$\mathrm{CC4102}/\mathrm{CC40A}/\mathrm{CC53A}$ - Diseño y Análisis de Algoritmos

Jérémy Barbay

23 March 2011

Contents

1	Presentación y Evaluación (1 charla)			
	1.1	Presentaciones		
		1.1.1 Quien somos?		
		1.1.2 Quien son?		
		1.1.3 El curso		
	1.2	Preguntas sobre la Programación :TALK:		
	1.3	Introduciendo "Concept questions": "Hanoi Tower" y "Disk Pile"		
		1.3.1 Story of Eric Mazur :TALK:		
		1.3.2 Hanoi Tower of height 4 :CQ:		
		1.3.3 Hanoi Tower of height 8 :CQ:		
		1.3.4 Disk Pile of height 8 :CQ:		
		1.3.5 Disk Pile of height 8 with 2 disk sizes :CQ:		
	1.4	Conceptos basicos (recuerdando CC3001)		
		1.4.1 Notaciones		
		1.4.2 Definiciones		
		1.4.3 Complejidad Computacional		
		1.4.4 Concept Questions $[0/7]$		
	1.5	Busqueda y Codificacion de Enteros (BONUS)		
		1.5.1 Relacion entre busqueda ordenada y codigos :TALK:		

1 Presentación y Evaluación (1 charla)

1.1 Presentaciones

1.1.1 Quien somos?

• franco-ingles-castellano

1.1.2 Quien son?

- Quien
 - tomo el curso CC40A o CC4102 en los últimos semestres?
 - toma CC53A?
 - Quien
 - * piensa seguir en la universidad después de magíster?

1.1.3 El curso

• Temáticas

- 1. Conceptos básicos y complejidad (3 semanas = 6 charlas)
- 2. Algoritmos y Estructuras de Datos para Memoria Secundaria (3 semanas = 6 charlas)
- 3. Técnicas avanzadas de diseño y análisis de algoritmos (4 semanas = 8 charlas)
- 4. Algoritmos no convencionales (5 semanas = 10 charlas)

• Modo

- Clases expositivas del profesor de cátedra
 - * buscando la participación de los alumnos en pequeños problemas que se van proponiendo durante la exposición.
- Clases auxiliares dedicadas a explicar ejemplos mas extensos, resolver ejercicios propuestos, y preparación pre y post controles.
- **Exposición** de las mejores tareas de los alumnos, como casos de estudio de implementación y experimentación.

• Evaluación

- 2010 con 6 tareas y 2 controles
 - 2/9 Examen (todas unidades)
 - 4/9 Controles
 - 2/9 Control 1 (unidades 1, 2 y parte de 3)
 - 2/9 Control 2 (unidades 3,4)
 - 3/9 Tareas
 - 1/18 Tarea 1
 - 1/18 Tarea 2
 - 1/18 Tarea 3
 - 1/18 Tarea 4
 - 1/18 Tarea 5
 - 1/18 Tarea 6

```
- 2010 con 6 tareas y 2 controles
1/3 Tareas
1/18 Tarea 1
1/18 Tarea 2
1/18 Tarea 3
1/18 Tarea 4
1/18 Tarea 5
1/18 Tarea 6
4/9 Controles
1/9 Control 1 (unidad 1)
2/9 Control 2 (unidades 2 y 3)
1/9 Control 3 (unidad 4)
2/9 Examen (todas unidades)
```

• Nota Final

- controles se promedian a partes iguales
- el examen reemplaza el peor control si la nota del examen es mayor.
- tareas se promedian a partes iguales

1.2 Preguntas sobre la Programación :TALK:

- Cuanto memoria hay en un computador? Como se maneja?
- Cual es la diferencia entre el disco duro y la memoria?
- Cuanto procesadores hay en un computador? Como se programan?
- Cual algoritmo elegir a implementar para un problema dicho?
- Cual es la diferencia entre programación imperativa y funcional?

1.3 Introduciendo "Concept questions": "Hanoi Tower" y "Disk Pile"

1.3.1 Story of Eric Mazur :TALK:

• link to his talk on UTube

1.3.2 Hanoi Tower of height 4 :CQ:

What is the minimum number of moves required to move a Hanoi Tower of height 4?

- 1. \square 4
- 2. $\Box 4 * \lg 4 = 4 * 2 = 8$
- 3. $\Box 4! = 4 * 3 * 2 * 1 = 24$
- 4. $\Box 2^4 = 32$
- 5. \square none of the above

1.3.3 Hanoi Tower of height 8 :CQ:

What is the minimum number of moves required to move a Hanoi Tower of height 8?

- 1. □ 8
- 2. $\square 8 * \lg 8 = 8 * 3 = 24$
- 3. $\Box 2^8 = 254$
- 4. \square 8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 40320
- 5. \square none of the above

1.3.4 Disk Pile of height 8 :CQ:

What is the minimum number of moves required to move a disk pile of height 8?

- 1. □ 8
- 2. $\square 8 * \lg 8 = 8 * 3 = 24$
- 3. $\Box 2^8$
- 4. $\square 8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = ?$
- 5. \square none of the above

1.3.5 Disk Pile of height 8 with 2 disk sizes :CQ:

What is the minimum number of moves required to move a disk pile of height 8 in the worst case over the instances with exactly two distinct sizes of disc?

- 1. □ 8
- 2. $\square \ 8 * \lg 8 = 8 * 3 = 24$
- 3. $\Box 2^8$
- 4. $\square 8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = ?$
- 5. \square none of the above

1.4 Conceptos basicos (recuerdando CC3001)

1.4.1 Notaciones

• $O(), o(), \Omega(), \omega(), \Theta(), \theta()$

1.4.2 Definiciones

- Complejidad en el peor caso
- Complejidad en promedio
- Otros modelos computacionales?

1.4.3 Complejidad Computacional

- Cual Algoritmos conocen? Cual son sus complejidades?
 - para buscar en un arreglo (ordenado? no ordenado?)
 - para ordenar un arreglo (en el modelo de comparaciones o no?)
- Cuales cotas inferiores conocen para...
 - buscar?
 - ordenar?
- Que problemas dificiles conocen?
 - elegir sus cursos
 - assignar salas y horarios a los cursos
 - assignar infermeros a hospitales

1.4.4 Concept Questions [0/7]

• TODO Asymptotics

- TODO ¿Cuántos árboles binarios distintos se pueden construir con 3 nodos internos?
 - 1. \Box 1
 - $2. \square 3$
 - $3. \square 4$
 - 4. □ 6
 - 5. \square otra
- TODO Arboles Binarios, nodos internos externos

Si se define i = número de nodos internos, e = número de nodos externos, entonces se tiene que:

- 1. \square i = e
- 2. $\Box e = i+1$
- 3. $\Box i = e+1$
- 4. \Box e = 2^{i}
- 5. \square sin relacion

- TODO Sea n = número de nodos internos. Se define:
 - In = suma del largo de los caminos desde la raíz a cada nodo interno (largo de caminos internos).
 - En = suma del largo de los caminos desde la raíz a cada nodo externo (largo de caminos externos). Se tiene que:
 - 1. \square En = In
 - 2. \square En = In+1
 - 3. \square En = In+n
 - 4. \square En = In+2n
 - 5. \square sin relacion

• TODO Heap

La característica que permite que un heap se pueda almacenar sin punteros es que, si se utiliza la numeración por niveles indicada, entonces la(s) relación(es) entre padres e hijos es (son):

- 1. \Box Hijos del nodo $j = \{2 * j, 2 * j + 1\}$
- 2. \square Padre del nodo $k = \lfloor k/2 \rfloor$
- 3. \Box Hijos del nodo $j = \{2 * j 1, 2 * j\}$
- 4. \square Padre del nodo $k = \lfloor k/2 \rfloor + 1$
- 5. □ ningunos

• TODO AVL

La altura de un AVL con n elementos es

- 1. $\Box \log_{\phi}(n+1) + \Theta(1)$
- 2. \square en $O(\lg n)$
- 3. \square en $\Omega(\lg n)$
- 4. \boxtimes en $\Theta(\lg n)$
- 5. \square ningunos o mas que dos

• **TODO** AVL h-> n

para una altura h dada, cuantos nodos tiene un árbol AVL con **mínimo** número de nodos que alcanza esa altura?

- 1. $\Box h$
- $2. \square 2h$
- $3. \square 2^h$
- 4. $\Box 2^h 1$
- 5. \square ningunas de las respuestas previas.

1.5 Busqueda y Codificacion de Enteros (BONUS)

1.5.1 Relacion entre busqueda ordenada y codigos :TALK:

Algoritmo de busqueda	Codigo por enteros
Busqueda secuencial	Codigo Unario
Busqueda binaria	Codigo Binario
Busqueda doblada	???
Busqueda por interpolacion	???
???	Huffman Code

- A cuales algoritmos de busqueda ordenada corresponden codigos?
- A cuales codigos corresponden algoritmos de busqueda?