18.014 pset 1

A is Dedekind-infinite: $\exists A' \subset A \text{ such that } A \leftrightarrow A'$

1 Any subset of a Dedekind...

Given $A' \subseteq A$ Show that A is D-finite $\Longrightarrow A'$ is D-finite It suffices to show that A' is D-infinite $\Longrightarrow A$ is D-infinite Since A' is D-infinite $\exists A'' \subset A'$ and $A'' \leftrightarrow A'$ Call the bijection between A' and A'' fConstruct a bijection g such that g(x) = f(x) when $x \in A'$ g(x) = x otherwise g bijects A to $(A - A') \cup A''$ hence A is D-infinite

2 Show that the following are equivalent

- 1) Any injection $A \to A$ is a surjection
- 2) A is D-finite
- 3) There is no injection $i: N \to A$

First, $\neg 2 \implies \neg 1$. Also $\neg 1 \implies \neg 2$.

Proof: By definition

Next, $\neg 3 \implies \neg 2$

Let $R(N) \subseteq S$ be the range of i on N. i is now a bijection $N \leftrightarrow R(N)$

Since the given i is an injection, it has an inverse i^{-1}

Consider the injection: $x \in R(N) \to i(2i^{-1}(x))$

This injects R(N) to R(2N)

And because $2N \subset N, R == N, R(2N) \subset R(N)$

Hence R is D-infinite and so is its parent set S.

Lastly, $\neg 2 \implies \neg 3$

Call the bijection p

Lemma: if X is D-infinite p(X) is also D-infinite.

Proof: p(X) bijects with $p(X') \subset p(X)$

So $p^n(A)$ is D-infinite for all n

Furthermore $p^n(A) - p^{n+1}(A)$ is nonempty because $p(p^n(A)) \subset p^n(A)$

Then map n to an element in $p^n(A) - p^{n+1}(A)$. Done!

3 Show that the union of two D-finite sets is D-finite

A finite and B finite $\implies A \cup B$ D-finite

We'll show $A \cup B$ D-infinite $\implies A$ D-infinite or B D-infinite

There is an injection i from $N \to A \cup B$

Consider the sets $N_A = i^{-1}(A)$ and $N_B = i^{-1}(B)$.

 $N_A \cup N_B = N$

We will show that one of them must be bounded.

If N_A is bounded by m_A and N_B is bounded by m_B , N is bounded by $\max(m_A, m_B)$. Clearly wrong. So S, which is A or B, is unbounded.

Consider the injection j defined by $0 \to \text{smallest}$ element of S And $n \to \text{smallest}$ element of S larger than j(n-1); this exists because S is unbounded Hence $N \to S$, so S is infinite.

4 Roots

Use PNT

5 Find at least 3 diophantine approximants to $\sqrt{2}$

1/1, 3/2, 7/5, 10/7, 17/12

6
$$1 < s < t \implies D(x,s) \supset D(x,t)$$

 $1/n^t<1/n^s$

7 For any irrational x, $|D(x,1)| = \infty$

measure in units of 1/n; then m/n < x < (m+1)/n.

8 If x is rational then $D(x,s) < \infty$ for s > 1

Let $s = 1 + \epsilon$. $\left| \frac{a}{b} - \frac{m}{n} \right| = \frac{|an - bm|n^{\epsilon}}{n^s}$.

$$\frac{n^{\epsilon}}{bn^{s}} < \frac{|an - bm|n^{\epsilon}}{bn^{s}} < \frac{1}{n^{s}}$$

$$n^{\epsilon} < b$$

This fails when $n > b^{1/\epsilon}$; since there are a finite number of n and for each n a finite number of m, we are done

9 Liouville numbers are transcedental

We must prove that infinite irrationality exponent \implies not a solution to polynomial equation Solution to polynomial equation \implies there exists n, c such that for all $p, q, |x - \frac{p}{q}| > \frac{c}{q^n}$. Let c = 1/k,

$$|x - \frac{p}{q}| > \frac{1}{kq^n} > \frac{1}{q^{n'}}$$

for some n' that depends on q. Hence for all q there exists n' such that $|x - \frac{p}{q}| > \frac{1}{q^{n'}}$ which means there are no n' or above approximants with denominator q. $n'(q) = n + 1/\ln_k q$ so the q - n' plot cuts off everything to the right of some n'.