- **2.9** Puisque $a \equiv b \mod m$, il existe $k \in \mathbb{Z}$ tel que b = a + k m. De même, il existe $k' \in \mathbb{Z}$ tel que d = c + k' m.
 - 1) $b+d=(a+k\,m)+(c+k'\,m)=(a+c)+(k+k')\,m$ En posant k''=k+k', on obtient $b+d=(a+c)+k''\,m$ avec $k''\in\mathbb{Z}$. Ceci revient à dire que $a+c\equiv b+d\mod m$.
 - 2) $bd = (a + k m) (c + k' m) = a c + a k' m + c k m + k k' m^2$ = a c + (a k' + c k + k k' m) mEn posant k'' = a k' + c k + k k' m, on trouve bd = a c + k'' m avec $k'' \in \mathbb{Z}$. On en tire que $ac \equiv bd \mod m$.
 - 3) Montrons par récurrence que $a^n \equiv b^n \mod m$ pour tout $n \in \mathbb{N}$.

Initialisation

 $a^1 \equiv b^1 \mod m$ est vérifié, puisque l'on suppose $a \equiv b \mod m$.

Hérédité

Supposons $a^n \equiv b^n \mod m$ pour un certain $n \in \mathbb{N}$. En utilisant la propriété 2) avec $c = a^n$ et $d = b^n$, on obtient : $a \cdot a^n \equiv b \cdot b^n \mod m$, c'est-à-dire $a^{n+1} \equiv b^{n+1} \mod m$.