DS 6: énoncé

Les calculatrices ne sont pas autorisées.

Exercice 1:

Soit $q \in \mathbb{R}_+^*$. Résoudre l'équation différentielle $(E): (t^2+1)y''+ty'-q^2y=0$ à l'aide du changement de variable $t=\operatorname{sh}(x)$.

Exercice 2:

On considère une suite de complexes (z_n) vérifiant la relation de récurrence $z_{n+1} = \frac{1}{2}(z_n + |z_n|)$.

Déterminer la limite de z_n lorsque n tend vers $+\infty$ en fonction de z_0 .

Problème

Partie I: polynômes d'endomorphismes

1°) On note $\mathbb{R}^{\mathbb{R}}$ l'ensemble des applications de \mathbb{R} dans \mathbb{R} .

Rappeler sans démonstration quelles sont les opérations (addition, multiplication interne, multiplication d'un réel par une application) qui donnent à $\mathbb{R}^{\mathbb{R}}$ une structure d'algèbre.

On désigne par $\mathbb{R}[X]$ l'ensemble des polynômes à coefficients réels, c'est-à-dire l'ensemble des applications de la forme $x \mapsto \sum_{n \in \mathbb{N}} a_n x^n$, où $(a_n)_{n \in \mathbb{N}}$ est une suite de réels, supposée presque nulle afin de garantir que la somme $\sum_{n \in \mathbb{N}} a_n x^n$ est une somme finie. Ce polynôme sera noté $\sum_{n \in \mathbb{N}} a_n X^n$. On admet que si $P = \sum_{n \in \mathbb{N}} a_n x^n$ est un élément de $\mathbb{R}[X]$, alors la suite $(a_n)_{n \in \mathbb{N}}$ de ses coefficients dépend uniquement de P.

 2°) Montrer que $\mathbb{R}[X]$ est une sous-algèbre de $\mathbb{R}^{\mathbb{R}}$.

Pour toute la suite de ce problème, E désigne un espace vectoriel de dimension infinie sur le corps \mathbb{R} des nombres réels.

On note L(E) l'ensemble des endomorphismes de E.

On note Id l'endomorphisme unité de E, qui à tout élément x de E associe $\mathrm{Id}(x)=x$. Lorsque $u \in L(E)$, on note Ker(u) le novau de u, et, pour tout sous-espace vectoriel F de E, on note u(F) l'image de F par u.

De plus, on définit pour tout $k \in \mathbb{N}$ l'endomorphisme u^k de E par les relations sui-

vantes :
$$u^0 = \text{Id et } u^{k+1} = u \circ u^k$$
.
Lorsque $Q(X) = \sum_{k=0}^n a_k X^k \in \mathbb{R}[X]$, on note $Q(u)$ l'endomorphisme $\sum_{k=0}^n a_k u^k$ de E .

3°) Soit $u \in L(E)$. Notons φ l'application allant de $\mathbb{R}[X]$ dans L(E) définie par : pour tout $Q \in \mathbb{R}[X]$, $\varphi(Q) = Q(u)$.

Montrer que φ est une application linéaire.

Montrer que pour tout $Q \in \mathbb{R}[X]$ et tout $p \in \mathbb{N}$, $\varphi(X^p) \circ \varphi(Q) = \varphi(X^pQ)$.

En déduire que φ est un morphisme d'algèbres.

On dit que deux polynômes P et Q de $\mathbb{R}[X]$ sont premiers entre eux (ou bien que Pest premier avec Q) si et seulement si il existe deux polynômes A et B de $\mathbb{R}[X]$ tels que AP + BQ = 1.

 4°) Si P,Q et R sont trois polynômes de $\mathbb{R}[X]$ tels que P et Q sont premiers avec R, montrer que PQ est premier avec R.

Soit $n \in \mathbb{N}^*$. Si P_1, \dots, P_n sont n polynômes, tous premiers avec un même polynôme

$$Q \in \mathbb{R}[X]$$
, montrer que $\prod_{i=1}^{n} P_i$ est premier avec Q .

Partie II : décomposition des novaux

5°)

- a) Soit F, G et H trois sous-espaces vectoriels de E. On suppose que F+G est une somme directe. On pose $K = F \oplus G$ et on suppose que K + H est une somme directe. Montrer que F + G + H est une somme directe et que $(F \oplus G) \oplus H = F \oplus G \oplus H$.
- **b)** Soit $n \in \mathbb{N}^*$ et soit G un sous-espace vectoriel de E. Si F_1, \ldots, F_n sont n sous-espaces vectoriels de E dont la somme est directe, et si en posant $K = \bigoplus F_i$, K + G est en somme directe, montrer que $F_1 + \cdots + F_n + G$ est une somme directe et que $(F_1 \oplus \cdots \oplus F_n) \oplus G = F_1 \oplus \cdots \oplus F_n \oplus G$.
- **6°**) Soit $u \in L(E)$. Soient P et Q deux polynômes à coefficients réels. Montrer que $Ker(P(u)) + Ker(Q(u)) \subset Ker[(PQ)(u)]$.

- **7°)** On suppose de plus P et Q sont premiers entre eux. Montrer que $\operatorname{Ker}(P(u)) \oplus \operatorname{Ker}(Q(u)) = \operatorname{Ker}[(PQ)(u)]$.
- 8°) Soit $u \in L(E)$. Soit $n \in \mathbb{N}$ avec $n \geq 2$ et soit P_1, \ldots, P_n n polynômes de $\mathbb{R}[X]$ deux à deux premiers entre eux.

Montrer que
$$\bigoplus_{i=1}^{n} \operatorname{Ker}(P_i(u)) = \operatorname{Ker}\left(\left[\prod_{i=1}^{n} P_i\right](u)\right).$$

 9°) Soit F un sous-espace vectoriel de E de dimension finie.

Soit $p \in \mathbb{N}^*$ et soit F_1, \ldots, F_p p sous-espaces vectoriels de F tels que $F = \bigoplus_{i=1}^p F_i$.

Pour tout $i \in \{1, \ldots, p\}$, notons $p_i = \dim(F_i)$ et $b_i = (e_{i,1}, \ldots, e_{i,p_i})$ une base de F_i . On note $b = (e_{i,j})_{\substack{1 \le i \le p \\ 1 \le j \le p_i}}$: b est la "réunion" des bases b_i des sous-espaces vectoriels F_i .

Montrer que b est une base de F. En déduire que $\dim(F) = \sum_{i=1}^{p} \dim(F_i)$.

Partie III: applications

- 10°) On considère l'équation différentielle (E): y''' = 2y'' + y' 2y, où l'inconnue y est une application de \mathbb{R} dans \mathbb{R} .
- a) Montrer que les solutions de (E) sont de classe C^{∞} .
- b) Montrer que y est solution de (E) si et seulement si $y \in \text{Ker}(P(D))$, où P est un polynôme de $\mathbb{R}[X]$ à préciser et où D est un endomorphisme à préciser sur un \mathbb{R} -espace vectoriel à préciser.
- c) Résoudre cette équation différentielle.
- 11°) Déterminer l'ensemble des suites $(u_n)_{n\in\mathbb{N}}$ de réels satisfaisant la relation de récurrence suivante : pour tout $n\in\mathbb{N},\ u_{n+3}=2u_{n+2}+u_{n+1}-2u_n$.

Partie IV: une décomposition plus fine

On suppose que v un endomorphisme surjectif de E.

- 12°) On suppose que S est un sous-espace vectoriel de E tel que $S \oplus \operatorname{Ker}(v) = E$. Montrer que la restriction de v à S est un isomorphisme entre S et E. En déduire qu'il existe un endomorphisme injectif w de E tel que $v \circ w = \operatorname{Id}$.
- **13**°) Soit $k \in \mathbb{N}^*$. Montrer que pour tout $i \in \{0, \dots, k-1\}, w^i(\operatorname{Ker}(v)) \subset \operatorname{Ker}(v^k)$.
- **14°)** Soit $k \in \mathbb{N}^*$. Montrer que pour tout $x \in E$ et pour tout $i \in \{0, \dots, k-1\}$, $w^i \circ v^i(x) w^{i+1} \circ v^{i+1}(x) \in w^i(\operatorname{Ker}(v))$.

En déduire que $\operatorname{Ker}(v^k) = \bigoplus_{i=0}^{k-1} w^i(\operatorname{Ker}(v)).$

- 15°) On suppose dans cette question que $\operatorname{Ker}(v)$ est de dimension finie et on note $s = \dim(\operatorname{Ker}(v))$. Déterminer la dimension de $\operatorname{Ker}(v^k)$ pour tout $k \in \mathbb{N}^*$.
- Soit r_1, \ldots, r_p des nombres réels deux à deux distincts et n_1, \ldots, n_p des nombres entiers

strictement positifs. On pose
$$P(X) = \prod_{q=1}^{p} (X - r_q)^{n_q} = (X - r_1)^{n_1} (X - r_2)^{n_2} \cdots (X - r_p)^{n_p}$$
. On suppose que pour tout $q \in \{1, \dots, p\}$, l'endomorphisme $u - r_q$ Id est surjectif.

On suppose que pour tout $q \in \{1, ..., p\}$, l'endomorphisme $u - r_q Id$ est surjectif. Ainsi, pour tout $q \in \{1, ..., p\}$, il existe un endomorphisme injectif w_q de E tel que $(u - r_q Id) \circ w_q = Id$.

- 16°) Déterminer Ker(P(u)) en fonction des sous-espaces $w_q^k(\text{Ker}(u-r_q\text{Id}))$, où $k\in\mathbb{N}$ et $1\leq q\leq p$.
- Calculer la dimension de Ker(P(u)) lorsque $Ker(u r_q Id)$ est de dimension finie s_q pour tout $q \in \{1, \ldots, p\}$.