

인공지능 데이터 분석 orange

소프트웨어융합대학원 진혜진

boston-housing-price

	А	В	С	D	E	F	G	Н	I	J	K	L	М	N	0
1	CRIM :	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV	CAT. MED
2	0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	3 24	1 0
3	0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6	5 0
4	0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7	7 1
5	0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4	1 1
6	0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2	2 1
7	0.02985	0	2.18	0	0.458	6.43	58.7	6.0622	3	222	18.7	394.12	5.21	28.7	7 0
8	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9	0
9	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311	15.2	396.9	19.15	27.1	0
10	0.21124	12.5	7.87	0	0.524	5.631	100	6.0821	5	311	15.2	386.63	29.93	16.5	0
11	0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311	15.2	386.71	17.1	18.9	9 0
12	0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15	0
13	0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5	311	15.2	396.9	13.27	18.9	9 0
14	0.09378	12.5	7.87	0	0.524	5.889	39	5.4509	5	311	15.2	390.5	15.71	21.7	7 0
15	0.62976	0	8.14	0	0.538	5.949	61.8	4.7075	4	307	21	396.9	8.26	20.4	1 0
16	0.63796	0	8.14	0	0.538	6.096	84.5	4.4619	4	307	21	380.02	10.26	18.2	2 0
17	0.62739	0	8.14	0	0.538	5.834	56.5	4.4986	4	307	21	395.62	8.47	19.9	9 0
18	1.05393	0	8.14	0	0.538	5.935	29.3	4.4986	4	307	21	386.85	6.58	23.1	0

■ Test and Score 위젯 추가

Random sampling

- Repeat train/test
 - 랜덤 샘플링을 몇 번 수행할 지 지정한다.
- Training set size
 - •전체 데이터 중 학습을 위해 사용할 데이터의 비율이다.
 - •이 값을 70으로 지정하면 학습을 위해서는 70%를 쓰고 나머지 30%는 테스트 할 때 쓴다는 뜻이다.

Random sampling

- 붓꽃
 - 바깥쪽 면 꽃받침(sepal)
 - 안쪽 면 꽃잎(petal)

	А	В	С	D	Е
1	sepal length	sepal width	petal length	petal width	iris
2	5.1	3.5	1.4	0.2	Iris-setosa
3	4.9	3	1.4	0.2	Iris-setosa
4	4.7	3.2	1.3	0.2	Iris-setosa
5	4.6	3.1	1.5	0.2	Iris-setosa
6	5	3.6	1.4	0.2	Iris-setosa
7	5.4	3.9	1.7	0.4	Iris-setosa
8	4.6	3.4	1.4	0.3	Iris-setosa
9	5	3.4	1.5	0.2	Iris-setosa
10	4.4	2.9	1.4	0.2	Iris-setosa
11	4.9	3.1	1.5	0.1	Iris-setosa
12	5.4	3.7	1.5	0.2	Iris-setosa
13	4.8	3.4	1.6	0.2	Iris-setosa
14	4.8	3	1.4	0.1	Iris-setosa
15	4.3	3	1.1	0.1	Iris-setosa
16	5.8	4	1.2	0.2	Iris-setosa
17	5.7	4.4	1.5	0.4	Iris-setosa
18	5.4	3.9	1.3	0.4	Iris-setosa
19	5.1	3.5	1.4	0.3	Iris-setosa
20	5.7	3.8	1.7	0.3	Iris-setosa
21	5.1	3.8	1.5	0.3	Iris-setosa
22	5.4	3.4	1.7	0.2	Iris-setosa
23	5.1	3.7	1.5	0.4	Iris-setosa
24	4.6	3.6	1	0.2	Iris-setosa
25	5.1	3.3	1.7	0.5	Iris-setosa
26	4.8	3.4	1.9	0.2	Iris-setosa
27	5	3	1.6	0.2	Iris-setosa

■데이터 준비하기

■좋은 모델을 찾는 방법

- 모든 학습 알고리즘을 다 이용해서 모델을 만들어보고, 모델끼리 경쟁시 켜서 비교하는 것이다.
- •아주 유명한 학습 방법 하나를 알아내서 언제나 그것만 쓰는 것이다.
- 모든 학습 알고리즘을 깊이 있게 공부한 다음, 학습 시키고 싶은 데이터의 특성에 가장 잘 어울리는 학습 알고리즘으로 학습시키고, 그렇게 만들어 진 모델을 경쟁시켜서 그중 가장 성능이 좋은 것을 사용하는 것이다.

■지도학습 알고리즘 비교

Comparing Super	rvised Learning	Algorithms: T	able			
Algorithm	Problem Type	Results interpretable by you?	Easy to explain algorithm to others?	Average predictive accuracy	Training speed	Prediction speed
KNN	Either	Yes	Yes	Lower	Fast	Depends on n
Linear regression	Regression	Yes	Yes	Lower	Fast	Fast
Logistic regression	Classification	Somewhat	Somewhat	Lower	Fast	Fast
Naive Bayes	Classification	Somewhat	Somewhat	Lower	Fast (excluding feature extraction)	Fast
Decision trees	Either	Somewhat	Somewhat	Lower	Fast	Fast
Random Forests AdaBoost	Either Either	A little	No No	Higher Higher	Slow	Moderate Fast
Neural networks	Either	No	No	Higher	Slow	Fast