Econ 703 Fall 2002

Answers to Homework #11

Prof. R. Deneckere

- 1. Note that f is concave iff $f(\lambda x + (1-\lambda)y) \ge \lambda f(x) + (1-\lambda)f(y)$ where $\lambda \in (0,1)$. Taking y=0, we obtain $f(\lambda x) \ge \lambda f(x)$, i.e. $\frac{1}{\lambda} f(\lambda x) \ge f(x)$. Defining $k = \frac{1}{\lambda} \ge 1$, and letting $z = \frac{x}{k}$, we obtain $kf(z) \ge f(kz)$. If $k \in [0,1]$. We have $f(kx) \ge kf(x)$. As shown in the first inqueality above (with $k = \lambda \in (0,1)$).
- 2. Let $x_1, x_2 \in X$. By definition, there exist ρ_1 , $\rho_2 \in C$, s.t. $x_1 = A$ ρ_1 , $x_2 = A$ ρ_2 . Then we have that for any $\lambda \in [0,1]$, $x_\lambda = \lambda x_1 + (1-\lambda)x_2 = \lambda A$ $\rho_1 + (1-\lambda)A$ $\rho_2 = A(\lambda \rho_1 + (1-\lambda)\rho_2) \in X$ since C is a convex set. Therefore X is convex.
- 3. Note that we can rewrite

$$f(x) = \sum_{j=1}^{n} x_j \ln x_j - \sum_{j=1}^{n} x_j \alpha$$
$$= \sum_{j=1}^{n} x_j \ln \frac{x_j}{\alpha}$$

Since

$$\frac{d^2(x\ln\frac{x}{a})}{dx^2} = \frac{d(\ln x + 1 - \ln \alpha)}{dx} = \frac{\alpha}{x} > 0$$

 $g(x) = x \ln \frac{x}{\alpha}$ is a convex function because $\frac{d^2g(x)}{dx^2} = \frac{a}{x} > 0$ as x > 0. Since f(x) is a

positive linear combination of these convex functions, it is convex.

- 4. Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is convex. Let μ , λ_1 , $\lambda_2 \in [0,1]$. Now observe that $(\mu \lambda_1 + (1-\mu) \lambda_2) x_1 + (1-\mu \lambda_1 (1-\mu) \lambda_2) = \mu \left[\lambda_1 x_1 + (1-\lambda_1) x_2\right] + (1-\mu) \left[\lambda_2 x_1 + (1-\lambda_2) x_2\right]$. Consequently, $\phi(\mu \lambda_1 + (1-\mu) \lambda_2) = f([\mu \lambda_1 + (1-\mu) \lambda_2] x_1 + [1-\mu \lambda_1 (1-\mu) \lambda_2] x_2) = f(\mu \left[\lambda_1 x_1 + (1-\lambda_1) x_2\right] + (1-\mu) \left[\lambda_2 x_1 + (1-\lambda_2) x_2\right]) = \mu \phi(\lambda_1) + (1-\mu) \phi(\lambda_2)$. Thus ϕ is convex.
 - Suppose, on the other hand, that ϕ is convex. For arbitrary x_1 and $x_2 \in \mathbb{R}^n$, define $y_1 = 2x_2 x_1$ and $y_2 = 2x_1 x_2$. Observe that $z(\lambda) = \lambda y_1 + (1-\lambda)y_2 = (2-3\lambda) x_1 + (3\lambda-1)x_2$. In particular, we have $z(\lambda) = x_1$ at $\lambda = \lambda_1 = 1/3$ and $z(\lambda) = x_2$ at $\lambda = \lambda_2 = 2/3$.

Hence we see that $f(\mu \ x_1 + (1-\mu) \ x_2) = f(\mu \ [\lambda_1 \ y_1 + (1-\lambda_1)y_2] + (1-\mu)[\lambda_2 \ y_1 + (1-\lambda_2)y_2] = \varphi(\mu \ \lambda_1 + (1-\mu) \lambda_2) \le \mu \varphi(\lambda_1) + (1-\mu) \varphi(\lambda_2) = \mu f(x_1) + (1-\mu) f(x_2).$

5. Suppose that the convex function $f: \mathbb{R}^n \to \mathbb{R}$ is linearly positively homogeneous, i.e. $f(\lambda x) = \lambda f(x)$ for all $\lambda \ge 0$ and x. Then $f(x+y) = 2f([x+y]/2) \le 2f(x/2) + 2f(y/2) = f(x) + f(y)$.

Conversely, suppose that $f(x+y) \le f(x) + f(y)$ for all x and $y \in \mathbb{R}^n$. Then by the homogeneity assumption $f([x+y]/2) = (1/2) f(x+y) \le (1/2) f(x) + (1/2) f(y)$. It follows that f is convex.