Глава 3.

Задача 1.

По определению из теоремы 3.1 граница Хэмминга: $M \leq \frac{q^n}{\sum_{i=0}^t \binom{n}{i} (q-1)^{i'}}$ где $d \geq 2t+1$.

Код Хэмминга (пример 2.6): $(2^r - 1, 2^r - r - 1) - \text{код c } d = 3$. Подставим данные характеристики в формулу границы Хэмминга:

$$M = 2^k = 2^{2^r - r - 1} \le \frac{2^{2^r - 1}}{\sum_{i=0}^1 \binom{2^r - 1}{i}(2^{-1})^i} = \frac{2^{2^r - 1}}{\binom{2^r - 1}{0} + \binom{2^r - 1}{1}} = \frac{2^{2^r - 1}}{1 + 2^r - 1} = \frac{2^{2^r - 1}}{2^r} = 2^{2^r - r - 1}$$

Код Голея (23,12) — код с d=7. Аналогично:

$$M = 2^k = 2^{12} \le \frac{2^{23}}{\sum_{i=0}^3 \binom{23}{i} (2-1)^i} = \frac{2^{23}}{\binom{23}{0} + \binom{23}{1} + \binom{23}{2} + \binom{23}{3}} = \frac{2^{23}}{1+23+253+1771} = \frac{2^{23}}{2048} = \frac{2^{23}}{2^{11}} = 2^{12}$$

Задача 3 (Вариант 77).

$$n = 19, d = 6$$

Воспользуемся границей Хэмминга, из которой получим верхнюю границу для k:

$$M = 2^k \le \frac{2^{19}}{\sum_{i=0}^2 \binom{19}{i}} = \frac{2^{19}}{\binom{19}{0} + \binom{19}{1} + \binom{19}{2}} = \frac{2^{19}}{1 + 19 + 342} = \frac{2^{19}}{362} \approx 1448.3$$

$$k \le \lfloor \log_2 1448.3 \rfloor = 10$$

Для поиска нижней границы воспользуемся границей Варшамова-Гилберта:

$$2^{19-k} > \sum_{i=0}^{4} {18 \choose i}$$

$$19 - k > \log_2(\sum_{i=0}^4 {18 \choose i})$$

$$k < 19 - \log_2(\sum_{i=0}^4 \binom{18}{i})$$

Значит, при k=7 у нас существует код с такими характеристиками $(n=19, d=6) \Rightarrow$ нижняя граница $k \geq 7$.

Проверим с помощью границы Грайсмера, можем ли мы уточнить границы:

$$k = 7 \Rightarrow n \ge 15$$

$$k = 8 \Rightarrow n \ge 16$$

$$k = 9 \Rightarrow n \ge 17$$

$$k = 10 \Rightarrow n \ge 18$$

Значит, получили $k \in [7, 10]$.

Задача 4 (Вариант 77).

$$n = 19, k = 6$$

Воспользуемся границей Хэмминга, из которой получим верхнюю границу для d:

$$M = 2^6 \le \frac{2^{19}}{\sum_{i=0}^t \binom{19}{i}}$$

$$\sum_{i=0}^{t} {19 \choose i} \le 2^{13} \Rightarrow t = 4 \Rightarrow d \le 10$$

Для поиска нижней границы воспользуемся границей Варшамова-Гилберта:

$$2^{13} > \sum_{i=0}^{d-2} {18 \choose i} \Rightarrow d \ge 6$$

Проверим с помощью границы Грайсмера, можем ли мы уточнить границы:

$$19 \ge \sum_{i=0}^{5} \left\lceil \frac{d}{2^i} \right\rceil \Rightarrow d \le 8$$

Значит, получили $d \in [6, 8]$.

Задача 5.Таблица построена программно (Task5).

n	k	d	Gilberd- Varshamov	Hamming
8	4	4	3	4
10	5	4	3	4
12	6	4	3	4
14	7	4	4	6
16	8	5	4	6
18	9	6	4	6
20	10	6	4	6
22	11	7	5	8
24	12	8	5	8
26	13	7	5	8
28	14	8	5	8
30	15	8	6	10
32	16	8	6	10
34	17	8	6	10
36	18	8	6	10
38	19	8-9	7	10
40	20	8-9	7	12

Задача 7.

Таблица построена программно (Task7).

k	n	Griesmer
3	14	14
4	15	15
5	16	16
6	18	17
7	19	18
8	20	19
9	21	20
10	22	21
11	23	22
12	24	23

13	27	24
14	28	25
15	30	26
16	31	27
17	32	28
18	34	29
19	35	30
20	36	31
21	37	32
22	38	33
23	40	34