Analysis of Algorithms

Chapter 2.1, 2.2, 2.3

Review of Chapter 1

- Two main issues related to algorithms
 - How to design algorithms
 - How to analyze algorithm efficiency
- Properties of an Algorithm
 - Effectiveness
 - Instructions are simple
 - can be carried out by pen and paper
 - Definiteness
 - Instructions are clear
 - meaning is unique
 - Correctness
 - Algorithm gives the right answer
 - for all possible cases
 - Finiteness
 - Algorithm stops in reasonable time
 - produces an output

Donald E. Knuth

Professor Emeritus of <u>The Art of Computer</u>

<u>Programming</u> at <u>Stanford University</u>

Knuth has been called the "father" of the <u>analysis of algorithms</u>

A person well-trained in computer science knows how to deal with algorithms: how to construct them, manipulate them, understand them, analyze them. This knowledge is preparation for much more than writing good computer programs; it is a general-purpose mental tool that will be a definite aid to the understanding of other subjects, whether they be chemistry, linguistics, or music, etc. The reason for this may be understood in the following way: It has often been said that a person does not really understand something until after teaching it to someone else. Actually, a person does not really understand something until after teaching it to a computer, i.e., expressing it as an algorithm . . . An attempt to formalize things as algorithms leads to a much deeper understanding than if we simply try to comprehend things in the traditional way. [Knu96, p. 9]

Algorithm Design Process

Code the algorithm

Euclid's Algorithm

- **Problem:** Find gcd(*m*,*n*), the greatest common divisor of two nonnegative, not both zero integers *m* and *n*
- Examples: gcd(60,24) = 12, gcd(60,0) = 60, gcd(0,0) = ?
- Euclid's algorithm is based on repeated application of equality

$$gcd(m,n) = gcd(n, m \mod n)$$

 until the second number becomes 0, which makes the problem trivial.

Example:
$$gcd(60,24) = gcd(24,12) = gcd(12,0) = 12$$

Structured Description of Euclid's Algorithm

- Step 1 If n = 0, return m and stop; otherwise go to Step 2
- Step 2 Divide m by n and assign the value to the remainder to r
- Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.

Euclid's Algorithm (Pseudocode)


```
ALGORITHM Euclid(m, n)
    //Computes gcd(m, n) by Euclid's algorithm
    //Input: Two nonnegative, not-both-zero integers m and n
    //Output: Greatest common divisor of m and n
    while n \neq 0 do
       r \leftarrow m \bmod n
        m \leftarrow n
    return m
```

Consecutive integer checking algorithm

- **Step 1** Assign the value of $min\{m,n\}$ to t
- **Step 2** Divide *m* by *t*. If the remainder is 0, go to Step 3; otherwise, go to Step 4
- **Step 3** Divide *n* by *t*. If the remainder is 0, return *t* and stop; otherwise, go to Step 4
- Step 4 Decrease t by 1 and go to Step 2

Middle-school procedure for computing gcd(m, n)

Step 1 Find the prime factors of m.

Step 2 Find the prime factors of n.

Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors and return it as gcd(m,n)

$$60 = 2 \times 2 \times 3 \times 5$$

 $24 = 2 \times 2 \times 2 \times 3$
 $gcd(60, 24) = 2 \times 2 \times 3 = 12$

Is this an algorithm?

- A simple Algorithm Generating Consecutive Primes Not Exceeding Any Given Integer n: Sieve of Eratosthenes
- Example:

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
2	3	X	5	X	7	X	9	X	11	X	13	Х	15	X	17	X	19	X	21	X	23	X	25
2	3		5		7		X		11		13		X		17		19		X		23		25
2	3		5		7				11		13				17		19				23		X

Sieve of Eratosthenes

return L

```
ALGORITHM
                  Sieve(n)
    //Implements the sieve of Eratosthenes
    //Input: An integer n \ge 2
    //Output: Array L of all prime numbers less than or equal to n
    for p \leftarrow 2 to n do A[p] \leftarrow p
    for p \leftarrow 2 to |\sqrt{n}| do //see note before pseudocode
         if A[p] \neq 0 //p hasn't been eliminated on previous passes
              j \leftarrow p * p
              while j \leq n do
                   A[j] \leftarrow 0 //mark element as eliminated
                   j \leftarrow j + p
    //copy the remaining elements of A to array L of the primes
    i \leftarrow 0
    for p \leftarrow 2 to n do
         if A[p] \neq 0
              L[i] \leftarrow A[p]
              i \leftarrow i + 1
```

11

ROAD MAP

- Analysis of algorithms
- Running time functions
- Mathematical Analysis of Nonrecursive Algorithms
- Recurrence Relations
 - Exact Solution
 - Forward substitution
 - Backward substitution
 - Methods similar to those used in solving differential equations
 - Asymptotic Solution
 - Master theorem

Analysis of algorithms

- Issues:
 - correctness
 - time efficiency
 - space efficiency
 - optimality
- Approaches:
 - theoretical analysis
 - empirical analysis

Analysis of Algorithms

- Study complexity of an algorithm
 - How good is the algorithm?
 - How is it when compared with other algorithms?
 - Is it the best that can be done?

Analysis of Algorithms

- Complexities
 - Space
 - Number of bits
 - Number of elements
 - Time
 - Number of operations
 - Depends on model
 - RAM

Run-Time Analysis of Algorithms

- Algorithm complexity is investigated as a function of some parameter n indicating problem's size
- Time complexity, T(n), is can be computed as the number of times the algorithm's most important operation -- called its <u>basic operation</u> -- is executed
- Space complexity, S(n), is usually computed as the size of memory space used during an execution of the algorithm

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of repetitions of the <u>basic operation</u> as a function of <u>input size</u>

 <u>Basic operation</u>: the operation that contributes most towards the running time of the algorithm

Input size and basic operation examples

Problem	Input size measure	Basic operation			
Searching for key in a list of <i>n</i> items	Number of list's items, i.e. <i>n</i>	Key comparison			
Multiplication of two matrices	Matrix dimensions or total number of elements	Multiplication of two numbers			
Checking primality of a given integer <i>n</i>	n'size = number of digits (in binary representation)	Division			
Typical graph problem	#vertices and/or edges	Visiting a vertex or traversing an edge			

Types of formulas for basic operation's count

Exact formula

e.g.,
$$C(n) = n(n-1)/2$$

Formula indicating order of growth with specific multiplicative constant

e.g.,
$$C(n) \approx 0.5 n^2$$

Formula indicating order of growth with unknown multiplicative constant

e.g.,
$$C(n) \approx cn^2$$

Order of growth

 Most important: Order of growth within a constant multiple as n→∞

- Example:
 - How much faster will algorithm run on computer that is twice as fast?

 How much longer does it take to solve problem of double input size?

Values of some important functions as $n \to \infty$

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

- Worst case: $C_{worst}(n)$ maximum over inputs of size n
- Best case: $C_{\text{best}}(n)$ minimum over inputs of size n
- Average case: $C_{avg}(n)$ "average" over inputs of size n
 - Number of times the basic operation will be executed on typical input
 - NOT the average of worst and best case
 - Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs

Worst case

$$T(n) = max_{|I|=n} \{T(I)\}$$

Average case

$$T(n) = \sum_{|I|=n} T(I).\Pr{ob(I)}$$

Best case

$$T(n) = min_{|I|=n} \{T(I)\}$$

Example: Sequential search


```
ALGORITHM SequentialSearch(A[0..n-1], K)
```

```
//Searches for a given value in a given array by sequential search //Input: An array A[0..n-1] and a search key K //Output: The index of the first element of A that matches K // or -1 if there are no matching elements i \leftarrow 0 while i < n and A[i] \neq K do i \leftarrow i+1 if i < n return i else return -1
```

- Worst case
- Best case
- Average case

Sequential search

Algorithm Complexity:

- Best case
 - A[1] = key
- Worst case
 - A[i] ≠ key for any key
 - time is proportional to the number of elements
 - time complexity of linear search is O(n)
- Average case ?
 - if any key is equally likely ~ n/2

ROAD MAP

- Analysis of algorithms
- Running time functions
- Mathematical Analysis of Nonrecursive Algorithms
- Recurrence Relations
 - Exact Solution
 - Forward substitution
 - Backward substitution
 - Methods similar to those used in solving differential equations
 - Asymptotic Solution
 - Master theorem

Definition

A nondecreasing function is called *running time function* if

 $f:Z^+ \rightarrow R$ such that f(n)>0 for all $n\ge m$ where m is some positive integer

$$Z^+ = \{ 1, 2, 3, \dots \}$$

A way of comparing functions that ignores constant factors and small input sizes

- O(g(n)): class of functions f(n) that grow <u>no faster</u> than g(n)
- $\Theta(g(n))$: class of functions f(n) that grow at same rate as g(n)
- Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)

O notation

Definition

Let f and g are running time functions. We denote f(n) = O(g(n)) if there exists a real constant c and integer m such that

$$f(n) \le c (g(n))$$
 for all $n \ge m$

Big-oh

Figure 2.1 Big-oh notation: $t(n) \in O(g(n))$

O notation

- Ex: 7n + 5 = O(n)
- Ex: $10n^2 + 4n + 2 = O(n^2)$
- Ex: $7n + 5 = O(n^2)$
- Ex7n + 5 ≠ O(1)

Ω notation

Definition

Let f and g are running time functions. We denote $f(n) = \Omega(g(n))$ if there exists a real constant c and integer m such that

$$f(n) \ge c (g(n))$$
 for all $n \ge m$

Big-omega

Fig. 2.2 Big-omega notation: $t(n) \in \Omega(g(n))$

Ω notation

• Ex:

$$3n + 2 = \Omega(n)$$

• Ex:

$$6.2^n + n^2 = \Omega(2^n)$$

• Ex:

$$3n - 7 = \Omega(1)$$

θ notation

Definition

Let f and g are running time functions. We denote $f(n) = \theta(g(n))$ if there exists real constants c_1 and c_2 and integer m such that

 $c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge m$

Big-theta

Figure 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$

θ notation

• Ex:

$$3n + 2 = \theta (n)$$

• Ex:

$$10 \log n + 4 = \theta (\log n)$$

• Ex:

$$3n + 2 \neq \theta$$
 (1)

Asymptotic notations

- $O(1) < O(logn) < O(n) < O(n logn) < O(n^2) < O(n^3) < O(2^n)$
- f(n) = O(g(n))
 - g is an upper bound of f
 - f grows no faster than g
- How tight is this bound?
 - $n = O(n^2)$
 - $n=O(2^n)$
- $f(n) = O(g(n)) \rightarrow g(n) = O(f(n))$?

Some Rules

Transitivity

$$f(n) = O(g(n))$$
 & $g(n) = O(h(n))$ \Rightarrow $f(n) = O(h(n))$

Addition

$$f(n) + (g(n)) = O(\max\{f(n), g(n)\})$$

Polynomials

$$a_0 + a_1 n + ... + a_d n^d = O(n^d)$$

Some Rules

θ is equivalence notation

$$f(n) = \theta(f(n))$$

$$f(n) = \theta(g(n)) \implies g(n) = \theta(f(n))$$

$$f(n) = \theta(g(n)) \& g(n) = \theta(h(n)) \Longrightarrow f(n) = \theta(h(n))$$

Some Rules

$$f_1(n) = \theta(g(n)) \& f_2(n) = \theta(g(n))$$
$$\Rightarrow f_1(n) + f_2(n) = \theta(g(n))$$

$$f_1(n) = \theta(g_1(n)) \& f_2(n) = \theta(g_2(n))$$

 $\Rightarrow f_1(n) + f_2(n) = \theta(g_1(n) * g_2(n))$

Establishing order of growth using limits

0 order of growth of
$$T(n)$$
 < order of growth of $g(n)$

$$\lim_{n\to\infty} T(n)/g(n) = -$$

$$c > 0$$
 order of growth of $T(n) =$ order of growth of $g(n)$

 ∞ order of growth of $\mathbf{T}(\mathbf{n})$ > order of growth of $\mathbf{g}(\mathbf{n})$

Examples:

• 10n

VS.

 n^2

•
$$n(n+1)/2$$

VS.

 n^2

L'Hôpital's rule and Stirling's formula

L'Hôpital's rule: If $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$ and the derivatives f', g' exist, then

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$$

Example: $\log n$ vs. n

Stirling's formula: $n! \approx (2\pi n)^{1/2} (n/e)^n$

Example: 2^n vs. n!

Orders of growth of some important functions

- All logarithmic functions log_a n belong to the same class ⊕(log n) no matter what the logarithm's base a > 1 is
- All polynomials of the same degree k belong to the same class: $a_k n^k + a_{k-1} n^{k-1} + ... + a_0 \in \Theta(n^k)$
- Exponential functions aⁿ have different orders of growth for different a's
- order $\log n$ < order n^{α} (α >0) < order a^n < order n! < order n^n

Basic asymptotic efficiency classes

1	constant
log n	logarithmic
n	linear
n log n	n-log-n
n^2	quadratic
n^3	cubic
2 ⁿ	exponential
n!	factorial

ROAD MAP

- Analysis of algorithms
- Running time functions
- Mathematical Analysis of Nonrecursive Algorithms
- Recurrence Relations
 - Exact Solution
 - Forward substitution
 - Backward substitution
 - Methods similar to those used in solving differential equations
 - Asymptotic Solution
 - Master theorem

Time efficiency of nonrecursive algorithms

General Plan for Analysis

- Decide on parameter n indicating <u>input size</u>
- Identify algorithm's <u>basic operation</u>
- Determine <u>worst</u>, <u>average</u>, and <u>best</u> cases for input of size n
- Set up a sum for the number of times the basic operation is executed
- Simplify the sum using standard formulas and rules (see Appendix A)

Properties of Logarithms

1.
$$\log_a 1 = 0$$

2.
$$\log_a a = 1$$

3.
$$\log_a x^y = y \log_a x$$

$$4. \quad \log_a xy = \log_a x + \log_a y$$

$$5. \quad \log_a \frac{x}{y} = \log_a x - \log_a y$$

6.
$$a^{\log_b x} = x^{\log_b a}$$

7.
$$\log_a x = \frac{\log_b x}{\log_b a} = \log_a b \log_b x$$

Important Summation Formulas

1.
$$\sum_{l=l}^{u} 1 = \underbrace{1 + 1 + \dots + 1}_{u-l+1 \text{ times}} = u - l + 1 \ (l, u \text{ are integer limits}, l \le u); \sum_{l=1}^{n} 1 = n$$

2.
$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2$$

3.
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} \approx \frac{1}{3}n^3$$

4.
$$\sum_{k=1}^{n} i^{k} = 1^{k} + 2^{k} + \dots + n^{k} \approx \frac{1}{k+1} n^{k+1}$$

Important Summation Formulas

5.
$$\sum_{i=0}^{n} a^{i} = 1 + a + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1} \ (a \neq 1); \quad \sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

6.
$$\sum_{i=1}^{n} i 2^{i} = 1 \cdot 2 + 2 \cdot 2^{2} + \dots + n 2^{n} = (n-1)2^{n+1} + 2$$

7.
$$\sum_{i=1}^{n} \frac{1}{i} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n + \gamma$$
, where $\gamma \approx 0.5772 \dots$ (Euler's constant)

8.
$$\sum_{i=1}^{n} \lg i \approx n \lg n$$

$$1. \quad \sum_{i=1}^{u} ca_i = c \sum_{i=1}^{u} a_i$$

2.
$$\sum_{i=1}^{u} (a_i \pm b_i) = \sum_{i=1}^{u} a_i \pm \sum_{i=1}^{u} b_i$$

3.
$$\sum_{i=1}^{u} a_i = \sum_{i=1}^{m} a_i + \sum_{i=m+1}^{u} a_i$$
, where $i \le m < u$

4.
$$\sum_{i=1}^{u} (a_i - a_{i-1}) = a_u - a_{l-1}$$

Example: Maximum element


```
ALGORITHM MaxElement(A[0..n-1])

//Determines the value of the largest element in a given array
//Input: An array A[0..n-1] of real numbers
//Output: The value of the largest element in A

maxval \leftarrow A[0]

for i \leftarrow 1 to n-1 do

if A[i] > maxval

maxval \leftarrow A[i]

return maxval
```

Example : Element uniqueness problem


```
ALGORITHM UniqueElements (A[0..n-1])

//Determines whether all the elements in a given array are distinct

//Input: An array A[0..n-1]

//Output: Returns "true" if all the elements in A are distinct

// and "false" otherwise

for i \leftarrow 0 to n-2 do

for j \leftarrow i+1 to n-1 do

if A[i] = A[j] return false

return true
```


Example: Matrix multiplication

```
ALGORITHM MatrixMultiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])

//Multiplies two n-by-n matrices by the definition-based algorithm

//Input: Two n-by-n matrices A and B

//Output: Matrix C = AB

for i \leftarrow 0 to n-1 do

C[i,j] \leftarrow 0.0

for k \leftarrow 0 to n-1 do

C[i,j] \leftarrow C[i,j] + A[i,k] * B[k,j]

return C
```

Example : Counting binary digits


```
ALGORITHM Binary(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n's binary representation count \leftarrow 1

while n > 1 do

count \leftarrow count + 1

n \leftarrow \lfloor n/2 \rfloor

return count
```

It cannot be investigated the way the previous examples are.