Commutative Algebra MAS439 Lecture 1

Paul Johnson paul.johnson@sheffield.ac.uk Hicks J06b

October 3rd

Assessment is entirely via problem sets

- ▶ Five problem sets throughout term, due Friday at 10
- ▶ Planned for Weeks 3, 5, 8, 10, and 12
- ➤ You are encouraged, but not required, to write your solutions in LATEX
- You are encouraged, but not required, to work together in groups of 2 or 3
- ▶ Of course life happens; if there's an issue with handing an assignment in on time let my know as soon as possible

In previous years we had problem sets every week and it was a bit intense; on other hand they could drop lowest ones.

Wait, groupwork?! How does that work?

- ► Each group member writes up and hands in their own solution
- ▶ If you do work in groups, please write who you worked with on every assignment

What is/isn't allowed:

- ➤ You should NOT be writing up identical solutions, or even writing up your solutions sitting together.
- Rather, in the group digest what the problem is actually asking, come up with an informal / pseudo-formal solution
- ► LATER, on your own, write up the full, rigorous solution

Rigour and intuition, proof and understanding

- Mathematics is all in our heads. Giving formal definitions and rigorous proofs make sure we're not just making up nonsense
- ► However, humans don't think very well in this rigorous structure. We have our own intuitive pictures
- Most of the work of doing mathematics is translating back and forth between rigorous and intuitive modes.

The Oral tradition in mathematics

Mathematics is written down in full rigor, but informal discussion of "how to think about this" or "what's really going on" aren't written down

- Terry Tao, There's more to mathematics than rigour and proofs
- ▶ William Thurston, On proof and progress in mathematics

Lectures and Notes

- ▶ Primary text: Notes by Tom Bridgeland (Rigor) on Webpage
- Lectures will follow notes, but from a different angle (Intuition)
- Slides will go online, but not what goes on board

Please *Please* read the notes I will be assuming you are

Small announcements

Office hours:

Always by appointment is possible.

- ► Monday 1-2
- ▶ Wednesday 10-11

GitHub

The course webpage is hosted on GitHub, a site that mostly houses software development using the Git version control system.

- This means you can find source code for all files
- If there's a typo / change of suggestion, you can fix it yourself and make a "pull request"

Using git/github is slightly complicated and annoying, but it's a major tool used in real world, and so I encourage you to try it.

The first 3-4 weeks should be somewhat review

220 Syllabus

http:

//maths.dept.shef.ac.uk/maths/module_info_1944.html

Coure notes

https://ptwiddle.github.io/ MAS439-Commutative-Algebra/MAS439Bridgeland.pdf

- You've forogtten a lot of this not having used it for two years
- We do everything more in depth and sophisticated

Talk to me!

I AM DEPENDING ON YOU TO LET ME KNOW IF I'M GOING TOO FAST (or too slow)

```
What's a normal subgroup?
Why is a normal subgroup?
      What's a ring?
      Why is a ring?
     What's an ideal?
     Why is an ideal?
```

Definition of a ring, ugly version

A *ring* is a set R with two binary operations +, · satisfying:

- 1. $\forall x, y, z \in R, (x + y) + z = x + (y + z)$
- 2. $\exists 0_R \in R$ such that $\forall x \in R, 0_R + x = x + 0_R = x$
- 3. $\forall x \in R, \exists -x \in R \text{ such that } x + (-x) = (-x) + x = 0_R$
- 4. $\forall x, y \in R, x + y = y + x$
- 5. $\forall x, y, z \in R, (x \cdot y) \cdot z = x \cdot (y \cdot z)$
- 6. $\exists 1_R \in R$ such that $\forall x \in R, 1_r \cdot x = x \cdot 1_R = x$
- 7. $\forall x, y, z \in R$:

$$x \cdot (y+z) = x \cdot y + x \cdot z$$
$$(y+z) \cdot x = y \cdot x + y \cdot z$$

What are the names of the axioms?

Definition of a ring, take two

A *ring* is a set R with two binary operations +, \cdot satisfying:

- 1. (R, +) is an abelian group
- 2. (R, \cdot) is a monad
- 3. Multiplication (\cdot) distributes over addition (+)

A *monad* satisfies all the axioms of a group except perhaps the existence of inverses.

Examples of rings

How'd we do?

- 1. The trivial ring has one element
- 2. The integers \mathbb{Z}
- 3. Any field $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_2, \cdots$
- 4. "clock arithmetic" $\mathbb{Z}/12\mathbb{Z}$ and more generally $\mathbb{Z}/n\mathbb{Z}$
- 5. Polynomial rings $\mathbb{R}[x], \mathbb{Z}[y, z]$
- 6. The set $M_n(\mathbb{R})$ of $n \times n$ matrices with real coefficients
- 7. The quaternions H
- 8. The Gaussian integers $\mathbb{Z}[i] = \{z = a + bi \in \mathbb{C} | a, b \in \mathbb{Z}\}$
- 9. The set $\operatorname{Fun}(\mathbb{R}, \mathbb{R})$ of all functions from \mathbb{R} to itself, under pointwise addition and multiplication (e.g., $(f \cdot g)(x) = f(x) \cdot g(x)$)
- 10. The set $C(\mathbb{R})$ of all *continuous* functions from \mathbb{R} to itself

Commutative algebra and algebraic geometry

Definition

A ring R is *commutative* if multiplication is commutative, i.e.

$$x \cdot y = y \cdot x$$

Convention:

Unless otherwise specified, all rings R will be assumed to be commutative.

Algebraic geometry studies the zero sets of polynomials

$$y^2 - x^3 = 0$$
 $y^2 - x^3 - x = 0$ $y^2 - x^3 - x^2 = 0$

Goal:

Dictionary between commutative rings and these zero sets.

Types of elements

Definition

We say $r \in R$ is a *unit* if there exists an element $s \in R$ with $rs = 1_R$

Definition

We say that $r \in R$ is a zero divisor if there exists $s \in R$, $s \neq 0_R$ with $rs = 0_R$

Definition

We say that $r \in R$ is *nilpotent* if there exists some $n \in \mathbb{N}$ with $r^n = 0_R$

Examples?

Types of rings

Definition

We say R is *field* if every nonzero element is a unit.

By convention, the trivial ring is not a field.

Definition

We say R is an integral domain if it has no zero divisors.

Definition

We say that R is *reduced* if it has no nilpotent elements.

Examples?