ARIMA и сезонная ARIMA

Буковка І

Буковка I: план

- Стационарность ARMA.
- Определение ARIMA.
- Нужно ли переходить к разностям?

ARMA процесс

Определение

ARMA(p,q) процессом с несократимым уравнением

$$y_t = c + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + u_t + \alpha_1 u_{t-1} + \ldots + \alpha_q u_{t-q},$$

где (u_t) — белый шум, $\beta_p \neq 0$ и $\alpha_q \neq 0$, называется решение этого уравнения вида $MA(\infty)$ относительно (u_t) .

Определение с лагами

ARMA(p,q) процессом с уравнением

$$P(L)y_t = c + Q(L)u_t,$$

где (u_t) — белый шум, P(L) степени p и Q(L) степени q несократимы, P(0)=Q(0)=1, называется решение этого уравнения вида $MA(\infty)$ относительно (u_t) .

Нюансы

- Процесс $y_t \sim ARMA(p,q)$ стационарен по определению: $\mathbb{E}(y_t) = \mu_y$, $Var(y_t) = \gamma_0$, $Cov(y_t, y_{t-k}) = \gamma_k$.
- В канонической записи ARMA(p,q) процесса $P(L)y_t = c + Q(L)u_t$ у полинома P(L) все корни $|\ell| > 1$. Возможны неканонические варианты.
- При оценке ARMA(p,q) процесса методом максимального правдоподобия эти ограничения наложены а-приори.

Есть упрощённые варианты правдоподобия.

Что делать с нестационарными процессами?

Определение

Случайный процесс (y_t) называется ARIMA(p,1,q) процессом относительно белого шума (u_t) , если (y_t) нестационарен, но Δy_t — стационарный ARMA(p,q) процесс относительно белого шума (u_t) .

Определение

Случайный процесс (y_t) называется ARIMA(p,2,q) процессом относительно белого шума (u_t) , если (y_t) и (Δy_t) нестационарны, но $\Delta^2 y_t$ — стационарный ARMA(p,q) процесс относительно белого шума (u_t) .

$$\Delta y_t = y_t - y_{t-1}$$
 и $\Delta^2 y_t = \Delta y_t - \Delta y_{t-1}$

ARIMA — AutoRegressive Integrated Moving Average

Как выбрать?

ARIMA(p,0,q) или ARIMA(p,1,q) или ARIMA(p,2,q)

- Посмотреть на график!
 График стационарного процесса колеблется в полосе постоянной ширины вокруг своего ожидания.
- Оценить все эти модели и выбрать наилучшую по кросс-валидации.

Затратно по времени!

• Применять AIC нельзя!

$$\ln L(y_1,\ldots,y_n\mid heta)$$
 и $\ln L(y_2,\ldots,y_n\mid heta,y_1)$ и $\ln L(y_3,\ldots,y_n\mid heta,y_1,y_2)$ несравнимы!

• Есть тесты на единичный корень! ADF, KPSS, PP, ...

Выбираем «на глазок»

четыре небольших графика на одном слайде явно стационарный (x) случайное блуждание (y) явно с трендом (z) что-то спорное (w)

Буковка I: итоги

- ARMA подходит только для стационарных рядов.
- Иногда стационарен Δy_t или $\Delta^2 y_t$.
- Выбираем между ARMA и ARIMA.

ADF TECT

ADF тест: план

- Предположения теста.
- Алгоритм теста.
- Три вариации теста.

Зачем нужен ADF тест?

Хотим ответить на вопросы:

- Использовать ARMA модель для (y_t) или для (Δy_t) ?
- Как включать константу в модель?

Название «тест на единичные корни»:

$$\Delta = 1 - L = P(L)$$

Уравнение $1 - \ell = 0$ имеет корень $\ell = 1$.

ADF Tect

Расшифровка

Augmented Dickey Fuller test

Расширенный тест Дики-Фуллера

Три вариации теста: без константы, с константой, с трендом.

ADF с константой

$$\Delta y_t = c + \beta y_{t-1} + d_1 \Delta y_{t-1} + \ldots + d_p \Delta y_{t-p} + u_t,$$
 H_0 : $\beta = 0$; (Δy_t) — стационарный $AR(p)$ процесс; $y_t = y_0 + mt + \sum_{i=1}^t (\Delta y_t - \mathbb{E}(\Delta y_t));$ H_a : $\beta < 0$; (y_t) — стационарный $AR(p+1)$ процесс;

ADF с константой: H_0 и H_a

тут два графика,

слева H_0

 Δy_t — стационарный AR(p) процесс;

$$y_t = y_0 + ct + \sum_{i=1}^t (\Delta y_t - \mathbb{E}(\Delta y_t));$$

справа H_a

 y_t — стационарный AR(p+1) процесс с ненулевым ожиданием

ADF с константой: алгоритм

Шаг 1. Оцениваем регрессию

$$\widehat{\Delta y_t} = \hat{c} + \hat{\beta} y_{t-1} + \hat{d}_1 \Delta y_{t-1} + \ldots + \hat{d}_p \Delta y_{t-p}.$$

Шаг 2. Считаем по классической формуле t-статистику

$$ADF = \frac{\hat{\beta} - 0}{se(\hat{\beta})}.$$

При верной H_0 распределение ADF-статистики стремится к особому распределению DF^c !

Шаг 3. Делаем вывод:

Если $ADF < DF^c$, то H_0 отвергается.

ADF без константы

распределение DF^0 .

$$\Delta y_t = \beta y_{t-1} + d_1 \Delta y_{t-1} + \ldots + d_p \Delta y_{t-p} + u_t,$$
 H_0 : $\beta = 0$; (Δy_t) — стационарный $AR(p)$ процесс с $\mathbb{E}(\Delta y_t) = 0$; $y_t = y_0 + \sum_{i=1}^t \Delta y_t;$ H_a : $\beta < 0$; (y_t) — стационарный $AR(p+1)$ процесс с $\mathbb{E}(y_t) = 0$; В алгоритме будет регрессия без константы и другое

ADF без константы: H_0 и H_a

тут два графика, слева H_0 справа H_a

ADF с трендом

$$\Delta y_t = c + gt + \beta y_{t-1} + d_1 \Delta y_{t-1} + \ldots + d_p \Delta y_{t-p} + u_t,$$
 H_0 : $\beta = 0$;
$$\Delta y_t = k_1 + k_2 t + x_t;$$
 (x_t) — стационарный $AR(p)$ процесс с $\mathbb{E}(x_t) = 0$; $y_t = y_0 + m_1 t + m_2 t^2 + \sum_{i=1}^t x_i;$ H_a : $\beta < 0$; $y_t = m_1 + m_2 t + x_t;$ (x_t) — стационарный $AR(p+1)$ процесс с $\mathbb{E}(x_t) = 0$; В алгоритме будет регрессия с константой и трендом и другое распределение DF^{ct} .

ADF с трендом: H_0 и H_a

тут два графика, слева H_0 справа H_a

ADF тест: итоги

- Применим для принятия решения о переходе к Δy_t .
- Есть три варианта теста с разными предпосылками.

KPSS TecT

KPSS тест: план

- Долгосрочная дисперсия.
- Предпосылки теста.
- Две вариации теста.

Зачем нужен KPSS тест?

Хотим ответить на вопросы:

- Использовать ARMA модель для (y_t) или для (Δy_t) ?
- Как включать константу в модель?

KPSS Tect

Расшифровка

Kwiatkowski-Phillips-Schmidt-Shin test

Тест Квятковского-Филлипса-Шмидта-Шина

Две вариации теста: с константой, с трендом.

Долгосрочная дисперсия

Определение

Для стационарного процесса (y_t) величина λ^2 называется долгосрочной дисперсией, если

$$Var(\bar{y}) = \frac{\lambda^2}{T} + o(1/T)$$

или

$$\lim_{T \to \infty} T \operatorname{Var}(\bar{y}) = \lambda^2,$$

где
$$\bar{y} = (y_1 + \ldots + y_T)/T$$
.

Мотивация

Для независимых наблюдений с одинаковой дисперсией

$$\mathrm{Var}(\bar{y}) = \frac{\sigma^2}{T}, \;$$
где $\sigma^2 = \mathrm{Var}(y_i).$

KPSS с константой

$$y_t = c + rw_t + x_t,$$
 H_0 : $rw_t = 0$; (x_t) — стационарный процесс с $\mathbb{E}(x_t) = 0$; H_a : $rw_t = rw_{t-1} + u_t$; $rw_0 = 0$; (x_t) — стационарный процесс с $\mathbb{E}(x_t) = 0$; (u_t) — белый шум, независимый с (x_t) .

KPSS с константой: H_0 и H_a

тут два графика, слева H_0 справа H_a

KPSS с константой: алгоритм

Шаг 1. Оцениваем регрессию на константу

$$\widehat{y_t} = \widehat{c}.$$

Шаг 2. Считаем KPSS статистику

$$KPSS = \frac{\sum_{t=1}^{T} S_t^2}{T^2 \hat{\lambda}^2},$$

где S_t — накопленная сумма остатков, $S_t = \hat{u}_1 + \ldots + \hat{u}_t$, а $\hat{\lambda}^2$ — состоятельная оценка долгосрочной дисперсии.

При верной H_0 распределение KPSS-статистики стремится к особому распределению $KPSS^c$!

Шаг 3. Делаем вывод:

Если $KPSS > KPSS^c$, то H_0 отвергается.

KPSS с трендом

$$y_t = c + bt + rw_t + x_t,$$
 H_0 : $rw_t = 0$;
 (x_t) — стационарный процесс с $\mathbb{E}(x_t) = 0$;
 H_a : $rw_t = rw_{t-1} + u_t$;
 $rw_0 = 0$;
 (x_t) — стационарный процесс с $\mathbb{E}(x_t) = 0$;
 (u_t) — белый шум, независимый с (x_t) .

В алгоритме будет регрессия с константой и трендом и другое распределение $KPSS^{ct}$.

KPSS с трендом: H_0 и H_a

тут два графика, слева H_0 справа H_a

Устоявшаяся терминология:

$$A.y_t = a + bt + x_t;$$

 (y_t) — стационарный вокруг тренда (trend stationary).

 (x_t) — стационарный процесс с $\mathbb{E}(x_t)=0$.

Рецепт: оценим регрессию a+bt с ARMA ошибками для (y_t) .

$$B.y_t = a + \sum_{i=1}^t x_i$$
 или $y_t = a + bt + \sum_{i=1}^t x_i$

 (x_t) — стационарный процесс с $\mathbb{E}(x_t)=0$.

 (y_t) — стационарный в разностях (difference stationary).

Рецепт: оценим ARMA для (Δy_t) .

Оба (y_t) нестационарны!

KPSS тест: итоги

- Применим для принятия решения о переходе к Δy_t .
- Есть два варианта теста с разными предпосылками.

Сезонная ARIMA

Сезонная ARIMA: план

- ARMA должна быть экономной!
- Сезонные полиномы.
- Нужно ли переходить к сезонным разностям?

Сезонность и АРІМА

С помощью ARMA и ARIMA моделей можно моделировать сезонность!

Только дорого!

$$MA(12): y_t = c + u_t + a_1u_{t-1} + a_2u_{t-2} + \dots + a_{12}u_{t-12}.$$

$$ARIMA(12,1,0): \Delta y_t = c + u_t + b_1 \Delta y_{t-1} + \ldots + b_{12} \Delta y_{t-12}.$$

ARMA должна быть экономной!

Сосредоточимся на коэффициентах сильнее отличных от нуля!

Определение

Если стационарную ARMA модель для y_t можно записать с меньшим числом параметров в виде

$$P_{non}(L)P_{seas}(L^{12})y_t = c + Q_{non}(L)Q_{seas}(L^{12})u_t,$$

где степени у лаговых полиномов равны $\deg P_{non}=p$, $\deg P_{seas}=P$, $\deg Q_{non}=q$, $\deg Q_{seas}=Q$, то она также называется SARMA(p,q)(P,Q)[12].

Примеры

• SARMA(1,0)(0,2)[12]

$$(1 - b_1 L)y_t = c + (1 + d_1 L^{12} + d_2 L^{24})u_t;$$

• SARMA(0, 2)(1, 0)[12]

$$(1 - f_1 L^{12})y_t = c + (1 + a_1 L + a_2 L^2)u_t;$$

• SARMA(1, 2)(2, 1)[12]

$$(1-f_1L^{12}-f_2L^{24})(1-b_1L^1)y_t = c + (1+a_1L+a_2L^2)(1+d_1L^{12})u_t$$

SARIMA

По аналогии с разностью $\Delta y_t = y_t - y_{t-1}$ можно рассмотреть сезонную разность $\Delta_{12}y_t = y_t - y_{t-12}$.

Определение

Если ряд $z_t = \Delta^d \Delta_{12}^D y_t$ описывается стационарной моделью SARMA(p,q)(P,Q)[12], то говорят, что y_t описывается моделью $SARIMA(p,\mathbf{d},q)(P,\mathbf{D},Q)[12]$.

d — количество взятий обычной разности $\Delta=1-L$; D — количество взятий сезонной разности $\Delta_{12}=1-L^{12}$; $y_t\sim SARIMA(0,0,2)(1,1,2)[12]$ означает, что $\Delta_{12}y_t\sim SARMA(0,2)(1,2)[12]$

Как выбрать?

SARIMA(p,0,q)(P,0,Q) или SARIMA(p,0,q)(P,1,Q)[12]?

- Посмотреть на график! Слишком выраженная сезонность — повод перейти к $\Delta_{12} y_t$.
- Оценить все эти модели и выбрать наилучшую по кросс-валидации.
 Затратно по времени!
- Применять AIC нельзя!
 Условная и безусловная функции правдоподобия содержат разное число слагаемых.
- Есть тесты на единичный корень! И эмпирические правила...

STL разложение и сила сезонности

Шаг 1. Находим STL разложение ряда (y_t) .

$$y_t = trend_t + seas_t + remainder_t$$

Шаг 2. Рассчитываем силу сезонности.

$$F_{seas} = \max \left\{ 1 - \frac{\text{sVar}(remainder)}{\text{sVar}(seas + remainder)}, 0 \right\}.$$

Шаг 3. Если сила сезонности выше порога, то переходим к

$$\Delta_{12}y_t = y_t - y_{t-12}.$$

Сезонная ARIMA: итоги

- Сезонная ARIMA экономит параметры.
- Сила сезонности из STL разложения используется для решения о необходимости сезонной разности $\Delta_{12}y_t$.

Алгоритм Хандакара-Хиндмана

Алгоритм Хандакара-Хиндмана: план

- Три шага алгоритма.
- Нюансы и рекомендации.

Как всё это собрать в кучу?

Шаг 1 (для сезонных рядов). Сколько раз надо брать Δ_{12} ?

Шаг 2. Сколько раз надо брать Δ ?

Шаг 3. Какую стационарную SARMA модель оценивать после взятия разностей?

Шаг 1. Сколько раз надо брать Δ_{12} ?

Ни разу, раз или два раза.

- Находим STL разложение ряда.
- Если сила сезонности меньше пороговой, то работаем с исходным рядом y_t .
- Если сила больше пороговой, то переходим к сезонной разности и после нового STL разложения сравниваем силу сезонности с пороговой ещё раз.
- Если сила сезонности снова больше пороговой, то работаем с $\Delta_{12}^2 y_t$, иначе работаем с $\Delta_{12} y_t$.

Есть альтернатива в виде теста Канова-Хансена (Canova-Hansen).

Шаг 2. Сколько раз надо брать Δ ?

Ни разу, раз или два раза.

- Применяем KPSS тест с константой к исходному ряду.
- Если H_0 не отвергается, то работаем с рядом y_t .
- Если H_0 отвергается, то проводим KPSS тест для разности Δy_t .
- Если у повторного KPSS теста H_0 отвергается, то работаем с $\Delta^2 y_t$ иначе работаем с Δy_t .

Есть альтернатива в виде ADF теста.

Шаг 3. Выбор SARMA модели для преобразованного ряда

• Оцениваем большое количество экономных SARMA моделей.

$$\Delta^d \Delta^D_{12} y_t \sim SARMA(p,q)(P,Q)[12], p+q \le 5, P+Q \le 5$$

 Выбираем наилучшую модель по штрафному критерию Акаике:

 $AIC = 2K - 2 \ln L$, где K — общее число параметров, $\ln L$ — логарифм правдоподобия.

Есть альтернатива в виде перебора с помощью кросс-валидации.

Методология Бокса-Дженкинсона

- Идентификация подходящей модели.
 Графический анализ, тесты. Выбор количества сезонных и обычных разностей.
- Оценивание подходящей модели. Оценивание параметров SARMA модели для преобразованного ряда.
- Статистическая проверка модели.
 Визуализация остатков. Тесты на остатки модели.

Алгоритм Хандакара-Хиндмана — практическая реализация методологии.

Нюансы алгоритма

• Очень много опций...

Возможны отличия реализаций в софте.

• Обратите внимание на включение константы

$$P(L)y_t = c + Q(L)u_t$$
 или $P(L)(y_t - \mu) = Q(L)u_t$

• Требует много времени.

Не стоит использовать кросс-валидацию.

• Суммирует опыт десятилетий.

Не забудьте им воспользоваться!

Алгоритм Хандакара-Хиндмана: итоги

- Шаг 1. Решение о переходе к сезонным разностям.
- Шаг 2. Решение о переходе к разностям.
- Шаг 3. Оценка множества SARMA моделей с выбором по AIC.
- Обязательно попробуйте алгоритм!