Géométrie Différentielle, TD 8 du 29 mars 2019

1. Questions diverses - A FAIRE AVANT LE TD

Formes alternées : Soit E un espace vectoriel sur \mathbb{R} de dimension finie.

1- Soit $l_1, \ldots, l_k \in E^*$ des formes linéraires sur E. Justifier pourquoi l'identification $\Lambda^k E^* \equiv \operatorname{Alt}^k(E, \mathbb{R})$ vue en cours fait correspondre le produit extérieur $l_1 \wedge \cdots \wedge l_k$ avec la forme k-linéaire alternée $E^k \to \mathbb{R}, (v_1, \ldots, v_k) \mapsto \det(l_i(v_j))_{i,j}$.

Dans la suite, cette identification est implicite.

2– Soient $\alpha \in \Lambda^k E^{\star}$ et $\beta \in \Lambda^l E^{\star}$. Montrer que le produit extérieur $\alpha \wedge \beta \in \Lambda^{k+l} E^{\star}$ est donné par la formule :

$$\alpha \wedge \beta(v_1, \dots, v_{k+l}) = \frac{1}{k! l!} \sum_{\sigma \in S_{k+l}} \varepsilon(\sigma) \alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \beta(v_{\sigma(k+1)}, \dots, v_{\sigma(k+l)})$$

Formes différentielles : Soit M une variété.

- 1- Donnons nous pour tout $x \in M$ une forme k-linéaire alternée $\omega_x \in \Lambda^k(T_xM)^*$ et posons $\omega : M \to \Lambda^k(T^*M), x \mapsto \omega_x$. Montrer que ω est une k-forme différentielle si et seulement si pour tous champs de vecteurs $X_1, \ldots, X_k \in \Gamma(TM)$, la fonction $\omega(X_1, \ldots, X_k) : M \to \mathbb{R}$ est de classe C^{∞} .
- 2– Soit N une variété, $f:M\to N$ une application C^∞ . Montrer que pour α,β formes différentielles sur N, on a $f^*(\alpha\wedge\beta)=f^*\alpha\wedge f^*\beta$. Si de plus, L est une variété, $g:L\to M$ une application C^∞ , pourquoi n'a t on pas $(f\circ g)^*\alpha=f^*(g^*\alpha)$? Corriger la formule.

Solution:

- 1- Rappelons comment est faite l'identification. On considère la forme bilinéaire non dégénérée $\langle .,. \rangle : \Lambda^k E^* \times \Lambda^k E \to \mathbb{R}$ caractérisée par la propriété que $\langle l_1 \wedge \cdots \wedge l_k, v_1 \wedge \cdots \wedge v_k \rangle = \det(l_i(v_j))_{1 \leq i,j \leq k}$ Elle identifie $\Lambda^k E^* \equiv (\Lambda^k E)^*$ via $a \mapsto \langle a,. \rangle$. Notons $p: E^k \to \Lambda^k E, (v_1, \ldots, v_k) \mapsto v_1 \wedge \cdots \wedge v_k$. On a une identification entre $(\Lambda^k E)^*$ et $\operatorname{Alt}^k(E, \mathbb{R})$ donnée par $f \mapsto f \circ p$. Finalement, en composant ces identifications, on obtient que $l_1 \wedge \cdots \wedge l_k$ s'identifie à $\langle l_1 \wedge \cdots \wedge l_k, . \rangle \circ p$, ce qui est le résultat voulu.
- 2- Quitte à décomposer dans une base les formes α et β , on peut supposer que $\alpha = l_1 \wedge \cdots \wedge l_k$ et $\beta = m_1 \wedge \cdots \wedge m_l$. On calcule que $\alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)}) = \det(l_i(v_{\sigma(j)}))_{i,j} = \sum_{\rho \in S_k} \varepsilon(\rho) l_1(v_{\sigma \circ \rho(1)}) \dots l_k(v_{\sigma \circ \rho(k)})$. De même $\beta(v_{\sigma(k+1)}, \dots, v_{\sigma(k+l)}) = \sum_{\tau \in S_l} \varepsilon(\tau) m_1(v_{\sigma(k+\tau(1))}) \dots m_l(v_{\sigma(k+\tau(l))})$

On en déduit que

$$\sum_{\sigma \in S_{k+l}} \varepsilon(\sigma) \alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \beta(v_{\sigma(k+1)}, \dots, v_{\sigma(k+l)})$$

$$= \sum_{\sigma \in S_{k+l}} \varepsilon(\sigma) \sum_{\rho \in S_k} \varepsilon(\rho) l_1(v_{\sigma \circ \rho(1)}) \dots l_k(v_{\sigma \circ \rho(k)}) \sum_{\tau \in S_l} \varepsilon(\tau) m_1(v_{\sigma(k+\tau(1))}) \dots m_l(v_{\sigma(k+\tau(l))})$$

$$= \sum_{\sigma \in S_{k+l}} \sum_{(\rho,\tau) \in S_k \times S_l} \varepsilon(\sigma \circ j(\rho,\tau)) l_1(v_{\sigma \circ j(\rho,\tau)(1)}) \dots l_k(v_{\sigma \circ j(\rho,\tau)(k)}) m_1(v_{\sigma \circ j(\rho,\tau)(k+1)}) \dots m_l(v_{\sigma \circ j(\rho,\tau(k+l))})$$

où $j: S_k \times S_l \to S_{k+l}$ est le morphisme de groupes injectif naturel.

On inverse les sommes, et le terme général est indépendant de (ρ, τ) . De plus, on reconnait l'expression du déterminant calculé par $l_1 \wedge \cdots \wedge l_k \wedge m_1 \wedge \cdots \wedge m_l$. D'où la formule.

- 1- Il s'agit de montrer le sens réciproque. On suppose donc ω lisse au sens où l'évaluation en k champs de vecteurs C^{∞} quelconques est automatiquement lisse. On veut montrer que $M \to \Lambda^k T^*M$, $x \mapsto \omega_x$ est lisse. Soit (U, φ) une carte de M. Elle identifie TU à $\varphi(U) \times \mathbb{R}^n$, puis $\Lambda^k T^*M_{|U} = \Lambda^k T^*U$ à $\varphi(U) \times \operatorname{Alt}^k(\mathbb{R}^n, \mathbb{R})$. ω restreint à U s'identifie alors à une application $\widetilde{\omega} : \varphi(U) \to \operatorname{Alt}^k(\mathbb{R}^n, \mathbb{R})$ telle que pour tout $\widetilde{X}_1, \ldots, \widetilde{X}_k$ champs de vecteurs sur $\varphi(U)$, on a $\widetilde{\omega}(\widetilde{X}_1, \ldots, \widetilde{X}_k)$ de classe C^{∞} . En considérant les différents k-uplets formés à partir de la base canonique de \mathbb{R}^n on obtient que $\widetilde{\omega}$ est C^{∞} puis que ω aussi.
- 2- On peut par exemple utiliser la question 2 du cas vectoriel. Soit $x \in M, v_1, \ldots, v_{k+l} \in T_x M$. On a :

$$f^{\star}(\alpha \wedge \beta)(v_{1}, \dots, v_{k+l}) := \alpha \wedge \beta(Tf(v_{1}), \dots, Tf(v_{k+l}))$$

$$= \frac{1}{k!l!} \sum_{\sigma \in S_{k+l}} \varepsilon(\sigma)\alpha(Tf(v_{\sigma(1)}), \dots, Tf(v_{\sigma(k)}))\beta(Tf(v_{\sigma(k+1)}), \dots, Tf(v_{\sigma(k+l)}))$$

$$= \frac{1}{k!l!} \sum_{\sigma \in S_{k+l}} \varepsilon(\sigma)f^{\star}\alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)})f^{\star}\beta(v_{\sigma(k+1)}, \dots, v_{\sigma(k+l)})$$

$$= f^{\star}\alpha \wedge f^{\star}\beta(v_{1}, \dots, v_{k+l})$$

L'objet $f^*(g^*\alpha)$ n 'a pas de sens car g n'est pas à valeurs dans N donc $g^*\alpha$ n'est pas défini. La formule correcte est $(f \circ g)^*\alpha = g^*(f^*\alpha)$ (il y a "contravariance"). La preuve est la suivante : $g^*(f^*\alpha) = f^*\alpha(Tg(.), ..., Tg(.)) = \alpha(TfTg(.), ..., TfTg(.)) = \alpha(T(f \circ g), ..., T(f \circ g)) = (f \circ g)^*\alpha$.

2. Formes différentielles $SL(n, \mathbb{R})$ -invariantes

Soit ω la forme différentielle de degré n-1 sur \mathbb{R}^n donnée par :

$$\omega = \sum_{i=1}^{n} (-1)^{i-1} x_i \, \mathrm{d} x_1 \wedge \cdots \wedge \widehat{\mathrm{d} x_i} \wedge \cdots \wedge \mathrm{d} x_n.$$

- 1– Calculer $d\omega$.
- 2- Montrer que $\omega(x)(\xi_1, ..., \xi_{n-1}) = \det(x, \xi_1, ..., \xi_{n-1}).$
- 3– Soit $A: \mathbb{R}^n \to \mathbb{R}^n$ une application linéaire. Que vaut $A^*\omega$?
- 4- Montrer que ω est, à constante multiplicative près, la seule forme de degré n-1 invariante par $\mathrm{SL}(n,\mathbb{R})$.
- 5- Montrer en revanche que, si $n \ge 3$, toute forme différentielle de degré 1 invariante par $SL(n, \mathbb{R})$ sur \mathbb{R}^n est nulle.

Solution:

- 1– Dans $d\omega$, tous les termes donnent, après être réordonnés, un $dx_1 \wedge \ldots \wedge dx_n$. Ainsi, $d\omega = n dx_1 \wedge \ldots \wedge dx_n$.
- 2- C'est le développement du déterminant par rapport à la première colonne.
- 3- On calcule:

$$(A^*\omega)(x).(\xi_1,\ldots,\xi_{n-1}) = \omega(Ax).(A\xi_1,\ldots,A\xi_{n-1}) = \det(Ax,A\xi_1,\ldots,A\xi_{n-1})$$

= \det(A)\det(x,\xi_1,\dots,\xi_{n-1}) = \det(A)\omega(x).(\xi_1,\dots,\xi_{n-1})

i.e. $A^*\omega = \det(A)\omega$.

Dans la suite, on note $G := \begin{pmatrix} 1 & \star \\ 0 & \star \end{pmatrix} \cap SL_n(\mathbb{R})$ l'ensemble des matrices de $SL_n(\mathbb{R})$ qui fixent le vecteur $e_1 := (1, 0, \dots, 0) \in \mathbb{R}^n$.

- 4- La question précédente montre que ω est invariante sous $\mathrm{SL}(n,\mathbb{R})$. Comme $SL_n(\mathbb{R})$ agit transitivement sur $\mathbb{R}^n \{0\}$, la forme (n-1)-alternée ω_{e_1} sur \mathbb{R}^n détermine uniquement la forme différentielle ω sur $\mathbb{R}^n \setminus \{0\}$, puis sur tout \mathbb{R}^n par continuité. Il reste à vérifier que ω_{e_1} est uniquement déterminée, à une constante multiplicative près en utilisant le fait qu'elle est G-invariante. On peut pour cela l'écrire en coordonnées : $\omega_{e_1} = \sum_{i=1}^{n-1} a_i dx_1 \wedge \cdots \wedge dx_i \wedge \cdots \wedge dx_n$ où $a_i \in \mathbb{R}$. Montrons que les $(a_i)_{i\geqslant 2}$ sont nuls. Par G-invariance, on a pour $i\geqslant 1$, $a_i=\omega_{e_1}(e_1,\ldots,\hat{e_i},\ldots,e_{n-1})=\omega_{e_1}(e_1,\ldots,e_{i-1},e_i+e_{i+1},e_{i+2},\ldots,e_{n-1})=a_i+a_{i+1}$, donc $a_{i+1}=0$ d'où le résultat.
- 5- Soit $\omega \in \Gamma(T^*\mathbb{R}^n)$ une 1-forme différentielle sur \mathbb{R}^n invariante sous $SL_n(\mathbb{R})$. De même que dans la question précédente, il suffit de vérifier que son évaluation en e_1 est nulle. Notons $H \subseteq \mathbb{R}^n$ le noyau de ω_{e_1} . Comme $n \geqslant 3$, on a dim $H \geqslant 2$, donc il existe $v \in H$ de la forme $\sum_{i\geqslant 1}^n \lambda_i e_i$ avec $\lambda_i \neq 0$ pour un $i \geqslant 2$. Comme H est G invariant,

et que $SL_{n-1}(\mathbb{R})$ agit transitivement sur \mathbb{R}^{n-1} , on a que $H \supseteq \lambda_1 e_1 \oplus \mathbb{R}^{n-1}$ puis en soustrayant : $H \supseteq \{0\} \times \mathbb{R}^n$. La transformation $f \in G$ donnée par $f(e_2) = e_1 + e_2$ et $f(e_i) = e_i$ si $i \neq 2$ stabilise H donc H contient $e_1 + e_2$ puis e_1 puis $H = \mathbb{R}^n$. Ainsi $\omega_{e_1=0}$.

3. Formes différentielles sur un quotient

Soit X une variété C^{∞} et G un groupe de Lie agissant de façon libre et propre sur X. On note $p: X \to G \setminus X$ l'application quotient.

- 1- Soit $k \ge 0$. Montrer que $p^*: \Omega^k(G \setminus X) \to \Omega^k(X)$ est injective.
- 2– Dans le cas où G est discret, montrer que l'image de $p^*: \Omega^k(G\backslash X) \to \Omega^k(X)$ est l'ensemble $\Omega^k(X)^G$ des formes G-invariantes.
- 3– Identifier l'image de p^* dans le cas général.

Solution:

- 1- Comme p^* est linéaire, il suffit de vérifier que son noyau est trivial. Soit $\omega \in \Omega^k(X/G)$ telle que $p^*\omega = 0$. Soit $y \in X/G$ et soit x un antécédent de y par p. Comme p est une submersion, $d_x p$ est surjective et envoie donc $T_x X$ sur $T_y X/G$. On a alors $\omega_y(T_y X/G) = (p^*\omega)_x(T_x X) = \{0\}$ et donc $\omega_y = 0$. On a bien $\omega = 0$.
- 2- Soit $g \in G$. Comme $p \circ g = p$, $g^*p^*\omega = p^*\omega$, de sorte que $p^*\omega$ est G-invariante. Réciproquement, soit ω une forme G-invariante sur X. Soit $y \in X/G$. On choisit x un antécédent de y, et on pose $\alpha_y = ((d_x p)^{-1})^*\omega_x$. Comme ω est G-invariante, α_y ne dépend pas du choix de x.

Pour montrer que α est C^{∞} , on choisit des voisinages U et V de x et de y tels que p réalise un difféomorphisme entre U et V. Alors $\alpha|_{V}=((p|_{U})^{-1})^{*}\omega|_{U}$, ce qui montre que $\alpha|_{V}$ est C^{∞} , comme voulu.

Finalement, par construction, on a bien $\omega = p^*\alpha$.

3- Dans le cas général, la projection $p: X \to X/G$ est toujours une submersion. Remarquons qu'une forme ω dans l'image est encore G-invariante. De plus, si Y_x est dans le noyau de $d_x p$ (de façon équivalente, si Y_x est tangent à l'orbite de G passant par x), on a nécessairement $\iota_{Y_x}\omega_x=0$. On va montrer que ces conditions nécessaires sont suffisantes. Soit donc ω une forme de degré k sur X, G-invariante et telle que $\iota_{Y_x}\omega_x=0$ dès que Y_x appartient au noyau de $d_x p$. Soient Z_1,\ldots,Z_k des vecteurs dans $T_z(X/G)$. On considère un point x tel que p(x)=z et des vecteurs Y_1,\ldots,Y_k tels que $d_x p(Y_i)=Z_i$ (on rappelle que p est une submersion). On définit alors

$$\alpha_z(Z_1,\ldots,Z_k) := \omega_x(Y_1,\ldots,Y_k).$$

D'autres choix pour les Y_i diffèrent des Y_i par des vecteurs dans le noyau de d_xp . En appliquant de proche en proche l'hypothèse faite sur ω , on en déduit que l'expression

ne dépend pas des Y_i choisis. De plus, elle ne dépend pas non plus de x, comme précédemment, par G-invariance. Finalement, si s est une section locale de p, on a défini α comme $s^*\omega$. Ceci montre que α ainsi définie est lisse; par construction, elle vérifie $p^*\alpha = \omega$.

4. Formes homogènes

Une forme différentielle α sur \mathbb{R}^n est dite homogène de degré d si pour tout t > 0, $h_t^* \alpha = t^d \alpha$, où on désigne par h_t l'homothétie de rapport t.

- 1- Montrer qu'une k-forme différentielle sur \mathbb{R}^n est homogène de degré d si et seulement si ses coefficients sont homogènes de degré d-k.
- 2- Montrer que la différentielle d'une forme homogène est homogène de même degré.

Solution:

- 1- Soit α une k-forme différentielle sur \mathbb{R}^n . On l'écrit en coordonnées $\alpha = \sum_I a_I de_I$ où $a_I \in C^{\infty}(\mathbb{R}^n)$ et I décrit les sous ensembles de $\{1,\ldots,n\}$ de cardinal k. Alors $h_t^*\alpha = \sum_I (a_I \circ h_t) h_t^* de_I = t^k \sum_I (a_I \circ h_t) de_I$. On a donc $h_t^*\alpha = t^d \alpha$ si et seulement si $t^k a_I \circ h_t = t^d a_I$ i.e. $a_I \circ h_t = t^{d-k} a_I$ pour tout $I \subseteq \{1,\ldots,n\}$ tel |I| = k, ce qui est le résultat cherché.
- 2- Soit t > 0, α une forme différentielle homogène de degré d. Alors

$$h_t^*(d\alpha) = d(h_t^*\alpha) = d(t^d\alpha) = t^d d\alpha$$

donc $d\alpha$ est homogène de degré d.

5. Coordonnées de Plücker

Soient E un espace vectoriel de dimension n et e_1, \ldots, e_n une base de E^* . Pour chaque m-uplet $I = (i_1, \ldots, i_m)$ avec $1 \leq i_1 < \cdots < i_m \leq n$, posons $e_I = e_{i_1} \wedge \cdots \wedge e_{i_m}$. Si W est un sous-espace de E^* de dimension m et x_1, \ldots, x_m une base de W, la m-forme linéaire alternée $x_1 \wedge \cdots \wedge x_m$ s'écrit $\sum a_I e_I$ pour certains coefficients a_I .

- 1– Montrer que, à une constante multiplicative près, les coefficients $(a_I)_I$ ne dépendent pas du choix de la base de W et définissent une application *injective* de l'ensemble $\{W \subset E^* \mid \dim W = m\}$ dans l'espace projectif $\mathbb{P}^N(\mathbb{R})$, où $N = \binom{n}{m} 1$.
 - Les coefficients a_I s'appellent les coordonnées de Plücker de W.
- 2- Montrer que les coordonnées de Plücker déterminent un plongement de la grassmanienne $\mathcal{G}_m(E^*)$ dans $\mathbb{P}^N(\mathbb{R})$.
- 3– Montrer qu'une forme bilinéaire alternée ω sur \mathbb{R}^4 s'écrit sous la forme $x_1 \wedge x_2$ avec x_1, x_2 deux formes linéaires indépendantes sur \mathbb{R}^4 , si et seulement si $\omega \neq 0$ et $\omega \wedge \omega = 0$.
- 4- En paramétrant l'image de $\mathcal{G}_2(\mathbb{R}^4)$ par le plongement de Plücker, montrer que $\mathcal{G}_2(\mathbb{R}^4)$ est difféomorphe au quotient de $\mathbb{S}^2 \times \mathbb{S}^2$ par l'action de $\mathbb{Z}/2\mathbb{Z}$ donnée par $(x,y) \mapsto$

(-x, -y). On pourra poser $x_1 = a_{12} + a_{34}$, $x_2 = a_{23} + a_{14}$, $x_3 = a_{31} + a_{24}$, $y_1 = a_{12} - a_{34}$, $y_2 = a_{23} - a_{14}$, $y_3 = a_{31} - a_{24}$.

Solution:

1- Si y_1, \ldots, y_m est une autre base de W, il existe une matrice $A \in GL(W)$ envoyant x_i sur y_i . Alors $y_1 \wedge \cdots \wedge y_m = (\det A)x_1 \wedge \cdots \wedge x_m$.

Ainsi, l'application $W \mapsto [x_1 \wedge \cdots \wedge x_m]$ est bien définie. Pour montrer qu'elle est injective, il faut voir que, si $x_1 \wedge \cdots \wedge x_m = \alpha y_1 \wedge \cdots \wedge y_m$, alors $\text{Vect}(x_1, \dots, x_m) = \text{Vect}(y_1, \dots, y_m)$. On complète x_1, \dots, x_m en une base x_1, \dots, x_n . On peut écrire $y_i = \sum a_{ij}x_j$. Alors

$$y_i \wedge x_1 \wedge \cdots \wedge x_k = \sum_{j=k+1}^n a_{ij} x_j \wedge x_1 \wedge \cdots \wedge x_k.$$

Mais $y_i \wedge x_1 \wedge \cdots \wedge x_k = \alpha y_i \wedge y_1 \wedge \cdots \wedge y_k = 0$. Par conséquent, $a_{ij} = 0$ pour j > k. Ainsi, $y_i \in \text{Vect}(x_1, \dots, x_k)$, ce qui conclut.

2- Soit P l'application de Plücker. Montrons que c'est un plongement. C'est une application clairement injective, et propre car $\mathcal{G}_m(E^*)$ est compact. Il suffit donc de montrer que c'est une immersion en tout point. Quitte à faire un changement de coordonnées linéaire à la source et au but, il suffit de travailler au voisinage de $W = \text{Vect}(e_1, \ldots, e_m)$ (avec $P(W) = [1:0:\ldots:0]$).

La coordonnée canonique de $\mathcal{G}_m(E^*)$ au voisinage de W est donnée par $\varphi: A \mapsto \operatorname{Im} \left(\begin{array}{c} I_k \\ A \end{array} \right)$ lorsque $A \in \mathcal{M}_{n-k,k}$. Une base de $\varphi(A)$ est $e_1 + Ae_1, \dots, e_m + Ae_m$. On peut écrire

$$(e_1 + Ae_1) \wedge \cdots \wedge (e_m + Ae_m) = e_1 \wedge \cdots \wedge e_m + \sum_{I \neq \{1, \dots, m\}} a_I(A)e_I,$$

où les fonctions a_I sont polynômiales en A (et donc C^{∞}). Dans les cartes, l'application P est donnée par $Q: A \mapsto (a_I(A))_{I \neq \{1, \dots, m\}}$; elle est donc polynomiale.

Calculons la dérivée de Q en 0. On a

$$(e_1 + Ae_1) \wedge \cdots \wedge (e_m + Ae_m) = e_1 \wedge \cdots \wedge e_m + \sum_{i=1}^m e_i \wedge \cdots \wedge Ae_i \wedge \cdots \wedge e_m + O(\|A\|^2).$$

Mais $Ae_i = \sum_j A_{ji}e_{j+m}$. Ainsi, $dQ_0(A) = ((-1)^{m-i}A_{ji}e_{\{1,\dots,\widehat{i},\dots,m,j+m\}})$. Cette différentielle est injective.

Ainsi, P est une immersion injective. Elle est propre puisque $\mathcal{G}_m(E^*)$ est compact. C'est donc un plongement.

3- Si $\omega = x_1 \wedge x_2$ avec (x_1, x_2) libre, alors ω est non nulle et $\omega \wedge \omega = 0$. Réciproquement, soit ω telle que $\omega \neq 0$ et $\omega \wedge \omega = 0$.

Le théorème de réduction des formes bilinéaires antisymétriques assure qu'une forme bilinéaire alternée peut s'écrire dans une certaine base avec une matrice de 0 et des blocs diagonaux de la forme $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. S'il n'y avait aucun bloc diagonal, on aurait $\omega = 0$, ce qui est absurde. S'il y a exactement un bloc diagonal, alors $\omega = x_1 \wedge x_2$ et on a gagné. Enfin, s'il y a deux blocs diagonaux, alors $\omega = x_1 \wedge x_2 + x_3 \wedge x_4$ où (x_1, x_2, x_3, x_4) forme une base de E^* . On obtient $\omega \wedge \omega = 2x_1 \wedge x_2 \wedge x_3 \wedge x_4 \neq 0$, ce qui est encore absurde.

4- Une 2-forme non nulle

$$\omega = a_{12}e_1 \wedge e_2 + a_{31}e_3 \wedge e_1 + a_{14}e_1 \wedge e_4 + a_{23}e_2 \wedge e_3 + a_{24}e_2 \wedge e_4 + a_{34}e_3 \wedge e_4$$
 est dans l'image du plongement de Plücker si et seulement si $\omega \wedge \omega = 0$, d'après la question précédente. Mais

$$\omega \wedge \omega = 2(a_{12}a_{34} + a_{31}a_{24} + a_{14}a_{23})e_1 \wedge e_2 \wedge e_3 \wedge e_4.$$

Ainsi, l'image de P est donnée par la surface déquation $a_{12}a_{34} + a_{31}a_{24} + a_{14}a_{23} = 0$. Dans les coordonnées indiquées dans l'énoncé, cette équation devient $x_1^2 + x_2^2 + x_3^2 = y_1^2 + y_2^2 + y_3^2$. Ainsi, $\mathcal{G}_2(\mathbb{R}^4)$ est difféomorphe à l'ensemble

$$E = \{ [x_1: x_2: x_3: y_1: y_2: y_3] \in \mathbb{P}^5(\mathbb{R}) \mid x_1^2 + x_2^2 + x_3^2 = y_1^2 + y_2^2 + y_3^2 \}.$$

Cet ensemble est le quotient de $\mathbb{S}^2 \times \mathbb{S}^2$ par l'action diagonale de $\mathbb{Z}/2\mathbb{Z}$ via (l'application $(x_1, x_2, x_3), (y_1, y_2, y_3) \mapsto [x_1 : x_2 : x_3 : y_1 : y_2 : y_3]$ passe au quotient et donne un difféomorphisme).