

PREDICTIVE ANALYSIS FOR DECISION MAKING

WEEKS 8 AND 9 MODELLING NON STATIONARY TIME SERIES

Dr Issam Malki School of Finance and Accounting Westminster Business School

November 2021

1

NON-STATIONARY TIME SERIES

- We established the following types of time series data
 - Strictly Stationary Time Series
 - · Covariance Stationary
 - · Random Walk processes
 - Time Varying Volatility
- Implications:
 - Spurious regressions
 - The absence of long run relationships
 - · Misleading predictions
 - Incorrect inference
- Plan:
 - · Focus on single equation models
 - Introducing unit root tests
 - Introducing cointegration tests

2

Implications: Spurious Regression

• Spurious Regression

- Refers to a regression that provide misleading statistical evidence of linear relationship between two or more variables.
- The regression often reports high t and F statistics, R-squared (near 1).
- The issue is that these indicators and statistics often hold for variables that are not related or those non-stationary.
- Rule of thumb: R-squared > D.W statistics.
- If we have a spurious regression, we need to test the stationarity (or non stationarity)
 of the data

• Recall some of the examples from past lecture

- The long run static relationship is not valid.
- When variables suffer from non-stationarity, then we can retrieve the long run relationship using the Error Correction Model, ECM.

4

5

Example (1)

		OLS Regr	ession Res	ults		
Dep. Variabl	le:	ot		ared:		0.932
Model:		OLS		Adj. R-squared:		0.031
Method:		Least Squar	es F-sta	tistic:		2171.
Date:	We	d, 17 Mar 20	21 Prob	(F-statistic):	3.38e-277
Time:		13:42:	54 Log-L	ikelihood:	_	-1591.9
No. Observat	tions:	4	80 AIC:			3192.
Df Residuals	s:	4	76 BIC:			3208.
Df Model:			3			
Covariance 1	Type:	nonrobu	st			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	31.3661	0.823	38.106	0.000	29.749	32.984
rt	1.4015	0.130	10.808	0.000	1.147	1.656
mt	0.0476	0.006	7.745	0.000	0.035	0.060
pt	0.2206	0.060	3.651	0.000	0.102	0.339
				L		
Omnibus:		21.8	64 Durbi	n-Watson:		0.022
Prob(Omnibus	s):	0.0	00 Jarqu	e-Bera (JB):		14.793
Skew:		0.3	06 Prob(JB):		0.000613
Kurtosis:		2.3	97 Cond.	No.		1.63e+03

Unit Root Tests Introduction

• Consider the following Data Generating Process, DGP, for a process y_t :

$$y_t = \rho y_{t-1} + u_t$$
 with $-1 \le \rho \le 1$

- \cdot u_t is white noise process (a process with zero mean, constant variance and uncorrelated terms)
- The coefficient ρ is the persistence term. If $\rho=1$, the process y_t becomes a Random
- In fact, if $\rho = 1$ then y_t contains a **unit root**.
- The main implication: in theory, the process \boldsymbol{y}_t will never converge to the long run level, or equilibrium.
- · Many Economic applications can be found:
 - Income convergence
 CO2 Convergence
 Efficient Market Hypothesis
- · Therefore, one way to test for the non-stationarity of the data is to test for the presence of a unit root.

7

Unit Root Tests Random Walk Process

8

Unit Root Tests Dickey-Fuller Test

· Dickey-Fuller test proposes the following procedure to test for the presence of unit root:

$$\begin{aligned} y_t &= \rho y_{t-1} + u_t \\ y_t - y_{t-1} &= \rho y_{t-1} - y_{t-1} + u_t \\ \Delta y_t &= \delta y_{t-1} + u_t \end{aligned}$$

where
$$\Delta y_t = y_t - y_{t-1}$$
 and $\delta = \rho - 1$

- Remarks
 - The model above the basic DGP that captures the structure of a random walk
 - If $\rho=1$, then $\delta=0$ and $\Delta y_t=u_t$. This has two implications: i). The process y_t contains a unit root and ii). The change in the process $y_t, \Delta y_t$, is stationary since it is a function of a white noise process.
 - Furthermore, if $\delta = 0$ the estimated t statistics of the estimated value of δ does not follow normal distribution even in large samples.

3

Unit Root Tests Dickey-Fuller Test

- · Dickey-Fuller test proposes also the following:
 - · Using three forms (DGPs)
 - y_t is Random Walk:
- $\Delta y_t = \delta y_{t-1} + u_t$
- y_t is Random Walk with drift: $\Delta y_t = \beta_1 + \delta y_{t-1} + u_t$
- \boldsymbol{y}_t is Random Walk with drift around stochastic trend

 $\Delta y_t = \beta_1 + \beta_2 t + \delta y_{t-1} + u_t$

- The test statistic is called tau, which follows different distribution with own critical
- The null and alternative hypotheses are defined as follows:

 H_0 : $\delta = 0$ there is a unit root

 H_1 : $\delta < 0$ there is no unit root

10

Unit Root Tests Dickey-Fuller Test

11

Unit Root Tests Augmented Dickey-Fuller Test

- · Augmented Dickey-Fuller test, ADF, extends the DF test to correct for the presence of serial correlation. The ADF has the same asymptotic distribution as DF test. Thus, the only difference is the DGPs forms, which are modified to include lagged dependent variables:
 - y_t is Random Walk:
- $\Delta y_t = \delta y_{t-1} + \textstyle \sum_{i=1}^k \theta_i \Delta y_{t-i} + u_t$
- y_t is Random Walk with drift: $\Delta y_t = \beta_1 + \delta y_{t-1} + \sum_{i=1}^k \theta_i \Delta y_{t-i} + u_t$
- \boldsymbol{y}_t is Random Walk with drift around stochastic trend

 $\Delta y_t = \beta_1 + \beta_2 t + \delta y_{t-1} + \textstyle \sum_{i=1}^k \theta_i \Delta y_{t-i} + u_t$

• The lag length, k, is determined using information criteria.

Unit Root Tests in Python	
• Use the package 'arch'	
Install in Anaconda using In Anaconda prompt type: conda install arch-py -c conda-forge	
• The package offers a wide range of unit root tests	
• Example using the variable 'ot'	
from arch unitroot import DFGLS, ADF, KPSS, PhillipsPerron ot_test=ADF(data1['ot'], lags=10) print(ot test.summary())	
print(ot_cssummary())	
13	
13	
Energia (2)	
Example (2)	
Augmented Dickey-Fuller Results	
Test Statistic 0.316 P-value 0.978	
Lags 10	
Trend: Constant Critical Values: -3.44 (1%), -2.87 (5%), -2.57 (10%)	
Null Hypothesis: The process contains a unit root. Alternative Hypothesis: The process is weakly stationary.	
14	
14	
14	
Unit Root Tests	
Order of Integration	
All variables tested contain a unit root. The standard form of the	
The natural question is what to do next? We take the first difference of the data.	
Run unit root tests on the differenced data. Reth for differenced data and description a	
 If the first differenced data contain no unit root (i.e. rejecting the null), then we conclude that the data are first-difference stationary. 	
 The process that becomes stationary after taking its first difference is known as an integrated process of order 1. 	
 The order of the integration is equal to the number of times the process is differenced to become stationary. 	
• Remarks	
 When applying unit root tests on the first differenced data, do not choose trend. Notation: I(0) variable refers to a variable that does not contain a unit root. It is read 	
as 'Integrated of order 0'. <i>I</i> (<i>I</i>): an integrated process of order 1. This means the variable is stationary when taking its first difference. In general, <i>I</i> (<i>d</i>) refers to a	
variable is stationary when taking its installierence. In general, $t(a)$ refers to a process that is integrated of order d (i.e. the variable contain d unit roots and stationary only when taking the d th difference).	

Spurious Regression - Again

- · From above
 - The presence of unit roots in the data give a rise to spurious regression
 - The question we need to answer: Can we estimate the long run relationship between macroeconomic variables?
 - The answer: we may be able to estimate the long run if

 - Theory suggests the presence of this relationship.
 The statistical properties for such a long run suggest to exist.
- · Properties of integrated processes
 - If $X_t \sim I(0)$ and $Y_t \sim I(0)$, then $Y_t = \beta_0 + \beta_1 X_t \sim I(0)$

 - If $X_t \sim I(d)$ and $Y_t \sim I(0)$, then $Y_t = \beta_0 + \beta_1 X_t \sim I(d)$
 - If $X_t \sim I(d)$ and $Y_t \sim I(d)$, then $Y_t = \beta_0 + \beta_1 X_t \sim I(d)$
 - * This means that if unit roots are the source of spurious regression, then we are faced with either $X_t \sim I(1)$ and $Y_t \sim I(0)$ or $X_t \sim I(1)$ and $Y_t \sim I(1)$.

16

Cointegration Test

- · Granger Representation Theorem
 - If two variables $X_t \sim I(1)$ and $Y_t \sim I(1)$, then it is possible to find a linear combination $U_t \sim I(0)$.
 - This means:

 - There is a common trend between X_t and Y_t.
 There is a long run error correction equilibrium
- · Engle-Granger Cointegration Test
 - Estimate the long run relationship: $Y_t = \beta_0 + \beta_1 X_t + U_t$
 - Save residuals: $\widehat{U_t}$
 - Run a unit root test on $\widehat{U_t}$

* The null and alternative hypotheses $H_0 : There \ is \ unit \ root \ (no \ cointegration) \\ H_1 : There \ is \ no \ unit \ root \ (cointegration)$

17

Error Correction Model

- · One way to retrieve the long run equilibrium is to estimate an Error Correction Model
- The ECM model
 - · Baseline model

$$\Delta Y_t = \alpha_0 + \alpha_1 \Delta X_t + \rho \hat{u}_{t-1} + v_t$$

• Extended Model (Granger Causality) $\Delta Y_t = \alpha_0 + \alpha_1 \Delta X_t + \rho \hat{u}_{t-1} + \sum_{i=1}^k \theta_i \Delta X_{t-i} + \sum_{i=1}^k \delta_i \Delta X_{t-i} + v_t$

- The interpretation of the ECM
 - α₁: The short run relationship.
 - ρ : The long run speed of adjustment.
 - + ρ : it has to be negative and less than 1 in absolute values

Example: Error Correction Model

		OLS Regr	ession Resu	ılts		
Dep. Variabl	e:		ot R-squa			0.022
Model:		0	LS Adj. R	t-squared:		0.014
Method:		Least Squar	es F-stat	istic:		2.636
Date:	We	d, 24 Mar 20	21 Prob (F-statistic):	0.0335
Time:		00:10:	16 Log-Li	kelihood:		2253.9
No. Observat	ions:	4	79 AIC:			-4498.
Df Residuals	:	4	74 BIC:			-4477.
Df Model:			4			
Covariance T	ype:	nonrobu	st			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0 0000	0 000	6 160	0 000	0 001	0 001
		0.116				
		0.039				
		0.003				
		0.001				0.005
		0.001	1.020	0.000	-0.000	
Omnibus:		104.2	98 Durbin	-Watson:		1.303
Prob(Omnibus):	0.6	00 Jarque	-Bera (JB):		1735.152
Skew:			03 Prob(3			0.00
Kurtosis:		12.2	89 Cond.	No.		1.16e+03

19

20

THANK YOU

2