

1 2 3 4 5 6

FIG. 1

FIG. 2

1 2 3 4 5 6

FIG. 3

FIG. 4

FIG. 5

FDCPmix proliferation inhibition by
INPROL: direct effect *in vitro*

FIG. 6

INPROL effects dynamic of CFU's proliferation inhibition

FIG. 7

FIG. 8

**Survival of lethally irradiated
mice after treatment with INPROL**

FIG. 9

**Cell regeneration in BMLTC - L1210 cultures
after combined AraC plus Inprol treatment**

FIG. 10A

**Cell regeneration in BMLTC - L1210 cultures
after combined AraC plus Inprol treatment**

FIG. 1OB

**30 days radioprotection by th. bone marrow cells
after preincubation with (B) or without (A) INPROL**

FIG. 11

**Marrow repopulating ability of BDF1
mice cells after incubation with SCP1**

FIG. 12

**Pre-B progenitors number in Lymphoid Long Term Culture
after preincubation with or without INPROL**

FIG. 13

FIG. 15A

**INPROL improves the repopulating ability
(LTC-IC number) of leukemic peripheral blood cells**

FIG. 14

Analysis: Channel A

Peak No.	Time	Type	Height(μY)	Area($\mu Y\text{-sec}$)	Area%
1	4.383	N1	3945	95125	0.119
2	5.080	N2	28639	330889	0.413
3	5.216	N3	49084	531867	0.665
4	7.980	N1	399424	1110511	1.389
5	8.100	Err	1203320	2882013	3.605
6	8.241	N3	443249	1506159	1.884
7	8.386	N4	481563	2185702	2.734
8	8.533	N5	412886	1826165	2.284
9	8.701	N6	321500	842122	1.053
10	8.745	N7	404661	1610380	2.014
11	8.995	N8	435765	2489721	3.114
12	9.316	N9	517790	4801831	6.007

FIG. 15B

1 2 3

FIG. 15C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 Val Leu Ser Pro Ala Asp Lys Thr Asn Val Lys Ala Ala Thr Gly Lys Val Gly Ala His
 GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC CCC TGG GGT AAG GTC GGC GCG CAC
 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 Ala Gly Glu Tyr Gly Ala Glu Ala Leu Glu Arg Met Phe Leu Ser Phe Pro Thr Thr Lys
 GCT GGC GAG TAT GGT GCG GAG GCC CTG GAG AGG ATG TTC CTG TCC TTC CCC ACC ACC AAG
 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 Thr Tyr Phe Pro His Phe Asp Leu Ser His Gly Ser Ala Gln Val Lys Gly His Gly Lys
 ACC TAC TTC CCC CAC TTC GAC CTG ACC CAC GGC TCT CCC CAG GTT AAG GGC CAC GGC AAG
 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 Lys Val Ala Asp Ala Leu Thr Asn Ala Val Ala His Val Asp Asp Met Pro Asn Ala Leu
 AAC GTG CCC GAC CCC CTG ACC AAC GGC CTG CAC GAC GAC ATG CCC AAC GCG CTG
 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
 Ser Ala Leu Ser Asp Leu His Ala His Lys Leu Arg Val Asp Pro Val Asn Phe Lys Leu
 TCC CCC CTG AGC CAC CTG CAC GCG CAC AAG CTT CGG CTG GAC CCC GTC AAC TTC AAC CTC
 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
 Leu Ser His Cys Leu Leu Val Thr Leu Ala Ala His Leu Pro Ala Glu Phe Thr Pro Ala
 CTA AGC CAC TGC CTG CTG ACC CTG CCC CAC CTC CCC CCC GAG TTC ACC CCT GCG
 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
 Val His Ala Ser Leu Asp Lys Phe Leu Ala Ser Val Ser Thr Val Leu Thr Ser Lys Tyr Arg
 GTG CAC CCC TCC CTG GAC AAG TTC CTG CCT TCT GTG ACC ACC GTG CTG ACC TCC AAA TAC CCT

Fig. 16A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 Val His Leu Thr Pro Glu Glu Lys Ser Ala Val Thr Ala Leu Trp Gly Lys Val Asn Val
 GTG CAC CTG ACT CCT CAG GAG AAG TCT GCC GTT ACT CCC CTG TGG GGC AAG GTG AAC GTG
 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 Asp Glu Val Gly Gly Glu Ala Leu Gly Arg Leu Leu Val Val Tyr Pro Trp Thr Gln Arg
 CAT GAA GTT GGT GAG GGC CCT CGC AGG CTG CTG GTG GTC TAC CTT TGG ACC CAG ACC
 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 Phe Phe Glu Ser Phe Gly Asp Leu Ser Thr Pro Asp Ala Val Met Gly Asn Pro Lys Val
 TTC TTT GAG TCC TTT GGG CAT CTG TCC ACT CCT GAT CCT GTT ATG ~~GTC~~ AAC CCT AAC GTC
 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 Lys Ala His Gly Lys Lys Val Leu Gly Ala Phe Ser Asp Gly Leu Ala His Leu Asp Asn
 AAG CCT CAT CGC AAC AAA GTG CTC GGT CCC TTT ACT GAT CCC CTG CCT CAC CTG GAC AAC
 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
 Leu Lys Gly Thr Phe Ala Thr Leu Ser Glu Leu His Cys Asp Lys Leu His Val Asp Pro
 CTC AAG GGC ACC TTT GCC ACA CTG ACT GAG CTG CAC TGT GAC AAG CTC CAC GIG GAT CCT
 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
 Glu Asn Phe Arg Leu Leu Gly Asn Val Leu Val Cys Val Leu Ala His His Phe Gly Lys
 GAG AAC TTC AGG CTG CTG GGC AAC GTG CTC TGT GTG CTG GCC CAT CAC TTT GGC AAA
 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
 Glu Phe Thr Pro Pro Val Gln Ala Ala Tyr Gln Lys Val Val Ala Gly Val Ala Asn Ala
 GAA TTC ACC CCA CCA GTG CAG GCT GCC TAT CAG AAA GTG CTG CCT GGT CTG CCT AAT GCC
 141 142 143 144 145 146
 Leu Ala His Lys Tyr His
 CTG GCC CAC AAG TAT CAC

Fig. 16 B

	10	20	30	40	50	
hHemA . pep	1 V-LSPADKIN	VKAANGNGCA	H--GEYGAEE	LE-PMFLEEF	ETKTYFPHF-	50
hHemB . pep	1 VHLITPEEKS	WTAI-----	-NVDENGCEH	IG-FMIVVYF	WTQRFESFG	50
mHemA . pep	1 V-LSGEDKSN	IKAAPGHI	HG-AEYGAEE	IE-PMFASFF	ETKTYFPHF-	50
mHemB . pep	1 VHLIDAEKAA	VSCL-----NS	-----EVGCEH	IE-GMIVVYF	W-QRVEDSFG	50
pHemA . pep	1 V-LSPADKAN	VKAANGNGCG	QE---SAHGAEE	LE-PMFELGEF	ETKTYFPHF-	50
pHemB . pep	1 VHLSAEEKEA	VGLIGRTNV	-----EVGCEA	IE-GRLLVVYF	WTQRFESFG	50
	60	70	80	90	100	
hHemA . pep	51 DLSH-----G	SAQVRAHGKF	VADALIN---	AVAHVDEMPN	ALS--ALSDEL	100
hHemB . pep	51 DLSIPDAVMG	NPKVKAHGKF	VLA-----FSD	GLAHLNLKG	TFA--TLSEL	100
mHemA . pep	51 DVSH-----G	SAQVRAHGKF	VADALAS---	AVAGHLDLPG	ALS--ALSDEL	100
mHemB . pep	51 DLSSASAALMG	NAKVKAHGKF	V----ITAEND	GLNHLDLKG	TFASL--SEL	100
pHemA . pep	51 NLSH-----G	SDQVKAHGKF	VADALT-----K	AVGHLDDLPG	ALS--ALSDEL	100
pHemB . pep	51 DLSNADAVMG	NPKVKAHGKF	V----LOSFS	GLKHLNLKG	TFAKL--SEL	100
	110	120	130	140	150	
hHemA . pep	101 HA-KLDRVDPV	NFKILLSHCLLI	VTLAAHLPAD	FTPAAVHASLE	-KFLASVSTIV	150
hHemB . pep	101 HODKLIVDPE	NFRLLGNVLV	CVLAHHFGKE	FTPPEVQAAQYQ	-KWAGVANA	150
mHemA . pep	101 HA-KLDRVDPV	NFKILLSHCLLI	VTLASHHPAD	FTPAAVHASLD	-KFLASVSTIV	150
mHemB . pep	101 HODKLIVDPE	NFRLLGNMTV	IVLGHHLGKD	FTPAAQQAFA-	OKWAGVATA	150
pHemA . pep	101 HA-KLDRVDPV	NFKILLSHCLLI	VTLAAHPDD	FNPSVHASLD	-KFLANVSTIV	150
pHemB . pep	101 HCDOLIVDPE	NFRLLGNVTV	VVLARRLGH	FNPDVQAAF-	OKWAGVANA	150
	160	170	180	190	200	
hHemA . pep	151 LTSKYR	-----	-----	-----	-----	200
hHemB . pep	151 LAHKYH	-----	-----	-----	-----	200
mHemA . pep	151 LTSKYR	-----	-----	-----	-----	200
mHemB . pep	151 LAHKYH	-----	-----	-----	-----	200
pHemA . pep	151 LTSKYR	-----	-----	-----	-----	200
pHemB . pep	151 LAHKYH	-----	-----	-----	-----	200

Fig. 16C

Fig 17 A

Fig. 17 B

Fig. 18

Fig. 19 A

Fig. 19 B

Comparison of Inprol and Hemoglobin Chains in FDCPmix Assay

Fig. 20