EP 501 Homework 5: Ordinary Differential Equations

November 12, 2019

Instructions:

- Submit all source code and publish Matlab results in .pdf form via Canvas. Please zip all contents of your solution into single file and then submit in a single zip file.
- Discussing the assignment with others is fine, but you must not copy anyone's code.
- I must be able to run your code and produce all results by executing a single top-level Matlab script, e.g. assignment1.m or similar.
- You may use any of the example codes from our course repository: https://github.com/mattzett/EP501/.
- Do not copy verbatim any other codes (i.e. any source codes other than from our course repository). You may use other examples as a reference but you must write you own programs (except for those I give you).

Purpose of this assignment:

- Solve ODEs numerically and interpret the results.
- Develop good coding and documentation practices, such that your programs are easily understood by others.
- Exercise good judgement in numerical problem setup.
- Demonstrate higher reasoning to synthesize a problem and devise a basic algorithm to solve it.

1. The electrostatic potential in a region $-a \le x \le a$ with continuously varying dielectric material having dielectric function $\epsilon(x)$, is governed by the equation:

$$\epsilon \frac{d^2 \Phi}{dx^2} + \frac{d\epsilon}{dx} \frac{d\Phi}{dx} = 0 \tag{1}$$

Suppose the dielectric function takes the form:

$$\epsilon(x) = \epsilon_0 \left(2 - \frac{1}{2} \tanh\left(\frac{x - x'}{\ell}\right) + \frac{1}{2} \tanh\left(\frac{x - x''}{\ell}\right) \right) \tag{2}$$

with parameters:

$$a = 0.01 \quad (m)$$

$$\ell = \frac{a}{5} \quad (m)$$

$$x' = -\frac{9a}{10} \quad (m)$$

$$x'' = \frac{9a}{10} \quad (m)$$

The boundary conditions for this system are given by:

$$\frac{d\Phi}{dx}(-a) = 0 \quad \text{(V)}$$

$$\Phi(a) = 100 \quad \text{(V)}$$

- (a) Plot the dielectric function and note that it varies rapidly near the edges of the domain of interest.
- (b) Develop a system of finite difference equations for this system based on second order accurate centered differences. Include this system in your homework submission.
- (c) Develop two finite difference equations for the boundary conditions of this system. Use a first-order forward difference at the x = -a boundary. Include these equations with your submission.
- (d) Solve your system of equations using the direct Gaussian elimination solver in the course repository.
- (e) Solve your system of equations using the iterative Jacobi solver in the course repository.
- (f) Repeat steps d-e using grids of 100,500,1000, and 1500 points and time your results (tic and toc in matlab. Which solver is the fastest? Does it depend on the number of grid points?
- (g) Since the dielectric function varies rapidly at the boundary, this is a problem where a second order (forward) difference may be useful (see course notes for formula). Reformulate your matrix system to include this for the x = -a boundary and solve the system numerically for 50 grids points. Plot the result and compare it against the solution with a first order forward difference.
- 2. Consider a charged particle immersed in a magnetic field $\mathbf{B} = B\hat{\mathbf{e}}_z$. If the field is uniform and the particle is given an initial velocity the particle will oscillate in a perfect circular motion as shown in class an in the example system of ODEs in the course repository, which solves the system of equations:

$$m\frac{d\mathbf{v}}{dt} = q\mathbf{v} \times \mathbf{B} \tag{3}$$

 $(\mathbf{v} = v_x \hat{\mathbf{e}}_x + v_y \hat{\mathbf{e}}_y)$ using a two-step, second order accurate Runge-Kutta method. Assume that the v_z is constant with time.

(a) Solve this system with the RK4 algorithm and plot the velocity and position as a function of time. Compare this against the RK2 solution in the repository and show they are roughly equal. Use 100 time steps per particle oscillation period $T = \frac{2\pi m}{aB}$.

- (b) Show that the RK4 solution is better in the sense that it can solve the problem accurately with fewer time steps.
- (c) Suppose the magnetic field is changed to vary linearly in the y-direction:

$$\mathbf{B}(y) = B\left(1 + \frac{1}{2}y\right)\hat{\mathbf{e}}_z\tag{4}$$

Use your RK4 solver to solve for and plot the velocities and path of the particle in the x-y plane for a least five periods of oscillation. HINT: The particle should execute trochoidal motion.

3. Efficiently solve the system of equations:

$$\frac{dy_1}{dt} = 998y_1 + 1998y_2 \tag{5}$$

$$\frac{dy_1}{dt} = 998y_1 + 1998y_2$$

$$\frac{dy_2}{dt} = -999y_1 - 1999y_2$$
(5)

for $0 \le t \le 0.5$ if $y_1(0) = y_2(0) = 1$. It is only necessary to resolve the longest time scale present in this system and a first-order accurate solution is acceptable. You may use any codes that we have developed in the course repository. Points will be deducted for solutions using a method that requires an overly large number of time steps.