Appunti di Algoritmi e strutture dati

Filippo Bisconcin

2018

Contents

Algoritmi e loro complessità: i numeri di Fibonacci Formula di Binet	$\frac{4}{4}$
Dimostrazione	5 7
	11
Notazione asintotica: le classi O, Omega, Theta	11
Esercizi sulla notazione asintotica. Le classi o, omega	12
Divide et impera. Il teorema fondamentale delle ricorrenze (c "Teorema master"). Esercizi.	12
Rappresentazione di una lista attraverso un vettore (matrice)	12
	13
Alberi Alberi binari (Albero k-ario con K = 2)	13 15 15 16 16 16 17
Utilizzo del vettore posizionale Implementazioni Utilizzo di strutture collegate Implementazioni: Implementazioni:	17 18 18 18 19
Algoritmi di visita degli Alberi Visita generica	19 19 20 20
Lemma 2 Lemma 3: Max_heapify Dato un vettore disordinato, costruire un heap	20 21 22 22 23

Heapsort	24
Teorema	24
Code di priorità	24
Implementazione di code di massima priorità con le strutture Heap Esercizi	2526
Limite inferiore per l'ordinamento per confronti	28
Esempio: Ordina 3 elementi	29
Quanto è grande un albero di decisione?	30
Quante foglie contiene?	30
	32
Algoritmi di ordinamento privi di confronti	32
CountingSort	32
	33
RadixSort	33
	36
	36
Risoluzione delle collisioni tramite metodo di concatenamento	39
Implementazioni	39
Come si costruiscono le funzioni hash?	41
Risoluzione delle collisioni tramite indirizzamento aperto	43
1. Ispezione (o "scansione") lineare	45
2. Ispezione (o "scansione") quadratica	46
3. Hashing doppio	46
Esercizio	47
Analisi dell'hashing a indirizzamento aperto	48
	48
Dimostrazione	48
Corollario	49
Teorema	49
Confrontro tra metodi di risoluzione delle collisioni	50
	5 0
Sottografi	51
Cammini	51
Cammini semplici e cammini non semplici	51
Lunghezza di un cammino	51
Raggiungibilità dei vertici	52
Ciclo	52
[NO]Grafo connesso	52
[NO] Componente connessa	52
[NO]Vertici adiacenti	52
Arco incidente	52
Vertici isolati e terminali	52

Teorema della stretta di mano (HandShaking Lemm	a)			53
Matrice di adiacenza				54
Matrice di adiacenza per grafi orientati				55
Matrice di adiacenza per grafi non orientati				56
				57
Liste concatenate				57
Grafo autocomplementare				58
Prodotto tra matrici di adiacenza				58
Prodotto di matrici				58
Matrice al quadrato				59
Matrice con esponente maggiore di 2				59
Esercizio				60
				60
[NO] Grafi regolari				
Proprietà				61
Dimostrazione				61
Esercizio				61
Isomorfismi di grafi				61
[NO] Definizione				61
Determinare se due grafi sono isomorfi				62
A 11 . •				40
Alberi				62
[NO]Definizione				62
Alberi di copertura				63
Taglio di un albero				64
Arco leggero				64
Albero di copertura minimo (MST)				64
Teorema fondamentale degli MST				65
Dimostrazione				65
Corollario				66
Dimostrazione				66
Corollario				66
Dimostrazione tramite la tecnica "cuci e taglia"				66
Corollario				67
Dimostrazione per assurdo				67
Esercizio				67
Esercizio				67
Generazione degli alberi di copertura minima				68
Generazione di MST : Kruskal				
Simulazione di esecuzione				69
Tramite grafo				69
Tramite tabella				69
Generazione di MST : Prim				69
Cammini minimi				70
				71
Varianti				71
Archi con pesi negativi				72
Archi con pesi negativi		 ٠	 •	12

Strutture dati per la rappresentazione dei c	an	1m	$_{ m ln1}$	m	ın	ım	1.		•	٠	•		(2
Sottografo dei predecessori													72
Albero dei cammini minimi													72
													72
Procedure di modifica dei due campi													72
Dijkstra													73
Correttezza di Dijkstra												,	73
Correttezza di Dijkstra Proprietà 1													
3													
Proprietà 1													73 73
Proprietà 1													73 73 74
Proprietà 1							 	 					73 73 74 74

Algoritmi e loro complessità: i numeri di Fibonacci

[DFI] cap. 1

$$f(n) = \begin{cases} 1 & \text{se } n = 1, n = 2\\ (n-1) + f(n-2) & \text{se } n \ge 3 \end{cases}$$
 (1)

Formula di Binet

$$\forall n \in N, F_n = \frac{1}{\sqrt{5}} (\Phi^n - \overline{\Phi}^n)$$
 (2)

Dove con Φ si indica la sezione aurea $\frac{1+\sqrt{5}}{2}\simeq -0,618$ e con $\overline{\Phi}$ si indica $\frac{1-\sqrt{5}}{2}\simeq -0,618$

Dimostrazione

Dimostriamo per Induzione la formula di Binet:

Base #1

$$n = 1$$

$$\tfrac{1}{\sqrt{5}}(\Phi^1-\overline{\Phi}^1)$$

sostistuisco con le definizioni di Φ e semplifico

$$= 1 = F_1$$

Base #2

$$n = 2$$

$$\frac{1}{\sqrt{5}}(\Phi^2 - \overline{\Phi}^2)$$

sostistuisco con le definizioni di Φ e semplifico

$$= 1 = F_2$$

Passo induttivo

$$n \ge 3$$

$$F_n = F_{n-1} + F_{n-2}$$

$$F_{n-1} = \frac{1}{\sqrt{5}} \left(\Phi^{n-1} - \overline{\Phi}^{n-1} \right)_{e} F_{n-2} = \frac{1}{\sqrt{5}} \left(\Phi^{n-2} - \overline{\Phi}^{n-2} \right)$$

$$\operatorname{assomiglia\ alla\ forma} F_{n\,=}\,\frac{1}{\sqrt{5}}\!\!\left(\Phi^{n}\!-\!\overline{\Phi}^{n}\right)$$

$$_{\text{ci chiediamo se}} \boldsymbol{\Phi}^n = \boldsymbol{\Phi}^{n-1} + \boldsymbol{\Phi}^{n-2} {}_{\text{e se}} \, \boldsymbol{\overline{\Phi}}^n = \boldsymbol{\overline{\Phi}}^{n-1} + \boldsymbol{\overline{\Phi}}^{n-2}$$

divido da entrambe le parti per Φ^{n-2} e $\overline{\Phi}^{n-2}$

Definizione #1

Utilizzeremo la notazione T_n per indicare la velocità/complessità di una particolare funzione (numero di righe di codice eseguite)

Fib1 (int n) \rightarrow int

$$\frac{1}{\sqrt{5}}\!\!\left(\Phi^n\!-\!\overline{\Phi}^{\,n}\right)$$

$$T(Fib1)_n = 1 \ \forall \ n$$

Problema: con l'aumentare di n, la funzione Fib1(n) diventa sempre più imprecisa

$$Fib1_3 = 1,9999... \simeq 2$$

$$Fib1_{16} = 986,699... \simeq 987$$

 $Fib1_{18} = 2583,1... \neq Fib_{18} = 2584$

Definizione #2

Fib2 (int n) \rightarrow int if n \leq = 2 then return 1 else return Fib2(n-1) + Fib2(n-2)

$$T(Fib2)_n = 1$$
 $n = 1$ [?][?][?] $n = 2$ $2 + T_{n-1} + T_{n-2}$ $\forall n \ge 3$ $T(Fib2)_{n \text{ è una formula ricorsiva o ricorrenza}$

n	$\overline{T_n}$
1	1
2	1
3	2+1+1=4
4	2 + 4 + 1 = 7
5	2 + 7 + 4 = 13

Risolviamo la ricorrenza per determinare la complessità / bontà della funzione esaminata.

- andamento esponenziale rispetto ad n \rightarrow funzione NON efficiente
- andamento logaritmico / proporzionale rispetto ad n \rightarrow funzione efficiente

Strumento #1 - albero di ricorsione

$$T(Fib2)_5 = (1 \times 5) + (2 \times 4) = 13$$

dove (1*5) è la complessità delle foglie (5 foglie con peso 1)

e (2 * 4) è la complessità dei nodi interni (4 nodi con peso 2)

Proprietà #1

Se T_n rappresenta l'albero di ricorsione relativo a $Fib2_n$, allora il numero di foglie di T_n è uguale a F_n (con F_n indichiamo l'n-esimo numero della successione di Fibonacci)

Dimostrazione per induzione

Base:

se n = 1
$$\rightarrow$$
 numero di foglie di $T_1 = 1 = F_1$

se n =
2
 \rightarrow numero di foglie di T_{2} $=$ 1 $=$ F_{2}

Passo induttivo:

Proprietà #2

Sia T un albero binario in cui ogni nodo interno ha esattamente 2 figli

Allora $i_T=f_T-1$, dove con i_T indichiamo il numero di nodi interni dell'albero T e con f_T indichiamo il numero di foglie dell'albero T

Dimostrazione per induzione

Dimostrazione su n, dove n è il numero di nodi di T

Base:

 $n=1\to {\rm OVVIO}$

Passo induttivo:

 $n \ge 2$

L'albero risultante lo chiamiamo \overline{T} :

Notiamo che

$$\begin{split} i_{\overline{T}} &= \boldsymbol{f}_{\overline{T}} \! - \! \boldsymbol{1}_{\!*} \\ \boldsymbol{f}_{\overline{T}} &= \boldsymbol{f}_{T} \! - \! \boldsymbol{1}_{\!*\!*} \end{split}$$

$$i_{\overline{T}} = i_T - 1$$

$$_{
m o \; (inverto)} \;\; i_T = i_{\overline{T}} + 1$$

$$_{\scriptscriptstyle \rightarrow \; (\text{sostituisco *})} \, i_T = f_{\,\overline{T}} - 1 + 1$$

$$_{_{\rightarrow \; (\text{semplifico})}}\; i_{T} = f_{\,\overline{T}}$$

$$_{\tiny \rightarrow \text{ (sostituisco **)}} \;\; i_T = \boldsymbol{f}_T \! - \! \boldsymbol{1}$$

Studio complessità di $Fib2_n \, con_{
m l'utilizzo \, del \, metodo \, dell'albero \, di \, ricorsione}$

$$i_{T_n} = F_n - 1$$

$$f_{T_n} = F_n$$

$$T_n = 2 \times i_{T_n} + 1 \times f_{T_n}$$

$$_{\rightarrow} 2 \times F_n - 1 + F_n$$

$$_{\rightarrow} 3 \times F_n - 2$$

Proprietà #3

$$\forall n \ge 6 \to F_n \ge 2^{\frac{n}{2}}$$

Dimostrazione per induzione

Base:

$$n = 6$$

$$F_6 = 8$$

$$2^{\frac{6}{2}} = 2^3 = 8$$

Passo induttivo:

$$n \ge 7$$

$$F(n) \geq 2^{\frac{n-1}{2}} + 2^{\frac{n-2}{2}}$$

$$F(n) \ge 2^{\frac{n}{2}} * 2^{-\frac{1}{2}} + 2^{\frac{n}{2}} * 2^{-1}$$

$$F(n) \geq 2^{\frac{n}{2}} * (2^{-\frac{1}{2}} + 2^{-1})$$

$$2^{-\frac{1}{2}} + 2^{-1}$$
è sempre maggiore o uguale ad i

Fib2(n) risulta essere troppo poco efficiente

$$T(8) = 61$$

$$T(45) = 3,404,709,508$$

Definiamo allora Fib3(n) utilizzando l'iterazione al posto della ricorsione

Fib3 (int n)
$$\rightarrow$$
 int

//Allocazione di un array lungo n;

F(1) = 1; F(2) = 1;

For i = 3 to n

F(i) = F(i-1) + F(i-2);

Return F(n)

$$T(fib3,n) = 3 + (n-2) + (n-1) = 2n$$

Ci chiediamo se fib3 sia efficiente dal punto di vista della memoria...

Notazione asintotica: le classi O, Omega, Theta

[DFI] 2.2; [CLRS] 3.1

Esercizi sulla notazione asintotica. Le classi o, omega

[CLRS] 3.1

Divide et impera. Il teorema fondamentale delle ricorrenze (o "Teorema master"). Esercizi.

[DFI] 2.5; [CLRS] 4.3

Rappresentazione di una lista attraverso un vettore (matrice)

La lista è doppiamente concatenata, ovvero contiene riferimento sia all'elemento precedente che a quello successivo.

La costante NULL viene rappresentata da un indice che non appartiene all'insieme degli indici del vettore (0 in pseudocodice, -1 in C)

Analogamente si può creare una lista singolarmente concatenata chiamata FreeList contenente le celle libere (i campi Key e Previous si possono ignorare). Essa verrà utilizzata per l'allocazione di una nuova lista. FreeList è una variabile globale.

All'inizio [...] la FreeList contiene TUTTI gli oggetti non allocati.

Allocate_Object() Complessità $\Theta(1)$ if(free == null)

errore "spazio esaurito"

else x = freefree = nexy[free]

return x

#Inserisce la cella da liberare in testa alla FreeList

Free_Object(x) Complessità $\Theta(1)$

Alberi

[CLRS] pp. 977-979

L'albero è un tipo particolare di grafo connesso, aciclico e non orientato.

Un albero radicato è una coppia T = (N, A)

N è un insieme finito di nodi fra cui si distingue un nodo R, detto 'Radice'.

A è un sottoinsieme del prodotto cartesiano (NxN),è un insieme di coppie di nodi che chiamiamo archi.

In un albero, ogni nodo v (eccetto la radice) ha esattamente un genitore che viene chiamato padre u, tale che $(u,v)\in A$

Un nodo può avere 0 o più figli, un figlio è tale se esiste un arco $(u, v) \in A$

Il numero dei figli di un nodo si chiama GRADO del nodo.

Un nodo senza figli è detto FOGLIA o NODO ESTERNO.

Un nodo non foglia è un NODO INTERNO.

Se due nodi hanno lo stesso padre, allora sono fratelli.

Il cammino da v ad v'nell'albero T è una sequenza di nodi $n_0, n_1, n_2, \dots, n_{k_{\text{tale}}}$ che soddisfa queste condizioni:

$$\begin{aligned} v &= n_0 \\ v' &= n_k \\ (n_{i-1}, n_i) \in A \ \forall \, 1 < i < k \end{aligned}$$

La lunghezza di un cammino è il numero di archi nel cammino oppure il numero di nodi - 1.

Sia x un nodo dell'albero radicato Tcon radice T.

Qualsiasi nodo y in un cammino, che parte dalla radice r ed arriva ad x, è detto ANTENATO di x(x) compreso, è antenato di se stesso).

Se y è un antenato di x, allora x è DISCENDENTE di y

NB: Ogni nodo è DISCENDENTE ed ANTENATO di sè stesso.

Se y è un antenato di x ed x è diverso da y, allora y è un ANTENATO PROPRIO di x ed x è DISCENDENTE PROPRIO di y.

Il sottoalbero con radice in x è l'albero indotto dai discendenti di x

La profondità di un nodo x è la lunghezza del cammino dalla radice ad x.

Un livello di un albero è costituito da tutti i nodi che stanno alla stessa profondità.

L'altezza di un nodo x è la lunghezza del più lungo cammino che scende da x alle foglie (qualsiasi foglia) di profondità massima.

L'altezza di un albero è l'altezza del nodo radice.

L'altezza è la massima profondità di un qualsiasi nodo dell'albero.

Alberi binari (Albero k-ario con K = 2)

Gli alberi binari sono definiti in modo ricorsivo:

- Un albero vuoto è binario
- Un albero costituito da un nodo (radice),

da un albero binario detto sottoalbero sinistro della radice,

e da un'altro albero binario detto sottoalbero destro della radice

è detto un albero binario.

Albero k-ario

E' un albero in cui i figli si un nodo sono etichettati con interi positivi distinti e le etichette maggiori di K sono assenti = ogni nodo può avere al più K figli.

Un albero K-ario completo è tale quando tutte le foglie hanno la stessa profondità e tutti i nodi interni hanno grado K

ALGORITMO

Trovare l'algoritmo per determinare la completezza di un albero

Dimostro per induzione che le foglie sono K^h

h=0 (caso base): $K^0=1$, OK

Assumiamo che per un albero di altezza h sia vero che $n = K^h$

Lo dimostro per h+1

Il numero di nodi di profondità $h \in K^h$ per ipotesi

Il numero di nodi di profondità h+1 è $K^h*K=K^{h+1}$, OK

ALGORITMO

Trovare il numero di foglie e il numero di nodi interni di un albero k-ario completo di altezza \boldsymbol{h}

Altezza di un albero k-ario completo con n nodi:

$$n = K^h \operatorname{log}_k(n) = \log_k(K^h) \operatorname{log}_k(n) = h$$

Proprietà

Dimostrare per induzione che in un albero BINARIO completo non nullo avente n nodi, il numero di foglie è $\frac{n+1}{2}$

Tipo di dato ALBERO

Struttura:

Insieme di nodi

Insieme di archi

Le operazioni del tipo ALBERO:

$newTree() \rightarrow T$	Nuovo albero T
$\mathrm{numNodi}(T) \to \mathrm{int}$	Numero di nodi presenti in T
$\operatorname{grado}(T,\!N) \to \operatorname{int}$	Numero di figli di N, N appartenente a T
$\operatorname{padre}(T,\!N) \to \operatorname{int}$	Nodo padre, null se N è radice, N appartenente
аТ	
$\mathrm{figli}(\mathrm{T,N})\rightarrow\mathrm{int}[]$	Lista contenente i figli del nodo N, N
appartenente a T	

Rappresentazione di alberi tramite array

Utilizzo del vettore padri

Sia
$$T = (N, A), N = \{n_1, n_2, ..., n_n\}$$

Costruisco un vettore di dimensione n, le cui celle contengono copie di (i, u). Con i indichiamo l'informazione del nodo e con u indichiamo il nodo padre (indice).

```
\forall v \in [1, n]
```

```
p[v] \to info = contenuto
```

 $\mathbf{p}[\mathbf{v}] \to \mathbf{padre} = \mathrm{indice}$ del padre, $(u,v) \in A(archi)$, se v è radice il padre è NULL/-1/0

Spazio per memorizzare $n = \Theta(n)$

Implementazioni

Padre - Complessità $\Theta(1)$

```
padre(Tree P, Node v)
if ( p[v] == 0 )
return null
else
return p[v]->parent;
```

Figli - Complessità $\Theta(n)$

```
figli(Tree P, Node v)
l = crealista()
for i = 1 to n
if ( p[i]->parent == v )
inserisci(i,l)
return l
```

Utilizzo del vettore posizionale

L'albero deve essere completo e con $k \geq 2$. La ricerca è ottimizzata rispetto all'albero dei padri. Ogni nodo ha una posizione prestabilita.

Utilizzo un vettore posizionale P di dimensione n tale che

- 1. 0 è la posizione della radice
- 2. l'i-esimo figlio di un certo nodo v è in posizione kv+i+1, con $0 \leq i < K-1$

un nodo fè foglia se non ha figli, quindi se $kv\,+1\,{>}\,n$

Il padre del nodo f è in posizione $\lfloor \frac{f-1}{k} \rfloor$ (parte intera inferiore) e i figli si trovano tra kv+1 e kv+1+i-1.

Implementazioni

Padre - Complessità $\Theta(1)$

```
padre(Tree P, Node v)

if ( n == 0 )

return null

else

return \lfloor \frac{v-1}{K} \rfloor
```

Figli - Complessità $\Theta(k)$, con k = grado di v

```
figli(Tree P, Node v)
l = crealista()
if( kv + 1 n)
return l
else
for i = 0 to k-1
inserisci(kv + 1 + i ,l)
return l
```

Utilizzo di strutture collegate

Parent + Childs

Ogni nodo è un record con i seguenti campi:

k: informazione

p : puntatore al padre

Se il numero di figli è noto

left: puntatore al figlio sinistro

right: puntatore al figlio destro

Altrimenti si utilizza una lista di puntatori ai propri figli

c [] : lista di puntatori ai figli

Se ogni nodo ha grado al più k, è possibile mantenere in ogni nodo un puntatore a ciascuno dei possibili k figli

Spazio necessario: $\Theta(nk)$, se k costante allora $\Theta(n)$

Implementazioni:

```
Padre - Complessità O(1)

padre (Tree P, Node v)

return v->p
```

Figli - Complessità O(k), con k = grado di v

Con k non noto si utilizza un ciclo che scorre c

```
figli(Tree P, Node v)
l = crealista()
if( v->left <>null )
inserisci(v->left ,1)
if( v->right <>null )
inserisci(v->right ,1)
return l
```

Parent + Left child + Right sibling

Ogni nodo è un record con i seguenti campi:

k: informazione

p: puntatore al padre

left_child: puntatore al figlio sinistro

right_sibling : puntatore al fratello immediatamente a destra

Implementazioni

```
Padre - Complessità \Theta(1)
```

```
padre(Tree P, Node v)
return v->p
```

Figli - Complessità $\Theta(k)$ con k = grado di v

```
figli(Tree P, Node v)
l = crealista()
iter = v->left_child
while (iter <> null)
inserisci(iter, l)
iter = iter->right_sibling
return l
```

Algoritmi di visita degli Alberi

[DFI] pp. 77-80

Visita generica

```
VisitaGenerica(Node v)

s={v}

while ( s <> {} )

u = pop(s)

figli = VisitaGenerica(u)

s = s U figli

return s
```

Dimostrare che ha costo LINEARE^[b]

Teorema

L'algoritmo di visita, applicato alla radice di un albero con m nodi, termina in O(m) iterazioni. Lo spazio usato è O(n)

Dimostrazione

Hp: L'inserimento e la cancellazione da S sono effettuati in tempo costante

Ogni nodo verrà inserito ed estratto dall'insieme s una sola volta, perchè in un albero non si può tornare ad un nodo a partire dai suoi figli.

Quindi le iterazioni del ciclo while saranno al più O(n)

Poiché ogno nodo compare al più una volta in S, lo spazio richiesto non è più alto di O(n)

Visita DFS - Depth first search - Ricerca in profondità

Seguiamo tutti i figli sinistri, andando in profondità fino a che non si raggiunge la prima foglia sinistra. Solo quando il sottoalbero sx è stato completamente visitato, si passa a visitare il sottoalbero dx

```
Dfs_Visit(Node r)
s = stack()
push (r,s)
while(not stackempty(s))
u = pop(s)
if (u <> null)
Dfs_Visit(u)
push(u->right, s)
push(u->left, s)
```

Visita BFS - Breadth first search - Ricerca in ampiezza

Heap

Heap: albero quasi completo con tutti i nodi dell'ultimo livello a sinistra

MaxHeap: La radice ha valore maggiore o uguale a quello dei figli

MinHeap: La radice ha valore minore o uguale a quello dei figli

Lemma 2

Nell'array che rappresenta un heap di n elementi, le foglie sono i nodi con indici che vanno alle posizioni

 $\frac{n}{2}+1, \frac{n}{2}+2, ..., n$

Elemento

Posizione

1°

 2°

 3°

 4°

 6°

9°

 10°

 $\frac{n}{2}$

 $\frac{\frac{n}{2}+1}{\frac{n}{2}+2}$

 $\frac{n}{2} + 3$

 $\frac{n}{2} + 4$

 \mathbf{n}

Lemma 3:

Il teorema definisce la numerosità di nodi con una certa altezza:

Ci sono al massimo $\frac{n}{2^{h+1}}$ nodi di altezza $^{[c]}$ h in un qualsiasi heap di n elementi

Max_heapify

L'operazione max_heapify permette di mantenere le proprietà di maxheap

Precondizioni:

Gli alberi binari con radice in left(i) e right(i) sono maxheap

Postcondizioni:

L'albero radicato in i è un maxheap

```
1 Max_heapify( Heap A, Node i)
     l = left(i)
     r = right(i)
     if ( l <= A. heapsize AND A[l] > A[i] )
       massimo = 1
     else
       massimo = i
8
     if ( r \le A.heapsize AND A[r] > A[massimo])
9
10
       massimo = r
11
     if ( massimo != i )
12
       scambia ( A[i] , A[massimo] )
max_heapify (A, massimo)
13
```

Tempo di esecuzione : O(h) dove h è l'altezza del nodi i poichè l'heap ha altezza log(n) (LEMMA 2)

Dato un vettore disordinato, costruire un heap

```
Build_maxheap ( Array A )
A. heapsize = A. length
for i in \[ \frac{A.length}{2} \] downto 1
max_heapify(A, i)
```

Invariante: ogni nodo in posizione $i+1,\dots,n$ è radice di un maxheap, con n =

$$O\left(\frac{n}{2}log(n)\right) = O\left(n log(n)\right)$$

Sembrerebbe complessa

max_heapify lavora principalmente su foglie, quindi la complessità è lineare $O\left(\,n\,
ight)$

$$\sum_{h=0}^{\log(n)} PIS(\frac{h}{2^{h-1}}) * O(h) = O(n * \sum_{h=0}^{\log(n)} PIS(\frac{h}{2^h}))$$

$$\sum_{h=0}^{+\inf} h * x^h = \frac{x}{(1-x)^2}$$
 L'ultima sommatoria è la serie nota

$$x = \frac{1}{2} \sum_{h=0}^{+inf} h * x^h = \frac{\frac{1}{2}}{(1 - \frac{1}{2})^2} = 2$$

$$O(n * \sum_{h=0}^{log(n)} PIS(\frac{h}{2^h})) = O(2n) = O(n)$$
Quindi

Heapsort

```
HeapSort ( Array A )
build_maxheap ( A )
for i = A.length downto 2
scambia A[ 1 ] e A[ i ]
A.heapsize -= 1
max_heapify ( A , 1 )
```

INV = Il sottoarray che va dalla posizione 1 alla posizione i è un maxheap che contiene gli elementi più piccoli del intero vettore di partenza, mentre A[a+1,[7]], n contiene gli n-1 elementi più grandi di A[1..n] ordinati.

Teorema

L'algoritmo HeapSort ordina in loco n elementi eseguendo nel peggiore dei casi O(nloq(n)) confronti in quanto algoritmo basato sui confronti.

Code di priorità

[CLRS] pp. 135-140

Struttura dati che serve a mantenere un insieme dinamico i cui elementi (aggiungibili e rimovibili) hanno un valore associato detto chiave o peso.

Esistono due tipi di code di priorità:

- MaxPriorità (Si utilizza la struttura MaxHeap)
- MinPriorità (Si utilizza la struttura MinHeap)

Le operazioni delle code di priorità massima/minima sono:

Insert(Coda s , Elemento X) : Inserisce l'elemento X in S

Maximum
(Coda s): Restituisce l'elemento di S con la chiave maggiore senza rimu
overlo

Minimum
(Coda s) : Restituisce l'elemento di S con la chiave minore senza rimu
overlo

 ${\tt Extract_max(\ Coda\ s)}$: Elimina e restituisce l'elemento di S con la chiave maggiore

 $\operatorname{Extract_min}(\operatorname{\ Coda\ s})$: Elimina e restituisce l'elemento di
 S con la chiave minore

Increase_key(Coda s, Elemento x, Chiave k) : Incrementa il valore della chiave di X al nuovo valore K. Si suppone che K sia maggiore o uguale al valore corrente della chiave di X, $K \geq chiave(X)$

Decrease_key(Coda s, Elemento x, Chiave k) : Decrementa il valore della chiave di X al nuovo valore K. Si suppone che K sia minore o uguale al valore corrente della chiave di X, $K \leq chiave(X)$

Implementazione di code di massima priorità con le strutture Heap

```
\begin{aligned} \text{Heap\_maximum(Heap A)} \\ \text{if ( A.heapSize } < 1 \text{ )} \\ \text{error "heap underflow"} \\ \text{else} \\ \text{max} &= A[1] \\ \text{return max} \end{aligned}
```

Complessità di Heap Maximum : O(1)

```
\begin{split} & \text{Heap\_extract\_max}(\text{Heap A}) \\ & \text{if ( A.heapSize } < 1 \text{ )} \\ & \text{error "heap underflow"} \\ & \text{else} \\ & \text{max} = A[1] \\ & A[1] = A[\text{ A.heapSize }] \\ & A.\text{heapSize } \text{-= 1} \\ & \text{max\_heapify}^{[f]} \text{ ( A , 1}^{[g]} \text{ )} \\ & \text{return max} \end{split}
```

Complessità di Heap Extract Max :O(log(n))

```
\begin{split} \text{Heap\_Increase\_Key(Heap A, Nodo i, Key K)} \\ & \text{if ( K < A[i] )} \\ & \text{error "la nuova chiave è più piccola di quella esistente"} \\ & \text{else} \\ & A[i] = K \\ & \text{while}^{[h][i]} \text{ ( i > 1 AND A[i] > A[parent(i)] )} \\ & \text{scambia ( A[i] , A[parent(i)] )} \\ & \text{i = parent(i)} \end{split}
```

Complessità di Heap Increase Key : O(log(n))

Invariante del while: L'array A[i,...,A.heapSize] soddisfa le proprietà di maxHeap tranne una possibile violazione: A[i] potrebbe essere più grande di A[parent(i)]

Con un Heap di n elementi, la complessità è O(log(n)) in quanto il cammino dal nodo fino alla radice ha lunghezza O(log(n))

```
Heap_Insert (Heap A, Element K)
A. heapSize += 1
A[A. heapSize] = -\infty
Heap_increase_key(A, A. heapSize, K)
```

Complessità di Heap_Insert : O(log(n))

La ricerca su una cosa di priorità, nel caso peggiore, ha costo O(n)

Premessa : $1 \le i \le A.heapSize$

```
Heap_Delete ( Heap A, Node i)
    if A. heapSize == 1
      A.heapSize = 0
    else
      val = A[i]
      A[i] = A[A.heapSize]
      A. heapSize -= 1
      if (val > A[i])[l]
        max_heapify ( A , i )
9
      else [m]
10
         while (i > 1 \text{ AND A}[i] > A[parent(i)])
11
           scambia ( A[i] , A[parent(i)] )
12
           i = parent(i)
```

Complessità di Heap Delete : O(log(n))

Esercizi

Esercizio 1:

Scrivere una funzione che determini se un albero è quasi completo. Gli output devono essere 1 se l'albero è quasi completo o 0 se non lo è. L'albero è rappresentato con notazione left e right.

Note: notiamo che non è sufficiente sapere se un albero è quasi completo o meno, necessitiamo anche di un valore per rappresentare l'albero completo.

Gli output saranno quindi: 0 - albero completo, 1 - albero quasi completo, 2 - albero non quasi completo.

*h = (hSx < hDx ? hDx : hSx) + 1 //l'altezza massima + 1

(risSx == 0 AND risDx == 0 AND hDx <= hSd AND hSx <= (hDdx + hDdx)

Complessità di is quasi completo : O(n)

return 2 //non quasi completo

return (hDx < hSx ? 1 : risDx)

$$T(n) = T(k) + T(n - k - 1) + c = O(n)$$

Esercizio 2 :

1))

8

10

13

14

Siano dati due alberi binari completi di radice r ed s aventi la stessa altezza h e dimensione totale (somma dei nodi dei due alberi) n. Le chiavi memorizzate nei nodi soddisfano la proprietà di maxheap. Si vuole creare un unico albero quasi completo maxheap, fusione dei due alberi, con altezza h+1 e dimensione n.

Le seguenti soluzioni vengono accettate:

- 1. Soluzione di costo e tempo [?][?](n) e in spazio aggiuntivo [?][?](n)
- 2. Soluzione (più elegante) di costo e tempo $O(\log(n))$ e spazio aggiuntivo costante

Soluzione:

1. Soluzione di costo e tempo [?][?](n) e in spazio aggiuntivo [?][?](n)

Vettore di n elementi v. (spazio aggiuntivo [?][?](n))

Carichiamo il vettore con i valori di r ed s. [?][?](n)Applichiamo build_maxheap all'intero vettore v. [?][?](n)Creo l'albero corrispondente. [?][?](n)

2. Soluzione di costo e tempo $O(\log(n))$ e spazio aggiuntivo costante

Non possiamo fare altro che modificare le strutture a nostra disposizione, non usiamo strutture ausiliarie.

Prendo come radice il nodo foglia x più a destra dell'albero s. [?][?] $(log\ n)$ Assegno x.left ad s e x.right as r.

Applico la max_heapify al nuovo nodo radice x. $\cite{Model 1}(\log n)$

Limite inferiore per l'ordinamento per confronti

[CLRS] pp. 157-159

Fino ad ora abbiamo visto i seguenti algoritmi di ordinamento, tutti basati sul confronto.

MergeSort	[?][?] (n log(n))
QuickSort	Caso medio:
	$[?][?] \left(\ n \ log(n) \ ight)_{ m, \ caso}$
	$_{ m pessimo}$: [?][?] (n^2)
HeapSort	[?][?] (n log(n))
InsertionSort	$[?][?](n^2)$

Ci domandiamo, è possibile infrangere il limite inferiore di $[?][?](n \log(n))$? Dimostreremo che NON è possibile farlo con algoritmi basati sul confronto.

Analizziamo il limite inferiore degli algoritmi basati sul confronto:

[?][?](n)è il limite banale, in quanto devo analizzare n elementi. Questo

limite è tuttavia irrealistico e insensato.

Tutti gli algoritmi basati sul confronto hanno come limite inferiore $[?][?](n \log(n))$. Per dimostrarlo facciamo uso degli alberi di decisione.

Un albero di decisione è un'astrazione di un qualsiasi algoritmo di ordinamento basato sui confronti.

Esempio: Ordina 3 elementi

Esempio: < 6, 8, 3 >

Questa struttura assomiglia all'Insertion Sort $^{[\mathrm{o}]}$

Per un input $A = \langle A_1, ..., A_n \rangle$ di dimensione n, ogni nodo interno è etichettato da una coppia i:j dove i,j sono indici dell'insieme da ordinare.

- i:j significa confrontare A_i con A_j
- il sottoalbero sinistro dà i successivi confronti se $A_i \leq A_j$
- il sottoalbero destro dà i successivi confronti se $A_i > A_j$
- ogni foglia fornisce una permutazione dell'input tale che se io vado a prendere gli elementi dell'input, ordinati a seconda della permutazione, ottengo l'insieme ordinato in ordine crescente

Dato un qualsiasi algoritmo di ordinamento basato sul confronto, è possibile costruirmi gli alberi di decisione.

- Ogni valore di n è associato ad un proprio albero di decisione.
- L'albero modella tutte le tracce possibile di esecuzione.
- Il tempo di esecuzione (cioè il numero di confronti necessari) è la lunghezza di un cammino sull'albero.
- Il tempo di esecuzione nel caso peggiore è il più lungo cammino dell'albero, ovvero l'altezza dell'albero.

Mi basta quindi trovare la dimensione dell'albero di decisione per determinare il tempo di esecuzione.

Quanto è grande un albero di decisione?

Quante foglie contiene?

L'albero ha come minimo n! foglie poichè, per essere corretto, ogni permutazione deve comparire almeno una volta.

Lemma 2:

Un albero binario di altezza h ha al più 2^h foglie.

Dimostrazione per induzione:

- Se h = 0 abbiamo un albero costituito da un solo nodo radice che è l'unica foglia. Ovviamente con h = 0, $1 \le 2^h$ è verificata, infatti $1 \le 2^0$.
- Assumiamo vera la proprietà per alberi binari di altezza k < h e lo dimostro per h. Sia r la radice dell'albero t.
- Se t ha un solo figlio allora il numero di foglie di t è uguale a quello del figlio che ha altezza h-1. Per ipotesi induttiva: Il numero delle foglie del sottoalbero figlio è minore di 2^{h-1} , che è minore di 2^h .
- Se sono presenti entrambi il figlio sx e il figlio dx, allora il numero delle foglie è dato dalla somma delle foglie dei due sottoalberi. Siano h_L, h_R le altezze dei due figli. Entrambe sono minori di h.

$$f = f_L + f_R = 2^{h_L} + 2^{h_R} \le 2 * 2^{max(h_L,h_R)}$$
 $f \le 2^{1 + max(h_L,h_R)} + max(h_L,h_R) = h_{\text{quindi}}$

Quindi il numero delle foglie è compreso tra n! e 2^h .

Teorema:

Qualsiasi algoritmo di ordinamento per confronti richiede almeno $[?][?](n \log(n))_{ ext{confronti}}$ nel caso peggiore.

Dimostrazione:

Bisogna determinare l'altezza di un albero di decisione, dove ogni permutazione appare come foglia. Si consideri un albero di decisione di altezza h con l foglie che corrisponde ad un ordinamento per confronti di n elementi.

Allora $n! \le l \le 2^h$ (per Lemma 2)

Passando al logaritmo, $h \ge log(n!)$

Utilizziamo l'approssimazione di Stirling per approssimare n!: $n! \simeq \sqrt{2 \pi n} \left(\frac{n}{e}\right)^n$

Per n sufficientemente grande, considero solo il termine più grande

$$h \ge \log\left(\left(\frac{n}{e}\right)^n\right)$$

Per proprietà dei logaritmi

$$egin{aligned} h &\geq n * log\left(rac{n}{e}
ight) \ h &\geq n * (log\left(n
ight) - log(e)
ight)_{ ext{, il secondo algoritmo \`e costante}} \ h &\geq n * log\left(n
ight) \end{aligned}$$

Non ci può essere quindi un algoritmo basato sui confronti minore di n * log(n)

Corollario:

Gli algoritmi HeapSort e MergeSort sono algoritmi di ordinamento per confronti asintoticamente ottimali.

Dimostrazione:

I limiti superiori dei sue algoritmi sono $O(n \log n)$ nei tempi di esecuzione corrispondono al limite inferiore $[?][?](n \log(n))$ nel caso peggiore dato dal teorema.

Se elimino il modello basato sui confronti, posso battere il limite inferiore di $\cite{figure 1.00}(n\ log(n))_{
m SI}$.

Algoritmi di ordinamento privi di confronti

CountingSort

[CLRS] pp. 159-161

Assunzione:

I numeri da ordinare sono interi in un intervallo che va da 0 a k, per qualche k prefissato

Input:

A = [0, ..., n] dove $A[j] \in [0, ..., k], n, k$ sono parametri

Output:

B = [0, ..., n] ordinato, permutazione di A

Utilizzo una memoria ausiliaria C, costituita da k+1 elementi, C=[0,...,n]

Codice:

CountingSort(Array A, Array B, int k, int k) for
$$i = 0$$
 to k
$$C[i] = 0 \text{ //inizializzo a 0 i contatori} \text{????}(k)$$
 for $j = 1$ to n //conto le occorrenze, bound garantito da ipotesi di k [?][?](n)
$$C[A[j]] ++$$

$$\begin{array}{l} \text{for i = 1 to k //somme prefisse} & \text{[?][?](k)} \\ & \text{C[i] = C[i] + C[i-1]} \\ \text{for j = n downto 1 //ciclo di distribuzione} & \text{[?][?](n)} \\ & \text{B[C[A[j]]] = A[j]} \\ & \text{C[A[j]] -} \end{array}$$

Complessità di CountingSort : [?][?] (n+k)

Di solito il CountingSort quando k è limitato superiormente da n, k = O(n). Allora il tempo di esecuzione risulta [?][?](n). Il tempo di esecuzione di questo algoritmo è dato da [?][?](n+k). Di solito è utilizzato (Il CountingSort). Quando k è limitato superiormente da n in k = O(n). Allora, il tempo di esecuzione risulta essere O(n).

Il CountingSort è un algoritmo stabile, caratteristica molto importante. Analisi:

$$C[i] = \left| \left\{ x \in \{1..n\} \mid A[x] = i \right\} \right|$$

$$A[i] = \left| \left\{ x \in \{1..n\} \mid A[x] \leq i \right\} \right|$$

$$A[i] = \left| \left\{ x \in \{1..n\} \mid A[x] \leq i \right\} \right|$$

RadixSort

[CLRS] pp. 162-164

1 °	2°	3°	4°	
PASSO	PASSO	PASSO	PASSO	
253	10	5	5	5
346	253	10	10	10
1034	1034	127	1034	127
10	5	1034	127	253
5	3 4 6	346	253	346
127	127	253	346	1034

L'algoritmo di ordinamento scelto deve essere stabili e rispettare l'ordine.

 $\begin{array}{l} {\rm RadixSort(Array\ A,\ int\ d)\ //\ A\ contiene\ interi\ di\ d\ cifre} \\ {\rm for\ i=1\ to\ d\ //\ 1:\ cifra\ meno\ significativa,\ d:\ cifra\ più\ significativa} \\ {\rm //uso\ un\ ordinamento\ stabile\ per\ ordinare\ l'array\ A\ sulla\ crifra\ i-esima} \\ \end{array}$

Dimostriamo la correttezza dell'algoritmo tramite induzione sulla colonna da ordinare:

Caso base (i=1)

Ordino l'unica colonna

Assumo

che le cifre delle colonne che vanno da 1 a i-1siano ordinate

Dimostro

che un algoritmo stabile sulla colonna i, lascia le colonne da 1 a i ordinate:

Se due cifre in posizione i

• sono uguali:

per stabilità, rimangono nello stesso ordine e, per ipotesi induttiva, sono ordinate.

• sono diverse:

l'algoritmo di ordinamento sulle colonna i le ordina e le mette in posizione corretta.

$$_{\text{Complessità:}}$$
 [?][?](d * (k+n))

Teorema:

Dati n numeri di d cifre, dove ogni cifra può avere fino a k valori possibili^[p], la procedura ordina correttamente i numeri nel tempo di [?][?](d*(k+n)) se l'algoritmo stabile utilizzato dalla procedura impiega un tempo [?][?](k+n)

Dimostrazione:

Per ogni iterazione, il costo risulta essere [?][?] (k+n)

Le iterazioni sono d, per un totale di [?][?](d*(k+n))

Osservazioni:

$$_{\mathrm{Se}}\,k = O(n)_{\,\mathrm{il}\,\,\mathrm{tempo}\,\,\mathrm{di}\,\,\mathrm{esecuzione}\,\,\grave{\mathrm{e}}}\,[?][?](d\,\,{}^*n)$$

Inoltre, se d è costante, la complessità è ${\hbox{\it [?][?]}}(n)$

Come ripartire le chiavi in cifre?

- Usiamo il Counting Sort su ciascuna cifra $\cite{Mathematical Counting}(k+n)$
- Siano n interi, ognuno costituito da b bits
- Divido ogni intero in $PIS(rac{b}{r})$ "cifre", ognuna di r bits. La cifra appartiene a $[0\,,...\,,2^r-1\,]$, $k=2^r$

Esempio: Parola di 32 bits

La suddivido in cifre, ciascuna di 8 bits

$$\begin{aligned} b &= 32, r = 8, d = 4 \, (cifre) \\ &?]?](\frac{b}{r} * \, (n+k) \,) \\ &?]?](\frac{b}{r} * \, (n+2^r) \,) = [?]?](\frac{b}{r} * \, n \, + \frac{b}{r} * \, 2^r \,) \end{aligned}$$

Cerco di minimizzare la complessità ponendo r grande, $\frac{b}{r}$ * n risulta dimi-

nuito, ma $\frac{b}{r}*2^r$ è cresciuto esponenzialmente. Scelgo $\mathbb r$ piccolo, altrimenti $2^r_{\text{domina su }n}.$

Scegliamo r essere il massimo valore tale che n risulti essere $n \geq 2^r$, quindi $r = log \ n$

Sostituendo:

$$\begin{tabular}{ll} \end{tabular} [?][?](& \frac{b}{\log n} * (n + 2^{\log n}) \end{tabular}_{, \text{ essendo}} 2^{\log n} = n \\ & \end{tabular}_{, \text{ essendo}} 2^{\log n} = n$$

I numeri variano nell'intervallo $\begin{bmatrix} 0 \ , ... \ , 2^b - 1 \end{bmatrix}$. Se fisso b = c * log n, allora l'intervallo diventa $\begin{bmatrix} 0 \ , ... \ , n^c - 1 \end{bmatrix}$.

Allora il tempo è uguale a [?][?] (c^*n) , se $\mathbb C$ è costante, allora il tempo è [?][?](n)

Ho ampliato la grandezza dell'intervallo su cui posso applicare l'algoritmo.

Tabelle hash

[CLRS] pp. 209-211

Le tabelle hash sono una possibile implementazione dei dizionari,insiemi dinamici con inserimento, cancellazione e ricerca dove ogni elemento è associato ad una chiave.

I dizionari possono essere implementati nei seguenti modi:

- Con le liste: O(n)
- Con gli alberi binari di ricerca

non bilanciati
$$O(n)$$
 bilanciati $O(\log n)$

- Tabelle hash
- Tempo medio delle tabelle hash
 Caso peggiore
 [?][?](1) Motivo principale per l'utilizzo
 [?][?](n)

Vogliamo fornire un'applicazione che ha bisogno di un insieme dinamico (insert/delete/search). Ogni elemento ha una chiave estratta da un universo U con $|U| \equiv \{0,\dots,w-1\}$, dove w non è troppo grande. Nessun elemento ha la stessa chiave (elementi distinti).

Mi costruisco una tabella ad accesso diretto. Si può utilizzare un array $\begin{bmatrix} 0, \dots, w-1 \end{bmatrix}_{\mathrm{dove}}$

- ogni posizione (o cella) corrisponde ad una chiave di ${\cal U}$
- Se c'è un elemento x con chiave k, allora nella posizione T(k) è contenuto un puntatore a x
- Altrimenti, se l'insieme non contiene l'elemento, $T(k)=\mathit{NULL}$

$$T(k) = \begin{cases} x & \text{se } x.key = k, x \in K \\ NULL & \text{altrimenti} \end{cases}$$
 (3)

 $Direct_Access_Search: O(1)$

```
Direct_Access_Search(Array T, Chiave K) return T[K]
```

 $Direct_Access_Insert : O(1)$

 $Direct_Access_Delete : O(1)$

Direct_Access_Delete(Array T, Elem X)
$$T[X.key] = NULL$$

Potrebbe essere uno spreco se $|K| \leq |U|_{\text{(Molto minore)}}$

Pregi:

Operazioni eseguibili in tempo costante

Difetti:

Lo spazio utilizzato è proporzionale a w e non al numero n di elementi. Di conseguenza si può avere un importante spreco di memoria.

Per ovviare al problema dello spreco di memoria si utilizzano le tabelle hash.

Richieste:

- 1. Vogliamo ridurre lo spazio per la tabella ad $\Theta(|K|)$, ovvero il numero di chiavi effettivamente utilizzate
- 2. Le operazioni siano con costo medio $\Theta(1)$, ma non nel caso pessimo

Idea:

Invece di memorizzazione un elemento con chiave o nella cella k, si usa una funzione h, detta funzione hash, e si memorizza l'elemento nella cella h(k)

 $h: U \to \{0, 1, ..., m-1\}$, dove m della tabella hash è generalmente molto più piccola della dimensione dello spazio di tutte le chiavi.

Problema:

Se m < |U|, due valori possono essere mappati nella stessa cella, ciò è chiamato collisione.

Le tabelle hash possono soffrire del problema delle collisioni: quando un elemento da inserire è mappato, tramite h, in una cella già occupata, si verifica una collisione.

$$k_1 \neq k_2 \in U, h(k_1) = h(k_2)$$

Se |K| > m, ho la certezza di imbattermi in collisioni.

Cerchiamo quindi strategie per gestire le collisioni, ne analizzeremo due:

- 1. Metodo di concatenamento (liste di collisione (o di trabocco))
- 2. Indirizzamento aperto

Risoluzione delle collisioni tramite metodo di concatenamento

Si mettono tutti gli elementi che sono associati alla stessa cella in una lista concatenata.

La cella j contiene un puntatore alla testa di una lista di tutti gli elementi memorizzati che sono mappati in j. Se non ci sono elementi, la cella j conterrà NULL.

Implementazioni

Andiamo ad analizzare l'hashing con concatenamento.

```
Chained_Hash_Insert( Array A, Elem x)
//inserisci x in testa alla lista T[h(x.key)]
```

Tempo di esecuzione: $\Theta(1)$ se h impiega tempo costante $\Theta(1)$ e l'elemento non è presente nella lista

```
Chained_Hash_Search( Array A, Key k)
//ricerca un elemento con chiave k nella lista T[h(k)]
```

Tempo di esecuzione:

Caso peggiore:

Proporzionale alla lunghezza della lista nella cella h(x)

```
Chained_Hash_Delete( Array T, Elem x)
//cancella x dalla lista T[h(k)]
```

Tempo di esecuzione:

Caso peggiore:

 $\Theta(1)$ se la lista doppiamente concatenata (ci serve un puntatore al predecessore)

Senza una lista doppiamente concatenata servirebbe ricercare la chiave del predecessore come ulteriore step.

Sia T una tabella hash con n celle dove sono stati memorizzati n elementi.

Caso peggiore:

Tutti gli elementi sono mappati nella stessa cella. Abbiamo quindi un'unica lista di lunghezza n.

Tempo di esecuzione della ricerca: $\Theta(n)$

Caso medio:

Analisi di h

Deve soddisfare la proprietà di Hashing Uniforme Semplice:

Ogni elemento ha la stessa probabilità di essere mandato in una qualsiasi delle m celle, indipendentemente dalle celle in cui sono mancati gli altri elementi.

$$\forall i \in \{0, ..., n-1\}, Q(i) = \frac{1}{n}$$

Assumo che h soddisfi la proprietà di Hashing Uniforme Semplice: indico con n_j la lunghezza della lista T[j]

Il valore medio di
$$n_{j}$$
 è $\alpha = \frac{n_0 + n_1 + \ldots + n_{m-1}}{m} = \frac{n}{m}$

Fattore di carico:

In una tabella hash con n chiavi ed m celle, il fattore di carico è $\alpha = \frac{n}{m}$. Esso è il numero medio di elementi memorizzati in ogni lista.

Teorema 1

In una tabella hash in cui le collisioni sono risolte con il concatenamento, una ricerca senza successo richiede, nel caso medio, un tempo $\Theta(1+\alpha)$, nell'ipotesi di Hashing Uniforme Semplice.

Intuizione:

- Calcolo i = h(k): $\Theta(1)$
- Accedo a $T[j]: \Theta(1)$
- Scorro la lista T[j] fino alla fine) : $\Theta(\alpha)$ (in media)

Teorema 2

In una tabella hash in cui le collisioni sono risolte con il concatenamento, una ricerca con successo richiede, nel caso medio,un tempo $\Theta(1+\frac{\alpha}{2})=\Theta(1+\alpha)$ nell'ipotesi di Hashing Uniforme Semplice.

Se il numero di celle della tabella hash è almeno proporzionale al numero di elementi da memorizzare, cioè abbiamo n=O(m), di conseguenza

$$\alpha = \frac{n}{m} = \frac{O(m)}{m} = \Theta(1).$$
 (Se alpha è costante)

Tutte le operazioni quindi, mediamente, sono svolte in tempo $\Theta(1)$.

Come si costruiscono le funzioni hash?

Significato di hash: polpetta, tritare.

Una buona funzione hash dovrebbe essere in grado di distribuire in modo uniforme le chiavi nello spazio degli indici della tabella. Deve quindi rispettare l'ipotesi di HUS.

Esempio: la distribuzione delle chiavi è nota.

Le chiavi sono numeri reali k casuali e distribuiti in modo indipendente e uniforme nell'intervallo $0 \le k \le 1$.

Per distribuirle su m celle possiamo moltiplicarle per il valore di quest'ultimo: $h(k) = \lfloor km \rfloor$

Questa funzione soddisfa l'ipotesi HUS.

Le distribuzioni delle chiavi difficilmente risultano note a priori.

Metodi di costruzione delle funzioni hash.

1. Metodo della divisione

$$h(k) = k \mod m$$

Esempio:

$$h = 10, k = 91, h(k) = 91 \mod 19 = 15$$

Svantaggio:

Scegliere il valore di m diventa critico.

Vantaggio:

Semplice da implementare

Come scegliere m:

Si evitano le potenze di due per non ottenere sempre e solo i p bit meno significativi ed evitare problemi (carattere uguale di fine stringa). Scegliamo un numero primo non troppo vicino ad una potenza esatta di 2 o 10.

Es: 3 collisioni accettabili, $n=2000, n/3=666, perci \cite{Amortima} \cite{A$

2. Metodo della moltiplicazione

$$_{ ext{Se}} \, x \in [0...1]_{ ext{uniformemente distribuiti}}$$

$$h(x) = PII(m*x)$$

Data una chiave naturale, la trasformo in un numero nell'intervallo $\begin{bmatrix} 0...1 \end{bmatrix}_{\rm per\ poi\ moltiplicarlo\ per\ } m.$

Fisso cuna costante $A, 0 \leq A \leq 1$

Calcolo k * A ed estraggo la parte frazionaria

$$k*A \bmod 1 = k*A - PII(k*A)P$$

$$h(x) = PII (m * (K * A) mod 1)$$

Vantaggio:

Il valore di m non è più critico. Funziona bene con tutti i valori di A. Knuth

$$\frac{\sqrt{5}-1}{2}$$

suggerì il valore

Per semplificare i conti possiamo scegliere $m=2^p$

$$A = \frac{q}{2w}$$
, $w = \lim_{\text{lunghezza di una parola in memoria, } 0 < q < 2^w$, intero.

Ipotesi:

$$k * a = mod 1 = \frac{k*q}{2^w} mod 1$$

k entra in una sola parola:

$$h(k) = p_{
m \ bit \ più \ significativi \ della \ parola \ meno \ significativa \ di} \, k^{\, *} \, q_{
m .}$$

3. Hashing universale

Se un avversario conosce la funzione hash, qualunque essa sia, potrebbe inserire nella tabella elementi che finiscono tutti nella stessa cella e ciò porterebbe a pessime prestazioni.

La soluzione è costruire un insieme di funzioni hash da pescare casualmente.

- Costruisco un insieme h di funzioni hash, l'insieme deve essere opportunamente costruito.
- 2. Il programma sceglie casualmente h dall' insieme

Risoluzione delle collisioni tramite indirizzamento aperto

Ipotesi:

Non ho alcuna struttura ausiliaria esterna.

Idea:

Gli elementi sono tutti memorizzati nella tabella.

Non c'è memoria esterna

Ogni cella contiene un elemento dell'insieme dinamico oppure NULL

Per cercare un elemento di chiave k:

- 1. Calcoliamo h ed esaminiamo la cella con indice (ispezione)
- 2. Se la cella contiene la chiave k, la ricerca ha successo.
- 3. Se invece contiene NULL, la ricerca termina senza successo.
- 4. Se la cella contiene una chiave che non è k calcoliamo l'indice di un'altra cella in base a k e all'ordine di ispezione. Si continua la scansione della tabella finché non si trova k (successo), una cella contenente NULL oppure dopo m ispezioni senza successo.

La funzione hash per l'indirizzamento aperto è la seguente:

$$h: U \times \{0,1,...,m-1\} \rightarrow \{0,1,...,m-1\}$$

h(k,i) rappresenta la posizione della chiave k dopo i ispezioni fallite

per ogni chiave, la sequenza di ispezioni data da

```
< h(k,0), h(k,1), ..., h(k,m-1)), > deve essere una permutazione di <0,1,...,m-1>
```

in modo che ogni posizione della tabella hash possa essere considerata come possibile cella in cui inserire una nuova chiave.

Assunzioni:

gli elementi della tabella hash sono senza dati satellite

Hash insert: restituisce l'indice della cella dove ha memorizzato la chiave k, oppure segnala un errore se la tabella è piena

```
1 Hash_Insert(Array T, Elem k)
2    i = 0 //ispezioni
3    trovata = false //inserita
4    repeat
```

```
j = h(k, i)
      if T[j] = NULL or T[j] = "deleted"
6
        T[j] = k
        trovata = true
      else
9
        i++
10
11
    until trovata or i == m
    if trovata
12
      return j
13
14
    else
   return error "overflow, tabella piena"
```

Hash search: restituisce j se T[j] contiene la chiave k oppure NULL se essa non esiste in T.

```
1 Hash_Search (Array T, Key K)
    trovata = false
    repeat
      j=h(k,i)
      if T[j] == k
        trovata = true
      else
        i++
9
    until trovata or i-m or T[j] == NULL
10
    if trovata
11
      return j
13
    else
     return NULL
14
```

Problema:

La cancellazione da una tabella hash con indirizzamento aperto è problematica.

Soluzione:

Non si può cancellare ponendo NULL al posto della chiave. Usiamo quindi un marcatore (un valore speciale, chiamato "deleted") al posto di NULL per marcare una cella come vuota a causa di un'eliminazione.

Svantaggio:

Il tempo di ricerca non dipende più dal fattore di carico $\frac{m}{n}$

Non si usa l'indirizzamento aperto quando le chiavi vanno cancellate. Si utilizza invece il concatenamento.

Hash Delete(Array T, Key K)^[r]

La posizione viene determinata dalla funzione

```
h: U \cup U \rightarrow \{0, 1, ..., m-1\} che restituisce
```

< h(k,0), h(k,1), ..., h(k,m-1)>, permutazioni di $\{0,1,...,m-1\}$. Le possibili permutazioni sono m! ma ottenere un sufficiente numero di permutazioni distinte non è banale.

Estensione dell'hashing uniforme semplice:

Situazione ideale : h deve rispettare la proprietà di hashing uniforme, ovvero ogni chiave deve avere la stessa probabilità di avere come sequenza di ispezione, una delle n! permutazioni di $\{0, 1, ..., m-1\}$

Per far ciò:

h(k,0) deve distribuire in modo uniforme nelle m celle.

h(k,1) deve distribuire in modo uniforme nelle m-1 celle. (Nel caso la cella fosse occupata)

. . .

h(k, m-1) deve distribuire obbligatoriamente nell'unica cella ancora vuota.

Ovvero, h deve rispettare la proprietà di Hashing Uniforme Semplice per ogni ispezione (o "iterazione")

Analizziamo quindi tre metodi di scansione

- 1. Ispezione (o "scansione") lineare
- 2. Ispezione (o "scansione") quadratica
- 3. Hashing doppio

1. Ispezione (o "scansione") lineare

Data una funzione hash ordinaria $h':U \to \{0,1,\dots,m-1\}_{\text{chiamata}}$ funzione ausiliaria, il metodo dell'ispezione lineare usa la seguente funzione:

$$h(k,i) = (h'(k) + i) \mod m$$

 $con i \in \{0,1, ..., m-1\}$

Nota: la prima cella ispezionata determina l'intera sequenza di ispezioni, quindi ci sono soltanto m sequenze di ispezioni distinte.

Vantaggi:

Facilità di calcolo

Svantaggi:

Dopo i celle occupate la proprietà che venga estratta la cella immediatamente successiva è $\frac{1+i}{m}$. Abbiamo quindi un problema di addensamento o aglomerazione primaria. Si possono formare lunghe file di celle occupate che aumentano il tempo di ricerca.

Per superare il limite delle m ispezioni distinte e dell'addensamento, proviamo a cambiare il passo con una funzione quadratica.

2. Ispezione (o "scansione") quadratica

Utilizziamo una funzione di hashing quadratica.

$$h(k,i) = (h'(k) + C_1 * i + C_2 * i^2) \mod m$$

con C_1, C_2 costanti non nulle ed $i \in \{0, 1, ..., m-1\}$

La scansione quadratica funziona meglio [s] maparticolare attenzione va posta nella ricerca dei valori di C_1, C_2 in modo che vengano generati tutti gli indici. Non possono essere scegli in modo arbitrario.

Esempio:
$$C_1 = C_2 = \frac{1}{2}, m = 2^p$$

Ho un massimo di m sequenze di ispezione distinte.

Svantaggio: "Addensamento secondario"

Se due chiavi distinte $k_1 \neq k_2$ hanno valore hash ausiliario $h'(k_1) = h'(k_2)$ allora hanno la stessa sequenza di ispezione.

Nonostante tutto, continuo ad avere lo stesso passo tra un'iterazione e la successiva. Procedo quindo con una seconda funzione hash.

3. Hashing doppio

$$h(k,i) = (h_1(k) + i * h_2(k)) \mod m$$

Con
$$h_1, h_2$$
 funzioni hash ausiliarie e $i \in \{0, 1, \dots, m-1\}$

Vantaggio:

La posizione finale viene data dai valori combinati della coppia $(h_1(k), h_2(k))$, i cui elementi producono m combinazioni distinte ciascuno.

Ho quindi $\theta(m^2)$ sequenze di ispezione perchè ogni possibile coppia $(h_1(k),h_2(k))$ produce una sequenza distinta di ispezione.

Vogliamo porre $h_2(k)_{\text{ed}}$ m (dimensione della tabella hash) coprimi (relativamente primi). Ciò mi assicura che l'intera tabella venga ispezionata.

Esercizio

Date due ispezioni
$$i,i' < m, h(k,i) = h(k,i')_{\text{con}} h_2(k), m_{\text{coprimi,}}$$
 allora dimostrare che $i=i'$

Dimostrazione A:

Scelgo $m=2^p$ potenza di due e definisco $h_2(k)$ in modo che produca sempre un numero dispari: $h_2(k)=2^*h_1(k)+1$

Dimostrazione B:

Scelgo m primo, definisco $h_2(k)$ in modo che generi sempre un numero intero positivo minore di m: $h_1(k) = k \mod m$, $h_2(k) = 1 + (k \mod m')$, m' < m Esempio:

$$m = 13$$

$$h_1(k) = k \mod 13$$

$$h_2(k) = 1 + (k \mod 11)$$

$$h(k,i) = (\ h_1(k) + i\ *h_2(k))\ mod\ m$$

$$_{\text{Input:}}$$
 <79,50,69,72,98,14>

$$h(79,0) = 1 \ h(50,0) = 11 \ h(69,0) = 4 \ h(72,0) = 7$$

$$h(98,0) = 7$$

Collisione:
$$h(98,1) = 5$$

$$h(14,0) = 5$$

Collisione:
$$h(14,1) = 9$$

Analisi dell'hashing a indirizzamento aperto

Teorema

Nell'ipotesi di

- Tabella hash priva di cancellazioni
- Funzione hash che rispetta l'ipotesi di hashing uniforme

$$lpha = rac{m}{n}$$
 fattore di carico. Essendo $n \leq m, 0 \leq lpha \leq 1$

il numero atteso (medio) di ispezioni in una ricerca senza successo è al massimo $\frac{1}{1-\alpha}.$

Dimostrazione

Essendo $\alpha \leq 1$ per ipotesi, sono presenti delle celle vuote.

La prima scansione avviene con probabilità 1.

La seconda scansione avviene con probabilità $\frac{n}{m}=\alpha$

La terza scansione avviene con probabilità $\frac{n}{m}*\frac{n-1}{m-1}\simeq \alpha^2_{_{[t]}}$

$$1 + \alpha + \alpha^2 + \dots \le \sum_{i=0}^{\infty} \alpha^i = \frac{1}{1-\alpha^2}$$

Il valore atteso (medio) del numero di ispezioni sarà quindi

$$\cos \alpha^i < 1$$

Se α è costante, una ricerca senza sucesso viene eseguita in tempo medio $\theta(1)$ e in caso pessimo O(n)

Analisi del valore di α :

Se $\alpha=0.5$ (tabella riempita a metà), allora il numero medio di ispezioni è $\frac{1}{1.0.5}=2$.

Se $\alpha=0.9$ (tabella riempita al 90%),
allora il numero medio di ispezioni è $\frac{1}{1-0.9}=10.$

Corollario

L'inserimento di un elemento in una tabella hash a indirizzamento aperto, con fattore di carico α , richiede in media non più di $\frac{1}{1-\alpha}$ ispezioni (tempo richiesto da una ricerca senza successo) nell'ipotesi di Hashing Uniforme.

Nota: l'elemento viene inserito solamente se c'è almeno una cella vuota, quindi $\alpha < 1$

L'inserimento richiede una ricerca senza successo, seguita dalla sistemazione della chiave nella prima cella vuota. Quindi, dal teorema, il numero massimo di ispezioni sarà al massimo $\frac{1}{1-\alpha}$.

Teorema

Data una tabella hash ad indirizzamento aperto con $\alpha \leq 1$ e funzione hash che rispetti l'ipotesi di Hash Uniforme, in una ricerca con successo in una tabella le cui chiavi hanno uguale probabilità di essere scelte, il numero atteso di ispezioni

$$\frac{1}{\alpha}*log(\frac{1}{1-\alpha})$$

Analisi del valore di α :

Se $\alpha=0.5$ (tabella riempita a metà), allora il numero massimo di ispezioni è 1.387, ovvero con meno di 2 accessi riesco a trovare l'elemento cercato.

Se $\alpha=0.9$ (tabella riempita al 90%), allora il numero massimo di ispezioni è 2.255, ovvero con meno di 3 accessi riesco a trovare l'elemento cercato.

Confrontro tra metodi di risoluzione delle collisioni

Notiamo che i costi del concatenamento in nero (indirizzamento aperto) crescono molto più velocemente delle altre due rosse (liste di collisione).

Mod 2 - Grafi

Coppia ordinata G = (V, E) formata da due insiemi V (vertici) ed E (archi)

$$V = \{1,2,3,...,n\}$$

 $E \subseteq Vx\,V$, ovvero E è un sottoinsieme dell'insieme delle parti (prodotto cartesiano) dell'insieme V

I grafi possono essere

- Orientati
- Non orientati, se le relazioni sono simmetriche

$$_{\text{se}} \, \forall (u,v) \in E <=>(v,u) \in E$$

Non si ammettono cappi nei grafi non orientati.

$$\forall u \in E <=>(u,u) \notin E$$

Sottografi

Sottografo di G

G' = (V', E')è sottografo di G se $V' \subseteq V$ e $E' \subseteq E$

Sottografo indotto

Dato $V'\subseteq V,$ il sottografo indotto da V' di G è G[V']=(V',E'), con $E'=E\cap V\,x\,V'$

Cammini

Un cammino di G è una sequenza $< X_0, X_1, X_2, \dots, X_k >$ dove i vertici appartengono al grafo di partenza.

$$\forall i, 0 \le i < k, (X_i, X_{i+1}) \in E$$

Cammini semplici e cammini non semplici

<1,2,3,4,5>è un cammino semplice

<1,2,3,1,4,5> non è un cammino semplice

Un cammino è semplice se tutti i vertici sono distinti

Lunghezza di un cammino

La lunghezza di un cammino è il numero dei suoi archi

Raggiungibilità dei vertici

uè raggiungibile da vse esiste un cammino
 $< X_0, X_1, X_2, ..., X_k >$ tale che $X_0 = u$ e
 $X_k = v$

Ciclo

Un ciclo è un cammino dove $X_0 = X_k$

Un grafo senza cicli si dice aciclico.

[NO]Grafo connesso

Un grado non orientato si dice connesso se $\forall (u,v) \mid u,v \in V$, esiste un cammino da u a v con

[NO] Componente connessa

Dato
$$G = (V, E)$$
 e $V' \subseteq V$

V' si dirà componente connessa se

- 1. G[V'] è connesso
- 2. V' non è sottoinsieme stretto di un sottografo connesso

Se il numero di componenti connesse di un grafo è uguale a 1, il grafo è connesso.

[NO]Vertici adiacenti

Dato
$$G = (V, E)$$
 e $u \in V$

Il grado di $u,\,deg(u)$ è il numero di vertici adiacenti a u

Arco incidente

Un arco che è collegato ad \boldsymbol{v}

Vertici isolati e terminali

Se deg(u) = 0 allora u è isolato

Se deg(u) = 1 allora u è terminale

Teorema della stretta di mano (HandShaking Lemma)

[NO]

$$\sum_{u \in V} degree(u) = 2m \tag{4}$$

dove m = |E| è il numero di archi.

[O]

outDegree(u): numero degli archi uscenti da \boldsymbol{u}

inDegree(u): numero degli archi entranti in u

$$\sum_{u \in V} outDegree(u) = \sum_{u \in V} inDegree(u) = m$$
 (5)

[NO] Proprietà

Il numero di vertici che hanno grado dispari è sempre pari

Dim:

$$\begin{split} V &= P \cup D \\ P &= \{u \in V \mid deg(u)[?][?] \; pari \} \\ D &= \{u \in V \mid deg(u)[?][?] \; dispari \} \\ 2m &= \sum_{u \in V} deg(u) \\ &= \sum_{u \in P} deg(u) + \sum_{u \in D} deg(u) \\ &= \sum_{u \in P} (2*h(u)) + \sum_{u \in D} (2*h(u) + 1) \\ &= \sum_{u \in P} (2*h(u)) + \sum_{u \in D} (2*h(u)) + |D| \\ |D| &= 2m - 2 \sum_{u \in P} h(u) - 2 \sum_{u \in D} h(u) \end{split}$$

$$=2*(m-\sum_{u\in V}h(u))$$

Il numero di vertici con grado dispari è quindi pari

Esercizio:

Dimostrare che, dato G = (V, E) non orientato senza vertici isolati (nessuno vertice ha grado 0),

$$con |E| = |V| - 1$$

Allora, esistono almeno due vertici terminali

Dimostrazione per assurdo:

$$n = |V|, m = |E|$$

Per il lemma della stretta di mano:

$$\sum_{u \in V} deg(u) = 2|E| = 2m$$

$$2n-2=2m=\textstyle\sum\limits_{u\,\in\,V}deg(u)$$

Chiamo V_1 un sottoinsieme di V di vertici terminali

$$V_1 = \{ u \in V \, | \, deg(u) = 1 \}$$

Il problema diventa: dimostrare che $|V_1| \ge 2$

$$2m = \sum_{u \,\in\, V_1} deg(u) \,+\, \sum_{u \,\in\, V \,\backslash\, V_1} deg(u)$$

$$2n-2 \ge 2n - |V_1|_{????^{[\mathbf{u}]}}$$

 $|V_1| \ge 2 \text{ OK}$

Matrice di adiacenza

Dato
$$G = (V, E)$$

$$n = |V|, m = |E|$$

A Matrice quadrata nxn

- Per trovare il grado di un vertice basta calcolare la somma degli elementi sulla corrispondente riga
- [NO]n archi in totale = doppia somma di tutti gli elementi della matrice
- [O] n archi in totale = doppia somma di tutti gli elementi della matrice

Usare le matrici di adiacenza solitamente conviene se ci sono molti archi, altrimenti è meglio utilizzare le liste.

Matrice di adiacenza per grafi orientati

 $A_{i,j} = \begin{cases} 0 & \text{se } (i,j) \notin E \\ 1 & \text{se } (i,j) \in E \end{cases}$ (6)

Matrice di adiacenza per grafi non orientati

$$A_{i,j} = \begin{cases} 0 & \text{se } \{i,j\} \notin E \\ 1 & \text{se } \{i,j\} \in E \end{cases}$$
 (7)

Essendo la relazione tra vertici simmetrica, $A = A^T(trasposta)$

0

3

1

0

0

Liste concatenate

Usare le liste di adiacenza solitamente conviene se ci sono pochi archi, altrimenti è meglio utilizzare le matrici.

[O] Densità

$$\delta = \frac{numero \, di \, archi}{numero \, di \, possibili \, archi} = \frac{numero \, di \, archi}{n^2} \tag{8}$$

$$n=|V|,m=|E|$$

$$\delta = \frac{m}{n^2}$$

[NO] Densità

$$\delta = \frac{numero \, di \, archi}{numero \, di \, possibili \, archi} \tag{9}$$

 $\delta = \frac{m}{k}, k = \frac{n(n-1)}{2}$ coefficiente binomiale

Grafi sparsi $(n \simeq m)$: lista

Grafi densi $(n^2 \simeq m)$: matrice

Proprietà:

Sia G un grafo NO. Se G è aciclico, allora la cardinalità $|E| \leq |V| - 1$

Dimostrazione induttiva su n = |V|:

Caso base:

se n=1 allora m=0

se n=2 allora $m\leq 1$

Passo induttivo $n \geq 3$:

[NO] Complemento di un grafo

Il complemento di un grafo è un grafo con gli stessi vertici, i cui archi sono complementari:

$$G = (V, E), \overline{G} = (\overline{V}, \overline{E})$$

Grafo autocomplementare

Un grafo è detto autocomplementare se $\overline{G} = G$ ovvero se $\forall \ (i,j) \in E \ sse \ (i,j) \in \overline{E}$

Prodotto tra matrici di adiacenza

Prodotto di matrici

Due matrici $n\,x\,m$ ed $p\,x\,n$ (il numero di righe della prima equivale al numero di colonne della seconda) possono essere moltiplicate tramite il prodotto "righe per colonne".

$$C = A * B$$

$$C_{i,j} = \sum_{k=1}^{n} a_{i,k} * a_{k,j}$$

Matrice al quadrato

Moltiplicando una matrice di adiacenza A per se stessa, tramite il prodotto tra righe e colonne, ottengo una matrice delle stesse dimensioni con le seguenti caratteristiche:

- Sulla diagonale principale ho i gradi dei vertici
- Nelle altre posizioni ho il numero di cammini tra i e j di lunghezza 2

$$A^{2} = A * A = (a_{i,j}^{(2)})$$
$$a_{i,j}^{(2)} = \sum_{k=1}^{n} a_{i,k} * a_{k,j}$$

Dimostrazione:

"Sulla diagonale principale ho i gradi dei vertici" (i = j)

$$a_{i,j}^{(2)} = \sum_{k=1}^{n} a_{i,k} * a_{k,i}$$

Essendo G non orientato, la matrice è simmetrica e $a_{i,k} * a_{k,i} = a^{2}_{i,k}$

$$a^{(2)}_{i,i} = \sum_{k=1}^{n} a^{2i,k}$$

k=1 , notiamo che il termine della sommatoria contiene solo valori binari che elevati al quadrato restituiscono il medesimo valore. Perciò

$$a^{(2)}_{i,i} = \sum_{k=1}^{n} a_{2i,k} = \sum_{k=1}^{n} a_{i,k} = deg(i)$$

"Nelle altre posizioni ho il numero di cammini tra i e j di lunghezza" ($i \neq j$)

$$a^{2i,j} = \sum_{k=1}^{n} a_{i,k} * a_{k,j}$$

k=1, essendo la matrice di adiacenza composta da valori binari, il prodotto risulta valere 1 solo se entrambi i fattori valgono 1, ovvero se esiste un cammino di lunghezza 2

Matrice con esponente maggiore di 2

$$\boldsymbol{A}^n, n > 2_{\text{conterrà}}$$

- Sulla diagonale: il numero di cicli di lunghezza n che partono da i
- Fuori dalla diagonale: il numero di cammini di lunghezza n

Dimostrazione per induzione:[v][w]

Ipotesi:

Passo induttivo:
$$A^n = A * A * ... * A (n \ volte) = A^{n-1} * A$$

$$a^{(n)}$$
i, $j=\sum\limits_{k=1}^{n}a^{(n-1)}$ i, $k*a_{k,j}$, ovvero il numero di cammini da

i a j passanti per k.

Esercizio

Mostrare che G = (V, E)[NO] contiene un triangolo, ovvero un ciclo di lunghezza 3, se e solo se esistono due indici i, j tali che sia la matrice di adiacenza A e la matrice al quadrato A^2 hanno un elemento non nullo in posizione (i, j)

[NO] Grafi regolari

G=(V,E)si dice k-regolare se tutti i vertici hanno grado k. Conn=|V|, m=|E|

2-regolare

3-regolare (o "cubico")

Proprietà

Se G è 2-regolare allora il numero di vertici coincide necessariamente con il numero degli archi. n=m

Dimostrazione

Utilizziamo il teorema della stretta di mano

$$2m = \sum_{u \in V} deg(u)^{[\mathbf{x}][\mathbf{y}]}$$

Esercizio

Dimostrare che se il grafo G è 3-regolare, allora n è pari. Analogamente, analizzare G 4-regolare.

Isomorfismi di grafi

Un isomorfismo di grafi è un funzione che mappa un grafo in un secondo dalla stessa forma.

Viene fornita la definizione per i grafi non orientati, essa può però essere adattata a grafi orientati.

[NO] Definizione

$$G_1 = (v_1, E_1), G_2(V_2, E_2)$$

 $\Theta: V_1 \to V_2$ si dice isomorfismo se valgono le due proprietà:

1. Θ deve essere una funzione biettiva (è necessaria una corrispondenza 1-1).

2. La relazione di adiacenza deve essere preservata

$$\forall u,v \in V_1, (u,v) \in E_1 \Leftrightarrow (\Phi(u),\Phi(v)) \in E_2$$

Determinare se due grafi sono isomorfi

 $G_1=(v_1,E_1),G_2(V_2,E_2)$ sono isomorfi se esiste un isomorfismo da G_1 a G_2 e si indica con $G_1\simeq G_2$

Condizioni necessarie perché $G_1 \simeq G_2$:

- 1. $|V_1| = |V_2|$
- 2. $|E_1| = |E_2|$
- 3. Stessa degree sequence $degseq(G_1) = degseq(G_2)$
- 4. $\#ComponentiConnesse(G_1) = \#ComponentiConnesse(G_2)$

\overline{G}	\overline{G}	Può verificarsi?	
Connesso	Connesso	FALSO	
Connesso	Disconnesso	FALSO	
		(Es:	
		autocomplementare)	
Disconnesso	Connesso	VERO	
Disconnesso	Disconnesso	FALSO	

Il problema di determinare l'esistenza di un'isomorfismo tra due grafi è esoso in termini di tempo. Per evitare il bruteforce di tutte le combinazioni si procede a mappare gli archi con grado analogo.

Alberi

Un albero è una particolare categoria di grafo

[NO]Definizione

G = (V, E) si dice albero [libero] se è aciclico e connesso.

Un albero libero in cui si seleziona un particolare vertice, chiamato "radice", si dice radicato.

Proprietà 1:

Se G è un albero, allora |E|=|V|-1 poichè è, per definizione, connesso e aciclico:

- G è connesso se $|E| \ge |V| 1$: si deve rispettare un numero minimo di archi
- G è aciclico se $|E| \leq |V| 1$: si deve rispettare un numero massimo di archi

L'albero risulta essere quindi una struttura "fragile" per quanto riguarda il numero di archi.

Proprietà degli alberi [liberi]

Sia G = (V, E)[NO], le seguenti affermazioni sono equivalenti:

- 1. G è un albero
- 2. Due vertici qualsiasi di G sono connessi da un unico cammino semplice, ovvero senza vertici ripetuti

Dimostrazione:

Sia G=(V,E)[NO], per assurdo assumo ci siano almeno due vertici u,v, tali che esistono almeno due cammini che li collegano. Facendo ciò si forma un ciclo.

- 3. G è connesso, ma se un qualche arco viene rimosso da G, il grafo risultante è disconnesso
- 4. G è connesso e |E| = |V| 1
- 5. G è aciclico e |E| = |V| 1
- 6. G è aciclico, ma se un qualunque arco viene aggiunto, allora il grafo risultante è ciclico.

Alberi di copertura

Un albero G=(V,E)[NO] connesso si dice di copertura se tutti gli archi in $T\subseteq E$ toccano tutti i vertici di G.

Taglio di un albero

Un taglio di un albero è una divisione in due parti $(S,V\setminus S)$ dell'insieme dei vertici.

Un taglio rispetta $A\subseteq E$ se non esistono archi di A tagliati. Essi possono essere in una delle due partizioni ma non possono attraversare il taglio.

Arco leggero

Un arco è leggero se ha il peso minore tra gli altri archi attraversanti un taglio.

Albero di copertura minimo (MST)

Sia T un albero di copertura,
definisco

$$w(T) = \sum_{(u,v) \in T} w(u,v)$$

dove $w:E\to\mathbb{R}$ è detta "funzione peso"

Definizione:

Un albero di copertura T si dice minimo o "di peso minimo" (minimum spanning tree) se w(T) è il minimo rispetto a tutti gli alberi di copertura

Teorema fondamentale degli MST

Sia G = (V, E)[NO] connesso con funzione peso w.

Se le tre condizioni

- 1. $A \subseteq E$ è contenuto in qualche MST
- 2. $(S, V \setminus S)$ è un taglio che rispetta A
- 3. Sia (u, v) un arco leggero che attraversa il taglio $(S, V \setminus S)$

sono rispettate, allora l'arco (u,v) è sicuro per A, ovvero $A\subseteq\{(u,v)\}$ è contenuto in qualche MST.

Dimostrazione

 $A\subseteq T\text{ con }T\text{ MST}$

Due casi:

- 1. $(u,v) \in T$, caso banale in quanto $A \cup \{(u,v)\} \subseteq T$ e T è l'MST che cerchiamo.
- 2. $(u,v) \notin T$, quindi T non è l'MST che cerchiamo, procediamo quindi a costruirne uno:

Per le sei proprietà fornite, se unisco (u, v) a T formo un ciclo, è quindi necessario rimuovere l'altro cammino (x, y) che lo forma tra gli archi che attraversano il taglio.

$$T' = T \cup (u, v) \setminus \{(x, y)\}$$

 $w(u,v) \leq w(x,y)$: Il peso dell'arco aggiunto è minore del peso dell'arco rimosso, in quanto esso è leggero per ipotesi.

Quanto vale allora w(T')?

$$w(T') \leq w(T)$$
 ed essendo $w(u,v) \leq w(x,y)$ allora $w(T') \leq w(T)$

Da
$$w(T) \leq w(T') \leq w(T)$$
 [z]risulta che $w(T') = w(T)$, e T' è quindi un MST.

Nota^[aa]: se
$$w(u, v) = w(x, y)$$
 allora $(u, v) = (x, y)$?

Dobbiamo però dimostrare che T' sia "sicuro", e perciò dimostriamo che $A \cup \{(u,v)\} \subseteq T'$

Corollario

Sia G = (V, E)[NO] connesso con funzione peso w. Se le tre condizioni

- 1. $A \subseteq E$ è contenuto in qualche MST
- 2. C è una componente connessa della foresta (V,A)
- 3. Sia (u,v) un arco leggero che collega la componente C con il resto del grafo

sono rispettate, allora l'arco (u, v) è sicuro per A, ovvero $A \cup \{(u, v)\}$ è contenuto in qualche MST.

Dimostrazione

Se impongo che

- Il taglio dell'ipotesi 2 sia $(C,V\setminus C),$ in modo da isolare la componente connessa
- $\bullet \quad MANCA^{[ab]}$

posso utilizzare il teorema fondamentale per la dimostrazione

Corollario

Sia (u, v) un arco di peso minimo in G. Allora (u, v) appartiene a qualche MST.

Dimostrazione tramite la tecnica "cuci e taglia"

Sia T un MST di G.

Due casi:

- 1. $(u, v) \in T$, ovvio
- $2. (u,v) \notin T$

Corollario

Sia (u, v) un arco di peso minimo in G e supponiamo che sia unico. Allora (u, v) appartiene a tutti gli $MST^{[ac]}$.

Dimostrazione per assurdo

Nonostante le ipotesi, esiste [almeno] un MST senza l'arco in questione.

Non esistendo, provvediamo ad aggiungerlo a T. $T' = T \cup \{(u, v)\}$

Facendo ciò creo sicuramente un ciclo, in quanto T è albero. Scelto un arco (x,y) e lo rimuovo. Ho quindi costruito un albero di copertura con peso W(T[?][?][?]) = W(T) + w(u,v) - w(x,y) < W(T)

Con w(u, v) < w(x, y) (minore stretto!)

Contraddizione: essendo T MST, non può esistere un altro albero con peso inferiore.

Esercizio

G = (V, E)[NO] connesso con $w : E \to \mathbb{R}$

Sia T_{min} un MST di G.

Sia T' un albero di copertura (ST) non necessariamente minimo (M).

Siano (u,v),(x,y) rispettivamente gli archi di T,T[?][?][?]di peso massimo. Ordino gli archi e considero i pesi maggiori.

$$T_{min}: \langle e_1, e_2, ..., e_{n-1} \rangle_{con} e_{n-1} = (u, v)$$

 $T': \langle e'_1, e'_2, ..., e'_{n-1} \rangle_{con} e'_{n-1} = (x, y)$

Congettura: $w(u, v) \le w(x, y)$

Si può procedere per confutazione con controesempio oppure per dimostrazione tramite metodo "cuci e taglia".

Soluzione $^{[ad]}$:

Esercizio

Dimostrare che, se tutti i pesi del grafo sono distinti, allora esiste un solo MST.

Soluzione^[ae]:

Generazione degli alberi di copertura minima

```
Generic_MST(G, w) A = []
while (A non forma un MST) o analogamente (|A| \le |V| - 1)
//Trova un arco sicuro per A (u, v)
A = A \cup \{(u, v)\}
Return A
```

Verranno analizzati gli algoritmi di Kruskal e Prim, i quali differiscono per l'implementazione della ricerca dell'arco sicuro.

Kruskall utilizza le strutture dati Set per la gestione di insiemi disgiunti. Esse dispongono di tre operatori:

- 1. Make set(X)
- 2. Union(x,y) o $Merge_set(x,y)$
- 3. $Find_set(x)$

Esempio di utilizzo: determinare le componenti connesse di un grafo

Generazione di MST: Kruskal

```
G = (V, E) connesso, n = |V|, m = |E|
```

```
1 Kruskal (G,w)
       A = []
       Foreach u in V[G] do
                                                               O(n)
           Make_set(u)
       Ordina gli archi di E[G] in ordine crescente
                                                               \Theta(mlogm)
       Foreach (u,v) in E[G] do
                                                               O(mlogm)
6
           If find_set(u) != find_set(v) then
                                                               O(logm)*
            Union(u,v)
                                                        O(logm)*
8
                   A = A U \{(u,v)\}
       Return A
```

*Per l'analisi delle due find_set e della union ci viene formita la complessità ottenuta tramite Heichmann.

Complessità:

O(mlog(m)+n+mlog(m)),
avendo $m\geq n-1$ archi poichè l'arco è connesso, la complessità
èO(mlog(m))

Simulazione di esecuzione

Tramite grafo

Tramite tabella

Passo	A	Insiemi disgiunti
1	{}	$\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}$
2	$\{(1,6)\}$	$\{1,6\},\{2\},\{3\},\{4\},\{5\}$
3	$\{(1,6),(1,4)\}$	$\{1,4,6\},\{2\},\{3\},\{5\}$
4	$\{(1,6),(1,4),(1,2)\}$	$\{1,2,4,6\},\{3\},\{5\}$
5	$\{(1,6),(1,4),(1,2),(4,3)\}$	$\{1,2,3,4,6\},\{5\}$
6	$\{(1,6),(1,4),(1,2),(4,3),$	$(4,5)$ {1,2,3,4,5,6}

Generazione di MST : Prim

A differenza di Kruskal, Prim richiede un vertice di partenza detto "radice". Con l'insieme Q si indica l'insieme dei vertici da estrarre. V

Q indica quindi l'insieme dei vertici già estratti. Q è una coda di priorità, implementata tramite Heap Binario, i cui elementi hanno le seguenti caratteristiche:

- Predecessore: $\pi[u]$
- Chiave: Key[u] valore dell'arco incidente che attraversa il taglio (Q, V
 Q) con peso minore. Si utilizza il valore infinito positivo per indicare l'eventuale assenza di archi.

```
Prim(G, w, r):
      Q = V[G]
       foreach v in Q
          key[v] = inf
      key[r] = 0
      \pi[r] = NIL
       while Q != [] do
          u = extractMin(Q)
          foreach v in Adj[u]
             if v in Q and w(u\,,v)\,<\,key\,[\,v\,] then
10
                key[v] = w(u,v)
\pi[v] = u
11
12
       \mathbf{return} \ \mathbf{T} = \{(\mathbf{v}, \pi[\mathbf{v}]\} \mid \mathbf{v} \ \mathbf{in} \ \mathbf{V} \setminus \{\mathbf{r}\}\}
13
```

La convergenza risulta essere finita

La complessità della funzione Prim è O(mlogn)

Simulazione

Cammini minimi

Solitamente si sottointende l'utilizzo su grafi orientati, in caso di grafi non orientati, ogni arco può essere sostituito da una coppia di archi inversamente orientati.

$$G = (V, E, w)$$
 orientato, $w : E \to \mathbb{R}$

Un cammino p è una sequenza $< x_0, x_1, ..., x_q>, \forall i, i \leq i \leq q, (x_{i-1}, x_i) \in E.$

$$w(p) = \sum_{i=1}^{q} w(x_{i-1}, x_i)$$
 è la funzione "peso" di un cammino p .

La distanza $\delta(u,v)$ tra due vertici $u,v\in V$ è definita nel seguente modo:

 $\delta(u,v) = +\infty$ se non esiste un cammino orientato da u a v

 $\delta(u,v) = min(w(p))$ minimo dei pesi dove p è il cammino tra u e v

Table 20: My caption

		Destinazione	
		Singola	Multipla
Sorgente	Singola	a	b
	Multipla	c	d

Varianti

Esistono quattro diverse varianti di ricerva dei cammini minimi, combinazioni dei due casi si numerosità dei vertici di partenza e di destinazione.

Destinazione

Singola

Multipla

(tutti i vertici)

Sorgente

Singola

$$_{\text{Out:}}^{\text{In:}} G(V,\!E,\!w)\!,u,\!v\in \!V$$

cm: cammino minimo

$$_{\text{In:}}\,G(V,\!E,\!w)\!,s\in V$$

$$_{\text{Out:}} \; \forall \; u \!\in\! V, \! \delta(s\!,\!u)$$

Multipla

(tutti i vertici)

$$_{\text{In:}}$$
 $G(V,E,w),d\in V$

$$_{\text{Out:}} \; \forall \; u \in V, \! \delta(u,\!d)$$

$$_{\text{In:}}\,G(V,\!E,\!w)$$

$$_{\text{Out:}} \; \forall \; u,\!v \in \! V,\! \delta(u,\!v)$$

Solo i casi evidenziati verranno presi in analisi, in quanto gli altri due sono sottoproblemi di essi.

Archi con pesi negativi

Ci domandiamo se sia possibile risolvere il problema degli archi con peso negativo sommando ai pesi di tutti gli archi del grafo G la costante k capace di renderli tutti positivi. Es: $k = -min(w(u, v)) \forall u, v \in E$

NO. Sommare una costante ai pesi degli archi altera eventuali somme di pesi di archi di lunghezza differente in maniera diversa.

Strutture dati per la rappresentazione dei cammini minimi

Per ogni vertice $u \in V$ necessitiamo di due campi:

- 1. d[u]: stima della distanza tra s ed u
- 2. $\pi[u]$: predecessore

Sottografo dei predecessori

Dato G = (V, E, w), il sottografo dei predecessori è $G_{\pi} = (V_{\pi}, E_{\pi})$ dove

 $V_{\pi} = \{ u \in V | \pi[u] \neq NIL \} \cup \{ s \}$

 $E_{\pi} = \{ (\pi[u], u) \in E | u \in V_{\pi} \setminus \{s\} \}$

Albero dei cammini minimi

Dato G=(V,E,w), l'albero dei cammini minimi G'=(V',E') è un sottografo di G dove

 V^{\prime} : tutti gli archi ragiungibili dal vertice sorgente

G' : forma un albero radicato in s

 $\forall v \in V'$ l'unico cammino tra $s \in v$ in G' è un cammino minimo in G

Procedure di modifica dei due campi

Dijkstra

```
Dijkstra (G,w,s)

InitSingleSource (G,s)

Q <- V[G]

S <- []

while Q != [] do

u <- extractMin (Q)

S <- S U {u}

foreach v in Adj[u] do

relax (u, v, w)

return d,π
```

La coda di priorità Q può essere implementata tramite

- 1. Array lineare
- 2. Heap binario

Studiamo la complessità di Dijkstra con coda di priorità implementata con array lineare:

Correttezza di Dijkstra

Proprietà 1

Un sottocammino p' di un cammino minimo p, è anch'esso minimo.

Dimostrazione

Se, per assurdo, suppongo che p' non sia minimo. Allora deve esistere un terzo cammino p'' tra x e y con w(p'') < w(p'). Se così fosse, p non sarebbe minimo.

Proprietà 2

Dato p cammino minimo, $\delta(s, v) = \delta(s, u) + \delta(u, v)$

Proprietà 3 - Diseguaglianza triangolare

$$\delta(s, v) \le \delta(s, u) + w(u, v)$$

Dimostrazione

```
caso a, u non è raggiungibile da s, quindi \delta(s,u)=+\inf caso b, u è raggiungibile da s, allora \delta(s,u)<+\inf
```

se p è minimo $\delta(s, v) = w(s, u) + w(u, v)$, altrimenti $\delta(s, v) < w(s, u) + w(u, v)$

[a]Parte Intera Inferiore

[b]?????

[c]cammino più lungo verso una foglia

[d]Complessità O(log(n))

[e]Parte Intera Inferiore

[f]Complessità O(log(n))

[g]parto da 1 (radice)

[h]invariante

[i]Complessità O(log(n))

[j]Nell'implementazione reale ci si comporta in maniera diversa, usando la parte finale della HeapIncreaseKey

[k]Complessità O(log(n))

[l]Anomalia verso il basso

Complessità: $O(\log(n))$

[m]anomali verso il basso

Complessità : O(log(n))

[n]Aggiunta mia

- [o]Che vuol dire???
- [p]per il countingSort
- [q]per i problemi della deleted
- [r]manca
- [s]???
- [t]Controllare
- [u]Capire la logica
- [v]INCOMPLETA
- [w]Pag 2- 14/3
- [x]MANCA ROBA
- [y]Pag 3 14/3
- [z]Perchè il primo termine??
- [aa]Eeeh...
- [ab]MANCA
- [ac]Solitamente quando formulata così, si procede per assurdo negando la tesi
- [ad]22/3/2018
- [ae]22/3/2018