Computer Vision

CSE/ECE 344/544

Pinhole Camera model

Recall - Pinhole Camera:

- Barrier between world and image plane -Reduce Blurriness
- One point of entry for all light rays (Centre of Projection)
- Image Plane (Film)
- Size of opening (Aperture)

Information Loss in Perspective Projection

Loss in Height information

Loss in Angle information

Conversion from World to Image Coordinates

3D World to 2D Image?

3D Object(world) Perspective Projection 2D Image(Camera)

Image formation model

External Matrix

Frame of reference different for camera and world

Rotation matrix

$$R = R_x * R_y * R_z$$

Final matrix

$$E = [[R \ t],$$
 $[0 \ 1]]$

Perspective projection matrix

Perspective Projection Transformation

Given X in 3D homogeneous and X' in 2D homogeneous

$$X' = MX$$
(3x1) (3x4)(4x1)

$$X' = (x_1, y_1, z_1)$$

 $(x, y) = (x_1/z_1, y_1/z_1)$

Camera Matrix

Principal point offset

$$(X, Y, Z) \rightarrow (f^*X/Z, f^*Y/Z)$$

With offset $(X, Y, Z) \rightarrow (f^*X/Z + Px, f^*Y/Z + Py)$

Q. Given (X, Y, Z), derive the transformation matrix for the camera coordinates

Camera Intrinsic matrix

```
f 0 p<sub>x</sub>
0 f p<sub>y</sub>
0 0 1
```

Camera matrix in pixels

If the axes are not orthogonal

Degrees of Freedom

There are 11 degrees of freedom in the matrices.

Hence, a total of 11 equations are required to estimate the parameters.