

### Universidade Federal do Rio de Janeiro

Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Engenharia de Sistemas e Computação

Rio de Janeiro, RJ – Brasil

# RECONHECIMENTO FACIAL UTILIZANDO EIGENFACES

Abel Bruno Nascimento Silva

16 de junho de 2013

Disciplina: Introdução ao Processamento de Imagens

Professores: Antônio Oliveira Ricardo Marroquim

# Sumário

| 1. In                    | trodução                  | 3  |
|--------------------------|---------------------------|----|
| 2. D                     | etecção Facial            | 4  |
| 3. Ba                    | anco de Faces             | 5  |
| 4. Ca                    | álculo das Eigenfaces     | 6  |
| 4.1.                     | Passo 1:                  | 6  |
| 4.2.                     | Passo 2:                  | 6  |
| 4.3.                     | Passo 3:                  | 7  |
| 4.4.                     | Passo 4:                  | 7  |
| 4.5.                     | Passo 5:                  | 7  |
| 4.6.                     | Passo 6:                  | 8  |
| 5. Pr                    | ojeção no Espaço de Faces | 9  |
| 6. Reconhecimento Facial |                           | 9  |
| 6.1.                     | Passo 1:                  | 9  |
| 6.2.                     | Passo 2:                  | 9  |
| 6.3.                     | Passo 3:                  | 10 |
| 6.4.                     | Passo 4:                  | 10 |
| 7. Re                    | esultados                 | 10 |
| 8. Co                    | onclusão                  | 12 |

### 1. Introdução

A capacidade do ser humano de reconhecer faces é notável. Uma pessoa pode reconhecer milhares de faces ao longo de sua vida e identificar rostos familiares de forma rápida mesmo após anos de separação. Embora haja diversas mudanças faciais ocorridas devido a diferentes expressões faciais, distrações como acessórios (óculos, tapa-olho, etc.) ou mudanças de corte de cabelo e barba, o ser humano consegue realizar esta tarefa de forma robusta [1].

Computadores que reconhecem faces podem ser utilizados em uma grande variedade de problemas: identificação criminal, sistemas de segurança, processamento de imagens e vídeos e interação homem-máquina. Entretanto, desenvolver sistemas de reconhecimento facial não é uma tarefa trivial devido à complexidade das faces e suas grandes variações. A fim de desenvolver nos computadores a habilidade de reconhecer rostos, foram desenvolvidos modelos de reconhecimento facial tais como Linear Discriminant Analysis, Elastic Bunch Graph Matching e Reconhecimento Facial utilizando Eigenfaces.

Eigenfaces são um conjunto de autovetores de uma matriz de covariância formada por imagens de faces. A ideia de utilizar eigenfaces no reconhecimento de faces surgiu com a técnica desenvolvida por Sirovich e Kirby [2] para representar imagens de rostos de forma eficiente utilizando Análise de Componentes Principais. Turk e Pentland [1] utilizam esta representação para avaliar a distância entre rostos em um "espaço de faces" e assim determinar rostos similares.

Este trabalho teve como objetivo implementar o algoritmo de reconhecimento facial proposto por Turk e Pentland. O sistema desenvolvido recebe como entrada imagens capturadas através de uma webcam e utiliza o algoritmo de Turk e Pentland para determinar em tempo-real se o rosto obtido pertence a alguma pessoa armazenada previamente em um banco de faces, caso pertença, o programa indica qual pessoa foi reconhecida.

Nesta seção de introdução foram apresentados o contexto e a motivação para a realização do trabalho. As demais seções estão organizadas da seguinte maneira: as seções 2 a 6 detalham cada etapa do algoritmo. A seção 7 apresenta os resultados obtidos e a seção 8 apresenta as conclusões deste trabalho.

### 2. Detecção Facial

A etapa de detecção facial é o primeiro passo para a implementação de sistemas de reconhecimento facial. Assim como o reconhecimento, apesar de ser uma tarefa facilmente executada pelo ser humano, a detecção de rostos pelo computador necessita da utilização de diversas técnicas de processamento de imagens. Alguns desafios encontrados na detecção facial incluem: faces em diferentes tamanhos na imagem, oclusão de faces, faces não frontais, variação de luminosidade, etc. Na Figura 1 observa-se a detecção de rostos aplicada em uma fotografia.



Figura 1. Detecção de rostos em uma imagem.

Por não fazer parte do escopo deste trabalho, a detecção da face do usuário não é realizada de forma automática. O usuário deve posicionar manualmente o seu rosto em um retângulo centralizado na imagem, sendo esta a área em que será processado o reconhecimento facial.

### 3. Banco de Faces

Para realizar o reconhecimento deve-se estabelecer um conjunto de imagens de pessoas que serão reconhecidas — no caso deste trabalho, foram reconhecidas 10 pessoas. O algoritmo desenvolvido por Turk e Pentland necessita que todas as imagens contenham os rostos centralizados, alinhados e com o mesmo tamanho. O banco de faces utilizado neste trabalho contém, para cada pessoa, 4 imagens com variações de expressões, formando um total de 40 imagens presentes no banco. A Figura 2 apresenta algumas imagens presentes no banco utilizado neste trabalho.



Figura 2. Banco de faces.

As imagens armazenadas possuem dimensão de  $92 \times 112$  pixels, e para simplificar o cálculo das eigenfaces trabalhou-se apenas com imagens em nível de cinza.

# 4. Cálculo das Eigenfaces

#### 4.1. Passo 1:

Uma imagem pode ser vista como uma matriz A de  $n \times m$  pixels, entretanto, para estabelecer o relacionamento entre um conjunto de imagens necessita-se de um "espaço de faces", no qual se pode computar o quão similar duas faces são. Assim, ao invés de representar as imagens como matrizes, estas são representadas como pontos. Para isto, todas as linhas da matriz A são unidas em um único vetor linha  $\Gamma$  com  $n \times m$  coordenadas, desta forma obtem-se um "espaço de faces"  $\mathbb{R}^{nm}$ . Nota-se que este espaço é grande mesmo para imagens pequenas, para as imagens utilizadas neste trabalho, por exemplo, o espaço possui 10304 dimensões.

#### 4.2. Passo 2:

Após obter os vetores  $\Gamma$  de todas as M imagens do banco, computa-se a face média  $\Psi$ , que representa o centro de gravidade do conjunto de faces:

$$\Psi = \frac{1}{M} \sum_{i=1}^{M} \Gamma_i$$

A Figura 3 exibe o resultado obtido.



Figura 3. Face média.

### 4.3. Passo 3:

Para todo vetor  $\Gamma$  calcula-se o vetor  $\Phi$ :

$$\Phi_i = \Gamma_i - \Psi$$

A Figura 4 apresenta o resultado deste passo.



Figura 4. Faces subtraídas da média.

### 4.4. Passo 4:

Constrói-se a matriz A tal que cada *i*-ésima coluna da matriz é a transposta do vetor linha  $\Phi_i$ . Portanto, neste trabalho, a matriz A possui dimensão  $10304 \times 40$ .

### 4.5. Passo 5:

Calcula-se a matriz de covariância C:

$$C = AA^T$$

#### 4.6. Passo 6:

Para se obter as eigenfaces é preciso apenas computar os autovetores da matriz  $AA^T$ . Entretanto, a matriz  $AA^T$  possui dimensão  $10304 \times 10304$ , o que faz com que o cálculo de seus autovetores seja computacionalmente inviável. Para contornar este problema considera-se a matriz  $A^TA$  de dimensão  $40 \times 40$  e seus autovetores v tais que:

$$A^{T}A v_{i} = \lambda v_{i}$$

Multiplicando ambos os lados por A, tem-se:

$$AA^{T}A v_{i} = \lambda Av_{i}$$

Desta forma pode-se observar que  $Av_i$  são os autovetores de  $C = AA^T$  associados aos 40 maiores autovalores da matriz.

O cálculo das eigenfaces (autovetores) neste trabalho, assim como toda a manipulação das matrizes, foi realizado através da biblioteca Eigen [3] de álgebra linear.

A Figura 5 apresenta algumas eigenfaces obtidas neste trabalho.



Figura 5. Eigenfaces.

# 5. Projeção no Espaço de Faces

Para se calcular a proximidade entre duas faces, faz-se necessário projetar a imagem do rosto no "espaço de faces", o que pode ser facilmente computado considerando as M eigenfaces u:

$$\omega_k = u_k^T \Phi$$

Para k = 1,..., M. Desta forma, os pesos  $\omega$  formam o vetor:

$$\Omega^{\mathrm{T}} = [\omega_1, \omega_2, ..., \omega_{\mathrm{M}}]$$

Que representa a imagem projetada no "espaço de faces". Após o cálculo do vetor  $\Omega$  para todos os rostos armazenados no banco, inicia-se a etapa de reconhecimento facial.

# 6. Reconhecimento Facial

A etapa de reconhecimento facial recebe como entrada uma imagem capturada através da webcam. Para realizar esta captura utilizou-se a biblioteca de visão computacional OpenCV [4].

#### 6.1. Passo 1:

Para a nova face calcula-se o vetor  $\Phi$ .

#### 6.2. Passo 2:

Projeta-se no "espaço de faces" o vetor obtido no passo anterior.

#### 6.3. Passo 3:

Utilizando a projeção  $\Omega$  obtida no passo 6.2 calcula-se a distância entre  $\Omega$  e todas as projeções obtidas na etapa 5, selecionando a menor distância d entre as projeções:

$$d = \min_{k} \|\Omega - \Omega_{k}\|$$

#### 6.4. Passo 4:

Se d for menor que um threshold pré-estabelecido, então a nova face pertence ao indivíduo cujo rosto armazenado no banco apresenta distância d da nova face. Caso contrário, trata-se de uma face desconhecida.

### 7. Resultados

As Figuras 6 e 7 exibem alguns resultados do projeto desenvolvido.



Figura 6. Resultados negativos obtidos na etapa de reconhecimento facial. (a) Face descentralizada, (b) face em escala diferente, (c) oclusão e (d) diferença de iluminação e background.



Figura 7. Resultados positivos obtidos na etapa de reconhecimento facial.

Como ilustrado na Figura 6, o algoritmo apresenta grande dependência da iluminação e da maneira como a face está posicionada na imagem, o que justifica a necessidade de que as imagens armazenadas no banco de faces estejam centralizadas e em uma mesma escala.

Entretanto, a partir dos resultados obtidos, pode-se observar que o algoritmo desenvolvido por Turk e Pentland, apesar de apresentar uma implementação relativamente simples, alcança um bom resultado no reconhecimento de faces mesmo em rostos com variação de expressão facial e com pequenas rotações e oclusões (Figuras 7).

### 8. Conclusão

Este relatório apresentou as etapas do sistema de reconhecimento facial desenvolvido na disciplina Introdução ao Processamento de Imagens. O algoritmo implementado apresentou bons resultados no reconhecimento de faces, mesmo estas apresentado pequenas variações.

Possíveis melhorias no trabalho apresentado incluem: detecção automática das faces, não sendo mais necessário o posicionamento manual do rosto por parte do usuário; processamento das imagens das faces visando atenuar problemas de iluminação; e adição automática de novos rostos no banco de faces.

### Referências

- [1] Turk, M., Pentland, A. *Eigenfaces for Recognition*. Journal of Cognitive Neuroscience. vol 3, no. 1. pp. 71-86, 1991.
- [2] Sirovich, L., Kirby, M. Low-dimensional Procedure for the Characterization of Human Faces. Journal of the Optical Society of America A. 4(3), 519-524, 1987.
- [3] Eigen. *C++ Template Library for Linear Algebra*. Último acesso em: 15 de junho de 2013. Disponível em: < http://eigen.tuxfamily.org >.
- [4] OpenCV. *Open Source Computer Vision*. Último acesso em: 15 de junho de 2013. Disponível em: < http://opencv.org >.