

AD A 046096

ELECTRONIC MECHANICAL COMMUNICATIONS AND CRYPTOGRAPHIC EQUIPMENT SYSTEMS SPECIALIST

AFSC 30651.

AFPT-90-306-222 10 23 September 1977

OCCUPATIONAL SURVEY BRANCH

*USAF OCCUPATIONAL MEASUREMENT CENTER

LACKLAND AFB TEXAS 78236

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

12)52p.

OC FILE COPY &

408889

TABLE OF CONTENTS

	PAGE NUMBER
PREFACE	2
INTRODUCTION	3
DEVELOPMENT OF THE ELECTRONIC PRINCIPLES INVENTORY (EPI)	3
ADMINISTRATION	3
PRESENTATION OF RESULTS	6
APPENDIX	7

CCESSION ITIS	April 200, Cu
90	pur coulon El
PANSIO V	yen E
MATERIAL PROPERTY AND ADMINISTRATION OF THE PARTY AND ADMINIST	POST

marro IDI	THOM LAVALABILATE SOUTS
marro IDI	MON/AVALASAM CON SPECI
marro IDI	MOM/AVMLASAIN (SO) S AVAIL and/or SPECI
DISTRIBUTION OF THE PROPERTY O	MON/AVALASAM COLOS AVAIL end or SPECI

PREFACE

This report presents a summary of the results of a detailed Air Force Electronic Principles Survey of the Electronic-Mechanical Communications and Cryptographic Equipment Systems Specialist, AFSC 30651.

The Electronic Principles Inventory (EPI) was developed by Major Thomas J. O'Connor and Mr. Hendrick W. Ruck and the survey data were analyzed by Mr. Harry G. Lawrence. All are members of the Occupational Survey Branch, USAF Occupational Measurement Center, Lackland AFB, Texas.

Computer programs for analyzing the data were designed by Dr. Raymond E. Christal, Occupational and Manpower Research Division, Air Force Human Resources Laboratory (AFHRL), and were written by the Project Analysis and Programming Branch, Computational Sciences Division, AFHRL.

Distribution of this report is made upon request to the USAF Occupational Measurement Center, attention of the Chief, Occupational Survey Branch (OMY), Lackland AFB, Texas 78236.

This report has been reviewed and is approved.

JAMES A. TURNER, JR., Colonel, USAF Commander USAF Occupational Measurement Center WALTER E. DRISKILL, Ph.D. Chief, Occupational Survey Branch USAF Occupational Measurement Center

ELECTRONIC PRINCIPLES OCCUPATIONAL SURVEY REPORT ELECTRONIC-MECHANICAL COMMUNICATIONS AND CRYPTOGRAPHIC EQUIPMENT SYSTEMS SPECIALIST AFSC 30651

INTRODUCTION

This report summarizes the results of the administration of the Electronic Principles Inventory to airmen assigned as Electronic-Mechanical Communications and Cryptographic Equipment Systems Specialist (AFSC 30651). The data for this report were collected during the period April through June 1977.

This report describes: (1) development and administration of the survey instrument; and (2) electronic principles used by DAFSC 5-skill level personnel both CONUS and overseas and assigned to selected major commands.

DEVELOPMENT OF THE ELECTRONIC PRINCIPLES INVENTORY (EPI)

The EPI was developed by personnel from the Occupational Survey Branch who were well qualified in theoretical physics and electronics, as well as in task analysis and survey development. Over 300 maintenance personnel from SAC, TAC, ADC, MAC, and AFCS participated in the development of the inventory. Representing the five ATC training centers, electronics experts who averaged 12 years of maintenance experience and four years of electronic principles instruction experience spent several weeks refining the EPI. In addition, personnel at the Electrical Engineering Department of the USAF Academy and the Air Force Human Resources Laboratory were consulted during the development of the inventory.

The final version of the EPI used in this survey contained 1,257 items in 62 subject matter areas covering all electronic principles training given at the five ATC technical training centers. Table 1 lists the 62 subject areas.

ADMINISTRATION

The Electronic Principles Inventory was administered by mail to AFSC 30651 airmen worldwide. Responses from 116 individuals represented 27 percent of the total of all AFSC 30651 personnel. Table 2 shows the percentage distribution by major command of the survey incumbents.

TABLE 1
EPI SUBJECT AREAS

SEQUENCE OF SUBJECT AREAS	SUBJECT AREA TITLE	BEGINNING ITEM NUMBER	GPSUM PAGE NUMBER
1	MATHEMATICS	A1	2
2	DIRECT CURRENT AND VOLTAGE	A15	2
2 3	RESISTANCE	A24	2
4	MULTIMETER USES	B52	2 2 2 3
5	ALTERNATING CURRENT	B61	4
6	INDUCTORS AND INDUCTIVE	B67	
0	REACTANCE	D07	4
7	CAPACITORS AND CAPACITIVE	C92	
	REACTANCE	C32	5
0	TRANSFORMERS	C128	5 6
8 9		C171	7
	MAGNETISM		8
10	RCL CIRCUITS	D185	8
11	SERIES AND PARALLEL RESONANCE	D229	10
10	(TIME CONSTANTS)	0000	10
12	FILTERS	D239	10
13	COUPLING	E261	11
14	SOLDERING	E273	11
15	RELAYS	E295	12
16	MICROPHONES	F314	12
17	SPEAKERS	F327	13
18	OSCILLOSCOPES	F342	13
19	SEMICONDUCTOR DIODES	G354	13
20	TRANSISTORS	G404	15
21	TRANSISTOR AMPLIFIERS	G428	16
22	SOLID-STATE SPECIAL PURPOSE		
	DEVICES	H477	19
23	POWER SUPPLIES	H483	19
24	OSCILLATORS	H512	19
25	MIII TIVIDDATADS	1539	20
26	LIMITERS AND CLAMPERS	1555	21
27	ELECTRON TUBES	1565	21
28	ELECTRON TUBE AMPLIFIERS	J609	
	AND CIRCUITS		22
29	SPECIAL PURPOSE ELECTRON	J616	
	TUBES		23
30	HETERODYNING, MODULATION, AND	J632	
30	DEMODULATION		23
31	AM SYSTEMS	K638	23
32	FM SYSTEMS	K666	24

TABLE 1 (CONTINUED) EPI SUBJECT AREAS

SEQUENCE OF SUBJECT AREAS	SUBJECT AREA TITLE	BEGINNING ITEM NUMBER	GPSUM PAGE NUMBER
33	NUMBERING SYSTEMS	K685	25
34	LOGIC FUNCTIONS	L695	25
35	BOOLEAN EQUATIONS	L708	26
36	COUNTERS	L733	27
37	TIMING CIRCUITS	M757	27
38	USE OF SIGNAL GENERATORS	M769	28
39	MOTORS AND GENERATORS	M779	28
40	METER MOVEMENTS	N808	29
41	SATURABLE REACTORS AND	N818	
	MAGNETIC AMPLIFIERS		29
42	WAVESHAPING CIRCUITS	N834	30
43	SINGLE SIDEBAND SYSTEMS	0845	30
44	PULSE MODULATION SYSTEMS	0875	31
45	ANTENNAS	0914	32
46	TRANSMISSION LINES	P953	34
47	WAVEGUIDES AND CAVITY	P984	
	RESONATORS		35
48	MICROWAVE AMPLIFIERS AND	P1034	
	OSCILLATORS		37
49	REGISTERS	Q1110	39
50	STORAGE DEVICES	Q1117	40
51	DIGITAL TO ANALOG CONVERTERS	Q1126	40
52	PHANTASTRONS	Q1140	41
53	SCHMITT TRIGGERS	R1141	41
54	CABLE FABRICATION	R1144	41
55	INPUT/OUTPUT DEVICES	S1146	41
56	PHOTO SENSITIVE DEVICES	S1149	41
57	SYNCHRONOUS VIBRATIONS	\$1150	
	(CHOPPER CIRCUITS)		41
58	INFRARED	T1159	41
59	LASERS	T1186	42
60	DISPLAY TUBES	T1220	43
61	PROGRAMMING	U1234	43
62	DB AND POWER RATIOS	U1255	44

TABLE 2

COMMAND REPRESENTATION OF SURVEY SAMPLE

	30	1651
COMMAND	PERCENT ASSIGNED	PERCENT OF SAMPLE
AFSC USAFSS OTHER	85 8 	79 10 11
TOTAL	100	100

Total Assigned - 433 Total Sampled - 116 Percent Sampled - 27%

PRESENTATON OF RESULTS

Personnel responded "yes" or "no" to the 1,257 electronic principles questions as related to their present job. A Group Summary (GPSUM) computer printout is provided in the Appendix portion of this report. Page 1 of the GPSUM lists the four selected groups identified for this report. Pages 2-44 show the percentage of the incumbents responding to the EPI items. The computer program results display the percent members answering "yes" to the subject area questions. The reader can locate a specific subject area by referring to the Appendix page number as listed in Table 1. For example, the Transformers area results are given on page 6 of the GPSUM. The percentage of survey respondents indicating use of specific electronic principles ranged from high in areas such as Alternating Current (p. 4) and Soldering (pp. 11-12) to low in areas such as Antennas (pp. 32-33-34) and Lasers (pp. 42-43). Additional AFSC 306X1 data can be obtained upon request to the Chief, Occupational Survey Branch (OMY).

APPENDIX

CPSHIC PAGE 1

PCT HERS RESPONDING "YES" BY SELECTED GRPS

TABULATION OF ELLCTRONIC PRINCIPLES UTILIZATION DATA FOR SELECTED GROUPS IN THE JUDSI CAREER FIELD.

REPORTS ON THE FULLOWING GROUPS MERE REQUESTED

110 MEMBERS. 69 MEMBERS. 47 MEMBERS. 5 MEMBERS.
CONTAINING CONTAINING CONTAINING CONTAINING
STATIONED IN CONUS STATIONED OVERSEAS ASSIGNED TO ATC
30651 30651 30651 30651
DAFSC DAFSC DAFSC DAFSC
AINMEN DAFSC AIRMEN DAFSC AIRMEN DAFSC AIRMEN DAFSC
1111
SPC226 SPC227 SPC228 SPC228

ROUP IDENTITY .
2000

SPENIC PAGE

MATHEMATICS 9 20200 224 80 2 2 8 8 2 5 8 8 S 65 38 4 4 7 0 2 5PC 5 ~ 5 0.0 38 2 2 5PC 226 42 38 A HELD TO TOU USE PUBLICATIONS, SUCH AS A TECHNICAL ORDERS ON MAINTENANCE MANUALS, IN WHICH IT IS NECESSARY FOR YOU TO MULTIPLY OR DIVINE BY A POWER OF 10 BEFORE YOU CAN APPLY THE INFORMATION FROM THE PUBLICATION IN A USEFUL WAT I AITOI IN YOUN PRESENT JOB: DO YOU USE INSTRUMENTS: SUCH AS HETEMS OR OSCILLOSCOPES, IN WAICH IT IS NECESSARY TO AMPLIET ON ATTENUATE VOLTAGE, RESISTANCE, ETC., BY POWERS DY-15K TASK GMOUP SUMMANY PERC, NT MEMBERS PLHEORMING ON THE JOB. OF 10.

AI-03 UD YOU HEAMBAGE AND SCLVE FORMULAS ON EQUATIONS.
AI-04 DO YOU CALCULATE THE SQUARE ROUT OF A QUANTITY.
AI-05 DO YOU SOLVE FOR UNKNOWN QUANTITIES.
AI-06 DO YOU CONVENT NUMBERS TO LOGARITHMS.
AI-07 OO YOU USE LOGARITHM TABLES IN ANY TYPE UF AI-US DO YOU SOLVE AUADRATIC EAUATIONS.
AI-US DO YOU USE THE MATURAL SYSTEM OF LOGARITHMS.
AI-IU DO YOU PERFORM CALCULATIONS ON VECTOR PUANTITIES.
AI-II OO YOU MORK WITH TRIGONOMETRIC FUNCTIONS SUCH AS SINE, CUSINE, OR TANGENT. 12 AT-12 DO TOU DETERMINE AREAS OF PLANE FIGURES. CALCULATIONS. 100 13 A1-13 00 YOU 3 01-14 01 ¥ 1 - 1 4

9 7 7 3

GU SOLVE ON USE SINULTANEOUS EQUATIONS.

DU SOLVE ON USE SINULTANEOUS EQUATIONS.

DU USE THE TERM VOLTAGE ON VOLT (V).

DU USE THE TERM POLTAGE ON VOLT (V).

DU USE THE TERM TON.

DU USE THE TERM AMPREC.

U USE THE TERM AMPREC.

U USE THE TERM AMPREC.

U USE THE TERM COULDMS. USE THE TERM PROTOW.
**OPK WITH RESISTOMS IN YOUR PRESENT JOH!
INSPECT RESISTORS. TERM PROTON. 100 100 230000 00000 00 00 15 AZ-02 17 AZ-02 18 AZ-03 20 AZ-03 21 AZ-03 22 AZ-03 23 AZ-03 24 AZ-03 25 AZ-03 27 AZ-03 28 AZ-7

DIRECT CURRENT AND VOLTAGE

00-80000000-0

22 2 0 2 - 20

DO YOU CHECK DIMIC VALUE OR RESISTORS.
DO YOU REMOVE OR REPLACE RESISTORS.
DO YOU USE ON MEFER TO TLMPERATURE COEFFICIENTS FOR CLEAN HESISTORS. ADJUST PESISTORS. 100 100 0000

RESISTANCE

7 0 7 0 0 0 B

0 8 90

80 8

. 9 5

-

80

6

83

8

A 3-08 DO TOU USE OR HEFER TO RESISTOR STHBOLS SUCH AS FIXED RESISTOR SYMBOLS OR TAPPED RESISTOR SYMBOLS.
A3-U9 DO TOU IDENTIFY OR CLASSIFY THE RESISTORS YOU WORK
WITH AS CARBON, FIXED WIRE, SLIDE TAP, MAEOSTAT, OR PESISTONS ON ANY TASKS YOU PERFORM. 3

POTENTIOMETER.
33 A3-10 DO YOU USE RESISTOR COLOR CODES WHICH INDICATE OHMIC

VALUE OF HESISTANCE.

GPSMIO PAGE 3

TASK GROUP SUMMANY
PERCENT MEMBERS PERFORMING

SPC SPC 2.8 229	87 80	26 0	21 20	08 96	43 60	36 60	000	28 40	09 64	36 60	47 60	000	28 20	45 60	38 60	00	38 30	30 20	94 80		3.6	2 0 MULTIMETER USES	2 2 2		2	0.80
SPC 227	7.8	23	12	90	32	30	30	19	33	32	32	30	- 1	32	30	32	32	6	6	1	6		8	60	-	9.0
5 PC 226	8 2	7	-	9.2	36	13	38	22	37	34	38	3.3	2.2	37	34	34	7	23	9.2		43	ۍ .	• •	6	•	16
DY=15K	A 34 A3-11 DO YOU USE RESISTOR COLOH CODES WHICH INDICATE	A 35 A3-12 DO TOU USE RESISTOR COLOR CODES WHICH INDICATE	FAILURE MATE DECISIONS IN WHICH YOU MUST DETERMINE HOW TWO OR MORE BATTERIES MUST BE CONNECTED TOLETHER TO	A 37 A3-14 DO 700 USE OR REFERR TO THE SCHEMATIC SYMBOLS WHICH		MESISTIVE CIRCUITS. A 39 A3-16 DO YOU CALCULATE TOTAL CURRENT FOR SERIES RESISTIVE	CIRCUITS. A 40 43-17 DO YOU CALCULATE INDIVIDUAL VOLTAGE DROP'S FOR SERIES	RESISTIVE CIRCUITS. A 41 A3-18 DO YOU CALCULATE POWER DISSIPATION FOR SERIES	RESISTIVE CIRCUITS. A 42 A3-19 DO YOU CALCULATE TOTAL RESISTANCE FOR SERIES PARALLEL	RESISTIVE CINCUITS. A 43 A3-20 DO YOU CALCULATE TOTAL CURNENT FOR SERIES PARALLEL	RESISTIVE CIRCUITS. A 44 A3-21 DO YOU CALCULATE INDIVIDUAL VOLTAGE DROPS FOR SERIES	PAMALLEL RESISTIVE CIRCUITS. A 45 A3-22 DO YOU CALCULATE INDIVIDUAL BRANCH CURRENTS FOR	SERIES PARALLEL RESISTIVE CIRCUITS. A 46 A3-23 DO YOU CALCULATE POWER DISSIPATION FOR SERIES	PAMALLEL MESISTIVE CINCUITS. A 47 A3-24 DO 70U CALCULATE TOTAL RESISTANCE FOM PAMALLEL	RESISTIVE CIRCUITS. A 48 A3-25 DO YOU CALCULATE TOTAL CURRENT FOR PARALLEL RESISTIVE	CIRCUITS. A 49 A3-Z6 DO YOU CALCULATE INDIVIDUAL VOLTAGE UROPS FOR	PARALLEL MESISTIVE CINCUITS. 4 SO A3-27 DO YOU CALCULATE INDIVIDUAL BRANCH CURPENTS FOR	PAMALLEL MESISTIVE CIPCUITS. A SI A3-28 DO YOU CALCULATE POWER DISSIPATION FOR PARALLEL	RESISTIVE CIRCUITS.	B1-02 00	54 BI-03 DO YOU	55 81-04 00 700	SO NICOS DO TOU VEPAIR ANNETERS.	58 81-07 00 You	81-08 00 YOU	COULDRS. 6 AD BI-UP DO YOU READ SCHEMATICS.

PCT HORS RESPONDING .YES. BY SELECTED GRPS

GPSHIL PAUL

TASK GROUP SURMARY PERCENT MEMBERS PERFORMING

	ALTERNATING CURRENT								INDUCTORS AND	INDUCTIVE REACTANCE																								
368	0	9	2 (•	200	40		3 6	207	0	20	0 0	9 0	200	0	0	C	3		3	(3		د	3	0	2	0		c	0	3	2 3	20
5PC 228	•	8	*	m 7	= =	4		m .	2 5	93	23	9 8	,	,	, ,	7		•		~		•	,	7	7	7	7	=		•	=	9	7	=
286	25	*	4	2.	52	30		7 .	5 -	÷	36	53	- 1	n 4		7		•		7		,		7	•	٠	•	0		•	0	16	1 1	10
5PC 226	5.8	8 3	99	2.5	-	2.4		5	5.5	. 80	4.5	57	52	n 4		. 1	•	•		•		•		6	•	*	*	91		•	6	2	2 2	15
07-75x	B 61 B2-UI DO YOU USE OF HEFER TO THE TERM EFFECTIVE VOLTAGE	62 HZ-02 DO YOU USE OR REFER TO THE TERM	DO TOU USE ON MEFER TO THE FERM	64 82-34 DO TOU USE OR REFER TO THE TERM	B BS B2-05 OR TOU USE OR REFER TO THE TERM FREQUENCY.	SECTION HIM NAME OF THE PARTY OF	DOU'L	68 83-02 BO YOU	83-03	7. 03-05 00 700	72 63-06 DO YOU USE ON	73 H3-U7 DO YOU USE OR REFER	74 43-08 DO YOU USE OR	83-09 00 YOU	אין פיין ייט אין ייבי אין	74 1-12 NO TON 1155 ON		B 79 B2-13 DO TOU USE OR REFER TO 14E GENERAL MULE 144 14E 14	SECTIONAL AREA OF THE CORE.	B AN BE-14 DO YOU USE OR REFER TO INE GENERAL RULE THAT THE INDUCTANCE OF A COIL IS INVIRSELY PROPORTIONAL TO 115	LENGTH	G BI BETTE DO TOU USE OR REFER TO THE GENERAL RULE THAT THE INDUCTANCE OF A COIL IS DIRECTLY PROPORTIONAL TO THE	PERMEABILITY OF THE CORE MATERIAL.	B 82 82-16 DG YOU CALCULATE INDUCTANCE FOR PARTICULAR INDUCTORS	USING FORMULAS. B 83 BITT DO TOU CALCULATE THE TOTAL INDUCTANCE FOR INDUCTANCE	IN SERIES. B. BY BS-18 DO YOU CALCULATE THE TOTAL INDUCTANCE FOR INDUCTORS	25.		B 56 B3-20 DO 100 OSE OF REPER TO THE GENERAL MOLE THE CONTENT	87			SE BEST DO TOU WORK WITH POWER INDICATORS.	H3-25 UO TOU *OPK

TASK GHOUP SUMMARY PERCENT HEMBERS PEHFORMING

	CAPACITORS AND	CAPACITIVE REACTANCE																																		
5PC	0.9		9:	20	09	90	09	0	20	0.9		8	50		70	20	80	09	09		0	U	,	0		0	20	20	50	40		0	0			0
5PC	8.7		9 .		85	-	96	•	7	8 5		-	• •		53	97	*	8	6.3		•	4	,	0		0	2	13	2	87		15	=			•
SPC	7.8		10 : 00 P	29	7.8	90	8 7	•	_	7.8		. 1			22	22	0.	11	11		-	-	,	-		-	1.2	77	0	30		13	-			~
5 P C 226	8.2		-	- 7	3	¢	•	•	~	-		8 4	24		22	23	-	82	19		•	,		-		-	1.2	1.5	=	50		<u>*</u>	•	,		7
4 9 1 1 1 2 C	C W2 CI-DI DO YOU MORK WITH CAPACITORS OR CIRCUITS CONTAINING		00 70-13	OF ALLOS DO TOU CLEAN CAPACITORS.	96 11-05 00 700	00 90-13	00 400	CI-UR DO YOU USE ON MEFER TO DISTRIBUTED CAPACITANCE.		C 101 C1-10 DO YOU USE ON REFER TO FAMADS. MICROFARADS. OR	PICOFARADS.	C 102 CI-11 DO YOU USE ON REFER TO CAPACITANCE.	CI-13 DO YOU USE ON REFER TO	CAPACITORS	105 cl-14 00 You USE	106 CI-15 no You USE	107 (1-16 00 700		C 109 C1-16 DO YOU MORK WITH CAPACITORS IN CIRCUITS WITH BOTH DC	AND AC	LIN CI-19 DO YOU TORK MITH CAPACITORS IN DON'T REMEMBER WHICH	CINCUITS CINCUITS CO YOU CALCULATE CAPACITANCE FOR PARTICULAR	:	C 112 CI-21 DO YOU USE ON MEFER TO THE GENERAL RULE THAT	DIRLECTALC CONSTANT	C 113 C1-22 DO YOU USE ON REFER TO THE GENERAL RULE THAT	C 114 C1-23 DO YOU CALCULATE THE TOTAL CAPACITANCE OF CAPACITORS	IN SERIES 115 CI-24 DO YOU CALCULATE THE TOTAL CAPACITANCE OF CAPACITORS	C 116 CI-25 DO YOU CALCULATE THE TOTAL CAPACITANCE OF CAPACITORS	117 CI-26 DO YOU USE ON MEFER TO THE GENERAL RULE THAT CURNENT	DOES NOT FLOW THROUGH CAPACITORS. IT ONLY APPEARS	C 118 CI-27 DO YOU USE OR REFER TO THE GENERAL RULE THAT CURRENT	LEADS VOLIMED IN ACCEPTED CINCOLLS		FREGUENCY	C 120 C1-29 00 YOU CALCULATE CAPACITIVE MEACTAMCE

PCT MANS HESPONDING TYEST OF SELECTED GRPS

SPSKIG PAGE

TASK GHOUP SUMMANY PENCENT MEMBERS PERFORMING

226 5PC 5PC 5PC 226 227 228 229	20 19 21 20 18 12 28 20 86 81 94 00 73 64 87 40 78 70 89 40 14 16 11 40	72 61 87 60 76 67 69 60 70 58 87 40 17 14 21 20 66 54 85 60 TRANSFORMERS 68 57 85 60 5 3 9 0		10 2 2 2 4 10 10 10 10 10 10 10 10 10 10 10 10 10	75 58 87 60 66 52 85 60 60 52 72 40 17 13 23 0 25 20 32 20 76 67 89 60
07-754	C 121 C1-30 DO 700 m5Rh m1TH RDTON-STATOR (VARIABLE) CAPACITORS C 122 C1-31 DO 700 m5Rh m1TH COMPMESSION (THIMMER) CAPACITORS C 123 C1-32 DO 700 m5Rh m1TH PAPER (F, EE) CAPACITORS C 124 C1-33 DO 700 m5Rh m1TH PAPER (F, EE) CAPACITORS C 125 C1-34 DO 700 m5Rh m1TH MICA (F, EE) CAPACITORS C 126 C1-35 DO 700 m5Rh m1TH MICA (F, EE) CAPACITORS C 127 C1-36 DO 700 m5Rh m1TH DON'T RLHEHBER MHICH TYPE OF	CITAL CA-DITONS CITAL CA-DITONS CITAL CA-DITON TOUR MORK MITH TRANSFORMERS IN YOUR PRESENT JOB CITAL CA-DITON TOUR LISPECT TRANSFORMERS CITAL CA-DITON CLEAN TRANSFORMERS CITAL CA-DITON TOUR CADJUST TRANSFORMERS CITAL CA-DITON TOUR TROUBLESHOOT TRANSFORMERS CITAL CA-DITON TOUR TOUR TRANSFORMERS CITAL CA-DITON TOUR TRANSFORMERS CITAL CA-DITON TOUR TRANSFORMERS CITAL CA-DITON TOUR TRANSFORMERS THE PRIMARY WINDING CITAL CA-DITON TOUR TRANSFORMER PARTS, SUCH AS THE PRIMARY WINDING	AND MUTUAL INDUCTANCE (M) C 13A C4-109 DO TOU USE THE STABOL FOR MUTUAL INDUCTANCE, M C 137 C2-10 DO TOU MEFER TOR USE THE COEFFICIENT OF COUPLING MHEN MORKING WITH THANSFORMERS C 13A C2-11 DO YOU CALCULATE TURNS RATIOS FOR TRANSFORMERS USING CUMMENT OF WOLFFER TO METLICITENTI IMPEDANCE WHEN MORKING MITH		C 145 CZ-19 30 TOU CHECK TRANSFORMERS FOR DPEN WINDINGS BY HEASURING MESISTANCE C 147 CZ-20 DO TOU CHECK TRANSFORMERS FOR SHORTED WINDINGS BY HEASURING NESISTANCE C 149 CZ-21 DO TOU CHECK TRANSFORMERS FOR SHORTED WINDINGS BY HEASURING OUTPUT VOLTAGES C 149 CZ-22 DO TOU MEASURE RESISTANCE OF TRANSFORMER WINDINGS TO DETERMINE WHETHER A TRANSFORMER HAS A STEP-UP OR STEP-DOWN TURNS RATIO C 150 CZ-23 DO TOU MEASURE OUTPUT VOLTAGE OF FRANSFORMERS TO DETERMINE WHETHER A TRANSFORMER HAS A STEP-UP OR STEP- DOWN TURNS RATIO C 151 CZ-24 DO TOU REFER TO HASIC TRANSFORMER SCHEMATIC SYMBOLS FOR TRANSFORMERS

PCT MERS RESPONDING . YES. BY SELECTED GRPS

CPSHID PAGE

TASK GHOUP SUMHARY PERCENT MENBERS PERFORMING

PCT MARS RESPONDING TEST AT SELECTED GRPS

GPSHIC PAGE

FEST GROUP SUMMARY

SPC SPC SPC SPC 226 227 228 229	0 ,	19 2	11 12 11 0	95	11 10 13 20	4 7 13 0		07 55 05 05	2 3 0 0	2 1 2 0 KLL CIRCUITS	0 0 0 2	0 0 6 2	2 3 0 0	13 12 15 0			9 11 9	8 6 11 0	0 11 9	· ·	D	0 81 4	0 61 6 /	0 41 4 11	3 . 2 0	0 11 ,	0
07-75A	179 63-09	IND C3-10 DO TOU USE ON MEYEN TO MAGNETIC INDUCTIO	0	HAGNETIC POLES,	10.5	C 184 C3-14 DO TOU USE THE LEFT HAND THUNB RULE TO FIND THE NORTH	POLE OF A CU	Present Joe	L/A	U 187 01-03 DO YOU USE ON MEFER TO PYTHAGOMEAN THEOREM WHEN	U 188 DI-04 DO YOU USE ON MEREN TO SINE WHEN NORKING MITH RCL	CINCUITS J 149 DI-05 DO YOU USE ON HEPEN TO COSINE MHEN MUNKING MITH RCL	CINCUITS CINCUITS CINCUITS CINCUITS	CINCUITS OF PEFFER TO MATTS WHEN MORKING WITH RCL	CIRCUITS CIRCUITS	WITH RCL CIRCUITS	00			MORKING WITH RCL CIRCUITS DIGENTACTON (PF) WHEN MORKING DIGEN DIGENTACTON (PF) WHEN MORKING	A 17H MCL CHRUITS UNITE OF TO MESONANT CINCUITS THEN		RCL CIRCUITS 199 DI-12 DO YOU USE ON MEFER TO SELECTIVITY WHEN WORKING WITH				D 203 DI-19 DO YOU USE ON REFEM TO CIRCUIT O WHEN ACKRING WITH RCL CINCUITS

PCT HBRS RESPONDING . YES. BY SELECTED GRPS

TASK GROUP SUMMARY PERCENT MEMBERS PERFORMING

GPSHIO PAGE 9

SPC SPC SPC SPC 226 227 228 229	20 17 23 20	0 0 1 1	2 1 2 0		2 1 2 0	0 6 6 5	0 7 7 6	3 3 4 0	0 7 6 7	3 4 6	7	2 1 2 0	3 3		,	41 30 55 20	15 02	2 15 97	28 14 40	•	0	0 6 9 1		0 0 0		0 , ,	0 7 1 6	0 6 6 5	
07-75k		D 205 DI-21 DO YOU DETERNINE VALUES OF TRIGONOMETRIC FUNCTIONS	USING FORMULAS U 206 DI+22 DO YOU DRAW VOLTAGE: CURMENT: OR IMPEDANCE VECTOR	707	CIRCUITS U 208 UI-24 DO YOU CALCULATE PHASE A.GLES BETWEEN !MPEDANCE AND	607	CIRCUITS D 210 D1-26 DO YOU CALCULATE IMPEDANCE ANGLES FOR SERIES NCL	CINCUITS D 211 DI-27 DO YOU CALCULATE APPARENT POWER IPAI FOR SERIES RCL	CIRCUITS D 212 DI-28 DO YOU CALCULATE TRUE POWER (PT) FOR SERIES HCL	CIRCUITS D 213 D1-29 DO YOU CALCULATE POWER FACTURS IPF! FOR SERIES RCL	CINCUITS O 414 DI-30 DO YOU CALCULATE TOTAL CURRENT FOR PAMALLEL MCL	CIRCUITS D 215 DI-31 DO YOU CALCULATE IMPEDANCE ANGLES FOR PARALLEL RCL	CIRCUITS DE 214 DI-32 DO YOU CALCULATE TOTAL IMPEDANCE FOR PARALLEL RCL	CIRCUITS USING THE ASSUMED VOLTAGE METHOD	U 217 DI-33 DO TOU CALCULATE TOTAL IMPEDANCE FOR PAMALLEL MCL	418 01-34 DO TOU CHECK	01-35 00 YOU CHECK	220 D1-36 DO TOU CHECK INDUCTORS	C 221 DI=37 DO TOU CHECK INDUCTORS USING SUBSTITUTION	THE TA 0 . PF . 1. AND	0 223 DI-37 DO TOU CALCULATE RESINANT FREQUENCIES FOR ACL	TOU USE OR PEFER TO THE GENERAL RULE THA	IMPLOANCE 15 MINIMUM AND CURRENT MAXIMUM AT THE RESONANT FREGUENCY FOR SERIES RCL CIRCUITS	•	FREQUENCY FOR PARALLEL RCL CIRCUITS	TO THE GENERAL RULE	D 227 DI-43 DO YOU USE OR PEFER TO THE GENERAL ROLE THAT	U 228 DI-44 DO TOU DETERNINE HOW CHANGES IN FREQUENCY, RESIDIANCE . CAPACITANCE, OR INDUCTANCE AILL AFFECT CURRENT OR PLASE ANGLES FOR NO. CIRCUITANES.	- 1

PCT HERS RESPONDING TEST BY SELECTED GRPS

0

SPANIU PAGE

TASK GHOUP SUMMANY PERCENT MEMBERS PENFORMING

	SERIES AND	PARALLEL RESONANCE	(TIME CONSTANTS)																				FILTERS																			
5 P.C	0	0.	70	0	c)		0	20		0			0				,		09		9	0	0 +	09	9	09	0.2		20	20	50	50	0	0	0	0	09	0	•	c	,
5PC	7.	61		•	•			•	7		,			7			•	•		11		19	12	32	12	7	10	11		1	4	3	58	9	30	56	-	38	•	2	•	-
SPC 227	-	16	۰	•	1			7	9		-			-			•	•		28		5.7	£ 3	52	2	5	25	51	;	8 7	97	20	= ;	87	7	-	-	38	10	•	•	
5 P C 2 2 8	20	1.1	10	10	1	,		S	,		-	,		7			•	1		99		99	5.5	56	•	69	20	9	,	7	3.3	2	20	-	7	11	7	38	*	"	-	•
01-15k	U 229 D2-01 IN YOUR PRESENT JOHN DO YOU WORK WITH! USE, OR REFER	230 0		132 03-04	INTERVALS 1 A TOTAL STATE OF THE FOUR DESIGNATION OF THE		TIME CONSTANTS (TC)	234 02-06	0	CHROLIT CURRENT OR COMPONENT JOLIAGES AFTER A SPECIFIC	THE FOR AC ON LAST SCHOOL SON CORMULAS TO DETERMINE THE		REACH SPECIFIC VALUES FOR AC OF LA CIRCUITS	D 437 D2-UP DO YOU USE EQUATIONS ON FORMULAS TO DETERMINE	COMPONENT VALUES REGULATED FOR CINCUIT CURNENT AND	COMPONENT VOLTAGES TO REACH SPECIFIC VALUES IN SPECIFIC		THE CONTRACT OF THE PROPERTY OF THE PROPERTY NOTE OF THE PROPERTY OF THE PROPE	FIVE (S) TIME CONSTANTS	D 239 D3-C1 DO YOU WORK MITH CIRCUITS USED AS FILTERS IN YOUR	PRESENT	440 03-02 DO	241 53-03 BO YOU	442 03-04 00 YOU	243 03-05 DO YOU	244 03-06 00 700	245 03-07 DO TOU	0 246 03-08 UO YOU READVE OF REPLACE FILTER CIRCUIT COMPONENT	PARTS	747 03-09 00	248 03-10 00 TOU WORK	249 03-11	03-12	(1-10 14)	452 03-14	153	157	552	U 250 03-19 DO THE FILTERS YOU WORK WITH USE PARALLEL RESONANT	TO THE PILERS TOO HORK ALIN USE SERIES FRANKLEEL	CINCOLLS SERVICE THE PROPERTY AND MORE ATTACHMENT SERVICES HERONANT	

CIRCUITS
D3-19 DO THE FILTERS TOU MORK AITH USE SERIES-PARALLEL
CIRCUITS
D3-20 DO THE FILTERS YOU MORK AITH USE SERIES HESONANT
CIRCUITS

TASK GHOUP SUMMARY PLRCENT MEMBERS PERFORMING

			COUPLING										SOLDERING											
5PC	•	20 40	20	50	•	7	\$	00	0	0 0	90	8.0	0 4	0.9	90	0	0.9	90	0.80	9.0	80	9 9		0
5PC	ş~	* *	32	30	30	73	7.1	30	7.0	23	6	63	0 0		- 1		83		-	-	7	5.5		32
5PC	3.	28	7.7	50	30	52	22	29	20	- 0	98	7.0	75	. 00	7 6	9 9		6 6	78	11	6	53	:	56
5PC 226	0, 6	35	3.6	*2	30	54	7.7	20	7.7	50	89	15	60 3	9 6	8 9	5	78	0 0	4	63	0	30 E		28
00**TSK	D 259 D3-21 DON'T REMEMBER WHICH TYPE OF BASIC CINCUIT D 240 D3-22 DO YOU USE EGUATIONS OR FORMULAS TO DETERMINE CAPACITANCE OR INDUCTANCE VALUES REGUIRED FOR SPECIFIC	E 261 E1-01-00 YOU WORK WITH COUPLING DEVICES IN YOUR PRESENT JOB E 262 E1-02 DO YOU IDENTIFY ON SCHEMATIC DIAGRAMS AND RELATE TO THE ACTUAL CIRCUITHY THE COMPONENTS ASSOCIATED WITH RC	E 263 E1-03 OG TOU TOENTIFY ON SCHEMATIC DIAGRAMS AND RELATE TO THE ATTUAL CIRCUITY THE COMPONENTS ASSOCIATED WITH	E 264 E1-04 DO YOU IDENTIFY ON SCHEMATIC DIAGRAMS AND RELATE TO THE ACTUAL CIRCUITY THE COMPONENTS ASSOCIATED WITH	E 265 E1-05 DO YOU'REOURLING E 265 E1-05 DO YOU'REOURLING MILL BEREGER OF TOWN THE	LAGE EL-GO TOUR LESTONE ESHOUR CHECK MATCH HAVE COMPONENTS WHICH PERFORM INPRANCE COMPOING	E 467 E1-07 DO YOU TROUBLESHOOT CIRCUITS WHICH HAVE COMPONENTS	E 468 E1-08 DO YOU WORK WITH DIRECTLY COUPLED CINCUITS E 469 E1-09 DO YOU WORK WITH CAPACITIVE-RESISTIVE COUPLED	E 70 EL-10 DO YOU MORK WITH CAPACITIVE-INDUCTIVE COUPLED		173 EZ-01 IN YOUR PRESENT JOB. DO YOU PERFORM SOLDERING	174 6		£2-05 00 You	279 £2-07 00 YOU	280 £2-08 50 YOU	281 62-09 30 700	AND AND THE GO TOUT IN SOLDERING IND. TIPS	£2-12 00 You	485 £2-13 00 TOU TIN OF PRE-TIN CO	286 £2-14 00 YOU	E 287 E2-15 DO TOU DESOLDEM CONNECTIONS BY MICKING E 288 E2-16 DO TOU DESOLDEM CONNECTIONS USING MACUUM DESOLDEMING	10015	E 290 E2-18 DO TOU CUT COMPONENT LEADS TO REMOVE COMPONENTS E 290 E2-18 DO TOU CRUSH COMPONENTS FOR MEMOVAL

PCI MUNS RESPONDING TYEST NY SELECTES GRPS

GPSHID PAGE 12

TASK GROUP SUMMANY PERCENT MEMBERS PERFORMING

SPC 229	0.8	90	0.9	0.8	9.6	07	20		40 KELAYS	9	07	20	9	0	0	0	0	50		20		20	20		50			0		0 MICRUPHONES	0 :			0	0	9	0	0	3 (D (9
228 228	87	96	96	96	68	21	9 2	85	68	7	1 8	9 9	83	35	43	62	0.0	7.4		12		9 9	12		9 4	*		•	7	7	,	,		7	*	2	0	0	~ :	•	0
227	-	8 7	9	67	68	58	70	7.	7.1	5 8	59	2	28	-	6	30	4.2	9		24		-	;		0	5		-	-	0	_	-		0	0	0	0	0	0 (c (0
5 P.C	*	-	0	•	11	3.8	76	7.6	7.8	34	11	5.7	8 9	7	28	*	•	29		3		75	,		26	-		-	•	-	٦,			-	7	-	0	0		, :	0
0+-15k	HAKE HAPDWIRE C	EZ-ZU DO TOU MAKE PRINTED CI	793 E2-21 DO YOU SALDER PASSIVE	E 294 F2-22 DO TOU SOLDER ACTIVE COMPONENTS SUCH AS SOLID-STATE	1 295 13-01 DO YOU WORK WITH RELATS DU YOUR PRESENT JOB	796 F3-02 DO YOU AD 11/57 RELAYS	63-03 00	10 40 40-F	199 E3-US DO YOU HEMOVE OR HEPLACE COMPLETE	300 E3-06 DO YOU REMOVE OR REPLACE PARTS OR	301 £3-07 00 TOU TROUBLESHOOT HELATS	302 E3-UM DO YOU STRAIGHTEN RELAY CONTAC	JUS ES-UP DO YOU PERFORM TASKS ON RELAY	E3-10 DO YOU PERFORM TASKS ON HELAY	E3-11 DO YOU PERFORM TASKS ON RELAY	DO TOU PERFORM TASKS ON RELAT	ES-13 UO YOU PERFORM TASKS ON HELAY	TOU USE OR REFER TO	15PST1.	E 369 E3-15 DO YOU USE ON REFER TO SINGLE POLE: SINGLE THROW	(SPST), NORMALLY CLOSED INC	E 310 E3-16 DO YOU USE OF REFER TO SINGLE POLE: DOUBLE THROW	(SPDI) SCHEMATIC SYMBOLS FOR RELAYS	THE STATE OF THE S	HEFER 10	STABOLS FOR RELAYS	MEASURING MESISTANCE	F 314 F1=01 IN YOUR PRESENT JOB: DO YOU PERFORM ANY TASKS DEALING	 F1-02 20 400	314 F1-03 00 You	00 +0-14	THE STATE OF THE TROUBLESHOOT AS THE AS CHECKING THE	PARTY OF ALTROPOLOGY	F 319 F1-06 DO TOU THOUBLESHOOT DOWN TO HICROPHONE PARTS	F 320 F1 407 DO YOU REMOVE OR REPLACE COMPLETE MICROPHONES	FI-OR DO YOU REHOVE OR HEPL	FI-09 DO YOU PERFORM TASKS ON	323 FI-10 DO YOU PERFORM TASKS ON	FILL DO TOU PERFORM TASKS ON	325 FI-12 DO TOU PERFORM TASKS	F 326 FI-13 DO YOU PERFORM TASKS ON JELOCITY RIBBON MICHOPHONES

TASK GROUP SUMMARY PERCENT MEMBERS PEMFORMING

		SPEAKERS															OSCILLOSCOPES														SEMICONDUCTOR	UIODES					
5 PC	•	•	707	4			0 5	9 0	2 0	0	0	0	0	0 0	90	00	0.0	80		9	0 1	9	2	0		9 0	0	90	90	0.4	09	90	0		•	0	,
5 PC	\$	\$	36	4.5		,	• ;	•		. 0	~		0	•	70	3	67	6		6 :	0 0	87	;	36		5 5		7	~	96	96	8 4	~	•		•	
5PC 227	-	;	30	35			٠,	32	٠.	- 0	0	0	•		9	75	0 19			29	,	D 40	,	- -		7 9	:	7 00	18	8.0	78	11	٥			-	
22¢	42	42	33	2			7	2 *	٦ ~	, =	-	8	2	~ ~	87	18		8		19	70	2 4	,	34	,	78	0	88	7 00	9 6	٠,	8.2	7		D	71	:
DY-15K	F 327 F2-01 IN YOUR PRESENT JOB! DO YOU PERFORM ANY TASKS DEALING	328 F 2-02 DO YOU I	329	DO YOU TROUBLE SHOOT AS FAR AS CHECKING	CONNECTIONS B	PARTS OF SPEAKERS	DO TOU TROUBLESHOOT DOWN	FZ-U7 DO TOU HEHOVE	DO TOU REHOVE ON METLACE	STATES OF STATES AND TANKS ON SPEAKER	337 F2-11 DO TOU PERFORM ANY TASKS ON SPEAKER	338 F2-12 DO YOU PERFORM ANY TASKS ON SPEAKER	F2-13 00 YOU PERFORM ANY TASKS ON SPEAKER	FZ-14 DO TOU PERFORM ANY TASKS ON	THE FREIS DO TOU PERFORM ANT LASKS ON SPEAKEN	F3-02 DO YOU USE OSCILLOSCOPES TO PENFORM UPENA	CHECKS	ADJUSTMENTS 5 F 3-04 DO YOU USE 05/11/105/00PES	CIRCUITS	F3-05 DO YOU USE OSCILLOSCOPES TO MEASURE	347 F3-U6 DO TOU USE USCILLUSCOPES TO MEASURE	F 348 F3-UT DO TOU USE OSCILLOSCOPES TO UBSERVE LISAGOUS FATIERRS	UTILIZING ATTENDATOR PROBES	SE OSCILLOSCOPES	MEASUREMENTS USING DELAY TIME	F3-10 30 700 05E	SIGNALS AFTER FIRST ABJUSTING	F3-12 DO YOU USE OSCILLOSCOPES	6 354 61-01 DO YOU MORE WITH SEMICONOUTION DIDDES IN YOUR PRESENT	108 00 10-10 70-10 10-10	61-03 00 700	357 61-64 00 700 0	61-05 on You	010065	G 354 GITUS DO 101 USE PR JUNCTION DIODE CHARACIERISTIC CONFEST TOGETHER WITH VALUES OF FORMAND AND REVERSE BIAS VOLTAGE.	TO COMPUTE FORMARD ON REVENSE LIAS MESISTANCE TO COMPUTE FORMARD OF REVENSE BIAS RESISTANCE FOR	310065

IASK GROUP SUNDANY PERCENT MEMBERS PERFORMING

5PC 5PC 5PC 5PC 226 227 228 229	51 48 55 60	72 65 81 60	7 10 2 0	47 38 60 60	•		07 0 1 1	01 89 55 09	0 0 1 1	0 0 1 1	44 35 57 60	2 1 2 0	0 0 1 1	0 0 1 1	0 4 6 6	0 0 1 1	14 67 65 60	21 19 23 0	35 30 43 40		55 49 64 40	0
07-75x	30) GI-US DO TOU USE OR REFER TO THE GENERAL RULE THAT	TOENTIFY SENICONDUCTOR DIDDER MONIC COMPONENTS, SUCH AS RES	JAS GETTO STORE ATTENDED TO YOU DETERMINE THE GENERAL FOR THE GENERAL	1 USE OR RE	GI-12 DO TOU USE OR HEFER TO DIODE COLOM CODING	USE ON MEFER TO CENTRIFUGAL FONCE OF ORBIT AROUND A NUCLEUS	367 GI-14 DO TOU USE OR REFER TO CENTRIPETAL FURCE OF AN	USE OR REFER	AS IN SAR 369 SI-16 DO YOU USE OR PEPER TO KINETIC ENERGY OF AN ELECTRON	90	ELECTRON MUVING IN ORBIT 371 GI-18 DO TOU USE OR NEFEN TO MEASUMEMENTS OF REVERSE BIAS			AN CHRITING ELECTRON 374 61-21 DO YOU USE OR REFER TO FURBIDDEN ENERGY LEVELS OF AN	DABITING ELECTRON 375 GI-22 DO YOU USE OR HEFER TO VALENCE ELECTHONS ITHUSE IN	THE DUTERMUST SHELL! 376 61-23 DO 70U USE OR PEFER TO ATOMIC NUMBER (TOTAL NUMBER OF	377 GI-24 DO TOU USE ON REFER TO STANGES ON THE DIDDE MAICH	INDICATE THE CATHODE END 374 GI-25 DO YOU WEED TO KNOW WHICH MATERIALS ARE USED IN THE	EMICONDUCTURS	INCREASES MESISTANCE DECREASES BUG 61-27 DO YOU USE ON REFER TO PM JUNCTION DIODE CHARACTERISTIC CURVES, SUCH AS VOLTAGE - CURRENT CHARACTERISTIC CURVES (PERHAPS YOU DO THIS TO IDENTIFY	TOTALS OF STRUCTURAL METHER PN JUNCTION DIDDES ARE FORMAND BLASED OR REVERSE BLASED WHEN YOU PEAD OR	INTERPRET CIRCUIT DIAGRAMS 382 GI-29 DO YOU USE ON HEFER TO VALENCE BAND IN SEMICONDUCTOR MATERIALS

TASK GROUP SUMMARY PERCENT MEMBERS PERFORMING

61-30 DO VOU USE OR REFER TO FORBIDDEN BAAD IN 61-30 DO VOU USE OR REFER TO FORBIDDEN BAAD IN 61-30 DO VOU USE OR REFER TO CONDUCTION BAND IN 61-30 DO VOU USE OR REFER TO CONDUCTION BAND IN 61-30 DO VOU USE OR REFER TO CLECTRON FLOW OR HOLE FLOW IN 61-30 DO VOU USE OR REFER TO CLECTRON FLOW OR HOLE FLOW IN 61-30 DO VOU USE OR REFER TO CLECTRON FLOW OR HOLE FLOW IN 61-30 DO VOU USE OR REFER TO CLECTRON INPURITY IN 61-30 DO VOU USE OR REFER TO DANGE INPURITY IN 61-30 DO VOU USE OR REFER TO DANGE INPURITY IN 61-30 DO VOU USE OR REFER TO DANGE INPURITY IN 61-30 DO VOU USE OR REFER TO DANGE INPURITY IN 61-30 DO VOU USE OR REFER TO DANGE INPURITY IN 61-30 DO VOU USE OR REFER TO DANGE INFURITY IN 61-31 DO VOU USE OR REFER TO DANGE INFURITY IN 61-31 DO VOU USE OR REFER TO DANGE INFURITY IN 61-31 DO VOU USE OR REFER TO DANGE INFURITY IN 61-31 DO VOU USE OR REFER TO DANGE INFURITY IN 61-31 DO VOU USE OR REFER TO DANGE INFURING IN 61-31 DO VOU USE OR REFER TO DANGE INFURING IN 61-32 DO VOU USE OR REFER TO DANGE INFURING IN 61-34 DO VOU USE OR REFER TO DANGE INFURING IN 61-34 DO VOU USE OR REFER TO DANGE INFURING IN 61-34 DO VOU USE OR REFER TO DANGE INFURING IN 61-34 DO VOU USE OR REFER TO DANGE INFURING IN 61-34 DO VOU USE OR REFER TO DANGE INFURING INVERSE. VOLTAGE INFURING IN 61-34 DO VOU USE OR REFER TO DANGE INFURENCE INVERSE. VOLTAGE INFURING IN 61-34 DO VOU USE OR REFER TO DANGE INFURENCE INVERSE. VOLTAGE INFURENCE 61-34 DO VOU USE OR REFER TO DANGE INFURENCE INVERSE. VOLTAGE INFURENCE 61-34 DO VOU USE OR REFER TO DANGE INFURENCE INVERSE. VOLTAGE 61-34 DO VOU USE OR REFER TO DANGE INFURENCE INVERSE. VOLTAGE 61-35 DO VOU USE OR REFER TO DANGE INFURENCE INVERSE. VOLTAGE 61-34 DO VOU USE OR REFER TO DANGE INFURENCE INVERSE. VOLTAGE 61-34 DO VOU USE OR REFER TO DANGE INFURENCE INVERSE INFURENCE 61-34 DO VOU USE OR REFER TO DANGE INFURENCE INVERSE INFURENCE 61-34 DO VOU USE OR REFER TO DANGE INFURENCE INFURENCE 61-34 DO VOU USE OR REFER TO DANGE INFURENCE 61-34 DO VOU USE OR REFER TO	5 P C 2 2 9		•	0	0	c	,	20	0	0		20	0	c		20	0		0	0.7	c	2	70	D		0	0	2	100	0.0	0.4		60 IMANSISIORS	09
\$22 SPC SPC SPC SPEER TO FORBIDDEN BAND IN			,	~	•	,		=	~	~		28	•		•	•	,		•	47		5	45	>		1 1	53	23	. 0	0 7	96	87	9.6	67
SETICOMOUTIONS GI-10 DO YOU USE OR REFER TO FORBIDDEM BAND IN SETICOMOUTION ATERIALS SETICOMOUTION ATERIALS SETICOMOUTION ATERIALS SETICOMOUTION ATERIALS SETICOMOUTION ATERIALS SETICOMOUTION ATERIALS SETICOMOUTIONS GI-13 DO YOU USE ON REFER TO ELECTRON FLOW OR HOLE FLOW IN SETICOMOUTIONS GI-13 DO YOU USE ON REFER TO ELECTRON FLOW OR HOLE FLOW IN SETICOMOUTIONS GI-14 DO YOU USE ON REFER TO DANOR IMPURITY IN SETICOMOUTIONS GI-15 DO YOU USE ON REFER TO DANOR IMPURITY IN SETICOMOUTIONS GI-19 DO YOU USE ON REFER TO MATTOR INFURITY IN SETICOMOUTIONS GI-19 DO YOU USE ON REFER TO MATTOR INFURITY IN SETICOMOUTIONS GI-19 DO YOU USE ON REFER TO MATTOR INFURITY IN SETICOMOUTIONS GI-19 DO YOU USE ON REFER TO MATTOR INFURITY IN SETICOMOUTIONS GI-19 DO YOU USE ON REFER TO MATTOR INFURITY IN SETICOMOUTIONS GI-19 DO YOU USE ON REFER TO MATTOR INFURITY IN SETICOMOUTIONS GI-19 DO YOU USE ON REFER TO DANOR INFURING IN SETICOMOUTIONS GI-19 DO YOU USE ON REFER TO DANOR INFURING IN SETICOMOUTIONS GI-19 DO YOU USE ON REFER TO DANOR INFURING IN SETICOMOUTIONS GI-19 DO YOU USE ON REFER TO DANOR INFURENT FORWARD GI-19 DO YOU USE ON REFER TO DANOR INFURENT FORWARD GI-19 DO YOU USE ON REFER TO MATTORN AVERSEE (INVERSEE) YOUT AGE GI-19 DO YOU USE ON REFER TO DANOR INFURENT FORWARD GI-19 DO YOU USE ON REFER TO DANOR INFURENT FORWARD GI-19 DO YOU USE ON REFER TO MATTORN SINGE CURRENT FORMARD GI-19 DO YOU USE ON REFER TO MATTORN SINGE CURRENT MATTORS GI-19 DO YOU USE ON REFER TO MATTORN AND SINGE CURRENT MATTORS GI-19 DO YOU USE ON REFER TO MATTORN AND SINGE COURTER MATTORS GI-19 DO YOU USE ON REFER TO MATTORN AND SINGE COURTER MATTORS GI-19 DO YOU USE ON REFER TO MATTORN AND SINGE COURTER MATTORS GI-19 DO YOU USE ON REFER TO MATTORN AND SINGE COURTER MATTORS GI-19 DO YOU USE ON REFER TO MATTORN AND SINGE COURTER MATTORS GI-19 DO YOU USE ON REFER TO MATTORN AND SINGE COURTER MATTORS GI-19 DO YOU USE ON REFER TO MATTORN AND SINGE COURTER MATTORS GI-19 DO YOU USE ON REFER TO MATTORN AND				۰	-	-		<u>*</u>	~	•		97	,	•	,	7	*		*	30		-	52			•	7	11	-	0 0	8 6	83		7.2
61-30 DO YOU USE OR REFER TO SEMICONDUCTOR MATERIALS SELICONDUCTOR MATERIALS GI-31 DOU YOU USE OR REFER TO SEMICONDUCTOR MATERIALS GI-32 DO YOU USE OR REFER TO SEMICONDUCTORS OR REFER	5 P.C	•	•	*	•	-	,	13	•	r	;	27	,			S	•		6	37		-	33	1.		12	8	50		6 8	06	æ	7.8	7.8
	**************************************	33 33 35 35 35 35 35 35 35 35 35 35 35 3	SEMICONDUCTOR MATERIALS	OR REFER		SENICONOUCTOR HA	SEMICONDUCTORS	387 61-34 DO YOU USE	JAR GI-35 DO TOU USE	SEMICONDUCTORS	SEMICONDUCTORS	GI-37 DO TOU USE ON REFER TO P-TTPE SEMICONDUCTOR	GI-39 DO YOU USE OR REFER TO MAJORITY CARRIERS IN	SEMICONDUCTORS	STATE OF THE OF THE PER TO TIME IT THE PER TO THE PER T	OR REFER	SENICONDUCTORS	SEMICONDUCTORS	394 GI-43 DO YOU USE ON REFER TO RELLATIONSHIP BETWEEN BARRIER	WIDTH AND DIFFERENCE OF POTENTIAL	RESISTANCE RATIO FOR UTODES	*		SI-47 DO TOU USE OR REFER	CURRENT DIODE RATINGS	GI-48 DO TOU USE ON REFER TO	You use	403 61-50 DO	0100E PA	62-01 00	62-03 DO YOU	407 62-04 DO YOU CHECK THANSISTORS USING	408 62-05 DO YOU USE ON REFER TO ENITTER	USE OF REFER TO COLLECTOR

TASK GMOUP SUMMANY
PRACENT MEMBERS PERFORMING

SPC SPC SPC SPC 226 227 428 229	78 72 85 60	27 29 23 40	25 28 21 20	52 51 53 40	12 14 9 20	98 18	87 86 89 AG	45 45 45 20	32 32 32 20		43 45 40 20	13 14 11 20	0 12 4 0	,	7	7			9	40	30 34	04 60	07 09 65	0.0	25 32	6 7 13 20	
07-75K	6 410 62-07 bg You USE OR REFER TO EMITTER - COLLECTOR (EC)	G "11 GE-08 DO YOU USE ON MERENTO HOW BLANING AFFECTS THE	G 112 G2-09 DO YOU USE ON REFER TO HOW BIASING AFFECTS THE	G 413 G2+10 00 YOU USE ON MERRY FOR THE COLLECTION - BASE JUNCTION OF 413 G2+10 00 YOU USE ON MERRY FOR THE PHYSICAL SIZE OF THE TARMSISTAL STRUCTION FOR THE AND ELITTER	6 "114 GZ-11 UO TOU USE OR REFER TO LEAKAGE CURRENT (1080) IN A	415 GZ-12 00 TOU USE OR REFER TO TAANSISTOR	GA-13 DO YOU USE OR REFER	" " 17 G2-1" DO YOU USE OR HEFER TO THANSISTOR SUBSTITUTION	INFORMATION OF OR PEFER TO THE GENERAL RULE THAT THE	SHALLER THRE FRITTER CURRENT IE CUSCALLY IB BEING 2 TO	G 419 G2-10 00 YOU USE THE INFORMATION THAT THE EFFECT OF EMITTER BASE VOLIGGE ON BASE CURRENT IS THE CONTROLLING FACTOR FOR	6 420 62-17 00 YOU USE THE GENERAL RULE THAT LEAKAGE CURRENT	1260) IN A TRANSISTOR INCREASES AS TEMPERATURE INCREASES OF 421 G2-18 DO 700 USE OR REFER TO THANSISTOR CHARACTERISTIC	G +22 G2=19 DO YOU USE OR REFER TO BETA TRANSISTOR GAINS	423 52-20 00 TOU	424 42-21 00 TOU USE OR	G 425 G2-22 DO TOU CALCULATE BETA TRANSISTOR GAINS	62-24 DO 700 CALCULATE	428 63-01 00 YOU NORK MITH	429 63-02 00 TOU	00 100	131 63-04 00 YOU	6 432 63-05 DO TOU TROUBLESHOOT TO AMPLIFIER COMPONENTS	43-07 po 100	435 63-08 po fou use on	G 43A G3-09 DO TOU USE ON HERER TO (COMMON EMITTER) THE	CALCULATIONS NECESSARY TO MEASURE THE SPECIFIC CHANGE IN COLLECTOR CURRENT WHICH RESULTS FROM A SPECIFIC CHANGE IN BASE CURRENT

SPC SPC SPC SPC 226 227 228 229

TASK GROUP SUMMARY PERCENT MEMBERS PERFORMING

226 227 228 229	ANGE IN 26 22 32 20 SE	GE IN 9 7 13 20 NGE IN	CHANGE IN 28 23 36 20	GE IN 10 9 13 0	YOUR 2 1 2 0	12 9 17 0	FOR A 3 4 0 0	34 26 43 40	22 17 30 20	16 16 15 20	THANGE 3 0 9 0	3 0 6 C	7.4L 3 1 4 0	17 17 11 0 11 15 17 0 18 18 18 18 18 18 18 18 18 18 18 18 18	0 0 0 0 0	TE TO 23 23 23 0	RELATE TO 20 16 26 0
DY-15k	437 63-10 DO YOU USE OR REFER TO (COMMON EMITTER) THE CHANGE COLLECTOR VOLTAGE MHICH RESULTS FHOM A CHANGE IN BASE	43A 63-11 DO TOU USE OR HEFER TO (COMMON EMITTER) THE CALCULATIONS NECESSARY TO MEASURE THE SPECIFIC CHANGE IN COLLECTOR VOLTAGE MMICH RESULTS FROM A SPECIFIC CHANGE IN	TOURSENT OR REFER TO (COMMON EMITTER) THE	GENE CURRENT WHICH RESOLTS FROM AN INTO STEMAL STAID GO YOU USE OR REFER TO (COMMON ENITTER) THE CALCULATIONS NECESSARY TO MEASURE THE SPECIFIC CHANGE IN DAMA STREET TO IMPUT STAND		##2 G3-15 DO YOU USE ON REFER TO THE OPERATING POINT &	443 GA-16 DO YOU CALCULATE THE SPECIFIC GUIESCENT POINT FOR	444 GA-17 DO YOU MEASURE VOLTAGE GAIN USED IN THE COMMON			447 SHITTER CONTINUATION 53-20 DO YOU CACCULATE THE VOLTAGE GAIN FOR SPECIFIC TRAN- 515TORS USING A FORMULA THAT IS, DO YOU DIVIDE THE CHANGE IN BASE-EMITTER VOLTAGE INTO THE CHANGE THE BASE COLLECTOR	YOUTAGE TO DETERMINE THE VOLTAGE GAIN HHR G3-21 DO YOU CALCULATE THE CURRENT GAIN FOR SPECIFIC TRANSISTORS USING A FORMULA THAT IS, DO YOU DIVIDE THANGE THANGE IN BASE CHREENT THIS CHANGE IN COLLECTOR CHANGE IN COLLECTOR	NAME OF THE POWER GAIN FOR A SPECIFIC TRANSISTOR USING A FORMULA THAT IS, DO YOU NULTIPLY THE CUMPENT GAIN TIMES THE VOLTAGE GAIN TO DETERMINE THE	45) 63-23 DO WEED TO KNOW THAT HORE COLLECTUR CURRENT IS GENERATED WITH LESS COLLECTOR VOLTAGE AS TEMPERATURE INCREASES (THIS AFFECTS THE STATIC OPERATING POINT (9) OF	THE THANSISTORY OF THE STATIC OPERATING POINT (G) OF TOLICY OF THE STATIC OPERATING POINT (G) OF		ATED

TASK GROUP SUNNARY

5PC 5PC 5PC 5PC 226 227 228 229	27 25 30 20	26 25 28 20	26 25 28 20	16 13 21 0	25 23 28 0	19 32	31 28 36 20 30 26 36 20	28 26 32 20	19 14 26 0	29 28 32 40	34 33 36 40	26 22 32 40	15 13 17 0	13 13 13 20	21 20 21 20	11 12 11 0	16 13 19 0	10 15	37 32 45 20 15 14 15 20	14 16 23 20
UY=15x	G 454 G3-27 DO YOU IDENTIFY ON SCHEMATIC DIAGRAMS AND RELATE TO THE ACTUAL CINCUITAY THE COMPUNENTS ASSOCIATED WITH	THERMISTON STABILIZATION G 455 G3-24 DO YOU LOENTIFY ON SCHEMATIC DIAGNAMS AND RELATE TO THE ACTUAL CINCUITRY THE COMPUNENTS ASSOCIATED WITH		REVERSE BIAS DIODE STARILIZATION G 457 G3+30 DO YOU IDENTIFY ON SCHEMATIC DIAGRAMS AND RELATE TO THE ACTUAL CIRCUITRY THE COMPONENTS ASSOCIATED WITH	COUBLE DIODE STABILIATION G 458 53-31 DO TOUTHOUBLESHOOT CIRCUITS WHICH HAVE COMPONENTS ALICH POMEDHM CMITTER (SMAMPING) RESISTOR STABILIZATION	G #59 G3-32 DO YOU TROUBLESHOOT CIRCUITS WHICH HAVE COMPONENTS WHICH PERFORM SELF-BIAS STABILIZATION	2 091	HICH PERFORM FORMATO HIAS 5100E STABILIZATIO	9	WHICH PERFORM DOUBLE DIDDE STABILITATION FOR TRANSISTOR & 464 63-37 DO YOU IDENTIFY AMPLITUDE DISTORTION FOR TRANSISTOR	G 465 G3-38 DO TOU TROUBLE SHOOT THANSISTUR CIHCUITS TO FIND THE	G 466 G3-39 DO YOU IDENTIFY FREQUENCY DISTURTION FOR TRANSISTOR	G 467 G3-40 DO YOU IDENTIFY PHASE DISTORTION FOR TRANSISTOR	CINCUITS CINCUITS OF THOUBLESHOOT THANSISTON CINCUITS TO FIND THE	G 469 GJ-42 DO TOU TROUBLESHOOT THANSISTOR CIRCUITS TO FIND THE	G 470 G3443 DO TOU MEED TO NOW THE DEGENERATIVE EFFECTS ON THE CINCUIT CAUSED BY CHANGING EMITTER MESISTANCE FOR THANSISTON AMPLIFIERS IN THE COMMON COLLECTOR	CONFIGURATION G 47) G3-44 DO 700 DEERMINE THE CLASS OF OPERATION FOR	DO YOU TROUBLESHOOT OR REPAIR PARAPHASE	473 63-46 DO YOU TROUBLESHOOT OR	CIRCUITS 475 G3-48 D0 T0U THOUBLESHOOT OR AMPLIFIERS

GRPS
SELECTED
. VES. BY
HE SPONDING .
HBRS KESP
PCT

GPSHIO PAGE 19

TASK GROUP SUMMARY PERCENT MEMBERS PENFORMING

				SPECIAL PURPOSE	DEVICES					POWER SUPPLIES																											the second secon	
229	20	0 5	7 5	9	09	0 0	0 0	0 0	90	90	09	9 9	0 0	0 0		80	20	08	50	2 6	9 :	0 0	9	90	09	0,	9	?	2	7		20	20		3	0		0.9
5 P C	2.3	- :		51	7 :		0 0		9	•	7	6 6	12	83		9.5	34	83	2.5	•	0 :	2,5	28	4	12	10	4	3	*	38		36	34		3	•	1	11
5PC	20	6 2	9 6	*	0 0	8	9 00	8	98	10	83	7 :	2	61		11	32	75	96	0	70		30	0	10	2	3	:	32	28		53	28		36	0	1	3 7
5 P C 22 b	22	12		2	9 6	0 0		6	8 9	87	81	0	9 9	7.3		90	33	78	ĵ.	0	0 .	. 1	29	9	1.1	8 9	3	2	39	32		5 8	30		7	7		24
D1-75k	U TROUBLESHOOT	U USE OR REFER TO	TOU USE OF PEFER TO FIFTD FFFECT TRANSISTORS (FFT)	USE OR	USE	TOTAL SOLD THE CARE CONTROL TO SOLD SOLD SOLD SOLD SOLD SOLD SOLD SOL	TOUR PRESENT JOBS DO TOUR WITH TOWER SOUTHIES	YOU CLEAN DOWER SUPPLIES		TOU TROUBLESHOOT TO POWER SUPPLY CIRCUIT LEVEL	00	TOUREMOVE OR REPLACE COMPLETE POWER SUPPLIES		DO YOU WORK MITH FULL -WAVE RECTIFIERS OTHER THAN	BRIDGE RECTIFIENS	HZ-11 DO TOU MORK MITH BRIDGE RECTIFIERS		USE OR REFER	USE ON MEFER	TOU USE OR REFER TO PEAK OUTPUT VOLTAGE	200	TOO ON TENES TO ALTHUR PARTICIONS	USFOR	USE OR		TOU WORK WITH CIRCUITS WHICH EMPLOY CAPACITIVE	FILTERS		HZ-Z4 DO YOU MORK MITH CIRCUITS WHICH EMPLOY CAPACITIVE	AZ-ZS DO YOU MORK WITH CIRCUITS WHICH EMPLOY INDUCTIVE	INPUT L-TYPE FILTERS	HZ-Z6 DO YOU HORK MITH CIRCUITS WHICH EMPLOY LC PI-TYPE	AZ-27 DO TOU WORK ALTH CIRCUIT, WHICH EMPLOY RC PI-TYPE		WARREST DO YOU WORK WITH CIRCUITS AHICH EMPLOY DON'T	AZ-29 DO YOU HAVE THE OPTION OF REPLACING ONE TYPE OF	FILTER WITH A DIFFERENT TYPE FILTER	SIZ HI-GI DO TOU MORK MITH OSCILLATORS IN TOUR PRESENT JOB
	00 F	0	000			3	2 0	200	00	00	00	0 0	3 6			00	00	00	00	00	9	000	000	00	00	00 400	283	5 8	00	00	-7.	00	000	RS	00	00	*	00
	ANPLIFIERS	10-1H	11-03	10-1×	H1-05	D T	75.00	42-03	H2-04	45-05		42-07			BRIDG	11-24					01.74	15-17			H2-21	HZ-22	FILTERS	FILTERS	42-24	42-25	INPU	42-26	42-27 DO	FILTERS	87-58	42-29	F11.7	10-54
		1 477	179			70.	0 0		180	181		0 0		492		443	707		9 6	1			501	505	H 503 H	+ 504 H	90%		4 506 H	105 4		905 "	\$05 H		1 210	115 1		1 215
						1																															1	

TASK GROUP SUMMANY
PERCENT MEMBERS PEKEDHMING

15.13 H3-02 DU 700 1439ECT 055CLLATORS H 518 H3-03 DO 700 ALIGN 00 ADDUST 05 CLLLATOR COMPONENTS H 518 H3-03 DO 700 ALIGN 00 ADDUST 05 CLLLATOR COMPONENTS H 518 H3-03 DO 700 MERONE OR REFLET 0 SCILLATOR COMPONENTS H 518 H3-03 DO 700 MERONE OR REFLET 10 OSCILLATOR CIRCUIT LETER H 518 H3-03 DO 700 MERONE OR REFLET 10 OSCILLATOR CIRCUIT LETER H 518 H3-03 DO 700 MERONE OR REFLET 10 OSCILLATOR CIRCUIT LETER H 518 H3-03 DO 700 MERONE OR REFLET 10 OSCILLATOR CIRCUIT LETER H 518 H3-03 DO 700 MERONE OR REFLET 10 OSCILLATOR STABILITY H 52 H3-13 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-13 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-13 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-13 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-13 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-14 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-14 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-15 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-15 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-16 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-17 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-17 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-17 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-17 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-17 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-17 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-17 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-17 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-17 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-17 DO 700 USE ON REFER 10 DEGREECT CEFECT H 52 H3-17 DO 700 USE ON REFER 10 DEGREECT CEFECT H 53 H3-17 DO 700 USE ON REFER 10 DEGREECT CEFECT H 53 H3-17 DO 700 USE ON REFER 11 DOSCILLATORS HICH USE CEFECT H 53 H3-17 DO 700 USE ON REFER 11 DOSCILLATORS HICH USE CEFECT H 53 H3-17 DO 700 USE ON REFER 11 DOSCILLATORS H 53 H3-17 DO 700 USE ON REFER 11 DOSCILLATORS H 54 H3-17 DO 700 USE ON REFER 11 DOSCILLATORS H 54 H3-17 DO 700 USE ON REFER 11 DOSCILLATORS H 54 H3-17 DO 700 USE ON REFER 11 DOSCILLATORS H 54 H3-17 DO 700 USE ON REFER 10 DOSCIN CEFECT H 55 H3	226 227 228 229		B	17 24 49 20	42 12	30 53	35 43	42 36 51 0		33 43	35 53 2	91	87 57	~			22 12 36 20	20 4		48 36 66 20	21 20 21 40	ia 12 28 0	3.6		000	9 5 6 6	, ;	75 76	55 68	09 1	34 26 47 20 MULTIVIBRATORS	:	07 97 67 67		49 42 60 40		47 38 62 20		2	27 16 43 0	
	DY-15A	H 513 H3-02 BU YOU	14 H3-03 00 100	10 to	31-05 00 40-E	518 H3-07 00 YOU	SIS H3-US DO YOU USE ON REFER	SZO 43-09 DO YOU USE ON REFER TO FREQUENCY	(600)	521 H3-10 DU YOU USE ON REFER TO AMPLITUDE	522 43-11 DO YOU USE OR REFER TO FREQUENCY	523 H3-12 DO TOU USE OR REFER TO	524 H3-13 00 100 05E ON HEFER 10	325 H3-14 DO 700 USE OR REFER TO	526 H3-15 DO TOU USE OR REFER TO	527 H3-14 00 700 USE OF REFER	529 L3-11 00 100	CIRCUITS AS FOO	Fou	531 H3-2	532 43-21	*** ##!	OSCILLATORS	מול אלו מים	135 H3-24 00 100 H0HK H11H	536 H3-25 DO TOU JORK ALTH	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	05C1LLATORS	534 11-01 DO TOU MORK WITH HULTIVIERATORS IN YOUR PRESENT	SHU 11-02 DO TOU INSPECT WAVE	S41 11-03 DO YOU ALIGN OF ADJUST WAVE GENERATING ON	CIRCUITS	242 11-04 00 100	מון מון מון מון מון	,	CIRCUIT COMPONENTS	11-07 DO TOU REMOVE	STAPING CIRCUITS	COMPONENTS	11.0	CIRCUITS

GRPS
SELECTED
7.0
. 765.
RE SPONDING
HERS
-

GPSHIO PAGE 21

TASK GROUP SUNMARY PERCENT MEMBERS PERFORMING

C

TASK GROUP SURMANT PERCENT MEMBERS PERFORMING

5PC 5PC 5PC 5PC 226 727 228 229	0 0 0	0 0 1	0 0	0 0 0	0 0 0	0 0 0	0 0	0 0 1 1	0 0 -	0 0 1	0	0		2 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 6 2	0 0 7	0 0 6 7	0 -	0 0 0	0 7 8	•	0 1	2 1 2 0	2 3 0 0	O O O ELECTRON TUBE AMPLIFIERS AND CIRCUITS
07-75A	1 58% 13-22 00 YOU CALCULATE ACTUAL VALUES OF TRIODE	00 400 656 04	ETCT AMPLIFICATION FACTORS 1 548 13-24 DO TOU USE OF REFER TO ELECTION TUBE TRANSCONDUCTANCE	(G: MHICH IS MEASUHED IN MHGS) I SAM 13-25 DO YOU CALCULATE ACTUAL VALUES OF ELECTRON TUBE		SON 13-27 DO YOU CALCULATE ACTUAL VALUES OF AC PLATE	MESISTANCE SON THE SEFEN TO ELECTRON THE INTERELECTRONE	DO YOU USE OR		VOLTAGE FOR A SPECIFIED BIAS 1 595 13-31 DO YOU USE CHEMACTERISTIC CURVES TO SELECT PLATE	CURRENT FOW A SPECIFIED BIAS 1 598 13-32 DO YOU USE CHARACTERISTIC CURVES TO SELECT BIAS	REQUIRED FOR CUTOFF 1 597 13-33 DO YOU USE CHARACTERISTIC CURVES TO SELECT BIAS	REGULAED FOR SATURATION	1 598 13-34 DO TOU USE ON REFER TO ELECTRON TUBE AMPLIFIER GAIN 1 599 13-35 DO TOU USE OR REFER TO ELECTRON TUBE AMPLIFIER	•	THE AMPLIFIER GAIN I OUT 13-37 DO TOU USE MULTIMETENS TO DETERMINE ELECTRON TUBE	AMPLIFIER GAIN 1 ADZ 13-38 DO TOU USE OSCILLOSCOPES TO DETERMINE ELECTRON TUBE	AMPLIFIER GAIN 1 603 13-39 00 TOU USE CHARACTERISTIC CURVES TO DETERMINE	ELECTRON TUBE AMPLIFIER GAIN 1 604 13-40 00 YOU CALCULATE ANY ELECTRON TUBE CAPACITANCES SUCH	AS INPUT CAPACITANCE AS 13-41 DO YOU USE OR REFER TO TURE SOCKET NOTATION	13-42 DO YOU USE OR REFER TO PIN NUMBERING SYSTEMS	607 13-43 DO YOU USE ON REFER TO THE TYPE OF MATERIAL ON THE OPERATING TEMPERATURE OF THE EMITTING SURFACE IN THE	ELECTRON TUBES YOU WORK ON 18-608 13-408 TOUTION MATERIAL 1608 13-44 TO TOU USE OR REFER TO TUBE SUBSTITUTION MATERIAL	DO TOU MORK WI	IN YOUR PRESENT JOB J 610 JI-UZ DO YOU DETERMINE THE CLASS OF OPERATION FOR ELECTION TUBE AMPLIFIERS IN ORDER TO TROUBLESHOOT AMPLIFIER CIRCUITS

PCT MARS RESPONDING "YES" BY SELECTEU GRPS

CPSHID PAGE 23

TASK GROUP SUNMARY PERCENT MEMBERS PERFORMING

					SPECIAL PURPOSE ELECTRON TUBES													HETERODYNING.	MODULATION, AND	DEMODULATION		***************************************		AM SYSTEMS	
229	000	0	0	0	00	0	0	0	Q	0	0	0	00	0	0 0	0	t	7	00		00		• •	00	0
5PC	000	0	0	0	00	0	0	0	0	0	0	0	0	0	00	0	47	* 6	7 -		2	75	• 0	• •	•
SPC 227		0	-	-	• 0	-	0	0	0	0	0	0	00	0	00	0	33	50	9 7		m =	-			-
5PC 226		0	-	-	~ 0	-	0	0	0	0	0	c	0 0	0	0 0	9	25	97	; •		7 :	3	, ,	, ,	,
07=75x	J 611 JJ-03 DO YOU THOUBLESHOOT, OR REPAIR PARAPHASE AMPLIFIERS J 612 JJ-04 DO YOU TROUBLESHOOT OR REPAIR PUSH-PULL AMPLIFIERS J 613 JJ-05 DO YOU TROUBLESHOOT OR REPAIR COMPOUND-CONNECTED	AMPLIFIENS J 614 JI-U6 DO TOU TROUBLESHOOT ON NEPAIN CASCADE"CONNECTED	AMPLIFIERS J = 07 DO TOUBLESHOOT ON REPAIR DON'T KNOW WHICH TYPE OF AMPLIFIER	J 616 JZ-DI DO TOU MORK WITH GAS TUBES (HOT CATHODE OR COLD	CATHODE! Jell J2-02 DO YOU WORK HITH CATHODE-HAY TUBES Jell J2-03 DO YOU USE OR REFER TO THE CHARACTERISTICS OF BEAM		POWER TUBES ARE USED U 620 12-US DO YOU USE OR REFER TO THE CHAMACTERISTICS OF	U 621 JE-06 DO TOU THOUBLESHOOT OR REPAIR CIRCUITS IN WHICH	INTRATRONS ARE USED J 622 J2-07 DO TOU USE ON REFER TO THE PRINCIPLES OF OPERATION OF FIRSTRONG CONT.	J 623 J2-CE DO TOU USE OR REFER TO THE PRINCIPLES OF OPERATION OF	J 624 J2-09 DD YOU USE ON REFER TO THE PRINCIPLES OF OPERATION OF ELECTROSTATIC DEFLECTION SYST, MS OF CATHODE-RAY TUBES	025 J2-10 DG YOU USE OR REFER TO PHO	U 626 UZ-12 DO TOU USE OR REFER TO ELECTRON OPTICS	628 J2-13 00 TOU USE OR REFER TO PEH	J 629 JZ-14 DO TOU USE OR REFER TO DECAT TIMES J 630 JZ-15 DO TOU USE OR REFER TO FLUCKESCENCE	631 J2-16 DO YOU USE OR REFER TO PHOSPHORESCE	J 632 JJ-01 DO TOU "ORK ON TRANSMIT OR RECEIVE SYSTEMS IN YOUR	633 J3-02 DO TOU PERFORM TASKS ON FREQUENCY	0 0	IN YOUR WORK MITH TRANSHIT OR RECEIVE SYSTEMS	636 J3-US DO YOU PERFORM TASKS ON HE	ost ja-ue on tou PERFORM TASKS ON MODULATED USC	PARTICION TO THE PARTICION OF THE PARTIC	OFF KINDS DO YOU CLEAN AN TRANSMIT OR	KI-US DO YOU ALTON OR ADJUST AN

TASK GROUP SUMMANY
PERCENT MEMBERS PERFORMING

226 227 228 229	•••	0 • 1 •	0	0 9 1						• 1	, ,		0 , 0 2	۰	9	~ :	0 () i	• •		,	0 9 1 6		•	11 0 28 0		0 23 0 CM	0 17 0	11	0 21	9 0 21 0			0 83 0		0 51 0	71
07-TSR	* *	COMPONENTS AI-U7 DO TOU REMOVE ON PEPLACE AM THANSMIT OR MECEIVE	SYSTEMS KI-UM DO YOU REHOVE OF REPLACE AM TRANSMIT OF RECEIVE	COMPONENTS SACTATIONS OF MAN SON THE PROPERTY OF STATE O	O YOU PERFORM TASKS ON RE	KI-II DO YOU PERFORM TASKS ON AUDIO	YOU PERFORM TASKS ON POWER	TOU PERFORM TASKS ON	YOU PERFORM TASKS ON	KI-15 00 YOU PERFORM TASKS ON	ALTER DO TOU PERFORM LASKS ON DON'T REMEMBER THIS AN STACE	SALITIES.	AI-IS DO TOU USE OR REFER TO FREQUENCY STABILIZATION IN	AI-19 DO YOU USE ON MEFER TO SENSITIVITY OF	KI-20 DO TOU USE OR MEFER TO	KI-ZI DO YOU USE ON REFER TO	KI-22 DO YOU USE OR HEFER TO	41-23 00 10U USE OR REFER TO	41-24 DO TOU USE ON REFER TO	*1-25 50 TOU USE OR	IMAGE REDECTION RATIOS	KI-27 DO TOU THACE SIGNALS OR CURRENT PATHS THROUGH AM	51	KI-28 DO TOU TRACE SIGNALS OR CURRENT PAIMS THROUGH AM	RECEIVER SCHEMATIC DIAGNAMS - Z-DI NO TOU MORE ATTH EN TRANSMIT OF RECEIVE SYSTEMS IN	YOUR PRESENT JOS	x 2-02 00 700	KZ-03 DO YOU CLEAN FM TRANSMIT OR RECEIVE	KZ-04 DO TOU ALIGN FM TRANSMIT OR RECEIVE ST	¥	STSTEMS K2-06 DO YOU TROUBLESHOOT TO FM TRANSMIT ON RECEIVE	COMPONENTS	¥	SYSTEMS K2-08 DO YOU REMOVE ON REPLACE FM TRANSMIT OR RECEIVE	COMPUNENTS	KZ-09 DO YOU PERFORM TASKS ON AUDIO AMPLIFIERS	K2-10 DO YOU PERFORM TASKS ON FREQUENCY MULTIPLIERS
	2 0 4 2	*	949	**	0 + 0	*	0 1 0	× 650	x 651	250 ×	1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Y CO	250 X	¥ 556	K 657	x 058		099 ×	199 ×	× 662	200 ×	, 90 ×		× 965	446		1 96 7		690 ×	× 010	170 ×		K +72	K 673		K 674	K 675

PCT MERS RESPONDING .TES' BY SELECTED GRPS

GPSHIO PAGE 25

TASK GROUP SUMMANY PERCENT MEMBERS PENFORMING

									N N N N N N N N N N N N N N N N N N N	SYSTEMS										LOGIC FUNCTIONS										
5PC	0	20		0	00	0	0	0.4			50	0	0,	0 0	2	50	50	0.8	0,	~ 0,	0,	3) (2	0,	0,	0+	08	0.80	0
226 S	S	5		•	5 1	17	23	1			32	0 7	34	2.2	;	32	92	68	53	53	5.3	1	, ,		10	18	- p	0 2	0 0 0	,
SPC 5	0	00	0	0	00	0	0	1	3 4	2	2 2	45	35	35	;	33	88	10	2 4	~	+			70	79	29	29	08	0 0	0
22¢	٠	•	• ~	•	• ~	•	۰	1	;	:	34	4.5	*	- 3	;	33	2.7	10		7	4,7			5	7.0	7.0	0.2	7	J J	5
2Y-15K	R 676 KZ-11 DO YOU PERFORM TASKS ON DRIVERS (INTERMEDIATE	TOU PERFORM TASKS ON	079 K2-14 DO 100	680 KZ-15 DO YOU PERFORM TASKS ON	K 681 KZ-16 DO YOU PERFORM TASKS ON LIMITERS	483 KZ-18 DO TOU TRACE SIGNALS OR	A CHEMATIC DIAGNAMS OF FM TRANSMITTERS A 884 X2-19 DO TOU TRACE SIGNALS OF CURRENT PATHS THROUGH	SCHEMATIC DIAGRAMS OF FM RECEIVERS	(BASE B) NUMBERS	SABBANK	A 688 X 44 CO TO TOU CONFERT OCTAL NUMBERS TO DECIMAL NUMBERS	689 K3-05 DO YOU CONVERT	060	A 592 DR DO TOU ADD BINANT NUMBERS TO GET A SUM	CARRY METHOD	A 643 K3-04 DO YOU SUBTRACT BINARY NUMBERS USING THE DIRECT		L SPS [1-0] IN YOUR PRESENT JOB: DO YOU PERFORM ANY TASKS	HELATING TO LOGIC FUNCTIONS L 096 LI-UZ DO YOU COMSTRUCT TRUTH TABLES FOR AND LOGIC SYMBOLS	OR GATES OR GATES OR CATES	ON GATES	SYMBOLS WITH STATE INDICATORS	STABOLS OR GALFS	STANDES OF GATES	L 701 x1-07 DO YOU USE OR MEFER TO TRUTH TABLES FOR OR LOGIC	L 702 KI-00 DO 100 USE OR REFER TO TRUTH TABLES FOR AND OR OR LOCAL STANDING WITH STATE INDICATION	HEFE	OH HEFER TO LOGIC SYMBOLS	705 L1-11 00 YOU USE ON HEFER TO	GATES GATES

PC! MARS RESPONDING TEST BY SELECTED GRPS

CPSMID PAGE 20

TASK GROUP SUMMANY PERCENT NEMBERS PERFORMING

TASK GROUP SUMMANY PERCENT NEMBERS PENFORMING

	SOUNTERS	COUNIERS																																TIMING CIRCUITS		
229	9	9	*	0+	20	10	0	0,	20	20	40	40	}	20	40		20	09		0+	3	2	9		20		40	20	7		90	2.0	202	,	7	
228 228	1.	4		1.	•	7	47	•	53	S S	53	*		1	•		0,9	9	•	12	4,7		5.5		15		5.7	3.4	36	;	57	10	0 0	4.3	2	
227 227	12	52	5	6.7	\$	45	34	28	8	40	25	3.5	:	36	39		0	6.7		48	9		30 7		£.		4	-	36		21		9 -	53	32	
226 226	75	8	20	70	20	÷	42	62	90	25	53		;	•	0		53	12		28	3		15		4		51	2.2	*		5.7	1		34	3,	
07-75A	SOUTH SECTION TO YOU WARRY WITH DIGITAL COUNTERS IN YOUR PRESENT JOB	3-02 00 400 085	Total no You use on	3-04 00 YOU USE ON MEERS TO	13-04 00 YOU USE OR RESER TO	3-04 00 YOU USE OR REFER TO	13-07 DO YOU UST OR REFER TO	13-UB DO YOU USE OR REFER TO	DO YOU USE OR REFER TO	13-10 00 YOU	13-11 00 TOU	CPICOUNTERS TAVING COMPLEMENTED FLITTIFICATIONS OF		745 13-13 DO YOU THACE DATA FLOW THROUGH LOGIC DIAGRAMS OF	DECADE COUNTERS 746 L3-14 DO YOU TRACE DATA FLUM TAROUGH LOGIC DIAGRAMS OF	RING COUNTERS	147 [3-15 DG YOU TRACE DATA FLOW THROUGH LOGIC DIAGRAMS OF	SERIAL CP-COUNTERS FEEDING A PARALLEL SIONAGE REGISTER		749 [3-17 DO YOU TRACE DATA FLOW THROUGH LOGIC DIAGRAMS OF	OTHER TYPE OF COUNTERS		751 L3-19 DO YOU COMPUTE THE BINARY COUNT AFTER SPECIFIC INPUT	FULSES FOR SERIAL UP - OR DOWN-COUNTRYS HAVING CONTENTION	752 L3-20 DO YOU COMPUTE THE BINARY COUNT AFTER SPECIFIC INPUT	POLICES FOR SERIAL CHICAGO FESTING A TARACLEL SCOREGE REGISTERS	753 [3-2] DO YOU COMPUTE THE BINARY COUNT AFTER SPECIFIC INPUT	PULSES FOR OTHER TYPES OF COUNTERS 754 [3-22 DO YOU CONSTRUCT TRUTH TABLES FROM LOGIC DIAGRAMS OF	DECADE COUNTERS	COUNTERS FOR SPECIFIC INPUT PULSES	756 L3-24 DO YOU DETERNINE THE APPROPRIATE AND GATE NECESSARY	IN COUNT DETECT CINCUITS TO INDICATE A MENUINED COUNT	AND TELECT DO TOUR SORRY STATE SANTOOTS RAVE GENERALORS	#1-03 00 YOU AOKK	FEEDWACK 740 HIGH DO YOU WORK WITH PULSED OSCILLATORS WITHOUT	MEGENERALINE FFEORACK

C SPC 8 229	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	H 60 B 60 USE OF SIGNAL 6 40 GENERATORS	4 t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	94 60 91 60 GENERATORS 91 60 GENERATORS 91 60 91 91 60 91 91 91 91 91 91 91 91 91 91 91 91 91
SPC 228	2 - 6 - 2 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	2 6 1 1 7 1 1 2	38 48	~ ~ ~ ~	
5PC 227	- 1 M 1 -	\$ 1 .	700	0 2 29 111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 P C 226	2 4 4 5 2 2 2 4 5 2 5 4 5 5 5 5 5 5 5 5	* · · ·	31 30	20 20 50 9 00 9	20000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0v-15k	H 761 MI-05 DO YOU WORK WITH BLOCKING OSCILLATORS H 762 MI-06 DO YOU USE OF REFER TO RISE TIME H 763 MI-07 DO YOU USE OF REFER TO FALL OR FLYBACK TIME H 764 MI-08 DO YOU USE OF HEFER TO SAEEP TIME H 765 MI-09 DO YOU USE OF REFER TO ELECTRICAL LENGTH OF SANTOOTH	MAREFORMS H 764 MI-10 50 YOU USE OR REFER TO PHYSICAL LENGTH OF SAMTOOTH MANEFORMS H 767 MI-11 DO TOU USE OR MEFER TO LINEAR SLOPE OF SAMTOOTH MAVEFORMS H 768 MI-12 DO TOU USE OR MEFER TO GATE LENGTH OF SAMTOOTH	H 769 HZ-01 TO VOU USE SIGNAL GENERATORS IN YOUR PRESENT JOB H 779 HZ-02 DO YOU PERFORM OPERATIONAL CHECKS WHILE USING SIGNAL GENERATORS H 771 HZ-03 DO YOU PERFORM PERIODIC HAINTENANCE SUCH AS ADJUSTING, ALIGNING, OR CALIBHATING WHILE USING SIGNAL	GENERATORS W 772 AZ-04 DG TOU TROUBLESHOOT TO AN ASSENBLY OR SUBASSEMBLY WHILE USING SIGNAL GENERATORS H 773 AZ-05 DO TOU TROUBLESHOOT TO THE SMALLEST REPLACEABLE COMPONENT WHILE USING SIGNAL GENERATORS H 774 AZ-05 DO TOU USE AUDIO SINE-WAVE GENERATORS H 775 AZ-07 DO TOU USE AUDIO NON-SINUSOIDAL MAVE GENERATORS SUCH AS SQUARE MAVE, TRIANGLE, PULSE, OR SPIKE H 775 AZ-UB DO TOU USE RF GENERATORS LESS THAN 1,000 MH H 777 AZ-UB DO TOU USE RF GENERATORS GRESTER THAN 1,000 MH H 778 AZ-10 DO TOU USE RF GENERATORS GRESTER THAN 1,000 MH H 778 AZ-10 DO TOU USE RF GENERATORS GRESTER THAN 1,000 MH H 778 AZ-10 DO TOU USE OTHER SPECIAL PURPOSE ON MULTI-FUNCTION	Maria

PLT NBRS RESPONDING TEST BY SELECTED GRPS

GPSHID PAGE 29

CPSHIU PAGE 30

TASK GROUP SUMMARY

											WAVESHAPING	CIRCUIS									SINGLE SIDERAND	SYSTEMS					
5PC	• •	0	0.2	5	0	0	0	5.0	9.0	0	0 8	0 0		0 4	50	0	09	0	0	0	0	00	>	0	0	0	
5 P.C 228	*0	o	8	0	0	0	0	0	0	1.7	88	53		32	9 7	2	9	32	0	0	0	0 0	>	0	0	0	
5PC 227	-0	0	-	0	0	0	0	-	6	22	45	50		3 :	5 -	•	7	16	0	0	0	0 0	,	0	0	0	
5.P.C	•0	0	7	0	0	С	0	-	0 7	20	36	13		3-	22	9	7	22	C	0	0	0 5	•	0	2	0	
DY-TSK	N 025 NZ-GE DO YOU USE OR REFER TO MYSTERESIS CUMMES OR LODPS N 226 NZ-U9 DO YOU INTERPPET SCHEMATIC DRAWINGS TO DEVELUP OUTPUT WANTFORMS ARROSS REACTOR WINDINGS OF LOAD RESISTORS OF			MARKETURES FOR MAGNETIC APPLIFIERS N. 529 NZ-12 DO YOU USE OR MERER TO COERCIVE FONCE IN SATURABLE	A 830 A2 13 DO YOU USE ON HEFER TO RESIDUAL MACNETISM IN	N 631 NZ-14 DO YOU USE OR REFER TO FLUX DENSITY IN SATURABLE	E BEZ NZ-15 DO YOU USE OR REFER TO POINT OF SATURATION IN	A 433 NZ-16 DO YOU USE OR HEFER TO SATURABLE HEACTOR SCHEMATIC	" 634 "3-61 DO YOU MORK MITH MAVESHAPING CIRCUITS IN TOUR PRESENT	00 700	A36 NJ-US DO YOU USE OR REFER TO PULSE	N 837 N3-04 DO YOU USE OR HEFER TO PULSE RECURRENCE TIME (PRT) N 838 N3-05 DO YOU USE OR HEFER TO PULSE RECURRENCE FREQUENCY	(PRF)	419 43-06 00 YOU USE ON	NJ-08 DO TOU USE OR REFER	CONSTANTS (TC) AS LONG, MEDIUM, ON SHORT AS 13-09 DO YOU DETERMINE MHETHER AN LR ON RC CIRCUIT IS	AND COLFO COL YOUNGEN WITH SOUGHE MAVE GENERATORS	644 N3-11 00 TOU WORK WITH	C BAS GIACI DO TOU MORK ON SINGLE SIDEMAND SYSTEMS IN YOUR	546 01-02 DO YOU INSPECT SSB TRANSHIT OR RECEIVE	847 01-U3 DO YOU CLEAN 558 TRANSHIT OR RECEIVE	C 448 01-04 00 YOU ALIGN SSB TRANSMIT OF RECEIVE SYSTEMS	STSTEMS	G 850 01-06 DO TOU TROUBLESHOOT TO SSB TRANSHIT UP RECEIVE	U 451 01-07 DO TOU REMOVE OF REPLACE 558 TRANSHIT OF RECEIVE	0 852 01-08 DO YOU REMOVE ON REPLACE 558 TRANSMIT OF RECEIVE	CORPONENTS

PCT MARS RESPONDING . YES. BY SELECTED GAPS

CPSHID PAGE 31

TASK GROUP SUMMARY PERCENT MEMBERS PERFORMING

SPC SPC SPC SPC 226 227 228 229		00 0 0 0	3 3 4 20 3 3 4 20 PULSE MODULATION 3 1 4 20 SYSTEMS 3 3 4 20 3 3 2 20 1 0 2 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A21-75	683 01-00 DO YOU PERFORM TASKS ON 685 01-10 DO YOU PERFORM TASKS ON 685 01-12 DO YOU PERFORM TASKS ON 685 01-12 DO YOU PERFORM TASKS ON 685 01-13 DO YOU PERFORM TASKS ON 685 01-15 DO YOU PERFORM TASKS ON 685 01-16 DO YOU PERFORM TASKS ON 682 01-16 DO YOU PERFORM TASKS ON 685 01-16 DO YOU PERFORM TASKS ON 685 01-12 DO YOU USE ON MEFER TO	870 01-26 DO 871 01-27 DO 872 01-28 DO 73 01-29 DO 73 01-29 DO 74 01-30 DO 874 01-30 DO 864 01-30 DO	0 875 02-01 DO YOU WORK ON PULSE MODULATION SYSTEMS IN YOUR PRESENT JOB 67 02-02 DO YOU LINE MODULATION SYSTEMS OF 877 02-03 DO YOU CLEAN PULSE MODULATION SYSTEMS OF 878 02-09 DO YOU CLEAN PULSE MODULATION SYSTEMS OF 878 02-09 DO YOU TROUBLESHOOT TO PULSE MODULATION SYSTEMS OF 878 02-09 DO YOU TROUBLESHOOT TO PULSE MODULATION SYSTEMS OF 881 02-07 DO YOU TROUBLESHOOT TO PULSE MODULATION SYSTEMS OF 881 02-07 DO YOU REMOVE OR REPLACE PULSE MODULATION SYSTEMS OF 881 02-09 DO YOU MEMOVE OR REPLACE PULSE MODULATION SYSTEMS OF 881 02-09 DO YOU MORK ON PULSE-AMPLITUDE MODULATION (PAM) SYSTEMS OF 881 02-09 DO YOU MORK ON PULSE-AMPLITUDE MODULATION (PAM)	0 885 02-11 DO YOU WORK ON PULSE-POSITION HODULATION (PPM) SYSTEMS 0 886 02-12 DO YOU WORK ON PULSE-CODE MODULATION (PCM) SYSTEMS 0 887 02-13 DO YOU WORK ON LINE PULSING MODULATION SYSTEMS 0 888 02-14 DO YOU WORK ON DON'T REMEMBER WHICH TYPE OF MODULATION SYSTEM

PCT MERS MESPONDING "YES" BY SELECTED GAPS

SE 3984 DINSAS

TASK GROUP SUMMARY

5PC 5PC 5PC 5PC 226 227 228 229	3 1 4 20	1 6 2 0	3 3 2 20	3 3 2 20	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 1	0 2 0 1	0 0 1 1	2 1 2 0	0 0 0	0 0	2 3 0 20	1 1 0 20	0 5 0 1 1	1 2	3 3 4 20	7 0	0 0 0	0 0 0 0	0 0 0	3 1 4 20		3 3 4 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 - 1 5 x	U 889 02-15 DO YOU PERFORM TASKS ON PULSE MODULATION SYSTEM	O YOU PERFORM TASKS ON	CHANGING CHOKES AND CHARGING DIODES O 491 02-17 00 YOU PERFORM TASKS ON PULSE MODULATION SYSTEM	PULSE FORMING VETWORKS O 092 DZ-14 DO YOU PEMFORM TASKS ON PULSE MODULATION SYSTEM	TIMERS O H93 02-19 00 YOU PERFURH TASKS ON PULSE MODULATION SYSTEM			FRANSMITTER FUBES 0 896 02-22 DO FUERFORM TASKS ON PULSE HODULATION SYSTEM RE	APPLIFIENS OF YOU PEAFORM TASKS ON PULSE MODULATION SYSTEM	FREQUENCY CONVERTERS 0 498 02-24 00 YOU PERFOHM TASKS ON PULSE MODULATION SYSTEM	IF AMPLIFIERS U MPP 02-25 DO YOU PERFORM TASKS ON PULSE MODULATION SYSTEM	DETECTORS U 900 02-26 DO YOU PERFORM TASKS ON PULSE MODULATION SYSTEM	VIDED AMPLIFIERS U 901 Q2-27 DO YOU PERFORM TASKS ON PULSE MODULATION SYSTEM	POWER VIDEO AMPLIFIERS U 902 UZ=28 DO YOU PEMFORM TASKS ON PULSE MODULATION SYSTEM	DON'T REMEMBER WHICH PULSE NODULATION SYSTEM STAGES 0 903 02-29 00 YOU USE ON REFER TO PULSE RECURMENCE FREQUENCY	(PRF) 0 904 02-30 50 YOU USE OR HEFER TO PULSE RECURRENCE TIME (PRF)	905 02-31 DO YOU USE OR REFER TO PULSE MIDTH (PM)	OR REFER TO	908 02-34 00 YOU USE OR REFER	909 02-35 00 TOU CALCULATE PULSE	0 410 02-45 00 TO MELSON FOLKE PULSE RECURRENCE TIME (PRT) OR PULSE		PEAK POWER OF PULSE MODULATION TRANSMIT STSTEMS O 912 02-38 DO YOU TRACE SIGNALS OF CURRENT PATHS THROUGH PULSE	HODOL	O 913 02-39 DO YOU TRACE SIGNALS OR CURRENT PATHS THROUGH PULSE MOBULATION RECEIVER SCHEMATIC DIAGRAMS	U 914 03-01 DO YOU WORK WITH ANTENNAS IN YOUR PRESENT JOB O 915 03-02 DO YOU INSPECT ANTENNAS

TASK GROUP SUMMARY PERCENT MEMBERS PENFORMING

916 23-03 DO YOU CLEAN ANTENNAS 917 23-03 DO YOU CLEAN ANTENNAS 918 03-03 DO YOU CLEAN ANTENNAS 918 03-03 DO YOU CLEAN ANTENNAS 918 03-03 DO YOU CLECKHIALLY ALIGN ANTENNAS 920 03-03 DO YOU CHOUSECKHIALLY ALIGN ANTENNAS 920 03-03 DO YOU CHOUSE CHOOSE CONTONENTS OF ANTENNAS 921 03-03 DO YOU THE PROPER OF THE PROPERTY COPPONENTS OF ANTENNAS 922 03-03 DO YOU THE CHOOSE CHOOSE CONTONENTS OF ANTENNAS 922 03-03 DO YOU THE CHOOSE CHOOSE CHOOSE ANTENNAS 923 03-03 DO YOU THE CHOOSE CHOOSE CHOOSE ANTENNAS 924 03-03 DO YOU USE ON REFER TO THE GENERAL RULE THAT ANTENNAS 925 03-13 DO YOU USE ON REFER TO THE GENERAL RULE THAT ANTENNAS 927 03-13 DO YOU USE ON REFER TO THE GENERAL RULE THAT ANTENNAS 927 03-13 DO YOU USE ON REFER TO THE GENERAL RULE THAT ANTENNAS 927 03-13 DO YOU USE ON REFER TO THE GENERAL RULE THAT ANTENNAS 927 03-13 DO YOU USE ON REFER TO THE GENERAL RULE THAT ANTENNAS 927 03-13 DO YOU USE ON REFER TO THE GENERAL RULE THAT ANTENNAS 927 03-14 DO YOU USE ON REFER TO THE GENERAL RULE THAT ANTENNAS 927 03-15 DO TOU USE ON REFER TO THE GENERAL RULE THAT ANTENNAS 927 03-15 DO TOU USE ON REFER TO THE GENERAL RULE THAT ANTENNAS 928 03-15 DO TOU USE ON REFER TO THE GENERAL RULE THAT ANTENNAS 930 03-15 DO TOU USE ON REFER TO THE GENERAL RULE THAT ANTENNAS 931 03-15 DO TOU USE ON REFER TO THE RANTES OF ELECTRONA ANTENNAS 932 03-16 DO TOU USE ON REFER TO THE THAT ENTERNAS 933 03-15 DO TOU USE ON REFER TO THE THAT RANTENNAS 934 03-15 DO TOU USE ON REFER TO THE THAT RANTENNAS 935 03-15 DO TOU USE ON REFER TO THE THAT RANTENNAS 936 03-15 DO TOU USE ON REFER TO THE THAT RANTENNAS 937 03-15 DO TOU USE ON REFER TO THE THAT RANTENNAS 938 03-15 DO TOU USE ON REFER TO THE THAT RANTENNAS 938 03-15 DO TOU USE ON REFER TO THE THAT RANTENNAS 938 03-15 DO TOU USE ON REFER TO THE THAT RANTENNAS 938 03-15 DO TOU USE ON REFER TO THE THAT RANTENNAS 939 03-15 DO TOU USE ON REFER TO THE THAT RANTENNAS 939 03-15 DO TOU USE ON REFER TO THE THAT RANTENNAS 939 03-15 DO TOU USE ON REFER TO THE THAT RANTENNAS 939 03-15 DO TOU USE ON REFER TO THE	SPC SPC SPC SPC 226 227 228 229	0:	000	0	0 5	0	0 0	,	0 0 0	0 0 0		0 0 0	0 0 0			000) c		0	0	0	0 0 0 0	0 0		D D	0 0 0	0 0 0		0 0 0	0 0 0	0 0 0 0	0 0 0
			S W		OMPONENTS	1	ANTENNAS		DATA CONTAINING	F THE MAGNETIC LINES	FORCE FOR ANTENNAS	ACT.	IL RULE THAT ANTENNAS AS INDUCTIVE LOADS				^ 4			5	ELECTROMAGNETIC TENNAS		ELECTROMAGNETIC	TENNAS	MOILATION	ECTHIC		INDUCTION FIELD	ON LINEARLY	ON CIRCULARLY	10	- t
	07-15k	916 03-03 00 700	918 03-05 DO YOU ELECTRICALLY	919 03-06 DO YOU THOUBLESHOOT	920 03-07 00 TOU TROUBLE SHOOT TO	921 03-08 DO YOU REHOVE OR INSTALL	922 03-09 00 YOU RENOVE	REPRESENTATIONS OF	4 03-11 00 You USE OR	03-12 DO YOU DETERM	IN PELATION TO THE	26 03-13 DO TOU USE OR ANTENNAS WHICH ARE			TO THE GENERATOR	929 03-16 DO TOU MORK WITH	מוני מוני מוני מוני מוני מוני מוני מוני	732 03-19 DO TOU MORK MITH	933 03-28 DO TOU WORK -1TH	434 03-21 DO TOU MORK WITH COLLINEAR	435 03-22 DO TOU USE OR REFER TO THE INDUCTION FIELDS WHEN WORKING W		03-24 00 TOU USE	RADIATION FIELDS	x	39 03-26 DO TOU USE OR REFER TO	0 0+		41 03-28 ARE ANY OF THE POLANIZED	03-29 ARE ANY	03-30 DO TOU MEASURE ON DETERMINE	03-31 DO YOU CONSTRUCT, OR MAKE THE C NECESSART TO CONSTRUCT, ANTENNAS OF SPECIFIC MAVELEMENTHS

TASK GROUP SUNNANT
PERCENT MEMBERS PERFOUNING

	SPC SPC SPC	278	0 0 0	0 0 0 0	0 0 0	c	o o	0	0 0	0 0 0 0		LINES	0		,	2 3 0 0	0 0 0 0	2 1 2 0			0 0	•	2 7	- v		0 0 1 1	3 4 2 0		0 0 1	0 0 0 0	6	,	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		04-15x	945 03-32 DO THE ANTENNA ARRAYS YOU WORK	946 03-33 DO THE ANTENNA ARRAYS YOU WORK	947 03-34 DO THE ANTENNA ARRAYS YOU	CLEMENTS SERVING AS REFLECTORS	HEMEMBER WHAT KIND OF ELEMENTS	610	850 03-37 00 YOU WORK	651 03-38 DO YOU MORK	952 03-39	AS HIGH VOLTAGE POWER LINES, ETC. DO NOT CONSIDER	45.	9	5	454	156	958	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	141 PI-09 00 YOU WORK HITH	462 PI-1U DO YOU MORK HITH	463	100	 -	166	967 PI-15 DO YOU USE OR MEFER TO SCHEMATIC SYMBOLS FOR	TERMINATIONS IN TERMS OF CIRCUIT TERMINATIONS	THE PITTS DO TOU MEASURE STANDING LAVE MATIGS (SKI	(SER)	970		SATOL OF ZALCHORDERS TO MATE STORMSMISSION LINES TO LOADS

TASK GROUP SUNNANY PERCENT HEMBERS PERFORMING

SPC SPC SPC 227 228 229	1 2 0	0 0 0	0 0 0	1 2 0	0	c c	 •	0 0	0 0 0	0		0 0	0 0	•	0 0 0	c		, ,	0 5 0	0 0	0 0	0	0	0 0	o c		0	0 0 0	0	0 0	0 6	
226	~	o	3	~	-	C	 •	0	0	9		0	- :	0	0		0 0	3 5	-		0	0	0	0	0 0	0 0	0	0	-	0 0	0;	2
DY-15K	P 971 P1-19 DO YOU MORK MITH TRANSHISSION LINES WHICH ARE HATCHED	P 972 PI-20 DO TOUR DEST WITH TRANSMISSION LINES WHICH ARE MATCHED	P 973 PI-21 DO TOU SELECT THE TYPE OF TRANSMISSION LINE NEEDED	FOR PARTICULAR JOBS WITHOUT REFERNING TO TECHNICAL DATA P 974 PI-22 DO YOU USE OR REFER TO THE TERM CHARACTERISTIC	HAPEDANCE (20) OF TRANSMISSION LINES P 975 PI-23 DO YOU CALCULATE THE CHARACTERISTIC IMPEDANCE (20) OF		OF TRANSMISSION LINES	P 478 P1-26 DO TOU COMPUTE THE ELECTRICAL LENGTH OF TRANSMISSION	P 979 PI-27 DO YOU CONSTRUCT TRANSMISSION LINES OF PARTICULAR	THE SELECTED TO TOU USE OR REPTR TO THE GENERAL RULE THAT AS THE	THANSMISSION LINES REMAIN CONSTANT, THE ELECTRICAL LENGTH	INCREASES	P 942 PI-LO DO YOU MORK BITH PRODANT TRANSMISSION LINES	TO TOPOS USING BELLE MATCHING	P 484 PZ-01 DO TOU MORK MITH WAVEGUIDES OR CAVITY RESONATORS IN	YOUR	201 00 100		744 PZ-05 DO YOU	949 PZ-06 00 YOU	P2-07 DO YOU PURGE WAVEGUIDES OR CAVITY	P2-08 DO YOU TROUBLE	992 P2-09 DO YOU REMOVE ON INSTALL	993 PZ-10 DO TOU REMOVE OR INSTALL	F 744 PALLI DO TOU KENOVE OF INSTALL DUMPN LOADS	994 92-13 00 TOUR PEROVE OF INSTALL	997 PZ-14 UO YOU REHOVE OR INSTALL	498 PZ-15 DO YOU REMOVE OR INSTALL	999 PZ-16 DO YOU HEHOVE OR INSTALL	P2-17 00 TOU REHOVE OR		00 41-74

PLT MBRS NESPONDING .YES. BY SELECTED GRPS

OPSHIE PAGE 30

TASK GROUP SUMMARY PERCENT MENBERS PERFORMING

226 527 528 229		0 0		0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0	0 0 0 0	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0	0 0
07-TSR	PIDUS P2-20 DO YOU USE OR REFER TO "5" WALL OF WAVEGUIDES PIUGY P2-21 DO YOU USE OR MEFER TO CUTOFF FREQUENCY OF WAVEGUIDES PIUUS P2-22 DO YOU USE OR REFER TO FREQUENCY-DETERMINING WALL OF	MAYEGUIDES PLUGG P2-23 DG YOU USE ON HEFER TO PUMER-DETERMINING WALL OF MAYEGUIDES PLUGG 22-24 DG YOU HER DG HEFER TO FLECTOR FIFTO MOUNDARY	CONDITIONS P2-25 DO YOU USE OR REFER TO MAGNETIC FIELD	CONDITIONS PICOS PZ-ZE DO VOSE OR PEFER TO DUPLEXER FIELD BOUNDARY CONDITIONS	PIUID P2-27 DO TOU USE OR REFER TO THE GENERAL RULE THAT MOST WAVEGUIDES ARE MADE WITH A "B" WALL SIZE OF "7 MAYELENGTHS OF THE OPERATING ENEGUENCY	PIULI PZ-28 DO YOU USE OF REFER TO THE GENERAL RULE THAT MOST "A" MALLS RANGE FROM .2 TO .5 MAYELENGTHS IN SIZE, WITH .35 USED AS AN A PROPER	PICIZ PZ-ZY ARE YOU CONCERNED WITH THE MATERIAL (SUCH AS BHASS)		PIDIO PZ-31 DO YOU USE THE RIGHT HAND RULE TO DETERMINE THE DIRECTION OF ME" FIELD, OR UNKECTION OF "E" FIELD, OR	EFER T	PIUTO P2-33 UO YOU HEASURE THE TIME "HASE OF "L" OR "H" LINES IN WAVEGUIDES	FIG.17 P2-34 DO TOU USE OR HEFER TO THE SPACE GUADRATURE OF "E" OR "H" LINES IN WAVEGUIDES	PIDIR PZ-35 ARE HIGH POWER PROBES USED ON MAVEGUIDES OR CAVITY RESONATORS YOU MORK WITH	PIULY PA-36 ARE LOW POWER PROBES USED ON WAVEGUIDES ON CAVITY ARSONATORS YOU WORK WITH	USEC		FIG22 P2-34 ARE DON'T RECHER THE KIND OF ENERGY COUPLING USED ON HAVEGUIDES OR CAVITY RESONATORS YOU WORK WITH	PIC23 P2-40 DO YOU DETERHINE WHERE PHOBES SHOULD BE MOUNTED IN MAVEGUIDES OR CAVITY RESONATORS WITHOUT REFERRING TO TECHNICAL DATA	PIUZ4 PZ-41 DO YOU DETERHINE THE POSITIONING OF LOOPS IN WAVEGUIDES OR CAVITY RESONATOAS MITHOUT REFERRING TO TECHNICAL DATA

PCT MARS RESPONDING .VES. BY SELECTED GRPS

CPSHID PAGE 37

TASK GROUP SUMMARY PERCENT MEMBERS PENFORME

										MICROWAVE AMPLIFIEDS AND	OSCILLATORS																			
SPC 229	0	0	0	0	o	00	00	0	0	o	0	00	, ,	9	D	0 :	00	00	0	0	0	0	0	0	00		00	O	00	00
226	•	0	0	0	0	o c	00	0	0	c	0	00		0	0	0	00	0	0	0	0	0	0	0 0	0		00	3	0 0	00
257	•	0	0	0	0	0 0	00	0	0	c	0	00	, ,	0	C	o i	00	0	0	0	0	0	D	0 0	00	c	00	0	00	0 0
226	•	0	•	0	0	00	0	0	0	•	0	0 0		0	0	0	3 0	0	0	0	13	0		c :	, ,		2 0	O	0 0	0.0
PERCENT HEMBERS PENFORMING	PIUZS P2-42 DO YOU DETERHINE THE POSITIONING OR SIZE OF APERTURES IN MAVEGUIDES OR CAVITY RESONATORS MITHOUT REFERRING TO	TECHNICAL DATA PIDGE PS-45 ARE CONT. SUSED IN WAVEGUIDES OF CAVITY MENOMATORS FOR MORE MITH	PIUZZ PZ-44 ARE ROTAUN TOTA STED IN MAVEGUIDES OF CAVITY NECTON TORN TOTAUN MATERIAL	PICER PERSON AND DON'T PERSONATION OF COUNTS USED IN WAYEGUIDES OR CAVITY RESONATORS YOU MORE WITH	47-46	PIGGS T2-47 DO YOU TUNE CAVITY RESONATORS USING INDUCTIVE TUNING PIGGS D2-48 DO YOU TUNE CAVITY RESONATORS USING VOLUME TUNING		THE METHOD OF TUNING PLUIS PAGENCY OF SIGNALS IN CAVITY PLUIS PAGENATIBE	PICCH PURCH IN TOUR PRESENT JOB DO YOU MORK WITH KLYSTROWS.	MAGNETICAS AND TO THE TRANSPORT TRANSPORT TANGET TO THE TRANSPORT TANGET	P3-03 DO YOU USE OR REFER	REFER TO	CIRCUITRY		P3-07 00 70-Eq	P3-U8 00 100 -08K WITH	PLOSE PAINS DO FOU BORK BITT TIREFIELDAVILL ALL'ANDENS	F3-11 00 YOU #ORK #1TH	. WORK	PILUTA PATE DO TOU MORK WITH UP-CONVENTER PARAMETRIC AMPLIFIESS	P3-14 DO YOU ADRK WITH MAGNETRUNS	13-15 DO YOU	P3-16 00 700	PICSO PARTY DO TOU TONE KLYSTRONS OR THE ELECTRICALLY	P3-19 00 You	Tall	P3-21 00 You	P3-22 00 YOU	FILES PARTS DO TOU INSPECT PARAMETRIC AMPLIFICAS	63-25 00 700

TASK GROUP SUMMARY PLACENT HENDERS PEHFORMING

SPC SPC SPC SPC 226 227 228 229	0 0 0 0	0 0 0 0	0 0 0 0	0	0 0	0	o (0 0	0	0 0 0 0	0 0 0	0 0	c	,	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 1	
D**15R	PIUSO P3-26 DO YOU TUNE PARAMETHIC AMPLIFIERS PIUSO P3-27 DO YOU PEGFORM OPERATIONAL CHECKS OF PARAMETRIC	PIDGI PA-ZA DO TOU THOUBLESHOOT PARAMETRIC AMPLIFIERS PIDGZ PA-ZA DO TOU NEMOVE DR REPLACE COMPLETE PARAMETRIC AMBIITER	PIUGS PS-30 DO YOU REMOVE OR REPLACE PARAMETRIC AMPLIFIER	F3-3: 00	100	P3-33 00 YOU	PJ-14 00 TOU TUNE MAGNETRONS	PILEGO PILES DO TOU PERFORM OPERATIONAL CHECKS OF MACHETRONS	P3-37 00 YOU	P3-39 DO TOU REMOVE OR REPLACE MAGNETRON COMPONENTS	PIGNZ P3-39 DO YOU USE OR REFER TO THE OPERATING PRINCIPLES OF	PLUZ3 P3-40 DO TOU USE OR REFER TO THE OPENATING PRINCIPLES OF	PIUTY P3-41 DO TOU USE OR REFER TO THE OPENATING PRINCIPLES OF	THO-CAVITY KLYSTRONS CATCHER GRIDS	IMO-CAVITY KLYSTRONS FEEDBACK LOOPS	THO-CAVITY KLYSTRONS DRIFT SPACES	FIGGS P3-44 DO TOU USE ON HEFER TO THE OPERATING PRINCIPLES OF	PIUTE PA-45 DO TOU USE ON REFER TO THE OPERATING PRINCIPLES OF	FIGURE 1 TO THE OF RECENT OF THE OFFICE OFFICE OF THE OFFICE OF THE OFFICE OFFI	PIDEG PATTO TOURS OF SEEE OF THE OPERATING PRINCIPLES OF	PIGGI P3-40 DO 700 USE ON REFER TO THE OPENATING PRINCIPLES OF PRINCIPLE	ON REFER	OH REFER TO	GRID CAVI	RESONANT OR REFER		MEFLEX KLTSTWON FILAMENTS PIUB? p3-54 DO TOU USE OR REFER TO THE OPERATING PRINCIPLES OF Reflex Kltstron cathodes	

PCT MUNS RESPONDING . YES. BY SELECTED GRPS

CPSHIO PAGE 39

TASK GROUP SUMMANY PERCENT MEMBERS PENFORMING

SPC SPC SPC 227 228 229	0 0 6	0 0 0	0 0 0	0 0	0 0 0	0 0	0 0	0	0 0 0	0 0	0 0	0 0	0 0 0	0 0	0 0 0	000	0		000	0	0+ 14 52	72 63 40	67 70 40 KEUISTER	75 85 40	70 70 40
25 C	0	0	•	0	0	0	0	o	C	0	0	0	0	0	0	0 0	0	** .	- 0	0	13	11	9	1.0	10
N-1-15R	LUGG P3-55 DO YOU USE OR REFER TO THE OPENATING PRINCIPLES OF	TOBY PARTIES OF THE OFFICE OFFICE OF THE OFFICE OF	PAINTENANTE TORES THE REFER TO THE OPERATING PRINCIPLES OF	PARTICIPATION OF OR PREFER TO THE OPERATING PRINCIPLES OF	PIUGZ P3-59 DO YOU USE OR REFER TO THE OPERATING PRINCIPLES OF	THAVELING-WAVE TUBES ANDDES PLUG DEMATING PRINCIPLES OF PLUG DE TOU USE OR REFER TO THE OPERATING PRINCIPLES OF	THAFELING-MAVE TUBES HELIXES PLU94 P3-61 DO YOU USE ON REFER TO THE OPENATING PRINCIPLES OF	PILOTS PARKELING TOBES COLLECTORS FOR SO YOU USE OF MERER TO THE OPERATING PRINCIPLES OF	PIUTE PI-61 DO TOU USE OR REFER TO THE OPERATING PRINCIPLES OF	THAVELING-MAVE TUBES ATTENUATORS Plugt p3-64 do 700 perform tasks om parametric amplifiem ferrite	CIRCULATORS CINCULATORS OF THE PROBE TASKS ON PARAMETRIC AMPLIFIER SIGNAL	CAVITIES CAVITIES ON PARAMETRIC AMPLIFIEM IDLEM	CAVITIES	DIDDES DIDDES TOU PERFORM TASKS ON PARAMETHIC AMPLIFIER FERRITE	100	BIAS BATTERIES PILO3 PG-700 TOU PERFORM TASKS ON ANODES TIO 9 PG-71 NO TOU PERFORM TASKS ON ANODES	P3-72 DO TOU PERFORM TASKS ON COUPLING LOOPS	TOU PERFORM TASKS ON	PJ-75 DO YOU PERFORM TASKS ON CATHODES	P3-76 DO TOU PERFORM TASKS ON	DO TOU USE OR REFER TO STORAGE	VILLS CI-03 DO YOU USE OR REFER TO LOGIC STABOLS OF SHIFT	REGISTERS 41113 01-04 DO TOU USE OR REFER TO LOGIC STHBOLS OF STORAGE	REGISTERS 21114 41-05 DO YOU TRACE THE DATA FLOW THROUGH LOGIC DIAGRAMS OF	SHIFT REGISTERS LILIS 41-04 DO YOU TRACE THE DATA FLUM THROUGH LOUTC DIAGNAMS OF UTHER TYPE OF HEGISTERS

PCT MBRS RESPONDITE TEST BY SELECTED GRPS

GPSHIU PAGE 40

PERCENT MEMBERS PERFORMING

		STORAGE DEVICES				DIGITAL TO	ANALOG CONVERTERS											
22.0	9	5 0 7 0 7 0	20	0,	90	0.7	02	O	0	0	0 0	0	0	0	0	0	0	0
228	2	£ 7 ×	2 3	3	5 0	7	0	7	=	*	• •	*	-	•	•	•	٥	•
227	18	7 7 7	57	2	- 6	7	16	01	13	11	20	12	۰	•	20	-	11	•
5.76 2.24 7.0		<u>.</u> .	2 0	2.0	- 2	7	2	•	1.2	7.	÷ ;	•	01	=	15	-	-	10
DY-TSK GILLA GI-O7 DO TOU DETERMINE THE STATE OF EACH FLIP-FLOP OF A SMITT BEGISTED AFFED A SPECIFIC NUMBER OF SMITT PULSES		WILLS 42-02 DO YOU USE OR MEFER TO DELAY LINES WILLS 42-03 DO YOU USE OR MEFER TO MEMERITE COMES WILLO 42-04 DO YOU USE OR MEFER TO MEMERITE COMES	62-US DO YOU USE ON HETER TO MAGNETIC	MEMONY SYSTEMS QZ=07 DO YOU USE ON HEFER TO MURD CAPACITY O	SYSTEMS SYSTEMS CALLS4 02-08 DO YOU USE ON REFER TO VOLATILITY OF MEMORY SYSTEMS OLIZE 02-09 DO YOU USE ON REFER TO LOGIT SYMACL OF OREAY LANS	GJ-GI IN YOUR PRESENT JOB: DO YOU WORK WITH CANALOG (D/A) CONVERTERS, ANALOG-10-01G1TH CONVERTERS, ANALOG-10-01G1TH CONVERTERS, ANALOG (MAIN PERSON)	USETAL-TO-ANALGE COTPUT VOLTAGES FOR ELECTROMECHANICAL DIGITAL-TO-ANALGE (O/A) CONVENTERS FOR GIVEN INPUT	G1128 G1-03 DO YOU USE OR HEFER TO THE GENERAL RULE THAT THE COUNT IN ELECTROMECHANICAL DIGITAL-TO-AMALOG (D/A) CONVERTERS IS DETERMINED BY AUDING THE DENOMINATORS OF THE	CIIZO 93-04 DO COMPUTE ANALOG VOLTAGES FOR GIVEN BINARY	GILLE GATOS OF TOUR TRANSPORT TOUR TOUR TASKS ON VARIABLE TIME ANALOG TO DE TAL GATO CONVENTER CIRCUITS	WILLS WE OF DO YOU PERFORM HOLD FUNCTION TASKS ON VARIABLE TIME ANALOG-TO-DIGITAL (A/D) CONVENTER CIRCUITS WILLS WE UT OF YOU PERFORM COMPARE FUNCTION TASKS ON VARIABLE	- W	UII34 23-09 DO YOU PERFORM DON'T REMEMBEN WHICH FUNCTION TASKS ON VARIABLE TIME ANALOG-TO-DIGITAL (A/D) CONVERTER	CIRCUITS CINTS QA-10 DO VOU USE ON MEFER TO SAMPLE FUNCTION OF A/O	GII3A G3-11 DO YOU USE OR REFER TO HOLD FUNCTION OF A/D	GONVERTERS	GILLS GT-13 DO YOU USE OR REFER TO DIGITAL FUNCTION OF A/D	41134 63-14 DO TOU PERFORM ANY TASKS ON MECHANICAL ANALOG-TO-

PCT MBRS MESPONDING .YES. BY SELECTED GRPS

CPSHID PAGE 41

TASK GROUP SUMMANY PERCENT MEMBERS PERFORMING

	PHANTASTRONS		SCHWITT TOTAL OF	COLUMN TO THE CO		CABLE FABRICATION		INPUT/OUTPUT		PHOTO SENSITIVE	- DEVICES			SYNCHRONOUS VIBRATION:	(CHUPPER CIRCUIS)								C S C S C S C S C S C S C S C S C S C S	INTRAKED							
229	0	0.0	2	0	1	0	0	50	0	0	b	0	0 0	0 0		>	0	C	2	0	0	0	0 0	0	0	0	0	0	(0	0
228	•	0,0	5	0,	2	15	ξ,	٠	•	30	+	7	~ (~ ~		0	2	,	•	7	15			:=	13	-2	=	=		=	-
227	-	20	25	23	•	•	28	1.2	•	1.1	h	0	- 1	00		-	٦	-	,	~	-			,	1	•	•	,		,	,
226	-	:	2	7	-	•	20	10	•	33	+	-				-	٦	•	1	~	10		3 :		•	•	t	,		,	0
DY-75k		MILE RE-DI IN YOUR PRESENT JOB DO YOU MORK WITH SCHMITT TRIGGER	KII42 RZ-UZ DO TOU TRACE DATA FLUM TAROUGH SCHMITT TRIGGER	-	TITE NATURE IN TOOM PRESENT JOB DO TOU FABRICATE JULITONOCION	HILMS R3-02 DO YOU FABRICATE COAXIAL CA	SILMS SI-DI IN YOUR PRESENT JOB DO YOU PERFORM ANY TASKS ON	SILMY SI-UZ DO TOU PERFORM ANY TASKS ON NIXIE LIGHTS OR NIXIE	SILVA SI-03 DO YOU ANALYZE NIXIE LIGHT DECODER SYSTEMS USING	BOOLEAN ALGEBRA	SI-01 IN YOUR PRESENT JOB OF YOU WORK WITH CHOPPER	53-02 DO YOU MEASURE EXCITATIO, F	S3-03 DO YOU MEASURE VOLTAGE-CUR	SIISS 53-04 DO TOU USE OR REFER TO EXCITATION FREQUENCIES		SILES STACK DO TOU USE SERVOS IN CONJUNCTION WITH CHOPPER	SIISA 53-07 DO YOU USE DETECTORS IN CONJUNCTION WITH CHOPPER	CIRCUIT	CHOPPER CIRCUIT OPERATION	SIISA S3-09 DO YOU USE COMPLAISON CIPCUITS IN CONCUNCTION WITH	TIISY TI-UI DOES YOUR PRESENT JOS INVOLVE ANY TASKS DEALING MITH	INFHARED SYSTEMS	TION TO CONTRACT THE STATE OF T	11-04 00	TI-05 00 YOU OPERATE INFRANCE SYSTEMS	11-06 00	SYSTEMS SYSTEMS STOUTHOUBLESHOOT MAJON ASSEMBLIES OF INFHAMED	TILES TIMES YOU TROUBLESHOOT DOWN TO INFRARED SYSTEM	COMPONENT PARTS	TILET TI-UP UD YOU KEHOVE OR PEPLACE MAJOR ASSEMELIES OF	TILGG TI-TO DO YOU REMOVE ON REPLACE INFRANCO SYSTEM COMPONENT PARTS

PLT MARS HESPONDING .TES. BY SELECTED GRPS

CPSMID PAGE 42

FASK GROUP SUMMANY PERCENT MENDERS PERFORMING

SPC SPC SPC SPC 126 229			000
01-TSA	TI-11 00 YOU USE ON NEFER TO INTERR TI-12 00 YOU USE ON NEFER TO NEAR R TI-13 00 YOU USE ON REFER TO MICHON TI-19 00 YOU USE ON REFER TO MICHON TI-10 00 YOU USE ON REFER TO ABSORPTI-10 00 YOU USE ON REFER TO ABSORPTI-10 00 YOU USE ON REFER TO ABSORPTI-20 00 YOU USE ON REFER TO ABSORPTI-20 00 YOU USERONN TASKS ON CRUENTI-20 00 YOU PERFORM TASKS ON COULA TI-20 00 YOU PERFORM TASKS ON COULA TI-20 00 YOU PERFORM TASKS ON FILTE TI-20 00 YOU PERFORM TASKS ON FILTE TI-20 00 YOU PERFORM TASKS ON FILTE TI-20 00 YOU PERFORM TASKS ON PILTE TI-20 00 YOU PERFORM TASKS ON PILTE TI-20 00 YOU PERFORM TASKS ON PILTE	12-01 0065 1006 PRESENT JOB IN 12-03 00 700 CLEAR LASER SYSTE 12-04 00 700 DERATE LASER SYSTE 12-04 00 700 DERATE LASER SYSTE 12-05 00 700 DROUBLESHOOT HAJO SYSTEMS 12-05 00 700 DROUBLESHOOT HAJO SYSTEMS 12-10 00 700 DSE ON REFER TO B 12-12 00 700 USE ON REFER TO B 12-15 00 700 USE ON REFER TO B 12-16 00 700 USE ON REFER TO B 12-17 00 700 USE ON REFER TO B 12-18 00 700 USE ON REFER TO B 12-19 00 700 USE ON REFER TO B 12-19 00 700 USE ON REFER TO B 12-19 00 700 USE ON REFER TO B 12-10 00 700 USE ON REFER TO B 12-10 00 700 USE ON REFER TO B 12-11 00 700 USE ON REFER TO B 12-12 00 700 USE ON REFER TO B 12-13 00 700 USE ON REFER TO B 12-14 00 700 USE ON REFER TO B 12-15 00 700 USE ON REFER TO B 12-16 00 700 USE ON REFER TO B 12-17 00 700 USE ON REFER TO B 12-18 00 700 USE ON REFER TO B 12-19 00 700 USE ON REFER TO B 12-19 00 700 USE ON REFER TO B	72-23 DO 72-24 DO 72-24 DO

PCT PLAS RESPONDING "YES" BY SELECTED GRPS TASK GROUP SUMMARY PERCENT MEMBERS PERFORMING

CPSHID PAGE 43

PCT MURS RESPONDING .VES. BY SELECTED GRPS

CPSHIU PAGE 44

TASK GRUUP SUMMANY PERCENT MEMBERS PERFOUNING

					DB AND POWEF							
					6	R B						
872 578	00	00	00	0	0	5	0					
28c	5 5	• -		28 12 51 0	~	7	2					
5PC 227	• •	0 ~	• •	7	0	0	•					
226	••	-	2 .	28	-	-	•					
01-T5K	UIZHO UI-14 DO TOU PERFORM TASKS ON INPUT DEVICES	UISSI UI-LE DO TOU PERFORM TASKS ON ARTHMETIC SECTIONS	ULSS ULL-ZU DO YOU PERFORM TASKS ON CUTPUT DEVICES	U1254 U1-21 DO TOU PERFORM TASKS ON JOHEN SUFFIELD ON AND U1255 U2-01 DO TOU USE DECIBELS TO EXPRESS AMPLIFICATION AND	UIZS& UZ-02 DO YOU USE LOGARITHMS TO COMPUTE OUTPUT POWER IN	DECIBELS U1257 U2-U3 DO YOU USE LOGARITHMS TO COMPUTE ATTENUATION IN	DECIBELS U1258 U2-04 DUMNY TASK TO IDENTIFY INCUMBENTS WHO PERFORMED	NO TASKS				

AD-A046 096

AIR FORCE OCCUPATIONAL MEASUREMENT CENTER LACKLAND A--ETC F/G 5/9 ELECTRONIC-MECHANICAL COMMUNICATIONS AND CRYPTOGRAPHIC EQUIPMEN--ETC(U) SEP 77 T J O'CONNOR, M G LAWRENCE

UNCLASSIFIED

2 OF 2 ADA 046096

END DATE FILMED NL

SUPPLEMENTARY

INFORMATION

9609KA

Corrected

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3/ RECIPIENT'S CATALOG NUMBER WELL AFPT 90-306-222 ADAO46096 5. TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitle) FINAL Electronic-Mechanical Communications and April 77 - June 77 Cryptographic Equipment Systems Specialist 6. PERFORMING ORG. REPORT NUMBER AFSC 30651 8. CONTRACT OR GRANT NUMBER(s) 7. AUTHOR(a) Thomas J. O'Connor Marry G. Lawrence 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Occupational Survey Branch USAF Occupational Measurement Center Lackland AFB TX 78236 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE 23 September 1977 SAME AS ITEM 9 13. NUMBER OF PAGES 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Electronic principles

Electronics

basic electronics

Air Force Training Teaching Methods

Avionics

Training

Electronic equipment Electronic technicians

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report summarizes the results of the administration of the Electronic Principles Inventory to airmen assigned as Electronic-Mechanical Communications and Cryptographic Equipment Systems Specialist (AFSC 30651).

CONTINUED

DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

This specialty has the following functions:

Installs, maintains, inspects, tests, repairs, modifies, and safeguards electronic-mechanical communications and crytographic (TSEC/KG-13) equipment. Installs and checks the operation of electronic-mechanical communications and crytographic equipment. Maintains, inspects, and tests electronic-mechanical communications and cryptographic equipment. Safeguards cryptographic equipment and classified information.

UNCLASSIFIED

This report suggestings the results of the simisistration of the Electronic Frinciples layestory to altrian assigned as Electronic Mechanical Communicati