

CHAPTER 8

BINOMIAL THEOREM

Binomial theorem for any positive integer n

$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + {}^nC_3a^{n-3}b^3 + \dots + {}^nC_nb^n$$

Recall

1)
$${}^{n}C_{r} = \underline{n!}_{(n-r)! \ r!}$$

2)
$${}^{n}C_{r} = {}^{n}C_{n-r}$$
 ${}^{7}C_{4} = {}^{7}C_{3} = \underline{7 \times 6 \times 5} = 35$
 $1 \times 2 \times 3$
 ${}^{8}C_{6} = {}^{8}C_{2} = \underline{8 \times 7} = 28$
 1×2

3)
$${}^{n}C_{n} = {}^{n}C_{0} = 1$$

4)
$${}^{n}C_{1} = n$$

OBSERVATIONS/ FORMULAS

- 1) The coefficients ⁿC_r occurring in the binomial theorem are known as binomial coefficients.
- 2) There are (n+1) terms in the expansion of (a+b)ⁿ, ie one more than the index.
- 3) The coefficient of the terms equidistant from the beginning and end are equal.
- 4) $(1+x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + {}^nC_3x^3 + \dots + {}^nC_nx^n$. (By putting a = 1 and b = x in the expansion of $(a + b)^n$).
- 5) $(1-x)^n = {}^nC_0 {}^nC_1x + {}^nC_2x^2 {}^nC_3x^3 + \dots + (-1)^n {}^nC_nx^n$ (By putting a = 1 and b = -x in the expansion of $(a + b)^n$).
- 6) $2^n = {}^nC_0 + {}^nC_1 + {}^nC_2 + {}^nC_3 + \dots + {}^nC_n$ (By putting x = 1 in (4))

7)
$$0 = {}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - {}^{n}C_{3} + \dots + (-1)^{n} {}^{n}C_{n}$$
 (By putting $x = 1$ in (5))

 8^{**}) $(r + 1)^{th}$ term in the binomial expansion for $(a+b)^n$ is called the general term which is given by

$$T_{r+1} = {}^{n}C_{r} a^{n-r} b^{r}.$$

i.e to find 4^{th} term = T_4 , substitute r = 3.

- 9*) **Middle term** in the expansion of $(a+b)^n$
 - i) If **n is even**, middle term = $\left[\frac{n}{2} + 1\right]^{th}$ term.
- ii) If **n is odd**, then 2 middle terms are, $\left[\frac{n+1}{2}\right]^{th}$ term and $\left[\frac{n+1}{2}+1\right]^{th}$ term.
 - 10*) To find the **term independent of x or the constant term,** find the coefficient of x^0 . (ie put power of x = 0 and find r)

Problems

Ex 8.1

13**) Show that $9^{n+1} - 8n - 9$ is divisible by 64, whenever n is a positive integer

Or

$$3^{2n+2}$$
 - 8n - 9 is divisible by 64

Solution:
$$9^{n+1} - 8n - 9 = (1+8)^{n+1} - 8n - 9$$

$$= {}^{n+1}C_0 + {}^{n+1}C_18 + {}^{n+1}C_28^2 + {}^{n+1}C_38^3 + \dots + {}^{n+1}C_{n+1}8^{n+1} - 8n - 9$$

$$= 1 + 8n + 8 + 8^2 \left[{}^{n+1}C_2 + {}^{n+1}C_3.8 + \dots + {}^{n+1}\right] - 8n - 9$$

$$(since {}^{n+1}C_0 = {}^{n+1}C_{n+1} = 1, {}^{n+1}C_1 = {}^{n+1},$$

$$8^{n+1}/8^2 = 8^{n+1-2} = 8^{n-1})$$

$$= 8^2 \left[{}^{n+1}C_2 + {}^{n+1}C_3.8 + \dots + {}^{n+1}\right] \text{ which is divisible by 64}$$

Problems

Ex 8.2

Misc ex

Ex 8.2

Q 10**(6 marks)

The coefficients of the $(r-1)^{th}$, r^{th} and $(r+1)^{th}$ terms in the expansion of $(x+1)^{n}$ are in the ratio 1: 3: 5. Find n and r.

Solution

$$T_{r+1} = {}^{n}C_{r}x^{n-r}$$

$$T_r = T_{(r\text{-}1)+1} = {}^n C_{r\text{-}1} x^{n\text{-}r+1}$$

$$T_{r\text{-}1} = {}_{T(r\text{-}2)\text{+}1} = {}^{n}C_{r\text{-}2} \; x^{n\text{-}r\text{+}2}$$

Given
$${}^{n}C_{r-2}: {}^{n}C_{r-1}: {}^{n}C_{r}:: 1:3:5$$

$$\frac{{}^{n}C_{r-2}}{{}^{n}C_{r-1}} = \frac{1}{3}$$

$$\underline{n!} \div \underline{n!} = \underline{1}$$

$$(n-r+2)! (r-2)! (n-r+1)! (r-1)! 3$$

$$\frac{(n-r+1)!}{(n-r+2)!} \times \frac{(r-1)!}{(r-2)!} = \frac{1}{3}$$

$$\frac{(n-r+1)!}{(n-r+1)!(n-r+2)} \times \frac{(r-2)!(r-1)}{(r-2)!} = \frac{1}{3}$$

$$\frac{r-1}{n-r+2} = \frac{1}{3}$$

$$3r-3 = n-r+2$$

 $n-4r = -5$ _____(1)

$$\frac{{}^{n}C_{r-1}}{{}^{n}C_{r}} = \underline{3}$$

simplify as above and get the equation 3n - 8r = -3 _____(2) solving (1) and (2) we get n = 7 and r = 3.

EXTRA/HOT QUESTIONS

- 1) Using Binomial theorem show that $2^{3n} 7n 1$ or $8^n 7n 1$ is divisible by 49 where n is a natural number. (4 marks**)
- 2) Find the coefficient of x^3 in the equation of $(1+2x)^6 (1-x)^7$ (HOT)
- 3) Find n if the coefficient of 5^{th} , 6^{th} & 7^{th} terms in the expansion of $(1+x)^n$ are in A.P.
- 4) If the coefficient of x^{r-1} , x^r , x^{r+1} in the expansion of $(1+x)^n$ are in A.P. prove that $n^2 (4r+1)n + 4r^2 2 = 0$. (HOT)
- 5) If 6^{th} , 7^{th} , 8^{th} & 9^{th} terms in the expansion of $(x+y)^n$ are respectively a,b,c &d then show that $\frac{b^2 ac}{c^2 bd} = \frac{4a}{3c}$ (HOT)
- 6) Find the term independent of x in the expansion of $\left[3x^2 \frac{1}{2x^3}\right]^{10}$ (4 marks*)
- 7) Using Binomial theorem show that $3^{3n} 26n 1$ is divisible by 676. (4 marks**)
- 8) The 3rd,4th & 5th terms in the expansion of (x+a)ⁿ are 84, 280 & 560 respectively. Find the values of x, a and n. (6 marks**)
- 9) The coefficient of 3 consecutive terms in the expansion of $(1+x)^n$ are in the ratio 3:8:14. Find n. (6 mark**)
- Find the constant term in the expansion of $(x-1/x)^{14}$
- 11) Find the middle term(s) in the expansion of

i)
$$\left[\frac{x}{a} - \frac{a}{x}\right]^{10}$$
 ii) $\left[2x - \frac{x^2}{4}\right]^9$

12) If
$$(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$$

Prove that $C_1 + 2C_2 + 3C_3 + \dots + nC_n = n \cdot 2^{n-1}$

Answers

- 2) -43
- 3) n = 7 or 14
- 6) 76545/8
- 8) x = 1, a = 2, n = 7
- 9) 10
- 10) -3432
- 11) i) -252