

Study Guide for NTR 306 Final

- One continuous, 75-minute attempt Yes, it is timed!
 - SSD accommodations for extra time will be automatically added to your exam
- Approximately 40 questions
 - Multiple choice, matching, T/F, fill-in-the-blank
 - ~Half of questions are application-based (i.e., word problems)
 - Chapters 1-20 (nothing from chapter 18) Yes, it is cumulative!
 - Open book: use class materials only (e.g., notes you have taken (or SSD notes), textbook/e-book, lecture slides, lecture videos, etc.) – NO internet searches! Please show academic integrity.
- o 100 points

***This study guide does NOT contain every theme that will be on the midterm, nor will every theme in this study guide be tested.

This is a guide – you are in control of your own preparation!***

- Factors that influence food choices
- Six classes of nutrients:
 - Organic vs inorganic
 - Energy yielding vs non-energy yielding
 - kcalorie values of energy yielding nutrients
 - Macronutrients vs micronutrients
- Scientific Method
- Study Designs & Interpreting the Evidence

- Dietary Reference Intakes (DRI)
 - o EAR, RDA, AI, UL
- Estimated Energy Requirement (EER)
- Acceptable Macronutrient Distribution Ranges
 - Carbohydrate, fat, and protein
 - Calculate daily kcalories/grams within AMDRs
- Nutrition information sources
 - Registered Dietitians
 - Analyzing information from different sources (e.g. internet)

- Diet-planning principles
 - Adequacy, balance, energy control, nutrient density, moderation, variety
- Dietary Guidelines for Americans
 - Healthy Eating Index
 - Current Recommendations
- USDA Food Patterns
 - Analyze meals for the six food groups and subgroups
 - Serving sizes and equivalent measures for six food groups and subgroups
- My Plate

- Food processing
 - Whole, fortified, minimally processed, ultra-processed
 - o Grains: refined, enriched, whole-grain
- American dietary habits
 - Overconsumption and underconsumption of certain nutrients
- Nutrition labels:
 - Differences between claims on nutrition labels:
 - o Nutrient claims, health claims, structure-function claims
 - Interpreting nutrition facts labels:
 - Finding serving size, calculating total kcalories, calculating kcalories from each of the major nutrient groups (e.g. fat, carbohydrates, protein), interpreting ingredients list, new labels vs old labels

- Digestive processes
 - Food's journey from ingestion to excretion (pathway through digestive organs and sphincters; transition from food to bolus to chyme to stool)
 - Muscular actions
 - Secretions: enzymes, juices, bile, mucus
 - pH changes throughout digestive processes
- Absorptive processes
 - Anatomy and pathways of nutrient absorption
 - Vascular system (i.e. bloodstream) vs lymphatic system
- Specific digestive and absorptive processes for energy nutrients
 - Fats, proteins, carbohydrates

- Digestive reactions: condensation vs hydrolysis
- GI microbiota functions
- GI hormone action and negative feedback loops
 - Gastrin, secretin, CCK
- Common digestive problems

Soluble fiber:

- Dissolving in water, gel formation (viscous), fermentation, and the ability to lower blood cholesterol
- Examples: barley, oats, legumes

o Insoluble fiber:

- Indigestible components of the diet that promote bowel movements, alleviate constipation and prevent diverticular disease
- Examples: wheat bran, legumes, brown rice

- Carbohydrate characteristics and digestion:
 - Monosaccharides: glucose, fructose, galactose
 - Disaccharides: maltose, sucrose, lactose
 - Polysaccharides: glycogen, starch (amylose, amylopectin), fiber (soluble, insoluble)
- Carbohydrate digestion:
 - Mouth (salivary amylase)
 - Stomach (none)
 - Small Intestine, primary site (pancreatic amylase; maltase; sucrase; lactase)
 - Large Intestine (none); Fermentation
- Carbohydrate absorption:
 - Active transporters (glucose and galactose); Passive (Fructose)

- Carbohydrate metabolism
 - o Glucose storage (glycogen), use for immediate energy or stored as fat
 - Organ uses (Brain first, others second)
 - Glucose and hormone interactions:
 - Blood glucose rises (during/after meals): triggers release of insulin (moves glucose to cells to store excess) → blood glucose level is lowered
 - Blood glucose falls (between meals, overnight): triggers release of glucagon (moves glucose out of storage to fuel body) → blood glucose level is raised
 - Irregularities: Diabetes & Hypoglycemia
- Health impacts of carbohydrates and recommended intakes
 - Simple Sugars
 - Low/No calorie Sweeteners
 - Starches & Fibers

- Degrees of unsaturation of fats: saturated vs monounsaturated vs polyunsaturated
 - Characteristics and molecular structures of each
 - Hydrogenation
 - Trans-fats
- Others: Phospholipid & Sterol characteristics
- Digestive pathways and absorption processes of lipids
 - Mouth (lipase); Stomach (lipase); Small Intestine, primary (Bile, Lipases)
 - o lymphatic system to circulation (fat globules \rightarrow micelles \rightarrow chylomicrons \rightarrow VLDL, etc.)
- Fat Metabolism
 - Circulating TG → FAs (muscle & adipose tissue use lipoprotein lipase)
 - Adipose TG → FAs (hormone sensitive lipase)
- Lipoprotein types, characteristics, and health implications
 - Dietary cholesterol vs blood cholesterol; TG vs Cholesterol

Chylomicrons VLDL B. "Ferry Boat" for triglycerides LDL Cholesterol excretion HDL D. Synthesized in the liver

E. Deliver lipids to body cells

- Fatty acids:
 - Linoleic vs linolenic
 - Omega-3 fatty acids vs omega-6 fatty acids
 - Essential, non-essential, conditionally essential
- Relationships between different fats and health outcomes
 - Chronic disease
- Metabolic changes due to dietary insufficiencies:
 - Low-carb diet
 - Gluconeogenesis

- Roles of protein in the body
- Amino acids
 - Essential, nonessential
- Protein digestion
 - Mouth (nothing)
 - Stomach (HCL, pepsin)
 - Small Intestine (proteases, peptidases)
- Protein absorption active transporters (AAs)
- Protein metabolism
 - Nitrogen balance
 - Amino Acid Pool
 - Urea production and excretion

- Protein deficiency
- Protein & Health
 - No effects on CVD, T2D, or Cancer
 - Benefits for weight management, glycemic control, appetite control, satiety, performance
- Protein quantities
 - RDA vs. Optimal Amounts

- Reactions: catabolic vs anabolic
- Role of enzymes and coenzymes
- Metabolic compounds: Acetyl CoA and pyruvate
- Glycolysis (conversion of glucose to pyruvate)
- Pyruvate's options: lactate vs Acetyl CoA
 - Cori cycle
- Glycerol and fatty acid pathways
- Amino acid metabolic pathways

NOTE: Amino acids that can be used to make glucose are called *glucogenic*; amino acids that are converted to acetyl CoA are called *ketogenic*.

- TCA cycle
- Electron transport chain
- Metabolic processes of overconsumption of energy nutrients
 - Fat, carbohydrate, protein

^aAlcohol is not included because it is a toxin and not a nutrient, but it does contribute energy to the body. After detoxifying the alcohol, the body uses the remaining two carbon fragments to build fatty acids and stores them as fat.

^bThe muscles' stored glycogen provides glucose only for the muscle in which the glycogen is stored.

- Energy balance
- Hunger, satiety, and satiation vs Food Cravings & Reward
- Basal metabolism
 - Factors that affect BMR
 - Calculating BMR
- o TEF
- Physical Activity and Non-exercise Activity Thermogenesis
- Estimating energy requirements
- o BMI
 - Calculating BMI
 - Body types and BMI

- Body fat distribution
 - Waist circumference
 - Visceral vs subcutaneous fat
- Overweight and obesity
 - Health risks
 - Chronic disease

- Fat cell development and metabolism
- Hormones associated with body weight
 - Leptin vs ghrelin
- Treatments for obesity
- Weight loss strategies
 - SMART goals
- Weight maintenance and prevention of excessive weight gain

Vitamins

- Do not yield energy
- Necessary for life functions
- Grouped by solubility in water or fat
- Bioavailability: amount present in food differs from amount absorbed/used by body

	Water-Soluble Vitamins: B Vitamins and Vitamin C	Fat-Soluble Vitamins: Vitamins A, D, E, and K	
Absorption	Directly into the blood	First into the lymph, then the blood	
Transport	Travel freely	Many require transport proteins	
Storage	Circulate freely in water-filled parts of the body	Stored in the cells associated with fat	
Excretion	Kidneys detect and remove excess in urine	Less readily excreted; tend to remain in fat-storage sites	
Toxicity	Possible to reach toxic levels when consumed from supplements Likely to reach toxic levels when consumed from supplements		
Requirements	Needed in frequent doses (perhaps 1 to 3 days)	Needed in periodic doses (perhaps weeks or even months)	

NOTE: Exceptions occur, but these differences between the water-soluble and fat-solule vitamins are valid generalizations

- Vitamin precursors: converted to active form in body
- Organic nature (C): easily destroyed by natural forces (e.g. heat)
- Excessive intakes can lead to toxicity only certain vitamins
- Some vitamins act as coenzymes (especially B vitamins)
- Understand roles in the body, deficiency, toxicity, recommendations, food sources, and destruction for:
 - B vitamins: thiamin, riboflavin, niacin, biotin, pantothenic acid, B₆, folate, B₁₂
 - Vitamin C
 - Vitamin A and beta-carotene
 - Vitamin D
 - Vitamin E
 - Vitamin K

- Water's roles in the body
 - Electrolyte balance in cell fluid
 - Cations vs anions
 - Intracellular vs extracellular
 - Maintenance of blood volume
 - Acid-base balance
 - Lungs
 - Bicarbonate carbonic acid
- Water losses, dehydration, and recommended intake

Electrolytes	Intracellular (inside cells) Concentration (mEq/L)	Extracellular (outside cells) Concentration (mEq/L)
Cations (positively charged ions)		
Sodium (Na+)	10	142
Potassium (K+)	150	5
Calcium (Ca++)	2	5
Magnesium (Mg++)	40	3
	202	155
Anions (negatively charged ions)		
Chloride (CI-)	2	103
Bicarbonate (HCO ₃ -)	10	27
Phosphate (HPO ₄ =)	103	2
Sulfate (SO ₄ =)	20	1
Organic acids (lactate, pyruvate)	10	6
Proteins	57	16
	202	155

NOTE: The numbers of positive and negative charges in a given fluid are the same. For example, in extracellular fluid, the cations and anions both equal 155 milliequivalents per liter (mEq/L). Of the cations, sodium ions make up 142 mEq/L; and potassium, calcium, and magnesium ions make up the remainder. Of the anions, chloride ions number 103 mEq/L; bicarbonate ions number 27; and the rest are provided by phosphate ions, sulfate ions, organic acids, and protein.

o Minerals:

- Major vs trace
- Inorganic
 - Can't be destroyed
 - Can leach out and be lost in cooking water
- Variable
 absorption,
 transport, roles in
 body, and
 bioavailability

- Understand roles in the body, deficiency, toxicity, recommendations, and food sources for:
 - Sodium
 - Chloride
 - Potassium
 - Calcium
 - Phosphorus
 - Magnesium
 - Sulfate
 - Iron

- Zinc
- Iodine
- Selenium
- Copper
- Manganese
- Fluoride
- Chromium
- Molybdenum
- Contaminant Minerals
- Phytochemicals

- Overload principle of fitness: increase in frequency, intensity, time
- Strength training vs endurance exercise: differences, benefits
- "Balanced" fitness programs
- Energy for fitness
 - Glucose use, storage, importance
 - Fat use
 - Role of protein
- o Other nutrients of importance: vitamin E, iron, water

- Fetal growth and development stages
 - Critical periods
- Maternal weight gain: recommendations, implications, return to prepregnancy weight
- Nutritional needs: total energy, carbohydrates, fats, proteins, key vitamins/minerals (folate, iron, B₁₂, zinc, vitamin D, calcium), essential fatty acids
- High-risk pregnancy factors
- Maternal health conditions
 - Unsafe practices during pregnancy

- Lactation
 - Hormones
 - Energy nutrients needed
 - Maternal health
 - Benefits for mothers and babies

- First 6 months of life:
 - Growth trends
 - Nutrient needs
 - Breast milk: nutrient content, protective factors
 - Colostrum
 - Formula
- o 6 months 1 year:
 - Complementary foods
 - Food allergies
 - Positive food relationships (toddlers)

- Nutrient recommendations and growth during childhood
 - Malnutrition in children
 - Obesity in children
 - Meals at school
- Nutrient recommendations and growth during adolescence
- Development of "adult diseases" in children

- Body composition changes associated with aging
- o "Inflammaging"
- Factors associated with inadequate dietary intake:
 - GI changes
 - Tooth changes
 - Psychological and social challenges
- Nutrient recommendations, common deficiencies, diet-related health issues
 - Vision, arthritis, dementia, Alzheimer's

- Foodborne illnesses:
 - Role of food system
 - Safe practices in the kitchen
 - Safe practices for meats and seafood
 - Safe practices while traveling
- Environmental contaminants:
 - Bioaccumulation
 - Pesticide residue
 - Organics (pros and cons)

- Food additives
 - Intentional vs indirect
 - Purposes of additives
- Water
 - Concerns about contamination
 - Bottled water
- GMO foods
 - Pros and cons

- Hunger in the U.S.
 - Poverty obesity paradox
 - Federal food assistance programs
- Global hunger
 - Nutrient deficiencies
 - Malnutrition
- Agriculture systems
 - Problems with conventional production: crops, livestock, fishing
 - Sustainable agriculture alternatives
 - Consumer choice and impact on food system