RELATIONS

PRESENTED BY:-

ER. HANIT KARWAL

ASSISTANT PROFESSOR

INFORMATION TECHNOLOGY DEPT.

GNDEC, LUDHIANA

hanitgndec@gmail.com

ORDERED PAIR

- An ordered pair of elements a and b, where a is designated as the first element and b as the second element, is denoted by (a, b).
- In particular, (a, b) = (c, d)if and only if a = c and b = d.
- Thus (a, b) = (b, a) unless a = b.
- This contrasts with sets where the order of elements is irrelevant; for example, $\{3, 5\} = \{5, 3\}$.

PRODUCT SET

- Consider two arbitrary sets A and B. The set of all ordered pairs (a, b) where $a \in A$ and $b \in B$ is called the product, or Cartesian product, of A and B.
- A short designation of this product is $A \times B$, which is read "A cross B."
- By definition, $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$
- \circ A^2 instead of $A \times A$..

• Example:

Let $A = \{1, 2\}$ and $B = \{a, b, c\}$. Then

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

Similarly find $B \times A$, $A \times A$

EXERCISE

• Let $A = \{1, 2\}$ and $B = \{a, b, c\}$.

Then

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

$$B \times A = \{(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)\}$$

$$A \times A = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$$

RELATIONS

- \circ Let A and B be sets.
 - A binary relation (R) or, simply, relation (R) from A to B is a subset of $A \times B$.
- R is a set of ordered pairs where each first element comes from A and each second element comes from B. That is, for each pair a ∈ A and b ∈ B, exactly one of the following is true:
- (i) $(a, b) \in R$; we then say "a is R-related to b", written aRb.
- (ii) $(a, b) / \in R$; we then say "a is not R-related to b", written a/Rb.
- If A and B are sets with m' and 'n' elements respectively. Then total number of ordered pairs will be $A \times B = mn$. So the total number of relations from A to B is $2^{(mn)}$.

DOMAIN - RANGE

- Domain of a relation R is the set of all first elements of the ordered pairs which belong to R
- Range is the set of second elements.
- Example:
- Let there are 2 sets $A = \{1, 2\}$ and $B = \{a, b, c\}$.

 Then

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

 $R = \{(1, a), (2, b)\}$

Here 1Ra, 2Rb

Domain: (1, 2)

Range: (a, b)

EXERCISE

- Find range & domain of the following
- 1. A = (1, 2, 3) and $B = \{x, y, z\}$, and let $R = \{(1, y), (1, z), (3, y)\}$
- 2. $A = \{1,3,5,7\}$ and $B = \{2,4,6,8,\}$ and let $R = \{(1,8),(3,6),(5,2),(1,4)\}$
- 1Ry, 1Rz, 3Ry, but 1/Rx, 2/Rx, 2/Ry, 2/Rz, 3/Rx, 3/Rz The domain of R is {1, 3} and the range is {y, z}.
- The domain of R is $\{1, 3, 5\}$ and the range is $\{2,4,6,8,\}$

INVERSE OF A RELATION

- Let R be any relation from a set A to a set B.
- The inverse of R, denoted by $R^{(-1)}$, is the relation from B to A
- which consists of those ordered pairs which, when reversed, belong to *R*; that is,
- $\circ R^{(-1)} = \{(b, a) \mid (a, b) \in R\}$
- Example: $A = \{1, 2, 3\}$ and $B = \{x, y, z\}$. Then the inverse of $R = \{(1, y), (1, z), (3, y)\}$ is $R^{(-1)} = \{(y, 1), (z, 1), (y, 3)\}$
- R is any relation, then $(R^{(-1)(-1)}) = R$. Also, the domain and range of $R^{(-1)}$ are equal to that of R.

COMPLEMENT OF A RELATION

- Let R be any relation from a set A to a set B.
- The complement of R, denoted by $R^{(c)}$, is the relation from A to B which consists of those ordered pairs which don't belong to R; that is,
- $\circ R^{\wedge}(c) = \{(a, b) \mid (a, b) / \in R\}$
- Let $A = \{1, 2\}$ and $B = \{a, b, c\}$.

Then

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

- Let $R = \{(1, a), (2, b), (2, c)\}$

COMPOSITION OF RELATIONS

- Let A, B and C be sets, and let R be a relation from A to B and let S be a relation from B to C.

 That is, R is a subset of $A \times B$ and S is a subset of $B \times C$. Then R and S give rise to a relation from A to C denoted by $R \circ S$ and defined by:
- \circ $a(R \circ S)c$ if for some $b \in B$ we have aRb and bSc.
- o $R \circ S = \{(a, c) \mid there \ exists \ b \in B \ for \ which \ (a, b) \in R \ and \ (b, c) \in S\}$
- The relation $R \circ S$ is called the composition of R and S; it is sometimes denoted simply by RS.

• Let $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d\}$, $C = \{x, y, z\}$ and let

$$R = \{(1, a), (2, d), (3, a), (3, b), (3, d)\}$$
 and $S = \{(b, x), (b, z), (c, y), (d, z)\}$

$$R \circ S = \{(2, z), (3, x), (3, z)\}$$

EXERCISE

• Let $A = \{1, 2, 3, 4\}, B = \{a, b, c\}, C = \{x, y, z\}.$ Consider the relations R from A to B and S from B to C as follows:

$$R = \{(1, b), (3, a), (3, b), (4, c)\}$$
 and $S = \{(a, y), (c, x), (a, z)\}$

- 1) Draw the diagrams of R and S.
- 2) Write R (-1) and the composition $R \circ S$ as sets of ordered pairs.

SOLUTIONS

- $\circ R \circ S = \{(3, y), (3, z), (4, x)\}.$

- Reflexive Relations
- A relation R on a set A is reflexive if aRa for every $a \in A$, that is, if $(a, a) \in R$ for every $a \in A$. Thus R is not reflexive if there exists $a \in A$ such that $(a, a) / \in R$.
- Let $A = \{1, 2, 3, 4\}$ $R1 = \{(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)\}$ $R2 = \{(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$ $R3 = \{(1, 3), (2, 1)\}$ $R4 = \emptyset$, the empty relation
- $R5 = A \times A$, the universal relation
- Since A contains the four elements 1, 2, 3, and 4, a relation R on A is reflexive if it contains the four pairs
- (1, 1), (2, 2), (3, 3), and (4, 4). Thus only R2 and the universal relation $R5 = A \times A$ are reflexive.
- R1,R3, and R4 are not reflexive since, for example, (2, 2) does not belong to any of them.

- Symmetric Relation
- A relation R on a set A is symmetric if whenever aRb then bRa, that is, if whenever $(a, b) \in R$ then $(b, a) \in R$.
- Thus R is not symmetric if there exists $a, b \in A$ such that $(a, b) \in R$ but $(b, a) / \in R$.
- Let $A = \{1, 2, 3, 4\}$ $R1 = \{(1, 3), (1, 4), (3, 1), (2, 2), (4, 1)\}$ $R2 = \{(1, 1), (2, 2), (3, 3), (1,3)\}$

R1 is symmetric, R2 is not symmetric

- Antisymmetric Relation
- A relation R on a set A is antisymmetric if whenever aRb and bRa then a = b, that is, if a = b and aRb then bRa.
- Thus R is not antisymmetric if there exist distinct elements α
- Let $A = \{1, 2, 3, 4\}$ $R = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$

The identity relation is an antisymmetric relation.

- Transitive Relations
- A relation R on a set A is transitive if whenever aRb and bRc then aRc, that is, if whenever $(a, b), (b, c) \in R$ then $(a, c) \in R$.
- Thus R is not transitive if there exist a, b, $c \in R$ such that $(a, b), (b, c) \in R$ but $(a, c) / \in R$.
- Let $A = \{1, 2, 3, 4\}$:
- $R2 = \{(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$
- $R3 = \{(1, 3), (2, 1)\}$
- $R4 = \emptyset$, the empty relation
- $R5 = A \times A$, the universal relation
- The relation R3 is not transitive since $(2, 1), (1, 3) \in R3$ but $(2, 3) / \in R3$. All the other relations are transitive.

EQUIVALENCE RELATIONS

 \circ Consider a nonempty set S.

A relation R on S is an equivalence relation if R is reflexive, <u>symmetric</u>, and transitive.

- (1) For every $a \in S$, aRa : a = a for every $a \in S$.
- (2) If aRb, then bRa : If a = b, then b = a
- (3) If aRb and bRc, then aRc: If a = b, b = c, then a = c

PARTIAL ORDERING RELATIONS

- A relation R on a set S is called a partial ordering or a partial order of S if R is reflexive, antisymmetric, and transitive.
- A set S together with a partial ordering R is called a partially ordered set or poset.
- (1) For every $a \in S$, aRa : a = a for every $a \in S$.
- (2) If aRb and bRa, a=b: Identity relation
- (3) If aRb and bRc, then aRc: If a = b, b = c, then a = c

CLOSURES

- Consider the relation $R = \{(a, a), (a, b), (b, c), (c, c)\}$ on the set $A = \{a, b, c\}$. Find: (a) reflexive(R); (b) symmetric(R); (c) transitive(R).
- The **reflexive closure** on R is obtained by adding all diagonal pairs of $A \times A$ to R which are not currently in R.

```
reflexive(R) = R \cup \{(b, b)\}\
= \{(a, a), (a, b), (b, b), (b, c), (c, c)\}\
```

• The **symmetric closure** on R is obtained by adding all the pairs in R (−1) to R which are not currently in R. Hence,

```
symmetric(R) = R \cup \{(b, a), (c, b)\}\
= \{(a, a), (a, b), (b, a), (b, c), (c, b), (c, c)\}\
```

CLOSURES

• The **transitive closure** on R, since A has three elements, is obtained by taking the union of R with $R^2 = R \circ R$ and $R^3 = R \circ R \circ R$.

Note that

$$R^2 = R \circ R = \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$$

 $R^3 = R \circ R \circ R = \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$
transitive $(R) = R \cup R^2 \cup R^3$
 $= \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$

EXERCISE

Que1) Consider the following five relations on the set

```
A = \{1, 2, 3\}:

R = \{(1, 1), (1, 2), (1, 3), (3, 3)\},

\emptyset = empty \ relation

S = \{(1, 1)(1, 2), (2, 1)(2, 2), (3, 3)\},

A \times A = universal \ relation

T = \{(1, 1), (1, 2), (2, 2), (2, 3)\}
```

- Determine whether or not each of the above relations on *A is*:
- (a) reflexive;
- (b) symmetric;
- (c) transitive;
- (d) antisymmetric.

SOLUTIONS

- (a) R is not reflexive since $2 \in A$ but $(2, 2) / \in R$. T is not reflexive since $(3, 3) / \in T$ and, similarly, \emptyset is not reflexive. S and $A \times A$ are reflexive.
- (b) R is not symmetric since $(1, 2) \in R$ but (2, 1) $/ \in R$, and similarly T is not symmetric. S, \emptyset , and $A \times A$ are symmetric.
- (c) T is not transitive since (1, 2) and (2, 3) belong to T, but (1, 3) does not belong to T. The other four relations are transitive.
- (d) S is not antisymmetric since 1 = 2, and (1, 2) and (2, 1) both belong to S. Similarly, $A \times A$ is not antisymmetric. The other three relations are antisymmetric.

Que 2) Let R and S be the following relations on

$$B = \{a, b, c, d\}$$
:

$$R = \{(a, a), (a, c), (c, b), (c, d), (d, b)\}$$
 and

$$S = \{(b, a), (c, c), (c, d), (d, a)\}$$

Find the following composition relations:

$$(a)R\circ S$$
; $(b)S\circ R$; $(c)R\circ R$; $(d)S\circ S$.

- (a) $R \circ S = \{(a, c), (a, d), (c, a), (d, a)\}$
- (b) $S \circ R = \{(b, a), (b, c), (c, b), (c, d), (d, a), (d, c)\}$
- (c) $R \circ R = \{(a, a), (a, b), (a, c), (a, d), (c, b)\}$
- (d) $S \circ S = \{(c, c), (c, a), (c, d)\}$

Que 3) Let R be the relation on N defined by

$$x + 3y = 12$$
, i.e. $R = \{(x, y) \mid x + 3y = 12\}$.

- (a) Write R as a set of ordered pairs
- (b) Find the domain, range of R and R(-1)
- (d) Find the composition relation $R \circ R$.
- (a) $\{(9, 1), (6, 2), (3, 3)\};$
- $(b) (i) \{9, 6, 3\},\$
 - (ii) {1, 2, 3},
 - (iii) {(1, 9), (2, 6), (3, 3)};
- $(c) \{(3, 3)\}.$