Compilers

Stanford | Online

Alex Aiken

Contents

1	Intr	Introduction									
	1.1	Introduction	2								
	1.2	Structure of Compiler	2								
	1.3	The Economy of Programming Languages	3								
		The Cool Programming Language									
	2.1	Cool Overview									

CHAPTER 1

Introduction

1.1 Introduction

• Compilers

1954 IBM develops the 704 software > hardware "Speedcoding"

- 10-20x slower
- 300 bytes = 30% memory
- Interpreters

FORTRAN 1(Formulas Translated) 1954-1957 1958 50% program in FORTRAN 1

1.2 Structure of Compiler

5 phases

- 1. Lexical Analysis: divides program text into "words" or "tokens".
- 2. Parsing: diagramming sentences.

Stanford | Online Simon Hua

- 3. Semantic Analysis: try to understand "meaning". (hard) Compilers perform limited senmantic analysis to catch inconsistencies. \rightarrow Programming Languages define strict rules to avoid such ambiguities.
- 4. Optimization: Antomatically modify prgrams so that they
 - \rightarrow Run faster
 - \rightarrow Use less space
 - \rightarrow Reduce power consumption...
- 5. Code Generation(Code Gen)
 - → Produces assembly code.(usually)
 - \rightarrow A translation int another language.(Analgous to human translation)

FORTRAN 1:	L		Р	S	0	CG	
MODERN:		P (S		0		CG

The Economy of Programming Languages 1.3

Question

1. Why are there so many Programming Languages? Application domians have distinctive / conflicting needs.

Scientific Computing	ightarrow Good Float Points ightarrow Good Arrays ightarrow Parallelism	FORTRAN
Business Application	 → Persistence → Report Generation → Data Analysis 	SQL
Scientific Computing	ightarrow Control of Resources $ ightarrow$ Real TimeConstraints	C/C++

2. Why are there new programming languages?

Claim: Programmer training is the dominant cost for a Programming Languages

- (a) widely-used Languages are slow to change.
- (b) Easy to start a new language. → Productivity > Training Cost
- (c) Languages adopted to fill a void.

New languages tend to looks like old languages because of the Claim → Reducing programming training, like Java vs C++.

3. What is a good programming languages? There is no universally accepted metric for language design.

CHAPTER 2

The Cool Programming Language

2.1 Cool Overview