Knowledge and Computing

Damir Cavar

January 2025

Knowledge and Computing

- Model World Knowledge Linguistically Motivated Computational Processing
 - Meaning of words
 - Meaning of speech acts (including Presuppositions, Implicatures, Events, Temporal Logic)
 - Computational Models of World Knowledge / Common Sense in phenomena like Binding, Anaphora Resolution, Reasoning
 - "Take the knife, cut the lime in half, and put it down." it = knife
 - "Take the knife, cut the lime in half, and squeeze it." it = lime

Large Knowledge Graphs

2/3/2025 4

Knowledge Representations

Model (or Ontology) and Individuals (or Assertions of Facts)

- Model: Web Ontology Language (OWL) as a restrictive model/ontology specifying
 - Concepts (or entity types)
 - Relations (between entities, instances of concepts or entity types)
 - Properties of Concepts and Relations
- Individuals
 - Concrete instances of concepts and relations

- Concepts and Relations
 - Mostly unconstrained
 - Domain specific or free
- Attributes and Values

• encoding properties, time reference, ...

George

W. Bush

- No computation or interpretation of logic equations (e.g., no access to universal or existential quantifiers)
- Direct mapping of knowledge from language input is limited to Description Logic
- Description of Knowledge
 - Directed Graph: encoding concept, events, domain specific knowledge...
 - Attribute-Value encoded features like size and shape, but also event time references (start, end, duration), etc.
- Reasoning: OWL & Reasoner, Common Graph Algs.
- Prediction: Links, Class prediction, etc.
- Machine Learning of concepts and concept properties: node or edge embedding

- Static: Concept and Relation Properties
 - Even when dynamically growing or changing
- Problem to encode events or procedures
 - Mary gave John a book.
 - Event as a state change / transformation:
 - Mary owns a book, John does not → John owns a book, Mary does not
 - Peter was fetching his daughter from school.
 - Intermediate states:
 - Peter is at home, daughter at school → Peter is at school, daughter at school →
 Peter is at home, daughter at home

Temporal Relations

- Sequencing of events or sub-events
 - Wash the veggies, chop them, fry them.
 - Presentation and Temporal event sequence: 1 2 3
 - Before you fry the veggies, wash and chop them.
 - Presentation sequence: 3 1 2
 - Temporal event sequence: 1 2 3
- Duration of events
 - Clear reference: "for 30 minutes"
 - Common sense

Temporal Relations

- Duration of events
- Unfolding over time
 - Events relate to time
 - States are points in time
- Temporal sequencing relates to
 - Causal reasoning

Temporal Scope

- Simple temporal relations
 - Past tense: Tim Cook bought Google.
 - Assumptions: factive, true event
 - Future tense: Tim Cook will buy Google.
 - Assumptions: non-factive, hypothetical
- Complex relations: temporal scope
 - Reuters reported that

Tim Cook bought Google

Reuters will report that

NLP Extensions

• Implicatures:

- John to Peter: I bought the blue car.
 - John and Peter talked about cars earlier.
 - There should be a set with at least one more car the John could have bought, but did not, and
 - None of the cars in the set is blue.
- Clues: Definiteness of NP via the, and specificity of NP

• Presuppositions:

- John fed his cat this morning.
- Assumptions:
 - John owns/has a cat/pet.
 - John owned cat-food this morning.
- Clues: Possessive pronoun as modifier of Direct Object.

Predicates

- Veridicality
 - Factive predicates: know, regret, realize, notice, ...
 - I regret that ... (X did something to Y)
 - Complements are assumed to be true
 - Non-factive predicates: believe, think, claim, ...
 - I believe that ... (X did something to Y)
 - Complements cannot be assumed to be true
 - Counter-factive predicates: pretend, ...
 - John pretends that he is ill.
 - Complement cannot be true: John is not ill
- Question:
 - Cross-linguistic similarity = universal properties related to factivity

Semantic Mapping and Reasoning

- Type of Predicative Arguments: Typing
 - Named Entity Recognition
 - Closes possible Hypernym in a Taxonomy or Ontology of isA relations
- Identity of entity: Linking
 - Named Entity Recognition
 - Link to unique identifier of entity in some knowledge representation,
 Ontology, Wikipedia, Knowledge Graph

Issues: Ambiguity

Graph Extraction and Linking

- Graph generation sample:
 - NLP pipelines
 - Graph extraction
 - Linking (conceptualization, language independent representation)
- Goal:
 - Extract predicate-argument tuples
 - Type the entities (e.g. NER, ontology lookup, Knowledge Graph linking)
 - Dynamically expand the knowledge graph and track weights (probabilities)

Pipeline

• NLP Pipelines

Knowledge Graph Generation

Linguistic Bias

- Pragmatic effects in language use data (e.g. Sperber & Wilson's Relevance Theory, Grice's Maxims)
 - People communicate facts and information that is relevant, new, exciting
 - Observation:
 - Exciting information: purple carrots

Less exciting information: orange carrots

Solution

- Multi-modal information input to knowledge representation
 - Language input (speech and text)
 - Information in images
 - Haptic information
 - Secondary information: sound it makes, properties when shaking, tossing, etc.
- Graphs generated using:
 - General or common sense knowledge
 - Domain specific knowledge
 - Semantic restrictions over graphs: ontologies, taxonomies

Document Graphs

Concept/Knowledge Graph Document Representation

Event Graphs

- Arrangement of sub-events along time axis
 - Approximation of duration
 - Identification of geo-location
 - Linked entities and relations

Graph Neural Network Models

Graph Neural Network Models

$$h_v^{(l+1)} = \sigma(W_l \sum_{u \in N(v)} \frac{h_u^{(l)}}{|N(v)|} + B_l h_v^{(l)})$$