ANALYSIS OF ROAD ACCIDENTS USING DATA VISUALIZATION TECHNIQUES

DATA VISUALIZATION (CSE3020)

J COMPONENT REVIEW REPORT

TEAM MEMBERS

Student Name	Registration Number
Y D S S Prathyusha	18BCE2051
Siddhant Chourasia	18BCE0275
Vaibhav Singh	18BCE2313

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

Submitted to

Prof. Meenakshi S.P

LIST OF TOPICS

Chapter No	Topic	Page No				
1	INTRODUCTION					
	1.1 Abstract	3				
	1.2 Introduction	3				
	1.3 Objectives	3				
2	PROBLEM STATEMENT	3				
3	DATA COLLECTION					
	3.1 Dataset view	4				
	3.2 Description	5				
4	TASKS, SYSTEM DESIGN & TOOLS USED	5				
5	ACTIONS	7				
6	IMPLEMENTATION	7				
7	VALIDATION					
	7.1 Domain level	22				
	7.2 Task level	22				
	7.3 Data level	22				
	7.4 Algorithm level	22				
8	SUGGESTIONS/ CONCLUSION	23				

1.INTRODUCTION

1.1 ABSTRACT

Roadway traffic safety is a major concern for transportation governing agencies as well as ordinary citizens. In order to give safe driving suggestions, careful analysis of roadway traffic data is critical to find out variables that are closely related to fatal accidents. The relationship between fatal rate and other attributes including collision manner, weather, surface condition, causality severity, and driver age were investigated.

Association rules were discovered by Apriori algorithm, classification model was built by Naive Bayes classifier, and clusters were formed by a simple K-means clustering algorithm. Certain safety driving suggestions were made based on statistics, association rules, classification model, and clusters obtained.

1.2 INTRODUCTION

Investigations of the high-risk areas for road traffic crashes (RTCs) are urgently needed to guide improvements in road safety. In this paper we apply statistics analysis and data visualisation algorithms on the FARS Fatal Accident dataset as an attempt to address this problem. In this paper, the relationship between fatality rate and other attributes including collision manner, weather, surface condition, causality severity, and driver age were investigated.

1.3 OBJECTIVE

- Our Objective is to arrive at a conclusion regarding the problem of Roadway traffic safety and to give safe driving suggestions.
- .Finding Numbers of accidents happening in rural and urban areas.
- Finding the trend in the number of accidents that occur each year.
- .Finding the most dangerous time to drive.
- Finding What fraction of accidents caused minor injuries, major injuries and deaths.
- Finding how fast the number of car accidents drop off with age.
- Finding the ratio of men and women who get injured in accidents.

2. PROBLEM STATEMENT

Roadway traffic safety is a major concern for transportation governing agencies as well as ordinary citizens. In order to give safe driving suggestions, careful analysis of roadway traffic data is critical to find out variables that are closely related to fatal accidents. India is a country

having a high usage of vehicles. The vehicle consumption has drastically increased in the last 40 years from 6 million to 230 million vehicles. Due to the increasing rate of 9% vehicles per year, the occurrence of road accidents has increased exponentially which in turn has hampered the road security of the people in India.

3. DATA COLLECTION

3.1 DATASET VIEW

Attribute	Attribute type	Details
Accident_Index	Ordinal	Unique identifier of the accident.
Date	Ordinal	Date of the accident.
Day_of_Week	Categorical	Day of the accident.
Time	Ordinal	Time of the accident, in 24 hours format.
Longitude	Quantitative	Longitude coordinate of the accident.
Latitude	Quantitative	Latitude coordinate of the accident.
Number_of_Casualties	Quantitative	Number of casualties resulted from the accident.
Number_of_Vehicles	Quantitative	Number of vehicles involved in the accident.
Accident_Severity	Quantitative	3 levels of severity (Fatal, Serious and Slight)
Speed_limit	Quantitative	Speed limit imposed on the stretch of road, if applicable.
Road_Type	Categorical	6 types of road (Single carriageway, Dual carriageway, Roundabout, One way street, Slip road, Unknown)
Pedestrian_Crossing- Human_Control	Categorical	3 categories (None within 50 metres, Control by other authorised person, Control by school crossing patrol)
Pedestrian_Crossing- Physical_Facilities	Categorical	6 categories (No physical crossing within 50 meters, Pedestrian phase at traffic signal junction, non-junction pedestrian crossing, Zebra crossing, Central refuge, Footbridge or subway)
Light_Conditions	Categorical	5 categories (Street light present, Street light present and lit, No street lighting, Street lighting unknown, Street lights present but unlit)
Weather_Conditions	Categorical	9 categories (Fine without high winds, Raining without high winds, Raining with high winds, Fine with high winds, Snowing without high winds, Fog or mist, Snowing with high winds, Unknown, Others)
Road_Surface_Conditions	Categorical	5 categories (Dry, Flood, Frost, Snow, Wet)
Special_Conditions_at_Site	Categorical	8 categories (Auto traffic signal partly defective, Auto traffic signal out, Mud, None, Roadworks, O1 or diesel, Road surface defective, Permanent sign or marking defective or obscured)
Carriageway_Hazards	Categorical	6 categories (None, Other object in carriageway, Any animal (except a ridden horse), Pedestrian in carriageway (not injured), Involvement with previous accident, Dislodged vehicle load in carriageway)

2	1 Andhra Pra	9204	2724	2901	9639	6556	1488	1630	9163	7584	1924	2173	9294	3497	1191	1339	4321	10082	4114	4612	11947	3552
2	2 Arunachal	40	13	13	21	27	6	1030	37	41	16	21/3	76	11	1191	10	53	50	19	25	77	41
3															5							
4	3 Assam	1278	432	457	906	286	57	53	422	1454	419	454	1447	634	192	239	1148	1694	526	652	1639	838
5	4 Bihar	1803	724	733	1253	376	137	146	318	1900	857	943	1492	1285	534	601	1055	3243	1620	1754	2138	904
6	5 Chhattisga	3325	524	610	3688	333	33	37	338	2234	352	380	2844	747	158	190	1224	2645	747	877	2645	3725
7	6 Goa	1884	121	130	879	56	2	2	36	1527	78	81	650	204	17	18	258	391	26	33	130	0
8	7 Gujarat	6431	1541	1698	6184	2750	533	578	3033	4995	1158	1428	5356	1275	293	374	1588	6686	1839	2030	6010	1843
9	8 Haryana	1084	276	301	1420	389	120	180	275	2590	864	1009	2361	633	302	330	642	2825	1237	1424	2555	1249
10	9 Himachal F	697	144	144	845	25	1	1	36	1114	302	486	2050	207	40	176	950	653	177	224	1097	184
11	10 Jammu & F	1144	189	191	560	176	14	16	42	314	68	73	240	1235	132	379	1123	1891	266	274	1331	1608
12	11 Jharkhand	1341	600	626	870	288	98	106	337	748	271	294	929	520	239	283	648	1703	830	957	1387	413
13	12 Karnataka	10588	1891	2081	12565	3430	450	485	4575	8515	1556	1735	11061	3932	778	875	6072	11317	2464	2786	14635	2555
4	13 Kerala	12019	996	1018	11740	4999	263	280	5979	8693	1040	1116	10566	4847	776	865	7272	3956	622	675	4632	1628
15	14 Madhya Pr	16693	1689	1817	17541	2358	127	146	2570	11474	1382	1537	12108	3939	580	766	6486	11433	2489	2970	11383	3821
16	15 Maharasht	15111	3119	3477	10440	5208	658	769	4098	15903	1975	2168	9420	3892	493	595	3222	13158	3025	3154	9097	9652
17	16 Manipur	175	34	37	250	52	7	7	108	232	23	26	411	60	16	19	159	142	36	40	259	110
18	17 Meghalaya	31	17	18	14	17	7	8	14	123	37	42	78	36	12	14	16	99	46	48	58	137
19	18 Mizoram	27	17	19	22	7	5	5	7	23	12	14	50	3	2	3	34	26	18	18	25	24
20	19 Nagaland	6	2	9	7	12	7	15	15	8	- 6	11	10	4	2	7	3		2	4	4	7
1	20 Odisha	2191	800	872	2032	407	119	150	574	1671	446	520	2172	719	229	262	1283	3000	1169	1355	3304	793
2	21 Puniab	1498	1021	1110	964	200	134	171	171	1584	1056	1121	1107	556	348	403	410	1567	1111	1256	945	599
-	21 Punjab	1490	1021	1110	904	200	134	1/1	1/1	1384	1030	1121	1107	550	346	403	410	1567	1111	1250	945	599

SI. No	States/UT: F	ault of Dr Fa	ult of Dr F	ault of Dr Fa	ult of Cy Fa	ult of Cyl	Fault of Cy Fa	ult of Dr I	ault of Dr	ault of Dr F	ault of Pe F	ault of Pe F	ault of Pe D	efect in (D	efect in (E	efect in (E	efect in F [Defect in F [Defect in FW	eather CW	eather C W	eather CF
	1 Andhra Pra	21359	6743	26287	329	102	371	288	75	425	234	104	160	67	26	85	285	192	442	60	19	70
	2 Arunachal	30	19	30	12	5	36	20	14	45	0	0	0	17	8	22	15	9	29	23	13	25
	3 Assam	6895	2429	6281	59	28	53	2	1	1	144	53	129	0	0	0	0	0	0	0	0	0
	4 Bihar	5008	2646	3374	352	151	260	608	254	395	286	144	233	541	302	355	446	252	282	409	210	306
	5 Chhattisga	9108	2458	8710	95	41	96	726	253	665	146	41	139	672	229	489	440	142	381	212	60	206
,	6 Goa	3795	247	1650	60	4	23	0	0	0	175	29	86	17	0	13	1	0	0	1	0	0
3	7 Gujarat	18945	6635	18256	423	82	519	450	170	516	1512	405	1311	161	60	164	203	32	107	194	43	241
9	8 Haryana	8208	3186	7633	153	71	43	456	210	202	348	140	193	165	107	96	141	74	56	127	75	68
0	9 Himachal F	2936	1148	5326	1	0	1	22	3	30	0	0	0	74	37	156	25	11	63	0	0	0
1	10 Jammu & F	3614	561	4088	0	0	0	380	62	937	223	35	133	341	38	193	113	11	128	20	2	36
2	11 Jharkhand	2961	1354	2367	46	38	39	358	209	225	305	193	242	285	156	220	223	137	231	203	94	230
3	12 Karnataka	35409	8508	45635	522	101	718	3054	648	4489	335	77	867	626	113	810	178	43	183	679	202	307
4	13 Kerala	36282	4049	41096	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	14 Madhya Pr	41275	6740	44090	286	5	162	2215	346	2240	152	10	99	1664	370	1690	1446	225	1337	539	83	448
6	15 Maharasht	48237	11113	34294	95	44	86	7270	531	2186	334	111	268	497	98	455	381	79	324	102	41	92

ACCIDENT ACCIDENT	ACCIDENT AL	COHOL1A0	CCIDENT	DAY_OF_\	HII_RUN	_LIGHT_C	POLICE_	ASEVERITY	SPEED_ZC	LONGITUE	LATITUDE	LGA_NAM	TOTAL_PE	INJ_OR_F	FAIALITY	SERIOUSII	VJUKY	NON	VJUF MALES	FEMALE	S BICYCLIS
T2010001: ########	14.20.00	1	1	6	()	1	1 1	60	146.4239	-38.2431	1	7		(0		5	2	0	7
T2010001: ########	19.00.00	1	1	4	()	2	0 2	2 50	144.9353	-37.7454	3	2	1	. (1		0	1	2	0
T2010001: #######	15.00.00	1	2	6	()	1	0 1	. 60	144.962	-37.7681	3	3	1	. (0		1	2	1	2
T2010001: #######	16.10.00	1	1	6	()	1	1 1	. 60	145.0764	-37.863	14	3	1	. (0		1	2	1	2
T2010001: #######	11.00.00	0	3	5	()	1	0 1	60	146.0804	-37.9173	2	1	1	. (0		1	0	1	0
T2010001: #######	17.05.00	1	1	6	()	1	1 1	. 50	144.973	-37.7646	3	3	1	. (0		1	2	1	0
T2010001: ########	10.20.00	0	4	6	() :	1	0 2	-1	146.0013	-37.3617	4	1	. 1	. (1		0	0	1	0
T2010001: #######	18.00.00	1	1	6	()	2	1 2	2 70	145.0291	-37.7408	9	3	2		2		0	1	1	2
T2010001: ########	19.15.00	1	1	6	()	2	1 1	60	144.9402	-37.5988	15	2	2	(0		2	0	0	2

1		ACCIDENT	TOTAL_PE	RSONS
2	O	########	7	
3	1	########	2	
4	2	########	3	
5	3	########	3	
6	4	########	1	
7	5	########	3	
8	6	########	1	
9	7	########	3	

3.2 DESCRIPTION

Categorical attributes present – State/Union Territory

Quantitative attributes present- All Other attributes present based on each database

For example

Quantitative attributes present in "Details of road accident deaths by situation state 2014.csv"

Year, CrimeHeadOffenders (Driver/Pedestrian), Died_MaleOffenders (Driver/Pedestrian), Died_FemaleOffenders (Driver/Pedestrian), Died_TransgenderOffenders (Driver/Pedestrian), Died_TotalVictims, Died_MaleVictims, Died_FemaleVictims, Died_Transgender, Victims Died_Total

4. TASKS

- Download datasets
- Data preparation
- Modelling

Visualization

SYSTEM DESIGN

TOOLS/ IMPORTANT LIBRARIES USED

Numpy -NumPy is a Python library used for working with arrays. It also has functions for working in the domain of linear algebra, fourier transform, and matrices.

Pandas - Pandas is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series.

Matplotlib- Matplotlib is a plotting library for the Python programming language and its numerical mathematics extension NumPy. It provides an object-oriented API for embedding plots into applications.

Seaborn- Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.

Plotly- The plotly Python library is an interactive, open-source plotting library that supports over 40 unique chart types covering a wide range of statistical, financial, geographic, scientific, and 3-dimensional use-cases.

OrderedDict- OrderedDict is a dict subclass that preserves the order in which key-value pairs, commonly known as items, are inserted into the dictionary.

Datetime- It is a Python library used for Time access and conversions.

Bar_chart_race- Make animated bar chart races in Python with matplotlib. Img.

5. ACTIONS

- Data pre-processing
- Feature selection
- Training the model
- Statistical analysis
- Testing
- Output/ graphs prediction

6. IMPLEMENTATION

Types of vehicle involved in Accidents

Percentage of accidents per 3-hour period

Percentage of Accidents per 3-hour period

Number of Accidents happening in particular time interval

Percentage of Deaths occuring due to non-wearing of helmets between male and female.

Non-wearing of Helmet - Female

Number of Accidents at various severity level with respect to speed zone

Number of offenders died in accidents with respect to gender

Number of victims died with respect to gender

Percentage change in the accidents with previous year

Road accidents in Andhra Pradesh by age groups (2014)

Road accidents in Maharashtra by age groups (2014)

Road accidents in Karnataka by age groups (2014)

Road accidents in Andhra Pradesh by time of accident in hrs (2014)

Road accidents in Karanataka by time of accident in hrs (2014)

Road accidents in Tamil Nadu by time of accident in hrs (2014)

7. VALIDATION

7.1 DOMAIN LEVEL

- Our primary aim is to analyse the data obtained by applying statistics analysis and data visualisation algorithms on various Accident datasets.
- Certain safety driving suggestions were made based on statistics, association rules, classification model, and clusters obtained.
- These are made by analysing data and comparing trends to find out why and how such factors can affect road accidents.

7.2 TASK LEVEL

- The main motivation of our project revolves around the fact that in India approximately 465033 people lose their lives every year because of road accidents.
- India's young, productive population, aged 18-45 years, is involved in 70% of road accidents.
- So, through this project we aim to analyse trends and information /data related to road accidents in India and give a detailed analysis of these accidents which may be very helpful in controlling these accidents.
- This project analysis makes people cautious of the way accidents happen so that they can take precautions while driving.

7.3 DATA LEVEL

- Reasons for accidents
- Percentage of accidents in particular periods.
- Types of vehicles involved.
- Severity index.
- Reason for accidents.
- Road accidents of all states and union territories from 2001-14.
- Road accidents on a yearly basis.
- Monthly analysis on states having the highest number of accidents.
- Analysis based on drivers age.

7.4 ALGORITHM LEVEL

- Language used : python
- IDE used spyder and google collab

8. SUGGESTIONS/ CONCLUSIONS

- Whoever is driving should make sure that he is in a proper state to drive.
- Most of the accidents were happening in the time interval of 3pm-6pm, so people should be careful for various reasons like change in light condition etc..
- Apart from the year 2008, in all other years there is either no change or increase in the percentage of accidents. Despite so many warnings and laws issued regarding Road accidents like no triple riding, don't drink and drive, carry the prescribed weight on vehicles, everybody finds a way to violate these rules. But people should understand that at the end it's going to risk their lives and the lives of people travelling with them.
- The highest number of accidents are recorded from age groups 15-24 and 25-64. There can be various reasons for this like: Alcoholism, Bike racing, Reckless driving, or the urge to work or college on time etc...
- We have also seen that in the months of the rainy season the accidents actually peak down because people are extra careful.
- How many guidelines or awareness drives the government or any organization start, they are of no use until the people consider them seriously. Value their lives and other's lives.
- Even if people are following every precaution there is always a loophole in problems like this. So all we can do is be careful, be sober.