Empirical Practices

- 1. Estimating the intensive margin labor supply elasticity (see ps2q1.do for the codes)
- (a) Summarize all the variables in the data (no need to report the results). What is the average number of children in this data? What is the share of hispanic women in this data?

The average number of children is 0.65 and the share of Hispanic women is 15.5%.

Variable	0bs	Mean	Std. Dev.	Min	Max
year statefip metro	304382 304382 304382	1997.843 27.48188 2.408306	7.95684 15.49014 .9994369	1984 1 0	2010 56 4
age hrswork	304382 304382	29.91811 27.50024	7.490796 19.59052	16 0	44 99
uhrswork incwage	304382 304382	30.97973 16714.82	17.16204 21136.69	0 0	99 713263
nKids mstat	304382 304382	.6536786 1	1.046529	0 1	12
avgtax_15k + emp ind	302619 304382	.1346659 .7441964	.187795 .4363126	3804371 	.7400001
edu_yrs hsDrop	304382 304382	12.95306 .149976	2.505825 .3570485	1	20
hsGrad bachelor	304382 304382	.3530958	.4779329	0	1
advanced	304382	.0559166	.2297609	Θ	1
hisp nonwhite	304382 304382	. 1551964 . 2557477	.3620924 .4362814	0 0	1 1

(b) In order to estimate the effect of the wage on labor supply we need a measure of the hourly wage. We will use the two variables incwage (which is yearly income) and uhrswork (hours worked per week) and define the hourly wage to be the ratio: wage = incwage/ (52* uhrswork). Generate this variable and label it "Hourly wage".What is the mean and standard deviation of this variable? How many missing values does the variable wage have? Why does it have missing values?

The mean is 10.1 and the standard deviation is 13.3. There are 55727 missing values (the difference in observations between a) and b)).

Since division by zero is not allowed, for all those cases where uhrswork==0, the wage variable is missing.

- (c) There is a variable nKids which takes the number of children younger than age 18 and an indicator variable emp_ind which takes value 1 if women are in the labor force. Let's start by examining how labor force participation of these women depends on the number of their children. Use the tab and sum commands and answer the following questions:
 - What is the overall rate of labor force participation in the sample? **74.4 percent**
 - What is the rate of labor force participation among women who have no children? What is the rate for 1 or 2 children?

No children: 78.6 percent 1 child: 71.8 percent 2 children: 67.7 percent

The rate of labor force participation among women with 10 children seems very high. Can you think why that may be?

The sample size for this group is very small (only 10 individuals) so this could just be by chance.

- (d) Now we will estimate the regression model:
 - What is your estimate β_1 hat? **0.061**
 - What is the standard error and the t-statistic for β_1 hat? **0.0015**
 - Is the coefficient β_1 hat statistically significant? Yes, the t-statistic is 41
 - Based on your estimate of β_1 how much do the number of hours worked increase if the wage increases by \$1?

If the wage increases by \$1, the number of hours worked per week increase by around 0.06.

- The elasticity is around 0.02.

Source			lf	MS	_	F(1	er of obs 1,248653)	= 1698.0
Mode Residua		008.8 L693524865		.64008 58815		Prob R-squ	uared	= 0.000
Tota	2 4180 9	943.824865	64 97.	24735	51	Root	R-squared MSE	= 0.006 = 9.827
uhrsworl	k Co	oef. Sto	l. Err.		t P>	• t [9	95% Conf.	Interval
wage _cons			14844 247554	41 1506)582578 7.25693	. 064076 37 . 3539
sum wage Variable	0bs	Mean	Std	Dev.	Mi	n Max	(-	
wage local meanwa	248655 ge = r(mean)	10.09143	13.7	27755	.000320	5 2292.289		
sum uhrswork Variable	0bs	Mean	Std	Dev.	Mi	n Max	í.	
uhrswork	304382	30.97973	17.1	L6204		9 9	.)	
Variable	0bs 304382	30.97973					-	

(e) Usually when estimating labor supply models we use the logarithm of hours worked and

$$\log(uhrswork_i) = \beta_0 + \beta_1 \times \log(wage_i) + \varepsilon_i$$

In order to estimate this first generate two new variables: loghours and logwage using the 'gen' command, by typing gen loghours = log(uhrswork) and similarly for logwage. Regress loghours on logwage. What is your estimate of the female labor supply elasticity?

the logarithm of the wage as variables and estimate the model:

. di "Estimated elasticity of labor supply: e = `e'"
Estimated elasticity of labor supply: e = .0199247484741731

```
. g loghours = log(uhrswork)
(55727 missing values generated)
```

. g logwage = log(wage)
(55727 missing values generated)

. reg loghours logwage

. reg tognours	s cogwage							
Source	SS	df		MS		Number of obs F(1,248653)		
Model Residual	1652.49664 28908.6528	1 248653		2.49664 6261026		Prob > F R-squared	= =	0.0000 0.0541
Total	30561.1495	248654	.12	2906326		Adj R-squared Root MSE	=	0.0541 .34097
loghours	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
logwage _cons	.0824506 3.428861	.0006		119.22 2281.93	0.000 0.000	.0810952 3.425916		0838061 .431806

- What is your estimate β_1 hat? **0.082**
- What is the standard error and the t-statistic for β_1 hat? **0.00069**, **119**
- Is the coefficient β_1 hat statistically significant? Yes, very highly
- The elasticity is now 0.08, still very small but a little bit larger than the 0.02 from above.
- If the wage increases by 10%, hours worked would increase by 0.8 percent.
- f) Calculate the covariance between logwage and age and the variance of logwage. You can use the command: corr logwage age, covariance

In the table the topleft number is the variance of logwage and the bottomleft the covariance.

Suppose that the effect of age on loghours is 0.0053. Using the omitted variable bias formula, how much do you think your estimate of the labor supply elasticity will change if you control for age?

```
The covariance is Cov(logwage, age) = 2.22. And Var(logwage) = 0.98 The omitted variable formula says: E\hat{\beta} = \beta + \delta \frac{Cov(Age,logwage)}{Var(logwage)} The true\beta should therefore be: \beta = E\hat{\beta} - \delta \frac{Cov(Age,logwage)}{Var(logwage)}. Above we obtained a \hat{\beta} = 0.082, which should be close to E\hat{\beta}. Therefore \beta \approx \hat{\beta} - \delta \frac{Cov(Age,logwage)}{Var(logwage)} = 0.082 - 0.0053 \frac{2.22}{0.98} = 0.070
```

- g) Estimate the labor supply elasticity as in e) but controlling for age. Does this line up with your calculations in f)? Thus we get almost the same coefficient as the corrected coefficient from part g)
 - . reg loghours logwage age

Source	SS	df	MS		Number of obs	
Model Residual Total	2008.12203 28553.02742 30561.14952	248652 .	04.06102 11483128 		F(2,248652) Prob > F R-squared Adj R-squared Root MSE	0.00000.0657
loghours	Coef.	Std. Err	· t	P> t	[95% Conf.	Interval]
logwage age _cons	.0703175 .0053447 3.291758	.0007211 .000096 .0028809	55.65	0.000 0.000 0.000	.0689043 .0051564 3.286112	.0717308 .0055329 3.297405

- h) Re-estimate the model in part e), but now control for years of education, age and age squared (you have to create a new variable for this), year, and the ethnicity variabile.
 - Does the estimated labor supply elasticity stay the same as in part f)?

 The elasticity shrinks slightly to 0.066, but is still in a similar ballpark.
 - Comment briefly on the coefficients on the education, age, year and ethnicity variables. Individuals with more education and who are older tend to work more. The coefficient on year is negative, suggesting people work fewer hours over time.
 - $. g age2 = age^2$. reg loghours logwage age age2 edu_yrs year hisp nonwhite Source SS Number of obs = 248655F(7.248647) = 3040.902409.9822 7 344.283171 = 0.0000 Model Prob > F 28151.1673248647 .113217402 Residual R-squared = 0.0789 Adj R-squared = 0.0788Total 30561.1495248654 .122906326 Root MSE = .33648 loghours Coef. Std. Err. t P>|t| [95% Conf. Interval] .0658059 .0008012 82.13 0.000 .0642356 .0673763 logwage .041429 .0008681 47.72 0.000 -.0005776 .0000138 -41.80 0.000 .0397275 .0431304 age age2 -.0006047 -.0005505 .0068864 .0003187 21.61 0.000 .0062618 edu vrs .007511 year -.0026475 .0000902 -29.34 0.000 -.0028244 -.0024707 hisp .0087559 .0020383 4.30 0.000 .004761 .0127508 -.00431 .0016333 -2.64 0.008 -.0075113 -.0011087 nonwhite cons 7.966926 .1808884 44.04 0.000 7.612389
- i) How does the elasticity depend on whether women have children? Run the regression in h) but once restricting the sample to women with no children and once restricting the sample to women with more than one child. Why do you think the elasticity might be different for women with and without children?

. reg loghours logwage age age2 edu_yrs year hisp nonwhite if nKids==0

Source	SS	df	MS	Number of obs	=	163045
				F(7,163037)	=	2335.45
Model	1853.07037	7	264.724338	Prob > F	=	0.0000
Residual	18480.28916	3037	.113350276	R-squared	=	0.0911
				Adj R-squared	=	0.0911
Total	20333.359416	3044	.124710872	Root MSE	=	.33668

loghours	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logwage	.0607308	.0010316	58.87	0.000	. 0587089	.0627528
age	.0522317	.0010944	47.73	0.000	.0500866	.0543768
age2	000732	.0000176	-41.64	0.000	0007664	0006975
edu_yrs	.005671	.0003894	14.56	0.000	.0049077	.0064343
year	0024242	.0001111	-21.82	0.000	002642	0022064
hisp	.0070801	.0025673	2.76	0.006	.0020484	.0121119
nonwhite	0107246	.0021356	-5.02	0.000	0149103	006539
_cons	7.382588	.2228902	33.12	0.000	6.945728	7.819448

. reg loghours logwage age age2 edu_yrs year hisp nonwhite if nKids>0

Source	SS	df	MS		Number of obs F(7, 85602)	
Model Residual	626.592069 9596.09849		39.5131527 .112101335		Prob > F R-squared	= 0.000 = 0.063
Total	10222.6906	85609	.1194114		Adj R-squared Root MSE	= 0.063 = .3348
loghours	Coef.	Std. Er	rr. t	P> t	[95% Conf.	Interva
logwage age age2	.0703747 .022317 0002937	.001284 .001601	13.93	0.000 0.000 0.000	.0678563 .019178 000342	.072893 .02545

The elasticity of labor supply for women with children is slightly larger, though the difference
is small. For women with children, being able to pay for childcare may be an important
obstacle to working and having a higher wage may be particularly important for them to
determine whether it is worthwhile working more.

j) There are many possibilities here, the important thing is that you find a variable that is plausible and that you correctly figure out the direction of the bias.

One example for an omitted variable may be how monotonous a job is. Suppose some jobs are inherently more monotonous and therefore boring than others. E.g. working at an assembly line vs. working as a photographer. Suppose monotonous jobs pay less. Cov(Monotonous, Wage)<0, and people want to work less in monotonous jobs, so that the direct effect of monotonous Cov(hours, Monotonous) is negative. From the omitted variable bias formula, we can see that the bias term would therefore be positive and therefore the estimated elasticity would likely be larger than the true elasticity.

2. Minimum Wage Application (see ps2q3.do for the code)

- a) What is the smallest and what is the highest federal minimum wage in this time period?
- b) What is the smallest and what is the highest state minimum wage in this time period?
- sum st mw fed mw minwage

Variable	•		Std. Dev.		Max
st_mw fed_mw minwage	992 4896	5.578992 4.420833	1.199803 .7674355	3.35 3.35 3.35	7.93 5.85 7.93

The smallest state minimum range is 3.35, the same as the federal. The highest state minimum wage was 7.93, quite a bit higher than the federal minimum wage.

c) In which years did the average minimum wage increase the most? Why do you think it increases so dramatically in those years?

The federal minimum wage increased in 1990 and 1997. Since in every county the minimum wage is at least the federal minimum wage, these federal minimum wage increases raised the minimum wage in most places.

d) Plotting restaurant vs. total employment:

States that have more total employment are of course states with more population and thus, they also have more people working in restaurants. In both versions (log and levels) the relationship looks pretty linear and there is a high correlation.

e) Reload the employment data dubelesterreich_empdata.dta and but this time without restricting it to the year 2000. Estimate the following two regression models:

$$emp_{rest} = \alpha + \beta emp_{tot} + \epsilon$$
 And
$$\log(emp_{rest}) = \gamma + \delta \log(emp_{tot}) + \epsilon$$

Model Residual	9.6427e+12 4.3836e+11 1.0081e+13	1 91059	9.6427e+12 4814064.96		Number of obs = 91061 F(1, 91059) = . Prob > F = 0.0000 R-squared = 0.9565 Adj R-squared = 0.9565 Root MSE = 2194.1
+					[95% Conf. Interval]
_cons	526.8174 emp_rest loge	7.7962	76 67.57	0.000	511.5368 542.098
Model Residual	SS 136009.295 8037.82841 144047.124	1 91059	136009.295 .088270554		Number of obs = 91061 F(1, 91059) = . Prob > F = 0.0000 R-squared = 0.9442 Adj R-squared = 0.9442 Root MSE = .2971
					[95% Conf. Interval]
					.9500584 .9530634 -2.125349 -2.094807

We have that β hat = 0.059, so for each additional job in a county there are about 0.059 additional restaurant jobs. The coefficient is (very) highly statistically significant, which you can see from the t-statistic of 1415 which is obviously much larger than 1.96.

When estimating the model in logs we obtain a coefficient of 0.95. Thus, suggests that if total employment goes up by one percent restaurant employment goes up by just slightly less than 1 percent. It makes sense that the elasticity is close to 1, since we would think that the number of restaurants and the number of jobs in restaurants is roughly proportional to total employment.

f) No write-up necessary. See do file for code.

2. Estimating the Effect of Minimum Wages

We will first focus on log(Earnings) as an outcome variable (the very top panel) and then look at employment later.

a) Use the dubelesterreich_empdata_minwage.dta that you created before. Look at equation (1) in the paper. Let's first ignore the ϕ_i and τ_t . and just estimate:

 $\log(earnings_rest) = \alpha + \eta \log(minwage) + \delta \log(earnings_tot) + \epsilon$ Estimate this regression using the regress command.

What is your estimate η ? Is it statistically significant? Is it economically a large or a small number?

- use ./dubelesterreich empdata minwage.dta, clear
- regress logearnings_rest logminwage logearnings_tot

Source	SS	df MS			er of obs = 2, 91058) =6	91061 51240.45
Model 3	3151.30131	2 1575.65	066	Prob	> F =	0.0000
	2342.82398 916 5494.12529 916				uared = R-squared = MSE =	0.5736
logearnings_r~t	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
logminwage logearnings_tot _cons	.5460275 .5181051 .072268	.0047481 .002427 .0124983	115.00 213.47 85.79	0.000 0.000 0.000	.5367212 .5133482 1.047771	.5553338 .522862 1.096765

The estimate $\underline{\eta}$ hat is 0.55. This would mean that if the minimum wage goes up by one percent average earnings in the restaurant sector go up by 0.55 percent. This suggests that the minimum wage has a big effect on people's earnings. Note that there are definitely people who are making more than the minimum wage who are not affected by a minimum wage increase, so it makes sense that the coefficient is less than 1. The coefficient is highly significant.

b) Estimating the model with period effects:

Note that controlling for period fixed effects does not make a big difference.

- regress logearnings_rest logminwage logearnings_tot _I* note: _Iperiod64 omitted because of collinearity

Source	SS	df MS	5		ber of obs = 67, 90993) =	91061
	3225.31112 2268.81417 909	67 48.138 993 .024933		Pro R-s	b > F = quared =	0.0000 0.5870
Total !	5494.12529 916	060 .060335	5222		R-squared = t MSE =	0.5867 .1579
logearnings_r~t	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logminwage	5324718	.0086223	61.76	0.000	.5155721	.5493715
logearnings tot	.5021017	.0026023	192.94	0.000	.4970012	.5072022
Iperiod1	.0034737	.0072945	0.48	0.634	0108234	.0177708
Iperiod2	0201377	.0068935	-2.92	0.003	0336488	0066265
Iperiod3	.0233379	.0068924	3.39	0.001	.0098289	.036847
Iperiod4	0183083	.0068534	-2.67	0.008	031741	0048757
 Iperiod5	0297064	.0068481	-4.34	0.000	0431286	0162843
Iperiod6	0392276	.0065386	-6.00	0.000	0520431	0264121
Iperiod7	.0110044	.006535	1.68	0.092	0018041	.023813
iperiod8	0385507	.0064962	-5.93	0.000	0512832	0258182
iperiod9	0471605	.0065057	-7.25	0.000	0599117	0344093
- ' ' 110	007107	0005000	4 27	0 000	0200546	0143504

Estimating the model with period and county fixed effects:

```
- reghdfe logearnings rest logminwage logearnings tot , absorb(period county) vce(cluster state)
(converged in 4 iterations)
                                                               91,061
HDFE Linear regression
                                             Number of obs =
                                             F( 2, 50) =
Prob > F =
Absorbing 2 HDFE groups
                                                                 80.68
                                             Prob > F = R-squared =
                                                                 0.0000
Statistics robust to heteroskedasticity
                                                                0.9363
                                             Adj R-squared = 0.9352
                                             Within R-sq. = Root MSE =
                                                                 0.0489
Number of clusters (state) =
                               (Std. Err. adjusted for 51 clusters in state)
Robust
logminwage | .2165586 .0278701 7.77 0.000 .1605798 .2725375 logearnings_tot | .1940754 .0189192 10.26 0.000 .1560751 .2320756
Absorbed degrees of freedom:
   Absorbed FE | Num. Coefs. = Categories - Redundant
       period | 66 66 0 county | 0 1380 1380 *
```

We get exactly the coefficient and standard error as in Table 2 in the paper! Note that the coefficient on the minimum wage is quite a bit smaller now. If the minimum wage goes up by 1 percent, earnings for restaurant workers increase by around0.22 percent. It still sizable and clearly the minimum wage affects earnings but less than what we had before. Also, the coefficient is highly statistically significant (t = 7:77).

3. Unemployment Insurance Extension (See ps2q3.do)

Descriptive Analysis

a) Summary statistics

Variable	0bs	Mean	Std. Dev.	Min	Max
birthdate	420032	-2008.471	3080.602	-9490	5457
begindate	420032	14059.61	2424.765	9862	18262
year	420032	1997.993	6.632183	1987	2009
unemp	420032	9.196776	1.578365	5.866667	11.725
chgunemp	420032	.0112775	.8784827	-1.75	1.875
realgdpgro~1	401899	1.745831	2.082687	-4.834638	5.121585
age	420032	43.4931	5.191032	35	52
agedays	420032	16068.08	1898.853	12783	19358
expbaseline	420032	51.20519	19.55438	12	148
Р	420032	16.70799	5.633558	6	26
durnonemp	420032	8.694307	6.44661	-15.05626	164.825
duruib	420032	7.844934	4.60183	-15.05626	26
edyrs	420032	11.4976	2.291916	8	15
female	420032	.3507661	.4772104	θ	1
nonger	420032	.0794201	.2703937	θ	1
tenure	420032	6.002205	6.004541	2.66e-06	86.49593

b) Note that Potential UI durations are a bit lower than in the paper, that is because only people who worked for 52 months in the previous 7 years were eligible to the maximum potential benefit amounts, that is why later we will restrict the sample to individuals with at least 52 months experience in the baseperiod (past 7 years).

c) Here is the same graph with the restriction expbaseline >= 52. Now the potential UI durations line up with how we defined the policy in class: 12 if age < 42, then 18, then 22, then 26 for age >= 49.

1. OLS Analysis

Note that for this next part you have to reload the dataset.

a) You could have picked other control variables, but here is an example

	(1) durnonemp	(2) durnonemp	(3) durnonemp	(4) durnonemp
P	0.0306***	-0.206***	-0.206***	-0.205***
•	(0.00177)	(0.00244)	(0.00244)	(0.00248)
agedays		0.000991***	0.000991***	0.000989***
		(0.00000725)	(0.00000725)	(0.00000735)
edyrs			0.00371	0.00395
			(0.00425)	(0.00431)
female			-0.00262	-0.000828
			(0.0204)	(0.0207)
nonger			-0.00411	0.00252
			(0.0360)	(0.0365)
tenure			-0.00187	-0.00179
			(0.00162)	(0.00164)
realgdpgro~1				0.0803**
				(0.00475)
unemp				0.653***
				(0.00620)
_cons	8.183***	-3.795***	-3.826***	-10.04***
	(0.0311)	(0.0928)	(0.106)	(0.122)
N	420032	420032	420032	401899
R-sq	0.001	0.043	0.043	0.069

- b) Controlling for age makes a big difference and the effect of potential UI durations goes from positive to -0.2, suggesting that an additional month of UI would reduce unemployment duration by 0.2 months, this is the opposite of what theory would predict (we think more generous UI benefits should lead people to search less hard for a job).
- c) Note that potential UI duration might be related to positive worker characteristics. Worker who are older and had more employment in the past 7 years (one of the criteria to be eligible for higher P) might be more employable in general and might have an easier time finding a job.

2. Regression Discontinuity Design

a) The following shows the density (number of UI claims) by 15-day age bins. The figure looks noisy because the y-axis is pretty narrow, but there are no obvious jumps in the density at the threshold. This is an important test that the RD design is likely valid since it does not seem like people are manipulating the age when they enter UI or that some people are more likely to get laid off if they are eligible to more benefits.

Validity Test: Smoothness of Density around Cutoffs

b) The following figure shows that there is a clear increase in unemployment durations at the thresholds. This is the main outcome of interest and suggests that potential UI durations do have a positive effect on unemployment durations. At the 42 cutoff it looks like the 6 additional months of UI increase unemployment duration by a bit less than a year.

Outcome of Interest: Unemployment Duration

The following figure shows that the predetermined variables (predetermined means that the characteristics are not affected by the potential UI durations themselves) are pretty smooth around the cutoff (that is they do not exhibit jumps at the cutoffs) and therefore this suggests that people on both sides of the cutoffs are similar to each other. This together with the test in 3a) suggests that the RD design is valid and that the estimates in figure 3b) and below are meaningful.

Validity Test: Smoothness of Predetermined Variables

From here on we use regression analysis. To make things a bit easier, focus only on the age 42 cutoff. Simply drop all observations where age<40 or age>=44.

d) Here is the simple regression (after restricting the sample to individuals age 40 to <44: reg durnonemp P a0 a1 $^{\circ}$

Note that the effect of P is now positive and quite similar to the estimates in the paper.

Source	SS	df	MS		Number of obs	
Model Residual	11297.0092 1460547.72		765.66972 1.3914011		F(3, 46527) Prob > F R-squared Adj R-squared	0.00000.0077
Total	1471844.73	46530	31.632167		Root MSE	= 5.6028
durnonemp	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
P a0 a1 _cons	.1379493 .000282 0001433 4.756454	.017 .00017 .000246 .264242	4 1.62 2 -0.58	0.000 0.105 0.560 0.000	.104041 0000591 0006259 4.238534	.1718576 .000623 .0003392 5.274374

e) Here are the regressions when restricting the sample to be within 2, 1, 0.5 and 0.2 years around the age 42 cutoffs. The standard errors get larger as the window becomes smaller.

	(1)	(2)	(3)	(4)
	durnonemp	durnonemp	durnonemp	durnonemp
Р	0.138***	0.125***	0.132***	0.111*
	(0.0173)	(0.0247)	(0.0343)	(0.0536)
a0	0.000282	0.000105	0.000754	0.00922
	(0.000174)	(0.000494)	(0.00137)	(0.00540)
a1	-0.000143	0.000776	-0.000947	-0.0135
	(0.000246)	(0.000703)	(0.00195)	(0.00763)
_cons	4.756***	4.888***	4.847***	5.338***
	(0.264)	(0.376)	(0.524)	(0.819)
N	46531	23223	11730	4704
R-sq	0.008	0.007	0.006	0.007

Alternatively you can show the unscaled effect, which in the paper is labeled D(Age>=42):

	(1)	(2)	(3)	(4)
	durnonemp	durnonemp	durnonemp	durnonemp
RD	0.828***	0.751***	0.790***	0.669*
	(7.97)	(5.08)	(3.84)	(2.08)
a0	0.000282	0.000105	0.000754	0.00922
	(1.62)	(0.21)	(0.55)	(1.71)
a1	-0.000143	0.000776	-0.000947	-0.0135
	(-0.58)	(1.10)	(-0.49)	(-1.77)
cons	6.412***	6.390***	6.426***	6.676***
_	(87.70)	(61.46)	(44.32)	(29.37)
N	46531	23223	11730	4704

t statistics in parentheses

f) In your own words, how do the results from the OLS and RD analysis compare? What are the advantages of RD vs. OLS? Can you think of disadvantages?

The coefficients in the RD analysis have the opposite sign. The assumption for OLS regression to work is that there are no omitted variables that are correlated with the right-hand side variable and that have an effect on the outcome variable. The RD design on the other hand assumes that individuals to the left and the right of the threshold are similar and that the change in policy is the only reason for a change in the outcome variable.

Unlike the assumption for OLS, the RD assumptions can actually be tested (to some degree) by doing the validity checks: smoothness of density and smoothness of predetermined characteristics around the threshold.

One disadvantage of the RD is that we need a policy discontinuity. We also need a lot of data. Another disadvantage is that we can only find out the effect for people at the

^{*} p<0.05, ** p<0.01, *** p<0.001

discontinuity. For example, in the case here the RD design does not tell out how people age 30 would react to a UI extension (though it may seem plausible that they react in a similar way as the 42 year olds).