Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 14

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all real numbers with the operations, for any $x, y \in V$, $c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$
$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative.
- (b) Determine if V is a vector space or not. Justify your answer.

Standard V3.

Mark:

$$\begin{bmatrix}
-3 \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
5 \\
-1 \\
-2
\end{bmatrix}, \begin{bmatrix}
2 \\
0 \\
-1
\end{bmatrix}, \text{ and } \begin{bmatrix}
0 \\
2 \\
-1
\end{bmatrix} \text{ span } \mathbb{R}^3$$

Standard V4.

Mark:

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=0 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Standard S2. $\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \\ -1 \end{bmatrix}$ is a basis of \mathbb{R}^4 .

Additional Notes/Marks