Matchings and Allocations under Preferences: Algorithms and Polytopes My main work with Michel Balinski: 1997-2002

Mourad Baïou

CNRS, Laboratoire LIMOS 18 avril 2018

The Stable Admission Polytope

A matching μ in an admissions problem (Γ, q) is a set of nodes of Γ that has at most one per column and at most q_u in row u for each u in U.

Figure – The set of green nodes is a matching.

Figure – Stability via graphs : a matching μ (represented by green nodes in the figure) is stable if for any node (u,a) one of the assumptions (i), (ii) or (iii) hold.

Figure – The set of green nodes is a non stable matching.

Figure – The pair (u_2, a_9) is a blocking pair.

Figure – The set of green nodes is a stable matching.

Polyhedra

- The *incidence matrix* x^{μ} of a subset μ of the nodes of Γ is defined by : $x^{\mu}_{ua} = 1$ if $(u, a) \in \mu$ and $x^{\mu}_{ua} = 0$ otherwise.
- The stable admissions polytope, $SAP(\Gamma, q)$, of an admissions problem (Γ, q) is the convex hull of the incidence matrices of the stable matchings in (Γ, q) :

 $SAP(\Gamma, q) = conv\{x^{\mu} : \mu \text{ is a stable matching in } (\Gamma, q)\}.$

Let us first concentrate on the case where $q_u = 1$ for each $u \in U$. This is the stable marriage problem.

Theorem (Vande Vate (89), Rothblum (92))

For the case of the marriage problem $SAP(\Gamma,q)$ is characterized by the following inequalities :

$$\sum_{(u,a)\in\Gamma} x_{ua} \leq 1$$
 for all $u\in U$, row inequalities

Let us first concentrate on the case where $q_u = 1$ for each $u \in U$. This is the stable marriage problem.

Theorem (Vande Vate (89), Rothblum (92))

For the case of the marriage problem $SAP(\Gamma,q)$ is characterized by the following inequalities :

$$\sum_{(u,a)\in\Gamma} x_{ua} \leq 1$$
 for all $u\in U$, row inequalities $\sum_{(u,a)\in\Gamma} x_{ua} \leq 1$ for all $a\in A$, column inequalities

Let us first concentrate on the case where $q_u = 1$ for each $u \in U$. This is the stable marriage problem.

Theorem (Vande Vate (89), Rothblum (92))

 $(u,a) \in \Gamma$

For the case of the marriage problem $SAP(\Gamma, q)$ is characterized by the following inequalities :

$$\sum_{(u,a)\in\Gamma} x_{ua} \leq 1$$
 for all $u\in U$, row inequalities $\sum_{ua} x_{ua} \leq 1$ for all $u\in A$, column inequalities

$$x_{ua} + x_{ua} \uparrow + x_{ua} \longrightarrow \geq 1$$
 for all $(u, a) \in \Gamma$, stablity inequalities.

Figure – The set of green nodes is a stable matching of the marriage problem.

Figure – The set of green nodes is a stable matching of the marriage problem.

Figure – The set of green nodes is a stable matching of the marriage problem.

Figure – The set of green nodes is a stable matching of the marriage problem.

A natural extension of the theorem of [Vande Vate (89), Rothblum (92)] for the admissions polytope is the following

$$\begin{split} \sum_{(u,a)\in\Gamma} x_{ua} &\leq q_u, \quad \text{ for all } u \in U, \\ \sum_{(u,a)\in\Gamma} x_{ua} &\leq 1, \quad \text{ for all } a \in A, \\ q_u x_{ua} + q_u x_{ua} \uparrow + x_{ua} \longrightarrow &\geq q_u, \quad \text{for all } (u,a) \in \Gamma, \\ x_{au} &\geq 0, \quad \text{for all } (u,a) \in \Gamma. \end{split}$$

A natural extension of the theorem of [Vande Vate (89), Rothblum (92)] for the admissions polytope is the following

$$\sum_{(u,a)\in\Gamma} x_{ua} \leq q_u, \quad \text{ for all } u\in U,$$

$$\sum_{(u,a)\in\Gamma} x_{ua} \leq 1, \quad \text{ for all } a\in A,$$

$$q_u x_{ua} + q_u x_{ua} \uparrow + x_{ua} \longrightarrow \geq q_u, \quad \text{for all } (u,a)\in\Gamma,$$

$$x_{au} \geq 0, \quad \text{ for all } (u,a)\in\Gamma.$$

But it does not work. The above polytope contains fractional extreme points.

The comb inequalities

- Shaft S(u, a) = (u, a) and all of its successors in row u.
- Tooth T(u, a) = (u, a) and all of its successors in column a.
- Comb $C(u, a) = S(u, a) \bigcup_{(u,j) \in S(u,a)} (q_u 1)$ teeth T(u,j).

16

Figure – The set of green nodes is a stable matching.

Figure – A Shaft S(u, a) with a Teeth T(u, a).

Figure – A comb $C(u_2, a_2)$.

Figure – A comb $C(u_2, a_2)$.

Figure – A comb $C(u_2, a_2)$.

Theorem (A new "linear" definition of stability)

A matching μ of an admissions problem (Γ, q) is stable if and only if every comb C(u, a) contains at least q_u nodes of μ .

Theorem

For any stable admissions problem, $SAP(\Gamma, q)$ is described by the following set of linear inequalities :

$$\sum_{(u,a)\in\Gamma} x_{ua} \leq q_u, \qquad \qquad ext{for all } u\in U,$$
 $\sum_{(u,a)\in\Gamma} x_{ua} \leq 1, \qquad \qquad ext{for all } a\in A,$ $\sum_{(u,a)\in C(u,a)} x_{ua} \geq q_u, \quad ext{for each comb } C(u,a) \text{ of } \Gamma,$ $x_{au} \geq 0, \qquad \qquad ext{for all } (u,a) \in \Gamma.$

Stable allocations

Figure – A comb $C(u_2, a_2)$.

An allocation x = (x(i,j)) for a problem (Γ, s, d, π) is a set od real-valued numbers satisfying

$$x(i,J) \leq s(i), \quad \text{for all } i \in I,$$
 $x(I,j) \leq d(j), \quad \text{for all } j \in J,$ $0 \leq x(i,j) \leq \pi(i,j), \quad \text{for all } (i,j) \in \Gamma,$

An allocation x is stable is for every $(i,j) \in \Gamma$ $x(i,j) < \pi(i,j)$ implies $x(i,j) \longrightarrow = s(i)$ or $x(i,j) \uparrow = d(j)$.

non-stable allocation

An allocation x is stable id for every $(i,j) \in \Gamma$ $x(i,j) < \pi(i,j)$ implies $x(i,j) \longrightarrow = s(i)$ or $x(i,j) \uparrow = d(j)$.

Stable allocation

Optimal stable allocations

Row-greedy algorithm.

The row-greedy solution ρ is defined recursively, begining with i's prefered choice.

$$\rho(i,j) = \min\{s(i) - \rho(i,j^{>}), \ d(j), \ \pi(i,j)\}\$$

- Find the row-greedy solution ρ
- If ρ is not an allocation, then replace π by π^{ρ} , and repeat.

The unique stable allocation is

$$\begin{pmatrix} 0 & N \\ N & 0 \end{pmatrix}$$
, obtained after 2N steps.

The inductive algorithm

- Suppose x^{-i_0} is a stable allocation for the subproblem $(\Gamma, s, d, \pi)^{-i_0}$, where the data relevant to row i_0 is suppressed.
- The inductive algorithm shows how to obtain a stable allocation for (Γ, s, d, π) given a stable allocation for $(\Gamma, s, d, \pi)^{-i_0}$.
- Give to row 1 the row-greedy stable allocation.

The structure of stable allocations

The situation between two stable allocations, x and y, is

$$x=y=0$$
 $x=y=0$ $x=y=0$ $x>=y$ $y>=y$ $y>=y$

Let
$$i(x) = j^-$$
 if $x(i, j^-) > 0$ and $x(i, j) = 0$ for $j <_i j^-$.

Mechanisms

An allocation mechanism Φ is a function that selects exactly one stable allocation for any problem (Γ, s, d, π) .

Efficiency

Any allocation (stable or not) that gives 7 to rwo 1 and 11 to row 2, is better than x_I .

Generalized preferences to compare arbitrary allocation x and y

$$x \overset{\text{def}}{\succ_i} y \text{ if}$$

$$i(y) <_i i(x) \text{ or}$$

$$i(x) = i(y) = j^-,$$

$$x(i,j^-) < y(i,j^-)$$

$$x(i,J) > y(i,J) \qquad \text{when } y(i,J) < s(i).$$

Theorem

There is no allocation (stable or not) y with $y \succ_i x_I$ for all $i \in I$.

Monotonicity

Let $P = (\Gamma, s, d, \pi)$ a stable allocation problem.

 $P^h=(\Gamma^h,s,d,\pi^h)$ is a stable allocation problem defined as follows

for
$$j \in J$$
,

 $h >_j i$ in P implies $h >_j i$ in P^h and $\pi^h(h,j) \ge \pi(h,j)$.

A mechanism Φ is row-monotone if

$$\Phi(P^h) \succeq_h \Phi(P)$$
 for all $h \in I$.

Theorem

Let χ_I the mechanism that produces x_I . χ_I is the unique row-monotone mechanism.

Strategy

If $P=(\Gamma,s,d,\pi)$ is the true problem, then $P'=(\Gamma',s',d,\pi')$ is an alternate problem for $I'\subset I$ if the two problems are identical except for row-agents I' who announce altered preferences and/or altered quotas s' and bounds π' .

A mechanism Φ is row-strategy-proof if

$$\Phi(P') \succ_i \Phi(P)$$
 for all $i \in I'$ is false,

for any choice of $I' \subset I$.

Theorem

 χ_I is the unique row-strategy-proof mechanism.

Degeneracy

- If s(I') = d(J') for $I' \subseteq I$ and $J' \subseteq J$ with at least one of the subsets proper, then the problem (Γ, s, d, π) is said to be degenerate.
- A nondegenerate problem is strongly nondegenerate if $s(I) \neq d(J)$.

Theorem

A strongly nondegenerate problem has a unique stable allocation.