

S/0081/64/000/003/S078/S078

ACCESSION NR: AR4033715

SOURCE: Referativnyy zhurnal. Khimiya, Abs. 3S450

AUTHOR: Andreyev, G. Ya.; Sherzhukov, G. Ye.; Shevchenko, V. Ya.; Dardysh, Ya. I.

TITLE: New technique and equipment design for the preparation of glass-reinforced plastic pipe by a continuous method

CITED SOURCE: Nauchn. tr. Khar'kovsk. gorn. in-t, v. 12, 1962, 126-136

TOPIC TAGS: pipe manufacture, plastic pipe, glass reinforced pipe, glass reinforced plastic pipe

ABSTRACT: The essence of the new technique is that layers of longitudinal and transverse-glass fibers, impregnated with a binder during the process, are placed on a small length in the shaping zone of a pitch mandrel. To effect longitudinal movement of the pipe, the mandrel is composed of separate longitudinal sections, forming a cylinder when assembled, and able to move forward and backward. The sections move synchronously in the axial direction and cause the pipe to move along, after which each section is extracted from the pipe to return to its initial position, while the backward motion of the pipe is checked. The use of different variations of the assembly design permits manufacture of pipes with varying wall

Card 1/2

ACCESSION NR: AR4033715

thickness (from 0.5 to 1.5 mm) and a conical outer surface, while the use of changeable pitch mandrels ensures the production of pipes of varying internal diameter (75, 100, 125, 150, 300 mm) and length (as required). The productivity is up to 30 m/hr. Diagrams, technical characteristics, a description of the assembly and the advantages of its employment are given.

DATE ACQ: 02Apr64

SUB CODE: 1E, MA

ENCL: 00

Card 2/2

L 52988-65 EPA(s)-2/EWT(m)/EPF(c)/EPR/ENP(j)/T Pg-4/Pr-4/Ps-4/Pt-7 NM/RM

ACCESSION NR AM5009845

BOOK EXPLOITATION

S/ 43
B+1

Andreyev, Georgiy Yakovlevich; Sherzhukov, Gelyi Iefimovich; Shevchenko,
Valentin Yakovlevich, Bardyk, Iakov Iosifovich

Production of glass fiber reinforced plastic pipes (Isgotovleniye stekloplastiko-vykh trub), Khar'kov, Izd-vo Khar'kovskogo univ., 1964, 98 p. illus., biblio, 9,000 copies printed.

TOPIC TAGS: glass fiber, reinforced plastic, tube

PURPOSE AND COVERAGE: This book presents the technology of continuous fabrication of glass fiber reinforced plastic tubes developed in the Khar'kov Mining Institute. It describes in detail the equipment for producing tubes by the continuous method. The reader can more fully conceive of the newness and advantages of this method of fabricating glass fiber reinforced plastic tubes from the review of present methods in the USSR and abroad. At the same time, the book presents information on the various types of glass fillers and binders in use in the production of glass fiber reinforced plastics. The book is intended for a wide audience of engineers, technicians, workers in research and design institutions, students in VUZI and technicums, and production innovators.

Card 1/2

L 52988-65

ACCESSION NR. AM5009845

TABLE OF CONTENTS [abridged]:

- Introduction -- 3
Ch. I. Binders used in production of glass fiber reinforced plastics -- 5
Ch. II. Glass fiber fillers -- 16
Ch. III. Fabrication of glass fiber reinforced plastic tubes -- 29
Ch. IV. Continuous method of fabricating glass fiber reinforced plastic tubes developed in the Khar'kov Mining Institute -- 58
Bibliography -- 97

SUBMITTED: 26 March

SUB CODE: MT

NR REF Sov: 007

OTHER: 006

Card 2/2

SHE SHE BAROV, A.K., inzh.; FLAKSMAN, S.A., inzh.

Simplified checking of the auxiliary drive in the arc-quenching
chambers of MKP switches. Energetik 9 no.12:21-22 D '61.
(MIRA 15:1)
(Electric switchgear)

TABAKOV, I.; SHESHEDZHIEVA, E.

Local urethral anesthesia with dicaine-carbol-glycerin unguent (dicagel).
Khirurgia, Sofia 11 no.4:362-364 1958.

I. Institut za spetsializatsiia i usuvurshenstvuvane na lekarite - Sofiia
urologichna klinika Direktor: prof. A. Chervenakov Tsentralna apteka
Zav. aptekata: E. Shechedzhieva.

(ANESTHESIA, LOCAL,

dicaine-carbol-glycerin unguent in cystoscopy in male (Bul))

(CYSTOSCOPY, anesthesia & analgesia,

anesth., local, with dicaine-carbon-glycerin unguent in male (Bul))

SHESHEGOVA, L. I.

Cand Geol-Min Sci - (diss) "Fossil plants of the Nikitin deposits of the Kuzbass." Novosibirsk, 1961. 10 pp; 2 pages of tables; (Academy of Sciences USSR, Siberian Division, Inst of Geology and Geophysics, Joint Academic Council on Geological-Mineralogical, Geophysical, and Geographical Sciences); 150 copies; price not given; (KL, 5-61 sup, 181)

SHESHEGOVA, L.I.

New species cf fossil plants in the Il'ya series of the Kuznetsk
Basin. Geol. i geofiz. no.3:106-111 '61. (MIRA 14:5)
1. Institut geologii i geofiziki Sibirskogo otdeleniya AN SSSR,
Novosibirsk. (Kuznetsk Basin—Paleobotany)

GOR, Yu.G.; GUREVICH, A.B.; SHESHEGOVA, L.I.

Analogues of the Kuznetsk series in the Noril'sk region. Izv.
AN SSSR. Ser. geol. 30 no.6:92-94 Je '65.

(MIRA 18:6)

1. Laboratoriya geologii uglya Instituta geologii i geofiziki
Sibirskogo otdeleniya AN SSSR, Novosibirsk, i Institut geologii
Arktiki, Leningrad.

SHESEL'GENE, S. A., Cand of Agric Sci -- (diss) "Comparative Harvestability and Economical Efficacy of Certain Ensilage Crops and Root Crops in Semi-heavy Soils of Lithuanian SSR," Kaunas, 1959, 28 pp (Lithuanian Agricultural Academy) (KL, 4-60, 122)

BASKUTIS, P., prof., red.; YANITSKIS, I.[Janickis,I.], doktor khim. nauk, prof., red.; VIDMANTAS, Yu.[Vidmantas, J.], prof., ovt. red.; STANAYTIS, I.[Stanaitis, I.], starshiy prepodavatel', red.; BRAYNIN, S., kand. istor. nauk, dots., red.; INDRIUNAS, I., [Indriunas, I.], doktor tekhn. nauk, prof., red.; LASINSKAS, M., kand. tekhn. nauk, red.; NOVODVORSKIS, A., kand. tekhn. nauk, dots., red.; PESIS, R.[Pesys, R.], kand. tekhn. nauk, dots., red.; SADAUSKAS, T., dots., red.; SHESHEL'GIS, K.[Seselgis, K.], kand. arkh. dots., red.; VASAUSKAS, S., kand. tekhn. nauk, dots., red.; ZDANIS, Yu. [Zdanis, J.], kand. tekhn. nauk, red.; GRIGAIYUNAS, B. [Grigaliunas,B], red.; EYTUTIS, V.[Eitutis, V.], red.; VIDMANTAS, Yu.[Vidmantas,J.], red.; NAUYOKAS, I. [Naujokas,I.], tekhn. red.

[Materials of the 5th Scientific Technical Conference of Students of Institutions of Higher Learning of the White Russian S.S.R., Latvian S.S.R., Lithuanian S.S.R. and Estonian S.S.R.] Trudy Nauchno-tehnicheskoi konferentsii studentov vysshikh uchebnykh zavedenii Belorusskoi SSR, Latviiskoi SSR, Litovskoi SSR i Estonskoi SSR, 5th. Kaunas, Izd. Kaunasskogo politekhn. in-ta, 1961. 205 p. (MIRA 14:12)

1. Nauchno-tehnicheskaya konferentsiya studentov vysshikh uchebnykh zavedeniy Belorusskoy SSR, Latviyskoy SSR, Litovskoy SSR i Estonskoy SSR, 5th. (Science--Congresses) (Technology--Congresses)

SRESHENEV, A.A.

Reorganization of public health in rural areas of Voronezh
Province. Gig. i san. 23 no.6:37-41 Je '58 (MIRA 11;?)

1. Iz Voronezhskoy oblastnoy sanitarno-epidemiologicheskoy stantsii.
(PUBLIC HEALTH
in Russia, in rural areas (Rus))
(RURAL CONDITIONS,
health serv. reorganiz. (Rus))

SHESHENEV, A.A.

Voronezh Province congress of sanitary inspectors, epidemiologists,
microbiologists, and specialists in communicable diseases. Zdrav.
Ros.Feder. 3 no.1:42-43 Ja '59. (MIRA 12:2)
(VORONEZH PROVINCE--PUBLIC HEALTH--CONGRESSES)

SHESHENEV, A.A.

Physicians' meeting. Zdrav.Ros.Fed. 3 no.10-45 O '59.

(MIRA 13:1)

(VORONEZH--MEDICAL PERSONNEL)

SHE-SHENEV, M. F.

5
4E2c
T1-RG

Proprietary
Sheshnev

~~Effect of alloying elements on the high-temperature strength properties of chromium stainless steels~~ G. P. Fedorov-Lutikov and M. F. Sheshnev. Metallurgy. Obrabotka Metallov 1955, No. 6, 2-16. The aim of the research was to produce a non austenitic steel, not contg. Ni, for use at 600° in steam-turbine blades. The basic analysis of C 0.10-0.15, Cr 10-12, Mo 0.6-0.8, and V 0.15-0.25% was chosen on the basis of previous British and American work. The effects of single addns. of V 0.23-0.98, Nb 0.15-0.71, Ti 3.13-0.55, W 0.32-3.60, or W 0.80-3.4% with 0.35% Nb and 0.9% Ni were studied. Twelve-kg. ingots produced by induction melting were forged into bars. The bars were oil quenched after being heated at 1050° for 1 hr. and were tempered for 3 hrs. at 650° followed by air cooling. The grain sizes were in the range 6-8. The mech. properties at 20, 600, and 630° were plotted as a function of alloy content. The creep rate of the base compn. was decreased by 0.3% V, but was increased by 1.0% V. It was also decreased by Nb and W, but was unchanged by Ti. Extensive analyses were given of carbide residues obtained from the heat-treated steels and from steels aged 10,000 hrs. at 600°. The analyses of the ferrites were also tabulated. Rupture tests were carried out at 600° with a stress of 11 kg./sq. mm. For specimens that failed to break in 1000 hrs. the stress was raised to 20 or 25 kg./sq. mm. The 3.4% W alloy with Nb and Ni had the best properties with a 10,000-hr. strength of 18 kg./sq. mm. Although Nb increased the tensile strength of the alloy contg. about 4% W, it decreased the impact strength and made heat-treating more difficult. Strengthening of the ferrite was the principal cause of in-

FEDORTSOV - LUTIKOV, G.P...
creased high-temp. strength, although the presence of
special carbides helped. Two new steel compns. were
recommended on the basis of this work: 1Kh12V4MF
(E1757Y contg. C 0.10-0.15, Cr 10.5-12.5, W 3.7-4.3, Mo
0.0-0.8, V 0.2-0.3, Si 0.20-0.35, and Mn 0.0-0.8%; and
1Kh12V2MF4(E1758) which differed in contg. 1.8-2.2% W.
Their 10,000-hr. rupture strengths at 600° were 14-16 and
13-14 kg./sq. mm., resp., and their creep strengths for $1 \times 10^{-8} \%$ /hr. were 0.0 and 4.5 kg./sq. mm. Their impact
strengths were 4.5-14 and 10-15 kg.m./sq. cm. as heat-
treated, and 3-4 after 3000-10,000 hrs. aging at 600°.

18

A.G. Guv

2/2

PG

1B

amf

FILE: I BOOK REPRODUCTION

BOV/2103

16(5)

Strukturnyj maschino-isledovatel'nyj institut sotsialisticheskogo byznesa
Strukturnyj sverotvrdostnoj materialy (strukturnyj sverotvrdostnoj materialy i sverotvrdostnoj materialy)
(sbornik) [Structural (Structural) Structure and Properties of Heat-resistant Materials] Collection of Articles [Collection of Articles] Moscow, Naukova Dumka, 1959. (Series: Itos [Study] No. 99) Errata slip inserted.
Printed.

Additional Sponsoring Agency: USSR. Gosudarstvennyj nauchno-issledovatel'skiy i proektuyshiy organizatsiya Glavnaya upravleniya maschino-isledovatel'stva i proektuyshiy organizatsiya

Author: N.M. Fomichev [Tech. Ed.] A. P. Uvarov [Managing Ed.], for literature on metal working and tool making

Editor: N.M. Fomichev [Tech. Ed.] A. P. Uvarov [Managing Ed.], for literature on metal working and tool making

PURPOSE: This book is intended for workers of scientific research institutes and for engineers, staff or plant laboratories of the boiler and turbine industries and power stations. It may also be useful to staff members of higher educational institutions studying problems of physical metallurgy, provided this collection of articles describes results of work done at universities on the strength of materials used constantly at high temperatures in power plants. The articles deal with problems of heat resistance, alloying, and the production and heat treatment of heat-resistant steels. The evaluation of properties of industrial materials used under high and ultrahigh pressure is given, and modern testing methods are discussed. Some generalities are mentioned. References follow several of the articles.

TABLE OF CONTENTS

IV. I.I. [candidate of Technical Sciences]. Effect of Preliminary Detergent on Behavior of Materials During Subsequent Operations at High Temperatures
The influence of acidic hardnesses by tension and torsion on the strength and ductility of heat-resistant steels is discussed. The effect of acidic hardening on creep resistance, recrystallization, and stability of mechanical properties, and phase composition at aging is presented.

SECTION III. MATERIALS FOR HIGH AND ULTRA-HIGH PRESSURE CYCLES

M. M. Tikhonov, G.P. [Candidate of Technical Sciences], and V.S. [Candidate of Technical Sciences] Investigation of 18L22 and E3725 steels for High-Temperature Turbines
Properties of 18L22 heat-resistant steel are described. The phenomena of decomposition of chemical, mechanical, and heat-resistant properties of Cr-Mn heat-resistant steels are discussed. The phenomena of thermal fatigue and aging of these steels are discussed.

P. A. Kostyuk, D.P., and M.P. Stepanov [Candidate of Technical Sciences]. Investigation of the Properties of E3725 Chrome Steel
At low temperatures or mechanical properties, creep strength and creep rate at temperatures up to 600°C is presented.

T. T. Tikhonov, S.A., and M.D. Pastorev. Change in Phase Composition of E3725 and E3727 Steels Due to Heat-Treating Conditions
The steels under investigation were oil-quenched at 1150°C with subsequent aging at 600, 650 and 700°C, for up to 3,000 hours. The change in phase composition was studied by means of structural X-ray analysis and compared with results of chemical analysis and metallographic investigation.

For 1500 to 2000 hours, are presented.

V. A. Smirnov [Candidate of Technical Sciences]. Electrographical Investigation of the Structure of Oxide Films on E3612 and E3673 Steels and a Group of Ni-Cr-Al-Based Alloys
The structures of oxide films generated under various temperatures and holding time is discussed. The influence of preliminary heat treatment (annealing) made after quenching and tempering is also mentioned.

AVAILABLE: Library of Congress

cc/ea

SHESHENEV, M. F., Cand of Tech Sci -- (diss) "Research and Development of a Heat Resistant Complexly Alloyed Chromatic Steel for Power Engineering Establishments," Moscow, 1959, 21 pp (State Committee of the Council of Ministers USSR for Automation and Machine Building; Central Scientific Research Institute of Technology and Machine Building) (KL, 1-60, 103)

SHESHENEV, M.F.

PHASE I BOOK EXPLOITATION 535/559

Akademicheskii Institut metallogerii. Nauchnyi otsen po problem charkovskiy splavov
rekhodopochayushchim splavam. t. 5 (Investigations of Heat-Resistant
Alloys, Vol. 5) Moscow, Izd-vo Akademiia, 1959. 425 p. Errata ally inserted.
2,000 copies printed.

Eds. of Publishing House: V.A. Khlebnikov, Tech. Ed.: I.P. Kuzmin; Editorial
Board: I.P. Sardan, Academician, G.V. Kurchatov, Academician, N.V. Agafonov,
Corresponding Member, USSR Academy of Sciences (Savo, Zl.), I.A. Orlin,
I.M. Pavlyuk, and I.P. Rodin, Candidate of Technical Sciences.

Purpose: This book is intended for metallurgical engineers, research workers
in metallurgy, and may also be of interest to students of advanced courses
in metallurgy.

CONTENTS: This book, consisting of a number of papers, deals with the properties
of heat-resistant metals and alloys. Each of the papers is devoted to
the study of the factors which affect the properties and behavior of metals.
The effects of various elements such as Cr, Ni, and V on the heat-resisting
properties of various alloys are studied. Deformability and variability
of certain metals as related to the thermal conditions are the objects of
another study described. The problems of hydrogen embrittlement, diffusion
and the deposition of cermet coatings on metal surfaces by means of
electroplating are examined. One paper describes the properties and methods
used for growing monocryystals of metals. Monocrystal growths are critically
examined and evaluated. Results are given of studies of interatomic bonds and
the behavior of atoms in metals. Tests of turbine and compressor blades are
described. No personalities are mentioned. References accompany most
of the articles.

Savitskii, Yu., and K.V. Portnov. Study of Certain Problems of the Temperature
Dependence of the Plasticity of Steel From the Viewpoint of the Dislocation
Theory 150

Gorain, M.Iu., I.V. Pavlyuk, A.M. Struzhnik, (Deceased), and G.B. Fedorenko 155

Studied Effect of Chromium and Molybdenum

Fedorenko, I.M., G.P. M.F. Sheehanov, R.S. Kaplan, S.I. Butko, and L.N. Karzonova. Investigation of the Properties of TR70 Steel 160

Metallurgical Conditions of Prolonged Service of 650-1000°C
Steel 166

Tsirillov, I.Z., N.A. Trusova, A.V. Prokhorov, A.I. Makarov, S.A. Golubkovsky

A.S. Lebedev, D.I. Berenzon, V.K. Goryainov, and N.V. Dzhukov. Heat-
Resistant Alloy for Automotive and Stationary Gas Turbines 173

Arshany, P.M. The Effect of Elements of Groups IV to VIII of the Periodic Table
on the Properties of Phase Slags 179

Eustakhov, S.I. The Effect of Hardness and Grain Size on the Thermal Fatigue
of Heat-Resistant Steel 187

Portnov, K.I., and G.V. Samsonov. Study of Boride-Base Materials 192

Arshany, P.M. Study of Phase Composition of the Diffusion Layer 199

Agapov, B.A. On the Theory of Strength and Complex Alloys of Steels 203

Nevezin, Ye.A., N.G. Shirkov, G.F. Kochetkov, N.Y. Antipov, I.V. Grishchuk, and A.Ya. Trefe. Castability of Heat-Resisting Alloys 210

Podlesnyi, S.I., and A.M. Safonov. Metallurgical Problems in Electroslag
Refining of Heat-Resistant Austenitic Steels and Nickel-Chromium-Base Alloys 220

Paton, B.V., B.I. Tschernyak, and Yu.L. Vlasov. Improvement of Quality and Work-
ability of Alloyed Metal Molds 228

Izobitnaya, B.E. The Effect of Small Amounts of Addition Agents on the
Properties of Nickel-Based Alloys 234

Gribishev, D.M., and A.M. Grishnev. The Formation and Dissociation of Molyb-
denum Iodide 240

Pavlov, I.M. Forming of Hard-to-Form Alloys 245

Razegayev, M.V., and A.M. Danil'chenko. Specific Deformation Work [per
Unit of Volume] of Certain Alloys 255

Koslov, A.I., and A.M. Samoilin. Mechanical Properties of Deformed Chromium 260

Korobeyev, M.I., I.G. Stogarev, S.B. Pelezov, and Ye.I. Razibyan. Thermo-
mechanical Regime of Forming Right-Helix Polyhedral-Sieve and Chromium-
Base Alloys 269

18(7)

SOV/128-59-3-17/31

AUTHOR: Kreshchanovskiy, N.S. Candidate of Technical Sciences,
Silayev, A.F., Candidate of Technical Sciences,
Sheshenev, M.F. Engineer

TITLE: The Influence of Small Admixtures of Foreign Matter
on the Structure and on the Heat Resistance of Large
Castings of Steel Type 12Kh11V2NMF-L.

PERIODICAL: Liteynoye Proizvodstvo, 1959, Nr 3, pp 39-42 (USSR)

ABSTRACT: It has been realized that the use of austenite type
steel for castings of turbines and fittings operating
at steam temperature of 600° to 610° Celsius is not
suitable. The reasons are: high price and weak techno-
logical qualities. Therefore during the recent years
for this purpose perlite type and semi-ferrite type
steel have been introduced in the Soviet Union and in
foreign countries. The tests showed that perlite type
and especially semi-ferrite type steel of the type
Kh11 at correct alloying with Mo, W, V, and Nb is able
to operate at the above said temperature conditions.

Card 1/2

SOV/128-59-3-17/31

The Influence of Small Admixtures of Foreign Matter on the Structure and on the Heat Resistance of Large Castings of Steel Type
12 XII V2 NMF-L

In case these foreign structure particles are mixed at correct proportion, this alloyed steel allows the production of large steel castings, which have the necessary heat resistance. This paper describes the tests made with steel of the type 12Kh11V2NMF-L, to which several small admixtures have been added. Laboratory and shop tests had been made with barium, cerium, zirconium and calcium metal. Small admixtures of these elements have promoted the crystallization of the steel. The shop tests have been carried out in an electric furnace of 4 tons capacity. These tests have been compared with the table established by Larsen-Miller. The best result showed an alloy with added aluminum, barium, and calcium. Tensile strength improved to 9,4 kg per square millimeter from 7 kg per sq. mm of steel without any admixture. Correspondingly the heat resistance was higher too. There are 7 tables, 9 graphs and 1 micro-photo.

Card 2/2

FEDORTSOV-LUTIKOV, G.P., kand.tekhn.nauk; SHESHELEV, M.F., inzh.

High-chromium semiferrite steels for blades and rotors of
steam turbines operating at temperatures from 575° to 600°.
[Trudy] TSNIITMASH 100:162-182 '59. (MIRA 13:7)
(Chromium steel)
(Metals at high temperature)

SILAYEV, A.F., kand.tekhn.nauk; FEDORTSOV-LUTIKOV, G.P., kand.tekhn.
nauk; SHESHENEV, M.F., kand.tekhn.nauk

Properties of 12Kh11V2NMF-L steel castings. Metalloved.i term.
(MIRA 13:7)
oibr.met. no.6:2-7 Je '60.

1. TSentral'nyy nauchno-issledovatel'skiy institut tekhnologii
i mashinostroyeniya.
(Steel castings--Testing)

15818

S/137/62/000/004/121/201
A060/A101

18.1151
AUTHORS: Sheshenev, M. F., Marinenko, L. S.

TITLE: Toughness study of heat-resistant 12% chrome steel

PERIODICAL: Referativnyy zhurnal, Metallurgiya, no. 4, 1962, 54-55, abstract
41323 (V sb. "Issled. novykh zharoprovch. splavov dlya energetiki",
Moscow, Mashgiz, 1961, 151-163)

TEXT: The high level of a_k in 12% Cr-steel and semi-ferritic steel should be ensured already during the process of forging by a better treatment of the metal structure. In the production of castings and large forgings from steel of this class it is expedient to add gopherillitic elements (modifiers), especially alumino-barium-calcite alloy, to the metal, thus raising the a_k of the cast metal considerably.

T. Rumyantseva

[Abstracter's note: Complete translation]

Card 1/1

37862

S/123/62/000/009/002/017
A052/A101*10/15/*
AUTHORS: Sheshenev, M. F., Marinenko, L. S.

TITLE: Investigation of toughness of 12% chromium heat-resisting steel

PERIODICAL: Referativnyy zhurnal, Mashinostroyeniye, no. 9, 1962, 19-20,
abstract 9A119 (V sb. "Issled. novykh zharoprotch. splavov dlya
energetiki". Moscow, Mashgiz, 1961, 151-163)TEXT: The results are presented of the investigation of toughness of
3И 756 (EI756) (12% Cr) steel samples with a different C content (0.05 - 0.27%) in
a forged and cast state. The investigation was carried out for selecting material
suitable for large seamless forged steam turbine rotors. The toughness of cast
metal is very low and that of well-forged metal is high, independently of the
C content. The decisive factor determining the toughness level is the size of
ferrite grain (crushing leads to an increase of a_k). It is recommended to add
modifiers (Al-Ba-Ca addition alloy) when casting steel, increasing considerably
 a_k of the cast metal. ✓

[Abstracter's note: Complete translation]

Card 1/1

SHESHENEV, M.F., kand.tekhn.nauk

Effect of copper additions on the mechanical properties of
12 % chromium steel. [Trudy] TSNIITMASH 105:108-113 '62.
(MIRA 15:8)

(Chromium steel--Testing)

(Copper)

S/590/62/105/000/008/015
I031/I242

AUTHORS: Sheshenev, M.F., Candidate of Technical Sciences
and Ignatova, I.V., Eng.

TITLE: Effect of cobalt on the structure and properties
of 12% chromium steel

SOURCE: Moscow. Tsentral'nyy nauchno-issledovatel'skiy
institut tekhnologii i mashinostroyeniya. Trudy.
v.105, 1962, 114-124

TEXT: The existing data on the effect of cobalt on
heat-resisting properties of steel are scarce and often contra-
dictory. A 12% Cr steel of the 3// 756 (EI756) type with the
cobalt content varying from 0.4 to 3.68% was selected for study.

Card 1/2

PHASE I BOOK EXPLOITATION

SOV/6539

Silayev, Aleksandr Fedorovich, Georgiy Petrovich Fedortsov-
Lutikov, and Mikhail Fedotovich Sheshenev

Khromistyye zharoprochnyye stali dlya energomashinostroyeniya
(Heat-Resistant Chromium Steel for Power Machine-Building)
Moscow, Metallurgizdat, 1963. 183 p. Errata slip inserted.
2200 copies printed.

Ed.: R. M. Kireyeva; Ed. of Publishing House; A. L. Ozeretskaya;
Tech. Ed.: L. B. Dobuzhinskaya.

PURPOSE: This book is intended for engineering personnel engaged
in designing, building, and operating power units. It may
also be useful to research workers in metal science and to
students at technical schools of higher education.

COVERAGE: The book presents data on chemical composition,
structure, and properties of heat-resistant chromium steels
used in power machine-building. Basic laws governing the

Card 146

1/2

L 22294-66 EWP(k)/EWT(m)/ETC(n)-6/T/EWA(d)/EWP(w)/EWP(v)/EWP(t) IJP(c) EM/
ACC NR: AP6009811 MJW/JD (N) UR/0096/66/000/004/0022/0025

AUTHOR: Sheshenev, M.F. (Candidate of technical sciences); Vorokhanova, M.F. (Engineer)

ORG: TsNIITMASH

b3
b1
b

TITLE: High chromium steel for cast turbine blades

SOURCE: Teploenergetika, no.4, 1966, 22-25

TOPIC TAGS: chromium steel, turbine blade, gas turbine engine

ABSTRACT: A table gives the chemical composition and properties of steels and alloys used to fabricate cast turbine blades. The table shows that even for short term operation, chromium steels are used at a temperature no higher than 550°C. At higher temperatures chromium steels and special alloys are used. The chemical composition of the metal (2 melts) used for the turbine blades investigated experimentally was within the following limits: 0.13-0.15% carbon; 0.20-0.27% silicon; 0.44-0.48% manganese; 10.47-10.96% chromium; 1.58-1.84% tungsten; 0.72-0.76% molybdenum; 0.30-0.32% vanadium. Samples of turbine vanes made of this steel were subjected to metallographic investigation and to tests of their mechanical properties. The results are given in a series of curves and tables. Preliminary results from the testing of samples with a diameter

Card 1/2

UDC: 66.9.15-194:62-135.001.45

L 22294-66

ACC NR: AP6009811

of 5 mm cut from turbine blades show that the limiting long term strength of this steel (TsZh-5) at 580°C and a service life of ten thousand hours is about 17 kgf/mm². The article concludes that TsZh-5 steel is an industrially promising material for production of cast turbine blades.

Orig. art. has: 5 figures and 5 tables.

SUB CODE: 11,13 / SUBM DATE: none/ ORIG REF: 007/

Card 2/2 nat

MALYUK, V.I.; < SHESHENIN, N.I.

Attachement for taking photographs by means of MBS-1 and MBS-2
microscopes. Vrach. delo no. 1:119-120 '61. (MIRA 14:4)

1. Kafedra anatomii (zav. - prof. A.P. Lyubomudrov) L'vovskogo
meditsinskogo instituta.
(PHOTOMICROGRAPHY)

SHESENINA, G.G.; KOROL', A.N.

Amount of stationary liquid and the effectiveness of a filled column.
Zhur. prikl. khim. 38 no.7:1624-1625 Jl '65. (MIRA 18:7)

ZVEREV, A.G.; POPOV, V.F.; FADEYEV, I.I.; BABUSHKIN, V.I.; BERLOVICH, I.L.;
BOCHKO, A.M.; BURLACHENKO, S.Ye.; GARBUZOV, V.F.; DMITRICHEV, P.Ya.;
DUNDUKOV, G.F.; ZLOBIN, I.D.; KOROVUSHKIN, A.K.; KORSHUNOV, A.I.;
KUZIN, M.G.; KUTUZOV, G.A.; LYSKOVICH, A.A.; MASHTAKOV, A.M.;
MIKHEYEV, V.Ye.; NIKEL'BERG, P.M.; POSKONOV, A.A.; ROMANOV, G.V.;
SOSIN, I.F.; SOSNOVSKIY, V.V.; POVOLOTSKIY, M.M.; URYUPIN, F.A.;
KHARIONOVSKIY, A.I.; CHULKOV, N.S.; SHESHERO, N.A.; SHITOV, A.P.;
SHUVALOV, A.M.; YANBUKHTIN, K.Kh.

Arsenii Mikhailovich Safronov; obituary. Fin.SSSR 18 no.11:95
(MIRA 10:12)
N '57.
(Safronov, Arsenii Mikhailovich, 1903-1957)

NOVOZHILOV, V.; SHESHIN, A.

Work on QRP. Radio no.5:31 My '61.

(MIRA 14:7)

1. Radiostantsiya UALDQ, g. Leningrad. (for Novozhilov).
2. Radiostantsiya UAOWB, g. Abakan, Khakasskaya avtonomnaya oblast'
(for Sheshin).

(Amateur radio stations)

SHESHIN, A.

Birth of new things. Kryl.red. 13 no.6:4-5 Je '62.
(MIRA 19:1)

1. Nachal'nik Moskovskogo oblastnogo aerokluba.

SOV/110-59-5-5/25

AUTHORS: Golubeva, V.P., Engineer and Sheshin, B.A., Engineer

TITLE: A Circuit-Closer for a High-Power Laboratory
(Vklyuchayushchiy apparat dlya laboratorii bol'soy
moshchnosti)

PERIODICAL: Vestnik elektropromyshlennosti, 1959, Nr 5, pp 18-22 (USSR)

ABSTRACT: Accurate high-speed circuit-closers are required in high-power testing stations. Hitherto, Soviet equipment of this kind has not had sufficiently stable operating time and did not close the circuit at the required instant. This article describes a newly developed and tested three-phase circuit-closer type VA-12, intended for currents up to 330 kA at 12 kV with operating-time variations not greater than ± 5 electrical degrees. Under normal conditions the equipment can carry 120 kA for 0.3 seconds and in emergency for one second. The circuit-closer consists of three independent poles each enclosed in its own tank under an air pressure of 6 atm. All mechanical moving parts are within the tank, avoiding the need for special seals. A cross-sectional drawing of one pole of the equipment is given in Fig 1 and the mechanical construction is described.

Card 1/3

SOV/110-59-5-5/25

A Circuit-Closer for a High-Power Laboratory

Most of the variation in operating time of previous circuit-closers occurred because the trigger was tripped by an ordinary electro-magnetic coil. In the new equipment the operating coil is energised by the discharge through it of a capacitor of 12 microfarads charged to 7 kV. When the current passes through the operating coil, current is induced in an aluminium disc resting on it; the disc is rapidly accelerated and strikes the trigger. The disc strikes the trigger with a kinetic energy about twenty times that required to trip the trigger. Thus, the tripping time does not depend on frictional forces but only on the voltage to which the capacitor was charged. The trigger tripping time is 2.3×10^{-3} sec and the total operating time from the commencement of capacitor discharge until the main contacts touch is 0.029 sec. Pneumatic drive is provided to re-open the main contacts and recompress the springs. The construction of the pneumatic mechanism is described. The functions of the various auxiliary contacts and interlocks is explained; protection is provided against operation if the air pressure in the circuit-closer is too

Card 2/3

SOV/110-59-5-5/25

A Circuit-Closer for a High-Power Laboratory

low. A photograph of the complete equipment for one pole is reproduced in Fig 2; the unit weighs about 1.5 tons. The control circuit diagram is given in Fig 3; all the circuitry except the part shown dotted is contained in the control panel. The operation of the control circuit is explained. The electrical interlocking and signalling arrangements are described. A prototype of one pole of the circuit-closer was tested as follows: 3000 operations of circuit closing and opening with measurement of the closing time; high-voltage insulation tests at 42 kV rms and 50 c/s; dynamic and thermal stability and also circuit-making capacity. The tests showed that the equipment is mechanically reliable; the contact system operates satisfactorily with the rated current and the variations in operating time are within the required limits. One pole is now in experimental use. There are 3 figures.

SUBMITTED: 13th November 1958

Card 3/3

ZAKHAROV, S.N., kand.tekhn.nauk; KAPLAN, V.V., inzh.; IONOV, V.V., inzh.;
OSIPOVA, T.V., inzh.; SHERMAN, Ya.N., inzh.; SHISHIN, B.A., inzh.

New MG-10 and MG-20 generator switches. Vest. elektroprom. 32 no.3:
71-76 Mr '61. (MIRA 15:6)
(Electric switchgear)

L 53738-65 EPF(c)/EWT(m) Pr-4 RM
ACCESSION NR: AP5015488

UR/0286/65/000/008/0022/0022
547.563.1:66.095.254 17 B

AUTHOR: Makarova, T. F.; Moshkov, P. F.; Sheshin, M. A.; Vol'-Epshteyn, A. V.;
Yulin, M. K.

TITLE: A method for the preparation of p-tert-butylphenol. Class 12, No. 170065 15

SOURCE: Byulleten' izobreteniy i tovarnykh znakov, no. 8, 1965, 22

TOPIC TAGS: tert butylphenol synthesis, sulfonated compound, sulfo derivative catalyst

ABSTRACT: The preparation of p-tert-butylphenol involves the dealkylation of di- and tri-tert-butylphenols, in the presence of an acid catalyst. To achieve selective conversion and increased yields of the main product, the process is conducted at a residual pressure of 150—200 mm Hg, and 140—150°C, in the presence of sulfonated organic compounds (e.g., sulfo derivatives of phenol and isobutylsulfuric acid [sic]). (EW)

ASSOCIATION: none

Card 1/2

L 53738-65

ACCESSION NR: AP5015488

SUBMITTED: 17Jul63

ENCL: 00

SUB CODE: OC, GC

NO REF SOV: 000

OTHER: 000

ATD PRESS: 4019

mb
Card 2/2

SHESHIN, P.

USSR/Electronics - Rectifiers

Card 1/1 : Pub. 89 - 12/29

Authors : Sheshin, P.

Title : Rectifier for the IL-10 (*ИЛ-10*) type tube-tester

Periodical : Radio 7, page 20, July 1954

Abstract : A rectifier, designed for application with the IL-10 type tube-tester, is described, and special instructions for its operation are given. Diagram; table.

Institution : ...

Submitted : ...

SHESHIN, R. (RA3VGR), master radiolyubitel'skogo sporta (g.Ivanovo)

Radio transmitter operating on 420 mc. Radio no.7:21 J1 '61.
(MIRA 14:10)

(Radio, Shortwave--Transmitters and transmission)

RABINOVICH, R.M., SHESHINA, G.A.

Case of posterior paramediastinal pleurisy simulating mediastinal
tumor. Sov.med. 22 no.11:146-147 N '58 (MIRA 11:11)

1. Iz Tsentral'nogo nauchno-issledovatel'skogo rentgeno-radiologicheskogo
instituta Ministerstva zdravookhraneniya SSSR (dir. prof. M.N. Pobedinskiy)
(PLEURISY, differ. diag.
posterior paramediastinal, from mediastinal tumors (Rus))
(MEDIASTINUM, neoplasms.
differ. diag. from posterior paramediastinal pleurisy (Rus))

SHESHINA, G.A.

Radiotherapy of endarteritis obliterans. Vest. rent. i rad. 33 no.6:
192-46 N-O '58. (MIRA 12:1)

1. Iz terapevticheskogo otdeleniya (zav. - doktor med. nauk L.R.
Protas) Tsentral'nogo nauchno-issledovatel'skogo rentgeno-radiolog-
cheskogo instituta (dir. - prof. M.N. Pobedinskiy).

(THROMBOANGIITIS OBLITERANS, ther.)

x-ray ther. (Rus))

(RADIOTHERAPY, in various dis.

x-ray in thromboangiitis obliterans (Rus))

KACHUR, L.A.; MANOYLOV, S.Ye.; POBEDINSKIY, M.N.; PROTAS, L.R.; FEOKTISTOV, V.I.;
SHESHINA, G.A.

Relation of age to urinary excretion of radioactive potassium in
humans. Med. rad. 4 no.3:42-43 Mr '59. (MIRA 12:7)
(POTASSIUM, radioactive,
in urine, age factor (Rus))
(AGING, effects,
on urinary radiopotassium (Rus))

PROTAS, L.R., doktor med.nauk, starshiy nauchnyy sotrudnik (Leningrad,
Kirovskiy pr., d.54/31, kv.2); SHESHINA, G.A., kand.med.nauk,
mladshiy nauchnyy sotrudnik.

Telegamma therapy of generalized lymphogranulomatosis. Vest.
rent. i rad. 34 no.3:33-40 My-Je '59. (MIRA 12:10)

1. Iz terapevticheskogo otdeleniya TSentral'nogo nauchno-
issledovatel'skogo rentgeno-radiologicheskogo instituta
Ministerstva zdravookhraneniya SSSR (dir. - prof.M.N.Pobedin-
skiy).

(HODOKIN'S DISEASE, ther.
radiocobalt with telegamma appar. (Rus))
(CORALT, radioactive ther. of
Hodgkin's dis., with telegamma appar. (Rus))

DANILIN, A.A.; LUKASH, N.I.; SEREBRYANIKOV, V.D.; SHESHINA, G.A.

Results of a dynamic investigation of the peripheral blood in
subjects working under the influence of small doses of ionizing
radiations. Med. rad. 5 no.4:7-14 Ap '60. (MIRA 13:12)
(BLOOD) (RADIATION-PHYSIOLOGICAL EFFECT)

DANILIN, A.A.; LUKASH, N.I.; MALINOVSKAYA, T.Ya.; SKVIRSKAYA, K.B.;
SEREBRYANNIKOV, V.D.; SHESHINA, G.A.

Condition of the nervous system in subjects working with radioactive substances. Med.rad. 5 no.5:37-43 '60. (MIRA 13:12)
(NERVOUS SYSTEM) (RADIOACTIVITY—PHYSIOLOGICAL EFFECT)

MOZHAROVA, Ye.N.; BELUGINA, Z.T.; VASIL'YEVA, Ye.I.; KOZYRINA, Z.N.;
KUCHEROVA, I.B.; OPRYSJKO, N.G.; SHESHINA, G.A.

Radiation therapy of nontumorous diseases and prospects for
its evolution. Med. rad. 7 no.9:12-16 S '62. (MIRA 17:8)

1. Iz radioterapevticheskogo otdeleniya (zav. Ye.N. Mozharova)
TSentral'nogo nauchno-issledovatel'skogo instituta meditsinskoy
radiologii Ministerstva zdravookhraneniya SSSR.

YEREMIN, G. A.; ROSTOVENKO, N. I.; GOR'KOVYKH, V. G.; IVANOV, P. I.

Results of dosimetric measurements in therapeutic work with
radioactive iodine. Med. rad. 8 no. 9:44-48 1963. (MIRD 10-1)

1. O. Tsvetkov Large Moscow Medical Research Institute
and its Branches of the Ministry of Health.

RADCHENKO, O.A.; SHESHINA, L.S.

Geochemistry of petroleum porphyrins. Trudy VNIGRI no.83:274-
331 '55.
(MIRA 8:10)
(Porphyrin and porphyrin compounds) (Petroleum--Analysis)

Shestina, L S

Origin of porphyrins in petroleum. O. A. Kadchenko
and L. S. Shestina. *Doklady Akad. Nauk S.S.R.* 105,
1285-8 (1953). Examn. of numerous samples of petroleum
showed that samples contg. <0.7% S are either devoid of
or very low in porphyrin (I) content while the I content of
high-S samples is 100-1000 times greater. In the high-S
petroleum I is predominantly (90%) in the form of V com-
plexes, while in samples of low S content I occurs in Ni com-
plexes. The concn. of the complexes is approx. the same
for both types (1-2 mg./100 g.). The I-V complexes are
assoed. with the asphalt portion of bitumens, while the Ni
complexes are in the oil fraction. On this basis it is sug-
gested that the asphalt is the form in which petroleum
occurred originally and that the initial accumulation con-
sisted of heavy, high-S, and V substances rich in I, apparently
derived from the microflora in the ground, especially S
bacteria. G. M. Kysolapoff

4E3d J

RADCHENKO, O.A. ; SHESHINA, L.S.

Primary type of oil in the period of oil field formation. Dokl. Ak SSSR
109 no.3:614-616 Jl '56. (MIRA 9:10)

1. Vsesoyuznyy nauchno-issledovatel'skiy geologo-ravvedochnyy institut.
Predstavлено академиком D.V. Nalivkinym.
(Petroleum geology)

NIKOLAYEV, A.A., aspirant; SHESHINA, V.A., aspirant

Polyp of the main bronchus in tuberculous bronchadenitis. Probl.
tub. no.3:68-70 My-Je '55. (MIRA 8:8)

1. Iz kafedry patologicheskoy anatomi (zav.-prof. D.D.Lokhov) i
tuberkuleznoy kliniki (zav.Dotsent O.S.Malysheva) Leningradskogo
pediatricheskogo meditsinskogo instituta (dir.-prof.N.T.Shutova).
(POLYPI,

bronchus.main, in tuberc.bronchadenitis,diag.& surg.)
(TUBERCULOSIS, LYMPH NODE,
bronchial, with polyp of main bronchus, diag.& surg.).

SURZHIK, V.A., Candidate Sci—(disc) "Protein fractions of the blood serum in various forms and phases of tuberculosis in children." Len, 1958.
1 pp (Non Pediatric ~~extens~~ Med Inst), 200 copies (ML45-56, 153)

-165-

SHESHINA, V.A.

Blood protein fractions in tuberculosis in children. [with summary
in English]. Pediatriia 36 no.10:26-32 O '58 (MIRA 11:11)

1. Iz kafedry biologicheskoy khimii (zav. - prof. I.I. Ivanov)
i kliniki detskogo tuberkuleza (zav. V.M. Frolova) Leningradskogo
meditsinskogo instituta (dir. - prof. N.T. Shutova).

(TUBERCULOSIS, in inf. & child.
blood proteins determ. (Rus))
(BLOOD PROTEINS, in various dis.
tuberc. in child. (Rus))

TSEYTLIN, Z.D.; GURILEV, A.M.; NOSOV, N.I.; SHESHKAUSKAS, K.K.; SHUKHMAN, D.I.

Technical and economic indices of the operation of individual peat works during 1957. Torf. prom. 35 no. 4:1-6 '58. (MIRA 11:?)

1. Glavnnyy inzhener Barandayevskogo predpriyatiya Yaroslavskogo sovnarkhoza (for TSeytlin). 2. Glavnnyy inzhener Sitanikovskogo torfovopredpriyatiya Gor'kovskogo sovnarkhoza (for Gurilev). 3. Glavnnyy inzhener Oktyabr'skogo torfovopredpriyatiya Ivanovskogo torfotresta (for Nosov). 4. Nachal'nik proizvodstvennogo otdela Torfopredpriyatiya Belyaya Balka Litovskogo sovnarkhoza (for Sheshkauskas). 5. Glavnnyy inzhener Belorusskogo torfotresta No. 1 (for Shukhman).
(Peat industry)

RASSHCHEPLYAYEV, Yu. (Rostov-na-Donu); SHESHKO, M. (Gomel'skaya obl.);
OVCHAROV, Ye. (Vinnitsa); SAMTSOVICH, Ye. (UA6LIZ) (Rostov-na-
Donu); ANTONOV, V. (Moskva); BUTOV, P.

Exchange of experiences. Radio no.9:48,51,53,...62 S '63.
(MIRA 16:12)

SHESHKO, E. F.

PA 18T55

USSR/Mines and Mining - Equipment
Mineral Industries

Jul 1947

"Recent Undertakings in Open Mining of Lodes,"
E. F. Sheshko, 3 pp

"Gornyy Zhurnal" Vol CXXI, No 7

In last 15 years there has been much technological
advance in the field of open-pit mining. In Russia
the greatest advance took place during the World War
and the last Five-Year Plan. The system of mining
has been found very advantageous and must be fully
exploited during the new Five-Year Plan.

18T55

SHESHKO, E. F.

PA 24740

Engineering
Ore Deposits
Mines and Mining

Nov 1947

"Pit Mining of Deposits," Prof. E. F. Sheshko, 82 pp

"Gornyy Zhurnal" No 11

Well-illustrated article discussing open pit mining methods used at Magnitogorsk, Lopatinsk, Korkinsk and other ore deposits. Discusses such matters as laying tracks and best methods of making cuts. Author states that because of the various conditions of the ore found in these open pits it is difficult to establish a standard for judging the output of these workings and recommends that more research be done to determine a criterion for output.

24740

SHESHKO, Ye. F.

Sheshko, Ye. F. "A classification of methods of discovering and of systems of open working of minerals", in the collection entitled: Voprosy gornogo dela, Moscow, 1948, p. 39-52.

SG: U-2383, 12 Feb. 53, (Letopis' Zhurnal 'nykh Statey, No. 2, 1949).

SHESHKO, Ye.F., otvetstvennyy redaktor; SOLOVEYCHIK, A.A., tekhnicheskii redaktor.

[Transporter and hauling bridges and their utilization] Transportno-otvel'nye mosty i ikh primenie. Moskva, Ugletekhizdat, 1948. 46 p.
[Microfilm] (MLR 7:11)

1. Russia (1923- U.S.S.R.) Ministerstvo ugol'noy promyshlennosti vostochnykh rayonov. Byuro tekhnicheskoy informatsii.
(Transporter-bridges)

SHESHKO, YE. F. Prof

PA 5LT79

USSR/Mines and Mining
Mining Methods
Ore Deposits

Feb 1948

"Stripping of Deposits for Open Pit Mining," Prof Ye.
F. Sheshko, Moscow Mining Inst imeni I. V. Stalin,
13 pp

"Gornyy Zhur" No 2

Principle intent in stripping deposits is to facilitate transportation of the ore. Sheshko discusses some five basic methods used most frequently for the stripping operation on deposits: Internal trenching, method where no transport is used, underground workings, external trenches, and combined method. Tabulates factors that might cause one method to be chosen over another. LC

5LT79

SHESHKO, E.F.

21929 Sheshko, E.F. Opredeleniye Moshchnosti Robochego Parka Ztskavatorov.
Gorniy Zhurnal, 1949, No.1 S. 27-30

B Dobycha Rudnykh Iskopayemykh

Ss: Letopis' No. 33, 1949

3543. PRINCIPLES OF PLANNING OF OPENCAST COAL MINES. (OSNOVY PROIZVODSTVANIYA UGOL'Y
V KAR'EROV). Shestko, Z. Ya. (Moscow, Leningrad; 1930, 222pp.; title in Recent
Acquisitions, Brit. Museum).

immediate source clipping

Dr. Techniker Sci.

SHESHKO, Ye. F.

"Baring and Systems of Open-Pit Mining of Mineral Deposits." Sub 1 Jun 51, Inst
of Mining, Acad Sci USSR.

Dissertations presented for science and engineering degrees in Moscow during 1951.

SO: Sum. No. 480, 9 May 55.

SHESHKO, Ye F.

Spravochnik Po Stroitel'stvu Ugol'nykh Kar'yerov (Reference Book on The construction
of Strip Coal Mines) Moskva Ugletekhizdat, 1952.

1050 P. Illus., Diagrs., Map, Tables.

"Literatura": P. 1006-(1006)

At Head of Title: Kiev. Vsesoyuznyy Gosudarstvyy Institut Proyektirovaniya
Organizatsii Promyshlennogo i Zhilishchchnogc Stroitel'stva.

SO: N/5

735.1 + Housing Construction

.S55

SHESHKO, Ye. F.

Mining Engineering

Extending the front in strip mining. Gor.zhur. no. 3, 1952.

Monthly List of Russian Accessions, Library of Congress, April 1952. Unclassified.

1. SHESHKO, YE. F.
2. USSR (600)
4. Strip Mining
7. Technological cycle of loading and transportation operations in strip mines, Ugol', 28, No. 1, 1953.

9. Monthly List of Russian Accessions, Library of Congress, April, 1953, Uncl.

ANDREYEV, A.B.; ANTONOV, A.I.; ARAPOV, P.P., BARMASH, A.I., BEDNYAKOVA, A.B.; BENIN, G.S.; BERESNEVICH, V.V.; BERNSTEYN, S.A.; BITUTSKOV, V.I.; BLYUMENBERG, V.V.; BONCH-BRYUDEVICH, M.D.; BORMOTOV, A.D.; BULGAKOV, N.I.; VEKSLER, B.A.; GAVRILENKO, I.V.; GENDLER, Ye.S., [deceased]; GEGLIVANOV, N.A., [deceased]; GIBSHMAN, Ye.Ye.; GOLDOVSKIY, Ye.M.; GOHBUNOV, P.P.; GORYAINOV, F.A.; GRINBERG, B.G.; GRYUNER, V.S.; DANOVSKIY, N.F.; DZEVUL'SKIY, V.M., [deceased]; DREMAYLO, P.G.; DYBITS, S.G.; D'YACHENKO, P.F.; DYURNBAUM, N.S., [deceased]; YEGORCHENKO, B.F. [deceased]; YEL'YASHKEVICH, S.A.; ZHEREROV, L.P.; ZAVEL'SKIY, A.S.; ZAVEL'SKIY, F.S.; IVANOVSKIY, S.R.; ITKIN, I.M.; KAZHDAN, A.Ya.; KAZHINSKIY, B.B.; KAPLINSKIY, S.V.; KASATKIN, F.S.; KATSUROV, I.N.; KITAYGORODSKIY, I.I.; KOLESNIKOV, I.F.; KOLOSOV, V.A.; KOMAROV, N.S.; KOTOV, B.I.; LINDE, V.V.; LEBEDEV, H.V.; LEVITSKIY, N.I.; LOKSHIN, Ya.Yu.; LUTTSAU, V.K.; MANNERBERGER, A.A.; MIKHAYLOV, V.A.; MIKHAYLOV, N.M.; MURAV'YEV, I.M.; NYDEL'MAN, G.E.; PAVLYSHKOV, L.S.; POLUYANOV, V.A.; POLYAKOV, Ye.S.; POPOV, V.V.; POPOV, N.I.; RAKHLIN, I.Ye.; RZHEVSKIY, V.V.; ROZENBERG, G.Y.; ROZENTRETER, B.A.; ROKOTIAN, Ye.S.; RUKAVISHNIKOV, V.I.; RUTOVSKIY, B.N. [deceased]; RYVKIN, P.M.; SMIRNOV, A.P.; STEPANOV, G.Yu., STEPANOV, Yu.A.; TARASOV, L.Ya.; TOKAREV, L.I.; USPASSKIY, P.P.; FEDOROV, A.V.; FERE, N.E.; FRENKEL', N.Z.; KHAYFETS, S.Ya.; KHLOPIN, M.I.; KHODOT, V.V.; SHAMSHUR, V.I.; SHAPIRO, A.Ye.; SHATSOV, N.I.; SHISHKINA, N.N.; SHOR, E.R.; SHPICHENETSKIY, Ye.S.; SPRINK, B.E.; SHTERLING, S.Z.; SHUTTYI, L.R.; SHUKHGAL'TER, L. Ya.; ERVAYS, A.V.;

(Continued on next card)

(3v-4)

ANDREYEV, A.B. (continued) Card 2.

YAKOVLEV, A.V.; ANDREYEV, Ye.S., retsenzent, redaktor; BERKENGÉYM, B.M., retsenzent, redaktor; BERNAN, L.D., retsenzent, redaktor; BOLTINSKIY, V.N., retsenzent, redaktor; BONCH-BRUYEVICH, V.L., retsenzent, redaktor; VELLER, M.A., retsenzent, redaktor; VINOGRADOV, A.V., retsenzent, redaktor; GUDTSOV, N.T., retsenzent, redaktor; DEGTYAREV, I.L., retsenzent, redaktor; DEM'YANYUK, F.S., retsenzent; redaktor; DOBROSMYSLOV, I.N., retsenzent, redaktor; YELANCHIK, G.M. retsenzent, redaktor; ZHEMOCHKIN, D.N., retsenzent, redaktor; SHURAVCHENKO, A.N., retsenzent, redaktor; ZLODEYEV, G.A., retsenzent, redaktor; KAPLUNOV, R.P., retsenzent, redaktor; KUSAKOV, M.M., retsenzent, redaktor; LEVINSON, L.Ye., [deceased] retsenzent, redaktor; MALOV, N.N., retsenzent, redaktor; MARKUS, V.A. retsenzent, redaktor; METELITSYN, I.I., retsenzent, redaktor; MIKHAYLOV, S.M., retsenzent; redaktor; OLIVETSKIY, B.A., retsenzent, redaktor; PAVLOV, B.A., retsenzent, redaktor; PANYUKOV, N.P., retsenzent, redaktor; PLAKSIN, I.N., retsenzent, redaktor; RAKOV, K.A. retsenzent, redaktor; RZHAVINSKIY, V.V., retsenzent, redaktor; RINBERG, A.M., retsenzent; redaktor; ROGOVIN, N. Ye., retsenzent, redaktor; RUDENKO, K.G., retsenzent, redaktor; RUTOVSKIY, B.N., [deceased] retsenzent, redaktor; HYZHOV, P.A., retsenzent, redaktor; SANDOMIRSKIY, V.B., retsenzent, redaktor; SKRAMTAYEV, B.G., retsenzent, redaktor; SOKOV, V.S., retsenzent, redaktor; SOKOLOV, N.S., retsenzent, redaktor; SPIVAKOVSKIY, A.O., retsenzent, redaktor; STRAMENTOV, A.Ye., retsenzent, redaktor; STRELJETSKIY, N.S., retsenzent, redaktor;

(Continued on next card)

ANDREYEV, A.V.,(continued) Card 3.

TRET'YAKOV, A.P., retsenzent, redaktor; FAYERMAN, Ye.M., retsenzent, redaktor; KHACHATYROV, T.S., retsenzent, redaktor; CHERNOV, H.V., retsenzent, redaktor; SHERGIN, A.P., retsenzent, redaktor; SHESTOPAL, V.M., retsenzent, redaktor; SHESHKO, Ye.F., retsenzent, redaktor; SHCHAPOV, N.M., retsenzent, redaktor; YAKOBSON, M.O., retsenzent, redaktor; STEPANOV, Yu.A., Professor, redaktor; DEM'YANYUK, F.S., professor, redaktor; ZNAMENSKIY, A.A., inzhener, redaktor; PLAKSIN, I.N., redaktor; RUTOVSKIY, B.N. [deceased] doktor khimicheskikh nauk, professor, redaktor; SHUKHGAN'TER, L. Ya, kandidat tekhnicheskikh nauk, dotsent, redaktor; BRESTINA, B.S., redaktor; ZNAMENSKIY, A.A., redaktor.

(Continued on next card)

ANDREIEV, A. V. (continued) Card 4.

[Concise polytechnical dictionary] Kratkii politekhnicheskii slovar'. Redaktsionnyi sovet; IU. A. Stepanov i dr. Moskva, Gos. izd-vo tekhniko-teoret. lit-ry, 1955. 1136 p. (MLRA 8:12)

1. Chlen-korrespondent AN SSSR (for Plaksin)
(Technology--Dictionaries)

SHESHKO, Ye.F.

"Computation methods in designing overall mechanized open pits"
A.S.Fidelev. Reviewed by E.F.Sheeshko. Gor.zhur. no.11:64 N '55.
(Mining engineering) (Fidelev, A.S.) (MLRA 9:1)

RZHEVSKIY, Vladimir Vasil'yevich, doktor tekhnicheskikh nauk; SHESHKO, Ye.F., professor, doktor tekhnicheskikh nauk, retsenzent, redaktor; GORODETSKIY, P.I., professor, doktor tekhnicheskikh nauk, retsenzent; SHUSTOVA, V.M., redaktor izdatel'stva; ATTOPOVICH, M.K., tekhnicheskiy redaktor

[Planning contours in strip mining] Proektirovanie konturov kar'erov.
Pod red. E.F.Sheshko. Moskva, Gos. nauchno-tekhn. izd-vo lit-ry po
chernoi i tavetnoi metallurgii, 1956. 230 p. (MLRA 10:1)
(Strip mining)

AGAPOV, D.S.; ARTIBILOV, B.M.; VIKTOROV, A.M.; GINTS, A.N.; GOR'KOV, A.V.;
GUSYATINSKIY, M.A.; KARPOV, A.S.; KOLOT, I.I.; KOMAREVSKIY, V.T.;
KORYAGIN, A.I.; KRIVSKIY, M.N.; KRAYNOV, A.G.; NESTEROVA, I.N.;
OBES, I.S., kandidat tekhnicheskikh nauk; SOSNOVIKOV, K.S.; SUKHOT-
SKIY, S.F.; CHLENOV, G.O.; YUSOV, S.K.; ZHUK, S.Ya., akademik, glavnyy
redaktor; KOSTROV, I.N., redaktor; BARONENKOV, A.V., professor,
doktor tekhnicheskikh nauk, redaktor; KIRZHNIK, D.M., professor,
doktor tekhnicheskikh nauk, redaktor; SHESHKO, Ye.P., professor, doktor
tekhnicheskikh nauk, redaktor; AVERIN, N.D., inzhener, redaktor
[deceased]; GOR'KOV, A.V., inzhener, redaktor; KOMAREVSKIY, V.T.,
inzhener, redaktor; ROGOVSKIY, L.V., inzhener, redaktor; SHAPOVALOV,
T.I., inzhener, redaktor; RUSSO, G.A., kandidat tekhnicheskikh nauk,
redaktor; FILIMONOV, N.A., inzhener, redaktor; VOLKOV, L.N., inzhener,
redaktor; GRISHIN, M.M., professor, doktor tekhnicheskikh nauk, redak-
tor; ZHURIN, V.D., professor, doktor tekhnicheskikh nauk, redaktor;
LIKACHEV, V.P., inzhener, redaktor; MEDVEDEV, V.M., kandidat tekhnici-
cheskikh nauk, redaktor; MIKHAYLOV, A.V., kandidat tekhnicheskikh nauk,
redaktor; PETROV, G.D., inzhener, redaktor; RAZIN, N.V., redaktor; . . .
SOBOLEV, V.P., inzhener, redaktor; FERRINGER, B.P., inzhener, redaktor;
TSYPLAKOV, V.D., inzhener, redaktor; ISAYEV, N.V., redaktor; TISTROVA,
O.N., redaktor; SKVORTSOV, I.M., tekhnicheskiy redaktor

[The Volga-Don Canal; technical report on the construction of the
Volga-Don Canal, the Tsimlyanskaya hydro development and irrigation
works (1949-1952); in five volumes] Volgo-Don; tekhnicheskii otchet
(continued on next card)

AGAPOV, D.S. --- (continued) Card 2.
o stroitel'stve Volgo-Donskogo sudokhodnogo kanala imeni V.I.Lenina.
TSimlianskogo gidrouzla i orositel'nykh sooruzhenii (1949-1952) v
piati tomakh. Glav.red. S.IA. Zhuk. Moskva, Gos.energ. izd-vo.
Vol.5. [Quarry management] Kar'ernoe khoziaistvo. Red.toma I.N.
Kostrov. 1956. 172 p. (MLRA 10:4)

1. Russia (1923- U.S.S.R.) Ministerstvo elektrostantsii. Byuro
tekhnicheskogo otcheta o stroitel'stve Volgo-Dona. 2. Deystvitel'nyy
cheln akademii stroitel'stva, i arkhitektury SSSR (for Razin)
(Quarries and quarrying)

TERPIGOROVA, Vera Dmitriyevna; ZAVARITSKAYA, Marianna Aleksandrovna;
SHESHKO, Ye.F., otvetstvennyy redaktor; ALADOVA, Ye.I., tekhnicheskiy redaktor

[Open-cut coal mining. Manual for translating English mining literature
into Russian] Dobyча угля открытым способом; uchebnoe posobie po
perevodu s angliйskogo na russkii iazyk gorno-tekhnicheskoy literatury.
Moskva, Ugletekhnizdat. Vol. 4. 1956. 197 p. (MLRA 9:12)

(English language--Translating)
(Coal mines and mining--Terminology)

SHESHKO, Yevgeniy Fomich, professor, doktor tekhnicheskikh nauk; RZHEVSKIY,
V.V., otvetstvennyy redaktor; OKHRIMENKO, V.A., redaktor izdatel'-
stva; ALADOVA, Ye.I., tekhnicheskiy redaktor

[Mining mineral deposits by the open-pit method] Otkrytaia razrabot-
ka mestorozhdenii poleznykh iskopаемых. Izd. 3-e, perer. Moskva,
Ugletekhnizdat, 1957. 495 p.
(Mining engineering)

TYMOVSKIY, Leonid Georgiyevich; MEL'NIKOV, N.V., professor, retsenzent; YERSHOV, A.S.
retsenzent; GRAUDIN, R.K., retsenzent; SHESHKO, Ye.I., professor,
doktor tekhnicheskikh nauk, redaktor; YEZDOKOVA, M.L., redaktor
izdatel'stva; EVERSON, I.M., tekhnicheskiy redaktor

[Bline winzes in deep pits] Tupikovye s"erdy v glubokikh kar'erakh.
Moskva, Gos.nauchno-tekhnik.izd-vo lit-ry po chernoi i tsvetnoi
metallurgii, 1957. 79 p. (MIRA 10:7)

1. Chlen-korrespondent Akademii nauk SSSR (for Mel'nikov). 2.
Nachal'nik otdela transporta i gemyplanov Instituta Giproruda (for
Yershov). 3. Glavnyy tekhnolog gornogo otdela Instituta
Giproruda (for Graudin)
(Strip mining)

SIMKIN, Boris Aleksandrovich, kand. tekhn. nauk.; SHESHKO, Ye.F., doktor tekhn. nauk, prof., red.; VINITSKIY, K.Ye., otd. red.; ZHUKOV, V.V., red. izd-va.; KOROVENKOVA, Z.A., tekhn. red.; SHKLYAR, S.Ya., tekhn. red.

[Collection of examples and problems in open pit mining] Sbornik primerov i zadach po otkrytym gornym robotam. Moskva, Ugletekhizdat, (MIRA 11:12) 1958. 179 p.

(Strip mining)

SHESHKO, Yevgeniy Fomich, RZHEVSKIY, Vladimir Vasil'yevich, ; KHOKHRYAKOV,
V.S., red.; ZHUKOV, V.V., red., inq.-va, ; PROZOROVSKAYA, V.L., tekhn. red.;
ALADOVA, Ye.I., tekhn. red.

[Principles of planning open-cut mines] Osnovy proektirovaniia
kar'erov. Moskva, Ugletekhnizdat, 1958. 335 p. (MIRA 11:11)
(Strip mining)

SHESHKO, Ye. F.

ALATORTSEV, S.A., prof., doktor tekhn.nauk; ANDREYEV, A.V., kand.tekhn.nauk; ANCHAROV, I.L., inzh.; BALINSKIY, S.I., inzh.; BELOUSOV, V.G., inzh.; VINITSKIY, K.Ye., kand.tekhn.nauk; VLASOV, V.M., inzh.; VORONTSOV, N.P., kand.tekhn.nauk; GIPSMAN, M.K., inzh.; GLUZMAN, I.S., kand.tekhn.nauk; GUR'YEV, S.V., kand.tekhn.nauk [deceased]; DEMIN, A.M., kand.tekhn.nauk; YEGURNOV, G.P., kand.tekhn.nauk; YEFIMOV, I.P., inzh.; ZHUKOV, L.I., kand.tekhn.nauk; ZEL'TSER, N.M., inzh.; KOSACHEV, M.N., kand.tekhn.nauk; KOTOV, A.F., inzh.; KUDINOV, G.P., inzh.; LAPOVENKO, N.A., kand.tekhn.nauk; MAZUROK, S.F., inzh.; MEL'NIKOV, N.V.; MUDRIK, N.G., inzh.; NIKONOV, G.P., kand.tekhn.nauk; ORLOV, Ye.I., inzh.; POTAPOV, M.G., kand.tekhn.nauk; PRISEDSKIY, G.V., inzh.; RZHEVSKIY, V.V., prof., doktor tekhn.nauk; RYAKHIN, V.A., kand.tekhn.nauk; SIMKIN, B.A., kand.tekhn.nauk; SITNIKOV, I.Ye., inzh.; SOROKIN, V.I., inzh.; STASYUK, V.N., kand.tekhn.nauk; STAKHEVICH, Ye.B., inzh.; SUSHCHENKO, A.A., inzh.; TYUTIN, I.F., inzh.; TYMOVSKIY, L.G., inzh.; FISENKO, G.L., kand.tekhn.nauk; FURMANOV, B.M., inzh.; SHATAIEV, M.G., inzh.; SHESHKO, Ye.F., prof., doktor tekhn.nauk; TERPIGOREV, A.M., glavnnyy red. [deceased];

(Continued on next card)

ALATORTSEV, S.A.---(continued) Card 2.
KIT, I.K., zamestritel' glavnogo red.; SHESHIKO, Ye.F., zamestritel'
otv.red.; BUGOSLAVSKIY, Yu.K., red.; BYKHOVSKAYA, S.N., red.;
DIONIS'YEV, A.I., kand.tekhn.nauk, red.; KOZIN, Yu.V., red.;
SOKOLOVSKIY, M.M., red.; YASTREBOV, A.I., red.; DEMIDYUK, G.P.,
kand.tekhn.nauk, red.; KRIVSKIY, M.N., kand.tekhn.nauk, red.;
LYUBIMOV, B.N., inzh., red.; MOLOKANOV, P.L., inzh., red.; REISH,
A.K., inzh., red.; RODIONOV, L.Ye., kand.tekhn.nauk, red.; SLA-
VUTSKIY, S.O., inzh., red.; TRAKHMAN, A.I., inzh., red.; TRYMOV-
SKIY, I.G., inzh., red.; FIDELEV, A.S., doktor tekhn.nauk, red.;
SHUKHOV, A.N., kand.tekhn.nauk, red.; TER-IZRAEL'YAN, T.G., red.
izd-va; PROZOROVSKAYA, V.L., tekhn.red.; KONDRAT'YEVA, M.A.,
tekhn.red.

(Continued on next card)

ALATORTSEV, S.A.---(continued) Card 3.
[Mining; an encyclopedic dictionary] Gornoe delo; entsiklo-
pedicheskii spravochnik. Glav.red.A.M.Terpigorev. Chleny glav.
red.A.I.Baranov i dr. Moskva, Gos.nauchno-tekhn.izd-vo lit-ry
po gornomu delu. Vol.10. [Mining coal deposits by the open-cut
method] Razrabotka ugel'nykh mestorozhdenii ctkrytym sposobom.
Redkollegiya toma; N.V.Mel'nikov i dr. 1960. 625 p.
(MIRA 13:2)

1. Chlen-korrespondent AN SSSR (for Mel'nikov).
(Coal mines and mining) (Strip mining)

SHTSOKHOL'SKAYA, A. Ya.

Gravimetric determination of large amounts of niobium and
tungsten when present together. Zhur. anal. khim. 20 no. 11:
1250-1251 '65 (MIRA 19:1)

1. Institut metallurgii imeni A.A. Baykova, Moskva. Submitted
December 8, 1964.

REF ID: A6510

USSR/Chemical Technology -- Chemical Products and Their Application. Silicates.
Glass. Ceramics. Binders, I-9

Abst Journal: Referat Zhur - Khimiya, No 1, 1957, 1635

Author: Glagolev, A. A., and Sheshmintsev, A. N.

Institution: Academy of Sciences, Kazakh SSR

Title: Biceramic Mullite-Fireclay Refractory Bricks for Suspended Roofs

Original
Periodical: Izv. AN Kaz. SSR, Section on Mining, Metallurgy and Beneficiation
and Construction Materials, 1956, No 8, 114-118 (summary in Kazakh)

Abstract: Experience in the production of biceramic refractory bricks in which
the working part (over 40% of the length) consists of a mixture of
scrap mullite and high-grade refractory clay and the remainder con-
sists of cheaper fireclay (grog), is described. Both materials have
approximately the same coefficient of thermal expansion. The follow-
ing method was used to form the brick: a mold is separated into 2
portions by means of a partition, one end being filled with mullite
mass and the other end with grog. The partition is removed and the

Card 1/2

SHESHMINTSEV, A. N.

SHESHMINTSEV, A. N.: "Refractories of andalusite flotation concentrates and their interaction with basic slags." Acad Sci Kazakh SSR. Inst of Metallurgy and Ore Dressing. Alma-Ata, 1956. (Dissertation for the Degree of Candidate in Technical Sciences)

Knizhnaya letopis', No 39, 1956, Moscow.

SHESHMINTSEV, A.N.

Reaction of andalusite refractories with basic slags. Trudy Inst.
stroi. i stroimat. AN Kazakh SSR 1:131-139 '58. (MIRA 11:6)
(Refractory materials) (Slag)

GLAGOLEV, A.A.; SHESHMINSEV, A.N.

Characteristics of andalusite mullitization. Vest. AN Kazakh. SSR
14 no.7:105-107 Jl '58. (MIRA 11:9)
(ANDALUSITE) (MULLITE)

SOV /137-57-10-18631

Translation from Referativnyy zhurnal Metallurgiya, 1957, Nr 10, p 23 (USSR)

AUTHORS: Glagolev, A. A., Sheshmintsev, A. P.

TITLE: Composite Mullite-fireclay Refractory Brick for Suspended
Roofs (Bikeramicheskiy mulitto-shamotnyy ogneupornyy kirkich
dlya podvesnykh svodov)

PERIODICAL: Izv. AN KazSSR. Ser. gorn. dela, metallurgii i obogashche-
niya, stroymaterialov, 1956, Nr 8, pp 114-118

ABSTRACT: A description is given of experiences in the preparation of a composite refractory brick, the working portion of which consists for 40% of its length of a mixture of mullite bar scrap and refractory clay and the rest of a cheaper refractory (firebrick). The two materials have similar coefficients of thermal expansion. The brick-shaping technique is the following. A partition is placed in the mold, bulk mullite is poured into one end and fireclay into the other, whereupon the dividing plate is removed and the layer is tamped by hand. Subsequent layers are applied in the same fashion. The properties of the mullite-fireclay portion of refractory, which is used in the roof of a reverberatory copper-melting furnace, are presented.

A.L.

Card 1/1

TSEKHANSKIY, R.S.; SHESHNEVA, Yu.I.

Cellolignin as filler for molding materials. Gidroliz. i
lesokhim. prom. 17 no.6:14 '64. (MIRA 17:12)

1. Kafedra khimii Chuvashskogo gosudarstvennogo pedagogicheskogo
instituta.

IVANOV, A.A.; SHESHUKOV, N.G.; SAPRYKIN, F.Ya.

Wood remains in salt deposits. Sov.geol. 6 no.8:107-111 Ag '63.
(MIRA 16:9)

1. Vsesoyuznyy nauchno-issledovatel'skiy geologicheskiy institut.
(Trees, Fossil) (Salt deposits)

SVISHCHEV, M.F.; SHESHUKOV, N.L.; KREMS, L.M.; BYBAKOV, A.P.

Development of the Devonian pool in the Sultangulovo field of
Orenburg Province. Geol. nefti i gaza 4 no.11:46-50 N '60.
(MIRA 13:11)

1. Neftepromyslovoye upravleniye Buguruslannetft'.
(Orenburg Province--Oil reservoir engineering)

SHESHUKOV, N.L.; KRYMOV, V.F.

Oil potential of the Famennian stage in Orenburg Province.
Geol. nefti i gaza 6 no.12:45-47 D '62. (MIRA 15:12)

1. Neftepromyslovoe upravleniye Buguruslanneft' i trest
Orenburgneftegazrazvedka.
(Orenburg Province—Petroleum geology)

SRESHUKOV, N.L.

Characteristics of the Upper Devonian and Tournaisian sedimentation
in the region of the Kinel' dislocations. Neftegaz.geol.i geofiz.
no.9:17-20 '63. (MIRA 17:5)

1. Neftepromyslovoye upravleniye "Buguruslanneft".

"APPROVED FOR RELEASE: 08/09/2001

CIA-RDP86-00513R001549310012-5

SHPSHUKOV, N.I.

Geology and oil and gas potentials of the Samara dislocation. Trudy
VNIIGMI no. 36:198-203 '65. (VNIIGMI 17:9)

APPROVED FOR RELEASE: 08/09/2001

CIA-RDP86-00513R001549310012-5"

"APPROVED FOR RELEASE: 08/09/2001

CIA-RDP86-00513R001549310012-5

SLESHUKOV, N.L.; KOENYAN, N.S.

Prospects for finding gas in Orenburg Province. Gaz. prom. 8 no.4:1-3
'63. (MIRA 17:10)

APPROVED FOR RELEASE: 08/09/2001

CIA-RDP86-00513R001549310012-5"

SHESHUKOV, P., st. inzhener radiokluba.

Lectures on radio have been started in Tiumen. Radio no.1:14 Ja '54.
(MERA 7:1)

(Tyumen' Province--Radio--Study and teaching) (Study and teaching--
Radio--Tyumen' Province)