

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (currently amended): A method of determining ~~the-a~~ time of flight of a signal transmitted between a transmitter and a receiver, said method comprising the steps of:
~~transmitting-emitting~~ a first signal comprising at least one characteristic waveform feature;
~~transmitting-emitting~~ a second signal comprising at least one corresponding characteristic waveform feature and a waveform modification introduced at a predetermined point in time of the duration of the second signal;
receiving said first and second ~~transmitted-emitted~~ signals;
determining ~~an arrival~~ ~~a~~ time of reception of the introduced waveform feature modification in the second signal by comparing the respective waveforms of the first and second signals and determining a point of diversion between corresponding characteristic waveform features of the first and second received signals comprising super positioning said first and second received signals;
determining a time of flight of the introduced waveform modification based on the determined time of reception of the introduced waveform feature and its time of emission.

2. (original): The method of claim 1 wherein the step of determining a point of diversion further comprises:

calculating the difference between a value of the first received signal and a corresponding value of the second received signal at each point of occurrence of a characteristic waveform feature within the first received signal;

designating the point of diversion as the first point of occurrence at which the calculated difference is greater than the value of the second received signal.

3. (currently amended): The method of claim 2 further comprising the step of:
calculating the difference between the time of the point of diversion and the time of transmissionemission of the introduced waveform feature modification.

4. (currently amended): The method of claim 2 further comprising the steps of:
measuring a time relationship between a nominated characteristic waveform feature and the point of diversion and;
calculating the difference between the time of reception, based on the measured time relationship, and the time of transmissionemission of the nominated characteristic waveform feature.

5. (currently amended): The method of claim 4 wherein the nominated characteristic waveform feature is a feature of a first unmodified signal and the method further comprises the steps of:
transmittingemitting a plurality of subsequent first unmodified signals and;

determining the time of flight of the plurality of subsequent first unmodified signals by calculating the difference between the time of reception, based on the measured time relationship, and the time of ~~transmission~~emission of the nominated characteristic waveform feature of each respective one of the plurality of subsequent first unmodified signals.

6. (currently amended): The method of claim 1 further comprising the step of: repeating the steps of ~~transmitting~~emitting and receiving such that successive first and second signals are super positioned at the step of determining.

7. (previously presented): The method of claim 1, wherein the characteristic waveform feature of a signal is one of:

- a) a peak;
- b) a combination of peaks;
- c) a zero-crossing;
- d) a combination of zero-crossings.

8. (previously presented): The method of claim 1, wherein the waveform modification is introduced near the start of a signal.

9. (original): The method of claim 8 wherein the waveform modification is introduced at one of the third, fourth or fifth waveform peak after the onset of a signal.

10. (previously presented): The method of claim 1, wherein the waveform modification comprises a phase inversion.

11. (currently amended): The method of claim 1, wherein the ~~transmitted emitted~~ and received signals are ultrasonic signals.

12. (original): The method of claim 11 wherein the ultrasonic signals are provided by transducers driven at resonant frequencies in a frequency range of about 60 kHz to about 90 kHz.

13. (previously presented): Apparatus adapted to determine the time of flight of a signal transmitted between a transmitter and a receiver, said apparatus comprising:
processor means adapted to operate in accordance with a predetermined instruction set,
said apparatus, in conjunction with said instruction set, being adapted to perform the method of claim 1.

14. (currently amended): A method of determining ~~the-a~~ time of flight of a signal transmitted between a transmitter and a receiver, said method comprising the steps of:

~~transmitting emitting~~ a first and a second signal, where both signals comprise at least one characteristic waveform feature and the second signal further comprises a waveform modification introduced at a predetermined point in time of the duration of the second signal; receiving said first and second ~~transmitted emitted~~ signals; scanning through said received signals in time to determine a point of diversion between corresponding characteristic waveform features of the first and second received signals, wherein said point of diversion corresponds to a time of reception of the introduced waveform feature modification at the receiver;

determining the time of flight of the introduced waveform feature on the basis of the time of reception of the introduced waveform feature and its time of introduction.

15. (original): The method of claim 14 further comprising the steps of:
for each characteristic waveform feature of the first received signal calculating the difference between a value of the first received signal and a corresponding value of the second received signal;
designating the first point of occurrence at which the calculated difference is greater than the value of the second received signal as a point of diversion.

16. (currently amended): The method of claim 15 further comprising the step of:
calculating the difference between the time of the point of diversion and the time of ~~transmission emission~~ of the introduced waveform feature modification.

17. (currently amended): The method of claim 15 further comprising the step of:
measuring a time relationship between a nominated characteristic waveform feature and
the point of diversion and calculating the difference between the time of reception, based on the
measured time relationship, and the time of ~~transmission~~emission of the nominated
characteristic waveform feature.

18. (currently amended): The method of claim 17 wherein for a plurality of subsequent
~~transmitted~~emitted first unmodified signals, the time of flight is determined by:
calculating the difference between the time of reception, based on the measured time
relationship, and the time of ~~transmission~~emission of the nominated characteristic
waveform feature of respective subsequent first unmodified signals without reference to the
point of diversion.

19. (original): The method of claim 18 wherein the nominated characteristic waveform
feature of the respective subsequent signals is tracked to allow for variations in arrival time due
to physical changes in the transport medium between the transmitter and receiver.

20. (previously presented): Apparatus adapted to determine the time of flight of a signal
transmitted between a transmitter and a receiver, said apparatus comprising:

processor means adapted to operate in accordance with a predetermined instruction set, said apparatus, in conjunction with said instruction set, being adapted to perform the method of claim 14.

21. (currently amended): The method of claim 1 further comprising the steps of:
 - selecting a characteristic waveform feature of a first signal in accordance with predetermined selection criteria based on the point of diversion;
 - ~~transmitting emitting~~ and receiving a plurality of first signals;
 - detecting zero-crossings of the received plurality of first signals which indicate the presence of the selected characteristic waveform feature in each of the received plurality of first signals;
 - estimating a position of the selected characteristic waveform feature of the received plurality of first signals in accordance with predetermined estimation criteria based on the detected zero crossings to provide a position estimation value;
 - processing the position estimation value to determine a corresponding estimation time;
 - calculating the time of arrival of the selected characteristic waveform feature of at least one of the received plurality of first signals by adding a predetermined delay time to the estimation time.

22. (original): The method of claim 21 wherein the predetermined selection criteria comprise one of:

- a) adding a predefined delay to the time of the point of diversion;
- b) subtracting a predefined delay from the time of the point of diversion.

23. (previously presented): The method of claim 21 wherein the predetermined estimation criteria comprise:

- a) measuring the time of zero-crossings adjacent the selected characteristic waveform feature and;
- b) averaging the measured time of zero-crossings.

24. (currently amended): Apparatus adapted to determine the time of flight of a signal transmitted between a transmitter and a receiver, said apparatus comprising:

processor means adapted to operate in accordance with a predetermined instruction set, said apparatus, in conjunction with said instruction set, being adapted to perform the method of claim 21 wherein said apparatus comprises:

signal transducing means for transmitting emitting and receiving a plurality of first signals;

waveform feature selection means operatively connected to the signal transducing means and the processor means for selecting a characteristic waveform feature of a first signal in accordance with predetermined selection criteria based on the point of diversion;

zero-crossing detection means operatively connected to transducing means and the processor means for detecting zero-crossings of the received plurality of first signals which

indicate the presence of the selected characteristic waveform feature in each of the received plurality of first signals;

signal position estimation means operatively connected to the zero-crossing detection means and the processor means for estimating a position of the selected characteristic waveform

feature of the plurality of received first signals in accordance with predetermined estimation criteria based on the detected zero-crossings to provide a position estimation value; wherein the processor means processes the position estimation value to determine a corresponding estimation time and calculates the time of arrival of the selected characteristic waveform feature of at least one of the plurality of received first signals by adding a predetermined delay time to the estimation time.

25. (original): The apparatus of claim 24 wherein said signal position estimation means comprises a dual slope integrator.

26. (original): The apparatus of claim 24 wherein said plurality of received first signals are digitised and said processor means comprises digital data processing means comprising said zero-crossing detection means and said signal position estimation means.

27. (previously presented): A method of monitoring flow through a particle detector of an aspirated smoke detector system, the method comprising the steps of:

ascertaining the base flow of fluid through a particle detector using a flow sensor; monitoring subsequent flow through the particle detector; comparing the subsequent flow with the base flow, and indicating a fault if the difference between the base flow and the subsequent flow exceeds a predetermined threshold wherein base flow and subsequent flow are determined at respective times according to the following general flow calculation:

$$f = S \times A$$

where f = volumetric flow;

A = cross sectional area of an air flow path through the detector system;

s = speed of air through the detector system such that s is given by;

$$s = \frac{d}{2} \left(\frac{1}{t_2} - \frac{1}{t_1} \right)$$

where t_2 is the transit time of a signal transmitted in a forward direction, being generally in the direction of flow, from a first transducer located adjacent the flow path to a second transducer located generally opposite the first transducer and adjacent the flow path;

t_1 is the transit time of a signal transmitted in a reverse direction, being generally against the direction of flow, from the second transducer to the first transducer;

d is a distance travelled by the signal between the first and second transducer;

and wherein both t_1 and t_2 are determined in accordance with the method of claim 1.

28. (original): Apparatus adapted to monitor flow through a particle detector of an aspirated smoke detector system, said apparatus comprising:

processor means adapted to operate in accordance with a predetermined instruction set, said apparatus, in conjunction with said instruction set, being adapted to perform the method of claim 27.

29. (original): A method of detecting one or more blocked sampling holes in a pipe of an aspirated smoke detector system comprising:

ascertaining the base flow of fluid through a particle detector using a flow sensor; monitoring subsequent flow through the particle detector; comparing the subsequent flow with the base flow, and indicating a fault if the difference between the base flow and the subsequent flow exceeds a predetermined threshold.

30. (original): The method of claim 29 wherein the flow sensor is an ultrasonic flow sensor.

31. (canceled).

32. (previously presented): The method of claim 29, wherein the difference between base flow and 30 subsequent flow is compared over a length of time.

33. (previously presented): The method of claim 29 wherein the flow is determined according to the following general flow calculation:

$f=sxA$

where f = volumetric flow;

A = cross sectional area of an air flow path through the detector system;

s = speed of air through the detector system such that s is given by;

$$s = \frac{d}{2} \left(\frac{1}{t_2} - \frac{1}{t_1} \right)$$

where t_1 is the transit time of a signal transmitted in a forward direction, being generally in the direction of flow, from a first transducer located adjacent the flow path to a second transducer located generally opposite the first transducer and adjacent the flow path;

t_2 is the transit time of a signal transmitted in a reverse direction, being generally against the direction of flow, from the second transducer to the first transducer;

d is a distance travelled by the signal between the first and second transducer;
and wherein both t_1 and t_2 are determined.

34. (original): An aspirated smoke detector comprising a particle detector, a sampling network and an aspirator, an inlet; an outlet and a flow sensor, wherein the flow sensor uses ultrasonic waves to detect the flow rate of air entering the particle detector.

35. (original): The detector of claim 34 wherein the flow sensor measures the partial flow of fluid through a sampling network.

36. (previously presented): The smoke detector of claim 34, wherein the particle detector detects particles in a portion of the air flow flowing through the sampling network.

37. (previously presented): The smoke detector of claim 34 wherein the flow sensor is located in the sampling network.

38. (previously presented): The smoke detector of claim 34, wherein the flow sensor is located in a housing for the particle detector.

39. (previously presented): The smoke detector of claim 34, having a branch in the inlet allowing air to bypass the particle detector.

40. (canceled).

41. (previously presented): A computer program product comprising:
a computer usable medium having computer readable program code and computer readable system code embodied on said medium for determining the time of flight of a signal transmitted between a transmitter and a receiver within a data processing system, said computer program product comprising:

computer readable code within said computer usable medium for performing the method steps of claim 1.

42. (original): A computer program product comprising:
a computer usable medium having computer readable program code and computer
readable system code embodied on said medium for monitoring flow through a particle detector
of an aspirated smoke detector system within a data processing system, said computer program
product comprising:

computer readable code within said computer usable medium for performing the method
steps of claim 27.

43. (previously presented): A computer program product comprising:
a computer usable medium having computer readable program code and computer
readable system code embodied on said medium for detecting one or more blocked sampling
holes in a pipe of an aspirated smoke detector system within a data processing system, said
computer program product comprising:

computer readable code within said computer usable medium for performing the method
steps of claim 29.

44- 45. (canceled).

46. (currently amended): A method of determining the time of flight of a signal
transmitted between a transmitter and a receiver, said method comprising the steps of:

~~transmitting-emitting~~ a first signal comprising at least one characteristic waveform feature;

~~transmitting-emitting~~ a second signal comprising at least one characteristic waveform feature and a waveform modification introduced at a predetermined point in time of the duration of the second signal;

receiving said first and second ~~transmitted-emitted~~ signals;

determining a point of diversion between corresponding characteristic waveform features of the first and second received signals comprising super positioning said first and second received signals such that said point of diversion corresponds to an arrival time of the introduced waveform feature modification at the receiver, wherein the step of determining a point of diversion further comprises:

calculating the difference between a value of the first received signal and a corresponding value of the second received signal at each point of occurrence of a characteristic waveform feature within the first received signal;

designating the point of diversion as the first point of occurrence at which the calculated difference is greater than the value of the second received signal and wherein the method further comprises measuring a time relationship between a nominated characteristic waveform feature and the point of diversion and;

calculating the difference between the time of reception, based on the measured time relationship, and the time of ~~transmission-emission~~ of the nominated characteristic waveform

feature and wherein the nominated characteristic waveform feature is a feature of a first unmodified signal and the method further comprises the steps of:

~~transmitting-emitting~~ a plurality of subsequent first unmodified signals and;
determining the time of flight of the plurality of subsequent first unmodified signals by calculating the difference between the time of reception, based on the measured time relationship, and the time of ~~transmission-emission~~ of the nominated characteristic waveform feature of each respective one of the plurality of subsequent first unmodified signals.