

Teori Bahasa Automata

< Finite State Automata >

< Minggu-5^{th &} 6th (12/17 September 2025) >

Topics of the day

- 1.NFA dengan €-Move
- 2.E-Closure untuk NFA
- 3.Ekuivalensi NFA dengan €-Move ke NFA
- 4.Aturan Produksi Tata Bahasa

For more info: SLIDESGO | BLOG | FAQS You can visit our sister projects:
FREEPIK | FLATICON | STORYSET | WEPIK | VIDEVO

=

01 { . .

NFA dengan E-Move

NFA dengan E-Move

Introduction

Pada Non-Deterministic Finite Automata dengan ϵ -move (transisi ϵ), diperbolehkan mengubah state tanpa membaca input. Disebut dengan ϵ -move karena tidak bergantung pada suatu input ketika melakukan transisi.

NFA dengan E-Move

Contoh NFA dengan €-Move

\equiv

02 { . .

€-Closure untuk NFA

E-Closure untuk NFA

Introduction

E-Closure adalah
himpunan state
yang dapat
dicapai dengan emove.

Introduction

 ε -Closure adalah himpunan state yang dapat dicapai dengan ε -move.

E-Closure untuk NFA

Introduction

```
€-Closure adalah:
€-Closure(q0) = {q0, q1, q3}
€-Closure(q1) = {q1, q3}
€-Closure(q2) = {q2, q4}
€-Closure(q3) = {q3}
€-Closure(q4) = {q4}
```


03 { . .

Ekuivalensi NFA dengan E-Move ke NFA

Introduction

Dari sebuah NFA dengan ε -move dapat kita peroleh NFA tanpa ε -move yang ekuivalen. Dengan cara:

Introduction

Dari sebuah NFA dengan ε -move dapat kita peroleh NFA tanpa ε -move yang ekuivalen. Dengan cara:

- 1. Tentukan transisinya NFA ε-move
- 2. Tentukan fungsi ε-clouser
- 3. Tentukan transisi NFA ε-move ke NFA

Contoh

1. Tentukan Transisi

	a	b
q0	Ø	Ø
q1	q2	q4
q2	Ø	Ø
q3	Ø	Ø
q4	Ø	Ø

Contoh

3. Tentukan transisi

NFA ε -move ke NFA: $\delta'(q0,a) = \{q0, q1, q3\}$ $q1 \rightarrow \varepsilon$ -Closure(q2) = $\{q2, q4\}$

 $\delta'(q0,b) = \{q0, q1, q3\}$ $q1\rightarrow \varepsilon$ -Closure(q4) = {q4}

Contoh

{q2, q4}

3. Tentukan transisi NFA ε -move ke NFA: $\delta'(q1,a) = \{q1, q3\}$ $q1 \rightarrow \varepsilon$ -Closure(q2) =

 $δ'(q1,b) = {q1, q3}$ $q1 \rightarrow ε-Closure(q4) = {q4}$

Contoh

3. Tentukan transisi NFA ϵ -move ke NFA:

$$δ'(q2,a) = {q2, q4}$$

 $q2 \rightarrow ∅$

$$\delta'(q2,b) = \{q2, q3\}$$

 $q2 \rightarrow \emptyset$

Contoh

3. Tentukan transisi NFA ϵ -move ke NFA:

$$\delta'(q3,a) = \emptyset$$

$$\delta'(q3,b) = \emptyset$$

$$\delta'(q4,a) = \emptyset$$

$$\delta'(q4,b) = \emptyset$$

Contoh

3. Tentukan transisi NFA ϵ -move ke NFA:

```
\delta'(q0,a) = \{q2, q4\}

\delta'(q0,b) = \{q4\}

\delta'(q1,a) = \{q2, q4\}
```

$$\delta'(q1,b) = \{q4\}$$

$$\delta'(q2,a) = \{\}$$

$$\delta'(q2,b) = \{\}$$

$$\delta'(q3,a) = \{\}$$

$$\delta'(q3,b) = \{\}$$

$$\delta'(q4,a) = \{\}$$

$$\delta'(q4,b) = \{\}$$

Latihan (Soal)

Latihan (Soal)

What Next???

Silahkan Pelajari Sendiri

- Penggabungan dan Konkatenasi Finite State Automata
- 2. Ekspresi Regular
- 3. Notasi Ekspresi Regular
- 4. Hubungan Ekspresi Regular dan Finite State Automata

 \equiv

04 { . .

Aturan Produksi untuk Suatu Tata Bahasa Regular

Batasan Aturan Produksi

```
Suatu tata bahasa (grammar) didefinisikan dengan 4
Tupel yaitu : V, T, P, dan S
Di mana,
V = Himpunan simbol variabel / non terminal
T = Himpunan simbol terminal
P = Kumpulan aturan produksi
S = Simbol awal
```

Langkah-langkah

- 1. Identifikasi state
- 2. Tentukan himpunan terminal
- 3. Buat aturan produksi berdasarkan transisi

Pembahasan

1. Tentukan state

```
S \equiv q0, A \equiv q1, B \equiv q2, C \equiv

q3, D \equiv q4

Sehingga

S = \{q0\}

V = \{S, A, B, C, D\}
```


2. Tentukan himpunan terminal

$$T = \{a,b\}$$

3. Tentukan aturan

- 1. $S \rightarrow aA$
- 2. $A \rightarrow B \mid C$
- 3. $B \rightarrow aB \mid bD$
- 4. $C \rightarrow bC \mid bD$
- 5. $D \rightarrow \varepsilon$

Sehingga

$$P = \{S \rightarrow aA; A \rightarrow B \mid C; B \\ \rightarrow aB \mid bD; C \rightarrow bC \mid bD; D \rightarrow \epsilon\}$$

Hasil

```
S = {q0}

V = {S,A,B,C,D}

T = {a,b}

P = \{S \rightarrow aA; A \rightarrow B \mid C; B \rightarrow aB \mid bD; C \rightarrow bC \mid bD; D \rightarrow \epsilon\}
```


Pembahasan

Pembahasan

```
S = {q0}
V = {S,A,B,C,D}
T = {a, b}
P = {...}
```


Pembahasan

- 1. $S \rightarrow aA \mid bC \mid \epsilon$
- 2. $A \rightarrow bB$
- 3. $B \rightarrow aS \mid b$
- 4. $C \rightarrow bD$
- 5. $D \rightarrow bS$
- $P = \{ S \rightarrow aA \mid bC \mid \epsilon; A \rightarrow aA \mid bC \mid \epsilon$

bB; $B \rightarrow aS \mid b$; $C \rightarrow bD$; $D \rightarrow bS$ }

Pembahasan

```
S = \{q0\}
V = \{S,A,B,C,D\}
T = \{a,b\}
P = \{S \rightarrow aA \mid bC \mid \epsilon; A \rightarrow bB; B \rightarrow aS \mid b; C \rightarrow bD; D \rightarrow bS\}
```


Let's Try

Let's Try

<u>Aturan Produksi</u> Tata Bahasa

Acaran Froduksi Taca Danase

Let's Try

\equiv

04 { . .

Tata Bahasa Regular Ke FA

Langkah-langkah

- 1. Identifikasi state awal dan akhir
- Sederhanakan transisi
- 3. Buat tabel transisi
- 4. Buat diagram FA

Pembahasan

Misalkan terdapat tata bahasa regular dengan aturan produksi.

- 1. S \rightarrow aA | bB | ϵ
- 2. A → babS
- 3. $B \rightarrow abaS$

2. Sederhanakan transisi

- 1. S \rightarrow aA | bB | ϵ
- 2. $A \rightarrow babS$
 - $1. \quad A \rightarrow bA_1$
 - 2. $A_1 \rightarrow aA_2$
 - 3. $A_2 \rightarrow bS$
- 3. $B \rightarrow abaS$
 - 1. $B \rightarrow aB_1$
 - 2. $B_1 \rightarrow bB_2$

3. $B_2 \rightarrow aS$ $V = \{S,A,A1,A2,B,B1,B2\}$ $T = \{a,b\}$

3. Buat tabel transisi

State	Next State	
	а	b
→S	А	В
А	-	A1
A1	A2	-
A2	-	S
В	B1	-
B1	-	B2
B2	S	-

4. Buat diagram FA

4. Buat diagram FA

どうもありがとうございます

slidesgo