

Towards a Broadly Configurable Wearable Device for Continuous Hemodynamic Monitoring

Jeremy Yun, Steeve Nzama, Sahil Shah

Department of Electrical & Computer Engineering University of Maryland, College Park

2024 IEEE Midwest Symposium on Circuits and Systems August 11th – 14th, Springfield, MA

Outline

- 1. Introduction
- 2. Motivation
- 3. Comparison
- 4. System Architecture
- 5. Results
- 6. Conclusion & Future Work

Introduction

Cardiovascular diseases take ~20.5 million lives yearly

- Hemodynamically based signals are essential to early diagnostics
 - Most efficient method is through non-invasive, continuous monitoring, wearable devices

*Hemodynamic – blood related

Three Critical Biosignals

Improvement Opportunity for Wearables

Typical Wearables	Proposed Wearable		
Measure a single biosignal o Nonconfigurable	Multi-channel biosignal acquisition		
No onboard processing Only front end sensing	Onboard processing before wireless transmit Lower power Better data security Less latency 		
Proprietary Hardware	Open-source Hardware		

Concurrent Acquisition Examples

Pulse transit time (PTT) for blood pressure estimation

Requires Δt between ECG R-peak & PPG rising edge

Impedance plethysmography (IPG) for blood flow monitoring

Requires EBI and heart rate from ECG or PPG

Proposed System Flowchart

*mobile app is for visual illustration only

Wearable Device Hardware

- 60.5mm by 38.75mm
- Integrated commercial ECG, EBI, PPG front ends
- Onboard microcontroller (MCU)
- Wireless transmit

- Power management system
- Open-source hardware

Hardware Architecture

ECG & EBI Front End

PPG Front End

Built around the MAXM86146 Optical Biosensing module

- Pulse heart rate and SpO₂ modes
 - Multiwavelength LED array

• Integrated motion & ambient light compensation

Peripheral 3-axis accelerometer

Data Acquisition Unit (DAQ)

- nRF52840 microcontroller (MCU) SoC
 - Bluetooth (BLE) capable
 - Extensive development resources
 - Arduino library compatible
 - Wearable & IoT heritage
- Processes input from front ends
 - Feature extraction

Performs battery monitoring

Power Management System

- Battery either:
 - CR2032 coin cell battery
 - LIR2032 rechargeable coin cell
- Monitoring requires only a few seconds of measurement every few hours
 - o 2 min/day
 - CR2032 last over <u>2.5 months</u>*
 - LIR2032 need recharge every 2 weeks*

*Calculated from datasheets

Device Physical Model

Results

- ECG signal from the analog front end
 - Real time R-to-R detection
 - Onboard signal filtering & noise removal

Results

- EBI signal from the analog front end
 - Electrodes placed across thoracic cavity during respiration
 - Current injection configured to 8μA amplitude at 16kHz
 - Within IEC-60601 standard

Comparison Table

	[1]	[2]	[3]	[4]	Proposed Device
Sensor Type	ECG, EBI, PPG	EBI	ECG, EBI	ECG, EBI, PPG	ECG, EBI, PPG
EBI Resolution [m Ω]	200	100	N/A	66	40
Size [mm ²]	130 x 70 x 20	Nonintegrated	50 x 90 x 15	29 x 90 x 20	60 x 39 x 15
Current Draw [mA]	23.6	50	440	25	0.221*
Open-Source HW?	No	No	No	No	Yes

*Not including LED drive (will depend on application)

^[4] S. Lee, B. Grundlehner, R. G. van der Westen, S. Polito and C. Van Hoof, "Nightingale V2: Low-power Compact-sized Multi-Sensor Platform for Wearable Health Monitoring," 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 1290-1293, doi: 10.1109/EMBC.2019.8856847.

^[1] G. Squillace et al., "Bio-impedance System for Wearable Vital Sign Monitoring", 16th International Conference on Electrical Bio-Impedance (ICEBI), pp. 60, 2016.

^[2] S. Hersek et al., "A Robust System for Longitudinal Knee Joint Edema and Blood Flow Assessment Based on Vector Bioimpedance Measurements," IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 3, pp. 545–555, Jun. 2016, IEEE Transactions on Biomedical Circuits and Systems

^[3] J. Ferreira et al., "Portable bioimpedance monitor evaluation for continuous impedance measurements. Towards wearable Plethysmography Applications", Proceeding of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 559-562, 2013.

Conclusions & Future Work

- Proof-of-concept signal acquisition demonstrated
- Configurable open-HW platform can aid in rapid algorithm development

- Future steps:
 - More channels (e.g. ultrasound)
 - Use as a platform to target specific conditions

Thank You!

Questions?

Contact: jyun1129@umd.edu