

Fig.1 PRIOR ART

Fig.4

Fig.5A

Fig.5B

Fig.5C

Fig.5D

Fig.5E

Fig. 7

An anodic bonding process of the upper plate* and the									
	spacer** of the present invention time								
current			(sec)						
(μ A)	300℃	250°C	200°C	300℃	250℃				
(μ. 2)	$(1.23 \text{V}/\mu\text{m})$	$(1.23 \text{ V}/\mu\text{m})$	$(1.23 \text{V}/\mu\text{m})$	$(0.91 \text{V}/\mu\text{m})$	$(0.91 \text{V} / \mu \text{m})$				
0	115.40	49.18	18.88	79.23	27.62				
20	122.00	69.22	21.47	104.8	38.91				
40	94.70	61.58	18.33	81.27	33.89				
60	81.91	53.31	19.91	60.02	26.81				
80	64.26	46.11	19.76	48.01	21.32				
100	53.57	40.95	16.65	39.57	17.57				
120	44.82	36.02	14.71	33.02	14.39				
140	40.01	31.89	13.41	26.65	12.16				
160	34.54	29.69	12.56	22.58	10.66				
180	30.47	27.14	11.96	19.34	9.38				
200	27.03	25.10	11.60	16.87	7.61				
220	25.05	23.52	11.37	14.91	6.95				
240	22.85	22.28	11.07	13.52	6.33				
260	21.01	21.24	10.60	12.27	5.81				
280	19.53	21.44	10.20	11.07	5.35				
300	18.34	22.16	10.11	10.36	4.99				
320	17.34	22.71	9.40	9.58	4.62				
340	16.34	22.68	9.00	9.06	4.45				
360	15.78	22.63	7.67	7.67	4.23				
380	15.19	22.65	6.87	7.34	4.00				
400	14.62	22.61	6.31	7.15	3.76				
420	13.96	22.30	5.81	6.77	3.56				
440	13.45	21.96	5.38	6.61	3.36				
460	12.81	21.66	10.98	6.41	3.18				
480	12.66	21.22	13.72	6.09	3.07				

500	11.96	20.89	12.78	5.88	2.91
520	11.42	20.17	11.94	5.68	2.75
540	11.14	19.21	11.16	5.51	2.58
560	10.81	17.89	10.45	5.23	2.45
580	10.30	16.83	9.90	5.00	2.39
600	9.83	15.88	9.36	4.68	2.29
620	9.53	14.68	8.23	4.48	2.20
640	9.92	13.80	8.02	4.54	2.12
660	10.27	13.22	7.89	4.35	2.06
680	11.22	12.67	7.64	4.24	2.00
700		12.15	7.43	4.15	1.93
720		11.57	7.16	3.97	1.85
740		11.29	7.13	3.71	1.79
760		10.99	7.02	3.60	1.67
780		10.55	6.76	3.54	1.62
800		10.20	6.41	3.38	1.58
820		9.95	6.24	3.29	1.55
840		9.68	5.94	3.28	1.49
860		9.28	5.80	3.15	1.44
880		7.91	5.61	3.06	1.39
900		7.79	5.45	2.90	1.32
920		7.54	5.30	2.73	1.32
940		7.39	5.17	2.72	1.29
960		7.29	5.09	2.62	1.27

^{*} The upper layer comprises of an ITO conducting glass 11, manufacture by Asahi Japan, 470mm in length, 370mm in width, and 1.1mm in thickness; a BM layer area 14 and a multi-phosphor layer area 15, in which the thickness is 10 μ m; the thickness of an Al layer 17 is 3000 angstroms; the thickness of an AlO_x layer 18 is 200 angstroms; the depth of the hollow area 16 is about 10 μ m; the thickness of Cr/CrO_x layer 20 is 3000 angstroms.

^{**}The spacer is a glass material possessing the cross-sectional view of a cross column structure, in which the height is 1.1 mm, the thickness is 80 μ m, and the length of each arm of the cross is 1.0 mm.

Fig.8

Fig.9