A new idea for RSA backdoors

Hiding efficient backdoors in our cryptosystems

Marco Cesati

University of Rome Tor Vergata

RSA

- Rivest, Shamir, Adleman, 1977
- Primes p, q, and the product N = p q
 - lacktriangle typically N is balanced: p and q have nearly the same size $(\ell(p) \simeq \ell(q))$
- Exponents e, d such that $gcd(e, \phi(N)) = 1$ and $ed \equiv 1 \pmod{\phi(N)}$, where $\phi(x)$ is originally the *Euler's totient function*
 - the number of positive integers up to x that are relatively prime to x
 - $\phi(N) = \phi(p) \phi(q) = (p-1)(q-1)$
 - if gcd(a, N) = 1, $a^{\phi(N)} \equiv 1 \pmod{N}$
- \triangleright (N, e) is the public key: message M (< N) is encrypted as M^e mod N
- ightharpoonup (N,d) is the *private key*: message M' is decrypted as $M'^d \mod N$

$$(M^e)^d \equiv M^{e\,d} \equiv M^{s\,\phi(N)+1} \equiv M\,M^{s\,\phi(N)} \equiv M\,1^s \equiv M \pmod{N}$$

Main recipe to break RSA

- 1. Find the factors p and q of N = pq
- 2. Compute $\phi(N) = (p-1)(q-1)$
-)3. By the extended Euclidean algorithm, compute $d\equiv e^{-1}\pmod{\phi(N)}$
 - RSA is not harder than the integer factorization problem
- Best known factorization algorithm is GNFS, with heuristic runtime

$$L_N[1/3, (64/9)^{1/3}] = \exp\left(\left((64/9)^{1/3} + o(1)\right) (\ln N)^{1/3} (\ln \ln N)^{2/3}\right)$$

▶ Nowadays, RSA keys with $\ell(N) = 4096$ bits look safe

Main recipe to break RSA

Main recipe to break RSA

- 1. Find the factors p and q of N = pq
- 2. Compute $\phi(N) = (p-1)(q-1)$
-)3. By the extended Euclidean algorithm, compute $d\equiv e^{-1}\pmod{\phi(N)}$
 - RSA is not harder than the integer factorization problem
 - Best known factorization algorithm is GNFS, with heuristic runtime

$$L_N[1/3, (64/9)^{1/3}] = \exp\left(\left((64/9)^{1/3} + o(1)\right) (\ln N)^{1/3} (\ln \ln N)^{2/3}\right)$$

▶ Nowadays, RSA keys with $\ell(N) = 4096$ bits look safe

A *backdoor* in RSA is a method to forge public keys that are significantly easier to break

Who put backdoors in RSA?

- Developers of RSA cryptosystem implementations
 - ▶ Just ignorance or lazyness (maybe...)
 - ► Elementary vulnerabilities (e.g., unsafe primes)
- Criminals, spies, and other hidden agents
 - ► To easily get valuable data from encrypted channels
 - Weak backdoors: anyone just knowing that the vulnerability exists may break the public key
- State-level agencies
 - ► To lawfully enforce key escrow mechanisms
 - SETUP (Secretely Embedded Trapdoor with Universal Protection) backdoors: nobody just knowing that the vulnerability exists can easily break the public key

Hiding contrived backdoors

The final user of a RSA cryptosystem would not be happy to know about the existence of a backdoor

Some backdoors are easier to hide than others:

- Backdoors affecting the public exponent e cannot be easily hidden
 - ► For efficiency reasons, all RSA cryptosystems select a fixed public exponent of small bitsize and/or small Hamming weight
- ▶ Backdoors based on crafted values of the semiprime N are easier to hide but harder to devise

In the following we shall consider only backdoors that do not affect the choice of the public exponent

Roots of this work: Anderson's backdoor

In 1993 Anderson proposed the following RSA backdoor for N with $\ell(N) = n$:

- \blacktriangleright β is a *m*-bit secret prime (the "backdoor key"), whith $m \approx (3/8) \cdot n$
- $lacktriangledown\pi_{eta}$ and π_{eta}' are pseudo-random functions that yield (n/2-m)-bit values
- $ightharpoonup t, t' < \sqrt{eta}$ are (m/2)-bit random integers coprime with eta and such that
- $ightharpoonup p = \pi_{eta}(t) \cdot eta + t$ and $q = \pi_{eta}'(t') \cdot eta + t'$ are primes
- ▶ To exploit the backdoor, given N = p q and β :
 - 1. Compute $t t' = N \mod \beta$
 - 2. Factorize the m-bit integer t t'
 - 3. Apply $\pi_{\beta}(t)$ and $\pi'_{\beta}(t')$ and compute p and q

Main drawback: exploiting requires to factorize an integer of size $\approx (3/8) \cdot \ell(N)$

▶ Still too much for currently used RSA key sizes (factorization records is 829 bits)

Roots of this work: Implicit Factorization

May and Ritzenhofen introduced in 2009 the idea of implicit factorization:

Given semiprimes $N_1 = p_1 q_1$ and $N_2 = p_2 q_2$ of size n such that

- $\ell(q_1) = \ell(q_2) = \alpha$
- $\ell(p_1) = \ell(p_2) = n \alpha$
- ▶ $p_1 \equiv p_2 \pmod{2^t}$, with $t \geq 2\alpha + 3$

it is possible to factorize N_1 and N_2 in time $O(n^2)$ by searching a base for a suitable lattice by means of the quadratic Gaussian algorithm

This result can be extended to k>2 semiprimes by using Coppersmith's root finding algorithm and Lenstra-Lenstra-Lovàsz (LLL) lattice basis reduction algorithm

In the following years, dozens of authors improved and extended these results

Roots of this work: Implicit Factorization (2)

A backdoor based on implicit factorizations has major drawbacks:

- ► Weak: no secret key protects it
- **Cannot** be applied to balanced semiprimes: $\ell(p_i) > 2 \, \ell(q_i)$
- Cannot be hidden: the final user may look at the factors of the semiprimes and recognize that long sequences of bits are equal

Roots of this work: Implicit Factorization (2)

Roots of this work: Implicit Factorization (2)

A backdoor based on implicit factorizations has major drawbacks:

- ► Weak: no secret key protects it
- ▶ Cannot be applied to balanced semiprimes: $\ell(p_i) > 2 \ell(q_i)$
- ► Cannot be hidden: the final user may look at the factors of the semiprimes and recognize that long sequences of bits are equal
- ▶ In general, for all published variants:
 - the exploiting algorithm is polynomial only if we regard the "unbalancing" difference between $n-\alpha$ and α as a constant
 - the runtime is exponential in $1/(n-2\alpha)$

The idea for a new RSA backdoor

Is it possible to blend the core idea of Anderson's backdoor and the Implicit Factorization Problem and get an efficient, undetectable, and password-protected backdoor for large, balanced semiprimes like those in RSA-4096?

Eventually we got two different backdoors:

- ► Twin Semiprime Backdoor (TSB): a backdoor involving two paired semiprimes
- ▶ Single Semiprime Backdoor (SSB): a backdoor for a single semiprime

TSB: generation of trapped semiprimes

A pair of balanced semiprimes $N_1 = p_1 q_1$ and $N_2 = p_2 q_2$ is generated as follows:

- Let $\alpha = \ell(N_1)/2 = \ell(N_2)/2$ (α is the common size of all factors of N_1 and N_2)
- Fix a small constant c; typically, c=7 is fine for α in the range from 512 (RSA-1024) to 2048 (RSA-4096)
- ▶ Randomly select a prime T of size $\ell(T) = \alpha c$; this is the backdoor key
- ▶ Fix the value of a constant K (e.g, $K \approx \alpha/5$ for current RSA key sizes)
- ▶ Fix the value of some constant B < T such that $B \simeq 2^{\alpha-2c}$

TSB: generation of trapped semiprimes (2)

Generate random primes p_1 , q_1 , p_2 , and q_2 such that there exists h, k_1 , k_2 positive integers between 2 and K satisfying:

(H1)
$$q_2 \equiv h^2 q_1 \pmod{T}$$

(H2) $p_1 \equiv h \, k_1 \, q_2 \pmod{T}$
(H3) $p_2 \equiv k_2 \, q_1 \pmod{T}$
(H4) $h, \, k_1, \, \text{and} \, k_2 \, \text{are all coprime}$
(H5) $h \, k_1 \not\equiv k_2 \pmod{T}$
(H6) $(h \, q_1)^2 \pmod{T} > B$

The existence of these values is granted by Dirichlet's theorem: there are infinitely many primes of the form a + b c when a and b are coprime

Algorithm: randomly pick q_1 , then search h, q_2 , then p_1, k_1 , and finally p_2, k_2

TSB: generation of trapped semiprimes (3)

TSB: recovering procedure

How to recover the factors from N_1 , N_2 , and T:

- 1. Get "medium-level" coefficients
- 2. Get "low-level" coefficients
- 3. Get "high-level" coefficients
- 4. Determine the factors

Running example:

- $\sim \alpha = 64$, c = 3, K = 100, $B = 2^{57}$
- T = 1350856093440009833
- $N_1 = 199771249142689629600100193795300988277$
- $N_2 = 330849388672597230630022641974377014199$

TSB: recovering medium-level coefficients

From conditions H1, H2, and H3:

$$N_1 \equiv h^3 k_1 q_1^2 \pmod{T}$$
 and $N_2 \equiv h^2 k_2 q_1^2 \pmod{T}$

However, $\gcd(\mathit{N}_1 \bmod \mathit{T}, \mathit{N}_2 \bmod \mathit{T}) \neq \mathit{h}^2 \mathit{q}_1^2$. We rather have

$$N_1 \equiv (h \, k_1) \cdot [(h^2 \, q_1^2) \bmod T] \pmod T$$
 and $N_2 \equiv k_2 \cdot [(h^2 \, q_1^2) \bmod T] \pmod T$

thus there exist medium-level coefficients $\tilde{k_1}, \tilde{k_2}$ such that

$$(N_1 \mod T) + \tilde{k_1} \cdot T = (h k_1) \cdot [(h^2 q_1^2) \mod T]$$

$$(N_2 \mod T) + \tilde{k_2} \cdot T = k_2 \cdot [(h^2 q_1^2) \mod T]$$

where $\tilde{k_1} \leq K^2$ and $\tilde{k_2} \leq K$

TSB: recovering medium-level coefficients (2)

We consider every pair $(\tilde{k_1}, \tilde{k_2})$ with $\tilde{k_1} < K^2$ and $\tilde{k_2} < K$, and compute:

$$\gcd((N_1 \bmod T) + \tilde{k_1} \cdot T, (N_2 \bmod T) + \tilde{k_2} \cdot T) = (h^2 q_1^2) \bmod T$$

Candidate pairs $(\tilde{k_1}, \tilde{k_2})$ can be efficiently filtered because

- **b** by condition H6, $T > (h q_1)^2 \mod T > B$, a large threshold
- ▶ the Euclidean algorithm must return a square in GF(T)

There are only two pairs $(\tilde{k_1},\tilde{k_2})\in[2,100^2]\times[2,100]$ that yield a GCD higher than $B=2^{57}$: (671,10) and (5277,79)

 $(671,10): 196865400950880229 \equiv 10632559655363908^2 \pmod{T}$

(5277,79): 1547721494390890062 > T (discarded)

TSB: recovering low-level coefficients

So we may assume to know N_1 , N_2 , T, $\tilde{k_1}$, $\tilde{k_2}$, and $\gamma^2 = (h q_1)^2 \mod T$

We compute low-level coefficients k_1 , k_2 , and h as:

$$k_2 = \left((N_2 \mod T) + \tilde{k_2} \cdot T \right) / \gamma^2$$

$$(h \, k_1) = \left((N_1 \mod T) + \tilde{k_1} \cdot T \right) / \gamma^2$$

Because $h k_1 < K^2$ and $gcd(h, k_1) = 1$, the number of multiplicative partitions of the product $h k_1$ is $\leq K^2$: we build a list of candidate pairs (h, k_1)

The exact integer divisions yield $k_2 = 69$ and $(h k_1) = 4606 = 2 \cdot 7^2 \cdot 47$ There are six candidate pairs for (h, k_1) : (2, 2303), (47, 98), (49, 94), (94, 49), (98, 47), and (2303, 2)

TSB: recovering high-level coefficients

From N_1 , N_2 , T, k_1 , k_2 , h, and γ^2 we immediately get:

$$\gamma = \sqrt{\gamma^2} \bmod T \qquad \text{(two values, by Tonelli-Shanks alg.)}$$

$$q_1 \bmod T = (\gamma h^{-1}) \bmod T \qquad (h^{-1} \text{ is the inverse in } \mathsf{GF}(T))$$

$$q_2 \bmod T = ((q_1 \bmod T) \cdot h^2) \bmod T \qquad (\text{condition H1})$$

$$p_1 \bmod T = (h \, k_1 \, (q_2 \bmod T)) \bmod T \qquad (\text{condition H2})$$

$$p_2 \bmod T = (k_2 \, (q_1 \bmod T)) \bmod T \qquad (\text{condition H3})$$

The square roots of $\gamma^2=196865400950880229$ in GF(T) are $\gamma_1=10632559655363908$ and $\gamma_2=1340223533784645925$

TSB: recovering high-level coefficients (2)

The two values for γ and the six candidate pairs (h, k_1) yield:

h, k_1, γ	$q_1 \mod T$	$q_2 mod T$	$p_1 mod T$	$p_2 \mod T$
$2,2303, \gamma_1$	5316279827681954	21265119310727816	685500817531612520	366823308110054826
$2,2303,\gamma_2$	1345539813612327879	1329590974129282017	665355275908397313	984032785329955007
$47,98,\gamma_1$	1264857461085442480	499730303802103676	1249852184152786057	820374834734901808
$47, 98, \gamma_2$	85998632354567353	851125789637906157	101003909287223776	530481258705108025
$49,94,\gamma_{1}$	331038891447662896	520995423112831492	584496908244388744	1227986014848582496
49, 94, γ_2	1019817201992346937	829860670327178341	766359185195621089	122870078591427337
$94,49,\gamma_1$	632428730542721240	999460607604207352	1148848274865562281	410187417367450904
$94, 49, \gamma_2$	718427362897288593	351395485835802481	202007818574447552	940668676072558929
98, 47, γ_{1}	165519445723831448	1041990846225662984	1168993816488777488	613993007424291248
98, 47, γ_2	1185336647716178385	308865247214346849	181862276951232345	736863086015718585
$2303, 2, \gamma_1$	466909284818889792	171375204382903130	454232818686074308	1147050503383169489
$2303, 2, \gamma_2$	883946808621120041	1179480889057106703	896623274753935525	203805590056840344

TSB: recovering high-level coefficients (3)

Now we proceed separately on each semiprime:

$$N_i = p_i q_i = (\pi_i \cdot T + (p_i \bmod T)) \cdot (\nu_i \cdot T + (q_i \bmod T))$$

that is

$$\pi_i \nu_i T + \pi_i (p_i \mod T) + \nu_i (q_i \mod T) = (N_i - (p_i \mod T) (q_i \mod T)) / T = \delta_i$$

We can search by brute force the "high-level" coefficients ν_i and π_i because $\pi_i \nu_i \approx N_i/T^2$, thus $\ell(\pi_i \nu_i) = \ell(\pi_i) + \ell(\nu_i) \simeq 2 \alpha - 2 (\alpha - c) = 2 c$

The bounds for the high-level coefficients are: $\pi_1 \nu_1 \le 110$, $\pi_1 + \nu_1 \in [20, 110]$, $\pi_2 \nu_2 \le 182$, $\pi_2 + \nu_2 \in [26, 182]$.

TSB: recovering high-level coefficients (3)

Brute force search on all values for $\pi_i + \nu_i$:

if
$$x = \pi_i$$
, $C = \pi_i + \nu_i = x + \nu_i$, $\delta_i = (N_i - (p_i \mod T)(q_i \mod T))/T$, then
$$T x^2 + ((p_i \mod T) - (q_i \mod T) - C T) x + \delta_i - (q_i \mod T) C = 0$$

We discard any value for $C = \pi_i + \nu_i$ that do not yield integer solutions:

$$\Delta = ((p_i \bmod T) - (q_i \bmod T) - C T)^2 - 4 T (\delta_i - (q_i \bmod T) C)$$
 must be a square, and either one of the solutions

$$\left(\mathit{C}\ \mathit{T} + (\mathit{q}_i\ \mathsf{mod}\ \mathit{T}) - (\mathit{p}_i\ \mathsf{mod}\ \mathit{T}) \pm \sqrt{\Delta}\right)/(2\ \mathit{T})$$
 must be an integer

The brute force search is repeated on the 12 candidate coefficients. Eventually, only the following coefficients yield integer solutions: h = 47, $k_1 = 98$, $\gamma = \gamma_2$, $(\pi_1, \nu_1) = (9, 12)$, $(\pi_2, \nu_2) = (12, 14)$

TSB: recovering the factors

In this phase we know N_i , T, and a list of candidate solutions for $p_i \mod T$, $q_i \mod T$, π_i , and ν_i

We just compute $p_i = \pi_i T + (p_i \mod T)$ and $q_i = \nu_i T + (q_i \mod T)$, and verify that $N_i = p_i q_i$

$$p_1 = \pi_1 \ T + (p_1 \ \text{mod} \ T) = 12258708750247312273$$
 $q_1 = \nu_1 \ T + (q_1 \ \text{mod} \ T) = 16296271753634685349$
 $p_2 = \pi_2 \ T + (p_2 \ \text{mod} \ T) = 16740754379985226021$
 $q_2 = \nu_2 \ T + (q_2 \ \text{mod} \ T) = 19763111097798043819$

$$N_1 = 12258708750247312273 \times 16296271753634685349$$

 $N_2 = 16740754379985226021 \times 19763111097798043819$

TSB: time complexity

- ▶ The worst-case time complexity of the recovering procedure is $O(K^5(\alpha+c)^2 2^{2c})$
- ▶ Good values of K and c must be related to α , however K < α and c $\ll \alpha$
- Polynomial runtime in the size of semiprime (2α)
- ► This backdoor may be efficient even for very large semiprimes
- Larger values for K and c yield
 - ► Faster semiprime generation procedures
 - Slower recovery procedures

However c cannot be too large, otherwise it would be possible to detect and exploit the backdoor by guessing T, which has size $\alpha-c$

TSB: experimental results

Implementation in SageMath available at:

https://gitlab.com/cesati/ssb-and-tsb-backdoors.git

Experimental results for RSA-4096 keys (c = 7, times in seconds, 20 repetitions):

	Generation		Recovering	
K	avg	stdev	avg	stdev
10	6353.2	3759.4	31.1	9.3
50	1785.4	1429.4	43.1	12.5
100	1086.0	887.3	104.4	108.7
150	647.1	376.5	236.3	290.4
200	544.3	277.6	619.9	729.6
250	456.8	305.3	1976.0	3493.5
300	395.4	236.6	1910.5	4716.5
350	407.6	155.3	2537.8	5460.6
400	321.1	140.0	4541.4	6038.2
	'		' \ _	

SSB: the idea applied to a single key

The idea behind TSB can also be applied, in a simpler form, to a single semiprime

- $ightharpoonup \alpha$, c, K, T as in TSB
- ▶ N = p q where $p \equiv k q \pmod{T}$, $1 < k \le K$

The recovering procedure is also similar:

- 1. Recover "low-level" coefficient (k)
- 2. Recover "high-level" coefficients
- 3. Recover the factors

SSB: recovering procedure

From the two congruences $N \equiv p \ q \pmod{T}$ and $p \equiv k \ q \pmod{T}$ we derive $N \mod T \equiv (k \ q^2) \pmod{T}$

For any candidate k < K:

- ▶ if $N \cdot k^{-1}$ is a quadratic nonresidue in GF(T), discard this value of k
- \blacktriangleright otherwise compute the square roots (candidates for $q \bmod T$) and the corresponding $p \bmod T$

Having N, T, p mod T, and q mod T, the procedure continue as in TSB by looking for the high-level coefficients π and ν such that

$$N = (\pi \cdot T + (p \bmod T))(\nu \cdot T + (q \bmod T))$$

SSB: experimental results

Implementation in SageMath available at:

https://gitlab.com/cesati/ssb-and-tsb-backdoors.git

Experimental results for RSA-4096 keys (c = 7, times in seconds, 20 repetitions):

	Generation		Recovering	
K	avg	stdev	avg	stdev
100	466.4	375.1	27.1	6.9
500	214.0	134.7	47.4	18.6
1,000	151.2	61.3	71.6	37.4
1,500	122.3	35.0	101.2	70.0
2,000	102.7	20.3	95.8	51.7
2,500	112.7	25.4	113.2	84.8
3,000	107.6	23.0	130.7	84.1
3,500	99.5	22.6	95.5	54.8
4,000	90.4	9.1	143.1	104.4
4,500	91.5	13.5	152.8	136.6
5,000	97.3	16.9	94.5	91.5

Conclusions

- Further details: https://arxiv.org/abs/2201.13153v1
- ► TSB and SSB may inject exploitable vulnerabilities in any cryptosystem based on the integer factorization problem
- Currently, no way to discover and exploit the backdoors without the designer key
- ▶ We should really never use closed-source RSA key generators

