Overview

This project demonstrates how an **IR sensor** can be used with a **CH32V003 microcontroller** to detect objects and control an **LED** accordingly. When the sensor detects an obstacle, the LED turns ON; otherwise, it remains OFF.

Objectives

- To interface an IR sensor with the CH32V003 microcontroller.
- To control an **LED** based on IR sensor detection.
- To demonstrate an object detection system using an IR sensor.

Components Required

components	quantity
microcontroller	1
IR SENSOR	1
LED	1

Circuit Diagram

Circuit Connections

IR Sensor Connections

IR Sensor Pin	CH32V003 Pin	Description
VCC	5V	Power supply to IR sensor
GND	GND	Ground connection
OUT	PD4	Sensor output

LED Connections

LED Pin	CH32V003 Pin	Description
Anode	PD4	LED control output
Cathode	GND	completes circuit

CODE:

```
#include <ch32v00x.h>
#include <debug.h>
#define IR SENSOR GPIO PORT GPIOC
#define IR SENSOR GPIO PIN GPIO Pin 4
#define IR SENSOR CLOCK ENABLE
RCC APB2PeriphClockCmd(RCC APB2Periph GPIOC, ENABLE)
#define LED GPIO PORT GPIOD
#define LED GPIO PIN GPIO Pin 6
#define LED CLOCK ENABLE RCC APB2PeriphClockCmd(RCC APB2Periph GPIOD,
ENABLE)
void NMI_Handler(void) __attribute__((interrupt("WCH-Interrupt-fast")));
void HardFault Handler(void) attribute ((interrupt("WCH-Interrupt-fast")));
void Delay Init(void);
void Delay_Ms(uint32_t n);
int main(void)
  NVIC PriorityGroupConfig(NVIC PriorityGroup 1);
  SystemCoreClockUpdate();
  Delay Init();
```

```
GPIO InitTypeDef GPIO InitStructure = {0};
 // Enable clocks for LED and IR sensor GPIO ports
  LED CLOCK ENABLE;
  IR SENSOR CLOCK ENABLE;
 // Configure LED GPIO as output
  GPIO InitStructure.GPIO Pin = LED GPIO PIN;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode Out PP;
  GPIO InitStructure.GPIO Speed = GPIO Speed 50MHz;
  GPIO Init(LED GPIO PORT, &GPIO InitStructure);
 // Configure IR sensor GPIO as input
  GPIO_InitStructure.GPIO_Pin = IR_SENSOR_GPIO_PIN;
  GPIO InitStructure.GPIO Mode = GPIO Mode IN FLOATING;
  GPIO Init(IR SENSOR GPIO PORT, &GPIO InitStructure);
  while (1)
  {
    // Read IR sensor state
    if (GPIO ReadInputDataBit(IR_SENSOR_GPIO_PORT, IR_SENSOR_GPIO_PIN))
      // IR sensor detected something → Turn LED OFF
      GPIO ResetBits(LED GPIO PORT, LED GPIO PIN);
    }
    else
      // No detection \rightarrow Turn LED ON
      GPIO SetBits(LED GPIO PORT, LED GPIO PIN);
    }
    Delay Ms(100); // Small delay to avoid bouncing issues
  }
void NMI Handler(void) {}
void HardFault Handler(void)
  while (1)
```

}