Тема III. Квадратичные формы

§3. Классификация квадрик

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Постановка задачи: плоский случай

Дано уравнение второй степени:

$$a_{11}x^{2} + 2a_{12}xy + a_{22}y^{2} + 2a_{1}x + 2a_{2}y + a_{0} = 0.$$
 (*)

Какой геометрический объект оно задает? Множество точек, задаваемое произвольным уравнением 2-й степени вида (*), называется *плоской квадрикой*. Итак, поставленный вопрос есть задача классификации плоских квадрик. Ей занимались еще математики античной Греции (на чисто геометрическом языке и из чисто эстетических соображений). Намного позже «вдруг» оказалось, что знания о квадриках необходимы для многочисленных технических и научных приложений.

План:

- 1. Приведем квадратичную форму $a_{11}x^2+2a_{12}xy+a_{22}y^2$ к каноническому виду ортогональным преобразованием (в плоском случае ортогональное преобразование есть поворот вокруг начала координат или симметрия относительно одной из координатных осей).
- 2. Избавимся от двух из трех остальных слагаемых с помощью переноса начала координат.
- 3. При необходимости исследуем упрощенное уравнение средствами математического анализа.

Случай центральной квадрики

Плоская квадрика *центральная*, если определитель $\Delta_2 := \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} \neq 0.$

Тогда собственные значения λ_1,λ_2 матрицы $\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$ отличны от 0.

Квадратичная форма $a_{11}x^2 + 2a_{12}xy + a_{22}y^2$ ортогональным преобразованием приводится к каноническому виду $\lambda_1 x'^2 + \lambda_2 y'^2$. Соответственно, уравнение (*) преобразуется к виду

$$\lambda_1 x'^2 + \lambda_2 y'^2 + 2a_1' x' + 2a_2' y' + a_0 = 0.$$

Заменяя $x' = x'' - \frac{a_1'}{\lambda_1}$, $y' = y'' - \frac{a_2'}{\lambda_2}$, избавимся от линейных членов.

Упрощенное уравнение имеет вид

$$\lambda_1 x''^2 + \lambda_2 y''^2 + a_0' = 0.$$

Переобозначив коэффициенты, запишем его как

$$Ax''^2 + By''^2 + C = 0.$$

Случай центральной квадрики, подслучай 1

Подслучай 1: $C \neq 0$. В этом подслучае уравнение $Ax''^2 + By''^2 + C = 0$ можно переписать в виде

$$\frac{x''^2}{-C/A} + \frac{y''^2}{-C/B} = 1. ag{1}$$

Возможны три варианта.

- а) $-\frac{C}{A}, -\frac{C}{B}>0$. Введя обозначения $a=\sqrt{-\frac{C}{A}}$ и $b=\sqrt{-\frac{C}{B}}$, мы получаем уравнение $\frac{x''^2}{a^2}+\frac{y''^2}{b^2}=1$. Квадрика, задаваемая таким уравнением, называется эллипсом.
- б) Числа $-\frac{C}{A}$ и $-\frac{C}{B}$ имеют разные знаки. Без ограничения общности можно считать, что $-\frac{C}{A}>0$ и $-\frac{C}{B}<0$. Введя обозначения $a=\sqrt{-\frac{C}{A}}$, $b=\sqrt{\frac{C}{B}}$, мы получим уравнение $\frac{x''^2}{a^2}-\frac{y''^2}{b^2}=1$. Квадрика, задаваемая таким уравнением, называется *гиперболой*.
- в) $-\frac{C}{A}, -\frac{C}{B} < 0$. Тогда уравнение (1) не имеет решений, и потому его геометрическим образом является *пустое множество*. Квадрика, задаваемая таким уравнением, называется *мнимым эллипсом*.

Случай центральной квадрики, подслучай 2

Подслучай 2: C=0. Тогда уравнение $Ax''^2+By''^2+C=0$ имеет вид $Ax''^2+By''^2=0. \eqno(2)$

Возможны два варианта.

- а) Числа A и B имеют одинаковый знак. Тогда уравнение (2) имеет единственное решение: x''=y''=0 и его геометрическим образом является точка. Квадрика, задаваемая таким уравнением, называется парой мнимых пересекающихся прямых.
- 6) Числа A и B имеют разные знаки. Можно считать, что A>0 и B<0. Введя обозначения $a=\sqrt{A}$ и $b=\sqrt{-B}$, получим уравнение $a^2x''^2-b^2y''^2=0$, которое можно переписать в виде (ax''+by'')(ax''-by'')=0. Оно задает объединение прямой ax''+b''y=0 и прямой ax''-by''=0. Очевидно, что эти прямые пересекаются. Итак, квадрика, задаваемая таким уравнением, есть пара пересекающихся прямых.

Случай нецентральной квадрики

Если определитель $\Delta_2=\begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix}=0$, то одно из собственных значений матрицы $\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$ равно 0, а другое отлично от 0. Пусть λ — собственное

значение, отличное от 0. Квадратичная форма $a_{11}x^2 + 2a_{12}xy + a_{22}y^2$ ортогональным преобразованием приводится к каноническому виду $\lambda y'^2$. Соответственно, уравнение (*) преобразуется к виду

$$\lambda y'^2 + 2a_1'x' + 2a_2'y' + a_0 = 0.$$

Заменяя x'=x'', $y'=y''-\frac{a_2'}{\lambda}$, избавимся от члена, содержащего y'. Упрощенное уравнение имеет вид

$$\lambda y''^2 + 2a_1'x'' + a_0' = 0.$$

Переобозначив коэффициенты, запишем его как

$$Dy''^2 + 2Ex'' + F = 0.$$

Случай нецентральной квадрики, подслучаи 1 и 2

Подслучай 1: $E \neq 0$. При таком E уравнение $Dy''^2 + 2Ex'' + F = 0$ можно упростить, избавившись от свободного члена с помощью замены $x'' = x''' - \frac{F}{2E}, \ y'' = y'''$. Получится уравнение $Dy'''^2 + 2Ex''' = 0$. Квадрика, задаваемая таким уравнением, называется параболой.

Подслучай 2: E=0. Уравнение можно переписать в виде $y''^2=-rac{F}{D}$. Возможны три варианта.

- а) $-\frac{F}{D}>0$. Тогда, полагая $a=\sqrt{-\frac{F}{D}}$, мы получаем уравнение $y''^2=a^2$, геометрическим образом которого является *пара параллельных прямых* y''=a и y''=-a.
- 6) $-\frac{F'}{D}=0$. Тогда уравнение имеет вид $y''^2=0$ и определяет *пару совпадающих прямых*.
- в) $-\frac{F}{D}<0$. Тогда уравнение $y''^2=-\frac{F}{D}$ не имеет решений и его геометрическим образом является *пустое множество*. Квадрика, задаваемая таким уравнением, называется *парой мнимых параллельных прямых*.

Классификация плоских квадрик

Мы доказали следующий факт:

Теорема (классификация квадрик на плоскости)

Уравнение второй степени от двух переменных задает одну из 9 квадрик:

- эллипс,
- гипербола,
- парабола,
- мнимый эллипс,
- пара пересекающихся прямых,
- пара мнимых пересекающихся прямых,
- пара параллельных прямых,
- пара мнимых параллельных прямых,
- пара совпадающих прямых.

Эллипс (рисунок)

Эллипс с уравнением $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$ при a>b. Здесь $c:=\sqrt{a^2-b^2}$

Гипербола (рисунок)

М.В.Волков

Парабола (рисунок)

Парабола с уравнением $y^2=2px$

Пространственные квадрики

Теперь рассмотрим уравнение второй степени от трех переменных:

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2a_{1}x + 2a_{2}y + 2a_{3}z + a_{0} = 0.$$
(**)

Какой геометрический объект оно задает? Множество точек пространства, задаваемое произвольным уравнением 2-й степени вида (**), называется пространственной квадрикой.

Прежде чем приступать к общей задаче классификации пространственных квадрик, обсудим одну специальную ситуацию.

Цилиндрические поверхности

Определение

Пусть в пространстве заданы кривая ℓ и ненулевой вектор \vec{a} . Поверхность, образованная прямыми, проходящими через всевозможные точки кривой ℓ и коллинеарными вектору \vec{a} , называется *цилиндрической*. Кривая ℓ называется *направляющей*, а прямые — *образующими* этой поверхности.

Теорема (о цилиндрической поверхности)

Произвольная цилиндрическая поверхность может быть задана в подходящей системе координат уравнением вида F(x,y)=0, где F(x,y) — некоторая функция от двух переменных. Обратно, уравнение вида F(x,y)=0 задает в пространстве цилиндрическую поверхность.

<u>Доказательство</u>. Пусть σ — цилиндрическая поверхность, образующие которой параллельны вектору \vec{a} . Зафиксируем произвольную точку Oи проведем через нее плоскость π , перпендикулярную \vec{a} . Выберем в π произвольный базис \vec{b} и \vec{c} . Обозначим через ℓ кривую, по которой плоскость π пересекает поверхность σ . Ясно, что плоская кривая ℓ – направляющая поверхности $\sigma.$ Она задается в системе координат $(O; \vec{b}, \vec{c})$ плоскости π некоторым уравнением F(x,y) = 0. Проверим, что это же уравнение задает σ в системе координат $(O; \vec{b}, \vec{c}, \vec{a})$. Пусть $M(x_0,y_0,z_0)$ – произвольная точка. Проведем через M прямую, коллинеарную \vec{a} , и обозначим через M' точку ее пересечения с π . Точка M' имеет координаты $(x_0, y_0, 0)$. При этом $M \in \sigma$ тогда и только тогда, когда $M' \in \ell$, а $M' \in \ell$ тогда и только тогда, когда $F(x_0, y_0) = 0$. Таким образом, точка M принадлежит σ тогда и только тогда, когда ее координаты удовлетворяют уравнению F(x, y) = 0.

Уравнение цилиндрической поверхности (2)

Докажем обратное утверждение. Предположим, что поверхность σ имеет в некоторой системе координат уравнение F(x,y)=0. Обозначим через ℓ пересечение σ с плоскостью Oxy и положим $\vec{a}=(0,0,1)$. Произвольная точка M лежит на σ тогда и только тогда, когда координаты ее проекции на плоскость Oxy (при проектировании вдоль оси Oz) удовлетворяют уравнению F(x,y)=0. Отсюда σ – цилиндрическая поверхность с направляющей ℓ и образующими, коллинеарными вектору \vec{a} .

Возвращаясь к задаче классификации пространственных квадрик, видим, что каждое уравнение вида

$$a_{11}x^{2} + 2a_{12}xy + a_{22}y^{2} + 2a_{1}x + 2a_{2}y + a_{0} = 0$$
 (*)

в пространстве задает цилиндрическую поверхность, направляющей которой служит плоская квадрика, задаваемая (*). Таким образом, каждой из 9 плоских квадрик отвечает цилиндрическая квадрика в пространстве.

Цилиндрические квадрики

Эллипс \longmapsto Эллиптический цилиндр

Гипербола \longmapsto Гиперболический цилиндр

Парабола — Параболический цилиндр

Мнимый эллипс — Мнимый эллиптический цилиндр

Пара пересекающихся прямых \longmapsto Пара пересекающихся плоскостей

Пара мнимых пересекающихся прямых \longmapsto Пара мнимых пересекающихся плоскостей

Пара параллельных прямых \longmapsto Пара параллельных плоскостей

Пара мнимых параллельных прямых → Пара мнимых параллельных плоскостей

Пара совпадающих прямых \longmapsto Пара совпадающих плоскостей

Эллиптический цилиндр

Гиперболический цилиндр

Параболический цилиндр

Параболический цилиндр

План исследования уравнения 2-й степени от трех переменных

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2a_{1}x + 2a_{2}y + 2a_{3}z + a_{0} = 0.$$
(**)

1. Приведем квадратичную форму

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz$$

- к каноническому виду ортогональным преобразованием.
- 2. Избавимся от трех из четырех остальных слагаемых с помощью еще одного ортогонального преобразования или переноса начала координат.
- 3. Исследуем упрощенное уравнение методом сечения.

Случай центральной квадрики

Пространственная квадрика *центральная*, если $\Delta_3:=egin{array}{cccc} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \\ \end{array}
eq 0.$

Собственные значения $\lambda_1,\lambda_2,\lambda_3$ матрицы $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$ не равны 0.

Квадратичная форма

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz$$

ортогональным преобразованием приводится к каноническому виду $\lambda_1 x'^2 + \lambda_2 y'^2 + \lambda_3 z'^2$. Соответственно, уравнение (**) преобразуется к виду

$$\lambda_1 x'^2 + \lambda_2 y'^2 + \lambda_3 z'^2 + 2a_1' x' + 2a_2' y' + 2a_3' z' + a_0 = 0.$$

Заменяя $x'=x''-\frac{a_1'}{\lambda_1},\ y'=y''-\frac{a_2'}{\lambda_2},\ z'=z''-\frac{a_2'}{\lambda_3},$ избавимся от линейных членов. Упрощенное уравнение имеет вид

$$\lambda_1 x''^2 + \lambda_2 y''^2 + \lambda_3 z'^2 + a_0' = 0.$$

Переобозначив коэффициенты, запишем его как

$$Ax''^2 + By''^2 + Cz''^2 + D = 0.$$

Случай центральной квадрики, подслучай 1

Подслучай 1: $D \neq 0$. В этом подслучае уравнение $Ax''^2 + By''^2 + Cz''^2 + D = 0$ можно переписать в виде

$$\frac{x''^2}{-D/A} + \frac{y''^2}{-D/B} + \frac{z''^2}{-D/C} = 1.$$
 (3)

Возможны четыре варианта.

- а) Числа $-\frac{D}{A}$, $-\frac{D}{B}$ и $-\frac{D}{C}$ положительны. Введя обозначения $a=\sqrt{-\frac{D}{A}}$, $b=\sqrt{-\frac{D}{B}}$, $c=\sqrt{-\frac{D}{C}}$, получим уравнение $\frac{x''^2}{a^2}+\frac{y''^2}{b^2}+\frac{z''^2}{c^2}=1$. Квадрика, задаваемая таким уравнением, называется эллипсоидом.
- 6) Среди чисел $-\frac{D}{A}$, $-\frac{D}{B}$ и $-\frac{D}{C}$ два положительны и одно отрицательно. Без ограничения общности можно считать, что $-\frac{D}{A}$, $-\frac{D}{B}>0$ и $-\frac{D}{C}<0$. Введя обозначения $a=\sqrt{-\frac{D}{A}}$, $b=\sqrt{-\frac{D}{B}}$, $c=\sqrt{\frac{D}{C}}$, получим уравнение $\frac{x''^2}{a^2}+\frac{y''^2}{b^2}-\frac{z''^2}{c^2}=1$. Квадрика, задаваемая таким уравнением, называется однополостным гиперболоидом.

Случай центральной квадрики, подслучай 1, окончание

- в) Среди чисел $-\frac{D}{A}$, $-\frac{D}{B}$ и $-\frac{D}{C}$ одно положительно и два отрицательны. Можно считать, что первые два отрицательны, а третье положительно. Введя обозначения $a=\sqrt{\frac{D}{A}},\ b=\sqrt{\frac{D}{B}},\ c=\sqrt{-\frac{D}{C}},\$ получим уравнение $-\frac{x''^2}{a^2}-\frac{y''^2}{b^2}+\frac{z''^2}{c^2}=1,\$ что равносильно $\frac{x''^2}{a^2}+\frac{y''^2}{b^2}-\frac{z''^2}{c^2}=-1.$ Квадрика, задаваемая таким уравнением, называется двуполостным гиперболоидом.
- г) Числа $-\frac{D}{A}$, $-\frac{D}{B}$ и $-\frac{D}{C}$ отрицательны. Тогда уравнение (3) не имеет решений и его геометрическим образом является пустое множество. Соответствующая квадрика называется мнимым эллипсоидом.

Случай центральной квадрики, подслучай 2

Подслучай 2: D=0. Тогда уравнение $Ax^{\prime\prime2}+By^{\prime\prime2}+Cz^{\prime\prime2}+D=0$ имеет вид

$$Ax''^2 + By''^2 + Cz''^2 = 0. (4)$$

Возможны два варианта.

- а) Числа $A,\,B$ и C имеют один и тот же знак. Тогда уравнение (4) имеет единственное решение $x=0,\,y=0,\,z=0$ и его геометрическим образом является точка. Соответствующая квадрика называется мнимым конусом.
- 6) Числа A,B и C имеют разные знаки. Умножив, если потребуется, уравнение (4) на -1, можно добиться того, чтобы среди этих чисел было два положительных и одно отрицательное. Можно считать, что A,B>0 и C<0. Введя обозначения $a=\sqrt{\frac{1}{A}},\,b=\sqrt{\frac{1}{B}},\,c=\sqrt{-\frac{1}{C}},$ мы получим уравнение $\frac{x''^2}{b^2}+\frac{y''^2}{b^2}-\frac{z''^2}{c^2}=0$. Квадрика, задаваемая таким уравнением, называется конусом.

Случай нецентральной квадрики ранга 2

Если определитель матрицы $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$ равен 0, то ранг этой

матрицы может быть либо 2, либо 1. Если ранг равен 2, среди собственных значений матрицы $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$ два ненулевых, а одно нулевое. Если

 λ_1,λ_2 – ненулевые собственные значения, то квадратичная форма

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz$$

ортогональным преобразованием приводится к каноническому виду $\lambda_1 x'^2 + \lambda_2 y'^2$. Соответственно, уравнение (**) преобразуется к виду

$$\lambda_1 x'^2 + \lambda_2 y'^2 + 2a_1' x' + 2a_2' y' + 2a_3' z' + a_0 = 0.$$

Заменяя $x'=x''-\frac{a_1'}{\lambda_1},\ y'=y''-\frac{a_2'}{\lambda_2},$ избавимся от членов, содержащих x'

и y^\prime в первой степени. Упрощенное уравнение имеет вид

$$\lambda_1 x''^2 + \lambda_2 y''^2 + 2a_3' z' + a_0' = 0.$$

Переобозначив коэффициенты, запишем его как

$$Ax''^2 + By''^2 + 2Cz'' + D = 0.$$

Случай нецентральной квадрики ранга 2, окончание

Если C=0, уравнение $Ax''^2+By''^2+2Cz''+D=0$ сводится к $Ax''^2+By''^2+D=0$, т.е. задает некоторую цилиндрическую квадрику. Поэтому считаем, что $C\neq 0$, а тогда замена x''=x''', y''=y''', $z''=z'''-\frac{D}{2C}$ избавляет от свободного члена и приводит уравнение к виду

$$Ax'''^2 + By'''^2 + 2Cz''' = 0.$$

Возможны два варианта.

- а) Числа $-\frac{C}{A}$ и $-\frac{C}{B}$ имеют одинаковый знак. Можно считать, что они положительны. Введя обозначения $a=\sqrt{-\frac{C}{A}},\ b=\sqrt{-\frac{C}{B}},$ получим уравнение $\frac{x'''^2}{a^2}+\frac{y'''^2}{b^2}=2z$. Квадрика, задаваемая таким уравнением, называется эллиптическим параболоидом.
- 6) Числа $-\frac{C}{A}$ и $-\frac{C}{B}$ имеют разные знаки. Можно считать, что $-\frac{C}{A}>0$ и $-\frac{C}{B}<0$. Введя обозначения $a=\sqrt{-\frac{C}{A}},\ b=\sqrt{\frac{C}{B}}$, получим уравнение $\frac{x'''^2}{a^2}-\frac{y'''^2}{b^2}=2z$. Квадрика, задаваемая таким уравнением, называется гиперболическим параболоидом.

Случай нецентральной квадрики ранга 1

Если ранг матрицы $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$ равен 1, то одно из ее собственных

значений ненулевое, а два равно 0. Если λ – ненулевое собственное значения, то квадратичная форма

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz$$

ортогональным преобразованием приводится к каноническому виду $\lambda x'^2$. Соответственно, уравнение (**) преобразуется к виду

$$\lambda x'^2 + 2a_1'x' + 2a_2'y' + 2a_3'z' + a_0 = 0.$$

Заменяя $x'=x''-\frac{a_1'}{\lambda_1}$, избавимся от x' в первой степени. Упрощенное уравнение имеет вид

$$\lambda x''^2 + 2a_2'y' + 2a_3'z' + a_0' = 0.$$

Переобозначив коэффициенты, запишем его как

$$Ax''^2 + 2By'' + 2Cz'' + D = 0.$$

.

Случай нецентральной квадрики ранга 1, окончание

Если C=0, уравнение $Ax''^2+2By''+2Cz''+D=0$ задает некоторую цилиндрическую квадрику. Если же $C\neq 0$, выполним ортогональное

преобразование с матрицей
$$\begin{pmatrix} 1 & B & 0 \\ 0 & \frac{B}{\sqrt{B^2+C^2}} & -\frac{C}{\sqrt{B^2+C^2}} \\ 0 & \frac{C}{\sqrt{B^2+C^2}} & \frac{B}{\sqrt{B^2+C^2}} \end{pmatrix}.$$
 Подсчитаем,

во что перейдет линейная форма $By^{\prime\prime}+Cz^{\prime\prime}$ при таком преобразовании:

$$By'' + Cz'' = B\left(\frac{B}{\sqrt{B^2 + C^2}}y''' - \frac{C}{\sqrt{B^2 + C^2}}z'''\right) + C\left(\frac{C}{\sqrt{B^2 + C^2}}y''' + \frac{B}{\sqrt{B^2 + C^2}}z'''\right) = \sqrt{B^2 + C^2}y'''.$$

Видим, что уравнение $Ax''^2+2By''+2Cz''+D=0$ преобразуется в $Ax'''^2+\sqrt{B^2+C^2}y'''+D=0$. Значит, и при $C\neq 0$ оно задает некоторую цилиндрическую квадрику.

Классификация пространственных квадрик

Мы доказали следующий факт:

Теорема (классификация квадрик в пространстве)

Уравнение второй степени от трех переменных задает одну из 17 квадрик:

- одну из 9 цилиндрических квадрик
- эллипсоид,
- мнимый эллипсоид,
- однополостный гиперболоид,
- двуполостный гиперболоид,
- конус,
- мнимый конус,
- эллиптический параболоид,
- гиперболический параболоид.

Эллипсоид (рисунок)

Эллипсоид

Однополостный гиперболоид (рисунок)

Однополостный гиперболоид

Двуполостный гиперболоид (рисунок)

Эллиптический параболоид (рисунок)

Эллиптический параболоид

Гиперболический параболоид (рисунок)

Гиперболический параболоид