Computer Network [Day - 1]

UID: 24MCI10204

Name: Rahul Saxena

Branch: 24MCA – AI & ML

Question 1: Network Design and Optimization

Scenario:

You are a network architect for a multinational company that has five regional offices located in New York, London, Tokyo, Dubai, and Sydney. Each office needs to be connected to every other office to ensure real-time data sharing and high availability. However, due to budget constraints, you are allowed to establish a maximum of 7 physical links between the locations.

Each link has:

- A latency (ms)
- A bandwidth (Mbps)
- An associated cost (per km)

You are tasked to design an optimal network topology that fulfills the following: Requirements:

- 1. Minimum network latency for critical communications between New York and Tokyo.
- 2. High fault tolerance at least two alternative routes should exist between any two offices.
- 3. Least possible cost without exceeding the 7-link constraint.
- 4. Avoid bottlenecks no single node should become a major point of failure.
- 5. Choose and justify the best topology (from mesh, ring, star, hybrid) that fits the above requirements.

Given Data Table (Sample):

Link	Distance (km)	Latency (ms)	Bandwidth (Mbps)	Cost per km (\$)
NY ↔ London	5567	70	1000	3
NY ↔ Tokyo	10800	150	500	4
NY ↔ Dubai	11000	140	700	3.5
NY ↔ Sydney	15900	180	600	5
London ↔ Dubai	5500	60	1000	2.5
Tokyo ↔ Sydney	7800	90	800	4.2
Dubai ↔ Tokyo	8000	95	700	3.8

London ↔ Tokyo	9600	120	900	4
Dubai ↔ Sydney	12000	130	700	4.5

Tasks:

- 1. Select 7 links that fulfill all requirements.
- 2. Draw the resulting topology.
- 3. Justify your choice in terms of topology type and performance.
- 4. Calculate:
 - o Total cost of selected links.
 - Average latency between any two offices.
 - Fault tolerance level (minimum alternate paths).
- 5. Identify one major drawback of your design and propose a mitigation strategy.

Answer:

Link Selection:

Link	Latency (ms)	Cost (\$)
1. NY ↔ Tokyo	150	43,200
2. NY ↔ London	70	16,701
3. London ↔ Dubai	60	13,750
4. Dubai ↔ Tokyo	95	30,400
5. Tokyo ↔ Sydney	90	32,760
6. Dubai ↔ Sydney	130	54,000
7. NY ↔ Dubai	140	38,500

Topology Type:

- NY connects to: Tokyo, London, Dubai
- Tokyo connects to: NY, Sydney, Dubai
- Dubai connects to: NY, London, Tokyo, Sydney
- London connects to: NY, Dubai
- Sydney connects to: Dubai, Tokyo

Average Latency Estimation

- NY–Tokyo: 150 ms
- NY–Sydney: via Dubai = 270 ms
- London–Sydney: via Dubai = 190 ms
- Tokyo–London: via Dubai = 95 + 60 = 155 ms

Then estimates: average \sim 160–200 ms

Total Cost

Link	Cost (\$)
NY ↔ Tokyo	43,200
NY ↔ London	16,701
London ↔ Dubai	13,750
Dubai ↔ Tokyo	30,400
Tokyo ↔ Sydney	32,760
Dubai ↔ Sydney	54,000
NY ↔ Dubai	38,500

Total Cost: 229,311

Fault Tolerance

For any two offices, there are at least two paths:

• NY-Tokyo: Direct + via Dubai or London

NY-Sydney: via Dubai, via Tokyo

• London-Tokyo: via Dubai, via NY

So:

• Minimum 2 alternate paths per pair \rightarrow YES

Drawback and Mitigation

Drawback:

High-cost link (e.g., Dubai ↔ Sydney at \$54,000) impacts budget.

Mitigation:

Use MPLS or virtual private routing to simulate connectivity while reducing cost on physical infrastructure.

Question 2: Wireless and Wired Medium Access Protocol Design Challenge Scenario:

You are working as a network protocol analyst for a tech company that is designing communication infrastructure for two separate systems:

- 1. A remote agricultural sensor network in a rural area using wireless communication for environmental data collection (e.g., temperature, soil moisture).
- 2. An automated factory system using wired Ethernet to connect robots, conveyor belts, and control units with real-time precision.

Each network faces unique challenges regarding collisions, medium access, bandwidth constraints, and efficiency.

Objectives:

Your task is to:

- 1. Select the most appropriate MAC (Medium Access Control) protocol from the following for each network:
 - o Pure ALOHA
 - Slotted ALOHA
 - o CSMA
 - o CSMA/CD
 - o CSMA/CA

Given Parameters:

- Agricultural sensors send small packets every 5–10 seconds and are powered by battery-operated IoT devices.
- The factory system requires real-time communication with 1 ms latency tolerance and minimal jitter.

Questions:

- 1. Which MAC protocol would you assign to each network and why?
- 2. What would be the expected efficiency of the chosen protocols under high and low load conditions?
- 3. How does each protocol manage collisions, and how does this affect energy consumption or latency?
- 4. Simulate or draw packet transmission timelines showing collision or backoff behavior for each protocol.
- 5. What trade-offs exist between complexity, reliability, and energy usage in your choices?
- 6. What changes would you make if the agricultural network became denser (i.e., more sensors within range)?
- 7. Suggest one improvement or hybrid approach that combines the strengths of multiple MAC protocols for any of the scenarios.

Answer:

MAC Protocol Assignment and Justification

System	Selected MAC Protocol	Justification
Agricultural Sensor Network	CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)	- Reduces collision risk in wireless medium - Conserves battery by avoiding unnecessary retransmissions - Fits low-data, energy- constrained use
Automated Factory System	CSMA/CD (Carrier Sense Multiple Access with Collision Detection) or ideally Switched Ethernet with Full Duplex (no MAC contention)	- Low latency in a controlled wired environment - Collision detection ensures real- time delivery - Switches avoid collision entirely

Efficiency Under Different Load Conditions

Protocol	Low Load Efficiency	High Load Efficiency	
CSMA/CA	~70–80%	Drops to ~30–40% due to backoff delays and collisions	
CSMA/CD	~90% (with low collisions)	Can degrade to ~40–50% under heavy traffic due to collisions and retransmissions	

Collision Management and Impact

Protocol	Collision Management	Energy/Latency Impact	
CSMA/CA	Listens before transmitting; uses random backoff timers if the medium is busy. Avoids collisions.	Energy-efficient but adds delay due to backoff, especially with dense nodes	
CSMA/CD	Detects collision during transmission and immediately stops; retransmits after random backoff	Higher energy waste during collision but low latency if collisions are rare	

Packet Transmission Timeline Diagrams

CSMA/CA (Wireless Sensor):

Time \rightarrow

Device A: |Listen| |Send|-----|
Device B: |Listen| |Backoff|---|Send|
Device C: |Listen|Backoff|-----|Send|

- Devices listen first.
- If busy, they back off randomly before retrying.

CSMA/CD (Factory Ethernet):

Time \rightarrow

Device A: |Sense|Send|--X(Collision)--|Backoff|--Send|

Device B: |Sense|Send|--X(Collision)--|Backoff|---Send|

- Collision is detected during transmission.
- Retransmit after random time.

Trade-offs: Complexity vs Reliability vs Energy

Protocol	Complexity	Reliability	Energy Usage
CSMA/CA	Medium	High (for sparse networks)	Energy Efficient
CSMA/CD	Low–Medium	High (in wired setup)	Wastes energy during collisions
Switched Ethernet	Low complexity (no collisions)	Very high	Energy efficient

What If Agricultural Network Becomes Denser?

If more sensors are added:

- CSMA/CA becomes **less efficient** due to more frequent collisions and backoffs.
- Leads to higher latency and increased energy consumption.

Improvement Options:

- Use TDMA (Time Division Multiple Access): Assign time slots per sensor
- Cluster-based MAC: Elect cluster heads to coordinate communication
- **Duty Cycling**: Schedule node wake/sleep to avoid collisions

Suggested Hybrid MAC Improvement

For Wireless Sensor Network: CSMA/CA + TDMA Hybrid

- Use **CSMA/CA** in low-density, normal operation.
- Switch to **TDMA scheduling** when node density crosses threshold.

Advantages:

- Low energy use in sparse environments
- Collision-free slots during peak traffic
- Adaptive behavior improves both latency and battery life

Example Use Case:

- Sensors use CSMA/CA by default
- When traffic spikes (e.g., during weather anomaly), cluster head assigns TDMA slots