SEMICONDUCTOR LASER EMBEDDED STRUCTURE

Publication number: JP7202312

Publication date:

1995-08-04

Inventor:

ره

IWATA HIROSHI

Applicant:

NIPPON ELECTRIC CO

Classification:

- international:

H01S5/00; H01S5/223; H01S5/327; H01S5/22; H01S5/347;

H01S5/00; (IPC1-7): H01S3/18

- European:

H01S5/223B; H01S5/327; Y01N10/00

Application number: JP19930334305 19931228 Priority number(s): JP19930334305 19931228 Also published as:

US5519722 (A

Report a data error he

Abstract of JP7202312

PURPOSE:To obtain an enclosure structure for enclosing electrons by having a first embedded layer and a second embeded layer covering it and specifying their thickness and refractive index respectively. CONSTITUTION: A light guide layer 5 whose electrons are majority carriers and an n-type clad layer 6 form an n-region 11, while a first embedded layer 7 and a second embedded layer 8 are formed adjacent to the n-region 11. A position of a conduction electron band edge of the first embedded layer 7 is equal to or higher than that of the n-type clad layer 6 and the light guide layer 5, wherein the thickness of the layer is 1nm to 100nm, including the two values. A refractive index of the first embedded layer 7 is equal to or higher than that of the n-region 11 and the second embedded laver 8, wherein an effective refractive index of the second embedded layer 8 is made smaller than an effective refractive index with the n-region 11 averaged. As a result, electrons and light can be enclosed, a semiconductor laser using a type 2 material such as ZnCdSSe can be embedded, and performance of a green-blue laser can be improved.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-202312

(43)公開日 平成7年(1995)8月4日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

H01S 3/18

審査請求 有 請求項の数1 OL (全 4 頁)

(21)出題番号

特額平5-334305

(22)出願日

平成5年(1993)12月28日

(71) 出頭人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 岩田 普

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 京本 直樹 (外2名)

(54) 【発明の名称】 半導体レーザ埋め込み構造

(57)【要約】

【目的】 タイプ2である半導体材料を用いた半導体レーザの埋め込み構造を提供する。

【構成】 電子が多数キャリアーであるn領域11に隣接して第1埋め込み層7および第2埋め込み層8を形成した。光ガイド層5、n型クラッド層6、第1埋め込み層7、第2埋め込み層8のバンドラインナップはタイプ2である。第1埋め込み層7は、n型クラッド層6と光ガイド層5に比べ、伝導帯端の位置が高いため電子を有効に閉じ込める。第2埋め込み層8の屈折率がn型クラッド層6よりも2%小さく、n領域11を平均した有効屈折率よりも小さいため光を閉じ込めることができる。

【特許請求の範囲】

【請求項1】 2-6族化合物半導体からなる半導体レーザにおいて、電子が多数キャリアーである n型領域に 隣接する第1埋め込み層と、前記第1埋め込み層を覆う 第2埋め込み層とを有し、前記第1埋め込み層を構成す る2-6族化合物半導体の伝導電子帯端の位置が前記 n 型領域に比べ等しいかそれよりも高く、その層厚が1 n m以上100 n m以下であり、その屈折率が前記 n 型領域と前記第2埋め込み層の屈折率以上であり、前記第2 埋め込み層の有効屈折率が前記 n 型領域の有効屈折率よ り小さいことを特徴とする半導体レーザ埋め込み構造。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、2-6族化合物半導体 レーザの埋め込み構造に関する。

[0002]

【従来の技術】従来の2-6族化合物半導体レーザの埋め込み構造として、p型クラッド層を多結晶 Zn Sで埋め込んだ構造がある。アプライド・フィジックス・レターズ、(Applied Physics Letters)63巻、1993年、2315頁~2317頁参照。

[0003]

【発明が解決しようとする課題】しかしながら、2-6 族化合物半導体のバンドラインナップは一般にタイプ2 と呼ばれる関係にあり、バンドギャップが大きくなるに つれ価電子帯端と伝導帯端の位置がいずれも低くなって しまう。このため、埋め込み層にバンドギャップの大き い材料を用いると電子を閉じ込める事ができないという 問題を有していた。

【0004】本発明の目的は、電子を閉じ込めを可能にする閉じ込め構造を提供することにある。

[0005]

【課題を解決するための手段】本発明の埋め込み構造は、電子が多数キャリアーであるn型領域に隣接する第1埋め込み層を覆う第2埋め込み層とを有し、前記第1埋め込み層を構成する2-6族化合物半導体の伝導電子帯端の位置が前記n型領域に比べ等しいかそれよりも高く、層厚が1nm以上100nm以下であり、屈折率が前記n型領域と前記第2埋め込み層の屈折率のいずれよりも大きく、前記第2埋め込み層の有効屈折率が前記n型領域の有効屈折率より小さいことを特徴とする。

[0006]

子を n型領域に閉じ込めることができる。第1埋め込み層の屈折率は n型領域より大きいため、第1埋め込み層のみでは光を閉じ込めることはできないが、第2埋め込み層の屈折率が小さいため光の閉じ込めが可能となる。電子を閉じ込めるために必要な層厚は電子の拡散長程度であるため、第1埋め込み層の厚さは1nm以上100nm以下で十分な効果が得られる。第1埋め込み層の厚さは発光波長に比べ薄く、光閉じ込めの障害とはならない。

[0007]

【実施例】

20

30

(実施例1) 本発明について図面を参照して説明する。 図1は本発明の一実施例を示す断面図、図2はバンドラ インナップを示す図である。

【0008】 p型G a A s からなる基板 1 上に、窒素ド ープZno.7 Cdo.3 So.55Seo.45 (層厚1、5μ m、窒素濃度8×10¹⁷ c m⁻³) からなるp型クラッド 層2、Zno.8 Cdo.2 So.38 Seo.62 (層厚100n m) からなる光ガイド層3、Zno.8 Cdo.2 Se (層 厚10nm) からなる歪量子井戸層4、Zno.8 Cdo. 2 S0.38 Se0.62 (層厚100nm) からなる光ガイド 層 5、塩素ドープ 2 no.7 C do.3 So.55 S e o.45 (層 厚1.5μm、塩素濃度1×10¹⁸ cm⁻³)からなる n 型クラッド層6を分子線結晶成長法(MBE)により成 長した後、ドライエッチングにより幅5 μmのストライ プ状にエッチングし、続いてZno.9 Cdo.1 So.22 S e 0.78 (層厚 5 0 n m) からなる第1埋め込み層7と2 no.6 C do.4 So.71 S eo.29 からなる第2埋め込み層 8とを再びMBEにより成長し、最後に真空蒸着により 金を蒸着してn電極9とp電極10とを形成した。 歪量 子井戸層4以外の半導体成長層は基板1に格子整合して いる。 電子が多数キャリアーである光ガイド層5と n 型クラッド層6とがn領域11であり、このn領域11 に隣接して第1埋め込み層7および第2埋め込み層8を 形成した。光ガイド層5、 n型クラッド層6、第1埋め 込み層7、第2埋め込み層8の伝導帯端と価電子帯端の エネルギー位置は図2に示す通りであり、パンドライン ナップはタイプ2である。n電極9より注入された電子. は、n型クラッド層6、光ガイド層5を流れて、歪量子 井戸層4でホールと再結合する。第1埋め込み層7は、 n型クラッド層6と光ガイド層5に比べ、バンドギャッ プは大きくないものの、伝導帯端の位置がそれぞれ17 0 m e V、80 m e V 高いため電子を有効に閉じ込め る。第1埋め込み層7の層厚は50nmと薄いが、電子 の拡散は大幅に減少する。第1埋め込み層7、第2埋め 込み層8とも高抵抗であるため、これらの層へのn電極 9からの電子の流入は無い。第1埋め込み層7は電子を 閉じ込めるものの、屈折率が大きいため光を閉じ込める ことはできない。第2埋め込み層8の伝導帯端の位置は

じ込めにはあまり寄与しないが、屈折率がn型クラッド 層6よりも2%小さく、n領域11を平均した有効屈折 率よりも小さいため光を閉じ込めることができる。

【0009】このような埋め込み構造により、発振しき い値電流が15mAという特性の優れた緑青色半導体レ ーザが得られた。

【0010】上述の実施例では、ZnCdSSe系混晶 を用いたが、これに限らずるnCdSeTe系混晶など 他の材料系を用いてもよい。

【0011】 (実施例2) 図3は第2の実施例を示す断 10 面図、図4はそのバンドラインナップを示す図である。 【0012】n型GaAsからなる基板12上に、塩素 ドープ2 no.7 Cdo.3 So.55 Seo.45 (層厚1. 5μ m、塩素濃度1×10¹⁸cm⁻³) からなるn型クラッド 層13、塩素ドープZno.9 Cdo.1 So.22 Se 0.78 (層厚70nm、塩素濃度5×10¹⁷cm⁻³) から なる電子障壁層 1 4、塩素ドープ 2 no.7 C do.3 S 0.55 Se0.45 (層厚30 nm、塩素濃度1×10¹⁷ cm -3) からなる電子閉じ込め層 1 5、 2 no.7 C do.3 S e (層厚10nm) からなる歪量子井戸層16、窒素ド 20 ープZno.9 Cdo.1 So.22 Seo.78 (層厚100n m、 窒素濃度 1×10¹⁷ cm⁻³) からなる正孔閉じ込め 層17、窒素ドープZno.7 Cdo.3 So.55 Se 0.45 (層厚1. 5μm、窒素濃度1×10¹⁸cm⁻³) か らなるp型クラッド層18をMBE法により成長した 後、ドライエッチングにより幅5μmのストライプ状に エッチングし、続いてZno.9 Cdo.1 So.22 Seo.78 (層厚50nm) からなる第1埋め込み層19とZn 0.7 Cd0.3 So.55 Se0.45からなる第2埋め込み層2 Oとを再びMBE法により成長し、最後に真空蒸着によ 30 り金を蒸着してp電極21とn電極22とを形成した。 歪量子井戸層16以外の半導体成長層は基板12に格子 整合している。

【0013】電子が多数キャリアーであるn型クラッド 層13と電子障壁層14と電子閉じ込め層15とがn領 城23であり、このn領域23および歪量子井戸層16 に隣接して第1埋め込み層19および第2埋め込み層2 0を形成した。各層の伝導帯端と価電子帯端のエネルギ 一位置は図4に示す通りであり、バンドラインナップは タイプ2である。基板12に垂直な方向に関しては、電 40 子は電子閉じ込め層15に閉じ込められ、正孔は正孔閉 じ込め層17に閉じ込められ、歪量子井戸層16で再結 合する。第1埋め込み層19の伝導帯端はn領域23以 上であり、第2埋め込み層20の屈折率はn領域23以 n電極22より注入された電子は、n領域 下である。 23を流れて歪量子井戸層4でホールと再結合する。第 1埋め込み層19は、n型クラッド層13、電子閉じ込 め層15に比べ、バンドギャップは大きくないものの、 伝導帯端の位置が170me V高いため電子を有効に閉 じ込める。第1埋め込み層19の層厚は50nmと薄い 50

が、電子の拡散は大幅に減少する。第2埋め込み層20 は高抵抗であるため、この層へのp電極21からの正孔 の流入は無い。第1埋め込み層19は電子を閉じ込める ものの、屈折率が大きいため光を閉じ込めることはでき ない。第2埋め込み層20の伝導帯端の位置は電子障壁 層14より低く電子の閉じ込めにはあまり寄与しない が、屈折率はn型クラッド層13と等しく、n領域23 を平均した有効屈折率より小さくなるため、光を閉じ込 めることができる。

【0014】このような埋め込み構造により、発振しき い値電流が10mAという特性の優れた緑骨色半導体レ ーザが得られた。

【0015】上述の実施例では、ZnCdSSe系混晶 を用いたが、これに限らずZnCdSeTe系混晶など 他の材料系を用いてもよい。

[0016]

【発明の効果】以上説明したように、本発明によりZn CdSSeなどのタイプ2である材料を用いた半導体レ ーザの埋め込みが可能となり、緑骨色レーザなどの性能 を改善することができる。

【図面の簡単な説明】

- 【図1】本発明の実施例を示す断面図である。
- 【図2】バンドラインナップを示す図である。
- 【図3】本発明の第2の実施例を示す断面図である。
- 【図4】バンドラインナップを示す図である。

【符号の説明】

- 基板 1
- p型クラッド層
- 3 光ガイド層・
- 4 歪量子井戸層
 - 5 光ガイド層
 - 6 n型クラッド層
 - 第1埋め込み層
 - 第2埋め込み層 8
 - 9 n電極
 - 10 p電極
 - 1 1 n領域
 - 1 2 基板
 - 1 3 n型クラッド層
- 電子障壁層 14
 - 15 電子閉じ込め層
 - 16 歪量子井戸層
 - 17 正孔閉じ込め層
 - 18 p型クラッド層
 - 19 第1埋め込み層
 - 第2埋め込み層 20
 - 2 1 p電極
 - n電極 22
 - 23 n領域

