true or highly like substrate	ely method of verification	assay type	reference	doi	fc correct	ss t correc t	organism	predicted functional class fc		predicted substrate specificity ss	prediction	accession	perc aa identity to closest training set
2,3- dihydroxybenzoat	purified protein in e heterologous host	malachite green pyrophosphate	Zane et al. (2014) <i>JACS</i> . 136(15), 5615-5618	doi: 10.1021/ja5019942.	1	1	Vibrio campbellii ATCC BAA-1116	Aryl-CoA lig	a 0.98	aryl and biar	0.95	ABU70375.1	59.7
proline	biosynthetic logic based on gene knockouts and	assay biosynthetic logic sequence-based	Fu et al. (2019) ChemBioChem 20(6),	doi: 10.1002/cbic.201800791.	1	1	Streptomyces armeniacus	Nonribosom	a 0.98	cyclic alipha	t 0.66	AZY92000.1	64.4
glycine	natural product isolation purified protein from heterologous host, in vitro	prediction fluorogenic pyrophosphate production assay gene deletions	764-769 Shi et al. (2019) Chemical Science	doi: 10.1039/c8sc05670f	1	1	Streptomyces lividans SBT19	Nonribosom	a 0.98	tiny	0.42	QCE20608.1	36.2
tyrosine	biochemical assay product abolished after genetic knockout, stable isotope labeling to show tyrosine incorporation		10(10), 3042-3048 Lin et al. (2019) Molecules 24, 2267	doi: 10.3390/molecules24122267	1	1	Neonectria sp. DH2	Nonribosom	a 0.96	bulky mainly	0.75	BGC0002035 c1 342	2(58.1
C12 - C16 (preferi C10-C18 tested		product determination by ultra-high performance liquid chromatography plus (HPLC+)	Mares et al. (2019) <i>AEM</i> . 85(4), 17	doi: 10.1128/aem.02675-18	1	1	Cylindrospermum moravicum CC/	⁴ Fatty-acyl A	№ 0.91	C13 through	0.72	AXN93578.1	94.1
3-formamidosalicy	late BAC cloning and expression of biosynthetic cluster in heterologous host, biosynthetic logic based on natural product isolation	HPLC-MS analysis	Awakawa et al. (2018) Nat. Comm. 9, 3534	doi: 10.1038/s41467-018-05877-z.	1	1	Streptomyces orinoci	Aryl-CoA lig	a 0.91	cinnamate a	r 0.63	BBD17766.1	79.3
C12 - C16 (preferi C10-C18 tested	red) product purification from native host, MS-based assessment of structural variability of fatty acid moiety	product determination by ultra-high performance liquid chromatography plus (HPLC+)	Mares et al. (2019) <i>AEM</i> . 85(4), 17	doi: 10.1128/aem.02675-19	1	1	Anabaena minutissima UTEX B 16	Fatty-acyl A	0.91	C13 through	0.44	AXN93595.1	68.7
3-formamidosalicy	late BAC cloning and expression of biosynthetic cluster in heterologous host, biosynthetic logic based on natural product isolation	HPLC-MS analysis of natural product intermediates, sequence-based	Awakawa et al. (2018) Nat. Comm. 9, 3534	doi: 10.1038/s41467-018-05877-z.	1	1	Streptomyces sp.	Aryl-CoA lig	a 0.9	cinnamate a	r 0.6	BBD17745.1	79.2
C12 - C16 (preferi C10-C18 tested	red) product purification from native host, MS-based assessment of structural variability of fatty acid moiety	product determination by ultra-high performance liquid chromatography plus (HPLC+)	Mares et al. (2019) <i>AEM</i> . 85(4), 17	doi: 10.1128/aem.02675-20	1	1	Anabaena sp. UHCC-0399	Fatty-acyl A	N 0.89	C13 through	0.47	AXN93608.1	67.9
glycine, serine, ala	anine purified protein from heterologous host, in vitro biochemical assay	fluorogenic	Shi et al. (2019) Chemical Science 10(10), 3042-3048	doi: 10.1039/c8sc05670f	1	0	Streptomyces lividans SBT20	Nonribosom	a 0.88	cysteine	0.43	QCE20598.1	45.8
N-formyl glycine	biosynthetic logic-based on gene knockouts and natural product isolation	biosynthetic logic sequence-based prediction		doi: 10.1038/s41467-018-05877-z.	1	1	Streptomyces sp. CNB091	Nonribosom	a 0.85	small hydrop	0.3	WP_063738219.1	47.0
decanoic acid	biosynthetic logic-based on gene knockouts and natural product isolation	biosynthetic logic sequence-based prediction	Koomsiri et al. (2019) <i>J.</i> Nat. Prod. 82(8), 2144- 2151	doi: 10.1021/acs.jnatprod.9b00074	1	0	Streptomyces sp.	Fatty-acyl A	0.83	C13 through	0.51	QED55419.1	47.4
(2Z,4E)-8-methyl 2,4-dienoic acid	deca-TAR cloning and expression of biosynthetic cluster in heterologous host, biosynthetic logic	biosynthetic logic	Wu et al. (2019) <i>JACS</i> 141(9), 3910-3919	doi: 10.1021/jacs.8b12087	1	0	uncultured bacterium metagenome	e Fatty-acyl A	0.83	C13 through	0.43	QBC75017.1	51.8
phenylacetate	purified protein from heterologous host	NADH-consumptior continuous spectrophotometric assay	n Burckhardt et al. (2020) Mol. Microbiol. 113, 253- 269	doi: 10.1111/mmi.14414	1	1	Streptomyces lividans TK25	Aryl-CoA lig	a 0.82	aryl and biar	0.74	EFD64737.1	66.4

C12 - C16 (preferred) C10-C18 tested	product purification from native host, MS-based assessment of structural variability of fatty acid moiety	product determination by ultra-high performance liquid chromatography plus (HPLC+)	Mares et al. (2019) <i>AEM</i> 85(4), 17	doi: 10.1128/aem.02675-21	1	1	Anabaena minutissima UTEX B 1	6 Fatty-acyl Al\ 0.81	C6 through C	0.55	AXN93598.1	67.7
C12 - C16 (preferred) C10-C18 tested	product purification from native host, MS-based assessment of structural variability of fatty acid moiety	product determination by ultra-high performance liquid chromatography plus (HPLC+)	Mares et al. (2019) <i>AEM</i> 85(4), 17	doi: 10.1128/aem.02675-22	1	1	Anabaena sp. UHCC-0399	Fatty-acyl Al <mark> 0.81</mark>	C6 through C	0.55	AXN93611.1	66.0
2,3- dihydroxybenzoate	purified protein from heterologous host		Burckhardt et al. (2020) <i>Mol. Microbiol.</i> 113, 253- 269	doi: 10.1111/mmi.14415	1	1	Streptomyces lividans TK24	Aryl-CoA liga <mark>0.79</mark>	aryl and biary	0.76	EFD64524.1	54.9
myristoleic acid	biosynthetic logic-based on isolation of natural product and intermediates	biosynthetic logic sequence-based prediction	Moosmann et al. (2018) Org. Letters . 20(17), 5238-5241	doi: 10.1021/acs.orglett.8b02193	1	1	Fischerella sp. PCC 9339	Fatty-acyl Al 0.78	C13 through	0.49	DAB41914.1	54.4
alanine	purified protein from heterologous host, in vitro biochemical assay	fluorogenic pyrophosphate production assay	Shi et al. (2019) Chemical Science 10(10), 3042-3048	doi: 10.1039/c8sc05670f	1	1	Streptomyces lividans SBT21	Nonribosoma 0.77	small hydrop	0.3	QCE20609.1	39.8
luciferin	purified protein from heterologous host, structure determination, steady-state kinetics	spectrophotometric assay	Carrasco-Lopez et al. (2018) <i>Life Sci Alliance</i> 1(4), e201800072	doi: 10.26508/lsa.201800072	1	1	Amydetes vivianii	Luciferase 0.76	luciferin	0.79	6AAA_A	86.4
2-aminobenzoate	purified protein from heterologous host	NADH-consumption continuous spectrophotometric assay	Burckhardt et al. (2020) Mol. Microbiol. 113, 253- 269	doi: 10.1111/mmi.14416	1	1	Streptomyces lividans TK27	Aryl-CoA liga <mark>0.7</mark>	aryl and biary	0.57	EFD66106.1	33.7
4-acetamidopyrrole-2- carboxylate	biosynthetic logic-based on gene knockouts and natural product isolation	biosynthetic logic sequence-based prediction	Vingadassalon et al. (2015) ACS Chem. Biol. 10(2), 601-610	doi: 10.1021/cb500652n	1	1	Streptomyces netropsis	Aryl-CoA liga 0.62	cinnamate ar	0.28	AIS24844.1	31.9
4-coumarate	purified protein from heterologous host	NADH-consumption continuous spectrophotometric assay	Burckhardt et al. (2020) Mol. Microbiol. 113, 253- 269	doi: 10.1111/mmi.14417	1	1	Streptomyces lividans TK28	Aryl-CoA liga <mark>0.61</mark>	cinnamate ar	0.42	EFD67678.1	44.0
octanoate; hexanoate	substrate synthesis and culture feeding experiments, biosynthetic logic	HPLC-MS analysis of natural product intermediates, sequence-based prediction	Rachid et al. (2011) ChemBioChem . 12(6), 922-931	doi: 10.1002/cbic.201100024.	1	0	Streptomyces cinnabarigriseus	Fatty-acyl Al <mark> 0.6</mark>	C13 through	0.29	CBW54660.1	61.7
1,8,9-	biosynthetic logic-based on gene knockouts and natural product isolation	biosynthetic logic sequence-based prediction	Panter et al. (2018) Chemical Science 9(21), 4898-4908.	doi: 10.1039/c8sc01325j	1	1	Pyxidicoccus fallax	Aryl-CoA liga 0.58	cinnamate ar	0.3	AXM42922.1	36.2
	purified protein from heterologous host, in vitro biochemical assay	fluorogenic pyrophosphate production assay	Shi et al. (2019) Chemical Science. 10(10), 3042-3048	doi: 10.1039/c8sc05670f	1	1	Streptomyces sp.	Aryl-CoA liga 0.56	aryl and biary	0.34	QCE20613.1	48.4
3- methylmercaptopropio nate; also active with short chain fatty acids up to C6	purified protein from heterologous host	NADH-consumption continuous spectrophotometric assay	Bullock et al. (2014) <i>J. Biol. Chem.</i> 196, 1275-1285	doi: 10.1016/j.chembiol.2019.02.004	0	0	Ruegeria pomeroyi	Aryl-CoA liga <mark>0.47</mark>	cinnamate ar	0.23	WP_011047771.1	44.5
	biosynthetic logic based on gene knockouts, protein purification of other biosynthetic enzymes, and isolation of natural products and intermediates	biosynthetic logic sequence-based prediction	Huang et al. (2012) JACS 64(1),163–166	doi: 10.1038/ja.2010.150	1	1	Streptomyces sp. TP-A2060	Aryl-CoA liga 0.46	cinnamate ar	0.27	ADZ13551.1	35.3
benzoxazolinate	purified protein from	fluorogenic pyrophosphate production assay	Shi et al. (2019) Chemical Science. 10(10), 3042-3048	doi: 10.1039/c8sc05670f	1	1	Streptomyces lividans SBT18	Aryl-CoA liga <mark>0.46</mark>	aryl and biary	0.23	QCE20614.1	34.5

, . ,	purified protein in heterologous host	radioactive ATP- pyrophosphate	Steffensky et al. (2000) <i>JBC</i> . 275(28), 21754-	doi: 10.1074/jbc.M003066200	1	1	Streptomyces niveus	Aryl-CoA liga	0.46	cinnamate ar	0.22	AAF67505.1	35.3
cyanopropane	on gene knockouts and	biosynthetic logic sequence-based	21760 Wang et al. (2017) ACS Chem. Biol. 12,	doi: 10.1021/cb500652n	0	0	Streptomyces thioluteus	Long chain a	0.45	C13 through	0.55	ATY72527.1	58.6
(2S,3R)-2-hydroxy-3- (1H-indol-3-	natural product isolation purified protein from heterologous host, in vitro biochemical assays	prediction HPLC/LC-MS analysis	3067-3075 Du et al. (2015) <i>PNAS</i> . 112(9), 2717-2722	doi: 10.1073/pnas.1419964112	1	1	Streptomyces griseus	Aryl-CoA liga	0.45	aryl and biary	0.23	AJT38684.1	31.2
3- methylmercaptopropio nate	purified protein from	HPLC analysis	Shao et al. (2019) <i>Mol. Microbiol.</i> 111(4), 1057–1073.	doi: 10.1002/cbic.201100024.	0	0	Ruegeria lacuscaerulensis ITI-115	i Aryl-CoA liga	0.44	cinnamate ar	0.24	6IJB_A	44.1
caproate, valerate,	purified protein from heterologous host	NADH-consumption continuous spectrophotometric assay	Burckhardt et al. (2020) Mol. Microbiol. 113, 253- 269	doi: 10.1111/mmi.14418	0	0	Streptomyces lividans TK29	Aryl-CoA liga).37	C13 through	0.25	EFD68037.1	54.0
, , , .	purified protein from heterologous host, structure determination, steady-state kinetics	NADH-consumption continuous spectrophotometric assay	Bernhardsgrütter et al. (2018) <i>Nat. Chem. Biol.</i> 14(12), 1127-1132	doi: 10.1021/ja5019942.	1	1	Erthythrobacter sp. NAP1	Short chain a	0.36	C2 through C	0.24	6EQO_A	27.4
acid	purified protein from heterologous host, structure determination, steady-state kinetics	HPLC analysis	Zahn et al. (2019) <i>J Mol. Biol.</i> 431(15), 2747–2761	doi: 10.1016/j.jmb.2019.05.027	0	0	Aquincola tertiaricarbonis	Aryl-CoA liga	0.36	cinnamate ar	0.17	6HDW_A	34.0
myristate	biosynthetic logic based on gene knockouts, protein purification of other biosynthetic enzymes, and isolation of natural products and intermediates	biosynthetic logic sequence-based prediction	Duitman et al. (1999) PNAS. 96(23), 13294–13299	doi: 10.1073/pnas.96.23.13294	0	1	Bacillus subtilis subsp. spizizenii A	Aryl-CoA liga).32	C13 through	0.15	AAF08801.1	92.9
valerate, butyrate,	purified protein from heterologous host	NADH-consumption continuous spectrophotometric assay	Burckhardt et al. (2020) Mol. Microbiol. 113, 253- 269	doi: 10.1111/mmi.14419	0	0	Streptomyces lividans TK26	Aryl-CoA liga	0.31	C13 through	0.21	EFD64965.1	39.1
methoxybenzoic acid	, , . ,	LC-MS-based analysis	Waldman et al. (2018) <i>J. Org Chem.</i> 83(14), 7539-46	doi: 10.1021/acs.joc.8b00367	1	0	Streptomyces cremeus	Aryl-CoA liga	0.29	C13 through	0.18	ALA99210.1	43.3
1-acetyl-9 <i>H</i> -pyrido[3,4- <i>b</i>]indole-3-carboxylic		HPLC analysis with substrate panel	Petchey et al. (2018) Angew. Chem. Int. Ed.	doi: 10.1002/anie.201804592	1	1	Marinactinospora thermotolerans	Aryl-CoA liga	0.26	cinnamate ar	0.16	6H1B_A	33.2
				Average	0.83	0.73						Average	52.5