How Ames, Iowa Housing Data Models Can Help You!

Overview

- Problem: How do we use Ames, Iowa housing data and modeling techniques to predict property prices, and how can we use this knowledge to focus efforts to increase property value/price?
- Data supplied by: Dean De Cock, Truman State University
- Explore data: Cleaned data and inspected relationships between property features and sale price
- Model with data: Utilized Python and Scikitlearn and Matplotlib and other libraries to create Linear Regression model to predict sale price given certain features
- Evaluate model: Utilized linear regression metrics to evaluate model accuracy and precision
- **Answer problem:** I'll give you some recommendations!

Background

- Dataset: 81 variables and 2051 rows, compiled by Dean De Cock
 - Test dataset: 80 variables and 879 rows
- Data from Ames Assessor's Office (used in computing assessed values for individual residential properties sold in Ames, IA from 2006 to 2010)
- Iowa State University located in Ames, Iowa
- Ames, Iowa population as of 2010 Census: 58,965
 (including students enrolled at ISU over 36,000 students)

Data Cleaning

- Null values: inspected and filled with 0 or NA or other appropriate values
- Year garage was built column was removed due to issues with null values
- One additional feature was created:
 - Total bathrooms =
 - Basement Full Baths + Basement ½ Baths +
 - Above Grade Full Baths + Above Grade ½ Baths

Exploring the Data

The variables shown in the heatmap have |correlation| with sale price ≥ 0.4

updates by David Yerrington (SF): http://localhost:8888/notebooks/Desktop/DSI-US-7/Lessons/2.04-lesso

n-eda/2 04-basic-eda-walkthrough.ipvnb#cov cor

-0.6

- 0.9

- 0.6

-0.3

-0.0

-0.3

Linear Regression Assumptions

- Each feature linearly related to sale price (see plots of some features vs. sale price used in model to right)
- Independence of errors
- Normality of errors (mean of 0)
- Equality of variance (e.g., errors don't increase as feature values increase)
- Independence of predictors (features)

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} X_{1i} + \hat{\beta}_{2} X_{2i} + \dots + \hat{\beta}_{p} X_{pi}$$

Distribution of Sale Price Data

There is a right-skew (positive skew) of the data -> did PowerTransform

Model R2 Score data - showing how chose model

Model 6

*2	R Squared Scores	LR_Feats_Corr_AbvPt4	LassoCV_Feats_Corr_AbvPt4	RidgeCV_Feats_Corr_AbvPt4	ElasticNet_Feats_Corr_AbvPt4
0	CrossVal	0.855894	0.857036	0.856608	0.854803
1	Train_R2	0.868364	0.867810	0.868133	0.867550
2	Test_R2	0.871557	0.872436	0.872428	0.872642
3	Test_Rev_R2	0.897680	0.897631	0.897905	0.897627

Model 8

	R Squared Scores	LR_Feats_Corr_AbvPt4	LassoCV_Feats_Corr_AbvPt4	RidgeCV_Feats_Corr_AbvPt4	ElasticNet_Feats_Corr_AbvPt4
0	CrossVal	0.859687	0.859999	0.860085	0.857229
1	Train_R2	0.870223	0.869988	0.870021	0.869848
2	Test_R2	0.866803	0.867277	0.867655	0.867545
3	Test_Rev_R2	0.906289	0.905850	0.906283	0.905915

Chose Model 8: More metrics for this model: MSE: approx. 603273361.69 \$^2, RMSE: \$24561.62,

Mean Absolute Error: \$17106.22

Linear Regression Prediction Using RidgeCV Fit to True Values

Top 10 features that add to value

add the most value to a

home

These features appear to

0.255023 0.207971 0.205559

0.268590

0.129366

0.112555

0.107744

0.103072

0.097451

0.091224

0.073824

10

Beta Coefficients

Features

Overall Qual

Gr Liv Area

Exter Qual Gd

Exter Qual TA

BsmtFin SF 1

Year Built

Fireplaces

1st Flr SF

Year Remod/Add

Exter Qual Ex

Garage Cars

Features that hurt value

The following features hurt the value of a home the most:

- Unfinished garage
- No masonry vaneer type (e.g., if no brick, brick face, cinder block, or stone vaneer)
- Poured concrete foundation type (instead of cinder block, etc.)
- Typical/avg kitchen quality (instead or excellent or good)
- Rating of basement finish type: good
 living quarters odd observation
- Masonry vareer area (sq ft)

Fireplace Qu_NA

Neighborhood_NridgHt

Bsmt Qual_Ex

X

0.025552

0.025446

0.024430

0.015754

0.009698

0.009032

-0.002872

-0.004084

-0.004159

-0.022398

-0.023809

Bsmt Qual_TA

Garage Finish_Fin

TotRms AbvGrd

otems advigr

Garage Finish_Unf

Mas Vnr Type_None
Foundation PConc

Mas Vnr Area

Kitchen Qual_TA

Nitchen Qual_I

BsmtFin Type 1_GLQ

-0.025620

11

Other findings / recommendations

- To increase value of home, homeowners should:
 - Increase overall quality of the home
 - Ensure good quality of exterior (including masonry vaneer)
 - Finish basement if it is unfinished
 - Remodel
 - Finish garage if it is unfinished
 - Increase kitchen quality (need to stand out!)
- Neighborhood that stands out as a good investment:
 - Northridge Heights (NridgHt)
 - Other good neighborhoods: Northridge, Stone Brook, Somerset,
 Timberland, Veenker, and College Creek (according to corr.)

Next Steps

- Model optimization
- This model can generalize to other city/cities if:
 - Demand and market information available (e.g., general growth rates would help to scale the model)
 - Data similar to data used to build this model, especially variables on heatmap on Slide 4
- To make the model more universal (*e.g.*, to general U.S. regions):
 - Include data from various areas in U.S. (weighted equally for enough representation of each region)
 - Scaling factors for regions in U.S. with different priorities (e.g., structural features needed in flood-prone areas)

Sources

City of Ames, https://www.cityofames.org/about-ames/interesting-facts-about-ames

Dean De Cock, http://jse.amstat.org/v19n3/decock/DataDocumentation.txt

General Assembly lesson by *Kiefer Katovich (SF), Minor updates by David Yerrington (SF):*http://localhost:8888/notebooks/Desktop/DSI-US-7/Lessons/2.04-lesson-eda/2 04-basic-eda-walkthrough.ipvnb#cov cor

General Assembly lesson by *Matt Brems (DC), Marc Harper (LA):* http://localhost:8888/notebooks/Desktop/DSI-US-7/Lessons/3.01-lesson-linear_regression/starter-code.ipynb

https://www.google.com/search?biw=1280&bih=583&tbm=isch&sa=1&ei=pj2UXOzBPIO7jwS3_ZfgDQ&q=birds+eye+view+ames%2C+iowa+current&oq=birds+eye+view+ames%2C+iowa+current&gs_l=img.3...3
318625.3321015..3321206...0.0.0.0.0.....13....1..gws-wiz-img.jSwJteC57P8#imgrc=Klagv1qes1xiKM:

Thank you!