Decoder and Encoder

Theory

- Combinational Circuit
- Decodes the given input
- Input: n bits
- Output: 2ⁿ bits

General Block Diagram – n to m decoder

Each output corresponds to one of the 2ⁿ possible combinations, m=2ⁿ

General Block Diagram

- The ENABLE line performs no logical operation
- Used to toggle decoder between ACTIVE and INACTIVE states
 - When enable input is 0, all outputs are 0

2-to-4 line decoder

- 2 inputs A1(MSB) and A0(LSB),
- 2²=4 outputs

D0, D1, D2 and D3

Truth Table – without ENABLE

Decimal #	In	put	Output						
	A_1	A_0	$\mathbf{D_0}$	D_1	D_2	D_3			
0	0	0	1	0	0	0			
1	0	1	0	1	0	0			
2	1	0	0	0	1	0			
3	1	1	0	0	0	1			

- For each input combination, one single output line is activated(=1)
- Each output is actually a MINTERM by taking a certain combination of the inputs

- D 0 = A 1' A 0', (minterm m 0) which corresponds to input 00
- D 1 = A 1' A 0, (minterm m 1) which corresponds to input 01
- D 2 = A 1 A 0', (minterm m 2) which corresponds to input 10
- D 3 = A 1 A 0, (minterm m 3) which corresponds to input 11

Truth Table – with ENABLE

Decimal value	Enable	Inp	outs	Outputs					
	E	A_1	A_0	\mathbf{D}_0	$\mathbf{D_1}$	D_2	\mathbf{D}_3		
	0	X	X	0	0	0	0		
0	1	0	0	1	0	0	0		
1	1	0	1	0	1	0	0		
2	1	1	0	0	0	1	0		
3	1	1	1	0	0	0	1		

- D 0 = E A 1' A 0', (minterm m 0) which corresponds to input 00
- D 1 = E A 1' A 0, (minterm m 1) which corresponds to input 01
- D 2 = E A 1 A 0', (minterm m 2) which corresponds to input 10
- D 3 = E A 1 A 0, (minterm m 3) which corresponds to input 11

Circuit Diagram – without ENABLE

Circuit Diagram – with ENABLE

As long as E is 0, the outputs remain 0

3 to 8 line Decoder

Truth Table

Dec.	Inputs			Outputs								
Code	$\mathbf{A_2}$	\mathbf{A}_{1}	$\mathbf{A_0}$	$\mathbf{D_0}$	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_4	\mathbf{D}_5	\mathbf{D}_6	\mathbf{D}_7	
0	0	0	0	1	0	0	0	0	0	0	0	
1	0	0	1	0	1	0	0	0	0	0	0	
2	0	1	0	0	0	1	0	0	0	0	0	
3	0	1	1	0	0	0	1	0	0	0	0	
4	1	0	0	0	0	0	0	1	0	0	0	
5	1	0	1	0	0	0	0	0	1	0	0	
6	1	1	0	0	0	0	0	0	0	1	0	
7	1	1	1	0	0	0	0	0	0	0	1	

Circuit Diagram

Construct a 3-to-8 decoder using two 2-to-4 decoders with enable inputs.

Steps

- The two least significant bits (i.e. A 1 and A 0) are connected to both decoders
- Most significant bit (A 2) is connected to the enable input of one decoder.
- The complement of most significant bit (A 2) is connected to the enable of the other decoder.

Steps

- When A 2 = 0, upper decoder is enabled, while the lower is disabled. Thus, the outputs of the upper decoder correspond to minterms D 0 through D 3.
- When A 2 = 1, upper decoder is disabled, while the lower is enabled. Thus, the outputs of the lower decoder correspond to minterms D 4 through D 7.

Encoder

- Performs reverse operation of Decoder
- 2ⁿ inputs, n outputs
- At any time instant t, only one input can be high (logic 1)
- Output lines generate the binary code corresponding to the high input

General Block Diagram

Block Diagram – 8 to 3 Encoder

Truth Table

	Inputs									Outputs			
E7	E6	E5	E4	E3	E2	E 1	E 0	A2	A1	A0			
0	0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	1	0	0	0	0		
0	0	0	0	0	0	1	0	0	0	1	1		
0	0	0	0	0	1	0	0	0	1	0	2		
0	0	0	0	1	0	0	0	0	1	1	3		
0	0	0	1	0	0	0	0	1	0	0	4		
0	0	1	0	0	0	0	0	1	0	1	5		
0	1	0	0	0	0	0	0	1	1	0	6		
1	0	0	0	0	0	0	0	1	1	1	7		

4 to 2 Encoder

Truth Table

	Inp	Outputs			
D_3	D_2	D_1	D_0	Q ₁	Q_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1
0	0	0	0	Х	Χ

Q0 is high when D1 or D3 is high

Q0 = D1.D0'.D2'.D3' + D3.D2'.D1'.D0'

Q1 = D2.D1'.D3'.D0' + D3. D2'.D1'.D0'

Circuit Diagram

Do it yourself!

Problems of Encoders

- If two or more inputs are active at the same time, what should the output be?
- An output of all 0's is generated in 2 cases: when all inputs are 0 when E0 is equal to 1.

How can this ambiguity be resolved?

PRIORITY ENCODER

- Uses pre-defined 'priority' value for each input
- If multiple inputs are 1, output will correspond to input pin with highest priority
- Digital Encoders that use this logic, are Priority Encoders
- In the presence of higher priority input, other lower priority inputs are ignored

Block Diagram

Truth Table

		Binary Output								
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Q ₂	Q ₁	Q ₀
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	X	0	0	1
0	0	0	0	0	1	Х	X	0	1	0
0	0	0	0	1	X	Х	X	0	1	1
0	0	0	1	X	Х	Х	X	1	0	0
0	0	1	X	X	X	X	X	1	0	1
0	1	X	X	X	X	X	X	1	1	0
1	X	X	X	X	X	X	X	1	1	1

Expressions

		Binary Output								
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Q ₂	Q ₁	Q_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	X	0	0	1
0	0	0	0	0	1	Х	X	0	1	0
0	0	0	0	1	Х	Х	X	0	1	1
0	0	0	1	X	X	X	X	1	0	0
0	0	1	X	X	X	X	X	1	0	1
0	1	X	X	X	X	X	X	1	1	0
1	Х	X	Х	Х	Х	Х	Х	1	1	1

$$Q0 = D1 + D3 + D5 + D7$$

$$Q1 = D2 + D3 + D6 + D7$$

$$Q2 = D4 + D5 + D6 + D7$$

Priority Encoder

