

L78Sxx L78SxxC

2 A positive voltage regulators

Datasheet - production data

Features

- Output current to 2 A
- Output voltages of 5; 7.5; 9; 10; 12; 15; 18; 24 V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection

Description

The L78Sxx series of three-terminal positive regulators is available in TO-220 and TO-3 packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shutdown and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 2 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Table 1. Device summary

Part numbers						
L78S05	L78S09	L78S12	L78S18			
L78S05C	L78S09C	L78S12C	L78S18C			
L78S75	L78S10	L78S15	L78S24			
L78S75C	L78S10C	L78S15C	L78S24C			

May 2012 Doc ID 2148 Rev 7 1/39

Contents L78Sxx, L78SxxC

Contents

1	Diagram	5
2	Pin configuration	6
3	Maximum ratings	7
4	Test circuits	8
5	Electrical characteristics	9
6	Typical performance	:2
7	Package mechanical data 3	2
8	Order codes 3	7
9	Revision history	8

L78Sxx, L78SxxC List of tables

List of tables

Table 1.	Device summary	1
Table 2.	Absolute maximum ratings	7
Table 3.	Thermal data	7
Table 4.	Electrical characteristics of L78S05	9
Table 5.	Electrical characteristics of L78S75	. 10
Table 6.	Electrical characteristics of L78S09	. 10
Table 7.	Electrical characteristics of L78S10	. 11
Table 8.	Electrical characteristics of L78S12	
Table 9.	Electrical characteristics of L78S15	. 12
Table 10.	Electrical characteristics of L78S18	. 12
Table 11.	Electrical characteristics of L78S24	. 13
Table 12.	Electrical characteristics of L78S05C	
Table 13.	Electrical characteristics of L78S75C	. 15
Table 14.	Electrical characteristics of L78S09C	
Table 15.	Electrical characteristics of L78S10C	
Table 16.	Electrical characteristics of L78S12C	
Table 17.	Electrical characteristics of L78S15C	
Table 18.	Electrical characteristics of L78S18C	
Table 19.	Electrical characteristics of L78S24C	. 21
Table 20.	TO-220 mechanical data	. 32
Table 21.	Order codes	. 37
Table 22.	Document revision history	. 38

List of figures L78Sxx, L78SxxC

List of figures

Figure 1.	Block diagram
Figure 2.	Pin connections (top view)
Figure 3.	Schematic diagram
Figure 4.	Application circuits
Figure 5.	DC parameter
Figure 6.	Load regulation8
Figure 7.	Ripple rejection
Figure 8.	Dropout voltage vs. junction temperature
Figure 9.	Peak output current vs. input/output differential voltage
Figure 10.	Output impedance vs. frequency
Figure 11.	Output voltage vs. junction temperature
Figure 12.	Supply voltage rejection vs. frequency
Figure 13.	Quiescent current vs. junction temperature
Figure 14.	Load transient response
Figure 15.	Line transient response
Figure 16.	Quiescent current vs. input voltage
Figure 17.	Fixed output regulator
Figure 18.	Constant current regulator
Figure 19.	Circuit for increasing output voltage
Figure 20.	Adjustable output regulator (7 to 30 V)
Figure 21.	0.5 to 10 V regulator
Figure 22.	High current voltage regulator
Figure 23.	High output current with short circuit protection
Figure 24.	Tracking voltage regulator
Figure 25.	Positive and negative regulator
Figure 26.	Negative output voltage circuit
Figure 27.	Switching regulator
Figure 28.	High input voltage circuit
Figure 29.	High input voltage circuit
Figure 30.	High output voltage regulator
Figure 31.	High input and output voltage
Figure 32.	Reducing power dissipation with dropping resistor29
Figure 33.	Remote shutdown
Figure 34.	Power AM modulator (unity voltage gain, $I_0 \le 1$ A)
Figure 35.	Adjustable output voltage with temperature compensation
Figure 36.	Light controllers (V _{Omin} = V _{XX} + V _{BE})
Figure 37.	Protection against input short-circuit with high capacitance loads
Figure 38.	Drawing dimension TO-220 (type STD-ST Dual Gauge)
Figure 39.	Drawing dimension TO-220 (type STD-ST Single Gauge)
Figure 40.	Drawing dimension tube for TO-220 Dual Gauge (mm.)
Figure 41.	Drawing dimension tube for TO-220 Single Gauge (mm.)

L78Sxx, L78SxxC Diagram

1 Diagram

Figure 1. Block diagram

Pin configuration L78Sxx, L78SxxC

2 Pin configuration

Figure 2. Pin connections (top view)

Figure 3. Schematic diagram

L78Sxx, L78SxxC Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Parameter		Unit
.,	DC input voltage	for V _O = 5 to 18V	35	V
V _I	DC input voltage	for V _O = 24V	40	V
Io	Output current		Internally limited	
P _D	Power dissipation		Internally limited	
T _{STG}	Storage temperature range		-65 to 150	°C
т	Operating junction temperature range	for L78Sxx	-55 to 150	°C
T _{OP}	Operating junction temperature range	for L78SxxC	0 to 150	

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	TO-220	TO-3	Unit
R _{thJC}	Thermal resistance junction-case	5	4	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	35	°C/W

Figure 4. Application circuits

Test circuits L78Sxx, L78SxxC

4 Test circuits

Figure 5. DC parameter

Figure 6. Load regulation

Figure 7. Ripple rejection

5 Electrical characteristics

Refer to the test circuits, T_J = 25 °C, V_I = 10 V, I_O = 500 mA, unless otherwise specified.

Table 4. Electrical characteristics of L78S05

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		4.8	5	5.2	V
V _O	Output voltage	I _O = 1 A, V _I = 7 V	4.75	5	5.25	V
A\/ .	Line regulation	V _I = 7 to 25 V			100	mV
ΔV _O	Line regulation	V _I = 8 to 25 V			50	IIIV
ΔV _O	Load regulation	I _O = 20 mA to 2 A			100	mV
IQ	Quiescent current				8	mA
41	Quiescent current change	I _O = 20 mA to 1 A			0.5	- mA
ΔI_{Q}		V _I = 7 to 25 V, I _O = 20 mA			1.3	
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA, T _J = -55 °C to 150 °C		-1.1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 kHz		40		μV
SVR	Supply voltage rejection	f = 120 Hz	60			dB
VI	Operating input voltage	I _O ≤ 1 A	8			V
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Electrical characteristics L78Sxx, L78SxxC

Refer to the test circuits, T_J = 25 °C, V_I = 12.5 V, I_O = 500 mA, unless otherwise specified.

Table 5. Electrical characteristics of L78S75

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{O}	Output voltage		7.15	7.5	7.9	V
V _O	Output voltage	I _O = 1 A, V _I = 9.5 V	7.1	7.5	7.95	V
AV/ .	Line regulation	V _I = 9.5 to 25 V			120	mV
ΔV_{O}	Line regulation	V _I = 10.5 to 20 V			60	IIIV
ΔV_{O}	Load regulation	I _O = 20 mA to 2 A			120	mV
ΙQ	Quiescent current				8	mA
Al	Quiescent current change	I _O = 20 mA to 1 A			0.5	- mA
Δl_{Q}		I _O = 20 mA, V _I = 9.5 to 25 V			1.3	
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = -55$ °C to 150 °C		-0.8		mV/°C
eN	Output noise voltage	B =10 Hz to 100 kHz		52		μV
SVR	Supply voltage rejection	f = 120 Hz	54			dB
V _I	Operating input voltage	I _O ≤ 1.5 A	10.5			V
R _O	Output resistance	f = 1 kHz		16		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Refer to the test circuits, T_J = 25 °C, V_I = 14 V, I_O = 500 mA, unless otherwise specified.

Table 6. Electrical characteristics of L78S09

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		8.65	9	9.35	V
V _O	Output voltage	I _O = 1 A, V _I = 11 V	8.6	9	9.4	٧
A\/ -	Line regulation	V _I = 11 to 25 V			130	mV
ΔV _O	Line regulation	V _I = 11 to 20 V			65	IIIV
ΔV _O	Load regulation	I _O = 20 mA to 2 A			130	mV
IQ	Quiescent current				8	mA
AI.	Quiescent current change	I _O = 20mA to 1A			0.5	- mA
ΔI_{Q}		V _I = 11 to 25 V, I _O = 20 mA			1.3	
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = -55$ °C to 150 °C		-1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 kHz		60		μV
SVR	Supply voltage rejection	f = 120 Hz	53			dB
VI	Operating input voltage	I _O ≤ 1.5 A	12			٧
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Refer to the test circuits, T_J = 25 °C, V_I = 15 V, I_O = 500 mA, unless otherwise specified.

Table 7. Electrical characteristics of L78S10

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		9.5	10	10.5	V
V _O	Output voltage	I _O = 1 A, V _I = 12.5 V	9.4	10	10.6	V
41/	Line regulation	V _I = 12.5 to 30 V			200	mV
ΔV_{O}	Line regulation	V _I = 14 to 22 V			100	IIIV
ΔV _O	Load regulation	I _O = 20 mA to 2 A			150	mV
IQ	Quiescent current				8	mA
Al	Quiescent current change	I _O = 20 mA to 1A			0.5	- mA
ΔI_{Q}		V _I = 12.5 to 30 V, I _O = 20 mA			1	
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = -55$ °C to 150 °C		-1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 kHz		65		μV
SVR	Supply voltage rejection	f = 120 Hz	53			dB
V _I	Operating input voltage	I _O ≤ 1.5 A	13			V
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Refer to the test circuits, T_J = 25 °C, V_I = 19 V, I_O = 500 mA, unless otherwise specified.

Table 8. Electrical characteristics of L78S12

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		11.5	12	12.5	V
Vo	Output voltage	I _O = 1 A, V _I = 14.5 V	11.4	12	12.6	٧
AV.	Line regulation	V _I = 14.5 to 30 V			240	mV
ΔV_{O}	Line regulation	V _I = 16 to 22 V			120	IIIV
ΔV_{O}	Load regulation	I _O = 20 mA to 2 A			160	mV
ΙQ	Quiescent current				8	mA
AI.	Quiescent current change	I _O = 20 mA to 1 A			0.5	- mA
ΔI_{Q}	Quiescent current change	$V_I = 14.5 \text{ to } 30 \text{ V}, I_O = 20 \text{ mA}$			1	
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = -55$ °C to 150 °C		-1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 kHz		75		μV
SVR	Supply voltage rejection	f = 120 Hz	53			dB
V _I	Operating input voltage	I _O ≤ 1.5 A	15			V
R _O	Output resistance	f = 1 kHz		18		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Electrical characteristics L78Sxx, L78SxxC

Refer to the test circuits, T_J = 25 °C, V_I = 23 V, I_O = 500 mA, unless otherwise specified.

Table 9. Electrical characteristics of L78S15

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		14.4	15	15.6	V
V _O	Output voltage	I _O = 1 A, V _I = 17.5 V	14.25	15	15.75	V
41/	Line regulation	V _I = 17.5 to 30 V			300	mV
ΔV_{O}	Line regulation	V _I = 20 to 26 V			150	IIIV
ΔV_{O}	Load regulation	I _O = 20 mA to 2 A			180	mV
IQ	Quiescent current				8	mA
	Quiescent current change	I _O = 20 mA to 1 A			0.5	- mA
ΔI_{Q}		V _I = 17.5 to 30 V, I _O = 20 mA			1	
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA, T _J = -55 °C to 150 °C		-1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 kHz		90		μV
SVR	Supply voltage rejection	f = 120 Hz	52			dB
V _I	Operating input voltage	I _O ≤ 1.5 A	18			V
R _O	Output resistance	f = 1 kHz		19		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Refer to the test circuits, T_J = 25 °C, V_I = 26 V, I_O = 500 mA, unless otherwise specified.

Table 10. Electrical characteristics of L78S18

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _O	Output voltage		17.1	18	18.9	V	
V _O	Output voltage	I _O = 1 A, V _I = 20.5 V	17	18	19	٧	
ΔV _O Line regulation	Line regulation	V _I = 20.5 to 30 V			360	- mV	
	V _I = 22 to 28 V			180	IIIV		
ΔV _O	Load regulation	I _O = 20 mA to 2 A			200	mV	
ΙQ	Quiescent current				8	mA	
4.1	ΔI _Q Quiescent current change	I _O = 20 mA to 1 A			0.5	mA	
ΔIQ		V _I = 20.5 to 30 V, I _O = 20 mA			1	IIIA	
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = -55$ °C to 150 °C		-1		mV/°C	
eN	Output noise voltage	B =10 Hz to 100 kHz		110		μV	
SVR	Supply voltage rejection	f = 120 Hz	49			dB	
VI	Operating input voltage	I _O ≤ 1.5 A	21			V	
R _O	Output resistance	f = 1 kHz		22		mΩ	
I _{sc}	Short circuit current	V _I = 27 V		500		mA	
I _{scp}	Short circuit peak current			3		Α	

Refer to the test circuits, T_J = 25 °C, V_I = 33 V, I_O = 500 mA, unless otherwise specified.

Table 11. Electrical characteristics of L78S24

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		23	24	25	V
V _O	Output voltage	I _O = 1 A, V _I = 27 V	22.8	24	25.2	V
AV.	ΔV_{O} Line regulation	V _I = 27 to 38 V			480	mV
ΔνΟ	Line regulation	V _I = 30 to 36 V			240	IIIV
ΔV _O	Load regulation	I _O = 20 mA to 2 A			250	mV
ΙQ	Quiescent current				8	mA
Al	ΔI _Q Quiescent current change	I _O = 20 mA to 1 A			0.5	mA
ΔiQ		V _I = 27 to 38 V, I _O = 20 mA			1	
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = -55$ °C to 150 °C		-1.5		mV/°C
eN	Output noise voltage	B =10 Hz to 100 kHz		170		μV
SVR	Supply voltage rejection	f = 120 Hz	48			dB
VI	Operating input voltage	I _O ≤ 1.5 A	27			V
R _O	Output resistance	f = 1 kHz		23		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Electrical characteristics L78Sxx, L78SxxC

Refer to the test circuits, T_J = 25 °C, V_I = 10 V, I_O = 500 mA, unless otherwise specified.

Table 12. Electrical characteristics of L78S05C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		4.8	5	5.2	V
Vo	Output voltage	I _O = 1 A, V _I = 7 V	4.75	5	5.25	V
AV.	Line regulation	V _I = 7 to 25 V			100	mV
ΔV _O		V _I = 8 to 25 V			50	IIIV
ΔV _O Load regulation	Load regulation	I _O = 20 mA to 1.5 A			100	mV
	Load regulation	I _O = 2 A		80		IIIV
ΙQ	Quiescent current				8	mA
AI.	Quiescent current change	I _O = 20 mA to 1 A			0.5	mA
ΔI_{Q}		V _I = 7 to 25 V, I _O = 20 mA			1.3	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-1.1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz		40		μV
SVR	Supply voltage rejection	f = 120 Hz	54			dB
VI	Operating input voltage	I _O ≤ 1 A	8			٧
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Refer to the test circuits, T_J = 25 °C, V_I = 12.5 V, I_O = 500 mA, unless otherwise specified.

Table 13. Electrical characteristics of L78S75C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		7.15	7.5	7.9	V
V _O	Output voltage	I _O = 1 A, V _I = 9.5 V	7.1	7.5	7.95	V
A\/	Line regulation	V _I = 9.5 to 25 V			120	mV
ΔV_{O} L	Line regulation	V _I = 10.5 to 20 V			60	IIIV
ΔV _O Load regulation	Load regulation	I _O = 20 mA to 1.5 A			140	mV
	I _O = 2 A		100		IIIV	
IQ	Quiescent current				8	mA
Al	Quiescent current change	I _O = 20 mA to 1 A			0.5	mA
ΔI_{Q}		V _I = 9.5 to 25 V, I _O = 20 mA			1.3	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz		52		μV
SVR	Supply voltage rejection	f = 120 Hz	48			dB
V _I	Operating input voltage	I _O ≤ 1 A	10.5			٧
R _O	Output resistance	f = 1 kHz		16		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Electrical characteristics L78Sxx, L78SxxC

Refer to the test circuits, T_J = 25 °C, V_I = 14 V, I_O = 500 mA, unless otherwise specified.

Table 14. Electrical characteristics of L78S09C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		8.65	9	9.35	V
V _O	Output voltage	I _O = 1 A, V _I = 11 V	8.6	9	9.4	V
41/	Line regulation	V _I = 11 to 25 V			130	mV
ΔV _O Line	Line regulation	V _I = 11 to 20 V			65	IIIV
41/	Load regulation	I _O = 20 mA to 1.5 A			170	mV
ΔV_{O}	ΔV _O Load regulation	I _O = 2 A		100		IIIV
IQ	Quiescent current				8	mA
4.1	Quiescent current change	I _O = 20 mA to 1 A			0.5	mA
ΔI_{Q}		V _I = 11 to 25 V, I _O = 20 mA			1.3	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz		60		μV
SVR	Supply voltage rejection	f = 120 Hz	47			dB
V _I	Operating input voltage	I _O ≤ 1 A	12			V
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Refer to the test circuits, T_J = 25 °C, V_I = 15 V, I_O = 500 mA, unless otherwise specified.

Table 15. Electrical characteristics of L78S10C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		9.5	10	10.5	V
Vo	Output voltage	I _O = 1 A, V _I = 12.5 V	9.4	10	10.6	٧
ΔV_{O}	Line regulation	V _I = 12.5 to 30 V			200	mV
	Line regulation	V _I = 14 to 22 V			100	IIIV
ΔV _O Load regulation	Load regulation	I _O = 20 mA to 1.5 A			240	mV
	Load regulation	I _O = 2 A		150		IIIV
ΙQ	Quiescent current				8	mA
AI.	Quiescent current change	I _O = 20 mA to 1 A			0.5	mA
ΔI_{Q}		V _I = 12.5 to 30 V, I _O = 20 mA			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz		65		μV
SVR	Supply voltage rejection	f = 120 Hz	47			dB
VI	Operating input voltage	I _O ≤ 1 A	13			٧
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Electrical characteristics L78Sxx, L78SxxC

Refer to the test circuits, T_J = 25 °C, V_I = 19 V, I_O = 500 mA, unless otherwise specified.

Table 16. Electrical characteristics of L78S12C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		11.5	12	12.5	V
Vo	Output voltage	I _O = 1 A, V _I = 14.5 V	11.4	12	12.6	V
4)/	Line regulation	V _I = 14.5 to 30 V			240	mV
ΔV _O L	Line regulation	V _I = 16 to 22 V			120	IIIV
AV.	Load regulation	I _O = 20 mA to 1.5 A			240	mV
ΔV _O Load regulation	Load regulation	I _O = 2 A		150		1110
ΙQ	Quiescent current				8	mA
AI.	Quiescent current change	I _O = 20 mA to 1 A			0.5	mA
ΔI_{Q}		V _I = 14.5 to 30 V, I _O = 20 mA			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 kHz		75		μV
SVR	Supply voltage rejection	f = 120 Hz	47			dB
VI	Operating input voltage	I _O ≤ 1 A	15			V
R _O	Output resistance	f = 1 kHz		18		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Refer to the test circuits, T_J = 25 °C, V_I = 23 V, I_O = 500 mA, unless otherwise specified.

Table 17. Electrical characteristics of L78S15C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		14.4	15	15.6	V
V _O	Output voltage	I _O = 1 A, V _I = 17.5 V	14.25	15	15.75	V
A\/	Line regulation	V _I = 17.5 to 30 V			300	mV
ΔV _O Line	ine regulation	V _I = 20 to 26 V			150	IIIV
AV.	Load regulation	I _O = 20 mA to 1.5 A			300	mV
ΔV_{O}	2v0 Load regulation	I _O = 2 A		150		IIIV
ΙQ	Quiescent current				8	mA
AI.	Quiescent current change	I _O = 20 mA to 1 A			0.5	mA
ΔI_{Q}		V _I = 17.5 to 30 V, I _O = 20 mA			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 kHz		90		μV
SVR	Supply voltage rejection	f = 120 Hz	46			dB
VI	Operating input voltage	I _O ≤ 1 A	18			V
R _O	Output resistance	f = 1 kHz		19		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Electrical characteristics L78Sxx, L78SxxC

Refer to the test circuits, T_J = 25 °C, V_I = 26 V, I_O = 500 mA, unless otherwise specified.

Table 18. Electrical characteristics of L78S18C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		17.1	18	18.9	V
Vo	Output voltage	I _O = 1 A, V _I = 20.5 V	17	18	19	V
4)/	Line regulation	V _I = 20.5 to 30 V			360	m\/
ΔV _O Li	Line regulation	V _I = 22 to 28 V			180	mV
ΔV _O Load regulation	Load regulation	I _O = 20 mA to 1.5 A			360	mV
	Load regulation	I _O = 2 A		200		IIIV
IQ	Quiescent current				8	mA
41	Quiescent current change	I _O = 20 mA to 1 A			0.5	mA
ΔI_{Q}		V _I = 20.5 to 30 V, I _O = 20 mA			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 kHz		110		μV
SVR	Supply voltage rejection	f = 120 Hz	43			dB
VI	Operating input voltage	I _O ≤ 1 A	21			٧
R _O	Output resistance	f = 1 kHz		22		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Refer to the test circuits, T_J = 25 °C, V_I = 33 V, I_O = 500 mA, unless otherwise specified.

Table 19. Electrical characteristics of L78S24C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		23	24	25	V
Vo	Output voltage	I _O = 1 A, V _I = 27 V	22.8	24	25.2	٧
4)/	Line regulation	V _I = 27 to 38 V			480	mV
ΔV_{O}	Line regulation	V _I = 30 to 36 V			240	IIIV
ΔV _O Load regulation	Load regulation	I _O = 20 mA to 1.5 A			480	mV
	I _O = 2 A		300		IIIV	
IQ	Quiescent current				8	mA
Al	Quiescent current change	I _O = 20 mA to 1 A			0.5	mA
ΔI_{Q}		V _I = 27 to 38 V, I _O = 20 mA			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-1.5		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz		170		μV
SVR	Supply voltage rejection	f = 120 Hz	42			dB
V _I	Operating input voltage	I _O ≤ 1 A	27			V
R _O	Output resistance	f = 1 kHz		28		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

6 Typical performance

Figure 8. Dropout voltage vs. junction temperature

Figure 9. Peak output current vs. input/output differential voltage

Figure 10. Output impedance vs. frequency

Figure 11. Output voltage vs. junction temperature

Figure 12. Supply voltage rejection vs. frequency

Figure 13. Quiescent current vs. junction temperature

577

Figure 14. Load transient response

Figure 15. Line transient response

Figure 16. Quiescent current vs. input voltage

Figure 17. Fixed output regulator

- 1. To specify an output voltage, substitute voltage value for "XX".
- 2. Although no output capacitor is need for stability, it does improve transient response.
- 3. Required if regulator is locate an appreciable distance from power supply filter.

Figure 18. Constant current regulator

Figure 19. Circuit for increasing output voltage

Figure 20. Adjustable output regulator (7 to 30 V)

24/39 Doc ID 2148 Rev 7

Figure 21. 0.5 to 10 V regulator

Figure 22. High current voltage regulator

Figure 23. High output current with short circuit protection

Typical performance L78Sxx, L78SxxC

Figure 24. Tracking voltage regulator

Figure 25. Positive and negative regulator

Figure 26. Negative output voltage circuit

Figure 27. Switching regulator

Figure 28. High input voltage circuit

Figure 29. High input voltage circuit

Figure 30. High output voltage regulator

Figure 31. High input and output voltage

L78Sxx, L78SxxC Typical performance

Figure 32. Reducing power dissipation with dropping resistor

Figure 33. Remote shutdown

Figure 34. Power AM modulator (unity voltage gain, $I_0 \le 1$ A)

Note: The circuit performs well up to 100 kHz.

Doc ID 2148 Rev 7 29/39

Typical performance L78Sxx, L78SxxC

Figure 35. Adjustable output voltage with temperature compensation

Note: Q_2 is connected as a diode in order to compensate the variation of the Q_1 V_{BE} with the temperature. C allows a slow rise time of the V_O .

Figure 36. Light controllers $(V_{Omin} = V_{XX} + V_{BE})$

V₁ L78SXX V₀ V₀

Figure 37. Protection against input short-circuit with high capacitance loads

1. Application with high capacitance loads and an output voltage greater than 6 volts need an external diode (see Figure 30 on page 28) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decrease slowly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground.

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Table 20. TO-220 mechanical data

	Туре	STD - ST Dual (Gauge	Туре	STD - ST Single	Gauge
Dim.		mm.		mm.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.40		4.60	4.40		4.60
b	0.61		0.88	0.61		0.88
b1	1.14		1.70	1.14		1.70
С	0.48		0.70	0.48		0.70
D	15.25		15.75	15.25		15.75
D1		1.27				
E	10.00		10.40	10.00		10.40
е	2.40		2.70	2.40		2.70
e1	4.95		5.15	4.95		5.15
F	1.23		1.32	0.51		0.60
H1	6.20		6.60	6.20		6.60
J1	2.40		2.72	2.40		2.72
L	13.00		14.00	13.00		14.00
L1	3.50		3.93	3.50		3.93
L20		16.40			16.40	
L30		28.90			28.90	
ØP	3.75		3.85	3.75		3.85
Q	2.65		2.95	2.65		2.95

In spite of some difference in tolerances, the packages are compatible.

Figure 38. Drawing dimension TO-220 (type STD-ST Dual Gauge)

Note: 1 Maximum resin gate protrusion: 0.5 mm.

2 Resin gate position is accepted in each of the two positions shown on the drawing, or their symmetrical.

34/39

Figure 39. Drawing dimension TO-220 (type STD-ST Single Gauge)

Doc ID 2148 Rev 7

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

Figure 40. Drawing dimension tube for TO-220 Dual Gauge (mm.)

TO-3 mechanical data

Dim.		mm.			inch.	
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А		11.85			0.466	
В	0.96	1.05	1.10	0.037	0.041	0.043
С			1.70			0.066
D			8.7			0.342
E			20.0			0.787
G		10.9			0.429	
N		16.9			0.665	
Р			26.2			1.031
R	3.88		4.09	0.152		0.161
U			39.5			1.555
V		30.10			1.185	

L78Sxx, L78SxxC Order codes

8 Order codes

Table 21. Order codes

Part numbers	Packages		Output voltage
	TO-220	Т0-3	Output voltage
L78S05		L78S05T ⁽¹⁾	5 V
L78S05C	L78S05CV	L78S05CT (1)	5 V
	L78S05CV-DG (2)		5 V
L78S75	L78S75T ⁽¹⁾ 7		7.5 V
L78S75C	L78S75CV	L78S75CT ⁽¹⁾	7.5 V
	L78S75CV-DG (2)		7.5 V
L78S09	L78S09T ⁽¹⁾		9 V
L78S09C	L78S09CV		9 V
	L78S09CV-DG (2)		9 V
L78S10		L78S10T ⁽¹⁾	10 V
1700100	L78S10CV	L78S10CT (1)	10 V
L78S10C	L78S10CV-DG (2)		10 V
L78S12		L78S12T ⁽¹⁾	12 V
L78S12C	L78S12CV	L78S12CT	12 V
	L78S12CV-DG (2)		12 V
L78S15	L78S15T ⁽¹⁾		15 V
L78S15C	L78S15CV		15 V
	L78S15CV-DG (2)		15 V
L78S18		L78S18T ⁽¹⁾	18 V
L78S18C	L78S18CV		18 V
L78S24		L78S24T ⁽¹⁾	24 V
L78S24C	L78S24CV	L78S24CT (1)	24 V

^{1.} Available on request.

^{2.} TO-220 Dual Gauge frame.

Revision history L78Sxx, L78SxxC

9 Revision history

Table 22. Document revision history

Date	Revision	Changes	
07-Sep-2006	2	Order codes updated.	
20-Mar-2008	3	Added: Table 1 on page 1.	
22-Mar-2010	4	Added: Table 20 on page 32, Figure 38 on page 33, Figure 39 on page 34, Figure 40 and Figure 41 on page 35.	
08-Feb-2012	5	Added: order codes L78S05CV-DG, L78S12CV-DG and L78S15CV-DG Table 21 on page 37.	
09-Mar-2012	6	Added: order codes L78S09CV-DG Table 21 on page 37.	
15-May-2012	7	Added: order codes L78S75CV-DG and L78S10CV-DG Table 21 on page 37.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

