Pattern Recognition Lecture 04-1 Basic Deep Learning

Prof. Jongwon Choi Chung-Ang University Fall 2022

This Class

- Supervised Deep Learning
 - Definition
 - Architecture
 - Prediction
 - Training
- Unsupervised Deep Learning Auto-encoder
 - Definition
 - Architecture
 - Prediction
 - Training

Limitation 1 of the traditional ML

- Very hard to classify the <u>complex non-linearity</u> of sample features
- For example, classify the class labels from the image!
- Thus, we've utilized the features like LoG filter and filter banks

Limitation 2 of the traditional ML

- To cover the complex non-linearity,
- we can expand the complexity of kernelization,
- which causes the increased number of parameters!
- With the large number of parameters, <u>overfitting problem</u> happens

- Solution 1 of the deep learning Complex non-linearity?
 - Let's iterate the simple non-linearity for the complex non-linearity
 - Thus, a neural network can represent the complex non-linearity.

- Solution/2 of the deep learning Overfitting with large parameter?
 - We can avoid the overfitting problem by large data!
 - Data Data! Many data is very very important!!

Feature Engineering – Convolution

- 1-D Convolution Examples [0 1 1 2 3 5 8 13]
 - "Gaussian" $\exp\left(-\frac{i^2}{2\sigma^2}\right)$
 - Blurring
 - "Sharpen convolution" [-1 3 -1]
 - Average that places negative weights on the surrounding pixels
 - "Laplacian" [-1 2 -1]
 - Sum to zero filters
 - Approximates second derivative!
 - "Laplacian of Gaussian Filter" $\left(1 \frac{\mathrm{i}^2}{2\sigma^2}\right) \exp\left(-\frac{\mathrm{i}^2}{2\sigma^2}\right)$

01. Feature Representation

Images and Higher-Order Convolution

- Notable convolutions
 - Gaussian blurring/Averaging
 - Laplace of Gaussian (LoG) Second-derivative
 - Gabor filters directional first- or higher-derivative

Filter Banks

Convolution filter layer (Conv. Layer)

• Similar to the feature extraction filters.

Convolution filter layer (Conv. Layer)

- Similar to the feature extraction filters.
- Difference

Activation Function

	Traditional Filters	Convolutional Layers	Hidden Feature Latent Feature
#(Filter Types)	10~30	64~1024	†
Filter Types	Predefined by users	Obtained by training	
Target Values	Unnecessary	Unknown —	
Input of the Filters	Input image	Image/Filter response map	

Convolution filter layer (Conv. Layer)

Similar to the feature extraction filters.

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features and fewer "dead" features. (d): Visualizations of 2nd layer features from (Krizhevsky et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in (d).

*** "ZFNet - Visualizing and understanding convolutional networks", ECCV2014

Pooling layer

Pooling

(Avg., Max.)

Reduce the resolution of feature maps

Activation Function

Labels

Pooling Layers

Linear Regression – 1 Dimension

- Assume that we only have 1 feature (d=1):
 - \bullet ex. x_i is the length of education and y_i is income
- Linear regression makes predictions \hat{y}_i using a linear function of x_i :

$$\hat{y}_i = wx_i$$

- The parameter 'w' is the weight or regression coefficient of x_i
- As x_i changes, slope 'w' affects the rate that \hat{y}_i increases/decreases:
 - Positive 'w': \hat{y}_i increases as x_i increases
 - Negative 'w': \hat{y}_i decreases as x_i increases

Multiple Dimension Linear Function

- A simple way is with a d-dimensional linear model

 - In words, our model is that the output is a weighted sum of the inputs
- We can re-write this in summation notation:
 - $\bullet \ \widehat{y}_i = \sum_{j=1}^d w_j x_{ij}$
- We can also re-write this in vector notation: (inner product)
 - $\bullet \ \widehat{y}_i = \mathbf{w}^{\mathrm{T}} \mathbf{x}_i$
 - In this course, a vector is a column vector

- Fully-connected layer (FC Layer)
 - Similar to multi-dim. linear regression models!

Fully-connected layer (FC Layer)

- Similar to multi-dim. linear regression models!
- Difference

	Basic Linear Regressor	FC Layer	Hidden Feature Latent Feature
#(Output)	1	128~2048	†
Target	Valued labels	Unknown (Except the last one)	
Input	Input features	Input features / Layer response map	

Linear Model Classification

- Binary classification using regression
 - Set $y_i = +1$ for one class
 - Set $y_i = -1$ for the other class

- At training time, fit a linear regression model:
 - $\hat{y}_i = w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id} = \mathbf{w}^T \mathbf{x}_i$
 - Then, the model will try to make $\mathbf{w}^T \mathbf{x}_i = +1$ for one class, and $\mathbf{w}^T \mathbf{x}_i = -1$ for the other class

"One vs All" Linear Classification

- "One vs all" logistic regression for classifying as cat/dog/person
 - Train a separate classifier for each class
 - Classifier 1 tries to predict +1 for "cat" images and -1 for "dog" and "person" images
 - Classifier 2 tries to predict +1 for "dog" images and -1 for "cat" and "person" images
 - ...
 - Results in a weight vector w_c for each class 'c':
 - Weights w_c try to predict +1 for class 'c' and -1 for all others
 - We'll use 'W' as a matrix with the w_c as rows

Last classification layer

- Similar to multi-class classification models!
- One of FC layers

Last classification layer

- Similar to multi-class classification models!
- One of FC layers
- Difference

Traditional Classification Model		Last Layer
Input	Handcraft features (Filter banks, etc.)	Layer response map

Non-linear Feature Transforms

- Can we use linear least squares to fit a quadratic model?
 - Yes! By adding a non-linear feature as:
 - $\hat{y}_i = w_0 + w_1 x_i + w_2 x_i^2$
 - It's a linear function of w, but a quadratic function of x_i
 - $\hat{y}_i = \mathbf{v}^{\mathrm{T}} \mathbf{z}_i = v_1 z_{i1} + v_2 z_{i2} + v_3 z_{i3}$

Kernel Trick

- Kernel function: $k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{z}_i^T \mathbf{z}_j$
 - Instead of the acquisition of \mathbf{z}_i and \mathbf{z}_j ,
 - ullet Directly estimate the Gram matrices from ${f x}_i$ and ${f x}_j$

- Linear Kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j = \mathbf{z}_i^T \mathbf{z}_j$
- Polynomial Kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p = \mathbf{z}_i^T \mathbf{z}_j$
- Gaussian-RBF Kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|x_i x_j\|^2}{2\sigma^2}\right) = \mathbf{z}_i^T \mathbf{z}_j$

Activation function

- Similar to the kernelization!
- Conventionally, always follows the layers

Activation function

- Similar to the kernelization!
- Conventionally, always follows the layers
- Difference

	Kernelization	Activation function
Motivation	Non-linear feature distribution	Neuro-science
Complexity	Depends on data	Fixed
#(Application)	1	1~1000

What happens without the activation functions?

What happens without the activation functions?

Supervised Deep Learning - Prediction

Supervised Deep Learning - Prediction

Softmax

$$p(\hat{y}_1|\mathbf{x},\mathbf{y}) = \frac{\exp(y_1)}{\sum \exp(y_c)}$$

$$p(\hat{y}_2|\mathbf{x},\mathbf{y}) = \frac{\exp(y_2)}{\sum \exp(y_c)}$$

. . .

