Azzolini Riccardo 2018-10-02

Relazioni

1 Relazione

Una **relazione** R tra due insiemi A e B è un sottoinsieme del prodotto cartesiano $A \times B$.

$$R \subseteq A \times B$$

1.1 Esempio

$$A = \{1, 2\}$$

$$B=\{a,b,c\}$$

$$R = \{(1, a), (1, b), (2, c)\}$$

1.2 Numero di relazioni esistenti

Siccome una relazione tra due insiemi A e B è un sottoinsieme di $A \times B$, l'insieme di tutte le possibili relazioni tra A e B è $\mathcal{P}(A \times B)$.

Il numero di relazioni esistenti tra A e B è quindi:

$$|\mathcal{P}(A \times B)| = 2^{|A| \cdot |B|}$$

2 Notazioni

2.1 Notazione infissa

Se $R \subseteq A \times B$ è una relazione tra A e B, per indicare che $(a,b) \in R$ si può scrivere aRb. Allo stesso modo, per indicare che $(a,b) \notin R$ si può scrivere aRb.

2.2 Matrice di adiacenza

Se A e B sono insiemi finiti, una relazione $R\subseteq A\times B$ può essere rappresentata da una tabella a doppia entrata con

- le righe corrispondenti agli elementi di A,
- le colonne corrispondenti agli elementi di B,
- un segno nelle celle corrispondenti alle coppie che appartengono alla relazione.

Questa tabella si chiama matrice di adiacenza della relazione.

2.2.1 Esempio

$$A = \{1, 2\}$$

$$B = \{a, b, c\}$$

$$R = \{(1, a), (1, b), (2, c)\}$$

$$\begin{array}{c|c} & a & b & c \\ \hline & 1 & X & X \\ 2 & & X \end{array}$$

3 Relazione inversa

Se R è una relazione tra A e B, la sua **relazione inversa** R^{-1} è una relazione tra B e A data da

$$R^{-1} = \{ (b, a) \mid (a, b) \in R \}$$

$$R^{-1} \subseteq B \times A$$

3.1 Esempio

$$A = \{1, 2, 3\}$$

$$B = \{a, b, c, d\}$$

$$R = \{(1, a), (2, a), (3, c), (2, d)\}$$

$$R^{-1} = \{(a, 1), (a, 2), (c, 3), (d, 2)\}$$

$$\frac{R \mid a \quad b \quad c \quad d}{1 \mid X}$$

$$2 \mid X \quad X$$

$$3 \mid X$$

4 Relazione binaria

Una relazione binaria R su (o di) A è un sottoinsieme di $A \times A$.

$$R \subseteq A \times A$$

Esempio: \leq è una relazione binaria su \mathbb{N} .

Se R è una relazione binaria su A, allora lo è anche la sua inversa R^{-1} .

4.1 Notazione: diagramma di Venn

Una relazione binaria R su A può essere rappresentata aggiungendo al diagramma di Venn di A delle frecce che uniscono gli elementi in relazione tra di loro.

4.1.1 Esempio

$$A = \{1, 2, 3\}$$

$$R = \{(1,1), (2,2), (3,3), (1,2), (2,3)\}$$

$$S = \{(1,1), (1,2), (1,3)\}$$

5 Relazione riflessiva

Una relazione binaria R su A è **riflessiva** se ogni elemento di A è in relazione con sé stesso:

$$\forall x \in A, xRx$$

$$\forall x \in A, (x, x) \in R$$

Non è riflessiva se esiste un $x \in A$ tale che $x \not R x$.

5.1 Nelle rappresentazioni

- Nella matrice di adiacenza, devono essere segnate tutte le caselle sulla diagonale che va da *in alto a sinistra* a *in basso a destra* (dato che esse corrispondono alle coppie con prima e seconda componente uguali).
- Nel diagramma di Venn, ogni elemento deve essere collegato a sé stesso.

5.2 Esempio

$$A = \{1, 2, 3\}$$

$$R = \{(\mathbf{1}, \mathbf{1}), (\mathbf{2}, \mathbf{2}), (\mathbf{3}, \mathbf{3}), (1, 2), (2, 3)\}$$
è riflessiva

R	1	2	3
1	\mathbf{X}	Χ	
2		\mathbf{X}	X
3			\mathbf{X}

$$S = \{(1,1), (1,2), (1,3)\}$$
non è riflessiva

6 Relazione simmetrica

Una relazione binaria R su A è **simmetrica** se per ogni $x, y \in A$, se x è in relazione con y allora y è in relazione con x:

$$\forall x, y \in A, xRy \implies yRx$$

Non è simmetrica se esistono $x, y \in A$ tali che xRy ma $y \not R x$.

6.1 Nelle rappresentazioni

- Nella matrice di adiacenza, le caselle segnate devono essere simmetriche rispetto alla diagonale che va da in alto a sinistra a in basso a destra.
- Nel diagramma di Venn, se tra due elementi c'è una freccia in una direzione (es. da a a b), allora ce ne deve essere anche una nella direzione opposta (da b ad a).

6.2 Esempio

$$A = \{1, 2, 3\}$$

$$R = \{(1, 2), (1, 3), (2, 1), (3, 1)\}$$
 è simmetrica

 $S = R \cup \{(2,3)\} = \{(1,2), (1,3), (2,1), (3,1), (2,3)\}$ non è simmetrica

S	1	2	3
1		X	X
2	X		${f X}$
3	X		

