Inicio AOC_02.pptx Álgebra de Boole

Based on the text Digital design and computer architecture,

harris & harris 2nd Edition 2012

Temas

- Introducción
- Ecc Booleaneas
- Algebra Booleana
- Desde la lógica a las compuertas (Gates)
- Logica Combinacional Multinivel
- X's y Z's
- Mapas de Karnaugh
- Blocks constructivos Combinacionales
- Sincronización

Introduccción

Un circuito lógico está compuesto de:

- Entradas (Inputs)
- Salidas (Outputs)
- Especificación funcional
- Especificación de temporización o sincronización

Circuitos

Nodos

- Entradas: A, B, C

Salidas: Y, Z

- Interno: n1

• Elementos de Circuito

- E1, E2, E3

- Cada uno un circuito

Tipos de circuitos lógicos

- Logica Combinacional
 - Sin Memoria
 - Las salidas están determinadas por los valores actuales de las entradas
- Logica Secuencial
 - Tiene memoria
 - Las salidas están determinadas por los valores previos y actuales de las entradas.

Reglas de creación combinatoria

- Todo elemento es combinacional
- Todo nodo es ya sea una entrada o se conecta exactamente a una salida
- El circuito no contiene trayectos ciclicos
- Ejemplo:

Ecuaciones booleanas

- Especificación Funcional de salidas en términos de las entradas
- Ejemplo:

$$F1 = A + B'C$$

Algunas definiciones

· Complemento: variable con una barra sobre él

- Otro modo de indicar una variable complementada es con ' o con ¬ A', B', C' ¬A, ¬B, ¬C
- Literal: variable o su complemento

Implicante: producto de literales

 Minterm: product that includes all input variables ABC, ABC, ABC

Maxterm: sum that includes all input variables
 (A+B+C), (A+B+C), (A+B+C)

Formato Suma de productos (SOP)

- Todas las ecuaciones pueden ser escritas en la forma SOP form
- Cada fila tiene un mintérmino
- Un mintérm is un producto (AND) de literales
- Cada mintérmino es TRUE para esa fila (y solo esa fila)
- Escriba la función haciendo OR con los mintérminos donde la salida es verdadera (TRUE)
- Así se tiene una suma (OR) de productos (términos AND)

					minterm
_	A	В	Y	minterm	name
	0	0	0	$\overline{A} \overline{B}$	m_0
	0	1	1	$\overline{A}\;B$	m_1°
	1	0	0	\overline{A}	m_2
	1	1	1	АВ	m_3

$$Y = F(A, B) = A'B + AB$$

Formato Suma de productos (SOP)

- Todas las ecuaciones se pueden escribir en forma SOP.
- Cada fila tiene un minitérmino.
- Un mintérmino es un producto (AND) de literales.
- Cada mintérmino es TRUE para esa fila (y solo esa fila).
- Forme la función haciendo ORing en mintérminos donde la salida es TRUE.
- Así, se tiene una suma (OR) de productos (Y términos).

				minterm
_ <i>A</i>	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	\overline{A}	m_2
1	1	1	АВ	m_3

$$Y = F(A, B) = A'B + AB = \Sigma(1, 3)$$

Formato Productos de Suma (POS)

- Todas las ecuaciones booleanas se pueden escribir en forma POS.
- Cada fila tiene un maxtérmino.
- Un maxtérmino es una suma (OR) de literales.
- Cada maxtérmino es FALSE para esa fila (y solo esa fila).
- Escriba la función haciendo ANDing con los maxtérminos para los cuales la salida es FALSE.
- Así, se tiene un producto (AND) de sumas (términos OR).

				maxterm
A	В	Y	maxterm	name
0	0	0	A + B	M_{0}
0	1	1	$A + \overline{B}$	M_1
1	0	0	A + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

$$Y = F(A, B) = (A + B)(A + B') = \Pi(0, 2)$$

Ejemplo de ecuaciones booleanas

- Estás yendo a la cafetería a almorzar:
 - No vas a almorzar (E')
 - si no está abierto (O') o
 - si solo sirven hotdogs (C).
- Escriba una tabla de verdad para determinar si almorzarás (E).

0	С	E
0	0	
0	1	
1	0	
1	1	

Ejemplo de ecuaciones booleanas

- vas a la cafetería a almorzar:
 - No vas a almorzar (E')
 - Si no está abierto (O')
 - o Si solo sirven hotdogs(C)
- Escriba una tabla de verdad para determinar si almorzarás (E).

0	С	Ε
0	0	0
0	1	0
1	0	1
1	1	0

Formas SOP y POS

• SOP – Suma de Productos

0	С	E	minterm
0	0		<u> </u>
0	1		<u> </u>
1	0		0 <u>C</u>
1	1		ОС

• POS – Productos de Sumas

	0	С	Ε	maxterm
-	0	0		O + C
	0	1		$O + \overline{C}$
	1	0		<u>O</u> + C
	1	1		$\overline{O} + \overline{C}$

Formas SOP y POS

• SOP – Suma de Productos

0	С	Ε	minterm
0	0	0	O C
0	1	0	O C
1	0	1	0 <u>C</u>
1	1	0	O C

$$E = OC = \Sigma(2)$$

• POS – Producto de Sumas

0	С	Ε	maxterm
0	0	0	0 + C
0	1	0	$O + \overline{C}$
1	0	1	O + C
(1	1	0	$\overline{O} + \overline{C}$

$$E = (O + C)(O + C)(O + C) = \Pi(0, 1, 3)$$

Álgebra de boole

- Axiomas y teoremas para simplificar ecuaciones booleanas.
- Como el álgebra regular, pero más simple: las variables tienen solo dos valores (1 o 0).
- Dualidad en axiomas y teoremas:
 ANDs y ORs, 0 y 1 intercambiados.

Axiomas booleanos

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1'	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2'	T = 0	NOT
A3	$0 \bullet 0 = 0$	A3'	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5'	1 + 0 = 0 + 1 = 1	AND/OR

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

T1: Teorema de identidad

$$B \cdot 1 = B$$

$$B + 0 = B$$

$$\begin{bmatrix} B \\ 1 \end{bmatrix} = B$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix}$$
 $=$ B

T2: Teorema del elemento nulo

•
$$\mathbf{B} \cdot \mathbf{0} = \mathbf{0}$$

•
$$B + 1 = 1$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = 0$$

T3: Teorema de la Idempotencia

$$B \cdot B = B$$

$$B + B = B$$

$$\begin{bmatrix} B \\ B \end{bmatrix} = B$$

$$\begin{bmatrix} B \\ B \end{bmatrix}$$
 = B

T4: Teorema de la Identidad

$$B = B$$

T5: Teorema del complemento

• B · B' =
$$0$$

•
$$B + B' = 1$$

$$\frac{B}{B}$$
 = 0 ----

$$\frac{B}{B}$$
 \longrightarrow 1

Resumen de los teoremas booleanos

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Teoremas booleanos de varias variables

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9'	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ = $B \bullet C + \overline{B} \bullet D$	T11'	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$ = $(B + C) \bullet (\overline{B} + D)$	Consensus
T12	$ \overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots) $	T12'	$ \overline{B_0 + B_1 + B_2 \dots} = (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2}) $	De Morgan's Theorem

Simplificando ecuaciones boolenas

```
Ejemplo 1
Y = AB + A'B
= B(A + A')
= B(1)
= B
T1
```

Simplificando ecuaciones boolenas

Ejemplo 2:

```
Y = A(AB + ABC)
= A(AB(1 + C))
= A(AB(1))
= A(AB)
= A(AB)
= (AA)B
= AB
T3
```

Teorema de Morgan

$$Y = (AB)' = A' + B'$$

$$Y = (A + B)' = A' \cdot B'$$

Impulsando burbujas

· Hacia atrás:

- Cambia el cuerpo del componente
- Agrega burbujas a las entradas

Hacia Adelante:

- Cambia el cuerpo del componente
- Agrega burbujas a las salidas

Impulsando burbujas

• Cual es la expresión Booleana para este circuito?

$$Y = AB + CD$$

Desde la lógica a las puertas

- Lógica de dos niveles: ANDs followed by ORs
- Example: Y = A'B'C' + AB'C' + AB'C

Reglas de los esquemáticos de circuitos

- Entradas a la izquierda (o arriba)
- Salidas a la derecha (o abajo)
- Las puertas fluyen de izquierda a derecha
- Los cables rectos son los mejores

Reglas de los esquemáticos de circuitos

- Los cables siempre se conectan en una unión en T
- Un punto donde se cruzan los cables indica una conexión entre los cables
- Los cables que se cruzan sin un punto no hacen conexión

SWR de simulación TINKERCAD

- Crear una cuenta en TINKERCAD.COM
- En el menú superior click en Tinker
- En la ventana que se despliega ir a Circuitos
- Ir a nuevo diseño
- Comenzar con el ejemplo básico visto en clases

04-04-2025

Ejemplo de diseño dada la tabla de verdad Reducción por álgebra de Boole

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

04-04-2025

Circuito esquemático

Circuito esquemático para Tinker

https://www.tinkercad.com/things/8ISFTGklXy1-cool-jaagub-kasi/editel?returnTo=https%3A%2F%2Fwww.tinkercad.com%2Fdashboard%2Fdesigns%2Fcircuits&sharecode=oHvOSxAXH7VoX8QY5Zj2r85idWo9GYZMXYZJqmJVjtw

Circuitos con múltiples salidas

Ejemplo: Circuito Prioritario

Salida establecida correspondiente a la entrada del bit más significativo de valor TRUE

A_3	A_2	A_1	A_o	Y ₃	Y_2	Y_1	Y_o
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A_3 0 0 0 0 0 0 1 1 1 1 1	A_2 0 0 0 1 1 0 0 1 1 1 1 1 1 1	0 1 1 0 0 1 1 0 0 1 1	01010101010101	Y ₃ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y ₂ 0 0 0 0 1 1 1 0 0 0 0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Y _o 0 1 0 0 0 0 0 0 0 0 0
1	1	1	1	1	0	0	0

Condiciones DON'T CARES (NO IMPORTA)

A_3	A_2	$A_{\scriptscriptstyle 1}$	A_o	Y_3	Y_2	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0	Y _o 0 1 0 0 0 0 0 0 0 0 0
0	0	0	0	0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 0 0 0 0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1	$egin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 1 1 0 0 1 1 0 0 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	0	0
1	1	1	1	1	0	0	0

A_3	A_2	A_1	A_o	Y ₃	Y_2	Y ₁	Y ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	Χ	0	0	1	0
0	1	X	Χ	0	1	0	0
1	Χ	Χ	X	0 0 0 0 1	0	0	0

Fin AOC_02.pptx