translocation analysis survival

steph

2024-09-19

- load packages & read in processed dataset
- adjust ancestry so that coastal = 0 and inland = 1

```
library(tidyverse)
library(NatParksPalettes)
library(viridis)
library(ggpubr)
library(readxl)
theme_set(theme_classic())
#manual change made to CJS output - deleted header lines to allow output to be read into R
cjs_out<-read.table("C:/Users/Steph/GitHub_data/translocation/CJS.beta.translocation.20250410.edit.txt"
cjs_out_pemberton<-read.table("C:/Users/Steph/GitHub_data/translocation/CJS.beta.translocation_Pemberton
           header=T)
phi<-read.csv("C:/Users/Steph/GitHub_data/translocation/CJS.fit.phi.translocation.20250410.csv")</pre>
phi_pemberton<-read.csv("C:/Users/Steph/GitHub_data/translocation/CJS.fit.phi.translocation_Pemberton.2
birds<-read_xlsx("C:/Users/Steph/TAMU_OneDrive/Thrushes/translocation/data_archiving/translocation_data
pembertonBirds<-read_xlsx("C:/Users/Steph/TAMU_OneDrive/Thrushes/translocation/data_archiving/translocation/
birds2<-rbind(pembertonBirds,birds)%>%
  mutate(ancestry=aims_ancestry*(-1)+1)
birds<-birds%>%
  mutate(ancestry=aims_ancestry*(-1)+1)
```

• Sample sizes for survival analysis

${\tt release_site}$	${\tt release_year}$	count
Lilloet	2020	20
Pemberton	2020	98
Pemberton	2023	90

release_site	release_year	count
Squamish	2023	30

CJS (mark recapture) models

- Fit a CJS model with detections binned into 10 day chunks to create 30 time points (data were too sparse with each day as a time point)
- Model: Survival \sim release_site + ancestry + release_site x ancestry; Detection \sim time + release_site + ancestry
- No evidence for the predicted interaction between release site and ancestry
- None of release site, ancestry, or the interaction between release site and ancestry had a significant effect on survival
- The direction of the interaction effect was not in the predicted direction the release site x ancestry interaction is positive, meaning that the relationship between ancestry and survival is more positive for birds released in Squamish relative to those released in Lilloet
- probability of detection varied among time points, with the higher probabilities of detection occurring during fall and spring migration
- birds released in Squamish had a higher probability of detection than those released in Lilloet, but detection probability did not vary with ancestry
- Once you control for difference in detection probability no difference in survival between release sites

Survival analysis results:

```
knitr::kable(cjs_out%>%filter(startsWith(Factor, "Phi"))%>%
mutate_if(is.numeric,round,digits=2)%>%
select(-se)%>%
rename(Lower_CL=lcl,Upper_CL=ucl))
```

Factor	Estimate	${\rm Lower_CL}$	Upper_CL
Phi.(Intercept)	3.89	1.81	5.98
Phi.release_siteSquamish	-2.11	-5.28	1.07
Phi.ancestry	-1.94	-4.97	1.09
Phi.release_siteSquamish:ancestry	3.68	-0.61	7.98

Detection probability analysis results:

(minus variation among time points)

Factor	Estimate	Lower_CL	Upper_CL
p.(Intercept) p.release_siteSquamish p.ancestry	-1.38	-2.94	0.18
	2.83	1.92	3.74
	0.35	-1.64	2.35

CJS - with Pemberton

- Here, I would expect a flat relationship between ancestry and survival in Pemberton (ie at the centre of the hybrid zone), a positive relationship in Lilloet (better survival of inland birds) and a negative relationship in Squamish (better survival of coastal birds)
- Model: Survival ~ release_site + ancestry + release_site x ancestry; Detection ~ time + release_site + release_year + ancestry
- \bullet Adding Pemberton birds tagged in 2020 & 2023 does not change anything for the survival results everything is still null
- Because release site and release year aren't entirely covarying, I added relase year (alongside time point, release site, and ancestry) as a predictor for detection probability
- For detection probabilities, the difference seems to be primarily between release years, but also a reduction in Lilloet relative to Pemberton not sure how much to read into that

Survival analysis results:

```
knitr::kable(cjs_out_pemberton%>%filter(startsWith(Factor, "Phi"))%>%
mutate_if(is.numeric,round,digits=2)%>%
select(-se)%>%
rename(Lower_CL=lcl,Upper_CL=ucl))
```

Factor	Estimate	Lower_CL	Upper_CL
Phi.(Intercept)	2.82	2.17	3.46
Phi.release_siteLilloet	1.21	-1.15	3.58
Phi.release_siteSquamish	-0.91	-3.41	1.59
Phi.ancestry	0.29	-0.59	1.17
Phi.release_siteLilloet:ancestry	-2.36	-5.71	1.00
Phi.release_siteSquamish:ancestry	1.35	-1.86	4.56

Detection probability analysis results:

Factor	Estimate	Lower_CL	Upper_CL
p.(Intercept)	-0.41	-0.95	0.13
$p.release_siteLilloet$	-1.07	-1.77	-0.36
$p.release_siteSquamish$	0.33	0.01	0.66
$p.release_year2023$	1.14	0.87	1.42
p.ancestry	0.41	-0.21	1.03

Survival figures

- slopes are based on ancestry x release site predictions from the CJS models
- I think I actually prefer the violin plots because the data are more visible

#ggsave("C:/Users/Steph/TAMU_OneDrive/Thrushes/translocation/Fig2.png",
width=6,height=4)

• Next, points coloured by model-fitted survival probabilities

```
ggplot(phi,aes(x=release_site,y=ancestry,colour=est.adj))+
  geom_jitter(size=4,shape=19,alpha=0.8,width=0.1)+
  viridis::scale_colour_viridis(option="mako",end=0.9,name="survival\nprobability")
```



```
ggplot(phi_pemberton,aes(x=release_site,y=ancestry,colour=est.adj))+
  geom_jitter(size=4,shape=19,alpha=0.8,width=0.2)+
  viridis::scale_colour_viridis(option="mako",end=0.9,name="survival\nprobability")
```

