Tiago de Paula Alves RA: 187679
Tiago de Paula Alres
CORRIGIR A QUESTÃO (2).
1.a) Vale a pena notar aqui que $\ln(n) \in o(n^{k})$ para qualquer $\mathcal{E} > 0$, pois: $\lim_{n \to \infty} \frac{\ln(n)}{n^{k}} = \lim_{n \to \infty} \frac{1}{E} = \lim_{n \to \infty} \frac{1}{n^{k}} = 0$ Com isso, podemos es colher $g(n) = n^{k}/\ln(n)$ como contraexemplo, pois $g \in o(n^{k})$ e $g \in \omega(n^{k-\epsilon})$.
Demonstração: Suponha $k \ge 1$ e seja $g: \mathbb{R}^{21} \mapsto \mathbb{R}^{+}$ dada por $g(x) = \frac{x^{n}}{\ln x}$. Logo,
$\lim_{X \to \infty} \frac{g(X)}{x^{k}} = \lim_{X \to \infty} \frac{x^{k}/\ln x}{x^{k}}$ $= \lim_{X \to \infty} \frac{1}{\ln x}$ $= 0$
Como g é contínua e monotónica para x>ke, então o limite também vale para os naturais, ou seja, g E o(nk).
Suponha agora um EXO. Como xe e la x são contínuas, diferenciáveis e crescem indefinidamente, então comparando g(x) com xxe teremos que:

$\lim_{x \to \infty} \frac{g(x)}{x^{k-\varepsilon}} = \lim_{x \to \infty} \frac{x^{k}/\ln x}{x^{k}/x^{\varepsilon}}$
- lim x ^E
$-\times \rightarrow \infty$ $N\times$
$\frac{-\lim_{X\to\infty} \frac{\mathcal{E} \times \mathcal{E}^{-1}}{X^{-1}}$
- lim & xe
- 00
Novamente, como as expressões-são con funções são contínuas e monotônicas, a comparação continua válida para os naturais. Então, podemos afirmar que para todo $E>0$, $g\in \omega(n^{K-E})$, e, por isso, $g\notin O(n^{K-E})$.
Por fim, considerando g*: N → R a restrição de gaos naturais dada por:
$g^*(n) = \begin{cases} 0 & \text{se } n = 0 \text{ ou } n = 1 \end{cases}$
Como $g*(n) = g(n)$ para $n > 1$, o crescimento assitótico delas é o mesmo. Logo, teremos que $g* \in o(n^k)$, mas não existe $E>0$ tal que $g* \in O(n^{k-\epsilon})$, Portanto, Chorãozinho está errado.

1. b) Suponha uma função q: N + R tal que
1. b) Suponha uma função g: N HR tal que ge O(nk-E), para um real ESO. Logo, temos um E ER, uma constante ci ER e um ni EN
um EER uma constante ci Elke um ni El
tal que para todo natural n>n1, sabemos que
C & Pt and a constante
tal que para todo natural $n > n_1$, sabemos que $0 \le g(n) \le c_1 n^{\kappa-\epsilon}$. Suponha ainda uma constante $c_2 \in \mathbb{R}^t$ qualquer e considere o natural $n_2 = \frac{1}{2}(c_1/c_2)^{\frac{1}{2}}$ Então, para um natural $n > n_2$, teremos que
- MINOS POLO MINIMALITATION TO THE MENTINGS GOVERNORS
$n > n_2 = \left(\frac{c_1}{c_2}\right)^{1/\epsilon} > \left(\frac{c_1}{c_7}\right)^{1/\epsilon}$
(c_2) (c_2)
Como xº é estritamente crescente, já que ExO, então nº > C1/c2. Logo,
EXU/então nº XCI/cz. Logo,
$c \cdot n^{k-\epsilon} = c \cdot n^k \cdot c \cdot n^k - c \cdot n^k$
$\frac{c_1 n^{k-\varepsilon} = c_1 n^k}{n^{\varepsilon}} < c_1 \frac{n^k}{c_1/c_2} = c_2 n^k$
Assim, seja no = max {n, n, } e suponha n>no, ou seja, n>n, e n>n, Logo,
n>no, ou seja, n>nx e n>nz. Logo,
$0 \le g(n) \neq \le c_1 \cdot n^{k-\epsilon} \le c_2 n^k$
O a constitue avieta u
tolone Of ala) (c nk some n) no Portanto
a f a(nK). Coma a f O(nK-E) era arbitraria
Ou seja, para qualquer co positivo, existe no tal que O \(\frac{1}{2} \) (n) \(\text{Cz nk pana no no Portanto, } \) \(\frac{1}{2} \) \(\text{Como q E O (nk-E)} \) era arbitrária, \(\text{Xitoró está correto.} \)

2) Aplicando a formula de recorrência iterativamente, podemos ver que:

$$T(n) = 2n - 1 + T(n - 1)$$

$$= 2n - 1 + 2(n - 1) - 1 + T(n - 2)$$

$$= 2[n + (n - 1)] - [1 + 1] + T(n - 2)$$

$$= 2[n + (n - 1)] - [1 + 1] + 2(n - 2) - 1 + T(n - 3)$$

$$= 2[n + (n - 1) + (n - 2)] - [1 + 1 + 1] + T(n - 3)$$

$$= 2[n + (n - 1) + \dots + 2] - [1 + 1 + 1] + T(1)$$

$$= 2 \left[n + (n-1) + \dots + 2 \right] - \left[1 + \dots + 1 \right]$$

$$= 2 \left[1 + \dots + 1 \right]$$

$$= 2 \left[1 + \dots + 1 \right]$$

$$= 2 \left[\frac{n(n+1)}{2} - 1 \right] - (n-1) + 1$$

$$= n^2$$

Demonstração de T(n)=n2.

Caso base: Para
$$n=1$$
, temos que $T(1)=1=1^2$, como esperado.

$$T(n+1) = T(n) + 2(n+1) - 1$$

$$= n^2 + 2n + 2 - 1$$

$$= n^2 + 2n + 1$$

$$= (n+1)^2$$

para Ti	n) quando io da inc $T(n) = n$	n=1 00	GUZNAC	o T(n-1) =	$(n-1)^2$
o princip	io da inc	lução Fin	ita nos	permite	afir -
mar que	T(n) = n	2 no de	pminio	proposto.	

3.) Observando o tempo do algoritmo A, como o expoente crítico é loga 8 = 3 e n² e O (n³-e) com E = 1>0, o teorema Master nos diz que a recorrência de termina a ordem de crescimento do tempo do algoritmo, isto é, TA(n) e A(n³).

Agora, para o algoritmo B, como $F(n) = n^2$, então T_B (n) $\in \Omega$ (n^2). Pelo teorema Master, para que a determine o crescimento da Função queremos que o expoente crítico seja $2 < \log_3 x$, isto é, $\alpha > 3^2 = 9$. Com essa condição, $\frac{1}{16(n)}$ $\frac{1}{12}$ $\frac{$

Considerando as variaveis que temos controle, para que $T_B(n) \in o(T_A(n))$, a deve ser es co lhido como de modo que $n^{\log_3 \alpha} \in o(n^3)$. Logo, teremos que $\log_3 \alpha \in 3$, ou seja, a $\leq 3^3 = 27$. Como a deve ser intero, a escolha de major valor é $\alpha = 26$.