Premessa

D'ora in poi si denoterà con u' il simbolo \dot{u} , inteso come derivata nel senso di funzioni di variabile reale.

Definizione: Equazione differenziale ordinaria del primo ordine in forma implicita

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $A \subseteq \mathbb{R} \times X \times X$.

Sia $(Y, \|\cdot\|_Y)$ uno spazio normato.

Sia $f: A \to Y$.

Si denota con f(t, u, u') = 0 l'equazione differenziale ordinaria del primo ordine in forma implicita, associata a f;

essa consiste nella ricerca di intervalli $I\subseteq\mathbb{R}$ e di funzioni $u:I\to X$ di classe C^1 , tali che $\big(t,u(t),u'(t)\big)\in A$ e $f\big(t,u(t),u'(t)\big)=\mathbf{0}_Y$, per ogni $t\in I$.

Se f ha una legge del tipo $(t, \mathbf{x}, \mathbf{y}) \mapsto \mathbf{y} - g(t, \mathbf{x})$ per qualche funzione g, l'equazione differenziale si scrive allora come $u' - g(t, u) = \mathbf{0}$ oppure u' = g(t, u);

un'equazione di questo tipo si dice in forma normale.

₩ Definizione: Problema di Cauchy

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $A \subseteq \mathbb{R} \times X \times X$.

Sia $(Y, \|\cdot\|_Y)$ uno spazio normato.

Sia $f: A \to Y$.

Sia $(t_0,\mathbf{x}_0,\mathbf{y}_0)\in A$ tale che $f(t_0,\mathbf{x}_0,\mathbf{y}_0)=\mathbf{0}$.

Sia $I \subseteq \mathbb{R}$ un intervallo.

Si denota con
$$\begin{cases} f(t,u,u') = \mathbf{0} & \forall t \in I \\ u(t_0) = \mathbf{x}_0 & \text{il problema di Cauchy associato a } f \in (t_0,\mathbf{x}_0,\mathbf{y}_0); \\ u'(t_0) = \mathbf{y}_0 & \end{cases}$$

esso consiste nella ricerca di funzioni $u:I\to X$ di classe C^1 , tali che:

- $ig(t,u(t),u'(t)ig)\in A$ e fig(t,u(t),u'(t)ig)=0, per ogni $t\in I$;
- $u(t_0) = \mathbf{x}_0$;
- $u'(t_0) = \mathbf{y}_0$.

Teorema 27.1: Esistenza e unicità della soluzione al problema di Cauchy in forma normale

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $I \subseteq \mathbb{R}$ un intervallo.

Sia $f: I \times X \to X$ una funzione continua;

si supponga che esista una funzione $L:I o\mathbb{R}^+_0$ continua, tale che

 $||f(t,\mathbf{x}) - f(t,\mathbf{y})|| \le L(t) \cdot ||\mathbf{x} - \mathbf{y}||$, per ogni $t \in I$ e per ogni $\mathbf{x}, \mathbf{y} \in X$.

Sia $(t_0, \mathbf{x}_0) \in I \times X$.

Il problema $egin{cases} u' = f(t,u) = \mathbf{0} \ \ orall t \in I \ u(t_0) = \mathbf{x}_0 \end{cases}$ ammette un'unica soluzione

Dimostrazione

Si supponga dapprima I compatto, ossia del tipo [a;b], con $a,b \in \mathbb{R}$.

Si definisca l'operatore $\Phi: C^0ig([a;b],Xig) o C^0ig([a;b],Xig)$ ponendo

 $\Phi(u)(t)=\mathbf{x}_0+\int_{t_0}^t fig(s,u(s)ig)\,ds$ per ogni $u\in C^0ig([a;b],Xig)$ e per ogni $t\in [a;b];$

esso è ben definito, cioè $\Phi(u)$ è continuo per ogni $u \in C^0([a;b],X)$, essendo la funzione integrale $t \mapsto \int_{t_0}^t f(s,u(s)) ds$ di classe C^1 per il teorema fondamentale del calcolo integrale ([Teorema 21.9]).

Sempre per tramite di tale teorema, si osserva che u è soluzione del problema $\begin{cases} u'=f(t,u)=\mathbf{0} & \forall t\in I, \\ u(t_0)=\mathbf{x}_0 \end{cases}$, se e solo se $\Phi(u)=u$.

Per acquisire la tesi, si provi dunque che Φ ammette un unico punto fisso, facendo uso del teorema di Banach-Caccioppoli.

Poiché la funzione L è continua su I compatto, essa ammette massimo; sia dunque $L^* = \max_{t \in [a;b]} L(t)$ (che si nota essere nonnegativo in quanto L è nonnegativa) e sia $M > L^*$.

Si definisca la funzione $\|\cdot\|_{C^0([a;b],X)}^*: C^0([a;b],X) \to \mathbb{R}$, ponendo $u \mapsto \|u\|_{C^0([a;b],X)}^*:= \sup_{t \in [a;b]} e^{-M|t-t_0|} \cdot \|u(t)\|$ per ogni $u \in C^0([a;b],X)$;

essa è una norma su $C^0ig([a;b],Xig)$, e si osserva che

 $e^{-M(b-a)}\|u\|_{C^0([a;b],X)} \leq \|u\|_{C^0([a;b],X)}^* \leq \|u\|_{C^0([a;b],X)}$ per ogni $u \in C^0([a;b],X)$, dove $\|\cdot\|_{C^0([a;b],X)}$ è la norma usuale su $C^0([a;b],X)$.

Allora, le due norme $\|\cdot\|_{C^0([a;b],X)}^*$ e $\|\cdot\|_{C^0([a;b],X)}$ sono equivalenti; essendo $\left(C^0\left([a;b],X\right),\|\cdot\|_{C^0([a;b],X)}\right)$ completo, ne viene allora che anche $\left(C^0\left([a;b],X\right),\|\cdot\|_{C^0([a;b],X)}^*\right)$ è completo.

Resta da mostrare che Φ è una contrazione (rispetto alla norma $\|\cdot\|_{C^0([a;b],X)}^*$).

Siano $u,v\in C^0ig([a;b],Xig);$ per ogni $t\in [a;b],$ si ha

$$egin{aligned} \|\Phi(u)(t)-\Phi(u)(t)\| &= \left\|\int_{t_0}^t f(s,u(s)) - f(s,v(s))\,ds
ight\| \ &\leq \left|\int_{t_0}^t \|f(s,u(s)) - f(s,v(s))\|\,ds
ight| \end{aligned}$$

Per definizione di Φ e per linearità dell'integrale di Riemann

Per maggiorazione della norma di un integrale di Riemann (il valore assoluto va scritto, per ovviare al caso in cui $t_0>t$)

$$\leq \left| \int_{t_0}^t L(s) \cdot \left\| u(s) - v(s)
ight\| ds
ight|$$

Per ipotesi su L

$$\leq \left| \int_{t_0}^t L^* \cdot \left\| u(s) - v(s)
ight\| ds
ight|$$

Per definizione di L^* e per monotonia dell'integrale di Riemann per funzioni a valori reali

$$0 \leq L^* \cdot \left| \int_{t_0}^t \left\| u(s) - v(s)
ight\| ds
ight|$$

Per linearità dell'integrale di Riemann, ed essendo $L^* \geq 0$

$$=L^*\cdot\left|\int_{t_0}^t e^{M|s-t_0|}\cdot e^{-M|s-t_0|}\|u(s)-v(s)\|\,ds
ight|$$

Per definizione di
$$\|\cdot\|_{C^0([a;b],X)}^*$$
 e per monotonia dell'integrale di Riemann per funzioni a valori reali

$$0 \leq L^* \cdot \left| \int_{t_0}^t e^{M|s-t_0|} \cdot \left\| u - v
ight\|_{C^0\left([a;b],X
ight)}^* ds
ight|$$

$$\| = L^* \| u - v \|_{C^0([a;b],X)}^* \cdot \left| \int_{t_0}^t e^{M|s-t_0|} \, ds
ight|$$

$$= L^{} | u-v|_{C^0 \setminus big([a;b],X \setminus big)}^{} \cdot {} \cdot {1}$$

$$= Me^{} M$$

Si ha dunque che

$$e^{-M|t-t_0|}\cdot\|\Phi(u)(t)-\Phi(u)(t)\|\leq rac{L^*}{M}\|u-v\|_{C^0([a;b],X)}^*$$
 per ogni $t\in[a;b]$, da cui segue che

$$\|\Phi(u) - \Phi(u)\|_{C^0([a;b],X)}^* \le \frac{L^*}{M} \|u - v\|_{C^0([a;b],X)}^*$$
, per definizione di $\|\cdot\|_{C^0([a;b],X)}^*$.

Dunque, rispetto a $\|\cdot\|_{C^0([a;b],X)}^*$ la funzione Φ è Lipschitziana di costante $\frac{L^*}{M}$; allora, essa è una contrazione, essendo $\frac{L^*}{M} \in [0;1[$ in quanto $0 \le L^* < M$ per definizione di L^* e per costruzione di M.

Pertanto, Φ ammette un unico punto fisso per il teorema di Banach-Caccioppoli.

Si supponga ora che I non sia un intervallo compatto.

Allora, è comunque possibile costruire una successione non decrescente di intervalli compatti $\{I_n\}_{n\in\mathbb{N}}$, dimodoché $t_0\in I_1$ e $\bigcup_{i\in\mathbb{N}}I_i=I$.

Per ogni $n \in \mathbb{N}$ sia allora u_n la soluzione del problema $\begin{cases} u' = f(t, u) = \mathbf{0} & \forall t \in I_n \\ u(t_0) = \mathbf{x}_0 \end{cases}$, che esiste ed è unica in quanto questo problema rientra nel caso precedente per costruzione di $\{I_n\}_{n \in \mathbb{N}}$.

Si osserva che, per ogni $n \in \mathbb{N}$, la funzione u_{n+1} estende u_n , in quanto $I_{n+1} \supseteq I_n$ per costruzione di $\{I_n\}_{n \in \mathbb{N}}$, e $(u_{n+1})_{|I_n} = u_n$ per definizione di u_n .

Allora, risulta ben definita la funzione u:I o X in cui si pone $u(t)=u_n(t)$ per ogni $t\in I$, con $n\in\mathbb{N}$ tale che $t\in I_n$.

Essa è soluzione al problema $\begin{cases} u' = f(t,u) = \mathbf{0} & \forall t \in I \\ u(t_0) = \mathbf{x}_0 \end{cases}$, ed è l'unica per unicità degli u_n .