Geometry of Surfaces - Exercises

Exercises marked with * are to be answered (partially) in the online quiz for this week on the Keats page for this module.

- **39.** Let σ be a surface and $Ldu^2 + 2Mdudv + Ndv^2$ its second fundamental form. Compute the second fundamental form of the surface $\tilde{\sigma} = \lambda \sigma$ with $0 \neq \lambda \in \mathbb{R}$.
- **40.*** Consider the surface given by

$$\sigma: (0,3) \times (0,3) \to \mathbb{R}^3, (u,v) \mapsto (u^2, uv, u-v).$$

Calculate the second fundamental form of σ at $\sigma(1,1) = (1,1,0)$.

- **41.** Let S be a surface and let γ be a unit speed curve in S. Let σ and σ' be two parametrizations of S such that $\mathbf{N}' = -\mathbf{N}$. Show that $\kappa'_n = -\kappa_n$ where κ'_n and κ_n are the normal curvatures of γ with respect to σ' and σ .
- **42.** Let $\gamma:(-1,1)\to\mathbb{R}^3$ be a unit speed curve on a surface σ and let κ_n and κ_g be its normal and geodesic curvatures. Compute the normal and geodesic curvatures $\tilde{\kappa}_n$ and $\tilde{\kappa}_g$ of $\tilde{\gamma}:(-1,1)\to\mathbb{R}^3$, $s\mapsto \gamma(-s)$ at $\tilde{\gamma}(0)$.
- **43.*** Let $\gamma: (-1,1) \to \mathbb{R}^3$ be a unit speed curve that is contained in a surface \mathcal{S} . Assume that $\gamma(0) = O = (0,0,0)$, $\mathbf{t}(0) = \frac{1}{\sqrt{2}}(1,1,0)$ and $\dot{\mathbf{t}}(0) = (1,-1,2)$, and that the unit normal \mathbf{N} to \mathcal{S} at O is (0,0,1). Compute the geodesic curvature and the normal curvature of γ at O.
- **44.*** Let $\gamma: (-1,1) \to \mathbb{R}^3$ be a unit speed curve that is contained in a surface \mathcal{S} . Assume that $\gamma(0) = O = (0,0,0)$, $\mathbf{t}(0) = (1,0,0)$ and $\dot{\mathbf{t}}(0) = (0,2,1)$, and that the unit normal \mathbf{N} to \mathcal{S} at O is (0,0,1). Compute the geodesic curvature and the normal curvature of γ at O.
- **45.** Let S be a surface and suppose that there is a plane that is tangent to S along a unit speed curve γ . Show that the normal curvature of S along γ is identically zero. What is its geodesic curvature?
- **46.** Let $\sigma: U \to \mathbb{R}^3$ be a regular surface and suppose that p is a point on the surface that is farthest away from the origin O = (0,0,0). Let k_n be the normal curvature of σ at p with respect to a normal section. Prove that $|k_n| \ge \frac{1}{\|p\|}$. [Hint: Use Exercise 11.]
- **47.*** Let κ_1 and κ_2 be the principal curvatures of a surface σ . What are the principal curvatures of the surface $\tilde{\sigma} = \lambda \sigma$ with $0 \neq \lambda \in \mathbb{R}$?