PIDs and UFDs, II: A PID is a UFD

Jiang-Hua Lu

The University of Hong Kong

Algebra II, HKU

Monday Jan 20 2025 4 Thursday Jan 23, 2025

Outline

In this file: §1.2.3-1.2.4.

Definition of a UFD and two characterizing properties of a UFD;

A PID is a UFD.

Recall definition:

A non-zero non-unit a in an integral domain R is said to be irreducible if whenever a = bc, either b or c is a unit.

<u>Definition.</u> A unique factorization domain (UFD), or factorial ring, is an integral domain R such that

1 every non-zero non-unit $a \in R$ can be written as

$$a=p_1p_2\cdots p_r,$$

where each p_i , for i = 1, 2, ..., r, is irreducible (but not necessarily pair-wise distinct);

2 if $a = q_1q_2 \cdots q_s$ is another such factorization, then r = s and after a permutation of the indices, p_i and q_i are associates for each $i = 1, 2, \dots, r$.

Observation. If R is a UFD, we have a well-defined function

$$I: R \setminus \{0\} \longrightarrow \mathbb{N},$$

where I(a) = 0 if a is a unit, and I(a) = r if a is a non-unit and is a product of r irreducible factors. Then

$$I(ab) = I(a) + I(b), \quad a, b \in R \setminus \{0\}.$$

Terminology: If a in a UFD R is non-zero and non-unit, a factorization

$$a=p_1p_2\cdots p_n$$

where each p_j is irreducible, is called a prime factorization, or a factirzation of a into primes, or a factirzation of a into irreducibles.

<u>Fundamental Theorem of Arithmetic</u>: The ring \mathbb{Z} is a UFD.

Example: For \mathbb{Z} and $n \neq \pm 1$, I(n) is the number of prime factors counting multiplicity:

$$I(-2^37^2(11)^5) = 3 + 2 + 5 = 10.$$

Next immediate goal: To prove that every PID is a UFD.

Two characterizing properties of a UFD:

Lemma. An element in a UFD is irreducible if and only if it is prime.

Proof. Let R be a UFD. Already know prime are irreducible.

- Let $a \in R$ be irreducible, and suppose that a|bc for $b, c \in R \setminus \{0\}$.
- Need to show either • Then bc = ax for some $x \in R$. alb oralc
- If b is a unit, then a|c, and if c is a unit, then a|b.
 C = A(Rb¹)
 Suppose that neither b nor c is a unit. Write

$$b = p_1 \cdots p_n, \quad c = q_1 \cdots q_m, \quad x = r_1 \cdots r_t$$

as products of irreducibles. Then

$$bc = p_1 \cdots p_n q_1 \cdots q_m = ax = ar_1 \cdots r_t.$$

- Uniqueness of the factorizations implies that a is an associate of some p_i 's or some q_i . Thus a|b or a|c.
- Conclusion: irreducible elements of R are prime.

Q.E.D.

Lemma. Let R be an integral domain. If there exists a non-zero non-unit $a \in R$ which is not the product of irreducible elements in R, then there exists a chain

$$aR \subset c_1R \subset c_2R \subset \cdots \subset c_nR \subset \cdots$$

of principal ideals in R with proper inclusion at each step.

Proof.

- As a is not irreducible, have $a=a_1b_1$, neither a_1 nor b_1 is a unit. So $aR\subset a_1R$, $aR\subset b_1R$, and $aR\neq a_1R$, $aR\neq b_1R$.
- Either a_1 or b_1 is not irreducible. Say a_1 is not irreducible. Then can write $a_1 = a_2b_2$, where neither a_2 nor b_2 is a unit, so

$$a_1R\subset a_2R, \quad a_1R\subset b_2R, \quad \text{and} \quad a_1R\neq a_2R, \quad a_1R\neq b_2R.$$

• Now $a = a_2b_2b_1$, and at least one of the three elements a_2 , b_2 , b_1 is not irreducible. Proceeding this way, we get the desired chain

$$\begin{array}{c} aR \subset c_1R \subset c_2R \subset \cdots \subset c_nR \subset \cdots \\ \text{ If } R \text{ has } ACCPI, \text{ then every non-zero } Q.E.D. \\ ACR & a product of irreducibles. \end{array}$$

<u>Definition.</u> An integral domain is said to satisfy the <u>ascending chain</u> condition for principal ideals (ACCPI) if for every increasing sequence

$$I_1 \subset I_2 \cdots \subset I_n \subset \cdots$$

of principal ideals there exists m such that $I_n = I_m$ for all $n \ge m$.

Theorem. An integral domain R is a UFD if and only if it satisfies the ACCPI and every irreducible element in R is prime.

Proof. Assume R is a UFD. Already know every irreducible of R is prime.

Need to show that R has ACCPI. Thus assume that

$$a_1R \subset a_2R \subset \cdots \subset a_nR \subset \cdots$$

is an increasing sequence of principal ideals in R.

- If $a_j = 0$ for every j, nothing to prove, so assume otherwise. Let $j \ge 1$ be the smallest j such that $a_j \ne 0$. Then $(I(a_j), I(a_{j+1}), \ldots)$ decreases so there is some m s.t. $I(a_n) = I(a_m)$ for all $n \ge m$.
- Since $a_n|a_m$ for every $n \ge m$, a_n and a_m are associates for all $n \ge m$, i.e., $a_nR = a_mR$ for all $n \ge m$. Thus R has ACCPI.

§1.2.4: A PID is a UFD

Proof cont'd: Assume R has ACCPI and every irreducible of R is prime.

- Let $a \in R$ be non-zero and non-unit. By Lemma above, a has a factorization into irreducibles. Let m(a) be the smallest positive integer such that a is a product of m(a) irreducibles. With multiplicity
- If m(a) = 1, then a is irreducible, and uniqueness is clear. • Assume that m = m(a) > 1 and that uniqueness of factorization
- Assume that m = m(a) > 1 and that uniqueness of factorization holds for any $b \in R$, $b \neq 0$, with m(b) < m.
- Let $a = p_1 \cdots p_m = q_1 \cdots q_n$ be two factorizations into irreducibles.
- Since every irreducible of R is prime, p_m is prime.
- As $p_m|q_1\cdots q_n$, p_m divides q_j for some $1\leq j\leq n$.
- By re-ordering the elements, we may assume that j = n, so q_n = xp_m for some x ∈ R. As q_n is irreducible and p_m is not a unit, x must be a unit, so p_m and q_n are associates.
- Let $b=(x^{-1}p_1)p_2\cdots p_{m-1}=q_1\cdots q_{n-1}$. Then $m(b)\leq m-1$. By induction assumption, n-1=m-1 and that, re-order the elements q_1,\ldots,q_{n-1} if necessary, $x^{-1}p_1$ and q_1 are associates and p_j and q_j are associates for $j\geq 2$.

§1.2.4: A PID is a UFD

Theorem. A PID is a UFD.

Proof. A PID has the two characterizing properties of a UFD.

Q.E.D.

Example: We will show that if R is a UFD, so is R[x]. Fact: Let R be an integral domain

Example: The ring $\mathbb{Z}[x]$ is a UFD but not a PID.

Example: The ring $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.

PIDIFRISA

as (x, x) Tieg ... anhe used to test = 7