

SUMÁRIO

1 APRESENTAÇÃO DO CURSO	5
OBJETIVOS DO CURSO	5
PERFIL DO EGRESSO	8
2 ORGANIZAÇÃO DO CURSO	11
ATIVIDADES DISPONÍVEIS NO AVA	11
SISTEMA DE AVALIAÇÃO	11
ARTICULAÇÃO TEORIA E PRÁTICA	11
ATIVIDADES PRÁTICAS	12
EXTENSÃO UNIVERSITÁRIA	12
TRABALHO DE CONCLUSÃO DE CURSO	13
ESTÁGIO CURRICULAR NÃO OBRIGATÓRIO	13
ESTÁGIO CURRICULAR OBRIGATÓRIO	13
ATIVIDADES COMPLEMENTARES OBRIGATÓRIAS - ACO	14
3 APOIO AOS ESTUDOS	15
4 MATRIZ CURRICULAR E EMENTÁRIO	16
MATRIZ CURRICULAR	16
EMENTÁRIO	17

CARO(A) ESTUDANTE,

Seja bem-vindo(a)!

Iniciando a sua trajetória acadêmica, é importante que você receba as informações acerca da organização do seu curso, bem como dos espaços pelos quais sua jornada se concretizará.

No intuito de orientá-lo, apresentamos neste Guia de Percurso informações objetivas sobre o funcionamento do seu curso e suas especificidades.

Desejamos a você uma ótima leitura e um excelente período de estudos.

Coordenação do Curso

1 APRESENTAÇÃO DO CURSO

O Curso é ofertado na modalidade EaD, com conteúdo didático digital, atividades no Ambiente Virtual de Aprendizagem (AVA), com o suporte dos tutores a distância e dos docentes das disciplinas, além de atividades presenciais previamente preparadas de acordo com as especificidades de cada curso. Consulte o polo de apoio para receber mais informações sobre o modelo de oferta do seu Curso.

Embora você tenha autonomia para decidir quando e onde estudar, recomendamos que crie um cronograma de estudos para melhor uso do seu tempo. Você contará com o suporte dos tutores a distância e dos docentes das disciplinas, viabilizadas por meio do AVA.

O Curso cumpre integralmente ao que é estabelecido na Legislação Nacional vigente, em relação às competências e aos conteúdos obrigatórios estabelecidos para o perfil profissional e quanto ao uso de recursos tecnológicos como viabilizador do processo didático-pedagógico.

OBJETIVOS DO CURSO

Os objetivos do curso estão previstos, considerando o perfil profissional do egresso, a estrutura curricular, o contexto educacional e as características locais e regionais.

Nesse contexto caracteriza-se o perfil profissional a ser formado pela IES com a expressão das principais competências a serem desenvolvidas pelo aluno, durante sua formação acadêmica, à luz das disposições das Diretrizes Curriculares Nacionais do curso, Resolução CNE/CES nº 2 de 24 de abril de 2019.

A estrutura curricular foi concebida para atender às necessidades locais, regionais e nacionais, permitindo a integração social na comunidade externa por meio de ações desenvolvidas no decorrer do curso.

O contexto educacional em que o curso foi constituído contempla as demandas nacionais, de modo efetivo, considerando as questões de natureza social, econômica e educacional. Os objetivos do curso de bacharelado em Engenharia Ambiental foram concebidos e implementados buscando uma coerência, em uma análise sistêmica e

global, com os seguintes aspectos: perfil profissional do egresso, estrutura curricular e contexto educacional.

Nesse contexto, ao se definir a estrutura curricular do curso de bacharelado em Engenharia Ambiental, foi determinado o perfil profissional em consonância com os ideais de sua mantenedora, das orientações estabelecidas nas Diretrizes Curriculares Nacionais (DCNs), no Projeto Político Institucional (PPI) e no Plano de Desenvolvimento institucional (PDI), que direcionaram o principal objetivo do Engenheiro Ambiental a ser formado pela IES, os quais estão alinhados à luz dos agentes regulatórios.

Assim, o curso tem como objetivo principal, formar um Engenheiro Ambiental generalista, humanista, com senso crítico, apto a agir eticamente, capacitado e habilitado a atuar no planejamento e gerenciamento de questões ambientais, bem como desenvolver e aplicar metodologias que visam à gestão dos recursos naturais, mitigação de impactos ambientais relacionados às ações antrópicas, tratamento de resíduos e recuperação de ambientes degradados.

Objetivos específicos:

- I. Desenvolver projetos e atividades para aproximá-lo da comunidade regional na qual ele irá se inserir profissionalmente;
- Formular, implantar e supervisionar soluções de engenharia ambiental, analisando e compreendendo os usuários dessas soluções e seu contexto;
- III. Conceber, projetar e analisar sistemas, produtos (bens e serviços), componentes ou processos nas áreas de gestão ambiental, geociências e tecnologia ambiental;
- IV. Identificar, avaliar, implementar e supervisionar projetos e iniciativas relacionadas a poluição e impacto ambiental, manejo de resíduos sólidos, educação ambiental, licenciamento ambiental, além de propor ações de preservação, conservação e recuperação do meio ambiente;
- V. Aprender de forma autônoma e lidar com situações e contextos complexos, atualizando-se em relação aos avanços da ciência, da tecnologia e aos desafios da inovação, como novas técnicas e metodologias para realizar o tratamento de água e esgoto, controle sanitário de ambientes, entre outros.

A engenharia ambiental e sanitária é um ramo da engenharia que envolve meios para prevenir, reduzir ou resolver problemas ambientais e sanitários, consistindo

num conjunto de técnicas, processos e métodos que se melhora a relação entre o homem, suas atividades e o meio ambiente. Esses profissionais são responsáveis por projetar e implementar tecnologias de prevenção e controle da poluição, visando minimizar o impacto das atividades humanas sobre o ambiente. O maior desafio para esse profissional é conciliar o desenvolvimento econômico com a proteção ambiental e com a qualidade de vida, assegurando um ambiente digno e saudável para as gerações futuras.

O perfil exigido pelo mercado, para profissionais dessa formação vão desde a capacidade de assimilar as novas teorias e tecnologias, aplicando-as na solução de problemas ambientais e sanitários, ter visão crítica na identificação de problemas e, de forma criativa, planejar e elaborar projetos, realizar experimentos e ensaios, propor soluções técnicas e dirigi-las ou executá-las, agindo sempre de forma ética e responsável. Também se espera a habilidade para desenvolver, executar/acompanhar e monitorar projetos de sistemas ambientais e sanitários, em âmbito local, regional ou nacional, e no meio urbano ou rural.

Com a expansão populacional há um crescimento natural por água potável e maior geração de resíduos na sociedade. Essas são duas frentes que precisam de muitos profissionais qualificados na área de engenharia ambiental e sanitária.

Segundo a Pesquisa Nacional de Saneamento Básico (PNSB) 2017, realizada pelo Instituto Brasileiro de Geografia e Estatística (IBGE), apenas 60,3% dos municípios brasileiros informaram ter serviço de coleta de esgoto (IBGE, 2017).

A partir de informações do Atlas Esgotos da Agência Nacional de Águas e Saneamento Básico (ANA), apenas 55% da população brasileira possui algum tratamento de esgoto, sendo que 43% possuem esgoto coletado e tratado e 12% utilizam-se de fossa séptica. Ainda segundo a Agência, 18% da população tem seu esgoto coletado e não tratado e 27% não possuem coleta nem tratamento, sendo que o Brasil apresenta uma geração estimada por dia em torno de 9,1 toneladas de esgoto (ANA, 2022).

A atuação do engenheiro ambiental e sanitarista está diretamente relacionada a meta de "Água potável e saneamento" que compõe os Objetivos de Desenvolvimento Sustentável no Brasil. Esse objetivo tem como proposta assegurar até 2030 a disponibilidade e gestão sustentável da água e saneamento para todos os brasileiros (NAÇÕES UNIDAS, 2022).

A atualização do marco legal do saneamento básico publicada em 2020 a partir da Lei nº 14.026 (BRASIL, 2020) apresenta diversas premissas relacionadas ao acesso

à água potável, aumento dos índices de tratamento de água e coleta de esgoto, exigindo profissionais qualificados tecnicamente na área de ambiental e sanitária para planejamento, execução e supervisão de ações para atendimentos as metas estabelecidas.

Dado a necessidade nacional pelo engenheiro ambiental e sanitarista, portais de emprego já refletem a valorização da profissão. Segundo Glassdoor (2022), a média salarial no Brasil de um profissional da área ambiental e sanitária está em torno de R\$ 6.200,00. Vagas (2022) apresenta uma média salarial para o cargo de engenheiro ambiental e sanitarista de R\$ 4.010,00.

O Curso de Bacharelado em Engenharia Ambiental e Sanitária proposto pela IES reúne elementos que asseguram, na formulação curricular, o atendimento às exigências atuais relativas à complexidade do ambiente profissional, tendo em vista a formação do profissional com habilitação técnica e científica, postura ética e comprometimento com a sociedade. A política do curso prima pela qualidade do ensino, com o comprometimento de oportunizar uma formação integral do aluno, através do ensino, pesquisa e extensão, como elementos indissociáveis do processo de formação.

PERFIL DO EGRESSO

Para a concepção do perfil do egresso, a proposta de organização curricular foi articulada em observância às competências e habilidades que você precisa desenvolver, respeitando-se as aprendizagens, os conhecimentos e as construções adquiridas anteriormente.

O curso, por meio do modelo acadêmico, preocupa-se com uma formação do profissional-cidadão competente e capacitado a ingressar e manter-se no mercado de trabalho, desenvolvendo-se com eficiência e eficácia na área que escolheu atuar.

Para a formação desse egresso, a proposta de organização curricular foi realizada em função das competências que os alunos precisam desenvolver, respeitando-se as aprendizagens, os conhecimentos e as construções adquiridas anteriormente. Nessa proposta, a elaboração do currículo teve como referência o que a IES busca para seu egresso, definindo as áreas de atuações profissionalizantes, a composição das competências a serem desenvolvidas e, consequentemente, o conjunto de componentes curriculares que contribuem para se estabelecer as conexões necessárias para o futuro profissional.

Assim, a IES busca que o egresso do curso seja um profissional que, de acordo com as determinações legais do curso de Bacharelado em Engenharia Ambiental previstas na Resolução CNE/CES nº 2 de 24 de abril de 2019, tenha como valores e pressupostos essenciais um perfil generalista, crítico, reflexivo, propositivo, humanístico e dinâmico, para atuar no contexto socioeconômico do país, sendo um profissional e um cidadão comprometido com os interesses e desafios da sociedade contemporânea e capaz de acompanhar a evolução científica e tecnológica da sua área de atuação, mantendo adequado padrão de ética profissional, conduta moral e respeito ao ser humano, estando apto a:

- I Prezar pela formação holística, humanista e reflexiva que permita o desenvolvimento de novas tecnologias com o uso da criticidade, ética e criatividade na solução de problemas da sociedade considerando aspectos ambientais, políticos, econômicos, culturais, sociais e de segurança e saúde no trabalho;
- II Atuar de modo responsável e comprometido, interagindo com as novas situações e demandas da sociedade, com isenção e responsabilidade social, comprometido com legislação e atos normativos do exercício do profissional, primando pela busca do conhecimento e da aprendizagem autônoma, investigativa, empreendedora e cooperativa com o emprego de perspectivas multidisciplinares;
- III Desenvolver a capacidade de planejamento e condução de experimentos, de interpretação e análise dos resultados, compreendendo fenômenos físicos e químicos, se apropriando de ferramentas matemáticas, computacionais e de simulação de suas atividades;
- IV Exercer atividades de concepção, supervisão, coordenação e fiscalização de projetos de engenharia ambiental, utilizando técnicas adequadas de observação, compreendendo as necessidades da sociedade, com forte formação técnica e embasamento teórico;
- V Desenvolver atividades de coordenação e supervisão de equipes de trabalho, permitindo a liderança de projetos, com a aplicação de conceitos de gestão, com visão ampla, reflexiva e de viabilidade técnica e econômica, prevendo resultados por meio de modelos, avaliando impactos legais, sociais e ambientais, sempre se comunicando de forma eficiente durante os processos e interagindo com diferentes culturas, seja na forma presencial ou a distância, cooperando assim pela coletividade nas atividades;

VI - Executar e fiscalizar obras e serviços técnicos, vistorias, perícias e avaliações emitindo laudos e pareceres na área de engenharia ambiental;

VII - Analisar, interpretar e agir em situações pertinentes à engenharia ambiental, a partir de atitudes críticas, reflexivas e éticas, pois adquiriram habilidades suficientes para, eticamente, atuar: estudando, projetando, avaliando, implementando e supervisionando projetos e iniciativas relacionadas a poluição e impacto ambiental, manejo de resíduos sólidos, educação ambiental, licenciamento ambiental, além de propor ações de preservação, conservação e recuperação do meio ambiente.

Dessa maneira, compreende-se que os conteúdos previstos desenvolvem o conhecimento científico, acadêmico e profissional no aluno, contudo no processo de ensino-aprendizagem do aluno também são desenvolvidas as competências esperadas para o egresso.

Vale destacar que, as disciplinas e competências a serem trabalhadas no curso estão de acordo com as determinações legais e demandas do mercado de trabalho para o curso. Uma das estratégias utilizadas para retroalimentar essa característica é obtida através do portal de empregabilidade, que por meio das pesquisas de empregabilidade permite conhecer a evolução do desempenho do egresso em suas carreiras.

O perfil apresentado ainda tem como cerne aquilo que o egresso necessitará conhecer para ser capaz de desenvolver suas atividades nas diversas áreas da sua profissão, articulando-as com suas realidades locais e regionais. Destaca-se que as competências que serão desenvolvidas ao longo do curso estão no Anexo do documento. Dessa forma, espera-se que o egresso esteja apto para atuar nas seguintes áreas profissionais:

- I Geociências;
- II Gestão ambiental;
- III Tecnologia ambiental.

2 ORGANIZAÇÃO DO CURSO

ATIVIDADES DISPONÍVEIS NO AVA

O desenvolvimento das disciplinas ocorre conforme o Calendário Acadêmico, observando a linha do tempo, disponível no Ambiente Virtual de Aprendizagem (AVA) que você irá acessar com seu *login* e sua senha exclusivos.

O material didático, é fundamental para a realização das atividades programadas além de ser componente obrigatório das provas. Sempre que necessitar de orientações para a realização das atividades propostas, você poderá entrar em contato com o seu tutor a distância.

Você também pode consultar o detalhamento destas atividades no Manual Acadêmico disponível no AVA.

SISTEMA DE AVALIAÇÃO

No sistema de Avaliação, cada disciplina possui um nível que determina quais atividades valem pontos e a quantidade total de pontos disponíveis.

Para entender cada uma dessas atividades, quanto vale e os critérios de avaliação, veja os detalhes no Manual da Avaliação disponível no AVA.

Acesse sempre a linha do tempo, disponível em seu AVA, para organizar a sua rotina de estudo e se preparar para todas as atividades previstas no curso.

ARTICULAÇÃO TEORIA E PRÁTICA

A estruturação curricular do curso prevê a articulação entre a teoria e a prática, com o objetivo de possibilitar a aplicabilidade dos conceitos teóricos das disciplinas, por meio de vivência de situações inerentes ao campo profissional, contribuindo para o desenvolvimento das competências e habilidades necessárias para sua atuação nas áreas da futura profissão.

ATIVIDADES PRÁTICAS

No intuito de cumprir os objetivos de ensino-aprendizagem relacionados as disciplinas com carga horária prática, serão desenvolvidas por meio de um conjunto de atividades de aprendizagem e aprimoramento profissional, através de objetos de aprendizagem digitais, que contextualizam o conteúdo e desenvolvem as competências estabelecidas para o componente curricular. Os objetos de aprendizagem são recursos didáticos pedagógicos que compreendem os simuladores educacionais, os softwares e as estratégias audiovisuais que proporcionam uma ênfase no uso de Tecnologias Digitais da Informação e da Comunicação (TDICs), permitindo a você uma experiência acadêmica focada na realidade do mercado de trabalho.

EXTENSÃO UNIVERSITÁRIA

As atividades extensionistas são componentes obrigatórios, conforme estabelecido pela Legislação.

Têm como finalidade articular os conteúdos teóricos em aplicações práticas, por meio de ações voltadas à sociedade, tendo como premissa, o atendimento das necessidades locorregionais, de forma integrada e multidisciplinar, envolvendo a comunidade acadêmica.

Você terá a oportunidade de desenvolver projetos com ações comunitárias a partir de um problema local, vinculado a um dos Programas de Extensão Institucional, a saber: atendimento à comunidade; ação e difusão cultural, inovação e empreendedorismo, e sustentabilidade.

As ações extensionistas serão realizadas presencialmente, baseadas nas especificidades regionais escolhidas por você. As orientações de funcionamento da extensão estarão disponíveis no AVA e terão suporte de tutores e professores.

Você terá a oportunidade de colocar a "mão na massa" e compartilhar conhecimentos e competências que você já desenvolveu no seu curso!

TRABALHO DE CONCLUSÃO DE CURSO

O Trabalho de Conclusão de Curso (TCC) constitui um componente curricular de pesquisa e sistematização do conhecimento, prevendo produção textual e apresentação oral.

As atividades do TCC são definidas em manual específico, disponibilizado no AVA, com as orientações necessárias para o desenvolvimento do trabalho.

A realização com êxito do TCC, bem como dos demais componentes da Matriz Curricular é condição para que você conclua o seu curso e receba o tão sonhado Diploma de Curso Superior.

ESTÁGIO CURRICULAR NÃO OBRIGATÓRIO

No seu percurso acadêmico, você poderá realizar o Estágio Curricular Não Obrigatório, que tem como objetivo desenvolver atividades extracurriculares que proporcionem o inter-relacionamento dos conhecimentos teóricos e práticos adquiridos durante o curso.

Esse estágio pode ser realizado no setor privado, em entidades e órgãos de administração pública, instituições de ensino e/ou pesquisa em geral, por meio de um termo de compromisso, desde que traga vivência efetiva de situações reais de trabalho e ofereça o acompanhamento e orientação de um profissional qualificado.

ESTÁGIO CURRICULAR OBRIGATÓRIO

Considera-se Estágio Curricular Obrigatório as atividades eminentemente pedagógicas, previstas na matriz curricular do curso, tendo como finalidade articular os estudos teóricos e práticos.

As atividades do Estágio Curricular Obrigatório são definidas em Plano de Trabalho específico, disponibilizado no AVA, assim como o Manual do Estágio e demais orientações e documentos necessários.

Você deverá realizar o Estágio Curricular Obrigatório em local que disponibilize funções compatíveis com o perfil profissional previsto no curso e que seja previamente cadastrado junto à Instituição de Ensino.

ATIVIDADES COMPLEMENTARES OBRIGATÓRIAS - ACO

As Atividades Complementares Obrigatórias (ACO) são componentes curriculares obrigatórios, que permitem diversificar e enriquecer sua formação acadêmica e se efetivam por meio de experiências ou vivências do aluno, durante o período de integralização do curso, contemplando atividades que promovam a formação geral, como também a específica, ampliando suas chances de sucesso no mercado de trabalho.

Alguns exemplos de modalidades de ACO são: estágio curricular não obrigatório, visitas técnicas, monitoria acadêmica, programa de iniciação científica, participação em cursos, palestras, conferências e outros eventos acadêmicos, relacionados ao curso.

Recomendamos que você se organize e vá realizando as atividades, aos poucos, em cada semestre.

3 APOIO AOS ESTUDOS

Para que você organize seus estudos, é necessário que tenha disciplina, responsabilidade e administre seu tempo com eficiência no cumprimento das atividades propostas.

Para apoiá-lo, disponibilizamos no AVA os manuais abaixo:

- Manual da Avaliação: descreve o modelo de avaliação, as atividades previstas por tipo de disciplina, como obter pontuação e os critérios de aprovação.
- Manual Acadêmico: detalha o sistema acadêmico, as atividades a serem realizadas, o sistema de avaliação, procedimentos acadêmicos, atendimento ao estudante e outros serviços de apoio. É o documento que deve guiar sua vida acadêmica, pois contém todas as informações necessárias do ingresso no curso à formatura.
- Guia de Orientação de Extensão: orienta a realização das atividades extensionistas, detalhando o objetivo, as ações, operacionalização dos projetos, entrega e critérios de avaliação.

Consulte também em seu AVA:

- Sala do tutor: espaço no AVA onde são divulgadas orientações gerais pelos tutores a distância.
- Biblioteca Virtual: disponibiliza diversos materiais que v\u00e3o desde os livros did\u00e1ticos, peri\u00f3dicos cient\u00edficos, revistas, livros de literatura dispon\u00edveis nas diversas bases de dados nacionais e internacionais.
- Avaliação Institucional: anualmente, o aluno é convidado a participar da avaliação institucional, mediante questionários que são disponibilizados em seu AVA. O acadêmico avalia a instituição, o curso, os docentes, os tutores, o material didático, a tecnologia adotada, entre outros aspectos. Os resultados possibilitam ações corretivas e qualitativas dos processos, envolvendo todos os setores da Instituição.

4 MATRIZ CURRICULAR E EMENTÁRIO

MATRIZ CURRICULAR

ETAPA	DISCIPLINA	TOTAL
1	ADMINISTRAÇÃO E ECONOMIA PARA ENGENHEIROS	60
1	DESIGN THINKING E INOVAÇÃO DOS MODELOS DE NEGÓCIOS	60
1	ENGENHARIA, CIÊNCIA E TECNOLOGIA	60
1	LEGISLAÇÃO, SEGURANÇA DO TRABALHO E MEIO AMBIENTE	60
1	TECNOLOGIAS LIMPAS E TRATAMENTO DE RESÍDUOS	60
2	ALGORITMOS E LÓGICA DE PROGRAMAÇÃO*	60
2	CÁLCULO DIFERENCIAL E INTEGRAL I	60
2	FÍSICA GERAL E EXPERIMENTAL - MECÂNICA*	60
2	PROJETO DE EXTENSÃO I - ENGENHARIA AMBIENTAL E SANITÁRIA	90
2	QUÍMICA E CIÊNCIA DOS MATERIAIS*	60
3	CÁLCULO DIFERENCIAL E INTEGRAL II	60
3	DESENHO TÉCNICO PROJETIVO*	60
3	FÍSICA GERAL E EXPERIMENTAL - ENERGIA*	60
3	MÉTODOS MATEMÁTICOS	60
3	SOCIEDADE BRASILEIRA E CIDADANIA	60
4	CÁLCULO DIFERENCIAL E INTEGRAL III	60
4	FENÔMENOS DE TRANSPORTE*	60
4	PRINCÍPIOS DE ELETRICIDADE E MAGNETISMO	60
4	PROJETO DE EXTENSÃO II - ENGENHARIA AMBIENTAL E SANITÁRIA	90
4	RESISTÊNCIA DOS MATERIAIS*	60
5	BIOLOGIA PARA ENGENHARIA AMBIENTAL*	60
5	CLIMATOLOGIA E METEOROLOGIA*	60
5	FUNDAMENTOS DE CARTOGRAFIA E TOPOGRAFIA*	60
5	PENSAMENTO ANALÍTICO E ANÁLISE DE DADOS	60
5	QUÍMICA AMBIENTAL E TOXICOLOGIA	60
6	EDUCAÇÃO AMBIENTAL	60
6	GEOLOGIA E MECÂNICA DOS SOLOS*	60
6	GESTÃO DE RESÍDUOS SÓLIDOS	60
6	LEGISLAÇÃO E DIREITO AMBIENTAL	60
6	SENSORIAMENTO E GEOPROCESSAMENTO APLICADOS AO MEIO*	60
7	GEOLOGIA APLICADA À GEOTECNIA AMBIENTAL*	60
7	HIDRÁULICA E HIDROMETRIA*	60
7	HIDROLOGIA E MANEJO DE BACIAS HIDROGRÁFICAS*	60

7	GEOLOGIA APLICADA À GEOTECNIA AMBIENTAL*	60
7	MICROBIOLOGIA AMBIENTAL*	60
7	PROJETO DE EXTENSÃO III - ENGENHARIA AMBIENTAL E SANITÁRIA	90
8	AVALIAÇÃO DE IMPACTOS AMBIENTAIS	60
8	ESTÁGIO CURRICULAR EM ENGENHARIA	200
8	GERENCIAMENTO E CONTROLE DE QUALIDADE	60
8	PERÍCIAS E AUDITORIAS AMBIENTAIS	60
8	PLANEJAMENTO AMBIENTAL URBANO	60
8	PLANEJAMENTO E SAÚDE AMBIENTAL	60
8	SANEAMENTO BÁSICO	60
9	ESG - AMBIENTAL, SOCIAL E GOVERNANÇA NA ENGENHARIA	60
9	FONTES ALTERNATIVAS DE ENERGIA	60
9	GESTÃO DE RECURSOS NATURAIS E ENERGÉTICOS	60
9	PROJETO DE EXTENSÃO IV – ENGENHARIA AMBIENTAL E SANITÁRIA	90
9	RECUPERAÇÃO E MANEJO SUSTENTÁVEL DE ÁREAS DEGRADADAS	60
9	TRATAMENTO DE EFLUENTES LÍQUIDOS*	60
10	EMPREENDEDORISMO E INOVAÇÃO	60
10	GESTÃO DE EMISSÕES ATMOSFÉRICAS E MODELAGENS DE SISTEMAS AMBIENTAIS	60
10	PROJETOS HIDROSSANITÁRIOS PARA O MEIO AMBIENTE*	60
10	SISTEMAS ESTRUTURAIS APLICADAS AO MEIO AMBIENTE*	
10	TECNOLOGIAS E SUSTENTABILIDADE APLICADAS AO MEIO AMBIENTE	40
10	TRABALHO DE CONCLUSÃO DE CURSO	40
-	ATIVIDADES COMPLEMENTARES	180
-	CARGA HORÁRIA TOTAL	3600

^{*}disciplina com carga horária prática

EMENTÁRIO

1º SEMESTRE

ADMINISTRAÇÃO E ECONOMIA PARA ENGENHEIROS

Conceitos e análises sobre a macroeconomia. Conceitos gerais e fundamentos sobre microeconomia. Fundamentos da administração e contexto organizacional. Planejamento e organização empresarial.

DESING THINKING E INOVAÇÃO DDOS MODELOS DE NEGÓCIOS

Criatividade baseada em problemas e gestão das incertezas. Criatividade como processo de aprendizado e de gerenciamento. Design thinking para a inovação dos negócios. Design thinking: métodos e ferramentas.

ENGENHARIA, CIÊNCIA E TECNOLOGIA

Comunicação e expressão na engenharia. Metodologia e pesquisa científica. Produção científica. Responsabilidade social, ética e sustentabilidade na engenharia.

LEGISLAÇÃO, SEGURANÇA DO TRABALHO E MEIO AMBIENTE

A segurança e os acidentes do trabalho. Normas regulamentadoras de aplicação geral e para engenharia. O meio ambiente as questões ambientais. Planejamento e gestão ambiental.

TECNOLOGIAS LIMPAS E TRATAMENTO DE RESÍDUOS

Desenvolvimento sustentável e tecnologias limpas. Ecologia industrial. Fundamentos gerais sobre resíduos. Tratamento de resíduos.

2º SEMESTRE

ALGORITMOS E LÓGICA DE PROGRAMAÇÃO

Aplicações de programação. Conceitos de programação. Elementos de algoritmos. Lógica de programação.

CÁLCULO DIFERENCIAL E INTEGRAL I

Funções. Limites e derivadas. Otimização da derivada. Regras de derivação.

FÍSICA GERAL E EXPERIMENTAL - MECÂNICA

Cinemática e geometria analítica. Dinâmica - leis de newton do movimento e suas aplicações. Momento linear, impulso e colisões. Trabalho e energia.

PROJETO DE EXTENSÃO I - ENGENHARIA AMBIENTAL E SANITÁRIA

Programa de contexto à comunidade. O programa de contexto à comunidade do curso de engenharia ambiental proporciona maior articulação entre a comunidade acadêmica e a sociedade, a partir da transferência de conhecimento e auxílio no atendimento de demandas e necessidades locais. Estas ações, orientações e possíveis soluções podem surgir em relação as áreas da biologia, química ambiental, toxicologia, cartografia e topografia, entre outras. São diversos os locais que poderão contemplar esse projeto extensionista, como: prefeituras; associações de bairros; escolas municipais e estaduais; instituições religiosas; organizações não governamentais (Ongs).

QUÍMICA E CIÊNCIA DOS MATERIAIS

Átomo, moléculas e íons. Estruturas cristalinas. Estudo de reações químicas e estados da matéria. Propriedades, processamento e desempenho dos materiais.

3º SEMESTRE

CÁLCULO DIFERENCIAL E INTEGRAL II

Aplicações de derivadas parciais e integrais duplas. Funções de várias variáveis e derivadas parciais. Introdução as integrais e suas aplicações. Regras avançadas de integração e coordenadas polares.

DESENHO TÉCNICO PROJETIVO

Introdução ao desenho técnico. Perspectiva. Projeção ortogonal. Representação gráfica e edição de elementos de desenho.

FÍSICA GERAL E EXPERIMENTAL - ENERGIA

Dinâmica do movimento de rotação. Mecânica dos fluidos. Rotação e oscilação. Temperatura e calor.

MÉTODOS MATEMÁTICOS

Cálculo numérico. Estatística aplicada e probabilidade. Introdução à álgebra linear. Probabilidade e estatística.

SOCIEDADE BRASILEIRA E CIDADANIA

Cidadania e direitos humanos. Dilemas éticos da sociedade brasileira. Ética e política. Pluralidade e diversidade no século XXI.

4º SEMESTRE

CÁLCULO DIFERENCIAL E INTEGRAL III

Equações diferenciais ordinárias. Integrais múltiplas. Integrais múltiplas em outras coordenadas. Transformada de Laplace.

FENÔMENOS DE TRANSPORTE

Equação da energia e escoamento interno. Estática e cinemática dos fluidos. Introdução à transferência de calor. Termodinâmica básica.

RESISTÊNCIA DOS MATERIAIS

Conceitos de tensão e deformação. Estudo das relações tensão-deformação. Estudo de torção no regime elástico. Introdução ao estudo das tensões.

PRINCÍPIOS DE ELETRICIDADE E MAGNETISMO

Circuitos elétricos. Fundamentos do eletromagnetismo. Grandezas elétricas básicas. Introdução à eletricidade: eletrostática.

PROJETO DE EXTENSÃO II - ENGENHARIA AMBIENTAL E SANITÁRIA

Programa de contexto à comunidade. O programa de contexto à comunidade do curso de engenharia ambiental proporciona maior articulação entre a comunidade acadêmica e a sociedade, a partir da transferência de conhecimento e auxílio no atendimento de demandas e necessidades locais. Estas ações, orientações e possíveis soluções podem surgir em relação as áreas da biologia, química ambiental, toxicologia, cartografia e topografia, entre outras. São diversos os locais que poderão contemplar esse projeto extensionista, como: prefeituras; associações de bairros; escolas municipais e estaduais; instituições religiosas; organizações não governamentais (Ongs).

5º SEMESTRE

BIOLOGIA PARA ENGENHARIA AMBIENTAL

Biomas e ecossistemas. Citologia e seres vivos. Morfologia vegetal. Sistema de classificação botânica.

CLIMATOLOGIA E METEOROLOGIA

Elementos do clima. Fenômenos meteorológicos e suas implicações às populações humanas. Introdução ao estudo do clima. Sistemas de informações meteorológicas.

FUNDAMENTOS DE CARTOGRAFIA E TOPOGRAFIA

Introdução a cartografia. Introdução a topografia e aos equipamentos topográficos. Levantamentos planialtimétricos e representações. Representação do espaço geográfico e cartografia temática.

PENSAMENTO ANALÍTICO E ANÁLISE DE DADOS

Data driven. Ferramentas computacionais para análise de dados. Pensamento analítico na profissão de engenheiro. Pensamento analítico para tomada de decisão.

QUÍMICA AMBIENTAL E TOXICOLOGIA

Fundamentos e conceitos gerais sobre toxicologia ambiental. Introdução à química ambiental. Poluição ambiental. Reações químicas, iônicas, reações ácido-base e seu equilíbrio.

6° SEMESTRE

EDUCAÇÃO AMBIENTAL

Educação ambiental, cidadania e desenvolvimento sustentável. Histórico da educação ambiental. Profissionais de educação ambiental.

GEOLOGIA E MECÂNICA DOS SOLOS

Água no solo. Compactação do solo. Geologia aplicada a engenharia. Introdução ao estudo da mecânica dos solos.

GESTÃO DE RESÍDUOS SÓLIDOS

Caracterização e classificação dos resíduos sólidos. Gerenciamento integrado dos resíduos sólidos urbanos. Resíduos de serviço de saúde, de construção e demolição, resíduos radioativos e industriais. Tratamento e disposição final dos resíduos sólidos.

LEGISLAÇÃO E DIREITO AMBIENTAL

Aplicações práticas da legislação ambiental. Laudo e parecer ambiental. Ordenamento jurídico ambiental no brasil. Políticas ambientais brasileiras.

SENSORIAMENTO E GEOPROCESSAMENTO APLICADOS AO MEIO

Elaboração de mapas digitais. Estrutura de dados em um sig. Fundamentos sobre geoprocessamento e sensoriamento remoto. Sensoriamento remoto.

7º SEMESTRE

GEOLOGIA APLICADA À GEOTECNIA AMBIENTAL

Geossintéticos e geotécnicas ambientais. Introdução a geologia. Introdução a geotecnia ambiental, aterros sanitários e barragens de rejeitos. Tipos de rochas e elementos hidrológicos aplicados a geologia.

HIDRÁULICA E HIDROMETRIA

Condutos forçados e perda de carga. Condutos livres e hidrometria. Estações elevatórias. Fundamentos de mecânica dos fluidos.

HIDROLOGIA E MANEJO DE BACIAS HIDROGRÁFICAS

Análise de sistemas hidrológicos. Aproveitamento de recursos hídricos e hidrológia estatística. Ciclo hidrológico e bacia hidrográfica. Hidrologia quantitativa.

MICROBIOLOGIA AMBIENTAL

Microbiologia e meio ambiente. Microrganismos. Processos microbiológicos. Técnicas laboratoriais.

PROJETO DE EXTENSÃO III - ENGENHARIA AMBIENTAL E SANITÁRIA

Programa de sustentabilidade. A finalidade da extensão no programa de sustentabilidade do curso de engenharia ambiental está relacionada a aplicação de conceitos, técnicas e metodologias relacionadas a sustentabilidade, principalmente pelo entendimento e preocupação, cada vez maior com a gestão e utilização consciente dos recursos naturais para atendimento às demandas atuais e futuras, por meio de ações relacionadas a educação e gestão ambiental, como disposição correta de resíduos sólidos, uso racional de recursos hídricos, entre outros. São diversos os locais que poderão contemplar esse projeto extensionista, como: prefeituras; associações de bairros; escolas municipais e estaduais; instituições religiosas; organizações não governamentais (Ongs).

8º SEMESTRE

AVALIAÇÃO DE IMPACTOS AMBIENTAIS

Estudos ambientais. Introdução à avaliação de impacto ambiental. Licenciamento ambiental. Metodologias aplicadas a avaliação de impactos ambientais.

ESTÁGIO CURRICULAREM ENGENHARIA AMBIENTAL

Finalização e entrega do relatório. Introdução ao estágio. Planejamento do estágio. Supervisão.

GERENCIAMENTO E CONTROLE DE QUALIDADE

Melhoramento da qualidade. Princípios da gestão da qualidade. Programas e certificações da qualidade. Técnicas emergentes em gestão da qualidade.

PERÍCIAS E AUDITORIAS AMBIENTAIS

Aspectos gerais sobre a auditoria ambiental. Fundamentos gerais sobre a perícia ambiental. Planejamento e execução de auditoria ambiental. Tipo de perícias e laudos.

PLANEJAMENTO E SAÚDE AMBIENTAL

As ações de saneamento básico e seus efeitos sobre a saúde pública. Relação saúde e meio ambiente. Saúde ambiental e desenvolvimento sustentável. Saúde pública - planejamento e saúde ambiental.

SANEAMENTO BÁSICO

Hidrologia e drenagem. Resíduos. Sistema de abastecimento de água. Sistema de tratamento de esgoto.

9° SEMESTRE

ESG - AMBIENTAL, SOCIAL E GOVERNANÇA NA ENGENHARIA

Esg: conceitos, aplicações e oportunidades para implementação. Governança corporativa. Responsabilidade social na engenharia. Sustentabilidade na engenharia.

FONTES ALTERNATIVAS DE ENERGIA

Biocombustíveis, célula a combustível e aproveitamento de resíduos. Energia elétrica e o desenvolvimento social. Energia hidráulica e gaseificação. Energia solar, eólica e de biomassa.

GESTÃO DE RECURSOS NARTURAIS ENERGÉTICOS

Energia nuclear. Energia: conceito, diretrizes e situação energética brasileira. Fontes alternativas de energia e suas perspectivas. Recursos naturais: das ameaças à utilização sustentável.

PROJETO DE EXTENSÃO IV - ENGENHARIA AMBIENTAL E SANITÁRIA

Programa de inovação e empreendedorismo. A finalidade da extensão no programa de inovação e empreendedorismo do curso de engenharia ambiental está relacionada ao desenvolvimento e implementação de iniciativas para o atendimento de problemas da sociedade, gerando oportunidade para elaborar, analisar e/ou implementar soluções que atendam questões locorregionais, como assessoria técnica para análise de orçamentos/laudos, projetos e ações relacionadas a perícia ambiental, climatologia, meteorologia, fontes alternativas de energia, planejamento ambiental urbano, entre outros. São diversos os locais que poderão contemplar esse projeto extensionista, como: prefeituras; associações de bairros; escolas municipais e estaduais; instituições religiosas; organizações não governamentais (Ongs).

RECUPERAÇÃO E MANEJO SUSTENTÁVEL DE ÁREAS DEGRADADAS

Fundamentos do estudo de degradação ambiental. Identificação e estratégias de controle de impactos ambientais. Princípios ecológicos e conservacionistas. Técnicas para recuperação e monitoramento de áreas degradadas.

TRATAMENTO DE ÁGUA E EFLUENTES

Conservação de corpo hídrico. Introdução ao tratamento de água. Poluição e contaminação da água. Tratamento de esgoto e efluentes.

10° SEMESTRE

EMPREENDEDORISMO E INOVAÇÃO

Fundamentos e aspectos iniciais da inovação e processos de inovação. Panorama do empreendedorismo e oportunidade empreendedora. Perspectiva lean, plano de negócios e metodologias de gestão. Tópicos avançados em inovação e estratégia.

GESTÃO DE EMISSÕES ATMOSFÉRICAS E MODELAGENS DE SISTEMAS AMBIENTAIS

Análise e controle de poluentes atmosféricos. Composição e estrutura da atmosfera. Efeitos, transporte e monitoramento de poluentes atmosféricos. Modelagem de sistemas ambientais

PROJETOS HIDROSSANITÁRIOS E DE SANEAMENTO

Projetos hidrossanitários prediais. Sistema de coleta e tratamento de esgoto. Sistemas de abastecimento e tratamento de água. Sistemas de drenagem de águas pluviais e gerenciamento e tratamento de resíduos sólidos.

SISTEMAS ESTRUTURAIS PARA O MEIO AMBIENTE

Materiais de construção civil. Processos da construção civil. Sistemas estruturais. Teoria das estruturas.

TECNOLOGIAS E SUSTENTABILIDADE APLICADAS AO MEIO AMBIENTE

Desenvolvimento sustentável e tecnologias limpas. Ecologia industrial. Fundamentos gerais sobre resíduos. Tratamento de resíduos.

TRABALHO DE CONCLUSÃO DE CURSO - ENGENHARIA AMBIENTAL

Definição e contextualização do tema. Estrutura e desenvolvimento do projeto. Metodologia da pesquisa. Projeto final.

Coordenação do Curso.