Learning to Explore via Meta-Policy Gradient

Tianbing Xu*, Qiang Liu (UT, Austin), Liang Zhao*, Jian Peng (UIUC)

Baidu Research*, CA, USA

July 7, 2018

Demo

Video Result: Continuous Control Tasks

Teacher-Student Exploration-Exploitation Interactions

- ► Teacher (exploration policy π_e) Learning to generate high quality data based on student's performance improvement
- Student (exploitation policy π) Learning from teacher's demonstrations to improve the performance

Meta-Reward

The student performance improvement:

$$\mathcal{R}(\pi, D_0) = R(\pi') - R(\pi) \tag{1}$$

 π' look-ahead policy of student

$$\pi' = DDPG(\pi, D_0)$$

 $R(\pi)$ the cumulative reward of roll-out generated by policy π .

Learning to Explore via Meta-Policy Gradient

Teacher's Objective:

$$J(\pi_e) = E_{D_0 \sim \pi_e} \big[\mathcal{R}(\pi, D_0) \big]$$

Teacher's policy gradient (Meta-Policy Gradient):

$$\nabla_{\theta^{\pi_e}} J = E_{D_0 \sim \pi_e} \left[\mathcal{R}(\pi, D_0) \nabla_{\theta^{\pi_e}} \log P(D_0 | \pi_e) \right]$$
 (2)

where,

$$\nabla_{ heta^{\pi_e}} \log P(D_0|\pi_e) = \sum_t \nabla_{ heta^{\pi_e}} \log \pi_e(a_t|s_t)$$

Learning to Explore Algorithm

Algorithm 1 Learning to Explore

- 1: for iteration t do
- 2: Generate D_0 by executing teacher's policy π_e .
- 3: Update actor policy π to π' using DDPG based on D_0
- 4: Generate D_1 from π' and estimate the reward of π' . Calculate the meta reward: $\hat{\mathcal{R}}(\pi, D_0) = \hat{\mathcal{R}}_{\pi'} \hat{\mathcal{R}}_{\pi}$.
- 5: Update Teacher's Policy π_e with meta policy gradient

$$\theta^{\pi_e} \leftarrow \theta^{\pi_e} + \eta \nabla_{\theta^{\pi_e}} \log \mathcal{P}(D_0|\pi_e) \hat{\mathcal{R}}(\pi, D_0)$$

- 6: Add both D_0 and D_1 into the Replay Buffer $B \leftarrow B \cup D_0 \cup D_1$.
- 7: Update π using DDPG based on Replay Buffer, that is, $\pi \leftarrow \mathrm{DDPG}(\pi, B)$. Compute the new \hat{R}_{π} .
- 8: end for

Experiments on Continuous Control Tasks

Figure: Illustrative screen-shots of environments we experiment with Meta and DDPG

Meta-Exploration Policy Explores Efficiently

Figure: Comparison between meta exploration policies and DDPG

Meta:

$$\pi_e \sim N(f(s, \theta^{\pi_e}), \Sigma)$$

Meta (State): adding more *Q*-function related features Meta (Variance):

$$\pi_{\mathsf{e}} \sim \mathsf{N}(\mu(\mathsf{s}, \theta^{\pi}), \Sigma)$$

Sample Efficiency with Higher Return

Sample Efficiency with Higher Return

Table: Reward achieved in different environments

env-id	Meta	DDPG
InvertedDoublePendulum-v1	7718 \pm 277	2795 ± 1325
InvertedPendulum-v1	745 ± 27	499 ± 23
Hopper-v1	$\textbf{205}\pm\textbf{41}$	135 ± 42
Pendulum-v0	-123 \pm 10	-206 ± 31
HalfCheetah-v1	$\textbf{2011} \pm \textbf{339}$	1594 ± 298
Reacher-v1	-12.16 ± 1.19	$\textbf{-11.67}\pm\textbf{3.39}$

Guided Exploration with Diverse and Adaptive Meta Policies

Figure: State Visitation Density Contours of Meta and DDPG in Early (the first row) and Late (the second row) Learning Stages.

Conclusion

- Developed a Meta-RL method for More Efficient Exploration
- Guided Exploration by Teacher with Diverse and Adaptive Meta Policies
- ▶ Teacher Explores Spaces Globally, far away from the Student's States

Thank you!