Text file to create

We need to set red words

The blue part can be omitted

■ Neural network setting 「NET.txt」

CrossEntropy
BATCH_SIZE 50
EPOCH 10
LAMBDA 0.000000
EPS 0.001000
OPTIMIZER Adam
VALIDATION_NUM 100
ERROR_PLOT_STEP 10
TEST_SAMPLE 10

Square or CrossEntropy

Mini batch size Epoch number

Load decay (weight decay)

Learning rate
Optimizer

Number of Validation data

Graph data output interval(gnuplot format)

Number of test data samples

Xoptimizer solver is listed on the final page

■ Layer setting 「LAYER.txt」

LAYER 4 1 [28, 28]	Number of layers Input feature map from left, input unit width, input unit height
Each layer setting See layer description END	Width and height are numbers when input units are regarded as a matrix

■ Describing layers

Fully Connected layer

LAYER_TYPE_FullyConnected/layerName 1 [7, 7] -> [1, 10] Softmax	From the left, input of feature map, output unit width, output unit height, start function				
	X The width and height are the numbers when looking at the input device as a matrixX Activation function described on final page				

Convolutional layer

LAYER_TYPE_Convolutional/layerName	From the left, input feature map, convolution width,
20 [28, 28]->(5, 5)->[28, 28] st 1 ReLU	convolution height, stride, activation function

Convolutional layer

LAYER_TYPE_Convolutional/layerName	From the left, input feature map, convolution width,
20 [28, 28]->(5 , 5)->[28, 28] st 1 pd 2 ReLU	convolution height, stride, padding activation function

^{*} Leave the setting of LAMBDA to 0 (there is a problem)

maxPool	ina I	laver
---------	-------	-------

LAYER_TYPE_maxPooling/layerName 20 [28, 28]->(4, 4)->[7, 7] st 4 Identity From the left, input feature map, convolution with convolution height, stride, activation function				
maxPooling layer				
LAYER_TYPE_maxPooling/layerName	From the left, input feature map, convolution width,			
20 [28, 28]->(4, 4)->[7, 7] st 4 pd 0 Identity	convolution height, stride, padding, activation function			

AveragePooling layer

LAYER_TYPE_AveragePooling /layerName	From the left, input feature map, convolution width,
20 [28, 28]->(4, 4)->[7, 7] st 4 Identity	convolution height, stride, activation function

maxPooling layer

LAYER_TYPE_AveragePooling /layerName	From the left, input feature map, convolution width,
20 [28, 28]->(4, 4)->[7, 7] st 4 pd 0 Identity	convolution height, stride, padding, activation function

Dropout layer

LAYER_TYPE_Dropout/layerName	From	the	left,0.5	is	the	dropout	rate,	activation
0.5 Identity	function	n						

ReLU

 $\frac{\tanh(x/2)+1}{2}$ Sigmoid

Output UNIT

Activation fur	ection	Loss function	Differentiation of loss function
Identity	h(x) = x	Square	$\frac{\partial E}{\partial w} = y - t$
Softmax h(:	$x) = \frac{\exp(x)}{\sum_{j=1}^{n} \exp(x_j)}$	CrossEntropy	$\frac{\partial E}{\partial w} = y - t$

■Optimizer solver

Adam

$$m_{t+1} = \beta_1 m_t + (1 - \beta_1) \nabla E(\mathbf{w}^t)$$

$$v_{t+1} = \beta_2 v_t + (1 - \beta_2) \nabla E(\mathbf{w}^t)^2$$

$$\hat{m} = \frac{m_{t+1}}{1 - \beta_1^t}$$

$$\hat{v} = \frac{v_{t+1}}{1 - \beta_2^t}$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \frac{\hat{m}}{\sqrt{\hat{v}} + \epsilon}$$

 α =0.001, β 1 =0.9, β 2 =0.999, ϵ =10E-8

AdaGrad

$$egin{aligned} h_0 &= \epsilon \ h_t &= h_{t-1} +
abla E(\mathbf{w}^t)^2 \ \eta_t &= rac{\eta_0}{\sqrt{h_t}} \ \mathbf{w}^{t+1} &= \mathbf{w}^t - \eta_t
abla E(\mathbf{w}^t) \end{aligned}$$

 ϵ =10E-8 ,η 0 =0.001

RMSprop

$$egin{aligned} h_t &= lpha h_{t-1} + (1-lpha)
abla E(\mathbf{w}^t)^2 \ \eta_t &= rac{\eta_0}{\sqrt{h_t} + \epsilon} \ \mathbf{w}^{t+1} &= \mathbf{w}^t - \eta_t
abla E(\mathbf{w}^t) \end{aligned}$$

 α =0.99, ϵ =10E-8, η 0=0.01

AdaDelta

$$egin{aligned} h_t &=
ho h_{t-1} + (1-
ho)
abla E(\mathbf{w}^t)^2 \ v_t &= rac{\sqrt{s_t + \epsilon}}{\sqrt{h_t + \epsilon}}
abla E(\mathbf{w}^t) \ s_{t+1} &=
ho s_t + (1-
ho) v_t^2 \ \mathbf{w}^{t+1} &= \mathbf{w}^t - v_t \end{aligned}$$

 ρ =0.95, ϵ =10E-6

SGD

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \eta \frac{\partial E(\mathbf{w}^t)}{\partial \mathbf{w}^t}$$

η=0.01