

3D Sensor

Major Issues

- 1. 3 kinds of 3D sensors:
 - 1) Stereo,
 - 2) Time-of-Flight (ToF), and
 - 3) Structured light

1. Introduction - Motivation

Motivation:

- Single camera:
 - 僅能拍攝場景物體的位置(2D).
- Stereo system:
 - 藉由左右2顆攝影機的視差所求得的對應位置的 disparity,可用來估計拍攝場景中的物體的深度差異(3D)。
 - 利用 disparity image 來實現場景中的 object segmentation

1. Demo Video:

1) 3d_ArrayCamera_3dPrint_Pelican_20130620.fly

2. 3D Vision Technology

Three 3D Vision Technologies:

- 1. Stereo: Can embed the stereo system into TI DM8148/8168.
- 2. Time of Flight (TOF): Supported by TI DM365 VICP (current: 200x200 TOF sensor).
 - Kinect 2
- 3. Structured Light
 - ➤ Kinect1, DLP

Time of Flight (TOF)

Structured Light

2. 3D Vision Technology – Comparison

Three 3D Vision Tech. Comparison (Showed in TI confidential info.).

Depth resolution		Stereo Vision	Structured Light	Time of Flight (TOF)
	SW Complexity	High	High	Low
	Material cost	Low < NT\$4K	High > NT\$80K	Middle NT\$4K~5K
	Response Time	Middle 30 fps (33 ms/f)	Slow (1 sec/frame)	Fast 30~60 fps
	Accuracy	Low 10 cm or (cm sometimes)	High <= 10 um	Middle 1 mm
	Low light	Weak Good	Light source dep.	Good (IR, laser) Ok
	Outdoor	ОК	Weak	Weak
		4/0		
	Game Control /HCI (1~5m)			1
	3D Movie /ADAS (>5m)			.3
	3D Scanning /3D printing or 3D AOI (<1mm)	0	√	

2.1 Stereo System – Hardware: Stereo System Diagram

System Diagram:

2.1 Stereo System – Hardware: Embedded Hardware

• Processing Unit of Embedded Based Stereo System (預計):

	0	
Chip	DM8148	DM8168
CPU	Cortex A8 1GHz DSP C674x 750MHz	Cortex A8 1.2GHz DSP C674x 1GHz
RAM	DDR2 or DDR3	DDR2 or DDR3
Feature	Vision Coprocessor (VCoP) 500MHz Accelerator HD VICP 2.0 320 MHz *2 Video Processing Subsystem (VPSS) 3D Graphics Engine Fixed/Floating Point	Vision Coprocessor (VCoP) 500MHz Accelerator HD VICP 2.0 320 MHz *3 Video Processing Subsystem (VPSS) 3D Graphics Engine Fixed/Floating Point
市場定位	HD Video Conferencing Video Surveillance DVR IPCam	HD Video Conferencing Video Surveillance DVR IPCam

2.1 Stereo System – Software: Model

System Model:

U: point (X,Y,Z) in real world.

C_L, C_R: left/right cameras. (Left is the reference)

f: focal length of both cameras.

B: baseline, distance between 2 cameras

U_L, U_R: 點 U 在左右 2 cameras 的成像點

Disparity: $\Delta d = u_1 - u_R$.

Base on 三角測量,depth, Z(m):

$$\frac{\Delta d \ (pixel)}{B \ (m)} = \frac{f \ (pixel)}{Z \ (m)} \Longrightarrow Z(m) = \frac{f \ (pixel) \times B \ (m)}{\Delta d \ (pixe)}$$

2.1 Demo Video: Stereo

- 1) 3d_Stereo_Visionics.mpg
- 2) 3d_Stereo_Skeleton_Gesture_Etron_201304 22.flv
- 3) 3d_Stereo_MagicBody_SClass_Benz_2013.flv

2.2 ToF: Introduction

- ◆ 3D Time-of-Flight
 - > Hardware
 - Active modulated light source: Infrared rays
 - CMOS pixel array
 - > Applications
 - 3D scanning/printing
 - Automotive driving/parking
 - Hand gesture
 - Etc.

Gesture Recognition

Automotive

Anical Specification

- Technology: DepthSense®
- ▶ Depth field of view: 74° x 58° x 87° (H x V x D)
- Depth resolution: 320 x 240 | QVGA
- Frame rate: 25 fps 30 fps | QVGA
 - 50 fps 60 fps | QVGA
- Nominal operating range: 0.15m 1.0m
- ▶ Depth noise: < 1.4cm at 1m (50% reflectivity)
- ► Illumination type: Diffused laser
- Ambient light: Typical indoor
- ▶ RGB resolution: HD 720p
- ▶ RGB field of view: 63.2° x 49.3° x 75.2° (H x V x D)
- Accelerometer: 3 axis
- Microphones: 2
- ► Connectivity: Single USB
- ▶ Operating temperature: 10°C to 40°C
- ▶ Power: < 2.5W
- ▶ Size: 10.5cm (W) x 3cm (H) x 2.3cm (D)

10

Specification of SoftKinetic DS325

2.2 ToF: Introduction - One Example jj

3D Gesture Control System

2.2 ToF: Theory of Operation (1/5) jj

- ◆ How to get distance?
 - > Detect the phase shift between pulsed source and reflection.
 - Pulsed source
 - Continuous-wave: Square wave
 - Can be easily realized using digital circuits.
 - Reflection
 - Sensor receives two components
 - 1) Reflected component: The reflected light of pulsed source
 - 2) Ambient component: Any other light source, cause noise, need to reduce
 - ➤ High ambient component reduces SNR (increase noise)
- How to detect phase shift and phase angle?
 - > Two methods:
 - 1) Pulsed method: Phase shift
 - 2) Continuous-wave method (used): Phase angle

Figure 1: 3D time-of-flight camera operation.

2.2 3D Vision Technology – Time of Flight (TOF)(2/5)

Application (kinect2):

- 1. Gesture control: Body or hand
- 2. People counter:

Partial occlusion in multiple people situation.

2.2 3D Vision Technology – Time of Flight (TOF) (3/5)

2.2 3D Vision Technology – Time of Flight (TOF): Sensor Demo 01 (4/5)

- Full body Tracking (TI confidential info.):
 - 1. Detect body parts: head, shoulder, elbow, hand and torso.
 - 2. Kinect2 like user experience.

2.2 3D Vision Technology – Time of Flight (TOF): Sensor Demo 02 (5/5)

- 2 hand tracking (TI confidential info.):
 - 1. Detect 2 hands motion.
 - 2. iPhone like user experience.

2.2 ToF: TI Solution

◆ 3-chip solution

- 1) 3D TOF sensor array
 - Addressable CMOS pixel array
 - High pixel modulation frequency (>50MHz)
 - Up to 5x increase in SNR
 - Respond to specific optical spectrum (850-870nm)

2) Analog front-end (AFE)

- Supports up to 4 differential inputs
- Sample-and-hold front-end that helps reject common-mode noise
- High-speed, low-power 12-bit ADC samples

3) TOF Controller (TFC)

- Synchronizes the operation of TOF sensor, AFE and illumination
- Calculates the depth for each pixel
- · Performs dealiasing, de-noising
- Frequency tuning and temperature compensation

Figure 12: TI 3D-TOF chip set.

2.2 ToF: TI Solution (1/3) TI Content in TOF System

Today: Analog Out Sensor

2013: Digital Out Sensor

2014: Fully integrated QQQVGA Sensor

2.2 ToF: TI Solution (2/3)

2.2 ToF: TI Solution (3/3)

TI 3D-TOF Solutions Delivery Model

2.2 ToF: Demo Video 1

2.2 ToF: Demo Video 2

1) 3d_Tof_20140730_YuSh01.avi

2.3 3D Vision Technology – Structured Light

Kinect 1, DLP

2.3 Structured Light: Demo Video - Theory

Temporal Dithering of Illumination for Fast Shape Acquisition

By: Shuntaro Yamazaki Sanjeev J. Koppal Sriniyasa G. Narasimhan

2.3 Structured Light: Robot Arm 1

2.3 Structured Light: Robot Arm 2

2.3 Structured Light: Demo Video

- 1) 3d_StructureLight_Kinect_HowWork1_20140922.flv
- 2) 3d_StructureLight_Kinect_HowWork1_20140922.flv

2.3 Structured Light: Robot Arm + Pile + 3D Vision

3. Applications (1/3)

Application filed

- Automotive
 - Autonomous driving
 - Surrounding awareness
- > Industrial
 - HMI (Human-Machine Interface)
- > Healthcare
 - Gesture
- Smart advertising
 - Gesture
 - Human recognition
- Gaming
- > Entertainment

3. Applications (2/3)

Figure 10: TOF technology applies to a wide range of applications.

3. Applications (1/3)

- ◆ Gesture applications
 - > Channel surfing
 - Can be done by waving of hands
 - Presentation
 - · Scrolls using finger flickering
- Non-gesture applications
 - Automotive
 - Alerting the driver when it detects people and objects in the vicinity of the car
 - > Robotics and automation
 - Detect product defects and enforce safety envelopes
 - > 3D printing/3D scanning
 - Enable "3D copier" capability

Figure 11: Gesture recognition using a 3D-TOF sensor.

* Used with nermission