Q1 Data Multiplexors

3 Points

You can find the lecture slides for todays lecture here!

You can access the YouTube playlist here!

Q1.1 Which of the following are true?

3 Points

The MUX is most similar to:

- O Variable assignment
- O The while loop
- The if statement

If I wish to select between n different inputs to a mux, how many selector bits will I need?

- \mathbf{O} n
- $\bigcirc 2^n$
- $oldsymbol{\odot}\log_2(n)$

If the boolean expression for a 2-to-1 MUX is $\overline{s}a+sb$, then what should the boolean expression for a 4-to-1 MUX be? (Let a,b,c,d,s_0,s_1 be the 4 inputs and 2 selector bits, respectively)

- $\bigcirc s_1s_0a + \overline{s_1}s_0b + s_1\overline{s_0}c + \overline{s_1s_0}d$
- $\bigcirc s_1s_0a + s_1\overline{s_0}b + \overline{s_1}s_0c + \overline{s_1s_0}d$
- $oldsymbol{\odot} \overline{s_1s_0}a + \overline{s_1}s_0b + s_1\overline{s_0}c + s_1s_0d$
- $\bigcirc \overline{s_1s_0}a + s_1\overline{s_0}b + \overline{s_1}s_0c + s_1s_0d$

Q2 ALU

4 Points

Q2.1 Which of the following are true?

4 Points

Our ALU will only be able to compute 2 different things, since S is only 2 bits

- O True
- False

The signal bits S control which operation our ALU does. The machinery for our hardware for the operations not selected are not active.

- O True
- False

We're going to try to build an adder/subtractor box and reuse machinery (rather than build a separate adder and separate subtractor)

- True
- O False

We're going to try to build an ANDer/ORer box and reuse machinery (rather than build a separate ANDer and separate ORer)

- O True
- False

Q3 Adder/Subtractor

2 Points

Q3.1 How do we calculate the overflow of two signed numbers? 2 Points

- ${\sf O}$ We OR together the c_n and c_{n-1} bits
- $oldsymbol{\mathsf{O}}$ We AND together the c_n and c_{n-1} bits
- $oldsymbol{\odot}$ We XOR together the c_n and c_{n-1} bits
- $oldsymbol{\mathsf{O}}$ We XNOR together the c_n and c_{n-1} bits

Q4 Subtractor Design

4 Points

Q4.1 Which of the following are true? 4 Points

How did we implement subtraction?

	We built a whole new subtraction unit
•	We leveraged the 2's complement trick of negating a number by flipping the bits and adding 1
	We leveraged the 2's complement trick of negating a number by flipping the bits
•	We leveraged the mathematical fact that $a-b == a + (-b)$
	We flipped one input's bits by ANDing them all with 1
	We flipped one input's bits by ANDing them all with 0
	We flipped one input's bits by ORing them all with 1
•	We flipped one input's bits by XORing them all with 1
	We flipped one input's bits by XORing them all with 0
	We added 1 to one input by adding one more addition unit that will manually add a constant 1
•	We added 1 to one input by inserting a carry-in bit $c_{ m 0}$
•	We connected the flipping bit and the +1 together

Lecture 17 - Combinational Logic Blocks

UNGRADED

STUDENT

Shauna Hannani

TOTAL POINTS

- / 13 pts

QUESTION 1

4.1

	30E311014 1		
	Data Multiplexors		
	1.1 Which of the following are true?	3 pts	
	QUESTION 2		
	ALU	4 pts	
	2.1 Which of the following are true?	4 pts	
	QUESTION 3		
	Adder/Subtractor	2 pts	
	How do we calculate the overflow of two signed numbers?	2 pts	
	QUESTION 4		
Subtractor Design		4 pts	

Which of the following are true?

4 pts