser Arg Lys Phe Ser Leu Lys Thr Val Leu Leu Leu Ala Asp Gln Met $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Ile Ser Arg Ile Glu Tyr Ile His Ser Lys Asn Phe Ile His Arg Asp 115 120 125

Val Lys Pro Asp Asn Phe Leu Met Gly Leu Gly Lys Lys Gly Asn Leu 130 140

Val Tyr Ile Ile Asp Phe Gly Leu Ala Lys Lys Tyr Arg Asp Ala Arg 145 150 155 160

Thr His Gln His Ile Pro Tyr Arg Glu Asn Lys Asn Leu Thr Gly Thr 165 170 175

Ala Arg Tyr Ala Ser Ile Asn Thr His Leu Gly Ile Glu Gln Ser Arg 180 185 190

Arg Asp Asp Leu Glu Ser Leu Gly Tyr Val Leu Met Tyr Phe Asn Leu 195 200 205

Gly Ser Leu Pro Trp Gln Gly Leu Lys Ala Ala Thr Lys Arg Gln Lys 210 215 220	
Tyr Glu Arg Ile Ser Glu Lys Lys Met Ser Thr Pro Ile Glu Val Leu 225 230 235 240	
Cys Lys Gly Tyr Pro Ser Glu Phe Ser Thr Tyr Leu Asn Phe Cys Arg 245 250 255	
Ser Leu Arg Phe Asp Asp Lys Pro Asp Tyr Ser Tyr Leu Arg Gln Leu 260 265 270	
Phe Arg Asn Leu Phe His Arg Gln Gly Phe Ser Tyr Asp Tyr Val Phe 275 280 285	
Asp Trp Asn Met Leu Lys Phe Gly Ala Ala Arg Asn Pro Glu Asp Val 290 295 300	
Asp Arg Glu Arg Arg Glu His Glu Arg Glu Glu Arg Met Gly Gln Leu 305 310 315 320	
Arg Gly Ser Ala Thr Arg Ala Leu Pro Pro Gly Pro Pro Thr Gly Ala 325 330 335	
Thr Ala Asn Arg Leu Arg Ser Ala Ala Glu Pro Val Ala Ser Thr Pro 340 345 350	
Ala Ser Arg Ile Gln Pro Ala Gly Asn Thr Ser Pro Arg Ala Ile Ser 355 360 365	
Arg Val Asp Arg Glu Arg Lys Val Ser Met Arg Leu His Arg Gly Ala 370 375 380	
Pro Ala Asn Val Ser Ser Ser Asp Leu Thr Gly Arg Gln Glu Val Ser 385 390 395 400	
Arg Ile Pro Ala Ser Gln Thr Ser Val Pro Phe Asp His Leu Gly Lys 405 410 415	
<210> 11 <211> 1559 <212> DNA <213> Homo sapiens	
<400> 11 gggaggcggc ggcggcggcgg cgagagccca gagccagagc ccggccgg	0
ccgagcggag cgcggcggcg cggcggctgg gccgggagag gctggcgcgc 120	0
cgggcggctc cgcgaatcct ccggcatccg ccccggcggg ccgcccccgc ccgcggcagc 180	o
ccccgagca gtggcccggc atcggcgcct tcccggcggg caagagtgag ccatggagct 240	O
acgtgtgggg aacaagtacc gcctgggacg gaagatcggg agcgggtcct tcggagatat 300 Page 14	О

ctacctgggt	gccaacatca	cctctggtga	ggaagtcgcc	atcaagctgg	agtgtgtgaa	360
gacaaagcac	ccccagctgc	acatcgagag	caagttctac	aagatgatgc	agggtggcgt	420
ggggatcccg	tccatcaagt	ggtgcggagc	tgagggcgac	tacaacgtga	tggtcatgga	480
gctgctgggg	cctagcctcg	aggacctgtt	caacttctgt	tcccgcaaat	tcagcctcaa	540
gacggtgctg	ctcttggccg	accagatgat	cagccgcatc	gagtatatcc	actccaagaa	600
cttcatccac	cgggacgtca	agcccgacaa	cttcctcatg	gggctgggga	agaagggcaa	660
cctggtctac	atcatcgact	tcggcctggc	caagaagtac	cgggacgccc	gcacccacca	720
gcacattccc	taccgggaaa	acaagaacct	gaccggcacg	gcccgctacg	cttccatcaa	780
cacgcacctg	ggcattgagc	aaagccgtcg	agatgacctg	gagagcctgg	gctacgtgct	840
catgtacttc	aacctgggct	ccctgccctg	gcaggggctc	aaagcagcca	ccaagcgcca	900
gaagtatgaa	cggatcagcg	agaagaagat	gtcaacgccc	atcgaggtcc	tctgcaaagg	960
ctatccctcc	gaattctcaa	catacctcaa	cttctgccgc	tccctgcggt	ttgacgacaa	1020
gcccgactac	tcttacctac	gtcagctctt	ccgcaacctc	ttccaccggc	agggcttctc	1080
ctatgactac	gtctttgact	ggaacatgct	gaaattcggt	gcagcccgga	atcccgagga	1140
tgtggaccgg	gagcggcgag	aacacgaacg	cgaggagagg	atggggcagc	tacgggggtc	1200
cgcgacccga	gccctgcccc	ctggcccacc	cacgggggcc	actgccaacc	ggctccgcag	1260
tgccgccgag	cccgtggctt	ccacgccagc	ctcccgcatc	cagccggctg	gcaatacttc	1320
tcccagagcg	atctcgcggg	tcgaccggga	gaggaaggtg	agtatgaggc	tgcacagggg	1380
tgcgcccgcc	aacgtctcct	cctcagacct	cactgggcgg	caagaggtct	cccggatccc	1440
agcctcacag	acaagtgtgc	catttgacca	tctcgggaag	tgaggagagc	ccccattgga	1500
ccagtgtttg	cttagtgtct	tcactgtatt	ttctttaaaa	aaaaaaaaa	aaaaaaaa	1559

¹² 416 <210>

Met Glu Leu Arg Val Gly Asn Lys Tyr Arg Leu Gly Arg Lys Ile Gly 10 15

Ser Gly Ser Phe Gly Asp Ile Tyr Leu Gly Ala Asn Ile Thr Ser Gly 20 25 30

Glu Glu Val Ala Ile Lys Leu Glu Cys Val Lys Thr Lys His Pro Gln 35 40 45

Leu His Ile Glu Ser Lys Phe Tyr Lys Met Met Gln Gly Gly Val Gly 50 60

Ile Pro Ser Ile Lys Trp Cys Gly Ala Glu Gly Asp Tyr Asn Val Met Page 15

<211>

<212> PRT <213> Homo sapiens

<400>

Val Met Glu Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asn Phe Cys 85 90 95 Ser Arg Lys Phe Ser Leu Lys Thr Val Leu Leu Leu Ala Asp Gln Met $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$ Ile Ser Arg Ile Glu Tyr Ile His Ser Lys Asn Phe Ile His Arg Asp 115 120 125 Val Lys Pro Asp Asn Phe Leu Met Gly Leu Gly Lys Lys Gly Asn Leu 130 140 Val Tyr Ile Ile Asp Phe Gly Leu Ala Lys Lys Tyr Arg Asp Ala Arg 145 150 155 160 Thr His Gln His Ile Pro Tyr Arg Glu Asn Lys Asn Leu Thr Gly Thr 165 170 175 Ala Arg Tyr Ala Ser Ile Asn Thr His Leu Gly Ile Glu Gln Ser Arg 180 185 190 Arg Asp Asp Leu Glu Ser Leu Gly Tyr Val Leu Met Tyr Phe Asn Leu
195 200 205 Gly Ser Leu Pro Trp Gln Gly Leu Lys Ala Ala Thr Lys Arg Gln Lys 210 220 Tyr Glu Arg Ile Ser Glu Lys Lys Met Ser Thr Pro Ile Glu Val Leu 225 230 235 240 Cys Lys Gly Tyr Pro Ser Glu Phe Ser Thr Tyr Leu Asn Phe Cys Arg 245 250 255 Ser Leu Arg Phe Asp Asp Lys Pro Asp Tyr Ser Tyr Leu Arg Gln Leu 260 265 270 Phe Arg Asn Leu Phe His Arg Gln Gly Phe Ser Tyr Asp Tyr Val Phe 275 280 285 Asp Trp Asn Met Leu Lys Phe Gly Ala Ala Arg Asn Pro Glu Asp Val 290 295 300 Asp Arg Glu Arg Arg Glu His Glu Arg Glu Glu Arg Met Gly Gln Leu 305 315 320 Arg Gly Ser Ala Thr Arg Ala Leu Pro Pro Gly Pro Pro Thr Gly Ala 325 330 335 Thr Ala Asn Arg Leu Arg Ser Ala Ala Glu Pro Val Ala Ser Thr Pro

340

Ala Ser Arg Ile Gln Pro Ala Gly Asn Thr Ser Pro Arg Ala Ile Ser Arg Val Asp Arg Glu Arg Lys Val Ser Met Arg Leu His Arg Gly Ala Pro Ala Asn Val Ser Ser Ser Asp Leu Thr Gly Arg Gln Glu Val Ser 400

Arg Ile Pro Ala Ser Gln Thr Ser Val Pro Phe Asp His Leu Gly Lys 405 410 415