ผศ.ดร.ชิตสธา สมเล็ก

Lab Worksheet

ชื่อ-นามสกุล	_พีรพัฒน์ สายยุทธ์	รหัสนศ
653380209-6	Section2	_

Lab#7 - White-box testing

วัตถุประสงค์การเรียนรู้

- 1. ผู้เรียนสามารถออกแบบการทดสอบแบบ White-box testing ได้
- 2. ผู้เรียนสามารถวิเคราะห์ปัญหาด้วย Control flow graph ได้
- 3. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Line coverage ได้
- 4. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Block coverage ได้
- 5. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Branch coverage ได้
- 6. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Condition coverage ได้
- 7. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Branch and Condition coverage ได้

โจทย์: Clump counts

Clump counts (https://codingbat.com/prob/p193817) เป็นโปรแกรมที่ใช้ในการ นับการเกาะกลุ่มกันของข้อมูลภายใน Array โดยการเกาะกลุ่มกันจะนับสมาชิกใน Array ที่อยู่ติดกันและมีค่าเดียวกันตั้งแต่สองตัวขึ้นไปเป็นหนึ่งกลุ่ม เช่น

$$[1, 2, 2, 3, 4, 4] \rightarrow 2$$

 $[1, 1, 2, 1, 1] \rightarrow 2$
 $[1, 1, 1, 1, 1] \rightarrow 1$

ชอร์สโค้ดที่เขียนขึ้นเพื่อนับจำนวนกลุ่มของข้อมูลที่เกาะอยู่ด้วยกันอยู่ที่ https://github.com/ChitsuthaCSKKU/SQA/tree/2025/Assignment/Lab7 โดยที่ nums เป็น Array ที่ใช้ในการสนับสนุนการนับกลุ่มของข้อมูล (Clump) ทำให้ nums เป็น Array ที่จะต้องไม่มีค่าเป็น Null และมีความยาวมากกว่า 0 เสมอ หาก nums ไม่เป็นไปตามเงื่อนไขที่กำหนดนี้ โปรแกรมจะ return ค่า 0 แทนการ return จำนวนกลุ่มของข้อมูล

ผศ.ดร.ชิตสุธา สุ่มเล็ก

Lab instruction

แบบฝึกปฏิบัติที่ 7.1 Control flow grap

จากโจทย์และ Source code ที่กำหนดให้ (CountWordClumps.java) ให้เขียน Control Flow Graph (CFG) ของเมธอด countClumps() จากนั้นให้ระบุ Branch และ Condition ทั้งหมดที่พบใน CFG ให้ครบถัวน

ผศ.ดร.ชิตสุธา สุ่มเล็ก

Lab instruction

Branch:

<u>1->3</u>

<u>4->5,6</u>

<u>5->7</u>

6->8

Condition:

1,4,5,6

แบบฝึกปฏิบัติที่ 7.2 Line Coverage

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Line coverage = 100%
- <u>2.</u> เขียนกรณีทดสอบที่ได้ พร้อมระบุบรรทัดที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่า Line coverage

Test	Input(s)	Expected	Path and Branch
Case No.		Result(s)	
TC1	null	0	if (null) → return 0
			Line No.: 1, 2
TC2	1	0	ค่าเดียว, ไม่เข้า loop
			Line No.: 1, 3, 4, 5, 6, 14
TC3	2,2	1	พบ clump

ผศ.ดร.ชิตสุธา สุ่มเล็ก

Lab instruction

			Line No.:1, 3, 4, 5, 6, 7, 8, 9,
			14
TC4	1,2	0	ไม่พบ clump, else-if
			Line No.:1, 3, 4, 5, 6, 7, 10, 11,
			12, 14

Line coverage = $13/13 \times 100\% = 100\%$

แบบฝึกปฏิบัติที่ 7.3 Block Coverage

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Block coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Block ที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่า Block coverage

Test	Input(s)	Expected	Path and Branch
Case No.		Result(s)	
TC01	null	0	1→2→10 (nums==null)
			Block:1,2,10
TC02	0	0	$1\rightarrow2\rightarrow10$ (nums.length==0)
			Block:1,2,10
TC03	[1,2,3]	0	$1 \rightarrow 3 \rightarrow 4 (loop) \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 4$
			→10
			Block:1,3,4,7,8,9,10

ผศ.ดร.ชิตสุธา สุ่มเล็ก

Lab instruction

TC04	[1,1]	1	$1 \rightarrow 3 \rightarrow 4 \rightarrow 5(Y) \rightarrow 6 \rightarrow 7(N) \rightarrow 9 \rightarrow$
			4(N)→10
			Block:1,3,4,5,6,7,9,10
TC05	[1,1,2,2,2,3,3]	3	$1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10$
			Block:1,3,4,5,6,7,8,9,10

Block coverage = (10/10) × 100% = 100%

แบบฝึกปฏิบัติที่ 7.3 Branch Coverage

- 4. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Branch coverage = 100%
- 5. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path และ Branch ที่ถูกตรวจสอบทั้งหมด
- 6. แสดงวิธีการคำนวณค่า Branch coverage

ตอบ

Test	Input(s)	Expected	Path and Branch
Case No.		Result(s)	
TC01	null	0	Path:เข้าสู่ if ตัวแรก (เป็นจริง) →
			return 0
			Branch:B1: true
TC02	2	0	Path:ผ่าน if ตัวแรก (เป็น
			เท็จ) → ไม่เข้าลูป for (i < n
			false) → return 0
			Branch:B1: false, B2:
			false

ผศ.ดร.ชิตสุธา สุ่มเล็ก

Lab instruction

TC03	1,1	1	Path: ผ่าน if ตัวแรก → เข้า
			for (i < n true) \rightarrow inClump
			= true, count++ (พบ
			clump) → return count
			Branch:B2: true, B3: true,
			B4: false
TC04	1,2	0	Path:ผ่าน if ตัวแรก → เข้า
			for (i < n true) → ไม่เข้า
			กรณี clump, เข้ากรณีเปลี่ยน
			prev → return count
			Branch:B3: false, B4: true
TC05	1,1,2,2,3,3,3	3	Path: ผ่าน if ตัวแรก → เข้า
			for (i < n true วนหลายรอบ)
			→ ตรวจเจอ clump สามครั้ง
			→ return count
			Branch:B1: false
			Path:
			Branch:
			Path:
			Branch:
			Path:
			Branch:

ผศ.ดร.ชิตสุธา สุ่มเล็ก

Lab instruction

Branch coverage =100%

แบบฝึกปฏิบัติที่ 7.4 Condition Coverage

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Condition coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path และ Condition ที่ถูกตรวจสอบ ทั้งหมด เช่น Condition A = T และ Condition B = F
- 3. แสดงวิธีการคำนวณค่า Condition coverage

Test Case No.	Input(s)	Expected Result(s)	Path and Condition
TC1	null	0	C1=T
TC2		0	C1=F, C2=T
TC3	[1,1]	1	C1=F, C2=F, i=1: C3=T, C4=T, C5=F
TC4	[1,2]	0	C1=F, C2=F, i=1: C3=F, C5=T
TC5	[1,1,2,1]	2	C1=F, C2=F, i=1: C4=T, i=2: C3=F, C5=T, i=3: C3=F, C5=T

ผศ.ดร.ชิตสุธา สุ่มเล็ก

Lab instruction

Condition coverage = $5/5 \times 100\% = 100\%$

แบบฝึกปฏิบัติที่ 7.5 Branch and Condition Coverage (C/DC coverage)

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออก แบบกรณีทดสอบให้ได้ C/DC coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path, Branch, และ Condition ที่ถูกตรวจสอบ ทั้งหมด
- 3. แสดงวิธีการคำนวณค่า C/DC coverage
- 4. เขียนโค้ดสำหรับทดสอบตามกรณีทดสอบที่ออกแบบไว้ด้วย JUnit และบันทึกผล การทดสอบ

Test	Input(s	Expected	Actual	Path, Branch,	
Case)	Result(s)	Result(s)	and Condition	Pass/Fail
No.					

ผศ.ดร.ชิตสุธา สุ่มเล็ก

Lab instruction

TC1	null	0	0	A=T, branch1 taken
TC2		0	0	A=F, B=T, branch1 taken
TC3	[1]	0	0	A=F, B=F, branch1 not taken, (no loop)
TC4	[1,1]	1	1	loop, C=T, D=T (branch2 taken), E=F (branch3 not taken)
TC5	[1,2]	0	0	loop, C=F (branch2 not taken), E=T (branch3 taken)
TC6	[1,1,2,2]	2	2	loop: C, D, E วน หลากหลาย, ทุก branch,

ผศ.ดร.ชิตสุธา สุ่มเล็ก

Lab instruction

				condition ถูก ครอบคลุม	
TC7	[1,1,1]	1	1	loop C/T->D/T, i+1: C/T->D/F (inClump true ไม่ เพิ่ม count/branch2)	

C/DC coverage = 4/4 × 100% = 100%