

系别 数学科学学院 班级______ 姓名_____ 第1页

2024 现代分析基础 (张震球) 作业 2024年5月10日

1 第一周课程 2024.2.20;2024.2.23

题 1

设 (X, A, μ) 是 測 度 空 间, $\mathcal{N} = \{B \in A : \mu(B) = 0\}, \overline{A} = \{E \cup F : E \in A, F \subset B \cap B \in \mathcal{N}\}.$ 求证:

- (1) \overline{A} 是 σ 代数.
- (2) 对 $E \cup F \in \overline{A}$. 定义 $\overline{\mu}(E \cup F) = \mu(E)$, 则 $\overline{\mu}$ 是 (X, \overline{A}) 上完全测度.
- 2 第二周课程 2024.2.27;2024.3.1

题 2

设 φ 是 (X, A) 上符号测度, $E \in A$, 求证: $|\varphi|(E) = \sup \left\{ \sum_{i=1}^{n} |\varphi(F_i)|, \{F_i\} \subseteq A$ 是有限个互不相交的可测集且 $\bigcup_{i=1}^{n} F_i \subseteq E \right\}$.

题 3

设 (X, A) 是可测空间, μ, ν 是 (X, A) 上測度, μ 是 σ – 有限, ν 是非零有限測度. 若 $\nu \ll \mu$, 求证: $\exists \varepsilon > 0$ 及 $A \in A$ 满足 $0 < \mu(A) < \infty$ 且对 $\forall B \subset A, B \in A$ 有 $\varepsilon \mu(B) \le \nu(B)$.

3 第三周课程 2024.3.5;2024.3.8

题 4

设 (X, A) 是可測空间, ω 是 X 上 σ - 有限測度, 而 ν, μ 是 X 上有限測度, 且 $\nu \ll \mu, \mu \ll \omega$. 求证: $\nu \ll \omega$. 且 $\frac{\mathrm{d}\nu}{\mathrm{d}\omega} = \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \cdot \frac{\mathrm{d}\mu}{\mathrm{d}\omega}$ 关于 ω 測度几乎处处成立.

系别 数学科学学院 班级______ 姓名_____ 第 2 页

题 5

设 X=[0,1], \mathcal{B} 是包含 [0,1] 中所有开集的最小的 $\sigma-$ 代数, 即 X 上的 Borel 代数, μ =Lebesgue 测度, ν 是 \mathcal{B} 上的计数测度. 求证:

- (1) $\mu \ll \nu$, 但对任意函数 $f \in L(X, \mathcal{B}, \nu)$, $d\mu \neq f d\nu$.
- $(2) \nu$ 没有关于 μ 的 Lebesgue 分解.

4 第四周课程 2024.3.12;2024.3.15

题 6

设 (X, \mathcal{A}, μ) 是测度空间. 定义 $M = 2^X$ 上的集值映射 $\mu^* : M \mapsto [0, \infty]$ 为

対∀
$$E \in M, \mu^* = \inf \left\{ \sum_{j=1}^{\infty} \mu(A_j), A_j \in \mathcal{A}, E \subset \bigcup_{j=1}^{\infty} A_j \right\}$$

求证:

- (1) μ^* 是 X 上外测度.
- (2) $\mu^*|_{\mathcal{A}} = \mu$. (3) 若 $E \in \mathcal{A}$, 则 $E \neq \mu^*$ 可测的.

题 7

设 μ 是可测空间 (X, A) 上有限测度, μ^* 是由 μ 诱导出的 X 上的外测度 (见题6), 设存在 $E \subset X$, 使得 $\mu^*(E) = \mu^*(X)$, 对 $A, B \in A$, 若 $A \cap E = B \cap E$. 求证: $\mu(A) = \mu(B)$.

5 第五周课程 2024.3.19;2024.3.22

题 8

设 m 是一维直线 $\mathbb R$ 上的 Lebesgue 测度. H_1 是 $\mathbb R$ 上的 1 维 Hausdorff 测度. 求证: $H_1=m$.

系别_数学科学学院_ 班级_____ 姓名_____ 第3页

题 9

设 (X,d) 是紧的度量空间, μ 和 ν 是 (X,d) 上正则的 Borel 测度, 求证: $\mu \geq \nu$ (即对于 \forall Borel 集 $E, \mu(E) \geq \nu(E)$) \Longleftrightarrow 对 $\forall f \in C(X)$ 且 $f \geq 0$, 有 $\int_{X} f d\mu \geq \int_{X} f d\nu$.

6 第六周课程 2024.3.26;2024.3.29

题 10

设 m 是直线 \mathbb{R} 上的 Lebesgue 测度, $(\mathbb{R},\mathcal{B},m)$ 是测度空间, $(\mathbb{R}\times\mathbb{R},\mathcal{M},m\times m)$ 是 其乘积测度空间,设 $D=\{(x,y)\in\mathbb{R}\times\mathbb{R}:x=y\}$. 求证 D 是 $\mathcal{M}-$ 可测的,且 $(m\times m)(D)=0$.

题 11

设 (X, A, μ) 和 (Y, \mathcal{B}, ν) 是测度空间, μ^*, ν^* 分别是 X 和 Y 上由测度 μ 和 ν 诱导出的外测度, 设 $A \subset X, B \subset Y$ 且 $0 < \mu^*(A) < \infty, 0 < \mu^*(B) < \infty$. 求证 $A \times B$ 是 $\mu \times \nu$ — 可测充要条件是 $A \in \mathcal{A}$ 且 $B \in \mathcal{B}$.

7 第七周课程 2024.4.2;2024.4.7

题 12

设 (X, A) 是 σ - 有限测度空间, 求证 $L^{\infty}(X, d\mu)$ 是完备的.

8 第八周课程 2024.4.9;2024.4.12

题 13

设 (X, \mathcal{A}, μ) 是 σ - 有限测度空间, $1 \leq p < \infty, f_0 \in L^p(X, d\mu)$,若对 $\forall T \in (L^p(X, d\mu))^*$ 有 $T(f_0) = 0$. 求证 $f_0 = 0, \mu$ 几乎处处.

系别 数学科学学院 班级______ 姓名_____ 第 4 页

题 14

设 $X = (0, +\infty), f \in L^p(X), dy$ 为 Lebesgue 測度. 定义 $Tf(x) = \int_0^{+\infty} \frac{f(y)}{x+y} dy$, 则 对 1 ,

$$||Tf||_p \le c_p ||f||_p$$

其中
$$c_p = \int_0^\infty x^{-\frac{1}{p}} (x+1)^{-1} dx$$
.

9 第九周课程 2024.4.16;2024.4.19

题 15

求证:
$$f \in L^p(X, d\mu) \iff \sum_{k=-\infty}^{\infty} 2^{kp} \lambda_f(2^k) < +\infty.$$

题 16

设 f 是 \mathbb{R}^n 上 Lebesgue 实值可测函数,若 f 在 \mathbb{R}^n 的有界集上有界,则 $f \in L^1_{loc}(\mathbb{R}^n, \mathrm{d}m)$,其中 $\mathrm{d}m$ 为 Lebesgue 测度,特别地,若 f 是 \mathbb{R}^n 上实值连续函数. 求证 $f \in L^1_{loc}(\mathbb{R}^n, \mathrm{d}m)$.

10 第十周课程 2024.4.23;2024.4.26

题 17

设 $f \in L^1(\mathbb{R}^n)$, $||f||_1 \neq 0$, 则 $\exists C, R > 0$, 使得当 |x| > R 时, $Mf(x) > C |x|^{-n}$.

题 18

设 m 是 \mathbb{R}^n 上的 Lebesgue 测度, E 是 \mathbb{R}^n 中的 Borel 集, 定义 E 在 $x \in \mathbb{R}^n$ 点的密

度为
$$D_E(x) = \lim_{r \to 0} \frac{m(E \cap B(x,r))}{m(B(x,r))}$$
. 求证 $D_E(x) = \begin{cases} 1, 几乎处处x \in E \\ 0, 几乎处处x \notin E \end{cases}$.

系别 数学科学学院 班级______ 姓名_____ 第5页

11 第十一周课程 2024.4.30

题 19

- (1) 设 1 . 求证: <math>f * g 是 \mathbb{R}^n 上一致连 续的有界函数.
- (2) 设 $C_c(\mathbb{R}^n) = \{f \in \mathbb{R}^n \perp \text{ 连续}, \text{ 且 supp } f \in \mathbb{R}^n \}, C_0(\mathbb{R}^n)$ $\{f$ 在 \mathbb{R}^n 上连续, 且 $\lim_{|x|\to\infty} f(x)=0\}$. 求证: $C_c(\mathbb{R}^n)$ 在 $C_0(\mathbb{R}^n)$ 中稠密.
- (3) 求证: $f * g \in C_0(\mathbb{R}^n)$.

12 第十二周课程 2024.5.7;2024.5.10

题 20

设 $f \in L^2(\mathbb{R}^n)$, 且 $S = \{x \in \mathbb{R}^n, f(x) \neq 0\}$ 有有限 Lebesgue 测度. 对 \mathbb{R}^n 中的任意 可测集 E, 求证 $\int_{E} |\hat{f}(\xi)| d\xi \le ||f||_{L^{2}}^{2} |S| |E|$.

13 第十三周课程 2024.5.14