

Lecture # 5.1 CHE331A

- Reaction rate is a function of concentration
- Some more about reactions
- Rate laws and the forms of reaction rates
- Rate constant, activation energy and Equilibrium constants
- Rate as a function of conversion
 - Performance equations

GOUTAM DEO
CHEMICAL ENGINEERING DEPARTMENT
IIT KANPUR

To use the design equation in terms of conversion we need to find $-r_A = g(X)$

- ▶ We have seen $-r_A = f(T, C_j)$, \rightarrow we need to find out $C_j = h(X)$
- ➤ To determine this relationship the stoichiometry of the reaction is important
- For a reaction $A + \frac{b}{a}B \rightleftharpoons \frac{c}{a}C + \frac{d}{a}D$ we have $\frac{\Delta N_A}{-1} = \frac{\Delta N_B}{-b/a} = \frac{\Delta N_C}{c/a} = \frac{\Delta N_D}{c/a}$
- Number of moles of species A remaining after time t (BR) or volume V or W (flow reactors) is given by: $N_A = N_{A0}(1-X)$ for BR and $F_A = F_{A0}(1-X)$ for CSTR/PFR/PBR
- ▶ Based on the above the stoichiometry moles of the other species can be determined → best done by a stoichiometric table (single reaction)

The stoichiometry table for a batch system

Species	Initial (mol)	Change (mol)	Remaining (mol)
Α	N_{A0}	$-(N_{A0}X)$	$N_A = N_{A0} - N_{A0} X$
В	N_{B0}	$-\frac{b}{a}(N_{A0}X)$	$N_B = N_{B0} - \frac{b}{a} N_{A0} X$
С	N_{C0}	$\frac{c}{a}(N_{A0}X)$	$N_C = N_{C0} + \frac{c}{a} N_{A0} X$
D	N_{D0}	_	$N_D = N_{D0} + \frac{d}{a} N_{A0} X$
I (inerts)	N_{I0}		$N_I = N_{I0}$
Total =	N_{T0}		$N_T = N_{T0} + \delta N_{A0} X$
,	_ 1.		

 $\delta = \frac{a}{a} + \frac{c}{a} - \frac{b}{a} - 1$ is the change in number moles per mol A reacted

 \square Concentrations are given by $\frac{N_i}{V}$

$$\frac{\Delta N_A}{-1} = \frac{\Delta N_B}{-b/a} = \frac{\Delta N_C}{c/a} = \frac{\Delta N_D}{c/a} = N_{A0}X$$

$$C_A = \frac{N_A}{V} = \frac{N_{A0}(1-X)}{V}; \quad C_B = \frac{N_{B0}-(b/a)N_{A0}X}{V}$$

$$C_C = \frac{N_{C0}+(c/a)N_{A0}X}{V}; \quad C_D = \frac{N_{D0}+(d/a)N_{A0}X}{V}$$

 $lue{}$ Defining with respect to N_{A0}

$$\theta_i = \frac{N_{io}}{N_{A0}} = \frac{C_{io}}{C_{A0}} = \frac{y_{io}}{y_{A0}} \qquad \qquad \bigcirc$$

$$C_A = rac{N_{A0}(1-X)}{V};$$
 $C_B = rac{N_{A0}[\theta_B - (b/a)X]}{V}$ $C_C = rac{N_{A0}[\theta_C + (c/a)X]}{V};$ $C_D = rac{N_{A0}[\theta_D + (d/a)X]}{V}$

For flow systems a similar approach can be taken

- ▶ For flow systems: N_i is replaced by F_i and V by \dot{v} in the stoichio. table
- ▶ Thus, $C_A = \frac{F_A}{\dot{v}} = \frac{F_{A0} F_{A0}X}{\dot{v}};$ $C_B = \frac{F_{B0} (b/a)F_{A0}X}{\dot{v}}$
 - $C_C = \frac{F_{C0} + (c/a)F_{A0}X}{\dot{v}};$ $C_D = \frac{F_{D0} + (d/a)F_{A0}X}{\dot{v}}$
- \Box Defining with respect to F_{A0} :

$$C_A = \frac{F_{A0}(1-X)}{\dot{v}};$$

$$C_C = \frac{F_{A0}[\theta_C + (c/a)X]}{\dot{v}};$$

$$\theta_i = \frac{F_{io}}{F_{A0}} = \frac{C_{io}}{C_{A0}} = \frac{y_{io}}{y_{A0}}$$

$$C_B = \frac{F_{A0}[\theta_B - (b/a)X]}{\dot{v}}$$

$$C_D = \frac{F_{A0}[\theta_D + (d/a)X]}{\dot{v}}$$

 $\blacktriangleright V \ and \ \dot{v}$ may be function of $X, \rightarrow we$ now need to find $V(X) \ \& \ \dot{v}(X)$

For some cases the volume of the reacting system is a constant (const. volume systems)

- ► For liquid-phase reactions taking place in solution, the solvent usually dominates the system
 - Change in density is small/negligible, except for polymerization reactions
- For gas-phase reactions, constant volume occurs for

- Sealed constant-volume vessel, with appropriate T and P measurements
- Isothermal reaction with the number of moles of reactants is equal to the number of moles of products in the stoichiometric equation
- ► Thus, $V = V_0$ for batch systems OR $\dot{v} = \dot{v}_0$ for flow systems $C_i = \frac{N_{A0}[\theta_i + {\mu_i/a}X]}{V_0}$ OR $C_i = \frac{F_{A0}[\theta_i + {\mu_i/a}X]}{\dot{v}_0}$ $\xrightarrow{\mu_i}$ stoichio. coeffecient

Constant volume systems can readily be used for determining $-r_A = f(X)$

▶ For $V = V_0$ for batch systems OR $\dot{v} = \dot{v}_0$ for flow systems, and a rate law given for A reacting with B as $-r_A = k$. C_A . C_B

$$C_i = \frac{N_{A0}[\theta_i + {\mu_i/a}X]}{V_0} \quad \text{OR} \quad C_i = \frac{F_{A0}[\theta_i + {\mu_i/a}X]}{V_0} \rightarrow C_i = C_{A0} \left[\theta_i + {\mu_i/a}X\right]$$

▶ Then,
$$-r_A = kC_{A0}(1 - X).C_{A0}(\theta_B - \frac{b}{a}X)$$

► Thus,
$$-r_A = kC_{A0}^2(1 - X) \cdot \left(\theta_B - \frac{b}{a}X\right) = f(X)$$

Reading Assignment: Ex 3-2 and 3-3 from Fogler, 4th Edition

