计 算 方 法

实验一 Lagrange 插值

姓名 孙骁___

学号 <u>1180300811</u>

院系 计算机学院

专业 计算机系

哈尔滨工业大学

题目

Lagrange 插值

摘要

给定平面上n+1个不同的数据点 $(x_k,f(x_k)),k=0,1,...,n,x_i\neq x_j,i\neq j$,则满足条件

$$P_n(x_k) = f(x_k), k = 0, 1, ..., n$$

的n 次拉格朗日插值多项式

$$P_n(x) = \sum_{k=0}^n f(x_k) l_k(x)$$

是存在唯一的。若 $x_k \in [a,b], k = 0,1,...,n$,且函数f(x)充分光滑,则当 $x \in [a,b]$ 时,有误差估计式

$$f(x) - P_n(x) = rac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0) \, (x-x_1) \, \cdots \, (x-x_n), \xi \in [a,b]$$

前言(目的和意义)

目的:

利用 Lagrange 插值多项式 $P_n(x)$ 求f(x)近似值.

意义:

通过此次实验,使用编程语言实现 Lagrange 插值方法,学会使用 Lagrange 插值 法求解函数的近似值,以解决其他科学实验中的函数估计计算问题.

数学原理

Lagrange 插值问题

已知函数y = f(x)在[a,b]上有n+1个互异点 $x_0,x_1,...,x_n$,其函数值分别为 $f(x_0),f(x_1),...,f(x_n)$.

记 M_n 为 次 数 $\leq n$ 的 多 项 式 集 合 , 构 造 一 个 $L_n(x) \in M_n$, 满 足 条 件 $L_n(x_i) = f(x_i)$,(i = 0, 1, ..., n).则满足此插值条件的多项式 $L_n(x) \in M_n$ 存在且唯一.且有

$$l_i(x_j) = egin{cases} 1 & i=j \ 0 & i
eq j \end{cases}$$

即

$$l_i(x) = rac{(x-x_0)\,(x-x_1)\,\cdots\,(x-x_{i-1})\,(x-x_{i+1})\,\cdots\,(x-x_n)}{(x_i-x_0)\,(x_i-x_1)\,\cdots\,(x_i-x_{i-1})\,(x_i-x_{i+1})\,\cdots\,(x_i-x_n)}$$

则 Lagrange 插值多项式为

$$L_n(x) = \sum_{i=0}^n f(x_i) l_i(x).$$

若 $f(x) \in C^n[a,b]$, f(x) 在 (a,b) 内存在 n+1 阶 导数, 其中 [a,b] 是包含点 $x_0,x_1,...,x_n$ 的一区间,则对任意给定的 $x \in [a,b]$,总存在一点 $\xi \in (a,b)$ (ξ 依赖于x) 使得

$$E(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(x)}{(n+1)!} (x - x_0) (x - x_1) \cdots (x - x_n)$$

称E(x)为 Lagrange 插值多项式的余项. 于是有 Lagrange 插值公式

$$f(x) = \sum_{i=0}^n f(x_i) l_i(x) + rac{f^{(n+1)}(\xi)}{(n+1)!} \left(x - x_0
ight) (x - x_1) \cdots (x - x_n).$$

实验结果、结论与讨论

问题 1:

1.
$$f(x) = \frac{1}{1+x^2}, x \in [-5, 5]$$

$$N=5$$
时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
0.75	0.905441810344828	0.64	-0.265441810344828
1.75	0.525799900530504	0.246153846153846	-0.279646054376658
2.75	0.00955321618037138	0.116788321167883	0.107235104987512
3.75	-0.356826094164456	0.0663900414937759	0.423216135658232
4.75	-0.159544927055703	0.0424403183023873	0.20198524535809

N=10 时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
0.75	0.690717622465352	0.64	-0.0507176224653517
1.75	0.232998135375749	0.246153846153846	0.013155710778097
2.75	0.112245498272776	0.116788321167883	0.0045428228951068
3.75	0.10840041819812	0.0663900414937759	-0.0420103767043436
4.75	-0.236036984650529	0.0424403183023873	0.278477302952917

N=20 时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
0.75	0.641340346544816	0.64	-0.00134034654481563
1.75	0.249055752717957	0.246153846153846	-0.00290190656411057
2.75	0.128218767039017	0.116788321167883	-0.0114304458711337
3.75	0.190261670108915	0.0663900414937759	-0.123871628615139
4.75	6.41503206147495	0.0424403183023873	-6.37259174317256

2. $f(x) = e^x, x \in [-1, 1]$

N=5时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
-0.95	0.386293875908856	0.386741023454501	0.000447147545645177
-0.05	0.951334527877977	0.951229424500714	-0.000105103377262772
0.05	1.05116423974907	1.05127109637602	0.000106856626955754
0.95	2.58632252991597	2.58570965931585	-0.000612870600124715

N=10 时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i	
-0.95	0.386741026580096	0.386741023454501	-3.12559478299335e-09	

-0.05	0.951229424555521	0.951229424500714	-5.48073808559479e-11
0.05	1.05127109643133	1.05127109637602	-5.53064261055169e-11
0.95	2.58570966303014	2.58570965931585	-3.71429642598287e-09

N=20时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
-0.95	0.386741023454198	0.386741023454501	3.03701508386212e-13
-0.05	0.951229424500714	0.951229424500714	0
0.05	1.05127109637602	1.05127109637602	-4.44089209850063e-16
0.95	2.58570965931524	2.58570965931585	6.02184968556685e-13

问题 2:

1.
$$f(x) = \frac{1}{1+x^2}, x \in [-1, 1]$$

$$N=5$$
时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
-0.95	0.5135525	0.525624178712221	0.0120716787122208
-0.05	0.9977525	0.997506234413965	-0.0002462655860348
0.05	0.9977525	0.997506234413965	-0.000246265586035022
0.95	0.5135525	0.525624178712221	0.0120716787122207

N=10 时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
-0.95	0.524273974664652	0.525624178712221	0.00135020404756836
-0.05	0.997464701884015	0.997506234413965	4.15325299498726e-05
0.05	0.997464701884015	0.997506234413965	4.15325299498726e-05
0.95	0.524273974664649	0.525624178712221	0.00135020404757136

N=20 时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
-0.95	0.525631201741019	0.525624178712221	-7.02302879829197e-06

	-0.05	0.997506234361833	0.997506234413965	5.21316323442989e-11
ĺ	0.05	0.997506234361834	0.997506234413965	5.21315213219964e-11
ĺ	0.95	0.525631201740544	0.525624178712221	-7.0230283230055e-06

2. $f(x) = e^x, x \in [-5, 5]$

N=5时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
-4.75	-1.93214926360277	0.00865169520312063	1.94080095880589
-0.25	1.4275370211018	0.778800783071405	-0.648736238030395
0.25	0.588185463991354	1.28402541668774	0.695839952696387
4.75	123.714558835116	115.584284527188	-8.13027430792803

N=10 时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
-4.75	0.0425159586621753	0.00865169520312063	-0.0338642634590546
-0.25	0.779562065562605	0.778800783071405	-0.000761282491200554
0.25	1.28482007548394	1.28402541668774	-0.000794658796201553

N=20时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
-4.75	0.0086517043449682	0.00865169520312063	-9.14184756888037e-09
-0.25	0.778800783071361	0.778800783071405	4.41868763800812e-14
0.25	1.2840254166877	1.28402541668774	4.44089209850063e-14
4.75	115.584284541532	115.584284527188	-1.43442377975589e-08

问题 3:

1.
$$f(x) = \frac{1}{1+x^2}, x \in [-1, 1]$$

$$N=5$$
时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
-0.95	0.525417073170731	0.525624178712221	0.000207105541489283
-0.05	0.99780731707317	0.997506234413965	-0.000301082659205254
0.05	0.99780731707317	0.997506234413965	-0.000301082659205365
0.95	0.525417073170732	0.525624178712221	0.000207105541489172

N=10 时

	•		
插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
-0.95	0.525467972887303	0.525624178712221	0.000156205824917599
-0.05	0.9972459625394	0.997506234413965	0.000260271874565343
0.05	0.9972459625394	0.997506234413965	0.000260271874565454
0.95	0.525467972887303	0.525624178712221	0.000156205824917821

N=20 时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
-0.95	0.525624155528343	0.525624178712221	2.31838773734339e-08

-0.05	0.997506210602481	0.997506234413965	2.38114840067638e-08
0.05	0.997506210602482	0.997506234413965	2.38114835626746e-08
0.95	0.525624155528343	0.525624178712221	2.31838773734339e-08

2. $f(x) = e^x, x \in [-1, 1]$

$$N=5$$
时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
-0.95	0.386733160435482	0.386741023454501	7.86301901900543e-06
-0.05	0.951361132942333	0.951229424500714	-0.000131708441618805
0.05	1.05113719086242	1.05127109637602	0.000133905513605592
0.95	2.58572043657629	2.58570965931585	-1.07772604467371e-05

N=10 时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
-0.95	0.386741023958965	0.386741023454501	-5.04464137129901e-10
-0.05	0.951229424979854	0.951229424500714	-4.79139727893596e-10
0.05	1.05127109685953	1.05127109637602	-4.83502127224256e-10
0.95	2.58570965991527	2.58570965931585	-5.99424510028257e-10

N=20 时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
-0.95	0.386741023454501	0.386741023454501	-1.11022302462516e-16
-0.05	0.951229424500714	0.951229424500714	-1.11022302462516e-16
0.05	1.05127109637602	1.05127109637602	0
0.95	2.58570965931585	2.58570965931585	4.44089209850063e-16

问题 4:

$$f(x) = \sqrt{x}$$

1.
$$x_0 = 1, x_1 = 4, x_2 = 9$$
 时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
5	2.26666666666667	2.23606797749979	-0.0305986891668768
50	-20.2333333333333	7.07106781186548	27.3044011451988
115	-171.9	10.7238052947636	182.623805294764
185	-492.733333333333	13.6014705087354	506.334803842069

2. $x_0 = 36$, $x_1 = 49$, $x_2 = 64$ 时

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
5	3.11575091575092	2.23606797749979	-0.879682938251126
50	7.07179487179487	7.07106781186548	-0.000727059929396034
115	10.167032967033	10.7238052947636	0.556772327730613
185	10.0388278388278	13.6014705087354	3.56264266990766

3. $x_0 = 100$, $x_1 = 121$, $x_2 = 144$ Fy

插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
5	4.43911161302466	2.23606797749979	-2.20304363552487
50	7.2849614153962	7.07106781186548	-0.213893603530728
115	10.7227555053642	10.7238052947636	0.00104978939940636
185	13.5356672313194	13.6014705087354	0.0658032774160358

4. $x_0 = 169$, $x_1 = 196$, $x_2 = 225$ 时

, , , , , , , , , , , , , , , , , , , ,			
插值点 x_i	计算插值 y_i	实际值 $yFact_i$	误差 err_i
5	5.497172048896	2.23606797749979	-3.26110407139621
50	7.80012771392083	7.07106781186548	-0.729059902055354
115	10.8004926108374	10.7238052947636	-0.0766873160738299
185	13.6006203247583	13.6014705087354	0.000850183977188834

思考题

问题 1:

拉格朗日插值多项式的次数并不是越大越好,根据定义,插值多项式可以在节点处与实际函数匹配,但不能保证在节点之间很好的逼近实际函数。这个现象就是多项式摆动——Runge 现象,有时多项式摆动可以通过谨慎选择基础函数的取样点来减小。通常采用分段插值例如 Hermite 插值可以很好的消除多项式摆动现象。

问题 2:

在分段数量相同的情况下,插值区间越大,误差越大。原因是大部分情况下,相对于比较大的区间,函数在比较小的区间上的函数值变化较缓和,因此即使出现 摆动也不会过大的偏离原函数。

问题 3:

Runge 现象可以通过谨慎选择基础函数的取样点来减小。例如在函数f(x)变化趋势较大的区间选取更多取样点,变化趋势平缓的区间适当减少取样点。

问题 4:

一般情况下,内插时插值收敛于实际函数,一旦超出内插的范围,插值函数会 发散,且离插值区间越远外推误差越大。使用不用的插值方法在同一点外推的值也 会相差很多,即外推本身就存在很大的不确定性。

```
程序代码
Lagrange.m
% X代表样本值的横坐标向量
% Y代表对应样本值的函数值向量
% x代表待计算点的横坐标向量
% 输出y代表x对应的计算得出的插值
function y = Lagrange(X, Y, x)
dataNumber = length(X);
sampleNumber = length(x);
for i = 1:sampleNumber
   z = x(i);
   s = 0.0;
   for k = 1:dataNumber
      p = 1.0;
      for j = 1:dataNumber
          if j~=k
             p = p * (z - X(j)) / (X(k) - X(j));
         end
      end
      s = p * Y(k) + s;
   end
   y(i) = s;
end
Test1.m
% fun为输入函数
% a,b为计算区间
% n为区间分段数
% xi为待计算插值点
function Test1(fun, a, b, n, xi)
x = linspace(a, b, n);
y = feval(fun, x);
yi = Lagrange(x, y, xi);
yFact = feval(fun, xi);
err = yFact - yi;
fprintf('区间[%d,%d]分为%d段\n', a, b, n);
```

```
fprintf('计算插值点xi:\n');
disp(xi);
fprintf('计算得插值yi:\n');
disp(yi);
fprintf('插值点处函数值yFact:\n');
disp(yFact);
fprintf('计算误差err:\n');
disp(err);
plot(x, y, '-b', xi, yi, '-r', xi, yi, 'og');
Test2.m
% fun为输入函数
% a,b为计算区间
% n为区间分段数
% xi为待计算插值点
function Test2(fun, a, b, n, xi)
x = zeros(1, n);
for k = 1:n
   x(k) = cos((2 * k - 1) * pi / (2 * n));
end
y = feval(fun, x);
yi = Lagrange(x, y, xi);
yFact = feval(fun, xi);
err = yFact - yi;
fprintf('区间[%d,%d]分为%d段\n', a, b, n);
fprintf('计算插值点xi:\n');
disp(xi);
fprintf('计算得插值yi:\n');
disp(yi);
fprintf('插值点处函数值yFact:\n');
disp(yFact);
fprintf('计算误差err:\n');
disp(err);
plot(x, y, '-b', xi, yi, '-r', xi, yi, 'og');
```

```
Test3.m
% x为插值点
% xi为待计算点
function Test3(x, xi)
y = sqrt(x);
yi = Lagrange(x, y, xi);
yFact = sqrt(xi);
err = yFact - yi;
fprintf('计算插值点xi:\n');
disp(xi);
fprintf('计算得插值yi:\n');
disp(yi);
fprintf('插值点处函数值yFact:\n');
disp(yFact);
fprintf('计算误差err:\n');
disp(err);
plot(x, y, '-b', xi, yi, '-r', xi, yi, 'og');
```