Application

Second Year

Prove that

$$\cos 4\theta = 8\cos^4\theta - 8\cos^2\theta + 1$$

L.H.S =
$$\cos^2(2\theta) - \sin^2(2\theta)$$

= $(\cos^2\theta - \sin^2\theta)^2 - (2\sin\theta\cos\theta)^2$
= $\cos^4\theta - 2\sin^2\theta\cos^2\theta + \sin^4\theta - 4\sin^4\theta\cos^4\theta$
= $\cos^4\theta - 6\sin^2\theta\cos^2\theta + \sin^4\theta$
= $\cos^4\theta - 6\cos^2\theta (1-\cos^2\theta) + (1-\cos^2\theta)^2$
= $\cos^4\theta - 6\cos^2\theta + 6\cos^4\theta + 1-2\cos^2\theta + \cos^4\theta$

Exercises 2 = $8\cos^{9}\theta - 8\cos^{3}\theta + 1 = R.H.S$

If z = x + iy, find the equation of the locus $\arg(z^2) = 1$ let z = x + iy, $z^2 = x^2 - y^2 + i(2xy)$

$$arg(2^2) = tan^{-1}\left(\frac{x^2-y^2}{2xy}\right) = \frac{\pi}{4}$$

$$\frac{x^2 - y^2}{2xy} = 1 \qquad x^2 - y^2 = 2xy$$

$$30 x^2 - 2xy - y^2 = 0$$

 $\frac{\pi}{4}$.

- 1-Expand $\sin 4\theta$ in powers of $\sin \theta$ and $\cos \theta$.
- 2. Express $\cos^4 \theta$ in terms of cosines of multiples of θ .
- 3- If z = x + iy, find the equations of the two loci defined by

(a)
$$|z-4|=3$$
 (b) $\arg(z+2)=\frac{\pi}{6}$

(i)
$$\sin 4\theta = \text{Img}\left[\left(e^{i\theta}\right)^4\right] = \text{Img}\left[\left(\cos \theta + i\sin \theta\right)^4\right]$$

$$= \text{Img}\left[\cos^3 \theta + 4i\cos^3 \theta \sin \theta - 6\cos^2 \theta \sin^2 \theta - 4i\cos \theta \sin^3 \theta + \sin^4 \theta\right]$$

$$= 4\cos^3 \theta \sin \theta - 4\cos \theta \sin^3 \theta$$

$$|3| |2-4|=3 \qquad \text{let } 2=x+iy$$

$$|x+iy-4|=3 \qquad \text{in} \sqrt{(x-4)^2+y^2}=3$$

$$(x-4)^2+y^2=9$$

b) arg
$$(2+2) = \frac{\pi}{6}$$
 $tan^{-1}(\frac{y}{x+2}) = \frac{\pi}{6}$
 $tan^{-1}(\frac{y}{x+2}) = \frac{\pi}{6}$
 $tan^{-1}(\frac{y}{x+2}) = \frac{\pi}{6}$
 $tan^{-1}(\frac{y}{x+2}) = \frac{\pi}{6}$

$$y = \frac{\sqrt{3}}{3}(x+2)$$

Show that $u(x, y) = x^3y - y^3x$ is an harmonic function and find the function v(x, y) that ensures that f(z) = u(x, u) + jv(x, y) is analytic. That is, find the function v(x, y) that is conjugate to u(x, y).

$$U_{x} = 3x^{2}y - y^{3}$$

$$U_{xx} = 6xy$$

$$U_{y} = x^{3} - 3y^{2}x$$

$$U_{yy} = -6xy$$

$$U_{xx} + U_{yy} = 6xy - 6xy = 2ero$$

$$U_{xx} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xx} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xx} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xx} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xx} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xx} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xx} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xx} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xx} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xx} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xx} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$U_{xy} + U_{yy} = 6xy - 6xy = 4x$$

$$V_{x} = -u_{y} = 3xy^{2} - x^{3} \qquad \text{so } V = \frac{3}{2}x^{2}y^{2} - \frac{1}{4}x^{3} + 9u^{3}$$

$$V_{y} = 3x^{2}y + 9(y) = u_{x} = 3x^{2}y - y^{3}$$

$$309(y) = -y^3$$
 $309(y) = -\frac{1}{4}y^4 + K$

:.
$$f(z) = (x^3y - y^3x) + i(\frac{3}{2}x^2y^2 - \frac{1}{4}x^3 - \frac{1}{4}y^4 + k)$$

Exercises 5 (Harmonic functions) Are the following functions harmonic? If your answer is yes, find a corresponding analytic function f(z) = u(x, y) + iv(x, y).

$$1. \ u = e^{-x} \sin 2y$$

$$2. \ u = xy$$

4.
$$v = -y/(x^2 + y^2)$$

$$6. \ v = \ln |z|$$

$$8. \ u = 1/(x^2 + y^2)$$

$$u_{x} = y$$

$$u_{x} = 0$$

$$u_{y} = x$$

$$u_{yy} = 0$$

$$u_{xx} + u_{yy} = 0$$

$$u_{xx} + u_{yy} = 0$$

$$u_{x} = v_{y}$$

$$u_{x} = v_{y}$$

$$v_{y} = v_{x}$$

$$y_{x} = -u_{y} = g'(x) = -x$$

$$g(x) = -\frac{1}{2}x^{2} + K$$

$$V = \frac{1}{2}y^2 - \frac{1}{2}x^2 + 16$$

$$\frac{1}{4} u = -\frac{y}{(x^2 + y^2)^2}$$

$$u_x = \frac{-y(2x)}{(x^2 + y^2)^2}$$

$$u_y = \frac{-(x^2 + y^2) - y(2y)}{(2x^2 + y^2)^2}$$

$$4x = -\frac{2y(x^2+y^2)+2(-x^2+y^2)2x-2xy}{(x^2+y^2)^4}$$

$$u_{yy} = \frac{(x^2 + y^2)^2 (-2y - 4y) - (-(x^2 + y^2) - 2y^2)}{*4y(x^2 + y^2)}$$

$$3. \ v = xy$$

$$.5. u = \ln |z|$$

7.
$$u = x^3 - 3xy^2$$

9.
$$v = (x^2 - y^2)^2$$

$$u_y = \frac{\chi y}{\chi(\chi^2 + y^2)}, \quad u_{yy} = \frac{(\chi^2 + y^2) - 2y^2}{(\chi^2 + y^2)^2}$$

$$u_{xx} + u_{yy} \neq 0 \quad \text{su isn't harmon's}$$

$$\sqrt{y} = -6xy$$
 $u_{x} = 3x^{2} - 3y^{2}$
 $u_{y} = -6xy$
 $u_{y} = -6xy$
 $u_{xx} + u_{yy} = 0$
 $u_{xx} + u_{yy} = 0$
 $u_{x} = 3x^{2} - 3y^{2} = 3y^{2}$
 $v_{y} = -6xy$
 $v_{x} = 3x^{2} - 3y^{2} = 3y^{2}$
 $v_{y} = -6xy$
 $v_{x} = 3x^{2} - 3y^{2} = 3y^{2}$

$$4y = -1/x$$

 $3xy = 6xy + 9(x)$
 $3xy = 6xy + 9(x)$
 $3xy = 6xy + 9(x)$
 $3xy = 6xy + 9(x)$

$$\sqrt{3x^2y-y^3+k}$$

Determine a, b, c such that the given functions are harmonic and find a harmonic conjugate.

$$I-\quad U=ax^2+y^2$$

$$2. u = e^{3x} \cos ay$$

$$4. \ u = ax^3 + by^3$$

$$U = ax^2 + y^2$$

$$U_{x} = 2ax$$

$$U_{xx} = 2a$$

$$u_y = 2y$$
 $u_{yy} = 2$

$$u_{xx}+u_{yy}=0=2a+2$$

$$u_x = 3e^{3x} \cos \alpha y$$
 $u_{xx} = 9e^{3x} \cos \alpha y$

$$a^{2}=9$$
 $a=\pm 3$

3 4 = sin x cosh Cy

3. $u = \sin x \cosh cy$

$$4x = 3ax^2$$

$$u_x = 3ax^2$$
 $u_{xx} = 6ax$

Evaluate

$$\oint_C \frac{7z-6}{z^2-2z} dz$$
, C as shown

$$z^2 - 2z = 0$$
 $z(z-2) = 0$

$$Z=0$$
, $Z=2$

$$I = \int_{\frac{7z-6}{z-2}}^{(7z-6)/z} dz + \int_{\frac{7z-6}{z}}^{(7z-6)/(z-2)} dz$$

$$= 2\pi i \left[\frac{7z-6}{z} \right]_{z=z}^{2} + 2\pi i \left[\frac{7z-6}{z-2} \right]_{z=0}^{2}$$

$$= 2\pi i \left(\frac{14/6}{z} \right) + 2\pi i \left(\frac{0/6}{0/2} \right)$$

$$= 8\pi i + 6\pi i = \boxed{14\pi i}$$

Exercises 8 tangare
Evaluate

$$\oint_C \frac{dz}{z^2-1}$$
, C as shown

$$\int \frac{dz}{z^2-1} = \int \frac{dz}{(z-1)(z+1)}$$

$$I = \oint \frac{1/(z+1)}{(z-1)} dz + \oint \frac{1/(z-1)}{(z+1)} dz$$

$$= 2\pi i \left[\frac{1}{z+1} \right]_{z=1} - 2\pi i \left[\frac{1}{z-1} \right]_{z=-1}$$

$$= 2\pi i \times \frac{1}{z} - 2\pi i \times \frac{1}{z}$$

$$= \pi i + \pi i = 2\pi i$$

DAUL CIOCO >

- (a) Evaluate $\oint_C \frac{z}{(z-1)(z+2i)} dz$ around C: |z| = 4.
- (b) Using Bromwich contour

To find inverse Laplace transform of

$$F(s) = \frac{1}{(s-1)(s-2)}$$

$$I = \oint \frac{Z}{(Z-1)(z+zi)} dz$$

$$I = \oint \frac{Z/(Z-1)}{Z+2i} dZ + \oint \frac{Z/(Z+2i)}{Z-1} dZ$$

$$= 2\pi i \left[\frac{Z}{Z-1} \right]_{Z=-2i} + 2\pi i \left[\frac{Z}{Z+2i} \right]_{Z=1}$$

$$=2\pi i\left(\frac{-2i}{-2i-1}\right)+2\pi i\left(\frac{1}{1+2i}\right)$$

$$= \frac{-4\pi}{1+2i} + \frac{2\pi 1}{1+2i} = \frac{2\pi (-4+i)}{1+2i}$$

$$= \frac{2\pi (-4+i)(1-2i)}{1+4}$$

$$=\frac{2\pi}{5}\cdot\left(-4+i+8i+2\right)$$

$$=\frac{2}{5}\pi(-2+9i)$$

Expand $\frac{c}{(z-2)^4}$ in a Laurent series about the point z=2 determine the nature of the singularity at z=2.

$$\frac{e^{\frac{3z}{(z-2)^4}}}{(z-2)^4} = \frac{e^{\frac{3(z-2)}{(z-2)^4}}}{(z-2)^4} = \frac{e^{\frac{6}{2}} e^{\frac{3(z-2)}{(z-2)^4}}}{(z-2)^4}$$

$$= \frac{e^{\frac{6}{2-2}} \left[1 + \frac{3(z-2)}{1!} + \frac{9(z-2)^2}{2!} + \cdots\right]}{\frac{9}{(z-2)^4}}$$

$$= e^{\frac{6}{2-2}} \left[\frac{1}{(z-2)^4} + \frac{3}{(z-2)^3} + \frac{9/2}{(z-2)^2} + \frac{9/2}{z-2} + \frac{81}{41!}\right]$$

$$+ \frac{3^5}{5!} (z-2) + \cdots$$

$$\lim_{z \to z_0} f(z) = \lim_{z \to z} \frac{e^{3z}}{(z-2)^4} = \frac{e^6}{0} = \infty \quad \text{not Remove ble}$$

$$\mathfrak{A}_{A}(x) = \frac{x}{x+1}$$
, $\mathfrak{A}_{B}(x) = \frac{1}{x^{2}+10}$, $\mathfrak{A}_{C}(x) = \frac{1}{10^{x}}$

Determine mathematical membership functions graphs of the followings

- $a)A \cup B$, $B \cap C$, $b)A \cup B \cup C$, $A \cap B \cap C$
- $c)A\cap C$, $B\cup C$ d) $A\cap B$, $A\cup B$

$$M_{A}(x) = \frac{x}{x+1} = \frac{x+1-1}{x+1}$$
 $M_{B}(x) = \frac{1}{x^{2}+10}$
 $M_{A}(x) = \frac{1}{x^{2}+10}$

$$M_{B}(x) = \frac{1}{x^2 + 10}$$

Show the two fuzzy sets satisfy the De Morgan s Law,

$$\mathfrak{A}_{A} = \frac{1}{1 + (x - 10)}$$
, $\mathfrak{A}_{B}(x) = \frac{1}{1 + x^{2}}$

MA>MB

Evaluate
$$\oint \frac{e^z}{z^2+1} dz$$
, $\oint \frac{\cos z \, dz}{z^2 (z+2)}$, $\oint \frac{dz}{z^2 (z+4)}$
where C is the circle $|z-1|=2$

$$\oint \frac{e}{\pm z^2+1} dz = \oint \frac{e}{(z+i)(z-i)} dz$$

$$I = \int \frac{e^{2}/(2-i)}{(2+i)} dz + \int \frac{e^{2}/(2+i)}{(2-i)} dz$$

$$= 2\pi i \left(\frac{e^{2}}{2-i}\right)_{2=2i} + 2\pi i \left(\frac{e^{2}}{2+i}\right)_{2=2i}$$

$$= 2\pi i \left(\frac{e^{i}}{2-i}\right) + 2\pi i \left(\frac{e^{i}}{2-i}\right)$$

$$\boxed{2}$$
 $\oint \frac{\cos 7}{2^2(2+2)} d2$ $= -2 \in Contour$

$$I = \oint \frac{\cos 2/2^{2}}{2+2} dz + \oint \frac{\cos 2/(2+2)}{2^{2}} dz$$

$$= 2\pi i \left(\frac{\cos 2}{2^{2}}\right)_{2=-2} + 2\pi i \left(\frac{\cos 2}{2+2}\right)_{2=0} = \frac{\pi i}{2^{2}} (\cos -2 + \pi i)$$

$$\boxed{3} \oint \frac{d^2}{2^2(2+4)}$$
 $Z=-4 \notin contour$, $Z=0 \in contour$

$$I = \oint \frac{1/(z+u)}{z^2} dz = \frac{2\pi i}{(z-1)!} \left(\frac{1}{z+u}\right) = 2\pi i \left(\frac{-1}{(z+u)^2}\right)_{z=0}$$

$$=\frac{-\pi i}{8}$$

Show that $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 2$ is a harmonic function and find corresponding analytic function f(z) = u + iv

$$u_x = 3x^2 + 6x - 3y^2$$
 $u_y = -6xy - 6y$
 $u_y = -6x - 6$

$$u_{xx} + u_{yy} = 0$$
 $3 \cdot u(x,y)$ is harmonic

$$V_y = 3x^2 - 3y^2 + 6x$$
 $V = 3x^2y - y^3 + 6xy + 9(x)$

$$V_x = 6xy + 6y + g(x) = -u_y = 6xy + 6y$$

is $g(x) = 0$ is $g(x) = K$

$$(3.f(z) = (x^3 - 3xy^2 + 3x^2 - 3y^2 + 2) + i (3x^2y - y^3 + 6xy + k)$$