CB N°4 - SÉRIES ENTIÈRES - SUJET 1

EXERCICE 1

Déterminer les rayons de convergence et les sommes des séries entières suivantes :

1.
$$\sum_{n>0} e^{-n} x^{2n}$$

Pour $r \in \mathbb{R}^+$, la suite géométrique $\left((e^{-1}r^2)^n\right)_n$ est bornée si et seulement si $r \leq \sqrt{e}$. On en déduit que le rayon de convergence est $R = \sqrt{e}$.

De plus, pour $x \in]-\sqrt{e}, \sqrt{e}[$, on a : $\sum_{n=0}^{+\infty} e^{-n}x^{2n} = \frac{1}{1 - e^{-1}x^2}$

2.
$$\sum_{n>0} \frac{n+2}{n+1} x^n$$

 $\frac{n+2}{n+1} \underset{n \to +\infty}{\sim} 1$ et $\sum x^n$ a pour rayon de convergence 1, donc par comparaison, il en est de même de $\sum_{n \ge 0} \frac{n+2}{n+1} x^n$.

$$\sum_{n>0} \frac{n+2}{n+1} x^n$$

Pour $n \in \mathbb{N}$, $\frac{n+2}{n+1} = 1 + \frac{1}{n+1}$.

 $\sum x^n$ et $\sum \frac{x^{n+1}}{n+1}$ sont des séries usuelles, de rayon de convergence égal à 1, donc pour $x \in]-1,1[$

on a:
$$\sum_{n=0}^{+\infty} \frac{n+2}{n+1} x^n = \sum_{n=0}^{+\infty} x^n + \sum_{n=0}^{+\infty} \frac{x^n}{n+1} = \begin{cases} 0 & \text{si } x = 0\\ \frac{1}{1-x} - \frac{1}{x} \ln(1-x) & \text{si } 0 < |x| < 1 \end{cases}.$$

3.
$$\sum_{n>0} \frac{(n+1)^2}{n!} x^n$$

La règle de d'Alembert donne immédiatement un rayon de convergence égal à $+\infty$. Pour $n \in \mathbb{N}$, $\frac{(n+1)^2}{n!} = \frac{n(n-1)}{n!} + \frac{3n}{n!} + \frac{1}{n!}$.

Pour
$$n \in \mathbb{N}$$
, $\frac{(n+1)^2}{n!} = \frac{n(n-1)}{n!} + \frac{3n}{n!} + \frac{1}{n!}$

 $\sum \frac{x^n}{n!}$ est une série usuelle de rayon de convergence $+\infty$, donc pour tout réel x:

$$\sum_{n=0}^{+\infty} \frac{(n+1)^2}{n!} x^n = x^2 \sum_{n=2}^{+\infty} \frac{x^{n-2}}{(n-2)!} + 3x \sum_{n=1}^{+\infty} \frac{x^{n-1}}{(n-1)!} + \sum_{n=0}^{+\infty} \frac{x^n}{n!} = (x^2 + 3x + 1)e^x$$

4.
$$\sum_{n>1} \frac{x^n}{n2^n}$$

On sait que la série $\sum \frac{x^n}{n}$ a pour rayon de convergence 1, et que sa somme est : $\sum_{n=1}^{+\infty} \frac{x^n}{n} = -\ln(1-x)$.

On en déduit que la série $\sum_{n\geq 1} \frac{x^n}{n2^n}$ converge absolument pour $\left|\frac{x}{2}\right| < 1$ et diverge grossièrement pour

 $\left|\frac{x}{2}\right| > 1$, donc que son rayon de convergence est 2.

De plus, sa somme est : $\sum_{n=0}^{+\infty} \frac{x^n}{n2^n} = -\ln\left(1 - \frac{x}{2}\right).$

5.
$$\sum_{n>0} (-1)^{n+1} nx^{2n+1}$$

Pour
$$n \ge 1$$
, et $x \in \mathbb{R}$, on a: $(-1)^{n+1} nx^{2n+1} = x^3 n (-x^2)^{n-1}$;

D'après le théorème de dérivation de séries entières, on sait que la série $\sum nx^{n-1}$ a pour rayon de

convergence 1, et que sa somme est :
$$\sum_{n=0}^{+\infty} nx^{n-1} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\sum_{n=0}^{+\infty} x^n \right) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{1-x} \right) = \frac{1}{(1-x)^2}.$$

On en déduit que la série $\sum_{n\geq 0} (-1)^{n+1} n x^{2n+1}$ converge absolument pour $|-x^2| < 1$ et diverge grossiè-

rement pour $|-x^2| > 1$, donc que son rayon de convergence est 1.

De plus sa somme est :
$$\sum_{n=0}^{+\infty} (-1)^{n+1} n x^{2n+1} = \frac{x^3}{(1+x^2)^2}.$$

EXERCICE 2

1. Développer en série entière les fonctions f_1, f_2 et f_3 définies par :

$$f_1(x) = \frac{1}{x-3}$$
, $f_2(x) = \frac{1}{(x-3)^2}$, $f_3(x) = \frac{1}{2x-1}$

en précisant les rayons de convergence.

$$f_1(x) = \frac{-1}{3(1-\frac{x}{3})} = \sum_{n=0}^{+\infty} \frac{-x^n}{3^{n+1}}$$
, rayon de convergence $R_1 = 3$.

$$f_2(x) = \frac{1}{9(1-\frac{X}{2})^2} = \sum_{n=0}^{+\infty} \frac{nx^{n-1}}{3^{n+1}}$$
, rayon de convergence $R_2 = 3$.

$$f_3(x) = \frac{-1}{1-2x} = \sum_{n=0}^{+\infty} -(2x)^n$$
, rayon de convergence $R_3 = \frac{1}{2}$.

2. En déduire le développement en série entière et le rayon de convergence de la fonction f définie par :

$$f(x) = \frac{x+12}{(2x-1)(x-3)^2}$$

$$f(x) = \frac{2}{2x - 1} - \frac{1}{x - 3} + \frac{3}{(x - 3)^2} = \sum_{n=0}^{+\infty} \left(-2^{n+1} + \frac{n+2}{3^{n+1}} \right) x^n$$

De plus, $-2^{n+1} + \frac{n+2}{3^{n+1}} \sim -2^{n+1}$ donc le rayon de convergence de la série est $\frac{1}{2}$.

CB N°4 - Séries entières - Sujet 2

EXERCICE 1

Déterminer les rayons de convergence et les sommes des séries entières suivantes :

1.
$$\sum_{n>0} \frac{\mathrm{e}^n}{n!} x^n$$

La série $\sum \frac{x^n}{n!}$ a pour rayon de convergence $+\infty$ et pour somme $\sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x$.

On en déduit que la série $\sum_{n \ge 0} \frac{(ex)^n}{n!}$ converge pour tout réel x, donc que son rayon de convergence est

 $+\infty$. De plus, sa somme est : $\sum_{n=0}^{+\infty} \frac{(ex)^n}{n!} = e^{ex}$.

2.
$$\sum_{n>0} \frac{n-1}{n+1} x^n$$

 $\frac{n-1}{n+1} \underset{n \to +\infty}{\sim} 1$ et $\sum x^n$ a pour rayon de convergence 1, donc par comparaison, il en est de même de $\sum_{n \ge 0} \frac{n-1}{n+1} x^n$.

Pour $n \in \mathbb{N}$, $\frac{n-1}{n+1} = 1 - \frac{2}{n+1}$.

$$\sum_{n=0}^{n+1} x^{n+1} = \sum_{n=0}^{n+1} x^{n+1} \text{ sont des séries usuelles, de rayon de convergence égal à 1, donc pour } x \in]-1,1[$$
 on a:
$$\sum_{n=0}^{+\infty} \frac{n-1}{n+1} x^n = \sum_{n=0}^{+\infty} x^n - 2 \sum_{n=0}^{+\infty} \frac{x^n}{n+1} = \begin{cases} -1 & \text{si } x = 0 \\ \frac{1}{1-x} + \frac{2}{x} \ln(1-x) & \text{si } 0 < |x| < 1 \end{cases}.$$

3.
$$\sum_{n\geq 0} \frac{n^2-1}{n!} x^n$$

La règle de d'Alembert donne immédiatement un rayon de convergence égal à $+\infty$. Pour $n \in \mathbb{N}$, $\frac{n^2-1}{n!} = \frac{n(n-1)}{n!} + \frac{n}{n!} - \frac{1}{n!}$.

Pour
$$n \in \mathbb{N}$$
, $\frac{n^2 - 1}{n!} = \frac{n(n-1)}{n!} + \frac{n}{n!} - \frac{1}{n!}$.

 $\sum \frac{x^n}{n!}$ est une série usuelle de rayon de convergence $+\infty$, donc pour tout réel x:

$$\sum_{n=0}^{+\infty} \frac{n^2 - 1}{n!} x^n = x^2 \sum_{n=2}^{+\infty} \frac{x^{n-2}}{(n-2)!} + x \sum_{n=1}^{+\infty} \frac{x^{n-1}}{(n-1)!} - \sum_{n=0}^{+\infty} \frac{x^n}{n!} = (x^2 + x - 1)e^x$$

4.
$$\sum_{n\geq 0} \frac{n+1}{3^n} x^n$$

D'après le théorème de dérivation de séries entières, on sait que la série $\sum (n+1)x^n$ a pour rayon de

convergence 1, et que sa somme est : $\sum_{n=0}^{+\infty} (n+1)x^n = \frac{\mathrm{d}}{\mathrm{d}x} \left(\sum_{n=0}^{+\infty} x^{n+1} \right) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{1-x} - 1 \right) = \frac{1}{(1-x)^2}.$

On en déduit que la série $\sum_{n>0} \frac{n+1}{3^n} x^n$ converge absolument pour $\left|\frac{x}{3}\right| < 1$ et diverge grossièrement pour

 $\left|\frac{x}{3}\right| > 1$, donc que son rayon de convergence est 3.

De plus, sa somme est :
$$\sum_{n=0}^{+\infty} \frac{n+1}{3^n} x^n = \frac{1}{\left(1 - \frac{x}{3}\right)^2} = \frac{9}{(3-x)^2}$$
.

5.
$$\sum_{n>0} (-1)^{n+1} \frac{x^{2n+1}}{n+1}$$

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}^*$, $(-1)^{n+1} \frac{x^{2n+1}}{n+1} = \frac{1}{x} \frac{(-x^2)^{n+1}}{n+1}$. On sait que la série $\sum \frac{x^{n+1}}{n+1}$ a pour rayon de convergence 1, et que sa somme vaut : $\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} = -\ln(1-x)$.

On en déduit que la série $\sum_{n\geq 0} (-1)^{n+1} \frac{x^{2n+1}}{n+1}$ converge absolument pour $|-x^2| < 1$ et diverge grossièrement pour $|-x^2| > 1$, donc que son rayon de convergence est 1.

De plus, sa somme est : $\sum_{n=0}^{+\infty} (-1)^{n+1} \frac{x^{2n+1}}{n+1} = \begin{cases} 0 & \text{si } x = 0\\ \frac{-\ln(1+x^2)}{x} & \text{si } 0 < |x| < 1 \end{cases}.$

EXERCICE 2

1. Développer en série entière les fonctions f_1, f_2 et f_3 définies par :

$$f_1(x) = \frac{1}{x-2}$$
, $f_2(x) = \frac{1}{(x-2)^2}$, $f_3(x) = \frac{1}{3x-1}$

en précisant les rayons de convergence.

$$f_1(x) = \frac{-1}{2(1-\frac{x}{2})} = \sum_{n=0}^{+\infty} \frac{-x^n}{2^{n+1}}$$
, rayon de convergence $R_1 = 2$.

$$f_2(x) = \frac{1}{4(1-\frac{x}{2})^2} = \sum_{n=0}^{+\infty} \frac{nx^{n-1}}{2^{n+1}}$$
, rayon de convergence $R_2 = 2$.

$$f_3(x) = \frac{-1}{1-3x} = \sum_{n=0}^{+\infty} -(3x)^n$$
, rayon de convergence $R_3 = \frac{1}{3}$.

2. En déduire le développement en série entière et le rayon de convergence de la fonction f définie par :

$$f(x) = \frac{x+8}{(3x-1)(x-2)^2}$$

$$f(x) = \frac{3}{3x - 1} - \frac{1}{x - 2} + \frac{2}{(x - 2)^2} = \sum_{n=0}^{+\infty} \left(-3^{n+1} + \frac{n+2}{2^{n+1}} \right) x^n$$

De plus, $-3^{n+1} + \frac{n+2}{2^{n+1}} \sim -3^{n+1}$ donc le rayon de convergence de la série est $\frac{1}{3}$