CANTIDAD DE HOJAS:

UNIVERSIDAD ARGENTINA DE LA EMPRESA Facultad de Ingeniería y Ciencias Exactas Departamento de Cs. Básicas

ELECTRICIDAD Y MAGNETISMO

EXAMEN FINAL PREVIO

ALUMNO: LU:

CARRERA: FECHA:

- Responda claramente las consignas, justificando los pasos dados.
- No resuelva el examen en lápiz.
- Para aprobar el examen, se requiere tener bien resueltos al menos tres de los cinco ejercicios propuestos.
- La duración del examen es de 3 horas.

EJERCICIO NRO.1: Considere el circuito de la figura. Inicialmente los capacitores se hallan descargados y las llaves abiertas. En un dado instante, se cierra la llave L_1 , manteniéndose abierta L_2 . Transcurrido un tiempo muy largo, se abre L_1 y se cierra L_2 . Determinar las cargas finales en los tres capacitores.

EJERCICIO NRO.2: Considere una esfera de radio R, cargada en volumen con una densidad de carga uniforme ρ. Determinar el trabajo realizado por el campo, si una carga Q se desplaza desde un punto situado a una distancia 2R del centro de la esfera, hasta otro ubicado a una distancia 3R del centro de la esfera.

EJERCICIO NRO.3: Considere el circuito de la figura.

- a) Determinar las corrientes que circulan por cada rama.
- b) Calcular la potencia disipada por la resistencia de 4Ω .

EJERCICIO NRO.4: Dos hilos infinitos, paralelos entre sí y situados a una distancia D=12 cm uno del otro, transportan corrientes I_1 =2 A y I_2 =3 A, de sentidos opuestos. En un instante dado, una carga q= -4μ C pasa por un punto ubicado entre ambos hilos y a una distancia d=5 cm del primero, con una velocidad perpendicular a los hilos y de módulo 4 x 10^5 m/s (ver figura).

- a) Determinar la fuerza neta ejercida sobre la carga.
- b) Calcular la fuerza por unidad de longitud ejercida por uno de los hilos sobre el otro. Justificar si se atraen o se repelen.

EJERCICIO NRO.5:

a) Un hilo infinito conduce una corriente I=2 A. Determinar la corriente inducida en una espira rectangular de lados a=5 cm y b=8 cm, y resistencia total $R=4~\Omega$, que se mantiene a una distancia c=12 cm del hilo, y se desplaza con una velocidad constante de módulo 5 m/s, paralela al hilo (ver figura.)

- b) Una espira rectangular de lados a=5 cm y b=8 cm, y resistencia R=3 Ω , que se desplaza con una velocidad constante de 5 m/s, ingresa en una región de ancho D=40 cm en la cual existe un campo magnético uniforme **B** de módulo 0,2 T, entrante en la hoja. Determinar la corriente inducida en la espira, indicando el sentido de circulación, en las siguientes situaciones:
 - i) La espira aún no ingresó en la región de campo magnético.
 - ii) La espira ingresó parcialmente en la zona de campo magnético.
- iii) La espira se halla completamente sumergida en la región de campo magnético.

Justificar las respuestas.

NOTA EN NÚMEROS	NOTA EN LETRAS	SELLO	FIRMA DEL DOCENTE