Exercise 5. In general, let us denote the *identity function* for a set C by i_C . That is, define $i_C: C \to C$ to be the function given by the rule $i_C(x) = x$ for all $x \in C$. Given $f: A \to B$, we say that a function $g: B \to A$ is a *left inverse* for f if $g \circ f = i_A$; and we say that $h: B \to A$ is a *right inverse* for f if $f \circ h = i_B$.

- (a) Show that if f has a left inverse, f is injective; and if f has a right inverse, f is surjective
- (b) Give an example of a function that has a left inverse but no right inverse
- (c) Give an example of a function that has a right inverse but no left inverse
- (d) Can a function have more than one left inverse? More than one right inverse?
- (e) Show that if f has both a left inverse g and a right inverse h, then f is bijective and $g = h = f^{-1}$

Proof.

- (a) If f has a left inverse g, then $g \circ f = i_A$. The function i_A being injective, we deduce that f is injective. Similarly, if f has a right inverse h, then $f \circ h = i_B$. The function i_B being surjective, we deduce that f is surjective.
- (b) Let $A = \{1, 2\}$, $B = \{a, b, c\}$, f(1) = a, f(2) = b. The function $g: B \to A$ defined by g(a) = 1, g(b) = 2, g(c) = 1 is a left inverse for f. However, f not being surjective implies that it does not have a right inverse.
- (c) Consider A, B, f, g as in the exemple defined above. Then f is a right inverse for g. Similarly, g not being injective implies it does not have a left inverse.
- (d) Left and right inverses are not unique. Still with the definitions from the same example, let $h: B \to A$ defined by h(a) = 1, h(b) = 2, h(c) = 2. Then both g and h are left inverses for f. Define also $k: A \to B$ by k(1) = a, k(2) = c. Then both f and k are left inverses for g.
- (e) Let f, g and h be such that $g \circ f = i_A$ and $f \circ h = i_B$. Let $g \in B$; we have $g = f \circ h(g)$, so $g(g) = (g \circ f) \circ h(g) = h(g)$, so g and h are equal. Since $f \circ h = i_B$ is surjective, then f is surjective. Since $g \circ f = i_A$ is injective, then f is injective. Since f is both surjective and injective, it is bijective. From $f \circ h = i_B = f \circ f^{-1}$, we deduce that $f^{-1} = h$. And from h = g, we deduce $g = h = f^{-1}$