

Abel-konkurransen 2001–2002 Første runde

Oppgave 1

I en klasse med 27 elever er antall jenter 3 mer enn antall gutter. Antall gutter i klassen er da

- A) 9
- B) 10
- C) 11
- D) 12
- E) 13

Oppgave 2

Gjennomsnittet av $\frac{1}{2}$, $\frac{2}{3}$ og $\frac{3}{4}$ er

- A) $\frac{2}{3}$ B) $\frac{7}{12}$ C) $\frac{15}{24}$ D) $\frac{23}{36}$ E) Ingen av disse

Oppgave 3

 $\frac{(0,3)^3}{0,9}$ er det samme som

- A) 3 B) 1 C) 0,3 D) 0,03 E) 0,003

Oppgave 4

 $6^6 + 6^6 + 6^6 + 6^6 + 6^6 + 6^6$ er lik

- A) 36⁶ B) 6³⁶ C) 6⁷ D) 7⁶ E) Ingen av disse

Oppgave 5

La n være et helt tall og m et oddetall. Hvis $x = m^2 + nm$, så gjelder at

- A) x er alltid et oddetall B) x er alltid et partall
- C) x er et oddetall bare hvis n er et oddetall
- D) x er et partall bare hvis n er et partall
- E) x er et oddetall bare hvis n er et partall

Oppgave 6

Et rektangel inndeles i fire mindre rektangler med arealer som vist på figuren. Arealet av det 4. rektanglet er da

6 10 ? 15

A) 21

B) 24

C) 25

D) 27

E) 30

Oppgave 7

 $1 - 3 + 5 - 7 + 9 - \ldots + 2001$ er lik

A) 999

B) 1001

C) 1003

D) 3001

E) Ingen av disse

Oppgave 8

Hvis linjen y = 2x - 6 speiles om linjen x = 1, blir likningen for den nye linjen y =

A) -2x-6 B) -2x-2 C) $-\frac{1}{2}x-2$ D) $\frac{1}{2}x-\frac{1}{6}$ E) $-2x-\frac{1}{2}$

Oppgave 9

Dersom n er et positivt heltall, og n(n+1) deles på 3, så kan resten få verdiene

A) Bare 0

B) Bare 2 C) Bare 0 eller 1 D) Bare 0 eller 2

E) 0, 1, eller 2

Oppgave 10

Hvilken av de 5 parablene under kan være grafen til $f(x) = ax^2 + bx + c$, der a, b, c > 0?

Oppgave 11

Vi roterer et rektangel med sider a og b ($a \neq b$) 360° rundt siden med lengde a. Volumet av sylinderen som da framkommer, kaller vi V_a . Dersom vi roterer rektangelet 360° rundt siden med lengde b, får vi et volum vi kaller V_b . Forholdet $V_a:V_b$ er da

A) $\frac{a}{b}$ B) $\frac{b}{a}$ C) 1 D) $\frac{a^2}{b^2}$ E) $\frac{b^2}{a^2}$

Oppgave 12

La N være det minste heltall som er større enn 1 og som er både et kvadrattall og et kubikktall (3.potens). Summen av sifrene i N er da

A) 1

B) 10

C) 18

D) 27

E) Ingen av disse

Oppgave 13

ABC er en likesidet trekant med sidelengde 2. La E være midtpunktet på AB og F et punkt på AC slik at AF = 2FC. Arealet av firkanten BCFE er da

A) 1 B) $\frac{2\sqrt{3}}{3}$ C) $\frac{3\sqrt{3}}{4}$ D) $\frac{\sqrt{3}+1}{2}$

E) $\frac{2\sqrt{3}-1}{2}$

Oppgave 14

Hvis man skriver ned alle heltallene fra 1 til 1000000, så er antall ganger sifferet 5 forekommer lik

A) 500000

B) 505050

C) 555000

D) 585001

E) 600000

Oppgave 15

Antall tallpar (x,y) som passer i likningssettet

$$3x + 4y = 25$$
$$x^2 + y^2 = 25$$

A) 0

B) 1

C) 2

D) 3

E) 4

Oppgave 16

På figuren er $\angle A = 90^{\circ}$, AB = 3, AC = 4, BX = XCog $\angle BXY = 90^{\circ}$. Lengden av XY er da

Oppgave 17

Koordinatene til punktene A og B er gitt på figuren. Punktene P og Q ligger på den positive x-aksen og kan bevege seg slik at PQ alltid har lengde 8. For at omkretsen til firkanten APQB skal være minimal, må midtpunktet på PQ ha x-koordinat lik

A) 7

B) 8

C) 9

D) 10

E) 11

Oppgave 18

En følge av 6 positive heltall begynner med 4 og slutter med 517. Fra det 3. tallet i følgen er hvert tall lik summen av de to foregående. Summen av sifrene i det andre tallet er da

A) 2

B) 5

C) 8

D) 11

E) Ingen av disse

Oppgave 19

På figuren er AD = DB = 5, EC = 2AE = 8 og $\angle AED=90^{\circ}.$ Lengden av BCer da

B) $4\sqrt{3}$ C) $3\sqrt{6}$ D) $2\sqrt{13}$

E) Ingen av disse

Oppgave 20

Vi har gitt mengden $A = \{1, 2, 3, 4, \dots, 49, 50\}$. Vi plukker ut n tall fra A slik at summen av to forskjellige tall blant disse n tallene aldri er delelig med 7. Den største mulige verdien for n er da

A) 7

B) 21

C) 22

D) 23

E) 24