DP for Hamming weight Small Space Source

Prithviraj Ghosh

June 2025

1 Report

We have a Small Space Source which is the uniform distribution over the width n+1 where any node s representing the hamming weight in layer i is connected with node s and node s+1 in layer i+1 each representing not accepting and accepting w_{i+1} respectively.

We define $\tau(i, a, s)$ as the minimum capacity with the accepting probability over all possible binary strings is at least a and present state in the small space source is s at layer i for weights w_1, w_2, \ldots, w_i .

Claim

$$\tau(i, a, s) = \min_{\substack{\alpha, \beta \in [0, 1] \\ \alpha p_1 + \beta p_2 = a}} \max \left\{ \begin{array}{l} \tau(i - 1, \alpha, s) \\ \tau(i - 1, \beta, s - 1) + w_i \end{array} \right.$$

where $p_1 \& p_2$ are the probabilities associated with the edge from s and s-1 in layer i-1 of the small space source respectively.

Proof

Fix any $\alpha \in [0,1]$ and automatically a β is fixed.

Call $B = \max \{ \tau(i-1, \alpha, s), \ \tau(i-1, \beta, s-1) + w_i \}$. There is at least α probability with weights $w_1, w_2, \ldots, w_{i-1}$ with present state s and capacity B. Also there is at least β probability with weights $w_1, w_2, \ldots, w_{i-1}$ with present state s-1 and capacity $B-w_i$. Since $\alpha p_1 + \beta p_2 = a$ there is at least a probability with weights w_1, w_2, \ldots, w_i with present state s and capacity s as all solutions are disjoint. So,

$$\tau(i, a, s) \le \min_{\substack{\alpha, \beta \in [0, 1] \\ \alpha p_1 + \beta p_2 = a}} \max \left\{ \begin{array}{l} \tau(i - 1, \alpha, s) \\ \tau(i - 1, \beta, s - 1) + w_i \end{array} \right.$$

Calling $\tau(i,a,s) = C$. Let α be such that αp_1 be the fraction of a which does not include w_i and β accordingly. So, $\tau(i-1,\alpha,s) \leq C$ and $\tau(i-1,\beta,s-1) \leq C-w_i$. Hence $\max{\{\tau(i-1,\alpha,s),\ \tau(i-1,\beta,s-1)+w_i\}} \leq C$

$$\tau(i, a, s) \ge \min_{\substack{\alpha, \beta \in [0, 1] \\ \alpha p_1 + \beta p_2 = a}} \max \left\{ \begin{array}{l} \tau(i - 1, \alpha, s) \\ \tau(i - 1, \beta, s - 1) + w_i \end{array} \right.$$

Giving the equality.

Solution

The solution probability $a^* = \max\{a: \tau(n,a,s) \leq C \forall s \in [n+1]\}$