		発表 1
	発表者	板谷さくら
14:30- 14:50	題目	Overview of the conventional Gross-Neveu phase diagram and recent noteworthy reports (Review)
	概要	The Gross-Neveu (GN) model has provided hints for the QCD phase structure at finite temperature and chemical potential. Conventional studies on the GN phase diagram observed spontaneous symmetry breaking (SSB) of chiral Z2 symmetry, which was assumed to occur homogeneously. Later work, however, additionally suggested inhomogeneous chiral Z2 SSB at high densities. I will share the method of drawing the $1+1$ dimensional GN phase diagram and some calculation results in the former part of my talk. The latter part is dedicated to expansion to $d+1$ dimensional theory. In higher dimensions the phase structures are much different from that of $1+1$ dimensions. I will introduce a very recent study which reported how the GN phase structures at zero temperature change depending on the spatial dimension d
	発表者	谷口真彦
	題目	Cartan F(R)修正重力理論を用いた宇宙の加速膨張の導出
14:50- 15:10	概要	現在、観測により我々の宇宙は宇宙初期および現在の宇宙の加速 膨張の存在が示唆されている。Cartan F(R)修正重力理論は、一般相 対性理論のEinstein-Hilbert作用を一般の関数形F(R)へと拡張し、四脚 場を基本要素とするReimann-Cartan幾何学を用いて構築する理論で ある。今回、Cartan F(R)理論のモデルから2つの宇宙の加速膨張を 統一的に導出することを議論する。
	発表者	西村健太郎
	題目	How baryons appear in low-energy QCD: Domain-wall Skyrmion phase in strong magnetic fields
15:10- 15:30	概要	Low-energy dynamics of QCD can be described by pion degrees of freedom in terms of the chiral perturbation theory(ChPT). A chiral soliton lattice(CSL), an array of solitons, is the ground state due to the chiral anomaly in the presence of a magnetic field larger than a certain critical value at finite density. Here, we show in a model-independent and fully analytic manner (at the leading order of ChPT) that the CSL phase transits to a {\it domain-wall Skyrmion phase} when the chemical potential is larger than the critical value $\gamma = 16 \pi - 1$
	発表者	小野田 壮真
	題目	格子上の2次元コンパクトスカラー理論における磁気的演算子の構成
15:30- 15:50	概要	格子上でwell-definedなトポロジカル電荷を得るには場の配位が admissibility条件を満たしていることが不可欠である。しかし、この 条件は自動的にBianchi恒等式を保証するため、素朴には磁気的演算子の存在を禁止してしまうかのように思われる。この講演では格子上の2次元コンパクトスカラー理論においてこの困難がどのように解決されるか説明する。また、その構成の応用として、電気的対称性と磁気的対称性に付随する't Hooft anomalyやWitten効果が格子上でどのように定式化されるかについて説明する。

発表2		
	発表者	高田 浩行
16:20- 16:40	題目	高階スピンと連続スピン
	概要	
	発表者	浅野陽佑
	題目	SU(2)格子ゲージ理論によるDirac演算子の固有値分布の研究
16:40- 17:00	概要	最も軽いクォークであるアップクォークとダウンクォークでは、 陽子や中性子の質量を再現できない、然しながら、非摂動論的効果により、カイラル対称性が自発的に破れて、ハドロンは観測結果に合致する質量を獲得する、それは、「カイラル凝縮」と呼ばれるカイラル対称性の破れに対する秩序パラメータの値によって判断される、このカイラル凝縮は、Banks-Casher関係式によりDirac 演算子の固有値と固有ベクトルにより表現できることが知られている。

発表3		
	発表者	門内晶彦
10:10- 10:30	題目	Hydrodynamic model of hot and dense QCD matter in heavy-ion collisions
	概要	Nuclear collisions at relativistic energies have revealed that quark-gluon plasma, a deconfined phase of QCD, exhibits fluidity with extremely small viscosity. We discuss recent developments in the relativistic hydrodynamic description of the QCD matter.
	発表者	武井玄徳
	題目	数値確率過程摂動論を用いた時空縮約模型の解析
10:30- 10:50	概要	時空縮約模型とは時空にツイストされた境界条件を課すことで、ラージN極限の下で1点格子上の理論として定義した模型である。本発表では時空縮約模型を数値確率過程摂動論を用いて解析を行い、その結果について議論する。
	発表者	野中千穂
	題目	
10:50- 11:10	概要	
	発表者	田原智治
11:10- 11:30	題目	Neutrino oscillations in Quantum Field Theory
	概要	本発表では、真空中のニュートリノ振動に関する場の量子論的アプローチを提案する。このアプローチでは、ニュートリノの放射と検出を、基礎となるプロセスの1つの2次ファインマンダイアグラムの荷電カレント頂点と同一視し、これらの2点間におけるニュートリノの伝播を考慮に入れる。このアプローチにおけるポイントは、ニュートリノ振動実験に特有の時空間設定を定義し、線源と検出器が十分に大きな距離Lで分離され、巨視的には大きいが有限な体積を持つことである。これに基づき、荷電レプトン生成率のLに依存する公式を導出し、ニュートリノ振動の解析における場の量子論を紹介する。なお本発表はarXiv:2212.13635v2[hep-ph]等に基づいたレビュー発表である。

		発表4
12:30-	発表者	滑川 裕介
	題目	格子シミュレーションによる符号問題への挑戦
	概要	
		有限密度における量子色力学などの物理的に重要な系において、 符号問題のため第一原理に基づく格子シミュレーションは難し かった。しかし、近年、様々な手法が考案され符号問題が克服で きつつある。現状を概観し、我々の最新結果について解説する。
12:50-	発表者	宗博人
	題目	確率過程量子化と離散時間ランジュバン方程式
	概要	
		確率過程量子化において、Parisi-Wuの定理が重要であるが、数値計算の場合の離散時間においての取り扱いについて、議論する。
13:10-	発表者	新美蓮
		格子上のフェルミオンと量子ホール効果
	題目	恰丁工のフェルミオンと里丁小一ル効果
	題目 概要	常子エのフェルミオンと重子ホール効果 宗らの"Induced Chern-Simons Class with Lattice Fermion"をレビュー
15:30-	概要	宗らの"Induced Chern-Simons Class with Lattice Fermion"をレビューし、3次元時空の格子フェルミオンにおけるQEDの量子異常と物性物理における量子ホール効果との関係を紹介する。フォトンの真空偏極をゼロ運動量の周りで展開をすると運動量に比例する部分は、QEDのパリティを破る項である。それはトポロジカル質量項であり、物性物理ではチャーン数と呼ばれるトポロジカル不変量に対応し、量子ホール効果におけるホール伝導度がe2/hの整数倍に量
15:30-	概要 発表者 題目	宗らの"Induced Chern-Simons Class with Lattice Fermion"をレビューし、3次元時空の格子フェルミオンにおけるQEDの量子異常と物性物理における量子ホール効果との関係を紹介する。フォトンの真空偏極をゼロ運動量の周りで展開をすると運動量に比例する部分は、QEDのパリティを破る項である。それはトポロジカル質量項であり、物性物理ではチャーン数と呼ばれるトポロジカル不変量に対応し、量子ホール効果におけるホール伝導度がe2/hの整数倍に量子化される原因となる。
15:30-	概要	宗らの"Induced Chern-Simons Class with Lattice Fermion"をレビューし、3次元時空の格子フェルミオンにおけるQEDの量子異常と物性物理における量子ホール効果との関係を紹介する。フォトンの真空偏極をゼロ運動量の周りで展開をすると運動量に比例する部分は、QEDのパリティを破る項である。それはトポロジカル質量項であり、物性物理ではチャーン数と呼ばれるトポロジカル不変量に対応し、量子ホール効果におけるホール伝導度がe2/hの整数倍に量子化される原因となる。
15:30-	概要 発表者 題目	宗らの"Induced Chern-Simons Class with Lattice Fermion"をレビューし、3次元時空の格子フェルミオンにおけるQEDの量子異常と物性物理における量子ホール効果との関係を紹介する。フォトンの真空偏極をゼロ運動量の周りで展開をすると運動量に比例する部分は、QEDのパリティを破る項である。それはトポロジカル質量項であり、物性物理ではチャーン数と呼ばれるトポロジカル不変量に対応し、量子ホール効果におけるホール伝導度がe2/hの整数倍に量子化される原因となる。
15:30-	概要 発表者 題目	宗らの"Induced Chern-Simons Class with Lattice Fermion"をレビューし、3次元時空の格子フェルミオンにおけるQEDの量子異常と物性物理における量子ホール効果との関係を紹介する。フォトンの真空偏極をゼロ運動量の周りで展開をすると運動量に比例する部分は、QEDのパリティを破る項である。それはトポロジカル質量項であり、物性物理ではチャーン数と呼ばれるトポロジカル不変量に対応し、量子ホール効果におけるホール伝導度がe2/hの整数倍に量子化される原因となる。
15:30-	概要 発表者 題目	宗らの"Induced Chern-Simons Class with Lattice Fermion"をレビューし、3次元時空の格子フェルミオンにおけるQEDの量子異常と物性物理における量子ホール効果との関係を紹介する。フォトンの真空偏極をゼロ運動量の周りで展開をすると運動量に比例する部分は、QEDのパリティを破る項である。それはトポロジカル質量項であり、物性物理ではチャーン数と呼ばれるトポロジカル不変量に対応し、量子ホール効果におけるホール伝導度がe2/hの整数倍に量子化される原因となる。
15:30-	概要 発表者 題目	宗らの"Induced Chern-Simons Class with Lattice Fermion"をレビューし、3次元時空の格子フェルミオンにおけるQEDの量子異常と物性物理における量子ホール効果との関係を紹介する。フォトンの真空偏極をゼロ運動量の周りで展開をすると運動量に比例する部分は、QEDのパリティを破る項である。それはトポロジカル質量項であり、物性物理ではチャーン数と呼ばれるトポロジカル不変量に対応し、量子ホール効果におけるホール伝導度がe2/hの整数倍に量子化される原因となる。

発表5		
14:20- 14:40	発表者	竹下 昌之介
	題目	SU(5)大統一模型を用いたアクシオン質量の予測
	概要	Minimal SU(5)大統一模型は、現在の陽子崩壊探索の実験結果から棄却されている。さらに高エネルギー領域でゲージ結合定数の統一が実現しないという問題点を抱えている。本発表では、minimal SU(5)大統一模型を拡張してアクシオンが生じるような模型を構築する。そして、上記の問題点が解決される場合に予想されるアクシオンの質量領域について議論する。
	発表者	井澤幸邑
	題目	拡張HiggsとS4対称性を用いたフレーバー模型の構築
14:20- 15:00	概要	標準模型のフェルミオンであるクォーク・レプトンには質量の違い(質量階層性)や世代の混合(フレーバー混合)といった世代構造が存在する。標準模型ではこの世代構造についてただパラメーターが充てられているのみで、理論的な説明が成されていない。本研究では拡張Higgs模型とS4対称性を用いてレプトンの世代構造を再現するフレーバー模型を構築する。そして構築した模型のもとで混合角、CP位相、ニュートリノの有効質量を数値計算し、将来の
	発表者	Albertus Hariwangsa Panuluh
	題目	, and the second
15:00- 15:20	概要	
	発表者	黒岩 太平
	題目	波束を含めたニュートリノ振動の記述を与える UDW 検出器モデルの提案
15:20- 15:40	概要	間的広がりを持つ UDW 検出器モデルを提案する。従来の UDW 検出器モデルによるニュートリノ振動確率の記述は、点状の検出器を仮定する為、波束が導入されない。しかし、我々は測定を記述するのであれば、空間的な広がりを有することが重要であると考え、空間的広がりを持つ UDW 検出器モデルを提案する。更に、提案する UDW 検出器モデルから検出されるニュートリノ振動確率を導出する。モデルの正当性の一つの根拠として、得られたニュートリノ振動確率が、場の量子論で記述される波束を導入したニュートリノ振動の結果と一致することを発表することが、本発表の目的である。

16:10- 16:30	発表者	松井俊憲
	題目	Gauged U(1)_X breaking as origin of tiny neutrino masses, stability of dark matter and baryogenesis
	概要	U(1)_Xゲージ対称性の自発的な破れを共通の起源として、ニュートリノの微小質量、暗黒物質の安定性、レプトジェネシスを同時に実現する方法を提案する。U(1)_Xの破れにより、ベクトルライクレプトンのマヨラナ質量が生成され、レプトジェネシスにより観測されたバリオン数を説明する。またU(1)_Xの破れによるマヨラナ質量項は、1ループレベルでニュートリノ微小質量を自然に生成する。さらに\$U(1)_X\$は、対称性の破れた後にも残る\$Z_2\$対称性を内包しており、暗黒物質候補の安定性を保証する。我々は具体的な模型を提示し、現在の実験データを無矛盾に説明するベンチマークシナリオがあることを示す。
	発表者	両角卓也
16:30- 16:50	題目	Spacetime evolution of lepton number densities including the momentum distribution
	概要	We present the results of the spacetime evolution of the lepton number densities of neutrinos. The wave packet like effect is incorporated with the momentum distribution for an initial state and the cases for both Dirac and Majorana neutrinos are studies. (The work is based on the paper arXiv:2106.02783, PRD 108, 056009(2013), A. S. Adam, N.J. Benoit, Y. Kawamura, Y. Matsuo, T. Morozumi, Y. Shimizu, and N. Toyota)
	発表者	稲垣知宏
16:50- 17:10	題目	4体フェルミ相互作用模型の相構造とカイラル対称性の過回復
	概要	カレント質量を導入した4体フェルミ相互作用模型の有限温度、 化学ポテンシャル相構造を1/N展開の最初のオーダーで計算する。 まず、理論が繰り込み可能になる2次元で離散的カイラル対称性の 相構造とカイラル対称性が過回復する境界を求める。次に、繰り 込み不可能な4次元南部・ヨナラシニオ模型で、連続的なカイラル 対称性の過回復とその正規化依存性について述べる。最後に、カ イラル対称性の過回復に伴う臨界現象について議論する。

≥ ≠ 7		
		発表7
14:30- 14:50	発表者	西村皐
	題目	機械学習で探るクォーク・レプトンのフレーバー構造
	概要	本研究ではクォーク・レプトンのフレーバー構造を探索する手法として、機械学習の応用を提案する。具体的にはU(1)フレーバー対称性を持つFroggatt-Nielsen模型に着目し、U(1)電荷の組を探索する強化学習を構築した。学習を経て得られた模型は質量・混合角の実験値を再現しつつ、ニュートリノの質量構造として順階層のほうが統計的に好まれること等を予言した。総じて、フレーバー構造への理解や新物理の探索に向け、強化学習が新たな解析手法となり得ることを示した。本講演はarXiv:2304.14176に基づく。
	発表者	長尾桂子
	題目	Directional Detection of Cosmic Ray Boosted Dark Matter
14:50- 15:10	概要	Dark matter with MeV scale mass is difficult to detect with standard direct search detectors. However, they can be searched for by considering the up-scattering of kinetic energies by cosmic rays. Because the dark matter density is higher in the central region of the Galaxy, the up-scattered dark matter will arrive at Earth from the direction of the Galactic center. Once the dark matter is detected, we can expect to recognize this feature by directional direct detection experiments. In this study, we simulate the nuclear recoils of the up-scattered dark matter and quantitatively reveal that a large amount of this type of dark matter is arriving from the direction of the Galactic center. Also, we have shown that the characteristic signatures of the up-scattered dark matter can be verified with more than 5 σ confidence levels for the assumed target atoms and future upgrades to directional detectors.
	発表者	小野翔子
	題目	Repot on Schwinger–Dyson analysis of Super Restoration
15:10- 15:30	概要	
	発表者	高木隆
	題目	
15:30- 15:50	概要	