

Program Code: J620-002-4:2020

Program Name: FRONT-END SOFTWARE DEVELOPMENT

Title: Exercise 07 Getting Knowing Your Data with Pandas

Name: Ooi Caaron

IC Number: 990701-07-5837

Date: 27/6/23

Introduction: Learning and use pandas built in functions

Conclusion: Still need to practice more

Ex07 Getting and Knowing your Data with Pandas

This time we are going to pull data directly from the internet. Special thanks to: https://github.com/justmarkham (<a href="https://github.com/justmarkha

Step 1. Import the necessary libraries

In [1]:

import numpy as np
import pandas as pd

Step 2. Import the dataset from this address

(https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user).

In [21]:

```
path = ('https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user')
data = pd.read_csv(path,delimiter='|')
data
```

Out[21]:

	user_id	age	gender	occupation	zip_code
0	1	24	М	technician	85711
1	2	53	F	other	94043
2	3	23	М	writer	32067
3	4	24	М	technician	43537
4	5	33	F	other	15213
938	939	26	F	student	33319
939	940	32	М	administrator	02215
940	941	20	М	student	97229
941	942	48	F	librarian	78209

In [7]:

```
File "/var/folders/15/q27cjv5x7bg68ngcklmljcdr0000gn/T/ipykernel_3134/23
71991143.py", line 1
    df = pd.read_csv('https://raw.githubusercontent.com/justmarkham/DAT8/m
aster/data/u.user' sep = "|")
```

SyntaxError: invalid syntax

Step 3. Assign it to a variable called users and use the 'user_id' as index

```
In [30]:
```

```
# data.rename(columns={
# '': 'user_id',
# }, inplace=True)
# data.columns
users = data.set_index('user_id')
users
```

Out[30]:

	age	gender	occupation	zip_code
user_id				
1	24	М	technician	85711
2	53	F	other	94043
3	23	М	writer	32067
4	24	М	technician	43537
5	33	F	other	15213
939	26	F	student	33319
940	32	М	administrator	02215
941	20	М	student	97229
942	48	F	librarian	78209
943	22	М	student	77841

943 rows × 4 columns

Step 4. See the first 25 entries

In [31]:

TH [31]	•			
users.h	ead(2	25)		
Out[31]	:			
	age	gender	occupation	zip_code
user_id				
1	24	М	technician	85711
2	53	F	other	94043
3	23	М	writer	32067
4	24	М	technician	43537
5	33	F	other	15213
6	42	М	executive	98101
7	57	М	administrator	91344
8	36	М	administrator	05201
9	29	М	student	01002

Step 5. See the last 10 entries

In [32]:

users.tail(10)

Out[32]:

	age	gender	occupation	zip_code
user_id				
934	61	М	engineer	22902
935	42	М	doctor	66221
936	24	М	other	32789
937	48	М	educator	98072
938	38	F	technician	55038
939	26	F	student	33319
940	32	М	administrator	02215
941	20	М	student	97229
942	48	F	librarian	78209
943	22	М	student	77841

Step 6. What is the number of observations in the dataset?

```
In [33]:
users.shape[0]
Out[33]:
943
```

Step 7. What is the number of columns in the dataset?

```
In [35]:
users.shape[1]
Out[35]:
4
```

Step 8. Print the name of all the columns.

```
In [36]:
users.columns
Out[36]:
Index(['age', 'gender', 'occupation', 'zip_code'], dtype='object')
```

Step 9. How is the dataset indexed?

Step 10. What is the data type of each column?

In [43]: users.dtypes Out[43]:

age int64 gender object occupation object

zip_code object
dtype: object

Step 11. Print only the occupation column

In [46]:

```
# df['occupation']
users['occupation']
```

Out[46]:

```
user_id
          technician
1
               other
3
              writer
4
          technician
5
               other
939
             student
940
       administrator
             student
941
           librarian
942
             student
943
Name: occupation, Length: 943, dtype: object
```

Step 12. How many different occupations are in this dataset?

```
In [52]:
```

```
users['occupation'].nunique()
```

Out[52]:

21

Step 13. What is the most frequent occupation?

```
In [55]:
```

```
users['occupation'].value_counts().head(1)
Out[55]:
student
           196
Name: occupation, dtype: int64
```

Step 14. Summarize the DataFrame.

```
In [56]:
```

```
users.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 943 entries, 1 to 943
Data columns (total 4 columns):
                Non-Null Count Dtype
    Column
0
    age
               943 non-null
                               int64
    gender 943 non-null
 1
                               object
    occupation 943 non-null
                               object
                               object
    zip_code 943 non-null
dtypes: int64(1), object(3)
memory usage: 36.8+ KB
```

Step 15. Summarize all the columns

```
In [62]:
```

```
users.describe(include='all')
```

Out[62]:

	age	gender	occupation	zip_code
count	943.000000	943	943	943
unique	NaN	2	21	795
top	NaN	М	student	55414
freq	NaN	670	196	9
mean	34.051962	NaN	NaN	NaN
std	12.192740	NaN	NaN	NaN
min	7.000000	NaN	NaN	NaN
25%	25.000000	NaN	NaN	NaN
50%	31.000000	NaN	NaN	NaN
75%	43.000000	NaN	NaN	NaN
max	73.000000	NaN	NaN	NaN

Step 16. Summarize only the occupation column

```
In [63]:
users['occupation'].describe()

Out[63]:
count    943
unique    21
top    student
freq    196
Name: occupation, dtype: object
```

Step 17. What is the mean age of users?

```
In [64]:
users['age'].mean()
Out[64]:
34.05196182396607
```

Step 18. What is the age with least occurrence?

```
In [70]:
users['age'].value_counts().sort_values()
Out[70]:
73
       1
       1
       1
10
11
       1
       1
66
27
      35
28
      36
22
      37
25
      38
30
      39
Name: age, Length: 61, dtype: int64
In [ ]:
```