Análisis Matemático I

Pedro Sánchez Terraf Ana Andrés Laura Martín Agustín Luciana José Luis Romina

FaMAF, 6 de mayo de 2024

Contenidos estimados para hoy

- Otras formas de límite
 - Límites usuales y límites laterales
 - Límite (al) infinito
 - Ejemplos
- 2 Límites notables
 - Límites notables trigonométricos
- Funciones continuas
 - Definición y ejemplos
 - Propiedades locales
 - Aritmética
- 4 Conclusión

Límites usuales y límites laterales

■ Límite usual. $\lim_{x\to a} f(x) = l \iff$

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ 0 < |x - a| < \delta \implies |f(x) - l| < \varepsilon.$$

Límites usuales y límites laterales

Límite usual. $\lim_{x\to a} f(x) = l \iff$

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ 0 < |x - a| < \delta \implies |f(x) - l| < \varepsilon.$$

■ Límite lateral por izquierda. $\lim_{x \to a} f(x) = l$ $(\lim_{x \to a^-} f(x) = l)$

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ a - \delta < x < a \implies |f(x) - l| < \varepsilon.$$

Límites usuales y límites laterales

■ Límite usual. $\lim_{x\to a} f(x) = l \iff$

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ 0 < |x - a| < \delta \implies |f(x) - l| < \varepsilon.$$

■ Límite lateral por izquierda. $\lim_{x\to a} f(x) = l$ $(\lim_{x\to a^-} f(x) = l)$

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ a - \delta < x < a \implies |f(x) - l| < \varepsilon.$$

■ Límite lateral por derecha. $\lim_{x \to a} f(x) = l$ $(\lim_{x \to a^+} f(x) = l)$

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ a < x < a + \delta \implies |f(x) - l| < \varepsilon.$$

■ Límite infinito. $\lim_{x\to a} f(x) = \infty \iff$ $\forall M, \; \exists \delta > 0, \; \forall x, \; 0 < |x-a| < \delta \implies M < f(x).$

- Límite infinito. $\lim_{x\to a} f(x) = \infty \iff \forall M, \ \exists \delta > 0, \ \forall x, \ 0 < |x-a| < \delta \implies M < f(x).$
- Límite cuando x tiende a ∞ . Igual que sucesiones:

$$\forall \varepsilon > 0, \ \exists N, \ \forall x, \ N < x \implies |f(x) - l| < \varepsilon.$$

- Límite infinito. $\lim_{x\to a} f(x) = \infty \iff$ $\forall M, \; \exists \delta > 0, \; \forall x, \; 0 < |x-a| < \delta \implies M < f(x).$
- Límite cuando x tiende a ∞ . Igual que sucesiones:

$$\forall \varepsilon > 0, \ \exists N, \ \forall x, \ N < x \implies |f(x) - l| < \varepsilon.$$

■ Límite cuando x tiende a $-\infty$.

$$\forall \varepsilon > 0, \ \exists N, \ \forall x, \ x < N \implies |f(x) - l| < \varepsilon.$$

- Límite infinito. $\lim_{x\to a} f(x) = \infty \iff$ $\forall M, \; \exists \delta > 0, \; \forall x, \; 0 < |x-a| < \delta \implies M < f(x).$
- Límite cuando x tiende a ∞ . Igual que sucesiones:

$$\forall \varepsilon > 0, \ \exists N, \ \forall x, \ N < x \implies |f(x) - l| < \varepsilon.$$

■ Límite cuando x tiende a $-\infty$.

$$\forall \varepsilon > 0, \ \exists N, \ \forall x, \ x < N \implies |f(x) - l| < \varepsilon.$$

■ Límite infinito cuando x tiende a ∞ . Igual que sucesiones:

$$\forall M, \exists N, \forall x, N < x \implies M < f(x).$$

- Límite infinito. $\lim_{x\to a} f(x) = \infty \iff$ $\forall M, \; \exists \delta > 0, \; \forall x, \; 0 < |x-a| < \delta \implies M < f(x).$
- Límite cuando x tiende a ∞ . Igual que sucesiones:

$$\forall \varepsilon > 0, \ \exists N, \ \forall x, \ N < x \implies |f(x) - l| < \varepsilon.$$

■ Límite cuando x tiende a $-\infty$.

$$\forall \varepsilon > 0, \ \exists N, \ \forall x, \ x < N \implies |f(x) - l| < \varepsilon.$$

■ Límite infinito cuando x tiende a ∞ . Igual que sucesiones:

$$\forall M, \exists N, \forall x, N < x \implies M < f(x).$$

■ Todas las demás combinaciones. Ver en el apunte.

- Límite infinito. $\lim_{x\to a} f(x) = \infty \iff$ $\forall M, \; \exists \delta > 0, \; \forall x, \; 0 < |x-a| < \delta \implies M < f(x).$
- Límite cuando x tiende a ∞ . Igual que sucesiones:

$$\forall \varepsilon > 0, \ \exists N, \ \forall x, \ N < x \implies |f(x) - l| < \varepsilon.$$

■ Límite cuando x tiende a $-\infty$.

$$\forall \varepsilon > 0, \exists N, \ \forall x, \ x < N \implies |f(x) - l| < \varepsilon.$$

■ Límite infinito cuando x tiende a ∞ . Igual que sucesiones:

$$\forall M, \exists N, \forall x, N < x \implies M < f(x).$$

■ Todas las demás combinaciones. Ver en el apunte.

Las definiciones con $+\infty$ son equivalentes si se pide que M,N sean mayores que 0; las de $-\infty$, con M,N < 0.

Ejemplos

- Límite lateral infinito. $\lim_{x \to a} f(x) = \infty \iff \forall M, \ \exists \delta > 0, \ \forall x, \ a < x < a + \delta \implies M < f(x).$
- Límite cuando x tiende a $-\infty$.

$$\forall \varepsilon > 0, \ \exists N < 0, \ \forall x, \ x < N \implies |f(x) - l| < \varepsilon.$$

Ejemplos

- Límite lateral infinito. $\lim_{x \to a} f(x) = \infty \iff \forall M, \exists \delta > 0, \forall x, a < x < a + \delta \implies M < f(x).$
- Límite cuando x tiende a $-\infty$.

$$\forall \varepsilon > 0, \ \exists N < 0, \ \forall x, \ x < N \implies |f(x) - l| < \varepsilon.$$

Acá vamos a usar que vale lo mismo si ponemos M > 0.

Ejemplos

- Límite lateral infinito. $\lim_{x \to a} f(x) = \infty \iff \forall M, \ \exists \delta > 0, \ \forall x, \ a < x < a + \delta \implies M < f(x).$
- Límite cuando x tiende a $-\infty$.

$$\forall \varepsilon > 0, \ \exists N < 0, \ \forall x, \ x < N \implies |f(x) - l| < \varepsilon.$$

Acá vamos a usar que vale lo mismo si ponemos M > 0.

La función "recíproco"

- $\lim_{x \to 0} \frac{1}{x} = \infty.$
- $\lim_{x \to -\infty} \frac{1}{x} = 0.$

Repaso

Material del cursillo [1], Secciones 5.1 a 5.3 (pp. 163–171).

- Notación: $sen^n(x) := (sen(x))^n$.
- $= \sin^2(x) + \cos^2(x) = 1.$

- 1 $\operatorname{sen} x \le x \le \frac{\operatorname{sen} x}{\operatorname{cos} x}$. 2 $0 \le \operatorname{sen} x$.

- $0 \le \sin x$.
- $0 \le 1 \cos x \le \overline{\mathsf{AP}} \le x.$

- $0 \le \operatorname{sen} x$.
- $0 \le 1 \cos x \le \overline{\mathsf{AP}} \le x.$

Límites básicos

- $0 \le \operatorname{sen} x$.
- $0 \le 1 \cos x \le \overline{\mathsf{AP}} \le x.$

Límites básicos

- $\blacksquare \lim_{x \to 0} \sin x = 0.$

- $0 \le \sin x$.
- $0 \le 1 \cos x \le \overline{\mathsf{AP}} \le x.$

Límites básicos

- $\blacksquare \lim_{x \to 0} \sin x = 0.$

- $0 \le \sin x$.
- $0 \le 1 \cos x \le \overline{\mathsf{AP}} \le x.$

Límites básicos

- $\blacksquare \lim_{x \to 0} \sin x = 0.$
- $\blacksquare \lim_{x \to 0} 1 \cos x = 0.$
- $\blacksquare \lim_{x \to 0} \cos x = 1.$

- $\begin{array}{ll}
 & \sin x \le x \le \frac{\sin x}{\cos x}. \\
 & \end{array}$
- $x \cdot \cos x \le \sin x \le x$.

- $x \cdot \cos x \le \sin x \le x$.

Límites copados

$$\blacksquare \lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1.$$

- $x \cdot \cos x \le \sin x \le x$.

Límites copados

- $\blacksquare \lim_{x \to 0} \frac{\sin x}{x} = 1.$
- $\blacksquare \lim_{x \to 0} \frac{\tan x}{x} = 1.$

- $x \cdot \cos x \le \sin x \le x$.

Límites copados

- $\blacksquare \lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1.$
- $\blacksquare \lim_{x \to 0} \frac{\tan x}{x} = 1.$
- $\blacksquare \lim_{x \to 0} \frac{1 \cos x}{x^2} = \frac{1}{2}.$

Funciones continuas

Definición

f es **continua en** a si y sólo si

- $\mathbf{1}$ f está definida en un entorno de a y
- $\lim_{x \to a} f(x) = f(a).$

Funciones continuas

Definición

f es continua en a si y sólo si

- $\mathbf{1}$ f está definida en un entorno de a y
- $\lim_{x \to a} f(x) = f(a).$

Equivalentemente

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon.$$

Funciones continuas

Definición

f es **continua en** a si y sólo si

- \mathbf{I} f está definida en un entorno de a y
- $\lim_{x \to a} f(x) = f(a).$

Equivalentemente

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon.$$

Ejemplo

■ Funciones constantes (P4E4b).

Funciones continuas

Definición

f es **continua en** a si y sólo si

- $\mathbf{1}$ f está definida en un entorno de a y
- $\lim_{x \to a} f(x) = f(a).$

Equivalentemente

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon.$$

- Funciones constantes (P4E4b).
- identidad (P4E4a).

Funciones continuas

Definición

f es **continua en** a si y sólo si

- $\mathbf{1}$ f está definida en un entorno de a y
- $\lim_{x \to a} f(x) = f(a).$

Equivalentemente

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon.$$

- Funciones constantes (P4E4b).
- identidad (P4E4a).
- $f(x) := x^2 \text{ (P4E4c)}.$

Funciones continuas

Definición

f es **continua en** a si y sólo si

- \mathbf{I} f está definida en un entorno de a y
- $\lim_{x \to a} f(x) = f(a).$

Equivalentemente

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon.$$

- Funciones constantes (P4E4b).
- identidad (P4E4a).
- $f(x) := x^2$ (P4E4c).
- $f(x) := \sqrt{x}$ (P4E4d).

Propiedades locales

Lema (Preservación de signo)

Si f es continua en a y f(a) > 0 (f(a) < 0), entonces f es mayor (menor) que 0 en un entorno de a.

Propiedades locales

Lema (Preservación de signo)

Sif es continua en a y f(a) > 0 (f(a) < 0), entonces f es mayor (menor) que 0 en un entorno de a.

Lema (Acotación local)

Si f es continua en a entonces f está acotada en un entorno de a.

Igual que los límites,

Teorema

Las funciones continuas son cerradas por suma, producto y cociente.

Igual que los límites,

Teorema

Las funciones continuas son cerradas por suma, producto y cociente.

Ejemplo

funciones polinómicas;

Igual que los límites,

Teorema

Las funciones continuas son cerradas por suma, producto y cociente.

- funciones polinómicas;
- funciones racionales: cocientes de polinomios, en su dominio

Igual que los límites,

Teorema

Las funciones continuas son cerradas por suma, producto y cociente.

Ejemplo

- funciones polinómicas;
- funciones racionales: cocientes de polinomios, en su dominio

Teorema (Clausura por composición)

Si $f: X \to Y$ es continua en a y $g: Y \to Z$ es continua en f(a) entonces $g \circ f: X \to Z$ es continua en a.

Ejercicios para hoy

Con lo visto esta clase, pueden trabajar hasta el final del P4.

Ejercicios para hoy

Con lo visto esta clase, pueden trabajar hasta el final del P4.

Lectura para la próxima clase

■ Teoremas Fuertes, (Apunte, Sección 8.3, páginas 47–48).

Bibliografía

[1] P. KISBYE, ET AL., "Ingreso a Famaf: materiales de estudio", FaMAF (2017).

