Lectures 12 and 13 Dynamic programming: weighted interval scheduling

COMP 523: Advanced Algorithmic Techniques

Lecturer: Dariusz Kowalski

Overview

Last week:

• Graph algorithm: BFS and DFS, testing graph properties based on searching, topological sorting

This week:

- Dynamic programming
- Weighted interval scheduling
- Sequence alignment

Dynamic Programming paradigm

Dynamic Programming (DP):

- Decompose the problem into series of subproblems
- Build up correct solutions to larger and larger subproblems

Similar to:

- Recursive programming vs. DP: in DP subproblems may strongly overlap
- Exhaustive search vs. DP: in DP we try to find redundancies and reduce the space for searching

(Weighted) Interval scheduling

(Weighted) Interval scheduling:

Input: set of intervals (with weights) on the line, represented by pairs of points - ends of intervals

Output: finding the largest (maximum sum of weights) set of intervals such that none two of them overlap

Greedy algorithm doesn't work for weighted case!

Example

Greedy algorithm:

• Repeatedly select the interval which ends first (but still not overlapping the already chosen intervals)

Exact solution of unweighted case.

weight 1	_	
	weight 3	
		weight 1

Greedy algorithm gives total weight 2 instead of optimal 3

Basic structure and definition

- Sort the intervals according to their right ends
- Define function *p* as follows:
 - p(1) = 0
 - -p(i) is the number of intervals which finish before i^{th} interval starts

Basic property

- Let \mathbf{w}_{j} be the weight of j^{th} interval
- Optimal solution for the set of first *j* intervals satisfies

$$OPT(j) = \max\{ w_j + OPT(p(j)), OPT(j-1) \}$$

Proof:

If j^{th} interval is in the optimal solution **O** then the other intervals in **O** are among intervals $1, \dots, p(j)$.

Otherwise search for solution among first *j*-1 intervals.

Sketch of the algorithm

Additional array M[0...n] initialized by 0,p(1),...,p(n)
 (intuitively M[j] stores optimal solution OPT(j))
 Algorithm

```
• For j = 1, \dots, n do
```

 $- \operatorname{Read} p(j) = M[j]$

- Set $M[j] := \max\{ w_j + M[p(j)], M[j-1] \}$

```
weight 1

weight 3

p(1)=0

p(2)=1

weight 2

p(3)=0

Lectures 12-13: Dynamic Programming
```

Complexity of solution

Time: $O(n \log n)$

- Sorting: $O(n \log n)$
- Initialization of M[0...n] by 0,p(1),...,p(n): O(n log n)
- Algorithm: n operations, each takes constant time, total O(n)

Memory: O(n) - additional array M

Sequence alignment problem

Popular problem from word processing and computational biology

- Input: two words $X = x_1x_2...x_n$ and $Y = y_1y_2...y_m$
- Output: largest alignment

Alignment A: set of pairs $(i_1, j_1), ..., (i_k, j_k)$ such that

- If (i,j) in A then $x_i = y_j$
- If (i,j) is before (i',j') in A then i < i' and j < j' (no crossing matches)

Example

• Input: X = c t t t c t c c Y = t c t t c cAlignment A:

$$X = c t t t c t c c$$

$$| | | | |$$

$$Y = t c t t c c$$

Another largest alignment A:

$$X = c t t t c t c c$$

$$| | | | | |$$

$$Y = t c t t c c$$

Finding the size of max alignment

Optimal alignment OPT(i,j) for prefixes of X and Y of lengths i and j respectively:

```
OPT(i,j) = \max\{ \alpha_{ij} + OPT(i-1,j-1), OPT(i,j-1), OPT(i-1,j) \} where \alpha_{ij} equals 1 if \mathbf{x}_i = \mathbf{y}_j, otherwise is equal to -\infty
```

Proof:

If $x_i = y_j$ in the optimal solution **O** then the optimal alignment contains one match (x_i, y_j) and the optimal solution for prefixes of length i-1 and j-1 respectively.

Otherwise at most one end is matched. It follows that either $x_1x_2...x_{i-1}$ is matched only with letters from $y_1y_2...y_m$ or $y_1y_2...y_{j-1}$ is matched only with letters from $x_1x_2...x_n$. Hence the optimal solution is either the same as for OPT(i-1,j) or for OPT(i,j-1).

Algorithm finding max alignment

- Initialize matrix M[0..n,0..m] into zeros Algorithm
- For i = 1,...,n do -For j = 1,...,m do
 - Compute α_{ij}
 - Set M[i,j] : = $\max\{ \alpha_{ij} + M[i-1,j-1], M[i,j-1], M[i-1,j] \}$

Complexity

Time: O(nm)

- Initialization of matrix M[0..n,0..m]: O(nm)
- Algorithm: O(nm)

Memory: O(nm)

Reconstruction of optimal alignment

Input: matrix M[0..*n*,0..*m*] containing OPT values

Algorithm

- Set i = n, j = m
- While i,j > 0 do
 - Compute α_{ij}
 - If $M[i,j] = \alpha_{ij} + M[i-1,j-1]$ then match x_i and y_j and set i = i 1, j = j 1; else
 - If M[i,j] = M[i,j-1] then set j = j 1 (skip letter y_i), else
 - If M[i,j] = M[i-1,j] then set i = i 1 (skip letter x_i)

 Lectures 12-13: Dynamic Programming

Distance between words

Generalization of alignment problem

- Input:
 - two words $X = x_1 x_2 ... x_n$ and $Y = y_1 y_2 ... y_m$
 - mismatch costs α_{pq} , for every pair of letters p and q
 - gap penalty δ
- Output: (smallest) distance between words X and Y

Example

• Input: X = c t t t c t c c Y = t c t t c cAlignment A: (4 gaps, 1 mismatch of cost α_{ct}) X = c t t t c t c cY = t c t t c cLargest alignment A: (4 gaps) X = c t t t c t c cY = t c t t c c

Finding the distance between words

Optimal alignment OPT(*i*,*j*) for prefixes of X and Y of lengths *i* and *j* respectively:

$$OPT(i,j) = \max\{ \alpha_{ij} + OPT(i-1,j-1), \delta + OPT(i,j-1), \delta + OPT(i-1,j) \}$$

Proof:

If x_i and y_j are (mis)matched in the optimal solution O then the optimal alignment contains one (mis)match (x_i, y_j) of cost α_{ij} and the optimal solution for prefixes of length i-1 and j-1 respectively.

Otherwise at most one end is (mis)matched. It follows that either $x_1x_2...x_{i-1}$ is (mis)matched only with letters from $y_1y_2...y_m$ or $y_1y_2...y_{j-1}$ is (mis)matched only with letters from $x_1x_2...x_n$. Hence the optimal solution is either the same as counted for OPT(i-1,j) or for OPT(i,j-1), plus the penalty gap δ .

Algorithm and complexity remain the same.

Conclusions

- Dynamic programming
- Weighted interval scheduling
- Sequence alignment

Textbook and Exercises

- Chapter 6 "Dynamic Programming"
- All Interval Sorting problem