#### **Deep Learning Examples**

- Near-human-level image classification
- Near-human-level speech recognition
- Near-human-level handwriting transcription
- Digital assistants Google Now, Cortana
- Near-human-level autonomous driving

#### **Neural Fuzzing**

- Fuzzing is a popular technique for finding program vulnerabilities in complex software
  - Present the program with malicious input designed to crash it
  - Crafting malicious inputs is a complex problem
  - Input programs need to be mutated continuously
  - Potentially large number of mutations for a complex program
- Blackbox, Greybox and Whitebox Fuzzers
- Using Neural Network to predict "useful" mutations
- https://www.microsoft.com/en-us/security-risk-detection/

```
1 z = pow(3, a+b);
2 if(z < 1) {
3   return 1;
4 }
5 else if(z < 2) {
6    //vulnerability
7   return 2;
8 }
9 else if(z < 4) {
10   return 4;
11 }</pre>
```

#### Reference:

Not all bytes are equal: Neural byte sieve for fuzzing <a href="https://www.microsoft.com/en-us/research/wp-content/uploads/2017/11/neural-fuzzing-mcr.pdf">https://www.microsoft.com/en-us/research/wp-content/uploads/2017/11/neural-fuzzing-mcr.pdf</a>

#### A recent quote from Andrew Ng

AI (Artificial Intelligence) technology is now poised to transform every industry, just as electricity did 100 years ago.

Between now and 2030, it will create an estimated \$13 trillion of GDP growth.

While it has already created tremendous value in leading technology companies such as Google, Baidu, Microsoft and Facebook, much of the additional waves of value creation will go **beyond the software sector** "

# Why now? What about past Al winters?

- Hardware
- Datasets and benchmarks
- Algorithmic advances

# What about other ML techniques?

- Probabilistic modeling (Naïve Bayes)
- Kernel Methods
  - Support Vector Machines
  - Decision Trees
  - Random Forests
  - Gradient Boosting Machines

#### "Deep" in deep learning



#### How can a network help us?



#### How does a network learn?



#### **Tensor**





shape (128, 256, 256, 1)

#### How layers transform data?

output = relu(dot(W, input) + b)

W- Weight

b - Bias

#### Rectified Linear Unit (RELU)



#### Power of parallelization

```
def naive_relu(x):
i in range(x.shape[0]): for j in
    range(x.shape[1]): x[i, j] = max(x[i, j], 0)
return x
```

z = np.maximum(z, 0.)

## Sigmoid function



#### How network learns?



#### **Training Loop**

- Draw a batch of training samples x and corresponding targets y.
- Run the network on x
- Compute the loss of the network
- Update all weights of the network in a way that slightly reduces the loss on this batch.

## **Key Concepts**

Derivative

Gradient



Stochastic Gradient



## **Back propagation**



#### **Network of layers**

- Layers are like LEGO bricks of deep learning
- A data-processing module that takes as input one or more tensors and that outputs one or more tensors

#### Demo

- Digit Classification
- Keras Library



#### Training and validation loss



## **Overfitting**



## Weight Regularization

- L1 regularization— The cost added is proportional to the absolute value of the weight coefficients
- L2 regularization— The cost added is proportional to the square of the value of the weight coefficients

## **Dropout**

 Randomly dropping out (setting to zero) a number of output features of the layer during training.

## Feature Engineering

 process of using your own knowledge to make the algorithm work better by applying hardcoded (nonlearned) transformations to the data before it goes into the model

#### Feature engineering



## ENTER CNN OR (CONVOLUTION NEURAL NETWORKS)

### **Convolution Operation**



## **Spatial Hierarchy**



#### **Digit Classification**



#### **How Convolution works?**



## Sliding





## **Padding**



#### **Stride**

| 1 | 2 |  |
|---|---|--|
|   |   |  |
| 3 | 4 |  |
|   |   |  |

| 1 |  |
|---|--|
|   |  |

|  | 2 |  |
|--|---|--|
|  |   |  |

| 3 |  |
|---|--|
|   |  |

|  | 4 |  |
|--|---|--|
|  |   |  |

#### Demo

- Digit Classification (using CNN)
- Keras Library



#### Demo

- X-ray Image Classification
- Dealing with overfitting
- Visualizing the learning

#### Visualizing the learning



## **Overfitting**



## With dropout regularization



#### With data augmentation



#### Demo

Activation heatmap

#### Stochastic gradient descent

- Draw a batch of training samples x and corresponding targets y.
- Run the network on x to obtain predictions y\_pred.
- Compute the loss of the network on the batch, a measure of the mismatch between y\_pred and y.

#### Stochastic gradient descent

- Compute the gradient of the loss with regard to the network's parameters (a backward pass).
- Move the parameters a little in the opposite direction from the gradient—for example W = step \* gradient—thus reducing the loss on the batch a bit.