

Superpermutations

1)

2

3)

4)

5)

6)

(9 symbols)

Number of Symbols

Length of Shortest

<u>33</u>

<u>153</u>

???

The Shortest Known (N=6)

12345612345162345126345123645132645136245136425136452136451234651234156234152634 15236415234615234165234125634125364125346125346125341625341265341235641235461235416235 41263541236541326543126453162435162431562431652431625431624531642531462531426531 42563142536142531645231465231456231456231452361452361453216453126435126431526431 25643215642315462315423615423165423156421356421536241536214536215436215346 21354621346521346251346215364215634216534216354216345216342516342516342516342561432564132564132564312546312546321546325146325416325461325463124563214563241653246153264153264132546312465321465324165324615326415326145326154326514365214356214356214352614 3521643521463521436512436152436125436124561243651423561423516423514623514 263514236514326541365241365241352641352461352416352416352413654213654123

(872 symbols)

... but is it the shortest?

5 symbols was proven with 'branch and bound'

```
(0.. Infinity).each do |w|
```

p = "What's the maximum number of permutations that can fit into a string that 'wastes' w symbols?"

```
break if p == 5!
  prune_search_space(w, p)
end
```

This takes ~2 minutes

But it won't scale to 6 symbols

This universe would die first

Can we do better?

Some clever people found a reduction to the Travelling Salesman Problem

Every permutation is a 'city' to visit

I managed to reduce it to the Boolean Satisfiability Problem, but that doesn't seem too promising

... but I've also found a reduction to the Shortest Path Problem, that seems *more* promising

The reduction:

The reduction:

'Symmetry breaking'

Directed cyclic graph:

Shortest path:

Shortest path algorithms:

A*

Breadth-First

Frontier Search

Dijkstras

Depth-First

Adaptive A*

Branch and Bound

Best-First

D* Lite

Jump Point

IDA*

Shortest path algorithms:

A*

Breadth-First

Frontier Search

Dijkstras

Depth-First

Adaptive A*

Branch and Bound

Best-First

D* Lite

Jump Point

IDA*

Adaptive A*:

'Incremental Heuristic Search' algorithm

"Repeatedly solves 'subproblems' to learn how to solve the overall problem more quickly!"

What subproblems?

"What's the maximum number of permutations that can fit into a string that 'wastes' w symbols?"

"What's the shortest path that adds n bits to the bitmap?"

'Abstract State Space'

Aaaaanyway...

I've been building some things...

https://github.com/tuzz/bucket_queue

An efficient data structure that can be used as a priority queue

https://github.com/tuzz/leaps-and-bounds

My first attempt at solving this problem using Best-First search

(undocumented)

https://github.com/tuzz/supermutation

My current attempt at solving this problem using Adaptive A* search

(undocumented, unfinished)

l've no idea if it'll work! (...probably not)

Thanks!

