## **SOLUTIONS**

## DANMARKS TEKNISKE UNIVERSITET Skriftlig prøve, 12 December 2019 Side 1 Kursusnavn: Diskret Matematik Kursusnummer: 01017 Hjælpemidler: Skriftlige hjælpemidler er tilladt. Varighed: 2 timer. Vægtning: Opgave 1: 40% Opgave 2: 10% Opgave 3: 10% Opgave 4: 15% Opgave 5: 13% Opgave 6: 12% Bedømmelserne af eksamen er delvist automatiseret. Det er derfor afgørende at du nøje overholder følgende retningslinjer: Alle opgaver besvares ved at udfylde de tomme bokse på de følgende sider. Som opgavebesvarelse afleveres blot hele opgavesættet i udfyldt stand. Tekst og figurer udenfor de tomme bokse vil ikke blive taget i betragtning. Hvis man undtagelsesvis har brug for mere plads, kan man tilføje opgaveløsninger på ekstra ark, som tilføjes til slutningen af afleveringen. I multiple-choice spørgsmål skal du sætte et kryds i de rigtige firkanter: . Hvis du fortryder et kryds og ikke kan slette det, så overtegn i stedet hele den forkerte box: Studienummer $Study\ number$ Fødselsdato Date of birth Navn Name

Bordnummer Table number

# Opgave 1 (40%)

 ${\bf Afg} {\it \& g}$ om følgende udsagn er sande eller falske. Forkert svar tæller negativt.

|     | Udsagn                                                                                                                                              | Sand        | Falsk       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| 1.  | Udtrykket $\forall x(P(L(x),Y(x)))$ er en formel i prædikatlogik når $L$ og $Y$ er unære prædikatsymboler og $P$ er et binært prædikatsymbol.       |             | $\boxtimes$ |
| 2.  | Udtrykket $\forall x(P(x,y,f(x,y)))$ er en formel i prædikatlogik når $P$ er et ternært (3-ært) prædikatsymbol og $f$ er et binært funktionssymbol. | $\boxtimes$ |             |
| 4.  | Lad $A, B, C$ og $D$ være vilkårlige mængder. Da gælder: $(A - B) \cap (C - D) \cap (D - A) = \emptyset.$                                           | $\boxtimes$ |             |
| 5.  | Lad $A, B, C$ og $D$ være vilkårlige mængder. Da gælder: $(A-B) \cup (B-C) \cup (C-D) = A-D.$                                                       |             | $\boxtimes$ |
| 6.  | Formlen $((p \lor r) \land (r \to q) \land \neg p) \to q$ er gyldig.                                                                                | $\boxtimes$ |             |
| 7.  | $\forall x P(x,y)$ er en lukket formel.                                                                                                             |             | $\boxtimes$ |
| 8.  | $\forall x P(x,y)$ er en åben formel.                                                                                                               |             | $\boxtimes$ |
| 9.  | $x$ er erstattelig med $y$ i følgende formel: $\forall y(Q(y) \to \forall x P(x,y)) \to R(f(x),g(y)).$                                              | $\boxtimes$ |             |
| 10. | Lad A være formlen $P(x, y)$ . Da gælder $A[y/x] = A[x/y]$ .                                                                                        |             | $\boxtimes$ |

|     | Udsagn                                                                                                                                                                                                                                                          | Sand        | Falsk       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| 11. | Lad $A$ og $B$ være formler i udsagnslogik. Antag vi laver et tableau med $A\to B$ : T i roden. Da gælder at $B$ <b>ikke</b> er en logisk konsekvens af $A$ , hvis og kun hvis vi kan få tableauet til at lukke.                                                |             | $\boxtimes$ |
| 12. | På en ø er der to typer af mennesker: sandsigere, som altid taler sandt, og løgnere, som altid lyver. En fremmed møder på øen Paul og Susan. Paul siger: "Enten er vi begge sandsigere eller også er vi begge løgnere." Det følger heraf at Susan er sandsiger. | $\boxtimes$ |             |
| 13. | Betragt en fortolkning hvori $E(x,y)$ betegner egenskaben at $x$ elsker $y$ . Vi kan i denne fortolkning formalisere udsagnet "alle, som elsker nogen, elsker sig selv" som formlen $\forall x \exists y (E(x,y) \to E(x,x))$ .                                 |             | $\boxtimes$ |

## Opgave 2 (10%)

Brug tableau-metoden til at afgøre om følgende påstand er korrekt. Hvis den **ikke** er korrekt, skal du angive en konkret sandhedstildeling som gør præmisserne sande og konklusionen falsk.

$$\neg p \to \neg q, \neg (p \land \neg r), \neg r \models q$$

#### SOLUTION.



## Opgave 3 (10%)

Vi betragter et sædvanligt kortspil med 52 kort fordelt ligeligt på de 4 kulører spar, hjerter, ruder og klør.

1. Hvor mange forskellige hænder med 3 kort er der, hvor der er 2 hjerter og 1 klør. Der skelnes ikke mellem rækkefølge af de tre kort på hånden. Angiv løsningen med en formel, og husk at argumentere kort for dit svar.

**SOLUTION.** There are  $\binom{13}{2}$  ways to select the 2 Hearts (disregarding order) and  $\binom{13}{1}$  ways to choose a Club. By the rule of the product this amounts to  $\binom{13}{2}\binom{13}{1}=1014$  possibilities.

2. Lad  $M = \{1, 2, ..., 180\}$  angive de positive heltal mellem 1 og 180. Beregn hvor mange af elementerne der er delelige med 6 eller 9 (eller begge dele). Retfærdiggør dit svar.

**SOLUTION.** Let A be the set of elements of M which are divisible by 6 and let B be the set of elements of M which are divisible by 9. By the inclusion-exclusion principle, we have to find  $|A \cup B| = |A| + |B| - |A \cap B|$ .

Obviously |A| = 30 and |B| = 20. What about  $|A \cap B|$ , i.e., those elements of M which are divisible by both 6 and 9.

The set of integers which are divisible by both 6 and 9 can be written as  $6\mathbb{Z} \cap 9\mathbb{Z} = m\mathbb{Z}$ , where  $m = \text{mfm}(6,9) = \frac{6\cdot 9}{\gcd(6,9)} = \frac{6\cdot 9}{3} = 18$ . Therefore  $|A \cap B| = 10$ .

All together 30 + 20 - 10 = 40.

### Opgave 4 (15%)

En funktion f(n) er for n = 1, 2, 3, ... defineret ved

$$f(n) = \sum_{k=1}^{n} \frac{1}{k(k+1)}$$

1. Udregn værdierne af f(1), f(2) og f(3).

**SOLUTION.** By definition:

$$f(1) = \frac{1}{2}$$

$$f(2) = \frac{1}{2} + \frac{1}{6} = \frac{2}{3}$$

$$f(3) = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} = \frac{3}{4}$$

2. Vis at for  $n = 1, 2, 3, \ldots$  gælder

$$f(n+1) = \frac{1}{(n+1)(n+2)} + f(n)$$

**SOLUTION.** Using the definition of f twice, we get

$$f(n+1) = \sum_{k=1}^{n+1} \frac{1}{k(k+1)}$$

$$= \frac{1}{(n+1)(n+2)} + \sum_{k=1}^{n} \frac{1}{k(k+1)}$$

$$= \frac{1}{(n+1)(n+2)} + f(n)$$

3. Før et induktionsbevis for at

$$f(n) = \frac{n}{n+1}$$
, for  $n = 1, 2, 3, ...$ 

**SOLUTION.** The base case is n = 1 and we have to show  $f(1) = \frac{1}{2}$ . This has been shown in the first part of the problem.

For the induction step we assume that the formula is true for some  $n \in \mathbb{N} - \{0\}$ , i.e., that  $f(n) = \frac{n}{n+1}$ . We have to show that  $f(n+1) = \frac{n+1}{n+2}$  holds. We have

$$f(n+1) = \frac{1}{(n+1)(n+2)} + f(n)$$
 so by induction hypothesis we get
$$= \frac{1}{(n+1)(n+2)} + \frac{n}{n+1}$$

$$= \frac{1}{(n+1)(n+2)} + \frac{n(n+2)}{(n+1)(n+2)}$$

$$= \frac{n^2 + 2n + 1}{(n+1)(n+2)}$$

$$= \frac{(n+1)^2}{(n+1)(n+2)}$$

$$= \frac{n+1}{n+2},$$

as required. This completes the induction proof.

### Opgave 5 (13%)

1. Forbind med en streg hvert tal i venstre kolonne med sin multiplikative invers (mod 5) i højre kolonne. Tegn ikke andre linjer.

| $\overline{a}$ | b |
|----------------|---|
| 1              | 1 |
| 2              | 2 |
| 3              | 3 |
| 4              | 4 |

**SOLUTION.** The lines to be drawn are (1,1), (2,3), (3,2), and (4,4).

2. Angiv løsningsmængden til

$$34x \equiv 4 \pmod{44}$$
.

**SOLUTION.** We find gcd(44, 34) by using Euclid's extended algorithm

| $\overline{k}$ | $q_k$ | $r_k$ | $s_k$ | $t_k$ |                              |
|----------------|-------|-------|-------|-------|------------------------------|
| 0              | -     | 44    | 1     | 0     | start value                  |
| 1              | -     | 34    | 0     | 1     | start value                  |
| 2              | 1     | 10    | 1     | -1    | since $44 = 1 \cdot 34 + 10$ |
| 3              | 3     | 4     | -3    | 4     | since $34 = 3 \cdot 10 + 4$  |
|                |       |       |       |       | since $10 = 2 \cdot 4 + 2$   |
| 5              | 2     | 0     | *     | *     | since $2 \mid 4$ .           |

Thus  $gcd(44,34) = 2 = 7 \cdot 44 - 9 \cdot 34$ . As d = 2 divides 4, the congruence equation is equivalent to

$$17x \equiv 2 \pmod{22}$$
.

We already saw  $2 = 7 \cdot 44 - 9 \cdot 34$  and, dividing by 2, we get

$$1 = 7 \cdot 22 - 9 \cdot 17.$$

This shows

$$-9 \cdot 17 \equiv 1 \pmod{22}$$
.

Thus we can choose c = -9 in Theorem 5.8 and arrive at

$$x \equiv -9 \cdot 2 \pmod{22}$$
.

Therefore the solution set is  $L = -18 + 22\mathbb{Z}$ , which can be rewritten as

$$L = 4 + 22\mathbb{Z}.$$

## Opgave 6 (12%)

Vi er givet følgende to polynomier

$$N(x) = x^3 - 2x^2 - 4x + 8$$
$$M(x) = 3x^2 - 4x - 4$$

En kørsel af Euklids algoritme giver følgende

| $\overline{k}$ | $R_k$                           |
|----------------|---------------------------------|
| 0              | $x^3 - 2x^2 - 4x + 8$           |
| 1              | $3x^2 - 4x - 4$                 |
| 2              | $-\frac{32}{9}x + \frac{64}{9}$ |
| 3              | 0                               |

Afgør om følgende udsagn er sande eller falske. Forkert svar tæller negativt.

| Udsagn                                                     | Sand        | Falsk       |
|------------------------------------------------------------|-------------|-------------|
| N(x) og $M(x)$ har ingen fælles rødder                     |             | $\boxtimes$ |
| M(x) går op i $N(x)$                                       |             | $\boxtimes$ |
| $R_2(x)$ går op i $R_1(x)$                                 | $\boxtimes$ |             |
| $R_2(x)$ er en største fælles divisor for $N(x), M(x)$     | $\boxtimes$ |             |
| D(x) = x - 2 er en største fælles divisor for $N(x), M(x)$ | $\boxtimes$ |             |
| N(x) har en dobbeltrod                                     | $\boxtimes$ |             |