$WW \rightarrow qql\nu$ Benchmark

Justin Anguiano

October 7, 2019

Introduction / Motivation

WW is a standard process with a large cross-section

15 pb in semileptonic channel at 500 GeV

Three central physics issues addressable by this channel are

- Dynamics of the charged triple gauge couplings
- Measurement of W boson mass, width, cross-section, and BR
- Beam polarization measurement

500 GeV Samples

 $\sqrt{s} = 500 \text{ GeV}$

Total luminosity : 4000 fb^{-1}

Reco/Sim: ILCSoftv02-00-02 ILD_15_o1_v02

MC Background Samples (DBD)-

- 2-fermion
 - Z-bhabhag/hadronic/leptonic
- 4-fermion
 - singleW-leptonic
 - Zee/vv-leptonic/semileptonic
 - singleZsingleWMix-leptonic
 - WW-hadronic/leptonic
 - ZZ-hadronic/leptonic/semileptonic
 - ZZWWMix-hadronic/leptonic

Note: singleW semileptonic is split into $WW \to qqe\nu$ signal and also 4f background events that contain an off shell W $(\pm 10 \mbox{GeV}$ to nominal mass) are considered backround

6-fermion

- eeWW, IIWW, vvWW, xxWW
- ttbar
- xxxxZ, yyyyZ
- SM Higgs
 - eeH, qqH, $\mu\mu$ H, $\tau\tau$ H, $\nu\nu$ H

Analysis Approach

Step 1-

Treat all lepton flavors universally

Start by identifiying signal tau candidates with TauFinder

Optimize TauFinder to efficiently find taus (based on decay products) and also reject tau fakes from hadronic jets

Separate into 4 categories:

$$\begin{array}{c} \tau \to \mu\nu\nu \\ \tau \to \mathrm{e}\nu\nu \\ \end{array}$$

$$\tau \to \mathrm{hadronic} \ 1\text{-prong} \\ \tau \to \mathrm{hadronic} \ 3\text{-prong} \end{array}$$

This approach simultaneously optimizes lepton selection for prompt μ/e

Step 2-

With a selected lepton, treat the remaining system as hadronic components of W o qq

Use y-cut and kinematic cuts on mini-jets to mitigate pileup $(\gamma\gamma)$

Step 3- Perform basic event selection for multiple polarization scenarios

(1) TauFinder

TauFinder basic operation

Processor starts by seeding tau candidates with tracks ordered by $\left|P\right|$

-Particles that fall within a search cone around the seed track are added to the candidate

-Particles are sequentially added until there are no more in the search cone or until acceptance conditions are violated

Operating criteria

- Search Cone Angle The opening angle of the search cone for the tau jet [rad]
- Isolation Cone Angle Outer isolation cone around the search cone of the tau jet [rad]
- Isolation Energy The total energy allowed within the isolation cone region [GeV]
- Invariant Mass The upper limit on tau candidate mass [GeV]

(1) TauFinder Optimization

Optimization of 3 parameters:

- searchCone $\in [0, 0.15]$ rad with 0.01 rad steps
- isolationCone \in [0, 0.15] rad with 0.01 rad steps
- isolationEnergy \in [0, 5.5] GeV with 0.5 GeV steps

For simplicity, fix invariant mass cut at 3 GeV

Define optimization metrics:

Efficiency using $WW \rightarrow qqlnu$ for true leptons:

$$\varepsilon_s = N_{matched}/N_{Stotal}$$

 a tau candidate is considered matched within 100 mrads of the gen lepton

– if the gen lepton is a tau, the jet is matched to the gen visible components – excluding FSR – N_{Stotal} is the Number of events with 3 visible gen fermions $|cos\theta| < 0.99$

fake leptons: Use WW o qqqq

$$-\varepsilon_b = N_b/N_{Btotal}$$

 ${\it N}_{\it b}$ is any event with at least one reconstructed tau jet

4 quarks give 4 chances to create a tau jet ε_b —Use a better tuning parameter P_{fake} which is the probability of reconstructing a tau jet from a single quark jet

$$P_{fake} = 1 - (1 - \varepsilon_b)^{\frac{1}{4}}$$
 $\sigma_{P_{fake}} = \frac{1}{4} \sqrt{\frac{\varepsilon_b}{N_{Btotal} \sqrt{1 - \varepsilon_b}}}$

The optimal working point is chosen from the two tuning parameters $\max[(1 - P_{fake})\varepsilon_s]$

(1) TauFinder Optimization Results

Channel	ε_s	$1 - P_{fake}$	%	searchCone	isoCone	isoE
			Matched	[rad]	[rad]	[GeV]
Prompt μ	0.905	0.974	0.992	0.03	0.15	3.0
Inclusive $ au$	0.736	0.943	0.958	0.07	0.15	4.5
$\tau \rightarrow \nu \nu \mu$	0.802	0.974	0.984	0.03	0.15	3.0
$\tau ightarrow u u e$	0.781	0.963	0.981	0.05	0.15	3.5
au Had-1p	0.707	0.943	0.951	0.07	0.15	4.5
au Had-3p	0.709	0.930	0.937	0.07	0.15	5.5
Prompt e	0.839	0.961	0.97	0.04	0.15	4.0

(2) Hadronic System

If a lepton(s) have been found by TauFinder,

- select highest energy candidate as signal lepton
- shuffle remaining fakes back into the hadronic system.

At least one quark tends to be very forward, so pileup tends to mix into the jets

These beam particles cannot be cleanly removed by standard methods e.g. kT algorithm tuned R values

My approach: "Jet Fragmentation"

- tune y-cut($\propto M_{jet}^2$) values on the durham algorithm (eekt)
- apply simple cuts to the resulting "mini-jets"

(2) Optimized W Mass

Find best W jet parameters over the ranges: Use only signal events with gen. prompt muons

- yCut: $[1 \times 10^{-3}, 5 \times 10^{-6}]$
- pT:[0, 5] bins of 0.5 GeV
- $|\cos\theta|$:[0.9, 1] 0.01 bins

Use 2 optimization parameters from the $M_{qq}^{meas} - M_{qq}^{gen}$ dist.:

- Full Width Half Maximum (FWHM)
- Number of bin Entries in the Mode

The Mode Entries is the number of entries in the Maximum bin + the number of Entries of the nearest left/right neighbor bins

The Mode is the weighted mean of the center of the 3 Mode bins

The Maximum for the FWHM is the "Mode Average" or the average number of entries from the 3 mode hins

The edges of the Width for FWHM are the weighted average between the 2 bins around the half maximum (1 bin above 1 bin below) 4 D > 4 D > 4 E > 4 E > E 9 Q O

(2) Hadronic System Results

Comparison of 3 YCuts with the same kinematic cuts Pt>2 GeV AND $\cos\theta < 1$ (optimized for 5e-05)

Small peak around -80 GeV is where the W has been incorrectly thrown out

Significant Improvement!

```
Mass Difference Statistics: ycut: 0.001 ptcut: 2 costcut: 1 FWHM: 11.769 RMS: 24.1855 Mode: -0.24211 mean: 0.782898 modeEnt: 5199 ycut: 5e-05 ptcut: 2 costcut: 1 FWHM: 9.7087 RMS: 25.2774 Mode: -0.25127 mean: -3.09776 modeEnt: 6326 ycut: 5e-06 ptcut: 2 costcut: 1 FWHM: 11.567 RMS: 25.7475 Mode: -1.75521 mean: -9.57673 modeEnt: 5475
```

Best Performance is reached with:

ycut= 5e-05 and removal of mini-jets with pT < 2 GeV

(3) Event Selection Overview

Perform event selection with two mutually exclusive groups:

1st group will use μ cone (optimized for prompt muons)

- "tight" selection will yield some efficiency ϵ_0 and purity p_0
- tight cuts will be targeted towards prompt signal leptons μ/e

2nd group will use the τ cone (optimized for inclusive τ decays)

- "loose" selection will yield some efficiency ϵ_1 and purity p_1
- "loose" cuts should address aus not reconstructed by muon cone
- orthognalize selection require 0 tight leptons in loose selection

Optimize selection for some overall efficiency $\epsilon = \epsilon_0 + \epsilon_1$ times purity

$$p = (N_0 + N_1)/(B_0 + B_1 + N_0 + N_1)$$

Description of current cuts:(currently tight/loose are mostly the same) adapted from ref. I.MarchesiniDESY-THESIS2011

-Note reconstructed particles are boosted against crossing angle boost- (3.5 GeV in x)

- Lepton Require at least 1 reconstructed lepton
- Track Multiplicity > 10 at least 10 tracks in the event (targeting rejection of 2f Bkg.)
- Pt > 5 GeV reject events with no genuine missing Pt
- E_{vis} < 500 GeV Sum of the total visible energy in the event
- E_{com} > 100 GeV target rejection of 2f and leptonic eeZ,
- $E_{com} = E_{vis} + E_{miss} P_{miss}^{\mu} = (|P_{miss}|, -\sum \vec{p}_{vis})$ $40 < M_{qq} < 120$ constrains jet system to be W-like
- $-q\cos\theta_W$ require the W^- to scatter forward

 $\mbox{Tight Signal} \Rightarrow \mbox{muon cone for } \mu, e, \tau \mbox{ signal events} \\ \mbox{Loose Signal} \Rightarrow \mbox{tau cone for } \mu, e, \tau \mbox{ signal events with no reconstructed tight lepton}$

N Leptons > 0

N Tracks > 10

 $\mbox{Tight Signal} \Rightarrow \mbox{muon cone for } \mu, e, \tau \mbox{ signal events} \\ \mbox{Loose Signal} \Rightarrow \mbox{tau cone for } \mu, e, \tau \mbox{ signal events with no reconstructed tight lepton} \\$

Visible Pt > 5 GeV

Visible Energy $< 500 \; \text{GeV}$

 $\mbox{Tight Signal} \Rightarrow \mbox{muon cone for } \mu, e, \tau \mbox{ signal events} \\ \mbox{Loose Signal} \Rightarrow \mbox{tau cone for } \mu, e, \tau \mbox{ signal events with no reconstructed tight lepton} \\$

 $E_{com} > 100 \text{ GeV}$

 $40 < M_{qq} < 120$

 $\mbox{Tight Signal} \Rightarrow \mbox{muon cone for } \mu, e, \tau \mbox{ signal events} \\ \mbox{Loose Signal} \Rightarrow \mbox{tau cone for } \mu, e, \tau \mbox{ signal events with no reconstructed tight lepton} \\$

 $-q\cos\theta_W > -0.95$

Polarization: (-0.8,+0.3) Luminosity: 1600 fb⁻¹

Selection		

	Prompt μ	Prompt e	τ	Tot. Sig.	2f	4f	6f	Higgs
nocut	3.87×10^{6}	3.89 × 10 ⁶	3.90×10^{6}	1.17×10^{7}	4.22 × 10 ⁷	3.22×10^{7}	2.14×10^{5}	4.12×10^{5}
lepton	3.31×10^{6}	3.20×10^{6}	2.28×10^{6}	8.78×10^{6}	1.15×10^{7}	1.18×10^{7}	1.63×10^{5}	1.15×10^{5}
ntracks	3.22×10^{6}	3.11×10^{6}	2.21×10^{6}	8.54×10^{6}	2.84×10^{6}	2.83×10^{6}	1.50×10^{5}	9.36×10^{4}
ptcut	3.18×10^{6}	3.07×10^{6}	2.18×10^{6}	8.44×10^{6}	1.81×10^{6}	2.08×10^{6}	1.47×10^{5}	8.40×10^{4}
esum	3.16×10^{6}	3.00×10^{6}	2.18×10^{6}	8.33×10^{6}	1.66×10^{6}	1.96×10^{6}	1.46×10^{5}	8.11×10^{4}
roots	3.15×10^{6}	2.99×10^{6}	2.16×10^{6}	8.31×10^{6}	1.37×10^{6}	1.63×10^{6}	1.45×10^{5}	7.96×10^{4}
mwhad	2.70×10^{6}	2.56×10^{6}	1.82×10^{6}	7.08×10^{6}	4.02×10^{5}	2.67×10^{5}	2.08×10^{4}	3.06×10^{4}
qcostw	2.69×10^{6}	2.55×10^{6}	1.81×10^{6}	7.05×10^{6}	3.21×10^{5}	2.37×10^{5}	2.01×10^{4}	2.94×10^{4}
ϵ	0.6951 ±	0.6551 ±	0.4644 ±	0.6047 ±	0.007589±	0.007363±	0.09395 ±	0.0714 ±
	0.0018	0.0019	0.002	0.0011	1.3e - 05	1.5e - 05	0.00063	0.0004

	0.0010	0.0013	0.002	0.0011	1.50	1.50	0.00005	0.0001
Loose selection	n with tau cone							
	Prompt μ	Prompt e	τ	Tot. Sig.	2f	4f	6f	Higgs
nocut	3.87×10^{6}	3.89×10^{6}	3.90×10^{6}	1.17×10^{7}	4.22×10^{7}	3.22×10^{7}	2.14×10^{5}	4.12×10^{5}
lepton	3.36×10^{6}	3.30×10^{6}	2.82×10^{6}	9.48×10^{6}	1.30×10^{7}	1.36×10^{7}	1.77×10^{5}	1.38×10^{5}
mucone	7.72×10^{4}	1.28×10^{5}	5.70×10^{5}	7.76×10^{5}	1.93×10^{6}	2.15×10^{6}	1.61×10^{4}	3.12×10^{4}
ntracks	7.45×10^{4}	1.23×10^{5}	5.55×10^{5}	7.52×10^{5}	1.61×10^{6}	1.85×10^{6}	1.58×10^{4}	2.81×10^{4}
ptcut	7.34×10^{4}	1.22×10^{5}	5.48×10^{5}	7.43×10^{5}	9.22×10^{5}	1.12×10^{6}	1.36×10^{4}	2.52×10^{4}
esum	7.27×10^{4}	1.19×10^{5}	5.48×10^{5}	7.40×10^{5}	8.75×10^{5}	1.02×10^{6}	1.32×10^{4}	2.46×10^{4}
roots	7.04×10^{4}	1.18×10^{5}	5.41×10^{5}	7.29×10^{5}	7.33×10^{5}	9.83×10^{5}	1.32×10^{4}	2.43×10^{4}
mwhad	4.54×10^{4}	8.08×10^{4}	4.22×10^{5}	5.48×10^{5}	1.85×10^{5}	1.18×10^{5}	1.15×10^{3}	1.28×10^{4}
qcostw	4.00×10^{4}	7.74×10^{4}	4.12×10^{5}	5.29×10^{5}	1.17×10^{5}	1.01×10^{5}	1.11×10^{3}	1.23×10^{4}
ϵ	$0.01032 \pm$	$0.01991 \pm$	0.1057 ±	0.0454 ±	$0.002775 \pm$	$0.003146 \pm$	$0.005167 \pm$	0.0299 ±
	0.0004	0.0005	0.0012	0.0005	8.1e - 06	9.9e - 06	0.00015	0.00027

(3) Event Selection – Not "WW-like" Signal

Polarization: (-0.8,+0.3) Luminosity: $1600~{\rm fb}^{-1}$ Signal events containing off-shell W

	with muon cone		
	Prompt μ O.S.	Prompt e O.S.	Tau O.S.
nocut	5.78 × 10 ⁵	3.88 × 10 ⁶	5.70 × 10 ⁵
lepton	5.11×10^{5}	2.27×10^{6}	3.42×10^{5}
ntracks	4.99×10^{5}	2.21×10^{6}	3.36×10^{5}
ptcut	4.93×10^{5}	2.19×10^{6}	3.31×10^{5}
esum	4.89×10^{5}	2.18×10^{6}	3.30×10^{5}
roots	4.89×10^{5}	2.17×10^{6}	3.29×10^{5}
mwhad	3.41×10^{5}	1.88×10^{6}	2.37×10^{5}
qcostw	3.40×10^{5}	1.80×10^{6}	2.36×10^{5}
ϵ	0.5885 ±	0.463 ±	0.4138 ±
	0.0052	0.002	0.0052
oose Selection	n with tau cone		
	Prompt μ	Prompt e	Tau O.S.
	O.S.	O.S.	
nocut	5.78×10^{5}	3.88×10^{6}	5.70×10^{5}
lepton	5.15×10^{5}	2.47×10^{6}	4.26×10^{5}
mucone	8.18×10^{3}	2.61×10^{5}	8.83×10^{4}
ntracks	7.87×10^{3}	2.48×10^{5}	8.63×10^{4}
ptcut	7.87×10^{3}	2.46×10^{5}	8.53×10^{4}
esum	7.57×10^{3}	2.46×10^{5}	8.53×10^{4}
roots	7.42×10^{3}	2.35×10^{5}	8.47×10^{4}
mwhad	3.94×10^{3}	1.28×10^{5}	4.91×10^{4}
qcostw	3.63×10^{3}	1.18×10^{5}	4.77×10^{4}
ϵ	0.0062 ±	0.0303 ±	0.083 ±
	0.0081	0.0007	0.003

Event Selection Summary

(-0.8, +0.3) 1600 fb -1

	Tight Selection			Tight + Loc	Tight + Loose Sel.		
	Sel. Total	Efficiency	Purity	Sel. Total	Efficiency	Purity	
Bkg.	6.07e+05			8.39e+05			
Signal	4.5e+06	0.579	0.881	4.95e+06	0.638	0.855	
Sig.+O.S.	6.98e+06	0.545	0.92	7.56e+06	0.59	0.9	

(+0.8, -0.3) 1600 fb⁻¹

	Tight Selection			Tight + Loo	Tight + Loose Sel.		
	Sel. Total	Efficiency	Purity	Sel. Total	Efficiency	Purity	
Bkg.	3.09e+05			3.89e+05			
Signal	2.91e+05	0.585	0.485	3.21e+05	0.645	0.452	
Sig.+O.S.	5.54e+05	0.447	0.642	6.06e+05	0.489	0.609	

(-0.8, -0.3) 400 fb⁻¹

	Tight Selection			Tight + Loc	Tight + Loose Sel.		
	Sel. Total	Efficiency	Purity	Sel. Total	Efficiency	Purity	
Bkg.	1e+05			1.33e+05			
Signal	6.06e+05	0.579	0.858	6.67e+05	0.638	0.834	
Sig.+O.S.	9.7e+05	0.525	0.906	1.05e+06	0.569	0.888	

(+0.8, +03) 400 fb⁻¹

	Tight Selection			Tight + Loo	Tight + Loose Sel.		
	Sel. Total	Efficiency	Purity	Sel. Total	Efficiency	Purity	
Bkg.	6.61e+04			8.16e+04			
Signal	1.28e+05	0.581	0.659	1.41e+05	0.64	0.633	
Sig.+O.S.	2.4e+05	0.45	0.784	2.62e+05	0.492	0.763	