GATE-2007-AE-35-51

1

EE24BTECH11047 - Niketh Prakash Achanta

- 18) Let a primal linear programming problem admit an optimal solution. Then the corresponding dual problem
 - a) does not have a feasible solution
 - b) has a feasible solution but does not have any optimal solution
 - c) does not have a convex feasible region
 - d) has an optimal solution
- 19) In any system of particles, suppose we do not assume that the internal forces come in pairs. Then the fact that the sum of internal forces is zero follows from
 - a) Newton's second law
 - b) conservation of angular momentum
 - c) conservation of energy
 - d) principle of virtual displacement
- 20) Let q_1, q_2, \dots, q_n be the generalized coordinates and $\dot{q}_1, \dot{q}_2, \dots, \dot{q}_n$ be the generalized velocities in a conservative force field. If under a transformation φ , the new coordinate system has the generalized coordinates Q_1,Q_2,\cdots,Q_n and velocities $\dot{Q}_1,\dot{Q}_2,\cdots,\dot{Q}_n$, then the equation $\frac{\partial L}{\partial \dot{q}_k}=\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_k}\right)$ takes the form

 - a) $\frac{\partial L}{\partial Q_k} = \varphi \frac{d}{dt} \left(\frac{\partial L}{\partial Q_k} \right)$ b) $\varphi \frac{\partial L}{\partial Q_k} = \frac{d}{dt} \left(\frac{\partial L}{\partial Q_k} \right)$ c) $\frac{\partial L}{\partial Q_k} = \frac{d}{dt} \varphi \left(\frac{\partial L}{\partial Q_k} \right)$

 - d) $\frac{\partial L}{\partial Q_t} = \varphi \frac{d}{dt} \left(\frac{\partial \widetilde{L}}{\partial \dot{Q}_t} \right)$
- 21) Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be the linear map satisfying

$$T(e_1) = e_2, T(e_2) = e_3, T(e_3) = 0, T(e_4) = e_3,$$

where $\{e_1, e_2, e_3, e_4\}$ is the standard basis of \mathbb{R}^4 . Then

- a) T is idempotent
- b) T is nvertible
- c) Rank T = 3
- d) T is nilpotent
- 22) Let $M = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ and $V = \{Mx : x \in \mathbb{R}^3\}$. Then an orthonormal basis for V is
 - a) $\left\{ (1,0,0)^T, \frac{1}{\sqrt{5}} (0,2,1)^T, \frac{1}{\sqrt{6}} (2,1,1)^T \right\}$
 - b) $\left\{ (1,0,0)^T, \frac{1}{\sqrt{2}}(0,1,1)^T \right\}$
 - c) $\left\{ (1,0,0)^T, \frac{1}{\sqrt{3}} (1,1,1)^T, \frac{1}{\sqrt{6}} (2,1,1)^T \right\}$
 - d) $\{(1,0,0)^T, (0,0,1)^T\}$

23) For any $n \in \mathbb{N}$, let P_n denote the vector space of all polynomials with real coefficients and of degree at most n. Define $T: P_n \to P_{n+1}$ by

$$T(p)(x) = p'(x) - \int_0^x p(t)dt.$$

Then the dimension of the null space of T is

- a) 0
- b) 1
- c) n
- d) n + 1
- 24) Let $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$, where $0 < \theta < \frac{\pi}{2}$. Let $V = \{u \in \mathbf{R}^3 : Mu^T = u^T\}$. Then

the dimension of

- a) 0
- b) 1
- c) 2
- d) 3
- 25) The number of linearly independent eigenvectors of the matrix $\begin{pmatrix} 2 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ is
 - a) 1
 - b) 2
 - c) 3
 - d) 4
- 26) Let f be a bilinear transformation that maps -1 to 1, i to ∞ and -i to 0. Then f(1) is equal to
 - a) -2
 - b) -1
 - c) i
 - d) -i
- 27) Which one of the following does NOT hold for all continuous functions $f: [-\pi, \pi] \to$ \mathbb{C} ?
 - a) if f(-t) = f(t) for each $t \in [-/pi, /pi]$, then $\int_{-\pi}^{\pi} f(t) dt = 2 \int_{0}^{\pi} f(t) dt$ b) If f(-t) = -f(t) for each $t \in [-/pi, /pi]$, then $\int_{-\pi}^{\pi} f(t) dt = 0$

 - c) $\int_{-\pi}^{\pi} f(-t) dt = -\int_{-\pi}^{\pi} f(t) dt =$
 - d) There is an α with $-\pi < \alpha < \pi$ such that $\int_{-\pi}^{\pi} f(t) dt = 2\pi f(\alpha)$
- 28) Let S be the positively oriented circle given by |z 3i| = 2. Then the value of $\int_S \frac{dz}{z^2 + 4}$

 - a) $-\frac{\pi}{2}$ b) $\frac{\pi}{2}$ c) $-\frac{i\pi}{2}$

- d) $\frac{i\pi}{2}$
- 29) Let T be the closed unit disk and ∂T be the unit circle. Then which one of the following holds for every analytic function $f: T \to \mathbb{C}$.
 - a) | f | attains its minimum and its maximum on ∂T
 - b) | f| attains its minimum on ∂T but need not attain its maximum on ∂T
 - c) |f| attains its maximum on $|\partial T|$ but need not attain its minimum on $|\partial T|$
 - d) | f | need not attain its maximum on ∂T and also it need not attain its minimum on ∂T
- 30) Let S be the disk |z| < 3 in the complex plane and let $f: S \to \mathbb{C}$ be an analytic function such that $f\left(1+\frac{\sqrt{2}}{n}i\right)=-\frac{2}{n^2}$ for each natural number n. Then $f(\sqrt{2})$ is equal to
 - a) $3 2\sqrt{2}$
 - b) $3 + 2\sqrt{2}$
 - c) $2 3\sqrt{2}$
 - d) $2 + 3\sqrt{2}$
- 31) Which one of the following statements holds?

 - a) The series $\sum_{n=0}^{\infty} x^n$ converges for each $x \in [-1,1]$ b) The series $\sum_{n=0}^{\infty} x^n$ converges uniformly in (-1,1)c) The series $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ converges for each $x \in [-1,1]$ d) The series $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ converges uniformly in (-1,1)
- 32) For $x \in [-\pi, \pi]$, let

$$f(x) = (\pi + x)(\pi - x) \text{ and } g(x) = \begin{cases} \cos(1/x) & if x \neq 0, \\ 0 & if x = 0. \end{cases}$$

Consider the statements: P: The Fourier series of f converges uniformly to f on $[-\pi,\pi]$. Q: The Fourier series of g converges uniformly to g on $[-\pi,\pi]$. Then

- a) P and Q are true
- b) P is true but Q is false
- c) P is false but Q is true
- d) Both P and Q are false
- 33) Let $W = \{(x, y, z) \in \mathbf{R}^3 : 1 \le x^2 + y^2 + z^2 \le 4\}$ and $F : W \to \mathbf{R}^3$ be defined by $F(x, y, z) = \frac{(x, y, z)}{\left[x^2 + y^2 + z^2\right]^{3/2}}$ for $(x, y, z) \in W$. If ∂W denotes the boundary of W oriented by the outward normal n to W, then $\iint_{\partial W} F \cdot n \, dS$ is equal to
 - a) 0
 - b) 4π
 - c) 8π
 - d) 12π
- 34) For each $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ be a measurable function such that $|f_n(t)| \le \frac{1}{\sqrt{t}}$ for all $t \in (0,1]$. Let $f:[0,1] \to \mathbf{R}$ be defined by f(t) = 1 if t is irrational and f(t) = -1 if t is rational. Assume that $f_n(t) \to f(t)$ as $n \to \infty$ for all $t \in [0, 1]$.
 - a) f is not measurable

- b) f is measurable and $\int_0^1 f_n d\mu \to 1$ as $n \to \infty$ c) f is measurable and $\int_0^1 f_n d\mu \to 0$ as $n \to \infty$ d) f is measurable and $\int_0^1 f_n d\mu \to -1$ as $n \to \infty$