2014_ARC_论文阅读

• 论文题目:Convolutional Neural Network Architectures for Matching Natural Language Sentences

• 论文链接: https://arxiv.org/abs/1503.03244v1

• 代码链接: http://nlp.stanford.edu/~socherr/classifyParaphrases.zip

• 代码语言: matlab 【没看代码】

摘要

较好的匹配算法能够同时为句子内部结构和句子间的交互信息建模。本文提出的模型通过逐层构图和合并充分表达句子的层次信息,而且能够在不同的层次捕捉到丰富的匹配模式。该算法无需先验知识,而且具有通用性。

句子建模

句子匹配任务的核心是能够充分地为句子建模(即提取sentence-level的特征),本文基于CNN为句子建模,结构如图1所示:

流程:规定句子最大长度为M ,将句子中的词通过词嵌入表达成一个向量,假设向量维度为d ,则Mxd 的矩阵为该模型的输入(未达到最大长度的部分采用zero-padding) ,通过卷积层+max_pooling层将输入矩阵转化为一个固定长度的向量。

这样为什么有效呢?

如图2所示,采用卷积能够从句子中提取出局部的语义组合,如图2中的 the cat sat和cat sat on等这样的短语组合。卷积多个filter能够提取多个feature map,这样就能够从多个角度提取语义组合,如图2中的第一个滑动窗涵盖的feature map1 是the cat sat的特征,feature map2 为cat sat 的特征,feature map3为the cat的特征。采用max pooling层会对多种语义组合进行选择,过滤掉一些置信度低的特征组合,图2中亮的表示特征值较大。

匹配模型

句子建模后能够提取出一个句子的特征向量,接下来需要利用特征向量对句子对进行匹配建模。

ARC-I

模型结构:

这种结构比较直观,对两个句子分别进行特征提取,提取后的两个特征做拼接之类的操作合成一个向量,再喂给MLP进行2分类。缺点是:**两个句子是单独提取特征的,没有交互**。使得句子在提取特征时丢失了很多重要的匹配信息,提取特征过程中没有体现句子间的交互性。

ARC-II

• 模型结构:

• 做法:

将X与Y中的向量两两拼接在一起【例如:x1-y1,x1-y2,x2-y1,x2-y2】,然后做1D卷积,得到得结果再加权求和,构成一个新的矩阵(相当于XY交互的产物),然后再通过正常的卷积、池化等操作。

这样做之所以有效:

- 。 1.对句子建模时,就利用了句子间的交互信息
- 2.保留了词序信息,如下图所示。

【上图类似一个卷积池化后的结果,可以看到保留了一些词序信息】

训练

• loss函数:排序损失函数 (ranking-based loss):

$$e(x, y^+, y^-) = max(0, 1 + s(x, y^-) - s(x, y+))$$

合页损失,句子x与**与其匹配的句子**间的相似度得分要高于**与其不匹配的句子**间相似度得分。

- batch_szie: 100~200
- word embedding维度:50,算法Word2Vec
- 数据:英文数据:Wikipedia(~1B Words)中文:微博数据(~300M Words)

实验结果

• 三个匹配任务:句子自动填充、推文匹配、同义词匹配

• 效果:结构1和结构2远好于其他算法,结构2稍好于结构1

Model	P@1(%)	
Random Guess	20.00	
DEEPMATCH	32.50	
WORDEMBED	37.63	
SENMLP	36.14	
SENNA+MLP	41.56	
URAE+MLP	25.76	
ARC-I	47.51	
ARC-II	49.62	

Table 1: Sentence Completion.

Model	P@1(%)
Random Guess	20.00
DEEPMATCH	49.85
WORDEMBED	54,31
SENMLP	52.22
SENNA+MLP	56.48
ARC-I	59.18
ARC-II	61.95

Table 2: Tweet Matching.

Model	Acc. (%)	F1(%)
Baseline	66.5	79.90
Rus et al. (2008)	70.6	80.50
WORDEMBED	68.7	80.49
SENNA+MLP	68.4	79.70
SENMLP	68.4	79.50
ARC-I	69.6	80.27
ARC-II	69.9	80.91

Table 3: The results on Paraphrase. n2014