

无极风扇调速模块

零件位置	1
、, , 系统原理图	2
基本功能	3
如何进行故障排除	6
ECU 端子	
电路图	9
 有散热需求,无极风扇不工作	10
无极风扇常转,且不受控制	12
长 知 与 字	13

零件位置

系统原理图

基本功能

调速策略

无级风扇调速模块通过接收空调 ECU、电喷发送的散热需求 CAN 信号,选取散热需求最高的占空比来控制冷凝风扇、冷却风扇的转速;通过接收驱动电机控制器或车载充电器的散热需求信息,控制驱动电机散热风扇的转速。

- 注: 1)任意电源档位,若无级风扇调速模块收不到车载充电器的 0x47E,不做掉线处理;
- 2)在 OK 档,若检测到前驱动电机控制器掉线,则电机散热风扇全速转,在别的电源档位,不做掉线处理:
 - 3) 在 OK 或伪 Ok 档, 若检测到空调掉线则无级风扇调速模块控制冷凝/冷却风扇以 100%的占空比转;
 - 4) 在 OK 档, 若检测到电喷掉线则无级风扇调速模块控制冷凝/冷却风扇以 100%的占空比转;

输入-输出占空比关系

无级风扇调速模块供电电源恒定(电源为 12V,接线电阻 0.1ohm),负载恒定,其接收到的各个模快 PWM 信号的占空比需求与输出信号占空比应满足下面情况:

- a. 当占空比输入为0时,即认为无散热需求,无级风扇调速模块不做处理;
- b. 当占空比信号为(0; 30%],调速模块输出至风扇的为30%的占空比;
- c. 当占空比信号为(30%; 100], 调速模块按照1:1的比例输出至风扇。
- 注: 1) 若占空比大于 100%, 无级风扇调速模块以 100%的占空比输出至风扇; 风扇工作的时间由有需求帧的时间决定。
 - 2) 外部环境在-40℃~120℃, 电压在 8~16V 的条件下无级风扇调速模块按照 1: 1 输出至风扇。
- 3) 当调速模块自身的温度上升至大于或等于 125℃,并且冷凝/冷却风扇的目标占空比未达到 100%,无级风扇调速模块控制冷凝/冷却风扇按照 100%的占空比进行工作;当调速模块自身的温度下降至小于或等于 120℃,并且冷凝/冷却风扇的目标占空比未达到 100%,无级风扇调速模块控制冷凝/冷却风扇按照 100%的占空比进行工作。

散热需求模块掉线处理策略

- 1)任意电源档位,若无级风扇调速模块收不到车载充电器的 0x47E,不做掉线处理;
- 2) 在 0K 或伪 0K 档, 若检测到前驱动电机控制器掉线,则电机散热风扇全速转,在别的电源档位,不做掉线处理;
- 3) 在 OK 或伪 OK 档, 若检测到空调 ECU 掉线,则冷凝/冷却风扇全速转,在别的电源档位,不做掉线处理;
- 4) 在 OK 或伪 OK 或 ON 档电, 若检测到电喷掉线,则冷凝/冷却风扇全速转,在别的电源档位,不做掉线处理;

MM

故障码表

			以件的化	
序号	DTC	显示内 容	检验条件	可能的故障区域
1	B23104 B	过温	当调速模块传感器温度超过 135℃以后,为保护内部器件,电机输出电压立即降低到 9V。当调速模块内部温度传感器温度超过 140℃时,应立即切断输出,记录此故障;当调速模块内部温度传感器温度下降到 120℃以下后,系统才会恢复到正常工作状态,同时消除故障码。温度误差为±5℃。	1) 无级风扇调速 模块 2) 线束
2	B23101 7	过压	调速模块的输入电压超过 16.5V 且持续时间大于 1S, 调速模块能自动关闭电机,若电压下降到 16 以下,调速模块能控制电机立即恢复到正常状态。电压误差为±0.3V。	1) 调速模块 2) 线束
3	B23101 6	欠压	正常工作过程中,若电压跌落到8V以下,且保持时间大于100ms,调速模块能自动关闭电机,若电压恢复到9V以上时,调速模块能控制电机恢复到正常状态。电压误差为±0.3V。	1) 调速模块 2) 线束
4	B23111 3	冷却风 扇开路	当无级风扇调速模块初次检测到冷却风扇电机与模块之间开路,则认为是冷却风扇电机开路,模块应立即切断此风扇的输出,记录此故障,同时另一风扇开始加速至全速。输出关闭后,系统 15s 后尝试重启电机,如果开路依旧存在,那么系统将一直每间隔 15s 尝试启动,启动成功后,消除故障码。	1)调速模块2)线束和接插件
5	B23117	冷却风扇堵转	无级风扇调速模块实时检测冷却风扇电机反电动势,当连续 5 次没有检测到反电动势且存在电流时则认定为堵转,模块应立即切断此风扇的输出,记录此故障,同时另一风扇开始加速至全速。输出关闭后,系统 15s 后尝试重启电机,如果堵转依旧存在,那么系统将一直每间隔 15s 尝试启动,启动成功后,消除故障码。	1)冷却风扇电机 2)线束和接插件
6	B23111 2	冷却风 扇短路	调速模块实时检测冷却风扇,当初次检测到风扇短路时,模块 应立即切断输出,记录此故障,同时另一风扇开始加速至全 速。输出关闭后,系统 15s 后尝试重启电机,如果短路依旧存 在,那么系统将一直每间隔 15s 尝试启动,启动成功后,消除 故障码。	1)调速模块2)线束和接插件
7	B23121 23	冷凝风 扇开路	当无级风扇调速模块初次检测到冷凝风扇电机与模块之间开路,则认为是冷凝风扇电机开路,模块应立即切断此风扇的输出,记录此故障,同时另一风扇开始加速至全速。输出关闭后,系统 15s 后尝试重启电机,如果开路依旧存在,那么系统将一直每间隔 15s 尝试启动,启动成功后,消除故障码。	1)调速模块 2)线束和接插件
8	B23127	冷凝风扇堵转	无级风扇调速模块实时检测冷凝风扇电机反电动势,当连续5次没有检测到反电动势且存在电流时则认定为堵转,模块应立即切断此风扇的输出,记录此故障,同时另一风扇开始加速至全速。输出关闭后,系统15s后尝试重启电机,如果堵转依旧存在,那么系统将一直每间隔15s尝试启动,启动成功后,消除故障码。	1)冷凝风扇电机 2)线束和接插件
9	B23121 2	冷凝风扇短路	调速模块实时检测冷凝风扇,当初次检测到风扇短路时,模块 应立即切断输出,记录此故障,同时另一风扇开始加速至全 速。输出关闭后,系统 15s 后尝试重启电机,如果短路依旧存 在,那么系统将一直每间隔 15s 尝试启动,启动成功后,消除 故障码。	1)调速模块 2)线束和接插件
	B23141 3	电机散 热风扇 开路	当无级风扇调速模块初次检测到电机散热风扇电机与模块之间 开路,则认为是电机散热风扇电机开路,模块应立即切断输 出,记录此故障。同时冷凝/冷却风扇开始加速至全速。输出 关闭后,系统 15s 后尝试重启电机,如果开路依旧存在,那么 系统将一直每间隔 15s 尝试启动,启动成功后,消除故障码。	1) 电机散热风扇 2) 线束和接插件

 ${\sf CD}$

NM

7		B23147 1	电机散 热风扇 堵转	无级风扇调速模块实时检测电机散热风扇电机反电动势,当连续 5 次没有检测到反电动势且存在电流时则认定为堵转,模块应立即切断此风扇的输出,记录此故障,同时冷凝/冷却风扇开始加速至全速。输出关闭后,系统 15s 后尝试重启电机,如果堵转依旧存在,那么系统将一直每间隔 15s 尝试启动,启动成功后,消除故障码。	1)电机散热风扇 2)线束和接插件	
		B23141 2	电机散 热风扇 短路	调速模块实时检测电机散热风扇,当初次检测到风扇短路时,模块应立即切断输出,记录此故障,同时冷凝/冷却风扇开始加速至全速。输出关闭后,系统15s后尝试重启电机,如果短路依旧存在,那么系统将一直每间隔15s尝试启动,启动成功后,消除故障码。	1)电机散热风扇2)线束和接插件	
	10	U01408 7	与 BCM 之间通 讯故障	风扇调速模块在 ON 档电下,5s 内未接到 BCM 发送的 0x12D 的CAN 信息即认为是通讯故障,记录此故障。	1) BCM 2) 风扇调速模块 3) 线束	
	11	U01008 7	与 ECM 之间通 讯故障	风扇调速模块在 ON 档电下,5s 内未接到 ECM 发送的 0x40E 的 CAN 信息即认为是通讯故障,记录此故障。	1) ECM 2) 风扇调速模块 3) 线束	
	12	U01648 7	与 AC 之 间通讯 故障	风扇调速模块在 ON 档电下, 5s 内未接到 AC 发送的 Ox4D8 的 CAN 信息即认为是通讯故障,记录此故障。	1) AC 2) 风扇调速模块 3) 线束	
	13	U01A58 7	与驱动 电机控 制器通 讯故障	风扇调速模块在 0N 档电下,5s 内未接到 0x342 的 CAN 信息即认为是通讯故障,记录此故障。	1) 整车控制器 2) 风扇调速模块 3) 线束	
	14	U02978 7	与车载 充电器 之间通 讯故障	风扇调速模块在 ON 档电下,5s 内未接到车载充电器发送的 0x47E 的 CAN 信息即认为是通讯故障,记录此故障。	1) 车载充电器 2) 调速模块 3) 线束	
	15	U01AA8 7	车型故 障	风扇调速模块在 ON 档电下,5s 内未接到 0x40D 的 CAN 信息即认为是通讯故障,记录此故障。	1)前驱动电机控制 器或电喷 2)调速模块 3)线束	
	16	B23138 7	内部通 信故障	风扇调速模块在 ON 档电下,5s 内 DZ60 未接到 TLE9861 串口信息或者 9861 未接收到 DZ60 串口信息即认为是通讯故障,记录此故障。	1) 调速模块	
	17	B23121 9	冷凝风扇驱动电路过流	调速模块实时检测冷凝风扇, 当初次检测到风扇过流时, 模块应立即切断输出,记录此故障,同时另一风扇开始加速至全速。输出关闭后,系统 15s 后尝试重启电机,如果过流依旧存在,那么系统将一直每间隔 15s 尝试启动,启动成功后,消除故障码。	1) 调速模块	
	18	B23111 9	冷却风 扇驱动 电路过 流	调速模块实时检测冷却风扇,当初次检测到风扇过流时,模块应立即切断输出,记录此故障,同时另一风扇开始加速至全速。输出关闭后,系统 15s 后尝试重启电机,如果过流依旧存在,那么系统将一直每间隔 15s 尝试启动,启动成功后,消除故障码。	1) 调速模块	
	20	B23141 9	电机散 热风扇 驱动电 路过流	调速模块实时检测电机散热风扇,当初次检测到风扇过流时,模块应立即切断输出,记录此故障,同时冷凝/冷却风扇开始加速至全速。输出关闭后,系统15s后尝试重启电机,如果过流依旧存在,那么系统将一直每间隔15s尝试启动,启动成功后,消除故障码。	1) 调速模块	

如何进行故障排除

提示:

- 使用以下程序对无极风扇调速模块进行故障排除。
- 使用 VDS2000 诊断仪。

1 车辆送入维修车间

CI

下一步

2 客户故障分析检查和症状检查

下一步

3 检查蓄电池电压

标准电压:

9V 至 16V

如果电压低于 9V, 在转至下一步前对蓄电池充电或更换蓄电池。

下一步

4 检查 CAN 通信系统*

(a) 使用 VDS2000 检查 CAN 通信系统是否正常工作。

结果

结果	转至
未输出 CAN 通信系统 DTC	Α
输出 CAN 通信系统 DTC	В

A

转至 CAN 通信系统

В

5 检查 DTC

结果

结果	转至
未輸出 DTC	Α
输出 DTC	В

Α

转至步骤8

В

6 故障症状表

结果

-H/N				
结果	转至			
故障未列于故障症状表中	Α			
故障列于故障症状表中	В			

NW

A 转至步骤 8

В

7 总体分析和故障排除

下一步

8 调整、维修或更换

下一步

9 确认测试

下一步

结束

ECU 端子

检查无极风扇调速模块引脚(线束端)

根据下表中的值测量电压和电阻。

端子号(符号)	配线颜色	端子描述	条件	规定状态
B14-1-车身搭铁	В	电源	常电	9-16V
B14-2-车身搭铁	R	接地	始终	小于 1Ω
B14-3-车身搭铁	v	舒适网 2 CAN_L	始终	约 2.5V
B14-4-车身搭铁	Р	舒适网 2 CAN_H	始终	约 2.5V
B14-5-车身搭铁	Y	IG1 检测	ON 档电	9-16V

如果结果不符合规定,则线束可能有故

障。

电路图

NW

有散热需求时, 无极风扇不工作

检查步骤

1 前舱温度是否正常

(a) 用 VDS2000 读取无极风扇调速模块数据流中的模块温度

值

正常:调速模块温度小于 **120**℃ 异常:调速模块温度超过 **140**℃

异常

待前舱自然冷却(调速模块温度<120℃)

正常

2 测量蓄电池电压

(a) 用万用表测量蓄电池正负极柱之间电压。

正常: 9-16V

异常: 蓄电池电压低于 9V 或者高于 16V

异常

给蓄电池充电或更换蓄电池

正常

3 检查保险

(a) 用万用表检查 F3/4、F2/16 保险。

正常:保险正常导通 异常:保险断路

异常

更换正常保险

正常

4 检查无极风扇输入端线束

(a) 断开无极风扇接插件 B14;

(b) 用万用表测量线束端端子的对地电压、电阻值

检测仪连接	条件	规定状态
B14-1-车身地	В	小于 1 Ω
B14-2-车身地	R	9-16V
B14-3-车身地	V	约 2.5V
B14-4-车身地	Р	约 2.5V
B14-5-车身地	Y	9-16V

异常

排查输入线束中的断/短路情况,或者更换线

正常

5 检查风扇电机是否开/短路

(a) 用万用表测量调速模块输出端的电阻值

正常: 有一定的电阻值

异常: 电阻值为零或者无穷大

异常

更换风扇电机以及风扇电机线束

正常

NW

6 检查风扇电机是否堵转

(a) 用万用表测量风扇电机的反向电动势

(b) 用电流探头测量风扇电机的电流值

正常:风扇电机有一定的反向电动势和电流值 异常:风扇电机无反向电动势,有一定的电流值

异常

更换风扇电机以及风扇电机线束

正常

7 更换无极风扇总成

无极风扇常转,且不受控制

检查步骤

1 检查网关是否正常工作

(a) 连接 VDS2000, 扫描整车模块

正常: 网关可以点亮,每路 CAN 网络都有模块可以点亮 异常: 网关无法点亮,或者存在整路的 CAN 网络 VDS 无法 点亮

异常

"跳转至网关维修手册"

正常

2 大极风扇是否正常通讯

(a) 连接 VDS2000, 扫描整车模块

正常: 无极风扇调速模块可以正常点亮

异常: VDS 整车扫描无法点亮无极风扇调速模块

异常

检查无极风扇 CAN 线线束

正常

3 风扇是否报通讯类故障码

(a) VDS2000, 读取无极风扇调速模块故障码 正常:没有当前通讯类故障码

异常

跳转至前驱动电机控制器、电喷、空调和 OBC 维修手册

正常

4 更换无极风扇调速模块

•

拆卸与安装

无极风扇调速模块拆卸 调速模块安装在风扇总成上

的四个接插件

四个固定螺栓

- 1. 断开调速模块
- 2. #10 套筒拆除

四个固定螺栓

的四个接插件

- 1. #10 套筒安装
- 2. 连接调速模块