Hoy **Ivan the Confessor** prefiere las funciones $f:[0,1]\to\mathbb{R}$ que cumplen que $f(x)+f(y)\geqslant |x-y|$ para cualquier pareja de valores $x,y\in[0,1]$. Encuentra el mínimo valor de $\int_0^1 f$ de todas las posibles funciones preferidas.

Solución:

Aprovechando la simetría de la expresión del enunciado, se puede suponer que la variable $x \in \left[0, \frac{1}{2}\right]$ y que $y \in \left[\frac{1}{2}, 1\right]$. De esta manera

$$\int_0^1 f(t) dt = \int_0^{\frac{1}{2}} f(x) dx + \int_{\frac{1}{2}}^1 f(y) dy$$

Y realizando un cambio de variable $y = x + \frac{1}{2}$, se obtiene que

$$\int_0^1 f(t) dt = \int_0^{\frac{1}{2}} f(x) dx + \int_0^{\frac{1}{2}} f\left(x + \frac{1}{2}\right) dx$$

$$= \int_0^{\frac{1}{2}} \left(f(x) + f\left(x + \frac{1}{2}\right) \right) dx$$

$$\geqslant \int_0^{\frac{1}{2}} \left| x - \left(x + \frac{1}{2}\right) \right| dx$$

$$= \int_0^{\frac{1}{2}} \frac{1}{2} dx$$

$$= \frac{1}{4}$$

Y entonces,
$$\int_0^1 f \geqslant \frac{1}{4}$$
.