概率论与数理统计期末练习卷(2)

一、单项选择题

1.某人向同一目标独立重复进行射击,每次击中目标的概率为p(0 ,

则此人第四次射击时恰好第2次命中目标的概率为(/)。

$$(A)3p(1-p)^2$$

(B)
$$6p(1-p)^2$$

$$(C)3p^2(1-p)^2$$

(D)
$$6p^2(1-p)^2$$

$$C_{3}^{1} P \cdot (I-P)^{2} \cdot P$$

$$= 3P^{2} (I-P)^{2}$$

 $P(B|A) = \frac{P(AB)}{P(A)} = 1$

(B)
$$P(\bar{B}|A) = 0 p(\bar{B}|A) = 1 - p(B|A) = 1 - l = 0$$

(D)
$$A \subset B$$

3.已知随机变量 $X \sim N(\mu, 16)$, 又 $P\{X \le -2\} = 0.5$, 则 $P\{X < 2\}$ (C)。

- (A) 是离散型随机变量的分布函数 (B) 是连续型随机变量的分布函数
- (C) 是随机变量的分布函数

5.设随机变量X和Y都服从正态分布 $N(0,\sigma^2)$,且 $P\{X \le 1,Y \le -1\} = 1/4$,则

5.设随机变量
$$X$$
和Y都服从正态分布 $N(0,\sigma^2)$,且 $P\{X \le 1,Y \le -1\} = 1/4$,则 $P\{X > 1,Y > -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人)。 $P\{X > 1,Y < -1\}$ 等于(人))。 $P\{X > 1,Y < 1,Y < -1\}$ 等于(人))。 $P\{X > 1,Y < 1,Y$

(A)
$$1/4$$
 $\times \sim \sim (0, 6^2)$

(C)
$$3/4$$
 $\gamma \sim N(0)6^{2}$

 $2023-2024-1A P(A)=P(X\leqslant I)=P(\frac{\chi-0}{6}\leq \frac{I-0}{6})=\overline{\mathbb{Q}}(\frac{I}{6}) = I-P(AUB)$

$$p(B) = p(Y \le -1) = p(\underline{Y} - 0 \le -1 - 0) = p(-\frac{1}{6}) = 1 - p(A) + p(B) - p(AB)$$

$$p(B) = p(Y \le -1) = p(\underline{Y} - 0 \le -1 - 0) = 1 - p(A) - p(B) + p(AB)$$

$$p(B) = p(Y \le -1) = p(\underline{Y} - 0 \le -1 - 0)$$

$$= [-p(A) - p(B) + p(AB)] = \frac{1}{4}$$

6.设随机变量X的期望和方差均存在,则下列选项**正确**的是(\bigwedge)

(A)
$$D(D(X)) = 0$$
 (B) $D(D(X)) = 1$

(C)
$$E(E(X)) = 2E(X) = E(X)$$

(D)
$$E(E(X)) = E^2(X) = E(X)$$

7.设 $X_1, X_2, ..., X_n$ 为来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本, \bar{X} 为样本平均值,

记:

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2, \quad S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2, \quad \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

$$S_3^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2, \qquad S_4^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$

$$S_{3}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \mu)^{2}, \qquad S_{4}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2}$$
则服从自由度为 $n-1$ 的 t 分布的随机变量是(D)。
$$(A)t = \frac{\bar{x} - \mu}{S_{1}/\sqrt{n-1}} \qquad \frac{\bar{\chi} - \mu}{S_{1}/\sqrt{n-1}} \qquad (B) \quad t = \frac{\bar{x} - \mu}{S_{2}/\sqrt{n-1}}$$

$$(C) \quad t = \frac{\bar{x} - \mu}{S_{3}/\sqrt{n}} \qquad (D) \quad t = \frac{\bar{x} - \mu}{S_{4}/\sqrt{n}} \qquad (D) \quad t = \frac{\bar{x} - \mu}{S_{4}/\sqrt{n}}$$

(C)
$$t = \frac{\bar{X} - \mu}{S_3 / \sqrt{n}}$$

(D)
$$t = \frac{\bar{X} - \mu}{S_4 / \sqrt{n}}$$

8.下列哪个**不属于**常用估计量的评选标准的是())

- (A) 无偏性 (B) 有效性
- 9. 在假设检验中,显著性水平 a表示(2). H。为其, to 绝H。

 - (A) H_0 为真接受 H_0 的概率 (B) H_0 为真拒绝 H_0 的概率
 - (C) H_0 为不真接受 H_0 的概率
- (D) H_1 为真接受 H_1 的概率

10. 已知 ϕ (1) = 0.8413,则上 α 分为点 $Z_{0.8413}$ = (\bigcirc)。 (A) 0.8413 (B) 0.1507

(A)
$$0.8413$$
 (B) 0.1587 (C) 1 (D) -1

$$\phi(1) = P(X \le 1) = 0.8413 \qquad \Rightarrow 20.8413 = -1$$

 $R \mid P(X \gg -1) = 0.8413$ 二、填空题

12.设X是连续型随机变量,其密度函数为 $f(x) = \begin{cases} c(4x-2x^2), \ 0 < x < 2 \\ 0, \ 4 \ \end{cases}$ 则二 $\left[-\frac{1}{2}P(A)+p(B)-\frac{1}{2}P(A)\right]$

常数*c*=_____。 (**结果用分数表示**)

$$\Re \left[\int_{-\infty}^{\infty} f(x) \, dx = 1, \, || \int_{0}^{2} x \cdot C(4x - 2x^{2}) \, dx = 1 \right]$$

$$C \cdot \left[\frac{4}{3} x^{3} - \frac{1}{2} x^{4} \right]_{0}^{2} = 1 \quad \Re \left[\frac{8}{3} c = 1 \right] \Rightarrow c = \frac{3}{8}$$

14.设随机变量
$$X$$
具有 $E(X) = 2$, $D(X) = 3$, 则由切比雪夫不等式得 $P\{|X - 2| \ge 4\} \le \frac{3}{16}$ 。 (结果用分数表示)
$$P(|X-E(X)| \ge 2) \le \frac{D(X)}{E^2}$$

$$P(|X-2| > 4) \le \frac{3}{4^2} = \frac{3}{16}$$

 $0 = F_{0,2}$ 気を見る。 15.设随机变量 $X \sim F(n,n)$ 且 $P\{X > a\} = 0.2$,a为常数,则 $P\{X > \frac{1}{a}\} = \frac{0.8}{2}$ 。 $\mathbb{R} \times_{l} \sim F(n_{1}, n_{2}) \times \sim F(n_{1}, n_{2}) \times \mathbb{R} \times_{l} = p(\frac{1}{X} < a)$

 $\mathbb{R} / \frac{1}{X_{1}} \sim \mathbb{F}(\mathbb{N}_{2},\mathbb{N}_{1})$ = **16**.设随机变量X = Y相互独立,下表是二维随机变量(X,Y)的联合

分布律中的部分数值,请将表中空白①至⑧填入正确的数值,并写出计算过程。

X Y	y_1	y_2	y_3	$P\{X=x_i\}=p_i.$	
x_1	1	$\frac{1}{8}$	2	3	$P(X=X_{2},Y=Y_{3})$ $=P(X=X_{2})-\frac{1}{8}-\frac{3}{8}$
x_2	$\frac{1}{8}$	4	5	6	
$P\{Y=y_j\}=p_{\cdot j}$	$\frac{1}{6}$	7	8	1	$= \frac{3}{4} - \frac{1}{8} - \frac{3}{8} + \frac{1}{4} + \frac{5}{8}$
$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = 1$					

$$P(X = X_2, Y = y_1) = \frac{1}{8}, \text{ for } P(Y = y_1) = \frac{1}{6}, P(X = X_2) = \frac{1}{4} \frac{1}{6}$$

$$P(X = X_1, Y = y_1) = P(Y = y_1) - P(X = X_2, Y = y_1) = \frac{1}{6} - \frac{1}{8} = \frac{1}{24} \frac{1}{6}$$

$$P(X=X_{1},Y=y_{1}) = P(Y=y_{1}) - P(X=X_{2},Y=y_{1}) = \frac{1}{6} - \frac{1}{8} = 24$$

$$P(X=X_{1}) = P(X=X_{1},Y=y_{1}) = 24$$

$$P(X=X_{1},Y=y_{1}) = P(X=X_{1},Y=y_{1}) = 24$$

$$P(X=X_{1},Y=y_{2}) = P(X=X_{1},Y=y_{2}) = 24$$

$$P(X=X_{2},Y=y_{2}) = 24$$

$$P(X=X_{2},Y=y_{2}) = 24$$

$$P(X=X_{2},Y=y_{2}) = 24$$

$$P(X=X_{2},Y=y_{2}) = 24$$

$$P(X=X_{2},Y=y_{3}) = P(X=X_{1},Y=y_{3})$$

$$P(X=X_{2},Y=y_{3}) = P(X=X_{1},Y=y_{3})$$

$$P(X=X_{2},Y=y_{3}) = 24$$

$$P(X=X$$

$$\frac{1}{2\psi}; 2\frac{1}{12}; 3\frac{1}{4}; 4\frac{3}{8}; 5\frac{1}{4}; 6\frac{3}{4}; 7\frac{1}{2}; 8\frac{1}{3} = 12+4+3$$

17. 设总体X的概率密度函数 $f(x;\lambda) = \begin{cases} \lambda^2 x e^{-\lambda x}, & x > 0 \\ 0 & x < 0 \end{cases}$, 其中 $\lambda > 0$ 为未知参

数, $X_1, X_2, ..., X_n$ 为来自总体X的随机样本, $X_1, X_2, ..., X_n$ 为相应的样本值。

 \vec{x} : (1) 参数 λ 的**矩估计量**; (2) 参数 λ 的**最大似然计量**。

解: (1) 短估计量 图只信一个未知发数, to $H_1 = E(X) = \int_{-\infty}^{\infty} \alpha f(x) dx = \int_{0}^{+\infty} \chi \cdot \lambda^2 x e^{-\lambda x} dx$ $\int_{2}^{\infty} \frac{d(nL(\lambda))}{d\lambda} = \frac{2n}{\lambda} - \sum_{i=1}^{n} \chi_{i}^{2} = 0$ $\frac{N}{2} - \sum_{i=1}^{N} X_{i} = 0$ 得最大似些估计量 $\hat{\lambda} = \frac{2N}{2} = \frac{2}{\sqrt{2}} = \frac{2}{\sqrt$

18.由于某渔业养殖场收到水质污染,需要测定该养殖场中的鱼的含汞量,随机

地取 10 条鱼, 测得各条鱼的含汞量(单位: 毫克) 为:

8.0 0.9 8.0 1.2 0.4 0.7 1.0 1.2 1.1 1.6

计算得 $\bar{x} = 0.97$, $S^2 = 0.33^2$ 。 假设鱼的含汞量服从正态分布 $N(\mu, \sigma^2)$,求:

- (1) 关于 σ^2 的置信水平为 0.9 的双侧置信区间;
- (2) 检验假设 H_0 : $\mu \leq 1.2$, H_1 : $\mu > 1.2$ (右边检验,取 $\alpha = 0.1$)。

 $(\chi^2_{0.05}(9) = 16.92, \chi^2_{0.95}(9) = 3.33, t_{0.1}(9) = 1.383, \sqrt{10} = 3.16)$

解、因从未知,所以关于62的墨信水平为1一以二0.9的22侧墨信区间为

$$\left(\begin{array}{c} \frac{(N-1)S^2}{\sqrt{\frac{2}{3}}(N-1)} \\ \end{array}\right) \frac{\left(N-1\right)S^2}{\sqrt{\frac{2}{3}}(N-1)}$$

又因
$$N=10$$
, $S^{2}=0.33^{2}$, $d=0.1$, $\chi^{2}_{0.05}(9)=16.92$, $\chi^{2}_{0.95}(9)=3.33$)
$$(代入行) \left(\frac{(N-1)S^{2}}{\chi^{2}_{-2}(N-1)}, \frac{(N-1)S^{2}}{\chi^{2}_{-2}(N-1)}\right) = \left(\frac{9\times0.33^{2}}{16.92}, \frac{9\times0.33^{2}}{3.33}\right) = (0.06, 0.29)$$

$$((N-1)S^{2}_{-2}(N-1)) = \left(\frac{9\times0.33^{2}}{16.92}, \frac{9\times0.33^{2}}{3.33}\right) = (0.06, 0.29)$$

而以=0.1, $\overline{\mathcal{D}}=0.97$, S=0.33, $H_0=1.2$, N=10 代入特

2023-2024-1A $t = \frac{0.97 - 1.2}{0.23 / 115}$ $< 0 < t_{0.1}(9) = 1.383$ (治有 落在 抢 定 大)

校接受原假设H。,认为含质量均值并未增加

了么二(墨信区间存)因6°未知,关于从附墨信水平为1一以二0.9的事则墨信下限的置信区间为 $(\underline{M}_1 + \omega) = (\bar{\chi} - \underline{S}_{1} t_{d} (n+1), +\omega)$ 代入文=0.97, S=0.33, N=10, d=0.1, to.1(9)=1.383, H=0.97-0.33 ×1.383<0.97<H=1.2 す文Hoe (H,+か)、国而落在接受域、接度價限设Ho,认为含质量均值并未提为。

心极限定理求 $P\{\sum_{i=1}^{30} X_i \geq 12\}$ 的概率。(结果用 $\phi(\cdot)$ 表示,结果可以含根式)

19.设 $X_1, X_2, ..., X_{30}$ 是一组独立同服从均匀分布U(0,1)的随机变量序列。根据中

$$\frac{1}{100} = \frac{1}{100} = \frac{1$$

20. 设随机变量(X,Y)的分布函数

求(1) $F_X(x)$, $f_X(x)$, $f_Y(y)$; (2) X与Y是否相互独立? (3) $f_{X|Y}(x|y)$; (4)

$$\text{Re}_{x}^{(1)} = \text{Fr}_{x}(x) =$$

(2) 因
$$F(x,y) = F_{X}(x) F_{Y}(y)$$
 (联络布图数 = 两位络分布函数 東我)
市文 X 与 Y 和 3 独立
第用 $f(x,y) = f_{X}(x) f_{Y}(y)$
 $f(x,y) = \frac{\partial^{2} F(x,y)}{\partial x \partial y} = \begin{cases} 6e^{-2x-3y}, & x > 0, y > 0 \end{cases}$
 $f_{X|Y}(x|y) = \frac{f(x,y)}{f(y)} = f_{X}(x) = \begin{cases} 2e^{-2x}, & x > 0 \end{cases}$, 其他

(4) $C_0 \vee (-X, \Upsilon) = -C_0 \vee (X, \Upsilon)$

21. 设总体X服从参数为 θ 的指数分布,其概率密度函数为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, & x > 0 \\ 0, & x \le 0 \end{cases}, \quad \sharp \theta > 0$$
 为未知参数,

 $X_1, X_2, ..., X_n$ 为来自总体X的随机样本。

证明: (1) \bar{X} 和 $nY = n \min (X_1, X_2, ..., X_n)$ 均为 θ 的无偏估计量;

(2) \bar{X} 较 nY有效。 (2) \bar{X} 较 nY有效。

解(1) 由于 $X \sim \exp(\Theta)$,校 $\bar{E}(X) = \theta$, $D(X) = \theta^2$,且 $\bar{F}(X; \theta) =$ (指数分布 0) 其他 $\bar{E}(X) = 0$ (指数分布 $\bar{E}(X) = 0$) $E(\bar{X}) = E(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = E(X_{i}) = 0$

校义是的的无偏估计

 $E(\Upsilon) = \frac{0}{n}$, $f_X E(n\Upsilon) = nE(\Upsilon) = 0$ > nT电量o的无偏估计

 $(2) \quad D(\overline{X}) = D(\frac{1}{N} \sum_{i=1}^{N} X_{i}) = \frac{1}{N^{2}} D(\sum_{i=1}^{N} X_{i}) = \frac{1}{N} D(X_{i}) = \frac{\theta^{2}}{N}$ $D(N\Upsilon) = N^2 D(\Upsilon) = N^2 \cdot \frac{Q^2}{N^2} = Q^2$

5n기时,因 $D(\overline{X}) \leq D(nY)$,放 \overline{X} 较 nY 有刻

5n=1时,因 $D(\bar{X})=D(nY)$,此时时有多少学和同