Cognoms:	Nom:
c obliging.	1 1 0 1 1 1 1

1 ÓSSOS

A la planta -4 estació 27 trobem tres esquelets d'óssos. El més petit fa aproximadament 30 cm d'alçada, el mitjà 1.0 metre i el més gran uns 2.3 metres. Suposem que el model cilíndric/elàstic ($m \sim L^4$) és vàlid i que l'ós més petit tenia aproximadament una massa igual a 250 g.

- Troba la massa dels altres dos.
- La llei dels temps biològics diu que $T \sim m^{1/4}$. La freqüència d'un moviment periòdic (nombre d'oscil·lacions per unitat de temps) és igual a l'invers del període $f = 1/\tau$ i, per tant, tenim que $f \sim m^{-1/4}$. Sabent que el cor de l'ós adult fa uns 50 batecs per minut, troba la freqüència cardíaca dels altres dos.

2 VELOCITAT DEL SO

A l'entrada de la planta -5 (a la dreta) trobem un tub que fa uns 100 metres per dins del museu. Si emetem un so per un extrem trobem que al cap de 1/3 segon ens arriba per l'altre extrem del tub. Troba la velocitat del so.

3 PÈNDOLS

El període d'oscil·lació d'un pèndol satisfà $\tau \sim \sqrt{l/g}$. Observa que realment el període no depèn de la massa. A quina distància cal posar la massa (aproximadament) per tal que el període sigui la meitat (és a dir oscil·li el doble de ràpid)?

4 CAIGUDA LLIURE

Tots els objectes al buit cauen a la mateixa velocitat perquè la força de la gravetat és proporcional a la massa. Si la velocitat inicial és nul·la, tenim que v(t) = gt i $h(t) = \frac{1}{2}gt^2$.

- Encara que es bastant difícil perquè triga molt poc temps a caure, proveu de mesurar el temps que triga a caure un objecte en el buit i l'alçada inicial, deduïu l'acceleració de la gravetat.
- Quan hi ha fregament, quins objectes cauen abans? Anoteu les diferències de temps.

5 SEDIMENTACIÓ I BOMBOLLES

El fregament que experimenten els objectes que es mouen en el sí d'un fluid viscós és predominantment degut a la **força viscosa**: $F_v \propto \eta rv$. La velocitat límit de caiguda s'assoleix quan aquesta força s'iguala amb les altres [gravetat+empenta, $F \propto r^3(\rho_c - \rho_l)g$], per tant

$$v_L \propto r^2$$
. (1)

Quan no hi ha viscositat (o aquesta no és massa important), la força rellevant es l'arrossegament (força d'arrossegament $F_a \propto \rho_l A v^2$). La relació entre la velocitat límit de caiguda i el radi de la bola és doncs:

$$v_L \propto \sqrt{r}$$
 (2)

- Si una bola de radi $r_1 = r$ es sedimenta a velocitat $v_1 = v$, troba la velocitat de sedimentació de boles de radi $r_2 = r/2$ pel cas en que les forces de fregament són del tipus (1) o (2). En quin cas és més dramàtica la reducció de velocitat?
- Perquè tant l'equació (1) com la (2) impliquen que els objectes sedimentats més grans són els més profunds?

Observa l'efecte complementari: les bombolles més grans pugen més de pressa.

6 HIDROSTÀTICA

- Escriu el principi de Bernouilli i també la seva expressió quan el fluid està en repòs.
- Escriu l'expressió de la velocitat de sortida del fluid a l'experiència del tanc d'aigua foradat.

7 EFECTE VENTURI, AVIONS I PEIXOS

A alçades iguals, l'Eq. de Bernoulli es redueix a $p + \frac{1}{2}\rho v^2 = \text{ct}$

- Perquè s'atrauen les boles?
- Perquè es manté estable la bola de porexpan?
- Perquè volen els avions?
- Hi ha un tipus de tauró que no té bufeta natatòria (cavitat amb aire), per tant si es quedés quiet s'enfonsaria. Explica perquè si està sempre en moviment no s'enfonsa.
- Comenteu com s'ho fa el el Nautilus per mantenir-se ingràvid en aigua si la seva densitat corporal és 1,1 vegades la densitat de l'aigua de mar.

8 ESPECTRE ELECTROMAGNÈTIC

• Ordena l'espectre electromagnetic en energies i identifica l'espectre visible (colors).

• Quin és més energètic, el vermell o el blau?

9 CENTRE DE GRAVETAT

• Com és que aquest objecte sembla violar la força de la gravetat?

10 ROTACIONS I MOMENTS D'INÈRCIA

Observa l'experiència dels cilindres que cauen per un pla inclinat.

• A què es degut que un caigui més de pressa que l'altre?

En parelles doneu voltes (per exemple unes 10) en la plataforma giratòria. Què passa quan us allunyeu de l'eix o estireu les cames? Cronometreu quanta diferència de temps es pot aconseguir en fer les 10 voltes.