

Lecture 3

OPIM 5603Fall
2019

Slide 3.1

Simple Linear Regression

Selected Topics

OPIM 5603

1. The Least Squares Method

Fall 2019

2. Simple Linear Regression

3. Measures of Variation

Slide 3.2

4. Residuals

5. Regression Variance

6. Regression Coefficients

7. Briefly on Multiple Linear Regression

Trend Line?

OPIM 5603Fall

2019

Slide 3.3

Percentage of export-dependent jobs affected by retaliatory tariffs, by U.S. counties *Tariffs That Send a Political Message*, The New York Times, October 3rd 2018

OPIM 5603

Fall 2019

Slide 3.4

The Least Squares Method

Given pairs of points (x_i, y_i) , i = 1, ..., n, calculate *intercept* b_0 and *slope* b_1 so that the line $\hat{y} = b_1 x + b_0$ is "the best" linear representative for points (x_i, y_i) .

The coefficients b_0 and b_1 are computed from points (x_i, y_i) in such a way that they minimize the sum of the residuals squared!

The Least Squares Method

"...they minimize the sum of the residuals squared":

OPIM 5603Fall

2019

Slide 3.5

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (b_1 x_i + b_0))^2$$

$$= \min_{\text{over all } a, m} \sum_{i=1}^{n} (y_i - (m x_i + a))^2$$

Rephrased: Among all lines mx + a that can be used to predict y as a linear function of x the prediction line

$$\hat{y} = b_1 x + b_0$$

has the smallest sum of the residuals squared.

Question: How can we compute b_0 and b_1 ?

Basic Calculus: To find the minimum of the function Q(a,m) take derivatives with respect to a and m and set them equal to zero.

OPIM 5603Fall

2019

Slide 3.6

The Least Squares Method

The solutions are

$$b_1 = m_{min} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Note: cor(x,y) and the slope b_1 have the same sign.

$$b_0 = a_{min} = \bar{y} - b_1 \bar{x}$$

Note 1: Point (\bar{x}, \bar{y}) lies on the prediction line $\hat{y} = b_1 x + b_0$:

$$b_0 + b_1 \bar{x} = \bar{y} - b_1 \bar{x} + b_1 \bar{x} = \bar{y}$$

Note 2: Average of the predictions $\hat{y}_1, ..., \hat{y}_n$ is \bar{y} :

$$\frac{1}{n}\sum_{i=1}^{n}\hat{y}_{i} = \frac{1}{n}\sum_{i=1}^{n}(b_{1}x_{i} + b_{0}) = b_{0} + b_{1}\frac{1}{n}\sum_{i=1}^{n}x_{i} = b_{0} + b\bar{x},$$

which equals \bar{y} by Note 1.

Note 3: Sum of the residuals $e_1, e_2, ..., e_n$ is zero:

$$\frac{1}{n} \sum_{i=1}^{n} e_i = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} y_i}_{\bar{y}_i} - \underbrace{\frac{1}{n} \sum_{i=1}^{n} \hat{y}_i}_{\bar{y}_i} = \bar{y} - \bar{y} = 0,$$

$$\bar{y} = \bar{y}, \text{ by Note 2}$$

Measures of Variation

Another corollary of the Least Square Method is that

5603Fall 2019

 $\sum_{\substack{\text{Variance} \\ \text{of } y \text{ 's}}}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 \quad \text{Sample} \\ \text{Variance} \quad \text{of } \hat{y} \text{ 's}$

SST

Total sum of squares (Total Variation)

SSE

Error sum of squares (Unexplained Variation)

SSR

Regression sum of squares (Explained Variation)

(proportional to variation of x_i 's)

Measures of Variation

All three quantities, *SST*, *SSE*, and *SSR*, are non-negative and

5603Fall 2019

$$0 \le SSR \le SST$$
 i.e., $0 \le \frac{SSR}{SST} \le 1$ Larger the ratio the prediction is better.

$$0 \le SSE \le SST$$
 i.e., $0 \le \frac{SSE}{SST} \le 1$ Smaller the ratio the prediction is better.

Slide 3.8

We define Coefficient of Determination $r^2 = \frac{SSR}{SST}$.

Clearly $0 \le r^2 \le 1$, and the prediction is better for r^2 's closer to 1.

Notice that
$$r^2 = 1 - \frac{SSE}{SST}$$
 (since $SST = SSE + SSR$).

Thus r^2 is the portion of total variation in the dependent variable that is explained by variation in the independent variable.

Examples of r^2

OPIM 5603Fall
2019

Slide 3.9

 $r^2 = 1$

$$(\underline{SSE} = 0 \text{ since } \hat{y}_i = y_i)$$

$$(SSR = 0 \text{ since } \hat{y} = \text{const. } \bar{y})$$

Correlation, r^2 , Adjusted r^2

Another corollary of the *Least Square Method* is:

OPIM 5603

Fall 2019

Slide 3.10

$$r^2 = cor(x,y)^2 = cor(\hat{y},y)^2$$

Note: identity makes sense when we have only one predictor x.

Adjusted r^2 is primarily designed for multiple predictors:

$$r^2_{\text{adj}} = 1 - \frac{n-1}{n-p-1} (1 - r^2),$$

where p is the number of predictors excluding the constant term.

It takes into account the fact that r^2 automatically increases when additional predictors are added to the model.

On Least Squares Method Optional

OPIM 5603 Fall 2019

Slide 3.11

$$\sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{n} (b_0 + b_1 x_i - y_i)^2 = \min_{\text{over all } a, m} \left[\sum_{i=1}^{n} (a + m x_i - y_i)^2 \right]$$
function $Q(a, m)$

Partial derivatives:

$$\frac{\partial Q}{\partial a}(a,m) = 2\sum_{i=1}^{N} (a + mx_i - y_i)$$

$$\frac{\partial Q}{\partial m}(a,m) = 2\sum_{i=1}^{N} x_i(a + mx_i - y_i)$$

 b_0 and b_1 are the values of a and m when the two equations above are set to 0.

$$\sum_{i=1}^{n} (b_0 + b_1 x_i - y_i) = 0 \qquad \Rightarrow \sum_{i=1}^{n} (\hat{y}_i - y_i) = 0 \qquad (1) \quad \text{Note: The sum of residuals is } 0.$$

$$\sum_{i=1}^{n} x_i (b_0 + b_1 x_i - y_i) = 0 \quad \Rightarrow \sum_{i=1}^{n} x_i (\hat{y}_i - y_i) = 0 \quad (2)$$

Corollary: 55T = 55E + 55R Optional

OPIM 5603Fall
2019

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} ((y_i - \hat{y}_i) + (\hat{y}_i - \bar{y}))^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + 2\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y})$$

$$SSE \qquad SSR \qquad "Cross term" equals 0$$

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}) = \sum_{i=1}^{n} (y_i - y_i)(b_1 x_i + b_0 - \bar{y})$$

$$= b_1 \sum_{i=1}^{n} x_i (y_i - \hat{y}_i) + (b_0 - \bar{y}) \sum_{i=1}^{n} (y_i - \hat{y}_i) = 0$$

$$= 0, \text{ by } (2)$$

When should Least Square Method be used?

OPIM 5603Fall
2019

Recap: Given pairs of points (x_i, y_i) , i = 1, ..., n, the Least Squares Method calculates intercept b_0 and slope b_1 so that the line $\hat{y} = b_1 x + b_0$ has the smallest sum of the residuals squared among all lines that can be used to predict y as a linear function of x.

Hence the intent is to use it for cases when there is a linear relationship between *x* and *y*.

Think: why would you use a line to predict y as a function of x (or vice versa) if their relationship was not linear?

The method, however, is "blind" to this requirement: it will calculate the intercept and the slope no matter what the relationship between *x* and *y* is.

Caution: Anscombe's Quartet

5603 Fall 2019

The four *y samples* have the same mean of 7.5, variance 4.12, correlation (with x) of 0.816 and regression line y = 3 + 0.5x (example by Francis Anscombe).

Types of Relationships

OPIM 5603

Fall 2019

Slide 3.15

Linear relationships

Non-linear relationships

Linear Relationships

OPIM 5603 Fall

Simple Linear Regression

Linear relationship between *two* random variables *X* and *Y*:

OPIM 5603Fall
2019

Slide 3.17

The main assumption is that population Y linearly depends on population X. Further assumptions about the random error component will be elaborated later.

Note: There are three *random variables* above: X and Y represent their respective populations and the random error made by linear approximation is captured by ε . The coefficients *Slope* and *Intercept* are numbers.

Simple Linear Regression and the LSM

The *LSM* deals with pairs of numbers; *SLR* involves two random variables.

OPIM 5603Fall
2019

Suppose $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ is a sample from the *(joint)* distribution of (X, Y). Recall the 'representatives' from chapter 2:

Slide 3.18

It would be reasonable to expect that the average of all b_0 's is 'close' to the true regression slope β_1 (and the same for the intercepts).

To meet these 'reasonable expectations' we need to impose additional requests on the simple regression model.

Simple Linear Regression Assumptions

5603Fall 2019

Slope Predictor y-intercept (Independent Variable) Variable $Y = \beta_0 + \beta_1 X + \varepsilon$ Linear component Random Error component

Slide 3.19

The relationship between *Y* and *X* is assumed to follow *LINE*:

Linearity: Relationship between *X* and *Y* is linear.

Independence of Errors: Given sample $(X_1, Y_1), ..., (X_n, Y_n)$ the errors

$$\varepsilon_i = Y_i - (\beta_0 + \beta_1 X_i)$$

are a sample from ε , hence independent.

Normality of Error: ε has a normal distribution with population mean zero.

Equal Variance: The variance of ε is constant with respect to X. (homoscedasticity)

 $\geq \varepsilon \sim N(0, \sigma^2)$ with unknown variance σ^2 called *regression variance*.

Residuals

OPIM 5603Fall
2019

Slide 3.20

Recall: residuals $e_i = Y_i - \hat{Y}_i$.

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} e_i^2$$

For sample $(X_1, Y_1), ..., (X_n, Y_n)$ notice the distinction:

Errors:
$$\varepsilon_i = Y_i - (\beta_0 + \beta_1 X_i)$$

Sample from ε $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_n)$ are independent r.v.'s)

Residuals:
$$e_i = Y_i - (b_0 + b_1 X_i)$$

Dependent r.v.'s with sum 0 (from LSM), since b_0 and b_1 are r.v.'s completely dependent on (X_i, Y_i) (i.e., computed from them)

Problem: We do not know the values of the error terms ε_i and we only know the residuals e_i which approximate the error terms.

Given X_i 's and Y_i 's, we check the regression assumptions by examining various plots of residuals for *linearity*, *independence*, *homoscedasticity*, and finally for *normality* assumption.

The most practical way to conduct this is the *Graphical Analysis of Residuals*: scatter-plot of the residuals vs. values of X_i 's or the fitted values \hat{Y}_i 's.

5603Fall 2019

Slide 3.21

Graphical Analysis of Residuals

These are mainly scatter plots, typically of the residuals vs. values of X_i 's or the fitted values \hat{Y}_i 's.

Unfortunately these visual inspections are typically better at telling when the model assumption is not valid than when it is.

Typically the order of checking is *linearity*, *independence*, *homoscedasticity*, and lastly *normality*.

Linearity check: plot the residuals vs. values of X_i 's (simple regression).

Independence check: plot residuals against any variables used in the technique: X_i 's, \hat{Y}_i 's or Y_i 's. A pattern that is not random suggests lack of independence.

Keep in mind that the residuals sum to zero and they are not independent so the plot is really a very rough approximation!

Homoscedasticity check: plot residuals against fitted values \hat{Y}_i 's and observe if the spread is changing in different ranges of \hat{Y}_i 's.

Normality check: Create a *quantile* (q-q) *plot*.

Residual Analysis for Linearity

OPIM 5603Fall
2019

Residual Analysis for Independence

OPIM 5603Fall
2019

Slide 3.23

(might be) Independent

Residual Analysis for Homoscedasticity

OPIM 5603Fall
2019

Residual Analysis for Normality

OPIM 5603Fall
2019

Slide 3.25

Commonly accepted way to check whether the sample is taken from the (normal) distribution is the (*Normal*) quantile plot: normal errors will approximately display in a straight line:

R function Im

```
OPIM
5603
Fall
2019
```

Slide 3.26

```
Residuals:

Min 1Q Median 3Q Max
-1.7333 -1.1333 -0.3833 0.7417 3.1167
```

Estimate `

Call: lm(formula = weight ~ height, data = women)

Coefficients:

(Intercept) -87.51667 height 3.45000

```
Std. Error t value Pr(>|t|)
5.93694 -14.74 1.71e-09 ***
0.09114 37.85 1.09e-14 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 1.525 on 13 degrees of freedom

Multiple R-squared: 0.991, Adjusted R-squared: 0.9903
```

```
F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14
```


Probability Space for Linear Regression

Optional

OPIM 5603Fall
2019

Slide 3.27

The coefficients *Slope* and *Intercept* are numbers.

Note: *X* lives in an underlying *population* space. Since the random error can have different values for identical *X* values it is reasonable to postulate that it lives in an *independent copy* of that space.

Think of it this way: There are two "separate" sources of underlying randomness: one for X and another for the error ε .

OPIM 5603 Fall

2019

Slide 3.28

Regression Variance & Standard Error

Simple regression: $Y = \beta_0 + \beta_1 X + \varepsilon$, with $\varepsilon \sim N(0, \sigma^2)$.

 σ^2 is called the regression variance and (usually) is unknown.

Given a sample (X_i, Y_i) the errors ε_i are a sample from ε .

They are unknown: the residuals e_i are our best estimates.

Thus the residual *sample variance* can be used as an estimator for σ^2 :

$$\frac{1}{n-1}\sum_{i=1}^{n}(e_{i}-e_{i})^{2}=\frac{1}{n-1}\sum_{i=1}^{n}e_{i}^{2}=\frac{SSE}{n-1}.$$

The estimator used in practice is Sample Regression Variance defined as

$$S^2 = \frac{SSE}{n-2}.$$

Division by n-2 instead of n-1 is justified by the fact that two parameters (*slope* and *intercept*) are involved in obtaining this estimator, hence two *degrees of freedom* are 'lost'.

Regression (or *Residual*) *Standard Error* (S) is the square root of this quantity.

Regression Coefficients

OPIM 5603

Fall 2019

Slide 3.29

Simple regression: $Y = \beta_0 + \beta_1 X + \varepsilon$, with $\varepsilon \sim N(0, \sigma^2)$. β_0 and β_1 are numbers.

Given a sample (X_i, Y_i) the *Least Square Method* produces

$$b_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{k=1}^n (X_k - \bar{X})^2} = \frac{SXY}{SSX}$$
 and $b_0 = \bar{Y} - b_1 \bar{X}$.

Note: b_0 and b_1 are random variables dependent on errors ε_i (a sample from ε).

Then: (1) b_0 and b_1 are normal random variables,

(2)
$$E(b_1) = \beta_1$$
 and $Var(b_1) = \frac{\sigma^2}{SSX}$

(3)
$$E(b_0) = \beta_0$$
 and $Var(b_0) = \frac{\bar{X}^2 \sigma^2}{SSX}$

Note: b_0 depends on b_1 so it is enough to prove (1) for b_1 .

Proof

Optional

OPIM 5603Fall
2019

$$SSX = \sum_{k=1}^{n} (X_k - \bar{X})^2 = \sum_{k=1}^{n} (X_k^2 - 2X_k \bar{X} + \bar{X}^2)$$

$$= \sum_{k=1}^{n} (X_k^2 - X_k \bar{X}) + \sum_{k=1}^{n} (\bar{X}^2 - X_k \bar{X})$$

$$= \sum_{k=1}^{n} X_k (X_k - \bar{X}) + \bar{X} \underbrace{\sum_{k=1}^{n} (\bar{X} - X_k)}_{=n\bar{X} - \sum_{k=1}^{n} X_k} = 0$$

$$SXY = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) = \sum_{i=1}^{n} (X_i - \bar{X})Y_i - \underbrace{\sum_{i=1}^{n} (X_i - \bar{X})}_{=n\bar{X} - \sum_{k=1}^{n} X_k} = 0$$

$$SXY = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) = \sum_{i=1}^{n} (X_i - \bar{X})Y_i - \underbrace{\sum_{i=1}^{n} (X_i - \bar{X})}_{=n\bar{X} - \sum_{k=1}^{n} X_k} = 0$$

$$= \sum_{i=1}^{n} (X_i - \bar{X})(\beta_0 + \beta_1 X_i + \varepsilon_i) = SSX$$

$$= \beta_0 \underbrace{\sum_{i=1}^{n} (X_i - \bar{X})}_{=n\bar{X} - \sum_{i=1}^{n} X_i} = \sum_{i=1}^{n} (X_i - \bar{X}) \varepsilon_i$$

$$= \beta_1 SSX + \sum_{i=1}^{n} (X_i - \bar{X}) \varepsilon_i$$

$$b_1 = \frac{SXY}{SSX} = \frac{\beta_1 SSX + \sum_{i=1}^{n} (X_i - \bar{X}) \varepsilon_i}{SSX} = \beta_1 + \sum_{i=1}^{n} \frac{X_i - \bar{X}}{SSX} \varepsilon_i$$

Proof cont.

Optional

OPIM 5603Fall
2019

 $b_1 = \beta_1 + \sum_{i=1}^n \frac{X_i - X}{SSX} \varepsilon_i = \beta_1 + \sum_{i=1}^n c_i \varepsilon_i$

Notice that β_1 is a number. Furthermore, the X_i 's do not have the random component of ε_i 's. In other words, in equation above they are just numbers, and consequently so are \overline{X} and SSX. Thus c_i 's defined above are numbers.

Note: this proves that the randomness of b_1 is instigated by the errors ε_i 's.

Slide 3.31

Since ε_i 's are independent $N(0,\sigma^2)$ (they are a sample from ε)

$$\Rightarrow \sum_{i=1}^{n} c_{i} \varepsilon_{i} \sim N(0, \sigma^{2} \sum_{i=1}^{n} c_{i}^{2})$$

$$\Rightarrow b_1 = \beta_1 + \sum_{i=1}^n c_i \varepsilon_i \sim N(\beta_1, \sigma^2 \sum_{i=1}^n c_i^2)$$

This proves (1). Clearly $E(b_1) = \beta_1$ and

$$Var(b_1) = \sigma^2 \sum_{i=1}^{n} c_i^2 = \sigma^2 \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{SSX} \right)^2 = \frac{\sigma^2}{SSX^2} \underbrace{\sum_{i=1}^{n} (X_i - \bar{X})^2}_{SSX} = \frac{\sigma^2}{SSX}$$

This proves (2).

Proof cont.

Optional

OPIM 5603Fall
2019

Slide 3.32

$$E(b_0) = E(\bar{Y} - b_1 \bar{X}) = E(\bar{Y}) - E(b_1 \bar{X}) = E(\bar{Y}) - E(b_1) \bar{X} = E(\bar{Y}) - \beta_1 \bar{X}$$

Notice that $\bar{Y} = \beta_0 + \beta_1 \bar{X} + \bar{\varepsilon}$, where $\bar{\varepsilon} = \frac{1}{n} \sum_{i=1}^n \varepsilon_i$.

$$\Rightarrow E(\overline{Y}) = \beta_0 + \beta_1 \overline{X} + E(\overline{\varepsilon}) = \beta_0 + \beta_1 \overline{X}$$

$$\Rightarrow E(b_0) = \beta_0 + \beta_1 \overline{X} - \beta_1 \overline{X} = \beta_0$$

Finally,

$$Var(\underline{b}_0) = Var(\overline{Y} - \underline{b}_1 \overline{X}) = Var(-\overline{X}\underline{b}_1) = (-\overline{X})^2 Var(\underline{b}_1) = \overline{X}^2 \frac{\sigma^2}{SSX}$$

This proves (3).

OPIM

5603

Fall

2019

More on Regression Slope

Hence $b_1 \sim N(\beta_1, \frac{\sigma^2}{SSX})$. Slope Variance

T Se

The regression variance σ^2 is unknown, but its unbiased estimator is the Sample Regression Variance $S^2 = \frac{SSE}{n-2}$.

Since *SSX* is a number in this context (does not depend on error terms), the unbiased estimator for the slope variance is

 $\frac{S^2}{SSX} = \frac{SSE}{(n-2)SSX}$ Sample Slope Variance

The square root of this quantity is *Slope Standard Error* (S_{b1}).

The following results should not be surprising:

$$\frac{b_1 - \beta_1}{\frac{\sigma}{\sqrt{SSX}}} \sim N(0,1) \qquad \frac{b_1 - \beta_1}{S_{b1}} \sim t(n-2)$$

Two-tailed t-test for Regression Slope

OPIM 5603

Fall 2019

Slide 3.34

$$t_{stat} = \frac{b_1 - \beta_1}{S_{b_1}} = (b_1 - \beta_1) \sqrt{\frac{(n-2)SSX}{SSE}} \sim t(n-2)$$

Given a sample $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ from (X, Y), formulate the hypotheses H_0 : $\beta_1 = 0$ H_a : $\beta_1 \neq 0$

and compute:

the *t-statistic*

$$t_{stat} = \frac{b_1 - \beta_1}{S_{b_1}} = (b_1 - 0) \sqrt{\frac{(n-2)SSX}{SSE}}$$

the *p-value*
$$P(t(n-2) \le - |t_{stat}|) + P(t(n-2) \ge |t_{stat}|)$$

Given the agreed significance level α ,

if p value $> \alpha$, accept the null hypothesis!

if p value $\leq \alpha$, reject the null hypothesis!

Conclusion: R function Im

OPIM 5603Fall
2019

```
Call: lm(formula = weight ~ height, data = women)
Residuals:
                         30 Max
    Min
             10 Median
-1.7333 -1.13: Slope Standard Error
                                             p-value
                  (see 3.33)
                                (see 3.34)
                                             (see 3.34)
Coefficients:
                      Std. Error t value
                                             Pr(>|t|
                                    -14.74
                          5.93694
(Intercept) -87.51667
                                     37.85
                          0.09114
                                             1.09e-14
height
              3.45000
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (), 1
Residual standard error: 1.525 on 13 degrees of freedom
Multiple R-squared: 0.991, Adjusted R-squared: 0.9903
F-statistic: 1433 on 1 and 13 DF,
                                   p-value: 1.091e-14
               Regression Standard Error (see 3.28)
```


OPIM 5603Fall
2019

Slide 3.36

Optional Slides

Regression Models

OPIM 5603Fall
2019

Slide 3.37

Linear Regression models are used to fit a linear relationship between a continuous dependent variable Y and a set of one or more continuous predictors;

Logistic Regression models
measure the relationship
between the categorical
dependent variable Y and a set
of one or more continuous
predictors;

Simple Regression: only one predictor

Multiple Regression: multiple predictors

Briefly on Multiple Linear Regression

OPIM 5603 Fall

2019

Dependent Variable (Outcome or Response Variable): Y

Predictors (Independent, Input Variables, Repressors): $X_1,...,X_p$

Assumes the following relationship:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + \varepsilon$$
,

where β 's are the *coefficients* and ε is the *noise*.

Slide 3.38

As in simple regression, for the given sample from the random vector

$$(X_1, X_2, \dots, X_p, Y)$$

the coefficients are obtained via the *Least Squares Method*.

There are also regression models with multiple dependent variables – these are usually called *Multivariate Linear Regression* models.

Multiple Regression in R: Syntax

	-	Separates response variables on the left from the explanatory variables on the right. For example, a prediction of y from x, z, and w would be coded $y - x + z + w$.
ODIM	+	Separates predictor variables.
OPIM 5603 Fall 2019	÷	Denotes an interaction between predictor variables. A prediction of y from x, z, and the interaction between x and z would be coded $y - x + z + x : z$.
	•	A shortcut for denoting all possible interactions. The code $y - x * z * w$ expands to $y - x + z + w + x:z + x:w + z:w + x:z:w$.
	^	Denotes interactions up to a specified degree. The code $y - (x + z + w)^2$ expands to $y - x + z + w + x : z + x : w + z : w$.
Slide 3.39	*	A place holder for all other variables in the data frame except the dependent variable. For example, if a data frame contained the variables x , y , z , and w , then the code y – . would expand to y – x + z + w .
	-	A minus sign removes a variable from the equation. For example, $y - (x + z + w)^2 - x \cdot w$ expands to $y - x + z + w + x \cdot z + z \cdot w$.
	-1	Suppresses the intercept. For example, the formula $y - x - 1$ fits a regression of y on x , and forces the line through the origin at $x = 0$.
	I()	Elements within the parentheses are interpreted arithmetically. For example, $y-x+(z+w)^2$ would expand to $y-x+z+w+z$. In contrast, the code $y-x+z+(z+w)^2$ would expand to $y-x+y+z+y+z$, where h is a new variable created by squaring the sum of z and w.
	function	Mathematical functions can be used in formulas. For example, $log(y) - x + z + w$ would predict $log(y)$ from x, z, and w.