Sequence Models I

This Lecture

Sequence modeling

▶ HMMs for POS tagging

▶ HMM parameter estimation

Viterbi

POS Tagging

▶ What tags are out there?

Ghana's ambassador should have set up the big meeting in DC yesterday.

NNP POS NN MD VB VBN RP DT JJ NN IN NNP NN

POS Tagging

▶ How to choose the correct tag from the tagset?

DT- Determiner

POS Tagging

CC	conjunction, coordinating	and both but either or
CD	numeral, cardinal	mid-1890 nine-thirty 0.5 one
DT	determiner	a all an every no that the
EX	existential there	there
FW	foreign word	gemeinschaft hund ich jeux
IN	preposition or conjunction, subordinating	among whether out on by if
JJ	adjective or numeral, ordinal	third ill-mannered regrettable
JJR	adjective, comparative	braver cheaper taller
JJS	adjective, superlative	bravest cheapest tallest
MD	modal auxiliary	can may might will would
NN	noun, common, singular or mass	cabbage thermostat investment subhumanity
NNP	noun, proper, singular	Motown Cougar Yvette Liverpool
NNPS	noun, proper, plural	Americans Materials States
NNS	noun, common, plural	undergraduates bric-a-brac averages
POS	genitive marker	' 'S
PRP	pronoun, personal	hers himself it we them
PRP\$	pronoun, possessive	her his mine my our ours their thy your
RB	adverb	occasionally maddeningly adventurously
RBR	adverb, comparative	further gloomier heavier less-perfectly
RBS	adverb, superlative	best biggest nearest worst
RP	particle	aboard away back by on open through
то	"to" as preposition or infinitive marker	to
UH	interjection	huh howdy uh whammo shucks heck
VB	verb, base form	ask bring fire see take
VBD	verb, past tense	pleaded swiped registered saw
VBG	verb, present participle or gerund	stirring focusing approaching erasing
VBN	verb, past participle	dilapidated imitated reunifed unsettled
VBP	verb, present tense, not 3rd person singular	twist appear comprise mold postpone
VBZ	verb, present tense, 3rd person singular	bases reconstructs marks uses
WDT	WH-determiner	that what whatever which whichever
WP	WH-pronoun	that what whatever which who whom
WP\$	WH-pronoun, possessive	whose
WRB	Wh-adverb	however whenever where why

▶ Text-to-speech: record, lead

- ▶ Text-to-speech: record, lead
- Preprocessing step for syntactic parsers

- ▶ Text-to-speech: record, lead
- Preprocessing step for syntactic parsers
- ▶ Domain-independent disambiguation for other tasks

- ▶ Text-to-speech: record, lead
- Preprocessing step for syntactic parsers
- Domain-independent disambiguation for other tasks
- ▶ (Very) shallow information extraction

Sequence Models

Sequence Models

▶ Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$

▶ POS tagging: **x** is a sequence of words, **y** is a sequence of tags

▶ Today: generative models P(x, y); discriminative models next time

Hidden Markov Models

- Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$
- ▶ Model the sequence of y as a Markov process (dynamics model)
- Markov property: future is conditionally independent of the past given the present

$$(y_1)$$
 (y_2) (y_3) $P(y_3|y_1,y_2) = P(y_3|y_2)$

- ▶ Lots of mathematical theory about how Markov chains behave
- If y are tags, this roughly corresponds to assuming that the next tag only depends on the current tag, not anything before

Hidden Markov Models

▶ Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$

Hidden Markov Models

Input $\mathbf{x}=(x_1,...,x_n)$ Output $\mathbf{y}=(y_1,...,y_n)$

$$P(\mathbf{y}, \mathbf{x}) = P(y_1) \prod_{i=2} P(y_i|y_{i-1}) \prod_{i=1} P(x_i|y_i)$$
Initial Transition Emission distribution probabilities probabilities

- Observation (x) depends only on current state (y)
- Multinomials: tag x tag transitions, tag x word emissions
- P(x|y) is a distribution over all words in the vocabulary
 not a distribution over features (but could be!)

Transitions in POS Tagging

Dynamics model $P(y_1)\prod_{i=2}^n P(y_i|y_{i-1})$

VBD VB

VBN VBZ VBP VBZ

NNP NNS NN NNS CD NN

Fed raises interest rates 0.5 percent.

NNP - proper noun, singular

VBZ - verb, 3rd ps. sing. present

NN - noun, singular or mass

- $P(y_1 = NNP)$ likely because start of sentence
- $P(y_2 = VBZ|y_1 = NNP)$ likely because verb often follows noun
- $P(y_3 = NN|y_2 = VBZ)$ direct object follows verb, other verb rarely follows past tense verb (main verbs can follow modals though!)

Estimating Transitions

NNP VBZ NN NNS CD NN . Fed raises interest rates 0.5 percent .

- Similar to Naive Bayes estimation: maximum likelihood solution = normalized counts (with smoothing) read off supervised data
- ▶ P(tag | NN) = (0.5 ., 0.5 NNS)
- How to smooth?
- One method: smooth with unigram distribution over tags

$$P(\text{tag}|\text{tag}_{-1}) = (1 - \lambda)\hat{P}(\text{tag}|\text{tag}_{-1}) + \lambda\hat{P}(\text{tag})$$

$$\hat{P} = \text{empirical distribution (read off from data)}$$

Emissions in POS Tagging

NNP VBZ NN NNS CD NN . Fed raises interest rates 0.5 percent .

- Emissions $P(x \mid y)$ capture the distribution of words occurring with a given tag
- P(word | NN) = (0.05 person, 0.04 official, 0.03 interest, 0.03 percent ...)
- When you compute the posterior for a given word's tags, the distribution favors tags that are more likely to generate that word
- How should we smooth this?

Emissions in POS Tagging

NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent

- P(word | NN) = (0.5 interest, 0.5 percent) hard to smooth!
- Can interpolate with distribution looking at word shape P(word shape | tag) (e.g., P(capitalized word of len >= 8 | tag))
- Alternative: use Bayes' rule $P(\text{word}|\text{tag}) = \frac{P(\text{tag}|\text{word})P(\text{word})}{P(\text{tag})}$
 - ▶ Fancy techniques from language modeling, e.g. look at type fertility
 - P(tag|word) is flatter for some kinds of words than for others)
- ▶ P(word | tag) can be a log-linear model we'll see this in a few lectures

Inference in HMMs

Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$

Inference problem: $\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}) = \operatorname{argmax}_{\mathbf{y}} \frac{P(\mathbf{y}, \mathbf{x})}{P(\mathbf{x})}$

Inference in HMMs

Input $\mathbf{x}=(x_1,...,x_n)$ Output $\mathbf{y}=(y_1,...,y_n)$

$$\underbrace{y_n} \qquad P(\mathbf{y}, \mathbf{x}) = P(y_1) \prod_{i=2}^n P(y_i | y_{i-1}) \prod_{i=1}^n P(x_i | y_i)$$

- Inference problem: $\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}) = \operatorname{argmax}_{\mathbf{y}} \frac{P(\mathbf{y}, \mathbf{x})}{P(\mathbf{x})}$
- Exponentially many possible y here!

Inference in HMMs

Input $\mathbf{x}=(x_1,...,x_n)$ Output $\mathbf{y}=(y_1,...,y_n)$

$$P(\mathbf{y}, \mathbf{x}) = P(y_1) \prod_{i=2}^{n} P(y_i|y_{i-1}) \prod_{i=1}^{n} P(x_i|y_i)$$

- Inference problem: $\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}) = \operatorname{argmax}_{\mathbf{y}} \frac{P(\mathbf{y}, \mathbf{x})}{P(\mathbf{x})}$
- Exponentially many possible y here!
- ▶ Solution: dynamic programming (possible because of Markov structure!)

Sentence: "Learning changes people"

Tagset: NN, VB

 $P(Learning|VB) = 3*10^{-3} P(NN|VB) = 4*10^{-1}$ $P(Learning|NN) = 1*10^{-3}$ $P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ $P(People|VB) = 2*10^{-4}$ $P(VB|NN) = 3*10^{-1}$ $P(changes|NN) = 3*10^{-3}$ P(changes|VB)= 4*10⁻²

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

Sentence: "Learning changes people" Tagset: NN, VB

Input	Learning	changes	People
NN			
VB			

P(Learning|VB)= 3*10⁻³ $P(Learning|NN) = 1*10^{-3}$ $P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ P(People|VB)= 2*10⁻⁴ $P(changes|NN) = 3*10^{-3}$ P(changes|VB)= 4*10⁻²

 $P(NN|VB) = 4*10^{-1}$ P(VB|NN)= 3*10-1

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

Sentence: "Learning changes people"

Tagset: NN, VB

VB			
NN	2*10 ⁻⁴ (q ₀)		
Input	Learning	changes	People

 $P(\text{Learning}|VB) = 3*10^{-3} \qquad P(NN|VB) = 4*10^{-1}$ $P(Learning|NN) = 1*10^{-3}$ $P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ $P(People|VB) = 2*10^{-4}$ $P(VB|NN) = 3*10^{-1}$ P(changes|NN)= 3*10⁻³ P(changes|VB)= 4*10⁻²

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

 $P(Learning|NN) = P(Learning|NN) * P(NN|q_0) = 2*10^{-4}$

Sentence: "Learning changes people" Tagset: NN, VB

$q_{_{F}}$			
VB	9*10 ⁻⁴ (q ₀)		
NN	2*10 ⁻⁴ (q ₀)		
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(Learning|NN) = I*10^{-3}$ $P(NN|NN) = I*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ P(People|VB)= 2*10⁻⁴ $P(changes|NN) = 3*10^{-3}$ P(changes|VB)= 4*10⁻²

 $P(NN|VB) = 4*10^{-1}$ P(VB|NN)= 3*10⁻¹

 $P(VB|q_0) = 3*10^{-1}$ $P(NN|q_0) = 2*10^{-1}$

 $P(q_f|NN)=1*10^{-1}$ $P(q_f|VB) = 2*10^{-2}$

 $P(Learning|NN) = P(Learning|NN) * P(NN|q_0) = 2*10^{-4}$ $P(Learning|VB) = P(Learning|VB) * P(VB|q_0) = 9*10^{-4}$

Sentence: "Learning changes people" Tagset: NN,VB

$q_{_{F}}$			
VB	9*10 ⁻⁴ (q ₀)		
NN	2*10 ⁻⁴ (q ₀)		
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3}$ $P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ $P(People|VB) = 2*10^{-4}$ $P(VB|NN) = 3*10^{-1}$ P(changes|NN)= 3*10⁻³ P(changes|VB)= 4*10⁻²

 $P(NN|VB) = 4*10^{-1}$

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

P(changes|NN) = P(changes|NN) * P(NN|NN) * 2*10-4 = 6*10-8

Sentence: "Learning changes people" Tagset: NN, VB

q _F		
	9*10 ⁻⁴	

F			
VB	9*10 ⁻⁴ (q ₀)		
NN	2*10 ⁻⁴ (q ₀)		
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3} P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ $P(People|VB) = 2*10^{-4}$ $P(VB|NN) = 3*10^{-1}$ $P(changes|NN) = 3*10^{-3}$ P(changes|VB)= 4*10⁻²

 $P(NN|VB) = 4*10^{-1}$

 $P(VB|q_0) = 3*10^{-1}$ $P(NN|q_0) = 2*10^{-1}$

 $P(q_f|NN)=1*10^{-1}$ $P(q_f|VB) = 2*10^{-2}$

P(changes|NN) = P(changes|NN) * P(NN|NN) * 2*10-4 = 6*10-8

P(changes|NN) = P(changes|NN) * P(NN|VB) * 9*10-4 = 1.08*10-6

Sentence: "Learning changes people" Tagset: NN, VB

$q_{_{F}}$			
VB	9*10 ⁻⁴ (q ₀)		
NN	2*10 ⁻⁴ (q ₀)	1.08*10 ⁻⁶ (VB)	
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3} P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ $P(People|VB) = 2*10^{-4}$ $P(VB|NN) = 3*10^{-1}$ P(changes|NN)= 3*10⁻³ P(changes|VB)= 4*10⁻²

 $P(NN|VB) = 4*10^{-1}$

 $P(VB|q_0) = 3*10^{-1}$ $P(NN|q_0) = 2*10^{-1}$

 $P(q_f|NN)=1*10^{-1}$ $P(q_f|VB) = 2*10^{-2}$

P(changes|NN) = P(changes|NN) * P(NN|NN) * 2*10-4 = 6*10-8

P(changes|NN) = P(changes|NN) * P(NN|VB) * 9*10-4 = 1.08*10-6

Sentence: "Learning changes people" Tagset: NN, VB

$q_{_{F}}$			
VB	9*10 ⁻⁴ (q ₀)		
NN	2*10 ⁻⁴ (q ₀)	1.08*10 ⁻⁶ (VB)	
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3}$ $P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ P(People|VB)= 2*10⁻⁴ P(changes|NN)= 3*10⁻³ P(changes|VB)= 4*10⁻²

 $P(NN|VB) = 4*10^{-1}$ $P(VB|NN) = 3*10^{-1}$

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

 $P(changes|VB) = P(changes|VB) * P(VB|NN) * 2*10^{-4} = 2.4*10^{-6}$

Sentence: "Learning changes people" Tagset: NN, VB

$q_{_{F}}$			
VB	9*10 ⁻⁴ (q ₀)	3.6*10 ⁻⁶ (VB)	
NN	2*10 ⁻⁴ (q ₀)	1.08*10 ⁻⁶ (VB)	
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3} P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ P(People|VB)= 2*10⁻⁴ $P(changes|NN) = 3*10^{-3}$ P(changes|VB)= 4*10⁻²

 $P(NN|VB) = 4*10^{-1}$ $P(VB|NN) = 3*10^{-1}$

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

 $P(changes|VB) = P(changes|VB) * P(VB|NN) * 2*10^{-4} = 2.4*10^{-6}$ $P(changes|VB) = P(changes|VB) * P(VB|VB) * 9*10^{-4} = 3.6*10^{-6}$

Sentence: "Learning changes people" Tagset: NN, VB

$q_{_{F}}$			
VB	9*10 ⁻⁴ (q ₀) —	3.6*10 ⁻⁶ → (VB)	
NN	2*10 ⁻⁴ (q ₀)	1.08*10 ⁻⁶ (VB)	
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3} P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ P(People|VB)= 2*10⁻⁴ $P(changes|NN) = 3*10^{-3}$ P(changes|VB)= 4*10⁻²

 $P(NN|VB) = 4*10^{-1}$ $P(VB|NN) = 3*10^{-1}$

 $P(VB|q_0) = 3*10^{-1}$ $P(NN|q_0) = 2*10^{-1}$

 $P(q_f|NN)=1*10^{-1}$ $P(q_f|VB) = 2*10^{-2}$

P(changes|VB) = P(changes|VB) * P(VB|NN) * 2*10-4 = 2.4*10-6

 $P(changes|VB) = P(changes|VB) * P(VB|VB) * 9*10^{-4} = 3.6*10^{-6}$

Sentence: "Learning changes people" Tagset: NN, VB

$q_{_{F}}$			
VB	9*10 ⁻⁴ (q ₀)	3.6*10 ⁻⁶ (VB)	
NN	2*10 ⁻⁴ (q ₀)	1.08*10 ⁻⁶ (VB)	
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3}$ $P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ $P(People|VB) = 2*10^{-4}$ $P(VB|NN) = 3*10^{-1}$ P(changes|NN)= 3*10⁻³ $P(\text{changes}|VB) = 4*10^{-2}$

 $P(NN|VB) = 4*10^{-1}$

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

 $P(People|NN) = P(People|NN) * P(NN|NN) * 1.08*10^{-6} = 5.4*10^{-9}$

Sentence: "Learning changes people"

Tagset: NN, VB

$q_{_{F}}$			
VB	9*10 ⁻⁴ (q ₀)	3.6*10 ⁻⁶ (VB)	
NN	2*10 ⁻⁴ (q ₀)	1.08*10 ⁻⁶ (VB)	7.2*10 ⁻⁸ (VB)
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|\text{NN}) = 1*10^{-3} \qquad P(\text{NN}|\text{NN}) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ $P(People|VB) = 2*10^{-4}$ $P(VB|NN) = 3*10^{-1}$ $P(changes|NN) = 3*10^{-3}$ P(changes|VB)= 4*10⁻²

 $P(NN|VB) = 4*10^{-1}$

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

 $P(People|NN) = P(People|NN) * P(NN|NN) * 1.08*10^{-6} = 5.4*10^{-9}$

 $P(People|NN) = P(People|NN) * P(NN|VB) * 3.6*10^{-6} = 7.2*10^{-8}$

Sentence: "Learning changes people"

Tagset: NN, VB

$q_{_{F}}$			
VB	9*10 ⁻⁴ (q ₀)	3.6*10 ⁻⁶ (VB)	
NN	2*10 ⁻⁴ (q ₀)	1.08*10 ⁻⁶ (VB)	7.2*10 ⁻⁸ (VB)
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|\text{NN}) = 1*10^{-3} \qquad P(\text{NN}|\text{NN}) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ $P(People|VB) = 2*10^{-4}$ $P(VB|NN) = 3*10^{-1}$ $P(changes|NN) = 3*10^{-3}$ $P(changes|VB) = 4*10^{-2}$

 $P(NN|VB) = 4*10^{-1}$

 $P(VB|q_0) = 3*10^{-1}$ $P(NN|q_0) = 2*10^{-1}$

 $P(q_f|NN)=1*10^{-1}$ $P(q_f|VB) = 2*10^{-2}$

 $P(People|NN) = P(People|NN) * P(NN|NN) * 1.08*10^{-6} = 5.4*10^{-9}$

 $P(People|NN) = P(People|NN) * P(NN|VB) * 3.6*10^{-6} = 7.2*10^{-8}$

Sentence: "Learning changes people" Tagset: NN, VB

$q_{_{F}}$			
VB	9*10 ⁻⁴	3.6*10 ⁻⁶	7.2*10 ⁻¹¹
	(q ₀)	(VB)	(VB)
NN	2*10 ⁻⁴	1.08*10 ⁻⁶	7.2*10 ⁻⁸
	(q ₀)	(VB)	(VB)
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3} P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ $P(People|VB) = 2*10^{-4}$ $P(VB|NN) = 3*10^{-1}$ $P(changes|NN) = 3*10^{-3}$ $P(\text{changes}|VB) = 4*10^{-2}$

 $P(NN|VB) = 4*10^{-1}$

 $P(VB|q_0) = 3*10^{-1}$ $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

 $P(People|VB) = P(People|VB) * P(VB|NN) * 1.08*10^{-6} = 6.48*10^{-11}$

Sentence: "Learning changes people" Tagset: NN, VB

$q_{_{F}}$			
VB	9*10 ⁻⁴ (q ₀)	3.6*10 ⁻⁶ (VB)	
NN	2*10 ⁻⁴ (q ₀)	1.08*10 ⁻⁶ (VB)	7.2*10 ⁻⁸ (VB)
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3} P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ P(People|VB)= 2*10⁻⁴ $P(changes|NN) = 3*10^{-3}$ $P(changes|VB) = 4*10^{-2}$

 $P(NN|VB) = 4*10^{-1}$ $P(VB|NN) = 3*10^{-1}$

 $P(VB|q_0) = 3*10^{-1}$ $P(NN|q_0) = 2*10^{-1}$

 $P(q_f|NN)=1*10^{-1}$ $P(q_f|VB) = 2*10^{-2}$

 $P(People|VB) = P(People|VB) * P(VB|NN) * 1.08*10^{-6} = 6.48*10^{-11}$

Sentence: "Learning changes people" Tagset: NN, VB

$q_{_{F}}$			
VB	9*10 ⁻⁴	3.6*10 ⁻⁶	7.2*10 ⁻¹¹
	(q ₀)	(VB)	(VB)
NN	2*10 ⁻⁴	1.08*10 ⁻⁶	7.2*10 ⁻⁸
	(q ₀)	(VB)	(VB)
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3} P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ P(People|VB)= 2*10⁻⁴ $P(changes|NN) = 3*10^{-3}$ $P(changes|VB) = 4*10^{-2}$

 $P(NN|VB) = 4*10^{-1}$ $P(VB|NN) = 3*10^{-1}$

 $P(VB|q_0) = 3*10^{-1}$ $P(NN|q_0) = 2*10^{-1}$

 $P(q_f|NN)=1*10^{-1}$ $P(q_f|VB) = 2*10^{-2}$

 $P(People|VB) = P(People|VB) * P(VB|NN) * 1.08*10^{-6} = 6.48*10^{-11}$

Sentence: "Learning changes people"

Tagset: NN, VB

VB	9*10 ⁻⁴	3.6*10 ⁻⁶	7.2*10 ⁻¹¹
	(q ₀)	(VB)	→ (VB)
NN	2*10 ⁻⁴	1.08*10 ⁻⁶	7.2*10 ⁻⁸
	(q ₀)	(VB)	(VB)
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3} P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ $P(People|VB) = 2*10^{-4}$ $P(VB|NN) = 3*10^{-1}$ P(changes|NN)= 3*10⁻³ $P(\text{changes}|VB) = 4*10^{-2}$

 $P(NN|VB) = 4*10^{-1}$

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

 $P(People|VB) = P(People|VB) * P(VB|NN) * 1.08*10^{-6} = 6.48*10^{-11}$

Sentence: "Learning changes people"

Tagset: NN, VB

				q _F
VB	9*10 ⁻⁴	3.6*10 ⁻⁷	7.2*10 ⁻¹¹	1.44*10 ⁻¹²
	(q ₀)	(VB)	(VB)	(VB)
NN	2*10 ⁻⁴	10.8*10 ⁻⁶	7.2*10 ⁻⁸	7.2*10 ⁻⁹
	(q ₀)	(VB)	(VB)	(NN)
Input	Learning	changes	People	

P(Learning|VB)= 3*10⁻³ $P(Learning|NN) = 1*10^{-3}$ $P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ P(People|VB)= 2*10⁻⁴ P(changes|NN)= 3*10⁻³ P(changes|VB)= 4*10⁻²

 $P(NN|VB) = 4*10^{-1}$ P(VB|NN)= 3*10⁻¹

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

Sentence: "Learning changes people"

Tagset: NN, VB

$q_{_{F}}$			
VB	9*10 ⁻⁴	3.6*10 ⁻⁶	7.2*10 ⁻¹¹
	(q ₀)	(VB)	(VB)
NN	2*10 ⁻⁴	1.08*10 ⁻⁶ /	7.2*10 ⁻⁸
	(q ₀)	(VB)	(VB)
Input	Learning	changes	People

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3} P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ P(People|VB)= 2*10⁻⁴ $P(changes|NN) = 3*10^{-3}$ $P(changes|VB) = 4*10^{-2}$

 $P(NN|VB) = 4*10^{-1}$ $P(VB|NN) = 3*10^{-1}$

 $P(VB|q_0) = 3*10^{-1}$ $P(NN|q_0) = 2*10^{-1}$

 $P(q_f|NN)=1*10^{-1}$ $P(q_f|VB) = 2*10^{-2}$

 $P(People|VB) = P(People|VB) * P(VB|NN) * 1.08*10^{-6} = 6.48*10^{-11}$

Sentence: "Learning changes people"

Tagset: NN, VB

				q _F
VB	9*10 ⁻⁴	3.6*10 ⁻⁷	7.2*10 ⁻¹¹	1.44*10 ⁻¹²
	(q ₀)	(VB)	(VB)	(VB)
NN	2*10 ⁻⁴	10.8*10 ⁻⁶	7.2*10 ⁻⁸	7.2*10 ⁻⁹
	(q ₀)	(VB)	(VB)	(NN)
Input	Learning	changes	People	

$$P(q_{F}|VB) = P(q_{F}|VB) * 7.2*10^{-11} = 1.44*10^{-12}$$

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3}$ $P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ P(People|VB)= 2*10⁻⁴ $P(changes|NN) = 3*10^{-3}$ P(changes|VB)= 4*10⁻²

P(NN|VB)= 4*10⁻¹ P(VB|NN)= 3*10-1

 $P(VB|q_0) = 3*10^{-1}$ $P(NN|q_0) = 2*10^{-1}$

 $P(q_f|NN)=1*10^{-1}$ $P(q_f|VB) = 2*10^{-2}$

Sentence: "Learning changes people"

Tagset: NN,VB

				q _F
VB	9*10 ⁻⁴	3.6*10 ⁻⁷	7.2*10 ⁻¹¹	1.44*10 ⁻¹²
	(q ₀)	(VB)	(VB)	(VB)
NN	2*10 ⁻⁴	10.8*10 ⁻⁶	7.2*10 ⁻⁸	7.2*10 ⁻⁹
	(q ₀)	(VB)	(VB)	(NN)
Input	Learning	changes	People	

$$P(q_f|VB) = P(q_f|VB) * 7.2*10^{-11} = 1.44*10^{-12}$$

 $P(q_f|NN) = P(q_f|NN) * 7.2*10^{-8} = 7.2*10^{-9}$

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3}$ $P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ P(People|VB)= 2*10⁻⁴ $P(changes|NN) = 3*10^{-3}$ $P(changes|VB) = 4*10^{-2}$

 $P(NN|VB) = 4*10^{-1}$ P(VB|NN)= 3*10-1

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

Sentence: "Learning changes people"

Tagset: NN,VB

				q _F
VB	9*10 ⁻⁴	3.6*10 ⁻⁷	7.2*10 ⁻¹¹	1.44*10 ⁻¹²
	(q ₀)	(VB)	(VB)	(VB)
NN	2*10 ⁻⁴	10.8*10 ⁻⁶	7.2*10 ⁻⁸	7.2*10 ⁻⁹
	(q ₀)	(VB)	(VB)	(NN)
Input	Learning	changes	People	

$$P(q_{f}|VB) = P(q_{f}|VB) * 7.2*10^{-11} = 1.44*10^{-12}$$

$$P(q_{F}|NN) = P(q_{F}|NN) * 7.2*10^{-8} = 7.2*10^{-9}$$

P(Learning|VB)= 3*10⁻³ $P(\text{Learning}|NN) = 1*10^{-3}$ $P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ P(People|VB)= 2*10⁻⁴ $P(changes|NN) = 3*10^{-3}$ $P(changes|VB) = 4*10^{-2}$

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

Sentence: "Learning changes people"

Tagset: NN, VB

				q _F
VB	9*10 ⁻⁴ (q ₀)	3.6*10 ⁻⁷ (VB)	7.2*10 ⁻¹¹ (VB)	1.44*10 ⁻¹² (VB)
NN	2*10 ⁻⁴ (q ₀)	10.8*10 ⁻⁶ (VB)	7.2*10 ⁻⁸ (VB)	7.2*10 ⁻⁹ (NN)
Input	Learning	changes	People	

P(Learning|VB)= 3*10⁻³ $P(Learning|NN) = 1*10^{-3}$ $P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ P(People|VB)= 2*10⁻⁴ P(changes|NN)= 3*10⁻³ P(changes|VB)= 4*10⁻²

 $P(NN|VB) = 4*10^{-1}$ P(VB|NN)= 3*10-1

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

Sentence: "Learning changes people"

Tagset: NN, VB

				q _F
VB	9*10 ⁻⁴	3.6*10 ⁻⁷	7.2*10 ⁻¹¹	1.44*10 ⁻¹²
	(q ₀)	(VB)	(VB)	(VB)
NN	2*10 ⁻⁴	10.8*10 ⁻⁶	7.2*10 ⁻⁸	7.2*10 ⁻⁹
	(q ₀)	(VB)	(VB)	(NN)
Input	Learning	changes	People	

P(Learning|VB)= 3*10⁻³ $P(Learning|NN) = 1*10^{-3}$ $P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ P(People|VB)= 2*10⁻⁴ P(changes|NN)= 3*10⁻³ P(changes|VB)= 4*10⁻²

 $P(NN|VB) = 4*10^{-1}$ $P(VB|NN) = 3*10^{-1}$

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

Sentence: "Learning changes people"

Tagset: NN, VB

				q _F
VB	9*10 ⁻⁴ (q ₀)	3.6*10 ⁻⁷ (VB)	7.2*10 ⁻¹¹ (VB)	1.44*10 ⁻¹² (VB)
NN	2*10 ⁻⁴ (q ₀)	10.8*10 ⁻⁶ (VB)	7.2*10 ⁻⁸ (VB)	7.2*10 ⁻⁹ (NN)
Input	Learning	changes	People	
Output	VB	VB	NN	

 $P(Learning|VB) = 3*10^{-3} P(NN|VB) = 4*10^{-1}$ $P(Learning|NN) = 1*10^{-3}$ $P(NN|NN) = 1*10^{-1}$ $P(People|NN) = 5*10^{-2}$ $P(VB|VB) = 1*10^{-1}$ $P(People|VB) = 2*10^{-4}$ $P(VB|NN) = 3*10^{-1}$ P(changes|NN)= 3*10⁻³ P(changes|VB)= 4*10⁻²

$$P(VB|q_0) = 3*10^{-1}$$

 $P(NN|q_0) = 2*10^{-1}$

$$P(q_f|NN)=1*10^{-1}$$

 $P(q_f|VB)=2*10^{-2}$

Viterbi Algorithm

1. Initial: For each state s, calculate

$$score_1(s) = P(s)P(x_1|s) = \pi_s B_{x_1,s}$$

2. Recurrence: For i = 2 to n, for every state s, calculate

$$score_{i}(s) = \max_{y_{i-1}} P(s|y_{i-1}) P(x_{i}|s) score_{i-1}(y_{i-1})$$

$$= \max_{y_{i-1}} A_{y_{i-1},s} B_{s,x_{i}} score_{i-1}(y_{i-1})$$
T

3. Final state: calculate

$$\max_{\mathbf{y}} P(\mathbf{y}, \mathbf{x} | \pi, A, B) = \max_{s} \mathbf{score}_{n}(s)$$

π: Initial probabilities

A: Transitions

B: Emissions

This only calculates the max. To get final answer (argmax),

- keep track of which state corresponds to the max at each step
- build the answer using these back pointers