PHÂN TÍCH GIÁ TRỊ KỲ DỊ (SINGULAR VALUE DECOMPOSITION)

TRẦN HÀ SƠN

ĐẠI HỌC KHOA HỌC TỰ NHIÊN-ĐHQG TPHCM

Ngày 28 tháng 3 năm 2025

Overview

1 Một số kiến thức của đại số tuyến tính

2 Full Singular Value Decomposition

3 Reduced Singular Value Decomposition

Phân tích giá trị kỳ dị

Định lý

Với mọi ma trận $M \in M_{m \times n}(\mathbb{R})$, các ma trận $M^T M$ và MM^T đều có các trị riêng không âm.

Phân tích giá trị kỳ dị

Định lý

Với mọi ma trận $M \in M_{m imes n}(\mathbb{R}),$ luôn có

$$rank(M) = rank(M^T M) = rank(MM^T).$$

Phân tích giá trị kỳ dị

Định lý

Với mọi ma trận $M \in M_{m \times n}(\mathbb{R})$, các ma trận $M^T M$ và MM^T đều có cùng tập các trị riêng dương (nonzero eigenvalues).

Nhận xét

Gọi hạng của ma trận M là r, ta có

$$rank(M) = rank(M^T M) = rank(MM^T) = r.$$

Ma trận M^TM có kích thước $n \times n$ và ma trận MM^T có kích thước $m \times m$ (m có thể khác n). Do đó ma trận M^TM có n-r vector riêng ứng với trị riêng 0 và ma trận MM^T có m-r vector riêng ứng với trị riêng 0.

Định lý

Cho $M \in M_{m \times n}(\mathbb{R})$. Tồn tại các ma trận trực giao

$$U = \begin{bmatrix} u_1 & u_2 & \dots & u_m \end{bmatrix} \in M_m(\mathbb{R}) \text{ và } V = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \in M_n(\mathbb{R})$$

sao cho

$$U^TMV = S = dig(\sigma_1, \sigma_2, \dots, \sigma_p),$$

 $v\acute{o}i \ p = min\{m, n\} \ v\grave{a} \ \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0.$

Chú ý:

- σ_i được gọi là các giá trị kỳ dị.
- u_i là các vector kỳ dị trái.
- v_i là các vector kỳ dị phải.

Định lý

Giả sử $U^TMV = S$ với $M \in \mathbb{R}^{m \times n}$ thỏa $m \ge n$. Ta có:

Nhận xét

- (σ_i^2, v_i) là các trị riêng, vector riêng của ma trận $M^T M \in M_n(\mathbb{R})$.
- $u_i = \frac{1}{\sigma_i} M v_i$ với $i = 1, 2, 3, \dots, n$.
- Có thể bổ sung thêm $\{u_{n+1}, u_{n+2}, \dots, u_m\}$ để $\{u_1, u_2, \dots, u_m\}$ là một cơ sở trực chuẩn của \mathbb{R}^m .

Giải thuật phân tích full SVD cho $M \in M_{m imes n}(\mathbb{R}), \, m \geq n$.

• **Bước 1**. Tìm tất cả các cặp trị riêng (λ_i, v_i) của $M^T M$ và sắp xếp theo thứ tư giảm dần

$$\lambda_1 \ge \lambda_2 \ge \lambda_3 \ldots \ge \lambda_n \ge 0$$

rồi tính $\sigma_i = \sqrt{\lambda_i}$.

• **Bước 2**.Tìm các vector riêng u_1, u_2, \ldots, u_n của $MM^T \in M_m(\mathbb{R})$ bằng công thức:

$$u_i = \frac{1}{\sigma_i} M v_i.$$

Giải thuật phân tích full SVD cho $M \in M_{m \times n}(\mathbb{R}), \, m \geq n$.

- **Bước 3**. Mở rộng cơ sở trực chuẩn $\{u_1, u_2, \dots, u_n\}$ thành cơ sở trực chuẩn $\{u_1, u_2, \dots, u_m\}$.
- Bước 4. Thành lập các ma trận

$$\begin{cases}
U = \begin{bmatrix} u_1 & u_2 & \dots & u_m \end{bmatrix} \in M_m(\mathbb{R}) \\
V = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \in M_n(\mathbb{R}) \\
S = dig(\sigma_1, \sigma_2, \dots, \sigma_n)
\end{cases}$$

ta được

$$M = USV^T$$
.

Ví dụ

Tìm SVD của ma trận

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Đáp án:

$$U = \begin{bmatrix} \frac{\sqrt{6}}{3} & 0 & -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \end{bmatrix}, S = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, V^T = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}.$$

Ví du

Tìm SVD của ma trận

$$\begin{bmatrix}1&0&1&0\\0&1&0&1\end{bmatrix}.$$

Đáp án:

$$U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, S = \begin{bmatrix} \sqrt{2} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \end{bmatrix}, V^{T} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

Định lý

Cho ma trận $M \in M_{m \times n}(\mathbb{R})$ có hạng r, tồn tại một phân tích kỳ dị

$$M = U\Sigma V^T$$
,

trong đó:

- U là ma trận cỡ m × r với các cột là một hệ trực chuẩn.
- Σ là một ma trận vuông cỡ r × r với các phần tử nằm trên đường chéo chính là các giá trị kỳ dị của M.
- ullet V^T là một ma trận cỡ r imes n với các hàng là một hệ trực chuẩn.

Giải thuật phân tích reduced SVD cho $M \in M_{m imes n}(\mathbb{R})$.

• **Bước 1**. Tìm tất cả các cặp (λ_i, v_i) ứng với $\lambda > 0$ của $M^T M$ và sắp xếp theo thứ tự giảm dần

$$\lambda_1 \geq \lambda_2 \geq \lambda_3 \ldots \geq \lambda_r$$

rồi tính $\sigma_i = \sqrt{\lambda_i}$.

• **Bước 2**.Tìm các vector riêng u_1, u_2, \dots, u_r của $MM^T \in M_m(\mathbb{R})$ bằng công thức:

$$u_i = \frac{1}{\sigma_i} M v_i.$$

Giải thuật phân tích reduced SVD cho $M \in M_{m \times n}(\mathbb{R})$.

• Bước 3. Thành lập các ma trận

$$\begin{cases} U = \begin{bmatrix} u_1 & u_2 & \dots & u_r \end{bmatrix} \in M_{m \times r}(\mathbb{R}) \\ V = \begin{bmatrix} v_1 & v_2 & \dots & v_r \end{bmatrix} \in M_{n \times r}(\mathbb{R}) \\ \Sigma = dig(\sigma_1, \sigma_2, \dots, \sigma_r) \end{cases}$$

ta được

$$M = U\Sigma V^T$$
.

Ví dụ

Tìm SVD của ma trận

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}.$$

Dáp án:
$$U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, S = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix}, V^T = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}.$$