HOWEST TOEGEPASTE INFORMATICA, 2022-2023, © BRIAN BAERT

DATA ANALYTICS

HOOFDSTUK 6 (DEEL 3) -KNN -PERFORMANTIE VAN CLASSIFIERS

howest.be

1

Hoofdstuk 6 – Classificeren – deel 3 : Nearest neighbor classifier

2

NEAREST NEIGHBOR CLASSIFIER

• Basisidee

"If it walks like a duck, quacks like a duck, then it's probably a duck

NEAREST NEIGHBOR CLASSIFIER

- Vereist drie dingen
 - De verzameling van opgeslagen records
 - Afstandsmaat om de afstand tussen records te berekenen
 - De waarde van k, het aantal dichtste buren
- ☐ Om een nieuw record (unknown record) te classificeren:
 - Bereken afstand tot andere records
 - Identificeer de k dichtste buren
 - Maak gebruik van de class labels van de dichtste buren om de class te bepalen van het nieuwe record (b.v. door majority voting)

3

Hoofdstuk 6 – Classificeren – deel 3 : Nearest neighbor classifier

DEFINITIE "NEAREST NEIGHBOR CLASSIFIER"

 \mathbf{k} dichtste buren van een record \vec{x} zijn punten die de \mathbf{k} kleinste afstand hebben tot \vec{x} .

Hoofdstuk 6 – Classificeren – deel 3 : Nearest neighbor classifier

NEAREST NEIGHBOR CLASSIFIER

- Bereken de afstand tussen twee punten (records)
 - → Euclidische afstand

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

- Bepaal vervolgens de class van de dichtste burenlijst
 - → Neem de meerderheidsstemming van class labels tussen de dichtste buren (majority voting)
 - → Weeg de stemming t.o.v. de afstand met wegingsfactor

$$w = \frac{1}{d^2}$$

5

Hoofdstuk 6 – Classificeren – deel 3 : Nearest neighbor classifier

6

NEAREST NEIGHBOR CLASSIFIER

- Kiezen van de juiste waarde voor k
 - → Als k te klein is, gevoelig aan ruis
 - \rightarrow Als k te groot is, de omgeving kan dan punten van andere klassen bevatten.

Hoofdstuk 6 – Classificeren – deel 3 : Nearest neighbor classifier

NEAREST NEIGHBOR CLASSIFIER

- Schaalbaarheidsissues
 - → Attributen kunnen geschaald zijn om te voorkomen dat afstandsmaten gedomineerd worden door één of meerdere attributen.
 - → Voorbeelden:
 - → Grootte van een persoon kan variëren tussen 1.5m en 1.9m
 - → Gewicht van een persoon kan variëren tussen 50kg en 150kg
 - → Inkomen van een persoon kan variëren tussen \$10K en \$1M

7

Hoofdstuk 6 – Classificeren – deel 3 : Nearest neighbor classifier

8

PROBLEEM MET EUCLIDISCHE AFSTANDSMAAT

- Bij hoge dimensionaliteit
- Tegenstrijdige uitkomsten

 $1\,1\,1\,1\,1\,1\,1\,1\,1\,1\,0$

vs

100000000000

011111111111

000000000001

d = 1.4142

d = 1.4142

Oplossing: Normaliseren (z-score berekenen) van de vectoren tot eenheidslengte

EVALUATIEMETHODEN

• Holdout dataset wordt opgesplitst in twee disjuncte verzamelingen

Data

Training

Test

EVALUATIEMETHODEN

• Cross-validation
Elk record wordt evenveel keer gebruikt voor training en precies één keer voor test set.

5-fold cross-validation →

Training Test

Test

Test

EVALUATIEMETHODEN

· Confusion matrix

	Voorspelde klasse		
Werkelijke klasse		Class=Yes	Class=No
	Class=Yes	(TP)	(FN)
	Class=No	(FP)	(TN)

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

$$F_1 = \frac{2 * TP}{2 * TP + FP + FN}$$

$$recall = \frac{TP}{TP + FN}$$

$$TPR = \frac{TP}{TP + FN}$$

$$precision = \frac{TP}{TP + FP}$$

$$FPR = \frac{FP}{FP + TN}$$

13

Hoofdstuk 6 – Classificeren – deel 3 : Performantie en evaluatie

14

ROC CURVE

(TP, FP)

- (0,0): alles behoort tot de negatieve klasse
- (1,1): alles behoort tot de positieve klasse
- (0,1): ideale wereld

- → Willekeurig gokken
- → Onder de diagonaal
 - → voorspelling is tegengestelde van de positieve klasse

ROC CURVE GEBRUIKEN - VOORBEELD

- ☐ Geen enkel model is consequent beter dan de andere
 - ☐ M₁ is beter voor kleine FPR
 - M₂ is beter voor grote FPR
- □ Oppervlakte onder de ROC-curve
 - □ Ideaal:
 - Opp = 1
 - Willekeurig gokken:
 - Opp = 0.5

15

Hoofdstuk 6 – Classificeren – deel 3 : Performantie en evaluatie

16

OEFENINGENREEKS

- 6.5.5
 - 3 en 4