```
continuity
```

A: F → g a function continuity means convergent sequence in 7 maps to an convergent sequence in a.

operator norm

 $A: \mathcal{F} \mapsto G$, a linear operator: $||A|| = \sup_{f \in \mathcal{F}} \frac{||Af||_{G}}{||f||_{\mathcal{F}}}$ "maximum scalaring " 11 A 11 < po : bounded operator.

Thm L: linear operator, (子,11·11g), (G,11·11g normed linear space DO L is bounded

Q L is continuous on 7

多L is continuous at 1 paint fx

befinition (RKHS)

A Hilbert space (H) of functions $f: \chi \mapsto |R|$ is said to be a RKHS if δ_{χ} is Continuous Yx EX.

1) <· ,· >n A.JHG Sx: HHR a convergent sequence in is defined convergent sequence in J is mapped to G 2) complete f + fa) (沒有利) Evaluation functional. \$ in SVGD, \$(.) is not

1, 1.4. 1.414, 1.442, ... a member of the RKHS H 17/V? (Q, 1.1) | Couchy fi, fieh,

How about "Reproducing Kernel"?

 \mathcal{H} : Hilbert space of functions $f: X \mapsto IR$,

a function $k: x \times x \mapsto |R|$ is called a.

* reproducing kernel * of H

< S(E) , Yx i) $\forall x \in \mathcal{X}$, $k(\cdot, x) \in \mathcal{H}$. $eq k(x, x') = \frac{-\|x - x'\|^2}{2\sigma^2}$, $k(\cdot, x) = \frac{-\|\cdot - x\|^2}{2\sigma^2}$. 2) $\forall x \in \mathcal{X}$, $\forall f \in \mathcal{H}$, $\langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (" reproducing property")

in particular, for any x, y & x, $k(x, y) = \begin{cases} k(\cdot, x), k(\cdot, y) \end{cases} \mathcal{H} \cdot \begin{cases} k(\cdot, x_0) \end{cases} \mathcal{H} \text{ has a r.k.}$ because $k(\cdot, x), k(\cdot, y)$ in $\mathcal{H} \cdot \begin{cases} (is \text{ only subset if } \mathcal{H}), \text{ has a r.k.} \end{cases}$ Thm H is a RKHS (&x is continue) i.f.f.

Il fill , Il fill H are close, then

 $\forall x \in X$, $f_{i}(x)$ and $f_{i}(x)$ are

 $\|f_i - f_z\|_{\mathcal{H}} < \epsilon \Rightarrow |f_i(\alpha) - f_{\mathbb{P}}(\alpha)|$