10-605 Recitation 4

Daniel, Zach

Today's Recitation

SGD Recap

Optimize SGD

Learning Rate Tuning

Coding Example

SGD Recap

Stochastic Gradient Descent

for i in range(m):

$$w_j := w_j - \alpha \frac{\partial J_i}{\partial w_j}$$

J_i is the cost of ith training example

Gradient Descent

$$w_j := w_j - \alpha \frac{\partial J}{\partial w_j}$$

J is the cost over all the training data points

SGD Recap

Stochastic Gradient Descent

Computationally cheap

High variance

More step to converge

Prone to find local minima

Gradient Descent

Computationally expensive

Low variance

Less step to converge

Prone to find global minima arnegie
 Mellon

SGD Recap

Mini Batch Gradient Descent

for b in batches:

$$w_j := w_j - \alpha \frac{\partial J_b}{\partial w_j}$$

J_b is the cost of bth batch

SGD with Momentum

"Noisy" derivatives for SGD.

Only estimate on a small batch, which might not be the optimal direction.

Momentum:

Define a way to get the "moving" average of some sequence, which will change along with data.

$$V_{t} = \beta V_{t-1} + \alpha \nabla_{w} L(W, X, y)$$

$$W = W - V_{t}$$

Carnegie Mellon

University

SGD with Nesterov

Slightly different from Momentum.

Calculate gradient at "look ahead" position, instead of current position.

$$V_t = \beta V_{t-1} + \alpha \nabla_w L(W - \beta V_{t-1}, X, y)$$

$$W = W - V_t$$
Nesterov momentum update

"lookahead" gradient step (bit different than original)

actual step

gradient step

Learning Rate Tuning

Learning Rate Tuning

Adaptive learning rate methods

Time-based decay

$$lr = lr \times \frac{1}{decay \times num_epoch}$$

Step decay

$$lr = lr_{initial} \times drop^{\frac{num_epoch}{epochs_drop}}$$

Exponential decay

$$lr = lr_{initial} \times e^{k \times num_iter}$$

Learning Rate Tuning

Other adaptive learning rate methods

Multi-step scheduler

Reduce Ir on plateau

Newbob strategy

Coding Example

Task: Image Classification

Data: CIFAR10

Model: CNN

Reference

- https://towardsdatascience.com/https-towardsdatascience-com-whyv-stochastic-gradient-descent-works-9af5b9de09b8
- https://towardsdatascience.com/stochastic-gradient-descent-with-m omentum-a84097641a5d
- https://deepnotes.io/sgd-momentum-adaptive#momentum

