Assignment 6

MAA4211

Carson Mulvey

(Graded) 2.7.3. (a) Suppose $\sum_{k=1}^{\infty} b_k$ converges. Let $\epsilon > 0$. Then there exists and $N \in \mathbb{N}$ such that for $n > m \ge N$, we have

$$|b_{m+1} + b_{m+2} + \dots + b_n| < \epsilon.$$

However, because $0 \le a_k \le b_k$ for all $k \in \mathbb{N}$, we also see that

$$a_{m+1} + a_{m+2} + \dots + a_n \le b_{m+1} + b_{m+2} + \dots + b_n$$

$$\implies |a_{m+1} + a_{m+2} + \dots + a_n| \le |b_{m+1} + b_{m+2} + \dots + b_n|$$

$$|a_{m+1} + a_{m+2} + \dots + a_n| < \epsilon.$$

Thus, taking the same N as picked for (b_n) , we can apply the Cauchy Criterion for Series again, showing that $\sum_{k=1}^{\infty} a_k$ converges.

(b) Suppose that