Software Project Management

Durga Prasad Mohapatra

Professor

CSE Deptt.

NIT Rourkela

Project Evaluation and Programme Management cont...

Contents

Cost-benefit evaluation techniques

Cost-benefit analysis – Detailed Steps

- I. Identify the cost and benefits pertaining to the project
- 2. Categorize the various costs and benefits
- 3. Select cost-benefit evaluation technique
- 4. Interpret the results of the analysis
- 5. Take appropriate action.

Select cost-benefit evaluation technique

Different cost-benefit evaluation techniques are:

- I. Net benefit (profit) analysis
- 2. Payback period
- 3. Return on investment
- 4. Present value analysis
- 5. Net present value (NPV)
- 6. Internal rate of return (IRR)
- 7. Break-even analysis

Net Profit

 Net profit of a project is the difference between the total costs and the total income over the life of the project.

Net Profit - Example

Year	Cash-flow
0	-100,000
1	10,000
2	10,000
3	10,000
4	20,000
5	100,000
Net profit	50,000

- In this example, 'Year 0' represents all the costs before system is operation.
- 'Cash-flow' is the value of income less outgoing.
- Net profit is the value of all the cash-flows for the lifetime of the application.
- For this example, net profit is \$50,000.
- Cons: Does not take into account the timing of the cash flows.

Another Example: Four project cash-flow projections

Year	Cash-flow Project 1 (\$)	Cash-flow Project 2(\$)	Cash-flow Project 3(\$)	Cash-flow Project 4(\$)	
0	-100,000	-1000,000	-100,000	-120,000]
1	10,000	200,000	30,000	30,000	
2	10,000	200,000	30,000	30,000	
3	10,000	200,000	30,000	30,000	
4	20,000	200,000	30,000	30,000	
5	100,000	300,000	30,000	75,000	
Net profit(\$)	50,000	100,000	50,000	75,000	

So, project 2 shows largest net profit, but, at the expense of huge investment

Pay back period

Year	Cash- flow (\$)	Accumulated (\$)
0	-100,000	-100,000
1	10,000	-90,000
2	10,000	-80,000
3	10,000	-70,000
4	20,000	-50,000
5	100,000	50,000

- It is the time taken to break even or pay back the initial investment.
- This is the time it takes to start generating a surplus of income over the expenditure.
- The project with shortest payback period is preferred, as the owner wishes to minimize the time that a project is "in debt".
- For this example, payback period is year 5.

Another Example: Four project cash-flow projections

Year	Cash-flow Project 1 (\$)	Cash-flow Project 2(\$)	Cash-flow Project 3(\$)	Cash-flow Project 4(\$)
0	-100,000	-1000,000	-100,000	-120,000
I	10,000	200,000	30,000	30,000
2	10,000	200,000	30,000	30,000
3	10,000	200,000	30,000	30,000
4	20,000	200,000	30,000	30,000
5	100,000	300,000	30,000	75,000
Net profit	50,000	100,000	50,000	75,000
PB period	Year 5	Year 5	Year 4	At end of Year 4

So, project 3 is the most beneficial Project

Pay back period cont...

Pros:

- Simple to calculate
- Not particularly sensitive to small forecasting errors

Cons:

- Ignores the overall profitability of the project
- Ignores any income (expenditure) once the project has broken-even
- So, the fact that Projects 2 and 4 are, overall, more profitable than Project 3, is ignored

Return on investment (ROI)

- Provides a way of comparing the net profitability to the investment period.
- Provides a simple and easy-to-calculate measure of return on capital.

Return on investment (ROI) cont...

In the previous example

- Average annual profit
 - = 50,000/5
 - = 10,000
- So, $ROI = 10,000/100,000 \times 100$
 - = 10%

Another Example: Four project cash-flow projections

Year	Cash-flow Project 1 (\$)	Cash-flow Project 2(\$)	Cash-flow Project 3(\$)	Cash-flow Project 4(\$)
0	-100,000	-1000,000	-100,000	-120,000
I	10,000	200,000	30,000	30,000
2	10,000	200,000	30,000	30,000
3	10,000	200,000	30,000	30,000
4	20,000	200,000	30,000	30,000
5	100,000	300,000	30,000	75,000
Net profit	50,000	100,000	50,000	75,000
ROI	10%	2%	10%	12.5%

So, Project 4 is the most beneficial project

Return on investment (ROI) cont...

Cons:

- Like the net profitability, it does not take into account the timing of the cash flows.
- Bears no relationship to the interest rates charged by banks since it takes no account of the timing of the cash flows.
- It is therefore, potentially, very misleading.

- Present value (PV) analysis
 In developing long-term projects, it is often difficult to compare today's costs with the full value of tomorrow's benefits.
- The time value of money allows for interest rates, inflation, and other factors that alter the value of the investment.
- So, PV analysis is important. It controls the above problems by calculating the costs & benefits of the system in terms of today's value of the investment and then comparing across alternatives.
- A critical factor to consider in computing present value is a discount rate equivalent to the forgone amount that the money could earn if it were invested in a different project.

- In other words, the annual rate by which we discount the future earnings is known as discount rate.
- Discount Factor (DF) is calculated as follows:

$$DF = \frac{1}{(1+r)^t}$$

where r= discount rate, t= number of years into the future that the cash flow occurs.

• In the case of 10% rate and one year

Discount Factor =
$$I/(I+0.10) = 0.909I$$

In the case of 10% rate and two years

$$DiscountFactor = \frac{1}{(1+0.10)^2}$$

Similarly, the discount factor can be computed for any given year and discount rate.

	Vasu		Discount rate (%)					
Z	Year	5	6	8	10	12	15	
U	I	0.9524	0.9434	0.9259	0.9091	0.8929	0.8696	
	2	0.9070	0.8900	0.8573	0.8264	0.7972	0.7561	
dis	3	0.8638	0.8396	0.7938	0.7513	0.7118	0.6575	
is	4	0.8227	0.7921	0.7350	0.6830	0.6355	0.5718	
CO	5	0.7835	0.7473	0.6806	0.6209	0.5674	0.4972	
	6	0.7462	0.7050	0.6302	0.5645	0.5066	0.4323	
nt	7	0.7107	0.6651	0.5835	0.5132	0.4523	0.3759	
_	8	0.6768	0.6274	0.5403	0.4665	0.4039	0.3269	
factors	9	0.6446	0.5919	0.5002	0.4241	0.3606	0.2843	
ਲ	10	0.6139	0.5584	0.4632	0.3855	0.3220	0.2472	
2	15	0.4810	0.4173	0.3152	0.2394	0.1827	0.1229	
S	20	0.3769	0.3118	0.2145	0.1486	0.1037	0.0611	
	25	0.2953	0.2330	0.1460	0.0923	0.0588	0.0304	

- Suppose that \$3000 is to be invested in a project, and the average annual benefit is \$1500 for the four-years life of the project. The investment has to be made today, whereas the benefits are in the future.
- We compare present values to future values by considering the time value of money to be invested.
- The amount that we are willing to invest today is determined by the value of the benefits at the end of a given period (year).
- The amount is called the present value of the benefit.

To compute the present value, we use the formula for future value as given below

$$F = \frac{P}{(1+r)^{t}}$$

where,

F = future value

P = present value

r = discount rate

t = number of years into the future that the cash flow occurs.

On solving the above equation, we obtain the formula for present value (P) as follows:

$$P = \frac{F}{(1+r)^{t}}$$

where,

F = future value

P = present value

r = discount rate

t = number of years into the future that the cash flow occurs.

So the present value of \$1,500 invested at 10% interest at the end of 4^{th} year is:

$$P = \frac{1500}{(1+0.10)^4}$$
$$= \frac{1500}{1.61} = 1027.39$$

That is, if we invest \$1,027.39 today at 10 percent interest, we can expect to have \$1,500 in four years.

This calculation can be represented for each year where a benefit is expected.

Net Present Value (NPV) analysis

- NPV is a project evaluation technique that takes into account the profitability of a project and the timing of the cash flows that are produced.
- The net present value is obtained by discounting each cash flow (both negative & positive) and summing the discounted values.

Net Present Value (NPV) analysis - Example (project I)

Year	Cash-flow (\$)	Discount factor	Discounted cash flow (\$)
0	-100,000	1.0000	-100,000
1	10,000	0.9091	9,091
2	10,000	0.8264	8,264
3	10,000	0.7513	7,513
4	20,000	0.6830	13,660
5	100,000	0.6209	62,090
		NPV	618

Net Present Value (NPV) analysis - cont...

Cons:

- The main difficulty with NPV for deciding between projects is selecting an appropriate discount rate.
- Using NPV, it might not be directly comparable with earnings from other investments or the costs of borrowing capital.

Exercise:

Calculate the NPV values for Projects 2, 3 and 4 and draw the inference.

- IRR provides a profitability measure as a percentage return that is directly comparable with interest rates. So, a project that shows an IRR of 10% would be worth if the capital could be borrowed for less than 10% or the capital could not be invested elsewhere for a return greater than 10%.
- IRR is the discount rate that would produce an NPV of 0 for the project.
- Can be used to compare different investment opportunities.
- Can be calculated using a spread sheet. Also, Microsoft Excel provides functions, such as IRR(), which take a value and an initial guess as input and return an IRR as the output.

Internal Rate of Return (IRR) cont ...

Cons:

- It does not indicate the absolute size of the return.
- A project with an NPV of \$100,000 with an IRR of 15% can be more attractive than one with an NPV of \$10,000 with an IRR of 18%.
- Under certain conditions, it is possible to find more than one rate that will produce zero NPV. In these cases, take the lowest value and ignore the others.

Break-even Analysis

- Break-even is the point where the cost of the candidate (proposed) system and that of the current one are equal.
- Unlike the payback method that compares costs and benefits of the candidate system, break-even analysis compares the costs of the current and candidate systems.

Break-even Analysis cont ...

- When a candidate system is developed, the initial costs usually exceed those of the current system. This is an investment period.
- When both costs are equal, it is break-even.
- Beyond that point, the candidate system provides greater benefit (profit) than the old one. This is the return period.

Break-even analysis

Break- even chart [Awad, 2009]

Break-even Analysis cont ...

- Straight lines are used to show the model's relationships in terms of the variable, fixed, and total costs of the two processing methods and their economic benefits.
- Intersection B' indicates the point where the total cost of processing 65,000 transactions by the current system is equal to the total cost of using the candidate system.

Break-even Analysis cont ...

- The shaded area beyond that point is the return period.
- The shaded area AB'A' is the investment period.
- According to the chart, then, it would be more economical to process manually when volume is below 65,000 transactions during a given time period.
- Processing volume above B' favours the candidate system.

Summary

- Discussed different cost-benefit evaluation techniques with suitable examples.
- Also, described the advantages and disadvantages of each technique.
- Presented which technique will be best suitable in which circumstances.

References:

- I. B. Hughes, M. Cotterell, R. Mall, Software Project Management, Sixth Edition, McGraw Hill Education (India) Pvt. Ltd., 2018.
- 2. E. M. Awad, Systems Analysis and Design, Second Edition. Galgotia Publications Pvt. Ltd., 2009.
- 3. R. Mall, Fundamentals of Software Engineering, Fifth Edition, PHI Learning Pvt. Ltd., 2018.

Thank you