SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

RIADENIE NELINEÁRNYCH SPOJITÝCH SYSTÉMOV tímový projekt

Študijný program: Robotika a kybernetika

Študijný odbor: Kybernetika

Školiace pracovisko: Ústav robotiky a kybernetiky

Vedúci projektu: Prof. Ing. Ján Murgaš, PhD.

Bratislava 2020 Bc. Eva Štalmachová

Bc. Marek Trebul'a

Bc. Denis Vasko

Bc. Ján Urdianyk

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY ÚSTAV ROBOTIKY A KYBERNETIKY

TÍMOVÝ PROJEKT ZADANIE

Študijný program:

Robotika a kybernetika

Študijný odbor:

Kybernetika

Vedúci projektu:

Prof.lng. Ján Murgaš, PhD.

Miesto vypracovania projektu:

Ústav robotiky a kybernetiky

Riešitelia:

Názov projektu: Riadenie nelineárnych spojitých systémov

Špecifikácia zadania:

Cieľom projektu je navrhnúť a overiť metódy nelineárneho riadenia vybraných nelineárnych systémov za účelom pedagogického využitia.

Úlohy:

1. Pre zadané metódy nelineárneho riadenia spojitých systémov vypracujte príklady využitia v rozsahu:

- Návrh riadenia
- Simulačné overenie
- Pedagogické spracovanie
- Vypracujte a predneste prezentáciu.
- 3. Vypracujte posudok na projekt druhého tímu
- 4. Pri riešení postupujte podľa zásad tímového projektu.

Termín odovzdania projektu: 15.5.2020

Obsah

Zoznam použitých skratiek				
1	Úvod	6		
2	Matematické základy			
3	Metóda spätnoväzobnej linearizácie	8		
4	Vstupno-stavová metóda spätnoväzobnej linearizácie	9		
	Návrh riadenia - Príklad 1	9		
	Simulačná schéma - Príklad 1	9		
	Overenie navrhnutého riadenia - Príklad 1	9		
	Návrh riadenia - Príklad 2	9		
	Simulačná schéma - Príklad 2	9		
	Overenie navrhnutého riadenia - Príklad 2	9		
	Porovnanie navrhnutého riadenia s lineárnym regulátorom	9		
5	Vstupno-výstupná metóda spätnoväzobnej linearizácie	10		
	Návrh riadenia - Príklad 1	10		
	Simulačná schéma - Príklad 1	10		
	Overenie navrhnutého riadenia - Príklad 1	10		
	Návrh riadenia - Príklad 2	10		
	Simulačná schéma - Príklad 2	10		
	Overenie navrhnutého riadenia - Príklad 2	10		
	Porovnanie navrhnutého riadenia s lineárnym regulátorom	10		
6	Prehlad takych zakladnych latex veci - Tato sekcia tu nebude			
	Enumeration	12		
	Itemization	13		
7	Z áver	14		

Literatúra 15

Zoznam použitých skratiek

1 Úvod

2 Matematické základy

Tu začíname doplnat text. Ked chcete skompilovat ctrl+s a skomplilujete main.tex nekompilujte tento subor. Také zakladné pravidlá aby sme sa vedeli orientovať obrázky davajte do priečinka figures. Ak budete chciet robit referenciu na obrazok, rovnicu alebo sekcie : 2. Preto prosím každý obrázok, sekciu a rovnicu label-ujte, ulahci to robotu. Ja mam vo zvyku sekcie nazyvat sec:nazov, obrazky fig:nazov, rovnice eq:nazov.

3 Metóda spätnoväzobnej linearizácie

tu by mohla byt nejaka teoria o spätnoväzobnej linearizácií

4 Vstupno-stavová metóda spätnoväzobnej linearizácie

tu by mohla byt nejaka teoria o spätnoväzobnej linearizácií VS

Návrh riadenia - Príklad 1.

tu bude priklad 1 + vypocet

Simulačná schéma - Príklad 1.

tu schema

Overenie navrhnutého riadenia - Príklad 1.

tu vysledky co sme dosiahli plus nejaky pokec k tomu

Návrh riadenia - Príklad 2.

Simulačná schéma - Príklad 2.

Overenie navrhnutého riadenia - Príklad 2.

Porovnanie navrhnutého riadenia s lineárnym regulátorom

5 Vstupno-výstupná metóda spätnoväzobnej linearizácie

Návrh riadenia - Príklad 1.

Simulačná schéma - Príklad 1.

Overenie navrhnutého riadenia - Príklad 1.

Návrh riadenia - Príklad 2.

Simulačná schéma - Príklad 2.

Overenie navrhnutého riadenia - Príklad 2.

Porovnanie navrhnutého riadenia s lineárnym regulátorom

6 Prehlad takych zakladnych latex veci - Tato sekcia tu nebude

$$H = \begin{bmatrix} 18.9000 & 47.6000 & 63.0000 \\ 28.7000 & 44.1000 & 45.5000 \\ 15.4000 & 16.8000 & 12.6000 \\ 1.4000 & -2.8000 & -7.0000 \end{bmatrix} y = \begin{bmatrix} -64.4000 \\ -41.3000 \\ -8.4000 \\ 8.4000 \end{bmatrix}$$
$$F(s) = \frac{K}{1 + Ts} e^{-Ds}$$
(1)

Neznáme parametre: K, T, D

Postup:

1.

$$K = y(\infty); K = 3.8059$$

2.

$$T = \frac{t_2 - t_1}{\ln(\frac{K - y_1}{K - y_2})}; T = 0.4452$$

3.

$$x = \frac{ln(\frac{K-y_1}{K})}{ln(\frac{K-y_2}{K})}, D = \frac{t_2x - t_1}{x - 1}; x = 0.2093, D = 0.0857$$

Postup:

•

$$K = y(\infty); K = 3.8059$$

•

$$T = \frac{t_2 - t_1}{\ln(\frac{K - y_1}{K - y_2})}; T = 0.4452$$

•

$$x = \frac{ln(\frac{K-y_1}{K})}{ln^{\frac{K-y_2}{K}}}, D = \frac{t_2x - t_1}{x - 1}; x = 0.2093, D = 0.0857$$

k	$ heta_k^*$	P_k	e_k	Q_k
0	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$10^{10} * \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	0	0
1	$ \begin{bmatrix} -0.1846 \\ -0.4650 \\ -0.6155 \end{bmatrix} $	$10^9 * \begin{bmatrix} 9.4581 & -1.3648 & -1.8063 \\ -1.3648 & 6.5628 & -4.5492 \\ -1.8063 & -4.5492 & 3.9790 \end{bmatrix}$	-64.4000	$6.2915*10^{-11}$
2	$ \begin{bmatrix} 0.4987 \\ -0.2360 \\ -0.9935 \end{bmatrix} $	$ \begin{array}{c cccc} 10^9 * & 2.4082 & -3.7279 & 2.0942 \\ -3.7279 & 5.7707 & -3.2418 \\ 2.0942 & -3.2418 & 1.8211 \end{array} $	12.5111	$1.2915 * 10^{-10}$
3	$ \begin{bmatrix} 1.6486 \\ -2.0160 \\ 0.0064 \end{bmatrix} $	$\begin{bmatrix} 13.6362 & -21.4003 & 12.0936 \\ -21.4002 & 33.5946 & -18.9875 \\ 12.0935 & -18.9874 & 10.7325 \end{bmatrix}$	0.4031	$6.7820*10^{-10}$
4	$ \begin{bmatrix} 0.8406 \\ -0.7436 \\ -0.7140 \end{bmatrix} $	$\begin{bmatrix} 4.3694 & -6.8073 & 3.8314 \\ -6.8066 & 10.6133 & -5.9761 \\ 3.8311 & -5.9762 & 3.3659 \end{bmatrix}$	0.4920	0.0704

Obr. 1: Name figure

Enumeration

- 1. goal 1
 - (a) goal 1.a
 - (b) goal 1.b
- 2. goal 2

3. goal 3

Itemization

- item 1
 - item 1.1
 - item 1.2
- item 2
- item 3

7 Záver

Literatúra