$11n_{13} \ (K11n_{13})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{10} - 2u^9 + 6u^8 - 8u^7 + 13u^6 - 15u^5 + 14u^4 - 15u^3 + 7u^2 + 2b - 7u + 2, \\ &- 2u^{10} + 5u^9 - 16u^8 + 26u^7 - 42u^6 + 51u^5 - 49u^4 + 50u^3 - 29u^2 + 2a + 23u - 9, \\ &u^{11} - 3u^{10} + 9u^9 - 16u^8 + 25u^7 - 32u^6 + 32u^5 - 32u^4 + 22u^3 - 15u^2 + 8u - 1 \rangle \\ I_2^u &= \langle -au + b, \ a^2 + au + a - u, \ u^2 + u + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 15 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{10} - 2u^9 + \dots + 2b + 2, -2u^{10} + 5u^9 + \dots + 2a - 9, u^{11} - 3u^{10} + \dots + 8u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{10} - \frac{5}{2}u^{9} + \dots - \frac{23}{2}u + \frac{9}{2} \\ -\frac{1}{2}u^{10} + u^{9} + \dots + \frac{7}{2}u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{10} - \frac{7}{2}u^{9} + \dots - \frac{25}{2}u + \frac{9}{2} \\ \frac{1}{2}u^{10} - 2u^{9} + \dots + \frac{15}{2}u^{2} - \frac{7}{2}u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{9} + u^{8} + \dots - \frac{3}{2}u + \frac{5}{2} \\ \frac{1}{2}u^{10} - u^{9} + \dots + \frac{3}{2}u^{2} - \frac{3}{2}u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{2}u^{10} + \frac{1}{2}u^{9} + \dots + u + \frac{3}{2} \\ \frac{1}{2}u^{10} - u^{9} + \dots + \frac{5}{2}u^{2} - \frac{5}{2}u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{10} - \frac{3}{2}u^{9} + \dots - 9u + \frac{9}{2} \\ \frac{1}{2}u^{10} - 2u^{9} + \dots + \frac{15}{2}u^{2} - \frac{7}{2}u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{5} - u^{3} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{5} - u^{3} - u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{1}{2}u^{10} - 2u^9 + 5u^8 - 9u^7 + \frac{21}{2}u^6 - \frac{19}{2}u^5 + 4u^4 + \frac{5}{2}u^3 - \frac{7}{2}u^2 + \frac{9}{2}u - 14u^4 + \frac{1}{2}u^3 - \frac{1}{2}u^2 + \frac{1}{2}u^3 - \frac{1}{2}u^2 + \frac{1}{2}u^3 - \frac{1}{2}u^2 + \frac{1}{2}u^3 - \frac{1}{2}u^$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{11} + 3u^{10} + \dots + 8u + 1$
c_2	$u^{11} + 9u^{10} + \dots + 34u - 1$
c_3, c_8	$u^{11} - u^{10} + \dots - 32u - 16$
<i>C</i> ₅	$u^{11} - 3u^{10} + \dots + 17u + 2$
c_6, c_7, c_{10} c_{11}	$u^{11} + 3u^{10} + \dots + 2u - 1$
<i>c</i> 9	$u^{11} - 13u^{10} + \dots - 2u + 7$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{11} + 9y^{10} + \dots + 34y - 1$
c_2	$y^{11} - 11y^{10} + \dots + 1282y - 1$
c_{3}, c_{8}	$y^{11} - 25y^{10} + \dots + 128y - 256$
<i>C</i> ₅	$y^{11} - 31y^{10} + \dots + 109y - 4$
c_6, c_7, c_{10} c_{11}	$y^{11} - 19y^{10} + \dots + 14y - 1$
<i>c</i> ₉	$y^{11} - 79y^{10} + \dots - 38y - 49$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.417699 + 0.894239I		
a = 0.258441 + 0.135782I	-0.35168 - 1.75940I	-2.35906 + 1.98194I
b = 0.229372 - 0.174392I		
u = -0.417699 - 0.894239I		
a = 0.258441 - 0.135782I	-0.35168 + 1.75940I	-2.35906 - 1.98194I
b = 0.229372 + 0.174392I		
u = -0.053436 + 1.167960I		
a = -0.409120 - 0.745046I	-3.73521 + 0.42312I	-13.72245 - 1.16571I
b = -0.892048 + 0.438025I		
u = -0.053436 - 1.167960I		
a = -0.409120 + 0.745046I	-3.73521 - 0.42312I	-13.72245 + 1.16571I
b = -0.892048 - 0.438025I		
u = 1.23651		
a = 1.53499	19.0799	-11.4300
b = -1.89802		
u = 0.732319		
a = -1.96295	-7.32923	-11.5330
b = 1.43751		
u = 0.289180 + 1.380880I		
a = 0.019963 + 1.125350I	-11.85310 + 3.71325I	-14.2941 - 2.2784I
b = 1.54820 - 0.35299I		
u = 0.289180 - 1.380880I		
a = 0.019963 - 1.125350I	-11.85310 - 3.71325I	-14.2941 + 2.2784I
b = 1.54820 + 0.35299I		
u = 0.61390 + 1.45389I		
a = 0.404068 - 1.146040I	14.5460 + 6.5663I	-13.47746 - 2.65332I
b = -1.91428 + 0.11608I		
u = 0.61390 - 1.45389I		
a = 0.404068 + 1.146040I	14.5460 - 6.5663I	-13.47746 + 2.65332I
b = -1.91428 - 0.11608I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.167281		
a = 2.88126	-0.738036	-13.3310
b = -0.481979		

II.
$$I_2^u = \langle -au + b, a^2 + au + a - u, u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -a+u+2 \\ -au-1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} au-a+u+1 \\ -au-1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -au+a \\ au \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = au + 2a + 5u 11

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$(u^2+u+1)^2$
c_3, c_8	u^4
C4	$(u^2 - u + 1)^2$
c_6, c_7, c_9	$(u^2+u-1)^2$
c_{10}, c_{11}	$(u^2 - u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_4 \\ c_5$	$(y^2+y+1)^2$
c_3, c_8	y^4
c_6, c_7, c_9 c_{10}, c_{11}	$(y^2 - 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0.309017 + 0.535233I	-0.98696 - 2.02988I	-13.5000 + 5.4006I
b = -0.618034		
u = -0.500000 + 0.866025I		
a = -0.80902 - 1.40126I	-8.88264 - 2.02988I	-13.50000 + 1.52761I
b = 1.61803		
u = -0.500000 - 0.866025I		
a = 0.309017 - 0.535233I	-0.98696 + 2.02988I	-13.5000 - 5.4006I
b = -0.618034		
u = -0.500000 - 0.866025I		
a = -0.80902 + 1.40126I	-8.88264 + 2.02988I	-13.50000 - 1.52761I
b = 1.61803		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 + u + 1)^2)(u^{11} + 3u^{10} + \dots + 8u + 1)$
c_2	$((u^2 + u + 1)^2)(u^{11} + 9u^{10} + \dots + 34u - 1)$
c_{3}, c_{8}	$u^4(u^{11} - u^{10} + \dots - 32u - 16)$
c_4	$((u^2 - u + 1)^2)(u^{11} + 3u^{10} + \dots + 8u + 1)$
<i>C</i> ₅	$((u^2+u+1)^2)(u^{11}-3u^{10}+\cdots+17u+2)$
c_6, c_7	$((u^2 + u - 1)^2)(u^{11} + 3u^{10} + \dots + 2u - 1)$
<i>c</i> 9	$((u^2+u-1)^2)(u^{11}-13u^{10}+\cdots-2u+7)$
c_{10}, c_{11}	$((u^2 - u - 1)^2)(u^{11} + 3u^{10} + \dots + 2u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y^2 + y + 1)^2)(y^{11} + 9y^{10} + \dots + 34y - 1)$
c_2	$((y^2 + y + 1)^2)(y^{11} - 11y^{10} + \dots + 1282y - 1)$
c_3,c_8	$y^4(y^{11} - 25y^{10} + \dots + 128y - 256)$
<i>C</i> ₅	$((y^2 + y + 1)^2)(y^{11} - 31y^{10} + \dots + 109y - 4)$
c_6, c_7, c_{10} c_{11}	$((y^2 - 3y + 1)^2)(y^{11} - 19y^{10} + \dots + 14y - 1)$
<i>C</i> 9	$((y^2 - 3y + 1)^2)(y^{11} - 79y^{10} + \dots - 38y - 49)$