Quiz 1: CS 331 Formal Language and Automata Theory - 10 Marks MO/25 SET A

Instructions: Solve all questions. Show your work where applicable

Question 1 (2 marks)

Construct a DFA that accepts all strings from the language $L = \{\text{strings of size divisible by 3}\}$. Draw the state diagram and provide the transition table.

Question 2 (2 marks)

Given the following DFA, determine whether the strings "1011" and "1010" are accepted or rejected. Show the path of computation for each string.

State diagram:

• States: {q₀, q₁, q₂}

Initial state: qo

Final state: q2

• Transitions:

$$\delta(q_0, 0) = q_0, \delta(q_0, 1) = q_1$$

$$\delta(q_1, 0) = q_2, \delta(q_1, 1) = q_0$$

$$\delta(q_2, 0) = q_2, \delta(q_2, 1) = q_2$$

Question 3 (1 mark)

In a DFA with alphabet Σ = {a, b, c}, what is the maximum number of transitions that can originate from any single state?

Question 4 (5 mark) Find the Minimum Automata: (Use Table Filling / Equivalence method)

State / 2	a ′	b
→ qo	q1	q2
q1	q4	q3
q2	q4	q3
*q3	q 5	q6
*q4	q7	q6
q5	q3	q6
q6	q6	q6
q 7	q4	q6