# Разработка библиотеки визуализации трехмерной графики для симулятора дронов

Цырендашиев Сультим Баиржапович, 371

Научный руководитель: ст. преп. Пименов А.А.

#### Введение

- Гражданские беспилотные летательные аппараты, их тестирование
- CoreCVS
- Необходимо повышение переносимости и удобства использования визуализации трехмерной графики

#### Цель и постановка задачи

Цель курсовой работы – разработка графической библиотеки с высокой конфигурируемостью и простотой использования.

- Реализация обертки над графическим API
- Реализация высокоуровневой системы визуализации трехмерной графики
- Интеграция в подсистему отображения инженерной графики библиотеки CoreCVS

#### Существующие решения

- Google Filament
  - произвольные шейдеры?
  - произвольный формат вершин?
- Object-oriented Graphics Rendering Engine
  - множество зависимостей
  - сложность интеграции с Qt
- Симуляторы AirSim, Carla Unreal Engine, Unity Engine





## Обзор



#### Реализация обёртки



• Вершинные, индексные буферы



• Регистрация структур вершин



• Текстуры, пробники



• Работа с командными буферами

## Вершинные, индексные буферы



## Структуры вершин

#### Полигональная сетка 1

| В                  | ершина 1                | Вершина 2          |                         |  |
|--------------------|-------------------------|--------------------|-------------------------|--|
| Позиция<br>3 float | He используется 5 float | Позиция<br>3 float | Не используется 5 float |  |

#### Полигональная сетка 2

| Вершина 1 |         |         | Вершина 2 |         |         |
|-----------|---------|---------|-----------|---------|---------|
| Позиция   | Нормаль | Цвет    | Позиция   | Нормаль | Цвет    |
| 3 float   | 3 float | 4 float | 3 float   | 3 float | 4 float |

### Структуры вершин



#### Интеграция Vulkan Memory Allocator

- Изначально: каждому VkBuffer свой VkDeviceMemory
- Количество одновременно существующих VkDeviceMemory ограничено
- Vulkan Memory Allocator решает эту проблему, оптимально используя количество аллокаций VkDeviceMemory

#### Высокоуровневая система отображения



# Примитивы



#### Рефлексия шейдеров с помощью SPIRV-Cross

#### Параметры:

- входные и выходные данные
- буферы параметров шейдера
- текстуры

```
layout (location = 0) in vec4 inColor;
layout (binding = 0) uniform UBO {
    mat4 mat;
    vec3 w;
} ubo;
layout (binding = 1) uniform sampler2D texture;
```

#### Интеграция в CoreCVS

- CoreCVS использует фреймворк Qt
- Для Vulkan необходим VkSurfaceKHR для отрисовки в окно
- Qt с версии 5.10 предоставляет возможность получения VkSurfaceKHR

### Интеграция в CoreCVS



## Интеграция в CoreCVS



#### Итоги

- Реализована графическая библиотека:
  - с оберткой над низкоуровневым графическим API
  - о с высокоуровневой системой отображения
- Библиотека интегрирована в подсистему отображения библиотеки CoreCVS