Life Expectancy Analysis

Data Analysis

Project Report

Submitted by:

Anantha Krishnan K

BCE229

1. Project Introduction and Dataset Exploration

1.1 Introduction to the Project

Life expectancy is a key indicator of the overall health and development of a country. Analyzing the factors affecting life expectancy can provide crucial insights into global health trends, socio-economic conditions, and the impact of medical advancements.

In this project, we explore a dataset containing life expectancy data from multiple countries over the period **2000-2015**. Our goal is to analyze various health, economic, and social factors influencing life expectancy and derive meaningful insights.

1.2 Overview of the Dataset

The dataset consists of **2938 records** spanning **183 countries** over a **16-year period** (**2000-2015**). It includes a mix of numerical and categorical features, covering economic, health, and demographic factors.

1.2.1 Dataset Features

The dataset contains the following key attributes:

Feature Description

Country Name of the country

Year of observation (2000-2015)

Status Classification of the country as Developed or

Developing

Life expectancy Average expected lifespan at birth (Target

Variable)

Adult Mortality Probability of dying between ages 15-60 per

1000 population

Infant deaths Number of infant deaths per 1000 births
Alcohol Alcohol consumption per capita (liters)

Percentage expenditure Expenditure on health as a percentage of GDP

Immunization rate for Hepatitis B in children

(Percentage)

Measles Number of measles cases reported

BMI Average Body Mass Index

Polio Immunization rate for Polio (Percentage)
Diphtheria Immunization rate for Diphtheria (Percentage)

HIV/AIDS Death rate due to HIV/AIDS per 1000

population

GDP Gross Domestic Product per capita
Population Total population of the country

Thinness 1-19 years

Percentage of underweight individuals aged 1-

19

Thinness 5-9 years

Percentage of underweight individuals aged 5-

9

Income composition of resources Human Development Index (HDI) based

measure of income

Schooling Average number of years of schooling

1.2.2 Initial Observations

Hepatitis B

- The dataset covers both developed and developing countries, allowing us to compare life expectancy trends between them.
- Several features relate to healthcare factors, such as immunization rates, mortality rates, and disease prevalence.
- Economic indicators like GDP and expenditure on health are included, which helps analyze their impact on life expectancy.
- Some columns contain missing values, requiring data cleaning before analysis.

• Outliers are present in features such as GDP, Population, and Measles cases, which will need treatment.

1.3 Objectives and Goals of the Analysis

The primary objective of this analysis is to understand the key factors influencing life expectancy and derive actionable insights.

Key Goals:

- Perform Data Cleaning: Handle missing values, outliers, and inconsistencies.
- Conduct Exploratory Data Analysis (EDA): Identify trends, patterns, and correlations in the data.
- **Apply Statistical Analysis**: Use hypothesis testing and statistical methods to validate insights.
- **Feature Selection and Model Building**: Determine the most important features affecting life expectancy.
- **Provide Data-Driven Insights**: Present conclusions that can help policymakers and health organizations improve life expectancy.

2. Data Cleaning Process

2.1 Handling Missing Values

During dataset exploration, we identified that some numerical features contained missing values. To ensure data integrity, we applied **median imputation**, as it is robust against outliers and does not distort the distribution.

Strategy Used:

- **Numerical Features**: Replaced missing values with the **median** of the respective column.
- **Categorical Features**: No missing values were found, so no imputation was required.

2.2 Handling Outliers

Outliers can distort statistical analysis and negatively impact model performance. To address this, we applied three different strategies based on the severity of outliers in each feature:

Outlier Detection Method:

We used the **Interquartile Range (IQR) method** to detect outliers:

Outlier Handling Strategies:

- 1. **IQR Method** (For columns with **fewer than 50** outliers)
 - a. Removed outliers that fell outside the 1.5*IQR range.
- 2. Winsorization (For columns with **50 to 300** outliers)
 - a. Capped extreme values to the **5th and 95th percentiles** to maintain statistical properties while reducing extreme values.
- 3. Log Transformation (For columns with more than 300 outliers)
 - a. Applied **log transformation** using np.log1p() to normalize highly skewed features.

Result:

- IQR method **removed extreme outliers** in low-outlier features.
- Winsorization capped extreme values for moderately skewed features.
- Log transformation normalized highly skewed features.

2.4 Encoding Categorical Variables

The dataset contained **one categorical feature**:

• Status: ("Developed" / "Developing")

Since machine learning models require numerical inputs, we **converted this** categorical feature into numerical values using Label Encoding:

- "Developed" → 1
- "Developing" → 0

Result:

The "Status" column is now numerical, enabling it to be used in models.

2.3 Data Transformation (Scaling & Normalization)

Since the dataset contains variables with vastly different ranges (e.g., **GDP vs. Infant Deaths**), we applied **feature scaling** to standardize the dataset.

Strategy Used:

 Standardization (Z-score transformation) → Applied to features with different units or magnitudes

Result:

• **Standardization** transformed features to have a mean of 0 and a standard deviation of 1, making them comparable.

Final Outcome of Data Cleaning

After completing the **data cleaning process**, we now have:

No missing values (handled using median imputation).

- Outliers detected and treated (IQR, Winsorization, Log Transformation).
- Categorical data converted into numerical format.
- Data transformation applied (Standardization).

3. Exploratory Data Analysis (EDA)

3.1 Introduction to EDA

Exploratory Data Analysis (EDA) is a crucial step to understand the dataset's structure, detect patterns, and identify relationships between features. The primary objectives of EDA in this project are:

- Understanding the distribution of numerical features.
- Identifying correlations between features and the target variable (*Life Expectancy*).
- Detecting patterns or anomalies that could influence the analysis.
- Visualizing trends using statistical plots.

3.2 Summary Statistics

We began by generating **summary statistics** of the numerical features using .describe() to understand the dataset's distribution.

Key Insights:

- Life Expectancy ranged from 36 years to 89 years.
- GDP values varied significantly, confirming the need for standardization.
- Infant mortality rates were notably higher in developing countries.

3.3 Distribution of Target Variable (Life Expectancy)

To check the **distribution of life expectancy**, we used a **histogram and KDE (Kernel Density Estimation) plot**.

Observations:

- The **distribution is slightly right-skewed**, meaning some countries have significantly higher life expectancy.
- The majority of life expectancy values lie between **60 to 80 years**.

3.4 Correlation Analysis

To identify relationships between **Life Expectancy** and other features, we calculated the Pearson correlation coefficient.

Key Findings:

- Life Expectancy has a strong positive correlation with:
 - o Income Composition of Resources (0.78)
 - Schooling (0.74)
 - o BMI (0.56)
 - o GDP (0.55)
- Life Expectancy is negatively correlated with:
 - HIV/AIDS (-0.76)
 - Adult Mortality (-0.68)
 - o Infant Deaths (-0.59)
 - Under-five Deaths (-0.62)

Implication: Countries with higher GDP, better schooling, and better nutrition (BMI) tend to have higher life expectancy, while high mortality rates and diseases (HIV/AIDS, Infant Deaths) decrease life expectancy.

3.5 Boxplots to Detect Outliers

To detect outliers in key features, we used boxplots.

Observations:

- **GDP has extreme outliers**, likely due to developed countries with very high GDP.
- Infant Deaths and HIV/AIDS show high skewness, confirming the need for transformations.

3.6 Comparing Life Expectancy for Developed vs. Developing Countries

We visualized the difference in life expectancy between **Developed** and **Developing** countries.

• **Developed countries** have significantly higher life expectancy.

• **Developing countries** show a wider range of life expectancy values.

3.7 Relationship Between GDP and Life Expectancy

To analyze the impact of economic factors, we plotted **GDP vs. Life Expectancy**.

Observations:

- A positive trend is visible: higher GDP → higher Life Expectancy.
- Some outliers exist where high GDP does not necessarily mean high life expectancy (e.g., oil-rich nations).

3.8 Conclusion from EDA

From our exploratory analysis, we derived the following key insights:

- Countries with higher GDP, better schooling, and better nutrition tend to have higher life expectancy.
- Developing countries exhibit greater variability in life expectancy.
- HIV/AIDS, infant mortality, and poor healthcare access negatively impact life expectancy.
- Economic growth (GDP) positively correlates with longer life expectancy.

4. Statistical Analysis

Statistical analysis helps in validating our observations from EDA using hypothesis testing.

4.1 Descriptive Statistics

Descriptive statistics summarize key properties of the dataset. We use .describe() to compute measures like mean, median, variance, and standard deviation.

4.2 Inferentail Statistics

1. Confidence Interval for Life Expectancy (95% CI: (68.98, 69.66))

- A **confidence interval** provides a range in which the true population mean is expected to lie with 95% confidence.
- This means that, based on your sample, the **true population mean life** expectancy is likely between 68.98 and 69.66 years.

2. One-Sample T-Test (Comparing Sample Mean with Population Mean)

- Sample Mean = 67.33, Population Mean = 69.32
- T-Statistic = -1.0165, P-Value = 0.3178
- Fail to Reject Null Hypothesis → No significant difference between sample and population mean.

Key Points:

- A t-test checks if the sample mean differs significantly from the population mean.
- A **high p-value (0.3178 > 0.05)** means the difference is not statistically significant.
- This suggests that the sample life expectancy is **not significantly different from** the population life expectancy.

3. Chi-Square Test (Association Between Life Expectancy and Country Status)

- Chi-Square Statistic = 503.9067, P-Value = 0.00000
- Reject Null Hypothesis → Life expectancy is significantly associated with country status (Developed/Developing).

Key Points:

- A Chi-square test checks if two categorical variables are independent.
- A p-value of 0.00000 (< 0.05) means the association is statistically significant.
- This indicates that **country status** (**Developed vs. Developing**) **strongly influences life expectancy**.

4. ANOVA Test (Effect of GDP on Life Expectancy)

- ANOVA Statistic = 576.67, P-Value = 3.50e-211
- Reject Null Hypothesis → GDP significantly affects life expectancy.

Key Points:

- ANOVA tests whether the means of multiple groups differ significantly.
- A very low p-value (almost zero) suggests a strong impact.

• This means **GDP** has a significant effect on life expectancy, likely indicating that higher **GDP** leads to higher life expectancy.

4.3 Key Conclusions from Statistical Analysis

- Confidence Interval (95%): The true population mean life expectancy is likely between 68.98 and 69.66 years.
- T-Test: No significant difference between sample mean (67.33) and population mean (69.32) (p=0.3178p=0.3178p=0.3178, fail to reject $H0H_{-}0H0$).
- Chi-Square Test: Life expectancy is significantly associated with a country's development status (p < 0.00001p < 0.00001p < 0.00001, reject $H0H_{-}0H0$).
- ANOVA Test: GDP has a significant impact on life expectancy ($p \approx 0p \mid approx 0p \approx 0$, reject $H0H_0H0$).

Conclusion & Final Takeaways

- Economic growth, education, and healthcare access are the strongest drivers of life expectancy.
- Preventable diseases, malnutrition, and mortality rates must be addressed to improve life expectancy in developing countries.
- Government policies focusing on healthcare infrastructure, vaccination programs, and nutrition can drastically improve life expectancy worldwide.

Sources of Dataset :- https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who

Sources used for handling Outliers :-

https://youtu.be/4FBPtgLbehY?si=m8ul_65IfeafApgo

https://youtu.be/jmAuVP_UOn0?si=F3mR-d3t0gH-_iBU