Mathematical analysis I

Conf.univ.,dr. Elena Cojuhari

elena.cojuhari@mate.utm.md
Technical University of Moldova

2021

- 1 Infinite Series
 - Sequences
 - Summing an Infinite Series
 - Convergence of Series with Positive Terms
 - Absolute and Conditional Convergence
 - The Ratio and Root Tests
 - Power Series
 - Taylor Series

Subsection 3

Convergence of Series with Positive Terms

Positive Series

- A **positive series** $\sum a_n$ is one with $a_n > 0$, for all n;
- The terms can be thought of as areas of rectangles with width 1 and height a_n;
 The partial sum

$$S_N = a_1 + \cdots + a_N$$

is equal to the area of the first *N* rectangles;

• Clearly, the partial sums form an increasing sequence $S_N < S_{N+1}$;

Dichotomy and Integral Test

Dichotomy for Positive Series

If $S = \sum_{n=1}^{\infty} a_n$ is a positive series, then either

- lacktriangledown The partial sums S_N are bounded above, in which case S converges, or
- \circ The partial sums S_N are not bounded above, in which case S diverges.

The Integral Test

Let $a_n = f(n)$, where the function f(x) is positive, decreasing and continuous for $x \ge 1$;

- If $\int_{1}^{\infty} f(x)dx$ converges, then $\sum_{n=1}^{\infty} a_n$ converges;
- If $\int_{1}^{\infty} f(x)dx$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges;

Applying the Integral Test on the Harmonic Series

• The Harmonic Series Diverges: Show that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges;

Consider the function $f(x) = \frac{1}{x}$; For $x \ge 1$, it is positive, decreasing and continuous, and, moreover, $f(n) = \frac{1}{n} = a_n$; So we check

$$\int_{1}^{\infty} \frac{dx}{x} = \lim_{R \to \infty} \int_{1}^{R} \frac{dx}{x} = \lim_{R \to \infty} \ln R = \infty;$$

Therefore, by the Integral Test, the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges;

Another Application of the Integral Test

• Does
$$\sum_{n=1}^{\infty} \frac{n}{(n^2+1)^2} = \frac{1}{2^2} + \frac{2}{5^2} + \frac{3}{10^2} + \cdots$$
 converge?

Consider the function $f(x) = \frac{x}{(x^2 + 1)^2}$; It is positive and continuous for $x \ge 1$; Is it also decreasing for $x \ge 1$? Let us compute its first derivative

$$f'(x) = \frac{(x)'(x^2+1)^2 - x[(x^2+1)^2]'}{[(x^2+1)^2]^2} = \frac{(x^2+1)^2 - x \cdot 2(x^2+1) \cdot 2x}{(x^2+1)^4} = \frac{(x^2+1) - 4x^2}{(x^2+1)^3} = \frac{1 - 3x^2}{(x^2+1)^3} < 0;$$

Thus, the Integral Test is applicable and we get

$$\int_{1}^{\infty} \frac{x}{(x^{2}+1)^{2}} dx = \lim_{R \to \infty} \int_{1}^{R} \frac{x}{(x^{2}+1)^{2}} dx \stackrel{u=x^{2}+1}{=} \lim_{R \to \infty} \int_{2}^{\infty} \frac{1}{2u^{2}} du = \lim_{R \to \infty} \left(\frac{-1}{2u} \right) = \lim_{R \to \infty} \left(\frac{1}{4} - \frac{1}{2R} \right) = \frac{1}{4}; \text{ So, } \sum_{n=1}^{\infty} \frac{n}{(n^{2}+1)^{2}} \text{ converges;}$$

The *p*-Series

Convergence of the *p*-Series

The infinite series $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converges, if p > 1, and diverges, otherwise.

- If $p \le 0$, $\lim_{n \to \infty} \frac{1}{n^p} \ne 0$; By Divergence Test, p-series diverges; If p > 0, $f(x) = \frac{1}{x^p}$ is positive, decreasing and continuous on $[1, \infty)$; Thus, the Integral Test applies and

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \begin{cases} \frac{1}{p-1}, & \text{if } p > 1\\ \infty, & \text{if } p \le 1 \end{cases}$$

• Example: $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ diverges, and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges;

Comparison Test

Comparison Test

Assume that for some M > 0, $0 \le a_n \le b_n$, for all $n \ge M$;

- If $\sum b_n$ converges, then $\sum a_n$ also converges;
- ② If $\sum_{n=0}^{\infty} a_n$ diverges, then $\sum_{n=0}^{\infty} b_n$ also diverges;
- Example: Does $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}3^n}$ converge?

Clearly, for all
$$n \ge 1$$
, we have $0 \le \frac{1}{\sqrt{n}3^n} \le \frac{1}{3^n}$; Moreover, $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$

converges since it is a geometric series with ration $\frac{1}{3} < 1$; Therefore,

by Comparison $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}3^n}$ also converges;

• Does $\sum_{n=0}^{\infty} \frac{1}{(n^2+3)^{1/3}}$ converge?

Consider the function $f(x) = x^3 - x^2 - 3$; We show that for $x \ge 2$, f(x) > 0; Note $f(2) = 2^3 - 2^2 - 3 = 1 > 0$; Moreover, for $x \ge 2$ $f'(x) = 3x^2 - 2x = x(3x - 2) > 0$, so f is increasing; Thus f > 0, all x > 2;

We have shown, for
$$n \ge 2$$
, $f(n) = n^3 - n^2 - 3 > 0 \Rightarrow n^3 > n^2 + 3 \Rightarrow n > (n^2 + 3)^{1/3} \Rightarrow \frac{1}{n} < \frac{1}{(n^2 + 3)^{1/3}}$; But $\sum_{n=2}^{\infty} \frac{1}{n}$ is the harmonic series

that diverges; therefore, by Comparison $\sum_{n=0}^{\infty} \frac{1}{(n^2+3)^{1/3}}$ also diverges;

Limit Comparison Test

Limit Comparison Test

Let $\{a_n\}$ and $\{b_n\}$ be positive sequences and assume that $L = \lim_{n \to \infty} \frac{a_n}{b_n}$ exists;

- If L > 0, then $\sum a_n$ converges if and only if $\sum b_n$ converges;
- 2 If $L=\infty$ and $\sum a_n$ converges, then $\sum b_n$ also converges;
- If L=0 and $\sum b_n$ converges, then $\sum a_n$ also converges;

Example I

• Show that $\sum_{n=2}^{\infty} \frac{n^2}{n^4 - n - 1}$ converges; Pick $a_n = \frac{n^2}{n^4 - n - 1}$ and $b_n = \frac{1}{n^2}$; Then $L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2}{n^4 - n - 1} \cdot \frac{n^2}{1} = \frac{n^2}{n^4 - n - 1}$

Since
$$\sum_{n=2}^{\infty} \frac{1}{n^2}$$
 converges, $\sum_{n=2}^{\infty} \frac{n^2}{n^4 - n - 1}$ also converges by the Limit Comparison Test;

 $\lim_{n\to\infty} \frac{1}{1-\frac{1}{2}-\frac{1}{4}} = 1;$ L=1+0

42 of 85

• Show that $\sum_{n=3}^{\infty} \frac{1}{\sqrt{n^2+4}}$ diverges; Pick $a_n = \frac{1}{\sqrt{n^2+4}}$ and $b_n = \frac{1}{n}$; Then

Pick
$$a_n = \frac{1}{\sqrt{n^2 + 4}}$$
 and $b_n = \frac{1}{n}$; Then

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 4}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{4}{n^2}}} = 1; \quad \neq \mathbf{D}$$
 divergent

Since $\sum_{n=3}^{\infty} \frac{1}{n}$ diverges, $\sum_{n=3}^{\infty} \frac{1}{\sqrt{n^2+4}}$ also diverges by the Limit Comparison Test;

Subsection 4

Absolute and Conditional Convergence

Absolute Convergence

Absolute Convergence

The series $\sum a_n$ converges absolutely if $\sum |a_n|$ converges.

• Example: Verify that $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$ converges absolutely; We check

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

which converges as a p-series with p > 1;

Absolute Convergence Implies Convergence

Theorem (Absolute Convergence Implies Convergence)

If $\sum |a_n|$ converges, then $\sum a_n$ also converges.

• Example: Verify that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ converges;

It was shown in the previous slide that $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n^2} \right|$ converges;

Therefore, by the Theorem, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ also converges;

Another Example

• Does $S = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}} = \frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \cdots$ converge absolutely? We have

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{\sqrt{n}} \right| = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{1/2}},$$

which is a p-series, with $p=\frac{1}{2}\leq 1$, and so diverges; Therefore $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ is not absolutely convergent;

Conditional Convergence

• We saw than absolute convergence implies convergence:

If
$$\sum |a_n|$$
 converges, then $\sum a_n$ also converges;

• The converse is not true in general! I.e., the convergence of a series does not necessarily imply its absolute convergence;

Conditional Convergence

An infinite series
$$\sum a_n$$
 converges conditionally if $\sum a_n$ converges but $\sum |a_n|$ diverges.

Alternating Series

An alternating series is an infinite series of the form

$$S = \sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots,$$

where $a_n > 0$ and decrease to 0;

Leibniz Test for Alternating Series

Suppose $\{a_n\}$ is a positive sequence that is decreasing and converges to 0:

$$a_1 > a_2 > a_3 > \cdots > 0$$
, $\lim_{n \to \infty} a_n = 0$;

Then the alternating series $S=\sum (-1)^{n-1}a_n=a_1-a_2+a_3-a_4+\cdots$

converges; Moreover, we have

$$0 < S < a_1$$
 and $S_{2N} < S < S_{2N+1}, N \ge 1$;

$$S_{1} = \alpha_{1} , S_{2} = \alpha_{1} - \alpha_{2} , S_{3} = \alpha_{1} - \alpha_{2} + \alpha_{3}$$

$$S_{1} = \alpha_{1} , S_{2} = \alpha_{1} - \alpha_{2} , S_{3} = \alpha_{1} - \alpha_{2} + \alpha_{3}$$

$$S_{1} = \alpha_{1} , S_{2} = \alpha_{1} - \alpha_{2} , S_{3} = \alpha_{1} - \alpha_{2} + \alpha_{3}$$

$$S_{1} = \alpha_{1} , S_{2} = \alpha_{1} - \alpha_{2} + \alpha_{3}$$

Example

- Show that $S = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}} = \frac{1}{\sqrt{1}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} \cdots$ converges conditionally and that 0 < S < 1;
 - We already saw that $\sum_{n=0}^{\infty} \left| \frac{(-1)^{n-1}}{\sqrt{n}} \right| = \sum_{n=0}^{\infty} \frac{1}{n^{1/2}}$ is a divergent *p*-series;
 - On the other hand, S converges by the Leibniz Test, since $a_n = \frac{1}{\sqrt{n}}$ is a positive decreasing sequence converging to 0;
 - Therefore, S is conditionally convergent;
 - By the last part of the Leibniz Test, $0 < S < a_1 = 1$;

Error of Approximation of Alternating Series

Theorem

Let $S = \sum_{n=1}^{\infty} (-1)^{n-1} a_n$, where a_n is a positive decreasing sequence that

converges to 0; Then

$$|S - S_N| < a_{N+1};$$

I.e., the error committed when we approximate S by S_N is less than the size of the first omitted term a_{N+1} ;

i.e. id est "in other words"

Alternating Harmonic Series

• Show that $S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges conditionally;

Since $a_n = \frac{1}{n}$ is positive, decreasing and has limit 0, we get by the Leibniz Test that S converges;

Moreover $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ which diverges (harmonic series);

Thus, S is conditionally convergent;

- Show that $|S S_6| < \frac{1}{7}$; By the approximation error theorem, we get that $|S - S_6| < a_{6+1} = a_7 = \frac{1}{7}$;
- Find an N, such that S_N approximates S with an error less than 10^{-3} ; We know that $|S-S_N| < a_{N+1}$; To make the error $|S-S_N| < 10^{-3}$ it suffices to arrange N so that

$$a_{N+1} \le 10^{-3} \Rightarrow \frac{1}{N+1} \le 10^{-3} \Rightarrow N+1 \ge 1000 \Rightarrow N \ge 999;$$

abs. conv., S

How many terms should we take to obtain the sum with appr. error up to 0.001?

$$|S - S_{N}| < 10^{-3}$$

$$|S - S_{N}| < 0_{N+1}$$

 $=>(N+1)^2>1000$, $N>\sqrt{1000}-7$ 7,30,6. /N=3

Subsection 5

The Ratio and Root Tests

The Ratio Test

Theorem (Ratio Test)

Assume that
$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
 exists;

- If $\rho < 1$, then $\sum a_n$ converges absolutely;
- 2 If $\rho > 1$, then $\sum a_n$ diverges;
- 3 If $\rho = 1$, then test is inconclusive.

d'Alembert Test

Applying the Ratio Test I

• Prove that $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges; $a_n = \frac{2^n}{n!}$, $a_{n+1} = \frac{2^{n+1}}{(n+1)!}$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n} \right| = \lim_{n \to \infty} \frac{2}{n+1} = 0;$$

Since $\rho < 1$, the series $\sum_{n=0}^{\infty} \frac{2^n}{n!}$ converges by the Ratio Test;

• Does the series $\sum_{n=0}^{\infty} \frac{n^2}{2^n}$ converge?

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^2}{2^{n+1}} \cdot \frac{2^n}{n^2} \right| = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{2n^2} = \frac{1}{2};$$

Since $\rho < 1$, the series $\sum_{n=0}^{\infty} \frac{n^2}{2^n}$ converges by the Ratio Test;

Applying the Ratio Test II

• Does the series $\sum_{n=0}^{\infty} (-1)^n \frac{n!}{1000^n} \text{ converge?}$ $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1}(n+1)!}{1000^{n+1}} \cdot \frac{1000^n}{(-1)^n n!} \right| = \lim_{n \to \infty} \frac{n+1}{1000} = +\infty;$

Since $\rho > 1$, the series $\sum_{n=0}^{\infty} (-1)^n \frac{n!}{1000^n}$ diverges by the Ratio Test;

• Consider $\sum_{n=1}^{\infty} n^2$;

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2} = 1;$$

So Ratio Test is inconclusive; However, $\lim_{n\to\infty} a_n \neq 0$, so the series

 $\sum_{n=1}^{\infty} n^2 \text{ diverges by Divergence Test;}$

• Consider $\sum_{n=1}^{\infty} \frac{1}{n^2}$;

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = \lim_{n \to \infty} \frac{n^2}{n^2 + 2n + 1} = 1;$$

So Ratio Test is again inconclusive; However, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a *p*-series with p=2>1 and, hence, it converges!

The Root Test

Theorem (Root Test)

Assume that $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ exists;

Cauchy Test

- If L < 1, then $\sum a_n$ converges absolutely;
- 2 If L > 1, then $\sum a_n$ diverges;
- **3** If L = 1, the test is inconclusive.
- Example: Does $\sum_{n=1}^{\infty} \left(\frac{n}{2n+3}\right)^n$ converge?

$$L = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n}{2n+3}\right)^n} = \lim_{n \to \infty} \frac{n}{2n+3} = \frac{1}{2};$$

Since L < 1, the series $\sum_{n=1}^{\infty} \left(\frac{n}{2n+3}\right)^n$ converges by the Root Test;

Example.
$$\sum_{n=1}^{\infty} a^n \left(1 + \frac{1}{n}\right)^{n^2}, \quad (\ge 0)$$

$$\begin{aligned}
& = \lim_{h \to \infty} \sqrt{|a_n|} = \lim_{h \to \infty} \sqrt{a(1 + \frac{1}{h})^{h^2}} \\
& = \lim_{h \to \infty} (1 + \frac{1}{h})^h = a \cdot e \\
& + o \cdot a : \text{ de}(1 \text{ convergent}) \\
& = \lim_{h \to \infty} (a \cdot a \cdot a \cdot b) = \lim_{h \to \infty} (a \cdot a \cdot b) = \lim_{h \to \infty} (a \cdot a \cdot b) = \lim_{h \to \infty} (a \cdot a \cdot b) = \lim_{h \to \infty} (a \cdot a \cdot b) = \lim_{h \to \infty} (a \cdot a \cdot b) = \lim_{h \to \infty} (a \cdot a \cdot b) = \lim_{h \to \infty} (a \cdot a \cdot b) = \lim_{h \to \infty} (a \cdot a \cdot b) = \lim_{h \to \infty} (a \cdot b)$$

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{4} + \frac{1}{1} = \frac{1}{1} + \frac{1}{2k-1} = \frac{1}{4k-2} + \frac{1}{4k-2} = \frac{1}{4k-2} + \frac{1}{4k-2} + \frac{1}{4k-2} + \frac{1}{4k-2} = \frac{1}{4k-2} + \frac{1}{4k-2} + \frac{1}{4k-2} + \frac{1}{4k-2} = \frac{1}{4k-2} + \frac{1}{4k-2} + \frac{1}{4k-2} + \frac{1}{4k-2} + \frac{1}{4k-2} = \frac{1}{4k-2} + \frac{1}$$

 $= \frac{1}{2} \left(1 - \frac{1}{2} + \dots + \frac{1}{2\kappa_{-1}} - \frac{1}{2\kappa} \right) = \frac{1}{2} \cdot S_{2\kappa}$

Rearrangements, Stewart, p.737

11.7 Strategy for testing Series

0,

Stewart, Calculus, p.739