Mech 410 – Computer Aided Design

Final Project: Stirling Engine Modeling and Analysis

Colson Foster Kevin Elzinga

Matt Roles

Agenda

- Objective
- CAD software used
- Modeling Process/Challenges
- Assembly Process/Challenges
- Animation Process/Challenges
- Structural Analysis
- Recommendation/Conclusions
- Questions?

Objective

- To become familiar with CAD software common in industry
- Model a Stirling Engine using shop drawings
- Gain experience by testing FEA analysis

Apply animation and photo rendering techniques

CAD Software

Pro/Engineering:

- Primary modeling and assembly tool
- Primary FEA tool for Mesh refinement
- Animation

- SolidWorks and PhotoView 360:
- Used to compare FEA results
- Rendering with PhotoView 360

Part Modeling

- 30+ Engine Components
- Notable Techniques Used
 - Hole Feature
 - Mirror/Pattern Feature
 - Cosmetic Threads

Cylinder Block

Connecting Rod

Part Modeling

Hole Feature

- Define hole placement
- Shape of hole
 - Size
 - Depth
 - Threads
 - Countersunk

Part Modeling

- External Threads
 - Cosmetic Thread Feature
 - Define needed Elements
- Pattern and Mirror Tool
 - Holes
 - Complex Geometry

Part Modeling Problems

Problem 1

 Hole has more detail than hole tool can provide .

Solution

Apply hole tool multiple times

Assemble Model

- Assembling the Model
 - Three Sub-Assemblies
 - One Final Assembly
 - Appearances

Assemble Model Problems

Problem 3

 Unable to constrain certain components

 Multiple people could not work on the same assembly at the same time

Solution

- Consistent hole spacing between parts
 - **1**/3 ≠ 0.33333

 Create sub-assembly to be connected into a final assembly

Animation

AnimationApplication

Demonstrates system cycle

Animation Problems

Problem

- Animation jumps form frame to frame
- Could not see all moving parts
- Change in rotational speed and direction

Solution

- Change the interpolation setting from linear to smooth
- Cut the assembly model, make parts invisible or use wire frame.
- Take more snap shoot between frames and adjust frame spacing with the timeline

- Objectives
 - Gain Experience
 - Analyze 1 component
 - Crankshaft
 - Refine Mesh to Improve Results

Loading

- Constraints
- Simulate system failure
- Combined Bending Stresses and Torsion
- Random value of 2500N and steel as a material

Refining the Mesh

- AutoGem Controls
- Reduced maximum element size

Maximum Element Size (in)	# of Nodes	# of Elements
0.7	147	384
0.6	190	515
0.5	231	627
0.4	327	949
0.3	570	1851
0.2	1455	5572
0.1	6494	27471
0.08	10332	44362

Structural Analysis Problems

Problems

 Unsure of the Reliability of FEA Results for very fine mesh sizes

Solutions

 Used another CAD software to compare results

Secondary Stress Anaylsis

- SolidWorks Simulation was used to compare to Pro/ Mechanica results
- $\sigma_{\text{Max}} = 338 \text{Mpa}$
- 11.1% Percent difference from average Pro/ Mechanica max stress

Secondary Stress Anaylsis

Pros	Cons	
User Friendly	Over simplified	
Tutorial guide	Difficulty refining mesh	
Low computation time	Limited user interaction	

Rendering with PhotoView 360

Conclusions

- Gained further experience with modeling and assembly
- Learned how to better interpret FEA results
- Animation Techniques and limitations
- Photo Rendering

Questions?

