the transmitter comprising:

1 2

3

CLAIMS

an input port for receiving analog RF signals from downstream;

A transmitter for transmitting reverse optical signals in a broadband communications system,

4		a converter for digitizing the analog RF signals; and
5		a carrier-detect circuit coupled to the converter for detecting the presence of digital RF signals
6	and for	allowing the digital RF signals to be provided to an output of the transmitter and transmitted
7	upstream.	
1	2.	The transmitter of claim 1, further comprising:
2		a delay circuit coupled to the converter for delaying the digital RF signals; and
3		a switch coupled to the delay circuit and controlled by the carrier-detect circuit,
4		wherein the carrier-detect circuit closes the switch enabling a path for the transmission of the
5	digital RF signals.	
1	3.	The transmitter of claim 1, wherein the broadband communications system includes:
2		a plurality of transmitters;
3		a digital network coupled to each of the plurality of transmitters for receiving and combining
4	the digital RF signals;	
5		a receiver coupled to the digital network for receiving the combined digital RF signals, and
6	for converting the combined digital RF signals to analog RF signals; and	
7		a headend coupled to the receiver for receiving and processing the analog RF signals,
8		whereby, due to a burst-mode transmission from each of the plurality of transmitters, the
9	digital	network combines the digital RF signals from the plurality of transmitters using header
10	identifier information.	
1	4.	The transmitter of claim 3, wherein the broadband communications system is a cable
2	televisi	on system that may include both a digital headend and an analog headend for generating and
3	receiving the digital RF signals and the analog RF signals.	
1	5.	The transmitter of claim 4, wherein the broadband communications system further includes:
2		a descriminator circuit coupled to the digital network for analyzing the header identifier
3	information,	
4		wherein dependent upon the header identifier information, the descriminator circuit provides
5	the digi	ital RF signals to the digital headend and provides the analog RF signals to the analog headend.

PATENT APPLICATION Docket No. A-7195

- 1 6. A communications system for transmitting and receiving signals over a communications 2 medium, the communications system comprising:
- 3 subscriber equipment for transmitting reverse signals;
- a plurality of transmitters coupled to at least one of the subscriber equipment for digitizing the reverse signals;
- a digital network coupled to each of the plurality of transmitters for combining the digital signals;
- a receiver coupled to the digital network for converting the digital signals back to the original reverse signals; and
- a headend coupled to the receiver for processing the reverse signals,
- whereby the communications system combines the reverse signals from each of the plurality of transmitters within the digital network and delivers the reverse signals to the receiver.
- 7. The communications system of claim 6, the plurality of transmitters further comprising:
- 2 a carrier-detect circuit for detecting when reverse signals are present within the transmitter;
- a delay circuit for delaying the reverse signals; and
- a switch coupled to the delay circuit and controlled by the carrier-detect circuit,
- wherein when the carrier-detect circuit detects reverse signals, the carrier-detect circuit allows the reverse signals to be transmitted upstream through the digital network.
- 1 8. The communications system of claim 6, wherein digitizing the reverse signals is
- 2 accomplished with an analog-to-digital converter.
- 1 9. The communications system of claim 6, wherein each of the plurality of transmitters blocks
- 2 the reverse signals and encapsulates the blocks into packets with associated identifier header
- 3 information for identification within the headend.
- 1 10. The communications system of claim 9, wherein the communications system is a cable
- 2 television system that may include both a digital headend and an analog headend.
- 1 11. The communications system of claim 10, wherein the communications system further comprises:
- a descriminator circuit coupled to the digital network for analyzing the associated identifier header information,
- wherein dependent upon the identifier header information, the descriminator circuit provides the packets to one of the digital headend and the analog headend.
- 1 12. The communications system of claim 6, wherein the communications medium is a hybrid
- 2 fiber coaxial cable.

- 1 13. The communications system of claim 10, wherein a control system is used in connection with
- both the digital and the analog headends for preventing collision of the reverse signals.