ЭТО БАЗА

Содержание

1	Признаки равенства треугольников (6:50)
	1.1 Первый признак (по двум сторонам и углу между ними)
	1.2 Второй признак (по стороне и двум прилежащим к ней углам)
	1.3 Третий признак (по трем сторонам)
2	Свойства и признаки параллельных прямых (9:00)
3	Вертикальные углы (9:30)
1	Смежные углы (9:40)
5	Сумма углов треугольника, внешний угол (9:50)
3	Параллелограмм (8:30)
	6.1 Свойства (11:35)
	6.2 Признаки (12:50)
7	Теорема Φ алеса (15:25)
	7.1 Прямая теорема Фалеса
	7.2 Обратная теорема Фалеса (21:00)
3	Средняя линия треугольника (23:00)
)	Обобщенная теорема Фалеса (т. о пропорциональных отрезках)
	9.1 Прямая теорема о пропорциональных отрезках (29:15)
	9.2 Обратная теорема о пропорциональных отрезках (34:40)
ا0	Биссектриса (40:00)
	10.1 Что такое биссектриса?
	10.2 Бомбическое свойство биссектрисы (42:50)
	10.3 Точка пересечения биссектрис, вписанная окружность (48:34)
	10.4 Биссектриса в параллелограмме (54:50)
	10.5 Углы между биссектрисами (57:00)
L1	Высота (1:22:00) 11.1 Что такое высота и ортоцентр?
	11.1 Что такое высота и ортоцентр?
۱ 2	Медиана (1:01:35)
	12.1 Что такое медиана?
	12.2 Удвоение медианы (1:11:50)
	12.3 Точка пересечения медиан (1:02:50)
	12.4 Медиана прямоугольного треугольника (1:15:05)
L 3	Серединный перпендикуляр и описанная окружность (1:26:05)
	13.1 Что такое серединный перпендикуляр?
	13.2 Точка пересечения серединных перпендикуляров

1 Признаки равенства треугольников (6:50)

1.1 Первый признак (по двум сторонам и углу между ними)

Если
$$AB=A_1B_1,\ AC=A_1C_1$$
 и $\angle A=\angle A_1,$ то $\triangle ABC=\triangle A_1B_1C_1.$

1.2 Второй признак (по стороне и двум прилежащим к ней углам)

Если
$$AB=A_1B_1,\ \angle A=\angle A_1$$
 и $\angle B=\angle B_1,$ то $\triangle ABC=\triangle A_1B_1C_1.$

1.3 Третий признак (по трем сторонам)

Если
$$AB = A_1B_1, \ AC = A_1C_1$$
 и $BC = B_1C_1,$ то $\triangle ABC = \triangle A_1B_1C_1.$

2 Свойства и признаки параллельных прямых (9:00)

Три свойства: если $a \parallel b$ и c — секущая, то

- 1. $\angle 1 = \angle 2$ (накрест лежащие углы)
- 2. $\angle 1 = \angle 4$ (соответственные углы)
- 3. $\angle 1 + \angle 3 = 180^{\circ}$ (односторонние углы)

Три признака: $a \parallel b$ при секущей c, если:

- 1. $\angle 1 = \angle 2$ (накрест лежащие углы)
- 2. $\angle 1 = \angle 4$ (соответственные углы)
- 3. $\angle 1 + \angle 3 = 180^{\circ}$ (односторонние углы)

3 Вертикальные углы (9:30)

Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого. Вертикальные углы равны.

$$\angle AOB = \angle COD$$

4 Смежные углы (9:40)

Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными. Сумма смежных углов равна 180°.

$$\angle AOB + \angle BOC = \alpha + \beta = 180^{\circ}$$

5 Сумма углов треугольника, внешний угол (9:50)

Сумма углов треугольника равна 180°. Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\angle BCD = 180^{\circ} - \angle C = \angle A + \angle B$$

6 Параллелограмм (8:30)

Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.

6.1 Свойства (11:35)

- 1. Противоположные стороны попарно равны.
- 2. Противоположные углы попарно равны.
- 3. Диагонали точкой пересечения делятся пополам.

6.2 Признаки (12:50)

Четырехугольник является параллелограммом, если

- 1. Противоположные стороны попарно равны.
- 2. Две стороны равны и параллельны.
- 3. Диагонали точкой пересечения делятся пополам.

7 Теорема Фалеса (15:25)

7.1 Прямая теорема Фалеса

Если параллельные прямые высекают на одной из сторон угла равные отрезки, то они отсекают равные отрезки и на другой стороне угла.

Доказательство

Пусть первая прямая соответственно пересекает стороны угла с вершиной O в точках A и C, а вторая — в точках B и D, и OA = AB. Проведем через точку C прямую $CP \parallel AB$. Тогда BACP — параллелограмм (т.к. $CP \parallel AB$ и $AC \parallel BD$). Тогда AB = CP.

Так как $AB \parallel CP$, то $\angle CPD = \angle ABD$ и $\angle PCD = \angle AOC$.

Так как $AC \parallel BD$, то $\angle OAC = \angle ABD$.

Значит, $\angle CPD = \angle OAC$. Тогда $\triangle AOC = \triangle PCD$ по второму признаку. Следовательно, OC = CD.

Если прямые высекают равные отрезки на сторонах угла, то прямые параллельны.

Доказательство

Пусть первая прямая соответственно пересекает стороны угла с вершиной O в точках A и C, а вторая — в точках B и D.

Тогда предположим противное. Пусть $AC \not\parallel BD$. Тогда проведем $AC_1 \parallel BD$. По теореме Фалеса $OC_1 = C_1D$. Значит, и точка C, и точка C_1 делят отрезок OD пополам. Противоречие, следовательно, $AC \parallel BD$.

8 Средняя линия треугольника (23:00)

Средняя линия треугольника — отрезок, соединяющий середины двух сторон треугольника.

Средняя линия треугольника равна половине третьей стороны и параллельна ей, то есть

$$PQ = \frac{1}{2}AC$$
 и $PQ \parallel AC$

Доказательство

- 1) PQ средняя линия, то есть AP = PB и CQ = QB. Тогда по обратной теореме Фалеса $PQ \parallel AC$.
- 2) Проведем через через точку Q прямую $OR \parallel AB$. Тогда $\triangle PBQ = \triangle RQC$ по второму признаку. Значит, PQ = RC. С другой стороны, APQR параллелограмм, следовательно, PQ = AR. Тогда $PQ = \frac{1}{2}AC$.

9 Обобщенная теорема Фалеса (т. о пропорциональных отрезках)

9.1 Прямая теорема о пропорциональных отрезках (29:15)

Параллельные прямые высекают на сторонах угла пропорциональные отрезки:

$$\frac{a}{b} = \frac{c}{d}$$

9.2 Обратная теорема о пропорциональных отрезках (34:40)

Если прямые высекают пропорциональные отрезки на сторонах угла, то прямые парадлельны.

10 Биссектриса (40:00)

10.1 Что такое биссектриса?

Биссектрисой угла называется луч, исходящий из вершины угла и делящий его на два равных.

Каждая точка биссектрисы угла равноудалена от его сторон. Верно и обратное: если точка равноудалена от сторон угла, то она лежит на его биссектрисе.

Доказательство

В обоих случаях образующиеся прямоугольные треугольники будут равны. В первом — по острому углу и гипотенузе, а во втором — по катету и гипотенузе.

10.2 Бомбическое свойство биссектрисы (42:50)

Пусть BL — биссектриса в треугольнике ABC. Тогда

$$\frac{AB}{BC} = \frac{AL}{LC}$$

Проведем через точку C прямую $CP \parallel BL$. Тогда $\angle LBC = \angle PCB$ как накрест лежащие, образованные параллельными прямыми CP и BL и секущей BC. Также $\angle ABL = \angle BPC$ как соответственные, образованные параллельными прямыми CP и BL и секущей BC.

BL — биссектриса, значит,

$$A$$
 L
 C

$$\angle PCB = \angle LBC = \angle ABL = \angle BPC$$

Таким образом, $\triangle BCP$ — равнобедренный, то есть BC = BP. По теореме о пропорциональных отрезках

$$\frac{AL}{LC} = \frac{AB}{BP} = \frac{AB}{BC}$$

10.3 Точка пересечения биссектрис, вписанная окружность (48:34)

Биссектрисы треугольника пересекаются в одной точке — центре вписанной окружности этого трегуольника.

Доказательство

Пусть I — точка пересечения биссектрис углов A и B треугольника ABC. Тогда расстояния от точки I до прямых AB и AC равны и расстояния от точки I до прямых BA и BC равны, значит, расстояния от точки I до прямых CA и CB также равны. Таким образом, I лежит на биссектрисе угла C треугольника ABC.

Мы получили, что расстояния от точки I до прямых $AB,\ BC$ и AC равны, значит, I — центр вписанной окружности треугольника ABC.

Если окружность вписана в угол, то ее центр лежит на биссектрисе этого угла.

10.4 Биссектриса в параллелограмме (54:50)

Биссектриса AE параллелограмма ABCD отсекает от него равнобедренный треугольник, то есть

$$\angle BAE = \angle DAE = \angle BEA \Rightarrow AB = BE$$

10.5 Углы между биссектрисами (57:00)

Биссектрисы односторонних углов при параллельных прямых взаимно перпендикулярны.

Доказательство 1

Биссектриса AE отсекает равнобедренный треугольник, значит, $AB=BC.\ BO$ — биссектриса, выходящая из вершины равнобедренного трегуольника, тогда она также является высотой. Следовательно, $BO \perp AO$.

Сумма односторонниих углов равна 180°, то есть

$$2\alpha + 2\beta = 180^{\circ} \implies \alpha + \beta = 90^{\circ}$$

По сумме углов треугольника ABO

$$\angle AOB = 180^{\circ} - (\angle BAO + \angle ABO) = 180^{\circ} - (\alpha + \beta) = 90^{\circ}$$

Биссектрисы смежных углов перпендикулярны.

Доказательство (1:36:40)

Сумма смежных углов равна 180°, то есть

$$2\alpha + 2\beta = 180^{\circ} \Rightarrow \alpha + \beta = 90^{\circ}$$

Пусть угол Bтреугольника ABCравен $\alpha.$ Тогда угол между биссектрисами углов A и Cравен $90^\circ + \frac{\alpha}{2}.$

Доказательство (1:31:40)

Пусть биссектрисы углов A и C пересекаются в точке I. Пусть $\angle BAI = \angle IAC = x, \ \angle BCI = \angle ICA = y.$ Тогда по сумме углов треугольника ABC

$$2x + 2y = 180^{\circ} - \alpha \quad \Rightarrow \quad x + y = 90^{\circ} - \frac{\alpha}{2}$$

По сумме углов треугольника ACI

$$\angle AIC = 180^{\circ} - (\angle IAC + \angle ICA) = 180^{\circ} - (x+y) = 90^{\circ} + \frac{\alpha}{2}$$

11 Высота (1:22:00)

11.1 Что такое высота и ортоцентр?

Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника.

Три высоты треугольника, как три медианы и три биссектрисы, пересекаются в одной точке. Эта точка называется ортоцентром.

Высота, опущенная из вершины острого угла тупоугольного треугольника, падает на продолжение противоположной стороны.

Важно помнить, что формула площади треугольника

где h — высота, a — сторона, на которую она опущена, работает для любого треугольника (даже для тупоугольного).

12 Медиана (1:01:35)

12.1 Что такое медиана?

Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.

12.2 Удвоение медианы (1:11:50)

Удвоение медианы — это практически самое популярное и действенное дополнительное построение в задачах с медианой.

Возьмем треугольник ABC и продлим его медиану BM на свою длину за точку M. Пусть мы получили точку P. Тогда диагонали четырехугольника ABCP пересекаются и точкой пересечения делятся пополам, значит, ABCP — параллелограмм.

12.3 Точка пересечения медиан (1:02:50)

Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины:

$$AO: OA_1 = BO: OB_1 = CO: OC_1 = 2:1$$

Доказательство

Пусть AA_1 и BB_1 — медианы треугольника ABC, O — их точка пересечения. Докажем, что $AO:OA_1=2:1$. Проведем через точку B_1 прямую $B_1Q \parallel AA_1$. Тогда, так как $AB_1=B_1C$, по теореме Фалеса $CQ=QA_1$. Пусть $CQ=QA_1=x$. A_1 — середина BC, тогда $BA_1=CA_1=2x$. По теореме о пропорциональных отрезках для угла B_1BC и параллельных прямых AA_1 и B_1Q имеем

$$\frac{BO}{OB_1} = \frac{BA_1}{A_1Q} = \frac{2x}{x} = 2$$

Таким образом, мы получили, что медиана AA_1 делит медиану BB_1 в отношении 2:1 считая от вершины. Аналогично докажем, что медиана CC_1 делит медиану BB_1 в отношении 2:1 считая от вершины. На BB_1 такая точка единственна, значит, три медианы пересекаются в ней.

12.4Медиана прямоугольного треугольника (1:15:05)

Медиана треугольника, проведенная из вершины прямого угла, равна половине гипотенузы:

$$CM = \frac{1}{2}AB = AM = MB$$

Удвоим медиану CM. Пусть мы получили точку D. Тогда ADBC — параллелограмм с прямым углом C, значит, ADBCпрямоугольник.

Диагонали прямоугольника разбиваются на 4 равных отрезка, следовательно, CM = AM = BM.

Доказательство

Если медиана треугольника равна половине стороны, к которой проведена, то этот треугольник прямоугольный.

Пусть медиана CM равна половине стороны AB. Тогда CM =AM = BM. Заметим, что $\triangle ACM$ и $\triangle BCM$ равнобедренные. Тогда пусть $\angle MAC = \angle MCA = \alpha$ и $\angle MBC = \angle MCB = \beta$. По сумме углов треугольника имеем

$$2\alpha + 2\beta = 180^{\circ} \Rightarrow \alpha + \beta = 90^{\circ} \Rightarrow \angle C = 90^{\circ}$$

13 Серединный перпендикуляр и описанная окружность (1:26:05)

Что такое серединный перпендикуляр? 13.1

Серединный перпендикуляр — прямая, перпендикулярная данному отрезку и проходящая через его середину.

Любая точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от его концов. Верно и обратное: если точка равноудалена от концов отрезка, то она лежит на его серединном перпендикуляре.

Доказательство

В обоих случаях образующиеся прямоугольные треугольники будут равны. В первом — по двум катетам, а во втором — по катету и гипотенузе.

13.2 Точка пересечения серединных перпендикуляров

Серединные перпендикуляры треугольника пересекаются в одной точке — центре описанной окружности этого трегуольника.

Доказательство

Пусть O — точка пересечения серединных перпендикуляров к сторонам AB и AC треугольника ABC, а L, M, N — середины сторон BC, AC и AB. Тогда расстояния от точки O до точек A и B равны и расстояния от точки O до точек A и C равны, значит, расстояния от точки O до точек B и C также равны. Таким образом, O лежит на серединном перпендикуляре к стороне BC треугольника ABC.

Мы получили, что расстояния от точки O до точек $A,\ B$ и C равны, значит, O — центр описанной окружности треугольника ABC.

ШКОЛКОВО

