

รายวิชา 568 351 สถิติและการประยุกต์ทางเภสัชศาสตร์
สมการถดถอยเชิงเส้นอย่างง่าย
(SIMPLE LINEAR REGRESSION)

รศ.ดร.ลาวัลย์ ศรัทธาพทธ

ภาควิชาสารสนเทศศาสตร์ทางสุขภาพ คณะเภสัชศาสตร์ มหาวิทยาลัยศิลปากร

ความสัมพันธ์เชิงเส้น

- สัมประสิทธิ์สหสัมพันธ์เชิงเส้น (r) เป็นค่าที่ใช้วัดองศาแห่ง ความสัมพันธ์เชิงเส้นระหว่างตัวแปร 2 ตัว
- ในกรณีที่ 2 ตัวแปรมีความสัมพันธ์เชิงเส้นอย่างสมบูรณ์ใน ทางบวกหรือในทางลบ ทุกหน่วยของข้อมูลจะสามารถเขียนให้ อยู่ในรูป Y_i = a+bX_i คือทราบอัตราการเปลี่ยนแปลง (ค่า X เปลี่ยนไป 1 หน่วย ค่า Y จะเปลี่ยนไป b หน่วย)
- ในกรณีที่ 2 ตัวแปรมีความสัมพันธ์เชิงเส้นที่ไม่สมบูรณ์จะบอก ไม่ได้ว่าค่า X เปลี่ยนไป 1 หน่วย ค่า Y จะเปลี่ยนไปกี่หน่วย และไม่สามารถเขียนให้อยู่ในรูป Y, = a+bX,

สมการถดถอยเชิงเส้น

• ถ้าต้องการทราบอัตราการเปลี่ยนแปลง ต้องหา**สมการ** เส้นตรงที่ลากผ่านจุด (X_i , Y_i) ต่างๆ โดยให้ห่างจากจุด เหล่านี้น้อยที่สุด (นั่นคือลากเส้นตรงด้วยหลักการ least square) เรียกเส้นตรงนี้ว่า สมการถดถอยเชิงเส้น (regression line) ซึ่งแทนด้วย $\hat{Y}_i = a + bX_i$

"Least Squares" Concept

$$\left| Min \left[\sum_{i=1}^{n} (y_i - (a + x_i b))^2 \right] \right|$$

ระบบสมการเชิงเส้นที่สามารถหาผลลัพธ์ได้

ระบบสมการเชิงเส้น (Simultaneous linear equations) ที่สามารถหา ผลลัพธ์ได้ หมายถึงสมการทุกสุมการเป็นจริงพร้อมๆ กันในเวลาเดียวกันเมื่อ แทนค่าผลลัพธ์ในสมการเหล่านั้น เช่น

$$2b = 1$$
 $3b = 3/2$
 $4b = 2$
 $Y_i = a + bX_i$

ผลลัพธ์ของระบบสมการเชิงเส้นนี้คือ b = 1/2 และเขียนสมการทั้งสามใน รูปเวกเตอร์สดมภ์ได้ดังนี้

$$\begin{bmatrix}
1 \\
3/2 \\
2
\end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

ระบบสมการเชิงเส้นที่ไม่สามารถหาผลลัพธ์ได้

• ระบบสมการเชิงเส้นที่ไม่สามารถหาผลลัพธ์ได้ หมายถึง สมการทุกสมการไม่ สามารถเป็นจริงพร้อมๆ กันในเวลาเดียวกันเมื่อแทนค่าผลลัพธ์ในสมการ เหล่านั้น เช่น

2b = 1
$$\rightarrow$$
 E1 = $Y_i - \hat{Y}_i$ = 1-2b
3b = 4 \rightarrow E2 = 4-3b
4b = 8 \rightarrow E3 = 8-4b

- กรณีนี้ไม่มีผลลัพธ์ b ที่ทำให้ทุกสมการเป็นจริงได้พร้อมกันในเวลาเดียวกัน ดังนั้นต้องใช้ค่า b ประนีประนอม คือค่า b ที่ทำให้ผลบวกความ คลาดเคลื่อนกำลังสองมีค่าน้อยที่สุด
- เรียกวิธีเลือก b ที่ทำให้ผลบวกความคลาดเคลื่อนกำลังสองมีค่าน้อยที่สุดว่า วิธี Least squares $\widehat{Y}_i = a + bX_i$

ระบบสมการเชิงเส้นที่ไม่สามารถหาผลลัพธ์ได้

• ให้ E² แทนผลบวกความคลาดเคลื่อนกำลังสอง

$$E^2 = (1-2b)^2 + (4-3b)^2 + (8-4b)^2$$

- ในกรณีไม่มีค่า b ที่ทำให้ทุกสมการเป็นจริงพร้อมกันในเวลาเดียวกัน ค่า E² เป็นฟังก์ชัน พาราโบลาหงายที่มีจุดต่ำที่สุดที่ $dE^2/db=0$
- ดังนั้น b = 46/29
- ผลลัพธ์ประนีประนอม คือ

$$\hat{Y} = \frac{46}{29} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 3.1724 \\ 4.7586 \\ 6.3448 \end{bmatrix}$$

- จะเห็นว่า $\hat{Y} \neq Y$ โดย $Y = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$
- จะเห็นว่าไม่สามารถเขียน (X,, Y,) อยู่ในรูป Y, = a+bX, แต่เขียนอยู่ในรูป $\hat{Y}=a+bX$

สมการถดถอยเชิงเส้นอย่างง่าย

- สมการถดถอยเชิงเส้นอย่างง่าย (Simple linear regression) มี 2 ตัว แปรคือ **ตัวแปรตาม**และ**ตัวแปรอิสระ** และเป็นกรณีที่**ตัวแปรอิสระมี เพียงตัวเดียว** รูปแบบดังนี้
- ullet สมการถดถอยเชิงเส้นอย่างง่ายของ**ประชากร**คือ Y = lpha+etaX+ $oldsymbol{\epsilon}$
- สมการถดถอยเชิงเส้นอย่างง่ายของ**ตัวอย่างสุ่ม**คือ Y = a+bX+e
- Y คือ ตัวแปรตาม
 X คือ ตัวแปรอิสระ
- α และ a คือ จุดตัดแกน Y
- eta และ b คือ ความชั้นของเส้นตรง ก็คือค่าสัมประสิทธิ์ของสมการ หรือเรียกว่า **สัมประสิทธิ์สหสัมพันธ์ถดถอยเชิงเส้น**
- E (epsilon) และ e คือ ค่าความคลาดเคลื่อนของ Y เมื่อกำหนดค่า X

สมการถดถอยเชิงเส้นอย่างง่าย

- สมการถดถอยเชิงเส้นของ Y บน X : $\widehat{Y}_i = a + bX_i$
- Slope b $b = \frac{\sum (X_i \bar{X})(Y_i \bar{Y})}{\sum (X_i \bar{X})^2} = \frac{S_{XY}}{S_Y^2}$

$$b = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})/(n-1)}{\sum (X_i - \bar{X})^2/(n-1)} = \frac{Cov(X,Y)}{s_x^2}$$

Intercept a

 $a = \bar{Y} - b\bar{X}$

สมการถดถอยเชิงเส้นอย่างง่าย

- สมการถดถอยเชิงเส้น $\hat{Y}_i = a + bX_i$ ถูกเรียกอีกอย่างว่า "สมการพยากรณ์" ซึ่งสามารถนำมาทำนายค่าตัวแปรตาม Y หรือเรียกว่าค่าพยากรณ์ (\hat{Y}_i) เมื่อกำหนดค่าตัวแปรอิสระ X ได้
- ullet โดย $b=rac{S_{XY}}{S_X^2}=rac{cov(X,Y)}{S_X^2}=rac{r_{xy}S_y}{S_x}$ $a=ar{Y}-bar{X}$

สมการถดถอยเชิงเส้นอย่างง่าย

เอสเล็ก

- ในการหาความสัมพันธ์เชิงเส้นระหว่าง 2 ตัวแปรจากสมการ ถดถอยเชิงเส้นจะต้องมีการกำหนดว่าจะให้ตัวแปรตัวใดเป็นตัว แปรตามหรือเป็นตัวแปรอิสระ
- ไม่มีทฤษฎีที่กล่าวถึงกฎเกณฑ์ตายตัวว่าจะให้ตัวแปรใดเป็นตัว แปรตามหรือเป็นตัวแปรอิสระ และบางกรณีแยกได้ยากว่าจะให้ ตัวแปรไหนเป็นตัวแปรอิสระหรือตัวแปรตาม
- สมการถดถอยเชิงเส้นที่มี Y เป็นตัวแปรตามและมี X เป็นตัว แปรอิสระ (regression of y on x) จะไม่เหมือนกับสมการ ถดถอยเชิงเส้นที่มี X เป็นตัวแปรตามและมี Y เป็นตัวแปรอิสระ (regression of x on y)

สรุปสูตร

Slope

$$b = \frac{S_{XY}}{S_X^2}$$

$$S_{XY} = \sum (X_i - \bar{X})(Y_i - \bar{Y}) = \sum X_i Y_i - \frac{(\sum X_i)(\sum Y_i)}{n}$$

$$S_X^2 = \sum (X_i - \bar{X})^2 = \sum X_i^2 - \frac{(\sum X_i)^2}{n}$$

Intercept

$$a = \bar{Y} - b\bar{X}$$

🗣 จงหาสมการถดถอยเชิงเส้นของ Y บน X และค่าพยากรณ์ของข้อมูลดังนี้

Х	-2	-1	0	1	2
Y	-3		1	3	5

$$b = \frac{\sum X_i Y_i - \frac{(\sum X_i) (\sum Y_i)}{n}}{\sum X_i^2 - \frac{(\sum X_i)^2}{n}} = \frac{20}{10} = 2$$

$$a = \bar{Y} - b\bar{X} = 1 - (2)(0) = 1$$

• สรุปสมการถดถอยเชิงเส้นของ Y บน X คือ

$$\widehat{Y} = 1 + 2X$$

ตัวอย่าง 1

จากสมการถดถอยเชิงเส้นที่ได้นำมาคำนวณค่าพยากรณ์ได้ดังนี้

$$\widehat{Y}_i = 1 + 2X_i$$

Х	-2	-1	0	1	2
Y		-1		3	
Ŷ	-3	-1	1	3	5

• จะเห็นว่า ถ้าสองตัวแปรมีความสัมพันธ์กันอย่างสมบูรณ์การ พยากรณ์ค่า Y จะถูกต้อง 100%

ตัวอย่าง 2

จงหาสมการถดถอยเชิงเส้นของ Y บน X และค่าพยากรณ์ของข้อมูลดังนี้

х	5	6	9	9	10
Υ	9	11	0	15	

$$b = \frac{\sum X_i Y_i - \frac{(\sum X_i) (\sum Y_i)}{n}}{\sum X_i^2 - \frac{(\sum X_i)^2}{n}} = \frac{-24.8}{18.8} = -1.3191$$

$$a = \bar{Y} - b\bar{X} = 7.2 - (-1.3191)(7.8) = 17.4894$$

• สรุปสมการถดถอยเชิงเส้นของ Y บน X คือ

$$\hat{Y} = 17.4894 - 1.3191X$$

ตัวอย่าง 2

• จากสมการถดถอยเชิงเส้นที่ได้นำมาคำนวณค่าพยากรณ์ได้ดังนี้

$$\hat{Y} = 17.48936 - 1.31915X$$

Х	5		9	9	10
Y	9	11	0	15	1
Ŷ	10.89	9.57	5.62	5.62	4.30

จะเห็นว่า ถ้าสองตัวแปรมีความสัมพันธ์กันไม่สมบูรณ์การ
 พยากรณ์ค่า Y จะไม่ถูกต้อง 100%

ความสัมพันธ์ระหว่างสัมประสิทธิ์สหสัมพันธ์ และสัมประสิทธิ์สหสัมพันธ์ถดถอยเชิงเส้น

$$ullet$$
 จากสมการ $b_{YX}=rac{\sum (X_i-ar{X})(Y_i-ar{Y})}{\sum (X_i-ar{X})^2}=rac{Cov(X,Y)}{s_x^2}$

$$r_{XY} = \frac{Cov(X,Y)}{s_x s_y} = r_{YX}$$

• แทนค่า Cov(X,Y) หรือ S_{XY} จะได้ว่า

$$b_{YX} = r_{XY} \frac{s_y}{s_x}$$

ข้อแนะนำ

- ก่อนที่จะเริ่มทำการหาสมการถดถอยเชิงเส้นโดยวิธี least squares จะต้อง plot graph ก่อนเสมอ เพื่อศึกษาสิ่งต่อไปนี้
 - ดูความสัมพันธ์ว่าเป็นชนิดเชิงเส้นหรือไม่
 - ถ้าความสัมพันธ์ไม่เป็นเชิงเส้น เราอาจจะสามารถแปลงให้อยู่ในรูป ความสัมพันธ์เชิงเส้นได้ เช่นแปลง Y ให้อยู่ในรูป In Y และ/หรือแปลง X เป็น In X
 - ถ้าแปลงแล้วความสัมพันธ์ไม่เป็นเชิงเส้นจริงๆ จะต้องดำเนินการหา สมการถดถอยโดยวิธี Nonlinear Regression เช่น Polynomial Regression
 - ดูการกระจายของจุดเป็น**เอกรูป**หรือไม่ (Homogeneous scatter) คือมีการกระจายของจุด<u>สม่ำเสมอในกรอบเส้นขนาน</u>

Linear Correlation (เชิงเส้น?)

Types of Correlation

http://slideplayer.com/slide/5256836/

Homogeneous Scatter (เอกรูป?)

Homogeneous scatter

Heterogeneous scatter

https://www.r-bloggers.com/model-validation-interpreting-residual-plots/

คุณสมบัติสมการถดถอยเชิงเส้น

- 1. มาตราวัดของ**ตัวแปรตาม** Y จะต้องเป็นชนิดอันตรภาค (interval) หรือชนิดอัตราส่วน (ratio) ส่วนมาตราวัดของ**ตัว** แปรอิสระ X จะเป็นชนิดใดก็ได้
 - —ถ้าหากมาตราวัดของตัวแปรตาม Y ไม่เป็นชนิดอันตรภาค
 หรือชนิดอัตราส่วน จะใช้วิธี least squares หาสมการถดถอย
 เชิงเส้นไม่ได้ จะต้องใช้วิธีอื่น

คุณสมบัติสมการถดถอยเชิงเส้น

2. สมการถดถอยเชิงเส้นจากตัวอย่างสุ่มผ่านจุด ($\overline{X},\overline{Y}$) เสมอ เนื่องจาก

$$a = \overline{Y} - b\overline{X}$$
$$\overline{Y} = a + b\overline{X}$$

- คุณสมบัติข้อนี้ใช้ประโยชน์ในด้านต่างๆ ดังนี้
 - ใช้พิสูจน์คุณสมบัติของเวคเตอร์ส่วนเหลือ (Residual vector)
 - ใช้ในการวิเคราะห์ความแปรปรวน (ANOVA)

เวกเตอร์ส่วนเหลือ (Residual vector)

การใช้วิธีฉาย (project) เวกเตอร์สดมภ์ y ลงในสเปชของเวกเตอร์สดมภ์ x เพื่อหาผลลัพธ์ b ประนีประนอม จะต้องฉายให้ระยะห่างจากเวกเตอร์สดมภ์ y มายังสเปชของเวกเตอร์สดมภ์ x น้อยที่สุด ตามแนวคิดของ least squares ดังนั้น จากทฤษฎีทางเรขาคณิต ระยะห่างจากจุดๆ มายังเส้นตรง ระยะห่างที่น้อยที่สุดคือ ระยะตั้งฉากกับสเปชของเวกเตอร์สดมภ์ x

• ระยะห่างคือ**เวกเตอร์ส่วนเหลือ d** (Residual vector) ซึ่งมีค่าเท่ากับ $Y_i - \hat{Y_i}$ จำนวน n ค่า

คุณสมบัติของเวกเตอร์ส่วนเหลือ

- จากทฤษฎีเวกเตอร์ การที่เวกเตอร์ส่วนเหลือ **d** ตั้งฉากกับสเปชของเวกเตอร์ สดมภ์ **x** ทำให้ได้ว่าแต่ละเวกเตอร์สดมภ์ในสเปชของ **x** เป็นอิสระกับ เวกเตอร์ส่วนเหลือ ดังนั้นคุณสมบัติของเวกเตอร์ส่วนเหลือ ได้แก่
 - 1. ผลบวกของสมาชิกของเวกเตอร์ส่วนเหลือเป็นศูนย์
 - 2. เวกเตอร์ของตัวแปรอิสระ (**x**) เป็นอิสระกับเวกเตอร์ส่วนเหลือ (**d**)

คุณสมบัติของเวกเตอร์ส่วนเหลือ

1. ผลบวกของสมาชิกของเวกเตอร์ส่วนเหลือ (d) เป็นศูนย์

$$\sum_{i} (Y_i - \hat{Y}_i) = 0$$

$$\sum \mathbf{d}_i = 0$$

- ค่า 0 หมายความว่า **0 เป็นศูนย์กลางของการกระจายของค่า** ความคลาดเคลื่อนที่เกิดจากประมาณ Y_i ด้วย \widehat{Y}_i
 - lacktriangle ถ้า \widehat{Y}_i มีค่ามากกว่า Y_i ค่า $Y_i \widehat{Y}_i$ จะมีค่าเป็นลบ
 - lacktriangle ถ้า \widehat{Y}_i มีค่าน้อยกว่า Y_i ค่า $Y_i \widehat{Y}_i$ จะมีค่าเป็นบวก

คุณสมบัติของเวกเตอร์ส่วนเหลือ

2. เวกเตอร์ของตัวแปรอิสระ (**X**) เป็นอิสระกับเวกเตอร์ส่วนเหลือ (**d**)

$$\sum X_i (Y_i - \hat{Y}_i) = 0$$

$$\sum X_i \, \mathbf{d}_i = 0$$

 เวกเตอร์ส่วนเหลือตั้งฉากกับสเปชของเวกเตอร์สดมภ์ X จาก ทฤษฎีของเวกเตอร์ถ้า 2 เวกเตอร์ตั้งฉากกันจะได้ว่าผลบวก ของผลคูณของแต่ละสมาชิกเป็นศูนย์

ตัวอย่าง 3

• จงหาเวกเตอร์ส่วนเหลือ และ**ทดสอบคุณสมบัติของเวกเตอร์ส่วนเหลือ**ของ ข้อมูลดังนี้

Х	-2	-1	0	1	2
Y		-1	1	3	5

$$r_{XY}=1$$

• จากตัวอย่างก่อนหน้าหาสมการถดถอยเชิงเส้นของ Y บน X ได้คือ

$$\hat{Y} = 1 + 2X$$

ullet ดังนั้นหา \widehat{Y} ได้คือ

х	-2	-1	0	1	2
Y			1	9	
Ŷ	-3	-1	1	3	5

ตัวอย่าง 3

• หาเวกเตอร์ส่วนเหลือได้ดังนี้

$$\mathbf{d} = Y_i - \widehat{Y}_i$$

х	-2	-1	0	1	2
Y	-3	-1	1		
Ŷ	-3	-1	1	3	5
	0	0	0	0	U
X*d	0	0	0	0	0

- ullet ผลบวกของสมาชิกของเวกเตอร์ส่วนเหลือเป็นศูนย์ $\sum {f d}_i = 0$
- ullet เวกเตอร์ของตัวแปรอิสระเป็นอิสระกับเวกเตอร์ส่วนเหลือ $\sum X_i \, \mathbf{d}_i = 0$

จงหาเวกเตอร์ส่วนเหลือ และทดสอบคุณสมบัติของเวกเตอร์ส่วนเหลือของ ข้อมูลดังนี้

х	5	6	9	9	10
Y	9	11	0	15	1

 $r_{XY} = -0.44$

• จากตัวอย่างก่อนหน้าหาสมการถดถอยเชิงเส้นของ Y บน X ได้คือ

$$\hat{Y} = 17.4894 - 1.3191X$$

ullet ดังนั้นหา \widehat{Y} ได้คือ

Х	5	6	9	9	10
Y	9	11		15	1
\widehat{Y}	10.89	9.57	5.62	5.62	4.30

จาก 2 ตัวอย่าง

- จะเห็นว่า**ถ้า X และ Y ไม่มีความสัมพันธ์กันอย่างสมบูรณ์** ข้อสนเทศ X_i จะถูกเก็บไว้ใน **Y**i ไม่หมด 100% <mark>ข้อสนเทศของ X_i ส่วนที่เหลือจะถูกเก็บไว้ในเวกเตอร์ส่วนเหลือ</mark>
- ยิ่งค่า r เล็ก ข้อสนเทศของ X_i จะถูกเก็บไว้ใน **Y**_i น้อยลง และ ส่วนเหลือจาก 100% จะมีมากขึ้น ข้อสนเทศของ X_i จะถูกเก็บไว้ ในเวกเตอร์ส่วนเหลือมากขึ้น **เป็นผลให้คุณสมบัติของเวกเตอร์** ส่วนเหลือคลาดเคลื่อนจากทฤษฎีได้

ตัวอย่าง 4

• หาเวกเตอร์ส่วนเหลือได้ดังนี้

$$\mathbf{d} = Y_i - \widehat{Y}_i$$

X	5	6	9	9	10
Υ	9	11	0	15	1
Ŷ	10.89	9.57	5.62	5.62	4.30
d	-1.89	1.43	-5.62	9.38	-3.298
X*d	-9.47	8.58	-50.55	84.44	-32.98

- ullet ผลบวกของสมาชิกของเวกเตอร์ส่วนเหลือเป็นศูนย์ $\sum {f d}_i = 0.002$
- เวกเตอร์ของตัวแปรอิสระเป็นอิสระกับเวกเตอร์ส่วนเหลือ $\sum X_i \, \mathbf{d}_i = \mathbf{0.02}$

การวิเคราะห์ความแปรปรวน

การวิเคราะห์ความแปรปรวน

- ullet จากกราฟเขียนสมการได้ดังนี้ $Y_i ar{Y} = (\widehat{Y}_i ar{Y}) + (Y_i \widehat{Y}_i)$ โดย
- $ightarrow Y_i ar{Y}$ = ค่าเบี่ยงเบนของ Y_i จากค่าเฉลี่ยเลขคณิต $ar{Y}$
- $ightarrow \sum (Y_i \overline{Y})^2$ = ค่า**ความแปรปรวนรวม**ของ Y_i จำนวน n ค่า = Total sum of squares = SST
- ightarrow $\widehat{Y}_i ar{Y}_i =$ ค่าเบี่ยงเบนของค่าประมาณ (ค่าพยากรณ์) ที่ i (\widehat{Y}_i) จากค่าเฉลี่ยเลข คณิต $ar{Y}_i$
- $ightharpoonup \sum (\widehat{Y}_i \overline{Y})^2$ = ค่า**ความแปรปรวนถดถอย**ของ \widehat{Y}_i จำนวน n ค่า = Regression sum of squares = SSR
- $ightarrow Y_i \widehat{Y}_i$ = ค่าส่วนเหลือจากการประมาณ Y_i ด้วย \widehat{Y}_i
- $ightarrow \sum (Y_i \hat{Y}_i)^2$ = ค่าส่วนเหลือกำลังสอง = Residual (Error) sum of squares = SSE

การวิเคราะห์ความแปรปรวน

- การวิเคราะห์ความแปรปรวน (Analysis of Variance: ANOVA) อาศัยฐานความรู้ เกี่ยวกับคุณสมบัติของสมการถดถอยเชิงเส้นที่ผ่านจุด $(\overline{X}, \overline{Y})$ เสมอ และคุณสมบัติของความเป็นอิสระระหว่างเวกเตอร์ส่วนเหลือกับเวกเตอร์สดมภ์ X
- สำหรับสมการถดถอยเชิงเส้นที่สร้างขึ้นมาจากแนวความคิด least squares จะได้ ว่า ค่าความแปรปรวนรวม (SST) จะเท่ากับผลบวกของค่าความแปรปรวนถดถอย (SSR) และค่าส่วนเหลือกำลังสอง (SSE) เสมอ

$$\sum (Y_i - \bar{Y})^2 = \sum (\hat{Y}_i - \bar{Y})^2 + \sum (Y_i - \hat{Y}_i)^2$$

SST = SSR + SSE

• หมายเหตุ: จะเห็นว่า SSE = SST-SSR

ตารางวิเคราะห์ความแปรปรวน (ANOVA)

ตารางวิเคราะห์ความแปรปรวน (ANOVA)

แหล่งความ แปรปรวน	องศา อิสระ	SS	MS	F
ถดถอย	1	SSR	MSR =SSR/1	F=MSR/MSE
ส่วนเหลือ	n-2	SSE =SST-SSR	MSE =SSE/(n-2)	
รวม	n-1	SST		

MSE = Mean square error MSR = Mean square regression

• F เป็นค่าสถิติจากการคำนวณที่ใช้สำหรับทดสอบสมมติฐานสัมประสิทธิ์ สหสัมพันธ์ถดถอยเชิงเส้นของประชากร H_0 : $oldsymbol{eta}$ = 0, H_1 : $oldsymbol{eta}$ eq 0

การหาค่าความแปรปรวน SST และ SSR

• สูตรหาความแปรปรวนรวม SST ได้แก่

$$SST = S_Y^2$$

- สูตรหาความแปรปรวนถดถอย SSR หาได้ 3 สูตร ได้แก่
 - 1. หาจากค่าสัมประสิทธิ์สหสัมพันธ์ถดถอยเชิงเส้น (Regression coefficient, b)

$$SSR = b^2 S_X^2$$

2. หาจากค่าสัมประสิทธิ์สหสัมพันธ์ถดถอยเชิงเส้น (Regression coefficient, b)

$$SSR = bS_{XY}$$

3. หาจากสัมประสิทธิ์สหสัมพันธ์เชิงเส้น (Correlation coefficient, r)

$$SSR = r^2 S_Y^2 = r^2 SST$$

Recall

• สูตรคำนวณ

$$S_X^2 = \sum (X_i - \bar{X})^2 = \sum X_i^2 - \frac{(\sum X_i)^2}{n}$$

$$S_Y^2 = \sum (Y_i - \bar{Y})^2 = \sum Y_i^2 - \frac{(\sum Y_i)^2}{n}$$

$$S_{XY} = \sum (X_i - \bar{X})(Y_i - \bar{Y}) = \sum X_i Y_i - \frac{(\sum X_i)(\sum Y_i)}{n}$$

สัมประสิทธิ์แห่งการกำหนด, r²

- จากสมการ
- $SSR = r^2 SST$
- จะได้สมการ

$$\frac{SSR}{SST} = r^2$$

- ให้ข้อมูลดังนี้
 - ค่า \mathbf{r}^2 เป็นร้อยละ (สัดส่วน) ที่ข้อสนเทศ (information) ของตัว แปรอิสระ \mathbf{X} ที่ถูกเก็บไว้ในค่าประมาณ \widehat{Y}_i หาก $\mathbf{r} \neq +1$ หรือ -1 ย่อมมีความแปรปรวนในการประมาณ Y_i ดังนั้น \mathbf{r}^2 จึงเป็นร้อย ละที่ข้อสนเทศของตัวแปรอิสระ \mathbf{X} อธิบายความแปรปรวน ของค่าของตัวแปรตาม \mathbf{Y} เรียก \mathbf{r}^2 ว่าสัมประสิทธิ์แห่งการ กำหนด (Coefficient of Determination)

สัมประสิทธิ์แห่งการกำหนดกับส่วนเหลือกำลังสอง

- จากสมุการ SSE = SST SSR
- จะได้สมการ

$$\frac{SSE}{SST} = 1 - r^2$$

- ให้ข้อมูลดังนี้
 - (1-r²) บอกถึงร้อยละ (สัดส่วน) ของ**ข้อสนเทศของตัวแปรอิสระ** X ที่**ไม่ถูกเก็บไว้ในค่าประมาณ** Ŷ หรือ
 - (1-r²) บอกถึงร้อยละ (สัดส่วน) ของส่วนเหลือของข้อสนเทศของ ตัวแปรอิสระ X ที่**ถูกเก็บไว้ในเวคเตอร์ส่วนเหลือ d**
 - (1-r²) จึงเป็นร้อยละ (สัดส่วน) ของข้อสนเทศของตัวแปรอิสระ X ที่ไม่สามารถอธิบายความแปรปรวนของค่าตัวแปรตาม Y

สัมประสิทธิ์แห่งการกำหนดกับส่วนเหลือกำลังสอง

- ให้ข้อมูลดังนี้ (ต่อ)
 - เนื่องจาก SSE มีค่าเป็นบวกเสมอและมีค่าต่ำสุดเป็นศูนย์ ซึ่งถ้า
 SSE=0 จะเป็นกรณีที่ตัวแปรอิสระ X และตัวแปรตาม Y มี
 ความสัมพันธ์เชิงเส้นอย่างสมบูรณ์ ดังนั้น
 - ิ ขอบเขตของ r² จึงอยู่ในช่วงปิด [0,1]
 - ขอบเขตของ r จึงอยู่ในช่วงปิด [-1,1]
 - lacktriangle ถ้า ${
 m r}^2$ มีค่าสูง (1- ${
 m r}^2$) จะมีค่าต่ำ ซึ่งทำให้ SSE มีค่าต่ำด้วย การที่ SSE มีค่าต่ำหมายความว่า ค่าประมาณ (ค่าพยากรณ์) \widehat{Y}_i มีความ แม่นยำสูงในการประมาณ (พยากรณ์) Y_i

ข้อสมมติของรูปแบบสมการถดถอยเชิงเส้น

- ในที่นี้ศึกษาเฉพาะกรณีที่การเปลี่ยนแปลงค่าของตัวแปรอิสระมี ช่วงเท่ากัน (equally spacing) กล่าวคือ**ไม่มีความคลาดเคลื่อน** ในการวัดตัวแปรอิสระ X
 - หากเป็นกรณีที่ต้องพิจารณาความคลาดเคลื่อนในการวัดค่าของตัวแปร อิสระรูปแบบของสมการถดถอยจะเป็นอีกอย่างหนึ่ง รายละเอียดอ่าน จาก: Snedecor & Cochran ใน "Statistical Method" และ Berkoon ใน "J.Am.Stat.Assoc." 45(1950): p.164

ข้อสมมติของรูปแบบสมการถดถอยเชิงเส้น

กราฟแจกแจงแบบปกติของตัวแปรตาม Y สำหรับแต่ละค่าของตัวแปร
 อิสระ X ซึ่งมีช่วงห่างเท่าๆกัน

ข้อสมมติที่ 1

$Y \approx N(\mu_{Y,X}, \sigma_{Y,X}^2)$

- สำหรับแต่ละค่าของตัวแปรอิสระ X จะ**มีค่าของตัวแปรตาม Y ได้หลายค่า** ดังนั้นค่าต่างๆ ของตัวแปรตาม Y (ซึ่งก็คือ Y) จะกระจายเป็นรูปโค้งระฆังคว่ำคือ มี**การกระจายแบบปกติ** โดยมี**ค่าเฉลี่ย**อยู่ที่จุด μ_{YX} ซึ่งค่าเฉลี่ยนี้ตั้งอยู่บนสมการถดถอยเชิงเส้น $\hat{Y} = \alpha + \beta X + \varepsilon$
- การแจกแจงค่าต่างๆ ของ Y_i เป็นอิสระกัน คือ Y_i เป็นอิสระกับ Y_j : ∀i≠j ที่เกิดขึ้นจากแต่ ละค่าของ X
- ความแปรปรวนของตัวแปรตาม Y เท่ากันสำหรับแต่ละระดับของตัวแปรอิสระ X นั่นคือ $\sigma^2_{Y,X_1}=\sigma^2_{Y,X_2}=\cdots=\sigma^2_{Y,X_n}=\sigma^2_{Y,X}$
- ดังนั้นคุณสมบัตินี้จึง**ทำให้การกระจายจุดเป็นเอกรูป**ในกรอบเส้นคู่ขนาน (Homogeneous scatter)
- หมายเหตุ: ตัวแปรอิสระ X ต้องมีช่วงห่างเท่ากัน หากการเปลี่ยนค่าของตัวแปรอิสระ X มี ช่วงห่างไม่เท่ากัน วิธีสร้างสมการถดถอยเชิงเส้นที่กล่าวในบทนี้ไม่เหมาะสม ต้องใช้วิธีอื่น

ข้อสมมติที่ 2

$$\varepsilon \approx N(0, \sigma_{Y,X}^2)$$

- £ เป็นค่าความคลาดเคลื่อนในการประมาณค่า Y เนื่องจาก ε มีความสัมพันธ์เชิงเส้น
 กับ Y จากรูปแบบสมการถดถอยเชิงเส้นของประชากร Ŷ = α + βX + ε ดังนั้น การ
 แจกแจงของ ε เหมือนกับของ Y กล่าวคือมีการแจกแจงแบบปกติที่มีค่าเฉลี่ยศูนย์
 (จากคุณสมบัติของเวคเตอร์ส่วนเหลือ) และมีค่าความแปรปรวนเหมือนกับของ Y คือ
 ความแปรปรวนของ ε เท่ากันสำหรับแต่ละระดับของตัวแปรอิสระ X
- คุณสมบัติการแจกแจงปกติของ ε มีความสำคัญในการทดสอบสมมติฐาน และในการหาช่วงความเชื่อมั่นของ α (intercept) และ β (slope) เนื่องจากค่าเฉลี่ยกำลังสองของ ε เป็นตัวส่วน (ตัวหาร, denominator) ของตัวสถิติ F (นั่นคือ F = MSR/MSE) และที่มาของตัวสถิติ F มาจากตัวแปรเชิงสุ่มที่มีการแจกแจงแบบปกติ

ข้อสมมติที่ 3

- การแจกแจงค่าต่างๆ ของ E_i เป็นอิสระกัน คือ E_i เป็นอิสระกับ E_j ∀i≠j ที่
 เกิดขึ้นจากแต่ละค่าของ X เนื่องจาก การแจกแจงของ Yi เป็นอิสระกัน และ E
 มีความสัมพันธ์เชิงเส้นกับ Y จากรูปแบบสมการถดถอยเชิงเส้นของประชากร
 ดังนั้นจึงทำให้ E_i มีการแจกแจงที่ป็นอิสระไปด้วย
- คุณสมบัติข้อนี้ทำให้สามารถวิเคราะห์ข้อมูลหาการแจกแจงความน่าจะเป็น
 ของตัวสถิติ b (slope) จากตัวแปรที่มีความสัมพันธ์เชิงเส้นและมีการกระจาย
 สม่ำเสมอในกรอบเส้นขนาน (เอกรูป) โดยใช้สมการถดถอยเชิงเส้นได้
- หมายเหตุ: ถ้า $\mathbf{\mathcal{E}}_{_{\! j}}$ ไม่เป็นอิสระกับ $\mathbf{\mathcal{E}}_{_{\! j}}$ กล่าวคือมี Auto-Correlation จะ วิเคราะห์ความสัมพันธ์โดยวิธีที่เรียกว่า การวิเคราะห์อนุกรมเวลา (Time series analysis)

การแจกแจงความน่าจะเป็นของตัวสถิติ จากตัวอย่างสุ่ม

• สมการถดถอยเชิงเส้นของประชากรเป็นดังนี้

$$Y = \alpha + \beta X + \epsilon$$

• การแจกแจงความน่าจะเป็นของ b

$$b \sim N(\beta, \frac{\sigma_{yx}^2}{\sum (X_i - \bar{X})^2})$$

การแจกแจงความน่าจะเป็นของ a

$$a \sim N(\alpha, \sigma_{yx}^2(\frac{1}{n} + \frac{\bar{X}^2}{\sum(X_i - \bar{X})^2})$$

ข้อสมมติที่ 4

- เวคเตอร์สดมภ์ X **ตั้งฉาก**และ**เป็นอิสระ**กับเวคเตอร์ส่วนเหลือ **E** ซึ่ง
 - คุณสมบัติการตั้งฉากมาจากแนวคิดของ least squares ที่ว่า เวคเตอร์
 ส่วนเหลือมีระยะห่างจากสเปซของเวคเตอร์สดมภ์ X น้อยที่สุด (จากทฤษฎี
 ของเวคเตอร์ ระยะห่างน้อยที่สุดคือ ระยะตั้งฉาก)
 - คุณสมบัติการ**เป็นอิสระ**มาจากผลของการตั้งฉากกันของ 2 เวคเตอร์
- คุณสมบัติข้อนี้ทำให้ได้ SST = SSR+SSE ซึ่งนำไปสู่การสร้างตารางวิเคราะห์
 ความแปรปรวนเพื่อใช้หาค่าสถิติ F ที่ใช้ทดสอบสมมติฐานว่าตัวแปรทั้งสองมี
 ความสัมพันธ์หรือไม่โดยผ่านสมการถดถอยเชิงเส้น (นั่นคือทดสอบค่า β)
- สรุป ตั้งฉาก => อิสระ => ไม่มีความสัมพันธ์เชิงเส้น

การทดสอบสมมติฐาน

- หลังจากที่ได้สมการถดถอยเชิงเส้นแล้ว ก่อนที่จะนำสมการ ถดถอยเชิงเส้นไปใช้ประมาณ (พยากรณ์/ทำนาย) ค่าตัว แปรตาม Y ควรมีการตรวจสอบทางสถิติโดยการทดสอบ สมมติฐาน 2 ข้อ ได้แก่
 - 1. สมการถดถอยเชิงเส้นมีความเหมาะสมสามารถนำไปประมาณ ค่าของตัวแปรตามได้หรือไม่ โดย**การอนุมานเกี่ยวกับ** $oldsymbol{eta}$
 - 2. สมการถดถอยเชิงเส้นผ่านจุดกำเนิดหรือไม่ โดย**การอนุมาน** เกี่ยวกับ α

การอนุมานเกี่ยวกับ β

- เป็นการทดสอบสมมติฐานว่าสมการถดถอยเชิงเส้นที่ได้มีความ
 เหมาะสมที่จะนำไปประมาณค่าของตัวแปรตามหรือไม่
- ullet การอนุมานเกี่ยวกับ $oldsymbol{eta}$ ตั้งสมมติฐานดังนี้

 H_0 : $\beta = 0$ (สมการไม่เหมาะสมสำหรับทำนาย y)

 H_1 : $\beta \neq 0$ (สมการเหมาะสมสำหรับทำนาย y)

การอนุมานเกี่ยวกับ β

- ullet การทดสอบสมมติฐานเกี่ยวกับ $oldsymbol{eta}$
- ค่าสถิติที่ใช้ทดสอบสมมติฐานมี 2 ตัวคือ
 - —ค่าสถิติ F
 - —ค่าสถิติ t

การอนุมานเกี่ยวกับ β ด้วยค่าสถิติ F

ตารางวิเคราะห์ความแปรปรวน (ANOVA)

แหล่งความ แปรปรวน	องศา อิสระ	SS	MS	F
ถดถอย	1	SSR	MSR =SSR/1	F= MSR/MSE
ส่วนเหลือ	n-2	SSE	MSE =SSE/(n-2)	
รวม	n-1	SST		

• F เป็นค่าสถิติจากการคำนวณที่ใช้สำหรับทดสอบสมมติฐานสัมประสิทธิ์ สหสัมพันธ์ถดถอยเชิงเส้นของประชากร H_0 : $oldsymbol{eta}$ = 0, H_1 : $oldsymbol{eta}$ eq 0

การอนุมานเกี่ยวกับ β ด้วยค่าสถิติ F

- จากตารางวิเคราะห์ความแปรปรวน (ANOVA)
- ค่า SSR หาจาก
 - —จากค่า b

$$SSR = bS_{XY} = b^2 S_X^2$$

—จากค่า r

$$SSR = r^2 S_Y^2 = r^2 SST$$

การอนุมานเกี่ยวกับ β ด้วยค่าสถิติ F

• ค่า SST หาจาก

$$SST = S_Y^2$$

• ค่า SSE หาจาก

$$SSE = SST - SSR = (1 - r)^2 SST$$

การอนุมานเกี่ยวกับ β ด้วยค่าสถิติ F

- สำหรับค่าสถิติ F:
- Decision rule คือ

ปฏิเสธ H_0 ที่ระดับนัยสำคัญ $oldsymbol{lpha}\%$ ถ้า $|\mathsf{F}| \geq \mathsf{F}_{(oldsymbol{lpha},1,\mathsf{n-2})}$

หมายเหตุ

- ในการทดสอบ ANOVA (ทดสอบ equality of means) จะปฏิเสธ H_0 ที่ ระดับนัยสำคัญ \mathbf{C} % ถ้า $|F| \geq F_{(\mathbf{C},n1,n2)}$ คือตรวจสอบแค่เพียงข้างเดียวคือข้าง ค่ามาก ถึงแม้สมมติฐานจะเป็นแบบ two-tailed
- ในการทดสอบ equality of variances จะปฏิเสธ H_0 ที่ระดับนัยสำคัญ \mathbf{C} % เมื่อ $|F| \geq F_{(\mathbf{C}/2,n1,n2)}$ คือต้องตรวจสอบทั้งสองข้างในกรณีสมมติฐานเป็นแบบ two-tailed
- ในการทดสอบ β (ก็คือการทดสอบความแปรปรวนจากค่า mean ของสมการ เชิงเส้นซึ่งก็คือทดสอบ equality of means นั่นเอง) จุดอ่อนของ F-test คือ ผู้วิจัยจะไม่ทราบเครื่องหมายของ b ว่าเป็นบวกหรือลบ ดังนั้น F-test ใช้ได้ เฉพาะกรณีสมมติฐานทางเลือกเป็นชนิดสองทางเท่านั้น หากเป็นชนิดทางเดียว จะต้องใช้ t-test

การอนุมานเกี่ยวกับ β ด้วยค่าสถิติ t

• ค่าสถิติที่ใช้ทดสอบสมมติฐานเป็นดังนี้

$$t_{\left(\frac{\alpha}{2},n-2\right)} = \frac{b}{\sqrt{\frac{MSE}{S_X^2}}}$$

$$df = n - 2$$

$$S_Y^2 = \sum_i Y_i^2 - \frac{(\sum Y_i)}{n}$$

$$MSE = \frac{S_Y^2 - bS_{XY}}{n - 2}$$

 $S_X^2 = \sum_i X_i^2 - \frac{(\sum X_i)^2}{n}$

$$S_Y^2 = \sum Y_i^2 - \frac{(\sum Y_i)^2}{n}$$

$$S_{XY} = \sum X_i Y_i - \frac{(\sum X_i) (\sum Y_i)}{n}$$

การอนุมานเกี่ยวกับ β ด้วยค่าสถิติ t

ช่วงความเชื่อมั่น (1- lpha)100% ของ eta เป็นดังนี้

$$b - t_{\left(\frac{\alpha}{2}, n-2\right)} \sqrt{\frac{MSE}{S_X^2}} < \beta < b + t_{\left(\frac{\alpha}{2}, n-2\right)} \sqrt{\frac{MSE}{S_X^2}}$$

ความสัมพันธ์ระหว่าง F_(1.n-2) และ t_(n-2)

$$F_{(\alpha,1,n-2)} = t_{(\frac{\alpha}{2},n-2)}^2 = \frac{MSR}{MSE} = \frac{r^2(n-2)}{1-r^2}$$

• เนื่องจาก

$$t = \frac{b}{\sqrt{MSE/S_X^2}} \qquad \qquad t^2 = \frac{b^2 S_X^2}{MSE} = \frac{SSR}{MSE} = \frac{MSR}{MSE}$$

$$MSR = \frac{SSR}{1} = b^2 S_X^2 = r^2 S_Y^2$$
 $MSE = \frac{SSE}{n-2} = \frac{(1-r^2)S_Y^2}{n-2}$

ความสัมพันธ์ระหว่าง F_(1.n-2) และ t_(n-2)

- จะเห็นว่า ในกรณีที่ไม่มีตาราง F ก็สามารถใช้ตาราง t แทนได้ โดยการยกกำลังสองของค่า t ความสัมพันธ์ระหว่างค่าสถิติ F และค่าสถิติ t ตามสมการดังกล่าวเ**ป็นจริงเฉพาะกรณีที่องศา อิสระตัวแรกของค่าสถิติ F เป็น 1** เท่านั้นกล่าวคือ เป็น**กรณีที่มี** ตัวแปรอิสระ 1 ตัว
- สมการยังแสดงความสอดคล้องกันของการทดสอบสมมติฐาน $\mathsf{H}_{\mathsf{o}} \colon \pmb{\beta} = \mathsf{0}$ และ $\mathsf{H}_{\mathsf{o}} \colon \pmb{\rho} = \mathsf{0}$ กล่าวคือ
 - ถ้าไม่ปฏิเสธ H_{n} : $oldsymbol{eta}$ = 0 ก็จะไม่ปฏิเสธ H_{n} : $oldsymbol{
 ho}$ = 0
 - ถ้าปฏิเสธ H_{n} : β = 0 ก็จะปฏิเสธ H_{n} : ρ = 0

• จากข้อมูลดังนี้ จงทดสอบสมมติฐานว่าสมการถดถอยเชิงเส้นเหมาะสมหรือไม่ ที่ระดับนัยสำคัญ 0.05

X	-2	-1	0	1	2
Y		-1	1	3	99-29993199999999999

• สมมติฐานคือ

 H_0 : β = 0 (สมการไม่เหมาะสม)

 H_1 : β ≠ 0 (สมการเหมาะสม)

ตัวอย่าง 5

- กรณีใช้ค่าสถิติ F ทดสอบสมมติฐาน H_0 : $\beta = 0$
- จะใช้ตาราง ANOVA คำนวณ ดังนี้

แหล่งความ แปรปรวน	องศา อิสระ	SS	MS	F
ถดถอย	1	SSR	MSR =SSR/1	F= MSR/MSE
ส่วนเหลือ	n-2	SSE	MSE =SSE/(n-2)	$F = \frac{r^2(n-2)}{1-r^2}$
รวม	n-1	SST		

ตัวอย่าง 5

• ตาราง ANOVA กรณี SSR คำนวณจากค่า r

แหล่งความ แปรปรวน	องศา อิสระ	SS	MS	F
ถดถอย	1	$SSR = r^2 S_Y^2 = 1(40) = 40$	$MSR = \frac{40}{1} = 40$	$F = \frac{40}{0} = \infty$
ส่วนเหลือ	5-2=3	SSE = 40 - 40 = 0	$MSE = \frac{0}{5-2} = 0$	$F = \frac{1(5-2)}{1-1}$ $= \infty$
รวม	5-1=4	$SST = S_Y^2 = 40$		

- จากตารางสถิติ F_[0.05,1,3] = 10.13
- พบว่า | F | ≥ F_[0.05,1,3]
- สรุปว่า ปฏิเสธ H_0 ที่ α =0.05
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 5 อนุมานได้ว่า สมการถดถอยเชิงเส้นมีความ
 เหมาะสมที่จะนำไปประมาณค่าตัวแปรตาม Y

ตัวอย่าง 5

กรณีใช้ค่าสถิติ t ทดสอบสมมติฐาน H₀: β = 0

$$t = \frac{b}{\sqrt{\frac{MSE}{S_X^2}}} = \frac{2}{\sqrt{0/10}} = \infty$$

- จากตารางสถิติ t_[0.025,3] = 3.182
- พบว่า | t | ≥ t_[0.025,3]
- สรุปว่า ปฏิเสธ H_0 ที่ α =0.05
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 5 อนุมานได้ว่า สมการถดถอยเชิง เส้นมีความเหมาะสมที่จะนำไปประมาณค่าตัวแปรตาม Y

• กรณีใช้ค่าสถิติ t ทดสอบสมมติฐาน $H_0: \mathbf{p} = 0$

$$t = r\sqrt{\frac{n-2}{1-r^2}} = 1\sqrt{\frac{5-2}{1-1}} = \infty$$

- จากตารางสถิติ t_[0.025,3] = 3.182
- พบว่า | t | ≥ t_[0.025,3]
- สรุปว่า ปฏิเสธ H_0 ที่ α =0.05
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 5 อนุมานได้ว่า ตัวแปรทั้งสองตัวมี
 ความสัมพันธ์เชิงเส้น

ตัวอย่าง 6

• จากข้อมูลดังนี้ จงทดสอบสมมติฐานว่าสมการถดถอยเชิงเส้นเหมาะสมหรือไม่ ที่ระดับนัยสำคัญ 0.05

X	5	6	9	9	10
Υ	9	11	0	15	1

• สมมติฐานคือ

 H_0 : $\beta = 0$ (สมการไม่เหมาะสม)

 H_1 : β ≠ 0 (สมการเหมาะสม)

ตัวอย่าง 6

- ullet กรณีใช้ค่าสถิติ F ทดสอบสมมติฐาน H_0 : $oldsymbol{eta}$ = 0
- จะใช้ตาราง ANOVA คำนวณ ดังนี้

แหล่งความ แปรปรวน	องศา อิสระ	SS	MS	F
ถดถอย	1	SSR	MSR=SSR/1	MSR/MSE
ส่วนเหลือ	n-2	SSE	MSE=SSE/(n-2)	
รวม	n-1	SST		

ตัวอย่าง 6

• ตาราง ANOVA กรณีค่า SSR คำนวณจากค่า r

แหล่งความ แปรปรวน	องศา อิสระ	SS	MS	F
ถดถอย	1	$SSR = r^2 S_Y^2 = 32.7149$	MSR = 32.7149	$F = \frac{32.7149}{45.3617}$
ส่วนเหลือ	5-2=3	SSE = 136.0851	MSE = 45.3617	= 0.7212
รวม	5-1=4	$SST = S_Y^2 = 168.8$		

- จากตารางสถิติ $F_{[0.05,1,3]} = 10.13$
- พบว่า | F | < F_[0.05,1,3]
- สรุปว่า ไม่ปฏิเสธ H_n ที่ α =0.05
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 5 อนุมานได้ว่า สมการถดถอยเชิงเส้นไม่เหมาะสมที่ จะนำไปประมาณค่าตัวแปรตาม Y

• ตาราง ANOVA กรณีค่า SSR คำนวณจากค่า b

แหล่งความ แปรปรวน	องศา อิสระ	SS	MS	F
ถดถอย ส่วนเหลือ	1 5-2=3	$SSR = b^2 S_X^2 = 32.7149$ SSE = 136.0851	MSR = 32.7149 $MSE = 45.3617$	$F = \frac{32.7149}{45.3617}$ $= 0.7212$
รวม	5-1=4	$SST = S_Y^2 = 168.8$		- 0.7212

- จากตารางสถิติ F_[0.05,1,3] = 10.13
- พบว่า | F | < F_[0.05,1,3]
- สรุปว่า ไม่ปฏิเสธ H_{0} ที่ α =0.05
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 5 อนุมานได้ว่า สมการถดถอยเชิงเส้นไม่เหมาะสมที่ จะนำไปประมาณค่าตัวแปรตาม Y

ตัวอย่าง 6

• กรณีใช้ค่าสถิติ t ทดสอบสมมติฐาน H_0 : $\beta = 0$

$$t = \frac{b}{\sqrt{\frac{MSE}{S_X^2}}} = \frac{-1.31915}{\sqrt{45.36/18.8}} = -0.849$$

- จากตารางสถิติ t_[0.025,3] = 3.182
- พบว่า | t | < t_[0.025,3]
- สรุปว่า ไม่ปฏิเสธ H_0 ที่ α =0.05
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 5 อนุมานได้ว่า สมการถดถอยเชิง เส้นไม่เหมาะสมที่จะนำไปประมาณค่าตัวแปรตาม Y

ตัวอย่าง 6

• กรณีใช้ค่าสถิติ t ทดสอบสมมติฐาน $H_0: \mathbf{p} = 0$

$$t = -0.44 \sqrt{\frac{5 - 2}{1 - (-0.44)^2}} = -0.849$$

- จากตารางสถิติ t_[0.025,3] = 3.182
- พบว่า | t | < t_[0.025,3]
- สรุปว่า ไม่ปฏิเสธ H_0 ที่ $\pmb{\alpha}$ =0.05
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 5 อนุมานได้ว่า ตัวแปรทั้งสองตัว<mark>ไม่</mark> มีความสัมพันธ์เชิงเส้น

จากตัวอย่างที่ 6

จะเห็นว่าผลการทดสอบสมมติฐาน H₀: β = 0 ไม่ปฏิเสธ H₀ ที่ระดับ นัยสำคัญ 5% ซึ่งสอดคล้องกับผลการทดสอบสมมติฐาน H₀: ρ = 0 ไม่ ปฏิเสธ H₀ ที่ระดับนัยสำคัญ 5% เพราะเหตุที่ตัวแปรทั้งสองไม่มี ความสัมพันธ์เชิงเส้น จึงไม่เหมาะสมที่จะนำสมการถดถอยเชิงเส้นมา พยากรณ์ค่าตัวแปรตาม Y

การอนุมานเกี่ยวกับ α

- เป็นการทดสอบสมมติฐานว่าสมการถดถอยเชิงเส้นของ
 ประชากรผ่านจุดกำเนิดหรือไม่
- การอนุมานเกี่ยวกับ α ตั้งสมมติฐานดังนี้

$$H_0$$
: $\alpha = 0$

$$H_1$$
: $\alpha \neq 0$

การอนุมานเกี่ยวกับ α ด้วยค่า t

• ช่วงความเชื่อมั่น (1- lpha)100% ของ lpha เป็นดังนี้

$$a - t_{\left(\frac{\alpha}{2}, n-2\right)} S_a < \alpha < a + t_{\left(\frac{\alpha}{2}, n-2\right)} S_a$$

$$S_a = S_{YX} \sqrt{\frac{1}{n} + \frac{\bar{X}^2}{S_X^2}}$$

$$S_{YX} = \sqrt{MSE}$$

$$S_X^2 = \sum_i (X_i - \bar{X})^2$$

การอนุมานเกี่ยวกับ α ด้วยค่า t

• ใช้ตัวสถิติ t ในการทดสอบสมมติฐาน

$$t = \frac{a}{\sqrt{MSE} \sqrt{\frac{1}{n} + \frac{\bar{X}^2}{S_X^2}}}$$

- มีองศาอิสระ n-2
- สำหรับค่าสถิติ t: Decision rule คือ ปฏิเสธ H_0 ที่ระดับนัยสำคัญ $oldsymbol{lpha}$ % ถ้า $|t| \geq t_{(oldsymbol{lpha}/2,n-2)}$

ตัวอย่าง 7

• จากตารางข้อมูลขนาดบ้าน (X) และราคาบ้าน (Y) 20 หลัง ดังนี้

บ้านที่	ขนาด	ราคา									
1	1.8	32	6	0.8	17	11	2.3	44	16	2.5	43
2	1.0	24	7	3.6	52	12	0.9	19	17	1.4	27
3	1.7	27	8	1.1	20	13	1.2	25	18	3.3	50
4	2.8	47	9	2.0	38	14	3.4	50	19	2.2	37
5	1.2	35	10	2.6	45	15	1.7	30	20	1.5	28

- 1) จงหาเวกเตอร์ส่วนเหลือ และจงทดสอบคุณสมบัติของเวกเตอร์ส่วนเหลือ
- 2) จงสร้างสมการถดถอยเชิงเส้นพร้อมทั้งทดสอบสมมติฐานว่าสมการถดถอยเชิง เส้นที่สร้างขึ้นเหมาะสมที่จะนำไปทำนายราคาบ้านหรือไม่ ที่ระดับนัยสำคัญ 0.05

ตัวอย่าง 7 - สมการถดถอย

หาสมการถดถอยเชิงเส้นของ Y บน X

$$S_{XY} = \sum X_i Y_i - \frac{(\sum X_i) (\sum Y_i)}{n} = 1554.9 - \frac{(40)(690)}{20} = 174.9$$

$$S_X^2 = \sum X_i^2 - \frac{(\sum X_i)^2}{n} = 93.56 - \frac{(40)^2}{20} = 13.56$$

$$b = \frac{S_{XY}}{S_X^2} = \frac{174.9}{13.56} = 12.8982$$

$$a = \bar{Y} - b\bar{X} = (690/20) - (12.8982) \left(\frac{40}{20}\right) = 8.7035$$

• สรุปสมการถดถอยเชิงเส้นของ Y บน X คือ

$$\hat{Y} = 8.7035 + 12.8982X$$

ตัวอย่าง 7 - เวกเตอร์ส่วนเหลือ

• หาเวคเตอร์ส่วนเหลือและทดสอบคุณสมบัติของเวคเตอร์ส่วนเหลือได้ดังนี้ $\mathbf{d} = Y_i - \widehat{Y}_i$

บ้านที่	d	Xd	บ้านที่	d	Xd	บ้านที่	d	Xd	บ้านที่	d	Xd
1	0.0796	0.1434	6	-2.0221	-1.6177	11	5.6305	12.9502	16	2.0509	5.1272
2	2.3982	2.3982	7	-3.1372	-11.2938	12	-1.3119	-1.1808	17	0.2389	0.3345
3	-3.6309	-6.1719	8	-2.8916	-3.1808	13	0.8186	0.9823	18	-1.2677	-4.1834
4	2.1814	6.1080	9	3.5000	7.0000	14	-2.5575	-8.6956	19	-0.0796	-0.1752
5	-2.0794	-4.5752	10	2.7611	7.1788	15	-0.6305	-1.0719	20	-0.0509	-0.0763

• ทดสอบผลบวกของสมาชิกของเวกเตอร์ส่วนเหลือเป็น<mark>ศูนย์</mark>

$$\sum_{i} \mathbf{d}_i = -7.11E - 15$$

ullet ทดสอบเวกเตอร์ของตัวแปรอิสระเ<mark>ป็นอิสระ</mark>กับเวคเตอร์ส่วนเหลือ $\sum X_i \, {f d}_i = -4.95E-13$

ตัวอย่าง 7 - สมการถดถอย

• จากสมการถดถอยเชิงเส้นที่ได้นำมาคำนวณค่าพยากรณ์ได้ดังนี้

$$\hat{Y}_i = 8.7035 + 12.8982X_i$$

บ้านที่	Y_i	\hat{Y}_i	บ้านที่	Y_i	\widehat{Y}_i	บ้านที่	Y_i	\hat{Y}_i	บ้านที่	Y_i	\widehat{Y}_i
1	32	31.9204	6	17	19.0222	11	44	30.8695	16	43	40.9491
2	24	21.6018	7	52	55.1371	12	19	30.8120	17	27	26.7611
3	27	30.6305	8	20	22.8916	13	25	24.1814	18	50	51.2677
4	47	44.8186	9	38	34.5000	14	50	52.5575	19	37	37.0796
5	35	37.0704	10	45	42.2389	15	30	30.6305	20	28	28.0509

• จะเห็นว่า ถ้าสองตัวแปรมีความสัมพันธ์กันไม่สมบูรณ์การพยากรณ์ค่า Y จะไม่ ถูกต้อง 100%

ตัวอย่าง 7 - อนุมานเกี่ยวกับ β

• **กรณีใช้ค่าสถิติ F ทดสอบ** จะใช้ตาราง ANOVA คำนวณ

แหล่งความ แปรปรวน	องศา อิสระ	SS	MS	F
ถดถอย	1	SSR	MSR =SSR/1	F= MSR/MSE
ส่วนเหลือ	n-2	SSE	MSE =SSE/(n-2)	
รวม	n-1	SST		

• สมมติฐานคือ

$$H_0$$
: $\beta = 0$ (สมการไม่เหมาะสม)

$$H_1$$
: β ≠ 0 (สมการเหมาะสม)

ตัวอย่าง 7 - อนุมานเกี่ยวกับ β

• ตาราง ANOVA คำนวณจากค่า b

แหล่งความ แปรปรวน	องศา อิสระ	SS	MS	F
ถดถอย ส่วนเหลือ	1 20-2=18	$SSR = b^2 S_X^2 = 2255.9004$ SSE = SST - SSR = 117.0996	MSR = 2255.9004 $MSE = 6.5055$	$F = \frac{MSR}{MSE}$ $= 346.7665$
รวม	20-1=19	$SST = S_Y^2 = 2373$		

- จากตารางสถิติ $F_{[0.05,1,18]} = 4.41$
- พบว่า | F | > F_[0.05,1,18]
- สรุปว่า ปฏิเสธ H_0 ที่ α=0.05
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 20 อนุมานได้ว่า สมการถดถอยเชิงเส้นเหมาะสมที่ จะนำไปประมาณค่าตัวแปรตาม Y

คำถาม

ตัวอย่าง 7 – อนุมานเกี่ยวกับ α

• กรณีใช้ค่าสถิติ t ทดสอบสมมติฐาน H_0 : $\mathbf{C} = \mathbf{C}$

$$t_{(\frac{\alpha}{2}, n-2)} = \frac{a}{\sqrt{MSE} \sqrt{\frac{1}{n} + \frac{\bar{X}^2}{S_X^2}}} = \frac{8.7035}{\sqrt{6.5055} \sqrt{\frac{1}{20} + \frac{4}{13.56}}} = 5.810$$

- จากตารางสถิติ t_[0.025,18] = 2.101
- พบว่า | t | ≥ t_[0.025,18]
- สรุปว่า ปฏิเสธ H_0 ที่ α =0.05
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 5 อนุมานได้ว่า สมการถดถอยเชิง เส้นของประชากรไม่ผ่านจุดกำเนิด