Bell Nozzle Rocket Engine Calculations

Ben Calow

August 6, 2025

Contents

Introduction		3
I	Propellant 1.1 Propellant Stoichiometry	4 4
2	Exhaust Gasses 2.1 Ratio of Specific Heats of a Multi-Compound Gas 2.2 Stagnation Pressure	5 5 5 5
3	Combustion Chamber Geometry	6
1	Throat Geometry	7
5	Nozzle Geometry	8

Nomenclature

 C_f Vacuum thrust coefficient

 $\begin{array}{ll} \dot{m} & {\rm Mass~flow~rate} \\ M & {\rm Molar~mass} \\ Ma & {\rm Mach~number} \\ mol\% & {\rm Mole~percentage} \end{array}$

 $\begin{array}{ccc} P & & \text{Pressure} \\ R & & \text{Gas constant} \\ T & & \text{Temperature} \\ v & & \text{Velocity} \end{array}$

 ϵ Nozzle area ratio

 γ Ratio of specific heats

ho Density

Subscripts

 $egin{array}{lll} a & & {\sf Ambient} \\ c & & {\sf Chamber} \\ e & & {\sf Exit} \\ s & & {\sf Stagnation} \end{array}$

Throat

Introduction

Documentation of calculations for a bell nozzle rocket engine

1 Propellant

1.1 Propellant Stoichiometry

2 Exhaust Gasses

2.1 Ratio of Specific Heats of a Multi-Compound Gas

$$\frac{1}{\gamma-1} = \sum \frac{mol\%}{\gamma_i-1}$$

- 2.2 Stagnation Pressure
- 2.3 Stagnation Temperature

3 Combustion Chamber Geometry

4 Throat Geometry

5 Nozzle Geometry