English | 中文

基于层裁剪与精度量化的大模型压缩与加速方法

python 3.12+ PyTorch 2.5+ License MIT

摘要

本项目探索并实现了一套完整的、针对BERT系列模型的端到端优化管线。该管线以层敏感度分析为核心驱动、 实验分别在bert-base-uncased和bert-large-uncased模型上进行,并在GLUE SST-2任务上进行了全面评估。结果表明,本管线提出的"剪枝+FP16"策略,尤其是在bert-large这样的大模 >447.97MB)和显**著的性能加速**(6.00ms -> 4.17ms 在更大的batch_size上甚至更好),同时**精度几乎无损,甚**

核心技术

- 模型敏感度分析 (Sensitivity Analysis): 通过逐层消融(Ablation Study)精确定位对任务贡献度最低的Transformer层。
- 结构化剪枝 (Structured Pruning): 根据敏感度得分,物理移除冗余的模型层,直接减小模型深度和参数
- **重新微调 (Re-finetuning)**: 对剪枝后的模型进行短暂的微调,以恢复因结构改变而损失的精度。
- 半精度转换 (FP16 Conversion): 利用现代GPU的Tensor Core硬件,将模型转换为FP16半精度,实现推
- 多维度性能评估: 从精度、延迟、模型大小、峰值显存等多个指标,对所有模型进行综合"对决"。

可视化成果

层敏感度分析 左: BERT-Base (12层). 右: BERT-Large (24层).

不同批量下的FP16与FP32延迟对比 左: 剪枝后 BERT_Base (8层). 右: 剪枝后 BERT-Large (16层).

多维度性能雷达图

关于归一化方法:为了在同一视图下直观对比多个异构指标,我们将所有数据归一化到一个统一的 [0.1, 1] 评分区间。

• 成本型指标(模型尺寸,延迟,峰值内存):数值越小越好的指标,我们进行逆向归一化处理。表现最份

$$\mathrm{Score} = \alpha + (1-\alpha) \times \frac{\max(X) - x}{\max(X) - \min(X)}$$

• 效益型指标(准确率): 数值越大越好的指标, 我们进行正向归一化。特别地, 为更真实反映高精度图 [0.90, 0.94] 进行映射。公式如下:

$$\label{eq:score} \text{Score} = \alpha + (1 - \alpha) \times \frac{x - \text{semantic_min}}{\text{semantic_max} - \text{semantic_min}}$$

- 修正系数
- alpha 设为 0.1,以避免归一化后的最小值为0,使可视化结果更清晰。 经此处理,所有的数值都变成了**越大越好**,这样在雷达图上看起来会更加直观。

最终实验结果

Bert-Base (12层 -> 8层) 优化结果

Model	Size (MB)	Accuracy (GPU)	Latency (GPU, ms)	Peak GPU Mem (MB)	Accuracy (CPU)	Latency (CPU, ms)
1. FP32 Baseline (12L)	1253.16	0.9300	3.23	428.26	0.9300	127.99
2. INT4 BitsAndBytes (12L, GPU-Only)	91.64	0.9300	8.92	106.13	N/A	N/A
3. INT8 PTQ (12L, CPU-Only)	173.09	N/A	N/A	N/A	0.9186	67.03
4. INT8 QAT (12L)	418.63	0.9255	3.22	428.56	0.9255	132.04
5. Pruned FP32 (8L)	310.42	0.9278	2.30	320.98	0.9278	114.94

Model	Size (MB)	Accuracy (GPU)	Latency (GPU, ms)	Peak GPU Mem (MB)	Accuracy (CPU)	Latency (CPU, ms)
6. Pruned FP16 (8L, GPU-Only)	155.66	0.9266	2.28	169.25	N/A	N/A

Bert-Large (24层 -> 16层) 优化结果

Model	Size (MB)	L Accuracy (GPU)	_atency (GPU, ms)	Peak GPU Mem (MB)	Accurac (CPU)	Latency y(CPU, ms)
1. Baseline (bert-large, 24L, FP32)	3836.	7 0.9312	6.00	1288.91	0.9312	383.98
2. Pruned (bert-large, 16L, FP32)	895.00	0.9392	4.14	904.51	0.9392	288.00
3. Pruned+Quantized (bert-large, 16L, FP16)		7 0.9392	4.17	456.82	N/A	N/A

分析:在bert-large上,本项目的优化策略效果更为惊人。剪枝不仅没有降低精度,反而提升了0.8%,这可能

如何复现

1. 实验环境

本项目结果在以下环境中复现: *操作系统: Linux * GPU: NVIDIA RTX 5090 32GB * CUDA: 12.8 * Python: 3.12 * 核心库: PyTorch 2.5.1+cu121, Transformers, Datasets, Optimum

2. 环境配置

首先,克隆本仓库,并建议使用Conda创建一个干净的Python 3.10+环境。

1.
git clone <your-repo-url>
cd <your-repo-name>

2. Conda

conda create -n model_opt python=3.12 -y conda activate model_opt

3.

pip install -r requirements.txt

3. Bert-Base 实验流程

请按以下顺序,依次执行bert base目录下的Jupyter Notebooks。

重要提示: 在运行每个Notebook之前,请检查并修改文件头部的模型输入/输出路径,确保它们指向正确

- 1. bert_base_fine.ipynb 微调Baseline: 对标准的bert-base-uncased模型在SST-
- 2上进行微调,生成后续所有优化的基础模型。
- 2. base_ablation_study.ipynb **敏感度分析**: 加载上一步微调好的模型,进行逐层消融实验,生成层敏愿 3. bert_base_pruned_fine.ipynb - **剪枝与重训练**: 根据敏感度分析的结果,移除最不重要的层,并对剪枝
- 4. base_pruned_fp16.ipynb FP16转换与评估:将剪枝并微调好的模型转换为FP16半精度,并进行性能对

4. Bert-Large 实验流程

与Bert-Base流程类似,请依次执行bert_large目录下的Jupyter Notebooks

重要提示: 同样,请在运行前检查并修改每个Notebook中的模型路径。

- 1. bert_large_fine.ipynb 微调Baseline: 对bert-large-uncased模型进行微调。
- 2. bert_large_ablation.ipynb 敏感度分析: 对微调好的bert-large模型进行敏感度分析。
- 3. bert_large_fp16.ipynb 剪枝、重训练与FP16转换: 这个Notebook整合了剪枝、重新微调和FP16转换的完整流程。

5. 最终评估

eva目录包含了生成最终对比报告的脚本。

- 1. showdown.py 用于生成bert-base系列的最终对比总表 (final_results.md)。
- 2. showdown_large.py 用于生成bert-large系列的最终对比总表 (final_results_bert_large.md).
- 3. radar.ipynb 加载最终的评估数据,进行归一化处理,并绘制最终的性能雷达图。

重要提示: 在运行评估脚本前,请确保MODELS_TO_EVALUATE列表中每个模型的path都指向您自己生成的、

引用

如果您的研究从本项目中获益,请考虑以下方式引用。

许可证 (License)

本项目采用 MIT License。