Fuzzing Semantic Misinterpretation for Voice Assistant Applications

Project Proposal

Presented by

Shivam Pandit

Christin Wilson

Security Concerns in Voice Assistants

- **Semantic Misinterpretations:** VA's are found to misclassify things based on speech understanding that can cause security concern
- Attacks on ASR & Intent Classifier: Attacks on Automatic Speech Recognition and intent classifier are big concern as attackers leverage common spoken errors to breach vApp integrity for malicious intent

NLU's Intent Classifier

 Intent Classifier may misinterpret something other than user intent based on machine understanding

VUI based VA Architecture

Fig. 1: VUI-based VA Architecture.

Security Aspects

- Voice assistants allow us to directly control computational devices like phones, tablets that emphasizes need of security.
- User voice commands can be misinterpreted by NLU intent classifier to give undesired results.
- ASR and intent classifier are both proven to misinterpret the spoken command by users that can be leveraged by hackers to intrude privacy.
- Developers can maliciously modify intent matching process in NLU.
- Intent classifier plays more important role since it is last step of the interpretation process.

Examples

- The actual word used in the utterance matters as seen above.
- Machine learning algorithm considers the number of words in the utterance, the utterance word itself, as well as the number of words in each sample slot.

Attack Consequences

- Denial of Service
- Privacy Leakage
- Phishing
- Other consequences
 - Introduction of new functionalities like in-vApp purchasing can cause new consequences.

Related Work

Attacking ASR through Acoustic Channels

 Launch Attacks that can be recognized by a computer speech recognition system but not easily understandable by humans.

Attacking ASR with Misinterpretation.

- vApp Squatting Attack
- Uses a malicious skill with similarly pronounced name or paraphrased name to hijack the voice command meant for a different skill.

Implementation

1. Creating BN Models

- 1.1. Linguistic Knowledge is collected and Bayesian Networks are formulated.
- 1.2. Mispronunciation, Grammar and Vocabulary are considered.

2. Collecting SEED inputs

- 2.1. Crawl skill commands from Alexa Skill Store and preprocess them for mutation.
- 3. Perform Mutation
- 4. Evaluate

Implementation

Timeline

Task	Date
Collect SEED inputs	2/25 - 3/4
Formulate BNs from collected Linguistic Knowledge	3/4 - 3/11
Train BNS with statistical weights and Preprocess SEED inputs	3/11 - 3/18
Perform Mutation	3/18 - 3/25
Prepare Midterm Project Prosentation	3/25 - 4/3
Evaluation	4/3 - 4/17
Prepare Final Project Presentation	4/17 - 4/24
Prepare Report	4/24 - 5/1

THANK YOU...