Machine Learning

1. Introduction to Machine Learning [5 hours]

- 1.1 Definition and Evolution of Machine Learning
- 1.2 Types of Machine Learning

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Active Learning

1.3 Machine Learning Workflow

Problem Definition

Data Collection and Preprocessing

Model Selection

Model Evaluation and Validation

Model Deployment

1.4 Challenges in Machine Learning

Data Quality Issues

Computational complexity

Interpretability and Explainability

Ethical Considerations

2. Supervised Learning [10 hours]

- 2.1 Types of Supervised Learning: Regression and Classification
- 2.2 Regression
 - 2.2.1 Linear Regression

Simple and Multiple Regression

Polynomial Regression

2.2.2 Regularization Techniques

Ridge Regression

Lasso Regression

Bias-variance Tradeoff

2.2.3 Support Vector Regression

2.3 Classification

2.3.1 Logistic Regression

Binary Classification

Multi-class classification

- 2.3.2 K-Nearest Neighbors (KNN)
- 2.3.3 Support Vector Machine (SVM)

Hyperplane ad Support Vectors

Kernels and its Types: Linear, Polynomial, Radial Basis Function (RBF)

SVM for Linear and Non-linear classification

2.3.4 Decision Trees

Construction and pruning of decision trees

Ensemble Methods: Bagging, Random forests

3. Unsupervised Learning [10 hours]

- 3.1 Basic concept of Unsupervised Learning
- 3.2 Types of Unsupervised Learning:

Clustering

Dimensionality Reduction

Association Rule Learning

3.3 Clustering:

K-Means Clustering

Hierarchical Clustering: Agglomerative and Divisive

Density-Based Clustering: DBSCAN

3.4 Dimensionality Reduction:

Principal Component Analysis (PCA)

Linear Discriminant Analysis (LDA)

4. Artificial Neural Network [12 hours]

4.1 Introduction to Neural Network

Neural Network Architectures: Feedforward, Convolution, Recurrent

Perceptron: Single Layer perceptron, Multilayer perceptron, Backpropagation

4.2 Training Neural Network

Forward and Backward propagation:

Forward propagation

Backpropagation and Gradient Descent

Loss Functions:

Role of loss function

Mean Squared Error (MSE)

Cross-entropy Loss

Regularization techniques:

Overfitting and underfitting

Regularization methods: L1, L2, Dropout, Batch normalization

4.3 Advanced Neural Network Architecture

Convolution Neural Networks (CNNs):

CNNs and their components

Convolution, Pooling and fully connected layers

Application in Image processing and computer vision

Recurrent Neural Networks:

Basics of RNNs

Long Short-term Memory (LSTM)

Gradient Recurrent Units (GRU)

Applications of Time-series prediction

5. Model Evaluation and Validation [8 hours]

- 5.1 Need of Model Evaluation in ML
- 5.2 Model Evaluation Metrics

5.2.1 Classification Metrics

Accuracy, Precision, Recall and F1 score

Confusion matrix

ROC and PR-Curve

5.2.2 Regression Metrics:

Mean Absolute Error (MAE)

Mean-Squared Error (MSE)

Root Mean Squared Error (RMSE)

R-Squared

5.3 Model Validation Techniques:

Train-Test Split

Cross-validation: K-fold Cross Validation

5.4 Hyper-parameter Tuning: Grid Search, Random Search