

Criptografia

Grupo de Resposta a Incidentes de Segurança

OLÁ, Eu sou Sidney

Aluno de Ciência da Computação na UFRJ, Diretor do GRIS e membro do Laboratório de Redes e Multimídia(Labnet).

Sumário

- O que é criptografia?
- Por que criptografar?
- Tipos de criptografia
- Hash
- base64, MD5 (básico)
- RSA, Diffie-Hellman (Intermediário)
- Criptografia Quântica(?)
- Tag

O que é criptografia?

- Consiste em técnicas cuja a finalidade destina-se a tornar informações sigilosas em mensagem que aparentam não ter sentido
- ➤ Esteganografia ≠ Criptografia

Por que?

Tipos de Criptografias

Simétrica

- um algoritmo
- uma chave de segurança

Exemplo:

Cifra de césar e AES

Assimétrica

- um algoritmo
- uma chave pública (para encriptar)
- uma chave privada (para decriptar)

Exemplo:

RSA e curvas elípticas

Hash

- Uma função hash criptográfica é um algoritmo que pega uma informação de tamanho qualquer e mapeia para uma informação de tamanho fixo, além disso é praticamente impossível de inverter
- > Pode ser usado para comparar e validar senhas ou validar a integridade de arquivos

COMPUTER HETH EDITION NETWORKING

KUROSE ROSS

Hashes:

AICH YDIFAZKS6NAXN6KIY5SVTXN667HD7PY3

CRC32 B6764D7C

eDonkey 92794EFFD6E32EF7796DEE770A4CB6A5

MDS B29D6ECA58B6B460D11AD68F224EDD02

SHA1 2610CED2F8C4181898419DEA6CED5DC6407D0749

SHA256 80E5CF17E8A5CBB1D2168912FCB2A2BF

906898648469F51FB2930726324DF854

TTH G2SJCBMF2IU6HEHJ6NPMEVBXQWCM0F4H7PFSXKI

Colisão de Hash

- Quando duas entradas distintas são processadas por uma função hash e geram um mesmo resultado, isso se chama uma colisão de hash
- > Todas as funções Hash tem potenciais colisões
- Uma função Hash é considerada boa, quando há poucas ocorrências de colisões

Birthday attack

- Baseado em um paradoxo usaremos a teoria da probabilidade para tentar encontrar uma colisão
- Um ataque de força bruta em que podemos estipular o quão seguro é uma função hash antes de executar

Para formar um par em que uma das partes seja especificamente uma pessoa:

Precisamos de 253 só para ter 50% de chance

Para formar um par qualquer:

Basta 23 pessoas para ter 50% de chance

Um pouco de Combinatória mostra o porquê

$$C_{232} = 253$$

Base64

- É uma técnica de codificação usada para transferir dados binários por transmissão que aceitam texto
- > Constituído por 64 caracteres ([a-z],[A-Z],[0-9],"/" e "+"), que deu origem ao nome

source ASCII (if <128)		M						a						n										
source octets	77 (0x4d)			97 (0x61							x61)				110 (0x6e)									
Bit pattern	0	1	0	0	1	1	0	1	0	1	1	0	0	0	0	1	0	1	1	0	1	1	1	0
Index	19			22					5					46										
Base64-encoded	T				w					F						u								
encoded octets	84 (0x54)				87 (0x57)					70 (0x46)					117 (0x75)									

MD5

- Message Digest algorithm 5
- ➤ É um função hash criptográfica de 128 bits
- > Fraco contra rainbow tables e não é seguro pela
 - facilidade em gerar colisões

MD5 Rainbow Tables

Table ID	Charset	Plaintext Length	Key Space	Success Rate	Table Size	Files	Performance	
# md5_ascii-32-95#1-7	ascii-32-95	1 to 7	70,576,641,626,495	99.9 %	52 GB 64 GB	Perfect Non-perfect	Perfect Non-perfect	
# md5_ascii-32-95#1-8	ascii-32-95	1 to 8	6,704,780,954,517,120	96.8 %	460 GB 576 GB	Perfect Non-perfect	Perfect Non-perfect	
md5_mixalpha-numeric#1-8	mixalpha-numeric	1 to 8	221,919,451,578,090	99.9 %	127 GB 160 GB	Perfect Non-perfect	Perfect Non-perfect	
md5_mixalpha-numeric#1-9	mixalpha-numeric	1 to 9	13,759,005,997,841,642	96.8 %	690 GB 864 GB	Perfect Non-perfect	Perfect Non-perfect	
md5_loweralpha-numeric#1-9	loweralpha-numeric	1 to 9	104,461,669,716,084	99.9 %	65 GB 80 GB	Perfect Non-perfect	Perfect Non-perfect	
# md5_loweralpha-numeric#1-10	loweralpha-numeric	1 to 10	3,760,620,109,779,060	96.8 %	316 GB 396 GB	Perfect Non-perfect	Perfect Non-perfect	

RSA

- > Encriptação a partir de um par de primos
- Sua força deriva-se da ausência de um algoritmo de fatoração eficiente

1º passo: Escolha 2 números primos P e Q. Com isso, N = P x Q e F = (P-1)x(Q-1)

2º passo: Escolha um número 'e' qualquer maior que 3 e que o MDC entre 'e' e F seja 1

3º passo: Encontre um "d" inteiro que satisfaz a equação ed + fg = 1, sendo g um número inteiro qualquer

Chave pública: (n,e)

Chave privada: (n,d)

Ex:

Suponha P = 11 e Q = 13, então N e F são respectivamente 143(8 bits) e 120

Agora com e = 23, como o MDC(e,F) = 1, basta encontrar o 'd'

Usando um algoritmo que se chama Euclidiano estendido podemos encontrar 47 como valor apropriado para d

$$M^{\bullet} \equiv C \pmod{N}$$

$$C^{d} \equiv M \pmod{N}$$

Diffie-Hellman

> Algoritmo de troca de chaves ideal de ser usado quando pretende-se usar uma criptografia simétrica

Sid	Membro do Gris
2 números em comum é definido: 191 & 19	2 números em comum é definido: 191 & 19
O próprio número secreto é escolhido: 4	O próprio número secreto é escolhido: 7
$19^4 \equiv X \pmod{191}$	19 ⁷ ≡ Y (mod 191)
Y ⁴ ≡ Z (mod 191)	X ⁷ ≡ Z (mod 191)

A troca de chaves foi um sucesso e a chave é Z

Criptografia Quântica

- Quantum proof
- > BB84 & "coin tossing"

Tag: Cryptopals

- Fazer 3 desafios do site cryptopals.com (recomendo os três iniciais) e entregar um relatório explicando as questões selecionadas e suas respostas
- Pode ser feito em qualquer linguagem
- Entrega: daqui a 3 semanas

OBRIGADO

