	Name: ID: Grade:	03/22/2011
Classic cipher, Perfectly-Secret Er Private-Key Encryption, Pseudorar	5 .	
ame in Pinyin (without blank space and her respectively. The key, if needed, is	0 ,	
Key:		

Private-Key Encryption, Pseudorandomness
1.1 Encrypt your name in Pinyin (without blank space and ignoring case) with Caesar's cipher and shift cipher respectively. The key, if needed, is your student ID (mod 26).
Name: Key: Ciphertext (Caesar's): Ciphertext (Shift):
1.2 Encrypt the message "attackatnineoclock" with mono-alphabetic sub. cipher and Vigenère cipher respectively. The key is your first name in Pinyin (ignoring case).
Key: Ciphertext (Mono-Alphabetic sub.): Ciphertext (Vigenère):
1.3 Decrypt the ciphertext "OVDTHUFWVZZPISLRLFZHYLAOLYL".
Plaintext:
1.4 Show that the shift, Mono-Alphabetic sub., and Vigenère ciphers are all trivial to break using a known-plaintext attack. How much known plaintext is needed to completely recover the key for each of the ciphers?
Shift:
Mono-Alphabetic sub.:
Vigenère:

1.5 Show that the shift, Mono-Alphabetic sub., and Vigenère ciphers are all trivial to break using a chosen-plaintext attack. How much plaintext must be encrypted to completely recover the key?
Shift:
Mono-Alphabetic sub.:
Vigenère:
1.6 What is the index of coincidence of your name in Pinyin (without blank space and ignoring case)?
Name: Letters and their corresponding probabilities in your name:
IC =

$$Pr[M = m | C = c] = Pr[M = m' | C = c].$$

2.2	Study condition	ns under which	the shift,	mono-alphabet	tic sub., and	d Vigenère c	ipher
ciph	ners are perfectly	y secret:					

- (a) Prove that if only a single character is encrypted, then the shift cipher is perfectly secret.
- ullet (b) What is the largest plaintext space M you can find for which the monoalphabetic sub. cipher provides perfect secrecy?
- (c) Show how to use the Vigenère cipher to encrypt any word of length t so that

perfect secrecy is obtained answer.	0 1	J1	,
(a) Shift:			
(b) Mono-alphabetic sub.:			
(c) Vigenère cipher.:			

3.1 The best algorithm known today for finding the prime factors of an *n*-bit number runs in time $2^c \cdot n^{\frac{1}{3}(\log n)^{\frac{1}{3}}}$. Assuming 4Ghz computers and c=1, estimate the size of numbers that cannot be factored for the next 100 years.

(Do not only give the value of *n*, show the process of solving it.)

3.2	Prove that Definition 1 (see handout '3privatekey.pdf') cannot be satisfied if Π can
enci	rypt arbitrary-length messages and the adversary is not restricted to output equal-
leng	of the messages in experiment PrivK ^{eav} _{$\Delta\Pi$} (n) .

(Show what the adversary would output, and the probability the experiment will success.)

3.3 Assuming the existence of a pseudorandom function, prove that there exists an encryption scheme that has indistinguishable multiple encryptions in the presence of an eavesdropper (i.e. Definition 8), but is not CPA-secure (i.e. Definition 10). (see handout '3privatekey.pdf')

Hint: You will need to use the fact that in a CPA the adversary can choose its queries to the encryption oracle adaptively.

3.4 Present a construction of a variable output-length pseudorandom generator from any pseudorandom function. Prove that your construction satisfies Definition 7 (see handout '3privatekey.pdf').

3.5 Present formulas for decryption of all the different modes of operation for encryption. For which modes can decryption be parallelized?
ECB:
CBC:
OFB:
CRT:
3.6 Show that the CBC, OFB and CRT modes do not yield CCA-secure encryption schemes (regardless of F).
CBC:
OFB:
CRT:
schemes (regardless of F). CBC: OFB: