

Customer Live Times Value Model

What is customer lifetime value (CLV)?

Data Description

The goal of this project was to use regression models to predict the CLTV model and analysis the data that answer the following questions:

Top 5 country transaction		Average Price by Country
Number of transactions for all countries		CLV for each customer
Transactions by Month and Year		Products purchased more
Predict Purchases	for 1 month for each c	eustomer
Predict CLTV using	g Linear Regression M	

Top 5 country transaction

Number of transactions for all countries

Transactions by Month and year

Average price by country

Products purchased more

Predict Purchases for 1 month for each customer

```
result = rfm_summary.copy()

#Create instance
pareto_model = lifetimes.ParetoNBDFitter(penalizer_coef = 0.1)
pareto_model.fit(rfm_summary["frequency"],rfm_summary["recency"], rfm_summary["T"])

#Calculate the expected number of repeat purchases up to time t.|

#t (array_like) - times to calculate the expectation for.

t = 30
result["predicted_purchases"] = pareto_model.conditional_expected_number_of_purchases_up_to_time(t,result["frequency"], result["result["result["requency"], result["result["requency"]])
```

```
result["actual"] = (result["frequency"]/result["recency"])*30
result["actual"].fillna(0, inplace = True)

result["error"] =abs(result["actual"]-result["predicted_purchases"])
result.head()
```

	frequency	recency	Т	monetary_value	predicted_purchases	actual	error
CustomerID							
12346.0	0.0	0.0	325.0	0.000000	0.063046	0.000000	0.063046
12347.0	6.0	365.0	367.0	599.701667	0.469673	0.493151	0.023477
12348.0	3.0	283.0	358.0	301.480000	0.268872	0.318021	0.049149
12349.0	0.0	0.0	18.0	0.000000	0.285125	0.000000	0.285125
12350.0	0.0	0.0	310.0	0.000000	0.065540	0.000000	0.065540

Customer Live Times Value

```
# Calculate Purchase Frequency
   #Purchase Frequency: Purchase Frequency is the ratio of the total number of orders and the total number of customer. It represent
   purchase_frequency = sum(clv_grp['InvoiceNo'])/clv_grp.shape[0]
   # Calculate Repeat and Churn Rate
   #Repeat Rate: Repeat rate can be defined as the ratio of the number of customers with more than one order to the number of unique
   repeat_rate = clv_grp[clv_grp['InvoiceNo'] > 1].shape[0]/clv_grp.shape[0]
   #Churn Rate: Percentage of customers who have not ordered again.
   churn_rate = 1 - repeat_rate
1: # Calculate Profit margin assuming gain of 5%
   #Profit margin is the commonly used profitability ratio. It represents how much percentage of total sales has earned as the gain.
   clv grp['profit margin'] = clv grp['invoice value'] * 0.05
   # Calculate Customer Lifetime Value
  clv_grp['CLV'] = ((clv_grp['AvgOdeVal'] * purchase_frequency)/churn_rate) * clv grp['profit margin']
  CLV F=clv grp['CLV']
  CLV F.to frame().tail()
   #CLV_F.sort_index()
                     CLV
    CustomerID
       18280.0 9.019848e+05
       18281.0 2.580497e+05
       18282.0 7.305777e+05
       18283.0 1.604871e+06
       18287.0 1.333572e+07
```


Predict CLTV using Linear Regression Model

	CustomerID	Apr- 2011	Aug- 2011	Dec- 2010	Dec- 2011	Feb- 2011	Jan- 2011	Jul- 2011	Jun- 2011	Mar- 2011	May- 2011	Nov- 2011	Oct- 2011	Sep- 2011	CLV
4333	18280.0	0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.00	180.6	0.00	0.00	0.00	0.0	361.20
4334	18281.0	0.0	0.00	0.0	0.00	0.00	0.00	0.00	80.82	0.0	0.00	0.00	0.00	0.0	161.64
4335	18282.0	0.0	100.21	0.0	77.84	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.0	356.10
4336	18283.0	115.6	0.00	0.0	208.00	100.95	213.75	139.89	296.52	0.0	85.22	637.71	112.99	134.9	3859.86
4337	18287.0	0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.0	765.28	0.00	1072.00	0.0	3674.56
									-2011']]						
#2targe y = sale[t variable							•	,,						
y = sale[X_train,	['CLV']] X_test, y_t		test = t	rain_te	st_split	(X,y,tra	in_size=			.2)					
y = sale[X_train, : LR = Line	['CLV']] X_test, y_tearRegression	n()	test = t	rain_te	st_split	(X,y,tra	in_size=			.2)					
y = sale[X_train, : LR = Line	['CLV']] X_test, y_t	n()	test = t	rain_te	st_split	(X,y,tra	in_size=			.2)					
y = sale[X_train, : LR = Line LR.fit(X_ y_pred =	['CLV']] X_test, y_tearRegression	n() ain) X_test)			st_split	(X,y,tra	in_size=			2)					
y = sale[X_train, : LR = Line LR.fit(X_ y_pred = y_pred_sc	['CLV']] X_test, y_transport train, y_transport LR.predict(n() ain) X_test) ore(X_te	est, y_te	st)			in_size=			.2)					

Thanks