Verifying ω **-Regular Properties**

Lecture #11 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 25, 2008

Overview Lecture #11

- ⇒ Checking Regular Safety Properties
 - Checking ω -Regular Properties
 - persistence properties
 - reduction to checking persistence properties
 - checking persistence properties
 - Nested depth-first search
 - Summary of regular properties

Regular safety properties

Safety property P_{safe} over AP is regular if its set of bad prefixes is a regular language over 2^{AP}

Basic idea of the algorithm

$$TS
ot \models P_{safe}$$
 if and only if $Traces_{fin}(TS) \cap \underbrace{BadPref(P_{safe})}_{P_{safe}}
ot \neq \varnothing$ if and only if $Traces_{fin}(TS) \cap \mathcal{L}(\mathcal{A})
ot \neq \varnothing$ if and only if $TS \otimes \mathcal{A} \not \models$ "always" $eg F$

⇒ checking regular safety properties is reduced to invariant checking!

Verifying regular safety properties

Let TS over AP and NFA A with alphabet 2^{AP} as before, regular safety property P_{safe} over AP such that $\mathcal{L}(A)$ is the set of bad prefixes of P_{safe}

The following statements are equivalent:

(a)
$$TS \models P_{safe}$$

(b)
$$Traces_{fin}(TS) \cap \mathcal{L}(A) = \emptyset$$

(c)
$$TS \otimes A \models P_{inv(A)}$$

where
$$P_{inv(A)} =$$
 "always" $\neg F$

Overview Lecture #11

- Checking Regular Safety Properties
- \Rightarrow Checking ω -Regular Properties
 - persistence properties
 - reduction to checking persistence properties
 - checking persistence properties
 - Nested depth-first search
 - Summary of regular properties

ω -regular properties

LT property P over AP is ω -regular if P is an ω -regular language over 2^{AP}

Basic idea of the algorithm

$$TS
ot \models P$$
 if and only if $Traces(TS) \not\subseteq P$ if and only if $Traces(TS) \cap \left(2^{AP}\right)^{\omega} \setminus P \neq \varnothing$ if and only if $Traces(TS) \cap \overline{P} \neq \varnothing$ if and only if $Traces(TS) \cap \mathcal{L}_{\omega}(\mathcal{A}) \neq \varnothing$ if and only if $TS \otimes \mathcal{A} \not\models \underbrace{\text{"eventually for ever"} \neg F}_{\text{persistence property}}$

where ${\cal A}$ is an NBA accepting the complement property $\overline{P}=\left(2^{\it AP}\right)^\omega\setminus P$

Persistence property

A *persistence property* over AP is an LT property $P_{pers} \subseteq (2^{AP})^{\omega}$ "eventually for ever Φ " for some propositional logic formula Φ over AP:

$$P_{pers} = \left\{ A_0 A_1 A_2 \dots \in \left(2^{AP}\right)^{\omega} \mid \exists i \geqslant 0. \ \forall j \geqslant i. \ A_j \models \Phi \right\}$$

 Φ is called a persistence (or state) condition of P_{pers}

Example persistence property

let
$$\{a\}=AP$$
, i.e., $2^{AP}=\{A,B\}$ where $A=\{\}$ and $B=\{a\}$ "eventually for ever a " equals $(A+B)^*B^\omega=(\{\}+\{a\})^*\{a\}^\omega$

Recall synchronous product

For transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states and $A = (Q, \Sigma, \delta, Q_0, F)$ a non-blocking NBA with $\Sigma = 2^{AP}$, let:

$$TS \otimes A = (S', Act, \rightarrow', I', AP', L')$$
 where

- $S' = S \times Q$, AP' = Q and $L'(\langle s, q \rangle) = \{q\}$
- \rightarrow' is the smallest relation defined by: $\frac{s \xrightarrow{\alpha} t \land q \xrightarrow{L(t)} p}{\langle s, q \rangle \xrightarrow{\alpha}' \langle t, p \rangle}$
- $I' = \{ \langle s_0, q \rangle \mid s_0 \in I \land \exists q_0 \in Q_0. \ q_0 \xrightarrow{L(s_0)} q \}$

Verifying ω -regular properties

Let:

- TS be a transition system without terminal states over AP
- P be an ω -regular property over AP, and
- \mathcal{A} a non-blocking NBA such that $\mathcal{L}_{\omega}(\mathcal{A}) = \overline{P}$.

The following statements are equivalent:

(a)
$$TS \models P$$

(b)
$$Traces(TS) \cap \mathcal{L}_{\omega}(A) = \emptyset$$

(c)
$$TS \otimes A \models P_{pers(A)}$$

where $P_{pers(A)} =$ "eventually for ever $\neg F$ "

 \Rightarrow checking ω -regular properties is reduced to persistence checking!

Proof

Infinitely often green?

Infinitely often green?

Persistence checking

- Aim: establish whether $TS \not\models P_{pers}$ = "eventually for ever Φ "
- Let state s be reachable in TS and $s \not\models \Phi$
 - TS has an initial path fragment that ends in s
- If s is on a cycle
 - this path fragment can be continued by an infinite path
 - by traversing the cycle containing s infinitely often
- \Rightarrow TS may visit the $\neg \Phi$ -state s infinitely often and so: TS $\not\models P_{pers}$
 - If no such s is found then: $TS \models P_{pers}$

In picture

Persistence checking and cycle detection

Let

- TS be a finite transition system without terminal states over AP
- Φ a propositional formula over AP, and
- ullet P_{pers} the persistence property "eventually for ever Φ "

$$TS \not\models P_{pers}$$

if and only if

 $\exists s \in \textit{Reach}(\textit{TS}). s \not\models \Phi \land s \text{ is on a cycle in } G(\textit{TS})$

Infinitely often green?

Infinitely often green?

Overview Lecture #11

- Checking Regular Safety Properties
- Checking ω -Regular Properties
 - persistence properties
 - reduction to checking persistence properties
 - checking persistence properties
- ⇒ Nested Depth-First Search
 - Summary of Regular Properties

Cycle detection

How to check for reachable cycles containing a $\neg \Phi$ -state?

Alternative 1:

- compute the strongly connected components (SCCs) in G(TS)
- check whether one such SCC is reachable from an initial state
- . . . that contains a $\neg \Phi$ -state
- "eventually for ever Φ " is refuted if and only if such SCC is found

Alternative 2:

- use a nested depth-first search
- ⇒ more adequate for an on-the-fly verification algorithm
- ⇒ easier for generating counterexamples

let's have a closer look into this by first dealing with two-phase DFS

A two-phase depth first-search

- Determine all ¬Φ-states that are reachable from some initial state this is performed by a standard depth-first search
- 2. For each reachable $\neg \Phi$ -state, check whether it belongs to a cycle
 - start a depth-first search in s
 - check for all states reachable from s whether there is a "backward" edge to s
- Time complexity: $\mathcal{O}(N \cdot (|\Phi| + N + M))$
 - where N is the number of states and M the number of transitions
 - fragments reachable via $K \neg \Phi$ -states are searched K times

Two-phase depth first-search

Input: finite transition system TS without terminal states, and proposition Φ *Output:* "yes" if $TS \models$ "eventually for ever Φ ", otherwise "no".

```
set of states R := \emptyset; R_{\neg \Phi} := \emptyset;
                                                (* set of reachable states resp. \neg \Phi-states *)
stack of states U := \varepsilon:
                                                   (* DFS-stack for first DFS, initial empty *)
                                                 (* set of visited states for the cycle check *)
set of states T := \emptyset:
stack of states V := \varepsilon:
                                                            (* DFS-stack for the cycle check *)
for all s \in I \setminus R do visit(s); od
                                                                                    (* phase one *)
for all s \in R_{\neg \Phi} do
  T := \varnothing : V := \varepsilon :
                                                                                    (* phase two *)
                                                                        (* s belongs to a cycle *)
  if cycle_check(s) then return "no"
od
return "yes"
                                              (* none of the \neg \Phi-states belongs to a cycle *)
```

Find $\neg \Phi$ -states

```
procedure visit (state s)
  push(s, U);
                                                                                                 (* push s on the stack *)
  R := R \cup \{s\};
                                                                                                (* mark s as reachable *)
  repeat
     s' := top(U);
     if Post(s') \subseteq R then
        pop(U);
        if s' \not\models \Phi then R_{\neg \Phi} := R_{\neg \Phi} \cup \{ s' \}; fi
     else
        \mathbf{let}\ s'' \in \mathit{Post}(s') \setminus R
        push(s'', U);
                                                                                (* state s^{\prime\prime} is a new reachable state *)
        R := R \cup \{s''\};
  until (U = \varepsilon)
endproc
```

this is a standard DFS checking for $\neg \Phi$ -states

Cycle detection

```
procedure boolean cycle_check(state s)
  boolean cycle_found := false:
                                                                                  (* no cycle found yet *)
  push(s, V); T := T \cup \{s\};
                                                                                 (* push s on the stack *)
  repeat
    s' := top(V);
                                                                              (* take top element of V *)
    if s \in Post(s') then
                                                                  (* if s \in Post(s'), a cycle is found *)
       cycle_found := true;
      push(s, V);
                                                                                 (* push s on the stack *)
    else
       if Post(s') \setminus T \neq \emptyset then
         let s'' \in Post(s') \setminus T;
         push(s'',V); T := T \cup \{s''\};
                                                                  (* push an unvisited successor of s'*)
                                                                   (* unsuccessful cycle search for s'*)
         else pop(V);
      fi
    fi
  until ((V = \varepsilon) \lor cycle\_found)
  return cycle_found
endproc
```

Nested depth-first search

- Idea: perform the two depth-first searches in an interleaved way
 - the outer DFS serves to encounter all reachable $\neg \Phi$ -states
 - the inner DFS seeks for backward edges leading to a $\neg \Phi$ -state

Nested DFS

- on full expansion of $\neg \Phi$ -state s in the outer DFS, start inner DFS
- in inner DFS, visit all states reachable from s not visited in the inner DFS yet
- no backward edge found to s? continue the outer DFS (look for next $\neg \Phi$ state)
- Counterexample generation: DFS stack concatenation
 - stack U for the outer DFS = path fragment from $s_0 \in I$ to s (in reversed order)
 - stack V for the inner DFS = a cycle from state s to s (in reversed order)

The outer DFS (1)

Input: transition system TS without terminal states, and proposition Φ *Output:* "yes" if $TS \models$ "eventually for ever Φ ", otherwise "no" plus counterexample

```
(* set of visited states in the outer DFS *)
set of states R := \emptyset;
                                                                                    (* stack for the outer DFS *)
stack of states U := \varepsilon;
                                                                     (* set of visited states in the inner DFS *)
set of states T := \emptyset;
                                                                                    (* stack for the inner DFS *)
stack of states V := \varepsilon;
boolean cycle_found := false;
while (I \setminus R \neq \emptyset \land \neg cycle\_found) do
  let s \in I \setminus R;
                                                                                      (* explore the reachable *)
  reachable_cycle(s);
                                                                                  (* fragment with outer DFS *)
od
if ¬cycle_found then
                                                                             (* TS \models "eventually for ever \Phi" *)
  return ("yes")
else
  return ("no", reverse(V.U))
                                                                  (* stack contents yield a counterexample *)
fi
```

The outer DFS (2)

```
procedure reachable_cycle (state s)
  push(s, U);
                                                                                     (* push s on the stack *)
  R := R \cup \{s\};
  repeat
    s' := top(U);
     if Post(s') \setminus R \neq \emptyset then
       let s'' \in Post(s') \setminus R;
       push(s'', U);
                                                                    (* push the unvisited successor of s'*)
       R := R \cup \{s''\};
                                                                                  (* and mark it reachable *)
     else
                                                                               (* outer DFS finished for s' *)
       pop(U);
       if s' \not\models \Phi then
          cvcle\_found := cvcle\_check(s'):
                                                                                  (* proceed with the inner *)
                                                                                          (* DFS in state s' *)
       fi
    fi
  until ((U = \varepsilon) \lor cycle\_found)
                                                                          (* stop when stack for the outer *)
                                                                           (* DFS is empty or cycle found *)
endproc
```

Example

The order of cycle detection

Correctness of nested DFS

Let:

- TS be a finite transition system over AP without terminal states and
- P_{pers} a persistence property

The nested DFS algorithm yields "no" if and only if $TS \not\models P_{pers}$

Time complexity

The worst-case time complexity of nested DFS is in

$$\mathcal{O}((N+M)+N\cdot|\Phi|)$$

where N is # reachable states in TS, and M is # transitions in TS

Overview Lecture #11

- Checking Regular Safety Properties
- Checking ω -Regular Properties
 - persistence properties
 - reduction to checking persistence properties
 - checking persistence properties
- Nested Depth-First Search
- ⇒ Summary of Regular Properties

Summary of regular properties (1)

- Languages recognized by NFA/DFA = regular languages
 - serve to represent the bad prefixes of regular safety properties
- Checking a regular safety property = invariant checking on a product
 - "never visit an accept state" in the NFA for the bad prefixes
 - amounts to solving a (DFS) reachability problem
- ω -regular languages are languages of infinite words
 - can be described by ω -regular expressions
- Languages recognized by NBA = ω -regular languages
 - serve to represent ω -regular properties

Summary of regular properties (2)

- DBA are less powerful than NBA
 - fail, e.g., to represent the persistence property "eventually for ever a"
- Generalized NBA require repeated visits for several acceptance sets
 - the languages recognized by GNBA = ω -regular languages
- Checking an ω -regular property = checking persistency on a product
 - "eventually for ever no accept state" in the NBA for the complement property
- Persistence checking is solvable in linear time by a nested DFS
- Nested DFS = a DFS for reachable $\neg \Phi$ -states + a DFS for cycle detection