

iNEMO inertial module: always-on 3-axis accelerometer and 3-axis gyroscope with ISPU - intelligent sensor processing unit

LGA-14L (2.5 x 3.0 x 0.83 mm) typ.

Product status link

LSM6DSO16IS

Product summary				
Order code	LSM6DSO16ISTR			
Temperature range [°C]	-40 to +85			
Package	LGA-14L (2.5 x 3 x 0.83 mm)			
Packing	Tape and reel			

Product resources

TN0018 (Design and soldering)

SUSTAINABLE TECHNOLOGY

Features

- 3-axis accelerometer with selectable full scale: ±2/±4/±8/±16 g
- 3-axis gyroscope with selectable full scale: ±125/±250/±500/±1000/±2000 dps
- Embedded ISPU: ultra-low-power, high-performance programmable core to execute signal processing and AI algorithms in the edge for a seamless digitallife experience
- Low-power consumption: 0.59 mA in high-performance mode, 0.46 mA in low-power mode (gyroscope + accelerometer only, ISPU not included)
- Low noise: 70 µg/√Hz in high-performance mode
- Sensor hub feature to efficiently collect data from additional external sensors (up to 4 external sensors)
- SPI / I²C serial interface
- Analog supply voltage: 1.71 V to 3.6 V with independent IO supply (1.62 V)
- Temperature range from -40 to +85 °C
- · Embedded temperature sensor
- Compact footprint: 2.5 mm x 3 mm x 0.83 mm
- · ECOPACK and RoHS compliant

Applications

- Complex motion detection and gesture recognition
- Activity recognition and tracking
- · IoT and connected devices
- · Wearables and smart watches for sports and personal health
- Smart pens, gaming and remote controllers

Description

The LSM6DSO16IS is a system-in-package featuring a 3-axis digital accelerometer and a 3-axis digital gyroscope, boosting performance at 0.59 mA in high-performance mode and enabling always-on low-power features for optimal motion results in personal electronics and IoT solutions.

The LSM6DSO16IS has a full-scale acceleration range of $\pm 2/\pm 4/\pm 8/\pm 16~g$ and an angular rate range of $\pm 125/\pm 250/\pm 500/\pm 1000/\pm 2000$ dps. The module features programmable interrupts and an on-chip sensor hub which includes up to 6 sensors: the internal accelerometer & gyroscope and 4 external sensors.

The LSM6DSO16IS embeds a new ST category of processing, ISPU (intelligent sensor processing unit) to support real-time applications that rely on sensor data. The ISPU is an ultra-low-power, high-performance programmable core which can execute signal processing and AI algorithms in the edge. The main benefits of the ISPU are C programming and an enhanced ecosystem with libraries and 3rd party tools/IDE.

Its optimized ultra-low-power hardware circuitry for real-time execution of the algorithms is a state-of-the-art feature for any personal electronics, from wearable accessories to high-end applications.

The LSM6DSO16IS is available in a plastic land grid array (LGA) package.

1 Overview

The LSM6DSO16IS is a system-in-package featuring a high-performance 3-axis digital accelerometer and 3-axis digital gyroscope which embeds an **ISPU** (intelligent sensor processing unit).

ISPU is the new ST category of processing: it is an ultra-low-power, high-performance programmable core with high computational efficiency which can execute signal processing and Al algorithms on the real-time data from the sensor(s). It is compatible with the most common tools to enable flexible development and supports both machine learning and deep learning, offering broad options and freedom for programming.

ISPU is equipped with 32 KB of program RAM, 8 KB of data RAM and an FPU supporting addition, subtraction, and multiplication.

The LSM6DSO16IS features programmable interrupts and an on-chip sensor hub which includes up to six sensors: two internal (accelerometer and gyroscope) and four external sensors.

The sensor hub is accessible from the ISPU.

Like the entire portfolio of MEMS sensor modules, the LSM6DSO16IS leverages the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes.

The sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DSO16IS is available in a small plastic land grid array (LGA) package of $2.5 \times 3.0 \times 0.83$ mm to address ultra-compact solutions.

DS13892 - Rev 2 page 2/107

2 ISPU (intelligent sensor processing unit)

The LSM6DSO16IS embeds a general-purpose core, a new ST category of processing, called ISPU (intelligent sensor processing unit). The ISPU is based on STRED architecture, a proprietary architecture developed by STMicroelectronics. Its optimized ultra-low-power hardware circuitry for the real-time execution of the algorithms is a state-of-the-art feature for any personal electronics, from wearable accessories to high-end applications (for example, smartwatches, convertible laptops, smartphones, and so on).

A toolchain allows developing in C code and loading any custom program in the core, with the only limitation being the available memory size of the program.

Several algorithms running on the ISPU can generate interrupts to wake up the host processor accordingly.

The ISPU core includes an 8 KB RAM for data storage and a dedicated 32 KB RAM for program memory in order to have maximum configurability. The program of the ISPU, hosted in volatile memory, should be loaded at power-up of the device by an external host through the SPI/I²C interface.

The LSM6DSO16IS is internally organized as follows:

- the sensor core (with 8-bit registers) which communicates with the user over the SPI or I²C and handles the sensor features (from settings to outputs)
- the processing core: ISPU which is based on 32-bit registers and communicates with the user through the 8-bit interface registers of the sensor core

The registers that enable the exchange between the ISPU and the sensor core are:

- ISPU reading accelerometer data ISPU_ARAW_X_L (6880h), ISPU_ARAW_X_H (6881h), ISPU_ARAW_Y_L (6884h), ISPU_ARAW_Y_H (6885h), ISPU_ARAW_Z_L (6888h), ISPU_ARAW_Z_H (6889h)
- ISPU reading gyroscope data ISPU_GRAW_X_L (688Ch), ISPU_GRAW_X_H (688Dh), ISPU_GRAW_Y_L (6890h), ISPU_GRAW_Y_L (6891h), ISPU_GRAW_Z_L (6894h), ISPU_GRAW_Z_H (6895h)
- ISPU reading external sensor data ISPU_ERAW_0_L (6898h), ISPU_ERAW_0_H (6899h),
 ISPU_ERAW_1_L (689Ch), ISPU_ERAW_1_H (689Dh), ISPU_ERAW_2_L (68A0h), ISPU_ERAW_2_H (68A1h)
- ISPU reading temperature sensor data ISPU_TEMP_L (68A4h), ISPU_TEMP_H (68A5h)

The data in the registers above comes from physical sensors (accelerometer, gyroscope, temperature and external sensors) in 16-bit two's complement format, without any decoding.

DS13892 - Rev 2 page 3/107

There are 64-byte registers for general-purpose output data coming from the ISPU in registers ISPU_DOUT_00_L (10h), ISPU_DOUT_00_H (11h) through ISPU_DOUT_31_L (4Eh), ISPU_DOUT_31_H (4Fh).

The device also provides four sets of 16-bit registers which can be used for loading input data (like algorithm configuration) for the ISPU in registers ISPU_DUMMY_CFG_1_L (73h) and ISPU_DUMMY_CFG_1_H (74h) through ISPU_DUMMY_CFG_4_L (79h) and ISPU_DUMMY_CFG_4_H (7Ah).

Figure 1. ISPU block diagram

DS13892 - Rev 2 page 4/107

3 Pin description

Figure 2. Pin connections

Direction of detectable angular rate (top view)

DS13892 - Rev 2 page 5/107

3.1 Pin connections

The LSM6DSO16IS offers flexibility to connect the pins in order to have two different mode connections and functionalities. In detail:

- Mode 1: I²C or SPI (3- and 4-wire) serial interface is available.
- Mode 2: I²C or SPI (3- and 4-wire) serial interface and I²C interface master for external sensor connections are available.

Figure 3. LSM6DSO16IS connection modes

DS13892 - Rev 2 page 6/107

In the following table each mode is described for the pin connections and function.

Table 1. Pin description

Pin#	Name	Mode 1 function Mode 2 function				
1	SDO/SA0	SPI 4-	wire interface serial data output (SDO)			
!	3D0/3A0	I ² C least	significant bit of the device address (SA0)			
2	MSDA	Connect to Vdd_IO or GND	I ² C serial data master (MSDA)			
3	MSCL	Connect to Vdd_IO or GND	I ² C serial clock master (MSCL)			
4	INT1		Programmable interrupt 1			
5	Vdd_IO ⁽¹⁾		Power supply for I/O pins			
6	GND		0 V supply			
7	GND		0 V supply			
8	Vdd ⁽¹⁾		Power supply			
9	INT2	Drogrammable interrupt 2	Programmable interrupt 2 (INT2)			
9	INTZ	Programmable interrupt 2	I ² C master external synchronization signal (MDRDY)			
10	RES		Leave unconnected ⁽²⁾			
11	RES	Conn	ect to Vdd_IO or leave unconnected(2)			
			I²C/SPI mode selection			
12	CS	(1: SPI	idle mode / I ² C communication enabled;			
		0: SP	I communication mode / I ² C disabled)			
13	SCL		I ² C serial clock (SCL)			
	001	SPI serial port clock (SPC)				
		I ² C serial data (SDA)				
14	SDA		SPI serial data input (SDI)			
		3-wi	re interface serial data output (SDO)			

^{1.} Recommended 100 nF filter capacitor.

DS13892 - Rev 2 page 7/107

^{2.} Leave pin electrically unconnected and soldered to PCB.

4 Module specifications

4.1 Mechanical characteristics

@ Vdd = 1.8 V, T = 25 °C, unless otherwise noted.

Table 2. Mechanical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.(2)	Max.	Unit	
				±2			
14 50	Linear appalaration management range			±4			
LA_FS	Linear acceleration measurement range			±8		g	
				±16			
				±125			
	Angular rate			±250			
G_FS	measurement range			±500		dps	
	modeliononitaligo			±1000			
				±2000			
		FS = ±2 g		0.061			
LA_So	Linear acceleration sensitivity ⁽³⁾	FS = ±4 <i>g</i>		0.122		mg/LSB	
LA_30	Linear acceleration sensitivity	FS = ±8 <i>g</i>		0.244		IIIg/LOD	
		FS = ±16 <i>g</i>		0.488			
		FS = ±125 dps		4.375			
		FS = ±250 dps		8.75			
G_So	Angular rate sensitivity ⁽³⁾	FS = ±500 dps	500 dps 17.50		mdps/LSB		
		FS = ±1000 dps		35			
		FS = ±2000 dps		70			
G_So%	Sensitivity tolerance ⁽⁴⁾	at component level, T = 25 °C		±1		%	
LA_So%	Sensitivity tolerance ⁽⁴⁾	at component level, T = 25 °C		±1		%	
LA_SoDr	Linear acceleration sensitivity change vs. temperature ⁽⁵⁾	from -40° to +85°		±0.01		%/°C	
G_SoDr	Angular rate sensitivity change vs. temperature ⁽⁵⁾	from -40° to +85°		±0.01		%/°C	
LA_TyOff	Linear acceleration zero-g level offset accuracy ⁽⁴⁾	T = 25 °C		±40		m <i>g</i>	
G_TyOff	Angular rate zero-rate level ⁽⁴⁾	T = 25 °C		±3		dps	
LA_OffDr	Linear acceleration zero-g level change vs. temperature ⁽⁵⁾	from -40° to +85°		±0.1		mg/°C	
G_OffDr	Angular rate typical zero-rate level change vs. temperature ⁽⁵⁾	from -40° to +85°		±0.015		dps/°C	
Rn	Rate noise density in high-performance mode ⁽⁶⁾			3.4		mdps/√Hz	
RnRMS	Gyroscope RMS noise in low-power mode ⁽⁷⁾			75		mdps	
		FS = ±2 g		70			
		FS = ±4 g		75			
An	Acceleration noise density in high-performance mode ⁽⁸⁾	FS = ±8 g		85		— μ <i>g</i> /√Hz	
		FS = ±16 <i>g</i>		110			
		FS = ±2 g		1.8			
RMS	Acceleration RMS noise in low-power mode ⁽⁹⁾⁽¹⁰⁾	FS = ±4 g		2.0		mg(RMS)	
		FS = ±8 g		2.4			

DS13892 - Rev 2 page 8/107

Symbol	Parameter	Test conditions	Min.	Typ. ⁽²⁾	Max.	Unit
RMS	Acceleration RMS noise in low-power mode ⁽⁹⁾⁽¹⁰⁾	FS = ±16 <i>g</i>		3.0		mg(RMS)
				1.6(11)		
				12.5		
				26		
				52		
				104		
LA_ODR	Linear acceleration output data rate			208		
				416		
				833		
				1667		
				3333		
				6667		Hz
				12.5		
				26		
				52		
				104		
G_ODR	Angular rate output data rate			208		
	3			416		
				833		
				1667		
				3333		
				6667		
	Linear acceleration self-test output change(12)(13)(14)		50		1700	m <i>g</i>
Vst	Angular rate self-test output change ⁽¹⁵⁾⁽¹⁶⁾	FS = ±250 dps	20		80	dps
	rangular rate our test output change	FS = ±2000 dps	150		700	dps
Тор	Operating temperature range		-40		+85	°C

- 1. Min/Max values are based on characterization results at 3σ on a limited number of samples, not tested in production and not guaranteed.
- 2. Typical specifications are not guaranteed.
- 3. Sensitivity values after factory calibration test and trimming.
- 4. Values after factory calibration test and trimming.
- 5. Measurements are performed in a uniform temperature setup and they are based on characterization data in a limited number of samples. Not measured during final test for production.
- 6. Gyroscope rate noise density in high-performance mode is independent of the ODR and FS setting.
- 7. Gyroscope RMS noise in low-power mode is independent of the ODR and FS setting.
- 8. Accelerometer noise density in high-performance mode is independent of the ODR.
- 9. Accelerometer RMS noise in low-power mode is independent of the ODR.
- 10. Noise RMS related to BW = ODR/2.
- 11. This ODR is available when the accelerometer is in low-power mode.
- 12. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in a dedicated register for all axes.
- 13. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 0.061 mg at ±2 g full scale.
- 14. Accelerometer self-test limits are full-scale independent.
- 15. The sign of the angular rate self-test output change is defined by the STx_G bits in a dedicated register for all axes.
- 16. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of:

 OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 70 mdps at ±2000 dps full scale.

DS13892 - Rev 2 page 9/107

4.2 Electrical characteristics

@ Vdd = 1.8 V, T = 25 °C, unless otherwise noted.

Table 3. Electrical characteristics

Symbol	Parameter	Test conditions	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Unit
Vdd	Supply voltage		1.71	1.8	3.6	V
Vdd_IO	Power supply for I/O		1.62		3.6	V
IddHP	Gyroscope and accelerometer current consumption in high- performance mode ⁽³⁾			595		μA
IddLP	Gyroscope and accelerometer current consumption in low-power mode ⁽³⁾	ODR = 208 Hz		465		μA
G_lddHP	Gyroscope current consumption in high-performance mode ⁽³⁾			490		μA
G_lddLP	Gyroscope current consumption in low-power mode ⁽³⁾	ODR = 52 Hz ODR = 12.5 Hz		320 290		μA
LA_IddHP	Accelerometer current consumption in high-performance mode ⁽³⁾			180		μA
LA_lddLP	Accelerometer current consumption in low-power mode ⁽³⁾	ODR = 52 Hz ODR = 1.6 Hz		37 15		μA
IddPD	Gyroscope and accelerometer current consumption during power-down			6		μA
Ton	Turn-on time			35		ms
V _{IH}	Digital high-level input voltage		0.7 * Vdd_IO			V
V _{IL}	Digital low-level input voltage				0.3 * Vdd_IO	V
V _{OH}	High-level output voltage	I _{OH} = 4 mA ⁽⁴⁾	Vdd_IO - 0.2			V
V _{OL}	Low-level output voltage	I _{OL} = 4 mA ⁽⁴⁾			0.2	V
Тор	Operating temperature range		-40		+85	°C

 $^{1. \}quad \textit{Min/Max values are based on characterization results at } 3\sigma \text{ on a limited number of samples, not tested in production and not guaranteed.}$

DS13892 - Rev 2 page 10/107

^{2.} Typical specifications are not guaranteed.

^{3.} Current consumption is intended for accelerometer and gyroscope sensors only, ISPU consumption is not taken into account.

 ⁴ mA is the maximum driving capability, that is, the maximum DC current that can be sourced/sunk by the digital pin in order to guarantee
the correct digital output voltage levels V_{OH} and V_{OL}.

4.3 Temperature sensor characteristics

2 Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 4. Temperature sensor characteristics

Symbol	Parameter	Test condition	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Unit
TODR ⁽³⁾	Temperature refresh rate			52		Hz
Toff	Temperature offset ⁽⁴⁾		-15		+15	°C
TSen	Temperature sensitivity			256		LSB/°C
TST	Temperature stabilization time ⁽⁵⁾				500	μs
T_ADC_res	Temperature ADC resolution			16		bit
Тор	Operating temperature range		-40		+85	°C

^{1.} Min/Max values are based on characterization results at 3σ on a limited number of samples, not tested in production and not guaranteed.

- 2. Typical specifications are not guaranteed.
- 3. When the accelerometer is in low-power mode and the gyroscope part is turned off, the TODR value is equal to the accelerometer ODR.
- 4. The output of the temperature sensor is 0 LSB (typ.) at 25 °C.
- 5. Time from power ON to valid data based on characterization data.

DS13892 - Rev 2 page 11/107

4.4 Communication interface characteristics

4.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top. @ Vdd_IO = 1.8 V, T = 25 °C unless otherwise noted.

Table 5. SPI slave timing values

Symbol	Parameter		Value ⁽¹⁾		Unit
	Faranietei	Min	Тур	Max	Uill
f _{c(SPC)}	SPI clock frequency			10	MHz
t _{c(SPC)}	SPI clock period			100	
t _{high(SPC)}	SPI clock high	45			
t _{low(SPC)}	SPI clock low	45			
t	CS setup time (mode 3)	5			
t _{su(CS)}	CS setup time (mode 0)	20			ns
turan	CS hold time (mode 3)	20			
t _{h(CS)}	CS hold time (mode 0)	20			
$t_{su(SI)}$	SDI input setup time	5			
t _{h(SI)}	SDI input hold time	15			
t _{v(SO)}	SDO valid output time		15	25	
t _{dis(SO)}	SDO output disable time			50	
C _{load}	Bus capacitance			100	pF

Values are evaluated at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

Figure 4. SPI slave timing in mode 0

DS13892 - Rev 2 page 12/107

Figure 5. SPI slave timing in mode 3

Note: Measurement points are done at 0.3·Vdd_IO and 0.7·Vdd_IO for both input and output ports.

DS13892 - Rev 2 page 13/107

4.4.2 I²C - inter-IC control interface

Subject to general operating conditions for Vdd and Top.

Table 6. I²C slave timing values

Cumbal	Parameter	I ² C fast	I ² C fast mode ⁽¹⁾⁽²⁾		I ² C fast mode plus ⁽¹⁾⁽²⁾		
Symbol			Max	Min	Max	Unit	
f _(SCL)	SCL clock frequency	0	400	0	1000	kHz	
t _{w(SCLL)}	SCL clock low time	1.3		0.5			
t _{w(SCLH)}	SCL clock high time	0.6		0.26		μs	
t _{su(SDA)}	SDA setup time	100		50		ns	
t _{h(SDA)}	SDA data hold time	0	0.9	0			
t _{h(ST)}	START/REPEATED START condition hold time	0.6		0.26			
t _{su(SR)}	REPEATED START condition setup time	0.6		0.26			
t _{su(SP)}	STOP condition setup time	0.6		0.26		μs	
t _{w(SP:SR)}	Bus free time between STOP and START condition	1.3		0.5			
	Data valid time		0.9		0.45		
	Data valid acknowledge time		0.9		0.45		
C _B	Capacitive load for each bus line		400		550	pF	

- 1. Data based on standard I²C protocol requirement, not tested in production.
- 2. Data for I²C fast mode and I²C fast mode plus have been validated by characterization, not tested in production.

START

Figure 6. I²C slave timing diagram

Note: Measurement points are done at 0.3·Vdd_IO and 0.7·Vdd_IO for both ports.

DS13892 - Rev 2 page 14/107

4.5 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 7. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
T _{STG}	Storage temperature range	-40 to +125	°C
Sg	Acceleration g for 0.2 ms	10,000	g
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	-0.3 to Vdd_IO +0.3	V

Note: Supply voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

DS13892 - Rev 2 page 15/107

4.6 Terminology

4.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ± 1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors (see Table 2).

An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time (see Table 2).

4.6.2 Zero-g and zero-rate level

Linear acceleration zero-*g* level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface measures 0 *g* on both the X-axis and Y-axis, whereas the Z-axis measures 1 *g*. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as a two's complement number). A deviation from the ideal value in this case is called zero-*g* offset.

Offset is to some extent a result of stress to the MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero-*g* level change vs. temperature" in Table 2. The zero-*g* level tolerance (TyOff) describes the standard deviation of the range of zero-*g* levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time (see Table 2).

DS13892 - Rev 2 page 16/107

Digital interfaces

5.1 I²C/SPI interface

The registers embedded inside the LSM6DSO16IS may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The device is compatible with SPI modes 0 and 3.

The serial interfaces are mapped onto the same pins. To select/exploit the I²C interface, the CS line must be tied high (that is, connected to Vdd IO).

Table 8. Serial interface pin description

Pin name	Pin description	
	Enables SPI	
CS	I²C/SPI mode selection (1: SPI idle mode / I²C communication enabled;	
	0: SPI communication mode / I ² C disabled)	
SCL/SPC	I ² C serial clock (SCL)	
SPI serial port clock (SPC)		
	I ² C serial data (SDA)	
SDA/SDI/SDO	SPI serial data input (SDI)	
	3-wire interface serial data output (SDO)	
SDO/SA0	SPI serial data output (SDO)	
3D0/3A0	I ² C less significant bit of the device address	

5.1.1 I²C serial interface

The LSM6DSO16IS I²C is a bus slave. The I²C is employed to write the data to the registers, whose content can also be read back.

The relevant I²C terminology is provided in the table below.

Table 9. I²C terminology

Term	Description
Transmitter	The device which sends data to the bus
Receiver	The device which receives data from the bus
Master	The device which initiates a transfer, generates clock signals and terminates a transfer
Slave	The device addressed by the master

There are two signals associated with the I²C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.

The I^2C interface is implemented with fast mode (400 kHz) I^2C standards as well as with fast mode plus (1000 kHz).

In order to disable the I²C block, (I2C_disable) = 1 must be written in CTRL4_C (13h).

DS13892 - Rev 2 page 17/107

5.1.1.1 I²C operation

The transaction on the bus is started through a start (ST) signal. A start condition is defined as a high to low transition on the data line while the SCL line is held high. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The slave address (SAD) associated to the LSM6DSO16IS is 110101xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is 1 (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is 0 (address 1101010b). This solution permits to connect and address two different inertial modules to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line low so that it remains stable low during the high period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the LSM6DSO16IS behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit subaddress (SUB) is transmitted. The increment of the address is configured by the CTRL3_C (12h) (IF_INC).

The slave address is completed with a read/write bit. If the bit is 1 (read), a repeated start (SR) condition must be issued after the two subaddress bytes. If the bit is 0 (write) the master transmits to the slave with direction unchanged. Table 10 explains how the SAD + read/write bit pattern is composed, listing all the possible configurations.

Table 10. SAD + read/write patterns

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	110101	0	1	11010101 (D5h)
Write	110101	0	0	11010100 (D4h)
Read	110101	1	1	11010111 (D7h)
Write	110101	1	0	11010110 (D6h)

Table 11. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 12. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Table 13. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DATA		DATA		

DS13892 - Rev 2 page 18/107

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit (MSb) first. If a slave receiver doesn't acknowledge the slave address (that is, it is not able to receive because it is performing some real-time function) the data line must be left high by the slave. The master can then abort the transfer. A low to high transition on the SDA line while the SCL line is high is defined as a stop condition. Each data transfer must be terminated by the generation of a stop (SP) condition.

In the presented communication format MAK is master acknowledge and NMAK is no master acknowledge.

5.1.2 SPI bus interface

The LSM6DSO16IS SPI is a bus slave. The SPI allows writing and reading the registers of the device. The serial interface communicates to the application using 4 wires: **CS**, **SPC**, **SDI** and **SDO**.

Figure 7. Read and write protocol (in mode 3)

CS enables the serial port and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

bit 0: $R\overline{W}$ bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip drives **SDO** at the start of bit 8.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods are added. When the CTRL3_C (12h) (IF_INC) bit is 0, the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is 1, the address used to read/write data is increased at every block.

The function and the behavior of SDI and SDO remain unchanged.

DS13892 - Rev 2 page 19/107

5.1.2.1 SPI read

Figure 8. SPI read protocol (in mode 3)

The SPI read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte reads.

Figure 9. Multiple byte SPI read protocol (2-byte example) (in mode 3)

DS13892 - Rev 2 page 20/107

5.1.2.2 SPI write

Figure 10. SPI write protocol (in mode 3)

The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1 -7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).

bit 16-...: data DI(...-8). Further data in multiple byte writes.

Figure 11. Multiple byte SPI write protocol (2-byte example) (in mode 3)

DS13892 - Rev 2 page 21/107

5.1.2.3 SPI read in 3-wire mode

A 3-wire mode is entered by setting the CTRL3 C (12h) (SIM) bit equal to 1 (SPI serial interface mode selection).

Figure 12. SPI read protocol in 3-wire mode (in mode 3)

The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

A multiple read command is also available in 3-wire mode.

5.2 Master I²C interface

If the LSM6DSO16IS is configured in mode 2, a master I^2C line is available. The master serial interface is mapped in the following dedicated pins.

Table 15. Master I²C pin details

Pin name	Pin description
MSCL	I ² C serial clock master
MSDA	I ² C serial data master
MDRDY	I ² C master external synchronization signal

DS13892 - Rev 2 page 22/107

6 Functionality

6.1 Operating modes

In the LSM6DSO16IS, the accelerometer and the gyroscope can be turned on/off independently of each other and are allowed to have different ODRs and power modes.

The LSM6DSO16IS has three operating modes available:

- only accelerometer active and gyroscope in power-down
- · only gyroscope active and accelerometer in power-down
- · both accelerometer and gyroscope sensors active with independent ODR

The accelerometer is activated from power-down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2_G (11h). For combo-mode the ODRs are totally independent.

6.2 Accelerometer power modes

In the LSM6DSO16IS, the accelerometer can be configured in three different operating modes: power-down, low-power, and high-performance mode. The operating mode selected depends on the value of the XL_HM_MODE bit in CTRL6_C (15h). If XL_HM_MODE is set to 0, high-performance mode is valid for all ODRs (from 12.5 Hz up to 6667 Hz).

To enable low-power mode, the XL_HM_MODE bit has to be set to 1. Low-power mode is available for ODRs of 1.6, 12.5, 26, 52, 104, 208 Hz.

6.3 Gyroscope power modes

In the LSM6DSO16IS, the gyroscope can be configured in three different operating modes: power-down, low-power, and high-performance mode. The operating mode selected depends on the value of the G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE is set to 0, high-performance mode is valid for all ODRs (from 12.5 Hz up to 6667 Hz).

To enable low-power mode, the G_HM_MODE bit has to be set to 1. Low-power mode is available for ODRs of 12.5, 26, 52, 104, 208 Hz.

DS13892 - Rev 2 page 23/107

6.4 Block diagram of filters

6.4.1 Block diagram of the accelerometer filters

In the LSM6DSO16IS, the filtering chain for the accelerometer part is composed of the following:

- Analog filter (anti-aliasing)
- Digital low-pass filter (LPF1)

Figure 13. Accelerometer filters

6.4.2 Block diagram of the gyroscope filter

In the LSM6DSO16IS, the filtering chain for the gyroscope part is composed of a digital low-pass filter (LPF1).

Figure 14. Gyroscope filter

6.5 Temperature sensor

The temperature is available in OUT_TEMP_L (20h), OUT_TEMP_H (21h) stored as two's complement data. Refer to Table 4. Temperature sensor characteristics for the conversion factor.

DS13892 - Rev 2 page 24/107

7 Application hints

7.1 LSM6DSO16IS electrical connections in mode 1

Figure 15. LSM6DSO16IS electrical connections in mode 1

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C interface.

DS13892 - Rev 2 page 25/107

7.2 LSM6DSO16IS electrical connections in mode 2

SDO/SAO 1 TOP III RES⁽¹⁾

MSCL 4 MDRDY/INT2 Vdd

MDRDY/INT2 Vdd

MDRDY/INT2 Vdd

7

GND

Figure 16. LSM6DSO16IS electrical connections in mode 2

Leave pin electrically unconnected and soldered to PCB.

OI_bbV

100 nF

GND

Vdd IO

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

100 nF

GND

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C primary interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C primary interface.

DS13892 - Rev 2 page 26/107

Table 16. Internal pin status

Pin#	Name	Mode 1 function	Mode 2 function	Pin status - mode 1	Pin status - mode 2
	SDO	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)	Default: input without pull-up	Default: input without pull-up
1	SA0	I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)	Pull-up is enabled if bit SDO_PU_EN = 1 in PIN_CTRL (02h).	Pull-up is enabled if bit SDO_PU_EN = 1 in PIN_CTRL (02h).
2	MSDA	Connect to Vdd_IO or GND	I ² C serial data master (MSDA)	Default: input without pull-up Pull-up is enabled if bit SHUB_PU_EN = 1 in MASTER_CONFIG (14h) in the sensor hub registers (see Note to enable pull-up).	Default: input without pull-up Pull-up is enabled if bit SHUB_PU_EN = 1 in MASTER_CONFIG (14h) in the sensor hub registers (see Note to enable pull-up).
3	MSCL	Connect to Vdd_IO or GND	I ² C serial clock master (MSCL)	Default: input without pull-up Pull-up is enabled if bit SHUB_PU_EN = 1 in MASTER_CONFIG (14h) in the sensor hub registers (see Note to enable pull-up).	Default: input without pull-up Pull-up is enabled if bit SHUB_PU_EN = 1 in MASTER_CONFIG (14h) in the sensor hub registers (see Note to enable pull-up).
4	INT1	Programmable interrupt 1	Programmable interrupt 1	Default: input with pull-down ⁽¹⁾	Default: input with pull-down ⁽¹⁾
5	Vdd_IO	Power supply for I/O pins	Power supply for I/O pins		
6	GND	0 V supply	0 V supply		
7	GND	0 V supply	0 V supply		
8	Vdd	Power supply	Power supply		
9	INT2	Programmable interrupt 2 (INT2)	Programmable interrupt 2 (INT2) / I ² C master external synchronization signal (MDRDY)	Default: output forced to ground	Default: output forced to ground
10	RES	Leave unconnected	Leave unconnected		
11	RES	Connect to Vdd_IO or leave unconnected	Connect to Vdd_IO or leave unconnected		
12	CS	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	Default: input with pull-up	Default: input with pull-up
13	SCL	I ² C serial clock (SCL) / SPI serial port clock (SPC)	I ² C serial clock (SCL) / SPI serial port clock (SPC)	Default: input without pull-up	Default: input without pull-up
14	SDA	l²C serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	I ² C serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	Default: input without pull-up	Default: input without pull-up

^{1.} INT1 must be set to 0 or left unconnected during power-on.

Internal pull-up value is from 30 k Ω to 50 k Ω , depending on Vdd_IO.

Note: The procedure to enable the pull-up on pins 2 and 3 is as follows:

- 1. From the primary I²C/SPI interface: write 40h in register at address 01h (enable access to the sensor hub registers)
- 2. From the primary I²C/SPI interface: write 08h in register at address 14h (enable the pull-up on pins 2 and 3)
- 3. From the primary I²C/SPI interface: write 00h in register at address 01h (disable access to the sensor hub registers)

8 Register mapping

The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding addresses.

All these registers are accessible from the primary SPI/I²C interface only.

Table 17. Registers address map

		Regis	ter address		
Name	Туре	Hex	Binary	Default	
FUNC_CFG_ACCESS	R/W	01	00000001	0000000	
PIN_CTRL	R/W	02	0000010	00111111	
RESERVED	-	03-0A			
DRDY_PULSED_REG	R/W	0B	00001011	00000000	
RESERVED	-	0C			
INT1_CTRL	R/W	0D	00001101	00000000	
INT2_CTRL	R/W	0E	00001110	00000000	
WHO_AM_I	R	0F	00001111	00100010	
CTRL1_XL	R/W	10	00010000	0000000	
CTRL2_G	R/W	11	00010001	00000000	
CTRL3_C	R/W	12	00010010	00000100	
CTRL4_C	R/W	13	00010011	00000000	
CTRL5_C	R/W	14	00010100	00000000	
CTRL6_C	R/W	15	00010101	0000000	
CTRL7_G	R/W	16	00010110	0000000	
RESERVED	-	17			
CTRL9_C	R/W	18	00011000	11100000	
CTRL10_C	R/W	19	00011001	00000000	
ISPU_INT_STATUS0_MAINPAGE	R	1A	00011010	output	
ISPU_INT_STATUS1_MAINPAGE	R	1B	00011011	output	
ISPU_INT_STATUS2_MAINPAGE	R	1C	00011100	output	
ISPU_INT_STATUS3_MAINPAGE	R	1D	00011101	output	
STATUS_REG	R	1E	00011110	output	
RESERVED	-	1F			
OUT_TEMP_L	R	20	00100000	output	
OUT_TEMP_H	R	21	00100001	output	
OUTX_L_G	R	22	00100010	output	
OUTX_H_G	R	23	00100011	output	
OUTY_L_G	R	24	00100100	output	
OUTY_H_G	R	25	00100101	output	
OUTZ_L_G	R	26	00100110	output	
OUTZ_H_G	R	27	00100111	output	
OUTX_L_A	R	28	00101000	output	
OUTX_H_A	R	29	00101001	output	

DS13892 - Rev 2 page 29/107

Norma	T	Regis	ter address	Defeelt
Name	Type	Hex	Binary	Default
OUTY_L_A	R	2A	00101010	output
OUTY_H_A	R	2B	00101011	output
OUTZ_L_A	R	2C	00101100	output
OUTZ_H_A	R	2D	00101101	output
RESERVED	-	2E-38		
STATUS_MASTER_ MAINPAGE	R	39	00111001	output
RESERVED	-	3A-3F		
TIMESTAMP0	R	40	01000000	output
TIMESTAMP1	R	41	01000001	output
TIMESTAMP2	R	42	01000010	output
TIMESTAMP3	R	43	01000011	output
RESERVED	-	44-5D		
MD1_CFG	R/W	5E	01011110	00000000
MD2_CFG	R/W	5F	01011111	00000000
INTERNAL_FREQ_FINE	R	63	01100011	output
ISPU_DUMMY_CFG_1_L	R/W	73	01110011	00000000
ISPU_DUMMY_CFG_1_H	R/W	74	01110100	00000000
ISPU_DUMMY_CFG_2_L	R/W	75	01110101	00000000
ISPU_DUMMY_CFG_2_H	R/W	76	01110110	00000000
ISPU_DUMMY_CFG_3_L	R/W	77	01110111	00000000
ISPU_DUMMY_CFG_3_H	R/W	78	01111000	00000000
ISPU_DUMMY_CFG_4_L	R/W	79	01111001	00000000
ISPU_DUMMY_CFG_4_H	R/W	7A	01111010	00000000

Reserved registers must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

DS13892 - Rev 2 page 30/107

9 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

9.1 FUNC_CFG_ACCESS (01h)

Enable ISPU / sensor hub functions register (R/W)

Table 18. FUNC_CFG_ACCESS register

ISPU_REG _ACCESS	SHUB_REG _ACCESS	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	SW_RESET _ISPU	0 ⁽¹⁾
---------------------	---------------------	------------------	------------------	------------------	------------------	-------------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 19. FUNC_CFG_ACCESS register description

ISPU_REG_ACCESS	Enables access to the ISPU interaction registers ⁽¹⁾ . Default value: 0
SHUB_REG_ACCESS	Enables access to the sensor hub (I ² C master) registers ⁽²⁾ . Default value: 0
SW_RESET_ISPU	Software reset of ISPU core. Set the bit to 1 to activate the reset sequence and immediately write back to 0 (this bit is not automatically cleared). Default value: 0

Details regarding the ISPU interaction registers are available in Section 10 ISPU interaction register mapping and Section 11 ISPU interaction register description.

9.2 PIN_CTRL (02h)

SDO pin pull-up register (R/W)

Table 20. PIN_CTRL register

	0(1)	SDO_PU_EN	1(2)	1(2)	1(2)	1(2)	1(2)	1(2)
--	------	-----------	------	------	------	------	------	------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 21. PIN_CTRL register description

- 1		
	SDO PU EN	Enables pull-up on SDO pin.
	SDO_PO_EN	(0: SDO pin pull-up disconnected (default); 1: SDO pin with pull-up)

DS13892 - Rev 2 page 31/107

Details concerning the sensor hub registers are available in Section 14 Sensor hub register mapping and Section 15 Sensor hub register description.

^{2.} This bit must be set to 1 for the correct operation of the device.

9.3 DRDY_PULSED_REG (0Bh)

Pulsed data-ready mode register (R/W)

Table 22. DRDY_PULSED_REG register

DRDY_ PULSED	0 ⁽¹⁾						
-----------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 23. DRDY_PULSED_REG register description

	Enables pulsed data-ready mode.
DRDY_PULSED	(0: Data-ready latched mode (returns to 0 only after an interface reading) (default);
	1: Data-ready pulsed mode (the data-ready pulses are 75 µs long))

9.4 INT1_CTRL (0Dh)

INT1 pin control register (R/W)

The output of the INT1 pin is the OR combination of the signals selected here and in register MD1_CFG (5Eh).

Table 24. INT1_CTRL register

0(1) 0(1)	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	INT1_BOOT	INT1_ DRDY_G	INT1_ DRDY_XL	
-----------	------------------	------------------	------------------	-----------	-----------------	------------------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 25. INT1_CTRL register description

INT1_BOOT	Boot status available on the INT1 pin. Default value: 0 (0: disabled; 1: enabled)
INT1_DRDY_G	Enables gyroscope data-ready interrupt on the INT1 pin. Default value: 0 (0: disabled; 1: enabled)
INT1_DRDY_XL	Enables accelerometer data-ready interrupt on the INT1 pin. Default value: 0 (0: disabled; 1: enabled)

DS13892 - Rev 2 page 32/107

9.5 INT2_CTRL (0Eh)

INT2 pin control register (R/W)

The output of the INT2 pin is the OR combination of the signals selected here and in register MD2 CFG (5Fh).

Table 26. INT2_CTRL register

INT2_SLEEP _ISPU	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	INT2_ DRDY_TEMP	INT2_ DRDY_G	INT2_ DRDY_XL
---------------------	------------------	------------------	------------------	------------------	--------------------	-----------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 27. INT2_CTRL register description

INT2_SLEEP_ISPU	Enables ISPU sleep state signal on the INT2 pin. Default value: 0 (0: disabled; 1: enabled) When enabled: INT2 low: ISPU is running; INT2 high: ISPU is in sleep state.
INT2_DRDY_TEMP	Enables temperature sensor data-ready interrupt on the INT2 pin. Default value: 0 (0: disabled; 1: enabled)
INT2_DRDY_G	Enables gyroscope data-ready interrupt on the INT2 pin. Default value: 0 (0: disabled; 1: enabled)
INT2_DRDY_XL	Enables accelerometer data-ready interrupt on the INT2 pin. Default value: 0 (0: disabled; 1: enabled)

9.6 WHO_AM_I (0Fh)

WHO_AM_I register (R). This is a read-only register. Its value is fixed at 22h.

Table 28. WHO_AM_I register

_	_		_	_	_		_
0	0	1	0	0	0	1	0
_	_	-	_	_	_	-	

DS13892 - Rev 2 page 33/107

9.7 CTRL1_XL (10h)

Control register 1 (R/W)

Table 29. CTRL1_XL register

ODR_XL3	ODR_XL2	ODR_XL1	ODR_XL0	FS1_XL	FS0_XL	0 ⁽¹⁾	0 ⁽¹⁾
---------	---------	---------	---------	--------	--------	------------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 30. CTRL1_XL register description

ODR_XL[3:0]	Accelerometer ODR selection (see Table 31).
FS[1:0]_XL	Accelerometer full-scale selection (see Table 32).

Table 31. Accelerometer ODR configuration setting

ODR_XL3	ODR_XL2	ODR_XL1	ODR_XL0	ODR selection [Hz] when XL_HM_MODE = 1 in CTRL6_C (15h)	ODR selection [Hz] when XL_HM_MODE = 0 in CTRL6_C (15h)
0	0	0	0	Power-down	Power-down
1	0	1	1	1.6 Hz (low power)	12.5 Hz (high performance)
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (low power)	104 Hz (high performance)
0	1	0	1	208 Hz (low power)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1667 Hz (high performance)	1667 Hz (high performance)
1	0	0	1	3333 Hz (high performance)	3333 Hz (high performance)
1	0	1	0	6667 Hz (high performance)	6667 Hz (high performance)
1	0	1	1	Reserved	Reserved
1	1	х	х	Reserved	Reserved

Table 32. Accelerometer full-scale selection

FS[1:0]_XL	Full scale
00 (default)	±2 g
01	±16 g
10	±4 g
11	±8 g

DS13892 - Rev 2 page 34/107

9.8 CTRL2_G (11h)

Control register 2 (R/W)

Table 33. CTRL2_G register

ODR_G3	ODR_G2	ODR_G1	ODR_G0	FS1_G	FS0_G	FS_125	0(1)

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 34. CTRL2_G register description

ODR_G[3:0]	Gyroscope output data rate selection. Default value: 0000 (Refer to Table 35)		
FS[1:0]_G	Gyroscope chain full-scale selection. Default value: 00 (00: ±250 dps; 01: ±500 dps; 10: ±1000 dps; 11: ±2000 dps)		
FS_125	Gyroscope chain full-scale selection for ±125 dps. Default value: 0 (0: FS selected through bits FS[1:0]_G; 1: FS set to ±125 dps)		

Table 35. Gyroscope ODR configuration setting

ODR_G3	ODR_G2	ODR_G1	ODR_G0	ODR selection [Hz] when G_HM_MODE = 1 in CTRL7_G (16h)	ODR selection [Hz] when G_HM_MODE = 0 in CTRL7_G (16h)
0	0	0	0	Power-down	Power-down
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (low power)	104 Hz (high performance)
0	1	0	1	208 Hz (low power)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1667 Hz (high performance)	1667 Hz (high performance)
1	0	0	1	3333 Hz (high performance) 3333 Hz (high performa	
1	0	1	0	6667 Hz (high performance) 6667 Hz (high performance)	
1	0	1	1	Reserved Reserved	
1	1	Х	х	Reserved	Reserved

DS13892 - Rev 2 page 35/107

9.9 CTRL3_C (12h)

Control register 3 (R/W)

Table 36. CTRL3_C register

воот	BDU	H_LACTIVE	PP_OD	SIM	IF_INC	0 ⁽¹⁾	SW_RESET
------	-----	-----------	-------	-----	--------	------------------	----------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 37. CTRL3_C register description

воот	Reboot memory content. Default value: 0
ВООТ	(0: normal mode; 1: reboot memory content)
	Block data update. Default value: 0
BDU	(0: continuous update;
	1: output registers are not updated until MSB and LSB have been read)
H LACTIVE	Interrupt activation level. Default value: 0
H_LACTIVE	(0: interrupt output pins active-high; 1: interrupt output pins active-low)
PP_OD	Push-pull/open-drain selection on INT1 and INT2 pins. This bit must be set to 0 when H_LACTIVE is set to 1. Default value: 0
	(0: push-pull mode; 1: open-drain mode)
SIM	SPI serial interface mode selection. Default value: 0
SIIVI	(0: 4-wire interface; 1: 3-wire interface)
IF_INC	Register address automatically incremented during a multiple byte access with a serial interface (I ² C or SPI). Default value: 1
	(0: disabled; 1: enabled)
	Software reset. Default value: 0
SW_RESET	(0: normal mode; 1: reset device)
	This bit is automatically cleared.

9.10 CTRL4_C (13h)

Control register 4 (R/W)

Table 38. CTRL4_C register

000	SLEEP_G INT2_on _INT1	0(1)	0 ⁽¹⁾	I2C_disable	0 ⁽¹⁾	0 ⁽¹⁾
-----	-----------------------	------	------------------	-------------	------------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 39. CTRL4_C register description

SLEEP_G	Enables gyroscope sleep mode. Default value: 0 (0: disabled; 1: enabled)		
INT2_on_INT1	Enables all interrupt signals available on INT1 pin. Default value: 0 (0: interrupt signals divided between INT1 and INT2 pins; 1: all interrupt signals in logic or on INT1 pin)		
Disables I ² C interface. Default value: 0 (0: SPI and I ² C interfaces enabled (default); 1: I ² C interface disabled)			

DS13892 - Rev 2 page 36/107

9.11 CTRL5_C (14h)

Control register 5 (R/W)

Table 40. CTRL5_C register

	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	ST1_G	ST0_G	ST1_XL	ST0_XL	
--	------------------	------------------	------------------	------------------	-------	-------	--------	--------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 41. CTRL5_C register description

ST[1:0]_G	Enables angular rate sensor self-test. Default value: 00 (00: Self-test disabled; Other: refer to Table 42)
ST[1:0]_XL	Enables linear acceleration sensor self-test. Default value: 00
	(00: Self-test disabled; Other: refer to Table 43)

Table 42. Angular rate sensor self-test mode selection

ST1_G	ST0_G	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Not allowed
1	1	Negative sign self-test

Table 43. Linear acceleration sensor self-test mode selection

ST1_XL	ST0_XL	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Negative sign self-test
1	1	Not allowed

9.12 CTRL6_C (15h)

Control register 6 (R/W)

Table 44. CTRL6_C register

0 ⁽¹	0 ⁽¹⁾	0(1)	XL_ HM_MODE	0(1)	0 ⁽¹⁾	0(1)	0 ⁽¹⁾
-----------------	------------------	------	----------------	------	------------------	------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 45. CTRL6_C register description

	Disables high-performance operating mode for the accelerometer. Default value: 0
XL_HM_MODE	(0: high-performance operating mode enabled;
	1: high-performance operating mode disabled)

DS13892 - Rev 2 page 37/107

9.13 CTRL7_G (16h)

Control register 7 (R/W)

Table 46. CTRL7_G register

HM_MODE	HM MODE	0 ⁽¹⁾	0(1)	0(1)	0(1)	0(1)	0(1)	0 ⁽¹⁾
---------	---------	------------------	------	------	------	------	------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 47. CTRL7_G register description

	Disables high-performance operating mode for gyroscope. Default: 0
G_HM_MODE	(0: high-performance operating mode enabled;
	1: high-performance operating mode disabled)

9.14 CTRL9_C (18h)

Control register 9 (R/W)

Table 48. CTRL9_C register

ISPU_	ISPU_	ISPU_	ISPU_	O ⁽¹⁾	n (1)	ISPU_	ISPU_
RATE_3	RATE_2	RATE_1	RATE_0	0(1)	0(1)	BDU_1	BDU_0

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 49. CTRL9_C register description

	ISPU IRQ rate selection.
	(0000: power-down (default);
	0001: 12.5 Hz;
	0010: 26 Hz;
	0011: 52 Hz;
	0100: 104 Hz;
ISPU_RATE_[3:0]	0101: 208 Hz;
	0110: 416 Hz;
	0111: 833 Hz;
	1000: 1667 Hz;
	1001: 3333 Hz;
	1010: 6667 Hz;
	1011-1111: reserved)
ISPU_BDU_[1:0]	Block data update (BDU) for ISPU output registers. Based on output data format, different configurations must be used, see Table 50

Table 50. Configurations for block data update

ISPU_BDU_[1:0]	ISPU_DOUT_00_L to ISPU_DOUT_15_H	ISPU_DOUT_16_L to ISPU_DOUT_31_H
00	BDU disabled	BDU disabled
01	BDU on 2 bytes (16 outputs)	BDU on 4 bytes (8 outputs)
10	BDU on 2 bytes (16 outputs)	BDU on 2 bytes (16 outputs)
11	BDU on 4 bytes (8 outputs)	BDU on 4 bytes (8 outputs)

DS13892 - Rev 2 page 38/107

9.15 CTRL10_C (19h)

Control register 10 (R/W)

Table 51. CTRL10_C register

0(1)	0 ⁽¹⁾	TIMESTAMP _EN	0 ⁽¹⁾	0 ⁽¹⁾	ISPU_ CLK_SEL	0 ⁽¹⁾	0 ⁽¹⁾	
------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 52. CTRL10_C register description

TIMESTAMP EN	Enables timestamp counter. Default value: 0
	(0: disabled; 1: enabled)
	The counter is readable in TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h).
	Selects the ISPU core clock frequency:
ISPU_CLK_SEL	0: core clock frequency set to 5 MHz (default)
	1: core clock frequency set to 10 MHz

9.16 ISPU_INT_STATUS0_MAINPAGE (1Ah), ISPU_INT_STATUS1_MAINPAGE (1Bh), ISPU_INT_STATUS2_MAINPAGE (1Ch), ISPU_INT_STATUS3_MAINPAGE (1Dh)

ISPU interrupt status registers (R)

Table 53. ISPU_INT_STATUS0_MAINPAGE output register

| IA_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ISPU_7 | ISPU_6 | ISPU_5 | ISPU_4 | ISPU_3 | ISPU_2 | ISPU_1 | ISPU_0 |

Table 54. ISPU_INT_STATUS1_MAINPAGE output register

IA_	IA_	IA_	IA_	IA_	IA_	IA_	IA_
ISPU_15	ISPU_14	ISPU_13	ISPU_12	ISPU_11	ISPU_10	ISPU_9	ISPU_8

Table 55. ISPU_INT_STATUS2_MAINPAGE output register

| IA_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ISPU_23 | ISPU_22 | ISPU_21 | ISPU_20 | ISPU_19 | ISPU_18 | ISPU_17 | ISPU_16 |

Table 56. ISPU_INT_STATUS3_MAINPAGE output register

0	0	IA_	IA_	IA_	IA_	IA_	IA_
U	U	ISPU_29	ISPU_28	ISPU_27	ISPU_26	ISPU_25	ISPU_24

Table 57. ISPU_INT_STATUS_MAINPAGE output register description

IA_ISPU_[29:0]	Generic interrupt flags from ISPU.

DS13892 - Rev 2 page 39/107

9.17 STATUS_REG (1Eh)

Status register (R)

Table 58. STATUS_REG register

TIMESTAMP_ ENDCOUNT	0	0	0	0	TDA	GDA	XLDA
------------------------	---	---	---	---	-----	-----	------

Table 59. STATUS_REG register description

TIMESTAMP_ENDCOUNT	Alerts timestamp overflow within 6.4 ms.
TDA	Temperature new data available. Default: 0 (0: no set of data is available at temperature sensor output; 1: a new set of data is available at temperature sensor output)
GDA	Gyroscope new data available. Default value: 0 (0: no set of data available at gyroscope output; 1: a new set of data is available at gyroscope output)
XLDA	Accelerometer new data available. Default value: 0 (0: no set of data available at accelerometer output; 1: a new set of data is available at accelerometer output)

9.18 OUT_TEMP_L (20h), OUT_TEMP_H (21h)

Temperature data output register (R). The value is expressed as a 16-bit word in two's complement.

Table 60. OUT_TEMP_L register

Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0		
	Table C4 OUT TEMP II register								
	Table 61. OUT_TEMP_H register								
Temp15	Temp14	Temp13	Temp12	Temp11	Temp10	Temp9	Temp8		

Table 62. OUT_TEMP register description

Temp[15:0]	Temperature sensor output data.
Temp[15.0]	The value is expressed as two's complement sign extended on the MSB.

DS13892 - Rev 2 page 40/107

9.19 OUTX_L_G (22h) and OUTX_H_G (23h)

Angular rate sensor pitch axis (X) angular rate output register (R). The value is expressed as a 16-bit word in two's complement.

Data are according to the full-scale and ODR settings (CTRL2_G (11h)) of the gyroscope.

Table 63. OUTX_L_G register

D7	D6	D5	D4	D3	D2	D1	D0		
	Table 64. OUTX_H_G register								
D15	D14	D13	D12	D11	D10	D9	D8		

Table 65. OUTX_H_G register description

D[15:0] Gyroscope chain pitch axis (X) angular rate output value.

9.20 OUTY_L_G (24h) and OUTY_H_G (25h)

Angular rate sensor roll axis (Y) angular rate output register (R). The value is expressed as a 16-bit word in two's complement.

Data are according to the full-scale and ODR settings (CTRL2_G (11h)) of the gyroscope.

Table 66. OUTY_L_G register

D7	D6	D5	D4	D3	D2	D1	D0			
	Table 67 OUTY H. G. register									
	Table 67. OUTY_H_G register									
D15	D14	D13	D12	D11	D10	D9	D8			

Table 68. OUTY_H_G register description

D[15:0] Gyroscope chain roll axis (Y) angular rate output value.

DS13892 - Rev 2 page 41/107

9.21 OUTZ_L_G (26h) and OUTZ_H_G (27h)

Angular rate sensor yaw axis (Z) angular rate output register (R). The value is expressed as a 16-bit word in two's complement.

Data are according to the full-scale and ODR settings (CTRL2_G (11h)) of the gyroscope.

Table 69. OUTZ_L_G register

D7	D6	D5	D4	D3	D2	D1	D0
		т	able 70. OUT	Z_H_G registe	er		
	I	-			-		
D15	D14	D13	D12	D11	D10	D9	D8

Table 71. OUTZ_H_G register description

D[15:0]	Gyroscope chain yaw axis (Z) angular rate output value.	
---------	---	--

DS13892 - Rev 2 page 42/107

9.22 OUTX_L_A (28h) and OUTX_H_A (29h)

Linear acceleration sensor X-axis output register (R). The value is expressed as a 16-bit word in two's complement.

Data are according to the full-scale and ODR settings (CTRL1_XL (10h)) of the accelerometer.

Table 72. OUTX_L_A register

D7	D6	D5	D4	D3	D2	D1	D0
		т	able 73. OUT	K_H_A registe	er		
D15	D14	D13	D12	D11	D10	D9	D8

Table 74. OUTX_H_A register description

D[15:0] Accelerometer chain X-axis linear acceleration output value.

9.23 OUTY_L_A (2Ah) and OUTY_H_A (2Bh)

Linear acceleration sensor Y-axis output register (R). The value is expressed as a 16-bit word in two's complement.

Data are according to the full-scale and ODR settings (CTRL1_XL (10h)) of the accelerometer.

Table 75. OUTY_L_A register

D7	D6	D5	D4	D3	D2	D1	D0
			able 76 OUT	/ U A regista	A.M.		
			able 76. OUT	Y_H_A registe	? r		
D15	D14	D13	D12	D11	D10	D9	D8

Table 77. OUTY_H_A register description

D[15:0] Accelerometer chain Y-axis linear acceleration output value.

DS13892 - Rev 2 page 43/107

9.24 OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh)

Linear acceleration sensor Z-axis output register (R). The value is expressed as a 16-bit word in two's complement.

Data are according to the full-scale and ODR settings (CTRL1_XL (10h)) of the accelerometer.

Table 78. OUTZ_L_A register

D7	D6	D5	D4	D3	D2	D1	D0
		т	able 79. OUT	Z_H_A registe	er		
D15	D14	D13	D12	D11	D10	D9	D8

Table 80. OUTZ_H_A register description

D[15:0]	Accelerometer chain Z-axis linear acceleration output value.
---------	--

DS13892 - Rev 2 page 44/107

9.25 STATUS_MASTER_MAINPAGE (39h)

Sensor hub status register (R)

Table 81. STATUS_MASTER_MAINPAGE register

WR_ONCE_	SLAVE3_	SLAVE2_	SLAVE1_	SLAVE0_	0	0	SENS_HUB_	
DONE	NACK	NACK	NACK	NACK			ENDOP	

Table 82. STATUS_MASTER_MAINPAGE register description

WR_ONCE_DONE	When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
	Sensor hub communication status. Default value: 0
SENS_HUB_ENDOP	(0: sensor hub communication not concluded;
	1: sensor hub communication concluded)

9.26 TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h)

Timestamp first data output register (R). The value is expressed as a 32-bit word and the bit resolution is 25 μ s. These registers are also accessible from ISPU at address 6940h, 6941h, 6942h, 6943h (R).

Table 83. TIMESTAMP0 output register

D7	D6	D5	D4	D3	D2	D1	D0
		Table	84. TIMESTAI	MP1 output re	aister		
	I	I	I	-			
D15	D14	D13	D12	D11	D10	D9	D8
		Table	85. TIMESTAI	MP2 output re	gister		
D23	D22	D21	D20	D19	D18	D17	D16
			'				'
	Table 86. TIMESTAMP3 output register						
D31	D30	D29	D28	D27	D26	D25	D24

Table 87. TIMESTAMP output register description

D[31:0]	Timestamp output registers: 1LSB = 25 μs.	
---------	---	--

DS13892 - Rev 2 page 45/107

9.27 MD1_CFG (5Eh)

Functions routing to INT1 pin register (R/W)

Table 88. MD1_CFG register

	0 ⁽¹⁾	INT1_ ISPU	INT1_SHUB						
--	------------------	------------------	------------------	------------------	------------------	------------------	---------------	-----------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 89. MD1_CFG register description

	Routing ISPU event to INT1. Default value: 0
INT1_ISPU	(0: routing ISPU event to INT1 disabled;
	1: routing ISPU event to INT1 enabled)
	Routing sensor hub communication concluded event to INT1. Default value: 0
INT1_SHUB	(0: routing sensor hub communication concluded event to INT1 disabled;
	1: routing sensor hub communication concluded event to INT1 enabled)

9.28 MD2_CFG (5Fh)

Functions routing to INT2 pin register (R/W)

Table 90. MD2_CFG register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0(1)	0(1)	0 ⁽¹⁾	INT2_ ISPU	INT2_ TIMESTAMP
------------------	------------------	------------------	------	------	------------------	---------------	--------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 91. MD2_CFG register description

	Routing ISPU event to INT2. Default value: 0
INT2_ISPU	(0: routing ISPU event to INT2 disabled;
	1: routing ISPU event to INT2 enabled)
INT2_TIMESTAMP	Enables routing the alert for timestamp overflow within 6.4 ms to the INT2 pin.

9.29 INTERNAL_FREQ_FINE (63h)

Internal frequency register (R)

Table 92. INTERNAL_FREQ_FINE register

| FREQ_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| FINE7 | FINE6 | FINE5 | FINE4 | FINE3 | FINE2 | FINE1 | FINE0 |

Table 93. INTERNAL_FREQ_FINE register description

FREQ_FINE[7:0]	Difference in percentage of the effective ODR (and timestamp rate) with respect to the typical. Step: 0.15%. 8-bit format, two's complement.
	o-bit format, two s complement.

DS13892 - Rev 2 page 46/107

9.30 ISPU DUMMY CFG 1 L (73h) and ISPU DUMMY CFG 1 H (74h)

General-purpose input configuration register for ISPU (R/W). This register is also accessible from ISPU at address 6974h, 6975h (R).

Table 94. ISPU_DUMMY_CFG_1_L register

| ISPU_DUMMY |
|------------|------------|------------|------------|------------|------------|------------|------------|
| CFG 1 7 | CFG 1 6 | CFG 1 5 | CFG 1 4 | CFG 1 3 | CFG 1 2 | CFG 1 1 | CFG 1 0 |
| _0, 0_1_, | _0, 0_,_0 | _0.0_1_0 | _0, 0_,_, | _0, 0_,_0 | _0.0_1_2 | _0. 0 | |

Table 95. ISPU_DUMMY_CFG_1_H register

| ISPU_DUMMY |
|------------|------------|------------|------------|------------|------------|------------|------------|
| _CFG_1_15 | _CFG_1_14 | _CFG_1_13 | _CFG_1_12 | _CFG_1_11 | _CFG_1_10 | _CFG_1_9 | _CFG_1_8 |

Table 96. ISPU_DUMMY_CFG_1 register description

ISPU_DUMMY_CFG_1_[15:0] Input configuration register 1 for ISPU.

9.31 ISPU_DUMMY_CFG_2_L (75h) and ISPU_DUMMY_CFG_2_H (76h)

General-purpose input configuration register for ISPU (R/W). This register is also accessible from ISPU at address 6976h, 6977h (R).

Table 97. ISPU_DUMMY_CFG_2_L register

| ISPU_DUMMY |
|------------|------------|------------|------------|------------|------------|------------|------------|
| _CFG_2_7 | _CFG_2_6 | _CFG_2_5 | _CFG_2_4 | _CFG_2_3 | _CFG_2_2 | _CFG_2_1 | _CFG_2_0 |

Table 98. ISPU_DUMMY_CFG_2_H register

| ISPU_DUMMY |
|------------|------------|------------|------------|------------|------------|------------|------------|
| _CFG_2_15 | _CFG_2_14 | _CFG_2_13 | _CFG_2_12 | _CFG_2_11 | _CFG_2_10 | _CFG_2_9 | _CFG_2_8 |

Table 99. ISPU_DUMMY_CFG_2 register description

ISPU_DUMMY_CFG_2_[15:0] Input configuration register 2 for ISPU.

DS13892 - Rev 2 page 47/107

9.32 ISPU_DUMMY_CFG_3_L (77h) and ISPU_DUMMY_CFG_3_H (78h)

General-purpose input configuration register for ISPU (R/W). This register is also accessible from ISPU at address 6978h, 6979h (R).

Table 100. ISPU_DUMMY_CFG_3_L register

CFG 3 7	ISPU_DUMMY CFG 3 7	U_DUMMY ISPU_DUMN CEG 3 6 CEG 3 5	·	ISPU_DUMMY CFG 3 3	ISPU_DUMMY CFG 3 2	ISPU_DUMMY CFG 3 1	ISPU_DUMMY CFG 3 0
---------	-----------------------	--	---	-----------------------	-----------------------	-----------------------	-----------------------

Table 101. ISPU_DUMMY_CFG_3_H register

| ISPU DUMMY |
|------------|------------|------------|------------|------------|------------|------------|------------|
| _CFG_3_15 | _CFG_3_14 | _CFG_3_13 | _CFG_3_12 | _CFG_3_11 | _CFG_3_10 | _CFG_3_9 | _CFG_3_8 |

Table 102. ISPU_DUMMY_CFG_3 register description

ISPU_DUMMY_CFG_3_[15:0]	Input configuration register 3 for ISPU.	
-------------------------	--	--

DS13892 - Rev 2 page 48/107

9.33 ISPU_DUMMY_CFG_4_L (79h) and ISPU_DUMMY_CFG_4_H (7Ah)

General-purpose input configuration register for ISPU (R/W). This register is also accessible from ISPU at address 697Ah, 697Bh (R).

Table 103. ISPU_DUMMY_CFG_4_L register

| ISPU_DUMMY |
|------------|------------|------------|------------|------------|------------|------------|------------|
| CFG 4 7 | CFG 4 6 | CFG 4 5 | CFG 4 4 | CFG 4 3 | CFG 4 2 | CFG 4 1 | CFG 4 0 |
| _01 0_1_1 | _0, 0_,_0 | _0, 0_,_0 | _0, 0_,_, | _0, 0_,_0 | _01 0_1_2 | _0.0_1 | |

Table 104. ISPU_DUMMY_CFG_4_H register

| ISPU DUMMY |
|------------|------------|------------|------------|------------|------------|------------|------------|
| _CFG_4_15 | _CFG_4_14 | _CFG_4_13 | _CFG_4_12 | _CFG_4_11 | _CFG_4_10 | _CFG_4_9 | _CFG_4_8 |

Table 105. ISPU_DUMMY_CFG_4 register description

ISPU_DUMMY_CFG_4_[15:0]	Input configuration register 4 for ISPU.	
-------------------------	--	--

DS13892 - Rev 2 page 49/107

10 ISPU interaction register mapping

The table given below provides a list of the registers for the ISPU functions available in the device and the corresponding addresses.

When the ISPU_REG_ACCESS bit is set to 1 in FUNC_CFG_ACCESS (01h), the ISPU interaction registers are accessible **over the I²C/SPI interface** with the address indicated in the first column (IF address) of the table below.

These registers are also accessible from ISPU through the address indicated in the second column (ISPU address), regardless of the ISPU REG ACCESS bit configuration.

Table 106. Register map - ISPU interaction registers

IF address (hex)	ISPU address (hex)	Bytes	Name	IF access	ISPU access
02	6802	1	ISPU_CONFIG	R/W	R
04	6804	1	ISPU_STATUS	R	R/W
08	-	1	ISPU_MEM_SEL	R/W	No
09-0A	-	2	ISPU_MEM_ADDR	R/W	No
0B	-	1	ISPU_MEM_DATA	R/W	No
0C-0D	680C-680D	2	ISPU_IF2S_FLAG	R/W, set only	R/W, clear only
0E-0F	680E-680F	2	ISPU_S2IF_FLAG	R/W, clear only	R/W, set only
10-11	6810-6811	2	ISPU_DOUT_00	R	R/W
12-13	6812-6813	2	ISPU_DOUT_01	R	R/W
14-15	6814-6815	2	ISPU_DOUT_02	R	R/W
16-17	6816-6817	2	ISPU_DOUT_03	R	R/W
18-19	6818-6819	2	ISPU_DOUT_04	R	R/W
1A-1B	681A-681B	2	ISPU_DOUT_05	R	R/W
1C-1D	681C-681C	2	ISPU_DOUT_06	R	R/W
1E-1F	681E-681F	2	ISPU_DOUT_07	R	R/W
20-21	6820-6821	2	ISPU_DOUT_08	R	R/W
22-23	6822-6823	2	ISPU_DOUT_09	R	R/W
24-25	6824-6825	2	ISPU_DOUT_10	R	R/W
26-27	6826-6827	2	ISPU_DOUT_11	R	R/W
28-29	6828-6829	2	ISPU_DOUT_12	R	R/W
2A-2B	682A-682B	2	ISPU_DOUT_13	R	R/W
2C-2D	682C-682D	2	ISPU_DOUT_14	R	R/W
2E-2F	682E-682F	2	ISPU_DOUT_15	R	R/W
30-31	6830-6831	2	ISPU_DOUT_16	R	R/W
32-33	6832-6833	2	ISPU_DOUT_17	R	R/W
34-35	6834-6835	2	ISPU_DOUT_18	R	R/W
36-37	6836-6837	2	ISPU_DOUT_19	R	R/W
38-39	6838-6839	2	ISPU_DOUT_20	R	R/W
3A-3B	683A-683B	2	ISPU_DOUT_21	R	R/W
3C-3D	683C-683D	2	ISPU_DOUT_22	R	R/W
3E-3F	683E-683F	2	ISPU_DOUT_23	R	R/W
40-41	6840-6841	2	ISPU_DOUT_24	R	R/W

DS13892 - Rev 2 page 50/107

IF address (hex)	ISPU address (hex)	Bytes	Name	IF access	ISPU access
42-43	6842-6843	2	ISPU_DOUT_25	R	R/W
44-45	6844-6845	2	ISPU_DOUT_26	R	R/W
46-47	6846-6847	2	ISPU_DOUT_27	R	R/W
48-49	6848-6849	2	ISPU_DOUT_28	R	R/W
4A-4B	684A-684B	2	ISPU_DOUT_29	R	R/W
4C-4D	684C-684D	2	ISPU_DOUT_30	R	R/W
4E-4F	684E-684F	2	ISPU_DOUT_31	R	R/W
50-53	6850-6853	4	ISPU_INT1_CTRL	R/W	R
54-57	6854-6857	4	ISPU_INT2_CTRL	R/W	R
58-5B	6858-685B	4	ISPU_INT_STATUS	R	R/W
70-73	6870-6873	4	ISPU_ALGO	R/W	R, clear only

Table 107. Register map - ISPU to external resources

ISPU address (hex)	Bytes	Name	ISPU access
6940-6941	2	TIMESTAMP0 (40h), TIMESTAMP1 (41h) Section 9.26	R
6942-6943	2	TIMESTAMP2 (42h), TIMESTAMP3 (43h) Section 9.26	R
6974-6975	2	ISPU_DUMMY_CFG_1_L (73h) and ISPU_DUMMY_CFG_1_H (74h)	R
6976-6977	2	ISPU_DUMMY_CFG_2_L (75h) and ISPU_DUMMY_CFG_2_H (76h)	R
6978-6979	2	ISPU_DUMMY_CFG_3_L (77h) and ISPU_DUMMY_CFG_3_H (78h)	R
697A-697B	2	ISPU_DUMMY_CFG_4_L (79h) and ISPU_DUMMY_CFG_4_H (7Ah)	R

Reserved registers must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

DS13892 - Rev 2 page 51/107

11 ISPU interaction register description

11.1 ISPU_CONFIG (02h)

ISPU configuration register (R/W). This register is also accessible from ISPU at address 6802h (R).

Table 108. ISPU_CONFIG register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	LATCHED	0 ⁽¹⁾	0 ⁽¹⁾	CLK_DIS	ISPU_ RST_N
------------------	------------------	------------------	---------	------------------	------------------	---------	----------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 109. ISPU_CONFIG register description

LATCHED	Configures the interrupt generation. (0: interrupt pulsed; 1: interrupt latched)
CLK_DIS	When active, stops the clock of ISPU.
ISPU_RST_N	ISPU active-low reset.

11.2 ISPU_STATUS (04h)

ISPU status register (R). This register is also accessible from ISPU at address 6804h (R/W).

Table 110. ISPU_STATUS register

	0 ⁽¹⁾	BOOT_END	0 ⁽¹⁾	0 ⁽¹⁾				
--	------------------	------------------	------------------	------------------	------------------	----------	------------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 111. ISPU_STATUS register description

BOOT END End of ISPU boot procedure.	
Eliu di 13FO boot procedure.	

DS13892 - Rev 2 page 52/107

11.3 ISPU_MEM_SEL (08h)

ISPU memory selection register (R/W)

Table 112. ISPU_MEM_SEL register

0 ⁽¹⁾ READ_ MEM_EN	0 ⁽¹⁾	MEM_SEL				
----------------------------------	------------------	------------------	------------------	------------------	------------------	---------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 113. ISPU_MEM_SEL register description

READ_MEM_EN	Enables reading from program or data memories. Default value: 0 (0: disabled; 1: enabled)
MEM_SEL	Selects the memory to be accessed. Default value: 0 (0: data RAM memory is selected; 1: program RAM memory is selected)

11.4 ISPU_MEM_ADDR1 (09h), ISPU_MEM_ADDR0 (0Ah)

ISPU memory address register (R/W)

Table 114. ISPU_MEM_ADDR1 register

MEM_ADDR_15	MEM_ADDR_14	MEM_ADDR_13	MEM_ADDR_12	MEM_ADDR_11	MEM_ADDR_10	MEM_ADDR_9	MEM_ADDR_8

Table 115. ISPU_MEM_ADDR0 register

	MEM_ADDR_7	MEM_ADDR_6	MEM_ADDR_5	MEM_ADDR_4	MEM_ADDR_3	MEM_ADDR_2	MEM_ADDR_1	MEM_ADDR_0
--	------------	------------	------------	------------	------------	------------	------------	------------

Table 116. ISPU_MEM_ADDR register description

MEM_ADDR_[15:0]	Memory address to be read/written.
-----------------	------------------------------------

11.5 ISPU_MEM_DATA (0Bh)

ISPU memory data register (R/W)

Table 117. ISPU_MEM_DATA register

MEM DATA 7 MEM DATA 6 MEM DATA 5 MEM DATA 4 MEM DATA 3 MEM DATA 2 MEM DATA 1 MEM D							
- MEM DAIA / MEM DAIA 6 MEM DAIA 5 MEM DAIA 4 MEM DAIA 3 MEM DAIA 2 MEM DAIA 1 MEM D	MATERA DATA 7	MENA DATA O	MATERA DATA F	MENA DATA 4	MENA DATA O	MENA DATA 4	MENA DATA O
	MEM DAIA /				IVILIVI DATA 3		MEM_DATA_0

Table 118. ISPU_MEM_DATA register description

MEM_DATA_[7:0]	Byte to write to memory in write transaction or data read from memory in read transaction.
----------------	--

DS13892 - Rev 2 page 53/107

11.6 ISPU_IF2S_FLAG_L (0Ch), ISPU_IF2S_FLAG_H (0Dh)

Interface to ISPU register (R/W, set only). This register is also accessible from ISPU at address 680Ch, 680Dh (R/W, clear only).

Table 119. ISPU_IF2S_FLAG_L register

IF2S_7	IF2S_6	IF2S_5	IF2S_4	IF2S_3	IF2S_2	IF2S_1	IF2S_0
		Table	120. ISPU_IF2	S_FLAG_H re	egister		
IF2S_15	IF2S_14	IF2S_13	IF2S_12	IF2S_11	IF2S_10	IF2S_9	IF2S_8

Table 121. ISPU_IF2S_FLAG register description

IF2S_[15:0] 16-bit general purpose bits which can be set from the interface and cleared by ISPU.

11.7 ISPU_S2IF_FLAG_L (0Eh), ISPU_S2IF_FLAG_H (0Fh)

ISPU to interface register (R/W, clear only). This register is also accessible from ISPU at address 680Eh, 680Fh (R/W, set only).

Table 122. ISPU_S2IF_FLAG_L register

S2IF_7	S2IF_6	S2IF_5	S2IF_4	S2IF_3	S2IF_2	S2IF_1	S2IF_0
		Table	122 15011 52	IE ELAC U #	ngiotor		
				IF_FLAG_H re	_		
S2IF 15	S2IF 14	S2IF 13	S2IF 12	S2IF 11	S2IF 10	S2IF 9	S2IF 8

Table 124. ISPU_S2IF_FLAG register description

S2IF_[15:0] 16-bit general purpose bits which can be set from ISPU and cleared by the interface.

DS13892 - Rev 2 page 54/107

11.8 ISPU_DOUT_00_L (10h), ISPU_DOUT_00_H (11h)

ISPU output register 0 (R). This register is also accessible from ISPU at address 6810h, 6811h (R/W).

Table 125. ISPU_DOUT_00_L register

DOUT0_7	DOUT0_6	DOUT0_5	DOUT0_4	DOUT0_3	DOUT0_2	DOUT0_1	DOUT0_0

Table 126. ISPU_DOUT_00_H register

	DOUT0_15	DOUT0_14	DOUT0_13	DOUT0_12	DOUT0_11	DOUT0_10	DOUT0_9	DOUT0_8
--	----------	----------	----------	----------	----------	----------	---------	---------

Table 127. ISPU_DOUT_00 register description

DOUT0_[15:0]	General-purpose output.
--------------	-------------------------

11.9 ISPU_DOUT_01_L (12h), ISPU_DOUT_01_H (13h)

ISPU output register 1 (R). This register is also accessible from ISPU at address 6812h, 6813h (R/W).

Table 128. ISPU_DOUT_01_L registers

Table 129. ISPU_DOUT_01_H registers

Table 130. ISPU_DOUT_01 register description

DOUT1_[15:0] General-purpose output.

11.10 ISPU_DOUT_02_L (14h), ISPU_DOUT_02_H (15h)

ISPU output register 2 (R). This register is also accessible from ISPU at address 6814h, 6815h (R/W).

Table 131. ISPU_DOUT_02_L register

DOUT2_7	DOUT2_6	DOUT2_5	DOUT2_4	DOUT2_3	DOUT2_2	DOUT2_1	DOUT2_0

Table 132. ISPU_DOUT_02_H register

DOLLTO 15	DOLLT2 14	DOUT2_13	DOLLT2 12	DOLLT2 11	DOLLT2 40	DOLIT2 0	DOLITA 0
DO012 13	DO012 14	00012 13	DOU12 12	DO012 11	DO012 10	DO012 9	DO012 0
_	_	_	_	_	_	_	_

Table 133. ISPU_DOUT_02 register description

DOUT2_[15:0] General-purpose output.

DS13892 - Rev 2 page 55/107

11.11 ISPU_DOUT_03_L (16h), ISPU_DOUT_03_H (17h)

ISPU output register 3 (R). This register is also accessible from ISPU at address 6816h, 6817h (R/W).

Table 134. ISPU_DOUT_03_L register

DOUT3_7	DOUT3_6	DOUT3_5	DOUT3_4	DOUT3_3	DOUT3_2	DOUT3_1	DOUT3_0

Table 135. ISPU_DOUT_03_H register

DOUT3_15	DOUT3_14	DOUT3_13	DOUT3_12	DOUT3_11	DOUT3_10	DOUT3_9	DOUT3_8

Table 136. ISPU_DOUT_03 register description

OOUT3_[15:0]	General-purpose output.

11.12 ISPU_DOUT_04_L (18h), ISPU_DOUT_04_H (19h)

ISPU output register 4 (R). This register is also accessible from ISPU at address 6818h, 6819h (R/W).

Table 137. ISPU_DOUT_04_L register

DOUT4_7	DOUT4_6	DOUT4_5	DOUT4_4	DOUT4_3	DOUT4_2	DOUT4_1	DOUT4_0

Table 138. ISPU_DOUT_04_H register

DOUT4_15 DOUT4_14 DOUT4_13 DOUT4_12 DOUT4_11 DOUT4_10 DOUT4_9 DOUT4_9

Table 139. ISPU_DOUT_04 register description

DOUT4_[15:0]	General-purpose output.
--------------	-------------------------

11.13 ISPU_DOUT_05_L (1Ah), ISPU_DOUT_05_H (1Bh)

ISPU output register 5 (R). This register is also accessible from ISPU at address 681Ah, 681Bh (R/W).

Table 140. ISPU_DOUT_05_L register

DOUT5_7 DOUT5_6 DOUT5_5 DOUT5_4 DOUT5_3 DOUT5_2 DOUT5_1 DOUT5_0

Table 141. ISPU_DOUT_05_H register

	DOUT5_15	DOUT5_14	DOUT5_13	DOUT5_12	DOUT5_11	DOUT5_10	DOUT5_9	DOUT5_8
--	----------	----------	----------	----------	----------	----------	---------	---------

Table 142. ISPU_DOUT_05 register description

DOUT5_[15:0]	General-purpose output.

DS13892 - Rev 2 page 56/107

11.14 ISPU_DOUT_06_L (1Ch), ISPU_DOUT_06_H (1Dh)

ISPU output register 6 (R). This register is also accessible from ISPU at address 681Ch, 681Dh (R/W).

Table 143. ISPU_DOUT_06_L register

DOUT6_7	DOUT6_6	DOUT6_5	DOUT6_4	DOUT6_3	DOUT6_2	DOUT6_1	DOUT6_0		
Toble 444 ISBN DOUT 06 H register									
Table 144. ISPU_DOUT_06_H register									
DOUT6_15	DOUT6_14	DOUT6_13	DOUT6_12	DOUT6_11	DOUT6_10	DOUT6_9	DOUT6_8		

Table 145. ISPU_DOUT_06 register description

D	OUT6_[15:0]	General-purpose output.

11.15 ISPU_DOUT_07_L (1Eh), ISPU_DOUT_07_H (1Fh)

ISPU output register 7 (R). This register is also accessible from ISPU at address 681Eh, 681Fh (R/W).

Table 146. ISPU_DOUT_07_L register

		DOUT7_7	DOUT7_6	DOUT7_5	DOUT7_4	DOUT7_3	DOUT7_2	DOUT7_1	DOUT7_0
--	--	---------	---------	---------	---------	---------	---------	---------	---------

Table 147. ISPU_DOUT_07_H register

Table 148. ISPU_DOUT_07 register description

DOUT7_[15:0]	General-purpose output.	
--------------	-------------------------	--

11.16 ISPU_DOUT_08_L (20h), ISPU_DOUT_08_H (21h)

ISPU output register 8 (R). This register is also accessible from ISPU at address 6820h, 6821h (R/W).

Table 149. ISPU_DOUT_08_L register

DOUT8_7	DOUT8_6	DOUT8_5	DOUT8_4	DOUT8_3	DOUT8_2	DOUT8_1	DOUT8_0

Table 150. ISPU_DOUT_08_H register

	DOUT8_15	DOUT8_14	DOUT8_13	DOUT8_12	DOUT8_11	DOUT8_10	DOUT8_9	DOUT8_8
--	----------	----------	----------	----------	----------	----------	---------	---------

Table 151. ISPU_DOUT_08 register description

DOUT8_[15:0]	General-purpose output.
DOO10_[10.0]	Ceneral purpose output.

DS13892 - Rev 2 page 57/107

11.17 ISPU_DOUT_09_L (22h), ISPU_DOUT_09_H (23h)

ISPU output register 9 (R). This register is also accessible from ISPU at address 6822h, 6823h (R/W).

Table 152. ISPU_DOUT_09_L register

Table 153. ISPU_DOUT_09_H register									
	DOUT9_7	DOUT9_6	DOUT9_5	DOUT9_4	DOUT9_3	DOUT9_2	DOUT9_1	DOUT9_0	

	DOUT9_15	DOUT9_14	DOUT9_13	DOUT9_12	DOUT9_11	DOUT9_10	DOUT9_9	DOUT9_8
--	----------	----------	----------	----------	----------	----------	---------	---------

Table 154. ISPU_DOUT_09 register description

DO	UT9_[15:0]	General-purpose output.	

ISPU_DOUT_10_L (24h), ISPU_DOUT_10_H (25h) 11.18

ISPU output register 10 (R). This register is also accessible from ISPU at address 6824h, 6825h (R/W).

Table 155. ISPU_DOUT_10_L register

Table 156. ISPU_DOUT_10_H register

Table 157. ISPU_DOUT_10 register description

DOUT10_[15:0]	General-purpose output.	

11.19 ISPU_DOUT_11_L (26h), ISPU_DOUT_11_H (27h)

ISPU output register 11 (R). This register is also accessible from ISPU at address 6826h, 6827h (R/W).

Table 158. ISPU_DOUT_11_L register

DOUT11_7	DOUT11_6	DOUT11_5	DOUT11_4	DOUT11_3	DOUT11_2	DOUT11_1	DOUT11_0

Table 159. ISPU_DOUT_11_H register

	15	DOLIT11 14	DOUT11_13	DOLIT11 12	DOLIT11 11	DOLIT11 10		
DOOLL	_ 10	DO0111_1 4	DO0111_13	000111_12	DOUTH_H	DO0111_10	DO0111_8	DO0111_0

Table 160. ISPU_DOUT_11 register description

DOUT11 [15:0]	General-purpose output.
DO0111_[13.0]	General-purpose output.

DS13892 - Rev 2 page 58/107

11.20 ISPU_DOUT_12_L (28h), ISPU_DOUT_12_H (29h)

ISPU output register 12 (R). This register is also accessible from ISPU at address 6828h, 6829h (R/W).

Table 161. ISPU_DOUT_12_L register

D	OUT12_7	DOUT12_6	DOUT12_5	DOUT12_4	DOUT12_3	DOUT12_2	DOUT12_1	DOUT12_0
---	---------	----------	----------	----------	----------	----------	----------	----------

Table 162. ISPU_DOUT_12_H register

	DOUT12_15	DOUT12_14	DOUT12_13	DOUT12_12	DOUT12_11	DOUT12_10	DOUT12_9	DOUT12_8	
--	-----------	-----------	-----------	-----------	-----------	-----------	----------	----------	--

Table 163. ISPU_DOUT_12 register description

DOUT12_[15:0] General-purpose output	
--------------------------------------	--

11.21 ISPU_DOUT_13_L (2Ah), ISPU_DOUT_13_H (2Bh)

ISPU output register 13 (R). This register is also accessible from ISPU at address 682Ah, 682Bh (R/W).

Table 164. ISPU_DOUT_13_L register

DOUT13_7 DOUT13_6 DOUT13_5 DOUT13_4 DOUT13_3 DOUT13_2 DOUT13_1 DOUT	DOUT13_7	DOUT13_6	DOUT13_5	DOUT13_4	DOUT13_3	DOUT13_2	DOUT13_1	DOUT13_
---	----------	----------	----------	----------	----------	----------	----------	---------

Table 165. ISPU_DOUT_13_H register

	DOUT13_15	DOUT13_14	DOUT13_13	DOUT13_12	DOUT13_11	DOUT13_10	DOUT13_9	DOUT13_
--	-----------	-----------	-----------	-----------	-----------	-----------	----------	---------

Table 166. ISPU_DOUT_13 register description

DOUT13 [15:0]	General-purpose output.	
DOUT 13 [13.0]	General-purpose output.	

11.22 ISPU_DOUT_14_L (2Ch), ISPU_DOUT_14_H (2Dh)

ISPU output register 14 (R). This register is also accessible from ISPU at address 682Ch, 682Dh (R/W).

Table 167. ISPU_DOUT_14_L register

DOUT14_7 DOUT14_6 DOUT14_5 DOUT14_4 DO	T14_3 DOUT14_2 DOUT14_1 DOUT14_0	
--	--	--

Table 168. ISPU_DOUT_14_H register

DOUT14 15	DOUT14 14	DOUT14_13	DOUT14 12	DOUT14 11	DOUT14 10	DOUT14 9	DOUT14_8
2000					2000	2000	

Table 169. ISPU_DOUT_14 register description

DOUT14 [15:0]	General-purpose output.
1000114 11501	General-purpose output
2 0 0 1 1 1 [10.0]	ourioral parpood datpati

DS13892 - Rev 2 page 59/107

11.23 ISPU_DOUT_15_L (2Eh), ISPU_DOUT_15_H (2Fh)

ISPU output register 15 (R). This register is also accessible from ISPU at address 682Eh, 682Fh (R/W).

Table 170. ISPU_DOUT_15_L register

DOUT15_7	DOUT15_6	DOUT15_5	DOUT15_4	DOUT15_3	DOUT15_2	DOUT15_1	DOUT15_0
_	_	_	_	_	_	_	_

Table 171. ISPU_DOUT_15_H register

DO	UT15_15	DOUT15_14	DOUT15_13	DOUT15_12	DOUT15_11	DOUT15_10	DOUT15_9	DOUT15_8
----	---------	-----------	-----------	-----------	-----------	-----------	----------	----------

Table 172. ISPU_DOUT_15 register description

DOUT15_[15:0] General-purpose output.	
---------------------------------------	--

11.24 ISPU_DOUT_16_L (30h), ISPU_DOUT_16_H (31h)

ISPU output register 16 (R). This register is also accessible from ISPU at address 6830h, 6831h (R/W).

Table 173. ISPU_DOUT_16_L register

	DOUT16_7	DOUT16_6	DOUT16_5	DOUT16_4	DOUT16_3	DOUT16_2	DOUT16_1	DOUT16_0	
--	----------	----------	----------	----------	----------	----------	----------	----------	--

Table 174. ISPU_DOUT_16_H register

DOUT16_15 DOUT16_14 D	DOUT16_13 DOI	OUT16_12	DOUT16_11	DOUT16_10	DOUT16_9	DOUT16_8
---------------------------	-----------------	----------	-----------	-----------	----------	----------

Table 175. ISPU_DOUT_16 register description

DOUT16 [15:0]	General-purpose output.
000110113.01	General-purpose output.

11.25 ISPU_DOUT_17_L (32h), ISPU_DOUT_17_H (33h)

ISPU output register 17 (R). This register is also accessible from ISPU at address 6832h, 6833h (R/W).

Table 176. ISPU_DOUT_17_L register

17_7 DOL	JT17_6 DOUT17	_5 DOUT17_4	DOUT17_3	DOUT17_2	DOUT17_1	DOUT17_0
----------	---------------	-------------	----------	----------	----------	----------

Table 177. ISPU_DOUT_17_H register

DOUT17 15	DOUT17 14	DOUT17_13	DOUT17 12	DOUT17 11	DOUT17 10	DOUT17 9	DOUT17 8
D00111_10	D00111_11		D00111_12				

Table 178. ISPU_DOUT_17 register description

DOUT17 [15:0]	General-purpose output.
DOULT/ 115'01	General-purpose output
200111_[10:0]	Contra parpose catpat:

DS13892 - Rev 2 page 60/107

11.26 ISPU_DOUT_18_L (34h), ISPU_DOUT_18_H (35h)

ISPU output register 18 (R). This register is also accessible from ISPU at address 6834h, 6835h (R/W).

Table 179. ISPU_DOUT_18_L register

	DOUT18_7	DOUT18_6	DOUT18_5	DOUT18_4	DOUT18_3	DOUT18_2	DOUT18_1	DOUT18_0
--	----------	----------	----------	----------	----------	----------	----------	----------

Table 180. ISPU_DOUT_18_H register

DOUT18_15 DOUT18_14 DOUT18_13 DOUT18_12 DOUT18_11 DOUT18_10 DOUT1	DOUT18_15	T18_15 [DOUT18_14	DOUT18_13	DOUT18_12	DOUT18_11	DOUT18_10	DOUT18_9	DOUT18_8
---	-----------	------------	-----------	-----------	-----------	-----------	-----------	----------	----------

Table 181. ISPU_DOUT_18 register description

UT18_[15:0]	General-purpose output.
-------------	-------------------------

11.27 ISPU_DOUT_19_L (36h), ISPU_DOUT_19_H (37h)

ISPU output register 19 (R). This register is also accessible from ISPU at address 6836h, 6837h (R/W).

Table 182. ISPU_DOUT_19_L register

DOUT19_7	DOUT19_6	DOUT19_5	DOUT19_4	DOUT19_3	DOUT19_2	DOUT19_1	DOUT19_0
_	_	_	_	_	_	_	_

Table 183. ISPU_DOUT_19_H register

	DOUT19_15
--	-----------

Table 184. ISPU_DOUT_19 register description

DOUT19 [15:0]	General-purpose output.	
DOUT 19 [15.0]	General-purpose output.	

11.28 ISPU_DOUT_20_L (38h), ISPU_DOUT_20_H (39h)

ISPU output register 20 (R). This register is also accessible from ISPU at address 6838h, 6839h (R/W).

Table 185. ISPU_DOUT_20_L register

DOUT20_7	DOUT20_6	DOUT20_5	DOUT20_4	DOUT20_3	DOUT20_2	DOUT20_1	DOUT20_0

Table 186. ISPU_DOUT_20_H register

DOUT20_15	DOLLTON 44	DOLITOR 42	DOLITOR 40	DOLITOR 44	DOLITOR 40		DOLITOR 0
	DOUTZU 14	DOUTZU 13				DOU120 9	

Table 187. ISPU_DOUT_20 register description

DOUT20 [15:0]	General-purpose output.
DOUT20_[15.0]	General-purpose output.

DS13892 - Rev 2 page 61/107

11.29 ISPU_DOUT_21_L (3Ah), ISPU_DOUT_21_H (3Bh)

ISPU output register 21 (R). This register is also accessible from ISPU at address 683Ah, 683Bh (R/W).

Table 188. ISPU_DOUT_21_L register

Table 189. ISPU_DOUT_21_H register

DOUT21_15 DOUT21_14 DOUT21_13 DOUT21_12 DOUT21_11 DOUT21_10 DOUT21_9	DO0121_15	_15 DOUT21_14	DOU121_13	DOU121_12	DOUT21_11	DOUT21_10	DOU121_9	DOU121_8
--	-----------	-----------------	-----------	-----------	-----------	-----------	----------	----------

Table 190. ISPU_DOUT_21 register description

OUT21_[15:0]	General-purpose output.
--------------	-------------------------

11.30 ISPU_DOUT_22_L (3Ch), ISPU_DOUT_22_H (3Dh)

ISPU output register 22 (R). This register is also accessible from ISPU at address 683Ch, 683Dh (R/W).

Table 191. ISPU_DOUT_22_L register

	DOUT22_7	DOUT22_6	DOUT22_5	DOUT22_4	DOUT22_3	DOUT22_2	DOUT22_1	DOUT22_0	
--	----------	----------	----------	----------	----------	----------	----------	----------	--

Table 192. ISPU_DOUT_22_H register

DOUT22_15	DOUT22_14	DOUT22_13	DOUT22_12	DOUT22_11	DOUT22_10	DOUT22_9	DOUT22_8
-----------	-----------	-----------	-----------	-----------	-----------	----------	----------

Table 193. ISPU_DOUT_22 register description

DOLLTON MENT	O 1	
DOUT22 [15:0]	General-purpose output.	
DOO122_[10.0]	Ochiciai parpose output.	

11.31 ISPU_DOUT_23_L (3Eh), ISPU_DOUT_23_H (3Fh)

ISPU output register 23 (R). This register is also accessible from ISPU at address 683Eh, 683Fh (R/W).

Table 194. ISPU_DOUT_23_L register

DOUT23_3 DOUT23_2 DOUT23_1 DOUT23_	DOUT23_4	DOUT23_5	DOUT23_6	DOUT23_7
------------------------------------	----------	----------	----------	----------

Table 195. ISPU_DOUT_23_L register

DOUT23_15	DOUT23 14	DOUT23 13	DOUT23 12	DOUT23 11	DOUT23 10	DOUT23 9	DOUT23 8

Table 196. ISPU_DOUT_23 register description

OUT23 [15:0]	General-purpose output.
30123 [13.0]	General-purpose output.

DS13892 - Rev 2 page 62/107

11.32 ISPU_DOUT_24_L (40h), ISPU_DOUT_24_H (41h)

ISPU output register 24 (R). This register is also accessible from ISPU at address 6840h, 6841h (R/W).

Table 197. ISPU_DOUT_24_L register

DOUT24_7 DOUT24_6 DOUT24_5 DOUT24_4 DOUT24_3 DO	DUT24_2 DOUT24_1 DOUT	24_0
---	---------------------------	------

Table 198. ISPU_DOUT_24_H register

DC	OUT24_15	DOUT24_14	DOUT24_13	DOUT24_12	DOUT24_11	DOUT24_10	DOUT24_9	DOUT24_8
----	----------	-----------	-----------	-----------	-----------	-----------	----------	----------

Table 199. ISPU_DOUT_24 register description

UT24_[15:0]	General-purpose output.
-------------	-------------------------

11.33 ISPU_DOUT_25_L (42h), ISPU_DOUT_25_H (43h)

ISPU output register 25 (R). This register is also accessible from ISPU at address 6842h, 6843h (R/W).

Table 200. ISPU_DOUT_25_L register

DOUT25_7 DOUT25_6 DOUT25_5 DOUT25_4 DOUT25_3 DOUT25_2 DOUT25_1 DOU	DOU125_/	
--	----------	--

Table 201. ISPU_DOUT_25_H register

[DOUT25_15	DOUT25_14	DOUT25_13	DOUT25_12	DOUT25_11	DOUT25_10	DOUT25_9	DOUT25_8
---	-----------	-----------	-----------	-----------	-----------	-----------	----------	----------

Table 202. ISPU_DOUT_25 register description

DOUT25 [15:0]	General-purpose output.	
DOU123 [13.0]	General-purpose output.	

11.34 ISPU_DOUT_26_L (44h), ISPU_DOUT_26_H (45h)

ISPU output register 26 (R). This register is also accessible from ISPU at address 6844h, 6845h (R/W).

Table 203. ISPU_DOUT_26_L register

DOUT26_7	DOUT26_6	DOUT26_5	DOUT26_4	DOUT26_3	DOUT26_2	DOUT26_1	DOUT26_0

Table 204. ISPU_DOUT_26_H register

DOUT26 15	DOUT26 14	DOUT26 13	DOUT26 12	DOUT26 11	DOUT26 10	DOUT26 9	DOUT26 8
200.200		200.200			200.200	200.20	200.20

Table 205. ISPU_DOUT_26 register description

DOUT26 [15:0]	General-purpose output.
DOUTEO_[13.0]	Ochciai-purpose output.

DS13892 - Rev 2 page 63/107

11.35 ISPU_DOUT_27_L (46h), ISPU_DOUT_27_H (47h)

ISPU output register 27 (R). This register is also accessible from ISPU at address 6846h, 6847h (R/W).

Table 206. ISPU_DOUT_27_L register

DOUT27_7 DOUT27_6 DOUT27_5 DOUT27_4	DOUT27_3 DOUT27_2	DOUT27_1	DOUT27_0
-------------------------------------	-------------------	----------	----------

Table 207. ISPU_DOUT_27_H register

Table 208. ISPU_DOUT_27 register description

OUT27_[15:0]	General-purpose output.
--------------	-------------------------

11.36 ISPU_DOUT_28_L (48h), ISPU_DOUT_28_H (49h)

ISPU output register 28 (R). This register is also accessible from ISPU at address 6848h, 6849h (R/W).

Table 209. ISPU_DOUT_28_L register

	DOUT28_7	DOUT28_6	DOUT28_5	DOUT28_4	DOUT28_3	DOUT28_2	DOUT28_1	DOUT28_0	
--	----------	----------	----------	----------	----------	----------	----------	----------	--

Table 210. ISPU_DOUT_28_H register

		DOUT28_15 DOUT28_1	DOUT28_13	DOUT28_12	DOUT28_11	DOUT28_10	DOUT28_9	DOUT28_8	í	
--	--	--------------------	-----------	-----------	-----------	-----------	----------	----------	---	--

Table 211. ISPU_DOUT_28 register description

DOUT28 [15:0]	On a small assume and a substant	
11011128 115:01	General-purpose output.	
DOO 120_[10.0]	Ocheral parpose output.	

11.37 ISPU_DOUT_29_L (4Ah), ISPU_DOUT_29_H (4Bh)

ISPU output register 29 (R). This register is also accessible from ISPU at address 684Ah, 684Bh (R/W).

Table 212. ISPU_DOUT_29_L register

DOUT29_7 DOUT29_6 DOUT29_5 DOUT29_4 DOUT29_3 DOUT29_2 DOUT29_1 DOUT29_
--

Table 213. ISPU_DOUT_29_H register

DOUT29 15	DOUT29_14	DOUT29 13	DOUT29 12	DOUT29 11	DOUT29 10	DOUT29 9	DOUT29 8
200.200		200.200			200.20	200.20_0	200.20

Table 214. ISPU_DOUT_29 register description

DOUT29 [15:0]	General-purpose output.
DOU129 113.01	General-purpose output.

DS13892 - Rev 2 page 64/107

11.38 ISPU_DOUT_30_L (4Ch), ISPU_DOUT_30_H (4Dh)

ISPU output register 30 (R). This register is also accessible from ISPU at address 684Ch, 684Dh (R/W).

Table 215. ISPU_DOUT_30_L register

DOUT30_7	DOUT30_6	DOUT30_5	DOUT30_4	DOUT30_3	DOUT30_2	DOUT30_1	DOUT30_0	
----------	----------	----------	----------	----------	----------	----------	----------	--

Table 216. ISPU_DOUT_30_H register

[DOUT30_15	DOUT30_14	DOUT30_13	DOUT30_12	DOUT30_11	DOUT30_10	DOUT30_9	DOUT30_8
---	-----------	-----------	-----------	-----------	-----------	-----------	----------	----------

Table 217. ISPU_DOUT_30 register description

DOUT30_[15:0] General-purpose output.

11.39 ISPU_DOUT_31_L (4Eh), ISPU_DOUT_31_H (4Fh)

ISPU output register 31 (R). This register is also accessible from ISPU at address 684Eh, 684Fh (R/W).

Table 218. ISPU_DOUT_31_L register

	DOUT31_7	DOUT31_6	DOUT31_5	DOUT31_4	DOUT31_3	DOUT31_2	DOUT31_1	DOUT31_0	
--	----------	----------	----------	----------	----------	----------	----------	----------	--

Table 219. ISPU_DOUT_31_H register

	DOUT31_15	DOUT31_14	DOUT31_13	DOUT31_12	DOUT31_11	DOUT31_10	DOUT31_9	DOUT31_8
--	-----------	-----------	-----------	-----------	-----------	-----------	----------	----------

Table 220. ISPU_DOUT_31 register description

DOUT31 [15:0]	General-purpose output.
DOUTST 115.01	General-burbose outbut.

DS13892 - Rev 2 page 65/107

11.40 ISPU_INT1_CTRL0 (50h), ISPU_INT1_CTRL1 (51h), ISPU_INT1_CTRL2 (52h), ISPU_INT1_CTRL3 (53h)

ISPU INT1 configuration register (R/W). This register is also accessible from ISPU at address 6850h, 6851h, 6852h, 6853h (R).

Table 221. ISPU_INT1_CTRL0 register

| ISPU_INT1 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| _CTRL7 | _CTRL6 | _CTRL5 | _CTRL4 | _CTRL3 | _CTRL2 | _CTRL1 | _CTRL0 |

Table 222. ISPU_INT1_CTRL1 register

| ISPU_INT1 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| _CTRL15 | _CTRL14 | _CTRL13 | _CTRL12 | _CTRL11 | _CTRL10 | _CTRL9 | _CTRL8 |

Table 223. ISPU_INT1_CTRL2 register

| ISPU_INT1 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| _CTRL23 | _CTRL22 | _CTRL21 | _CTRL20 | _CTRL19 | _CTRL18 | _CTRL17 | _CTRL16 |

Table 224. ISPU_INT1_CTRL3 register

0	0	ISPU_INT1 _CTRL29	ISPU_INT1 _CTRL28	ISPU_INT1 _CTRL27	ISPU_INT1 _CTRL26	ISPU_INT1 _CTRL25	ISPU_INT1 _CTRL24
---	---	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------

Table 225. ISPU_INT1_CTRL register description

ISDIT INIT4 CEDI [30:0]	Routing 30-bit interrupt flags (in ISPU_INT_STATUS registers) to the INT1 pin. INT1_ISPU must be set to 1 also.
13F0_INTI_CTRE[29.0]	set to 1 also.

DS13892 - Rev 2 page 66/107

11.41 ISPU_INT2_CTRL0 (54h), ISPU_INT2_CTRL1 (55h), ISPU_INT2_CTRL2 (56h), ISPU_INT2_CTRL3 (57h)

ISPU INT2 configuration register (R/W). This register is also accessible from ISPU at address 6854h, 6855h, 6856h, 6857h (R).

Table 226. ISPU_INT2_CTRL0 register

| ISPU_INT2 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| _CTRL7 | _CTRL6 | _CTRL5 | _CTRL4 | _CTRL3 | _CTRL2 | _CTRL1 | _CTRL0 |

Table 227. ISPU_INT2_CTRL1 register

ISPU_INT	2 ISPU_INT2	ISPU_INT2	ISPU_INT2	ISPU_INT2	ISPU_INT2	ISPU_INT2	ISPU_INT2
_CTRL1	_CTRL14	_CTRL13	_CTRL12	_CTRL11	_CTRL10	_CTRL9	_CTRL8

Table 228. ISPU_INT2_CTRL2 register

| ISPU INT2 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| CTDI 22 | CTDI 22 | CTDI 24 | CTDI 20 | CTDI 10 | CTDI 10 | CTDI 17 | CTDI 16 |
| _CTRL23 | _CTRL22 | _CTRL21 | _CTRL20 | _CTRL19 | _CTRL18 | _CTRL17 | _CTRL16 |

Table 229. ISPU_INT2_CTRL3 register

0	0	ISPU_INT2	ISPU_INT2	ISPU_INT2	ISPU_INT2	ISPU_INT2	ISPU_INT2
U	0	_CTRL29	_CTRL28	_CTRL27	_CTRL26	_CTRL25	_CTRL24

Table 230. ISPU_INT2_CTRL register description

ISDIT INTO CEDITOUNI	Routing 30-bit interrupt flags (in ISPU_INT_STATUS registers) to the INT2 pin. INT2_ISPU must be set to 1 also.
13F0_IN12_C1RE[29.0]	set to 1 also.

DS13892 - Rev 2 page 67/107

11.42 ISPU_INT_STATUS0 (58h), ISPU_INT_STATUS1 (59h), ISPU_INT_STATUS2 (5Ah), ISPU_INT_STATUS3 (5Bh)

ISPU interrupt status register (R). This register is also accessible from ISPU at address 6858h, 6859h, 685Ah, 685Bh (R/W).

Table 231. ISPU_INT_STATUS0 register

| ISPU_INT_ |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| STATUS7 | STATUS6 | STATUS5 | STATUS4 | STATUS3 | STATUS2 | STATUS1 | STATUS0 |

Table 232. ISPU_INT_STATUS1 register

| ISPU_INT_ |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| STATUS15 | STATUS14 | STATUS13 | STATUS12 | STATUS11 | STATUS10 | STATUS9 | STATUS8 |

Table 233. ISPU_INT_STATUS2 register

| ISPU_INT_ |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| STATUS23 | STATUS22 | STATUS21 | STATUS20 | STATUS19 | STATUS18 | STATUS17 | STATUS16 |

Table 234. ISPU_INT_STATUS3 register

31A10329 31A10320 31A10320 31A10323 31A1032	0	0	ISPU_INT_ STATUS29	ISPU_INT_ STATUS28	ISPU_INT_ STATUS27	ISPU_INT_ STATUS26	ISPU_INT_ STATUS25	ISPU_INT_ STATUS24
---	---	---	-----------------------	-----------------------	-----------------------	-----------------------	-----------------------	-----------------------

Table 235. ISPU_INT_STATUS register description

ISPU_INT_STATUS[29:0]	30-bit interrupt flags.	
-----------------------	-------------------------	--

DS13892 - Rev 2 page 68/107

11.43 ISPU_ALGO0 (70h), ISPU_ALGO1 (71h), ISPU_ALGO2 (72h), ISPU_ALGO3 (73h)

ISPU algorithm register (R/W). This register is also accessible from ISPU at address 6870h, 6871h, 6872h, 6873h (R).

Table 236. ISPU_ALGO0 register

| ISPU_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ALGO7 | ALGO6 | ALGO5 | ALGO4 | ALGO3 | ALGO2 | ALGO1 | ALGO0 |

Table 237. ISPU_ALGO1 register

ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_
ALGO15	ALGO14	ALGO13	ALGO12	ALGO11	ALGO10	ALGO9	ALGO8

Table 238. ISPU_ALGO2 register

| ISPU_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ALGO23 | ALGO22 | ALGO21 | ALGO20 | ALGO19 | ALGO18 | ALGO17 | ALGO16 |

Table 239. ISPU_ALGO3 register

0	0	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_
		ALGO29	ALGO28	ALGO27	ALGO26	ALGO25	ALGO24

Table 240. ISPU_ALGO register description

ISPU_ALGO[29:0]	Enable configurations in order to run up to 30 independent algorithms.

DS13892 - Rev 2 page 69/107

12 ISPU functions register mapping

The table given below provides a list of the registers internally available in the ISPU core.

Table 241. Register map - ISPU functions internally available

ISPU address (hex)	Bytes	Name	IF access	ISPU access
6800	1	ISPU_GLB_CALL_EN	No	R/W
685C	1	ISPU_INT_PIN	No	R/W
6880-6881	2	ISPU_ARAW_X	No	R
6884-6885	2	ISPU_ARAW_Y	No	R
6888-6889	2	ISPU_ARAW_Z	No	R
688C-688D	2	ISPU_GRAW_X	No	R
6890-6891	2	ISPU_GRAW_Y	No	R
6894-6895	2	ISPU_GRAW_Z	No	R
6898-6899	2	ISPU_ERAW_0	No	R
689C-689D	2	ISPU_ERAW_1	No	R
68A0-68A1	2	ISPU_ERAW_2	No	R
68A4-68A5	2	ISPU_TEMP	No	R
68B8-68BB	4	ISPU_CALL_EN	No	R/W
6948-6949	2	ISPU_DTIME_0	No	R
694A-694B	2	ISPU_DTIME_1	No	R

Reserved registers must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

DS13892 - Rev 2 page 70/107

13 ISPU functions register description

13.1 ISPU_GLB_CALL_EN (6800h)

ISPU read/write access (6800h)

Table 242. ISPU_GLB_CALL_EN registers

-	-	-	-	-	-	-	ISPU_GLB_C
							ALL_LIN

Table 243. ISPU_GLB_CALL_EN register description

ISPU_GLB_CALL_EN	Enables internal interrupt generation to run algorithm routines.
------------------	--

13.2 ISPU_INT_PIN (685Ch)

ISPU read/write access (685Ch)

Table 244. ISPU_INT_PIN registers

	0	0	0 0	0	0	0		INT1
--	---	---	-----	---	---	---	--	------

Table 245. ISPU_INT_PIN register description

INT2	Flag for interrupt generation on INT2 pin.
INT1	Flag for interrupt generation on INT1 pin.

13.3 ISPU_ARAW_X_L (6880h), ISPU_ARAW_X_H (6881h)

ISPU read access (6880h, 6881h)

Table 246. ISPU_ARAW_X_L register

| ISPU_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ARAW_X_7 | ARAW_X_6 | ARAW_X_5 | ARAW_X_4 | ARAW_X_3 | ARAW_X_2 | ARAW_X_1 | ARAW_X_0 |

Table 247. ISPU_ARAW_X_H register

ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	
ARAW_X_15	ARAW_X_14	ARAW_X_13	ARAW_X_12	ARAW_X_11	ARAW_X_10	ARAW_X_9	ARAW_X_8	

Table 248. ISPU_ARAW_X register description

i o i o _ i i i i i _ i _ i _ i _ i _ i	ISPU_ARAW_X_[15:0]	Accelerometer X-axis output expressed in two's complement.
---	--------------------	--

DS13892 - Rev 2 page 71/107

13.4 ISPU_ARAW_Y_L (6884h), ISPU_ARAW_Y_H (6885h)

ISPU read access (6884h, 6885h)

Table 249. ISPU_ARAW_Y_L register

| ISPU_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ARAW_Y_7 | ARAW_Y_6 | ARAW_Y_5 | ARAW_Y_4 | ARAW_Y_3 | ARAW_Y_2 | ARAW_Y_1 | ARAW_Y_0 |

Table 250. ISPU_ARAW_Y_H register

ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	
ARAW_Y_15	ARAW_Y_14	ARAW_Y_13	ARAW_Y_12	ARAW_Y_11	ARAW_Y_10	ARAW_Y_9	ARAW_Y_8	

Table 251. ISPU_ARAW_Y register description

ISPU_ARAW_Y_[15:0] Accelerometer Y-axis output expressed in two's complement.

13.5 ISPU_ARAW_Z_L (6888h), ISPU_ARAW_Z_H (6889h)

ISPU read access (6888h, 6889h)

Table 252. ISPU_ARAW_Z_L register

| ISPU_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ARAW_Z_7 | ARAW_Z_6 | ARAW_Z_5 | ARAW_Z_4 | ARAW_Z_3 | ARAW_Z_2 | ARAW_Z_1 | ARAW_Z_0 |

Table 253. ISPU_ARAW_Z_H register

ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	
ARAW_Z_15	ARAW_Z_14	ARAW_Z_13	ARAW_Z_12	ARAW_Z_11	ARAW_Z_10	ARAW_Z_9	ARAW_Z_8	

Table 254. ISPU_ARAW_Z register description

ISPU_ARAW_Z_[15:0] Accelerometer Z-axis output expressed in two's complement.

13.6 ISPU_GRAW_X_L (688Ch), ISPU_GRAW_X_H (688Dh)

ISPU read access (688Ch, 688Dh)

Table 255. ISPU_GRAW_X_L register

| ISPU_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| GRAW_X_7 | GRAW_X_6 | GRAW_X_5 | GRAW_X_4 | GRAW_X_3 | GRAW_X_2 | GRAW_X_1 | GRAW_X_0 |

Table 256. ISPU_GRAW_X_H register

ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	
GRAW_X_15	GRAW_X_14	GRAW_X_13	GRAW_X_12	GRAW_X_11	GRAW_X_10	GRAW_X_9	GRAW_X_8	

Table 257. ISPU_GRAW_X register description

ISPU GRAW X [15:0]	Gyroscope pitch axis output expressed in two's complement.
101 0_01\AVV_A_[10.0]	Cyroscope pitch axis output expressed in two s complement.

DS13892 - Rev 2 page 72/107

13.7 ISPU_GRAW_Y_L (6890h), ISPU_GRAW_Y_L (6891h)

ISPU read access (6890h, 6891h)

Table 258. ISPU_GRAW_Y_L registers

| ISPU_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| GRAW_Y_7 | GRAW_Y_6 | GRAW_Y_5 | GRAW_Y_4 | GRAW_Y_3 | GRAW_Y_2 | GRAW_Y_1 | GRAW_Y_0 |

Table 259. ISPU_GRAW_Y_H registers

ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	
GRAW_Y_15	GRAW_Y_14	GRAW_Y_13	GRAW_Y_12	GRAW_Y_11	GRAW_Y_10	GRAW_Y_9	GRAW_Y_8	

Table 260. ISPU_GRAW_Y register description

ISPU_GRAW_Y_[15:0] Gyroscope roll axis output expressed in two's complement.

13.8 ISPU_GRAW_Z_L (6894h), ISPU_GRAW_Z_H (6895h)

ISPU read access (6894h, 6895h)

Table 261. ISPU_GRAW_Z_L registers

| ISPU_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| GRAW_Z_7 | GRAW_Z_6 | GRAW_Z_5 | GRAW_Z_4 | GRAW_Z_3 | GRAW_Z_2 | GRAW_Z_1 | GRAW_Z_0 |

Table 262. ISPU_GRAW_Z_H registers

ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_
GRAW_Z_15	GRAW_Z_14	GRAW_Z_13	GRAW_Z_12	GRAW_Z_11	GRAW_Z_10	GRAW_Z_9	GRAW_Z_8

Table 263. ISPU_GRAW_Z register description

ISPU_GRAW_Z_[15:0] Gyroscope yaw axis output expressed in two's complement.

13.9 ISPU_ERAW_0_L (6898h), ISPU_ERAW_0_H (6899h)

ISPU read access (6898h, 6899h)

Table 264. ISPU_ERAW_0_L registers

ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_
ERAW_0_7	MERAW_0_6	ERAW_0_5	ERAW_0_4	ERAW_0_3	ERAW_0_2	ERAW_0_1	ERAW_0_0

Table 265. ISPU_ERAW_0_H registers

ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_
ERAW_0_15	ERAW_0_14	ERAW_0_13	ERAW_0_12	ERAW_0_11	ERAW_0_10	ERAW_0_9	ERAW_0_8

Table 266. ISPU_ERAW_0 register description

ISPU ERAW 0 [15:0] External sensor data from SENSOR HUB 1 and SENSOR HUB 2	3 2
--	-----

DS13892 - Rev 2 page 73/107

13.10 ISPU_ERAW_1_L (689Ch), ISPU_ERAW_1_H (689Dh)

ISPU read access (689Ch, 689Dh)

Table 267. ISPU_ERAW_1_L register

| ISPU_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ERAW_1_7 | ERAW_1_6 | MRAW_Y_5 | ERAW_1_4 | ERAW_1_3 | ERAW_1_2 | ERAW_1_1 | ERAW_1_0 |

Table 268. ISPU_ERAW_1_H register

ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	
ERAW_1_15	ERAW_1_14	ERAW_1_13	ERAW_1_12	ERAW_1_11	ERAW_1_10	ERAW_1_9	ERAW_1_8	

Table 269. ISPU_ERAW_1 register description

ISPU_ERAW_1_[15:0] External sensor data from SENSOR_HUB_3 and SENSOR_HUB_4.

13.11 ISPU_ERAW_2_L (68A0h), ISPU_ERAW_2_H (68A1h)

ISPU read access (68A0h, 68A1h)

Table 270. ISPU_ERAW_2_L register

| ISPU_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ERAW_2_7 | ERAW_2_6 | ERAW_2_5 | ERAW_2_4 | ERAW_2_3 | ERAW_2_2 | ERAW_2_1 | ERAW_2_0 |

Table 271. ISPU_ERAW_2_H register

ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	
ERAW_2_15	ERAW_2_14	ERAW_2_13	ERAW_2_12	ERAW_2_11	ERAW_2_10	ERAW_2_9	ERAW_2_8	

Table 272. ISPU_ERAW_2 register description

ISPU_ERAW_2_[15:0] External sensor data from SENSOR_HUB_5 and SENSOR_HUB_6.

13.12 ISPU_TEMP_L (68A4h), ISPU_TEMP_H (68A5h)

ISPU read access (68A4h, 68A5h)

Table 273. ISPU_TEMP_L register

| ISPU_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TEMP_7 | TEMP_6 | TEMP_5 | TEMP_4 | TEMP_3 | TEMP_2 | TEMP_1 | TEMP_0 |

Table 274. ISPU_TEMP_H register

ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_
TEMP_15	TEMP_14	TEMP_13	TEMP_12	TEMP_11	TEMP_10	TEMP_9	TEMP_8

Table 275. ISPU_TEMP register description

ISPU TEMP [15:0] Temperature sensor output expressed in two's complement.	
---	--

DS13892 - Rev 2 page 74/107

13.13 ISPU_CALL_EN_0 (68B8h), ISPU_CALL_EN_1 (68B9h), ISPU_CALL_EN_2 (68BAh), ISPU_CALL_EN_3 (68BBh)

ISPU read/write access (68B8h, 68B9h, 68BAh, 68BBh)

Table 276. ISPU_CALL_EN_0 register

ISPU_CALL_	O ⁽¹⁾						
ALGO_6	ALGO_5	ALGO_4	ALGO_3	ALGO_2	ALGO1	ALGO_0	0.7

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 277. ISPU_CALL_EN_1 register

| ISPU_CALL_ |
|------------|------------|------------|------------|------------|------------|------------|------------|
| ALGO_14 | ALGO_13 | ALGO_12 | ALGO_11 | ALGO_10 | ALGO_9 | ALGO_8 | ALGO_7 |

Table 278. ISPU_CALL_EN_2 register

| ISPU_CALL_ |
|------------|------------|------------|------------|------------|------------|------------|------------|
| ALGO_22 | ALGO_21 | ALGO_20 | ALGO_19 | ALGO_18 | ALGO_17 | ALGO_16 | ALGO_15 |

Table 279. ISPU_CALL_EN_3 register

0(1)	ISPU_CALL_						
0(1)	ALGO_29	ALGO_28	ALGO_27	ALGO_26	ALGO_25	ALGO_24	ALGO_23

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 280. ISPU_CALL_EN register description

ISDIT CALL ALCO 130:01	If bit i=1, IRQ is generated for the execution of ISPU_ALGO_(i-1). After it is written to 1, it remains
ISPU_CALL_ALGO_[29.0]	If bit i=1, IRQ is generated for the execution of ISPU_ALGO_(i-1). After it is written to 1, it remains at 1 until the ISPU_ALGO_(i-1) routine is completed.

DS13892 - Rev 2 page 75/107

13.14 ISPU_DTIME_0_L (6948h), ISPU_DTIME_0_H (6949h), ISPU_DTIME_1_L (694Ah), ISPU_DTIME_1_H (694Bh)

ISPU read access (6948h, 6949h, 694Ah, 694Bh)

Table 281. ISPU_DTIME_0_L output register

| ISPU_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| DTIME_7 | DTIME_6 | DTIME_5 | DTIME_4 | DTIME_3 | DTIME_2 | DTIME_1 | DTIME_0 |

Table 282. ISPU_DTIME_0_H output register

ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	ISPU_	
DTIME_15	DTIME_14	DTIME_13	DTIME_12	DTIME_11	DTIME_10	DTIME_9	DTIME_8	

Table 283. ISPU_DTIME_1_L output register

| ISPU_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| DTIME_23 | DTIME_22 | DTIME_21 | DTIME_20 | DTIME_19 | DTIME_18 | DTIME_17 | DTIME_16 |

Table 284. ISPU_DTIME_1_H output register

| ISPU_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| DTIME_31 | DTIME_30 | DTIME_29 | DTIME_28 | DTIME_27 | DTIME_26 | DTIME_25 | DTIME_24 |

Table 285. ISPU_DTIME output register description

ISPU_DTIME_[31:0] Actual delta time at 104 Hz (expressed in seconds): it is represented as a single precision floating-point number.

DS13892 - Rev 2 page 76/107

14 Sensor hub register mapping

The table given below provides a list of the registers for the sensor hub functions available in the device and the corresponding addresses. The sensor hub registers are accessible when bit SHUB_REG_ACCESS is set to 1 in FUNC_CFG_ACCESS (01h).

Table 286. Registers address map

		Re	gister address	2.5	
Name	Туре	Hex	Binary	Default	Comment
SENSOR_HUB_1	R	02	0000010	output	
SENSOR_HUB_2	R	03	00000011	output	
SENSOR_HUB_3	R	04	00000100	output	
SENSOR_HUB_4	R	05	00000101	output	
SENSOR_HUB_5	R	06	00000110	output	
SENSOR_HUB_6	R	07	00000111	output	
SENSOR_HUB_7	R	08	00001000	output	
SENSOR_HUB_8	R	09	00001001	output	
SENSOR_HUB_9	R	0A	00001010	output	
SENSOR_HUB_10	R	0B	00001011	output	
SENSOR_HUB_11	R	0C	00001100	output	
SENSOR_HUB_12	R	0D	00001101	output	
SENSOR_HUB_13	R	0E	00001110	output	
SENSOR_HUB_14	R	0F	00001111	output	
SENSOR_HUB_15	R	10	00010000	output	
SENSOR_HUB_16	R	11	00010001	output	
SENSOR_HUB_17	R	12	00010010	output	
SENSOR_HUB_18	R	13	00010011	output	
MASTER_CONFIG	R/W	14	00010100	00000000	
SLV0_ADD	R/W	15	00010101	00000000	
SLV0_SUBADD	R/W	16	00010110	00000000	
SLV0_CONFIG	R/W	17	00010111	00000000	
SLV1_ADD	R/W	18	00011000	00000000	
SLV1_SUBADD	R/W	19	00011001	00000000	
SLV1_CONFIG	R/W	1A	00011010	00000000	
SLV2_ADD	R/W	1B	00011011	00000000	
SLV2_SUBADD	R/W	1C	00011100	00000000	
SLV2_CONFIG	R/W	1D	00011101	00000000	
SLV3_ADD	R/W	1E	00011110	00000000	
SLV3_SUBADD	R/W	1F	00011111	00000000	
SLV3_CONFIG	R/W	20	00100000	00000000	
DATAWRITE_SLV0	R/W	21	00100001	00000000	
STATUS_MASTER	R	22	00100010	output	

Reserved registers must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

DS13892 - Rev 2 page 77/107

15 Sensor hub register description

15.1 SENSOR_HUB_1 (02h)

Sensor hub output register (R)

First byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 287. SENSOR_HUB_1 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub1_7 | Hub1_6 | Hub1_5 | Hub1_4 | Hub1_3 | Hub1_2 | Hub1_1 | Hub1_0 |

Table 288. SENSOR_HUB_1 register description

SensorHub1_[7:0]	First byte associated to external sensors.
------------------	--

15.2 SENSOR_HUB_2 (03h)

Sensor hub output register (R)

Second byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 289. SENSOR_HUB_2 register

Sensor								
Hub2_7	Hub2_6	Hub2_5	Hub2_4	Hub2_3	Hub2_2	Hub2_1	Hub2_0	

Table 290. SENSOR_HUB_2 register description

ensorHub2_[7:0]	Second byte associated to external sensors.
-----------------	---

15.3 SENSOR_HUB_3 (04h)

Sensor hub output register (R)

Third byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 291. SENSOR_HUB_3 register

Ser	nsor	Sensor						
Hub	3_7	Hub3_6	Hub3_5	Hub3_4	Hub3_3	Hub3_2	Hub3_1	Hub3_0

Table 292. SENSOR_HUB_3 register description

SensorHub3_[7:0]	Third byte associated to external sensors.	
------------------	--	--

DS13892 - Rev 2 page 78/107

15.4 SENSOR_HUB_4 (05h)

Sensor hub output register (R)

Fourth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 293. SENSOR_HUB_4 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub4_7 | Hub4_6 | Hub4_5 | Hub4_4 | Hub4_3 | Hub4_2 | Hub4_1 | Hub4_0 |

Table 294. SENSOR_HUB_4 register description

SensorHub4_[7:0] Fourth byte associated to external sensors.		SensorHub4_[7:0]	Fourth byte associated to external sensors.
--	--	------------------	---

15.5 SENSOR_HUB_5 (06h)

Sensor hub output register (R)

Fifth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 295. SENSOR_HUB_5 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub5_7 | Hub5_6 | Hub5_5 | Hub5_4 | Hub5_3 | Hub5_2 | Hub5_1 | Hub5_0 |

Table 296. SENSOR_HUB_5 register description

SensorHub5 [7:0]	Fifth byte associated to external sensors.
00110011100_[1:0]	Third by to decodated to external contents.

15.6 SENSOR_HUB_6 (07h)

Sensor hub output register (R)

Sixth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 297. SENSOR_HUB_6 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub6_7 | Hub6_6 | Hub6_5 | Hub6_4 | Hub6_3 | Hub6_2 | Hub6_1 | Hub6_0 |

Table 298. SENSOR_HUB_6 register description

SensorHub6_[7:0]	Sixth byte associated to external sensors.	
------------------	--	--

DS13892 - Rev 2 page 79/107

15.7 SENSOR_HUB_7 (08h)

Sensor hub output register (R)

Seventh byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 299. SENSOR_HUB_7 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub7_7 | Hub7_6 | Hub7_5 | Hub7_4 | Hub7_3 | Hub7_2 | Hub7_1 | Hub7_0 |

Table 300. SENSOR_HUB_7 register description

SensorHub7_[7:0]	Seventh byte associated to external sensors.

15.8 SENSOR_HUB_8 (09h)

Sensor hub output register (R)

Eighth byte associated to external sensors. The content of the register is consistent with the $SLVx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 301. SENSOR_HUB_8 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub8_7 | Hub8_6 | Hub8_5 | Hub8_4 | Hub8_3 | Hub8_2 | Hub8_1 | Hub8_0 |

Table 302. SENSOR_HUB_8 register description

SensorHub8 [7:0]	Eighth byte associated to external sensors.
[]	= ig. ii. b) to account a contental content.

15.9 **SENSOR_HUB_9 (0Ah)**

Sensor hub output register (R)

Ninth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 303. SENSOR_HUB_9 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub9_7 | Hub9_6 | Hub9_5 | Hub9_4 | Hub9_3 | Hub9_2 | Hub9_1 | Hub9_0 |

Table 304. SENSOR_HUB_9 register description

SensorHub9_[7:0]	Ninth byte associated to external sensors.	
------------------	--	--

DS13892 - Rev 2 page 80/107

15.10 SENSOR_HUB_10 (0Bh)

Sensor hub output register (R)

Tenth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 305. SENSOR_HUB_10 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub10_7 | Hub10_6 | Hub10_5 | Hub10_4 | Hub10_3 | Hub10_2 | Hub10_1 | Hub10_0 |

Table 306. SENSOR_HUB_10 register description

nsorHub10_[7:0]	Tenth byte associated to external sensors.
-----------------	--

15.11 SENSOR_HUB_11 (0Ch)

Sensor hub output register (R)

Eleventh byte associated to external sensors. The content of the register is consistent with the $SLVx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 307. SENSOR_HUB_11 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub11_7 | Hub11_6 | Hub11_5 | Hub11_4 | Hub11_3 | Hub11_2 | Hub11_1 | Hub11_0 |

Table 308. SENSOR_HUB_11 register description

Senson Tubit 17.01 Eleventi Divie associated to external sensors.	SensorHub11 [7:0]	Eleventh byte associated to external sensors.
---	-------------------	---

15.12 SENSOR_HUB_12 (0Dh)

Sensor hub output register (R)

Twelfth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 309. SENSOR_HUB_12 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub12_7 | Hub12_6 | Hub12_5 | Hub12_4 | Hub12_3 | Hub12_2 | Hub12_1 | Hub12_0 |

Table 310. SENSOR_HUB_12 register description

SensorHub12_[7:0]	Twelfth byte associated to external sensors.	
-------------------	--	--

DS13892 - Rev 2 page 81/107

15.13 SENSOR_HUB_13 (0Eh)

Sensor hub output register (R)

Thirteenth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 311. SENSOR_HUB_13 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub13_7 | Hub13_6 | Hub13_5 | Hub13_4 | Hub13_3 | Hub13_2 | Hub13_1 | Hub13_0 |

Table 312. SENSOR_HUB_13 register description

SensorHub13_[7:0]	Thirteenth byte associated to external sensors.
_, ,	,

15.14 SENSOR HUB 14 (0Fh)

Sensor hub output register (R)

Fourteenth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 313. SENSOR_HUB_14 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub14_7 | Hub14_6 | Hub14_5 | Hub14_4 | Hub14_3 | Hub14_2 | Hub14_1 | Hub14_0 |

Table 314. SENSOR_HUB_14 register description

SensorHub14 [7:0]	Fourteenth byte associated to external sensors.
0011001110011_[1.10]	Tourtouritr by to decodated to external concerts.

15.15 SENSOR_HUB_15 (10h)

Sensor hub output register (R)

Fifteenth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 315. SENSOR_HUB_15 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub15_7 | Hub15_6 | Hub15_5 | Hub15_4 | Hub15_3 | Hub15_2 | Hub15_1 | Hub15_0 |

Table 316. SENSOR_HUB_15 register description

SensorHub15_[7:0] Fifteenth byte associated to external sensors.	SensorHub15_[7:0]
--	-------------------

DS13892 - Rev 2 page 82/107

15.16 SENSOR_HUB_16 (11h)

Sensor hub output register (R)

Sixteenth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 317. SENSOR_HUB_16 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub16_7 | Hub16_6 | Hub16_5 | Hub16_4 | Hub16_3 | Hub16_2 | Hub16_1 | Hub16_0 |

Table 318. SENSOR_HUB_16 register description

	SensorHub16_[7:0]	Sixteenth byte associated to external sensors.	
--	-------------------	--	--

15.17 SENSOR_HUB_17 (12h)

Sensor hub output register (R)

Seventeenth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 319. SENSOR_HUB_17 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub17_7 | Hub17_6 | Hub17_5 | Hub17_4 | Hub17_3 | Hub17_2 | Hub17_1 | Hub17_0 |

Table 320. SENSOR_HUB_17 register description

	SensorHub17_[7:0]	Seventeenth byte associated to external sensors.
--	-------------------	--

15.18 SENSOR_HUB_18 (13h)

Sensor hub output register (R)

Eighteenth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 321. SENSOR_HUB_18 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub18_7 | Hub18_6 | Hub18_5 | Hub18_4 | Hub18_3 | Hub18_2 | Hub18_1 | Hub18_0 |

Table 322. SENSOR_HUB_18 register description

SensorHub18_[7:0] Eighteenth byte associated to external sensors.	
---	--

DS13892 - Rev 2 page 83/107

15.19 MASTER_CONFIG (14h)

Master configuration register (R/W)

Table 323. MASTER_CONFIG register

RST_MASTER	WRITE_	START_	PASS_THROUGH	SHUB_	MASTER	AUX_SENS	AUX_SENS
_REGS	ONCE	CONFIG	_MODE	PU_EN	_ON	_ON_1	_ON_0

Table 324. MASTER_CONFIG register description

RST_MASTER_REGS	Resets master logic and output registers. Must be set to 1 and then set it to 0. Default value: 0
	Slave 0 write operation is performed only at the first sensor hub cycle.
WRITE_ONCE	Default value: 0
	(0: write operation for each sensor hub cycle;
	1: write operation only for the first sensor hub cycle)
	Selects sensor hub trigger signal. Default value: 0
START_CONFIG	(0: sensor hub trigger signal is the accelerometer/gyro data-ready;
	1: sensor hub trigger signal is external to INT2 pin)
	I ² C interface pass-through. Default value: 0
PASS_THROUGH_MODE	(0: pass-through disabled;
	1: pass-through enabled, main I ² C line is short-circuited with the auxiliary line)
	Enables master I ² C pull-up. Default value: 0
SHUB_PU_EN	(0: internal pull-up on auxiliary I ² C line disabled;
	1: internal pull-up on auxiliary I ² C line enabled)
MASTER ON	Enables sensor hub I ² C master. Default: 0
W/OTEN_ON	(0: master I ² C of sensor hub disabled; 1: master I ² C of sensor hub enabled)
	Number of external sensors to be read by the sensor hub.
	(00: one sensor;
AUX_SENS_ON_[1:0]	01: two sensors;
	10: three sensors;
	11: four sensors)

DS13892 - Rev 2 page 84/107

15.20 SLV0_ADD (15h)

I²C slave address of the first external sensor (sensor 1) register (R/W)

Table 325. SLV0_ADD register

slave0_ slave0_ slave0_ slave0_ slave0_ slave0_ slave0_ slave0_ add6 add5 add4 add3 add2 add1

Table 326. SLV0_ADD register description

slave0_add[6:0]	I ² C slave address of sensor 1 that can be read by the sensor hub.
	Default value: 0000000
rw_0	Read/write operation on sensor 1. Default value: 0
	(0: write operation; 1: read operation)

15.21 SLV0_SUBADD (16h)

Address of register on the first external sensor (sensor 1) register (R/W)

Table 327. SLV0_SUBADD register

| slave0_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 328. SLV0_SUBADD register description

slave0_reg[7:0] Address of register on (15h). Default value: 00	sensor1 that has to be read/written according to the rw_0 bit value in SLV0_ADD 0000000
---	---

15.22 SLV0_CONFIG (17h)

First external sensor (sensor 1) configuration and sensor hub settings register (R/W)

Table 329. SLV0_CONFIG register

SHUB_ ODR_1 ODR_0 0(1) 0(1) 0(1)	Slave0_	Slave0_	Slave0_
	numop2	numop1	numop0

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 330. SLV0_CONFIG register description

SHUB_ODR_[1:0]	Rate at which the master communicates. Default value: 00
	(00: 104 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 104 Hz);
	01: 52 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 52 Hz);
	10: 26 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 26 Hz);
	11: 12.5 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 12.5 Hz)
Slave0_numop[2:0]	Number of read operations on sensor 1. Default value: 000

DS13892 - Rev 2 page 85/107

15.23 SLV1_ADD (18h)

I²C slave address of the second external sensor (sensor 2) register (R/W)

Table 331. SLV1_ADD register

Table 332. SLV1_ADD register description

Slave1_add[6:0]	I ² C slave address of sensor 2 that can be read by the sensor hub.
	Default value: 0000000
n 1	Enables read operation on sensor 2. Default value: 0
1_1	(0: read operation disabled; 1: read operation enabled)

15.24 SLV1_SUBADD (19h)

Address of register on the second external sensor (sensor 2) register (R/W)

Table 333. SLV1_SUBADD register

| Slave1_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 334. SLV1_SUBADD register description

Slave1_reg[7:0] Address of register on sensor 2 that has to be read/written according to the r_1 bit value in SLV1_ADD (18h).

15.25 SLV1_CONFIG (1Ah)

Second external sensor (sensor 2) configuration register (R/W)

Table 335. SLV1_CONFIG register

0 ⁽¹⁾	Slave1_ numop2	Slave1_ numop1	Slave1_ numop0					
------------------	------------------	------------------	------------------	------------------	-------------------	-------------------	-------------------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 336. SLV1_CONFIG register description

Slave1 numop[2:0]	Number of read operations on sensor 2. Default value: 000	

DS13892 - Rev 2 page 86/107

15.26 SLV2_ADD (1Bh)

I²C slave address of the third external sensor (sensor 3) register (R/W)

Table 337. SLV2_ADD register

|--|

Table 338. SLV2_ADD register description

Slave2_add[6:0]	I ² C slave address of sensor 3 that can be read by the sensor hub.
r 2	Enables read operation on sensor 3. Default value: 0
1_2	(0: read operation disabled; 1: read operation enabled)

15.27 SLV2_SUBADD (1Ch)

Address of register on the third external sensor (sensor 3) register (R/W)

Table 339. SLV2_SUBADD register

| Slave2_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 340. SLV2_SUBADD register description

15.28 SLV2_CONFIG (1Dh)

Third external sensor (sensor 3) configuration register (R/W)

Table 341. SLV2_CONFIG register

0 ⁽¹⁾	0(1)	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	Slave2_ numop2	Slave2_ numop1	Slave2_ numop0	
------------------	------	------------------	------------------	------------------	-------------------	-------------------	-------------------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 342. SLV2_CONFIG register description

Slave2 numop[2:0]	Number of read operations on sensor 3. Default value: 000

DS13892 - Rev 2 page 87/107

15.29 SLV3_ADD (1Eh)

I²C slave address of the fourth external sensor (sensor 4) register (R/W)

Table 343. SLV3_ADD register

add6 add5 add4 add3 add2 add1 add0 '-'
--

Table 344. SLV3_ADD register description

Slave3_add[6:0]	I ² C slave address of sensor 4 that can be read by the sensor hub.
r 2	Enables read operation on sensor 4. Default value: 0
1_3	(0: read operation disabled; 1: read operation enabled)

15.30 SLV3_SUBADD (1Fh)

Address of register on the fourth external sensor (sensor 4) register (R/W)

Table 345. SLV3_SUBADD register

| Slave3_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 346. SLV3_SUBADD register description

Slave3_reg[7:0] Address of register on sensor 4 that has to be read according to the r_3 bit value in SLV3_ADD (1Eh).

15.31 SLV3_CONFIG (20h)

Fourth external sensor (sensor 4) configuration register (R/W)

Table 347. SLV3_CONFIG register

	0 ⁽¹⁾	Slave3_ numop2	Slave3_ numop1	Slave3_ numop0					
--	------------------	------------------	------------------	------------------	------------------	-------------------	-------------------	-------------------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 348. SLV3_CONFIG register description

Slave3 numop[2:0]	Number of read operations on sensor 4. Default value: 000
Siaves Hulliopiz.oj	Inditibet of feat operations of School 4. Default value, 000

DS13892 - Rev 2 page 88/107

15.32 DATAWRITE_SLV0 (21h)

Data to be written into the slave device register (R/W)

Table 349. DATAWRITE_SLV0 register

| Slave0_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| dataw7 | dataw6 | dataw5 | dataw4 | dataw3 | dataw2 | dataw1 | dataw0 |

Table 350. DATAWRITE_SLV0 register description

ClaveO deterritzio	Data to be written into the slave 0 device according to the rw_0 bit in register SLV0_ADD (15h).	
Slave0_dataw[7:0]	Default value: 00000000	

15.33 STATUS_MASTER (22h)

Sensor hub source register (R)

Table 351. STATUS_MASTER register

Table 352. STATUS_MASTER register description

WR_ONCE_DONE	When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
	Sensor hub communication status. Default value: 0
SENS_HUB_ENDOP	(0: sensor hub communication not concluded;
	1: sensor hub communication concluded)

DS13892 - Rev 2 page 89/107

16 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

16.1 Soldering information

The LGA package is compliant with the ECOPACK and RoHS standard.

It is qualified for soldering heat resistance according to JEDEC J-STD-020.

For land pattern and soldering recommendations, consult technical note TN0018 available on www.st.com.

16.2 LGA-14L package information

Figure 17. LGA-14L 2.5 x 3.0 x 0.86 mm package outline and mechanical data

Dimensions are in millimeter unless otherwise specified General tolerance is +/-0.1mm unless otherwise specified

OUTER DIMENSIONS

ITEM	DIMENSION [mm]	TOLERANCE [mm]
Length [L]	2.50	±0.1
Width [W]	3.00	±0.1
Height [H]	0.86	MAX

DM00249496_5

DS13892 - Rev 2 page 90/107

16.3 LGA-14 packing information

Po 4.00±0.10(II) E1 1.75<u>±</u>0.10 Ø 1.50 0.00 0.30±0.05 D1 Ø1.50 MIN. R0.20 TYP SECTION Y-Y SECTION X-X Measured from centreline of sprocket hole to controlline of pocket. Cumulative foliarance of 10 sprocket holes is 2.02. Measured from centreline of sprocket hole to centreline of pocket. Other material available. (1) +/- 0.05 Ao Во 3.30 +/- 0.05 (11) Ko 1.00 +/- 0.10 (111) +/- 0.05 +/- 0.10 +/- 0.30 F 5.50 8.00 (IV) Forming format : Press form - 17-B W Required length: 170 meter / 22B3 reel ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Figure 18. Carrier tape information for LGA-14 package

Figure 19. LGA-14 package orientation in carrier tape

DS13892 - Rev 2 page 91/107

G measured at hub

40mm min.
Access hole at slot location

Tape slot in core for tape start 2.5mm min. width

Figure 20. Reel information for carrier tape of LGA-14 package

Table 353. Reel dimensions for carrier tape of LGA-14 package

Full radius

Reel dimensions (mm)			
A (max)	330		
B (min)	1.5		
С	13 ±0.25		
D (min)	20.2		
N (min)	60		
G	12.4 +2/-0		
T (max)	18.4		

DS13892 - Rev 2 page 92/107

Revision history

Table 354. Document revision history

Date	Version	Changes
22-Dec-2021	1	Initial release
01-Jun-2022	2	First public release

DS13892 - Rev 2 page 93/107

Contents

1	Ove	rview		2		
2	ISPL	J (intelligent sensor processing unit)3				
3	Pin	descrip	tion	5		
	3.1	Pin co	nnections	6		
4	Mod	lule spe	ecifications	8		
	4.1	•	anical characteristics			
	4.2	Electri	cal characteristics	10		
	4.3	Tempe	erature sensor characteristics	11		
	4.4	•	nunication interface characteristics			
		4.4.1	SPI - serial peripheral interface	12		
		4.4.2	I ² C - inter-IC control interface	14		
	4.5	Absolu	ute maximum ratings	15		
	4.6	Termin	nology	16		
		4.6.1	Sensitivity	16		
		4.6.2	Zero-g and zero-rate level	16		
5	Digi	tal inter	faces	17		
	5.1	I ² C/SP	PI interface	17		
		5.1.1	I ² C serial interface	17		
		5.1.2	SPI bus interface	19		
	5.2	Master	r I ² C interface	22		
6	Fun	ctionali	ty	23		
	6.1	Opera	ting modes	23		
	6.2	Accele	erometer power modes	23		
	6.3	Gyroso	cope power modes	23		
	6.4	Block	diagram of filters	24		
		6.4.1	Block diagram of the accelerometer filters	24		
		6.4.2	Block diagram of the gyroscope filter	24		
	6.5	Tempe	erature sensor	24		
7	App	lication	hints	25		
	7.1	LSM6	DSO16IS electrical connections in mode 1	25		
	7.2	LSM6	DSO16IS electrical connections in mode 2	26		
8	Reg	ister ma	apping	29		
9	Reg	ister de	scription	31		
	9.1		_CFG_ACCESS (01h)			

	9.2	PIN_CTRL (02h)	31
	9.3	DRDY_PULSED_REG (0Bh)	32
	9.4	INT1_CTRL (0Dh)	32
	9.5	INT2_CTRL (0Eh)	33
	9.6	WHO_AM_I (0Fh)	33
	9.7	CTRL1_XL (10h)	34
	9.8	CTRL2_G (11h)	35
	9.9	CTRL3_C (12h)	36
	9.10	CTRL4_C (13h)	36
	9.11	CTRL5_C (14h)	37
	9.12	CTRL6_C (15h)	37
	9.13	CTRL7_G (16h)	38
	9.14	CTRL9_C (18h)	38
	9.15	CTRL10_C (19h)	39
	9.16	ISPU_INT_STATUS0_MAINPAGE (1Ah), ISPU_INT_STATUS1_MAINPAGE (ISPU_INT_STATUS2_MAINPAGE (1Ch), ISPU_INT_STATUS3_MAINPAGE (1Dh)	
	9.17	STATUS_REG (1Eh)	40
	9.18	OUT_TEMP_L (20h), OUT_TEMP_H (21h).	40
	9.19	OUTX_L_G (22h) and OUTX_H_G (23h)	41
	9.20	OUTY_L_G (24h) and OUTY_H_G (25h)	41
	9.21	OUTZ_L_G (26h) and OUTZ_H_G (27h)	42
	9.22	OUTX_L_A (28h) and OUTX_H_A (29h)	43
	9.23	OUTY_L_A (2Ah) and OUTY_H_A (2Bh)	
	9.24	OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh)	44
	9.25	STATUS_MASTER_MAINPAGE (39h)	45
	9.26	TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43	h) 45
	9.27	MD1_CFG (5Eh)	46
	9.28	MD2_CFG (5Fh)	46
	9.29	INTERNAL_FREQ_FINE (63h)	46
	9.30	ISPU_DUMMY_CFG_1_L (73h) and ISPU_DUMMY_CFG_1_H (74h)	47
	9.31	ISPU_DUMMY_CFG_2_L (75h) and ISPU_DUMMY_CFG_2_H (76h)	47
	9.32	ISPU_DUMMY_CFG_3_L (77h) and ISPU_DUMMY_CFG_3_H (78h)	48
	9.33	ISPU_DUMMY_CFG_4_L (79h) and ISPU_DUMMY_CFG_4_H (7Ah)	49
10	ISPU	interaction register mapping	50
11	ISPU	interaction register description	52
	11.1	ISPU_CONFIG (02h)	52

11.2	ISPU_STATUS (04h)	52
11.3	ISPU_MEM_SEL (08h)	53
11.4	ISPU_MEM_ADDR1 (09h), ISPU_MEM_ADDR0 (0Ah)	53
11.5	ISPU_MEM_DATA (0Bh)	53
11.6	ISPU_IF2S_FLAG_L (0Ch), ISPU_IF2S_FLAG_H (0Dh)	54
11.7	ISPU_S2IF_FLAG_L (0Eh), ISPU_S2IF_FLAG_H (0Fh)	54
11.8	ISPU_DOUT_00_L (10h), ISPU_DOUT_00_H (11h)	55
11.9	ISPU_DOUT_01_L (12h), ISPU_DOUT_01_H (13h)	55
11.10	ISPU_DOUT_02_L (14h), ISPU_DOUT_02_H (15h)	55
11.11	ISPU_DOUT_03_L (16h), ISPU_DOUT_03_H (17h)	56
11.12	ISPU_DOUT_04_L (18h), ISPU_DOUT_04_H (19h)	56
11.13	ISPU_DOUT_05_L (1Ah), ISPU_DOUT_05_H (1Bh)	56
11.14	ISPU_DOUT_06_L (1Ch), ISPU_DOUT_06_H (1Dh)	57
11.15	ISPU_DOUT_07_L (1Eh), ISPU_DOUT_07_H (1Fh)	57
11.16	ISPU_DOUT_08_L (20h), ISPU_DOUT_08_H (21h)	57
11.17	ISPU_DOUT_09_L (22h), ISPU_DOUT_09_H (23h)	58
11.18	ISPU_DOUT_10_L (24h), ISPU_DOUT_10_H (25h)	58
11.19	ISPU_DOUT_11_L (26h), ISPU_DOUT_11_H (27h)	58
11.20	ISPU_DOUT_12_L (28h), ISPU_DOUT_12_H (29h)	59
11.21	ISPU_DOUT_13_L (2Ah), ISPU_DOUT_13_H (2Bh).	59
11.22	ISPU_DOUT_14_L (2Ch), ISPU_DOUT_14_H (2Dh)	59
11.23	ISPU_DOUT_15_L (2Eh), ISPU_DOUT_15_H (2Fh)	60
11.24	ISPU_DOUT_16_L (30h), ISPU_DOUT_16_H (31h)	60
11.25	ISPU_DOUT_17_L (32h), ISPU_DOUT_17_H (33h)	60
	ISPU_DOUT_18_L (34h), ISPU_DOUT_18_H (35h)	
11.27	ISPU_DOUT_19_L (36h), ISPU_DOUT_19_H (37h)	61
11.28	ISPU_DOUT_20_L (38h), ISPU_DOUT_20_H (39h)	61
11.29	ISPU_DOUT_21_L (3Ah), ISPU_DOUT_21_H (3Bh)	62
11.30	ISPU_DOUT_22_L (3Ch), ISPU_DOUT_22_H (3Dh)	62
11.31	ISPU_DOUT_23_L (3Eh), ISPU_DOUT_23_H (3Fh)	62
11.32	ISPU_DOUT_24_L (40h), ISPU_DOUT_24_H (41h)	63
11.33	ISPU_DOUT_25_L (42h), ISPU_DOUT_25_H (43h)	63
11.34	ISPU_DOUT_26_L (44h), ISPU_DOUT_26_H (45h)	63
11.35	ISPU_DOUT_27_L (46h), ISPU_DOUT_27_H (47h)	64
11.36	ISPU_DOUT_28_L (48h), ISPU_DOUT_28_H (49h)	64
11.37	ISPU_DOUT_29_L (4Ah), ISPU_DOUT_29_H (4Bh)	64

DS13892 - Rev 2 page 96/107

	11.38	ISPU_DOUT_30_L (4Ch), ISPU_DOUT_30_H (4Dh)	65
	11.39	ISPU_DOUT_31_L (4Eh), ISPU_DOUT_31_H (4Fh)	65
		ISPU_INT1_CTRL0 (50h), ISPU_INT1_CTRL1 (51h), ISPU_INT1_CTRL2 (ISPU_INT1_CTRL3 (53h)	(52h),
	11.41	ISPU_INT2_CTRL0 (54h), ISPU_INT2_CTRL1 (55h), ISPU_INT2_CTRL2 (ISPU_INT2_CTRL3 (57h)	
	11.42	ISPU_INT_STATUS0 (58h), ISPU_INT_STATUS1 (59h), ISPU_INT_STATUS2 (ISPU_INT_STATUS3 (5Bh)	5Ah),
	11.43	ISPU_ALGO0 (70h), ISPU_ALGO1 (71h), ISPU_ALGO2 (72h), ISPU_ALGO3 (73h)	69
12	ISPU	functions register mapping	70
13	ISPU	functions register description	71
	13.1	ISPU_GLB_CALL_EN (6800h)	
	13.2	ISPU_INT_PIN (685Ch)	71
	13.3	ISPU_ARAW_X_L (6880h), ISPU_ARAW_X_H (6881h)	71
	13.4	ISPU_ARAW_Y_L (6884h), ISPU_ARAW_Y_H (6885h)	72
	13.5	ISPU_ARAW_Z_L (6888h), ISPU_ARAW_Z_H (6889h)	72
	13.6	ISPU_GRAW_X_L (688Ch), ISPU_GRAW_X_H (688Dh)	72
	13.7	ISPU_GRAW_Y_L (6890h), ISPU_GRAW_Y_L (6891h)	
	13.8	ISPU_GRAW_Z_L (6894h), ISPU_GRAW_Z_H (6895h)	73
	13.9	ISPU_ERAW_0_L (6898h), ISPU_ERAW_0_H (6899h)	73
	13.10	ISPU_ERAW_1_L (689Ch), ISPU_ERAW_1_H (689Dh)	74
	13.11	ISPU_ERAW_2_L (68A0h), ISPU_ERAW_2_H (68A1h)	74
	13.12	ISPU_TEMP_L (68A4h), ISPU_TEMP_H (68A5h)	74
	13.13	ISPU_CALL_EN_0 (68B8h), ISPU_CALL_EN_1 (68B9h), ISPU_CALL_EN_2 (68BPU_CALL_EN_3 (68BBh)	BAh), 75
	13.14	ISPU_DTIME_0_L (6948h), ISPU_DTIME_0_H (6949h), ISPU_DTIME_1_L (69ISPU_DTIME_1_H (694Bh)	
14	Sens	or hub register mapping	77
15	Sens	or hub register description	78
	15.1	SENSOR_HUB_1 (02h)	
	15.2	SENSOR_HUB_2 (03h)	78
	15.3	SENSOR_HUB_3 (04h)	78
	15.4	SENSOR_HUB_4 (05h)	79
	15.5	SENSOR_HUB_5 (06h)	
	15.6	SENSOR_HUB_6 (07h)	
	15.7	SENSOR_HUB_7 (08h)	
	15.8	SENSOR_HUB_8 (09h)	

DS13892 - Rev 2 page 97/107

	15.9	SENSOR_HUB_9 (0Ah)	. 80
	15.10	SENSOR_HUB_10 (0Bh)	. 81
	15.11	SENSOR_HUB_11 (0Ch)	. 81
	15.12	SENSOR_HUB_12 (0Dh)	. 81
	15.13	SENSOR_HUB_13 (0Eh)	. 82
	15.14	SENSOR_HUB_14 (0Fh)	. 82
	15.15	SENSOR_HUB_15 (10h)	. 82
	15.16	SENSOR_HUB_16 (11h)	. 83
	15.17	SENSOR_HUB_17 (12h)	. 83
	15.18	SENSOR_HUB_18 (13h)	. 83
	15.19	MASTER_CONFIG (14h)	. 84
	15.20	SLV0_ADD (15h)	. 85
	15.21	SLV0_SUBADD (16h)	. 85
	15.22	SLV0_CONFIG (17h)	. 85
	15.23	SLV1_ADD (18h)	. 86
	15.24	SLV1_SUBADD (19h)	. 86
	15.25	SLV1_CONFIG (1Ah)	. 86
	15.26	SLV2_ADD (1Bh)	. 87
	15.27	SLV2_SUBADD (1Ch)	. 87
	15.28	SLV2_CONFIG (1Dh)	. 87
	15.29	SLV3_ADD (1Eh)	. 88
	15.30	SLV3_SUBADD (1Fh)	. 88
	15.31	SLV3_CONFIG (20h)	. 88
	15.32	DATAWRITE_SLV0 (21h)	. 89
	15.33	STATUS_MASTER (22h)	. 89
16	Pack	age information	.90
	16.1	Soldering information	. 90
	16.2	LGA-14L package information	. 90
	16.3	LGA-14 packing information	. 91
Rev	ision h	nistory	.93
		les	
List	of figu	ıres	106

Table 1.	Pin description	. 7
Table 2.	Mechanical characteristics	. 8
Table 3.	Electrical characteristics	10
Table 4.	Temperature sensor characteristics	11
Table 5.	SPI slave timing values	12
Table 6.	I ² C slave timing values	14
Table 7.	Absolute maximum ratings	15
Table 8.	Serial interface pin description	17
Table 9.	I ² C terminology	17
Table 10.	SAD + read/write patterns	18
Table 11.	Transfer when master is writing one byte to slave	18
Table 12.	Transfer when master is writing multiple bytes to slave	18
Table 13.	Transfer when master is receiving (reading) one byte of data from slave	18
Table 14.	Transfer when master is receiving (reading) multiple bytes of data from slave	18
Table 15.	Master I ² C pin details	22
Table 16.	Internal pin status	27
Table 17.	Registers address map	
Table 18.	FUNC_CFG_ACCESS register	
Table 19.	FUNC_CFG_ACCESS register description	
Table 20.	PIN_CTRL register	
Table 21.	PIN_CTRL register description	
Table 22.	DRDY_PULSED_REG register	
Table 23.	DRDY_PULSED_REG register description	
Table 24.	INT1_CTRL register	
Table 25.	INT1_CTRL register description	
Table 26.	INT2_CTRL register	
Table 27.	INT2_CTRL register description	
Table 28.	WHO_AM_I register	
Table 29.	CTRL1_XL register	
Table 30.	CTRL1_XL register description	
Table 31.	Accelerometer ODR configuration setting	
Table 32.	Accelerometer full-scale selection	
Table 33.	CTRL2 G register	
Table 34.	CTRL2_G register description	
Table 35.	Gyroscope ODR configuration setting	
Table 36.	CTRL3 C register	
Table 37.	_ •	36
Table 38.	CTRL4_C register	36
Table 39.	CTRL4 C register description	
Table 40.	CTRL5_C register	
Table 41.	CTRL5 C register description	
Table 42.	Angular rate sensor self-test mode selection	
Table 43.	Linear acceleration sensor self-test mode selection	
Table 44.	CTRL6_C register	
Table 45.	CTRL6 C register description	
Table 46.	CTRL7_G register	
Table 47.	CTRL7 G register description	
Table 48.	CTRL9_C register	
Table 49.	CTRL9_C register description	
Table 50.	Configurations for block data update	
Table 50.	CTRL10_C register	
Table 51.	CTRL10_C register description	
Table 53.	ISPU_INT_STATUS0_MAINPAGE output register	

Table 54	IODIL INT. CTATION MAINDAGE systems as sistem	20
Table 54.	ISPU_INT_STATUS1_MAINPAGE output register	
Table 55.	ISPU_INT_STATUS2_MAINPAGE output register	
Table 56.	ISPU_INT_STATUS3_MAINPAGE output register	
Table 57.	ISPU_INT_STATUS_MAINPAGE output register description	
Table 58.	STATUS_REG register	
Table 59.	STATUS_REG register description	
Table 60.	OUT_TEMP_L register	
Table 61.	OUT_TEMP_H register	
Table 62.	OUT_TEMP register description.	
Table 63.	OUTX_L_G register	
Table 64.	OUTX_H_G register	
Table 65.	OUTX_H_G register description.	
Table 66.	OUTY_L_G register	
Table 67.	OUTY_H_G register	
Table 68.	OUTY_H_G register description.	
Table 69.	OUTZ_L_G register	
Table 70.	OUTZ_H_G register	
Table 71.	OUTZ_H_G register description	
Table 72.	OUTX_L_A register	
Table 73.	OUTX_H_A register	
Table 74.	OUTX_H_A register description	
Table 75.	OUTY_L_A register	
Table 76.	OUTY_H_A register	
Table 77.	OUTY_H_A register description	
Table 78.	OUTZ_L_A register	
Table 79.	OUTZ_H_A register	
Table 80.	OUTZ_H_A register description	
Table 81.	STATUS_MASTER_MAINPAGE register	
Table 82.	STATUS_MASTER_MAINPAGE register description	
Table 83.	TIMESTAMP0 output register	
Table 84.	TIMESTAMP1 output register	
Table 85.	TIMESTAMP2 output register	
Table 86.	TIMESTAMP3 output register	
Table 87.	TIMESTAMP output register description	
Table 88.	MD1_CFG register	
Table 89.	MD1_CFG register description	
Table 90.	<u> </u>	
Table 91.	MD2_CFG register description	
Table 92.	INTERNAL_FREQ_FINE register	
Table 93.	INTERNAL_FREQ_FINE register description.	
Table 94.	ISPU_DUMMY_CFG_1_L register	
Table 95.	ISPU_DUMMY_CFG_1_H register	
Table 96.	ISPU_DUMMY_CFG_1 register description	
Table 97.	ISPU_DUMMY_CFG_2_L register	
Table 98.	ISPU_DUMMY_CFG_2_H register	
Table 99.	ISPU_DUMMY_CFG_2 register description	
	ISPU_DUMMY_CFG_3_L register	
	ISPU_DUMMY_CFG_3_H register	
	ISPU_DUMMY_CFG_3 register description	
	ISPU_DUMMY_CFG_4_L register	
	ISPU_DUMMY_CFG_4_H register	
	ISPU_DUMMY_CFG_4 register description	
	Register map - ISPU interaction registers	
	Register map - ISPU to external resources	
Table 108.	ISPU_CONFIG register	52

	ISPU_CONFIG register description	
	ISPU_STATUS register	
	ISPU_STATUS register description	
	ISPU_MEM_SEL register	
	ISPU_MEM_SEL register description	
	ISPU_MEM_ADDR1 register	
Table 115.	ISPU_MEM_ADDR0 register	53
Table 116.	ISPU_MEM_ADDR register description	53
Table 117.	ISPU_MEM_DATA register	53
Table 118.	ISPU_MEM_DATA register description	53
Table 119.	ISPU_IF2S_FLAG_L register	54
Table 120.	ISPU_IF2S_FLAG_H register	54
Table 121.	ISPU_IF2S_FLAG register description	54
Table 122.	ISPU_S2IF_FLAG_L register	54
Table 123.	ISPU_S2IF_FLAG_H register	54
	ISPU_S2IF_FLAG register description	
	ISPU_DOUT_00_L register	
	ISPU_DOUT_00_H register	
	ISPU_DOUT_00 register description	
	ISPU_DOUT_01_L registers	
	ISPU_DOUT_01_H registers	
	ISPU_DOUT_01 register description	
	ISPU_DOUT_02_L register	
	ISPU_DOUT_02_H register.	
	ISPU_DOUT_02 register description	
	ISPU_DOUT_03_L register	
	ISPU_DOUT_03_H register.	
	ISPU_DOUT_03 register description	
	ISPU_DOUT_04_L register	
	ISPU_DOUT_04_H register.	
	ISPU_DOUT_04 register description	
	ISPU_DOUT_05_L register	
	ISPU_DOUT_05_H register	
	ISPU_DOUT_05 register description	
	ISPU_DOUT_06_L register	
	·	57
	ISPU_DOUT_07_L register	
	ISPU_DOUT_07_H register	
	ISPU_DOUT_07 register description	
	ISPU_DOUT_08_L register	
	ISPU_DOUT_08_H register	
	ISPU_DOUT_08 register description	
	ISPU_DOUT_09_L register	
	ISPU_DOUT_09_H register.	
	ISPU_DOUT_09 register description	
	ISPU_DOUT_10_L register	
Table 156.	ISPU_DOUT_10_H register.	58
	ISPU_DOUT_10 register description	
Table 158.	ISPU_DOUT_11_L register	58
Table 159.	ISPU_DOUT_11_H register	58
Table 160.	ISPU_DOUT_11 register description	58
	ISPU_DOUT_12_L register	
Table 162.	ISPU_DOUT_12_H register	59
	ISPU_DOUT_12 register description	

	ISPU_DOUT_13_L register	
	ISPU_DOUT_13_H register	
	ISPU_DOUT_13 register description	
	ISPU_DOUT_14_L register	
Table 168.	ISPU_DOUT_14_H register	59
Table 169 .	ISPU_DOUT_14 register description	59
Table 170 .	ISPU_DOUT_15_L register	60
Table 171 .	ISPU_DOUT_15_H register	60
Table 172 .	ISPU_DOUT_15 register description	60
Table 173.	ISPU_DOUT_16_L register	60
Table 174.	ISPU_DOUT_16_H register	60
Table 175.	ISPU_DOUT_16 register description	60
Table 176.	ISPU_DOUT_17_L register	60
Table 177.	ISPU_DOUT_17_H register	60
Table 178.	ISPU_DOUT_17 register description	60
	ISPU_DOUT_18_L register	
	ISPU DOUT 18 H register	
	ISPU_DOUT_18 register description	
	ISPU_DOUT_19_L register	
	ISPU DOUT 19 H register	
	ISPU_DOUT_19 register description	
	ISPU_DOUT_20_L register	
	ISPU_DOUT_20_H register.	
	ISPU_DOUT_20 register description	
	ISPU_DOUT_21_L register	
	ISPU_DOUT_21_H register.	
	ISPU_DOUT_21 register description	
	ISPU_DOUT_22_L register	
	ISPU_DOUT_22_H register.	
	ISPU_DOUT_22 register description	
	ISPU_DOUT_23_L register	
	ISPU_DOUT_23_L register	
	ISPU_DOUT_23 register description	
	ISPU_DOUT_24_L register	
	ISPU_DOUT_24_H register.	
	ISPU_DOUT_24 register description	
	ISPU_DOUT_25_L register	
	ISPU_DOUT_25_H register.	
	ISPU_DOUT_25 register description	
	ISPU_DOUT_26_L register	
	ISPU_DOUT_26_H register.	
	ISPU_DOUT_26 register description	
	ISPU_DOUT_27_L register	
	ISPU_DOUT_27_H register	
	ISPU_DOUT_27 register description	
	ISPU_DOUT_28_L register	
	ISPU_DOUT_28_H register	
	ISPU_DOUT_28 register description	
	ISPU_DOUT_29_L register	
	ISPU_DOUT_29_H register	
	ISPU_DOUT_29 register description	
	ISPU_DOUT_30_L register	
	ISPU_DOUT_30_H register	
	ISPU_DOUT_30 register description	
Table 218 .	ISPU_DOUT_31_L register	65

Table 219.	ISPU_DOUT_31_H register	65
Table 220.	ISPU_DOUT_31 register description	65
Table 221.	ISPU_INT1_CTRL0 register	66
Table 222.	ISPU_INT1_CTRL1 register	66
Table 223.	ISPU_INT1_CTRL2 register	66
Table 224.	ISPU_INT1_CTRL3 register	66
Table 225.	ISPU_INT1_CTRL register description	66
Table 226.	ISPU_INT2_CTRL0 register	67
Table 227.	ISPU_INT2_CTRL1 register	67
Table 228.	ISPU_INT2_CTRL2 register	67
Table 229.	ISPU_INT2_CTRL3 register	67
Table 230.	ISPU_INT2_CTRL register description	67
Table 231.	ISPU_INT_STATUS0 register	68
Table 232.	ISPU_INT_STATUS1 register	68
Table 233.	ISPU_INT_STATUS2 register	68
Table 234.	ISPU_INT_STATUS3 register	68
Table 235.	ISPU_INT_STATUS register description	68
	ISPU ALGO0 register	
	ISPU ALGO1 register	
Table 238.	ISPU_ALGO2 register	69
	ISPU ALGO3 register	
Table 240.	ISPU ALGO register description	69
Table 241.	Register map - ISPU functions internally available	70
	ISPU_GLB_CALL_EN registers	
	ISPU_GLB_CALL_EN register description	
	ISPU_INT_PIN registers	
	ISPU_INT_PIN register description	
	ISPU_ARAW_X_L register	
	ISPU_ARAW_X_H register	
	ISPU_ARAW_X register description	
	ISPU_ARAW_Y_L register	
	ISPU_ARAW_Y_H register	
	ISPU_ARAW_Y register description	
	ISPU ARAW Z L register	
	ISPU_ARAW_Z_H register	
	ISPU_ARAW_Z register description	
	ISPU_GRAW_X_L register	
	ISPU_GRAW_X_H register	
	ISPU_GRAW_X register description	
	ISPU_GRAW_Y_L registers	
	ISPU_GRAW_Y_H registers	
	ISPU_GRAW_Y register description	
	ISPU_GRAW_Z_L registers	
	ISPU_GRAW_Z_H registers	
	ISPU GRAW Z register description	
	ISPU_ERAW_0_L registers	
	ISPU_ERAW_0_H registers	
	ISPU_ERAW_0 register description	
	ISPU_ERAW_1_L register	
	ISPU_ERAW_1_H register	
	ISPU_ERAW_1 register description	
	ISPU_ERAW_2_L register	
	ISPU_ERAW_2_H register	
	ISPU_ERAW_2 register description	
	ISPU_TEMP_L register	

	ISPU_TEMP_H register	
	ISPU_TEMP register description	
	ISPU_CALL_EN_0 register	
	ISPU_CALL_EN_1 register	
	ISPU_CALL_EN_2 register	
	ISPU_CALL_EN_3 register	
	ISPU_CALL_EN register description	
	ISPU_DTIME_0_L output register	
	ISPU_DTIME_0_H output register	
	ISPU_DTIME_1_L output register	
	ISPU_DTIME_1_H output register	
	ISPU_DTIME output register description	
	Registers address map	
	SENSOR_HUB_1 register description	
	SENSOR_HUB_1 register description	
	SENSOR_HUB_2 register description	
	SENSOR_HUB_3 register	
	SENSOR_HUB_3 register description	
	SENSOR HUB 4 register	
	SENSOR_HUB_4 register description	
	SENSOR_HUB_5 register	
	SENSOR_HUB_5 register description	
	SENSOR_HUB_6 register.	
	SENSOR_HUB_6 register description	
	SENSOR_HUB_7 register.	
	SENSOR_HUB_7 register description	
	SENSOR_HUB_8 register.	
	SENSOR_HUB_8 register description	
	SENSOR_HUB_9 register	
	SENSOR_HUB_9 register description	
	SENSOR_HUB_10 register	
	SENSOR_HUB_10 register description	
	SENSOR_HUB_11 register	
Table 308.	SENSOR_HUB_11 register description	81
Table 309.	SENSOR_HUB_12 register	81
Table 310.	SENSOR_HUB_12 register description	81
Table 311.	SENSOR_HUB_13 register	82
Table 312.	SENSOR_HUB_13 register description	82
	SENSOR_HUB_14 register	
	SENSOR_HUB_14 register description	
	SENSOR_HUB_15 register	
	SENSOR_HUB_15 register description	
	SENSOR_HUB_16 register	
	SENSOR_HUB_16 register description	
	SENSOR_HUB_17 register	
	SENSOR_HUB_17 register description	
	SENSOR_HUB_18 register	
	SENSOR_HUB_18 register description	
	MASTER_CONFIG register	
	MASTER_CONFIG register description	
	SLV0_ADD register	
	SLV0_ADD register description	
	SLV0_SUBADD register	
Table 328.	SLV0_SUBADD register description	85

	SLV0_CONFIG register	
Table 330.	SLV0_CONFIG register description	85
Table 331.	SLV1_ADD register	86
Table 332.	SLV1_ADD register description	86
Table 333.	SLV1_SUBADD register	86
Table 334.	SLV1_SUBADD register description	86
Table 335.	SLV1_CONFIG register	86
Table 336.	SLV1_CONFIG register description	86
Table 337.	SLV2_ADD register	87
Table 338.	SLV2_ADD register description	87
Table 339.	SLV2_SUBADD register	87
	SLV2_SUBADD register description	
	SLV2_CONFIG register	
	SLV2_CONFIG register description	
	SLV3_ADD register	
	SLV3_ADD register description	
	SLV3_SUBADD register	
	SLV3_SUBADD register description	
	SLV3_CONFIG register	
	SLV3_CONFIG register description	
	DATAWRITE_SLV0 register	
	DATAWRITE_SLV0 register description	
	STATUS_MASTER register	
	STATUS_MASTER register description	
	Reel dimensions for carrier tape of LGA-14 package	
Table 354.	Document revision history	93

List of figures

Figure 1.	ISPU block diagram	. 4
Figure 2.	Pin connections	. 5
Figure 3.	LSM6DSO16IS connection modes	. 6
Figure 4.	SPI slave timing in mode 0	12
Figure 5.	SPI slave timing in mode 3	13
Figure 6.	I ² C slave timing diagram	14
Figure 7.	Read and write protocol (in mode 3)	19
Figure 8.	SPI read protocol (in mode 3)	20
Figure 9.	Multiple byte SPI read protocol (2-byte example) (in mode 3)	20
Figure 10.	SPI write protocol (in mode 3)	21
Figure 11.	Multiple byte SPI write protocol (2-byte example) (in mode 3)	21
Figure 12.	SPI read protocol in 3-wire mode (in mode 3)	22
Figure 13.	Accelerometer filters	24
Figure 14.	Gyroscope filter	24
Figure 15.	LSM6DSO16IS electrical connections in mode 1	25
Figure 16.	LSM6DSO16IS electrical connections in mode 2	26
Figure 17.	LGA-14L 2.5 x 3.0 x 0.86 mm package outline and mechanical data	90
Figure 18.	Carrier tape information for LGA-14 package	91
Figure 19.	LGA-14 package orientation in carrier tape	91
Figure 20.	Reel information for carrier tape of LGA-14 package	92

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics - All rights reserved

DS13892 - Rev 2 page 107/107