Discrete-time Signal Processing

MsCV Vibot - UE4 Digital Signal Processing

Olivier Morel

December 11, 2017

Contents

1	Introduction	3							
2	Discrete-Time signals	7							
3	Discrete-Time systems3.1 Basic systems3.2 Linear Time-Invariant (LTI) systems								
4	The Z-Transform (ZT) 4.1 Definition 4.2 Study of the ROC 4.3 Properties of the ZT 4.4 Rational ZTs 4.5 Inverse ZT	18 18 19 22 25 27							
5	Fourier Transform of DT signals 5.1 Definition	33 34 34							
6	Analysis of LTI systems in the z-Domain 6.1 LTI systems described by LCCDE 6.2 One-sided Z-Transform 6.3 The system function 6.4 Response of rational system Functions 6.5 Schur-Cohn Stability test 6.6 Frequency response of rational systems 6.7 Analysis of certain basic systems	36 36 38 39 41 42 43							
7	Discrete Fourier Transform (DFT) 7.1 The DFT and its inverse	48 48 50 53 57 59							

Preamble

• Main references:

References

- [1] Digital Signal Processing, Principles, Algorithms, and Applications, John G. Proakis, Dimitris G. Manolakis.
- [2] Linear Processing for Discrete-Time Signal, Frédéric Truchetet University of Burgundy
- [3] Discrete Time Signal Processing, Benoît Champagne, Fabrice Labeau, Dpt of Electrical & Computer Engineering McGill University
 - Course flow:
 - 8x2H Main course mix with tutorials
 - Assessment : closed book
 - \Rightarrow 1 sheet of A4 paper allowed!
 - * double-sided
 - * manuscript
 - * no hard copy

1 Introduction

Introduction

Signal

Quantity that varies as function of time and/or space and has ability to convey information

- Signals are ubiquitous in science and engineering:
 - Electrical signals: currents and voltages in AC circuits, radio communications audio and video signals.
 - Mechanical signals: sound or pressure waves, vibrations in a structure, earthquakes.
 - Biomedical signals: electro-encephalogram, lung and heart monitoring, X-ray and other types of images.
 - Finance: time variations of a stock value or a market index.
- By extension, any series of measurements of a physical quantity can be considered a signal (temperature measurements for instance)

Types of signals and representations

Analog signal

$$t \in \mathbb{R} \to x_a(t) \in \mathbb{R} \text{ or } \mathbb{C}$$

Discrete signal

$$n \in \mathbb{Z} \to x[n] \in \mathbb{R} \text{ or } \mathbb{C}$$

Digital signal

 $n \in \mathbb{Z} \to x_d[n] \in A$, where A represents a finite set of signal levels.

Multi-channel signal

$$x(t) = (x_1(t), \dots, x_N(t))$$

Multi-dimensional signal

$$x(t_1,\ldots,t_N)$$

Example: analog signal

Example: discrete signal

Example: digital signal

Generic structure of a DSP

- 1. The A/D (analog-to-digital) converter transforms the analog signal $x_a(t)$ into a digital signal (sampler + quantizer) $x_d[n]$
- 2. The DSP (Digital Signal Processing) performs the desired operations on the digital signal $x_d[n] \rightarrow y_d[n]$
- 3. The D/A (digital-to-analog) converter transforms the digital output into an analog signal $y_a(t)$

A/D converter

- Sampler: analog input is transformed into a DT signal $x[n] = x_a(nT_s)$ where T_s is the sampling period.
- Quantizer: the DT signal is approximated by a digital signal $x_d[n]$ with only a finite set of possible levels.
- The number of representation levels is generally equal to 2^b where b is the number of bits in a word
- In most systems, the set of discrete levels is uniformly spaced
- WAVE file example:
 - sampling rate: 44.1kHz (sampling rate used for audio CD's)
 - level resolution: 16 bits per sample (some systems use 24 bits)

Digital system

- Similar to a microprocessor: ability to perform mathematical operations and store intermediate results in internal memory
- Operations can be described of mean of an algorithm
- Important distinctions
 - Real-time system: computing associated to each sampling interval can be accomplished in a time ≤ the sampling interval
 - Off-line system: requires the use of external data storage units

D/A converter

- Pulse train generator: the digital signal $y_d[n]$ is transformed into a sequence of scaled, analog pulses
- Interpolator: the high frequency components of $\hat{y}_a(t)$ are removed via low-pass filtering to produce a smooth analog output $y_a(t)$
- One device can generally take care of both steps.

Pros and cons of DSP

Advantages

- Robustness (signal levels can be regenerated)
- Storage capability (can interfaced to low-cost devices for storage)
- Flexibility (software programmable)
- Structure (easy interconnection of DSP blocks)

Disadvantages

- \bullet Cost/complexity added by A/D and D/A conversion
- $\bullet\,$ Input signal bandwidth is technology limited
- Quantization effects

2 Discrete-Time signals

Discrete-Time signals

Definition

sequence of real or complex numbers, that is, a mapping from the set of integers \mathbb{Z} into \mathbb{R} or \mathbb{C} , as in:

$$n \in \mathbb{Z} \to x[n] \in \mathbb{R} \ or \mathbb{C}$$

- \bullet *n* is called the discrete-time index
- x[n], the *n*th number in the sequence, is called a sample

Description

• Sequence notation:

$$x = \{ \cdots, 0, \underline{0}, 1, 4, 1, 0, 0, \cdots \},\$$

where underline indicates origin of time: n = 0

• Table:

n		-2	-1	0	1	2	3	4	5	
x[n]		0	0	0	1	4	1	0	0	

• Graphical:

Description

• Explicit mathematical expression:

$$x[n] = \begin{cases} 0 & n < 0, \\ 1 & n = 0, \\ 1/n & n > 0. \end{cases}$$

• Recursive approach:

$$x[n] = \begin{cases} 0 & n < 0, \\ 1 & n = 0, \\ \frac{1}{2}x[n-1] & n > 0. \end{cases}$$

Basic Discrete-time signals

• Unit pulse:

$$\delta[n] = \begin{cases} 1 & n = 0, \\ 0 & \text{otherwise} \end{cases}$$

• Unit step:

$$u[n] = \begin{cases} 1 & n \geqslant 0, \\ 0 & n < 0. \end{cases}$$

Basic Discrete-time signals

• Ramp function:

$$r[n] = n \cdot u[n].$$

• Exponential sequence:

$$x[n] = a^n \cdot u[n].$$

Uniform sampling

• DT signals are commonly generated via uniform (or periodic) sampling of an analog signal $x_a(t)$:

$$x[n] = x_a(nT_s), n \in \mathbb{Z},$$

where $T_s > 0$: sampling period.

• Example of a sine wave with frequency F defined by $x_a(t) = \sin 2\pi F t$

$$x[n] = \sin(2\pi F n T_s) = \sin\left(2\pi \frac{F}{F_s}n\right) = \sin(\omega n),$$

- $F_s = 1/T_s$: sampling frequency,
- $-\omega$: normalized radian frequency of the DT signal.

Nyquist rate

Nyquist rate: $2 \cdot F$

The sampling frequency F_s must satisfy

$$F_s \gg 2 \cdot F$$

Basic operations on signal

In the set S of all DT signals the following operations can be defined:

scaling

$$(\alpha x)[n] = \alpha \cdot x[n]$$

addition

$$(x+y)[n] = x[n] + y[n]$$

multiplication

$$(xy)[n] = x[n] \cdot y[n]$$

Property

 \mathcal{S} equipped with addition and scaling is a vector space.

Classes of signals

Energy signals

all $x \in \mathcal{S}$ with finite energy:

$$\mathcal{E}_x \triangleq \sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$$

Power signals

all $x \in \mathcal{S}$ with finite power:

$$\mathcal{P}_x \triangleq \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2 < \infty$$

Classes of signals

Bounded signals

all $x \in \mathcal{S}$ that can be bounded:

$$\exists B_x \in \mathbb{R}^+ / \forall n \in \mathbb{Z}, |x[n]| \le B_x$$

$Absolutely\ summable$

all $x \in \mathcal{S}$ such that:

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

Discrete convolution

Discrete convolution of x and y

$$(x * y)[n] = x[n] * y[n] \triangleq \sum_{k=-\infty}^{\infty} x[k] \cdot y[n-k]$$

Properties

• commutative law: x * y = y * x

• associative law: (x * y) * z = x * (y * z)

• convolution by unit pulse: $x * \delta = x$

Correlation of DT signals

• Signal correlation is an operation similar to signal convolution with different physical meaning

• Can be applied to energy signals

• Crosscorrelation: performed on two signals

- can be considered as a measure of similarity of two signals

- application when the signal is corrupted by noise

• Autocorrelation: performed on one signal

- indicates how the signal energy (power) is distributed within the signal

applications of signal autocorrelation are in radar, sonar, satellite, and wireless communications systems

Crosscorrelation

Definition

$$R_{xy}[n] = \sum_{k=-\infty}^{\infty} x[k]y[k-n] = \sum_{k=-\infty}^{\infty} x[k+n]y[k]$$

Property

$$R_{xy}[n] = R_{yx}[-n]$$

Link with convolution

$$x[n] * y[n] = \sum_{k=-\infty}^{\infty} x[k]y[n-k]$$
$$R_{xy}[n] = x[n] * y[-n]$$

Autocorrelation

Definition

$$R_{xx}[n] = \sum_{k=-\infty}^{\infty} x[k]x[k-n] = \sum_{k=-\infty}^{\infty} x[k+n]x[k]$$

Properties

• Even function:

$$R_{xx}[n] = R_{xx}[-n]$$

• Energy:

$$R_{xx}[0] = \sum_{k=-\infty}^{\infty} |x[k]|^2 = \mathcal{E}_x$$

$$\forall n \in \mathbb{Z}, R_{xx}[n] < R_{xx}[0]$$

Correlation coefficient

Definition

$$c_{xy} = \frac{R_{xy}[0]}{\sqrt{R_{xx}[0] \cdot R_{yy}[0]}}$$

Properties

• Similarity measurement of two signals

 $\bullet \ -1 \le c_{xy} \le 1$

 \bullet Geometrically represents angle between euclidean vectors x and y

$$C_{xy} = \frac{x \cdot y}{\sqrt{|x|^2 |y|^2}} = \frac{x \cdot y}{|x| |y|} \triangleq \cos(x, y)$$

Correlation coefficient

• $c_{xy} \simeq 1 \Rightarrow x$ and y are very similar (almost overlap)

• $c_{xy} \simeq 0 \Rightarrow x$ and y are very different (orthogonal)

• $c_{xy} \simeq -1 \Rightarrow x$ and y are a similar (opposite direction, but almost the same sample values)

• An also be defined in terms of paramter n:

$$-1 \le c_{xy}[n] = \frac{R_{xy}[n]}{\sqrt{R_{xx}[0]R_{yy}[0]}} \le 1$$

3 Discrete-Time systems

Definition

• A Discrete-Time system is a mapping H from S into itself:

- The system output y[n] generally depends on x[k] for all values of $k \in \mathbb{Z}$
- Notations:

$$y[n] = H(x[n]) \triangleq (Hx)[n]$$

3.1 Basic systems

Basic systems

Time reversal

$$y[n] = (Rx)[n] \triangleq x[-n]$$

• Mirror image about origin:

Basic systems

Delay or shift by integer k

$$y[n] = (D_k x)[n] \triangleq x[n-k]$$

- Interpretation:
 - $-k \ge 0 \Rightarrow$ graph of x[n] shifted by k units to the right
 - $-k \le 0 \Rightarrow$ graph of x[n] shifted by |k| units to the left
- Application: any signal $x \in \mathcal{S}$ can be expressed as a linear combination of shifted impulses:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

$$x[n] = (x*\delta) \, [n]$$

Basic systems

Moving average system

$$y[n] = \frac{1}{2N+1} \sum_{k=-N}^{N} x[n-k]$$

Systems properties

- 1. Static or dynamic (memoryless or not)
- 2. Causal versus anti-causal
- 3. Linear or non-linear
- 4. Time invariant or not
- 5. Stable or not

Systems properties: static or dynamic?

Static

y[n] = (Hx)[n] is a function of x[n] only.

• Static systems are memoryless:

$$y[n] = (x[n])^2$$

• Dynamic systems require memory:

$$y[n] = \frac{1}{2} (x[n-1] + x[n])$$

Systems properties: causal versus anti-causal

Causal

y[n] only depends on values x[k] for $k \leq n$.

- Present output depend only on past and present inputs
- Example:

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

Anti-causal

y[n] only depends on values x[k] for k>n.

Systems properties: linear or not ?

Linearity

$$\forall (\alpha, \beta) \in \mathbb{C}^2, \forall (x, y) \in \mathcal{S}^2, H(\alpha x + \beta y) = \alpha H(x) + \beta H(y)$$

• Example of a linear system:

$$y[n] = \frac{1}{3} \left(x[n-1] + x[n] + x[n+1] \right)$$

• Example of a non-linear system:

$$y[n] = (x[n])^2$$

Systems properties: time invariant or not ?

 $Time\mbox{-}invariant$

$$\forall (n,k) \in \mathbb{Z}^2, (Hx)[n] = y[n] \Rightarrow (Hx)[n-k] = y[n-k]$$

• Example of a time invariant system: the moving average system.

$$y[n] = \frac{1}{2N+1} \sum_{k=-N}^{N} x[n-k]$$

• Example of system not time invariant:

$$y[n] = x[2n]$$

Systems properties: stable or not?

Stable

 $x \text{ bounded} \Rightarrow y = Hx \text{ bounded}$

Stable

if $\forall n \in \mathbb{Z} |x[n]| \leq B_x$ then $\exists B_y / \forall n \in \mathbb{Z}, |y[n]| \leq B_y$

• A system is stable (Bounded Input Bounded Output) if every bounded input produces a bounded output.

3.2 Linear Time-Invariant (LTI) systems

Linear Time-Invariant (LTI) systems

- DT systems that are both *Linear* and *Time-Invariant* play a central role in digital signal processing:
 - Many physical systems are either LTI or approximately so
 - Many efficient tools are available for the analysis and design of LTI systems

Fundamental property

Let H a LTI system and y = Hx

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x * h[n],$$

with $h \triangleq H\delta$ known as impulse response of H.

Proof of the fundamental property

First we have:

$$y[n] = (Hx)[n] = H(x[n]).$$

And for any DT signal, we can write:

$$x[n] = x * \delta[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k].$$

Invoking linearity:

$$y[n] = H\left(\sum_{k=-\infty}^{\infty} x[k]\delta[n-k]\right) = \sum_{k=-\infty}^{\infty} x[k]H\left(\delta[n-k]\right)$$

Invoking Time-Invariant property:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]HD_k\left(\delta[n]\right) = \sum_{k=-\infty}^{\infty} x[k]D_kH\left(\delta[n]\right) = \sum_{k=-\infty}^{\infty} x[k]D_kh[n]$$

Graphical interpretation

- to compute the sample values of y[n] according to y[n] = h * x[n]:
 - 1. Time reverse sequence of h[k]:

$$\Rightarrow h[-k]$$

2. Shift h[-k] by n samples:

$$\Rightarrow h[-(k-n)] = h[n-k]$$

3. Multiply sequences x[k] and h[n-k] and sum over k:

$$\Rightarrow y|n$$

• Example with $h = \{\cdots, 0, 1, \underline{0}, -1, 0, \cdots\}$ and x = u:

Characterization of a LTI system

A LTI system is fully characterized by the knowledge of its impulse response $h = H\delta$. For any other input x we have:

$$Hx = x * h.$$

- Example of the accumulator system defined by $y[n] = \sum_{k=-\infty}^{n} x[k]$:
 - Let's define as input x the unit pulse δ :

$$h[n] = \sum_{k=-\infty}^{n} \delta[k]$$

$$h[n] = \begin{cases} 1 & \text{if } n \ge 0\\ 0 & \text{if } n < 0 \end{cases}$$

$$h[n] = u[n]$$

Causality of a LTI system

Causality

A LTI system is causal if and only if:

$$\forall n < 0, h[n] = 0$$

• Proof:

$$y[n] = h * x[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$y[n] = \cdots + h[-1]x[n+1] + h[0]x[n] + h[1]x[n-1] \cdots$$

 \Rightarrow Clearly, y[n] only depends on values x[m] for $m \leq n$ if and only if h[k] = 0 for k < 0

Stability of a LTI system

Stability

A LTI system is stable if and only if the sequence h[n] is absolutely summable, that is:

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

- Example: consider LTI system with impulse response $h[n] = \alpha^n u[n]$:
- Causality: h[n] = 0 for $n < 0 \Rightarrow$ causal
- Stability:

$$\sum_{n=-\infty}^{\infty} |h[n]| = \sum_{n=0}^{\infty} |\alpha|^n$$

clearly the sum diverges if $|\alpha| \ge 1$ while it converges if $|\alpha| < 1$:

$$\sum_{n=0}^{\infty} |\alpha|^n = \frac{1}{1-\alpha} < \infty$$

Thus the system is stable provided $|\alpha| < 1$

FIR and IIR

FIR system

An LTI system has a Finite Impulse Response (FIR) if we can find integers $N_1 \leq N_2$ such that:

$$h[n] = 0$$
 when $n < N_1$ or $n > N_2$

- Otherwise the LTI system has an *Infinite Impulse Response* (IIR).
- FIR systems are necessarily stable:

$$\sum_{n=-\infty}^{\infty} |h[n]| = \sum_{n=N_1}^{N_2} |h[n]| < \infty$$

16

• The impulse response is often called a convolution mask.

FIR and IIR system examples

1. Let the LTI system described by:

$$h[n] = u[n] - u[n - N]$$

$$h[n] = \begin{cases} 1 & \text{if } 0 \le n \le N - 1\\ 0 & \text{otherwise} \end{cases}$$

- \Rightarrow the system is FIR with $N_1=0$ and $N_2=N-1$
- 2. Let the LTI system described by:

$$h[n] = \alpha^n u[n]$$

 \Rightarrow the system is IIR (cannot find any N_2)

Interconnection of LTI systems: cascade

$$y = h_2 * (h_1 * x) = (h_2 * h_1) * x = (h_1 * h_2) * x$$

Interconnection of LTI systems: parallel

$$y = (h_1 * x) + (h_2 * x) = (h_1 + h_2) * x$$

4 The Z-Transform (ZT)

4.1 Definition

Introduction

Definition

The ZT is a transformation that maps DT signal x[n] into a function of the complex variable z, defined as:

$$X(z) = \sum_{-\infty}^{\infty} x[n]z^{-n}, z \in \mathbb{C}$$

• The domain of x(z) is the set of all $z \in \mathbb{C}$ such that the series converges absolutely, that is:

$$\mathrm{Dom}(X) = \left\{ z \in \mathbb{C} / \sum_{n = -\infty}^{\infty} |x[n]z|^{-n} < \infty \right\}$$

- The domain of X(z) is called the Region Of Convergence (ROC).
- The ROC only depends on |z|: if $z \in ROC$, so is $ze^{i\phi}$ for any angle ϕ
- Within the ROC, X(z) is an analytic function of complex variable z:
 - -X(z) is smooth,
 - derivative exists, etc.
- Both X(z) and the ROC are needed when specifying a ZT.

ZT of unit step

- Unit step: x[n] = u[n]
 - 1. ZT:

$$X(z) = \sum_{n=0}^{\infty} z^{-n}, \, z \in \mathbb{C}$$

$$x(z) = \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n = \frac{1}{1 - \frac{1}{z}}$$

2. ROC:

$$\left|\frac{1}{z}\right| < 1$$

ZT of a signal defined by a sequence

- Signal defined by: $x = \{\cdots, 1, 1, \underline{1}, 1, 1, \cdots\}$
 - 1. ZT:

$$X(z) = z^{-2} + z^{-1} + 1 + z + z^{2}$$

2. ROC:

$$0 < |z| < \infty$$

3. Modulus of ZT:

4.2 Study of the ROC

Signal with finite duration

Definition

A signal with finite duration is defined such that:

$$\exists (N_1, N_2) \in \mathbb{Z}^2, N_1 \leq N_2 / \forall n < N_1 \text{ and } \forall n > N_2, x[n] = 0$$

• ZT is defined by:

$$X(z) = \sum_{n=N_1}^{N_2} x[n]z^{-n}$$

= $x[N_1]z^{-N_1} + x[N_1 + 1]z^{-N_1 - 1} + \dots + x[N_2]z^{-N_2}$

• ZT exists $\forall z \in \mathbb{C}$, except possibly at z = 0 and $z = \infty$:

$$-N_2 > 0 \Rightarrow z = 0 \notin ROC$$

$$-N_1 < 0 \Rightarrow z = \infty \notin ROC$$

Theorem

Radius of convergence

To any power series $\sum_{n=0}^{\infty} c_n w^n$, we can associate a radius of convergence

$$R_w = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|,$$

such that:

- if $|w| < R_w \Rightarrow$ the series converges absolutely
- if $|w| > R_w \Rightarrow$ the series diverges

Causal signals

• Suppose x[n] = 0 for n < 0:

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n} = \sum_{n=0}^{\infty} c_n w^n$$

• The ROC is given by:

$$|w| < R_w = \lim_{n \to \infty} \left| \frac{x[n]}{x[n+1]} \right|$$

$$|z| > \frac{1}{R_w} \equiv r$$

• The ROC is the exterior of a circle of radius r:

Causal signals: example

• Consider the causal sequence:

$$x[n] = a^n u[n]$$

• ZT:

$$X(z) = \sum_{n=0}^{\infty} a^n z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^n$$

$$X(z) = \frac{1}{1 - az^{-1}}, \, \text{provided} \, \left| az^{-1} \right| < 1$$

• The ROC is the exterior of a circle of radius r = |a|

Anti-causal signals

• Suppose x[n] = 0 for n > 0:

$$X(z) = \sum_{n=-\infty}^{0} x[n]z^{-n} = \sum_{n=0}^{\infty} x[-n]z^{n} = \sum_{n=0}^{\infty} c_n w^{n}$$

• The ROC is given by:

$$|w| < R_w = \lim_{n \to \infty} \left| \frac{x[-n]}{x[-n-1]} \right|$$

$$|z| < R_w \equiv R$$

• The ROC is the interior of a circle of radius R:

Anti-causal signals: example

• Consider the anti-causal sequence:

$$x[n] = -a^n u[-n-1]$$

• ZT:

$$X(z) = -\sum_{n=-\infty}^{1} a^{n} z^{-n} = -\sum_{n=1}^{\infty} (a^{-1}z)^{n}$$

$$X(z) = -\frac{a^{-1}z}{1 - a^{-1}z}$$
, provided $|a^{-1}z| < 1$
= $\frac{1}{1 - az^{-1}}$

• The ROC is the interior of a circle of radius r = |a|

Arbitrary signals

• The series X(z) can be decomposed as:

$$X(z) = \underbrace{\sum_{n=-\infty}^{-1} x[n]z^{-n}}_{\text{needs } |z| < R} + \underbrace{\sum_{n=0}^{\infty} x[n]z^{-n}}_{\text{needs } |z| > r}$$

• If r < R, the ZT exists and ROC: r < |z| < R:

• if r > R, the ZT does not exists.

Arbitrary signals: example 1

Consider the DT signal:

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - 2^n u[-n-1]$$

$$X(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} + \sum_{n=-\infty}^{-1} 2^n z^{-n}$$

$$X(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2z}\right)^n + \sum_{n=1}^{\infty} \left(\frac{z}{2}\right)^n$$

$$\text{needs } |z| > \frac{1}{2}$$

The two series will converge iff ROC: $\frac{1}{2} < |z| < 2$

$$X(z) = \frac{1}{1 - \frac{1}{2z}} - 1 + \frac{1}{1 - \frac{z}{2}} = \frac{2 - \frac{5}{2}z^{-1}}{1 - \frac{5}{2}z^{-1} + z^{-2}}$$

Arbitrary signals: example 2

Consider the DT signal:

$$x[n] = 2^{n}u[n] - \left(\frac{1}{2}\right)^{n}u[-n-1]$$

$$X(z) = \sum_{n=0}^{\infty} (2)^{n} z^{-n} + \sum_{n=-\infty}^{-1} \left(\frac{1}{2}\right)^{n} z^{-n}$$

$$X(z) = \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^{n} + \sum_{n=1}^{\infty} (2z)^{n}$$

$$\underset{\text{needs } |z| > 2}{\underbrace{\sum_{n=0}^{\infty} (2z)^{n}}} + \underbrace{\underset{\text{needs } |z| < \frac{1}{2}}{\sum_{n=0}^{\infty} (2z)^{n}}}$$

Since $\{|z| > 2\} \cap \{|z| < \frac{1}{2}\} = \emptyset$, the ROC is empty and the ZT does not exist.

4.3 Properties of the ZT

Introductory remarks

• Notations for ZT pairs:

$$x[n] \stackrel{z}{\longleftrightarrow} X(z), z \in \mathcal{R}_x$$

 $y[n] \stackrel{z}{\longleftrightarrow} Y(z), z \in \mathcal{R}_y$

 \mathcal{R}_x and \mathcal{R}_y denote the ROC of X(z) and Y(z) respectively.

- When stating a property, the corresponding ROC must also be specified
- In some cases, the true ROC may be larger than the one indicated

Basic symmetries

 $Basic\ symmetries$

$$x[-n] \stackrel{z}{\longleftrightarrow} X(z^{-1}), z^{-1} \in \mathcal{R}_x$$

 $x^*[n] \stackrel{z}{\longleftrightarrow} X^*(z^*), z \in \mathcal{R}_x$

• Proof:

Let be $x_f[n] = x[-n]$:

$$X_f(z) = \sum_{n = -\infty}^{\infty} x[-n]z^{-n}$$

$$X_f(z) = \sum_{n = -\infty}^{\infty} x[n]z^n = X(z^{-1})$$

Assuming that the ROC \mathcal{R}_x was defined by: r < |z| < R, then the ROC of $X_f(z)$ is: 1/R < |z| < 1/r

Linearity and Time shift

Linearity

$$\forall (a,b) \in \mathbb{C}^2, \ ax[n] + by[n] \stackrel{z}{\longleftrightarrow} aX(z) + bY(z), \ z \in \mathcal{R}_x \cap \mathcal{R}_y$$

Time shift

$$\forall d \in \mathbb{Z}, \ x[n-d] \stackrel{z}{\longleftrightarrow} z^{-d}X(z), \ z \in \mathcal{R}_x$$

• Let's denote $X_d(z)$ the ZT of the DT x shifted (or delayed) by d:

$$X_d(z) = \sum_{n=-\infty}^{\infty} x[n-d]z^{-n}$$

$$X_d(z) = \sum_{l=-\infty}^{\infty} x[l]z^{-d}z^{-l}$$
, with $l = n - d$

Exponential modulation

Exponential modulation (scaling)

$$a^n x[n] \stackrel{z}{\longleftrightarrow} X(z/a), \ z/a \in \mathcal{R}_x$$

• Proof:

$$\sum_{n=-\infty}^{\infty} a^n x[n] z^{-n} = \sum_{n=-\infty}^{\infty} x[n] (a^{-1}z)^{-n}$$

• Assuming that the ROC \mathcal{R}_x was defined by: r < |z| < R, then:

$$r < \left| a^{-1}z \right| < R$$

Exponential modulation: example

$$x[n] = \cos(\omega_0 n) u[n]$$

$$x[n] = \frac{1}{2}e^{j\omega_0 n}u[n] + \frac{1}{2}e^{-j\omega_0 n}u[n]$$

$$X(z) = \frac{1}{2}ZT\left\{e^{j\omega_0 n}u[n]\right\} + \frac{1}{2}ZT\left\{e^{-j\omega_0 n}u[n]\right\}$$

$$X(z) = \underbrace{\frac{1}{2}\frac{1}{1 - e^{j\omega_0}z^{-1}}}_{|z| > |e^{j\omega_0}| = 1} + \underbrace{\frac{1}{2}\frac{1}{1 - e^{-j\omega_0}z^{-1}}}_{|z| > |e^{-j\omega_0}| = 1}$$

$$X(z) = \frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}, \text{ ROC}: |z| > 1$$

Differentiation

Differentiation

$$nx[n] \stackrel{z}{\longleftrightarrow} -z \frac{dX(z)}{dz}, z \in \mathcal{R}_x$$

• Proof:

$$\frac{dX(z)}{dz} = \sum_{n=-\infty}^{\infty} x[n] \frac{dz^{-n}}{dz}$$

$$\frac{dX(z)}{dz} = -\sum_{n=-\infty}^{\infty} nx[n]z^{-n-1} = -z^{-1} \sum_{n=-\infty}^{\infty} nx[n]z^{-n}$$

Differentiation: example

$$X(z) = -z \frac{d}{dz} \left(\frac{1}{1 - az^{-1}} \right), |z| > |a|$$

$$X(z) = -z \left(-az^{-2} \right) \left(\frac{1}{(1 - az^{-1})^2} \right), \text{ROC} : |z| > |a|$$

$$Z(x) = \frac{az^{-1}}{(1 - az^{-1})^2}, \text{ROC} : |z| > |a|$$

 $x[n] = na^n u[n]$

Convolution

Convolution

$$x[n] * y[n] \stackrel{z}{\longleftrightarrow} X(z)Y(z), z \in \mathcal{R}_x \cap \mathcal{R}_y$$

• Let be $c[n] = x[n] * y[n] = \sum_{k=-\infty}^{\infty} x[k]y[n-k]$:

$$C(z) = \sum_{n = -\infty}^{\infty} \sum_{k = -\infty}^{\infty} x[k]y[n - k]z^{-n}$$

$$C(z) = \sum_{l = -\infty}^{\infty} \sum_{k = -\infty}^{\infty} x[k]y[l]z^{-l-k}, \text{ with } l = n - k$$

$$C(z) = \sum_{l = -\infty}^{\infty} y[l]z^{-l} \sum_{k = -\infty}^{\infty} x[k]z^{-k}$$

Initial value

Initial value (causal case)

For x[n] causal (i.e. x[n] = 0 for n < 0), we have:

$$\lim_{z \to \infty} X(z) = x[0]$$

Initial value (anti-causal case)

For x[n] anti-causal (i.e. x[n] = 0 for n > 0), we have:

$$\lim_{z^{-1} \to \infty} X(z) = x[0]$$

4.4 Rational ZTs

Rational function

Definition

X(z) is a rational function in z (or z^{-1}) if:

$$X(z) = \frac{N(z)}{D(z)}$$

where N(z) and D(z) are polynomials in z (resp. z^{-1})

- Rational ZT plays a central role in DSP
- Essential for the realization of practical IIR filters
- Two important issues related to rational ZT are investigated:
 - Pole-Zero (PZ) characterization
 - Inversion via partial fraction expansion

Poles and zeros

Pole

X(z) has a pole of order L at $z = p_0$ if:

$$X(z) = \frac{\psi(z)}{(z - p_0)^L}, \ 0 < |\psi(p_0)| < \infty$$

Zero

X(z) has a zero of order L at $z=z_0$ if:

$$X(z) = (z - z_0)^L \psi(z), \ 0 < |\psi(z_0)| < \infty$$

• The order L is sometimes referred as the multiplicity of the pole/zero.

Poles and zeros at ∞

Poles at ∞

X(z) has a pole of order L at $z = \infty$ if:

$$X(z)=z^L\psi(z),\,0<|\psi(\infty)|<\infty$$

Zeros at ∞

X(z) has a zero of order L at $z = \infty$ if :

$$X(z) = \frac{\psi(z)}{z^L}, \, 0 < |\psi(\infty)| < \infty$$

- Let be X(z) = N(z)/D(z) (expressed in "simplified" form):
 - If order (N(z)) order $(D(z)) = L > 0 \Rightarrow X(z)$ has a pole of order L at $z = \infty$
 - If order (N(z)) order $(D(z)) = L < 0 \Rightarrow X(z)$ has a zero of order L at $z = \infty$

Poles and Zeros of a rational X(z)

Consider rational function X(z) = N(z)/D(z):

- Roots of $N(z) \Rightarrow zeros$ of X(z)
- Roots of $D(z) \Rightarrow poles \text{ of } X(z)$
- Must take into account pole-zero cancellation:
 - common roots of N(z) and D(z) do not count as zeros and poles.
- Repeated roots in N(z) (or D(z)) lead to multiple zeros (respectively poles).

Property

number of poles = number of zeros, if poles and zeros at 0 and ∞ are included.

Poles and Zeros of a rational: examples

• Example 1:

$$X(z) = \frac{z^{-1}}{1 - 2z^{-1} + z^{-2}} = \frac{z}{z^2 - 2z + 1} = \frac{z}{(z - 1)^2}$$

Corresponding poles and zeros:

poles
$$p_1 = 1, L = 2$$

zeros
$$z_1 = 0, L = 1, z_2 = \infty, L = 1$$

• Example 2:

$$X(z) = \frac{1 - z^{-4}}{1 + 3z^{-1}} = \frac{z^4 - 1}{z^3(z+3)}$$

Corresponding poles and zeros:

poles
$$p_1 = 0, L = 3$$
 $p_2 = -3, L = 1$

zeros
$$z_{k \in [0,3]} = e^{jk\pi/2}0, L = 1$$

Pole-zero and rational function link

Property

For rational functions X(z) = N(Z)/D(z), knowledge of the poles and zeros (along with their order) completely specify X(z), up to a scaling factor $G \in \mathbb{C}$.

• Example:

poles
$$p_1 = 2, L = 1$$

zeros
$$z_1 = 1, L = 1$$

$$X(z) = G\frac{z-1}{z-2} = G\frac{1-z^{-1}}{1-2z^{-1}}$$

Pole-zero (PZ) diagram

- The presence of poles or zeros at ∞ should be mentioned on the diagram
- It is useful to indicate ROC on the PZ-diagram

ROC and PZ diagram

• Consider $x[n] = a^n u[n]$, where a > 0:

$$X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \, \text{ROC:} \, |z| > a$$

poles $p_1 = a, L = 1$

zeros $z_1 = 0, L = 1$

ROC for rational **ZT**

- ROC does not contain poles
 - because X(z) does not converge at a pole
- ROC can always be extended to nearest pole
- ROC is delimited by poles
 - annular region between poles
- If we are given only X(z), then several possible ROC:
 - any annular region between two poles of increasing magnitude
 - accordingly, several possible DT signals x[n]

4.5 Inverse ZT

Introduction

- The inverse Z-Transform consists in finding x[n] given its ZT X(z) and its corresponding ROC.
- Several methods exist:
 - Contour integration via residue theorem
 - Power series expansion
 - Partial fraction expansion
- Partial fraction is the most useful technique in the context of rational ZTs

Contour integration

Inverse Z-Transform

$$x[k] = \frac{1}{2\pi j} \oint_{\mathcal{C}} X(z) z^{k-1} dz$$

$$\frac{1}{2\pi j} \oint_{\mathcal{C}} X(z) z^{k-1} dz = \frac{1}{2\pi j} \oint_{\mathcal{C}} \sum_{n=-\infty}^{\infty} x[n] z^{-n} z^{k-1} dz$$
$$= \sum_{n=-\infty}^{\infty} x[n] \frac{1}{2\pi j} \oint_{\mathcal{C}} z^{k-1-n} dz$$

• Cauchy integral theorem:

$$\frac{1}{2\pi j} \oint_{\mathcal{C}} z^{k-1-n} dz = \begin{cases} 1 & \text{if } k = n \\ 0 & \text{if } k \neq n \end{cases}$$

Inversion via Partial Fraction Expansion

- Let be a rational ZT defined according to:
 - $-X(z) = \frac{N(z)}{D(z)}$
 - -N(z) and D(z) are polynomials in z^{-1}
 - degree of D(z) > degree of N(z)
- Under these conditions, X(z) may be expressed as:

$$X(z) = \sum_{k=1}^{K} \sum_{l=1}^{L_K} \frac{A_{kl}}{(1 - p_k z^{-1})^l}$$

- $-p_1, \cdots, p_K$ are the distinct poles of X(z)
- $-L_1, \cdots, L_K$ are the corresponding orders

Expression of the constants A_{kl}

$$X(z) = \sum_{k=1}^{K} \sum_{l=1}^{L_K} \frac{A_{kl}}{(1 - p_k z^{-1})^l}$$

Constants A_{kl} can be computed as follows:

• simple poles $(L_k = 1)$:

$$A_{kl} \equiv \left(1 - p_k z^{-1}\right) X(z) \big|_{z=p_k}$$

• multiple poles $(L_k > 1)$:

$$A_{kl} \equiv \frac{1}{(L_k - l)!(-p_k)^{L_k - l}} \left\{ \frac{d^{L_k - l}}{(dz^{-1})^{L_k - l}} \left(1 - p_k z^{-1} \right)^{L_k} X(z) \right\} \Big|_{z = p_k}$$

Inversion method

Given X(z) as above with ROC: r < |z| < R.

1. Determine the PFE of X(z):

$$X(z) = \sum_{k=1}^{K} \sum_{l=1}^{L_K} \frac{A_{kl}}{(1 - p_k z^{-1})^l}$$

2. Invoking linearity of the ZT, express x[n] as:

$$x[n] = \sum_{k=1}^{K} \sum_{l=1}^{L_K} A_{kl} \mathcal{Z}^{-1} \left\{ \frac{1}{(1 - p_k z^{-1})^l} \right\}$$

- 3. Evaluate the elementary inverse ZTs:
 - simple poles $(L_k = 1)$:

$$\frac{1}{1 - p_k z^{-1}} \stackrel{\mathcal{Z}^{-1}}{\to} \begin{cases} p_k^n u[n] & \text{if } |p_k| \le r \\ -p_k^n u[-n-1] & \text{if } |p_k| \ge R \end{cases}$$

• multiple poles $(L_k > 1)$:

$$\frac{1}{(1 - p_k z^{-1})^l} \stackrel{\mathcal{Z}^{-1}}{\to} \begin{cases} \binom{n+l-1}{l-1} p_k^n u[n] & \text{if } |p_k| \le r \\ -\binom{n+l-1}{l-1} p_k^n u[-n-1] & \text{if } |p_k| \ge R \end{cases}$$

Example

$$X(z) = \frac{1}{(1 - az^{-1})(1 - bz^{-1})}, |a| < |z| < |b|$$

• PFE can be written as:

$$X(z) = \frac{A_1}{(1 - az^{-1})} + \frac{A_2}{(1 - bz^{-1})},$$

with:

$$- A_1 \equiv (1 - az^{-1}) X(z) \big|_{z=a} = \frac{a}{a-b}$$
$$- A_2 \equiv (1 - bz^{-1}) X(z) \big|_{z=b} = \frac{b}{b-a}$$

• Elementary inverse ZTs from 2 simple poles:

$$- \frac{1}{1-az^{-1}} \stackrel{\mathcal{Z}^{-1}}{\to} a^n u[n] \text{ since } |z| > |a| \text{ (causal)}$$

$$- \frac{1}{1-bz^{-1}} \stackrel{\mathcal{Z}^{-1}}{\to} -b^n u[-n-1] \text{ since } |z| < |b| \text{ (anti-causal)}$$

• Finally:

$$x[n] = \frac{a^{n+1}}{a-b}u[n] - \frac{b^{n+1}}{b-a}u[-n-1]$$

Putting X(z) in a suitable form

- When applying the above PFE method to X(z) = N(z)/D(z), it is essential that:
 - N(z) and D(z) be polynomials in z^{-1}
 - degree of D(z) > degree of N(z)
- \bullet If either one of the above conditions are not satisfied, further algebraic manipulations must be applied to X(z)
- There are two common types of manipulations:
 - polynomial division
 - use of shift property

Polynomial division

• Find Q(z) and R(z), such that:

$$\frac{N(z)}{D(z)} = Q(z) + \frac{R(z)}{D(z)}$$

- -Q(z) is a polynomial in z^{-1} ,
- -R(z) is a polynomial in z^{-1} with degree less than that of D(z).
- Q(z) and R(z) are determined using a division table:

$$D(z) \qquad Q(z) \\ N(z) \qquad Q(z) \\ -Q(z)D(z) \\ R(z)$$

- To increase the z^{-1} power in N(z), D(z) and N(z) are expressed in decreasing powers of z (e.g. $D(z) = 1 + 2z^{-1} + z^{-2}$)
- To decrease the z^{-1} power in N(z), D(z) and N(z) are expressed in increasing powers of z (e.g. $D(z) = z^{-2} + 2z^{-1} + 1$)

Example

ZT of a causal signal

$$X(z) = \frac{-5 + 3z^{-1} + z^{-2}}{3 + 4z^{-1} + z^{-2}}$$

• Use long division to make the degree of numerator smaller than the degree of the denominator \Rightarrow decrease the z^{-1} power in N(z)

$$z^{-2} + 4z^{-1} + 3$$
 $z^{-2} + 3z^{-1} - 5$

$$\begin{array}{c|c}
1 \\
z^{-2} + 4z^{-1} + 3 & z^{-2} + 3z^{-1} - 5 \\
- (z^{-2} + 4z^{-1} + 3)
\end{array}$$

$$z^{-2} + 4z^{-1} + 3 \overline{ z^{-2} + 3z^{-1} - 5 }$$

$$\underline{-(z^{-2} + 4z^{-1} + 3)}$$

$$-z^{-1} - 8$$

$$X(z)$$
 rewrites $X(z) = 1 - \frac{z^{-1} + 8}{z^{-2} + 4z^{-1} + 3}$

Example

$$X(z) = 1 - \frac{z^{-1} + 8}{z^{-2} + 4z^{-1} + 3}$$

• The denominator of the 2nd term has 2 roots, poles at z = -1/3 and z = -1, hence:

$$X(z) = 1 - \frac{z^{-1} + 8}{3\left(1 + \frac{1}{3}z^{-1}\right)\left(1 + z^{-1}\right)}$$

• The PFE gives:

$$X(z) = 1 - \frac{1}{3} \left(\frac{A_1}{1 + \frac{1}{3}z^{-1}} + \frac{A_2}{1 + z^{-1}} \right)$$

with.

$$-A_1 = \frac{z^{-1} + 8}{1 + z^{-1}} \Big|_{z = -1/3} = -\frac{5}{2}$$

$$-A_2 = \frac{z^{-1} + 8}{1 + \frac{1}{3}z^{-1}} \Big|_{z = -1} = \frac{21}{2}$$

Example

$$X(z) = 1 + \frac{5}{6\left(1 + \frac{1}{3}z^{-1}\right)} - \frac{7}{2\left(1 + z^{-1}\right)}$$

- Causality of x[n] determines the ROC of X(z)
 - ROC is supposed to be delimited by circles with radius 1/3 and/or 1
 - causal sequence \Rightarrow ROC must extend outwards from the outermost pole \Rightarrow ROC is |z| > 1
- The sequence x[n] is then given by:

$$x[n] = \delta[n] + \frac{5}{6} \left(-\frac{1}{3}\right)^n u[n] - \frac{7}{2} (-1)^n u[n]$$

Use of shift property

• In some cases, a simple multiplication by z^k is sufficient to put X(z) into a suitable format, that is:

$$Y(z) = z^k X(z) = \frac{N(z)}{D(z)}$$

where N(z) and D(z) satisfy previous conditions

- The PFE method is then applied to Y(z), yielding a DT signal y[n]
- Finally, the shift property is applied to recover x[n]:

$$x[n] = y[n-k]$$

Example

$$X(z) = \frac{1 - z^{-128}}{1 - z^{-2}}, |z| > 1$$

• X(z) can be rewritten according to:

$$X(z) = Y(z) - z^{-128}Y(z)$$

where:

$$Y(z) = \frac{1}{1 - z^{-2}} = \frac{1}{(1 - z^{-1})(1 + z^{-1})}$$

• ZT of Y(z) is:

$$y[n] = \frac{1}{2} (1 + (-1)^n) u[n]$$

 \bullet Using $\mathit{linearity}$ and $\mathit{shift\ property}$:

$$x[n] = y[n] - y[n - 128]$$

• Therefore:

$$x[n] = \frac{1}{2} (1 + (-1)^n) (u[n] - u[n - 128])$$

5 Fourier Transform of DT signals

5.1 Definition

Definition

DTFT (Discrete-Time Fourier Transform)

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}, \ \omega \in \mathbb{R}$$

• $X(\omega)$ is continuous and 2π periodic:

$$-X(\omega) = X(\omega + 2\pi)$$

• Nyquist frequency is defined by: $\omega_N = \pi$

• $X(\omega)$ is called the spectrum of x[n]: $X(\omega) = |X(w)| e^{j\angle X(\omega)}$

- |X(w)|: magnitude spectrum

 $- \angle X(\omega)$: phase spectrum

• The Fourier Transform is a specific case of the ZT taking $z = e^{j\omega}$ with $|z| = 1 \in \text{ROC}$.

Fourier Transform of a sampled continuous signal

• Let $s_e(t)$ the sampled expression of the continuous signal s(t) with sampling period T_s :

$$s_e(t) = s(t) \cdot \sum_{k=-\infty}^{+\infty} \delta(t - kT_s)$$

• If we denote s[k] = s(kTs), we have:

$$s_e(t) = \sum_{k=-\infty}^{\infty} s[k]\delta(t - kT_s)$$

• The Fourier transform gives:

$$TF\{s_e(t)\} = \hat{s}_e(\omega) = s[k] \sum_{k=-\infty}^{\infty} s[k]TF\{\delta(t-kT_s)\}$$

• Applying the delay theorem:

$$\hat{s}_e(\omega) = s[k] \sum_{k=-\infty}^{\infty} s[k] e^{-jkwT_s} TF\{\delta(t)\} = s[k] \sum_{k=-\infty}^{\infty} s[k] e^{-jkwT_s}$$

• Finally:

$$\hat{s}_e(\omega) = S(\omega T_s)$$

with the Nyquist frequency equal to:

$$\omega_N = \frac{\pi}{T_s}$$

Inverse DTFT

Inverse DTFT

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega, n \in \mathbb{Z}$$

Proof: Note that $\int_{-\pi}^{\pi} e^{j\omega n} d\omega = 2\pi \delta[n]$:

$$\int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega = \int_{-\pi}^{\pi} \left(\sum_{k=-\infty}^{\infty} x[k] e^{-j\omega k} \right) e^{j\omega n} d\omega$$

$$= \sum_{k=-\infty}^{\infty} x[k] \int_{-\pi}^{\pi} e^{j\omega(n-k)} d\omega$$

$$= 2\pi \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

$$= 2\pi x[n]$$

5.2 Convergence of the DTFT

Convergence of the DTFT

- For the DTFT to exist, the series $\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$ must converge
- That is, the partial sum

$$X_M(\omega) = \sum_{n=-M}^{M} x[n]e^{-j\omega n}$$

must converge to a limit $X(\omega)$ as $M \to \infty$

- Absolutely summable signals
 - $X_M(\omega)$ converges uniformly to $X(\omega)$
 - $-X(\omega)$ is continuous
- Energy signals
 - $-X_M(\omega)$ does not necessarily converge
 - $-X(\omega)$ may be discontinuous at certain points
- Power signals
 - Most power signals do not have a DTFT
 - Exceptions including: Periodic signals, Unit step

5.3 Properties

Properties

• Linearity

$$ax[n] + by[n] \stackrel{\mathcal{F}}{\leftrightarrow} aX(\omega) + bY(\omega)$$

• Time shift

$$x[n-d] \stackrel{\mathcal{F}}{\leftrightarrow} e^{-j\omega d} X(\omega)$$

• Frequency modulation

$$e^{j\omega_0 n}x[n] \stackrel{\mathcal{F}}{\leftrightarrow} X(\omega - \omega_0)$$

• Differentiation

$$nx[n] \stackrel{\mathcal{F}}{\leftrightarrow} j \frac{dX(\omega)}{d\omega}$$

Even and odd component definition

DT signal

$$\begin{split} x[n] &= x_e[n] + x_o[n] \\ x_e[n] &\triangleq \frac{1}{2} \left(x[n] + x^*[-n] \right) = x_e^*[-n] \\ x_o[n] &\triangleq \frac{1}{2} \left(x[n] - x^*[-n] \right) = -x_o^*[-n] \end{split}$$

DTFT

$$X(\omega) = X_e(\omega) + X_o(\omega)$$

$$X_e(\omega) \triangleq \frac{1}{2} (X(\omega) + X^*(w)) = X_e^*(-\omega)$$

$$X_o(\omega) \triangleq \frac{1}{2} (X(\omega) - X^*(w)) = -X_o^*(-\omega)$$

Basic symmetries

Real and imaginary parts decomposition

$$x[n] = x_R[n] + jx_I[n]$$

$$X(\omega) = X_R(\omega) + jX_I(\omega)$$

- $x[-n] \stackrel{\mathcal{F}}{\leftrightarrow} X(-\omega)$
- $x^*[n] \stackrel{\mathcal{F}}{\leftrightarrow} X^*(-\omega)$
- $x_R[n] \stackrel{\mathcal{F}}{\leftrightarrow} X_e(\omega)$
- $jx_I[n] \stackrel{\mathcal{F}}{\leftrightarrow} X_o(\omega)$
- $x_e[n] \stackrel{\mathcal{F}}{\leftrightarrow} X_R(\omega)$
- $x_o[n] \stackrel{\mathcal{F}}{\leftrightarrow} jX_I(\omega)$

More properties

Convolution

$$x[n]^*y[n] \stackrel{\mathcal{F}}{\leftrightarrow} X(\omega)Y(\omega)$$

Multiplication

$$x[n]y[n] \stackrel{\mathcal{F}}{\leftrightarrow} \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\phi)Y(\omega - \phi)d\phi$$

Parseval's relation

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^2 d\omega$$

Plancherel's relation

$$\sum_{n=-\infty}^{\infty} x[n]y[n]^* = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)Y^*(\omega)d\omega$$

6 Analysis of LTI systems in the z-Domain

6.1 LTI systems described by LCCDE

Linear Constant Coefficient Difference Equations

Definition

A DT system can be described by an LCCDE of order N if:

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

where $a_0 \neq 0$ and $a_N \neq 0$.

• If we further assume initial rest conditions, i.e.:

$$\forall n < n_0, x[n] = 0 \Rightarrow \forall n < n_0, y[n] = 0$$

LCCDE corresponds to unique causal LTI system.

Example: Accumulator system

$$x[n] \to y[n] = \sum_{k=-\infty}^{n} x[k]$$

This LTI system can be rewritten according to:

$$y[n] = \sum_{k=-\infty}^{n-1} x[k] + x[n]$$

= $y[n-1] + x[n]$

 \Rightarrow LCCDE of order $N = 1 (M = 0, a_0 = 1, a_1 = -1, b_0 = 1)$

LCCDEs lead to efficient recursive implementation:

- Recursive because computation of y[n] make use past output signal values (y[n-1])
- Efficient: in the case of the accumulator it requires only 1 adder and 1 memory unit instead of an infinite number of adders and memory units.

6.2 One-sided Z-Transform

One-sided Z-Transform

- The two-sided ZT requires that the corresponding signals be specified for entire time range $-\infty < n < \infty$
 - Prevent evaluation of the output of non-relaxed systems
- The one-sided ZT can be used to solve difference equations with initial conditions

Definition

$$X^{+}(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

Characteristics

- 1. Does not contain information about the signal x[n] for negative values of time (n < 0)
- 2. It is *unique* only for *causal* signals
- 3. one-sided ZT of x[n] is identical to the two-sided ZT of x[n]u[n]

Properties

Almost all properties for the two-sided ZT carry over to the one-sided ZT with exception of the shifting property.

Case 1: Time Delay

Tf

$$x[n] \stackrel{z^+}{\longleftrightarrow} X^+(z)$$

then

$$\forall k > 0, \ x[n-k] \stackrel{z^+}{\longleftrightarrow} z^{-k} \left(X^+(z) + \sum_{n=1}^k x[-n]z^n \right)$$

Case 2: Time advance

Tf

$$x[n] \stackrel{z^+}{\longleftrightarrow} X^+(z)$$

then

$$\forall k > 0, \ x[n+k] \stackrel{z^+}{\longleftrightarrow} z^k \left(X^+(z) - \sum_{n=0}^{k-1} x[n]z^{-n} \right)$$

Example

Determine the step response of the system with IC y[-1] = 1:

$$y[n] = \alpha y[n-1] + x[n]$$
, with $-1 < \alpha < 1$

1. By taking the one-sided ZT of both sides:

$$Y^{+}(z) = \alpha z^{-1} (Y^{+}(z) + y[-1]z) + X^{+}(z).$$

2. Compute one-sided ZT of x[n]:

$$x[n] = u[n] \stackrel{z^+}{\longleftrightarrow} X^+(z) = \frac{1}{1 - z^{-1}}$$

3. Solving for $Y^+[n]$:

$$Y^{+}(z) = \frac{\alpha}{1 - \alpha z^{-1}} + \frac{1}{(1 - \alpha z^{-1})(1 - z^{-1})}$$

4. Perform partial-fraction expansion:

$$Y^{+}(x) = \frac{\alpha}{1 - \alpha z^{-1}} + \frac{\frac{\alpha}{\alpha - 1}}{1 - \alpha z^{-1}} + \frac{\frac{1}{1 - \alpha}}{1 - z^{-1}}$$

5. Compute inverse ZT:

$$y[n] = \alpha^{n+1}u[n] + \frac{1 - \alpha^{n+1}}{1 - \alpha}u[n]$$
$$= \frac{1}{1 - \alpha} (1 - \alpha^{n+2}) u[n]$$

Final Value Theorem

If

$$x[n] \stackrel{z^+}{\longleftrightarrow} X^+(z)$$

then

$$\lim_{n \to \infty} x[n] = \lim_{z \to 1} (z - 1)X^+(z)$$

- The limit exists if the ROC of $(z-1)X^+(z)$ includes the unit circle
- \bullet Useful when the asymptotic behavior of a signal x[n] is desired knowing its ZT

6.3 The system function

The system function

LTI system \mathcal{H} (recall)

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] \text{ with } h[n] = \mathcal{H}\left\{\delta[n]\right\}$$

Definition

The system function of \mathcal{H} , denoted H(z) is the ZT of h[n]:

$$H(z) = \sum_{n = -\infty}^{\infty} h[n]z^{-n}, z \in \mathcal{R}_H$$

where \mathcal{R}_H denotes the corresponding ROC.

- If H(z) and \mathcal{R}_H are known, h[n] can be recovered via inverse ZT
- if $z = e^{j\omega} \in \mathcal{R}_H$ (the ROC contains the unit circle) then

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n} \equiv H(\omega)$$

 \Rightarrow the system function evaluated at $z=e^{j\omega}$ corresponds to the frequency response at angular frequency ω

Properties

Let \mathcal{H} be LTI system with system function H(z) and ROC \mathcal{R}_H .

• If y[n] denotes the response of \mathcal{H} to arbitrary input x[n], then:

$$Y(z) = H(z)X(z)$$

- LTI system \mathcal{H} is causal iff \mathcal{R}_H is the exterior of a circle (including ∞)
- LTI system \mathcal{H} is stable iff \mathcal{R}_H contains the unit circle:

$$\mathcal{H}$$
 stable $\Leftrightarrow \sum_{n} |h[n]| < \infty$
 $\Leftrightarrow e^{j\omega} \in \mathcal{R}_{\mathcal{H}}$

$$|H(z)| \le \sum_n \left| h[n] z^{-n} \right|$$

evaluated on the unit circle: $z = e^{i\omega}$:

$$|H(z)| \leq \sum_n |h[n]| < \infty$$

LCCDE system function

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

Taking ZT on both sides:

$$\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

Leading to a rational system function:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

Rational system with real coefficients

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

• In many applications, coefficients a_k and b_k are real implying:

$$H^*(z) = H(z^*)$$

• Thus, if z_k is a zero of H(z) then:

$$H(z_k^*) = (H(z_k))^* = 0^* = 0$$

which shows that z_k^* is also a zero of H(z)

- More generally, it can be shown that complex poles (or zeros) occur in complex conjugate pairs:
 - if p_k is a pole of order l of H(z), so is p_k^*
 - if z_k is a zero of order l of H(z), so is z_k^*

6.4 Response of rational system Functions

Response of rational system functions

- Let be $H(z) = \frac{B(z)}{A(z)}$ the system function of a LCCDE system:
 - roots of A(z) are the poles of H(z)
 - roots of B(z) are the zeros of H(z)
- Let assume that the input signal x[n] has a rational ZT of the form $X(z) = \frac{N(z)}{Q(z)}$
- If the system is initially relaxed the initial conditions $(y[-1] = y[-2] = \cdots = y[-N] = 0)$ the output of the system has the form:

$$Y(z) = H(z)X(z) = \frac{B(z)N(z)}{A(z)Q(z)}$$

• The partial fraction expansion of Y(z) yields

$$Y(z) = \sum_{k=1}^{N} \frac{A_k}{1 - p_k z^{-1}} + \sum_{k=1}^{L} \frac{Q_k}{1 - q_k z^{-1}}$$

39

if $\forall k \forall m, p_k \neq q_m$ and there is no pole-zero cancellation.

Response of rational system functions

$$Y(z) = \sum_{k=1}^{N} \frac{A_k}{1 - p_k z^{-1}} + \sum_{k=1}^{L} \frac{Q_k}{1 - q_k z^{-1}}$$

• The inverse transform of Y(z) can be written

$$y[n] = \underbrace{\sum_{k=1}^{N} A_k(p_k)^n u[n]}_{\text{natural response}} + \underbrace{\sum_{k=1}^{L} Q_k(q_k)^n u[n]}_{\text{forced response}}$$

- Influence of the input signal on the natural response is through the scale factor $\{A_k\}$
- Influence of the system on the forced response is through the scale factor $\{Q_k\}$

Response with nonzero initial conditions

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

- x[n] is assumed to be causal
- ullet effects of all previous input signals are reflected in the initial conditions $y[-1],\ y[-2],\ ,\cdots\ ,y[-N]$
- To determine $y[n], \forall n \geq 0$, the one-sided ZT can be used:

$$Y^{+}(z) = -\sum_{k=1}^{N} a_k z^{-k} \left(Y^{+}(z) + \sum_{n=1}^{k} y[-n] z^n \right) + \sum_{k=0}^{M} b_k z^{-k} X^{+}(z)$$

$$Y^{+}(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}} X^{+}(z) - \frac{\sum_{k=1}^{N} a_k z^{-k} \sum_{n=1}^{k} y[-n] z^n}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$

Response with nonzero initial conditions

Since x[n] is causal $X^+(z) = X(z)$ and the expression can be written:

$$Y^{+}(z) = \underbrace{H(z)X(z)}_{Y_{zs(z)}} + \underbrace{\frac{N_0(z)}{A(z)}}_{Y_{zz}^{+}}$$

- $Y_{zs}(z) = H(z)X(z)$ is the zero-state response of the system
- $Y_{zi}^+(z) = \frac{N_0(z)}{A(z)}$ is the zero-input response of the system
- The zero-state response of the system remains the same and gives:

$$y_{zs}[n] = \sum_{k=1}^{N} A_k(p_k)^n u[n] + \sum_{k=1}^{L} Q_k(q_k)^n u[n]$$

• Since $Y_{zi}^+(z) = \frac{N_0(z)}{A(z)}$ its poles are p_1, \dots, p_N and the zero-input response has the form:

$$y_{zi}[n] = \sum_{k=1}^{N} D_k(p_k)^n u[n]$$

40

Response with nonzero initial conditions

• The terms involving the poles $\{p_k\}$ can be combined:

$$y[n] = y_{zs}[n] + y_{zi}[n] = \sum_{k=1}^{N} A'_{k}(p_{k})^{n} u[n] + \sum_{k=1}^{L} Q_{k}(q_{k})^{n} u[n]$$

with
$$A'_{k} = A_{k} + D_{k}$$
.

- Effect of initial conditions alter the natural response of the system through modification of the scale factors
- No new poles are introduced by the nonzero initial conditions
- There is no effect on the forced response of the system

6.5 Schur-Cohn Stability test

Schur-Cohn stability test

Reminder

- LTI system \mathcal{H} is causal iff \mathcal{R}_H is the exterior of a circle (including ∞)
- LTI system \mathcal{H} is stable iff \mathcal{R}_H contains the unit circle

 \Rightarrow A causal system described by its rational system function is stable iff its poles are strictly inside the unit circle.

Let be $A(z) = 1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}$ the denominator polynomial of H(z). A polynomial of degree m is denoted by:

$$A_m(z) = \sum_{k=0}^{m} a_m[k] z^{-k}$$
 $a_m(0) = 1$

The reverse polynomial $B_m(z)$ of degree m is defined as:

$$B_m(z) = z^{-m} A_m(z^{-1}) = \sum_{k=0}^m a_m [m-k] z^{-k}$$

Schur-Cohn stability test

The set of coefficients $K_1,\,K_2,\,\cdots,\,K_N$ must satisfy the condition $|K_m|<1$

1. First iteration:

$$A_N(z) = A(z)$$

and
$$K_N = a_N(N)$$

2. Compute the lower-degree polynomial:

$$A_{m-1}(z) = \frac{A_m(z) - K_m B_m(z)}{1 - K_m^2}$$

41

and
$$K_m = a_m(m)$$

3. Loop to step 2 until it fails or m=1

6.6 Frequency response of rational systems

Frequency response of rational systems

• Knowing poles and zeros of H(z) can be expressed as:

$$H(z) = Gz^{-K} \frac{\prod_{k=0}^{M} (z - z_k)}{\prod_{k=1}^{N} (z - p_k)}$$

• Frequency response:

$$H(\omega) = \left. H(z) \right|_{z=e^{j\omega}} = G e^{-j\omega K} \frac{\prod_{k=0}^{M} \left(j\omega - z_k\right)}{\prod_{k=1}^{N} \left(j\omega - p_k\right)}$$

• Define:

$$V_k(\omega) = |e^{j\omega} - z_k| U_k(\omega) = |e^{j\omega} - p_k|$$

$$\theta_k(\omega) = \angle (e^{j\omega} - z_k) \phi_k(\omega) = \angle (e^{j\omega} - p_k)$$

• Magnitude response:

$$|H(\omega)| = |G| \frac{V_1(\omega) \cdots V_M(\omega)}{U_1(\omega) \cdots U_N(\omega)}$$

• Phase response:

$$\angle H(\omega) = \angle G - \omega K + \sum_{k=1}^{\infty} \theta_k(\omega) - \sum_{k=1}^{N} \phi_k(\omega)$$

Geometrical interpretation

• Consider pole p_k :

- $-\Delta = e^{j\omega} p_k$: vector joining p_k to point $e^{j\omega}$ on unit circle
- $-U_k(\omega) = |\Delta|$: length of vector Δ
- $-\phi_k(\omega) = \angle \Delta$: angle between Δ and real axis
- A similar interpretation holds for the terms $V_k(\omega)$ and $\theta_k(\omega)$ associated to the zeros z_k

Some basic principles

- For stable and causal systems, the poles are located inside the unit circle; zeros can be anywhere.
- Poles near the unit circle at $p = re^{j\omega_0}$ (r < 1) give rise to:
 - peak in $|H(\omega)|$ near ω_0
 - rapid phase variation near ω_0
- Zeros near the unit circle at $z = re^{j\omega_0}$ give rise to:
 - deep notch in $|H(\omega)|$ near ω_0
 - rapid phase variation near ω_0

6.7 Analysis of certain basic systems

First order LTI systems

The system function is given by:

$$H(z) = G\frac{1 - bz^{-1}}{1 - az^{-1}}$$

• Poles and zeros are:

- pole: z = a (simple)

- zero: z = b (simple)

• Practical requirements:

– causality: ROC: |z| > |a|

- stability: |a| < 1

• Impulse response (ROC: |z| > |a|):

$$h[n] = G\left(1 - \frac{b}{a}\right)a^n u[n] + G\frac{b}{a}\delta[n]$$

Low-pass case

$$H(z) = G\frac{1 - bz^{-1}}{1 - az^{-1}}$$

- To get a low-pass behavior: $a = 1 \epsilon$, where $0 < \epsilon \ll 1$
- Additional attenuation of high-frequency is possible by proper placement of the zero z = b.

$$\begin{array}{l} H_1(z)=G_1\frac{1}{1-az^{-1}} \text{ (zero: } b=0)\\ G_1=1-a\Rightarrow H_1(\omega=0)=1 \end{array}$$

$$H_2(z) = G_2 \frac{1+z^{-1}}{1-az^{-1}}$$
 (zero: $b = -1$)
 $G_2 = \frac{1-a}{2} \Rightarrow H_2(\omega = 0) = 1$

Frequency responses of the corresponding low-pass systems

High-pass case

$$H(z) = G\frac{1 - bz^{-1}}{1 - az^{-1}}$$

- To get a high-pass behavior: $a = -1 + \epsilon$, where $0 < \epsilon \ll 1$
- To get a high attenuation of the DC component, one has to locate the zero at or near b=1

$$H_3(z) = G_3 \frac{1-z^{-1}}{1-az^{-1}} \text{ (zero: } b=1\text{)}$$

 $G_3 = \frac{1+a}{2} \Rightarrow H_3(\omega = -\pi) = 1$

Frequency response of the corresponding high-pass system

• Frequency response:

Second order systems

System function

$$H(z) = G \frac{1 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

• Poles

– if $a_1^2>4a_2$: 2 distinct poles (real) at $p_{1,2}=-\frac{a_1}{2}\pm\frac{1}{2}\sqrt{a_1^2-4a_2}$

– if $a_1^2=4a_2$: double pole (real) at $p_1=-\frac{a_1}{2}$

– if $a_1^2 < 4a_2$: 2 distinct poles (complex) at $p_{1,2} = -\frac{a_1}{2} \pm j\frac{1}{2}\sqrt{4a_2 - a_1^2}$

• Practical requirements:

- causality: ROC: $|z| > \max\{|p_1|, |p_2|\}$

– stability: $|p_1| < 1$ and $|p_2| < 1 \Leftrightarrow |a_2| < 1$ and $a_2 > |a_1| - 1$

Second order systems: resonator

$$p_1 = re^{j\omega_0}$$
$$p_2 = re^{-j\omega_0} = p_1^*$$

$$H(z) = G \frac{1}{(1 - re^{j\omega_0 z^{-1}}) (1 - re^{-j\omega_0 z^{-1}})}$$
$$= G \frac{1}{1 - 2r\cos(\omega_0) z^{-1} + r^2 z^{-2}}$$

Second order systems: resonator

• Frequency response:

- The frequency response clearly shows peaks around $\pm \omega_0$.
- For r close to 1 (but < 1), $|H(\omega)|$ reaches a maximum at $\pm \omega_0$

FIR filters

System function

$$H(z) = B(z) = b_0 + b_1 z^{-1} + \dots + b_M z^{-M}$$

= $b_0 (1 - z_1 z^{-1}) \cdots (1 - z_M z^{-1})$

- This is zeroth order rational system: A(z) = 1
 - The M zeros z_k can be anywhere in the complex plane
 - There is multiple pole of order M at z=0
- Practical requirement: none
 - Above system is always causal and stable
- Impulse response:

$$h[n] = \begin{cases} b_n & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$$

FIR filters: moving average system

• Difference equation:

$$y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

• System function:

$$H(z) = \frac{1}{M} \sum_{k=0}^{M-1} z^{-k} = \frac{1}{M} \frac{1 - z^{-M}}{1 - z^{-1}}$$

• PZ analysis: roots of the numerator

$$z^{M} = 1 \Rightarrow z = e^{j2\pi k/M}, k = 0, 1, \dots, M-1$$

 \Rightarrow there is no pole at z=1 because of PZ cancellation:

$$H(z) = \frac{1}{M} \prod_{k=1}^{M-1} \left(1 - e^{j2\pi k/M} z^{-1} \right)$$

FIR filters: moving average system

$$H(z) = \frac{1}{M} \prod_{k=1}^{M-1} \left(1 - e^{j2\pi k/M} z^{-1} \right)$$

• PZ diagram for M=8

FIR filters: moving average system

• Frequency response:

7 Discrete Fourier Transform (DFT)

Introduction

Discrete Time Fourier Transform \neq Discrete Fourier Transform

Definition of the DTFT

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}, \, \omega \in [-\pi, \pi]$$

Several drawbacks from a computational viewpoint:

- \bullet the summation over n is infinite
- the variable ω is continuous

In many situation, it is either not possible, or not necessary to implement the infinite summation:

- only the signal samples x[n] from n to N-1 are available
- the signal is known to be zero outside this range; or
- \bullet the signal is periodic with period N

7.1 The DFT and its inverse

The DFT and its inverse

Definition of the DFT

$$X[k] = \text{DFT}_N \left\{ x[n] \right\} \triangleq \sum_{n=0}^{N-1} x[n] e^{-j2\pi k n/N}, \ k \in \mathbb{Z}$$
$$\triangleq \sum_{n=0}^{N-1} x[n] e^{-j\omega_k n}, \ \omega = 2\pi k/N$$

- The N-point DFT is a transformation that maps DT signal samples $\{x[n]\}$ into a periodic sequence $\{X[k]\}$
- Only samples $x[0], \ldots, x[N-1]$ are used in the computation
- The N-point DFT is periodic, with period N: X[k+N] = X[k]
- The "D" in DFT stands for discrete frequency (i.e. ω_k)

Examples

1. Consider

$$x[n] = \begin{cases} 1 & n = 0 \\ 0 & n = 1, \dots, N - 1 \end{cases}$$
$$\forall k \in \mathbb{Z}, X[k] = 1$$

2. Let

$$x[n] = a^n, n = 0, \dots, N-1$$

$$\forall k \in \mathbb{Z}, \ X[k] = \sum_{n=0}^{N-1} \rho_k^n, \text{ where } \rho_k \triangleq ae^{-j2\pi k/N}$$
$$= \begin{cases} N & \text{if } \rho_k = 1\\ \frac{1-\rho_k^N}{1-\rho} & \text{otherwise} \end{cases}$$

case
$$a = 1$$

$$\Rightarrow X[k] = \begin{cases} N & \text{if } k = 0 \\ 0 & \text{if } k = 1, \dots, N - 1 \end{cases}$$
case $a = e^{j2\pi l/N}$

$$\Rightarrow X[k] = \begin{cases} N & \text{if } k = l \text{ modulo } N \\ 0 & \text{otherwise} \end{cases}$$

Inverse DFT (IDFT)

Definition of the IDFT

$$\tilde{x}[n] = \text{IDFT}_N \{X[k]\} = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi k n/N}, n \in \mathbb{Z}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\omega_k n}, \omega = 2\pi k/N$$

- In general, $\forall n \in \mathbb{Z}, \, \tilde{x}[n] \neq x[n]$
- Only the samples $X[0], \ldots, X[N-1]$ are used in the computation
- The N-point IDFT is periodic, with period N: $\tilde{x}[n+N] = \tilde{x}[n]$

IDFT Theorem

IDFT Theorem

If X[k] is the N-point DFT of the samples $\{x[0], \ldots, x[N-1]\}$ then:

$$x[n] = \tilde{x}[n] = IDFT_N \{X[k]\}, n = 0, \dots, N-1$$

- Nothing is said about sample x[n] out of the range $n = 0, \dots, N-1$
- The IDFT $\tilde{x}[n]$ is periodic with period N whereas no such requirement is imposed on the original signal x[n]
- Values of x[n] for n < 0 and for $n \ge N$ cannot in general be recovered from the DFT samples X[k]
- There are two important special cases when the complete signal x[n] can be recovered from the DFT samples X[k]:
 - -x[n] is periodic with period N
 - -x[n] is known to be zero for n < 0 and for $n \ge N$

7.2 Relationship between the DFT and the DTFT

Introduction

The DFT may be viewed as a finite approximation to the DTFT:

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\omega_k n} \approx X(\omega_k = \frac{2\pi k}{N}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega_k n}$$

- It should not be possible to recover the DTFT exactly from the DFT
 - an arbitrary signal x[n] cannot be recovered entirely from its N-point DFT
- However, in the following two special cases the DTFT can be evaluated exactly at any frequency $\omega \in [-\pi, \pi]$ if the DFT is known:
 - finite length signals
 - N-periodic signals

Finite length signals

Assumption

Suppose x[n] = 0 for n < 0 and for $n \ge N$

Inverse DFT

In this case x[n] can be recovered entirely from its N-point DFT:

$$\tilde{x}[n] = \text{IDFT} \{X[k]\} = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi k n/N}, n \in \mathbb{Z}$$

- For n = 0, ..., N 1 the IDFT theorem yields: $x[n] = \tilde{x}[n]$
- For n < 0 and for $n \ge N$, by assumption: x[n] = 0

$$x[n] = \begin{cases} \tilde{x}[n] & \text{if } 0 \le n \le N \\ 0 & \text{otherwise} \end{cases}$$

Finite length signals

Relationship between DFT and DTFT

In this case the DTFT $X(\omega = \omega_k = 2\pi k/N)$ can be completely reconstructed from the N-point DFT X[k]:

$$X(\omega_k) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega_k n} = \sum_{n=0}^{N-1} x[n]e^{-j\omega_k n} = X[k]$$

In the general case, i.e. ω arbitrary, the following theorem can be applied.

Theorem

 $X(\omega)$ and X[k] respectively denote the DTFT and N-point DFT of signal x[n] (x[n] = 0 for for n < 0 and for $n \ge N$:

$$X(\omega) = \sum_{k=0}^{N-1} X[k]P(\omega - \omega_k)$$

where

$$P(\omega) \triangleq \frac{1}{N} \sum_{n=0}^{N-1} e^{-j\omega n}$$

Finite length signals

$$X(\omega) = \sum_{k=0}^{N-1} X[k] P(\omega - \omega_k) \text{ with } P(\omega) \triangleq \frac{1}{N} \sum_{n=0}^{N-1} e^{-j\omega n}$$

Properties of $P(\omega)$:

- The theorem provides a kind of interpolation formula for evaluating $X(\omega)$ in between adjacent values of $X(\omega_k) = X[k]$
- Periodicity: $P(\omega + 2\pi) = P(\omega)$
- If $\omega = 2\pi l \ (l \in \mathbb{Z})$ then $e^{-j\omega n} = e^{-j2\pi ln} = 1$ so that $P(\omega) = 1$
- If $\omega \neq 2\pi l$

$$P(\omega) = \frac{1}{N} \frac{1 - e^{-j\omega N}}{1 - e^{j\omega}} = \frac{1}{N} e^{-j\omega(N-1)/2} \frac{\sin(\omega N/2)}{\sin(\omega/2)}$$

• Note that at frequency $\omega_k = 2\pi/N$

$$P(\omega_k) = \begin{cases} 1 & k = 0 \\ 0 & k = 1, \dots, N - 1 \end{cases}$$

Periodic signals

Assumption

Suppose x[n] is N-periodic, i.e. x[n+N] = x[n]

Inverse DFT

In this case x[n] can be recovered entirely from its N-point DFT:

$$\tilde{x}[n] = \text{IDFT} \{X[k]\} = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi k n/N}, n \in \mathbb{Z}$$

- For n = 0, ..., N 1 the IDFT theorem yields: $x[n] = \tilde{x}[n]$
- Since both x[n] and $\tilde{x}[n]$ are known to be N-periodic, it follows that $x[n] = \tilde{x}[n]$ must also be true for n < 0 and for $n \ge N$:

$$x[n] = \tilde{x}[n], \, \forall n \in \mathbb{Z}$$

Periodic signals

Relationship between DFT and DTFT

Since the N-periodic signal x[n] can be recovered completely from its N-point DFT X[k], it should be possible to reconstruct the DTFT $X(\omega)$ from X[k].

Theorem

 $X(\omega)$ and X[k] respectively denote the DTFT and N-point DFT of signal x[n]

$$X(\omega) = \frac{2\pi}{N} \sum_{-\infty}^{\infty} X[k] \delta_a(\omega - \omega_k)$$

where $\delta_a(\omega)$ denotes an analog delta function centered at $\omega = 0$

- $X(\omega) \Leftrightarrow \text{periodic train of infinite impulses in the } \omega \text{ domain}$
- When x[n] is N-periodic, the DFT admits a Fourier series interpretation since the IDFT provides an expansion of x[n] as a sum of harmonically related complex exponential signals $e^{j\omega_k n}$:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\omega_k n}, n \in \mathbb{Z}$$

Signal reconstruction via DTFT sampling

1. Let $X(\omega)$ be the DTFT of signal $x[n], n \in \mathbb{Z}$, that is:

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}, \ \omega \in \mathbb{R}.$$

- 2. Consider the sampled values of $X(\omega)$ at uniformly spaced frequencies $\omega_k = 2\pi k/N$ for $k = 0, \ldots, N-1$.
- 3. Suppose we compute the IDFT of the samples $X(\omega_k)$:

$$\hat{x}[n] = \text{IDFT} \{X(\omega_k)\} = \frac{1}{N} \sum_{k=0}^{N-1} X(\omega_k) e^{j\omega_k n}$$

What is the relationship between the original signal x[n] and the reconstructed sequence $\hat{x}[n]$?

- $\hat{x}[n]$ is N-periodic, while x[n] may not be
- Even for n = 0, ..., N 1 there is no reason for $\hat{x}[n]$ to be equal to x[n]

Signal reconstruction via DTFT sampling

Theorem

$$\hat{x} = \text{IDFT} \{X(\omega_k)\} = \sum_{r=-\infty}^{\infty} x[n - rN]$$

- $\hat{x}[n]$ is an infinite sum of the sequences $x[n-rN], r \in \mathbb{Z}$:
- Each of these sequences x[n-rN] is a shifted version of x[n] by an integer multiple of N
- Depending on whether or not these shifted sequences overlap, we distinguish two important cases:
 - 1. Time limited signal: suppose x[n] = 0 for n < 0 and for $n \ge N$. Then there is no temporal overlap of the sequences x[n-rN]. We can recover x[n] exactly from one period of $\hat{x}[n]$:

$$x[n] = \begin{cases} \hat{x}[n] & n = 0, \dots, N-1 \\ 0 & \text{otherwise} \end{cases}$$

2. Non time-limited signal: suppose that $x[n] \neq 0$ for some n < 0 or $n \geq N$. Then, the sequences x[n-rN] for different values of r will overlap in the time-domain. In this case, it is not true that $\hat{x}[n] = x[n]$ for all $0 \leq n \leq N-1 \Rightarrow temporal aliasing$

Time limited signal

Non time-limited signal

7.3 Properties of the DFT

Properties of the DFT

Notations

x[n] and y[n] are defined over $0 \le n \le N-1$:

$$x[n] \overset{\mathrm{DFT}_N}{\leftrightarrow} X[k]$$
$$y[n] \overset{\mathrm{DFT}_N}{\leftrightarrow} Y[k]$$

X[k] and Y[k] are viewed as N-periodic sequences, defined for all $k \in \mathbb{Z}$.

Modulo N operation

any integer $n \in \mathbb{Z}$ can be expressed uniquely as n = k + rN where $k \in \{0, ..., N-1\}$ and $r \in \mathbb{Z}$:

$$(n)_N = n \text{ modulo } N \triangleq k$$

Time reversal and complex conjugation

Circular time reversal

Given a sequence x[n], $0 \le n \le N-1$, its circular reversal (CR) is defined as:

$$\operatorname{CR}\left\{x[n]\right\} = x\left[\left(-n\right)_{N}\right],\, 0 \leq n \leq N-1$$

Example: Let x[n] = 6 - n for $n = 0, \dots, 5$.

n	0	1	2	3	4	5
x[n]	6	5	4	3	2	1
$(-n)_{6}$	0	5	4	3	2	1
$x[(-n)_6]$	6	1	2	3	4	5

Time reversal and complex conjugation

Interpretation:

- Circular reversal can be seen as an operation on the set of samples $x[0], \ldots, x[N-1]$:
 - -x[0] is left unchanged
 - for k = 1 to N 1 samples x[k] and x[N k] are exchanged
- One can also see this operation consisting in:
 - 1. periodizing the samples of x[n], $0 \le n \le N-1$ with period N
 - 2. time-reversing the periodized sequence
 - 3. keeping only the samples between 0 and N-1

Time reversal and complex conjugation

Time reversal and complex conjugation

Property

$$x [(-n)_N] \overset{\mathrm{DFT}_N}{\longleftrightarrow} X[-k]$$

$$x^*[n] \overset{\mathrm{DFT}_N}{\longleftrightarrow} X^*[-k]$$

$$x^*[(-n)_N] \overset{\mathrm{DFT}_N}{\longleftrightarrow} X^*[k]$$

Remarks:

- Since X[k] is periodic, $X[-k] = X[(-k)_N]$
- For real-valued signals:

$$-x[n] = x^*[n] \Leftrightarrow X[k] = X[-k]$$

- -X[0] is real
- if N is even: X[N/2] is real
- $-X[N-k] = X^*[k] \text{ for } 1 \le k \le N-1$

Time reversal and complex conjugation

Linearity

Linearity

$$ax[n] + by[n] \overset{\mathrm{DFT}_N}{\longleftrightarrow} aX[k] + bY[k]$$

Even and odd decomposition

Conjugate symmetric components of finite sequences

$$x_{e,N}[n] \triangleq \frac{1}{2} (x[n] + x^* [(-n)_N])$$

 $x_{e,N}[n] \triangleq \frac{1}{2} (x[n] - x^* [(-n)_N])$

In the case of a N-periodic sequence the modulo N operation can be omitted:

$$\begin{split} X_e[k] &\triangleq \frac{1}{2} \left(X[k] + X^*[-k] \right) \\ X_o[k] &\triangleq \frac{1}{2} \left(X[k] - X^*[-k] \right) \end{split}$$

$$\Re \left\{ x[n] \right\} \overset{DFT_N}{\longleftrightarrow} X_e[k]$$

$$j\Im \left\{ x[n] \right\} \overset{DFT_N}{\longleftrightarrow} X_o[k]$$

$$x_{e,N}[n] \overset{DFT_N}{\longleftrightarrow} \Re \left\{ X[k] \right\}$$

$$x_{o,N}[n] \overset{DFT_N}{\longleftrightarrow} j\Im \left\{ X[k] \right\}$$

Circular shift

Definition

Given a sequence x[n] defined over the interval $0 \le n \le N-1$, we define its circular shift by k as follows:

$$CS_k \{x[n]\} = x [(n-k)_N], 0 \le n \le N-1$$

Example: Let x[n] = 6 - n for $n = 0, \dots, 5$.

n	0	1	2	3	4	5
x[n]	6	5	4	3	2	1
$(n-2)_6$	4	5	0	1	2	3
$x\left[(n-2)_6\right]$	2	1	6	5	4	3

Circular shift

Interpretation:

- Can be seen as an operation on the set of signal samples x[n] in which:
 - signal samples x[n] are shifted as in a conventional shift
 - any signal sample leaving the interval $0 \le n \le N-1$ from one end reenters by the other end
- Alternatively, it may be interpreted as follows:
 - 1. periodizing the samples of x[n], $0 \le n \le N-1$ with period N
 - 2. delaying the periodized sequence by k samples
 - 3. keeping only the samples between 0 and N-1

Circular shift

Circular shift

Circular shift property

$$x\left[(n-m)_N\right] \overset{\mathrm{DFT}_N}{\longleftrightarrow} e^{-j2\pi mk/N} X[k]$$

Frequency shift property

$$e^{j2\pi nm/N}x[n] \stackrel{\mathrm{DFT}_N}{\longleftrightarrow} X[k-m]$$

• Since the DFT X[k] is already periodic, the modulo N operation is not needed here, that is: X[(k-m)-N]=X[k-m].

Circular convolution

Definition

Let x[n] and y[n] be 2 sequences defined over $0 \le n \le N-1$:

$$x[n] \circledast y[n] \triangleq \sum_{m=0}^{N-1} x[m]y[(n-m)_N], 0 \le n \le N-1$$

Circular convolution property

$$x[n] \circledast y[n] \overset{\mathrm{DFT}_N}{\longleftrightarrow} X[k]Y[k]$$

Multiplication Property

$$x[n]y[n] \overset{\mathrm{DFT}_N}{\longleftrightarrow} \frac{1}{N} X[k] \circledast Y[k]$$

Other properties

Plancherel's relation

$$\sum_{n=0}^{N-1} x[n] y^*[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] Y^*[k]$$

Parseval's relation

$$\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2$$

- Parseval's relation is a special case of Plancherel's relation: with y[n] = x[n]
- It allows the computation of the energy of the signal samples x[n] $(n=0,\ldots,N-1)$ directly from the DFT samples X[k]

7.4 Relation between linear and circular convolutions

Introduction

Linear convolution

Time domain expression:

$$y_l[n] = x_1[n] * x_2[n] = \sum_{k=-\infty}^{\infty} x_1[k]x_2[n-k], n \in \mathbb{Z}$$

Frequency domain representation via DTFT:

$$Y_l(\omega) = X_1(\omega)X_2(\omega), \ \omega \in [0, 2\pi]$$

Circular convolution

Time domain expression:

$$y_c[n] = x_1[n] \circledast x_2[n] = \sum_{k=0}^{N-1} x_1[k] x_2[(n-k)_N], \ 0 \le n \le N-1$$

Frequency domain representation via N-point DFT

$$Y_c[k] = X_1[k]X_2[k], k \in \{0, \dots N-1\}$$

A necessary condition...

Circular convolution and linear convolution are equivalent if:

$$y_l[n] = \begin{cases} y_c[n] & \text{if } 0 \le n \le N \\ 0 & \text{otherwise} \end{cases}$$

 \Rightarrow true if signals $x_1[n]$ and $x_2[n]$ have both finite length.

Finite length assumption

Suppose that $x_1[n]$ and $x_2[n]$ are time limited to $0 \le n < N_1$ and $0 \le n < N_2$ respectively then the linear convolution is time limited to $0 \le n < N_1 + N_2 - 1$

Example: Consider $x_1[n] = \{\underline{1}, 1, 1, 1\}$ and $x_2[n] = \{\underline{1}, 1/2, 1/2\}$

- $N_1 = 4$ and $N_2 = 3$
- $y_l[n] = \{1, 1.5, 2, 2, 1, .5\}$
- $\bullet \Rightarrow N_3 = 6 = N_1 + N_2 1$

...proved to be a sufficient condition

Assuming $N \ge N_1 + N_2 - 1$:

1. Linear convolution gives:

$$y_l[n] = \sum_{k=-\infty}^{\infty} x_1[k]x_2[n-k] = \sum_{k=0}^{n} x_1[k]x_2[n-k], \ 0 \le n < N$$

2. Circular convolution gives:

$$y_{c}[n] = \sum_{k=0}^{N-1} x_{1}[k]x_{2}[(n-k)_{N}], \ 0 \le n < N$$
$$= \sum_{k=0}^{n} x_{1}[k]x_{2}[n-k] + \underbrace{\sum_{k=n+1}^{N-1} x_{1}[k]x_{2}[N+n-k]}_{=0}$$

Conclusion

The linear and circular convolution are equivalent if and only if:

$$N \ge N_1 + N_2 - 1$$

Relationship between $y_c[n]$ and $y_l[n]$

Assuming that $N \ge \max\{N_1, N_2\}$ the DFT of the 2 sequences $x_1[n]$ and $x_2[n]$ are samples of the corresponding DTFT:

$$N \ge N_1 \Rightarrow X_1[k] = X_1(\omega_k), \ \omega_k = 2\pi k/N$$

 $N \ge N_2 \Rightarrow X_2[k] = X_2(\omega_k)$

The DFT of the circular convolution is just the product of DFT:

$$Y_c[k] = X_1[k]X_2[k]$$

= $X_1(\omega_k)X_2(\omega_k) = Y_l(\omega_k)$

- $\Rightarrow Y_c[k]$ is also made of uniformly samples of the DTFT $Y_l(\omega)$ of the linear convolution $y_l[n]$
- \Rightarrow The circular convolution $y_c[n]$ can be computed as the N-point IDFT of these frequency samples:

$$y_c[n] = IDFT_N \{Y_c[k]\} = IDFT_N \{Y_l(\omega_k)\}$$

58

Relationship between $y_c[n]$ and $y_l[n]$

Applying the "signal reconstruction via DTFT sampling" theorem we obtain:

$$y_c[n] = \sum_{r=-\infty}^{\infty} y_l[n-rN], \ 0 \le n < N$$

The circular convolution is obtained by:

- a N-periodic repetition of the linear convolution $y_l[n]$
- ullet and a windowing to limit the nonzero samples to the instants 0 to N-1

To get $y_c[n] = y_l[n]$ for $0 \le n < N$, temporal aliasing must be avoided: the length of DFT \ge length of $y_l[n]$, i.e. :

$$N \ge N_1 + N_2 - 1$$

Linear convolution via DFT

Linear convolution via DFT can be summarized according to the following steps:

- Suppose that $x_1[n]$ and $x_2[n]$ are time limited to $0 \le n < N_1$ and $0 \le n < N_2$ respectively
- Select DFT size $N \ge N_1 + N_2 1$ (usually, $N = 2^k$)
- Compute the DFTs:

$$X_1[k] = \text{DFT}_N \{x_1[n]\}, \ 0 \le k < N$$

 $X_2[k] = \text{DFT}_N \{x_2[n]\}, \ 0 \le k < N$

• Compute the IDTF:

$$x_1[n] * x_2[n] = \begin{cases} \text{IDFT}_N \left\{ X_1[k] X_2[k] \right\} & 0 \le n < N \\ 0 & \text{otherwise} \end{cases}$$

7.5 The FFT

The FFT

Recall of the DFT

$$X[k] = \mathrm{DFT}_N \left\{ x[n] \right\} \triangleq \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N}$$

For each coefficient:

- N complex multiplications
- N-1 complex additions

Then for the DFT_N:

- N^2 complex multiplications
- N(N-1) complex additions
- $\Rightarrow algorithm\ complexity = N^2$

The FFT

Fast Fourier Transform

The FFT was developed in 1965 by Cooley and Tukey

- Assuming $N = 2^k$
- \bullet Considering even and odd part of the signals the DFT_N is split into 2 $\mathrm{DFT}_{N/2}$
- The FFT leads to:
 - $-\ \frac{N}{2}\log_2 N$ complex multiplications
 - $-\ N\log_2 N$ complex additions
- \bullet The algorithm complexity becomes $\frac{N}{2}\log_2 N$