CS281: Introduction to Automata Theory

Intersection Equivalence Quiz

Z	Х	Υ	FA_1'	FA_2'	$FA_1' + FA_2'$	$(FA_1' + FA_2')'$	Χ	Υ	XY	Χ	Υ	XY
z_1	x_1	y_1	-	-	-	±	x_2	y_2	Z_5	x_3	y_3	Z 9
z_2	x_1	y_2	-	+	+		x_2	y_1	Z_4	x_3	y_3	Z_9
Z_3	x_1	y_3	-	+	+		x_2	y_2	Z_5	x_3	y_3	Z_9
Z_4	x_2	y_1	+	-	+		x_4	y_2	Z ₁₁	x_3	y_3	Z_9
z_5	x_2	y_2	+	+	+		x_4	y_1	Z ₁₀	x_3	y_3	Z_9
z_6	x_2	y_3	+	+	+		x_4	y_2	Z ₁₁	x_3	y_3	Z_9
<i>Z</i> ₇	x_3	y_1		-		+	x_1	y_2	Z_2	x_3	y_3	Z_9
z_8	x_3	y_2		+	+		x_1	y_1	Z_1	x_3	y_3	Z_9
Z_9	x_3	y_3		+	+		x_1	y_2	Z_2	x_3	y_3	Z_9
z_{10}	x_4	y_1	+	-	+	-	x_4	y_2	Z ₁₁	x_2	y_3	<i>Z</i> ₆
z_{11}	x_4	y_2	+	+	+		x_4	y_1	Z ₁₀	x_2	y_3	<i>Z</i> ₆
Z_{12}	x_4	y_3	+	+	+		x_4	y_2	Z ₁₁	x_2	y_3	Z_6

Graph:

Eto lang yung graph kasi no end state after kay z_1

Z	Х	Υ	FA_1'	FA_2'	$FA_1' + FA_2'$	$(FA_1' + FA_2')'$	Х	Υ	XY	Х	Υ	XY
z_1	x_1	y_1	-	1	1	±	x_3	y_3	Z ₁₁	x_2	y_2	Z_6
z_2	x_1	y_2	-			+	x_3	y_1	Z_9	x_2	y_2	Z_6
Z_3	x_1	y_3	-	+	+		x_3	y_4	Z ₁₂	x_2	y_2	Z_6
Z_4	x_1	y_4	-	+	+		x_3	y_4	Z ₁₂	x_2	y_3	Z_7
z_5	x_2	y_1	+	-	+		x_3	y_3	Z ₁₁	x_1	y_2	Z_2
z_6	x_2	y_2	+		+		x_3	y_1	Z_9	x_1	y_2	Z_2
z_7	x_2	y_3	+	+	+		x_3	y_4	Z ₁₂	x_1	y_2	Z_2
z_8	x_2	y_4	+	+	+		x_3	y_4	Z_{12}	x_1	y_3	Z_3
Z_9	x_3	y_1	+	-	+		x_3	y_3	Z_{11}	x_2	y_2	Z_6
Z_{10}	x_3	y_2	+		+	-	x_3	y_1	Z_9	x_2	y_2	Z_6
z_{11}	x_3	y_3	+	+	+	-	x_3	y_4	Z ₁₂	x_2	y_2	Z_6
Z_{12}	x_3	y_4	+	+	+		x_3	y_4	Z_{12}	x_2	y_3	Z_7

Step 1: Create a unique end state

Step 6: Bypass state z_6

Step 7: Bypass state z_2

$$\Lambda + ([b+ab][a(b+ab)]^*[b+aa(a^+b)^+b] + [a(a^+b)^+b])$$

$$([aa(a^+b)^+b] + [b+a(b+ab)][a(b+ab)]^*[b+aa(a^+b)^+b])^*$$