ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Τηλεπικοινωνίες - Εργαστηριακή άσκηση 1

Σκοπός της 1^{ης} εργαστηριακής άσκησης του μαθήματος «Τηλεπικοινωνίες» είναι εξοικείωση με βασικές συναρτήσεις και λειτουργίες του Matlab (ή αντίστοιχου λογισμικού ανοιχτού κώδικα).

Βήμα 1°: εκτέλεση της άσκησης

Ερώτηση 1:

1.	Δημιουργήστε μια μεταβλητή	>> t=2
2.	Δημιουργήστε πίνακα	>> A=[1 3; 5 6]
3.	Δημιουργήστε ένα διάνυσμα	>> u =[2 4 5]
4.	Δημιοργήστε ένα διάνυσμα με τον αριθμό του ΑΜ ανά στοιχείο	
	π.χ. για τον ΑΜ 4998 είναι	>> u1= [4 9 9 8]
5.	Δημιουργήστε το άθροισμα αριθμών	>> u2 = u1 + 3
6.	Δημιουργήστε τον πολλαπλασιασμό	>> upol = u1*t
7.	Πολλαπλασιάστε στοιχείο-προς-στοιχείο	>> upol2 = u1.*u2
8.	Μήκος ενός διανύσματος	>> length(u1)
9.	Μέγεθος ενός πίνακα	>> size(u1)
10.	Δείτε τα συγκεκριμένα στοιχεία ενός πίνακα	>> A(1,2)
11.	Προσπελάστε συγκεκριμένα τμήματα ενός πίνακα	>> A(1, 1:2)
12.	Δημιουργήστε διάνυσμα με στοιχεία από το 0 ως 1με βήμα 0.1	>> t = 0:0.1:1
1.1	2 Εντολή HELP	
1.1	3 Εντολή PLOT	>> plot(t)

Εκτυπώστε τα αποτελέσματα των παραπάνω εντολών:

Ερώτηση 2:

Χρησιμοποιώντας τις παραπάνω συναρτήσεις μπορούν να δημιουργηθούν πολλά σήματα.

 $u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$

Μοναδιαία Βηματική Συνάρτηση

Μοναδιαία Επικλινής Συνάρτηση

$$r(t) = \begin{cases} t, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

Γράψτε κώδικα σε matlab, χρησιμοποιώντας και τις απαραίτητες συναρτήσεις για να δημιουργήσετε το σήμα:

$$y1(t) = 3u(t)$$

$$y2(t) = 2r(t+3)$$

$$y3(t) = 3u(t) - 2r(t+3)$$

$$y4(t) = 6u(t) * 2r(t+3)$$

Εκτυπώστε τα αποτελέσματα των παραπάνω εντολών και αναπαραστήστε τις γραφικές παραστάσεις

<u>Βήμα 2°: Αναφορά εργαστηρίου</u>

Η αναφορά πρέπει να περιέχει την περιγραφή της διαδικασίας του εργαστηρίου, καθώς και τα αποτελέσματα που καταγράψατε. Χρησιμοποιήστε το πρότυπο αναφοράς, που υπάρχει στο eclass. Η αναφορά πρέπει να αποσταλεί στο eclass και σε μορφή pdf (και μόνο), με όνομα αρχείου ΧΧΧΧ_1, όπου ΧΧΧΧ ο αριθμός μητρώου σας, μέχρι 22/03/2024.