O Método do Gradiente Conjugado Aplicado à Localização em Ambientes Fechados

Rebeca A. F. Cunha, Vinicius M. de Pinho e Marcello L. R. de Campos

Resumo— Este trabalho utiliza o método do Gradiente Conjugado para a solução de sistemas de grande porte de equações afins simultâneas. O algoritmo é aplicado ao problema de localização em ambientes fechados utilizando WLAN fingerprinting.

Palavras-Chave—Gradiente Conjugado, WLAN fingerprinting, localização em ambientes fechados.

Abstract—This paper uses the Conjugate Gradient method for solving large-scale systems of simultaneous affine equations. The algorithm is applied to the indoor localization problem using WLAN fingerprinting.

Keywords—Conjugate Gradient, WLAN fingerprinting, indoor localization.

I. INTRODUÇÃO

Diante do cenário atual de desenvolvimento, a sofisticação dos servicos e a criação de novas tecnologias exigem que lidemos com um amplo volume de informação em tempo hábil. Deparamo-nos com problemas que envolvem matrizes de dados extremamente grandes e que em muitos casos podem ser aproximados para um modelo linear. Devido à magnitude dos dados, abordagens que fazem uso de métodos diretos, como a Decomposição de Cholesky, mostram-se ineficientes. Todavia, métodos iterativos são alternativas que estão conquistando cada vez mais espaço nas mais diversas áreas que lidam com big data, como as redes sociais, a bioinformática e a ciência da computação. Neste trabalho, temos como objetivo descrever o Gradiente Conjugado (CG, sigla em inglês para Conjugate Gradient), método iterativo deveras eficiente quando trabalha com matrizes esparsas e de grande porte, e aplicá-lo a questão da localização em lugares fechados utilizando WLAN fingerprinting, mostrando então que esse problema presente nas cidades modernas pode ser resolvido por regressão linear, cujos parâmetros são obtidos empregando o CG.

II. O MÉTODO DO GRADIENTE CONJUGADO

Muitos fenômenos podem ser descritos por um sistema de m equações afins independentes e n incógnitas ($\mathbf{D}\mathbf{x}=\mathbf{g}$, onde $\mathbf{D}\in\mathbb{R}^{m\times n}$, $\mathbf{x}\in\mathbb{R}^n$, e $\mathbf{g}\in\mathbb{R}^m$). Mesmo quando m>n e o sistema não tem solução, há interesse em encontrar \mathbf{x} que minimize a norma quadrática $f(\mathbf{x}_{(i)}) = \|\mathbf{D}\mathbf{x}_{(i)} - \mathbf{g}\|^2$. Ao calcularmos o gradiente dessa função e igualarmos a zero, nos resta buscar a solução para a equação normal $\mathbf{D}^T\mathbf{D}\mathbf{x} = \mathbf{D}^T\mathbf{g}$. Fazemos $\mathbf{D}^T\mathbf{D} = \mathbf{A}$, $\mathbf{A}\in\mathbb{R}^{n\times n}$ e $\mathbf{D}^T\mathbf{g} = \mathbf{b}$, $\mathbf{b}\in\mathbb{R}^n$.

Rebeca A. F. Cunha, Vinicius M. de Pinho e Marcello L. R. de Campos, Departamento de Engenharia Eletrônica e de Computacão, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, Brasil, E-mails: rebecararipe@poli.ufrj.br, viniciusmesquita@poli.ufrj.br e campos@smt.ufrj.br. Este trabalho foi parcialmente financiado por CNPq, CAPES (Projeto PRODE-FESA 23038.009094/2013-83) e FINEP (Projeto Comunicações Submarinas FINEP-01.13.0421.00).

O método do Gradiente Conjugado é um método numérico iterativo robusto que pode ser usado para a solução de sistemas do tipo $\mathbf{A}\mathbf{x} = \mathbf{b}$, \mathbf{A} simétrica e positiva definida. O método converge em até n iterações caso não haja problemas com arredondamentos.

Dada uma estimativa inicial $\mathbf{x}_{(0)}$ da solução \mathbf{x} , a cada iteração o método dá um passo em uma direção $\mathbf{d}_{(i)}$ Aconjugada a todas as direções anteriores, escolhendo uma nova solução $\mathbf{x}_{(i)}$ que minimize $f(\mathbf{x}_{(i)})$ naquela direção:

$$\mathbf{x}_{(i+1)} = \mathbf{x}_{(i)} + \alpha_{(i)} \mathbf{d}_{(i)}$$
$$\frac{\partial f(\mathbf{x}_{(i+1)})}{\partial \alpha} = 0$$
$$f'(\mathbf{x}_{(i+1)})^T \frac{\partial \mathbf{x}_{(i+1)}}{\partial \alpha} = 0$$

Como o resíduo, $\mathbf{r}_{(i)} = \mathbf{b} - \mathbf{A}\mathbf{x}_{(i)}$, é igual em módulo e está na mesma direção e sentido oposto ao gradiente da função, escrevemos $\mathbf{r}_{(i+1)}^T\mathbf{d}_{(i)} = 0$, que equivale a $\mathbf{d}_{(i)}^T\mathbf{A}\mathbf{e}_{(i+1)} = 0$, onde $\mathbf{e}_{(i)}$ é o erro a cada iteração descrito por $\mathbf{e}_{(i)} = \mathbf{x} - \mathbf{x}_{(i)}$.

Desse modo, o algoritmo vai eliminando a componente do erro correspondente a cada $\mathbf{d}_{(i)}$, levando vantagem nesse quesito sobre métodos como o Gradiente Descendente, que eventualmente dá passos em direções já percorridas anteriormente, atrasando o processo de convergência.

No CG, esse conjunto de direções A-conjugadas é formado dos próprios resíduos pelo processo de Gram-Schmidt Conjugado, que elimina suas componentes não A-conjugadas às direções anteriores. Assim, o subespaço gerado por eles é o mesmo que o gerado pelas direções conjugadas, ou seja $\{\mathbf{r}_{(0)},\mathbf{r}_{(1)},...,\mathbf{r}_{(i-1)}\}$ equivale a $D_i=\{\mathbf{d}_{(0)},\mathbf{d}_{(1)},...,\mathbf{d}_{(i-1)}\}$.

Como $\mathbf{r}_{(i+1)} = -\mathbf{A}\mathbf{e}_{(i+1)} = \mathbf{r}_{(i)} - \alpha_{(i)}\mathbf{A}\mathbf{d}_{(i)}$, observamos que o resíduo $\mathbf{r}_{(i+1)}$ é uma combinação linear entre o resíduo anterior $\mathbf{r}_{(i)}$ e a direção conjugada anterior transformada por \mathbf{A} , $\mathbf{A}\mathbf{d}_{(i)}$. Portanto o subespaço D_{i+1} é uma união de D_i com $\mathbf{A}D_i$. Obtemos então o subespaço de Krylov $D_{i+1} = \{d_{(0)}, \mathbf{A}\mathbf{d}_{(0)}, \mathbf{A}^2\mathbf{d}_{(0)}, ..., \mathbf{A}^i\mathbf{d}_{(0)}\}$.

O fato do próximo resíduo $\mathbf{r}_{(i+1)}$ ser sempre ortogonal aos resíduos anteriores implica que ele é também ortogonal ao subespaço formado pelos resíduos antigos:

$$\mathbf{r}_{(i+1)}^T D_{i+1} = 0 \Leftrightarrow \mathbf{r}_{(i+1)}^T \{\mathbf{d}_{(0)}, \mathbf{A}\mathbf{d}_{(0)}, \mathbf{A}^2\mathbf{d}_{(0)}, ..., \mathbf{A}^i\mathbf{d}_{(0)}\} = 0$$

Para que essa igualdade se verifique, $\mathbf{r}_{(i+1)}$ deve ser Aconjugado a todos os subespaços de Krylov que formam D_i , e portanto a todas as direções de busca anteriores, exceto a imediatamente anterior $\mathbf{d}_{(i)}$. O fato de não haver necessidade de guardar na memória todas as direções antigas para realizar o Gram-Schmidt Conjugado constitui uma grande vantagem em relação a algoritmos como o método das Direções Conjugadas.

Para problemas muitos grandes, erros de arredondamentos estão presentes e é possível que não cheguemos à solução \mathbf{x} , mas sim a uma boa aproximação dela. O CG é em resumo:

$$\begin{aligned} \mathbf{d}_{(0)} &= \mathbf{r}_{(0)} = \mathbf{b} - \mathbf{A} \mathbf{x}_{0} & \alpha_{(i)} &= \frac{\mathbf{r}_{(i)}^{T} \mathbf{r}_{(i)}}{\mathbf{d}_{(i)}^{T} \mathbf{A} \mathbf{d}_{(i)}} \\ \mathbf{x}_{(i+1)} &= \mathbf{x}_{(i)} + \alpha_{(i)} \mathbf{d}_{(i)} & \mathbf{r}_{(i+1)} &= \mathbf{r}_{(i)} - \alpha_{(i)} \mathbf{A} \mathbf{d}_{(i)} \\ \beta_{(i+1)} &= \frac{\mathbf{r}_{(i+1)}^{T} \mathbf{r}_{(i+1)}}{\mathbf{r}_{(i)}^{T} \mathbf{r}_{(i)}} & \mathbf{d}_{(i+1)} &= \mathbf{r}_{(i+1)} + \beta_{(i+1)} \mathbf{d}_{(i)} \end{aligned}$$

III. APLICAÇÃO

A popularização da tecnologia móvel e de serviços cuja funcionalidade dependem da localização geográfica do usuário demanda sistemas de posicionamento cada vez mais eficientes. Embora o Sistema de Posicionamento Global (*GPS*, na abreviação em inglês) seja majoritariamente utilizado, torna-se ineficiente para locais fechados, onde há má recepção de sinais de satélite. Desse modo, sistemas alternativos estão sendo desenvolvidos e aprimorados pela comunidade científica.

Este trabalho aborda um sistema que emprega a intensidade do sinal recebido (*RSSI*) no dispositivo utilizado pelo usuário e advindo de aparelhos da rede sem fio local (*WLAN*) preexistentes. O aproveitamento da infraestrutura que já se encontra hoje em dia em boa parte dos ambientes é um diferencial positivo desse sistema, classificado como *infrastructure-less*.

A base de dados que utilizamos, UJIIndoorLoc [3], é introduzida em [4]. A matriz de dados é formada por 520 colunas referentes a 520 WAP (Wireless Access Points) distintos. Cada coluna é composta por 21048 instâncias (linhas), sendo 19937 delas utilizadas na aplicação do CG e 1111 utilizadas para validação dos resultados. Cada linha indica a intensidade do sinal do WAP recebido pelo aparelho em um determinado local. A área total utilizada nesta coleta de dados é de 108703 m^2 , que engloba 3 prédios de 4 ou 5 andares.

IV. RESULTADOS E CONCLUSÕES

Na base de dados, quando um WAP não é detectado em uma determinada instância, seu nivel de RSSI é marcado como 100. Como a faixa de detecção está no intervalo [-100,0] dBm, onde -100 é um sinal extremamente fraco e 0 representa um ótimo sinal, substituímos o nível de não detecção para -200 para não prejudicar o aprendizado do *CG*. Quanto aos vetores de latitude e longitude, subtraímos seus valores médios, de modo que não perdemos informação sobre a relação entre os níveis de RSSI e a coordenada.

A solução de mínimos quadrados nos levou a uma matriz inicial com 520 linhas e colunas e número de condicionamento igual a $3,2148.10^{38}$. Reduzimos o número de colunas da matriz de dados ${\bf D}$ eliminando aquelas com o menor número de medições válidas, ou seja, diferentes de -200 dBm. Os resultados apresentados a seguir foram obtidos com uma matriz de dados com 266 atributos (WAP), levando a um número de condicionamento da matriz ${\bf A}$ igual a $5,2717.10^5$. A origem foi escolhida como o ${\bf x}$ inicial. O algoritmo usado foi baseado no pseudo-código apresentado em [2].

A norma do resíduo convergiu para 0 em apenas 246 iterações para a estimação da longitude, como pode ser visto

Fig. 1. Curva de aprendizado do CG.

na curva de aprendizado apresentada acima, e em apenas 257 iterações para a estimação da latitude. Em ambos os casos, a convergência se deu em menos de n iterações.

Fig. 2. Distribuição de erros da longitude para as 1111 coletas de validação.

Calculamos a diferença entre as latitudes e longitudes da base de validação e as coordenadas obtidas com a regressão usando as soluções do CG. As médias dos erros encontrados foram 33,5386 e 32,8202 metros para longitude e latitude, respectivamente. O histograma na Fig. 2 mostra a distribuição das magnitudes dos erros para a longitude, que ilustra uma concentração de erros de pequena magnitude. As médias das discrepâncias relativas foram $5,8837.10^{-4}\%$ para a latitude e 0,047% para a longitude.

Considerando que as coletas foram realizadas em uma área total de 108703 m^2 , obtivemos resultados bastante satisfatórios. Podemos inferir que o problema de localização em ambientes fechados por meio de $WLAN\ Fingerprinting$ pode ser linearizado e o CG é uma ferramenta poderosa a ser empregada, principalmente quando o número de atributos é grande.

REFERÊNCIAS

- [1] M. R. Hestenes e E. Stiefel, *Methods of Conjugate Gradients for Solving Linear Systems*, Journal of Research of the Nacional Bureau of Standards, Vol. 49, No. 6, December 1952.
- [2] J. R. Schewchuck, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, Edition 1¹/₄. School of Computer Science Carnegie Mellon University. August 4, 1994.
- [3] UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc
- [4] J. Torres-Sospedra, R. Montoliu, J. Huerta. UJIIndoorLoc: A New Multi-building and Multi-floor Database for WLAN Fingerprint-based Indoor Localization Problems, In Proceedings of the Fifth International Conference on Indoor Positioning and Indoor Navigation, 2014.