Лабораторная работа №1 «Исследование матричных норм и зависимости ошибки решения СЛАУ от числа обусловленности матрицы»

Исследование системы вида Ax = b.

- 1. Составить 5 матриц A_k размером 25х25, где k=1,...,5, заполненные случайными числами в диапазоне (0,1). Диагональное преобладание необязательно.
- 2. Вывести полученные матрицы.
- 3. Написать функцию подсчета нормы матрицы. Норма матрицы соответствует определенному варианту в таблице№1, который вычисляется как остаток от деления своего порядкового номера в списке группы на общее количество норм = 6. Например, если вы в группе являетесь 9-м по счету, то ваш вариант будет 9%6 = 3
- 4. Найти число обусловленности каждой матрицы $cond(A) = ||A_k|| \cdot ||A_k^{-1}||$.
- 5. Вывести результаты по пяти сгенерированным матрицам в таблицу:

k	Норма матрицы $\ A\ $	cond(A)
1		
5		

6. Исследовать матрицу Вандермонда из задачи полиномиальной интерполяции с прошлого семестра. Для этого задаем равномерную сетку $[x_0, ... x_n]$. Условие интерполяции: $P(x_i) = y_i = f(x_i)$. Решить любым встроенным методом СЛАУ следующего вида:

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ \dots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ \dots \\ y_n \end{pmatrix}.$$

Здесь неизвестными является вектор коэффициентов из a_0 , a_1 , a_2 , ..., a_n , в то время как вектор столбец y получается перемножением матрицы Вандермонда на вектор

столбец из единиц:
$$y=\begin{pmatrix} 1 & x_0 & x_0^2 & ... & x_0^n \\ 1 & x_1 & x_1^2 & ... & x_1^n \\ ... & ... & ... & ... & ... \\ 1 & x_n & x_n^2 & ... & x_n^n \end{pmatrix}\begin{pmatrix} 1 \\ 1 \\ ... \\ 1 \end{pmatrix}$$
. Взять $n=25$.

7. Посчитать число обусловленности для матрицы Вандермонда и векторную норму между получившимся решением СЛАУ и точным решением. Для вычисления нормы используйте любую из приведенных ниже формул:

$$||x||_{\infty} = \max |x_i|, \quad ||x||_1 = \sum_{i=1}^n |x_i|, \quad ||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$$

Замечание: точным решением данной СЛАУ является вектор столбец из всех единиц, для n=25 точным решением будет вектор столбец из всех 25 коэффициентов $a_i=1$, $i=\overline{1,n}$

- 8. Сделать вывод.
- 9. Оформить отчет, который должен содержать:
 - а. Титульник с номером своего варианта.
 - b. Полученные пять матриц A_k .

- с. Результаты выполнения пунктов 4, 5, и 6.
- d. Заключение.
- е. Листинг программы.

Графиков здесь нет 😊

Таблица 1.

	Тиолици 1.	
Вариант	Нормы матрицы А	
1	$ A_k = \max_{1 \le i \le n} \sum_{j=1}^n a_{ij} $	
2	$ A_k = \max_{1 \le j \le n} \sum_{i=1}^n a_{ij} $	
3	$ A_k = \frac{1}{n} \max_{1 \le i \le n} \sum_{j=1}^{n} a_{ij} $	
4	$ A_k = \frac{1}{n} \max_{1 \le j \le n} \sum_{i=1}^n a_{ij} $	
5	$ A_k = \sqrt{\sum_{i,j=1}^n \left a_{ij}\right ^2}$	
6	$ A_k = \frac{1}{n} \sqrt{\sum_{i,j=1}^n a_{ij} ^2}$	