1901. Find a Peak Element II

Medium

A peak element in a 2D grid is an element that is strictly greater than all of its adjacent neighbors to the left, right, top, and bottom.

Given a 0-indexed $m \times n$ matrix mat where no two adjacent cells are equal, find any peak element mat[i][j] and return the length 2 array [i,j].

You may assume that the entire matrix is surrounded by an **outer perimeter** with the value **-1** in each cell.

You must write an algorithm that runs in $O(m \log(n))$ or $O(n \log(m))$ time.

Example 1:

-1	-1	-1	-1
-1	1	4	-1
-1	3	2	-1
-1	-1	-1	-1

Input: mat = [[1,4],[3,2]]

Output: [0,1]

Explanation: Both 3 and 4 are peak elements so [1,0] and [0,1] are both acceptable answers.

Example 2:

-1	-1	-1	-1	-1
-1	10	20	15	-1
-1	21	30	14	-1
-1	7	16	32	-1
-1	-1	-1	-1	-1

Input: mat = [[10,20,15],[21,30,14],[7,16,32]]

Output: [1,1]

Explanation: Both 30 and 32 are peak elements so [1,1] and [2,2] are both acceptable answers.

Constraints:

• m == mat.length

• n == mat[i].length

• 1 <= m, n <= 500

• 1 <= mat[i][j] <= 105

• No two adjacent cells are equal.