Chapter 9

Molecular Geometry and Bonding Theories

- 1. The basis of the VSEPR model of molecular bonding is ______.
- A) regions of electron density on an atom will organize themselves so as to maximize s-character
- B) regions of electron density in the valence shell of an atom will arrange themselves so as to maximize overlap
- C) atomic orbitals of the bonding atoms must overlap for a bond to form
- D) electron domains in the valence shell of an atom will arrange themselves so as to minimize repulsions
- E) hybrid orbitals will form as necessary to, as closely as possible, achieve spherical symmetry

- 2. The electron domain and molecular geometry of BrO_2^- is
- A) tetrahedral, trigonal planar
- B) trigonal planar, trigonal planar
- C) trigonal pyramidal, linear
- D) tetrahedral, bent
- E) trigonal pyramidal, seesaw

3. Of the following species, _____ will have bond angles of 120°.

- A) PH₃
- B) ClF₃
- C) NCl₃
- D) BCl₃
- E) All of these will have bond angles of 120°

4. The bond angles marked a, b, and c in the molecule below are about ______, and ______, respectively.

- A) 90° , 90° , 90°
- B) 120° , 120° , 90°
- C) 120° , 120° , 109.5°
- D) 107° , 120° , 104.5°
- E) 109.5° , 90° , 120°

5. The central iodine atom in the ICl_4^- ion has nonbonded electron pairs and bonded electron pairs in its valence shell.

- A) 2, 2
- B) 3, 4
- C) 1, 3
- D) 3, 2
- E) 2, 4

- 6. An electron domain consists of _____
- a) a nonbonding pair of electrons
- b) a single bond
- c) a multiple bond
- A) a only
- B) b only
- C) c only
- D) a, b, and c
- E) b and c

7. The electron-domain geometry and the molecular geometry of a molecule of the general formula AB_n will always be the same if

- A) there are no lone pairs on the central atom
- B) there is more than one central atom
- C) n is greater than four
- D) n is less than four
- E) the octet rule is obeyed

- 8. For which of the molecules is the molecular geometry (shape) the same as the VSEPR electron domain arrangement (electron domain geometry) ______?

 (i) PCl₃ (ii) CCl₄ (iii) TeCl₄ (iv) XeF₄ (v) SF₆
- A) (i) and (ii)
- B) (i) and (iii)
- C) (ii) and (v)
- D) (iv) and (v)
- E) (v) only

9. Of the following molecules, only ______ is polar.

- A) BeCl₂
- B) BF₃
- C) CBr₄
- D) SiH₂Cl₂
- E) Cl₂

10. An antibonding MO ______ the corresponding bonding MO.

- A) is always lower in energy than
- B) can accommodate more electrons than
- C) can accommodate fewer electrons than
- D) is always higher in energy than
- E) is always degenerate with

11. Of the following, only _____ has sp² hybridization of the central atom.

- A) PH₃
- B) CO₃²⁻
- C) ICl₃
- D) I_{3}^{-}
- E) PF₅

12. The hybridizations of nitrogen in NF₃ and NH₃ are _____ and ____, respectively.

- A) sp^2 , sp^2
- B) sp, sp^3
- C) sp^3 , sp
- D) sp^3 , sp^3
- E) sp^2 , sp^3

13. When four atomic orbitals are mixed to form hybrid orbitals, how many hybrid orbitals are formed ______?

- A) one
- B) six
- C) three
- D) four
- E) five

- 14. Valence bond theory does not address the issue of _____
- A) excited states of molecules
- B) molecular shape
- C) covalent bonding
- D) hybridization
- E) multiple bonds

15. In molecular orbital theory, the σ_{1s} orbital is _____ and the σ_{1s}^* orbital is _____ in the H₂ molecule.

- A) filled, filled
- B) filled, empty
- C) filled, half-filled
- D) half-filled, filled
- E) empty, filled

- 16. Molecular Orbital theory correctly predicts diamagnetism of fluorine gas, F₂. This is because ______.
- A) the bond order in F_2 can be shown to be equal to 1.
- B) there are more electrons in the bonding orbitals than in the antibonding orbitals.
- C) all electrons in the MO electron configuration of F₂ are paired.
- D) the energy of the π_{2p} MOs is higher than that of the σ_{2p} MO
- E) the F-F bond enthalpy is very low