

Eðlisfræði

Bekkir 5.Y og 5.Z

Leyfileg hjálpargögn:

Skriffæri og reiknivél af gerðinni Casio fx-350ES PLUS $\hbox{ Petta próf er 10 spurningar, alls 100 stig. }$

Nafn: _	bekkur: _	

1. (a) (8%) Sívalningur hefur lengd $\ell=22.0\pm0.5\,\mathrm{cm},$ geisla $r=2.5\pm0.1\,\mathrm{cm}$ og massa $m=3500\pm5\,\mathrm{g}.$ Finnið eðlismassa sívalingsins með óvissu.

(b) (2%) Á eftirfarandi töflu má glöggt greina eðlismassa nokkurra efna:

Efni	Eðlismassi $[kg/m^3]$
Ál	$2.7 \cdot 10^3$
Stál	$7.8 \cdot 10^{3}$
Kóbalt	$8.7 \cdot 10^{3}$
Kopar	$8.9 \cdot 10^{3}$
Pólóníum	$9.2 \cdot 10^{3}$
Silfur	$10.5 \cdot 10^{3}$
Gull	$19.3 \cdot 10^{3}$

Úr hvaða efni er sívalningurinn?

2. (10%) Engilbert hellir $m_{\rm te}=0.2\,{\rm kg}$ af te við 95°C í bolla með massa $m_{\rm bolli}=0.15\,{\rm kg}$ sem er við 25°C til að byrja með. Hvert verður lokahitastig tesins og bollans að því gefnu að enginn varmi tapist til umhverfisins? ($c_{\rm te}=4100\,{\rm J/kg\,K},$ $c_{\rm bolli}=840\,{\rm J/kg\,K}$).

- 3. Slökkviliðsmaður skýtur vatni úr háþrýstislöngu í átt að brennandi byggingu. Hraði vatnsins við enda slöngunnar er $25,0\,\mathrm{m/s}$. Slökkviliðsmaðurinn stillir hornið $\theta=23^\circ$ sem slangan myndar við jörðu þannig að vatnið er $3,00\,\mathrm{s}$ að ferðast til byggingarinnar. Gerum ráð fyrir því að slönguendinn nemi við jörðu.
 - (a) (5%) Hversu langt frá byggingunni stendur slökkviliðsmaðurinn?

(b) (5%) Í hvaða hæð hæfir vatnið húsið?

4. Kyrrstæður $M=15,0\,\mathrm{kg}$ kubbur stendur á núningslausu, láréttu borði. Kubburinn er festur við gorm, með gormstuðul $k=525\,\mathrm{N/m}$. Steinn með massa $m=3,00\,\mathrm{kg}$ og láréttan hraða $v_1=8,00\,\mathrm{m/s}$ til hægri, lendir á kubbnum. Steinninn endurkastast með hraðanum $v_2=2,00\,\mathrm{m/s}$ til vinstri.

(a) (5%) Notið skriðþungavarðveislu til þess að finna hraða kubbsins rétt eftir áreksturinn.

(b) (5%) Notið orkuvarðveislu til þess að finna mestu þjöppun gormsins eftir áreksturinn.

5. Braut Venusar um sólina er næstum hringlaga. Venus er í 0,72 AU fjarlægð frá sólu. (1 AU = 1,5 \cdot 10¹¹ m) (a) (5%) Notið þriðja lögmál Keplers til að finna umferðartíma Venusar.

- (b) (3%) Lítum á Venusi sem punktmassa ($M_{\rm Venus}=4.9\cdot 10^{24}\,{\rm kg}$). Hver er hverfitregða Venusar um snúningsás í gegnum sólina?
- (c) (2%) Hvert er heildarvægið (um snúningsás í gegnum sólina) sem verkar á Venusi?
- 6. Kyrrstæður kassi með massa 42 kg stendur í 25 m hæð á skábretti sem hallar um 21° miðað við lárétt. Núningsstuðullinn milli kassans og skábrettisins er $\mu=0,23$.
 - (a) (4%) Hver er hröðun kassans niður brekkuna?

(b) (3%) Finnið hraða kassans þegar hann er kominn niður hallann.

(c) (3%) Þegar hann er komninn niður hallann tekur við hrjúft lárétt yfirborð með núningsstuðul $\mu=0.67$. Hversu langt rennur kubburinn á hrjúfa yfirborðinu áður en hann stöðvast?

7.	(a) (4%) Sjóræninginn Jack Sparrow heldur á fjarsjóðskistu af lengd 40 cm, breidd 40 cm og hæð 30 cm Kistan er full af gulli, sem hefur eðlismassann $1,93\cdot10^4\mathrm{kg/m^3}$. Hver er massi gullsins í kistunni?
	(b) (3%) Nú missir Jack Sparrow kistuna í sjóinn. Fjarsjóðskistan sekkur á botn Maríanadjúpálsins sem er 11 km að dýpt. Gerum þá nálgun að eðlismassi sjávar, $\rho_{\rm sjór}=1024{\rm kg/m^3}$ sé fasti. Hver er þrýstingurinn á þessu dýpi?
	(c) (3%) Gerið kraftamynd af kistunni á botni djúpálsins og finnið þverkraftinn sem verkar á kistuna
8.	 Hvalir eiga samskipti með hljóðbylgjum sem ferðast í gegnum sjóinn. Hraði hljóðsins í vatni er um 1500 m/s. Hvalskálfur sendir frá sér hljóðbylgju með tíðni 50,0 Hz. (a) (4%) Móðir hvalkálfsins er í 1,20 km fjarlægð frá honum. Hversu langan tíma tekur það hljóðið að berast til hennar?
	(b) (3%) Hver er bylgjulengd hljóðsins í vatninu?
	(c) (3%) Hver væri bylgjulengd hljóðsins í lofti?

- 9. Einsleitum bjálka með massa $M=16.8\,\mathrm{kg}$ og af lengd $\ell=2.0\,\mathrm{m}$ er haldið uppi af tveimur eins vírum með togkröftum T_A og T_B . Lítill kubbur með massa $m=5.2\,\mathrm{kg}$ situr á bitanum í fjarlægð $\frac{1}{4}\ell$ frá öðrum enda bjálkans.
 - (a) (3%) Skrifið niður kraftajöfnu fyrir bjálkann.

(b) (3%) Skrifið niður kraftvægisjöfnu fyrir snúning stangarinnar um vinstri enda bjálkans.

(c) (4%) Nýtið ykkur jöfnunurnar í liðum (a) og (b) til þess að finna togkraftana T_A og T_B .

10. Einfaldri sveifluhreyfingu agnar er lýst með eftirfarandi jöfnu:

$$x(t) = 1.3\cos(3.4t)$$

Stærðirnar í jöfnunni eru allar í SI-einingum og horn eru mæld í radíönum.

(a) (5%) Finnið mesta útslag, hornhraða og sveiflutíma agnarinnar.

(b) (5%) Hver er mesti hraði agnarinnar og hvar er ögnin stödd þá?