

We covered...

- Python Basics
 - Basic functions, Types, List, Dictionary
- Numpy library
- Pandas Library
 - Series data structure
 - Dataframe data structure
 - Indexing/Merge/Groupby
- Matplotlib
 - Scatter/Line/Bar chart
 - Subplot, histogram
- Data acquisition

Today's Subjects

- Applied Machine Learning for data analysis
- Machine learning workflow with data

What is Machine Learning (ML)?

- The study of computer programs (algorithms) that can learn by example
- ML algorithms can generalize from existing examples of a task
- e.g. after seeing a training set of labeled images, an image classifier can figure out how to apply labels accurately to new, previously unseen images

Speech Recognition

Speech recognition rules

"How do I get to Ann Arbor?

Machine Learning models learn from experience

- Labeled examples (Email spam detection)
- User feedback (Clicks on a search page)
- Surrounding environment (self-driving cars)

Machine Learning for fraud detection

Data instance/example

\$\$\$
Credit card transaction

Features

- Time
- Location
- Amount

ML algorithm User feedback Fraud rules Notification User history

Feature Representation

Email

To: Chris Brooks From: Daniel Romero

Subject: Next course offering

Hi Daniel,

Could you please send the outline for the next course offering? Thanks! -- Chris

Feature	Count
to	1
chris	2
brooks	1
from	1
daniel	2
romero	1
the	2
-	

Feature representation

A list of words with their frequency counts

A matrix of color values (pixels)

Sea Creatures

Feature	Value
DorsalFin	Yes
MainColor	Orange
Stripes	Yes
StripeColor1	White
StripeColor2	Black
Length	4.3 cm

A set of attribute values

What is **Applied Machine Learning?**

- Understand basic ML concepts and workflow
- How to properly apply 'black-box' machine learning components and features
- Learn how to apply machine learning algorithms in Python using the <u>scikit-learn</u> package

Supervised Machine Learning

Training set

X Sample	Y Target Value (Label)
x_1	Apple y_1
x_2	Lemon y ₂
x_3	Apple y_3
x_4	Orange y_4

for new instances using the

learned rules.

Unsupervised Machine Learning

 Detecting abnormal server access patterns (unsupervised outlier detection)

Finding clusters of similar users (clustering)

A Basic Machine Learning Workflow

Choose:

- A feature representation
- Type of classifier to use
- e.g. image pixels, with k-nearest neighbor classifier

Choose:

- What criterion distinguishes good vs. bad classifiers?
- e.g. % correct predictions on test set

Choose:

 How to search for the settings/parameters that give the best classifier for this evaluation criterion

e.g. try a range of values for "k" parameter in k-nearest neighbor classifier

Represent / Train / Evaluate / Refine Cycle

Extract and select object features

<u>Train models</u>:

Fit the estimator to the data

Feature and model refinement

Evaluation

List of skills for data analysis

- Data Visualization
 - Matplotlib, Seaborn, Plotly
 - Data mining
 - Pandas, numpy
- Feature engineering
 - Time series features
 - Categorical features
 - Numerical features
 - Aggregation features
 - Ratio features
 - Product features

- Data preparation
 - Up-sampling
 - Down-sampling
 - SMOTE

- Model development
 - Sklearn : linear, non-linear, tree model
 - Xgboost
 - Lightgbm
 - Catboost
 - LibFFM