CMPT 409/981: Optimization for Machine Learning

Lecture 15

Sharan Vaswani

October 31, 2024

Recap: Online Optimization

Generic Online Optimization (w_0 , Algorithm \mathcal{A} , Convex set $\mathcal{C} \subseteq \mathbb{R}^d$)

- 1: **for** k = 1, ..., T **do**
- 2: Algorithm $\mathcal A$ chooses point (decision) $w_k \in \mathcal C$
- 3: Environment chooses and reveals the (potentially adversarial) loss function $f_k:\mathcal{C}\to\mathbb{R}$
- 4: Algorithm suffers a cost $f_k(w_k)$
- 5: end for

Application: Prediction from Expert Advice: Given d experts,

$$\mathcal{C} = \Delta_d = \{w_i | w_i \geq 0 \; ; \; \sum_{i=1}^d w_i = 1\}$$
 and $f_k(w_k) = \langle c_k, w_k \rangle$ where $c_k \in \mathbb{R}^d$ is the loss vector.

Application: **Imitation Learning**: Given access to an expert that knows what action $a \in [A]$ to take in each state $s \in [S]$, learn a policy $\pi : [S] \to [A]$ that imitates the expert, i.e. we want that $\pi(a|s) \approx \pi_{\text{expert}}(a|s)$. Here, $w = \pi$ and $\mathcal{C} = \Delta_A \times \Delta_A \dots \Delta_A$ (simplex for each state) and f_k is a measure of discrepancy between π_k and π_{expert} .

1

Online Optimization

- Recall that the sequence of losses $\{f_k\}_{k=1}^T$ is potentially adversarial and can also depend on w_k .
- **Objective**: Do well against the *best fixed decision in hindsight*, i.e. if we knew the entire sequence of losses beforehand, we would choose $w^* := \arg\min_{w \in \mathcal{C}} \sum_{k=1}^T f_k(w)$.
- **Regret**: For any fixed decision $u \in C$,

$$R_T(u) := \sum_{k=1}^T [f_k(w_k) - f_k(u)]$$

When comparing against the best decision in hindsight,

$$R_T := \sum_{k=1}^{T} [f_k(w_k)] - \min_{w \in C} \sum_{k=1}^{T} f_k(w).$$

• We want to design algorithms that achieve a *sublinear regret* (that grows as o(T)). A sublinear regret implies that the performance of our sequence of decisions is approaching that of w^* .

Online Convex Optimization

- Online Convex Optimization (OCO): When the losses f_k are (strongly) convex loss functions.
- Example 1: In prediction with expert advice, $f_k(w) = \langle c_k, w \rangle$ is a linear function.
- Example 2: In imitation learning, $f_k(\pi) = \mathbb{E}_{s \sim d^{\pi_k}}[\mathsf{KL}(\pi(\cdot|s) || \pi_{\mathsf{expert}}(\cdot|s)])$ where d^{π_k} is a distribution over the states induced by running policy π_k .
- Example 3: In online control such as LQR (linear quadratic regulator) with unknown costs/perturbations, f_k is quadratic.
- In Examples 2-3, the loss at iteration k+1 depends on the *learner*'s decision at iteration k.

Online Convex Optimization

• Online-to-Batch conversion: If the sequence of loss functions is i.i.d from some fixed distribution, we can convert the regret guarantees into the traditional convergence guarantees for the resulting algorithm.

Formally, if f_k are convex and $R(T) = O(\sqrt{T})$, then taking the expectation w.r.t the distribution generating the losses,

$$\mathbb{E}\left[\frac{R_T}{T}\right] = \mathbb{E}\left[\frac{\sum_{k=1}^T [f_k(w_k)] - \sum_{k=1}^T f_k(w^*)}{T}\right] \geq \sum_{k=1}^T \left[f(\bar{w}_T) - f(w^*)\right] = O\left(\frac{1}{\sqrt{T}}\right)$$

where $f(w) := \mathbb{E}[f_k(w)]$ (since the losses are i.i.d) and $\bar{w}_T := \frac{\sum_{k=1}^T w_k}{T}$ (since the losses are convex, we used Jensen's inequality).

- If the distribution generating the losses is a uniform discrete distribution on n fixed data-points, then $f(w) = \frac{1}{n} \sum_{i=1}^{d} f_i(w)$ and we are back in the finite-sum minimization setting.
- Hence, algorithms that attain $R(T) = O(\sqrt{T})$ can result in an $O\left(\frac{1}{\sqrt{T}}\right)$ convergence (in terms of the function values) for convex losses.

Online Gradient Descent

The simplest algorithm that results in sublinear regret for OCO is Online Gradient Descent.

Online Gradient Descent (OGD): At iteration k, the algorithm chooses the point w_k . After the loss function f_k is revealed, OGD suffers a cost $f_k(w_k)$ and uses the function to compute

$$w_{k+1} = \Pi_C[w_k - \eta_k \nabla f_k(w_k)]$$

where $\Pi_C[x] = \arg\min_{y \in C} \frac{1}{2} \|y - x\|^2$.

Claim: If the convex set $\mathcal C$ has a diameter D i.e. for all $x,y\in\mathcal C$, $\|x-y\|\leq D$, for an arbitrary sequence losses such that each f_k is convex and differentiable, OGD with a non-increasing sequence of step-sizes i.e. $\eta_k\leq\eta_{k-1}$ and $w_1\in\mathcal C$ has the following regret for all $u\in\mathcal C$,

$$R_T(u) \leq \frac{D^2}{2\eta_T} + \sum_{k=1}^T \frac{\eta_k}{2} \|\nabla f_k(w_k)\|^2$$

5

Online Gradient Descent - Convex functions

Proof: Using the update $w_{k+1} = \prod_{\mathcal{C}} [w_k - \eta_k \nabla f_k(w_k)]$. Since $u \in \mathcal{C}$,

$$\|w_{k+1} - u\|^2 = \|\Pi_{\mathcal{C}}[w_k - \eta_k \nabla f_k(w_k)] - u\|^2 = \|\Pi_{\mathcal{C}}[w_k - \eta_k \nabla f_k(w_k)] - \Pi_{\mathcal{C}}[u]\|^2$$

Since projections are non-expansive i.e. for all x, y, $\|\Pi_{\mathcal{C}}[y] - \Pi_{\mathcal{C}}[x]\| \le \|y - x\|$,

$$\leq \|w_{k} - \eta_{k} \nabla f_{k}(w_{k}) - u\|^{2}$$

$$= \|w_{k} - u\|^{2} - 2\eta_{k} \langle \nabla f_{k}(w_{k}), w_{k} - u \rangle + \eta_{k}^{2} \|\nabla f_{k}(w_{k})\|^{2}$$

$$\leq \|w_{k} - u\|^{2} - 2\eta_{k} [f_{k}(w_{k}) - f_{k}(u)] + \eta_{k}^{2} \|\nabla f_{k}(w_{k})\|^{2}$$
(Since f_{k} is convex)

$$\implies 2\eta_{k}[f_{k}(w_{k}) - f_{k}(u)] \leq [\|w_{k} - u\|^{2} - \|w_{k+1} - u\|^{2}] + \eta_{k}^{2} \|\nabla f_{k}(w_{k})\|^{2}$$

$$\implies R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{\|w_{k} - u\|^{2} - \|w_{k+1} - u\|^{2}}{2\eta_{k}} \right] + \sum_{k=1}^{T} \frac{\eta_{k}}{2} \|\nabla f_{k}(w_{k})\|^{2}$$

Online Gradient Descent - Convex functions

Recall that
$$R_T(u) \leq \sum_{k=1}^T \left[\frac{\|w_k - u\|^2 - \|w_{k+1} - u\|^2}{2\eta_k} \right] + \sum_{k=1}^T \frac{\eta_k}{2} \|\nabla f_k(w_k)\|^2$$
.

$$\sum_{k=1}^{T} \left[\frac{\|w_k - u\|^2 - \|w_{k+1} - u\|^2}{2\eta_k} \right]$$

$$= \sum_{k=2}^{T} \left[\|w_k - u\|^2 \left(\frac{1}{2\eta_k} - \frac{1}{2\eta_{k-1}} \right) + \frac{\|w_1 - u\|^2}{2\eta_1} - \frac{\|w_{T+1} - u\|^2}{2\eta_T} \right]$$

$$\leq D^2 \sum_{k=2}^{T} \left[\frac{1}{2\eta_k} - \frac{1}{2\eta_{k-1}} \right] + \frac{D^2}{2\eta_1} = D^2 \left[\frac{1}{2\eta_T} - \frac{1}{2\eta_1} \right] + \frac{D^2}{2\eta_1} = \frac{D^2}{2\eta_T}$$
(Since $\|x - y\| \leq D$ for all $x, y \in \mathcal{C}$)

Putting everything together,

$$R_T(u) \leq \frac{D^2}{2\eta_T} + \sum_{k=1}^T \frac{\eta_k}{2} \left\| \nabla f_k(w_k) \right\|^2$$

Online Gradient Descent - Convex, Lipschitz functions

Claim: If the convex set $\mathcal C$ has a diameter D i.e. for all $x,y\in\mathcal C$, $\|x-y\|\leq D$, for an arbitrary sequence losses such that each f_k is convex, differentiable and G-Lipschitz, OGD with $\eta_k=\frac{\eta}{\sqrt{k}}$ and $w_1\in\mathcal C$ has the following regret for all $u\in\mathcal C$,

$$R_T(u) \leq \frac{D^2 \sqrt{T}}{2\eta} + G^2 \sqrt{T} \eta$$

Proof: Since the step-size is decreasing, we can use the general result from the previous slide,

$$R_T(u) \le \frac{D^2}{2\eta_T} + \sum_{k=1}^T \frac{\eta_k}{2} \|\nabla f_k(w_k)\|^2 \le \frac{D^2}{2\eta_T} + \frac{G^2}{2} \sum_{k=1}^T \eta_k$$
 (Since f_k is G-Lipschitz)

$$\implies R_T(u) \le \frac{D^2 \sqrt{T}}{2\eta} + \frac{G^2 \eta}{2} \sum_{k=1}^T \frac{1}{\sqrt{k}} \le \frac{D^2 \sqrt{T}}{2\eta} + G^2 \sqrt{T} \eta \qquad \text{(Since } \sum_{k=1}^T \frac{1}{\sqrt{k}} \le 2\sqrt{T}\text{)}$$

• In order to find the "best" η , set it such that $D^2/2\eta = G^2\eta$, implying that $\eta = D/\sqrt{2}G$ and $R_T(u) \leq \sqrt{2} DG \sqrt{T}$. Hence, OGD with a decreasing step-size attains sublinear $\Theta(\sqrt{T})$ regret for convex, Lipschitz functions.

Online Mirror Descent

- The OGD update at iteration k can also be written as: $w_{k+1} = \arg\max_{w \in \mathcal{C}} \left[\langle \nabla f_k(w_k), w \rangle + \frac{1}{2n_{\nu}} \|w w_k\|_2^2 \right]$
- Online Mirror Descent (OMD) generalizes gradient ascent by choosing a strictly convex, differentiable function $\phi : \mathbb{R}^d \to \mathbb{R}$ (referred to as the *mirror map*) to induce a distance measure.
- ϕ induces the Bregman divergence $D_{\phi}(\cdot,\cdot)$, a distance measure between points x,y,

$$D_{\phi}(y,x) := \phi(y) - \phi(x) - \langle \nabla \phi(x), y - x \rangle.$$

Geometrically, $D_{\phi}(y,x)$ is the distance between the function $\phi(y)$ and the line $\phi(x) + \langle \nabla \phi(x), y - x \rangle$ which is tangent to the function at x.

• Using D_{ϕ} as the distance measure results in the mirror descent update:

$$w_{k+1} = rg \max_{w \in \mathcal{C}} \left[\langle
abla f_k(w_k), w
angle + rac{1}{\eta_k} D_{\phi}(w, w_k)
ight]$$

• Setting $\phi(x) = \frac{1}{2} \|x\|^2$ results in $D_{\phi}(y, x) = \frac{1}{2} \|y - x\|^2$ and recovers OGD.

Online Mirror Descent – Example

- For prediction with expert advice, $C = \Delta_d = \{w_i | w_i \ge 0 ; \sum_{i=1}^d w_i = 1\}$ and we want a distance metric between probabilities.
- Typically use the negative-entropy mirror map i.e. $\phi(w) = \sum_{i=1}^{d} w_i \ln(w_i)$.
- For $u, v \in \mathcal{C}$, the corresponding Bregman divergence $D_{\phi}(u, v)$ can be calculated as:

$$D_{\phi}(u,v) = \phi(u) - \phi(v) - \langle \nabla \phi(v), u - v \rangle = \phi(u) - \phi(v) - \langle \log(v) + 1, u - v \rangle$$

$$(
abla\phi(u) = \log(u) + 1$$
, where $\log(\cdot)$ is element-wise)

$$= \sum_{i=1}^{d} u_{i} \log(u_{i}) - \sum_{i=1}^{d} v_{i} \log(v_{i}) - \left[\sum_{i=1}^{d} u_{i} \log(v_{i}) - \sum_{i=1}^{d} v_{i} \log(v_{i})\right] - \sum_{i=1}^{d} (v_{i} - u_{i})$$

$$= \sum_{i=1}^{d} u_{i} \log\left(\frac{u_{i}}{v_{i}}\right) = KL(u||v). \qquad (\sum_{i=1}^{d} u_{i} = \sum_{i=1}^{d} v_{i} = 1)$$

• The KL-divergence is a standard way to measure the distance between probability distributions. For distributions u, v, $\mathsf{KL}(u||v) := \sum_{i=1}^d u_i \, \log\left(\frac{u_i}{v_i}\right)$ is non-negative and equal to zero iff u = v.

Online Mirror Descent

The OMD update can be equivalently written as:

GD in dual space: $w_{k+1/2} = (\nabla \phi)^{-1} (\nabla \phi(w_k) - \eta_k \nabla f_k(w_k))$

Bregman projection: $w_{k+1} = \arg\min_{w \in \mathcal{C}} D_{\phi}(w, w_{k+1/2})$

Prove in Assignment 3!

Online Mirror Descent – Example

For prediction with expert advice, $\mathcal{C} = \Delta_d = \{w_i | w_i \geq 0 \; ; \; \sum_{i=1}^d w_i = 1\}$, $\phi(w) = \sum_{i=1}^d w_i \ln(w_i)$ is the negative-entropy mirror map and $g_k := \nabla f_k(w_k)$, then the OMD update can be written as: (prove in Assignment 3!)

- GD in dual space: $w_{k+1/2}[i] = w_k[i] \exp(-\eta_k g_k[i])$
- Bregman projection: $w_{k+1}[i] = \frac{w_{k+1/2}[i]}{\left\|w_{k+1/2}\right\|_1}$
- Multiplicative weights update:

$$w_{k+1}[i] = \frac{w_k[i] \exp(-\eta_k g_k[i])}{\sum_{j=1}^d w_k[j] \exp(-\eta_k g_k[j])}$$

If $w_0[i] = \frac{1}{d}$ for all $i \in [d]$, then, for all k,

$$w_{k+1}[i] = \frac{\exp\left(-\sum_{j=1}^{k} \eta_{j} g_{j}[i]\right)}{\sum_{i=1}^{d} \exp\left(-\sum_{j=1}^{k} \eta_{j} g_{j}[i]\right)}$$

In order to analyze OMD, we will make some assumptions about C, f_k and ϕ .

- **Assumption 1**: C is a convex set and $\forall k$, f_k is a convex function.
- Assumption 2: $\forall k$, f_k is G-Lipschitz in the ℓ_p norm (for $p \geq 1$), implying that $\forall w \in \mathcal{C}$,

$$\|\nabla f_k(w)\|_p \leq G$$

• Assumption 3: ϕ is ν strongly-convex in the ℓ_q norm (for $q \ge 1$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$) i.e.

$$\phi(y) \ge \phi(x) + \langle \nabla \phi(x), y - x \rangle + \frac{\nu}{2} \|y - x\|_q^2$$

- Example: For prediction from expert advice,
- ullet $\mathcal{C}=\Delta_d$ is a convex set and $f_k(w_k)=\langle c_k,w_k
 angle$ is a convex function.
- If the costs are bounded by M, then, $\|\nabla f_k(w)\|_{\infty} = \|c_k\|_{\infty} \leq M$. Hence, $p = \infty$, G = M.
- ullet If $\phi(w)$ is negative-entropy, then by Pinsker's inequality, q=1 and $\nu=1$ i.e.

$$\phi(y) - \phi(x) - \langle \nabla \phi(x), y - x \rangle = D_{\phi}(y, x) = \mathsf{KL}(y||x) \ge \frac{1}{2} \|y - x\|_{1}^{2}.$$

Claim: For an arbitrary sequence losses such that each f_k is convex, G-Lipschitz and differentiable, then OMD with a ν strongly-convex mirror map ϕ , $\eta_k = \eta = \sqrt{\frac{2\nu}{K}} \frac{D}{G}$ where $D^2 := \max_{u \in \mathcal{C}} D_{\phi}(u, w_1)$ has the following regret for all $u \in \mathcal{C}$,

$$R_K(u) \leq \frac{\sqrt{2} DG}{\sqrt{\nu}} \sqrt{K}$$

Proof: Recall the mirror descent update: $\nabla \phi(w_{k+1/2}) = \nabla \phi(w_k) - \eta_k \nabla f_k(w_k)$. Setting $\eta_k = \eta$ and using the definition of regret,

$$\begin{split} R_T(u) &= \sum_{k=1}^T f_k(w_k) - f_k(u) \leq \sum_{k=1}^T [\langle g_k, w_k - u \rangle] \qquad \text{(Convexity of } f_k \text{ and } g_k := f_k(w_k)) \\ &= \sum_{k=1}^T \frac{1}{\eta} \left\langle \nabla \phi(w_k) - \nabla \phi(w_{k+1/2}), w_k - u \right\rangle \qquad \text{(Using the OMD update)} \end{split}$$

Recall that $R_T(u) = \sum_{k=1}^T \frac{1}{\eta} \left\langle \nabla \phi(w_k) - \nabla \phi(w_{k+1/2}), w_k - u \right\rangle$

Three point property: for any 3 points x, y, z,

$$\langle \nabla \phi(z) - \nabla \phi(y), z - x \rangle = D_{\phi}(x, z) + D_{\phi}(z, y) - D_{\phi}(x, y)$$

$$\langle \nabla \phi(w_{k}) - \nabla \phi(w_{k+1/2}), w_{k} - u \rangle = D_{\phi}(u, w_{k}) + D_{\phi}(w_{k}, w_{k+1/2}) - D_{\phi}(u, w_{k+1/2})$$

$$\implies R_{T}(u) = \sum_{k=1}^{T} \frac{1}{\eta} \left[D_{\phi}(u, w_{k}) + D_{\phi}(w_{k}, w_{k+1/2}) - D_{\phi}(u, w_{k+1/2}) \right]$$

From the OMD update, we know that, $w_{k+1} = \arg\min_{w \in \mathcal{W}} D_{\phi}(w, w_{k+1/2})$. Recall the optimality condition: for a convex function f and a convex set \mathcal{C} , if $x^* = \arg\min_{x \in \mathcal{C}} f(x)$, then $\forall x \in \mathcal{X}$, $\langle \nabla f(x^*), x^* - x \rangle \leq 0$. Using this condition for $D_{\phi}(w, w_{k+1/2})$, for $u \in \mathcal{C}$,

$$\langle \nabla \phi(w_{k+1}) - \nabla \phi(w_{k+1/2}), w_{k+1} - u \rangle \le 0$$

$$\Rightarrow -D_{\phi}(u, w_{k+1/2}) < -D_{\phi}(u, w_{k+1}) - D_{\phi}(w_{k+1}, w_{k+1/2})$$
(3 point property)

$$\implies R_T(u) \leq \sum_{k=1}^T \frac{1}{\eta} \left[D_{\phi}(u, w_k) - D_{\phi}(u, w_{k+1}) \right] + \frac{1}{\eta} \left[D_{\phi}(w_k, w_{k+1/2}) - D_{\phi}(w_{k+1}, w_{k+1/2}) \right]$$

Telescoping we conclude that
$$R_T(u) \leq \frac{1}{\eta} D_{\phi}(u, w_1) + \frac{1}{\eta} \sum_{k=1}^T \left[D_{\phi}(w_k, w_{k+1/2}) - D_{\phi}(w_{k+1}, w_{k+1/2}) \right]$$
.

$$D_{\phi}(w_{k}, w_{k+1/2}) - D_{\phi}(w_{k+1}, w_{k+1/2}) = \phi(w_{k}) - \phi(w_{k+1}) - \langle \nabla \phi(w_{k+1/2}), w_{k} - w_{k+1} \rangle$$

$$\leq \langle \nabla \phi(w_{k}) - \nabla \phi(w_{k+1/2}), w_{k} - w_{k+1} \rangle - \frac{\nu}{2} \|w_{k} - w_{k+1}\|_{q}^{2}$$

(Using strong-convexity of
$$\phi$$
 with $y=w_{k+1}$ and $x=w_k$)

$$= \eta \left\langle g_k, w_k - w_{k+1} \right\rangle - \frac{\nu}{2} \left\| w_k - w_{k+1} \right\|_q^2 \qquad \text{(Using the OMD update)}$$

$$\leq \eta G \|w_k - w_{k+1}\|_q - \frac{\nu}{2} \|w_k - w_{k+1}\|_q^2$$

(Holder's inequality:
$$\langle x,y\rangle \leq \|x\|_p \|y\|_q$$
 s.t. $\frac{1}{p} + \frac{1}{q} = 1$ and since $\|g_k\|_p \leq G$)

$$\leq \frac{\eta^2 G^2}{2\nu} \qquad \qquad \text{(For all } z, \ az - bz^2 \leq \frac{a^2}{4b}\text{)}$$

$$\implies R_{\mathcal{T}}(u) \leq \frac{1}{\eta} D_{\phi}(u, w_1) + \frac{\eta G^2 T}{2\nu} \leq \frac{D^2}{\eta} + \frac{\eta G^2 T}{2\nu} \qquad \qquad \text{(Since } D_{\phi}(u, w_1) \leq D^2\text{)}$$

$$\implies R_T(u) \le \frac{\sqrt{2}DG}{\sqrt{\nu}}\sqrt{T}$$
 (Setting $\eta = \sqrt{\frac{2\nu}{T}} \frac{D}{G}$)

Online Mirror Descent – Example

We have proved that for any fixed comparator u, $R_T(u) \leq \frac{\sqrt{2DG}}{\sqrt{\nu}} \sqrt{T}$ where,

(i)
$$\|\nabla f_k(w)\|_p \le G$$
, (ii) $\phi(y) \ge f(x) + \langle \nabla \phi(x), y - x \rangle + \frac{\nu}{2} \|y - x\|_q^2$ and (iii) $D_{\phi}(u, w_1) \le D^2$.

• Using OMD with negative-entropy for prediction with expert advice, $p=\infty$, q=1, $\nu=1$. Since $\|c_k\|_{\infty} \leq M$, G=M. If $\forall i \in [d]$, $w_1[i]=\frac{1}{d}$, $D_{\phi}(u,w_1)=\sum_{i=1}^d u_i \ln(u_i\,d) \leq \ln(d)$.

$$\implies R_T(u) \leq \sqrt{2}M\sqrt{\ln(d)}\sqrt{T}$$

• Since OGD is a special case of OMD with $\phi(w) = \frac{1}{2} \|w\|^2$, using OGD for prediction with expert advice, p=2, q=2, $\nu=1$. Since $\|c_k\|_{\infty} \leq M$, using the relation between norms, $G=M\sqrt{d}$. If $\forall i \in [d]$, $w_1[i]=\frac{1}{d}$, $D_{\phi}(u,w_1)=\frac{1}{2} \|u-w_1\|^2 \leq \sqrt{2}$

$$\implies R_T(u) \leq 2M\sqrt{d}\sqrt{T}$$

• Hence, using multiplicative weights results in $O(\ln(d)\sqrt{T})$ regret which is better than the $O(\sqrt{d}\sqrt{T})$ regret obtained by OGD. For prediction with expert advice, when the number of experts is large, this can be a substantial advantage.

Online Gradient Descent - Strongly-convex, Lipschitz functions

Claim: If the convex set $\mathcal C$ has a diameter D, for an arbitrary sequence losses such that each f_k is μ_k strongly-convex (s.t. $\mu:=\min_{k\in[T]}\mu_k>0$), G-Lipschitz and differentiable, then OGD with $\eta_k=\frac{1}{\sum_{i=1}^k\mu_i}$ and $w_1\in\mathcal C$ has the following regret for all $u\in\mathcal C$,

$$R_T(u) \leq rac{G^2}{2\mu} \left(1 + \log(T)
ight)$$

Proof: Similar to the convex proof, use the update $w_{k+1} = \Pi_{\mathcal{C}}[w_k - \eta_k \nabla f_k(w_k)]$. Since $u \in \mathcal{C}$,

$$\implies R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{\|w_{k} - u\|^{2} (1 - \mu_{k} \eta_{k}) - \|w_{k+1} - u\|^{2}}{2 \eta_{k}} \right] + \frac{G^{2}}{2} \sum_{k=1}^{T} \eta_{k}$$
(Since f_{k} is G -Lipschitz)

Online Gradient Descent - Strongly-convex, Lipschitz functions

Recall that
$$R_T(u) \leq \sum_{k=1}^T \left[\frac{\|w_k - u\|^2 (1 - \mu_k \eta_k) - \|w_{k+1} - u\|^2}{2\eta_k} \right] + \frac{G^2}{2} \sum_{k=1}^T \eta_k$$
.

$$\sum_{k=1}^{T} \left[\frac{\|w_{k} - u\|^{2} (1 - \mu_{k} \eta_{k}) - \|w_{k+1} - u\|^{2}}{2 \eta_{k}} \right]$$

$$= \sum_{k=2}^{T} \left[\|w_k - u\|^2 \underbrace{\left(\frac{1}{2\eta_k} - \frac{1}{2\eta_{k-1}} - \frac{\mu_k}{2}\right)}_{=0} \right] + \|w_1 - u\|^2 \underbrace{\left[\frac{1}{2\eta_1} - \frac{\mu_1}{2}\right]}_{=0} - \frac{\|w_{T+1} - u\|^2}{2\eta_T} \le 0$$
(Since $\eta_k = \frac{1}{\sum_{k=1}^k \mu_i}$)

Putting everything together, $R_T(u) \leq \frac{G^2}{2} \sum_{i=1}^T \frac{1}{uk} \leq \frac{G^2}{2u} \ (1 + \log(T))$

(Since
$$\mu := \min_{k \in [T]} \mu_k$$
 and $\sum_{k=1}^T 1/k \le 1 + \log(T)$)

Lower Bound: There is an $\Omega(\log(T))$ lower-bound on the regret for strongly-convex, Lipschitz functions and hence OGD is optimal (in terms of T) for this setting!

Follow the Leader

Common algorithm that achieves logarithmic regret for strongly-convex losses.

Follow the Leader (FTL): At iteration k, the algorithm chooses the point w_k . After the loss function f_k is revealed, FTL suffers a cost $f_k(w_k)$ and uses it to compute

$$w_{k+1} = \arg\min_{w \in \mathcal{C}} \sum_{i=1}^{k} f_i(w).$$

- × Needs to solve a deterministic optimization sub-problem which can be expensive.
- \times Needs to store all the previous loss functions and requires O(T) memory.
- ✓ Does not require any step-size and is hyper-parameter free.
- In applications such Imitation Learning (IL), interacting with the environment and getting access to f_k is expensive. FTL allows multiple policy updates (when solving the sub-problem) and helps better reuse the collected data. FTL is a standard method to solve online IL problems and the resulting algorithm is known as DAGGER [RGB11].
- Compared to FTL, OGD requires an environment interaction for each policy update.

Follow the Leader and OGD

To connect FTL and OGD, consider the case when $\mathcal{C} = \mathbb{R}^d$.

$$w_{k+1} = \operatorname*{arg\,min}_{w \in \mathbb{R}} \sum_{i=1}^{k} \left[f_i(w) \right] \implies \sum_{i=1}^{k} \nabla f_i(w_{k+1}) = 0$$

- If we define $\tilde{f}_i(w)$ to be a lower-bound on the original μ_i strongly-convex function as $\tilde{f}_i(w) := f_i(w_i) + \langle \nabla f_i(w_i), w w_i \rangle + \frac{\mu_i}{2} \|w w_i\|^2$, then $\nabla \tilde{f}_i(w) = \nabla f_i(w_i) + \mu_i [w w_i]$.
- ullet Using FTL on $ilde f_k$ instead and using that $\sum_{i=1}^k
 abla ilde f_i(w_{k+1}) = 0$ and $\sum_{i=1}^k
 abla ilde f_i(w_k) = 0$,

$$\sum_{i=1}^{k} \nabla f_i(w_i) + w_{k+1} \left[\sum_{i=1}^{k} \mu_i \right] = \sum_{i=1}^{k} \mu_i w_i \quad ; \quad \sum_{i=1}^{k-1} \nabla f_i(w_i) + w_k \left[\sum_{i=1}^{k-1} \mu_i \right] = \sum_{i=1}^{k-1} \mu_i w_i$$

$$\nabla f_k(w_k) + (w_{k+1} - w_k) \left[\sum_{i=1}^k \mu_i \right] = 0 \implies w_{k+1} = w_k - \eta_k \nabla f_k(w_k). \text{ (where } \eta_k := 1/\sum_{i=1}^k \mu_i)$$

(Adding $\mu_k w_k$ to the second equation, and subtracting the two equations)

Hence, for the strongly-convex setting, running FTL on \tilde{f}_k recovers OGD on f_k .

Follow the Leader

Claim: If the convex set $\mathcal C$ has a diameter D, for an arbitrary sequence losses such that each f_k is μ_k strongly-convex (s.t. $\mu:=\min_{k\in[T]}\mu_k>0$), G-Lipschitz and differentiable, FTL with $w_1\in\mathcal C$ has the following regret for all $u\in\mathcal C$,

$$R_T(u) \leq \frac{G^2}{2\mu} \ (1 + \log(T))$$

Hence, FTL achieves the same regret as OGD when the sequence of losses is strongly-convex and Lipschitz (we will prove this later)

What about when the losses are convex but not strongly-convex?

Consider running FTL on the following problem. $\mathcal{C} = [-1,1]$ and $f_k(w) = \langle z_k, w \rangle$ where

$$z_1 = -0.5$$
; $z_k = 1$ for $k = 2, 4, ...$; $z_k = -1$ for $k = 3, 5, ...$

In round 1, FTL suffers $-0.5w_1$ cost and will compute $w_2 = 1$. It will suffer cost of 1 in round 2 and compute $w_3 = -1$. In round 3, it will thus suffer a cost of 1 and so on. Hence, FTL will suffer O(T) regret if the losses are not strongly-convex.

References i

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell, *A reduction of imitation learning and structured prediction to no-regret online learning*, Proceedings of the fourteenth international conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings, 2011, pp. 627–635.