水滴打卡

系 统 设 计 说 明 书

目 录

1.	引言	1
	1.1 编写目的	1
	1.2 背景	1
	1.3 名词术语	1
	1.4 参考资料	2
2.	功能模块层次设计、功能模块层次图	3
	2.1 功能模块层次设计	3
	2.2 功能模块层次图	3
3.	UML 设计图	4
	3.1 用例图	4
	3.2 类图	4
	3.3 活动图	5
	3.4 状态图	5
	3.5 泳道图	6
	3.6 顺序图	7
4.	接口设计	7
	4.1 外部接口	7
	4.2 内部接口	7
5.	ER 分析、表结构设计	9
	5.1 ER 分析	9
	5.2 表结构设计	9
6.	系统安全和权限设计	10
	6.1 数据传输安全性设计	10
	6.2 应用系统安全性设计	11
	6.3 数据备份和恢复	11

水滴打卡系统设计说明书

1. 引言

1.1 编写目的

本设计说明书文档包括该项目的建设背景、目标、建设内容、系统架构、接口、数据模型、功能模型、部署模型、功能设计等描述,用于指导该项目的开发与部署;同时,作为该项目的重要技术资料,作为系统未来维护或扩展的参考。

本文档的阅读者为本系统的设计、开发人员、接口系统的开发人员、系统维护人员。

1.2 背景

本设计通过用户对图书馆的需求进行调研分析,深入了解用户的需求情况。 在现在的日常生活中,"打卡"可以让自己在一些需要长期坚持的事情上更加坚定信念,有"跑步打卡"、"健身打卡"、"读书打卡"等等,这些都可以让人们养成一个良好的习惯,直观的了解到自己的时间利用,随着打卡天数和时长的不断增加可以不断的激励自我,将所做的事能够长期坚持下去;同时能够与志同道合者相互竞争,增强自信,激发潜力,从而图书馆有一个自己的"打卡"小程序是有必要也有益处的。

1.3 名词术语

应用程序接口: 预先定义的函数或指软件系统不同组成部分衔接的约定

云数据库:云数据库是指被优化或部署到一个虚拟计算环境中的数据库,可以实现按需付费、按需扩展、高可用性以及存储整合等优势。根据数据库类型一般分为关系型数据库和非关系型数据库(NoSQL 数据库)。

云开发: 云开发(CloudBase)是云端一体化的后端云服务,采用 serverless 架构,免去了移动应用构建中繁琐的服务器搭建和运维。同时云开发提供的静态托管、命令行工具(CLI)、Flutter SDK等能力降低了应用开发的门槛。使用云开发可以构建完整的小程序/小游戏、H5、Web、移动 App 等应用。

1.4 参考资料

● 技术参考

微信官方文档•小程序开发指南

微信官方文档 • 云开发

● 资料参考

[1] 邹欣,构建之法-现代软件工程(第三版)

[2] 《系统设计说明书》参考模版:

https://wenku.baidu.com/view/ba97b6e30812a21614791711cc7931b764ce7b81.

htm1

[3] 软件设计-UML 类图详解说明:

https://blog.csdn.net/loumoxiaozi/article/details/81036408

[4] 数据库表设计的几条准则:

https://www.cnblogs.com/wyq178/p/8549715.html

[5] RBAC 用户、角色、权限、组设计方案:

https://blog.csdn.net/1jw499356212/article/details/81055141

2. 功能模块层次设计、功能模块层次图

2.1 功能模块层次设计

2.1.1 总体设计

本系统的主要功能是根据用户打卡记录和在馆时长,记录学生到管次数,对数据设计相应的模板渲染。体现用户的学习时长、访馆频率,生成打卡年度报告并分享给其他人。因而小程序只设计学生模块,学生模块主要能够让学生查看自己的学习记录。

2.1.2 学生模块设计

- (1) 用户登录:实现用户使用学号登录功能,非学院学生不得登录;
- (2) 用户个人信息:显示用户系别、专业、年级、性别、学号、姓名等个人信息:
- (3) 用户功能模块:显示打卡记录、累计打卡时长、打卡排行榜、打卡周报,实现快速打卡等功能。

2.2 功能模块层次图

第 3 页 共 11 页

3. UML 设计图

3.1 用例图

3.2 类图

3.3 活动图

3.4 状态图

3.5 泳道图

3.6 顺序图

4. 接口设计

4.1 外部接口

(1) 用户授权登录小程序

调用 wx. login()和 wx. checksession()接口实现登录操作,并调用 wx. getUserProfile()接口获取用户信息。

(2) 获取用户所在地

调用 wx. getLocation()接口获取用户所在位置。

4.2 内部接口

4.2.1 用户打卡

- (1) 功能要求:前端传入用户打卡所在地点,时间等参数,通过后端接口 交互记录到数据库中;
 - (2) 性能要求:响应时间在200ms以内;
 - (3) 输入项:用户的信息,所在地,打卡时间等;
 - (4) 输出项:是否打卡成功。

4.2.2 获取打卡累计时长:

- (1) 功能要求:通过用户信息获取到用户的累计打卡时长,天数;
- (2) 性能要求:响应时间在 200ms 以内;
- (3) 输入项:用户的基本信息,例如 id:
- (4) 输出项:用户的累计打卡时长,天数。

4.2.3 打卡排行榜:

- (1) 功能要求: 获取用户以及好友的打卡排行榜;
- (2) 性能要求:响应时间在200ms以内;
- (3) 输入项:用户的基本信息,例如 id;
- (4) 输出项:用户的打卡排行榜。

4.2.4分享内容至朋友圈:

- (1) 功能要求:点击分享将小程序的内容分享到朋友圈;
- (2) 性能要求:响应时间在 200ms 以内;
- (3) 输入项:用户的基本信息,想要分享的内容信息;
- (4) 输出项:提供一个链接用以跳转到小程序。

5. ER 分析、表结构设计

5.1 ER 分析

5.2 表结构设计

表名	功能简介
Student	学生表,用于存放学生的个人信息
Main	打卡记录表,记录打卡的相关信息

5.2.1 Student 表

列名	数据类型	空/非空	约束条件	说明
Sno	INT (10)	非空	PRIMARY KEY	学生学号
Name	VARCHAR (30)	非空		学生姓名
ID	CHAR (18)	非空		学生 ID

Sex	CHAR (2)	非空	Sex='男'or'女'	学生性别
Grade	CHAR (5)	非空		学生年级
Department	VARCHAR (255)	非空		学生系别
Major	VARCHAR (255)	非空		学生专业
Password	CHAR (20)	非空		登录密码

5.2.2 Main 表

列名	数据类型	空/非空	约束条件	说明
Sno	INT (10)	非空	PRIMARY KEY	学生学号
Name	VARCHAR (30)	非空		学生姓名
Suc Time	DATETIME (255)	非空		打卡成功时间
Acu Time	TIME(255)			累计打卡时长
Counts	INT (255)			累计打卡天数

6. 系统安全和权限设计

6.1 数据传输安全性设计

SSH可以通过将联机的封包加密的技术进行资料的传递,确保资料传输比较安全并且传输效率较高。使用 SSH可以把传输的所有数据进行加密,即使有人截获到数据也无法得到有用的信息。同时数据经过压缩,大大地加快了传输的速度。

6.2 应用系统安全性设计

操作人的操作信息需要提供操作记录。对系统的异常信息需进行记录,已备以后查看。只有授权管理员才能登录系统,对于某个操作,需要具有相应权限才能进行操作。

6.3 数据备份和恢复

为防止用户手机丢失导致数据丢失的情况,应当定时进行数据备份。如有需要,将进行数据的回档操作,将数据还原至指定时间点。回档期间,数据库的数据访问不受影响。回档完成后,开发者可在集合列表中看到原有数据库集合和回档后的集合。