Human Resources: A Study of Attrition

Matt Gracer

Data

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1480 entries, 0 to 1479
Data columns (total 38 columns):

Data	columns (total 38 columns):	
#	Column	Non-Null Count	Dtype
0	EmpID	1480 non-null	object
1	Age	1480 non-null	int64
2	AgeGroup	1480 non-null	object
3	Attrition	1480 non-null	object
4	BusinessTravel	1480 non-null	object
5	DailyRate	1480 non-null	int64
6	Department	1480 non-null	object
7	DistanceFromHome	1480 non-null	int64
8	Education	1480 non-null	int64
9	EducationField	1480 non-null	object
10	EmployeeCount	1480 non-null	int64
11	EmployeeNumber	1480 non-null	int64
12	EnvironmentSatisfaction	1480 non-null	int64
13	Gender	1480 non-null	object
14	HourlyRate	1480 non-null	int64
15	JobInvolvement	1480 non-null	int64
16	JobLevel	1480 non-null	int64
17	JobRole	1480 non-null	object
18	JobSatisfaction	1480 non-null	int64
19	MaritalStatus	1480 non-null	object
20	MonthlyIncome	1480 non-null	int64
21	SalarySlab	1480 non-null	object
22	MonthlyRate	1480 non-null	int64
23	NumCompaniesWorked	1480 non-null	int64
24	0ver18	1480 non-null	object
25	OverTime	1480 non-null	object
26	PercentSalaryHike	1480 non-null	int64
27	PerformanceRating	1480 non-null	int64
28	RelationshipSatisfaction	1480 non-null	int64
29	StandardHours	1480 non-null	int64

- > 38 Columns
- > 1480 Observations
- Attrition, Gender, Marital Status, Monthly Income, and YearsinCurrentRole were all target variables

Data Organization

- Data was found from Kaggle
- Unbalanced Attrition had 1480 Observations, Balanced Attrition had 476
- 4 Total Models: Random Forest Classifier, Logistic Regression, Decision Tree Classifier, and Mulitnomial
- One Hot Encoder Function
- Merge datasets between numeric and Object
- Conducted for Train and Test Datasets
- Fit transformed train and test data on models
- Cross Validation for all models resulting in higher scores

Attrition Levels

Feature Importances

Employee Number, Daily Rate, Monthly Rate, Monthly Income, Hourly Rate had highest Feature Importances

Additional Models - Classification Report Unbalanced

- Model 1 Random Forest Classifier
- Model 2 Logistic Regression
- ➤ Model 3 Decision Tree Classifier
- ➤ Model 4 Multinomial
- Scores were lower for these models
- ➤ Baseline Random Forest Regressor Model had highest results

Model 1 - Acc Classificatio		243243243	2433	
	precision	recall	f1-score	support
	0.04	1 00	0.01	242
0	0.84	1.00	0.91	312
1	0.00	0.00	0.00	58
accuracy			0.84	370
macro avg	0.42	0.50	0.46	370
weighted avg	0.71	0.84	0.77	370
999(C) (A)				

Model 1 - Acc	uracy: 0.84	3243243243	2433	
Classificatio	n Report:			
	precision	recall	f1-score	support
				242
0	0.84	1.00	0.91	312
1	0.00	0.00	0.00	58
accuracy			0.84	370
macro avg	0.42	0.50	0.46	370
weighted avg	0.71	0.84	0.77	370
weighted avg	0.71	0.04	0.77	370
Model 2 - Acc	uracv: 0.74	0540540540	5405	
Classificatio		05 105 105 10	5 105	
C tussii icutio	precision	recall	f1-score	support
	p. 001510		12 50010	зарро, с
0	0.86	0.83	0.84	312
1	0.22	0.26	0.24	58
accuracy			0.74	370
macro avg	0.54	0.54	0.54	370
weighted avg	0.76	0.74	0.75	370
Model 3 - Acc		9189189189	1892	
Classificatio				
	precision	recall	f1-score	support
	0.81	0.52	0.63	312
0	0.81	0.34		
1	0.12	v.34	0.17	58
accuracy			0.49	370
macro avg	0.46	0.43	0.40	370
weighted avg	0.70	0.49	0.56	370
weighted avg	0.70	0.43	0.30	370

Cross Validation

```
Accuracy Cross-Validation Scores: [0.86486486 0.87837838 0.82432432 0.83783784 0.89189189]
Mean Accuracy CV Score: 0.8594594594595

F1 Cross-Validation Scores: [0.16666667 0.47058824 0.31578947 0.25 0.5555556]
Mean F1 CV Score: 0.3517199862401101

Precision Cross-Validation Scores: [1. 0.66666667 0.42857143 0.5 0.83333333]
Mean Precision CV Score: 0.6857142857142857

Recall Cross-Validation Scores: [0.09090909 0.36363636 0.25 0.16666667 0.41666667]
Mean Recall CV Score: 0.257575757575757

Roc_auc Cross-Validation Scores: [0.65512266 0.68398268 0.80107527 0.66263441 0.78091398]
Mean Roc_auc CV Score: 0.7167457990038635
```

- Mean Accuracy remains around 85%
- Mean Precision increases to 68% and mean ROC increases to 71% from 53%.

Classification Models - Balanced

- ➤ Model 1 Random Forest Classifier
- ➤ Model 2 Logistic Regression
- Model 3 Decision Tree Classifier
- ➤ Model 4 Multinomial
- Scores were lower for these models
- ➤ Baseline Random Forest Regressor Model had highest results

Model - Class	ification Re	port:		
	precision	recall	f1-score	support
0	0.93	0.96	0.94	183
1	0.95	0.92	0.94	174
				Mar. 2000
accuracy			0.94	357
macro avg	0.94	0.94	0.94	357
weighted avg	0.94	0.94	0.94	357
4				

Model 1 - Acc Classificatio		6218487394	9579	
	precision	recall	f1-score	support
0	0.51	0.51	0.51	55
1	0.58	0.58	0.58	64
accuracy	0.54	0.54	0.55	119
macro avg	0.54	0.54	0.54	119
weighted avg	0.55	0.55	0.55	119
Model 2 - Acc		7815126050	4201	
Classificatio	and the second second			protein management of the co
	precision	recall	f1-score	support
0	0.50	0.67	0.57	55
1	0.60	0.42	0.50	64
accuracy			0.54	119
macro avg	0.55	0.55	0.53	119
weighted avg	0.55	0.54	0.53	119
Model 3 - Acc	uracv: 0.47	8991596638	6555	
Classificatio				
	precision	recall	f1-score	support
0	0.45	0.56	0.50	55
1	0.52	0.41	0.46	64
accuracy			0.48	119
macro avg	0.48	0.48	0.48	119
weighted avg	0.49	0.48	0.48	119

Baseline Model - Random Forest Classifier

- > Roc Curve for Unbalanced dataset was 0.95
- Roc Curve for Balanced dataset was 0.99

Linear Regression

		OLS Regress	sion Results				
===========		========	=========	=======		=====	
Dep. Variable:	Mon	thlyIncome	R-squared:			0.248	
Model:		0LS	Adj. R-squ		0.247		
		st Squares		F-statistic:		388.2	
		6 Nov 2023	Prob (F-statistic):		6.10e-75		
Time: No. Observation:		13:02:28 1182	Log-Likelihood: AIC:		-11322.		
Df Residuals:	· .	1182	BIC:		2.265e+04 2.266e+04		
Df Model:		1	DIC.		2.2	000104	
Covariance Type	:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	3306.6715	162.684	20.326	0.000	2987.490	3625.853	
YearsAtCompany	384.5406	19.516	19.704	0.000	346.250	422.831	
Omnibus:		371.198	Durbin-Wat	son:		1.752	
Prob(Omnibus):		0.000	Jarque-Bera (JB):		1066.059		
Skew:		1.602	Prob(JB):		3.2	2e-232	
Kurtosis:		6.373	Cond. No.			13.4	

	OLS Regre	ssion Resu	lts =======			
Dep. Variable:	MonthlyIncome R-squared:			0.539		
Model:	0LS	Prob (F-statistic):		0.535 171.1		
Method:	Least Squares					
	ue, 07 Nov 2023				5.72e-191	
Time:	10:57:47				-11033.	
No. Observations:	1182	AIC:			2.208e+04	
Df Residuals:	1173	BIC:			2.213e+04	
Df Model:	8					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
const	1720.0221	803.853	2.140	0.033	142.872	3297.172
YearsAtCompany	50.2819	30.385	1.655	0.098	-9.333	109.897
YearsSinceLastPromotio	n -5.7712	34.943	3 -0.165	0.869	-74.330	62.787
TrainingTimesLastYear	-18.2800	61.511	-0.297	0.766	-138.964	102.404
TotalWorkingYears	419.1931	15.541	26.974	0.000	388.703	449.684
PerformanceRating	-39.4628	221.465	-0.178	0.859	-473.974	395.048
MonthlyRate	0.0154	0.011	1.368	0.172	-0.007	0.037
YearsInCurrentRole	-23.4194	38.020	-0.616	0.538	-98.014	51.175
HourlyRate	-4.6900	3.956	-1.186	0.236	-12.451	3.071
 Omnibus:	85 . 957	Durbin-	 Watson:		2.050	
Prob(Omnibus):	0.000	0.000 Jarque-Bera (JB):		166.524		
Skew:	0.485	0.485 Prob(JB):		6.92e-37		
Kurtosis:	4.562	Cond. N	0.		1.65e+05	

- ➤ Linear Regression for Monthly Income with one dependent variable
- > Other Linear Regression is result with multiple dependent variables
- ➤ R**2 values varied 0.25 and 0.539

Recommendations

- The strongest model for Attrition was the Random Forest Classifier. The metrics were most reliable for the balanced Attrition study so the initial recommendation is to focus on that balanced dataset for Attrition to further understand how to keep Attrition low for those employees.
- The multi-Class Regression study had high scores for the specific categories of Single and Married so could filter the data for these categories to better understand how it is driving attrition rates
- For the Linear Regression Study filtering for the variables that were found to be significant at the 1% level would also be a solid indicator of what is driving attrition levels.
- These recommendations would be helpful to companies because of how high levels of attrition are. Companies lose revenue when there's high turnover so understanding how to interpret data for attrition is a big step toward raising revenue levels

Thank You!