Мешанина

- 1 На прямоугольную карту положили карту той же местности, но меньшего масштаба. Докажите, что можно проткнуть иголкой сразу обе карты так, чтобы точка прокола изображала на обеих картах одну и ту же точку местности.
- $\boxed{2}$ Общие внешние касательные к парам окружностей S_1 и S_2 , S_2 и S_3 , S_3 и S_1 пересекаются в точках A, B и C соответственно. Докажите, что точки A, B и C лежат на одной прямой.
- [3] Окружность ω касается равных сторон AB и AC равнобедренного треугольника ABC и пересекает сторону BC в точках K и L. Отрезок AK пересекает ω второй раз в точке M. Точки P и Q симметричны точке K относительно точек B и C соответственно. Докажите, что описанная окружность треугольника PMQ касается окружности ω .
- [4] В треугольнике ABC AH_1 и BH_2 высоты; касательная к описанной окружности в точке A пересекает BC в точке S_1 , а касательная в точке B пересекает AC в точке S_2 ; T_1 и T_2 середины отрезков AS_1 и BS_2 . Докажите, что T_1T_2 , AB и H_1H_2 пересекаются в одной точке.
- [5] На диагонали BD вписанного четырёхугольника ABCD выбрана такая точка K, что $\angle AKB = \angle ADC$. Пусть I и I' центры вписанных окружностей треугольников ACD и ABK соответственно. Отрезки II' и BD пересекаются в точке X. Докажите, что точки A, X, I, D лежат на одной окружности.
- $\boxed{6}$ Окружность S находится внутри треугольника ABC. Каждая из окружностей S_1 , S_2 и S_3 касается внешним образом окружности S (в точках A_1 , B_1 и C_1 соответственно) и двух сторон треугольника ABC. Докажите, что прямые AA_1 , BB_1 и CC_1 пересекаются в одной точке.
- Точка X, лежащая вне непересекающихся окружностей ω_1 и ω_2 , такова, что отрезки касательных, проведённых из X к ω_1 и ω_2 , равны. Докажите, что точка пересечения диагоналей четырёхугольника, образованного точками касания, совпадает с точкой пересечения общих внутренних касательных к ω_1 и ω_2 .
- 8 Окружность проходит через вершины B и C треугольника ABC и пересекает стороны AB и AC в точках D и E соответственно. Отрезки CD и BE пересекаются в точке O. Пусть M и N центры окружностей, вписанных соответственно в треугольники ADE и ODE. Докажите, что середина меньшей дуги DE лежат на прямой MN.
- 9 На стороне BC треугольника ABC взята точка A'. Серединный перпендикуляр к отрезку A'B пересекает сторону AB в точке M, а серединный перпендикуляр к отрезку A'C пересекает сторону AC в точке N. Докажите, что точка, симметричная

точке A' относительно прямой MN, лежит на описанной окружности треугольника ABC.

- 10 На сторонах AB, BC и CA треугольника ABC построены во внешнюю сторону квадраты ABB_1A_2 , BCC_1B_2 и CAA_1C_2 . Докажите, что серединные перпендикуляры к отрезкам A_1A_2 , B_1B_2 и C_1C_2 , пересекаются в одной точке.
- [11] Биссектрисы треугольника ABC пересекаются в точке I, внешние биссектрисы его углов B и C пересекаются в точке J. Окружность ω_b с центром в точке O_b проходит через точку B и касается прямой CI в точке I. Окружность ω_c с центром в точке O_c проходит через точку C и касается прямой BI в точке I. Отрезки O_bO_c и IJ пересекаются в точке K. Найдите отношение $\frac{IK}{KJ}$.