Ciągi i szeregi liczbowe

 ${\it Lukasz~Stod\'ołka}$

Grudzień 2023

"Everything around us can be represented and understood through numbers."

Ciągi

Definicja: Ciągiem a_n nazwamy odwozorowaniem liczb naturalnych w liczby rzeczywiste. Liczby a_1, a_2, a_3, \dots nazywamy wyrazami ciągu.

Przykłady:

(a)
$$1, 2, 3, 4, 5...$$

(b) $\frac{1}{n}$

$$(b)^{\frac{1}{n}}$$

Ciągi mogą być rosnące wtedy:

$$(\forall n \in \mathbb{N})(a_n < a_{n+1})$$

Ciągi mogą być niemalejące wtedy:

$$(\forall n \in \mathbb{N})(a_n <= a_{n+1})$$

Ciągi mogą być malejące wtedy:

$$(\forall n \in \mathbb{N})(a_n > a_{n+1})$$

Ciągi mogą być nierosnące wtedy:

$$(\forall n \in \mathbb{N})(a_n >= a_{n+1})$$

Ciągi mogą być stałe wtedy:

$$(\forall n \in \mathbb{N})(a_n = a_{n+1})$$

Ciąg jest monotoniczny, gdy jest rosnący lub malejący.

Ciąg jest słabo monotoniczny, gdy jest nierosnący lub niemalejący.

Ciąg jest ograniczony z góry, jeżeli:

$$(\exists M \in \mathbb{R})(\forall n \in \mathbb{N})(a_n <= M)$$

Ciąg jest ograniczony z dołu, jeżeli:

$$(\exists M \in \mathbb{R})(\forall n \in \mathbb{N})(a_n >= M)$$

Zbieżność ciągu

Intuicyjnie: mówimy że ciąg jest zbieżny, gdy wyrazy ciągu leżą coraz bliżej jakieś liczby g, dla dostatecznie dużych n. Zapis $\lim_{n\to\infty} a_n = g$

Formalnie:

$$(\exists g \in \mathbb{R})(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall n > N)(|a_n - g| < \varepsilon)$$

Zatem z punktu logiki, aby udowodnić jakaś granicę formalnie musimy znaleźc N dla zadanego Epsilona.

Przykład:

$$a_n = \left| \frac{n^2 + n}{2n^2 - 2n + 1} \right|$$

Niech $g = \frac{1}{2}$.

Szukamy dużego N wedle definicji:

$$\left| \frac{N^2 + N}{2N^2 - 2N + 1} - \frac{1}{2} \right| < \varepsilon$$

Nasze a_N możemy ograniczyć z dołu zwiększając mianownik o +2N, bo wiemy, że N>0, a g rozszerzymy o wspólny mianownik:

$$\left| \frac{N^2 + N}{2N^2} - \frac{N^2}{2N^2} \right| < \varepsilon$$

Wtedy:

$$\left| \frac{N}{2N^2} \right| = \left| \frac{1}{2N} \right| < \varepsilon$$

Możemy opuścić wartość bezwględną bo wiemy że wyrażenie z lewej strony jest dodatnie.

$$N>\frac{1}{2\varepsilon}$$

Bierzemy takie N które z pewnością będzię większe np.

$$N = \left| \frac{1}{\varepsilon} \right| + 1$$

Tak mniej więcej wygląda proces znajdywania N, może być czasem dość nużący. Jednakże to co zrobiliśmy wyżej nie jest dowodem, aby dowód był poprawny należy ten proces odwrócić w drugą stronę, czyli pokazać, że to nasze N spełnia definicję, ułatwić może fakt, że wystarczy przepisać od dołu do góry zmieniając słowa.

Własności granic:

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} (\frac{a_n}{b_n}) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}, b_n \neq 0$$

Dowód zostawiam czytelnikowi albo zapraszam do skryptu prof. Ryszarda Szwarca

Warunek Cauchy'go: Ciąg jest zbieżny wtedy i tylko wtedy gdy spełnia warunek Cauchy'go, czyli dla dostatecznie dużych wskaźników liczby leżą obok siebie, formalnie:

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall n, m > N)(|a_n - a_m| < \varepsilon)$$

Dowody sprowadzają się do wyznaczenia N, jak w przykładzie na początku notatek. Pozwolę pominąć sobie kolejny przykład, bo nie należy to do zbyt podniecających rzeczy.

Rozbieżność ciagu do ∞ : Mówimy, że ciąg jest rozbieżny do ∞ , gdy spełnie warunek:

$$(\forall M \in \mathbb{R})(\exists N \in \mathbb{N})(\forall n > N)(a_n > M)$$

Ważne Lematy i Twierdzenia

Lemat nr 1: Ciąg zbieżny posiada tylko jedną granicę

Dowód Lematu: Załóżmy nie wprost, że $\lim_{n\to\infty} a_n = g$ oraz $\lim_{n\to\infty} a_n = g'$ oraz g > g'.

Weźmy $\varepsilon = (g'-g)/2$ widzimy zatem że otoczenie czyli przedziały: $(g-\varepsilon,g+\varepsilon)$ i $(g'-\varepsilon,g'+\varepsilon)$ są rozłączne. Otrzymujemy sprzeczność, bo z definicji granicy, wyrazy, powinny leżeć zarówno w jednym jak i drugim przedziałe.

Lemat nr 2: Każdy ciąg, który jest zarówno monotoniczny i ograniczony jest zbieżny Dowód lematu zostawiam czytelnikowi

Lemat nr 3: Z wyżej wymienionych własności wynika, ze można wyciągać stałą przed lim

Lemat nr 4: Dla ciągu a_n , i każdego ściśle rosnącego ciągu liczb naturalnych m_n , a_{m_n} nazywamy podciągiem ciagu a_n i ma on tą samą granicę co a_n .

Twierdzenie Bolzano-Weierstrassa: Każdy ciąg ograniczony zawiera podciąg zbieżny

Twierdzenie o trzech ciągach: Jeżeli:

$$a_n <= c_n <= b_n$$

oraz

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

to c_n jest zbieżne, a

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} a_n$$

Kryterium porównawcze: Jeśli $a_n \le b_n$ oraz $\lim_{n\to\infty} a_n = \infty$ $to \lim_{n\to\infty} b_n = \infty$

Punkt skupienia: Liczbę α nazywamy punktem skupienia jeśli jakiś podciąg a_n jest zbieżny do α

Ciąg zbieżny posiada tylko jeden punkt skupienia.

Twierdzenie kolejne: Dla ograniczonego ciągu a_n istnieją najmniejszy i największy punkt skupienia nazywane granicą dolną i górną ciągu i oznaczane symbolami:

 $\lim \inf a_n, \lim \sup a_n$

Szeregi liczbowe

Definicja: Ciąg sum częściowych:

$$s_n = \sum_{n=1}^n a_n$$

Jeżeli s_n jest zbieżne do s to możemy zapisać:

$$\sum_{n=1}^{\infty} a_n = s$$

np. ciąg geometryczny:

$$a_n = q^n \wedge |q| < 1$$

Wtedy:

$$s_n = q + q^2 + \dots + q^n = \frac{q - q^{n+1}}{1 - q} \longrightarrow_n \frac{q}{1 - q}$$

 $\operatorname{gdyż} q^n \longrightarrow_n 0$

Zatem:

$$\sum_{n=1}^{\infty} q^n = \frac{q}{q-1}$$

Natomiast np. szereg harmoniczny jest rozbieżny

$$s_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} > \log n$$

Zatem możemy zapisać:

$$\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$$

Warunek Cauchy'ego dla szeregów:

Szereg jest zbieżny wtedy i tylko wtedy, gdy spełnia warunek Cauchy'ego

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall n, m > N)(|a_{m+1} + a_{m+2} + \dots + a_n| < \varepsilon)$$

Łatwo zauważyć, że

$$|s_n - s_m| = |a_{m+1} + a_{m+2} + \dots + a_n|$$

Przejdźmy teraz do **ciekawych** faktów na temat szeregów:

Fakt 1:

Jeśli szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny to $\lim_{n\to\infty} a_n=0$ Jednakże nie wystarczy to do stwierdzenia zbieżności

Fakt 2:

Dla każdego szeregu zbieżnego, ciąg sum częściowych jest ograniczony

Fakt 3:

 $\sum_{n=1}^{\infty}|a_n|$ jest zbieżny to $\sum_{n=1}^{\infty}a_n$ jest bezw
ględnie zbieżny. Jeśli szereg jest bezw
ględnie zbieżny to jest też zbieżny. Natomiast jeśli szereg jest zbieżny, ale nie jest bezw
ględnie zbieżny to szereg jest zbieżny warunkowo.

Kryteria zbieżności szeregów liczbowych

Kryterium Dirichleta:

Rozważmy:

$$\sum_{n=1}^{\infty} a_n b_n$$

Jeżeli $a_n \longrightarrow_n 0$, a sumy częściowe b_n są ograniczone, wtedy szereg jest zbieżny

Kryterium Leibniza:

Rozważmy:

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

Jeżeli $a_n \longrightarrow_n 0$, to szereg jest zbieżny, bo $b_n = (-1)^{n+1}$ jest ograniczony

Kryterium porównawcze:

Rozważmy:

$$0 <= a_n <= b_n$$

Jeżeli b_n zbieżne to a_n również zbieżne.

Co więcej:

$$0 <= \sum_{n=1}^{\infty} a_n <= \sum_{n=1}^{\infty} a_n$$

Kryterium Cauchy'ego:

$$a = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

Jeśli a<1, to szereg $\sum_{n=1}^{\infty} a_n$ bezwględnie zbieżny.

Jeśli a>1, to szereg $\sum_{n=1}^{\infty} a_n$ rozbieżny.

Jeśli a=1, kryterium nie rozstrzyga zbieżności.

Kryterium d'Aleberta:

$$a = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$$

Jeśli a<1, to szereg $\sum_{n=1}^{\infty}a_n$ bezw
ględnie zbieżny.

Jeśli a>1, to szereg $\sum_{n=1}^{\infty} a_n$ rozbieżny.

Jeśli a=1, kryterium nie rozstrzyga zbieżności.

A na deserek twierdzenie równie przydatne jak Kryteria

Twierdzenie o zagęszczaniu:

$$a_n \longrightarrow_n 0$$

to szereg $\sum_{n=1}^\infty a_n \Leftrightarrow \text{gdy zbieżny jest szereg zagęszczony czyli: } \sum_{n=1}^\infty \left(\frac{1}{2^{\alpha-1}}\right)^n$