

Stratégies d'analyses des cellules

Olivier PLUQUET

Master 1 MISO 2 février 2022

Objectifs du cours

A l'issu du cours vous devriez être en mesure :

-D'expliquer des méthodes classiques de biologie moléculaire et cellulaire permettant d'explorer la cellule

Plan du cours

- 1) La microscopie
- 2) L'exploration cellulaire par les protéines fluorescents
- 3) Le Western Blot
- 4) La PCR quantitative

Conditions pour observer une image

L'oeil est capable de distinguer 2 objets séparés par 0,2 mm et le microscope optique des objets séparés par ~200 nm.

Une image de bonne qualité:

- *Nette
- *Lumineuse
- *Peu de bruit de fond
- *Bien contrastée
- *Résolution adéquate

^{*}Qualité d'image => 1er facteur : qualité de l'échantillon et sa préparation

Microscopie optique

Microscopie optique à fluorescence

- · Fluorophores exogènes intercalables, greffables (spécifique)...
- · Protéines chimériques (GFP...);
- Billes fluorescentes (plus lumineux mais plus gros);
- Fluorophores endogènes (moins lumineux);

Microscopie optique à fluorescence

Microscopie confocale

Section optique

Un diaphragme minuscule (pinhole), situé dans un plan conjugué, bloque les raies lumineuses provenant des niveaux supérieurs et inférieurs.

Amélioration de la résolution

Microscopie électronique à transmission

Microscopie électronique à balayage

Grains de pollen

Pour obtenir des images de la surface d'un échantillon. Cette technique est caracterisee par un effet de relief de l'image.

Vidéomicroscopie

https://www.youtube.com/watch?v=cT5gfFpgdRI

Intravitale

Nature Reviews | Cancer

Plan du cours

- 1) La microscopie
- 2) L'exploration cellulaire par les protéines fluorescents
- 3) Le Western Blot
- 4) La PCR quantitative

Exploration cellulaire par les protéines fluorescentes

Osamu Shimomura

Le prix Nobel de Chimie 2008: Osamu Shimomura, Roger Tsien et Martin Chalfie, pour leur travaux sur la GFP,

La Green Fluorescent Protein

- -Structure en tonneau: confère grande photosatbilité
- -Importance des Cys de l'hélice alpha dans la fluorescence
- -GFP résistante à la dénaturation, fluorophore protégé dans le cylindre
- -GFP est flexible et peut être fusionné à d'autres protéines en C- ou N- terminal

La Green Fluorescent Protein et ses dérivées

recommended for cell and organelle labeling

eGFP= substitution de la serine65 du chromophore par une thréonine, conséquence: changement spectre emission/excitation

La Green Fluorescent Protein et ses dérivées

Mutagenèse sur chromophore:

protéines fluorescentes (FP) à partir d'autres organismes marins appartenant aux Anthozoaires (coraux, hydres)

La mCherry: dérivée du DsRed

extensive mutagenesis

Spectre GFP et variants

	Ex (nm)	Em (nm)	ε (M ⁻¹ , cm ⁻¹)	Φ_{F}	brillance (ε. Φ; UA)
wtGFP neutre	395	508	25-30 000	0,79	21 600
wtGFP phénolate	475	503	9,5-14 000		~9 400
EBFP	380	440	31 000	0,18	5 600
ECFP	434	477	26 000	0,40	10 000
EGFP	488	509	55 000	0,60	33 000
EYFP	515	529	80 400	0,61	49 000
Venus YFP	510	530	92 000	0,57	52 000
DsRed; DsRed2	558	583	57 000	0,79	45 000
mRFP1	584	607	44 000	0,25	11 000
HcRed1; HcRed-2A	588	618		faible	
fluorescéine	490	520	80 000	0,90	72 000

GFP

Absorption Rendement Q

The mFruit Series of Fluorescent Proteins

mHoneydew, mBanana, mOrange, mTangerine, mStrawberry, (and mCherry)

mHoneydew, mBanana, and mTangerine, suffer from low intrinsic brightness and poor photostability.

Creating Pseudo-Monomeric Fluorescent Proteins with Tandem Dimers

Protéines fluorescentes photo...

Autres protéines fluorescentes

Applications des protéines fluorescentes en biologie

Conclusion

Quelle FP choisir, quels sont les critères de choix ? Les paramètres importants à considérer sont multiples :

- La couleur (2 d'excitation/émission)
- Photostabilité
- 2 Brillance
- Maturation (lente vs rapide)
- Sensibilité au pHi
- Present Pre

.....mais le plus important reste « Quelle est la question biologique ? »

- *Luminosité
- *photostabilité
- *fusion

Plan du cours

- 1) La microscopie
- 2) L'exploration cellulaire par les protéines fluorescents
- 3) Le Western Blot
- 4) La PCR quantitative

Gel d'électrophorèse

- Technique permettant de séparer des molécules chargées en fonction de leur taille en les faisant migrer à travers un gel par application d'un champ électrique.
- Cette technique peut être utilisée pour séparer des acides nucléiques (ADN ou ARN, sur gels d'agarose ou d'acrylamide) ou des protéines (sur gel d'acrylamide)

Gel de protéines: SDS PAGE

- Pour Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis
 - SDS: solution anionique
 - Polyacrylamide : matière faisant le gel.
- Il faut dénaturer la protéine, c'est à dire lui faire perdre sa structure tridimensionnelle.
 - Pour cela, on « l'enveloppe » de charges négatives (grâce au SDS). Ainsi, les chaines polypeptidiques se repoussent et la protéine perd sa structure et est chargée. Elle peut donc migrer dans un champ électrique.

Gel de protéines: SDS PAGE

- En conséquence :
 - les protéines sont dénaturées : elles ont perdu leur structure tridimensionnelle native
 - Les protéines n'ont plus de pont disulfure : elles sont sous une forme monomérique

En pratique

Révélation du gel

Western Blotting (buvardage)

