

Devoir surveillé nº 1

Correction

Exercice 1 (4 pts).

1. L'intégrande est de la forme $\frac{u'}{u}$ avec $u(x) = 1 + e^x$, donc :

$$I_1 = \int_0^1 \frac{e^x}{1 + e^x} dx = \left[\log(1 + e^x) \right]_0^1 = \log(1 + e) - \log(2) = \log\left(\frac{1 + e}{2}\right).$$

2. On intègre par partie avec u'(x) = x et $v(x) = \log(x)$:

$$I_2 = \int_1^e x \log(x) dx = \left[\frac{x^2}{2} \log(x) \right]_1^e - \int_1^e \frac{x}{2} dx = \frac{e^2}{2} - \left[\frac{x^2}{4} \right]_1^e = \frac{e^2}{2} - \left(\frac{e^2}{4} - \frac{1}{4} \right) = \frac{e^2 + 1}{4}.$$

- **3.** On effectue le changement de variable $u = \sqrt[3]{x}$, c'est-à-dire $x = u^3$:
 - $dx = 3u^2 du$;
 - lorsque x varie de 1 à 8, u varie de 1 à 2.

$$I_3 = \int_1^8 \frac{1}{x + \sqrt[3]{x}} \, \mathrm{d}x = \int_1^2 \frac{3u^2}{u^3 + u} \, \mathrm{d}u = \int_1^2 \frac{3u}{u^2 + 1} \, \mathrm{d}u = \frac{3}{2} \int_1^2 \frac{2u}{u^2 + 1} \, \mathrm{d}u = \frac{3}{2} \Big[\log(1 + u^2) \Big]_1^2 = \frac{3}{2} \log \Big(\frac{5}{2} \Big).$$

- **4.** On effectue le changement de variable $x = \sin u$, avec $u \in \left[0, \frac{\pi}{6}\right]$:
 - $dx = \cos u du$;
 - lorsque u varie de 0 à $\frac{\pi}{6}$, on a bien x qui varie de 0 à $\frac{1}{2}$.

$$I_4 = \int_0^{1/2} \frac{1}{(1-x^2)^{3/2}} \, \mathrm{d}x = \int_0^{\pi/6} \frac{\cos u}{\left(1-\sin^2 u\right)^{3/2}} \, \mathrm{d}u = \int_0^{\pi/6} \frac{\cos u}{\left(\cos^2 u\right)^{3/2}} \, \mathrm{d}u = \int_0^{\pi/6} \frac{1}{\cos^2 u} \, \mathrm{d}u.$$

Une primitive de $\frac{1}{\cos^2 u}$ sur $\left[0, \frac{\pi}{6}\right]$ est tan u donc :

$$I_4 = \left[\tan u\right]_0^{\pi/6} = \tan\left(\frac{\pi}{6}\right) - \tan(0) = \frac{1}{\sqrt{3}}.$$

Exercice 2 (2 pts). On reconnait que:

$$\frac{1}{2n}\sum_{k=0}^{n-1}\frac{1}{\sqrt{1-\frac{k^2}{4n^2}}}=\sum_{k=0}^{n-1}f(\xi_k)(a_{k+1}-a_k)=S(f,a,\xi),$$

avec $f(x) := \frac{1}{\sqrt{1-x^2}}$, $a_k := \frac{k}{2n}$ et $\xi_k := \frac{k}{2n} \in [a_k, a_{k+1}]$. Les $(a_k)_{0 \le k \le n}$ forment une subdivision régulière de l'intervalle $[0, \frac{1}{2}]$ et f est Riemann–intégrable sur cet intervalle car continue sur cet intervalle, donc :

$$\lim_{n \to +\infty} \frac{1}{2n} \sum_{k=0}^{n-1} \frac{1}{\sqrt{1 - \frac{k^2}{4n^2}}} = \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^2}} \, \mathrm{d}x = \left[\arcsin(x) \right]_0^{1/2} = \arcsin\left(\frac{1}{2}\right) - \arcsin(0) = \frac{\pi}{6}.$$

Exercice 3 (4 pts). Soit f une fonction Riemann-intégrable sur [a, b].

1. a. On dit que f est Riemann–intégrable sur [a,b] si pour tout $\varepsilon > 0$, il existe des fonctions en escalier φ et ψ sur [a,b] telles que :

$$|f - \varphi| \le \psi$$
 et $\int_a^b \psi(x) \, \mathrm{d}x \le \varepsilon$.

(J'acceptais aussi la définition séquentielle.)

b. Par définition de la Riemann–intégrabilité (avec disons $\varepsilon = 1$), soient φ et ψ des fonctions en escalier telles que $|f - \varphi| \le \psi$. On a alors :

$$\varphi - \psi \le f \le \varphi + \psi$$
.

Or les fonctions en escalier $\varphi - \psi$ et $\varphi + \psi$ sont bornées, donc f est bornée.

- **2.** Pour tout $x \in [a, b]$, on définit $F(x) := \int_a^x f(t) dt$.
 - **a.** Soit M > 0 un majorant de |f| sur [a, b], et soient $x, y \in [a, b]$. Sans perte de généralité, on peut supposer que $y \le x$. On a :

$$\begin{aligned} \left| F(x) - F(y) \right| &= \left| \int_{a}^{x} f(t) \, \mathrm{d}t - \int_{a}^{y} f(t) \, \mathrm{d}t \right| \\ &= \left| \int_{y}^{x} f(t) \, \mathrm{d}t \right| \\ &\leq \int_{y}^{x} \left| f(t) \right| \mathrm{d}t \\ &\leq \int_{y}^{x} M \, \mathrm{d}t = M(x - y) = M|x - y|. \end{aligned}$$

Remarque : si vous avez utilisé le théorème des accroissements finis appliqué à F en disant que F' = f d'après le théorème fondamental de l'analyse, c'est faux car on ne suppose pas que f est continue dans cette question! (la continuité de f est une hypothèse essentielle du TFA)

b. Réponse courte : d'après la question précédente, F est Lipschitzienne sur [a,b], donc elle est uniformément continue sur [a,b]. A fortiori, elle est continue sur [a,b].

Réponse plus terre à terre : soit $x_0 \in [a, b]$, montrons que F est continue en x_0 . D'après la question précédente, on a pour tout $x \in [a, b]$:

$$0 \le |F(x) - F(x_0)| \le M|x - x_0|$$
.

Par encadrement, $|F(x) - F(x_0)| \to 0$ lorsque $x \to x_0$, donc $\lim_{x \to x_0} F(x) = F(x_0)$, CQFD.

- **3.** Soit $x_0 \in [a, b[$.
 - a. Remarquons que:

$$\frac{F(x_0+h)-F(x_0)}{h} = \frac{1}{h} \left(\int_a^{x_0+h} f(t) \, dt - \int_a^{x_0} f(t) \, dt \right) = \frac{1}{h} \int_{x_0}^{x_0+h} f(t) \, dt,$$

et que

$$f(x_0) = \frac{1}{h} \int_{x_0}^{x_0+h} f(x_0) dt$$
 (intégrale d'une constante).

La linéarité de l'intégrale et l'inégalité triangulaire nous donnent alors :

$$\left| \frac{F(x_0 + h) - F(x_0)}{h} - f(x_0) \right| = \left| \frac{1}{h} \int_{x_0}^{x_0 + h} (f(t) - f(x_0)) dt \right| \le \frac{1}{h} \int_{x_0}^{x_0 + h} |f(t) - f(x_0)| dt.$$

b. Supposons que f est continue à droite et fixons $\varepsilon > 0$. Il existe alors $\delta > 0$ tel que pour tout $t \in [x_0, x_0 + \delta]$, on a $|f(t) - f(x_0)| \le \varepsilon$. Ainsi, pour tout $h \in]0, \delta]$, on a d'après la question précédente :

$$\left| \frac{F(x_0 + h) - F(x_0)}{h} - f(x_0) \right| \le \frac{1}{h} \int_{x_0}^{x_0 + h} |f(t) - f(x_0)| \, \mathrm{d}t \le \frac{1}{h} \int_{x_0}^{x_0 + h} \varepsilon \, \mathrm{d}t = \varepsilon.$$

Ceci démontre que :

$$\lim_{h \to 0^+} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0),$$

donc F est dérivable à droite en x_0 et $F'_d(x_0) = f(x_0)$.