Lie Groups

Jaume Guasch

Departament de Física Quàntica i Astrofísica Universitat de Barcelona

2020-2021

Definition: Group *G*:

 $\{g_i\} \in G$ with an operation " \cdot " such that:

- $g_i \cdot g_j \in G$ (internal operation)
- $g_i \cdot (g_j \cdot g_k) = (g_i \cdot g_j) \cdot g_k$ (associative)
- $\exists e \mid g_i \cdot e = g_i \quad \forall g_i \in G$ (neutral element)
- $\forall g \ \exists g^{-1} \mid g \cdot g^{-1} = e$ (inverse element)

It can be proved:

$$-e \cdot g = g$$

-
$$g^{-1} \cdot g = e$$

-
$$g^{-1}$$
 is unique

$$-(g^{-1})^{-1}=g$$

$$-(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$$

-
$$a \cdot b = a \cdot c \leftrightarrow b = c \leftrightarrow b \cdot a = c \cdot a$$

-
$$a \cdot a = a \leftrightarrow a = e$$

Definition: Lie Group: continuous group:

- $\theta \equiv \theta_a \in \mathbb{R}$, a = 1, ... N parameters, $N \equiv$ group dimension
- $g = g(\theta_1, \dots, \theta_N)$ continuous, differentiable
- g(0) = e
- $g(-\theta) = g^{-1}(\theta)$

Definition: Subgroup:

 $H \subset G$ such that H is group

Definition: Invariant subgroup:

 $H \subset G$ is a subgroup such that:

$$\forall h \in H \& \forall g \in G: g \cdot h \cdot g^{-1} \in H$$

Definition: Simple group:

has no proper invariant subgroups

Example: SU(N) is an invariant subgroup of U(N)

$$U(N): \{ \text{matrix } U, N \times N | U^{\dagger} = U^{-1} \}$$

 $SU(N): \{ \text{matrix } U, N \times N | U^{\dagger} = U^{-1}, \det(U) = 1 \}$
 $SU(N) \subset U(N)$

$$A \in U(N) , S \in SU(N)$$

$$B = ASA^{-1} \in U(N)$$

$$\det(B) = \det(ASA^{-1}) = \det(A)\det(S)\det(A)^{-1} = \det S = 1$$

$$\Rightarrow B \in SU(N)$$

 \Rightarrow SU(N) is invariant

Definition: Representation *R*:

Each element $g \in G$ is assigned a linear operator in a vector space:

$$V \equiv \text{vector space}$$
 , $D_R : V \xrightarrow{\text{linear}} V$

 $R: g \rightarrow D_R(g)$ such that:

- $D_R(e) = 1$
- $\bullet \ D_R(g_i \cdot g_j) = D_R(g_i) \cdot D_R(g_j)$

If $\dim(V) = n$ finite $\to D_R$ are $n \times n$ matrices

Example: rotation group in 3-D: SO(3)

Defining object:
$$\begin{pmatrix} x \\ y \\ x \end{pmatrix} \to M \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

- ⇒ Fundamental representation: F
- \Rightarrow Vector space of dimension: 3. dim(F) = 3
- \Rightarrow 3 parameters in the group (e.g.: rotations around x, y and z angles, or 3 Euler angles)
 - ⇒ Lie group of dimension 3
 - ⇒ 3 parameters = 3 generators

Some representations:

- Spinors $\binom{a}{b}$ \Rightarrow Vector space of dimension 2. (but dim(group)=3: 3 generators: 3 Pauli matrices 2 × 2)
- Trivial: $D_R(g) = 1 \ \forall g \in SO(3)$
 - \Rightarrow Scalar particle $\phi \rightarrow \phi$
 - ⇒ Vector space of dimension 1.

Definition: Equivalent representations:

R and R' are equivalent if:

$$\exists S \mid D_R(g) = S^{-1}D_{R'}(g)S$$
 (basis change)

Definition: Reducible representation:

Leaves invariant a non-trivial subspace:

- V: defining vector space
- $V' \subsetneq V$ a non-trivial subspace $(V' \neq \{0\})$
- if $\forall v' \in V' \ \forall g \in G \rightarrow D_B(g)v' \in V'$

e.g.: has a zero-diagonal block:

$$\begin{pmatrix} a & b & c & d \\ e & f & g & h \\ 0 & 0 & i & j \\ 0 & 0 & k & l \end{pmatrix} \forall D_R(g) \text{ then } \begin{pmatrix} x \\ y \\ 0 \\ 0 \end{pmatrix} \text{ is an invariant subspace}$$

⇒ is a reducible representation

Definition: Irreducible representation (*irrep*):

has no invariant subspaces

Definition: Completely reducible representation:

 \exists a basis in which D_R is block-diagonal

$$\Rightarrow D_R = D_1 \oplus D_2 \oplus D_3 \cdots$$
 (direct sum)

	1		0		0	0	1
I		0		0	• • •	0	
		0	0		0	•••	
		:	:	0	٠.,	0	
	(0	0		0		/

If g is close to the identity:

$$heta_i = \delta heta_i \ll 1$$
 $D_R(g(\delta heta)) = \mathbb{1} - i\delta heta_a T_R^a$

Group generators in representation R

$$T_R^a = i \frac{\partial D_R}{\partial \theta_a}$$
, $a = 1, \dots, N$ (group dimension)

$$D_R = e^{-i heta_a T_R^a}$$
 (near the identity)

If D_R is unitary $(D_R^{\dagger}D_R = 1) \Rightarrow T_R^a$ are hermitic.

Definition: Structure constants: fabc

 $[T_R^a, T_R^b] = if^{abc}T_R^c$ independent of representation! Group's generator algebra: describes the local structure of the group near the neutral element.

Two groups with the same generator algebra are locally isomorf in the vicinity of the neutral element.

Abelian group:

$$[T_R^a,T_R^b]=0$$
 $e^{-ilpha_aT^a}e^{-ieta_bT^b}=e^{-i(lpha_aT^a+eta_bT^b)}=e^{-i(lpha_c+eta_c)T^c}$

⇒ 1-Dimensional representations

Definition: Casimir operators: C

- Commutes with all group elements
- $C = \lambda 1$: λ label the possible irreducible representations

e.g.: Rotation in 3-dim SO(3) (locally equivalent to SU(2)):

Generators: J^k, k = 1,2,3 spin matrices
 Group dimension: 3. (3 parameters ≡ 3 generators)

• $[J^k, J^l] = i\varepsilon^{klm}J^m$: structure constants ε^{klm} , $\varepsilon^{123} = 1$

•
$$C = \vec{J}^2 = (J^1)^2 + (J^2)^2 + (J^3)^2 = \lambda \mathbb{1}$$

 $\lambda = j(j+1)$, $j = 0, \frac{1}{2}, 1, \frac{3}{2}, \dots$ Spin states

• Dimension of representation: 2i + 1

Birrensier er representation: 2j 1						
j = 0	$\lambda = 0$	Scalar				
		trivial $D_R(g)=1$				
$j=\frac{1}{2}$	$\lambda = \frac{3}{4}$	Dim=2. 2-spinors. Spin 1/2				
		$\begin{pmatrix} a \\ b \end{pmatrix}$ $J^i = \frac{\sigma^i}{2}$ Pauli matrices				
<i>j</i> = 1	$\lambda = 2$	Dim=3. Vectors. Spin 1				
		$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \cdots$				
:	:	:				

Important irreducible representations:

- Fundamental (defining representation)
- Adjoint: Jacobi identity:

$$[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0$$

$$-f^{ade}f^{bcd}T^{e} - f^{bde}f^{cad}T^{e} - f^{cde}f^{abd}T^{e} = 0$$

$$f^{abd}f^{cde} + f^{bcd}f^{ade} + f^{cad}f^{bde} = 0$$
(1)

Definition: adjoint representation:

$$[\mathcal{T}_{ ext{adj}}^a,\mathcal{T}_{ ext{adj}}^b]^{cd} = -\left(f^{ace}f^{bed}-f^{bce}f^{aed}
ight) = -\left(f^{ace}f^{bed}+f^{aed}f^{cbe}
ight)$$

 $(T_{\rm adi}^a)^{bc} = -if^{abc}$

Jacobi identity (1) with: $b \rightarrow c$, $d \rightarrow e$, $c \rightarrow b$, $e \rightarrow d$ $[T_{
m adj}^a,T_{
m adj}^b]^{cd}=+f^{bae}f^{ced}=-f^{abe}f^{ced}=f^{abe}f^{ecd}=if^{abe}(-if^{ecd})=if^{abe}\left(T_{
m adi}^e\right)^{cd}$

Definition (2) fulfills the generator algebra ⇒ is a representation of the group generators:

$$[\mathcal{T}_{ ext{adj}}^{a},\mathcal{T}_{ ext{adj}}^{b}]^{ ext{cd}}= ext{if}^{abe}\left(\mathcal{T}_{ ext{adj}}^{e}
ight)^{cd}$$