CS 6501 Natural Language Processing

Text Representation Learning

Yangfeng Ji

November 19, 2018

Department of Computer Science University of Virginia

Overview

- 1. Principle of Compositionality
- 2. Modeling Composition Functions
- 3. Generalized Distributional Hypothesis

Principle of Compositionality

Principle of Compositionality

Principle [Partee, 2007]

The meaning of a whole is a function of the meanings of the parts and of the way they are syntactically combined.

Example

- empty
- ▶ full

- empty
- ▶ full
- ▶ half empty
- ▶ half full

Example

- good
- ▶ not good
- ▶ not good at all

Example

- good
- not good
- ▶ not good at all
- very good
- ▶ not very good

Modeling Composition Functions

Linear Operations

Let u and v are two embeddings, the composition function can be represented as

$$p = f(u, v, R, K) \tag{1}$$

where R is syntactic relation between u and v, and K denotes some additional knowledge for composition.

[Mitchell and Lapata, 2008]

Simple Examples

Without R and K, the composition function is simplified as f(u, v) with the following special cases

$$p = u + v$$

$$p = u \circ v$$

[Mitchell and Lapata, 2008]

Simple Examples

Without R and K, the composition function is simplified as f(u, v) with the following special cases

- p = u + v
- p = Au + Bv
- $p = u \circ v$
- p = uCv

where $\bf A$ and $\bf B$ are parameterized matrices, and $\bf C$ is a 3-D parameterized tensor

[Mitchell and Lapata, 2008]

Composition on Sentences

This film does n't care about cleverness, wit or any other kind of intelligent humor

Recursive Neural Networks

Tree-LSTM

$$\begin{split} \tilde{h}_j &= \sum_{k \in C(j)} h_k, \\ i_j &= \sigma \left(W^{(i)} x_j + U^{(i)} \tilde{h}_j + b^{(i)} \right), \\ f_{jk} &= \sigma \left(W^{(f)} x_j + U^{(f)} h_k + b^{(f)} \right), \\ o_j &= \sigma \left(W^{(o)} x_j + U^{(o)} \tilde{h}_j + b^{(o)} \right), \\ u_j &= \tanh \left(W^{(u)} x_j + U^{(u)} \tilde{h}_j + b^{(u)} \right), \\ c_j &= i_j \odot u_j + \sum_{k \in C(j)} f_{jk} \odot c_k, \\ h_j &= o_j \odot \tanh(c_j), \end{split}$$

Generalized Distributional Hypoth-

esis

Distributonal Hypothesis

words that occur in the same contexts tend to have similar meanings

- ▶ to have a splendid time in Rome
- to have a wonderful time in Rome

Generalized Distributonal Hypothesis

___ that occur in the same contexts tend to have similar meanings

Continuous BoW

fastText

where x_n is the normalized bag of features of the n-th document, y_n is the label, A and B are the weight metrics. [Joulin et al., 2017]

Skip-thoughts Model

[Kiros et al., 2015]

Summary

1. Principle of Compositionality

2. Modeling Composition Functions

3. Generalized Distributional Hypothesis

Reference

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2017).

Bag of tricks for efficient text classification.

In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 427–431. Association for Computational Linguistics.

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., and Fidler, S. (2015). Skip-thought vectors.

In Advances in neural information processing systems, pages 3294-3302.

Mitchell, J. and Lapata, M. (2008).

Vector-based models of semantic composition.

proceedings of ACL-08: HLT, pages 236-244.

Partee, B. (2007).

Compositionality and coercion in semantics: The dynamics of adjective meaning.