最大匹配与最小点覆盖

圆眼睛的阿凡提哥哥

2020年12月11日

设二部图 $\mathcal{G}=(\mathcal{V},\mathcal{E})$,其中 $\mathcal{V}=\mathcal{V}_1 \uplus \mathcal{V}_2$, $\mathcal{E}\subseteq \mathcal{V}_1 \times \mathcal{V}_2$, $\delta(v)$ 为与点 v 相连的边的集合。若 $\mathcal{M}\subseteq \mathcal{E}$ 且其中任意两条边没有公共顶点,即不存在长度 ≥ 2 的路径,则称 \mathcal{M} 为匹配 (matching),其可表示为向量 $\mathbf{x}\in\mathbb{Z}_+^{|\mathcal{E}|}$ 满足对任意 $v\in\mathcal{V}$ 有 $\sum_{e\in\delta(v)}x_e\leq 1$ 。若 $\mathcal{C}\subseteq\mathcal{V}$ 使得 \mathcal{G} 的每条边都至少有一个顶点属于 \mathcal{C} ,则称 \mathcal{C} 为覆盖 (cover),其可表示为向量 $\mathbf{z}\in\mathbb{Z}_+^{|\mathcal{V}|}$ 使得对任意 $(u,v)\in\mathcal{E}$ 有 $z_u+z_v\geq 1$ 。

设 $\mathbf{A} \in \{0,1\}^{|\mathcal{V}| \times |\mathcal{E}|}$ 是二部图 \mathcal{G} 对应的关联矩阵,即 $a_{v,e} = 1_{e \in \delta(v)}$,则

$$\forall v \in \mathcal{V}, \sum_{e \in \delta(v)} x_e \le 1 \iff \mathbf{A}\mathbf{x} \le \mathbf{e}$$

 $\forall (u, v) \in \mathcal{E}, \ z_u + z_v \ge 1 \Longleftrightarrow \mathbf{A}^{\top} \mathbf{z} \ge \mathbf{e}$

1 最大匹配

所有匹配中, 势最大的称为最大匹配, 求解最大匹配可形式化成

$$\max\{e^{\top}x : x \in \mathbb{Z}_{+}^{|\mathcal{E}|}, \ \mathbf{A}x \le e\}$$
 (1)

由于第一个约束的存在,这是一个整数规划,难以直接求解,将可行域放松成连续域可得线性规划

$$\max_{x} \{ e^{\top} x : x \ge 0, \ \mathbf{A} x \le e \}$$
 (2)

注意 $\{x \geq 0, Ax \leq e\} \iff [A; -I]x \leq [e; 0]$,由于二部图的关联矩阵必然是全幺模矩阵,故 [A; -I]也是全幺模矩阵,又 [e; 0] 是整数向量,故凸多面体 $\{x \geq 0, Ax \leq e\}$ 的极点是整数向量。由于线性规划必然在极点处取最优,因此式 (2) 的最优解就是式 (1) 的最大匹配。

上述将离散整数约束替换为连续实数约束的操作,其实是将可行域由匹配集合扩大成其凸包。

定理 1. 记匹配 \mathcal{M} 对应的表示向量为 $x^{(\mathcal{M})}$, $\mathcal{P}(\mathcal{G}) \triangleq \operatorname{conv}\{x^{(\mathcal{M}_1)}, x^{(\mathcal{M}_2)}, \ldots\}$, $\mathcal{Q}(\mathcal{G})$ 定义为:

$$\mathcal{Q}(\mathcal{G}) = \{ oldsymbol{x} \mid oldsymbol{x} \geq oldsymbol{0}, \ oldsymbol{A} oldsymbol{x} \leq oldsymbol{e} \} = \left\{ oldsymbol{x} \in \mathbb{R}_+^{|\mathcal{V}|} \mid orall v \in \mathcal{V}, \sum_{e \in \delta(v)} x_e \leq 1
ight\}$$

那么 $\mathcal{P}(\mathcal{G}) = \mathcal{Q}(\mathcal{G})$ 。

证明. 正向比较简单,对任意 $x=\sum_{i\in[n]}\alpha^{(\mathcal{M}_i)}x^{(\mathcal{M}_i)}\in\mathcal{P}(\mathcal{G})$,易知

$$\sum_{e \in \delta(v)} x_e = \sum_{e \in \delta(v)} \sum_{i \in [n]} \alpha^{(\mathcal{M}_i)} x_e^{(\mathcal{M}_i)} = \sum_{i \in [n]} \alpha^{(\mathcal{M}_i)} \underbrace{\sum_{e \in \delta(v)} x_e^{(\mathcal{M}_i)}}_{<1} \le \sum_{i \in [n]} \alpha^{(\mathcal{M}_i)} = 1$$

其中不等号是因为对任意匹配,点v相连的边中最多只有一条属于该匹配。

反向较为麻烦,对任意 $x \in Q(\mathcal{G})$,设 $\operatorname{supp}(x) = \{e \in \mathcal{E} \mid x_e > 0\}$ 。下面对 $|\operatorname{supp}(x)|$ 进行归纳,若 $|\operatorname{supp}(x)| = 0$,则 x = 0 就是零匹配;若 $|\operatorname{supp}(x)| = 1$,显然 x 可以表示成零匹配和单边匹配的凸组合。若 $|\operatorname{supp}(x)| \geq 2$,分两种情况讨论:

• $\operatorname{supp}(\boldsymbol{x})$ 不是匹配,则 $\operatorname{supp}(\boldsymbol{x})$ 包含长度 ≥ 2 的路径,不妨就设为 $v_1 \xrightarrow{e_1} v_2 \xrightarrow{e_2} v_3$,由于 $x_{e_1}, x_{e_2} > 0$,故 $x_{e_1}, x_{e_2} < 1$,否则 $\sum_{e \in \delta(v_2)} x_e = x_{e_1} + x_{e_2} > 1$ 。引入

$$d_e = \begin{cases} 1 & e = e_1 \\ -1 & e = e_2 \\ 0 & \text{o.w.} \end{cases}$$

现考虑 $x + \epsilon d$, 当 ϵ 增大时, $x_{e_1} + \epsilon d_{e_1}$ 增大, $x_{e_2} + \epsilon d_{e_2}$ 减小, 当 $x_{e_2} + \epsilon d_{e_2}$ 变为零时, 记此时的 ϵ 为 ϵ_1 , 定义 $x_1 \triangleq x + \epsilon_1 d$; 同理对于 $x - \epsilon d$, 当 ϵ 增大时, $x_{e_1} - \epsilon d_{e_1}$ 减小, $x_{e_2} - \epsilon d_{e_2}$ 增大, 当 $x_{e_1} - \epsilon d_{e_1}$ 变为零时, 记此时的 ϵ 为 ϵ_2 , 定义 $x_2 \triangleq x - \epsilon_2 d$, 那么

$$\epsilon_2 \epsilon_1 \boldsymbol{d} = \epsilon_2 \boldsymbol{x}_1 - \epsilon_2 \boldsymbol{x} = \epsilon_1 \boldsymbol{x} - \epsilon_1 \boldsymbol{x}_2 \Longrightarrow \boldsymbol{x} = \frac{\epsilon_2}{\epsilon_1 + \epsilon_2} \boldsymbol{x}_1 + \frac{\epsilon_1}{\epsilon_1 + \epsilon_2} \boldsymbol{x}_2 = \operatorname{conv} \{ \boldsymbol{x}_1, \boldsymbol{x}_2 \}$$

注意 $|\text{supp}(x_1)| = |\text{supp}(x_2)| = |\text{supp}(x)| - 1$,由归纳假设知 $x_1, x_2 \in \mathcal{P}(\mathcal{G})$,于是 $x \in \mathcal{P}(\mathcal{G})$ 。

• supp(x) 是匹配,不妨设 $supp(x) = \{e_1, e_2, e_3, \dots, e_n\}$ 且 $x_{e_1} \le x_{e_2} \le x_{e_3} \le \dots \le x_{e_n}$,定义

$$\mathcal{M}_i \triangleq \{e_i, e_{i+1}, \dots, e_n\}, \quad \boldsymbol{x}^{(\mathcal{M}_i)} = [\underbrace{0, \dots, 0}_{1:i-1}, \underbrace{1, 1, \dots, 1}_{i:n}, \underbrace{0, \dots, 0}_{n+1:|\mathcal{E}|}], \quad i \in [n]$$

则

$$\boldsymbol{x} = \begin{bmatrix} x_{e_1} \\ x_{e_2} \\ x_{e_3} \\ \vdots \\ x_{e_n} \\ \boldsymbol{0} \end{bmatrix} = \begin{bmatrix} x_{e_1} \\ x_{e_1} \\ x_{e_1} \\ \vdots \\ x_{e_1} \\ \boldsymbol{0} \end{bmatrix} + \begin{bmatrix} 0 \\ x_{e_2} - x_{e_1} \\ x_{e_2} - x_{e_1} \\ \vdots \\ x_{e_2} - x_{e_1} \\ \boldsymbol{0} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ x_{e_3} - x_{e_2} \\ \vdots \\ x_{e_3} - x_{e_2} \\ \boldsymbol{0} \end{bmatrix} + \cdots$$

$$= x_{e_1} \boldsymbol{x}^{(\mathcal{M}_1)} + (x_{e_2} - x_{e_1}) \boldsymbol{x}^{(\mathcal{M}_2)} + (x_{e_3} - x_{e_2}) \boldsymbol{x}^{(\mathcal{M}_3)} + \cdots + (x_{e_n} - x_{e_{n-1}}) \boldsymbol{x}^{(\mathcal{M}_n)} + (1 - x_{e_n}) \boldsymbol{0} \in \mathcal{P}(\mathcal{G})$$

由定义 $\mathcal{P}(\mathcal{G}) = \text{conv}\{x^{(\mathcal{M}_1)}, x^{(\mathcal{M}_2)}, \ldots\}$ 知 $\mathcal{P}(\mathcal{G})$ 的任意极点都是 \mathcal{G} 的匹配,反过来结论也成立。

定理 2. G 的任意匹配都是 P 的极点。

证明. 对任意匹配 M 和非零向量 d,不妨设 $d_e \neq 0$,注意 $x_e^{(\mathcal{M})} \in \{0,1\}$,因此 $x_e^{(\mathcal{M})} \pm \epsilon d_e$ 总有一个不属于 [0,1],即 $x^{(\mathcal{M})} \pm \epsilon d$ 总有一个不属于 \mathcal{P} ,故 $x^{(\mathcal{M})}$ 是 \mathcal{P} 的极点。

2 完美匹配

若匹配 \mathcal{M}^* 使得在子图 $(\mathcal{V}, \mathcal{M}^*)$ 中,所有点都有且仅有一条相连的边,则称为完美匹配 (perfect matching)。完美匹配可表示为向量 $\boldsymbol{x} \in \mathbb{Z}_+^{|\mathcal{E}|}$ 满足对任意 $v \in \mathcal{V}$ 有 $\sum_{e \in \delta(v)} x_e = 1$,显然完美匹配是匹配的真子集。

定理 3. 设 $\mathcal{P}^*(\mathcal{G})$ 为 \mathcal{G} 的所有完美匹配构成的凸包, $\mathcal{Q}^*(\mathcal{G})$ 定义为:

$$\mathcal{Q}^{\star}(\mathcal{G}) = \{oldsymbol{x} \mid oldsymbol{x} \geq oldsymbol{0}, \; oldsymbol{A}oldsymbol{x} = oldsymbol{e}\} = \left\{oldsymbol{x} \in \mathbb{R}_{+}^{|\mathcal{V}|} \mid orall v \in \mathcal{V}, \sum_{e \in \delta(v)} x_e = 1
ight\}$$

则 $\mathcal{P}^{\star}(\mathcal{G}) = \mathcal{Q}^{\star}(\mathcal{G})_{\circ}$

证明. 一方面,对任意 $x = \sum_{i \in [n]} \alpha^{(\mathcal{M}_i^{\star})} x^{(\mathcal{M}_i^{\star})} \in \mathcal{P}^{\star}(\mathcal{G})$,易知

$$\sum_{e \in \delta(v)} x_e = \sum_{e \in \delta(v)} \sum_{i \in [n]} \alpha^{(\mathcal{M}_i^{\star})} x_e^{(\mathcal{M}_i^{\star})} = \sum_{i \in [n]} \alpha^{(\mathcal{M}_i^{\star})} \sum_{e \in \delta(v)} x_e^{(\mathcal{M}_i^{\star})} = \sum_{i \in [n]} \alpha^{(\mathcal{M}_i^{\star})} = 1 \Longrightarrow \boldsymbol{x} \in \mathcal{Q}^{\star}(\mathcal{G})$$

另一方面,对任意 $x \in \mathcal{Q}^*(\mathcal{G}) \subseteq \mathcal{Q}(\mathcal{G}) = \mathcal{P}(\mathcal{G})$,设 $x = \sum_{i \in [n]} \alpha^{(\mathcal{M}_i)} x^{(\mathcal{M}_i)}$ 。用反证法,若其凸组合表示中存在不完美匹配 \mathcal{M}_i ,设 v 不是 \mathcal{M}_i 中边的顶点,则

$$\sum_{e \in \delta(v)} x_e = \sum_{e \in \delta(v)} \sum_{i \in [n] \setminus \{j\}} \alpha^{(\mathcal{M}_i)} x_e^{(\mathcal{M}_i)} = \sum_{i \in [n] \setminus \{j\}} \alpha^{(\mathcal{M}_i)} \sum_{e \in \delta(v)} x_e^{(\mathcal{M}_i)} \le \sum_{i \in [n] \setminus \{j\}} \alpha^{(\mathcal{M}_i)} < 1$$

这和 $Q^*(\mathcal{G})$ 的定义矛盾, 故 x 的凸组合表示中不存在不完美匹配, 即 $x \in \mathcal{P}^*(\mathcal{G})$ 。

定理 4. G 的任意完美匹配都是 \mathcal{P}^* 的极点。

证明. 完美匹配也是匹配,因此是 \mathcal{P} 的极点,故无法由 \mathcal{P} 中其它点的凸组合表示,又 $\mathcal{P}^* \subseteq \mathcal{P}$,因此 也无法由 \mathcal{P}^* 中其它点的凸组合表示,从而也是 \mathcal{P}^* 的极点

对于完全二部图 $\mathcal{K}_{n,n}$ 有 $|\mathcal{E}| = n^2$, 对任意 $\mathbf{x} \in \mathcal{Q}^*(\mathcal{K}_{n,n})$ 有

$$\boldsymbol{x} \in \mathbb{R}^{n^2}_+, \ \forall v \in \mathcal{V}, \sum_{e \in \delta(v)} x_e = 1$$

又每个点恰有 n 条相连的边,因此 x 也可以写成一个 $n \times n$ 的双随机矩阵 (所有行和、列和均为 1)。另一方面,对于完美匹配 M,每个点有且仅有一条相连的边,其对应的 $x^{(M)}$ 可以写成置换矩阵 (每行、每列有且仅有一个 1,其余为零),由定理4知双随机矩阵集合的极点是置换矩阵,这就是 Birkhoff-von Neumann 定理。

3 König 定理

前文已述最大匹配问题可放松成线性规划

$$\max_{\boldsymbol{x}} \{ \boldsymbol{e}^{\top} \boldsymbol{x} : \boldsymbol{x} \geq \boldsymbol{0}, \ \boldsymbol{\Lambda} \boldsymbol{x} \leq \boldsymbol{e} \}$$

引入 Lagrange 对偶函数 $\mathcal{L}(x,y,z) = e^{\top}x + y^{\top}x - z^{\top}(\mathbf{A}x - e)$, 易知

$$rac{\partial \mathcal{L}}{\partial x} = e + y - \mathbf{A}^{ op} z = \mathbf{0} \Longrightarrow \mathbf{A}^{ op} z - e = y \geq \mathbf{0}$$

故对偶问题为

$$\min_{\mathbf{z}} \{ \mathbf{e}^{\top} \mathbf{z} : \mathbf{z} \ge \mathbf{0}, \ \mathbf{A}^{\top} \mathbf{z} \ge \mathbf{e} \}$$
 (3)

显然这是将最小点覆盖问题

$$\min_{\mathbf{z}} \{ e^{\mathsf{T}} \mathbf{z} : \mathbf{z} \in \mathbb{Z}_{+}^{|\mathcal{V}|}, \ \mathbf{A}^{\mathsf{T}} \mathbf{z} \ge e \}$$
 (4)

的离散可行域放松成连续域得到的线性规划。同理由 $\{z \geq 0, \mathbf{A}^{\top}z \geq e\} \iff [-\mathbf{A}^{\top}; -\mathbf{I}]z \leq [-e; 0]$ 以及 \mathbf{A} 是全幺模矩阵知凸多面体 $\{z \mid z \geq 0, \mathbf{A}^{\top}z \geq e\}$ 的极点是整数向量。由于线性规划必然在极点处取最优,因此式 (3) 的最优解就是式 (4) 的最小点覆盖。

综上,最大匹配、最小点覆盖这两类整数规划问题,其最优解就是将整数约束放松后导出的线性规划的最优解,且这两类相应的线性规划互为对偶问题。

定理 5 (König). 对于二部图 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, 设最大匹配问题的最优值为 max-matching(\mathcal{G}), 最小点覆盖问题的最优值为 min-vertex-covering(\mathcal{G}), 则有 max-matching(\mathcal{G}) = min-vertex-covering(\mathcal{G})。

证明. $min-vertex-covering(\mathcal{G}) \geq max-matching(\mathcal{G})$ 是显然的,因为对最大匹配中的任意一条边,至少要覆盖其中一个顶点。

下面证明另一个方向,若 $\mathcal{E}=\emptyset$,则 max-matching(\mathcal{G}) = min-vertex-covering(\mathcal{G}) = 0,故不妨设 \mathcal{E} 非空。对 $|\mathcal{V}|$ 进行归纳,若 $|\mathcal{V}|=2$,易知 max-matching(\mathcal{G}) = min-vertex-covering(\mathcal{G}) = 1。若 $|\mathcal{V}|>2$,设 z^* 是最小点覆盖问题的最优解,由于存在点 v 使得 $z_v^*>0$,故根据互补松弛条件可得

$$z_v^{\star}(\mathbf{A}_{v,:}\boldsymbol{x}^{\star}-1)=0 \Longrightarrow 1=\mathbf{A}_{v,:}\boldsymbol{x}^{\star}=\sum_{e\in\delta(v)}x_e^{\star}$$

又原问题的最优解 x^* 是最大匹配. 故 v 出现在所有的最大匹配中. 于是

$$\max$$
-matching($\mathcal{G} \setminus \{v\}$) = \max -matching(\mathcal{G}) - 1

由归纳假设知 max-matching($\mathcal{G} \setminus \{v\}$) = min-vertex-covering($\mathcal{G} \setminus \{v\}$), 于是

$$\begin{aligned} \min\text{-vertex-covering}(\mathcal{G}) &\leq \min\text{-vertex-covering}(\mathcal{G} \setminus \{v\}) + 1 \\ &= \max\text{-matching}(\mathcal{G} \setminus \{v\}) + 1 \\ &= \max\text{-matching}(\mathcal{G}) \end{aligned}$$

König 定理还可进一步推广,设 b-匹配对应的表示向量满足对任意 $v \in \mathcal{V}$ 有 $\sum_{e \in \delta(v)} x_e \leq b_v$; c-点覆盖对应的表示向量满足对任意 $e = (u,v) \in \mathcal{E}$ 有 $z_u + z_v \geq c_e$,易知有

$$\max_{\boldsymbol{x}}\{\boldsymbol{c}^{\top}\boldsymbol{x}:\boldsymbol{x}\geq\boldsymbol{0},\ \boldsymbol{\Lambda}\boldsymbol{x}\leq\boldsymbol{b}\}=\min_{\boldsymbol{z}}\{\boldsymbol{b}^{\top}\boldsymbol{z}:\boldsymbol{z}\geq\boldsymbol{0},\ \boldsymbol{\Lambda}^{\top}\boldsymbol{z}\geq\boldsymbol{c}\}$$

即最大 c-加权 b-匹配等于最小 b-加权 c-点覆盖。

4 最大流与最小割

类似于最大匹配和最小点覆盖,最大流和最小割也是一组对偶问题。给定有向流网络 $\mathcal{G}=(\mathcal{V},\mathcal{E})$ 、源点 s、汇点 t,设 $\delta_{\rm in}(v)$ 是以点 v 为终点的入边集合、 $\delta_{\rm out}(v)$ 是以点 v 为起点的出边集合, $\mathbf{A} \in \{0,\pm 1\}^{|\mathcal{V}|\times|\mathcal{E}|}$ 是 \mathcal{G} 对应的关联矩阵,即

$$a_{v,e} = \begin{cases} 1 & e \in \delta_{\text{in}}(v) \\ -1 & e \in \delta_{\text{out}}(v) \\ 0 & \text{o.w.} \end{cases}$$

 ${f A}_{\overline{st}}$ 为 ${f A}$ 去掉 s、t 对应行的子矩阵,注意有向流网络中源点 s 只有出边、汇点 t 只有入边,因此 ${f A}_{\overline{st}}$ 其实也是 ${\cal G}$ 删除 s、t 及其所有相连边后的有向图的关联矩阵,故 ${f A}_{\overline{st}}$ 是全幺模矩阵。

最大流问题可形式化为线性规划:

$$\max_{\boldsymbol{x}}\{\mathbf{A}_t\boldsymbol{x}:\mathbf{0}\leq\boldsymbol{x}\leq\boldsymbol{c},\ \mathbf{A}_{\overline{st}}\boldsymbol{x}=\mathbf{0}\}$$

其中 \mathbf{A}_t 是 \mathbf{A} 中汇点 t 对应的行, $\mathbf{0} \le x \le c$ 约束流的上下界, $\mathbf{A}_{\overline{st}}x = \mathbf{0}$ 约束非源点、汇点的流量要守恒。注意

$$\{x\mid 0\leq x\leq c,\ \mathbf{A}_{\overline{st}}x=0\} \Longleftrightarrow [\mathbf{A}_{\overline{st}};-\mathbf{A}_{\overline{st}};\mathbf{I};-\mathbf{I}]x\leq [0;0;c;0]$$

由 $\mathbf{A}_{\overline{st}}$ 是全幺模矩阵知 $[\mathbf{A}_{\overline{st}}; -\mathbf{A}_{\overline{st}}; \mathbf{I}; -\mathbf{I}]$ 也是全幺模矩阵,若流量上限 c 是整数向量,则可行域 $\{z\mid 0\leq x\leq c,\ \mathbf{A}_{\overline{st}}x=0\}$ 的极点也是整数向量,即最大流是整数流。

引入 Lagrange 对偶函数 $\mathcal{L}(x, y, z, w) = \mathbf{A}_t x + y^\top x - z^\top (x - c) - w_{st}^\top \mathbf{A}_{\overline{st}} x$, 易知

$$rac{\partial \mathcal{L}}{\partial m{x}} = \mathbf{A}_t^ op + m{y} - m{z} - \mathbf{A}_{\overline{st}}^ op m{w}_{\overline{st}} = \mathbf{0} \Longrightarrow \mathbf{A}_{\overline{st}}^ op m{w}_{\overline{st}} + m{z} \geq \mathbf{A}_t^ op$$

故对偶问题为

$$\min_{oldsymbol{w}_{\overline{st}},oldsymbol{z}} \{oldsymbol{c}^ op oldsymbol{z}: oldsymbol{z} \geq oldsymbol{0}, \ oldsymbol{\mathbf{A}}_{\overline{st}}^ op oldsymbol{w}_{\overline{st}} + oldsymbol{z} \geq oldsymbol{\mathbf{A}}_t^ op \}$$

注意

$$\{oldsymbol{z} \mid oldsymbol{z} \geq oldsymbol{0}, \ \mathbf{A}_{\overline{st}}^ op oldsymbol{w}_{\overline{st}} + oldsymbol{z} \geq \mathbf{A}_t^ op\} \Longleftrightarrow [-\mathbf{A}_{\overline{st}}^ op, -\mathbf{I}][oldsymbol{w}_{\overline{st}}; oldsymbol{z}] \leq [-\mathbf{A}_t^ op; oldsymbol{0}]$$

由 $\mathbf{A}_{\overline{st}}$ 是全幺模矩阵知 $[-\mathbf{A}_{\overline{st}}^{\top}, -\mathbf{I}; \mathbf{0}, -\mathbf{I}]$ 也是全幺模矩阵,故对偶问题的最优解 $\mathbf{w}_{\overline{st}}^{\star}, \mathbf{z}^{\star}$ 也是整数向量。

 $\boldsymbol{w}_{st}^{\star}$ 的维度为 $|\mathcal{V}|-2$,与 \mathbf{A}_{st} 的行对应,现添加 $w_{s}^{\star}=0$ 、 $w_{t}^{\star}=-1$ 将其扩充为 \boldsymbol{w}^{\star} ,与 \mathbf{A} 的行对应, 于是 $\mathbf{A}^{\top}\boldsymbol{w}^{\star}+\boldsymbol{z}^{\star}=\mathbf{A}_{st}^{\top}\boldsymbol{w}_{st}^{\star}-\mathbf{A}_{t}^{\top}+\boldsymbol{z}^{\star}\geq\mathbf{0}$ 。由于 \boldsymbol{c} 非负,故 \boldsymbol{z}^{\star} 应尽量的小,从而 $\boldsymbol{z}^{\star}=\max\{\mathbf{0},-\mathbf{A}^{\top}\boldsymbol{w}^{\star}\}$,即对 $\boldsymbol{e}=(u,v)\in\mathcal{E}$ 有 $\boldsymbol{z}_{e}^{\star}=\max\{0,w_{u}^{\star}-w_{v}^{\star}\}$ 。

定义 $\mathcal{S} = \{v \in \mathcal{V} \mid w_v^{\star} \geq 0\}$, $\overline{\mathcal{S}} = \mathcal{V} \setminus \mathcal{S}$, $\delta_{\mathcal{S},\overline{\mathcal{S}}} \triangleq \{(u,v) \in \mathcal{E} \mid u \in \mathcal{S}, v \in \overline{\mathcal{S}}\}$ 为所有起点属于 \mathcal{S} 、终点属于 $\overline{\mathcal{S}}$ 的边的集合。显然 $s \in \mathcal{S}$ 、 $t \in \overline{\mathcal{S}}$, 在将所有 $\delta_{\mathcal{S},\overline{\mathcal{S}}}$ 中的边删除后,s、t 不再连通,因此 $\delta_{\mathcal{S},\overline{\mathcal{S}}}$ 称为割 (cut)。

由于 w_v^* 都是整数, 因此对任意 $e=(u,v)\in\delta_{\mathcal{S},\overline{\mathcal{S}}}$ 有 $z_e^*\geq w_u^*-w_v^*\geq 1$, 因此

$$\boldsymbol{c}^{\top}\boldsymbol{z}^{\star} \geq \sum_{e \in \delta_{\mathcal{S},\overline{\mathcal{S}}}} c_e z_e^{\star} \geq \sum_{e \in \delta_{\mathcal{S},\overline{\mathcal{S}}}} c_e \geq \sum_{e \in \delta_{\mathcal{S},\overline{\mathcal{S}}}} x_e^{\star} \geq \sum_{e \in \delta_{\text{in}}(t)} x_e^{\star} = \mathbf{A}_t \boldsymbol{x}^{\star} \geq \boldsymbol{c}^{\top} \boldsymbol{z}^{\star}$$

其中第一个不等号是因为 $z_e^* \ge 0$; 第二个不等号是因为对任意 $e \in \delta_{S,\overline{S}}$ 有 $z_e^* \ge 1$; 第三个不等号是因为 c_e 是边 e 的流量上限; 第四个不等号是因为从 S 到 \overline{S} 的流量未必会全部进入汇点,可能会有一部分通过从 \overline{S} 到 S 的边再折回 S; 第五个不等号是因为弱对偶性。

综上所有的不等号都取等号,由此可以得到一些有趣的结论:

- 根据第一个不等号取等号,对任意 $e \notin \delta_{S,\overline{S}}$ 有 $z_e^* = 0$,即对任意 S 内部的边 e、 \overline{S} 内部的边 e、 \overline{S} 内部的边 e、 \overline{S} 内部的边 e0;
- 根据第二个不等号取等号,对任意 $e = (u, v) \in \delta_{S, \overline{S}}$ 有 $z_e^* = 1$,故只可能是 $w_u^* = 0$ 、 $w_v^* = -1$,于是对任意 S 内部的边 e = (p, u),必然有 $w_p^* = 0$,否则 $z_e^* \ge w_p^* w_u^* > 0$,与前一个结论矛盾,依此类推,对所有 S 中的点 u 都有 $w_u^* = 0$ 。同理,对所有 \overline{S} 中的点 v 都有 $w_v^* = -1$;
- 根据第三个不等号取等号,当流量达到最大时, $\delta_{S,\overline{S}}$ 中的每条边上的流量都达到上限,这个也可由互补松弛条件 $z_e(x_e-c_e)=0$ 得到: $z_e^*=1>0\Longrightarrow x_e^*=c_e$;
- 根据第四个不等号取等号,从 S 到 \overline{S} 的流量全部进入 t,不存在折回 S 的情况,即 $\delta_{\overline{S},S}$ 中的每条边上的流量都是零,这个也可由互补松弛条件 $y_e x_e = 0$ 得到:注意此时 $z_e^* = 0 > -1 = w_u^* w_v^*$,故 $y_e^* = z_e^* (w_u^* w_v^*) > 0$,从而 $x_e^* = 0$ 。