основны оценки сложности алгоритмов

модель алгоритма сортировки • алгоритм MERGE SORT

Нестеров Р.А., PhD, доцент департамента программной инженерии

июль 2024

30	1	2	3	4	5	6
_	8					
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31	1	2	3

план лекции

01

разделяй-и-

властвуй: алгоритм

MERGE SORT

02

общая модель

алгоритма сортировки 03

оптимальная

сортировка на сравнениях

разделяй–и–властвуй • MERGE SORT

разделяй–и–властвуй • MERGE SORT

DIVIDE	разбить входную последовательность на две по [примерно] половине элементов в каждой
CONQUER	выполнить рекурсивную сортировку полученных подпоследовательностей
COMBINE	объединить две отсортированные подпоследовательности

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 2 6

2 4 7 1 3 2

2 5 4 7 2 6

5 2 4 7 1 3 2

2 4 5 7

1 2 3 6

2 5 4 7 2 6

5 2 4 7 1 3 2

1 2 2 3 4 5 6 7

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

```
MERGE_SORT.cpp
    void mergeSort(std::vector<int> &arr,
                    size_t left,
                    size_t right) {
         if (left < right) {</pre>
             size_t mid = left + (right - left) / 2;
 6
 8
             // DIVIDE
 9
             mergeSort(arr, left, mid);
10
             mergeSort(arr, mid + 1, right);
11
12
             // CONQUER & COMBINE
13
             merge(arr, left, mid, right);
14
15
```

функция merge может быть реализована двумя способами

- → свыделением дополнительной памяти
- → без использования
 дополнительных массивов
 [in-place]

ЗАДАЧА

Найти g(n), для которой $T(n) = 2 \cdot T(n/2) + O(n) = O(g(n))$.

$$a_1 \leq a_2$$

выполнение сортировки — путь из корня до листа в дереве решений

выполнение сортировки—
путь из корня до листа
в дереве решений

нижняя граница высоты дерева — минимальное количество сравнений

TEOPEMA

Высота дерева решений для сортировки — $\Omega(n\log n)$.

24

TEOPEMA

Высота дерева решений для сортировки — $\Omega(n \log n)$.

ДОК-ВО

Оценим h — высоту дерева решений алгоритма сортировки массива из n элементов.

- (1) Число листьев дерева решений составляет n! количество перестановок.
- (2) Бинарное дерево высоты h имеет не более 2^h листьев. Тогда: $2^h \ge n! \Rightarrow h \ge \log_2(n!)$.
- (3) Воспользуемся формулой Стирлинга $n! > (n/e)^n$ и получим: $h \ge \log_2(n!) \Rightarrow h \ge \log_2(n/e)^n \Leftrightarrow h \ge n\log_2 n n\log_2 e$.

Следовательно, $h = \Omega(n \log n)$ для c = 0.5 и достаточно больших n.

любой алгоритм сортировки, использующий сравнения, потребует $\Omega(n \log n)$ операций

MERGE SORT — оптимальный алгоритм сортировки на сравнениях

27

хранение упорядоченных данных в массиве — плохая идея...

30