MEDIDAS DE DISPERSÃO

Desvio médio simples; variância e desvio padrão

O objetivo é construir medidas que avaliem a representatividade da média e para isto, usaremos as medidas de dispersão.

Medidas de dispersão absoluta

As principais medidas de dispersão absoluta são: amplitude total, desvio médio simples, variância e desvio- padrão.

Amplitude Total

É a diferença entre o maior e o menor valor da sequência.

Desvio médio simples

O desvio médio simples que indicaremos por DMS é definido como sendo uma média aritmética dos desvios de cada elemento da série para a média da série.

$$DMS = \frac{\sum |xi - \overline{x}|.fi}{\sum fi}$$

Хi	fi	xi.fi		
1	2	2	4	8
3	5	15	0	0
4	2	8	2	2
5	1	5	2	4
Total	10	30	8	14

Media = 3

DMS = 0,8 unidades

Em média, cada elemento da série está afastado do valor 3 por 0,8 unidades.

VARIÂNCIA

Se a sequência representa uma POPULAÇÃO, a variância é calculada pela fórmula:

$$\sigma^{2}(x) = \frac{\Sigma(xi - \overline{x})^{2}.fi}{\Sigma fi = N}$$

$$\sigma^{2}(x) = 1.4$$

VARIÂNCIA

Se a sequência representar uma AMOSTRA, a variância será denotada por s²(x)

$$s^{2}(x) = \frac{\Sigma(xi - \overline{x})^{2}.fi}{\Sigma fi - 1}$$

DESVIO - PADRÃO

O desvio- padrão é a raiz quadrada da variância.

$$\sigma = \sqrt{\frac{\Sigma(xi - \overline{x})^2.fi}{\Sigma fi}}$$
 1,18

$$s = \sqrt{s^2(x)}$$

INTERPRETAÇÃO DO DESVIO - PADRÃO

O desvio – padrão é, sem dúvida, a mais importante das medidas de dispersão.

Exemplo:

$$\overline{X} = 100$$
 $\sigma(x) = 5$

[95,105] contém aproximadamente 68% dos valores da série.

[90,110] contém aproximadamente 95% da série

[85,115] contém aproximadamente 99% da série