Problem 1.65. Prove that for each n > 0, a language B_n exists where

Part a. B_n is recognizable by an NFA that has n states.

Proof. Let Σ be any nonempty set of symbols. Define B_n to be the language:

 $B_n = \{ w \mid w \text{ has length at least } n-1 \}$

Example of an NFA that recognizes B_3 , where $\Sigma = \{a, b\}$.

Construct the NFA $N=(Q,\Sigma,\delta,q_0,F)$ to recognize B_n :

- 1. $Q = \{q_1, q_2, \dots, q_n\}$
- 2. $q_0 = q_1$
- 3. $F = \{q_n\}$
- 4. Define $\delta(q_i, a)$ so that for any $q_i \in Q$ and any $a \in \Sigma$:

$$\delta(q_i, a) = \begin{cases} \{q_{i+1}\} & i < n \\ \{q_n\} & i = n \end{cases}$$

Part b. If $B_n = A_1 \cup \cdots \cup A_k$, for regular languages A_i , then at least one of the A_i requires a DFA with exponentially many states.

Proof. Solution Replace this text with the details of your proof or solution. \Box