

Wyższa Szkoła Oficerska Sił Powietrznych

Katedra Awioniki i Systemów Sterowania

Miernictwo i Technika Eksperymentu							
Rok akademicki	Rok studiów Kierunek		Grupa				
2010/2011	2	Lotnictwo i Kosmonautyka	C9D2				
Sprawozdanie							
Nr ćwiczenia	Nr ćwiczenia Temat ćwiczenia						
Pomiary pośrednie podstawowych wielkości elektrycznych							
Data wykonania	Imię i nazwisko Ocena						
ćwiczenia	Karol Mazur						
19.01.2011	Szkopiak Piotr						
Data złożenia	Łukasz Kusek						
sprawozdania	Małgorzata Michalak						
24.01.2011							
Prowadzący							
mjr mgr inż.							
Roman Tuziak							

Spis treści

1	Cel i zakres ćwiczenia	2
2	Opis stanowiska laboratoryjnego	2
3	Opis przebiegu realizacji	3
4	Wyniki	3
E	Weigald	1

1 Cel i zakres ćwiczenia

Celem ćwiczenia jest zapoznanie się z technicznymi metodami pomiarów rezystancji, pojemności i indukcyjności oraz wykonanie pomiarów.

2 Opis stanowiska laboratoryjnego

Stanowiska pomiarowe wykonane zostały według schematów

• dla pomiaru rezystancji małych i dużych

• dla pomiaru pojemności

• dla pomiaru indukcyjności

3 Opis przebiegu realizacji

W celu pomiaru rezystancji, pojemności oraz indukcyjności połączono układy pomiarowe według schematów zamieszczonych powyżej, następnie odczytano wyniki, a wartości umieszczono w tabelach poniżej.

4 Wyniki

Wie	elkość	R_X - małe				R_X - duże							
mie	rzona	R_1	=	R_2	=	R_3	=	R_{X4}	=	R_5	=	R_{X6}	=
		487Ω		$4,7k\Omega$		$1k\Omega$		$4,7k\Omega$		$1k\Omega$		487Ω	
Tole	rancja	2%		5%		10%		5%		10%		2%	
U_R	V	2,5		9, 1		2, 5		10, 5		10		10	
I_R	mA	5		2		2,5		1,8		5,2		7,4	
R_X	Ω	500		4550		1000		5833		1923		1351	
δ	%	-3		3		0		-20		-48		-64	

Ze wzoru

$$R_X = \frac{U_R}{I_R}$$

obliczyliśmy wartości ${\cal R}_X$ i umieściliśmy w tabeli.

Ze wzoru

$$\delta R_n = \frac{R_n - R_X}{R_X} \cdot 100\%$$

obliczamy błąd względny i umieszczamy w tabeli.

Wielkość					
mie	L_{X1}				
U_L	V	0, 2			
I_L	mA	7,5			
$\mid f \mid$	Hz	1000			
L_X	mH	4, 2			

Ze wzoru

$$L_X = \frac{U_L}{2\pi f I_L}$$

obliczyliśmy wartości ${\cal L}_X$ i umieściliśmy w tabeli.

Wie	elkość	C_X					
mie	rzona	$C_{X1} = 150nF$	$\begin{array}{c c} C_{X2} & = \\ 47nF \end{array}$	$C_{X3} = 220nF$			
Tolerancja		10%	20%	10%			
$egin{array}{c} U_C \ I_C \end{array}$	V	8,4	10	7, 7			
I_C	mA	5, 25	4	5, 5			
$\int f$	kHz	1	1	1			
C_X	Ω	99	64	114			
δ	%	51	-26	93			

Ze wzoru

$$C_X = \frac{I_C}{2\pi f U_C}$$

obliczyliśmy wartości ${\cal C}_X$ i umieściliśmy w tabeli. Ze wzoru

$$\delta C_n = \frac{C_n - C_X}{C_X} \cdot 100\%$$

obliczamy błąd względny i umieszczamy w tabeli.

5 Wnioski

- Badania rezystancji według schematu dla małych rezystancji dały wyniki porównywalne z nominalnymi.
- Badania rezystancji według schematu dla dużych rezystancji dały wyniki dużo różniące się od nominalnych.
- \bullet Schemat dla dużych rezystancji nie sprawdza się dla rezystancji rzędu kilku tysięcy Ω
- Badanie indukcyjność nie pozwala nam wysnuć wniosków, gdyż nie posiadaliśmy wartości nominalnych.
- Badanie pojemności dały duże rozbieżności pomiędzy wartością uzyskaną w wyniku pomiaru, a wartością nominalną. Sugeruje to albo uszkodzenie wszystkich trzech badanych kondensatorów, albo niedokładność użytej metody.