ALGEBRAIC GEOMETRY

BEIJING INSTITUTE OF TECHNOLOGY, 2019

Exercises for chapter 1: Commutative algebra

We use the notations from the course, i.e. \mathbb{K} is a field, $\overline{\mathbb{K}}$ its algebraic closure, $\mathbb{K}[X_1, \dots, X_n]$ denotes the polynomial ring in n variables and R is a commutative ring.

Exercise 1. For $(a_1, \ldots, a_n) \in \mathbb{K}^n$ define the ideal $I(a_1, \ldots, a_n)$ in $\mathbb{K}[X_1, \ldots, X_n]$ generated by $X_i - a_i$ for $1 \le i \le n$.

- (a) Find an example for a maximal ideal \mathfrak{m} in $\mathbb{K}[X_1,\ldots,X_n]$ for some n such that $\mathfrak{m} \neq I(a_1,\ldots,a_n)$ for all $(a_1,\ldots,a_n) \in \mathbb{K}^n$.
- (b) Show that $I(a_1, ..., a_n) = I(b_1, ..., b_n)$ if and only if $(a_1, ..., a_n) = (b_1, ..., b_n)$.
- (c) Assume that \mathbb{K} has infinitely many elements. Show that for any $f \in \mathbb{K}[X_1, \dots, X_n]$ such that $f \neq 0$ there are infinitely many $(a_1, \dots, a_n) \in \mathbb{K}^n$ such that $f \notin I(a_1, \dots, a_n)$.

Exercise 2. Show the following alternative definitions of R being noetherian

- (a) R is noetherian if and only if any ascending chain $I_1 \subset I_2 \subset I_3 \subset ...$, of ideals $\{I_j \mid j \in \mathbb{Z}_{\geq 1}\}$ in R, is stationary, i.e. there exists a $n \in \mathbb{Z}_{\geq 1}$ such that $I_n = I_{n+k}$ for all $k \in \mathbb{Z}_{\geq 0}$.
- (b) R is noetherian if and only if any collection $\{I_j \mid j \in J\}$ of ideals in R has a maximal element with respect to the inclusion of ideals.

Exercise 3. For a subset $S \subset \mathbb{K}[X_1, \dots, X_n]$ denote by $\mathcal{V}(S)$ the vanishing set of S in $\overline{\mathbb{K}}$ and for a subset $V \subset \overline{\mathbb{K}}$ denote by $\mathcal{I}(V)$ the vanishing ideal of V in $\mathbb{K}[X_1, \dots, X_n]$.

- (a) Show the following properties of \mathcal{V} :
 - (i) $S \subset S' \subset \mathbb{K}[X_1, \dots, X_n]$ then $\mathcal{V}(S') \subset \mathcal{V}(S)$,
 - (ii) $\mathcal{V}(S) = \mathcal{V}(I)$ for I the ideal generated by the set S,
 - (iii) for $\{I_j \mid j \in J\}$ an arbitrary collection of ideals in $\mathbb{K}[X_1, \dots, X_n]$ it holds

$$\bigcap_{j\in J} \mathcal{V}(I_j) = \mathcal{V}\left(\sum_{j\in J} I_j\right),\,$$

- (iv) and for I, I' ideals in $\mathbb{K}[X_1, \dots, X_n]$ then $\mathcal{V}(I) \cup \mathcal{V}(I') = \mathcal{V}(I \cap I') = \mathcal{V}(I \cdot I')$.
- (b) Show the following properties of \mathcal{I} :
 - (i) $\mathcal{I}(\emptyset) = \mathbb{K}[X_1, \dots, X_n]$ and $\mathcal{I}(\overline{\mathbb{K}}^n) = (0)$,
 - (ii) for $V \subset \overline{\mathbb{K}}^n$ \mathbb{K} -algebraic it holds $\mathcal{V}(\mathcal{I}(V)) = V$,
 - (iii) and for $V, W \subset \overline{\mathbb{K}}^n$ \mathbb{K} -algebraic, it holds $\mathcal{I}(V \cup W) = \mathcal{I}(V) \cap \mathcal{I}(W)$.