

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1 по дисциплине "Анализ алгоритмов"

Тема: <u>Расстояния Левенштейна и Дамерау-Левенштейна</u>
Студент: Сироткина П.Ю.
Группа: <u>ИУ7-56Б</u>
Оценка:
Преподаватель: Волкова Л.Л.

Оглавление

Bı	веде	ние	2		
1	Ана	алитическая часть	3		
	1.1	Рекурсивный алгоритм нахождения расстояния Левенштейна	3		
	1.2	Матричный алгоритм нахождения расстояния Левенштейна	4		
	1.3	Рекурсивный алгоритм нахождения расстояния Левенштейна с заполнением матрицы	4		
	1.4	Расстояние Дамерау-Левенштейна	4		
	1.5	Вывод	5		
2	Ког	аструкторская часть	6		
	2.1	Схемы алгоритма Левенштейна	6		
	2.2	Схема алгоритма Дамерау-Левенштейна	9		
	2.3	Вывод	10		
3	Технологическая часть				
	3.1	Требования к ПО	11		
	3.2	Средства реализации	11		
	3.3	Листинг кода	11		
	3.4	Тестовые данные	17		
	3.5	Вывод	17		
4	Исс	ледовательская часть	18		
	4.1	Пример работы	18		
	4.2	Технические характеристики	19		
	4.3	Время выполнения алгоритмов	19		
	4.4	Использование памяти	20		
	4.5	Вывод	21		
38	клю	чение	23		
Лi	итер	атура	23		

Введение

Расстояние Левенштейна - минимальное количество операций вставки/удаления одного символа, а также замены одного символа на другой, необходимых для превращения одной строки в другую[1].

Расстояние Дамерау-Левенштейна вычисляется аналогично, с учетом добавления часто применяющейся операции операции, которую заметил Дамерау: транспозиция 2 соседних символов.

Применение расстояния Левенштйена:

- В сфере теоретической информатики: исправление ошибок и опечаток (например, в поисковых запросах);
- В сфере биоинформатики: сравнение белковых структур, генов, хромосом и тд, анализ иммунитета (цепочку молекул можно закодировать вполне определенным символом, т.к. на данный момент известных науке молекул меньше, чем количество букв в латинском алфавите).

Цель лабораторной работы:

- Изучение метода динамического программирования на материале алгоритмов Левенштейна и Дамерау-Левенштейна.
- 2. Оценка реализаций алгоритмов.

Задачи лабораторной работы:

- 1. Изучение алгоритмов Левенштейна и Дамерау-Левенштейна нахождения расстояния между строками.
- 2. Применение метода динамического программирования для матричной реализации указанных алгоритмов.
- 3. Получение практических навыков реализации указанных алгоритмов: матричные и рекурсивные версии.
- 4. Сравнительный анализ линейной и рекурсивной реализации выбранного алгоритма определения расстояния между строками по затрачиваемым ресурсам (времени и памяти).
- 5. Экспериментальное подтверждение различий во временной эффективности рекурсивной и нерекурсивной реализаций выбранного алгоритма.
- 6. Описание и обоснование полученных результатов в отчете о выполненной лабораторной работе, выполненного как рассчетно-пояснительная записка к работе.

1 Аналитическая часть

Расстояние Левенштейна - минимальное количество операций вставки/удаления одного символа, а также замены одного символа на другой, необходимых для превращения одной строки в другую.

Расстояние Дамерау-Левенштейна вычисляется аналогично, с учетом добавления часто применяющейся операции операции, которую заметил Дамерау: транспозиция 2 соседних символов.

Задача по нахождению Расстояния Левенштейна и Дамерау-Левенштейна соответственно заключается в нахождении последовательности этих операций, стоимость которых будет минимальной.

Задаются базовые радакторские операции, т.н. правила, а также вводится понятие штрафа - цена одной операции.

Базовые операции:

- 1. **I** (**Insert**) вставка символа. Штра $\phi = 1$.
- 2. **D** (**Delete**) удаление символа. Штра $\phi = 1$.
- 3. \mathbf{R} (Replace) замена символа. Штраф = 1.
- 4. **M** (Match) совпадение символа из 1 строки с символом из 2 строки. Штра $\varphi = 0$.
- 5. **X** (eXchange) транспозиция 2 соседних символов. Штра $\phi = 1$.

1.1 Рекурсивный алгоритм нахождения расстояния Левенштейна

Пусть S1 и S2 - две строки над некоторым алфавитом(для определенности берется латинский алфавит). Пусть λ обозначает пустую строку.

Вводится обозначение length(S) = длина строки S. S[1...i] обозначает подстроку строки S, включающую в себя первые і символов строки, а S[i] - i+1-ый символ строки S.

Тогда расстояние Левенштейна можно рассчитать по формуле (1.1):

$$D(S1[1..i], S2[1..j]) = \begin{cases} 0 & \text{i} = 0, \text{j} = 0 \\ i & \text{j} > 0, \text{j} = 0 \\ j & \text{i} = 0, \text{j} > 0 \end{cases}$$

$$min\{ & \text{j} = 0, \text{j} > 0$$

$$min\{ & \text{j} = 0, \text{j} > 0$$

$$D(S1[1..i], S2[1..j - 1]) + 1 & \text{j} = 0, \text{j} > 0$$

$$D(S1[1..i - 1], S2[1..j]) + 1$$

$$D(S1[1..i - 1], S2[1..j - 1]) + match(S1[i], S2[j]) \}$$

$$D(S1[1..i - 1], S2[1..j - 1]) + match(S1[i], S2[j]) \}$$

Функция match(a, b) = 0, если a = b, и 1 иначе.

Рекурсивный алгоритм вычисления расстояния Левенштейна является реализацией рекуррентной формулы 1.1. Расстоянием будет минимальное значение функции.

Рекуррентная формула составлена из следующий соображений:

• $D(\lambda, \lambda) = 0$ (первое выражение в системе). Для перевода пустой строки в пустую потребуется 0 операций;

- $D(S, \lambda) = length(S)$ (второе выражение в системе). Для преобразования некоторой строки в пустую необходимо последовательно удалить все буквы в слове;
- $D(\lambda, S) = length(S)$ (третье выражение в системе). Для преобразования пустой строки в некоторую непустую строку S понадобится length(S) раз воспользоваться операций вставки;
- Для преобразования некоторой непустой строки S1 (length(S1) = i) в непустую строку S2 (length(S2) = j) потребуется выполнить некую последовательность операций вставки, удаления и замены. Цена преобразования строки S1 в строку S2 может быть выражена как:
 - Стоимость преобразования S1[1..i] в S2[1..j-1] + Цена операции вставки (т.е. 1), которая необходима для преобразования S2[1..j-1] в S2[1..j];
 - Стоимость преобразования S1[1..i-1] в S2[1..j] + Цена операции удаления (т.е. 1), которая необходима для преобразования S1[1..i-1];
 - Стоимость преобразования S1[1...i-1] в S2[1...j-1] + Цена операции определения совпадения (0, если S1[i] = S2[j], 1 иначе), которая необходима для преобразования S1[1...i] в S1[1...i-1] и S2[1...j] в S2[1...j-1].

1.2 Матричный алгоритм нахождения расстояния Левенштейна

Прямая реализация формулы 1.1 может быть малоэффективна по времени исполнения при больших і и j, т.к. промежуточные значения D(S1[1..i], S2[1..j]) вычисляются заново много раз.

Например, если представить этот процесс в виде дерева рекурсивных вызовов, то многие поддеревья будут содержать в себе другие идентичные поддеревья и вычислять их заново смысла нет.

Для оптимизации нахождения расстояния Левенштейна можно использовать матрицу в целях хранения соответствующих промежуточных значений. В этом случае алгоритм является реализацией построчного заполнения некоторой матрицы A размерами length(S1) х length(S2) знаечниями D(S1[1..i], S2[1..i]).

1.3 Рекурсивный алгоритм нахождения расстояния Левенштейна с заполнением матрицы

Рекурсивный алгоритм заполнения можно оптимизировать по времени исполнения с использованием матричного алгоритма.

Суть данного метода заключается в параллельном заполнении матрицы при выполнении рекурсии. В случае, если при выполнении рекурсии обрабатываются подстроки, которые ранее не были обработаны, то алгоритм делает прогон данных для них и заносит результат в матрицу, а если подстроки уже обрабатывались, то аолгритм ничего с ними не делает и переходит к обработке следующих пар подстрок.

1.4 Расстояние Дамерау-Левенштейна

Расстояние Дамерау-Левенштейна можно рассчитать по формуле (1.2):

$$D(S1[1..i], S2[1..j]) = \begin{cases} \max(i,j) & \min(i,j) = 0 \\ \min\{ & D(S1[1..i-1], S2[1..j-1]) + 1 & i > 0, j > 0 \\ D(S1[1..i-1], S2[1..j]) + 1 & \\ D(S1[1..i-1], S2[1..j-1]) + \max(S1[i], S2[j]) & \\ & D(S1[1..i-2], S2[1..j-2]) + 1, \quad \text{если } i,j > 1; \\ & S1[i] = S2[j-1]; \\ & S2[j] = S1[i-1] \\ & \infty, & \text{иначе} \end{cases}$$

Формула выводится исходя из тех же соображений, что и 1.1, дополнительно рассматривается случай перестановки двух последовательных символов (4 вариант в поиске минимума).

Бесконечность в случае "иначе" в качестве ответа означает то, что при выборе максимума этот случай рассматриваться не будет, т.к. первые 3 выражения заведомо не дадут результат в виде бесконечноти.

1.5 Вывод

В данном разделе были рассмотрены алгоритмы нахождения расстояния Левенштейна и Дамерау-Левенштейна, задача которых - определить минимальное количество операций вставки/удаления одного символа, а также замены одного символа на другой и транспозиции двух пар символов, необходимых для превращения одной строки в другую.

Формулы для вычисления задаются в рекурсивном виде (см. формулы 1.1 и 1.2). Как известно, рекурсия - часто не самый эффективный способ решения, на больших данных будет затрачиваться большое количество памяти и времени, поэтому был рассмотрен способ оптимизации вычислений - использование матрицы для хранения промежуточного ответа.

2 Конструкторская часть

В данном разделе представлены схемы алгоритмов, описанных в аналитическом разделе.

2.1 Схемы алгоритма Левенштейна

На рисунке 2.1 представлена схема рекурсивного алгоритма нахождения расстояния Левенштейна.

Рис. 2.1: Схема рекурсивного алгоритма нахождения расстояния Левенштейна

На рисунке 2.2 представлена схема рекурсивного алгоритма нахождения расстояния Левенштейна с заполнением матрицы.

Рис. 2.2: Схема рекурсивного алгоритма нахождения расстояния Левенштейна с заполнением матрицы

На рисунке 2.3 представлена схема матричного (итерационного) алгоритма нахождения расстояния Левенштейна.

Рис. 2.3: Схема матричного (итерационного) алгоритма нахождения расстояния Левенштейна

2.2 Схема алгоритма Дамерау-Левенштейна

На рисунке 2.4 представлена схема алгоритма нахождения расстояния Дамерау-Левенштейна.

Рис. 2.4: Схема алгоритма нахождения расстояния Дамерау-Левенштейна

2.3 Вывод

В этом разделе представлены схемы алгоритмов Левенштейна и Дамерау-Левенштейна, основанные на теоретических данных, полученных из аналитического раздела.

3 Технологическая часть

В данном разделе приведны требования к программному обеспечению, средства реализации и листинги кода.

3.1 Требования к ПО

- 1. На вход подаются две строки в любой раскладке, в том числе и пустые;
- 2. Результат работы программы искомое расстояние для всех методов, а также матрицы расстояний для всех методов, кроме рекурсивного;
- 3. Должна быть возможность просмотра потраченного времени и памяти.

3.2 Средства реализации

В качестве языка программирования для реализации лабораторной работы был выбран язык С. Выбор этого языка обусловен его быстродействием и эффективностью, это легкочитаемый, лаконичный и гибкий язык. Также выбор обусловлен моим личным желанием получить больше практики написания программ на этом языке.

3.3 Листинг кода

Листинг 3.1: Нахождение расстояния Левенштейна рекурсивно

Листинг 3.2: Нахождение расстояния Левенштейна рекурсивно с использованием кеширования

```
int lev_rec_matrix(const char *s1, const char *s2)
{
   int i = strlen(s1), j = strlen(s2);

   int **matrix = allocate_matrix(i + 1, j + 1);
   fill_matrix_int_max(matrix, i + 1, j + 1);

   int dist = get_lev_dist(s1, s2, matrix);
```

```
free matrix(matrix, i + 1);
10
       return dist;
11
  }
12
13
  int get_lev_dist(const char *s1, const char *s2, int **matrix)
14
  {
15
      int i = strlen(s1), j = strlen(s2);
16
17
       if (matrix[i][j] != INT MAX)
18
           return matrix[i][j];
19
20
       if (i == 0)
21
22
           matrix[i][j] = j;
23
           return matrix[i][j];
24
      }
25
26
       if (i > 0 \&\& j == 0)
27
       {
28
           matrix[i][j] = i;
29
           return matrix[i][j];
30
      }
31
       int match = (s1[i-1] = s2[j-1]) ? 0 : 1;
33
34
       matrix[i][j] = min_from_three(
35
                    get_lev_dist(s1, substr(s2, 0, j - 1), matrix) + 1,
36
                    get lev dist(substr(s1, 0, i - 1), s2, matrix) + 1,
37
                    get lev dist(substr(s1, 0, i - 1), substr(s2, 0, j - 1), matrix)
38
                    + match);
39
40
       return matrix[i][j];
^{41}
42 }
```

Листинг 3.3: Нахождение расстояния Левенштейна матрично (итерационно)

```
int lev_iter(const char *s1, const char *s2)
{
    int n = strlen(s1), m = strlen(s2);

    int **matrix = allocate_matrix(n + 1, m + 1);
    fill_matrix_int_max(matrix, n + 1, m + 1);

    for (int i = 0; i < n + 1; i++)
        matrix[i][0] = i;

    for (int j = 0; j < m + 1; j++)
        matrix[0][j] = j;
</pre>
```

```
int insert dist, delete dist, match dist, match;
14
15
      for (int i = 1; i < n + 1; i++)
16
           for (int j = 1; j < m + 1; j++)
17
18
               match = (s1[i - 1] == s2[j - 1]) ? 0 : 1;
19
               insert dist = matrix[i][j-1] + 1;
               delete dist = matrix[i - 1][j] + 1;
22
               match dist = matrix[i - 1][j - 1] + match;
23
24
               matrix[i][j] = min_from_three(insert_dist, delete_dist, match_dist);
25
          }
26
27
      int dist = matrix[n][m];
28
      free matrix(matrix, n + 1);
29
30
      return dist;
31
32
```

Листинг 3.4: Нахождение расстояния Дамерау-Левенштейна рекурсивно

```
int dam lev rec(const char *s1, const char *s2)
  {
      int i = strlen(s1), j = strlen(s2);
      if (i = 0 | | j = 0)
          return max(i, j);
      int match = (s1[i-1] = s2[j-1]) ? 0 : 1;
      int res = min from three(
                           dam lev rec(s1, substr(s2, 0, j-1)) + 1,
11
                           dam lev rec(substr(s1, 0, i - 1), s2) + 1,
12
                           dam_lev_rec(substr(s1, 0, i - 1), substr(s2, 0, j - 1)) + match);
13
      if (i > 1 \&\& j > 1 \&\& s1[i] == s2[j-1] \&\& s1[i-1] == s2[j])
15
16
          res = min(dam lev rec(substr(s1, 0, i - 2), substr(s2, 0, j - 2)) + 1, res);
17
18
19
      return res;
20
21 }
```

Листинг 3.5: Нахождение расстояния Дамерау-Левенштейна рекурсивно с использованием кеширования

```
int dam_lev_rec_matrix(const char *s1, const char *s2)
{
    int i = strlen(s1), j = strlen(s2);
}
```

```
int **matrix = allocate_matrix(i + 1, j + 1);
      fill_matrix_int_max(matrix, i + 1, j + 1);
      int dist = get lev dist(s1, s2, matrix);
      free matrix(matrix, i + 1);
10
      return dist;
11
  }
12
13
  int get dam lev dist(const char *s1, const char *s2, int **matrix)
14
15
  {
      int i = strlen(s1), j = strlen(s2);
16
17
       if (matrix[i][j] != INT MAX)
18
           return matrix[i][j];
19
20
      if (i == 0)
21
22
           matrix[i][j] = j;
           return matrix[i][j];
24
      }
25
26
      if (i > 0 \&\& j == 0)
27
           matrix[i][j] = i;
           return matrix[i][j];
30
      }
31
32
      int match = (s1[i-1] = s2[j-1]) ? 0 : 1;
33
34
      int res = min from three(
35
                   get_dam_lev_dist(s1, substr(s2, 0, j - 1), matrix) + 1,
36
                   get dam lev dist(substr(s1, 0, i - 1), s2, matrix) + 1,
37
                   get dam lev dist(substr(s1, 0, i - 1), substr(s2, 0, j - 1), matrix)
                   + match);
39
40
      if (i > 1 \&\& j > 1 \&\& s1[i] = s2[j-1] \&\& s1[i-1] = s2[j])
41
           res = min(get_dam_lev_dist(substr(s1, 0, i - 2),
42
                                        substr(s2, 0, j-2), matrix), res);
43
44
       matrix[i][j] = res;
45
46
47
      return matrix[i][j];
48 }
```

Листинг 3.6: Нахождение расстояния Дамерау-Левенштейна матрично (итерационно)

```
int dam_lev_iter(const char *s1, const char *s2)
{
    int n = strlen(s1), m = strlen(s2);
}
```

```
int **matrix = allocate_matrix(n + 1, m + 1);
      fill matrix int max(matrix, n + 1, m + 1);
      for (int i = 0; i < n + 1; i++)
           matrix[i][0] = i;
10
      for (int j = 0; j < m + 1; j++)
11
           matrix[0][j] = j;
12
13
      int insert dist, delete dist, match dist, exchange dist;
14
      int match;
15
16
      for (int i = 1; i < n + 1; i++)
17
           for (int j = 1; j < m + 1; j++)
18
19
               match = (s1[i - 1] == s2[j - 1]) ? 0 : 1;
20
               if (i > 1 \&\& j > 1 \&\& s1[i - 1] == s2[j - 2] \&\& s1[i - 2] == s2[j - 1])
22
                   exchange_dist = matrix[i - 2][j - 2] + 1;
23
               else
24
                   exchange dist = INT MAX;
25
26
               insert_dist = matrix[i][j - 1] + 1;
               delete dist = matrix[i - 1][j] + 1;
               match\_dist = matrix[i - 1][j - 1] + match;
29
30
               matrix[i][j] = min_from_four(insert_dist, delete_dist,
31
                                               match dist, exchange dist);
32
          }
33
34
      int dist = matrix[n][m];
35
      free matrix(matrix, n + 1);
36
37
      return dist;
38
  }
39
```

Листинг 3.7: Вспомогательные функции, упомянутые выше

```
int min(int a, int b)

{
    if (a < b)
        return a;
    return b;

}

int max(int a, int b)

{
    if (a > b)
        return a;
```

```
return b;
12
13 }
  int min from three(int a, int b, int c)
15
16
  {
       return min(a, min(b, c));
17
  }
18
  int min from four(int a, int b, int c, int d)
20
  {
21
       return min(a, min from three(c, b, d));
22
  }
23
24
  char* substr(const char *str, int start, int len)
25
  {
26
       char *s;
27
28
       s = malloc((len - start + 1) * sizeof(char));
29
30
       for (int i = start; i < len; i++)
31
           s[i] = str[i + start];
32
33
       return s;
34
  }
35
  int **allocate_matrix(int m, int n)
37
  {
38
       int **data = calloc(m, sizeof(int*));
39
       if (!data)
           return NULL;
41
       for (int i = 0; i < m; i++)
42
43
           data[i] = malloc(n * sizeof(int));
44
           if (!data[i])
45
                free_matrix(data, m);
47
                return NULL;
48
           }
49
50
       return data;
51
  }
52
  void fill_matrix_int_max(int **matrix, int n, int m)
54
  {
55
       for (int i = 0; i < n; i++)
           for (int j = 0; j < m; j++)
57
                matrix[i][j] = INT MAX;
58
  }
59
60
```

3.4 Тестовые данные

В таблице 3.1 приведены тестовые данные, на которых было протестировано разработанное ПО. Все тесты были успешно пройдены.

Nº	Первое слово	Второе слово	Левенштейн	Дамерау-Левенштейн
1			0	0
2		love	4	4
3	love		4	4
4	cow	woc	2	2
5	let	letter	5	5
6	qwerty	qwe	3	3
7	cat	cta	2	1
8	head	ehda	3	2
9	death	health	2	2
10	monday	monday	0	0

Таблица 3.1: Таблица тестовых данных

3.5 Вывод

В данном разделе были разработаны исходные коды выбранных алгоритмов: вычисления расстояния Левенштейна и Дамерау-Левенштейна рекурсивно, рекурсивно с заполнением матрицы и матрично.

4 Исследовательская часть

В данном разделе представлен пользовательский интерфейс, а также проведена оценка эффективности алгоритмов.

4.1 Пример работы

На рисунке 4.1 приведен пример работы программы.

```
polina@polina-IdeaPad-5-14ARE05:~/aa$ ./app.exe
Выберите действие:
1) Ввести две строки и посчитать расстояние для них;
2) Показать сравнительный анализ эффективности алгоритмов;
3) Выход.
Ответ: 1
Первая строка: death
Вторая строка: health
Расстояние Левенштейна: рекурсивный алгоритм: 2
Расстояние Левенштейна: рекурсивный алгоритм с кешированием: 2
Расстояние Левенштейна: матричный (итеративный) алгоритм: 2
Расстояние Дамерау-Левенштейна: 2
Матрица по Левенштейну:
0 1 2 3 4 5 6
1123456
 2 1 2 3 4 5
3 3 2 1 2 3 4
 4 3 2 2 2 3
 4 4 3 3 3 2
Матрица по Дамерау-Левенштейну:
0 1 2 3 4 5 6
1 1 2 3 4 5 6
 2 1 2 3 4 5
 3 2 1 2 3 4
4 4 3 2 2 2 3
5 4 4 3 3 3 2
Выберите действие:
1) Ввести две строки и посчитать расстояние для них;
2) Показать сравнительный анализ эффективности алгоритмов;
3) Выход.
Ответ:
```

Рис. 4.1: Пример работы программы

4.2 Технические характеристики

Технические характеритиски машины, на которой выполнялось тестирование:

- Операционная система: Ubuntu[3] Linux[4] 20.04 64-bit.
- Оперативная память: 16 Gb.
- Процессор: AMD(R) Ryzen(TM)[5] 5 4500U CPU @ 2.3 CHz

4.3 Время выполнения алгоритмов

Время выполнения агоритмов (процессорное) замерялось с помощью ассемблерной вставки, которая ведет посчет тиков процессора[2]:

Листинг 4.1: "Ассемблерная вставка для замера тиков процессора"

```
uint64_t tick(void)
{
    uint32_t high, low;
    __asm__ __volatile__(
        "rdtsc\n"
        "movl %%edx, %0\n"
        "movl %%eax, %1\n"
        : "=r"(high), "=r"(low)::"%rax", "%rbx", "%rcx", "%rdx");

uint64_t ticks = ((uint64_t)high << 32) | low;

return ticks;
}</pre>
```

В таблице 4.1 приведены замеры процессорного времени для каждого из алгоритмов (Л - Левенштйе, ДЛ - Дамерау-Левенштейн):

Таблица 4.1: Таблица	а замеров	процессорного	э времени	(в тиках	:).

Длина строки	Л: Рекурсия	Д: Рекурсия	Л: Кэширование	Д: Кэширование	Л: Матрица	Д: Матрица
5	2 096 910	9 649 916	21 440	21 302	2 180	2 982
10	-	-	79 930	101 161	6 445	9 430
20	-	-	405 981	455 066	29 503	34 119
40	-	-	2 347 010	2 672 620	102 847	149 847
80	-	-	15 898 429	17 552 178	380 299	561 260
160	-	_	114 139 866	95 198 994	1 365 697	1 237 296

На рисунке 4.2 изображена зависимость процессорного времени работы рекурсивного алгоритма с кэшированием и матричного алгоритма от длины строк для итеративного алгоритма и алгоритма с кэшированием (обе строки пологаются одинаковой длины):

На рисунке 4.3 изображена зависимость процессорного времени работы рекурсивного алгоритма с кэшированием для нахождения расстояния Левенштейна и Дамерау-Левенштейна от длины строк (обе строки пологаются одинаковой длины):

Рис. 4.2: Зависимость процессорного времени от длины строк для итеративного алгоритма и алгоритма с кэшированием

Рис. 4.3: Зависимость процессорного времени работы рекурсивного алгоритма с кэшированием для нахождения расстояния Левенштейна и Дамерау-Левенштейна от длины строк

4.4 Использование памяти

Алгоритмы Левенштейна и Дамерау-Левенштейна не отличаются друг от друга с точки зрения использования памяти, поэтому достаточно рассмотреть разницу рекурсивной и матричной реализации одного из алгоритмов.

Максимальная глубина стека вызовов при рекурсивной реализации равна сумме длин входящих строк. Поэтому максимальный объем памяти равен:

$$(Length(S1) + Length(S2)) \cdot (2 * SizeOf(*String) + 3 * SizeOf(Int))$$

$$(4.1)$$

Length() - оператор вычисления длины строки, SizeOf() - оператор вычисления длины переменной в байтах,

*String - тип данных указатель на строку, Int - целочисленный тип данных.

Использование памяти при итеративной реализации теоретически равно:

$$(Length(S1) + 1) \cdot (Length(S2) + 1) \cdot SizeOf(Int) + 2 * SizeOf(*String) + 3 * SizeOf(Int)$$

$$(4.2)$$

4.5 Вывод

Рекурсивный вариант реализации нахождения расстояния Левенштейна работает существенно дольше итеративных реализаций: на строках длиной 5 рекурсивная реализация нахождения расстояния Левенштейна работает в 1000 раз медленее итеративной реализации и в 100 раз медленее рекурсивной реализации с кэшированием. Стоит заметить, что такой большой проигрыш происходит при длине строки всего в 5 символов, следовательно, на более длинных строках нет смысла использовать рекурсивную реализацию. Рекурсивный вариант Дамерау-Левенштейна работает еще медленее: в 4-5 раз медленее аналогичной реализации Левенштейна.

В свою очередь, рекурсивная реализация проигрывает итеративной: на строках длиной 160 кэширование работает примерно в 100 раз медленее.

Однако, итеративные памяти проигрывают по памяти: в итеративной реализации максимальный размер памяти растет как произведение длин строк, в то время как в рекурсивной реализации - как сумма длин строк.

Заключение

В ходе проделанной работы были выполнены все поставленные задачи: был изучен метод динамического программирования на материале алгоритмов Левенштейна и Дамерау-Левенштейна, а также проведена оценка реализации алгоритмов с описанием и обоснованием проделанных результатов.

Экспериментально были установлены различия в производительности различных алгоритмов нахождения редакционного расстояния. Рекурсивный вариант реализации нахождения расстояния Левенштейна работает существенно дольше итеративных реализаций: на строках длиной 5 рекурсивная реализация нахождения расстояния Левенштейна работает в 1000 раз медленее итеративной реализации и в 100 раз медленее рекурсивной реализации с кэшированием. Стоит заметить, что такой большой проигрыш происходит при длине строки всего в 5 символов, следовательно, на более длинных строках нет смысла использовать рекурсивную реализацию. Рекурсивный вариант Дамерау-Левенштейна работает еще медленее: в 4-5 раз медленее аналогичной реализации Левенштейна.

Теоретически было рассчитано использование памяти различных алгоритмов нахождения редакционного расстояния. Матричные алгоритмы потребляют больше памяти, чем рекурсивные, за счет выделения памяти под матрицу и введения дополнительных промежуточных переменных. Если использовать статическую матрицу в реализации рекурсивного метода с кэшированием, то это приведет к множественному копированию этой матрицы при рекурсивных вызовах, что нельзя назвать преимуществом алгоритма.

Список использованных источников

- 1. Вычисление редакционного расстояния [Электронный ресурс]. Режим доступа: https://habr.com/ru/post/117063/. Дата обращения: 16.09.2021.
- 2. C/C++: как измерять процессорное время [Электронный ресурс]. Режим доступа: https://habr.com/ru/post/282301/. Дата обращения: 16.09.2021.
- 3. Ubuntu [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/Ubuntu. Дата обращения: 18.09.2021.
- 4. Linux: [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/Linux. Дата обращения: 18.09.2021.
- 5. Процессор AMD Ryzen(TM) 5 [Электронный ресурс]. Режим доступа: https://www.notebookcheck-ru.com/Obzornoutbuka-Lenovo-IdeaPad-5-14ARE05.491399.0.html. Дата обращения: 21.09.2021.