Algebraic Geometry II: Exercises for Lecture 11 – 18 April 2019

[RdBk] refers to Mumford's Red Book, [HAG] to Hartshorne's Algebraic Geometry.

Exercise 1. Let $r \in \mathbb{Z}_{>0}$, let k be a field and write $X = \mathbb{P}_k^r$ and $S = k[X_0, \dots, X_r]$.

(a) Show that K(X) can be identified with the ring of degree zero elements in the fraction field of S. Note that the fraction field of S is the localization of S at the prime ideal (0).

For $f \in S$ homogeneous we denote by Z(f) the closed subscheme of X determined by the homogeneous ideal $I = (f) \subset S$ generated by f. For a prime divisor Y on X with Y = Z(f) we set $\deg Y = \deg f$ and for $D = \sum_i n_i Y_i$ a Weil divisor on X with $Y_i = Z(f_i)$ prime divisors we set $\deg D = \sum_i n_i \deg Y_i$. Let $H = Z(X_0)$. Following the proof of Proposition 11.1.7 of the AG1 lecture notes, show the following statements.

- (b) Let $f \in K(X)^{\times}$. Show that deg div f = 0.
- (c) Let $D \in \text{Div } X$. Assume that $\deg D = d$. Show that D dH is a principal divisor.
- (d) Show that the map deg: Div $X \to \mathbb{Z}$ induces an isomorphism $\operatorname{Cl} X \xrightarrow{\sim} \mathbb{Z}$.

Exercise 2. Let X be a noetherian, integral and locally factorial scheme. Let $D \in \text{Div } X$ and $g \in K(X)^{\times}$. Write D' = D + div g.

(a) Construct an isomorphism of \mathcal{O}_X -modules $\mathcal{O}_X(D) \xrightarrow{\sim} \mathcal{O}_X(D')$.

We define

$$H^0(X, \mathcal{O}_X(D)) = \{ f \in K(X)^{\times} : \operatorname{div}(f) + D \ge 0 \} \cup \{ 0 \}.$$

Now let k be a field, take $X = \mathbb{P}_k^r$ and set $H = Z(X_0)$ as above. Let $d \in \mathbb{Z}$.

- (b) Compute a basis of the k-vector space $H^0(X, \mathcal{O}_X(dH))$.
- (c) Assume that D dH = div g. Compute a basis of the k-vector space $H^0(X, \mathcal{O}_X(D))$.

Exercise 3. Let A be a ufd. Recall that an irreducible element of A generates a prime ideal of A. Show that every prime ideal of height one of A is principal.

Exercise 4. Let X be a noetherian topological space. Show that X is quasi-compact. Show that every subset of X, endowed with the induced topology, is a noetherian topological space.

Exercise 5. Let X be the spectrum of a noetherian ring. Show that the underlying topological space of X is noetherian. Show that the underlying topological space of a noetherian scheme is noetherian.

Exercise 6. Let X be an irreducible topological space, and let $\{U_i\}$ be an open covering of X. Let \mathcal{F} be a sheaf on X and assume that the restriction of \mathcal{F} to each open U_i is constant. Show that \mathcal{F} is constant.