请扫码登记

无线网名称: B3A06, 无线网密码: beihang41

助教: 芦家琪 李伟祥

微电子器件实验

彭守仲

北京航空航天大学 微电子学院

第一馆203办公室 shouzhong.peng@buaa.edu.cn

2020年11月25日

回顾:共集放大电路

■ 放大电路参数测量

- $1. E_B$ 不变,使 E_C =12V
- 2.任意波形发生器输出 1KHz、 $1V_{pp}$ 信号 v_b
- 3.用示波器测量 v_{in} 和 R_L 的电压波形,用万用表测量 i_{in}
- 4.计算电压放大倍数 $A_{\nu_{\kappa}}$ 电流 放大系数 A_{i} 和输入电阻 R_{in}
- 5.断开 R_L 测量 v_{out1} ,连接 R_L 测量 v_{out2} ,计算输出电阻 R_{out}

回顾:共集放大电路

■ 放大电路参数测量

画出低频交流小信号

等效电路(课堂测试)

- 晶体管单管放大电路
 - 共射放大电路
 - 共集放大电路(射随器)
 - 共基放大电路
 - (交流等效电路中以某一端口为公共端)

■ 电压或电流放大倍数(增益)的测量方法

任何放大电路均可视为二端口网络。

放大倍数/增益:输出量与输入量之比。注意:是变化量之比。

$$A_{v} = \frac{\dot{U}_{o}}{\dot{U}_{i}}$$
 最常用
$$A_{i} = \frac{\dot{I}_{o}}{\dot{I}_{i}} \qquad A_{ui} = \frac{\dot{U}_{o}}{\dot{I}_{i}} \qquad A_{iu} = \frac{\dot{I}_{o}}{\dot{U}_{i}}$$

■ 输入电阻和输出电阻的测量方法

对输出电阻的直观理解:将放大器的输出等效为电压源,其内阻就是输出电阻。可用戴维南定理求解(从负载端看进去,令 $\dot{U}_{o}{}'=0$)。

■ 输入电阻和输出电阻的测量方法

对输出电阻的直观理解:将放大器的输出等效为电压源,其内阻就是输出电阻。可用戴维南定理求解(从负载端看进去,令 $\dot{U_o}'=0$)。

共基放大电路: 直流通路

$$I_{EQ} = \frac{V_{BB} - U_{BEQ}}{R_e} \qquad I_{BQ} = \frac{I_{EQ}}{1 + \beta} \qquad I_{CQ} = \frac{\beta I_{EQ}}{1 + \beta} \approx I_{EQ}$$

$$U_{CEQ} = U_{CQ} - U_{EQ} = (V_{CC} - I_{CQ}R_c) - (0 - U_{BEQ})$$

$$= V_{CC} - \frac{\beta}{1+\beta} \frac{V_{BB} - U_{BEQ}}{R_{\rho}} R_{c} + U_{BEQ}$$

■ 共基放大电路:交流通路

$$A_{v} = \frac{\dot{U}_{o}}{\dot{U}_{i}} = \frac{\dot{I}_{c}R_{c}}{\dot{I}_{e}R_{e} + \dot{I}_{h}r_{he}} = \frac{\beta R_{c}}{(1+\beta)R_{e} + r_{he}}$$

$$R_i = \frac{\dot{U}_i}{\dot{I}_e} = \frac{\dot{I}_e R_e + \dot{I}_b r_{be}}{\dot{I}_e} = R_e + \frac{r_{be}}{1 + \beta}$$
 $R_o = R_c$

例题: R_e =300 Ω , R_c =5k Ω , 晶体管的 β =100, r_{be} = r_{π} =1k Ω , 静态工作点合适,则:

$$A_v \approx 16$$
, $R_i = 310\Omega$, $R_o = R_c = 5k\Omega$

共基放大电路:交流通路

$$A_{v} = \frac{\dot{U}_{o}}{\dot{U}_{i}} = \frac{\dot{I}_{c}R_{c}}{\dot{I}_{e}R_{e} + \dot{I}_{b}r_{be}} = \frac{\beta R_{c}}{(1+\beta)R_{e} + r_{be}}$$

$$R_i = \frac{\dot{U}_i}{\dot{I}_e} = \frac{\dot{I}_e R_e + \dot{I}_b r_{be}}{\dot{I}_e} = R_e + \frac{r_{be}}{1 + \beta}$$
 $R_o = R_c$

- ■这是同相放大器。 $A_v \approx 16$, $R_i = 310\Omega$, $R_o = R_c = 5k\Omega$
- ■具备一定的电压放大能力,几乎不放大电流 $(i_e \approx i_c)$ 。
- **■输入电阻较小**,输出电阻较大。

步骤1:确保工作在放大区

■ 直流输出特性测量

- 1.调节 E_B =7V
- 2.调节 E_C 使 E_C =0.1V-15V
- $3.测量V_{CE}和I_C$ 并画图,
 - 计算 I_C/I_B
- 4.思考: 放大电路中
 - E_C 应设置为多少伏

电压源 产生电压 E_R 和 E_C

手持式万用表1 测量电压 V_{CE}

手持式万用表2 测量电流 I_C

台式万用表 测量电流 I_R

■ 放大电路参数测量

画出低频交流小信号等效电路并计算出电压放大倍数 A_{ν} 、电流放大系数 A_{i} 、输入电阻 R_{in} 和输出电阻 R_{out} 的数值(课堂测试)

■ 放大电路参数测量

- $1.E_B$ 和 E_C 保持不变
- 2.任意波形发生器输出

1 KHz、 500mV_{PP} 信号 v_b

3.断开 R_L ,用示波器测量 v_{in}

和 v_{outl} ,用万用表测量 i_{in}

- 4.计算电压放大倍数 A_{ν} 和输入电阻 R_{in}
- 5. 连接 R_L 测量 v_{out2} ,计算电流 放大倍数 A_i 和输出电阻 R_{out}

课后思考

■ 课后思考

- 1. 利用交流等效电路计算放大电路的电压放大倍数 A_{v_i} 电流放大系数 A_{i_i} 输入电阻 R_{in} 和输出电阻 R_{out} ,并与实验测量结果进行对比——已完成。
- 2. 对比和分析共集放大电路和共基放大电路的参数和特点。

步骤1:确保工作在放大区

■ 直流输出特性测量

- 1.调节 E_B =7V
- 2.调节 E_C 使 E_C =0.1V-15V
- $3.测量V_{CE}和I_C$ 并画图,
 - 计算 I_C/I_B
- 4.思考: 放大电路中
 - E_C 应设置为多少伏

电压源 产生电压 E_R 和 E_C

手持式万用表1测量电压 V_{CE}

手持式万用表2测量电流 I_C

台式万用表 测量电流*I*₈

■ 放大电路参数测量

画出低频交流小信号等效电路并计算出电压放大倍数 A_{ν} 、电流放大系数 A_{i} 、输入电阻 R_{in} 和输出电阻 R_{out} 的数值(课堂测试)

■ 放大电路参数测量

- $1.E_B$ 和 E_C 保持不变
- 2.任意波形发生器输出

1 KHz、 500mV_{PP} 信号 v_b

- 3.断开 R_L ,用示波器测量 v_{in}
 - 和 v_{outl} ,用万用表测量 i_{in}
- 4.计算电压放大倍数 A_{ν} 和输入电阻 R_{in}
- 5. 连接 R_L 测量 v_{out2} ,计算电流 放大倍数 A_i 和输出电阻 R_{out}

谢谢!