

Olimpiada Națională de Matematică

Etapa Județeană/a Sectoarelor Municipiului București, 2023

CLASA a VI-a – soluții

Problema 1. Elementele unei mulțimi A sunt 13 numere naturale consecutive, elementele unei mulțimi B sunt 12 numere naturale consecutive, iar elementele mulțimii $A \cup B$ sunt 15 numere naturale consecutive.

- a) Determinați numărul elementelor mulțimii $A \setminus B$.
- b) Dacă, în plus, suma elementelor mulțimii A este egală cu suma elementelor mulțimii B, determinați cele două mulțimi.

Gazeta Matematică

Problema 2. Fie ABC un triunghi isoscel, cu AB = AC și $\angle ABC = 72^{\circ}$. Pe dreapta BC considerăm punctul D astfel încât C să aparțină segmentului BD și CD = AB.

- a) Arătați că AC este bisectoarea unghiului $\not \subset BAD$.
- b) Pe paralela la AB dusă prin D luăm punctul E, în același semiplan cu A față de BD, astfel încât DE = DB. Fie F punctul de intersecție a dreptelor AD și BE. Demonstrați că dreptele AC și AE sunt perpendiculare și AF = FC = BC.

Soluție. a) Avem $\angle BAC = 36^{\circ}$. Cum triunghiul ACD este isoscel cu $\angle ACD = 180^{\circ} - 72^{\circ} = 108^{\circ}$, rezultă că $\angle CAD = \angle ADC = 36^{\circ}$, deci AC este bisectoarea unghiului $\angle BAD \cdot \mathbf{2p}$ b) Deoarece $\angle ABD = \angle BAD = 72^{\circ}$, rezultă că triunghiul

Problema 3. Considerăm tabloul din figura alăturată. În fiecare pătrățel al lui scriem câte un număr întreg, astfel încât suma numerelor scrise în pătrățelele albe să fie 23, iar suma numerelor scrise în pătrățelele de pe coloanele cu număr impar să fie 40. Înlocuim apoi numerele din pătrățelele albe cu opusele lor.

Cât este acum suma numerelor din pătrățelele de pe liniile cu număr impar?

Soluție. Fie a_p suma numerelor din pătrățelele albe de pe liniile cu număr par și a_i suma numerelor din pătrățelele albe de pe liniile cu număr impar. Avem $a_i + a_p = 23 \dots 2p$

Mulțimea pătrățelelor negre din coloanele cu număr impar coincide cu mulțimea pătrățelelor
negre din liniile cu număr impar, iar mulțimea pătrățelelor albe din coloanele cu număr impar
coincide cu mulțimea pătrățelelor albe din liniile cu număr par ${\bf 2p}$
Fie n suma numerelor din pătrățelele negre de pe coloanele cu număr impar. Din cele de
mai sus și din ipoteză, știm că $n + a_p = 40$ și avem de calculat $n - a_i$.
Rezultă $n - a_i = (n + a_p) - (a_i + a_p) = 17 \dots 3p$
Problema 4. Determinați numerele naturale n pentru care cel mai mare divizor prim al
numărului $n^2 + 2$ este egal cu cel mai mare divizor prim al numărului $n^2 + 2n + 3$.
Soluție. Un divizor comun d al numerelor date divide și numerele $n^2+2n+3-(n^2+2)=2n+1$,
$n \cdot (2n+1) = 2n^2 + n$, $2n^2 + n - 2 \cdot (n^2 + 2) = n - 4$, $2n + 1 - 2 \cdot (n - 4) = 9 \dots 2p$
Astfel, dacă d este prim, atunci $d=3$, iar singurul factor prim care mai poate apărea în
descompunerea numerelor date este 2, la cel mult unul dintre ele. În plus, măcar unul dintre
numere are exponentul lui 3 cel mult 2 $\mathbf{1p}$
Dacă n este par, atunci $n^2 + 2$ este par, dar nu este divizibil cu 4 și putem avea cazurile: I)
$n^2 + 2 = 2 \cdot 3$; II) $n^2 + 2 = 2 \cdot 3^2$; III) $n^2 + 2n + 3 = 3$; IV) $n^2 + 2n + 3 = 3^2$. Obținem doar
soluția $n=4$ (corespunzătoare cazului II)
Dacă n este impar, atunci $n^2 + 2n + 3$ este par, dar nu este divizibil cu 4 și putem avea
cazurile: V) $n^2 + 2n + 3 = 2 \cdot 3$; VI) $n^2 + 2n + 3 = 2 \cdot 3^2$; VII) $n^2 + 2 = 3$; VIII) $n^2 + 2 = 3^2$.
Obținem doar soluția $n=1$ (corespunzătoare cazurilor V și VII)2p