International TOR Rectifier

Automotive Grade AUIRS2123S/AUIRS2124S

HIGH SIDE DRIVER IC

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout
- CMOS Schmitt-triggered inputs with pull-down
- Output in phase with input (AUIRS2123) or out of Phase with input (AUIRS2124)
- Leadfree, RoHS compliant
- Automotive qualified*

Typical Applications

• General purpose single high side inverters

Product Summary

Topology	Single highside
V _{OFFSET}	≤ 600 V
V _{OUT}	10 V – 20 V
I _{o+} & I _{o-} (typical)	500 mA
t _{ON} & t _{OFF} (typical)	140 ns & 140 ns

Package Options

Table of Contents	Page
Description	3
Qualification Information	4
Absolute Maximum Ratings	5
Recommended Operating Conditions	5
Static Electrical Characteristics	6
Dynamic Electrical Characteristics	6
Functional Block Diagram	7
Input/Output Pin Equivalent Circuit Diagram	8
Lead Definitions	9
Lead Assignments	9
Application Information and Additional Details	10
Parameter Temperature Trends	11
Package Details	15
Tape and Reel Details	16
Part Marking Information	17
Ordering Information	18

International TOR Rectifier

AUIRS2123S, AUIRS2124S

Description

The AUIRS2123S/AUIRS2124S are high voltage, high speed power MOSFET and IGBT drivers. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS outputs. The output drivers feature a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

www.irf.com © 2008 International Rectifier

International TOR Rectifier

AUIRS2123S, AUIRS2124S

Qualification Information[†]

Qualification inform		1		
		Automotive		
		(per AEC-Q100 ^{††})		
Qualification Level	Qualification Level		of ICs has passed an Automotive	
		qualification. IR's Indu	ustrial and Consumer qualification	
	level is granted by extension of the higher Automotive I			
Moisture Sensitivity Level		SOIC8	MSL3 ^{†††} 260°C	
		SOICo	(per IPC/JEDEC J-STD-020)	
Machine Model		Class M3		
	Macrime Moder	(per AEC-Q100-003)		
ESD	Lluman Dady Madal	Class H2		
ESD	Human Body Model	(per AEC-Q100-002)		
	Charged Davies Medal	Class C5		
Charged Device Model		(per AEC-Q100-011)		
IC Latch-Up Test		Class II, Level A		
		(per AEC-Q100-004)		
RoHS Compliant Yes			Yes	

[†] Qualification standards can be found at International Rectifier's web site http://www.irf.com/

^{††} Exceptions to AEC-Q100 requirements are noted in the qualification report.

^{†††} Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to GND, all currents are defined positive into any lead. This is a stress only rating and operation of the device at these or any conditions exceeding those indicated in the operational sections of this specification is not implied

Symbol	Definition	Min.	Max.	Units
V _{BS}	High Side Floating Supply Voltage	-0.3	25	V
V _B	High Side Driver Output Stage Voltage	-0.3	625	V
Vs	High Side Floating Supply Offset Voltage	V _B - 25	$V_{B} + 0.3$	V
V_{Ho}	Output Voltage Gate Connection	$V_{S} - 0.3$	V _B + 0.3	V
Vcc	Supply Voltage	-0.3	25	V
V _{IN}	Input Voltage	-0.3	V _{CC} + 0.3	V
V_{RES}	Reset Input Voltage	-0.3	$V_{CC} + 0.3$	V
dV/dt	Allowable Offset Voltage Slew Rate	-50	50	V/nsec
TJ	Junction Temperature	-55	150	°C
T _S	Storage Temperature	-55	150	

Recommended Operating Conditions

For proper operations the device should be used within the recommended conditions.

Symbol	Definition	Min.	Max.	Units
V_{B}	High Side Driver Output Stage Voltage -10V Transient 0.4 us	V _S +10	V _S +20	V
Vs	High Side Floating Supply Offset Voltage -25V Transient 0.4 μs	†	600	V
V_{Ho}	Output Voltage Gate Connection	Vs	V _B	V
V _{CC}	Supply Voltage	10	20	V
V_{IN}	Input Voltage	0	V_{CC}	V
V_{RES}	Reset Input Voltage	0	Vcc	V
T_A	Ambient Temperature (f _s <60kHz, V _{BS} =14V, C _{load} =2,5nF, R=50Ohm)	-40	125	°C

[†] Logic operational for V_S of -5 to +600 V. Logic state held for V_S of -5 V to $-V_{BS}$. (Please refer to the Design Tip DT97-3 for more details).

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V and T_A = 25°C unless otherwise specified. The V_{IL} , V_{IH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition			Тур	Max	Units	Test Conditions	
V _{IH}	Logic "1" input voltage	AUIRS2123	0.70					
V IH	Logic "0" input voltage AUIRS2124		*V _{CC}					
V_{IL}	Logic "0" input voltage	AUIRS2123	_	_	0.35	V		
* 11.	Logic "1" input voltage	AUIRS2124			*V _{CC}	_ v		
V_{OH}	High level output voltage, V_{BIAS} - V_{BIAS}	' 0	_	_	2		I _O = 10 mA	
V_{OL}	Low level output voltage, Vo		_	0.1	0.2		10 - 10 1117	
I_{LK}	Offset supply leakage current		_	_	50		$V_{B} = V_{S} = 600 \text{ V}$	
I_{QBS}	Quiescent V _{BS} supply current			_	240		V _{IN} = 0 V or V _{CC}	
I _{QCC}	Quiescent V _{CC} supply current		_	_	500		VIN - O V OI VCC	
I _{IN+}	Logic "1" input bias current	AUIRS2123			_ 5.0	μA	$V_{IN} = V_{CC}$	
'IN+	Logic 1 input bias current	AUIRS2124					5.0	
I _{IN-}	Logic "0" input bias current	AUIRS2123	_	_		5.0		
*IIN-		AUIRS2124					$V_{IN} = V_{CC}$	
V_{BSUV+}	V _{BS} supply undervoltage positive g		7.2	8.6	9.6			
V_{BSUV}	V _{BS} supply undervoltage negative of	going threshold	6.6	8.0	9.0	V		
$V_{\text{CCUV+}}$	V _{CC} supply undervoltage positive g	joing threshold	7.2	8.6	9.6	V		
V_{CCUV}	V _{CC} supply undervoltage negative going threshold		6.6	8.0	9.0			
I _{O+}	Output high short circuit pulsed current		250	500	_	mA	$V_O = 0 V$, $V_{IN} = Logic "1"$ $PW \le 10 \mu s$	
I _{O-}	Output low short circuit pulsed curr	rent	250	500		IIIA	$V_O = 15 V$, $V_{IN} = Logic "0"$ $PW \le 10 \mu s$	

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, C_L = 1000 pF, T_A = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Fig. 3.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
t _{on}	Turn-on propagation delay	_	140	240		V _S = 0 V
t _{off}	Turn-off propagation delay	_	140	240		V _S = 600 V
tr	Turn-on rise time		80	200	ns	
t_f	Turn-off fall time	_	80	200	110	
t _{RES}	RESET to output turn off propagation delay (AUIRS2123 only)	_	170	300		

Functional Block Diagram (AUIRS2123)

Functional Block Diagram (AUIRS2124)

Lead Definitions

Pin	Symbol	Pin description
1	VCC	Low side and logic fixed supply
2	IN	Logic input for gate driver output (HO), in phase with HO (AUIRS2123)
	IN-	Logic input for gate driver output (HO), out of phase with HO (AUIRS2124)
3	COM	Logic Ground
4	RESET-	Driver Enable Signal Input (negative logic) (AUIRS2123)
4	NC	No connection (AUIRS2124)
5	NC	No connection
6	V_s	High-side floating supply return
7	Ho	High-side gate drive output
8	V_{B}	High-side floating supply

Application Information and Additional Details

AUIRS2123 logic table for V_{CC}, V_{BS}, RESET, IN, and H_O

V _{CC}	VBS	RESET-	IN	Ho
X	X	X	LOW	OFF
X	X	LOW	X	OFF
<vccuvlo-< td=""><td>X</td><td>X</td><td>X</td><td>OFF</td></vccuvlo-<>	X	X	X	OFF
X	<vbsuvlo-< td=""><td>X</td><td>X</td><td>OFF</td></vbsuvlo-<>	X	X	OFF
>VccUVLO+	>VBSUVLO+	HIGH	HIGH	ON

RESET = HIGH indicates that high side NMOS is allowed to be turned on.

RESET = LOW indicates that high side NMOS is OFF.

IN = HIGH indicates that high side NMOS is on.

IN = LOW indicates that high side NMOS is off.

X = independent

AUIRS2124 logic table for V_{CC}, V_{BS}, RESET, IN, and H_O

Vcc	VBS I	N-	Ho
Х	X	HIGH	OFF
<vccuvlo-< td=""><td>X</td><td>X</td><td>OFF</td></vccuvlo-<>	X	X	OFF
Х	<vbsuvlo-< td=""><td>X</td><td>OFF</td></vbsuvlo-<>	X	OFF
>VccUVLO+	>VBSUVLO+	LOW	ON

IN- = HIGH indicates that high side NMOS is on.

IN- = LOW indicates that high side NMOS is off.

X = independent

Parameter Temperature Trends

Figure 1A. Turn-on Delay Time vs. Temperature

Figure 2A. Turn-Off Time vs. Temperature

Fiure 3A. Turn-On Rise Time (VBS=17V) vs.Temperature

Figure 1B. Turn-on Delay Time vs. Supply Voltage

Figure 2B. Turn-Off Time vs. Supply Voltage

Figure 3B. Turn-On Rise Time (VBS=17V)

Figure 4A. Turn-Off Fall Time (VBS=17V) vs. Temperature

Figure 4B. Turn-Off Fall Time (VBS=17) vs. Supply Voltage

Figure 5A. Logic "1" Input Voltage vs. Temperature

Figure 5B. Logic "1" Input Voltage vs. Supply Voltage

Figure 6A. Logic "0" Input Voltage vs. Temperature

Figure 6B. Logic "0" Input Voltage vs. Supply Voltage

Figure 7A. VBS Supply Current vs. Temperature

Figure 8A. VBS Supply Current vs. Temperature

Figure 9A. Vcc Supply Current vs. Temperature

Figure 9B. Vcc Supply Current vs. Supply Voltage

Figure 10A. Vcc Supply Undervoltage Threshold (+) vs. Temperature

Figure 10B. Vcc Supply Undervoltage Threshold (-) vs. Temperature

Figure 11A. VBS Supply Undervoltage Threshold (+) vs. Temperature

Figure 11B. VBS Supply Undervoltage Threshold (-) vs. Temperature

Figure 12. Logic Level Input Resistance vs. Temperature

Figure 13. Maximum VS Negative Offset vs. Supply Voltage

Package Details

Tape and Reel Details

CARRIER TAPE DIMENSION FOR 8SOICN

	Metric Impe		erial	
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E F	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 8SOICN

TELLE BIIIILITOIGNON GINGGOOM						
	Metric		Imp	erial		
Code	Min	Max	Min	Max		
Α	329.60	330.25	12.976	13.001		
В	20.95	21.45	0.824	0.844		
С	12.80	13.20	0.503	0.519		
D	1.95	2.45	0.767	0.096		
E	98.00	102.00	3.858	4.015		
F	n/a	18.40	n/a	0.724		
G	14.50	17.10	0.570	0.673		
Н	12.40	14.40	0.488	0.566		

Part Marking Information

Ordering Information

Base Part Number	Package Type	Standard Pack		Occupated a Board Mount on
		Form	Quantity	Complete Part Number
AUIRS2123S	SOIC8	Tube/Bulk	95	AUIRS2123S
		Tape and Reel	2500	AUIRS2123STR
AUIRS2124S	SOIC8	Tube/Bulk	95	AUIRS2124S
		Tape and Reel	2500	AUIRS2124STR

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Revision History

Date Comment
