S No	Title	Objective	Methods	Description	Performance	Author & Year
1	Vegetable Plant Disease Detection And Fertilizer Recommendation System [1]	Detects diseases in vegetable plants using advanced image processing and fertilizer recommendation.	CNN & Machine learning algorithms	For various types of vegetable plant images, the system achieved a disease detection	Disease Accuracy-95% Fertilizer Recommendation Accuracy-90%	Prof.Suhas Chavan, 2023
2	A real-time application-based convolutional neural network approach for tomato leaf disease classification [2]	User-Friendly Interface	CNN – VGG- 19	Website is created for determination of tomato diseases with CNN	Accuracy – 95%	Showmick Guha Paul, 2023
3	Detection of Tomato Leaf Diseases for Agro - Based Industries Using Novel PCA DeepNet [3]	Accurately identifies diseases affecting tomato plants	Pipeline Method which includes GANs, PCA, CNN and F-RCNN	contribute to the advancement of disease detection in tomato plants.	Accuracy – 99.6%	KYAMELIA ROY1, 2023

4	DCNet: DenseNet77- based CornerNet model for the tomato plant leaf disease detection and classification [5]	Enhance accuracy in identifying disease patterns	Corner net DenseNet	DCNet combines DenseNet77's feature extraction capabilities with CornerNet's.	Accuracy - 99.7%	Saleh Albahli1, 2022
5	Tomato Disease Detection Model Based on DenseNet and Transfer Learning [6]	Developed a disease detection model by leveraging DenseNet and transfer learning techniques	DenseNet201	Using DenseNet and transfer learning with pre-trained features	Accuracy- 95%	Mahmoud BAKR,2022
6	Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification [7]	Design a streamlined deep neural architecture and efficient tomato leaf disease classification	mobile net v2	develop a lightweight and faster deep neural architecture to enhance the speed and efficiency	Accuracy- 99.30%	SABBIR AHMED, 2021

5	DCNet: DenseNet77- based CornerNet model for the tomato plant leaf disease detection and classification [5]	Enhance accuracy in identifying disease patterns	Corner net DenseNet	DCNet combines DenseNet77's feature extraction capabilities with CornerNet's.	Accuracy -99.7%	Saleh Albahli1, 2022
6	Tomato Disease Detection Model Based on DenseNet and Transfer Learning [6]	Developed a disease detection model by leveraging DenseNet and transfer learning techniques	DenseNet201	Using DenseNet and transfer learning with pre-trained features	Accuracy- 95%	Mahmoud BAKR,2022
7	Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification [7]	Design a streamlined deep neural architecture and efficient tomato leaf disease classification	mobile net v2	develop a lightweight and faster deep neural architecture to enhance the speed and efficiency	Accuracy- 99.30%	SABBIR AHMED, 2021
8	A generic intelligent tomato classification system for practical applications using DenseNet-201 with transfer learning [8]		DenseNet201 with transfer learning		Accuracy- 96%	Tao Lu1, Baokun Han1, 2021