Examenul de bacalaureat național 2014 Proba E. d) Fizică

BAREM DE EVALUARE ŞI DE NOTARE

Model

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracţiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ (45 puncte)

Nr.ltem	Soluţie, rezolvare	Punctaj
l.1.	C	3р
2.	b	3р
3.	b	3р
4.	a	3р
5.	d	3р
TOTAL pentru Subiectul I		15p

Subjectul al II-lea

II.a.	Pentru:	_	4p
	Reprezentarea forțelor asupra ce acționează asupra corpului A	4p	
b.	Pentru:		4p
	$m_1g-T_1=0$	1p	
	$T_1 - Mg \sin \alpha - \mu Mg \cos \alpha = 0$	2p	
	rezultat final: $m_1 = 68 \text{ g}$	1p	
C.	Pentru:		3р
	$R = \sqrt{2T_1^2 \left(1 + \sin \alpha\right)}$	2p	
	rezultat final: R ≅ 1,21 N	1p	
d.	Pentru:		4p
	$T_2 - m_2 g = m_2 a$	1p	
	$Mg \sin \alpha - \mu Mg \cos \alpha - T_2 = Ma$	2p	
	rezultat final: $a \approx 0.86 \text{m/s}^2$	1p	
OTAL	pentru Subiectul al II-lea		15p

Subjectul al III-lea

III.a.	Pentru:	3p
	$L_{\rm G} = mg\Delta h$	
	$\Delta h = 0$	
	rezultat final $L_{\rm G}=0$ 1p	
b.	Pentru:	4p
	$L_{F_f} = -F_f \ell$ 2p $F_f = \mu mg \cos \alpha$ 1p	
	$F_{f} = \mu mg \cos \alpha$ 1p	
	rezultat final: $L_{F_t} = -4 \text{ J}$	
C.	Pentru:	4p
	$\frac{mv_1^2}{2} - \frac{mv_0^2}{2} = -mg\ell\sin\alpha + L_{F_t}$	
	rezultat final: $v_1 = 3 \text{ m/s}$	
d.	Pentru:	4p
	$p_2 = mv_2 $ 1p	
	$\frac{mv_2^2}{2} - \frac{mv_1^2}{2} = mg\ell\sin\alpha$	
	rezultat final: $p_2 \cong 9.2 \text{N} \cdot \text{s}$	
TOTAL pentru Subiectul al III-lea		