The probability of observing the value $y_i \equiv y(t_i)$ when the expectation value is $\mu(t_i)$ and the error is gaussian is

$$f(y_i|\boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\nu}} \exp\left(-\frac{1}{2} \frac{(y_i - \mu(t_i))^2}{\nu}\right),$$

$$\boldsymbol{\theta} = (\nu, \omega, \phi),$$

$$\mu(t_i) = N_0 \left(1 + P \sin(\omega t_i + \phi)\right).$$

The likelihood of observing a set of observations $\mathbf{y} = (y_1, \dots, y_K)$, under the i.i.d. assumption, is the product of propabilities taken as a function of the parameters:

$$\mathcal{L}(\boldsymbol{\theta}|\mathbf{y}) = \prod_{i} f(y_i|\boldsymbol{\theta}),$$

and the log-likelihood

$$\ell(\boldsymbol{\theta}|\mathbf{y}) = -\frac{K}{2}\log 2\pi - \frac{K}{2}\log \nu - \frac{1}{2\nu}\sum_{i}\epsilon_{i}^{2}, \ \epsilon_{i} = y_{i} - \mu(t_{i}).$$

The usual assumptions for the error term are zero expectation and strict exogeneity

$$\mathrm{E}\left[\epsilon_{i}|\ \boldsymbol{\theta}_{0}\right] = \mathrm{E}\left[t_{i}\epsilon_{i}|\ \boldsymbol{\theta}_{0}\right] = 0,$$

and the relations between the mean's derivatives are

$$\mu'_{\phi} = N_0 P \cos(\omega t + \phi),$$

$$\mu'_{\omega} = t \cdot \mu'_{\phi}, \epsilon'_{\xi} = -\mu'_{\xi}.$$

The log-likelihood derivatives:

$$\begin{split} \ell'_{\nu} &= -\frac{K}{2\nu} + \frac{1}{2\nu^2} \sum_{i} \epsilon_{i}^{2}; \\ \ell'_{\omega} &= \frac{1}{\nu} \sum_{i} \mu'_{\phi}(t_{i}) t_{i} \epsilon_{i}; \\ \ell'_{\psi} &= \frac{1}{\nu} \sum_{i} \mu'_{\phi}(t_{i}) \epsilon_{i}; \\ \ell''_{\nu^2} &= \frac{K}{2\nu^2} - \frac{1}{\nu^3} \sum_{i} \epsilon_{i}^{2}, \\ \ell''_{\nu^2} &= \frac{K}{2\nu^2} - \frac{1}{\nu^3} \sum_{i} \epsilon_{i}^{2}, \\ \ell''_{\nu\omega} &= -\frac{1}{\nu^2} \sum_{i} \mu'_{\phi}(t_{i}) t_{i} \epsilon_{i}, \\ \ell''_{\nu\phi} &= -\frac{1}{\nu^2} \sum_{i} \mu'_{\phi}(t_{i}) \epsilon_{i}, \\ \ell''_{\psi\phi} &= -\frac{1}{\nu^2} \sum_{i} \mu'_{\phi}(t_{i}) \epsilon_{i}, \\ \ell''_{\psi\phi} &= \frac{1}{\nu} \sum_{i} \left(\mu''_{\psi^2}(t_{i}) \epsilon_{i} - \left(\mu'_{\phi}(t_{i}) \right)^2 \right), \\ \ell''_{\phi\omega} &= \frac{1}{\nu} \sum_{i} \left(\mu''_{\psi^2}(t_{i}) t_{i} \epsilon_{i} - \left(\mu'_{\phi}(t_{i}) \right)^2 t_{i} \right), \\ \ell''_{\psi\omega} &= \frac{1}{\nu} \sum_{i} \left(\mu''_{\psi^2}(t_{i}) t_{i} \epsilon_{i} - \left(\mu'_{\phi}(t_{i}) \right)^2 t_{i} \right), \\ - \mathbf{E} \left[\ell''_{\psi\omega} | \boldsymbol{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(t_{i} \left(\mu'_{\phi}(t_{i}) \right)^2 - \mu''_{\phi^2}(t_{i}) \mathbf{E} \left[\epsilon_{i} | \boldsymbol{\theta}_{0} \right] \right) \\ \ell''_{\psi\omega} &= \frac{1}{\nu} \sum_{i} \left(\mu''_{\psi^2}(t_{i}) t_{i} \epsilon_{i} - \left(\mu'_{\phi}(t_{i}) \right)^2 t_{i} \right), \\ - \mathbf{E} \left[\ell''_{\omega} | \boldsymbol{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(t_{i} \left(\mu'_{\phi}(t_{i}) \right)^2 - \mu''_{\phi^2}(t_{i}) \mathbf{E} \left[t_{i} \epsilon_{i} | \boldsymbol{\theta}_{0} \right] \right) \\ - \mathbf{E} \left[\ell''_{\omega} | \boldsymbol{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(\left(t_{i} \mu'_{\phi}(t_{i}) \right)^2 - \mu''_{\phi^2}(t_{i}) \mathbf{E} \left[t_{i} \epsilon_{i} | \boldsymbol{\theta}_{0} \right] \right) \\ - \mathbf{E} \left[\ell'''_{\omega} | \boldsymbol{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(\left(t_{i} \mu'_{\phi}(t_{i}) \right)^2 - \mu''_{\phi^2}(t_{i}) \mathbf{E} \left[t_{i} \epsilon_{i} | \boldsymbol{\theta}_{0} \right] \right) \\ - \mathbf{E} \left[\ell'''_{\omega} | \boldsymbol{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(\left(t_{i} \mu'_{\phi}(t_{i}) \right)^2 - \mu''_{\phi^2}(t_{i}) \mathbf{E} \left[t_{i} \epsilon_{i} | \boldsymbol{\theta}_{0} \right] \right) \\ - \mathbf{E} \left[\ell'''_{\omega} | \boldsymbol{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(\left(t_{i} \mu'_{\phi}(t_{i}) \right)^2 - \mu''_{\phi^2}(t_{i}) \mathbf{E} \left[t_{i} \epsilon_{i} | \boldsymbol{\theta}_{0} \right] \right) \\ - \mathbf{E} \left[\ell'''_{\omega} | \boldsymbol{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(\left(t_{i} \mu'_{\phi}(t_{i}) \right)^2 - \mu''_{\phi^2}(t_{i}) \mathbf{E} \left[t_{i} \epsilon_{i} | \boldsymbol{\theta}_{0} \right] \right) \\ - \mathbf{E} \left[\ell'''_{\omega} | \boldsymbol{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(\left(t_{i} \mu'_{\phi}(t_{i}) \right)^2 - \mu''_{\phi^2}(t_{i}) \mathbf{E} \left[t_{i} \epsilon_{i} | \boldsymbol{\theta}_{0} \right] \right) \\ - \mathbf{E} \left[\ell'''_{\omega} | \boldsymbol{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(\left(t_{i} \mu'_{\phi}(t_{i}) \right)^2 - \mu''_{\phi^2}(t_{i}) \mathbf{E} \left[t_{i} \epsilon_{i} | \boldsymbol{\theta}_{0} \right] \right) \\ - \mathbf{E} \left[\ell$$

1 Variances

The Fisher matrix

$$I(\boldsymbol{\theta}_0) = \begin{pmatrix} ^{K/2\nu} & 0 & 0 \\ 0 & ^{1/\nu} \sum \left(t_i \mu_\phi'(t_i) \right)^2 & ^{1/\nu} \sum t_i \left(\mu_\phi'(t_i) \right)^2 \\ 0 & ^{1/\nu} \sum t_i \left(\mu_\phi'(t_i) \right)^2 & ^{1/\nu} \sum \left(\mu_\phi'(t_i) \right)^2 \end{pmatrix}.$$

The determinant

$$|I(\boldsymbol{\theta}_0)| = \frac{K}{2\nu^4} \underbrace{\left(\sum \left(t_i \mu_{\phi}'(t_i)\right)^2 \sum \left(\mu_{\phi}'(t_i)\right)^2 - \left(\sum t_i \left(\mu_{\phi}'(t_i)\right)^2\right)^2\right)}_{\Omega}.$$

The variance-covariance matrix

$$vcov = \begin{pmatrix} 2\nu^{2}/K & 0 & 0 \\ 0 & \nu \frac{\sum (\mu'_{\phi}(t_{i}))^{2}}{\Omega} & \nu \frac{\sum t_{i}(\mu'_{\phi}(t_{i}))^{2}}{\Omega} \\ 0 & \nu \frac{\sum t_{i}(\mu'_{\phi}(t_{i}))^{2}}{\Omega} & \nu \frac{\sum (t_{i}\mu'_{\phi}(t_{i}))^{2}}{\Omega} \end{pmatrix}.$$

The variance of the frequency estimate

$$\operatorname{var}\left[\hat{\omega}\right] = \nu \frac{\sum \left(\mu_{\phi}'(t_i)\right)^2}{\sum \left(t_i \mu_{\phi}'(t_i)\right)^2 \sum \left(\mu_{\phi}'(t_i)\right)^2 - \left(\sum t_i \left(\mu_{\phi}'(t_i)\right)^2\right)^2}.$$
(1)

Cross-check. Let $\mu(t_i) = \phi + \omega t_i$. In that case $\mu'_{\phi}(t_i) = 1$, $\mu'_{\omega}(t_i) = t_i = t_i \cdot \mu'_{\phi}(t_i)$, the determinant of the Fisher matrix simplifies to

$$\begin{split} |I(\boldsymbol{\theta}_0)| &= \frac{K}{2\nu^4} \left(K \sum_i t_i^2 - \left(\sum_i t_i \right)^2 \right) \\ &= \frac{K^3}{2\nu^4} \left(\frac{1}{K} \sum_i t_i^2 - \langle t \rangle^2 \right) \\ &= \frac{K}{2\nu^4} \cdot \underbrace{K \sum_i \left(t_i - \langle t \rangle \right)^2}_{\Omega} \end{split}$$

and the variance-covariance matrix becomes

$$vcov = \begin{pmatrix} 2\nu^2/K & 0 & 0\\ 0 & \frac{\nu}{\sum(t_i - \langle t \rangle)^2} & \nu \frac{\sum t_i}{K\sum(t_i - \langle t \rangle)^2} \\ 0 & \nu \frac{\sum t_i}{K\sum(t_i - \langle t \rangle)^2} & \nu \frac{\sum t_i^2}{K\sum(t_i - \langle t \rangle)^2} \end{pmatrix},$$

with the well-known expression for the slope variance

$$\operatorname{var}\left[\hat{\omega}\right] = \frac{\nu}{\sum \left(t_i - \langle t \rangle\right)^2}.$$

Let us denote $\left(\mu'_{\phi}(t_i)\right)^2 = (N_0 P)^2 \cos^2(\omega t_i + \phi) \equiv x_i$. Eq. (1) can be rewritten in the following form:

$$\operatorname{var}\left[\hat{\omega}\right] = \frac{\nu}{\sum_{j} x_{j} \left(\sum_{i} t_{i}^{2} \frac{x_{i}}{\sum_{j} x_{j}} - \left(\sum_{i} t_{i} \frac{x_{i}}{\sum_{j} x_{j}}\right)^{2}\right)}$$

$$= \frac{\nu}{\sum_{j} x_{j} \sum_{i} w_{i} \left(t_{i} - \langle t \rangle_{w}\right)^{2}}$$

$$= \frac{\nu}{\sum_{j} x_{j} \cdot \operatorname{var}_{w}\left[t\right]}.$$
(2)

In matrix form, the frequency variance is written as

$$\mathrm{var}\left[\hat{\omega}\right] = \frac{\nu}{\left(\underline{T}'\mathcal{D}_{\mu}^{2}\underline{T}\right) - \left(\underline{T}'\mathcal{D}_{\mu}\underline{M}\right)^{2} / \left(\underline{M}'\underline{M}\right)},$$

with

$$\underline{\mathbf{T}} = (t_0, \dots, t_{K-1})', \ \underline{\mathbf{M}} = (\mu'_{\phi}(t_0), \dots, \mu'_{\phi}(t_{K-1}))'$$

$$\mathcal{D}_{\mu} = \begin{pmatrix} \mu'_{\phi}(t_0) & 0 & \cdots & 0 \\ 0 & \mu'_{\phi}(t_1) & \cdots & 0 \\ \vdots & \cdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mu'_{\phi}(t_{K-1}) \end{pmatrix}.$$

2 Sampling modulation

Suppose we write the Fisher matrix as a sum:

$$I(\boldsymbol{\theta}_0) = \sum_{i} I_i(\boldsymbol{\theta}_0); \ I_i(\boldsymbol{\theta}_0) = \frac{1}{\nu} \begin{pmatrix} \left(\sqrt{2} \cdot \mu'_{\phi}(t_i)\right)^{-2} & 0 & 0\\ 0 & t_i^2 & t_i\\ 0 & t_i & 1 \end{pmatrix} \cdot \left(\mu'_{\phi}(t_i)\right)^{2}.$$
(3)

 $I_i(\boldsymbol{\theta}_0) = -\mathbb{E}\left[\frac{\partial^2}{\partial \boldsymbol{\theta}^2} \log f(y_i|\boldsymbol{\theta})|_{\boldsymbol{\theta}=\boldsymbol{\theta}_0}|\; \boldsymbol{\theta}_0\right]$ could be interpreted as the information about the parameter that's carried in y_i .

(b) Filled areas are where the points are more informative.

If we attribute each point a weight proportional to its Fisher information, i.e. $w_i = \cos^2(\omega t_i + \phi)$, the weight of a region where $\left(\mu_{\phi}'(t_i)\right)^2 \ge 1/2$ is greater than that of an equivalent region with $\left(\mu_{\phi}'(t_i)\right)^2 < 1/2$ by the factor:

$$\int_{t_0}^{t_1} \cos^2(\omega t + \phi) dt = \frac{1}{\omega} \int_{\omega t_0}^{\omega t_1} \cos^2 \theta d\theta = \frac{\Delta t}{2} + \frac{1}{2\omega} \sin \omega \Delta t \cos \omega \Sigma t \approx 1.9.$$

The implication is that increasing the number of points measured during the signal's rise and fall is roughly twice as beneficial as doing so during the peaks and troughs.

3 The dependence of var $[\hat{\omega}]$ on ω

The variance in eq. (2) is conditional on the frequency ω and phase ϕ of the signal. The conditioning happens because the parameters determine the sampling range of the distribution of the x_i weights.

That distribution is

$$f(x_i) = \frac{1}{\pi} \cdot \left[\frac{x_i}{N_0 P} \left(1 - \frac{x_i}{N_0 P} \right) \right]^{-1/2}.$$

$$E\left[\sum_{i} x_{i} | (\omega, \phi)\right] = \sum_{i} \int_{\cos^{2} \phi}^{\cos^{2}(\omega t_{i} + \phi)} x_{i} f(x_{i}) dx_{i};$$

¹The t_i in the structural matrix in eq. (3) worries me, because it appears that a point carries more information simply by virtue of it being measured later in time; but as far as I can tell the reason for it is that it is assumed that the point labeled as i is the i-th point in a series, and so a later point is more informative than a point closer to the origin, all other things being equal. And it's nothing new; in linear regression we also want our predictors to be as spread out as possible. 2 The variance of ω is proportional to the (2,2)-minor, in which time doesn't figure, only the squared cosine.