22. Treatments that turn on once

Difference in difference Interrupted time series Regression discontinuity Synthetic control

Ian Lundberg
Cornell Info 6751: Causal Inference in Observational Settings
Fall 2022

8 Nov 2022

Learning goals for today

At the end of class, you will be able to:

- 1. Recognize the promises and pitfalls of four methods to study the effects of treatments that turn on once
 - 1.1 Difference in difference (DID)
 - 1.2 Interrupted time series (ITS)
 - 1.3 Regression discontinuity (RD)
 - 1.4 Synthetic control (SC)

Data

- ► Apr 1 1991: Federal minimum wage rises to \$4.25
- ► Apr 1 1992: New Jersey minimum wage rises to \$5.05

Data

- ► Apr 1 1991: Federal minimum wage rises to \$4.25
- ► Apr 1 1992: New Jersey minimum wage rises to \$5.05

Theoretical Estimand: Effect of the law on employment in NJ

Data

- ► Apr 1 1991: Federal minimum wage rises to \$4.25
- ► Apr 1 1992: New Jersey minimum wage rises to \$5.05

Theoretical Estimand: Effect of the law on employment in NJ

$$Y_{\text{NJ,After}}^1$$
 - $Y_{\text{NJ,After}}^0$ - Counterfactual

where Y is employment,

Data

- ► Apr 1 1991: Federal minimum wage rises to \$4.25
- ► Apr 1 1992: New Jersey minimum wage rises to \$5.05

Theoretical Estimand: Effect of the law on employment in NJ

$$Y_{NJ,After}^1$$
 - $Y_{NJ,After}^0$ - Counterfactual

where Y is employment, superscript A=1 is \$5.05 minimum wage, and pause superscript A=0 is \$4.25 minimum wage

Photo by James Loesch - https://www.flickr.com/photos/jal33/49113053632/CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=87207834

Photo by James Loesch - https://www.flickr.com/photos/jal33/49113053632/CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=87207834

Photo by James Loesch - https://www.flickr.com/photos/jal33/49113053632/CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=87207834

- Card & Krueger 1994: Fast food stores near the NJ / PA border
 - ► 171 Burger King stores
 - ▶ 80 KFC stores
 - ▶ 99 Roy Rogers stores
 - ► 60 Wendy's stores

Figure 1 Distribution of Starting Wage Rates

New Jersey Pennsylvania

Parallel trends assumption:

the trend in NJ would equal
$$Y_{\text{NJ,After}}^0 - Y_{\text{NJ,Before}}^0$$
 would equal $Y_{\text{PA,After}}^0 - Y_{\text{PA,Before}}^0$

$$\underbrace{Y_{\text{NJ,After}}^{0} - Y_{\text{NJ,Before}}^{0}}_{\text{would equal}} \underbrace{Y_{\text{PA,After}}^{0} - Y_{\text{PA,Before}}^{0}}_{\text{PA,After}}$$

$$\underbrace{Y_{\text{NJ,After}}^{0} - Y_{\text{NJ,Before}}^{0}}_{\text{would equal}} \underbrace{Y_{\text{PA,After}}^{0} - Y_{\text{PA,Before}}^{0}}_{\text{PA,After}}$$

$$Y_{NJ,After}^{0}$$
 By Assumption $Y_{NJ,After}^{0}$

$$\overbrace{Y_{\text{NJ,After}}^{0} - Y_{\text{NJ,Before}}^{0}}^{\text{the trend in NJ}} \underbrace{\qquad \qquad }_{\text{VPA,After}}^{\text{the trend in PA}}$$

$$\underbrace{Y_{\text{NJ,After}}^{0}}_{\text{Counterfactual}} \underbrace{=}_{\text{By Assumption}} \underbrace{Y_{\text{NJ,Before}}^{0} + Y_{\text{PA,After}}^{0} - Y_{\text{PA,Before}}^{0}}_{\text{Factual}}$$

$$\underbrace{Y_{\text{NJ,After}}^{0} - Y_{\text{NJ,Before}}^{0}}_{\text{would equal}} \underbrace{Y_{\text{PA,After}}^{0} - Y_{\text{PA,Before}}^{0}}_{\text{PA,After}}$$

By Assumption
$$Y_{NJ,After}^{0} = Y_{NJ,Before}^{0} + Y_{PA,After}^{0} - Y_{PA,Before}^{0}$$
Factual

Effect in NJ = $Y_{NJ,After}^{1}$ - $Y_{NJ,After}^{0}$ - Estimated by Above

Can we test the parallel trends assumption?

Can we test the parallel trends assumption?

No.

Can we test the parallel trends assumption?

No.

You can make it credible by looking at many pre-treatment periods

DID would be very credible

DID would be very doubtful

Time

DID would be very doubtful

Time

DID would be very doubtful

¹Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial. International Journal of Epidemiology, 46(1), 348-355.

You study one unit. It is untreated. Then it is treated.

¹Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial. International Journal of Epidemiology, 46(1), 348-355.

You study one unit. It is untreated. Then it is treated.

In what settings does this work well?

¹Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial. International Journal of Epidemiology, 46(1), 348-355.

You study one unit. It is untreated. Then it is treated.

In what settings does this work well?

▶ When you have a strong pre-treatment trend to forecast Y_t^0

¹Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial. International Journal of Epidemiology, 46(1), 348-355.

You study one unit. It is untreated. Then it is treated.

In what settings does this work well?

- ▶ When you have a strong pre-treatment trend to forecast Y_t^0
- ▶ When you don't have a comparable unit that is never treated

¹Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial. International Journal of Epidemiology, 46(1), 348-355.

You study one unit. It is untreated. Then it is treated.

Theoretical Estimand

$$\mathsf{E}(Y^1-Y^0\mid \mathcal{T}>t_{\mathsf{Intervention}})$$

¹Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial.

You study one unit. It is untreated. Then it is treated.

Identifying Assumption

¹Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial. International Journal of Epidemiology, 46(1), 348-355.

You study one unit. It is untreated. Then it is treated.

Identifying Assumption

► In the absence of the intervention, the pre-intervention trend in Y⁰ would have continued

¹Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial. International Journal of Epidemiology, 46(1), 348-355.

You study one unit. It is untreated. Then it is treated.

Concrete steps:

¹Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial. International Journal of Epidemiology, 46(1), 348-355.

You study one unit. It is untreated. Then it is treated.

Concrete steps:

1. Learn a model on the pre-treatment period

¹Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial. International Journal of Epidemiology, 46(1), 348-355.

You study one unit. It is untreated. Then it is treated.

Concrete steps:

- 1. Learn a model on the pre-treatment period
 - ► Evaluation metric: Forecast within the pre-treatment period

¹Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial. International Journal of Epidemiology, 46(1), 348-355.

You study one unit. It is untreated. Then it is treated.

Concrete steps:

- 1. Learn a model on the pre-treatment period
 - ► Evaluation metric: Forecast within the pre-treatment period
- 2. Forecast Y^0 for the post-treatment period

¹Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial. International Journal of Epidemiology, 46(1), 348-355.

Interrupted time series: Recap

- ► ITS applies when treatment turns on at one time for all units
- ► ITS requires a parametric model to extrapolate
- ► ITS is most credible near the time when treatment turns on

When to use each method

- ► Difference in difference
 - One unit becomes treated
 - ► One unit never becomes treated
 - ightharpoonup The trends in Y^0 are parallel
- ► Interrupted time series
 - ightharpoonup Everyone becomes treated at X = c
 - You believe you can forecast Y^0 from X < c to X > c

New Jersey Pennsylvania

New drug

Deaths would
have been stable

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

Cattaneo & Titiunik 2022 Fig 1a

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

Cattaneo & Titiunik 2022 Fig 1a

Examples

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

Cattaneo & Titiunik 2022 Fig 1a

Examples

X is PSAT test score
c is a score cutoff
A is National Merit Scholarship
(Thistlewaite & Campbell 1960)

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

Cattaneo & Titiunik 2022 Fig 1a

Examples

X is PSAT test scorec is a score cutoffA is National Merit Scholarship

(Thistlewaite & Campbell 1960)

X is vote share c is 50% A is winning the election

(De la Cuesta & Imai 2016)

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

Cattaneo & Titiunik 2022 Fig 1a

Examples

X is PSAT test scorec is a score cutoffA is National Merit Scholarship

(Thistlewaite & Campbell 1960)

X is vote share c is 50% A is winning the election

(De la Cuesta & Imai 2016)

X is date
c is 2am Nov 6 2022
A is hours of PM darkness

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

Cattaneo & Titiunik 2022 Fig 1a

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

Cattaneo & Titiunik 2022 Fig 1a

Theoretical Estimand E(Y(1) - Y(0) | X = c)

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

Cattaneo & Titiunik 2022 Fig 1a

Theoretical Estimand
$$E(Y(1) - Y(0) | X = c)$$

Empirical Estimand
$$\lim_{x\downarrow c} E(Y \mid X = x)$$

$$\mathsf{lim}_{x\uparrow c}\mathsf{E}(Y\mid X=x)$$

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

Cattaneo & Titiunik 2022 Fig 1a

Theoretical Estimand
$$E(Y(1) - Y(0) | X = c)$$

Empirical Estimand
$$\lim_{x\downarrow c} E(Y \mid X = x)$$

$$\mathsf{lim}_{x \uparrow c} \mathsf{E}(Y \mid X = x)$$

Identifying Assumptions E(Y(1) | X = x) and E(Y(0) | X = x) are continuous at x = c

and $f_X(x) > 0$ for x near c

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

Cattaneo & Titiunik 2022 Fig 1a

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

Promises of RD

- Highly credible
- Easy to visualize

Drawbacks of RD

— Local to X = c

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

Promises of RD

- Highly credible
- Easy to visualize

Drawbacks of RD

- Local to X = c
- Sensitive to sorting

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

Promises of RD

- Highly credible
- Easy to visualize

Drawbacks of RD

- Local to X = c
- Sensitive to sorting
 (people moving strategically over the cutoff)

²Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs. Annual Review of Economics, 14, 821-851.

When to use each method

- ► Difference in difference
 - One unit becomes treated
 - One unit never becomes treated
 - ▶ The trends in Y^0 are parallel
- ► Interrupted time series
 - ightharpoonup Everyone becomes treated at X = c
 - You believe you can forecast Y⁰ from X < c to X > c
- ► Regression discontinuity
 - \blacktriangleright Everyone becomes treated at X=c
 - You want a local estimate $E(Y^1 Y^0 \mid X = c)$ at the cutoff
 - $ightharpoonup Y^0$ and Y^1 are continuous at X=c

New Jersey Pennsylvania

New drug Deaths would

have been stable

Win the election

Close elections

Synthetic control³

³Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American Statistical Association, 105(490), 493-505.

Synthetic control³

In 1988, California implemented a tobacco control program

³Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American Statistical Association, 105(490), 493-505.

Synthetic control³

In 1988, California implemented a tobacco control program

► New tax: 25 cents per pack

³Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American Statistical Association, 105(490), 493-505.

Synthetic control³

In 1988, California implemented a tobacco control program

- ► New tax: 25 cents per pack
- ► Money earmarked for smoking-reduction programs

³Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American Statistical Association, 105(490), 493-505.

Synthetic control³

In 1988, California implemented a tobacco control program

- ► New tax: 25 cents per pack
- ► Money earmarked for smoking-reduction programs

How much did it reduce CA cigarette sales in 1990? 1995? 2000?

³Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American Statistical Association, 105(490), 493-505.

Synthetic control⁴

Figure 1. Trends in per-capita cigarette sales: California vs. the rest of the United States.

Can't use RD

- Effect at 1988 not of interest

Can't use ITS

— Hard to extrapolate Y^0 trend

Can't use DID

No other state like CA

Idea: Create a synthetic CA to estimate $Y_{\text{CA,t}}^0$ for $t \ge 1988$

⁴Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American Statistical Association, 105(490), 493-505.

Synthetic control⁵

Synthetic CA as a weighted average of other states

Table 1. Cigarette sales predictor means

	California		Average of
Variables	Real	Synthetic	38 control states
Ln(GDP per capita)	10.08	9.86	9.86
Percent aged 15-24	17.40	17.40	17.29
Retail price	89.42	89.41	87.27
Beer consumption per capita	24.28	24.20	23.75
Cigarette sales per capita 1988	90.10	91.62	114.20
Cigarette sales per capita 1980	120.20	120.43	136.58
Cigarette sales per capita 1975	127.10	126.99	132.81

NOTE: All variables except lagged cigarette sales are averaged for the 1980–1988 period (beer consumption is averaged 1984–1988). GDP per capita is measured in 1997 dollars, retail prices are measured in cents, beer consumption is measured in gallons, and cigarette sales are measured in packs.

⁵Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American Statistical Association, 105(490), 493-505.

Synthetic control⁶

Synthetic CA as a weighted average of other states

Theoretical Estimand:
$$\tau(t) = Y_{\text{CA},t}^1 - Y_{\text{CA},t}^0$$
 $t \ge 1988$

⁶Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American Statistical Association, 105(490), 493-505.

Synthetic control⁶

Synthetic CA as a weighted average of other states

Theoretical Estimand:
$$au(t) = Y_{\mathsf{CA},t}^1 - Y_{\mathsf{CA},t}^0$$
 $t \geq 1988$

Empirical Estimand:
$$\theta(t) = Y_{\mathsf{CA},t}^1 - Y_{\mathsf{SyntheticCA},t}^0$$
 $t \geq 1988$

⁶Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American Statistical Association, 105(490), 493-505.

Synthetic control⁶

Synthetic CA as a weighted average of other states

Theoretical Estimand:
$$\tau(t) = Y_{\mathsf{CA},t}^1 - Y_{\mathsf{CA},t}^0$$
 $t \geq 1988$ Empirical Estimand: $\theta(t) = Y_{\mathsf{CA},t}^1 - Y_{\mathsf{SyntheticCA},t}^0$ $t \geq 1988$ Identifying Assumption: $Y_{\mathsf{CA},t}^0 = Y_{\mathsf{SyntheticCA},t}^0$ $t \geq 1988$

Factual

Counterfactual

⁶Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American Statistical Association, 105(490), 493-505.

Synthetic control⁷

Figure 2. Trends in per-capita cigarette sales: California vs. synthetic California.

⁷Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American Statistical Association, 105(490), 493-505.

When to use each method

- ► Difference in difference
 - ► One unit becomes treated
 - One unit never becomes treated
 - ▶ The trends in Y^0 are parallel
- ► Interrupted time series
 - ightharpoonup Everyone becomes treated at X = c
 - You believe you can forecast Y⁰ from X < c to X > c
- ► Regression discontinuity
 - ightharpoonup Everyone becomes treated at X=c
 - You want a local estimate $E(Y^1 Y^0 \mid X = c)$ at the cutoff
 - $ightharpoonup Y^0$ and Y^1 are continuous at X=c
- Synthetic control
 - One unit becomes treated
 - ► Many units are never treated
 - ► You want to extrapolate far from the cutoff

New Jersey

Pennsylvania

New drug

Deaths would have been stable

Win the election

Close elections

California

Other states

 $1988 \rightarrow 2000$

Learning goals for today

At the end of class, you will be able to:

- 1. Recognize the promises and pitfalls of four methods to study the effects of treatments that turn on once
 - 1.1 Difference in difference (DID)
 - 1.2 Interrupted time series (ITS)
 - 1.3 Regression discontinuity (RD)
 - 1.4 Synthetic control (SC)

Let me know what you are thinking

tinyurl.com/CausalQuestions

Office hours TTh 11am-12pm and at calendly.com/ianlundberg/office-hours Come say hi!