#### Fundamental Data Structures - Review

#### **Circularly Linked Lists**

- a singularly linked list in which the next reference of the tail node is set to refer back to the head of the list (rather than null)
- good for cyclic-order systems (round-robin scheduler, etc.)



- No need to keep track of head node
- Add rotate() method to move the first element to the end of the list.

#### Fundamental Data Structures - Review

#### **Equivalency Testing**

- Arrays use Arrays.equals method for one dimensional arrays, Arrays.deepEquals for two dimensional arrays
- Singly Linked Lists implement equals method to verify lengths and equivalency element-by-element using equals method.

#### Cloning Data Structures

- Object's clone method returns a shallow copy
- Implement your own clone method for a deeper cloning
  - Implement *Cloneable* interface
  - clone individual elements

Presentation for use with the textbook Data Structures and Algorithms in Java, 6<sup>th</sup> edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

# **Analysis of Algorithms**



## **Analysis of Algorithms**

#### □ Recall:

- a data structure is a systematic way of organizing and accessing data.
- an algorithm is a step-by-step procedure for performing some task in a finite amount of time.
- To be able to classify some data structures and algorithms as "good," we must have precise ways of analyzing them.
- Running times of algorithms and data structure operations is is a natural measure of "goodness", since time is a precious resource.
- We are interested in characterizing an algorithm's running time as a function of the input size.

## Running Time Scenarios

- Best-case: the case with the shortest running time
- Worst-case: the case with the longest running time
- Average-case: this is the running time used by the algorithm averaged over all possible inputs.
- Example: do a linear search in an array the element you are searching for could be at: <a href="https://doi.org/>best\_7">best\_7</a>
  - the beginning of the array
  - the end of the array
  - somewhere between



# Running Time

- Most algorithms transform input objects into output objects.
  - The running time of an algorithm typically grows with the input size.
  - Average case time is often difficult to determine.
  - We focus on the worst case running time.
    - Easier to analyze
    - Crucial to applications such as games, finance and robotics



#### **Experimental Studies**

- Write a program implementing the algorithm.
- Run the program with inputs of varying size and composition, noting the time needed:
- Plot the results.



```
1 long startTime = System.currentTimeMillis();
```

- 2 /\* (run the algorithm) \*/
- 3 long endTime = System.currentTimeMillis();
- 4 **long** elapsed = endTime startTime;

```
// record the ending time
// compute the elapsed time
```

#### **Experimental Studies - Example**

 Consider two algorithms for constructing long strings in Java (StringExperiment.java):

| n          | repeat1 (in ms) | repeat2 (in ms) |
|------------|-----------------|-----------------|
| 50,000     | 2,884           | 1               |
| 100,000    | 7,437           | 1               |
| 200,000    | 39,158          | 2               |
| 400,000    | 170,173         | 3               |
| 800,000    | 690,836         | 7               |
| 1,600,000  | 2,874,968       | 13              |
| 3,200,000  | 12,809,631      | 28              |
| 6,400,000  | 59,594,275      | 58              |
| 12,800,000 | 265,696,421     | 135             |

Table 4.1: Results of timing experiment on the methods from Code Fragment 4.2.

There is an order of magnitude difference in the growth of the running times!

## Limitations of Experiments

- ☐ It is **necessary to implement the algorithm**, which may be difficult.
  - Results may not be indicative of the running time on other inputs not included in the experiment.
  - In order to compare two algorithms, the same hardware and software environments must be used.



## Theoretical Analysis

- Uses a high-level description of the algorithm
   (either in the form of an actual code fragment, or language-independent pseudocode) instead of an implementation.
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs.
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment.

## Theoretical Analysis

- Things to review and/or define:
  - Pseudocode
  - Random Access Machine (RAM) model
  - Counting Primitive operations
  - Seven important functions to express the growth rate of algorithm's running time
  - Big O notation to give an upper bound on the growth rate of a function

#### Pseudocode

- $\Psi$   $\Box$  High-level description of an algorithm
  - More structured than English prose
  - Less detailed than a program
  - Preferred notation for describing algorithms
  - Hides program design issues
  - Example:
  - Algorithm sum(arr):

Input: an array of integers arr

Output: the sum of array elements sum

$$sum = 0$$

for i=0 to arr.length-1 do

return sum

#### **Pseudocode Details**



- Control flow
  - if ... then ... [else ...]
  - while ... do ...
  - repeat ... until ...
  - for ... do ...
  - Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...])

Input ...

Output ...

- Method call
  - method (arg [, arg...])
- Return value return expression
- Expressions:
  - ← Assignment
  - = Equality testing
  - n<sup>2</sup> Superscripts and other mathematical formatting allowed

#### The Random Access Machine (RAM) Model

Algorithms can be measured in a machine-independent way using the Random Access Machine (RAM) model.

A RAM consists of:

- A CPU
- A potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character
- Memory cells are numbered and accessing any cell in memory takes unit time.



#### The Random Access Machine (RAM) Model

- RAM is an abstraction that **allows us to compare algorithms** on the basis of performance.
  - This model assumes a single processor.
  - In the RAM model, instructions are executed one after the other, with no concurrent operations.
  - □ The assumptions made in the RAM model to accomplish this are:
    - Each simple operation takes 1 time step.
    - Loops and subroutines are not simple operations.
    - Each memory access takes one time step, and there is no shortage of memory.
  - For any given problem the running time of an algorithms is assumed to be the number of time steps/units.
  - The space used by an algorithm is assumed to be the number of RAM memory cells.

#### Seven Important Functions

- Seven functions that often appear in algorithm analysis:
  - Constant ≈ 1
  - Logarithmic  $\approx \log n$
  - Linear  $\approx n$
  - N-Log-N  $\approx n \log n$
  - Quadratic  $\approx n^2$
  - Cubic  $\approx n^3$
  - Exponential  $\approx 2^n$
  - In a log-log chart, the slope of the line corresponds to the growth rate



# Functions Graphed Using "Normal" Scale

Slide by Matt Stallmann included with permission.



## **Primitive Operations**

- Primitive operations are:
  - Basic computations performed by an algorithm
  - Identifiable in pseudocode
  - Largely independent from the programming language
  - Exact definition not important (we will see why later)
  - Assumed to take a constant amount of time in the RAM model



- Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method
  - **Comparing** two numbers
  - Following an object reference

## **Counting Primitive Operations**

 By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

Step 3: 2 ops, 4: 2 ops, 5: 2n ops,6: 2n ops, 7: 0 to n ops, 8: 1 op

# Estimating Running Time

- Algorithm arrayMax executes 5n + 5 primitive operations in the worst case, 4n + 5 in the best case.
- Define:
  - a = Time taken by the fastest primitive operation
  - b = Time taken by the slowest primitive operation
- $\Box$  Let T(n) be worst-case time of arrayMax. Then

$$a (4n + 5) \le T(n) \le b(5n + 5)$$

 $\Box$  Hence, the running time T(n) is bounded by two linear functions.

# **Growth Rate of Running Time**

- Changing the hardware/ software environment
  - Affects T(n) by a constant factor, but
  - Does not alter the growth rate of T(n)
- □ The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax
- Constant factors don't matter
- □ For example, c\*n² and n² have the same growth rate
  - both quadruple when n is doubled,
    c\*(2n)² = 4\*c\*n² and
    (2n)² = 4\*n²



Slide by Matt Stallmann included with permission.

#### Why Growth Rate Matters

| if runtime       | time for <b>n + 1</b>                  | time for 2 n       | time for 4 n       |
|------------------|----------------------------------------|--------------------|--------------------|
| clgn             | c lg (n + 1)                           | c (lg n + 1)       | c(lg n + 2)        |
| <b>C</b> N       | c (n + 1)                              | 2c n               | 4c n               |
| c n lg n         | ~ c n lg n<br>+ c n                    | 2c n lg n +<br>2cn | 4c n lg n +<br>4cn |
| c h <sup>2</sup> | ~ c n² + 2c n                          | 4c n <sup>2</sup>  | 166 112            |
| c n <sup>3</sup> | ~ c n <sup>3</sup> + 3c n <sup>2</sup> | 8c n <sup>3</sup>  | 64c n <sup>3</sup> |
| c 2 <sup>n</sup> | c 2 n+1                                | c 2 <sup>2n</sup>  | c 2 <sup>4n</sup>  |

runtime quadruples when problem size doubles

Slide by Matt Stallmann included with permission.

#### Comparison of Two Algorithms



insertion sort is  $n^2 / 4$  merge sort is

2 n lg n

sort a million items?

insertion sort takes roughly 70 hours

while

merge sort takes roughly 40 seconds

This is a slow machine, but if 100 x as fast then it's 40 minutes versus less than 0.5 seconds

#### **Constant Factors**

- The growth rate is not affected by
  - constant factorsor
  - lower-order terms
- Examples
  - $10^2n + 10^5$  is a linear function
  - $10^5 n^2 + 10^8 n$  is a quadratic function



- In many situations we would like to give an upper bound on the growth rate of a function f(n).
- Example: sequential search in arrays
  - if the target value is just the first element, then the running time is a constant function.
  - however, in worst-case scenario, the running time of sequential search algorithm f(n) grows at most as fast as a linear function.
- We can say that the growth rate of running time function f(n), is bounded above by a linear function.

- Another example:
  - Let the growth rate of running time function be:

$$f(n) = 10n + 10$$

- We know 10n+10 > n, so f(n) is not bounded by n.
- Also, 10n + 10 > 10n, so fn() is not bounded by 10n.
- However, 10n +10 < 11n for n > 10
- In this case, we say that f(n) is asymptotically bounded above by 11n.
- □ This means that the growth rate of f(n) is no more than the growth rate of function 11n.
- □ The Big-Oh notation can express well just that.

Given functions f(n)and g(n), we say that f(n) is O(g(n)) if there are **positive constants** c and  $n_0$  such that

 $f(n) \le cg(n)$  for  $n \ge n_0$ 



Figure 4.5: Illustrating the "big-Oh" notation.

□ The function f(n) is O(g(n)), since  $f(n) \le c \cdot g(n)$  when  $n \ge n_0$ .

- $\bigcirc$  Example: 2n + 10 is O(n)
  - □ We have:
    - $\mathbf{g}(\mathbf{n}) = \mathbf{n}$
    - f(n) = 2n + 10
  - $\Box$  We need to find **c** and  $n_0$  s.t.
    - $2n + 10 \le cn$
    - (c 2) n ≥ 10
    - $n \ge 10/(c-2)$



- Pick c = 3, so that the inequality holds.
  - this gives  $n \ge 10$
- Picking  $n_0 = 10$ , this inequality will hold for  $n \ge n_0$ .

## Big-Oh Example

□ Example: the function<sub>1,000,000</sub>  $n^2$  is not O(n)

■ 
$$n^2 \le cn$$

- $n \leq c$
- The above inequality cannot be satisfied since c must be a constant



## More Big-Oh Examples



 $\Box$  7n – 2 is O(n)

need to find c > 0 and  $n_0 \ge 1$  such that  $7 n - 2 \le c n$  for  $n \ge n_0$   $7n - 2 \le 7n$  for any n. By picking c = 7, this is true for  $n_0 = 1$ 

 $n^3 + 20 n^2 + 5$ 

 $3 n^3 + 20 n^2 + 5 is O(n^3)$ 

need c>0 and  $n_0\geq 1$  such that  $3~n^3+20~n^2+5\leq c~n^3$  for  $n\geq n_0$  this is true for c=4 and  $n_0=21$ 

□ 3 log n + 5

 $3 \log n + 5 \text{ is } O(\log n)$ 

need c > 0 and  $n_0 \ge 1$  such that  $3 \log n + 5 \le c \log n$  for  $n \ge n_0$ 

this is true for c = 8 and  $n_0 = 2$ 

## Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

|                 | f(n) is $O(g(n))$ | g(n) is $O(f(n))$ |
|-----------------|-------------------|-------------------|
| g(n) grows more | Yes               | No                |
| f(n) grows more | No                | Yes               |
| Same growth     | Yes               | Yes               |

## Big-Oh Rules



- □ If is f(n) a polynomial of degree d, then f(n) is  $O(n^d)$ , i.e.,
  - Drop lower-order terms
  - 2. Drop constant factors
- Use the smallest possible class of functions
  - Say "2n is O(n)" instead of "2n is  $O(n^2)$ "
- □ Use the simplest expression of the class
  - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

# Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines
   the running time in big-Oh notation.
- To perform the asymptotic analysis:
  - We find the worst-case number of primitive
     operations executed as a function of the input size.
  - We express this function with big-Oh notation.
- Example:
  - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations.

## Computing Prefix Averages

- We further illustrate
   asymptotic analysis with two
   algorithms for prefix
   averages
- The *i*-th prefix average of an array X is average of the first (*i* + 1) elements of X:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

 Computing the array A of prefix averages of another array X has applications to financial analysis



## Prefix Averages (Quadratic)

The following algorithm computes prefix averages in **quadratic time** by applying the definition

```
/** Returns an array a such that, for all j, a[j] equals the average of x[0], ..., x[j]. */
    public static double[] prefixAverage1(double[] x) {
      int n = x.length;
      double[] a = new double[n];
                                                      // filled with zeros by default
      for (int j=0; j < n; j++) {
        double total = 0:
                                                     // begin computing x[0] + ... + x[j]
 6
        for (int i=0; i <= j; i++)
8
          total += x[i];
        a[j] = total / (j+1);
                                                      // record the average
10
11
      return a:
12
```

## **Arithmetic Progression**

- □ The running time of prefixAverage1 is O(1+2+...+n)
- □ The sum of the first n integers is n(n + 1)/2
  - There is a simple visual proof of this fact
- Thus, algorithm
   prefixAverage1 runs in
   O(n²) time



## Prefix Averages 2 (Linear)

The following algorithm uses a **running summation** to improve the efficiency

```
/** Returns an array a such that, for all j, a[j] equals the average of x[0], ..., x[j]. */
    public static double[] prefixAverage2(double[] x) {
      int n = x.length;
      double[] a = new double[n];
                                              // filled with zeros by default
                                               // compute prefix sum as x[0] + x[1] + ...
5
      double total = 0:
      for (int j=0; j < n; j++) {
        total += x[j];
                                              // update prefix sum to include x[j]
        a[j] = total / (j+1);
                                               // compute average based on current sum
10
      return a:
11
```

#### Algorithm prefixAverage2 runs in O(n) time!

## Math you need to Review

- Summations
- Powers
- Logarithms
- Proof techniques
- Basic probability

#### Properties of powers:

$$a^{(b+c)} = a^b a^c$$
 $a^{bc} = (a^b)^c$ 
 $a^b / a^c = a^{(b-c)}$ 
 $b = a^{\log_a b}$ 
 $b^c = a^{c*\log_a b}$ 

#### Properties of logarithms:

$$log_b(xy) = log_bx + log_by$$
  
 $log_b(x/y) = log_bx - log_by$   
 $log_bxa = alog_bx$   
 $log_ba = log_xa/log_xb$ 



## Relatives of Big-Oh



#### big-Omega

• f(n) is  $\Omega(g(n))$  if there is a constant c > 0and an integer constant  $n_0 \ge 1$  such that  $f(n) \ge c g(n)$  for  $n \ge n_0$ 

#### big-Theta

• f(n) is  $\Theta(g(n))$  if there are constants c' > 0 and c'' > 0 and an integer constant  $n_0 \ge 1$  such that  $c'g(n) \le f(n) \le c''g(n)$  for  $n \ge n_0$ 

# Intuition for Asymptotic Notation



#### big-Oh

f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

#### big-Omega

• f(n) is  $\Omega(g(n))$  if f(n) is asymptotically greater than or equal to g(n)

#### big-Theta

f(n) is ⊕(g(n)) if f(n) is asymptotically equal to g(n)

# Example Uses of the Relatives of Big-Oh



#### • $5n^2$ is $\Omega(n^2)$

f(n) is  $\Omega(g(n))$  if there is a constant c > 0 and an integer constant  $n_0 \ge 1$  such that  $f(n) \ge c \ g(n)$  for  $n \ge n_0$ 

let c = 5 and  $n_0 = 1$ 

#### • $5n^2$ is $\Omega(n)$

f(n) is  $\Omega(g(n))$  if there is a constant c > 0 and an integer constant  $n_0 \ge 1$  such that  $f(n) \ge c \ g(n)$  for  $n \ge n_0$ 

let c = 1 and  $n_0 = 1$ 

#### • $5n^2$ is $\Theta(n^2)$

f(n) is  $\Theta(g(n))$  if it is  $\Omega(n^2)$  and  $O(n^2)$ . We have already seen the former, for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an integer constant  $n_0 \ge 1$  such that  $f(n) \le c g(n)$  for  $n \ge n_0$ 

Let c = 5 and  $n_0 = 1$