MAE0217 - Estatística Descritiva - Primeiro semestre de 2017 Professora: Márcia D'Elia Branco

LISTA 4

1) Uma rede de supermercados decidiu dar um bônus, proporcional ao valor comprado, para todo cliente que comprasse um mínimo x (em UPM). Este mínimo foi fixado em 6 diferentes níveis. Simultaneamente mediu-se o incremento y no número de clientes cujas compras foram acima desse mínimo. Os resultados são apresentados a seguir.

X	100	100	125	125	150	150	175	175	200	200	225	225
У	30	44	114	138	155	163	145	163	158	126	126	106

- (a) Ajuste o modelo linear.
- (b) Faça o diagrama de dispersão com a reta ajustada. Você acha adequado o modelo? Por que?
- (c) Proponha um modelo mais adequado e ajuste o modelo. Faça uma análise de resíduos para esse modelo.
- 2) Para verificar a capacidade de captura de uma armadilha de caçar as "mosca da goiaba", fez-se o seguinte experimento controlado. A armadilha com a isca era colocada no centro de um pomar, e 8 moscas marcadas eram soltas a uma certa distância da mesma. Após 30 minutos contavam-se as moscas marcadas presas na armadilha. Para cada distância foram realizadas 4 réplicas do experimento.

Distância (cm)	Moscas capturadas
6.25	5; 3; 4; 6
12.5	5; 2; 5; 4
25.0	4; 5; 3; 0
50.0	3; 4; 2; 2
100.0	1; 2; 2; 3

Proponha um modelo para analisar o dados e implemente o ajuste no R. Especifique as suposições que estão sendo considerada no modelo proposto, bem como as variáveis explicativa e resposta. Interprete a saída do R no contexto do problema.

3) Depois de ajustar um modelo de regressão linear simples, um pesquisador obteve os seguintes valores para os resíduos.

X	10	11	12	13	14
R	-2	26	-2	0	-4
\mathbf{E}	0	-4	-6	4	0
\mathbf{S}	-4	-2	2	-2	-4
Ι	12	-6	8	0	4
D	-2	2	-2	-4	-6
U			2		-2
Ο					

Existem evidências de que algumas das suposições usuais do modelo não foram respeitadas? Justifique.

4) Cinquenta e quatro indivíduos idosos são submetidos a um exame psiquiátrico para avaliar a ocorrência ou não de sintomas de demência senil . Acredita-se que o escore obtido em um exame psicológico feito previamente esteja associado com a ocorrência do sintoma. Os dados são apresentados a seguir, com Resposta 1 (ocorrência) e 0 (não ocorrência). Ajuste um modelo de regresão logística e interprete os resultados.

Escore	Resp								
9	1	7	1	7	0	17	0	13	0
13	1	5	1	16	0	14	0	13	0
6	1	14	1	9	0	19	0	9	0
8	1	13	0	9	0	9	0	15	0
10	1	16	0	11	0	11	0	10	0
4	1	10	0	13	0	14	0	11	0
14	1	12	0	15	0	10	0	12	0
8	1	11	0	13	0	16	0	4	0
11	1	14	0	10	0	10	0	14	0
7	1	15	0	11	0	16	0	20	0
9	1	18	0	6	0	14	0		

5) Para este exercício, baixe os dados do R, na biblioteca *car* com os seguintes comandos:

library(car) dados<-Duncan</pre>

- (a) Acesse o help do R e descreva o conjunto de dados e suas variáveis. Certifique-se de ter entendido o que elas significam.
- (b) Apresente uma análise descritiva das variáveis da base dados o mais completa possível, com tabelas e gráficos que julgar importantes para a compreensão de um leitor que desconheça o assunto.
- (c) Ajuste um modelo de regressão linear múltipla tendo a variável *prestige* como resposta e as variáveis *education*, *income* e *type*, como explicativas. Apresente os resultados do modelo organizadamente (não vale saída bruta do R!), interprete as estimativas e descreva o que se pode concluir do modelo.
- (d) Faça uma análise de diagnóstico do modelo utilizando a função plot (aplicada a objetos do tipo lm), e a função qqPlot (da biblioteca car). Comente os resultados à luz das suposições de um modelo de regressão. Alguma delas, na sua opinião, foi ferida?
- (e) Você acha que o modelo pode ser utilizado? Explique. O importante, neste item, é a sua justificativa. Para inspirar a resposta, segue uma frase de George P. Box (um dos autores da transformação de Box-Cox): "Todos os modelos estão errados, mas alguns são úteis".

Entrega: 13/05/2017