Supervised classification of 3D left ventricle shapes to detect Myocardial infarction.

*

*

Abstract. Abstract

 $\textbf{Keywords:} \ \ \text{statistical shape model,} \\ \text{myocardial infarction, left ventricle,} \\ \text{random forest}$

1 Introduction

Impact of cardiovascular disease on world health Cardiovascular disease*mention myocardial infarction in particular*

*talk about how ejection fraction is the standard way of assessing function*We look to improve on this and see how properties of the shape that are not related to ejection fraction directly can help classify.

*relevance of being able to classify hearts with infarction * *remodelling of the heart after MI^*

2 Method

2.1 Volume calculations

 $Myocardium\ thickness$

Endocardium and epicardium volumes

 $Ejection\ fractions$

Mesh areas

2.2 Statistical shape model

General Procrustes analysis

 $Principal\ component\ analysis$

2.3 Classification

 $Random\ forests$

3 Results

Bullseye plots

3.1 Classification

- *Graph of feature importance*
 Graph of classification error
- Conclusion
- 5 Discussion

References