EXPECTATIONS FORMATION WITH FAT-TAILED PROCESSES: EVIDENCE AND THEORY

Tim de Silva Stanford GSB & SIEPR Eugene Larsen-Hallock CFM

Adam Rej CFM David Thesmar MIT, NBER, CEPR

NBER Behavioral Finance Meeting

April 2025

- Large recent literature documenting predictability in expectation errors
 - Underreaction: lab + field, often short-term or consensus forecasts
 - ullet Overreaction: lab + field, often longer-term individual forecasts

de Silva, Larsen-Hallock, Rej, Thesmar

- Large recent literature documenting predictability in expectation errors
 - Underreaction: lab + field, often short-term or consensus forecasts
 - Overreaction: lab + field, often longer-term individual forecasts
- Models to explain this predictability typically have two ingredients
 - 1 Simple DGP for forecasting variable (e.g. AR1 with normal shocks)
 - 2 Biases given known DGP (e.g. diagnostic expectations)

- Large recent literature documenting predictability in expectation errors
 - Underreaction: lab + field, often short-term or consensus forecasts
 - Overreaction: lab + field, often longer-term individual forecasts
- Models to explain this predictability typically have two ingredients
 - 1 Simple DGP for forecasting variable (e.g. AR1 with normal shocks)
 - 2 Biases given known DGP (e.g. diagnostic expectations)
- However, many variables have non-Gaussian DGPs with Pareto tails Gabaix 09
 - Challenge: hard to study beliefs because rational expectations become intractable

de Silva, Larsen-Hallock, Rej, Thesmar

1

- Large recent literature documenting predictability in expectation errors
 - Underreaction: lab + field, often short-term or consensus forecasts
 - Overreaction: lab + field, often longer-term individual forecasts
- Models to explain this predictability typically have two ingredients
 - 1 Simple DGP for forecasting variable (e.g. AR1 with normal shocks)
 - Biases given known DGP (e.g. diagnostic expectations)
- However, many variables have non-Gaussian DGPs with Pareto tails Gabaix 09
 - Challenge: hard to study beliefs because rational expectations become intractable
- This paper: study expectations formation in the presence of "fat" tails
 - Takeaway: helps match data + parsimonious model of under & overreaction

1 Document three facts using analysts forecasts of sales growth from IBES

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock ⇒ Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails ⇒ Fact #1

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock ⇒ Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails ⇒ Fact #1
- 3 Provide additional evidence in support of our theory
 - 1. Estimate the model and show it quantitatively three facts

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock ⇒ Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails ⇒ Fact #1
- 3 Provide additional evidence in support of our theory
 - 1. Estimate the model and show it quantitatively three facts
 - 2. Adding fat tails to DGP in experiment ⇒ non-linear error-revision relationship

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock ⇒ Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails ⇒ Fact #1
- 3 Provide additional evidence in support of our theory
 - 1. Estimate the model and show it quantitatively three facts
 - 2. Adding fat tails to DGP in experiment ⇒ non-linear error-revision relationship
 - 3. Returns to momentum are positive in bulk, but exhibit mean-reversion in tails

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock ⇒ Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails ⇒ Fact #1
- 3 Provide additional evidence in support of our theory
 - 1. Estimate the model and show it quantitatively three facts
 - 2. Adding fat tails to DGP in experiment ⇒ non-linear error-revision relationship
 - 3. Returns to momentum are positive in bulk, but exhibit mean-reversion in tails
- ⇒ Recognizing **complexity of DGP** is important for understanding belief formation!

1 Empirical evidence on under and overreaction in expectations

- Empirical evidence on under and overreaction in expectations
 - Underreaction: lab Benjamin 19, ST earnings Bouchaud et al. 19, revenues Ma et al. 2024, ST rates Wang 21, macro (consensus) Coibion-Gorodnichenko 15
 - Overreaction: lab Afrouzi et al. 23, LT earnings growth Bordalo et al. 19, LT rates Giglio-Kelly 18, d'Arienzo 20, macro (individual) Bordalo et al. 20
 - Contributions:
 - 1 Field: Evidence of both within **same** forecasting variable + horizon
 - 2 Lab: Non-linearity in overreaction depends on the Pareto tail of DGP

- Empirical evidence on under and overreaction in expectations
- 2 Models of under or overreaction in individual expectations
 - Underreaction: sticky expectations Bouchaud et al. 19, behavioral inattention Gabaix 19
 - Overreaction: diagnostic expectations Bordalo et al. 19, availability Afrouzi et al. 23

- Empirical evidence on under and overreaction in expectations
- 2 Models of under or overreaction in individual expectations
- Models of under and overreaction in individual expectations
 - Experience effects/constant-gain learning Malmendier-Nagel 16, Nagel-Xu 19
 - Selective recall with similarity and interference Bordalo et al. 22, 23
 - Shrinkage towards average persistence or precision Wang 21, Augenblick et al. 24
 - Overreaction to category-specific features Kwon-Tang 25
 - Within vs. across-category comparisons Graeber et al. 24
 - Contribution: model with under + overreaction within category/DGP

- Empirical evidence on under and overreaction in expectations
- 2 Models of under or overreaction in individual expectations
- Models of under and overreaction in individual expectations
- Models of expectations with unknown/misspecified DGPs
 - Natural expectations Fuster et al. 10, 11
 - Bayesian or non-parametric learning Kozlowski et al. 20, Singleton 21, Farmer et al. 24
 - No restrictions on the DGP de Silva-Thesmar 24
 - Our focus: misspecified model of distribution in the tails (could come from learning)

- Empirical evidence on under and overreaction in expectations
- 2 Models of under or overreaction in individual expectations
- Models of under and overreaction in individual expectations
- Models of expectations with unknown/misspecified DGPs
- **5** Statistical models with **non-Gaussian** dynamics
 - Pareto tails, especially in firm growth Gabaix 09, Stanley et al. 96, Moran et al. 24
 - Skewness + kurtosis in income Guvenen et al. 14, 21, Braxton et al. 25
 - Contribution: connect with models of belief formation in a tractable way

OUTLINE

- 1 Three Key Facts
 - Fact 1: Non-Linear Error-Revision Relationship
 - Fact 2: Fat Tails in the Distribution of Growth
 - Fact 3: Expected Growth is Non-Linear in Past Growth
- 2 Model of Expectations Formation
- 3 Additional Model Predictions Quantitative Fit Forecasting Experiment Return Momentum
- 4 Conclusion

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growth

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- Additional Model Predictions
 Quantitative Fit
 Forecasting Experiment
 Return Momentum
- 4 Conclusion

DATA AND VARIABLES

- Sample: 122K observations from 2000-2023 of US and foreign firms in IBES
- Forecasting variable: $g_{it} \equiv \log \text{sales}_{it} \log \text{sales}_{it-1 \text{ year}}$
 - Advantages relative to EPS: larger sample + stationary
 - g_{it} is adjusted for firm-specific mean and SD
 - Accounts for heterogenous DGPs across firms Wyatt-Bouchaud 03, but not crucial

DATA AND VARIABLES

- Sample: 122K observations from 2000-2023 of US and foreign firms in IBES
- Forecasting variable: $g_{it} \equiv \log \text{sales}_{it} \log \text{sales}_{it-1 \text{ year}}$
 - Advantages relative to EPS: larger sample + stationary
 - g_{it} is adjusted for firm-specific mean and SD
 - Accounts for heterogenous DGPs across firms Wyatt-Bouchaud 03, but not crucial

• Forecasts:

$$F_t g_{it+h} \equiv \log F_t \text{sales}_{it+h \text{ years}} - \log F_t \text{sales}_{it+(h-1) \text{ years}}$$
 (1)

- F_t = consensus analyst forecasts after year t FY-end announcement
- $F_t g_{it+h}$ is adjusted using same firm-specific mean and SD as g_{it}
- Note: (1) ignores a Jensen's adjustment, but not quantitatively important

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growth

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- Additional Model Predictions Quantitative Fit Forecasting Experiment Return Momentum
- 4 Conclusion

Coibion-Gorodnichenko Error-Revision Regressions

$$\underbrace{g_{it+1} - F_t g_{it+1}}_{\text{forecast error}} = \alpha + \beta \underbrace{\left(F_t g_{it+1} - F_{t-1} g_{it+1}\right)}_{\text{forecast revision}} + \epsilon_{it+1}$$

Coibion-Gorodnichenko Error-Revision Regressions

$$\underbrace{g_{it+1} - F_t g_{it+1}}_{\text{forecast error}} = \alpha + \beta \underbrace{\left(F_t g_{it+1} - F_{t-1} g_{it+1}\right)}_{\text{forecast revision}} + \epsilon_{it+1}$$

- $\beta \neq 0$ is inconsistent with rational expectations
 - Revisions are in forecasters information set ⇒ should not predict errors
- $eta > 0 \Rightarrow$ revisions do not update "enough" \Rightarrow underreaction Bouchaud et al. 19
- $eta < 0 \Rightarrow$ revisions update "too much" \Rightarrow **overreaction** Bordalo et al. 19
- Now a standard way of characterizing deviations from RE across datasets

Underreaction in the Bulk of the Distribution...

• Between 10-90% of revisions, error-revision slope is positive Bouchaud et al. 19

... BUT OVERREACTION IN THE TAILS!

Between 0-10%

of revisions, error-revision slope is negative

... But Overreaction in the Tails!

• Between 0-10% and 10-90% of revisions, error-revision slope is negative

FACT 1: Non-Linear Error-Revision Relationship

• Forecasts underreact and overreact within same variable and horizon

ROBUSTNESS OF NON-LINEAR ERROR-REVISION RELATIONSHIP

- Not driven by within-firm adjustment: holds with raw growth
- 2 Does not reflect omitted Jensen's term: holds with percent growth
- Open Does not arise because of aggregate time-varying volatility
- Not driven by aggregation: present in individual forecasts
- 5 Does not reflect sample: similar for both US and foreign firms

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growth

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- 3 Additional Model Predictions Quantitative Fit Forecasting Experiment Return Momentum
- 4 Conclusion

Tails of g_{it} are Fatter than Gaussian

TAIL BEHAVIOR IN TOP DECILES IS APPROXIMATELY A POWER LAW

Power Law : $P(|g_{it}| > x) \propto x^{-\nu} \Rightarrow \log P(|g_{it}| > x) = -\nu \log x + \text{constant}$

TAIL BEHAVIOR IN TOP DECILES IS APPROXIMATELY A POWER LAW

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growth

Fact 3: Expected Growth is Non-Linear in Past Growth

- Model of Expectations Formation
- Additional Model Predictions
 Quantitative Fit
 Forecasting Experiment
 Return Momentum
- 4 Conclusion

FACT 3: $\mathbf{E}(g_{it}|g_{it-1})$ IS NON-LINEAR: 10-90% OF g_{it-1}

FACT 3: $\mathbf{E}(g_{it}|g_{it-1})$ IS Non-Linear: Full Distribution of g_{it-1}

SUMMARIZING THE THREE FACTS

- 1 Forecast errors of sales growth are non-linear in revisions
 - Underreaction in the bulk of the distribution, overreaction in the tails

- 2 Distribution of sales growth, g_{it} , follows a **power law**
 - In the tails, $\log P(|g_{it}| > x) \approx -2.7 \log x + \text{constant}$

- **3** $E(g_{it+1}|g_{it})$ is non-linear
 - Increasing function in the bulk, decreasing function in the tails

SUMMARIZING THE THREE FACTS

- 1 Forecast errors of sales growth are non-linear in revisions
 - Underreaction in the bulk of the distribution, overreaction in the tails

- 2 Distribution of sales growth, g_{it} , follows a **power law**
 - In the tails, $\log P(|g_{it}| > x) \approx -2.7 \log x + \text{constant}$

- **3** $E(g_{it+1}|g_{it})$ is non-linear
 - Increasing function in the bulk, decreasing function in the tails

Next: introduce a framework that connects these three facts

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growtl

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- Additional Model Predictions
 Quantitative Fit
 Forecasting Experiment
 Return Momentum
- 4 Conclusion

DATA-GENERATING PROCESS

• DGP for sales growth (dropping *i* subscripts):

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

DATA-GENERATING PROCESS

• DGP for sales growth (dropping *i* subscripts):

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

- g_t is a combination of persistent and transitory processes Lettau-Wachter 07
 - $g_t^* =$ **unobservable** persistent latent state
 - ϵ_t = transitory shock with **Pareto tail**: $f(|\epsilon|) \propto |\epsilon|^{-\nu}$ as $|\epsilon| \longrightarrow \infty$, where $\nu > 2$

DATA-GENERATING PROCESS

• DGP for sales growth (dropping *i* subscripts):

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

- ullet g_t is a combination of persistent and transitory processes Lettau-Wachter 07
 - $g_t^* =$ **unobservable** persistent latent state
 - ϵ_t = transitory shock with **Pareto tail**: $f(|\epsilon|) \propto |\epsilon|^{-\nu}$ as $|\epsilon| \longrightarrow \infty$, where $\nu > 2$
- Remarks:
 - If ϵ_t was Gaussian, rational expectation would be the Kalman filter
 - Pareto tail in u_t Guvenen et al. 14 instead of ϵ_t inconsistent with Fact 3

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

• Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

 $g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

 $g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

$$E(g_{t+1}|g_t) = -
ho\sigma_{g^*}^2\cdotrac{d}{dg}\log h(g_t)$$

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

 $g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

$$E(g_{t+1}|g_t) = -\rho \sigma_{g^*}^2 \cdot \frac{d}{dg} \log h(g_t)$$

• In bulk of distribution, $g_t pprox ext{Gaussian} \Rightarrow \log h(g_t) pprox -rac{g_t^2}{2\sigma_g^2} + ext{constant}$

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

- In bulk of distribution, $g_t \approx \text{Gaussian} \Rightarrow \log h(g_t) \approx -\frac{g_t^2}{2\sigma^2} + \text{constant}$
- Intution: moderate values of g_t likely reflect $g_t^* \Rightarrow$ likely persistent

$$egin{aligned} g_{t+1} &= g_{t+1}^* + \sigma_\epsilon \epsilon_{t+1} & \epsilon_t \sim f(\cdot) \ g_{t+1}^* &=
ho g_t^* + \sigma_u u_{t+1} & u_t \sim N(0, \sigma_u^2) \end{aligned}$$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

$$E(g_{t+1}|g_t) = -
ho\sigma_{g^*}^2 \cdot \frac{d}{dg}\log h(g_t)$$

• In tails of distribution, $g_t \approx \mathsf{Pareto} \Rightarrow \log h(g_t) \approx -\nu \log(g_t)$

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

$$E(g_{t+1}|g_t) =
ho \sigma_{g^*}^2 \cdot rac{
u}{g_t} \qquad \searrow g_t$$

- In tails of distribution, $g_t \approx \text{Pareto} \Rightarrow \log h(g_t) \approx -\nu \log(g_t)$
- **Intuition**: extreme values of g_t likely reflect $\epsilon_t \Rightarrow$ likely transitory

Consider a linear model of belief formation for intuition:

$$F_t g_{t+h} = \gamma g_t, \quad \gamma = \text{OLS coefficient of } g_{t+h} \text{ on } g_t$$

Consider a linear model of belief formation for intuition:

$$F_t g_{t+h} = \gamma g_t, \quad \gamma = \mathsf{OLS} \; \mathsf{coefficient} \; \mathsf{of} \; g_{t+h} \; \mathsf{on} \; g_t$$

Result: Reaction of linear versus rational forecast to g_t:

$$rac{d}{dg_t}\Big[F_tg_{t+h}-E(g_{t+1}|g_t)\Big]\geq 0\iff rac{d^2}{dg^2}\log h(g_t)\geq -rac{1}{\sigma_g^2}$$

Consider a linear model of belief formation for intuition:

$$F_t g_{t+h} = \gamma g_t, \quad \gamma = \mathsf{OLS}$$
 coefficient of g_{t+h} on g_t

• **Result**: Reaction of linear versus rational forecast to g_t :

$$\frac{d}{dg_t}\Big[F_tg_{t+h} - E(g_{t+1}|g_t)\Big] \ge 0 \iff \frac{d^2}{dg^2}\log h(g_t) \ge -\frac{1}{\sigma_g^2}$$

• If ϵ_t was Gaussian,

$$rac{d^2}{dg^2}\log h(g_t) = -rac{1}{\sigma_g^2} \Rightarrow$$
 no under or overreaction

Consider a linear model of belief formation for intuition:

$$F_t g_{t+h} = \gamma g_t, \quad \gamma = \mathsf{OLS}$$
 coefficient of g_{t+h} on g_t

Result: Reaction of linear versus rational forecast to g_t:

$$\frac{d}{dg_t}\Big[F_tg_{t+h} - E(g_{t+1}|g_t)\Big] \ge 0 \iff \frac{d^2}{dg^2}\log h(g_t) \ge -\frac{1}{\sigma_g^2}$$

• If ϵ_t has Pareto tail, in the **bulk** of the distribution,

$$\frac{d^2}{dg^2}\log h(g_t) \approx -\frac{1}{\sigma_{g0}^2} < -\frac{1}{\sigma_g^2} \Rightarrow$$
 underreaction

Consider a linear model of belief formation for intuition:

$$F_t g_{t+h} = \gamma g_t, \quad \gamma = \mathsf{OLS}$$
 coefficient of g_{t+h} on g_t

• **Result**: Reaction of linear versus rational forecast to g_t :

$$\frac{d}{dg_t}\Big[F_tg_{t+h} - E(g_{t+1}|g_t)\Big] \ge 0 \iff \frac{d^2}{dg^2}\log h(g_t) \ge -\frac{1}{\sigma_g^2}$$

• If ϵ_t has Pareto tail, in the **tails** of the distribution,

$$rac{d^2}{dg^2}\log h(g_t)pprox rac{
u}{g_t^2}>-rac{1}{\sigma_g^2}\Rightarrow$$
 overreaction

• Consider a linear model of belief formation for intuition:

$$F_t g_{t+h} = \gamma g_t, \quad \gamma = \mathsf{OLS} \; \mathsf{coefficient} \; \mathsf{of} \; g_{t+h} \; \mathsf{on} \; g_t$$

Result: Reaction of linear versus rational forecast to g_t:

$$rac{d}{dg_t} \Big[F_t g_{t+h} - E(g_{t+1}|g_t) \Big] \geq 0 \iff rac{d^2}{dg^2} \log h(g_t) \geq -rac{1}{\sigma_g^2}$$

- Intuition:
 - Bulk: g_t is a stronger predictor of g_{t+1} than full-sample OLS predicts
 - Tails: g_t is a weak predictor of g_{t+1} because of transitory shocks
 - ⇒ Overreaction to weak signals + underreaction to strong signals Augenblick et al. 24

REPLICATING FACT 1 IN A MORE REALISTIC EXPECTATIONS MODEL

- Linear model of beliefs is tractable but unrealistic
- More realistic model: forecasts are **optimal** given full history of $\{g_s\}_{s=0}^t$
 - Add one departure from RE: forecasters think ϵ_t is Gaussian \Rightarrow use Kalman filter

REPLICATING FACT 1 IN A MORE REALISTIC EXPECTATIONS MODEL

- Linear model of beliefs is tractable but unrealistic
- More realistic model: forecasts are **optimal** given full history of $\{g_s\}_{s=0}^t$
 - Add one departure from RE: forecasters think ϵ_t is Gaussian \Rightarrow use Kalman filter
- Result: In the steady-state,

$$\lim_{| ext{revision}_t| o \infty} E(ext{error}_{t+1} \mid ext{revision}_t) = C imes ext{revision}_t \quad C < 0$$

- Proof uses that large revision, must reflect large current ϵ_t or past ϵ_{t-h}
- Overreaction occurs because ϵ_t is transitory, which forecasters don't realize

REPLICATING FACT 1 IN A MORE REALISTIC EXPECTATIONS MODEL

- Linear model of beliefs is tractable but unrealistic
- More realistic model: forecasts are **optimal** given full history of $\{g_s\}_{s=0}^t$
 - Add one departure from RE: forecasters think ϵ_t is Gaussian \Rightarrow use Kalman filter
- **Result**: In the steady-state, if $f(\cdot)$ is symmetric, there exists an R > 0 such that:

$$E\left(\operatorname{error}_{t+1} \times \operatorname{revision}_{t} \mid |\operatorname{revision}_{t}| < R\right) > 0$$

- Overreaction in tails + unbiased on average ⇒ some underreaction in bulk
- Implication: model generates Fact 1 qualitatively

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growth

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- 3 Additional Model Predictions

Quantitative Fit
Forecasting Experiment
Return Momentum

4 Conclusion

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growtl

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- 3 Additional Model Predictions Quantitative Fit

Forecasting Experiment Return Momentum

4 Conclusion

MODEL FIT: DGP

- Estimate DGP parameters using SMM by matching Facts 2 and 3
 - Assume $\epsilon \sim t$ -distribution with ν degrees of freedom
 - Add additional moments to identify process scale and persistence

MODEL FIT: DGP

- Estimate DGP parameters using SMM by matching Facts 2 and 3
 - Assume $\epsilon \sim t$ -distribution with ν degrees of freedom
 - Add additional moments to identify process scale and persistence
- Parameter estimates: $\rho = 0.53$, $\nu = 2.53$, $\sigma_u = 0.63$, $\sigma_{\epsilon} = 1.33$

Slope: $g_{t+1} - F_t g_{t+1}$ on $F_t g_{t+1} - F_{t-1} g_{t+1}$

1.0

0.0

-0.5

0-10%

10-20%

20-50%

Percentile of $F_tg_{t+1} - F_{t-1}g_{t+1}$

Kalman Filter Model Data

50-80%

• Given DGP, Kalman filter generates Fact 1 qualitatively...

80-90%

90-100%

• ... but overdoes it quantitatively: too much predictability

Kalman Filter

• Allow shrinkage to RE:
$$F_t^{\lambda}g_{t+h} = \lambda F_t g_{t+h} + \underbrace{(1-\lambda)E_t g_{t+h}}_{\text{particle filtering}}$$

Fuster et al. 10, Gabaix 19

- Allow shrinkage to RE: $F_t^{\lambda}g_{t+h} = \lambda F_t g_{t+h} + (1-\lambda)E_t g_{t+h}$ Fuster et al. 10, Gabaix 19
- $\lambda = 0.29 \Rightarrow$ replicates error predictability Fact 1

- Allow shrinkage to RE: $F_t^{\lambda}g_{t+h} = \lambda F_t g_{t+h} + (1-\lambda)E_t g_{t+h}$ Fuster et al. 10, Gabaix 19
- $\lambda = 0.29 \Rightarrow$ replicates error predictability Fact 1, but only lose **0.1%** of MSE

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growth

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- 3 Additional Model Predictions

Quantitative Fit

Forecasting Experiment

Return Momentum

4 Conclusion

EXPERIMENTAL DESIGN

- Design follows Afrouzi et al. 23: participants make one and two-period forecasts
- 201 participants make 40 forecasts ⇒ 8K observations possibly scale up?
- DGP is a scaled version of the one estimated in data

	Dependent Variable: Error				
	Non-Gaussian DGP with Fat Tails (1)	Gaussian AR1			
Revision	-0.40*** (0.02)				
Top 20%	(0.02)				
Bottom 20%					
Revision \times Bottom 20%					
Revision \times Top 20%					
Revision × Top & Bottom 20%					
Constant Clustering by Participant N	√ √ 7839				

	Dependent Variable: Error			
	Non-Gaussian DGP v	with Fat Tails (4)	Gaussian AR1	
Revision	-0.40***	-0.44**		
Top 20%	(0.02)	(0.02)		
Bottom 20%				
Revision \times Bottom 20%				
Revision \times Top 20%				
Revision \times Top & Bottom 20%				
Constant	✓	✓		
Clustering by Participant N	√ 7839	√ 5421		

	Dependent Variable: Error			
	Non-Gaussian DGP with Fat Tails Gaussian			
	(1)	(2)	(4)	
Revision	-0.40***	-0.28***	-0.44***	
	(0.02)	(0.06)	(0.02)	
Top 20%		-1.46		
		(4.41)		
Bottom 20%		-11.04**		
		(4.55)		
Revision × Bottom 20%		-0.27***		
		(0.09)		
Revision × Top 20%		-0.11		
		(80.0)		
Revision × Top & Bottom 20%				
Constant	✓	✓	\checkmark	
Clustering by Participant	\checkmark	\checkmark	✓	
N	7839	7839	5421	

	Dependent Variable: Error				
	Non-Gaussian DGP with Fat Tails		G	Baussian AR1	
	(1)	(2)	(4)	(5)	
Revision	-0.40***	-0.28***	-0.44***	-0.42***	
	(0.02)	(0.06)	(0.02)	(0.06)	
Top 20%		-1.46		-1.10	
		(4.41)		(2.52)	
Bottom 20%		-11.04**		-10.17***	
		(4.55)		(3.38)	
Revision × Bottom 20%		-0.27***		-0.12	
		(0.09)		(0.09)	
Revision × Top 20%		-0.11		-0.07	
		(80.0)		(0.07)	
Revision \times Top & Bottom 20%					
Constant	√	√	√	√	
Clustering by Participant	\checkmark	\checkmark	\checkmark	\checkmark	
N	7839	7839	5421	5421	

	Dependent Variable: Error				
	Non-Gaussian DGP with Fat Tails			G	aussian AR1
	(1)	(2)	(3)	(4)	(5)
Revision	-0.40***	-0.28***	-0.28***	-0.44***	-0.42***
	(0.02)	(0.06)	(0.06)	(0.02)	(0.06)
Top 20%		-1.46	4.19		-1.10
		(4.41)	(4.24)		(2.52)
Bottom 20%		-11.04**	-5.42		-10.17***
		(4.55)	(3.76)		(3.38)
Revision × Bottom 20%		-0.27***			-0.12
		(0.09)			(0.09)
Revision × Top 20%		-0.11			-0.07
		(80.0)			(0.07)
Revision × Top & Bottom 20%			-0.18**		
			(80.0)		
Constant	✓	√	✓	✓	✓
Clustering by Participant	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
N	7839	7839	7839	5421	5421

	Dependent Variable: Error					
	Non-Gaussian DGP with Fat Tails			Gaussian AR1		
	(1)	(2)	(3)	(4)	(5)	(6)
Revision	-0.40***	-0.28***	-0.28***	-0.44***	-0.42***	-0.42***
	(0.02)	(0.06)	(0.06)	(0.02)	(0.06)	(0.06)
Top 20%		-1.46	4.19		-1.10	-0.00
		(4.41)	(4.24)		(2.52)	(2.53)
Bottom 20%		-11.04**	-5.42		-10.17***	-8.83***
		(4.55)	(3.76)		(3.38)	(2.78)
Revision × Bottom 20%		-0.27***			-0.12	
		(0.09)			(0.09)	
Revision × Top 20%		-0.11			-0.07	
		(80.0)			(0.07)	
Revision × Top & Bottom 20%			-0.18**			-0.09
			(80.0)			(0.07)
Constant	✓	✓	✓	✓	✓	✓
Clustering by Participant	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark
N	7839	7839	7839	5421	5421	5421

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growtl

Fact 3: Expected Growth is Non-Linear in Past Growth

- Model of Expectations Formation
- 3 Additional Model Predictions

Quantitative Fit Forecasting Experiment

Return Momentum

4 Conclusion

• Campbell 91 + constant $F_t(r_{t+k})$ + earnings growth $t = \gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma \left(F_{t+1} - F_t \right) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

• Campbell 91 + constant $F_t(r_{t+k})$ + earnings growth $t = \gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma (F_{t+1} - F_t) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

Model

• Campbell 91 + constant $F_t(r_{t+k})$ + earnings growth $t = \gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma (F_{t+1} - F_t) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

Model

• Campbell 91 + constant $F_t(r_{t+k})$ + earnings growth $t = \gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma (F_{t+1} - F_t) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

Model

• Campbell 91 + constant $F_t(r_{t+k})$ + earnings growth $t = \gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma \left(F_{t+1} - F_t \right) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

Model

Data: Below Median Market Cap

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growtl

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- Additional Model Predictions
 Quantitative Fit
 Forecasting Experiment
 Return Momentum
- 4 Conclusion

Conclusion

- Main fact: forecast errors are non-linear in forecast revisions
 - Underreaction in the bulk of the distribution, overreaction in the tails
- One deviation from RE can explain this: ignoring fat tails
 - Intuition: Extreme realizations are less persistent than forecasters realize
 - Provides a parsimonious model of under and overreaction within a DGP
 - Also consistent with evidence from experiments and asset prices

Conclusion

- Main fact: forecast errors are non-linear in forecast revisions
 - Underreaction in the bulk of the distribution, overreaction in the tails
- One deviation from RE can explain this: ignoring fat tails
 - Intuition: Extreme realizations are less persistent than forecasters realize
 - Provides a parsimonious model of under and overreaction within a DGP
 - Also consistent with evidence from experiments and asset prices
- Broader takeaways:
 - Recognizing DGP complexity important for understanding belief formation
 - **2** Combining experiments + surveys useful for assessing important features

THANK YOU!

tdesilva@stanford.edu

thesmar@mit.edu