偏微分方程式の計算数理(共立出版,2023年) 正誤表と補足コメント

齊藤 宣一

https://norikazu-saito.github.io/p/

最新更新日:2025年4月24日(← 2023.10.25)

1 正誤表

頁/行	訂正前	訂正後	更新日
15/-5	となる.	となる.ただし, $I \in \mathbb{R}^{N imes N}$ は単位行列である.	2023.11.02
$36/9 \sim 11$	$oxed{u^{n-1+ heta}}, \ oxed{u^{n-1}}$	$u^{(n-1+ heta)}, u^{(n-1)}$	2023.10.25
36/9	$k\langle A_h oldsymbol{u}', A_h oldsymbol{u}' angle$ (2 つ目の $'$ がボールド体)	$k\langle A_h u', A_h u' \rangle$	2023.11.04
68/-5	実際に代入することで	代入することで("実際に"を削除)	2024.04.04
69/11	$0 \le x \le x + \varepsilon$	$0 \le x \le \varepsilon$	2023.10.25
79/1	w = w(x)	u = u(x)	2023.11.09
79/2	$J(w) = \int_0^L G(w, \partial_x w) \ dx$	$J(\mathbf{u}) = \int_0^L G(\mathbf{u}, \partial_x \mathbf{u}) \ dx$	2023.11.09
97/-5	$G\boldsymbol{u}^{(n-1)} - i\tau H^{-1} \left[(1-\theta)\boldsymbol{f}(\boldsymbol{u}^{(n-1)}) + \theta \boldsymbol{f}(\boldsymbol{u}) + \boldsymbol{g}^{(n-1+\theta)} \right]$	$G_{\mathbf{u}} - i\tau H^{-1} \left[(1-\theta) f(\mathbf{u}) + \theta f(\mathbf{u}) + g^{(n-1+\theta)} \right]$ (2 箇所の	2023.12.13
		(n-1) を削除)	
97/-3	確かめられる.	確かめられる. ただし, $\mathcal{F}(u)$ は, (2.51) で定めたものである.	2023.12.13
		(2.52) も見よ.	

98/3	$ \ \boldsymbol{u}^{(n-1)} \ + \tau (1 - \theta) \ \boldsymbol{f}(\boldsymbol{u}^{(n-1)}) \ + \tau \theta \ \boldsymbol{f}(\boldsymbol{u}) \ + \tau R $	$\ \ \boldsymbol{u}\ \ + \tau(1-\theta)\ \ \boldsymbol{f}(\boldsymbol{u})\ \ + \tau\theta\ \ \boldsymbol{f}(\boldsymbol{u})\ \ + \tau R$ (2 箇所の $(n-1)$ を削除)	2023.12.13
98/4	$\ \boldsymbol{u}^{(n-1)}\ + \tau(1-\theta)C_{1f}(\ \boldsymbol{u}^{(n-1)}\) + \tau\theta C_{1f}(\ \boldsymbol{u}\) + \tau R$	$\ \mathbf{u}\ + \tau(1-\theta)C_{1f}(\ \mathbf{u}\) + \tau\theta C_{1f}(\ \mathbf{u}\) + \tau R$ (2 箇所の $(n-1)$ を削除)	2023.12.13
140/13, 15, 16	B (3 箇所)	<mark>E</mark> (3 箇所)	2023.11.19
140/16	$\det B$	$\det E$	2023.11.19
144/-2	凸多角形ならば	凸多角形 <mark>領域</mark> ならば	2023.11.02
145/4	凸多角形なので	凸多角形 <mark>領域</mark> なので	2025.04.24
212/4	$Bu + \rho f$	$Bv + \rho f$	2024.04.04
275/-7	$\inf_{x \in X} \frac{\ Tx\ _Y}{\ x\ _X}$	$\inf_{\mathbf{v} \in X} \frac{\ T\mathbf{v}\ _{Y}}{\ \mathbf{v}\ _{X}}$	2023.11.04
276/14	R (A) (2 箇所)	$\mathcal{R}(T)$ (2 箇所)	2023.11.03
287/-7	$ p-p_h _V$	$ p-p_h _{Q}$	2023.12.13
302/-6	$C_9 (u,p) _{\mathcal{X}}$	$C_9 \ (u,p)\ _{\mathcal{X}}$	2024.01.16
304/6	が成り立つ.	が,任意の $T \in \mathcal{T}_h$ に対して,成り立つ.	2023.10.25
304/11	$\ (v,q)\ $	$\ (v,q)\ _{\mathcal{T}_h}$	2024.01.16
305/5	$\inf_{(u_h, p_h) \in \mathcal{X}_h} \sup_{(v_h, q_h) \in \mathcal{X}_h} \frac{B_h((u_h, p_h), (v_h, q_h))}{\ (u_h, p_h)\ _{\mathcal{T}_h} \ (v_h, q_h)\ _{\mathcal{T}_h}}$	$\inf_{(u_h, p_h) \in \mathcal{X}_h} \sup_{(v_h, q_h) \in \mathcal{X}_h} \frac{B_h((u_h, p_h), (v_h, q_h))}{\ (u_h, p_h) \ \tau_h \ (v_h, q_h) \ \tau_h }$	2024.01.16
329/14	$1 \le p \le \infty$	$1 \le p < \infty$ (2° は 2 つの空間が同一視できるという主張です)	2023.12.06
371/6	$\ (A^{-1})^*\mathcal{E}_h(t)^*\ $	$\ \mathcal{E}_h(t)^*(A^{-1})^*\ $	2023.11.05
$402/ - 5 \sim -3$	このような … 通りである.	この一文を削除	2025.04.12
434/-9	$\int_{\Omega} [\nabla \cdot (bu)] v \ dx$	$-\int_{\Omega} (bu) \cdot \nabla v \ dx$	2024.01.26

435/2 - 4	$I \approx \sum v_h(P_i) \int_{P_i} \nabla \cdot (b^m u_h) dx$	$I = \int_{\Omega} [\nabla \cdot (b^m u)] v \ dx - \int_{\Gamma} (b^m \cdot n) uv \ dS$	2024.01.26
	$I \approx \sum_{i=1}^{N+B} v_h(P_i) \int_{D_i} \nabla \cdot (b^m u_h) \ dx$ $= \sum_{i=1}^{N+B} v_h(P_i) \int_{\partial D_i} (b^m \cdot n_i) u_h \ dx$ $= \sum_{i=1}^{N+B} v_h(P_i) \sum_{j \in \Lambda_i} \int_{\Gamma_{ij}} (b^m \cdot n_{ij}) u_h \ dx$	$I = \int_{\Omega} [\nabla \cdot (b^m u)] v dx - \int_{\Gamma} (b^m \cdot n) uv dS$ $\approx \sum_{i=1}^{N+B} v_h(\mathbf{P}_i) \int_{D_i} \nabla \cdot (b^m u_h) dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) u_$	$(n_i)u_h dS$
	$= \sum_{i=1}^{N+B} v_h(\mathbf{P}_i) \sum_{j \in \Lambda_i} \int_{\Gamma_{ij}} (b^m \cdot n_{ij}) u_h \ dx$	$= \sum_{i=1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i} (b^m \cdot n_i) u_h dx - \sum_{i=N+1}^{N+B} v_h(\mathbf{P}_i) \int_{\partial D_i \cap \Gamma} (b^m \cdot n_i) u_h dx$ $= \sum_{i=1}^{N+B} v_h(\mathbf{P}_i) \sum_{j \in \Lambda_i} \int_{\Gamma_{ij}} (b^m \cdot n_{ij}) u_h dx$	$(n_i)u_h dS$
440/6	$r(x,y) = \sqrt{(x-1/4)^2 + (y-1/4)^2}$	$r(x,y) = (x - 1/4)^2 + (y - 1/4)^2$	2024.01.26
444/-1	質量保存性則	質量保存則(性を削除)	2023.10.25
450/11	$(Tu, v)_X = (u, T^*v)_Y$	$(Tu, v)_{\mathbf{Y}} = (u, T^*v)_{\mathbf{X}}$	2024.08.09
468/2, 5	$(q, abla \cdot v)$	$(q, \nabla \cdot v)_{L^2(\Omega)}$	2024.04.02
472/4	$\lambda \in \mathbb{R}$	$\mu \in \mathbb{R}$	2023.10.25
476/-9	$ Jv_k - Jv_n _{2,\Omega}$	$ Jv_k - Jv_m _{2,\Omega}$	2023.10.25
515	[69] Y. Chiba and N. Saito. Nitsche's method for a Robin	[69] Y. Chiba and N. Saito. Nitsche's method for a Robin	2024.04.02
	boundary value problem in a smooth domain. Numer.	boundary value problem in a smooth domain. Numer.	
	Methods Partial Differential Equations, 掲載予定	Methods Partial Differential Equations, Vol. 39, No. 6, p.p. 4126–4144, 2023.	
535	[390] M. Tabata. A numerical algorithm for an upwind-type finite element method using exponential functions. <i>Theoretical and Applied Mechanics</i> , Vol. 34, pp. 371–376, 1986.	[390] M. Tabata. Conservative upwind finite element approximation and its applications. In Analytical and numerical approaches to asymptotic problems in analysis (Proc. Conf., Univ. Nijmegen, Nijmegen, 1980), pp. 369–381 North-Holland Math. Stud., 47. Amsterdam-New York, 1981	2023.12.13
539/右-14~	Galerkin Least Square (GLS) 安定化 408 Galerkin Least-	Galerkin Least Square (GLS) 安定化 303, 408	2024.05.10
-17	Square (GLS) 安定化 303		
540/左 - 5	$\mathbb{P}_2/\mathbb{P}_1$	$\mathbb{P}_2/\mathbb{P}_1$ 要素	2023.10.25

540/右 - 4	Taylor-Hood	Taylor-Hood 要素	2023.10.25
544/-7	(macro elements)	削除	2023.10.25

2 補足コメント

- 1. しばしば,"次のノルムを導入する: $\|\cdot\|^2 = \cdots$ " という表現をしているが,これは," $\|\cdot\|^2 = \cdots$,すなわち, $\|\cdot\| = \sqrt{\cdots}$ で定められるノルム $\|\cdot\|$ を考える"という意味である.あまり良い習慣ではないが,しばしば,専門的な論文の中でこのように表現することがある.(2023.10.25, 2023.11.12)
- 2. 研究課題 2.2 と研究課題 2.3 は、私が学部 4 年生の時に、藤田宏先生から出された課題である。ただし、中川の可変時間刻み幅の技巧を使えとは言われなかったし、文献も直接は教えてはもらえなかった。その代わりに、(質問に行った際に) 陳蘊剛、田端正久、侯野博の名前だけ教えてもらった。その後、以下の論文や記事を見つけ、これらが私が初めて読んだ数学の論文となった。夏休み明けから、冬休みまでかかったと記憶している。幸いなことに、この三人の先生とは、その後長く(現在に至るまで)交流を持てることになった。
 - [66] Y. G. Chen. Asymptotic behaviours of blowing-up solutions for finite difference analogue of $u_t = u_{xx} + u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo Sect. IA Math., Vol. 33, No. 3, pp. 541–574, 1986.
 - [388] M. Tabata. A finite difference approach to the number of peaks of solutions for semilinear parabolic problems. *J. Math. Soc. Japan*, Vol. 32, No. 1, pp. 171–192, 1980.
- [397] 田端正久. もう一つの数値解析―離散問題から連続問題へのフィードバック―. 数値解析と非線型現象(山口昌哉[編]), pp. 17-53. 日本評論社, 1996.
- [281] H. Matano. Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math., Vol. 29, No. 2, pp. 401–441, 1982.

陳先生のことは、今となっては、ご存知ない方が多いかもしれない.

• Y. G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom. Vol. 33, No. 3, pp. 749–786, 1991.

この論文の Chen さんと同一人物である. (2023.11.02)

- 3. [390] の参照ミスは、BibTeX からの拾い違いが原因です。(2023.12.13)
- 4. 定義 4.36 で述べた, 多角形領域, 多面体領域の定義は, "本書ではこのように扱う"という意味であるので, くれぐれも注意されたい(なので, "多面体とは…"という言い方はしなかった). そして, 有限要素法の数学理論の分野では, このように解釈されている, と筆者は理解している. (2023.12.19)
- 5. 楕円型,放物型という用語を,あまり深く考えずに使ってしまったと反省しています。あまり良い用語ではないと思うのですが,他にどう言えば良いのか分からなかったため,惰性で使ってしまいました。(2023.12.19)