Clase 26

IIC 2223

Prof. Cristian Riveros

Bottom-up parsing (recordatorio)

$$E \rightarrow E + E \mid E * E \mid n$$

Top-down parsing

Bottom-up parsing

Cambio en la notación de stack (recordatorio)

Notación (desde ahora y hasta el término del curso)

Para un stack $q_0 \dots q_{n-1} q_n$, usaremos a q_n como el **tope de stack** y $q_0 \dots q_{n-1}$ como la cola de stack.

Para un PDA \mathcal{P} y una transición $(p_0 \dots p_i, a, q_0 \dots q_j)$ de \mathcal{P} , p_i es el símbolo en el tope del stack y q_j será el símbolo del tope del stack resultante.

La relación $\vdash_{\mathcal{P}}$ de siguiente-paso quedará como:

$$(\gamma \cdot \alpha, a \cdot u) \vdash_{\mathcal{P}} (\gamma \cdot \beta, u)$$

Como recordatorio, (algunas veces) marcaremos el tope del stack:

$$q_0 \dots q_{n-1} q_n^{\downarrow}$$

Gramática aumentada (recordatorio)

Sea $G = (V, \Sigma, P, S)$ una gramática libre de contexto reducida.

Definición

Se define la gramática aumentada de $\mathcal G$ como:

$$\mathcal{G}' = (V \cup \{S'\}, \Sigma, P \cup \{S' \rightarrow S\}, S')$$

tal que S' es una variable nueva con $S' \notin V$.

"Usaremos S' para saber cuando hemos llegado al final de una derivación."

Desde ahora, trabajaremos siempre con una gramática aumentada.

Apilador bottom-up (recordatorio)

Sea $\mathcal{G}' = (V, \Sigma, P, S')$ una gramática libre de contexto aumentada.

Definición

El apilador bottom-up de \mathcal{G} (bottom-up-PDA) es un PDA alternativo:

$$\mathcal{P}_{\uparrow} = (\underbrace{V \cup \Sigma \cup \{\$\}}_{Q}, \Sigma, \Delta, \underbrace{\$}_{q_{0}}, \underbrace{\{S'\}}_{F})$$

Tres tipos de transiciones en $\Delta \subseteq Q^+ \times (\Sigma \cup \{\epsilon\}) \times Q^*$:

Shift:
$$q \stackrel{a}{\rightarrow} q a$$
 para $q \in V \cup \Sigma \cup \{\$\} \ y \ a \in \Sigma$

Reduce:
$$\alpha \stackrel{\epsilon}{\to} X$$
 si $X \to \alpha \in P$

Termino: $\$S' \stackrel{\epsilon}{\rightarrow} S'$

Correctitud de apilador bottom-up (recordatorio)

Teorema

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto. Entonces:

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{P}_{\uparrow})$$

Corolario

$$\mathsf{Si}\ (\$, xy) \vdash^{\star}_{\mathcal{P}_{\uparrow}} (\$\alpha, y) \vdash^{\star}_{\mathcal{P}_{\uparrow}} (\$S', \epsilon), \ \mathsf{entonces}\ S' \overset{\star}{\underset{m}{\Rightarrow}} \alpha y \overset{\star}{\underset{m}{\Rightarrow}} xy.$$

Las **configuraciones** del apilador bottom-up son **derivaciones** por la derecha de G.

Prefijos viables, reducibles y handles (recordatorio)

Sea $G = (V, \Sigma, P, S)$ una gramática y G' su gramática aumentada.

Definiciones

- $\alpha \in (V \cup \Sigma)^*$ es un **prefijo viable** de \mathcal{G} ssi existe una derivación $S' \overset{\star}{\underset{m}{\longrightarrow}} \alpha\beta w$ tal que $\beta \in (V \cup \Sigma)^*$ y $w \in \Sigma^*$.
- $\alpha \cdot \beta \in (V \cup \Sigma)^*$ es reducible a $\alpha \cdot X$ ssi existe una derivación $S' \overset{\star}{\underset{m}{\longrightarrow}} \alpha Xw \underset{m}{\Longrightarrow} \alpha \beta w$ con $w \in \Sigma^*$. En cuyo caso, decimos que $X \to \beta$ es un handle de $\alpha \beta$.
- $\alpha \cdot \beta \in (V \cup \Sigma)^*$ es un prefijo reducible ssi $\alpha \cdot \beta$ es un prefijo viable y existe X tal que $\alpha \cdot \beta$ es reducible a $\alpha \cdot X$.

Prefijos viables y prefijos reducibles representan **configuraciones válidas** del apilador bottom-up.

¿podemos usar el bottom-up PDA para hacer parsing?

Problemas

- 1. Conflicto Shift-Reduce.
- 2. Conflicto Reduce-Reduce.
- 3. Configuraciones no-viables.

Ejemplo: ¿es esta configuración viable?

$$\begin{array}{ccc} S & \rightarrow & ab \mid B \\ B & \rightarrow & b \end{array}$$

Stack	Input	Operaciones
\$	ab	
\$ <i>a</i>	Ь	shift
\$ab		shift
\$aB		reduce $b \stackrel{\epsilon}{\to} B$
X	×	×

Outline

Autómata caracteristico

Determinización

LR-Parser

¿cómo usar LR-Parser?

Outline

Autómata caracteristico

Determinización

LR-Parser

cómo usar LR-Parser?

Items de una gramática

Sea $G = (V, \Sigma, P, S)$ una gramática libre de contexto.

Definición

Un item de \mathcal{G} es un triple:

$$(X, \alpha, \beta) \in V \times (V \cup \Sigma)^* \times (V \cup \Sigma)^*$$

tal que $X \to \alpha \beta$ es una regla en P.

Por conveniencia, usaremos un item como: $[X \rightarrow \alpha.\beta]$.

Ejemplos de items

$$E \rightarrow E + E \mid E * E \mid n$$

- $\blacksquare [E \rightarrow E. + E]$
- $[E \rightarrow .n]$
- $[E \rightarrow E * E.]$

Items de una gramática

Sea $G = (V, \Sigma, P, S)$ una gramática libre de contexto.

Definición

Un item de \mathcal{G} es un triple:

$$(X,\alpha,\beta) \ \in \ V \times (V \cup \Sigma)^* \times (V \cup \Sigma)^*$$

tal que $X \to \alpha \beta$ es una regla en P.

Por conveniencia, usaremos un item como: $[X \rightarrow \alpha.\beta]$.

- 1. Un item $[X \rightarrow \alpha]$ decimos que esta completado.
- 2. Se define Items $_{\mathcal{G}}$ como el conjunto de todos los items de \mathcal{G} .

¿cuál es el tamaño de $|\text{Items}_{\mathcal{G}}|$?

Sea \mathcal{G} = (V, Σ, P, S) una gramática libre de contexto cualquiera.

Definición

El autómata característico de G es un ϵ -NFA:

$$\mathsf{char}[\mathcal{G}] = (Q_0, \Sigma', \Delta_0, I_0, F_0)$$

- $Q_0 = \mathsf{Items}_{\mathcal{G}} \cup \big\{ \big[S' \rightarrow .S \big], \big[S' \rightarrow S. \big] \big\}$
- $\Sigma' = V \cup \Sigma$
- $I_0 = \{ [S' \rightarrow .S] \}$

Sea $G = (V, \Sigma, P, S)$ una gramática libre de contexto cualquiera.

Definición

El autómata característico de \mathcal{G} es un ϵ -NFA:

$$\mathsf{char}[\mathcal{G}] \ = \ (\underbrace{\mathsf{Items}_{\mathcal{G}} \cup \big\{ [S' \to .S], [S' \to S.] \big\}}_{Q_0}, V \cup \Sigma, \Delta_0, \underbrace{[S' \to .S]}_{I_0}, \underbrace{\{[X \to \alpha.]\}}_{F_0})$$

Dos tipos de transiciones en Δ_0 :

Bajar:
$$[X \to \alpha.Y\beta] \stackrel{\epsilon}{\to} [Y \to .\gamma]$$
 para cada $X \to \alpha Y\beta \in Q_0$ y $Y \to \gamma \in P$
Avanzar: $[X \to \alpha.Y\beta] \stackrel{Y}{\to} [X \to \alpha Y.\beta]$ $Y \in V \cup \Sigma$

char[G] "navega" por un árbol de derivación.

Definición

$$\mathsf{char}[\mathcal{G}] \ = \ \big(\mathsf{Items}_{\mathcal{G}} \cup \big\{[S' \to .S], [S' \to S.]\big\}, \ V \cup \Sigma, \Delta_0, [S' \to .S], \{[X \to \alpha.]\}\big)$$

Bajar:
$$[X \to \alpha. Y\beta] \stackrel{\epsilon}{\to} [Y \to .\gamma]$$
 para cada $X \to \alpha Y\beta \in Q_0$

Avanzar:
$$[X \rightarrow \alpha. Y\beta] \xrightarrow{Y} [X \rightarrow \alpha Y.\beta]$$
 $Y \in V \cup \Sigma$

Teorema

1. $[S' \rightarrow .S] \xrightarrow{\gamma} [X \rightarrow \alpha.\beta]$ si, y solo si, γ es un prefijo viable de \mathcal{G} .

Demostración (⇒)

PD: Si $[S' \rightarrow .S] \stackrel{\gamma}{\rightarrow} [X \rightarrow \alpha.\beta]$, entonces $S' \stackrel{\star}{\Rightarrow} \gamma \beta w$ para algún $w \in \Sigma^*$.

Caso inductivo: Como $[S' \rightarrow .S] \stackrel{\gamma}{\rightarrow} [X \rightarrow \alpha.\beta]$, entonces para $\gamma = \gamma' \alpha$:

$$[S' \to .S] \xrightarrow{\gamma'} [Y \to \alpha'.X\beta'] \xrightarrow{\epsilon} [X \to .\alpha\beta] \xrightarrow{\alpha} [X \to \alpha.\beta]$$

Por Hipótesis de Inducción: $S' \stackrel{\star}{\Rightarrow} \gamma' X \beta' v$ para algún $v \in \Sigma'$.

Como \mathcal{G} es reducida, entonces $\beta' \stackrel{\star}{\Rightarrow} u$ para algún $u \in \Sigma^*$ y tenemos:

$$S' \underset{m}{\overset{\star}{\Rightarrow}} \gamma' X \beta' v \underset{m}{\overset{\star}{\Rightarrow}} \gamma' X \widehat{uv} \underset{m}{\overset{w}{\Rightarrow}} \gamma' \alpha \beta w$$

Teorema

 $1. \ [S' \to .S] \overset{\gamma}{\to} [X \to \alpha.\beta] \text{ si, y solo si, } \gamma \text{ es un prefijo viable de } \mathcal{G}.$

Demostración (←)

PD: Si $S' \stackrel{\star}{\Rightarrow} \gamma' X w \Rightarrow \gamma' \alpha \beta w$, entonces $[S' \rightarrow .S] \stackrel{\gamma}{\Rightarrow} [X \rightarrow \alpha . \beta]$ con $\gamma = \gamma' \alpha$.

¿por qué esto es suficiente para demostrar (←)?

Teorema

1.
$$[S' \rightarrow .S] \stackrel{\gamma}{\rightarrow} [X \rightarrow \alpha.\beta]$$
 si, y solo si, γ es un prefijo viable de \mathcal{G} .

Demostración (←)

$$\mathbf{PD:} \; \mathsf{Si} \; \overset{\star}{S'} \underset{\scriptscriptstyle \mathsf{rm}}{\overset{\star}{\Rightarrow}} \gamma' X w \underset{\scriptscriptstyle \mathsf{rm}}{\Rightarrow} \gamma' \alpha \beta w, \; \mathsf{entonces} \; \big[S' \to .S\big] \overset{\gamma}{\to} \big[X \to \alpha.\beta\big] \; \mathsf{con} \; \gamma = \gamma' \alpha.$$

Demostración (←) usando PD

Sea γ un prefijo viable de $\mathcal G$ y sea $S' \overset{\star}{\underset{\mathsf{rm}}{\Rightarrow}} \gamma \beta w$ la derivación de **menor largo** donde aparece γ . Entonces:

$$S' \underset{rm}{\overset{\star}{\Rightarrow}} \gamma' X w \underset{rm}{\Rightarrow} \overbrace{\gamma' \alpha}^{\gamma} \beta w$$

y por **PD** tenemos que $[S' \rightarrow .S] \stackrel{\gamma}{\rightarrow} [X \rightarrow \alpha.\beta]$.

(¿por qué $X \to \alpha\beta$?)

Teorema

1. $[S' \rightarrow .S] \stackrel{\gamma}{\rightarrow} [X \rightarrow \alpha . \beta]$ si, y solo si, γ es un prefijo viable de \mathcal{G} .

Demostración (←)

PD: Si $S' \overset{\star}{\Rightarrow} \gamma' X w \Rightarrow \gamma' \alpha \beta w$, entonces $[S' \rightarrow .S] \overset{\gamma}{\rightarrow} [X \rightarrow \alpha.\beta]$ con $\gamma = \gamma' \alpha$.

Caso inductivo: Suponga que:

$$S' \stackrel{*}{\underset{m}{\longrightarrow}} \gamma_1 Y v \Rightarrow \overbrace{\gamma_1 \gamma_2}^{\gamma'} X \stackrel{w}{uv} \Rightarrow \gamma' \alpha \beta w$$

Por HI, tenemos que $[S' \rightarrow .S] \stackrel{\gamma'}{\rightarrow} [Y \rightarrow \gamma_2.Xu]$. Por definición de char $[\mathcal{G}]$:

$$[Y \rightarrow \gamma_2.Xu] \stackrel{\epsilon}{\rightarrow} [X \rightarrow .\alpha\beta] \stackrel{\alpha}{\rightarrow} [X \rightarrow \alpha.\beta]$$

Por lo tanto, $[S' \rightarrow .S] \stackrel{\gamma}{\rightarrow} [X \rightarrow \alpha.\beta]$ con $\gamma = \gamma' \alpha$.

Teorema

- 1. $[S' \rightarrow .S] \stackrel{\gamma}{\rightarrow} [X \rightarrow \alpha.\beta]$ si, y solo si, γ es un prefijo viable de \mathcal{G} .
- 2. $\mathcal{L}(\mathsf{char}[\mathcal{G}]) = \{ \gamma \mid \gamma \text{ es un prefijo reducible de } \mathcal{G} \}$

Demostración

Sea $\gamma \in \mathcal{L}(\mathsf{char}[\mathcal{G}])$ tal que $[S' \to .S] \stackrel{\gamma}{\to} [X \to \alpha.]$.

Por 1., γ es un **prefijo viable**.

Por demostración (\Rightarrow) sabemos que $\gamma = \gamma' \alpha$ para algún γ' .

Por lo tanto, $X \to \alpha$ es un handle para γ y γ es un prefijo reducible.

 $char[\mathcal{G}]$ sirve para **identificar** las configuraciones viables del bottom-up PDA

Outline

Autómata caracteristico

Determinización

LR-Parser

cómo usar LR-Parser?

Determinización de autómata característico

 $\mathsf{Sea}\ \mathsf{det}[\mathcal{G}] = (\mathit{Q}_0^{\mathsf{det}}, \mathit{V} \cup \Sigma, \Delta_0^{\mathsf{det}}, \mathit{I}_0^{\mathsf{det}}, \mathit{F}_0^{\mathsf{det}})\ \mathsf{la}\ \mathsf{determinizaci\'{o}}\mathsf{n}\ \mathsf{de}\ \mathsf{char}[\mathcal{G}] :$

$$Q_0^{\text{det}} = \left\{ C \mid C \subseteq \text{Items}_{\mathcal{G}} \cup \left\{ \left[S' \rightarrow .S \right], \left[S' \rightarrow S. \right] \right\} \right\}$$

$$I_0^{\text{det}} = \left\{ [X \to .\alpha] \mid ([S' \to .S], \epsilon) \vdash_{\text{char}[\mathcal{G}]}^* ([X \to .\alpha], \epsilon) \right\}$$

$$\Delta_0^{\mathsf{det}} = \left\{ (C_1, Y, C_2) \mid \mathsf{para} \; \mathsf{todo} \; g_2 \in C_2, \mathsf{existe} \; g_1 \in C_1 \; \mathsf{y} \; g \in Q_0, \\ (g_1, Y) \vdash_{\mathsf{char}[\mathcal{G}]} (g, \epsilon) \vdash_{\mathsf{char}[\mathcal{G}]}^* (g_2, \epsilon) \right\}$$

$$F_0^{\text{det}} = \{ C \mid \text{ existe } [X \rightarrow \alpha.] \in C \}$$

Hacemos la determinización usual, pero eliminando ϵ -transiciones.

Determinización de autómata característico

Determinización de autómata característico

Propiedades

- 1. $\mathcal{L}(\det[\mathcal{G}]) = \{ \gamma \mid \gamma \text{ es un prefijo reducible de } \mathcal{G} \}$
- 2. Si $I_0^{\det} \stackrel{\gamma}{\to} C$ y $[X \to \alpha.] \in C$, entonces $X \to \alpha$ es un handle para γ .

Demostración 2.

Si $I_0^{\det} \stackrel{\gamma}{\to} C$ y $[X \to \alpha.] \in C$, entonces $\gamma \in \mathcal{L}(\det[\mathcal{G}])$ y γ es un prefijo reducible de \mathcal{G} (por definición de $\det[\mathcal{G}]$). Más aún,

$$[S' \rightarrow .S] \stackrel{\gamma}{\rightarrow} [X \rightarrow \alpha.]$$

Por Demostración (\Rightarrow) sabemos que $\gamma = \gamma' \cdot \alpha$ y $X \to \alpha$ es un **handle** para γ .

Podemos encontrar **todos los handles** de un prefijo viable mirando el último estado de det[G].

Outline

Autómata caracteristico

Determinización

LR-Parser

cómo usar LR-Parser?

LR parser

Sea \mathcal{G} = (V, Σ, P, S) una gramática libre de contexto cualquiera.

Definición

El LR-autómata apilador de ${\mathcal G}$ (LR-PDA) es un PDA alternativo:

$$\mathsf{LR}[\mathcal{G}] = (Q_1, \Sigma, \Delta_1, I_1, F_1)$$

- $Q_1 = Q_0^{\text{det}} \cup \{f\}$
- $I_1 = I_0^{\text{det}}$

LR parser

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto cualquiera.

Definición

El LR-autómata apilador de \mathcal{G} (LR-PDA) es un PDA alternativo:

$$\mathsf{LR}[\mathcal{G}] \ = \ (\underbrace{Q_0^{\mathsf{det}} \cup \{f\}}_{Q_1}, \Sigma, \Delta_1, \underbrace{J_0^{\mathsf{det}}}_{I_1}, \underbrace{\{f\}}_{F_1})$$

Tres tipos de transiciones en $\Delta_1 \subseteq Q_1^+ \times \Sigma \times Q_1^*$ para $C, C_1, \dots, C_n \in Q_0^{\text{det}}$:

Shift:
$$C \stackrel{a}{\rightarrow} C \cdot \Delta_0^{\text{det}}(C, a)$$
 si $\Delta_0^{\text{det}}(C, a) \neq \emptyset$

Reduce:
$$C C_1 \dots C_n \stackrel{\epsilon}{\to} C \cdot \Delta_0^{\text{det}}(C, X)$$
 si $[X \to \alpha] \in C_n$ y $n = |\alpha|$

Término:
$$I_0^{\det} C \xrightarrow{\epsilon} f$$
 $\operatorname{si} [S' \to S.] \in q$

LR parser

Shift:
$$C \stackrel{a}{\rightarrow} C \cdot \Delta_0^{\text{det}}(C, a)$$
 si $\Delta_0^{\text{det}}(C, a) \neq \emptyset$

Reduce:
$$C C_1 \dots C_n \stackrel{\epsilon}{\to} C \cdot \Delta_0^{\text{det}}(C, X)$$
 si $[X \to \alpha.] \in C_n$ y $n = |\alpha|$

Término: $I_0^{\text{det}} C \stackrel{\epsilon}{\to} f$ $\text{si } [S' \to S.] \in q$

Ejemplo: $S \rightarrow S + S \mid n$

- $\{ \dots, [S \to .S + S], [S \to .n] \} \{ [S \to n.] \} \stackrel{\epsilon}{\to} \{ \dots, [S \to .S + S], [S \to .n] \} \{ \dots, [S \to S. + S] \}$

¿qué representa el stack del LR-PDA?

Definición LR-PDA

$$\mathsf{LR}[\mathcal{G}] \ = \ (\underbrace{Q_0^{\mathsf{det}} \cup \{f\}}_{Q_1}, \Sigma, \Delta_1, \underbrace{J_0^{\mathsf{det}}}_{I_1}, \underbrace{\{f\}}_{F_1})$$

Proposición

Si
$$(I_0^{\text{det}}, uv) \vdash_{\mathsf{LR}[\mathcal{G}]}^* (I_0^{\text{det}} C_1 \dots C_n, v)$$
, entonces existe $\gamma_1 \dots \gamma_n \in (V \cup \Sigma)^*$:

$$I_0^{\text{det}} \stackrel{\gamma_1}{\rightarrow} C_1 \stackrel{\gamma_2}{\rightarrow} \dots \stackrel{\gamma_n}{\rightarrow} C_n$$

es una **ejecución** de char $[\mathcal{G}]^{\text{det}}$ sobre $\gamma_1 \dots \gamma_n$.

El stack $I_0^{\text{det}} C_1 \dots C_n$ de una configuración cualquiera corresponde a una **ejecución** de la determinización char [G].

Relación entre LR-PDA y bottom-up PDA

Sea $\mathcal G$ una gramática libre de contexto.

Teorema

Sea $\gamma = \gamma_1 \dots \gamma_n \in (V \cup \Sigma)^*$ y $I_0^{\text{det}} \stackrel{\gamma_1}{\to} C_1 \stackrel{\gamma_2}{\to} \dots \stackrel{\gamma_n}{\to} C_n$ la ejecución de $\text{det}[\mathcal{G}]$ sobre γ . Para todo $u, v \in \Sigma^*$:

$$C_n \neq \emptyset \text{ y } (I_0^{\text{det}}, uv) \vdash_{\mathsf{LR}[\mathcal{G}]}^* (I_0^{\text{det}} C_1 \dots C_n, v) \vdash_{\mathsf{LR}[\mathcal{G}]}^* (f, \epsilon).$$

En particular, $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathsf{LR}[\mathcal{G}])$.

En otras palabras, LR[\mathcal{G}] simula a \mathcal{P}_{\uparrow} llevando solo **configuraciones viables**.

(NO haremos esta demostración en clases)

Outline

Autómata caracteristico

Determinización

LR-Parser

¿cómo usar LR-Parser?

LR parser y su uso

Sea $G = (V, \Sigma, P, S)$ una gramática libre de contexto cualquiera.

Definición

El LR-autómata apilador de \mathcal{G} (LR-PDA) es un PDA alternativo:

$$\mathsf{LR}[\mathcal{G}] \ = \ (\underbrace{Q_0^{\mathsf{det}} \cup \{f\}}_{Q_1}, \Sigma, \Delta_1, \underbrace{J_0^{\mathsf{det}}}_{I_1}, \underbrace{\{f\}}_{F_1})$$

Tres tipos de transiciones en $\Delta_1 \subseteq Q_1^+ \times \Sigma \times Q_1^*$ para $C, C_1, \dots, C_n \in Q_0^{\text{det}}$:

Shift:
$$C \stackrel{a}{\rightarrow} C \cdot \Delta_0^{\text{det}}(C, a)$$
 si $\Delta_0^{\text{det}}(C, a) \neq \emptyset$

Reduce:
$$C C_1 \dots C_n \stackrel{\epsilon}{\to} C \cdot \Delta_0^{\text{det}}(C, X)$$
 si $[X \to \alpha] \in C_n$ y $n = |\alpha|$

Término:
$$I_0^{\text{det}} C \stackrel{\epsilon}{\to} f$$
 $\text{si } [S' \to S.] \in q$

¿dónde esta el no-determinismo en el LR-PDA?

Determinación de conflictos en LR-PDA

Definición

Para un estado $C \in Q_0^{\text{det}}$ decimos que:

- 1. C tiene un conflicto **Shift-Reduce** si existen $[X \rightarrow \alpha.a\beta]$ y $[Y \rightarrow \gamma.]$ en C, simultáneamente.
- 2. C tiene un conflicto Reduce-Reduce si existen $[Y_1 \rightarrow \gamma_1]$ y $[Y_2 \rightarrow \gamma_2]$ distintos en C.

Determinación de conflictos en LR-PDA

Definición

Para un estado $C \in Q_0^{\text{det}}$ decimos que:

- 1. C tiene un conflicto **Shift-Reduce** si existen $[X \rightarrow \alpha.a\beta]$ y $[Y \rightarrow \gamma.]$ en C, simultáneamente.
- 2. C tiene un conflicto Reduce-Reduce si existen $[Y_1 \rightarrow \gamma_1.]$ y $[Y_2 \rightarrow \gamma_2.]$ distintos en C.

Decimos que *C* es **libre de conflictos** si **NO tiene** un conflicto Shift-Reduce o Reduce-Reduce.

Notar que...

Si C es libre de conflictos para todo $C \in Q_0^{\text{det}}$, entonces $\text{LR}[\mathcal{G}]$ es un autómata apilador determinista.

Determinación de conflictos en LR-PDA

Notar que...

Si C es libre de conflictos para todo $C \in Q_0^{\text{det}}$, entonces $\mathsf{LR}[\mathcal{G}]$ es un autómata apilador determinista.

Shift:
$$C \stackrel{a}{\rightarrow} C \cdot \Delta_0^{\text{det}}(C, a)$$
 si $\Delta_0^{\text{det}}(C, a) \neq \emptyset$

Reduce:
$$C C_1 \dots C_n \stackrel{\epsilon}{\to} C \cdot \Delta_0^{\text{det}}(C, X)$$
 si $[X \to \alpha] \in C_n$ y $n = |\alpha|$

Término:
$$I_0^{\text{det}} C \stackrel{\epsilon}{\to} f$$
 si $[S' \to S.] \in q$

Por lo tanto, podemos usar $LR[\mathcal{G}]$ para hacer **parsing** y encontrar una **derivación por la derecha (invertida)** de \mathcal{G} para cada input.