

REDES RECORENTES

APRENDIZAGEM PROFUNDA

PPGCC - 2023.1

Prof. Saulo Oliveira <<u>saulo.oliveira@ifce.edu.br</u>>

DADOS SEQUENCIAIS

Sempre que as amostras

amostras no conjunto de

sequenciais. Um exemplo

como preços de ações ou

dependem de outras

dados, os dados são

dados de sensores.

Lidando com

típico desse tipo de dados dados sequenciais são as **séries temporais**,

Sound wave

Fonte: https://cognitiveclass.ai/courses/course-v1:IBM+GPXXOSPHEN+v1

Lidando com dados sequenciais

The clouds are in the ...

sky

I grew up in Canada... I speak fluently

English

French

Lidando com dados sequenciais

Fonte: TOLSTIKHIN, Ilya O. et al. Mlp-mixer: An all-mlp architecture for vision. **Advances in neural information processing systems**, v. 34, p. 24261-24272, 2021.

A estratégia de janelamento (ainda) é muito comum para lidar com dados sequenciais. É uma maneira simples de aumentar as características de um dado, haja vista que a análise pontual (descontínua) produz a perda da informação.

Principais diferenças

	Rede Convolucional (CNN)	Rede Recorrente (RNN)
Arquitetura	Redes neurais feedforward usando filtros e pooling	Alimenta os resultados de volta na rede
Entrada/Saída	O tamanho da entrada e a saída resultante são fixos (imagens de tamanho fixo e as envia para a categoria apropriada junto com o nível de confiança de sua previsão)	O tamanho da entrada e a saída resultante podem variar (traduções de texto em que as sentenças resultantes podem ter mais ou menos palavras)
Cenário ideal	Dados espaciais (independentes)	Dados sequenciais ou temporais
Casos de uso	Reconhecimento e classificação de imagens, detecção facial, análise médica, descoberta de medicamentos e análise de imagens	Tradução de texto, processamento de linguagem natural, tradução de linguagem, extração de entidade, inteligência conversacional, análise de sentimento, análise de fala

Fonte: https://www.techtarget.com/searchenterpriseai/feature/CNN-vs-RNN-How-they-differ-and-where-they-overlap

Arquitetura

A, B and C are the parameters

Fonte: https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn

- Apesar de a estrutura RNN padrão resolver o problema da memória de informação, a informação é atenuada durante a memória de longo prazo;
- As **informações** precisam ser **salvas por muito tempo** em muitas tarefas. Por exemplo, uma dica no início de uma ficção especulativa pode não ser respondida até o final;
- O RNN pode não ser capaz de salvar informações por muito tempo devido à capacidade limitada da unidade de memória;
- Espera-se que as unidades de memória possam se lembrar de informações importantes.

Arquitetura

 $y_t = \sigma(\mathbf{A} \cdot h(\mathbf{C} \cdot h(\mathbf{B} \cdot x_{t-1}) + \mathbf{B} \cdot x_t))$ é estendido pela dependência (normalmente o tempo t).

Fonte: https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn

Arquitetura

Fonte: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

COMO QUE TREINA?

Retropropagação de erro pelo tempo

- A retropropagação pelo tempo é a extensão da retropropagação na sequência de tempo;
- Existem duas fontes de erros na sequência no tempo da unidade de memória:
 - a primeira é do erro de saída da camada oculta na sequência de tempo t;
 - a segunda é o erro da célula de memória na próxima sequência de tempo t+1.
- Quanto mais longa a sequência de tempo, mais provável é que a perda (loss) da última sequência de tempo para o gradiente dos parâmetros na primeira sequência de tempo cause o gradiente de ou o problema do gradiente explosivo.

• O gradiente total do parâmetro W é o acúmulo do gradiente do peso em todas as sequências de tempo.

Fonte: https://discuss.pytorch.org/t/implementing-backpropagation-through-time/69765

REDE DE MEMÓRIA CURTA DE LONGO PRAZO

RNN tradicional

Fonte: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs (1)

Fonte: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs (2)

Input Gate Output Gate

LSTM (3)

LSTM (3)

LSTMs e o Buraco da fechadura

$$f_{t} = \sigma (W_{f} \cdot [C_{t-1}, h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma (W_{i} \cdot [C_{t-1}, h_{t-1}, x_{t}] + b_{i})$$

$$o_{t} = \sigma (W_{o} \cdot [C_{t}, h_{t-1}, x_{t}] + b_{o})$$

Fonte: GERS, Felix A.; SCHMIDHUBER, Jürgen. **Recurrent nets** that time and count. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. IEEE, 2000. p. 189-194.

Uma variante popular do LSTM, introduzida por Gers & Schmidhuber (2000), adicionou "conexões do tipo buraco da fechadura". Isso significa que as camadas do portão observam o estado da célula.

Fonte: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unidade recorrente fechada (GRU)

Portão de atualização

$$(r_t) = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$

$$(\tilde{h}_t) = \tanh (W \cdot [r_t * h_{t-1}, x_t])$$

$$(h_t) = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

Conteúdo de memória atual

Memória final no estado atual

Fonte: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

GRU em ação

Referências

- Andrew Yap Jiun Herng. **Time Series Forecasting. Seasonal, Trending, Cyclical or Random?** https://medium.com/vitrox-publication/what-is-a-time-series-forecasting-d020d657f11a. 2020, Accessed on May 2021.
- Aashish Chaubey. **Sequential Data** and the Neural Network Conundrum! https://medium.com/analytics-vidhya/sequential-data-and-the-neural-network-conundrum-b2c005f8f865. 2020, Accessed on Mar 2021.
- HUAWEI. Deep Learning Overview. 2020, Accessed on Mar 2021.
- Christopher Olah. **Understanding LSTM Networks**. https://colah.github.io/posts/2015-08-Understanding-LSTMs/. 2015, Accessed on Mar 2021.
- Avijeet Biswal. **Recurrent Neural Network (RNN) Tutorial for Beginners**. https://www.simplilearn.com/tutorials/ deep-learning-tutorial/rnn. 2021, Accessed on May 2021.
- LECUN, Yann; BENGIO, Yoshua; HINTON, Geoffrey. Deep learning. Nature, v. 521, n. 7553, p. 436-444, 2015.
- Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks. http://karpathy.github.io/2015/05/21/rnn-effectiveness/. 2015, Accessed on Mar 2021.
- Frank Yang. **Implementing Backpropagation Through Time**. https://discuss.pytorch.org/t/implementing-backpropagation-through-time/69765. 2020, Accessed on Mar 2021.
- Simeon Kostadinov. **Understanding GRU Networks**. https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be. 2017, Accessed on Mar 2021.