Comparing the performance of two algorithms for the min-cut problem for weighted graphs.

Syed Riaz Raza¹ Rana Mandal² Muhammad Tabish³

* Homework 3 Report for "Advanced Algorithms"

Keywords

Advance
Algorithms,
Stoer and Wagner's
Algorithm,
Karger and stein's
randomized
algorithm,
Complexity,
UNIPD,
Padova, Italy

Abstract:

In this report we are comparing the performance of two algorithms for the min-cut problem for weighted graphs.

- 1. Stoer and Wagner's deterministic algorithm.
- 2. Karger and Stein's randomized algorithm.

The report summarizes the result in following way:

- 3. Visualize the result using matplotlib one-by-one
- 4. Comparing the result of one algorithm with other one and vice versa
- 5. Conclude the result

¹ Syed Riaz Raza; E-mail: syedriaz.raza@studenti.unipd.it; Portfolio: riazraza.me

² Rana Mandal; E-mail: <u>rana.mandal@studenti.unipd.it</u>;

³ Muhammad Tabish; E-mail: muhammad.tabish@studenti.unipd.it;

Table of Contents

1.		Intr	oduction:	3
I	4.		Definition of Minimum Cut:	3
		a.	Stoer and Wagner's deterministic algorithm:	3
		b.	Karger and Stein's randomized algorithm:	3
2.		Pro	ject Structure:	3
I	4.		Implementation:	3
I	3.		Output Result:	3
		a.	Stoer and Wagner's deterministic algorithm:	4
		b.	Karger and Stein Algorithm:	4
(Ξ.		Asymptotic Notation & Visualization:	4
3.		Miı	nimum Cut Solution	5
1	4.		Stoer and Wagner's deterministic algorithm:	5
		a.	Pseudocode:	5
		b.	Complexity:	5
I	3.		Karger and Stein's randomized algorithm:	6
		a.	Pseudo Code:	6
		b.	Complexity:	6
4.		Que	estion 1:	7
5.		Que	estion 2	9
6.		Que	estion 3:	10
7.		Dat	taset Result:	12
I	4.		Stoer and Wagner's deterministic algorithm:	12
1	3		Karger and Stein's randomized algorithm:	14

1. Introduction:

A. Definition of Minimum Cut:

In Graph Theory, a minimum cut or min-cut of a graph is a cut (a partition of the vertices of a graph into two disjoint subsets) that is minimal in some metric.

Variations of the minimum cut problem consider weighted graphs, directed graphs, terminals, and partitioning the vertices into more than two sets.

a. Stoer and Wagner's deterministic algorithm:

In graph theory, the Stoer-Wagner algorithm is a recursive algorithm to solve the minimum cut problem in undirected weighted graphs with non-negative weights. It was proposed by Mechthild Stoer and Frank Wagner in 1995. The essential idea of this algorithm is to shrink the graph by merging the most intensive vertices, until the graph only contains two combined vertex sets.[2] At each phase, the algorithm finds the minimum s-t cut for two vertices s and t chosen at its will. Then the algorithm shrinks the edge between s and t to search for non s-t cuts. The minimum cut found in all phases will be the minimum weighted cut of the graph.

b. Karger and Stein's randomized algorithm:

The Karger-Stein random contraction algorithm significantly improves the runtime of the Karger algorithm by decreasing the number of iterations required to produce a minimum cut with a high probability of correctness. The basic concept is that the probability of collapsing an incorrect edge gets higher as the number of edges decreases.

2. Project Structure:

A. Implementation:

We implemented most of our algorithms using minimum cut problem.

Other than the core data structures (for each algorithm), some functions are the same in all project files like:

Core Program Units:

- class KargerGraph (diff for each algo)
- class StoerWagner (diff for each algo)

B. Output Result:

The result created as output for each algorithm implementation is in .csv format, and all the project files implementing the algorithm are using the same format to export the data.

a. Stoer and Wagner's deterministic algorithm:

- dataset number
- n vertex
- n edges
- nano seconds time
- seconds time
- result
- exe times

b. Karger and Stein Algorithm:

- dataset number
- n vertex
- n edges
- nano seconds time
- seconds time
- result
- discovery time
- rep times
- K
- k_min
- is_treshold_activated

C. Asymptotic Notation & Visualization:

To compute Error Ratio and Asymptotic complexity for each algorithm the following parameters were created for each graph in dataset (for each algorithm implementation):

Note: Our work here to solve an intractable problem and to compare the execution times and Computing Ration and Constant:

Note: n here is the number of a graph in a dataset

- ratios= Minimumcut [estimated_time][n+1] / Minimumcut [estimated_time][n]
- constant= Minimumcut [estimated_time] [n] / Minimumcut [num_nodes][n]
- reference = avg(constant)* Minimumcut [n][num_nodes])

We have created a separate file system which import the computational results of algorithm as mentioned in above paragraph and visualize the result of algorithms in following category

- Computational complexity of the algorithm
- Theoretical(C) computational complexity of the algorithm (reference variable)

3. Minimum Cut Solution

A. Stoer and Wagner's deterministic algorithm:

In graph theory, the Stoer–Wagner algorithm is a recursive algorithm to solve the minimum cut problem in undirected weighted graphs with non-negative weights. It was proposed by Mechthild Stoer and Frank Wagner in 1995. The essential idea of this algorithm is to shrink the graph by merging the most intensive vertices, until the graph only contains two combined vertex sets. At each phase, the algorithm finds the minimum s-t cut for two vertices s and t chosen at its will. Then the algorithm shrinks the edge between s and t to search for non s-t cuts. The minimum cut found in all phases will be the minimum weighted cut of the graph.

a. Pseudocode:

Stoer and Wagner's algorithm

- 1. find an s, t min-cut (S, T) of G, for some two vertices $s, t \in V$
- 2. two cases:
 - \triangleright (S, T) is also a global min-cut
 - in any global-min cut of G, s and t are on the same side of the cut
- 3. in the second case a global min-cut of $G/\{s,t\}$ is also a global min-cut of G

General Structure:

b. Complexity:

Given a graph G with n vertices and m edges:

- The execution time of stMinCut where Q is implemented with a MaxHeap: O(mlog n):
- The execution time of GlobalMinCut implemented with a MaxHeap: $O(mn \log n)$

B. Karger and Stein's randomized algorithm:

The Karger-Stein random contraction algorithm significantly improves the runtime of the Karger algorithm by decreasing the number of iterations required to produce a minimum cut with a high probability of correctness. The basic concept is that the probability of collapsing an incorrect edge gets higher as the number of edges decreases.

We can implement Full_Contraction with O(n²) running time

- Pick an edge
- Contraction

a. Pseudo Code:

```
function Recursive Contract(G = (D, W))
    n \leftarrow number of vertices in G
    if n < 6 then
                                                              function Contract(G = (D, W), k)
         G' \leftarrow \text{Contract}(G, 2)
                                                                   n \leftarrow number of vertices in G
        return weight of the only edge (u, v) in G'
                                                                   for i \leftarrow 1 to n - k do
    t \leftarrow \lceil n/\sqrt{2} + 1 \rceil
    for i \leftarrow 1 to 2 do
                                                                        (u, v) \leftarrow \mathsf{Edge} \; \; \mathsf{Select}(D, W)
        G_i \leftarrow \text{Contract}(G, t)
                                                                       Contract Edge(u, v)
         w_i \leftarrow \text{Recursive Contract}(G_i)
                                                                   return D, W
    return min(w_1, w_2)
function Contract Edge(u,v)
    D[u] \leftarrow D[u] + D[v] - 2W[u,v]
    D[v] \leftarrow 0
    W[u,v] \leftarrow W[v,u] \leftarrow 0
    for each vertex w \in V, except u and v do
         W[u, w] \leftarrow W[u, w] + W[v, w]
         W[w, u] \leftarrow W[w, u] + W[w, v]
         W[v, w] \leftarrow W[w, v] \leftarrow 0
```

b. Complexity:

Recursive_Contract has $O(n2 \log n)$ running time Recursive_Contract finds a minimum cut with probability $1/\log n$ by repeating Recursive_Contract $\log^2 n$ times, the error probability became less or equal to 1/nThe total running time of the algorithm is $O(n^2 \log^3 n)$

4. Question 1:

Run the two algorithms you have implemented on the graphs of the dataset. For the Karger e Stein algorithm, use several repetitions that guarantees a probability to obtain a global min-cut for at least 1-1/n.

Measure the execution times of the algorithms and create a graph showing the increase of execution times as the number of vertices in the graph increases. Compare the measured times with the asymptotic complexity of the algorithms. For each problem instance, report the weight of the minimum cut obtains by your code.

Solution: The results of weight of the minimum cut, the data has been inserted in the table

Figure 1.1: Stoer & Wagner complexity with for each graph with equal number of nodes.

The graph just illustrated (fig. 1.1) shows the expected (in yellow) and effective (in blue) computational complexity for the Stoer & Wagner algorithm with more executions of the algorithm. As can be seen from the image, the effective complexity curve remains below the theoretical curve(C). With the yellow line having linear representation and blue line showing quadratic representation.

Figure 1.2: Karger & Stein complexity with for each graph with equal number of nodes.

The graph just illustrated (fig. 1.2) shows the expected (in yellow) and effective (in blue) computational complexity for the Karger & Stein algorithm with more executions of the algorithm. As can be seen from the image, the effective complexity curve remains slightly below the theoretical curve(C) and showing quadratic representation, and therefore we can say two complexities are almost comparable.

```
[Running] python -u "d:\University Data\PADUA\2nd Semester\Adv Algo\HomeWork\3\main.py"
Executing StoerWagner...
Loading dataset files...DONE
Executing Karger-Stein...
Loading dataset files...DONE
Total execution time: 9468.37785745s

[Done] exited with code=0 in 9470.553 seconds
```

Figure 1.3: Total run time of algorithms.

5. Question 2

Measure the *discovery time* of the Karger and Stein algorithm. The discovery time is the instant (in seconds) when the algorithm finds the minimum cost cut. Compare the discovery time with the overall execution time for each of the graphs in the dataset.

Figure 2.1: Comparison of discovery time and execution time of each graph in a dataset as the number of vertices are increasing.

The illustration (fig. 2) shows the comparisons between the Discovery and Execution time of each graph in a dataset as the number of vertices are increasing while executing Karger and Stein Algorithm.

As shown, we can observe in the start, discovery time is miniature as compared to the execution time of whole graph, the difference can be seen clearly as the number of vertices increased to greater than 300 and the results of discovery time is 20%-40% of the total execution time.

Note: A graph with difference between (Discovery_time – Execution_time) was created but it didn't illustrated the results very well, and was removed.

6. Question 3:

Comment on the results you have obtained: how do the algorithms behave with respect to the various instances? There is an algorithm that is always better than the other? Which algorithm is more efficient?

Figure 3.1: Comparing the execution time of Karger Stein and Stoer Wagner.

The graph just illustrated (fig. 3) the comparison between the execution time of Karger Stein (in blue) and execution time of Stoer Wagner as the number of vertices are being increased.

In the case of the execution time, it can be clearly seen that Karger Stein algorithm turns out to be more efficient than Stoer & Wagner algorithm.

In case of complexity and simplicity Karger and Stein is a little complex, whereas Stoer Wagner is also referred as "Simple Min-Cut Algorithm". For Karger Stein the room for improvement is increasing.

We compared the error of min-cut(result) by comparing the result of both algorithms, giving a proof that both algorithms are working fine, and giving the right result

While executing the Karger Stein algorithm we analyzed the result for asymptotic complexity (repetition times) where the algorithm achieved the result of being executed only 1 num_call time when it reached the vertex# 60, as compared to the Stoer Wagner

which reached the same result of being executed 1 num_call time when the program reached the vertex# 300.

7. Dataset Result:

A. Stoer and Wagner's deterministic algorithm:

#	n_vertex	n_edges	Time (ns)	Time (s)	Result	exe_times
1	10	14	2030945	0.0020309	3056	460
2	10	10	1188435.484	0.0011884	223	682
3	10	12	1118221.473	0.0011182	2302	638
4	10	11	1011846.728	0.0010118	4974	871
5	20	24	2889937.017	0.0028899	1526	181
6	20	24	4522151.412	0.0045222	1684	354
7	20	27	9477300.658	0.0094773	522	152
8	20	25	10172838.65	0.0101728	2866	207
9	40	52	20713347.73	0.0207133	2137	44
10	40	54	14491207.95	0.0144912	1446	88
11	40	51	14193219.05	0.0141932	648	63
12	40	50	14145845.35	0.0141458	2486	86
13	60	82	29707856.25	0.0297079	1282	32
14	60	72	29829734.38	0.0298297	299	32
15	60	83	32099238.46	0.0320992	2113	26
16	60	79	31184308	0.0311843	159	25
17	80	101	50028043.75	0.050028	969	16
18	80	105	43484717.39	0.0434847	1756	23
19	80	108	38275737.04	0.0382757	714	27
20	80	108	41880884	0.0418809	2610	25
21	100	128	63953193.75	0.0639532	341	16
22	100	120	56473123.53	0.0564731	890	17
23	100	125	57774294.12	0.0577743	772	17
24	100	133	64013520	0.0640135	1561	15
25	150	197	140655271.4	0.1406553	951	7
26	150	206	154352450	0.1543525	424	6
27	150	195	145157100	0.1451571	1153	6
28	150	198	168361450	0.1683614	707	6
29	200	276	308606000	0.308606	484	3
30	200	260	279913000	0.279913	850	3
31	200	269	279464500	0.2794645	1382	3
32	200	274	287958100	0.2879581	1102	3
33	250	317	444742300	0.4447423	346	2
34	250	322	442721400	0.4427214	381	2
35	250	338	456653500	0.4566535	129	2
36	250	326	449405900	0.4494059	670	2
37	300	403	671063800	0.6710638	1137	1
38	300	393	677553200	0.6775532	869	1

Lab 3 Homework

39	300	408	700373000	0.700373	868	1
40	300	411	690243800	0.6902438	1148	1
41	350	468	955078000	0.955078	676	1
42	350	475	965932000	0.965932	290	1
43	350	462	1053498600	1.0534986	818	1
44	350	474	961604900	0.9616049	175	1
45	400	543	1275305800	1.2753058	508	1
46	400	527	1271454000	1.271454	904	1
47	400	526	1251964800	1.2519648	362	1
48	400	525	1270084300	1.2700843	509	1
49	450	595	1777374200	1.7773742	400	1
50	450	602	1721216200	1.7212162	364	1
51	450	593	1741665700	1.7416657	336	1
52	450	594	1629809100	1.6298091	639	1
53	500	670	2150573900	2.1505739	43	1
54	500	671	2140404900	2.1404049	805	1
55	500	670	2957780700	2.9577807	363	1
56	500	666	2106707100	2.1067071	584	1

B. Karger and Stein's randomized algorithm:

#	n_vertex	n_edges	Time_ns	Time_s	Result	discover(ns)	Repetition	k	K min
1	10	14	4971423	0.004971	3056	1301693.878	98	11	2
2	10	10	4863303	0.004863	223	502751	100	11	1
3	10	12	4616924	0.004617	2302	1185666	225	11	2
4	10	11	4581093	0.004581	4974	1802942	231	11	2
5	20	24	30318700	0.030319	1526	7192174	31	19	10
6	20	24	29636026	0.029636	1684	4711981	27	19	2
7	20	27	31384614	0.031385	522	3167014	28	19	1
8	20	25	29409726	0.02941	2866	7910079	34	19	1
9	40	52	2.19E+08	0.219051	2137	59035825	4	28	6
10	40	54	2.32E+08	0.232152	1446	22588275	4	28	2
11	40	51	2.14E+08	0.214365	648	22948025	4	28	7
12	40	50	2.21E+08	0.221243	2486	50220300	4	28	3
13	60	82	7.92E+08	0.792061	1282	4.09E+08	1	35	18
14	60	72	7.96E+08	0.795775	299	1.18E+08	1	35	5
15	60	83	7.46E+08	0.745547	2113	42686000	1	35	2
16	60	79	7.57E+08	0.756588	159	28053800	1	35	1
17	80	101	1.85E+09	1.854154	969	54226300	1	40	1
18	80	105	1.85E+09	1.85311	1756	1.44E+08	1	40	3
19	80	108	1.88E+09	1.877795	714	43785800	1	40	1
20	80	108	1.89E+09	1.890357	0	6.57E+08	1	40	14
21	100	128	3.82E+09	3.82248	341	98751800	1	44	1
22	100	120	3.9E+09	3.904697	890	1.7E+08	1	44	2
23	100	125	3.8E+09	3.799816	772	79470200	1	44	1
24	100	133	3.69E+09	3.690227	1561	1.74E+08	1	44	2
25	150	197	1.47E+10	14.68531	951	2.68E+08	1	52	1
26	150	206	1.44E+10	14.35232	424	2.71E+08	1	52	1
27	150	195	1.41E+10	14.12117	1153	1.62E+09	1	52	6
28	150	198	1.41E+10	14.14129	707	8.26E+08	1	52	3
29	200	276	3.63E+10	36.26252	484	4.38E+09	1	58	7
30	200	260	3.55E+10	35.54782	850	7.96E+09	1	58	13
31	200	269	3.7E+10	37.00348	1382	2.52E+09	1	58	4
32	200	274	3.58E+10	35.76403	1102	2.44E+09	1	58	4
33	250	317	7.4E+10	73.97771	346	1.21E+09	1	63	1
34	250	322	7.49E+10	74.94908	0	9.39E+09	1	63	8
35	250	338	7.47E+10	74.67894	129	1.23E+09	1	63	1
36	250	326	7.53E+10	75.2985	670	1.16E+09	1	63	1
37	300	403	1.40E+11	139.5622	1137	2.04E+09	1	68	1
38	300	393	1.55E+11	154.5544	869	2.07E+10	1	68	10

39	300	408	1.44E+11	144.3123	868	1.7E+10	1	68	8
40	300	411	1.37E+11	137.4575	1148	2.03E+10	1	68	10
41	350	468	2.30E+11	229.5759	676	6.44E+09	1	71	2
42	350	475	2.32E+11	232.0913	0	6.44E+10	1	71	20
43	350	462	2.28E+11	227.6666	818	1.63E+10	1	71	5
44	350	474	2.28E+11	228.06	175	6.55E+09	1	71	2
45	400	543	3.60E+11	360.4575	508	9.51E+09	1	75	2
46	400	527	3.58E+11	357.6185	904	9.56E+09	1	75	2
47	400	526	3.60E+11	360.2154	362	4.98E+09	1	75	1
48	400	525	3.68E+11	367.5047	509	3.9E+10	1	75	8
49	450	595	5.47E+11	546.7849	400	6.97E+09	1	78	1
50	450	602	5.47E+11	546.8291	364	6.97E+09	1	78	1
51	450	593	5.18E+11	517.8779	336	2.65E+10	1	78	4
52	450	594	6.15E+11	614.9765	639	1.35E+10	1	78	2
53	500	670	9.67E+11	966.7981	43	2.33E+10	1	80	2
54	500	671	1.01E+12	1005.748	805	2.46E+11	1	80	21
55	500	670	8.66E+11	866.3529	363	1.14E+10	1	80	1
56	500	666	8.48E+11	847.6328	584	4.54E+10	1	80	4

EOF