MAT137 Lecture 34

Huan Vo

University of Toronto

March 5, 2018

Agenda

The divergence test.

March 5, 2018

2/9

The tail of a series

(a) Show that

$$\sum_{n=0}^{\infty} a_n \, {\rm converges} \, \Longleftrightarrow \, \sum_{n=m}^{\infty} a_n \, {\rm converges}$$

for any positive integer m.

- (b) Show that if $\sum_{n=0}^{\infty} a_n = L$, then $\sum_{n=m}^{\infty} a_n = L \sum_{n=0}^{m-1} a_n$.
- (c) Show that if $\sum_{n=m}^{\infty} a_n = M$, then $\sum_{n=0}^{\infty} a_n = M + \sum_{n=0}^{m-1} a_n$.

The tail of a series

Let
$$\sum_{n=0}^{\infty} a_n$$
 be a convergent series.

Let
$$R_n = \sum_{k=n+1}^{\infty} a_k$$
.

Show that

$$\lim_{n\to\infty} R_n = 0.$$

Examples

Evaluate the following series

(a)
$$\sum_{k=3}^{\infty} \frac{1}{k^2 - k}$$
.

(b)
$$\sum_{n=-2}^{\infty} \frac{(-1)^n}{5^n}$$
.

(c)
$$\sum_{n=1}^{100} 2^n + \sum_{n=101}^{\infty} \frac{1}{3^n}$$
.

(d)
$$\sum_{k=1}^{\infty} \frac{2^{k-1}}{3^{2k+1}}$$

The divergence test

Theorem

If the series $\sum_{n} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$.

The divergence test

If $\lim_{n\to\infty}a_n$ does not exist or if $\lim_{n\to\infty}a_n\neq 0$, then the series \sum_na_n is

divergent.

Note. When $\lim_{n\to\infty}a_n=0$, then NO conclusions can be made, the series can converge or diverge.

The divergence test

- (a) Suppose that the series $\sum_n a_n$ is convergent and $a_n \neq 0$ for all n. Show that $\sum_n (1/a_n)$ diverges.
- (b) Give an example of a series $\sum_n a_n$ such that $a_n>0$ for all n, $\sum_n a_n$ diverges, but $\sum (1/a_n)$ converges.
- (c) Give an example of a series $\sum_n a_n$ such that $a_n>0$ for all n, $\sum_n a_n$ diverges, and $\sum (1/a_n)$ diverges.

Examples

Show that the following series diverge.

(a)
$$\sum_{n=1}^{\infty} \ln \left(\frac{n^2 + 2}{3n^2 + \sqrt{n}} \right).$$

- (b) $\sum_{n=1}^{\infty} \arctan n$.
- (c) $\sum_{n=1}^{\infty} \frac{e^n}{n^2}.$

(d)
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n} \right)^n.$$

(e)
$$\sum_{n=1}^{\infty} \ln\left(\frac{n+1}{n}\right)$$
.

(f)
$$\sum_{n=2}^{\infty} \frac{n^{n-3}}{2n^4}$$
.

Next Class: Thursday March 8

Watch videos 13.10, 13.11, 13.12, 13.13, 13.14 in Playlist 13.

9/9