Statistical Distribution Reference Tables

Continuous Distributions

Distribution	PDF	CDF
Normal $N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$F(x) = \Phi\left(\frac{x - \mu}{\sigma}\right)$
Exponential Exp(λ)	$f(x) = \lambda e^{-\lambda x}$	$F(x) = 1 - e^{-\lambda x}$
Gamma $\Gamma(\alpha, \theta)$	$f(x) = \lambda e^{-\lambda x}$ $f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha - 1} e^{-x/\theta}$	$F(x) = \frac{\gamma(\alpha, x/\theta)}{\Gamma(\alpha)}$
Lognormal LogN(μ , σ^2)	$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}\exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$	$F(x) = \Phi\left(\frac{\ln x - \mu}{\sigma}\right)$
Beta Beta(α, β)	$f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$	$F(x) = I_x(\alpha, \beta)$
Uniform U(a, b)	$f(x) = \frac{1}{b - a}$	$F(x) = \frac{x - a}{b - a}$
Chi-Square $\chi^2_{\ k}$	$f(x) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2}$	$F(x) = \frac{\gamma(k/2, x/2)}{\Gamma(k/2)}$
Student's t t _V	$f(x) = \frac{\Gamma((v+1)/2)}{\sqrt{v\pi}\Gamma(v/2)} \left(1 + \frac{x^2}{v}\right)^{-(v+1)/2}$	No closed form
Cauchy C(x ₀ , γ)	$f(x) = \frac{1}{\pi \gamma} \left[1 + \left(\frac{x - x_0}{\gamma} \right)^2 \right]^{-1}$	$F(x) = \frac{1}{\pi}\arctan\left(\frac{x - x_0}{\gamma}\right) + \frac{1}{2}$
GEV $(\xi \neq 0)$ $t(y) > 0$	$f(y) = \frac{1}{\sigma}t(y)^{-1/\xi - 1}\exp\left(-t(y)^{-1/\xi}\right)$ where $t(y) = 1 + \xi \frac{y - \mu}{\sigma}$	$F(y) = \exp(-t(y)^{-1/\xi})$
GEV (ξ = 0, Gumbel)	$f(y) = \frac{1}{\sigma} \exp\left(-\frac{y-\mu}{\sigma}\right) \exp\left(-\exp\left(-\frac{y-\mu}{\sigma}\right)\right)$	$F(y) = \exp\left(-\exp\left(-\frac{y-\mu}{\sigma}\right)\right)$
GPD $(\xi \neq 0)$ $1 + \xi \frac{y}{\sigma} > 0$	$f(y) = \frac{1}{\sigma} \left(1 + \xi \frac{y}{\sigma} \right)^{-1/\xi - 1}$	$F(y) = 1 - \left(1 + \xi \frac{y}{\sigma}\right)^{-1/\xi}$
GPD (ξ = 0, Exponential)	$f(y) = \frac{1}{\sigma} \exp\left(-\frac{y}{\sigma}\right)$	$F(y) = 1 - \exp\left(-\frac{y}{\sigma}\right)$

Discrete Distributions

Distribution	PMF	CDF
Bernoulli Bern(p)	$P(X = x) = p^{x}(1-p)^{1-x}$	$F(x) = \begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$

Binomial Bin(n, p)	$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$	$F(k) = \sum_{j=0}^{k} {n \choose j} p^{j} (1-p)^{n-j}$
Poisson Pois(λ)	$P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$	$F(k) = e^{-\lambda} \sum_{j=0}^{k} \frac{\lambda^{j}}{j!}$
Geometric (failures)	$P(X=k) = (1-p)^k p$	$F(k) = 1 - (1 - p)^{k+1}$
Negative Binomial NB(r, p)	$P(X = k) = {k + r - 1 \choose k} (1 - p)^k p^r$	No closed form
Discrete Uniform U{a,,b}	$P(X=k) = \frac{1}{b-a+1}$	Piecewise linear

Support Conditions

Distribution	Support
Normal	$x \in \mathbb{R}$
Exponential	$x \ge 0$
Gamma	x > 0
Lognormal	x > 0
Beta	0 < x < 1
Uniform	$a \le x \le b$
Chi-Square	x > 0
Student's t	$x \in \mathbb{R}$
Cauchy	$x \in \mathbb{R}$
GEV (ξ > 0)	$y > \mu - \sigma/\xi$
GEV (ξ < 0)	$y < \mu - \sigma/\xi$
GEV (ξ = 0)	$y \in \mathbb{R}$
GPD (ξ > 0)	y ∈ $[0, ∞)$
GPD (ξ < 0)	$y \in [0, -\sigma/\xi]$
GPD (ξ = 0)	$y \ge 0$
Bernoulli	$x \in \{0,1\}$
Binomial	$k = 0,1,\ldots,n$
Poisson	k = 0,1,2,
Geometric	k = 0,1,2,
Negative Binomial	k = 0,1,2,
Discrete Uniform	$k \in \{a, a+1, \dots, b\}$

Notes

Parameter Notation

- μ: mean (location)
- σ^2 : variance
- σ: standard deviation (scale)
- α , β : shape parameters
- λ: rate parameter
- θ : scale parameter
- k, v: degrees of freedom
- ξ: shape parameter (extreme value distributions)

Special Functions

- $\Phi(\cdot)$: Standard normal CDF
- $\Gamma(\cdot)$: Gamma function
- $\gamma(\cdot, \cdot)$: Lower incomplete gamma function
- $B(\cdot, \cdot)$: Beta function
- $I_x(\cdot, \cdot)$: Regularized incomplete beta function