Graf Teori

Bagian 2

- Jarak (distance)
- Diameter
- Jenis Graf
- Representasi Graf
- Isomorfisme Graf

Jarak

- kita dapat membuat beberapa walk/trail/path yang berbeda dari sebuah titik pangkal a, ke sebuah titik ujung b
- jarak dari titik a ke b adalah panjang path terpendek yang menghubungkan titik a dan b. dituliskan sebagai d(a,b)

Contoh

- d(v1,v7) = 3
- d(v6,v5) = 2

Diameter

- Diameter dari graf G adalah jarak terpanjang antar sembarang 2 pasang titik pada G.
- dinotasikan dengan diam(G)
- diam(G) = 3

Terhubung

- Sebuah graf dikatakan sebagai graf terhubung jika untuk sembarang dua titik u dan v, dapat dibuat path yang berpangkal di u dan berakhir di v.
- Jika tidak, maka graf tersebut dikatakan graf tidak terhubung.

Jenis Graf

- Jika ditinjau dari arah sisinya, graf dibagi menjadi 2 macam
 - graf berarah (directed graph)
 - graf tidak berarah (undirected graph / graph)
- Jika ditinjau dari bentuk sisinya, sebuah graf dapat dibagi menjadi 3 macam
 - graf sederhana (simple graph)
 - graf ganda (multi graph)
 - graf semu (pseudo graph)

Graf Sederhana

- Graf sederhana adalah graf yang tidak memiliki sisi ganda dan loop.
- Teorema :

Jika G adalah graf sederhana dan banyaknya titik adalah n, maka banyaknya sisi dari G maksimal sebanyak nC2

 note: teorema tersebut dapat dibuktikan dengan induksi matematika

Graf Tidak Sederhana

- Graf ganda adalah graf yang dapat memiliki sisi ganda, tetapi tidak memiliki loop.
- Graf semu adalah graf yang dapat memiliki sisi ganda dan loop.

 Graf sederhana, graf ganda, dan graf semu adalah graf tidak berarah

Contoh

 Contoh graf sederhana G₁, graf ganda G₂, dan graf semu G₃

Graf Berarah

- Dalam graf berarah, sisi (a,b) tidak sama dengan sisi (b,a).
- Graf Berarah dibagi menjadi 2 kategori
 - Graf berarah sederhana graf berarah yang tidak memiliki sisi ganda dan loop
 - Graf berarah ganda graf berarah yang memiliki sisi ganda atau loop

Contoh

 Contoh graf berarah sederhana G₄, dan graf berarah ganda G₅

Derajat Titik pada Graf Berarah

- penulisan derajat pada graf berarah dibedakan dari graf tidak berarah
- pada graf berarah, derajat titik v dituliskan :
 - d_{in}(v) = d·(v) = banyak sisi yang masuk ke titik v (*in-degree*)
 - d_{out}(v) = d+(v) = banyak sisi yang keluar dari titik v (out-degree)
 - $d(v) = d_{in}(v) + d_{out}(v)$

Derajat Titik pada Graf Berarah

- Titik dengan $d_{in}(v) = 0$ disebut sebagai source
- Titik dengan $d_{out}(v) = 0$ disebut sebagai **sink**

$$\sum d_{in}(v) = \sum d_{out}(v) = |E|$$

Jenis Graf

Jenis	Sisi	Sisi ganda	Sisi gelang
		dibolehkan?	dibolehkan?
Graf sederhana	Tak-berarah	Tidak	Tidak
Graf ganda	Tak-berarah	Ya	Tidak
Graf semu	Tak-berarah	Ya	Ya
Graf berarah	Bearah	Tidak	Ya
Graf-ganda berarah	Bearah	Ya	Ya

- Note:
- Kata Graf pada bahasan selanjutnya mengacu kepada Graf Sederhana kecuali diberitakan lain.

Representasi Graf

- Graf bisa direpresentasikan dengan cara
 - menggambar graf secara geometris
 - menuliskan himpunan V dan E dari graf
- Selain itu, bisa juga ditampilkan menggunakan :
 - matriks ketetanggaan (adjacency matrix)
 - matriks bersisian (incidence matrix)
 - daftar ketetanggaan (adjacency list)

Matriks Ketetanggaan

Cara membuat :

tiap baris dan tiap kolom mewakili titik pada graf

$$-a_{ij} = \begin{cases} 1 & \text{jika i bertetangga dengan j} \\ 0 & \text{jika i tidak bertetangga dengan j} \end{cases}$$

Sifat :

 jumlah elemen tiap barisnya / tiap kolomnya akan menunjukkan derajat titik yang mewakili baris tersebut

Matriks Bersisian

Cara membuat :

- tiap baris matriks mewakili titik pada graf
- tiap kolom matriks mewakili sisi pada graf

$$-a_{ij} = \begin{cases} 1 & \text{jika j bertumpu ke i} \\ 0 & \text{jika j tidak bertumpu ke j} \end{cases}$$

• Sifat:

- jumlah elemen tiap kolom = 2
- jumlah elemen tiap baris menyatakan derajat titik yang mewakili baris tersebut

Daftar Ketetanggaan

Cara membuat :

- dibuat dalam bentuk tabel 2 kolom
- kolom pertama berisi daftar titik pada graf
- kolom kedua berisi daftar titik yang bertetangga dengan titik di kolom pertama pada baris yang sama

Sifat :

 banyak elemen di kolom kedua menyatakan derajat titik di kolom pertama

Latihan

Quiz!!!

• Apakah kedua graf ini sama?

 Diberikan matriks ketetanggaan suatu graf sebagai berikut (ket : graf tersebut bukan graf sederhana)

 Gambarkan 2 buah graf yang bersesuaian dengan matriks tersebut! Beri nama G dan H.

 Dua buah graf yang sama, tetapi penggambaran secara geometrisnya berbeda disebut sebagai isomorfik.

Graf G dan H isomorfik

- Dua buah graf G dan H dikatakan isomorfik jika terdapat korespondensi satu-satu antar titik dan antar sisi pada graf G dan H sehingga hubungan kebersisiannya tetap terjaga.
- Dua graf yang isomorfik adalah graf yang sama, meskipun nama titik dan sisinya berbeda

Contoh Graf Isomorf

Contoh Graf Isomorf

Contoh Graf Isomorf

- Pengecekan :
 - mempunyai banyak titik yang sama
 - mempunyai banyak sisi yang sama
 - mempunyai titik berderajat tertentu yang sama
 - korespondensi satu-satunya mengawetkan kebersisiannya
- Jika salah satu syarat tersebut tidak terpenuhi, maka kedua graf tersebut tidak isomorfik. Bisa juga diperiksa secara visual

Latihan

Apakah kedua graf berikut isomorfik?

Latihan

Apakah kedua graf berikut isomorfik?

