

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015

MATEMATYKAPOZIOM ROZSZERZONY

ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

GRUDZIEŃ 2014

Klucz odpowiedzi do zadań zamkniętych

Nr zadania	1	2	3	4	5
Odpowiedź	Α	С	D	С	В

Wymagania ogólne	Wymagania szczegółowe
------------------	-----------------------

Zadanie 1. (0–1)

I. Wykorzystanie i tworzenie	R3.4. Zdający stosuje twierdzenia o reszcie z dzielenia
informacji.	wielomianu przez dwumian $x-a$.

Poprawna odpowiedź: A

Zadanie 2. (0–1)

	R8.5., 4.5. Zdający posługuje się równaniem okręgu
	$(x-a)^2 + (y-b)^2 = r^2$ oraz opisuje koła za pomocą
informacji.	nierówności, rysuje wykres funkcji liniowej, korzystając
	z jej wzoru.

Poprawna odpowiedź: C

Zadanie 3. (0–1)

1 Intermetow/ante	R11.4. Zdający korzysta z własności pochodnej do wyznaczenia przedziałów monotoniczności funkcji
reprezentacji.	wyznaczenia przedziałów monotoniczności funkcji.

Poprawna odpowiedź: D

Zadanie 4. (0–1)

II. Wykorzystanie	R6.4. Zdający posługuje się wykresami funkcji
i interpretowanie	trygonometrycznych (np. przy rozwiązywaniu nierówności
reprezentacji.	typu $\sin x > a, \cos x \le a, \operatorname{tg} x > a$).

Poprawna odpowiedź: C

Zadanie 5. (0–1)

	4.4., 4.3. Zdający na podstawie wykresu funkcji $y = f(x)$
	szkicuje wykresy funkcji $y = f(x+a)$, $y = f(x)+a$,
II. Wykorzystanie i interpretowanie	y = -f(x), $y = f(-x)$; odczytuje z wykresu własności
reprezentacji.	funkcji (dziedzinę, zbiór wartości, miejsca zerowe,
	maksymalne przedziały, w których funkcja maleje, rośnie,
	ma stały znak; punkty, w których funkcja przyjmuje
	w podanym przedziale wartość największą lub najmniejszą).

Poprawna odpowiedź: B

Zadanie 6. (0–2) – zadanie kodowane

IV. Użycie i tworzenie	G6.6., 2.1. Zdający wyłącza wspólny czynnik z wyrazów sumy algebraicznej poza nawias, używa wzorów skróconego
strategii	mnożenia na $(a\pm b)^2$ oraz a^2-b^2 .

Poprawna odpowiedź: 210

Zadanie 7. (0–2)

Długości boków prostokąta są równe 3 oraz 5. Oblicz sinus kąta ostrego, który tworzą przekątne tego prostokąta.

II. Wykorzystanie	6.1., R6.5. Zdający wykorzystuje definicje i wyznacza wartości funkcji sinus, cosinus i tangens kątów o miarach od
i interpretowanie reprezentacji	0° do 180°, stosuje wzory na sinus i cosinus sumy i różnicy kątów, sumę i różnicę sinusów i cosinusów kątów.

Rozwiązanie (I sposób):

Przyjmijmy oznaczenia jak na rysunku.

Wtedy $\alpha = 2\beta$. Z twierdzenia Pitagorasa otrzymujemy $AC = \sqrt{34}$.

Ponieważ
$$\sin \beta = \frac{3}{\sqrt{34}}$$
 oraz $\cos \beta = \frac{5}{\sqrt{34}}$, więc

$$\sin \alpha = 2\sin \beta \cos \beta = 2 \cdot \frac{3}{\sqrt{34}} \cdot \frac{5}{\sqrt{34}} = \frac{15}{17}$$

Rozwiązanie (II sposób):

Przekątna tego prostokąta ma długość $\sqrt{34}$. Niech α oznacza kąt ostry między przekątnymi tego prostokąta.

Obliczamy pole *P* prostokata dwoma sposobami:

$$P = 3.5 = 15$$
, $P = 4.\frac{1}{2} \cdot \frac{\sqrt{34}}{2} \cdot \frac{\sqrt{34}}{2} \cdot \sin \alpha = 17 \sin \alpha$.

Stad
$$\sin \alpha = \frac{15}{17}$$
.

Schemat oceniania

Zdający otrzymuje – 1 pkt

jeżeli:

poda wartość
$$\sin \frac{\alpha}{2} = \frac{3}{\sqrt{34}}$$
 i $\cos \frac{\alpha}{2} = \frac{5}{\sqrt{34}}$

albo

poda sposób obliczenia pola prostokąta przy wykorzystaniu $\sin \alpha$.

Zdający otrzymuje – 2 pkt

jeżeli obliczy $\sin \alpha = \frac{15}{17}$.

Zadanie 8. (0-2)

Oblicz granicę
$$\lim_{n\to\infty} \left(\frac{n^2}{n+2} - \frac{(n+2)^2}{n+444} \right)$$
.

II. Wykorzystanie
i interpretowanie
reprezentacji

R11.1. Zdający oblicza granice funkcji (i granice jednostronne), korzystając z twierdzeń o działaniach na granicach i z własności funkcji ciągłych.

Rozwiązanie:

$$\lim_{n \to \infty} \left(\frac{n^2}{n+2} - \frac{(n+2)^2}{n+444} \right) = \lim_{n \to \infty} \left(\frac{n^2 (n+444) - (n+2)^3}{(n+2)(n+444)} \right) =$$

$$= \lim_{n \to \infty} \frac{438n^2 - 12n - 8}{(n+2)(n+444)} = 438$$

Schemat oceniania

Zdający otrzymuje – 1 pkt

jeżeli poprawnie zapisze wyrażenie $\frac{n^2}{n+2} - \frac{\left(n+2\right)^2}{n+444}$ w postaci ułamka, np. $\frac{438n^2 - 12n - 8}{\left(n+2\right)\left(n+444\right)}$.

Zdający otrzymuje – 2 pkt

jeżeli poprawnie obliczy wartość granicy.

Zadanie 9. (0–2)

Funkcja f jest określona wzorem $f(x) = \frac{x^2}{x-4}$ dla każdej liczby rzeczywistej $x \neq 4$. Oblicz pochodną funkcji f w punkcie x = 12.

II. Wykorzystanie i interpretowanie reprezentacji

Rozwiązanie:

$$f'(x) = \frac{2x(x-4)-x^2}{(x-4)^2} = \frac{x^2-8x}{(x-4)^2},$$
$$f'(12) = \frac{144-96}{64} = \frac{3}{4}.$$

Schemat oceniania

Zdający otrzymuje – 1 pkt

gdy poprawnie poda wzór funkcji f', np. $f'(x) = \frac{2x(x-4)-x^2}{(x-4)^2}$

Zdający otrzymuje – 2 pkt

gdy obliczy wartość pochodnej dla x = 12: $f'(12) = \frac{3}{4}$

Zadanie 10. (0–3)

Funkcja f jest określona wzorem $f(x) = x^4$ dla każdej liczby rzeczywistej x. Wyznacz równanie prostej stycznej do wykresu funkcji f, która jest równoległa do prostej y = 4x + 7.

IV. Użycie i tworzenie	R11.3. Zdający korzysta z geometrycznej i fizycznej
1	interpretacji pochodnej.

Rozwiazanie:

Styczna do wykresu funkcji f w punkcie $(x_0, f(x_0))$ jest prostą o równaniu

$$y - f(x_0) = f'(x_0)(x - x_0)$$

Obliczamy pochodną funkcji f:

$$f'(x) = 4x^3$$

Ponieważ styczna jest równoległa do prostej o równaniu y = 4x + 7, więc $f'(x_0) = 4$.

Zatem $x_0 = 1$ i styczna ma równanie

$$y-1=4(x-1)$$
, czyli $y=4x-3$.

Schemat oceniania

Rozwiązanie, w którym jest istotny postęp – 1 p.

Obliczenie pochodnej funkcji f: $f'(x) = 4x^3$.

Pokonanie zasadniczych trudności zadania – 2 p.

Obliczenie pierwszej współrzędnej punktu styczności: $x_0 = 1$.

Rozwiązanie pełne – 3 p.

Zapisanie równania stycznej w postaci np. y = 4x - 3.

Zadanie 11. (0-3)

Wyznacz wszystkie liczby rzeczywiste x, spełniające równanie $\sin 5x - \sin x = 0$.

IV. Użycie i tworzenie	R6.5. Zdający stosuje wzory na sinus i cosinus sumy i różnicy
strategii	kątów, sumę i różnicę sinusów i cosinusów kątów.

Rozwiązanie (I sposób):

Korzystamy ze wzoru na różnicę sinusów i zapisujemy równanie w postaci

$$2\sin 2x\cos 3x = 0$$

zatem

$$\sin 2x = 0$$
 lub $\cos 3x = 0$

stąd otrzymujemy kolejno:

$$\sin 2x = 0$$
, gdy $2x = k\pi$ czyli $x = \frac{k\pi}{2}$, gdzie k jest liczbą całkowitą,

$$\cos 3x = 0$$
, gdy $3x = \frac{\pi}{2} + k\pi$ czyli $x = \frac{\pi}{6} + \frac{k\pi}{3}$, gdzie k jest liczbą całkowitą.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp – 1 p.

Zapisanie równania w postaci iloczynowej np. $\sin 2x \cos 3x = 0$

Pokonanie zasadniczych trudności zadania – 2 p.

Zapisanie rozwiązań równania

•
$$\sin 2x = 0$$
: $x = \frac{k\pi}{2}$, gdzie k jest liczbą całkowitą

albo

•
$$\cos 3x = 0$$
: $x = \frac{\pi}{6} + \frac{k\pi}{3}$, gdzie k jest liczbą całkowitą.

Rozwiązanie pełne – 3 p.

Zapisanie wszystkich rozwiązań równania $\sin 5x - \sin x = 0$: $x = \frac{k\pi}{2}$ lub $x = \frac{\pi}{6} + \frac{k\pi}{3}$, gdzie k jest liczbą całkowitą.

Rozwiązanie (II sposób):

Zapisujemy równanie w postaci $\sin 5x = \sin x$.

Z własności funkcji sinus wynika, że

$$5x = x + 2k\pi$$
, gdzie *k* jest liczbą całkowitą

lub

 $5x = \pi - x + 2k\pi$, gdzie *k* jest liczbą całkowitą,

zatem

$$4x = 2k\pi$$
, czyli $x = \frac{k\pi}{2}$, gdzie *k* jest liczbą całkowitą

lub

$$6x = \pi + 2k\pi$$
, czyli $x = \frac{\pi}{6} + \frac{k\pi}{3}$, gdzie *k* jest liczbą całkowitą.

Schemat oceniania II sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp – 1 p.

Zapisanie jednej z zależności: $5x = x + 2k\pi$, gdzie k jest liczbą całkowitą lub $5x = \pi - x + 2k\pi$, gdzie k jest liczbą całkowitą.

Pokonanie zasadniczych trudności zadania – 2 p.

Zapisanie obu zależności: $5x = x + 2k\pi$, gdzie k jest liczbą całkowitą oraz $5x = \pi - x + 2k\pi$, gdzie k jest liczbą całkowitą.

Rozwiązanie pełne – 3 p.

Zapisanie wszystkich rozwiązań równania $\sin 5x - \sin x = 0$: $x = \frac{k\pi}{2}$ lub $x = \frac{\pi}{6} + \frac{k\pi}{3}$, gdzie k jest liczbą całkowitą.

Uwagi

- 1. Jeżeli zdający zapisze jedynie 5x = x, to otrzymuje 0 punktów.
- 2. Jeżeli zdający zapisze 5x = x oraz $5x = \pi x$, to otrzymuje 1 punkt.
- 3. Jeżeli zdający zapisze tylko jedną z zależności $5x = x + 2k\pi$, gdzie k jest liczbą całkowitą lub $5x = \pi x + 2k\pi$, gdzie k jest liczbą całkowitą i w rezultacie uzyska tylko jedną serię

rozwiązań:
$$x = \frac{k\pi}{2}$$
 albo $x = \frac{\pi}{6} + \frac{k\pi}{3}$, gdzie *k* jest liczbą całkowitą, to otrzymuje 2 punkty.

Zadanie 12. (0-3)

Niech P_n oznacza pole koła o promieniu $\frac{1}{2^n}$, dla $n \ge 1$. Oblicz sumę wszystkich wyrazów ciągu (P_n) .

IV. Użycie i tworzenie	R5.3. Zdający rozpoznaje szeregi geometryczne zbieżne
strategii	i oblicza ich sumy.

Rozwiązanie:

Pole koła o promieniu $r_n=\frac{1}{2^n}$ jest równe $\pi\cdot\left(\frac{1}{2^n}\right)^2=\frac{\pi}{4^n}$, czyli $P_n=\frac{\pi}{4^n}$. Dla $n\geq 1$ zachodzi równość $\frac{P_{n+1}}{P_n}=\frac{1}{4}$. Wynika stąd, że (P_n) jest ciągiem geometrycznym o ilorazie $q=\frac{1}{4}$ i pierwszym wyrazie $P_1=\frac{\pi}{4}$. Ponieważ $-1<\frac{1}{4}<1$, więc suma S wszystkich wyrazów ciągu (P_n) jest skończona i jest równa

$$S = \frac{P_1}{1 - q} = \frac{\frac{\pi}{4}}{1 - \frac{1}{4}} = \frac{\pi}{3}$$

Schemat oceniania

Rozwiązanie, w którym jest istotny postęp 1 p.

Obliczenie pierwszego wyrazu i ilorazu ciągu (P_n) : $P_1 = \frac{\pi}{4}$, $q = \frac{1}{4}$

Pokonanie zasadniczych trudności zadania......2 p.

Stwierdzenie, że istnieje skończona suma wszystkich wyrazów ciągu (P_n) , np.: $|q| = \frac{1}{4} < 1$

Rozwiązanie pełne 3 p.

Obliczenie sumy S wszystkich wyrazów ciągu (P_n) : $S = \frac{\pi}{3}$

Uwaga:

Jeżeli zdający obliczy sumę wszystkich wyrazów ciągu (P_n) , ale nie stwierdzi, że |q| < 1, to otrzymuje 2 punkty.

Zadanie 13. (0-3)

Wykaż, że jeżeli
$$a > b \ge 1$$
, to $\frac{a}{2+a^3} < \frac{b}{2+b^3}$.

V. Rozumowanie i argumentacja	R2.6. Zdający dodaje, odejmuje, mnoży i dzieli wyrażenia wymierne; rozszerza i (w łatwych przypadkach) skraca wyrażenia wymierne.
-------------------------------	---

Rozwiązanie (I sposób):

Przekształcamy nierówność
$$\frac{a}{2+a^3} < \frac{b}{2+b^3}$$
 równoważnie.
$$2a+ab^3 < 2b+a^3b,$$

$$2(a-b) < ab(a^2-b^2),$$

$$2(a-b) < ab(a-b)(a+b).$$

Ponieważ a > b, więc możemy obie strony tej nierówności podzielić przez a - b > 0. Otrzymujemy

$$2 < ab(a+b)$$
.

Ponieważ $a > b \ge 1$, to ab > 1 oraz a + b > 2, zatem $ab(a + b) > 1 \cdot 2 = 2$. To kończy dowód.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp – 1 p.

Zapisanie nierówności
$$\frac{a}{2+a^3} < \frac{b}{2+b^3}$$
 w postaci $2(a-b) < ab(a^2-b^2)$

Pokonanie zasadniczych trudności zadania – 2 p.

Stwierdzenie, że dla $a > b \ge 1$ nierówność $\frac{a}{2+a^3} < \frac{b}{2+b^3}$ jest równoważna nierówności 2 < ab(a+b)

Uwaga:

Zdający zamiast podzielić obie strony nierówności przez a-b>0, może zapisać nierówność w postaci równoważnej (a-b)(ab(a+b)-2)>0

Rozwiązanie pełne – 3 p.

Przeprowadzenie pełnego dowodu.

Rozwiązanie (II sposób):

Definiujemy funkcję f określoną wzorem $f(x) = \frac{x}{2+x^3}$ dla każdej liczby rzeczywistej $x \neq -\sqrt[3]{2}$.

Obliczamy pochodną funkcji f:
$$f'(x) = \frac{2(1-x^3)}{(2+x^3)^2}$$

Stwierdzamy, że f'(x) < 0 dla $x \in (1, +\infty)$. Wynika stąd, że w przedziale $\langle 1, +\infty \rangle$ funkcja f jest malejąca. Zatem dla dowolnych dwóch argumentów a > b z tego przedziału prawdziwa jest nierówność f(a) < f(b), czyli $\frac{a}{2+a^3} < \frac{b}{2+b^3}$, co należało udowodnić.

Schemat oceniania II sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp – 1 p.

Określenie funkcji
$$f(x) = \frac{x}{2+x^3}$$
 i obliczenie jej pochodnej $f'(x) = \frac{2(1-x^3)}{(2+x^3)^2}$

Pokonanie zasadniczych trudności zadania – 2 p.

Określenie znaku pochodnej funkcji f w przedziale $(1,+\infty)$: f'(x) < 0 dla $x \in (1,+\infty)$

Rozwiązanie pełne – 3 p.

Stwierdzenie, że w przedziale $\langle 1, +\infty \rangle$ funkcja f jest malejąca i wywnioskowanie prawdziwości tezy.

Zadanie 14. (0-4)

Wykaż, że jeżeli α, β, γ są kątami wewnętrznymi trójkąta i $\sin^2 \alpha + \sin^2 \beta < \sin^2 \gamma$, to $\cos \gamma < 0$.

v. Rozumowanie	R7.5. Zdający znajduje związki miarowe w figurach płaskich z zastosowaniem twierdzenia sinusów i twierdzenia
i argumentacja	cosinusów.

Rozwiązanie (I sposób):

Niech a,b,c oznaczają długości boków trójkąta leżących naprzeciwko kątów, odpowiednio, α,β,γ , i niech R będzie promieniem okręgu opisanego na tym trójkącie. Z twierdzenia sinusów otrzymujemy

$$\sin \alpha = \frac{a}{2R}$$
, $\sin \beta = \frac{b}{2R}$, $\sin \gamma = \frac{c}{2R}$.

Zatem nierówność $\sin^2 \alpha + \sin^2 \beta < \sin^2 \gamma$ możemy zapisać w postaci

$$\left(\frac{a}{2R}\right)^2 + \left(\frac{b}{2R}\right)^2 < \left(\frac{c}{2R}\right)^2.$$

Stąd $a^2 + b^2 < c^2$, czyli $a^2 + b^2 - c^2 < 0$. Zatem z twierdzenia cosinusów otrzymujemy $\cos \gamma = \frac{a^2 + b^2 - c^2}{2ab} < 0$.

Uwaga:

Zamiast wykorzystać twierdzenie sinusów możemy również skorzystać ze wzoru na pole trójkąta i wówczas otrzymujemy

$$\sin \alpha = \frac{2P}{bc}$$
, $\sin \beta = \frac{2P}{ac}$, $\sin \gamma = \frac{2P}{ab}$

Dalsza część rozwiązania przebiega tak samo.

Schemat oceniania:

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania -1 p.

Zastosowanie

- twierdzenia sinusów, np. zapisanie równości: $\sin \alpha = \frac{a}{2R}$, $\sin \beta = \frac{b}{2R}$, $\sin \gamma = \frac{c}{2R}$ albo
 - wzoru na pole trójkąta i zapisanie równości: $\sin \alpha = \frac{2P}{bc}$, $\sin \beta = \frac{2P}{ac}$, $\sin \gamma = \frac{2P}{ab}$

Rozwiązanie, w którym jest istotny postęp – 2 p.

Zapisanie nierówności $a^2 + b^2 - c^2 < 0$.

Pokonanie zasadniczych trudności zadania – 3 p.

Zastosowanie twierdzenia cosinusów do zapisania równości $\cos \gamma = \frac{a^2 + b^2 - c^2}{2ab}$.

Rozwiązanie pełne – 4 p.

Poprawne uzasadnienie, że $\cos \gamma < 0$.

Uwaga:

Jeżeli zdający zauważy, że z nierówności $a^2 + b^2 < c^2$ wynika, że trójkąt jest rozwartokątny oraz γ jest kątem rozwartym, a stąd $\cos \gamma < 0$, to otrzymuje **4 punkty**.

Rozwiązanie (II sposób):

Ponieważ $\gamma = 180^{\circ} - (\alpha + \beta)$, więc $\sin \gamma = \sin(180^{\circ} - (\alpha + \beta)) = \sin(\alpha + \beta)$. Nierówność $\sin^2 \alpha + \sin^2 \beta < \sin^2 \gamma$ możemy zapisać w postaci

$$\sin^2\alpha + \sin^2\beta < \sin^2(\alpha + \beta).$$

Ze wzoru na sinus sumy kątów otrzymujemy

$$\sin^2 \alpha + \sin^2 \beta < (\sin \alpha \cos \beta + \cos \alpha \sin \beta)^2$$

$$\sin^2 \alpha + \sin^2 \beta < \sin^2 \alpha \cos^2 \beta + 2\sin \alpha \cos \beta \cos \alpha \sin \beta + \cos^2 \alpha \sin^2 \beta$$

$$\sin^2 \alpha - \sin^2 \alpha \cos^2 \beta + \sin^2 \beta - \cos^2 \alpha \sin^2 \beta < 2\sin \alpha \cos \beta \cos \alpha \sin \beta$$

$$\sin^2 \alpha \left(1 - \cos^2 \beta\right) + \sin^2 \beta \left(1 - \cos^2 \alpha\right) < 2\sin \alpha \cos \beta \cos \alpha \sin \beta$$

$$\sin^2 \alpha \sin^2 \beta + \sin^2 \beta \sin^2 \alpha < 2\sin \alpha \cos \beta \cos \alpha \sin \beta$$

$$2\sin^2 \alpha \sin^2 \beta < 2\sin \alpha \cos \beta \cos \alpha \sin \beta$$

$$\sin^2 \alpha \sin^2 \beta < \sin \alpha \cos \beta \cos \alpha \sin \beta$$

Obie strony nierówności możemy podzielić przez $\sin \alpha \sin \beta > 0$, otrzymując

$$\sin \alpha \sin \beta < \cos \alpha \cos \beta$$
$$\cos \alpha \cos \beta - \sin \alpha \sin \beta > 0$$
$$\cos (\alpha + \beta) > 0$$

Stąd wynika, że $\alpha + \beta < 90^{\circ}$, więc $\gamma > 90^{\circ}$. To oznacza, że $\cos \gamma < 0$, co kończy dowód.

Schemat oceniania II sposobu rozwiązania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania – $1\,\mathrm{p.}$

Doprowadzenie nierówności do postaci $\sin^2 \alpha + \sin^2 \beta < \sin^2 (\alpha + \beta)$

Rozwiązanie, w którym jest istotny postęp – 2 p.

Doprowadzenie nierówności do postaci

$$\sin^2\alpha + \sin^2\beta < \sin^2\alpha\cos^2\beta + 2\sin\alpha\cos\beta\cos\alpha\sin\beta + \cos^2\alpha\sin^2\beta$$

Pokonanie zasadniczych trudności zadania – 3 p.

Doprowadzenie nierówności do postaci $\cos(\alpha + \beta) > 0$

Rozwiązanie pełne – 4 p.

Poprawne uzasadnienie, że $\cos \gamma < 0$.

Zadanie 15. (0–4)

Punkt *E* jest środkiem boku *BC* prostokąta *ABCD*, w którym AB > BC. Punkt *F* leży na boku *CD* tego prostokąta oraz $\angle AEF = 90^{\circ}$. Udowodnij, że $\angle BAE = \angle EAF$.

V. Rozumowanie i argumentacja	G10.14. Zdający stosuje cechy przystawania trójkątów.
----------------------------------	---

Rozwiązanie (I sposób):

Przedłużamy odcinki AB i EF do przecięcia w punkcie G.

Trójkąty ECF i EBG są przystające (oba są prostokątne, kąty CEF i BEG są równe, gdyż są wierzchołkowe oraz CE = BE), skąd EF = EG. Zatem trójkąty AEF i AEG są przystające (oba są prostokątne, AE jest ich wspólną przyprostokątną i przyprostokątne EF i EG mają tę samą długość). Zatem $\angle EAF = \angle EAB$, co kończy dowód.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp – 1 p.

Zapisanie, że trójkąty *ECF* i *EBG* są przystające.

Pokonanie zasadniczych trudności zadania – 2 p.

Zapisanie, że trójkąty AEF i AEG są przystające.

Rozwiązanie pełne – 3 p.

Zapisanie, że $\angle EAF = \angle EAB$.

Rozwiązanie (II sposób):

Przedłużamy odcinki AE i DC do przecięcia w punkcie G.

Trójkaty ABE i GCE są przystające (oba są prostokatne, katy CEG i BEA są równe, gdyż są wierzchołkowe oraz CE = BE), skad AE = GE oraz $\angle EGC = \angle EAB$. Prosta EF jest więc

symetralną odcinka AG. Zatem AF = FG. Trójkąt AGF jest więc równoramienny, czyli $\angle EAF = \angle EGF = \angle EAB$. To kończy dowód.

Schemat oceniania II sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp – 1 p.

Zapisanie, że trójkąty ABE i GCE są przystające.

Pokonanie zasadniczych trudności zadania – 2 p.

Zapisanie, że $\angle EGF = \angle EAB$.

Rozwiązanie pełne – 3 p.

Zapisanie, że $\angle EAF = \angle EAB$.

Rozwiązanie (III sposób):

Przyjmijmy oznaczenia, jak na rysunku.

Trójkąt ABE jest prostokątny, więc $\angle AEB = 90^{\circ} - \alpha$, kąt AEF jest prosty, więc $\angle CEF = 180^{\circ} - (90^{\circ} - \alpha) - 90^{\circ} = \alpha$. Zatem trójkąty ABE i ECF są podobne, skąd

$$\frac{FC}{EC} = \frac{BE}{AB}$$
, czyli $\frac{a-x}{b} = \frac{b}{a}$.

Stąd
$$x = \frac{a^2 - b^2}{a}$$
.

Z twierdzenia Pitagorasa dla trójkątów ABE i ADF otrzymujemy

$$AE = \sqrt{a^2 + b^2}$$
 oraz $AF = \sqrt{x^2 + (2b)^2}$

zatem

$$AF = \sqrt{x^2 + 4b^2} = \sqrt{\left(\frac{a^2 - b^2}{a}\right)^2 + 4b^2} = \sqrt{\frac{\left(a^2 - b^2\right)^2 + 4a^2b^2}{a^2}} = \sqrt{\frac{\left(a^2 + b^2\right)^2}{a^2}} = \sqrt{\frac{\left(a^2 + b^2\right)^2}{a^2}} = \sqrt{\frac{a^2 + b^2}{a^2}}$$

stąd otrzymujemy

$$\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$$
 oraz $\cos \beta = \frac{AG}{AF} = \frac{x}{AF} = \frac{a^2 - b^2}{a^2 + b^2}$

Następnie $\cos 2\alpha = 2\cos^2 \alpha - 1 = 2 \cdot \frac{a^2}{a^2 + b^2} - 1 = \frac{a^2 - b^2}{a^2 + b^2} = \cos \beta$, czyli $2\alpha = \beta$, co należało udowodnić.

Schemat oceniania III sposobu rozwiązania:

Rozwiązanie, w którym jest istotny postęp1 p.

Zapisanie, że
$$\cos \beta = \frac{a^2 - b^2}{a^2 + b^2}$$

Pokonanie zasadniczych trudności zadania......2 p.

Zapisanie, że
$$\cos \beta = \frac{a^2 - b^2}{a^2 + b^2}$$
 oraz $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$

Rozwiązanie pełne3 p.

Zapisanie, że $\cos \beta = \cos 2\alpha$.

Rozwiązanie (IV sposób):

Przyjmijmy oznaczenia, jak na rysunku.

Trójkąt ABE jest prostokątny, więc $\angle AEB = 90^{\circ} - \alpha$, kąt AEF jest prosty, więc $\angle CEF = 180^{\circ} - (90^{\circ} - \alpha) - 90^{\circ} = \alpha$. Zatem trójkąty ABE i ECF są podobne, skąd

$$\frac{FC}{EC} = \frac{BE}{AB}$$
, czyli $\frac{a-x}{b} = \frac{b}{a}$

Stad
$$x = \frac{a^2 - b^2}{a}$$

Z trójkątów ABE i AGF otrzymujemy

$$tg\alpha = \frac{b}{a} \text{ oraz } tg\beta = \frac{2b}{x} = \frac{2b}{\frac{a^2 - b^2}{a}} = \frac{2ab}{a^2 - b^2}$$

Zauważmy, że
$$tg2\alpha = \frac{2tg\alpha}{1-tg^2\alpha} = \frac{2\cdot\frac{b}{a}}{1-\left(\frac{b}{a}\right)^2} = \frac{\frac{2b}{a}}{\frac{a^2-b^2}{a^2}} = \frac{2ab}{a^2-b^2} = tg\beta$$
, czyli $2\alpha = \beta$

To należało udowodnić.

Schemat oceniania IV sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp – 1 p.

Zapisanie, że
$$tg\beta = \frac{2ab}{a^2 - b^2}$$

Pokonanie zasadniczych trudności zadania – 2 p.

Zapisanie, że
$$tg\beta = \frac{2ab}{a^2 - b^2}$$
 oraz $tg\alpha = \frac{b}{a}$

Rozwiązanie pełne – 3 p.

Zapisanie, że $tg\beta = tg2\alpha$

Zadanie 16. (0-5)

Oblicz prawdopodobieństwo warunkowe, że w trzykrotnym rzucie symetryczną sześcienną kostką do gry otrzymamy co najmniej jedną "jedynkę", pod warunkiem, że otrzymamy co najmniej jedną "szóstkę".

III. Modelowanie	R10.2. Zdający oblicza prawdopodobieństwo warunkowe.
matematyczne	K10.2. Zdający oblicza prawdopodobielistwo warulikowe.

Rozwiazanie:

Zdarzeniami elementarnymi są wszystkie trzywyrazowe ciągi o wyrazach ze zbioru $\{1,2,3,4,5,6\}$ (czyli trójelementowe wariacje z powtórzeniami tego zbioru). Jest to model klasyczny. $|\Omega| = 6^3 = 216$.

Wprowadźmy oznaczenia dla zdarzeń

A – otrzymamy co najmniej raz jedno oczko,

B – otrzymamy co najmniej raz sześć oczek.

Mamy obliczyć prawdopodobieństwo warunkowe
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{|A \cap B|}{|B|}$$
.

Moc zdarzenia *B* obliczymy, korzystając z pojęcia zdarzenia przeciwnego, które polega na tym, że nie otrzymamy ani razu sześciu oczek.

$$|B| = |\Omega| - |B'| = 6^3 - 5^3 = 216 - 125 = 91.$$

Zdarzenie $A \cap B$ jest suma parami rozłącznych zdarzeń:

- otrzymamy raz jedno oczko, raz sześć oczek i raz liczbę oczek ze zbioru $\{2,3,4,5\}$ możliwe są $3 \cdot 2 \cdot 4 = 24$ takie wyniki,
- otrzymamy raz jedno oczko i dwa razy sześć oczek; możliwe są 3 takie wyniki,
- otrzymamy dwa razy jedno oczko i raz sześć oczek; możliwe są 3 takie wyniki.

Stad
$$|A \cap B| = 30 \text{ i } P(A \mid B) = \frac{30}{91}$$

Uwaga:

 $|A \cap B|$ można obliczyć korzystając z prawa de Morgana.

$$|A \cap B| = \left| \left((A \cap B)' \right)' \right| = |\Omega| - |A' \cup B'| = |\Omega| - \left(|A'| + |B'| - |A' \cap B'| \right) =$$

$$= 6^3 - \left(5^3 + 5^3 - 4^3 \right) = 30$$

Schemat oceniania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania
Zapisanie wzoru na prawdopodobieństwo warunkowe przy poprawnie wprowadzonych oznaczeniach.
Rozwiązanie, w którym jest istotny postęp
Obliczenie $ B = 91$ lub $P(B)$.
Pokonanie zasadniczych trudności zadania3 p.
Obliczenie $ A \cap B = 30$ lub $P(A \cap B)$.
Rozwiązanie prawie pełne4 p.
Rozwiązanie zadania do końca z błędami rachunkowymi.
Rozwiązanie pełne
Obliczenie $P(A \mid B) = \frac{30}{91}$.

Zadanie 17. (0–6)

Dany jest okrąg o_0 o równaniu $(x-3)^2 + (y-1)^2 = 1$. W pierwszej "ćwiartce" układu współrzędnych istnieją dwa okręgi o_1 , o_2 styczne zewnętrznie do okręgu o_0 i jednocześnie styczne do obu osi układu współrzędnych. Oblicz odległość środków okręgów o_1 oraz o_2 .

IV. Użycie i tworzenie strategii	R8.5. Zdający posługuje się równaniem okręgu $(x-a)^2 + (y-b)^2 = r^2$ oraz opisuje koła za pomocą nierówności.
-------------------------------------	---

Rozwiązanie:

Okrąg o równaniu $(x-3)^2+(y-1)^2=1$ ma środek w punkcie (3,1) i promień 1. Z treści zadania wynika, że okręgi o_1, o_2 leżą w pierwszej "ćwiartce" układu współrzędnych. Równanie okręgu leżącego w I "ćwiartce" układu współrzędnych i stycznego do obu osi układu jest postaci

$$(x-r)^2 + (y-r)^2 = r^2$$
, gdzie $r > 0$.

Zapisujemy warunek styczności okręgów. Okręgi są styczne zewnętrznie, czyli odległość środków tych okręgów jest równa sumie ich promieni, zatem

$$\sqrt{(r-3)^2 + (r-1)^2} = r+1.$$

Przekształcając to równanie, otrzymujemy równanie $r^2 - 10r + 9 = 0$, które ma dwa rozwiązania $r_1 = 1$, $r_2 = 9$.

Środki S_1, S_2 okręgów o_1, o_2 mają współrzędne $S_1 = (1,1), S_2 = (9,9)$ i ich odległość jest równa $8\sqrt{2}$.

Schemat oceniania:

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania
Zapisanie, że okrąg o równaniu $(x-3)^2 + (y-1)^2 = 1$ ma środek w punkcie (3,1) i promień 1.
Rozwiązanie, w którym jest istotny postęp2 p.
Zapisanie postaci równania okręgu leżącego w I "ćwiartce" układu współrzędnych i stycznego do obu osi układu jest postaci $(x-r)^2 + (y-r)^2 = r^2$, gdzie $r > 0$
Pokonanie zasadniczych trudności zadania 3 p. Zapisanie równania wynikającego z warunku styczności okręgów $\sqrt{\left(r-3\right)^2+\left(r-1\right)^2}=r+1$
Rozwiązanie prawie pełne 5 p.
Rozwiązanie pełne6 p.

Zadanie 18. (0–7)

Obliczenie odległości środków okręgów: $8\sqrt{2}$.

Okno na poddaszu ma mieć kształt trapezu równoramiennego, którego krótsza podstawa i ramiona mają długość po 4 dm. Oblicz, jaką długość powinna mieć dłuższa podstawa tego trapezu, aby do pomieszczenia wpadało przez to okno jak najwięcej światła, czyli aby pole powierzchni okna było największe. Oblicz to pole.

V. Rozumowanie	R11.6. Zdający stosuje pochodne do rozwiązywania
i argumentacja	zagadnień optymalizacyjnych.

Rozwiązanie (I sposób):

Niech x oznacza długość rzutu prostokątnego ramienia trapezu na prostą zawierająca dłuższą podstawę trapezu, a h – wysokość trapezu.

Z geometrycznych warunków zadania wynika, że 0 < x < 4.

Przy tak przyjętych oznaczeniach pole trapezu jest określone wzorem:

$$P = \frac{2 \cdot 4 + 2x}{2} \cdot h = (4 + x) \cdot h$$
 i $0 < x < 4$

Z twierdzenia Pitagorasa otrzymujemy

$$x^2 + h^2 = 4^2$$
.

stad
$$h = \sqrt{16 - x^2}$$
.

Pole trapezu, w zależności od zmiennej x, jest określone wzorem:

$$P(x) = (4+x)\sqrt{16-x^2} = \sqrt{(4+x)^2(16-x^2)} = \sqrt{(4+x)^3(4-x)} = \sqrt{-x^4-8x^3+128x+256}$$

gdzie 0 < x < 4.

Należy obliczyć, dla jakiego x spełniającego nierówność 0 < x < 4, funkcja P określona wzorem $P(x) = \sqrt{-x^4 - 8x^3 + 128x + 256}$ przyjmuje wartość największą.

Funkcja P osiąga wartość największą, gdy funkcja $f(x) = -x^4 - 8x^3 + 128x + 256$ osiąga w przedziale (0,4) wartość największą. Wystarczy więc zbadać funkcję f. Wyznaczmy pochodną tej funkcji

$$f'(x) = -4x^3 - 24x^2 + 128$$

Następnie obliczamy miejsca zerowe pochodnej: $x_1 = x_2 = -4$, $x_3 = 2$ Ponadto:

- f'(x) > 0 w przedziale (0,2),
- f'(x) < 0 w przedziale (2,4)

Zatem funkcja f jest rosnąca w przedziale (0,2) i malejąca w przedziale (2,4).

Ponieważ $P(x) = \sqrt{f(x)}$ dla $x \in (0,4)$, więc funkcja P jest rosnąca w przedziale (0,2), a malejąca w przedziale (2,4). Stąd wynika, że w punkcie x = 2 funkcja P przyjmuje wartość największą.

Gdy x = 2, to 2x + 4 = 8, czyli dłuższa podstawa trapezu ma długość 8, a pole tego trapezu jest wówczas równe

$$P(2) = (4+2) \cdot \sqrt{16-2^2} = 6 \cdot 2\sqrt{3} = 12\sqrt{3}$$
.

Odpowiedź: Największe pole, równe $12\sqrt{3}\,\mathrm{dm}^2$, ma szyba w kształcie trapezu, którego dłuższa podstawa ma długość 8 dm.

Schemat oceniania I sposobu rozwiązania:

Rozwiązanie zadania składa się z trzech etapów.

Pierwszy etap składa się z trzech części:

- a) wybór zmiennej x (długość rzutu prostokątnego ramienia trapezu na prostą zawierająca dłuższą podstawę trapezu) i zapisanie za pomocą tej zmiennej wysokości trapezu: $h = \sqrt{16 x^2}$
- b) zapisanie pola trapezu w zależności od zmiennej x: $P(x) = (4+x)\sqrt{16-x^2}$
- c) określenie dziedziny funkcji P: (0, 4)

Zdający może otrzymać maksymalnie po **1 punkcie** za realizację każdej z części tego etapu, przy czym dziedzina funkcji nie może wynikać jedynie z wyznaczonego wzoru funkcji, ale z geometrycznych warunków zadania.

Drugi etap składa się z trzech części:

a) wyznaczenie pochodnej funkcji wielomianowej $f(x) = -x^4 - 8x^3 + 128x + 256$: $f'(x) = -4x^3 - 24x^2 + 128$,

- b) obliczenie miejsc zerowych pochodnej: $x_1 = x_2 = -4$, $x_3 = 2$,
- c) uzasadnienie (np. przez badanie monotoniczności funkcji), że funkcja P osiąga wartość największą w punkcie x = 2.

Za poprawne rozwiązanie każdej z części tego etapu zdający otrzymuje 1 punkt, o ile poprzednia część etapu została zrealizowana bezbłędnie.

Trzeci etap.

Obliczenie pola trapezu dla x = 2: $P(2) = 12\sqrt{3}$.

Za poprawne rozwiązanie tego etapu zdający otrzymuje 1 punkt.

Uwaga:

Punkt za trzeci etap przyznajemy tylko w przypadku, gdy zdający wyznaczył poprawnie x = 2.

Rozwiązanie (II sposób):

Niech x oznacza długość dłuższej podstawy trapezu, a h – wysokość trapezu.

Długość y rzutu prostokątnego ramienia trapezu na prostą zawierająca dłuższą podstawę trapezu jest wówczas równa $y = \frac{x-4}{2}$.

Z geometrycznych warunków zadania wynika, że 4 < x < 12.

Przy tak przyjętych oznaczeniach pole trapezu jest określone wzorem:

$$P = \frac{x+4}{2} \cdot h$$
 i $4 < x < 12$

Z twierdzenia Pitagorasa otrzymujemy

$$y^2 + h^2 = 4^2,$$

$$\left(\frac{x-4}{2}\right)^2 + h^2 = 4^2.$$
 stąd $h = \sqrt{16 - \left(\frac{x-4}{2}\right)^2} = \sqrt{16 - \frac{x^2 - 8x + 16}{4}} = \sqrt{\frac{64 - x^2 + 8x - 16}{4}} = \frac{1}{2}\sqrt{-x^2 + 8x + 48}$

Pole trapezu, w zależności od zmiennej x, jest określone wzorem:

$$P(x) = \frac{x+4}{2} \cdot \frac{1}{2} \sqrt{-x^2 + 8x + 48} = \frac{1}{4} \sqrt{(x+4)^2 (-x^2 + 8x + 48)} =$$
$$= \frac{1}{4} \sqrt{(x^2 + 8x + 16)(-x^2 + 8x + 48)} = \frac{1}{4} \sqrt{-x^4 + 96x^2 + 512x + 768}$$

gdzie 4 < x < 12.

Należy obliczyć, dla jakiego x spełniającego nierówność 4 < x < 12, funkcja P określona wzorem $P(x) = \frac{1}{4}\sqrt{-x^4 + 96x^2 + 512x + 768}$ przyjmuje wartość największą.

Funkcja P osiąga wartość największą, gdy funkcja $f(x) = -x^4 + 96x^2 + 512x + 768$ osiąga w przedziale (4,12) wartość największą. Wystarczy więc zbadać funkcję f. Wyznaczmy pochodną tej funkcji

$$f'(x) = -4x^3 + 192x + 512$$

Następnie obliczamy miejsca zerowe pochodnej: $x_1 = x_2 = -4$, $x_3 = 8$. Ponadto:

- f'(x) > 0 w przedziale (4,8)
- f'(x) < 0 w przedziale (8,12)

Zatem funkcja f jest rosnąca w przedziale (4,8) i malejąca w przedziale (8,12).

Ponieważ $P(x) = \frac{1}{4}\sqrt{f(x)}$ dla $x \in (4,12)$, więc funkcja P jest rosnąca w przedziale (4,8),

a malejąca w przedziale (8,12). Stąd wynika, że w punkcie x=8 funkcja P przyjmuje wartość największą.

Dla x = 8 pole tego trapezu jest równe

$$P(8) = \frac{4+8}{2} \cdot \frac{1}{2} \sqrt{-8^2 + 8 \cdot 8 + 48} = 3\sqrt{48} = 12\sqrt{3}$$

Odpowiedź.: Największe pole, równe $12\sqrt{3}\,\,\mathrm{dm^2}$, ma szyba w kształcie trapezu, którego dłuższa podstawa ma długość 8 dm.

Schemat oceniania II sposobu rozwiązania:

Rozwiązanie zadania składa się z trzech etapów.

Pierwszy etap składa się z trzech części:

- a) wybór zmiennej x (długość dłuższej podstawy trapezu) i zapisanie za pomocą tej zmiennej wysokości trapezu: $h = \sqrt{16 \left(\frac{x-4}{2}\right)^2}$
- b) zapisanie pola trapezu w zależności od zmiennej x: $P(x) = \frac{x+4}{4} \cdot \sqrt{-x^2+8x+48}$
- c) określenie dziedziny funkcji P: (4, 12).

Zdający może otrzymać maksymalnie po 1 punkcie za realizację każdej z części tego etapu, przy czym dziedziną funkcji nie może wynikać jedynie z wyznaczonego wzoru funkcji, ale z geometrycznych warunków zadania.

Drugi etap składa się z trzech części:

- a) wyznaczenie pochodnej funkcji wielomianowej $f(x) = -x^4 + 96x^2 + 512x + 768$: $f'(x) = -4x^3 + 192x + 512$,
- b) obliczenie miejsc zerowych pochodnej: $x_1 = x_2 = -4$, $x_3 = 8$,
- c) uzasadnienie (np. przez badanie monotoniczności funkcji), że funkcja P osiąga wartość największą w punkcie x = 8.

Za poprawne rozwiązanie każdej z części tego etapu zdający otrzymuje 1 punkt, o ile poprzednia część etapu została zrealizowana bezbłędnie.

Trzeci etap.

Obliczenie pola trapezu dla x = 8: $P(8) = 12\sqrt{3}$.

Za poprawne rozwiązanie tego etapu zdający otrzymuje 1 punkt.

Uwaga:

Punkt za trzeci etap przyznajemy tylko w przypadku, gdy zdający wyznaczył poprawnie x = 8.