CONTROL MODES

- Cyclic Synchronous Position-Velocity-Torque (CSP, CSV, CST)
- Profile Position-Velocity-Torque, Interpolated Position, Homing
- · Camming, Gearing
- Indexer

COMMAND INTERFACE

- CAN application layer over EtherCAT (CoE)
- ASCII and discrete I/O
- Stepper commands
- ±10V position/velocity/torque
- PWM velocity/torque command
- Master encoder (Gearing/Camming)

COMMUNICATIONS

- EtherCAT
- RS-232

FEEDBACK

Incremental Encoders

- Digital quad A/B Analog Sin/Cos Panasonic Incremental A Format
- Aux. quad A/B encoder / encoder out Absolute Encoders
- SSI, EnDat, Absolute A, Tamagawa & Panasonic Absolute A Sanyo Denki Absolute A, BiSS (B & C)

Resolver (-R option)

- · Brushless Resolver
- Digital Halls

I/O DIGITAL

- 10 non-isolated, 8 isolated inputs,
- 5 isolated outputs, 2 non-isolated outputs

ANALOG

• 2, 12-bit inputs

SAFE TORQUE OFF (STO)

• SIL 3, Category 3, PL d

DIMENSIONS: MM [IN]

• 167 x 115.2 x 40.6 [6.58 x 4.54 x 1.60]

DIGITAL SERVO DRIVE FOR BRUSHLESS/BRUSH MOTORS

Model	Iр	Ic	Vdc
BE2-090-06	6	3	90
BE2-090-14	14	7	90
BE2-090-20	20	10	90

Current ratings are for each axis Add -R for resolver feedback option

DESCRIPTION

The BE2 is a high-performance, DC powered drive for position, velocity, and torque control of brushless and brush motors via EtherCAT, an Ethernet-based fieldbus. Drive commissioning is fast and simple using CME 2™ software operating under Windows® and communicating with the BE2 via RS-232.

The BE2 operates as an EtherCAT slave using the CAN Application Layer over EtherCAT (CoE) protocol of DSP-402 for motion control devices. Supported modes include: Profile Position-Velocity-Torque, Cyclic Synchronous Position-Velocity-Torque, Interpolated Position Mode (PVT), and Homing.

Feedback from both incremental and absolute encoders is supported. A multi-mode encoder port functions as an input or output depending on the drive's basic setup. As an input it takes feedback from a secondary encoder to create a dual-loop position control system or as a master encoder for driving a cam table. As an output, it buffers the digital encoder signals from the motor's digital encoder and eliminates split cables that would be needed to send the signals to both drive and control system.

There are ten non-isolated inputs. Eight opto-isolated digital inputs are bipolar types that source or sink current into a common connection that can be tied to ground or +24V. [IN1&10] default to the drive Enable function for axes A & B, and are programmable to other functions. The other inputs are programmable. All inputs have programmable active levels. Five opto-isolated outputs [OUT1~5] have individual collector/emitter connections. Two MOSFET outputs [OUT6~7] are programmable to drive motor brakes or other functions.

Drive power is transformer-isolated DC from regulated or unregulated power supplies. An AuxHV input is provided for "keep-alive" operation permitting the drive power stage to be completely powered down without losing position information, or communications with the control system.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 Web: www.copleycontrols.com

Accelnet Plus 2-Axis Panel EtherCAT BE2 CA

GENERAL SPECIFICATIONS

MODEL		BE2-090-06	BE2-090-14	BE2-090-20	
OUTPUT POWER (EACH A	XIS)				
Peak Current	•	6 (4.24)	14 (9.9)	20 (14.4)	Adc (Arms-sine), ±5%
Peak time		1			Sec
Continuous current (N	Note 1)	3 (2.1)	7 (5)	10 (7.1)	Adc (Arms-sine) per phase
NPUT POWER					
HVmin~HVmax		+14 to +90	+14 to +90	+14 to +90	Vdc Transformer-isolated
Ipeak		12	28	40	Adc (1 sec) peak
Icont		6	14	20	Adc continuous
Aux HV		+14 to +1	HV Vdc @ 500 mAdc	maximum, 2.5 W	Optional, not required for operation
DIGITAL CONTROL		C	and the state of the state of	1000/ -!!-!!!	hand.
Digital Control Loops				n. 100% digital loop con	
Sampling rate (time) Bus voltage compens	ation			voltage do not affect ba	on loops: 4 kHz (250 µs)
Minimum load inducta			uH line-line	voltage do not affect ba	anawiath
OMMAND INPUTS (NOTI			<u> </u>		
Distributed Control N		T T ONO THOU	TROOM WINNELL)		
CAN Application proto					file Position-Velocity-Torque,
		Inter	polated Position, Ho	ming	
Stand-alone mode	La attaca de actata de con		Mala 10 late or a location	Dedicate	ad differential analysis in such
Analog torque, ve			Vdc, 12-bit resolution		ed differential analog input
Digital position re	referice		e/Direction, CW/CCW d A/B Encoder		commands (2 MHz maximum rate) /sec, 8 Mcount/sec (after quadrature)
Digital torque & v	elocity reference	Quat PW/M	I , Polarity		0% - 100%, Polarity = 1/0
Digital torque & velocity reference PWM , Polarity PWM = 0% - 100%, Polarity = 1/0 PWM 50% PWM = 50% ±50%, no polarity significant production in the product of the product		50% ±50%, no polarity signal required			
			I frequency range		ninimum, 100 kHz maximum
		PWM	l minimum pulse wid	th 220 ns	,
Indexing				pe launched from inputs	
Camming				be stored in flash memo	
ASCII		RS-2	232, DIE, 9600~115	200 Baud, 3-wire, RJ-1:	2 connector
DIGITAL INPUTS					
Number 18 [IN1,2,10,11]	Digital non-icola	ted Schmitt triage	or 1 us BC filtor 24 V	/dc compatible program	nmable pull-up/down to +5 Vdc/ground,
[1141,2,10,11]			Vdc, VH = $0.7 \sim 1.5$		innable pair apydown to 13 vac/ground,
[IN3,4,12,13]					s RC filter, 12 Vdc max,
2 -, , , -3	10 kΩ programm	nable pull-up/down	per input to +5 Vdc	/ground,	, ,
					mVdc, Vin-HI ≥ 200 mVdc, VH = 45 mV typ
[IN5~8,14~17]					s of 4 with 1 common return
[TNO 10]					nt ±3.6 mA @ ±24 Vdc, typical
[IN9,18]			rogrammable for the		mmable to other functions
					2.2 Vdc, VH = 0.7~1.5 Vdc
Functions					ion and are programmable
AFE TORQUE OFF (STO)		J , [,		
Function		active and current	to the motor will not	be possible when the S	TO function is asserted
Standard			1508-2, IEC-61800-		
Safety Integrity Leve	I SIL 3, Catego	ry 3, Performance I	level d		
Inputs			IN1-, STO_IN2+, ST		
Туре				open, Vin-HI ≥ 15.0 Vd	c,
Input current (typical		mA, STO_IN2: 4.5		anaway aynaliad tat	
Response time Reference				energy supplied to mot	or et Plus Panels STO Manual
ANALOG INPUTS	complete IIII	acion ana spi		riccomet a stephe	rancio e re rianda
Number	2				
[AIN1~2]		10 Vdc, 5 kW input	t impedance, 12-bit	resolution	
DIGITAL OUTPUTS	,				
Number	7				
[OUT1~5]	Opto-isolated	Darlingtons, 20 m/	A max, 24 V tolerant	, Rated impulse ≥ 800 V	/, series 20 ohm resistor
					voical, output ON, Vce-max 32 Vdc, output

collector & emitter connections on each output, Vce = 1.2 Vdc @ 20 mAdc, typical, output ON, Vce-max 32 Vdc, output OFF, Td-ON = 500 µs max @ 20 mA, Td-OFF = 500 µs max @ 20 mA, times include rise/fall times
Default as motor brake control: current-sinking, 1 Adc max, internal flyback diodes for driving inductive loads

[OUT6~7]

Programmable for other functions if not used for brake

RS-232 PORT

RxD, TxD, Gnd in 6-position, 4-contact RJ-12 style modular connector, non-isolated, common to Signal Ground Signals Mode Full-duplex, DTE serial communication port for drive setup and control, 9,600 to 115,200 baud

Protocol Binary and ASCII formats

ETHERCAT PORTS Format

Dual RJ-45 receptacles, 100BASE-TX EtherCAT, CAN Application protocol over EtherCAT (CoE) Protocol

NOTES:

1) Heatsink or forced-air required for continuous current rating

Fax: 781-828-6547 Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Web: www.copleycontrols.com Page 2 of 28

FEEDBACK	
Incremental:	
Digital Incremental Encoder	Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required)
	5 MHz maximum line frequency (20 M counts/sec)
Analog Incremental Encoder	MAX3097 differential line receiver with 121 Ω terminating resistor between complementary inputs Sin/cos format (sin+, sin-, cos+, cos-), differential, 1 Vpeak-peak, ServoTube motor compatible, BW > 300 kHz, 121 Ω terminating resistor between complementary inputs
Analog Index signal	Differential, 121 Ω terminating resistor between complementary inputs, 1 Vpeak-peak zero-crossing detect
Absolute:	
SSI	Clock (X, /X), Data (S, /S) signals, 4-wire, clock output from BE2, data returned from encoder
EnDat	Clock (X, /X), Data (S, /S), sin/cos (sin+, sin-, cos+, cos-) signals
Absolute A	Tamagawa Absolute A, Panasonic Absolute A Format, Sanyo Denki Absolute A SD+, SD- (S, /S) signals, 2.5 or 4 MHz, 2-wire half-duplex communication
	Status data for encoder operating conditions and errors
BiSS (B&C)	MA+, MA- $(X, /X)$, SL+, SL- $(S, /S)$ signals, 4-wire, clock output from BE2, data returned from encoder
DIGITAL HALLS	
Туре	Digital, single-ended, 120° electrical phase difference between U-V-W signals, Schmitt trigger, 1 µs RC filter, 24 Vdc compatible, programmable pull-up/down to +5 Vdc/ground, Vt+ = $2.5 \sim 3.5$ Vdc, VT- = $1.3 \sim 2.2$ Vdc, VH = $0.7 \sim 1.5$ Vdc
Inputs	10 k Ω pullups to +5 Vdc, 1 μ s RC filter to Schmitt trigger inverters
MULTI-MODE ENCODER PORT	Digital and distance and decide (A. /A. D. /D. V. /V). 424 O. L
As Input	Digital quadrature encoder (A, /A, B, /B, X, /X), $121~\Omega$ terminating resistors on X & S inputs only 5 MHz maximum line frequency (20 M counts/sec), MAX3097 line receiver
	Digital absolute encoder (Clk, /Clk, Dat, /Dat) half or full-duplex operation,
	S & X inputs with $121~\Omega$ terminating resistors are used for absolute encoder interface
As Emulated Output	Quadrature encoder emulation with programmable resolution to 4096 lines (65,536 counts) per rev
	from analog sin/cos encoders or resolvers. A, /A, B, /B, X, /X, from ISL32179 differential line driver
As Buffered Output	Digital encoder feedback signals from primary digital encoder are buffered by ISL32179 line driver
RESOLVER (-R OPTION)	-g
Type	Brushless, single-speed, 1:1 to 2:1 programmable transformation ratio
Resolution	14 bits (equivalent to a 4096 line quadrature encoder)
Reference frequency	8.0 kHz
Reference voltage Reference maximum current	2.8 Vrms, auto-adjustable by the drive to maximize feedback 100 mA
Maximum RPM	10,000 typical
Sin/Cos inputs	Differential, 54k ±1% differential impedance, 2.0 Vrms, BW ≥ 300 kHz
DC POWER OUTPUTS	
Number	2
Ratings	+5 Vdc, 500 mA max each output, thermal and short-circuit protected
Connections	Axis A +5V Output: J1-25, J6-17, J6-22; combined current from these pins cannot exceed 500 mA
	Axis B +5V Output: J1-30, J7-17, J7-22; combined current from these pins cannot exceed 500 mA
RS-232 PORT	
Signals	RXD, TxD, Gnd in 6-position, 4-contact RJ-11 style modular connector, referenced to Signal Ground
Mode	Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset and is programmable up to 115,200 thereafter
Protocol	ASCII or Binary format
MOTOR CONNECTIONS	
Phase U, V, W	PWM outputs to 3-phase ungrounded Wye or delta connected brushless motors, or DC brush motors
Hall U, V, W	Digital Hall signals, single-ended
Digital Incremental Encoder	Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required)
	5 MHz maximum line frequency (20 M counts/sec) MAX3097 differential line receiver, 121 ohm inputs
Analog Incremental Encoder	Sin/cos format (sin+, sin-, cos+, cos-), differential, 1 Vpeak-peak, 121 ohm inputs
/ marcy incremental increas	X or S input may be firmware configured to latch position or time
SSI	Serial data and clock signals (DATA, /DATA, CLK, /CLK), differential, 121 ohm inputs
EnDat 2.1,2.2	Serial data and clock signals (DATA, /DATA, CLK, /CLK), differential, 121 ohm inputs
Absolute A	Sin/cos signals (Sin+, Sin-, Cos+, Cos-) Tamagawa Absolute A, Panasonic Absolute A Format, SD+, SD- (S, /S) signals, 121 ohm inputs
BiSS (B&C)	MA+, MA-, SL+, SL, 121 ohm inputs
Hall & encoder power	(See DC POWER OUTPUTS section)
Brake	OUT6~7] Default to brake function, programmable for other functions.
INDICATORS	
AMP	Bicolor LED, drive state indicated by color, and blinking or non-blinking condition
RUN ERR	Green LED, status of EtherCAT state-machine (ESM) Red LED, shows errors due to time-outs, unsolicited state changes, or local errors
L/A	Green LED, Link/Act, shows the state of the physical link and activity on the link (EtherCAT connection)
•	RUN, ERR, and L/A LED colors and blink codes conform to ETG.1300 S(R) V1.1.0

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090

Fax: 781-828-6547

Web: www.copleycontrols.com

Page 3 of 28

SPECIFICATIONS (CONT'D)

PROTECTIONS

 $+HV > HV_{max}$ Drive outputs turn off until $+HV < HV_{max}$ (See Input Power for HV_{max}) **HV** Overvoltage

+HV < +14 Vdc Drive outputs turn off until +HV > +14 VdcHV Undervoltage

Drive over temperature Heat plate > 70°C. Drive outputs turn off

Output to output, output to ground, internal PWM bridge faults Programmable: continuous current, peak current, peak time Short circuits I2T Current limiting Digital inputs programmable to detect motor temperature switch Inadequate analog encoder amplitude or missing incremental encoder signals Motor over temperature

Feedback Loss

MECHANICAL & ENVIRONMENTAL

Size 6.58 x 4.54 x 1.60 [167 x 115.2 x 40.6]

Weight 1.27 lb [0.58 kg], add 1.22 lb [0.55 kg] with heatsink

Ambient temperature 0 to +45°C operating, -40 to +85°C storage

Humidity 0 to 95%, non-condensing

Vibration 2 g peak, 10~500 Hz (sine), IEC60068-2-6 10 g, 10 ms, half-sine pulse, IEC60068-2-27 Shock

Contaminants Pollution degree 2 IEC68-2: 1990 Environment

Heat sink and/or forced air cooling required for continuous power output Cooling

AGENCY STANDARDS CONFORMANCE

Approvals

Underwriters Laboratory (UL) recognized component to UL 61010-1, 2nd Ed.: 2004 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use UL File Number E249894

TUV Functional Safety to IEC 61508

Functional Safety

IEC 61508-1, IEC 61508-2, EN(ISO) 13849-1, EN(ISO) 13849-2

(See the Accelnet & Stepnet Plus Panels STO Manual for further details)

Electrical Safety

In accordance with EC Directive 2006/95/EC (Low Voltage Directive)

IEC/UL/CSA 61010-1 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use

IEC 61800-5-1:2007

FMC.

IEC 61326-1:2005 (Industrial locations)

IEC 61326-3-1:2008

IEC 55011:2009/A1:2010, Group 1, Class A

IEC 61800-3:2004

Hazardous Substances

Lead-free and RoHS compliant

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Web: www.copleycontrols.com

Fax: 781-828-6547 Page 4 of 28

ETHERCAT COMMUNICATIONS

EtherCAT is the open, real-time Ethernet network developed by Beckhoff based on the widely used 100BASE-TX cabling system. EtherCAT enables high-speed control of multiple axes while maintaining tight synchronization of clocks in the nodes. Data protocol is CAN Application Layer over EtherCAT (CoE) based on DSP-402 for motion control devices.

More information on EtherCAT can be found on this web-site: http://ethercat.org/default.htm

ETHERCAT CONNECTIONS

Dual RJ-45 sockets accept standard Ethernet cables. The IN port connects to a master, or to the OUT port of a device that is 'upstream', between the Accelnet and the master. The OUT port connects to 'downstream' nodes. If Accelnet is the last node on a network, only the IN port is used. No terminator is required on the OUT port.

OUT (B)

IN (A)

ETHERCAT LEDS (ON RJ-45 CONNECTORS)

Green: Shows the state of the physical link and activity on the link.

A green LED indicates the state of the EtherCAT network:

LED Link Activity Condition ON Yes No Port Open

Yes Port Open with activity Flickering Yes

Off No (N/A)Port Closed

RUN Green: Shows the state of the ESM (EtherCAT State Machine)

Off = Init

Blinking = Pre-operational Single-flash = Safe-operational

On = Operational

Red: Shows errors such as watchdog timeouts and unsolicited

state changes in the BE2 due to local errors.

Off = EtherCAT communications are working correctly

Blinking = Invalid configuration, general configuration error

Single Flash =Local error, slave has changed EtherCAT state autonomously

Double Flash = PDO or EtherCAT watchdog timeout,

or an application watchdog timeout has occurred

EtherCAT DEVICE ID

In an EtherCAT network, slaves are automatically assigned fixed addresses based on their position on the bus. But when the device must have a positive identification that is independent of cabling, a Device ID is needed. In the BE2, this is provided by two 16-position rotary switches with hexadecimal encoding. These can set the Device ID of the drive from 0x01~0xFF (1~255 decimal). The chart shows the decimal values of the hex settings of each switch.

Example 1: Find the switch settings for decimal Device ID 107:

1) Find the highest number under S1 that is less than 107 and set S1 to the hex value in the same row:

96 < 107 and 112 > 107, so S1 = 96 = Hex 6

2) Subtract 96 from the desired Device ID to get the decimal value of switch S2 and set S2 to the Hex value in the same row:

S2 = (107 - 96) = 11 = Hex B

J3: EtherCAT PORTS

RJ-45 receptacles, 8 position, 4 contact

PIN	SIGNAL
6	RX-
3	RX+
2	TX-
1	TX+

EtherCAT Device ID Switch Decimal values

_/A (green)

Run

L/A (green)

(red)

				_		
Set	S1	S2	П	Set	S1	S2
Hex	D	ec		Hex	D	ec
0	0	0	П	8	128	8
1	16	1	П	9	144	9
2	32	2		Α	160	10
3	48	3	П	В	176	11
4	64	4	П	С	192	12
5	80	5	П	D	208	13
6	96	6	П	E	224	14
7	112	7		F	240	15

AMP LED

Two bi-color LEDs give the state of the BE2 drive. Colors do not alternate, and can be solid ON or blinking. When multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared the next one below will shown.

- 1) Red/Blinking
- 2) Red/Solid
- 3) Green/Slow-Blinking
- 4) Green/Fast-Blinking
- Latching fault. Operation will not resume until drive is Reset.
- = Transient fault condition. Drive will resume operation when
- the condition causing the fault is removed.
- Drive OK but NOT-enabled. Will run when enabled
- Positive or Negative limit switch active.
- Drive will only move in direction not inhibited by limit switch. Drive OK and enabled. Will run in response to
- reference inputs or EtherCAT commands

5) Green/Solid Latching Faults

Defaults

- Short circuit (Internal or external)
- Drive over-temperature
- Motor over-temperature
- Feedback Error
- Following Error

Optional (programmable)

- Over-voltage
- Under-voltage Motor Phasing Error
- Command Input Fault

AMP LEDS & ADDRESS SWITCHES

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Web: www.copleycontrols.com

Fax: 781-828-6547 Page 5 of 28

COMMUNICATIONS

RS-232 COMMUNICATIONS

BE2 is configured via a three-wire, full-duplex DTE RS-232 port that operates from 9600 to 115,200 Baud, 8 bits, no parity, and one stop bit. Signal format is full-duplex, 3-wire, DTE using RxD, TxD, and Gnd. Connections to the BE2 RS-232 port are through J4, an RJ-11 connector. The BE2 Serial Cable Kit (SER-CK) contains a modular cable, and an adapter that connects to a 9-pin, Sub-D serial port connector (COM1, COM2, etc.) on PC's and compatibles.

After power-on, reset, or transmission of a Break character, the Baud rate will be 9,600. Once communication has been established at this speed, the Baud rate can be changed to a higher rate (19,200, 57,600, 115,200).

SER-CK SERIAL CABLE KIT

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector on the BE2. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the BE2. The connections are shown in the diagram below.

J4: RS-232 PORT RJ-11 receptacle, 6 position, 4 contact

Don't forget to order a Serial Cable Kit SER-CK when placing your order for an BE2!

ASCII COMMUNICATIONS

The Copley ASCII Interface is a set of ASCII format commands that can be used to operate and monitor Copley Controls Accelnet, Stepnet, and BE2 series amplifiers over an RS-232 serial connection. For instance, after basic amplifier configuration values have been programmed using CME 2, a control program can use the ASCII Interface to:

- Enable the amplifier in Programmed Position mode.
- Home the axis.
- Issue a series of move commands while monitoring position, velocity, and other run-time variables.

The Baud rate defaults to 9,600 after power-on or reset and is programmable up to 115,200 thereafter.

After power-on, reset, or transmission of a Break character, the Baud rate will be 9,600. Once communication has been established at this speed, the Baud rate can be changed to a higher rate (19,200, 57,600, 115,200).

ASCII parameter 0x90 holds the Baud rate data. To set the rate to 115,200 enter this line from a terminal:

s r0x90 115200 <enter>

Then, change the Baud rate in the computer/controller to the new number and communicate at that rate.

Additional information can be found in the ASCII Programmers Guide on the Copley website: http://www.copleycontrols.com/Motion/pdf/ASCII ProgrammersGuide.pdf

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090

Fax: 781-828-6547

Web: www.copleycontrols.com

Page 6 of 28

SAFE TORQUE OFF (STO)

DESCRIPTION

The BE2 provides the Safe Torque Off (STO) function as defined in IEC 61800-5-2. Three opto-couplers are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core. This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When the opto-couplers are activated (current is flowing in the input diodes), the control core will be able to control the on/off state of the PWM outputs.

INSTALLATION

DANGER

Refer to the Accelnet & Stepnet Plus Panels STO Manual

The information provided in the Accelnet & Stepnet Plus Panels STO Manual must be considered for any application using the BE2 drive's STO feature.

Failure to heed this warning can cause equipment damage, injury, or death.

STO BYPASS (MUTING)

In order for the PWM outputs of the BE2 to be activated, current must be flowing through all of the opto-couplers that are connected to the STO-1 and STO-2 terminals of J5, and the drive must be in an ENABLED state. When the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor. This diagram shows connections that will energize all of the opto-couplers from an internal current-source. When this is done the STO feature is overridden and control of the output PWM stage is under control of the digital

If not using the STO feature, these connections must be made in order for the BE2 to be enabled.

FUNCTIONAL DIAGRAM

Current must flow through all of the opto-couplers before the drive can be enabled

Bypass Plug Connections Jumper pins: 1-7, 3-6, 8-14, 10-13

J5 SIGNALS

SIGNAL	PIN		SIGNAL
STO_IN2+	8	1	STO_IN2-
n.c.	9	2	n.c.
STO_IN1+	10	3	STO_IN1-
n.c.	11	4	n.c.
n.c.	12	5	n.c.
CTO DVD	13	6	Sgnd
STO_BYP	14	7	Sgnd

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 Page 7 of 28 Web: www.copleycontrols.com

COMMAND INPUTS

DIGITAL POSITION

Single-ended digital position commands should be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs. For differential commands, the A & B channels of the multi-mode encoder ports are used.

SINGLE-ENDED PULSE & DIRECTION

SINGLE-ENDED CU/CD

QUAD A/B ENCODER SINGLE-ENDED

DIFFERENTIAL PULSE & DIRECTION

DIFFERENTIAL CU/CD

QUAD A/B ENCODER DIFFERENTIAL

SINGLE-ENDED

Signal	Axis A J1	Axis B J1	
Pls, Enc A	23	24	
Dir, Enc B	5	6	
Sgnd	7,12,20		
F.G.	17		

F.G. = Frame Gnd

DIFFERENTIAL

Signal	Axis A J1	Axis B J1	
Pls, Enc A	26	31	
/Pls, Enc /A	8	13	
Dir, Enc B	27	32	
/Dir, Enc /B	9	14	
Sgnd	7,12,20		
F.G.	17		

F.G. = Frame Gnd

DIGITAL TORQUE, VELOCITY

Digital torque or velocity commands are in single-ended format and must be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs.

SINGLE-ENDED PWM & DIRECTION

DIFFERENTIAL PWM & DIRECTION

DIFFERENTIAL 50% PWM

SINGLE-ENDED 50% PWM

Tel: 781-828-8090

SINGLE-ENDED

Signal	Axis A J1	Axis B J1		
PWM	23	24		
Dir	5	6		
Sgnd	7,12,20			
F.G.	17			

F.G. = Frame Gnd

DIFFFRENTIAL

DITTERCENTIAL			
Signal	Axis A J1	Axis B J1	
PWM	26	31	
/PWM	8	13	
Dir	27	32	
/Dir	9	14	
Sgnd	7,12,20		
F.G.	17		

F.G. = Frame Gnd

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Web: www.copleycontrols.com

Fax: 781-828-6547 Page 8 of 28

MULTI-MODE ENCODER PORT

This port consists of three differential input/output channels that take their functions from the Basic Setup of the drive. With quad A/B encoder feedback, the port works as an output, buffering the signals from the encoder. With resolver or sin/cos encoder versions, the feedback is converted to "emulated" quad A/B/X signals with programmable resolution. These signals can then be fed back to an external motion controller that closes the position or velocity loops. As an input, the port can take quad A/B signals to produce a dual-loop position control system or use the signals as master-encoder commands in camming mode. In addition, the port can take stepper command signals (CU/CD or Pulse/Direction) in differential format.

AS COMMAND INPUTS

AS DIGITAL COMMAND INPUTS IN PULSE/DIRECTION, PULSE-UP/PULSE-DOWN, OR DIGITAL QUADRATURE ENCODER FORMAT

The multi-mode port can also be used when digital command signals are in a differential format. These are the signals that typically go to single-ended inputs. But, at higher frequencies these are likely to be differential signals in which case the multi-mode port can be used.

AS A MASTER OR CAMMING ENCODER INPUT FROM A DIGITAL QUADRATURE ENCODER

When operating in position mode the multi-mode port can accept digital command signals from external encoders. These can be used to drive cam tables, or as master-encoder signals when operating in a master/slave configuration.

COMMAND INPUT MULTI-PORT

Signal	Axis A J1	Axis B J1
Pls, Enc A	26	31
/Pls, Enc /A	8	13
Dir, Enc B	27	32
/Dir, Enc /B	9	14
Enc X	28	33
Enc /X	10	15
Sgnd	7,12,20	
F.G.	17	

F.G. = Frame Gnd

AS AN OUTPUT FOR FEEDBACK SIGNALS TO AN EXTERNAL CONTROLLER

AS BUFFERED OUTPUTS FROM A DIGITAL QUADRATURE PRIMARY ENCODER

When using a digital quadrature feedback encoder, the A/B/X signals drive the multi-mode port output buffers directly. This is useful in systems that use external controllers that also need the motor feedback encoder signals because these now come from J8, the Control connector. In addition to eliminating "Y" cabling where the motor feedback cable has to split to connect to both controller and motor, the buffered outputs reduce loading on the feedback cable that could occur if the motor encoder had to drive two differential inputs in parallel, each with it's own 121 ohm terminating resistor.

AS EMULATED QUAD A/B/X ENCODER OUTPUTS FROM AN ANALOG SIN/COS FEEDBACK ENCODER

Analog sin/cos signals are interpolated in the drive with programmable resolution. The incremental position data is then converted back into digital quadrature format which drives the multi-mode port output buffers. Some analog encoders also produce a digital index pulse which is connected directly to the port's output buffer. The result is digital quadrature A/B/X signals that can be used as feedback to an external control system.

EMULATED QUAD A/B/X MULTI-PORT

Signal	Axis A J1	Axis B J1	
Enc A	26	31	
Enc /A	8	13	
Enc B	27	32	
Enc /B	9	14	
Enc X	28	33	
Enc /X	10	15	
Sgnd	7,12,20		
F.G.	17		

F.G. = Frame Gnd

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090

Fax: 781-828-6547

Web: www.copleycontrols.com

Page 9 of 28

PROGRAMMABLE DIGITAL INPUTS

Use this chart shows as a quick reference to the inputs and their characteristic R/C combinations.

HI/LO DEFINITIONS: INPUTS

Input	State	Condition
IN1,2,10,11	HI	Vin >= 3.5 Vdc
IN9,18	LO	Vin <= 0.7 Vdc
INIO 4 40 40	HI	Vin >= 2.7 Vdc
IN3,4,12,13	LO	Vin <= 2.3 Vdc
IN5,6,7,8 IN14,15,16,17	HI	Vin >= 10.0 Vdc
	LO	Vin <= 6.0 Vdc

[IN1~18] SIGNALS

Inpu	it	Pin	R1	R2	C1
*IN1	1	J1-21		10k	
*IN2	2	J1-3	10k	TUK	1000
*IN3	3	J1-23	TOK	41	100p
*IN4	1	J1-5		1k	
IN5		J2-11			
IN6		J2-1		Opto	
IN7		J2-12	±Common is		s J2-20
IN8		J2-2			
IN9		J6-7	4.99k	10k	33n

_					
	Input	Pin R1		R2	C1
1	*IN10	J1-22		10k	
1	*IN11	J1-4	101	TUK	1000
1	*IN12	J1-24	10k -	1k	100p
	*IN13	J1-6			
1	IN14	J2-13			
1	IN15	J2-3		Opto	
	IN16	J2-14	±Cor	nmon is	32-20
	IN17	J2-4			
	IN18	J7-7	4.99k	10k	33n

* PROGRAMMABLE PULL UP/DOWN

The input resistor of these inputs is programmable to pull-up to +5V or pull-down to 0V. Pull-up is the default and works with current-sinking outputs from a controller. Pull-down works with current-sourcing outputs, typically PLC's that drive grounded loads.

Six of the inputs have individually settable PU/PD. The other four have PU/PD control for pairs of inputs.

INPUT CONFIGURATIONS

Vmax

+12V

INPUTS WITH PROGRAMMABLE PULL UP/DOWN

Input	Pin	PU/PD	Input
IN1	J1-21	1	IN10
IN2	J1-3	2	IN11
IN3	J1-23	5	IN12
IN4	J1-5	6	IN13

IIIADEL	I OLL OI	/DOWN
Input	Pin	PU/PD
IN10	J1-22	3
IN11	J1-4	4
IN12	J1-24	7
IN13	J1-6	8

Tel: 781-828-8090

SINGLE-ENDED/DIFFERENTIAL DIGITAL INPUTS [IN2~3,12~13]

These inputs have all the programmable functions of the GP inputs plus these additional functions which can be configured as single-ended (SE) or differential (DIFF):

- PWM 50%, PWM & Direction for Velocity or Current modes
- Pulse/Direction, CU/CD, or A/B Quad encoder inputs for Position or Camming modes

[IN2~3,12~13] SIGNALS

S.E. Input	Diff Input	Pin
IN2	IN2+	J1-23
IN3	IN2-	J1-5

S.E. Input	Diff Input	Pin
IN12	IN12+	J1-24
IN13	IN12-	J1-6

PLC outputs are frequently current-sourcing from 24V for driving grounded loads. PC based digital controllers commonly use NPN or current-sinking outputs. Set the Accelnet inputs to pull-down to ground for currentsourcing connections, and to pull-up to 5V for current-sinking connections.

Fax: 781-828-6547 Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Web: www.copleycontrols.com Page 11 of 28

OPTO-ISOLATED DIGITAL INPUTS

These inputs have all the programmable functions of the GP inputs plus opto-isolation. There are two groups of four inputs, which share a common terminal. Grounding the common terminal configures the inputs to work with current-sourcing outputs from controllers like PLC's. When the common terminal is connected to ± 24 V, then the inputs will be activated by current-sinking devices such as NPN transistors or N-channel MOSFETs. The minimum ON threshold of the inputs is ± 15 Vdc.

IN THE GRAPHICS BELOW, "24V" IS FOR CONNECTIONS TO CURRENT-SOURCING OUTPUTS AND "GND" IS FOR CURRENT-SINKING OUTPUTS ON THE CONTROL SYSTEM

[IN5,7,13,16] ±30 Vdc max

These inputs work with current-sourcing OR current-sinking connections. Connect the COMM to controller ground/common for current-sourcing connections and to $15{\sim}24V$ from the controller for current-sinking connections.

[IN16,8,15,17] ±30 Vdc max

[IN5~8,14~17] SIGNALS

Vmax +24V

Tel: 781-828-8090

Signal	Pins	Signal	Pins
IN5	J2-11	IN6	J2-1
IN7	J2-12	IN8	J2-2
IN14	J2-13	IN15	J2-3
IN16	J2-14	IN17	J2-4
COMM	J2-20	F.G.	J2-10

F.G. = Frame Gnd

Fax: 781-828-6547

Page 12 of 28

ANALOG INPUTS

The analog inputs have a ± 10 Vdc range at 12-bit resolution As reference inputs they can take position/velocity/torque commands from a controller. If not used as command inputs, they can be used as general-purpose analog inputs.

[AIN A,B] SIGNALS

Cianal	J1 Pins	
Signal	Axis A	Axis B
AIN(+)	18	19
AIN(-)	1	2
Sgnd	7,12,20	
F.G.	17	

CME2 -> Basic Setup -> Operating Mode Options

Command Source: Analog Command

OUTPUTS

OPTO-ISOLATED OUTPUTS [OUT1~5]

30 Vdc max

Zener clamping diodes across outputs allow driving of resistive-inductive (R-L) loads without external flyback diodes.

[OUT1~5] SIGNALS

Signal	Pins	Signal	Pins
[OUT1+]	J2-15	[OUT1-]	J2-5
[OUT2+]	J2-16	[OUT2-]	J2-6
[OUT3+]	J2-17	[OUT3-]	J2-7
[OUT4+]	J2-18	[OUT4-]	J2-8
[OUT5+]	J2-19	[OUT5-]	J2-9
[COMM]	J2-20	F.G.	J2-10

F.G. = Frame Gnd

[OUT1~5]

BRAKE OUTPUTS [OUT6,7]

These outputs are open-drain MOSFETs with internal flyback diodes for driving inductive loads. Each can sink up to 1A from a motor brake connected to the +24 Vdc supply. The operation of the brake is programmable with *CME 2*. They can also be programmed as a general-purpose digital outputs.

Earthing connections for power supplies should be as close as possible to elimimate potential differences between power supply OV terminals.

This diagram shows the connections to the drive that share a common ground in the driver. If the brake 24V power supply is separate from the DC supply powering the drive, it is important that it connects to an earth or common grounding point with the HV power supply.

BRAKE SIGNALS

Signal	Axis A	Axis B
Brk24V	J6-23	J7-23
BRK-A,B	J6-24	J7-24
Signal Gnd	J6-11,10,5	J7-11,10,5

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
OUT4 5	HI	Output transistor is ON, current flows
OUT1~5	LO	Output transistor is OFF, no current flows
BRK-A,B OUT6,7	HI	Output transistor is OFF Brake is un-powered and locks motor shaft Motor cannot move Brake state is Active
	LO	Output transistor is ON Brake is powered, releasing motor shaft Motor is free to move Brake state is NOT-Active

CME2 Default Setting for Brake Outputs [OUT6,7] is "Brake - Active HI"

tive = Brake is holding motor shaft (i.e. the Brake is Active)

Motor cannot move

No current flows in coil of brake

CME2 I/O Line States shows Output 6 or 7 as HI

BRK Output voltage is HI (24V), MOSFET is OFF

Servo drive output current is zero

Servo drive is disabled, PWM outputs are off

Inactive = Brake is not holding motor shaft (i.e. the Brake is Inactive)

Motor can move

Current flows in coil of brake

CME2 I/O Line States shows Output 6 or 7 as LO BRK output voltage is LO (\sim 0V), MOSFET is ON

Servo drive is enabled, PWM outputs are on

Servo drive output current is flowing

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090

Fax: 781-828-6547

Web: www.copleycontrols.com

Page 13 of 28

QUAD A/B/X ENCODER WITH SIGNAL LOSS DETECTION

Encoders with differential line-driver outputs are required (single-ended encoders are not supported) and provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark. The MAX3097 receiver has differential inputs with fault protections for the following conditions:

QUAD ENCODER WITH INDEX

+5V 0V

Condition Example Line-line shorts A shorted to /A

Open-circuits: A disconnected, /A connected. Terminator resistor pulls

A & /A together for a short-circuit fault

Low-voltage $Va - Vb \le 200 \text{ mV}, \text{ or } \ge -200 \text{ mV}$ Encoder power loss, cabling, etc.

SIGNAL LOSS DETECTION LOGIC

Frame Ground Frame Ground A B B 121 Enc. A A 121 Enc. B Frame Ground Frame

Signal J6,J7 Pin Enc A 13 Enc /A 1 Enc B 14

A/B/X SIGNALS

Enc B	14	
Enc /B	2	
Enc X	15	
Enc /X	3	
+5V	17,22	
Sgnd	5,10	

Sgnd = Signal Ground F.G. = Frame Gnd

CME2 FEEDBACK OPTIONS

ANALOG SIN/COS INCREMENTAL ENCODER

The sin/cos/index inputs are differential with 121 Ω terminating resistors and accept 1 Vp-p signals in the format used by incremental encoders with analog outputs, or with ServoTube motors.

Signal Ground

ı !-----

SIN/COS SIGNALS

5111, COS 51011/1ES		
Signal	J6,J7 Pin	
Sin(+)	20	
Sin(-)	8	
Cos(+)	21	
Cos(-)	9	
Х	15	
/X	3	
+5V	17,22	
Sgnd	5,10	
F.G.	12	

F.G. = Frame Gnd

RESOLVER (-R MODELS)

Connections to the resolver should be made with shielded cable that uses three twisted-pairs. Once connected, resolver set up, motor phasing, and other commissioning adjustments are made with CME 2 software. There are no hardware adjustments.

Tel: 781-828-8090

MOTOR CONNECTIONS (CONT'D)

SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The XEL drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The polling of the encoder data occurs at the current loop frequency (16 kHz). The number of encoder data bits and counts per motor revolution are programmable.

The hardware bus consists of two signals: SCLK and SDATA. Data is sent in 8 bit bytes, LSB first. The SCLK signal is only active during transfers. Data is clocked out on the falling edge and clock in on the rising edge of the Master.

BISS ABSOLUTE ENCODER

BiSS is an - Open Source - digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options.

Serial Synchronous Data Communication Cyclic at high speed

2 unidirectional lines Clock and Data

Line delay compensation for high speed data transfer

Request for data generation at slaves Safety capable: CRC, Errors, Warnings

Bus capability incl. actuators

Bidirectional

BiSS B-protocol: Mode choice at each cycle start

BiSS C-protocol: Continuous mode

SSI, BISS SIGNALS

SSI	BiSS	J6,J7 Pin
Clk	MA+	15
/Clk	MA-	3
Data	SL+	16
/Data	SL-	4
+5V		17,22
Sgnd		5,10
Frame Gnd		12

ENDAT ABSOLUTE ENCODER

The EnDat interface is a Heidenhain interface that is similar to SSI in the use of clock and data signals, but which also supports analog sin/cos channels from the same encoder. The number of position data bits is programmable as is the use of sin/cos channels. Use of sin/cos incremental signals is optional in the EnDat specification.

ENDAT SIGNALS

Signal	J6,J7 Pin	
Clk	15	
/Clk	3	
Data	16	
/Data	4	
Sin(+)	20	
Sin(-)	8	
Cos(+)	21	
Cos(-)	9	
+5V	17,22	
Sgnd	5,10	
F.G.	12	

F.G. = Frame Gnd

ABSOLUTE-A ENCODER

The Absolute A interface is a serial, half-duplex type that is electrically the same as RS-485

ABSOLUTE-A SIGNALS

Signal	J6,J7 Pin	
Data	16	
/Data	4	
+5V	17,22	
Sgnd	5,10	
F.G.	12	

 $F.G. = Frame\ Gnd$

Tel: 781-828-8090

MOTOR CONNECTIONS (CONT'D)

MOTOR PHASE CONNECTIONS

The drive outputs are three-phase PWM inverters that convert the DC buss voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the motor. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive frame ground terminal (J8,J9-1) for best results.

MOTOR SIGNALS

Signal	J8,J9 Pin
Mot U	4
Mot V	3
Mot W	2
Frame Gnd	1

F.G. = Frame Gnd

DIGITAL HALL SIGNALS

Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U, V, & W) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and are used for commutation-initialization after startup, and for checking the motor phasing after the amplifier has switched to sinusoidal commutation.

HALL SIGNALS

J6,J7 Pin
18
6
19
17,22
5,10
12

F.G. = Frame Gnd

MOTOR OVER TEMP INPUT

The 4.99k pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999:Part 111:1987 (table below), or switches that open/close indicating a motor over-temperature condition. The active level is programmable.

These inputs are programmable for other functions if not used as Motemp inputs. And, other inputs are programmable for the Motemp function.

MOTEMP SIGNALS

Signal	Pin
Motemp A	J6-7
Motemp B	J7-7
J6,J7 Sgnd	5,10
Frame Gnd	12

BS 4999 SENSOR

Property	Ohms
Resistance in the temperature range 20°C to +70°C	60~750
Resistance at 85°C	≤1650
Resistance at 95°C	≥3990
Resistance at 105°C	≥12000

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090

Fax: 781-828-6547

Web: www.copleycontrols.com

Page 16 of 28

MOTOR CONNECTIONS (CONT'D)

MULTI-MODE ENCODER PORT

The multi-mode port can operate as primary or secondary feedback from digital quad A/B/X or absolute encoders.

FEEDBACK FROM DIGITAL QUADRATURE ENCODER

When operating in position mode the multi-mode port can accept digital command signals from external encoders. These can be used to drive cam tables, or as master-encoder signals when operating in a master/ slave configuration.

QUAD A/B/X SIGNALS

Signal J1	Axis A	Axis B
Enc A	26	31
Enc /A	8	13
Enc B	27	32
Enc /B	9	14
Enc X	28	33
Enc /X	10	15
+5V Output	25	30
Sgnd	7,12,20	
Frame Gnd	17	

FEEDBACK FROM ABSOLUTE ENCODERS

Digital absolute encoder feedback as motor or load encoder can come from absolute encoders, too. Analog sin/cos signals are not supported by the multi-port. The graphic to the right shows half-duplex format but both full and half-duplex operation are supported by the multi-port (see below)

ABSOLUTE ENCODER, FULL-DUPLEX MODE

FULL-DUPLEX ENCODERS

SSI BiSS EnDat

HALF-DUPLEX ENCODERS

Absolute-A Panasonic Absolute A Format Sanyo Denki Absolute-A Tamagawa Absolute-A

FULL-DUPLEX SIGNALS

Signal J1	Axis A	Axis B
Clk	28	33
/Clk	10	15
Dat	29	34
/Dat	11	16
+5V Output	25	30
Sgnd	7,12,20	
Frame Gnd	1	7

ABSOLUTE ENCODER, HALF-DUPLEX MODE

HALF-DUPLEX SIGNALS

JI OI WILD		
Signal J1	Axis A	Axis B
Dat	29	34
/Dat	11	16
+5V Output	25	30
Sgnd	7,12,20	
Frame Gnd	17	

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090

Fax: 781-828-6547

Web: www.copleycontrols.com

Page 17 of 28

MOTOR CONNECTIONS FOR INCREMENTAL DIGITAL ENCODERS

The connections shown may not be used in all installations

Accelnet Plus Panel 2-Axis ϵ Frame Gnd 12 Enc A /A Enc /A В Enc B **DIGITAL** l 14 **ENCODER** Enc /B Χ Enc X l 15 /X Enc /X 3 J6 Vcc +5V Out 17 **J7** OV Signal Gnd 10 Hall U 18 **DIGITAL** Hall V HALLS Hall W Signal Gnd 5 **TEMP** SENSOR Motemp Brk +24V 23 Brake 24 Brk 24 Vdc J3 Signal Gnd 11 OV ϵ Mot U BRUSH ٧ MOTOR **J8** BRUSHLESS Mot V **MOTOR** J9 W Mot W Frame Gnd Grounding tab

NOTES:

- 1) +5V Out on J6 & J7 are independent power supplies and each is rated for 400 mA
- 2) CE symbols indicate connections required for CE compliance.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090

Fax: 781-828-6547

Web: www.copleycontrols.com

Page 18 of 28

MOTOR CONNECTIONS FOR INCREMENTAL ANALOG (SIN/COS) ENCODERS

The connections shown may not be used in all installations

Accelnet Plus Panel 2-Axis Œ Frame Gnd 12 Sin+ Enc Sin(+) 20 Sin-Enc Sin(-) Cos+ **DIGITAL** Enc Cos(+) 21 **ENCODER** Cos-Enc Cos(-) 9 Ndx+ Enc Index(+) 15 Ndx-Enc Index(-) J6 Vcc +5V Out 17 22 J7 OV Signal Gnd 10 Hall U DIGITAL Hall V 6 **HALLS** Hall W Signal Gnd 5 TEMP **SENSOR** Motemp Brk +24V 23 Brake 24 Brk 24 Vdc Signal Gnd 11 0V ϵ Mot U BRUSH J8 MOTOR BRUSHLESS Mot V MOTOR J9 W Mot W Frame Gnd Grounding tab

NOTES:

- 1) +5V Out on J6 & J7 are independent power supplies and each is rated for 400 mA
- 2) CE symbols indicate connections required for CE compliance.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090

Fax: 781-828-6547

Web: www.copleycontrols.com

Page 19 of 28

MOTOR CONNECTIONS FOR RESOLVERS

The connections shown may not be used in all installations.

Accelnet Plus Panel 2-Axis Œ Frame Gnd 12 Sin+ S3 Rlvr Sin(+) Sin-S1 Rlvr Sin(-) Cos+ S2 Rlvr Cos(+) RESOLVER Cos- S4 Rlvr Cos(-) Ref+ R1 Rlvr Ref(+) Ref- R2 RIvr Ref(-) 3 **J6** +5V Out 17 **J7** Signal Gnd 10 Hall U 18 Hall V Hall W Signal Gnd TEMP SENSOR Motemp Brk +24V 23 24 Vdc Brake 24 Brk Signal Gnd 11 0V ϵ U Mot U BRUSH MOTOR **J8** BRUSHLESS Mot V MOTOR J9 W Mot W Frame Gnd Grounding tab

NOTES:

- 1) +5V Out on J6 & J7 are independent power supplies and each is rated for 400 mA
- 2) CE symbols indicate connections required for CE compliance.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090

Fax: 781-828-6547

Web: www.copleycontrols.com

Page 20 of 28

CONNECTORS & SIGNALS

J2: I/O

Signal	Pin		Signal
ISO Input [IN5]	11	1	ISO Input [IN6]
ISO Input [IN7]	12	2	ISO Input [IN8]
ISO Input [IN14]	13	3	ISO Input [IN15]
ISO Input [IN16]	14	4	ISO Input [IN17]
ISO Output [OUT1+]	15	5	ISO Output [OUT1-]
ISO Output [OUT2+]	16	6	ISO Output [OUT2-]
ISO Output [OUT3+]	17	7	ISO Output [OUT3-]
ISO Output [OUT4+]	18	8	ISO Output [OUT4-]
ISO Output [OUT5+]	19	9	ISO Output [OUT5-]
ISO COMM [ICOM]	20	10	Frame Ground

J2 I/O Connector:

20-position shrouded cable header, keyed polarization Samtec IPL1-110-01-L-D-RA-K

J2 Cable Connector:

Samtec IPD1-10-D-K

Contacts: CC79L-2024-L (AWG 20~24)

J1: CONTROL

Signal	Pi	in	Signal
Axis A Analog Ref(+)	18	1	Axis A Analog Ref(-)
Axis B Analog Ref(+)	19	2	Axis B Analog Ref(-)
Signal Ground	20	3	GP Input [IN2]
GP Enable Input [IN1]	21	4	GP Input [IN11]
GP Input [IN10]	22	5	HS Input [IN4]
HS Input [IN3]	23	6	HS Input [IN13]
HS Input [IN12]	24	7	Signal Ground
Axis A +5 Vdc Output	25	8	Axis A Multi-Mode Enc /A
Axis A Multi-Mode Enc A	26	9	Axis A Multi-Mode Enc /B
Axis A Multi-Mode Enc B	27	10	Axis A Multi-Mode Enc /X
Axis A Multi-Mode Enc X	28	11	Axis A Multi-Mode Enc /S
Axis A Multi-Mode Enc S	29	12	Signal Ground
Axis B +5 Vdc Output	30	13	Axis B Multi-Mode Enc /A
Axis B Multi-Mode Enc A	31	14	Axis B Multi-Mode Enc /B
Axis B Multi-Mode Enc B	32	15	Axis B Multi-Mode Enc /X
Axis B Multi-Mode Enc X	33	16	Axis B Multi-Mode Enc /S
Axis B Multi-Mode Enc S	34	17	Frame Ground

J1 Control Connector:

34-position shrouded cable header, keyed polarization Samtec: IPL1-117-01-L-D-RA-K

J1 Cable Connector:

34-position connector housing, keyed polarization

Samtec IPD1-17-D-K

Contacts: CC79L-2024-L (AWG 20~24)

S2 S1 DEV

J5 Safety Connector:

14-position shrouded cable header, keyed polarization Samtec IPL1-107-01-L-D-RA-K

J5 Cable Connector:

Samtec IPD1-07-D-K Contacts: CC79L-2024-L

(AWG 20~24)

J5: SAFETY (STO)

Signal	Pin		Signal
STO_IN2+	8 1		STO_IN2-
n.c.	9 2		n.c.
STO_IN1+	10	3	STO_IN1-
n.c.	11 4		n.c.
n.c.	12 5		n.c.
CTO DVD	13	6	Sgnd
STO_BYP	14	7	Sgnd

J4: SERIAL

Pin	Signal
6	n.c.
5	TxD
4	Sgnd
3	Sgnd
2	RxD
1	n.c.

J4 RS-232 Connector: RJ-11 modular receptacle 6-position, 4 used

J3: ETHERCAT

Pin	Signal
8	TX1 Term
7	TX1 Term
6	RX1-
5	RX1 Term
4	RX1 Term
3	RX1+
2	TX1-
1	TX1+

J3 EtherCAT Connector: RJ-45 dual receptacle

Samtec Connector Tools:

Crimping tool: CAT-HT-179-2024-11 Contact Extractor: CAT-EX-179-01 Contact lance reset tool: CAT-RE-169-01

Notes on Tools:

Connector tools are available from manufacturers and are not sold by Copley Controls.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090

Fax: 781-828-6547

Web: www.copleycontrols.com

Page 21 of 28

CONNECTORS & SIGNALS

J10: Power Connector:

Euro-style 5,0 mm receptacle, 3-position

Wago: 721-463/001-040 Insert/extract lever: Wago: 231-131

J10 Cable Connector:

Wago 721-103/026-047/RN01-0000 Insert/extract lever: Wago: 231-131

J7: AXIS B FEEDBACK

Signal	Pin		Signal
Axis B Enc A	13	1	Axis B Enc /A
Axis B Enc B	14	2	Axis B Enc /B
Axis B Enc X	15	3	Axis B Enc /X
Axis B Enc S	16	4	Axis B Enc /S
Axis B +5 Vdc Output	17	5	Signal Ground
Axis B Hall U	18	6	Axis B Hall V
Axis B Hall W	19	7	Axis B Motemp [IN18]
Axis B Sin(+)	20	8	Axis B Sin(-)
Axis B Cos(+)	21	9	Axis B Cos(-)
Axis B +5 Vdc Output	22	10	Signal Ground
Axis B Brake +24V	23	11	Signal Ground
Axis B Brake [OUT7]	24	12	Frame Ground

J6: AXIS A FEEDBACK

Signal	Pin		Signal
Axis A Enc A	13	1	Axis A Enc /A
Axis A Enc B	14	2	Axis A Enc /B
Axis A Enc X	15	3	Axis A Enc /X
Axis A Enc S	16	4	Axis A Enc /S
Axis A +5 Vdc Output	17	5	Signal Ground
Axis A Hall U	18	6	Axis A Hall V
Axis A Hall W	19	7	Axis A Motemp [IN9]
Axis A Sin(+)	20	8	Axis A Sin(-)
Axis A Cos(+)	21	9	Axis A Cos(-)
Axis A +5 Vdc Output	22	10	Signal Ground
Axis A Brake +24V	23	11	Signal Ground
Axis A Brake [OUT6]	24	12	Frame Ground

J6,J7 Feedback Connectors:

24-position shrouded cable headers, keyed polarization Samtec IPL1-112-01-L-D-RA-K

J6,J7 Cable Connectors:

24-position connector housing, keyed polarization

Samtec IPD1-12-D-K

Contacts: CC79L-2024-L (AWG 20~24)

Samtec Connector Tools:

Crimping tool: CAT-HT-179-2024-11 Contact Extractor: CAT-EX-179-01 Contact lance reset tool: CAT-RE-169-01

Notes on Tools:

Connector tools are available from manufacturers and are not sold by Copley Controls.

J10: HV & AUX POWER

Pin	Signal
3	Aux HV
2	HV Com (Gnd)
1	+HV

J9: AXIS B MOTOR

Pin	Signal
4	Axis B Mot U
3	Axis B Mot V
2	Axis B Mot W
1	Frame Ground

J8: AXIS A MOTOR

Pin	Signal
4	Axis A Mot U
3	Axis A Mot V
2	Axis A Mot W
1	Frame Ground

J8,J9: Motor Connectors:

Euro-style 5,0 mm receptacles, 4-position

Wago: 721-464/001-000

J8,J9 Cable Connectors:

Wago 721-104/026-047/RN01-0000 Insert/extract lever: Wago: 231-131

Wago Connector Tool:

Contact opener: 231-131 (included in BE2-CK)

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090

Fax: 781-828-6547

Web: www.copleycontrols.com

Page 22 of 28

DEVICE STRUCTURE

This graphic shows the electrical structure of the drive, detailing the elements that share a common circuit common (Signal Ground, HV Com) and circuits that are isolated and have no connection to internal circuits.

Note that there is no connection between the heatplate (Chassis, Frame Ground) and any drive circuits.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090

Fax: 781-828-6547

Web: www.copleycontrols.com

Page 23 of 28

POWER SUPPLIES

Accelnet BE2 operates typically from transformer-isolated, unregulated DC power supplies. These should be sized such that the maximum output voltage under high-line and no-load conditions does not exceed the drives maximum voltage rating. Power supply rating depends on the power delivered to the load by the drive. In many cases, the continuous power output of the drive is considerably higher than the actual power required by an incremental motion application.

Operation from regulated switching power supplies is possible if a diode is placed between the power supply and drive to prevent regenerative energy from reaching the output of the supply. If this is done, there must be external capacitance between the diode and drive.

AUXILIARY HV POWER

Accelnet BE2 has an input for AUX-HV. This is a voltage that can keep the drive communications and feedback circuits active when the PWM output stage has been disabled by removing the main +HV supply. This can occur during EMO (Emergency Off) conditions where the +HV supply must be removed from the drive and powered-down to ensure operator safety. The AUX-HV input operates from any DC voltage that is within the operating voltage range of the drive and powers the DC/DC converter that supplies operating voltages to the drive DSP and control circuits.

When the drive +HV voltage is greater than the AUX-HV voltage it will power the DC/DC converter. Under these conditions the AUX-HV input will draw no current.

GROUNDING CONSIDERATIONS

Power and control circuits in *Accelnet BE2* share a common circuit-ground (HV_COM on J10-2, and Signal Ground on J1-7,12,20 and J6~7-5,10,11,12,23). Circuits that are referenced to Signal Ground are the analog Reference input, non-isolated digital inputs, buffered encoder outputs, motor encoder and Hall signals, PWM outputs and the RS-232 port. For this reason, drive Signal Gnd terminals should connect to the users' control ground system so that signals between drive and controller are at the same common potential, and to minimize noise. The system ground should, in turn, connect to an earthing conductor at some point so that the whole system is referenced to "earth". The EtherCAT ports are transformer-isolated from the drive circuits.

Because current flow through conductors produces voltage-drops across them, it is best to connect the drive HV Return to system earth, or circuit-common through the shortest path, and to leave the power-supply floating. In this way, the power supply (-) terminal connects to ground at the drive HV Return terminals, but the voltage drops across the cables will not appear at the drive ground, but at the power supply negative terminal where they will have less effect.

Motor phase currents are balanced, but currents can flow between the PWM outputs, and the motor cable shield. To minimize the effects of these currents on nearby circuits, the cable shields should connect to Frame Gnd (J8~9-1).

The drive heatplate (Frame Gnd) does not connect to any drive circuits. Connections to the heatplate are provided on connectors J1-17,J2-10, and J7~8-12. Cables to these connectors must be shielded for CE compliance, and the shields should connect to these terminals. When installed, the drive heatplate should connect to the system chassis. This provides a path to ground for noise currents that may occur in the cable shields.

Signals from controller to drive are referenced to +5 Vdc, and other power supplies in user equipment. These power supplies should also connect to system ground and earth at some point so that they are at same potential as the drive circuits.

The final configuration should embody three current-carrying loops. First, the power supply currents flowing into and out of the drive at the +HV and HV_COM pins on J10. Second the drive outputs driving currents into and out of the motor phases on J8~9, and motor shield currents circulating between the U, V, and W outputs and Gnd. And, lastly, logic and signal currents connected to the drive control inputs and outputs.

For CE compliance and operator safety, the drive heatplate should be earthed by using external tooth lock washers under the mounting screws. These will make contact with the aluminum chassis through the anodized finish to connect the chassis to the equipment frame ground.

REGENERATION

The chart Below shows the energy absorption in W·s for a *BE2* drive operating at some typical DC voltages. When the load mechanical energy is greater than these values an external regenerative energy dissipater is required. The internal capacitor bank is 1360 uF and the energy absorption is shared with both axes.

ENERGY ABSORPTION

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090

Fax: 781-828-6547

Web: www.copleycontrols.com

Page 24 of 28

POWER DISSIPATION

The top chart on this page shows the internal power dissipation for one axis of the BE2 under differing power supply and output current conditions. The +HV values are for the average DC voltage of the drive power supply. The lower chart shows the temperature rise vs. power dissipation under differing mounting and cooling conditions.

TOTAL POWER DISSIPATION

Use this chart to find the total power dissipation for both axes.

Example:

Power supply HV = 65 Vdc Axis 1 current = 7.5 A, axis 2 = 9.0 A Total current = 16.5 A Total dissipation = 19 Watts

Total continuous current of both axes

MAXIMUM OPERATING TEMPERATURE RISE VS. TOTAL DISSIPATION

Use this chart to find the maximum operating temperature of the drive under differing mounting and cooling conditions. Example:

Example:

Using the 19 W value from the calculations above, draw a vertical line. This shows that 24 C is the maximum operating temperature for NHSNF, and that any of the other mounting/cooling options will be sufficient for operation up to the maximum ambient temperature of 45 C.

HSF = Heat Sink (with) Fan NHSF = No Heat Sink (with) Fan HSNF = Heat Sink No Fan NHSNF = No Heat Sink No Fan

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090

Fax: 781-828-6547

Web: www.copleycontrols.com

Page 25 of 28

MOUNTING

Thermal data for convection-cooling with a heatsink assumes a vertical mounting of the drive on a thermally non-conducting surface. Heatsink fins run parallel to the long axis of the drive. When fan-cooling is used vertical mounting is not necessary to guarantee thermal performance of the heatsink.

THERMAL RESISTANCE

Thermal resistance is a measure of the temperature rise of the drive heatplate due to power dissipation in the drive. It is expressed in units of °C/W where the degrees are the temperature rise above ambient.

E.g., an drive dissipating 16 W mounted with no heatsink or fan would see a temperature rise of 38.2C above ambient based on the thermal resistance of 2.39C/W. Using the drive maximum heatplate temperature of 70C and subtracting 38.2C from that would give 31.7C as the maximum ambient temperature the drive in which the drive could operate before going into thermal shutdown. To operate at higher ambient temperatures a heatsink or forced-air would be required.

END VIEWS VERTICAL MOUNTING

NO HEATSINK + FAN	°C/W
FORCED-AIR, 300 LFM	0.98

HEATSINK, NO FAN	°C/W
CONVECTION	1.28

HEATSINK + FAN	°C/W
FORCED-AIR, 300 LFM	0.61

DIMENSIONS

Units: in [mm]

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Web: www.copleycontrols.com

Tel: 781-828-8090 Fax: 781-828-6547 Page 27 of 28

MASTER ORDERING GUIDE

BE2-090-06	Accelnet Plus 2-Axis Panel EtherCAT servo drive, 3/6 A, 90 Vdc
BE2-090-14	Accelnet Plus 2-Axis Panel EtherCAT servo drive, 7/14 A, 90 Vdc
BE2-090-20	Accelnet Plus 2-Axis Panel EtherCAT servo drive, 10/20 A, 90 Vdc

Add -R to model number for resolver feedback option (Example: BE2-090-14-R)

Add -H to model number for factory-installed heatsink

Example: Order one Accelnet Plus BE2 drive, 7/14 A, resolver version, with connector kit, serial cable kit, heatsink fitted at the factory: Remarks

Accelnet Plus BE2 2-axis servo drive with resolver, safety option, and factory-mounted heatsink

BE2-090-14-R-H

BE2-CK BE2 Connector Kit Serial Cable Kit SER-CK

ACCESSORIES

	QTY	REF	DESCRIPTION	MANUFACTURERS PART NUMBER
BE2-CK Connector Kit	1	J1	Connector housing, 34 position, keyed polarization	Samtec: IPD1-17-D-K
	1	J2	Connector housing, 20 position, keyed polarization	Samtec: IPD1-10-D-K
	4	J5	Connector housing, 14 position	Samtec: IPD1-07-D-K
	2	J6,J7	Connector housing, 24 position, keyed polarization	Samtec: IPD1-12-D-K
	2	J8,J9	Plug, 4 position, 5.0 mm, female	Wago: 721-104/026-047/RN01-0000
	1	J10	Plug, 3 position, 5.0 mm, female	Wago: 721-103/026-047/RN01-0000
	110	->	Contacts for J1, J2, J5, J6, J7	Samtec: CC79L-2024-L
	1	->	Tool, wire insertion & extraction for J8, J9, J10	Wago: 231-131
CME 2			CME 2 Drive Configuration Software (CD-ROM)	
SER-CK J4		J4	RS-232 Cable Kit: Includes Dsub9 adapter and modular cable	
BE2-NC-10	1	J3	EtherCAT® network cable, 10 ft (3 m)	
BE2-NC-01	1	JJ	EtherCAT® network cable, 1 ft (0.3 m)	

Heatsink Kits for Field Installation (Optional)

	1	BE2 Heatsink			
BE2-HK Heatsink Kit 1	1	Heatsink thermal material			
	4	Heatsink hardware			

Note: The heatsink can be fitted at the factory by adding an "-H" to the drive part number.

The BE2-HK is for field installation by the user. The kit contains the heatsink, mounting hardware, and thermal interface material.

ACCESSORIES (NOT SOLD BY COPLEY)

Hand crimping tool	11 12	Samtec: CAT-HT-179-2024-11 (for CC79L-2024 contacts)
Contact extraction tool	J5,J6,	Samtec: CAT-EX-179-01
Contact lance reset tool	J7	Samtec: CAT-RE-169-01

EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Note: Specifications subject to change without notice Rev 12.03-we 04/15/2015

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Fax: 781-828-6547 Tel: 781-828-8090 Web: www.copleycontrols.com Page 28 of 28