Monad Translations for Higher-Order Logic

GT Scalp 2025

Thomas Traversié

Relation between Logics (1)

- Different logics:
 - ► Minimal logic (ML)
 - ▶ Intuitionistic logic (IL) = ML + principle of explosion $\bot \Rightarrow A$
 - ▶ Classical logic (CL) = IL + principle of excluded middle $A \lor \neg A$

Relation between Logics (1)

- Different logics:
 - ► Minimal logic (ML)
 - ▶ Intuitionistic logic (IL) = ML + principle of explosion $\bot \Rightarrow A$
 - ▶ Classical logic (CL) = IL + principle of excluded middle $A \lor \neg A$
- Glivenko's theorem [1928] for propositional logic
 - ▶ If $\vdash_{CL} A$ then $\vdash_{IL} \neg \neg A$
 - ▶ Intuition: $\neg\neg(A \lor \neg A)$ has an intuitionistic proof

Relation between Logics (1)

- Different logics:
 - ► Minimal logic (ML)
 - ▶ Intuitionistic logic (IL) = ML + principle of explosion $\bot \Rightarrow A$
 - ▶ Classical logic (CL) = IL + principle of excluded middle $A \lor \neg A$
- Glivenko's theorem [1928] for propositional logic
 - ▶ If $\vdash_{\mathsf{CL}} A$ then $\vdash_{\mathsf{IL}} \neg \neg A$
 - ▶ Intuition: $\neg\neg(A \lor \neg A)$ has an intuitionistic proof
- Double-negation translations for first-order logic
 - ► Insert double negations inside formulas
 - ► Several translations: Kolmogorov [1925], Gödel-Gentzen [1933, 1936], Kuroda [1951]
 - ► From CL to IL/ML

Relations between Logics (2)

- Kuroda's translation has been:
 - ► Generalized to monad operators [van den Berg 2019]
 - Extended to higher-order logic [Brown-Rizkallah 2014, T. 2024]

Relations between Logics (2)

- Kuroda's translation has been:
 - ► Generalized to monad operators [van den Berg 2019]
 - Extended to higher-order logic [Brown-Rizkallah 2014, T. 2024]

■ This talk:

We define a monad translation for higher-order logic.

Relations between Logics (2)

- Kuroda's translation has been:
 - ► Generalized to monad operators [van den Berg 2019]
 - Extended to higher-order logic [Brown-Rizkallah 2014, T. 2024]

■ This talk:

We define a monad translation for higher-order logic.

We characterize different relations between higher-order classical, intuitionistic and minimal logic.

Outline

Double-Negation Translations

Generalization to Monad Operators

Extension to Higher-Order Logic

Monad Translation for Higher-Order Logic

Translation and Embedding

Embeddings between Higher-Order Logics

Factorizable Monad Translation

Conclusion

Double-Negation Translations

- Translations $A \mapsto A^*$ that insert double negations inside first-order formulas
 - **Soundness property**: if $\Gamma \vdash_{\mathsf{CL}} A$ then $\Gamma^* \vdash_{\mathsf{IL}} A^*$
 - ► Characterization property: $\vdash_{\mathsf{CL}} A^* \Leftrightarrow A$

Double-Negation Translations

- Translations $A \mapsto A^*$ that insert double negations inside first-order formulas
 - ▶ Soundness property: if $\Gamma \vdash_{\mathsf{CL}} A$ then $\Gamma^* \vdash_{\mathsf{IL}} A^*$
 - **▶** Characterization property: $\vdash_{CL} A^* \Leftrightarrow A$
- Kuroda's translation [1951] inserts double negations:
 - after universal quantifiers:

$$(A \Rightarrow B)_{Ku} := A_{Ku} \Rightarrow B_{Ku} \qquad (\neg A)_{Ku} := \neg A_{Ku} \qquad P_{Ku} := P \text{ if } P \text{ atomic}$$

$$(A \land B)_{Ku} := A_{Ku} \land B_{Ku} \qquad \top_{Ku} := \top \qquad (\forall x.A)_{Ku} := \forall x.\neg\neg A_{Ku}$$

$$(A \lor B)_{Ku} := A_{Ku} \lor B_{Ku} \qquad \bot_{Ku} := \bot \qquad (\exists x.A)_{Ku} := \exists x.A_{Ku}$$

▶ in front of formulas: $A^{Ku} := \neg \neg A_{Ku}$

Outline

Double-Negation Translations

Generalization to Monad Operators

Extension to Higher-Order Logic

Monad Translation for Higher-Order Logic

Translation and Embedding

Embeddings between Higher-Order Logics

Factorizable Monad Translation

Conclusion

Monad Operators

- Connectives *T* that satisfy:
 - ▶ Unit: $A \Rightarrow TA$
 - ▶ Bind: $(A \Rightarrow TB) \Rightarrow (TA \Rightarrow TB)$

Monad Operators

- Connectives *T* that satisfy:
 - ▶ Unit: $A \Rightarrow TA$
 - ▶ Bind: $(A \Rightarrow TB) \Rightarrow (TA \Rightarrow TB)$
- Also known as lax modalities, nuclei or strong monads

Monad Operators

- Connectives *T* that satisfy:
 - ▶ Unit: $A \Rightarrow TA$
 - ▶ Bind: $(A \Rightarrow TB) \Rightarrow (TA \Rightarrow TB)$
- Also known as lax modalities, nuclei or strong monads
- Examples:
 - ▶ Continuation monad: $TA := (A \Rightarrow R) \Rightarrow R$
 - ▶ Double negation: $TA := \neg \neg A$
 - ▶ Peirce monad: $TA := (A \Rightarrow R) \Rightarrow A$
 - $ightharpoonup TA := A \lor \bot$

Monad Translations

- Translations $A \mapsto A^*$ that insert **monad operators** inside first-order formulas
 - ▶ Different translations [Aczel 2001, Escardó-Oliva 2012, van den Berg 2019]

Monad Translations

- Translations $A \mapsto A^*$ that insert monad operators inside first-order formulas
 - ▶ Different translations [Aczel 2001, Escardó-Oliva 2012, van den Berg 2019]
- Kuroda's monad translation [van den Berg 2019] inserts monad operators:
 - after universal quantifiers and implications:

$$(A \Rightarrow B)_T := A_T \Rightarrow \mathsf{T}B_T \qquad (\neg A)_T := \neg A_T \qquad P_T := P \text{ if } P \text{ atomic}$$

$$(A \land B)_T := A_T \land B_T \qquad \qquad \top_T := \top \qquad (\forall x.A)_T := \forall x.\mathsf{T}A_T$$

$$(A \lor B)_T := A_T \lor B_T \qquad \qquad \bot_T := \bot \qquad (\exists x.A)_T := \exists x.A_T$$

▶ in front of formulas: $A^T := TA_T$

- Monad translations remove the T-elimination $TA \Rightarrow A$
 - ▶ Just like double-negation translations remove the double-negation elimination $\neg \neg A \Rightarrow A$
 - ▶ Depending on the monad, they embed CL into IL or IL into ML
 - ightharpoonup We write L + T for the logic L along with

$$\frac{}{\Gamma \vdash TA \Rightarrow A}$$
 T-ELIM

- Monad translations remove the T-elimination $TA \Rightarrow A$
 - ▶ Just like double-negation translations remove the double-negation elimination $\neg \neg A \Rightarrow A$
 - ▶ Depending on the monad, they embed CL into IL or IL into ML
 - ightharpoonup We write L + T for the logic L along with

$$\frac{}{\Gamma \vdash TA \Rightarrow A}$$
 T-ELIM

■ Soundness property: if $\Gamma \vdash_{L+T} A$ then $\Gamma^* \vdash_L A^*$

- Monad translations remove the T-elimination $TA \Rightarrow A$
 - ▶ Just like double-negation translations remove the double-negation elimination $\neg \neg A \Rightarrow A$
 - ▶ Depending on the monad, they embed CL into IL or IL into ML
 - ightharpoonup We write L + T for the logic L along with

$$\frac{}{\Gamma \vdash TA \Rightarrow A}$$
 T-ELIM

- Soundness property: if $\Gamma \vdash_{L+T} A$ then $\Gamma^* \vdash_{L} A^*$
- **Characterization property**: $\vdash_{L+T} A^* \Leftrightarrow A$

Outline

Double-Negation Translations

Generalization to Monad Operators

Extension to Higher-Order Logic

Monad Translation for Higher-Order Logic

Translation and Embedding

Embeddings between Higher-Order Logics

Factorizable Monad Translation

Conclusion

Higher-Order Logic

■ Simple type theory:

- ▶ Types τ , $\sigma ::= \iota \mid o \mid \tau \rightarrow \sigma$
- ► Terms $t, u := x \mid c \mid \lambda x. \ t \mid t \ u$
- β -conversion \equiv_{β} generated by $(\lambda x. t) u \hookrightarrow t[x \leftarrow u]$

$$\frac{\Gamma \vdash A \qquad A \equiv_{\beta} B}{\Gamma \vdash B} \text{ Conv}$$

Higher-Order Logic

■ Simple type theory:

- ▶ Types τ , $\sigma ::= \iota \mid o \mid \tau \rightarrow \sigma$
- ightharpoonup Terms $t, u := x \mid c \mid \lambda x. \ t \mid t \ u$
- β -conversion \equiv_{β} generated by $(\lambda x. t) u \hookrightarrow t[x \leftarrow u]$

$$\frac{\Gamma \vdash A \qquad A \equiv_{\beta} B}{\Gamma \vdash B} \text{ Conv}$$

Functional extensionality and propositional extensionality

$$\frac{\Gamma \vdash f \ x = g \ x \qquad x \notin FV(\Gamma, f, g)}{\Gamma \vdash f = g} \text{ Funext} \qquad \frac{\Gamma \vdash A \Rightarrow B \qquad \Gamma \vdash B \Rightarrow A}{\Gamma \vdash A = B} \text{ Propext}$$

Extension to Higher-Order Logic

- Kolmogorov's translation and the Gödel-Gentzen translation cannot be naturally extended as they do not preserve β -conversion [Brown-Rizkallah 2014]
 - \blacktriangleright $(\lambda x. \ x \land Q) \ P \hookrightarrow P \land Q$
 - $((\lambda x. \ x \land Q) \ P)^{GG} = (\lambda x. \ \neg \neg x \land \neg \neg Q) \ \neg \neg P \hookrightarrow \neg \neg \neg \neg P \land \neg \neg Q$
 - $(P \wedge Q)^{GG} = \neg \neg P \wedge \neg \neg Q$

Extension to Higher-Order Logic

- Kolmogorov's translation and the Gödel-Gentzen translation cannot be naturally extended as they do not preserve β -conversion [Brown-Rizkallah 2014]

 - $((\lambda x. \ x \land Q) \ P)^{GG} = (\lambda x. \ \neg \neg x \land \neg \neg Q) \ \neg \neg P \hookrightarrow \neg \neg \neg \neg P \land \neg \neg Q$
 - $(P \wedge Q)^{GG} = \neg \neg P \wedge \neg \neg Q$
- Kuroda's translation can be extended to higher-order logic

Kuroda's Translation for Higher-Order Logic

- Soundness property: if $\Gamma \vdash_{CL} A$ then $\Gamma_{Ku} \vdash_{IL} A^{Ku}$
 - ► Holds in the general case [Brown-Rizkallah 2014]
 - ▶ Does not hold with FunExt [Brown-Rizkallah 2014]
 - ► Holds with FunExt assuming $\forall f \forall g. (\forall x. \neg \neg (fx = gx)) \Rightarrow \neg \neg (f = g)$ [T. 2024]

Kuroda's Translation for Higher-Order Logic

- **Soundness property**: if $\Gamma \vdash_{Cl} A$ then $\Gamma_{Ku} \vdash_{ll} A^{Ku}$
 - ► Holds in the general case [Brown-Rizkallah 2014]
 - ▶ Does not hold with FunExt [Brown-Rizkallah 2014]
 - ► Holds with FunExt assuming $\forall f \forall g. (\forall x. \neg \neg (fx = gx)) \Rightarrow \neg \neg (f = g)$ [T. 2024]
- **Characterization property**: $\vdash_{\mathsf{CL}} A^{\mathsf{K}u} \Leftrightarrow A$
 - \blacktriangleright Does not generally hold, but does under ${\rm Fun}{\rm Ext}$ and ${\rm Prop}{\rm Ext}$ [T. 2024]

Outline

Double-Negation Translations

Generalization to Monad Operators

Extension to Higher-Order Logic

Monad Translation for Higher-Order Logic

Translation and Embedding

Embeddings between Higher-Order Logics

Factorizable Monad Translation

Conclusion

Outline

Double-Negation Translations

Generalization to Monad Operators

Extension to Higher-Order Logic

Monad Translation for Higher-Order Logic

Translation and Embedding

Embeddings between Higher-Order Logics

Factorizable Monad Translation

Conclusion

Monad Translation for Higher-Order Logic

- The translation inserts monad operators:
 - ► after universal quantifiers and implications:

$$x_{T} := x$$

$$c_{T} := \begin{cases} \lambda p. \ \forall x. T(p \ x) & \text{if } c = \forall \\ \lambda p. \ \lambda q. \ p \Rightarrow Tq & \text{if } c = \Rightarrow \\ c & \text{otherwise} \end{cases}$$

$$(\lambda x. \ t)_{T} := \lambda x. \ t_{T}$$

$$(t \ u)_{T} := t_{T} \ u_{T}$$

▶ in front of formulas: $A^T := TA_T$

Monad Translation for Higher-Order Logic

- The translation inserts monad operators:
 - ▶ after universal quantifiers and implications:

$$x_{T} := x$$

$$c_{T} := \begin{cases} \lambda p. \ \forall x. T(p \ x) & \text{if } c = \forall \\ \lambda p. \ \lambda q. \ p \Rightarrow Tq & \text{if } c = \Rightarrow \\ c & \text{otherwise} \end{cases}$$

$$(\lambda x. \ t)_{T} := \lambda x. \ t_{T}$$

$$(t \ u)_{T} := t_{T} \ u_{T}$$

- ▶ in front of formulas: $A^T := TA_T$
- Substitution: $(A[z \leftarrow w])^T = A^T[z \leftarrow w_T]$

Monad Translation for Higher-Order Logic

- The translation inserts monad operators:
 - ▶ after universal quantifiers and implications:

$$x_{T} := x$$

$$c_{T} := \begin{cases} \lambda p. \ \forall x. T(p \ x) & \text{if } c = \forall \\ \lambda p. \ \lambda q. \ p \Rightarrow Tq & \text{if } c = \Rightarrow \\ c & \text{otherwise} \end{cases}$$

$$(\lambda x. \ t)_{T} := \lambda x. \ t_{T}$$

$$(t \ u)_{T} := t_{T} \ u_{T}$$

- ▶ in front of formulas: $A^T := TA_T$
- Substitution: $(A[z \leftarrow w])^T = A^T[z \leftarrow w_T]$
- **Conversion is preserved**: if $A \equiv_{\beta} B$ then $A^T \equiv_{\beta} B^T$

- **Soundness property**: if $\Gamma \vdash_{L+T} A$ then $\Gamma_T \vdash_L A^T$
 - ► Holds in the general case
 - ▶ With FunExt, we assume $\forall f \forall g. (\forall x. T(fx = gx)) \Rightarrow T(f = g)$
 - ▶ With PROPEXT, we assume $\forall x \forall y. (Tx = Ty) \Rightarrow x = y$

- **Soundness property**: if $\Gamma \vdash_{L+T} A$ then $\Gamma_T \vdash_{L} A^T$
 - ► Holds in the general case
 - ▶ With FunExt, we assume $\forall f \forall g. (\forall x. T(fx = gx)) \Rightarrow T(f = g)$
 - ▶ With PROPEXT, we assume $\forall x \forall y. (Tx = Ty) \Rightarrow x = y$
- **Characterization property**: $\vdash_{L+T} A^T \Leftrightarrow A$
 - ► Holds under FUNEXT and PROPEXT

Outline

Double-Negation Translations

Generalization to Monad Operators

Extension to Higher-Order Logic

Monad Translation for Higher-Order Logic

Translation and Embedding

Embeddings between Higher-Order Logics

Factorizable Monad Translation

Conclusion

Embeddings between Higher-Order Logics

Monad operator	T -elimination $TA \Rightarrow A$	Translation
$TA := \neg \neg A$ $TA := (A \Rightarrow \bot) \Rightarrow A$ $T_RA := (A \Rightarrow R) \Rightarrow A$	double-negation elimination $\neg \neg A \Rightarrow A$ Clavius's law $((A \Rightarrow \bot) \Rightarrow A) \Rightarrow A$ instance of Peirce's law $((A \Rightarrow R) \Rightarrow A) \Rightarrow A$	CL o IL
$TA := A \lor \bot$	principle of explosion $\bot \Rightarrow A$	IL o ML

Fragment of Higher-Order Coherent Formulas

- Coherent formulas are built using \land , \lor and \exists
 - ▶ If A is coherent then $A_T = A$
 - ▶ We use this trick to adapt two results to higher-order logic

Fragment of Higher-Order Coherent Formulas

- Coherent formulas are built using \land , \lor and \exists
 - ▶ If A is coherent then $A_T = A$
 - ▶ We use this trick to adapt two results to higher-order logic
- Intuitionistic provability entails minimal provability: if $\vdash_{\mathsf{IL}} A$ then $\vdash_{\mathsf{ML}} A$
 - ▶ Using $TA := A \lor \bot$, we have $\vdash_{\mathsf{ML}} TA_T$
 - ▶ We get $\vdash_{\mathsf{ML}} A \lor \bot$
 - lacktriangle ML has the disjunction property and we cannot prove ot

Fragment of Higher-Order Coherent Formulas

- Coherent formulas are built using \land , \lor and \exists
 - ▶ If A is coherent then $A_T = A$
 - ▶ We use this trick to adapt two results to higher-order logic
- Intuitionistic provability entails minimal provability: if $\vdash_{\mathsf{IL}} A$ then $\vdash_{\mathsf{ML}} A$
 - ▶ Using $TA := A \lor \bot$, we have $\vdash_{ML} TA_T$
 - ▶ We get $\vdash_{\mathsf{ML}} A \lor \bot$
 - lacktriangle ML has the disjunction property and we cannot prove ot
- Classical provability entails intuitionistic provability: if $\Gamma \vdash_{\mathsf{CL}} A$ then $\Gamma \vdash_{\mathsf{IL}} A$
 - ▶ Using Friedman's trick, that is $T_RA := (A \Rightarrow R) \Rightarrow R$, we have $\Gamma_T \vdash_{\mathsf{IL}} TA_T$
 - ▶ We get $\Gamma \vdash_{\mathsf{IL}} (A \Rightarrow R) \Rightarrow R$
 - ▶ Choosing R := A, we get $\Gamma \vdash_{\mathsf{IL}} A$

Outline

Double-Negation Translations

Generalization to Monad Operators

Extension to Higher-Order Logic

Monad Translation for Higher-Order Logic

Translation and Embedding

Embeddings between Higher-Order Logics

Factorizable Monad Translation

Conclusion

Factorizable Monad Operators

■ Factorizable monad operators additionally satisfy

$$(TA \Rightarrow TB) \Rightarrow T(A \Rightarrow B)$$

Factorizable Monad Operators

■ Factorizable monad operators additionally satisfy

$$(TA \Rightarrow TB) \Rightarrow T(A \Rightarrow B)$$

- Examples:
 - $ightharpoonup TA := (A \Rightarrow R) \Rightarrow A \text{ in minimal logic}$
 - $ightharpoonup TA := \neg \neg A$ in intuitionistic logic

Factorizable Monad Operators

■ Factorizable monad operators additionally satisfy

$$(TA \Rightarrow TB) \Rightarrow T(A \Rightarrow B)$$

Examples:

- $ightharpoonup TA := (A \Rightarrow R) \Rightarrow A \text{ in minimal logic}$
- ► $TA := \neg \neg A$ in intuitionistic logic

■ Counter-examples:

- $ightharpoonup TA := A \lor \bot$
- $ightharpoonup TA := (A \Rightarrow R) \Rightarrow R$

- Refinement of the translation:
 - ▶ No need for monad operators after implications [van den Berg 2019]
 - ▶ Direct abstraction of Kuroda's translation

- Refinement of the translation:
 - ▶ No need for monad operators after implications [van den Berg 2019]
 - ▶ Direct abstraction of Kuroda's translation
- The soundness property still holds
 - ▶ With PropExt, we no longer assume $\forall x \forall y. (Tx = Ty) \Rightarrow x = y$

- Refinement of the translation:
 - ▶ No need for monad operators after implications [van den Berg 2019]
 - ▶ Direct abstraction of Kuroda's translation
- The soundness property still holds
 - ▶ With PROPEXT, we no longer assume $\forall x \forall y. (Tx = Ty) \Rightarrow x = y$
- The characterization property still holds

- Refinement of the translation:
 - ▶ No need for monad operators after implications [van den Berg 2019]
 - ▶ Direct abstraction of Kuroda's translation
- The soundness property still holds
 - ▶ With PROPEXT, we no longer assume $\forall x \forall y. (Tx = Ty) \Rightarrow x = y$
- The characterization property still holds
- The embeddings of CL into IL are still valid
 - ► Introduce less monad operators

Outline

Double-Negation Translations

Generalization to Monad Operators

Extension to Higher-Order Logic

Monad Translation for Higher-Order Logic

Translation and Embedding

Embeddings between Higher-Order Logics

Factorizable Monad Translation

Conclusion

Takeaway message

- Monad translation and factorizable monad translation for higher-order logic
 - ▶ Based on Kuroda's translation,
 - ▶ its generalization to monad operators [van den Berg 2019],
 - ▶ and its extension to higher-order logic [Brown-Rizkallah 2014, T. 2024]

Takeaway message

- Monad translation and factorizable monad translation for higher-order logic
 - Based on Kuroda's translation,
 - ▶ its generalization to monad operators [van den Berg 2019],
 - ▶ and its extension to higher-order logic [Brown-Rizkallah 2014, T. 2024]
- Relation between higher-order logics:
 - Embeddings of classical logic into intuitionistic logic
 - Embedding of intuitionistic logic into minimal logic
 - ► Fragment of coherent formulas

Takeaway message

- Monad translation and factorizable monad translation for higher-order logic
 - Based on Kuroda's translation,
 - ▶ its generalization to monad operators [van den Berg 2019],
 - ▶ and its extension to higher-order logic [Brown-Rizkallah 2014, T. 2024]
- Relation between higher-order logics:
 - Embeddings of classical logic into intuitionistic logic
 - ► Embedding of intuitionistic logic into minimal logic
 - ► Fragment of coherent formulas
- See the paper published at FSCD 2025 for more details

■ Geometric formulas = coherent formulas with **infinitary disjunction**

- Geometric formulas = coherent formulas with **infinitary disjunction**
- Barr's theorem: in first-order geometric logic, if $\Gamma \vdash_{\mathsf{CL}} A$ then $\Gamma \vdash_{\mathsf{IL}} A$

- Geometric formulas = coherent formulas with **infinitary disjunction**
- Barr's theorem: in first-order geometric logic, if $\Gamma \vdash_{\mathsf{CL}} A$ then $\Gamma \vdash_{\mathsf{IL}} A$
- We showed this for higher-order coherent logic

- Geometric formulas = coherent formulas with infinitary disjunction
- Barr's theorem: in first-order geometric logic, if $\Gamma \vdash_{\mathsf{CL}} A$ then $\Gamma \vdash_{\mathsf{IL}} A$
- We showed this for higher-order coherent logic
- We would like to show Barr's theorem for higher-order geometric logic

- Geometric formulas = coherent formulas with **infinitary disjunction**
- Barr's theorem: in first-order geometric logic, if $\Gamma \vdash_{\mathsf{CL}} A$ then $\Gamma \vdash_{\mathsf{IL}} A$
- We showed this for higher-order coherent logic
- We would like to show Barr's theorem for higher-order geometric logic

Thank you!