

Effect of Ligand Coordination on Complex Formation: Synthesis & Structural Studies of metal(I) salts containing the N(SO₂CF₃)₂ and OTeF₅ groups

**Ashwani Vij
Air Force Research Laboratory
PRSP
ashwani.vij@edwards.af.mil
(661) 275-6278**

Award Symposium for Dr. Surya Prakash-227th National ACS Meeting, New York, March 29, 2004

Distribution Statement A: Approved for public release; distribution unlimited

Report Documentation Page			Form Approved OMB No. 0704-0188	
<p>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>				
1. REPORT DATE 23 MAR 2004	2. REPORT TYPE	3. DATES COVERED -		
4. TITLE AND SUBTITLE Effect of Ligand Coordination on Complex Formation: Sysnthesis & Structural Studies of metal(I) salts			5a. CONTRACT NUMBER F04611-99-C-0025	5b. GRANT NUMBER
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Ashwani Vij; Vandana Vij; William Wilson; Fook Tham			5d. PROJECT NUMBER 2303	5e. TASK NUMBER M2C8
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ERC Incorporated,555 Sparkman Drive,Huntsville,AL,35816-0000			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited				
13. SUPPLEMENTARY NOTES The original document contains color images.				
14. ABSTRACT The ſcisoid form is less common. In the CCDC, only 6 structures show this conformation where as the ſtransiod form occurs in 15 remaining structures The ſcisoid conformation results from stronger cation-anion interaction The ſcisoid exclusively when anion is chelated to the metal center The ſtransoid form dominates in structures containing a ſfree anion NO structure known with both ſcisoid AND ſtransoid geometry				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF: a. REPORT unclassified			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES 39
b. ABSTRACT unclassified	c. THIS PAGE unclassified			

Coworkers & Collaborators

Ms. Vandana Vij and Dr. William W. Wilson

Air Force Research Laboratory, PRSP, Bldg 8451, 10 E. Saturn Blvd. Edwards Air Force Base,
CA 93524

Dr. Fook S. Tham

Department of Chemistry, University of California, Riverside CA 92521

Coordination & isomerism in $N(SO_2CF_3)_2$

“Cisoid”

**C-S--S-C
“torsion”**

“Transoid”

- ✓ The “cisoid” form is less common. In the CCDC, only 6 structures show this conformation whereas the “transoid” form occurs in 15 remaining structures
- ✓ The “cisoid” conformation results from stronger cation-anion interaction
- ✓ The “cisoid” exclusively when anion is chelated to the metal center
- ✓ The “transoid” form dominates in structures containing a “free” anion
- ✓ NO structure known with both “cisoid” AND “transoid” geometry

DesMarteau, Pennington *et al.*, Solid State Sciences, 2002, 4, 1535-

1545

Award Symposium for Dr. Surya Prakash, 227th ACS National Meeting, Anaheim
Distribution A: Approved for public release; distribution unlimited

Synthesis of metal(I) derivatives

These salts are colorless crystalline materials. Some turn amorphous with time

nTe-O (cm^{-1}): IR (Ra) at ~865 (860)
n_{as} SO₂ (cm^{-1}): IR (Ra) at ~1320(~1328)

¹H NMR: C₆H₆ peak at 7.6-7.7 ppm
Uncoordinated benzene: 7.3
¹⁹F NMR: ~-78 ppm (CF₃)

- ✓ These salts are colorless and crystalline.
- ✓ Recrystallization from iso-propylalcohol gave anhydrous salts.
- ✓ Some of these salts turn amorphous with time

Structure of $CsN(SO_2CF_3)_2$ salts

CsN(SO₂CF₃)₂

CsN(SO₂CF₃)₂•H₂O

Monoclinic $C2/c$ [$\beta = 91.92(1)^\circ$]

$a = 22.509(12)$, $b = 7.029(4)$, $c = 13.519(7)$ [Å]

Volume (Å³) = 2137.5(19), Z = 8, T = 298 K

R1 = 0.0399, S = 1.024

Tetragonal *I*-4

$$a = 16.903(1), c = 7.8933(6) \text{ [Å]}$$

Volume (Å³) = 2255.2(3), Z = 6, T = 298 K

R1 = 0.0307, S = 1.20

Coordination environment of Cs in $\text{CsN}(\text{SO}_2\text{CF}_3)_2$ salts

Octa-coordinated with a short Cs-N bond

Nona-coordinated with a long Cs-N bond

Crystal packing in $CsN(SO_2CF_3)_2$ salts

Hydrophobic and hydrophilic Layering

“Swiss cheese” Tunnel/channel structure

Polymorphism in $\text{AgN}(\text{SO}_2\text{CF}_3)_2$

Unit cell dimensions (\AA)

Orthorhombic $P2_1/n$

$a = 7.510(6)$, $b = 15.729(12)$, $c = 8.119(7)$

Volume (\AA^3) = $876.7(12)$, $Z = 4$, $T = 298 \text{ K}$

$R1 = 0.1028$, $S = 1.84$

Unit cell dimensions (\AA)

Trigonal $P-3_1c$

$a = 7.510(6)$, $c = 8.119(7)$

Volume (\AA^3) = $876.7(12)$, $Z = 6$, $T = 298 \text{ K}$

$R1 = 0.1028$, $S = 1.84$

Structure of $[AgN(SO_2CF_3)_2(C_6H_6)_2]$

- ✓ Dimerization via S-O...Ag bonding (2.302 Å)
- ✓ Long unsymmetrical Ag-C bonds
- ✓ N($SO_2CF_3)_2$ group is “transoid”
- ✓ H...F bond distances observed close to sum of van der Waal distance

Triclinic $P\bar{1}$

$a = 7.6704(13)\text{\AA}$, $b = 8.4295(14)\text{\AA}$, $c = 8.8631(15)\text{\AA}$,

$\alpha = 111.673(3)^\circ$, $\beta = 108.479(3)^\circ$, $\gamma = 97.798(3)^\circ$

$V (\text{\AA}^3) = 483.89(14)$, $Z = 2$, $T = 298(2) K$; $R1 = 0.0432$, $S = 1.114$

Crystal packing in [AgN(SO₂CF₃)₂(C₆H₆)₂]

Structure of [AgN(SO₂CF₃)₂(C₆H₆)]₂•H₂O

Monoclinic $P2_1/n$

$a = 10.372(1)\text{\AA}$, $b = 19.823(2)\text{\AA}$, $c = 12.406(1)\text{\AA}$, $\beta = 108.536(3)$ °,
 $V (\text{\AA}^3) = 2148.5(5)$, $Z = 8$, $T = 173(1)$ K; $R1 = 0.0224$, $S = 1.04$

- ✓ N(SO₂CF₃)₂ group is both N- as well as O-bonded to silver
- ✓ Water bridges the eighth-membered Ag-O-S-N-Ag-O-S-N ring forming two fused six-membered rings.
- ✓ Unsymmetrical Ag-C bonds
- ✓ N(SO₂CF₃)₂ group is “cisoid”
- ✓ H...F bond distances observed close to sum of van der Waal distance

Crystal packing in [AgN(SO₂CF₃)₂(C₆H₆)]₂•H₂O

March 29, 2004

Award Symposium for Dr. Surya Prakash, 227th ACS National Meeting, Anaheim
Distribution A: Approved for public release; distribution unlimited

12

Structure of $[AgOTeF_5(C_6H_6)_2]_2$

- ✓ Dimeric structure
- ✓ Unsymmetrical Ag-C bonds
- ✓ Unsymmetrical and very long Te-O bonds
- ✓ H...F bonds observed

Triclinic $P\bar{1}$

$$a = 7.6704(13)\text{\AA}, b = 8.4295(14)\text{\AA}, c = 8.8631(15)\text{\AA},$$

$$\alpha = 111.673(3)^\circ, \beta = 108.479(3)^\circ, \gamma = 97.798(3)^\circ$$

$$V (\text{\AA}^3) = 483.89(14), Z = 2, T = 298(2) K; R1 = 0.0432, S = 1.114$$

Reaction of silver salts: Synthesis of trimethyltin(IV) derivatives

MS shows $[\text{M}-\text{CH}_3]^+$ peak

Trimethyltin(IV) teflate can be distilled at 50 °C under vacuum (0.1 T)

nTe-O (cm^{-1}): IR (Ra) at 860 (856)
 nSn-C (cm^{-1}) IR (Ra): asym: 552 (554); sym 518 (518)

$\text{n}_{\text{as}}\text{SO}_2$ (cm^{-1}): IR (Ra) at 1342(1327)
 nSn-C (cm^{-1}) IR (Ra): asym: 558 (556); sym 520 (513)

nTe-O (cm^{-1}) F_5TeOCl : IR (Ra) at 551 (554); nTe-O (cm^{-1}) F_5TeOTBA : IR (Ra) at 867 (866);

- ✓ Trimethyltin(IV) derivatives are colorless viscous oils.
- ✓ Highly moisture sensitive
- ✓ Potentially stronger catalysts in organic synthesis compared to TMSOTf

What is so interesting about $(CH_3)_3Sn$ derivatives of strong acids??

- ✓ The Sn-C bond cleavage can be selective i.e., there is a competition between Sn-C and Sn-Cl bond cleavage depending upon the acid used.
- ✓ The trimethyltin(IV) derivatives of strong acids are extremely electrophilic reagents that have application in organic synthetic reactions.

- ✓ The electrophilic nature of an organotin(IV) compound can be reflected by its ^{119}Sn chemical shift i.e., deshielding. ^{119}Sn has a spin of $\frac{1}{2}$, relative abundance of 8.58 % and has high relative sensitivity (30x ^{13}C).
- ✓ Can ^{119}Sn chemical shifts (in neat liquids or as a solution in “low-coordinating” solvents) be correlated to anion basicities in case of trimethy tin(IV) derivatives?

Correlating spectroscopy and crystallography

Correlation of ${}^2J({}^{119}\text{Sn}-{}^1\text{H})$ and C-Sn-C angle (determined from x-ray crystallography gives the following non-linear relationship:

$$T (\text{C-Sn-C})^\circ = 0.0161 |{}^2J({}^{119}\text{Sn}-{}^1\text{H})|^2 - 1.32 |{}^2J({}^{119}\text{Sn}-{}^1\text{H})| + 133.4$$

Correlation of ${}^1J({}^{119}\text{Sn}-{}^{13}\text{C})$ and C-Sn-C angle (determined from x-ray crystallography gives the following linear relation:

$$11.4T - 875 = |{}^1J({}^{119}\text{Sn}-{}^{13}\text{C})|$$

Lockhart, T. P.; Manders, W. F. *Inorg. Chem.* 1985, 25, 892

Lockhart, T. P.; Manders, W. F.; Zuckerman, J. J. *J. Am. Chem. Soc.* 1985, 107, 4546

Synthesis of trimethyltin(IV) derivatives

MS shows [M-CH₃]⁺ peak

Trimethyltin(IV) teflate can be distilled at 50 °C under vacuum (0.1 T)

nTe-O (cm⁻¹): IR (Ra) at 860 (856)
nSn-C (cm⁻¹) IR (Ra): asym: 552 (554); sym 518 (518)

n_{as}SO₂ (cm⁻¹): IR (Ra) at 1342(1327)
nSn-C (cm⁻¹) IR (Ra): asym: 558 (556); sym 520 (513)

nTe-O (cm⁻¹) F₅TeOCl: IR (Ra) at 551 (554); nTe-O (cm⁻¹) F₅TeOTBA: IR (Ra) at 867 (866);

- ✓ Tetramethyltin is used in large excess
- ✓ Reaction by-products can be easily removed under vacuum
- ✓ Trialkyltin(IV) derivatives are colorless viscous oils that are highly sensitive to moisture and donor solvents.

Coordination complex formation with donor solvents

Formation of the hydrated trimethylstannyl cation

The hydrated salt can be isolated with $\text{N}(\text{SO}_2\text{CF}_3)_2$ anion but NOT for OTeF_5 anion.

The compound isolated after hydrolysis is $[\text{Me}_3\text{Sn}(\text{OH}_2)_2]_2\text{SiF}_6$

The hydrolysis of trimethyltin teflate results in the decomposition of the OTeF₅ group

Hydrated trimethyltin(IV) cation

Unit cell dimensions (Å)

Monoclinic ($P2_1/c$)

$a = 7.3072(1)$, $b = 13.4649(2)$,

$c = 16.821(2)$

$\beta = 98.705(1)^\circ$

Volume (Å³) = 1636.0(3) ,

Z = 4

T = 213(2)

R1 = 0.0367

wR2 = 0.0736

S = 1.233

Hydrogen bonding in hydrated trimethyltin(IV) cations

$$S(vdWSn + vdWO) = 2.17 + 1.52 = 3.69 \text{ \AA}$$

March 29, 2004

Award Symposium for Dr. Surya Prakash, 227th ACS National Meeting, Anaheim
Distribution A: Approved for public release; distribution unlimited

21

Multinuclear NMR Parameters

Table 1. ¹H, ¹³C NMR Spectroscopic Data^a and calculated^{b,c} C-Sn-C angles for (CH₃)₃SnX [X = OTeF₅ and N(SO₂F/CF₃)₂]

Solute	Solvent ^d	$\delta(^1\text{H})$ ppm	$^2J(^{119}(^{117})\text{Sn}-^1\text{H})$ Hz	$\theta(\text{C-Sn-C})$ ^b (°)	$\delta(^{13}\text{C})$ ppm	$^1J(^{119}(^{117})\text{Sn}-^{13}\text{C})$ Hz	$\theta(\text{C-Sn-C})$ ^c (°)
(CH ₃) ₃ SnOTeF ₅	neat	0.84	59.2 ^e	111.7	0.84	376.9(360.3)	109.8
	CH ₂ Cl ₂	0.79	58.5(55.9)	111.3	0.90	374.0(357.4)	109.6
	acetone	0.69	68.8(65.8)	118.8	1.55	480.4(459.3)	118.9
	CH ₃ CN	0.66	69.2(66.2)	119.2	1.49	484.6(463.1)	119.3
	DMSO	0.50	69.5(66.6)	119.4	1.05	511.4(490.0)	121.6
(CH ₃) ₃ SnOTeF ₅	AN/H ₂ O	0.46	69.6(66.7)	119.5	0.10	508.5(486.0)	121.4
	DMSO/H ₂ O	0.43	70.1(68.5) ^e	120.0	0.84	515.5(492.5)	122.0
(CH ₃) ₃ SnN(SO ₂ F) ₂	neat	0.91	63.8(61.6)	114.7	1.6	416.8(400.3)	113.3
	CH ₂ Cl ₂	0.96	62.3(59.9)	113.6	1.4	404.1(387.7)	112.2
(CH ₃) ₃ SnN(SO ₂ CF ₃) ₂	DMSO	0.83	72.4(70.0)	122.2	-0.2	528.3(509.9)	123.1
	neat	0.84	64.2(61.6)	115.0	2.1	412.6(394.1)	113.0
	CH ₂ Cl ₂	0.81	64.4(61.8)	115.2	0.8	414.8(395.2)	113.0
	CH ₃ CN	0.82	70.2(67.1)	120.1	-1.7	489.5(467.6)	119.7
	DMSO	0.48	69.0(67.4)	119.0	0.7	512.2(499.0)	121.6
[(CH ₃) ₃ Sn(H ₂ O)][N(SO ₂ CF ₃) ₂]	CH ₃ CN	0.61	69.7(66.7)	119.6	0.10	491.8(470.0)	120.0
	DMSO	1.18	69.8(66.7)	119.7	0.92	512.9(497.2)	121.8

^a NMR spectroscopic data were recorded at 300 K.

^b Calc from relation: $\theta = 0.0161 |^2J(^{119}\text{Sn}-^1\text{H})|^2 - 1.32 |^2J(^{119}\text{Sn}-^1\text{H})| + 133.4$.

^c Calc from relation: $|^1J(^{119}\text{Sn}-^{13}\text{C})| = 11.4 \theta - 875$.

^d Acetone = (CD₃)₂CO, DMSO = (CD₃)₂SO.

^e Calculated from center of unresolved ¹¹⁹Sn, ¹¹⁷Sn satellites ($|J_{\text{obs}}| \times 1.023$)

Multinuclear NMR parameters ...continued

Table 2. ^{19}F , ^{119}Sn and ^{125}Te NMR Spectroscopic Data^a of $(\text{CH}_3)_3\text{SnX}$ [X = OTeF₅ and N(SO₂F/CF₃)₂]

Solute	Solvent ^b	$\delta(^{19}\text{F})$, ppm			$\delta(^{119}\text{Sn})$	$\delta(^{125}\text{Te})$	$\delta(^{13}\text{CF}_3)$	$\frac{1}{2}J(^{19}\text{F}_{\text{ax}}-^{19}\text{F}_{\text{eq}})$, Hz			$^1J(^{13}\text{C}-^{19}\text{F})$
		F_{ax}	F_{eq}	CF ₃ /SO ₂ F	Hz			F _{ax}	F _{eq}	Hz	
$(\text{CH}_3)_3\text{SnOTeF}_5$	neat	-32.9	-41.9		182.5	270.8 ^c	569.5		3112	3540	
	CH ₂ Cl ₂	-30.3	-38.5		183.0	272.4	564.6		3188	3550	
	acetone	-29.1	-40.6		180.0	96.0	574.9		3020	3558	
	CH ₃ CN	-29.2	-40.8		179.0	84.2	575.0		3032	3556	
	DMSO	-16.2	-33.8		170.0	40.0	598.7		2712	3666	
$(\text{CH}_3)_3\text{SnN}(\text{SO}_2\text{F})_2$	neat			55.5		242.5					
	CH ₂ Cl ₂			55.6		248.6					
	DMSO			52.5		32.9					
$(\text{CH}_3)_3\text{SnN}(\text{SO}_2\text{CF}_3)_2$	neat			-78.5		240.2		118.7		320.4	
	CH ₂ Cl ₂			-78.8		251.0		118.1		319.8	
	CH ₃ CN			-78.9		44.9		119.4		320.7	
	DMSO			-78.6		37.4		120.0		321.7	
$[(\text{CH}_3)_3\text{Sn}(\text{H}_2\text{O})_2][\text{N}(\text{SO}_2\text{CF}_3)_2]$	CH ₃ CN			-79.0		59.0					
	DMSO			-79.1		42.8					

^a NMR spectroscopic data were recorded at 300 K

^b Acetone = (CD₃)₂CO, DMSO = (CD₃)₂SO

^c ^{119}Sn NMR shows a peak at 300.7 ppm in HOTEF₅

$^{19}\text{F}_{\text{ax}}$ NMR for TEAOTeF₅ = -25.4 ppm

B(OTeF₅)₃ = -46.2 (Strauss et al., 1986)

¹¹⁹Sn chemical shifts and anion basicity

- *d* (¹¹⁹Sn) values lower (more downfield) than +200 ppm show a highly deshielded tin nuclei. Sometimes stronger acids results in relatively higher (upfield) chemical shifts due to close contacts even in solution state:

<u>Compound (Me₃SnX)</u>	<u>d</u> (¹¹⁹ Sn)
X = ClO ₄ (unidentate)	245
X = SO ₃ CF ₃ (bidentate)	162

**For trimethyltin(IV) derivate in dichloromethane solution
the relative anion basicity can be ordered as:**

Sn-C versus Sn-Cl bond cleavage

XN(SO₂CF₃)₂ (X = H, Cl) shows a preferential Sn-Cl bond cleavage

XOTeF₅ (X = H, Cl) shows a preferential Sn-C bond cleavage

According to Sladky and Kropshofer (*JCS Chem. Commun.*, 1973, 600), reaction of (CH₃)₃SnCl with HOTeF₅ gives trimethyltin(IV) teflate exclusively!

Structure of $(CH_3)_2Sn(Cl)OTeF_5$

Unit cell dimensions (Å)

Monoclinic $P2_1/n$

$a = 5.8204(8)$, $b = 10.782(1)$,

$c = 15.493(2)$

$\beta = 99.59(1)^\circ$

Volume (\AA^3) = 971.7(2)

$Z = 4$

$T = 218(2) \text{ K}$

$R1 = 0.0282$

$wR2 = 0.0712$

$S = 1.088$

Te-O (Å) (X=OTeF₅) : B(X)₃ = 1.874(6); [TBA][H(X)₂] = 1.800(4)av; [Au(X₃)₂] = 1.91(2)

Strauss et al., *Inorg. Chem.*, 1986, 25, 2806 and references therein

n(TeO) = 856 cm⁻¹ in IR and Ra; n(SnO) = 427 (IR)/424 (Ra) cm⁻¹; n(SnCl) = 313 (Ra) cm⁻¹

Tetra- or pentacoordinated tin???

The C-Sn-C angle calculated using $^2J(^{119}\text{Sn}-^1\text{H})$ (67.9 Hz) and $^1J(^{119}\text{Sn}-^{13}\text{C})$ (472 Hz) coupling constants for $(\text{CH}_3)_2\text{SnCl}(\text{OTeF}_5)$ dissolved in CD_2Cl_2 is approximately $\sim 118^\circ$. The $d(^{119}\text{Sn})$ value of ~ 142.7 ppm indicates that tin is present in a five-coordinate environment. The fifth coordination site can be occupied by a bridging chlorine, fluorine or oxygen from a neighboring $\text{Me}_2\text{SnCl}(\text{OTeF}_5)$ molecule .

^{119}Sn NMR show the presence of another broad peak at ~ 127 ppm, which is due to an equilibrium. In VT NMR studies using toluene- d_8 as a solvent, this peak disappears at -80°C .

Mass spectrum shows $[\text{M}-\text{CH}_3]^+$ peak as the highest peak indicating that the dimer is not stable in the gas phase

Coordination environment around tin

Sn-Cl contact found in the crystal lattice is 3.201(1) Å, which is much shorter than the sum of van der Waal radii of tin and chlorine. A longer Sn-Cl contact is also present at 3.904(2) Å.
 $S(vdWSn + vdWCl) = 2.17 + 1.75 = 3.92 \text{ \AA}$

One Sn-F contact is also found in the crystal lattice 3.140(4) Å, which is much shorter than the sum of van der Waal radii of tin and fluorine.
 $S(vdWSn + vdWF) = 2.17 + 1.47 = 3.64 \text{ \AA}$

Hydrolysis of the Sn-Cl bond in $(CH_3)_2Sn(Cl)OTeF_5$

March 29, 2004

Award Symposium for Dr. Surya Prakash, 227th ACS National Meeting, Anaheim
Distribution A: Approved for public release; distribution unlimited

29

Structure of the dimethyloxotin(IV) teflate

Unit cell dimensions (Å)

Orthorhombic

Space Group: *Pnnm*

$a = 12.574(6)$, $b = 12.667(6)$,

$c = 11.682(5)$

Volume (Å³) = 1860.6(1)

$Z = 2$

$T = 243\text{ K}$

$R1 = 0.0376$

$wR2 = 0.1021$

$S = 1.04$

$$\begin{aligned} S_{(\text{vdWSn} + \text{vdWO})} &= 2.17 + 1.52 \\ &= 3.69\text{ Å} \end{aligned}$$

Hydrolysis of the Sn-Cl bond in $(CH_3)_2Sn(Cl)N(SO_2CF_3)_2$

Structure of $\text{Me}_2\text{Sn}(\text{OH})\text{N}(\text{SO}_2\text{CF}_3)_2$

Solvolytic synthesis of dimethyltin(IV) teflate

- ✓ Dimethyltin(IV) teflate is formed when tetramethyltin is reacted with excess teflic acid

MS shows $[\text{M}-\text{CH}_3]^+$ peak

- ✓ Upon sublimation $\sim 75^\circ\text{C}/0.01\text{T}$ a polymeric species is formed, probably due to the loss of $\text{O}(\text{TeF}_5)_2$

$$n(\text{TeO}) = 877 \text{ cm}^{-1}; n(\text{SnO}) = 434 \text{ (IR) cm}^{-1}; n_{\text{as}}(\text{SnC}) = 591 \text{ cm}^{-1}, n_s(\text{SnC}) = 531 \text{ cm}^{-1}$$

Structure of dimethyltinooxteflate

Unit cell dimensions (Å)

Monoclinic $P2_1/n$

Rotational TWIN

$a = 7.510(6)$, $b = 15.729(12)$,

$c = 8.119(7)$

$B = 115.1(1)^\circ$

Volume (Å³) = 876.7(12)

$Z = 4$

$T = 233(2) K$

$R1 = 0.1028$

$S = 1.84$

$\text{BASF} = 0.256$

$C1\text{-Sn}\text{-O}1 = 110.2(5)^\circ$; $C2\text{-Sn}\text{-O}1 = 103.3(6)^\circ$,
 $\langle \text{equi. X-Sn-X (av)} \rangle = 120^\circ$; $O2\text{-Sn}\text{-O}2^* = 169.9(5)^\circ$

Crystal packing showing tin and tellurium polyhedra

$$\begin{aligned} S_{(\text{vdWSn} + \text{vdWF})} &= 2.17 + 1.47 \\ &= 3.64 \text{ \AA} \end{aligned}$$

Sn-F distance in the crystal packing
= 3.107(16) Å

The structure shows polymeric Sn-O chains bridged by a fluorine atom of the OTeF₅ group.

$$\angle \text{Sn-O}_2\text{-Sn}^* = 167.2^\circ$$

$$(\text{Sn}^* = \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z)$$

Conclusions

- Trimethyltin(IV) teflates/F-imides are highly electrophilic in nature and form 1:1 or 1:2 complexes with donor solvents
- ^{119}Sn NMR chemical shifts can reflect the “electrophilic strength” and relative anion basicity for a Me_3Sn (IV) compound.
- During the solvolysis of trimethyltinchloride in HOTeF_5 , there is a preferential cleavage of the Sn-C bond versus Sn-Cl bond
- Chlorodimethyltin(IV) teflate hydrolyzes to form a Sn-O ladder compound and sublimation of dimethyltin(II) bis(teflate) results in the formation of an oxo-bridged species.

Acknowledgments

Dr. Karl Christe (AFRL/USC)

Dr. Michael Berman (AFOSR)

Dr. Don Woodbury (DARPA)

Dr. Ronald Channell (AFRL)

Mr. Michael Huggins (AFRL)

FUNDING

DARPA, AFOSR

ERC Inc.

BACKUP/SUPPL. SLIDES

BACKUP

March 29, 2004

Award Symposium for Dr. Surya Prakash, 227th ACS National Meeting, Anaheim
Distribution A: Approved for public release; distribution unlimited

38

Bond distances and angles

$\text{Me}_2\text{SnClOTeF}_5$

• Sn(1)-C(2)	2.104(4)	C(2)-Sn(1)-C(1)	117.8(2)
• Sn(1)-C(1)	2.115(4)	C(2)-Sn(1)-C(3)	120.1(2)
• Sn(1)-C(3)	2.120(4)	C(1)-Sn(1)-C(3)	122.1(2)
• Sn(1)-O(1)	2.306(3)	C(2)-Sn(1)-O(1)	89.83(15)
• Sn(1)-O(2)	2.335(3)	C(1)-Sn(1)-O(1)	92.3(2)
• S(1)-O(3)	1.427(2)	C(3)-Sn(1)-O(1)	87.19(13)
• S(1)-O(4)	1.428(3)	C(2)-Sn(1)-O(2)	91.04(15)
• S(1)-N(1)	1.573(3)	C(1)-Sn(1)-O(2)	90.8(2)
• S(1)-C(4)	1.825(5)	C(3)-Sn(1)-O(2)	88.95(13)
• S(2)-O(6)	1.421(3)	O(1)-Sn(1)-O(2)	175.94(11)
• S(2)-O(5)	1.433(3)	O(3)-S(1)-O(4)	118.5(2)
• S(2)-N(1)	1.589(3)	O(3)-S(1)-N(1)	107.6(2)
• S(2)-C(5)	1.844(4)	O(4)-S(1)-N(1)	116.1(2)
		O(3)-S(1)-C(4)	104.0(2)
		O(4)-S(1)-C(4)	105.4(2)
		O(6)-S(2)-O(5)	118.2(2)
		O(6)-S(2)-N(1)	109.0(2)
		O(5)-S(2)-N(1)	115.3(2)
		O(6)-S(2)-C(5)	104.7(2)
		O(5)-S(2)-C(5)	105.0(2)
		S(1)-N(1)-S(2)	125.3(2)