PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-163182

(43)Date of publication of application: 19.06.2001

(51)Int.CI.

B60R 22/46

(21)Application number: 11-352902

(71)Applicant: TAKATA CORP

(22)Date of filing:

13.12.1999 (72)Invento

(72)Inventor: MISHINA SHOJI

KANAMORI YASUSHI

SHIOTANI MASAHIRO

(54) PRETENSIONER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a pretensioner modified so as to prevent the motion of a sheet belt retractor from being hampered.

SOLUTION: This pretensioner 10 is structured by having a pipe 21 to store a ball 20 as a core component. This pipe 21 is curved so as to surround the periphery of the insertion hole 42a. A tip opening 21b is opened at the end (tip) of the last guide part 21j of the pipe 21. The guide part 21j has a sectional shape formed only by a part of the annulus ring of the pipe, and is easy to be deformed. After the pretension 10 is actuated, an EA mechanism 7 is actuated, a motion to push back the ball 20 to the inside of the pipe 21 is produced, and the last guide part 21j of the pipe 21 is bent by receiving the force pushing the ball 20. Thereby, the passage for the ball 20 is expanded, and the ball 20 is discharged toward a case 17, even if it remains between levers 33.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

TB 99-72

(19)日本国特許庁 (JP) ... (12)公開特許公報(A)

(11)特許出願公開番号 特開2001-163182 (P2001 - 163182A)

(43)公開日 平成13年6月19日(2001.6.19)

(51) Int.Cl.7

識別記号

FI B 6 0 R 22/46 テ-マコード(参考)

3 D 0 1 8

B 6 0 R 22/46

(21)出願番号

特願平11-352902

(22)出願日

平成11年12月13日(1999.12.13)

(71)出願人 000108591

タカタ株式会社

東京都港区六本木1丁目4番30号

審査請求 未請求 請求項の数2 〇L (全 13 頁)

(72)発明者 三科 丞司

東京都港区六本木1丁目4番30号 タカタ

株式会社内

(72)発明者 金森 靖

東京都港区六本木1丁目4番30号 タカタ

株式会社内

(74)代理人 100100413

弁理士 渡部 温

最終頁に続く

(54)【発明の名称】 プリテンショナ

(57)【要約】

.【課題】 プリテンショナ作動後に、シートベルトリト ラクタの動作が妨げられることのないよう改良を加えた プリテンショナを提供する。

【解決手段】 プリテンショナ10は、ポール20を収 納するパイプ21を中心に構成されている。このパイプ 21は、ベース41の挿通孔42aの回りを囲むように 湾曲している。パイプ21の最後の案内部21jの先 (先端) には、先端開口21bが開いている。案内部2 1 j は、断面形状がパイプの円環の一部のみからなる形 状となっており、変形しやすくなっている。 プリテンシ ョナ10の作動後にEA機構?が作動し、ポール20を パイプ21内に押し戻そうとする動作が生じると、ポー ル20が押される力を受けて、パイプ21の最後の案内。 部21jが屈曲する。これによって、ポール20の通路 が広がり、ポール20がレバー33間に残留していて も、ケース17の方向に排出される。

監修 日本国特許庁

1

【特許請求の範囲】

【請求項1】 緊急時にシートベルトの巻取軸を巻き取 り方向に回転させてベルトにプリテンションを与えるプ リテンショナであって;ガスジェネレータと、

このガスジェネレータの発生するガスによって加速され る一連の複数の部材を備える駆動体と、

この駆動体を案内する通路と、

上記駆動体の各部材が当たって回転駆動力を与える複数 の駆動点(レバー等)を有する上記巻取軸に連結される。 回転部材と、を備え、

プリテンショナ作動後に、上記回転部材の駆動点近辺に 残留している駆動部材を排出しやすくする機構を備える ことを特徴とするプリテンショナ。

【請求項2】 上記ペルトに所定値以上の張力がかかっ た場合に、上記巻取軸を徐々にペルト引き出し方向に回 転させるエネルギ吸収機構が付設されており、

プリテンショナ作動後にエネルギ吸収機構が作動する際 に、上記通路の一部が変形又は脱落することを特徴とす る請求項1記載のプリテンショナ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、乗員を車両等のシ ートに拘束するシートペルト装置に組み込まれて、シー トペルトの巻取軸を緊急に巻き取り方向に回転させるプ リテンショナに関する。特には、プリテンショナ作動後 に、シートベルトリトラクタの動作が妨げられることの ないよう改良を加えたプリテンショナに関する。

[0002]

【従来の技術】PCT国際公開WO95/27638に・ は、新たな方式のプリテンショナが開示されている。図 30 14 (a) はこのプリテンショナの分解斜視図であり、 図14 (b) は同プリテンショナのドライブホイルの詳 細図である。なお、このプリテンショナは、シートベル トを巻き取るシートベルトリトラクタ(図示されず)に 付設されている。

【0003】 このプリテンショナは、図14 (a) に示 すように、シートペルトの巻取軸101に取り付けられ る一対のドライブホイル片103、104を備えてい る。一方のドライブホイル片104は巻取軸101に固 着されている。他方のドライブホイル片103はギア1 *40* 06を介して巻取軸101に組み付けられる。両ドライ プホイル片103、104が対向して配置されることに より、図14 (b) に示すようなドライブホイル105 が構成される。ドライブホイル片103、104の対向 面には、周方向に沿って複数の凹部103a、104a が形成されている。これら凹部103a、104aは、 両ドライブホイル片103、104が対向したどき、カ ップ状(ほぼ半球面状)の凹部100と溝110とを構 成する。

ソードポックス114が設けられている。同ソードポッ クス114は、カップ(ケーシング)112とともにり トラクタハウジング(図示されず)に取り付けられてい る。ソードボックス114には、突片状のガイド11 6、117が形成されている。同ガイド116、117 は、ドライプホイル105の溝110内に位置するよう になっている。

【0005】カップ112の内側には、U字状のチュー プ118が設けられている。同チュープ118は、ソー ドポックス114の外周を囲うように位置する。このチ ュープ118には、ガイド116、117間の空間と向 かい合う位置に、開口118aが形成されている。チュ ープ118の一端部(基端部)にはガスジェネレータ1 15が設けられている。チューブ118の他端部(先端 部)は、カップ112に形成されたスロート部119に 係合される。このチューブ118内には、ドライブホイ ル105を駆動するためのマスポール120が収納され ている。同マスポール120は、複数の連なった球状体 からなる。マスポール120の基端部(ガスジェネレー 20 タ115に近い側の端部)には、ピストン121が設け られている。

【0006】上記したプリテンショナの作用を図13及 び図14を参照しつつ説明する。図13(a)はプリテ ンショナの作動前の状態を示す図であり、図13(b) はプリテンショナの正常作動時の状態を示す図であり、 図13(c) はプリテンショナの異常作動時の状態を示 す図である。図13(a)の状態(プリテンショナの作 動前)からガスジェネレータ115が作動すると、発生 したガスによりチューブ118内のマスポール120が 図の下方に押される。これにより、まず最先端のマスポ ール120が、図13 (b) に示すように、開口118 aから突き出てドライブホイル105の歯105aの側 部に当たる。このとき、マスポール120の力は、ドラ イブホイル105に対してベクトルαの方向に作用し、 ドライブホイル105を回転させる力となる。

【0007】隣り合うドライブホイルの歯105aの間 の凹部10.5 bは、マスポール120の寸法に対応する 半球状をしているため、凹部105bと複数のマスポー ル120とが順次噛み合って、ドライブホイル105が 回転する。このドライブホイル105の回転と同時に巻 取軸101も回転し、ベルトが巻取方向に巻き取られ

【0008】ところが、このプリテンショナにおいて は、ドライプホイル105及び巻取軸101の回転が正 確に行われない場合がある。すなわち、図13(c)に 示すように、高速で押し出されたマスポール120が、 ドライブホイルの歯105aの頂部Xの真上に当たる場 合がある。このとき、マスポール120からドライブホ イル105への力はペクトルBの方向(すなわちドライ 【0004】ドライブホイル片103、104の間には 50 ブホイル105の軸心に向かう方向)に作用する。この

場合には、マスポール120の力がドライブホイル10 5の回転トルクとして作用しないことになる。したがっ て、ベルトが確実に巻き取られない可能性がある。

【0009】この問題を解決すべく、本発明者らは特願 平11-262104号において、新たなブリテンショ ナを提案した。その提案のポイントは、以下である。

- (1) 巻取軸101とドライブホイル(第1回転部材) 105間に、プリテンショナ作動時にのみつながるクラッチを入れる。
- (2) プリテンショナ作動前から先頭のマスポール (駋 10 動体) 120をドライブホイル105の歯 (駆動点) 1 05aに適正な形態で当てておく。

【0010】上記提案によれば、マスポール120の先頭の部材は、ドライブホイル105の歯105aに実質的に接触しているので、ガスジェネレータ作動後即座にドライブホイール105の歯105aを押すことができる。したがって、マスポール120とドライブホイル105との噛み合い不良が起こらず、プリテンショナの作動がより確実になる。

【0011】しかしながら、ブリテンショナ作動後について考えると、特に巻取軸回動型のエネルギ吸収機構(EA機構ともいう)を有するシートベルトリトラクタにおいて、次のような現象が起こる可能性がある。すなわち、車体に大きなGが働いてブリテンショナが作がした後に、乗員が慣性力で前方に移動すると、ベルトが断い、ある抵抗トルクを維持しながらベルト引き出しが、ある抵抗トルクを維持しながらベルト引き出したが、あるに回動する。そのとき、図13においてドラインはチューブ118内に押し戻される形となる。その際にマスポール105に与えると、巻取軸101の回動抵抗カをドラインはインボイル105に与えると、巻取軸101の回動抵抗トルクが規定の値より高くなって、ベルト張力が高くなるおそれがあり好ましくない。

[0012]

【発明が解決しようとする課題】本発明はこのような問題点に鑑みてなされたもので、プリテンショナ作動後に、シートベルトリトラクタの動作が妨げられることのないよう改良を加えたプリテンショナを提供することを目的とする。

[0013]

【課題を解決するための手段、作用及び発明の実施の形態】上記課題を解決するため、本発明のプリテンショナは、 ガスジェネレータと、 このガスジェネレータの発生するガスによって加速される一連の複数の部材を備える駆動体と、 この駆動体を案内する通路と、 上記駆動体の各部材が当たって回転駆動力を与える複数の駆動点 (レバー等)を有する上記巻取軸に連結される回転部材と、を備え、 プリテンショナ作動後に、上記回転部材の駆動点近辺に残留している駆動部材を排出しやす 50

くする機構を備えることを特徴とする。

【0014】プリテンショナの作動後に、ボール等の駆動部材が駆動点近辺に残留していても、その駆動部材を容易に排出できるため、回転部材ひいては巻取軸の動きを妨げるようなことはない。

【0015】上記ベルトに所定値以上の張力がかかった場合に、上記巻取軸を徐々にベルト引き出し方向に回転させるエネルギ吸収機構が付設されている場合には、ブリテンショナ作動後にエネルギ吸収機構が作動する際に、巻取軸のベルト引き出し方向への回転に伴い、上記回転部材の駆動点が上記駆動部材を上記通路中に戻そうとする動作が生じる。このようなエネルギ吸収機構が装備されている場合、上記駆動部材を排出しやすくする機構として、上記動作が生じた場合に、上記通路の一部が変形又は脱落して駆動部材が通路外に排出されやすく構成することができる。

【0016】以下、図面を参照しつつ説明する。まず、本実施の形態のプリテンショナを有するシートベルトリトラクタの全体構成例を説明する。図8は、本実施の形態のプリテンショナを有するシートベルトリトラクタの全体構成例を示す分解斜視図である。

【0017】図8に示すシートベルドリトラクタ1は、 大きく分けて、以下の各部からなる。 (1) フレーム 2。 (2) ベルト3を巻き取る軸であるリール4。 (3) フレーム2の一側面に配設された、緊急ロック作 動時にリール4のペルト引き出し方向への回転を阻止す るロック手段 5。(4)ロック手段 5を車両の衝突時に 作動させる緊急ロック機構6。(5)衝突時等の大減速 時にロック手段5の作動によりベルト3の引き出しが阻 30 止されたとき、同ペルト3の荷重を制限するエネルギ吸 収機構(EA機構) 7。(6) 車両減速度を検知する減 速検知手段8。(7)リール4をベルト巻き取り方向に 付勢するリターンスプリング9. (8) 衝突時にリール 4を瞬時にベルト巻き取り方向に回転させるプリテンシ ョナ10。これら各部のうち、プリテンショナ10の駆 動部材排出機構を除く各部の詳細については、特顯平1 1-262104号に詳細に開示してある。また、その 他に、さまざまな方式のものを適用することができる。

【0018】このシートベルトリトラクタにおけるプリテンショナ及びEA機構に関連する部分について説明する。図9は、本発明の一実施の形態に係るプリテンショナ及びそれと連結されたリールの構成を示す斜視図である。リール4は、ベルト3を巻き取るベルト巻き取り部4aの両端のフランジ部4b、4cを有する。リール4の図の左側のフランジ部4bの左側には、外周面が断面6角形の6角軸部4dが突設されている。なお、同外周面は断面6角形ではなく、セレーション形状や6歯又は7歯又はその他の歯数のスプライン形状とすることもできる。この6角軸部4dには、ピニオン23が嵌合される。さらに、この6角

軸部4dの先には、ばね付勢力付加軸4eが突設されている。組み立て状態において、6角軸部4dは図8に示すフレーム2の側壁50から図の左方向に突出する。ばね付勢力付加軸4eは図9に示すリターンスプリング9のブッシュシャフト71内に挿入され、リターンスプリング9のばね付勢力が加えられる。

【0019】リール4の図の右側のフランジ部4cの右側には、スプールリング支持軸部4gが形成されている。この軸部4gの外間には所定数(図示例では6個)の突部4fが形成されている。軸部4gは、組み立て状 10態において、図8に示すフレーム2の側壁51から図の右方向に突出し、スプールリング64を相対回転不能に支持する。

【0020】リール4の中央には、軸方向に延びる穴4hが穿設されている。この穴4hは、図示されないが図の左の6角軸部4dの内部にまで延びており、この6角軸部4dに位置する部分(つまり、6角軸部の内周面)も断面6角形となっている。そして、フランジ部4bまでの穴4hの部分は比較的大きな穴とされており、フランジ部4bから6角軸部4d側の部分は比較的小さな穴とされている。穴4hの奥は、6角軸部4dの端部の側壁によって閉塞されており、この側壁からばね付勢力付加軸4eが突設されている。

【0021】図8に示すEA機構7のトーションバー62は、リール4の穴4h(図9)内に挿入されており、その端部の6角軸部62aが、リール穴4hの奥の6角穴(図示されず)に嵌合している。したがって、通常時は、トーションバー62とリール4は相対回動不能に連結されている。

【0022】図8に示す減速検知手段8、ロック手段5 30 及び緊急ロック機構6は、車両衝突時等の異常減速時に作動し、トーションパー62と一体のロッキングペースの回転をロックする(車体に固定されているフレーム2に対して回動不能とする)。すると、トーションパー62を介してリール4の回転もロックされる。しかし、慣性力で前に移動する乗員の体に引かれてベルト3の張力が一定値以上となると、トーションパー62が捩れ塑性変形を起し、徐々にリール4がベルト引き出し方向に回動し、ほぼ一定の張力がかかった状態でベルト3が引き出される。このような作用によって、乗員の体の慣性エ 40ネルギが吸収される。

【0023】次に、ブリテンショナ10について説明する。図1~7は、本発明の一実施の形態に係るブリテンショナの構成と作動順序を示す図である。図1は、本発明の特徴事項である、ブリテンショナ作動後のボール排出機構の動作を示す正面断面図である。図2は、ボール排出機構の変形例を示す正面図である。図3は、ボール排出機構の他の変形例を示す正面図である。図4は、作動前の状態を示す正面断面図である。図5はガスジェネレータ発火直後の状態を示す正面断面図である。図6は50

ベルト巻き取り開始直後の状態を示す正面断面図である。図7はベルト巻き取り中の状態を示す正面断面図である。さらに、図10は、本発明に係るプリテンショナのパイプ、ベース及びギアホルダの詳細を示す斜視図である。図11は、図13のギアホルダの詳細を示す斜視図である。

【0024】図8に示すように、プリテンショナ10は、駆動体部材であるボールを収納するパイプ21を中心に構成されている。このパイプ21は、ペース41に組み付けられた状態で、フレーム2の開壁50外側に取り付けられる。ペース41は、図10に最も良く示すように、平板状をした基板42を備えている。この基板42のほぼ中心位置には押通孔42aが形成されており、外周寄りの位置には取り付け孔42cや42dが形成されている。押通孔42aにはリール4のばね付勢力付加軸4e(図9参照)が押通される。取り付け孔42cや42dには、ペース41とリターンスプリング9を一体に固定するためのねじ44(図8参照)が螺入される。

【0025】基板42の周緑には複数のガイド板43 a、43b等が一体的に設けられている。各ガイド板は、基板42に対してほぼ垂直に立ち上がっている。ガイド板43aや43fの先端部は外側に折り返されており、この折り返し部分にそれぞれ取り付け孔43a、や43f、が形成されている。各取り付け孔43a、等には、ベース41をフレーム2の側壁50に固定するためのリベット49(図8参照)もしくはポルト(スクリュー)が挿入される。なお、図1、図4~図7において、基板42の各部形状の大部分は省略されている。

【0026】プリテンショナ10のパイプ21の内側には、図4や図11に示すように、ほぼコ字状をしたギアホルダ45が嵌合されている。ギアホルダ45は、図11に最も良く示すように、屈曲変形可能な樹脂材からなる側板47及び背板46を備えている。側板47は背板46の一端からフランジ状に内側に張り出している。側板47の内側面上には、対向する2ヶ所の位置に、各々2本のピン25、26が値設されている。ピン25、26は、プリテンショナ作動前の状態(図4)において、リングギア30のレバー33を挟持する。側板47の内周辺46aや46bは、図4に示すようにプリテンショナ作動前の状態においてリングギヤ30の外周面30bと接している。

【0027】特板46のコの字状の中央部には、ヒンジ部46cが設けられている。ヒンジ部46cには孔が形成されている。この孔はリングギア30のレバー先端の干渉を避けるためのものである。ヒンジ部46cにおいて、ギアホルダ45は、ブリテンショナ作動直後(図5の状態)に屈曲する。その結果、リングギア30の保持が解除される。

【0028】図10に最も良く示すように、上記ベース 41に固定されたパイプ(通路)21は、銅管を曲げ加 7

工したもの(一例)である。このパイプ21は、ペース41の挿通孔42aの回りを囲むように湾曲している。パイプ21は、図4等に示すように、図の下側の基端21cから右上に約90°湾曲して直線部21gへとつながり、さらに図の上部の半円部21hへとつながっている。半円部21hの先は、図の下方に向う案内部21iがつながっており、さらにその先にやや内側に傾斜した案内部21jがつながっている。この最後の案内部21jの先(先端)には、先端開口21bが開いている。案内部21jは、断面形状がパイプの円環の一部のみからなる形状となっており、変形しやすくなっている。なお、案内部21jのボール排出機構としての作用については後述する。

【0029】パイプ21の最後の案内部21 jは、図2に示すように、先端に塑性変形する部材(例えばアルミプロック等)21 j を組み込んで構成してもよい。又は、図3に示すように、パイプ21の案内部21 i と最後の案内部21 j を別体に構成することもできる。この場合、案内部21 i と案内部21 j とは連なるように配置する。案内部21 j とは連なるように配置する。案内部21 j がといる部材(一例アルミプロック)等)から形成するのがよい。なお、これら図2及び図3に示す先端部材21 j 、案内部21 j でのポール排出機構としての作用についても後述する。

【0030】図4等に示すように、パイプ21の先端開口21b寄りの案内部21i、21jの内側には、リングギア30が介入可能なように切り欠かれた切欠部21 aが設けられている。切欠部21a内には、リングギア30のレバー32、33が入り込める。パイプ21が湾曲していることで、プリテンショナ10の外形寸法全体が小さくてすむ。また、パイプが直線状に限るものに比べて、設計自由度が高くなっている。なお、パイプ21は、三次元的に湾曲させるなど、他の様々な形状に湾曲することもできる。

【0031】このパイプ21の基端部21cには、パイプ21よりもやや太くなったパイプ状の圧力容器21d が接続されている。この圧力容器21d内にガスジェネレータ15が収納されている。このガスジェネレータ15は、車両の衝突時等に図示せぬ衝突検知手段から発信される検知信号に基づき火薬に点火し、ガス圧をパイプ 4021内に供給する。同ガスジェネレータ15は、圧力容器21d内に収められた後に、フランジ部21 fを外側からかしめることにより固定されている。

【0032】引続きプリテンショナ10について説明する。図9に示すリール4の6角軸部4dは、図8に示すフレーム2の左側の側壁50を貫通する。この6角軸部4dの外周には、ピニオン23が固定されている。このピニオン23は、外周の全周にわたって一様に外衛24を備えている。このピニオン23の外周域には、図4に示すようにリングギア30が配置されている。リングギ50

ア30の内周面には、ピニオン23の外歯24と噛合可能な内歯31が全周にわたって形成されている。なお、プリテンショナ作動前の状態(図4)では、ピニオン23の外歯24とリングギヤ30の内歯31とは噛み合っていないが、作動開始直後(図5)に噛み合う。このピニオン23の外歯24と、リングギア30の内歯21は周方向に傾いており、円滑に噛み合い可能な歯形をしている。

[0033] リングギア30の外周面には、外方に向けて張り出した突起状のレバー(駆動点)32、33が、所定間隔おきに複数形成されている。これらレバーのうちの1つ(符号32)は、突起の頂部が他のレバー33に比べて特に広くフラットに形成されている。これら隣り合うレバー32、33の間には、台形状の谷が構成される。この谷は、後述するボールに係合可能である。

【0034】ギアホルダ45に植設された各2本のピン25、26は、リングギヤ30の軸芯をはさんで対向する2コのレバー33をそれぞれはさみ込んでいる。これにより、リングギア30はギアホルダ45内の定位置に保持されている。そして、リングギア30の内周径は、ピニオン23の外周径より大きく形成されているので、通常時(図4の状態)において、リングギア30の内歯31とピニオン23の外歯24との間には、クリアランスが確保されており、両者は噛み合っていない。そのため、リール4はブリテンショナ10の存在にも拘らず自由に回転可能である。これがピニオン23とリングギヤ30からなるクラッチ機構が切り離されている状態である

【0035】 このプリテンショナ100パイプ21内には、図4等に示すように、複数個(図では15個)のポール20が装備されている。このうち、ガスジェネレータ15に最も近いポール20-1を除く他のポール20-2-20-15はアルミニウム製の球状体である。これらポール20-2-20-15の外径は、パイプ21の内径より若干小さくなっており、比較的クリアランスがある(例えばポール外径10.6mmに対してクリアランス0.4mm)。そして、先頭のポール20-15は、リングギア30のレバー32に実質的に接触している。

【0036】一方、ガスジェネレータ15に最も近い側のボール20-1は、シリコンゴム等の樹脂製である。同ボール20-1は、ガスジェネレータ15発火後にガス圧を受けるピストンの役割を果たす。このボール20-1は、ガスの射出後に変形して拡がることによりパイプ21内面に接し、ガスを先頭側に漏らさないシールの役割も果たす。

【0037】ガスジェネレータ15発火後にポール20 がレバー32及び33を押すと、ギア位置決めピン2 5、26が破断して、リングギア30は回転しながら図 4の右方向に移動する(詳しくは図5~7参照しつつ後 述する)。パイプ21の先端閉口21bの先には、ケース17が設けられている。同ケース17は、パイプ21の外に射出されたポール20を収容するためのものである。ケース17により、パイプ21から射出されたポール20は一か所に集められる。

【0038】次に、図4~7を参照して、上記の構成を有するシートベルトリトラクタ1におけるプリテンショナ10の緊急巻き締め時の作用について説明する。プリテンショナの非作動時(通常時)においては、図4に示すように、リングギア30は、ギアホルダ45のピン2 105、26と内接面46a、46bによりケーシング内部で定位置に保持されており、リングギア30とピニオン23は噛み合っていない。また、EA機構7のトーションバー62とリール4は相対回動不能に連結されている

【0039】この後、車両の衝突状態が検知されると、ガスジェネレータ15に検知信号が送信される。この検知信号により、図5に示すように、ガスジェネレータ15が発火し、パイプ21内にガス圧(砂地模様で表示)を供給する。このガス圧により、最もガスジェネレータ15寄りのボール20-1がピストンの役割を果たして押される。この押圧力により順次複数のボール20が押されて、押圧力は最も先頭のボール20-15(リングキア30のレバー32に接触しているボール)に伝達される。

【0040】ボール20の押圧力によりリングギア30に押圧力がかかり、ピン25、26(図4参照)が剪断される。このため、リングギア30が図5のX方向に移動し、リングギア30の内歯31とピニオン23の外歯24が噛み合う。このとき、ギアホルダ45は、リング 30 ギア30の回転により上部が押し上げられるためにヒンジ部46cより屈曲し、リングギア30は自由に回転できる。

【0041】リングギヤ30は、上記のようにピニオン23の軸芯方向に移動するとともに、ポール20がレバー32を押す力によって同軸芯周りに回転する。リングギア30が動き始める前の時点で、先頭のボール20ー15がリングギア30のレバー32に回転力を与えられる姿勢で接触しているため、レバー32はロックすることなく確実に回転し始める。

【0042】さらに、ガス圧を受けてポール20が順次押し出されると、各ポール20はリングギア30のレバー33間の谷に順次係合する。ポール20-2~20-15とパイプ21の間にはクリアランスがあるのでポールはスムーズに進む。これらポール20が順次係合することにより、リングギア30は図5~7に示すようにY方向に回転する。ピニオン外歯24とリングギヤ内歯31は噛み合っているので、リングギア30の回転はピニオン23に伝達され、双方が連動して回転する。このとき、リングギア30の内歯31の数よりピニオン23の50

外歯の数が多いので、増速作用が生じ、ピニオン23は リングギヤ30よりも早い角速度で回転する。

【0043】さらにピニオン23には、リール4の6角軸部4dが固着されているので、リール4は回転してベルト3が瞬時にある長さだけ巻き取られる。これにより、リール4外間に巻かれたベルト3の巻きだるみスラグが取られ、ベルトが巻き締まる。なお、上記増速作用によりリール4のプリテンショナ作動時の回転角はリングギア30の回転角よりも大きくなり、プリテンショナ10によるシートベルトの引き込み長さも長くなる。

【0044】次に、図1を参照しつつプリテンショナ1 . 0 の作動後の作用について説明する。このようなプリテ ンショナ10の作動後に、慣性力で前に移動する乗員の 体に引かれてベルト3が引き出されようとし、このベル トの張力が一定値以上になると、EA機構7(図8参 照)が作動し、同機構7のトーションパー62aが捩れ 変形を起す。すると、徐々にリール4がベルト引き出し 方向に回動(図1の矢印W方向)し、ほぼ一定の引力を かけながらベルト3が引き出される。このリール4のベ ルト引き出し方向Wへの回転に伴い、ピニオン23及び リングギア30も同方向に回転しようとする。 このリン グギア30の回転によって、レバー33間の台形状の谷 に係合しているポール20をパイプ21内に押し戻そう とする動作が生じる。このときにポール20がロックぎ みとなって抵抗力をリングギア30に与えると、リール 4 の回動抵抗トルクが規定の値より高くなって、ペルト 3の張力が高くなるおそれがある。

【0045】このような動作が生じた場合には、ボール20が押される力を受けて、パイプ21の最後の案内部21jが図1の矢印2方向に屈曲する。この屈曲によって、案内部21jは、図1の一点鎖線で示す位置に移動する。その結果、ボール20の通路が広がることによって、ボール20がレバー33間に残留していても、ボール20はケース17の方向に排出される。したがって、ボール20がリングギア30及びリール4の動きを妨げることはない。

【0046】図2に示すように、パイプ21の最後の案内部が、先端部材21j′を組み込んで構成したものである場合、ボール20をパイプ21内に押し戻そうとするカ(図2の矢印 α 方向)が生じると、先端部材21j′が図2に一点鎖線で示す位置に塑性変形する。この先端部材21j′の塑性変形に伴い、ボール20は図2の矢印 β 方向に弾かれるので、この場合もボール20は容易に排出される。

【0047】図3に示すように、パイプ21の案内部21 j ** を別体に弾性部材から構成したものである場合、ボール20 をパイプ21内に押し戻そうとする力(図3 の矢印 α 方向)が生じると、案内部21 j ** が図3 に 点鎖線で示す位置に弾性変形する。この案内部21 j ** の弾性変形に伴い、ボール20は図3の矢印 β 方向に弾

の) が挿入される。

11

かれる。したがって、上記と同様に、この場合もポール 20は容易に排出される。

【0048】パイプ21の先端開口21bから押し出されたボール20は、図1、図7に示すようにケース17内に収められる。なお、パイプ21の先端閉口21bは、プリテンショナ作動前はギアホルダ45のヒレ46eで閉じられているが、プリテンショナ作動後にボール20で押されることで開く。

【0049】さらに、図12を参照しつつ本発明の他の実施の形態に係るプリテンショナ及びシートベルトリトラクタについて説明する。図12は、他の実施の形態に係るプリテンショナ及びシートベルトリトラクタの構成を示す断面図である。この図のプリテンショナ・シートベルトリトラクタは、図1~11のプリテンショナ・シートベルトリトラクタに様々な改良を加えたものである。

【0050】図12に示すシートベルトリトラクタ310は、上記シートベルトリトラクタ1に対して、主に次の各部材が異なる。

(1) カバー301

このカバー301は、上記シートベルトリトラクタ1においてベース41に相当する部材であるが、形状が相当 異なっているとともに、ポールケース等の部品も複合化 してある。なお、詳細については後述する。

(2) ガイドブロック318

ガイドブロック 3 1 8 は、上記シートベルトリトラクタ 1 においてパイプ 2 1 の最後の案内部 2 1 j (又は図 2 の 2 1 j 、図 3 の 2 1 j 、)に相当する部材である。なお、パイプ 3 2 1 は、図 1 等に示すパイプ 2 1 とほぼ同様のものである。パイプ 3 2 1 は、基端 3 2 1 c、案内部 3 2 1 g、半円部 3 2 1 h、案内部 3 2 1 i、先端開口 3 2 1 bを有する。パイプ 3 2 1 においては、ボール 3 2 0 - 1 とガスジェネレータ 1 5 間に、ポール 3 2 0 - 1 を先端方向に付勢するコイルスプリング 3 9 9 が組み込まれている。

【0051】カバー301について詳しく説明する。カバー301は、アルミニウムダイカスト製の部材であって、平板状をした基板312を備えている。この基板312のほぼ中心位置には挿通孔312aが形成されている。この挿通孔312aにはリールのばね付勢軸304dが挿通される。さらに、基板312には、3個の取り付け孔342b等には、カバー301にリターンスプリング9を固定するためのねじ44(図8とほぼ同様のもの)が発し込まれる。なお、この基板312においては、パイプ321が取り付けられる側の面をバイブ側の面と呼び、リターンスプリング9が取り付けられる側の面をスプリング側の面と呼ぶ。

[0052] 基板312のパイプ側の面には、大別して 2箇所にパイプガイド411、413が設けられてい 50

る。各パイプガイド411、413は、基板312のパイプ側の面から突出するように一体成形されている。パイプガイド411は、パイプ321上部の半円部321hの内側をガイドする。パイプガイド413は、パイプ321の案内部321gの始端部分の内側をガイドする。これらパイプガイド411、413には、取り付け孔412等が形成されている。これら取り付け孔412等には、カバー301をフレームの側壁等(図8を照)に固定するためのリペット49(図8とほぼ同様のも

【0053】基板312のパイプ側の面下辺寄りにおいて、パイプガイド411と413間には、ポールケース317が形成されている。図8のケース17は、ペース41に対してリベット49により取り付けられていたが、本実施例のポールケース317は、基板312と一体に形成されている。ポールケース317は、パイプ321の外に射出されたポール320を収容するためのものである。同ケース317により、パイプ321から射出されたポール320は一か所に集められる。

20 【0054】次に、ガイドブロック318について説明する。ガイドブロック318は、アルミニウムダイカスト製部材である。同ガイドブロック318は、パイプ321の終端に組み込まれるとともに、カバー301とフレームの側壁等(図8参照)間においてピン319により固定されている。ガイドブロック318は、滑らかなカーブ状の通路面318aを有する。この通路面318aは、パイプ321の案内部321iとポールケース317間のボール320の通路の一部を構成する。

【0055】このガイドブロック318は、ボール32 0をパイプ321内に押し戻そうとする動作が生じた場合に、ボール320が押される力を受けて、その端部3 18bが塑性変形する。これにより、ボール320の通路が広くなり、ボール320は排出されやすくなる。したがって、本実施例の場合も、ポール320はケース317の方向に容易に排出され、ボール320がリングギア及びリールの動きを妨げることはない。

【0056】以上、プリテンショナの例を図面を参照しつつ説明したが、本発明はこれらの例に限定されるものではなく、様々な改変が可能なことはもちろんである。

40 例えば、ガイドブロック318をアルミニウムダイカスト製部材としているが、その他負荷時に適度に変形可能な部材であればよく、アルミニウムにこだわる必要はない。また、ボールの押す力による変形は、塑性変形に限らず弾性変形や破壊であってもよい。

[0057]

【発明の効果】以上の説明から明らかなように、本発明によれば、ブリテンショナ作動後に、シートベルトリトラクタの動作が妨げられることのないプリテンショナを提供することができる。

50 【図面の簡単な説明】

【図1】本発明の特徴事項であるプリテンショナ作動後	
のポール排出機構の動作を示す正面断面図である。	

【図2】ボール排出機構の変形例を示す正面図である。

【図3】ポール排出機構の他の変形例を示す正面図であ

【図4】作動前の状態を示す正面断面図である。

【図5】 ガスジェネレータ発火直後の状態を示す正面断 面図である。

【図6】ベルト巻き取り開始直後の状態を示す正面断面

【図7】ベルト巻き取り中の状態を示す正面断面図であ

【図8】本実施の形態のプリテンショナを有するシート ベルトリトラクタの全体構成例を示す分解斜視図であ

【図9】本発明の一実施の形態に係るプリテンショナ及 びそれと連結されたリールの構成を示す斜視図である。

【図10】本発明に係るプリテンショナのパイプ、ペー ス及びギアホルダの詳細を示す斜視図である。

【図11】図10のギアホルダの詳細を示す斜視図であ

【図12】本発明の他の実施の形態に係るプリテンショ ナ及びシートベルトリトラクタの構成を示す断面図であ

【図13】 (a) はプリテンショナの作動前の状態を示 す説明図であり、 (b) はプリテンショナの正常作動時 の状態を示す説明図であり、(c)はプリテンショナの 異常作動時の状態を示す説明図である。

【図14】(a)はこのプリテンショナの分解斜視図で あり、 (b) はプリテンショナのドライブホイルの詳細 30 図である。

【符号の説明】

- 2 フレーム
- 3 ベルト
- 4 リール

4 a ペルト巻き取

り部

4 b、4 c フランジ部

4 d 6 角軸部

4 e ばね付勢力付加軸

4 f 突部

4 8 軸部

4 h 六

- 5 ロック手段
- 6 緊急ロック機構
- 7 EA機構
- 8 減速検知手段
- 9 リターンスプリング
- 10 プリテンショナ
- 15 ガスジェネレータ
- 17 ケース・
- 20 ポール

21 パイプ

21a 切欠部

21b 先端開口 21d 圧力容器

21c 基端

21i, 21j, 2

21g 直線部 1 j″ 案内部

21 j′ 先還部材 21ſ フランジ部

21h 半円部

23 ピニオン

24 外街

10 25、26 ピン

3.0 リングギア

30b 外周面

32、33 レバー

41 ベース

4.2 基板

42a 挿通孔

42c、42d 取

り付け孔

43a~43h ガイド板。

44 ねじ

45 ギアホルダ

46 背板

46a 内周辺

46b 侧板内周辺

46c ヒンジ部

47 · 側板

49 リベット

50、51 例壁

62 トーションバー

62a 6 角軸部

72 スパイラルスプリング

100 凹部

101 巻取軸

103、104 ドライブホイル片

103a、104a 凹部

105 ドライブホイル

105a 嫡

056 凹部

106 ギア

110 溝

112 カップ・

114 ソードポックス

115 ガスジェネレータ

116、117 ガイド

40 118 チューブ

118a 開口

120 マスポール

121 ピストン

301 カバー

317 ポールケース

318 ガイドブロック

318a 通路面

319 ピン

[図1]

[図2]

[⊠3]

[図4]

【図5】

【図6】

【図7】

[図10]

[図8]

[図9]

[図11]

[図12]

[図13]

(a)

(b)

(c)

【図14】

フロントページの続き

- (72)発明者 塩谷 昌広 東京都港区六本木1丁目4番30号 タカタ 株式会社内 Fターム(参考) 3D018 DA07 MA02

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.