ModestPy

An Open-Source Python Tool for Parameter Estimation in Functional Mock-up Units

Krzysztof Arendt, M. Jradi, M. Wetter, C.T. Veje

The American Modelica Conference 2018, October 9-10, 2018

Center for Energy Informatics, University of Southern Denmark

Introduction

Background

- Functional Mock-up Interface (FMI) is becoming a de facto standard co-simulation interface, already supported by over 100 simulation tools
- FMI offers flexibility in terms of modeling environments
- FMI attracts generic tools for co-simulation, system identification, and optimization
- There are several tools for parameter estimation in Functional Mock-up Units (FMUs), but most of them are tied to at least one of the following:
 - Specific optimization algorithms
 - Specific proprietary platforms
 - Large software environments

Objective

The objective was to develop a tool for parameter estimation in FMUs that would:

- be lightweight,
- support multiple optimization methods,
- support chaining of global and local methods,
- be easily deployable.

Software Description

Architecture

Figure 1: Package structure.

Dependencies:

pyfmi, numpy, scipy, pandas, matplotlib

Available algorithms:

- Genetic Algorithm (GA)
- Generalized Pattern Search (GPS)
- SciPy:
 - Sequential Least Squares Programming (SLSQP)
 - Limited Memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B)
 - Truncated Newton Method (TNC)

Error Metrics

Currently, two type of error metrics are implemented, the total mean-square error (MSE_{tot}) and the total normalized mean-square error $(NMSE_{tot})$. $NMSE_{tot}$ is suggested for multi-output models.

$$MSE_{tot} = \sum_{i} \frac{\sum_{t=1}^{N} (\hat{Y}_{i}^{t} - Y_{i}^{t})^{2}}{N}$$
 $NMSE_{tot} = \sum_{i} \frac{MSE_{i}}{\bar{Y}_{i}^{2}}$

where \hat{Y}_i^t is the measured value of variable i at time step t, Y_i^t is the simulated value of variable i at time step t, \bar{Y}_i is the mean measured value of variable i, N is the number of time steps, and MSE_i is the mean-square error for variable i.

Installation

Through conda (recommended):

```
conda config --add channels conda-forge
conda install modestpy
```

Through pip:

```
python -m pip install modestpy
```

Installation through pip requires pyfmi to be installed separately.

Usage

from modestpy import Estimation

```
session = Estimation(workdir, fmu_path,
    inputs, known_parameters,
    estimated_parameters, measurements,
    method=('GA', 'GPS'),
    ga_opts = {'maxiter': 5, 'tol': 1e-4},
    gps_opts = { 'maxiter': 500, 'tol': 1e-6 },
    ftype='MSE')
estimates = session.estimate()
err, res = session.validate()
```

Example

Test Case: Thermal Zone Gray-Box Model

- Gray-box model is calibrated to mimic the dynamics of a white-box model implemented in EnergyPlus
- Model outputs used in the cost function: T, CO2, verate, grad
- Error metric: *NMSE*_{tot}

T – indoor temperature [$^{\circ}$ C], CO2 – indoor CO $_{2}$ [ppm], verate – ventilation airflow rate [$^{\circ}$ S $^{-1}$], qrad – radiator heating rate [W]

Gray-Box Model

Figure 2: Gray-box zone model developed in Modelica (using Dymola).

Estimation Setup

Table 1: Setup of model parameters

Parameter	Initial guess*	Lower bound	Upper bound
shgc	5	0.1	10
tmass	50	1	100
imass	50	1	100
RExt	5	0.1	10
RInt	5	0.1	10
Vinf	5	0.1	10
maxVent	5	0.1	10

^{*} Not used by GA

 $\label{eq:shgc-solar} \begin{array}{l} \operatorname{shgc} - \operatorname{solar} \ \operatorname{heat} \ \operatorname{gain} \ \operatorname{coefficient} \ [-], \ \operatorname{tmass} - \operatorname{indoor} \ \operatorname{air} \ \operatorname{thermal} \ \operatorname{mass} \ [\operatorname{JK}^{-1} \operatorname{m}^{-3}], \\ \operatorname{imass} - \operatorname{internal} \ \operatorname{thermal} \ \operatorname{mass} \ [\operatorname{JK}^{-1} \operatorname{m}^{-2}], \ \operatorname{RExt} - \operatorname{external} \ \operatorname{wall} \ \operatorname{resistance} \ [\operatorname{m}^2 \operatorname{WK}^{-1}], \\ \operatorname{RInt} - \operatorname{internal} \ \operatorname{wall} \ \operatorname{resistance} \ [\operatorname{m}^2 \operatorname{WK}^{-1}], \ \operatorname{Vinf} - \operatorname{infiltration} \ \operatorname{air} \ \operatorname{change} \ \operatorname{rate} \ [\operatorname{h}^{-1}], \\ \operatorname{maxVent} - \operatorname{max}. \ \operatorname{ventilation} \ \operatorname{air} \ \operatorname{change} \ \operatorname{rate} \ [\operatorname{h}^{-1}] \end{array}$

Table 2: CPU time and $NMSE_{tot}$ for validation and training, sorted in ascending order by validation error

Method	Training	Validation	CPU Time
	$NMSE_{tot}$	$NMSE_{tot}$	[s]
GA+SLSQP	0.377	0.353	920
GA+GPS	0.351	0.371	1319
GA + TNC	0.393	0.372	801
GA	0.394	0.373	723
GA+L-BFGS-B	0.349	0.379	934
GPS	1.306	3.428	986
TNC	4.967	5.856	101
L-BFGS-B	4.929	6.808	38
SLSQP	5.040	6.920	12

Figure 3: Histogram of estimates yielded by the 9 method sequences.

Figure 4: Cost function evaluated on the training data based on linear combinations of parameters yielded by GA (x_1) and SLSQP (x_2) . Sections with positive derivatives with respect to s marked in red.

Figure 5: Parameter evolution in the genetic algorithm – color represents the training error (darker more accurate).

Figure 6: Validation root-mean-square error (RMSE) per output variable.

Figure 7: Validation results: temperature (T), CO_2 (CO2), ventilation airflow rate (verate).

Figure 8: Validation results: radiator heating rate (qrad).

Conclusions and Future Work

Conclusions

- The in-house algorithms (GA, GPS) were validated.
- Using GA for a preliminary global search significantly improved the model accuracy in the test case.¹
- The current functionality of the tool is already sufficient for a general use. It is used by the authors for calibrating gray-box models of buildings and HVAC systems for the use in MPC.

¹It should be noted, that the initial global search would not be needed if the approximate initial values of parameters were known. In such a case the gradient-based methods would easily outperform GA. Another solution could be to run gradient-based methods with multiple initial guesses.

Future Work

The development work continues and there are plans to include the following functionality:

- a simple graphical user interface to attract users less experienced in the Python programming language,
- support for on-line estimation methods (e.g. Kalman filter),
- support for multi-period stochastic gradient descent training,
- support for parallel processing methods.

Repository

Project repository:

https://github.com/sdu-cfei/modest-py