

Depth Perception Haptic System

Group 40

Christa Lawrence CpE
Cristopher Matos CpE, Psych
Kathryn Pagano EE
Chad Pauley EE

Outline

- Project Objective
- Requirements
- Software Discussion
- Hardware Discussion
- Administrative Details
- Testing
- Demonstration

Project Objective

The Depth Perception Haptic System is a wearable device that allows for hands-free navigation of indoor and outdoor spaces

Goals

Category	Goals
Physical Attributes	Lightweight, compact, durable
Usage & Maintenance	Responsive, rechargeable, long battery life, full range of motion (ROM)
User Interface	Simple, accessible, quick to learn
General Navigation	Encode distance and location of obstacles, alert to emergencies
Outdoor Navigation	Detect and describe curb presence, orientation, and magnitude

Requirement Specifications

Statement	Description	Value	Unit
Lightweight	Total weight of electronics, housings, and cloth.	< 10	lb
Compact	Thickness along all axes normal to the body.	< 2	in
Full Range of Motion (ROM)	ROM of shoulder joints before and after putting on device.	< 10	% diff
Large Buttons	Surface area large enough to contain braille.	> 0.25	in ²
Long Lasting, Rechargeable Battery	Time from full charge to depletion at 80% feedback level and all sensors active.	> 6	hrs
Haptic feedback that encodes distance	Provides a relative indication of distance (via feedback intensity) of arbitrarily shaped objects visible to the camera over a discrete range of intensities (including zero).	≥ 3	ct
Alert to proximal objects	Objects near the device trigger an unambiguous alert.	< 3	ft
Quick Response Time	Time it takes for the device to send a haptic response from a spontaneously appearing obstacle.	< 900	ms

Solution Approach - Obstacle Avoidance

- Combine computer vision with LiDAR to map objects in the environment to the user's body via haptic (vibration) feedback
 - Minimizes # of sensors, maximizes input data

Overall Block Diagram

Hardware Design Approach

Always plan to make a prototype, because you'll end up building one anyway

Design Considerations

- Minimize power consumption
- Low resolution output
- Minimize number of sensor units while maximizing input data (CV + LiDAR),
- Ensuring all clock and input data is coherent
- Enough outputs to ensure future development and testing potential

Major Component Considerations

- Raspberry Pi Compute Module 4 (CM4)
 - Price
 - Hardware independence
 - Entire project run on ARM CPU (and integrated GPU)
 - Required RAM and embedded memory
 - Availability of schematics
 - Ability to modify carryout board
 - GPIO availability (up to 5x UART, 5x I2C, 1x SDIO, 1 PCM, 2x PWM, 3x GPCLK, two MIPI CSI channels and multiple voltage output lanes including 3.3V and 1.8V)

Raspberry Pi Camera

Model:Raspberry Pi Camera Module 2 Resolution

- 8-megapixel
- 3280 x 2464 still frame

Video mode

1080p30, 720p60, 480p90

Price

\$25.00

Board size

o 23.86 x 25 x 9mm

Onboard processor

 \circ No

The camera module is incredibly small and can easily be concealed.

This camera is compatible with the Raspberry Pi board and can be connected using either a 15 pin connector or 22 pin adapter ribbon to work with the board. It uses the Camera Serial Interface Type 2 (CSI-2).

Software Controlled directly by board, no special drivers needed.

PCB Housing

Raspberry Pi Case Angled View

Raspberry Pi Case Approx. Measurements

Raspberry Pi Camera Case

Raspberry Pi Camera Case

Raspberry Pi Camera Case Approx. Measurements

Keeps moisture and dirt out of the camera's sensitive components and ensures durability.

- 2 LiDARs (I2C)
- Speaker (PWM)
- Soft power off (button tied to GND)

- Raspberry Pi Camera (15-pinout)
- 5 programmable GPIO pins for buttons
- Motor Controller Chip (I2C -> PWM)

Board layout

4 Programmable Buttons

- 1) Outdoor Moode
- 2) Spare
- 3) Low Power Mode
- 4) General Mode

Button Cross-section

On/ Off Switch	1 Outdoor Moder	2 Spare	3 Low Power Mode	4 General Mode
----------------------	-----------------------	------------	---------------------------	----------------------

Two Levels of Power Control

- Button Power Off (Software Controlled)
 - Button connected to GPIO GLOBAL_EN set driven low sets device to minimum power usage (around 15μA).
- Switch Power Off (Hardware Controlled)
 - Physical switch between the batteries and voltage regulator to allow the batteries and device to maintain longevity as well as function as hard reset for any potential errors.

Voltage Regulator

Mounted separately to batteries to have 5V source instead of 12V+

A TAMAYA plug is used to charge the device (as shown below)

Barrel Jack connects to the board

Power Considerations

- Battery must be able to supply 3A with a voltage source between 5V and 30V.
- Due to design constraints in creating a power bus; the power for the CM4 and PWM motor control are differentiated as a primary 5V pin and VCC pin respectively on the board to evenly split current and effectively half the needed width for the bus channels on the PCB

Electronic Code of Federal Regulations

 The device must be less than or equal to the maximum unit of energy consumption (UEC) for the appropriate product class and battery rating

Product Class	Product Class Description	Rated Battery Energy (Ebatt)	Special characteristics or battery voltage	Maximum UEC (kWh/yr)
1	Low-Energy	≤ 5 Wh	Inductive Connection	3.04
2	Low-Energy, Low-Voltage	<100 Wh	<4V	.1440*E _{bat} +2.95
3	Low-Energy, Medium-Voltage		4-10 V	For E_{batt} <10 Wh, 1.42 kWh/y $E_{\text{batt}} \ge 10$ Wh, 0.0255 * $E_{\text{batt}} + 1.16$
4	Low-Energy, High-Voltage		>10V	0.11 * E _{batt} + 3.18

Power Considerations

Part	ldle	Full Use
Camera	200mA	200-250mA
2x lidar (Garmin LIDAR-Lite v4)	2mA	85mA
Accelerometer (ADXL345)	.1uA	40uA
CM4	The lowest shutdown power consumption mode is with the GLOBAL_EN driven low, typically is 15uA With GLOBAL_EN high but software shutdown the typical consumption is 8mA Idle power consumption is typically 400mA	Operating power consumption is typically around 1.4A again this greatly depends on the Operating System and the Tasks, goes up to 3A.
Motor Controller (PCA9685)	25mA	25mA
Speaker	0	1.7mA
Individual Motor	0	9-25 mA depending on intensity

Hardware Design Changes Made Over Time

- Removal of HDMI interface as later noted as unnecessary and to reduce size of PCB
- Removal of SD memory storage due to the need for more GPIO pins
- Removal of voltage regulator chip on primary PCB board due to concern of electric shock
- Change from using PWM with MOSFET connection which would control voltage of haptic motors with duty cycle to a direct connection with a simple diode and capacitor controlled by the programmable values set by analog
- Addition of ethernet connector to PCB for troubleshooting

Software Overview

Depth Perception Approach

- Problem: Need distances of objects located in front of the user
 - Existing products use:
 - Multiple distance sensors placed along body
 - One distance sensor, actively manipulated by user
 - Conflicts with our goals:
 - Few sensors (For full ROM and comfort)
 - Hands-free operation
- Solution: Combine computer vision (CV) with LiDAR to estimate depth

Approach Motivation

- Explosion of research and development in monocular depth estimation for mobile devices (Ignatov et al., 2021)
 - o Some models (including MIT Licensed) already exist online
- Prospect of combining depth inferencing with LiDAR

Depth Sensing Procedure

- 1. Use MiDaS to create a depth map of the space in front of the user
- 2. Divide map into regions
- 3. Find one representative value per region
- 4. Set motor intensity based on value

Raw Image sourced from (SDOT, 2015)

Representative Value and Motor Response

- 1. Subtract box filter
- 2. Clip
- 3. Discretize to N levels
- 4. Maxpool
- 5. Compare with previous

Motor intensity varies linearly with estimated depth

More complex response patterns likely require a greater time to learn

Latency Reduction and Accuracy Penalty

- Alibaba MNN Framework with UINT8 quantized weights of MiDaS v2.1 Small
 - o Maximum inference time: 302 ms, 3.3 FPS
 - o 3.1x speedup from FP32 model on Tensorflow Lite

	TF Lite ¹	TF Lite w/ XNNPACK	MNN ²
Floating Point Weights	$T_1 = 1,906$ $T_2 = 1,213$ $T_4 = \underline{948}$ $T_8 = 1,619$	1,170 655 511 1,136	744 445 398 578
Int Quantized Weights ^{3,4,5}	1,111 670 468 1,249	1,106 682 467 1,179	901 486 <u>302</u> 454

Maximum inference times (ms) for various thread counts T. All benchmarks set to 5 warm up runs, 50 runs, VideoCore temp below 70.0 °C.

¹ Results from TF Lite linux arm benchmark tool

² Results from MNN model benchmark tool

³ Weights quantized using RedWeb V1 dataset

⁴ INT8 quantized weights for TF Lite from default optimization tool

⁵UINT8 quantized weights for MNN from the quantization tool. KL divergence for features, max absolute value for weights

Latency Reduction and Accuracy Penalty

- Minor reduction in accuracy when using UINT8 weights versus FP32
 - Inference time greater priority than pixel-for-pixel accuracy
 - Essential features preserved

FP32 UINT8

Curb Detection

- LiDAR angled downward to poll for changes in floor height
- Maintains finite length queue which detects range changes over time
 - o If the index of the maximum of the curb is before the index of the minimum, step down
 - o Otherwise, step up

Emergency Detection

- Forward-facing LiDAR programmatically connected to motor device central to the chest
 - Linear haptic response to distance detected by device
- When the threshold distance (3 ft) is detected, the system will force all motors to vibrate until the obstacle is no longer present
 - All motors 100% haptic feedback intensity at 5 Hz and 50% duty cycle

Successes and Difficulties

Part Availability (CM4 and Voltage Regulator)

Shipping Dates

PCB arrangement on 2-layer design

CV Runtime Reduction

Budget

Item Type	Quantity	Actual Cost	Description
LiDAR	2	\$60	Garmin LiDAR
Accelerometer	1	\$19	ADXL345
Camera	1	\$25	Raspberry Pi Camera
Speaker	1	\$11	MakerHawk Speaker
Haptic feedback	Set acquirement (20)	\$16	Tatoko flat coin motors
Compute Module	2	\$215	Raspberry Pi Compute 4 Module 4GB (+Replacement)
Fabric	1	\$25	
Battery	3	\$15	12V, 4800mAh
Misc. Electronics & Materials		\$100	
Shipping		\$37.93	Shipping on parts
Current Total		=\$576	

TESTING

Testing Considerations

- Fabric can muffle sounds and haptic feedback: Can the user hear the audible alerts and feel the haptic vibrations?
- Can the user effectively avoid approaching obstacles?
- How long does the battery actually last?
- What is the voltage coming out of the regulator?
- Do the lidars provide distance based alerts?
- Do the buttons work?
- Do we have a successful Field test?

Hardware Testing

Voltage Regulator Watts Lost

Amount of Time (min)

Voltage Reg	gulator Waste
Time (min)	Watts
0	2.09979
5	2.11275
10	1.97136
15	2.0922
20	2.2925
25	2.09304
30	2.06397
35	2.28975
40	2.24155
45	2.13092
50	2.15
55	2.25624
60	2.42736
65	2.33
70	2.23
75	1.97802
Camera ON	1.978
Camera OFF	2.38386
90	2.384
95	2.369
100	2.50295
105	2.5029
Motors ON 1	2.13486
115	2.08119
120	2.0941

Hardware Testing

CM4 Temperature				
Time (min)	Temp			
0	43.8			
5	54.5			
10	55.1			
15	55.5			
20	58.9			
25	60.3			
30	58.9			
35	58.9			
40	59.9			
45	61.3			
50	61.3			
55	59.4			
60	62.3			
65	62.5			
70	65.7			
75	71.5			
80	70.5			
85	65.2			
90	68.4			
95	71.1			
100	72			
110	60.8			
115	60.8			
120	58.4			

COMPONENT & REQUIREMENT TESTING

FEEDBACK

TESTING OBSERVATIONS

FULL INTEGRATION FIELD TEST

Requirement Specifications

Statement	Description	Value	Actual	Y/N	Unit
Lightweight	Total weight.	< 10	4.0	Y	lb
Compact	Thickness along normal to the body.	< 2	1.8	Y	in
Full Range of Motion (ROM)	ROM of shoulder joints.	< 10	0	Y	% diff
Large Buttons	Surface area of buttons.	> 0.25	0.28	Y	in ²
Long Lasting	Time from full charge to depletion.	> 6	2.0	N	hrs
Haptic feedback that encodes distance	Detectable feedback levels.	≥ 3	8	Y	ct
Alert to proximal objects	Objects near the device alert.	< 3	1.5	Y	ft
Quick Response Time	Latency of computer vision.	< 900	302	Y	ms

References

- Allan, Alasdair. "Benchmarking TensorFlow Lite on the New Raspberry Pi 4, Model B." Hackster.io, 2019, https://www.hackster.io/news/benchmarking-tensorflow-lite-on-the-new-raspberry-pi-4- model-b-3fd859d05b98.
- Ignatov, Andrey, et al. "Fast and Accurate Single-Image Depth Estimation on Mobile Devices, Mobile AI 2021 Challenge: Report." ArXiv, 17 May 2021, https://arxiv.org/pdf/2105.08630.pdf.
- Ranftl, Rene, et al. "Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer." IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, https://arxiv.org/abs/1907.01341.
- SDOT Photos. "Columbia City Sidewalk Repair Project." flickr, 16 Dec. 2015, https://www.flickr.com/photos/sdot_photos/23168490614. Image. Used in its resized form, and colored over with gradients to depict depth. Licensed under CC BY-NC 2.0.
- Zhang, Ziyu, et al. "A Simple Baseline for Fast and Accurate Depth Estimation on Mobile Devices." 2021 IEEE/CVF
 Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021,
 https://openaccess.thecvf.com/content/CVPR2021W/MAI/papers/Zhang_A_Simple_Baseline_for_Fast_and_Accurat
 e_Depth_Estimation_on_CVPRW_2021_paper.pdf.

Questions?

