Математический анализ Расчётно-графическая работа № 1

«Последовательность и её предел»

Описание работы

Расчетно-графические работы выполняются командами студентов (по 3-4 человека) и заключаются в выполнении заданий, оформлении отчета и его защите (порядок см. ниже). Сформированные команды сами выбирают себе номер от 1 до 8 так, чтобы у каждой команды он был уникальный.

Требования

К выполнению заданий – в работе должны быть:

- 1) поставлены требуемые задачи;
- 2) представлены в логической последовательности основные этапы исследования или решения:
- 3) указаны используемые теоретические положения и методы;
- 4) получены точные численные результаты и построены требуемые графические изображения.

К содержанию отчета – отчет выполняется в электронном виде (текстовый документ или презентация; для презентации Power Point используется шаблон Университета В MS ИСУ стилистика полезные ссылки \rightarrow корпоративная презентации (внизу страницы)). должен содержать:

- 1) титульный лист/слайд (название дисциплины, учебный год, название РГР, ФИ исполнителей, номер потока, ФИ преподавателя, ФИ ментора (если у преподавателя есть ментор), дата, место выполнения);
- 2) условия всех заданий (условие каждого задания перед его решением);
- 3) основные этапы решения каждой задачи, *пронумерованные согласно пунктам плана*, их теоретическое обоснование, численные результаты;
- 4) графики или рисунки, иллюстрирующие решение каждой задачи (выполненные в математическом редакторе Desmos: https://www.desmos.com/, Geogebra: https://www.geogebra.org/ или других);
- 5) выводы;
- 6) оценочный лист (вклад каждого исполнителя оценивается всей командой по шкале от 0 до 100% баллов).

К оформлению отчета:

- 1) Страницы и слайды следует пронумеровать (на титульной странице/слайде номер не ставится).
- 2) Текст представляется полностью в цифровом виде. Не допускается вставка фото или сканов текста, а также скриншотов электронного текста.
- 3) Все формулы набираются в редакторе формул. Не допускается набор формул текстом (например, $f(x)=3*x^2$), а также вставка фото или сканов формул, однако допускается вставка скриншотов электронных формул (если ни один редактор формул не доступен). Про редакторы формул:
 - а. в MS Office есть встроенный редактор формул;
 - b. в MS Office также есть скачиваемая надстройка MathType для набора формул;
 - с. Google-документы и Open Office имеют встроенные редакторы формул;
 - d. в LaTeX встроен набор формул;
 - е. можно воспользоваться бесплатным сервисом набора формул https://editor.codecogs.com/ и скачать формулу в виде изображения;
 - f. или воспользоваться математическим пакетом (MathCAD, Wolfram Mathematica и др.) или сайтом Wolfram Alpha и сделать оттуда скриншоты формул.

Защита работ

Защита работы представляет собой проверку преподавателем (ментором) и её оценивание по следующим критериям. Работы, присланные позже назначенного срока, оцениваются со штрафом (от 0 до 4 баллов).

Критерии	min баллы	тах баллы
Все задания решены полностью, правильно и оптимально.	0	2
Даны необходимые и полные обоснования применяемых методов, ход решения сопровождается подробными комментариями и графиками.	0	2
Отчёт аккуратно оформлен и грамотно свёрстан.	0	1
Итого:	0	5

Задание 1. Метод математической индукции

Пользуясь методом математической индукции, докажите, что при любом $n \in \mathbb{N}$:

№ ком.	Утверждение
1.	$\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} > \frac{13}{24} \text{при} n > 1$
2.	$1^2 + 3^2 + \dots + (2n - 1)^2 = \frac{n(4n^2 - 1)}{3}$
3.	число $n(2n^2-3n+1)$ кратно 6 (при $n>1$)
4.	$1 \cdot 2 + 2 \cdot 5 + \dots + n(3n - 1) = n^2(n + 1)$
5.	$\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{3n+1} > 1$
6.	$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$
7.	число n^5-n делится на 5 (при $n>1$)
8.	$1 \cdot 2^2 + 2 \cdot 3^2 + \dots + (n-1)n^2 = \frac{n(n^2 - 1)(3n + 2)}{12}$

План:

- 1) Проверьте утверждение для первых номеров n, например, для n = 1 (база индукции).
- 2) Предположите, что утверждение верно при n = k (индукционное предположение).
- 3) Покажите, что из справедливости индукционного предположения для номера n=k следует справедливость этого утверждения для номера n=k+1 (*шаг индукции*).
- 4) Сделайте вывод.

Задание 2. Исследование предела рекуррентно заданной последовательности

Вещественная последовательность задана рекуррентно: $x_{n+1} = \sqrt{2 + x_n}$, где $x_1 \in \mathbb{R}$. Исследуйте её предел при $n \to \infty$ в зависимости от значения x_1 .

План:

- 1) Предположите, что предел существует, и найдите его. Доказательство существования предела будет проведено в п. 6).
- 2) Какими могут быть значения x_1 ? Укажите множество возможных значений x_1 . Докажите ваш ответ аналитически.
- 3) При каком значении x_1 последовательность является стационарной? Докажите это аналитически.
- 4) Выделите характерные случаи для значений x_1 (с точки зрения монотонности) и проиллюстрируйте их графиками последовательности.
- 5) Докажите аналитически ограниченность и монотонность последовательности для каждого характерного случая. Сделайте заключение о существовании предела по теореме Вейерштрасса.

Задание 3. Исследование сходимости

Дана последовательность a_n . Исследуйте её поведение при $n \to \infty$.

План:

- 1) Вычислите предел A последовательности при $n \to \infty$.
- 2) Постройте график общего члена последовательности в зависимости от номера n.
- 3) Проиллюстрируйте сходимость (расходимость) последовательности:
 - а. вспомните определение предела последовательности, запишите его через ε , n_0 и неравенство;
 - b. выберите три различных положительных числа $\varepsilon_1 > \varepsilon_2 > \varepsilon_3$;
 - с. для каждого такого числа изобразите на графике соответствующую ε -окрестность предела A (« ε -трубу»);
 - d. для каждого выбранного ε найдите на графике номер $n_0 = n_0(\varepsilon)$, после которого все члены последовательности попадают в ε -окрестность, или установите, что такого номера нет.
 - (!) Обратите внимание, что для качественной иллюстрации сгущения элементов последовательности a_n вокруг предела A (при $n \to \infty$) значения для ε следует выбирать так, чтобы соответствующие номера $n_0 = n_0(\varepsilon)$ получались действительно большими (например, $n_0(\varepsilon_1) > 10$, $n_0(\varepsilon_2) > 100$, $n_0(\varepsilon_3) > 1000$).

№ ком.	a_n
1.	$a_n = \frac{4}{1 \cdot 9} + \frac{4}{9 \cdot 17} + \dots + \frac{4}{(8n-7) \cdot (8n+1)}$
2.	$a_n = \frac{8^{n+2} + (-7)^{n-1}}{5 \cdot 8^n + (-7)^n}$
3.	$a_n = \frac{3+8++(5n-2)}{4+7++(3n+1)}$
4.	$a_n = \frac{\sqrt[3]{n^5(5n-3)} - \sqrt[3]{5n^6 + 2}}{\sqrt{9n^2 - 2n + 3}}$
5.	$a_n = -\frac{3}{5} + \frac{3}{25} - \dots + 3 \cdot \frac{\left(-1\right)^n}{5^n}$
6.	$a_n = \frac{\sqrt{9n^4 - 1} + \sqrt{3n^2 + 1}}{7 + 9 + \dots + (2n + 5)}$
7.	$a_n = \frac{5 - n + 3n^2}{2 + 6 + \dots + (4n - 2)}$
8.	$a_n = \sqrt[3]{n^2} \left(\sqrt[3]{(3n^2 - 1)^2} - \sqrt[3]{(3n^2 + 1)^2} \right)$