ALGEBRAIC TOPOLOGY II LECTURE NOTES

HIDENORI SHINOHARA

Contents

1.	Poincare Duality	1
1.1.	Orientations	1
1.2.	Poincare Duality(Version 1)	2
1.3.	Cap Products	2

1. Poincare Duality

Since $H^*(T^n) \equiv \wedge_{\mathbb{Z}} M$ where $M = \langle v_1, \cdots, v_n \rangle$, we have

k	0	1	2	 n-1	n
$\operatorname{rank} H^k(T^n; \mathbb{Z})$	$\binom{n}{0}$	$\binom{n}{1}$	$\binom{n}{2}$	 $\binom{n}{n-1}$	$\binom{n}{n}$

This symmetry phenomenon is true in general and very useful. Another example: The cellular complex for \mathbb{CP}^n is $\mathbb{Z} \to 0 \to \mathbb{Z} \to 0 \to \cdots \to 0 \to \mathbb{Z} \to 0$. Thus

k	0	1	2	 2n - 1	2n
$\operatorname{rank} H^k(\mathbb{CP}^n; \mathbb{Z})$	1	0	1	 0	1

1.1. Orientations.

Definition 1.1. Let M be a triangulable closed n-manifold. Let $\sigma_1, \dots, \sigma_k$ be n-simplices such that $M = \sigma_1 \cup \dots \cup \sigma_k$. Then $\sigma_i \in C_n(M)$ for each i. Suppose that the ordering of the vertices in σ_i and the signs \pm can be chosen such that

$$\sum \pm \partial \sigma_i = 0 \in C_{n-1}(M).$$

Then M is said to be *orientable*.

Example 1.2. A tetrahedron and torus are examples of orientable manifolds.

FIGURE 1. Orientation of a tetrahedron

Definition 1.3. Let M be an n-dimensional orientable manifold. Choose $\sigma_i \in C_n(M)$ and signs $\operatorname{sgn}_i \in \{-1,1\}$ such that $M = \sigma_1 \cup \cdots \cup \sigma_k$ and $\sum \operatorname{sgn}_i \partial \sigma_i = 0$. The class represented by $\sum \operatorname{sgn}_i \sigma_i \in \ker(\partial)$ in $H_n(M)$ is called a fundamental class [M].

Theorem 1.4. If M connected, then [M] is a generator of $H_n(M)$.

Proof. By Poincare Duality(which will be discussed later (1.7)), $H_n(M) \cong H^0(M) = \mathbb{Z}$. Let $\sum c_i \sigma_i$ represent a generator of $H_n(M)$ where $c_i \in \mathbb{Z}$. Then $\sum \operatorname{sgn}_i \sigma_i = \lambda \sum c_i \sigma_i = \sum (\lambda c_i) \sigma_i$ for some $\lambda \in \mathbb{Z}$. Since each $\lambda c_i = \operatorname{sgn}_i \in \{-1, 1\}$, λ must be 1 or -1. Therefore, the class represented by $\sum \operatorname{sgn}_i \sigma_i$ is a generator of $H_n(M)$.

Corollary 1.5. There are two fundamental classes for any connected orientable manifold.

Proof. By (1.4), a fundamental class [M] is a generator of $H_n(M) = \mathbb{Z}$. Since \mathbb{Z} has exactly two generators 1, -1, M has exactly two fundamental classes.

Definition 1.6. Let M be a connected, orientable manifold. Then a choice of a fundamental class is called an orientation of M.

1.2. Poincare Duality(Version 1).

Theorem 1.7. If M is an orientable closed n-manifold, then

$$H^k(M;G) \cong H_{n-k}(M;G)$$

for any integer $0 \le k \le n$ and an abelian group G.

Remark. If M is not orientable, Poincare Duality holds when $G = \mathbb{Z}/2$. In other words,

$$H^k(M; \mathbb{Z}/2) \cong H_{n-k}(M; \mathbb{Z}/2).$$

For instance,

so Poincare Duality does not hold in this case. However, with $\mathbb{Z}/2$,

so Poincare Duality holds in this case.

Definition 1.8. The kth Betti number of a manifold M is defined to be $b_k = \operatorname{rank}(H^k(M;\mathbb{Z}))$.

Theorem 1.9. $b_k = b_{n-k}$ for all k if M is a closed orientable n-manifold.

Proof. By the Universal Coefficient Theorem, $\operatorname{rank}(H^k(M)) = \operatorname{rank}(H_k(M))$. By Poincare Duality, $\operatorname{rank}(H^k(M)) = \operatorname{rank}(H_{n-k}(M))$. Therefore, $b_k = \operatorname{rank}(H^k(M)) = \operatorname{rank}(H_{n-k}(M)) = \operatorname{rank}(H^{n-k}(M)) = b_{n-k}$.

1.3. Cap Products. There is a nice way to explicitly write down the isomorphism when G is a commutative ring.

Definition 1.10. Let a space X and a commutative ring R be given. For any $k \ge l$, define the cap product

$$C_k(X;R) \otimes C^l(X;R) \longrightarrow C_{k-l}(X;R)$$

$$\sigma\otimes\phi\longmapsto\phi(\sigma|_{[v_0,\cdots,v_l]})\sigma|_{[v_l,\cdots,v_k]}$$