Optimization

Lusine Poghosyan

YSU

December 10, 2020

Assume we want to find the extremum points of $f(x_1, x_2) = x_1^2 + x_2^2$ subject to $x_1^2 + 2x_2^2 = 2$. Use Lagrange's theorem to find all possible local extremum points.

Theorem (Second Order Necessary Condition SONC)

Let x^* be a local minimizer (maximizer) of $f: \mathbb{R}^n \to \mathbb{R}$ subject to $h_i(x) = 0$, $h_i: \mathbb{R}^n \to \mathbb{R}$, $i = 1, \ldots m$, $m \le n$. Assume f, h_i for $i = 1, \ldots m$ are twice continuously differentiable functions and x^* is a regular point. Then, there exists $\lambda^* \in \mathbb{R}^m$ such that:

- $\nabla f(x^*) + \sum_{j=1}^m \lambda_j^* \nabla h_j(x^*) = 0$ or $\nabla \mathcal{L}(x^*, \lambda^*) = 0$,
- if $TS(x^*) = \{y \in \mathbb{R}^n : y^T \nabla h_i(x^*) = 0, \text{ for } i = 1, \dots, m\}$, then for all $y \in TS(x^*)$ we have that $y^T \nabla^2 \mathcal{L}(x^*, \lambda^*) y \geq 0$ $(y^T \nabla^2 \mathcal{L}(x^*, \lambda^*) y \leq 0)$.

Consider the following optimization problem:

maximize
$$-x_2(x_1 + x_3)$$

subject to $x_1 + x_2 = 0$,
 $x_2 + x_3 = 0$.

Is it possible that $x^* = [0, 0, 0]^T$ is a maximum point of the problem.

Theorem (Second Order Sufficient Condition SOSC)

Suppose f, h_i , for i = 1, ..., m are twice continuously differentiable functions on \mathbb{R}^n and there exists a point $x^* \in \mathbb{R}^n$ satisfying $h_i(x^*) = 0$, i = 1, ..., m and $\lambda^* \in \mathbb{R}^m$ such that:

- $\frac{\partial \mathcal{L}}{\partial x_i}(x^*, \lambda^*) = 0$ for $i = 1, \dots n$,
- for all $y \in TS(x^*)$, $y \neq 0$ we have that $y^T \nabla^2 \mathcal{L}(x^*, \lambda^*) y > 0$ $(y^T \nabla^2 \mathcal{L}(x^*, \lambda^*) y < 0)$, i.e. $\nabla^2 \mathcal{L}(x^*, \lambda^*)$ is a positive (negative) definite matrix on the tangent space $TS(x^*)$,

then x^* is a strict local minimizer (maximizer) of f subject to $h_i(x) = 0$, i = 1, ..., m.

Note: If $\nabla^2 \mathcal{L}(x^*, \lambda^*)$ is a positive (negative) definite matrix, then you don't need to consider the tangent space $TS(x^*)$.

Find the minimizers and maximizers of the function

$$f(x_1, x_2, x_3) = \left(a^T x\right) \left(b^T x\right),$$

subject to

$$x_1+x_2=0,$$

$$x_2+x_3=0,$$

where

$$a = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 and $b = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

Problems with inequality constraints

minimize
$$f(x)$$

subject to $h_i(x) = 0, \quad i = 1, \dots m,$
 $g_j(x) \le 0, \quad j = 1, \dots p$

where $h_i : \mathbb{R}^n \to \mathbb{R}$ for $i = 1, ..., m, m \le n$ and $g_j : \mathbb{R}^n \to \mathbb{R}$ for j = 1, ..., p are given functions.

Definition

Assume x^* is a feasible point. An inequality constraint $g_j(x) \le 0$ is said to be active at x^* if $g_j(x^*) = 0$. It is inactive at x^* if $g_j(x^*) < 0$.

Definition

Let x^* be a feasible point, i.e. $h_i(x^*) = 0$, i = 1, ... m and $g_j(x^*) \le 0$, j = 1, ... p and let $J(x^*)$ be the index set of active inequality constraints

$$J(x^*) = \{j : g_j(x^*) = 0\}.$$

We will say that x^* is a regular point if the vectors

$$\nabla h_i(x^*), i = 1, \dots m, \nabla g_j(x^*), j \in J(x^*)$$

are linearly independent.

Consider the following constraints on \mathbb{R}^2

$$h(x_1, x_2) = x_1 - 2 = 0$$
 and $g(x_1, x_2) = (x_2 + 1)^3 \le 0$.

Find the set of feasible points. Are the feasible points regular?

Let's introduce the Lagrangian function $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, given by

$$\mathcal{L}(x,\lambda,\mu)=f(x)+\sum_{i=1}^m\lambda_ih_i(x)+\sum_{j=1}^p\mu_jg_j(x).$$

Theorem (Karush-Kuhn-Tucker (KKT) Theorem)

Let x^* be a local minimizer of $f: \mathbb{R}^n \to \mathbb{R}$ subject to h(x) = 0, $h: \mathbb{R}^n \to \mathbb{R}^m$, $m \le n$, $g(x) \le 0$, $g: \mathbb{R}^n \to \mathbb{R}^p$. Assume $f, h_i, i = 1, \dots m$ and $g_j, j = 1, \dots p$ are continuously differentiable functions and x^* is a regular point. Then, there exists $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that

- $\mu_j^* \geq 0$, for $j = 1, \dots p$,
- $\frac{\partial \mathcal{L}}{\partial x_i}(x^*, \lambda^*, \mu^*) = 0$, for $i = 1, \dots n$,
- $\mu_{j}^{*}g_{j}(x^{*}) = 0$, for $j = 1, \dots p$.

Theorem (Karush-Kuhn-Tucker (KKT) Theorem)

Let x^* be a local maximizer of $f: \mathbb{R}^n \to \mathbb{R}$ subject to h(x) = 0, $h: \mathbb{R}^n \to \mathbb{R}^m$, $m \le n$, $g(x) \le 0$, $g: \mathbb{R}^n \to \mathbb{R}^p$. Assume $f, h_i, i = 1, \dots m$ and $g_j, j = 1, \dots p$ are continuously differentiable functions and x^* is a regular point. Then, there exists $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that

- $\mu_j^* \leq 0$, for $j = 1, \dots p$,
- $\frac{\partial \mathcal{L}}{\partial x_i}(x^*, \lambda^*, \mu^*) = 0$, for $i = 1, \dots n$,
- $\mu_i^* g_j(x^*) = 0$, for $j = 1, \dots p$.