

CÓDIGO:	AIPUL 0000
VERSIÓN:	002
FECHA:	01/07/2024
	•

INFORMACIÓN GENERAL			
ID	0001 Impact o		
Nombre del Proyecto	Reconocimiento de placas para la automatización de servicios		
Patrocinador	Recursos propios		

Historial de revisiones			
Versión	Fecha	Autor	Motivo del cambio
001	09-08- 2025	Brian García - Luis García - David Quintero	Comienzo de estructuración.

MIEMBROS O INTERESADOS				
Rol	Nombre	Área	Teléfono	Email
Patrocinador	David Quintero			
Patrocinador	Luis García			
Patrocinador	Brian García			
Project Manager	David Quintero			
Otros Interes	Otros Interesados			
Desarrollado r	Brian Garcia	T.I	3013033841	Briana- garciam@unilibre.ed u.co
Desarrollado r	Luis Garcia	T.I	3054167711	Luise- garciab@unilibre.edu .co
Desarrollado r	David Quintero	T.I	3002473988	Davids- quinteroq@unilibre.e du.co

CÓDIGO:	AIPUL 0000
VERSIÓN:	002
FECHA:	01/07/2024
	•

DESCRIPCIÓN DEL PROYECTO

Este proyecto está orientado a crear un software de reconocimiento de placas para e monitorio de accesos vehiculares

OBJETIVOS DEL PROYECTO

OBJETIVO GENERAL

Desarrollar un Software que permita la captura automática de placas vehiculares, su lectura mediante técnicas de visión por computador, la obtención de su ubicación geográfica y el almacenamiento de la información en una base de datos para su posterior consulta.

OBJETIVOS ESPECÍFICOS

Analizar las necesidades y requisitos técnicos, operacionales y de seguridad para el desarrollo de un sistema de gestión de reconocimiento vehicular. Este análisis tiene como fin determinar las características y funcionalidades necesarias para el diseño e implementación de una solución eficaz y eficiente.

Diseñar una red neuronal que sea capaz de detectar e identificar placas de vehículos mediante el Reconocimiento Óptico de Caracteres, junto con una base de datos para el almacenamiento seguro de la información y una interfaz web que permita la búsqueda y visualización de registros en lista y en mapa.

CÓDIGO:	AIPUL 0000
VERSIÓN:	002
FECHA:	01/07/2024

Codificar e integrar un servicio de geolocalización para asociar coordenadas GPS a cada registro. Junto con sus respectivas redes neuronales, bases de datos e interfaces web

Probar los modulos, aplicativos, integridades de las bases de datos y seguridad de las API's; verificando el correcto funcionamiento del producto final.

Desplegar de manera satisfactoria según los requerimientos del cliente el aplicativo y hardware nesesario para el correcto funcionamiento de esta.

ALCANCE DEL PROYECTO

- Incluye:
- Captura de imágenes/video.
- Reconocimiento automático de placas.
- Obtención de ubicación GPS o estática.
- Registro en base de datos.
- Consulta por web con visualización en lista y mapa.
- No incluye:
- Control físico de acceso vehicular (barreras o semáforos).
- Integración con sistemas de tránsito externos.
- Procesamiento de video en la nube en tiempo real.

CÓDIGO:	AIPUL 0000
VERSIÓN:	002
FECHA:	01/07/2024
	•

ANTECEDENTES

CÓDIGO:	AIPUL 0000
VERSIÓN:	002
FECHA:	01/07/2024

Situación Actual de la Empresa

Actualmente, SecureVision no cuenta con un sistema automatizado para la lectura y reconocimiento de placas vehiculares. El registro y control de acceso de vehículos se realiza de forma manual, lo que consume tiempo, aumenta el margen de error humano y retrasa los procesos de seguridad. La ausencia de un sistema moderno de reconocimiento de placas limita la eficiencia operativa y la capacidad de respuesta ante incidentes.

Necesidad de Presencia Tecnológica

En los últimos años, la necesidad de implementar soluciones de control de acceso inteligentes ha crecido significativamente, especialmente en entornos como parqueaderos, conjuntos residenciales, empresas de logística y zonas de alta seguridad. La falta de un sistema automatizado para el reconocimiento de placas está afectando la capacidad de SecureVision para ofrecer un servicio rápido, seguro y competitivo, además de reducir su atractivo frente a empresas que ya han adoptado este tipo de tecnología.

Proyectos Anteriores o Iniciativas Relacionadas

Anteriormente, la empresa intentó implementar un sistema de control de acceso basado en tarjetas RFID, pero este presentaba limitaciones importantes, como la pérdida o duplicación de tarjetas y la imposibilidad de registrar de manera precisa la información de los vehículos. También se han usado cámaras de videovigilancia convencionales, pero sin capacidad de análisis automatizado, lo que obliga a depender siempre de la supervisión humana para identificar vehículos.

Tendencias del Mercado

Actualmente, empresas de seguridad y control de acceso están invirtiendo en soluciones basadas en inteligencia artificial y visión por computadora para el reconocimiento de placas. Estas soluciones incluyen integración con bases de

CÓDIGO:	AIPUL 0000
VERSIÓN:	002
FECHA:	01/07/2024
	•

datos, alertas automáticas, reportes en tiempo real y compatibilidad con sistemas móviles. Además, se están adoptando tecnologías que permiten un análisis predictivo y la gestión inteligente del tráfico vehicular.

Cambios en la Demanda del Cliente

La demanda de sistemas automatizados de control vehicular ha aumentado debido al crecimiento de las ciudades, la necesidad de reforzar la seguridad y la búsqueda de procesos más rápidos y eficientes. Los clientes ahora esperan que los sistemas puedan identificar vehículos en segundos, almacenar un historial de accesos y generar reportes personalizados sin intervención manual.

Oportunidad de Mejora

Con el avance de la inteligencia artificial y la visión por computadora, SecureVision tiene la oportunidad de implementar un sistema de reconocimiento de placas que optimice el control de acceso, reduzca los tiempos de espera, minimice los errores humanos y ofrezca una experiencia más segura y fluida para los usuarios. Además, la recopilación y análisis de datos permitirán tomar decisiones estratégicas para mejorar la seguridad y la operatividad del sistema.

FUERA DEL ALCANCE

Control físico de acceso vehicular: El proyecto no contempla la implementación de sistemas de control físico como barreras, semáforos, o cualquier otra infraestructura relacionada con el acceso vehicular físico a las instalaciones. Esto incluye, pero no se limita a, la instalación de mecanismos de seguridad para la regulación del tránsito en las entradas y salidas de vehículos, ni la integración de dispositivos como lectoras de matrículas, sensores de presencia o sistemas automáticos de bloqueo.

CÓDIGO:	AIPUL 0000
VERSIÓN:	002
FECHA:	01/07/2024
	•

Integración con sistemas de tránsito externos: El alcance del proyecto no incluye la conexión ni la interoperabilidad con sistemas de tránsito o redes de control de tráfico externos, ya sean gubernamentales, municipales o privados. Esto abarca la falta de integración con sistemas de monitoreo de tráfico, bases de datos externas, o plataformas que gestionen el flujo vehicular fuera del ámbito específico del proyecto, así como la comunicación o sincronización con infraestructuras de tránsito inteligentes de otros operadores.

Procesamiento de video en la nube en tiempo real: El procesamiento, almacenamiento y análisis de datos de video en tiempo real a través de plataformas en la nube no está contemplado en el alcance de este proyecto. Esto incluye, entre otras cosas, el uso de servicios de análisis en vivo o en streaming de video para la detección, clasificación o seguimiento de objetos, personas o vehículos mediante algoritmos de visión artificial o inteligencia artificial alojados en servidores remotos o servicios en la nube.

	ESFUERZO/COSTO/DURACIÓN
Costo estimado	Raspberry Pi 4 (4 GB RAM): \$300.000 COP Módulo GPS NEO-6M: \$60.000 COP Cámara USB HD: \$120.000 COP Servicios API (Google Maps, cuota básica): \$50.000 COP Otros (cables, soporte, almacenamiento): \$40.000 COP Total estimado: \$570.000 COP
Esfuerzo en Horas	 Análisis de Requerimientos Esfuerzo estimado: 32 horas Tareas principales:

CÓDIGO:	AIPUL 0000
VERSIÓN:	002
FECHA:	01/07/2024

- Definir requisitos técnicos y funcionales.
- Selección de tecnologías y herramientas necesarias para el proyecto.
- Desarrollo del Sistema de Reconocimiento de Placas
- **Esfuerzo estimado:** 80 horas
- Tareas principales:
- Implementación del modelo de detección de placas (usando IA como YOLOv5).
- Integración del OCR para la lectura de las placas.
- Ajuste del modelo y pruebas iniciales.
- Integración de GPS y Base de Datos
- **Esfuerzo estimado:** 64 horas
- Tareas principales:
- Integración del módulo GPS para obtener la ubicación.
- Configuración de la base de datos (MySQL o PostgreSQL) para almacenar la información.
- Desarrollo de la Interfaz Web
- **Esfuerzo estimado:** 56 horas
- Tareas principales:
- Creación de la interfaz web para consultas.
- Implementación de funcionalidades de búsqueda y visualización de registros en mapa.
- Pruebas y Ajustes
- Esfuerzo estimado: 40 horas
- Tareas principales:
- Pruebas del sistema completo (detección de placas, GPS, OCR, interfaz web).
- Ajustes de rendimiento y precisión del sistema.

CÓDIGO:	AIPUL 0000
VERSIÓN:	002
FECHA:	01/07/2024

			•	
	 Capacitación y Documentación Esfuerzo estimado: 16 horas Tareas principales: Capacitación del cliente para el uso del sistema. Entrega de la documentación técnica y de usuario. 			
Duración Estimada	Desarrollo del Duración Integración de Duración Desarrollo de Duración Pruebas y Aju Duración Capacitación	n estimada: 1 semana Sistema de Recono n estimada: 3 semana e GPS y Base de Date n estimada: 2 semana la Interfaz Web	cimiento de Placas as (80 horas) os as (64 horas) as (56 horas)	
	Hito Fecha de entrega Entregables completados			

CÓDIGO:	AIPUL 0000
VERSIÓN:	002
FECHA:	01/07/2024

Inicio del proyecto	9-08-2025	Reunión inicial, definición de objetivos y alcance.	
Diseño del sistema	Fecha de entrega: [Fecha de inicio + 2 semanas]	Prototipo visual y arquitectura de la solución.	
Desarrollo Frontend		Interfaz de usuario funcional (HTML, CSS, JS).	
Desarrollo Backend		Lógica del servidor, base de datos y API.	
Pruebas y ajustes		Corrección de errores y optimización.	
Entrega final		Sistema completo en producción.	

SUPUESTOS DEL PROYECTO

El cliente proporcionará el contenido necesario (textos, imágenes, videos) en el tiempo acordado.

El cliente tiene una cuenta de hosting y dominio activo.

No habrá cambios sustanciales en los requisitos durante el proceso de desarrollo.

RIESGOS DEL PROYECTO			
Área de Riesgo	Nivel (Alto, medio, Bajo)	Plan de Riesgo	
Retrasos en la entrega del contenido por parte del cliente.	Medio	Mitigación: Establecer plazos claros y ofrecer soporte para la creación de contenido.	
Cambios inesperados en los requerimientos del cliente.	Alto	Mitigación: Realizar revisiones periódicas y definir un alcance claro desde el inicio.	
Falta de experiencia del equipo con tecnologías	Alto	Mitigación: Capacitación específica y desarrollo de	

CÓDIGO:	AIPUL 0000
VERSIÓN:	002
FECHA:	01/07/2024

específicas (OCR, visión por computadora, GPS)	pruebas piloto para validar conocimientos.	
Dependencias externas no disponibles o poco confiables (librerías, APIs)	media	Mitigacion: Revisar y validar dependencias antes de integrarlas, buscar alternativas si es necesario.

OBSERVACIONES

Fecha de Inicio:

Establecer una fecha clara de inicio del proyecto, ya que todas las fechas de entrega se basarán en esta. Esta fecha debe ser aprobada por el cliente para evitar malentendidos y asegurar que todos los recursos estén listos desde el primer día.

Fase de Diseño del Sistema (UI/UX y Flujo de Trabajo):

Durante esta fase, es crucial que el cliente esté involucrado en las revisiones para garantizar que la interfaz de usuario y el flujo del sistema de reconocimiento de placas sean lo que esperan.

Los plazos para revisiones y ajustes deben ser acordados, ya que estos pueden influir en el progreso del proyecto.

Se recomienda establecer al menos 2 rondas de revisión:

- Una después de la primera presentación del prototipo de interfaz.
- Otra antes de la aprobación final para ajustes menores.

Desarrollo del Módulo de Captura (Frontend):

Es esencial que el diseño aprobado se traduzca correctamente en el módulo visual de captura y visualización de placas.

Debe definirse qué dispositivos de captura (cámaras) y resoluciones serán compatibles para asegurar un rendimiento óptimo.

Durante este desarrollo, se deben realizar pruebas con imágenes y videos reales para detectar problemas de reconocimiento temprano.

Desarrollo del Módulo de Procesamiento y Base de Datos (Backend):

El cliente debe garantizar el acceso al servidor o infraestructura donde se ejecutará el sistema.

CÓDIGO:	AIPUL 0000
VERSIÓN:	002
FECHA:	01/07/2024

Es fundamental la correcta instalación y configuración de la base de datos para almacenar las lecturas de placas.

La integración con herramientas de análisis o monitoreo (por ejemplo, estadísticas de tráfico o control de accesos) debe ser verificada para asegurar que el rastreo y almacenamiento funcionen correctamente.

Pruebas y Validación:

Las pruebas deben cubrir todos los aspectos del sistema: precisión en el reconocimiento de placas, velocidad de procesamiento, compatibilidad con diferentes tipos de cámaras y estabilidad en condiciones de baja iluminación o mal clima.

Además, se debe verificar la capacidad del sistema para trabajar en distintos navegadores y dispositivos de monitoreo.

Cualquier error o discrepancia detectada debe ser corregida antes de la entrega final.

Capacitación al Cliente:

El cliente debe estar listo para recibir la capacitación, contando con acceso al sistema, cámaras y datos de prueba para comprender su uso.

Es recomendable proporcionar un manual o guía con instrucciones claras sobre:

- Cómo operar el sistema.
- Cómo extraer reportes de placas.
- Cómo realizar mantenimiento preventivo.

FIRMAS			
Interesados	Nombre	Firma	Fecha