

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		A2	(11) International Publication Number: WO 99/64576
C12N 15/00			(43) International Publication Date: 16 December 1999 (16.12.99)
(21) International Application Number: PCT/IB99/01062			
(22) International Filing Date: 9 June 1999 (09.06.99)			
(30) Priority Data:			
60/088,801	10 June 1998 (10.06.98)	US	ROLL, Eddie, III [US/US]; 24 Eddy Street, Waltham, MA 02154 (US). CATINO, Theodore, J. [US/US]; 18 Jo Paul Drive, Attleboro, MA 02702 (US). DERTI, Adnan [US/US]; 7 Wigglesworth Street, Boston, MA 02120 (US). FORD, Donna, M. [US/US]; 8 Morningside Road, Plainville, MA 02762 (US). LEWIS, Marcia, E. [US/US]; 67 Wheelwright Farm, Cohasset, MA 02025 (US). MONAHAN, John, E. [US/US]; 942 West Street, Walpole, MA 02081 (US). SCHLEGEL, Robert [US/US]; 211 Melrose Street, Auburndale, MA 02466 (US).
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application			
US	60/088,801 (CON)		(74) Agents: ROESLER, Judith, A.; Bayer Corporation, 63 North Street, Medfield, MA 02052 (US) et al.
Filed on	10 June 1998 (10.06.98)		
(71) Applicant (for all designated States except US): BAYER CORPORATION [US/US]; 333 Coney Street, East Walpole, MA 02032 (US).			
(72) Inventors; and			
(75) Inventors/Applicants (for US only): ENDEGE, Wilson, O. [KE/US]; 222 Normandy Drive, Norwood, MA 02062 (US). STEINMANN, Kathleen, E. [US/US]; 115 Washington Street, Unit 3B, Winchester, MA 01890 (US). ASTLE, Jon, H. [US/US]; 42 Short Street, Taunton, MA 02780 (US). BURGESS, Christopher, C. [US/US]; 97 Canton Terrace, Westwood, MA 02090 (US). BUSHNELL, Steven, E. [US/US]; 41 South Street, Medfield, MA 02052 (US). CAR-			
(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).			
Published <i>Without international search report and to be republished upon receipt of that report.</i>			

(54) Title: NOVEL HUMAN GENES AND GENE EXPRESSION PRODUCTS

(57) Abstract

This invention relates to novel human genes, to proteins expressed by the genes, and to variants of the proteins. The invention also relates to diagnostic assays and therapeutic agents related to the genes and proteins, including probes, antisense constructs, and antibodies. The subject nucleic acids have been found to be differentially regulated in tumor cells, particularly colon cancer cell lines and/or tissue.

Differential Expression Analysis

SW480 Clone Number

8 8 8 8 8

Cancer Probe

Normal Probe

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

5

NOVEL HUMAN GENES AND GENE EXPRESSION PRODUCTS

This application is based on Provisional Application No. 60/088,801, filed June 10, 1998, which is hereby incorporated herein by reference.

10

Field of the Invention

The present invention provides nucleic acid sequences and proteins encoded thereby, as well as probes derived from the nucleic acid sequences, antibodies directed to the encoded proteins, and diagnostic methods for detecting cancerous cells, especially colon cancer cells.

15

Background of the Invention

Colorectal carcinoma is a malignant neoplastic disease. There is a high incidence of colorectal carcinoma in the Western world, particularly in the United States. Tumors of this type often metastasize through lymphatic and vascular channels. Many patients with colorectal carcinoma eventually die from this disease. In fact, it is estimated that 62,000 persons in the United States alone die of colorectal carcinoma annually.

However, if diagnosed early, colon cancer may be treated effectively by surgical removal of the cancerous tissue. Colorectal cancers originate in the colorectal epithelium and typically are not extensively vascularized (and therefore not invasive) during the early stages of development. Colorectal cancer is thought to result from the clonal expansion of a single mutant cell in the epithelial lining of the colon or rectum. The transition to a highly vascularized, invasive and ultimately metastatic cancer which spreads throughout the body commonly takes ten years or longer. If the cancer is detected prior to invasion, surgical removal of the cancerous tissue is an effective cure. However, colorectal cancer is often detected only upon manifestation of clinical symptoms, such as pain and black tarry stool. Generally, such symptoms are present

only when the disease is well established, often after metastasis has occurred, and the prognosis for the patient is poor, even after surgical resection of the cancerous tissue. Early detection of colorectal cancer therefore is important in that detection may significantly reduce its morbidity.

- 5 Invasive diagnostic methods such as endoscopic examination allow for direct visual identification, removal, and biopsy of potentially cancerous growths such as polyps. Endoscopy is expensive, uncomfortable, inherently risky, and therefore not a practical tool for screening populations to identify those with colorectal cancer. Non-invasive analysis of stool samples for characteristics indicative of the presence of
10 colorectal cancer or precancer is a preferred alternative for early diagnosis, but no known diagnostic method is available which reliably achieves this goal. A reliable, non-invasive, and accurate technique for diagnosing colon cancer at an early stage would help save many lives.

15

Summary of the Invention

The present invention provides nucleic acid sequences and proteins encoded thereby, as well as probes derived from the nucleic acid sequences, antibodies directed to the encoded proteins, and diagnostic methods for detecting cancerous cells, especially colon cancer cells.

20

In one aspect, the invention provides an isolated nucleic acid comprising a nucleotide sequence which hybridizes under stringent conditions to a sequence of SEQ ID Nos. 1-127 or a sequence complementary thereto. In a related embodiment, the nucleic acid is at least about 80% or about 100% identical to a sequence corresponding to at least about 12, at least about 15, at least about 25, or at least about

25

40 consecutive nucleotides up to the full length of one of SEQ ID Nos. 1-127 or a sequence complementary thereto or up to the full length of the gene of which said sequence is a fragment. In certain embodiments, a nucleic acid of the present invention includes at least about five, at least about ten, or at least about twenty nucleic acids from a region designated as novel in Table 2. In certain other

30

embodiments, a nucleic acid of the present invention includes at least about five, at least about ten, or at least about twenty nucleotides which are not included in corresponding clones whose accession numbers are listed in Table 2.

In one embodiment, the invention provides a nucleic acid comprising a nucleotide sequence which hybridizes under stringent conditions to a sequence of SEQ ID Nos. 1-127 or a sequence complementary thereto, and a transcriptional regulatory sequence operably linked to the nucleotide sequence to render the

- 5 nucleotide sequence suitable for use as an expression vector. In another embodiment, the nucleic acid may be included in an expression vector capable of replicating in a prokaryotic or eukaryotic cell. In a related embodiment, the invention provides a host cell transfected with the expression vector.

In another embodiment, the invention provides a transgenic animal having a
10 transgene of a nucleic acid comprising a nucleotide sequence which hybridizes under stringent conditions to a sequence of SEQ ID Nos. 1-127 or a sequence complementary thereto incorporated in cells thereof. The transgene modifies the level of expression of the nucleic acid, the stability of an mRNA transcript of the nucleic acid, or the activity of the encoded product of the nucleic acid.

15 In yet another embodiment, the invention provides substantially pure nucleic acid which hybridizes under stringent conditions to a nucleic acid probe corresponding to at least about 12, at least about 15, at least about 25, or at least about 40 consecutive nucleotides up to the full length of one of SEQ ID Nos. 1-127 or a sequence complementary thereto or up to the full length of the gene of which said
20 sequence is a fragment. The invention also provides an antisense oligonucleotide analog which hybridizes under stringent conditions to at least 12, at least 25, or at least 50 consecutive nucleotides of one of SEQ ID Nos. 1-850 up to the full length of one of SEQ ID Nos. 1-850 or a sequence complementary thereto or up to the full length of the gene of which said sequence is a fragment, and which is resistant to
25 cleavage by a nuclease, preferably an endogenous endonuclease or exonuclease.

In another embodiment, the invention provides a probe/primer comprising a substantially purified oligonucleotide, said oligonucleotide containing a region of nucleotide sequence which hybridizes under stringent conditions to at least about 12, at least about 15, at least about 25, or at least about 40 consecutive nucleotides of
30 sense or antisense sequence selected from SEQ ID Nos. 1-127 up to the full length of one of SEQ ID Nos. 1-127 or a sequence complementary thereto or up to the full length of the gene of which said sequence is a fragment. In preferred embodiments,

the probe selectively hybridizes with a target nucleic acid. In another embodiment, the probe may include a label group attached thereto and able to be detected. The label group may be selected from radioisotopes, fluorescent compounds, enzymes, and enzyme co-factors. The invention further provides arrays of at least about 10, at least 5 about 25, at least about 50, or at least about 100 different probes as described above attached to a solid support.

In yet another embodiment, the invention pertains to a method of determining the phenotype of a cell, comprising detecting the differential expression, relative to a normal cell, of at least one nucleic acid which hybridizes under stringent conditions to 10 one of SEQ ID Nos. 1-850, wherein the nucleic acid is differentially expressed by at least a factor of two, at least a factor of five, at least a factor of twenty, or at least a factor of fifty.

In another aspect, the invention provides polypeptides encoded by the subject nucleic acids. In one embodiment, the invention pertains to a polypeptide including an 15 amino acid sequence encoded by a nucleic acid comprising a nucleotide sequence which hybridizes under stringent conditions to a sequence of SEQ ID Nos. 1-127 or a sequence complementary thereto, or a fragment comprising at least about 25, or at least about 40 amino acids thereof. Further provided are antibodies immunoreactive with these polypeptides.

20 In still another aspect, the invention provides diagnostic methods. In one embodiment, the invention pertains to a method for determining the phenotype of cells from a patient by providing a nucleic acid probe comprising a nucleotide sequence having at least 12, at least about 15, at least about 25, or at least about 40 consecutive nucleotides represented in a sequence of SEQ ID Nos. 1-850 up to the full 25 length of one of SEQ ID Nos. 1-850 or a sequence complementary thereto or up to the full length of the gene of which said sequence is a fragment, obtaining a sample of cells from a patient, providing a second sample of cells substantially all of which are non-cancerous, contacting the nucleic acid probe under stringent conditions with mRNA of each of said first and second cell samples, and comparing (a) the amount of 30 hybridization of the probe with mRNA of the first cell sample, with (b) the amount of hybridization of the probe with mRNA of the second cell sample, wherein a difference of at least a factor of two, at least a factor of five, at least a factor of twenty, or at least

a factor of fifty in the amount of hybridization with the mRNA of the first cell sample as compared to the amount of hybridization with the mRNA of the second cell sample is indicative of the phenotype of cells in the first cell sample. Determining the phenotype includes determining the genotype, as the term is used herein.

- 5 In another embodiment, the invention provides a test kit for identifying an transformed cells, comprising a probe/primer as described above, for measuring a level of a nucleic acid which hybridizes under stringent conditions to a nucleic acid of SEQ ID Nos. 1-850 in a sample of cells isolated from a patient. In certain embodiments, the kit may further include instructions for using the kit, solutions for suspending or fixing the cells, detectable tags or labels, solutions for rendering a nucleic acid susceptible to hybridization, solutions for lysing cells, or solutions for the purification of nucleic acids.
- 10

- In another embodiment, the invention provides a method of determining the phenotype of a cell, comprising detecting the differential expression, relative to a normal cell, of at least one protein encoded by a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-850, wherein the protein is differentially expressed by at least a factor of two, at least a factor of five, at least a factor of twenty, or at least a factor of fifty. In one embodiment, the level of the protein is detected in an immunoassay. The invention also pertains to a method for determining the presence or absence of a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-127 in a cell, comprising contacting the cell with a probe as described above. The invention further provides a method for determining the presence or absence of a subject polypeptide encoded by a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-127 in a cell,
- 15
- 20
- 25
- comprising contacting the cell with an antibody as described above. In yet another embodiment, the invention provides a method for determining the presence of an aberrant mutation (e.g., deletion, insertion, or substitution of nucleic acids) or aberrant methylation in a gene which hybridizes under stringent conditions to a sequence of SEQ ID Nos. 1-383 or a sequence complementary thereto, comprising collecting a
- 30
- sample of cells from a patient, isolating nucleic acid from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a nucleic acid sequence of SEQ ID Nos. 1-850 under conditions such that

hybridization and amplification of the nucleic acid occurs, and comparing the presence, absence, or size of an amplification product to the amplification product of a normal cell.

- In one embodiment, the invention provides a test kit for identifying
- 5 transformed cells, comprising an antibody specific for a protein encoded by a nucleic acid which hybridizes under stringent conditions to any one of SEQ Nos. 1-850. In certain embodiments, the kit further includes instructions for using the kit. In certain embodiments, the kit may further include instructions for using the kit, solutions for suspending or fixing the cells, detectable tags or labels, solutions for rendering a
- 10 polypeptide susceptible to the binding of an antibody, solutions for lysing cells, or solutions for the purification of polypeptides.

- In yet another aspect, the invention provides pharmaceutical compositions including the subject nucleic acids. In one embodiment, an agent which alters the level of expression in a cell of a nucleic acid which hybridizes under stringent
- 15 conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto is identified by providing a cell, treating the cell with a test agent, determining the level of expression in the cell of a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto, and comparing the level of expression of the nucleic acid in the treated cell with the level of
- 20 expression of the nucleic acid in an untreated cell, wherein a change in the level of expression of the nucleic acid in the treated cell relative to the level of expression of the nucleic acid in the untreated cell is indicative of an agent which alters the level of expression of the nucleic acid in a cell. The invention further provides a pharmaceutical composition comprising an agent identified by this method. In another
- 25 embodiment, the invention provides a pharmaceutical composition which includes a polypeptide encoded by a nucleic acid having a nucleotide sequence that hybridizes under stringent conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto. In one embodiment, the invention pertains to a pharmaceutical composition comprising a nucleic acid including a sequence which hybridizes under stringent
- 30 conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto.

Brief Description of the Figure

The figure depicts an exemplary assay result for determining differential expression of gene products in cells.

5

Detailed Description of the Invention

The invention relates to nucleic acids having the disclosed nucleotide sequences (SEQ ID Nos. 1-850), as well as full length cDNA, mRNA, and genes corresponding to these sequences, and to polypeptides and proteins encoded by these nucleic acids and genes and portions thereof.

10

Also included are nucleic acids that encode polypeptides and proteins encoded by the nucleic acids of SEQ ID Nos. 1-850. The various nucleic acids that can encode these polypeptides and proteins differ because of the degeneracy of the genetic code, in that most amino acids are encoded by more than one triplet codon. The identity of such codons is well known in this art, and this information can be used for the construction of the nucleic acids within the scope of the invention.

15

Nucleic acids encoding polypeptides and proteins that are variants of the polypeptides and proteins encoded by the nucleic acids and related cDNA and genes are also within the scope of the invention. The variants differ from wild-type protein in having one or more amino acid substitutions that either enhance, add, or diminish a biological activity of the wild-type protein. Once the amino acid change is selected, a nucleic acid encoding that variant is constructed according to the invention.

20

The following detailed description discloses how to obtain or make full-length cDNA and human genes corresponding to the nucleic acids, how to express these nucleic acids and genes, how to identify structural motifs of the genes, how to identify the function of a protein encoded by a gene corresponding to an nucleic acid, how to use nucleic acids as probes in mapping and in tissue profiling, how to use the corresponding polypeptides and proteins to raise antibodies, and how to use the nucleic acids, polypeptides, and proteins for therapeutic and diagnostic purposes.

25

30

The sequences investigated herein have been found to be differentially expressed in samples obtained from colon cancer cell lines and/or colon cancer tissue. However, it is also believed that these sequences may also have utility with other types of cancer.

Accordingly, certain aspects of the present invention relate to nucleic acids differentially expressed in tumor tissue, especially colon cancer cell lines, polypeptides encoded by such nucleic acids, and antibodies immunoreactive with these polypeptides, and preparations of such compositions. Moreover, the present 5 invention provides diagnostic and therapeutic assays and reagents for detecting and treating disorders involving, for example, aberrant expression of the subject nucleic acids.

I. General

10 This invention relates in part to novel methods for identifying and/or classifying cancerous cells present in a human tumors, particularly in solid tumors, e.g., carcinomas and sarcomas, such as, for example, breast or colon cancers. The method uses genes that are differentially expressed in cancer cell lines and/or cancer tissue compared with related normal cells, such as normal colon cells, and thereby 15 identifies or classifies tumor cells by the upregulation and/or downregulation of expression of particular genes, an event which is implicated in tumorigenesis.

Upregulation or increased expression of certain genes such as oncogenes, act to promote malignant growth. Downregulation or decreased expression of genes such as tumor suppressor genes promotes malignant growth. Thus, alteration in the 20 expression of either type of gene is a potential diagnostic indicator for determining whether a subject is at risk of developing or has cancer, e.g., colon cancer.

Accordingly, in one aspect, the invention also provides biomarkers, such as nucleic acid markers, for human tumor cells, e.g., for colon cancer cells. The invention also provides proteins encoded by these nucleic acid markers.

25 The invention also features methods for identifying drugs useful for treatment of such cancer cells, and for treatment of a cancerous condition, such as colon cancer. Unlike prior methods, the invention provides a means for identifying cancer cells at an early stage of development, so that premalignant cells can be identified prior to their spreading throughout the human body. This allows early detection of potentially 30 cancerous conditions, and treatment of those cancerous conditions prior to spread of the cancerous cells throughout the body, or prior to development of an irreversible cancerous condition.

II. Definitions

For convenience, the meaning of certain terms and phrases used in the specification, examples, and appended claims, are provided below.

5 The term "an aberrant expression", as applied to a nucleic acid of the present invention, refers to level of expression of that nucleic acid which differs from the level of expression of that nucleic acid in healthy tissue, or which differs from the activity of the polypeptide present in a healthy subject. An activity of a polypeptide can be aberrant because it is stronger than the activity of its native counterpart. Alternatively,
10 an activity can be aberrant because it is weaker or absent relative to the activity of its native counterpart. An aberrant activity can also be a change in the activity; for example, an aberrant polypeptide can interact with a different target peptide. A cell can have an aberrant expression level of a gene due to overexpression or underexpression of that gene.

15 The term "agonist", as used herein, is meant to refer to an agent that mimics or upregulates (e.g., potentiates or supplements) the bioactivity of a protein. An agonist can be a wild-type protein or derivative thereof having at least one bioactivity of the wild-type protein. An agonist can also be a compound that upregulates expression of a gene or which increases at least one bioactivity of a protein. An agonist can also be
20 a compound which increases the interaction of a polypeptide with another molecule, e.g., a target peptide or nucleic acid.

25 The term "allele", which is used interchangeably herein with "allelic variant", refers to alternative forms of a gene or portions thereof. Alleles occupy the same locus or position on homologous chromosomes. When a subject has two identical alleles of a gene, the subject is said to be homozygous for that gene or allele. When a subject has two different alleles of a gene, the subject is said to be heterozygous for the gene. Alleles of a specific gene can differ from each other in a single nucleotide, or several nucleotides, and can include substitutions, deletions, and/or insertions of nucleotides. An allele of a gene can also be a form of a gene containing mutations.
30 The term "allelic variant of a polymorphic region of a gene" refers to a region of a gene having one of several nucleotide sequences found in that region of the gene in other individuals.

"Antagonist" as used herein is meant to refer to an agent that downregulates (e.g., suppresses or inhibits) at least one bioactivity of a protein. An antagonist can be a compound which inhibits or decreases the interaction between a protein and another molecule, e.g., a target peptide or enzyme substrate. An antagonist can also be a

5 compound that downregulates expression of a gene or which reduces the amount of expressed protein present.

The term "antibody" as used herein is intended to include whole antibodies, e.g., of any isotype (IgG, IgA, IgM, IgE, etc), and includes fragments thereof which are also specifically reactive with a vertebrate, e.g., mammalian, protein. Antibodies

10 can be fragmented using conventional techniques and the fragments screened for utility in the same manner as described above for whole antibodies. Thus, the term includes segments of proteolytically-cleaved or recombinantly-prepared portions of an antibody molecule that are capable of selectively reacting with a certain protein.

Nonlimiting examples of such proteolytic and/or recombinant fragments include Fab,
15 F(ab')2, Fab', Fv, and single chain antibodies (scFv) containing a V[L] and/or V[H] domain joined by a peptide linker. The scFv's may be covalently or non-covalently linked to form antibodies having two or more binding sites. The subject invention includes polyclonal, monoclonal, or other purified preparations of antibodies and recombinant antibodies.

20 The phenomenon of "apoptosis" is well known, and can be described as a programmed death of cells. As is known, apoptosis is contrasted with "necrosis", a phenomenon when cells die as a result of being killed by a toxic material, or other external effect. Apoptosis involves chromatic condensation, membrane blebbing, and fragmentation of DNA, all of which are generally visible upon microscopic examination.

25

A disease, disorder, or condition "associated with" or "characterized by" an aberrant expression of a nucleic acid refers to a disease, disorder, or condition in a subject which is caused by, contributed to by, or causative of an aberrant level of expression of a nucleic acid.

30 As used herein the term "bioactive fragment of a polypeptide" refers to a fragment of a full-length polypeptide, wherein the fragment specifically agonizes (mimics) or antagonizes (inhibits) the activity of a wild-type polypeptide. The

bioactive fragment preferably is a fragment capable of interacting with at least one other molecule, e.g., protein, small molecule, or DNA, which a full length protein can bind.

- "Biological activity" or "bioactivity" or "activity" or "biological function",
- 5 which are used interchangeably, herein mean an effector or antigenic function that is directly or indirectly performed by a polypeptide (whether in its native or denatured conformation), or by any subsequence thereof. Biological activities include binding to polypeptides, binding to other proteins or molecules, activity as a DNA binding protein, as a transcription regulator, ability to bind damaged DNA, etc. A bioactivity
- 10 can be modulated by directly affecting the subject polypeptide. Alternatively, a bioactivity can be altered by modulating the level of the polypeptide, such as by modulating expression of the corresponding gene.

The term "biomarker" refers a biological molecule, e.g., a nucleic acid, peptide, hormone, etc., whose presence or concentration can be detected and

15 correlated with a known condition, such as a disease state.

"Cells," "host cells", or "recombinant host cells" are terms used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or

20 environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A "chimeric polypeptide" or "fusion polypeptide" is a fusion of a first amino acid sequence encoding one of the subject polypeptides with a second amino acid sequence defining a domain (e.g., polypeptide portion) foreign to and not substantially homologous with any domain of the subject polypeptide. A chimeric polypeptide may present a foreign domain which is found (albeit in a different polypeptide) in an organism which also expresses the first polypeptide, or it may be an "interspecies," "intergenic," etc., fusion of polypeptide structures expressed by different kinds of organisms. In general, a fusion polypeptide can be represented by the general formula

25 $(X)_n-(Y)_m-(Z)_n$, wherein Y represents a portion of the subject polypeptide, and X and Z are each independently absent or represent amino acid sequences which are not related to the native sequence found in an organism, or which are not found as a polypeptide

30

chain contiguous with the subject sequence, where m is an integer greater than or equal to one, and each occurrence of n is, independently, 0 or an integer greater than or equal to 1 (n and m are preferably no greater than 5 or 10).

- A "delivery complex" shall mean a targeting means (e.g., a molecule that
- 5 results in higher affinity binding of a nucleic acid, protein, polypeptide or peptide to a target cell surface and/or increased cellular or nuclear uptake by a target cell). Examples of targeting means include: sterols (e.g., cholesterol), lipids (e.g., a cationic lipid, virosome or liposome), viruses (e.g., adenovirus, adeno-associated virus, and retrovirus), or target cell-specific binding agents (e.g., ligands recognized by target
- 10 cell specific receptors). Preferred complexes are sufficiently stable *in vivo* to prevent significant uncoupling prior to internalization by the target cell. However, the complex is cleavable under appropriate conditions within the cell so that the nucleic acid, protein, polypeptide or peptide is released in a functional form.

- As is well known, genes or a particular polypeptide may exist in single or
- 15 multiple copies within the genome of an individual. Such duplicate genes may be identical or may have certain modifications, including nucleotide substitutions, additions or deletions, which all still code for polypeptides having substantially the same activity. The term "DNA sequence encoding a polypeptide" may thus refer to one or more genes within a particular individual. Moreover, certain differences in
- 20 nucleotide sequences may exist between individual organisms, which are called alleles. Such allelic differences may or may not result in differences in amino acid sequence of the encoded polypeptide yet still encode a polypeptide with the same biological activity.

- The term "equivalent" is understood to include nucleotide sequences encoding
- 25 functionally equivalent polypeptides. Equivalent nucleotide sequences will include sequences that differ by one or more nucleotide substitutions, additions or deletions, such as allelic variants; and will, therefore, include sequences that differ from the nucleotide sequence of the nucleic acids shown in SEQ ID NOS: 1-850 due to the degeneracy of the genetic code.

- 30 As used herein, the terms "gene", "recombinant gene", and "gene construct" refer to a nucleic acid of the present invention associated with an open reading frame, including both exon and (optionally) intron sequences.

A "recombinant gene" refers to nucleic acid encoding a polypeptide and comprising exon sequences, though it may optionally include intron sequences which are derived from, for example, a related or unrelated chromosomal gene. The term "intron" refers to a DNA sequence present in a given gene which is not translated into 5 protein and is generally found between exons.

The term "growth" or "growth state" of a cell refers to the proliferative state of a cell as well as to its differentiative state. Accordingly, the term refers to the phase of the cell cycle in which the cell is, e.g., G0, G1, G2, prophase, metaphase, or telophase, as well as to its state of differentiation, e.g., undifferentiated, partially differentiated, 10 or fully differentiated. Without wanting to be limited, differentiation of a cell is usually accompanied by a decrease in the proliferative rate of a cell.

"Homology" or "identity" or "similarity" refers to sequence similarity between two peptides or between two nucleic acid molecules, with identity being a more strict comparison. Homology and identity can each be determined by comparing a position 15 in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base or amino acid, then the molecules are identical at that position. A degree of homology or similarity or identity between nucleic acid sequences is a function of the number of identical or matching nucleotides at positions shared by the nucleic acid sequences. A degree of 20 identity of amino acid sequences is a function of the number of identical amino acids at positions shared by the amino acid sequences. A degree of homology or similarity of amino acid sequences is a function of the number of amino acids, i.e., structurally related, at positions shared by the amino acid sequences. An "unrelated" or "non-homologous" sequence shares less than 40% identity, though preferably less than 25% 25 identity, with one of the sequences of the present invention.

The term "percent identical" refers to sequence identity between two amino acid sequences or between two nucleotide sequences. Identity can each be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When an equivalent position in the compared sequences is occupied by 30 the same base or amino acid, then the molecules are identical at that position; when the equivalent site occupied by the same or a similar amino acid residue (e.g., similar in steric and/or electronic nature), then the molecules can be referred to as

homologous (similar) at that position. Expression as a percentage of homology, similarity, or identity refers to a function of the number of identical or similar amino acids at positions shared by the compared sequences. Various alignment algorithms and/or programs may be used, including FASTA, BLAST, or ENTREZ. FASTA and
5 BLAST are available as a part of the GCG sequence analysis package (University of Wisconsin, Madison, Wis.), and can be used with, e.g., default settings. ENTREZ is available through the National Center for Biotechnology Information, National
Library of Medicine, National Institutes of Health, Bethesda, Md. In one embodiment,
the percent identity of two sequences can be determined by the GCG program with a
10 gap weight of 1, e.g., each amino acid gap is weighted as if it were a single amino acid
or nucleotide mismatch between the two sequences.

Other techniques for alignment are described in Methods in Enzymology, vol. 266: Computer Methods for Macromolecular Sequence Analysis (1996), ed. Doolittle, Academic Press, Inc., a division of Harcourt Brace & Co., San Diego, California,
15 USA. Preferably, an alignment program that permits gaps in the sequence is utilized to align the sequences. The Smith-Waterman is one type of algorithm that permits gaps in sequence alignments. See Meth. Mol. Biol. 70: 173-187 (1997). Also, the GAP program using the Needleman and Wunsch alignment method can be utilized to align sequences. An alternative search strategy uses MPSRCH software, which runs
20 on a MASPAN computer. MPSRCH uses a Smith-Waterman algorithm to score sequences on a massively parallel computer. This approach improves ability to pick up distantly related matches, and is especially tolerant of small gaps and nucleotide sequence errors. Nucleic acid-encoded amino acid sequences can be used to search both protein and DNA databases.

25 Databases with individual sequences are described in Methods in Enzymology, ed. Doolittle, *supra*. Databases include Genbank, EMBL, and DNA Database of Japan (DDBJ).

Preferred nucleic acids have a sequence at least 70%, and more preferably 80% identical and more preferably 90% and even more preferably at least 95%
30 identical to an nucleic acid sequence of a sequence shown in one of SEQ ID NOS: 1-850. Nucleic acids at least 90%, more preferably 95%, and most preferably at least about 98-99% identical with a nucleic sequence represented in one of SEQ ID NOS:

1-850 are of course also within the scope of the invention. In preferred embodiments, the nucleic acid is mammalian.

The term "interact" as used herein is meant to include detectable interactions (e.g., biochemical interactions) between molecules, such as interaction between 5 protein-protein, protein-nucleic acid, nucleic acid-nucleic acid, and protein-small molecule or nucleic acid-small molecule in nature.

The term "isolated" as used herein with respect to nucleic acids, such as DNA or RNA, refers to molecules separated from other DNAs, or RNAs, respectively, that are present in the natural source of the macromolecule. The term isolated as used 10 herein also refers to a nucleic acid or peptide that is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. Moreover, an "isolated nucleic acid" is meant to include nucleic acid fragments which are not naturally occurring as fragments and would not be found in the natural state. 15 The term "isolated" is also used herein to refer to polypeptides which are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides.

The terms "modulated" and "differentially regulated" as used herein refer to both upregulation (i.e., activation or stimulation (e.g., by agonizing or potentiating)) 20 and downregulation (i.e., inhibition or suppression (e.g., by antagonizing, decreasing or inhibiting)).

The term "mutated gene" refers to an allelic form of a gene, which is capable of altering the phenotype of a subject having the mutated gene relative to a subject which does not have the mutated gene. If a subject must be homozygous for this 25 mutation to have an altered phenotype, the mutation is said to be recessive. If one copy of the mutated gene is sufficient to alter the genotype of the subject, the mutation is said to be dominant. If a subject has one copy of the mutated gene and has a phenotype that is intermediate between that of a homozygous and that of a heterozygous subject (for that gene), the mutation is said to be co-dominant.

30 The designation "N", where it appears in the accompanying Sequence Listing, indicates that the identity of the corresponding nucleotide is unknown. "N" should therefore not necessarily be interpreted as permitting substitution with any nucleotide,

e.g., A, T, C, or G, but rather as holding the place of a nucleotide whose identity has not been conclusively determined.

The "non-human animals" of the invention include mammals such as rodents, non-human primates, sheep, dog, cow, chickens, amphibians, reptiles, etc.

- 5 Preferred non-human animals are selected from the rodent family including rat and mouse, most preferably mouse, though transgenic amphibians, such as members of the *Xenopus* genus, and transgenic chickens can also provide important tools for understanding and identifying agents which can affect, for example, embryogenesis and tissue formation. The term "chimeric animal" is used herein to refer to animals in
- 10 which the recombinant gene is found, or in which the recombinant gene is expressed in some but not all cells of the animal. The term "tissue-specific chimeric animal" indicates that one of the recombinant genes is present and/or expressed or disrupted in some tissues but not others.

- As used herein, the term "nucleic acid" refers to polynucleotides such as
- 15 deoxyribonucleic acid (DNA), and, where appropriate, ribonucleic acid (RNA). The term should also be understood to include, as equivalents, analogs of either RNA or DNA made from nucleotide analogs, and, as applicable to the embodiment being described, single (sense or antisense) and double-stranded polynucleotides. ESTs, chromosomes, cDNAs, mRNAs, and rRNAs are representative examples of molecules
- 20 that may be referred to as nucleic acids.

- The term "nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO. x" refers to the nucleotide sequence of the complementary strand of a nucleic acid strand having SEQ ID NO. x. The term "complementary strand" is used herein interchangeably with the term "complement". The complement of a nucleic acid strand can be the complement of a coding strand or the complement of a non-coding strand.

- The term "polymorphism" refers to the coexistence of more than one form of a gene or portion (e.g., allelic variant) thereof. A portion of a gene of which there are at least two different forms, i.e., two different nucleotide sequences, is referred to as a
- 30 "polymorphic region of a gene". A polymorphic region can be a single nucleotide, the identity of which differs in different alleles. A polymorphic region can also be several nucleotides long.

A "polymorphic gene" refers to a gene having at least one polymorphic region.

As used herein, the term "promoter" means a DNA sequence that regulates expression of a selected DNA sequence operably linked to the promoter, and which effects expression of the selected DNA sequence in cells. The term encompasses 5 "tissue specific" promoters, i.e., promoters which effect expression of the selected DNA sequence only in specific cells (e.g., cells of a specific tissue). The term also covers so-called "leaky" promoters, which regulate expression of a selected DNA primarily in one tissue, but cause expression in other tissues as well. The term also encompasses non-tissue specific promoters and promoters that constitutively express 10 or that are inducible (i.e., expression levels can be controlled).

The terms "protein", "polypeptide", and "peptide" are used interchangeably herein when referring to a gene product.

The term "recombinant protein" refers to a polypeptide of the present invention which is produced by recombinant DNA techniques, wherein generally, 15 DNA encoding a polypeptide is inserted into a suitable expression vector which is in turn used to transform a host cell to produce the heterologous protein. Moreover, the phrase "derived from", with respect to a recombinant gene, is meant to include within the meaning of "recombinant protein" those proteins having an amino acid sequence of a native polypeptide, or an amino acid sequence similar thereto which is generated 20 by mutations including substitutions and deletions (including truncation) of a naturally occurring form of the polypeptide.

"Small molecule" as used herein, is meant to refer to a composition, which has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be nucleic acids, peptides, polypeptides, peptidomimetics, 25 carbohydrates, lipids or other organic (carbon-containing) or inorganic molecules. Many pharmaceutical companies have extensive libraries of chemical and/or biological mixtures, often fungal, bacterial, or algal extracts, which can be screened with any of the assays of the invention to identify compounds that modulate a bioactivity.

30 As used herein, the term "specifically hybridizes" or "specifically detects" refers to the ability of a nucleic acid molecule of the invention to hybridize to at least a portion of, for example approximately 6, 12, 15, 20, 30, 50, 100, 150, 200, 300, 350,

- 400, 500, 750 or 1000 contiguous nucleotides of a nucleic acid designated in any one of SEQ ID Nos: 1-850, or a sequence complementary thereto, or naturally occurring mutants thereof, such that it has less than 15%, preferably less than 10%, and more preferably less than 5% background hybridization to a cellular nucleic acid (e.g.,
- 5 mRNA or genomic DNA) encoding a different protein. In preferred embodiments, the oligonucleotide probe detects only a specific nucleic acid, e.g., it does not substantially hybridize to similar or related nucleic acids, or complements thereof.

"Transcriptional regulatory sequence" is a generic term used throughout the specification to refer to DNA sequences, such as initiation signals, enhancers, and

10 promoters, which induce or control transcription of protein coding sequences with which they are operably linked. In preferred embodiments, transcription of one of the genes is under the control of a promoter sequence (or other transcriptional regulatory sequence) which controls the expression of the recombinant gene in a cell-type in which expression is intended. It will also be understood that the recombinant gene

15 can be under the control of transcriptional regulatory sequences which are the same or which are different from those sequences which control transcription of the naturally-occurring forms of the polypeptide.

As used herein, the term "transfection" means the introduction of a nucleic acid, e.g., via an expression vector, into a recipient cell by nucleic acid-mediated gene transfer. "Transformation", as used herein, refers to a process in which a cell's genotype is changed as a result of the cellular uptake of exogenous DNA or RNA, and, for example, the transformed cell expresses a recombinant form of a polypeptide or, in the case of anti-sense expression from the transferred gene, the expression of the target gene is disrupted.

25 As used herein, the term "transgene" means a nucleic acid sequence (or an antisense transcript thereto) which has been introduced into a cell. A transgene could be partly or entirely heterologous, i.e., foreign, to the transgenic animal or cell into which it is introduced, or, is homologous to an endogenous gene of the transgenic animal or cell into which it is introduced, but which is designed to be inserted, or is

30 inserted, into the animal's genome in such a way as to alter the genome of the cell into which it is inserted (e.g., it is inserted at a location which differs from that of the natural gene or its insertion results in a knockout). A transgene can also be present in

a cell in the form of an episome. A transgene can include one or more transcriptional regulatory sequences and any other nucleic acid, such as introns, that may be necessary for optimal expression of a selected nucleic acid.

A "transgenic animal" refers to any animal, preferably a non-human mammal,
5 bird or an amphibian, in which one or more of the cells of the animal contain heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a
10 recombinant virus. The term genetic manipulation does not include classical cross-breeding, or *in vitro* fertilization, but rather is directed to the introduction of a recombinant DNA molecule. This molecule may be integrated within a chromosome, or it may be extra-chromosomally replicating DNA. In the typical transgenic animals described herein, the transgene causes cells to express a recombinant form of one of
15 the subject polypeptide, e.g. either agonistic or antagonistic forms. However, transgenic animals in which the recombinant gene is silent are also contemplated, as for example, the FLP or CRE recombinase dependent constructs described below. Moreover, "transgenic animal" also includes those recombinant animals in which gene disruption of one or more genes is caused by human intervention, including both
20 recombination and antisense techniques.

The term "treating" as used herein is intended to encompass curing as well as ameliorating at least one symptom of the condition or disease.

The term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of preferred vector is an
25 episome, i.e., a nucleic acid capable of extra-chromosomal replication. Preferred vectors are those capable of autonomous replication and/or expression of nucleic acids to which they are linked. Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the
30 form of "plasmids" which refer generally to circular double stranded DNA loops which, in their vector form are not bound to the chromosome. In the present specification, "plasmid" and "vector" are used interchangeably as the plasmid is the

most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which become known in the art subsequently hereto.

- The term "wild-type allele" refers to an allele of a gene which, when present in
- 5 two copies in a subject results in a wild-type phenotype. There can be several different wild-type alleles of a specific gene, since certain nucleotide changes in a gene may not affect the phenotype of a subject having two copies of the gene with the nucleotide changes.

10 III. Nucleic Acids of the Present Invention

As described below, one aspect of the invention pertains to isolated nucleic acids, variants, and/or equivalents of such nucleic acids.

- Nucleic acids of the present invention have been identified as differentially expressed in tumor cells, e.g., colon cancer-derived cell lines (relative to the
- 15 expression levels in normal tissue, e.g., normal colon tissue and/or normal non-colon tissue), such as SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto. In certain embodiments, the subject nucleic acids are differentially expressed by at least a factor of two, preferably at least a factor of five, even more preferably at least a factor of
- 20 twenty, still more preferably at least a factor of fifty. Preferred nucleic acids include sequences identified as differentially expressed both in colon cancer cell tissue and colon cancer cell lines. In preferred embodiments, nucleic acids of the present invention are upregulated in tumor cells, especially colon cancer tissue and/or colon cancer-derived cell lines. In another embodiment, nucleic acids of the present
- 25 invention are downregulated in tumor cells, especially colon cancer tissue and/or colon cancer-derived cell lines.

- Table 1 indicates those sequences which are over- or underexpressed in a colon cancer-derived cell line relative to normal tissue, and further designates those sequences which are also differentially regulated in colon cancer tissue. The
- 30 designation O indicates that the corresponding sequence was overexpressed, M indicates possible overexpression, N indicates no differential expression, and U indicates underexpression.

Genes which are upregulated, such as oncogenes, or downregulated, such as tumor suppressors, in aberrantly proliferating cells may be targets for diagnostic or therapeutic techniques. For example, upregulation of the *cdc2* gene induces mitosis. Overexpression of the *myt1* gene, a mitotic deactivator, negatively regulates the 5 activity of *cdc2*. Aberrant proliferation may thus be induced either by upregulating *cdc2* or by downregulating *myt1*. Similarly, downregulation of tumor suppressors such as *p53* and *Rb* have been implicated in tumorigenesis.

Particularly preferred polypeptides are those that are encoded by nucleic acid sequences at least about 70%, 75%, 80%, 90%, 95%, 97%, or 98% similar to a nucleic 10 acid sequence of SEQ ID Nos. 1-850. Preferably, the nucleic acid includes all or a portion (e.g., at least about 12, at least about 15, at least about 25, or at least about 40 nucleotides) of the nucleotide sequence corresponding to the nucleic acid of SEQ ID Nos. 1-383, preferably SEQ ID Nos. 1-127, or a sequence complementary thereto.

Still other preferred nucleic acids of the present invention encode a 15 polypeptide comprising at least a portion of a polypeptide encoded by one of SEQ ID Nos. 1-850. For example, preferred nucleic acid molecules for use as probes/primers or antisense molecules (i.e., noncoding nucleic acid molecules) can comprise at least about 12, 20, 30, 50, 60, 70, 80, 90, or 100 base pairs in length up to the length of the complete gene. Coding nucleic acid molecules can comprise, for example, from about 20 50, 60, 70, 80, 90, or 100 base pairs up to the length of the complete gene.

Another aspect of the invention provides a nucleic acid which hybridizes under low, medium, or high stringency conditions to a nucleic acid sequence represented by one of SEQ ID Nos. 1-383, preferably SEQ ID Nos. 1-127, or a sequence complementary thereto. Appropriate stringency conditions which promote 25 DNA hybridization, for example, 6.0 x sodium chloride/sodium citrate (SSC) at about 45 °C, followed by a wash of 2.0 x SSC at 50 °C, are known to those skilled in the art or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-12.3.6. For example, the salt concentration in the wash step can be selected from a low stringency of about 2.0 x SSC at 50 °C to a high stringency of 30 about 0.2 x SSC at 50 °C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22 °C, to high stringency conditions at about 65 °C. Both temperature and salt may be varied, or

temperature or salt concentration may be held constant while the other variable is changed. In a preferred embodiment, a nucleic acid of the present invention will bind to one of SEQ ID Nos. 1-383, preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, under moderately stringent conditions, for example at about 5 2.0 x SSC and about 40 °C. In a particularly preferred embodiment, a nucleic acid of the present invention will bind to one of SEQ ID Nos. 1-383, preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, under high stringency conditions.

In one embodiment, the invention provides nucleic acids which hybridize under low stringency conditions of 6 x SSC at room temperature followed by a wash 10 at 2 x SSC at room temperature.

In another embodiment, the invention provides nucleic acids which hybridize under high stringency conditions of 2 x SSC at 65 °C followed by a wash at 0.2 x SSC at 65 °C.

Nucleic acids having a sequence that differs from the nucleotide sequences 15 shown in one of SEQ ID Nos. 1-383, preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, due to degeneracy in the genetic code, are also within the scope of the invention. Such nucleic acids encode functionally equivalent peptides (i.e., a peptide having equivalent or similar biological activity) but differ in sequence from the sequence shown in the sequence listing due to degeneracy in the genetic 20 code. For example, a number of amino acids are designated by more than one triplet. Codons that specify the same amino acid, or synonyms (for example, CAU and CAC each encode histidine) may result in "silent" mutations which do not affect the amino acid sequence of a polypeptide. However, it is expected that DNA sequence polymorphisms that do lead to changes in the amino acid sequences of the subject 25 polypeptides will exist among mammals. One skilled in the art will appreciate that these variations in one or more nucleotides (e.g., up to about 3-5% of the nucleotides) of the nucleic acids encoding polypeptides having an activity of a polypeptide may exist among individuals of a given species due to natural allelic variation.

Also within the scope of the invention are nucleic acids encoding splicing 30 variants of proteins encoded by a nucleic acid of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence

complementary thereto, or natural homologs of such proteins. Such homologs can be cloned by hybridization or PCR, as further described herein.

The polynucleotide sequence may also encode for a leader sequence, e.g., the natural leader sequence or a heterologous leader sequence, for a subject polypeptide.

- 5 For example, the desired DNA sequence may be fused in the same reading frame to a DNA sequence which aids in expression and secretion of the polypeptide from the host cell, for example, a leader sequence which functions as a secretory sequence for controlling transport of the polypeptide from the cell. The protein having a leader sequence is a preprotein and may have the leader sequence cleaved by the host cell to 10 form the mature form of the protein.

- The polynucleotide of the present invention may also be fused in frame to a marker sequence, also referred to herein as "Tag sequence" encoding a "Tag peptide", which allows for marking and/or purification of the polypeptide of the present invention. In a preferred embodiment, the marker sequence is a hexahistidine tag, 15 e.g., supplied by a PQE-9 vector. Numerous other Tag peptides are available commercially. Other frequently used Tags include myc-epitopes (e.g., see Ellison et al. (1991) *J Biol Chem* 266:21150-21157) which includes a 10-residue sequence from c-myc, the pFLAG system (International Biotechnologies, Inc.), the pEZ-Z-protein A system (Pharmacia, NJ), and a 16 amino acid portion of the *Haemophilus influenza* 20 hemagglutinin protein. Furthermore, any polypeptide can be used as a Tag so long as a reagent, e.g., an antibody interacting specifically with the Tag polypeptide is available or can be prepared or identified.

- As indicated by the examples set out below, nucleic acids can be obtained from mRNA present in any of a number of eukaryotic cells, e.g., and are preferably 25 obtained from metazoan cells, more preferably from vertebrate cells, and even more preferably from mammalian cells. It should also be possible to obtain nucleic acids of the present invention from genomic DNA from both adults and embryos. For example, a gene can be cloned from either a cDNA or a genomic library in accordance with protocols generally known to persons skilled in the art. cDNA can be obtained by isolating total mRNA from a cell, e.g., a vertebrate cell, a mammalian cell, or a human 30 cell, including embryonic cells. Double stranded cDNAs can then be prepared from the total mRNA, and subsequently inserted into a suitable plasmid or bacteriophage

vector using any one of a number of known techniques. The gene can also be cloned using established polymerase chain reaction techniques in accordance with the nucleotide sequence information provided by the invention.

In certain embodiments, a nucleic acid, probe, vector, or other construct of the
5 present invention includes at least about five, at least about ten, or at least about twenty nucleic acids from a region designated as novel in Table 2. In certain other embodiments, a nucleic acid of the present invention includes at least about five, at least about ten, or at least about twenty nucleic acids which are not included in the clones whose accession numbers are listed in Table 2.

10 The invention includes within its scope a polynucleotide having the nucleotide sequence of nucleic acid obtained from this biological material, wherein the nucleic acid hybridizes under stringent conditions (at least about 4 x SSC at 65°C, or at least about 4 x SSC at 42°C; see, for example, U.S. Patent No. 5,707,829, incorporated herein by reference) with at least 15 contiguous nucleotides of at least one of SEQ ID
15 Nos. 1-850. By this is intended that when at least 15 contiguous nucleotides of one of SEQ ID Nos. 1-850 is used as a probe, the probe will preferentially hybridize with a gene or mRNA (of the biological material) comprising the complementary sequence, allowing the identification and retrieval of the nucleic acids of the biological material that uniquely hybridize to the selected probe. Probes from more than one of SEQ ID
20 Nos. 1-850 will hybridize with the same gene or mRNA if the cDNA from which they were derived corresponds to one mRNA. Probes of more than 15 nucleotides can be used, but 15 nucleotides represents enough sequence for unique identification.

Because the present nucleic acids represent partial mRNA transcripts, two or more nucleic acids of the invention may represent different regions of the same
25 mRNA transcript and the same gene. Thus, if two or more of SEQ ID Nos. 1-850 are identified as belonging to the same clone, then either sequence can be used to obtain the full-length mRNA or gene.

Nucleic acid-related polynucleotides can also be isolated from cDNA libraries.
These libraries are preferably prepared from mRNA of human colon cells, more
30 preferably, human colon cancer cells, even more preferably, from a human colon adenocarcinoma cell line, SW480. Alignment of SEQ ID Nos. 1-850, as described

above, can indicated that a cell line or tissue source of a related protein or polynucleotide can also be used as a source of the nucleic acid-related cDNA.

Techniques for producing and probing nucleic acid sequence libraries are described, for example, in Sambrook *et al.*, "Molecular Cloning: A Laboratory Manual" (New York, Cold Spring Harbor Laboratory, 1989). The cDNA can be prepared by using primers based on a sequence from SEQ ID Nos. 1-850. In one embodiment, the cDNA library can be made from only poly-adenylated mRNA. Thus, poly-T primers can be used to prepare cDNA from the mRNA. Alignment of SEQ ID Nos. 1-850 can result in identification of a related polypeptide or 10 polynucleotide. Some of the polynucleotides disclosed herein contains repetitive regions that were subject to masking during the search procedures. The information about the repetitive regions is discussed below.

Constructs of polynucleotides having sequences of SEQ ID Nos. 1-850 can be generated synthetically. Alternatively, single-step assembly of a gene and entire 15 plasmid from large numbers of oligodeoxyribonucleotides is described by Stemmer *et al.*, *Gene (Amsterdam)* (1995) 164(1):49-53. In this method, assembly PCR (the synthesis of long DNA sequences from large numbers of oligodeoxyribonucleotides (oligos)) is described. The method is derived from DNA shuffling (Stemmer, *Nature* (1994) 370:389-391), and does not rely on DNA ligase, but instead relies on DNA 20 polymerase to build increasingly longer DNA fragments during the assembly process. For example, a 1.1-kb fragment containing the TEM-1 beta-lactamase-encoding gene (bla) can be assembled in a single reaction from a total of 56 oligos, each 40 nucleotides (nt) in length. The synthetic gene can be PCR amplified and cloned in a vector containing the tetracycline-resistance gene (Tc-R) as the sole selectable marker. 25 Without relying on ampicillin (Ap) selection, 76% of the Tc-R colonies were Ap-R, making this approach a general method for the rapid and cost-effective synthesis of any gene.

IV. Identification of Functional and Structural Motifs of Novel Genes Using Art-
30 Recognized Methods

Translations of the nucleotide sequence of the nucleic acids, cDNAs, or full genes can be aligned with individual known sequences. Similarity with individual

sequences can be used to determine the activity of the polypeptides encoded by the polynucleotides of the invention. For example, sequences that show similarity with a chemokine sequence may exhibit chemokine activities. Also, sequences exhibiting similarity with more than one individual sequence may exhibit activities that are
5 characteristic of either or both individual sequences.

The full length sequences and fragments of the polynucleotide sequences of the nearest neighbors can be used as probes and primers to identify and isolate the full length sequence of the nucleic acid. The nearest neighbors can indicate a tissue or cell type to be used to construct a library for the full-length sequences of the nucleic acid.

10 Typically, the nucleic acids are translated in all six frames to determine the best alignment with the individual sequences. The sequences disclosed herein in the Sequence Listing are in a 5' to 3' orientation and translation in three frames can be sufficient (with a few specific exceptions as described in the Examples). These amino acid sequences are referred to, generally, as query sequences, which will be aligned
15 with the individual sequences.

Nucleic acid sequences can be compared with known genes by any of the methods disclosed above. Results of individual and query sequence alignments can be divided into three categories: high similarity, weak similarity, and no similarity. Individual alignment results ranging from high similarity to weak similarity provide a
20 basis for determining polypeptide activity and/or structure.

Parameters for categorizing individual results include: percentage of the alignment region length where the strongest alignment is found, percent sequence identity, and p value.

The percentage of the alignment region length is calculated by counting the
25 number of residues of the individual sequence found in the region of strongest alignment. This number is divided by the total residue length of the query sequence to find a percentage. An example is shown below:

Query sequence:	ASN PERTM I P V T R V G L I R Y M
30	
Individual sequence:	Y M M T E Y L A I P V . R V G L P R Y M
	1 5 10 15

The region of alignment begins at amino acid 9 and ends at amino acid 19.

The total length of the query sequence is 20 amino acids. The percent of the alignment region length is 11/20 or 55%.

Percent sequence identity is calculated by counting the number of amino acid
5 matches between the query and individual sequence and dividing total number of matches by the number of residues of the individual sequence found in the region of strongest alignment. For the example above, the percent identity would be 10 matches divided by 11 amino acids, or approximately 90.9%.

P value is the probability that the alignment was produced by chance. For a
10 single alignment, the p value can be calculated according to Karlin *et al.*, Proc. Natl. Acad. Sci. 87: 2264 (1990) and Karlin *et al.*, Proc. Natl. Acad. Sci. 90: (1993). The p value of multiple alignments using the same query sequence can be calculated using an heuristic approach described in Altschul *et al.*, Nat. Genet. 6: 119 (1994).

Alignment programs such as BLAST program can calculate the p value.

15 The boundaries of the region where the sequences align can be determined according to Doolittle, Methods in Enzymology, *supra*; BLAST or FASTA programs; or by determining the area where the sequence identity is highest.

Another factor to consider for determining identity or similarity is the location
20 of the similarity or identity. Strong local alignment can indicate similarity even if the length of alignment is short. Sequence identity scattered throughout the length of the query sequence also can indicate a similarity between the query and profile sequences.

High Similarity Error! Bookmark not defined.

For the alignment results to be considered high similarity, the percent of the
25 alignment region length, typically, is at least about 55% of total length query sequence; more typically, at least about 58%; even more typically; at least about 60% of the total residue length of the query sequence. Usually, percent length of the alignment region can be as much as about 62%; more usually, as much as about 64%; even more usually, as much as about 66%.

30 Further, for high similarity, the region of alignment, typically, exhibits at least about 75% of sequence identity; more typically, at least about 78%; even more typically; at least about 80% sequence identity. Usually, percent sequence identity

can be as much as about 82%; more usually, as much as about 84%; even more usually, as much as about 86%.

- The p value is used in conjunction with these methods. If high similarity is found, the query sequence is considered to have high similarity with a profile
- 5 sequence when the p value is less than or equal to about 10^{-2} ; more usually; less than or equal to about 10^{-3} ; even more usually; less than or equal to about 10^{-4} . More typically, the p value is no more than about 10^{-5} ; more typically; no more than or equal to about 10^{-10} ; even more typically; no more than or equal to about 10^{-15} for the query sequence to be considered high similarity.

10

Weak Similarity

For the alignment results to be considered weak similarity, there is no minimum percent length of the alignment region nor minimum length of alignment.

A better showing of weak similarity is considered when the region of alignment is, typically, at least about 15 amino acid residues in length; more typically, at least about 20; even more typically; at least about 25 amino acid residues in length. Usually, length of the alignment region can be as much as about 30 amino acid residues; more usually, as much as about 40; even more usually, as much as about 60 amino acid residues.

20 Further, for weak similarity, the region of alignment, typically, exhibits at least about 35% of sequence identity; more typically, at least about 40%; even more typically; at least about 45% sequence identity. Usually, percent sequence identity can be as much as about 50%; more usually, as much as about 55%; even more usually, as much as about 60%.

25 If low similarity is found, the query sequence is considered to have weak similarity with a profile sequence when the p value is usually less than or equal to about 10^{-2} ; more usually; less than or equal to about 10^{-3} ; even more usually; less than or equal to about 10^{-4} . More typically, the p value is no more than about 10^{-5} ; more usually; no more than or equal to about 10^{-10} ; even more usually; no more than or equal to about 10^{-15} for the query sequence to be considered weak similarity.

Similarity Determined by Sequence Identity Alone~~Error! Bookmark not defined.~~

Sequence identity alone can be used to determine similarity of a query sequence to an individual sequence and can indicate the activity of the sequence. Such an alignment, preferably, permits gaps to align sequences. Typically, the query 5 sequence is related to the profile sequence if the sequence identity over the entire query sequence is at least about 15%; more typically, at least about 20%; even more typically, at least about 25%; even more typically, at least about 50%. Sequence identity alone as a measure of similarity is most useful when the query sequence is usually, at least 80 residues in length; more usually, 90 residues; even more usually, at 10 least 95 amino acid residues in length. More typically, similarity can be concluded based on sequence identity alone when the query sequence is preferably 100 residues in length; more preferably, 120 residues in length; even more preferably, 150 amino acid residues in length.

15 Determining Activity from Alignments with Profile and Multiple Aligned Sequences

Translations of the nucleic acids can be aligned with amino acid profiles that define either protein families or common motifs. Also, translations of the nucleic acids can be aligned to multiple sequence alignments (MSA) comprising the polypeptide sequences of members of protein families or motifs. Similarity or 20 identity with profile sequences or MSAs can be used to determine the activity of the polypeptides encoded by nucleic acids or corresponding cDNA or genes. For example, sequences that show an identity or similarity with a chemokine profile or MSA can exhibit chemokine activities.

Profiles can be designed manually by (1) creating a MSA, which is an alignment 25 of the amino acid sequence of members that belong to the family and (2) constructing a statistical representation of the alignment. Such methods are described, for example, in Birney *et al.*, Nucl. Acid Res. 24(14): 2730-2739 (1996).

MSAs of some protein families and motifs are publicly available. For example, these include MSAs of 547 different families and motifs. These MSAs are 30 described also in Sonnhammer *et al.*, Proteins 28: 405-420 (1997). Other sources are also available in the world wide web. A brief description of these MSAs is reported in Pascarella *et al.*, Prot. Eng. 9(3): 249-251 (1996).

Techniques for building profiles from MSAs are described in Sonnhammer *et al.*, *supra*; Birney *et al.*, *supra*; and Methods in Enzymology, vol. 266: "Computer Methods for Macromolecular Sequence Analysis," 1996, ed. Doolittle, Academic Press, Inc., a division of Harcourt Brace & Co., San Diego, California, USA.

- 5 Similarity between a query sequence and a protein family or motif can be determined by (a) comparing the query sequence against the profile and/or (b) aligning the query sequence with the members of the family or motif.

10 Typically, a program such as Searchwise can be used to compare the query sequence to the statistical representation of the multiple alignment, also known as a profile. The program is described in Birney *et al.*, *supra*. Other techniques to compare the sequence and profile are described in Sonnhammer *et al.*, *supra* and Doolittle, *supra*.

15 Next, methods described by Feng *et al.*, J. Mol. Evol. 25: 351-360 (1987) and Higgins *et al.*, CABIOS 5: 151-153 (1989) can be used align the query sequence with the members of a family or motif, also known as a MSA. Computer programs, such as PILEUP, can be used. See Feng *et al.*, *infra*.

20 The following factors are used to determine if a similarity between a query sequence and a profile or MSA exists: (1) number of conserved residues found in the query sequence, (2) percentage of conserved residues found in the query sequence, (3) number of frameshifts, and (4) spacing between conserved residues.

25 Some alignment programs that both translate and align sequences can make any number of frameshifts when translating the nucleotide sequence to produce the best alignment. The fewer frameshifts needed to produce an alignment, the stronger the similarity or identity between the query and profile or MSAs. For example, a weak similarity resulting from no frameshifts can be a better indication of activity or structure of a query sequence, than a strong similarity resulting from two frameshifts. Preferably, three or fewer frameshifts are found in an alignment; more preferably two or fewer frameshifts; even more preferably, one or fewer frameshifts; even more preferably, no frameshifts are found in an alignment of query and profile or MSAs.

30 Conserved residues are those amino acids that are found at a particular position in all or some of the family or motif members. For example, most known chemokines contain four conserved cysteines. Alternatively, a position is considered

conserved if only a certain class of amino acids is found in a particular position in all or some of the family members. For example, the N-terminal position may contain a positively charged amino acid, such as lysine, arginine, or histidine.

Typically, a residue of a polypeptide is conserved when a class of amino acids
5 or a single amino acid is found at a particular position in at least about 40% of all class members; more typically, at least about 50%; even more typically, at least about 60% of the members. Usually, a residue is conserved when a class or single amino acid is found in at least about 70% of the members of a family or motif; more usually, at least about 80%; even more usually, at least about 90%; even more usually, at least
10 about 95%.

A residue is considered conserved when three unrelated amino acids are found at a particular position in the some or all of the members; more usually, two unrelated amino acids. These residues are conserved when the unrelated amino acids are found at particular positions in at least about 40% of all class member; more typically, at
15 least about 50%; even more typically, at least about 60% of the members. Usually, a residue is conserved when a class or single amino acid is found in at least about 70% of the members of a family or motif; more usually, at least about 80%; even more usually, at least about 90%; even more usually, at least about 95%.

A query sequence has similarity to a profile or MSA when the query sequence
20 comprises at least about 25% of the conserved residues of the profile or MSA; more usually, at least about 30%; even more usually; at least about 40%. Typically, the query sequence has a stronger similarity to a profile sequence or MSA when the query sequence comprises at least about 45% of the conserved residues of the profile or
25 MSA; more typically, at least about 50%; even more typically; at least about 55%.

V. Probes and Primers

The nucleotide sequences determined from the cloning of genes from tumor cells, especially colon cancer cell lines and tissues will further allow for the generation of probes and primers designed for identifying and/or cloning homologs in
30 other cell types, e.g., from other tissues, as well as homologs from other mammalian organisms. Nucleotide sequences useful as probes/primers may include all or a portion of the sequences listed in SEQ ID Nos. 1-850 or sequences complementary

thereto or sequences which hybridize under stringent conditions to all or a portion of SEQ ID Nos. 1-850. For instance, the present invention also provides a probe/primer comprising a substantially purified oligonucleotide, which oligonucleotide comprising a nucleotide sequence that hybridizes under stringent conditions to at least 5 approximately 12, preferably 25, more preferably 40, 50, or 75 consecutive nucleotides up to the full length of the sense or anti-sense sequence selected from the group consisting of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, or naturally occurring mutants thereof. For instance, primers based on a nucleic acid represented 10 in SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, can be used in PCR reactions to clone homologs of that sequence.

In yet another embodiment, the invention provides probes/primers comprising a nucleotide sequence that hybridizes under moderately stringent conditions to at least 15 approximately 12, 16, 25, 40, 50 or 75 consecutive nucleotides up to the full length of the sense or antisense sequence selected from the group consisting of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or naturally occurring mutants thereof.

In particular, these probes are useful because they provide a method for 20 detecting mutations in wild-type genes of the present invention. Nucleic acid probes which are complementary to a wild-type gene of the present invention and can form mismatches with mutant genes are provided, allowing for detection by enzymatic or chemical cleavage or by shifts in electrophoretic mobility.

Likewise, probes based on the subject sequences can be used to detect 25 transcripts or genomic sequences encoding the same or homologous proteins, for use, for example, in prognostic or diagnostic assays. In preferred embodiments, the probe further comprises a label group attached thereto and able to be detected, e.g., the label group is selected from radioisotopes, fluorescent compounds, chemiluminescent compounds, enzymes, and enzyme co-factors.

30 Full-length cDNA molecules comprising the disclosed nucleic acids are obtained as follows. A subject nucleic acid or a portion thereof comprising at least about 12, 15, 18, or 20 nucleotides up to the full length of a sequence represented in

SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, may be used as a hybridization probe to detect hybridizing members of a cDNA library using probe design methods, cloning methods, and clone selection techniques as described in U.S. Patent No.

- 5 5,654,173, "Secreted Proteins and Polynucleotides Encoding Them," incorporated herein by reference. Libraries of cDNA may be made from selected tissues, such as normal or tumor tissue, or from tissues of a mammal treated with, for example, a pharmaceutical agent. Preferably, the tissue is the same as that used to generate the nucleic acids, as both the nucleic acid and the cDNA represent expressed genes. Most
10 10 preferably, the cDNA library is made from the biological material described herein in the Examples. Alternatively, many cDNA libraries are available commercially. (Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, 2nd Ed. (Cold Spring Harbor Press, Cold Spring Harbor, NY 1989). The choice of cell type for library construction may be made after the identity of the protein encoded by the nucleic
15 15 acid-related gene is known. This will indicate which tissue and cell types are likely to express the related gene, thereby containing the mRNA for generating the cDNA.

Members of the library that are larger than the nucleic acid, and preferably that contain the whole sequence of the native message, may be obtained. To confirm that the entire cDNA has been obtained, RNA protection experiments may be performed
20 20 as follows. Hybridization of a full-length cDNA to an mRNA may protect the RNA from RNase degradation. If the cDNA is not full length, then the portions of the mRNA that are not hybridized may be subject to RNase degradation. This may be assayed, as is known in the art, by changes in electrophoretic mobility on polyacrylamide gels, or by detection of released monoribonucleotides. Sambrook *et*
25 25 *al.*, *Molecular Cloning: A Laboratory Manual*, 2nd Ed. (Cold Spring Harbor Press, Cold Spring Harbor, NY 1989). In order to obtain additional sequences 5' to the end of a partial cDNA, 5' RACE (PCR Protocols: A Guide to Methods and Applications (Academic Press, Inc. 1990)) may be performed.

Genomic DNA may be isolated using nucleic acids in a manner similar to the
30 30 isolation of full-length cDNAs. Briefly, the nucleic acids, or portions thereof, may be used as probes to libraries of genomic DNA. Preferably, the library is obtained from the cell type that was used to generate the nucleic acids. Most preferably, the genomic

- DNA is obtained from the biological material described herein in the Example. Such libraries may be in vectors suitable for carrying large segments of a genome, such as P1 or YAC, as described in detail in Sambrook *et al.*, 9.4-9.30. In addition, genomic sequences can be isolated from human BAC libraries, which are commercially
- 5 available from Research Genetics, Inc., Huntsville, Alabama, USA, for example. In order to obtain additional 5' or 3' sequences, chromosome walking may be performed, as described in Sambrook *et al.*, such that adjacent and overlapping fragments of genomic DNA are isolated. These may be mapped and pieced together, as is known in the art, using restriction digestion enzymes and DNA ligase.
- 10 Using the nucleic acids of the invention, corresponding full length genes can be isolated using both classical and PCR methods to construct and probe cDNA libraries. Using either method, Northern blots, preferably, may be performed on a number of cell types to determine which cell lines express the gene of interest at the highest rate.
- 15 Classical methods of constructing cDNA libraries are taught in Sambrook et al., supra. With these methods, cDNA can be produced from mRNA and inserted into viral or expression vectors. Typically, libraries of mRNA comprising poly(A) tails can be produced with poly(T) primers. Similarly, cDNA libraries can be produced using the instant sequences as primers.
- 20 PCR methods may be used to amplify the members of a cDNA library that comprise the desired insert. In this case, the desired insert may contain sequence from the full length cDNA that corresponds to the instant nucleic acids. Such PCR methods include gene trapping and RACE methods.
- Gene trapping may entail inserting a member of a cDNA library into a vector.
- 25 The vector then may be denatured to produce single stranded molecules. Next, a substrate-bound probe, such a biotinylated oligo, may be used to trap cDNA inserts of interest. Biotinylated probes can be linked to an avidin-bound solid substrate. PCR methods can be used to amplify the trapped cDNA. To trap sequences corresponding to the full length genes, the labeled probe sequence may be based on the nucleic acids
- 30 of the invention, e.g., SEQ ID Nos. 1-383, preferably SEQ ID Nos. 1-127, or a sequence complementary thereto. Random primers or primers specific to the library vector can be used to amplify the trapped cDNA. Such gene trapping techniques are

described in Gruber *et al.*, PCT WO 95/04745 and Gruber *et al.*, U.S. Pat. No. 5,500,356. Kits are commercially available to perform gene trapping experiments from, for example, Life Technologies, Gaithersburg, Maryland, USA.

“Rapid amplification of cDNA ends,” or RACE, is a PCR method of 5 amplifying cDNAs from a number of different RNAs. The cDNAs may be ligated to an oligonucleotide linker and amplified by PCR using two primers. One primer may be based on sequence from the instant nucleic acids, for which full length sequence is desired, and a second primer may comprise a sequence that hybridizes to the oligonucleotide linker to amplify the cDNA. A description of this method is reported 10 in PCT Pub. No. WO 97/19110.

In preferred embodiments of RACE, a common primer may be designed to anneal to an arbitrary adaptor sequence ligated to cDNA ends (Apte and Siebert, *Biotechniques* 15:890-893, 1993; Edwards *et al.*, *Nuc. Acids Res.* 19:5227-5232, 1991). When a single gene-specific RACE primer is paired with the common primer, 15 preferential amplification of sequences between the single gene specific primer and the common primer occurs. Commercial cDNA pools modified for use in RACE are available.

Another PCR-based method generates full-length cDNA library with anchored ends without specific knowledge of the cDNA sequence. The method uses lock- 20 docking primers (I-VI), where one primer, poly TV (I-III) locks over the polyA tail of eukaryotic mRNA producing first strand synthesis and a second primer, polyGH (IV-VI) locks onto the polyC tail added by terminal deoxynucleotidyl transferase (TdT). This method is described in PCT Pub. No. WO 96/40998.

The promoter region of a gene generally is located 5' to the initiation site for 25 RNA polymerase II. Hundreds of promoter regions contain the “TATA” box, a sequence such as TATTA or TATAA, which is sensitive to mutations. The promoter region can be obtained by performing 5' RACE using a primer from the coding region of the gene. Alternatively, the cDNA can be used as a probe for the genomic sequence, and the region 5' to the coding region is identified by “walking up.”

30 If the gene is highly expressed or differentially expressed, the promoter from the gene may be of use in a regulatory construct for a heterologous gene.

Once the full-length cDNA or gene is obtained, DNA encoding variants can be prepared by site-directed mutagenesis, described in detail in Sambrook *et al.*, 15.3-15.63. The choice of codon or nucleotide to be replaced can be based on the disclosure herein on optional changes in amino acids to achieve altered protein structure and/or function.

As an alternative method to obtaining DNA or RNA from a biological material, nucleic acid comprising nucleotides having the sequence of one or more nucleic acids of the invention can be synthesized. Thus, the invention encompasses nucleic acid molecules ranging in length from 12 nucleotides (corresponding to at least 12 contiguous nucleotides which hybridize under stringent conditions to or are at least 80% identical to a nucleic acid represented by one of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto) up to a maximum length suitable for one or more biological manipulations, including replication and expression, of the nucleic acid molecule. The invention includes but is not limited to (a) nucleic acid having the size of a full gene, and comprising at least one of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto; (b) the nucleic acid of (a) also comprising at least one additional gene, operably linked to permit expression of a fusion protein; (c) an expression vector comprising (a) or (b); (d) a plasmid comprising (a) or (b); and (e) a recombinant viral particle comprising (a) or (b). Construction of (a) can be accomplished as described below in part IV.

The sequence of a nucleic acid of the present invention is not limited and can be any sequence of A, T, G, and/or C (for DNA) and A, U, G, and/or C (for RNA) or modified bases thereof, including inosine and pseudouridine. The choice of sequence will depend on the desired function and can be dictated by coding regions desired, the intron-like regions desired, and the regulatory regions desired.

VI. Vectors Carrying Nucleic Acids of the Present Invention
The invention further provides plasmids and vectors, which can be used to express a gene in a host cell. The host cell may be any prokaryotic or eukaryotic cell. Thus, a nucleotide sequence derived from any one of SEQ ID Nos. 1-850, preferably

SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, encoding all or a selected portion of a protein, can be used to produce a recombinant form of an polypeptide via microbial or eukaryotic cellular processes. Ligating the polynucleotide sequence into a gene construct, such as an 5 expression vector, and transforming or transfecting into hosts, either eukaryotic (yeast, avian, insect or mammalian) or prokaryotic (bacterial cells), are standard procedures well known in the art.

Vectors that allow expression of a nucleic acid in a cell are referred to as expression vectors. Typically, expression vectors contain a nucleic acid operably 10 linked to at least one transcriptional regulatory sequence. Regulatory sequences are art-recognized and are selected to direct expression of the subject nucleic acids. Transcriptional regulatory sequences are described in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). In one embodiment, the expression vector includes a recombinant gene encoding a 15 peptide having an agonistic activity of a subject polypeptide, or alternatively, encoding a peptide which is an antagonistic form of a subject polypeptide.

The choice of plasmid will depend on the type of cell in which propagation is desired and the purpose of propagation. Certain vectors are useful for amplifying and making large amounts of the desired DNA sequence. Other vectors are suitable for 20 expression in cells in culture. Still other vectors are suitable for transfer and expression in cells in a whole animal or person. The choice of appropriate vector is well within the skill of the art. Many such vectors are available commercially. The nucleic acid or full-length gene is inserted into a vector typically by means of DNA ligase attachment to a cleaved restriction enzyme site in the vector. Alternatively, the 25 desired nucleotide sequence may be inserted by homologous recombination *in vivo*. Typically this is accomplished by attaching regions of homology to the vector on the flanks of the desired nucleotide sequence. Regions of homology are added by ligation of oligonucleotides, or by polymerase chain reaction using primers comprising both the region of homology and a portion of the desired nucleotide sequence, for example.

30 Nucleic acids or full-length genes are linked to regulatory sequences as appropriate to obtain the desired expression properties. These may include promoters (attached either at the 5' end of the sense strand or at the 3' end of the antisense

strand), enhancers, terminators, operators, repressors, and inducers. The promoters may be regulated or constitutive. In some situations it may be desirable to use conditionally active promoters, such as tissue-specific or developmental stage-specific promoters. These are linked to the desired nucleotide sequence using the techniques 5 described above for linkage to vectors. Any techniques known in the art may be used.

When any of the above host cells, or other appropriate host cells or organisms, are used to replicate and/or express the polynucleotides or nucleic acids of the invention, the resulting replicated nucleic acid, RNA, expressed protein or polypeptide, is within the scope of the invention as a product of the host cell or 10 organism. The product is recovered by any appropriate means known in the art.

Once the gene corresponding to the nucleic acid is identified, its expression can be regulated in the cell to which the gene is native. For example, an endogenous gene of a cell can be regulated by an exogenous regulatory sequence as disclosed in U.S. Patent No. 5,641,670, "Protein Production and Protein Delivery."

15 A number of vectors exist for the expression of recombinant proteins in yeast (see, for example, Broach *et al.* (1983) in Experimental Manipulation of Gene Expression, ed. M. Inouye, Academic Press, p. 83, incorporated by reference herein). In addition, drug resistance markers such as ampicillin can be used. In an illustrative embodiment, a polypeptide is produced recombinantly utilizing an expression vector 20 generated by sub-cloning one of the nucleic acids represented in one of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto.

The preferred mammalian expression vectors contain both prokaryotic sequences, to facilitate the propagation of the vector in bacteria, and one or more 25 eukaryotic transcription units that are expressed in eukaryotic cells. The various methods employed in the preparation of plasmids and transformation of host organisms are well known in the art. For other suitable expression systems for both prokaryotic and eukaryotic cells, as well as general recombinant procedures, see Molecular Cloning: A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and 30 Maniatis (Cold Spring Harbor Laboratory Press: 1989) Chapters 16 and 17.

When it is desirable to express only a portion of a gene, e.g., a truncation mutant, it may be necessary to add a start codon (ATG) to the oligonucleotide fragment

containing the desired sequence to be expressed. It is well known in the art that a methionine at the N-terminal position can be enzymatically cleaved by the use of the enzyme methionine aminopeptidase (MAP). MAP has been cloned from *E. coli* (Ben-Bassat *et al.* (1987) *J. Bacteriol.* 169:751-757) and *Salmonella typhimurium* and its *in vitro* activity has been demonstrated on recombinant proteins (Miller *et al.* (1987) *PNAS* 84:2718-2722). Therefore, removal of an N-terminal methionine, if desired, can be achieved either *in vivo* by expressing polypeptides in a host which produces MAP (e.g., *E. coli* or CM89 or *S. cerevisiae*), or *in vitro* by use of purified MAP (e.g., procedure of Miller *et al.*, *supra*).

Moreover, the nucleic acid constructs of the present invention can also be used as part of a gene therapy protocol to deliver nucleic acids such as antisense nucleic acids. Thus, another aspect of the invention features expression vectors for *in vivo* or *in vitro* transfection with an antisense oligonucleotide.

In addition to viral transfer methods, non-viral methods can also be employed to introduce a subject nucleic acid, e.g., a sequence represented by one of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, into the tissue of an animal. Most nonviral methods of gene transfer rely on normal mechanisms used by mammalian cells for the uptake and intracellular transport of macromolecules. In preferred embodiments, non-viral targeting means of the present invention rely on endocytic pathways for the uptake of the subject nucleic acid by the targeted cell. Exemplary targeting means of this type include liposomal derived systems, polylysine conjugates, and artificial viral envelopes.

A nucleic acid of any of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, the corresponding cDNA, or the full-length gene may be used to express the partial or complete gene product. Appropriate nucleic acid constructs are purified using standard recombinant DNA techniques as described in, for example, Sambrook *et al.*, (1989) *Molecular Cloning: A Laboratory Manual*, 2nd ed. (Cold Spring Harbor Press, Cold Spring Harbor, New York), and under current regulations described in United States Dept. of HHS, National Institute of Health (NIH) Guidelines for Recombinant DNA Research. The polypeptides encoded by the nucleic acid may be expressed in

any expression system, including, for example, bacterial, yeast, insect, amphibian and mammalian systems. Suitable vectors and host cells are described in U.S. Patent No. 5,654,173.

5 Bacteria. Expression systems in bacteria include those described in Chang *et al.*, *Nature* (1978) 275:615, Goeddel *et al.*, *Nature* (1979) 281:544, Goeddel *et al.*, *Nucleic Acids Res.* (1980) 8:4057; EP 0 036,776, U.S. Patent No. 4,551,433, DeBoer *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1983) 80:2125, and Siebenlist *et al.*, *Cell* (1980) 20:269.

10 Yeast. Expression systems in yeast include those described in Hinnen *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1978) 75:1929; Ito *et al.*, *J. Bacteriol.* (1983) 153:163; Kurtz *et al.*, *Mol. Cell. Biol.* (1986) 6:142; Kunze *et al.*, *J. Basic Microbiol.* (1985) 25:141; Gleeson *et al.*, *J. Gen. Microbiol.* (1986) 132:3459, Roggenkamp *et al.*, *Mol. Gen. Genet.* (1986) 202:302) Das *et al.*, *J. Bacteriol.* (1984) 158:1165; De Louvencourt *et al.*, *J. Bacteriol.* (1983) 154:737, Van den Berg *et al.*, *Bio/Technology* (1990) 8:135; Kunze *et al.*, *J. Basic Microbiol.* (1985) 25:141; Cregg *et al.*, *Mol. Cell. Biol.* (1985) 5:3376, U.S. Patent Nos. 4,837,148 and 4,929,555; Beach and Nurse, *Nature* (1981) 300:706; Davidow *et al.*, *Curr. Genet.* (1985) 10:380, Gaillardin *et al.*, *Curr. Genet.* (1985) 10:49, Ballance *et al.*, *Biochem. Biophys. Res. Commun.* (1983) 112:284289; Tilburn *et al.*, *Gene* (1983) 26:205221, Yelton *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1984) 81:14701474, Kelly and Hynes, *EMBO J.* (1985) 4:475479; EP 0 244,234, and WO 91/00357.

15 Insect Cells. Expression of heterologous genes in insects is accomplished as described in U.S. Patent No. 4,745,051, Friesen *et al.* (1986) "The Regulation of Baculovirus Gene Expression" in: *The Molecular Biology Of Baculoviruses* (W. Doerfler, ed.), EP 0 127,839, EP 0 155,476, and Vlak *et al.*, *J. Gen. Virol.* (1988) 69:765776, Miller *et al.*, *Ann. Rev. Microbiol.* (1988) 42:177, Carbonell *et al.*, *Gene* (1988) 73:409, Maeda *et al.*, *Nature* (1985) 315:592594, Lebacq-Verheyden *et al.*, *Mol. Cell. Biol.* (1988) 8:3129; Smith *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1985) 82:8404, Miyajima *et al.*, *Gene* (1987) 58:273; and Martin *et al.*, *DNA* (1988) 7:99.

20 30 Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts are described in Luckow *et al.*, *Bio/Technology* (1988) 6:4755, Miller

et al., Generic Engineering (Setlow, J.K. *et al.* eds.), Vol. 8 (Plenum Publishing, 1986), pp. 277-279, and Maeda *et al.*, *Nature*, (1985) 315:592-594.

Mammalian Cells. Mammalian expression is accomplished as described in Dijkema *et al.*, *EMBO J.* (1985) 4:761, Gorman *et al.*, *Proc. Natl. Acad. Sci. (USA)* 5 (1982) 79:6777, Boshart *et al.*, *Cell* (1985) 41:521 and U.S. Patent No. 4,399,216. Other features of mammalian expression are facilitated as described in Ham and Wallace, *Meth. Enz.* (1979) 58:44, Barnes and Sato, *Anal. Biochem.* (1980) 102:255, U.S. Patent Nos. 4,767,704, 4,657,866, 4,927,762, 4,560,655, WO 90/103430, WO 87/00195, and U.S. RE 30,985.

10

VII. Therapeutic Nucleic Acid Constructs

One aspect of the invention relates to the use of the isolated nucleic acid, e.g., SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, in antisense therapy. As used 15 herein, antisense therapy refers to administration or *in situ* generation of oligonucleotide molecules or their derivatives which specifically hybridize (e.g., bind) under cellular conditions with the cellular mRNA and/or genomic DNA, thereby inhibiting transcription and/or translation of that gene. The binding may be by conventional base pair complementarity, or, for example, in the case of binding to 20 DNA duplexes, through specific interactions in the major groove of the double helix. In general, antisense therapy refers to the range of techniques generally employed in the art, and includes any therapy which relies on specific binding to oligonucleotide sequences.

An antisense construct of the present invention can be delivered, for example, 25 as an expression plasmid which, when transcribed in the cell, produces RNA which is complementary to at least a unique portion of the cellular mRNA. Alternatively, the antisense construct is an oligonucleotide probe which is generated *ex vivo* and which, when introduced into the cell, causes inhibition of expression by hybridizing with the mRNA and/or genomic sequences of a subject nucleic acid. Such oligonucleotide 30 probes are preferably modified oligonucleotides which are resistant to endogenous nucleases, e.g., exonucleases and/or endonucleases, and are therefore stable *in vivo*. Exemplary nucleic acid molecules for use as antisense oligonucleotides are

- phosphoramidate, phosphorothioate and methylphosphonate analogs of DNA (see also U.S. Patents 5,176,996; 5,264,564; and 5,256,775). Additionally, general approaches to constructing oligomers useful in antisense therapy have been reviewed, for example, by Van der Krol et al. (1988) BioTechniques 6:958-976; and Stein et al.
- 5 (1988) Cancer Res 48:2659-2668. With respect to antisense DNA, oligodeoxyribonucleotides derived from the translation initiation site, e.g., between the -10 and +10 regions of the nucleotide sequence of interest, are preferred.
- Antisense approaches involve the design of oligonucleotides (either DNA or RNA) that are complementary to mRNA. The antisense oligonucleotides will bind to
- 10 the mRNA transcripts and prevent translation. Absolute complementarity, although preferred, is not required. In the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing
- 15 nucleic acid, the more base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.
- Oligonucleotides that are complementary to the 5' end of the mRNA, e.g., the
- 20 5' untranslated sequence up to and including the AUG initiation codon, should work most efficiently at inhibiting translation. However, sequences complementary to the 3' untranslated sequences of mRNAs have recently been shown to be effective at inhibiting translation of mRNAs as well. (Wagner, R. 1994. Nature 372:333).
- Therefore, oligonucleotides complementary to either the 5' or 3' untranslated, non-
- 25 coding regions of a gene could be used in an antisense approach to inhibit translation of endogenous mRNA. Oligonucleotides complementary to the 5' untranslated region of the mRNA should include the complement of the AUG start codon. Antisense oligonucleotides complementary to mRNA coding regions are typically less efficient inhibitors of translation but could also be used in accordance with the invention.
- 30 Whether designed to hybridize to the 5', 3', or coding region of subject mRNA, antisense nucleic acids should be at least six nucleotides in length, and are preferably

less than about 100 and more preferably less than about 50, 25, 17 or 10 nucleotides in length.

- Regardless of the choice of target sequence, it is preferred that *in vitro* studies are first performed to quantitate the ability of the antisense oligonucleotide to
- 5 quantitate the ability of the antisense oligonucleotide to inhibit gene expression. It is preferred that these studies utilize controls that distinguish between antisense gene inhibition and nonspecific biological effects of oligonucleotides. It is also preferred that these studies compare levels of the target RNA or protein with that of an internal control RNA or protein. Additionally, it is envisioned that results obtained using the
- 10 antisense oligonucleotide are compared with those obtained using a control oligonucleotide. It is preferred that the control oligonucleotide is of approximately the same length as the test oligonucleotide and that the nucleotide sequence of the oligonucleotide differs from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.
- 15 The oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc. The oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. WO 88/09810, published December 15, 1988) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134, published April 25, 1988), hybridization-triggered cleavage agents
- 20 (See, e.g., Krol et al., 1988, BioTechniques 6:958-976), or intercalating agents (See, e.g., Zon, 1988, Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
- 25

- The antisense oligonucleotide may comprise at least one modified base moiety
- 30 which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxytriethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-

carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil,
5 beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiacytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and
10 2,6-diaminopurine.

The antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylose, and hexose.

The antisense oligonucleotide can also contain a neutral peptide-like backbone. Such molecules are termed peptide nucleic acid (PNA)-oligomers and are described, e.g., in Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. U.S.A. 93:14670 and in Eglom *et al.* (1993) Nature 365:566. One advantage of PNA oligomers is their capability to bind to complementary DNA essentially independently from the ionic strength of the medium due to the neutral backbone of the DNA. In yet another embodiment, the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet a further embodiment, the antisense oligonucleotide is an α -anomeric oligonucleotide. An α -anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-O-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131-12148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330).

Oligonucleotides of the invention may be synthesized by standard methods known in the art, e.g., by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. 5 (1988, Nucl. Acids Res. 16:3209), methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

While antisense nucleotides complementary to a coding region sequence can be used, those complementary to the transcribed untranslated region and to the region 10 comprising the initiating methionine are most preferred.

The antisense molecules can be delivered to cells which express the target nucleic acid *in vivo*. A number of methods have been developed for delivering antisense DNA or RNA to cells; e.g., antisense molecules can be injected directly into the tissue site, or modified antisense molecules, designed to target the desired cells 15 (e.g., antisense linked to peptides or antibodies that specifically bind receptors or antigens expressed on the target cell surface) can be administered systemically.

However, it is often difficult to achieve intracellular concentrations of the antisense sufficient to suppress translation on endogenous mRNAs. Therefore, a preferred approach utilizes a recombinant DNA construct in which the antisense 20 oligonucleotide is placed under the control of a strong pol III or pol II promoter. The use of such a construct to transfet target cells in the patient will result in the transcription of sufficient amounts of single stranded RNAs that will form complementary base pairs with the endogenous transcripts and thereby prevent translation of the target mRNA. For example, a vector can be introduced *in vivo* such 25 that it is taken up by a cell and directs the transcription of an antisense RNA. Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed by recombinant DNA technology methods standard in the art. Vectors can be plasmid, viral, or others known in the art for replication and expression in mammalian cells.

30 Expression of the sequence encoding the antisense RNA can be by any promoter known in the art to act in mammalian, preferably human cells. Such promoters can be inducible or constitutive. Such promoters include but are not limited to: the SV40

early promoter region (Benoist and Chambon, 1981, *Nature* 290:304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto *et al.*, 1980, *Cell* 22:787-797), the herpes thymidine kinase promoter (Wagner *et al.*, 1981, *Proc. Natl. Acad. Sci. U.S.A.* 78:1441-1445), the regulatory sequences of the 5 metallothionein gene (Brinster *et al.*, 1982, *Nature* 296:39-42), etc. Any type of plasmid, cosmid, YAC or viral vector can be used to prepare the recombinant DNA construct which can be introduced directly into the tissue site; e.g., the choroid plexus or hypothalamus. Alternatively, viral vectors can be used which selectively infect the desired tissue (e.g., for brain, herpesvirus vectors may be used), in which case 10 administration may be accomplished by another route (e.g., systemically).

In another aspect of the invention, ribozyme molecules designed to catalytically cleave target mRNA transcripts can be used to prevent translation of target mRNA and expression of a target protein (See, e.g., PCT International Publication WO90/11364, published October 4, 1990; Sarver *et al.*, 1990, *Science* 247:1222-1225 and U.S. Patent No. 5,093,246). While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy target mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following 15 sequence of two bases: 5'-UG-3'. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Haseloff and Gerlach, 1988, *Nature*, 334:585-591. Preferably the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the target mRNA; i.e., to increase efficiency and minimize the intracellular accumulation of non-functional 20 mRNA transcripts.

The ribozymes of the present invention also include RNA endoribonucleases (hereinafter "Cech-type ribozymes") such as the one which occurs naturally in *Tetrahymena thermophila* (known as the IVS, or L-19 IVS RNA) and which has been extensively described by Thomas Cech and collaborators (Zaug, *et al.*, 1984, *Science*, 30 224:574-578; Zaug and Cech, 1986, *Science*, 231:470-475; Zaug, *et al.*, 1986, *Nature*, 324:429-433; published International patent application No. WO88/04300 by University Patents Inc.; Been and Cech, 1986, *Cell*, 47:207-216). The Cech-type

ribozymes have an eight base pair active site which hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place. The invention encompasses those Cech-type ribozymes which target eight base-pair active site sequences that are present in a target gene.

5 As in the antisense approach, the ribozymes can be composed of modified oligonucleotides (e.g., for improved stability, targeting, etc.) and should be delivered to cells which express the target gene *in vivo*. A preferred method of delivery involves using a DNA construct “encoding” the ribozyme under the control of a strong constitutive pol III or pol II promoter, so that transfected cells will produce
10 sufficient quantities of the ribozyme to destroy endogenous messages and inhibit translation. Because ribozymes, unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.

15 Antisense RNA, DNA, and ribozyme molecules of the invention may be prepared by any method known in the art for the synthesis of DNA and RNA molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides and oligoribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by *in vitro* and *in vivo* transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated
20 into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.

25 Moreover, various well-known modifications to nucleic acid molecules may be introduced as a means of increasing intracellular stability and half-life. Possible modifications include but are not limited to the addition of flanking sequences of ribonucleotides or deoxyribonucleotides to the 5' and/or 3' ends of the molecule or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterate linkages within the oligodeoxyribonucleotide backbone.

30

VIII. Polypeptides of the Present Invention

- The present invention makes available isolated polypeptides which are isolated from, or otherwise substantially free of other cellular proteins, especially other signal transduction factors and/or transcription factors which may normally be associated with the polypeptide. Subject polypeptides of the present invention include
- 5 polypeptides encoded by the nucleic acids of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, or polypeptides encoded by genes of which a sequence in SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, is a fragment. Polypeptides of the present invention
- 10 include those proteins which are differentially regulated in tumor cells, especially colon cancer-derived cell lines (relative to normal cells, e.g., normal colon tissue and non-colon tissue). In preferred embodiments, the polypeptides are upregulated in tumor cells, especially colon cancer cancer-derived cell lines. In other embodiments, the polypeptides are downregulated in tumor cells, especially colon cancer-derived
- 15 cell lines. Proteins which are upregulated, such as oncogenes, or downregulated, such as tumor suppressors, in aberrantly proliferating cells may be targets for diagnostic or therapeutic techniques. For example, upregulation of the *cdc2* gene induces mitosis. Overexpression of the *myt1* gene, a mitotic deactivator, negatively regulates the activity of *cdc2*. Aberrant proliferation may thus be induced either by upregulating
- 20 *cdc2* or by downregulating *myt1*
- The term "substantially free of other cellular proteins" (also referred to herein as "contaminating proteins") or "substantially pure or purified preparations" are defined as encompassing preparations of polypeptides having less than about 20% (by dry weight) contaminating protein, and preferably having less than about 5%
- 25 contaminating protein. Functional forms of the subject polypeptides can be prepared, for the first time, as purified preparations by using a cloned nucleic acid as described herein. Full length proteins or fragments corresponding to one or more particular motifs and/or domains or to arbitrary sizes, for example, at least about 5, 10, 25, 50, 75, or 100 amino acids in length are within the scope of the present invention.
- 30 For example, isolated polypeptides can be encoded by all or a portion of a nucleic acid sequence shown in any of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary

thereto. Isolated peptidyl portions of proteins can be obtained by screening peptides recombinantly produced from the corresponding fragment of the nucleic acid encoding such peptides. In addition, fragments can be chemically synthesized using techniques known in the art such as conventional Merrifield solid phase f-Moc or t-Boc chemistry. For example, a polypeptide of the present invention may be arbitrarily divided into fragments of desired length with no overlap of the fragments, or preferably divided into overlapping fragments of a desired length. The fragments can be produced (recombinantly or by chemical synthesis) and tested to identify those peptidyl fragments which can function as either agonists or antagonists of a wild-type (e.g., "authentic") protein.

Another aspect of the present invention concerns recombinant forms of the subject proteins. Recombinant polypeptides preferred by the present invention, in addition to native proteins as described above are encoded by a nucleic acid, which is at least 60%, more preferably at least 80%, and more preferably 85%, and more preferably 90%, and more preferably 95% identical to an amino acid sequence encoded by SEQ ID NOS. 1-850. Polypeptides which are encoded by a nucleic acid that is at least about 98-99% identical with the sequence of SEQ ID Nos. 1-850 are also within the scope of the invention. Also included in the present invention are peptide fragments comprising at least a portion of such a protein.

In a preferred embodiment, a polypeptide of the present invention is a mammalian polypeptide and even more preferably a human polypeptide. In particularly preferred embodiment, the polypeptide retains wild-type bioactivity. It will be understood that certain post-translational modifications, e.g., phosphorylation and the like, can increase the apparent molecular weight of the polypeptide relative to the unmodified polypeptide chain.

The present invention further pertains to recombinant forms of one of the subject polypeptides. Such recombinant polypeptides preferably are capable of functioning in one of either role of an agonist or antagonist of at least one biological activity of a wild-type ("authentic") polypeptide of the appended sequence listing. The term "evolutionarily related to", with respect to amino acid sequences of proteins, refers to both polypeptides having amino acid sequences which have arisen naturally,

and also to mutational variants of human polypeptides which are derived, for example, by combinatorial mutagenesis.

In general, polypeptides referred to herein as having an activity (e.g., are "bioactive") of a protein are defined as polypeptides which include an amino acid

- 5 sequence encoded by all or a portion of the nucleic acid sequences shown in one of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, and which mimic or antagonize all or a portion of the biological/biochemical activities of a naturally occurring protein.
- According to the present invention, a polypeptide has biological activity if it is a
- 10 specific agonist or antagonist of a naturally occurring form of a protein.

Assays for determining whether a compound, e.g., a protein or variant thereof, has one or more of the above biological activities are well known in the art. In certain embodiments, the polypeptides of the present invention have activities such as those outlined above.

- 15 In another embodiment, the coding sequences for the polypeptide can be incorporated as a part of a fusion gene including a nucleotide sequence encoding a different polypeptide. This type of expression system can be useful under conditions where it is desirable to produce an immunogenic fragment of a polypeptide (see, for example, EP Publication No: 0259149; and Evans *et al.* (1989) Nature 339:385;
- 20 Huang *et al.* (1988) J. Virol. 62:3855; and Schlienger *et al.* (1992) J. Virol. 66:2). In addition to utilizing fusion proteins to enhance immunogenicity, it is widely appreciated that fusion proteins can also facilitate the expression of proteins, and, accordingly, can be used in the expression of the polypeptides of the present invention (see, for example, Current Protocols in Molecular Biology, eds. Ausubel *et al.* (N.Y.: John Wiley & Sons, 1991)). In another embodiment, a fusion gene coding for a purification leader sequence, such as a poly-(His)/enterokinase cleavage site sequence at the N-terminus of the desired portion of the recombinant protein, can allow purification of the expressed fusion protein by affinity chromatography using a Ni²⁺ metal resin. The purification leader sequence can then be subsequently removed by
- 25 treatment with enterokinase to provide the purified protein (e.g., see Hochuli *et al.* (1987) J. Chromatography 411:177; and Janknecht *et al.* PNAS 88:8972).

Techniques for making fusion genes are known to those skilled in the art. Essentially, the joining of various DNA fragments coding for different polypeptide sequences is performed in accordance with conventional techniques, employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide 5 for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of nucleic acid fragments can be carried out using anchor primers which give rise to complementary 10 overhangs between two consecutive nucleic acid fragments which can subsequently be annealed to generate a chimeric nucleic acid sequence (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al. John Wiley & Sons: 1992).

The present invention further pertains to methods of producing the subject 15 polypeptides. For example, a host cell transfected with a nucleic acid vector directing expression of a nucleotide sequence encoding the subject polypeptides can be cultured under appropriate conditions to allow expression of the peptide to occur. Suitable media for cell culture are well known in the art. The recombinant polypeptide can be isolated from cell culture medium, host cells, or both using techniques known in the art for purifying proteins including ion-exchange chromatography, gel filtration 20 chromatography, ultrafiltration, electrophoresis, and immunoaffinity purification with antibodies specific for such peptide. In a preferred embodiment, the recombinant polypeptide is a fusion protein containing a domain which facilitates its purification, such as GST fusion protein.

Moreover, it will be generally appreciated that, under certain circumstances, it 25 may be advantageous to provide homologs of one of the subject polypeptides which function in a limited capacity as one of either an agonist (mimetic) or an antagonist, in order to promote or inhibit only a subset of the biological activities of the naturally occurring form of the protein. Thus, specific biological effects can be elicited by treatment with a homolog of limited function, and with fewer side effects relative to 30 treatment with agonists or antagonists which are directed to all of the biological activities of naturally occurring forms of subject proteins.

- Homologs of each of the subject polypeptide can be generated by mutagenesis, such as by discrete point mutation(s), or by truncation. For instance, mutation can give rise to homologs which retain substantially the same, or merely a subset, of the biological activity of the polypeptide from which it was derived. Alternatively,
- 5 antagonistic forms of the polypeptide can be generated which are able to inhibit the function of the naturally occurring form of the protein, such as by competitively binding to a receptor.

The recombinant polypeptides of the present invention also include homologs of the wild-type proteins, such as versions of those proteins which are resistant to
10 proteolytic cleavage, for example, due to mutations which alter ubiquitination or other enzymatic targeting associated with the protein.

Polypeptides may also be chemically modified to create derivatives by forming covalent or aggregate conjugates with other chemical moieties, such as glycosyl groups, lipids, phosphate, acetyl groups and the like. Covalent derivatives of
15 proteins can be prepared by linking the chemical moieties to functional groups on amino acid sidechains of the protein or at the N-terminus or at the C-terminus of the polypeptide.

Modification of the structure of the subject polypeptides can be for such purposes as enhancing therapeutic or prophylactic efficacy, stability (e.g., *ex vivo*
20 shelf life and resistance to proteolytic degradation), or post-translational modifications (e.g., to alter phosphorylation pattern of protein). Such modified peptides, when designed to retain at least one activity of the naturally occurring form of the protein, or to produce specific antagonists thereof, are considered functional equivalents of the polypeptides described in more detail herein. Such modified peptides can be
25 produced, for instance, by amino acid substitution, deletion, or addition. The substitutional variant may be a substituted conserved amino acid or a substituted non-conserved amino acid.

For example, it is reasonable to expect that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a
30 serine, or a similar replacement of an amino acid with a structurally related amino acid (i.e., isosteric and/or isoelectric mutations) will not have a major effect on the biological activity of the resulting molecule. Conservative replacements are those that

take place within a family of amino acids that are related in their side chains. Genetically encoded amino acids can be divided into four families: (1) acidic = aspartate, glutamate; (2) basic = lysine, arginine, histidine; (3) nonpolar = alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) 5 uncharged polar = glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine. In similar fashion, the amino acid repertoire can be grouped as (1) acidic = aspartate, glutamate; (2) basic = lysine, arginine histidine, (3) aliphatic = glycine, alanine, valine, leucine, isoleucine, serine, threonine, with serine and threonine optionally be grouped separately as aliphatic-hydroxyl; (4) aromatic = phenylalanine, tyrosine, 10 tryptophan; (5) amide = asparagine, glutamine; and (6) sulfur -containing = cysteine and methionine. (see, for example, Biochemistry, 2nd ed., Ed. by L. Stryer, WH Freeman and Co.: 1981). Whether a change in the amino acid sequence of a peptide results in a functional homolog (e.g., functional in the sense that the resulting polypeptide mimics or antagonizes the wild-type form) can be readily determined by 15 assessing the ability of the variant peptide to produce a response in cells in a fashion similar to the wild-type protein, or competitively inhibit such a response. Polypeptides in which more than one replacement has taken place can readily be tested in the same manner. The variant may be designed so as to retain biological activity of a particular region of the protein. In a non-limiting example, Osawa et al., 20 1994, Biochemistry and Molecular International 34:1003-1009, discusses the actin binding region of a protein from several different species. The actin binding regions of the these species are considered homologous based on the fact that they have amino acids that fall within "homologous residue groups." Homologous residues are judged according to the following groups (using single letter amino acid designations): 25 STAG; ILVMF; HRK; DEQN; and FYW. For example, an S, a T, an A or a G can be in a position and the function (in this case actin binding) is retained.

Additional guidance on amino acid substitution is available from studies of protein evolution. Go et al., 1980, Int. J. Peptide Protein Res. 15:211-224, classified amino acid residue sites as interior or exterior depending on their accessibility. More 30 frequent substitution on exterior sites was confirmed to be general in eight sets of homologous protein families regardless of their biological functions and the presence or absence of a prosthetic group. Virtually all types of amino acid residues had higher

5 mutabilities on the exterior than in the interior. No correlation between mutability and polarity was observed of amino acid residues in the interior and exterior, respectively. Amino acid residues were classified into one of three groups depending on their polarity: polar (Arg, Lys, His, Gln, Asn, Asp, and Glu); weak polar (Ala, Pro, Gly, Thr, and Ser), and nonpolar (Cys, Val, Met, Ile, Leu, Phe, Tyr, and Trp). Amino acid replacements during protein evolution were very conservative: 88% and 76% of them in the interior or exterior, respectively, were within the same group of the three. Inter-group replacements are such that weak polar residues are replaced more often by nonpolar residues in the interior and more often by polar residues on the exterior.

10 Querol *et al.*, 1996, Prot. Eng. 9:265-271, provides general rules for amino acid substitutions to enhance protein thermostability. New glycosylation sites can be introduced as discussed in Olsen and Thomsen, 1991, J. Gen. Microbiol. 137:579-585. An additional disulfide bridge can be introduced, as discussed by Perry and Wetzel, 1984, Science 226:555-557; Pantoliano *et al.*, 1987, Biochemistry 26:2077-2082;

15 Matsumura *et al.*, 1989, Nature 342:291-293; Nishikawa *et al.*, 1990, Protein Eng. 3:443-448; Takagi *et al.*, 1990, J. Biol. Chem. 265:6874-6878; Clarke *et al.*, 1993, Biochemistry 32:4322-4329; and Wakarchuk *et al.*, 1994, Protein Eng. 7:1379-1386.

20 An additional metal binding site can be introduced, according to Toma *et al.*, 1991, Biochemistry 30:97-106, and Haezerbrouck *et al.*, 1993, Protein Eng. 6:643-649. Substitutions with prolines in loops can be made according to Masul *et al.*, 1994, Appl. Env. Microbiol. 60:3579-3584; and Hardy *et al.*, FEBS Lett. 317:89-92.

25 Cysteine-depleted muteins are considered variants within the scope of the invention. These variants can be constructed according to methods disclosed in U.S. Patent No. 4,959,314, which discloses how to substitute other amino acids for cysteines, and how to determine biological activity and effect of the substitution. Such methods are suitable for proteins according to this invention that have cysteine residues suitable for such substitutions, for example to eliminate disulfide bond formation.

30 To learn the identity and function of the gene that correlates with an nucleic acid, the nucleic acids or corresponding amino acid sequences can be screened against profiles of protein families. Such profiles focus on common structural motifs among

proteins of each family. Publicly available profiles are described above. Additional or alternative profiles are described below.

In comparing a new nucleic acid with known sequences, several alignment tools are available. Examples include PileUp, which creates a multiple sequence 5 alignment, and is described in Feng *et al.*, *J. Mol. Evol.* (1987) 25:351-360. Another method, GAP, uses the alignment method of Needleman *et al.*, *J. Mol. Biol.* (1970) 48:443-453. GAP is best suited for global alignment of sequences. A third method, BestFit, functions by inserting gaps to maximize the number of matches using the local homology algorithm of Smith and Waterman, *Adv. Appl. Math.* (1981) 2:482-10 489.

Examples of such profiles are described below.

Chemokines

Chemokines are a family of proteins that have been implicated in lymphocyte 15 trafficking, inflammatory diseases, angiogenesis, hematopoiesis, and viral infection. See, for example, Rollins, *Blood* (1997) 90(3):909-928, and Wells *et al.*, *J. Leuk. Biol.* (1997) 61:545-550. U.S. Patent No. 5,605,817 discloses DNA encoding a chemokine expressed in fetal spleen. U.S. Patent No. 5,656,724 discloses chemokine-like 20 proteins and methods of use. U.S. Patent No. 5,602,008 discloses DNA encoding a chemokine expressed by liver.

Mutants of the encoded chemokines are polypeptides having an amino acid sequence that possesses at least one amino acid substitution, addition, or deletion as compared to native chemokines. Fragments possess the same amino acid sequence of the native chemokines; mutants may lack the amino and/or carboxyl terminal 25 sequences. Fusions are mutants, fragments, or the native chemokines that also include amino and/or carboxyl terminal amino acid extensions.

The number or type of the amino acid changes is not critical, nor is the length or number of the amino acid deletions, or amino acid extensions that are incorporated in the chemokines as compared to the native chemokine amino acid sequences. A 30 polynucleotide encoding one of these variant polypeptides will retain at least about 80% amino acid identity with at least one known chemokine. Preferably, these polypeptides will retain at least about 85% amino acid sequence identity, more

preferably, at least about 90%; even more preferably, at least about 95%. In addition, the variants will exhibit at least 80%; preferably about 90%; more preferably about 95% of at least one activity exhibited by a native chemokine. Chemokine activity includes immunological, biological, receptor binding, and signal transduction functions of the native chemokine.

5 Chemotaxis. Assays for chemotaxis relating to neutrophils are described in Walz *et al.*, *Biochem. Biophys. Res. Commun.* (1987) 149:755, Yoshimura *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1987) 84:9233, and Schroder *et al.*, *J. Immunol.* (1987) 139:3474; to lymphocytes, Larsen *et al.*, *Science* (1989) 243:1464, Carr *et al.*, *Proc. 10 Natl. Acad. Sci. (USA)* (1994) 91:3652; to tumor-infiltrating lymphocytes, Liao *et al.*, *J. Exp. Med.* (1995). 182:1301; to hemopoietic progenitors, Aiuti *et al.*, *J. Exp. Med.* (1997) 185:111; to monocytes, Valente *et al.*, *Biochem.* (1988) 27:4162; and to natural killer cells, Loetscher *et al.*, *J. Immunol.* (1996) 156:322, and Allavena *et al.*, *Eur. J. Immunol.* (1994) 24:3233.

15 Assays for determining the biological activity of attracting eosinophils are described in Dahinden *et al.*, *J. Exp. Med.* (1994) 179:751, Weber *et al.*, *J. Immunol.* (1995) 154:4166, and Noso *et al.*, *Biochem. Biophys. Res. Commun.* (1994) 200:1470; for attracting dendritic cells, Sozzani *et al.*, *J. Immunol.* (1995) 155:3292; for attracting basophils, in Dahinden *et al.*, *J. Exp. Med.* (1994) 179:751, Alam *et al.*, *J. 20 Immunol.* (1994) 152:1298, Alam *et al.*, *J. Exp. Med.* (1992) 176:781; and for activating neutrophils, Maghazaci *et al.*, *Eur. J. Immunol.* (1996) 26:315, and Taub *et al.*, *J. Immunol.* (1995) 155:3877. Native chemokines can act as mitogens for fibroblasts, assayed as described in Mullenbach *et al.*, *J. Biol. Chem.* (1986) 261:719.

25 Receptor Binding. Native chemokines exhibit binding activity with a number of receptors. Description of such receptors and assays to detect binding are described in, for example, Murphy *et al.*, *Science* (1991) 253:1280; Combadiere *et al.*, *J. Biol. Chem.* (1995) 270:29671; Daugherty *et al.*, *J. Exp. Med.* (1996) 183:2349; Samson *et al.*, *Biochem.* (1996) 35:3362; Raport *et al.*, *J. Biol. Chem.* (1996) 271:17161; Combadiere *et al.*, *J. Leukoc. Biol.* (1996) 60:147; Baba *et al.*, *J. Biol. Chem.* (1997) 30 23:14893; Yosida *et al.*, *J. Biol. Chem.* (1997) 272:13803; Arvannitakis *et al.*, *Nature* (1997) 385:347, and many other assays are known in the art.

Kinase Activation. Assays for kinase activation are described by Yen *et al.*, *J. Leukoc. Biol.* (1997) 61:529; Dubois *et al.*, *J. Immunol.* (1996) 156:1356; Turner *et al.*, *J. Immunol.* (1995) 155:2437. Assays for inhibition of angiogenesis or cell proliferation are described in Maione *et al.*, *Science* (1990) 247:77.

- 5 Glycosaminoglycan production can be induced by native chemokines, assayed as described in Castor *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1983) 80:765. Chemokine-mediated histamine release from basophils is assayed as described in Dahinden *et al.*, *J. Exp. Med.* (1989) 170:1787; and White *et al.*, *Immunol. Lett.* (1989) 22:151. Heparin binding is described in Luster *et al.*, *J. Exp. Med.* (1995) 182:219.

- 10 Dimerization Activity. Chemokines can possess dimerization activity, which can be assayed according to Burrows *et al.*, *Biochem.* (1994) 33:12741; and Zhang *et al.*, *Mol. Cell. Biol.* (1995) 15:4851. Native chemokines can play a role in the inflammatory response of viruses. This activity can be assayed as described in Bleul *et al.*, *Nature* (1996) 382:829; and Oberlin *et al.*, *Nature* (1996) 382:833. Exocytosis 15 of monocytes can be promoted by native chemokines. The assay for such activity is described in Uguccioni *et al.*, *Eur. J. Immunol.* (1995) 25:64. Native chemokines also can inhibit hematopoietic stem cell proliferation. The method for testing for such activity is reported in Graham *et al.*, *Nature* (1990) 344:442.

20 Death Domain Proteins

- Several protein families contain death domain motifs (Feinstein and Kimchi, *TIBS Letters* (1995) 20:242-244). Some death domain-containing proteins are implicated in cytotoxic intracellular signaling (Cleveland and Ihle, *Cell* (1995) 81:479-482, Pan *et al.*, *Science* (1997) 276:111-113, Duan and Dixit, *Nature* (1997) 385:86-89, and Chinnaiyan *et al.*, *Science* (1996) 274:990-992). U.S. Patent No. 5,563,039 describes a protein homologous to TRADD (Tumor Necrosis Factor Receptor-1 Associated Death Domain containing protein), and modifications of the active domain of TRADD that retain the functional characteristics of the protein, as well as apoptosis assays for testing the function of such death domain containing 25 proteins. U.S. Patent No. 5,658,883 discloses biologically active TGF-B1 peptides. U.S. Patent No. 5,674,734 discloses protein RIP which contains a C-terminal death domain and an N-terminal kinase domain.

Leukemia Inhibitory Factor (LIF)

An LIF profile is constructed from sequences of leukemia inhibitor factor, CT-1 (cardiotrophin-1), CNTF (ciliary neurotrophic factor), OSM (oncostatin M), and IL-6 (interleukin-6). This profile encompasses a family of secreted cytokines that have pleiotropic effects on many cell types including hepatocytes, osteoclasts, neuronal cells and cardiac myocytes, and can be used to detect additional genes encoding such proteins. These molecules are all structurally related and share a common co-receptor gp130 which mediates intracellular signal transduction by cytoplasmic tyrosine 5
10 kinases such as src.

Novel proteins related to this family are also likely to be secreted, to activate gp130 and to function in the development of a variety of cell types. Thus new members of this family would be candidates to be developed as growth or survival factors for the cell types that they stimulate. For more details on this family of 15 cytokines, see Pennica *et al*, *Cytokine and Growth Factor Reviews* (1996) 7:81-91. U.S. Patent No. 5,420,247 discloses LIF receptor and fusion proteins. U.S. Patent No. 5,443,825 discloses human LIF.

Angiopoietin

20 Angiopoietin-1 is a secreted ligand of the TIE-2 tyrosine kinase; it functions as an angiogenic factor critical for normal vascular development. Angiopoietin-2 is a natural antagonist of angiopoietin-1 and thus functions as an anti-angiogenic factor. These two proteins are structurally similar and activate the same receptor. (Folkman and D'Amore, *Cell* (1996) 87:1153-1155, and Davis *et al.*, *Cell* (1996) 87:1161-1169.)

25 The angiopoietin molecules are composed of two domains, a coiled-coil region and a region related to fibrinogen. The fibrinogen domain is found in many molecules including ficolin and tesascin, and is well defined structurally with many members.

Receptor Protein-Tyrosine Kinases

30 Receptor Protein-Tyrosine Kinases or RPTKs are described in Lindberg, *Annu. Rev. Cell Biol.* (1994) 10:251-337.

Growth Factors: Epidermal Growth Factor (EGF) and Fibroblast Growth Factor (FGF)

For a discussion of growth factor superfamilies, see Growth Factors: A Practical Approach, Appendix A1 (Ed. McKay and Leigh, Oxford University Press, 5 NY, 1993) pp. 237-243.

The alignments (pretty box) for EGF and FGF are shown in Figures 1 and 2, respectively. U.S. Patent No. 4,444,760 discloses acidic brain fibroblast growth factor, which is active in the promotion of cell division and wound healing. U.S. Patent No. 5,439,818 discloses DNA encoding human recombinant basic fibroblast 10 growth factor, which is active in wound healing. U.S. Patent No. 5,604,293 discloses recombinant human basic fibroblast growth factor, which is useful for wound healing. U.S. Patent No. 5,410,832 discloses brain-derived and recombinant acidic fibroblast growth factor, which act as mitogens for mesoderm and neuroectoderm-derived cells 15 in culture, and promote wound healing in soft tissue, cartilaginous tissue and musculo-skeletal tissue. U.S. Patent No. 5,387,673 discloses biologically active fragments of FGF that retain activity.

Proteins of the TNF Family

A profile derived from the TNF family is created by aligning sequences of the 20 following TNF family members: nerve growth factor (NGF), lymphotoxin, Fas ligand, tumor necrosis factor (TNF), CD40 ligand, TRAIL, ox40 ligand, 4-1BB ligand, CD27 ligand, and CD30 ligand. The profile is designed to identify sequences of proteins that constitute new members or homologues of this family of proteins.

U.S. Patent No. 5,606,023 discloses mutant TNF proteins; U.S. Patent No. 25 5,597,899 and U.S. Patent No. 5,486,463 disclose TNF muteins; and U.S. Patent No. 5,652,353 discloses DNA encoding TNF α muteins.

Members of the TNF family of proteins have been show in vitro to multimerize, as described in Burrows *et al.*, *Biochem.* (1994) 33:12741 and Zhang *et al.*, *Mol. Cell. Biol.* (1995) 15:4851 and bind receptors as described in Browning *et al.*, 30 *J. Immunol.* (1994) 147:1230, Androlewicz *et al.*, *J. Biol. Chem.* (1992) 267:2542, and Crowe *et al.*, *Science* (1994) 264:707.

In vivo, TNFs proteolytically cleave a target protein as described in Kriegel *et al.*, *Cell* (1988) 53:45 and Mohler *et al.*, *Nature* (1994) 370:218 and demonstrate cell proliferation and differentiation activity. T-cell or thymocyte proliferation is assayed as described in Armitage *et al.*, *Eur. J. Immunol.* (1992) 22:447; Current Protocols in Immunology, ed. J.E. Coligan *et al.*, 3.1-3.19; Takai *et al.*, *J. Immunol.* (1986) 137:3494-3500, Bertagnoli *et al.*, *J. Immunol.* (1990) 145:1706-1712, Bertagnoli *et al.*, *J. Immunol.* (1991) 133:327-340, Bertagnoli *et al.*, *J. Immunol.* (1992) 149:3778-3783, and Bowman *et al.*, *J. Immunol.* (1994) 152:1756-1761. B cell proliferation and Ig secretion are assayed as described in Maliszewski, *J. Immunol.* (1990) 144:3028-3033, and Assays for B Cell Function: In vitro antibody production, Mond and Brunswick, Current Protocols in Immunol., Coligan Ed vol 1 pp 3.8.1-3.8.16, John Wiley and Sons, Toronto 1994, Kehrl *et al.*, *Science* (1987) 238:1144 and Boussiotis *et al.*, *PNAS USA* (1994) 91:7007.

Other in vivo activities include upregulation of cell surface antigens, upregulation of costimulatory molecules, and cellular aggregation/adhesion as described in Barrett *et al.*, *J. Immunol.* (1991) 146:1722; Bjorck *et al.*, *Eur. J. Immunol.* (1993) 23:1771; Clark *et al.*, *Annu Rev. Immunol.* (1991) 9:97; Ranheim *et al.*, *J. Exp. Med.* (1994) 177:925; Yellin, *J. Immunol.* (1994) 153:666; and Gruss *et al.*, *Blood* (1994) 84:2305.

Proliferation and differentiation of hematopoietic and lymphopoietic cells has also been shown in vivo for TNFs, using assays for embryonic differentiation and hematopoiesis as described in Johansson *et al.*, *Cellular Biology* (1995) 15:141-151, Keller *et al.*, *Mol. Cell. Biol.* (1993) 13:473-486, McClanahan *et al.*, *Blood* (1993) 81:2903-2915 and using assays to detect stem cell survival and differentiation as described in Culture of Hematopoietic Cells, Freshney *et al.* eds, pp 1-21, 23-29, 139-162, 163-179, and 265-268, Wiley-Liss, Inc., New York, NY, 1994, and Hirajama *et al.*, *PNAS USA* (1992) 89:5907-5911.

In vivo activities of TNFs also include lymphocyte survival and apoptosis, assayed as described in Darzynkiewicz *et al.*, *Cytometry* (1992) 13:795-808; Gorczyca *et al.*, *Leukemia* (1993) 7:659-670; Itoh *et al.*, *Cell* (1991) 66:233-243; Zacharduk, *J. Immunol.* (1990) 145:4037-4045; Zamai *et al.*, *Cytometry* (1993) 14:891-897; and Gorczyca *et al.*, *Int'l J. Oncol.* (1992) 1:639-648.

Some members of the TNF family are cleaved from the cell surface; others remain membrane bound. The three-dimensional structure of TNF is discussed in Sprang and Eck, Tumor Necrosis Factors; *supra*.

TNF proteins include a transmembrane domain. The protein is cleaved into a
5 shorter soluble version, as described in Kriegler *et al.*, *Cell* (1988) 53:45-53, Perez *et*
al., *Cell* (1990) 63:251-258, and Shaw *et al.*, *Cell* (1986) 46:659-667. The
transmembrane domain is between amino acid 46 and 77 and the cytoplasmic domain
is between position 1 and 45 on the human form of TNF α . The 3-dimensional motifs
of TNF include a sandwich of two pleated β sheets. Each sheet is composed of anti-
10 parallel α strands. α Strands facing each other on opposite sites of the sandwich are
connected by short polypeptide loops, as described in Van Ostade *et al.*, *Protein*
Engineering (1994) 7(1):5-22, and Sprang *et al.*, Tumor Necrosis Factors; *supra*.

Residues of the TNF family proteins that are involved in the β sheet secondary
structure have been identified as described in Van Ostade *et al.*, *Protein Engineering*
15 (1994) 7(1):5-22, and Sprang *et al.*, Tumor Necrosis Factors; *supra*.

TNF receptors are disclosed in U.S. Patent No. 5,395,760. A profile derived
from the TNF receptor family is created by aligning sequences of the TNF receptor
family, including Apo1/Fas, TNFR I and II, death receptor3 (DR3), CD40, ox40,
CD27, and CD30. Thus, the profile is designed to identify, from the nucleic acids of
20 the invention, sequences of proteins that constitute new members or homologs of this
family of proteins.

Tumor necrosis factor receptors exist in two forms in humans: p55 TNFR and
p75 TNFR, both of which provide intracellular signals upon binding with a ligand.
The extracellular domains of these receptor proteins are cysteine rich. The receptors
25 can remain membrane bound, although some forms of the receptors are cleaved
forming soluble receptors. The regulation, diagnostic, prognostic, and therapeutic
value of soluble TNF receptors is discussed in Aderka, *Cytokine and Growth Factor*
Reviews, (1996) 7(3):231-240.

30 PDGF Family

U.S. Patent No. 5,326,695 discloses platelet derived growth factor agonists;
bioactive portions of PDGF-B are used as agonists. U.S. Patent No. 4,845,075

discloses biologically active B-chain homodimers, and also includes variants and derivatives of the PDGF-B chain. U.S. Patent No. 5,128,321 discloses PDGF analogs and methods of use. Proteins having the same bioactivity as PDGF are disclosed, including A and B chain proteins.

5

Kinase (Including MKK) Family

U.S. Patent No. 5,650,501 discloses serine/threonine kinase, associated with mitotic and meiotic cell division; the protein has a kinase domain in its N-terminal and 3 PEST regions in the C-terminus. U.S. Patent No. 5,605,825 discloses human 10 PAK65, a serine protein kinase.

The foregoing discussion provides a few examples of the protein profiles that can be compared with the nucleic acids of the invention. One skilled in the art can use these and other protein profiles to identify the genes that correlate with the nucleic acids.

15

IX. Determining the Function of the Encoded Expression Products

Ribozymes, antisense constructs, dominant negative mutants, and triplex formation can be used to determine function of the expression product of an nucleic acid-related gene.

20

A. Ribozymes

Trans-cleaving catalytic RNAs (ribozymes) are RNA molecules possessing endoribonuclease activity. Ribozymes are specifically designed for a particular target, and the target message must contain a specific nucleotide sequence. They are 25 engineered to cleave any RNA species site-specifically in the background of cellular RNA. The cleavage event renders the mRNA unstable and prevents protein expression. Importantly, ribozymes can be used to inhibit expression of a gene of unknown function for the purpose of determining its function in an in vitro or in vivo context, by detecting the phenotypic effect.

30

One commonly used ribozyme motif is the hammerhead, for which the substrate sequence requirements are minimal. Design of the hammerhead ribozyme is disclosed in Usman *et al.*, *Current Opin. Struct. Biol.* (1996) 6:527-533. Usman

- also discusses the therapeutic uses of ribozymes. Ribozymes can also be prepared and used as described in Long *et al.*, *FASEB J.* (1993) 7:25; Symons, *Ann. Rev. Biochem.* (1992) 61:641; Perrotta *et al.*, *Biochem.* (1992) 31:16-17; Ojwang *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1992) 89:10802-10806; and U.S. Patent No. 5,254,678.
- 5 Ribozyme cleavage of HIV-I RNA is described in U.S. Patent No. 5,144,019; methods of cleaving RNA using ribozymes is described in U.S. Patent No. 5,116,742; and methods for increasing the specificity of ribozymes are described in U.S. Patent No. 5,225,337 and Koizumi *et al.*, *Nucleic Acid Res.* (1989) 17:7059-7071. Preparation and use of ribozyme fragments in a hammerhead structure are also
- 10 described by Koizumi *et al.*, *Nucleic Acids Res.* (1989) 17:7059-7071. Preparation and use of ribozyme fragments in a hairpin structure are described by Chowrira and Burke, *Nucleic Acids Res.* (1992) 20:2835. Ribozymes can also be made by rolling transcription as described in Daubendiek and Kool, *Nat. Biotechnol.* (1997) 15(3):273-277.
- 15 The hybridizing region of the ribozyme may be modified or may be prepared as a branched structure as described in Horn and Urdea, *Nucleic Acids Res.* (1989) 17:6959-67. The basic structure of the ribozymes may also be chemically altered in ways familiar to those skilled in the art, and chemically synthesized ribozymes can be administered as synthetic oligonucleotide derivatives modified by monomeric units.
- 20 In a therapeutic context, liposome mediated delivery of ribozymes improves cellular uptake, as described in Birikh *et al.*, *Eur. J. Biochem.* (1997) 245:1-16.
- Using the nucleic acid sequences of the invention and methods known in the art, ribozymes are designed to specifically bind and cut the corresponding mRNA species. Ribozymes thus provide a means to inhibit the expression of any of the
- 25 proteins encoded by the disclosed nucleic acids or their full-length genes. The full-length gene need not be known in order to design and use specific inhibitory ribozymes. In the case of an nucleic acid or cDNA of unknown function, ribozymes corresponding to that nucleotide sequence can be tested in vitro for efficacy in cleaving the target transcript. Those ribozymes that effect cleavage in vitro are further
- 30 tested in vivo. The ribozyme can also be used to generate an animal model for a disease, as described in Birikh *et al.*, *Eur. J. Biochem.* (1997) 245:1-16. An effective ribozyme is used to determine the function of the gene of interest by blocking its

transcription and detecting a change in the cell. Where the gene is found to be a mediator in a disease, an effective ribozyme is designed and delivered in a gene therapy for blocking transcription and expression of the gene.

- Therapeutic and functional genomic applications of ribozymes proceed
- 5 beginning with knowledge of a portion of the coding sequence of the gene to be inhibited. Thus, for many genes, a partial nucleic acid sequence provides adequate sequence for constructing an effective ribozyme. A target cleavage site is selected in the target sequence, and a ribozyme is constructed based on the 5' and 3' nucleotide sequences that flank the cleavage site. Retroviral vectors are engineered to express
- 10 monomeric and multimeric hammerhead ribozymes targeting the mRNA of the target coding sequence. These monomeric and multimeric ribozymes are tested in vitro for an ability to cleave the target mRNA. A cell line is stably transduced with the retroviral vectors expressing the ribozymes, and the transduction is confirmed by Northern blot analysis and reverse-transcription polymerase chain reaction (RT-PCR).
- 15 The cells are screened for inactivation of the target mRNA by such indicators as reduction of expression of disease markers or reduction of the gene product of the target mRNA.

B. Antisense

- 20 Antisense nucleic acids are designed to specifically bind to RNA, resulting in the formation of RNA-DNA or RNA-RNA hybrids, with an arrest of DNA replication, reverse transcription or messenger RNA translation. Antisense polynucleotides based on a selected nucleic acid sequence can interfere with expression of the corresponding gene. Antisense polynucleotides are typically
- 25 generated within the cell by expression from antisense constructs that contain the antisense nucleic acid strand as the transcribed strand. Antisense nucleic acids will bind and/or interfere with the translation of nucleic acid-related mRNA. The expression products of control cells and cells treated with the antisense construct are compared to detect the protein product of the gene corresponding to the nucleic acid.
- 30 The protein is isolated and identified using routine biochemical methods.

One rationale for using antisense methods to determine the function of the gene corresponding to an nucleic acid is the biological activity of antisense

therapeutics. Antisense therapy for a variety of cancers is in clinical phase and has been discussed extensively in the literature. Reed reviewed antisense therapy directed at the Bcl-2 gene in tumors; gene transfer-mediated overexpression of Bcl-2 in tumor cell lines conferred resistance to many types of cancer drugs. (Reed, J.C., *N.C.I.* 5 (1997) 89:988-990). The potential for clinical development of antisense inhibitors of *ras* is discussed by Cowser, L.M., *Anti-Cancer Drug Design* (1997) 12:359-371. Additional important antisense targets include leukemia (Geurtz, A.M., *Anti-Cancer Drug Design* (1997) 12:341-358); human C-ref kinase (Monia, B.P., *Anti-Cancer Drug Design* (1997) 12:327-339); and protein kinase C (McGraw *et al.*, *Anti-Cancer Drug Design* (1997) 12:315-326.

Given the extensive background literature and clinical experience in antisense therapy, one skilled in the art can use selected nucleic acids of the invention as additional potential therapeutics. The choice of nucleic acid can be narrowed by first testing them for binding to "hot spot" regions of the genome of cancerous cells. If an 15 nucleic acid is identified as binding to a "hot spot", testing the nucleic acid as an antisense compound in the corresponding cancer cells clearly is warranted.

Ogunbiyi *et al.*, *Gastroenterology* (1997) 113(3):761-766 describe prognostic use of allelic loss in colon cancer; Barks *et al.*, *Genes, Chromosomes, and Cancer* (1997) 19(4):278-285 describe increased chromosome copy number detected by FISH 20 in malignant melanoma; Nishizake *et al.*, *Genes, Chromosomes, and Cancer* (1997) 19(4):267-272 describe genetic alterations in primary breast cancer and their metastases and direct comparison using modified comparative genome hybridization; and Elo *et al.*, *Cancer Research* (1997) 57(16):3356-3359 disclose that loss of heterozygosity at 16z24.1-q24.2 is significantly associated with metastatic and 25 aggressive behavior of prostate cancer.

C. Dominant Negative Mutations

As an alternative method for identifying function of the nucleic acid-related gene, dominant negative mutations are readily generated for corresponding proteins 30 that are active as homomultimers. A mutant polypeptide will interact with wild-type polypeptides (made from the other allele) and form a non-functional multimer. Thus, a mutation is in a substrate-binding domain, a catalytic domain, or a cellular

localization domain. Preferably, the mutant polypeptide will be overproduced. Point mutations are made that have such an effect. In addition, fusion of different polypeptides of various lengths to the terminus of a protein can yield dominant negative mutants. General strategies are available for making dominant negative 5 mutants. See Herskowitz, *Nature* (1987) 329:219-222. Such a technique can be used for creating a loss-of-function mutation, which is useful for determining the function of a protein.

D. Triplex Formation

10 Endogenous gene expression can also be reduced by inactivating or "knocking out" the gene or its promoter using targeted homologous recombination. (E.g., see Smithies *et al.*, 1985, *Nature* 317:230-234; Thomas & Capecchi, 1987, *Cell* 51:503-512; Thompson *et al.*, 1989 *Cell* 5:313-321; each of which is incorporated by reference herein in its entirety). For example, a mutant, non-functional gene (or a 15 completely unrelated DNA sequence) flanked by DNA homologous to the endogenous gene (either the coding regions or regulatory regions of the gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express that gene *in vivo*. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the gene.

20 Alternatively, endogenous gene expression can be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of the target gene (i.e., the gene promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells in the body. (See generally, Helene, C. 1991, *Anticancer Drug Des.*, 6(6):569-84; Helene, C., *et al.*, 1992, *Ann. N.Y. Accad. Sci.*, 660:27-36; and Maher, L.J., 1992, *Bioassays* 14(12):807-15).

25 Nucleic acid molecules to be used in triple helix formation for the inhibition of transcription are preferably single stranded and composed of deoxyribonucleotides. The base composition of these oligonucleotides should promote triple helix formation via Hoogsteen base-pairing rules, which generally require sizable stretches of either 30 purines or pyrimidines to be present on one strand of a duplex. Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC triplets across the three associated strands of the resulting triple helix. The pyrimidine-rich molecules provide

base complementarity to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand. In addition, nucleic acid molecules may be chosen that are purine-rich, for example, containing a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the 5 majority of the purine residues are located on a single strand of the targeted duplex, resulting in CGC triplets across the three strands in the triplex.

Alternatively, the potential sequences that can be targeted for triple helix formation may be increased by creating a so called "switchback" nucleic acid molecule. Switchback molecules are synthesized in an alternating 5'-3', 3'-5' 10 manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizable stretch of either purines or pyrimidines to be present on one strand of a duplex.

Antisense RNA and DNA, ribozyme, and triple helix molecules of the invention may be prepared by any method known in the art for the synthesis of DNA 15 and RNA molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides and oligoribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by *in vitro* and *in vivo* transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated 20 into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.

Moreover, various well known modifications to nucleic acid molecules may be 25 introduced as a means of increasing intracellular stability and half-life. Possible modifications include but are not limited to the addition of flanking sequences of ribonucleotides or deoxyribonucleotides to the 5' and/or 3' ends of the molecule or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the oligodeoxyribonucleotide backbone.

X. Diagnostic & Prognostic Assays and Drug Screening Methods

The present invention provides method for determining whether a subject is at risk for developing a disease or condition characterized by unwanted cell proliferation by detecting the disclosed biomarkers, i.e., the disclosed nucleic acid markers (SEQ ID Nos: 1-850) and/or polypeptide markers for colon cancer encoded thereby.

In clinical applications, human tissue samples can be screened for the presence and/or absence of the biomarkers identified herein. Such samples could consist of needle biopsy cores, surgical resection samples, lymph node tissue, or serum. For example, these methods include obtaining a biopsy, which is optionally fractionated by cryostat sectioning to enrich tumor cells to about 80% of the total cell population. In certain embodiments, nucleic acids extracted from these samples may be amplified using techniques well known in the art. The levels of selected markers detected would be compared with statistically valid groups of metastatic, non-metastatic malignant, benign, or normal colon tissue samples.

In one embodiment, the diagnostic method comprises determining whether a subject has an abnormal mRNA and/or protein level of the disclosed markers, such as by Northern blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), *in situ* hybridization, immunoprecipitation, Western blot hybridization, or immunohistochemistry. According to the method, cells are obtained from a subject and the levels of the disclosed biomarkers, protein or mRNA level, is determined and compared to the level of these markers in a healthy subject. An abnormal level of the biomarker polypeptide or mRNA levels is likely to be indicative of cancer such as colon cancer.

Accordingly, in one aspect, the invention provides probes and primers that are specific to the unique nucleic acid markers disclosed herein. Accordingly, the nucleic acid probes comprise a nucleotide sequence at least 12 nucleotides in length, preferably at least 15 nucleotides, more preferably, 25 nucleotides, and most preferably at least 40 nucleotides, and up to all or nearly all of the coding sequence which is complementary to a portion of the coding sequence of a marker nucleic acid sequence, which nucleic acid sequence is represented by SEQ ID Nos: 1-850 or a sequence complementary thereto.

In one embodiment, the method comprises using a nucleic acid probe to determine the presence of cancerous cells in a tissue from a patient. Specifically, the method comprises:

1. providing a nucleic acid probe comprising a nucleotide sequence at least 12 nucleotides in length, preferably at least 15 nucleotides, more preferably, 25 nucleotides, and most preferably at least 40 nucleotides, and up to all or nearly all of the coding sequence which is complementary to a portion of the coding sequence of a nucleic acid sequence represented by SEQ ID Nos: 1-850 or a sequence complementary thereto and is differentially expressed in tumors cells, such as colon cancer cells;
 2. obtaining a tissue sample from a patient potentially comprising cancerous cells;
 3. providing a second tissue sample containing cells substantially all of which are non-cancerous;
 4. contacting the nucleic acid probe under stringent conditions with RNA of each of said first and second tissue samples (e.g., in a Northern blot or in situ hybridization assay); and
 5. comparing (a) the amount of hybridization of the probe with RNA of the first tissue sample, with (b) the amount of hybridization of the probe with RNA of the second tissue sample;
- wherein a statistically significant difference in the amount of hybridization with the RNA of the first tissue sample as compared to the amount of hybridization with the RNA of the second tissue sample is indicative of the presence of cancerous cells in the first tissue sample.

In one aspect, the method comprises in situ hybridization with a probe derived from a given marker nucleic acid sequence, which nucleic acid sequence is represented by SEQ ID Nos: 1-850 or a sequence complementary thereto. The method comprises contacting the labeled hybridization probe with a sample of a given

type of tissue potentially containing cancerous or precancerous cells as well as normal cells, and determining whether the probe labels some cells of the given tissue type to a degree significantly different (e.g., by at least a factor of two, or at least a factor of five, or at least a factor of twenty, or at least a factor of fifty) than the degree to which
5 it labels other cells of the same tissue type.

Also within the invention is a method of determining the phenotype of a test cell from a given human tissue, e.g., whether the cell is (a) normal, or (b) cancerous or precancerous, by contacting the mRNA of a test cell with a nucleic acid probe at least 12 nucleotides in length, preferably at least 15 nucleotides, more preferably at least 25
10 nucleotides, and most preferably at least 40 nucleotides, and up to all or nearly all of a sequence which is complementary to a portion of the coding sequence of a nucleic acid sequence represented by SEQ ID Nos: 1-850 or a sequence complementary thereto, and which is differentially expressed in tumor cells as compared to normal cells of the given tissue type; and determining the approximate amount of
15 hybridization of the probe to the mRNA, an amount of hybridization either more or less than that seen with the mRNA of a normal cell of that tissue type being indicative that the test cell is cancerous or precancerous.

Alternatively, the above diagnostic assays may be carried out using antibodies to detect the protein product encoded by the marker nucleic acid sequence, which
20 nucleic acid sequence is represented by SEQ ID Nos: 1-850 or a sequence complementary thereto. Accordingly, in one embodiment, the assay would include contacting the proteins of the test cell with an antibody specific for the gene product of a nucleic acid represented by SEQ ID Nos: 1-850 or a sequence complementary thereto, the marker nucleic acid being one which is expressed at a given control level
25 in normal cells of the same tissue type as the test cell, and determining the approximate amount of immunocomplex formation by the antibody and the proteins of the test cell, wherein a statistically significant difference in the amount of the immunocomplex formed with the proteins of a test cell as compared to a normal cell of the same tissue type is an indication that the test cell is cancerous or precancerous.

30 Another such method includes the steps of: providing an antibody specific for the gene product of a marker nucleic acid sequence represented by SEQ ID Nos 1-850, the gene product being present in cancerous tissue of a given tissue type (e.g.,

colon tissue) at a level more or less than the level of the gene product in noncancerous tissue of the same tissue type; obtaining from a patient a first sample of tissue of the given tissue type, which sample potentially includes cancerous cells; providing a second sample of tissue of the same tissue type (which may be from the same patient
5 or from a normal control, e.g. another individual or cultured cells), this second sample containing normal cells and essentially no cancerous cells; contacting the antibody with protein (which may be partially purified, in lysed but unfractionated cells, or in situ) of the first and second samples under conditions permitting immunocomplex formation between the antibody and the marker nucleic acid sequence product present
10 in the samples; and comparing (a) the amount of immunocomplex formation in the first sample, with (b) the amount of immunocomplex formation in the second sample, wherein a statistically significant difference in the amount of immunocomplex formation in the first sample less as compared to the amount of immunocomplex formation in the second sample is indicative of the presence of cancerous cells in the
15 first sample of tissue.

The subject invention further provides a method of determining whether a cell sample obtained from a subject possesses an abnormal amount of marker polypeptide which comprises (a) obtaining a cell sample from the subject, (b) quantitatively determining the amount of the marker polypeptide in the sample so obtained, and (c)
20 comparing the amount of the marker polypeptide so determined with a known standard, so as to thereby determine whether the cell sample obtained from the subject possesses an abnormal amount of the marker polypeptide. Such marker polypeptides may be detected by immunohistochemical assays, dot-blot assays, ELISA and the like.

25 Immunoassays are commonly used to quantitate the levels of proteins in cell samples, and many other immunoassay techniques are known in the art. The invention is not limited to a particular assay procedure, and therefore is intended to include both homogeneous and heterogeneous procedures. Exemplary immunoassays which can be conducted according to the invention include fluorescence polarization immunoassay (FPIA), fluorescence immunoassay (FIA), enzyme immunoassay (EIA), nephelometric inhibition immunoassay (NIA), enzyme linked immunosorbent assay (ELISA), and radioimmunoassay (RIA). An indicator moiety, or label group, can be
30

attached to the subject antibodies and is selected so as to meet the needs of various uses of the method which are often dictated by the availability of assay equipment and compatible immunoassay procedures. General techniques to be used in performing the various immunoassays noted above are known to those of ordinary skill in the art.

5 In another embodiment, the level of the encoded product, i.e., the product encoded by SEQ ID Nos 1-850 or a sequence complementary thereto, in a biological fluid (e.g., blood or urine) of a patient may be determined as a way of monitoring the level of expression of the marker nucleic acid sequence in cells of that patient. Such a method would include the steps of obtaining a sample of a biological fluid from the
10 patient, contacting the sample (or proteins from the sample) with an antibody specific for a encoded marker polypeptide, and determining the amount of immune complex formation by the antibody, with the amount of immune complex formation being indicative of the level of the marker encoded product in the sample. This determination is particularly instructive when compared to the amount of immune
15 complex formation by the same antibody in a control sample taken from a normal individual or in one or more samples previously or subsequently obtained from the same person.

20 In another embodiment, the method can be used to determine the amount of marker polypeptide present in a cell, which in turn can be correlated with progression of a hyperproliferative disorder, e.g., colon cancer. The level of the marker polypeptide can be used predictively to evaluate whether a sample of cells contains cells which are, or are predisposed towards becoming, transformed cells. Moreover, the subject method can be used to assess the phenotype of cells which are known to be transformed, the phenotyping results being useful in planning a particular therapeutic regimen. For instance, very high levels of the marker polypeptide in sample cells is a powerful diagnostic and prognostic marker for a cancer, such as colon cancer. The observation of marker polypeptide level can be utilized in decisions regarding, e.g., the use of more aggressive therapies.
25

30 As set out above, one aspect of the present invention relates to diagnostic assays for determining, in the context of cells isolated from a patient, if the level of a marker polypeptide is significantly reduced in the sample cells. The term "significantly reduced" refers to a cell phenotype wherein the cell possesses a

reduced cellular amount of the marker polypeptide relative to a normal cell of similar tissue origin. For example, a cell may have less than about 50%, 25%, 10%, or 5% of the marker polypeptide that a normal control cell. In particular, the assay evaluates the level of marker polypeptide in the test cells, and, preferably, compares the 5 measured level with marker polypeptide detected in at least one control cell, e.g., a normal cell and/or a transformed cell of known phenotype.

Of particular importance to the subject invention is the ability to quantitate the level of marker polypeptide as determined by the number of cells associated with a normal or abnormal marker polypeptide level. The number of cells with a particular 10 marker polypeptide phenotype may then be correlated with patient prognosis. In one embodiment of the invention, the marker polypeptide phenotype of the lesion is determined as a percentage of cells in a biopsy which are found to have abnormally high/low levels of the marker polypeptide. Such expression may be detected by immunohistochemical assays, dot-blot assays, ELISA and the like.

15 Where tissue samples are employed, immunohistochemical staining may be used to determine the number of cells having the marker polypeptide phenotype. For such staining, a multiblock of tissue is taken from the biopsy or other tissue sample and subjected to proteolytic hydrolysis, employing such agents as protease K or pepsin. In certain embodiments, it may be desirable to isolate a nuclear fraction from 20 the sample cells and detect the level of the marker polypeptide in the nuclear fraction.

The tissue samples are fixed by treatment with a reagent such as formalin, glutaraldehyde, methanol, or the like. The samples are then incubated with an antibody, preferably a monoclonal antibody, with binding specificity for the marker polypeptides. This antibody may be conjugated to a label for subsequent detection of 25 binding. Samples are incubated for a time sufficient for formation of the immuno-complexes. Binding of the antibody is then detected by virtue of a label conjugated to this antibody. Where the antibody is unlabeled, a second labeled antibody may be employed, e.g., which is specific for the isotype of the anti-marker polypeptide antibody. Examples of labels which may be employed include radionuclides, 30 fluorescers, chemiluminescers, enzymes and the like.

Where enzymes are employed, the substrate for the enzyme may be added to the samples to provide a colored or fluorescent product. Examples of suitable

enzymes for use in conjugates include horseradish peroxidase, alkaline phosphatase, malate dehydrogenase and the like. Where not commercially available, such antibody-enzyme conjugates are readily produced by techniques known to those skilled in the art.

5 In one embodiment, the assay is performed as a dot blot assay. The dot blot assay finds particular application where tissue samples are employed as it allows determination of the average amount of the marker polypeptide associated with a single cell by correlating the amount of marker polypeptide in a cell-free extract produced from a predetermined number of cells.

10 It is well established in the cancer literature that tumor cells of the same type (e.g., breast and/or colon tumor cells) may not show uniformly increased expression of individual oncogenes or uniformly decreased expression of individual tumor suppressor genes. There may also be varying levels of expression of a given marker gene even between cells of a given type of cancer, further emphasizing the need for
15 reliance on a battery of tests rather than a single test. Accordingly, in one aspect, the invention provides for a battery of tests utilizing a number of probes of the invention, in order to improve the reliability and/or accuracy of the diagnostic test.

 In one embodiment, the present invention also provides a method wherein nucleic acid probes are immobilized on a DNA chip in an organized array.
20 Oligonucleotides can be bound to a solid support by a variety of processes, including lithography. For example a chip can hold up to 250,000 oligonucleotides (GeneChip, Affymetrix). These nucleic acid probes comprise a nucleotide sequence at least about 12 nucleotides in length, preferably at least about 15 nucleotides, more preferably at least about 25 nucleotides, and most preferably at least about 40 nucleotides, and up to
25 all or nearly all of a sequence which is complementary to a portion of the coding sequence of a marker nucleic acid sequence represented by SEQ ID Nos: 1-850 and is differentially expressed in tumor cells, such as colon cancer cells. The present invention provides significant advantages over the available tests for various cancers, such as colon cancer, because it increases the reliability of the test by providing an
30 array of nucleic acid markers on a single chip.

 The method includes obtaining a biopsy, which is optionally fractionated by cryostat sectioning to enrich tumor cells to about 80% of the total cell population. The

DNA or RNA is then extracted, amplified, and analyzed with a DNA chip to determine the presence or absence of the marker nucleic acid sequences.

In one embodiment, the nucleic acid probes are spotted onto a substrate in a two-dimensional matrix or array. Samples of nucleic acids can be labeled and then 5 hybridized to the probes. Double-stranded nucleic acids, comprising the labeled sample nucleic acids bound to probe nucleic acids, can be detected once the unbound portion of the sample is washed away.

The probe nucleic acids can be spotted on substrates including glass, nitrocellulose, etc. The probes can be bound to the substrate by either covalent bonds 10 or by non-specific interactions, such as hydrophobic interactions. The sample nucleic acids can be labeled using radioactive labels, fluorophores, chromophores, etc.

Techniques for constructing arrays and methods of using these arrays are described in EP No. 0 799 897; PCT No. WO 97/29212; PCT No. WO 97/27317; EP 15 No. 0 785 280; PCT No. WO 97/02357; U.S. Pat. No. 5,593,839; U.S. Pat. No. 5,578,832; EP No. 0 728 520; U.S. Pat. No. 5,599,695; EP No. 0 721 016; U.S. Pat. No. 5,556,752; PCT No. WO 95/22058; and U.S. Pat. No. 5,631,734.

Further, arrays can be used to examine differential expression of genes and can be used to determine gene function. For example, arrays of the instant nucleic acid sequences can be used to determine if any of the nucleic acid sequences are 20 differentially expressed between normal cells and cancer cells, for example. High expression of a particular message in a cancer cell, which is not observed in a corresponding normal cell, can indicate a cancer specific protein.

In yet another embodiment, the invention contemplates using a panel of antibodies which are generated against the marker polypeptides of this invention, 25 which polypeptides are encoded by SEQ ID Nos 1-850. Such a panel of antibodies may be used as a reliable diagnostic probe for colon cancer. The assay of the present invention comprises contacting a biopsy sample containing cells, e.g., colon cells, with a panel of antibodies to one or more of the encoded products to determine the presence or absence of the marker polypeptides.

30 The diagnostic methods of the subject invention may also be employed as follow-up to treatment, e.g., quantitation of the level of marker polypeptides may be

indicative of the effectiveness of current or previously employed cancer therapies as well as the effect of these therapies upon patient prognosis.

Accordingly, the present invention makes available diagnostic assays and reagents for detecting gain and/or loss of marker polypeptides from a cell in order to 5 aid in the diagnosis and phenotyping of proliferative disorders arising from, for example, tumorigenic transformation of cells.

The diagnostic assays described above can be adapted to be used as prognostic assays, as well. Such an application takes advantage of the sensitivity of the assays of the invention to events which take place at characteristic stages in the progression of a 10 tumor. For example, a given marker gene may be up- or downregulated at a very early stage, perhaps before the cell is irreversibly committed to developing into a malignancy, while another marker gene may be characteristically up or down regulated only at a much later stage. Such a method could involve the steps of contacting the mRNA of a test cell with a nucleic acid probe derived from a given 15 marker nucleic acid which is expressed at different characteristic levels in cancerous or precancerous cells at different stages of tumor progression, and determining the approximate amount of hybridization of the probe to the mRNA of the cell, such amount being an indication of the level of expression of the gene in the cell, and thus an indication of the stage of tumor progression of the cell; alternatively, the assay can 20 be carried out with an antibody specific for the gene product of the given marker nucleic acid, contacted with the proteins of the test cell. A battery of such tests will disclose not only the existence and location of a tumor, but also will allow the clinician to select the mode of treatment most appropriate for the tumor, and to predict 25 the likelihood of success of that treatment.

25 The methods of the invention can also be used to follow the clinical course of a tumor. For example, the assay of the invention can be applied to a tissue sample from a patient; following treatment of the patient for the cancer, another tissue sample is taken and the test repeated. Successful treatment will result in either removal of all cells which demonstrate differential expression characteristic of the cancerous or 30 precancerous cells, or a substantial increase in expression of the gene in those cells, perhaps approaching or even surpassing normal levels.

In yet another embodiment, the invention provides methods for determining whether a subject is at risk for developing a disease, such as a predisposition to develop cancer, for example colon cancer, associated with an aberrant activity of any one of the polypeptides encoded by nucleic acids of SEQ ID Nos: 1-850, wherein the 5 aberrant activity of the polypeptide is characterized by detecting the presence or absence of a genetic lesion characterized by at least one of (i) an alteration affecting the integrity of a gene encoding a marker polypeptides, or (ii) the mis-expression of the encoding nucleic acid. To illustrate, such genetic lesions can be detected by ascertaining the existence of at least one of (i) a deletion of one or more nucleotides 10 from the nucleic acid sequence, (ii) an addition of one or more nucleotides to the nucleic acid sequence, (iii) a substitution of one or more nucleotides of the nucleic acid sequence, (iv) a gross chromosomal rearrangement of the nucleic acid sequence, (v) a gross alteration in the level of a messenger RNA transcript of the nucleic acid sequence, (vii) aberrant modification of the nucleic acid sequence, such as of the 15 methylation pattern of the genomic DNA, (vii) the presence of a non-wild type splicing pattern of a messenger RNA transcript of the gene, (viii) a non-wild type level of the marker polypeptide, (ix) allelic loss of the gene, and/or (x) inappropriate post-translational modification of the marker polypeptide.

The present invention provides assay techniques for detecting lesions in the 20 encoding nucleic acid sequence. These methods include, but are not limited to, methods involving sequence analysis, Southern blot hybridization, restriction enzyme site mapping, and methods involving detection of absence of nucleotide pairing between the nucleic acid to be analyzed and a probe.

Specific diseases or disorders, e.g., genetic diseases or disorders, are 25 associated with specific allelic variants of polymorphic regions of certain genes, which do not necessarily encode a mutated protein. Thus, the presence of a specific allelic variant of a polymorphic region of a gene in a subject can render the subject susceptible to developing a specific disease or disorder. Polymorphic regions in genes, can be identified, by determining the nucleotide sequence of genes in 30 populations of individuals. If a polymorphic region is identified, then the link with a specific disease can be determined by studying specific populations of individuals, e.g, individuals which developed a specific disease, such as colon cancer. A

polymorphic region can be located in any region of a gene, e.g., exons, in coding or non coding regions of exons, introns, and promoter region.

In an exemplary embodiment, there is provided a nucleic acid composition comprising a nucleic acid probe including a region of nucleotide sequence which is capable of hybridizing to a sense or antisense sequence of a gene or naturally occurring mutants thereof, or 5' or 3' flanking sequences or intronic sequences naturally associated with the subject genes or naturally occurring mutants thereof. The nucleic acid of a cell is rendered accessible for hybridization, the probe is contacted with the nucleic acid of the sample, and the hybridization of the probe to the sample nucleic acid is detected. Such techniques can be used to detect lesions or allelic variants at either the genomic or mRNA level, including deletions, substitutions, etc., as well as to determine mRNA transcript levels.

A preferred detection method is allele specific hybridization using probes overlapping the mutation or polymorphic site and having about 5, 10, 20, 25, or 30 nucleotides around the mutation or polymorphic region. In a preferred embodiment of the invention, several probes capable of hybridizing specifically to allelic variants are attached to a solid phase support, e.g., a "chip". Mutation detection analysis using these chips comprising oligonucleotides, also termed "DNA probe arrays" is described e.g., in Cronin et al. (1996) *Human Mutation* 7:244. In one embodiment, a chip comprises all the allelic variants of at least one polymorphic region of a gene. The solid phase support is then contacted with a test nucleic acid and hybridization to the specific probes is detected. Accordingly, the identity of numerous allelic variants of one or more genes can be identified in a simple hybridization experiment.

In certain embodiments, detection of the lesion comprises utilizing the probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligase chain reaction (LCR) (see, e.g., Landegran et al. (1988) *Science* 241:1077-1080; and Nakazawa et al. (1994) *PNAS* 91:360-364), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya et al. (1995) *Nuc Acid Res* 23:675-682). In a merely illustrative embodiment, the method includes the steps of (i) collecting a sample of cells from a patient, (ii) isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, (iii)

contacting the nucleic acid sample with one or more primers which specifically hybridize to a nucleic acid sequence under conditions such that hybridization and amplification of the nucleic acid (if present) occurs, and (iv) detecting the presence or absence of an amplification product, or detecting the size of the amplification product
5 and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.

Alternative amplification methods include: self sustained sequence replication (Guatelli, J.C. *et al.*, 1990, Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional
10 amplification system (Kwoh, D.Y. *et al.*, 1989, Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi, P.M. *et al.*, 1988, Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such
15 molecules are present in very low numbers.

In a preferred embodiment of the subject assay, mutations in, or allelic variants, of a gene from a sample cell are identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and
20 fragment length sizes are determined by gel electrophoresis. Moreover, the use of sequence specific ribozymes (see, for example, U.S. Patent No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.

Another aspect of the invention is directed to the identification of agents
25 capable of modulating the differentiation and proliferation of cells characterized by aberrant proliferation. In this regard, the invention provides assays for determining compounds that modulate the expression of the marker nucleic acids (SEQ ID Nos: 1-850) and/or alter for example, inhibit the bioactivity of the encoded polypeptide.

Several in vivo methods can be used to identify compounds that modulate
30 expression of the marker nucleic acids (SEQ ID Nos: 1-850) and/or alter for example, inhibit the bioactivity of the encoded polypeptide.

Drug screening is performed by adding a test compound to a sample of cells, and monitoring the effect. A parallel sample which does not receive the test compound is also monitored as a control. The treated and untreated cells are then compared by any suitable phenotypic criteria, including but not limited to microscopic analysis, viability testing, ability to replicate, histological examination, the level of a particular RNA or polypeptide associated with the cells, the level of enzymatic activity expressed by the cells or cell lysates, and the ability of the cells to interact with other cells or compounds. Differences between treated and untreated cells indicates effects attributable to the test compound.

Desirable effects of a test compound include an effect on any phenotype that was conferred by the cancer-associated marker nucleic acid sequence. Examples include a test compound that limits the overabundance of mRNA, limits production of the encoded protein, or limits the functional effect of the protein. The effect of the test compound would be apparent when comparing results between treated and untreated cells.

The invention thus also encompasses methods of screening for agents which inhibit expression of the nucleic acid markers (SEQ ID Nos: 1-850) in vitro, comprising exposing a cell or tissue in which the marker nucleic acid mRNA is detectable in cultured cells to an agent in order to determine whether the agent is capable of inhibiting production of the mRNA; and determining the level of mRNA in the exposed cells or tissue, wherein a decrease in the level of the mRNA after exposure of the cell line to the agent is indicative of inhibition of the marker nucleic acid mRNA production.

Alternatively, the screening method may include in vitro screening of a cell or tissue in which marker protein is detectable in cultured cells to an agent suspected of inhibiting production of the marker protein; and determining the level of the marker protein in the cells or tissue, wherein a decrease in the level of marker protein after exposure of the cells or tissue to the agent is indicative of inhibition of marker protein production.

The invention also encompasses in vivo methods of screening for agents which inhibit expression of the marker nucleic acids, comprising exposing a mammal having tumor cells in which marker mRNA or protein is detectable to an agent

suspected of inhibiting production of marker mRNA or protein; and determining the level of marker mRNA or protein in tumor cells of the exposed mammal. A decrease in the level of marker mRNA or protein after exposure of the mammal to the agent is indicative of inhibition of marker nucleic acid expression.

5 Accordingly, the invention provides a method comprising incubating a cell expressing the marker nucleic acids (SEQ ID Nos: 1-850) with a test compound and measuring the mRNA or protein level. The invention further provides a method for quantitatively determining the level of expression of the marker nucleic acids in a cell population, and a method for determining whether an agent is capable of increasing or 10 decreasing the level of expression of the marker nucleic acids in a cell population. The method for determining whether an agent is capable of increasing or decreasing the level of expression of the marker nucleic acids in a cell population comprises the steps of (a) preparing cell extracts from control and agent-treated cell populations, (b) isolating the marker polypeptides from the cell extracts, (c) quantifying (e.g., in 15 parallel) the amount of an immunocomplex formed between the marker polypeptide and an antibody specific to said polypeptide. The marker polypeptides of this invention may also be quantified by assaying for its bioactivity. Agents that induce increased the marker nucleic acid expression may be identified by their ability to increase the amount of immunocomplex formed in the treated cell as compared with 20 the amount of the immunocomplex formed in the control cell. In a similar manner, agents that decrease expression of the marker nucleic acid may be identified by their ability to decrease the amount of the immunocomplex formed in the treated cell extract as compared to the control cell.

mRNA levels can be determined by Northern blot hybridization. mRNA levels 25 can also be determined by methods involving PCR. Other sensitive methods for measuring mRNA, which can be used in high throughput assays, e.g., a method using a DELFIA endpoint detection and quantification method, are described, e.g., in Webb and Hurskainen (1996) *Journal of Biomolecular Screening* 1:119. Marker protein levels can be determined by immunoprecipitations or immunohistochemistry using an 30 antibody that specifically recognizes the protein product encoded by SEQ ID Nos: 1-850.

Agents that are identified as active in the drug screening assay are candidates to be tested for their capacity to block cell proliferation activity. These agents would be useful for treating a disorder involving aberrant growth of cells, especially colon cells.

- 5 A variety of assay formats will suffice and, in light of the present disclosure, those not expressly described herein will nevertheless be comprehended by one of ordinary skill in the art. For instance, the assay can be generated in many different formats, and include assays based on cell-free systems, e.g., purified proteins or cell lysates, as well as cell-based assays which utilize intact cells.
- 10 In many drug screening programs which test libraries of compounds and natural extracts, high throughput assays are desirable in order to maximize the number of compounds surveyed in a given period of time. Assays of the present invention which are performed in cell-free systems, such as may be derived with purified or semi-purified proteins or with lysates, are often preferred as "primary" screens in that they can be generated to permit rapid development and relatively easy detection of an alteration in a molecular target which is mediated by a test compound. Moreover, the effects of cellular toxicity and/or bioavailability of the test compound can be generally ignored in the *in vitro* system, the assay instead being focused primarily on the effect of the drug on the molecular target as may be manifest in an alteration of binding affinity with other proteins or changes in enzymatic properties of the molecular target.
- 15 20

A. Use of Nucleic Acids as Probes in Mapping and in Tissue Profiling

Probes

- 25 Polynucleotide probes as described above, e.g., comprising at least 12 contiguous nucleotides selected from the nucleotide sequence of an nucleic acid as shown in SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, are used for a variety of purposes, including identification of human chromosomes and determining transcription levels. Additional disclosure about preferred regions of the nucleic acid sequences is found in the accompanying tables.
- 30

- The nucleotide probes are labeled, for example, with a radioactive, fluorescent, biotinylated, or chemiluminescent label, and detected by well known methods appropriate for the particular label selected. Protocols for hybridizing nucleotide probes to preparations of metaphase chromosomes are also well known in the art. A 5 nucleotide probe will hybridize specifically to nucleotide sequences in the chromosome preparations which are complementary to the nucleotide sequence of the probe. A probe that hybridizes specifically to an nucleic acid should provide a detection signal at least 5-, 10-, or 20-fold higher than the background hybridization provided with other unrelated sequences.
- 10 In a non-limiting example, commercial programs are available for identifying regions of chromosomes commonly associated with disease, such as cancer. Nucleic acids of the invention can be used to probe these regions. For example, if, through profile searching, a nucleic acid is identified as corresponding to a gene encoding a kinase, its ability to bind to a cancer-related chromosomal region will suggest its role 15 as a kinase in one or more stages of tumor cell development/growth. Although some experimentation would be required to elucidate the role, the nucleic acid constitutes a new material for isolating a specific protein that has potential for developing a cancer diagnostic or therapeutic.
- 20 Nucleotide probes are used to detect expression of a gene corresponding to the nucleic acid. For example, in Northern blots, mRNA is separated electrophoretically and contacted with a probe. A probe is detected as hybridizing to an mRNA species of a particular size. The amount of hybridization is quantitated to determine relative amounts of expression, for example under a particular condition. Probes are also used to detect products of amplification by polymerase chain reaction. The products of the 25 reaction are hybridized to the probe and hybrids are detected. Probes are used for *in situ* hybridization to cells to detect expression. Probes can also be used *in vivo* for diagnostic detection of hybridizing sequences. Probes are typically labeled with a radioactive isotope. Other types of detectable labels may be used such as chromophores, fluorophores, and enzymes.
- 30 Expression of specific mRNA can vary in different cell types and can be tissue specific. This variation of mRNA levels in different cell types can be exploited with nucleic acid probe assays to determine tissue types. For example, PCR, branched

DNA probe assays, or blotting techniques utilizing nucleic acid probes substantially identical or complementary to nucleic acids of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, can determine the presence or absence of target cDNA or

5 mRNA.

Examples of a nucleotide hybridization assay are described in Urdea *et al.*, PCT WO92/02526 and Urdea *et al.*, U.S. Patent No. 5,124,246, both incorporated herein by reference. The references describe an example of a sandwich nucleotide hybridization assay.

10 Alternatively, the Polymerase Chain Reaction (PCR) is another means for detecting small amounts of target nucleic acids, as described in Mullis *et al.*, *Meth. Enzymol.* (1987) 155:335-350; U.S. Patent No. 4,683,195; and U.S. Patent No. 4,683,202, all incorporated herein by reference. Two primer polynucleotides nucleotides hybridize with the target nucleic acids and are used to prime the reaction.

15 The primers may be composed of sequence within or 3' and 5' to the polynucleotides of the Sequence Listing. Alternatively, if the primers are 3' and 5' to these polynucleotides, they need not hybridize to them or the complements. A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a large amount of target nucleic acids is

20 generated by the polymerase, it is detected by methods such as Southern blots. When using the Southern blot method, the labeled probe will hybridize to a polynucleotide of the Sequence Listing or complement.

Furthermore, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook *et al.*, "Molecular Cloning: A Laboratory Manual" (New York, Cold Spring Harbor Laboratory, 1989). mRNA or cDNA generated from mRNA using a polymerase enzyme can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labeled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected. Typically, the probe is labeled with radioactivity.

Mapping

Nucleic acids of the present invention are used to identify a chromosome on which the corresponding gene resides. Using fluorescence in situ hybridization (FISH) on normal metaphase spreads, comparative genomic hybridization allows total genome assessment of changes in relative copy number of DNA sequences. See 5 Schwartz and Samad, *Current Opinions in Biotechnology* (1994) 8:70-74; Kallioniemi et al., *Seminars in Cancer Biology* (1993) 4:41-46; Valdes and Tagle, *Methods in Molecular Biology* (1997) 68:1, Boultwood, ed., Human Press, Totowa, NJ.

Preparations of human metaphase chromosomes are prepared using standard 10 cytogenetic techniques from human primary tissues or cell lines. Nucleotide probes comprising at least 12 contiguous nucleotides selected from the nucleotide sequence of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, are used to identify the corresponding chromosome. The nucleotide probes are labeled, for example, with a 15 radioactive, fluorescent, biotinylated, or chemiluminescent label, and detected by well known methods appropriate for the particular label selected. Protocols for hybridizing nucleotide probes to preparations of metaphase chromosomes are also well known in the art. A nucleotide probe will hybridize specifically to nucleotide sequences in the chromosome preparations that are complementary to the nucleotide sequence of the probe. A probe that hybridizes specifically to a target gene provides a detection signal 20 at least 5-, 10-, or 20-fold higher than the background hybridization provided with unrelated coding sequences.

Nucleic acids are mapped to particular chromosomes using, for example, radiation hybrids or chromosome-specific hybrid panels. See Leach et al., *Advances 25 in Genetics*, (1995) 33:63-99; Walter et al., *Nature Genetics* (1994) 7:22-28; Walter and Goodfellow, *Trends in Genetics* (1992) 9:352. Panels for radiation hybrid mapping are available from Research Genetics, Inc., Huntsville, Alabama, USA. Databases for markers using various panels are available via the world wide web at <http://shgc-www.stanford.edu>; and other locations. The statistical program RHMAP 30 can be used to construct a map based on the data from radiation hybridization with a measure of the relative likelihood of one order versus another. RHMAP is available via the world wide web at <http://www.sph.umich.edu/group/statgen/software>.

Such mapping can be useful in identifying the function of the target gene by its proximity to other genes with known function. Function can also be assigned to the target gene when particular syndromes or diseases map to the same chromosome.

5 Tissue Profiling

The nucleic acids of the present invention can be used to determine the tissue type from which a given sample is derived. For example, a metastatic lesion is identified by its developmental organ or tissue source by identifying the expression of a particular marker of that organ or tissue. If a nucleic acid is expressed only in a specific tissue type, and a metastatic lesion is found to express that nucleic acid, then the developmental source of the lesion has been identified. Expression of a particular nucleic acid is assayed by detection of either the corresponding mRNA or the protein product. Immunological methods, such as antibody staining, are used to detect a particular protein product. Hybridization methods may be used to detect particular mRNA species, including but not limited to in situ hybridization and Northern blotting.

Use of Polymorphisms

A nucleic acid will be useful in forensics, genetic analysis, mapping, and diagnostic applications if the corresponding region of a gene is polymorphic in the human population. A particular polymorphic form of the nucleic acid may be used to either identify a sample as deriving from a suspect or rule out the possibility that the sample derives from the suspect. Any means for detecting a polymorphism in a gene are used, including but not limited to electrophoresis of protein polymorphic variants, differential sensitivity to restriction enzyme cleavage, and hybridization to an allele-specific probe.

B. Use of Nucleic Acids and Encoded Polypeptides to Raise Antibodies

Expression products of a nucleic acid, the corresponding mRNA or cDNA, or the corresponding complete gene are prepared and used for raising antibodies for experimental, diagnostic, and therapeutic purposes. For nucleic acids to which a corresponding gene has not been assigned, this provides an additional method of

identifying the corresponding gene. The nucleic acid or related cDNA is expressed as described above, and antibodies are prepared. These antibodies are specific to an epitope on the encoded polypeptide, and can precipitate or bind to the corresponding native protein in a cell or tissue preparation or in a cell-free extract of an in vitro expression system.

- 5 Immunogens for raising antibodies are prepared by mixing the polypeptides encoded by the nucleic acids of the present invention with adjuvants. Alternatively, polypeptides are made as fusion proteins to larger immunogenic proteins. Polypeptides are also covalently linked to other larger immunogenic proteins, such as 10 keyhole limpet hemocyanin. Immunogens are typically administered intradermally, subcutaneously, or intramuscularly. Immunogens are administered to experimental animals such as rabbits, sheep, and mice, to generate antibodies. Optionally, the animal spleen cells are isolated and fused with myeloma cells to form hybridomas which secrete monoclonal antibodies. Such methods are well known in the art. 15 According to another method known in the art, the nucleic acid is administered directly, such as by intramuscular injection, and expressed in vivo. The expressed protein generates a variety of protein-specific immune responses, including production of antibodies, comparable to administration of the protein.

- Preparations of polyclonal and monoclonal antibodies specific for nucleic 20 acid-encoded proteins and polypeptides are made using standard methods known in the art. The antibodies specifically bind to epitopes present in the polypeptides encoded by a nucleic acid of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto. In another embodiment, the antibodies specifically bind to epitopes present in a 25 polypeptide encoded by SEQ ID Nos. 1-850. Typically, at least about 6, 8, 10, or 12 contiguous amino acids are required to form an epitope. However, epitopes which involve non-contiguous amino acids may require more, for example, at least about 15, 25, or 50 amino acids. A short sequence of a nucleic acid may then be unsuitable for use as an epitope to raise antibodies for identifying the corresponding novel protein, 30 because of the potential for cross-reactivity with a known protein. However, the antibodies may be useful for other purposes, particularly if they identify common

structural features of a known protein and a novel polypeptide encoded by a nucleic acid of the invention.

Antibodies that specifically bind to human nucleic acid-encoded polypeptides should provide a detection signal at least about 5-, 10-, or 20-fold higher than a
5 detection signal provided with other proteins when used in Western blots or other immunochemical assays. Preferably, antibodies that specifically bind nucleic acid T-encoded polypeptides do not detect other proteins in immunochemical assays and can immunoprecipitate nucleic acid-encoded proteins from solution.

To test for the presence of serum antibodies to the nucleic acid-encoded
10 polypeptide in a human population, human antibodies are purified by methods well known in the art. Preferably, the antibodies are affinity purified by passing antiserum over a column to which an nucleic acid-encoded protein, polypeptide, or fusion protein is bound. The bound antibodies can then be eluted from the column, for example using a buffer with a high salt concentration.

15 In addition to the antibodies discussed above, genetically engineered antibody derivatives are made, such as single chain antibodies.

Antibodies may be made by using standard protocols known in the art (See, for example, Antibodies: A Laboratory Manual ed. by Harlow and Lane (Cold Spring Harbor Press: 1988)). A mammal, such as a mouse, hamster, or rabbit can be
20 immunized with an immunogenic form of the peptide (e.g., a mammalian polypeptide or an antigenic fragment which is capable of eliciting an antibody response, or a fusion protein as described above).

In one aspect, this invention includes monoclonal antibodies that show a subject polypeptide is highly expressed in colorectal tissue or tumor tissue, especially
25 colon cancer tissue or colon cancer-derived cell lines. Therefore, in one embodiment, this invention provides a diagnostic tool for the analysis of expression of a subject polypeptide in general, and in particular, as a diagnostic for colon cancer.

Techniques for conferring immunogenicity on a protein or peptide include conjugation to carriers or other techniques well known in the art. An immunogenic
30 portion of a protein can be administered in the presence of adjuvant. The progress of immunization can be monitored by detection of antibody titers in plasma or serum. Standard ELISA or other immunoassays can be used with the immunogen as antigen

to assess the levels of antibodies. In a preferred embodiment, the subject antibodies are immunospecific for antigenic determinants of a protein of a mammal, e.g., antigenic determinants of a protein encoded by one of SEQ ID Nos. 1-850 or closely related homologs (e.g., at least 90% identical, and more preferably at least 95% identical).

Following immunization of an animal with an antigenic preparation of a polypeptide, antisera can be obtained and, if desired, polyclonal antibodies isolated from the serum. To produce monoclonal antibodies, antibody-producing cells (lymphocytes) can be harvested from an immunized animal and fused by standard somatic cell fusion procedures with immortalizing cells such as myeloma cells to yield hybridoma cells. Such techniques are well known in the art, and include, for example, the hybridoma technique (originally developed by Kohler and Milstein, (1975) *Nature*, 256: 495-497), the human B cell hybridoma technique (Kozbar *et al.*, (1983) *Immunology Today*, 4: 72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole *et al.*, (1985) *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc. pp. 77-96). Hybridoma cells can be screened immunochemically for production of antibodies specifically reactive with a polypeptide of the present invention and monoclonal antibodies isolated from a culture comprising such hybridoma cells.

The term antibody as used herein is intended to include fragments thereof which are also specifically reactive with one of the subject polypeptides. Antibodies can be fragmented using conventional techniques and the fragments screened for utility in the same manner as described above for whole antibodies. For example, F(ab)₂ fragments can be generated by treating antibody with pepsin. The resulting F(ab)₂ fragment can be treated to reduce disulfide bridges to produce Fab fragments. The antibody of the present invention is further intended to include bispecific, single-chain, and chimeric and humanized molecules having affinity for a polypeptide conferred by at least one CDR region of the antibody. In preferred embodiments, the antibodies, the antibody further comprises a label attached thereto and able to be detected, (e.g., the label can be a radioisotope, fluorescent compound, chemiluminescent compound, enzyme, or enzyme co-factor).

Antibodies can be used, e.g., to monitor protein levels in an individual for determining, e.g., whether a subject has a disease or condition, such as colon cancer, associated with an aberrant protein level, or allowing determination of the efficacy of a given treatment regimen for an individual afflicted with such a disorder. The level of 5 polypeptides may be measured from cells in bodily fluid, such as in blood samples.

Another application of antibodies of the present invention is in the immunological screening of cDNA libraries constructed in expression vectors such as gt11, gt18-23, ZAP, and ORF8. Messenger libraries of this type, having coding sequences inserted in the correct reading frame and orientation, can produce fusion 10 proteins. For instance, gt11 will produce fusion proteins whose amino termini consist of β-galactosidase amino acid sequences and whose carboxyl termini consist of a foreign polypeptide. Antigenic epitopes of a protein, e.g., other orthologs of a particular protein or other paralogs from the same species, can then be detected with antibodies, as, for example, reacting nitrocellulose filters lifted from infected plates 15 with antibodies. Positive phage detected by this assay can then be isolated from the infected plate. Thus, the presence of homologs can be detected and cloned from other animals, as can alternate isoforms (including splicing variants) from humans.

In another embodiment, a panel of monoclonal antibodies may be used, wherein each of the epitope's involved functions are represented by a monoclonal 20 antibody. Loss or perturbation of binding of a monoclonal antibody in the panel would be indicative of a mutational attention of the protein and thus of the corresponding gene.

C. Differential Expression

25 The present invention also provides a method to identify abnormal or diseased tissue in a human. For nucleic acids corresponding to profiles of protein families as described above, the choice of tissue may be dictated by the putative biological function. The expression of a gene corresponding to a specific nucleic acid is compared between a first tissue that is suspected of being diseased and a second, 30 normal tissue of the human. The normal tissue is any tissue of the human, especially those that express the target gene including, but not limited to, brain, thymus, testis,

heart, prostate, placenta, spleen, small intestine, skeletal muscle, pancreas, and the mucosal lining of the colon.

The tissue suspected of being abnormal or diseased can be derived from a different tissue type of the human, but preferably it is derived from the same tissue type; for example an intestinal polyp or other abnormal growth should be compared with normal intestinal tissue. A difference between the target gene, mRNA, or protein in the two tissues which are compared, for example in molecular weight, amino acid or nucleotide sequence, or relative abundance, indicates a change in the gene, or a gene which regulates it, in the tissue of the human that was suspected of being diseased.

The target genes in the two tissues are compared by any means known in the art. For example, the two genes are sequenced, and the sequence of the gene in the tissue suspected of being diseased is compared with the gene sequence in the normal tissue. The target genes, or portions thereof, in the two tissues are amplified, for example using nucleotide primers based on the nucleotide sequence shown in the Sequence Listing, using the polymerase chain reaction. The amplified genes or portions of genes are hybridized to nucleotide probes selected from a corresponding nucleotide sequence shown SEQ ID No. 1-850. A difference in the nucleotide sequence of the target gene in the tissue suspected of being diseased compared with the normal nucleotide sequence suggests a role of the nucleic acid-encoded proteins in the disease, and provides a lead for preparing a therapeutic agent. The nucleotide probes are labeled by a variety of methods, such as radiolabeling, biotinylation, or labeling with fluorescent or chemiluminescent tags, and detected by standard methods known in the art.

Alternatively, target mRNA in the two tissues is compared. PolyA⁺ RNA is isolated from the two tissues as is known in the art. For example, one of skill in the art can readily determine differences in the size or amount of target mRNA transcripts between the two tissues using Northern blots and nucleotide probes selected from the nucleotide sequence shown in the Sequence Listing. Increased or decreased expression of a target mRNA in a tissue sample suspected of being diseased, compared with the expression of the same target mRNA in a normal tissue, suggests

that the expressed protein has a role in the disease, and also provides a lead for preparing a therapeutic agent.

Any method for analyzing proteins is used to compare two nucleic acid-encoded proteins from matched samples. The sizes of the proteins in the two tissues
5 are compared, for example, using antibodies of the present invention to detect nucleic acid-encoded proteins in Western blots of protein extracts from the two tissues. Other changes, such as expression levels and subcellular localization, can also be detected immunologically, using antibodies to the corresponding protein. A higher or lower level of nucleic acid-encoded protein expression in a tissue suspected of being
10 diseased, compared with the same nucleic acid-encoded protein expression level in a normal tissue, is indicative that the expressed protein has a role in the disease, and provides another lead for preparing a therapeutic agent.

Similarly, comparison of gene sequences or of gene expression products, e.g., mRNA and protein, between a human tissue that is suspected of being diseased and a
15 normal tissue of a human, are used to follow disease progression or remission in the human. Such comparisons of genes, mRNA, or protein are made as described above.

For example, increased or decreased expression of the target gene in the tissue suspected of being neoplastic can indicate the presence of neoplastic cells in the tissue. The degree of increased expression of the target gene in the neoplastic tissue
20 relative to expression of the gene in normal tissue, or differences in the amount of increased expression of the target gene in the neoplastic tissue over time, is used to assess the progression of the neoplasia in that tissue or to monitor the response of the neoplastic tissue to a therapeutic protocol over time.

The expression pattern of any two cell types can be compared, such as low and
25 high metastatic tumor cell lines, or cells from tissue which have and have not been exposed to a therapeutic agent. A genetic predisposition to disease in a human is detected by comparing an target gene, mRNA, or protein in a fetal tissue with a normal target gene, mRNA, or protein. Fetal tissues that are used for this purpose include, but are not limited to, amniotic fluid, chorionic villi, blood, and the
30 blastomere of an in vitro-fertilized embryo. The comparable normal target gene is obtained from any tissue. The mRNA or protein is obtained from a normal tissue of a human in which the target gene is expressed. Differences such as alterations in the

nucleotide sequence or size of the fetal target gene or mRNA, or alterations in the molecular weight, amino acid sequence, or relative abundance of fetal target protein, can indicate a germline mutation in the target gene of the fetus, which indicates a genetic predisposition to disease.

5

D. Use of Nucleic Acids, and Encoded Polypeptides to Screen for Peptide Analogs and Antagonists

Polypeptides encoded by the instant nucleic acids, e.g., SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a 10 sequence complementary thereto, and corresponding full length genes can be used to screen peptide libraries to identify binding partners, such as receptors, from among the encoded polypeptides.

A library of peptides may be synthesized following the methods disclosed in U.S. Pat. No. 5,010,175, and in PCT WO 91/17823. As described below in brief, one 15 prepares a mixture of peptides, which is then screened to identify the peptides exhibiting the desired signal transduction and receptor binding activity. In the '175 method, a suitable peptide synthesis support (e.g., a resin) is coupled to a mixture of appropriately protected, activated amino acids. The concentration of each amino acid in the reaction mixture is balanced or adjusted in inverse proportion to its coupling 20 reaction rate so that the product is an equimolar mixture of amino acids coupled to the starting resin. The bound amino acids are then deprotected, and reacted with another balanced amino acid mixture to form an equimolar mixture of all possible dipeptides. This process is repeated until a mixture of peptides of the desired length (e.g., hexamers) is formed. Note that one need not include all amino acids in each step: one 25 may include only one or two amino acids in some steps (e.g., where it is known that a particular amino acid is essential in a given position), thus reducing the complexity of the mixture. After the synthesis of the peptide library is completed, the mixture of peptides is screened for binding to the selected polypeptide. The peptides are then tested for their ability to inhibit or enhance activity. Peptides exhibiting the desired 30 activity are then isolated and sequenced.

The method described in WO 91/17823 is similar. However, instead of reacting the synthesis resin with a mixture of activated amino acids, the resin is

divided into twenty equal portions (or into a number of portions corresponding to the number of different amino acids to be added in that step), and each amino acid is coupled individually to its portion of resin. The resin portions are then combined, mixed, and again divided into a number of equal portions for reaction with the second 5 amino acid. In this manner, each reaction may be easily driven to completion.

Additionally, one may maintain separate "subpools" by treating portions in parallel, rather than combining all resins at each step. This simplifies the process of determining which peptides are responsible for any observed receptor binding or signal transduction activity.

10 In such cases, the subpools containing, e.g., 1-2,000 candidates each are exposed to one or more polypeptides of the invention. Each subpool that produces a positive result is then resynthesized as a group of smaller subpools (sub-subpools) containing, e.g., 20-100 candidates, and reassayed. Positive sub-subpools may be resynthesized as individual compounds, and assayed finally to determine the peptides 15 that exhibit a high binding constant. These peptides can be tested for their ability to inhibit or enhance the native activity. The methods described in WO 91/7823 and U.S. Patent No. 5,194,392 (herein incorporated by reference) enable the preparation of such pools and subpools by automated techniques in parallel, such that all synthesis and resynthesis may be performed in a matter of days.

20 Peptide agonists or antagonists are screened using any available method, such as signal transduction, antibody binding, receptor binding, mitogenic assays, chemotaxis assays, etc. The methods described herein are presently preferred. The assay conditions ideally should resemble the conditions under which the native activity is exhibited *in vivo*, that is, under physiologic pH, temperature, and ionic 25 strength. Suitable agonists or antagonists will exhibit strong inhibition or enhancement of the native activity at concentrations that do not cause toxic side effects in the subject. Agonists or antagonists that compete for binding to the native polypeptide may require concentrations equal to or greater than the native concentration, while inhibitors capable of binding irreversibly to the polypeptide may 30 be added in concentrations on the order of the native concentration.

The end results of such screening and experimentation will be at least one novel polypeptide binding partner, such as a receptor, encoded by a nucleic acid of the

invention, and at least one peptide agonist or antagonist of the novel binding partner. Such agonists and antagonists can be used to modulate, enhance, or inhibit receptor function in cells to which the receptor is native, or in cells that possess the receptor as a result of genetic engineering. Further, if the novel receptor shares biologically important characteristics with a known receptor, information about agonist/antagonist binding may help in developing improved agonists/antagonists of the known receptor.

5 E. Pharmaceutical Compositions and Therapeutic Uses

10 Pharmaceutical compositions can comprise polypeptides, antibodies, or polynucleotides of the claimed invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

15 The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgment of the clinician.

20 For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

25 A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins,

polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral
5 acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in *Remington's Pharmaceutical Sciences* (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain
10 liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared.
15 Liposomes are included within the definition of a pharmaceutically acceptable carrier.

Delivery Methods

Once formulated, the nucleic acid compositions of the invention can be (1) administered directly to the subject; (2) delivered ex vivo, to cells derived from the
20 subject; or (3) delivered in vitro for expression of recombinant proteins.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly, or delivered to the interstitial space of a tissue. The compositions can also be administered into a tumor or lesion. Other modes of administration include oral and
25 pulmonary administration, suppositories, and transdermal applications, needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in e.g., International Publication No. WO
30 93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoietic, lymph cells, macrophages, dendritic cells, or tumor cells.

Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct 5 microinjection of the DNA into nuclei, all well known in the art.

Once a subject gene has been found to correlate with a proliferative disorder, such as neoplasia, dysplasia, and hyperplasia, the disorder may be amenable to treatment by administration of a therapeutic agent based on the nucleic acid or corresponding polypeptide.

10 Preparation of antisense polypeptides is discussed above. Neoplasias that are treated with the antisense composition include, but are not limited to, cervical cancers, melanomas, colorectal adenocarcinomas, Wilms' tumor, retinoblastoma, sarcomas, myosarcomas, lung carcinomas, leukemias, such as chronic myelogenous leukemia, promyelocytic leukemia, monocytic leukemia, and myeloid leukemia, and
15 lymphomas, such as histiocytic lymphoma. Proliferative disorders that are treated with the therapeutic composition include disorders such as anhydric hereditary ectodermal dysplasia, congenital alveolar dysplasia, epithelial dysplasia of the cervix, fibrous dysplasia of bone, and mammary dysplasia. Hyperplasias, for example, endometrial, adrenal, breast, prostate, or thyroid hyperplasias or
20 pseudoepitheliomatous hyperplasia of the skin, are treated with antisense therapeutic compositions. Even in disorders in which mutations in the corresponding gene are not implicated, downregulation or inhibition of nucleic acid-related gene expression can have therapeutic application. For example, decreasing nucleic acid-related gene expression can help to suppress tumors in which enhanced expression of the gene is
25 implicated.

Both the dose of the antisense composition and the means of administration are determined based on the specific qualities of the therapeutic composition, the condition, age, and weight of the patient, the progression of the disease, and other relevant factors. Administration of the therapeutic antisense agents of the invention 30 includes local or systemic administration, including injection, oral administration, particle gun or catheterized administration, and topical administration. Preferably, the therapeutic antisense composition contains an expression construct comprising a

promoter and a polynucleotide segment of at least about 12, 22, 25, 30, or 35 contiguous nucleotides of the antisense strand of a nucleic acid. Within the expression construct, the polynucleotide segment is located downstream from the promoter, and transcription of the polynucleotide segment initiates at the promoter.

5 Various methods are used to administer the therapeutic composition directly to a specific site in the body. For example, a small metastatic lesion is located and the therapeutic composition injected several times in several different locations within the body of tumor. Alternatively, arteries which serve a tumor are identified, and the therapeutic composition injected into such an artery, in order to deliver the
10 composition directly into the tumor. A tumor that has a necrotic center is aspirated and the composition injected directly into the now empty center of the tumor. The antisense composition is directly administered to the surface of the tumor, for example, by topical application of the composition. X-ray imaging is used to assist in certain of the above delivery methods.

15 Receptor-mediated targeted delivery of therapeutic compositions containing an antisense polynucleotide, subgenomic polynucleotides, or antibodies to specific tissues is also used. Receptor-mediated DNA delivery techniques are described in, for example, Findeis *et al.*, *Trends in Biotechnol.* (1993) 11:202-205; Chiou *et al.*, (1994) Gene Therapeutics: Methods And Applications Of Direct Gene Transfer (J.A. Wolff,
20 ed.); Wu & Wu, *J. Biol. Chem.* (1988) 263:621-24; Wu *et al.*, *J. Biol. Chem.* (1994) 269:542-46; Zenke *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1990) 87:3655-59; Wu *et al.*, *J. Biol. Chem.* (1991) 266:338-42. Preferably, receptor-mediated targeted delivery of therapeutic compositions containing antibodies of the invention is used to deliver the antibodies to specific tissue.

25 Therapeutic compositions containing antisense subgenomic polynucleotides are administered in a range of about 100 ng to about 200 mg of DNA for local administration in a gene therapy protocol. Concentration ranges of about 500 ng to about 50 mg, about 1 mg to about 2 mg, about 5 mg to about 500 mg, and about 20 mg to about 100 mg of DNA can also be used during a gene therapy protocol. Factors
30 such as method of action and efficacy of transformation and expression are considerations which will affect the dosage required for ultimate efficacy of the antisense subgenomic nucleic acids. Where greater expression is desired over a larger

area of tissue, larger amounts of antisense subgenomic nucleic acids or the same amounts readministered in a successive protocol of administrations, or several administrations to different adjacent or close tissue portions of, for example, a tumor site, may be required to effect a positive therapeutic outcome. In all cases, routine 5 experimentation in clinical trials will determine specific ranges for optimal therapeutic effect. A more complete description of gene therapy vectors, especially retroviral vectors, is contained in U.S. Serial No. 08/869,309, which is expressly incorporated herein, and in section F below.

For genes encoding polypeptides or proteins with anti-inflammatory activity, 10 suitable use, doses, and administration are described in U.S. Patent No. 5,654,173, incorporated herein by reference. Therapeutic agents also include antibodies to proteins and polypeptides encoded by the subject nucleic acids, as described in U.S. Patent No. 5,654,173.

15 F. Gene Therapy

The therapeutic nucleic acids of the present invention may be utilized in gene delivery vehicles. The gene delivery vehicle may be of viral or non-viral origin (see generally, Jolly, *Cancer Gene Therapy* (1994) 1:51-64; Kimura, *Human Gene Therpay* (1994) 5:845-852; Connelly, *Human Gene Therapy* (1995) 1:185-193; and 20 Kaplitt, *Nature Genetics* (1994) 6:148-153). Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic of the invention can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches. Expression of such coding sequences can be induced using endogenous mammalian or heterologous promoters. Expression of the coding 25 sequence can be either constitutive or regulated.

The present invention can employ recombinant retroviruses which are constructed to carry or express a selected nucleic acid molecule of interest. Retrovirus vectors that can be employed include those described in EP 0 415 731; WO 90/07936; WO 94/03622; WO 93/25698; WO 93/25234; U.S. Patent No. 5, 219,740; WO 30 93/11230; WO 93/10218; Vile and Hart, *Cancer Res.* (1993) 53:3860-3864; Vile and Hart, *Cancer Res.* (1993) 53:962-967; Ram et al., *Cancer Res.* (1993) 53:83-88; Takamiya et al., *J. Neurosci. Res.* (1992) 33:493-503; Baba et al., *J. Neurosurg.*

(1993) 79:729-735; U.S. Patent no. 4,777,127; GB Patent No. 2,200,651; and EP 0 345 242. Preferred recombinant retroviruses include those described in WO 91/02805.

Packaging cell lines suitable for use with the above-described retroviral vector constructs may be readily prepared (see PCT publications WO 95/30763 and WO 92/05266), and used to create producer cell lines (also termed vector cell lines) for the production of recombinant vector particles. Within particularly preferred embodiments of the invention, packaging cell lines are made from human (such as HT1080 cells) or mink parent cell lines, thereby allowing production of recombinant retroviruses that can survive inactivation in human serum.

The present invention also employs alphavirus-based vectors that can function as gene delivery vehicles. Such vectors can be constructed from a wide variety of alphaviruses, including, for example, Sindbis virus vectors, Semliki forest virus (ATCC VR-67; ATCC VR-1247), Ross River virus (ATCC VR-373; ATCC VR-1246) and Venezuelan equine encephalitis virus (ATCC VR-923; ATCC VR-1250; ATCC VR 1249; ATCC VR-532). Representative examples of such vector systems include those described in U.S. Patent Nos. 5,091,309; 5,217,879; and 5,185,440; and PCT Publication Nos. WO 92/10578; WO 94/21792; WO 95/27069; WO 95/27044; and WO 95/07994.

Gene delivery vehicles of the present invention can also employ parvovirus such as adeno-associated virus (AAV) vectors. Representative examples include the AAV vectors disclosed by Srivastava in WO 93/09239, Samulski et al., *J. Vir.* (1989) 63:3822-3828; Mendelson et al., *Virol.* (1988) 166:154-165; and Flotte et al., *PNAS* (1993) 90:10613-10617.

Representative examples of adenoviral vectors include those described by Berkner, *Biotechniques* (1988) 6:616-627; Rosenfeld et al., *Science* (1991) 252:431-434; WO 93/19191; Kolls et al., *PNAS* (1994) 91:215-219; Kass-Eisler et al., *PNAS* (1993) 90:11498-11502; Guzman et al., *Circulation* (1993) 88:2838-2848; Guzman et al., *Cir. Res.* (1993) 73:1202-1207; Zabner et al., *Cell* (1993) 75:207-216; Li et al., *Hum. Gene Ther.* (1993) 4:403-409; Cailaud et al., *Eur. J. Neurosci.* (1993) 5:1287-1291; Vincent et al., *Nat. Genet.* (1993) 5:130-134; Jaffe et al., *Nat. Genet.* (1992) 1:372-378; and Levrero et al., *Gene* (1991) 101:195-202. Exemplary adenoviral gene

therapy vectors employable in this invention also include those described in WO 94/12649, WO 93/03769; WO 93/19191; WO 94/28938; WO 95/11984 and WO 95/00655. Administration of DNA linked to killed adenovirus as described in Curiel, *Hum. Gene Ther.* (1992) 3:147-154 may be employed.

5 Other gene delivery vehicles and methods may be employed, including polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example Curiel, *Hum. Gene Ther.* (1992) 3:147-154; ligand linked DNA, for example see Wu, *J. Biol. Chem.* (1989) 264:16985-16987; eukaryotic cell delivery vehicles cells, for example see U.S. Serial No. 08/240,030, filed May 9, 1994, and U.S. Serial
10 No. 08/404,796; deposition of photopolymerized hydrogel materials; hand-held gene transfer particle gun, as described in U.S. Patent No. 5,149,655; ionizing radiation as described in U.S. Patent No. 5,206,152 and in WO92/11033; nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip, *Mol. Cell Biol.* (1994) 14:2411-2418, and in Woffendin, *Proc. Natl. Acad. Sci.*
15 (1994) 91:1581-1585.

Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and U.S. Patent No. 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads.
20 The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm. Liposomes that can act as gene delivery vehicles are described in U.S. Patent No. 5,422,120, PCT Nos. WO 95/13796, WO 94/23697, and WO 91/14445, and EP No. 0 524 968.

25 Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin *et al.*, *Proc. Natl. Acad. Sci. USA* (1994) 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery
30 of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in U.S. Patent No. 5,149,655; use of ionizing radiation for activating

transferred gene, as described in U.S. Patent No. 5,206,152 and PCT No. WO 92/11033.

G. Transgenic Animals

5 One aspect of the present invention relates to transgenic non-human animals having germline and/or somatic cells in which the biological activity of one or more genes are altered by a chromosomally incorporated transgene.

In a preferred embodiment, the transgene encodes a mutant protein, such as dominant negative protein which antagonizes at least a portion of the biological
10 function of a wild-type protein.

Yet another preferred transgenic animal includes a transgene encoding an antisense transcript which, when transcribed from the transgene, hybridizes with a gene or a mRNA transcript thereof, and inhibits expression of the gene.

In one embodiment, the present invention provides a desired non-human
15 animal or an animal (including human) cell which contains a predefined, specific and desired alteration rendering the non-human animal or animal cell predisposed to cancer. Specifically, the invention pertains to a genetically altered non-human animal (most preferably, a mouse), or a cell (either non-human animal or human) in culture, that is defective in at least one of two alleles of a tumor-suppressor gene. The
20 inactivation of at least one of these tumor suppressor alleles results in an animal with a higher susceptibility to tumor induction or other proliferative or differentiative disorders, or disorders marked by aberrant signal transduction, e.g., from a cytokine or growth factor. A genetically altered mouse of this type is able to serve as a useful model for hereditary cancers and as a test animal for carcinogen studies. The
25 invention additionally pertains to the use of such non-human animals or animal cells, and their progeny in research and medicine.

Furthermore, it is contemplated that cells of the transgenic animals of the present invention can include other transgenes, e.g., which alter the biological activity of a second tumor suppressor gene or an oncogene. For instance, the second
30 transgene can functionally disrupt the biological activity of a second tumor suppressor gene, such as p53, p73, DCC, p21^{cip1}, p27^{kip1}, Rb, Mad or E2F. Alternatively, the second transgene can cause overexpression or loss of regulation of an oncogene, such

as ras, myc, a cdc25 phosphatase, Bcl-2, Bcl-6, a transforming growth factor, neu, int-3, polyoma virus middle T antigen, SV40 large T antigen, a papillomaviral E6 protein, a papillomaviral E7 protein, CDK4, or cyclin D1.

A preferred transgenic non-human animal of the present invention has
5 germline and/or somatic cells in which one or more alleles of a gene are disrupted by a chromosomally incorporated transgene, wherein the transgene includes a marker sequence providing a detectable signal for identifying the presence of the transgene in cells of the transgenic animal, and replaces at least a portion of the gene or is inserted into the gene or disrupts expression of a wild-type protein.

10 Still another aspect of the present invention relates to methods for generating non-human animals and stem cells having a functionally disrupted endogenous gene. In a preferred embodiment, the method comprises the steps of:

- (i) constructing a transgene construct including (a) a recombination region having at least a portion of the gene, which recombination region directs recombination of the transgene with the gene, and (b) a marker sequence which provides a detectable signal for identifying the presence of the transgene in a cell;
- (ii) transferring the transgene into stem cells of a non-human animal;
- (iii) selecting stem cells having a correctly targeted homologous recombination between the transgene and the gene;
- (iv) transferring cells identified in step (iii) into a non-human blastocyst and implanting the resulting chimeric blastocyst into a non-human female; and
- (v) collecting offspring harboring an endogenous gene allele having the correctly targeted recombination.

25 Yet another aspect of the invention provides a method for evaluating the carcinogenic potential of an agent by (i) contacting a transgenic animal of the present invention with a test agent, and (ii) comparing the number of transformed cells in a sample from the treated animal with the number of transformed cells in a sample from an untreated transgenic animal or transgenic animal treated with a control agent. The difference in the number of transformed cells in the treated animal, relative to the number of transformed cells in the absence of treatment with a control agent, indicates the carcinogenic potential of the test compound.

Another aspect of the invention provides a method of evaluating an anti-proliferative activity of a test compound. In preferred embodiments, the method includes contacting a transgenic animal of the present invention, or a sample of cells from such animal, with a test agent, and determining the number of transformed cells 5 in a specimen from the transgenic animal or in the sample of cells. A statistically significant decrease in the number of transformed cells, relative to the number of transformed cells in the absence of the test agent, indicates the test compound is a potential anti-proliferative agent.

The practice of the present invention will employ, unless otherwise indicated, 10 conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, for example, *Molecular Cloning A Laboratory Manual*, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press:1989); *DNA Cloning*, 15 Volumes I and II (D. N. Glover ed., 1985); *Oligonucleotide Synthesis* (M. J. Gait ed., 1984); Mullis *et al.* U.S. Patent No. 4,683,195; *Nucleic Acid Hybridization* (B. D. Hames & S. J. Higgins eds. 1984); *Transcription And Translation* (B. D. Hames & S. J. Higgins eds. 1984); *Culture Of Animal Cells* (R. I. Freshney, Alan R. Liss, Inc., 1987); *Immobilized Cells And Enzymes* (IRL Press, 1986); B. Perbal, *A Practical 20 Guide To Molecular Cloning* (1984); the treatise, *Methods In Enzymology* (Academic Press, Inc., N.Y.); *Gene Transfer Vectors For Mammalian Cells* (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); *Methods In Enzymology*, Vols. 154 and 155 (Wu *et al.* eds.), *Immunochemical Methods In Cell And Molecular Biology* (Mayer and Walker, eds., Academic Press, London, 1987); *Handbook Of 25 Experimental Immunology*, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); *Manipulating the Mouse Embryo*, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).

As mentioned above, the sequences described herein are believed to have particular utility in regards to colon cancer. However, they may also be useful with 30 other types of cancers and other disease states.

The present invention will now be illustrated by reference to the following examples which set forth particularly advantageous embodiments. However, it should

be noted that these embodiments are illustrative and are not to be construed as restricting the invention in any way.

XI. Examples

5 A. Identification of differentially expressed sequences in the SW480 library

Description of the SW480 library

SEQ ID NO 1-850 were derived from the SW480 library. The SW480 library is a normalized, subtracted cDNA library that was generated from the RNA derived
10 from colon cancer cell line SW480 and normal human colon tissue. Human colorectal adenocarcinoma (cancer) cell line SW480; ATCC #CCL228 (Leibovitz et al., Cancer Research 36:4562-4569, 1976) was used to generate double-stranded cDNA that was subsequently used as the tester sample for the subtraction experiment. Poly A⁺ RNA from normal human colon tissue (purchased from OriGene Technologies, Inc.
15 Rockville, MD) was used to generate double-stranded cDNA that was used as the driver sample for the subtraction experiment.

The growth conditions of the driver and tester sources in this library were different as SW480 is a rapidly growing cell line and may have higher cellular metabolism. Therefore
20 some of the differential expression in this library might be due to non-relevant growth effects of the two sources of tissue.

Construction of the SW480 library

Double-stranded cDNA was generated using the Clontech SMART PCR cDNA
25 Synthesis Kit (purchased from Clontech Laboratories Inc, Palo Alto, CA) following the manufacturer's instructions. Subtraction hybridization steps were performed in accordance with the manufacturer's instructions for the Clontech PCR-Select kit (purchased from Clontech Laboratories Inc, Palo Alto, CA). The subtracted cDNAs were then directly inserted into a T/A cloning vector (TOPO TA Cloning Kit, Invitrogen Corporation, Carlsbad, CA)
30 according to manufacturer's instructions, transformed into *E. coli*, and plated onto LB-amp plates, containing X-gal and IPTG. 1248 bacterial colonies were picked, transferred to LB-

amp broth and propagated. Plasmids were isolated using column chromatography (QIAprep 96 Turbo Miniprep Kits, Qiagen Corporation, Valencia, CA) on the QIAGEN Biorobot 9600.

Initial validation of differential expression

5

The inserts from subtracted clones were amplified by PCR and 10ul of the PCR reaction product was run on a 2.0% agarose gel for 2 hr at 100 volts. The gel was blotted onto a nylon membrane according to standard methods and hybridized as follows: 50 ng aliquots of the RSA1 cut SW480 and normal colon cDNA libraries were labeled with [α -³²P] dCTP by 10 Prime-It RmT Random Primer labeling kit (Stratagene, La Jolla, CA). Nylon membranes containing the PCR amplified DNA from the SW480 library clones were hybridized to the labeled probes at 4×10^6 cpm/ml in Express hybridization buffer (Clonetech) at 68°C for approximately 16 hours. The membranes were subjected to stringent washes (0.1 X SSC; 15 0.1% SDS) done at 68°C and were then exposed to phosphorimager screens. The screens were analyzed using Molecular Dynamics ImageQuant software. Clones that exhibited a stronger hybridization signal with the SW480 probe relative to the normal colon probe were deemed to be differentially expressed.

Validation of differential expression in colon cancer

20

To validate that the differentially expressed sequences found in this library were specific to colon cancer, the clones were screened with cDNAs prepared from a colon cancer specific library, Delaware (DE), and a normal tissue specific library Maryland (MD).

The DE library is specific for sequences expressed in colon cancer [proximal and 25 distal Dukes' B, microsatellite instability negative (MSI-)] but not expressed in normal tissues, including colon. This colon cancer tissue specific cDNA library, was made using pooled colon cancer cDNA as tester (tumor tissue cDNA pooled from eight patients with either proximal stage B MSI- or distal stage B MSI+ cancers). The driver cDNA consisted a combination of cDNAs made from 50% normal colon tissue and a pool of peripheral blood 30 leukocytes (PBL), and normal liver, spleen, lung, kidney, heart, small intestine, skeletal muscle, and prostate tissue cDNAs as the remaining 50% of the driver.

The MD library is specific for sequences expressed in normal tissue, but not expressed in proximal and distal Dukes' B, MSI- colon cancers. The tester cDNA in this case was made up of 50% normal colon tissue cDNA while the other 50% was made up of PBL, liver, spleen, lung, kidney, heart, small intestine, skeletal muscle, and prostate tissue cDNAs. The 5 driver for this library was generated from pools of proximal stage B, MSI and distal stage B, MSI tumor tissue cDNAs obtained from eight cancer patients.

SW 480 clones that hybridized with the DE probe, but hybridized to a lesser degree (or not at all) to the MD probe were determined to be differentially expressed. This confirmation of differential expression is additional evidence that the up 10 regulation of the individual clones is related to colon cancer.

Sequencing and analysis of differentially expressed clones

The nucleotide sequence of the inserts from clones shown to be differentially 15 expressed was determined by single-pass sequencing from either the T7 or M13 promoter sites using fluorescently labeled dideoxynucleotides via the Sanger sequencing method. Sequences were analyzed according to methods described in the text (XI., Examples; B. Results of Public Database Search).

Each nucleic acid represents sequence from at least a partial mRNA transcript. 20 The nucleic acids of the invention were assigned a sequence identification number (see attachments). The DNA sequences are provided in the attachments containing the sequences.

Of the 1248 colonies examined, 826 individual clones were found to be differentially expressed using the SW480 and normal colon probes. Of these, 681 25 were found to be differentially expressed using the DE and MD tissue probes. 145 clones that previously showed differential expression with the SW480 and normal colon probes did not show differential expression with the DE and MD probes. 363 of these clones contained known sequences, 213 contained ESTs, and 105 contained novel sequences. An examination of the known sequences revealed that many of the 30 genes are involved in cellular metabolism.

An example of an experiment to identify differentially expressed clones is shown in the Figure, "Differential Expression Analysis". The inserts from subtracted clones were amplified, electrophoresed, and blotted on to membranes as described above. The gel was hybridized with RSA1 cut DE and MD cDNA probes as 5 described above.

In the Figure, individual clones are designated by a number at the top of each lane; the blots are aligned so that the same clone is represented in the same vertical lane in both the upper ("Cancer Probe") and lower ("Normal Probe") blot. Lanes 10 labeled "O" indicate clones that are overexpressed, i.e., show a darker, more prominent band in the upper blot ("Cancer Probe") relative to that observed, in the same lane, in the lower blot ("Normal Probe"). The Lane labeled "U" indicates a clone that is underexpressed, i.e., shows a darker, more prominent band in the lower blot ("Normal Probe") relative to that observed, in the same lane, in the upper blot 15 ("Cancer Probe"). The lane labeled "M", indicates a clone that is marginally overexpressed in cancer and normal cells.

B. Results of Public Database searches

The nucleotide sequence of SEQ ID Nos. 1-850 were aligned with individual 20 sequences that were publicly available. Genbank and divisions of GenBank, such as dbEST, CGAP, and Unigene were the primary databases used to perform the sequence similarity searches. The patent database, GENESEQ, was also utilized.

A total of 850 sequences were analyzed; most sequences were between 200 and 700 nucleotides in length. The sequences were first masked to identify vector- 25 derived sequences, which were subsequently removed. The remaining sequence information was used to create the sequences listed in the Sequence Listing (SEQ ID Nos. 1-850). Each of these sequences was used as the query sequence to perform a Blast 2 search against the databases listed above. The Blast 2 search differs from the traditional Blast search in that it allows for the introduction of gaps in order to 30 produce an optimal alignment of two sequences.

A proprietary algorithm was developed to utilize the output from the Blast 2 searches and categorize the sequences based upon high similarity (e value < 1e-40) or

identity to entries contained in the GenBank and dbEST databases. Three categories were created as follows: 1) matches to known human genes, 2) matches to human EST sequences, and 3) no significant match to either 1 or 2, and therefore a potentially novel human sequence.

5

Those skilled in the art will recognize, or be able to ascertain, using not more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such specific embodiments and equivalents are intended
10 to be encompassed by the following claims.

All patents, published patent applications, and publications cited herein are incorporated by reference as if set forth fully herein.

Table 1

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
1	SW0006	O	O	47	SW0558	O	O
2	SW0019M13	O	O	48	SW0585T7	O	O
3	SW0025T7	O	O	49	SW0602T7	O	O
4	SW0026T7	O	O	50	SW0605T7	O	O
5	SW0044	O	O	51	SW0638M13	O	O
6	SW0071	O	O	52	SW0638T7	O	O
7	SW0081T7	O	O	53	SW0652T7	O	O
8	SW0106	O	O	54	SW0659	O	O
9	SW0116	O	O	55	SW0663T7	M	O
10	SW0124	O	O	56	SW0678T7	O	O
11	SW0142M13	O	O	57	SW0682T7	O	M
12	SW0142T7	O	O	58	SW0684	O	O
13	SW0162T7	M	N	59	SW0693T7	M	O
14	SW0181T7	O	O	60	SW0704M13	O	O
15	SW0184	M	O	61	SW0704T7	O	O
16	SW0208T7	O	O	62	SW0709M13	O	O
17	SW0212M13	O	O	63	SW0709T7	O	O
18	SW0212T7	O	O	64	SW0730T7	O	O
19	SW0249	M	O	65	SW0749T7	O	O
20	SW0277	O	O	66	SW0758T7	M	O
21	SW0292	O	O	67	SW0766	O	O
22	SW0305T7	M	O	68	SW0796M13	M	O
23	SW0306	O	O	69	SW0797T7	O	O
24	SW0328	M	O	70	SW0799T7	O	O
25	SW0337	O	O	71	SW0800T7	M	O
26	SW0345	O	O	72	SW0815T7	M	O
27	SW0348	M	O	73	SW0824M13	N	O
28	SW0353	O	O	74	SW0824T7	N	O
29	SW0389T7	O	O	75	SW0837	O	O
30	SW0392T7	M	O	76	SW0843T7	N	O
31	SW0402T7	O	O	77	SW0852	M	O
32	SW0410T7	M	O	78	SW0906T7	O	O
33	SW0411T7	M	M	79	SW0925	N	O
34	SW0433	O	O	80	SW0926T7	O	O
35	SW0445T7	O	O	81	SW0931T7	M	O
36	SW0450T7	O	M	82	SW0932	M	O
37	SW0464	O	O	83	SW0961T7	O	N
38	SW0466	M	O	84	SW0962	O	O
39	SW0469T7	M	O	85	SW0971	O	O
40	SW0489T7	O	O	86	SW0973T7	M	M
41	SW0498	O	O	87	SW0985	O	O
42	SW0511M13	O	O	88	SW1000M13	O	O
43	SW0511T7	O	O	89	SW1000T7	O	O
44	SW0519T7	O	M	90	SW1015T7	O	O
45	SW0522	O	O	91	SW1032T7	O	O
46	SW0539	O	O	92	SW1051	O	O

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
93	SW1052	O	O	142	SW0082T7	O	O
94	SW1053	O	O	143	SW0091T7	O	O
95	SW1059T7	O	O	144	SW0093T7	O	O
96	SW1067	M	O	145	SW0101M13	O	O
97	SW1068M13	O	O	146	SW0101T7	O	O
98	SW1068T7	O	O	147	SW0102T7	O	O
99	SW1085T7	M	O	148	SW0105T7	O	O
100	SW1086M13	M	O	149	SW0108T7	O	M
101	SW1086T7	M	O	150	SW0111T7	O	O
102	SW1088M13	O	O	151	SW0112T7	O	O
103	SW1088T7	O	O	152	SW0117T7	O	O
104	SW1089M13	O	O	153	SW0119T7	O	O
105	SW1089T7	O	O	154	SW0122T7	M	O
106	SW1093T7	O	O	155	SW0131T7	O	O
107	SW1098	O	O	156	SW0132T7	O	O
108	SW1115	O	O	157	SW0144T7	M	O
109	SW1116M13	O	O	158	SW0146T7	M	O
110	SW1116T7	O	O	159	SW0156T7	O	O
111	SW1122	O	O	160	SW0160T7	O	O
112	SW1138M13	O	O	161	SW0163T7	O	O
113	SW1138T7	O	O	162	SW0166T7	O	O
114	SW1139M13	O	O	163	SW0175T7	M	O
115	SW1139T7	O	O	164	SW0177M13	O	O
116	SW1144M13	O	O	165	SW0182T7	O	O
117	SW1144T7	O	O	166	SW0185T7	O	O
118	SW1145M13	M	O	167	SW0189T7	O	O
119	SW1187T7	O	O	168	SW0191T7	O	O
120	SW1195M13	M	O	169	SW0195T7	O	O
121	SW1195T7	M	O	170	SW0202T7	O	O
122	SW1209T7	M	N	171	SW0203T7	O	O
123	SW1225M13	O	O	172	SW0213T7	O	N
124	SW1225T7	O	O	173	SW0224T7	O	O
125	SW1227M13	M	O	174	SW0229T7	O	O
126	SW1227T7	M	O	175	SW0231M13	O	O
127	SW1242	M	O	176	SW0241T7	O	O
128	SW0004M13	O	O	177	SW0242T7	O	O
129	SW0004T7	O	O	178	SW0246T7	O	O
130	SW0011M13	O	O	179	SW0248T7	O	O
131	SW0011T7	O	O	180	SW0254T7	O	O
132	SW0015T7	O	O	181	SW0260T7	M	M
133	SW0024T7	M	O	182	SW0264T7	O	O
134	SW0026M13	O	O	183	SW0267T7	M	O
135	SW0026T7	O	O	184	SW0269T7	O	O
136	SW0033T7	O	O	185	SW0271T7	O	O
137	SW0038T7	M	O	186	SW0273T7	O	O
138	SW0069T7	O	O	187	SW0280T7	O	O
139	SW0073T7	O	O	188	SW0281T7	O	O
140	SW0076T7	O	O	189	SW0291T7	O	O
141	SW0078T7	O	O	190	SW0294T7	O	O

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
191	SW0295T7	O	O	240	SW0575T7	O	O
192	SW0296T7	O	O	241	SW0577T7	O	O
193	SW0297T7	O	O	242	SW0583T7	O	O
194	SW0301T7	O	O	243	SW0604T7	O	O
195	SW0310T7	O	O	244	SW0605M13	O	O
196	SW0311M13	O	O	245	SW0609T7	M	O
197	SW0325T7	O	O	246	SW0610M13	M	O
198	SW0326T7	O	O	247	SW0610T7	M	O
199	SW0330T7	M	O	248	SW0613T7	O	M
200	SW0334T7	O	N	249	SW0621T7	O	O
201	SW0339T7	O	O	250	SW0633T7	O	O
202	SW0341T7	O	O	251	SW0647T7	O	O
203	SW0358T7	O	O	252	SW0654M13	M	O
204	SW0359T7	M	O	253	SW0658T7	M	O
205	SW0360T7	O	O	254	SW0662T7	O	O
206	SW0361M13	O	O	255	SW0663M13	M	O
207	SW0367T7	O	O	256	SW0668T7	O	O
208	SW0369T7	O	O	257	SW0672T7	O	O
209	SW0394T7	O	O	258	SW0674T7	O	N
210	SW0399T7	O	O	259	SW0676T7	O	M
211	SW0401T7	O	O	260	SW0677T7	O	O
212	SW0403T7	O	O	261	SW0678M13	O	O
213	SW0412T7	M	O	262	SW0681T7	O	M
214	SW0419T7	O	O	263	SW0683T7	O	M
215	SW0429T7	M	M	264	SW0687T7	O	M
216	SW0434T7	O	O	265	SW0688T7	O	O
217	SW0441T7	O	O	266	SW0692T7	O	N
218	SW0446T7	O	O	267	SW0694T7	O	O
219	SW0454T7	O	O	268	SW0697T7	O	O
220	SW0461T7	O	O	269	SW0710T7	O	O
221	SW0468T7	O	O	270	SW0711T7	O	O
222	SW0484T7	O	U	271	SW0713T7	N	M
223	SW0489M13	O	U	272	SW0724T7	M	U
224	SW0496T7	O	U	273	SW0734T7	M	O
225	SW0499T7	O	O	274	SW0736T7	N	M
226	SW0507T7	O	M	275	SW0744T7	O	O
227	SW0514T7	O	M	276	SW0751T7	O	O
228	SW0520T7	O	M	277	SW0753T7	O	O
229	SW0531T7	M	N	278	SW0763T7	O	O
230	SW0537T7	M	N	279	SW0768T7	M	M
231	SW0548T7	O	U	280	SW0770T7	O	M
232	SW0555T7	O	N	281	SW0772T7	O	N
233	SW0557T7	O	N	282	SW0774T7	M	O
234	SW0560T7	O	N	283	SW0778T7	M	M
235	SW0563T7	O	U	284	SW0779T7	M	M
236	SW0570T7	O	O	285	SW0783T7	O	O
237	SW0572T7	O	M	286	SW0784T7	O	M
238	SW0573T7	M	U	287	SW0786T7	N	O
239	SW0574T7	O	O	288	SW0787T7	O	N

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
289	SW0797M13	O	O	338	SW1065T7	O	O
290	SW0803T7	O	O	339	SW1080T7	M	M
291	SW0809T7	O	N	340	SW1085M13	M	O
292	SW0811T7	M	N	341	SW1087T7	O	O
293	SW0815M13	M	O	342	SW1091T7	O	O
294	SW0821T7	O	O	343	SW1093M13	O	O
295	SW0825T7	M	M	344	SW1097T7	O	O
296	SW0826T7	M	M	345	SW1104T7	O	O
297	SW0827M13	O	O	346	SW1105T7	O	O
298	SW0828T7	O	M	347	SW1106T7	O	O
299	SW0836T7	M	O	348	SW1107T7	O	O
300	SW0839T7	O	M	349	SW1108T7	O	O
301	SW0843M13	N	O	350	SW1109T7	O	O
302	SW0846M13	O	M	351	SW1114T7	O	O
303	SW0847T7	O	M	352	SW1123T7	O	O
304	SW0849T7	M	M	353	SW1124T7	O	O
305	SW0850T7	O	O	354	SW1130T7	M	O
306	SW0855T7	O	O	355	SW1131T7	M	O
307	SW0863T7	M	M	356	SW1132T7	M	O
308	SW0866T7	O	O	357	SW1133M13	M	O
309	SW0867T7	N	O	358	SW1134T7	O	O
310	SW0896M13	N	O	359	SW1136T7	O	N
311	SW0912T7	O	O	360	SW1141T7	M	O
312	SW0914T7	O	O	361	SW1146T7	M	O
313	SW0916T7	O	O	362	SW1147T7	O	O
314	SW0918T7	O	O	363	SW1155T7	O	N
315	SW0921T7	N	O	364	SW1156T7	O	N
316	SW0923T7	O	O	365	SW1160T7	O	N
317	SW0926M13	O	O	366	SW1161T7	O	N
318	SW0928T7	N	M	367	SW1169T7	O	N
319	SW0947T7	O	O	368	SW1176T7	O	O
320	SW0949T7	O	O	369	SW1182T7	O	O
321	SW0954T7	M	O	370	SW1193T7	O	O
322	SW0964T7	M	N	371	SW1201T7	O	O
323	SW0969T7	M	N	372	SW1203T7	O	O
324	SW0972T7	M	N	373	SW1212T7	O	M
325	SW0982T7	O	M	374	SW1213M13	O	M
326	SW0994T7	O	N	375	SW1214T7	O	N
327	SW0998T7	O	N	376	SW1218T7	O	N
328	SW1001T7	O	O	377	SW1220T7	O	N
329	SW1002T7	O	N	378	SW1232T7	O	N
330	SW1012T7	O	O	379	SW1236M13	O	N
331	SW1018T7	O	M	380	SW1238T7	O	O
332	SW1045T7	O	M	381	SW1239T7	O	O
333	SW1046T7	M	O	382	SW1245M13	M	N
334	SW1058T7	O	O	383	SW1247T7	O	O
335	SW1059M13	O	O	384	SW0003T7	O	O
336	SW1061T7	O	O	385	SW0009T7	O	O
337	SW1064T7	O	O	386	SW0012T7	O	O

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
387	SW0013T7	O	O	436	SW0158T7	O	O
388	SW0015T7	O	O	437	SW0159T7	O	O
389	SW0016T7	U	N	438	SW0169T7	O	O
390	SW0018T7	O	O	439	SW0170T7	O	O
391	SW0019T7	O	O	440	SW0171T7	O	O
392	SW0023T7	O	O	441	SW0173T7	O	O
393	SW0025T7	O	O	442	SW0178T7	O	O
394	SW0027T7	O	O	443	SW0179T7	O	O
395	SW0029M13	O	O	444	SW0180T7	O	O
396	SW0030T7	O	O	445	SW0183T7	O	N
397	SW0039T7	O	O	446	SW0186T7	M	M
398	SW0043T7	O	O	447	SW0187T7	M	U
399	SW0046T7	O	O	448	SW0188T7	O	O
400	SW0048T7	O	O	449	SW0190T7	O	O
401	SW0050T7	O	O	450	SW0192T7	O	O
402	SW0052T7	O	O	451	SW0196T7	O	O
403	SW0063T7	O	O	452	SW0199T7	O	O
404	SW0064T7	O	O	453	SW0201T7	O	M
405	SW0068T7	O	N	454	SW0204T7	O	M
406	SW0072T7	O	O	455	SW0205T7	O	N
407	SW0074T7	O	N	456	SW0206T7	O	O
408	SW0075T7	O	O	457	SW0207T7	O	M
409	SW0077T7	O	O	458	SW0210T7	O	O
410	SW0080T7	O	O	459	SW0211T7	O	O
411	SW0081T7	O	O	460	SW0214T7	O	O
412	SW0085T7	O	O	461	SW0217T7	O	O
413	SW0088T7	O	O	462	SW0218T7	O	O
414	SW0090T7	O	O	463	SW0220T7	O	O
415	SW0095T7	O	O	464	SW0223T7	O	O
416	SW0103T7	M	O	465	SW0229T7	O	O
417	SW0104T7	M	O	466	SW0237T7	O	O
418	SW0121T7	O	N	467	SW0244T7	O	O
419	SW0123T7	O	O	468	SW0247T7	O	O
420	SW0125T7	O	O	469	SW0250T7	O	O
421	SW0127T7	O	O	470	SW0251T7	O	O
422	SW0128T7	O	O	471	SW0252T7	O	O
423	SW0129T7	O	O	472	SW0253T7	O	O
424	SW0130T7	O	N	473	SW0255T7	O	O
425	SW0133T7	M	M	474	SW0256T7	O	O
426	SW0134T7	O	O	475	SW0257T7	O	O
427	SW0135T7	M	O	476	SW0258T7	O	O
428	SW0140T7	O	O	477	SW0262T7	O	O
429	SW0141T7	M	O	478	SW0275T7	O	O
430	SW0143T7	O	O	479	SW0278T7	M	O
431	SW0145T7	O	O	480	SW0285T7	O	O
432	SW0147T7	O	O	481	SW0289T7	O	M
433	SW0152T7	O	O	482	SW0290T7	O	O
434	SW0155T7	O	N	483	SW0293T7	O	O
435	SW0157T7	O	O	484	SW0300T7	O	O

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
485	SW0302T7	O	O	534	SW0430T7	M	O
486	SW0303T7	O	O	535	SW0435T7	O	O
487	SW0307T7	O	O	536	SW0436T7	O	O
488	SW0308T7	O	O	537	SW0438T7	O	O
489	SW0311T7	O	O	538	SW0439M13	O	O
490	SW0312T7	O	O	539	SW0440T7	O	O
491	SW0313T7	O	O	540	SW0442M13	O	N
492	SW0314T7	O	O	541	SW0443T7	O	O
493	SW0319T7	O	O	542	SW0444T7	O	O
494	SW0322T7	O	N	543	SW0448T7	O	M
495	SW0333T7	O	O	544	SW0452M13	O	O
496	SW0338T7	M	O	545	SW0455T7	O	O
497	SW0340T7	O	O	546	SW0456T7	O	O
498	SW0342T7	O	O	547	SW0457T7	O	O
499	SW0344T7	O	O	548	SW0458T7	O	O
500	SW0346T7	O	O	549	SW0459T7	O	O
501	SW0347T7	O	O	550	SW0460T7	M	M
502	SW0349T7	M	O	551	SW0463T7	O	O
503	SW0350T7	O	O	552	SW0467M13	O	O
504	SW0351T7	O	O	553	SW0469M13	M	O
505	SW0352T7	O	O	554	SW0473M13	O	M
506	SW0354T7	O	O	555	SW0474T7	O	O
507	SW0355T7	O	O	556	SW0476T7	O	O
508	SW0356T7	O	M	557	SW0481T7	O	U
509	SW0357T7	O	O	558	SW0485T7	O	U
510	SW0361T7	O	O	559	SW0486T7	O	U
511	SW0362T7	O	O	560	SW0487T7	O	U
512	SW0365T7	O	O	561	SW0488T7	O	O
513	SW0366T7	O	O	562	SW0490T7	U	U
514	SW0381T7	O	O	563	SW0491T7	O	U
515	SW0391M13	O	O	564	SW0492T7	O	U
516	SW0393T7	O	O	565	SW0494T7	O	U
517	SW0395T7	O	M	566	SW0495T7	O	O
518	SW0396T7	M	O	567	SW0497T7	O	N
519	SW0398T7	O	O	568	SW0500T7	O	U
520	SW0400T7	O	O	569	SW0501T7	N or U	U
521	SW0404T7	O	O	570	SW0502T7	M	N
522	SW0405T7	O	O	571	SW0503T7	O	U
523	SW0406T7	M	O	572	SW0504T7	O	N
524	SW0407T7	O	O	573	SW0505T7	N	N
525	SW0408T7	M	O	574	SW0506T7	O	U
526	SW0413T7	M	O	575	SW0509T7	O	M
527	SW0414T7	O	U	576	SW0512T7	O	U
528	SW0415T7	O	O	577	SW0513T7	O	U
529	SW0417T7	N	O	578	SW0515T7	O	O
530	SW0418T7	O	O	579	SW0516T7	O	M
531	SW0426T7	O	O	580	SW0517T7	O	M
532	SW0427T7	O	O	581	SW0518T7	O	N
533	SW0428T7	M	U	582	SW0525T7	M	N

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
583	SW0529T7	O	N	632	SW0651T7	O	N
584	SW0532T7	O	N	633	SW0653T7	M	O
585	SW0533T7	O	N	634	SW0655T7	O	O
586	SW0534T7	O	M	635	SW0656T7	O	O
587	SW0535T7	O	O	636	SW0664T7	M	O
588	SW0536T7	M	U	637	SW0666T7	O	O
589	SW0538T7	O	N	638	SW0667T7	O	U
590	SW0540T7	O	O	639	SW0671T7	O	O
591	SW0541T7	O	O	640	SW0673T7	O	M
592	SW0542T7	O	O	641	SW0675T7	O	O
593	SW0543T7	O	O	642	SW0686T7	O	O
594	SW0544M13	O	M	643	SW0689T7	O	O
595	SW0545T7	O	O	644	SW0693M13	M	O
596	SW0546T7	O	O	645	SW0695T7	O	M
597	SW0547T7	O	U	646	SW0698T7	M	M
598	SW0550T7	O	M	647	SW0701T7	O	O
599	SW0551T7	O	M	648	SW0708T7	O	M
600	SW0552T7	O	U	649	SW0714T7	O	O
601	SW0554T7	O	U	650	SW0715T7	O	N
602	SW0559T7	O	M	651	SW0716T7	O	M
603	SW0561T7	O	N	652	SW0720T7	O	O
604	SW0562T7	O	U	653	SW0722T7	O	N
605	SW0566T7	O	O	654	SW0723T7	O	O
606	SW0567T7	O	N	655	SW0725T7	O	M
607	SW0568T7	O	N	656	SW0726T7	O	O
608	SW0569T7	O	O	657	SW0727T7	M	U
609	SW0571T7	O	O	658	SW0728T7	O	U
610	SW0578T7	O	N	659	SW0729T7	O	O
611	SW0580T7	O	O	660	SW0730M13	O	M
612	SW0582T7	O	O	661	SW0731T7	O	O
613	SW0584T7	O	O	662	SW0732T7	O	N
614	SW0591T7	N	O	663	SW0733T7	O	O
615	SW0606T7	O	O	664	SW0735T7	O	O
616	SW0607T7	O	O	665	SW0738T7	O	O
617	SW0608T7	O	O	666	SW0740T7	O	N
618	SW0611T7	O	O	667	SW0750T7	O	O
619	SW0612T7	N	O	668	SW0752T7	O	O
620	SW0616T7	O	M	669	SW0755T7	O	O
621	SW0623T7	O	O	670	SW0756T7	O	N
622	SW0629T7	O	O	671	SW0757T7	O	O
623	SW0635T7	O	O	672	SW0761T7	O	N
624	SW0636T7	O	O	673	SW0762T7	O	O
625	SW0637T7	O	M	674	SW0764T7	M	O
626	SW0640T7	N	O	675	SW0765T7	O	O
627	SW0641T7	O	M	676	SW0767T7	M	O
628	SW0642T7	O	O	677	SW0769T7	M	M
629	SW0644T7	O	O	678	SW0771T7	O	M
630	SW0645T7	O	O	679	SW0775T7	M	M
631	SW0646T7	O	O	680	SW0776T7	O	O

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
681	SW0780T7	O	O	730	SW0920T7	O	O
682	SW0782T7	M	M	731	SW0922T7	O	O
683	SW0785T7	O	O	732	SW0929T7	O	O
684	SW0789T7	O	O	733	SW0930T7	O	O
685	SW0790T7	O	N	734	SW0933T7	M	O
686	SW0795T7	O	O	735	SW0936T7	M	O
687	SW0796T7	M	M	736	SW0937T7	O	O
688	SW0798T7	M	M	737	SW0938T7	N	O
689	SW0799M13	O	O	738	SW0940T7	O	O
690	SW0801T7	O	O	739	SW0943T7	O	O
691	SW0802T7	M	M	740	SW0945T7	O	O
692	SW0804T7	O	O	741	SW0946T7	N	O
693	SW0806T7	O	M	742	SW0951T7	O	O
694	SW0807T7	N	N	743	SW0952T7	O	O
695	SW0810T7	M	O	744	SW0953T7	O	O
696	SW0814T7	O	O	745	SW0955T7	N	O
697	SW0816T7	N	N	746	SW0957T7	O	O
698	SW0819T7	O	O	747	SW0967T7	O	M
699	SW0822T7	O	M	748	SW0968T7	O	O
700	SW0827T7	O	O	749	SW0970T7	O	N
701	SW0829T7	O	M	750	SW0974T7	O	O
702	SW0830T7	O	M	751	SW0975T7	O	O
703	SW0831T7	O	O	752	SW0976T7	O	O
704	SW0834T7	O	O	753	SW0977T7	M	N
705	SW0835T7	O	N	754	SW0978T7	O	N
706	SW0838T7	O	U	755	SW0983T7	O	M
707	SW0840T7	O	O	756	SW0988T7	O	N
708	SW0842T7	O	O	757	SW0989T7	M	O
709	SW0845T7	O	O	758	SW0990T7	M	N
710	SW0846T7	O	M	759	SW0991T7	O	N
711	SW0848T7	O	M	760	SW0992T7	O	O
712	SW0851T7	M	M	761	SW0997T7	M	N
713	SW0853T7	O	O	762	SW1004T7	O	O
714	SW0854T7	N	O	763	SW1007T7	M	N
715	SW0857T7	O	O	764	SW1008T7	O	O
716	SW0858T7	M	N	765	SW1024T7	O	M
717	SW0859T7	M	M	766	SW1027T7	O	O
718	SW0860T7	O	M	767	SW1028T7	O	O
719	SW0862T7	M	M	768	SW1029T7	O	M
720	SW0865T7	N	O	769	SW1030T7	M	O
721	SW0868T7	O	O	770	SW1032M13	O	O
722	SW0891T7	O	O	771	SW1036T7	O	N
723	SW0897T7	O	O	772	SW1037T7	O	N
724	SW0898T7	O	O	773	SW1039T7	O	N
725	SW0901T7	O	O	774	SW1047T7	M	N
726	SW0904T7	O	O	775	SW1048T7	O	O
727	SW0905T7	N	O	776	SW1050T7	O	O
728	SW0917T7	O	O	777	SW1055T7	O	N
729	SW0919T7	O	O	778	SW1062T7	O	O

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
779	SW1063T7	O	O	828	SW1192T7	O	N
780	SW1066T7	O	O	829	SW1196T7	M	N
781	SW1069T7	O	O	830	SW1199T7	M	O
782	SW1070T7	M	O	831	SW1200T7	O	M
783	SW1074T7	O	O	832	SW1202T7	O	N
784	SW1075T7	O	O	833	SW1204T7	O	N
785	SW1076T7	O	O	834	SW1205T7	O	N
786	SW1077T7	O	O	835	SW1207T7	O	N
787	SW1078T7	O	O	836	SW1210T7	M	N
788	SW1081T7	O	O	837	SW1213T7	O	M
789	SW1082T7	O	O	838	SW1221T7	O	N
790	SW1094T7	O	O	839	SW1223T7	O	O
791	SW1095T7	O	N	840	SW1224T7	O	N
792	SW1096T7	O	O	841	SW1228T7	O	O
793	SW1099T7	O	O	842	SW1230T7	O	N
794	SW1101T7	O	O	843	SW1231T7	O	O
795	SW1103T7	O	O	844	SW1234T7	O	O
796	SW1111T7	O	O	845	SW1235T7	O	N
797	SW1112T7	O	O	846	SW1237T7	O	N
798	SW1113T7	O	O	847	SW1240T7	O	O
799	SW1117T7	O	O	848	SW1241T7	O	O
800	SW1118T7	O	O	849	SW1243T7	O	O
801	SW1119T7	O	O	850	SW1246T7	O	N
802	SW1121T7	O	N				
803	SW1125T7	O	O				
804	SW1128T7	M	N				
805	SW1129T7	O	O				
806	SW1140T7	M	N				
807	SW1143T7	O	O				
808	SW1145T7	M	O				
809	SW1149T7	M	O				
810	SW1153T7	O	N				
811	SW1157T7	O	O				
812	SW1158T7	O	N				
813	SW1164T7	O	M				
814	SW1165T7	O	N				
815	SW1166T7	O	O				
816	SW1167T7	O	N				
817	SW1170T7	M	N				
818	SW1171T7	O	N				
819	SW1172T7	O	N				
820	SW1173T7	O	N				
821	SW1175T7	O	N				
822	SW1178T7	O	O				
823	SW1179T7	O	O				
824	SW1180T7	M	N				
825	SW1183T7	O	M				
826	SW1187M13	O	N				
827	SW1189T7	O	N				

Table 2

SEQ ID NO	Clone name	"Novel" Region 1		"Novel" Region 2		GenBank Identifier for top 5 matching EST sequences
		Start / Stop	Start / Stop	Start / Stop	Start / Stop	
128	SW0004M13	742-865		g1947473	g1969195	g12216795
129	SW0004T7	752-910		g1947473	g1969195	g1236508
130	SW0011M13	1-218	553-932	g2241970	g2140706	g1720731
131	SW0011T7	1-264	599-890	g2241970	g2140706	g1720731
132	SW0015T7	483-606		g9675241	g900355	g1774265
133	SW0024T7	1-148	268-606	g4033911	g1960000	g2180239
134	SW0026M13	400-598		g767139	g880785	g679294
135	SW0026T7	1-199	285-336	g767139	g880785	g2558187
136	SW0033T7	427-610		g2873486	g1960450	g9696474
137	SW0038T7	321-645		g4222862	g2583432	g4440193
138	SW0069T7	366-612		g770924	g1308307	g2268964
139	SW0073T7	521-592		g1152099	g2191626	g1494014
140	SW0076T7	456-618		g2567157	g2236340	g1721900
142	SW0082T7	511-601		g1718668	g1274002	g2768420
146	SW0101T7	420-624		g1376510	g708780	g3229743
147	SW0102T7	512-599		g4223023	g3430515	g1137129
148	SW0105T7	1-219	570-609	g2835475	g1482129	g1624179
149	SW0108T7	220-296	552-589	g2154028	g1303058	g1645371
150	SW0111T7	1-68		g1308307	g4332333	g1792312
153	SW0119T7	510-596		g4265953	g2836717	g2882934
154	SW0122T7	1-51		g1760809	g3804685	g900100
158	SW0146T7	1-76	333-617	g2009649	g1011403	g390153
159	SW0156T7	1-71	782-1002	g2902747	g3887935	g4125195
162	SW0166T7	1-48	444-638	g2264624	g3755582	g1440147
163	SW0175T7	1-303	829-1002	g724430	g2154572	g4684438
166	SW0185T7	113-208		g1647210	g1647264	g1162310
168	SW0191T7	388-683		g829950	g771211	g766442
172	SW0213T7	449-617		g3886373	g955334	g1441052
	SW0229T7	293-987		g2033455	g1940943	g955941
					g961389	174

SEQ ID NO	Clone name	"Novel" Region 1		"Novel" Region 2		GenBank Identifier for top 5 matching EST sequences
		Start / Stop	Start / Stop	Start / Stop	Start / Stop	
176	SW0241T7	494-570	440-621	92010030	g918739	g893980
177	SW0242T7	1-41	440-621	g3645529	g92335995	g1978587
178	SW0246T7	1-202		g1162850	g91140707	g2019409
179	SW0248T7	497-650		g4079044	g92158663	g2788869
182	SW0264T7	1-94	479-609	g1976294	g9346793	g1153656
186	SW0273T7	1-89	546-638	g3677131	g93805522	g4525163
187	SW0280T7	412-628		g1815110	g1933167	g4598742
188	SW0281T7	109-160	572-654	g2436919	g92185995	g654599
189	SW0291T7	461-650		g1992596	g91138351	g395782
190	SW0294T7	431-699		g2839339	g93838466	g2617794
196	SW0311M13	1-46	456-658	g4195712	g94648481	g1479221
197	SW0325T7	511-615		g1270394	g93896108	g9238973
198	SW0326T7	499-557		g1967113	g91967684	g2904744
200	SW0334T7	525-615		g1624696	g92356793	g683242
202	SW0341T7	414-584		g774421	g9570881	g92184702
203	SW0358T7	112-188	513-608	g1984379	g93789679	g1837320
204	SW0359T7	57-159	561-621	g1802072	g91663807	g1774577
206	SW0361M13	1-65	183-572	g2030884	g9645753	g196628
207	SW0367T7	559-616		g644105	g9716356	g1966828
210	SW0399T7	486-589		g1856563	g91690249	g1678033
211	SW0401T7	470-590		g1165586	g91690123	g15778203
212	SW0403T7	369-614		g3214476	g91648508	g3009494
213	SW0412T7	1-304	509-624	g681577	g9712993	g4533033
214	SW0419T7	134-612		g1388511	g92552190	g1491055
215	SW0429T7	516-618		g1349681	g91269881	g4522374
216	SW0434T7	349-595		g4261346	g93596444	g3329909
217	SW0441T7	428-610		g4762076	g92158733	g4684571
218	SW0446T7	458-585		g4111486	g91484542	g2809783
219	SW0454T7	116-599		g1319069	g91319055	g2113084
220	SW0461T7	1-189	411-602	g1295370	g92008512	g1571056
221	SW0468T7	1-55	477-573	g2163292	g92162568	g1225564
223	SW0489M13	449-564		g1779025	g92027299	g16966820
					g1960180	g2016248
					g2027299	g2879596

SEQ ID NO	Clone name	"Novel" Region 1		"Novel" Region 2		GenBank Identifier for top 5 matching EST sequences
		Start / Stop	Start / Stop	Start / Stop	Start / Stop	
224	SW0496T7	160-277		91040448	g1012154	g713991
225	SW0499T7	451-589		91745433	g4535376	g9393969
226	SW0507T7	539-636		91694289	g1959749	g93075884
227	SW0514T7	348-451		9815990	g4824527	g9281629
228	SW0520T7	1-200		91999728	g1959807	g3897416
231	SW0548T7	511-639		92036727	g1692039	g1951783
234	SW0560T7	237-408		g1180638	g2110980	g2715495
237	SW0572T7	1-47		92825571	g4395571	g9664974
239	SW0574T7	1-53		91721900	g1962046	g1023347
242	SW0583T7	156-284		g1983062	g1779675	g913991
243	SW0604T7	272-647		91151602	g1799297	g91317142
244	SW0605M13	436-603		93255034	g4523614	g91406230
245	SW0609T7	553-640		g870149	g9870280	g91689308
246	SW0610M13	263-312		91689308	g1289557	g91799313
247	SW0610T7	1-81		927910	g873209	g94232572
248	SW0613T7	274-624		g3118093	g9877748	g92064580
249	SW0621T7	295-636		94070350	g94087920	g9793188
250	SW0633T7	478-669		g4300499	g9307939	g9732206
251	SW0647T7	530-670		g1959511	g1689297	g9734486
252	SW0654M13	398-461		g1894108	g9838679	g9565336
253	SW0658T7	133-433		92878157	g3091572	g93897398
254	SW0662T7	505-652		g4083719	g2539985	g9840238
255	SW0663M13	315-605		g2786351	g645679	g91306866
256	SW0668T7	371-654		g1273871	g1978052	g9819867
257	SW0672T7	477-594		g1376487	g1815330	g981061
258	SW0674T7	505-648		g1280912	g774134	g981178347
260	SW0677T7	1-148		g1999506	g1967695	g93094537
261	SW0678M13	146-219		g1502150	g2027232	g93959666
262	SW0681T7	1-105		g2329443	g3897476	g9691414
263	SW0683T7	301-344		g1645468	g1507025	g9339778
264	SW0687T7	276-601		g2986269	g4665361	g9348989
265	SW0688T7	404-643		g11888074	g11693906	g974915

SEQ ID NO	Clone name	"Novel" Region 1		"Novel" Region 2		GenBank Identifier for top 5 matching EST sequences
		Start / Stop	Start / Stop	Start / Stop	Start / Stop	
266	SW0692T7	1-54	490-582	91969153	94534166	g3990730
267	SW0694T7	503-565		92184535	9812780	g3117755
268	SW0697T7	279-661		92986269	94665361	g2988563
269	SW0710T7	476-643		91307580	92053081	g1299364
270	SW0711T7	540-650		91967859	91970279	g1967270
271	SW0713T7	478-620		91308937	91484655	g1967497
272	SW0724T7	431-490		93030963	9389972	g1060573
273	SW0734T7	320-688		93037561	91068430	g3679607
274	SW0736T7	499-674		94735776	92458732	g1391607
275	SW0744T7	488-638		9835606	94291133	g9451965
276	SW0751T7	1-67	348-638	92033666	94525902	g9094551
277	SW0753T7	457-734		91281367	92013326	g1423548
279	SW0768T7	1-457		9816092	92028907	g1977384
281	SW0772T7	1-116	524-677	91389446	9889175	g4685207
282	SW0774T7	515-691		91280912	91516408	g774134
283	SW0778T7	166-688		9709101	9692097	g1843758
284	SW0779T7	247-777		9572918	9672436	g2873870
285	SW0783T7	433-692		92884478	92882317	g3918382
286	SW0784T7	557-709		91147127	92269337	g3674707
288	SW0787T7	476-681		91624696	92356793	g17784223
289	SW0797M13	1-48	527-565	9647094	94329924	g1296124
290	SW0803T7	464-699		9869902	9698828	g1496517
291	SW0809T7	1-120	495-699	9815129	9814313	g791801
292	SW0811T7	337-688		9775252	91064596	g2106148
293	SW0815M13	411-572		92369395	91495178	g1978754
294	SW0821T7	192-692		91847887	989896	g3055436
296	SW0826T7	451-677		94850460	9864989	g793071
297	SW0827M13	476-536		91779025	92027299	g1960180
299	SW0836T7	485-644		92912733	93330967	g1166303
301	SW0843M13	114-589		91211744	91320893	g825200
303	SW0847T7	1-346	555-673	91547479	92410830	g1012926
304	SW0849T7	115-426		92079660	g3099047	g2198300
					g2341367	g2197847

SEQ ID NO	Clone name	"Novel" Region 1 Start / Stop	"Novel" Region 2 Start / Stop	GenBank Identifier for top 5 matching EST sequences
305	SW0850T7	521-655		g1306156 g1923678 g2874241 g2805210 g4630217
306	SW0855T7	511-684		g2402087 g1781722 g1303037 g2005846 g2218908
308	SW0866T7	487-660		g1894503 g2191248 g3898116 g1785384 g1114295
312	SW0914T7	123-168		g783104 g1496681 g1687044 g2006571 g1440899
313	SW0916T7	541-656		g1255268 g1809627 g1815279 g1049496 g1388310
316	SW0923T7	461-637		g389604 g1983913 g573354 g772210 g3429552
317	SW0926M13	315-505		g2110746 g1958300 g850595 g1040607 g848805
318	SW0928T7	546-645		g2835368 g2159357 g1320607 g961005 g1692986
321	SW0954T7	351-588		g1713128 g4296983 g3152028 g3597337 g3134671
322	SW0964T7	275-368		g2617590 g1983739 g2321557 g661505
327	SW0998T7	1-430		g1665148 g873211 g1734568 g1722041 g1137689
331	SW1018T7	369-421		g815990 g4824527 g3213763 g4281629 g2445651
332	SW1045T7	171-616		g1960129 g3797281 g3678504 g2907669 g1299288
333	SW1046T7	1-58	227-650	g1689803 g747999 g3094753 g1969991 g4599383
334	SW1058T7	256-734		g3076981 g4764472 g4244708 g3675166 g3057227
335	SW1059M13	164-451		g3146363 g2842317 g2291325 g2035592 g4076865
336	SW1061T7	435-732		g1720353 g4083719 g2188948 g3649260 g1966864
337	SW1064T7	465-642		g1898567 g1984998 g1577078 g1969872 g1577114
338	SW1065T7	466-723		g4737452 g1721911 g2567423 g3595294 g4564556
340	SW1085M13	195-502		g2994840 g652041 g728040 g1741474 g3739875
342	SW1091T7	1-177	457-669	g1139868 g4740134 g1123719 g4690317 g4690888
343	SW1093M13	178-372		g2876843 g1212266 g1277704 g3842193 g650405
344	SW1097T7	345-483		g1966405 g200446 g1984682 g1162830
345	SW1104T7	348-667		g1987181 g1975635 g2575165 g2901280
346	SW1105T7	450-754		g3849721 g4606643 g1696922 g2725769 g3147355
348	SW1107T7	507-693		g4223536 g2539603 g4763850 g3921215 g4190351
350	SW1109T7	372-622		g1969153 g4534166 g3990730 g3052018
351	SW1114T7	436-574		g2094727 g3034248 g2445722 g2318514 g2884719
353	SW1124T7	424-727		g1801953 g834048 g867043 g4599665 g1491375
354	SW1130T7	1-151	311-411	g834106 g857314 g2880334 g1166307 g697528
356	SW1132T7	428-678		g2167403 g2080455 g1996679 g565319 g659447
358	SW1134T7	144-267	504-633	g3190963 g1921067 g1210922 g711478 g874773

SEQ ID NO	Clone name	"Novel" Region 1		"Novel" Region 2		GenBank Identifier for top 5 matching EST sequences
		Start / Stop	Start / Stop	Start / Stop	Start / Stop	
359	SW1136T7	420-635		91740775	9657385	g983198 g9831166 g94703413 g93648263 g93752988
361	SW1146T7	425-631		94524079	92154010	g94739574 g94301551 g91312127 g91721536 g9658245
362	SW1147T7	480-660				g91729323 g91729322 g91989919 g91314949 g91988870
364	SW1156T7	1-176	409-686			g92834800 g92807169 g94681663 g92526582 g92525859
365	SW1160T7	408-638		93429486	93049810	g91140898 g93665193
366	SW1161T7	400-585		94393979	g91155820	g91153641
367	SW1169T7	422-628		g93595746	g94190711	g94190042
368	SW1176T7	425-618		g91501716	g9656431	g91522532
370	SW1193T7	447-636		g94391165	g94295071	g92357775 g93238462
372	SW1203T7	487-612		g91012013	g91388510	g91264038 g93330122
373	SW1212T7	500-640		g91384656	g91696886	g92825672 g94084026
374	SW1213M13	218-503		g93076981	g94764472	g93675166 g93057227
375	SW1214T7	426-611		g91386338	g92162796	g91616215 g91965789 g929070
376	SW1218T7	424-601		g91191932	g91952078	g91328929 g92329319 g94618462
377	SW1220T7	1-67	487-621	g91690249	g91856563	g919666703 g91952828 g91965610
379	SW1236M13	390-516		g9875363	g92100509	g914187897 g91623528 g9157854
381	SW1239T7	420-480	501-620	g91017274	g91999568	g93754140 g91182700

We claim:

1. An isolated nucleic acid comprising a nucleotide sequence which hybridizes under stringent conditions to a sequence of SEQ ID Nos. 1-127 or a sequence complementary thereto.
5
2. An isolated nucleic acid comprising a nucleotide sequence at least 80% identical to a sequence corresponding to at least about 15 consecutive nucleotides of one of SEQ ID Nos. 1-127 or a sequence complementary thereto.
10
3. An isolated nucleic acid comprising a nucleotide sequence of SEQ ID Nos. 1-127 or a sequence complementary thereto.
15
4. A nucleic acid according to claim 1, further comprising a transcriptional regulatory sequence operably linked to said nucleotide sequence so as to render said nucleotide sequence suitable for use as an expression vector.
20
5. An expression vector, capable of replicating in at least one of a prokaryotic cell and eukaryotic cell, comprising the nucleic acid of claim 4.
25
6. A host cell transfected with the expression vector of claim 5.
25
7. A transgenic animal having a transgene of the nucleic acid of claim 1 incorporated in cells thereof, which transgene modifies the level of expression of the nucleic acid, the stability of an mRNA transcript of the nucleic acid, or the activity of the encoded product of the nucleic acid.
30
8. A substantially pure nucleic acid which hybridizes under stringent conditions to a nucleic acid probe corresponding to at least 12 consecutive nucleotides of one of SEQ ID Nos. 1-127 or a sequence complementary thereto.

9. A polypeptide including an amino acid sequence encoded by a nucleic acid of claim 1 or a fragment comprising at least 25 amino acids thereof.
10. A probe/primer comprising a substantially purified oligonucleotide, said oligonucleotide containing a region of nucleotide sequence which hybridizes under stringent conditions to at least 12 consecutive nucleotides of sense or antisense sequence selected from SEQ ID Nos. 1-127.
5
11. An array including at least 10 different probes of claim 10 attached to a solid support.
10
12. The probe/primer of claim 10, further comprising a label group attached thereto and able to be detected.
15
13. The probe/primer of claim 12, wherein said label group being selected from radioisotopes, fluorescent compounds, enzymes, and enzyme co-factors.
15
14. An antibody immunoreactive with a polypeptide of claim 9.
20
15. An antisense oligonucleotide analog which hybridizes under stringent conditions to at least 12 consecutive nucleotides of one of SEQ ID Nos. 1-850 or a sequence complementary thereto, and which is resistant to cleavage by a nuclease.
25
16. A test kit for determining the phenotype of transformed cells, comprising the probe/primer of claim 12, for measuring a level of a nucleic acid which hybridizes under stringent conditions to a nucleic acid of SEQ ID Nos. 1-850 in a sample of cells isolated from a patient.
30
17. A test kit for determining the phenotype of transformed cells, comprising an antibody specific for a protein encoded by a nucleic acid which hybridizes under stringent conditions to any one of SEQ Nos. 1-850.

18. A method of determining the phenotype of a cell, comprising detecting the differential expression, relative to a normal cell, of at least one nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-850, 5 wherein the nucleic acid is differentially expressed by at least a factor of two.
19. A method for determining the phenotype of cells in a sample of cells from a patient, comprising:
 - i. providing a nucleic acid probe comprising a nucleotide sequence having at least 12 consecutive nucleotides of any of SEQ ID 10 Nos. 1-850;
 - ii. obtaining a sample of cells from a patient;
 - iii. providing a second sample of cells substantially all of which are non-cancerous;
 - iv. contacting the nucleic acid probe under stringent conditions with mRNA of each of said first and second cell samples; and
 - v. comparing (a) the amount of hybridization of the probe with mRNA of the first cell sample, with (b) the amount of hybridization of the probe with mRNA of the second cell sample, wherein a difference of at least a factor of two in the amount of hybridization with the 15 mRNA of the first cell sample as compared to the amount of hybridization with the mRNA of the second cell sample is indicative of the phenotype of cells in the first cell sample.
20. A method of determining the phenotype of a cell, comprising detecting the differential expression, relative to a normal cell, of at least one protein encoded by a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-850, wherein the protein is differentially expressed by at least a factor of two.
30. 21. The method of claim 20, wherein the level of said protein is detected in an immunoassay.

22. A method for determining the presence or absence of a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-127 in a cell, comprising contacting the cell with a probe of claim 10.

5

23. A method for determining the presence or absence of a polypeptide encoded by a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-127 in a cell, comprising contacting the cell with an antibody of claim 14.

10

24. A method for detecting a mutation in a test nucleic acid which hybridizes under stringent conditions to a nucleic acid of SEQ ID Nos. 1-383 or a sequence complementary thereto, comprising

15

- i. collecting a sample of cells from a patient,
- ii. isolating nucleic acid from the cells of the sample,
- iii. contacting the nucleic acid sample with one or more primers which specifically hybridize to a nucleic acid sequence of SEQ ID Nos. 1-383 under conditions such that hybridization and amplification of the nucleic acid occurs, and
- iv. comparing the presence, absence, or size of an amplification product to the amplification product of a normal cell.

20

25. A method for identifying an agent which alters the level of expression in a cell of a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto, comprising

25

- i. providing a cell;
- ii. treating the cell with a test agent;
- iii. determining the level of expression in the cell of a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto; and
- iv. comparing the level of expression of the nucleic acid in the treated cell with the level of expression of the nucleic acid in an

30

untreated cell, wherein a change in the level of expression of the nucleic acid in the treated cell relative to the level of expression of the nucleic acid in the untreated cell is indicative of an agent which alters the level of expression of the nucleic acid in a cell.

5

26. A pharmaceutical composition comprising an agent identified by the method of claim 25.
- 10 27. A pharmaceutical composition comprising a nucleic acid which includes a nucleotide sequence which hybridizes under stringent conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto.
- 15 28. A pharmaceutical composition comprising a polypeptide encoded by a nucleic acid which includes a nucleotide sequence that hybridizes under stringent conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto.
29. An isolated nucleic acid comprising a portion of a nucleotide sequence of SEQ ID Nos. 128-383 or a sequence complementary thereto.
- 20 30. A gene which hybridizes to one of SEQ ID Nos. 1-383.
31. A method for detecting cancer in which one or more of SEQ ID Nos. 1-850 are used as probes, said method comprising:
 - i. collecting a sample of cells from a patient,
 - 25 ii. isolating nucleic acid from the cells of the sample,
 - iii. contacting the nucleic acid sample with one or more primers which specifically hybridize to a nucleic acid sequence of SEQ ID Nos. 1-850 under conditions such that hybridization and amplification of the nucleic acid occurs, and
 - 30 iv. comparing the presence, absence, or size of an amplification product to the amplification product of a normal cell.

32. A method of claim 31 in which said cancer is colon cancer.
33. A method for detecting cancer in a patient sample in which an antibody to a protein encoded by SEQ ID Nos. 1-850 is used to react with proteins in said sample.
5
34. A method of claim 33 in which said cancer is colon cancer.

10

Differential Expression Analysis

SEQUENCE LISTING

<110> BAYER CORPORATION

<120> NOVEL HUMAN GENES AND GENE EXPRESSION
PRODUCTS

<130> CCD-257 (PCT)

<150> US 60/088,801
<151> 1988-06-10

<160> 850

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 359
<212> DNA
<213> Homo sapiens

<400> 1

tacaaaacta acgatgaagt tattcatggc atcttcaaag cttacattca gaggctgctt	60
cacgccttgg ctgcacactg ccagctggaa ccagaccatg agggggttcc tgaggagact	120
gatgactttg gggagtttcg catgagggta tcagacctgg taaaggactt gattttcttg	180
atagggtcta tggagtgttt tgctcagttt tattctactc taaaagaagg caacccaccc	240
tgggaggtga cagaagcggt tctctttatc atgactgcta tagcaaagag tggatccg	300
gaaaacaatc caacacttgtt ggaagtctta gaaggagttt tccgcctccc ggagaccgt	359

<210> 2
<211> 901
<212> DNA
<213> Homo sapiens<220>
<221> misc_feature
<222> (1)...(901)
<223> n = A,T,C or G

<400> 2

tacactaccc ttaaaaaaaaa attggatat attactttt ctgtaaaaaa atgctttaaa	60
tcaggggtcc ccaacccccca ngtcacanac ctgaangggt ccatgntatg nnatgaacca	120
ngccacacag nnggangtaa gcanctgaga gcgagggaaag cctagnntgn atttacagaa	180
aagggaagct ncatctgtat ttacagccac tccccactgc tcacattatg gcctgagetc	240
tgcctcccgat nagatcagga gacatttatat tctcatagga gcatgaacac tatttngaaac	300
tgcacatnca anggatctgg gttgtctggg ttgtcgctc cttataaaaaa tctaatggtg	360
gatgatttgt cactgtctgc catcatccct agatggaaaaa caagctcacc caaagtctcn	420
cttngccna ggnntncctg atgccaagat tcncatttt gacctggggc gaaaaaaaggc	480
naaagnggat gagttccgct ttngggccac atgntgttag atgaatntga gcagctgct	540
ctgaagccct ggaggctgcc cgaatttng ccaatannta ccccgaaagcg ctggtagat	600
tcccaagggg agcgccctttt acactngncc ctganacttc nntccagat cggtcngggc	660
tttaacttt tggttcccg tttgtcaan gacattgctt cctttanttt tncagctggt	720

qngncttggaa aaggattggg ccctggcttc tcnaggatgg ctaaggatga anngatatca	780
aggncctggca tgaanaant cnccggccn ncttnggc ngttncctt gggacctggc	840
cgggcccggc cgtttcgaaa gggcnaaatt ctggcagaat ttccctgana cctggcgaaa	900
9	901
<210> 3	
<211> 553	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (553)	
<223> n = A,T,C or G	
<400> 3	
actgctttct gctgccgctc aggatagcac tggctttcac agggattanc cttctggtgg	60
tgggcacaac tgtggtggaa tacttgccaa atgggaggtt taaggagttc atgagtaaac	120
atgttcactt aatgtgttac cggatctgct tgcgagcgct gacagccatc atcacctacc	180
atgacagggaa aaacagacca agaaatgggt gcatctgtgt ggccaatcat acctcaccga	240
tcgatngat catcttggcc agcgatggct attatgccccat ggtgggtcaa gtgcacgggg	300
gactcatggn tgtgattcac agagccatgg tgaaggcctg cccacacgctc tggtttgagc	360
gctcggaaat gaaggatcgc cacctgggtt ctaagagact gactgaacat gtgcaagatn	420
aaagcaagct gcctatcctc atcttcccaag aaggaacctgg catcaataat acatcggn	480
tgtatgttcaa aaagggaaagn tttgaaattt nagccacagt ttaccctggg gctatnaagt	540
atgaccctca att	553
<210> 4	
<211> 565	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (565)	
<223> n = A,T,C or G	
<400> 4	
actgctttct gctgccgctc aggatagcac tggctttcac agggattagc cttctggtgg	60
tgggcacaac tgtggtggaa tacttgccaa atgggaggtt taaggagttc atgagtaaac	120
atgttcactt aatgtgttac cggatctgct tgcgagcgct gacagccatc atcacctacc	180
atgacagggaa aaacagacca agaaatgggt gcatctgtgt ggccaatcat acctcaccga	240
tcgatgtgtat catcttggcc agcgatggctt attatgccccat ggtgggtcaa gtgcacgggg	300
gactcatggg tgtgatttag agagccatgg tgaaggcctg cccacacgctc tggtttgagc	360
gctcggaaat gaaggatcgc cacctgggtt ctaagagact gactgaacat gtgcaagata	420
aaagcaagct gcctatctca tctttcccaag aaggaacctgc atcataatac attgggtgata	480
tgtcaaaaaan gggaaagtggaaatgganc cccagttaa cctgnngntt tnagtttnac	540
ccttaatttgc gcaaggccttt tggan	565
<210> 5	
<211> 500	
<212> DNA	
<213> Homo sapiens	

<210> 8
<211> 649
<212> DNA
<213> Homo sapiens

<400> 8

actgatctcc	tgttggcctg	cttcatttgt	cctgcagttg	tcaatccaga	acaatatgga	60
ataattccg	atgctcctat	taatgaagta	gcacgattta	atctgatgca	ggtaggccgc	120
cttttgcagc	agttagcaat	gactggctct	gaagagggag	atccccgaac	aaagagcagc	180
cttggaaaat	ttgacaaaag	ctgtgtgcc	gctttccttg	atgttgtat	tggggccgt	240
gcagtgaggaa	cccctccatt	gtcttcgtc	aatcttctgg	aaggattgag	cagaactgtg	300
gtttatataa	cctacagtca	ggcttattac	tctggtgaat	tttatgaaag	agtgtgatgt	360
ctggagatca	actgagagaa	gatagaatgg	ctcttgacaa	tttattggca	aacctacccc	420
cggccaagcc	aggaaaaagt	agcagtttag	aatgactcc	ctacaataca	cctcagctat	480
ctccagcaac	cactccagca	aataaaaaga	atcgattacc	tatagcaact	cggagcagaa	540
gccgcaccaa	tatgctaatt	gacctacata	tggaccatga	aggatcatct	caagaaacca	600
tccaggaggt	gcaaccagaa	gaggtgttgg	tcatttcctt	aggtacctc		649

<210> 9

<211> 645

<212> DNA

<213> Homo sapiens

<400> 9

acttagtgca	acatattgaa	cttaaattcc	agttttcctg	gaattacttg	tgtcttgagc	60
taaaggctgt	atttgatata	acagggaaagg	aaagaaatta	tttttcctat	aaaatttagtt	120
tagtttaaaa	acacatataa	ttaaacaaaaa	taaaaatatt	attccatctt	ttaaagaaca	180
tttactaatt	cacagatatt	acccgaagtt	tagaaagtca	cctaagaaca	attgtttaaa	240
aattatttag	ggaaaaatgaa	gcaaaaattgt	tttcaatctg	agattttAAC	agccagtgca	300
ctcctgttcc	tcagtgaaa	gtccccctca	ttctgaatgt	ctgcagtagt	attgaatttg	360
ggagcagttt	gttccaggg	acatattcac	tcctgttttg	ttctcccatc	aatctcagcc	420
ctttcggtga	ctgttggc	aaagcctccc	ttgtggtaga	agatgcctca	cttctgggaa	480
gaagaggctc	ctcatcttgc	agacaagaag	cagcacccac	tgtttcttgc	tccaaaagcc	540
attaacat	taaactggcc	agttgcagtg	gctcaaactt	gtaatcccag	caccttttgg	600
gagggttgg	cacaaggatt	gcttgagccc	aggagtttg	gtacc		645

<210> 10

<211> 564

<212> DNA

<213> Homo sapiens

<400> 10

cgcggccgag	gtacctgggc	ttaacagtaa	tagagaacct	catttatacc	atacagacac	60
agcaacttag	gaagacagca	ctgatagcat	ttagctagtt	gtaaccaaatt	ccaaatatgt	120
aaaattgaga	attatgatta	acatatgcaa	ctttagtaat	aggaatagat	gataatttc	180
ctgtattgtt	tcaaataagt	gactgttcag	ctgggatcca	ttggattata	atttacaatg	240
tcacataata	ttatgcttt	caatattgtat	gagtgtatgt	aacaatataa	agttggcagt	300
ttgttagtagt	tcagtagtct	agaaatacat	tgaacttcat	aagtatcagt	tcattttaa	360
gcatacagaa	ttgaactgtat	acttactgaa	atcataaact	cagagggaaac	aagcccatct	420
ttatcactaa	ttacttagct	tgaataacttt	tctattttaa	aataatccta	attattgcct	480
tttcaattat	agtctactgt	atttattttat	atgggatcaa	caggtattta	tcaaacatct	540
actgtgtgcc	cagcactacc	tagt				564

<210> 11
<211> 593
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(593)
<223> n = A,T,C or G

<400> 11

cgaggtgcct	cgcctcgggc	attttcttgc	agcaagaagg	gacgcattgcc	tctggcataa	60
atccaaaccag	agagtccaccc	ctctcaagct	gattttttaa	aatcttagat	attattttaga	120
tcatttcagc	aaattcttaa	tgctttggcc	ttcacagta	agatgttgct	taatcggtg	180
gatctcccccc	ctccttgcca	aggagactca	atttgcagt	tgcccatatc	tgccttagtta	240
aatcggttgc	atactaaagg	ttctgggagg	gtggggacag	aatttccccg	gtgctaattgc	300
ggcactgaat	cgcaggaggc	tgccatgcatt	ttcttcagtc	atctacaacc	aagaattctc	360
agagcagtcc	ctcggcagcc	tttgaagct	gtgctagagc	agaaagctgc	tattgnctc	420
atctctcaac	aaggaaagga	tcaaacttg	cctcttcaa	tttgaagat	tttttttat	480
ggtgttgggg	ggaagggatt	gcaatctga	tnctcaagtt	aactttgagg	atttggagtg	540
gtctnccagt	ttaaactgca	gatcaaatac	cagaaggccct	aacgcctgca	tnt	593

<210> 12
<211> 602
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(602)
<223> n = A,T,C or G

<400> 12

acacacaatt	ccactcttacc	acccaacatc	aatgaggcatt	tattgagcat	ctactgaagc	60
tcacagcatt	gtgcaggcag	gatacatatc	atacaaatgc	tgtttccctcc	tcccaccaaa	120
tgagggagaa	ttagatgaga	tttttaaaaa	ttcctccctag	ttctacaacc	agtattgtat	180
actgatccaa	tttggaaagtt	taagttaaa	attaattcaa	ggattccagt	tgaggaaatg	240
gtcccacttc	cttggaaagt	aaactagctc	ggtcaccagg	ctaggttacc	cacgttgtaa	300
ttgcttgtga	ttgactactc	caccgttata	atgatgaagt	gcccccgact	tgagatgcag	360
gcgttagggc	atctgtgatt	tgtctgcag	ttttaactgg	gagaccactc	caaatcctca	420
aagtttaactt	tgagtatcag	attgcaatcc	ttccccccacc	accataaaaa	aaaatcttc	480
aaattgaaga	ggcaaaaagtt	ggatccttc	cttgggttggaa	gatgagacca	ttgcccgttt	540
ttgnnttagc	caggttcaa	anggttgcca	nggactgnrn	tganaatctn	ggtgganaaa	600
an						602

<210> 13
<211> 487
<212> DNA
<213> Homo sapiens

<400> 13

gcgtggcgcg	gccgagggtac	tggaggccat	ccagccata	ccctggcgccc	gggcaaacct	60
cagatgcctc	cttcttgggt	ttcattgggc	accaggatcc	atctccatg	aattggatct	120

catcacaatc tgaacaggaa ctaagaatct ccataaaataa accatcaatg ataagagatt	180
catagggagc cttcttgcac cacacaggac atgtccatgt aggcttc ttc tcattcatct	240
gtagataaag ggcagcatcg aagctctgca ggtggcgca ggtgaaggca cgacaaggga	300
cagtcaggcg catctccct agcgggcaca tgagtgacac ccggagactt gtatggcca	360
cctcaactgtc agggtcagca gtcaatttct ccttgatcag tgcccgcag tggctgggt	420
tccggataacc ctggctctg agttttgtt gaagggttcc tgcagtcaac tgcctcacca	480
ggtacct	487

<210> 14
<211> 300
<212> DNA
<213> Homo sapiens

<400> 14

acagaaaattc ttaactgctt atgaaatgct gattgttaaa cagcatccac agctatttt	60
tgttgtttcc ctgacccccac cctgaagaaa agaaaaattt tggcatattt aaaaacagcag	120
tatgtatgtaa gagaaaagat cacaattcc ttgagggtgg gtctttcca tactcataag	180
cctatttata atattcagag taatttattt acacatatta atattccctc ctatcccatt	240
aattgccaaa tcatcaaaca ttatttggc acctactctg tgttagggtgt aagcagtacc	300

<210> 15
<211> 882
<212> DNA
<213> Homo sapiens

<400> 15

acctcataaac aaatgcctgc catgtgttcc agattcacct tctttcttcc tgccccagcc	60
ctggaatcag ctgccttc aagcaactcg gactccttta aacagagaat gataaaatct	120
tagaaacccc tgaggccccg tggctcagt gttctaggct gtccttc taaaggcccttc	180
tcgtggccag aaccacacaa agtatcatca cgacagctt atagtaatgt ctgggtttt	240
cagggcaaat ggccttc ttcacaatgt ttttaattaa tcctggactt gcactcttct	300
cagtgaattc tagtcaccc tgcaggaaag agaagtggct ggatgtcgat gggAACGTCA	360
ttgaatgtta agagcaactt tgggagacct gacacctggc atcttcctt ctctgaacat	420
agaggagaat taagcaaattc ttcccttaat gtccttcaat aaagtttata tattttctgc	480
atgcagatct tatctgtctt aaaatttacc ccagataacct ttttgcact gtaagcat	540
tgttttaat tacattttgtt aaccaattaa attgttgggtt taacaaaatg aattgatttt	600
atattttgtt cttaaatttgc ctcaactctc taatctgttc tgagatccct atttaggaaa	660
ttacatcaca tcacatgcca gtaacagcag ttttatttct gccttttca ccctctgcc	720
tgctgaaaac agtgttgtga ggctgaggat gatgtgggtt acacaaaact tggctgcact	780
gcagggggga atggaaatct acataaccac ttggaaaaaa tcgatatgtt tcaatatgca	840
gacgtctgcg ttatcctgca gaactggaca tttgcacgta cc	882

<210> 16
<211> 568
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(568)
<223> n = A,T,C or G

<400> 16

ggtaactcccg	gctttacagt	taaaaaccagt	tttctgggaa	catttgtcaa	acacaggaa	60
aggctgtcct	ttaagttag	tgtttactgc	atttcaccta	agactaaatg	gacaaatgaa	120
ttataaaattc	attttttagg	aggcataata	aactttggaa	atatttttc	ttaatttagag	180
ggaagaaaatg	agcaaaaagag	aacccgaggc	tctagctaga	agcccggtt	tctctgcct	240
aattgcacca	aacaatgcct	taataatctg	tgtcttcatg	tgggaggcat	ctactctgtc	300
ctctactttt	tcacttttat	gcaaactcag	gggaaaactca	ggggaaaaaa	tgattctatg	360
aaattataat	tagagccata	tttcttagatt	ttaattttca	acattggcat	ttattaattt	420
cctgcagctg	ctgtacaacag	ttaccacaaa	ctggtaaaaaa	tggctaaaaa	gaacngaaat	480
ttattnnct	acaggtcaag	gccggaaatn	ccaaatctaa	gcatcanggg	gggggggtcc	540
ctttggangn	tcccangnna	ntttttcc				568
<210>	17					
<211>	584					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(584)					
<223>	n = A,T,C or G					
<400>	17					
acaactgaag	accctagaaa	taagggtttc	aaccctgggtt	gcccattaga	atcatgaaag	60
agcccccgag	atttgggttg	aattggtctg	cagagactcc	aggccccttc	ttttgaagct	120
ccacagatga	ttcttttctg	cctgagggga	ggtgctgagt	tcccatcacc	caccagcttc	180
atcctacaca	ngtgcata	gaggcctagt	gagagtggca	ctgggggggtg	gccccccagc	240
gagtgc当地	tagatcccac	caggcccttn	ctttaggcca	gaggttctag	aaactttgat	300
gaatgtngca	ataaccaggg	ggtgctctga	aaaggnccta	nggctgggct	gcacctgnta	360
aaatnaagcc	cagtcttct	ggttgggacc	agaagattcc	naagggcagc	ncgctctta	420
aaaaccaagt	gccttctgn	taaacnaatc	cttaggnccn	ttatgtctgc	agttnttaag	480
ntaanggggtt	ggtagnant	taacntccat	taanttnag	tntacactta	agtttttggg	540
ggtatcnngt	tnnagtnna	ttangnagtc	ttcacaggt	ngtt		584
<210>	18					
<211>	560					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(560)					
<223>	n = A,T,C or G					
<400>	18					
ggtaactcaa	gcttggactc	catccctgaa	ggtcttcctg	attgatagcc	tggccttaat	60
accctacaga	aagctgtcc	attggctgtt	tcttcctcag	tcagttcctg	gaagacctt	120
ccccatgacc	ccagcttcag	atgtggtctt	tggaaacaga	ggtcgaagga	aagtaaggag	180
ctgagagctc	acattcatag	gtgccggccag	ccttcgtcga	tcttcctgca	tcatctctaa	240
ggagctccctc	taattacacc	atgcccgtca	cccatgagg	gatcagagaa	ggatgagtc	300
ttcttaaactc	tatattcgct	gtgagtccag	gttgttaaggg	ggagcaactgt	ggatgcatcc	360
tattgcactc	cagctgtatga	caccaaagct	taggtgtttt	ctgaaagtcc	ttgatgntgn	420
gacttaccac	ccctgcctna	caactgcaga	cataagggga	ctatggattg	cttaacagga	480
aaggcaactng	ntctcaangg	cggntgcccc	ttgggaaact	tntgggcccc	ccccaaagaa	540

tgtggnttn agttttcnn	560
<210> 19	
<211> 425	
<212> DNA	
<213> Homo sapiens	
<400> 19	
ggtacaaaaga gaaaaggta agacatttt caaatgaggg aaaactaaca ggatttatca	60
ctagtaaaccc tgctctaaaa gaattcaagg gaagctttt aaaaagaagg gaagttatag	120
cagaaggaaa cttagaatgg caggaataaa gaaggcataa tgtataagggt aaatataata	180
gacttctctt gaggtttaa aaattacatt ttttatttga aaaaaaaaaa ttaacgttgt	240
tgtatgtat tctctgtaga ggatatacag ttttttttgt ttttttttgt tctgttttt	300
taaggtgaag tctctgtcac ccaagctgga gtgcagttct gtgatcatgg ctcactgcag	360
cttcaccctg gttcagggtg atcctccac ttcaagctct tcagtaactg ggactacagg	420
catgt	425
<210> 20	
<211> 655	
<212> DNA	
<213> Homo sapiens	
<400> 20	
tgttacttcc caagcactgt agggcgtaag gaaaatctgg tccttatcaa atcccaggag	60
cttctgctta gttggggaaag aaattacatg aagcaaccag aggttataag gccacacttg	120
tatatectgtgc accctgtgtg gacaagatta gggactgttg agagaggagg aaaccagttag	180
agagcaaagc tctacccagg ctccctgtta gcctctggc tcccccgaga gggcctcgct	240
actctacgct tcccttagca cgttgatgtc cccacaaccc cacatcgtg cagctgtggc	300
ttgtgtggag gggctctgag gcctctgagg ccagatgtgt aaacagtgtc gaggttcagt	360
aataggatga agtcttcagg tttggagcag cccaccttgg ctctttccat gtctctgtgt	420
tacttctcat attctgctgt ctcccaaacc ttcaaggaca gtattaaattt atactagtt	480
ttcttcctca gtttgtgac ttgaatgcag tgagtgcctt agaggatcca aggatgaagg	540
aatgcggggtt ggtggttctc tctttcagaa tggaaacctc cccaaaatgg ggctcgct	600
cgccctctcag tagttccct acctctgggt ctccacccct tcaaatctg gtacc	655
<210> 21	
<211> 566	
<212> DNA	
<213> Homo sapiens	
<400> 21	
ggtacagccc ttctttgaa tggggatctg gggatgcaga ggagcataat gagcctttta	60
taattacaaa catgctcttc tctagctctt aaggttatgc ctaacgctca ttgtctcttg	120
gctaaaataa ctgagaaaaa aagttagtag taaaaaaatg ctggaaagtct gaaaatggtt	180
tagacagaaac ttccatcctg aagtttttagt ctgtagccag attttaattt tggcctgttt	240
tggtttttag atgatagatc tttagtgc tcaacaggaa tgtaaagttt gtattaaacat	300
ctagggtgat cacctgccat gctattaagt cagcatggta taattaaaag ttacatatgt	360
aggttcagag cctcttagca cagtgttaca ttgtaaagctc ttggagggca ggaatgagat	420
tctagtcctt acggaaatgg agtttgggtct tctatcccta gcattcattt tagtgcct	480
cacgtggtag gaattctgtt aatattttgtt aaagaaaatgtt atttctgcct ttaggggttca	540
cgagtgtata cttaaatgtt atgtgt	566
<210> 22	

<211> 269
 <212> DNA
 <213> Homo sapiens

<400> 22
 ggtactaata gcaaggaata atcctaaaca ttttcccaat aaactgacta agcctcaaaa 60
 ggacagctta ggaaaatgat taacatgcag ttttcttt ttccttagcca attcaggct 120
 acttagataa atctgggtgc caatcaatac atatataaat taatttttt ctgctcaatt 180
 actaccattt ttctttttc acctttccc caatttctc tagcaacact tttccttgg 240
 tttgatcagt tgaactcaa aggtttggt 269

<210> 23
 <211> 815
 <212> DNA
 <213> Homo sapiens

<400> 23
 gaggtaccct tcatccatca ggactgcacc tcctttccca tgagccttct ggggtcacat 60
 tctcctaact gcagctactg ttgctgtttt acttatacgag ggcctattac gtgccaggct 120
 ctgcgctgaa cgcttcacgc ccactggatc atttactcat aatacgctcg taaggtagtt 180
 accccaattha gccccatgtt agagaaaaac accaaggcac agaggtgagt cacttgtccc 240
 aggtcacacaca tctaggaagt agtagaaacca ggactcgact caggtccaaa gtctcaacca 300
 tggccagtc tgctcatctt agtcaaacc ccaaggctgca ttctgtggtc cagctactgg 360
 atcctgcaac cttctcagac tctatccatg aagccaagtg cacaggatct aggacatcag 420
 gtccagaaaa atgggggcca cattcttctg gacctgcaga tgggcaagga ccagactcta 480
 gcctgaacag tgagatgcag cccagagaag tgggaatcca cagacagagc ctggccctgag 540
 actcctactg agactgccc tggccact cggggagttc ccgtccctg cctgatcagc 600
 agtcttttg ctteccccctc caagagact gggggccatt cctccaggaa gcctgatatg 660
 taacaaactc cttcccatt tcttgctttg cttaaatctc caaagtccct ggagctgaag 720
 ccaagcgggc ctcattaggt ccacttaca gaaaagcaa ctgagtctca aagaggggaa 780
 gtcactgagc cgggtacctg ccgcgggccc ctcga 815

<210> 24
 <211> 555
 <212> DNA
 <213> Homo sapiens

<400> 24
 ggtacctggg cttaacagta atagagaacc tcatttatac catacagaca cagcaactta 60
 ggaagacagc actgatagca tttagctgt tgtaaccaa tacaaatatg taaaattgag 120
 aattatgatt aacatatgca actttagtaa taggaataga tgataatttt cctgtattgt 180
 ttcaaaataag tgactgttca gctggatcc attggattat aatttacaat gtcacataat 240
 attatgctt tcaatattga tgagtgtatgt aaacaatata aagtggcag tttgttagtag 300
 ttcagtatcc tagaaataca ttgaacttca taagtatcag ttcatttta agcatacaga 360
 attgaactga tacttactga aatcataaac tcagaggaaa caagccatc tttatcacta 420
 attacttagc ttgaataactt ttcttatttt aaataatctc aattattgccc ttttcaatta 480
 tagtctactg gatttattta tatggatca acaggtattt atcaaacatc tactgtgtgc 540
 ccagcactac ctagt 555

<210> 25
 <211> 413
 <212> DNA
 <213> Homo sapiens

<400> 25
 ggtacaagct tttttttttt tttttttttt ttttcctttc attgtccagt ccccatgaat 60
 tatttatttg ttattaaatt caactgaatg agatttcaaa gcaacaaaaa ttgaagttca 120
 aatgaaacca aattaccact ctgagctcca ggtggccctg acagcccagt tttgtgaagg 180
 gccccctgagg ctgttcactg aatctgagat gtcaccaggc atggagggtc tctgatcagc 240
 atccagagct ccagagtagg gagaaccccc tcaccaccac ttctggggcc caggcaaggc 300
 agagacccaaa agaaccctgg taaggttccc caacctccat gttcatttaa aaaaaatgtt 360
 taaaactgac aaataataat tgcatatatatt catggggtcc atcatatgtt ttt 413

<210> 26
 <211> 638
 <212> DNA
 <213> Homo sapiens

<400> 26
 acttagaatc gtgtgtccat ctgaagccag tgagaggcc aaagtcagtc aatttaat 60
 gaccatcacg atcaatcaaa atattatcg gtttaatatac tctatgaata aaaccattt 120
 taaggaacac cttaactgcac gCACAGGTAAGTCTGTAT GtAgAAcTGT GccAGACTTT 180
 ctggaaagat gcccattcta attaataggc tcatacatatc acccccaggatgtatcc 240
 ttacaaagta taaattgtcc ttatcttggaa atgaataata tagacgaact acccattcat 300
 tgtcagcttc agccaggata tctctctcag ccttaacatg agcgaacttga tttcgaagaa 360
 gaacatctt atttcaaga gtttttggatgtt catacaaaggc ctttagtatct acttttcttgc 420
 cttagacagac ttccacaaat gctccttattc ctatgttctt tatcttcaca aacatagact 480
 tgtccattttt agcccttta agacggatgt aatttagattt tttttggcaa agcatcttgc 540
 tcattttgate ctggcatct tgagataatc caacccgcat catttcatttc tctaattgtt 600
 ttttacgatg tagacgctgc tgatgagatt tgagtacc 638

<210> 27
 <211> 236
 <212> DNA
 <213> Homo sapiens

<400> 27
 ggtacacgtc gttctcttca agatctcata gacaatcgta ctccgggttt tgctgtcgaa 60
 aaaggaatcc ttatcagaca agtcaaatacg atgctgttc tccccggaga agggatagga 120
 gagtctcttc atggctggg gcctgtgctc agccacttttggatgtt gatctgtgtat 180
 tttctggagc acagagttga tttttttagt gaggccacgg gtctcattaa tgtgtt 236

<210> 28
 <211> 607
 <212> DNA
 <213> Homo sapiens

<400> 28
 ggtaccacgg gaaagatcag gactttggct gcaccctttt ccagctcctc catgttacag 60
 atcatatggg cacaagtggt aaaaatctcc acggctcggg aacgggttcg aataccatc 120
 acctcagccca tggtaagat cttatacatc tctggggaga tgacaggagc aacaaagtgg 180
 catctgtgtg tctgttactt tcacgagtga attctgtcag cacacccatg gctccatgg 240
 cggcatttaa gtctccgctc accaacatct ccatgagcag gttgaagagt tggggccaag 300
 ttccaggcca gtcccaatgg gcaatggctg acactgcata ggccacactg gagcgcactt 360
 tgcttatcga ttctctcaac ccattaggca atagctcccg gataacaatt tttgccctt 420
 ctgttagttc aggaggccta aatttctctg attgggcaca ccagtgc tccacatattt 480

gtttcaagat gactgatgcc agctgacgga ttgccagtgc cccctgggg tctacagtca	540
gttctgccaa gtgaacacca aattcctccg tcacctccag caccttaatc tgttcttcag	600
cagccgc	607
<210> 29	
<211> 612	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(612)	
<223> n = A,T,C or G	
<400> 29	
ggtaact cgcttacct ttctgatatt cgtcctaaga ttttacttcc tattatacg	60
tgtttcagt ataccagggt gaaggacctg tcacttctta atgaatggcc ttggtaagg	120
gtttttaaag tttcaggtca gaaatgtgga tggaaaaaaa tgtttttaa gacccatcaca	180
ggcttactag tatacacagca ataaatgatt ctaccaggat attcttcgtt gacttagtt	240
gcctggaggt agactttaa ggatatatct gtgcttctga ataaaattag ctaagaattc	300
aacattatgg aattcaataa attccagggg gaaatcagtg aattaggata cactgcctct	360
taaattctaa acctatata tcccacctgt tgcatgtang gggcatgtgt gcatgtggca	420
tcaaaactag ctngggaccc tttttttcc ataaaatttg gnctactca tccttggng	480
aaaaancctt gaaggnaaaa tctgggttna aaaaaaagct ttgggctgtg gaccaacctt	540
ccangttccc ngggaaggga ttnggaccta gnaaaaannnc ctttgcantg gcttggcct	600
tggattactg cn	612
<210> 30	
<211> 286	
<212> DNA	
<213> Homo sapiens	
<400> 30	
ggtaactgtta tcatacgac actatccaac atgaaagtaa tcttataatt tgcatttg	60
cccactccca gctcttcat tttagctca atccacttca tattttttgc agaccaaata	120
acaatgtcat aatcttcata ggcagatgtt agaaattcat gaagatatgg ccgcattaat	180
tctaccccaag tctctgcaca agacctgtgg tcaaataatg tataatcaac atctagcacc	240
aaaagcttt tcccttcctt gggaggattc aaaatttcca ctttgc	286
<210> 31	
<211> 606	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(606)	
<223> n = A,T,C or G	
<400> 31	
accttattt gctgagctt ttatataata ccagagcaga atagaaggta gacccacggg	60
aattcaaatc ttggctgtgc cacccacttc ctgggcaagt cacttcctct ctctgtgtcc	120
atttccaaat ctttgaatt cagttagaaa catcaacttta aaaacagggt tggtgtgaag	180

attttatgag	ataatgtata	aaataagtgc	ttaccaagta	tcagctatga	tatTTATGAT	240
atTTTtaggt	tattaattat	actgtgagga	ttaaggaact	tggcagagga	atacagttagg	300
tgcttaaatg	gtatcctaaa	atattattta	aaaataaaatg	acagtaatgg	gaataccgca	360
attacttttgc	caccaacgt	ataatagtag	gatatttaaa	gttgagatca	caggaatcag	420
tgcgatatgc	tctcatttt	cccacaggt	gcgcctcatgg	ccgggttaaa	ttctgaaaaaa	480
ccttaaaaag	tcccttgggc	gngaaccnn	ttanggcgaa	ttcccggnca	ctngngggcc	540
gtctaaangga	nnccnatttgc	ggccaacntt	ggggAACCGN	ggcanaccgn	tcccggggna	600
aatgg						606
<210>	32					
<211>	615					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1) ... (615)					
<223>	n = A,T,C or G					
<400>	32					
ggtactcatg	catcttcatg	agcagctctc	ttatcttctc	agtaacatag	tcacccctc	60
actggaaagg	tctgtattt	atactcttt	gggttaagtc	actggcagac	agaaacatca	120
atatccta	at tcaggatgg	tgccacagtc	tgcgcgtt	gctcattaat	tagataattc	180
ttaaaaata	ttgacaaaacc	attaattaag	agctgattat	tcacacatca	aacaatttt	240
cacttaaact	agaggatttgc	tttaaataagc	agctccccct	ggctgcattt	atctcttgt	300
gtaagttat	tagtatttg	gcagagaaat	ttcagaatgc	cagctacaag	tcagtgcagt	360
tgaagaacag	aatgtatgg	agggaaagta	tttctggaaag	catggcattt	attccaagaa	420
attatcta	aatgnattc	cttggaaag	tgcttaatat	aattatatat	gnaatcncaa	480
ttaatttctt	aaataantct	ngggatgg	ccagattttc	tggttggaa	aagcccgggt	540
nttngaatc	caaataantt	gnccaggc	tttnnnnnng	ncnnnggtng	accngggtn	600
gattcaangt	ttcnn					615
<210>	33					
<211>	297					
<212>	DNA					
<213>	Homo sapiens					
<400>	33					
acagacttcc	atctccccaa	catcttgaag	atgtatcaat	ttttttaaat	taagaattac	60
tttaaacagc	actcatttca	gaagataggc	agaggttattc	aaactctgc	tccaatctc	120
tcattattcc	aaggttcata	aaaaccactt	aggaagacct	tggttactgt	gacacatcac	180
agctataagt	gtaggtggcc	tagactctcc	ctatcttta	gctgccctga	gtcatgtgaa	240
ataagatagt	gacctctcc	atcatcccta	gaggctctct	ccccgagaga	gagtacc	297
<210>	34					
<211>	468					
<212>	DNA					
<213>	Homo sapiens					
<400>	34					
actgttttagt	gggatccatt	ttatacaggt	gacggtcagt	gacaaaaatt	gctctgtctt	60
ccaccttact	aaatcgattt	accttacgga	cgtgacagga	aaagaggaca	ttcatgtatt	120
tgtccttccg	tttcaattca	ttagcaacag	ggacaaaagt	gcctgaggc	tgaggtgtat	180

ctggctttga agcaagatag ttgccctccc aggccctcg gagcccgagg tcagcccttt	240
gacccttcaa catttccacg gctgcaacct ttgccctgac ctggggcagg tctgaggccg	300
gaatgctctt gatgagctgg gatgctctcc atctattgaa aatcgctgc agggcctcct	360
caaaaacggcg aagaacttta ggagggcttg gccacttcac gtgcttcccg tagtctcgca	420
tggcttgac gccatggaaa cgtctggcca cctcgatgt gtaacctcg	468
<210> 35	
<211> 314	
<212> DNA	
<213> Homo sapiens	
<400> 35	
ggtacttatg gctccagata aaatctctgg tggccacatt attcaagact ttttaaagtg	60
ctttatctga aatatcttca tagacatgaa tatgaaaggct ctgaaaattt tgttcaatgg	120
ccctgtgtc ccagaagatc ctaatgtaaa gatgcattata tataaagtaa ttatagaat	180
aggattaaac atatgttagaa ctttattaag aaaatataat gacttggga ccaattacag	240
gcccttgaac agccacaata ggctcaggag ggctgtgc ttgtttaaag tccccctccca	300
gacaccacca ggg	314
<210> 36	
<211> 600	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(600)	
<223> n = A,T,C or G	
<400> 36	
acccaatgtc atggaaatga tgcgtgtc acccccattt gacaagctgg ggaacagcca	60
tagggggacc agcttctgcc agaagtgggt gtctctcttc aatttccaca actatgacaa	120
cctgaggcac tgcgtcgaa agttagaccc acggcgtgaa gggcagaaa ttgcgaacaa	180
gactgtggtc aacctgttat ttgcgtccca tagtggcgat gtctcagctc ttgcgaagtt	240
tgccttgtca gcatggata tggAACAGAA agactatgac tcgcgcacag ctctgcattgt	300
tgctgcagct gaaggacaca tcgaagggtgt taaattcctg atcgaggctt gcaaaatgaa	360
tcctttgcc aaggacaggt gggcaacat tccccctggat gatgcgtgc agttcaacca	420
tctggagggtg gtcaaactgc tttcaggatt accaggaatt tctacacaac cttttgaaac	480
tcaggcttga gggcacaann tgaaggccct nttnaaang aaactttaa aaagccttng	540
tttttaaccc ncgggtcant gnnnaatccc tggtttana aaaaancctn gacttggccg	600
<210> 37	
<211> 516	
<212> DNA	
<213> Homo sapiens	
<400> 37	
ggtaactgtg taggaaagaa attaaggaca gtttagtatgg gcctgtgaat tctggcatac	60
atgtttaaat caatttacaat tatgcaagta aaaaaaggat atccctact aattcatgca	120
ggctgaaaag tcttagtatgt aaacctgcag cagaatctaa tttaagaaa caggcaccta	180
attttgattt tgaaactcac tcacctgagg aaagcttcca tcaggctcac tatgcccctt	240
tgctgtactt gcacactaaa attagcaaaa cagactccaa ctataaaaa tatcaaactc	300
ttcgatataca tactttgtt ttaactttaa gtatgttag agcaaagttag gtgccttac	360

taagctatat tttagagact atggggggag ctctagtgtg agaaaacagtt tctcaagggt	420
aacaatccta aaaatctagg atttggaaatg aaaactttca ataatttcaa agtattttga	480
gcagaaaaat acatttgatc caagtataga aagcgt	516
<210> 38	
<211> 319	
<212> DNA	
<213> Homo sapiens	
<400> 38	
actgaaaagga tgaaaaggtg gtgtcatgtt ttggggagaa tcttacttct caaatggaaa	60
ttgcacttt tgctgaatcc tttgcatttt ttgggttagta agcagttcat tgagtatcag	120
gtcctcaaag gaatgagttg gcccggctag ggtggggccct cttgacctaa cttcagaaqgg	180
ggccttggct cagtaggtgt gaatcaggga agccacattt tcctcagggt gctgtatgaa	240
gctgggtgtg ggcggattcc tcccacacct tcacactggc ctgcctccaa ctcatacaga	300
tctcgagcg gtcggattcc	319
<210> 39	
<211> 592	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(592)	
<223> n = A,T,C or G	
<400> 39	
acctacactt ggaataagac actgttctga atttgtgtca tagttttttt ttcatattga	60
cattaataga ggcttctatt ggggttaggc taaaaatctt ttgtaaaaaaaaa ttttaaatga	120
cactgctgat ttttctccgt taattatcag ttataagct aataaaaaact ttggcttgat	180
attacatttt agtggttaaa ttgtcatag aaggaatatg tgctgagttt cttatgtatt	240
gtaatcttga gattacgatt ttttatttga aaatttagaca aagtttgttt ttaattttta	300
tttcatttttta ataatttgagt tcagattaaa tggaaaggct aaatttgaat tccgttttc	360
tctcaaaata ctgnntttctt attattttaa ggcatccctt ggaggctaa aattgggcat	420
ttataggtgt tgatgaaagc acacccgatt taaagaatgg atgacccccc ttctgnatna	480
aacctttaat ngaattttaa annccaaact ttgggtcctt taaacctnng acctccttcc	540
ccnnaatcccc cttaaaaaaaaaa ncntngcnt tngcanaatt cnnttgccc aa	592
<210> 40	
<211> 577	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(577)	
<223> n = A,T,C or G	
<400> 40	
ggtagacaac ctaaagggttt cactgaatgc gaaatgacga aatctagccc tttgaaaata	60
acattgtttt tagaagagga caaatccta aaagtaacat cagacccaaa ggttgagcag	120
aaaattgaag tgatacgtga aattgagatg agtgtggatg atgatatcaa tagttcgaaa	180

gtaattaatg acctttcag tcatgtccta gaggaagggtg aactagatat ggagaagagc	240
caagaggaga tggatcaagc attagcagaa agcagcgaag aacaggaaga tgcactgaat	300
atctcctcaa tgtcttact tgcaccattg gcacaaacag ttggtgtgtt aagtccagag	360
agtttagtgn ccacacctag acttggattt aaagacccag cagaagtgtat gaaaatccaa	420
accnngaaaa ttccaagaac tcgngtctn gactggatct tgggganaac ctttggtnt	480
taaaaannggg acnntttnc cggcttgggg cccnntttaga tttcaaagtt tcangaaccc	540
aaacggtcct tnattaaanc cgngattgt tcgaagg	577

<210> 41
<211> 490
<212> DNA
<213> Homo sapiens

<400> 41

ggtacacaag agtatacgta tataaaacta aatgaagtca atcatattga ttatcccccc	60
aaaaaaaaata taatctaaag aataatcagt tcctaaataa ttgaaagctg cccttacaaa	120
ataaaaacaaa agaacacaca ttgcgtgtg ttgcccaggc tggctcgaa ctctgggct	180
caaggagtcc tcccacctcg acctcccaag atgctggat ttcggacat gagccaccac	240
gccccgggcca aagctgcctt ttttaacat ggatttttt tcccccattc gttgtgctca	300
gaagtcattt cctcttattt ttctctgcta atgtgtgctt taacaaacctt gtttaaaacg	360
acaaggcctt aatcaactgg ggtgtttgt tttgttttt tcttattttc ttaggagtca	420
gtggatcggt ggggaaaatg ctgcttaccc tgggccctgg gctgttagaaa gaagacacca	480
aaggcaaatg	490

<210> 42
<211> 571
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(571)
<223> n = A,T,C or G

<400> 42

ggtacttgcc ttttaacttt ccccacatt actgttgagt catggataa tgtttaagtt	60
gttatttgca tggaaattaa gtaggctgtt tatattatcta aaggaatcaa gtccactctt	120
ctgcctgcaa cattgttca aaaactaacc aaggtaaaat atttatttga aagcccaact	180
ttgatgttaa atattcttga ataaatctgt tatTTTaaatg atatcacatt attcaatgca	240
tataaaaacta tcagaagtta gtaaatcata ccagcaactaa aaataagaca attggaaat	300
atTTTtagcat cagtttacaa acaactttat tatcaacaga aatttttagct ctttctttg	360
caagatatat cacagctgtt ttggcagta gctgaagccg aagtatgaac agtccatTTT	420
gtttcttaaa atttgaagtc gtgtctgtcg tagcattttt actaccagca gtatgttact	480
taaaaaaacta catggcttc cttgaattta ttgaccgna ttatgtataa gacttgaaac	540
aattgccatc tttgtagnatc tgctgggtt c	571

<210> 43
<211> 708
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<222> (1)...(708)

<223> n = A,T,C or G

<400> 43

aggtaactgca	aaaatgaagt	attattctct	aagtattcat	tttatccctt	tcatttcagc	60
aaaatcacac	atttgaataa	acaggatcg	aatacgacac	ttgtcttcc	tcttaattta	120
aggaatata	tgttagatt	attgttcata	ttagacaact	gcctcaaaaa	tgtttaatg	180
ccatccaata	aataaacttt	tgatagatta	tgacttttt	taattttaag	ttgttaagaa	240
tattaactt	gagtctccta	ttaatattct	aaaagctagg	attcaattca	gcagtttct	300
ataacat	agaacccaag	gcataactac	aaagatggca	attgttcaa	gtctattaca	360
taataccgt	caaataaatt	caaggaaaag	cccatgttagt	tttaagtaa	ccataacctgc	420
tggtaagtaa	aaaatgccta	cgacggacc	acgactttca	aaattttaa	ggaaaaccaa	480
aaatnggacc	tngtnccat	tacctttgg	gnnttcaag	cntaccttgg	gccccaaaag	540
ccaagcttgg	nggaatataa	tccttggcca	aaggnaaaaa	ggaagccta	aaaantttcc	600
ngggnggaa	naantnaaaa	gttngtttg	gnaaaaaccn	ggangcctaa	aaaattttta	660
tttnccaaa	ttggggccct	naaattttt	aaagggcnng	ggganang		708

<210> 44

<211> 632

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(632)

<223> n = A,T,C or G

<400> 44

ggtaacttagt	ctattaaatc	tacctgctta	aaaaggtttt	gaactgaaga	ttccaggagc	60
tgaggcagctg	cctcttcaaa	ggtttgaga	gtaacaaatt	ggacctggta	gttttgcta	120
acagggtgga	ggccgttgat	catgccctca	gtggtgatga	tggccaggt	tgcacccgag	180
gggctcactg	ctatcccgtg	agtccctact	gagccaaaca	catctgagag	tttaatcaac	240
tggtgttcaa	acttcaatgc	aacatctgtg	aaaatggaa	tcaagctgcct	cacccccc	300
tcactggagc	aagtagatagac	tgttccattc	tgtttgtctg	cagtcatgg	gacaattggc	360
agtgagttga	aggcctgtga	catggaaatt	gtgaaccatt	nagccctgct	ttggagatca	420
gaagangaca	ccaaaattca	taagancctc	ttgcagccca	cttactaaag	ctgcnactac	480
acttttttgtt	aaggatgaa	taaangtggc	ccacatttng	atactngca	cnagntaact	540
tgggnccatt	tctttccnc	aagannacca	gggttgnctt	aaangggaaa	tanncttta	600
cngntttaa	aatnccncng	aaaaaatttt	tt			632

<210> 45

<211> 664

<212> DNA

<213> Homo sapiens

<400> 45

ggtaccccggt	ctacagtaga	gaggtttat	aaaaataaaa	tacaagacca	aattcaaaga	60
gctttaaaaa	ccacagagcc	agacaaatgt	gagaggttat	tatgagcaaa	caatgacatt	120
acagaagtga	aagtgcctaa	gtgccatcaa	gaacaagggc	tctatttcac	tcccatgtgt	180
caccataata	aagacagagt	ccctgatctt	aaaggcatca	atttgcccc	actggaagcc	240
ttaattgtaa	ttcattaata	cagcagcatc	ctaaaagtta	ctgcgttcc	taggaatcca	300
aacaactggt	tttaggtcct	aaagaattt	aatcattaag	aaattaaag	tacccactct	360
gggccagttg	atggctgcga	agagagcaga	aggggtgctg	ctgttaggaaa	tcaatggctc	420

ggaagaccac	actgaggaag	gtgtgagttg	atactggaag	atctccaggt	ttgaggcattc	480
tccagaggtt	tatggtggtt	tttgtgtgt	tgagggtgt	gtagcgacgc	agctccctag	540
ggaatttagaa	ggttttattt	aacatttacc	ctgtgacagg	cactgcaggc	attcagcgcg	600
cagtgtcatc	ttcattttac	aggtgaggaa	aagactcagg	ttcaagtaga	tggtaaggc	660
cagt						664
<210>	46					
<211>	633					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(633)					
<223>	n = A,T,C or G					
<400>	46					
ggtaacgttt	tatggatgg	gcacactaga	tgagatggaa	gaagatgtgc	cagtgtatgt	60
gagacaggg	gtgtgggaga	ggagcaggtt	gagctcagag	acgggtcact	taggcctgt	120
gtcattgggg	gtgacccaag	tagccacgg	ctgcccagcg	ttttgtgtt	ctctcctggg	180
tcccttagag	tggaaatttgg	gtaagaacaa	tgtgtgaggt	tgtggcctgc	ggggcagtt	240
gcagttgtca	gaccgggtcc	tggaaagtgtt	tcttggatca	ggaatcagg	actgaaaagg	300
gcattaagtt	tgtctggacc	accctgtcat	tgtgcaatgg	ggagatcgag	gccttttggg	360
aggaaaagcc	ctgtttaagg	gccgtataat	tgaagtca	ggctgtgtt	gggcctttga	420
acctgccaaa	agctggtgcc	tttctccact	cctcagtgt	tatgccccaa	gtgagggtct	480
agnccaaact	ctcccaactt	cctcccaactt	tcactaagca	cctgtctgg	taggcccagt	540
gctgtatgt	gtgaactcag	gctggtagg	tgctaattt	ttcacccagc	cagacattct	600
agtgtctcct	gcatggcagg	cactgttcga	agt			633
<210>	47					
<211>	433					
<212>	DNA					
<213>	Homo sapiens					
<400>	47					
accagttgct	cctccatgtat	ggtctggat	cacagaggct	ccaagtgggg	acttcactac	60
ctagaccagt	cccccacatg	gtccctccct	gggctgcattc	tttgcctgtc	ttagtctcct	120
gtgttccttg	agaaagtgg	gtcaataaca	cctttctctt	caggttgtgg	gagaacggct	180
cccagccacc	ttctgtttt	ccttctcttt	gagctctaga	ttcagggagg	ggttaaggca	240
agaccaggtc	ccagaagctt	ggctgagacc	agaagccagt	gttactgt	ctactgccac	300
tttcagcgc	aaggggccca	ccaatcagg	ccctagattc	aggccccagg	tggagctgcc	360
ctcccgattc	tagggagcct	ctctacatga	aagggtcaca	aaaaaacact	gcagaaaact	420
cacccagcaa	ggg					433
<210>	48					
<211>	633					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(633)					
<223>	n = A,T,C or G					

```

<400> 48
acttcttcag gtaacactgt aaggatctcc agcaaaaaaag gcaaagaagt cacatcattg      60
ctgtatttt ccaccagtgt ttgcacacat cccttccagg aaggcatctg tagggcaaga      120
tctgctattt ctaaagccag ctgcgttaca ataacaggtg acaagtcttt caagttctgg      180
atatgggta gcaatgagtc ccgtaaaagag gcatgagagt ctgtggggag ctcataaaat      240
gaggtctgaa tcttcatttt catggctctgt gcagcaaaat agcatgactc cacatcctgc      300
cgatctgta acaactggtc tgagatctcc catgcattgaa ccgaacgctg cagcttccca      360
agcnaaaaaag agggcccgct ccttcccgc tgggatctgg ggtccgtggt aaancgcct      420
gcaactggctt ggtaccacca ataaaggncat atttncgaaa aaaaaanaaa aaaaaaaaaacc      480
ttggccggga ccacncttan ggcgaaatca acacactgctg gccgtctang gatccactng      540
naccaacttg gcgtancatg gcnnactggt tcctgggna attgtanccg ttcaaattcc      600
ccaattacaa cccganncta aannaactn ggg      633

<210> 49
<211> 624
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(624)
<223> n = A,T,C or G

<400> 49
ggtacccttc tctcacacat gtcaaatatg aagaggcaga aggagccaat ggcaatgggt      60
ccgacttgct tccaaataccc tgcgtatgtgg ttccgcttgt gctgatccat catgtgctcg      120
ccacagaaga tgcgtccagaa ggacagaagc atcgataga agatgccctg tcggatgtca      180
ccaaacagca gcatccaggc ccagtcaaac ccgtatggaaa accattccac tgggatattg      240
ataaagggtca tggaaatccc aaggcggaaag atgactttt tcagaagcac cgggggtcgg      300
gacatcatgg tgcgtccctt ccaataccac accataatgat tgaagatgct gggccgtaa      360
gaaggtcttc atggcaaacc acaccttggt gaagcctcca ttttgggtgaa tccccaccaa      420
cccggatatac ctttatctcc caattccac attgatttct tcttcttatt cacaggcagn      480
cgatgttna aangnAAAAC ttatggccac agaccattt natgaaagga agacttacat      540
catagtacgg ctttatgctt ggatcttggg anntgagggc attgagntcc nggactgccc      600
gcgggcntta aagnaatcc acnn      624

<210> 50
<211> 733
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(733)
<223> n = A,T,C or G

<400> 50
ggtaccacaa agacagaagc ttcacaggaa gagcggtcta attcaagcgg cctcacatct      60
ctcaagaaat caccaaagggt ctcatccaag gacactcggg aaatcaaaac tgatttctca      120
ctttcttatta gtaattcgatc agatgtgagt gctaaagata agcatgctga agacaatgag      180
aagcgtttgg cagccttggg agcgaggcaa aaagcaaaag aagtgcagaa gaagctggtg      240
cataatgctc tggcaattt ggatggcat ccagaggata agccaacgca catcatcttc      300

```

ggttctgaca	gtgaatgtga	aacagaggag	acatcgactc	aggagcagag	ccnntccagg	360
agaggaatgg	gtgaaaagaag	tctatgggt	aaaacatcg	ggaaagctg	gttggatagc	420
agtngatgat	gaccnaaattc	tggantcttg	naagaatgac	cggtnattan	ggntccaaaa	480
atttaaaccc	ttangtttg	aaggggccna	aacttngac	cnnaaanctt	cattgggatt	540
taaccaggtn	gnacntttt	gggcacccca	ttgacccgna	tttccccat	tgggacctt	600
tcgaatttct	tanaaaaactt	gnccnnnga	aaaaaggaa	cccgggaaaa	aggtaaaat	660
ggaaaaggaa	aacctggnt	tngggaaaaa	aaaaacnttt	gcccaaanaa	aaaaaangaa	720
aagccccc	ttt					733
<210>	51					
<211>	565					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(565)					
<223>	n = A,T,C or G					
<400>	51					
acattaagtc	aagattgagc	tttgatttaa	aaggaacata	aatcctttac	attataaagg	60
gaagacataa	atctctccaa	tctaaatttt	ctcatctgg	atgatgtcat	taaactgcag	120
ctcaaactga	gattgttta	gaattttatg	taaattacat	cttgaacaa	atgagaacaa	180
ataaactcatc	tgagaatatt	ataaagaacc	ttcattaatc	aaaaggaatt	agacaagcac	240
ctagttttaa	aaaataaattg	gtgaataatt	taaacagaaaa	cctcaaaaaaa	gaaaatatca	300
gagtggccaa	taagcacata	gaaagataca	caacatcatt	agtttttaag	agaactacaa	360
attaaagcaa	ccataaaagat	acctcccaa	cactacnaga	atgactaaat	ttttaagtc	420
cgacagcgtt	gtgcccgggt	tcccaatacc	actcaggta	agtatttct	ggaanggctc	480
cagaactcag	aaaagctata	cttgctatcc	tannggtatg	ggttggtacn	gtggaaaaat	540
cccggttaaa	tcaggtaaag	accn				565
<210>	52					
<211>	637					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(637)					
<223>	n = A,T,C or G					
<400>	52					
ggtagtgtcc	aaagaaccaa	ctggttcttg	atctgctcct	gagagataac	cttcaaatcc	60
ttgaaatatac	ctgcatgata	agagtggatt	tgtaaatgtg	gggccttcga	tcatgccaaa	120
tagtttatgc	taaccatgtg	atttatggtg	gggaacttga	ccatgctgtc	agtttgacat	180
ccggaggggc	cgagtgttaa	gtaactaagg	ttggccacat	ggcaatcca	tgcttctgta	240
actgaagcct	aatagaatct	ctagacaacg	aacagcttgg	tgtagcttcc	ctgcttgata	300
atattccaca	ttgntttctg	gaagaattga	acattctta	cacagcttca	ctaggaggcag	360
acaactggaa	atttgcctgn	gnctcttt	tgggagaact	ctgggncttt	taccttgatt	420
taaccnngat	ctcttnactg	naaccaaccn	ttaccnnttag	tatngccaag	gataacttt	480
ttgaagtctg	ggagtcccttc	cgaaaatnct	taacctgtatg	gnnttgggan	ccccggcaan	540
cttngggcct	ttaaaaatttan	ncntnttgna	nggtgggggg	gnnttaaggg	ggtttaattn	600
gagtncttaa	aactaagngg	ggggggnttt	ttttgggn			637

```

<210> 53
<211> 632
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(632)
<223> n = A,T,C or G

<400> 53
ggtacatcca agatttgaag aactgaaata aatcagcttt aaacctgctt tttaaaaata      60
tctgggttgg aatttgc(ccc tgacaataa taaaatgatg agtgatgcaa gtgacatgtt    120
ggctgcagcg ttggagcaga tggatggat catagcagg(t tctaaggctc tggaaatattc    180
caatgggatt tttgattgcc aatctccac ctctccattc atggaaagtt tgcgagctct    240
gcaccttgtg gaagacctgc gtggattgtt agagatgatg gaaacagatg agaaagaagg    300
cttgagatgc cagatcccag attcaacacgc agaaacgctt gttgaatggc ttcagagtca    360
aatgacaat gggacaccta ccagggaaacc ggagatgtgt atcaagaaag gctggcacgt    420
ttagaaaatg ataaaagaatc cctcggtctt canggtaagt gtgnntaacag accagtggan    480
gctnanggag agaaaatcna gaattggagt ttggcttcaa aaccncnaga gaattgaatg    540
ccccgaagaa tgctgcacag gagctntaat tggacttctt aaactcnaan ttggactgan    600
gctgaaantt acctgagttg actgnnnntgg tn                                632

<210> 54
<211> 661
<212> DNA
<213> Homo sapiens

<400> 54
acaatagaac ttccagaaaa ttctttactt ccagcttctt ctatgttgac tggcacacaa     60
agtaaggctg ttgctttcaa tgcattgcaat attaactttt agtgtttact aactctgtgt    120
tttgccttacc tggctttct tccttgaagt tgcttaattt ttttcctcc aagaggaatt    180
atttaaaaag acttttgtct gtgacataac caagatttat tctgtttacc taaggaactt    240
attttcttt ttgcaatttc atttattctg agtcaattt tttgttaataa gtgaagaatt    300
ttaatactta gaaataagtt gtaaagaaaa taatgagaat cttaccatgc ttttagagaa    360
cggttaatttc tagaaatagt taaaagatga aatactaaga tattattttt ccttctttat    420
ataqctgtat atactggtag tatgaaagca actagtgtca ttgatgattt tttggggggg    480
tattttgtt ttcttaggctt gctgcaacct catttagaga gggttgccc catgtctca    540
caggttatgg tgggtggtag ttccccccacc aaatcgtaga aagcttcaac ttttaatgcg    600
tatgatttcc cgaatgagtc aaaatgttga tatgccccaaa cttcatgatg caatgggtac    660
c                                661

<210> 55
<211> 628
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(628)
<223> n = A,T,C or G

```

<400> 55
 acaactgcct acattcttc tggatcac ttcatgttac agtgttacat tcccaaactc 60
 taatgttaat ccgagaacgg tggggagacc ttgtgcaggt ggaaaggat catgctggaa 120
 agtgccttc ccttcagtt tggaatcaac aggttcttgg gagaaaaact ggaacagcat 180
 ctgttcacaa attacaatt aaaattgtat agaatgtatgt ctccaaagcct ttacagattt 240
 ttcacgatcc tccttgcca gcttctgatt ccaaattagt agaaagagcc atgaagatcg 300
 accacttatac aatagaaaaa ctcctgattt acagtgcctt gcaagagctc atcagaagct 360
 tcaagaactg aaggccattc ttagaggctt caatgccnat gaaaactt tcatagagac 420
 tggctccagc tcttgggtt nccatcttgg agccctgnng naattcanan tggctccat 480
 tttgnagaat tacattcttgg gaaggntcaa tggagctt tngacttgnc aggccctntg 540
 ggtgaatggg aanctnggat gagatttcaa ccaatntacc cggttana cttaaagttt 600
 nttggcaaaa ngttcaggcog nntnaaaaa 628

<210> 56
 <211> 635
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(635)
 <223> n = A,T,C or G

<400> 56
 acctcagctg gggaaaccgtc ctagaaagag atggccacta tgctgttagct gccaaatgct 60
 attttaggggc cacttgcgt tatgtatgcg ccaaagttt ggccaaaaag ggggatgcgg 120
 catcaacttag aacggctgca gagttgcgt ccacatcgtagg agagatgag ttgtctgctt 180
 ccctggctt cagatgtgcc caagagctgc ttctggccaa caactgggtg ggagcccagg 240
 aagccctgca gctcatgaa agtctacagg gtcagagatt ggtgtttgc cttctggagc 300
 tactgtccag gcatctggag gaaaagcage tttcagaggg caaaagctcc tcctcttacc 360
 acacttgaa cacgggcacc gaagggtcnt tcgtggaaag ggtgactgca atgtggaaag 420
 aacatcttca gcccctgaca cccctgaccg tattangggaa nccttnanaa acttgagaac 480
 attnagtacc ttggggccgga acacccttan ggcgaattcc acncaactggg ggccgtacta 540
 ngggntcca acttggggccc anttggggg aanatnggcn aacnggttcc ttgggaaatg 600
 ttacccttcc aatcccncaa nttnaaccgg aggn 635

<210> 57
 <211> 345
 <212> DNA
 <213> Homo sapiens

<400> 57
 actgcttggaa tcctgcttc tccaaagctgt gcacacacat aaggcagatg atgaccattt 60
 gaaagatgag aagggtccggg aggaaagcat atccactctc atactcctcc tcatcctcac 120
 tggccaggct gaggttgggt gaggaggcga ggtagaagag gcagagggtt aagtccctcca 180
 ggactgactg gcaaagttagt gtcagctctg agtccacgga gctgttttgc ggctgttagga 240
 ggctttgcag atacataaaag ttcactagca accttttaat gtcttacat cgcttttgc 300
 caggagacag ttcccgagtc tcacacttct tcagttgggtt gtaacc 345

<210> 58
 <211> 638
 <212> DNA
 <213> Homo sapiens

```

<400> 58
ggtaacttcct cttccctcctc atcctcacta gaggcttctt ctgcggcatg attagacctt
ggggggaggag cagtggcagt gccatctgcc ttctggatcg atggcttctg acagatgtat
ttgggggtccc tttccaagatt acagatttct tcaagtaact tgatgatggc agtcgttgca
tctgttttaa gggtgggctg atgtctcatg agctcatcga cagcaactccc caggttggat
gcagtatccc caaggggatc agaacttctc ctccctccgca tggctggag gtaatctgga
gacagaagaa ctttgaagag gcgttcaaaa ggctgacact gaacaaaaga ctgaagacct
cgggcattca aacagagtgc actgaataca tttggggaggg agccaaggac ttcacgggta
gcagggaaacat ctttgataaa gcagtgcattg cagcatgaca tctggcaatc cattgtcctg
gagtggggag agcagtgtat gttcttgaaa tacaaacaca gtcaccactt cagtagctag
gagggaaaggt gatggggccac agtattctgc attgctgtatg atgtgtttca gggaggttagg
cagagaacca tccatcacat gtcgatgcc atctgaga

<210> 59
<211> 728
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(728)
<223> n = A,T,C or G

<400> 59
gcgtggtcgg cgcccgaggt accatgccc gctaattttt ttacttttag tagtgcacggg
tctcaactgta ttgccttaggc ttctcaaaact tctggactca agcaatatgc ctgcctccgc
ctcccaaagt cctgggattt caggcatgag ctaccgagct cagttttgaa aggtagaagt
gtatgtacaa aggatgttag gacttgagag tcaaggccta tggtcttgc ctggctctac
cagtaagtgt gacccttcgat gttttttct caagtaaggc tggtaataat taccacagtt
gtgagaattt agaatttggg aatgcagtga aagagactat actcaagtct tggctggac
taacagtgt cttaaaatct ctcatttcaa agaaataaaag tattttgatg atctcttgca
tggngtatt aataaacctt ggnataatgg cagaaactgt acctacaaca gggttaccgt
taacttttt tgaagggtgg tttggaaaaaa naaggaatgg acccttgaat cttggaaagaa
cgttcaancc tcatgacnta agggaaaaant tggaaaaggg ccattggnga ncccaaggac
ccaatgccc tgccttnaa aaggaaaaag ggggaccang ggntcaaaat tggaaaaacc
gttttccng gaaatcctt gggccccntt nnaaaggcctt ccaccttngg ggaattttga
aaaaaaaaaa

<210> 60
<211> 581
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(581)
<223> n = A,T,C or G

<400> 60
ggtaactggcc caaggccaaat atggagaata tgaagagctg ctcatttcca gttccatctc
ctctttgctg gatgcacagg gtttcgtatc tctggagaaa agtccatcac ccactccagt
aatggatct cccagttgtt acccattttaa cacaagtgtt cccgaagagt tccataactac

```

catcttgc aa gttccatcc cttcattt attt gccagcaact gtaaacatgg aaacttctga	240
aaaatcaa ag ttgactccta agccagagac ttcattt gaaatgtg gaaacataat	300
ccttggtgc actgttgata cccaactgtg tgataaaactt ttaacttcaa gtctgcagaa	360
gtccagcagc ctggcaatc tgaagaaaaga gacgtctgat gggaaaaagg aaacttattca	420
gaagacttca gaggacagag ctccggcaga aagcaggcca tttggggacc cttccttcca	480
ggcccccaag gcaggacacc tcatggatga caacccttc gnactcgaaa agtcagactt	540
tctttggcc cggcctttt taaaatccaa agttacnaga g	581
<210> 61	
<211> 681	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(681)	
<223> n = A,T,C or G	
<400> 61	
acgagccaa gccctgttcc atcagccaa tgcaaaccctg ctccttggtc cacttggcaa	60
atggcatatc caagtcaactg ttagactgtc ccaagtctcg agaccaacct aatcggggcc	120
ccgcgggtgc ccttgcctt cctcttttga attcaggctc agacatgtca tctgggttga	180
atgttagttga ttgacttctc ctaagtttc caaagagttt catgataacct ctggatttct	240
ttttggaaatc tggagatgga ggccgtatct ggaaggggact gttccctgt gaatcttttgc	300
gccgagaaag aagcaccagc cagatctagg tgctctgtc nctcttttgc tgntcaact	360
aaatttggtg cacttgttgg tctcttggta cttttgatt taaaaaagcc ccngccaaag	420
gaaanactga ctttcgagt gccnaaaggg ttgcattccat ngangtgtcc tggcccttggg	480
gcctggaaag naaggctcaa atgggcttgc ttctggccga nctttggcc tttggannc	540
ttctggaaaa gtnccnttt tcccataaa cgntntttct tnaaaatggc ccagctggtt	600
gacnntttgg naacttgaag ttnaaagntt ttccccccant tgggnnttaa caggggncc	660
cagggatatg ttncccttnt t	681
<210> 62	
<211> 569	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(569)	
<223> n = A,T,C or G	
<400> 62	
actgggatta caggcgtgac ccaccacacc cggcccctaa ccacttgc aagtcccttc	60
acatctgttta gtttttaag gatgaaggct gagaattaac cttttccctt attcccccggaa	120
gtgtctgacc cagtgcgttgc tttgtgttgc gacgttgggtg aattctttcc aaataaaagga	180
attcccacaa cagccccacg aaggacttgc ggcaggattt aggatccccaa cttacagaag	240
aggaggacaa ggcccagaga agatccccaa gactcagccca gggcacgggg ggtcgggtga	300
gttttgagat cgatagagcc ttctttcaact ctccctgtgc gacatgacag tagataaaaa	360
gcatacttaccc tcattgcactc tcattggctc tggcaccatg ttttagatgc ggcttaggtt	420
ctttgcaatc tggtaaccta tggcttaaac ttataccctt acctcttcc tcgtttcttgc	480
nctgtgcaca tctctttcca tcagaccatc catagctcaa gctcaacagc ttttnccagct	540
agtgnccctn ctccttttnc atggatgc	569

```

<210> 63
<211> 650
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(650)
<223> n = A,T,C or G

<400> 63
gaggtacaat ggaggtatct gtgggaagga aaatgcaggt aaagatgaag aggaaaatct      60
gccttgtaa agcccagctc cccaaagtat tagacacatg aatttgcttc tggctgagg          120
ccatctgtgg ccgtcaggct agctgtttc tggctgatac ttttggaa tggttattgtt          180
gctgagaaag atagttccat gtcagagcta tcaacagaat gtggccatct ggacaaccat          240
gtataaacca acttattgtct tcttgaatgc cacctacaaa catgactacc tgcctttct          300
tgtttgaagg ggcactaaca atacttgggaa agatggaaag tgaactggac attaaggcag          360
agatgaagaa ttctgccttg ctccctgcac tccatggaaa aaggaggagg acactanctg          420
ggaaaagctg ttgaaccttg aactatggat ggnctgatgg aaaaaggatg tcncngacca          480
naacnngaaa aaaaggtttgc tttaagtttancctnaggt acccgaatgc aagaacctac          540
cccactttaa catgggccccca anccttaaaa gcctnaagnt atgnctttat tcnggattnt          600
ncccgaaang naaaagnttt ttganntaaa attncccncc ccnggcccggg                      650

<210> 64
<211> 676
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(676)
<223> n = A,T,C or G

<400> 64
cgaggtgccca attgggagga accttcttg gatgaggggtg ctcggttag caatatacg      60
gtgtggctcc agataattca atcatctaat taagattcca gttatgctaa tctgtttaa      120
aattccgttt gtgtaaattc ttttacaaag cctcaacccc aatttccagg gaggggttcag      180
agcctcaggt tgagttgatg accaacagcc tatagttaa cccatcatgc ctctagatg          240
aggtctccaa aaaaatccaa aaggaatagc tgtagagagc ttctggataa cactaactgg          300
aaggttagagc gccactccaa acaagacggg accaaaaatt tttctgaatt ttccgcaata          360
tctgcaacaa taaaatgggaa aatgtaatgg ccctcctacg tgggggagc tcttcagcc          420
aatggatgcn actattacna ggantggggaa acctggat tataaccagc tgctgaaaaa          480
gccagtaaac aacgttaaggc tttcattggat aatantatgg gaaggacagt cttgtggac          540
ttcggccctt tgnaactaat ggtatgcccc gnanataacc gtncccttgg atttcaagac          600
cccctttggc tggnnanaatt tttgggcatt tgcttgctgg cttaattacc attggaatca          660
aatctttcc ggcnn                                         676

<210> 65
<211> 660
<212> DNA
<213> Homo sapiens

```

<220>
 <221> misc_feature
 <222> (1)...(660)
 <223> n = A,T,C or G

<400> 65

acgtggcctg	aagagatgtt	attcttaaa	atggtctcg	ctgtggcga	ggtgccccca	60
tacaacaact	ctcggctat	catggcagtt	accgtggcct	tggcaggatt	cggagctgcc	120
ctggtaaaaat	ctttggtgtg	atgtccttga	ctaactccta	cagcctggc	gacctcggc	180
accatggaa	gaattccagc	aggcagctgc	tgtacttta	gataaggcat	cctgaactca	240
tcctctttat	tactagtccc	attttcatcc	ccagagccag	gttcaaaaaa	ggttacttt	300
cttccatccc	ctggtttctt	tatgggtgtc	tttcctctg	acttgagtgc	cggtttgtg	360
gctgcccctg	cgggactttg	aaacccagga	tcttcaacat	gntctcgctg	cattgccttg	420
gccaccttct	tgtggtgccc	gtccttntgc	aatgggggtt	ctaacctna	cctgnatnac	480
aaacttcctt	ncgcncggaa	aggctngctt	cntgaagaac	gtgtacctt	ggcngnaaca	540
cgcttanggc	gaantccacn	cactggnggg	ccgtactann	ggaatccaac	ttcggaccaa	600
cntggggnaa	catggcaaac	tggttcctng	ggnaaatgta	tccgttacaa	ttcccncana	660

<210> 66
 <211> 678
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(678)
 <223> n = A,T,C or G

<400> 66

actcaaatct	catcagcagc	gtctacatcg	taaaaaaaca	ttagagaatg	aatgatgcg	60
ggttggatta	tctcaagatg	cccaggatca	aatgagaaaag	atgcttgcc	aaaaagaatc	120
taattacatc	cgtctaaaaa	ggctaaaaat	ggacaagtct	atgtttgtga	agataaaagac	180
actaggaata	ggagcattt	gtgaagtctg	tctagcaaga	aaagtagata	ctaaggctt	240
gtatgcaaca	aaaactctt	gaaagaaaaga	tgttcttctt	cgaaatcaag	tcgtcatgt	300
taaggctgag	agagatatcc	tggctgaagc	tgacaatgaa	tgggtagttc	gtctatatta	360
ttcattccaa	gataagggcc	atttatctt	gtaatggcta	cattcctngg	ggtgatatga	420
agagcccatt	aattanaatg	ggcatcttt	ccagaaaaggc	tngcaccaat	ctaccttagc	480
cagaacrtac	ctgngccngt	tgaaagtgg	ccttaaaaatg	gggttaatt	cttagagatt	540
tttaaacctgg	ataatattt	antggaccgn	gaagggcctt	attaaaatgg	cttgcttgg	600
ccttngactg	cttnanatgg	ccccccaatc	taagtnctg	ggccggaacc	ccttangggc	660
naattcagcn	cactgggg					678

<210> 67
 <211> 695
 <212> DNA
 <213> Homo sapiens

<400> 67

ggtactatgt	gtgaagaaaat	ggagaaaaagg	aaaaatcagt	gtagaaaaat	aaaaaaagca	60
agagtggaggt	tgggcctac	agttcacagc	atgtgataag	gactgagcat	ttattctatt	120
atttggtcat	aaaaatgcag	gctgttaaggg	cc tacacaca	ccagcttac	gcagacttgg	180
ctctgagctt	tcctgcagcc	aatacaaaca	gggagacaca	acagagaatt	gccaatgtg	240
gaagctagat	gtctaattgt	gatcctgctt	gtgactaaag	tctgaatctg	ggctaagtca	300

cacatgtcct	gacactctgg	aagctctgtc	tggtgggtct	gggaacgggg	gagaagtcaa	360
agaggaagta	gcaaggaaag	atgcagaggc	ggagcctggg	agctagggca	gtgccaggtg	420
ggactgacat	ggcaccagga	gtccctcctg	cagggatctg	tcctgattca	ggtcagctgc	480
atcctgcata	tctagggaat	gagaccacat	ctgcaactca	ccagggactgt	tcactgttt	540
ttccacccccc	caatctact	cccactcaat	cccttggatg	tgggaggag	aaatacttaa	600
gctgaatgtt	gctgtggccc	atttgatgac	aggtaaccag	tgtggggat	gaccggcaat	660
gactgcaaga	agtggtccag	atgtcagaag	tggtt			695
<210>	68					
<211>	579					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(579)					
<223>	n = A,T,C or G					
<400>	68					
ggtagccaagg	aagacattca	gagtgtgatg	actgagatcc	gcaggtccct	tggagaggta	60
tgttttactt	tagtaaatgt	tagtttatat	ggtaattttt	cctttaggaa	aatctgactt	120
tttataatgt	tttgcttaca	ttatttacac	ttctgagtt	gattttgttt	gaacaaaatg	180
ttctgtgttt	ataaaaaaa	aaaaaaaaa	aagaaggcgt	agcttgtaaa	attctgcttt	240
agcctgtatt	ctgaaggaag	aatgccttag	agtaagtctg	acttcagaat	atttatgcag	300
taaaactgac	agtattcttc	atcctaaca	cctttaggta	gaatagaaag	aacagtggac	360
taattatccag	gagacctgac	aattagttct	agtcattgtt	gtgtcgacag	ttagctggag	420
gaccttgaat	ataagttcct	caacctaact	tgacatcagt	gnntttcacc	tataaaataa	480
ataaaaatag	gtaatgatta	aatactctta	aggctttat	attangnaat	ggactggat	540
tgagtaataa	atacctaata	gcccttcagt	taattnaaa			579
<210>	69					
<211>	661					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(661)					
<223>	n = A,T,C or G					
<400>	69					
cgaggtacaa	gctttttttt	tttttttttt	tttttttcag	aatgctaaat	tctattttg	60
tagagcagag	actccattaa	aaactccaa	atgacaaact	agaaaaaaaa	tttacaacac	120
tgtgtgaaaa	tcanagtgt	atttccta	atatacaag	agctcttgca	aaccaacaag	180
aaaaacacaa	atacccaa	ggaaaaatca	acaaaggaca	ggaatagttt	gttttcagaa	240
aaagaaatat	gaattaccaa	taagtgtgaa	aatggtgctc	aatgccatca	tgattaaaga	300
aatgtAACCA	aaacagtgg	gagccattt	ttcatgtggc	agattactca	attttagtaa	360
tttattctga	aaacaatctc	ccacaagtgt	atacttccac	ttgnatgcnc	aaggaagtac	420
aagctttttt	ttttttttt	tttttttt	ccttggctgn	agtcatgagc	cttttggaaa	480
aggcctccaa	agtaaatntt	tcagggggaa	tagggaaagt	nttttttaa	anaaggcngt	540
gattntaant	tccccgggac	tatggtaaa	tactntggaa	aaattnaant	ggtccatgg	600
ggccnaaatg	gnctntta	aaangnggg	gaaaaaantt	tttngggaa	aatncccaag	660
						661

```

<210> 70
<211> 697
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(697)
<223> n = A,T,C or G

<400> 70
actgagttc cagaaagcgc agtgcacttt tagtgcgcc aactggtaat ttgccattta      60
gagaattctt cctaaaatgtt attatttctg ttaaagcaaa tcactattcc taactgattt    120
ataatttgg taaatctaaa tttcatgaa ataggcttat aaagcgtgcc acatttcgtt    180
tttctcctat ggacaggaag aaaaagtgg atggggacag aaggacagaa cagggtgcgg    240
aaaccataagg ataaaaagctg tgggtttcc cccaaaagtt gctcaaaaga ataatatgac    300
ttctgcttt ctctcctct ggggtggcaat tggggaatcc agcagcctgt tgagaggaca    360
gaattggta agttgtggag aggtgcagtc taattggtaa atctttaaaa gtcttggttg    420
tctaacctgc tgggtttctt gctcacagcc cctgcagata tcttctcacc taccttaacg    480
ctggcatgca aggnntttctt ctttgctgag tggcattng gttaattcc atgttnaatt    540
ctaaccctgg ccatgattac naagccctta ctatggctt gcttgagtt angccctggg    600
gcttaagna atnccctanaa ttcncccntt ctnatttctt aaggcctgg anatnccaaa    660
atgatnganc ttgacnttgg tttgggaggg naactnaa                           697

<210> 71
<211> 705
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(705)
<223> n = A,T,C or G

<400> 71
accacacagt caatgatgtc agccactccg agcttttaggg tcctgggagt ggcagtaggt      60
gatacgctcg tctctccaaa aagcaaaagg atcctgcttg gggacacccc aagggtgggtg    120
gccatgttgtt ccaccacact ctgcaggggc tccgacatcc tgaggggcaa tctgaccagg    180
tcagccccgc aacggatttt gagtgggaag aggcttccta gatgacgggt gatgaagccc    240
aatcttccag gtggagagga cagcatgacc aaaggaagga cgtggaggtg acatggcatg    300
tgcagggAAC tacactgaac actgcagaga gccactggca ggacccaggc cagggagcac    360
ctactggc atactgggaa gcttggcctt tctcttgggt gtctggagat cccaaaagaa    420
tttatgccaa aaagtttagag gtggatagat tttaaatact ggggtttta aataccgan    480
ggatTTaaa tactttgtt gggtaatct aaatttangg ggaacccaaa ctggaggcnn    540
ntnaaaaggn cccttataag tggaaaaant gaaaagagn tgnattangg cnncnnaat    600
ttntgggtggc nttaaagtn ccnttngatt tcccanaaa attnaatcng gggattttt    660
atccccggaaat tgggggaana aannnnngaa gggttnccaa ttttggg                        705

<210> 72
<211> 683
<212> DNA
<213> Homo sapiens

```

```

<220>
<221> misc_feature
<222> (1)...(683)
<223> n = A,T,C or G

<400> 72
actgaatgaa gtaaccgaag acaacttaat agacctgggg ccagggtctc cagcccgtag 60
tgagcccaat ggtgggaaac acagcgc(ccatcttcctt ctcccccag cttgcaggct 120
tagacttggg gacagagagc gtcagtggca ccctcagttc actccagcaa tgaatcccc 180
gtgacggctt tgacatgttt gcccagacga gaggaaactc cttggctgag cagcgaaga 240
cggtaaccta tgaggatcctt caggctgtcg gaggacttgc ttctgcacta gacaatcgaa 300
aacagagttc agaaggggta ggtcttaac cctgttttc tgctggagt cttctggagg 360
gaaagtctagg tggtttggca aaactggctg ggttaattcag cagaaactgg cttgcacagg 420
gggcanggac accctgggg gaaaaaccna cgggggacac cccgtggAAC ccaagtantg 480
ccttatttga gtcttnaccc nacccctgtga gataaggccc ccatgagctt tccaatccac 540
ccaagagaaa cnagtnccagc nggtgggana cagcttgnac ncccanaaagc nnacngaagc 600
cggttccaa tctngataaa gggcnnttcc aaanccttgtt ggtcttacca aaggggcccaa 660
tttcaggcc aantttntg gnn 683

<210> 73
<211> 566
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(566)
<223> n = A,T,C or G

<400> 73
acagtgtgga aatttcaaca tgttatataca tccgtgaaac cattatccca atcaacatca 60
tgaatttaac catcacccca aaaagtcttc tcatgatctt ttgtatacc ttcccttttc 120
ctgtcccgccccc ccccacacc gctgtttttt ttttcttattt gtttgcattt tcttagatTTT 180
tatataaatg aaatcaatac attatacctt ttttgcattt ttttgcattt ccatttctat ttttgcgggg 240
taatgtgaga gctgtccatg ttgtctaattt ttttgcattt ccatttctat ttttgcgggg 300
ttgggcaggg gctgggtatg attccattaa gaggatacac tacagtttgc ttatttgcattt 360
tccttattcat ggtatgttttgc ttgtttcttgc ttgtttgcattt ttttgcgggg 420
gattgtatg ttaaagggtgc atactgtaaa ccctaaaata gtcactaaaa taacnaaaac 480
aaaaaggatgt tgtaataaagg ccaacaaagg aaataaaatca aatcataaaaa tacnaaaagaa 540
agcngaaaaaa gaccaaggc acctgg 566

<210> 74
<211> 690
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(690)
<223> n = A,T,C or G

<400> 74

```

cgaggtgtac aagctttttt tttttttttt ggctccctgt	agcctcgact	60
tcccagcaat cctcctgctt cgccctcacag caggcacacg ccaccatgcc	cagctaattt	120
ttgtattttt tgttagagaca gggtttgcc atgttgccta ggctggctc	aaactcctgg	180
gctcaagcaa cccatctgcc ttggccaacc aaagtgtctgg gattcttaggt	gtgaaccact	240
gtgcccagcc aatctctgtc ttttaatga gggtgtctgc atcgttgtt	tcacatggnt	300
attttaggact aactctatca ttctgctgct cagtaattt gtttgcagg	ctgccttgg	360
tcttttctg ctttcttttg natttatga ttgatttta tttccttgn	tggcttatta	420
acaataactt ttcgttttgg taatttaagn gactatttta ggggttacag	tatgcaccont	480
taacatcaca atctatcttc aagtgacatt atangnctna aaccngaaac cacccaaaca		540
tcntgaatng gaaaatgaat aaccaactnn annggaancn cttaaaggaa actaccaacc		600
ctggccaanc cccaaaatng aaaggcctct aatccnttna cacntggcc ggtttncata		660
atntcntggn gaaaaacttt cccaaaaggn		690

<210> 75
<211> 447
<212> DNA
<213> Homo sapiens

<400> 75		
ggtacaaact gtgttattca catctggccc ccaaggtatg taaggaaaa	ctttaaataa	60
atcttaagc tcatacggtg acaaagcaca gtctctatcc aaatcatgct	tgtcaaagg	120
gctttggaga aataaaatatg catgatgatt taattcagta gtcaatcag	gaggtattt	180
cagcaggggg aacaaatatt caggtgtcaa atccaggtca tcatacataac	caaatcgctg	240
aagcacagtc caagtagttt cgtgtctccc tctctggata aaaagtgtgt	gtaaaaagag	300
aaaaccttc agggtcaacc cactgtcagc cacaccatca cttatatgtt	ttctgactac	360
attcttgaca tcctccagag cttgaggagc taatggagtg ttgaaacaaa	tcctctgaaa	420
gaagttgagt tcagcatcat tgagagt		447

<210> 76
<211> 674
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(674)
<223> n = A,T,C or G

<400> 76		
actgttaggt aattttata ttttacttag ttggtttctt ttgtttttgg	agacagggtc	60
ttgctctgta gcccaggctg gactgcactg gaactcctgg gctcaagcaa	tcctcctgcc	120
tcggcctcca agtagctggg actactacag gcactcacca ccatcctgg	ctaattttta	180
gttttagttt gtagaaaagta agactaaata cactggatca ttcagaatgt	cagaaagtaa	240
tgttttctc agtttatttt ttcttaatag cacacaccat gttattgggt	tgtgtttgt	300
tagtgctgt aactagagtg caacttaatt aacaatttgc tcctcctcat	gaggttcatg	360
gcagtataga cttaaattct agtccccatgt ttgnattta tttagctgtgt	gctaagactt	420
ggttttccta tcagcagaat tgctatgtat atctaagggt atgttaaggg	ttcaaaccag	480
gaaccctctt tgtaagtgaa aggtgggggg gagctattgg taaattttt	ggtcagaaaat	540
tggcataacct aatttaatta ctaccttact aaangnatca attaccctca	tctatttcan	600
nggttaatg ggnccaagtg gaatattcct ttacttaaaa gccagttta	ctgggaaatc	660
ncttancaag gntt		674

<210> 77

<211> 441
 <212> DNA
 <213> Homo sapiens

<400> 77
 acatggctt ttgtcccta aaagactgca tcacacctc gattggagg ccaactgtca 60
 tttaactgag tggtagtg tctaaaacca agttcagcat ttgtctatct agcaagctc 120
 ccttcacaac ttgttactc ctctcaattt catctgcaga tctcctgggt caataaggct 180
 caaaaactgg ctgttccctt gcatttcttctt ctcttctccc aggacttctt cattttttt 240
 tctctcaggc tcacccttac aatccaacac cttccaatgg ccttccttag tccagtccat 300
 cctgacaccca agtaactggc ccgcatttggg agtctgtaca ctttcagtcctc 360
 ttcttccac ttcttcggc ccccaggagg atcctggatg gtcgtcacag ctgacaaatg 420
 atgagcagaa tgccctgtac c 441

<210> 78
 <211> 623
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(623)
 <223> n = A,T,C or G

<400> 78
 ggtacacgat taacttaaca caaaaacccg aacttcaaaa tgaaggtgtg tggagggaaag 60
 gtgctgtgg gtctccctac aactgttcat ttctttgtgg ggcagggggt agttcctgaa 120
 tggctgtggt ccaatgacta atgtaaaaca aaaacagaaa caaaaaaaaaac aaggaactgt 180
 catttcacag aaagcacacg ggcagtgtt ctgcgcggcc tcagggccct gggcctggag 240
 aggctacatg agggggagcc tcagtcacag gatcaacctg gggcccgaaag gagcagggtt 300
 ccctgcctct ccctctgcaa cagatcatcc catccaacac aacccccaaa atgttgcata 360
 tgacgcacat ggtcaaccctt caagacccctt aagacaaaaac agagcacata gaaaaaaa 420
 aacnaaacgc ccaatttctg ctgtgtcaat ggttagggcac cattttaaaa agtctgctaa 480
 acagtcgtctt tacttggan ggacgtatgc aaacataatn ctgttagtgc aagaaccatg 540
 acgcctctac ttactctaag ttatgtngaca ntaaaacttct gctcccttca agttaaagn 600
 ntcnaactg ggtggggaat act 623

<210> 79
 <211> 462
 <212> DNA
 <213> Homo sapiens

<400> 79
 accagttaaa aatgttattta ccaataagtg ataacagcaa caatagctaa ctgacaattg 60
 attaaagaca gtatacaggg atcctttgtt ggttcataag catgtatgatt agatttcat 120
 gctattgggt gagatatgcc ttccctcagac tttgttacag cataggcaca ttacaacctg 180
 tctgatagga gaaagaaaagt aaagatggta tacaggccag gtgcgggtggc tcacgcctgt 240
 aatcccagca ctgtgggagg ctgaggtggg tggattgttt taggcctgga gttcaagacc 300
 agcctggccc acatggcaaa accccatctc tactaaaata caaaaaaaaaatg gttgtgggtgg 360
 cacacacctg tattttccgt tgcttggag gctaaggcac aagaatctct tgaaccagga 420
 ggtggaggtt gcagtgagcc aatatcgac cactgtacct cg 462

<210> 80

```

<211> 640
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(640)
<223> n = A,T,C or G

<400> 80
accgcgttgct gctgccatgt gtgtgcttaa aacagggttc cttttgttag catcagaatt      60
tggaaaccat tacttatatac aaattgcaca tcttggagat gatgatgaag aacctgagtt     120
ttcatcagcc atgcctctgg aagaaggaga cacatcttt tttcagccaa gaccacttaa     180
aaaccttgtg ctgggtgatg agttggacag cctctctccc attctgtttt gccagatagc     240
tgatctggcc aatgaagata ctccacagt gtatgtggcc tgtggtaggg gaccccgatc     300
atctctgaga gtcctaagac atggacttga ggtgtcagaaa aatggctgg tctgagctac     360
ctggtaaccc caacgctgtc tggacagtgc gtnacacatt gaaaaatgaa tttgatgcct     420
acatcattgn gctttcgtg aatgccacct aatggtggnnc cattggagaa actgtaaaaa     480
aagtgactga ctctgggtn ctnggganca cccngaacct ncctgntnc ttattaggag     540
atgatncntg gngcaaggct ttccaannngn atnnggacaa tccaacctac caganaagtc     600
atggntggaa naaccctgga aagaaacaat ggtgaagggg     640

<210> 81
<211> 643
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(643)
<223> n = A,T,C or G

<400> 81
actgccattc cttaaattca ttttagattac agtgtgtaat cataactttt gatccatcag      60
ctccctttgt caaacactgg tcataactgca tgagttgatt tgcttcattt attctgaaaa     120
gctgattccc tcccatcctg tggcagggtc ctagttcaac aaagcctcca tttgttttc     180
ccatgctatc aatgcgatcaa gcagtttgcg agcctctgt ttctccccag tcaacattt     240
tgggtggcaa agggtagtgtt gaggtgatatacataagct ttcttccatg aaccacttaa     300
aacttttgcg gttgtgatct tctcgaaatt tttcaagct ccgatatacc cccatatgg     360
aatgcctgcg attcaggacg actagcatag aagtagtctt tatattcatc caccaaacct     420
tcacaactct aacataattc ttcaagatgtt gagaagaccc aacataaaatg ggcngaggat     480
tncttggcag ccctcaagac ggtagatatg tcccacacgag aaccanggac caaataataa     540
tttgcacca cacttggcat atcttggatg agatctcaaa gttcaccac cccaaatttgc     600
gaaacctgga tctttagacc caattcaaaag aaaacttttgc     643

<210> 82
<211> 642
<212> DNA
<213> Homo sapiens

<400> 82
accaagtcat tatttctgac agcattgtgt attagaagga acactggatt tagtcaaaag      60
ataggagttt gaatcccgat gccacctttt accaactggg taacccttggta taggaattgc     120

```

ataacttctc tgaggcctgtt	ctcaaattgc	ctacacctata	aggttgctgt	gaagaataaa	180
tgcgtatgg tttctgaagc	acttatcccc	tgccgttaga	tctcctgagc	tgcatttctg	240
tttaacacgg gcccccaagt	tgtcagccaa	gcagctcaaa	tatatgaagt	ctaaaatgaa	300
agtaatgacc ctttatgatc	tctttctatt	gttctcaatc	agttcctttt	tttttagtta	360
cctaattctg ctcacgggt	gtccctgtt	ttcagattcc	agatgtcagt	gattgtggac	420
tcctcctttt tcttaacaga	ttacataata	cctgcagctg	ccaagtctt	gtctgtgtt	480
tcattatttc atcatttaca	tcagatctt	cttttctctt	cccgttgaca	caccctagtt	540
caggcctcat tcaagtcata	cccagagtat	tgtatcagcc	tcctaattga	tctttactcc	600
ttcactttgc aacctattct	gtatgcctt	tgaagtacct	cg		642

<210> 83
<211> 584
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(584)
<223> n = A,T,C or G

<400> 83					
ggtacagtag agtctgagaa	ctgggtcaac	actgaagcat	tcacaccc	aggatatgaa	60
gcagagctc ctgtcacatc	tgcagatgtt	gtgctgttgg	tcaagagcca	gtgtgcagt	120
atctctccac ctctcatggg	tgcgactgac	ctagacacag	tctcagtctg	agacatggga	180
cttccatttt gcacccatcga	gctgctggca	agctgatgtt	ctccaaaggt	tggggaatca	240
ttttgcacac gcaaagacgt	aagtccaaat	tcatttctg	tggatgggtc	aatgaattcc	300
tcatccctcg gattcccagt	tactctactg	nttcttctcg	attccactgc	agagggtgaa	360
agaaggactg aggatagaat	ccgttagaat	tctggagttc	ttggggaa	cttctgtctt	420
gctcacagg	tccagactga	cccgtaaaag	atccgcagtg	ttctcgggcc	480
aacacgggggg	caacatgcat	tggcttgtt	gactgactna	ggagctttgg	540
gganttgta	agcttctctg	nacctgcccc	gggcggccnc	aggcccagtn	584

<210> 84
<211> 558
<212> DNA
<213> Homo sapiens

<400> 84					
ggtaaagaaa gaaaaaaaaaa	aaaggcctgg	atactgctt	tgctgtctt	gttatgagat	60
ggaagactta catggttgt	gataaaagg	gaccatgaga	atgaattggc	ttggcttact	120
ttccccctga aatccctctc	cctgcagact	gtcttgaaga	cctggtaact	ggttaataaa	180
gccctgcac	gaggctgcac	agcaggggca	agaggccc	ctcaactgagg	240
acagcttcag	gctgccttcc	tctgaacgtg	gtccacac	tcctctc	300
gtgcgcgcag	aatccctgt	cgcttctgt	gtctgcaatg	ggggcagca	360
agccatctaa	agagtttcca	gagaagat	taattcagaa	caagccaa	420
tcaccacaaa	caggcctttt	ggagtgtgaa	ttttagttga	agatacaaga	480
atttcttgtt	cttaactaat	cctcgcttc	atgtttgatc	tttaagaagt	540
tgatccatgt	tttgcgt				558

<210> 85
<211> 499
<212> DNA
<213> Homo sapiens

<400> 85
 acaaaaaccat cgccatcaaa aaaacgctgt tctgacaaca ctgaagtaga agtttctaac 60
 ttggaaaata aacaaccagt tgagtcgaca tctgcaaaat cttgttctcc aagtcctgtg 120
 ttcctcagg tgcatgccaca agcagcagat accaccagtg attctgttgc tgtcccgca 180
 tcactgtcg gcatgaggag agggctgaac tcaagattgg aagaactgc agcctcctca 240
 gttaaaacac gtatgaaaa acttgagag caacggcgcc gttggataa tgatgatatg 300
 acagatgaca ttccctgaaag ctcacttcc tcaccaatgc catcagagga aaaggctgct 360
 tccccctcca aacctctgct ttcaaatgcc ttggcaactt cagttggcag aagggccgt 420
 ctggcccaat ctggctgca actatttgc cctggaaaaa tgatgtaaat cactcatttg 480
 caaaaacaaaaa cagtgtacc 499

<210> 86
 <211> 146
 <212> DNA
 <213> Homo sapiens

<400> 86
 acaggatact taaaatggaa taacttttg gttgcaaaac agagacatgg ttctataatg 60
 cttcatgtcc ctccaagatt tgagatcaat ttagggattt tgaaattttt ttttcaaatt 120
 ttccatacaat catatttccc agtacc 146

<210> 87
 <211> 572
 <212> DNA
 <213> Homo sapiens

<400> 87
 atcccttagca tttaaaatt cagttgttac agggatccca cataatattt tgcatttat 60
 atgagggtgg atgagggtcg aaatttcattc ttgggtcttg gaacagattt atggcacac 120
 attttaaagc tattgttctt cagttctgca gattaagaaa ctccatattt ttgattttttt 180
 agggtaatga gaaaatgcat tgagtatat ataacatcca ctacattcac agaaatgct 240
 gtcctggatc aaaaactgac ctggtcattt aattatgtt gagaactcat aaaaatttcca 300
 tggagaaaatg gatattcaag ttggctcatg aattcttgatgaaaatttaa aagcaaaagga 360
 gaggatagcc ttacagagat aacaatagga acaaagtccac agacttgtgg aatggaaaga 420
 ccgggctaga aattaggaca gttcatattt aagcaagcag gggtgggttt gtgaacaaat 480
 accttgaagc ttggatgcc ttggagccct tgacagttt tgagaatgta tcaaaaacaat 540
 taaaatgtct atttggaaat gagagccctg gt 572

<210> 88
 <211> 512
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(512)
 <223> n = A,T,C or G

<400> 88
 ggtaccttat ctcagaaggc agactgtttt gggacaggcg cagtcctgt ggagcggcac 60
 ttgacatcg cgtctttcc cacatggagt gaggagccctg gccttgacaa ccctgccttt 120
 gaggagagcg ctggagctga caccacacaa cagccactta gtttaccaga aggagaaatc 180

accacgattg aaattcatcg gtccaaatcct tacattcagt taggaatcag cattgtgggt	240
ggcaacgaaa caccttgcataacattgtc atccaggagg tctatcgga tgggtcatt	300
gccagagacg ggagacttct tgctggagac cagattctc aggtcaacaa ctacaatatc	360
agcaatgtgt cccataacta tgcccagct gnccttc agccctgcaa cacactgnat	420
cttactggc tttcgagaga agcgcccttt ggcaacccga ngcacacaaan cattctgaaa	480
ggnaactctc cccnagaaaa aaatttncn ng	512

<210> 89
<211> 573
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(573)
<223> n = A,T,C or G

<400> 89	
actcgggtgc tcctccgcgt tctgagtcgc ctccctcaaca atctggacct caagtgcctt	60
aaggccaaca gcaggggacg cggcactggc tttcagcatt gcaactgcct cactgtgact	120
taaattgtgc aaatcaatgc cggtgatatt tagcaacaca tcacctctt ttattctgcc	180
atctcgtgca aggccat ggggtggcac actggtcaca aagatggca gctcaccact	240
cttacttccc ctgccccccag caacggtcat gccaaggat tcatgtgggt ccttctttac	300
agtaatgtgt tttcttggc atgtaacaca ctgagtaaga tccttatgt agcttggct	360
gctataatac ggtgggtgtg tgggtgctg gctgtgctg ctatgattt ctgcttctct	420
aatgggttta ccaggctggg gtttccctgg tctagcaatt ggtaaattca ctctntctcc	480
actggcctga ataatctggg cagcaagctc cggaaattcc atacttcagg tcgtgccccat	540
tgatggccac actcggcatt gctgcttanc ctg	573

<210> 90
<211> 658
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(658)
<223> n = A,T,C or G

<400> 90	
ggtacctttt aaccaccct cctccaatca tggaggagt tgttcggtt ctcagcatgt	60
ctgaagagga ccagatgatg agagcaattt ctatgtctt gggacaggat attccaatgg	120
atcaaaggc agagtcacct gaggaagttt cttgccggaa ggaggaagag gaacggaaag	180
ctcgaaaaaa gcaggaggag gaagaggcta aatgtctaga gaagttccag gatgctgacc	240
cgttggaaaca agatgagctc cacacttca cagatactat gttccaggc tgcttccacc	300
ttcttgatga gctgccagac acagtatacc cgtgtgtgtg acctgatcat gacagcaatc	360
aaacgtaatg gagcagatta tcgtgacatg attctgaagc cagtagtcaa tcaggtgtgg	420
gaagcttgct tggatgtattt gatcaaaagc ttnttcttc cctggacaac cangtggaca	480
caaaaaaccg tggtcanaaa tgggttaaag tcanatnggg ccccaacttgg ccccaaggcc	540
ttccaattttt ggctanctt aaaatcctt gcttttaacc nctactttt tgnagggat	600
ttgaagctt ccttgggccc ttgggtgggg ttgnaatcna agngggattc ctttnnngg	658

<210> 91

```

<211> 570
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(570)
<223> n = A,T,C or G

<400> 91
acctctgact acacccat gttggccct gaccaacaga ccctcagggtt gtgagtttg      60
gcctcgggga gaaaattctt cctgcttgat gttagggcaaa gtagctgatt tggcagattc    120
ctgttgcgt ggcagtccaa gagagataga tcccactgac ggcttgggtg tttcttgagt    180
gttaggaagcc tgattatgag aagtcaaata agtgcctgtt gttccctgtg agatggagcc    240
tcccattata aaagatggtt tttctgaagc caactgtggtt ttggatgacg ggatgagagg    300
gggcccgtgg cctgggtgg cgagttgtcg gaagccccaa cgccttcagg gagattagtt    360
atcaacttgat gtggagcagg ctgaaggact tcccacttc tgtttgact cttggatgtg    420
ccacatggac ttgtagaact tctacattcc aaatctatct ggncttgct ctggccnttg    480
ttccctncagg agtgctgact catgcntgn ttaatngt cgctggtaga naacatancc    540
gttactgggg tccaatggga tgtacatnngg                                570

<210> 92
<211> 603
<212> DNA
<213> Homo sapiens

<400> 92
ggtacacatg ttttatttag attcagtcct cacaacgaat ccattcaaag atacaactca      60
cagtggtaa atgactggcc agaggttagc caggtagcac gtggcagagg cagggatacc    120
aagagtccct tccatcatat cacactgact aagtttcct gggttctgtc gaaaatatta    180
atggttcatt gggcataatg gtttcttagt ctttcttatt atttcatcca aatgaatttt    240
ccttctcatt tactatgaaa gatttgtta gccttcacat cttgccctac tgcttataaa    300
ctaaggaaag gcaggttcct ccacacagaa cagctctc ctttatcact ttctatatga    360
aactttcaat aagacatatac gtgttatct caagccccacc atagctgagg aggaatcgct    420
tgctttcccc tataattccc agtgcccagc attctcacaa ctaggaggtt cttgagaatc    480
tcctcatatta tacaatatga agtaaaagcc aatttaact ttaatngt aacttaattc    540
aatgctgaat atcaaaaataa tcaactgtta aaaattaaa tgattgttt gatatattct    600
tgt                                603

<210> 93
<211> 627
<212> DNA
<213> Homo sapiens

<400> 93
ggtacacatg tggcccccattttttttt gatgacacag atgctgctca caaatgtcgt      60
tttggaaagga agaaaaatata tataatcata aaacaaacaa caaaaataaga taaaatatgg    120
ggaaatggcc aaaccaactc catgccaagg aaagagcaat tggctaattc ctaaattcac    180
caataggttc cttagagctg gtctttgata aatttttat tggtttcag taaaggtgga    240
aaaacaaagga gaatttattt agcttctta aaaaaaaaaact aaattttttt caactcaaaa    300
agattatccc ttttttaaga ttagccccc ttatggaga agccatcaac aaacccttc    360
tctgactgat agtgacatac ataactggtt tttttatgca attttatgt catttttgg    420
atgtggatag aggcagaaga aaagagaaga catcctggc ccagattgca acacaaacac    480

```

agaactgacg tgacagctgt	ggggatatg ggacagagat	acagaagga ggagcctggc	540
cagggttgc	aatcagact gggagctga	gagagcctc ttggagaggc	600
tttgaatgc	aggcgggga gtctgga		627
<210> 94			
<211> 331			
<212> DNA			
<213> Homo sapiens			
<400> 94			
ggtaacctatg ataatcagat	ggagatctgg ggaggggaga	acgtggaaat gtcctccgg	60
gtgtggcagt gtggggcca	gctggagatc atcccctgct	ctgtcgtagg ccatgtgttc	120
cggaccaaga gcccccacac	cttcccaag ggcactagtg	tcatgtctg caatcaagt	180
cgcctggcag aggtctggat	ggacagctac aagaagattt	tctataggag aaatctgcag	240
gcagcaaaga tggcccaaga	gaaatccttc ggtgacattt	cggaacgact gcagctgagg	300
gaacaactgc actgtcacaa	ctttcctgg t		331
<210> 95			
<211> 752			
<212> DNA			
<213> Homo sapiens			
<220>			
<221> misc_feature			
<222> (1)...(752)			
<223> n = A,T,C or G			
<400> 95			
ggtcctgtcc cgccctctc	cccaagcgcg ggcccgcca	gcggaaagccc ctgcgcccgc	60
gccatgtcaa agaaaaagg	actgagtgc	gaagaaaaga gaactcgcat	120
ttttctgaaa caaaaatgt	atttcaatta	aaagacttgg agaagattgc	180
aaaggcatta ctgctatgtc	agtaaaaagaa	gtccttcaaa gcttagttga	240
gttactgtg agaggatcgg	aacttctaatt	tattattggg ctttccaag	300
catgcaagga aacataagtt	ggaggttctg	aatctcagt tgtctgaggg	360
catgcaagcc tacagaaaaa	gcatttgaga	aagctnaaaa ttggcccgt	420
aaagaacnga acncaggctt	acaaaaaaa	agctttctc acnttcgaag	480
gaaccagctt taanggccna	aagttgnaaa	aatttccaaa ggactggnga	540
tttgggaa aaaaattccc	ttanccttan	ttccccaatt aaaaatnttt	600
aagnaaaaat ttnggggaaa	tgaaanaaaa	ttaaaaantg ggnntgaaac	660
aattcccaa aanaactttt	gcctccctt	tgnccttaaa aanttncca	720
aaanggattt nncttgnc	cngggnggg nc		752
<210> 96			
<211> 405			
<212> DNA			
<213> Homo sapiens			
<400> 96			
tacaacaaac accgaaaaca	aagtaaaaaa tgaaacacaa	ctagagaaaa tgtaggac	60
acatgtcagg aggttaatat	ccctaatact gaaaaatttc	ttgcttagtaa gccaaacaac	120
ccaataaaac tctaaatgtat	acttcgttag	ttgataaaaat gattccaaac	180
agacaaaaca tttgagatag	actaacaaaa	ttattgttta tctaaaactc	240
tgttgttattt ttatgttgg	aaggtggcaa	cactattca gacacttgtt	300

cctgcagtaa ctcatatgaga tggggaaaaga ggttaattaa cctctccaac agcagttcc	360
tcatctgtca aatacagtgt gagaattaaa ttggataata taggt	405
<210> 97	
<211> 499	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(499)	
<223> n = A,T,C or G	
<400> 97	
acagaaaactt ggtgggaaaa ggggactgtg gccagagttg ggacccttga gcagcatcct	60
ctgcagagaa ggattttgtc tggccagagc ctggagaaac ctgaaaaaga accagtcagc	120
tagccagggt ctcagagaaa agcagattac acactcaa at tggtaattt gagcagagct	180
taataaaggc agtatttaca aagtgtggc taagcctccc atgagagtg agaaccctgg	240
ggcttagcagt gtggggcgct attcccagcc ccctcaatcc attggcttag gccgctggaa	300
gccaccgggc caagggagct tggatgtg gtcacacgg gcatgttccc aggtcaagag	360
aggagagatgg agagtgaatc tanggagact caagaggaa gaagtgactt ccactacctt	420
tccttcctgg ccgttttgtc tccanctggc ttctctttt ccgannccnt agttttgggt	480
ttaangnnan ntangtnaa	499
<210> 98	
<211> 688	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(688)	
<223> n = A,T,C or G	
<400> 98	
naggtacaag ttatcaatcc gagggacaag agggaggac aagaaccagg tctcagctgc	60
attcacatcc tggaccctgt catctcaaag ccagttccct ccctgccttc caacttggtt	120
tcattcactt tggattgagt tgcgttctca ctgaacagaa acccacaacc caaaacaagg	180
gcagccccatg gccgtgatta agctctgcac cagtggcga gggatcgagt gggagaccag	240
aattcagctc cgccctgtg cggcctcaag ggagttatga acttctgagc cttagacatg	300
cttctgagct gccaccaagc tgcctnatgg ggctgcctaa ggattaatgn attaatccaa	360
tcccaggcac atnagtattt aataaaatta agaatacn gn gaccactaaa cccactactt	420
zngaagtact tcctactaac tacnttaaac cccaaacttga aggttttggaa aaaganaatg	480
nccacttggaa aaccaaaccg gcnnnaaangg aaaggtacct tggaggcact ttttccctt	540
tggggcttnc ctanaatccn tttccat tttttgacc tngnnaaatt ncccnngggaa	600
ccccatttac aaagtttccct tggccccggg gnntttnaag ggcttancc aagggnntan	660
ggggcttggg aaaaagnccc ccacttgn	688
<210> 99	
<211> 657	
<212> DNA	
<213> Homo sapiens	

```

<220>
<221> misc_feature
<222> (1) ... (657)
<223> n = A,T,C or G

    <400> 99
ggtaacttttc tttagtatctt aacatcacat gcattttgta gtttatggc tccagtctcc . 60
agctgttttt ggagcacctt ctaaccttga gagggtgagc tctagcctgt aaaatgact 120
gtgggtggct cgtggagaag gtgccttgt gtgcctttct gtgcctctc tggattctcc 180
ctgagctgtc cacctctgaa gcctgctca ctttcagact gccaggcga gacatgcagc 240
ttctgcagaa ctcatggcag ccgtttcca cttggccgag ctgggtctgt gaagcagaga 300
ggaatcgata ataggaaaga aatgttaagt gntttttcc cccttagaat acctaccata 360
ctggatttca gcttggagtg cgccagcatga agcatttg gtcaaaaaaag aggncttcct 420
tttccttct nctggtttct tttcttnctt ctccccaaact tccccaaangc ttactggctt 480
tcttnnaag ncacgtgtgt aaaatancct tgagggaaaa aanggttccg gcttgggana 540
tttggatnta cctaaagggn cagaataacc cttctttgcc tggtcnntt ttggcctaatt 600
cnagggaatt tttcgactgg ggnccattaat ggnccctccgg cggccgttaa anggcaa 657

    <210> 100
    <211> 504
    <212> DNA
    <213> Homo sapiens

    <220>
    <221> misc_feature
    <222> (1) ... (504)
    <223> n = A,T,C or G

    <400> 100
atttcttctt tgcatgcagg aagaaaaattc actcgccgtt tgataatttgc ttatggtctt 60
atttgacctg ttatccctgc ctccccatgtt ctctttaccc tacaacccat cagctgttag 120
agtttccctt tccaaagactc tccatgtcca tccccctctgc attccccctt ttcactccat 180
cttctgttaac ccagccccctc gggagctgag gaggtggagg cgatatacg cacggagagt 240
gctggatgca aagtgttac ttgtggcaaa ggcgcgtgt gtgtcgagga tagatggcag 300
gtatgagaga gggcaggatg aagcacagggtt ggaggaggaa gcagagagac ctacaacaaa 360
acccactcaa ggggtatgtg agatagactt tttttctgg ncttttctgg tgcgtgtaat 420
gggggttggaa aagtgggtg gtctcancag ntaattctct ggagntctct ggacttgagc 480
ctngtcnnnaa nagcccagaa nttt 504

    <210> 101
    <211> 685
    <212> DNA
    <213> Homo sapiens

    <220>
    <221> misc_feature
    <222> (1) ... (685)
    <223> n = A,T,C or G

    <400> 101
ggtgccctgtt ttgccactta ggaagctgga aagaattttc gagtcaagtt aacccaaccc 60
cctcttcttt tcacatgtaa gcacactggc tcagccagaa ctcaggctt tcaacctcac 120
agttggtaa gactcttaca tgggttcc aagttgctca actctcaggg ctcagcctac 180

```

aaaagactcg	gcatttcgac	cagctcagtc	cagaggactc	cagagaatga	ctgctgagac	240
caccccaactt	tccaacccc	actacagaca	cacaaaaaaga	acagaaaaaa	aagtcttatct	300
cacataaccc	ttgagtgggt	tttggtgnag	gtctctctgn	tccccttcac	ccctgngctt	360
catcctgcct	ctctcatacc	tgccatctat	cctnagcaca	cacnngcct	ttggcacaag	420
tacaccttg	cattcaagca	ctnttcgggn	ctataatncgg	cttcaacttc	ttagctccg	480
aaggggcttg	ggtacngaaa	aaggatgaaa	ggggggaaatg	ncaangggat	nggcctggga	540
aagttttgga	aaaggaacct	ttaccnctga	agggttgttag	gggnaaaaaa	aacctgggag	600
ggccgggtta	ccnngtcaa	taggaccttn	ccaantttt	acnngggagg	gaatttnttc	660
cngctgcca	naaaaannnc	ttccn				685
<210>	102					
<211>	498					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(498)					
<223>	n = A,T,C or G					
<400>	102					
ggtaccatat	acttaaggct	atagtttatt	tcataacttt	ttttctagcc	ttcataatctt	60
gtgttttcag	gttgcacaa	tattcttttta	aaaattaagc	attcttacgg	cttcactcat	120
gtgcaacatt	tataattatt	tgcatttgcc	ccctcaatga	tctcaataga	ataaatcagg	180
ctccactata	ctcatttcac	aaagacacat	tcattacaaa	ggataaaagga	ctgaaatatt	240
tgttttgc	aa tctgttgc	acc taatgttgc	aa tagttagaa	tttgcacac	tttgcacatgt	300
tttaaccct	gactgagacg	ttttgggtga	gtattactat	tcttattctt	ccaatgataa	360
agggaaactg	aatgccccaa	catgtgctgg	ctgtttacac	atatgcaaca	ttgactgggt	420
ctcacaacca	ccttgaggaa	taggcattgn	cttcaatttta	caaatgagga	aaacaaccat	480
tttcaangng	cattttnc					498
<210>	103					
<211>	697					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(697)					
<223>	n = A,T,C or G					
<400>	103					
gnnatctgaa	attcgccctt	cnagccgc	cgggcaggac	taaaaaatgt	agtttatttt	60
gccatcaccc	taacaacatt	ttatttaat	tatattgtga	cttgattaca	aatcttttaa	120
atgacattat	tggcatattt	ttcttaaact	ttgttaagaaa	aagataacat	ttcacatttt	180
agtagcaaaa	tcattgttaa	gagatagtca	attttgtaa	aatatttgag	tgctaatcaa	240
ttttccagg	atgatcttct	atccttaat	attttagatct	tcctttgaa	gcacttacat	300
catcatcaaa	ttttggtca	tttgnngn	catctaattt	ctgggtcatt	ttctaatggc	360
ttcgtatgt	aatgaatttt	agttattcct	aacgtcattg	gtagccactc	ttttgaaatt	420
ttttttaaa	ccaggcttc	aattttatt	tatanggaat	ttgcattggg	atataagatga	480
ccgctcaaaa	ttcccatng	agactgntga	aatgnctaa	acnattcgcc	tggacnctgg	540
attaancgn	ggctcttaa	ggtaatctng	anggggtggc	ttattggaa	aatttggatt	600
nnggcccgt	tactntgcca	ggttngactt	nnaagggccc	anaaggacct	nggaaatnaa	660

gatnccctna acccttcctt ggnaaaanaaa naagttn

697

<210> 104
 <211> 504
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(504)
 <223> n = A,T,C or G

<400> 104
 accatcatc agaataactc ttccaatttc tgcttcaga catgctgcag gtcctcatct 60
 gaactgtgg gttcgaaaaa tttttttttt cctgctccaa gaaagtgaact tcaaaaataaa 120
 ctgatcaggaa tagattattt tattttactt tttaacactc cttctccctt tttcccactg 180
 aaccaaaaag aaatccccatc cctaaaaaccc gccttctcct tttatgcaaa actgaaaatg 240
 gcaatacatt attatagcca taatgtata gatagtgatt gcgtttggct atgtgtgtt 300
 ttctttttt ttaaattatag aatatgtgtaa atatctgagg taacttgcta accgtgaatg 360
 gtcatataaac tttaaagata tatttataat tatttaatgaa catttgacc cttgaaacat 420
 ttcttagtgn attgatatgt tgactttcg tctctaaaag tgctctttat taaaataaca 480
 aatttctta aagggnctaa aanc 504

<210> 105
 <211> 746
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(746)
 <223> n = A,T,C or G

<400> 105
 ggtacttaggt gtctcataat tgaaccctct atccacatgt gcggctttta gctgactatg 60
 tctttgttat gaagcctggc gatttagagt tttgcttaac tatgaaacca cagaacattt 120
 ttctgttagtt caatgatttta cttgtgcttg tctttttat atgacaagag tcataattac 180
 cccaaagaaa ttagaaaacc acatcaactcc agcatttcat gctgataaaag ggcttaaggt 240
 tgtttttaa atccctaatt accgctttag aaggcaaagc tgtgttagag gcattcaaag 300
 atctgaaaga actaaacata acatttcctt catacatcac aaaaacaatc tataatctaaa 360
 atatttggag aagggaaagta tttttttaaa tcacattng ccctggatga acctggaaat 420
 ggcttancca tatttcaaga atatgntct aggacccact ggaaggaaaa tttgggtaat 480
 ttaaataaaaa gancccctt ttaggaggan ccgaaagttcc aaccttattt aattccctt 540
 angaaaatng ttcaaggggg gtcccnnaag ggccatttaa antaatttt taaaatatta 600
 tcctttaaag gtttttttg ganccnntn nccgggttgncc caaggttnc ctttcgnaat 660
 ttttncccctt tttttccctaa antttaaaaaa aaannnnnnn accccccccctt tggnccaaag 720
 cccatnccctn ttttttacc cttng 746

<210> 106
 <211> 645
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(645)
 <223> n = A,T,C or G

<400> 106

acaagctttt	ttttttttt	tttttttga	gatggagtct	cacattgtt	cctgggctgg	60
agtgcagtgg	cacgatctcg	gctcccccgt	tcacgtgggt	ctccctgcctc	agcctccag	120
gttagccggga	ttacaggtgc	ccaccaccat	gcccgataaa	ttttttatat	tttttagtaga	180
gacgggggtt	taccatgtt	gccagactgg	tctcaaactc	ctgacacctat	gatccgcctg	240
cctcaacactn	ccaaactgct	gggattacag	gcgtgagcca	ccacacccgg	ctgagttgtt	300
gatttttag	tttgntcagc	tttttactt	gtagaatgaa	gtgatgactg	ncgacctcct	360
taagggccag	actagaaaact	gggagactcc	tatttangc	gcctaaaaaa	ttgnaagctn	420
gacattggtg	gtgaaggatt	ggaacaattc	ttaattctgg	tacctganan	gggtgaattt	480
tggtttcact	ngcngcttat	cagtantcaa	ttccttgaac	ttttaaaacn	ttagttaccc	540
ttngtaggga	cagnnttcaa	atttcctt	acttagggaa	cccttantct	ngggacaagt	600
tttattctaa	ctgactgtt	caaacttang	gcttcntacc	tggcc		645

<210> 107
 <211> 684
 <212> DNA
 <213> Homo sapiens

<400> 107

acagccagat	cttaagatga	gtctgtgtca	aaatgacctg	aacgcaagtc	tgtattcttg	60
cagagtaaca	gagggttcgt	ctgtttctgt	ctaaaagtc	taactataca	gatatctggg	120
aatgcttgc	tgaagctttt	actcccgaga	gcataactact	acttacggtt	ataacttgtt	180
gatgtctata	ttgcttaat	tcaaatgaaa	agttcaactcc	aggaggagct	ctttgttaatc	240
cacaccaccc	cccagactgt	tctgaataaa	cccagaacaa	ctcacatacc	agcctaagca	300
tggtctattt	ttctgggatg	ggacagaaca	taattgtatt	aaaatataaa	atcagttta	360
aaaggtctgg	aaggacatat	cttaaggcca	tgatagtaag	tacagctggg	gtgctgggga	420
ggggaccta	actagggtt	gtggcaaaaa	tgggacttt	aacttggct	ttaacatcct	480
ggtcctaaaa	agaagactag	atttacctat	tatatatgca	atctaaaatt	aattcaaaaa	540
gtcatcagcg	aggacccccc	taagattctg	ggtggtaagt	ccaccaaagg	ccaagagcta	600
aaacaaaagc	ctttccaca	tgttctgaga	agttggccca	aaactgctga	atctataaggt	660
cttagcatgc	tctatctatg	tacc				684

<210> 108
 <211> 236
 <212> DNA
 <213> Homo sapiens

<400> 108

ggtacacgtc	gttctttca	agatctcata	gacaatcg	ctccgggtt	tgctgtcgaa	60
aaaggatcc	ttatcagaca	agtcaaata	atgctgc	tcccccggaga	agggatagga	120
gagtctttc	atggtctgg	gcctgtgc	agccactt	ggctggatgg	gatctgtat	180
tttctggagc	acagagttga	ttttttcag	gaggccacgg	gtctcattaa	tgttgt	236

<210> 109
 <211> 497
 <212> DNA
 <213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(497)
<223> n = A,T,C or G

<400> 109
acgagaagtg tgggtctgga atatcttcc ggtgaggcct caagaagttt acagtacgg      60
tggaaaggcaa tgaggagcca gcataatcaca tggtgacagc aacagccaga gcaaaaaggagg 120
gagggagagg tgccactcac acttaaacaa ccagatctgg tgtgaactga ctcacatcacca 180
aggggatggc actaaaccat tcatgaggga tctgccccca tcattccagac acctcccacc 240
aggcctcatac tccaaacactg gggattacat ttcattcatga gatttgagc ggacaaacat 300
ccaaaccata tcagtaggat gtctgacatt catcatacga tgtctgagtg aagggaggtt 360
taagggctta tttgtctcc ctggatagta atggaaaatg tatatctgaa agagatgtct 420
aaaaaaagaaa gtttaagtgg gtggcttgca cacttttgtt ttgctagngg gcttttgag 480
ctcanattct cattgn                                         497

<210> 110
<211> 722
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(722)
<223> n = A,T,C or G

<400> 110
ggtagcccg gtccctttct tccaggaatt ggctactgtc cctctgcaat cccattcatg      60
ataaaaagcat tcttatacaa cacaaaagat gctgcataa tgattctcaa acctccaaga 120
catccaaatc aactagcatg cttaagatgc agattcctgt gctcgactca ccaacttcca 180
gaattttcca ttcccttaggt ctgagggtgaa cctggaaatc tgccttgcta acaaattatg 240
ctgacactgt tgatttgggg accccacttg gagaacctgg gctctagatc tctaccctct 300
tactgaagtc ttcttccact tccctgttta actggaatcc aaccgcac ccctgnagcc 360
cttgc当地 gatttgcctt tttcccttac tctggtttt ttcctctgg ttcttagccta 420
gattccangg aacatnaact ttgggcntgg cattttcccc tngatntgg atccctttgg 480
nccagnttt ccccaaagna agccntnaat tcaaaaatctt tcccnntng gttccctattn 540
acccggacct tcngggggna aaaaatnccc aaaagcccccc ttacnaaattc ctttttccc 600
aaacttcaat tgggaaactn gggcttaaaa aaagnccccn ttnccaaan ccnaaaantg 660
ggcctaaccn ccccccnnn aaacttntt ttttnnanaa attnttttn anaaattncc 720
tt                                         722

<210> 111
<211> 614
<212> DNA
<213> Homo sapiens

<400> 111
accagggctc tcacttccaa atagactatt taattgttt gatacattct caaaaactgt      60
caagggtctcc aaggcatcca aagctcaag gtattgttc acaaaccctt ccctgtttgc 120
ttgaatatga actgtcctaa tttctagccc ggtcttccat ttccacaaatg ctgtgacttt 180
gttccttattg ttatctctgt aaggctatcc ttcctttgc ttttaactt ttactcagaa 240
ttcatgagcc aacttgaata tcacttctc catggaaattt ttatgagttc tccaaacataa 300
ttcaatgacc aggtcagttt ttgatccagg acagcatttc ctgtgaatgt ggtggatgtt 360

```

atataatcaact	caatgcattt	tctcattacc	ctggggaaatc	aataaattgg	agtttcttaa	420
tctgcagaac	tgaggaccaa	tagcttaaa	atgtgtcccc	atgaatctgt	tccaagaccc	480
aagatgaaat	ttcagccctc	atcccacccctc	atataaatga	caaaatatta	tgtgggatcc	540
ctgtacaac	tgaattttaa	aatgcttagga	ttatcccttc	cctagcacta	tgtcatttt	600
aaagggtgtac	ctcg					614
<210>	112					
<211>	499					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(499)					
<223>	n = A,T,C or G					
<400>	112					
acttttctgg	aaattggctt	taagagctca	tcctgcattt	ttaaaatctc	tccaaactgga	60
tcaaattttt	tatatactcg	tttgataggt	ttttttaaaa	cacatgactc	ttcaggacta	120
caagcagtat	tagtctggtt	tcctacagaa	gcctgtcccg	aggaagaatt	tggactagct	180
ggtctggAAC	ttaagttaga	acccacaaca	gctgtcttc	catcactatt	atttttacat	240
tctgtatcaa	tgattaaaca	ctcctcatct	gtatcactgc	tgcagagaac	tgtacccca	300
gtttttgctg	cttctgatcc	aacagtctt	tcctttgagt	tgtcttaggtt	ttctagaaca	360
ttaggtcttt	caccatcagc	atgtaatata	tctatagtc	tatcattttt	attagaagtt	420
tcaattttcct	gagaatttct	aactggaagg	catcagatgt	tttcaaggca	ctatcttgg	480
tcaaangtt	ggcaaaaaaa					499
<210>	113					
<211>	697					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(697)					
<223>	n = A,T,C or G					
<400>	113					
gcgtggcgcg	gcccgaggta	cctaacatga	cagatgctcc	tacagcccc	aaagcaggaa	60
ctacaactgt	ggcaccaagt	gcaccagaca	tttctgctaa	ttctagaagt	ttatctcaga	120
ttctgtatgg	acaattgcaa	aaggagaaac	agctggtcac	tggatggat	ggtggccctg	180
aggaatgcaa	aaataaagat	gatcagggat	ttgaatcatg	tgaaaaggt	tcaaattctg	240
acaaggctt	gataacaagat	agtgacttga	aaacatctga	tgccttacag	ttagaaaatt	300
ctcagggaaat	tgaaaacttct	aataaaaatg	atatgactat	agatatatata	catgctgtat	360
gtgaaaagacc	taatgttcta	aaaaaacctag	acaactcaaa	ggggaaaagac	tgttggatna	420
gaagcagcaa	aaacctggaa	ggtccagttc	tctgcacant	ggatnccan	tgaanggaag	480
tggtttaaat	caattggttc	ccggaatgg	aaaaaattaa	ttagtggatg	ggaaaagacc	540
agcttggttgg	nggggttctn	aacttaaagt	ttcnanacca	nnntangtcc	naatttttc	600
cttnagggaa	agggtttttn	tnggnnaacc	gncttaaac	gggttngnan	cccctaanaa	660
ntcttggn	ttaaaaaaaaaaa	ccttttanc	cgngttt			697
<210>	114					
<211>	497					

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (497)

<223> n = A,T,C or G

<400> 114

acccacttct	gacatctgg	ccacttcttg	cagtcatgg	gggtcatccc	ccacactgg	60
aacctgtcat	caaatgggc	acagcaacat	ttagcttaag	tatttctcct	tccccatcc	120
aagggatgt	gtgggagtga	gattgggggg	tggaaaaaac	agtgaacagt	cctggtgagt	180
tgcagatgt	gttcattcc	ctagagatgc	aggatgcagc	tgacctgaat	caggacagat	240
ccctgcagga	gggactcctg	gtgccatgtc	agtcccac	ggcactgccc	tagctccag	300
gtccgcctc	tgcattttc	cttgctactt	cctttcac	ttctcccccg	ttcccagacc	360
caccagacag	agcttccaga	gtgtcaggac	atgtgtgact	tagcccagat	tcagacttta	420
gtcacaagca	ggatcaagca	tanacatcta	acttccagaca	tgggcaattc	tctggtgggg	480
ctccctgnnt	ggantgg					497

<210> 115

<211> 687

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (687)

<223> n = A,T,C or G

<400> 115

ggtaatatgt	gttaaaaat	ggagaaaagg	aaaaatcang	tgtaaaaaa	taagaaaaag	60
caagagttag	gttgtgcct	acagttcaca	gcattgtata	aggactgagc	atttatttcta	120
ttatattgtc	ataaaaatgc	aggctgtaa	ggcctacaca	caccagctta	tcgnagactt	180
ggctctgagc	tttcctgcag	ccaataaaaa	caggagaca	cancagagaa	ttgccatgct	240
gggagctaga	tgtctatgt	gatcctgctt	gtgactaaag	tctaatctg	ggctaagtca	300
cacatgtnt	gacactctgg	aangctctng	ctgggggtc	tggaaacggg	ggagaagtga	360
aagatgaagt	agctaggaa	nagatgcaga	ggctgnncct	tggaaactta	ggcaagtgcc	420
aggtggggac	tgaccatggt	anccaggaat	tccnttcctg	gtangggatt	ctggcctng	480
aattcaggg	taagcttgcc	attcctgcat	ttcttnagg	ggganttgan	aaccccttt	540
ttggaaacct	cancaaggan	ttggctccc	nggnttttc	ccccccctta	aatnaattc	600
cccnnttaatn	ccttgaatt	cnggnaagg	nnaattctt	ancctaantg	ttcttgggc	660
nctatttgg	ngacagggtt	ncnanggg				687

<210> 116

<211> 508

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (508)

<223> n = A,T,C or G

<400> 116
 ggtaccatt ttctatttca agtagattaa ccccttatat tctgctaaaa tcataacttgt 60
 tgccta acac ccagtt aaca aagcaaaaaa aaatcagttt atttataaaa acaaaatgct 120
 aattcttatt ctatgtgaat gtatttcata gatttttaagg ggttaatcac caattagaag 180
 acatgtgtg tccacactat tttaagatta aacgttaatg ggaatataatt aattcaaatt 240
 aacatggtca tgtaaaaatata ataaccactt caaccattna aaaacttagtg tgaacactgc 300
 tcaattcttag aagagacaaa gacaaaacaa acaaaacagc cacacaaagg acaataaaatg 360
 ccaggctctg catccaaaat ccctccctta tcaaatacgca gatgtgacac tgagctttg 420
 aaaaccttgg ncaaaaatcc ttccgatgtc ttggcagca cccctggcag gatcaatccc 480
 ctctgnata aagnnttggg cccngccc 508

<210> 117
 <211> 644
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(644)
 <223> n = A,T,C or G

<400> 117
 acaggggtta aggaaggctt tgccggaaga acaattgtaa atcatgagag ttactacttg 60
 cgcattgtgt ggtagtctct ttaatgcata atggccctt ttaataccaa aaattaatta 120
 ataaaaggaaa tgattacatt gtccaaataa ctgttaaaca catgacagat ctgtttatg 180
 atactgtgtt tgacagttaa acattaaagta aacatttaat tgactttaag cttgaaatgt 240
 tcagaatgct ctaacccttg ctacagaatc ttttctgcag caagttaaatg attttgcgt 300
 tttttccca cctgttagctt atcaggccccg gtccaaagcc ttctagcaga ggggattgtat 360
 cctgtcaggg gttgctgccaa agacatcgga aggattttg accaaggntt tcaaaagctc 420
 aatgnacat ctggcatttt gataaaagga gggattttg atccaaagcn tggcnttatt 480
 ggcctttgg gtggctgggtt agggtggntt tggcttngc cttttcttaa aaattaacca 540
 nggttnccac ttantttttt aaaagggtaa atgggtaaa attttccnt ggaccnngta 600
 aattgnaata aaaattcccc ttaccgtta aactaaaaan angg 644

<210> 118
 <211> 500
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(500)
 <223> n = A,T,C or G

<400> 118
 ggtacaaacc catgcagccg ggccctcacg tggtaagat cttctttgct ggggacacta 60
 ttccctaagag tcccttcgtt gtgcagggtt gggaaagctg caatccaaat gcctgcggg 120
 ccagtggccg aggccataaa cccaaaggcg tccgtatccg ggagaccaca gatttcaagg 180
 ttgacaccaa agtgcagga agtggggagc tcgggtgtaac catgaagggt cctaagggtc 240
 tggaggagct ggtgaagcag aaagacttcc tggatgggtt ctacgcattc gagtttacc 300
 ccagcacccc gggagatac agcatgcca tcacatgggg gggacaccac attccaaaga 360
 gccccttga agttcaagtt ggccttgaag cgggtatgca gaaagtccgt gcttggggcc 420
 ctgggctcca tggtgggatt gtcngcggcgt caacngactt cgtggnanaa tccattggct 480

ctgaaaatnng gnctctgggg

500

<210> 119
<211> 624
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(624)
<223> n = A,T,C or G

<400> 119

actcaatctt	tgcctgagag	gggccttcaa	tggcaaaccc	cagagacccc	acttcagagc	60
caatggattc	taccacgaag	tctgctgacc	gcccgacaat	cccaccatgg	agcccagggc	120
cccaagcacg	gactttctgc	ataccgcgtt	cagggccaac	ttgaacttca	aagggctct	180
ttggaatgtg	gtgtcccccc	catgtatgg	caatgctgtt	tctcccccggg	gtgctgggt	240
aataactcgaa	tgcgttagacc	ccatccagaa	agtctttctg	cttcaccagc	tcctccagac	300
cctttaggacc	cttcatggtt	acaccgagct	ccccacttcc	tgcagcttg	gtgtcaacct	360
tgaaatctgt	ggtctcccg	ataccgaccg	cctttgggtt	gtaggcctcg	gccactggcc	420
cggcaggcat	ttggatgcan	gctttccaa	cctgcacaac	gaanggactt	ttangaatag	480
tggncccagc	aaagaaaatc	ttgaccacnt	tgangggcca	gctngatggg	tttggacctt	540
tggccggAAC	acccttangg	ccaantccng	cantggggg	ccgtacttag	ggaccaactt	600
ggnnccaact	ttggngaata	tggn				624

<210> 120
<211> 504
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(504)
<223> n = A,T,C or G

<400> 120

acaggcatgg	caccgacatc	tgcttggctt	ctgctgttagc	ctcaggaagc	ttatagtcgt	60
ggcagaaggc	aaagaggac	ggcaagagag	gaagcaagag	agagagcggag	gaggtctcag	120
actctctta	ataatcagat	ctcctgataaa	ctcatttcca	tggggagggc	accattcatg	180
agggatccgc	tcccatgacc	caaacagccc	ccacccggcc	ccactgtcaa	cactgaggat	240
cacatttcaa	catgaaatgt	ggaggggaca	gacatccaa	ctatatcacc	tccatactgt	300
tttccacagc	attcccacca	acagtgcaca	ggggtttca	tgtctccaca	tcctcatcac	360
acttgttatac	ttctgttttt	gtttgttgt	ttgtttgtt	tttatatgt	ccattctcat	420
gantgtgaag	tattaacagt	gtctttgaa	gatcagaaat	ttctaattt	atgaaagtcc	480
ngnttancan	ntttttcnt	tttn				504

<210> 121
<211> 630
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<222> (1)...(630)

<223> n = A,T,C or G

<400> 121

ggtaactatcc	taagttaac	actgcttcac	agtaaggaaa	gccgatcaaa	atttaaggag	60
agattagaat	ccagaaatag	gcccacacat	atatatagtc	attgattttt	aataaagggtt	120
caaaggcaaa	acaatgaaga	aaggatggc	tttcaataa	atgatgcaga	aacaactgga	180
catccacgt	tgcaaataaa	cttaatcca	tgcctttac	tttatccaaa	agctaattca	240
aatagaaac	ctcccttcc	tccctcaaaa	aagcttctag	agaaaacaca	ggagaaaatc	300
tttgtaacct	tgggttcaca	aagatttctc	aggtatgaca	ccataagtat	gatccagaaa	360
agaaaaaaa	tgataaactg	gacttcatca	aatttagaaat	ttctggatct	tcaaaagaca	420
ctgntaatac	ctcacactca	tgagaatggc	tactataaaa	acnaannanc	caaccaacca	480
ataacngaag	attncagggt	gatgangntt	ggagacnctg	aancctngng	cactgttggt	540
gggaatnntt	ntggaaaaca	gttggangng	aattagnnng	gngnntngcc	cttccanttc	600
atgggnaagg	gacctnagnn	tgancgnggg				630

<210> 122

<211> 431

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(431)

<223> n = A,T,C or G

<400> 122

actgaaaagc	ttggtcataa	tcttcctgaa	catggaatga	tctagctagc	tgatagcagc	60
tctctgcttg	catagcttcc	acttctgtat	tatggaatgc	atggagggcc	agatgctgga	120
ctttactata	atcccttttg	aagaaaaagt	gatttgccaa	atggttcaat	accatagggt	180
tgcttaggatc	aatagtatag	gctctggaaa	gaagctggac	accatttta	atggaatcag	240
cctctttatt	gtttagttct	agaacagcca	gtccaaaccaa	tgctcccacg	catttggaat	300
tgagttccag	ggctctgctg	aatgccagac	gagcttttc	cagtttgtt	agtttcacaa	360
agcaatgacc	cattcctaaa	cnaactccg	ctggacatc	ctgggttaag	tacctnnggc	420
cgngaccacg	c					431

<210> 123

<211> 504

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(504)

<223> n = A,T,C or G

<400> 123

actggctgtc	ctctgaggca	ccttgggtgc	ttttccacaa	tggttattt	tcctccagta	60
ggctagactg	gcttccttat	ttggcagttt	cagggcagca	tttcaaaagc	aggaagggtgg	120
aagtggcaag	gcccccttgag	gcccttctt	cagagctcac	acagtgtcac	ctttaccaca	180
ttcttatttgt	caaagcaact	tccaggccag	ccaaaattca	aagggtgagg	tagtagactc	240
tacctctttt	ttcttttgag	acagaattgc	gctctattgc	ccactctgga	gtgcagttagc	300
agcctcatgg	ctcaactgcag	cctcaacctc	ctgggctcaa	gcgatccttc	catctcagcc	360

tccccgagtag	ctaggaccac	aggcacatac	caccacagt	agctaattaa	aacat	ttttt	420
ttggtagaaag	atgggttctc	actttttgc	ccaagctgat	catgaactcc	tggccacntt		480
ngggcnttc	aaggggnaac	cccc					504
<210>	124						
<211>	632						
<212>	DNA						
<213>	Homo sapiens						
<220>							
<221>	misc_feature						
<222>	(1) ... (632)						
<223>	n = A,T,C or G						
<400>	124						
ggtacaaaaca	cagtaaagaa	caacacagat	accagtcctg	cctttatcg	gaaagacaaa		60
acaaaaacaa	aaagtaaaca	ttccagtaaa	ggaatgatta	gtgttattat	gacaaggaaa		120
gcataggaa	ctattcgatc	aaagaagaga	ggttacagtt	ccccaaatct	agggtgttg		180
gaaaggaaga	atatccttag	taaatgacat	tgaagctaaa	acctaaacta	tgtatagcag		240
tcagctagaa	aaaacaggca	agaaagaata	tttcaggtgg	agagaaacac	atgtttcag		300
gccaaaagct	ggagaacaag	gtgagttaa	agaactgana	gaggttagt	gattacaatn		360
gttgaacaaa	aggggggcat	tgtggaatga	atannaaga	ntggtttgt	anattggaat		420
ctctgcagca	aaactccatt	cagaaggtat	aagttcangc	cttggtggt	tactttggna		480
aggccgtagt	gggccaggag	nttcatgntn	cancttggc	caaaaagnng	agaaccatt		540
ttttccaaaa	anaatgnntt	naatttacct	ncntgggggg	ggaatgnncn	tnnggtcctt		600
anttcttgg	aanggttaa	attgnaaggt	nc				632
<210>	125						
<211>	496						
<212>	DNA						
<213>	Homo sapiens						
<220>							
<221>	misc_feature						
<222>	(1) ... (496)						
<223>	n = A,T,C or G						
<400>	125						
acaagattag	gaggggggaa	aaacctgaac	aaatcctgga	acacacctat	gtatttacgt		60
catggaaaaa	ggggagagaa	cacttcaaatt	atcaacaat	tctgcgccat	taactcatta		120
atagcttaat	ggccacacca	aattgcattt	aatgtttaga	acctctcaga	tagccacaat		180
aagtccatat	tttttttaa	aaaaaggaaa	acacagaaat	aactaccaac	agtgtctgag		240
aagagagact	aagttAACAT	acattgcattt	tattgcaggc	aaggcagagg	cattttttta		300
aagcttttgc	acagacttca	tataatctt	aaaaaaaaat	gcaggcctt	gcaagatttgc		360
acttgctgaa	atccaaacaa	ttttgactca	tgaaaaagtca	taagacttca	gctgaaaaaaaa		420
aagaaaaaaaaa	ttccagcctt	agacaaaaaa	aaaaaacctg	gaanagtntg	atagatttaa		480
cnanggtngg	cacgct						496
<210>	126						
<211>	631						
<212>	DNA						
<213>	Homo sapiens						

```

<220>
<221> misc_feature
<222> (1)...(631)
<223> n = A,T,C or G

<400> 126
ggtagcaccc ttacccaaat aggttggctt cttccccacc cacctttgag cttttgtctc      60
aaaatacatt cagggtccaa gcctgaccat cttgtttaa tctatcatac tcttcagggt      120
ttttttttt ggtctaaggc tggaactttt ttctttttt tcagctgaag tcttatgact      180
tttcatgagt caaaattgtt tggatttcag caagtcaaat cttgcaaagg cctgcattt      240
tttttaaga ttatatgaag tctgtcaaa agctttaaa aaatgcctc gccttgccctg      300
caatacatgc aatgtatgtt aacttaagtc tctcttctca gacactgtt gtagttattt      360
ctgtgtttc cttttttaaa aaaaaatatg gacttattgt ggctatctga gaggggtctaa      420
cattcacatg ccaatttggg ggtggncatt taactattaa tggagttaat gggcccaaaa      480
cttggtgata ttttnaaggg gtctcttccc ntttttccaa tgccgtaant ctttngggg      540
tggttccagg aatttgncc aagnttttc cccncctaa aatnttgaac cttgnccnng      600
cnggnccctt caaaggcgna atnnancn t                                         631

<210> 127
<211> 518
<212> DNA
<213> Homo sapiens

<400> 127
caggtaactcg gtgtttccca acacccctt attggaaaac agccaaggag atgggtggcta      60
actggaggca tcacccagca gtggggagc agtggagcaa ggtcatttgc gcactcactt      120
ccagattgtc acgtttaca tatggtcctt catttcctgc atttaaagtt cccgatgaag      180
atgccagtc gatccctcca gaaatggata atgagtgtt tgacacagaca tggttcgct      240
ttttacacat gttaagtaat cctgtggatt tggtaacccc agctattata agctctactc      300
ccaaatttca ggaacagttc ttgaatgtga gcggaatgcc gcaagaattt aatcagttatc      360
cctgccttaa acatctgcct caaatatttt ttctgtccat gcggttggaaatc agctgtctgg      420
tggatgcatt cttaggtatt tctagacccc gatcagacag tgctccccca acaccgtga      480
atagattaag tatgcctcaa agtgctgtg tcagtacc                                         518

<210> 128
<211> 865
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(865)
<223> n = A,T,C or G

<400> 128
accaaaggat agctgttctg tttaagtagg gacctctcat ggcctacagg ctttgacatc      60
tgagaatcaa actggagaac attccgaagc cgttcttata agtgtctca tctctacctg      120
ggctgaaaatg gaatgtgcaat atgtagccca gcctggctt tgggtgttgc cagttgattt      180
atgactggaa gccaaagtgg catctcctt gacctaaacg ggcgtatgtt aaataaaaact      240
caacagcctt tctctcatct tgcatgttga gatgcggaaat agagcgtgtc tctctgcctc      300
tcatttttagg ctgaggccgt ccaaagccgc catgccccat gtttccacta gatggcgctg      360
acacttcagg catcaaccct catggcctct cagccttgc aaggcagcca cttaaagtgc      420
gtgtcctgtg tggggcacca agctgagctg cagacacccc gtaggcgcga ggcaaatgcg      480

```

tcccatttta agaggcttgtt atttatgagc tctttgttc ctcctccca ctatcttaa	540
agaattgctc tccatctcct ttggcaaagt tccttgccc tttgncttat ttttgtaaa	600
cccttcaagg tatttccagt ccatttgcattt ccaatctggc atcttacng aanagcggtc	660
tcatatgcta ttgggtgtaa cgtggacta gtatttatgn ggttgagaac cacttggctg	720
tttgtcaagg aaaagtgtgc ccaaaaacca agaagtacctt tgccgnga accacgctta	780
aggccgaaat tctgnagata tncnntcaca cttggcgggc cggttcgaac cttgcatnta	840
aanggnccca atttggccct tatag	865

<210> 129
<211> 910
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(910)
<223> n = A,T,C or G

<400> 129	
tacttttgtt tttggcacac ttttcctgac aaacagccag tgttctcaac acataaatac	60
tagtccacgt taacaacaat agcatatgag accgctctcc gtaaaagatgc cagattggat	120
gcaaatggac tggaaataacc ttggagggtt tcacaaaaat aagacaaaagg gcaaaggaaac	180
tttgc当地 gagatggaga gcaattctt aaagatagtggagggagga agcaaaggagc	240
tcataaaatac aagccttta aaatggacg catttgcctc gcgcctactg ggtgtctgca	300
gctcagcttg gtgccccaca caggacaccg actttaagtggcttca caaggctgag	360
aggccatggag ggtgtatgccc tgaagtgtca ggc当地tca gtggaaacat ggggcatggc	420
cgc当地tgc当地 ggc当地cagcc taaaatgaga ggc当地gaga cacgctctat ttgc当地atctc	480
acaatgcaag atgagagaaa ggctgttag ttttatttca tcatcgccc ttaggtcaa	540
aggagatgcc acttggctc ccagtc当地ca atcaactggc aacacccaag gaccaggctg	600
ggctacattt gcacatttca tttcagccca ggttagagatg gagaccttat aagaacngct	660
tcnogaatggt ctncaatggttaaaat gatatctcaga tgc当地aaagc ctgttaagncc atgaaaggc	720
cctacttaaa cc当地accag ctatccttgc当地 gnanctggcc gggccgggccc ggttc当地aaaa	780
gggc当地aaatt cc当地accact tggccggccc gttacttaan ggaatccc当地 acttggnnan	840
cccaagcnntt ggc当地taat catggcccat anctgggtt cctggggggggg aaaatggtat	900
cccccttccca	910

<210> 130
<211> 932
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(932)
<223> n = A,T,C or G

<400> 130	
taccgcttgtt ttatccaaat tttcctctgc aagtggagca tctgcttagga tcaatagcag	60
cagtgttaag caggaagcta cattctgttc ccaaaggat ggc当地atact ctttgaataa	120
agccctatcc tcaagtgtcg atgatgc当地 tttggtaat gc当地taattt ccagctctgt	180
gaaagctact tctccagtgaa aatctactac atctatcaact gatgctaaaa gttgtgaggg	240
acaaaatccct gagctacttc caaaaactcc tatttagtctt ctgaaaacgg gggatcgaa	300
accaattgtg aagtcaactt tatccagac agttccatcc aagggagaat taagttagaga	360

aatttgtctg	caatctcaat	ctaaagacaa	atctacgaca	ccaggaggaa	caggaattaa	420
gccttcctg	gaacgcttg	gagagcgttg	tcaagaacat	agcaaagaaa	gtccagctcg	480
tagcacaccc	cacagaaccc	ccattattac	tccaaatcaa	aggccatcca	agaaagatta	540
ttcaagcaag	acacatctc	atctactacc	catttagcac	aacagctcaa	gcaggaaccg	600
tcaaaaagaa	ctagcatgtc	ttcgtggccc	gatttgacaa	ggccaatatt	atggaggtgc	660
agaaaaaggc	nggaaactca	aaaagcnaac	cacctnggaa	anccaaacng	ggaaaacttc	720
acttgtcaag	agcaactcccc	tnaaaaaaaa	ccnccccaaag	gggtttnc	aaaactcagt	780
cccnntccgg	taaccngaaa	aagggggacc	cgaaaacccc	cganaccnng	gcccaaaaat	840
tntaggacct	tgcccccggcg	ggcccgntnc	aaaangggcg	aaatttttgg	gaaaatccat	900
tnnnccctngg	cggggcnggt	tttgaccatt	cn			932

<210> 131
<211> 890
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(890)
<223> n = A,T,C or G

<400> 131

actagaattt	ttggctggta	tctggtttc	ggtcacctt	tctgttactg	gaagtgactg	60
agttttgaa	acaccttgg	gtttttgag	gggagtgctc	tgacagttag	tttcctgttt	120
ggtttctagt	tgtttgctt	tttaggtttcc	gcctttttct	gcactccata	tattgcctt	180
gtcaaatcg	ccacgaagac	atgctagttc	tttttgacgt	tcctgctga	gctgttgtgc	240
taaatggta	gtagatgaag	atgtgtctt	cttgaataat	ctttcttgg	tggcctttgt	300
atttggagta	ataatggggg	ttctgtgggg	tgtgtacga	gctggacttt	ctttgctatg	360
ttcttgacaa	cgctctccaa	agcggtccag	gaaaggcta	attcctgttc	ctccctgggt	420
cgtagattt	tcttttagatt	gagattgcag	acaaatttct	ctacttaatt	ctcccttgg	480
tggaactgtc	tgggataaaag	ttgacttcac	aattggtttc	gatacccccg	ttttcagagg	540
actaatagga	gtttttggaa	gtagctcagg	attttgcct	cacaacttt	agcatcagt	600
atagatgtag	tagatttcac	tggagaagta	gctttcacag	agctggaaat	tgaggcatta	660
accaaagacg	catcatcaag	cacttgagga	tagggcttta	ttcaaagagg	tatccggatc	720
ccttgggga	accagaatgg	aagcttnctg	cttaaacactg	ntgctatgg	cctancana	780
agctccactt	tgcanaangga	aaatttggat	aaaccagccg	gancctggc	cgggaancac	840
gcttanggcc	gaattccnca	cacctggcg	gnccgttacc	taagggaaacc		890

<210> 132
<211> 606
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(606)
<223> n = A,T,C or G

<400> 132

actcaggcac	ttcacagttt	acttggaaaga	ggctttggaa	aatagataaa	gtgaaagaag	60
aataaaataca	tatTTTtaat	aatgttaattt	taaaaatct	ttataatcg	gactaagtct	120
tggTTTgcag	aagctgtcac	ttaccctgaa	acacagtatc	aaaaggaaaa	cttaaaacat	180
actgtttgat	tttttttattt	cctcttacaa	tccatgttt	caggtagaat	tatgactttc	240

ccccccatgt tacacatttc tttacaaaagg aggccctgttag aaattggaca cgatcatgct	300
tgagcatgtg agttagtcaa attatgagtc cctgcctatt gtccattaca caccgaatgt	360
taatttaaaga acccaggaggca gaagttctgg cttcctgtt gaaacccaat tcttatatga	420
aaattttaa aagccagaac ctagcagccc atctgnttt tctctttgc cggngnattt	480
gganccttgg cgggaacacc cttanggggn aattcngnnn acttgggggc cggtaacttan	540
ggganccaaac tttgggccc aannttgggga aancaggcn anatngtnc ctggggnaaa	600
tggtnn	606
<210> 133	
<211> 606	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(606)	
<223> n = A,T,C or G	
<400> 133	
ggtaacttttc cttaatcttc ttctttttct tcttgtcacc atccttcttt tcttcttcct	60
catcagaacc aacatcttca atttcaggtt tgtcttccga ctctttctct tctttttctt	120
tttcttcttc tttgtcttcc ttttcttcag cctcatcatc gcttacttct ttatcacgtt	180
ccttctccac aaaaagagta atggatatac caataaactg agaatgttc ttcacaatct	240
cctttattct tcgttcttcc aagtacttta aatttagtgg ttgctggagc acctaaaagt	300
cagattgtca tggtaaaggc ctctgcagag aacatttac agcaggactt ttgccatgct	360
atcaaagtgg gagtggaaaata tacccaaacaataattcagg gcattcagca gttggtaaaa	420
gaaactggtg ttaccaagag gcacccaga aggtattttac cccttcgcag agaatngaa	480
atatactcat aaacctgcta tggagagact ctatgcgtt ttacagatac gagcatgaca	540
aggttcngga gatgaagctg taccaaataa gatagatccn gnggaccact aaangaaaat	600
tccgag	606
<210> 134	
<211> 598	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(598)	
<223> n = A,T,C or G	
<400> 134	
tacntcacca tcccgtattt gctgctgtnc canaaggcat ngncaaattg agggtcatac	60
tngatagcan caggtaaac tgtggctcca atttcaaaac ttncccttat gaacatcatc	120
accgangtat tattgtatcgca ggntccttct gngaagatga ggataggcag ctngctttta	180
tcttgcacat gttcannnan nctnttagcc accanntggc natccttcac ttccgagcgc	240
tcaaaccaga cgtgtggncn ggccttcacc atggntctct gaatcacacc catgagtc	300
ccgtgcactt gacccaccaat ggcataatan ccattgcgtt ccaagatgtt cacatcgatc	360
ggtgaggat gattggccac acagatgcca ccatttcttgc gtctgnttc cctgtcatgg	420
tagtgtatga tggctgtcag cgctgcacg cagatccggt aacacattaa ctgaacatgt	480
ttactcatga actcccttaaa cctccattt ggcangtate ccaccacagn tggcccacc	540
accagaaggc taatccctgt gaaagccagt gctatcctga gcggcancag aaagcagt	598

```

<210> 135
<211> 617
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(617)
<223> n = A,T,C or G

<400> 135
actgcttct gctgccgctc angatagcac tggctttcac agggattagc cttctggtgg      60
tgggcacaac tgtggnggga tacttgccaa atgggaggnt taaggagttc atgagtnaac      120
atgtncactt aatgtgttac cgatctgcg tgcgagcgt gacagccatc atcacctacc      180
atgacagggaa aacanacca agaaatggtg gcatctgnnt ggccaancat acctcacccga      240
tcgatgtat catcttggcc ancgatggct attatgccat ggtgngtcan gtgcacnng      300
gactcatggg tgtgattnag agagccatgg ngaanngcct gcccacacgt ctggtttgag      360
cgctcgaaag tgaatgatcg ncacctggtg gntaananaa tgactganca tgtgcangat      420
aanngcnagc tggctatnct catcttccca ganggancct gcatcaatna tacatcgntg      480
atgatgttca aaaagggaaag ttttgaacctt ggagccacag ttaccctga tgctntcaag      540
tatgaccctg aatttgnca tgccttctgg aacagnagca aatncngtat ggngactanc      600
ctcggnccnn ancacgcg      617

<210> 136
<211> 610
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(610)
<223> n = A,T,C or G

<400> 136
cgtgccgtag gcccggaatgt taccggctgt tggatctgcg gatgaggagg aggatcctgc      60
ggaggaggat tgtcctgaat tggttcccat tgagacgacg caaagcgagg aggagaaaa      120
gtctggccctc ggcgccaaga tcccagtac aattatcacc ggttatttag tgctggaa      180
gacaacactt ctgaactata ttttgacaga gcaacatagt aaaagagtag cggtcattt      240
aaatgaattt ggggaaggaa gtgcgttggaa gaaatccta gctgtcagcc aagggtggaga      300
gctctatgaa gagtggctgg aacttagaaa cgggtgcctc tgctgtttag tgaaggacag      360
tggccttaga gctattgaga atttgatcaa aagaaaagggg aaattnatt acataactgg      420
agagacnctg gattanccng accctggtgc cantggctn tantgttttgg tgaagact      480
tnaatttaggg nnngtntta acttggaggg ttnttacttt tgggggttca antttgggtt      540
aaactttttnn cnaaaaaaaaac cttgangcct tnttaatgan nntttngca agtttttgc      600
canagcctt      610

<210> 137
<211> 645
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

```

<222> (1)...(645)
 <223> n = A,T,C or G

<400> 137
 acaattccaa gtgcttata gcaatataag catattcat attagaaata gttatccata 60
 tgttaacaag aaactatggt cctcaaataat gccaatttta gagtctaata actactgata 120
 gtaactatgt aaatattttg gaataaacag ttatttacgc aagccacact tcagctgaga 180
 tgatcactag acatctgttt ccagagcttc aacaatgtgt gcagcagaag gacgatctt 240
 agggcttca ttagtgcata cagagaagag ttcaattact ttctggatg attcatccag 300
 ttcttcata ttaataggcg gcctagttcc caaggctgca tagtatgctt catcatcaaa 360
 atcaatttca tcaaaaagttt tatcttcata atcatcatca tttgaaagat taatgtgtgg 420
 aaatccgata aaagtcatca tttcccacaa agtaagggcc aangccaaat atgtctggcc 480
 tggccagtaa taacacccat tcttcttcac aggnntctt tgggtnca atggnttctg 540
 ggnccaatgg taaccaggnc ctaangggc aggtcccggg cataatttc aatncccnngg 600
 gganaaaaaag acctcctaaa nttnccagaa tttnaatnngg ttcna 645

<210> 138
 <211> 612
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(612)
 <223> n = A,T,C or G

<400> 138
 ggtactcctg gtcacttaag atctgatact gaacattcta caaatgaagt tggacttta 60
 tgtcataaaaa ctgatttaaa taatcttcaa atggccatta aggaagatca gattgcagat 120
 aactttcaag gaatatcagg tcctaaagaa gacagcacaa gtataaaggt aattcagacc 180
 aggattctt tcttcattgag aattcggtac accaagaaga gagtcaaaaa gaaaatatgc 240
 cttgtgggaa aacagcagaa tttaaacaaa agcaaagtgt taacaaagga aaacaaggaa 300
 aggagcaaaa tcaggactca cagacagagg cagaagagct acgcaaactt tggaaaaccc 360
 atactatgca acaaactaaa cagcanaggg aaaatattca acaagtgtca caaanagaag 420
 ctaagcataa aattacatct gctgatggac acatagaaag gtctgcactt ttaaaagaaaa 480
 agcanaggca tcgattacat aagttcttgg gtcttagagt tggaaaacc aatgaggaaaa 540
 accgtttgga tnttaaggcc aggtgctacc aatgccaccc tntgccnngag ggttaagaaaa 600
 cctnaatntt gg 612

<210> 139
 <211> 592
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(592)
 <223> n = A,T,C or G

<400> 139
 ggtactccac ttcttcctat tggaaagatta acattattta ccaagaagga cttaaaggag 60
 taagggggcgc agatttagcat tgctcaagag tatgtaaaaaa aaaaaaaaaa aaaagaacca 120
 aaccactgga aataatcaaa tgcaaaaagg taacaaattc ataactggaa agcaaagaga 180

```

agaacaagta tgattttggat gataaaagcat tggaaaaatgt gtgaaaactt cacagatcac 240
taatgtttct agagggttaac ttcaagtggg caagctgggg ttttaggtt gtcagtgccc 300
tagttcctaa agccacagta taggatctgt taaaactgaat gtctgttggaa agtttgggtt 360
agctgcgttgg aggcttcctt ttaagacaaa ctgtatgtga ttaagttgtt ttggagggaa 420
ctgaagacct gatgtacccc tggccagata actgcctgtat tctcagatata tattctctgg 480
gaaacatcta catacacagg agcttaaant ggcattatct cttgcctaaa ttcagagatn 540
ttttgnactt gccggngggcc gtcnaanggc gaatccgcac ctggcgccgt ac 592

```

<210> 140
<211> 618
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> (1)...(618)
<223> n = A,T,C or G
```

<400> 140

ggtncttaca	cgtaaaggatt	tagccatatgg	tcattttata	aagatgactg	tttaggattta	60
attcacattt	aaagaaaatg	agattcgta	tattatggtg	tttttatgac	ctataaaaata	120
cttaccctta	caaatttcca	taaatgtagt	ggtagtaaaa	gctttttct	tactaaaaaa	180
taatgccagg	taaccaagta	ttattccccc	catcatttat	ttaggaaaaaa	gttttatgt	240
tttagggtaaa	gtggtagaaag	ttaacctaga	atctaataat	ctccaaatcac	ccattcctga	300
tctaataagt	agccatgaga	aaaaatctct	agaaagaatc	atacctctca	aaaaataaaaa	360
tatnaaacaa	aggctgggtg	cagtggctca	cacctgtaat	ctnagcactt	ccnngaaagt	420
gaggtgggca	gatecgcttg	gcctaggcat	atcgcttgna	gcctgggca	ctgtggccaa	480
accggctttn	taccaaaaaaa	atcnncnaaag	tagccccggcc	ttagggccat	accacctnga	540
gcccagggan	ggtnaagnct	accttgganc	ngtgatttgg	ncctgcccng	gtggncgttc	600
aaaaagggn	naaatnnnt					618

<210> 141
<211> 551
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> (1)...(551)
<223> n = A,T,C or G
```

<400> 141

ggtaactccaa	actctctttaa	cggtgatgct	ctgacattca	ctactacatt	tactctgcaa	60
gatgttatcca	atgactttga	aataaatatt	gaagtttaca	gcttggtgca	aaagaaaagat	120
ccctcaggcc	ttgataagaa	aaaaaaaaca	tccaaagtcca	aggctattac	tccaaagcga	180
ctccctcacat	ctataaccac	aaaaagcaac	attcatttctt	cagtcatggc	cagtcaggg	240
ggtcttagtg	ctgtgcgaac	cagcaacttc	gcccttgg	gatcttacac	attatcattg	300
tcttcagtag	gaaatactaa	gttttgtctg	gacaagg	ccttttatac	ttcttggaa	360
ggtcatattt	attaaaaat	aaaatgtcaa	gtgaatttca	gtgttgaaga	aagaggtttt	420
ctaaccatat	ttgaagatgt	tagtggttt	ggtgccctggc	atcgaagatg	gtgtgtcttt	480
tctggaaact	ggatatctta	ttggacttaa	cccgatgatg	agaancgcaa	ggtaatttat	540
atagtacctg	c					551

```

<210> 142
<211> 601
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(601)
<223> n = A,T,C or G

<400> 142
cgaggtacat ggtcttatgcc tcccaggaga cgttcgggat gaaattgtca gtgtaaaacc      60
agaaaaaaatg catcttttctt agaattgttt aaacccttac caaggaaaaaa aaaggggtgt      120
taccaactga gatcgatcat ttccatccaat cacagatcat gaaacagtag tgttccccacc      180
taggagtgtt gggaaagtgtt gtttgtttt caagcagaaa aactgagctc caagtgagca      240
cattcagctt tggaaactat attatttaat gtgggctagc ttgtttcaa atttaaaag      300
tttaaaaata aaataactttt cattctaagt tgccaataaa atagacccctc aagttatttt      360
aatgctttt tctactaat aggaacttgtt aattccagca gtaatttaaa ggctttcaga      420
gagaccctga gtcttctctt caggttcaca gaaccgcgcg ncttttggg tagaagtttt      480
ctactcagct agagagatct cctaagagga tcttttangc ctgagttgtg aangcaccnc      540
ngcaaacgca ttgccttcca ntggcacaa acnccggtna acggcttgc ttaaaaaccg      600
C                                         601

<210> 143
<211> 515
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(515)
<223> n = A,T,C or G

<400> 143
ggtnncgtaa agaatatatac ttatctggag ctcagcctca atcatgtctt aacaaaatga      60
caggtctnan aaagggggag ctcaataagct caaaaagtgac aagtcccttt cacagcacccg      120
ttctcagaac acctctgagt aacgtgtttt ccagtagcta ttcttcactga tgcaactgatg      180
gccctgaaga agccgatcca gtcacatagg aaaggaggt gtgttagtga aagcacatgg      240
aaggtgttgn tttagaaagg tagtcaggaa aaacattcag gaatagattt atacaccatt      300
attgnattat ttntaaattt tcattcactc ttctgtttgg atactttgc taattaaccg      360
tcctatgtta atanccacca aagctataag tccatagtca gtaaaacatt ccccttggc      420
tgtctgagct aaaagcancgt gcatctccgn atgtnggaca tccnagaaat agnttggac      480
ctgcccnggc cgnncgttct taaggctaat ccngg                                515

<210> 144
<211> 436
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(436)
<223> n = A,T,C or G

```

<400> 144
 ggtaccgctc aggattccca tcccaagaca cccggtcctt aaaccgcccc atcatgggtt 60
 ggaagggatc tatgtggtag tagaatacaa actgctcagg tcccccgct agaggacgaa 120
 aattccaggt cactgttaga gcatcaccca cagggggcaaa gctggagaaa gtgcattta 180
 accgagcatc tgtcccatta acagcctcca gcacccggga ggtataaatt tccacagctg 240
 ctataggcca aagagctgtg agctgtatgc caaggagaag aagcaccgca cgagtagagc 300
 tcttgcata catgagggaa acccagcctt ggccccagag accggacggg gcagaccgag 360
 ggctccaaca ccctgccaag gccactccgg gaggagcaag caccgcgtt tnccagagag 420
 aggagttga gtttag 436

<210> 145
 <211> 441
 <212> DNA
 <213> Homo sapiens

<400> 145
 ggtacatccc cactatcatc cgccggatg acccctccat catccccatc ctctacacc 60
 atgagcacgc aacccatcgag gacatccttg aggagataga gaggaaagctg aacgtctacc 120
 acaaggggagc caagatctgg aaaatgctga ttttctgccca gggaggtcct ggacacctct 180
 atctcctcaa gaacaaggtg gccaccccttg ccaaagtgg aagggaaagag gacatgattc 240
 acttctgaa gcggtctgagc cgcctgatga gcaaagtgaa cccagagccg aacgtcatcc 300
 acatcatggg ctgtacatt ctggggaaacc ccaatggaga aaggtgttc cagaacctca 360
 ggaccctcat gactccttat agggtcacct tcgagtcacc cctggagctc tcagcccaag 420
 ggaagcagat gatcgagacg t 441

<210> 146
 <211> 624
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(624)
 <223> n = A,T,C or G

<400> 146
 acgtctcgat catctgcttc cttgggctg agagctccag gggtgactcg aaggtgaccc 60
 tataaggagt catgagggtc ctgagggtct gaaacagctt ctctccattt gggttcccc 120
 gaatgttagca gcccattatg tggatgacgt tcggctctgg ttcaatttgc ctcatcaggc 180
 ggctcagccg cttccagaag tgaatcatgt cctcttcctt ctccactttt gcaaagggtgg 240
 ccacccctt cttgaggaga tagagggtgc caggacctcc ctggcagaaa atcagcattt 300
 tccagatctt ggctccctt tggtagacgt tcagcttcct ctctatctcc tcaaggatgt 360
 cctcgaaggt tgctgtctca tggctgtana gatggggat gatggaaagggt gtcatccgc 420
 ngatgaatag tggggatgt accttggccg ngaacacgct taagggccaa ttccannaca 480
 cttggccggcc ttactaaag ggatncaac ttngnacca aacttggcnn aaacaatggg 540
 ccnaacttgg ttccntggng aaaatggttt cccntcaaat tcccccaan ttacnaccgg 600
 aaccttaaag ggaaaacctt gggg 624

<210> 147
 <211> 599
 <212> DNA
 <213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(599)
<223> n = A,T,C or G

<400> 147
cgaggtacaa gctttttttt tttttttttt tttttttttt cttttttttt tttttttttt      60
ttttttttt tttttttgaa cncanatcan ttattggca tggntttgtt tnaaaaaaaag      120
gaaaagnngnc aaancaaaaa nacanacttt gntaacaat ncctgggggn ggctggacnt      180
ttttgcctaa tgctgngcaa anagggggat cctggcccan acatccngct gattccttg      240
nacaagggtt gntgcttggg cctaantgcn ctttttggaa tacttgntt gaaaccacac      300
nttccantt aatttccagg ggcagntnat naccctnnat ccactgggtc cagccacgccc      360
cntcnntta accctttgc anacactgga gcttgntccg tcccagntca ctgnngnatg      420
cncttgccgn catttatgcc tgtcaaacct ctaaaactcn ttcccacctg gaagccatgg      480
angtagttcc taaaaggct caacgngccg aagaacaana tggggccccgg cctggacaaa      540
actttttggc ngggttaaac aagttggcna ttttcccaag gnccanttgc ctnnnggcc      599

<210> 148
<211> 609
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(609)
<223> n = A,T,C or G

<400> 148
ggtaacttaag taatccaaag ctcgatcctg atctgcatga attagcatca taaatgcatt      60
ccttttgc当地 cttgc当地tct tctcattcac cagaaaaatca tttatcagtt caggagcatc      120
aggtaataaga ttttcaaaaat ttctatagat ggtatagatg gccaaaacag catttcttct      180
aacatagctg tttcgatgtc ccaaacatgc acgaatagct ggcattaaag gttctagcaa      240
ttctgcttct ttcaatttgc aaagaaaacg aagagtagat cctcgaataa attcattagg      300
atgttgaaga tccttctgt atgc当地tacaaggatc atctcatgtt aaagtctccc      360
atctggagtt gttttaggaa caatttccca aaataccaga agtaatttct tgatagtg      420
atcctgaaga agtagcaca naacgaatgg atggc当地tca gaaagtnccg gaagttttc      480
accaattcag aatcataatg gattacctt cttcaaaagct tcagtc当地tgc actttacttc      540
ttccttttgc taaaatcatt tttaagctt aatttccaaa tggggggc当地 ttgaatccat      600
gggc当地cgtt      609

<210> 149
<211> 589
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(589)
<223> n = A,T,C or G

<400> 149
actcaggttag aaccatcatg aaaatgaccc acagtgaact tatgaaaaag ttcttaacag      60

```

attatttaaa	tgacctccag	ggtcgcaatg	atgatgacgc	cagtggcact	tgggacttct	120
atggcagctc	tgtttgtgaa	ccagatgatg	aaagtggcta	tgatgtttta	gccaaacccc	180
caggaccaga	agaccaggat	gatgatgacg	atgcctatacg	cgatgtgttt	gaatttgaat	240
tttcagagac	ccccctctta	ccgtgttata	acatccaatg	atctgtggct	cagggccac	300
gaaactggct	actgctttcg	gatgtcctta	agaaaattgaa	aatgtcctcc	gcataattcg	360
ctgcaatttt	ccaaacgtgg	aaattgtcac	cattgcagag	gcagaatttt	atcggcaggt	420
ttctgcaagt	ctcttggct	cttcttcaaa	gacctggAAC	cttcaaccct	gaaagtaagg	480
agctggtaga	tctggtgaa	ttcacgaacg	aaatcaaact	ctgctggct	cctctgtana	540
gtgctccacc	cagtgatttg	cctagacact	ctgggagcaa	ctggccccc		589

<210> 150

<211> 353

<212> DNA

<213> Homo sapiens

<400> 150

ggtacaaaga	aattttggat	agcaaaataa	aggaatcttt	accatagat	atagatcagc	60
tatcaggaag	ggacttctgc	cattcaaaga	aaatgacagg	aagtaacact	gaggaaatag	120
actcaagaat	ccgagatgca	ggtaatgata	gtgccagcac	tgctccttagg	agcactgagg	180
agtctcttc	tgaagatgtg	ttcacagaat	cagaactttc	ccctatacga	gaggagcttg	240
tatcttcaga	tgaactgcga	caagataaaat	cttctgggtgc	gtcatcagaa	tctgtgcaaa	300
ctgtcaatca	ggctgaagta	gaaagtctga	cagtcaaatc	agaatctact	ggt	353

<210> 151

<211> 492

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature
<222> (1) ... (492)
<223> n = A,T,C or G

<400> 151

ggtaccta	gggtgctgaaa	aaaggaaaat	tccggcttga	aggaaaggag	tttagaactc	60
tgaaaattt	gtgacattgt	ttttccctga	aagaaaatgt	tgttgtgattt	aacagatgaa	120
attatctgcc	ctccaaaagt	cctttagaag	agccagtgca	aggctgaaga	ccaaagcg	180
aagaacacgc	cagactctca	gcttcctctg	cttgcctc	tttgtgagga	aatgc	240
caaagagctt	cccgtaaaaa	acaaggagt	tctgagagcc	acgtgttcaa	cacgcttctc	300
ctgctgctga	ccccctctgca	cctgcagagg	cagtgagcac	ccaacaggt	gccc	360
gcccgtcaca	cgctcacg	ctctggccag	cagccacgtt	tattgaagga	gtgtggcact	420
gcccattt	ggatatgccc	tccggccatga	aggattccag	tggtcacgc	tgnccagtat	480
atacaaaaat	gt					492

<210> 152

<211> 597

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature
<222> (1) ... (597)
<223> n = A,T,C or G

<400> 152

ggtaaaaaataat	ttcacctagg	taaaatattt	atgtcataac	caaactata	60
ggccccgttt	cataaaagggtt	actatattct	atagagagt	aagaggtggc	120
cagcttaccc	tattcttggtt	attgttcaaa	tttcctgaa	gcttcataa	180
tcaggttaaat	gctattggct	agcagaagac	tgcagttctg	ttaatattag	240
gggaacttgg	gaacctgaca	ttaaaaatct	agaaacagaa	ttttaggatg	300
gaaacctgaa	ttgttaatgg	acttaagtaa	aaaccatccc	aaagaattt	360
tgataaccgt	cttttcagag	atcatagcac	atgaagaacc	catgacact	420
tgaaccggta	gcagaaaaag	atctcgac	taaagtgggg	gatgacagca	480
ttaccaaagg	aaaaaaaaat	agaaatncagg	aatattacca	gatgtaaaaa	540
tangccaaat	gagcccttc	ggattccaa	acccgttcc	tttccttcc	597

<210> 153
<211> 596
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(596)
<223> n = A,T,C or G

<400> 153

actgggttgc	accattttt	tcaagtctag	gtgtatggctg	ctcccttcca	acttgccttg	60
ttaaccagga	tcctgaacaa	gcatctactc	ctgcagggct	gaattccaca	gctaaaaatc	120
tcgaaaacca	tcagtttccct	gcaaagccat	tgagagagtc	ccagagccac	cttcttactg	180
attctcagtc	ttggacggag	agcagcataa	acccaggaaa	atgcaaagct	ggtatgagca	240
atcctgcatt	aaccatggaa	aatgagactt	aactcttcaa	gcaagataaa	ttcataactt	300
ataaaagat	caatgctgta	gatggatgga	agaggcttcc	cacaggaagg	tgccaccagt	360
cagtttgtgc	ctatgtccct	ttggctggaa	atgcagaata	tgaatttgatt	aagttctctt	420
ccaagccatt	gctaaaata	taacatgttt	tgggatccaa	tacacacatt	ggtacaacta	480
acacaaattc	ctattaaata	ttaaaagttag	ttctgggtt	ttaatcaacg	ggggaaaacat	540
tttttccaaa	aaaacttggaa	ataaatecan	ggaccagttt	tancccaata	tttgggg	596

<210> 154
<211> 297
<212> DNA
<213> Homo sapiens

<400> 154

ggtaacccagt	ttcaaagctc	tctggttttt	tctaagaaat	gaagcaagga	taggaacccc	60
ttctcccaga	acaggcctca	aatctatctt	caaaggtgac	ccagaatca	gtgtcaatgc	120
ctttactgta	gttaaacctgg	taatttcatt	ctttagtctc	tccaagaaaa	tctgaagtgt	180
attaggcaag	tcagaaccca	aattgtctcc	aagggtgcaa	ataatttgc	ccatacagga	240
aatagccctt	tccttgactt	cctgatcaat	gtcagctgt	tttaatctct	taatgg	297

<210> 155
<211> 594
<212> DNA
<213> Homo sapiens

<220>

```

<221> misc_feature
<222> (1)...(594)
<223> n = A,T,C or G

<400> 155
ggtaacttcaa ggagaacagt ttacatcgaa cgtagccac cttgcaggag gagactactg      60
tgtctctgaa tactgtggac agcattgaga gttttgtggc tgacattaac agtggccatt     120
gggataactgt gttcaggcgt atacagtctc taaaattgcc agacaaaacc ctcattgacc     180
tctatgaaca ggttggctcg gaattgatag agctccgtga attgggtgc gcccaggcac     240
tttgagaca gactgatccc atgatcatgt taaaacaaaac acagccagag cgatatattc     300
atctggagaa cctttggcc aggtctact ttgatcctcg tgagggcatac ccagatggaa     360
gtagcanaga aaagagaaga gcagcaattg cccaggcct agctggcgaa gtcaagtgtg     420
gtgcctncat ctcgtctcat ggcattgctg ggacaaggcc tgaagtggca gcacattcag     480
ggattgcctc ctccgtgtat gaccatagaa tttggttcga ggcaaggcac tgtcaaagat     540
gttggaaagaag aaaagttct acacactgag caggcttata agtnggcag aaan          594

<210> 156
<211> 294
<212> DNA
<213> Homo sapiens

<400> 156
acaggatgca gtttctcagc tggattctga gctgatggac ataactaagc tttatggga      60
atttgctgac ccatttaaac ttgcagagtg caaacttgcg ataattcatt gtgccgtta     120
ttcagacccct atattgggtgc agacactttg gcaagatatac atagagaaag aattgagtga     180
cagtgtgaca tttagtctcct cggatagaat gcatgctttt agtctcaaga ttgttctcct     240
tggcaaaatt tatgctggca caccacgctt ctttccttta gattttattt tacc          294

<210> 157
<211> 527
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(527)
<223> n = A,T,C or G

<400> 157
ggtaactgatt gtcattcgtt ctttggcatt ggcagctttt atattccgac gaatataatct    60
ggcaaaacaa tacatatttgc actttgagtt ataataatgtt ttttgactt atgagctgtg     120
actcaactgc ttcatattaaac attctgcattt ggggtataatc taagaattgtt ttacaaaaag     180
attattttgtt attaccctt cattccctttt tttgatcctt gtaagtttag tataaatata     240
tcttagacattt cagactgtgtt cttagatgtt cgtcctgtttt aaaggacta gaagtcaaag     300
ttcccttgc tcaatttttttga tctgcttgc agggaaataa cttgtttttt ctcattgttcc     360
atcttctttt tatgttaattt tgtaataactt tccttatattt ccctttgaaa tttttggata     420
aaagatgtt gtttaagtttcaatgatgtt tacttaggtat tcaataccac ttattggagt     480
cctggcccnng ggcggggcgnnt tcgaaanggc caaatncagc accactg                527

<210> 158
<211> 617
<212> DNA
<213> Homo sapiens

```

```

<220>
<221> misc_feature
<222> (1)...(617)
<223> n = A,T,C or G

<400> 158
ggtaactgaaa aagaggcgtg aggtgctccc tgtggatata accaccgcta aagatgcattg      60
tgcacaacaac aqgtgctctcg qgggagaagt ttatcgatata ccgcctcaga aagaggagac      120
acagtcctgc cctaacagtt tagaagataa caacttgcaa ttagaaaaat cagtttctat      180
acacacaccca gtagtcagtc tctctccctca caaaaatctg cccgtggata tgcaagctgaa      240
gaaggaaaaag aaatgtgtga aactcatagg agttcccgt gacgctgagg ccttaagtga      300
aagaagtggaa aacaccctca actctccctag gtcagtgtcc tctttccctc caggcagcca      360
gcagacctct ccatctctcc tctctcgctg catgaactgt gctgnctgnt tctttatctta      420
ctttcttaca attgcatgca gtataattcc tcagtttcat ctacctaccc tcaactttttn      480
cagaacttta agaaaagactt aaactgattt gaangggaaa ggactcttgg aataaggca      540
tcncattaaa aagttacncg tttctgggtt catgaaaggg atntcnagt ttacccatn      600
tttggaaagggt ttatnng      617

<210> 159
<211> 1002
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(1002)
<223> n = A,T,C or G

<400> 159
ggtaaccagct tacatttttgc attcagttgc tggtttctca ctctcttatccat ccatttggaaa      60
ttgattttttt ttagatgttg tatacttacg ttaggctttc tgtaatagt ggtttttctc      120
ctgttgacag agccaccgga ttatgacaca ggatgaggaa gattaaggat aatcaatttga      180
ctaatttcat tttagaatattt atcaaacatt tcaacttaggt atcagaaaaaa ggctttctt      240
cataagacta tttaaaatag aaatttttc aacaattttaa gtaatgttga ccattccccct      300
ctcagctgaa taaaagaaaaaa tttagttcaa ttattgcaa tttaatttaca atactacccct      360
cacaacattt tcatgtgttt taaataaata tttttttattt ggctaaagga cattcaagca      420
aagaaatgtt ttctttactt aaaatgtcta tctcatttgc tgcttttca ctaaggcttt      480
actttgtttaa taaaagtgtc cattgtgtga tggttttgc tttacagttt gctaaatctt      540
attttcttgg agttgtttt tgtaacagc tccattgcta ctccccattt tattggttta      600
catcaatgca tgcttcgttg tgatccctca agatgttaca cttggatgc tcggntgagg      660
atatgaaaaaa atactttccg aaaccaggaa attcagtttgc tgntgggtt atctgggttgg      720
ataagaaaaag tagggnnccag ccttaagcag nacagaagcc nctggtanaa gcatagtcag      780
ggaactttttt ttaatttntt tangntctaa ggncaggagt ggattnnaaa gggaggagag      840
cccttattat ggctatncc ccgnnttggaa gaagancctt actgggaacc tggcccccggcg      900
ggccgttcaa aaggcgaaa ttccgncacc tgggnngcgg gttcttaagg ancccnactt      960
ggggcccaan nttggggaaa nnngggcna aannngntcc cg      1002

<210> 160
<211> 434
<212> DNA
<213> Homo sapiens

```

```

<220>
<221> misc_feature
<222> (1)...(434)
<223> n = A,T,C or G

    <400> 160
ggtacaagtc atcanggtca gcattctccc actttcaagt gcactaaacaa ggctgctggg      60
atttccactg gagtgtcaac agcagtattc ttgttgagg aactctcaga atttgggggt      120
ccataacagg tttagcctat gaccaggc tc aaagttcc agcattctct gccacctcca      180
gagctagctt cagggtctgg tcaaagagct cacacctgtt aggcatttct aaggaataga      240
atggattctt gaggggcaaa tctgagtaaa tctcataaat ct ttcggaga agagaatcta      300
ttccagctt cctaggatct gctagaacca caaaacttgc ccctgtcagt gtctggtagc      360
agtgcattt gaatgtgtct gtctncagca tctcaatgcc tgagcttncc tgttcangag      420
acagntggna gcca                                         434

    <210> 161
    <211> 652
    <212> DNA
    <213> Homo sapiens

    <220>
    <221> misc_feature
    <222> (1)...(652)
    <223> n = A,T,C or G

    <400> 161
acagactcca aggaaagact gggctccaaa gcccacatgcc tttgttgca gcgtcaagag      60
tgagaagact tttgtgggg gtcctttaa gccaatgcc gagaacagga aagctactgg      120
gcatagtccc ctggaactgg tgggtcactt ggaaggatg cccttgc tggacttgcc      180
cttctggaaa ttacccccggag agccaggaa ggggctcagt gagcctctgg agccttcttc      240
tctcccttcc caactcagca tcaagcaggc attttatggg aagcttctca aactccaact      300
gagttccacc agcttaatt attcctctag ctctccacc tttccaaag gccttgctgg      360
aagtgtggtg cagctgagcc acaaagcaaa ctttggtgcg agccacagtg catcacttcc      420
cttgcaaatg ttcaactgaca gcagcacggg gggaaagcatc tcgctccagt gtgcgtgcag      480
cctgaaagcc atgatcatgt gccaaggctg cggtgcgttc tgcacatgt actgtattgg      540
accctcaaag ctctgtgtat tgtgccttgg ggtgagataa taaattatgg ccatgggaaa      600
caaannanan nnnnnnnnnaa aaaaaaagct tgnaccttgg ccngaccac gc             652

    <210> 162
    <211> 638
    <212> DNA
    <213> Homo sapiens

    <400> 162
ggtaacttcaa gatttgcata aagccaaacat tcgcaccgtc atggtcacag gtgacagtat      60
gttgaactgct gtctctgtgg ccagagattt gttgaatgatt ctacctcagg ataaagtgtat      120
tattgctgaa gcattaccc caaaggatgg gaaagttcc aaaataaatt ggcattatgc      180
agactccctc acgcgtgc a tcaatccatc agcaatttgc ccagaggctt ttccggtaa      240
atgggtccat gatacgtttag aggtatccatc aatgactcgt ttttgcatttgc caatgaatgg      300
aaaatcattc tcgtgatc tggagcatc tcaagacctt gttcctaagt tgatgttgca      360
tggcacccgtg ttggccctgtt tggcacctga tcagaagaca cagttgtat aagcatgtca      420
aaatgttgat tattttgttg ggatgtgtgg tttatggcgc aatgattgtg gtgcatttgaa      480
gagggcacac ggaggcattt ccttacggc gctcgaagct tcagttggcat ctcccttac      540

```

ctctaagact cctagtattt cctgtgtgcc aaaccttatac aggaaaggcc gtgctgcttt	600
aataacttcc ttctgtgtgt ttaaattcat ggcattgt	638
<210> 163	
<211> 1002	
<212> DNA	
<213> Homo sapiens .	
<220>	
<221> misc_feature	
<222> (1)...(1002)	
<223> n = A,T,C or G	
<400> 163	
acatataaaat atatatataaa aatgaacata gttcatgctt tcagataaaaa tgagtagatg	60
tatatttaga ttaatttttt tagtcagaac ttcatgaaat ccacaccaaa ggaaaaggtaa	120
actgaaattt cccttggaca tatgtgaaat cttttgtct ttatagtgaa acaaaggccag	180
agcatcttg tatattgcaa tatacttcaa aaaaatgaat gtatttttt ctccaaagaa	240
cagcatgtt cactcaatgg tgaaaagggtg gaaacattta tgtaacttta tgtgtatctg	300
tcttgatatc tactgacatt gtcttatatga gggaaatgtat tactggtcat gctcctgtga	360
gttttttggg aaggttagggt catttctccc tgcctgctt gtgccaacta gcatgttgca	420
tctacatgca ttatgagtct ggtaggcatt tactttaaac atacataaaag agacagtagg	480
acattgtggc tgagtctacc cagctcaagg taaaggagaa tattgctaatt ttttagcaa	540
actagaccag cattattact caaactaaaa atatcacacc tgaaaaattt aatttaggac	600
ctaaaatgtc tagattagct ttctgctttt tttatgtaa taactcattc agttgtgaat	660
gaattccctct ttaatttgggt ccacagtcaac caaatgacaa ggatttgcctt cttcccccc	720
aaatnggagt gcttgaatt taggctctt accntnaaat cagtnaagg gaaccgtaat	780
tatgtatggat ttttccaag atgaccagct ggggtgaaaa ccattttct ttggccaatg	840
gcaaaaactaa taagctttaa aaactcccccc ttatgggaa aagttttaaa actgggaaag	900
gttangaacc naccnngtggaa aancntggaa agggaaaaaaa anaaagggn ccttggncgg	960
gaacaccctt aaggggaaattt cancccatgg gggccnttc nt	1002
<210> 164	
<211> 572	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(572)	
<223> n = A,T,C or G	
<400> 164	
acagcatgca ttacaacca gcgcgtatct agtctatttt gtcataaaaa cttgaataaca	60
aaaatccaat ttaaataaga ctagacttac tataatagta aacaaaacaaa aacaaaaaac	120
aaaaaaaaaaa aacacacacaca gtagacttag tttgataactg attaattttta agagtaact	180
catcctgtcc cctcttaata ctctactgca atttattgtat ggctagaata tttactgact	240
taaaaaaaggt attaaataact tttatcatgaa aattacattc ttatataacaa taagacatac	300
tgtgtaaagaa aatagctcat gttgtgaaatg tttctgaaat gcatttttc cttacaacta	360
tcanaaacatc cactcacact aaaatgaaac cactccccac ccccccgtaa aaaatgttna	420
ggaaagacng ggtgggctgg gggaggagca agggaaaggaa aagattttagc tataactaatt	480
acagcacagt gattaacaat gggtaaggac agaaccaaca gaattnngca aaaaanngcc	540
ctttaaacat ggttaccatt aaaaaccaac nn	572

<210> 165
 <211> 594
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(594)
 <223> n = A,T,C or G

<400> 165

ggtaactggcc	tcctggca	ctgctttc	actgactggc	tactgaagag	caaggcagag	60
.ctgggtggca	tctcagaact	ggcatctgga	cctccctaac	tggccccgc	tggcccatt	120
tgctcattag	aatttctct	cacatcagt	ggatacagaa	ttcagttct	cccttgccag	180
gtccttggga	tgggtgaccc	ctgcctctgc	agtagcctt	tgtgagtctg	ctaaggtagc	240
tctcacacac	ctcggtctg	gggttgatac	ctgagccat	aatagagccc	tgaaatcaag	300
agcatagctt	gagtgtgtga	atatgatgtg	tgcacatgt	taatgagcgt	gcaagtgtgc	360
acacgtttgt	ggagaggagg	gtgtctggc	ctgagaaggt	aaagaagagg	catgtccagt	420
atgcttgca	gggtgtgtt	gctctttcc	atgcccattgc	aaccaggatt	gggttgagc	480
aggaaggagc	tctttctgt	tcccaagcct	cagaactctt	gagctgtggc	ttacttgctg	540
gcttcatcag	gttcaagctn	cgtggccac	actgctgctg	ngccaagaag	gtgt	594

<210> 166
 <211> 434
 <212> DNA
 <213> Homo sapiens

<400> 166

gcgtcgcggc	cgaggtacta	taatggtccc	catcttaatt	tgaaagcggt	tgagaatctt	60
ttaggacaag	cactgacgaa	ggcactcgaa	gactccagct	tcctgaaaag	aagtggcagg	120
gacagttggct	acgggtgacat	ctgggtgtcct	gaacgtggag	aatttcttgc	tcctccaagg	180
caccataaga	gagaagattc	ctttgaaagc	ttggactctt	tgggctcgag	gtcattgaca	240
agctgctcct	ctgatatcac	gttgagaggg	gggcgtgaag	gttttggaaag	tgacacagat	300
tcggaattta	catttaagat	gcaggattat	aataaagatg	atatgtcgta	tcgaaggatt	360
tcggctgttg	agccaaagac	tgcgttaccc	ttcaatcgtt	ttttacccaa	caaaggataga	420
cagccatcct	atgt					434

<210> 167
 <211> 395
 <212> DNA
 <213> Homo sapiens

<400> 167

acaaagttaa	gtttagccct	tttcttagaaa	gtgatcttta	aaattaaaat	tgctcctctt	60
ttaaatttcac	caaatttatg	tgtggaaagg	caccaaaatg	atttgttaag	tgccactgca	120
atattccctt	tcaagtgtgg	cctaaatttc	aatcttaagg	atgaaatgca	tgtctgctcc	180
ttgttctgaa	aaatataaggc	atctactaca	ttttaaaaca	cagtgaaaca	tatacataag	240
cctataaaaa	aagatttgg	caatttgaaa	gcctgttaat	ttttatgtt	gacataccta	300
cacacgaaag	ggttaaattc	acagcctac	tagttccttg	cttccagttat	ttcaatttgtt	360
ctcctccct	cattattatt	attactacta	gtacc			395

<210> 168

<211> 683

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(683)

<223> n = A,T,C or G

<400> 168

ggtaacgttat	tctaataat	gcatttggaaa	agtcaagcaaa	agccccacatt	aattccctatt	60
acgctttttt	cttggttcaa	tctcagact	ttcagcgct	cttgtgcggc	gattctgtct	120
tggacttatt	tctgtgtctt	gaagatcggt	tttatgtgat	gcttcccagg	cttcctcttc	180
ttctaaaaaga	tctcttatga	tgtctgaact	ggaactattg	catgaatctg	attctgtatga	240
agaaaagaact	tcttgaatat	caatacagct	agaagaatcc	tcttctctgt	caggttccaa	300
ttccctctggg	gagtccagct	ttgattgaga	aaagtgggtt	gttactgagg	tcatattatc	360
ttccctgtccc	atgcatacag	aagatacgctt	ttctgttagat	tcatcttctt	ttgttattgt	420
tactgtttt	tgtgacattc	cagcaatttt	cttgtatcct	tttcttagcct	gatccaccag	480
aagctgaaat	tcactcttat	gtttttacg	atatttactg	tggatttcat	ctatccctt	540
ttctgnntgg	tccttgtaa	aaaccattac	actttcattg	agtttactag	cttcaagacg	600
catcctagtc	ttctctataat	tttcgatttc	tcgaactatt	tcagcagctg	attnaggatg	660
caaaggcatcg	cattgggcat	tgt				683

<210> 169

<211> 408

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(408)

<223> n = A,T,C or G

<400> 169

ggtaaccttgc	tgaccacaat	gaaataaaacc	tagaaatcaa	taacaagagg	aacttttaaa	60
gcagcacaaa	taaatggaaa	ttaaataaca	tgattctgaa	tgaccaatgg	gtaatgaaga	120
aattaagaaa	caaaatttaa	atgtctaaa	atgagtgaaa	acagaaacac	aacatataaa	180
aatgtatggg	atgcagcaag	agcagttta	agagggaaat	atttagtaat	aaacacctac	240
atcaaaaaaca	agaaaagatct	ggctggccaa	ggtggtcac	acctgtatac	ccagtgcctt	300
gggagcccaa	ggcaggagga	cgacttgatg	ctgggtcaag	accagcctgg	gccatatata	360
tagcaagacc	ttatctctaa	aaaaaaaaaa	nanaaaaaaaaaaa	aagcttgc		408

<210> 170

<211> 566

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(566)

<223> n = A,T,C or G

<400> 170

ggtacccaaca	cagccaaaga	ctgttaagaag	gttagctgaag	tccctgtcca	aataggattg	60
aaaagctaaa	atctttctct	gtttcttct	taagtaacaa	ctggcttatt	caagctcaac	120
cagagcatat	aagagaaaaaa	actgactaac	gagggggct	taaagagctt	tgaaggacag	180
tttcttagaaa	gtagaaagat	cactgagtaa	attactgcac	ctcctctacc	ccacaaaaaa	240
aagggtgagg	atgaatgtaa	aagtgttagag	caagcttca	gacaactca	agtttgttt	300
tggcgcttcc	gtttgttaagc	aatcaagatg	gtgagagacg	ctatcccataa	gaagaaagtc	360
tgttaggaacc	agagtagctg	agcccgacca	cttgcgtatgc	ctttatgctt	gcacaatact	420
atggcataca	aggactctnc	cacatgaatc	agccaggcaa	gccaaataccc	attgcaaagg	480
anggtgtgat	gggnnnnac	caagtacctg	tccggcgcc	cctttaaaag	gggaaattcc	540
ccacttgggg	gccccnntta	gggnac				566

<210> 171
<211> 562
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(562)
<223> n = A,T,C or G

<400> 171

ggtaccctttg	caagcaggtg	gccagtaaaag	ctgaggagaa	tctgctcatg	gtgctgggaa	60
cagacatgag	tgatcgagaa	gctgcagtca	tctttgcaga	tacacttact	cttctgttt	120
aagggttgc	ccgcattgtg	gagacccacc	agccaatagt	ggagacctat	tatggccag	180
ggagactcta	taccctgatc	aaatatctgc	aggtggaaatg	tgacagacag	gtggagaagg	240
tggtagacaa	gttcatcaag	caaagggact	accaccagca	gttccggcat	gttcagaaca	300
acctgtatgag	aaattctaca	acagaaaaaa	tcgaaccaag	agaactggac	cccatccctga	360
ctgaggtcac	cctgatgaat	gcccccagtg	agctataactt	acgcttcctc	aagaagagga	420
ttagctctga	ttttgttggat	gggagaattc	atggccttag	angaagtaaa	gccangagcc	480
cccaaatgtc	ttggacnaac	ttctcaataa	ctggctttt	agctgtacct	gtcccccng	540
ggcncttaa	aangnnnaat	tn				562

<210> 172
<211> 617
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(617)
<223> n = A,T,C or G

<400> 172

acggtagaaac	tgcttattatt	catcctatgt	gggttaattga	ggagtatgct	aagattttgc	60
gtagctgggt	ttggtttaat	ccaccccaac	tgcctgttat	gatggataag	attgagagag	120
tgaggagaag	gtttacgttt	agtggggag	agatttggta	tatgattgag	atgggggcta	180
gtttttgtca	tgtgagaaga	agcaggccgg	atgtcagagg	gggccttgg	gtAACCTCTG	240
ggactcagaa	gtgaaagggg	gctattccta	gttttatgtc	tatagccatt	atgattatta	300
atgatgagta	ttgattggta	gtattggta	tggttcattt	tccggagagt	atattgttga	360
agaggatagc	tattagaagg	attatggatg	ccgttgctt	cgtgaggaaa	tcttgcgttgc	420
agcttctgtt	gaaacgang	tttattttt	gggtanaact	gggattaaaa	gctacatgg	480
taattctaag	gccactcagg	ntaaaaaanc	nngcagctt	aacccttga	aaaangngc	540

ccccntggcc	cgaaaacnccc	ttaaggggca	attccancaa	cntggnggcc	gttattangg	600
gatccgactt	ggcccn					617
<210> 173						
<211> 232						
<212> DNA						
<213> Homo sapiens						
<400> 173						
ggtaccagat	gcttagctggg	cctgggtgggt	atccacccag	acgagatgtat	cgtggaggga	60
gacagggata	tcccgagaga	ggaaggaaat	accctttgcc	accaccctca	ggaagataca	120
atttggaaatta	agctttgtat	aagcttccc	aaatccttc	atcattctac	agtttatgc	180
tatttgttga	aagatttctt	tctcaagtag	tagttttaa	taaaactaca	gt	232
<210> 174						
<211> 987						
<212> DNA						
<213> Homo sapiens						
<220>						
<221> misc_feature						
<222> (1)...(987)						
<223> n = A,T,C or G						
<400> 174						
gcggccgang	tacttcacca	tcactgactc	catggacttg	atcagccgccc	gctggatgtat	60
tccagtctca	gcagtnttga	cagccgtgtc	aatgagccccc	tcacggacccc	ccatggngtg	120
aaaaaagaac	tcaagtgggtg	tgaggccggc	taggttaggag	ttctccacaa	agccacggct	180
ctcaggcccg	tagtcatcct	tgtatgaagtg	aggcactagt	ccgggtgcttg	aaggccaaatg	240
gaatccgctt	gccctcgacg	ttctgtgtc	caacgacagc	gatgacctgg	gagatgtttaa	300
tcttggaaacc	ttagtctccg	gacacgacca	tanacttggaa	gttgttgtat	tcanacaggg	360
atttntgagc	agaggagcca	gtcttgcctc	gggcacatcgtt	aagaatgcgg	ttcacctgtat	420
tctcaaacgt	ctggccgcaga	gtgttccctg	nggnngggctc	cagctcattg	ttgnngngcct	480
tctcgatgac	ctcttattacg	tcctgtgtgn	ncttcttaat	agtgttctga	atgtcctgtt	540
aagncttaga	atcagcattt	gngtcccaan	gccctatactt	tgacctatag	acagggaaaa	600
acatcagcaa	acccttttgg	accttctaata	nacatggaaat	ggaattataa	ccccagagta	660
taancanggg	caccaatnc	aaggaggaaa	gaaanggatn	gtangacagn	aagaagttnn	720
agaantccnn	nagaacggctt	ggacccttgnc	cggcngggccg	ttcaaanggc	caattccann	780
ccactgggtgg	ccgnnaacttn	tggaaacgnc	ttgganccaa	acntggctaa	aaanggcnt	840
agcnggttcc	cggccttaaa	tggnatnccn	tcccaattcc	ncccaaattt	cggcccgnaa	900
nccttaancn	aaaancgg	ggggcctnan	gaanggnnta	acnccntta	aatgggttng	960
ccncaaggcc	cnnnttcaan	tngggan				987
<210> 175						
<211> 574						
<212> DNA						
<213> Homo sapiens						
<220>						
<221> misc_feature						
<222> (1)...(574)						
<223> n = A,T,C or G						

<400> 175

actccccgcc	ccctctgaaa	gcatgtcaca	tcatgtaaat	ttgcttctaa	catctgcttc	60
aaactgtctc	tggactccaa	atttggatgg	gtcagcctct	gcagaaaagt	tgtgttgaga	120
tgctggaaa	acacgcagagc	ctcctgcacc	ctcagcaagg	gaccagctcc	caaaggaaag	180
gtccttgtgt	gacatttggaa	gaatcttctt	tcatccagac	aactctactc	gaagcaagac	240
gaaaggcagga	tgtggcagtt	gcagtggagaa	aggaaaaggaa	agatgggcag	actctgcttt	300
ctggaaaattt	cttcacaaag	tagagctcat	gaactctgtg	ctgtcttctg	gtaacatatac	360
atcagtgttt	gtattcatgg	tgtggcacat	ggatccatgg	cattgggtaa	atctgggtgt	420
ttttacacat	ggtcagaatgt	tgttcaaata	catctcatga	tggagacagt	ncccaaggta	480
aatgggttgtt	ttcagcattt	taaaaaagac	tcccttaaca	tttatcttag	aatcatgagc	540
ccttcttcta	gttgacaatg	gcaatggtcc	cccn			574

<210> 176

<211> 570

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(570)

<223> n = A,T,C or G

<400> 176

ggtacagata	ttcattcagg	agctccagga	aactggattt	gctctctaga	gggcagctca	60
aagggccat	tcactcacaa	tccacccaac	ggcattcctg	gcctccggtc	acagcctcag	120
ccacggaaagt	cctgcagggt	ttgtcagttct	gtgggggtga	gtgccttaac	accatgaact	180
gcccactgct	cccgaaaaaga	aagaagaact	tggaaatatga	gactccccag	gtctcctgac	240
ccttttcctt	cttggaaatgt	gaccaggta	gtgctcaggg	gatttctgtt	gttggccatg	300
gacaagcaac	cagtatgtggg	ctcactttag	ggacgcaaac	cacaaagccc	acctcaggaa	360
gccaaatttc	aactcttgc	ctggggcaaa	cttctagcaa	ccaggccaga	ggcaaatgtc	420
agacaggata	agggatgaca	tnccatcaat	caaagttgna	aatgggaagg	gaccancca	480
gtttgnaata	aaggcnntaa	actnggnacc	tggccggcc	ggccgtttaa	aggcgaattc	540
acacactgg	gggcccgtcta	agggatccca				570

<210> 177

<211> 621

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(621)

<223> n = A,T,C or G

<400> 177

acagaagagg	atgaagaaga	ggatgaagag	gaagaagaag	agtcttttat	gacatcaaga	60
gaaatgatcc	cagaagaaa	aatcaagaa	aaagaatctg	atgatgcctt	aactgtgaat	120
gaagagactt	ctgaggaaaa	taatcaaatt	gaggaatctg	atgtgtctca	agctgagaaa	180
gatttgcac	attctgaagg	tagtggaaac	gaaggccctg	taagtagtag	ttcttctgac	240
tgccgtgaaa	cagaagaatt	agttaggatcc	aattccagta	aaactggaga	gattcttca	300
gaatcatcca	tggaaaatgt	tgacgaagcc	acagaagtca	ccgatgaacc	aatgggaaca	360
agactaacta	tttagaaaca	tttaagatgc	cagtattta	catacaggtt	ctggntttta	420
acactggatt	aaaactttt	ggngttaata	aaaaatggga	ccctttaggn	tttacccag	480

gaagaaaagcc aagggtttggt aaaaattaaa aggtancct tggggccggg gaanccacgg	540
ctttaagggg ccgaaaattt ccaagnacaa ccttggccng ggcccgnta ncttaaaggg	600
ggaatncca agaccttnng g	621
<210> 178	
<211> 403	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(403)	
<223> n = A,T,C or G	
<400> 178	
actccttcct gagccgctgc aataagcttt ttgctgtgga atatgacgac agctagatac	60
tgtccctgcc acaagagctt ctggttataa atagacaaaag actctaattt ctaatttgacc	120
tcttttctt ttcaggttta tacataaaattt ttcgtcacct ttataaacag cgccagacggc	180
gctatggaca aaaaangaaa aagatccact aaaaagaaaag atttagatgg cttcttgcca	240
gtttgagcct aatctgattt ttacagttt accttcttga accaatgtaa aagttttttt	300
aatgttaaat gattaaattt tcagtggaggc tatcttcctt ttccccagta acattcctga	360
atttactgnt accttattgt aagtacctcg gtcgtgacca cgc	403
<210> 179	
<211> 650	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(650)	
<223> n = A,T,C or G	
<400> 179	
cgaggtacaa gctttttttt tttttttttt tttttttttg agccaaccag ctaaaggatc	60
actgcagcta aatacagata gagaagcaac aaagccaggc aaatacccat cagagacagt	120
gacaagagca gctgggggca cgggggaggc agaaggaaga gaaagaaggg gaggagccctc	180
cagagtccc gcccccaacc cctctgccccat tggctaccct tgctccccac aaatccctgg	240
ggttgaagtg aggaggacta caggctgggg tggaaataca caaggacagc ccaacaaaat	300
acaacaagga ctagcatca gttcccccctt actccaccccc caagaaaaat acccttattt	360
ngactagttat ttatgaaaat ctgttaagaga ctattctatg tagtggtct aatcccatat	420
cacagcaact gcctgnngttt ggaacttttcaatcagtgta tttcgggaa ccaaccggat	480
tttcagctt ttagggngca tgcagtttcaaaaacttg ggttaaagncc agncacattt	540
accttctgct tacatntaaa aagggtgang aaagagggaa gggaaaaagg ggttaaggc	600
tagttaaact tactggtnag cagctanatt caccatggtc nttttttggg	650
<210> 180	
<211> 639	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	

<222> (1)...(639)

<223> n = A,T,C or G

<400> 180

acataccgct	gtgcgataca	ccagcattga	attggtttga	gagatgagtg	aagtcgttga	60
tcgaaatcct	cagtcccttg	accctgtgtt	ggctatttg	atgaaaggcc	tgtgtaaaa	120
gccccctggct	tctgctgcag	ccaaagccat	tcataaacatt	tgctctgtct	gccgagatca	180
catggctcag	cactttaatg	gactccttgg	gattgccgc	tccctcgatt	ccttcctgtt	240
gtctccagaa	gctgctgtgg	gcttgcataaa	agggacagca	cttgtcctag	cccgattacc	300
tttggataag	attaccgaat	gtcttagtga	actatgttct	gttcaggta	tggcattgaa	360
aaagctgttg	tctcaagagc	ccagcaatgg	catatccctca	gatccacagt	gttcttagat	420
cgccttgcag	tgtatatttag	gcataccaat	cccattgtgg	aaaatggaca	gactcatccg	480
tgtcagaaag	tcatacagga	aatatggnca	gtttatccga	gactctaaat	aagcacccgag	540
ctgataatcg	gattgttagag	cgtgttcaag	gtgcctgcgc	tttgggttcc	tgngaagcna	600
angactgaac	actgtgcagc	nctagtccac	aatgngaaat			639

<210> 181

<211> 644

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(644)

<223> n = A,T,C or G

<400> 181

acaagagagg	ttccaggagg	gggtgatagg	cagaattttg	gtccccatca	cttccctgc	60
ccagtgttat	gcctatgaat	gtgttacatt	atgtggtaaa	aggactttg	cagatgtAAC	120
taaaatttct	aaaatagaga	tattatcctg	gattacctgg	ggaaacccag	tgttaattaca	180
tgaaccctta	aaaatggaaag	aggatgcagg	agtcagattc	aaaggaaggc	ccaagggtgct	240
attgctgact	tgaagataga	ggggccatgt	ggaaatcaag	agaaggaagt	gaatccttcc	300
agtgagcttg	gaagagagca	ccttgaggca	cagatgagaa	gcttggcctt	acctgatgcc	360
ttgattttag	cctggtgaga	ccccgagcat	ataaaattgc	tgtgttatgc	cacacttctc	420
acctacagaa	acttagttt	aagccactaa	gtttgtggta	atttggtggc	tttaggcccc	480
ttgagggttag	agatttatgg	cttggtttac	aagtagaaaga	gcagtggaaa	agttgggctt	540
tggtaattct	tcaagggtt	aattgttagtt	ctgggagttcc	tatctanctt	gggntcagaa	600
cnttgggg	cangncctgc	tggggacttc	ctgggtttaac	cttg		644

<210> 182

<211> 609

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(609)

<223> n = A,T,C or G

<400> 182

ggtacagaaa	agtcaagatca	aattggatat	gtagacattt	ctaaggattt	tgaactctaa	60
gggcatttgc	aagctactca	agggttttta	gtagggagt	gacttgatta	gacttattta	120
tttggtaaaa	agtctgtgtg	gctgggtgt	ggaaaataga	atggattgaa	aaggaactca	180

agtggagcat caagactcgat ttaaggagtt aatcttaggtt ggaaataatt gtagcttagg	240
cctggatgt gcgaatatggg aaggggatgg attcatgaaa gaatggata cttgagaaga	300
aatatttcgt tgctggagaa gtatggatgg gaagttcatg gcataaacat tataatggat	360
gctatggca tagataacat aaacatgtat agaaagtagaa ggtgacctag ggcagaagcc	420
ttaggaaccc aaaatctaag agtagactga agagaaccgc tgttagaagtgg gggagaaanc	480
tgctcgatgt ggtagacaag gagacnttc aaaaggatca tcattacagt naaaagctgg	540
caactcgccg tcttggtgaa agtnccgtcc cgccggccgtc naggcnatca gccatcgcc	600
gtcttaggn	609
<210> 183	
<211> 401	
<212> DNA	
<213> Homo sapiens	
<400> 183	
ggtaactatc cttgccagc aaagatgcac aactataact atgggtgtaa cttacaggaa	60
aatccgatgt gccccagcct catgcatttga cagaccttgg cttctcctgc ccaaggacct	120
ggatattcac aaggatacag gggacatattt agcacatcaa ctggcagagg cagaggcaga	180
gggttaccat acttagtac ttttttccctt cagggcacatc atttttatctt ggaaagactt	240
ttcttagtgc aatttaaggc agcaatccaa gagacttgaa taataataat tcaacaacag	300
ctttatTTTt atgtggagaa gggtcttgca tacaatagtt taaaaaaagac aaaaaaaaaacc	360
tttgcttaaa ttcatgtgt tctaaaaactt agatcgattt t	401
<210> 184	
<211> 423	
<212> DNA	
<213> Homo sapiens	
<400> 184	
ggcggcgat ggaggcagc ggtggtgctc gctgcgggtt ggaatcactt gctaggagtc	60
ttgtctcttccatccagg acatcatggc agtcacccctg gtaaagcgat gcacgtgcct	120
cctgagagaa gctgctcgatcc agggccctgc catggctcca gttggccgac tgagacttgc	180
ctgggttagcc cataagactc tgacttccctc agccacccctca cccattttccc acctcccagg	240
ttccttgatg gagccgggtgg agaaggaaacg agcatctact ccctacatag agaagcagg	300
ggaccacccatc atcaagaagg ccacaaggcc agaggagctc ctggagctac ttggtgccag	360
tcacgacttg gacagcaatc aagcagcaat ggtactaccc ggcgtacaaa gtgaagtcgt	420
acc	423
<210> 185	
<211> 669	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(669)	
<223> n = A,T,C or G	
<400> 185	
acccgcagct tgcgtccatc ctcatattca tccaggcaaa tggcacagac atcataactgg	60
tctccctcttcatg gatagtcatg tgttagaattt tttttttttt gtccttttgtt aagtcgattc	120
cgctggagcc gtttccgggtg ctggatacaa cgagctatca ttactgctcc catggccaaa	180
accagcagtc ccacaatccc tttttttttt tttttttttt agcccaaggg gaaggtattt	240

tctggAACCA	gaagcACCCG	agccccCTTC	tcgtAGACAA	agAGGGCACG	caggTACAAA	300
gagAGAAATT	ttaaAGCTGG	gtgtCAGGGG	agacATCAT	tgtCGGCAGG	ttctGTGATG	360
ccccCTTAAGC	ccgtAAAACC	agcaAGTTT	tattAGTGAT	ttccAAAAGG	ggGAAGGGAG	420
tgtatGAAAT	agggtGGTGG	gtcacaAGAG	atcacATGCT	tnacaAGGT	ataAAAATAT	480
cacaAGGCAA	aatggAGGCA	gggtTGAGAA	cacNGGACCA	cattGACCAA	gggcGAAATT	540
aaaaATGTG	aagtGAAGGT	cnngccACGC	antgnCANTG	atacatCTTA	tcaggAGACA	600
ggntttGAGA	gcngaccANC	agtctGGNCC	aaaATTAATA	agtggGAAT	ttcttGGCCT	660
aataAGCCG						669
<210>	186					
<211>	638					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(638)					
<223>	n = A,T,C or G					
<400>	186					
ggtacatgtg	cgttggcatt	atggatcgat	ttttacaggt	tcagccagtt	tcccggaaaga	60
agcttcaatt	agttgggatt	actgctctgc	tcttggcttc	caagtatgag	gagatgtttt	120
ctccaaatat	tgaagacttt	gtttacatca	cagacaatgc	ttataccagt	tcccaaATCC	180
gagaaatgg	aactctaatt	ttgaaagaat	tgaaatttga	gttgggtcga	cccttgcac	240
tacacttctt	aaggcgagca	tcaaaAGCCC	ggggaggttg	atgttgaaca	gcacgcttta	300
gccaaGTATT	tgatggagct	gactctcatc	gactatgata	tgggtgcatt	atcatccctc	360
taaggtagca	gcagctgctt	cctgctgnct	canaaggtct	aggacaagga	aatggaact	420
taaAGCAGCA	gtattacaca	ggatncnag	agaatgaagt	atttgaagca	tgcagcacat	480
ggccaaaaat	gttggtaaaag	aaatgaaaac	ttacctaata	catgcCnTC	aagaataagt	540
ntgcagcngc	aactccTgaa	natcacttga	cccttagntg	accttaaAGC	ccgnaaanac	600
cttgcctccc	ccggaaaggaa	ggcctaggtt	cccgggcc			638
<210>	187					
<211>	628					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(628)					
<223>	n = A,T,C or G					
<400>	187					
ggtacataga	aattcattga	ggtatataga	tactcatctg	tctaggcagt	tcccaatttt	60
ctgaagaATG	ttttacagca	aaattttcta	ttttctttta	ttaaataAGTG	acacgtcaaa	120
caatgtcaca	tccaaaACAC	tagttcatc	aatttctAGC	agtaataata	gacttgctgt	180
aagtattgtt	ttctgtatGCC	ataccctgt	catacatatt	attaaatgac	caatattatG	240
tatgaagttag	acaaaaaaaaat	ttactcaaAC	ttcattcaaa	tcctaattgt	gataattttt	300
gttttatatt	taattataaa	ccaaaataca	tttgcattt	taagctaatt	tgtctaaaa	360
ttttgcTTA	tatTTTGG	tcagttaaa	gtcctgggga	tcccctgaat	gttattGCC	420
tcttggattg	gtttttactt	ctgagctata	ccgtcaAAAG	acacataAGC	ttcaAAAGTC	480
aagacaaacc	tcatttgcca	taaaaatcaa	gatataGATG	tctggtccga	aactncttga	540
aaaacatTTT	aagcatcaat	atgactggtt	ccatgaactt	aagtacttct	taatgagtt	600

tctttctgaa gctgaaaagaa gattgttt

628

<210> 188
<211> 654
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> (1)...(654)
<223> n = A,T,C or G
```

<400> 188

cgagggtacaa	ggtggactgt	gcatgcctca	aagaaaaacc	agagtgcct	gttctaaaac	60
gtagttctga	atccatggaa	aatatcaata	gtggttatga	gaccagacgg	aaaaaaagaat	120
aaaaagacaa	agatatttca	aaagaaaaag	atacacaaaa	tcagaatatt	actttggatt	180
gtgaaggaac	gaccaacaaa	atgaagagcc	cagaaaactaa	acaaagaaaag	ctttctccac	240
tgagactatc	agtatcaaat	aatcaggaac	cagattttat	tgatgatata	gaagaaaaaa	300
ctcctattag	taatgaagta	gaaatggaat	cagaggagca	gattgcagaa	aggaaaaagga	360
agatgacaag	agaagaaaaga	aaaatggaaag	caattttgca	aggctttgc	cagacttcaa	420
aagagagaga	anagaagaga	acaagcttg	gaaaggatca	gcacagccna	aactgaagtt	480
aaaactgaat	gtaaaagatcc	cagattgcag	tgatgctgag	ttatttanga	acnagccata	540
gaagaaaaatg	ctagcagcca	accctgcca	agtaatagac	taancgggga	aaagtttct	600
cqaqttaqqac	tacttqqcaq	caccgtcgga	gaccngactg	tcacatggtt	anan	654

<210> 189

<211> 650

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> (1) . . . (650)

<223> n = A, T, C or G

<400> 189

ggtaactttaa	gataattgtt	tttgatctttt	ttcagattcc	ttgtatTTT	aataaagtaa	60
tcttaaataa	aactcagata	ggttaagtgt	tagaaatttt	aaacagctt	cattgttagc	120
gtaaagttat	cttttctttt	ttcctaataca	gagttcttga	ccctttgggt	attgagttt	180
aaacttcaat	tgaaattcaa	tagtatttt	tttttaaaaaa	aatcaactaaa	ctgtgcctaa	240
agaacataac	tgccatattt	atgttttgt	tttatatcctc	tatagtaata	aaaaaacatt	300
taataacttgt	aatgctgtat	tgttaatttg	ataccagttg	agtagaatgt	gatcaatcca	360
gtttacaatc	tatcatgagt	attattaact	aaaatctatg	tgctttcaa	taggaatcat	420
tcttctcttg	ctgnaacact	tgccttaact	tttangaaaag	nggtcatttt	taaactgcac	480
tggnaagggt	gaaagttang	actcttggat	ttggngaccg	naatctgaag	ccgaatantt	540
aaagggagaa	aaagaaacca	ggtctttttg	ccaaaggctg	ggaacntat	tcanctttgg	600
gnaagtaatt	ggatatncca	agggtgggan	gacaagtctg	aaaatcacng		650

<210> 190

<211> 699

<212> DNA

<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(699)
<223> n = A,T,C or G

<400> 190
accagctcta atctgtggcg tccagtttc tttctttttt tttttttctt ttttaatgtc      60
aaagtgaatg tctgaagttt tgtctttttt tctttgtcct ttccatctg cttcattctg     120
tggggataaa atacttgtgt ttaatcagaa caactggAAC gcattgagga agggatggac     180
caaataataa aggacatgaa agaagcagaa aagaatttga cgacccagg AAAATTCTGT     240
gggcttgcgt tggtccctg taacaagtag gtgctgcctg cctgcctgaa gctttgattt     300
cccaaggccc atctccaagc cttgacaag ctcattctg ccaagctcat aggcaggatg     360
aagcatgtgg catgcagaaa cagatcaata cccgcttcaa tgcatcattcata tcatacgata     420
gaagatatta accaggaagt tactgggtga tgcanttaaa aaatcaaggc cataacctaca     480
ggtgaaaggc nttcacntgt cagcnaacnt ttaattggat gaaccgggtt caaccatTTT     540
nccaaaaaaag gtgtacctgg ggnnaagggg gtggggccag tggcccccaa gtgggacctn     600
ttgaaaatga aaagggtggt tcntttccac tggccctttt gggccttggt aaccaagncc     660
tctccgcgg gggcaaggca antanccttg gcccggnan                                699

<210> 191
<211> 378
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(378)
<223> n = A,T,C or G

<400> 191
acaaagattc cagacagact ttgttttttgc ttataaca atgtgttagat actacacaaa      60
gaatgaggat gtaattttca ttacaagca aaatgtgacc aaaatccctt ttcttcttaa     120
aattgaaaaa tgaatttctt gagaatacta attagtgacg gccaaatctt agactatTTT     180
aaatttagcca tggtaaaca tagtgagtt aaacatttgc ccttccaaa attaaggTTT     240
gcagttagaa acataaacat ttgataaaac ttctcaaaat taattatgag tggcttattc     300
atgtcccttg gattccagac acacactana aaaagtaaac gttaaagagg tgatatTTG     360
gaaagcatcc cttagtacc                                378

<210> 192
<211> 624
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(624)
<223> n = A,T,C or G

<400> 192
acagtaaaaaa gtaaaacttcc ctccatccca ggccctgccag catccctgat gcccactttc      60
tgggtgtggc cttagggccccc tcagtgtaat gtaggggttg tgagcacaga ctttgggtcc     120
agtttgctag gttcgaatcc tgactccctc tttgttagctc tggcttcaa ttgaaataact     180
gtgcctcagt ttctccctta taaaggcagg gatcatgaga gtgcctgtcc ctttgtgagca     240

```

ctatgaaagt	gttagctgtt	ctttaccaga	ataaatgcac	ttctatatct	tcccatatgc	300
attttgttaa	tttttaaagt	atttcaaaca	caaagttga	aacagaaaat	tgtgtAACAT	360
taactatgaa	cttaccaccc	agaattaca	aatgctgaca	tttgcaata	tttatttcgg	420
atctattttt	aaggggggga	accctgcagt	tactgcttaa	tcctctttcc	accccaacct	480
tttatTTTta	cacaaggAGC	catagtggtc	atacttaAGC	tatTTTTTC	agtaactnaa	540
tatATTTGg	aaganCTccc	tcctaggncA	tanaagcttt	gnccctttt	tttacagtgg	600
taaaccttn	ggactaaagg	gcng				624
<210>	193					
<211>	348					
<212>	DNA					
<213>	Homo sapiens					
<400>	193					
actgctactt	ctataaacgg	acagccgtaa	gactaggcga	tcctcacttc	taccaggact	60
ctttgtggct	gcgcaggAG	ttcatgcaag	ttcgaagggt	accttgc	acactgatgg	120
atactttcc	ttctgtatag	aagccacatt	tgctgcttg	caggagagt	tggccctatg	180
catggggAAA	cagctggact	ttccaaggAA	ggttcagact	agctgtgtc	agcattcaag	240
aaggaagatc	ctccctcttG	cacaattAGA	gtgtccccat	cggtctccag	tgcggcatcc	300
cttccttgcc	ttctacctct	gttccacccc	ctttccttcc	tttccacc		348
<210>	194					
<211>	627					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(627)					
<223>	n = A,T,C or G					
<400>	194					
ggtacacctt	cagccagctg	cagcaaAGCC	aaatggcaga	gaagcagtta	gaggaatcag	60
tcagtgaaaa	ggaacagcag	ctgctgagca	cactgaagtg	tcaggatgaa	gaacttgaga	120
aaatgcgaga	agtgtgtgag	caaaatcagc	agcttctccg	agagaatgaa	atcatcaagc	180
agaaaactgac	cctcctccag	gtagccagca	gacagaaACA	tcttcctaag	gatacccttc	240
tatctccaga	ctcttctttt	gaatatgtcc	cacctaAGCC	aaaaccttct	cgtgttaaag	300
aaaagtttct	ggagcaaAGC	atggacatcg	aggatctaa	atattgttca	gagcattctg	360
tgaatgagca	tgaggatgg	gatggtgatg	atgatgagg	ggatgacgag	gaatggaaAGC	420
caacaaaatt	agtaaaggTG	tccagGAAGA	acatCCAAGG	gtgtcctgc	aagggctggt	480
gtggaaacaa	gcatgtgggt	gcagGAAGC	aaaagtcaGA	ctgtgggttt	ggctgggtct	540
tgtgancccc	ccaagtgtng	gacCCGCCG	caaggcaagg	aaaccttggg	cccttttaa	600
cgggcccngg	aattcccaag	gttcntt				627
<210>	195					
<211>	405					
<212>	DNA					
<213>	Homo sapiens					
<400>	195					
ggtacaattc	cacttatcca	tactattcct	ttataaaagg	cagatttcag	gtaagcttct	60
aaatgcatgc	gtaatgtaga	ggctaataatt	ttctggcagt	ccttggttcc	tgaaatttga	120
acttcatatg	tgttttaaac	tttgcAAA	atagtcatga	aagatatgtt	atttttgcat	180

aatgaggtaa	tatatcaggg	gcgggcactc	ataagacagt	ataaaatccac	ttgtctaaac	240
ttgcatgagg	ctgtgtgcat	tgtaaaatgc	cataaagagt	tttgggtcag	tgaatatttt	300
gctgaaggaa	taacacttac	attnaactga	gcactttct	gtaataaaata	ccaaagttagg	360
ttttttagc	tgtaaaactgt	gtacctgcc	ggccggccg	ctcga		405
<210>	196					
<211>	658					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(658)					
<223>	n = A,T,C or G					
<400>	196					
ggtaaaagga	gttaaaacgc	ccagtggtca	ttaagtgaaa	catctttat	caacctgcaa	60
aagctgcgc	gttctctgcc	aggctaaatg	ggcatgttta	gaaaataaga	gaagatggct	120
gagtatagct	aatgaataaa	tggttgttc	tttagaaaat	taaacacaca	cagagtgtaa	180
gaggagagga	tacggccctc	cctgaaggat	aaagtccacc	tggacggtgc	cctgcctcg	240
cttctcacat	taactgccc	ggaatgtcat	gctgatttgt	tcccggaagg	gtgttggca	300
aggggcagtg	tatggagcta	cgtgtagaag	gagagaaaatt	tgtgtgtggc	ttttgtaaat	360
tttgaccgat	tgcagcaatt	aaataagttt	attactgngt	tgatttaat	acttatgaaa	420
gcttcaga	cnaaaaataa	accttcacg	ttaccccaa	annaaaanan	tnnnnntta	480
nataaaaaaa	acttggancg	gnatngggtt	tcttggaaaa	agtttggatg	ccatttgcn	540
aattctcnt	tttnggtttt	aaaattgaac	ncaggnattt	ggggggancc	nttttggaaa	600
aancccataa	gcttggtttt	cttgnnnnaaa	cttgnnaant	tngccccnng	nttaattt	658
<210>	197					
<211>	615					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(615)					
<223>	n = A,T,C or G					
<400>	197					
ggtacagaga	aagaaataaa	agatactgag	aaagaggtgg	atgacctaac	agcagagctg	60
aaaagtcttg	aggacaaagc	agcagaggc	gtttaaaaata	caaatgctgc	agaggaatcc	120
ttaccagaga	tccagaaaga	acatcgcaat	ctgcttcaag	aattaaaat	tattcaagaa	180
aatgaacatg	ctcttcaaaa	agatgcactt	agtattaaat	tgtttttttttt	acaaatagat	240
ggtcacattt	ctgaacataa	ttctaaaata	aaatattttttt	acaaaagat	ttcaaaaata	300
tcactgcattc	ctatagaaga	taatccatt	gaagagattt	cggttcttcaag	cccgaggat	360
cttgaagcga	tcaagaatcc	agattttata	caaattttttt	gcactttttttt	aagccnngtg	420
tcatgaaatg	aaacccaacc	ttcggccat	cgcagatnt	aaaaaggaaag	gaagaattgn	480
atttgcaccg	gttagcagaat	tggccaaaat	acttntttttttt	ggaccgggtt	agaccaaaaa	540
anaannntan	aaaaaaaaann	nttnacttgc	ccggngggccc	tttnaangggg	attcncccat	600
gggggccttt	tangg					615
<210>	198					
<211>	557					

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(557)
 <223> n = A,T,C or G

<400> 198
 gggacctgca gtggatttgc atctggcac cacctactt tgggtgggtg tttccagca 60
 cggaaaagtc gagataattt ccaatgatca gggaaaccga accactcaa gctatgtcgc 120
 cttaacggac actgaacggt tgatcggtga tgccgcaaaag aatcaagtgc caatgaaccc 180
 caccaacaca gttttgatc ccaaacgtct gattggacgc agatttgatg atgctgttgt 240
 ccagtctgat atgaaacatc ggcccattat ggtggtaat gatgctggca ggcggaaagg 300
 ccaagttagaa tacaagggag agacccaaag cttctatcca gaggagggtgt cttctatgg 360
 tctgacaaag atgaaggaaa ttgcagaagc ctaccttggg aagactgtt acaatgtgt 420
 ggtcacatgt ccagttact ttaatgactc taacgtcagg ctaccaaaga tgctggact 480
 attgctggct caatgtaccc nggccgcgaa cacgctaagg gcgaattnca cacacttgg 540
 ggnctctan tgatnc 557

<210> 199
 <211> 498
 <212> DNA
 <213> Homo sapiens

<400> 199
 acaatgatgc ttctcacagc ttcaaaagaca tggctgaggc atcctaactg cgaatcagcc 60
 cataaaaaaca aagaaggagt atttgaccgt atgaaagtgg cattggataa ggtcattgaa 120
 attgtgactg actgtaaacc gaatggagag actgacattt catctatcag tattttact 180
 ggaattaagg aattcaagat gaatattgaa gctcttcggg agaatccta ttttcagtcc 240
 aaagagaacc ttctgtgac attgaaagtc atcttggagc gtatggagga ctttactgat 300
 tctgcctaca ccagccatga gcacagagaa cgcatctgg aactgtcaac tcaggcgaga 360
 atggaactgc agcagttaat ttctgtgtgg attcaagctc aaagcaagaa aacaaaaagc 420
 atcgctgaag aactggaact cagtttttgg aaaatcagtc acagtcttaa tgaacttaag 480
 aaagaacttc atagttacc 498

<210> 200
 <211> 615
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(615)
 <223> n = A,T,C or G

<400> 200
 ggtacctctt cttccagcac ccagggccagt attgagatcg attctctcta tgaaggaatc 60
 gacttctata cctccattac ccgtgccccga tttgaagaac tgaatgctga cctgttccgt 120
 ggcaccctgg acccagttaga gaaagccctt cgagatgccaa aactagacaa gtcacagatt 180
 catgatatttgc tccctgggttgg tggttctact cgtatccccaa agattcagaa gcttctccaa 240
 gacttcttca atggaaaaga actgaataag agcatcaacc ctgatgaagc tgggtgttat 300
 ggtgcagctg tccaggcagc catcttgcgtt ggagacaagt ctgagaatgt tcaagaattt 360

gctgctcttt	ggatgtcac	tcctcttccc	ttggtatgaa	aactgctgg	ggagtcatga	420
ctgnccat	caagccgtaa	taccaccatt	cctaccaagc	agaccacaga	ccttcactac	480
ctatctgac	aaccagtctg	gtggnctt	tcangttat	gaagcgaccn	gccttgccaa	540
ggataccacc	tgnttggcaa	gttttaactn	caggcttcct	tctggacccc	aggngttccc	600
aaatttgaagt	ccttt					615
<210>	201					
<211>	256					
<212>	DNA					
<213>	Homo sapiens					
<400>	201					
actgcacttt	ataaaaagcat	ggataatatt	aaaggatcac	aaaaggcagc	attagcattc	60
tctatccagg	tattattaaa	tctttttatc	ccatgcccc	ctcaaata	ggagaattat	120
tatctgataa	gcctgaaacg	acttttttta	ataccataa	ctaaaaagac	acttcttaca	180
ggtgtatgca	actttggtca	gcagaaacac	aatacgagcc	tctggcctag	ctaaggcact	240
ctattctgaa	agtacc					256
<210>	202					
<211>	584					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(584)					
<223>	n = A,T,C or G					
<400>	202					
actttcaat	ctgatccatt	atcttctgaa	ctcttctgg	aggcacttc	ccacgagttt	60
gcatccttc	ggccacattt	tggttagaaat	cctgagcaca	ctctgactgt	tcttcaatgc	120
ttagatccct	tttgtaatgc	attccttcca	aaaacagctt	ggtctgttta	tagatttctt	180
ggcctgtctt	gtggaaaggc	ttgagaaatt	ctatgaactc	cttagacact	ctatccgttt	240
caatgctgtt	ttgcccgtt	atgaaaggac	tggagcttt	tgcttcctga	atttccttct	300
ttgatccgac	ccttggaaagaa	tgcactgaag	aaattcttca	ctgggggaac	cctgccggtc	360
ttcttgnntgg	gtttcttttc	ttcaaaactt	gaaaatgttna	aggattgggc	ccctgggtgg	420
gttnacttgtt	ngcaaaggct	ttttttctt	cctgaggcnt	tccgcagtcc	annctctgaa	480
ttgntttgcc	tggcttgngg	acctggccga	cacctanggg	aaatccacca	ctgggggccc	540
tctaagganc	cncntgggccc	aacttgggn	annntnggtan	nntt		584
<210>	203					
<211>	608					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(608)					
<223>	n = A,T,C or G					
<400>	203					
ggtaactctta	tacacacccctg	ttttctccaa	tgttctccctt	tagtatggct	ggtaattgtt	60
ttggtgattt	ccaccccttc	gagatgcctt	gccataagtg	ctctgttggc	ctattttgaa	120

aacacagaat	tctcatttag	ttttctacaa	aactttcttt	acaaacacaa	actattaaat	180
ctacaatct	ttgcgtgcta	aataaaaagt	attaagatat	tttagcaccc	attagatgct	240
actcataaat	catacatcct	agttcattta	taaccaccag	tctatgttag	tataatcatc	300
ctatgattgt	aacatgcctn	aaacacttaa	ctccgaacac	ttaatggaa	agcccataca	360
cacaatttca	gaacaggatt	gtatgttaac	aatgaatttt	aataccactg	ctttataaaa	420
ttaagttaaa	tattcttacc	actgnaatct	gcatatcctg	nccatatcat	aggccccata	480
ggtataccca	ggataaacat	attcggcata	gcactatgg	ttgaacacct	ggcccgccg	540
gccggtncaa	aaggcgaatt	cancnactgg	nggcoggtnc	natggatcca	ncntcgnacc	600
aactttgg						608
<210>	204					
<211>	621					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(621)					
<223>	n = A,T,C or G					
<400>	204					
ggtacctgaa	gatcttgatt	tgctacacga	gctttctcta	ggcattata	gtaagaaact	60
gcttcttct	ctcgctcctc	tttttcctct	ttaagccggt	ctacctggcg	cattaggtta	120
gtaataagaa	gttctagctg	ttcttgtctg	tattgtagtt	cattcaactc	ttctttgagg	180
gtggtcttca	tactctccat	ttctgtcage	tcaatttgaa	gagccagcat	ctctgaagac	240
atgcttcct	gcacacgttc	agacattacg	cgcagttct	ctgatttaca	agagaggagt	300
tccttctgat	gatctacttg	gtgcttcage	tgctttcac	taagcctggc	ttcatctaat	360
tccactttca	gttttctat	cttaagtttt	taagttcatt	cacttcctgc	catggcttct	420
gcttagttgt	cttccnattt	cttcagggtgc	attttttgtt	ggtggtaat	agcttcacat	480
tcgcaagctc	aaactttcta	acattcgact	cttgagttca	acttctctt	tgaangggat	540
atttcnntgg	tcataactct	tangcatnng	gcataattct	taccacatta	tccaatggat	600
ccggaattca	ntttgcctn	t				621
<210>	205					
<211>	607					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(607)					
<223>	n = A,T,C or G					
<400>	205					
ggtaccacacct	atcataggta	ttaccacaca	atttcatgca	tggggcata	ttttaactgg	60
ccttgggtcc	tatcttcaca	tcctttcag	tttgtataca	agaacacttt	acctgagata	120
taggccaaaa	gtgaagttt	tcttggaat	ctggccagtg	atccctgttg	agcctctcag	180
gaagcattga	tgaatcattc	caccaagaaa	acaaacaagc	acctaccata	gacctggcag	240
aataaataag	gaaatccta	aagatctaca	agttcaaata	tgtcatgacc	atcacagcag	300
aggagtgact	ttctgactaa	tgctgccacc	cacacagaga	ataaggagta	gggcctgctg	360
ggtgtttagc	tcatggctt	atcttatttg	ccccctcctc	tttcacgctc	cagttataaa	420
aagaaacaga	gatgatgtgt	gtgtatgcct	caaaatgcag	aaacaggtgg	gctttctta	480
acanggtnc	agtttgcgt	gggtataaga	aaataaccct	cttctttt	gccaaagggtg	540

catgtgaatt atcccttctt aanattggtt aaataagcan tnncttanag ccccaaanc nctntnn	600 607
<210> 206	
<211> 572	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(572)	
<223> n = A,T,C or G	
<400> 206	
acgcgtgacg tcactcacat agcaggaaga ctcacaacct ccatccagaa gcaccatttc cccacatccttg atgagttgat tattttcac atagtcaaaa gtgttgacc gattaccacc agccaccaca ggtggatagg ctAAAATGTC tgccacacga gcccggcatt caaatcaaa cttagcataa agaaaaggctt cttccacagg ggctttactg gtgaacatgg tttctatgaa agcctgtgat gtcagcttcc cagcaatctg cattcgatca atttctgcag gagacttgat cagccggagg cgctgtatca gctgctgaac accccgaacc ttgttcttgc tcttggctt ggcctcagtc aggggctgca tatagtcaga gtgaagctgt gcatgtgagg gccttatcca ggtcatacca aaccatgttc gtctcagctt tcatttttg gtagaaagatg ttgaaattct tctagcgtat aggcttcgtc tactccagtt agagctattt gttccatcag tgccagantc gnggaccatt cccaaaggtt tnnactnggg ag	60 120 180 240 300 360 420 480 540 572
<210> 207	
<211> 616	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(616)	
<223> n = A,T,C or G	
<400> 207	
ggtacctgtc ccattcctaa aaggatttgt gggtaatgct ggcaattgggt ggccaggaga atcttctgac cccactctcc ctccctttca gtcctgaaga ccccaagaac ccagtttagga tccccctggcc agaggtctct gtgactgcct ctggactctg cacgtgcagc agcttgggag gatttgagcc agtctcaaaa acttttagcc ccagaatgag accagtgacc ccaagcagga gggctggat ctggagggaa gagagggggt ccaaggggac cctgtggctg aggccatgga gaaccagtgc cagggcccaa gagaccatt tttccagtt tcagaggtga ctgacatctt ctgccactgc cttgagttca gaaattaaa aaagcttgc gcaagaaaaat gccagtgtgc aactgggtga ctaaaagacca aagaaaaaca gttaaaagg acagctact tgctctctgt ctcangtttta acttctcacc tggaaatctt nataccctaa ttaacacaac caaagtctct ttcatagata ggctactttt aagtttnact gttctgtgg tggctttgg gggcttgga agtgggatt ttttgg	60 120 180 240 300 360 420 480 540 600 616
<210> 208	
<211> 614	
<212> DNA	
<213> Homo sapiens	

```

<220>
<221> misc_feature
<222> (1)...(614)
<223> n = A,T,C or G

<400> 208
acacaacgctc atgagggttat tcgaaccaca gcgttttcag aactttcaga gaaaccagct      60
gagtctgtca cttctaaaaaa gacaggaccc ctttagtgcgg agccctctgt tgaaaaagag     120
aacttggcaa tagaaaagtca atcgaaaact cagaaaaaaag ggaagatgtc tcatgacaaa     180
aggaagaaaat caagaagtaa agccataggc ttagataactt ctgacattgt gcacatttg     240
tgtccagaag gaatgaaaac cagtgcacatc aaggagttga atattgtttt gcctgaattt     300
gagaaaaaccc accttagagca tcaacaaaaga atagaatcta aagtttgtaa ggcagccatc     360
gccacatttt atgtaatgt taaaagaacaa ttcatcaaaa tgcttaaaga aagccagatg     420
ttgacaatc tgaaaaggaa gaatgctaag atgatttcag atatcgaaaa gaaaaggcag     480
cgtatgattt aagtccagga tgaactgctt cggnntagagc cacagctgaa acaactncca     540
acaaaatatg atgaacttaa agagagaaaag tcttccttt ggaaagcaca tatttcttat     600
ctaatttaaa canc                                         614

<210> 209
<211> 610
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(610)
<223> n = A,T,C or G

<400> 209
acactgtttt gatggaagag gacattgtgg acacgaagta actggagatg gccttcagaa      60
tcagctgagc tgctgtctgc tttggaaaac cgttcctgcc gctgccatg gatggaaatg     120
caatggattt cagcttctta tcatcagcca gggccaagca gtttttcaact gtctttcca     180
gaagttcttc acacttgtct gcaccccaaa ctggactattt acagtggatc acaaacttgg     240
caggcagggcc atggcctgctg ctgacacgag ctccagctac ttccaaaggcc ccgttctttt     300
tccggaggcc caggacagct tccacaaact ctttgccacc tttcttctcc agcgtgttcc     360
ctaggtcattt tttaagggtca atgtcagcat tggtaggattt gattatggcc tncacctcaa     420
aagccccgct aaataactgtat ttcaactgnga ataanggtca acttttggcc cangaaaaag     480
ctctttgggtg gaaaaggact gtgaaaacccn tnggcaagng ggccttcggg tgggcttnn     540
gggcttggntg gcnttaaggg antnanncgn gttttnggaa ttccgggnccc tttttggccc     600
cnggtttta                                         610

<210> 210
<211> 589
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(589)
<223> n = A,T,C or G

<400> 210
ggtaccacgc tctaattact ggccgttagca gcatattgtc taagaattttt gtagaactta      60

```

tttctcatca	gcagctgtcc	aaaggactga	taaatagaga	cagatcccag	tcctggatac	120
tttctgtaaa	tcctaatecg	agactcaatt	ctcagcaatg	gaggctgaaa	gtcttagtga	180
gactcagtaa	atcccttcag	gccttggcag	atggatccag	taggttgaga	aaaagtgaag	240
gacttcagga	acagaaagaa	aatccccatg	ccactagcaa	ctccattttt	atcaactgga	300
aggaacatgc	caacgaccag	caacacatcc	aggtttatga	aatgggggt	tcacagccaa	360
atgtcagttc	acagttcagg	ctacgttac	tgggtggagg	actgagtgg	gtggatgaag	420
gcctgnacatc	tactgaaacc	tgaaaggatt	attngnataa	taattccttg	ntnaatgaat	480
gctgggttcaa	ctgtacctgg	ccggccggcc	cttaaaggnc	aattcngcca	cttgggggcc	540
gactaaggga	nccncttggg	ccancttggg	gnaacanggc	aannttgtt		589

<210> 211
<211> 590
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(590)
<223> n = A,T,C or G

<400> 211

acgaactgta	gcatcagcta	caactgccat	tgaaattcgt	aggcaatcca	gtagttatga	60
tgattcctgg	aaaataaacag	atgaacaaag	acagtattat	gtaaatcagt	ttaaaaaccat	120
tcagcctgat	ctaaacggat	ttattccagg	atctgcagct	aaagagttt	ttacaaaaatc	180
aaaacttcct	attcttgaac	tttctcatat	ttgggaactc	tcagactttg	ataaaagatgg	240
tgcattgaca	ctggatgagt	tttgcgtgc	ttttcatctg	gtgggtgcta	ggaagaatgg	300
ctatgattt	ccagaaaaac	ttcctgaaag	cttaatgcgg	aaactgattt	atttggaaaga	360
ttcagcagat	gttggggatc	agccaggtga	gttaggttat	tcaggcttct	ctgctgaact	420
cctncaagca	agtcccatcg	atgccattac	ttaacccgac	ttggncgtac	tgaatcaaac	480
cntgaccatg	ggaaacacatta	nngacgcttt	ttaagctaca	aanttggnc	ccattggttt	540
taaatttggc	ccnattgnac	cggaaccgga	ntgggnattc	cgnncattn		589

<210> 212
<211> 614
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(614)
<223> n = A,T,C or G

<400> 212

ggtacattcc	attactaaat	gccacataac	tgtttggata	acataagaag	agtgggtcat	60
tatatgatac	caatttagaaag	atattaggga	tgggtggaggg	agtaatttct	gggataagaa	120
ctataattta	cagaataacc	agacatcatc	tgtatctgggt	aaacctgtgc	atccccacaa	180
ttaggcttt	tcacacttcc	tctctttaaa	tgtgcaacac	cttccccatc	ccctctttac	240
ttgttagcaag	ttgattttgc	ttcttatatc	ccgagaaaagc	aactaccacc	aaatctacca	300
gtcaactcat	ctatatttga	acttaaagat	ctttatgtt	gaatgaaatc	tatccatgtt	360
ccagctttagg	cgaagccctt	ctgaagatat	ccattccttc	cttcctcatc	aaattttcct	420
tcttgactag	gattaaaaaaaa	attcaaccag	taggcataat	ccgaaccttt	ggncatcaa	480
tgaaaagat	agtaataaag	gctcatcaat	tggcccgnaa	ttttgnnttg	ggtcaagngt	540
tggccaaagc	nncnnnaaang	gccccattt	tggtaaaaan	tttttnaggg	gttaaaancc	600

anggggntnc annn

614

<210> 213
<211> 624
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(624)
<223> n = A,T,C or G

<400> 213

ggtacctctc ttgtcatcaa atttgccca gttatataat gttggattcc tcaaggctca	60
gtcagcacct tttaagccac tctaaactcc cactaatgga taagcttatt tacttccaag	120
gcttcaatgg tcacaataca acactgtgg ctctccaact tattttcta taaaataaaa	180
aataataaag gaacaacgta ttttctatt caagactttt tatctgagct tcagatacat	240
atatccaatt gctacttga catctccact tagaggccag aggcatataa actcaatacg	300
tcttaatca attcatgat cttccctctg aaatctaact tcctactt ccctatctta	360
atgaaagaca acaccatccg tcccttaca ttaagtgcct cagcttatcc ctacatctat	420
ctcatcacta aagaacaggtt atttcaccc ttttgagttt cattcaaatg ctttctactt	480
ctttccatt cntactggta cccccctang ggnaagntat taacttttc ctacctaeng	540
ncccttgn ancccttcca tcaantttc cnaattngna nggttaattt ttnnaacccc	600
aanntggca tacnnngtgg gnng	624

<210> 214
<211> 612
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(612)
<223> n = A,T,C or G

<400> 214

ggtacaagtc tgttaatacc ctatgtggtt tcatttagat aacttttac ctatccttga	60
ggtcatccat attcttacag gccttccagt caataatgga agagctact ctataaaaaa	120
ccaaatatgca aggcatgtgt ttgtccaaagc aattggatgt gtgcagtagc caatttcttatt	180
tactgcatta ctcttggcc tggaaacctt gtggtctgca ctacatgtga atggccttcc	240
acttcagttt taggcgatt tgaccccttta ggggcagcaa tgctgaagga cacagcaatt	300
taaattataa tgtgtcaggg tggttttca cttcaaaatcat gtatggatgt tcagctgtaa	360
ttagagaaat gatgacttcc taagagttca gccacgcata attcttagatt tcaagagcat	420
ctaagacttg tggattacat catggcatga gagtttcaga ctcagccntn tgagccagtc	480
nagggaaatg ggagtctgca acgcaaatga aaacctggct ttggggccaa nggacttggc	540
tttaaatggg ccccccttngg cctgggnttt cctttttgg cnaantttt ngtnnccaan	600
aaaagtaatn ag	612

<210> 215
<211> 618
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(618)
<223> n = A,T,C or G

<400> 215
ggtaactcggg aggctgatgc agcagaattg cttgaaccca agaggcggag gttgcagtga      60
gctgagaacg tgccattgca ctccagcctg ggcaagagag cgagactcca tctcaaaaaa     120
aagggtgagaa agatagggtg gaacatgagg tggcaggtgt gaagatagga aaggcaggct     180
caccctgtat gacatgcagt tagagagacg ggggcttccc ttcactttg gagagtaaag     240
agaaggctct gaggtatcaa cagcctggc tggtggaaa aggacaaaga atctgtgtt     300
cctgaacgcc aagaggaagt ctcttggtt gctgtggct aactggtctc ctccagttcc     360
aagaggtcat ccacatattc cacaacttct ccctcatcat catccattat atttcctta     420
nccaaagtca tacaagctc ntctggagtg gtggncacat ttaagaactg aactgnntta     480
agnctgggct ggaantgctc attcnanagg ccccantggn cctnnnggan ctngccngcc     540
ggcccnntaa aggcaattc cancanntgg gggccgggtt tangggancc aacttgggnc     600
caacttggng aaatatatgg                                         618

<210> 216
<211> 595
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(595)
<223> n = A,T,C or G

<400> 216
ggtaactcccc ttccagggtga cgaagtgggc agaactggga gccatcttgc ccagccctt      60
ggtgctatgt ttaccttga gcaatccctc ggccttagga ttggcctcta gtatgttca     120
acactgacct agagctacct ctgataagag cagcagtccct gtattcttta ggcgagaggc     180
aaagcagtaa ttggcactct tggaaagacat gtcagcaaag tagattcctt tcccaaacat     240
gtaacctgtg atgggagctt caggtggggc aattcgaagc ccatggctca agattcccac     300
ccagttactc atcctggAAC catgccccat aagcatccctg ttatgaaggt cctctctgaa     360
ggcttcttc tcaccatcct tctcaactca aacaaatcca gcaaggtcat ggtataagtc     420
gctgtgtgtg ggaancatgg gtagaatggg aggtacctgg cccggccggc cnntcaaaag     480
ggccaaattc cagcacaatt ggnngccgt tactaaggga tnccaacctt gggncccaa     540
cnntggngga atcatgggcc naaactngtt ccctggnggn aaattgnaan cccnn     595

<210> 217
<211> 610
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(610)
<223> n = A,T,C or G

<400> 217
actaaaaact tttttaaaaa aaggtgatga tgaagtgcattctgttagcag cagcgcagct      60
atgctttaaa ccacacaaaaa ggctgtgtcc aggtgcagcc tccttcaccc ttccctgcccc     120

```

cggtgaggat	tgaataacca	ggacttgggg	atattgttg	ttgtcagggt	tattctgtgt	180
ggtaaggaaat	atttgttca	catttataaca	ttttctttt	ccactcacgt	aagtttctat	240
cttgagagca	tagtccaaag	tgcaaaaactt	ggtgtttaca	aggaaaattg	tcttcagaa	300
ctccactgtc	atcaacttca	ccaaagtgga	agtttgcatt	aatatgctca	gaatctaata	360
ttcaatgtt	tgttacattt	taagtgaagt	ccagctaaaa	atagatttaa	tatattgaat	420
ttatttgnac	cntngccgg	gaacacgcct	aagggcgaaa	ttncagcacc	actggccggg	480
cggttcctaa	ngggattccc	aaactntggg	nnccanactt	nggcgnnaan	cnatngggcc	540
taaaaacttgg	tttccccctng	nngaaaattt	ggttatnccg	gttacaaatt	tcccncncaa	600
atttccgggg						610
<210>	218					
<211>	585					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1) ... (585)					
<223>	n = A,T,C or G					
<400>	218					
ggtacaattt	gtaaatattt	caaaggcata	ggagtcataa	ctttttgttt	tcataactgaa	60
aatgatgtt	atcagagaaa	ccaactgttt	tgctttcat	tgctctgtga	gaaatttgag	120
gattctgtt	tgctgttagg	taagctaaac	tcagaaaattt	aaaaggaaaa	gactggataa	180
acacaggatt	ttcagtaaga	aaacaacccc	agtcttgcct	tagaagccac	ttgttgagga	240
gtctgttggg	ggaaaaaaaaga	ggatatgttt	ttaaaggtag	aacaaaccc	tttctgtgtt	300
aaatcaaaag	gatgttcaaa	atccaccagg	acagatgcta	cttgggttta	aatggagcca	360
tagatgat	aaagtccctt	tggggctgaa	aatcaattcc	tatttgcatt	gctttactaa	420
ctggtttctg	tttccatta	tcttttccat	agaaagtnnt	tggtcaagat	ttttccagc	480
ctttnaaatt	gaaaccggtc	agtantttga	cccctgnnt	gntatttnnt	ccagnaattt	540
aaattgnatt	cnctggntcc	aaaggcattt	atccccttc	cttng		585
<210>	219					
<211>	599					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1) ... (599)					
<223>	n = A,T,C or G					
<400>	219					
acaggtcaca	gatccctacaa	tcctactgt	gcttgtgtct	cttttccgt	ggcacatcct	60
caaccttgg	aaaataaaact	tttaaatttga	ttgagactt	cctcagtgt	tttcttttgt	120
gtatactct	tatcaatttga	atactttcca	agtgaagaca	tgctttataa	tccagagtat	180
ggactgtttt	ggccagatgt	tttctatata	ctggaaagaa	atgtgtattt	tgctgttgtt	240
gaatggcat	ttctataaat	ctcaatttaca	tcaagttgt	tgatagtctt	gatgtcttct	300
atatctctgt	ggattttcca	tttggttctag	tgattatttt	gagaaaggta	ttgatataatc	360
tgcctataat	tctggatttta	tctacttctc	tttggagatt	tctccatttt	tgcttcatgt	420
attttggaaag	cccctacttc	accaggcatn	ggncatttctt	gagcccttc	caagaagtaa	480
ttttaaccac	ccangnccca	tccaaccctt	aaccccaang	gnnaaccaac	cgnnggcang	540
tnanttgggc	ctaaccnnggg	gaaccattt	gggnccctt	ggnatttaggg	ganaccnng	599

```

<210> 220
<211> 602
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(602)
<223> n = A,T,C or G

<400> 220
ggtacccatt taatataact atgatgcact taaattgaag ctatgccaca ggatagaaaa      60
tgaattaca cttaaataca tggtaagt gtaacactgt tttcaagggt ttaaaaaaaaat      120
tcctaatttc ttttagcctt ctttaatatt tttaggtaag gaaagtatgt ttggattttt      180
tcctcttgt aggtatatga gattgaaatg tgaagtatgt ggacaacaaa cgtcaagcaa      240
tggaaagcca tttgtatcc ttgagtaatc ttgttaagcat taagtgaatg acaaagttagt      300
agtgttaactt atttcttatg gtataacttc agtcaattaa tataaggata gtttttgttg      360
tatgtacact aagtggtaat ataatngcca ttgaantata ctaatcttc tcttaanaga      420
ctattcnct nttaatttgt tcctaattggg aacantntg gcctaaccn gaaaaaggggg      480
ganaaaaggat tnccctgccc nggccggcn tttccaaagg ggcatttn cgncaccc      540
ggnnngccgt tntctanngg aatccnannn tggtcccaan antttggggg aatcttnggc      600
nn                                              602

<210> 221
<211> 573
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(573)
<223> n = A,T,C or G

<400> 221
acctaattgaa aagatctcca agaggtttgt ctcattctcc ttgggctgta aaaaagatta      60
atcctatatg taatgtatcat tatcgaagtg tttatcaaaa gagactaatg gatgaagcta      120
agatttgaa aaggcttcat catccaaaca ttgttgggtt tcgtactttt actgaagcca      180
atgatggcag tctgtgtctt gctatggaat atggagggtgaa aaagtctcta aatgacttaa      240
tagaagaacg atataaagcc agccaaagatc cttttccagc agccataatt ttaaaaagttg      300
ctttgaatat ggcaagaggg ttaaagtatc tgcaccaaga aaagaaaactg cttcatggag      360
acataaaagtc ttcaaattgtt gtaattaaag gcgattttga aacaattaaa atctgtatg      420
tanggagct ctctaccact ggatggaaat atgactggga ctgccttga ggcttggtag      480
cnttggcncc aancccctgg gaaccccaaa aactntggaa gagaannggg gttttcctgn      540
caggcaacat attgcctttg gcctncttg ggg                                              573

<210> 222
<211> 168
<212> DNA
<213> Homo sapiens

<400> 222
ccaccatctt ggaacgggag gcggagcaga gtcgactggg agcgaccgag cggggccgccc      60

```

ccggccgcat	gaaccccgaat	tatgactacc	tgtttaagct	gcttttgcattt	ggcgactcag	120
gcgtggccaa	gtcatgcctg	ctcctgcggt	ttgctgatga	cacgtacc		168
<210>	223					
<211>	564					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(564)					
<223>	n = A,T,C or G					
<400>	223					
actgcagaca	aaatctgctt	tttagaggcaaa	gccccgttct	gacaaagtaa	ctgatccctt	60
ggatggcata	aattcacttt	ggggacttagc	cttattcttc	ctctgaggc	cttcgttctt	120
caatttatttc	aattcatcaa	tcaaaaagtgt	tctcttccca	gttcaatta	gaagaagtc	180
ttctgcttca	gcttcttcta	ggggcccttt	tccatgttct	tcatcaacac	agcagttaa	240
agcctggcta	gcttgataga	tcactgtctg	ttgcatattt	atttcggtat	tgagttcctg	300
cattttctgt	ttgatattaa	cttgacaagg	aaaggcatta	ttttttcat	ccagtttga	360
agtaacatct	tccttccgaa	caatcacctg	cttattgtat	ggacgttctg	tttcttggaa	420
tctttgagat	ctatatgcatt	caatgctgtt	aagaagatca	cgatcttcag	aaccaaggct	480
atcacnagat	tcaggtcgag	ggacacgaag	ttcttngaa	tttcctgggt	ttggactttc	540
atcacttctg	ctggngctt	caan				564
<210>	224					
<211>	277					
<212>	DNA					
<213>	Homo sapiens					
<400>	224					
acaaggctgg	cggttgg	gggacggttt	agccttggga	gggagggtca	gggtctggac	60
aggagcccg	gcccaggat	gggaaaagaa	acgtgggagc	agtaatgtca	agtgacactt	120
aaacccttag	accccgattt	gttataaacgc	gaggaaatct	aatcccacgt	ccctaacgg	180
cttcggaaagc	gaagcagtgt	caacagtccc	tggtaaacac	aagttagtatt	acaagtccgg	240
agctcttcaa	gtcttggatg	agactgtaga	gcccggacc			277
<210>	225					
<211>	589					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(589)					
<223>	n = A,T,C or G					
<400>	225					
ggcacctggaa	ggctcaacgg	cagaagcttc	accacaaaag	cgaaatgggc	acaccacagg	60
gagaaaaactg	gttgtcctgg	atgtttgaaa	agttggtcgt	tgtcatggtg	tgttacttca	120
tccttatctat	cattaactcc	atggcacaata	gttatgccaa	acgaatccag	cagcgggtga	180
actcagagga	gaaaactaaa	taagtagaga	aagttttaaa	ctgcagaaat	tggagtggat	240
gggttctgcc	ttaaattgggg	aggactccaa	gccgggaaagg	aaaattccct	tttccaacct	300

gtatcaattt ttacaacttt tttcctgaaa gcagtttagt ccatacttg cactgacata	360
cttttcctt ctgtgctaag gtaaggatc caccctcgat gcaatccacc ttgggtttc	420
ttanggtgga atgtgatggt cagcaacaaa cttgcaacaa gactgggcct ttggttgta	480
cttnnaaaa ggccncntt atcccattt agnaattncn cccggcccaa aaaaagggcc	540
taangttggt aaaatttca agcttttaa ggttgcccc aagnatgnt	589
<210> 226	
<211> 636	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(636)	
<223> n = A,T,C or G	
<400> 226	
ggtcaagaag catgccacct ccacaactcc tacctggacc tccagcgcag gtatggaga	60
ccctcgatgt gcagagcctt cccctggag aaggagctga aagacaaaaca ccccagcttg	120
ttccaggcat tgctggagat ggatctgctg accgtgccaa ggaaccaaaa tgaatctgta	180
tcaaaaaatcg gtgggaagat atttgagaag gctgtaaaga gactctctag cattgatgg	240
cttcaccaaa tttagtcttat cgtccccctt ctgacggatt ccagctgctg tggataccat	300
aaagcatcct actacccctgc agtcttttat gagactggat taaatgttcc tcgggatcac	360
ctgcaggggc atgttgnata agtttggttg gagggcnngg ggagtgagaa gctgcttcaa	420
tgaatcttgg gtataaacac taccaaggtt ttgacaacta cccctggac ttgggaactg	480
ncgtatgctt actacagcaa ccntggcnc caagaaaccc ttggaccag cacacacttgc	540
gaaggngaat caggcctttt gttgaaacca ttgacttaa aggattgtt gaaatcttca	600
nggnaccttgc cccggcgggc ctttnaaaaa ggggna	636
<210> 227	
<211> 451	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(451)	
<223> n = A,T,C or G	
<400> 227	
acccaaaaac caccggcaac gcccccaac cctcaggcggt gcctgtgagt gtgtctgtgt	60
gtctcaactt gactcaccctt gacaactgac ttcagcagcc aaccttggtc attcccagaa	120
ccaccactgg gggcatacg tggctaga ctggggcgcc cggaaatatct gtctctacaa	180
aaagtaaaaaa aaaaattaat ggggtgttgtt ggtggcggt gcctgtggta tcagctgctt	240
gggacgctgg ggcangagga tcacttgagc ccgagaattt aaggctacag tgagttt	300
ttacgcccactt gcactccatc ctgggtgaca gagcaagacc ttgtctcaag aaaaatttt	360
taaatgagta aaattcaaaa aaaanaanaa aaanaaaaagc ttgacacactg aaacatgggt	420
tactgcataat ggnacctnng cngagacacg c	451
<210> 228	
<211> 408	
<212> DNA	
<213> Homo sapiens	

<400> 228
 ggtcccttat atggcagaat cttgcaggca gcatgtcgag tttgatatgc tggtaagaa 60
 tagaacccaa ggaatcattc cttggccc catatctaaa tcatttgga cttgctcagt 120
 agaatcttc atggatatatt gtatataat gtatgatata ttcccttca aaaagctgg 180
 gaattttatt gtgagtgact ctggagcaca tggtttaaat tcttggactc aagaagacca 240
 aaatttacag gggctaattgg cagcattagc cgctgttggg cctccataatc ctcgggcaga 300
 tccagagtgc tgcagtattc tgcattgcct tggcacag tggaaactct ctgcaaaatt 360
 actgaataacc aacatgagggc tcgtacctgc cccgggcccc 408
 ccgctcga
 <210> 229
 <211> 270
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)...(270)
 <223> n = A,T,C or G
 <400> 229
 ggtacacacg agcatcaaaa aggctattta caagagattt tcttcaacag aatccacttg 60
 aaaggactga gaatttgcattt ctttagctaa agcagtttac caaggaacag ggccatctaa 120
 gtgcctaact agcatttaaa gttgtcaagg ggtggggatg tgcaaattaa gcagcaaaag 180
 attattatgt tggttntgctt taaggaaag taatantggt cagaggggcc agttccaagg 240
 gctggtccaa gggggggccgc tggcttttgtt 270
 <210> 230
 <211> 425
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)...(425)
 <223> n = A,T,C or G
 <400> 230
 ggtacattat ccaatttcag gaaaaaaa tacagttttc ttaccaaatt atccagtgt 60
 tatgactggt tagaattttt agttttgatt ttactgaaa ttccagagtat gaaatgcaaa 120
 cattcaggat aaaatgaaatt cataattaca cacagttata tcaacttgca acaaaggcagc 180
 aaatatgagg gcctaacaca catctcgact ctcccccttcc cttctgatcc ctcaaaaaaaaa 240
 agtgcaaaaat caaagagtca ctgcttggtc caaaaaataaa aatacattgt gtataaaacat 300
 ttgaaatctg atggaatcca gcttcttattc cacaggttgtt cttcagtaag aatcaacgtc 360
 cgaagatgga actcagttcc agaagaatta attctacaat ctgattctgg tcctgcccggg 420
 cggnnc
 <210> 231
 <211> 639
 <212> DNA
 <213> Homo sapiens
 <220>

<221> misc_feature
 <222> (1)...(639)
 <223> n = A,T,C or G

<400> 231

gcgtggttcg	cggccgaggt	actccaagaa	gtctgtctgc	cattgatagg	gctggagcag	60
aggtaagag	tagaacaacg	cttttcagaa	agattggaga	ctttagaagc	ttggagaaga	120
tttcacggga	agtcaaatac	attacgatta	tcggtggggg	cttccttggt	agcgaactgg	180
cctgtgctt	tggcagaaag	gctcgagcct	tgggcacaga	agtgattcaa	ctttccccg	240
agaaaggaaa	tatgggaaag	atccctccccg	aatacctca	caactggacc	atggaaaaag	300
tcagacgaga	gggggttaag	gtgatgccc	atgctattgt	gcaatccgtt	ggagtcaagca	360
gtggcaagtt	acttatcaag	ctgaaagacg	gcaggaaggt	ngaaactgac	cacatagtgg	420
cagctgtggg	cctggaaccc	aatgttgagt	tggccaagac	tggtggcctg	gaaatagact	480
cagatttttng	tggctttccg	ggtaaatgca	tnacttccag	cacgccttta	ccatcttggg	540
tggcangaaa	atgcgtcatt	gcnttctacg	atntaaaagt	tggnaagga	ggccgggtan	600
aacncccn	aacnccctt	tgtgantggg	aaaattgcn			639

<210> 232

<211> 369
 <212> DNA
 <213> Homo sapiens

<400> 232

ggtactaaaa	ggcctcaaaa	taatttagtga	cagaaaatagt	gttattaatt	tgctaagctc	60
aacaataacg	aattccttaa	ttaaaatctt	cgagatataa	atttgatgac	tattctcttc	120
agaaaatgaca	tacctggatt	atgttaatca	tcacaagcct	tattagtac	acatataaac	180
atggcctcat	gcaatcattt	gtctgtatat	gttactctaa	gttgcatgag	cacaagggtt	240
aatatctata	tctttaagaa	aatacttgat	attataaaca	gagtaaaaga	catgatata	300
tagtgattac	aaaaaaaaaa	aaatttagcag	cttaaatcta	tctatattt	aaaaaacgta	360
gtcacaagt						369

<210> 233

<211> 618
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <222> (1)...(618)
 <223> n = A,T,C or G

<400> 233

accctcttctt	ccagcaccca	ggccagttt	gagatcgatt	ctctctatga	aggaatcgac	60
ttctataacct	ccatttcccg	tgcccgattt	gaagaactga	atgctgacct	gttccgtggc	120
accctggacc	cagtagagaa	agcccttcga	gatgccaaac	tagacaagtc	acagattcat	180
gatattgtcc	tggtgtgggg	ttctactcgt	atccccaa	ttcagaagct	tctccaagac	240
ttcttcaatg	aaaaagaact	gaataagagc	atcaaccctg	atgaagctgt	tgcttatgg	300
gcagctgtcc	aggcagccat	cttgtctgga	gacaagtctg	agaatgttca	agatttgctg	360
ctcttggatg	tcactcctct	ttcccttggt	attgaaactg	ctggtgagg	catgactggc	420
ctcatcaagc	gtaataaccc	attcctacca	agcagacaca	gaccttacta	cctattctga	480
caaccagnct	ggtgngctt	ttcangttt	attnaaggca	accttccctg	acaaaggata	540
ccacctgctt	ggcaagggtt	gaactcccag	gcctgcccng	aaggaatgcn	cggggggatt	600
nctggggggg	gnncncn					618

```

<210> 234
<211> 603
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(603)
<223> n = A,T,C or G

<400> 234
accagatgga aaatgtttt ggtgatctgg ctgctgctta aagccagttt tccctaagaa      60
ctccaaaggc taaactctac tagggcaga gtgtgaggat agattctaa tcagagaaaa      120
gtggcctcca ggagcttca ttatgtctt ctccagacca gttttcctg ttatcttcct      180
ttaatcccct ttcaaccaac aggtgaagtt ctccagccc acagaggtag taatatcatc      240
ttttctatct cctcctctcc ttggccatg taatgaagca aaatattatt tatttagccc      300
aggcttgaga gccactgttt gtggacagtc ttcatctaga ttccataccc tggcctaggc      360
gaggttaaggc tctctggta ttgccaggat ggagccccc taccccangt ctgctgtang      420
gaatacccta attagttgan gcatgcttt ggaatcctgc atgttggcat atggctggnc      480
tatccctttt aaaanctctg ggtggggna tctggattn gattaagang ggacaaggag      540
cctttcttg gctaanggtt ncaatacctt ttgaatggg gccagccctc aggcttccca      600
ccc                                         603

<210> 235
<211> 328
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(328)
<223> n = A,T,C or G

<400> 235
gcgtgtcgcg gccgangnac atggacnaca ggtgangaac aggtgaacat ggaggttcta      60
gancccangg gagggggagt cacttggttt gggcaaaact tgctaaatgc aggaccacag      120
gaaccanctn ttcanctncc gtgaganttt ggctgcccanc ccanntttagg ggtgtggcc      180
tgcacggagn acagttatcc ctttctantc tggctcgtgg gactntnnan ggantcantc      240
tgcaacagta agtggtgant tcttctgncc ancgtcagta ttttgtatggt ggctttagac      300
ttgccagatn acactacnntn acatcagt                                         328

<210> 236
<211> 352
<212> DNA
<213> Homo sapiens

<400> 236
ggtagcacctg ttaggagctc tatcactctg aaagccaaaa gatagaatgc tcatttgagc      60
atttgcaaaa tgttctctat ttatattttt aaaaatctga tacatgttaag ttttctggc      120
agattcttt tggatgttac aaaacaaaaac atcaaaaagct cagagtaaga taagaatccc      180
tttttcttag aaagggtcaag cagataacttc ttgacatcat gtccttata caatggcata      240
ttgttcatat aaaagggtctc ttatcctata aaaatcttga caaaggcagc cttctaatcc      300

```

aatgcgtcca gttccgttc tgccgactgc tacttgattt ttgcaaacaa gt

352

<210> 237
<211> 607
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(607)
<223> n = A,T,C or G

<400> 237

ggtacaaaatg cgcttccagc aggaggcat ggacagccct atggaagagg tcctgctgg	60
caatcttgtt gaagggAACCT tcttaatgtc ggttgggtat gaaaaagaca tcctgcacc	120
gaagcttcag gatgacatct tagactctt tggtcagggg atcaatgagt taaagactgc	180
agaacaaatc aacgagcatg tttcaggccc ctttgcag atcattgtca agattgtgg	240
ccattatgtc tcctatatca agcggggc aaatggcaa ggccacttcc aagaaagatc	300
cttctgttaag gctctgacct ccaagaccaa ccggcgattt gtgaagaagt ttgtgaagac	360
acagctttc tcactttca tccagaagc ccgagaagag caagaatctt cctgcaggct	420
atttccaaca gaaaatctt aatatgagga acagaagaaa ccngaagaaa ccaaggaaaa	480
aaactgtgaa ataagactgt ggtgaatttag aatggctaga gctacccca ttntngctt	540
tagccctgcc aagtggcagg ntcancaact gtcagnttcc naatccta at cttactttgg	600
gnnnntgg	607

<210> 238
<211> 391
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(391)
<223> n = A,T,C or G

<400> 238

acaaacttag aagaaaattt gaagatagaa acaagataga aaatgaaaat attgtcaaga	60
gtttcagata gaaaatgaaa aacaagctaa gacaagtatt ggagaagtat agaagataga	120
aaaatataaa gccaaaaatt ggataaaata gcactgaaa aatgaggaaa ttattggtaa	180
ccaaatttatt taaaaagccc atcaatttaa tttctgggtt tgcagaagtt agaaggtaaa	240
gcttgagaag atgagggtgt ttacgttagac cagaaccaat tttagaagaat acttgaagct	300
agaaggggaa gttggtaaa aatcacatca aaaagctact aaaaggactg gtgtaaaana	360
aaaantgtta nnaaaaaaaaaa agcttgcct n	391

<210> 239
<211> 466
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(466)
<223> n = A,T,C or G

<400> 239
 gggagggaga cgggggagag agagaaaaaaaaaaaaaaaaaaaaaaaag cttgtgttgg 60
 tcccgacgt tcagctgagg tagggacgtg ccgtaggccg gaatgttacc ggctgttgg 120
 tctgtggatg aggaagagga tcctgcggag gaggattgtc ctgaatttgttccattgag 180
 acgacgcaaa gcgaggagga ggaaaagtct ggctcggcg ccaagatccc agtcacaatt 240
 atcaccgggt atttaggtgc tggaaagaca acacttctga actatattt gacagagcaa 300
 catagtaaaa gagtagcggt cattttaaat gaatctgggg aaggaagtgc gctggagaaa 360
 tccttagctg tcagccaagg cgagagagctc tatgaaagag tggctggAAC tttagaaacgg 420
 tttgcctctt gcttgcgttcan tgaagtgagg aatgtgtttt ctgggt 466

<210> 240
<211> 616
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(616)
<223> n = A,T,C or G

<400> 240
 ggtacaactc ttgctaataa aatgtataa tgccacaaggta caaggattta ataaattcta 60
 aaagtgtcta catatatcg tgataactgt attatttagaa atataaaatgt atagaaatat 120
 aaagtataat gtataaaaa cagacccgtc taatataaaac atatataaaag tatgtcactt 180
 ctccctgttat aacagcataa agatcgatct acagtttgcc ctgcgcctgg cactcttaaa 240
 ccactcctcc aatggtcaat gttgaccctt aatcaacaggc cgctgaaccc aggagacccc 300
 acagatgtgt agattcagca cctanagggc cccccctaccc tctgtgtgt gtgttcccat 360
 gactccagaa ataattaaatc gcaacttgca ttattaagtc cacaggcaag ttttgaatc 420
 taactagaaa aagttagcagc aaaggccaaa ataccgcggg aattttttaa gaaaagcaac 480
 cagaatttct taaaatgct tcanttcaag gtctgaattnn aggtgacntt aggtccacc 540
 agcnttaacg nagtgggn atgttttgct gntgggtttt naaaaaagaa gaatctgcna 600
 taaacatgtc ctttgg 616

<210> 241
<211> 598
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(598)
<223> n = A,T,C or G

<400> 241
 ggtactctat gaatgtgtta cccaggagac cccagagatg ttgcctgcat acatagcaat 60
 ggatcaggct ataagaagac ttgggagaag agaaatgtct gagacttctg aactttggca 120
 gataaaatgtg gtgttagagt ttttcagctc ccgaaggccat caggagcggc tgcagaacca 180
 cccttaagcgg gggcttta tgaactcgga attcctccct gttgtgaatgt gcaccattga 240
 taataccctg gaccagtggc tacaagtcgg ggggtatatgt tttgtgcacg cttacactc 300
 cgggcagccc ttggaggaat cacagctgag catgctggcc tgcttccctg tctaccactc 360
 tgtgccagct ccacaaggcac ctgccaccta taggactaga agggagcaca agctttgtcg 420
 aactgntctt caaatataac agcttaaat gccagtgcga gctttgtga natggctcct 480

ttgcttcttg gaaatccaca gccatggta tgcaccgtg ttggccggga acctaccta	540
acgtgacttn tggcacaacg tgaccaacct naaacttaag catgtttaa gtttangg	598
<210> 242	
<211> 565	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(565)	
<223> n = A,T,C or G	
<400> 242	
acagagctc ggtagcaga agaggaatgg cctatggaca tattgactct tatggggcag	60
atgatagtga ggaggagggg gctgggcctg ttgagcgacc gccagtgaga gggaaaactg	120
gcaagttaa agatgataag ctgtatgacc cagagaaagg ggcaaggtct ttggctggc	180
cacctccaca ttctcttagt tttagccgtg atgtgagaga ggagcgagac aagtttagacc	240
cagtccctgc agcaagatgc tcagctagca gagctgaccc cctgccacaa agtagtgtgg	300
ccacacatgc gtcttctgaa ggcaagctgg ctacaaaagg tgacagctcg gagagggaga	360
gaagggagca aaatttacct gcacgttcca ncagggctcc tgtgagtatt tgtggtggg	420
ggaaaaaacac ctnaagaag tgcagagggaa cctgtggtca ggccccaaat cagaaacctg	480
gcaggtccaa ctgcgtgaaa cccaaaattt tttttgatc ctgatgtga ntgaccatnt	540
ccncaccgta ccttggcgn gaaca	565
<210> 243	
<211> 647	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(647)	
<223> n = A,T,C or G	
<400> 243	
ggtactttgga atgggggctg tttttggct ggtctgagtg caggactttg ctgctaggat	60
gcttacaaa tagaaatttg actcagagcc tgcggctggg gaattgtcct caggaagtaa	120
aatggctcgc cagcttcct acctgcttgc gcatccgggt aggctgtgt ctggcacagg	180
acacttcagt gtggaaagca gcatccgggt aggctgtgt ctggcacagg gggatcctga	240
atctccccc tcttcttaag ctgacccgtc cacacattt gaggattaa gcttagagca	300
cctaagaaca gcagcctccc caggagggc caggaccaa agtggcagga atcctagaca	360
actctacgt tttctgcac taaccagctg ggtgactcta aacatgtcac ctccctntgg	420
cctnaacttt ctcatcgacc aaacgaanga gagtagactg ngcttcage ttaagaccga	480
aaaccgtatc ttaacccttt tctggnacct tgcccgccg gccgttcnaa angggcaaat	540
tccnnacact gggcgccgt actaaggat cccacttnng gccaaaactt gggtaaaca	600
tggcanaact ggtncctgng gnaaatggta anccgttcca aatcccc	647
<210> 244	
<211> 603	
<212> DNA	
<213> Homo sapiens	

```

<220>
<221> misc_feature
<222> (1)...(603)
<223> n = A,T,C or G

<400> 244
acaacattca gggctttctt ttttcttcg gcaagctctt cttccctcagc agttttcttt      60
tcatttacct ctccctgttc ctcttcactg tcagttctta gaaatcgaga gtccatgcgg      120
aatctgtcat cggtgcacaaa gtgcgactgt aatatccatga gcttcgtcc agctctgccc      180
tcaaactgag gtttaatttt gaaccttatta ctgtcatctt cagaatcaga ttcgtcatca      240
tcactgctat caaacagctt ccctgatgtt ttacccatag actcttcac ccattccctt      300
cctggatggc tctgctcctg agtcgatgtc tcctctgttt cacattcaact gtcagaaccg      360
aagatgatgt gcgttggctt atcctctgga tgaccatcca aattgccaga gcattatgca      420
ccagcttctt ctgcaactctt tgcttttgc ctgccttcca aggctgncaa acgcttcttn      480
attggcttca acatgcttat cttagact cacatttgac gaattactaa tngeaaagggg      540
agaaaaanagt tttggattcc ccgagngccc ttggatgana cctttgggga ttcttganaa      600
aag                                         603

<210> 245
<211> 640
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(640)
<223> n = A,T,C or G

<400> 245
actggggcacc attaatgagg atgcaggaga tcaggtggcc caggccttcg aagatatact      60
gaaacttgtg ctgctgaagg ctggcgctca tggccttttc aatggcgctg atatcttgt      120
tgagcttgac caccaggggg tcataatcca tactttccac attagccaca atggcatagt      180
tccccctcctt tgcaagaggg ataagatagt gggaaacagtg aaccctcaact tccagatgta      240
agacaagcaa gcagcggctca gccatatcct gggaaacgattt ggcaagttca ctgagagtct      300
gcatgatctg ctctgacact ggggggagat ccgtgttcgt gtggctgctt gagcaggaga      360
aagcatctgg gatgtagaaa gattggaaaga aagctgactt ttgttcgact tgccaaccat      420
tccaagcttt catgcntgtt ngccaaggct ttganggcac ttgaccgtca cgaaggatnc      480
ttgttggaaagg antaattttt caccaaggctt ccaatagaac tttagactcc ttgncaaaaac      540
tggcctttagt aaaacttntt cntcnctctt ttggcctanc tgnttngggt tgngcctntt      600
cattccantt gggnaaaaat tcaaananattt ctggttcttn                                         640

<210> 246
<211> 608
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(608)
<223> n = A,T,C or G

<400> 246
cgaggtactg tcattgaagt ggaaccagcg gccttcgtga gttgcgtatg ctgtgtaatg      60

```

tccagaacca	accgggaac	catggtcac	caccacagcg	gcgaggcat	acaggcagct	120
ctccggcca	ctgttctcg	gctctagtaa	gtagcatttc	atgtcttaggc	ctctcagtgg	180
aaattctacg	tatgtatcaa	ctttatttct	taaatatgt	gtccaatgaa	atctttcaa	240
atgtaaagcat	agcaccttg	gtagttttg	aatccaaaac	tttttgtgg	actttgttt	300
cttttgcata	ttatggcaca	tatataactc	tgtctcatca	agtttctta	agtcggtaaa	360
actgcgaaga	caatctcgta	acgaacaaac	tggccat	tcttgattct	tagagcgctt	420
acttctgaac	tgacttgaa	tatctaata	aaggctang	gaatggatca	aactttttaga	480
atctgcacca	tatgaggcag	ttacctcatt	ttggagaagc	ctccgaatat	agccggacaa	540
cagtnaagct	ccattatgna	ccttggtacc	ttgcagacag	ngtaaaatnt	cctgcaaaat	600
gntgaccg						608

<210> 247
<211> 632
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(632)
<223> n = A,T,C or G

<400> 247

acagaaaagtc	agagaacact	tacagaactt	ggaaaactca	gtttcacag	ctgacaggca	60
taagaaaaaa	aaacttttgg	aaaactcaac	actaaacacg	aagtattaa	aagtaaatgg	120
aagcaccact	gccatttgg	ccacaggct	tcggaatttgc	gggaacacat	gtttcatgaa	180
tgcacatcctt	cagtcactca	gtAACATTGA	gcagtttgc	tgttatttca	aagaactgcc	240
cggcgtggag	ttaaggaatg	ggaaaacacg	aggaaggcgg	acataccaca	ccaggagcca	300
aggggataac	aatgtgtctt	tggtagaaga	gtttagaaag	acactctgtg	ctttatggca	360
aggcagccag	actgnattta	gcccagagtc	cttaatttat	gttgggggaa	agaatatgcc	420
caactttagg	ggctatcaac	agcaggacgc	catgaatcat	gcgcctcctt	tggaccctta	480
ccttggact	tcaggcggn	caacggggtt	tccgctnaac	atttgcagg	gaaatctact	540
ttgctgcagt	accaagtgg	gctaaatgg	catttntgg	gcacggtn	tgcagggn	600
ntccaaatnn	ggttactgcn	tanttgggaa	aa			632

<210> 248
<211> 624
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(624)
<223> n = A,T,C or G

<400> 248

actccgaggg	gcctggcgag	gacatgtaga	aagactgcgt	tttcctttc	aatcgcccc	60
ttttgttggc	caacaccaga	ctgcgcggc	ttgaactgat	gattccgaa	atgaacttct	120
tgcagtccac	acacacctcc	atgggtctcc	agtcctccat	caactcttg	ggaaactgg	180
gttcttcatc	tgatttgc	atagacttag	attttggag	gaacctggca	atgctccgaa	240
gtggccgatg	atgggcagt	gagggtttt	ctgacctcat	actacttcc	cctcttgca	300
gagcagaagg	tcccaatgaa	aagataggaa	gagtgag	tggttggag	ggcagccgc	360
atcttttgc	aacactgtga	gcacaccgc	ctnttacaga	actgacaggt	ataagacaa	420
gtgaagaagg	aaaaccttct	ggttggcaa	ccaaagcaga	gcttnctt	ttcaagn	480

tgttnaagnct ttatctggtg atatttcca ntntgcntta ccaggaccgg cgaatatgnt	540
ncttnntccccc agtagacnag nattcnctgg gaccaaattc taaaanaccgg acttnctgaa	600
gnngaggact gcttcgttta ggct	624
<210> 249	
<211> 636	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(636)	
<223> n = A,T,C or G	
<400> 249	
acagtaaaaaa gtaaacttcc ctccatcccc ggcctgccag catccctgat gccgactttc	60
tgggtgtggc cttagggcccc tcagtgtaat gttaggggttg tgagcacaga ctttggtgcc	120
agtttgctag gttcgaatcc tgactccctc tttgttagctc tgtgcttcaa ttgaaatact	180
gtgcctcagt ttctccctta taaaggcagg gatcatgaga gtgcctgtcc cttgtgagca	240
ctatgaaagt gttagctgtt ctttaccaga ataaatgcat ttctatatct tcccatatgc	300
attttgntaa tttttaaagt atttcaaaca caaagttga aacagaaaaat tgtgtAACAT	360
taactatgaa cttaccaccc agaatttaca aatgctgaca ttttgcataa tttatTTTcNG	420
atctatTTT aangggggga accctgcagt tactgnntaa tcctttccac ccacctttta	480
attttacacc angagcatag tggtcataacc tangctaatt ttttcagtag ctgatataatt	540
tggagaactc cttccttaggc ataaaacTTG ncccttttt taanagtggg taacctttgg	600
gacnaaagggg cttaacaat tggcccatcc ctttgg	636
<210> 250	
<211> 669	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(669)	
<223> n = A,T,C or G	
<400> 250	
ggtagacataat ccggcagctc catggcatct cgcttctggc gctgtgcctc agccccaaatc	60
agaagggttga aatgaggtggc caaatgtctt cgcagcaaaag tcttattggg tggatgttc	120
aataactgtag ccattgtttc tacgttaaaa cgaggctcta gaaccatgag cccaccatgg	180
acaccactgc ctctgagatt gggcgcatat tctgccaagt ccacggagcg cagccactcc	240
atcaactcgat ggttagtcca cttctgaact tctgatgggg cgatggatt ctcatcagat	300
ggccgcctcc gtagacagtt tggttcaaaa gttattgatc ctcaggacct ggatggccct	360
tttgataactg agatgggtgtc ncacacttac caccTTTCAG agacagtaag tcatcaacag	420
tcatgtaatg taacattcga ccatnaaccc ggctttnatt aaactgggtc ttatatttga	480
gggaagggncc atggcattcc aaccctntaa nggacccnnn ttggaaatcc actttcccat	540
gaatgggttc ntttttnaaa atcccanggc nttnngaaagg ctaacttggg ngttcnntt	600
tcatgaaang aaagcctggc ttccaaggc cttttttaa aactttgtgg naaaccctgc	660
aaaaacnntn	669
<210> 251	
<211> 670	

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(670)
 <223> n = A,T,C or G

<400> 251

actattcaag	aggtaagag	aatgtgtat	gaccttacaa	gtatccccgt	tcgcccaccaa	60
ttatgggagg	gctggccaac	ttctgtcaca	gacgactcaa	tgtgtcttgc	tgaatcaggg	120
ctctcttatac	cctgccatcg	acttacagtg	ggaagaagat	cttcacctgc	acagaccgg	180
gaacagtccg	aagaacaaat	caccgatgtt	catatggtt	gtgatagcga	tggagatgac	240
tttgaagatg	ctacagaatt	tggggtggat	gatggagaag	tatttggcat	ggcgtcatct	300
gccttgagaa	aatctccaat	gatgccagaa	aacgcagaaa	atgaaggaga	tgccttatta	360
caatttacag	cagagtttc	ttcaagatat	ggtgattgcc	atcctgnatt	ttttattggc	420
tcattagaag	ctgttttca	agangccttc	tatgtgaaag	ccccgagata	gaaagcttct	480
tgctatctan	ctncccnlg	atgnaaagtg	tggtnaccca	cgggttctgn	gttaccaaata	540
gctttgggcc	tgnaanccat	tgggttcctt	attctgggtc	aaaaattttt	taaccgggc	600
nttgggaact	tgccaangn	ntccacnga	gccangaatt	ttcacttgg	gccaaaaaaaaac	660
cttttgnnggg						670

<210> 252

<211> 498

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(498)

<223> n = A,T,C or G

<400> 252

acacagcaca	ttctcttaag	agaaaacagg	aatgaacatt	ctcagaaaca	ttcacattgc	60
tcatcaaatg	tagcttacc	caaagtatat	agggaaatggc	aaaaacctaa	cctagctgga	120
cattttatac	aagtaagtca	aagttcaaag	gaatcatct	atctttattc	tcagaaatcc	180
aatgttgaat	atcacagttc	ttctttaatg	gaagcagaag	attcagagtc	tttgtctccc	240
aaaatgcctc	agccagggtc	agcacagaga	gtggaatata	aaaagcttaa	ttgtgttaat	300
acatggaaga	caacagttct	cagtcaacct	agccacaatt	ttctgtcttg	gccatctgta	360
agaaatgact	accgtttgaa	attcaactt	cacattcaa	aaaaagaaaa	tcaattcagc	420
tttnagacac	aaagcaaaaac	caaaacaaaa	aaacnaatgg	catagtctac	atatttnacc	480
ccttgacaat	tggggaa					498

<210> 253

<211> 433

<212> DNA

<213> Homo sapiens

<400> 253

acgtttcagt	tcaagtgc当地	aaaataacta	tttgctgaat	tctatttctt	tcagttat	60
tat	tttttaag	ctgtgttta	ttgtgaagcg	agacatccaa	gtgtagaatt	120
aatgcagat	tgcccttgg	ttacgcttcc	tggggagaca	gggggttgc当地	tgcttgagtt	180
caaagtcaag	tccatcatac	ggttagtaat	ttcacctg	tggggctgca	gagtgggtt	240

actgttcatg tttggagctg ttggcaaagt aacggtgtct gagacattga gccctgttcc	300
caaaagggttt ctttctcac gcattttgg tgatatggtg aggaaagagg taaaggaaga	360
atttgttggc aggataagtt aactggtgac ttgcattggg ggggtgaagt tggttgggcc	420
aatctttggt acc	433
<210> 254	
<211> 652	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(652)	
<223> n = A,T,C or G	
<400> 254	
ggtacaaacc caggcctggg cctaggaaag ggcagaagaa aggcaaaggg tcccttggag	60
caggaaccca tccctctctg cttataccca gcacccctca tcccagggttc ctttcttcaa	120
cctccgcctg cctctggaa cacagagcac caagaactga caaacggga ccctccaggg	180
ccacagcgtg gggcagagtc caggcttctg tctccccgca gtggagatc tggggagctc	240
agtgaacctc ctcacccctcc tgccagtagt aagttggaa ggccttctc tgtccccag	300
aacagaacaa actcttgttc tctgtggttg ggaaaaggt gtgggggct tggacctagg	360
aagaagctga gctgaattcc tccagggccc agtgaaaacc cccaaaggga gtttctgaga	420
cttcttagact tggcatttcc ccacttttc ctcccaatga ctccgtgaa gcagttaaaa	480
gtctnggctt agggcaactg gtggacagt nggaaatttg ncccaagaca tttnggggtt	540
tcaaataaag gtttccaaac accngaatca ttatatggan cctgcchngc nggccgttca	600
aagggnat tcngncctt ggngggcgta ctaaggaaac ccactttggg cc	652
<210> 255	
<211> 605	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(605)	
<223> n = A,T,C or G	
<400> 255	
ggtacgacag ttgtgtgggt ttattggaa cctccaacat ctccacaaca atgtagtatt	60
gtggaaggcg ggtaaagtta atgaacagtt tattcttaga aaggtttcca ataggatgag	120
ttgagtaatt gaaaagctgc aatgtttcac tgcttatcgt aggcagatgt tttatagact	180
gtttgcaacg ctgtgtcaca agccaaaact taagttctg aatccagggt atgattcggt	240
tcatatcatc attcacagac ttctccatgt catccagat ggcctgtca agtccataaaa	300
gcatcaattg aaacattcca gaatgtaaat ctacaaaaat gtgcaggcac tctgaattac	360
cacagggctc caagatggaa acaacaagag ctgggagtgac agtctctatg gaagagttc	420
attggcatgt aagctctaa gaatggcctt cagttcttg agcttctgat gagctcttgc	480
atggacactg gnaatcangg agtttctat tgataagtgg gccgatcttc atggctcttt	540
ctactaattt ggaatcanaa ntgcaaagg aggatcgtga aaaatttnna aggtttggaa	600
acatn	605
<210> 256	
<211> 654	

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(654)
 <223> n = A,T,C or G

<400> 256

acagttcaca	agcttcaggc	aaggggcagc	ctgagactat	ccgagtgtat	ttgaggcaat	60
ccaggcacag	caagtcattc	agccacttct	ccactgcata	cccaggggcc	gtatcggtt	120
gactcctgga	ggaaaacctc	atgcagtgtc	cgcgtgtat	ccaatctggc	tgtcgctgt	180
gtcttattct	cagcagtgg	gctgacctgg	ctctggcgcc	tctgttgacg	gagctgctga	240
attagcttga	gggacagtga	ccggccagtg	ccctcatagc	cattgatgg	ggatgccatg	300
aaaacaaggt	aggggccaag	taggcttcc	accaagggg	gggggatggc	ggcagcttca	360
tcaatcacaa	ctagttcage	ctggcccagc	ttcacagcat	ctgcaggatg	tataactga	420
atagtctggc	tgnctctcga	aatacattca	ctctgatcac	tgntttggta	aattcangaa	480
ttanagactg	gataatctca	taatccaaag	gttcctgaaa	nttcanaac	attnaaatcc	540
nttnaatncc	aattcaaccc	aattttgang	tttaanggc	tttgggangg	aaccaanaan	600
ttggggtacc	ttggccggaa	cccccttaag	gggnaattca	gnacntggg	gggn	654

<210> 257

<211> 594
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(594)
 <223> n = A,T,C or G

<400> 257

actgctttt	tattacggta	atacttgcta	gtgggatttc	tctttcacc	aaggctgcct	60
ttactgtgt	aaggacctgt	cagtctggct	gcagccaaat	tggatggagt	cctcattcga	120
agacttgc	tagccatttc	atgatgtca	atttcagcct	tttcatata	aaatattttt	180
ttaattgaat	ttgcattcctt	gaatacttga	gagccaggct	cattataat	tttgcattt	240
tttgcgagga	gatctatata	tttggccatt	gcatgaatac	ttttgttagct	tccattctgt	300
atcctctggg	caatggtctt	gagatctata	ggctccttaa	ttattgcata	ataatctgga	360
tattgcactt	tagaaggcaa	gtttctgaaa	aaagtcgcta	atgagacgtn	ctgatggatt	420
gnagctacca	ctatggcttc	aagaaactgc	ttcaggaact	ncttcaagta	agctggagaa	480
aatcttnag	cactgggncc	tggatggct	tggccatctt	catcaataac	ttcgncatt	540
ggttctcnnt	ttgaaccaac	ctcatttttg	gtccaaggna	ccttggncgg	gaac	594

<210> 258

<211> 648
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(648)
 <223> n = A,T,C or G

<400> 258

cgaggtaact	tgctgtttat	tccttagtct	agcagcatcc	ttagttgtta	gtatatctta	60
cttagttgca	actaaaaaaaaa	attgctagcc	taggctttaa	ctgggagttt	ctattatcta	120
gaaggttact	gtgaaccttt	cagaaaagtg	gaaagcaacc	aaaagagctg	tctcaaagac	180
tgtgtcccc	cagagttgt	ccagctctta	ctgttagacac	tctgaacagg	cacggttata	240
tcatgtccaa	agctcataac	agcacattag	aagaaaagtgg	ggagcctgtt	agaagcaggc	300
atattgatag	tgtgggagaa	gacatagcaa	attacttagc	agatattttta	aaaattttaa	360
aatccaacag	cagtctgagg	caaatgattc	tgnatcaccc	agggctgana	gaatcacatt	420
atacatat	tttcatttta	tgaaagtgtt	tacataccnn	agactngatc	480	
ctataataat	accttatgaa	tatactttac	tttcatcat	ggaaaatgtg	aatatactng	540
cntgatggtt	aagaagaagg	ccggagggtt	cctaccntnc	ntgaancctn	ccttaaaaaat	600
aatccnnngt	taaanngtgg	ncttggnaaa	ttccttattt	tcccaaaa		648

<210> 259

<211> 224

<212> DNA

<213> Homo sapiens

<400> 259

ggtaactcaa	aaagaacatc	aggattaatg	ttcctcagag	tatgttctgc	tgcttgaact	60
ttacttaatc	ctgcttgatg	aggttgaag	aaaagtctat	tcatattggc	tagttccacc	120
ttgtcataat	caaagagtag	caacttacca	atgccacatc	ttgtcagcat	ttcagcagtc	180
acactaccta	ctccaccaac	acctactatt	gctacggcaa	aggt		224

<210> 260

<211> 584

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(584)

<223> n = A,T,C or G

<400> 260

ggtaactcaa	actctcttaa	cggtgatgct	ctgacattca	ctactacatt	tactctgcaa	60
gatgtatcca	atgactttga	aataaatatt	gaagttaca	gcttggtgca	aaagaaaagat	120
ccctcagggc	ttgataagaa	aaaaaaaaca	tccaaagtcca	aggctattac	tccaaagcga	180
ctcctcacat	ctataaccac	aaaaagcaac	attcattctt	cagtcatggc	cagtccagga	240
ggtcttagtg	ctgtgcgaac	cagcaacttc	gcccttgttg	gatcttacac	attatcattt	300
tcttcagtag	gaaataactaa	gtttgttctg	gacaaggccc	cctttttatc	ttctttggaa	360
ggtcatat	ataaaaat	aaaatgtcaa	gtgaattcca	gtgttgaaga	aagaggtttt	420
ctaacat	tgaagaatgt	tagtgggtt	tggggccctg	ggcatcgaag	aatgggtgtgg	480
ttctttctg	gaaactgna	taatcttaat	tggacttaat	ccagnatgt	gaagaaaaccg	540
caggaatcc	catnggaan	gggataaaatc	tngcttaatt	ggan		584

<210> 261

<211> 526

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(526)
<223> n = A,T,C or G

<400> 261
ggtaacttgc gttctgaaagg cttcctgata ctgctcaggg gtgtcaaggc 60
tgaagatgct ctcccacact gcagtcaccc tctccacgaa agacccttcg gtgcccgtgt 120
tccaagtgtg gtaagaggag gagctttgc cctctgaaag ctgctttcc tccagatgcc 180
tggacagtag ctccagaagg caaaacacca atctctgacc ctgtagactt tcacatcgact 240
gcagggcttc ctgggctccc acccagttgt tggccagaag cagctttgg gcacatctga 300
gagccaggg a gcagacaac tcacatcctc ctacgatggc agccaactct gcagccgttc 360
taagtgtatgc cgcatcccccc ttggccca aaactttggc tgcatcataa gcacaagtgg 420
cccctaataa gcatttgca gctacagcat agtggccatc tctttcttagg acnggtcccc 480
agctgangna cctgcccggc gggcgcttct aaanggcgaa atcttg 526

<210> 262
<211> 703
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(703)
<223> n = A,T,C or G

<400> 262
cgaggtacag aggctgcaag aaggtggcat agagggctga aggtctgggt ggcagggcca 60
ctccttaat aaaccaatgt catgctcaca ctcctattgc ctaccttggc atgctggatc 120
agctcacaga tgcaggatca agtcttggaaa gccaatcaga aaatccttca taggcttaca 180
aaggaccacc catggaacat tggggccgt aagactgaaa agacaaacta caccacacc 240
caccactttt cttttccctt tttggccca tcaaaggaca tggagaaggt agacaagttt 300
tcttatccct actttctaa ctcgaggatt ctccaaattt acatcagcag ctctaaggat 360
attcctcaca ggtcacaaac tgaacccaaa atgaaaatcc tttctataaa actacacatt 420
ctttattcat acntatgact aaaggctact gaatggnacc tgcccccggcc ggccgttcga 480
aaggccaan ttcaacacac ttggccggnc cgtactanat ggaatccnaa ctttgggacc 540
caagcttgg cggtaatcca tggccataa gcttggttnc ccggggggga aaattggat 600
tnccgnntac caatttcccc accaaccnntt cccaaancgg gaaaccnnta aaggggtaaa 660
anccttgggg gggcccaaaa nggggtggc ctttaacttcc ann 703

<210> 263
<211> 475
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(475)
<223> n = A,T,C or G

<400> 263
ggtaacttgc agcttacccc aaaataatac ctggtataacc ggacccaata tctgctgatt 60
gatctaacct aaatgaatac aaaccatttc agaaaaagat atacaataga ccacatatcc 120
aggtcatgaa aataaaagct ttcaggtcac ctagcttagt gactattgt tttctgaccc 180
tagactcttg aaagcctatt taaactggcc tctttctcca caccaaaact gataaaaagg 240

agactgatta tgagccagga tttacacaga gattctctat ataaggcata aagggtgaggg	300
gtgagagaga gagagagaga gagagagaga gagacgtgag ggagggagag	360
aaaagagaac agacngaaga tnagagaaag aaaaaggat acagtctggn gcctcaattc	420
cagtatgntg atttggcttc aacaccng tacctggccc ggcnggccc tngaa	475
<210> 264	
<211> 601	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (601)	
<223> n = A,T,C or G	
<400> 264	
ggtactacaa aaaccaagtg ctcgattacc acttaacatg tttagcttga aatgactgct	60
acctttgcct tcaattcctt cccacacacc caggtataca aatatctttt ataccaagag	120
tccttgtaaa agtaaataga gggactccc agggataagg gagggcaaaa aacaggaagc	180
acttgaagcc aaaatctgga gcaactttt agaaggaaga gacgtccgtc ctatttcat	240
atctctgcat ggtatccca tggagaactt gagttaaatg taatgattac acgtggcaga	300
aagacaactc tctagcacag tggttcttc acataggctg ctacattcat tccataagct	360
caacaatttt aataaaaaat atttctgcta aatactttat attcatcatc ataaaaaatg	420
cacagccatt tgaaaaaaaaan ggcaattacc ctaaatgaat attgccccaa gcacagatca	480
acttttatata nggattctt ctttggctcg aaaaatcgca ancgaactg gcagacttta	540
tttaccaacc atggattttg nccagcatgg agttaaattt antgctgtct ggagcaggaa	600
a	601
<210> 265	
<211> 643	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (643)	
<223> n = A,T,C or G	
<400> 265	
actatgaaag gcaggttcc ttgtctggag gaaaaggccc ttgagacacc acaggaaatt	60
cacaccgtaa gcagcgaggc tgtcagctt ttggaaagagg tcacactcc ccggaaaggac	120
ctgcctcctt tactcctcaa attgaatgag aggccctgccg aacgcctgga ttacctgggt	180
gtttcctatg gctgacccc caggctcctc aagttctgga aacgagctgg atttgcctt	240
gtttatctga gacagacccc gaatgacccg accggagagc actcgtgcat catgctgaag	300
acgctcactg atgaggatga ggctgaccag ggaggctggc ttgcagccctt ctggaaagat	360
ttccgacggc ggtccttac tgcctcttac cagttcaata cctnngccgc gaccaccca	420
gggc当地 cacaactgg cnggcgtact aatggatcca cttngttccc aacttggcgt	480
aatcatggca taactggttc gggngaaatg gtatccgtta caatccccac acataacaanc	540
cggaaannnta agtgtaannnc tgggtctaa tgatgactac ttncttaatg ngttggctac	600
tgccttca tcggaaactt ntgcattgn tataatgcnc ccc	643
<210> 266	
<211> 582	

<212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(582)
 <223> n = A,T,C or G

 <400> 266

actgtttacc	agatcttgc	agatgaggtg	cttggttcag	gccagttgg	catcgtttat	60
ggaggaaaac	atagaaagac	tgggagggt	gtggcttata	aagttaattga	taagatgaga	120
tcccccacaa	aacaagaaaag	tcaactccgt	aatgaagtgg	ctattttaca	gaatttgcac	180
cattcctggga	ttgtaaacct	ggaatgtatg	tttggaaaccc	cagaacgagt	ctttgttagta	240
atggaaaaggc	tgcatggaga	tatgttggaa	atgattctat	ccagtgagaa	aagtccggctt	300
ccagaacgaa	ttactaaatt	catggtcaca	cagataacttg	ttgccttgag	aatctgcat	360
ttaagaata	tttgtcactg	tgatttaaag	ccagaaaatg	tgctgcctt	catcaacaga	420
accatttctt	caggtaaggc	tgtgtgactt	ttggattgca	cgcatttgc	gtgaaaagta	480
ttcaggagac	tgtggaggac	tccactacta	nccctgaagt	cttcgagcaa	ngtacaccgt	540
cctanaatgt	ggcatgggag	tatattatgg	anctatgcca	tt		582

<210> 267
 <211> 565
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(565)
 <223> n = A,T,C or G

 <400> 267

actttgggag	gctgaggcg	gcagatcaca	aggtcaggag	tgcagtc	agcctggcca	60
atatggtaa	accctgtctc	tactaaaaat	gcaaaaatta	gccaggcatg	gtggtgcatg	120
cctggagttc	cacctactt	gggctgaagc	agaatggctt	gaccaggag	gtggaggtt	180
cagtgagcca	agatcatgcc	atggcactcc	aacctgggt	acagagcaag	actccatctt	240
aaaaaaaaat	atactaattgt	ccctcaagtt	cttccatatg	aggttaaggg	atccaagatt	300
aagggttggaa	ttctttaact	gttcaacaat	tttgggtgt	catcaaaaaa	ggaatattc	360
atatatattt	attnaacctc	aatgatcaac	attgtaaaaa	gtcagttatgg	agaaagatca	420
ttctgacc	ttcagaaacc	acctggata	tgaacattt	gatccanat	tatgggat	480
nctaaggacn	atggtaaaaa	gaatcnan	attaaaatgt	ctatttcna	tggaccttng	540
ccccngaaac	acncttaagg	gccna				565

<210> 268
 <211> 661
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(661)
 <223> n = A,T,C or G

 <400> 268

cgaggtacta	caaaaaccaa	gtgctcgatt	accacttaac	atgttcagct	tgaaatgact	60
gctaccttg	cctccaattc	cttcccacac	acccaggat	acaaaatatct	tttataccaa	120
gagtccctgt	gaaagtaat	agagggaaact	cccaggata	agggagggca	aaaaacagga	180
agcaattgaa	gccaaaatct	ggagcaactt	ttaagaagga	agagacgtcc	gtcctattt	240
catatctctg	catggatctc	ccatggagaa	cttgagttaa	atgtaatgat	tacaccgtgg	300
cagaaagaca	actctctagc	acagtgttc	tttcacatag	gctgctacat	tcattccata	360
agctcaacaa	ttttataaaa	aaatatttct	gtctaaatact	tttatatcatc	atcataaaaa	420
atgcacagcc	ttttgaaaaa	angggcanta	ccccctaaatg	aatattgcca	agcacagatc	480
aacttatata	ggattcttc	cttggttctg	aaaaatcgca	accgaactgg	cagactttaa	540
ttaacaacat	tgatttggcc	agcctggagt	ttaattttant	gcatgtcctg	gaggcnggan	600
aatatgatcca	gaagtaagca	ccaccgnctg	cngggncan	gttcaagaac	ttaagccnng	660
g						661

<210> 269
 <211> 643
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(643)
 <223> n = A,T,C or G

<400> 269						
actgatggga	aggccaat	ttgatgcaat	caccacagt	agggcagatg	ccagttcaat	60
actgaagcca	ctagagggtg	tgatcggtgt	cagatccttc	cccatggtct	ggataactct	120
tcttcccaa	accacacagac	caacacagat	accacacacca	ccatagagta	gaagccat	180
tggtgttgc	actttgaag	aaacatctcc	tgtgccataa	accaaataata	aagcaaccag	240
aggcccaatg	gcattgctta	cgtcatgccc	accatgggg	aatgacccaa	agcaggctgt	300
aaggatctgc	aggaactgga	agangggag	agacttcagg	gtttatcctg	ggcataccat	360
tctttctaga	agaaccctta	ctttctttc	tgnCACCTAA	acccatcttt	gnctttgcac	420
ttatggctat	ctaaaangc	ttaatgaaag	ncagacacng	cattgcagta	actgggnac	480
tgncatttna	antcccttct	tggagctgna	ntaggcctgt	cacttctcat	ttcttngccn	540
ttggtaactt	tttgnncgg	atgaatcnga	gnatgcncat	atgcntggat	tganntactn	600
tatggcctaa	gggtgnncgn	ggtcctcant	tcncttggan	aga		643

<210> 270
 <211> 650
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(650)
 <223> n = A,T,C or G

<400> 270						
gggccacatc	tgcacagagcc	tggagtctgc	gaaggccggg	acccgggttcc	ccggcccaca	60
gtgggggtgt	gcaaaacccga	gagaactggg	ttgcaaaatc	gtgaagaatc	agcatcatgt	120
ttggcagctg	agtattggag	ccaggagcct	gccatgaggt	tttgagaaca	gagtgcgtt	180
tttagagctgg	cagcagcatc	tcagcccaag	agaaggttat	attcccagag	gatgtcagtc	240
ccaaggacca	gtagctgcc	tcagtttgg	ttctgaaaac	taactggcat	caacactggg	300
tgttagaaaca	tgcttgcctt	atgtatcaga	ggacatgctc	agcaagatcc	aagagatata	360

tttggcaact	ttttctagaa	aaggcacatt	gggtatcatt	cattacattc	ttgagttttt	420
ttgggtttt	tttttttt	tgaacagtct	tgctgnattg	ccangctgga	atgtgggtgc	480
caatcacanc	ttattgcattc	ctaatcaccc	aggcctaagc	aatctcccc	ttganctggg	540
actanggtta	cagnCACCTG	gtaaaatttt	tttgtgaac	ggntctttag	tgccagctgg	600
nttaggttct	ngntnaang	gcctctgcta	nntcaaggc	nagcatttg		650

<210> 271
<211> 620
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(620)
<223> n = A,T,C or G

<400> 271

ggtacacagg	tcccAACGTC	tttaaggagc	ccagtagtaa	atcaaacaag	ccgattattc	60
acaatgccat	atcccattgc	tgcctggctg	gaaaagtgaa	cgaACCCAC	aagaattcca	120
tattggagga	gctggagaag	tgtgatgcca	attactacat	catactgttt	cgtgtatgt	180
gctGCCAGTT	caggcgctt	tactgctact	atccgtatac	tgagggaaatc	tacaaactca	240
ctggcacggg	gccaAAAGAAC	atcaccAAAGA	aaatgatcga	caaactgtat	aaatacagct	300
cagaccgaaa	acagtttaac	ttgatcccag	ccaaaaccat	gtctgtcagt	gtggacgcac	360
tcacaatcca	caaccacctg	tggnanccaa	cggnctgcat	gccaagaagg	ccaaactcgt	420
aatgacccgg	tgcactggcg	tccaagggtg	accagactcg	taaatgatgc	cttgggttgg	480
atcaaagggt	cacggggggcc	tantttgg	ttanctattt	ggtcctgccc	gcnggcgttn	540
aaagggaatt	caccactgn	ggcgtctaag	gaccacttgn	ccacttngna	anatggntan	600
gttctnggaa	aantcccccn					620

<210> 272

<211> 670
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(670)
<223> n = A,T,C or G

<400> 272

cgaggtactt	tatattacta	aatgtctgaa	gacaaaagag	caattggaaa	tctctgtttc	60
ttgtttcgtc	atacatagga	aggcgacgtg	atgcaaattt	taacacaaga	tttttattaaa	120
gacgggcaaa	tttgtgaggc	atacctgaat	ttctggagat	atacaatgc	gtgagggtgg	180
catcatatgc	aaatgtggct	ttacaaaattg	tttttatttt	ctagctgtat	ttaaagaggt	240
gttcaaaattt	ccctactaat	caagaagcac	ccctgaaaaaa	actatgagat	aagatagtgt	300
tattaatgtt	ttgcatctaa	agaccaggaa	acacatttagc	caatacagtc	cacaatcggt	360
gaaatgctgc	cgtgcnaaat	gcacgtgcat	atgcntttt	actatattcc	ctnagagacc	420
gtaaaacaac	naccaccacc	aaaaaaaaac	ngtgcnta	aatnngggac	naaccttcc	480
aaaccaccgn	tttactctta	ctggggttta	aggaaattca	ggaagcttcn	tttanccana	540
aagctnaacc	ccttcagttc	ataancttt	nccttggaaat	aaggcctgnt	ntggctacct	600
aaaaccaagt	ctgggggaaa	aggactcatt	ccattattaa	cnntacncc	taaggganga	660
ataagggnnt						670

```

<210> 273
<211> 688
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(688)
<223> n = A,T,C or G

<400> 273
acacaggtaa ccttatgcag cacattgtgc taaaagtatg gaacagttaa cacttcagc 60
cattactgaa aataaacatg tagaaactaa gcaacaagtt aaaatacagt aatgcacaac 120
ttaacaattt taagtttcc acatggagca ataaagcagg taactgaata atttaaggag 180
atgcaaatgg ccctcttcat tctraattct cgccaattta ctcaggaaaa taaatttctg 240
gtcgcaagccc gaacagttcc agtccgatct caccttgatg gaaagtcttc attatctgtg 300
cttgcggcag gacttatgaa tgnttcttct ctttctttc ttctgaactg gccccgttct 360
ctttcttttcc tatttttttcc ttatcatgcc tggactcctt ttggcaccccg aaggagaatt 420
taaccatctt ctcagaattt aatgaatca ctggctttt ctttggcctg aagaatttga 480
cttantttt tncggcatt tctcaattng attaaggggaa ttcnccaagg acttttactt 540
ttaagggtttt gnaaacccca atngtncat tttcccccattt taccgctctt gggttaaanc 600
ccggggggac ttaccgggc cttggttcaa ngaaccnntt ttcggctttt tcngggcctt 660
ttaactttttt ctcnctttnn ctggagn 688

<210> 274
<211> 674
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(674)
<223> n = A,T,C or G

<400> 274
atttaaacct ggtttggata tgccctgtatg tgaggaagat gatggacc ggtagagca 60
gatggaaagat tcagaaggga cagtgagaca gataggtgca ttctctgaag gcatcaacaa 120
tctgacgcac atgttaaaag aagatgacat gtttaagat ttgctgccc gttccccag 180
tgccagcatt acagatgaag actcaaactgt ttgaccgttag cacctggatg aacatttaga 240
gtgcttagtc ttttttctac ttgctttcc aaacactcac agtatataaca acaggcagcg 300
gattgnat tgnnttggtn tccaacttct gctgccagaa gttaaacag aaagcaggaa 360
taatgtgccc attctgaagt tgccacaaaa aataagaccc tggtgaatga aaatataatt 420
ggttttcttc taattaatgg aaaaatctgg gatatattat attaaaggt ggtgcattta 480
aagaatgagt attttacccc gaagtgggtc ctttcatatt ccccgattt aaggatttga 540
nggaccgtac cnggatgggn atgaatttgg tacttcatgg tcacttgaac ccnctaagtn 600
ggccntttt ggattcanaa tcataatgggg aacttcttta agccttcagg ggccncttaa 660
tgccnnncca cctn 674

<210> 275
<211> 638
<212> DNA
<213> Homo sapiens

```

```

<220>
<221> misc_feature
<222> (1)...(638)
<223> n = A,T,C or G

<400> 275
ggtaactggca tggcaccaac atttgctcag cttctggtga gggcctcagg aagcttacag      60
taaaggcgga aggtgaaggg ggagcaggca tatacatgg cgagaaagag gggagaggc
tcagactctt taaaacaacc atatctatgt gaattgagtg agaactcact catcaccaag      120
gagatggtgc tgagccattc atgaaggatc ccctctcatg atccaaatac ttcccaccag      180
gctccacttc caacactggg aattacattt caacatgaga tttggagggg acgagcatcc      240
aaaccatatac agatggtgag acaggagaac tttgtgtgtc cagtcact ggtctgaaga      300
tataactaag tccctggact ttttctcctt aattggagaa ttcctaattgt tcatgatcag      360
cctgantgac cagtggctga ctggcctgaa aggggagata aaacngacca cagcttctt      420
catagaccaa tttaacctt attcatctgn gcagcagaag ggactggnc anatancat      480
caggttagng cttgaatatg ggtactttcc nanatactg ccggccggcc nttaaggca      540
attccaccaa tggggccgtc tanngatcc actcggnc      600
                                         638

<210> 276
<211> 638
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(638)
<223> n = A,T,C or G

<400> 276
ggtaacgtcag atctacagcg aacacaacta ctgccgcctt atccctctaaa tggggagcat      60
acccaggccg gaactgccat gtccagagct aggagagagg acctgccttc tctgagaaaag      120
gaggaaagct gcctactaca gagggctaca gttggactca cagatggctt aggagatgcc      180
tcccaactcc cgggtgctcc cactggggac cagccatgcc aggccctgcc cctactgtcc      240
tcccaaacct cagtagctga gagatttagtg gagcagcctc agttgcattc ggatgttaga      300
actgaatgtg agtctggcac cacttctgg gaaaagtgtat gatgaggagc aaggaccac      360
cgttcctgca gacaatggtc ccattccgc tctagtggga gatgatnntt agagaaagga      420
ctggcccagc tcttgagtc atccactatg aaggatcctg taatgtgacc ccagttccac      480
actgatctca ccgctgatgc tgcagaacag anatttgatg acgaataggc ttggngntta      540
tgcctctatg agggaaagtat ctngacnaga aacttgaac canntntg tttacagtct      600
ttgatggtcc atcatcatga nnngatgaac gccaaccg      638

<210> 277
<211> 734
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(734)
<223> n = A,T,C or G

<400> 277
ggtaacgaga tagatgaatg gaaatggta agggaggtgt tcattcacat ccatctaact      60

```

gcaaaataca	aaagtaagaa	gtcattgaca	tgaagcaacg	acgacccaaga	cgttctcaga	120
tctaaagg	tg aatgcata	gtcagctgg	aaatgcacaa	ggtggaaaaa	taacataaaa	180
aaggcataag	accttgaaga	acatcaatgt	caaagataaa	ttctaaagtc	ccagagaaaa	240
aagaatgg	atcaaattga	cctcagacta	tacgtgagaa	acacggagag	ccagaaaact	300
gtgtatgtcc	atcctcagag	tttgaaggaa	atatttgaag	gctgaatttt	acatccagct	360
taactatcaa	ggcatgccaa	gtcatgttat	tcttaggcct	tcaaggnctt	ngccctttt	420
ctcngeaaaag	cccgaatttn	aatgcctt	aaagaccgtt	cttcaaccn	gaagagaaaa	480
gaaancncng	gangggtgct	ctttagat	ttcagtcncc	cacaggttnc	ccaaatnnggg	540
cctaaggaaa	ttccgaagag	gtcncaa	nttnaccat	tacctcccc	caatngggga	600
accccccgcac	agggnnttan	ccatnnggg	taaagggtt	ttgacccggg	ggggccttgg	660
caaggtancc	tggccccggg	cgggccc	nttacccat	caanttccn	gncccccttg	720
ggggggccgg	tanc					734

<210> 278
<211> 586
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(586)
<223> n = A,T,C or G

<400>	278					
acatggtaaa	tggaccacca	cattttacag	aaagcacagt	gtttccaagg	gaatctggga	60
agaattgcaaa	agtcgttac	tttagtaagg	atgggacctt	gtttgcctgg	ggcaatggag	120
aaaaagtaaa	tattatcgt	gtcactaaca	agggactact	gcactccttc	gaccccttgc	180
aggcagttt	ccttgaattc	tcacccaaaa	atactgtcct	ggcaacgtgg	cagccttaca	240
ctacttctaa	agatggcaca	gctgggatac	ccaacctaca	actttatgtat	gtgaaaactg	300
ggacatgttt	gaaatcttac	atccagaaaa	aaatgcacaa	ttgggtgtcc	tcctgggtcag	360
aagatgaaac	tctttgtgco	cgcaatgtta	acaatgaagt	tcacttctt	gaaaaccacc	420
aatttttaaca	caatttgc	ataaantgca	tttgcacaa	attaatgact	ttggattatc	480
accctggacc	ccaaaccatac	caaggtggct	ggctatgtt	ccagaagtn	aangngcccc	540
cttatttgg	agaatatac	agtanc	tttgc	gcgggaacac	ccttan	586

<210> 279
<211> 664
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(664)
<223> n = A,T,C or G

<400>	279					
accaccgagg	ctagcacagt	caaggcctcca	gctaagctgg	atccctgaag	cctgctatca	60
tgcagacagg	ctatgcggct	gcctcgacc	atgcttagggc	acttgctggg	gtgtcaacct	120
accaccaaaag	gggtctttt	gcaaacctca	tggggAACAG	gaacattcct	gttcatccct	180
ggccacaggg	tgcaagaccca	gcactggccc	ttgcgtgagt	cagagcctgg	ggctggccct	240
agccccttct	actgacttcc	tcatttaagc	caattatata	agctcacatt	gatcagggag	300
ggagggaaag	agctaaagag	ggtcacacaa	gtggctattt	tccctgcagt	gtttctgtgt	360
gtgaaaata	acccagtcca	ctaaggggcg	ggagtgaatg	gatggctgga	ttttccccaa	420

gctccttata	gcctaattgtt	gtcaggatgt	gagttatgagg	aatttagcct	cttataagtga	480
aatggatcca	actctgggt	ttgcttan	gaaagctncc	gtcaggctn	ctataatatg	540
aaaagaagtc	accattgggg	aactagagac	cccagacctt	ttcatatgga	tatggagaa	600
tgtaatgcat	ntangcctng	tgctgaaact	ttaggcctnt	aggcnggtta	aaacacttga	660
tttt						664
<210>	280					
<211>	448					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(448)					
<223>	n = A,T,C or G					
<400>	280					
actaccacag	actgttgact	tttagttct	taaagagaaaa	aattgcctt	ttactagaaa	60
gcctttgtat	attgcaattt	ttctgtttgg	aaaaatctaa	ggattactg	tggtagtct	120
tacagaagaa	atgtggattt	gataaactag	tgcctatgat	ttaacttat	gtttgatata	180
tagtagtaag	gtttagtata	atgttggatta	ttttgtgc	acagcccaga	attgtcactt	240
atatgtaa	agaaaacaat	gagctctgct	tccaaagtta	ttaattttc	tca	300
aatgttattt	ttttaactca	agcatttgct	ggatcatttt	tctacaaaac	ttgggtgtac	360
tgtatcancg	ttgtgtaaac	ctagtacc				420
						448
<210>	281					
<211>	677					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(677)					
<223>	n = A,T,C or G					
<400>	281					
gcgtggcg	gcccgaggta	cacccatcaca	ggaaatccgc	aggcggggat	cttcagtc	60
ctttaaacacc	ggaaagtata	aacgggacag	atgatgaaag	aacacctgat	gtgacacaga	120
actcagagcc	aagggctgaa	ccaaactcaga	atgcattgcc	atttcacat	agttcagcaa	180
tcagcaaca	ttgggaggct	gaactggcta	ccctcaaagg	aaataatgcc	aaactcactg	240
cagccctgct	ggagtcact	gccaatgtga	aacaatggaa	acagcaactt	gctgcctatc	300
aagaggaagc	agaacgtctg	cacaagcggg	taatttcagg	gctgatgtct	atagggattt	360
agggctaaca	ggtttcttg	atcagaagaa	attttgcatt	tagattcage	acagggatat	420
cttctagttc	tagatgtca	gaacatagat	atgggttgn	tgatatgcat	ttgggttatt	480
aagaaaaata	tttccatag	tttaatgaga	atgaagaata	taccctttg	aagcaacaaa	540
ncatgtgatt	cccatattat	catgggct	gnatgcnc	agtctgc	ggcggcgtaa	600
ggcaatcagn	cctggngccg	tctnnggacc	acttggccac	tggngacagg	caactgtctg	660
ggaatgncc	ccatccc					677
<210>	282					
<211>	691					
<212>	DNA					

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(691)

<223> n = A,T,C or G

<400> 282

cgaggtacct	tgcgtttat	tccttagtct	agcagcatcc	ttagttgta	gtatatctta	60
cttagttgca	actaaaaaaa	attgctagcc	taggctttaa	ctggaggtt	ctattatctta	120
gaaggtaact	gtgaaccttt	cagaaaagtg	gaaagcaacc	aaaagagctg	tctcaaagac	180
tgtgtcccc	cagagttgt	ccagcttta	ctgttagacac	tctgaacagg	cacggttatc	240
tcatgtccaa	agtcataaac	agcacattag	aagaaagtgg	ggagcctgtt	agaagcaggc	300
atattgata	tgtgggagaa	gacatagcaa	attacttagc	agatattttt	aaaattttaa	360
aatccaacag	cagtcgtagg	caaatgattc	tgtatacctc	agggctgaga	gaatcacctt	420
ataacatatt	tgntatagcc	ctttacattt	tatgaagtgn	tttacataca	tcagagctgg	480
atcttataat	aatacattt	gaatataact	ttaactttt	atcatgaaaa	tgtgaattat	540
actgacctga	tgttaagaan	aangccggaa	ggtttctaac	ataacctgaaa	tcccttaaa	600
aataattcca	ggtttaaang	tggncttgaa	aanttcctta	ctttccaaaa	tntatgacct	660
gccgggggcn	ntnnnaaggng	aatccnncc	n			691

<210> 283

<211> 668

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(668)

<223> n = A,T,C or G

<400> 283

acatggttct	gtgacatggc	tggaggtggg	cgttctggac	aagtaaacaa	tttactgggg	60
agggtctgt	gttccacact	tagtgccta	agtttttagc	caaggcttta	gttgtccctcc	120
atgagcaatt	gtagaaattt	gaaatttgc	atgatttttt	atgagaaagg	ccacgaatgt	180
gtgttactat	tagtgcata	ccacatattt	tccagtcatt	gaaaatggcc	taaaagataaa	240
tttacctgca	aaacagaata	ttatgcagct	ataaaaataa	tgcataatgaa	gatttgccat	300
agagtggaaa	aatgtttgtt	agttaaaaat	caaaaaaaaaa	tgttaggaaac	aaaattttac	360
atatttgcata	tccactgtat	aaataaataa	aatggagaaa	catttgagaa	aaatcatcca	420
ataatgggtt	tctgtgggtt	gtaaaagcaa	ttgaaatgtc	ttcccttacac	tttaataat	480
ttttaaaaag	tatgtaaaaat	gccaattatg	acaatgtcaa	gctagatgaa	catcccatc	540
aaatttggaa	cccattttaa	atttagaaag	cncggttgga	ttcccttctc	tatcctttt	600
taaagcaaat	ggcccannc	tggngnntt	ttgacccaaac	ctttcaaaat	tnggcttaact	660
						668

<210> 284

<211> 777

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(777)

<223> n = A,T,C or G

<400> 284

acagtattta	aggattttc	cttttagctt	ttcatctcca	gtggcattaa	acataaaaag	60
accctggcat	ttttcacat	acttgaatcc	ctaaatgcac	ctgtctttca	ctttttgaga	120
cagactgaat	atatctaaaa	tttccagcaa	aaaaaaaaa	gcatttaact	tgccaccaagc	180
aagaaaaat	aaatacagtt	aactgcatta	agataatcac	gttaaaattt	ttactatgca	240
gcacagaact	tcattcttat	agtattctt	ggttcaaccc	ttgaatcaat	tttaccactg	300
attaaataaa	tgactcaaag	acatctgtaa	gtcatgctgc	tgtgtttga	aagtctttaa	360
ctaaat	aatgcagaat	ggatagtgat	tattcaatta	gaatttaagt	aaggggatgg	420
tgatantana	aggctggaaa	atnccttaat	ttttaaaaaaa	atcagaatag	gcntttaaat	480
aggtaaaatc	acttcaatt	nttccccaaa	acctgnangt	ttcccggaaa	aaaggttta	540
aggcttnaa	ggtggggaa	gncccaaggt	ttttaactta	tnccatggaa	gccanngcct	600
tgcatgggn	ccttagggna	accccccngaa	tcccnntcccc	aaaaggggggg	tttaccctt	660
tggattnaa	tttggggnaa	ccttatnng	nccttnggg	nttaccttng	gaaanaaaat	720
tnnnttttaa	atnnttcan	gggnnggaa	atttaaaggc	ctttttttt	gggaaaaa	777

<210> 285

<211> 692

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(692)

<223> n = A,T,C or G

<400> 285

ggtacaagct	tttttttttt	tttttttttt	tttttttttt	aaggatttac	ttttcttaac	60
aagtgaacaa	tttgcctcta	agcgtaatg	aaaggcaaca	cctccctnta	atggccaaag	120
gaagagatg	gcagtaagct	ggctttcca	atgngtcaca	caatccttca	tgccattaag	180
ttctccttgt	tggaaaagaa	attaggtgt	tttgataact	tagaaaagtt	agtttttagac	240
aacagtgaat	ttcagctaca	aataaaaaat	caaatccatg	tatataaggc	ttctgtatc	300
gatgtcttag	aggaacatct	gctcatttc	tccaagcccc	agtcctataa	atcaaggcaa	360
gtcaagtaat	taagcttcaa	ctatTTGGC	agctttgcaa	ttaaaaatgag	cnaagcacta	420
tatctatcct	tcatatcngg	atataattaa	ggtccaaactt	ggtacnccca	atnttacatg	480
ccgagaggcc	taaaatttnc	nnnttgggtt	ccnggtttaa	ttaaagncca	taanggnctt	540
gcnacnaatc	ttttccct	ncccaaggga	aatttccctc	nnattaccaa	accctgnct	600
caatttnttt	ccccggnaat	ttgaaaggcc	gggtttntcc	tttcaaaaana	aatttcccc	660
ggggattaan	atttggggccc	caatttctta	nn			692

<210> 286

<211> 709

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(709)

<223> n = A,T,C or G

<400> 286

actgtgccag gcatattttagatgtcttgggg ggtgtattgt atacctgccat 60

tttctgaatt gagttttctt ttcttgatgt tggtttcctt catabcacct caaggtagt	120
atttgtgaag gaataagcat gatggaaata atagtcttga aaggagatat gttgtatata	180
atcaggagga agaggaagga aggacttacc cattttgata ttttgcgtt ggtggccagt	240
tttgcgttctc atagggaaat ctgaccacc tgcgtatgtt gtcctaagg aactgctgtt	300
gtaaagcgct catcaagagt tgaacttcac gtgccttgt tggaaatatg gaaaaggaag	360
aaagccacag gactgcccatt tcagtcttgg gaagattggg atgattctgc acaagcaaaa	420
atgactgaag ttatgtata gacacaccc taccaatcca tcttcagctg actgaatgtt	480
gnatgatacc ctcttcaaa gcagangtag aatggtcang gttcaccat ggaatttct	540
acttaatttc gttttngga atcaacttta ccnnnaatncc aggtcccctt tnggaaaaaaa	600
tccttaaatc ttgtgtttttnaaaaat aanttnggtt catantaaa ggcccttgggn	660
ttaanccang gtnncnggtn cnatttatt tgaaccctt gcccattana	709

<210> 287
<211> 231
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(231)
<223> n = A,T,C or G

<400> 287	
acaagctttt tttttttttt tttttttttt ttttgcgtanag atgcgggtct cactatgttgc	60
cccaggctgg tctcaaactc ctgggctcag gttctcctcc tgcctgggcc tcccaaagtgt	120
ctgacatcac aggcgtgagc caccacaccc agcccccttg ggtgtttta aatataactt	180
tggcatttat aacaaatgca accacatgtt anatcttatt agaagtacct n	231

<210> 288
<211> 681
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(681)
<223> n = A,T,C or G

<400> 288	
accctcttcc ctagcacccca ggccagtatt gagatcgatt ctctctatga aggaatcgac	60
ttctataacctt ccattacccg tgccccattt gaagaactga atgctgaccc gttccgtggc	120
accctggacc ctagagagaa agcccttcga gatgccaac tagacaagtc acagattcat	180
gatattgtcc tgggtgggtt ttctactcgt atccccaaaga ttccagaagct tctccaagac	240
ttcttcaatg gaaaagaact gaataagagc atcaaccctg atgaagctgt tgctttaggt	300
gcagctgtcc aggcagccat cttgtctgga gacaagtctg agaatgttca agatttgtcg	360
ctcttggatg tcactcctct ttcccttggattt gaaactg ntggggagt catgactgccc	420
tcatcaagcg taataaccacc attccctacca agcagaccag accttnacta cctatctgac	480
accagcctgg nngcttaat canggttatg aaaggcaac gtgcctatgac caangataca	540
acctgggttg gcaagggttga aactacaggc ttacctntgg accccgaggg gtcctnaaaa	600
tgaagtctt ttgacattga gcccagggtt actcaaggnt ttgttnggca aaaancttgg	660
ccggAACCTT angggattn n	681

<210> 289

```

<211> 565
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(565)
<223> n = A,T,C or G

<400> 289
actcaaccta acttatagtt agcagctgga attctcaact cttccctgcc agcactatac      60
cacagtgtgg aagaaattag tcaaatgctt gtttcctgc ttctctttc agctgttact    120
gtgcgttgtt tgaaagtagt tttctctctc aaagccgttg cttatatcgtaaagaatgaa    180
ggtttgtgtt taaaatttat tgcattgcaa aggtagtt cactgaagtc atgcaccatt    240
aaataagatg aaatattgtt atttattgtc ctacttccta agccgttaact tctttccctc    300
tgtgaatttg cattgagtca ctcatgctac actacatcgc ttttagtattt gagatggcat    360
ttatgtttcc tctcggttat catgaaatgg gtcagattc catcagattc cacctctgtc    420
aggtggactc ttgtctgcct tccatgatga gatTTTTT tctccttccc ttctttaag    480
agaggctgcn gaactangng gcaatcaatt tggnaaccag tctctggntt ttttcatta    540
gtaatttcta tcatagttca ctggg                                565

<210> 290
<211> 699
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(699)
<223> n = A,T,C or G

<400> 290
ggcacacaat tctgcatttc tctcttgta atgggatccc agttttattt caggaggcag      60
tgtgccagtc tcagtagatg gaacacgatt ggtctattca gccatgacaa ttctgttccc    120
tgctgtctta gctttgtttc cagctagagg tgcaatggta gctggctcg gccaaggggca    180
tctaagtggaa gatatgcaga gggagagagc agggaaacaga cttctgacga gttttactt    240
tctgatagaa ggtgacaggt ccagctagtt tggcccttcc tcttcctcca cccctccctc    300
cttgaacgca gacatgattc ttggggatac agcagccatc ttgggaccat gaagtaacga    360
gcactgagat taaggcaaaa ggtcaagac gtgaccccta ctttcgtgaa gttggtaac    420
caataccatt aacccaccca tctccagaat ccatgctatg tggnaaaaca atcttctggt    480
tggtaaacc actgnatc aaggtttncn ttncttgcaat ctttgcggaa gncctttta    540
naaggtacct tgacccaaat gcnnaaggaa ncttggccctt tggaaattgg ancccgnan    600
acctgggtt ttaagcccat tttggcnnn tttnggnaag ctttaagggt aaggcctgaa    660
cctttggccn aaagggggna actngggttc cccctttcc                                699

<210> 291
<211> 699
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(699)

```

<223> n = A, T, C or G

<400> 291

ggtaacttggg	gacttcaggc	atacagccgt	tccagaatat	ggctatccct	ctctccact	60
cagaaagaga	tcttgtccct	ggaggctgt	atttggagtt	cgatttagat	attgatccca	120
acatttactt	ggagtataat	ttcttgaaa	cgactatcaa	gttgcffffa	gcaaacctag	180
gctatgcgag	aggcgtagat	ccccaccat	gtqacgctgg	gacagaccag	gactccaggt	240
ggaggttgca	gtatgatgtc	tatcagtatt	ttctgcctga	gaatgacccc	actgaggaga	300
tgttgctgaa	gcatctgcag	aggatggtca	gtgtgcffffa	ggtgaaggcc	agtgtctca	360
aggtggttac	cctaacaagct	aatgataaga	ccagtgtttc	cttctctcc	tccnggacaa	420
ggtgtcatat	accatgtcat	tggtgtggac	ccggttctaa	atcatctgt	ggctacattc	480
ctgntnacac	atacccttgc	aactttgang	cnngaaaaagg	taagtggggc	cttccttaagg	540
aaaaggnctt	tccaaggggt	cntcaatctt	tttgcncgg	ntnggnntct	tnaattgggt	600
ntttggaccc	cnaatttggg	aaaccgaaat	attnnttnana	ggctttannn	nngggaaann	660
tntttnaaaa	ccggntccnn	nantggccct	ttnaggtnn			699

<210> 292

<211> 688

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> (1) . . . (688)

<223> n = A, T, C or G

<400> 292

acagtcatcc	cactacctgg	ctatttcatt	acttggtgct	ctagacaagg	tcccaagaac	60
tgactggatc	ttggcttgtt	ctgtttctgt	cattgctaatt	ataatatatgg	aaacattgct	120
aaaaagaaca	gagatggcca	tggatatggc	taggttaggt	attcatatcc	aaatatctga	180
actctaacct	aatgtggata	tgattctgtt	gcatttatatt	aaaagctatg	atgatgcaat	240
gcaggaaata	acctttcatt	ctcccccccta	gaggatcacg	acaggtgctt	caatgcctgc	300
cttatctatg	ggacagtagt	gtgattctca	gtgagaagtg	aaggcctttg	gggattttgag	360
tcagggaaagg	gaacatggct	aagtgcctgg	aaactctggc	aacagtctgc	gggtagaatc	420
tacttggcct	ctggataaga	aaatctgtgc	ttcantgaac	ttaagnggtt	tggaaaatt	480
taaccccagaa	ttttnnanga	agcataagtn	cctggtcaa	ganaaccagc	ttacggaaaca	540
tgcacattct	taacatangc	aacctttggc	caatnaatcc	catnggatgg	cccccttaag	600
ggaaagccat	tttgggttct	tggatccaa	cnttttaagt	tcaaactttt	tttttaagnt	660
tttagntcct	nggcccccttt	agnaaggn				688

<210> 293

<211> 572

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) . . . (572)

<223> n = A, T, C or G

<400> 293

ggtaactgctc tgcttaggcca gtgaccaaattt gccatcagag atgtggctcg ggtcagcatt 60
gtccttcctg gtgcaggcca tggtttatac agagcactga ccaccctgtg gcactgtAAC 120

aggtgaccat	aggagacttg	tgcctggaga	acttggggcc	actgtggtag	gaacagcagg	180
ggttctgaa	atggacacta	atcctaggat	tggAACCCG	gcttgctgtc	tgctctctgg	240
gtgtctcagc	ctgtctccca	cctgcctggg	actgttttct	cttgggtgga	ttgggaagct	300
catgtgtggc	ctcatctcac	ggggtgaggt	gaagactcaa	tgaggcacta	cctgggttcc	360
acgggggtggc	ccccgtgggt	ctctccccca	gggtgtccct	gcccccgtg	caagccagtt	420
tctgctgaat	taccagcca	gctttgccaa	accacctgac	tttccttcag	aagacttcag	480
gcngaaaaaac	agggttaaag	acctaccct	tctgaacttg	gttcantgct	antgcanaac	540
caagtccctc	acaancttag	gtccatatag	gt			572

<210> 294
<211> 692
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1) ... (692)
<223> n = A,T,C or G

<400> 294

acttcacaag	tgtatgaaaa	tgatgtgacg	ttaacggctg	ataaaaggcaa	aacagaggac	60
actttcttca	tgagcaacaa	accccaaaga	tacaaagaca	agctaccaga	tagtgggtat	120
tctatgctta	ggatcagcac	cattgcttca	gccattgcag	aggcatcagt	taatactgtat	180
ccttcccaac	ttgctgcaat	gatcaaggca	cttcaaata	aaaccagaga	caagactttt	240
caggaagatg	agaaacaaaaa	ggactattct	catgtgcgtc	atttcttacc	taatgattta	300
gaaaaaagta	atggatccaa	tgcaattgtat	atggagaaaat	acctaaaaaa	aacagaagtt	360
agttagatatg	aaagtgcatt	ggaaaacttt	tcaagggtcta	gtatgtctga	tacttgggat	420
ttatcttgc	caaagaacaa	actactcaag	acattcattt	cggtggactt	aagtgcctta	480
gtggnaatgt	gaaggccccn	gaagaaaacn	cagcagctat	tgttatgttg	aaaatggnga	540
gagtgagaat	caagaggcn	tttagaanct	aaacttctca	aatccggttc	caattgagag	600
aatacngggc	cntagttgtat	gggaaaactg	tccnttgac	caattccaga	agtnngaccc	660
atnAAAactn	cctaatttcc	ctccnttgga	gg			692

<210> 295
<211> 459
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1) ... (459)
<223> n = A,T,C or G

<400> 295

cgaggtacaa	tgcaacaaaaa	tacaaaatac	atgcttggtg	aacattcggt	cataatctaca	60
agacggcagc	tagagattag	gtttcaatac	tgaccattta	ctatcctaca	agcaatttagc	120
attacatcat	aatatgccat	caaggcaact	tttttatac	tgaaaaaaatc	aaaataaaaaa	180
ccgttatttg	taaactttta	tacgaaatgt	aactcttcaa	gtggaaataa	aaaataaaat	240
ttgtctattt	actattgaat	acacatagga	tttcaatttt	cattataccg	agaaaaaaagc	300
tcttttgtgt	tggaaaata	atgcttcaaa	aaataattag	tagaaaaacc	cactagtata	360
atgnnttgcc	tttcaatgcc	agcacagatt	tgggaacata	ctgaggatga	aagttataga	420
cattcacagg	tgaaatgtcc	tgccnngcgg	ccgtcgaaa			459

<210> 296
 <211> 677
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(677)
 <223> n = A,T,C or G

<400> 296
 taaagactac ctacacatag atatatgatt ccaaagtcat actttctcca tccccacatt 60
 agccaagtga atacagggcc aaatgggttc ttggaatgat aataacaaag cattacaaag 120
 tgggtccccc tgggtccagc cttgtccaga gttttgggt atatatttct atttattaca 180
 atttacctt taaattgtaa aataaacctt tgggtggaca gagccaatgt ttcaatcttg 240
 aatgagtaaa gaaaataactt tggaactgat cctcattttg aaattgggtc taaattatta 300
 tccatttcca atgtctgaaa ttctctact tcctgctaaa actctcttgc tgccaaagtt 360
 gtttctgtaat ctgtctcaat gactataatg taaaattaaa gaagtaacca tgcttctcaa 420
 gggggaaatt aaaagtgggtt aatggatttt actcaggcta attgggtggc cagaaatcc 480
 taaggccaca gcttngggg ggtccgtgtaa natgtccagg anggcagnaa cattagttcc 540
 ttcttntgtt aatccaaaaa cttagaaacc nataatctt ccctggcatt tccttnntaa 600
 aatggccagg ccnttgggg ggaccttggc cgacccccct tangggaaat ccnccactgg 660
 gggccgtctt agggann 677

<210> 297
 <211> 574
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(574)
 <223> n = A,T,C or G

<400> 297
 accgtgggtgt tagaatgatt gttatgtact gcagacaaaaa tctgcttttta gaggcaagcg 60
 gatttctgac aaagtaactg atccttttggaa tggcataaaat tcactttggg gactagcctt 120
 attcttcctc tgaggtcctt cgttctcaa ttattcaat tcataatca aaagtgttct 180
 ctccccagtt gcaattagaa gaagtcttgc tggttcagct tcttcttaggg accctttcc 240
 atgttcttca tcaacacagc agttaagagc ctggctagct tgatagatca ctgtctgttgc 300
 catatttatt tcgttatttga gttctgtcat ttctgtttt atattaactt gacaaggaaa 360
 ggcattattt ttttcatcca gtttgaagt aacatcttcc ttccgaacaa tcacctgttgc 420
 tattgtatggaa cgttctgtttt ctttgaatct ttgagatcta tatgtatcaa tgctgtaaag 480
 aagatcacga tcttcagaac ccaggctatc accagattca actcgangga ccnagttttt 540
 tggaaattttc ctgggtttgg actttcatca cttt 574

<210> 298
 <211> 535
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature

<222> (1) . . . (535)

<223> n = A,T,C or G

<400> 298

ggtacattta	gctttggaat	gatggagaga	cacagagata	tatgtaaacg	tcaagagaat	60
caactccactc	cacgtctggg	tccacaccct	tccaggctt	gtcttggaca	ttatgtggct	120
ggtgcctgat	tccacagtga	ggatgcagga	gcccgagggt	tgatggataa	agcatttagga	180
gacaatcaag	tgtcaggaat	tggtcaataa	gaacggctt	aataatgatt	taacaaggaa	240
gacgagtaaa	aaacaatccc	atttcatctt	tagaaagaat	taagtcacta	aatgatttct	300
tctaagtgt	tgccatttgc	ttggatgaga	tcttgaaggt	tttccattct	ttctccaccc	360
agttaaagAAC	acattgacta	gaaatttgt	acaagaatct	agtaaaggcc	ttttccctcc	420
tgctcctcat	tatgccaatg	caagaacact	tatagcttc	tgngccaaag	tatgtacat	480
ccatgncttc	atcttggcct	aacttctgna	gtacctggcc	gggcggcccg	ttcn	535

<210> 299

<211> 644

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) . . . (644)

<223> n = A,T,C or G

<400> 299

acatatttcc	cgggataaga	tcaccaggcc	aggagcgaag	ctatggaaga	aaggggaagg	60
gctccccaaac	tttgcacaaca	acaatatcaa	gggcttttgc	ataatcactt	tttatgtgga	120
ttttccaaaa	gaacagttaa	cagaggaagc	gagagaagg	atcaaacagc	tactgaaaca	180
agggtcagt	cagaaggtat	acaatggact	gcaaggat	tgagagtgaa	taaaatttgg	240
ctttgtttaa	aataagtgaa	taagcgat	tttattatctt	caaggtttt	ttgtgtgt	300
ttttgtttt	atttcaata	tgcaagttt	gcttaatttt	ttttatctt	tgatcatcat	360
gaaatgaata	agagggctt	agaatttgcc	atttgcattt	ggaaaagaat	gaccagcaaa	420
agggttacta	ataccttcc	tttggggatt	aatgctgggt	ctgcccgtt	gtttcaagaa	480
ttaagctgca	gaagacttag	gagcaaagaa	ccccatntt	agggtggagt	gtaccattcn	540
tcaaatgcca	ctggaaagct	gtttaancat	ttggngtatt	aaaaaaaaa	aaaaaaaaant	600
ttcttgcgcga	ccctangnaa	tcaccctggg	cgtnttngan	cann		644

<210> 300

<211> 642

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) . . . (642)

<223> n = A,T,C or G

<400> 300

accttcccaa	ccatttagt	gagtcaccct	agaagcaa	tctccagctc	cagtgcattcc	60
tttagataac	tgccactctg	gtcactatct	tatctacaac	ctcatgagaa	acctcagccca	120
gaaccaccca	gctaaatgtc	ctctgaattt	ctgagccaca	gaaactggaa	gataatgtt	180
actgtttaag	actttaaatt	tggagtaatt	tgctattttag	ccatagaaag	tgacacttcat	240
ttcttcgtgc	ccgacactgc	tgtctctgt	gtttcacatc	cctgtggta	aagctctcca	300

agggctcatc	actaatttca	ggataaaaatc	taaatccctt	aacatagcat	aggttttta	360
caaactgct	cctgtgtgcc	tctcagcccc	atccggccca	ctctgcctt	cctncctgga	420
tcactccagc	tactctgaaa	catactgnac	cttnctaaat	gcngacagat	aaaattggca	480
gacttttcat	aggatgccca	gtgaaatttg	aatttcagat	aaccatgaat	aatgngtgtg	540
ggtataacaat	atttgggaca	tcctatacta	aaaatattgc	tgacncatat	tcttcaaggt	600
attaatttaa	tctgaaatcn	catttaatan	ggcatnttgg	gc		642

<210> 301
<211> 589
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(589)
<223> n = A,T,C or G

<400> 301

cgaggtaccc	tattatgaac	taacaaaata	ttttgtttt	acatcagtct	taatagtccc	60
attttgtca	attggaaata	gtgctagctc	tcttgttga	gaactgttac	ttcaaaaaaa	120
atccaatgca	agggtctgg	aagtccctt	cataacctta	attaataactt	gttagtgatt	180
tacagtaaaa	ctgcttttag	tgaagtata	tcacttggcc	cataaacact	gaaatagatg	240
aggtaatgat	acattagtaa	tgtagtaata	aatttagtatg	ccaattctga	caaaaaattta	300
ccaatagctc	cccccacctt	cacttacaag	agggttcctg	gtttgaaccc	taacataaccc	360
tagatataca	tagcaattct	gctgatagga	aaacccaagtc	ttagcacaca	gctaataaaat	420
gacaaacatg	ggactagaat	ttaagtctat	actgccatga	acctcatgag	gaggagccaa	480
attgntaatt	aagtgcact	ctagttacca	gcactaacan	aacacaaacc	aataacatgg	540
gtgtgggcta	ttnaaaaaaa	ataactgggg	gaaaacatta	ctttnttgg		589

<210> 302
<211> 577
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(577)
<223> n = A,T,C or G

<400> 302

ggtaacttcaa	atgttgctgg	ttaaaaagttt	ttctgcttta	ctcattcctt	tgacagcatt	60
aatttgtgaa	catttatatt	cagttcagct	gtatTTatgg	cacaagatct	catttccaaa	120
atggcactaa	ttttccttaa	gtgtAACAGC	actctatTTT	tagcagtaat	tatatTTTta	180
aaggTTAATT	tgtagaacaa	atgtTTtaac	tataCTTTT	ttctactcta	tactccccag	240
ttacagtatt	tacaaaggGC	tgaagtctat	ataaaaaaaat	gatCTTGGC	tgggcatggt	300
ggctcatGCC	tgtaatCCCA	gcactTTGGG	aggTCGAGGC	aggCGGATCA	cgaggtttagg	360
agTTTgagac	cagCCTgacc	aacatGAAGA	aaccCTGTCT	ctactaaaaaa	tacaaaattta	420
gccaggcatg	gaggcaggcg	cctgtaatcc	caactactcg	ggaggctgan	gcagggagaa	480
tcgCTTgAAC	ccgggaggCC	gaaggtGCCG	tgagttgaga	ntggccattg	cttcagcct	540
gggtgacaaa	cgagTTCAA	aaaaaaaaaa	acatttt			577

<210> 303
<211> 673

<212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(673)
 <223> n = A,T,C or G

<400> 303
 ggtacatatta gcccatgagc ctggcacaga tccctatcta gacatgaggc ccttagaca 60
 tgactttggc attgaccagc ctgttggcaa tgggtcgaaa aggcaagaggg gatgctcaca 120
 ccagtaattc tcatacccgt aatgcttggg atcacctggg gagagttcac aaaatactgg 180
 tgcaggggtc ccacctctga tcatgtctgag tgggtgggtct ggggtgtggc ccaggcatca 240
 tcatgtttca ggccccccagg tgacttctta ggcagcccag ctaagccctt agagccttgc 300
 aatttcccccc aaatgacctc agagggcccg atttgaggaa aatgcctaac ttcaggggcc 360
 cgtaagaatc ccccaaggag catgtgaaat gcagatacca ggcacccccc cagagatgag 420
 ctgangtggg tcaaggggtg aaagtgcang gatcaagtgt ttttccacaag ctccataacct 480
 tcagggaaatg gtgttgtgtt ttggggccgt anaaaaacatt cttgagagtc ctggtnnctt 540
 gtgccttggg gcaccttggg gtggaaatnc caatgggncc ttgnncnttga ggaaggatgt 600
 gccatttaacc tggtaagggg aaacccgaaa ccggtttcaa cttgnccctt gcccaaccgg 660
 ggacccttcn aaa 673

<210> 304
 <211> 426
 <212> DNA
 <213> Homo sapiens

<400> 304
 ggtactggc tcccatat ttaaatgtc caaaataggc aaattttagt acgaaaagta 60
 gatcagtgtt ttccctgcagc tgaagtgtg gttgaaatg gagcatgact gaatgcctt 120
 tctaaaacaa gtaaacctat aattcatatt tccttaagaa aataaaaatt ttatataatc 180
 aagatataat ttaccatgaa gaacacagag ttattattag tgcaagactt tattcatcct 240
 ctccccagcc aaatcccaag agatggcca ctttggaaac ttttactgg cagttactt 300
 aacctaagtc agtctctaa tctagtggc tttgaaatgg ggatgtataa gacaaccatt 360
 tgacacaggt agaaaaacttt tactttta agcccatccc cctggtaaac aatatatgtt 420
 cctgcc 426

<210> 305
 <211> 655
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(655)
 <223> n = A,T,C or G

<400> 305
 ggtacgagat tctgtgtgtc agccagttt ccctccagtg tgtcctgaag ggaaacaagc 60
 ctgatttcca ccttagcaatg cccacggagc aggcagaggg ctttacaac agttcctgg 120
 agcagctgctg taaaacatac aggcggagc ttatcaaaga tggcaagttt ggggcctaca 180
 tgcaggtgca cattcagaat gatgggcctg tgaccataga gctggaatcg ccagctcccg 240
 gcactgctac ctctgaccca aagcagctgt caaagctcgaa aacacagcag cagagggaaag 300

aaaagaccag	agctaaggga	ccttctgaat	caagcaagga	aagaaaacact	ccccgaaaag	360
aagaccgcag	tgccagcagc	ggggctgagg	gcgacgtgtc	ctctgaacgg	gagcccgtag	420
ctcaggaggc	agaattcaat	gtgttatcat	tggcagaac	tggatcctga	aaaattcaag	480
atgctaagca	cctacactac	tttaagaatt	tggaactgaa	catgaanaag	aagacnngaaa	540
ttagaatttg	ggaacctgaa	tagctttgc	aaaaacaccc	aagggccgt	taatcgttc	600
tggtggtgct	nnggtgaaat	gatncatggg	ccttgccntg	gncaagggg	cngnt	655

<210> 306
<211> 684
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(684)
<223> n = A,T,C or G

<400> 306

cgaggtacaa	cacgcctcca	tgtttcagca	tctacgtcat	gggcttgggt	ctggagtgga	60
ttaaaaacaa	tggaggtgcc	gcggccatgg	agaagcttag	ctccatcaaa	tctcaaacaa	120
tttatgagat	tattgataat	tctcaaggat	tccacgtttg	tccagtggag	ccccaaata	180
gaagcaagat	gaatattcca	ttccgcattg	gcaatgccaa	aggagatgat	gctttagaaa	240
aaaagatttc	ttgataaagc	tcttgaactc	aatatgttgt	ccttgaaagg	gcataggtct	300
gtgggaggca	tccgggcctc	tctgtataat	gctgtcacaa	ttgaagacgt	tcagaagctg	360
gccgccttca	tgaaaaaatt	tttggagatg	catcagctat	gaacacatcc	taacccagga	420
tatactctgt	tcttgaacaa	catacaaagt	ttaaaggtaa	cttggggat	ggctacccaaa	480
aggttaacac	agtattttc	tcaaatgaac	catgccttat	tgcagaattc	ttcnnttttg	540
gaaagaacca	ccggccaaaa	cattccccaa	cttntgtaaa	agctggtggg	gacctaatgg	600
ccgccccttaa	ttctgacttt	gaactggaaa	ncctttaag	naaaacttgg	nggctttnt	660
aacaaaatcc	cgcgtanttt	gnct				684

<210> 307
<211> 647
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(647)
<223> n = A,T,C or G

<400> 307

caggtcttgt	atacacaagc	gtccatgtct	cacacaaata	ttgatgtgat	tattcttaag	60
tgttaaatca	ttaacactta	aatgacttca	ttggaaatat	tgaggcagagg	gactgtgctt	120
ctatgcactg	ggcaaggcag	tatttgccta	ggaaactaat	ttagtcatca	gagatactt	180
cctaaaaagg	aaaaataaaaa	aacaaaatgg	tgccactttg	ggttgaagct	actttgttag	240
gcttgaattc	atttatatgt	ctttgattc	ttaaaaaaac	aaaaaacatt	ccattagaag	300
caccagttt	tttgcctaga	ctttgtggat	cagactctac	actcaacaca	ctctaattct	360
cttaaagta	tacaaaatat	gctgatctt	tttaaattat	gatttcctga	attttttct	420
taagtcgtct	caactgattt	actcaacttag	cttcctttcc	tcatcaccta	gtataataga	480
atgnatgtta	cattttatg	aatggcaggt	gtcattataa	tctgnattga	ctaaaaagg	540
ttcttcctca	tgatgctaat	angttttgg	atanttggg	ggatacncat	ttgacagttt	600
tgcattttat	gnatgagccn	gtatccatga	cggggcacgg	attataag		647

```

<210> 308
<211> 660
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(660)
<223> n = A,T,C or G

<400> 308
acctttgtg ctataaacca gatggagact gtgggtgctat tttgtatccc ttttttaatg      60
gaagggtgtt ggggtggcag tttttatcct tgaagacctc agatatgcta agtcaaccta      120
agcaaagtat actcggtgga accctagctc tgggggtgtt tctgaaaat agatataccct      180
gtcatgtaa gttcaggaaa tgctacagac tcaaggatta tttttggga ttcaccatgc      240
acagcacaca ttgaaggctg aaaagtccct gcagaaaggaa aactgactta actttgttc      300
ttaaggatat ttgaccacaa aacccttagt ctgcacatcaca ccaacctgat gcctnctgga      360
acctgtgtc tgtanaatgc gtattagaaa atgttgaca acctgttca ttatcagaag      420
tccccattct gangacagtg gtctctgnct gggaaaataan ggtccagaat ctcaantcc      480
agggaccagn caaggtctgg cacttnanc cagtaaaacc ccattgcata aatcttcatt      540
ccatcaaggg tataantgc ttngccccct tnacaaangg ggaaaanaact cggaanaaag      600
gtnccttggg ccggaaacac ccttaaggc caaattccan acaattgnng gccgtaatna      660

<210> 309
<211> 401
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(401)
<223> n = A,T,C or G

<400> 309
ggtacacata tacacataaac aagtgtagaa gatatatatta catacataca ctcactctgt      60
ctggtagg ctaatttga agaactccca taagttctg ctgcttctcc cataactgct      120
gccaccacca tcagaattca taatcaaacc taacctttt gtttggggca ccaaactgta      180
agacaaaaatt aatttgcacc agtaaacttc aagctgcttt ctttctgaa aactaaacgt      240
ttaacgtata atgtctgtt ggatactgtt ccaaattgtt gattgcattt ggttaatgtt      300
gcatttagagc actttgcaat tgcataattc attaatgtt tgtgagctt catttgtgag      360
ttattggatg atcagactga attttgcag tatcacattt n      401

<210> 310
<211> 502
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(502)
<223> n = A,T,C or G

```

```

<400> 310
acatgtttat ggggactcct aacacaggc tccccctctt ttcacttagga gtttcactta
cagctgacaa tctatggggg cggggggggg gcgcggcaaa aaagcaatga tggaccttgg
ctaattcccc cgacccttt cttaacaata taggtatcg tctatcgta gcttgccct
ttgccaagac cttaggaggcg gctctgccat gagctgctgt gtgctgccct ccccaccttc
agcacactca tctacacaca cacaggtac acccacctcg atgagaccgc cttgtctgg
cctgccccaa cccttggaaat tgaaaacata gagccattt tttctgttt tactctctgn
gcccattgtct tgtccacgaa actttgtga acttccagga ccttacacct gaagccccac
aataaacctgg atgttttggaa agccctngga aancagttt taganaaaagg acccccttaa
gccgaaacag ggcctgttaa aa

<210> 311
<211> 387
<212> DNA
<213> Homo sapiens

<400> 311
cgaggtacct tactcagagg ggctttgatt ttttcaagc acaaagcaag aagttccctg
gattctaaag cacactgtat ccaagttccr ggtggttgaa aatacccttg acattgtttg
cagaacgaaa tggagacttg ttctggaaata ctttggctga tgccacttt acttcgcaaa
caggccacac aaatattggc aggatttggg cttatcgaa caccacactc acagcacaag
atgtgtccag ggctgcgggc ggtggattct gccatatact ccattgttct gtatgcctta
agttttcgcc cctccagacc agccctggat ttgctgaaaaa cccgcaaccaa aatagacccc
ggctgtcccg tcagctgcca acctgg

<210> 312
<211> 654
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1) ... (654)
<223> n = A,T,C or G

<400> 312
ggtagaaaaa aatgcttctg gagatttctt tggcagaaaat gcctttcatc tataattca
tggagaactg cttaatttag ccttaggtgaa aagtagtctt agcagtgtaa atatgtataa
tttagagttt ctaatttccac tggagatct ctaactttt agtggcaaac agatcaagtc
ttttgtctat agacttttctt gtgggggtat taaaatgcaa aagctttattt tttttataa
atggccatact ccattatgtt cagatgtatgg tatggaattt gtcccttgc tttccccac
tggtagtctt tcaatgttata gatggccagc agagttcaga aatagagcag ggatttaccc
gttctttgtt tggacatccc attttctttt gccagaccca tggatggcaat catgtatgaa
ctgngtata cttctcgtt ctttctttt tctttttgtt aagatggata tcaaaaatag
ttgctgtgcc aaaagtatgtt agccttctt aagaagaaaa cccaatctt ttcttaataat
aatcctgnga aatgcttca ttcatttcatc taatttttaa gccaatggc accaaangct
gntgntttta actangaaat ttgaaatgnc agnnttaaag ctttttaaaa aaag

<210> 313
<211> 656
<212> DNA
<213> Homo sapiens

```

<220>

<221> misc_feature

<222> (1)...(656)

<223> n = A,T,C or G

<400> 313

acagttctgt	cctggcatca	tcattcattg	tagtatggc	aatagggcc	atgaaactca	60
gtagttgct	aaggacatga	aaccgaagtt	tcctgcctt	gctgcttcc	ctatctactt	120
ttttgtggat	tttgcttcgt	aacttctgga	ttgcaagcca	ctgccttccc	atggccacct	180
gatcgttggg	atccaaggag	ctggtcttcc	gttctatgag	ttctcgaagg	agctgggtgg	240
aaaagtcatc	atcatcaaag	atttcttcat	ccaagtccct	cagatgagca	ttagcaggggg	300
ctttaggaaag	gatctccgt	tcccctggca	aactctctgg	gacaggctga	gctgctggct	360
cagggttgc	aagaactcga	tagacagagc	gcttggctcg	tgtccctcga	agtaatctct	420
cttgnccat	cagaatattgg	tcatatctgag	tcaaagatgg	aaccgttcaa	angcaccaaa	480
acccttnccc	agtttttcag	aaacccagtt	tggtcttatac	gggcatttcc	tgaantgtgc	540
cggttcctgn	aaactggtaa	agtcggcaaa	acgctttgcc	atgaacttgg	aatagnctc	600
catntccggt	tncttttgc	anggaccctt	nttggtgggn	tgggtctttt	tttttn	656

<210> 314

<211> 649

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(649)

<223> n = A,T,C or G

<400> 314

ggtacatgga	ctggacactgc	ctggagccca	gcccgagaca	tctcctcagt	gctcatctct	60
atccagtccc	tgatgactga	gaacccctat	cacaatgagc	ccggcttga	acaggagaga	120
catccaggag	acagcaaaaa	ctataatgaa	tgtatccggc	acgagaccat	cagagttgca	180
gtctgtgaca	tgtatggaaagg	aaagtgtccc	tgtcctgaac	ccctacgagg	ggtgatggag	240
aagtcccttc	tggagtattt	cgacttctat	gagggtggcct	gcaaagatcg	cctgcaccc	300
caaggccaaa	ctatgcagga	cccttttgg	gagaagcggg	gccacttga	ctaccagtcc	360
ctcttgatgc	gcctggact	gatacgtcaa	gaaagtgtcg	gagaggctcc	ataatgagaa	420
tgcagaaaatg	gactctgata	gcagttcatc	tgggacagag	acagaccc	atgggagcc	480
gangtttag	accctggtcc	atctcccttc	ccccacttaag	aagtccagca	gaatcccttc	540
cccanccan	ggatgganan	gcctggnat	ctccttccan	aattgaagtc	atcttgcaag	600
aaggcaagaa	ccaagcagct	tcgantccan	ggtgtggaa	ggggccctn		649

<210> 315

<211> 238

<212> DNA

<213> Homo sapiens

<400> 315

acctgcaggt	ggtggcagcg	ggtagccggg	actcgggcgc	cgcgcctac	gtcttctccg	60
agttcaaccg	gtatctttc	aactgtggag	aaggcgttca	gagactcatg	caggagcaca	120
agttaaaggt	tgctgcctg	gacaacatat	tcctgacacg	aatgcactgg	tctaattgttg	180
ggggcttaag	tggaatgatt	cttactttaa	agggaaaccgg	gcttccaaag	tgtgtacc	238

<210> 316

<211> 637
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(637)
 <223> n = A,T,C or G

<400> 316

ggtaactgtt	ttacatggtg	agtggtcgtt	accatccaac	agcacaaggc	acaaaaaaatg	60
ggcatcaagc	aaaccatgca	taacgaggcc	tggaaaccat	caagaacagc	cacaaaagag	120
gtcactcaga	cctctgattc	aaacttctgg	tgttgagtg	acaagcatgc	acgtttaggc	180
tctgccaaa	tatcagggag	gatttccaat	ctccacaaga	gactggttc	acatatggcc	240
tttctctgg	ctgtcaaacc	accagggttc	ctccaaaaca	aatgagagc	agctgtttg	300
ctgatcaacc	aatcacacta	gcagttctat	ttcagttaa	aacaaccttgc	caggaataaa	360
ccacataaaag	actccgtggc	taagggctgc	tattacttac	acctaccaag	cgaacacaaa	420
cggtggcgc	ttctatggta	acgtttcaact	ggcatgcaaa	ccccaaaggc	cactgaatgg	480
aatgaatcca	catgaacagc	atacctggag	caggaacatg	ctttcacaag	aagtgtcagg	540
agactaacct	gtggttgcta	acattnntgt	gangaaaanc	aggtagcag	aagggtgggt	600
tgaagtnntg	cctaataatnc	ttaccatata	tataaac			637

<210> 317
 <211> 505
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(505)
 <223> n = A,T,C or G

<400> 317

ggtaacattgg	ccagactcat	gcacaccaca	tctgctgaca	tctccttccg	ttctgtgtac	60
tcattcagct	gtcctgaagg	atccatctcg	aaatagacca	gctctcctcc	tgtcagggca	120
atcaccactt	gtcgctgggt	cactgcacac	ttcacaattt	ttttcttcc	aggggtttc	180
cactcattga	ctctcttgc	tgctcgatg	tgccgaatgc	catctggata	gacctgcacc	240
aaggcatcat	ctcctaataa	ggagcaggac	aaggtcgggg	tggtccccag	gaacccagag	300
tcagtcactt	tttctacagt	ttctccaatg	gacaacacta	gggtggcatt	cacgaaagac	360
acaatgatgt	aggcatcaaa	ctcatcttca	atgtgtcgac	gcactgtcca	nacagcgttg	420
gggttaccag	gtanctcana	aacagccatt	tctgacacct	naagtccatg	gtttaaggac	480
ttttaanat	gatcnngggnc	ccctn				505

<210> 318
 <211> 645
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(645)
 <223> n = A,T,C or G

<400> 318

gcgtgtcgcg	gccgagggtac	atacaaactg	gggttctgtc	aatgacaaca	aggactatgt	60
gttggttcat	atcaaatcca	agaatattag	acaaccaaac	atataaccc	cttgtggttt	120
ctcttaatat	gcagcattca	ttatggtagt	taggtccctt	cactgggttt	ctgcaagtct	180
gaagttgtgt	ttcttgtgtc	gttgcggca	tctccaccc	cagagctgct	tttggtttcc	240
tcttccttgc	agtctttgtc	atcttcatct	cctggagatt	tccgggactg	tttagaggat	300
ttcttgaag	tatacgactt	tttccgtttt	gagcctgctt	tttcattctt	tctttgcct	360
tttccatctt	cttctactct	atcacccct	tcctcaactgc	ttgcatctgc	agtatttcca	420
ccttctcc	agtttctgaa	ganctctgg	gctgaattgc	ctggaccagg	taaactttac	480
tnctgggtat	tttctatttc	cacaatcc	cgttaaatcc	tttcgttgg	ttgactttc	540
aaactggcnt	tggacctggc	ccggccggcc	gtcgaaaggc	gaattccacc	attggcggcc	600
gtactaatgg	atcnacttgg	ncccaccc	cgtaatatgg	catan		645

<210> 319

<211> 424

<212> DNA

<213> Homo sapiens

<400> 319

acttttccat	aaagttctag	tcacttctgt	tggcctgagc	caccagatta	tgatgttgcc	60
agaattcact	caatttgaat	aaagatgaac	agtatttgtt	ttcttgcattc	catgaatttat	120
atcagtattc	taaaacatcg	cttcagaaag	agaactgttt	atttctgcag	gcttcctgtc	180
cttttgcgtt	atggttttt	ggccttattt	tcactggctt	ttccttctcc	aaactttgag	240
gcgtgatttc	attcattgaa	gaatcaatac	atatttgtt	tcaaaatgtt	tgaaacaaaa	300
gacatagatg	gtagactttt	attaaaacat	atatggatgt	ggaaagcaca	tatattaatg	360
cagtcatccc	ttttcaggtg	ggaagagagc	aaaccagttt	attttttaat	tcatccttag	420
tacc						424

<210> 320

<211> 472

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(472)

<223> n = A,T,C or G

<400> 320

acgaagtcgg	gcaacaagaa	agcgaggagc	agcgtgtatg	cccttatacct	cagcaagtga	60
gaacaaggca	gatcacagca	ccgacacaga	agatggcctt	ctcccatgtg	ccagcggaga	120
atcccccttcc	agccaaatcc	tcaggaagca	gagcaccaca	caagcagcat	ttcttgcgtt	180
ctcatggtca	tattcaaaag	cgactttaa	atcagaaaat	agaaaaagca	tttgcgttag	240
gtcttttca	aaccaggaaac	acaagttggc	taggaaaacg	gaaagcttcc	tctggcatcc	300
ctgtttggac	tcctcctcct	cttggaggag	ttcctgaac	cgcacacaca	tcgcttcctc	360
accaagagag	atgctcaact	aggatctttt	ttatgtgtgcc	agttacaaga	cacattaca	420
ggctatgtt	ctaagacctc	ttatgtggca	acgangaagg	agggtacctt	cg	472

<210> 321

<211> 588

<212> DNA

<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(588)
<223> n = A,T,C or G

<400> 321
acctacacctca caggtttgtt gtgaagacta aatgaagata atgcaataaa cggctgagac      60
ccatgccaaag cacatggtaa aagtgtgtaa ttgcgttatta gcagcagcag ccagagcaat     120
agccaagggt caattaactc ccagtcagggt gttcagttca tgattgtcca tgcattaaga     180
gccaaagcac ccccaaagcc atctcacccct gctgaagcag tctaaagtgc tcaactaagt     240
tgggtcatata atctcttagac cagaggtcag cagacgtttt ctgtaaaggg ccagacagca     300
aacattttag gtctctgttg caactactca gctttgcctt tgtgaatgaa agcagcaaga     360
caatatgtaa atgaatggc cgtggcagat ttcatccaca ggggtccct gcttttagact     420
gtgcccgagag ccatangtct tgagtttaag tccaacctt ccacacttgc aangggtgtt     480
ctttgaccaa gtcnnggaag gnntnccaaa agtcaaggcc cttaaancctt taaaaaatgg     540
ggaataataa tgccttccnt caagagctgg tnaaacaatg gaagctgg                         588

<210> 322
<211> 589
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(589)
<223> n = A,T,C or G

<400> 322
acagctaatt gaaagtatat aaaaatgtga attagtgtgg ttgcagctaa aagtatgagt      60
gatgttaacaa gaatqacgac gtaatgagtc aagtggtag actagttcta taagcaccgt     120
aaggagtgcc agtcctaata catgaacttc atccatccct tgtatataa ggaggagact     180
gtggtcagag aatgtatccc gtaagctata gttaaaaat attactttc agaaaattttgg     240
agcccaagca ggaattacag agattccccc caacagaggc cctgagatct cccctgactg     300
ccacccaaag gatccacact tgcctctgtat caaccagatt caggccaagg cttanaagag     360
ggaggaggca gtggccagaa gccaggact ctagaggaga gaaatgatgg cagatgtggg     420
gttcagaaaa aacacaagac gggaaagggg aagaaggggg aaaaaaggaa gaaccaccac     480
tggtgangaa attgttnaan aaggccacnt ttgcttgang agtggccctt gncttttca     540
ccttgcctgt gggcaaangc tggcaagtaa agacaaggcc ttaaccctn                         589

<210> 323
<211> 582
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(582)
<223> n = A,T,C or G

<400> 323
actgcttatg taaatcggtt atttttatccatcaaagcc tggcaagtat atgcattcca      60
atttaccatt ggcaaagctt tattttttttaagggttggta tggtaattttttgtggg     120
aaaatgagat ttgttaagtag ttttcttctt agataagata acataaaacca agctttcaga     180

```

agtttaaggat gatgaataat attgaaatga cttgttatat attgttaaggg ttcccttaag	240
tatcataatt aacaatttgc ggaaattgaa aaagcataaa ctgttttatt tgattaagta	300
atatgttccc ttaaaaattca ttttgagggtg tatgttatac acacagtaaa tttttgttca	360
ggaatgactt gtcattctg tgttttaaa aataggaaat aaggcatagt gagtcatcat	420
tacatcaatt aaccnnaaaaa atatttcatn ccctccgtca ctggaaattt tctacttcag	480
ncacctttct taatcctcggt gtttaggaggg ccccgtttat gggccctttt taatttccat	540
gngccatatt gtccactacc cgccagtagc ccaaagctan ct	582

<210> 324
<211> 180
<212> DNA
<213> Homo sapiens

<400> 324	
acccgtcgcc ggcacccacc aacaaccgcg ggatcttctg aattgtggct agcgagcaga	60
tgtttttgtg gccgcagaat ggcaggcgga ccgtggcgaa ggctctgccc tgggtgaaca	120
tttctgtcac ttgggaaggc aggtagctgg tggaggccat gagcacttcc ccgaagtacc	180

<210> 325
<211> 575
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(575)
<223> n = A,T,C or G

<400> 325	
ggtacaaata ctggaaaaaa cctgctttc tgcgttaagt gggagacaat gtcacaagtt	60
aaaagctttt attcctatga tgccccctcg gatttcatca atttttcatc cttggatgat	120
gaaggagata ctcaaaacat agattcatgg tttgaggaga aggccaattt ggagaataag	180
ttactgggaa agaatggAAC tggagggctt ttccaggcAA aaactccTTT gagaaaggct	240
aatcttcAGC aagctattgt cacacctttg aaaccagttt acaacactta ctacaaagag	300
gcagaaaaAG aaaatcttgc ggaacaatcc attccatcaa atgctgttc ttccctggaa	360
gttggaggcAG ccatatcaag aaaaactccA gcccagcTC agagaagatc tcttaggctt	420
tctgctcAGA aggatttggA acagaaAGAA aagcatcatg taaaaatgaa agcccanaga	480
tgtgccactC ctgtaatcat cgtgaaattt ctaccctcta agaaaaatgaa agtttctaAC	540
acnAAAAGAA ccngangaAG aagcatgtc atcaa	575

<210> 326
<211> 584
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(584)
<223> n = A,T,C or G

<400> 326	
accagcaatC tttagttacAA aataataactt ttcaGAGTC tttcttgatG cacatttAA	60
aaccagcACA actccctCTAG tgAAATGGTC aatttCCCTT aaaaaacaAC atctgAAATT	120

ataagacctg acaaatcata ttatatttca atatttagact gctgtggctc tagaacaaca	180
gaaaagcgta actttcaaac agcttaggga aaaaggactg aaatgttagat gtcgtcaatc	240
agcctcaggc attattgtac ctgtgccatc cacacaccct taagtttt cacagcactc	300
tgacggtatt atgtgtgtt tgcaaatgac gaatcaacag tatgtgaat aatcagcaat	360
gaaacacagg agataaaatta aatgtgttt tccaaatgtc agaatatcga gggtcccagg	420
agttggcaaa acttctcaag gtgggcatt cagactcang ctgtcnggg ataaggctc	480
cttaccgtan gtgaaccggc tgagaatatt gggtccncac acccnagaag ccatttaggc	540
atatactggg caaaaaagaa acctgaatnn aatgggacca atnt	584

<210> 327
<211> 573
<212> DNA
<213> Homo sapiens

<400> 327	
ggtacctctc tgaagcacac agaagttagcg ccaggcagag gggttgaagg atatgtattc	60
atcaagaagt aaacgcaaat ccaagatctc aaccacactt ggctcttaaa gatccaccaa	120
cttaaccctt atggcatgca tatgtgactt ctgcaagaag caacctgaaa acccaagaat	180
gccttgctt accacgtccc gcgactgcaa actcccttcc tctgaaacaa gcagccacag	240
ctttataaga aacatgccgg catgttagtcc atcctgggag gggagaaatc ttcaccactg	300
gctgccttcc agcaagttcc ccttgaatc tgccggcagt ggaacagatc ccagatccca	360
acgctgtac ttggcgtcc tcccaccagg gggtccttgt tctgaaagct gccaccagtg	420
ttgttccgaa agatgcctt gcctttgtgg ggtcatcttc cattatgcct cctaacagga	480
aacaggcttc tatggaagag aagagtccca gccccctgac cttccgctt tggctttgga	540
ggatctgagt cacatctgcc atgttgccta aag	573

<210> 328
<211> 422
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(422)
<223> n = A,T,C or G

<400> 328	
ggtactattt tgaagcgctg gaagaagaac tggtttgatc tgggtcgga tggcacctg	60
atctattatg atgaccagac tcggcagaat atcaaggata aggtccacat gccaatggac	120
tgcataaca tccgcacggg gcaggaatgt cgggatactc agcccccgga tggaaagtca	180
aaagactgca tgctccagat tggttgtcga gatggaaaaa caattagtct ttgtgcagaa	240
agcacagatg attgcttggc ctggaaattt acactccaaag attctaggac aaacacagcg	300
tatgtggct ctgcagtcat gaccgatgag acatccgtgg tttcctcacc tccaccatac	360
acggncatcg ctgcaccggc ccctgagcag gcttatggct atgggccata cggtgggtgcc	420
gt	422

<210> 329
<211> 467
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<222> (1) . . . (467)

<223> n = A,T,C or G

<400> 329

ggtaccacta	tccccacttt	acagatgagg	aaaaaacagg	ctcaagagt	aagtccctcg	60
cttgcttagt	atctcaaagc	taagctcaa	gcaaagatgg	ggctccaagg	tctgtgtgac	120
ctgagctctt	ggttatccaa	tacttcaaaa	ctgtcactta	gaaaagaaga	gaacatttt	180
agaaaatagga	gaaaacccaa	cagccacagt	gattgtcaaa	gagctgaggg	ggcatcagac	240
caggttcggg	ggcaccagac	caggttcagg	gccactgcgt	aactgccaat	gccctgccc	300
gccccagggag	acacgcagac	tccactgccc	tagacgagtg	gccctgctgt	taataaataa	360
ataaaaggta	ggcacaatcc	tacacaaagg	ccccagaatt	caaaccactg	tcttgnttct	420
cagacttttgc	cttaagagcc	nagtacctgc	ccggggccggn	cgctcga		467

<210> 330

<211> 595

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) . . . (595)

<223> n = A,T,C or G

<400> 330

tcgagcggcc	cccgccg	cagg tacatggccg	ccgtcctgga	ataacctgaca	gcggagattc	60
tggagctggc	tggcaatgca	gcgagagaca	acaagaagg	acgggtcaca	ccccggcaca	120
tcctgtggc	tgtggccaa	aat gatgaagagc	tgaatcagct	gctaaaagga	gtcaccatag	180
ccagtggggg	tgtgttaccc	aaatccacc	ccgagttgt	agcgaagaag	cggggatcca	240
aaggaaagtt	ggaagccatc	atcacaccac	ccccagccaa	aaaggccaag	tctccatccc	300
agaagaagcc	tgtatctaaa	aaagcaggag	gcaagaaaagg	ggcccgaaa	tccaaagaaga	360
ggcagggtga	agtcagtaag	gcagccagcg	ccgacagcac	aaccgagggc	acacctgccc	420
acggcttcac	agtccnttc	accaagagcc	tcttncttgg	ccagaagctg	aaccttatta	480
cagggaaatc	attaattagc	cggtttgaa	ggtggaggcc	taaatcatcc	taccaatgct	540
gcattgacct	taaagatgac	ctagaaacac	gtggagaaa	aaangtggnn	aggat	595

<210> 331

<211> 421

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) . . . (421)

<223> n = A,T,C or G

<400> 331

acccaaaaac	caccccaac	gcccccaac	cctcaggcgt	gcctgtgagt	gtgtctgtgt	60
gtctcaactt	gactcaccca	gacaactgac	ttcagcagcc	aaccttggtc	atccccagaa	120
ccaccactgg	ggggcatacg	tgtggctaga	ctgggggccc	ccgaatatct	gtctctacaa	180
aaaaaaaaaa	aaaaattaat	gggggtgtgg	ggtgggtgcgt	gcctgtggtg	tcagctgttt	240
ggggcgctgg	ggcaggagga	tcacttgagc	ccgagaattc	aaggctacag	tgagttaga	300
ttacgccact	gcactccatc	ctgggtgaca	gagcaagacc	ttgtctcaag	aaaaaatttt	360
taaatgagaa	aaaaaaaann	aaaanaaaaa	aaaaaagctt	gtacctcgcc	cngaccacg	420

C

421

<210> 332
<211> 616
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(616)
<223> n = A,T,C or G

<400> 332

cgaggtacca ggctacatat ctcggcagt agctggatcc tttgataatg aaggcattgc	60
tatTTTgca cttagttca catactattt atgggtaaaa tctgtaaaaa ctgggtcagt	120
ttttggaca atgtgctgt gcttatccta ttcttatatg gtctctgtt ggggtggta	180
tgtatTTtac atcaatctta ttccactgca tgtatTTgt ttgttactga tgcatagata	240
cagcaaaaga gtctacatag catatagcac ttctacatt gtgggttaa tattatcaat	300
gcagataacct tttgtggat tccagccaat cagaacaagt gaacacatgg cagcttgcag	360
gtgcttgca ttgctgcaag cttaanctt cttgcagtat ctgagaaccg attaccaaac	420
caagagttcc agacccttc ntTTTgggg atactacttc agngctgggt cctanggcatt	480
tattgtntac nggtacattt cccctggatg gcnGTTTANTC ntgggaaccg ggatncaaaa	540
cccNTccata tgctanggt gncctaacct acaatnggg ctTTTTgac aaaaanntgg	600
atncctccgg ggcnn	616

<210> 333
<211> 650
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(650)
<223> n = A,T,C or G

<400> 333

ggTgggagag ctaagtctgc attatTTTT ggaatcatta attaatttgc aatcacagag	60
tcttcaggaa aaaggcaagt tatcagctga agaaaaatccc gatgactctg aagttccatc	120
atcatcagga attaactcta ccaaATCCC agacaaagat gtcaatgaag gagaaacatc	180
agatggagtg aggaagttag ttcacaaggt ctTGTCTTCC atgcttggag agaatgaaga	240
tgatgaggag gaagaggaag aagaggagga ggaggaggag gaggaagaaa cacTgagca	300
accCACTGCG ggcgatgtat ttgtatTTGA gatggTTCTC aatcgtaaa ccaagaaaat	360
gatgaaagag aaaaggcctc ggagtAAACT TCCCAGAGCT ctgagaggtt TnatGGGtna	420
ancctcnTTT cgtTTTgnnt gaagagaacg tggngaggcn aatTTTgnT gcctggaaat	480
nataaaaaaca gctCTTTGG cttatggcca tcttacttta ncctgatttt agggccnagg	540
ngcctngaaa atcntGCCNT tgagtgtatgc tggccttnaa tcccngggcc cnaaaaaggg	600
ttNactggcna aatTTTggn nagcTTTTA ancggTTTT ttgnttcaan	650

<210> 334
<211> 734
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(734)
<223> n = A,T,C or G

    <400> 334
tgntatctga gaattcgcct ttcgagcggc gccgggcagg tacagattaa cttAACACAA      60
aaACCCGAAC ttcaaaatga aggtgtgtgg aggAAAGGTG ctgtgggtc tccCTACAAC      120
tGTTCAATTc tttgtggggc agggGGTAGT tcctGAATGG ctgtgggtcca atgACTAATG      180
taAAACAAAA acagAAACAA AAAAACAAG gAACTGTcat ttccACGAAA gcACAGCGC      240
agtGATTCTA gcAGGCCTCA gggCCCTGGG CCTGGGGAGG ctACATGAGG gggAGCCTCA      300
gtcACAGGAT caACCTGGGG CCCGAAGGAG CAGGGTTCCC tgcCTCTCCC tCTGCAACAG      360
atCATCCCAT ccaACACAAc CCCCAAAATG ttGATGATGA cgCAACATGG tcaACCCtNA      420
agACCTTAA gACCAAAACAG agCAGCATAg gAAAAAAACCAACCGCA ccaATTCTG      480
catGTGTCAA tggtagggca ccATTtNAa AAAGTTGGC ttaAAACAAAGC tggCTTACT      540
tgganggacc taATnCCAAG ctTAATTCTT ttGgtAANGG AAAAAACCCt tgaACCCNN      600
tctnAGCTTA aantCTTAAG gtTAAGTCNN aACCANTAA aACNtTCTGG gttNCCCTT      660
tccaAGnTn aAGCCCCCTT ttccCTNAAC ctGGGGATTG gggGNAATTn accNGGNCNT      720
ttaAAATTCC gnGG      734

    <210> 335
    <211> 492
    <212> DNA
    <213> Homo sapiens

    <400> 335
acatCCTCA ccACCATGGA atATTTAGT ctATGTAGTC aaAGTCTTCT ggaATTCCAA      60
aAGTCTATC aATTtTATTt tCTTCAAACC caAAATTtCT tttGCCAA gATTTATTG      120
cGAATATGTt ATGATTtCT tCCACAACtT gCGGATCACA gTCTTGTAT tttCTACTT      180
ctGCCTTtAG ctGTTCCtT tGGTCTCGAA gtGAAGAAAG CTCTTtGt gGCCTGGtC      240
gCTCTTCCGT tTCACATCGG ccaATTtAG CTtCTCAAT gCTTTCTGT aggCTTGCAT      300
gCTTTGACT tCCCTCAGAC aACTGAGATT CCAGAACCTC CAACtTATGT tTCCTTGCAT      360
gaAGAGCTT ACTTGGAAAA GCCCAATAAT ATTAGAAGT TCCGATCCTC tcACAGTCAA      420
ccATACCATC ATCAACTAAG ctTTGAAGGA ctTCTTTAC tgACATAGCA gtaATGCCtT      480
tctCTTTGGG gg      492

    <210> 336
    <211> 732
    <212> DNA
    <213> Homo sapiens

    <220>
    <221> misc_feature
    <222> (1)...(732)
    <223> n = A,T,C or G

    <400> 336
ggTACATATA aATGAATCTG gtGTTGGGGA AACCTTCATC tGAAACCCAC agATGTCT      60
ggGGCAGATC cCCACTGTCC tACCAGTTGC CCTAGCCAG ACTCTGAGCT gCTCACCGGA      120
gtCATTGGGA AGGAAAAGTG gAGAAATGGC aAGTCTAGAG tCTCAGAAAC tCCCTGGGG      180
gtTTCACCTG gGCCTGGAG gAAATTGAGCT cAGCTTCTC CTAGGTCCAA gCCCCCCACA      240
cCTTTCCCCC AACCACAGAG aACAAGAGTT tGTTCTGTTC tGGGGGACAG agAAGGGCt      300
tCCAACtTCA tactGGCAGG aggGTGAGGA ggttCACTGA gCTTCCCAGA tCTCCACTGC      360

```

ggggagacag aaggcctggac ttttgc	ccaa cctgtggccc tggagggtcc cgggttgta	420
attcttgggt ctcttnggt tccagaagca agccggaagt ttgaaaagaaa gggAACCTTG		480
gaaatnaagg ggtgttggg tattaancn naaaaggat tgggttcct gnttccaang		540
gganccttt ggccttctt tttgnccct tncctaaggc cccaggccct nggggttgg		600
accttngccc cggnngggcc aaggggccna aattcccacc ncantgggg ggcccggtac		660
ttaangggta atcccaactt tgggnccccca aacttnggg gnanaancntn gggccaaaac		720
tggtttcctn gg		732

<210> 337
<211> 642
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(642)
<223> n = A,T,C or G

<400> 337

ggtacaacag tagaagaagc aacaacaata gtaaagccac aggaaattat gttggacaat	60
atagaagacc cttctcagga ggatcttgc agtgttgc aatctggaga aagtggaggag	120
gaagaggaac aagataccct tgaactggag ctatgttgg aaaggaaaaa agcagagttg	180
cgagccttgg aggaaggaga tggtagtgc tcagggtcta gtccacgttc tgatatcagc	240
cagccagcat ctcaagatgg aatgcgttagg ctatgtcta aaagaggaaa atggaaatg	300
tttggtcag ctaccgtcc agaatctacc agtaggagtt ctatgttgg tggacgaaga	360
tctccagaaa atggagaaac tgcattttgtt gctgaaaaat tcagaaaaat tagatgagaa	420
tccagataag agatggaaatc agaagaatct tcagagaaaat taaagtccctg ccngccgnc	480
gttcnaangg cnaatncac acctggcgcc cgtctagtgg attccacttgc gtcccaactt	540
gcnatctgg gatactggc tttggngaaat tgcattttgtt acaatcncnc acttcaancc	600
ggagcttaa gtaaacttgg gcntannag tgtnactcc tt	642

<210> 338
<211> 723
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(723)
<223> n = A,T,C or G

<400> 338

acataaaacac acgtcatatca caagtctgtt caagaaagaa atacatagaa aaacaagata	60
gaattttaaa aataatttgc aaggaaagtt ctcaatgtttt cagttctaaa atattgtctt	120
cttttagaaa aatthaagac tggataaca gattgtttt cctgcaatgc tggatattact	180
gcaaatttat cagcaaaagag gtaaacagca atgcaattttt tccttaagct tgaatacata	240
agggaaacaat aaagaaaccc tttttttttt gattagacct gaactaatta aaagtccacac cagtaatttt	300
caggccagct ctgggtctcca ggttggatcc caggacaggt ttgnatcact gggccatcc	360
ccaaacaggct ggttggatcc ttctatcctg tttttttttt tttttttttt tttttttttt	420
ggctgccgac tggcattttggg ttccatcc ccagaataacc ttctgngngaa ataggccctt	480
ttcaggggga ccnggaagga aggaaaaagg gggctntggn aaacatnggg ggattcttg	540
gnaaaatttc tggcctggaa tngtggcnaa cttttggggc ttgggtntn gggaaatgtc	600
caaggganct ttaangggnc ctttngaaact cggagggnaa aatttaaccc ctangggccc	660

ttgggttnaa aaagggtttt atttggggga cccgggttnc ccttgnaaaa aatgccncca ann	720 723
<210> 339	
<211> 356	
<212> DNA	
<213> Homo sapiens	
<400> 339	
acaatagtgt aaaggtgggt tttaaaaaca tagccaggtg tggtggcacf tgccttagt tccagctact caggaggcta aggcaaggagg attgcttgag cccaggctgt gtggttcacc ataattgtgt ttgtgactag ctactgcact ccaacctggg caacatagtg ggacttcac tctaaaacaa aacaaaacaa aattacactt aagcactatt gtttaatttt taattgtcag tttatcatta ttttggtaa gacattctgg gtttcttga atcttgtcca aaaaccagtt gtttggaaa attgctttaa attgagcata tttatgtata ttggataaaa atgtcc	60 120 180 240 300 356
<210> 340	
<211> 502	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(502)	
<223> n = A,T,C or G	
<400> 340	
caggtacaat taactgtcac acagtcagat ataattcaact ctgatgaggc cagagaaaaga aaacaaggca aagaaaagggc tcatactgtc cctttaggtt atatccaaat atcccagcac ggaaaaccatc ttttcctcaa aggttatcta cacacgtggc ctgagaagaa aggcaagtaag cctttggggga gttggggaga aggaaggaaa agaaaaacagg aggaggaaaa aggaagacct cttttctgaa ccacaaatgc ctcatgtgc gcactccaag ctgaaataca gtatggtagg tattctaagg gggaaaaaaaaa caactacatt tctttcttat tactgattcc tctctgcttc acagaccagg ctcggccaag tggaaaacgg ctgccatgag ttctgcagaa gctgcatgtc ttgcctggc agtctgaagg tgaagcangc ttcanaggtg gacagctaa ggagaattcc cagaggnncnc cnaaaagccc cc	60 120 180 240 300 360 420 480 502
<210> 341	
<211> 243	
<212> DNA	
<213> Homo sapiens	
<400> 341	
acatcatcac ctcttggtc aagtttcca tccaaacttaa ttttaggatt ctccggacaa tcaacatttt cactgcttcc tgctgcaatt ttctgttttg gattttcagt cacctcggtt tgggcttcca ctgctgactt tctgtcagta gactttacct gctcttcttc cttaatttca cttaaatctg tgttctgata cgtaactct ttttaacat cttaagggt ttctacgggt acc	60 120 180 240 243
<210> 342	
<211> 669	
<212> DNA	
<213> Homo sapiens	

```

<220>
<221> misc_feature
<222> (1)...(669)
<223> n = A,T,C or G

<400> 342
tgaggtcaag cttttttttt tttttttttt ttttttttca gctttgttgt agttganatt      60
ctgatgttca cctaacaaag tccctgacaa aacagacttc cttcaatcca ggtcataatt     120
tgaaacgtta tacaataatg agatttaagt gatgaatgga aagaaaagaa ggagactgaa     180
aagatatacg aaatttctat tngtttttag attcagaaaa atataattac aggccaacat     240
gggtntgaca gagaggaagg acgtcagcag ttacttgaat gtaacccctt cccagcattt     300
ccaaagacct gcaatngntc cattngnac caagggcctt gntacctagt ttcttaggnga     360
tctacagant tgaacacaacc cagcacaaact ttatttcttg gagaagatga acccttaact     420
ntgaagggtgc nttaaggaaa nttnaactg gtcacttcca tgggtccgggt ttcaaagcca     480
caatcntcc gattaaanta aaacctggga naaaagccaa cggngggcaa ncaaacgggn     540
gggattctac ntggtaac ccattgaacc gggggcttcn ttttaaanana gtgntcattg     600
gtttggttt anaacctaaa ncccctttt tnaaaaaant ggtgnaaatt ttccncntnt     660
aaccgggtt                                         669

<210> 343
<211> 500
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(500)
<223> n = A,T,C or G

<400> 343
ggtagcagggc agtgcacatga gctttgacaa acagttcatg ctaggagtag agactgtgtc      60
ccaggactga gggatctgcc taagatcaag gaaaaactt gaaagactcg tcctaacaaa     120
gtgtaaaact aagtttttat aagttcaagg gaactgacta ctgatttagct gccagtgaaa     180
acaaaaatca acactctcag gtaacagaaa tcagaattgc tacaatgcat caccaacaat     240
gtccagctta caatttttaa ggacgactaa ataggagact cccagttct agtctggcac     300
ataaggaggt cggcagtcat cacttcattc taacaagtaa aaagctgaac aaactaaaaaa     360
atcaacaact cagccgggtg tggtggtca cgcctgtaat cccagcagtt tgggaggttg     420
aggcaggcgg atcatgaggt caggantttg agaccagtct ggcccacatg gnaaaacccc     480
ggtctactta aaanataaaa                                         500

<210> 344
<211> 483
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(483)
<223> n = A,T,C or G

<400> 344
ggtaacttcgg ccaaaaacag gagccatttg tgacaggcat ctggcatcac tacaaaggac      60

```

ccctggggct	ccatggcaac	cagggcaggca	ctaaggatag	aaggagagtc	tgcggcagag	120
attccacaca	tccggcacac	atccttggc	tttttgcgtga	ttgtctgtag	tgaacatct	180
ccaaggagga	tactccaatc	tttaagctcc	ccatggccaa	gacgcccag	tgcggccatt	240
acaactctcc	aggtagaga	tgtcatttg	acaatcccta	tgcaccactc	ccataactc	300
tgttagtccaa	ttttacgtgc	agatactta	ctccctccgtg	acctaacaaa	taaagaatg	360
gggaaggggga	agggtccct	agataaatca	gagttattta	tcacttataa	gaccaacact	420
agaaaatttcc	aagaacctat	ccatgctgna	cctgcccnggc	ngccgttnaa	aggcgaantc	480
agc						483

<210> 345
 <211> 667
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(667)
 <223> n = A,T,C or G

<400> 345	ggtacaggag	agaaggctct	tatgaccgat	acctacgaat	ggatgactat	tgcaggagaa	60
	aggatgactc	ttattttgc	cgttacagag	atagcttga	tggacggggc	cctccagggcc	120
	cagaaagtca	gtctcgtca	aaagagcgtt	tggaaacgtaa	ggaacggcgt	agagaagagc	180
	tttatcgtca	atatttttag	gaaatccaga	gacgcttga	tgccgaaagg	cccgttgatt	240
	gttctgtgt	tgtgtcaac	aaacagacaa	aagactatgc	tgagttctgtg	gggcggaaagg	300
	tgcgagac	gggcgttga	gtggacttga	tcttccttaa	cacagaagtgc	tcactgtcac	360
	aaggccttgg	ggatgttagc	agggggagggtt	cttcctttgc	tattgnccatc	acccacaaca	420
	ccagatcacc	gntcctgcac	aggtcaacat	catgtttgg	accccgnaag	aaccttgnaa	480
	catgccccaa	gncnatgcca	tgggtctggt	ggccanaaaat	ttttagccgt	tccaggaatt	540
	aattcccgga	anaaggaacc	tnagggnaat	gcnaaccgg	ccntcaaann	gccccatgaaa	600
	cttcttgcg	gaaaaaaaaa	gggggcctna	ggagggtatcc	ttggggcccc	ttaancntt	660
	caancnn						667

<210> 346
 <211> 754
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(754)
 <223> n = A,T,C or G

<400> 346	actgaactac	ttcattacca	actcgccccca	gatattgaca	tgcctgtatga	taacaaaaga	60
	attagaaggg	tgcgtctcc	ggtggaaagag	ggctgtgaag	atcgaattct	ggtagcacat	120
	gacatacata	cggaaaacccg	gctgatgaaa	tatggaggtc	acggcttcc	tcatataactc	180
	accaatgttg	tccctaaaat	gttgctgaga	ggcataactg	agaatgtgct	tgataagatt	240
	ctaatacgaga	acccttaagca	atggcttaact	tccaaatagg	atgggtgctt	atgaatttcac	300
	accttggat	aaaaacttgc	agagaacatt	cagcgatttc	cagttccactg	tgagatatta	360
	atcagttacc	taggactaat	gacagatcat	tcccttctga	tgagaactag	gaggggttg	420
	cttctctga	gaccctgcta	ttacaactgg	gccctntaag	ggaggtactt	aagcctaaat	480
	tgagccctta	ataatttcaa	cttaacccaa	anttaattnc	cggaanttcc	cttngggccg	540

ggaaaaccacn	ccttaagggg	ccnaaaatttc	cagcnccaac	ttgggcgggg	ccggttactt	600
aanggggaat	ncccaaactt	tggggncccc	aanctttgg	gcggaaaaacc	atngggccct	660
aaacctnggn	tnccccnnggg	nggaaaaatn	ggnnaattccc	gtttnanaa	atttccccnn	720
ccaannttt	tcnnaacccc	ggnagccnt	taaa			754
<210>	347					
<211>	444					
<212>	DNA					
<213>	Homo sapiens					
<400>	347					
accgtctcga	tcatctgctt	cccttgggt	gagagctcca	gggggtgactc	gaagggtgacc	60
ctataaggag	tcatgagggt	cctgagggttc	tggAACAGCT	tctctccatt	ggggttcccc	120
agaatgtac	agcccatgat	gtggatgacg	ttcggctctg	gttcaacttt	gctcatcagg	180
cggctcagcc	gcttccagaa	gtaatcatg	tcctcttcct	tctccacttt	ggcaaagggt	240
gccaccttgt	tcttgaggag	atagagggtgt	ccaggacctc	cctggcagaa	aatcagcatt	300
ttccagatct	tggctccctt	gtggtagacg	ttcagcttcc	tcttatctc	ctcaaggatg	360
tcctcgaagg	ttgcgtgctc	atggtccgta	gaggatgggg	atgatggagg	ggtcatcccc	420
ggcgatgat	agtggggatg	tacc				444
<210>	348					
<211>	693					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1) ... (693)					
<223>	n = A,T,C or G					
<400>	348					
ggtaactttaa	gaccctttgc	cttaaagtac	tataccaaca	cagactttat	agtatgtta	60
aaaatccaa	ctgcaagata	cacaggatgc	tgtaggcctg	atttcctgtt	gtagaacctc	120
cagccctgtg	ttgaatgagg	aggtgcaaat	atatacaccc	ttaagatcag	accacagcag	180
gcattcaggt	ggaggggatg	aactccattc	attccagctg	tgcagtggaa	catctgcgcc	240
ctccgcattc	cggctcattc	ctcatctgag	ccactcaaga	ggccggcttg	gtaagtgtca	300
tctgaattca	gcttctgaat	tccaatgatt	tctcccttc	cgtgtcttt	catccgagtc	360
aaaaggcagt	aaacaagaga	atagttgacg	gccacaatgc	tgaaggcagc	aggttagtgcc	420
agcagaaaaca	catggtgatg	aacatgaagg	tggcatcatc	cttctggnncc	attcnggtgg	480
tncaaaaggt	ggaaacngga	caaaccncaa	ttttgcnnaa	ccangttccn	tgnaaaatga	540
ttaaactggg	tccggaaaaaa	gttccagcnc	aatggnggtc	ccgaaaanat	cncncnttng	600
gggganttt	acnccncctt	ttgaaaagg	cttccncnng	gaatgaanng	aatnnnttgg	660
nccaacgaa	ggcccggtt	nggcntngta	atn			693
<210>	349					
<211>	299					
<212>	DNA					
<213>	Homo sapiens					
<400>	349					
cgaggtacat	tctctaaaaaa	ttgttactga	ctggtaagaa	atagacctga	gtttttat	60
ctaacaccca	atcaactaac	cacggcagca	agcaactggcc	accgat	ttgattacga	120
caaggaaac	cccatcagg	ttctatgtaa	tttagtgata	ctcatgtcac	taatatttgag	180

cattataactt	gatctgcatt	atattgttga	tatgcagagg	ctaaactagt	catcattgc	240
tctttcatct	atcagtagag	tccaaagttg	tttgcttcaa	tggactacat	gttaaaggt	299
<210> 350						
<211> 622						
<212> DNA						
<213> Homo sapiens						
<220>						
<221> misc_feature						
<222> (1)...(622)						
<223> n = A,T,C or G						
<400> 350						
actgtttacc	agatcttcgc	agatgaggtg	cttggttcan	gccagttngg	catcgtttat	60
ggaggaaaaac	atannaagac	tgggagggat	gtggctatta	aagtaattga	taagatgaga	120
ttccccacaa	aacangaaaag	tcaactccnt	aatgaagtgg	ctatnttaca	aatntgcac	180
catcctggga	ttgttaaacct	ggaatgtatg	tttggaaaccc	canaacgagt	ctttgttagta	240
atggaaaagc	tgcattggaga	tatgttggaa	atgattctat	ccnnnngagaa	aantctggct	300
tccagaacga	attactnaat	ncatgntcac	acagataactt	tgangcctt	gaggaatctg	360
catttaaga	aatattggtg	cnctggnatt	taatancnna	aaaagggctg	cttgcataa	420
tagaancat	tncttaggtn	aagctngtat	nactntgnat	tgcacccctc	atttgcngaa	480
atgtcnttcn	ngnnaactnt	ggtacgaaac	tcctccatnc	ttatcccngn	aagtnttccn	540
gagccanagg	gtncnacnt	atcctatana	nnagntcnnt	cnggacntna	tcnncttng	600
gnnccntag	tggccctttn	cc				622
<210> 351						
<211> 574						
<212> DNA						
<213> Homo sapiens						
<220>						
<221> misc_feature						
<222> (1)...(574)						
<223> n = A,T,C or G						
<400> 351						
qcttaacaa	tagcagcaga	caaaggcac	tacaaatttt	gtgaactcct	gattcatagg	60
ggagccacaca	tttatgttgc	taacaaaaag	ggaaatacgc	cacttggct	ggcatccaa	120
ggaggtcatt	tttatgttgt	gcagttgcta	gtgcaagcag	gtgctgatgt	ggatgcagca	180
gataaccgga	aaatcacacc	tctttagtca	gcatttcgca	agggtcatgt	aaaagttgtt	240
caatatttgg	taaaggaagt	aaatcagttc	ccttctgata	tagaatgcat	gagatacata	300
gcaacaattt	cgatataagga	actgntgaaa	aaatgtcatc	aatgtgtcga	aaccatttg	360
aangctaaaa	gaccacaagc	tgcaaaagca	aataaaatgc	cagntcttt	taaggaactt	420
gatctggaaa	agtcaganaa	agacngaaac	agctttgtgt	aaagagaaaa	gaangaaaga	480
gnaagaatag	agaccgaagg	actgagaata	naacactagg	atcgactcca	gtaataagga	540
ttaattgnaa	ntctaacttt	ncctcatga	ttgn			574
<210> 352						
<211> 399						
<212> DNA						
<213> Homo sapiens						

<400> 352
 ggtacataat attccagtag gaaactgctt ccaagttaa gcatgagctc cccaaactgg 60
 agaaaaacata ttttgcatt ctgagacaac aatcagaata cagacttgg attccaggc 120
 acagtttgc ttttagacaa ggttaagcaa agaaagccac attgtgccat cttcagctcc 180
 agtggctta gcagtgactg ttgacataa aacatgtaa aattgcttg tggaaagagt 240
 gcttaggaa cccactgttt tcatttcttc ttggagttt ccttggttca gatcagcca 300
 tggtaggtc agagatggac tgggttgca ataaaacccaa gaatcaatgt agcctttaa 360
 tcccatcaag atgtatgg tagcagcaaa agtgtacct 399

<210> 353
 <211> 727
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(727)
 <223> n = A,T,C or G

<400> 353
 ggtacttta cccatttcca gttccacctt tactttatca agtggaaactt tctgtggag 60
 gacagcaatt taatggcaaa ggaaagacaa gacaggctgc gaaacacgt gctgctgcca 120
 aagcggttag gatcctgcag aatgagcccc tgccagagag gctggaggtg aatggaaagag 180
 aatccgaaga agaaaatctc aataaatctg aaataagtca agtggtttagt attgcactta 240
 aacggaaactt gcctgtgaat ttcgagggtgg cccgggagag tggcccaccc cacatgaaga 300
 actttgtgac caagggttcg gttggggagt ttgtggggga aggtgaaggg aaaagcaaga 360
 agatttcaaa gaaaaatgcc cgccatagct gntcttgagg agctgaagaa agtaccgncc 420
 ctggcttgna ttggaccgaa gttaaggcct anaatccaa tgaaanacn aaanccctt 480
 ggtncangc cnccagaccc anggccccat aattttttgg ccncnggggg attcaaattnn 540
 cnnttttaan ccncgacttg ggnccncnaa attcnccgn 460
 naaaggggan ccccaanagt tacccttgnc ccngggcnng ggnccgttt 600
 gtncaantt cccatntnc attggggggg gcccgtttt ttaggggaa tcccgagctt 660
 gtcnaantt tggggnc 720
 tggggnc 727

<210> 354
 <211> 411
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(411)
 <223> n = A,T,C or G

<400> 354
 ggtaccatag gtcatttctg gccgatagtc tgaatttaca gcccattgt ggtgaaagtt 60
 tagtaattt aaattgttc tgtgagccca tgaacactg aaaaaattct ccatttctt 120
 ttccttcattt ccattctaattt acaaagttt ggattttaga accattgtca ctaggtgcct 180
 tccattgcaa agtgagtgaa tttttggcc gattggctat ctttgggtga ttaggtatatt 240
 caggttcaca gctcaaggtg gtaaagattt cagcctctga aggagttccc ttatagaat 300
 tatattctgc ctgactttt gcatggtaat ccatggctgg cttgagatca tttaaagtga 360
 tatttgnnttc ttctctacat atacactttt ggatttccca tctttccag t 411

<210> 355
 <211> 331
 <212> DNA
 <213> Homo sapiens

<400> 355
 ggtacttttc tctatctgat tcagccattt ctgccagagg gaaaaggctcg gcagaaaaaga 60
 tgtattgagt gaatagttaa ggataggatc ttgtccaaa aattcagaa agattgagca 120
 aatctgacgt attcattgag tgagttctg tgccccaaa ggtggaggag aaatttgac 180
 tggaaagttt taagcctccg tttcttggaa aatcagtctg taacactggc aagtcttaag 240
 atagtcgggt ttagactttt cagatgtga acctggctct gtaacgctgg gaagtcttaag 300
 gatagtcctg ttttagactttt gcaaaccctgt 331

<210> 356
 <211> 678
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(678)
 <223> n = A,T,C or G

<400> 356
 ggtacttttt aattcagcac cttttcaaaa tatgtgctgg gatggattct tcttagggaa 60
 agccccatata agaattctca tttggagca tcatttttat atgctatctc cccagtgtat 120
 cttctcaata tttataaacac tttatgaaat aaatattggg ttgcctgtaa gaagagaaaa 180
 atatacgctt ttctgagaaa gagcatggg cttgcagttt acagaagag ctgaaatttag 240
 agaccatagg gatttccaag accaatttga ccagaaatac aaaaattctg atgtcaaaaa 300
 ccctctcaca aaatttaaca ggttagaaattt atttagcag tatagcctga aatccagtgc 360
 aacaaaaaatg natcccaattt ctatgatatg ncataagtat gntctttan ctggcttnc 420
 ttacttggtc ctactcccta cttggacctt tngggaaagaa aatggtcggc ccaanccat 480
 ctttcaaaattt ttcnaattcc ttaatatggaa acccttagcc atggaaataac caggggcntt 540
 aaagttcccc ccatttaaat aatgnccctt aatntggnaa anggctgaa ancctggnc 600
 aaagggctgg ggtcttttaa gcccttgaa ggttaacctt caaaaggggg aaaaaaccnt 660
 tttttttta agttgggg 678

<210> 357
 <211> 414
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(414)
 <223> n = A,T,C or G

<400> 357
 acaccgagaaa ccataatgaa aaaacccccc gtgtgttttgc tcatgttttgc ttccaggaa 60
 gcagttgatg agtgcgttta ctaatgcctt ctcccagatc cattcagtgg tggagaggag 120
 gaaaatggc tggggatg tggctctggc gccttgcagt tactctgcac tggatgc 180
 ttaattctc ctctttctt gttAACCTT tgccagtggg tttccatag tctgggtatt 240
 tgccttata tcagttatac cacctaaggc aactgggtgc aaaatgcatt ctgttactc 300

actgtctggg cctcccccac cctagtcttg gcacattcct tcaagaatgt agttaccgtc	360
tgcttggaa gatgtcagtg caaatgtgaa gataatgggc atcggnaaac ccct	414
<210> 358	
<211> 633	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (633)	
<223> n = A,T,C or G	
<400> 358	
cgagggtact tcaaagaaaag tcaaattcta agcctgccca ggcccaaaga caaagccagc	60
caggacctga ccacctgtat cctcttgggt gcaatctgtc gaagccagat gagttctgct	120
tttaattcc aatcctattc tgccactgaa actaggcctg ggcaaccact cttaatcatt	180
aacatatcaa aaggagtatc tcctctgaga aaagagctt tctcagggttc tagaagctag	240
cttttacaaa agacgtcttc aaataggggc cgggtgcagt ggctcacgcc tataattttg	300
gcacttttagg aggctgaggt gggaggattg cttgagggccca ggagtccaag accagccctgg	360
acaacgtagt gaaacatcta ttcttaccaa aaaatttaaa aaaggaaaaa attatgtcct	420
aaaatattaa angncatta aaanggcccc ctngaacttg gaactttggg gaatctagtg	480
caacaacccc ttgccggana gaagaanctt naaccagctn ttgaattgcc nggtcaaant	540
ggttatattt aaaaccgata ccactttttt ataatcctt ggnaattnaa ctgtaaaccn	600
ttttccctg aacggaccnt gcctgccccaa ttt	633
<210> 359	
<211> 635	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (635)	
<223> n = A,T,C or G	
<400> 359	
acagattctt ttagaagctg gggcagatcc taatgcaact actttagaag aaacgacacc	60
attgtttta gctgttggaa atggacagat agatgtgtt aggctgttgc ttcaacacgg	120
agcaaatgtt aatggatccc attctatgtg tggatggAAC tccttgcacc aggcttcttt	180
tcagggaaat gctgagatca taaaattgtc tcttanaaaa ggagcanaca agaaatgcca	240
ggatgacttt ggaatcacac ctttattttgt ggctgctcag tatgcaagc tagaaagctt	300
gagcatactt atttcatcgg gtgcaaattgt caattgtcaa gccttggaca aagctacacc	360
cttgtcattt ctgctcaaga gggcacacacc aaatgtgtgg agctttgtc ctccagttgg	420
gcagatcctg atctttactg naatgangac agttggcagt ttcccnatca tgccagnnng	480
cccaaatnng gcctncaaa aatcttggac ttggtatnc ccctaactn accgggnctt	540
gggacccttgg gcttaaccaa agtnagnccct tgtaattaa naaaggtttgg ggggncttga	600
aaantgctttnaantttctt ccggaaatggg ttctng	635
<210> 360	
<211> 403	
<212> DNA	
<213> Homo sapiens	

```

<220>
<221> misc_feature
<222> (1)...(403)
<223> n = A,T,C or G

<400> 360
aggtaaaagt tcaccgagtg gtgcataatggg cctgtccggg tgtcgctgta tgacctggct
tctgtggaca gctgtgagga gaactcagtg ctggagatca ttgcctttca ttgcaagagc
ccgcaccgac accgaatggt cggtttggag cccctgaaca aactgctgca ggcgaaaatgg
gatctgtca tccccaaagt cttcttaaac ttccctgtgta atctgatcta catgttcatc
ttcacccgtg ttgccttacca tcaggctacc ctgaagaagc aggcgcgcct cacctgaaag
cgaggttgg aaactccatg ctgctgacgg gccacatcct tattctgtcta ggggggatct
acccctcggtt gggccaactg tggtaacctng ggccggacca cgc
                                         60
                                         120
                                         180
                                         240
                                         300
                                         360
                                         403

<210> 361
<211> 631
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(631)
<223> n = A,T,C or G

<400> 361
ggtaaaagct tttttttttt tttttttttt tttttttttt cgtttttaaa aactcggtt
ttatncaata gaatgttttt tagcanatgc ctnttggaaa aatataattaa aattttgcaaa
agccntttga gctactgcct tagtctaccc actgtccccc ngttatgagg tanaggatnt
catgacacca tacacacacaaa cccatcatttgc cctgtgaatg cacgttagggc canaattcct
cagttcccgcc tccctctgagg gttgataactg ctggaaatgc caaccantnc acaagcanag
ggaagccccn tcaggcctnc aggaggagcc gcagcagggg gtccaaattna aaccagcngc
aaaagagccct gacattttcc catccatnta tgagggaaagc cattttacag aacntggaca
tagggcaactt gntttccca cacnaanggg atggaaattt tctacctata gncatccctt
gnacttctgg anttactcan gaccanggnc caactaaang gcaaaaccct tttggntctt
taaccagaaa agcantnctn nggactgggg acctncccg gnggcnnntt aaaggngaat
ttccnnnnntt gggcggtnt aggggaccaan g
                                         60
                                         120
                                         180
                                         240
                                         300
                                         360
                                         420
                                         480
                                         540
                                         600
                                         631

<210> 362
<211> 660
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(660)
<223> n = A,T,C or G

<400> 362
ncnggtacact canttgnctg cttacgctnn anccagcatg tggagctag gtcatttntc
gcaagccagg caaccacacc agngtataan cctcaagcaa atgtnactcc naagccnnan
atgggactaa ggcctttgtt gggcttagggcg tgggttaaan cccangctg naagctnnnta
cccaaccnta attagtnctca ncttactntc aatatgtgca tantttcata aagcacaat
                                         60
                                         120
                                         180
                                         240

```

tnncatgagg	aaaagangat	ggtggtgaaa	gggnagggggt	gangggacat	nttcaagtca	300
canaggctgn	anaactcagc	atgacttgt	gacggaccac	aggncatnca	gggnnacaac	360
acngacataa	ctcaaccagt	ggtnaacngn	tctaaaccag	ggtnaacagg	agangggacc	420
aaangnaact	tcctggattt	ngctgcaagt	ttaaaagata	agtttacct	tagctttaag	480
ccttagncct	tatggggca	aaaaaaanggn	aaagtcaatt	cttgcncaa	atccaagctt	540
gggcncncca	aaaaaggaa	atnggggtn	ttaggccccca	aaacctnaat	tgagntccca	600
aggnttcaag	gcccaggcaa	attgnaaagt	tcctgccttn	aaagcttgggn	ccaataaaaa	660
<210>	363					
<211>	486					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(486)					
<223>	n = A,T,C or G					
<400>	363					
ggtaccttca	accttctcta	ttttaatctg	aggggaaatt	aagagaatct	caaaagtac	60
tacagagttt	gggtaggcta	gatacattt	ttaatagtagaa	aagcaaccat	ggcaaaagca	120
accataactca	ttcttgataa	tgaaaggatc	ttcttatatac	aaacctagca	aattaaaaaaaa	180
aaataactaaa	acaaagtgtc	tgaagataat	gaaaggcagt	tcaattcatg	taatgtcaag	240
taactttcaa	ttgtaataga	atcatttata	ttcttatagt	gccttacagc	atattttatc	300
gtaatgaga	aatgaacca	aaactatagt	gctaaccctg	aaaccttaaa	ccgaacctta	360
caaagttaaa	gactaagtgt	tggtcagaag	gaaaaggatg	caccatgcat	cttcacaggg	420
aaaaatgaaa	atagcnaaga	tggcagaaat	gcctgaactc	atggtacct	gcccgccggc	480
cgtttng						486
<210>	364					
<211>	686					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(686)					
<223>	n = A,T,C or G					
<400>	364					
ggtgctcgg	ataacttcct	gcagcgacca	acaggctaaa	gagggggaag	gtctggaggg	60
atccagcacc	ggctcctcct	ccggcaacca	cgggtggagc	ggcggaggaa	atggacataa	120
acccgggtgt	aaaaagccag	ggaatgaagc	ccgcgggagc	ggggaaatctg	ggattcagaa	180
ctctgagacg	tctctggga	tgttaactt	tgacactttc	tggaagaatt	ttaaatccaa	240
gctgggttcc	atcaacttggg	atgccataaa	caagaaccag	gtcccccccc	ccagcacccg	300
agccctcctc	tacttcagcc	gactctggga	ggatttcaaa	cagaacactc	ctttcctcaa	360
ctggaaagca	attattgagg	gtgccgacccg	cgtcatcact	gcagaaaccg	tgcaaggcag	420
aaccgcata	gaactaccaa	ttccaccagc	atgccgtatt	cccacttggc	ttattggtgg	480
ggaaatacct	tgcncnggcn	ggncggttca	aangggcgna	antccagct	cacttggccg	540
gcccgtactt	aatggggatc	cnaaactttg	gnaccccan	cnttggggcg	nnaatncatn	600
gggcaaaaat	tggntnnncnc	tgggggnaaa	atggtaatnc	cggttcacaa	nttccccca	660
attttctann	cccgaaagct	taaagg				686

<210> 365
 <211> 639
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(639)
 <223> n = A,T,C or G

<400> 365

ggtacatcct	aaagcattct	ggtacaaatg	aatggaaact	gcctttgtg	ggtctatttc	60
agaagtctgt	tgtcagagtt	cagttcacag	gcatcaacca	gaaggctagt	gaggccgtt	120
gaaattctgg	cccagattaa	tttttaaag	ctgcatttg	agcttttaa	agtcgagctg	180
tttccaaagg	cttaactgaa	gagtaactga	tttcaactgga	aataaaagtc	cacatgtgat	240
cccagctgga	gtgtggtcat	attttctt	caaacctaga	atgtcttggg	gaacaaacgg	300
ctgtcacgtg	tcccttcca	aaaatgtctt	aaacaccgga	aaggagggca	ggctaagggtg	360
tagcccttcc	caccctgggt	gccagggtt	gggggtgctat	aagtgaata	tcaaagctt	420
aggcactaat	attctgaatt	tcagctcaa	agganggann	gtntcnngaa	tcnangaagg	480
aggggaagga	cccaganacg	gggaatggcc	tggatggat	naatccanna	cntgggnnaa	540
agctggttc	ctgataatg	ngtcttggg	gaccttgc	ggccggncgt	tcnaaaggca	600
atcccccccc	atggnngggc	gttactaagg	ggntccgcn			639

<210> 366
 <211> 586
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(586)
 <223> n = A,T,C or G

<400> 366

cgaggtacaa	aattgcagat	agtggcttac	tgagtttaag	atcaagatca	gacttaaact	60
caacaagatc	accaaaggta	tttctactga	gttttcctat	gtcccacagt	aagctgggtt	120
agagagaact	caaattcctg	atggaaaaca	aaaccgaaca	aaaaaactag	aaaaaaaaagg	180
tgttaaaaat	gctgtgttaag	ttgctgcaaa	aggggaaaaaa	gaatagacac	taactccatg	240
taattttaga	catgcagctt	ttgtgtttt	ttttgtttt	gtttttttt	ttttgaaaaaa	300
aaccagtta	tttgagatc	agtggaaaaga	gtctangcca	cagaaaagaa	cagctctta	360
atgcaagtt	aaatgtgtaa	atgaatgacc	cgggacactt	gacacctta	gatgcagact	420
tcattcggca	ctggttggct	cagacttgcc	ggcngccgtt	naaaggcnat	tcaccnctgc	480
ggccgtctan	tngtccaac	ttgtccaact	gnnaanagn	tanntgtctt	gggaaannnt	540
nntncattcn	cnntnaccga	gctaagntag	cgggngnnntg	nggnnn		586

<210> 367
 <211> 628
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(628)

<223> n = A,T,C or G

<400> 367

gcttcctgag	gaggcaggcca	gaacggaagt	cttgggtttta	tttataatgttg	ataacttaca	60
tccggcctgc	tcctcaggaa	gcacaggcagg	gaggagacag	agcccaaagg	agacggcgac	120
aaaaaatgcc	aaaccctgt	gctaatgtgg	tgactgagag	caaggctaaa	gctcccttct	180
gagctcccc	gcagccaaag	caaagagaga	aacagggtcc	tgcagcatga	tgtcacagaa	240
aaccaggggac	cctggagect	gggttccaat	aagaacctta	cattctgacg	ccttagattt	300
ctccctggaa	aatggggaga	aaaatactga	atgggttggg	agggccatgc	aacacaccca	360
gcacagtgtc	tggatgcatt	tcagaggccc	caccagtcta	gggtctacag	aaagacagta	420
ccttnngccg	ngaccacgt	angggcaat	tccactcaact	ggcgggcccgt	tctaattggat	480
ccnacttcgg	accaactttg	gcgttatcat	ngcataact	tgnttcctgn	gggaaaattt	540
gtatcccgt	tcaaattncc	ccccanntct	aancgaannnc	ttaangttt	aacctggggg	600
ncaaataagn	gcttacacct	tattgggn				628

<210> 368

<211> 618

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(618)

<223> n = A,T,C or G

<400> 368

acaattcata	gggacgacca	atgaggacag	ggaatgaacc	cggtctctccc	ccagccctga	60
tttttgctac	atatgggtc	tcttttcatt	cttgcaaaa	acactggct	ttctgagaac	120
acggacgggt	c当地tagcacaa	tttgtgaaat	ctgtgttagaa	ccgggctttg	caggggagat	180
aattttccctc	ctctggagga	aaggtggtga	ttgacaggca	gggagacagt	gacaaggcta	240
gagaaaggca	cgctcggcct	tctctgaacc	aggatggaac	ggcagacccc	tgaaacgaag	300
cttggccctt	ccaatcagcc	acttctgaga	accccccattt	aacttcctac	tggaaaagag	360
ggccttcctca	ggagcagtcc	aagagttca	aaagataacgt	gacaactacc	atctagagga	420
aaggtgcccc	ttagcagaga	agcccaagac	ttactcttgt	cgtttncaga	nacaactgnt	480
ggcttgctt	ggatgcccccc	agccttgan	aggcccttac	ccattgacct	tttgccatcc	540
cttgggcatt	aacttnnggc	cttgggnttt	aancctgntt	gccttnaang	gncaggtttt	600
gcttaanccg	gntgnggc					618

<210> 369

<211> 443

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(443)

<223> n = A,T,C or G

<400> 369

gcagggcgggg	cngcgggggtc	ttggcgaacg	gtcttcggaa	gcggcggcgg	cgcgatgacc	60
acgctacggg	ccttacctg	cgacgacctg	ttccgcttca	acaacattaa	cttggatcca	120
cttacagaaa	cttatggat	tcctttctac	ctacaatacc	tcgcccactg	gccagagtat	180
ttcattgttg	cagaggcacc	tggtggagaa	ttaatgggtt	atattatggg	taaagcagaa	240

ggctcagtag ctagggaaga atggcacggg caccgtcacg gctctgtctg ttgccccaga	300
atttcgacgc ctgggttgg ctgctaaact tatggaaagg actagaggag atttcagaaa	360
gaaagggtgg atttttgtg gatcttttg taagagtatc taaccaagtt gcaagtaaca	420
tgtacacctng gtcgcganna cgc	443
<210> 370	
<211> 636	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(636)	
<223> n = A,T,C or G	
<400> 370	
acatttgttt attaaagca caggaatga ataaaatgcc acctaaaaag tatctgcaat	60
gaataaaatta tttccagtga agcactgcag atccacacac accagtctgc taacctttac	120
caaggccatg tccgggtggc ttgtgtttgt tccagttgac tcttccttga gacctttccc	180
ttctgtgcaa tgaccacagc attagagacc agtcctgcat ggcgtggcct tcctctgttagg	240
catggcagac cacgtggatg agcagtggc tggcatgcag taggcttnaa caaatggcac	300
ttcaactgttt ccagtgaccc tgaaatgttt tacgtaaatg gggcctggc tttaaagaaaa	360
agagccaggg ttccctcaagc tggcccccctt tacttgaggc cagcttcagg aaatactgggn	420
cttaaggagc cagaacttg tccaggagtt ttgagccctt anttgaagg aaaatggccc	480
cttggngtcc ntgcaagcac cagnnatttc cgtgatngtg ancaagtnac cnnccttaag	540
ggaaggccaa tcccnctttg gnggantcn agggcnctan tcctgtttgg aagggcttga	600
aggttggaa ntttaaaat ggaggnntng gcttcc	636
<210> 371	
<211> 615	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(615)	
<223> n = A,T,C or G	
<400> 371	
ggtacaagct tttttttttt tttttttttt tttttttttc tgtaaagaa tgcttttatta	60
atacaatcac acacaaactc tgaagcacta anaaatttaa atatctatgt cacagcaaac	120
aggtggcaat tcaacatcca gggtcgacag aatgcttcaa gganactgca acagattgg	180
ttcccatggt gganagggca tnttcacagg tgaagggggg cccagctgaa acagtttc	240
aagctcttc tcctcgtaa ggatcatgag aggcactcca ctcaagggga ggtgcgcaat	300
ctggtgctct tcagggcaggtaaaaactctc aaagtctaga ggattgaagg gaaagaattt	360
ttctattttt gataggcat catctgaggc aggaacagag cttttgctt taacagtctt	420
ctcagtcatc tttttggca aaaaagctt gctgggtttt tttgangggg tccttggct	480
ttacagactt ttctgnaact ctgtgacca gnttcccaaa gcctttta gtaactttt	540
ggtaaggctt ntggggcat taaacctttt tccaaacctg gggttgaaac ttggAACNC	600
ctttaagggt ttgt	615
<210> 372	
<211> 612	

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(612)
 <223> n = A,T,C or G

<400> 372

actttttttt	tgttctagga	atgagggttag	gataaatctc	agaggctctgt	gtgatttact	60
caagttgaag	acaacctcca	ggccattcct	ggtaaacgtt	ttaagtagca	tttccagcat	120
tcacacttga	tactgcacat	cangagttgt	gtcaccttcc	ctgggttgatt	tgggtttct	180
ccattcaagg	agctttagc	tctgagctat	gatgctttta	ttgggaggaa	aggaggcagc	240
tgcagaattg	atgtgagcta	tgtggggccg	aangtcttag	cccgagacta	agtctctacc	300
taagaaaatg	cctctggca	ttctttgaa	agtatagtgt	ctgagctnat	gctanaaaaga	360
atcaaaaagc	nagtgtggat	tttttagactg	naattaaatg	aggchaaang	atttctattc	420
ccagtggaa	agaanacctt	tctactgaag	ttgtgggggg	antatgttng	aatgttagag	480
agaaccctta	agnnntnctt	tgattggccc	ttggagaccg	nttgannac	atnncccgga	540
attnnantan	aaattnttc	nggnntnaag	tttccccntg	tngtngnann	ccaacctngt	600
ttttgcccccc	cc					612

<210> 373
 <211> 638
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(638)
 <223> n = A,T,C or G

<400> 373

ggtaactcagt	atttcaaatac	atgaacacaa	gattggaact	tttggaaaaaa	tgggttcaag	60
ctttcctatt	agccatggaa	atgcaaagtt	tagcagaagc	aagcaattag	gcagagaaaca	120
aaaatgttaa	gcatgggtt	gtctatctta	ttgaagtgg	tggaaatgaa	agcttttaat	180
ttgatagatt	tatcagtata	aaatttaggaa	aaccacgtgt	ggggaaatgaa	tcaattttaga	240
gcttcggaa	tttgtgaggtg	acttttgtaa	ctttgttct	gtgtgtgacc	tgtgaaccac	300
tagatgtat	ctgcccattgt	gggcagggtcc	agcatagtt	ggagtttaggc	tttancataaa	360
aattctagct	gcatctgagt	ctcctggat	gggtgctt	tggctngt	tggcctgccn	420
gattggtag	atccagancc	agcttttcc	tgctgcttg	cccctnncaa	ttaatttgtt	480
gggattgcca	gtgcnagaan	accttagttg	taaagaattt	taatcctacc	ncgaccnagt	540
ccaaaangc	ngggtttga	atgtggaaan	ttttnnaatt	ttcccttana	aagtctaaat	600
tttgcctngt	tanactnttg	gttttaaagg	gaaggaa			638

<210> 374
 <211> 503
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(503)
 <223> n = A,T,C or G

<400> 374

ggtagacatt	aacttaaacac	aaaaacccga	acttcaaaat	gaaggtgtgt	ggaggaaaagg	60
tgcgtctggg	tctccctaca	actgttcatt	tctttgttag	gcagggggta	gttcctgaat	120
ggctgtggtc	caatgactaa	tgtaaaaacaa	aaacagaaaac	aaaaaaaaaca	aggaactgtc	180
atttccacga	aagcacagcg	gcagtgattc	tagcaggcct	caggcccctg	ggcctgggga	240
ggctacatga	gggggagcct	cagtcacagg	atcaacctgg	ggcccgaaagg	agcagggttc	300
cctgcctctc	cctctgcaac	agatcatccc	atccaacaca	accccaaaaa	tgttgatgat	360
gacgcaacat	ggtcaaccct	caagacctt	aagacaaaac	agagcagcat	aggaaaaaaa	420
aaacaaaacg	caccaatttc	tgcgtgtc	aatggtaggg	cacnnttta	aaaaagtctg	480
tctaaaacan	nctntgttta	ctt				503

<210> 375

<211> 611

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(611)

<223> n = A,T,C or G

<400> 375

ggtacaaaag	ctgttgaact	taatccaaa	tatgtgaaag	ctctctttag	acgtgcaaaa	60
gcccatgaga	agctagacaa	taagaaggaa	tgtttagaag	atgtcactgc	tgtgtgtata	120
ttagaagggt	tccaaaatca	acaaagcatg	ctgttagccg	ataaagtct	taaactcctt	180
ggaaaagaga	aagccaaaga	aaaatataag	aatcgtgaac	ctctgatgcc	atctccacag	240
tttatcaaat	cttacttcag	ttctttcactg	gatgatataca	tttcccagcc	catgcttaaa	300
ggagaaaaat	ctgatgaaga	taaagacaag	gaagggggagg	ctttagaagt	gaaagaaaaat	360
tctggatact	taaaggccaa	acagttatgg	aagaagaaaa	ctacgatana	atcataaagt	420
aatgccccana	aaaaaaaaatn	attnaaaaaa	aagcttgc	ctgcggccg	gccgttchaa	480
aggcgaaatt	canctccctg	gnnggcggta	ctannnggat	ccaacnttgg	gccaacottg	540
gnngnaaacan	ngntatant	gtttcctggg	naaatggtn	ccngtncaa	tccccnaatn	600
ntngngccgg	g					611

<210> 376

<211> 601

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(601)

<223> n = A,T,C or G

<400> 376

cgaggtcttt	tctcttttc	tgtttcatac	ccagatcaaa	gaatcccgag	ttaggatctg	60
gatgaaggat	aagccctgt	attgtcgatg	ggctcacccc	cacactgacc	cagcatctga	120
acttgcttaa	cagggagccg	gggcttaact	gcttcaccct	gcctgagaac	cagggagcac	180
tgcatttttc	cacagggtgg	aggagaagag	gcagaataaaa	ccaagcctgg	gacacccc	240
tcctgtctag	gtgtacagca	cacaggttaa	tactcttcaac	cctcatacctc	tccgtcagca	300
ctatctgctc	caaccttc	ataatccttc	tcaagggcag	ccatgtcctc	acgggcctct	360
gaaaactcgc	ctggaccaca	aagtttgacc	tgatgtatgc	caagccgtgc	ctttggcac	420

tggcacctgg ccngccggc cgttcaangg cgaattccac acactggcng gcccgtactan	480
tggatccnaa ctnggaccag cttnngtaat catggcatnc tggttctgg ggnnaatgg	540
atccgttaca attccnccan ntcnancgg aacctaaagg gttaaacctgg ggngctaatin	600
a	601
<210> 377	
<211> 621	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(621)	
<223> n = A,T,C or G	
<400> 377	
ggtacaagct tttttttttt tttttttttt tttttttttt tctgttcaag aaccagtctg	60
ggatcttgc cccagctcta attactggcc gtagcagcat attgtttaan aatttttag	120
aacttatttc tcatcagcag ctgtccaaag gactgataaa tagagacaga tcccagtct	180
ggataacttc tgtaaatcct aatcgagac tcacttnna gcaatggagg ctgaaaagtct	240
tagtgagact cagtaaaattc cttttaggcct tggcagatgg atccagtagg ttgagagaaa	300
gtgaaggact tcagaaacag aaagaaaaatc cccatgccac tagcaactcc attttatna	360
actggaagga acatgccaac gaccagcaac acatccaggg ttatgaaaaa tgggggttca	420
cagnncnaat gtcngntcca agttcaggct ncnggatttt ggtttggagg actgaatgg	480
gtggattaaa ggcttncatt ttcttgnaac cttgaaaggg ttttnggan aanaattcnt	540
tgntaatgna agctnggtt aaacttgacc tngcccggn gggccntca aaaggcgna	600
ttncgcncn ttggggggcc g	621
<210> 378	
<211> 327	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(327)	
<223> n = A,T,C or G	
<400> 378	
acatctccga cagtagtctgt ttcaagcatct ttgcncttct gaagtcttn atacttgtgg	60
caaaagttcc taaaactggc ctccangtgt ccctccacct gtgctggcac ttggcggtt	120
ccacnnaact tccccaaacag ctcacaatcc tggctgactg ggacaataat tcagcaaact	180
ggctactcag acctggcacc aaatgtcctg tccaaaatgc tgttcaactga accagtgc	240
ggcgccccctg ggcagggtgg ctgcgtcacc cgccacatnc acttggccgc cagaagccng	300
nggggaagga cctnngcgcg acnacgc	327
<210> 379	
<211> 517	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	

<222> (1)...(517)
 <223> n = A,T,C or G

 <400> 379
 actcacaagt aagaacactt ctctactgaa ggatactgtc acagagttt ttgcagagca 60
 tctatatata tatttattna tttatTTaa aaaantaaac aacantgatg aacganccca 120
 ggttcctaga accaattctc ttgattctc acttccacaa aataaaagtgt atcattggc 180
 caagactaca gatgtgttt tnttttca canatgcaag tgccatgcaa aaataaaatta 240
 aagaacagat accaaaacat acatgtgata aaactacana tggtagattt ttaaaggcat 300
 ttatataaac ntaatttata aatacttctc ttntgcctt tatatacagt cncaaanctg 360
 gntgttatac atntaggatt tcctntgcnt gacctnggc cgtnacnacg nntaaggcc 420
 gaattctgga agattccatc tacaattggc ggctcgttt tancatncct ttntanggcc 480
 caatttngnc cnntannnga gtcngattac aanntcn 517

 <210> 380
 <211> 351
 <212> DNA
 <213> Homo sapiens

 <400> 380
 acgctgtgga gggctgcagt gctcgtggat tcaaaatcac agagggctgg taaatggcag 60
 cttctgtagg aataactgca gcaggagctg gaaatgtgt aggggagga gacaggcatg 120
 gtaacttaca tggcggtggg gataagccat ttgatttaa agtgcCCCCC attaacacaa 180
 agttcatctc ctcagctgaa cactgaaaga cttcaacata tctgtcttc atgtttttt 240
 atgacacatc tgcagccaa taaatgtctc gtccgcagac ttcatctgga taaaggcatc 300
 tcctgatggg cggcccttgtt gattcaaaa catgtgaacc ccatgagtagc c 351

 <210> 381
 <211> 622
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(622)
 <223> n = A,T,C or G

 <400> 381
 acacttccaa ttgtccatat aattaagctt tccacaatct tacacaccca tcatctcctg 60
 aagatgttag caccgttccct gtttatattcc aactcactcg ccagacctga gaattatgat 120
 ttcgaactg agccacttata tggatttcaa actttgttgg cccaccagag gaagtcagtt 180
 ctttccatcc aggttttaat gtaaaaattt tcacatctt ggtcgctatt gctagaatat 240
 ggaaagatct tcccaaattt ggagcgaatg caatatcatg aacaggatca gtgactgtca 300
 taagagtttgc agcttttgca tatttcctgg tttttcatt atattcaaaa atctgaacct 360
 tggccatcgt gttggggcta ctgnatcac ttctacggc gatcatgggg gaatgagcac 420
 gagagctttg naggggtncc aagaaatnca cttccagctt agctacttg aganctctgg 480
 ctggnaaga cccctnggct gagaattcnt aaccatctgg ggcctcaaa nantcttacc 540
 tttccatng nggacaaggt ggttacttag aaccCcnggn cttgggacca acttnccntt 600
 cggtnncana gtttggtn cc 622

 <210> 382
 <211> 509
 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(509)

<223> n = A,T,C or G

<400> 382

ggta	tactctca	tcccgcccc	attcaggctg	atagtaacag	cctaggtaga	gtcaacacat	60
aaaaaaagtgt	aattccagg	gaggaggatt	agaataagga	cacaaaggaa	gggaggaaaa		120
tgttcttga	ggctgaaatt	ccattaattt	ttcatagtgat	tgagttata	tttgcattg		180
catccttcaa	tcttctaaa	aaggaaatcc	ccggaacata	ataaaatctc	ttctgtatag		240
aaaagctaca	gctccacact	aagaggaatg	ccgtctgcct	taaagaatgg	aatcatcagt		300
gaccaagaat	tacttccaag	gagaaattca	ttgatattaa	aaccaaagcc	agatccagct		360
cagcaaaccg	acagccagaa	cagtatacg	gaggcgtatt	ttagagaatg	gtttccaaac		420
ccgccaacct	gcacggtgtt	atttctgcca	cgtgtctctg	gaacacacat	taaactgtgg		480
aaactnnctn	cttccgctg	ggggtc	cccc				509

<210> 383

<211> 380

<212> DNA

<213> Homo sapiens

<400> 383

acaattccac	ttatccatac	tattccctta	taaaaggcag	atttcaggta	agcttctaaa	60	
tgcatgcgt	atgtagaggc	taatatttc	tggcagtcct	tggttcctga	aatttgaact		120
tcatatgtgt	tttaaacttt	tgtcaaaata	gtcatgaaag	atatgttatt	tttgcataat		180
gaggtatata	atcagggcgc	ggcactcata	agacagtata	aatccacttg	tctaaacttg		240
catgaggcgt	tgtgcattgt	aaaatccat	aaagagttt	gggtcaagtg	aatatttgc		300
tgaaggaata	acacttacat	ttaactgagc	acttttctgt	aataaatacc	aaagtaggtt		360
ttttagctg	taaactgtgt						380

<210> 384

<211> 317

<212> DNA

<213> Homo sapiens

<400> 384

ggtcccagac	ccaagaccaa	ccgatggagg	aggaggaggt	tgagacgttc	gcctttcagg	60	
cagaaattgc	ccagttgtat	tcattgtat	tcaataactt	ctactcgaac	aaagagatct		120
ttctgagaga	gctcattca	aattcatcg	atgcattgga	caaaatccgg	tatgaaagct		180
tgacagatcc	cagtaaattt	gactctggga	aagagctgt	tattaacctt	ataccgaaca		240
aacaagatcg	aactctact	attgtggata	ctggaaattgg	aaatgaccaa	ggctgacttg		300
gatcaataac	ccttggt						317

<210> 385

<211> 275

<212> DNA

<213> Homo sapiens

<400> 385

acttttagtc	cctgtttac	aggggttaga	atagactgtt	aaggggcaac	tgagaaagaa	60	
cagagaagt	acagctaggg	gttgagaggg	gccagaaaaa	catgaatgca	ggcagattc		120

gtgaaatctg ccaccactt ataaccagat ggccctttc acaaccctgg gtcaaaaaga	180
gaataatttg gcctataatg ttaaaagaaa gcaggaaggt gggtaataa aaatcttggt	240
gcctggaaaa aaaaaaaaaa aaaaaaaaaa ctgtta	275
<210> 386	
<211> 606	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(606)	
<223> n = A,T,C or G	
<400> 386	
ggtacatgga tattccaaa ccattccatt agaaaactgc cccctgcac cacacaacaa	60
aaacagcgct atttcctaca cctattggac tgaaagtgt tggaaatgga atggtttag	120
aatatgaaga agaacacaaa ccaagtagct gtgggttgaa cctggacgtg agctggctgc	180
agggccgttg ggtagaaaac cagcatctca taaacaggc actacaaaaa taggaagagt	240
ataaaaaatag aatatattat gtcactattt cgtcttctt ttatagtagc gtatcgtagg	300
agtgggacag gtggccttc ccgaccctgc tacgctggc ggtgccgac aaacccac	360
tggatggtt gtcactggat ggttgttgg ggtgggtgc acaggcgcaa aggacatgca	420
cacgggcacg ctgcgtactg naaccagan gtgacttcag cntgaataaa gngaaaagg	480
tccccatnta nctcnngaatt tattncctnc ccaggnccca ttaaggggct ttntggctt	540
tnaccancca agncccncctt cttgaaangc caaactttt tgaaaaaaag gganccttgn	600
atngnc	606
<210> 387	
<211> 339	
<212> DNA	
<213> Homo sapiens	
<400> 387	
accacttgca gtc当地atgaa ttccttc当地 aatgtatggacttcc accgtgatgc	60
ttgatgctgc aacgcttaaa acgatgaaaga tttctcgatggccat ttatataact	120
ctgcagcctt caaagctcgatggccatggccat ttatataact	180
ttggagaatt cttcttagatt ttcagaactt gaagacttattt ttcttaattt tattttttt	240
tctatttcaa tgtatggaaatggccatggccat ttatataact	300
ttttagcag tggatggccatggccat ttatataact	339
<210> 388	
<211> 667	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(667)	
<223> n = A,T,C or G	
<400> 388	
taccagttgt catcatagcc ggagatggac acttcaggag ggtacgtac attccatga	60
caccaatactt acagtttcg gagtcacagt aagatacaca gaattacatc cgtaattaat	120

atgaatgcca acatgtcaag cagtaatttgc ttacatggca aacaaaatca agaaagcaac	180
catcaaaca aagagaccca tagttcaga caaggaaat cccaggatag catatgagaa	240
cagctgctgc ttcagcgaag gtttctggc ataaccatg ataaggctgc caaagactgt	300
tccaataccca gcaccagaac cagccactcc tactgttgc gcacctgcac caataaattt	360
ggcagcagta tcaatgtctc tgctgattgc actggctgtga aactccctt ggatttagctg	420
agacacacacca ttctggccc cattaaatac ctagagcccc tctccagtcc tactagctc	480
tggtcgagat aacactgtatc cagaaattgg tctgtatgc actctggatc cagctcgat	540
cagagagggg gtgcaggcga gcttggcga ggcgaacatc ttacactctt cgggactgcg	600
cggctggaga tattgggtga caggcgacgt ggctccctct cccgcttnct ctcttccag	660
gaagcg	667
<210> 389	
<211> 613	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(613)	
<223> n = A,T,C or G	
<400> 389	
ggtaccagggt gtcatcatag ccggagatgg acacttcagg aggtagcgt acattccat	60
gacaccaata ctacagttt cgagtcaca gtaagataca cagaattaca tccgttaatta	120
atatgaatgc caacatgtca agcagtaatt ttttacatgg caaacaaaat caagaaagca	180
accatcaaaac aaaagagacc catagcttca gacaaggcaa atcccaggat agcatatgag	240
aacagctgct gcttgcga agggttctg gcataaccaa tgataaggct gccaaagact	300
gttccaatac cagcaccaga accagccact cctactgttg cagcacctgc accaataaat	360
ttggcagcag tatcaatgtc tctgttgcatt gcactggct gaaactccct ttggatttagc	420
tgagacacac cattctggc cccattaaaa taccgnagag cttttcagt cctactagcc	480
tctggncgag ataacactga tgcanaaatg gnctgtatgc caactctgga tccacttcgg	540
ttcaaaaagg ggtgcaggca acttggccca ngcgaacatn tacactttc gggactgccc	600
gnntggnnnaa tgg	613
<210> 390	
<211> 278	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(278)	
<223> n = A,T,C or G	
<400> 390	
actagtcctc tagaaatagg taaaactgaa gcaacttgat ggaaggatct ctccacaggg	60
cttgttttcc aaagaaaaagt attgnnttggaa ggagcaaagt taaaagccta cctaagcata	120
tcgtaaagct gttcaaaaat aactcagacc cagtcttngn gatggaaatg tagtgcgtca	180
gtcacattct gcttaaagtt gtaacaaata cngatgagtt aaaaanannnt ctttnttga	240
actctnanga aaancttggaa cttngccgn gaccacgc	278
<210> 391	
<211> 604	

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(604)

<223> n = A,T,C or G

<400> 391

ggctttttt tttttttt	tttttgaa cacagatcac	tttattggca	tggctttgtt	60	
ttaaaaaaag gaaaagtgc	aaagccaaaga	gacagactnt	gctaacagat	gcctgggggt	120
ggctggacat	ttttgcctca	tgctgtgcaa	agagggggat	cctggcccac	180
gattccttgg	gacaagggtt	tctgcctggg	cctcaactgca	cottcttgaa	240
canaccacac	cttcacttgc	natctncagg	tgcagctcat	caccctngat	300
cagccacgccc	ccttcttetc	acccttctga	cacactggag	cttgcctcggt	360
gtgtcatgca	cttgcgnca	tctatgcctg	nagatcctcc	taaactcctt	420
aagtccatga	tgnantncct	aaaagngetc	accgtggcgg	angatcatat	480
ntgaacgaan	tntttggcg	ggnttcanna	agttgcccatt	tttgcgcaaa	540
gncgtnnagg	gccccangtnc	tttgcnngn	ccctnagggn	gaatccccac	600
tntn				nttggggcccg	604

<210> 392

<211> 610

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(610)

<223> n = A,T,C or G

<400> 392

acgagggggag	cgagacgaaa	ggagaacggt	gattattcat	gacaggcctg	atatcactca	60
tccttagacat	cctcgagagg	cagggcccaa	tccttcaga	cccaccagct	ggaaaagtga	120
aggaagcatg	tccactgaca	aacgggaaac	aagagttgaa	aggccagaac	gatctggag	180
agaagtatca	gggcacatgt	tgagaggcgc	tccccctggg	aatcgtagca	gcgcttcggg	240
gtacttattgc	gcacaaattc	gggcagcctc	caggcgttca	gaggacagct	gctcatattc	300
atctgacacc	atgtggccac	aaagcgaaaa	ctcatccact	tttgctttt	tccgccccag	360
gtcaaaaatg	cgaatcttgg	catcaggagac	actctggcag	aagcgagact	ttgggtgagc	420
ttgtttcca	tctagggatg	atgggagaca	gtgacaaaatc	atccaccatt	agattttat	480
aaggagcgca	caacccagac	aacccaaatc	cctttggatg	tgccagttca	caatagtgg	540
catgcctca	ttgagaatat	aatggctctn	gacttgccgg	aaggcaaact	taaggccata	600
atgggaccn						610

<210> 393

<211> 314

<212> DNA

<213> Homo sapiens

<400> 393

ggtcccagac	ccaagaccaa	ccgatggagg	aggaggaggt	tgagacgttc	gcctttcagg	60
cagaaattgc	ccagttgatg	tcattgatca	tcaataacttt	ctactcgaac	aaagagatct	120
ttctgagaga	gctcatttca	aattcatcag	atgcattgga	caaaatccgg	tatgaaagct	180

tgacagatcc	cagtaaatta	gactctggga	aagagctgta	tattaacctt	ataccqaaca	240
aacaagatcg	aactctcaact	attgtggata	ctggaatgg	aatgaccaag	gctgacttga	300
tcaataacct	tggt					314
<210>	394					
<211>	498					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(498)					
<223>	n = A,T,C or G					
<400>	394					
accagacctg	tcaacgtcna	tttctcgna	aatttnttgg	tatTTTgaa	tctncgtcca	60
gagaatgtaa	aactccttca	gncccagctt	gccactcccg	tccgaatcta	gcatgtcaac	120
cataatttng	aatcttcgtc	cagagaatgt	agaactccctt	cagccccagc	ttgccactcc	180
cgtccgaaatc	tagcatgtca	accataattt	tgcatgnctc	gatgctgaag	ccatctgact	240
ggatatcttg	gcgcTTTgct	agaacccttc	tcaggatggt	ctgcngctca	aaggcanaga	300
tctccgnatc	ctcteetgccc	aactgggcaa	acagnctctt	gaatccatca	tcaatgtcat	360
cctcgctgtat	gtcgaactct	tcaagattgg	cctcgatttc	atcatcgaca	gcttggttagt	420
cagctttctt	ttcagaaaaag	acccggatgc	agaaatcccc	atccttgntg	ggttcgaagg	480
tggaaggcac	ganaatgt					498
<210>	395					
<211>	629					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(629)					
<223>	n = A,T,C or G					
<400>	395					
gccggccgtc	aagctgtcca	catccctggc	ctcagcccgc	cacatcaccc	tgacctgctt	60
acggcccgat	tttcttcaat	cacatctgaa	taaatcactt	gaagaaagct	tatagcttca	120
ttgcaccatg	tgtggcattt	gggcgcgttt	tggcagtgtat	gattgccttt	ctgctcagt	180
tctgagtgtct	atgaagattt	cacacagagg	tccagatgca	ttccgttttg	agaatgtcaa	240
tggtacaccc	aactgctgct	ttggatttca	ccgggttggcg	gtagttgacc	cgctgtttgg	300
aatgcagcca	attcgagtga	agaaatatacc	gtattttgg	ctctgttaca	atggtaaaat	360
ctacaacat	aagaagatgc	aacagcattt	tgaatttggaa	taccagacca	aagtggatgg	420
tgagataatc	tttcatcttt	atgaccaang	gaggaattga	gccaccatt	tgnatggttg	480
gatgggtgtg	gttgcattt	ggtttactgg	ggaaactggc	cattangaaa	agggnctctg	540
ggtaaaaagaa	tccctatggg	ggccnnnaacc	tttgnntnaa	agccntrngcc	ccaaaaanggg	600
gnTTTTTggg	cggnatgttt	cnaaaaacn				629
<210>	396					
<211>	614					
<212>	DNA					
<213>	Homo sapiens					

<220>
 <221> misc_feature
 <222> (1)...(614)
 <223> n = A,T,C or G

<400> 396

ggtaacttggg cttcttcag ctgttcaac agagtggcag caaccaagct ggagtccaa	60
ccccctgata aaaggcagcc aatcctctg tctgtcatca aacgtttctt tacagcatta	120
ttaaaaagga tcctgaggtt gttttaca gtttctatct caaaacctgg aaagagttc	180
tccacattgt catagagggc gtgcagggt tcatcccac agtgatgata tttaaccatt	240
tccacggatg caactttgcc atttggctt aaatccaaa cttcatagtg tccaggaaga	300
aaaggctcca cttttaaaaa gggagtcgcg gagtgctca atgtaacaag accttaact	360
tctgaacata cagccaaaaa tcatcttct gncattgtt taaaccaang tctgactcca	420
tatggtatct cttaccagg aaccctttc ttaatggca ggtantccag taaaaccaa	480
atggcaaacc ccancanc caaccnttcc naaatggntt gggttnaaat nccttcctt	540
gggcataaaaa gaattnaang ggnttnntt tanccttcc cctttggc cggggattt	600
cnaaaattcn aaaa	614

<210> 397

<211> 588

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(588)

<223> n = A,T,C or G

<400> 397

acctggccat aggaaggaac caggacaggg ctggggacag aaggtggtca cagtcatgg	60
ttcaactctca gaaatatcct gggcctatgg cttaaaggctt cgtggagcag ggagtggacc	120
tttgtggtat ttacaaggct gggccatata aaagcattgc aaacatggag tggagaggat	180
ccttggagat gagctggttc aatcaactctt ctgaccaaca aggaaacaaa ggcccagaga	240
ggagaaggca gtgcctggcc agacgtggga cctgaaccca gccagggtc tgactccag	300
tccccccagtc ccctctctac ctcccttgctt ggctgagtc tttttgtata aaggccccag	360
acagcctctc cgacagtctc aggtcaggctt ggggttataaa atggagcagt ggactcagag	420
tcagaggccc agactctgtt ctggggctt nacattacca agncttgcta ataaccacga	480
gccccctggt tggaggggctt gctctttt aagctcagtc ntatctggc acaggccaca	540
aagttncatg ggataanngn tgaggccnna gcccacagn tggaggnc	588

<210> 398

<211> 348

<212> DNA

<213> Homo sapiens

<400> 398

ggtaactagcc ggacttggat tttctggaaa gatttcagtt gaggaacggg aacaaagatt	60
atgatagctt tccgaccacc accaacttca atttccttag ctgccgtaat attcagctcc	120
ctgagctgag ccttgaggctc cgagttcatc tccagctcca gaagagcttggagatggcg	180
gactcgaact cgtccggctt ctcgcattt ggcttacga tcttgccgtt cgaactgaac	240
atggctttctt cctggggagaa ctggccgagc gccggcttag gaagagaccc aatctcgcg	300
agagcacgtc aaaatccggc gtccgaaggc aagaggcggc aacagcgc	348

<210> 399
 <211> 630
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(630)
 <223> n = A,T,C or G

<400> 399
 acatccaaagt taaaattat cagcgaaatg gtccatgttt ttccaattac ctgctgacac 60
 ggttctaaggc taagtgaagg ggaagatctg agagcgtgct gtttggct gttatgcatt 120
 attcgtgatg taacagggtcc tggggcctca ctttacccca tttgtaaaat ggggctaatt 180
 tcacaccttctt cttacctacc tcagagggat ttggtaaggc aaactgttaa tcttcgaaaa 240
 cgaccatcc acttcttggat tatcaagtgc taacccagta tggtttctt ttttatgtaa 300
 gggacagctt tctccacaga gtccttctg ctggtgagga cagcatttctt gagcaggcgt 360
 ttgttctcta tgtgcattag gacttttatac atgccttgg tctatgtgtt gttacttgac 420
 agcatcaaataat gcccgtctt cctaattgncc ttcaagggtt catgaactaa caacccacc 480
 tttcancatg ggtctggccc ctgaatttgc tgngacttcc agaccacact ggttctacca 540
 cctgaacagg ccnttaaagt tccaaanggt cancttcctt aattccttgg ttcccggtgt 600
 atggggaaact tggcctanaa aagggnncncc 630

<210> 400
 <211> 619
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(619)
 <223> n = A,T,C or G

<400> 400
 actgaacagg taagtcatcc ctcagccaga gattagtcta cttcttccat gcgtgatgtg 60
 tcgtcatctc cttcaaggggg tggcatttct tcagttacag cagcaactggg atcatcagca 120
 gtagggtcat cttcatcaat acccagacca agtttgcata tcctgttagat cctgttagca 180
 tgtgtctggg gatttccag actgaagcca gaagacagggc gcgcagttc ataaagacaag 240
 atgaccagat cttcacaga cttgtcggtt ttatcagct ctgccttttgc ccttaaggc 300
 tcaataatgg aatggtcagg gtttatctcc aggtgtttct ttgctgccc gtaaccatt 360
 gntgagttgc tcttagggct tgagcttca tgattcgctc catgnttgct gccagccata 420
 tgtgcttgtg acaatacagn atggagatgc accaatcggt tggacaaacc accttcact 480
 ttttcttcca tangcttca gatttgcaaa gttctaaact ttgggtttc cttctgntc 540
 ttttctttt atctttggaa gtccaggctt ntggggacg ncctaagctt ccctnaatct 600
 ttatgtgttgc nnagnncnctn 619

<210> 401
 <211> 663
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature

<222> (1)...(663)

<223> n = A,T,C or G

<400> 401

cgaggtactt	ggcttctt	cagctgcttc	aacagagtgg	cagcaaccaa	gctggagtcc	60
aagccccctg	ataaaaaggca	gccaatcctt	ctgtctgtca	tcaaacgttt	ctttacagca	120
ttattaaaaa	ggatccttag	gttgttcttc	acagtttcta	tctcaaaacc	tggaaagagt	180
ttctccacat	tgcatacgag	ggcgtgcagg	ggttcatccc	gacagtgatg	atatttaacc	240
atttccacgg	atgcaacttt	gccatttggc	tttaaatcca	aaacttcata	gtgtccagga	300
agaaaaggct	ccacttttaa	aaagggagtc	gcggagtgtct	tcaatgtaac	aagaccttta	360
gcttctgaac	atacagccaa	aaatccatct	tctgcattgc	tttaaacaaa	ggtctgactc	420
catatgtatc	tctacccagg	aacactttct	taatggcagt	attcagtaaa	accaatgcca	480
acccaccatt	ccacatacca	aatgggttgc	tcaaatcctc	cttggcataa	agatgaaagg	540
ttattnacc	atncactttg	gccgggattc	aaattccaaa	agccggtgca	ttttntaan	600
ggtggnanat	tnncccttgn	accnaanccc	caaatccggg	attttnttnc	ctcnaatngn	660
tgg						663

<210> 402

<211> 673

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(673)

<223> n = A,T,C or G

<400> 402

ggtacgtgtc	cagctctgaa	gggcaaagtg	cagaagatcc	taatctggaa	gtggggtcag	60
ccaccatctc	ccacaccagt	gcctccgcct	ccagatgtc	atcccaacac	gcctcccca	120
aagcccttgg	agggggcggcc	agagcggcag	ttctttgtga	aatggcaagg	catgtcttac	180
tggcactgtct	cctgggttcc	tgaactgcag	ctggagctgc	actgtcaggt	gatgttccga	240
aactatcagc	ggaagaatga	tatggatgag	ccaccttctg	gggactttgg	tggtgatgaa	300
gagaaaaagcc	gaaagcgaaa	gaacaaggac	cctaaatttg	cagagatgga	ggaacgcttc	360
tatcgctatg	ggataaaaacc	cgagtggatg	atgatcaccc	aatcctnaac	cacagtgtgg	420
accagaaggg	ccacgttcca	ctacttggat	ccaaagtggcn	ggacttaccc	ttacgaatca	480
nggcnttttt	ggaanaatga	aggttttnga	aaatccagga	ataccnacct	ggtcaagcng	540
ancttttgg	naatccnnng	ggagtttatt	gaaggggtaa	aggaaggcnn	naccagcca	600
agaaaagctt	aagaaagggg	naactttcg	aaattggaaa	aggccttcan	aacnccaaacg	660
gttgttccac	nng					673

<210> 403

<211> 616

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(616)

<223> n = A,T,C or G

<400> 403

ggtaccgatt	atatcatctc	agtcttgaat	ttactcacgc	tgattgttga	acagataaaat	60
------------	------------	------------	------------	------------	-------------	----

acgaaaactgc	catcatcatt	tgttagaaaaaa	ctgtttatac	catcatctaa	actactattc	120
ttgcgttatac	ataaaagaaaaa	agagggttgtt	gctgtagccc	atgctgttta	tcaagcaatg	180
ctcagcttga	agaatattcc	tgtttggag	actgcctata	agtaaatatt	gggagaaaatg	240
acttgtgccc	taaacacaacct	cctgcacagt	ctgcaacttc	ctgaggcctg	ttctgaaata	300
aaacatgagg	ctttaagaa	tcatgtgttc	aatgttagaca	atgaaaattt	tgttagtaaa	360
tttgacctca	gtgccctgac	tacaattgga	aatgccaaaa	actcgagtct	ttaattgtaa	420
tggcttttgtt	ttatccacag	ttaggccctt	tctcaataca	tatttatgna	tttactggg	480
catggcaaca	tggctggaaa	aatcaactgga	tgttaaccaaa	cagccctttt	ttaanaaaatg	540
ncncggntta	accaaanaaaa	aaaaaaaaaa	anaaaagnnn	gacttcccg	ggngggcctt	600
taaaagggnna	attccn					616

<210> 404
<211> 613
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(613)
<223> n = A,T,C or G

<400> 404

cagtgctggg	cctaaaggag	ataacattt	tgaatggaga	tcaactatac	ttggccacc	60
gggttctgta	tatgaaggtt	gtgtgtttt	tctggatatac	acattttcat	cagattatcc	120
attnaagcca	ccaaagggtt	cttccgcac	cagaatctat	cactgcaaca	tcaacagtca	180
gggagtcatac	tgtctggaca	tccttaaaga	caactggagt	cccgcttga	ctatttcaaa	240
ggttttgcgt	tctatttgcgt	cccttttgac	agactgcaac	cctgcggatc	ctctgggtgg	300
aagcatagcc	actcgttattt	tgaccaacag	gcagaacac	gacaggatag	ccagacagtg	360
gaccaagaga	tacgcaacat	aattcacata	atttgtatgc	agtgtgaang	agcagaaggc	420
atcttctcac	tgggctgca	atcnntata	cctttacaat	ccgactttg	gggaaatgg	480
atacctggat	ctactctgnn	tttanacctt	tggacntng	gaaanntccc	caaaanggga	540
aaggcttca	aangtaaact	ttgaacctga	aaataagttt	gttnaaacnc	ctattgcaag	600
tttggttttn	gga					613

<210> 405
<211> 605
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(605)
<223> n = A,T,C or G

<400> 405

ggtaactgagg	tgtaaaggga	tttatatggg	gacgtaggcc	gattccggg	tgtttaggt	60
ttctctttt	caggcttata	ctcatgaatc	ttgtctgaag	cttttgggg	cagactgcc	120
agtcctggag	aaatagtaga	tggcaagttt	gtgggtttt	ttttttaca	cgaatttgag	180
gaaaacccaa	tgaattttagt	agccaaattt	agacaattt	agcaaatctg	taagcagttt	240
gtatgtttag	ttggggtaat	gaagtattt	agtttggat	gtgtactga	tgttttact	300
tcctcaccct	gaattcgttt	tgttaatgt	gagtttggat	gtgtactga	ggcgggggg	360
agttttcagt	atttttttt	gtgggggtgg	ggccaaaata	tgttttcagt	tcttttccc	420
ttaaggctg	ctagaatcct	aaaggcaat	gactcaaggt	gtaaccagaa	aaccagaaaa	480

tccccatttc	nggatatnng	accggcccgag	gttancggtt	attnaacttt	naccnnntta	540	
cctttaggct	ttgggaaaaaa	attnccttg	aaaaaagggt	tggannacc	tttttnccc	600	
cccccc						605	
<210>	406						
<211>	255						
<212>	DNA						
<213>	Homo sapiens						
<400>	406						
ggta	tacacct	gcccgtgtc	tcccagcagg	agtttgacaa	gaacacccctt	gatctcaggc	60
aacagaacgg	aactgcctca	tcacggaaga	ccctctggaa	tcaagaactc	tacatccagc	120	
aggacaactc	agagaggaag	cggaaacacc	ttccagaccg	acaggatggg	cctgcagcca	180	
agagtggagaa	agcagcccccc	agaagtccgc	actggttgca	cagggacctg	cgtgtgcgg	240	
ttgtggacaa	.catgt					255	
<210>	407						
<211>	601						
<212>	DNA						
<213>	Homo sapiens						
<220>							
<221>	misc_feature						
<222>	(1)...(601)						
<223>	n = A,T,C or G						
<400>	407						
ggtttttttt	ttaagaggaa	aaccggtaa	tgtatgtcggg	gttgaggat	aggaggagaa	60	
tggggatag	gtgtatgaac	atgagggtgt	tttctcggt	aatgggggt	tttatgttgt	120	
taatgtggtg	ggtgagttag	cccnattgtg	ttgtggtaaa	tatgttaggg	gagtagatgg	180	
ctgtgactag	tatgttgagt	cctgttaagta	ngagagtgtat	atttgatcag	gagaacgtgg	240	
ttactagcac	agagagttct	nccagtaggt	taatagtggg	gggttaaggcg	aggttagcga	300	
ggcttgctag	aagtcntcat	aaagctatta	gtggnaagta	gagtttgaag	ccttgaaaag	360	
aggatatgtat	nccactntga	gtgcgttcgg	tgtttgagtt	ngcttaggcag	aatattantn	420	
atgatgttaag	cccggtggca	ttatgagant	gactgcctng	ttaagnttna	nggggtttgg	480	
atgangaatg	gctngtaact	actaaggcct	atgntggctg	gtttaanagn	ttnatntnc	540	
nnanttann	tcttgcttgt	ctatgcagaa	tnganctgnt	attnatatgc	ctcacnangg	600	
g						601	
<210>	408						
<211>	630						
<212>	DNA						
<213>	Homo sapiens						
<220>							
<221>	misc_feature						
<222>	(1)...(630)						
<223>	n = A,T,C or G						
<400>	408						
ggtacaaaag	gagtctcagg	cttgaagagg	ttatgttaact	tgcctaaggt	cacacagtta	60	
agtggcagaa	atgagataca	aaccaaagtc	tgtctaactc	cagagttcac	accatcatgt	120	
tatagtgccca	tcttcgtaca	ttgagctcca	tagagacagc	gccggggcaa	gtgagagccg	180	

gacggggcact	gggcgactct	gtgcctcgct	gaggaaaaat	aactaaacat	gggcaaaagga	240
gatcctaaga	agccgagagg	caaaaatgtc	atcatatgca	tttttgc	aaacttgcg	300
ggaggagcat	aagaagaagc	acccagatgc	ttnagtcaac	ttctnagagt	ttctaagaaa	360
gtgctcanta	gaggtggaaa	gaccatgttt	gcttaaagag	anaggaaaat	ttnaagatat	420
tggcaaaggcg	gacaaaggnc	cgtttgaaa	gangaaatga	naacctataat	cccttc当地	480
gggggagacc	caaanagaag	tttcaaggat	nccaatggca	ccccaaagaag	gcntncttng	540
gccttcttnc	tcttctgtc	ntgagattc	ggcccaaataat	tcaaaggag	aacatcttng	600
gcctggccat	tggtgatgtt	ggcaaaaaag				630

<210> 409
<211> 614
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(614)
<223> n = A,T,C or G

<400> 409

cgaggtaccc	ggatgcagca	gtgatggctt	ttgggttgtat	cttggaaagga	ccagagccca	60
gtcagctcaa	accactagtt	atacaggcta	tgcaccct	aatagaatta	atgaaagacc	120
ccagtgtat	tgttcgagat	acagctgcat	gactgttagg	cagaatttgt	gagctgcttc	180
ctgaagctgc	catcaatgtat	gtctacttgg	ctccctgtct	acagtgtctg	attgagggtc	240
tcagtgtcga	acccagatgt	gcttcaaata	tgtgtggc	tttctccagt	ctggctgaag	300
ctgcttatga	agctgcagac	gttgctgatg	atcaggaaga	accagctact	tactgttat	360
cttcttcatt	tgaactcata	agttcagaag	ctcctagaga	ctacagacag	acctgtatgg	420
caccagaaca	acctgaggag	ttctgcata	aatctctga	tggaaattgt	aaaaaacagt	480
gnccaaggat	tggtatcct	gctgnccag	aaaaacact	tttggncatc	atgggaacga	540
ctggcacang	gtcttcaana	tggagtcnca	tatccgagcc	cattccattt	gaatnccgtt	600
caangacttn	ntct					614

<210> 410
<211> 611
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(611)
<223> n = A,T,C or G

<400> 410

cgaggtaccc	atgttatgct	ttcacctctc	acccaaatgg	agtcacacag	gcctgagttt	60
gaacagttaa	cacagcttgg	aaggacaca	tgcctgatc	ccatccctgg	agaacaataat	120
catgctatga	ggagtaggaa	ggcaagaga	tatgaaaaga	acagaggaaa	tgtggttcct	180
agaagtca	aggcatcaag	ggtccatcag	tgttagaagt	gctggggcgg	gagacgtaaa	240
cctcatccac	gggtttctgg	ccagccaaca	gtgggtcacc	attccggcatg	atttcttcaa	300
tctttacaca	gtttctgaag	atttcattt	gctcagtgtt	caaatgtctc	agatcacagg	360
gcaaatctgg	ctctggact	ggctgtata	caggcccttg	gtctggctct	ggcactgntt	420
gtgataccca	tgcatagtg	gggccttata	acangctca	gagtgactt	cagcacagac	480
tctagcttt	ggccccagaa	tccagccctt	ncttaacca	gtggctntt	atncaggctg	540
acctctggct	ntggcaccag	ncctagttca	gcttntaang	ctccanttt	gctntggttt	600

aagctccacn g

611

<210> 411
<211> 590
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(590)
<223> n = A,T,C or G

<400> 411

ggtacccttg tcttaaaaag gattccccct tataaggact cttcaagtaa atccacacat	60
atatagtcaa ctaatttttg acaaagacac caagaataca caatgggaa aggatagtgt	120
cttcaataaa cagtattgga aatactggat atccacatgc aaaagaatga aattggatga	180
aatatggta aattattttt caccgtaccc gtcffffcaac gtgcacggca ggagctacgg	240
cccagcggcc ggcgctggcc acgtgcagaa atggagttc atcatgttgt cctctcgAAC	300
tcctgacctc aagtgtatcca cccgcctcgcc cttccaaag tgctgagatt acaggaagag	360
tctaaccctgt ctctgcaagc tctttagtcc cgccaagatg atattttaaa acgtctgtat	420
gagttgaaag ctgcagttga tggcctctcc aagatgatcc aaacccagat qcagacttgg	480
atgttaaccaa cataatccaa gcggatgagc ccacgacttt aaccaccaat gcgctggact	540
ttgaatttcg tgcttggaa ggatacgggc gctnaaagac atcggAACan	590

<210> 412

<211> 609
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(609)
<223> n = A,T,C or G

<400> 412

ggtacagaag atgctgtgga ctattcagac atcaatgagg tggcagaaga taaaagccga	60
agataccagc agacgatggg gagcttgcag cccctttgcc actcagatta tgatgaagat	120
gactatgatg ctgattgtga agacattgtat tgcaagttga tgcctcctcc acctccaccc	180
ccgggaccAA tgaagaagga taaggaccAG gattctatta ctgggtgtc taaaatggA	240
gaaggcatca tcttgcctc catcatgcc cttccctt tggcctcaga gaaagtggac	300
ttcagttagt cctctgactc agaatctgag atgggacctc aggaagcaac acaggcagaa	360
tctgaagatg gaaagctgac cttccattt gctgggattt tgcagcatga tgccaccaag	420
ctgttgccaa gtgtcacaga acttttnca gaattttcgA cctggaaagg ttaccgtt	480
tttctacgtc ttttggacc agggaaat gtnccatctg gtttggcga ntgctcgaaan	540
aaagaggaag aagaagcncc gggagctgat ccaggaagaa cnatcccg aagtggagtn	600
gctcantra	609

<210> 413

<211> 420
<212> DNA
<213> Homo sapiens

<400> 413

ggtaccgcca catcgctgac ttggctggca actctgaagt catcctgcca gtcccgccgt	60
tcaatgtcat caatggcggt tctcatgctg gcaacaagct ggccatgcag gagttcatga	120
tcctcccaagt cggtgccagca aacttcaggg aagccatgcg cattggagca gaggttacc	180
acaacctgaa gaatgtcatc aaggagaat atgggaaaaga tgccaccaat gtggggatg	240
aaggcgggtt tgctcccaac atcctggaga ataaagaagg cctggagctg ctgaagactg	300
ctattgggaa agctggctac actgataagg tggtcatcgg catggacgta gcggcctccg	360
agttctttagt gtctgggaag tatgacacctgg acttcaagtc tccccatgac cccagcagg	420

<210> 414
<211> 621
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(621)
<223> n = A,T,C or G

<400> 414	
acatagttt atagtagcca cagtaacttc cagtgactgg caaatttctt tgcatcagct	60
ggcatgtgtg gtgaatggaa ttcccattgaa cagctcttac atccttccgc tttccttcta	120
caggcctcgg tcttgttcc aaaggtgact gcagtggagga tgtaaggtcc atgacctcta	180
gggataatgc catccactca ggaagaaaaga tgctgagaaa ctctagggat atctaagttt	240
acatcacagg gggagaatca attgtggagg ttttagaag acatttgaat ttttgcccc	300
aatcaagaag tggggccatc tctggtttac attcaataac tagtggctc atcatttgca	360
gaaataaaact ttccctctaga ttagggaaact tcattcatgag atctgagata tactggttt	420
gaaaggttnc tcagttctct tggcttcna agtccccggc cttggaaatgg ggttaaggcc	480
cattggangc ncatttaattt ggccttgggg taaagggaaac tttggantgg cgnccaaattt	540
nnaaccgggg tggccattt nttnacnc gttaaattaa ggntggggcc cgaaaaattt	600
ggtttccgg aananntttn g	621

<210> 415
<211> 619
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(619)
<223> n = A,T,C or G

<400> 415	
acaagctttt ttttttnttt tttttttttt tttttttaaa gatcaacaaa cattttatta	60
attctgattc cttttatcat gtgtttttt atacaaagca ctttnaaatn cattacatta	120
tcttaaatat ataataggag tttcttcgg attcagtttta aaaatgacaa atagcattcg	180
ttgcgcggaa gttagaattt cacaaaattt accatgngct ggcacatacc atcatccac	240
tggtggttgg aaaactgggt tgcaggagtg tctgcactga gatggggccac caccggcgt	300
gccatataagg tatagatgag ggaagagatgg actanaanca agctgggctt tcngggcgt	360
ctatantcct ttttcaacttc attccgtttt ccccatgng ctttgaaccc agggaatctn	420
nttgacccat ctttggagct nttaaaaagg acctgngttn aaggtggccnc ctttggaaa	480
ggggcccccct ttgnatnaan tgggcgttg aaaaaggccc ttngatttg ganccaaang	540
acngggaaat ttcaacttngg cattaaacnan tggcnccgaa atnttcnctn ngntatgaac	600
tttantaana tngtttngn	619

```

<210> 416
<211> 611
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(611)
<223> n = A,T,C or G

<400> 416
ggtagacactaa ggtatgagct gaagctttag gttctccgtg cttccctcaa gaccccttc      60
ttgctaacag aaggcgttgc caattgctgc agtgcgttgc tcaccctgcc aataggctcg      120
tctgtatctc tggtaaggaa aataggctgg tccctctgg cagtgcgttg aagcttgatg      180
ctaatttttata tagcgtgg caagctgacc agcagtgcca ggccttgatc tgtattctgc      240
actatccctt tacttggttc ctggcactga atggctcaca gccctgaaga atcacgttg      300
atcacacgac ctgacccgtgg ctttctcccc gagagggaaa ggcatgtcat ttttatttga      360
cagagggaaa atgggaactg ctttgcactgc ctttgcgtgg ctttcccgcg taagaaagca      420
ctgngtttaa actgtgcaat acactngct tgccatngat gtaaatgtaa gaaaatccct      480
anctttaaaaa cctantgggtt tgaacnnttat tatatnaaan acttttaac ctattnngna      540
attnngggnc cttgcccgtt agnttnggg ggggnaaacn ngtncaaaa ggaaagggtcc      600
tttaacttnggg 611

<210> 417
<211> 609
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(609)
<223> n = A,T,C or G

<400> 417
caggtaactgacat tactggccag tggtggcaaa gaaactgcca caaacaccat      60
gagaaggcag gcaattttat actcttcttc tggactaatg tttccgtt tttgtgaaga      120
aagagctacg accaatgcac gatcaatctc acaaggtaat ccggcagctg atgataactc      180
atacacatccatcattcaacacttc tcatatcactt ttcccttgcgatgtgatcct taaaatcttc      240
aattgaacctt acaagaaaag gaatgtggta ggataacaca tctctaaatgtg cttcttgtgc      300
caatgatcgaaaggataaaaa ttacaccaat tattgtcactc ctcttcaaga cactgtcaac      360
agatgataat cttttaaaca gtgcagccat ctggctctgtt tggtcaaaacg tggccctcat      420
ttgtgttaac acatcaacat tctccaccac aagtttctta agttcaagca accttgcgtat      480
gaaatatgcc acataaggct ttcaacttgc aacntcatac catatgggcc taataagtct      540
ggataatgac ctcattctga natggtcaga atattcntnt gcatggaaan gtaaatcaat      600
ttctggagg 609

<210> 418
<211> 643
<212> DNA
<213> Homo sapiens

<220>

```

<221> misc_feature
 <222> (1)...(643)
 <223> n = A,T,C or G

<400> 418

ggtaactcccc	atttgaagccc	ccattcgtat	aataattaca	tcacaagacg	tcttgca	c	60
atgagctgtc	cccacattag	gcttaaaaac	agatgcatt	cccgacgtc	taaacc	aaac	120
cactttcacc	gctacacgac	cgggggtata	ctacggtaa	tgctctgaaa	tctgng	gagc	180
aaaccacagt	ttcatgccca	tcgtcttaga	attaattccc	ctaaaaatct	ttgaaatagg		240
gccccgtattt	accctatagc	accnctcta	ccccctctag	agcccactgt	aaagcta	act	300
taggcattaa	ccttttaagt	taaagattaa	gagaaccaac	acctcttac	agn	gaaatgc	360
cncaactata	tactaccgt	atggcccacc	atanttac	ccnatactnc	ctacactatt		420
tncttatnaa	cncancttna	naatattaa	taccatactc	cntgnntcn	nnataatgt		480
aatgnccnat	tanaaattaa	anntattatn	taccatactc	cntgnntcn	nnataatgt		540
nngnananat	tggnntcggc	ttcaatttat	nnggtcccaa	aatgcctan	gcttaactcn		600
gnactngtnc	ggcgccncg	ttngnaaagg	ggctgaaatt	cng			643

<210> 419
 <211> 607
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(607)
 <223> n = A,T,C or G

<400> 419

accagaatat	ggcacacattc	caagctttct	tgtcgatgct	tgcacatctt	tagaagacca		60
tattcatacc	gaagggctt	ttcgaaaatc	aggatctgt	attcgcttaa	aagcactaaa		120
gaataaaatg	gatcatggtg	aagggtgcct	atcttctgca	cctccttgtg	atattgcggg		180
acttcttaag	cagttttta	gggaactgcc	agagcccatt	ctcccagctg	atttgc	atga	240
agcactttg	aaagctcaac	agtaggcac	agagggaaaag	aataaagcta	cactgttgct		300
ctcctgtctt	ctggctgacc	acacagttca	tgttataaga	tcttctttaa	ctttctcagg		360
aatgtttctc	ttagatccag	tgagaataag	atggacagca	gcaatcttgc	agtaatattt		420
gcaccgaatc	ttctttagaa	caagtgaagg	ccntgaaaag	atgc	ttntac	ccccggaaaa	480
gaagcttcca	atacnggntt	gaanaagnac	cttgggggg	aacacnctta	nggnggaaat		540
tcngnccact	tggngggcgt	actaanggn	nccaaactng	gnccaaactt	ggggaaacan		600
ggcanaa							607

<210> 420
 <211> 494
 <212> DNA
 <213> Homo sapiens

<400> 420

ggtacatgag	aacatatattt	tattgcatt	ttttcttagat	acacagtcta	tgcatttattc		60
atatacattt	attttagcct	aaagtggttt	tcaaattccag	ttcttca	actaaatgac		120
caagatccaa	gcaatctgaa	tttgttttg	tgattattt	actggaaatgc	ttctta	agt	180
gaataactat	actccgttat	ccaccgatt	tcctaatgt	attgaaagat	tttcttattt		240
gccacacact	tggagacaat	aagggtttt	agtttatct	actcttctat	tgaagt	aaa	300
gaaagaaaaaa	aagattttt	tatttgtatt	aatgaaaagc	tttagttaa	aataaggaga		360
tccagaataa	aaagaagaga	ctgatctt	caattattgt	catctgt	acc	caca	420

tcactcttat gtaatcccc aaggcttggc atgccgtaag tgtgtggtgg ggttagactgc	480
tgccggggaa tcgt	494
<210> 421	
<211> 366	
<212> DNA	
<213> Homo sapiens	
<400> 421	
ggtaccaagg ttattgtatca agtcagccctt ggtcattcca attccagtat ccacaatagt	60
gagagttcga tcttgtttgt tcggtataag gttaatatgc agctcttcc cagagtctaa	120
tttactggga tctgtcaagc tttcataccg gatTTTGTCC aatgcacatcg atgaatttga	180
aatgagctct ctcaaaaaaa tctctttgtt cgagtagaaaa gtattgtatca tcaatgacat	240
caactgggca atttctgcct gaaaggcgaa cgtctcaacc tcctcctcct ccatcggttgc	300
gtcttgggtc tgggttcctt caggcatctt ggctaaatgtga ccgcacagga ccaacggcac	360
agccac	366
<210> 422	
<211> 418	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(418)	
<223> n = A,T,C or G	
<400> 422	
ggtacaagag tggttcatga aatccgtttt taaaatgaac atctctgtgt gccacagttc	60
ctaggactgg ggcaggaca cagtgtcaag tttgttttgg aggatgagtc tctgaagaga	120
cagaatttctt gccagaatgc gcacagaaca taagtcaagcc aagtgtgtcg tgccaggat	180
actttgactt tgggttgcgt ctgtctgttag ggatattggg agggttatcc ttccagggtt	240
gtaggagagg gttgtggta aaggctgtgc gtaaaggacc cctggctgtc agctccaact	300
gattccgcattt gctgtgtca cgctctcnca gctgacgccc tcatttcage attttccag	360
ccttttttga aagctctcta ggaaggctttt ccgtggaggt aatttgtcca ggtcatgt	418
<210> 423	
<211> 374	
<212> DNA	
<213> Homo sapiens	
<400> 423	
ggtctattct gcatatagag aactgaggcc ttccctgag aaacagttga gttgtgttgc	60
caaccagaat ggctcgcaag ctgactgtga gtcggaaat cttttaaaaa gaaattcaaa	120
tgtcactttt tatttggttt taagtacacc tgatTTTcat gacaaatacg gtaatgctgt	180
attagctgtt ggagccactt tctgtattgt tacatggaca tatgttagcaa cacaagtcgg	240
aatagaatgg aacctgtccc ctgttggcag agttacccca aaggaatgg ggaatcaagt	300
aatcatccca actgggttaa taatgaattt tttaaaaaac agctcataat tgatgccaaa	360
ttaaaggcact gtgt	374
<210> 424	
<211> 610	
<212> DNA	

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(610)

<223> n = A,T,C or G

<400> 424

ggcggagctt	gaggaaaccc	cagataagtt	tttttctctt	tgaaagatag	agattaatac	60
aactacttaa	aaaatatagt	caataggta	ctaagatatt	gcttagcggt	aagttttaa	120
cgttatTTTA	atagCTTAAG	atTTTaaAGAG	aaaATATGAA	gacttAgAAG	AGTAGCATGA	180
ggaaggaaaa	gataAAAGGT	ttctAAAACA	tgacGGAGGT	tgAGATGAAG	CTTCTTCATG	240
gagtaaaaaa	tgatTTTAAA	agAAAATTGA	gAGAAAGGAC	tACAGAGCCC	CgAAATTATA	300
ccaatagaag	ggcaatgctt	tttagattaaa	atGAAGGTGA	cttaAACAGC	ttaaAGTTTA	360
gtttAAAAGT	tGAGGTGAT	taAAATAATT	tGAAGGCAT	ctttAAAAAA	GAGATTAAAC	420
ccGAAGGGTG	atTTAAAGAC	cttGAATCC	atGACCgcAG	ggAGAAATTGC	gtcATTAAA	480
gcctAGTTAA	cgcatTTTCCt	aaACCCcAGA	ccAAAAATGG	gGAAGGATT	attGGGAGTG	540
gtAGGATGAA	ccaantTGGG	ngaAGATGAA	gttGGAAGTG	gAAACTGGAA	aaccgAAAGT	600
ncctcgcccc						610

<210> 425

<211> 368

<212> DNA

<213> Homo sapiens

<400> 425

ggtataagtt	cagAGAGAAA	gattcCTTCC	caAGGTcatG	cAGCTAGTAA	atGATAGAA	60
caggattcat	agcatCACTA	tagGGGGTCA	atATTTACAC	aaaaAAAGGAA	AGTCACAAGC	120
ctgtttAAAA	tGAAGTgACC	acCTTTCTT	gCATAGACTA	AATAACTCGA	ACTGGCATT	180
ttAGGTTGGA	aAGACAGCTG	aATTAGTAGT	taAGTCTGAT	AGCCAAGTAA	gtttttAAAAA	240
ccAAAGCATC	cAGGATGcac	ACCCCTGcac	CATTGCTGT	GCgAAATTAT	AGTTCTGTCT	300
ctctCTCTCT	ttCTTTTTTC	tttttattCT	ttGAGATGGA	ttttcgctct	tGTCGCCAG	360
gctggagt						368

<210> 426

<211> 630

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(630)

<223> n = A,T,C or G

<400> 426

actaccacAG	cctttaAGTG	acattGATTt	ataACTTGGT	cacaATTcAC	tgcATTAGG	60
aaaaccAGCA	tcttatCTG	gtcAGTgCTC	gcttCTTAGC	aAcccCTAAT	taaATTtaAT	120
tcatCTCTAA	atCTTAGCTT	caACTTATT	caATTACATT	tggCTGACGG	ctgtttCTA	180
aaAcccCTAA	gtgttGACCA	taaATGCAA	actTCAGTA	tCTGTTGGGT	tttATTAGCA	240
gatGCTGCTT	ttatTTAAAAA	aaaAccGACA	gtATAACTGT	cataATTATG	gaAGGCACTG	300
cttccgataA	ttatATTCTA	ttaaaaaAAAC	accATTATA	gtGAACTCTG	tcACTGATAA	360
ataAAACAATA	aatATCTCAg	tGCCAAAAGG	acAGAAAGCT	ctcccCTAAG	AttaACACTT	420
tggccAAAT	ttGGTAGCAT	attATTCTT	aaAGTCTGAC	AAACTGAGTC	tgcaACTAAA	480

cacctgaaac tggtctttt caatgggctt tggagaacc aaaataccaa gaactaaatg gaggcttatg ggggaagggn cgagggaaata aatatctaag ctttggttc tggccctctt tcataaannc ctgaggtaca tattangctn	540 600 630
<210> 427 <211> 224 <212> DNA <213> Homo sapiens	
<400> 427 ggggggaggg tggtgtccac tgcccagttc cgtgtcccgta tgcccagcgc cagcgccagc cgcaagagtc aggagaagcc gcgggagatc atggacgcgg cggaagatta tgctaaagag agatatggaa tatcttcaat gatacatca caagaaaaac cagatcgagt tttggtcgg gttagagact tgacaataca aaaagctgat gaagttgtt ggg	60 120 180 224
<210> 428 <211> 543 <212> DNA <213> Homo sapiens	
<220> <221> misc_feature <222> (1)...(543) <223> n = A,T,C or G	
<400> 428 ggacgctctc agctctcgcc gcacggccca gtttccttca aaatgtctac tgttcacgaa atcctgtca agtcagctt ggaggggtat cactctacac ccccaagtgc atatgggtct gtcaaaggct atactaactt tgatgctgag cgggatgtt tgaacattga aacagccatc aagaccaaag gtgtggatga ggtcaccatt gtcaacatgg tgaaccaaccg cagcaatgca cagagacagg atattgcctt cgccttaccag agaaggacca aaaaggaaact tgcattcagca ctgaagtctt ccttatctgg ccacctggg acgggtgattt tgggcctattt gaagacacct gctcaagtat gacgcttctg agctaaaagc ttccatgaag gggctgggaa accgacgagg actctctcat tgagancatc tgnntcagaa cccaaacccag gaagctgcan ggaaantaac cagagtctac caagggaaat gtaccctnng gncccgngaac cacgttaan gggcgaaatt cca	60 120 180 240 300 360 420 480 540 543
<210> 429 <211> 346 <212> DNA <213> Homo sapiens	
<400> 429 actatctttt cattcagtcc cttaaggcagc ttactcttca atgccaacaa aactttatTT tttaaatagt cttaaaagtg cttaaggggat ttctgggtcc tcttttagc ctgcacagtt taagatcaat ggttaaaggta ggaataatc ataagggcac tggagaagg aatgagtcata aataatgtat aatgactgtt ccgccttacc aatTTTGTCA tggtgattat tcactaattt tataggagag tggatggata tctgctacag cttcttggat ctggaaagca ctgctgaatt acatacacaa agcagagcag atgtcagcac ctgattaatc agtacc	60 120 180 240 300 346
<210> 430 <211> 605 <212> DNA	

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(605)

<223> n = A,T,C or G

<400> 430

ggtggcgccgg ccgaggtaca gctggtgctt ctgccttacc ccatcctctc ctctcagatt	60
caccgaggac tggtcagggt gtaacattct cttagggtag ggaactctgc agagggagag	120
ctgaggaggat tccggccata gttgttgtt atcttagggc tctgggcttg gctgaaacat	180
gacgggtattt ctgggttca ggcttgcacac tgccaggcgc ctattgcttg acctctgttt	240
aatgagggaa ctcaagact agacagcatg gctctttca gtttattgca tgaaggagtt	300
acactagtcc aagttaaaag cggacccaa atggttacat tatacaagct gtgaggtttt	360
ttaaacctgtg acaagggaga gaagggaaat tctactcatt gcaaggaaat cctcacttaa	420
gcttcagtga gccacaagca cttaaaaccc atgaaccttc agctgatcgt ccttagccag	480
tccaaatctct acgaggaact ggcatatgtc ttgcgttggc accctgttagc tgaattactt	540
ctcatattcn gatgctaatt ncagacctgn ccggcggccg tcaaaggcna atccacnact	600
gnggn	605

<210> 431

<211> 430

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(430)

<223> n = A,T,C or G

<400> 431

acactaccaa cagatcaaag aaaccctcc gcccagttag aaagacaaaa ctgctaaggc	60
caaggtccaa cagactctg atggatccca gcagagtcca gatggcacac agcttcgtc	120
tggacacccc ttgcctgcca caagccaggc cactgcaagc aaatgccctt tcctggcagc	180
acagatgaat cagagaggca gcagtgtctt ctgcaaagcc agtcttgagc ttcaaggagga	240
tgtcagggaa atgaatgccg tgagggaaaga gtttgctgaa acctcagcag gccccagtgt	300
gttagtgtg aaaaccgatg gagggatcc cagtggactg ctgaagaact tccaggacat	360
tatcaaaaag caaagaccaa aaaanaann nnaaaaaaaa aagcttgtac ctnggcccng	420
accacgctaa	430

<210> 432

<211> 479

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(479)

<223> n = A,T,C or G

<400> 432

acaagctttt tttttttttt tttttttttt ttggAACGTA ggctttctct tgtctttatt	60
ctggggagga ggaatcctcc tcatacatctt cctcatcttc atcattgaac gaacaggggg	120

tctcgccctcg	ggactcggag	cagtgagagg	ccgcactgct	ggactggta	ctgtttgggg	180
ccaggaactg	cccagtgt	aaggccactt	ctgcatcaa	gcataaccct	tggttacac	240
ttgactgggg	taaggtggca	ccagtggtca	ggtctaaatt	tgaactgat	tggtagaag	300
ttcagaaga	gtccctgatt	taaccaagaa	ggtcctgtgg	agatatctgn	gatataacct	360
tctaaaggct	ttggcaccag	ggatttgc	agtttcaan	atctccaga	gagcatttgc	420
ctgacttcag	gcnaaacgac	atccccatnc	gctttangac	cttggcng	accacgcta	479

<210> 433
<211> 600
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(600)
<223> n = A,T,C or G

ggtacccaac	aataccaccc	accaggagct	gcaacacatt	cgcaacagcc	tcccagacac	60
agtgcggatt	aggcgggtgg	aggagcgggt	ctcagcctt	ggcaatgtca	ccacacgtcaa	120
tgactacgtg	gccttggtcc	acccagactt	ggacagggag	acagaagaaa	ttctggcaga	180
tgtgctcaag	gtgaaagtct	tcagacagac	agtggccgac	caggtgctag	taggaagcta	240
ctgtgtcttc	agcaatcagg	gagggttgtt	gcatccaaag	acttcaattt	aagaccagga	300
tgagctgtcc	tctcttcttc	aagtccccct	tgtggcgggg	actgtgaacc	gaggcagtga	360
ggtgattgct	gctgggatgg	tggtaatga	ctgggtgtcc	ttctgtggcc	tggacacaac	420
cagcacagag	ctgtcagtgg	tggagagtgt	cttcaagctg	aatgaagccc	agcctagcac	480
cattgccacc	agcatgcggg	attccctcat	tgacagccctc	acctgagtca	cttccaagt	540
tgttccatgg	gctcctggct	ctggactgtg	gccaaccttc	tncacattcc	gccaatctgt	600

<210> 434
<211> 417
<212> DNA
<213> Homo sapiens

ggtaccaacg	cgctaagaaa	ttagctccaa	ttcgaagtgc	acctgttccc	cccaaagatt	60
gcacaccc	tacccgcttc	tccttgagtg	ctgggctgtc	atccccaaagg	gcaagacgag	120
aagcacagct	ccgaaactca	gccagcccc	ggattggcag	atactcgtga	tttaggttat	180
tgtcatttagc	aatcttctgc	tccactttct	tcactactgg	caaaacccag	ggatggcagt	240
catccgtgcg	atatgtccc	actccagggt	tgaccttgcg	ggggtccgga	tcctccctga	300
agtcggcagt	gagcttgaag	accaggacag	gctgggcctg	cggaacctcg	gcaaagactg	360
acggagggtgc	catatcgaga	gactaggaat	caagagattt	cacccacgc	ccggagc	417

<210> 435
<211> 672
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(672)
<223> n = A,T,C or G

<400> 435

ggcagagaac	gatgtggaca	atgagcttt	ggactatgaa	gatgatgagg	tggagacagc	60
agctggggga	gatggggctg	aggccctgc	caagaaggat	gtcaagggt	cctatgtctc	120
catccacagc	tctggcttc	gtgacttcc	gctcaagcca	gagttgctcc	gggccattgt	180
cgactgtggc	tttgagcatc	cgtcagaagt	ccggcatgag	tgcattccctc	aggccattct	240
ggaatggat	gtcctgtgcc	aggcaagtc	gggcattggaa	aagacagcag	tgtttgtctt	300
ggccacactg	caacagctgg	agccagttac	tgggcaggtg	tctgtgctgg	tgatgtgtca	360
cactcgggag	ttggcttttc	aagatcagna	aggaatatga	gcgcattctt	taatacatgc	420
ccaatgtcaa	aggttgctgg	tttttttgtt	gggcattggct	tcaagaaagg	atgaagaagg	480
tgctgaanaa	anaactgccc	natattcgtc	ctgggggact	tcaagccgt	atnctaanc	540
tggcttcgaa	ataagancct	taancttaaa	cncataaaaca	ctttatttgg	atgaatgn	600
taaanancgg	aacagtnagc	atncttcgga	tgtcnngaaa	ttttncnagt	accccccana	660
anngncntgn	tt					672

<210> 436
<211> 469
<212> DNA
<213> Homo sapiens

<400> 436

ggtacaagct	tttttttttt	tttttttttt	tttttataaa	aagcatttta	ttgaacacat	60
tctggaggta	attttagaacc	aaaacaaaaat	ttgggattgg	ggggggatt	ctgtttttagt	120
gatttagatt	tggaaaact	ttggattctc	gtgtcagcag	gggcattgt	gtgggaaacc	180
tgaaggctga	tttgaagcag	aatatagaac	tgcggcacgg	gagaccagg	gctggaaatg	240
gggctctcct	gggaaccaaa	gaatgtggtt	ctgcaattgg	cttggtctag	actactctcc	300
agaaaaggat	aaaacatggc	ttgagcaact	gcctagaaga	ggcaatctcc	atgggctgg	360
ttgctgcact	tggaaaggcag	tgacttgcag	caggttctta	gctcttgaag	ctcttcggg	420
aggaggaggt	ggtggagaca	aatttgcacgc	tggggctgct	accccccggc		469

<210> 437
<211> 457
<212> DNA
<213> Homo sapiens

<400> 437

actgaggcat	cttcttcagc	atctgggaca	ggtcccgcac	gggggtctt	ctctccagta	60
ttcattctct	tgttagaaga	aaaattttc	agagaccggg	gtgacttctg	ggacacctct	120
gcgatgtgct	tgtggcgcag	tgctatccac	aggtcgctgt	cctcgtccag	gagcacctcc	180
ttcacccctg	cctccccgat	gccgctggtc	tcataacttgt	atacatcatt	ttcgataggc	240
agcagatcat	aactcatagc	ctgaaaagtc	aattcatgg	gcacaggg	gctggggtca	300
aagcctcgat	ccaggatcag	gagctggag	cgtgccttg	ctggccctc	ccccatgtt	360
ggatcatcag	cttataggc	atcgagctt	tcctggatta	gctgagccag	cagggcattt	420
tccttgcatt	ccccccgata	ccgcatagcc	gggtacc			457

<210> 438
<211> 731
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(731)
<223> n = A,T,C or G

<400> 438

accaattatt	cagaatcaa	tggatgcact	tcttgatttt	aatgttaata	gcaatgaact	60
tacaaatggg	gtaataaaatg	ctgccttc	cat gctcctgtt	aaagatgcc	ttagactgtt	120
tgccatcatac	aatgaaggaa	ttattaattt	gttggaaaaaa	tat tttgata	tgaaaaagaa	180
ccaatgc	aaa gaaggtctt	g acatctataa	gaagttccta	actaggatga	caagaatctc	240
agagttc	tc aaagttgcag	agcaagttgg	aattgacaga	ggtgatatac	cagaccttc	300
acaggccc	c ttc agcgtctt	ttgatgttt	ggaacaacat	ttagcttct	t ggaaggaaa	360
gaaaatcaa	aa gattctacag	ctgcaagcag	ggcaactaca	cttccaatg	cagtgtctc	420
cctggca	actggtctat	ctctgaccaa	agtggatgaa	agggaaaagc	aggcagcatt	480
agaggaagaa	caggcacgtt	tgaaagctt	aaaggaacag	cgcctaaaag	aacttgcaaa	540
gaaacctc	cat acctttaa	caactgcagc	ctctcctgt	tccacctcag	caggagggat	600
aatgactg	ca ccagccattt	acatattt	tacccctagt	tcttctaaca	gcacatcaa	660
gctgncc	aat gatctgctt	g anttgcagca	gccaaacttt	caccatctg	tacctttggg	720
ccgnga	acac g					731

<210> 439
<211> 470
<212> DNA
<213> Homo sapiens

<400> 439

ctgcgagcc	ggattcccg	a tccagagaca	atggccccg	tgggatggag	cccgaaggcg	60
tcatcgag	ag taactggaat	gagattttg	acagcttga	tgacatgaac	ctctcgagg	120
cccttctcc	g tggcatctac	gcctatgg	ttgagaagcc	ctctgc	cagcagcgag	180
ccattctacc	ttgttatcaag	ggttatgatg	tgattgctea	agcccaatct	gggactgg	240
aaacggccac	at ttgcata	tcgattctgc	agcagattga	attagatcta	aaagccaccc	300
aggccttgg	t ctagcaccc	actcgagaat	tggctcagca	gatacagaag	gtggtcatgg	360
cactaggaga	ctacatgggc	gcctcctgtc	acgcctgtat	cgggggcacc	aacgtgcgtg	420
ctgaggtg	ca gaaactgcag	atggaa	gctc	cccacatcat	cgtgggtacc	470

<210> 440
<211> 353
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1) . . . (353)
<223> n = A,T,C or G

<400> 440

gg tacat	ttg a gagaaca	ag tat	g c a g a c a g	g c c a a t	t c a g c c a c	g t t g a a g a a g	60
aa gat	g a a c a	ttc	cgat	g a c	g t g t t	g t c t t g a t a c	120
t t t a a a a t	ca a g a g a t	t c t	c a g t	g t c	t c t t c	t t a a a t t g t	180
t c t t t g g g	g g a g g a a g	t c t	c a t	t g t	c a a a g t	t g t t g a g a t	240
g a a g g t t a	c a g a a g a t	c a t	c t c t a t	t g t	c a a g t	t g t t g a t g a a	300
g t t c g n a t	t g c t g n c a	a t c	c n n n t g g	a a t	g n g a a n a	a t t g n t c t t g	353

<210> 441
<211> 647
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(647)
<223> n = A,T,C or G

<400> 441
acattattga tgaacgcagt gactctgaag aataatcaga ggatgacatg ggagagccca
atggcttcat tgattgccca tccctgttag gacagggaaa tggagcttg tgggattctg
ggatgacag agtgtgagtga ggtgaagccc tagggatgg tgaatggtag ctccggatcc
ctggtaggaa gttccctctt aagtctgagt tactgagagg gaagagggag aagctgggtg
aggctagcat cgtcgaccc gggaatccg ggtctgggaa ctgttcacaa gaagagccag
acaagaccct actgttctta ggtcagaca ggattatgaa acctgaagct cccagggacc
ccaacaaatt ttcaaaccct gagaatgaag gagtgtgtgt gactgtgaga gtgtgtgtgt
gtgtgtgtgg tgtgaggtat gctccctta agaaaaatgga aataaaccct acaatgagac
agacagacag acagagactc acttatccaa gtgttctgtc cagtcctctg aatccgttc
caagtcgcaa gacccttga gctccaaagtc catacagagc ccggcaaaat gctccggccc
gctgctcgcc tcttgtgacg atctgagtag ctcggccgn gaccacg

<210> 442
<211> 1002
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(1002)
<223> n = A,T,C or G

<400> 442
acagaagttg aagtggaaatc tactgaggag gctttgaag ttttctggag aggccagaaaa
aagagacgta ttgctaatac ccatttgaat cgtgagtcca gccgttccca tagcgtttc
aacattaaat tagttcaggc tccctggat gcagatggag acaatgtctt acaggaaaaaa
gaacaaatca ctataagtca gttgtcctt gtagatctt ctggaaagtga aagaactaac
cgaccagag cagaagggaa cagattacgt gaagctggta atattaatca gtcactaatg
acgctaagaa catgtatggc tgcctttaaga gagaacccaa tgtatggac taacaagatg
gttccatatac gagattcaaa gttaaacccat ctgttcaaga actactttga tggggaaagga
aaagtgcggc tgatctgtg tgtgaacccc aaggctgaag attatgaaga aaacttgc当地
gtcatgatgat ttgcggaaagt gactcaagaa gttgaagtagt caagacctgt agacaaggca
atatgtggtt taacgccttg gaggagatac agaaaccaggc ctcgagggtcc agttggaaat
gaaccattgg ttaccttgac tgggtttgc gatgtttcac ctttgcgtc atgcgaaatt
ttggatatac acatgagca gacacttcc angctgattt gaagccctta gagaaacgc
ttacttacga caaatggatg atgggtgatg ttaacaaaacc atntaaagct tttaaagctt
ttgttaccaga aattggcaat gctggttaa gttaaggaaa anccctgc anngggaaact
taatggaaan gggaaaaaaag attngnccc aatttggaaat tnaaccnccc gaaaaaaaaaa
annnnnnnaaa aaaganctt gncggaaacc ccccttaggg gaattcnncn ctttggggc
cnntnntaan ggacccantt ggnccaaaat ttggggaaan tg

<210> 443
<211> 486
<212> DNA
<213> Homo sapiens

```

<400> 443
 acatttagtct taatttgactt attacataat cgattcgtgt ctagtttga gagcttaag 60
 ttctcaatta tagttcttg aaaactgaat agcaaataac aatatgatta acttcatttt 120
 tattatttca acgatcttt ttataaccga gtttaatttt taaattaaat ttctaaaata 180
 gattaccaat attaaaatac cttaagatat ttatctttag caataatagg caatattaaa 240
 gttgtattaa cttttaaatt aagtaagagt atttgggtgga tgccctgggt ctgaaagtgc 300
 atgaaggacg cgattacctg cgataagctt cgtggagtt gaaataaaact atgatacgga 360
 gattccgaa tgggtaacc taactgagca aacctcagtt gcattttgat gaatccatag 420
 tcaaatttagc gagacacggt gcgaattgaa acatcttagt agcaacagga aaagaaaata 480
 aatacc 486

<210> 444
 <211> 625
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(625)
 <223> n = A,T,C or G

<400> 444
 gagggatgca cgttgcctta gccgagcttc ggagagaagc ctgatatgta acccaggcag 60
 gtgggagcct cagtctgtcg ggctgaggc tggcatctac aaagccttgc ggccgtgttc 120
 tgaacttcaa gcctggagga gttctctgct cagcacagcc aaggaacaga attagaagaa 180
 aaggAACCCCT ggcttgaggc aggtgacaaa cattaccacc ccagctgtgc acgatgcagc 240
 agatgcaacc agatgttac agaaggagag gaaatgtatc ttcaaggctc caccgttgg 300
 catcccgtact gtaagcaatc tacgaagacc gaggAAAAGC tgccgcctac caggacatcc 360
 tcggaaagta tttattcttag gccaggtc agtattccctg gtcaccagg tcatactatc 420
 tatgcaaaaag tagacaatga gatccctggat tacaaggatt tagcagccat tccgaaggc 480
 aaggcaattt atgacatttga acgtccagat cttattacct atgagcctt ctacacttcg 540
 ggctatgatg acaaacagga gagacagagc cttggagagt ctccgaggac ttgnctnct 600
 acttcatcag cagaagggtt cctcg 625

<210> 445
 <211> 1002
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(1002)
 <223> n = A,T,C or G

<400> 445
 accacaactc ccaggatttt cctggatcaa accttgtatc tcttctgcaa gtattgtgt 60
 tattggctcg agagacgtgg accctcctga acatttttt ttaaaaact atgatatcca 120
 gtatTTTCC atgagagata ttgatcgact tggatccag aaggtcatgg aacgaacatt 180
 tgatctgctg attggcaaga gacaaagacc aatccatttg agtttgata ttgatgcatt 240
 tgaccctaca ctggctccag ccacaggaac tcctgttgc gggggactaa cctatcgaga 300
 aggcatgtat attgctgagg aaatacacaa tacagggttg ctatcagcac tggatcttgc 360
 tgaagtcaat cctcagttgg ccacccatcaga ggaagaggcg aagactacag ctaaccctggc 420
 agtagatgtg attgcttcaa gctttggta gacaagagaa ggagggcata ttgnctatga 480

ccaacttcc	actcccagt	caccagatga	atcagaaaaat	caagcacgtg	tgagaattta	540
ggggacactg	tgcactgaca	tgtttcacaa	caggcattcc	agaattatga	ggcattgagg	600
ggatagatga	atactaaatg	gttggctggg	tcaatactgn	cttaatgaga	acatttacac	660
attctcacaa	ttggtaaagg	ttccctct	tttggtgac	caatactact	ggaaatggaa	720
tttggnttt	tgca	agggtantaa	tatggctcg	taccttnggc	cgcgaacacg	780
cttaaggcn	aattccacac	acttggcg	cggttctaa	nggatccgaa	ctnggancca	840
agcnttggcg	taaacatggg	cnataantgg	tttctggggg	gaaatggtat	ccggttacaa	900
tttccccca	nattccnaac	ccggaagn	tnaaggtaa	aaccgggggg	gccctaangg	960
ggngctaact	ccaaatn	tgggtgngc	ttaatggccc	nt		1002

<210> 446

<211> 367

<212> DNA

<213> Homo sapiens

<400> 446

ggtacaaaag	agtatgggc	cacaagaaga	tgattcagga	aacaaaccat	ccagttattc	60
ttgaaactaa	catccatcct	gagctaaaca	agagaaaacta	ccatcttgc	cagtgacaag	120
tgttcggagg	gcagcagaga	ggaccaagcc	tgtgtcacct	ggagactaag	aaattaagtt	180
ttgttttgc	atcttcagtc	ctgtgtgc	tcaaaaaacc	atttctctg	caaagaaaagg	240
aaacagattt	gcaaacttta	aagtctgtcg	tggatttatt	tatcctcaga	ttattgttac	300
tgcattaaat	ctacctttt	gtttaagtt	gctgaaaaaa	aaaaaaaaaa	aaaaaaaaaa	360
aaaaagc						367

<210> 447

<211> 754

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(754)

<223> n = A,T,C or G

<400> 447

actcttgggg	tggaaaagat	ctacacataa	caagttcaga	aaccacagt	ataaaactaac	60
ctaagaaaaat	cgtttaactt	ttatctacct	gaaacacaaa	ataaaaaggc	aacctataaa	120
ctggaaaaaa	atatttgc	caaataaaac	aaaagattat	caatatcctt	aagatgtaaa	180
tggctttgc	aaaacaatca	atagaaaaat	gacttaggaat	tagaaaatca	tacacacaca	240
cacacacaca	cacacgcaca	cacacacaca	ccacaaaatgg	ccaattgaca	catggtagag	300
atgttcagtc	accagcagac	aaagcaatgt	tcacatccac	agggaaagca	gactcgatcc	360
gtcgaggag	caaagg	ttt	caatgtnta	aagcccggtt	ctgaggaaan	420
atcagggttt	ncctcaccca	gtgaagaaca	cctaattng	aaaaaatccc	ttcccttgct	480
tggggccagt	ttaaccat	tatggAACCC	ttgaaagtct	ttaaaagaagt	ttnaaccagt	540
caatttncct	ttcttcngaa	atggatgtt	atttcaggca	tttccaaag	gaggtttanc	600
canccggacc	gtgaaaaaa	ggtcntggaa	ccttccnagg	gnaaagt	tttgccaagg	660
gtnttaattt	ttcttaagga	agggaaaaaa	aaaaanctt	naaaaatncc	ctnngattgn	720
ccccatttgn	aancccggn	atngttaa	aatt			754

<210> 448

<211> 551

<212> DNA

<213> Homo sapiens

<400> 448

```
accagaaccg agttcgggat actcacaggc tcataactca gatgcagctg agcctggcag      60
aaagtgaagc ttccctggga aacactaaca ttccctgcctc agaccactac gtggggccaa     120
atggcttaa aagtctggct caggaggcca caagattagc agaaagccac gttgagtcag     180
ccagtaacat ggagcaactg acaagggaaa ctgaggacta ttccaaacaa gccctctcac     240
tggtgcccaa gcccctgcat gaaggagtcg gaagcggaaag cgtagccccg gacggtgctg     300
tggtgcaagg gcttgtggaa aaattggaga aaaccaagtc cttggcccaag cagttgacaa     360
gggaggccac tcaagcggaa attgaagcag ataggtctta tcagcacagt ctccgcctcc     420
tggattcagt gtctcggtt cagggagtca gtgatcagtc ctttcaggtg gaagaagcaa     480
agaggatcaa acaaaaaagcg gattcactct caagccttgt aaccaggcat atggatgagt     540
tcaagcgtac c                                         551
```

<210> 449

<211> 398

<212> DNA

<213> Homo sapiens

<400> 449

```
accttcaaca ggcatactcaa cagccccatc accaacacct gtgtgcaagg catagccatc      60
acgcggaaaaa gtctcaggac tcagaactac accataaatg caggatcttt ttatttcata     120
taaaaatgtat caatgtgaaa aaagccaaac tgtatgtgg tttacagac tccgaccctt     180
cctgacagtc gtcttgtctg gccaggctgg gggcccaagca ttccctggaaag ggagagacag     240
cccggcatct cagtatttca ttgggacaac aagctggatg tggcaggaaag agctgagagc     300
gccaagggtcc ctttgcctta tcccaagctc ggagggacgc agctggcat ggctctggcc     360
tagcagccag gtgacatggc caggcacctt cctgtacc                                         398
```

<210> 450

<211> 672

<212> DNA

<213> Homo sapiens

<400> 450

```
accttatttag aaagcgacgg caaactatgt gccagcagcc gcgttaatac ataggtcgca      60
agcggttatcc ggaattatttg ggcgttaaagc gtccgttaggt ttttgcctaa gtctggagtt     120
aaatgctgaa gctcaacttc agtccgcctt ggatactggc aaaatagaat tataaaagagg     180
ttagcggaat tccTAGTgaa gcggtggaaat gcgttagatata taggaagaac accaataaggc     240
gaaggcagct aactggttat atattgacac taagggacga aagcgtgggg agcaaacagg     300
attagatacc ctggtagtcc acgcccgtaaa cgatgatcat tagttggtgg aataatttca     360
ctaacgcagc taacgcgtta aatgatccgc ctgagtagta tgctcgcaag agtgaardttt     420
aaaggaattg acgggaaccc gcacaagcgg tggagcatgt ggttaaattt gattctacgc     480
gtagaacctt acccaacttct gacatcttct gcaaagctat agagatatac tggaggttaa     540
cagaatgaca gatggtgcat ggttgcgtt cagctcggt cgtgagatgt taggttaagt     600
cctgcaacga ggcacaccct tttcttttagt tactaatatt aagttaaaggc ctctagagat     660
actggctgga cc                                         672
```

<210> 451

<211> 554

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(554)

<223> n = A,T,C or G

<400> 451

acacgctgcc	aaagtaattc	ctgctcatcc	atgcctgtc	tctgtctt	tttagagtcat	60
accttatttg	agtagatgg	gtttaatttt	gctagacttc	ctgaaaacac	taagggtggag	120
tatcagaagt	gattttagtc	acagttctgc	gggagagctt	agaataacat	cctccttgg	180
gaggtggct	tgggtgcgtg	gatgtggta	tacagtctt	attgttaagtc	tgataaaaaa	240
tgctaataaa	tttaatgttt	ttcttcctta	atttatttgc	atagttcttc	aggttagcacc	300
tcattttat	taatgatatt	gggattaact	atgaacaagc	tatatgtaga	catttgcatt	360
taaggacatt	gcagtggttc	aaagatccca	tcattgcagc	ttgnatcctt	tagatcaat	420
cggaaacttc	tggagcttac	attaaatgt	catttgagct	aaatagnaat	ctggtnaacc	480
aganttgggc	aatactttt	aaganactgg	ggacnattan	ggntaganng	ggctatttcc	540
ccttnaggg	nggg					554

<210> 452

<211> 566

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(566)

<223> n = A,T,C or G

<400> 452

acaataaaat	tgtatgctt	ccggataagt	gacatgtta	tatgggtata	aagggaatta	60
taatgcttt	aactcttatg	tagtatgttc	tcatcaaaat	caccaagcat	gagaacactg	120
tttagtctca	ttccatcaact	agcacagcct	ctttctgtcc	acttcaggc	caagtctttg	180
ccatggcccc	acataaacgtg	taaatttagct	tcaaggatca	aaaatcttg	aaaacccagt	240
ttgctgagcc	ttgaaggaag	cctttagacc	cagcttcaat	gaagtcacag	ctccctgagg	300
gtccctgggg	actggaggcg	gcctcccaag	cctggggagct	gtgtgcctgg	atggtctcac	360
tggggtgatg	acccaagctc	atggctccc	ctcaacctct	aacccttctt	aacacaagtc	420
acccctggnc	ccctgagcac	tcctgaagtc	ccttgaag	gacatttcta	ggctnctaag	480
angcctgggtt	ccttcagctg	gcaccctnan	tttaccagcc	nggnangcag	gnnttccaan	540
ttntgctggg	tnaanaaanc	ccgncc				566

<210> 453

<211> 688

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(688)

<223> n = A,T,C or G

<400> 453

ggtactccta	cttcattttt	gaaggcttgt	aactgctgag	gttaggtgc	tgtcacattc	60
aacattttca	ctgccacatc	accatgccac	tttcccttgt	agactgttcc	aatgatcca	120
gatccaattc	tttgtccac	tgtaatctgc	ccatcagggaa	tctcccaatc	atcaactcgag	180
tcccgtctac	caagtgtttt	cattcgattc	ctgtcttctg	aggatgaaga	tgacttcctt	240
tctcgctgag	gtcctggaga	tttctgttaag	gcttcacgt	tagttagtga	gccaggtaat	300

gaggcagggg	ggtagcaga	caaacctgtg	gttgatcc	cataccacg	aaatcc	ttgg	360
tctcta	aatca	agtcatca	attgacaggt	tctattgtgt	ttat	atgcac	420
tgtgaggat	cgnctcg	gccaaattg	aattccatga	tcttcatctg	ctgg	ccgaa	480
nggctngga	aatggatgg	gttttgaaga	gaccgactgg	tgagaattgg	ggccc	aaatan	540
aatcnaggcg	gttgccgaaa	gggatgatcn	canttaggc	agtcttgg	aaggac	cctn	600
ttctgnggga	ttgggggggt	taannactg	gggacaaccg	caa	atca	ant ggcctattaa	660
nccttaggga	aattntanct	gcn	gggg				688

<210> 454
<211> 565
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(565)
<223> n = A,T,C or G

<400> 454

actggctg	aggcgc	cgt	cgatcaatgt	atgacaggag	ctgagacttg	gccacaccag	60
gatccccat	cagacagat	gtt	ttgatgttgc	cccgattt	catgcctcg	ggagactgg	120
ccacaccc	gactagcagg	agc	agcagcgt	ccttcc	atcttc	ccgtatattt	180
ctggggcgat	tgaagctgc	agc	cttgcgt	agaaaatc	cctctg	ttgcctcag	240
tcctcc	tgagctctcc	agccc	acatcatc	cactttgtt	catctt	caca	300
atccgat	cttccaggta	ggtttctg	agtaaaacc	gtacttgat	cacttt	gcac	360
agacagggt	tgttgaatag	gcattat	ataaggaaaa	gaagtctgt	gtgactgg	tt	420
tgaaataa	tggtatgg	gatggagg	agn	tttt	gattgc	gtantg	480
tgggagac	gagaccac	n	ggcgcgaa	cacgctta	gggana	attn	540
ggggccgt	ctataggng	ccn	ccn				565

<210> 455
<211> 566
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(566)
<223> n = A,T,C or G

<400> 455

acagtcc	ttgcatcata	attgtgg	ccaa	ccca	ggacatt	acgtatgt	60
cctggaa	act	aagtggatta	ccc	aaacacc	gcgtgat	ttgtgt	120
ctgctag	att	tcgctac	atgg	ctgaaa	aacttgg	ccat	180
gatggat	ttt	gggg	aaacat	ggcact	gtgtgg	gtggat	240
cagg	gtt	tc	tccaggaa	ttgaatcc	aaatgg	tgacaat	300
ggaagg	aaat	gcataa	gtgg	gtgaaa	gtgcctat	agtc	360
atacca	act	ggtt	ttaa	gtgtgt	gtgatctt	ccat	420
tatccagg	at	tc	acnat	ttaa	tgaatccat	ntgaaa	480
gaanc	ttt	tc	acnat	atgtat	ttgg	gaaaat	540
ttnaan	ccn	tc	natccc	ccgg	gattna	acn	566

<210> 456

<211> 559
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(559)
 <223> n = A,T,C or G

<400> 456

ggcctggcc	tcagccccgc	acatcaccc	gacctgctt	cgtttcaatc	60
acatctgaat	aaatcaactt	aagaaagctt	atagcttcat	tgcaccatgt	120
ggcgctgttt	ggcagtgatg	attgcctt	tgttcagtg	ctgagtgcta	180
acacagaggt	ccagatgcat	tccgttt	gaatgtcaat	ggatacacca	240
tggatttcac	cgttggcg	tagttgaccc	gctgttgg	atgcagccaa	300
gaaatatccg	tatttgtgc	tctgttaca	tggtgaaatc	tacaaccata	360
acagcatttt	gaatttgaat	accagaccaa	agtggatggt	gagataatcc	420
tgacaaagga	ggaattgagc	caacaattgn	atgttggatg	gtggggtgca	480
tggatactgg	catagaaaagt	ggtntggg	gaaaaaccta	tggggcaga	540
aggctggcca	ananaggnt			ncnntttta	
					559

<210> 457
 <211> 552
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(552)
 <223> n = A,T,C or G

<400> 457

gttacgacaa	aatttaagag	gaataacaaa	tacaaatttt	ctgttaagaa	60
caaactagca	gagtcaatac	tggtaaccag	aaggcactaa	tccaaacaca	120
aagctggtta	tattatggaa	taccatat	actggcctt	gccagtttgg	180
atagcaataa	gcctcgttc	tgttccaat	tataacaaca	aaaagatgag	240
acattccact	acagaagtct	aggctatgtt	gataaattga	aaacttatct	300
gtctaagagc	aataaaaagt	aaacactctt	ttagccagca	gcactaggaa	360
tttaccaaga	taaatttagt	tgggatacc	tactgccaac	ttgtgcgggt	420
ctgnaatatg	tattcctctt	attgatagag	ctcttgaatg	naaaccacct	480
ggaaaagctt	caggatcatg	gnccacaatt	atgntatagn	gctttngng	540
aaccccgntn	cc			ggtnagccn	552

<210> 458
 <211> 561
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(561)
 <223> n = A,T,C or G

<400>	458					
accccaacaa	tcttcaagcc	acagtccaag	agaagtctca	ggaaaggcaga	cgttagaggaa	60
gaatccttag	caactcaggaa	acgaacacca	tcagtaggga	aagctatgg	cacacccaaa	120
ccagcaggag	gtgatgagaa	agacatgaaa	gcatttatgg	gaactccagt	gcagaaaattg	180
gacctgccag	gaaatttacc	tggcagcaaa	agatggccac	aaactcctaa	ggaaaaggcc	240
caggctctag	aagacctggc	tggctcaaa	gagctctcc	agacaccagg	cactgacaag	300
cccacgactg	atgagaaaaac	tacaaaata	gcctgcaa	ctccacaacc	agacccagtg	360
gacacccag	caagcacaaa	gcaacggcca	agagaaaacct	caggaaagca	gacgttaggg	420
aagaattttt	agactcagg	aaacgaacac	catnagcagg	ccaagccntg	gnccacccaa	480
aaccngcngt	nagtgggtga	gnaaaaattt	cncccantt	tggnaactt	ccggngcaaa	540
nttngcccn	tnttggnaa	a				561
<210>	459					
<211>	468					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(468)					
<223>	n = A,T,C or G					
<400>	459					
ggtacctcga	catcctgaac	actggataaa	aaagttgatt	aaatccagaa	gtgcgatgtc	60
cctgtcttgt	ttatatgatt	caatccagtc	atccaccacg	gactgcattg	cactttccc	120
cagtttacc	acctcaaata	atgtgacagg	ctcccccttc	ccattctgtt	gaggggtgtcc	180
attagcttt	ccacggcctg	ctcctcta	tccagcttca	attctgctct	tctcacctgg	240
agatttcga	ggtttcttat	ttgttagatgg	aggccggcca	ggacgacccc	tttttcttt	300
tcctttgacc	tctgtttctt	caagctcgct	gccagcatcg	aatgggcag	tagtttcatt	360
agttgaatcc	tgttaaacactg	gtaattctga	agtaatcatt	gctggagagg	cctttcacaa	420
tgcagcaaaa	taatcaagt	ctgnacctgg	ccggggccggg	cgctcgaa		468
<210>	460					
<211>	566					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(566)					
<223>	n = A,T,C or G					
<400>	460					
acttcttgca	tgttgctcaca	tgttgctgtg	agaatcaggt	gctgcctata	tggctccact	60
gggagagggc	agatggaagc	cgtgcctca	tctgtcgtgg	aacgtgtgc	gtgcaccc	120
tccctttgt	gatctaatac	tctgtcctt	tactgtata	aactgtact	gtgagcctaa	180
cagttttct	gagtcctgt	agtcctteta	gcaatgaaa	ggaggggtgg	tttggagacc	240
tatgaacttg	cacccgttttgc	cgtcggtttg	aggtctggca	caggaggga	ggctggtctc	300
tttggagggg	gtcttcatcc	attgggggtcg	ggtccaaactc	tggaggccca	cgtcccttgc	360
agctccagtc	tctctccct	ctcagttcccg	acgctgtcac	cttgccttct	ctgtctgtgg	420
atcctggaa	gagctgntct	ctctgtcac	agctgaatan	gagacatgcc	cattagctga	480
ggcgcttgca	tgcttgact	actcgattgn	caaangtnca	agnntccca	nnncnccccg	540
ggtctatgga	naannggggg	gnanan				566

```

<210> 461
<211> 570
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(570)
<223> n = A,T,C or G

<400> 461
ggtaactatag catagcctgc ctgtgctgg gtgtggcgat taggcctgg ggaactgcc 60
tcaataaaatc aaggcgatgtc agggtgagga acagggaaga aggaaatgtg gggaaatgg 120
atgaacatca ggtggatcac agagatgcag tcatgggggt caggtgtgg atccgaaata 180
atgtgggagg ctggattgaa gtccgggcca ggaacaatgg taattgtggg acttaacaaa 240
aagtgagaac agctgaaggg gtcagggagc agaaagtata tgcgctcagggt gtgaggaaga 300
aaatagattt tgaaagttat gagaaatgtg gagagtgagt tgagcatagt ttgtgatttt 360
gagggcctct aatagtttta aaggcgtggc agcccgatc accgcagaca tganggctag 420
gctaaaacac taaggggccaa gttgtttgca cagaaaggct tcagggtgcc ggtccctggct 480
cttgggttaag aattttggac cgacttaac catgcctaag gaaggggaag gagttgtngt 540
tttgtnaggg gaccagggtt tggggaaaann 570

<210> 462
<211> 573
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(573)
<223> n = A,T,C or G

<400> 462
cgaggtaacca ccagtatatg gaatgttagg gaaaaaacttt gttccagttc cttttttttt 60
tctttctact ttcaagttt agtgaaccat actgaaatga ccaacaagtc tgcctgtaaa 120
gttacatgtc atgattgtgt tgtaaatga ttatggggga gaaaatgaag taaatgttgc 180
tgcgtatccc catattttt gatcatatta aggttgttta tatagttgg aaatgaccag 240
cccccttaaggc agtgtttgtat taacttatgc taatcagatg attactcata tattctgcta 300
attttcttagc ttattttttt tgattttggaa aaatttattag ccaaatgcct tccttaggtgg 360
atccagggtgg aagatatgtc cagaaacctg aagaaaaattt gacgctgcct ttgtgtgctg 420
gattgtctta ctgtattttt gatcatata tcaaggntga atttttagag ggaaaattaa 480
ttctgtatata ttattttttt cttgtataag ntttttcctg gatttttttt tttcccaaaa 540
gaatttttca ttgtgnncct ngcccgccgg gcc 573

<210> 463
<211> 574
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(574)

```

<223> n = A,T,C or G

<400> 463

accatatcct	gtgtttgaat	caaaccggta	gttcttctat	gtggaaggct	tgccagaggg	60
gattcccttc	cgaagcccta	cctgggttgg	aattccacga	cttggaaagga	tcgtccacgg	120
gagtaataaa	atcaagttcg	ttgttaaaaa	acctgaacta	gttatttcct	acttgctcc	180
tggatggct	agtaaaaataa	acactaaagc	tttgcagtc	ccccaaagac	cacgaagtcc	240
tgggagtaat	tcaaagggtc	ctgaaattga	ggtcacccgt	gaaggcccta	ataacaacaa	300
tcctcaaaccc	tcagctgttc	gaaccccgac	ccagactaac	ggttctaacg	tccccttcaa	360
gccacgaagg	gaagagaggt	ttnctttga	ggcctggaaa	tgcccaaaat	cacnggcctt	420
aaaacaggaa	ggttggaaaa	tctcttcaa	tgagaaaatg	tgggnaact	cttgggcctt	480
aaacaagctg	tgaaagggtgc	ccggccccgg	taatttgggg	cctttcccg	gaagacnitt	540
ttgtggaaag	gnntacctga	ngggggggcc	cttt			574

<210> 464

<211> 458

<212> DNA

<213> Homo sapiens

<400> 464

ggtaactgccc	ctcggagatc	tttacttgtt	tttactttga	acatgagcag	agaaaaagaca	60
aagaaaaaga	tggccatggc	aaagctgatc	cgatacacag	ctttataacc	aaccagcaca	120
tcacaatctt	tatctgcatt	tatatcagcc	tcatggattt	taaatcccc	ttcacaaaat	180
ccaggaatct	tcttcaagta	agtttccatc	tctttctct	gcatgatata	ggatacgcaca	240
gtgctcagga	ggagaatgaa	agcataaatg	aggcgagtc	ccgtggaatt	cttactgtt	300
ggacagcaac	tacacagcaa	acatgaggca	ccgctgcaga	ggcatggaac	ccagctggcg	360
agggagaaga	cacccagcac	agccccatg	gtgacgcccag	tgatggaggt	ggccggcctt	420
gaggctgctt	tctaacacgg	tggtaactgc	cagcttag			458

<210> 465

<211> 580

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(580)

<223> n = A,T,C or G

<400> 465

gcggccgang	tacttcacca	tcactgactc	catggacttg	atcagccgnc	gctggatgt	60
tncagtctca	gnagtnttga	cagccgtgt	aatgagcccc	tcacgacccc	ccatggngtg	120
aaaaaagaac	tcagtgggt	tgagggccgc	tagttagggag	ttctncacaa	agccacggct	180
ctnaggcccc	tagtcaccc	tgtatgaagt	aggcagagtc	cggtgcttga	agccaaatgg	240
aatccgctt	ccctcgacgt	tctgctgtnc	aacgacagcg	atnacctggg	agatgttaat	300
cttggAACCT	ttagctccgg	acacgaccat	anacttgaag	ttgttgtatt	canacaggg	360
tttctgagca	gaggagccag	tcttgcctcg	gcacatcgta	agaatgcggg	tcacctgatt	420
ctcaaacgtc	tgnccgagan	tggtccctgg	gngggctcc	agctcattgt	tgngngnctt	480
cttnatgacc	tctantacgt	cctgnttggg	gcttttaana	ggccctgaat	gncccggaa	540
ggnnttanaa	ttncnatggg	gttcccaagg	ccanactnn			580

<210> 466

<211> 566

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(566)
 <223> n = A,T,C or G

<400> 466

caaggcctttt	ttttttttt	ttttttttt	gggcatgcct	gtgttggtt	gacagtgagg	60
gtaataatga	cttgggtt	gatttagat	attgggctgt	taattgtcag	ttcagtgttt	120
taatctgacg	caggcttatg	cggagggagaa	tgttttcatg	ttacttatac	taacattagt	180
tcttcatacg	ggtgatagat	tggccaatt	gggtgtgagg	agttcagttt	tatgtttggg	240
attttttagg	tagtggtgt	tgagcttcaa	cgctttctta	attgggtggct	gcttttaggc	300
ctactatggg	tgttaaattt	tttactctct	ctacaagggtt	ttttcctagt	gtccaaagag	360
ctgntccct	ttggactaac	agtaaattta	cnagggggat	ttaaagggtt	ctgggggccca	420
aatttaaagg	ttgaactaag	aattctatct	tggaccaacc	agntttcac	cangcctcgg	480
gaagggttgg	ccgcctntac	ctattaaact	tncccctatt	ttggaccta	naccgggnngg	540
ggctcctttt	aacngggcnt	aagggg				566

<210> 467

<211> 597
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <222> (1)...(597)
 <223> n = A,T,C or G

<400> 467

gcgtggtccg	gccgaggtac	gtgatgcctt	tacagctgaa	aaatccaaga	ttgagacaga	60
aatcaagaac	aagatgcaac	agaaatcaca	gaagaaaagca	gaacttcttg	ataatgaaaa	120
accagctgct	gtgggttgc	ccattacaac	gggtatacgt	gtgaaaatca	gtatttatgg	180
atgggatcag	tcaagataagt	ttgtgaaaat	ctacattacc	ttaactggag	ttcatcaagt	240
tcccactgag	aatgtgcagg	tgcatttcac	agagaggta	tttgcatttt	tggtaaagaa	300
tctaaatggg	aagagttact	ccatgattgt	gaacaatctc	ttgaaaccca	tctctgtgga	360
aggcagttca	aaaaaaagtca	agactgatac	agttcttata	ttgtgttagaa	agaaagtgg	420
aaacacaagg	tgggattacc	tgacccagg	tgaaaangg	agtcaaaga	aaaaggagaa	480
gcccttncta	tgacactgga	accagaatcc	tngtnagggg	attgatgaaa	ggtcttaaga	540
aaaattttt	aagaangn	cattgatttt	gaagcgnacc	ctttattnan	gcttggg	597

<210> 468

<211> 562
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <222> (1)...(562)
 <223> n = A,T,C or G

<400> 468

ggtactggat aaagggctga catcaagagc aaacagaagt ctttcctag tgcataatgca	60
aactggccaa ttcttccaa ctgaatgcat atttgccaga tggtaactgtt catggagcaa	120
atagtggac ttggcttga gaaggctaga aaagatgtaa cttggtaggt gtgttccacca	180
gacgtgatgg cttggaggcc tgggtgctcc atcatcaact cctctcccat ttcttcagtt	240
tcaagacagg taaccaaata ccaatttct tgacttggtt attcttcaag tatagatgtc	300
acaatctctc tcagttctt tgggttgtt ttaatatgtt ttctgtgaag atcctaacc	360
tccagcccag cagccccgtt aaccagttca ttaaggatca tggcagctt cttccggtaa	420
accacagatt gatggtaaaag ttccataaaag tgatccacaa gcnaataaaa gatnncata	480
ataaccaagt agttgacaa acctggctna agagctngaa gaatcttta tccgtgaaga	540
aaccggaata tcttctntng gg	562

<210> 469
<211> 533
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(533)
<223> n = A,T,C or G

<400> 469

cgaggtacca ataccaccaa tttttagac atcctggaga ggcaggcgca agggcttgtc	60
agttggacga gttgggtgtt ggtcgagtc cagagcctca agcagcgtgg ttccactggc	120
attgccatcc ttacgggtga cttccatcc cttgaaccaa ggcattgttag cacttgctc	180
cagcatgttgc taccatttc aaccagaaat tggcacaaat gctactgtgt cggtgtgt	240
gc当地atttc ttaatgttaag tgctgacttc cttacaattt tcctcatatc tcttctggct	300
gttagggtggg ctcagtgaa tccatattgtt taacaccgac aatttagttgt ttcacaccca	360
gtgtgttaagc cagaagggca tgctctcggg tctgcattt ttggagatac cagttcaaa	420
ttcaccaaca ccagcagcaa caatcaggac agcacaagt aggtgagat gtcctgnaat	480
catgnnttttataaaagctct gggtcctggg ccatcaatga tagccatag acc	533

<210> 470
<211> 672
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(672)
<223> n = A,T,C or G

<400> 470

ggtacaccat ataaacagca gatgaagtcg gagagatagt ctaataact tagatcatgt	60
tccaccacaa tggatatact atctggattt attagagatc gtatagtaat agcagccctt	120
aaacgctgtct tgacatctg gtaacttagaa ggctcatcaa acatgaaaat atcagcttcc	180
tgtatgcaaa cgacagcaca agcaaatttc tgcaacttcc ctcctgaaag atcttcaaca	240
tttcgttctt ttaggtgggt taaatcaagc tgctgacata caattgcctg tgtctttgtt	300
tcatctttc ggtccaaat agatcccact gttcccttgc cagcctttagg aatctggct	360
acatatttggat gttttagat ggtttttagg tcatcttcaaa gaatctttgg aaagnaattt	420
tgnaatttgcg atccacngaa ataagtcggaa atcttctggc agtcaaggan gatcatcgga	480
cctgncccg ccggccgntt cgaaaggccaa aattccagca cacttggccg gccggactt	540
agnngaaatcc nagcttcggg ancccangcn ttggcgnnaa tcatngggca taactgggtt	600

ccctgggggg aaaaatggta atcccggtta ccaanttcnc cccnacatac cnaaccggaa	660
agccttan an gg	672
<210> 471	
<211> 387	
<212> DNA	
<213> Homo sapiens	
<400> 471	
cgaggtgagc tttgaaacaa ctgatgagag cctgaggagc catttgagc aatggggAAC	60
gctcacggac tgggtggtaa tgagagatcc aaacaccaag cgctccaggc gctttgggtt	120
tgtcacatat gccactgtgg aggaggtgga tgcagctatg aatgcaaggc cacacaagg	180
ggatggaaaga gttgtggAAC caaagagAGC tggctccaga gaagatttctc aaagaccagg	240
tgcccactta actgtgaaaa agatattgt tggtggcatt aaagaagaca ctgaagaaca	300
tcacctaaga gattatTTG aacagtatgg aaaaattgaa gtgattgaaa tcatgactga	360
ctgagacctg cccggggcgg ccgtcga	387
<210> 472	
<211> 241	
<212> DNA	
<213> Homo sapiens	
<400> 472	
ggtacgaatc gtccctggc actgtgcagg cccacagctg acggcgatga ctccttcac	60
cagcttccttc tccttgagcc gcacagcctc ctccaccgcg atctcacaga aggggttcat	120
ggagtgcctc acaccatccg tgaccacacc gtcctgtca ggcttcactc ggatcttcac	180
ggcgttagtcg atgaccctct tgacagctac gagcacgcgc agctccgcac tcttccgc	240
9	241
<210> 473	
<211> 470	
<212> DNA	
<213> Homo sapiens	
<400> 473	
ggtacttagtt cactatcggt gtctgattag tatttagcct taccgggtgg tccccggcaga	60
ttcagacagg gttcacgtg ccccgcccta ctcaggatac atctatgaga ttttatgatt	120
tcgtatacag gaatatcacc ttctatgttg aagcttcca acttcttcta ctatcataaa	180
attttgtaac tcaatgtaaat atgtcctaca accccctttt acaggtttgg gtccttcgc	240
tttcgctcgc cactactgac gaaatcatta ttatTTCT ttcctgttg ctactaaat	300
gtttcaattc gcaacgtgtc tcgctaattt gactatggat tcataaaaat gcaactgagg	360
tttgctcaagt tagtttaccc cattcgaaa tctccgtatac atagtttatt tccaaactcca	420
cgaagcttat cgcaaggtaat cgccgttc atcgactttc agacccaagg	470
<210> 474	
<211> 637	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(637)	
<223> n = A,T,C or G	

<400> 474
acctttcct gataagattt aagtaaaaac tggtgaggaa gatgaagaag aattctttg 60
caaccgcgcg aaattgttc gttcgatgt agaatccaa gaatggaaag aacgtggat 120
tggcaatgtt aaaataactga ggcataaaaac atctggtaaa attcgccccc taatgagacg 180
agagcaagta ttgaaaatct gtgcaaatca ttacatcgt ccagatatga aattgacacc 240
aaatgctgga tcagacagat cttttgtatg gcatccccctt gattatgcag atgagttgcc 300
aaaaccagaa caacttgcta ttaggttcaa aactcctgag gaagcagcac tttttaatg 360
caagttgaa gaagcccaga gcattttaaa agccccagga acaaatgtag ccatggcg 420
aaatcaggct gcagaattgt aaagaaccca caagtcatga taacnaggat atttgcaaat 480
ctgatgtcgaa acacctgatt ttgaatttca ggntgcaaga aagaaaggc ttggtgccat 540
tgaaccactg ntcatattaaga atgcttcaact gctaaaaatg ngattatgcc aaattaanc 600
agcaataaga ctcgtggccc ccttaactga actgttt 637

<210> 475
<211> 647
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(647)
<223> n = A,T,C or G

<400> 475
ggtacaagcc atagtggaaa gaatgaatct ctccctaaaa tagcagttgc aaaagcagaa 60
agggggagac agagaatatg gaaccccaca gatgcaactg aaccttagcat tattaacagt 120
aaatttttg agcctgccc aaggccacat gttatcagca gctgaagagc atctacagaa 180
accagctgca aggacaaaaa cagaacaact gatttgggg agagatccga taacacgaag 240
ttggggaaataa ggtaaaataa taacttgggg gagaggttat gcttgtgtt ctccaggcca 300
atatcaatag cctatttggta taccatcaag acacctgaaa ctttatcgtg agccagatgc 360
tgagggatag actccgggg ggcattctgag aaccccccag ttgcagccat gtttgagact 420
gatgctgagg aggactccaa ctgtcacgag cacagcccc atctggggac agatcaagaa 480
gctgtcacag atgaaagaag aaaaccttga gaaaaggcagg acaatcggtc ccatgagtaa 540
aatctgtatgg tagtataaaa ccggttttan cacnccatgn tattcttng ttaaggctga 600
cncngagAAC aattataacct antggggata ttatcatct tggtngg 647

<210> 476
<211> 665
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(665)
<223> n = A,T,C or G

<400> 476
accttatttag aaagcgacgg caaactatgt gccagcagcc gcgtaatac ataggtcgca 60
agcgttatcc ggaatttattt ggcgtaaagc gtccgttaggt ttttgctaa gtctggagtt 120
aaatgctgaa gctcaacttc agtccgctt ggatactggc aaaatagaat tataaagagg 180
ttagcggaaat tccttagtgaa gcggtggaaat gcttagatat taggaaaca accaataggc 240
gaaggcagct aactggttat atattgacac taagggacga aagcgtgggg agcaaacagg 300

attagatacc	ctggtagtcc	acgccgtaaa	cgtatgtcat	tagttggtg	aataattca	360
ctaacgcagc	taacgcccgtt	aatgatccc	gcctgagtag	tatgctcgca	agagtgaat	420
ttaaaggaaat	tgacggAAC	ccgcacaAGC	cggtggAAcA	tgtgggttaa	tttgattcta	480
cgcctagaa	ccttacccac	ttcttggaca	tcttctgcaa	agctatngga	gatatagtgg	540
anggttaaca	gaatggccc	aagggtcatg	ggtggccgca	gctcgtgtcg	tgagaaggta	600
nggttaaagt	ctgnaacgag	cgcAACcnt	ttctttagta	ctaataattaa	gttaaggact	660
ntagn						665
<210>	477					
<211>	319					
<212>	DNA					
<213>	Homo sapiens					
<400>	477					
cgaggtactt	ttcaatttatg	ttaacgtaaa	atactcgtaa	cgaatgtagt	atgagttaa	60
agtggacttt	tcagatccta	taagtgcata	ctaagtaatg	acaggctta	agataaggaa	120
tatatgcatt	ttgttaaggc	agaaatctca	taaaaattca	tgaaaaacca	tggtcaatcc	180
aatatgcac	tttttaagac	aagttgtct	gaaaactgga	agggtcaaaa	gacaacaaaa	240
aagcacacac	caaaaaacct	cacttaagc	aaatctataa	cttgaaaaaa	aaaaaggccta	300
agaatattct	gagagtgg					319
<210>	478					
<211>	419					
<212>	DNA					
<213>	Homo sapiens					
<400>	478					
acccacgatg	atgtggggag	cttccatctg	cagtttctgc	acctcagcac	gcacgttggt	60
gcccccgata	caggcgtgac	aggaggcgcc	catgtagtc	cctagtgcca	tgaccacctt	120
ctgtatctgc	tgagccaatt	ctcgagtggg	tgcttagact	aaggcctggg	tggcttttag	180
atctaattca	atctgctgca	aatcgatat	gccaaATGt	gccgtttcc	cagtcccaga	240
ttgggcttga	gcaatcacat	cataaccctt	gataacaaggt	agaatgggct	cgctgctgga	300
tggcagagg	cttctcaaaa	ccataggcgt	agatgccacg	gagaagggac	tccgagaggt	360
tcatgtcata	aaagctgtca	acaatctcat	tccagttact	ctcgatgacg	ccttcgacc	419
<210>	479					
<211>	312					
<212>	DNA					
<213>	Homo sapiens					
<400>	479					
acatcctgga	gacctgaaga	attctgttga	agtcgcactg	aacaagttgc	tggatccaa	60
ccggggaaaag	ttaataaccc	ctgcccgtaa	aaaactggcc	agcgctgcct	acccagatcc	120
ctcaaaggcag	aaggccatgg	ccaaaggccc	tgccaagaat	tcagaaccag	aggaggtcat	180
cccatcccg	ctggatatcc	gtgtggggaa	aatcatcact	gtggagaagc	acccagatgc	240
agacagcctg	tatgttagaga	agattgacgt	gggggaagct	gaaccacgg	ctgtggtag	300
cggcctggta	cc					312
<210>	480					
<211>	640					
<212>	DNA					
<213>	Homo sapiens					

<220>

<221> misc_feature

<222> (1)...(640)

<223> n = A,T,C or G

<400> 480

ggtacccaaca	attcctccata	ccagttggctg	agcatactct	gcagagtcag	cctgcagcac	60
tgtggtgact	tctcttggac	tcaggtgatt	aacttcgctg	ctgctatagc	gaactggggt	120
ttcctcatgg	tccactgctt	ttgcaggaag	aaactgctc	attcctttcc	accaacctgc	180
ccggccccag	taaggttaagt	cataggtgcc	ttcagttttt	ttctttctgt	ttctccagtg	240
ccaaggcacac	actaatatga	aatgagagt	agtgaggacc	atgaccagca	cagggacaag	300
aactgcagcc	agcgctacat	cttggttac	atttggagtt	acggtagtat	ttctgatatc	360
aggactggca	gttgggggtt	ctgtctgtgc	aggaaattca	ttgtactgc	gaagttgttag	420
tggttgcgta	aattttgggg	cacgacctt	ggctattttg	gaggggctgt	agtggtttg	480
aggnccatgc	tgttncnaag	aggtgaggt	ttagtaagtt	ttggangacn	actttangaa	540
taaaactgaca	tccgagcgt	tcattttcat	gc当地tct	gctgccatgg	gtaaggatta	600
ctctaataaa	cgtgccataa	ttggggcaa	aagtattccc			640

<210> 481

<211> 501

<212> DNA

<213> Homo sapiens

<400> 481

ggtacatttc	cttggtagact	ctgttaattt	cctgcagctc	ctgggggtt	ctggagcaga	60
tgatctaat	gagagagtcc	tcgtcggttc	ccagccccctt	catggaagct	tttagctcag	120
aaggcgtcata	ctgagcagg	gtcttcaata	ggcccaaaat	caccgtctcc	aggtggccag	180
ataaggctga	cttcagtgct	gatgcaagtt	cctttttgtt	ccttctctgg	taggcgaagg	240
caatatcctg	tctctgtgca	ttgctgcgg	tggtaaaaat	gttgcacaatg	gtgacctcat	300
ccacaccc	gggtttgatg	gctgttcaa	tgttcaaaagc	atcccgctca	gcatcaaaag	360
ttagtatagg	ctttgacaga	cccatatgc	cttgggggtt	tagagtgtatc	accctccaag	420
ctgagcttgc	acaggattt	gtgaacagta	agacatttt	aaaggaagct	ggggccgtgc	480
ccccgagagc	tgaaagcgtc	c				501

<210> 482

<211> 306

<212> DNA

<213> Homo sapiens

<400> 482

ggtacctata	cagggatggc	tcccacgc	ccctcagtga	ccccaaaccc	atctccactt	60
acactcaggc	actcccagga	cctgacagct	actccccgtt	atcgtccttc	agttcqaagc	120
cctggccaa	ctaccagccc	acatgacgca	gttacctggc	catttctcca	cggttcccg	180
gagggccccca	caccagccg	cacaagagcc	cctcctgcat	tccgtctca	cacacaggcc	240
tgtgtatgca	cttgctactg	tcacacttt	gctagcagaa	gaggccctg	taatggccga	300
tatccc						306

<210> 483

<211> 663

<212> DNA

<213> Homo sapiens

<220>

```

<221> misc_feature
<222> (1)...(663)
<223> n = A,T,C or G

<400> 483
acagaatttc ttatcttg aagactctgt ggttgcaccac ttcttcatta gttacctgca      60
gcaagacacc ttccatTTta ctaccaacac cactgaagga accaagaaaa gctttattaa     120
tgcacttg gcttgcctca gctgtgaaa tgaagcactt tacagtctt gtggcagcag     180
aatatacttg tccatggttc atatcaatgc catggcaaat aggaagaagc tcagtatcg     240
ctcctccac cataaccccc acttcctcca ctgcctcctg gaccatagtt tcctccacca     300
tatggtcccc ccatgttccc gctaccacca aagttccac tcttcacacg ggccaagtca     360
gaaagaccat gacataaaga gagatggcga aactgaaacg gattatttct tttgnctca     420
aacatctca tcaatttatac actcatccat tctacctggg acttagaaaa ctccacacca     480
ttgttaactga cattatTTtag gagtgcacat gagtaaacac ccaatcctgn atcttagtc     540
cctccaaatc tgatccaag aagtttagcc aggttccaaa ctntggctg ntggggccca     600
ctgntattaa cacatTTca ttanctgaa nnggttccag gacantggc anaacttgtt     660
ant                                         663

<210> 484
<211> 228
<212> DNA
<213> Homo sapiens

<400> 484
cttgggtctg aaagtgcgt aaggacgcga ttacctgcga taagcttcgt ggagttggaa      60
ataaaactatg atacggagat ttccgaatgg ggtAACCTAA ctgagcaac ctcagttgca     120
ttttgatgaa tccatagtca aattagcggg acacgttgcg aattgaaaca tcttagtagc     180
aacaggaaaaa gaaaaaaaaa aaaaaaaaaa aaaaaaaaaaag cttgtacc                         228

<210> 485
<211> 672
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(672)
<223> n = A,T,C or G

<400> 485
acggagccct ctgaaaaatg acaaagatgg tatgatgtat ggcccaccag tggggactta      60
ccatgacccc agtgcccagg aggctggcg ctgcctaattg tctagtgtg gtctgcctaa     120
caagggcatg gaattaaagc atggctccc gaagttacaa gaatctgtt gggatcttc     180
tcggcaaact tctccagccca aaagcagcgg tcctccagga atgtccagtc aaaaaaggtt     240
tggggccgccc catgagactg atggacatgg actagctgag gctacacagt catccaaacc     300
tggtagtgtt atgctgagac ttccaggcca ggaggatcat tcttctcaaa accccttaat     360
catgaggagg cgtgttcgtt ctttatctc tccattccc agtaagagac agtcacaaga     420
tgtaaagaac agtagcactg aagataaagg tgccttcct tcactcatca aaaagaaaagg     480
cgcttgatta aagcatttca atttcctatg gccccatctt ttnttcacag gtccnnggat     540
antcaaggtc tattncctta agaagagaat tnccttccan gggnccttc cnaggtcccc     600
aatagtttaa aaaactggnc ctggtnngtta anccttann aaagcccttg gttaaaancc     660
cnaaanannng ng                                         672

```

<210> 486
 <211> 637
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(637)
 <223> n = A,T,C or G

<400> 486

ggtacaata	g agctttggat	ctgatacaag	aatttagaaa	tataaaacaa	aataactata	60
aaagttagga	ggcattt	gaa tggcatttcc	ttagaagaac	ctgctaactc	tgtatcattc	120
tgatgtggat	tcctagtcat	gtggggtgaa	atgcata	ttccccctt	gctggatcac	180
tggccttct	tcaaaagcta	taatgccatg	aacacacatc	ctaggagtct	ctataatgtt	240
aacagaagct	ccaaatacc	agccaatcaa	agatgggaga	ggcagggga	accataaagg	300
cgaagggtcc	aaaggtggc	gttactgaga	acttgcctt	tccaaaatgt	gaaagtata	360
gtgctctt	cttgttctca	gcttaaactt	gttaactgag	ttaatttgtt	tcttcagtgc	420
attctgtgca	gctgaaatgg	agggaaatgt	ggctaagacg	gtgtangtgg	angccaagtc	480
actgggttta	gaaccgttca	agggttggca	gtggtggnc	ccactggcca	cagcagaagg	540
ggttgaccac	cctgggttgg	gactgggggg	tncccgann	cccccgatn	ttggngccca	600
attttaaaga	agttnccca	aaaactttt	aacttng			637

<210> 487
 <211> 618
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(618)
 <223> n = A,T,C or G

<400> 487

ggtacctttt	ccc	atgactg	cacccagctc	cagggccct	tgggacagcc	agagctgggt	60
ggggacagt	g	ataggccaa	gtcccctcc	acatcccagc	agcccaagct	taatagccct	120
ccccctcaac	ctc	accattt	tgaagcacct	actatgtgt	gggtgcctcc	cacacttgct	180
ggggctcacg	ggc	cctccaa	cccattaat	caccatggga	aactgttgt	ggcgctgttt	240
ccaggataag	gagactgagg	cttagagaga	ggaggcagcc	ccctccacac	cagtggcctc	300	
gtggttatta	gcaaggctgg	gtaatgtgaa	ggcccaagag	cagagtctgg	gcctctgact	360	
ctgagtccac	tgctccattt	ataacccag	cctgacctga	gactgtcgg	gaggctgtct	420	
ggggccttta	tcaaaaaaaag	actcagccaa	gacaaggagg	tanagagggg	actggggac	480	
tgggagtcaa	aacccctggc	tgggttaag	tccacgtntg	gcnagcactg	gcttttctt	540	
ttgggcctt	gttcctt	gtgt	ggcaaagaat	gatgaccnct	atttcagga	cttttccttc	600
ngtttcaagg	tttttntg						618

<210> 488
 <211> 618
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature

<222> (1) ... (618)

<223> n = A,T,C or G

<400> 488

ggtacagtgcg	tctgaagaag	ctctgagggc	ggcaggacca	gccagcagca	gcccaagctt	60
ccctccatcc	ccctttacc	tctttctgc	agagaaaactt	aagcaaagg	gacagctgtg	120
tgacatttg	agagggggcc	tggacttcc	atgccttaaa	cctacctccc	acactccaa	180
ggttggagcc	cagggcatct	tgctggctac	gcctcttctg	tccctgttag	acgtccctcg	240
tccatatacg	aactgtgc	caatgcagtt	ctgagcaccc	tgtcaagctg	ccctgagcca	300
cagtggatg	aaccagccgg	ggccttatcg	ggctccagcc	atctcatgag	gggagaggag	360
acggagggga	gtagagaagt	tacacagaaa	tgctgctggc	caaatacgaa	agacaacctg	420
ggaaaggaaa	ggtcttgtg	ggataatcca	tatgttaatt	attcaacttc	atcaatcact	480
ttatattt	tttttcta	ttcttgaga	cttaatttac	tgntttatta	gggtgaaaac	540
tggcnnctca	ngtagggttt	tnttatccca	ggactacctt	gggtttaan	ttaaaaaaaaaa	600
aaagaaaatgg	ntnaaaaaa					618

<210> 489

<211> 624

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (624)

<223> n = A,T,C or G

<400> 489

naggtnctga	tgattctcca	natccangta	tagaatatga	ncncgnnctn	cgaaaantggn	60
gtganttgat	tcctggggct	gagtatcgat	gtttatgnca	tggaaaacna	gtttatttgt	120
atttctcaga	gagactacac	acaatactat	gatcatat	ctaaacagna	ggaagaaatt	180
cgcanaatgca	tacaagactt	tttcaagaaa	cacatacagt	acaagcttt	ntnctattta	240
attgntgtnt	tttttgtgg	taacnngaaa	gtttattnt	gtctgaaagc	ttttataagt	300
attnaaatnn	acnnagtaat	gaactattca	attgctgnaa	tccgtcaaaa	tttnchaaag	360
ncgcacacaa	antnnatcc	ttgnncacgn	anctncatac	actgnccctn	gccaaacacc	420
cttgcgggga	accaatcn	atgacatttc	tggccgggtt	aatnttata	aagccaagg	480
cccnngcact	ggttaaggng	ggccttanac	cttttagggg	agggcccnaa	taccctnccn	540
cttaaacntc	tggggggngg	tananatttc	ttataggnac	cgnccctta	aatcnattgn	600
canttttng	nccttttgtt	tttt				624

<210> 490

<211> 620

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (620)

<223> n = A,T,C or G

<400> 490

ggtacctctt	cccatgactg	cacccagctc	cagggccct	tggacagcc	agagctgggt	60
ggggacagt	ataggccaa	ggtccctcc	acatcccagc	agcccaagct	taatagcccc	120
ccccctcaac	ctcaccattg	tgaagcacct	actatgtgt	gggtgcctcc	cacacttgct	180

ggggctcagc	gggcctccaa	cccatttaat	caccatggga	aactgttgc	ggcgctgctt	240
ccaggataag	gagactgagg	cttagagaga	ggagggcagcc	ccctncacac	cagtggcctc	300
gtggttatta	gcaaggctgg	gtaatgtgaa	ggcccaagag	cagagtctgg	gcctctgact	360
ctgagtcac	tgctccattt	ataaccagg	cctgaccta	gactgtcgga	aggctgtctg	420
gggccttat	aaaaaaaaag	actnagccaa	acaaggaggt	agagagggga	ctgggggact	480
gggagtcana	gccctggctg	ggttcangtc	cacgttgggc	aggcacttgc	ttttctttt	540
nggncttgg	ttccttgttgc	gcaaaagagt	gattgaaccc	cttatttca	agggctttc	600
nctnatgttn	cangntttn					620
<210>	491					
<211>	630					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1) ... (630)					
<223>	n = A,T,C or G					
<400>	491					
acatttcctt	gttagactctg	ttaatttcct	gcagctcctg	gttggttctg	gagcagatga	60
tctcaatgag	agagtcctcg	tcggttccca	gcccccttcgt	ggaagctttt	agctcagaag	120
cgtcatactg	agcagggtgtc	ttcaatagc	ccaaaatcac	cgtctccagg	tggccagata	180
aggctgactt	cagtgtctgt	gcaagttcct	tttgggtcct	tctctggtag	gcgaaggcaa	240
tatcctgtct	ctgtgcattt	ctgcgggtgg	tcaaatgtt	gacaatggtg	acctcatcca	300
caccttttgt	cttgatggct	tttcaatgt	tcaaagcatc	ccgctcagca	tcaaagttag	360
tataggcttt	gacagaccca	tatgcacttgc	gggggtgtaga	gtgatcaccc	tccaagctga	420
gcttgcacag	gaattccgtg	aacagttagac	atttgaagg	aagcttnctt	gaggcccaat	480
gtgttcaacc	caaccggaa	aactnttncg	gtttagaagt	aaatccgaag	ttgctattgc	540
ttccagaata	acctgggnncn	tnccccnaaa	actttaaaac	gttcccacct	tggcgggaa	600
cccncttaan	ggggaaattc	ccgnccncng				630
<210>	492					
<211>	412					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1) ... (412)					
<223>	n = A,T,C or G					
<400>	492					
acactaccaa	cagatcaaag	aaacccctcc	ggccagttag	aaagacaaaa	ctgctaaggc	60
caagggtccaa	cagactcctg	atggatccca	gcagagtcca	gatggcacac	agcttccgtc	120
tggacacccc	ttgcctgcca	caagccaggg	cactgcaagc	aatgccctt	tcctggcagc	180
acagatgaat	cagagaggca	gcagtgtctt	ctgcaaagcc	agtcttgagc	tccaggagga	240
tgtcaggaa	atgaatgccg	tgagggaaaga	ggttgcgtaa	acctcagcag	gccccagttgt	300
ggttagtgtg	aaaaccgatg	gaggggatcc	cagtggactg	ctgaagaact	tccaggacat	360
tatgcaaaag	caaagaccan	aaaaaaaaaa	nnaaaaaaaaa	aaagcttgc	cc	412
<210>	493					
<211>	633					

<212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(633)
 <223> n = A,T,C or G

 <400> 493
 acactggcca gtgtgtttt ggcgattaaa cataatcctg tgaatcagat taattcactt 60
 gctgagtgtt catttgccgc atccctctgt tgggtcttgg gggccctcca cgacctcg 120
 gggctccccg tggccactc tgcccagagc ctcgcttga attctgctga tatccatccc 180
 gttgatagcc agagtaatcc cggggagcac tgaactgaga ctgtgtataa ccactgtttg 240
 gagtgttaga gaatgaaggg cggtaaccat natatcctcc tctgaatcca ttggcaaggc 300
 cccggtatcc attcatcaag cctctagcac cacgggagcc ttcacgagac gcaccacgac 360
 tattgtataa ggggctgatt gctacgttga aatncagtgt tctgctgaag aagctgtgg 420
 tgggtaccag tcacttgcgtt gggggaaaccat gggggaaatggt gccaaccac 480
 tgggtgnaac ttgtcttgc tgaancctcg gttggctac cttgggaaag cttgactaaa 540
 aaaacttttgc tataaaatttgc ggctgggacc ccctanggn gcaaccctgg gccannttt 600
 tcctnnnct taaaaagggg gggnatgaa ggn 633

 <210> 494
 <211> 609
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(609)
 <223> n = A,T,C or G

 <400> 494
 acttaaaagg taaagtagta accaaagaga aaatccagga agccaaagat gtctacaaag 60
 aacatttcca agatgatgtc tttaatgaaa agggatggaa ctacattttt gagaagtatg 120
 atgggcatttccatct tccaatagaa ataaaagctg ttcctgaggg ctttgttattt cccagaggaa 180
 atgttctctt cacgggtggaa aacacagatc cagagtgtt cttggcttaca aattggattt 240
 agactattct tggtcagttc tggtatccaa tcacagtggc cacaattctt agagagcaga 300
 agaaaatattt ggc当地atat ttgttagaaa cttctggtaa ctttagatggt ctggaaataca 360
 agttacatga ttttggctac agaggagttt cttcccaaga gactgctggc ataggagcat 420
 ctgctcaattt ggttaacttc aaaggaacag atacagttagc aggacttgct ctaattttttt 480
 aatattatgg aacgaaagat nctgttccag ctattctggt ccacagcaga acacagtacc 540
 ttggccngna cnacnctaag gcgaaatccg ccactggggg gccgttataa nggatcccnc 600
 ttnggacccn 609

 <210> 495
 <211> 606
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(606)
 <223> n = A,T,C or G

<400> 495

ggtaccaagg	tatctttgat	aataccacta	gtctgacgga	taaacacctg	gaccuaatca	60
ggaaaaatct	ggaaaagcac	tggaaaaact	gtgcccgtaa	actgggcttc	acacagtctc	120
agattgatga	aattgaccat	gactatgagc	gagatggact	gaaagaaaag	gtttaccaga	180
tgctccaaaa	gtgggtgatg	agggaaggca	taaaggggagc	cacgggtgggg	aagctggccc	240
aggcgctcca	ccagtgttcc	tggatcgacc	ttctgagcag	cttgatttac	gtcagccaga	300
actaacccctg	gatgggctac	ggcagctgaa	gtggacgcct	cacttagtgg	ataaccccg	360
aaagttggct	gcctcagagc	attcagaatt	ctgtcctcac	tgataggggt	tctgtgtctg	420
cagaaatttt	gtttctgtt	cctgccngc	gnncgctcaa	agggcgaatt	cacacactgc	480
ggccgtacta	gtggatccaa	ctcggaccaa	cttggcgtaa	tatggcatac	tgttctgng	540
ggaaatgtat	ccgtccaatt	cncccacata	cganccganc	ntaaaggtaa	gcttggggcc	600
tataat						606

<210> 496
<211> 279
<212> DNA
<213> Homo sapiens

<400> 496

ggtactcaat	gatgctggtc	agcgacttcc	acgggagaaa	atcttgctga	atgtccgtga	60
aatccttccc	atatttttcc	agggcttccct	cgaaaaggtt	ggcctctgtat	gcagaccact	120
cctccatctc	gtccctgtcag	agcacgggcc	cgccctgcgg	caccagcgcc	gagatggcct	180
tggagatgtc	gtagatgttc	ttgtggagag	tatccatggc	gtggaacagg	gtgatgtctc	240
gggaggcagc	tgcggcgctc	atgtgcagc	tgggctgtc			279

<210> 497
<211> 633
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(633)
<223> n = A,T,C or G

<400> 497

ggtacacaac	aggcääaaag	cttttcgca	agtataaaaa	tttagttgaa	aataacttgt	60
tgattcagct	acaggaagac	aactaacaat	taacaggctc	atgaataattt	atgaataaaag	120
tgccactaat	tttattgtaa	taagatataa	atagaataaa	tcctgacatg	gatagtagct	180
tctgtttct	ctccatctg	agaacagaag	ggccataaaa	aaacaaagaa	gcattaccaa	240
aggggagttc	tagaccacac	cggggaaactc	ctaataaaaa	agcaacaaga	aagacangta	300
agactttaaa	agtgcagaa	gtcctaagaa	tagcgccaaat	gtagtaggccc	cttttaaca	360
acaacaaana	ataaaaataa	gagagagaga	gaaatttagaa	atttangaag	ttcattaaat	420
aactggact	tatattcaag	ggaattttatt	agtggccagc	ctantggggg	acccagcntn	480
tagaaaaaga	cccttgaaaa	ggaccttccc	ncacctggga	canaaggata	gnaccgaccc	540
cccagggaaag	nccgccontgg	aaangggatc	cnaacttgan	gcttttagg	gtttcaaaan	600
tccttgctng	gccccaaang	gcaggnnn	ntn			633

<210> 498
<211> 601
<212> DNA
<213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(601)
 <223> n = A,T,C or G

<400> 498

acattttca	gaacagttt	ggtcgttaa	aaaaaatcac	acattataa	gcagtgattt	60
caatcatgtt	taaaaacaaa	aatattaaac	aaattcattt	cctaataccag	atgatacaga	120
atccaagaaa	tttctgttagg	cacttcactt	tccatagaac	ttcttgttca	gcaggtatat	180
gagaaggaaa	acattcactt	taacccttac	aaacatttc	attacagcta	ctccttcata	240
ttgcacatgt	agtaaatccct	gaatattgag	ttgcacccctt	tccatctcaa	caccaaggaa	300
ttttgatctt	acatcgaaaaa	tgcctacatc	ttcagtagct	atgatataaa	atgtaacatt	360
cttaaactgg	tttgtttcaa	gatcatctat	atctagcagg	acacctttct	catgcagctt	420
tgctgcagtg	tacaaactgc	aggctccatc	ctcggtggct	cgcaactatgt	gcgctttaa	480
aaaatattat	ttcttaataaa	tcttgaagt	taaaataccg	ttctttcagt	tggncaaaaa	540
aaaaannnnn	nnnanganag	aanngnaang	aaagtgggt	gnnnttgggg	ngaaaaacn	600
n						601

<210> 499
 <211> 293
 <212> DNA
 <213> Homo sapiens

<400> 499

ggtaactcaag	ctttgacct	catgccttgt	gtagtaaaaaa	aggatttggg	ggttttgttt	60
ggttcctgag	agggttgtgt	tttgggggg	tttccttttg	tttatgtttt	ggccttcct	120
ctttgtctt	ccatgttagac	cagatattt	aaagggcaga	cgatggctag	aggtgtaatg	180
tgcagctgt	ttatacggta	ttttggaaa	tttaccttgg	atggaaatc	gaatcggtga	240
ttcaccaggc	cgggtgtggc	acactcacc	tcgccttcc	cctccgggttc	agt	293

<210> 500
 <211> 630
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(630)
 <223> n = A,T,C or G

<400> 500

gggtactcat	gaattcaagc	cacagagtgg	agcagagatc	aaagaagggt	gtgaaacaca	60
taagggttgc	aacacaagt	cttttcacac	aactccaaac	acatcactgg	aatgggtca	120
ggcaacgcca	tccaaagtgc	agccatcacc	caccgtgcac	acaaaagaag	cattaggttt	180
catcatgaat	atgtttcagg	ctcctacact	tcctgtatatt	tctgtatgaca	aagatgaatg	240
gcaatctta	gatcaaaatg	aagatgcatt	tgaagccccag	tttcaaaaaa	atgtaaaggc	300
atctggggct	tggggatc	ataagatcat	ctcttcttgc	ncatctgctt	ttcatgtgtt	360
tgaagatgga	aacaaagaaa	attatggatt	accacagcct	aaaaataaaac	ccacaggagc	420
caggacccctt	ggagaacgc	ctgtcacaga	cttncttcaa	acccaaggag	gaagtgcctn	480
atgctgaaaa	gtttggatg	actcaactgg	atggggatt	ccctgnaacc	aaaacctggn	540
acccaagtcc	ttaaaancn	nggagactta	cattntgntg	nacaatttgg	gttaaaccnn	600
ttcncaaagc	tttccatggg	ggcanggccc				630

<210> 501
 <211> 240
 <212> DNA
 <213> Homo sapiens

<400> 501
 acatctgaaa tacccccc aaaccagaaag ctttcaaca gctagggtgt ccaagaactt 60
 ggaaaattca cttctgtatg tcctccaaga cagattccat ttttatatac ccttatttgc 120
 tcagacctgt aacctcagcc tggagtgaac acagacacct agtttcctc aaactcctct 180
 tggcttag agagaaggtg ctggccctt gagccaagca ggttatttgt tagtagtacc 240

<210> 502
 <211> 481
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(481)
 <223> n = A,T,C or G

<400> 502
 ggtacctgtt ctcttatcca aacctttcaa ttcatgctac ctgattcatt tatttgacat 60
 agatcttagg cccacttgaa ctctttctt gtttatctag catagcacaa acgttttcc 120
 agtcttctt atcaacacta atgccttta attgcattcag tatttcctat tggaaaatac 180
 atctgttcca gaaaaacatt tggcattctt gaataattc caaatgtttt taatccaaag 240
 aaaaagggtt aagcttatt tcccttttctt atacacacct gaataaaaatt gatgtgcattg 300
 ttttagggat caattaccta actgttccctt ggtctattt tgtataagaa tgcttttaa 360
 agcacatgtc tcattttaaa tgacggacaa actgaagatg ttaataaaaat ttaagagtaa 420
 tacaatgaaa aatattantn tttnnanatan aaaagcttgg acctgccngg gcggccgntc 480
 g 481

<210> 503
 <211> 643
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(643)
 <223> n = A,T,C or G

<400> 503
 ggtactgcat tatttgagaa gctgctcaac ttgcaaaatc agtttcctc tcaataaaat 60
 tatacgctca atgtttgcat ataaggaaag tagttatcat gtttagtaata cctctaata 120
 tataaaccctt accccaaaaat tagccagtaa tcctgttagga aggtacaagt ctcagactaa 180
 gtttttagcc acttgtcaaa ttcagtttta aatgctttaga aaacactgag gacacctatt 240
 gaggaggagg gggggaaagg cacctgtaaa ggagtccaaa gtatgtgctg gagcagatga 300
 tgacaaagac agaacatcta agaagataga catggaggaa aggaggatgt attccacac 360
 actatgacat tgaaaattca atcattttag ataggattt gatccactgc cattactacc 420
 ttgtggaaaa aatctnccaa tgaaaagggtt gaaaaattca ttctccaaaa attggccng 480
 ttttaangag aaaatttttag agcagcaccn ttaaaccatg ccggaaactt tggtttaaca 540

aaatatngtg	gggccccaaa	aagctcctgt	tgcttttagg	cctcnagaga	tttacccaga	600
acttaaagg	n	ttnncnctgc	cttgttcctt	aangttgaaa	acc	643
<210> 504						
<211> 624						
<212> DNA						
<213> Homo sapiens						
<220>						
<221> misc_feature						
<222> (1)...(624)						
<223> n = A,T,C or G						
<400> 504						
ggta	tat	ttgca	tttcc	tcaataaaat		60
tttttgc	atgttgc	ataaggaa	tagttatcat	gttagtaata	cctctaata	120
tttttttt	acttgtca	ttcagtta	tccgttagga	aggtacaagt	ctcagactaa	180
tttttttttt	tttttttttt	aatgcttaga	aaacactgag	gacacctatt		240
tttttttttttt	tttttttttttt	ggagttccaa	gtatgtgctg	gagcagatga		300
tttttttttttttt	tttttttttttttt	tttttttttttttt	tttttttttttttt	tttttttttttttt	tttttttttttttt	360
tttttttttttttttt	tttttttttttttttt	tttttttttttttttt	tttttttttttttttt	tttttttttttttttt	tttttttttttttttt	420
tttttttttttttttttt	tttttttttttttttttt	tttttttttttttttttt	tttttttttttttttttt	tttttttttttttttttt	tttttttttttttttttt	480
tttttttttttttttttttt	tttttttttttttttttttt	tttttttttttttttttttt	tttttttttttttttttttt	tttttttttttttttttttt	tttttttttttttttttttt	540
tttttttttttttttttttttt	tttttttttttttttttttttt	tttttttttttttttttttttt	tttttttttttttttttttttt	tttttttttttttttttttttt	tttttttttttttttttttttt	600
tttttttttttttttttttttttt	tttttttttttttttttttttttt	tttttttttttttttttttttttt	tttttttttttttttttttttttt	tttttttttttttttttttttttt	tttttttttttttttttttttttt	624
<210> 505						
<211> 652						
<212> DNA						
<213> Homo sapiens						
<220>						
<221> misc_feature						
<222> (1)...(652)						
<223> n = A,T,C or G						
<400> 505						
acaagctaca	aatgcttgtt	cagcagctga	ggggcactct	tgagttagcgt	gtctgaagag	60
tgaataaaaa	tccatataaa	acaaatattc	aaatagtttc	cataggaaca	cagataagt	120
tgacccat	cctagtcttc	catatggctg	catcatggcg	accctactct	tacaaagaca	180
tttcaaaact	agcagtaatt	aagttacatg	gtccccccaa	atcccttaat	tcaagctaaa	240
tttgcagtt	acagctacca	gagtgcatac	tacacattaa	tactagccc	aagcacaggc	300
ttgtctgtgg	cgtttcatcc	cactctccca	ggcacaagac	acaggcaggg	tgctggcatc	360
ctgttcctct	acttcgggtg	gggaaagtcg	gggttctgga	attgctgcat	gagttgccac	420
gcaggccctg	acatcacata	gtaanatcg	ccggcctttt	gggaaaccca	ttgnacctan	480
aaggcancna	gcaaccagt	gtaagccg	ccaaagg	cnaaagagcc	tttccaatna	540
ccccccatgc	cntttaang	gcnnngttac	caagg	aaaaaatccg	attnanggg	600
ccnnttacaag	gttggggccc	ccanaatgcn	cgatngnaa	aaaanac	tt	652
<210> 506						
<211> 545						
<212> DNA						
<213> Homo sapiens						

```

<220>
<221> misc_feature
<222> (1)...(545)
<223> n = A,T,C or G

<400> 506
acaagcgttt tttttttttt ttttttttac taaaagtgcc cagggtggct      60
taaggctgcc anaactgcacg cacatctaca gcaacaaggg ctcttattcc atctacaact
tggatcgggg gaaaaggaggat atgttaggaga ggaaggaaaa aagagggggaa aaatatacca 120
ccaacccctcc cccacaaaaaa aaggaaaaaa aaaaaatccc accacaggga gatctatgtg 180
ccaaagcataa tggaagagtg tgctccccaa acagatggtt ttgcacaggc taatgttctg 240
ctggtttcc tttagagacct attttgaaaa agttaaaaaa gacaggagat ttcaaaataa 300
ttcaatcctg gcagaaaattc aaactccaaa actaggagca aaatcatcct tcactgaatt 360
aattccttt ctctttctct tttcttaaac attttatcca ttttatagaa agatttctt 420
ttttggntgc nttaggtcca atcnnttgga nantgggtga aggagtacct tggncngan 480
cccccc                                              540
                                              545

<210> 507
<211> 625
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(625)
<223> n = A,T,C or G

<400> 507
acctgtctct ctgccttctg gaggctctct aggattggaa aagtcaaga aacccgaggg 60
aagctggac tgtgaattgt gccttagtgca gaataaggca gactctacca aatgtttggc 120
atgtgaaagt gcaaaggccag gcacaaaaatc tgggtttaaa ggctttgaca catcttcctc 180
atcttcgaac tcagcagecct cctcatcctt caaatgggt gtctcatcat cctcttctgg 240
gccttccttag acttttaacaa gcactggaaa ttttaaattt ggagatcagg gaggattcaa 300
aatagggtgtg tcatctgtt ctgggtctat aaaccccatg agtgaaggct taaaattttc 360
taaaccataa ggagattta aattttggagt ttcatctgaa tctaaggcccg aagaagttaa 420
aaaagatagt aagaatgata atttttaagt ttggacttct ttgtttaac caccctttt 480
ctttaacttc atttcaatttgggtatctaa tcttggacag gaagaaaaag aaagangaac 540
ctggcccaaa tctttcctnt gcaggnttta nccttnggac ccttggccgc naaccaccct 600
aaggggggaa ttccnnacac tgggg                                              625

<210> 508
<211> 612
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(612)
<223> n = A,T,C or G

<400> 508
ggtcgaagac agagggttcag gtcgttccag gggtagagga ggcatgaagg atgaccgtcg      60

```

ggacagatac	tctgcgggca	aaagggttgg	attnaatacc	tttagagaca	gggaaaatta	120
tgacagaggt	tactctagcc	tgcttaaaag	agattttggg	gcaaaaactc	agaatggtgt	180
ttacagtgt	gcaaattaca	ccaatgggag	ctttggaagt	aattttgtgt	ctgctgttat	240
acagaccagt	tttaggactg	gtaatccaac	agggacttac	cagaatgggt	atgatagcac	300
tcagcaatac	ggaagtaatg	ttccaaatat	gcacaatggt	atgaaccaac	aggcatatgc	360
atatcctgct	actgcagctg	cacctatgat	tggttatcca	atgccaacag	gatattccca	420
ataagacttt	agaagtatat	gtaaatgnct	gttttcata	attgtcttt	atattggng	480
gtatctgacc	agatagtatt	ttaagaaaca	tgggaattgc	anaaaatgact	gnagtgcana	540
agtaatttntn	gggcactttt	cgttttaag	ntggaaattc	nctacanttc	ctgaaccant	600
ttanggtttt	tt					612

<210> 509

<211> 473

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

$\langle 222 \rangle$ (1) . . . (473)

<223> n = A, T, C or G

<400> 509

cttgggtctg	aaagtgcgatg	aaggacgcga	ttacctgcga	taagcttcgt	ggagttggaa	60
ataaaactatg	atacggagat	ttccgaatgg	ggtaacctaa	ctgagcaaac	ctcagttgca	120
ttttgatgaa	tccatagtca	aattagcgag	acacggttgcg	aattgaaaaca	tcttagtagc	180
aacaggaaaa	gaaaataaaat	aatgatttcg	tcagtagtgg	cgagcggaaag	cgaaagagcc	240
caaaccgtgta	aaaaggggtt	gtaggacatc	ttacattttag	ttacaaaatt	ttatgatagt	300
agaagaagtt	ggaaagcttc	aacatagaag	gtgatattcc	tgtatacgaa	atcataaaaat	360
ctnatagatg	tatcctgagt	agggccccggc	accgtgaaaac	cctgtctgaa	tctggccggga	420
ccaccccccgt	aaggctaata	ctaatcanac	accgatagt	aactagtacc	tnq	473

<210> 510

<211> 632

<212> DNA

<213> Homo sapiens

<220>

<221> mis

<222> (1)

<223> n = A, T, C or G

<400> 510

ggtaacccatg	tggattccaa	gagccgtata	gcattcttgc	ccttcagagc	ctccctggca	60
aacaattacc	atcacacaaa	gccataacttt	tttgtgcctcg	gcgagatccc	agtgcagaac	120
tttggatgg	tccgcgatct	ggcactgatg	gagcaatagc	tctaactgga	gttagacaaag	180
cctatacgct	agaagaattt	caacatcttc	tacccaaaaat	gaaagctgag	acgaacatgg	240
tttggatgaa	ctggatgagg	ccctcacadatg	cacagcttca	ctctgactat	atgcagcccc	300
tgactgaggc	caaagccaag	agcaagaaca	aggttcgggg	tgttcagcag	ctgatacagc	360
gcctccggct	gatcaagtct	cctgcagaaa	ttgaacgaat	gcagattgct	gggaagctga	420
catcacaggc	tttcatagaa	accatgttna	ccagtaaaag	cccctgtgga	agaacccnttc	480
tttatgctaa	gtttgaattt	gaatggccgg	ctcgtggcgc	agacatttta	acctattcan	540
cttgtggtgg	cttggngtta	attcggncca	aacactttgc	nctttgtga	aaaaaaatcn	600
cctcttcang	gttggggnaa	nggggcttt	gg			632

<210> 511
 <211> 616
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(616)
 <223> n = A,T,C or G

<400> 511
 acagaaccta aaggttcac tgaatgcgaa atgacgaaat ctagccctt gaaaataaca 60
 ttgttttag aagaggacaa atccttaaaa gtaacatca gacccaaagg tgagcagaaa 120
 attgaagtga tacgtgaaat tgagatgagt gtggatgtg atgatatcaa tagttcgaaa 180
 gtaattaatg acctcttcag tgatgtccta gaggaagggtg aactagatat ggagaagagc 240
 caagaggaga tggatcaagc attagcagaa agcagcgaag aacaggaaga tgcactgaat 300
 atctcctcaa tgctttact tgcaccattg gcacaaacag ttgggtgtt aagtccagag 360
 agtttagtgtt ccacacccatg actggaaattt aaagacaccca gcagaagtga tgaaagtcca 420
 aaaccaggaa aattccaaag aactcgtgtc cctcgagctg aatctggtga tagcccttgg 480
 ttctgaagat cgtgacttct ttacagcattt gatgcata gatctcaaag attnanagaa 540
 acnngaatgt ccatcaataa acnaggttat tggatggaaag gaagatgttc tttttaaaaaa 600
 tnaatgttn atntng 616

<210> 512
 <211> 619
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(619)
 <223> n = A,T,C or G

<400> 512
 ggtaccggtc ttcttcaaattt atcatcagca ccctcaatcc cactgctaaa cgacatttg 60
 tcctcgcttgc ccactatgac tccaagtatttttcccactg gaacaacaga gtgtttgttag 120
 gagccactga ttcagccgtg ccatgtgcaa tgatgttggaa acttgctcgatgccttagaca 180
 agaaaactcct ttcttcaaagg actgtttcag actccaaggcc agattgtca ctccagctga 240
 tcttcttgc tggtaagag gcttttcttca actggcttcc tcaagattct ctctatgggt 300
 ctcgacactt agctgcaaagg atggcatcga ccccgacccc acctggagcg agaggcacca 360
 gccaactgca tggcatggat ttattggctt tattggattt gattggagct ccaaacccaa 420
 cgtttcccaa ttttttccaa aactcagcca ggtggttcga aagacttcaa gcaattgaac 480
 atgaacttca tgaattgggt tgcttcaagg atcactctttt tggaaaggcg ggattnccg 540
 aaatacnggt tttggagggng tgaatcaggg atgacntat tccctttta anaaaaaggg 600
 gttcccnntnt gcntntgn 619

<210> 513
 <211> 175
 <212> DNA
 <213> Homo sapiens

<400> 513

ggtacatcct	cggccgggag	tccccactgt	ctctctacaa	tgaggagctg	gtgagcatga	60
acgtgcaggg	tgattatgag	ccaactgatg	ccaccgggtt	catcaacatc	aattccctca	120
ggctgaagga	atacatcg	ctccagagca	aggtcactgc	caaata	gacc	175
<210>	514					
<211>	597					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1) ... (597)					
<223>	n = A,T,C or G					
<400>	514					
actagttact	gcatctgatt	ttacagacag	agaagagtca	aggcccagag	agcagacagc	60
tcaccccaac	atcacacagc	agtca	gctgc	gtgactca	gatttctc	120
aagaatgtt	ggaaaacaacc	tgagggagag	ttaagtaata	aaggaaaatc	acaaacagag	180
acagagaccc	agaaaggac	tcacggaaat	aaaagcagaa	agt	gacagag	240
atgatgagac	agagacagag	agatcagaga	tagggttcag	aaaaaaagaa	gagagaggct	300
gggcacagg	gctcacgcca	gtatcccag	cacttgaga	ggcggagatg	ggaggatctc	360
ttgagcccag	gagtttgaga	ccagcctgga	cagcatagta	agacccatc	tttat	420
aaaaagttt	attaatttaa	aaaaaatgcc	nagagagata	accccnnta	gaagg	480
aagccaaaag	cttttgggg	gctaaaaagn	accccaaccc	ggncnngga	ganaggttt	540
tttttgaggg	aanaatccgg	ttcttgccca	ngcttaanng	gcctatttcc	aaaaaaac	597
<210>	515					
<211>	574					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1) ... (574)					
<223>	n = A,T,C or G					
<400>	515					
ggtacactgg	ttgatatgaa	gattgaattt	ggtgttcat	taaccaccaa	agaaattt	60
cttgcgtatg	ttatgacaa	tgatccctgg	agactctggc	catcaggaga	tcgaagccaa	120
cagaaagaca	aacagtcta	tcgggaccc	aaagaagtaa	ctcctgaagg	gtccaaatg	180
gtaaaagaaaa	actttgatg	ggttgcagag	agatgatgat	tgctttgaa	atcagaaaat	240
cagtgcagg	ttgtatgtt	gatggctct	acttctgatc	ttggtcactg	tgaaaaaaatc	300
aagaaggct	gtggaaattt	tggcatttca	tgtgaacttc	gatcata	tgccataaa	360
ggaccagatg	aaactctgag	gattaaagct	gatgatgaa	ggatggcat	tcctactgt	420
tttgcggcag	tggcaggcag	aagtaatgtt	tngggaccag	tgatgtctgg	gaacactgca	480
tatnccgtt	tnagctggcn	tcncttanac	caactgggg	agttcaggat	gtgtggc	540
ctctttgact	nccaatggnc	ttggctntca	accn			574
<210>	516					
<211>	450					
<212>	DNA					
<213>	Homo sapiens					

<220>
 <221> misc_feature
 <222> (1)...(450)
 <223> n = A,T,C or G

<400> 516
 aaaaaggcgt aaagcgaaaa gcagatacta ccacccctac acctacagcc atcttggctc 60
 ctggttctcc agctagccct cctgggagtc ttgagcccaa ggcagcacgg cttcccccta 120
 tgcgttagaga gagtggtcgc cccatcaagc ccccacgcaa agacttgcct gactctcagc 180
 aacaacacca gagctctaag aaaggaaagc tttcagaaca gttaaaacat tgcaatggca 240
 ttttgaagga gttactctt aagaagcatg ctgcctatgc ttggccttcc tataaaccag 300
 tggatgcttc tgcacttggc ctgcataact accatgacat cattaagcac cccatggacc 360
 tcagcactgt caagcgaaag atggagaacc gtgattaccg ggatgcacag gagtttgctg 420
 ctgatgtacc tcggcgcga acacgcttan 450

<210> 517
 <211> 611
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(611)
 <223> n = A,T,C or G

<400> 517
 actcctctga ggactacatt aagtcaaggag ctcttcttgc ctgtggcata gtgaactctg 60
 gggtccggaa tgagtgtgac cctgctctgg caetgcttc agactatgtt ctccacaaca 120
 gcaacacccat gagacttggg tccatcttgc ggctaggcctt ggcttatgct ggctcaaatc 180
 gtgaagatgt cctaacaactg ctgctgcctg tggatggaga ttcaaaagtcc agcatggagg 240
 tggcagggtt cacagttta gcctgtggaa tggatagcagt agggtcctgc aatggagatg 300
 taacctccac tatccttcag accatcatgg agaaggcaga gactgagctc aaggatactt 360
 atgctcggtt gcttccttgc ggactgggtc tcaaccaccc ggggaagggt gaggccatcg 420
 angcaatcct ggctgcactg gaagggtgnnc anaaccnttt cgcannttt nccacacacc 480
 tggnggatgt gtgngcctat tcncgctttt ggnanatgcc tnaagggcna caaattggtc 540
 caatttgnnn nnaacccttg cctccaaaga aagggggaaa naaaagtttc ccccnanngg 600
 gggcgccccc c 611

<210> 518
 <211> 395
 <212> DNA
 <213> Homo sapiens

<400> 518
 ggtgatttat ctaatcagaa ctcttcagat caggccaaatg aagaatggga aacagcttct 60
 gaaaggcagtg atttcaatga gaggcgagag agggatgaaa aaaaaaatgc tgacttgaat 120
 gcacaaacag ttgtaaagggt tggagagaat gtcttacctc caaaggaggaa aattgcaaag 180
 agaagttttt ctatcagag accagttagat cgtcagaatc gacgtggcaa caatggtcca 240
 cccaaatcag gaaggaattt ctcaggtcct agaaatgaaa ggagaagtgg cccaccatca 300
 aaaagtggga agagagggcc atttgcgttgc cagcctgcag gcacaactgg ggttgcacctc 360
 atcaatggca gctctgcaca ccatcaggaa ggagt 395

<210> 519

<211> 626

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(626)

<223> n = A,T,C or G

<400> 519

ggtaccgaaa	gcacagtaat	cactgggtc	gatattgtca	tgaaccatca	cctgcaggaa	60
acaagttca	caaaaagaagc	ctacaagaag	tactgattt	aaaaactaat	aactaaaaac	120
tgcccacacgc	aaaaaaagaaa	accaaagtgg	tccacaaaaac	attctccctt	ccttctgaag	180
gttttacgat	gcattgttat	cattaaccag	tctttacta	ctaaacttaa	atggccaatt	240
gaaacaaaaca	gttctgagac	cgttcttcca	ccactgatta	agagtggggt	ggcaggtatt	300
agggataata	ttcatttagc	cttctgagct	ttctgggcag	acttggtgac	cttgcagct	360
ccagcagcct	tcttgcact	gcttgatga	caccaccgc	aactgtctgn	ctcatatcac	420
gaacagcaaa	gcgacccaaa	ngtggatagt	ctgagaagct	nttcaacaca	catnggcttt	480
gccaggaanc	ntttntacca	tgggagcntt	cccnngacttt	tagnaaatta	agggcnnttt	540
tcactttta	acccaaacgg	gaaaaaattt	ttnctttaag	ttaanaaaact	tgcnntgcaa	600
tggaanccgn	ngggaatcca	atacgg				626

<210> 520

<211> 322

<212> DNA

<213> Homo sapiens

<400> 520

ggtacccaag	catctagtct	ggaactgaca	gagataaata	gagaaaatgt	tccaaagtct	60
ggcacgcccc	agcttaggct	gccattcgct	gcaagggttga	acaccccat	gggccttgg	120
cgaactgtcg	tcgttaaagg	agaagtgaat	gcaaatgcc	aaagctttaa	tgttgaccta	180
ctagcaggaa	aatcaaagga	tattgctcta	cacttgaacc	cacgcctgaa	tattaaagca	240
tttgtaaaggaa	attctttct	tcaggagtcc	tggggagaag	aagagagaaa	tattacctct	300
ttcccattta	gtcctggat	gt				322

<210> 521

<211> 613

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(613)

<223> n = A,T,C or G

<400> 521

ggtaccatcc	tcatctcggt	gggatgtgca	gttttctgt	cccttatcgt	ctgggttctt	60
gtatgtccca	ggatgaagag	aaaaattgaa	cgagaaataa	agtgtagtcc	ttctgaaagc	120
cccttaatgg	aaaaaaagaa	tagctgaaa	gaagaccatg	aagaaaacaaa	gttgtctgtt	180
ggtgatatgg	aaaacaagca	tcctgtttct	gaggtggggc	ctgccactgt	gcccctccag	240
gctgtgggg	aggagagaac	agtctcattc	aaacttggag	atttggagga	agctccagag	300
agagagagggc	ttcccagcgt	ggacttgaaa	gaggaaacca	gcatagatag	caccgtgaat	360
ggtgcagtgc	agttgcctaa	tgggaacctt	gtccagttca	gtcaaagccg	tcaaacacca	420

aataaaactnc	agtggccact	accagtatca	caccgtgcat	aaaggattcc	gggctgtanc	480
ttggccggcc	ggcgtnaa	aggcgaattc	cagnacttg	ggggccgntc	taaaggatn	540
ccacttgggn	ccaacnttgg	ggaatctng	ggcaantng	tccctgngna	aatggtatcc	600
gtcaaatncc	cnn					613
<210>	522					
<211>	319					
<212>	DNA					
<213>	Homo sapiens					
<400>	522					
accagggagg	catgacattg	cttttgttga	atttggaaat	gatgggcagg	ctggagctgc	60
cagggatgct	ttacagggtt	ttaagatcac	accgtcccat	gctatgaaga	tcacctatgc	120
caagaaataa	catttggat	agtcgtctt	aaaagacttg	gtgttattta	cagtgtttgt	180
tttgataaca	tttggctggg	tcattttaat	agtttagagat	gaggaggagt	aaaagtgaaa	240
tttttgtgaa	ggacttaaat	tatccagtgt	ttcttagcc	ttggtaact	atgaaatacg	300
aaggccttaa	ttttgtacc					319
<210>	523					
<211>	589					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1) ... (589)					
<223>	n = A,T,C or G					
<400>	523					
acagcgcg	gctctacacg	cttggtagc	gggataagtc	actgtttct	ttatattcttt	60
aaaaaaaaaa	aagttctgtt	gcaaacgact	gctgtggat	tctgagggtg	gggagggaga	120
gagagggagg	gagaggagt	gaagagcctg	ccctcctata	tggattcttc	agggccctcc	180
acatctgagg	tggctcattc	ccatcacaca	cagattgtcc	tggtgttcat	ttcaaggcca	240
gtgttcagca	gcagcggtt	gaaagcaggt	tctgtggac	cccccgcccc	gcccccacac	300
tccttcata	cagcagtagt	ggcttctcca	tcctgnttcc	tgcaacattc	tataaaaaac	360
tgtgctgtga	ccttgcggta	agcctggatc	tggcaaagag	aatcaaatga	aacccttct	420
ttctctttc	gtccacaact	ctgtanaact	ntntgnaccc	ttacccctt	ccaccttttgc	480
gattnaattt	taaggccgt	nantttggc	cggaacaccc	ttagggcnna	ttcnnnccat	540
tggggccgt	ctaagggann	ccaattggnc	caanttgggn	aacanggn		589
<210>	524					
<211>	621					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1) ... (621)					
<223>	n = A,T,C or G					
<400>	524					
ggtacattgg	agagatctcg	cctactgccc	tgcggggtgc	ctttggcaact	ctcaaccagc	60
tgggcatcgt	tgttgttggatt	ctgggtggccc	agatctttgg	tctggaaattc	atccttgggt	120

ctgaagagct atggccgctg ctactgggtt ttaccatect tcctgctatc	ctacaaagtgc	180
cagcccttcc attttgcctt gaaagtccca gattttgct cattaacaga	aaagaagagg	240
agaatgctaa gcagatcetc cagcggttgt ggggcaccca ggatgtatcc	caagacatcc	300
aggagatgaa agatgagagt gcaaggatgt cacaagaaaa gcaagtacc	gtgctagagc	360
tcttagagt gtcagctacc cgacagtcca tcatcatttc cattgtgtc	cagctctntc	420
gcagcttctt gggatcaatg ctgngettcta atactcacca ggaatcttca	aggatgcagg	480
tggtaaaaaa ncccatttat gcnnccttg gccccggtn gggtnaaaacc	anacttnccn	540
nggaggnncc nttnnnnng ggggaanggc cngaaaaaag gncttcgctt	ttaaanngcc	600
cttggaggga agntttttt n		621

<210> 525

<211> 384

<212> DNA

<213> Homo sapiens

<400> 525

acagcacttt gagaggacat cactagacaa gtaatacaca catggcctgc	aggaggtcaa	60
gggcggcgag ggggctggc agggggacatt tttgtgactt ccactgttat	tatatttcac	120
gacaacagca gcagcacaaa tggtgtgctc accactggag aatgagagct	gctgagtcctt	180
gagatggcg agacagcctt cctgcatttg ctgctttagt ttctgctta	gagctaagtt	240
ttatacagag aataaaaatga ccatcttc ttacaaacac gatgatgtat	gaccccacac	300
aacacaaggt attatgaagt atctgaaact gaggataatc tgactgaaga	tgcttgcga	360
gagggtacct cggccgcgc acgc		384

<210> 526

<211> 621

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(621)

<223> n = A,T,C or G

<400> 526

actgtagctc cccatgagat gtgatgagta tgccttcacc cttgggtgtca	tactggggtc	60
ttccggcactg tcccagcatc tgcagaatgt ccagtgcctc cagttctgtc	caacgcccct	120
tctctggact gtacaatgtc actgacggat cctgccagct gtttgtgtat	gggggctgtg	180
acggaaacag caataattac ctgaccaagg aggagtgcct caagaaatgt	gccactgtca	240
cagagaatgn canggggtgac ctggccacna gcangaatgc agcggattcc	tctgcccag	300
tgcttnagaa ggcagnattc tgaagactac tncagcgata tgttcaacta	tgangaatac	360
tgcacngtna accgcattna ctgggntttg ncngtgcata cttcnacgct	ggtaccttcg	420
gccccgggacc acgcttaagg gcaaatncan gnactactgg ccgggtcggt	actantngaa	480
tccgagnttc gnnaccaagg ttgcgtaaa atattggca taagttggnt	ttctgngnga	540
aaaatggtan atcngtnan aattcccnnaa tatatncanc cngrncctt	aattntaaat	600
ccgggggtnn taantnanta n		621

<210> 527

<211> 611

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature
 <222> (1)...(611)
 <223> n = A,T,C or G

<400> 527

acagctcatc	cacttctca	tctgtaaaacc	gatcccccatt	ggttgtcagc	agctctctta	60
ggtaatcttc	ctgaatggtg	cctgttgcct	cttcatcaaa	gcaagcaaag	gcgttctga	120
tgacatcttc	aggatctgtg	ccatttaact	tctcaccaaa	catgtcagg	aacatggtga	180
aattgtatgg	ccctggggcc	tcattcatca	tggcatcaag	gtatgcata	gtgggattct	240
tcccttagaga	agcaaggata	tcatgcaaat	cttccttgc	gatgaagcca	tctctgttct	300
gatcaatcat	gttgaaggcc	tctttaact	cctgaatctg	tgattggtca	aacatggcaa	360
acacattgga	tgtgcacgc	tgagggcgct	tcttgggtgt	cttggtctt	gccttttgc	420
ttcgacatgg	tggntggta	atnncgacgc	cacaacacca	gaaccggggg	ccancctgcg	480
cganaacgca	accaaaacct	tnggccggaa	caccctaag	ggaaatccc	nncactgggg	540
ggccgtataa	ngganccna	ntnnggacca	aacttggngg	aaaaangggc	aaaanngttc	600
ctnggaaan n						611

<210> 528
 <211> 593
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(593)
 <223> n = A,T,C or G

<400> 528

acaagctttt	tttttttttt	tttttttttt	taggtagtgg	gtgttgagct	tgaacgctt	60
cttaatttgt	ggctgttttt	aggcctacta	tgggtgttaa	atttttact	ctctctacaa	120
ggttttttcc	tagtgtccaa	agagctgttc	ctctttggac	taacagttaa	atttacaagg	180
ggattttagag	ggttctgtgg	gcaaaatttaa	agttgaacta	agattctatc	ttggacaacc	240
agctatcacc	aggctcggtt	ggtttgcgc	ctctacctat	aaatctccc	actatttgc	300
tacatagacg	ggtgtgtct	tttagctgt	cttaggttagc	tcgtctgggt	tcgggggtct	360
tanctttggc	tctccttgca	aaggattttc	tagntaattc	attatgcnn	aagnatangg	420
gtaagccctg	ctatataagc	ctgggtataaa	attttcancc	tttccttgn	ggaccctngg	480
ccggaacacacc	ctaagggcga	aatccancca	ctggggcccg	tactaaaggg	atcccaactt	540
gggnccaaact	tggnnnaaac	cgggganaa	nngtccctgg	gnnaatgg	anc	593

<210> 529
 <211> 251
 <212> DNA
 <213> Homo sapiens

<400> 529

accattggtg	ccaaattgtat	ttgatggtaa	gggagggatc	gttacactcg	tctgttatgt	60
aaaggatgcg	tagggatggg	agggcgatga	ggactaggat	gatggcgggc	aggatagttc	120
agacggtttc	tatttcctga	gcgtctgaga	tgttagtatt	agttagttt	gttgtgagtg	180
tttagaaaaag	ggcatacagg	actaggaagc	agataaggaa	aatgattatg	agggcgtgat	240
catgaaagac c						251

<210> 530
 <211> 601

<212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(601)
 <223> n = A,T,C or G

<400> 530

acagtataaa	atgtttccat	aggaacacaa	aagaaaactgt	cactagtggc	ctgctgtcag	60
atggcttcta	attcatcagt	tagccattt	taggacacta	gtccagctta	ttgctacaat	120
cttcaaggtt	ttcttagtcac	ccaaattata	atgaattcaa	tgtataccag	aatttaccaa	180
taaagggctca	aagagtata	taatatacac	caatatacac	aaaacagcta	ttctgagtaa	240
aatgaatatt	ccatacttaa	ataagaacca	agaatagtaa	ttttaggcta	ctctattatc	300
cttgtgattt	gtatTTTaa	aattttgagc	aaagtgcaca	gtgaatgaaa	cagtcagcag	360
acacgatcct	tctgtgaact	ctcaaattcc	tgccttagaa	tcacgtcacc	tgagaaatga	420
gaaccttta	gacctggtgc	atatcaaata	gcttcacatg	tcaaaccaca	ggggccgcctt	480
ggangccatt	ctngggcaca	ggangncaac	tggttcnttn	aaaatggnnnc	ccttnccctgt	540
gcangggccc	tgtgttaaag	gccccaaaac	cggcctcngg	ggaaacaagg	ttgntaatta	600
a						601

<210> 531
 <211> 607
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(607)
 <223> n = A,T,C or G

<400> 531

ggtacaagct	ttttttttt	ttttttttt	tttttttttct	cagccttgga	tttcttctta	60
gcttccttct	gctttaagct	cttggctct	tgtttccgt	natttctggc	ctgcccttgg	120
atagtagtct	gacactctcc	ccgttgaacc	ttctgcctca	tcttcttctt	gcttttagca	180
atctttgtct	tatccctcctc	attcaatgtt	tcttgggcct	ccagttctt	tagggggcgg	240
ttgtctgtct	tgttcaatag	ctcagtgatt	ttgaccttag	gtggccgacc	tcgaccggcgt	300
ttcaccttgg	ggacttcctt	agtcttagcc	ttctcagtgt	ttcaaggctcg	accccgtttgc	360
ccagtaattt	cctgaatcct	cgacgggatc	tcctctgctg	aaagctgcac	ccactgcaag	420
ccctttggcg	gnncctttt	cttcaaagaa	atctccaaca	nggcatacgg	ggactgaanc	480
ttaanngctt	nttggnggaa	actgggnacc	tggccgggca	nggcctntg	ttttacctnc	540
tggnaatnna	aaggaaaaat	ncaaaanttt	accctnttna	ccnngttnt	ggggtnnnnn	600
gaaaang						607

<210> 532
 <211> 608
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(608)
 <223> n = A,T,C or G

<400> 532

ggtaactgaaac	aggtaagtca	tccctcagcc	agagattagt	ctacttcttc	catgcgtgat	60
gtgtcgcat	ctccttcaag	gggtggcatt	tcttcagttt	cagcagcact	ggtatcatca	120
gcagtagggt	catcttcata	aataccaga	ccaagtttg	tcatctgtt	gatcctgtta	180
gcatgtgtct	ggggatcttc	cagactgaag	ccagaagaca	ggagcgcagt	ttcataaagc	240
aagatgacca	gatccttcac	agacttgtcg	ttcttatacg	cctctgcctt	ttgccttaag	300
gtctcaataa	tggaatggtc	agggttatac	tccaggtgtt	tcttgctgc	catgtAACCC	360
attgttgagt	ngctcttagg	gctttagctt	tcatgattcg	ctccatgttt	gctgtccagc	420
catatgtgtct	tgngacaatc	agcatggaaa	ntcacaatc	cggttgacac	aaccacnntt	480
cactttttct	ccaaanngcc	tttcatgant	ttcnanggt	ntcaaacttt	gggtttcnc	540
ntnccgggtc	nttcncntt	ttaaacccctt	nggaattccn	gccttttttg	ggacnnacnn	600
taagntttt						608

<210> 533

<211> 593

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(593)

<223> n = A,T,C or G

<400> 533

acacatttgc	tgtatggcttc	tcaaaacctg	agccgagaat	agggtctgat	agcccagcca	60
agtttaaaag	cagacacaca	cgaatgttagt	atcgttgtgc	ctgaataatgac	cattctgggt	120
tgttttagaat	ccagaatcat	caaaagccat	gtggtatgag	gaagtaataa	atatcctctt	180
gaatcttctt	accatatttt	gcacaaatgg	atggctgcat	gaacagctct	tgtaaattgc	240
tctgagtcca	caccaataga	aacctgca	cattctatag	ctacagaggg	tttgggtggct	300
taaggggact	ttatcatctc	agcattaatt	tcccttttaa	agctattctc	aaggttggac	360
tgtctcagag	ataaaacaaag	aggaatcctt	ttggctttaga	agccaactgg	cttactcaga	420
cttcctccct	tcctactcca	attcccacac	taccatanta	tcntcttgac	tagaaaatca	480
attatattacc	tgacataagg	gcaagtctat	tcttttcca	nnccttgc	tngggcctt	540
ggnaanaaaaa	atccntgcct	tttggaaana	agttttggga	cnngctttagg	ttt	593

<210> 534

<211> 608

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(608)

<223> n = A,T,C or G

<400> 534

ggtacacttc	tgttttatatt	taaacaacaa	agaaaaaaagc	atctacacac	ttaaaaaatt	60
aattcaatat	tcctaaatct	attttaactc	attttaaaat	actacatata	gaagccagaa	120
tgcaggggta	agaatggaaat	aaggtgggga	gaagaagggg	accacgaaga	aaaacactta	180
gacaattact	tgtctgttgt	gggttaaagca	acaggaatcc	tgggagatac	aagaaatcag	240
taacaactt	gctcataact	gatatttcc	cctcatgttt	gttttaata	acgtccatat	300
gggtgctctc	tgtatgctcc	cttcactggc	ctagcaggag	gggccttnag	cgacggcctg	360

gtcccattcc	agtccgtcct	ggccataaagc	ttcataagaa	tcttgaacct	ncccatgtcc	420
atagtctaaa	tattctgagt	cccccttgact	ctggctgnaa	ataancttcg	tagccttnga	480
actttggct	gcgnatgnat	natcatatnc	ctaatacntca	naagnttnn	ngccccgaag	540
ttggnggcaa	gggttcttn	ggaancctt	tnccngcctt	tggggnctgg	acncnctnan	600
agnggggg						608

<210> 535
<211> 603
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(603)
<223> n = A,T,C or G

<400> 535

acaaaagtac	ccctcgctcc	tgccacccgt	tttagcaaggc	gttctacacc	tatgacacgt	60
cttcacccat	tatcttgaca	ttgacagcca	ttcgccacca	tgtccttgg	actatcacca	120
ccgacaaaat	gatggatgtc	actgtgacta	tcaagtcttc	catcgacagt	gaacccgcct	180
tgttcttagg	ccctctgaag	tctgtgcagg	agctgcggag	ggagcagcag	ctggctgaga	240
tcgaggcccc	caggcaggag	agggagaaaa	acggcaatga	ggaagggtgaa	gaaagaatga	300
ccaaaggctcc	cgtgcaggag	atggtagatg	agtacaagg	ccccttctcg	tatgatttct	360
cttactgggc	gcnggnctgg	agagaaaatt	actgnntcac	ngtcatctna	agaactgctc	420
tttatcccc	ctttcaatgg	aaagcnctt	gntcangtgg	gaagaaagct	tgcncaaggg	480
aaanttggat	tcgagatncn	ccggaaaaag	gccaggcctg	gttttaaaa	agggccnnaa	540
tnccccccgg	nantgnaaa	gggaatccna	aattggtctt	ccntnnngaaa	aggggncaag	600
ttn						603

<210> 536
<211> 581
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(581)
<223> n = A,T,C or G

<400> 536

ggtaactccctg	ggaggctttt	gacagccacg	ggcaggagag	cagcggccag	cttcccgagg	60
agctctttct	gctgctccag	tcttggtca	tggctaccca	cgaaaaggac	acggaagcca	120
tcaagtcgt	gcaggtggag	atgtggccac	tgtgactgc	tgagcagaac	cacctcttc	180
acctcggtct	acaagaaaacc	atctccccc	cagcacaggg	agtctgatcc	atcccattca	240
cccaagtgact	tcttttgcc	caggcctgga	cttttgcat	cagtcacgtt	aaccagatga	300
ctttgcctgt	taccaaacct	catgcatcca	cgttgcgtc	tggggaggaa	taaaaagaca	360
tcttcccgc	ttctgcgtt	tgttattcct	actgcccaca	taggaattat	ttcgtggctg	420
aacgttaccc	agcanccga	gaacactttt	ggatagaatt	ngagtggagg	acattggctg	480
gtttttaaaa	anccnnctt	gaaaatngna	atnccttcg	ntccttctc	cggnggttcc	540
ncctnanggn	antttggtt	cgcttgnrn	caaagngagg	g		581

<210> 537
<211> 568

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(568)
 <223> n = A,T,C or G

<400> 537

ggtaacggact	actccccc	catgcgtcct	acctgtgaaa	ctctgggaag	caggaaggcc	60
caagacctgg	tgcgtggatac	tatgtgtctg	tccactgacg	actgtcaagg	cctcatttgc	120
agaggccacc	ggagcttaggg	caactagcctg	acttttaagg	cagtgtgtct	ttctgagcac	180
tgttagacaa	gcccttgag	ctgctggttt	agccttgac	ctggggaaag	gatgtattta	240
tttgtatTTT	catatatcag	ccaaaagctg	aatggaaaag	ttaagaacat	tccttaggtgg	300
ccttatttcta	ataagttct	tctgtcttt	ttgttttca	attgaaaagt	aattaaataa	360
cagatttaga	atctagttag	agcctcctct	ctgggtgggt	gtggcattta	agggtcaaac	420
cancnanaaa	tgcttggtgc	tggttnaaaa	agctcangt	gctgctgtgg	tggctnatgc	480
ctgnaatcca	acattntggg	aaggccaagc	cggaaaactg	ttngccnnng	antaaaata	540
anctgggcac	ntacaanntt	cgtttnna				568

<210> 538
 <211> 598
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(598)
 <223> n = A,T,C or G

<400> 538

ggtttttttt	tttttngtt	catgtctttt	attaactcat	acagttactt	gtcttctgg	60
ttgttgaac	agtaagtcag	acaacnttg	ccacaataat	gtctgtcaaa	gtgacttgcc	120
ataaaanaccc	cancaccaca	ttcatcataa	gggactctt	gacgaaggcg	actaatttt	180
ccattctatt	tcaggacagc	cagctaaacc	ttctntct	tgtgcttatt	cttcttggga	240
gtgggtgtaa	acttcttctt	ccttttcta	gcaccaccac	gaagtcttaa	cacatgatga	300
agantagact	ccttttgaat	attgttagtcn	gacaagagtn	catacatcat	accaactttn	360
tanatacaca	gctcagttaa	ttagcttgat	ggcacagtt	tngtnggaa	nagagangag	420
tgcancatan	gnangagtga	ngngngatt	cccacaattt	tctnagaacn	gaanagttagg	480
nngaattagt	aggtactgga	aatgaaatnn	ggcttagct	gnctggntt	gaaanaagaa	540
ttcnaagccc	tttgtcaana	ntntcaaaa	agtnactt	ngcctatntt	gcgggnag	598

<210> 539
 <211> 607
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(607)
 <223> n = A,T,C or G

<400> 539

ggtacaggct ttaacagaaa ttcaaggagtt catcagctt ataagcaaac aaggcaattt	60
atcatctcaa gttccccta agagacttct gaacacacctg acaaacagat atccagatgc	120
taaaatggac ccaatgaaca tctggatga catcatcaca aatcgatgtt tctttctcag	180
caaaatagag gagaagctt cccctttcc agaagataat agtatgaatg tggatcaaga	240
tggagacccc agtgacagga tggaaagtgc agagcaggaa gaagatatac gtcctcgat	300
caggagttgc aagtttcca tgaaaatgaa gatgatngac agtgcggga agcagaacaa	360
tttctcactt gctatgaaaa ctactgaagg agcttgacata aagagtcaaa aaaccagaga	420
cgaattggct ggtgagctgg ggtgccaaac tactggcgnc tggagccccct taccgggag	480
cccggnccc anggnntggc cttgannncag gggcttcaat tggccttcaa aacnagtctt	540
tttgggttgg attagnaacn cacngtgtca agctncttta agccaaaaat tntccnngnt	600
tttnccg	607
<210> 540	
<211> 432	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (432)	
<223> n = A,T,C or G	
<400> 540	
ggtaactgatc atttatttc cccctctatt gatccccacc tccaaatatac tcataacaa	60
ccgactaatac accacccaac aatgactaat caaaactaacc tcaaaaacaaa tgataaccat	120
acacaacact aaaggacgaa cctgatctct catactagta tccttaatca tttttattgc	180
cacaactaac ctcttcggac tcctgcctca ctcatttaca ccaaccaccc aactatctat	240
aaaccttagcc atggccatcc ccttatgagc gggcgcagtg attataaggct ttcgctctaa	300
gattaaaaat gcccctagccc acttcttacc acaaggcaca cctacaccccc ttatccccat	360
actagttatt atcgaaacca tcagcctact cattcaacca atagccctgg ccgnccctgg	420
ncgtgaccac gc	432
<210> 541	
<211> 597	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (597)	
<223> n = A,T,C or G	
<400> 541	
gggtaccggc gtgtaaaaaaaa aatgtcagat gacgaggacg atgacgagga ggaatatggc	60
aaggaggaac atgaaaaaaga agcttattgcg gaagaaatct tccaggatgg ggaaggggaa	120
gaagggcagg aggccatgga ggccccatcg gtcctccag aggaggagga agaagatgat	180
gaggagtcag atattgacga cttcattgtg gatgtatgt gacagcctct gaaaaaacct	240
aagtggcggaa aaaagcttcc tggatacaca gacgcggccc tgcaagaagc ccagggaaatc	300
ttcgggtgtgg actttgacta tcatgtatgg gagaatatac atgagatgt tgaagaactg	360
gaggaagagt atgagatgt ggtatgtgan gctgtatgtg aaatccgtatg cccccccaga	420
agaccaccca gaaacngtgt tgagccntn ggagcnntt ttgaaatggt ttgannccn	480
gtngggctt naaagccnn nccttacnna ttngggccct tngantccn gcccttncc	540
gccttnaaag ggtccanntt ccgttnctc ccagtcangg ggntaaaaa tnatnan	597

```

<210> 542
<211> 577
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(577)
<223> n = A,T,C or G

<400> 542
gccccaggct cagccagtct ctatttaaga aaatttaaca aatacgagta accctgtccc      60
aatcaactgaa tctcttagtta ctactcttag aaacacacctgt ggcttccttgg ccctccctgtt 120
gccccgtctg aatctctctg cagtcataaa aatcgcccca gtcaactctc cacttggagg 180
gaatttgtcca gtgtggccccc tagaatttgag tcacccctcta gataccaaact gtctgacc 240
gaggagctct gtaagtccct gtccttcctc ttccctttgg ggctgggtgt gccactcagc 300
ataaattccct tttctctgt gctttcttag gtcctctgtcc tctgtctttg aggctgggta 360
ggaagcaaga gtcctgatct ttcatgtgc acaatatgag catgaaaaaa gctttttcca 420
gcagaacatg ttcctctgtcc tccagttgcc cgaaaaagga attttggggaa tcaaagaact 480
tagcttggnc tacccatgg tttagttctg gccttggaaa ancccaagcc aagtnangga 540
ccnagacctt ggccggaaac cnttaagggc aattccn                                577

<210> 543
<211> 607
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(607)
<223> n = A,T,C or G

<400> 543
tcgagcggcc gtccggcagg tacattattt ggcctcattt gccagcaac ggggcattcca      60
gattgagtgc agtcagggcc atgtcttcac tcggggact cancaggctt atacctcaag 120
caggcacagt gatgcggcgc cttatctctg attggagtgt taccanatg gtgagtgacc 180
taagtcaagg taccgttcaac ctgatggctt caccactga agagaatgt gatcaactgtc 240
ttgatccctt ggtaacaaag acccacactgc ttagcttgc ctccttcacc taccacgg 300
ntancaattt gcacagctga cgaggagctc tctgntcggt atggggatcc tacctttcat 360
acanatcagc tgcaacttagt nnantacng atttctggac aaactaccaa teganacatt 420
gcctttgggt aattgtatggg tccctnngcc gngacaanc tagggcgaa tttccatnca 480
actggggggg ccgntacta cngnatctt nctttggac ctaatcttgc tgcattttgt 540
gcnttacntg tacctctggg taatcntatc cngtnaanta tccnnanctt tactngccng 600
anntnng                                607

<210> 544
<211> 570
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

```

<222> (1)...(570)

<223> n = A,T,C or G

<400> 544

acttgggctt	ctttcagctg	cttcaacaga	gtggcagcaa	ccaagctgga	gtccaaagccc	60
cctgataaaaa	ggcagccaat	ccttcgtct	gtcatcaaac	gtttcttac	agcattatta	120
aaaaggatcc	tgaggttgtt	cttcacagtt	tctatctcaa	aacctggaaa	gagtttctcc	180
acattgtcat	agagggcgtg	caggggttca	tcccgacagt	gatgatattt	aaccattcc	240
acggatgcaa	cttgcatt	tggcttaaa	tccaaaactt	catagtgtcc	aggaagaaaa	300
ggctccactt	ttaaaaaggg	agtgcggag	tgcttcaatg	taacaagacc	tttagcttct	360
gaacatacag	ccaaaaatcc	atcttcgtc	attgctttaa	acaaggctt	gactccatat	420
gtatctcac	ccaggaacac	tttcttattt	gcagttatcca	gtaaaacaaa	tgcnaacaca	480
ccatccaaca	tacaaattgn	ttgctcaatt	cctccttgg	cataaagatg	aaggattatc	540
tcaccaatcc	acttttggnc	tggnattcaa				570

<210> 545

<211> 330

<212> DNA

<213> Homo sapiens

<400> 545

accgtccagg	atcccggt	catagccatc	agccagacac	cagttgacgc	ttgtctcctt	60
agtctccccg	gattgcctt	tggaatcata	tatgctgact	ctgccaacct	tgggtggtt	120
gacaataaag	ggatgtcgta	gtccatcctc	aatgcactc	ccatctcttgc	tcacacgaca	180
gcaaatacgca	cgggtcagat	gcccttggct	gaaaaggtaa	cccaatgtga	cagatttgag	240
ataaaatgggc	tgcaaggaagt	gggtcaacag	tgcccccttgc	aggcccagca	cgttccagcg	300
	taggatttttgc	tcactacagg	acatggtacc			330

<210> 546

<211> 589

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(589)

<223> n = A,T,C or G

<400> 546

ggtaccagag	gcactgtgga	tgggccacgg	aatgaattgt	cccggtctc	caaaaagaac	60
atttttcttc	tattaagaa	gctctgtcc	ttccgttacc	gcagggatct	actgagactc	120
tcctatggtg	aggccaagaa	agctgcccgt	gactacgaga	cggccaagaa	ctacttcaaa	180
aaaggccctga	aggatatggg	ctatggaaac	tggatttagca	aaccccagga	ggaaaagaac	240
ttttatctct	gcccagtata	gtatgttcca	gtgacagatg	gattagggcg	tgtcataacta	300
gggtgtgaga	gaggttaggtc	gtagcattcc	tcatcacatg	gtcagggat	ttttttttt	360
cctttttttt	ttctttttaa	gccataattt	gtgatactga	aaactttggg	gttcccattt	420
atcctgtttt	cttgggatt	gctaagcaag	gncttggcca	agccccccct	ttttttcccc	480
caaggngaaa	agnccnaaan	cctaanaagn	tatccttct	tttianccca	aggcttccct	540
tagcccttgg	nccnccnttc	ctttaaaang	tttnggttt			589

<210> 547

<211> 613

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(613)

<223> n = A,T,C or G

<400> 547

ggtaccagg	ttaaatgtag	tcttctggag	aagtattttt	gacattgagc	tctggacag	60
gacacacctgg	gttgttggac	tgcagccac	tatgatgtt	ttacttctct	ggccaggcct	120
ccagtggaaag	tgcacaggca	ctcccaatgt	tgttaatgtc	ctgtttcca	tttgttctgg	180
aatcctacgt	gttggtctgt	ggttccatgc	attagctgtt	tgtaaataat	gcatttgcat	240
actgaaaaaag	aatgtgccacc	tgccacagtt	gatggtgagg	aagctcctt	gacgtggtgc	300
aattttgatg	agatgtctct	ggggacacga	gatggcccta	atgatgctga	cttgtcatgg	360
ttgcagcatt	tgaacttttgc	gtgttaaaaaaa	naaaaacctg	tnagtctgga	accctggcaa	420
cattttacaa	ccctngnatt	tttaaaaagaa	gcnnttttt	attaaaaaaaa	ttnnnnaaacn	480
ccaccagnnc	ctattgggtc	aaaccaattc	ctncncttnt	ggggccnctg	gttttttaaa	540
ggggccttg	ctngaancaa	ttggnantcc	cangggtttc	gaaaaaaant	gaaatggttt	600
tnnnccnccc	tcc					613

<210> 548

<211> 578

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(578)

<223> n = A,T,C or G

<400> 548

ggtacatatg	tattttacaa	tatacttacc	atgagtttag	aaaaatttga	atccccacca	60
ttctataccca	accaaccaca	accccactgt	ctacattccc	cagccagaag	acttagaatc	120
catgctttag	ccaaagcctc	cattaaaacc	actgcccac	cctgcattgg	atgctgatcc	180
ccaaaccaatt	gctgcaccag	aatttagagcc	actataagag	ttatttccag	aaccgaaggc	240
ctggtttggc	tccctctgca	tgtgccttg	gttttggta	ttacccatgt	ggcctgactg	300
gttctgttgg	ctggctaaaca	tgcctcatcat	accccaactg	ctctgtantg	ctgcctggc	360
ggcagccatc	atggctggat	taatgctgaa	cgcacccaag	ttcatccacc	accatattac	420
tacctttgt	gtgtncaaaa	ncaagtcacc	cctntggta	ttaccaaatac	caccctggat	480
cccaaaggcc	cctgggatta	ccccccaaan	ttcncttnt	ttntaaatng	ccaatgnnta	540
tggggcttaa	ggtcngcnnt	ngattttga	accctgnt			578

<210> 549

<211> 620

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(620)

<223> n = A,T,C or G

<400> 549

WO 99/64576

PCT/IB99/01062

ggtacgcatg tcacttccca	tcatggAAC	actcatggtt	gctggTggaa	cGCCAGGATT	60	
agcttcataa cctatGCCAC	caccacCTCC	tagaggTggA	aatttCTGGC	CTCCCTGAACC	120	
atagggatct cccatgttca	ttgctcCTCC	gccACCCATT	cgcatgtCTC	TTTCCCCTG	180	
atccatgttag cccattCGGC	tgtAACTTTC	ctctCTTTGG	cgCCCTCATTT	GTTCTTCAT	240	
ctcacgttga cgaatcatca	tctCTTCTC	tcttCTACGT	cgNTCTCTCT	CTTGCTCTCAA	300	
ttgcatttct ttacgtttct	gcatttCTTG	attgtgaaAG	ttcttCCATG	CgtCTTAATT	360	
cttccTGTG	tctcatcaga	tcttggCGCA	aaagatttGC	ctgatgttCA	tgatangGCA	420
ttttccattt cactttCCA	atttggnCTT	ttggcanCTT	ttcannGNTG	tntttcaaac	480	
ttnggtncct ttgggtGgg	ntttcccAT	ntcnatnCAN	atgagnnTTG	nnntggGNGG	540	
ggagnantgg tngggnccta	nnctgtccgg	cccnntnnaa	angggcgnAA	tttcnnaAGC	600	
cncatggng ggccggtant					620	

<210> 550
<211> 577
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(577)
<223> n = A,T,C or G

<400> 550
acctatgttt cacccTCTGG aaatgaagAG gaagaatcaa aaatTTcac cactCTTGAC 60
cctgcttCTC tggctTggCT gactgaggAG gagCCAGAAC cagcAGAGGT cacaAGCACC 120
tcccAGAGCC ctcaCTCTCC agattCCAGT cagAGCTCCC tggCTCAGGA ggaAGAGGAG 180
gaagaccaAG ggagaACCAG gaaACGGAAA cagAGTGGTC attCCCCAGC CCGGGCTTGG 240
aAGCAGCGCA tgaaggAGAA agAACAGGAG aatgAAAGGA aagtGGCACA gctAGCTGAA 300
gagaatGAAC ggCTCAAGCA gggAAATCGAG CGCCTGACCA gggAAAGTAGA ggcGACTCGC 360
cgagCTCTGA ttgaccGAAT gggTGAATCT gcACCAAGCA tgaACCAATT ggggAGCATC 420
aagtccccCA ctTggGccAC acttACCCAC ctTTCCAGA agtggCTTCT gnCTACCTT 480
nacttanNGC catggTgggn accttaATTc ccattCCCCA ggggGAAGNT ttGAATTACC 540
aaagggAAGG gtttnacCTN gttttagAAA ttngccc 577

<210> 551
<211> 573
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(573)
<223> n = A,T,C or G

<400> 551
ggtaaaaaacc atCTTCTACT gtgacttCTT ctacttGtAT gtgacccaAG tcCTTAAGGG 60
aaagaAGTTA agtCTTCCAA tgccaATCTG aggacCTCA gagacAGTCT acgcCTTAAC 120
aagcacatGA agggAAACTAT tttGAATGTT ctCTTGGCA acttATCCAT aatttGGGAT 180
caaATGTTAA aaccAGAAAA gtgtttAGTG tgattTCAG caAAACCTGA tcATCCACC 240
cagaAGACCT tCTCATCAAT agatGCCCT taaAGACCCa ttgtaAGGTC ataaaaAAACC 300
tcggccaACT gcacAAAGAT ggtgcCTCAC tgcaacaAGA aacCTTAAGG tGtCTTACCG 360
acgaaATAAA aaAcataAAAT gattGNTCTC caaAGGCCTG agggcaAGAC tcAtGATGAG 420
caagtcaACC cccaaATCTGG aacaatGGCC ttCTNTTAAAT atgncccACT taagACCCGT 480

taaaatatta ggganctggc ccggccggccc tttaaanggc naattcngnc nctggnggcc	540
ntacttangg gaccaacttn ggnccangtt ngg	573

<210> 552
<211> 581
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(581)
<223> n = A,T,C or G

<400> 552

ggtacatcca ggaataatca tatcactggc tacataacaac tctcatgcaa agaaaaccct	60
caaaaaacaa aaaaaaaaaa ccctcagttt gttgtttct taagtctaatt taatccaaac	120
taataataggc catttaatta gcaatctgtt aatcagagag gtatagaaat tcagcagcta	180
aactgtatTT tccacctata gcactgctgc tactcaaact atttcttca cgtatttagaa	240
gaattcatag gcattgtatgg tcaaaataag aatttcaaca tagcagcaaa tgacagaaga	300
gtgagagaaa gagtcctaaat ttgttgaca gtcttaatga tcctttaaaa ggtagaagat	360
tgngtgcgta tttgtggaaa ggagttagaa agaaaagcat gaggttaaga caggtattta	420
aagggaatgg cgagatagct accttagaat atttattttt ttaaaaaact gctctgaaat	480
ctgcccagtg tacctgcccgc gcnncnntc naagggcnaa ttttgcnnna tntnnttcan	540
cttggcgccc cgtnnnacctg gnttttaan ggccccantt c	581

<210> 553
<211> 575
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(575)
<223> n = A,T,C or G

<400> 553

ggtaactgccc ttggAACCTT tgctgagggc ttgttaattc ctgttaaaa tccatttgta	60
atattgtttc tgtaaagcac tcatttccat tcttaaaatc tgctcaacct tggcaggaag	120
agattttcc acatcttct taactcggcg taacagaaat ggctcaagct ctttgtgaag	180
gcttcataaa ccatattctc tccctttgcc atgttcttct tcaaaatctt cccaggaaga	240
aaactttctt ggcataatga aatgttagca agaccagagc tctttgaggg aattctgttag	300
aggagttcca gtgataagga gacgatgatt gtatttttttcttattaaatg ttttatacag	360
aaggaggtca tcattttta atcgggtgtgc ttcatcaaca cctataatg cccaaattaa	420
gaccttcag ggaatgcctt aaaataatag aaaaacagta ttttgagaga aaaaccggaa	480
ttcaaaatttta gcccttccat ttaatctgac tcaatttattaaatgaaatn naaattaaaa	540
accaacttttgc gcttaattttt caaataaaaa atcgn	575

<210> 554
<211> 548
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(548)

<223> n = A,T,C or G

<400> 554

acggaggact	ccattaataa	catggaaatc	tccactctga	aagcgattca	ccatttctgt	60
cagcaagtca	ggccatttct	gtggaaaatc	ttctctgcct	ataatgctaa	ttgcactca	120
taactgcctc	tgaatttgc	ctgggctgct	aagcatcaag	tgcactatgt	tggctttaat	180
ggccactcga	tcggcttcac	aaattttgtt	tggttcatct	tcaacaatc	tccagttcct	240
tttaatata	ttttgaatg	ttactgaagc	acataactttg	ataacattat	cctgggactt	300
ctccagtaat	gtcaaaagca	acagtggata	attctgattt	ccttcaacag	attcaagaaa	360
tttctcagct	ggacgtcgga	tggcaggatc	aggatcaagt	gtttcttta	aatattctgt	420
tagtgttgc	agatttgcat	cgctgagttc	cattgctata	ggatctcg	gggatacaga	480
aaccgaggaa	ggaaccccag	ccgcggaccg	taactngcac	taccccgcta	cctngggcgc	540
gaaacacg						548

<210> 555

<211> 576

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(576)

<223> n = A,T,C or G

<400> 555

actccctgca	taacaagaga	ttattttgg	gacagttgat	aaaaaccata	catcctttt	60
attgttaagt	cataaaagagg	tatcaaattt	aaaagcaaaa	attacagggt	aagacttaac	120
aaaactacta	ggagcgtcaa	aggaagtgaa	aatgggacta	ggcgcccc	aatatgaatt	180
aatgaacatg	ggaaggacaa	ggatggggag	aacagtgagc	atgtgctgaa	gatactaggg	240
gagaggatct	ggtaaaaat	ttgatcttag	acaagcgcct	aggtaaagaa	ataatggat	300
aagatttcta	aacccacta	tgtgcttaag	agtcatcctc	gccattggcg	ctgnctctgn	360
catcctctcc	ttctcacctc	tttttcatca	tccttgatca	actccagctt	ggcatncccc	420
cgatcttcat	tatcattaaat	cttccagtan	gncccccttc	ttagcanaag	taatntgnac	480
cccccttana	attcattttt	ccatTTgnct	aaattttttt	tccnggacnn	gtnggnntgg	540
gcccttttng	nnntaaaant	tttaantctt	acnggg			576

<210> 556

<211> 613

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(613)

<223> n = A,T,C or G

<400> 556

ggcacctctt	cccatgactg	cacccagctc	cagggccct	tgggacagcc	agagctgggt	60
ggggacagtg	ataggccaa	ggtcccctcc	acatcccagc	agcccaagct	taatagccct	120
ccccctcaac	ctcaccattg	tgaagcacct	actatgtgct	gggtgcctcc	cacacttgct	180
ggggctcacg	gggcctccaa	cccatttaat	caccatggga	aactgttgt	ggcgctgctt	240

ccaggataag gagactgagg ctttagagaga ggaggcagcc ccctccacac	cagtggcctc	300
gtggttatta gcaaggctgg gtaatgtcaa ggcccaagag cagagtctgg	gcctctgact	360
ctgagtcac tgctccattt ataaccagg cctgacctga nacttgtcg	aaaagctgtc	420
ttggggcctt ttatnaaata aaaagacttn agncnatgac aangganggt	ttaagaangg	480
gacttgnggg gaantnggaa gnnannaanc cttgggttg ggtaagnn	nccccacgtt	540
tggcccaggc angtggctt ttcctnttg gncctnng tnncttng	ggacanaagg	600
nnnttgnac ccc		613

<210> 557
<211> 607
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(607)
<223> n = A,T,C or G

<400> 557		
acctggatga aaagcagagg gacccagaa tcgaagcgag caaagtgtcg ctgtgccatg		60
gggagctgcg gagaagagt ggacataaac tttacatttt cctgtttcaa gacatcttgg		120
ttctgactcg gcccgtcaca cggAACGAAC ggcactcta ccaggttac cggcagccaa		180
tcccagtcca agagctagtc ctggaaagacc tgcaggatgg agatgtgaga atgggaggct		240
cctttcgagg agctttcgt aactcagaga aagctaaaaa tatctttaga attcgcttcc		300
atgacccttc tccagcccg tccacactc tgcaagccaa tgacgtgttc cacaaggcagc		360
agtggttcaa ctgtattcga gcccgttccaa gtcggcaggc aagtccacct		420
gaactgcagg gcctggccgg agctgtacga aaaatgtgaa gggaaaccac ctttgcgag		480
gaactnacag cccaaaggaa ggcattcaca gttcagtgg tacttcaggt agaaaagttga		540
tgaaaaccct taccagantg tggcttttg cattgcaaat ggcagaggcc agcaagaact		600
taaannt		607

<210> 558
<211> 355
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(355)
<223> n = A,T,C or G

<400> 558		
acaaagacaa agaaacaaac tacattggca tttaagccaa tcaaaaaagg aaagaagaga		60
aatcccttgtt ctgattcaga atcagatagg agcagtgcg aaagtaattt tgatgtccct		120
ccacgagaaa cagagccacg gagagcagca acaaaaacaa aattcacaat ggatttggat		180
tcagatgaag atttctcaga ttttcatgaa aaaactgtatg atgaagattt tgtcccatca		240
gatgctatgc cacctaagac caaaacttcc caaaaactta gtaacaaaga actgaaacca		300
cagaaaaatgc tcgtgtcaga ctttgcgtt gatgtatgtt agggcagtgt acctn		355

<210> 559
<211> 597
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(597)
<223> n = A,T,C or G

<400> 559
acccgcaaaa cgggacatag tatgtgacaa tctgcacatcgta tcatggacta ctaaatgcct      60
ttacatagaa gggctctgat ttgcacaatt tggtgaaaaa tcacaaaccc atagaaaaagt     120
aagttaggcta agttggggag gctcaaacca ttaagggtt aaaaatacattc ttaaacattg     180
gaaagctctt ctatgtatctt ctgaaatatt acccccttgc tagaaaaagg ggggcagtca     240
gaacagctgt tccccactcc gtggttctca aaatcataaa ccattggctac tcttgggaac     300
caccggcca tgggtcgcc aagttagagca agccccctt ctctcccaa tcacgtggct     360
gagtgtggat gacttttatt ttaggagaag ggcgattaaac acttttgac agtattttgn     420
tttgcctga tttggggat tgnnttggtt ttgggtgggtt gttttggaaa aacnggttat     480
aaactgggtt ttgnangnt ttgggatttt aaagcccnaa ataaaaaann nnanaaaaaaa     540
aaagncttg gnctttggc cgaaaaaccct taangggcna attccagcca ctttggg     597

<210> 560
<211> 559
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(559)
<223> n = A,T,C or G

<400> 560
gactttgagg caagtgtggg ccactgtggt ggcagtggag gtgggggtt tgggaggctg      60
cgtgccagtc aagaagaaaa aggtttgcat tctcacattt ccagatgtat aagttccctt     120
cctttttttt aaagaagttt aagtttagga atcctttgtt gccaactgtt gtttggaaagt     180
agggacctca gaggttacc tagagaacag gtgggtttt aaggttatct tagatgtttc     240
acaccggaaag gtttttaaac actaaaaatata atattttata gtttaaggctt aaaaatatat     300
ttattgcaga ggatgttcat aaggccagta tgatttataa atgcaatctc ctttgcattt     360
aacacacaga tcacacacac acacacacac acacaaacccn tntgccttg atgttacaga     420
ttttantccg ttnatttttta aggatagagc ctttatnggt gnnnanaaaa caatctggan     480
aaaaaaaaac ncncncngcc ttgnatttng ncttnntnng gttttccca aancattnn     540
nnttgncaagg ctnggggngg     597

<210> 561
<211> 569
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(569)
<223> n = A,T,C or G

<400> 561
ggtacaagct tttttttttt tttttttttt tttttttact ttttgggana naggcttagga      60
ggagggaaagg gtgaaaacag cgtctcactg gagtctcaaa agtgtatgaa tcttctggta     120

```

gtgcaaggat	gggataagat	ggccagggaa	gtcagatgga	aaatccccaa	gattctttt	180
gtctactgatt	tctataatta	aatatatgaca	tatgttaaggg	actagtgcac	gatattcaat	240
aaatgtcagt	tgtcttcct	aactaggttc	ctcacaggct	aggttatgcc	tanatatcat	300
catcctcctt	tcagggaaatg	aagctcacct	agaaaactag	ggaactaaaa	gtgcaatatg	360
gtttgggtaa	tgcagtttgt	tagctgcctc	ccatcctccc	aactcaactat	tccaggagg	420
ggctgaaaac	agaaaatggct	cccctgaagc	tanntagcat	ggcatgcana	gtcncatgaa	480
aggtttgggc	tggaattttt	aagccaaagnc	ctntttttg	aaaaaaaatn	ttgggaaaaaa	540
ancccncccc	tnctgnnn	nagctgttt				569

<210> 562
<211> 597
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(597)
<223> n = A,T,C or G

<400> 562

cgaggtacgg	atgtactttg	tccaatgatg	gtaaaagggt	agcttactgg	ttgtcctccg	60
attcaggta	gaatgaggag	gtctcggtc	aggagtcaat	aaagtgattt	gcttagtggg	120
cggaaatatta	tgctttgtt	tttggatata	tggaggatgg	ggattattgc	taggatgagg	180
atggatagta	atagggcaag	gacgcctcct	agtttgttag	ggacggatcg	gagaattgtg	240
taggcaata	ggaaatatac	ttcgggctt	atgtggggag	gggtgtttaa	ggggttggct	300
agggtataat	tgtctgggtc	gcctaggagg	tctggtgaga	atagtgttaa	tgtcattaaag	360
gagagaagga	agagaagtaa	gcccggggc	cgtctttgat	tgtgtagtaa	gggggtggaaag	420
gtgatTTTAT	ccggaaatggg	aagtgtatnct	aagggggggtt	gttgancc	ctttcntgc	480
cntaaantgg	angtngaatt	ccnnnntnnng	cncncatana	ttanaggcca	aaatnaaatt	540
gaanggnnaa	aaaanctnn	anggggggga	ctgnnnnntg	agaacc	aaaaatn	597

<210> 563
<211> 574
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(574)
<223> n = A,T,C or G

<400> 563

acgccaagaa	ccgtattctt	tgccacaggg	tttatgtgg	gacactttag	acttgagtga	60
tggccgaagt	ctcaaggagt	tatacacgtt	gtttaaatgag	aattacgttag	aatgtatgatga	120
caatatgttc	cgatttgact	attcacccga	gttcctgtt	tgggctctgc	gtccaccagg	180
ctggctcctg	cagtggcact	gtggggtcag	agtgtcttca	aataaaaaac	tggtcgggtt	240
cataagtgcc	atcccagcaa	acattcggt	ttatgacagt	gtgaagaaga	tgttagaaat	300
caactttctt	tgtgttcata	agaagtttag	atcgaaacgg	gtagccccag	tgctaatecg	360
agagatca	agaagagtga	acctggaagg	gatcttccag	gctgtgtcaa	aaagcacact	420
ctccannccct	cnngggccctg	cattcctgcg	cttnntnnna	gacacttcc	ctttcttattt	480
tactgnggt	acttttcaa	acgctgtac	cccaaccctt	anantttt	gcccttggcg	540
gnntatnggt	taaanatcac	cctcccnng	gttt			574

<210> 564

<211> 600

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(600)

<223> n = A,T,C or G

<400> 564

ggtagcagaat atttctaata aacctaaatt taatcacagt taaaatttct caaaagtatt	60
ttaaagtgtcaagaatatt aaagtttggg gggaaatacc taagtcataa ataagcaagt	120
atccctcca agattcacta attgggataa aagtctcagg gtaagcccac aagaatggtc	180
tgcaataaaag aaaaatcagg tctgtgtaga gtaatttctg ccatctttag cagaaaagcc	240
aaaaacattc tgagccaaat aaaagcaaag atctttgtat tcagcgccct ttgttgtgtt	300
agtttaatt tctaacttct caacatgtta tagctcagaa attccccatat gcttactatc	360
tgtataagg aactataacg taaaagaaaa aattcagaga ccgtgatcat ttccatcat	420
aggctggct ctctttggta gaaacagatc aagacttact ttattttct ctccccncc	480
ngaagaaaaan ggggggttta atggcnnnta ccctgnnaa anaaccncg ngggtttaac	540
cttnaaattt ggnngggtaa aanancctaa ngntnagccc ttttnanaa ctnggggnnaa	600

<210> 565

<211> 600

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(600)

<223> n = A,T,C or G

<400> 565

accatcgccc atgtggacca cgggaagacc acactgactg cagccatcac gaagattcta	60
gctgaggggag gtggggctaa gttcaagaag taccaggctg ttgtgtatcg tatcagccgc	120
tatgtgaaac agcctttacc tgatgagttt ggcagctcac ccttggagcc aggggcctgc	180
aatggctcca ggaacagctg tgaaggagaa gatgagggaaatggagca tcaggaagaa	240
ggcaaagagc agnttnana aacagaaggc agnggggaag atgagccagg aaatgacc	300
agttagagacca cccaaaagaa gatcaaaggc cagccctgcc caaaaaggct tntttac	360
cagtcttgc aactcctatg gaacagctga cataaaatttca ctttgccagc tnatggaaaa	420
ctacntaaac tcaantttc ganctacact tggncnttga ttgtga	480
tggaganttt tnctatgnnt gtgcncnnnaa attnttaggg ntntccnat aaatctctgt	540
tancctttt gggncatnt tcnaagnnaa atntnangnc cttanggncc nttnaaaaan	600

<210> 566

<211> 576

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(576)

<223> n = A,T,C or G

<400> 566

ggtaactgaaac	aggttaagtca	tccctcagcc	agagattagt	ctacttcttc	catgcgtgat	60
gtgtcgcat	ctccttcaag	ggtgttttc	tttatttttg	ttaatattaa	aaagtctgta	120
tggcatgaca	actactttaa	gggaaagata	agatttctgt	ctactaagtg	atgctgtgat	180
accttaggca	ctaaaggcaga	gctagtaatg	cttttgaggt	ttcatgttgg	tttattttca	240
cagattgggg	taacgtgcac	tgtaaagacgt	atgtAACATG	atgttaactt	tgtggctaa	300
agtgttttagc	tgtcaagccg	gatgcctaag	tagaccaaata	cttggatttg	aagtgttctg	360
agctgtatct	tgtatgttttag	aaaagtattc	gttacatctt	gtagggatct	actttttgaa	420
cttttcatt	ccctgnaggt	gacaantctg	catggacctg	ccccggcgg	cccttnaaan	480
ggcgaanttc	annncantgg	ngggcnntct	tngggnnccn	ncctggncca	aatntggggg	540
ancngggnca	anctnttccn	tggggaaatg	gntccc			576

<210> 567

<211> 427

<212> DNA

<213> Homo sapiens

<400> 567

ttttggcagt	aaatcaattt	tatttgtgtt	cacagaacat	actaggcgat	ctcgacagtc	60
gtcccggtac	agcccaccaa	cccccaaccc	tctacctcgc	agccaccccta	aaggcgactt	120
caagaagatg	gaaggatctc	acggatctca	ttcctaattgg	tccggcgaag	tctcacacag	180
tagacagacg	gaggtagat	gctggaggat	gcagtcaccc	cctaaactta	cgaccacca	240
ccagacttca	tcccagccgg	gacgtcctcc	cccacccgag	tcctcccat	ttcttctcct	300
actttgccgc	agtccaggt	gtcctgttcc	caccagtccc	acaaagctca	ataaataacca	360
agagacctgc	atttacagca	gggggaacat	ctcacacccct	tgcataagtt	aaaataaaata	420
ttaccgt						427

<210> 568

<211> 616

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (616)

<223> n = A,T,C or G

<400> 568

acaagagtga	tggcaatgtg	actggAACAG	aaatagttc	taccaggcac	acaaaagctc	60
ctgtaaGCC	cgtagttccg	tcctgcAAAG	ggcctcagtg	ggaaccagg	ctgcacaccc	120
gagtgggcag	agagacgggt	ggaagcagg	gcccagatg	gtcccgccagg	cgtcacccgtc	180
tggtttggag	accttaaggg	agttgtgtt	caaacttctc	tcccagggtc	tcaggtggag	240
actaggagg	ttgacctaaa	ggtcctccaa	ggagaggcca	aggctttgga	gacagatctg	300
gtttaccatc	ttttaacaaa	aggcaaatgt	cttcttctt	tcagaaagag	tcattaacac	360
taaaattttt	ttcttnngaa	gtttcttctt	ttccgatgcc	atcttccaag	tttgnnccca	420
agaatgaaag	gcgtctttt	ccnaagggtc	aagggtttcc	attcacntt	ggccccattg	480
aaaaaggggac	tgggttcttt	tgggggggtt	ggncccggac	ccccaaana	aggnaanggn	540
ttttgtnc	aaggctttnt	tcccnnggggn	gggaagggn	anaaccttt	ggcccgngna	600
acccaccta	anggg					616

<210> 569

<211> 582

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(582)

<223> n = A,T,C or G

<400> 569

acagaatata acgcagcttg	gcaggatgca tacggccctg	cgcagggaa agtattcaa	60
atcagctggc aggttcaagc	ctttctgcac ttagacttt ccacactctg	gaaaagaagc	120
aaacaaacaa acccaaaga	accccaaaga aaaaaaaa	ccatccggga ggtgcatgag	180
tccaatggg	atgcaaccgt gatgccgctg	tcctatgccc agtgacagca	240
aagttagc	aggggagggg tagctcaagc	tacagaggat tattgtcata	300
agcataaattc	cattaaaaaaaa	aatccaaacc aggtaagta	360
aacccaaatct	atacagcatt tacaacaaat	aaatctctag ccagctgggg	420
catcttatgt	tagactatgt	gtaggtaag aaaagttt aatatngtt	480
ccttgatta	aaggccttgg	cccgaacncc cttaaaggnnn aattcnagnnc nattggggc	540
cggtcnaagg	ggatccaacn	tgggnccaaa ntggngaat nn	582

<210> 570

<211> 557

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(557)

<223> n = A,T,C or G

<400> 570

ccgggcaggt acttcttgcc	tttaagatag gcaccaggaa atcttcaag	gatctcatag	60
tcactctcca atttagatag	ggctgacaat ctggcttcca	ttaaaatgag taatcgctt	120
ctggcaacat ctttaatttt	cacatattgc atttctggat	taacacacac agcaaggta	180
ctaggttagag tccagggagt	ggttgtccaa gcaactaaag	atacgtttc atcttctcc	240
aaaggaaag ttacaaatac	tgaaggatct tgaacatcct	tataattctg gtgtgactcg	300
aagtggaaa gtggagtgtt	acatgccgt	gagaagggca tgactttcac	360
acaaggcctt tatacatagag	ttgggttgaag	acccaccaga ctgattccat	420
tacagagtt tatagtcatt	ggcaaagtta	atncatcggc aagttgctac	480
actnannnaa atctcatcnc	aatnnntgga	ctnatggata cctnggannc	540
caatctggc	ctngatn	ccnttngcc	557

<210> 571

<211> 382

<212> DNA

<213> Homo sapiens

<400> 571

acactgctct cttcctggca	attgacagtg gtaaccctcc	cgctacgggc actgggactt	60
tgctgataaac cctggaggac	gtaatgaca atgccccgtt	catttacccc acagtagctg	120
aagtctgtga tgatgccaaa	aacctcagtg tagtcatttt	gggagcatca gataaggatc	180
ttcacccgaa tacagatcct	ttcaaatgg	aaatccacaa acaagctgtt	240
tctggaaat	ctccaagatc	aacaatacac acgcccgtt	300

acaaagcaaa ctacaacctg cccatcatgg tgacagattc agggaaacca cccatgacga 360
 atatcacaga tctcaggta cc 382

<210> 572
 <211> 621
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(621)
 <223> n = A,T,C or G

<400> 572

acaagctttt	ttttttttt	ttttttttt	tttttttgcc	atttattgcc	atgttttaaa	60
attcgtgcaa	aatatntgaa	gccctggaca	gagaatacaa	agtatat	tcccaagaaa	120
cntaaaacta	ggaaaagggg	tgggggacat	tttcccacca	nagctncccc	cacgcccaggc	180
cccaaggcagg	gtgaggcctn	caacccggcc	agctgagcag	ggaggactaa	gagctacaat	240
ctggaccang	gaaggagggg	tggaaattgc	aacagngtnt	taactaccaa	cgagagggaaa	300
gccagtcaac	tgtacaacct	cttgcggagc	ggggaaaggtg	actacngaa	caagacatgc	360
tgccctgccct	gtgcttgtgg	gctgcaaagt	gggnntccaa	taagtgttc	catgaacgag	420
gacaggagtt	tttgancctt	gnngatcaac	aaaangttna	ctgacatccn	tttctgcctt	480
tccctttcct	ggnnccttta	anccatgtca	acnnntgacan	acncctntng	atggtccctt	540
tggnagtccct	aatnaggctg	atttttggan	nanntaatnt	ttttttggaa	cncaaggnga	600
acnnttttgg	ngaattttng	g				621

<210> 573
 <211> 296
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(296)
 <223> n = A,T,C or G

<400> 573

ggtaactcatt	gtgcttttg	gtgccttcc	tttcctacag	aaaaggaagt	gatctataacc	60
aaggtttgca	gggaagtcaa	atgttctcaa	ccttcatgc	cctctggta	ctcatctggc	120
ttgcaaaata	atttgatcc	ggacagattt	ccagtatttt	caagtccgct	gctttcccg	180
aaagctcggc	ctaacctgga	gctagttagg	tccgcaggcg	ccaccgnccgg	cgcactccgg	240
agaagaagct	ccttcitcag	ccgcccagga	gagtccctcg	agaaagatgc	cgccgc	296

<210> 574
 <211> 616
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(616)
 <223> n = A,T,C or G

<400> 574

ggtaactccaa	cgcaccctg	tgcagaaaatg	agagaagaca	gtgcttagagt	ctatgaaaac	60
gtgggcctga	tgcaacagca	gaaaagttc	agatgagaaa	acctgccaaa	acttcagcac	120
agaaaatagat	gtgacttcc	accctctccc	taaaaagatc	aagaacagac	gcaagaaaatg	180
ttatgtgaag	acagaatttgc	gatttggaaag	gottgcaatg	tggttgacta	cctttgata	240
agcaaaaattt	gaaaccattt	aaagaccact	gtatTTtaac	tcaacaatac	ctgcttccca	300
attactcatt	tcctcagata	agaagaaaatc	atctctacaa	tgtagacaac	attatatTTT	360
ataggaattt	gttggaaattt	gaggaaggcag	ttaaatttgtg	cgctgtatTT	tgcagattat	420
ggggattccaa	attctagtaa	taggctttt	tatTTTtatTT	ttataccctt	aaccaggtt	480
atTTTTttt	ttcctcattt	gtngggatg	atgagaagaa	atgatTTnggg	aaaattaatg	540
accaacgnac	tagaaaatgt	agaaccattt	tatttccnt	ntggttccng	gagnggataa	600
ttcatttgan	ggctt					616

<210> 575

<211> 614

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(614)

<223> n = A,T,C or G

<400> 575

ggtaacaaaca	ttttacaaaaa	aagaacatta	ccaatatcag	tggcagtaag	ggcaagctga	60
agaataaaata	gactgagttt	ccggggcaatg	tctgtcctca	aagacatcca	aactgcgttc	120
aggcagctga	aacaggcttc	tttcccagt	acaagcatat	gtggcagta	atacaacgca	180
tggtaaatga	ggctactaca	taggcccagt	taacaaactc	ctcttctcct	cgggttaggcc	240
atgataacaag	tggaaactcat	caaataattt	aaacccaagg	cgataacaac	gctatTTccc	300
atctaaactc	atTTaaggctt	tcacaatgtc	gcaatggatt	caagttactt	gcaaacgatc	360
ccgggttgc	atacagatac	ttgnTTTTA	cacataacgc	tatgccatcc	cttncttcac	420
tgcccagtc	ggTTTcctgn	tgttgaccg	aaaggggatc	ctttaaaaaa	tgcttcnttc	480
aagacagaag	tgagaaagaa	aggagaccct	gaggccagan	ctattaaaac	ttgtgngtcc	540
ccaaaaggaa	ggggaaaggn	agaattgaaa	gaaaacggnt	cttngccca	ggatnggaan	600
cgggactacn	ttgg					614

<210> 576

<211> 596

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(596)

<223> n = A,T,C or G

<400> 576

acatcaagac	ttttggaaca	gcgatcgtaa	tcaatcctga	gaaagacaaa	gacatggtcc	60
aagacctgtt	ggacttcaag	gacaagggtgg	accacgtat	cgaggctgc	ttccagaaga	120
atgagcggtt	cgtcaacctg	atgaaggagt	cctttagagac	gttcatcaac	aagagaccca	180
acaaggcctgc	agaactgatc	gcaaagcatg	tggattcaaa	gttaagagca	ggcaacaaag	240
aagccacaga	cgaggagctg	gagcggacgt	tggacaagat	catgatcctg	ttcaggTTta	300
tccacggtaa	agatgtctt	gaagcatttt	ataaaaaaaga	tttggcaaaa	agactccttg	360

ttgggaaaag tgcctcagtc gatgctgaaa agtctatgtt gtcaaagctc aagcatgagt	420
gccccgtgcagc cttcaccaggc aagctggaaag gntgttcaag gacatggagc tttcaangac	480
atcatggtca tttcaagcca gcntatgcag natcngagtg ctccaggcct atagacctac	540
agggacatct nccatggctt ctngccacat aacnccatgg aangccttac cccaaa	596

<210> 577
<211> 617
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(617)
<223> n = A,T,C or G

<400> 577

ggtaccacaa ctcccaggat tttcctggat caaaccttgt atctcttctg caagtattgt	60
gtatattgggt ctgagagacg tggaccctcc tgaacatTTT attttaaaga actatgatAT	120
ccagtatttt tccatggagag atattgatcg acttggatTC cagaaggTCA tggAACGAAC	180
atttgatCTG ctgattGGCA agagacaAAAG accaatCCAT ttgagTTTG atattgatGC	240
atttgaccCT acactGGCTC cagCCACAGG aactCCTGTT gtcgggggac taacCTATCG	300
agaaggcatG tatattGCTG aggAAataca caatacAGGG gttgCTATCA gcaCTGGATC	360
ttgttgaagt caatCCTCAG ttggCCACCT cagAGGAAGA ggcgaAGACT acagCTAAC	420
tggcagtAGA tgtgattGCT tcaagCTTT ggtcagACCA gaagaANGAA ggcataTTGG	480
ctatgacCAA ctttCTACTC ccAGTTCAcc agatGAATCA gaaaATCAAG cncCTGTGAN	540
aaatttaggAG acactTNGCC ctggCATGTT tacaaaaAGG cttnnGAAA tntgangCCT	600
tttagggaaa aaataaa	617

<210> 578
<211> 409
<212> DNA
<213> Homo sapiens

<400> 578

ggtacatgca gaatttgtcaa ctacaggGAA tgaaaaAGTTc aaaaAGTAGA tcctacaAGA	60
tgtAACGAAT acTTTCTAA acatcaAGAT acagCTCAGA acactTCAT aacaAGATT	120
ggTCTACTTA ggcATCCGGC ttgACAGCTA aacACTTTAG accACAAAGT taACATCATG	180
ttacatacGT cttacAGTGC acGTTACCCC aatCTGTGAA aataAAACCAa catgAAACTC	240
aaaaAGCATT actAGCTCTG CTTTAGTGCC taAGGTATCA cAGCATACT tagTAGACAG	300
aaATCTTATC ttcccTTAA AGTAGTTGTC ATGCCATACA gACTTTAA tattaACAAA	360
aataAAAGAAA AACATCCTTG AAAATATATT atcAGAGGAA ttGTAGAGT	409

<210> 579
<211> 619
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(619)
<223> n = A,T,C or G

<400> 579

ggtactattt tataccaga aagtcttctc tatgttagaga agtcagagag actagatgct	60
ttcaactagg aatgtcttcc caccaccca tcacaaatgt ggacaatcac tgcatccaca	120
tctgttaggc tatttctatg gaagtttaat tgacagctat attcatttatt tattttacaa	180
tttcattttt ctacacccctt gagatttatg aatgcagttt tttttttttt ttatTTTaa	240
cttgacagta tgTTTTAGT tcccccaatt taattaatgg accatgtgca tatatatggg	300
agtgtgctt catgttaata atttacttgc atacttatga gaatttcaca ttgaaattca	360
taatggtaaa acaacataca totgccaata tacgtttttt ctgntggttt aagagaagat	420
aactgacagg tttacactt ccctacagat gcatctaaac ccagattac tgagaagaag	480
tgtattggac tctgagtggaa aaaagagttt ggtttttt ggTTTTAAGN tctgctctag	540
anccataattt ngnaaaaaat tttaggnctt aanctggtnccctaaaattt gnnanccaaa	600
ngttnaatga aanggctgc	619

<210> 580
<211> 632
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(632)
<223> n = A,T,C or G

<400> 580

ggtacaaaca ttttacaaaaa aagaacattha ccaatatcg tggtagtaag ggcaagctga	60
agaataaaata gactgagttt ccgggcaatg tctgtcctca aagacatcca aactgcgttc	120
aggcagctga aacaggtttc tttcccagtg acaagcatat gtggtcagta atacaaacga	180
tggtaaatga ggctactaca taggcccagt taacaaactc ctcttctccct cgggttaggcc	240
atgatACAAG tggAACTCAT ataacaacgc tatttccat ctaaactcat ttaaggccttc	300
acaatgtcgc aatggattca gttacttgca aacgatcccgg ggttgtcata cagataacttg	360
nttttacac ataacgctgt gccatccctt ccttcactgn cccagtcagg tttcctgttg	420
gtggaccgaa aggggatcat ttaagaat gcttcctna agacagaaaag tgagaaagaa	480
aaggagaccc ttgaggncag gaactaatta aacctgggtt ggtgccccaa aagggaaagg	540
gaaaaggccg gaantgnaa nggataaccg ntcttttng cccagggant cnggaaccgt	600
ggctcgctt gggcttggac annccaaat cc	632

<210> 581
<211> 607
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(607)
<223> n = A,T,C or G

<400> 581

acataagtga tggagtatca atgctggtgg ttgaggtggaa gaaggaattt agttccttga	60
attttctttt ttctcctctg tgttccttct tggccaggta acccctgcta tatacataaga	120
tttcatctgc gagaaaaagga ggaattcttc tacagctccc ctgctcaact ttcaaggagat	180
tttgaccat gtgctgttaa tcaccgaaat ttttttaagga ggcttctccct ggcattgaaag	240
agttgttatt gtgtcccgaa ttgggtgggtt ctggctctca ctgacttcaa aaatgaagcc	300
gcccggacccttc gcgggtgagtg ttaacagctc ttaaggtggc acgtctggag ttgttccctt	360
ctgatgttcc ggtatgttcc agagtttctt cttctggta ggttcctggc ctcgcttggc	420

WO 99/64576

PCT/IB99/01062

ttcaggaatg aagctgcaga ctttcgtt nactntaca agcttaan gcaggccgtc	480
tggaaagtgt tcgttcctcc tggggctcggt ggtcttgctg gctttaggat ctaagtncaa	540
accttnaggg tgagtgtaca ntcatanaag cagtgtngnc ccaanaatna ncnttnaaaa	600
gccaacn	607
<210> 582	
<211> 603	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(603)	
<223> n = A,T,C or G	
<400> 582	
actgtattct ccatatgttag ctccggatgcg gagggctgtg agattccgca gtaaccctcg	60
atactcaaag taactcagct gggggctcca attattgtt ggatgtctat ttaaccctgaa	120
tgtgttaagtc ttgttgagcc cacaaggcag tgtcttgcca agtggcatca agggagctgt	180
gatccgtaga ccagcacctt ccagaatcac atcatggca gatgggtgtc tgcctccct	240
gtccacacgg tagtcaaagg acaggcttg accatagctc acctgttgat tcccaagaaa	300
tttggcagga gccacaaaat agacagggtc tagtcgttgg gctgagctaa acacatctt	360
atgggcgtc tgaccattgg agctttgcag gagacccatt tgcgttgaca gccttccagc	420
catcaacatc ttgtatgaaag gtanaagtga tcttatggac actgnattct gcanaactgc	480
ggcaacttgg ctgaatgcca tagcagaacc ctgggtaccc tngggcgaa cacgcttang	540
gcaatttcag cccacttggg gccgtctann ggnancact ttgggcccant tttggggaaan	600
ant	603
<210> 583	
<211> 535	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(535)	
<223> n = A,T,C or G	
<400> 583	
ggtacacacaca ggaccgcctg gggctaaagg aaatggacaa tgcaggacag ctagtgttcc	60
tggctacaga aggggaccat cttcaggatgt ctgaagaatg gttttatgcc cacatcatatc	120
cattccttgg atgaaaccccg tatagtcac aatagagctc agggagcccc taactcttcc	180
aaaccacatg ggagacagtt tccttcatgc ccaagcctga gctcagatcc agcttgcAAC	240
taatccttct atcatctaact atgcccactat tggaaagatc taagatctga atcttatctt	300
ttgccatctt ctgttaccat atgggtgtga atgcaagttt aattaccatg gagattttt	360
tacaaactt tgatgtggtc aagttcagtt ttagaaaagg gagtctgttc cagatcaagg	420
gccagaactg tgcccaggcc caaaggagac actaactaaa gtatgtgat agattctaan	480
ggcaaacatt ttccaggctt gccatatttc aagcaanaag ggccnaagcc tgagg	535
<210> 584	
<211> 524	
<212> DNA	
<213> Homo sapiens	

<220>
 <221> misc_feature
 <222> (1)...(524)
 <223> n = A,T,C or G

<400> 584
 acaactctct taaaagagta tggataacta tattttctgg attctggagg ttgataacca 60
 tatgcactta acattatatt ctataaacat taagtagtgc cagttatgag attcccagtt 120
 cttaactaaat tgttagtagca ggagctggta attacttgc ttatcacatg taactaataa 180
 tttgaactat acttgaagga ccgtgttat gtcaggtt tacagtggtt ggaagatagc 240
 agtattatta gcataagctg catacgtaat attcagaac tgccatatta tataacaaat 300
 ttacattcgc aaattcagta tcctgtaaa gtgtcatatt cttgtatct gcattctcca 360
 ggagtttat gtgtttaata gatgaattta ttttattnaaaggatattc aaatgnnttc 420
 agccncntat aggagaaaata cccaaatata ttctagttcc ttnatgtccc tgnaccctcg 480
 gccngacca cgctaaaggg cgaaatncaa ncncactggc nggn 524

<210> 585
 <211> 618
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(618)
 <223> n = A,T,C or G

<400> 585
 actgactata atcaaactcc gaataccatt aaaattaagc tatgcagtcg gaacgtgggt 60
 gataacgtcc acgctcgca gggaaacaac ccagatcgac agctaaggc cccaaattgt 120
 gttaagttag aaggttgtg agatttcata aacaactagg aagttggctt agaagcagcc 180
 acctttaaa gagtgctgaa ttgctacta gtcaagagat cttgcgccaa taatgttaacg 240
 ggactcaaac acaataccga agtacacggc acattatgtg cgttaggaga gcgttttaat 300
 ttcgttgaag tcagaccgtg aggactggtg gagagattaa aagtgagaat gccggcatga 360
 gtaacgatc gaagttagaa tcttcgacgc ctattggaa aggttccctg ggcaagggtc 420
 gtccaccctag gggttagtca gggctanga tgaggcanaa atgcatagtc gatggacaca 480
 gtttaatatt cctgtacctt cggncngaa cacgctaagg gccgaattnc agcacacttg 540
 gcgggnggtc ctatngat cccanctng ganccaactt ngggtaatc ntgggcttan 600
 ctggttccctt ggtgaaat 618

<210> 586
 <211> 337
 <212> DNA
 <213> Homo sapiens

<400> 586
 acaagcttt tttttttttt tttttttttt tggttcaagt tttaatcaaa gcttgtatat 60
 aagattactt tattctgca tcttctcaat ggttcttcc ttgtatgtc cttttccctt 120
 tcctacttgg cgagatttgg ctttccgttc gaggatctt ttgcgttctt tgcgtt 180
 tagcctatgt ataaccacct tgctgggtg aatgcctacg tggacagttg tgccattagc 240
 ctttcccgcc tgcacccgtt caatgtat aacatatttc ttctgtaaa cctggactac 300
 ttgccaatt tgctgacctt tatagtgtcc acgtacc 337

<210> 587

<211> 656

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(656)

<223> n = A,T,C or G

<400> 587

cgaggtacaa gctttttttt tttttttttt ttttttttct gaggagtggc atggagttct	60
ttaatttggga aggcaaaagg ttacatttaa tgaaaggcag aggctggatt aataaatgtt	120
tgttanaaag ttgttctgac acacagtcaa ctctgggctt ttctccgtca taaaaagcag	180
agcttagcagt aagtgc当地 ntgaagaaaa tccatgtgtc caataagctg ccatctccan	240
aactcttatac cagggaaattt aaagagtgaa cattctttt gtctctact cctcaattaa	300
gtaaaatgaga atgattcagc caacaaagt catgacaaca aggtgc当地 tggtgctggc	360
aaanagaaaa tnagcaaagg ctcgctctgg ggagatgcct tggaaatccn ntggntctg	420
nggggttgc当地 tgnatttctc agggnaaacc cgcttagggat gaaacttccc acccnaagan	480
aatgaaaccc cgaaagaaaa agangttaa aggggaaagg nccccngan ggagaccagt	540
tacccgaact tggAACNNCC ccggcaagca atttttcnc ggcagggtnc cctggccnng	600
ggcggccnntt tnaaaagggg gcaattncca ngnacttgg gggggcgttt tttnng	656

<210> 588

<211> 586

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(586)

<223> n = A,T,C or G

<400> 588

actcaaacac aggggggttg tcatttatgt caagaactga tacaatcaca gtgccagtg	60
cagtccgc当地 ccttggcaag cttgtatcca cagcttcaa agagagggtg tataactgc当地	120
ggagttctct gtccaaaggt ttttctaact gaataattcc agataattcg ttaatggaga	180
actgccc当地 agcagagtca atcagtgtgtg ataaaatctt ccgatttaat cctgcgtc当地	240
catctgtggc ctgc当地 cttgttccgtc tttccggctc tttgtttca aacacgggtga	300
tggcataagg atcggc当地 gag aattcggggg cattatcggtt cacgttcttctt agcgtgagca	360
caataactggc ttggtagaaat cttcccttccatctgtggc cctgacgaga agatgataaaa	420
cagcttgc当地 ctnacgatca aagggggggtt gacgtttca agtcacctgg nctggattaa	480
tttgaatttt ctgc当地 ctttccatgg taagtattca gcttaaccgg atgttgc当地	540
gacanaaaact gatgacattt tccgaaggac tnttaggaaa aggtga	586

<210> 589

<211> 645

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(645)

<223> n = A,T,C or G

<400> 589

acaagcagta ttagaaaatc	tttttggcaa	gggagagaaaa	taaatacaaa	tggaatgcta	60
catttttaaa ttagcaaact	gtctcaggaa	tgataaaggt	atcagtaaag	tagcaagggg	120
ataactttaa aacattattt	gtctgggct	caaaaaacac	tcaaaacaat	ttatttaaag	180
gttgcacaag agctatgtcc	aggcattac	gcttatggg	agtaaaatta	aaagaggata	240
ctttttccc aaggagaatt	tcttaaaac	caagcacatt	gctaaatagc	aacattatac	300
toggtaaaaca ataattggca	acaaaataag	ttaatattc	tgcccaaacc	agtcccagat	360
actgtttaat aaccaagata	caaactaatt	ttgttgnaac	aagcctagac	caattttatc	420
aaacatgtcc ttggtagat	atccaatttc	atthaacgtt	tttgnagct	canttgacag	480
ccagtcnagt ccttnatacn	gaccagttc	cntggggttg	gcacaaagtg	ggnttggacc	540
ataccccacca ttcaaaaagg	cgcatntngg	ttcttggccc	aaaaaatccn	gnnaaaaaaaaa	600
aggganggga aatttattnaa	gggncccttg	gngnnaatg	ggcnc		645

<210> 590

<211> 464

<212> DNA

<213> Homo sapiens

<400> 590

gttcttgac gaggctgcgg	tgtctgctgc	tattctccga	gcttcgcaat	gccgcctaag	60
gacgacaaga agaagaagga	cgctggaaag	tcggccaaga	aagacaaaga	cccagtgaac	120
aaatccgggg gcaaggccaa	aaagaagaag	tggtccaaag	gcaaagttcg	ggacaagctc	180
aataacttag tcttgttga	caaagctacc	tatgataaaac	tctgtaaagga	agttcccaac	240
tataaactta taaccccagc	tgtgtctct	gagagactga	agattcgagg	ctccctggcc	300
agggcagccc tttaggagct	ccttagtaaa	ggacttatca	aactgtttc	aaagcacaga	360
gctcaagtaa tttacaccag	aaataccaag	ggtggagatg	ctccagctgc	tggtgaagat	420
gcatgaatag gtccaccagc	ttgtacctgc	cgggcggcccg	ttcg		464

<210> 591

<211> 387

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(387)

<223> n = A,T,C or G

<400> 591

ggaagacgga ggtcctctt	ccttgcttaa	cgcagccatg	gctcggtgc	ccaagaagca	60
tctqaagccg	gtggcagctc	caaagcattg	atgtctggat	aaattgaccg	120
tcctcgatca	tccaccggtc	cccacaagtt	gagagagtgt	ctccccctca	180
gaggaacaga	cttaagtatg	ccctgacagg	agatgaagta	aagaagattt	240
gttcattaaa	atcgatggca	aggccgaac	tgtatataacc	taccctgctg	300
tgtcatcagc	attgacaaga	cgggagagaaa	tttccgtctg	gattcatgca	360
ctttgctgta	cctngggccgc	gacacgc			387

<210> 592

<211> 648

<212> DNA

<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(648)
<223> n = A,T,C or G

<400> 592
ggtacaaaca ttttacaaaa aagaacatta ccaatatcag tggtagtaag ggcaagctga      60
agaataaaata gactgagttt ccgggcataatg tctgtcctca aagacatcca aactgcgttc    120
aggcagctga aacaggcttc ttcccagtgc acaagcatat gtggtcagta atacaaacga     180
tggtaaatga ggctactaca taggcccagt taacaaactc ctcttctcct cgggttaggcc    240
atgatatacaag tggactcatcaaataattt aaacccaagg cgataacaac gctatttccc    300
atctaaactc attaaggct tcacaaatgtc gcaatggatt cagttacttg caaacgatcc    360
cggttgcatacagatact tgnttttac acataacgct gtgcctatccc ttccttcaact    420
gncccagtc ggttcctgt tgntggaccg aaaggggata cattttanga aaatgcttc    480
ttcaagacag aaatgagaaa gaaanggaga accctgaggc caggaatcta taaaaccctg    540
gggtngnnc nccaaaaggg aagggggnaa aggccnggaa tttgaaaagg ntaaaaccgn    600
tccctttgn gncccagggaa attaggaaaa ccttgactna cttttggg                         648

<210> 593
<211> 625
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(625)
<223> n = A,T,C or G

<400> 593
ggtacttaaa atcagagtca aaaaatggtt ttaagtttta atactcttaa ttagctccct      60
gtttataact gtaactccac agaagacata gggccaccta ggattcacag gaaggagcag    120
ctctgattct tacatggctg gctccgatgc cccccacagca ggcctcttcc tccccaaatg    180
tttccctctcc atttcaaaaa agcactattt tatcttcaca tccaaagagct ggttggttg    240
gtttgtttt ttggaaacca ataaaagaag caatttttc ctgttcttt tactcacatc    300
tacctatcag agcggctatt tccttcgaca gtcagtagc acacaggctg acttggccac    360
atggactcat gaatgcatac attcagaccg catattgcta ccaaatagggaa atgtggaaat    420
atgctatgca cctcagggtt agaaatgacc aagaaaatca agatctaaag gggtgatata    480
taatataat atatatcaat gctattattc ataaaaaacct tggtagtaa taaaaaaaaat    540
tgctttgggt naaatattga atattataag ctggcttctc atgggttggaa aaaaataagt    600
ctttntgnnaa aagccggggc ctttt                                         625

<210> 594
<211> 586
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(586)
<223> n = A,T,C or G

<400> 594

```

ggtaaccaga	caaaaacccgg	ccacgtgtaa	gtcagatgct	gattttgact	ccatTTcaag	60
gtcaaggcca	tggtgtctaa	cttcttggaa	cagttcatag	atactacact	gaattttctta	120
cagttcttga	tattacagcg	gaagatccat	ccaaaagacta	tgtgaaattt	cgagactttg	180
tgcttggaa	gttttgcctaa	gatttgcctt	gttttcccg	ggaaaaattt	atgcaaggat	240
tcaatgaaga	tatggcgata	gaggcacaac	agaagttcaa	aataaataag	caacacgcta	300
gaagggttta	tgaaatttctt	cgactactgg	taactgacat	gagtgtatgcc	gaacaataca	360
gaagctacag	actggatatt	aaaagaagac	taatttagccc	atataagaaa	aagcagagag	420
atcttgcataa	gatgagaaaa	tgtctcagac	cagaagaact	gacaaaccag	atgaacccaa	480
tagaaataag	catgcaacat	gaacagcttgc	gaananaagt	tttcanggnc	tagtgaaaga	540
ataccccggc	gtggatttgc	acnacttgc	caagagttaa	gaattt		586

```
<210> 595
<211> 613
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(613)
<223> n = A,T,C or G
```

```

<400> 595
acagaagggtt gacgaaaatt cttaactgagc aagaaaataac cttgttgtaa ttactaaaat      60
ttgagaaaatg tgattcttga ctggaaaaat agatgtgtcg tggaggccga atgtttgcac      120
caaccaaaaac ctggcgccgt tggcatcgta gagtgAACAC aacccaaaaa cgatacgcca      180
tctgttctgc cctggctgccc tcagccctac cagcactggg catgtctaaa ggtcatcgta      240
ttgaggaagt tcctgaacctt cctttggtag ttgaagataa agttgaaggc tacaagaaga      300
ccaaggaaagc tgTTTGTCTC cttaagaaaac ttaaAGGCTG gaatgatATC aaaaAGGTCT      360
atgcctctca gCGAATGAGA gctggcaaag gcanaatgag aaaccgtcgc cgtatccagc      420
gcagggggccc gtgctcatct ataatgagga tnaatggtat catcaaggcc ttttagaaaca      480
tcctggaaat acctctgttt aatggtaagc caagcttgac cattttgaan ncctgttctg      540
gtgggccttt tgggacgttc tggatttggaa cttgaaaggc ttttccggaa ttNNatgaaa      600
tqNCCNNCCQq ccc

```

```
<210> 596
<211> 616
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(616)
<223> n = A.T.C or C
```

<400>	596						
gcgtgggtcg	cggccgaggt	acaagaacac	tccttggcg	tccttgcgt	tttgttttg		60
aagtttcta	tgcccagtgt	tcctgacttc	gaaacgctat	tctcacagg	tca	ctcttc	120
atcagcactt	gtaatgggga	gcacattcga	tatgcaacag	acactttgc	tg	gggctttgc	180
catcagctaa	caa	atgcact	tgtggaaaga	aaacagcccc	tgcgaggaat	tggcatcc	240
aagcaagcca	tagacaagat	gcagatgaat	acaaaaccagc	tgacactaat	acatgctgat		300
ctctgccagc	tttgtttgc	agcaaaatgc	ttaagctg	ccttccat	cttgacgtgg		360
atatgatgga	tatctgtaaa	gagaatggag	cctatgatgc	aaaacactt	ttatgnact		420
attattatqg	aqqqatqatt	atactqgqct	qaaqaactt	tgaaqagactc	tctacttt		480

tgaacaggct atactacttc tgcatacgccg cagtcatatac atgtggaaac attaaaaagn ntatttanng gcttgaatac ctggcaaaga cctgnccggc gccgttcaaa ggggaattca	540
ccacttggng gcgtnt	600
	616

<210> 597
<211> 631
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(631)
<223> n = A,T,C or G

<400> 597

accagatggc ttttcagaca gaggttgaa accatcccac ttttgaggat atgcagggtc tcgtgtctag ggaaaaaacag agacccaagt tcccaagaagc ctggaaagaa aatagcctgg	60
cagttaggtc actcaaggag acaatcgaag actgttgaa ccaggatgca gaggctcggc	120
ttactgcaca gtgtgctgag gaaaggatgg ctgaacttat gatgatttgg gaaagaaaaca	180
aatctgtgag cccaacagtc aatccaatgt ctactgctat gcagaatgaa cgcaacctgt	240
cacataatacg gcgtgtgcca aaaattggtc cttatccaga ttattttcc tcctcataca	300
ttgaagactc tatccatcat actgacagca tcgtgaagaa tatttcctt gaggattcta	360
tgtccagcac acctttgact atagggggaa aaaaacccga aattcaatta ctatgaaccg	420
acagcaaggc acaaagctcg aatncccaag cccttggaaac aagtggtaac cagtttca	480
ccacancacc aaccnncaaa cnccccaggg anttacgccc aaggtacctt nggccggaa	540
cccncttang gggnaattcn cgncccttgg g	600
	631

<210> 598
<211> 630
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(630)
<223> n = A,T,C or G

<400> 598

cgagggtgctt cgtcttcggt ttttctcttc cttcgctaac gcctccggc tctcgtcagc ctcccgccgg ccgtctcctt aacaccgaac accatgcctt caattaagt gcagagttct	60
gatggagaga tatttgaagt tgatgtggaa attgccaaac aatctgtgac tattaagacc	120
atgttggaaat atttggaaat ggatgtgaa ggagatgatg acccagttcc tcctcctcct	180
cctcctgaag atgatgagaa caaagaaaaag cgaacagatg atatccctgt ttgggaccaa	240
gaattcctga aagttgacca aggaacacctt tttgaactca ttctggctgc aaactactta	300
gacatcaaag gtttgcgtga tgttacatgc aagactgtt ccaatatgat caagggggaaa	360
actcctgagg agattcgcaa gaccttcaat atcaaaaatg actttccctc ttttttgtt	420
agcaatggct ggctaaagtttta atggggccagg taacntttt tagacctttta aaaagtttgg	480
ccattggnaa atnaaaccac ttgcaaaaaa gtttnttgg atagaatttc cnaatatttt	540
cctttttcat gagtggaaac tgggnaaagg	600
	630

<210> 599
<211> 359
<212> DNA

<213> Homo sapiens

<400> 599

ggtagcttacc tcaggaggcag agatttgata ttcgagtgt	gggcttaggt ctgctgataa	60
atcttagtgg a gtatagtgt ctggaatcgcc actgtttgt	caacatggaa acatcggt	120
cttttatttc ttccatctgt agtggagaag gggatgtat	ttaaggata gggtggacaag	180
ttcatgttgt ccaggctta gtgcagctat tccttgagcg	agagcggca gcccagctag	240
cagaaaatgaa aacagatgag ttgatcaaag atgctccac	cactcagcat gataagatg	300
gagagtggca agaaaacaatg ggagaaatac agtgggtgtc	aactgaaaag actgtatgt	359

<210> 600

<211> 589

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(589)

<223> n = A,T,C or G

<400> 600

acccaggagac acaaacactg tggaaggctg cagggacctc tgcctaggaa agccaggtat	60
tgtccaaagg tttccccat gtgacagtct gaaatatggc ctctgtggaa gggaaagacc	120
tgaccgtccc ccagccgcac acccataaaag ggtctttgt gaggaggatt agtaaaagag	180
gaaggccctt ttgcagtgt gataagagga aggcatctgt ctccctgctcg tccctggca	240
atggaatgtc tcggtttaaa acccgattgt atattctatc tactgagata ggagaaaact	300
gccttagggc tggagatgag acatgtcggt ggcaataactg ctctttaatg cattgagatg	360
tttatgtatg tgccaaaaaa agcacagcgc ctttttttt acctcggtt tgatgcagag	420
acattttttt acatgttttc ctgctgactc tctccacta ttaccctatt gcctgccaca	480
tctcctttt gaaanggtag agataatgt caataaaatac tgaggactn aganactggg	540
ccgcgttaatg cctaataatct gaacgcccgt ccctggccca ntttttnt	589

<210> 601

<211> 240

<212> DNA

<213> Homo sapiens

<400> 601

acatctgaaa taccggccaa acccagaaag ctttcaaca gctagggtgt ccaagaacctt	60
ggaaaatcca ctttctgttgc tcctccaaga cagattccat ttttataca ctttatttgc	120
tcagacctgt aacctcagcc tggagtgaac acagacaccc agtttccctc aaactccctt	180
tgggctttag agagaaggtg ctggccctt gagccaagca ggttatttgg tagttagtacc	240

<210> 602

<211> 621

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(621)

<223> n = A,T,C or G

<400> 602

ggtacctttt	acatacaaga	aattaaatga	gagaaaaaat	aactgttagt	acaccatatc	60
acttacaaga	atggagaatc	tgcttataag	tcaaactaga	attagaactt	atttcttaga	120
ctgcttcata	aaaactaaca	taccactact	tttaatttat	ttatttattt	gctaaagaac	180
aaaaatttaa	gtatgaaaaa	caaccaactg	attcacccaa	ctcagtaagt	ttgactcacg	240
ttttctggtt	caacaccaat	gtcttcacaa	aatttctcca	tgccttcagg	gcctacaaca	300
tcatcagttc	ctgcatattc	atagaaccat	tccaaggcacc	tttacttga	aaaggcttct	360
tcttcagttc	ttatttcttagt	cgaatcatat	tttctataca	tgctatcatg	tctactttc	420
ttggcagata	aatcatctcc	agaagcaggt	cttctttttt	tccttgggtgg	catcaactta	480
ttaaaggcagt	ctgaagaact	gnaagaaccg	agacttcttg	gtttggcgac	gncttggnca	540
nggctctggt	anggtcaanc	ttattaangg	ngngggaaaa	cottntgaan	atttgcccn	600
gttganagat	gaaaagtcnn	g				621

<210> 603

<211> 655

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(655)

<223> n = A,T,C or G

<400> 603

acttataatt	ggcagtggag	gaagggaaaca	tacgctggcc	tggaaacttg	cacagtctca	60
tcatgtcaaa	caagtgttgg	ttgcccagg	aaacgcaggc	actgcctgct	ctgaaaagat	120
ttcaaataacc	gccatctcaa	tcagtgacca	cactgccctt	gctcaattct	gcaaagagaa	180
aaaaattgaa	ttttagttg	ttggaccaga	agcacctctg	gctgtggga	ttgttggaa	240
ccttaggtct	gcaggagtgc	aatgctttgg	cccaacagca	gaagcggctc	agtttagatgc	300
cagcaaaagg	tttccaaag	agtttatgga	cagacatgga	atcccaaccg	cacaatgaa	360
ggcttcacc	aaacctgaag	aaggcctgcag	cttcattttg	agtgcagact	tccctgctt	420
gtttgtgaaa	gggcancggg	cttgcactt	ggnaaaaggg	tgaatggtt	ccaaagaagc	480
caaagaaaana	aggncctgca	aagcntgtan	cctttgggoc	gggaaccacg	cttaangggc	540
cnaaaattcca	agnacaactt	ggccgggccc	gttacctaaa	nggatccca	acttnggn	600
acccaaaacn	ttngggngna	aatcatnggg	ncnaaaantt	tggttccct	gngng	655

<210> 604

<211> 490

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(490)

<223> n = A,T,C or G

<400> 604

acaacacacg	aattccactc	taaacttcaa	cgaaagcta	tgttcctctc	tgcctcatgg	60
cagtggccca	cagcatcctt	caatcttta	gttgagcgat	acaactccac	tagccggatg	120
ttcacatgga	cgtcatcagg	tcttacataa	agttctgact	gaatcaagtc	aaaaagttt	180
ttccatccat	cttccaccc	acaatctaga	agctgttccct	ttagttata	aattgcagga	240
cttcctggga	aaagtttgc	tgctcttgc	accaggattt	ttgcttcc	atcaggtAAC	300
atcattttta	caaagcaattt	ctgcaatctt	caacacaaga	tctttgtgt	tgggtttaat	360

tccactgaac	gcctgtaaca	ttnaaacggnt	ttctctgtgt	tttcttccat	tcataaaagan	420
gaccaggaaa	tctgtgagct	ttgggatccc	tctctcgac	attaaatgta	agtacctngg	480
gnccgcacca						490
<210> 605						
<211> 612						
<212> DNA						
<213> Homo sapiens						
<220>						
<221> misc_feature						
<222> (1)...(612)						
<223> n = A,T,C or G						
<400> 605						
acagaaggtt	gacgaaaatt	cttactgagc	aagaataaac	cttgttgtaa	ttactaaaat	60
ttgagaaaatg	tgattttga	ctggaaaaat	agatgtgtcg	tggaggccga	atgtttgcac	120
caaccaaaaac	ctggccgcgt	tggcatcgta	gagtgAACAC	aacccaaaaa	cgatacgcca	180
tctgttctgc	cctggctgcc	tcagccctac	cagcactgg	catgtctaaa	ggtcatcgta	240
ttgaggaagt	tcctgaactt	cctttggtag	ttgaagataa	agttgaaggc	tacaagaaga	300
ccaaggaagc	tgtttgctc	cttaagaaac	ttaaaggcctg	gaatgatatac	aaaaaggctt	360
atgcctctca	gcgaatgaga	gctggcaaag	gcaaaatgag	aaacccgtcg	ccgtatccag	420
ccgcaggggc	ccgtgcata	tctataatga	ggataatggg	tatcatcaag	gccttcagaa	480
acatccctgg	aattactctg	cttaatgnaa	gcaagctgac	atttttgaac	cctgcttctg	540
ggnggcctgt	nggactttct	gcatttggac	tgaaantgct	tttcggaagt	ttantaantg	600
gacctnngcc	cc					612
<210> 606						
<211> 577						
<212> DNA						
<213> Homo sapiens						
<220>						
<221> misc_feature						
<222> (1)...(577)						
<223> n = A,T,C or G						
<400> 606						
gactttgagg	caagtgtggg	ccactgtgg	ggcagtggag	gtgggggtt	tgggaggctg	60
cgtgccagtc	aagaagaaaa	aggtttgc	tctcacattg	ccaggatgat	aagttccctt	120
ccttttctt	aaagaagtt	aagtttagga	atcctttgt	gccaaactgg	gtttgaaagt	180
aggcaccta	gaggttacc	tagagaacag	gtggtttta	agggttatct	tagatgtt	240
acaccggaa	gtttttaaac	actaaaat	ataattata	gttaaggcta	aaaagtata	300
ttattgcaga	ggatgttcat	aaggccagta	tgatttataa	atgcaatctc	cccttgattt	360
aaacacacag	atacacacac	acacacacac	acacacacac	aaaccttctg	cctttgatgt	420
tacagattt	atacagttt	tttttaaaga	tagaatcctt	ttataggtga	aaaaaaaaaca	480
atctggaaag	aaaaaaccac	acaagacatt	gatcagcctg	ttngcgtt	canangtctt	540
tgattggcag	catggttnca	aggaaantag	gtacctc			577
<210> 607						
<211> 312						
<212> DNA						
<213> Homo sapiens						

<400> 607
 ggtaccaggc cgctcaccac agtccgtgg ttagcttccc ccacgtcaat cttctctaca 60
 tacaggctgt ctgcatactgg gtgcttctcc acagtgtatga ttttccccac acggatatcc 120
 agccggatg ggatgacctc ctctggttct gaattcttgg cagggcctt ggccattggc 180
 ttctgcttgc agggatctgg gttagcagcg ctggccagtt ttttcaggc aggggtatta 240
 aactttccc ggattggatc cagcaacttg ttcaactgcga cttcaacaga attcttcagg 300
 tctccaggat gt 312

<210> 608
 <211> 614
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(614)
 <223> n = A,T,C or G

<400> 608
 ggtgcaactt cttcggtcg tcccgaatcc gggttcatcc gacaccagcc gcctccacca 60
 tgccgccaa gttcgacccc aacgagatca aagtctgtata cctgaggtgc accggaggtg 120
 aagtcgggtgc cacttctgcc ctggccccc agatcggccc cctgggtctg tctccaaaaa 180
 aagttgggtga tgacattgcc aaggcaacgg gtgactggag gggcctgagg attacagtga 240
 aactgaccat tcagaacaga caggcccaga ttgaggtggt gccttctgcc tctgcccctga 300
 tcataccaaggc cctcaaggaa ccaccaagag acaaagaaaac agaaaaaacat taaacacagt 360
 gggaatatca cttttgtatga gattgtcaac attgctcgac agatgccggc accgatcctt 420
 agccagagaa ctctctggaa ccattaaaga gatctgggga ctgcccagtc agtgggctgn 480
 aatggtgatg gcccgcattnc ttatgacttc atcgatgaca tcaacagtgg tgctgtggaa 540
 tgcnagccgg ttaanccnaa ggaaacttta atnanggtca ttgcactgg aaaaaaaaaa 600
 nnaanananaa ggnt 614

<210> 609
 <211> 609
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(609)
 <223> n = A,T,C or G

<400> 609
 ggtactgagc acccctgttg tcaagaaaat gggagtaaca tctgttaggag gttcttaac 60
 tggggggcca aatataaaa caactctgtt aacgttgta cacatgcgag gtataaggct 120
 agccagaaaa ataagtgtt cccagtcagg ttcatcttta ctggagattc cacacacgta 180
 attgttaggg cgacagtcac cctgcacacc tacagttta attggcagca agaaggcatt 240
 cagtgaatgc agactggtaa tttgcatcag cttctctgtc tcctcttctg ttgtgcaggc 300
 tttgactctc tgtaataggg tatgtggctt tttaacactt gcagaaaaat cagctactat 360
 tttcaaaaata ttgtgggtt cagggaaatc ctacaaaata taaggttttt cagcacatat 420
 tactctgtt gccaggccag gacctggaaa tggatgcctg gaaactaact ttctggaaag 480
 tccaagttt cttggccaaa attctcaactt catctttatg aaaatcttc agaggtctat 540
 acttttcctc ctttttaact ttctgaatga ctctgggna tttggaaangg tttgatgagt 600

tcactttnc

609

<210> 610
<211> 254
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1) ... (254)
<223> n = A,T,C or G

<400> 610

accattggtg	gccaattgtat	ttgatgtttaa	gggaggggatc	gttgacctcg	tctgttatgt	60
aaaggatgcg	tagggatggg	agggccatg	aggacttagga	tatggcggtt	caggatagtt	120
cagacggttt	ctatccctg	agcgtctgag	atgttagtat	tagtttagttt	tgttgtgagt	180
gttaggaaaa	gggcatacag	gacttaggaag	cagataagga	aatgattat	gagggcgtga	240
tcatgaaaga	cctn					254

<210> 611
<211> 687
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1) ... (687)
<223> n = A,T,C or G

<400> 611

ggtacaagga	tgccatccat	ttctataaca	agtctctggc	agagcacccga	accccagatg	60
tgctcaagaa	atgccagcag	gcagagaaaa	tcctgaagga	gcaagagcgg	ctggcctaca	120
taaacccccga	cctggctttg	gaggagaaga	acaaaggcaa	cgagtgtttt	cagaaagggg	180
actatccccca	ggccatgaag	cattatacag	aagccatcaa	aaggaaccccg	aaagatgcca	240
aattatacag	caatcgagct	gcctgtaca	ccaaactcct	ggagttccag	ctggcactca	300
aggactgtga	ggaatgtatc	cagctggagc	ccgacccctca	tcaaggggtt	atacacggaa	360
agccgctgca	ctggaaagcga	tgaaggacta	cacccaaaag	cccatggatg	tgtacctgcc	420
cgggccggcc	gctcgaaagg	ggcgaattn	agcacactgg	ccggccggta	cttagtggga	480
tnchancttc	ggtaccaaac	ntngcgnnaa	tcatggcat	ancnnngttc	ctngggngga	540
aaattggtaa	tnccgtttac	nattccccca	ccaacttccn	aacccggaaa	ccttnaagng	600
gaaanccntg	gggnngccct	atgggnnggc	ttactcnccct	taattggctt	gggcttaatg	660
ggccccccttt	caatngggaa	acctnnnt				687

<210> 612
<211> 673
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1) ... (673)
<223> n = A,T,C or G

<400> 612

gactgtatgtt	ggtgtcctgc	agcgccacgt	ttcccgcac	aaccaccgga	acgaggatga	60
ggagaacaca	ctctccgtgg	actgcacacg	gatctccctt	gagttatgacc	tccgcctgg	120
gctctaccag	cactggtccc	tccatgacag	cctgtcaac	accagctata	ccgcagccag	180
gttcaagctg	tggtctgtgc	atggacagaa	gccccctcag	gagttccctt	cagacatggg	240
tcttcctctg	aagcaggtga	agcagaagtt	ccaggccatg	gacatctct	tgaaggagaa	300
tttgcggaaa	atgattgaag	agtctgcaaa	taaatttggg	atgaaggaca	tgcgcgtgc	360
agactttcaa	cattcatttt	gggttcaagc	acaagttct	ggccagccga	cgtggcttt	420
ngcaccatgt	ctttgatgga	gagccccgan	aaaggatggc	tnaaggaccg	aatacttta	480
tncaggctt	tggacangcc	tnttcaggag	tnaccctgga	caaacttgta	cctttgggn	540
ggngaacacc	ncttaagggc	naatttcang	cacactggcg	ggccgtaatt	aagggaatcc	600
aacttnnnna	nccaanctt	ggnnaaancn	tggcataan	ngttccctgn	gnnaaatngt	660
atccctncc	aat					673

<210> 613

<211> 279

<212> DNA

<213> Homo sapiens

<400> 613

ggtacaaaaag	gagacaatcc	atccccgaaa	gtcatataag	atgaactctt	cctgtgcaga	60
tatcctgctc	tttgccctcct	ataagtggaa	tgtctccgg	ccctcattgc	tggctgactc	120
caaggatgtg	atggacagca	ccaccaccca	gaaatactgg	attgacatcc	agttgcgcgtg	180
gggggactat	gatccccacg	acattgagcg	ctacgccccgg	gccaagttcc	tggactacac	240
caccgacaac	atgagtatct	acccttcgccc	cacaggtgt			279

<210> 614

<211> 653

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(653)

<223> n = A,T,C or G

<400> 614

gtttccacaa	acttcgtgga	tcaaaacgag	gtcttccagt	tctgcgggtc	agaaggctga	60
cccggggctc	aaatctgggt	gtcggcagtc	ctgcactcct	tctggaggct	ctaggggaga	120
attcatttct	ggcctttca	tttttagagg	ctgaccgtaa	ttcttgactt	caggctcc	180
catcttcaga	gccagctgtg	ggtagttgaa	tctttttccc	gtcacctcat	tgaggctcc	240
cctctctgc	ctccctccac	cactttttt	ttttttgag	acagggtctt	gctgtgttgc	300
ccaggctgga	gtcagttggc	ctggcatgg	catcaagct	cactgcagcc	tggacctcct	360
ggttcaagt	atcccttctgt	ctcagttccc	tgagacaatc	ccccacgccc	agctacatat	420
tttttggaa	tacagggtct	cattctgntg	cctagcttgt	ctggaaactcc	tggctcaag	480
ggatcttgg	gccttaacc	tnctaaagt	cttgggaata	taggcatgag	tcactggacc	540
ttgggnccga	ccacctaann	ggccgaattt	cagcacaatt	ggccggccgg	tacttagggg	600
annccaactt	tgggaccaac	ntgggnnaa	tcatggccn	aactggttnc	cng	653

<210> 615

<211> 676

<212> DNA

<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(676)
<223> n = A,T,C or G

<400> 615
acatgtgaag atttttggc agcttagcgt gaaaaccatt gatcaccctg ctctcattc      60
tacctgttct gtgttggcaa gggagagtgc ccaaatacgac aagatatcgc agcaaaacag    120
caactccagggt gtgaacggaa ttagtggat ccatacccaag gcacatgcc a cggcttaca    180
gcagggttctt cagctgggtc ctgctggccc tgggggagga ggcaaaagctg tggctccag    240
caaggcagagc aaaaagagtt cgcccatgga tcgaaacagt gacgaagtat cggcaacgcc    300
gagagagggaa caacatggct gtgaaaaaga gcccggttga aaagcaagca gaaaggcaca    360
gacacactgn agagagtcaa tcagctcaa gaagagaatg aacgggttga aagcaaaaat    420
caaattgcgt accnanggat taagtgtacn gaagcatgcc aacgccttag ctnatggcc    480
tggctnctat cagcttggaa acccnnaagn accagtttt ccangaatcc ccagaccgaa    540
ngggncnccaag gggncnccaacg ttcgggactt gaaangggaa aaaaacttg gancttggca   600
aggacttggg cttnccnaat tggancgan cccaanggat gaanaacccc ttcaagaaaa    660
ccagcttcct ttctng                                676

<210> 616
<211> 694
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(694)
<223> n = A,T,C or G

<400> 616
ggtaaccttct agatcttggc gttgatatga atgaacccaa tgccttatggc aatacaccc 60
ttcatgttagc ctgttataat ggacaagatg ttgttagtggaa tgaacttata gactgtggc 120
ctattgtgaa tcaaaaagaat gaaaaaggat ttactcctt gcactttgtc gctgcataa 180
cacatggagc attgtgtta gagctttagt ttggcaatgg ggccgatgtc aatatgaaga 240
gtaaaagatgg gaaaacccca ctacacatga ctgttcttcc cggtagattc tcccgatcac 300
aaaccattat ccagagtggc gctgtatcg actgtgagga taagaatggc aataccctt 360
tgcacatagc aacacggat ggcattttttt ctgttgcattt acacttctt ataccagtgg 420
gtgtgtgaccc ttgcaannc gtgggcatac ctggatgg ttcccccttc cattttggca 480
agcccttaaa ccggntttt caagaattac tggcnnaaaa accttcnttc ttttanggaa 540
ttnganattt gaaanccccc aanggaattt tggccnggac cttgggntaa catgcccattt 600
gnnacttggc agggnaattt gggaaangggc tnaaacctt tnggngnnaaa cctggggccn 660
aacntttatt aaaangggcc caatttnggg gaan                                694

<210> 617
<211> 554
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(554)
<223> n = A,T,C or G

```

<400> 617

cgaggtaccc	caaggaaag	atgaaaatt	ataaccaagc	ataatatagc	aaggactaac	60
ccctataacct	tctgcataat	gaattaacta	gaaataactt	tgcaaggaga	gccaaagcta	120
agaccccca	aaccagacga	gctacctaag	aacagctaa	agagcacacc	cgtctatgt	180
gcaaaatagt	ggtagattt	ataggttagag	gcgacaaacc	taccgagcct	ggtgatagct	240
ggttgtccaa	gatagaatct	tagttaact	ttaaatttgc	ccacagaacc	ctctaaatcc	300
ccttgnaaat	ttaactgtta	gtccaaagag	gaacagctct	ttggacacta	ggaaaaaacc	360
ttgttagagag	agtaaaaaat	ttaacaccca	tagttaggcct	aaaaagcagc	caccaattaa	420
gaaagcgttc	agactatatac	tattgcgcct	ggtttcaatt	tctatcgcta	tactttattt	480
ggtagaaaatg	ggtttggctt	aagggtggct	nggaagaag	gtggaatnng	aactgcccgg	540
gcngccgct	ngaa					554

<210> 618

<211> 305

<212> DNA

<213> Homo sapiens

<400> 618

acatgtgttc	acaagggtta	ctcctcaaaa	cccccagttc	tcactcatgt	ccccaaactca	60
aggctagaaa	acagcaagat	ggagaaataa	tgttctgtg	cgtccccacc	gtgacctgcc	120
tggcctcccc	tgtctcaggg	agcaggtcac	aggtcaccat	ggggattct	agccccact	180
ggggggatgt	tacaacacca	tgctggttat	tttggcggt	gtagttgtgg	ggggatgtgt	240
gtgtgcacgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgttc	tgtgacctcc	tgtccccatg	300
gtacc						305

<210> 619

<211> 604

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(604)

<223> n = A,T,C or G

<400> 619

acactctcat	agtcaactgaa	agtaatatac	actgacctgc	aaaagtca	tgggaagaca	60
taaaggacct	catcttttgt	tattatggg	tgaaaagaat	ctccatctgt	tccattaatc	120
atattgcact	tgtctgttat	ccaccagtca	agtgacgtt	tcccattcca	ttccacaatt	180
tttgtaaagt	taaggtact	gtcttcctca	gttagaaaaaa	catagtcctc	atcattagtc	240
ccattttct	catagaatag	gccaaaatag	ggagagat	cgggcctgaa	aacatggata	300
agggacaaga	tttcatcttt	gtagccccag	agcaattcgt	caactgtgt	agtccacaaag	360
agttctgtct	gataggcttt	caacatggcc	tcgatgatct	ccctgaggaa	gtgcacctgg	420
gaccactcta	tgacagtcaa	tacaggaata	ttaatggtc	taattaagtn	aaatttaag	480
ggctncaaca	gattgggtct	cgttcaaaaac	cataggcctt	gtgctaaca	gcaganattg	540
gtggttcatt	atctncaaat	ggaaaatng	cttgggtct	ggagtnctg	naagggtatg	600
gncc						604

<210> 620

<211> 571

<212> DNA

<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(571)
<223> n = A,T,C or G

<400> 620
ggtaactgtga acatgacttt cagatgctct ttgccccttg ctgtcatcag tgtggtaat      60
tcatcattgg ccgagttatc aaagccatga ataacagctg gcatccggag tgcttccgct      120
gtgacctctg ccaggaagt ctggcagata tcgggtttgt caagaatgtc gggagacacc      180
tgtgtcgccc ctgtcataat cgtgagaaaag ccagaggcct tggaaatac atctgccaga      240
aatgccatgc tatcatcgat gaggcagctc tgatattcaa gaacgacccc taccatccag      300
accatttcaa ctgcgccaac tgcgggaagg agctgactgc cgatgcacgg gaaactgaaag      360
ggggaaactat actgncttc atgcgatcat aaaatggggg tcccattgng gtgcttgca      420
cgccccatcaa ggcgctgtga cctatggcaa catgcatgtg gacatttggt gnncagtgtaa     480
aacctntga atgcataataa gaagctgcgn ttggactatt accgtntggg ngtgtcctgaa     540
tcggntnaag ggaggctgtn taaagcggng g                                571

<210> 621
<211> 581
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(581)
<223> n = A,T,C or G

<400> 621
acattcggcc tgagggccag gacagtgttt tctcctggac ggacctgctg ctgaagaata      60
attctgagct gcttaacaac ctggcaact tcatcaacag agctggatg tttgtgtcta      120
agttctttgg gggctatgtg cctgagatgg tgctcacccc ttagatgtcag cgcctgctgg      180
cccatgtcac cctggagctc cagcaacttcc accagctact tgagaaggtt cggatccggg      240
atgccttgcg cagtatcctc accatatctc gacatggcaa ccaatataattt caggtgaatg      300
agcccttggaa gcgattaaa ggcagtgagg ctgacaggca acgggcagga acagtgactg      360
gcttggcagt gaatatagt gccttgcctt ctgcgtatc caccttacat gcccacggta      420
gtgcccatac agcccaactgc actccactca gctgagtttac ngntgacaac ttctgngacc      480
ttggccggac acctaaggca atcaccatgg cgcgtctang gaccactcga ccacttgcga      540
acatggcnat ggtctgngaa tgnccgtaat tccnccanntc a                                581

<210> 622
<211> 644
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(644)
<223> n = A,T,C or G

<400> 622
actgtttacc agatcttgc agatgagggtg cttggttcag gccagtttg catcgtttat      60
ggagaatttg caccatcctg ggattgtaaa cctggaatgt atgtttgaaa ccccagaacg      120

```

agtctttgt	gtaatggaaa	agctgcatttgc	agatatgttgc	gaaatgatttc	tatccagtga	180
gaaaagtgcg	cttcagaacg	aattactaaa	ttcatggtca	cacagatact	tgttgctttg	240
aggaatctgc	attttaagaa	tattgtgcac	tgtgatttaa	agccagaaaa	tgtgctgctt	300
gcatcagcag	agccattcc	tcaggtgaag	ctgtgtgact	ttggatttgc	acgcatcatt	360
ggtaaaaagt	cattcaggag	atctgtggta	ggaacttcag	catacttacc	cctgaagttc	420
ttcnngagcca	angtacaacc	gntccctana	tatgtggnc	gtgggagttt	taatcttatgt	480
gagcctnaat	ggcacatttc	ctttaatgng	gatgaagatt	taatgnccaa	tccaaaaggc	540
tgganttagt	naccctngc	cgacccccctt	angggaaatt	ccannnnntt	ggggggccgt	600
tctaagggn	nccancttgg	gcccaacntg	ggggaaancat	ggcn		644

<210> 623
<211> 662
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(662)
<223> n = A,T,C or G

<400> 623

acaaaagagct	actccataaa	ttacatcttgc	ccaagggtggg	agattgcatttgc	ggagactccg	60
gtgacaaacc	cttaaggcgc	aataatagct	atacttccta	taccatggca	atatgtggca	120
tgccctcttgc	ttcattccgt	gccaaagaag	gtgaacagaa	ggcgaagaa	atggagaagc	180
tgacatggcc	taatgcggac	tccaaagaagc	gaattcgaat	ggacagttac	accagttact	240
gcaatgtgt	gtctgacattt	cactcagcat	ctgagataga	catgagtttc	aaggcagaga	300
tgggtcttagg	tgacagaaaa	gaaagtaat	gggcctctta	gaagaatggt	atgaccagga	360
taagcctgaa	gtctctctcc	tctttcagtt	cctgcaganc	cttacagcct	gctttgggtc	420
attcgcccat	ggtggcaatg	acgttaagcc	tgcattttgg	gcctctgggt	gctttatatt	480
tgggttatga	cccnngagan	gttcttcaaa	agtggcaaca	ccaatattgg	nttctactct	540
antggngggg	gttgggatct	gnngttggc	tgtggggttt	ggggaaaaaaa	aagttttccc	600
naccttgggg	aaaggatttgc	ccnccgttac	accctttaag	gtttngtat	ttgactnngna	660
tn						662

<210> 624
<211> 682
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(682)
<223> n = A,T,C or G

<400> 624

acaccaagca	tgggacttttgc	aaataccaga	cagactgtgc	ccctaataat	ggttacttttgc	60
tgatcccttt	gtatgataag	ggggatttca	ttctgttgc	tgagcctccc	ctagggtgg	120
gttttggcc	gacgaccgtg	gagctccatg	tggatggagt	cagtgcacatc	tgcacaaagg	180
gtggggacat	caactttgtc	ttcactgggt	tctctgtgaa	tggcaaggc	ctnagcaaag	240
ggcagccctt	gggtccctgcg	ggagttcang	tgtctctgag	aaacactggg	acccgaagca	300
aagatccagt	ncacagttac	acagnctgcg	gaaagtttgc	attttttaaa	gttctgcctg	360
gagaatatna	aaatccctngt	actcatccaa	cctggggcgt	tgaaagaagc	aagcaccacn	420
gtncctngt	accaactcca	atgccaatgn	cggnccgttcc	ccttcatagt	tgctggnnnta	480

WO 99/64576

PCT/IB99/01062

ccaatngtgg tcttggcntn tgtcccnaaa ttgatnggn gaagccccctt gtaanggcc	540
taaagttn tntncnttt cttcttntt ttcctnnang aaggaaanncc ttgggttnca	600
ntggntnacc tgngcctggg gttcaancc nnataccnan nntcttgggg tattngcct	660
accggtntc nnaaaaanat gg	682

<210> 625
<211> 502
<212> DNA
<213> Homo sapiens

<400> 625

acatttcctt gtgactctg ttaatttcct gcagctcccg gttgggtctg gagcagatga	60
tctcaatgag agagtccctcg tcggccc gccccttcat ggaagctttt agctcagagg	120
cgtcatactg agcagggtgtc ttcaataggc ocaaaaatcac cgtctccagg tggccagata	180
aggctgactt cagtgtctgat gcaaggttctt ttttggctct tctctggtag gccaaggcaa	240
tatcctgtct ctgtgcattt ctgcgttgg tcaaaaatgtt gacaatggtg acctcatcca	300
caccttttgtt cttgatggct gttcaatgtt tcaaaagcatc ccgcctcagca tcaaaggtag	360
tataggcttt gacagaccca tatgcaatttgg taggggtgttag aagtgtatcac ccttcaagct	420
gagttgcac aggaatttcg tgaacagtagt acattttggaa ggaactgggc ccgtgcgcgg	480
aagagctgaa aaccgtccca cc	502

<210> 626
<211> 935
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(935)
<223> n = A,T,C or G

<400> 626

acattccatca aagaggaatt tgcacccaa ggcacatgtgc ttttcagtgg aaaggaagga	60
gggaaacctc taaggccgca cggggggccc acggagctag cacgtggcg ggactgaagg	120
ctagatgtcg ggattggagg ggggaactag agatgactt aaggcaggaa catctgtacc	180
ttcgccgcgc ganccacgccc taaggccgaa attcagcac actggccggg cccgttacct	240
aagtggaaat cccgaagctt cgggtaccca aagcccttgg gccgtaaaat caattgggtc	300
caattaagcc ttggntttc ctttgggggg tggnaaaaat ttgggtttaa ttcccggtt	360
tcaaccaaan tttcccaac canccaaacc antttancn aaaacccccc gggaaaaggc	420
cnttttaaaa aggttggta aaaaaggnc ctttgggggg ggttngggcc cttaaaatttgc	480
gaaantttgg aaaccctttaa aaccntttaa nccatttta aaattttggc ccgttttggc	540
ccgcctttta aactttggc ccccnnggtt ttttcccaa agttcccggg gaaaaaaanc	600
cttgggtnc nttggncncc aacnttggc cantttaaaa ttggnaaatt cnngggcnccn	660
aaacggcccc ccgggggnna aaaaaaggcc cnnggtttt gccgtaant tnngggcccc	720
cttttttttc cggcttttc ctttgggtt tnaacttggaa acttccnnttt tgggncttgc	780
gggnccnntt cgggttttgc cggncaaaac cggggatntc aagntttanc ttcaaaagg	840
ccggaaata ncngggttt cccccngaaa tccgggggnna aaacccccgg gaaaaaaacct	900
ttttggacca aaaggccnc naaangggccc ggaan	935

<210> 627
<211> 680
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(680)
<223> n = A,T,C or G

    <400> 627
ggtaccacaa ctcccaggat tttcctggat caaaccttgt atctcttctg caagtattgt      60
gtatatttgtt ctgagagacg tggacccctcc tgaacattt attttaaga actatgatat     120
ccagtatTTT tccatgagag atattgatecg acttggatc cagaagggtca tggAACGAAC     180
atTTGATCTG ctgattggca agagacAAAG accaatccat ttgagTTTG atattgatgc     240
atTTGACCT acactgactc cagccacagg aactcctgtt gtcgggggac taacctatcg     300
agaaggcatg tatattgctg aggaataaca caatacaggg ttgctatcg cactggatct     360
tggtaaaagt caatcctnag ttggccacct nagaggaaga ngccaagact acagctaacc     420
tggcagtaga tgnantgct tcaagctttt gggcagacca ganaaaaggan ggcntattgg     480
ctattgaccc actttctant tccaagttan cccgaaggaa tccgaaaatc nagcccctgt     540
gganaaaattt tggggaaact tggcnctgn ctggTTTacc aacagggct ttcccnaaat     600
tttangcc ttnggggggn ttnanngaaa ccctaaaggg gtnnnctggg gccaaaaccg     660
gccttaanng gnnaaacttt                                         680

    <210> 628
    <211> 637
    <212> DNA
    <213> Homo sapiens

    <220>
    <221> misc_feature
    <222> (1)...(637)
    <223> n = A,T,C or G

    <400> 628
actttaggg tggaggtgtc ggtcaaagac cttctttatg atatcaagaa atagacatgt      60
aacaaccatg aggattatgg caaaccAAAGC agaaccactt gacaggagct gaataaacac     120
aaaatacata ttctgggagc ccaaaaaatgg ccagagaatc cctccataaa acaaggaaaa     180
tacaaaataa aaataataag atccccaggt aacgagatgg ttgatccaag tccaaaaatg     240
agtttccaga gccatctta ctgtgactgt aataaccatg actgtgaaga ccaaagtgcc     300
aaatgtccag tttccaaaca tctggcattt ccaaggcagag atgtatctt ccctattagt     360
aaataggatc naaaaagaaa ataaaggcat gactgaaccc aggatggtcc aataaagaaa     420
tggTTTAATA cttaagaagg cggTTTact aatggctcga taaaggtggc ttaatttgg     480
acacatgaag gnctacatgc ttgttccaaa agactnttn tcnnaattgg tngggaaagta     540
aaccatTTT ggttaaagtC agggnccttg gccggaccn cttanggcga attccnnccn     600
ctggggccg tcttagggga ncaacttggg cccaaact                                         637

    <210> 629
    <211> 446
    <212> DNA
    <213> Homo sapiens

    <220>
    <221> misc_feature
    <222> (1)...(446)
    <223> n = A,T,C or G

```

<400> 629

acttctcatg tccatggta atgaaaggca gccatttgtt ttgcgtgtg ctgttctcta	60
ttgtttccag tgtttcttgt ataaaaacca aaaaggacaa ggagaaaatcg tgtcaacact	120
tttacctct accattgatg caacaggtaa ttcagttca gctggccagt tattatgtgg	180
aggtttgttt tctactgatt cacttcaaa ctgggtgtgt gctgtggccc ttgcccattgc	240
gttgcagaa aatgccaccc agaaagaaca gttgctcagg gttcaacttg ctacaagttat	300
tggcaaccct ncagtttctt tacttcaaca gtgcaccaat attcttcac agggtgataa	360
agatcgacag acggggaaac naaatacnaa ccaagaagtg gattattaat ggtgcttgg	420
accttggncg ngancaccc anggccc	446

<210> 630

<211> 635

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(635)

<223> n = A,T,C or G

<400> 630

actagatatt gtgcctgcaa gtcataaaaa aaaaaaaaaaaa aaaagaaaaaa aatgaaagaa	60
tgcctttccc cttagacaaa aagaattact ttttcattt ttctaaaaaa aagaggaaaa	120
gttataacac gaaacctaaa ttgacttgca aaggaatacc atgtaacaaa tggcttgaag	180
tagtctatca aaaaattggg gagatttta ttaatagtg agtcagcaag gcatttttg	240
ttgtttaaaa aaaaatctcat ttcccttacag aacagttt tagttttaa tgaacttgc	300
aacnaaaaag ctcccatttc aaaataaaaa cnnaatccca gatcatatta atgnntacng	360
ggggtaccc tatctaagca acatacntac ctgttcagtt gtaaganggt aactaaattt	420
ctgngaccaa natgcnntt ttttaatacc cngaacnntt ttgaggtaat gcnnnaatcct	480
aangggaaac tagnngnccc taagnnttct taagcnntcc tttaaaaagcn gggattnta	540
gccccattaa ccggccnagn tttntatgc ctaaancctg gaantttggn gntnccattaa	600
atgggttgna acaaaaanccc ccnnttnaaa ngttn	635

<210> 631

<211> 694

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(694)

<223> n = A,T,C or G

<400> 631

actcatctta tactgaaaga acgtgggtgc tctaaatatg aagctgc当地 gaagtggaaat	60
ttacctgccc ttactatagc ttggctgttg gagactgcta gaacggaaa gagagcagac	120
gaaagccatt ttctgattga aaattcaact aaaaagaaac gaagtttggaa aacagaaaata	180
acaaatggaa tcaatctaaa ttcaagatact gcagagcatc ctggcacacg cctgcaaact	240
cacagaaaaa cccgtcgta cacctttaga tatgaaccgc ttccagagta aagcttccg	300
tgctgnggct nacaacatgc cagacaggc gcaacccccc agcagtagga caaccacttn	360
agaaggagcc ctggatcac ac cattcaaaat tctqntccan ggccaactct	420
ttaagcctt ctttgatgtg aaagatgccc tttcagnctt tggnaacttc cagaacgttc	480
caanccacn gaaaaaggaa aacccggta ccttngccgg gaaccccccct taagggcga	540

aattccannn cacttgggg gnccgttnct aaaggggatc ccaaacttng ggnccaaan	600
nttgggggga aancangggg ccanaaanng gntcccctgg gggnaaaaat ggntatnccg	660
gttcnaaaaan ttccccccn aanatttngg ggcn	694
<210> 632	
<211> 252	
<212> DNA	
<213> Homo sapiens	
<400> 632	
acggccatct tccagctgct tgcctgcaaa gatgagcctc tgctggtcgg gggaaatgcc	60
tcccttatcc tggatcttgg cttcacatt ttcgatggtg tcactgggct ccacctcaag	120
ggtgatggtc ttgccgtaa gggtttccac gaagatctgc attttgacct gtttagcggtat	180
accaggatcc tgccaatcac caaccacgtc caccacagg gacacaaaca agctcaccca	240
acaaagccaa cc	252
<210> 633	
<211> 631	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(631)	
<223> n = A,T,C or G	
<400> 633	
ggtaactgttg attcaacaac aaacctaataat ggggtatgag cttttgcata ccaatatgaa	60
tttgtcagca ctctgtaaaaa ctggccatca tttttcaat tcacaatttgc ctggatgtca	120
gggaacaata ggaagaagaa tgagcgtcaa ttttcatgtc ttcccttgc tcttcactgg	180
ccttccatag aagtatgtcag aaaaaaacaac agcaccatca accacacttc acaaacaatt	240
catgttggcc taagcttgc tcaacattca tatgacagaaa gatagaataa tgaaaaggaa	300
ctgctggcat cactttcccc ataataattac ataaaaatgg acagcacatt aaataaacat	360
tctgntatta atcattaaat atattaacac caaaaatcat gtataaaatt aggaaataaa	420
tgtcctgccc ggcgggnccg tcaagggccaa atncagnac tggcgggccc tctagtggat	480
ccnactcgga ccaacttggc gtaacatnngn catactgggt cctgggggaa atggtaatcc	540
nttacaantc ncacactnac anccggaaanc taaggggtaa acttgggtgc ctaagagng	600
nctacntnca ttaatgngtg gcncnttgcc c	631
<210> 634	
<211> 561	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(561)	
<223> n = A,T,C or G	
<400> 634	
gtgaaaattgg tgagtttgtt ggtgatttcc cggtgccctgc aatgaactcc tggtaaaatg	60
taggcgaggt tgaaaatgtt ctggacaga caggagattt cctgaagttt ggagataaac	120
acgtggtaga gactggggag taacacagtg aaagtgggaa gcttgggtgt gatccctggg	180

atcctggaaa	tgactggggc	tgaaatgtgg	gcgtggttgg	agagtagctg	ggacagacag	240
gagggtttgt	aagggcttgt	ggtgaagacg	tgagagagac	tggcgaggat	ctcaactgagg	300
tctctgactt	tctaggtgtt	tctggggtgt	gggagacata	caacagctga	aaactggaca	360
tagttggaca	gcactgggac	agaaaggaga	tcgtgatggg	tgggggtgac	tgtctattgt	420
gccaacagan	taccaaagt	atatcagacc	gtttgcttc	nttgaatggc	ctctggctnt	480
caaaagcgna	tggtangaca	ctcagagtat	tctnctaagc	nttgataata	cactgnttat	540
nctgcntgtc	tctanctgcn	c				561
<210>	635					
<211>	630					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(630)					
<223>	n = A,T,C or G					
<400>	635					
accgaggcgtg	ctaaagctgc	cagtcacaac	ccagcatgtc	aactggttcc	tcatgctctg	60
tttgggtgtgg	aaattcacat	gtgccctgac	actgaggaag	caattgccta	aaatcacttt	120
ccaataaacag	ctgataaaat	attttgcagg	tttgcatagc	aaggtttatt	tattaggtgg	180
ctattcaaaag	tttgcatagc	aaccacttaa	gcagaactaa	attaatattc	actgagcact	240
gtaacgatgg	aagagggctt	ttcctaaggg	ttgggttggg	agttgtgtt	ctgtgaaatt	300
aacatctctc	actcattgcc	aagattctct	gctaaaaat	attagtttc	tgtgctgggt	360
ccaaaatagc	aatttaagcn	aatgtatgtc	cagaatgaca	catgaacctn	ggacttnaggg	420
aacagtttccc	tgctgnngag	tacttgggc	gngaacacgc	ttanggcgaa	ttccacacac	480
tgccccgcgt	ctaanggatc	caactnggna	ccancttggc	aatcatggc	atactggttc	540
ctggggaaaa	tggtatccgt	tacaatcncn	cacntaccag	ccggaaccta	anngnnaaac	600
tgggggccta	atggngacta	cntcattant				630
<210>	636					
<211>	640					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(640)					
<223>	n = A,T,C or G					
<400>	636					
actccttattg	ccgcccagtgg	ggcctgtgg	atgagtgtgc	atggaggccc	tcctgtgctg	60
ggggaaatgag	cccagagaac	agcgaagtag	cttgctccct	gtgtccacct	gtgggtgtag	120
ccaggttatgg	ctctgcaccc	ctctgccctc	attactggc	cttagtggc	cagggctgcc	180
ctgagaagct	gctccaggcc	tgccagcagga	gtgggtcaga	cagaagtctc	ctcaattttt	240
gtctcagaag	tgaaaatctt	ggaaaccctg	caaacagaac	agggtcatgt	ttgcaggggt	300
gacggccctc	atctatgagg	aaaggtttt	gatcttgaat	gtggtctcag	gatatcctta	360
tcaganctt	nggtgggtgc	tcanaataag	gcangcattt	gangaaaaat	cttgggttct	420
cttacagtg	cccacttctt	acacaccctt	gaggcaagga	atgcttgc	acaagtacct	480
tggccggaa	cacgcttang	gccaattca	acacacttgc	cggccgtact	aaagggatcc	540
anctnggan	ccaaacttgg	ggaaacatgg	cnaaatggtt	ccntgggaa	atgnaatccg	600
ttcaattccc	nnaantntca	accggaacct	taaggtaan			640

<210> 637
 <211> 470
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(470)
 <223> n = A,T,C or G

<400> 637
 acctggtgac cttgaatgtg attaggactg ggagctccgt gaggccagag acctatgttc 60
 attagccta cataaaagac actcaataaa tagctggtaa aataacaat gaataaatac 120
 atatcatcaa gggttgggtt cagtagacag cagtgcctaa gctggcatcc gtcaggaagt 180
 gtgggcctt gtgtttgtat gctacacatg tctatggagg gccacttctt ctgtaaagtct 240
 gtggggcctc agcataccca ataggcagca agtttcagta tttcccagtt gtatgtccctc 300
 atgggtggggc tatgtctccc ccaccacgtc ccctctcatc aggctagact ttaacatcca 360
 tcaaatcatgt cttgagtctt gtccttcctt cttggcttan tcatgtgact acngatcaan 420
 atcntggcct aatggttaa gtgtncang tacctnngc cgggcccacg 470

<210> 638
 <211> 391
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(391)
 <223> n = A,T,C or G

<400> 638
 actggaacat caagttaat acaaataactc agaactaacc actgtccaaac aacagctaatt 60
 tagggagacg ctcatatcat ggctgcaagc tcagatgctg aatccccaaac cagagaagac 120
 ctttatacga aataaaagcccg cccaaagtctt cgcccttgctt tttgttacag agtatctcac 180
 taagtggccc aagttttttt ttgacattct ctcagtagtg gacctaaatc caaggggaggt 240
 agatctctac ctgcgaatcc tcataggctat tgattcagag ttggtggtac gtgatgtgg 300
 gcatacatca gaggaggcgtc gttagaaatc tctcataaaa gataccatga gggAACAGTG 360
 cattccaaat ctggtggaat catggnacct n 391

<210> 639
 <211> 329
 <212> DNA
 <213> Homo sapiens

<400> 639
 acatgctgac ccaccaggaa ctggcctccq atggggagat tgaaactaaa ctaattaagg 60
 gtgatattta taaaacaagg ggtgggtggac aatctgttca gtttaactgtat attgagactt 120
 taaagcaaga atcaccatc ggtagtcgaa aacgaagatc ttccacagta gcacctgccc 180
 aaccagatgg tgcagagtct gaatggaccg atgttagaaac aagggtttct gtggctgtgg 240
 agatgagagc aggatcccacg ctgggacactg gatatcagca tcacgcacaa cccaaAGCGCA 300
 aaaagccatg aactgacagt cccagtacc 329

WO 99/64576

PCT/IB99/01062

<210> 640

<211> 764

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(764)

<223> n = A,T,C or G

<400> 640

gcggccgagg tacttcacca tcactgactc catggacttg atcagccgcc gctggatgt	60
tccagtctca gcagtcttga cagccgtgtc aatgagcccc tcacgacccc ccatggcg	120
gaaaaagaac tcagtgggtg tgaggccggc tagtaggaa ttctccacaa agccacggc	180
ctcaggcccc tagtcattct ttagtgaatgt aggcagatgc cgggtgtca agccaaatgg	240
aatccgccttgc ccctcgacgt tctgctgtcc aacgacagcg atgacctggg agatgttaat	300
cttggAACCT ttagctccgg acacgaccat agacttgaag ttgttgnatt cagacaggga	360
tttctgaagc agaaggaacc agtctggct tgggcattcg gtaanaatgc gggcac	420
aatcttcaaa acgtctggnc cgcaaaaatgg ttcccctggg ggttgggct tccancntt	480
attgggtgggg gngcccttn ttggaaaggaa ccctctaatt aacggtcctt ggcttggc	540
ctttccttaa ataaggggtn ctngnaaagg gccctnggn aaaggncntt aaaaaaatcc	600
nccaatnggg agnnccccc aanggccccca atnngtnttg ganccattaa aanncccg	660
ggaaaaaaacc tttngncaa aaaccccnnt ttggggncct ttttaanaa aacccttggg	720
aatgggggaa ttnttnncc cccaaaanag gtttnaaaac ccgg	764

<210> 641

<211> 540

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(540)

<223> n = A,T,C or G

<400> 641

ggtagcgttag ccatgaacta catacagtga cgccctctaga aacgtggta gtgcaactga	60
ggaaggaatt tttaatctt ttttatatttttta attggcttaaa cttaaacatcg ccgcattgtgg	120
tttactgtatt ggatagcaca gcccctagagc ctgaagaaaag caaaccaaaag aacaccagct	180
gggtccccaaa cagaaggcag aaagggtaga accatccacc tcaactattc cagccccatc	240
agaaggcacc aggaacaggg caagagaaaa agcaaaaaac ccaccagcc catgaaaatt	300
cactcctcaa ccacccagca catcaaactg gaacaccaca ctatttcctg aaaaaatata	360
tttattttt ttagaccaag gagatata tatatagaac cagcacattt ccacatcctc	420
atatatatttttgg actgtaaaaa acttgttcgc aanttttaa agacantnaa ggcagctagc	480
gggttaagtaa aaactgggag gtatgaaaca gagaaggaga gctttantta tnaaaaaaaa	540

<210> 642

<211> 608

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (608)
 <223> n = A,T,C or G

<400> 642

ggtactagtg agaagaggga atatgcattg cagttcagca aagccgaaat tctgtgttga	60
acagatgtct gtctccctag tgtgtgactc acaccttgc gctgccttca gagcgccacc	120
tccagatcat atggggacac acaaccctg gatatgttc attgtcagat ttgtgtcttg	180
attttaagaa tggaaattgtg ggtatcttc cttttttta atgtatctt actgttgctt	240
gtcagtgttt acaaactagt gcgttgcacgg caccgtgtcc aagttttag aacccttgtt	300
agccagaccc aggtgtctg gtcacccgtt caccatcatg ctgtatgtt cccctgtctt	360
tccctcttct gctctcaaga caaaggtaa ttaaggacna agatgaagtc actgtaaact	420
aatctggcat tggtttttac ctccctttc ttttcagtg cagaaaatta aaagttangt	480
attaaagcac ccgtaaaaaa aaataactnt antacaaaana aaagcttgn caagcttnt	540
tttttnnnn tttttttt ttatcccc ggncaaaaaa gtttttnan tcaaantcaa	600
gggttnan	608

<210> 643

<211> 669

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (669)

<223> n = A,T,C or G

<400> 643

acagagtcat ttacatagat tatgttgtgc tttgtgttta ttctccacac ttctcagtc	60
tattctgtcc tggatgtttt tcccattttt ccaggcatt tagtccagg ccagactctg	120
ccaatatcac cagttcaaac agctccagg tccctgtggg tttcgtttt accatgcgtt	180
gcaggctggc ctttaaatcc ccatctttc atgacacccctt gaaaacctt accaatagtt	240
ttggctgtga catccacata ctgtccttggc cgaaagttag cagcataaag aggagtgcct	300
gttttaattt cagcattatc tggtatatta aagatttaa ctgtctgtt cggcggcaat	360
ccaagttccc ggtttttttt caatatggat gtagctttac gaaaacgtga tcaggtttt	420
cttctacaga cagggttgc attttttcat acaggtttcc ttttgcgtt tattttttaaga	480
catgacagtc ttgnacacta gaattatggt ttaagttcc tttgggnatta agagatatat	540
aacccttca aaacaatctg gtcctttttt aatntcaata atggaatgaa ttttctttttt	600
aaagggggaa atccacccnnt gcacctgctt tggnnntaan aaaatatggg taaacattna	660
cttccnntn	669

<210> 644

<211> 572

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (572)

<223> n = A,T,C or G

<400> 644

acaagctttt tttttttttt tttttttttt tttttttttt atattcacta ntngngacat	60
ntaactgctc aangatttct tgaatacggtt tttcaatttg ancctngtca cctttccctt	120

ttaanagcat ggcacatcgct	ttggncacaa ngacctntcc	aactttcct aagtcatgag	180
gctgaacgtc ttcaanattc	agggtcaatc cctnttctcc	aaacacctac aaaaagagtt	240
aaacgtaaac ctgttgttagg	ttacagttt tgcattata	ccaagttnat taatacncca	300
tgcaananaa tcatcaaaat	actttatttc ttgaaatga	gagatttaa natcaactgtt	360
agtccanaac aagactttag	tatagtctnt ttcaactgnat	ttccaaattc tcaatttca	420
caactgggt aattattacc agcnnactt	gnnaaaaaaa cnntcnaagg	tcacacttac	480
tgggaanagn caggacaana	ncataggccn ttgactntt	agtcctanaa tcccttgna	540
catacnctt taccttnaa	actgnngctt gg		572
<210>	645		
<211>	690		
<212>	DNA		
<213>	Homo sapiens		
<220>			
<221>	misc_feature		
<222>	(1)...(690)		
<223>	n = A,T,C or G		
<400>	645		
ttgtgagacc ctcttcattc	tgggttgtgc cttgaaccaa	cagcatcccc tggAACGCC	60
caagcaagac caaggcagat	actatgaggc aggccgcaca	gggcccataa caagaatttg	120
tgcagtcgaa tcagggtctgt	gggagaggcc ctatgtattc	cggattccca gggcttgctc	180
taattcttgt cgtctctgt	gcaccttggta gttagaagtat	cggcacacag cctcctgagc	240
ccagggctgg aagtagaact	cagctcgccg ctccctctct	gggttaccca ccacatca	300
cattgtcttg aggtccctgc	actgggactg aagccagtca	ttgatgaaac cctgagggtc	360
tctggccaaa cttAACATGA	actcccgctg agtcttcagc	tgggttatgg gtttctattg	420
gctcatggat cttgggtggct	aaagtaccaa tcttctggtg	gcccggcant gggacagcag	480
aaaaagaaat catcttgggg	cttcaaggn ggcattca	ttnaccatca atggcataaac	540
aagctggcct tttctnaac	atccgggtca acactgatga	cattgaataa nganaataagg	600
ttntggngc attaaccang	natggAACCN ctttagggact	ttgaaactta tcnntgagac	660
ttaanantn tgnggacatt	gccgaacncg		690
<210>	646		
<211>	770		
<212>	DNA		
<213>	Homo sapiens		
<220>			
<221>	misc_feature		
<222>	(1)...(770)		
<223>	n = A,T,C or G		
<400>	646		
cgaggtacat tccgctcacg	gatctcagct tccagatgg	ggatgaactg gaggcagtgc	60
ccaacatccc cctgggtgcc	gatgaggagc tggacgctt	gaagatcaag atctcccaga	120
tcaagagtga catccagaga	gagaagaggg cgaacaagg	cagcaaggct acggagaggc	180
tgaagaagaa gctgtcgag	caggagtca	tatgtctccc agcatggct	240
tcaggggtgca cagccgcaac	ggcaagagtt acacgttcc	gatctctct gactatgagc	300
gtgcagagtg gaggggagaa	catccggag cagcaagaaa	gaagtgttc anaaagctt	360
ctcccttgac atccgtga	gcttgcanaa tgcctgaccc	aacttcgtgt tggtgaaaac	420
ttccagaact tgncaacaag	catttccgc ttgaccatt	caatttaagg gaagaatgaa	480
tgaagtcttc cnngggctt	ttattgggt ttcttgaaat	ggtcattcan tccacttnaa	540

gcccnccttgg	gaattttaag	cccgagggtt	caaaatcttg	tanccttggc	ccnngggccgg	600
gccgggttcca	aaggggcgaa	atttccagcn	cacttggng	ggccggtaact	tannngggat	660
cccaacttcg	gnncccaacc	ttggngnnaa	ancatnggc	ctanctnggt	tccncggng	720
gaaaatggta	ttnccgttcc	aatttcccc	cannttnna	accggagctt		770
<210>	647					
<211>	454					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1) ... (454)					
<223>	n = A,T,C or G					
<400>	647					
acttggaaatc	ctccaggaag	ggcttcagga	cctgggttggg	gaagaccttc	atcaggatct	60
tgtgtttccg	cagctgggt	cgcataagaa	gcttgcctc	tgcactcaga	gccacattct	120
ggcagacgjc	tatcattcgg	ttgtcctgga	aaactgctgc	tatctcccgg	cggagaagcc	180
tgtatgaggcc	tatccctcc	tgtggggggc	tgggaggaga	tggcacgtat	cttccaagta	240
tgttctgaaa	attaaacagg	gtaacctatt	tttgcgttta	tttcaaactg	ctatattcat	300
ctatgtctag	ttaaaaaacaa	tttttgcgtt	attcacttac	ataatgttct	tatagtgata	360
ttttttccac	ttattccana	agtgttaggt	gattattcta	cacttctgn	gcccatattcta	420
tggagaataa	agatggcct	nggcgcgac	cacc			454
<210>	648					
<211>	532					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1) ... (532)					
<223>	n = A,T,C or G					
<400>	648					
ggtacatgtg	ggaaaaaac	ttaagtgtga	tgagtgtgg	aaggaattca	gtcagggcgc	60
tcatctacag	accatcaga	aagtccacgt	gatagagaaa	ccatacaa	atgtcaatg	120
tggaaaggt	ttcagtgcgt	gatcagca	taatgttcat	tgcaagg	tcc acacggcaga	180
gaaaccttat	aatttgagg	agtgtggag	ggccttcagt	caggcctc	atcttcagga	240
ccatcagaga	ctccacactg	gggagaagcc	attcaa	atgtcatgt	gtaagagctt	300
cagtccgaat	tcacatctc	aatcccatca	aagagttcat	acaggagaga	aaccatacaa	360
atgtgaggag	tgtgttaagg	gcttcatttgc	tagctcaat	ctttacattc	atcagagagt	420
ccacacagga	gaaaaaccct	ataaatgtga	ggaatgtgg	aaaggctta	gtcggnc	480
aagtcttcag	gcccatcagg	gagttcacac	tggagagaag	tcatacatat	gt	532
<210>	649					
<211>	493					
<212>	DNA					
<213>	Homo sapiens					
<400>	649					
ggtacaaaat	tgttggatt	tagctaata	aaaaacatag	taaatattt	caaaaacgtt	60

gataaacatta	ctcaagtac	acacatataa	caatgttagac	aggcttaac	aaagtttaca	120
aattgaaatt	atggagattt	cccaaataatga	atctaatacg	tcattgctga	gcattggatat	180
caatataaca	ttaagatct	tggatcaaataat	gttgtcccccg	agtcttctgc	aatccagtc	240
tcttagaaaat	tgtttctct	ctttgggaga	ttcagactca	gaggcagcca	gaggggacag	300
gtcaagagct	gaaataatca	cataactact	ctaattttct	tcattctatt	gactgtgtca	360
agttatagac	acagccaaag	tgttttctt	ctgcctctga	tgatttgaga	agatgaagaa	420
catgagcaat	ttctcattgc	ttaaagaaaa	acttggcaca	taagaggctg	agtgttagtag	480
agtatctgtc	ctg					493

<210> 650
<211> 693
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> (1)...(693)
<223> n = A,T,C or G
```

<400> 650

gagactttgg	atccttcctg	aggacgtgga	aaaaacttgc	tgctgagaag	gacatttga	60
aggttttgtt	ggctaaaaaa	gctgttctg	gaatcacccc	tagattttc	ttgaagactt	120
gaatttagatt	acagcgatgg	ggacacagaa	ggtcacccca	gctctgatat	ttgccatcac	180
agttgctaca	atcggtctt	tccaaattgg	ctacaacact	ggggcatca	atgctctgaa	240
gaagatcata	aaggaattta	tcaataaaac	tttgcacggac	aaggaaaatg	ccccaccctc	300
tgaggtgctg	ctcacgtctc	tctggncctt	ggctgtggcc	atattttccc	nccggggtat	360
gaacggnttc	ttttcccgcg	gactcttgc	caacccnntt	ggcaggcccc	attcaatgct	420
gaatggcaac	ctggtnctg	cactggtggc	tgctttattg	ggactgggtt	aaggaactta	480
ntccgggtgn	aatgcttgat	nccgggnccc	ttnggttaatt	gggcntttttn	tgnggactnt	540
tggnaaggt	ttgggnccca	tgtanccttg	ggccggnaac	acccttangg	gcnaanttcc	600
gcncacttgg	ccggggccgta	ctanagggaa	tcccaacttg	gnacccaacn	ttggggnaaa	660
catnggcana	actqqtccccc	qqqqqqaaaa	tqq			693

<210> 651
<211> 678
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> (1)...(678)
<223> n = A,T,C or G
```

<400> 651

ttttatgtga acccctttgn aaanatgggg gntngantgc ngagaaacca atggagttt	600
ngntgcnaaa aggtttttc ccgnaangta aaatttggaaat aantggcnat tgaggaccct	660
tgnnctgccc ggcggcnn	678

<210> 652
<211> 676
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(676)
<223> n = A,T,C or G

<400> 652

ggtacaagct tttttttttt tttttttttt tttttttgtg ttttaatgca ttttattttt	60
agacaaccta catgacatgt ttttcttaaa aacaatgcct ccactccaaa taaatcacag	120
tcaaaaataaa tgaagagctc aagatgacat cagtcccatt tgtcttaagt cctgggtgtg	180
tgtggatgac aagcagaagc cagttatgat gacaggtat agatccaaaa taattgcoac	240
atttgttaac atttttccat ttcttaaacc aatcatata tggggtcaca	300
ccatcctcac ggttagtccaa tagagcaacc atgccccatcg gattcatgtt ttcaccaata	360
aagaactggt aagttttga aatttagcaag ggatgtgtt gattttttt gcaacccctg	420
gcataaaaaag gttaactctt tctnggcctt ggtctttaag gttnccttg aatggattca	480
tgtaacctt gatgtaccct ggcccgcccg gccaaaggac ntgtaaaagn gcccccaatcc	540
acccganaan aaataagggg ttnttcgc gntanganc tccttggac ctttttaan	600
cttgccctgnn ggaaattaat ctggccnntt acctnggana atagaaaata nttnncccg	660
naaccttcaa ctccnn	676

<210> 653
<211> 468
<212> DNA
<213> Homo sapiens

<400> 653

tcgagcggcc ccgggcaggt actccagcat tggttatagt catggaaag gaaggtgtcc	60
acggaggcac acttacaacaa aagcatatg aactcgctt atacctgagg aggtctgatg	120
tgttaaggcgc ctctccccat ctacctagca actgtcttca tcaacaaccc taattatgtt	180
cacaatgcta ccaaactgtt gatggtagct aatttttctt tacctatattt ctaatgtcat	240
gattcctgtt tgccccatgg atcattttgtt tggtaaccac tggatgttac caacccttat	300
ctggcaacat aattgcagca caaatatgtt ttgcatgata ctttggaaatt gggggggagg	360
ggcatgccaa gttgggcattt actttgtttt agcaattaaat gggatattga ttactaaat	420
aagttaatat taaacaaggt gccgggttgc ccttggccgg gaacacgc	468

<210> 654
<211> 612
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(612)
<223> n = A,T,C or G

<400> 654

actgaagagc	ccatggatac	tacttctgca	gttatccatt	cagaaaattt	tcagacatgg	60
cttgatgctg	gtttaccaca	gaaaggtagtgc	gaaaaactag	atgaaaattt	cgttgcaggg	120
ctagttgcac	atagtgattt	agatgaaaga	gctattgaag	ctttaaaaga	attcaatgaa	180
gacgggtgcat	tggcagttct	tcaacagttt	aaagacagtg	atctctctca	tgttcagaac	240
aaaagtgcct	ttttatgtgg	agtcatgaag	acttacaggc	agagagaaaa	acaagggacc	300
aaagttagcag	attctagtaa	aggaccagat	gaggcaaaaa	ttaaggcact	cttggaaaga	360
acaggctaca	cacttgatgt	gaccactgga	cagaggaagt	atggaggacc	accttcagat	420
tccgtttatt	caggtcagca	gccttctgtt	ggcacctgag	atatttgtgg	ggaaagatcc	480
caagagatct	atttgaggat	gaacctgtn	cantaattt	agaaaacctn	gacctatatg	540
gggatcntcg	tctaattatg	ggatcccttc	actgggcttn	aataaangt	ntgccgttgg	600
caanttttg	nc					612

<210> 655

<211> 608

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(608)

<223> n = A,T,C or G

<400> 655

ggtaactttgt	cctggaggaa	gggcacgact	acacttcttc	caaggggcag	aacatggtgt	60
gcggcggcat	gggctgcaac	aatgattccc	tggtcagca	gatatttaac	gcggcgcagc	120
tggacaacta	tacccgaata	ggcttcgccc	cctcgctctg	gatcgacat	tatttcgact	180
gggtgaagcc	acagtcgtct	tgctgtcgag	tggacaatat	cactgaccag	ttctgcaatg	240
cttcagtggt	tgaccctgcc	tgcggtcgct	gcaggcctct	gactccggaa	ggcaaacaga	300
ggcctcaggg	gggagacttc	atgagatcc	tgcccatgtt	ccttcggat	aaccctaacc	360
ccaagtgtgg	caaaaaggggg	acatgctgcc	tatagtctgc	agttaacatc	ctccttggcc	420
atggcaccag	ggtcngaaacc	acgtactaca	atgaanccac	aggtggcaaa	atgttctcg	480
tgccttctgt	ggattaaact	gggaccatgg	cttgccttag	ncctttgcng	ncttaaccaa	540
cacttgattt	canttggag	taaatggcaa	gcctccagag	cncactgtnt	tgctgaggac	600
tccgcgcc						608

<210> 656

<211> 659

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(659)

<223> n = A,T,C or G

<400> 656

accaaactga	ccaaatggct	gcaagagggt	tagattattt	ctacccacaa	aattctgagc	60
caaattgata	atggcatca	ttagtgacat	ctcgccatga	tgataagaag	acatttcagc	120
cactgatcca	gctaattggg	caacctttac	ttctcgcttg	tcattccgtt	tgaagcaagt	180
aaacaaaacc	tttctctgac	ctggtttcaa	accatccacc	atagaaggaa	tagatctctc	240
gttatacgaa	tttgagaaca	agataagttc	cttgcgtatg	aagtcattat	atgtcagata	300
tgtggtagtt	tgtccataca	agtaatcctc	aggaagccca	agtaactttc	gttgtcttct	360

atcctccatg aaattagttt accattcctt tcgatcatct atctgtttt tgctaaaggc	420
caggctgata gcagcatcat cttcaggacc agaatattt aactggatac gatgtcttt	480
catatctgca aagtatctt acttcctttg atgtgctggt gcccaaacct ttgnaatatt	540
ggctttcat ttttatgatt gggagtagaa ctcttnact cttcaaattc aggaangctt	600
naaaaatgcct ttcttgcttg gtttagancc tttccatggg agtgataaat cctccgaaa	659
<210> 657	
<211> 676	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(676)	
<223> n = A,T,C or G	
<400> 657	
ggtacagaat tatataattc taacgcttaa atcatgtgaa agggttgctg ctgtcagcct	60
tgccttactgt gacttcaaac ccaaggagga actcttgc aagatgccc accctgtgat	120
cagaacctcc aaataactgcc atgagaaact agagggcagg tcttcataaa agccctttga	180
accccccctcc tgcctgtgt taggagatag ggttattggc ccctcactgc agctgccagc	240
acttggtcag tcactctcag ccatagcaact ttgttcaactg tccctgtgtca gaacactgag	300
ctccaccctt ttctgagaag ttattacagc cnagaaaatg tgggctgaaa aatgggtggg	360
ttcatggttt tggattaatg gatcttttg gatgggaaag actatatttt gggacctcat	420
ctttcccaag gatgaccagg aagctanaac ctgctaaaag gattcttgg aactgaaggg	480
tattaatacn aaccnnntca tggnggnatc ctnggaacct gccggaaaga agccnttgg	540
cccggttaat gcnccggc tnaacaagtc tgnntctgn ntntcacttc ancttgggc	600
ccttggaaatca nctggcnctg gtgnncagtt taactatgnc ttgnttggaaac ccctaaggcc	660
ttangcctta ccaaag	676
<210> 658	
<211> 646	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(646)	
<223> n = A,T,C or G	
<400> 658	
ggtacaatgg aacaaacaac aagaacacac ctgtctatgt gtcctcacca acctgggaga	60
atcacaatgc tggttttcc gctgctgggtt taaaagacat tcggtcctat cgctactggg	120
atgcagagaa gagaggattg gacctccagg gcttcctgaa tgatctggag aatgctctg	180
agtctccat tgggtcctc cacgcctgtg cacacaaccc aactggaaatt gacccaactc	240
cggagcagtg gaagcagatt gcttctgtca tgaagcacgg gtttctgttc cccttctttg	300
actcagccta tcaggccttc gcatctggaa acctggagag agatgcctgg gccattcgct	360
attttgtgtc tgaagcttcg agttcttcg tgcccatcct tctccaagaa cttcggctct	420
acaatgagag agtcnngaat ctgactgnngt gttggaaaag aacctgagaa catcctgcaa	480
gtcccttcca gatgagaaaa tcgtgccat tacttggtcc aatccccgg ccaaggagcc	540
cnaattgtgg ccagcacccnt ttaaacctga cttttggaa tggcnggtat ntgaaacatg	600
gttaccgatc tggcctgana ctgactnnngn ncnnntnaanc ctaaan	646

<210> 659
<211> 673
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(673)
<223> n = A,T,C or G

<400> 659

actgtgtcca acagctgaag	gaatttgagg ggaagacttt	agtgtcagtc accaaagaag	60
gcctggaact tccagaggat	gaagaagaga aaaagaagca	ggaagagaaaa aaaacaaaagt	120
ttgagaacct ctgcaaaatc	atgaaagaca tattggagaa	aaaagttgaa aaggtggttg	180
tgtcaaaccg attgggtgaca	tctccatgt gtattgtcac	aagcacatat ggctggacag	240
caaacatgga gcgaatcatg	aaagctcaag ccctaagaga	caactcaaca atgggttaca	300
tggcagcaaa gaaacacctg	gagataaacc ctgaccatc	cattatttag accttaagc	360
aaaaggcaga ggctgataag	aacgacaagt ctgtgaagga	tctggtcattc ttgctttatg	420
aaactgcgt cctgncttct	ggcttcagtc tggagatcc	cagacacatg ctaacaggat	480
ctcagggatg atcaaacttg	gtctggat tgatgaagat	gaccctactg ntgatgatcc	540
catgcttgc gnaactgaag	aatgcccnc cttgaagga	gataccaccc ctnacgcctg	600
ggaanaagtn actaactttg	gcttangat nnttacngt	cagaccttgg ncggaccccc	660
ttagggcnaa tcc			673

<210> 660

<211> 580
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(580)
<223> n = A,T,C or G

<400> 660

acaaaacgcc acattctcac	ttgtattggg agctgaaaaa	tggatcaca tggacgcagg	60
acggggaaca acacacactg	gggcctttcg ggagacagag	cgttaagaaa aacagctgat	120
gcatgctggg cttataacct	aggtgacggg ttgacaggtg	cagcaaacca ccatggcact	180
cgttacctt agtaacaaat	atacacatcc tgcccatata	ccccagaact tagaaacaga	240
acgaaacaaa agaaaacgag	aaagcaatag caaatcgcta	gcgggaaaac aaattttcaa	300
actcagaaaaa tgacagacca	attttgcct caaatcatgg	ttcttaaccc aggtgccata	360
aggtcaggat aaagaatttg	attacatatt gtaaataaga	catgcagcaa atgaccagaa	420
aaattattcc caacatatgt	gtgtcttcga attcaatggt	gacgctatct accgggacat	480
aacatttagt tccaaaggc	cgagtnncac aagactgncc	tnccatacta ataacnatga	540
aagccctacg ttgggttac	ctgctttnt ancagctggg		580

<210> 661

<211> 710
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(710)
 <223> n = A,T,C or G

<400> 661

ggtacatata	aatgaatctg	gtgttgggaa	aaccttcatc	tgaaacccac	agatgtctct	60
ggggcagatc	cccactgtcc	taccagttgc	cctagccccag	actctgagct	gctcacccgga	120
gtcattggga	aggaaaagtg	gagaatggc	aagtcttagag	tctcagaaac	tcccctgggg	180
gtttcacctg	ggccctggag	gaattcagct	cagcttcttc	ctaggtccaa	gccccccaca	240
ccttttcccc	aaccacagag	aacaagagt	tgttctgttc	tggggacacag	agaaggcgct	300
tcccaacttc	atactggcag	gagggtgagg	aggttcaactg	agctccccag	atctccact	360
gcggggagac	agaaacctgg	actctgcccc	acgctgtggc	cctggagggt	cccggttgnc	420
agttcttggt	gctctgtgtt	cccagaggca	agccggaggt	ttgaaagaaa	gaaacctggg	480
atgaaggggt	gctgggtata	aaccagaaaa	gggatnggg	tcctgnttcc	aangggaccc	540
cttggcctt	tcttctggcc	tttcctaagg	cccaggnctg	gggnntggnc	ccttggggccg	600
ngaaccacgc	ttaaggggccg	aaattccagc	acacttggcc	ggccgttacc	tagtgggatc	660
ccaactttgg	gtcccaaactt	tggcgtaat	catngggcct	aactntgtn		710

<210> 662

<211> 411

<212> DNA

<213> Homo sapiens

<400> 662

ccaaaatctg	aatgttcat	agtgtcctca	atgtccttca	ttccctggta	gacaaatcca	60
acatcaacccg	acagttggag	gtatacacaa	gcggaggtga	ccctgagagt	gtggctgggg	120
agtatggcgc	gcactccctc	tacaaaatgc	ttggttactt	cagectggc	gggcttctcc	180
gcctgcactc	cctgttagga	gattactacc	aggccatcaa	ggtgctggag	aacatcgaac	240
tgaacaagaa	gagtatgtat	tcccgtgtc	cagagtgcc	ggtcaccaca	tactattatg	300
ttgggtttgc	atattttagt	atgcgtcg	accaggatgc	catccgggtc	ttcgccaaca	360
tcctcctcta	catccagagg	accaagagca	tgttccagag	gaccacgtac	c	411

<210> 663

<211> 633

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(633)

<223> n = A,T,C or G

<400> 663

ggtaacttgg	tttaatgctc	gtcagcgaaa	agcctttctt	aatgcatta	tgcgatatgg	60
tatgccacct	caggatgctt	ttactaccca	gtggcttgta	agagacctgc	gaggcaaatc	120
agagaaaagag	ttcaaggcat	atgtctctt	tttcatgcgg	catttatgt	agccgggggc	180
agatggggct	gagacctttg	ctgatgggt	cccccgagaa	ggcctgtctc	gccagcatgt	240
cottactaga	attgggtta	tgtctttgat	tcgcaagaag	gttcaggagt	ttgaacatgt	300
taatgggcgc	tggagcatgc	ctgaactggc	tgaggtggag	gaaaacaaga	agatgtccca	360
qccagggtca	ccctcccaa	aactcctaca	ccctccactc	caggggacac	gcagcccaac	420
actcctgcac	ctgtccacct	gctgaagatg	gataaaatng	aaggaaaata	cctcaaagaa	480
ganagagctn	gaaggagaaa	aggaggtta	actacagccc	tgaactgcca	tatgactgc	540
ccggcggccg	tcaaaggcn	atcaaccatn	gcccgtnta	atggntcaac	tnggaccant	600
tgcnaacatg	cnaacttgc	ctgggaaatg	nnc			633

```

<210> 664
<211> 598
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(598)
<223> n = A,T,C or G

<400> 664
gcgtggcgcg gccccaggta ctgggtccaa atgctggaga agttacacaa ggctttgcag      60
ctgcgtcaaa atgtggactg accaaaaaagc agctggacag cacaatttggaa atccacccctg    120
tctgtgcaga ggtattcaca acattgtctg tgacccaagcg ctctggggca agcatcctcc    180
aggctggctg ctgagggttaa gcccaggatgtt ggtatgttgc gccaagactg caaaccactg    240
gctcgttcc gtgcggaaat ccaaggcgaa gttttctttaga gggttcttgg gctcttgca    300
cctcggtgtc ctgtgtttac cacccggcaag gcccccttgg atctctttgg ataggagttg    360
tgaatagaag cagcacatca cacttgggtc actgcagaac ttgaanttga cattggcagg    420
catcnaggat natccatgag tcaccatgtt nagccatgtt taggcgtatg acactgc当地    480
tatttacata ctttccttggg attcttatctc tggaaagttnn ggtgattttc tttttcatgg    540
naanattaan taaaactncat tatttgc当地 anntgttaat cntcagggtt tctgaagg    598

<210> 665
<211> 658
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(658)
<223> n = A,T,C or G

<400> 665
acccaaaagc agtgcaggac ctctgcagct ggagaatctg gagcctggct tggggaaaga      60
cgacgtcat tggcgcggcc gatggagca ccatcagctg gggcccatca ccgacccctt      120
ggaaactggg ctacaggat cacaaggccaa agtcttccac tgcagcccg gaggtgaaga    180
ctctgcatttgcatttctca gagccggctg ccatggctt ctcacactcc ttgggtatag    240
caagagatga aagtggaaact gagaaaggaaa agatcaagaa actgc当地 gagaa tacagcccc    300
aaaccctctg atgc当地 caga gactccttccg actccacacc tctcatggca gctgcatttcc    360
catgtgcact gggaccggaa agtcaaacna ggaattttaaa aaagccaaag tggacc当地    420
gggc当地 tattttaact tcctganggt ncgtttacc agtgc当地 cca cggttactac    480
cttttttctt ggttgc当地 ccaaggaccct tttttcttct taatggccaa ataaaaaacc    540
tgnttc当地 tggc当地 aaca nttctacca gagggccnaaa ccttttacca ttaagggggt    600
tttttcttct tctntctgaa acccttncca aaaactc当地 tccgattnnnngg    658

<210> 666
<211> 349
<212> DNA
<213> Homo sapiens

<400> 666
gcggcggcgg ggaaaggcagc gtgagcagcc ggaggatcgc ggagtccaa tgaaacggc      60

```

agccatggcc	ctccacagcc	cgcagtatat	ttttggagat	tttagccctg	atgaattcaa	120
tcaattcttt	gtgactcctc	gatcttcagt	tgagcttcct	ccatacagtg	gaacagttct	180
gtgtggcaca	caggctgtgg	ataaaactacc	tgtatggacaa	gaatatcaga	gaatttgagtt	240
tggtgtcgat	gaagtcatgg	aaccaggta	cactttgccg	agaacccccca	gctacagtat	300
ttcaagcaca	cttgaaccct	cagccccctga	atttatttctc	gggtgtacc		349

<210> 667
<211> 768
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> (1)...(768)
<223> n = A,T,C or G
```

<400> 667

ggggccgggg	tggaggcccc	ggactctgac	cctgccccctg	ctttcagcaa	ggccccccgc	60
agcgcggggc	actacgaact	gccgtgggtt	aaaaaatata	ggccagtaaa	gctgaatgaa	120
attgtcgaaa	atgaagacac	cgtgagcagg	ctagaggctt	ttgcaaggga	aggaaatgtg	180
cccaacatca	tcattgcggg	ccctccagga	accggcaaga	ccacaagcat	tctgtgctt	240
gccccggggc	tgctggccc	agcactcaaa	gatgccatgt	tgaaactcaa	tgcttcaaata	300
gacaggggca	ttgacgttgt	gaggaataaa	attaaaatgt	ttgctcaaca	aaaagtcaact	360
cttccaaagg	cccgacataa	gatcatcatt	cttggatgaa	acaagaacag	cattgaccgg	420
acggagcccc	agcaagccnt	tgaaggaaga	acccatggga	aaatctactt	ttaaaaacca	480
cttcgnnttc	gnccctttgc	nttgaaaatg	gtttnngga	ttaagaaaaca	attnagaagcc	540
ccaatttaan	tnccccgctt	ggggccaatc	ccnttccnng	taaccttgg	cccnngggccn	600
ggcccgggtt	cnaaaaanggg	ccnaaaaattt	ccaagcacca	cttgggnng	ggncggcgn	660
ncttaanggg	gatcccaaac	tttgggnacc	ccannccctt	nggcgnaaaa	ncaatgggccc	720
ataaaannggg	gttccccctqq	qqqnqnaaaaa	tqqqnattnc	cccccnenc		768

<210> 668
<211> 659
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> (1)...(659)
<223> n = A,T,C or G
```

<400> 668

ggtagcttat	cctctccaga	catttgcaat	tggcatggaa	gacagccccg	atttactggc	60
tgcttagaaaag	gtggcagatc	atatttggaaag	tgaacattat	gaagtccctt	ttaactctga	120
ggaaggcatt	caggctctgg	atgaagtcat	attttccctt	gaaacttatg	acattacaac	180
agttcggtct	tcaagttagta	tgtatttaat	ttccaagttat	attcggaaaga	acacagatag	240
cgtggtgatc	ttctctggag	aaggatcaga	tgaacttacg	cagggttaca	tatattttca	300
caaggcctcct	tctcctgaaa	aagccgagga	ggagaagtga	gaggcttctg	agggaaactct	360
atttgggttga	tgttctccgc	gcagatcgaa	ctactgctgc	ccatggtctt	gaactgagaa	420
gtccattttct	agaacatcgta	ntttcttnct	aatacttggc	tttgcuccag	aaatgagaaaa	480
ttccaagaat	gggatngaaa	aacattttct	gaganaaaacc	ntttgaggat	tccaatctga	540
taccaaagag	aatctttggc	gaccaaanaa	accttnatga	tnggaaacct	tngntaaaaa	600
tnctggtaa	aattnnnngga	atccttnact	tngggttnata	atccnqanqq	caaannccc	659

<210> 669
 <211> 409
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(409)
 <223> n = A,T,C or G

<400> 669

acgtgcggcg	gaaatgctcc	gctagcaatc	gcatcatcg	tgccaaggac	cacgcattca	60
tccagatgaa	cgtggccgag	gttacaagg	tcacaggcag	gtttaatggc	cagtttaaaa	120
cttatgtat	ctgcggggcc	attcgttagga	tgggtgagtc	agatgattcc	attctccgat	180
tggccaaggc	cgatggcatc	gtctcaaagt	aagttgggg	gctcacattt	gggcagatg	240
agtggactag	gactgctcca	gaggcggtgt	cttaacgttg	tcctttccc	ctgggtctag	300
gaactttga	ctggagagaa	tcacagatgt	ggaatatttg	tcataaataa	ataatgaana	360
aaaaannnnn	nnnnnnaaaa	aaaaaaactt	gtcctcgcc	ggaccacgc		409

<210> 670
 <211> 741
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(741)
 <223> n = A,T,C or G

<400> 670

accgctgtaa	gactgccaag	aagtcaagg	aggagattga	ctttcttcgt	tccaatccca	60
aatctggaa	tgttcatgt	gtcctcaatg	tccttcattc	cctggtagtc	aaatccaaaca	120
tcaaccgaca	gttggaggta	tacacaagcg	gaggtgaccc	tgagagtgtg	gctggggagt	180
atgggcggca	ctccctctac	aaaatgcttg	gttacttcag	cctggtcggg	cttctccgcc	240
tgcactccct	gttagagat	tactaccagg	ccatcaaggt	gctggagaac	atcgaactga	300
acaagaagag	tatgtattcc	cgtgtgccag	aatgccaggt	caccacatac	tattatgttg	360
gggtttgcat	atttgatgt	gcgtcggtac	caggatgcca	tcgggtttc	gccaacatcc	420
tnctctacat	ccagaggacc	nagaagcatg	ttncagaagg	acccacgtac	cttggccgn	480
gaccacgcct	aaggccaaa	attncaacac	actggccng	ncggttacct	aagtggaaatc	540
cnaaccttcg	gnanccaaag	cttggccgt	naatccatng	ggccataaagc	ttgggtccct	600
gggggggaaa	attggtaatn	ccggttcacn	aattccccca	ccaacnttcc	naaaccgggn	660
aagcctttaa	agngttnaaa	accntgggg	tggccnnaaa	ggggggggac	ctnaacttnc	720
atttaaatng	gggttggccn	c				741

<210> 671
 <211> 699
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(699)

<223> n = A,T,C or G

<400> 671

ggtagcagcag	gaattacaac	tactacctca	ccgagaactc	ctccaccact	gactgttcag	60
gatcccttat	gtcctgcagt	ttgtccctta	gaagaattat	ctccagatag	tattgtatgc	120
catacgttt	atttgaaac	tattccccat	ccaaacatag	aacagactat	tcaccaagtt	180
tcttttagact	tggattcatt	agcagaaagt	cctgaatcag	attttatgtc	tgctgtgaat	240
gagtttggtaa	tagaagaaaa	tttgtcgtct	cctaattccta	taagtatgcc	acaaagccca	300
aaaatgtatgg	gtggaatcac	tttatttcata	agttatcaat	gcgatagaca	gtagacgaat	360
gcagggatca	aatgtatgtg	gtaaggaggg	attttggaga	tcataacttct	ctgaatgtcc	420
agttggaaag	atgttagatgt	tttgcggcaag	actctcactt	cagtatacca	accattaagg	480
aagaccttgg	cacttttaga	accattgtac	ctggccgggc	cggccgggttc	naaangcccg	540
aanttccagc	acacttggcn	ggccgtact	tagtggatt	ccgagcttcg	ggacccaagc	600
nttggcggtta	atcatngggc	catagctgtt	tcccnngngt	naaattggta	ttcccggttac	660
caattccccca	ccacnnttcc	ancccggnnaa	ccntaaagt			699

<210> 672

<211> 377

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(377)

<223> n = A,T,C or G

<400> 672

actgaagctg	aaatgcagga	agtgggtggca	aagggttattt	ccagagaagc	caggaagccg	60
gtcatcaccc	agcctctgag	agcagttaact	ggggtcaccc	aacctgactt	cctctgcccac	120
tccccgctgt	gtgactttgg	gcaagccaag	tgcctctctct	gaacctcagt	ttcctcatct	180
gaaaaatggg	aacaatgacg	tgcctacctc	ttagacatgt	tgtgaggaga	ctatgtatata	240
acatgtgtat	gtaaatcttc	atgtgattgt	catgtaaaggc	ttaacacagt	gggtggtgag	300
ttctgactaa	aggttacctg	ttgtcgtgtat	ctgaaaaaaaaa	aaannnnnaa	aaaaaaaaaac	360
ctngggccgn	accacgc					377

<210> 673

<211> 650

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(650)

<223> n = A,T,C or G

<400> 673

cgaggtaacctt	gattggacca	gatggtgagt	ttcttagatta	ttttggccag	aacaagagga	60
agggagaaat	agctgcttca	attgccacac	acatgaggcc	atacagaaaa	aagagctagc	120
caaagcagtg	ttgctggatg	cagtattctc	ttgctaagag	gaaggaaact	gtctcgatata	180
ggagcctata	taaatataaa	catatatacg	tgcactctac	agaatggcct	tcataccatg	240
agaacatttc	tgtttggat	ggggatgtta	cccttgcgtt	caacccaaat	tgattcttgg	300
aactgtaaag	attacaaccc	aaagtctccc	aggaagctgt	ggggagacca	gaggatcaag	360
ctgaagtgaa	accagtgaaa	aaccCACCTG	tggaaaggcat	ggcggggcca	ggcacaccag	420

tgcattcctg cctgcgaaca ggcctccaca actttgccgc ttttcatcg	480
gctaaatagc tgtggactg aattcacaga aaagaatnta tttccatagg ctcttgctgg	540
ctcttcgttga gtcttntct ttgagtctg gnggctatac cgncaatacg ggcttggcat	600
tanagtgtatg cttaactt agttccatac angattnctn tcgattgcta	650
<210> 674	
<211> 705	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(705)	
<223> n = A,T,C or G	
<400> 674	
ggtacaagct tttttttttt tttttttttt ggtgaaaaga tatatatata tatatattca	60
gaatttagcca gctgactca gtttagatga tcccaatttt gttggcaaca tccaaagcat	120
cgtaatcagg agccagtcga acatatgcct tcttcctcc atcaggccga atcagggtgt	180
tgaccttggc cacatcaatg tcatacagct ctgttacagc ctgtttaatc tggtgcttgt	240
tggcttaac atccacaatg aacacaagtg tgggttgc ttctatctt ttcattggcag	300
actcagtggc cagcggaaac ttgtatgatag catagtggc aagttgttt ctcttggag	360
cgctcttccg aggatatttg ggctgtctcc ggagtcgcag tgcgttgcgc cgccccgaagg	420
nggggtgacg tgccggatct tcttctttt ggggctgtgg accacccttc aacactgcct	480
ttttgggccc ttnaaagccc ttngcttgg cttagctt taggaaggcc ccaggaacct	540
tnccttnttc gctttcggc acctgccccg gccggggcgt tcnaaaaggc cnnaattttc	600
aacncacttg gcngggccgn tactaagggg atnccaanct ttggnancca ancttggcg	660
naaancttgg ggcnataact ggntcccg ngngnaaaa tgntt	705
<210> 675	
<211> 622	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(622)	
<223> n = A,T,C or G	
<400> 675	
ggtaccctaa ttttccttgc acccatgcct gtccaaatcg atgactctgg gaaacgccaa	60
acaggctgaa tcaatgtctt tttgtgggtt tttcttcca gattgtttt ttctcaccta	120
taaaaggatc tatctttaaa aataaaactgt attaaatctg taacatcaaa ggcagaaggt	180
ttgtgtgtgt gtgtgtgtgt gtgtgtgtat ctgtgtgttt aaatcaaggg gagattgcat	240
ttataaaatca tactggccctt atgaacatcc tctgcaataa atataacttt tagccttaac	300
tataaattat atattttagt gttaaaaac cttccgggtgt gaaacatcta agataaccct	360
taaaaaccac ctgttctcta ggttaaacctc tgaggccct actttcaaac accagttggc	420
accaaaggat tcctaaaactt caacttctt aaagaaaaaga aaggaactta tcattctggca	480
tgtgagaatg caaccctttc tcttnctgca cgcagctnca acacccactc atgcacacag	540
tggccacccct gctaaagtct gttgaacagc ctgcggcgcg tcaagngatc accactgcgc	600
gtctatgacc actcgacact gc	622
<210> 676	

<211> 620
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(620)
 <223> n = A,T,C or G

<400> 676

cgaggtgcac	aggcaccact	aataatcaga	cctgattctg	gaaaccctct	tgacactgtg	60
ttaaaggttt	tggagatttt	aggtaagaag	tttcctgtta	ctgagaactc	aaagggttac	120
aagttgctgc	cacccatatct	tagagttatt	caaggggatg	gagtagatat	taatacctta	180
caagagattt	tagaaggcat	gaaacaaaaaa	atgtggatgta	ttgaaaatat	tgccttcggt	240
tctgggtggag	gtttgctaca	gaagttggca	agagatctct	tgaattgttc	cttcaagtgt	300
agctatgttg	taactaatgg	ccttgggatt	aacgtcttca	aggaccagt	tgctgatccc	360
aacaaaaaggt	ccaaaaaaggg	ccgattatct	ttacatagga	cgccagcagg	gaatttggta	420
cactggaaaga	aggaaaaagga	gaccttgagg	aatatggtca	ggatcttcc	atctgcttca	480
gaatggcang	tgacaaaaagc	tatctttgtt	aaaaaaaaaa	aaaaacctgc	cgccgnegtc	540
aangccaatt	caccctgcgg	cgtctatgac	cactgnccac	tgcnatntgc	tactgtntctg	600
ggaatgatcg	tncatcncan					620

<210> 677

<211> 691

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(691)

<223> n = A,T,C or G

<400> 677

cgaggtactg	ggtccaaatg	ctggagaagt	tacacaaggc	tttgcagctg	cgctcaaatg	60
tggactgacc	aaaaagcgc	tggacagcac	aatttggaaatc	caccctgtct	gtgcagaggt	120
attcacaaca	ttgtctgtga	ccaagcgctc	tggggcaagc	atcctccagg	ctggctgctg	180
agtttaagcc	ccagttgtga	tgctgttgcc	aagactgcaa	accactggct	cgtttccgtg	240
cccaaatcca	aggcgaagtt	ttcttagaggg	ttcttgggct	cttggcacct	gcgtgtccctg	300
tgttttaccac	ccgccaagcc	cccttggatc	tcttggatag	gagttggtga	atagaagcag	360
gcagcatcac	actggggtca	ctgacagact	tgaactgaca	ttttggcaag	gcatcgaaag	420
gatgtattcc	atgaagtac	cagtcttaaa	cccatgtgg	aagccgggtga	tggaaaccact	480
gtttaaatcaa	ttttAACATG	aacctttcnt	gnngatttct	taatctcggt	gcaagtttt	540
aagggtgaat	ttttctttt	ctncatgggg	gtaatgattt	tnagatgaaa	acctttccag	600
ttgatttttg	tccaaancaa	tatgtttaa	atatccctcc	agggnntttt	ncttgaagga	660
aatttgtntct	ttgaggttt	agcttncgg	a			691

<210> 678

<211> 667

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(667)
<223> n = A,T,C or G

<400> 678

cgaggtactt gattggacca gatggtgagt ttctagatta ttttggccag aacaagagga	60
angggagaaa tagctgcttc aattgccaca cacatgaggc catacagaaa aaagagctag	120
ccaaaggcagt gttgtctggat gcagtattct cttgtctaaga ggaaggaaaac tgtctcgcat	180
aggagcctat ataaatataa acatatatac gtgcactcta cagaatggcc ttcataccat	240
gagaacattt ctgttttggta tggggatgtt acccttgcgt tcaacaaaaa ttgattcttg	300
gaactgtaaa gattacaacc caaatgttcc caggaagctg tggggagacc agaggatcaa	360
gctgaagtga aaccagtgaa gagcccacct gtggaaagga catggcgcccc cgaggcacaa	420
ncagtgcatt cctgcctgct aacagnctn cacacttgc cgcttcatac gcttgggct	480
tggtaataac tgtgactga atttccagaa aagaatntat ttcatagnt ttnttgctt	540
tcttgagtct tgtctttgag tcttgggnt aanacagtcn aatanggctt tgcnntcaag	600
tgancgttggaa cctaagttcc tntaangana tccttcnat gctatgaaag gaattttgtt	660
nggggaa	667

<210> 679

<211> 302
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(302)
<223> n = A,T,C or G

<400> 679

cgaggtactg atggggaaagt gccggcgctt ctggatgaa ctagatgcgg ttcagatgga	60
ctgagcttgg atgcctctga ggcaagctga agctttgggt tctgactgac ccaccctaca	120
ggactgctga acagagagcc cagtgtgact agggatctg agtttctgg gacaattcca	180
gctttaatca atacattttg ttaaatgtgc cataaaatga gacttttac gcctttataa	240
ggccttagat gtaaataaac tcacccaaac aaaaaaaaaaaa aaaanaaaaaaa aaaaaagctt	300
gt	302

<210> 680

<211> 649
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(649)
<223> n = A,T,C or G

<400> 680

ggtacgtgct cagggaaattt aaaaacaaaaa tcaaggaattt gaacaacaca tgtgaacccg	60
ttgttaacaca accggaaacca aaaaatttgaat caccctaaact ggaaagaact ccaaatggcc	120
caaataatttga taaaaaggaa gaagatttag aagacaaaaa caattttgggt gctgaaccc	180
cacatcagaa tgggtaatgtt tacccataatg agaaaaatttgc tttaaatatg gacttggact	240
agataaccc ttatggccattt attccttcaa ttaataaaat tttttgccca tagtatgtga	300
ctctacataa catactgaaa ctatattat ttctttttt aaggatattt agaaattttg	360
tgtattatgtt gggaaaaagaa aaaaagcttta agtctgttgtt ctatgtatc cttttttttt	420

aaattgcctt ggtaactttc agattcctgt ggaattgtga attcatacta agctttctgg	480
gcagtctcac cattgcata ctgaggatga aactgacttt gcncnttgga gaaaaaaaact	540
gtcctgcggg cgccgtcaa aggcaattca ccctgcggcg tntanggacc actnggacca	600
ctgggaantg gctactgtcc tggaatgtnc cgtccatccc aatcacccgg	649

<210> 681
<211> 722
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(722)
<223> n = A,T,C or G

<400> 681

cgaggtacca ccagagggaa agctggggcg gagggatttg ttctgttgtga cccgagatta	60
tgtgctgaag tctcgagac tggcaaaagc tggagggtgc aaacatttc aacttgctatc	120
ctctaaagga gctgataaat caagcaattt tttatatctt caagtttaagg gagaagtaga	180
agccaagggtt gaagaattaa aatttgcattt ttactctgtt ttttaggcctt gagttctgtt	240
atgtgatagg caagaatctc gcccaggtga atggctgggtt agaaagttct ttggctcctt	300
accagactct tggccagtg ggcattctgt gcctgtgggtt acccggtgggt tagagcaatg	360
ctgaacaatg tgggtgagac caagagacaa gcagatggaa ctgctggaga acaaggccat	420
ccatgacctg gggaaaagcg catggctctn tnaagccatg acccccattt gagaatggg	480
ttttattggc aacccttaca cccattaccc aaatcngnaa tttcanggtc taaaaaaaaag	540
tancctgtt ttaactttgg ngggttacta atccttaggc ttcanttcca atcaggaat	600
gatggggcct ntggattaag gggttcaaaa cccgggtttc ctttgann cttcggggncc	660
ntttggnaaa ataaaaattt gnnncctnt ttaacttga atnaaaaattt nggggggggc	720
cn	722

<210> 682
<211> 530
<212> DNA
<213> Homo sapiens

<400> 682

ggtaacttggc ttttagtttat caggggatgt gtaaggagct tcaggagcat aaatcctgaa	60
aatatcagca aggcaagcagg ctaccagtaa gcgaacatcc ttatcaggat gcttggggaa	120
aaaatctgaa gcaagatgtt aagctaggaa taaaataaaagc tccttttctt cttcagagtc	180
ctgggtccata tccataaaag ttttcacaac catctataca aaaataaaaa atcaaataat	240
gaaatgctcc atgtaaaact acagtcatgt gaaataaaagg tcatgttaat tgctaaggtt	300
aacctcaaat gaatataactt tcattttctt gcagaaaagtc tctatttgag agaacacaaat	360
tctcctaaaa ctacaaagta aacctctatt taaaagactt actaaaaat ttttcattt	420
acccaaaata tctgctaacc agattttaa agattaaatt gcccttatgt agtagtcatt	480
attggaagaa ttccaaataga atatttgcgg aaacttctgg tctcacttgc	530

<210> 683
<211> 745
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<222> (1)...(745)

<223> n = A,T,C or G

<400> 683

ggtaacctgtc	tttccttatt	ccctcatcct	tagtggatca	tttgttatctc	ctgccttatg	60
agaaccttt	gacagaagat	gagacaacca	tatctgatga	tgtggatatac	gctcggtatg	120
tcatatgtct	tataaaatgc	ctccggctga	ttgaagagtgc	agtaactgtg	gatatgtcag	180
ttataatgta	aatgagttgt	tataacctac	agtctccgga	aaaggctgca	gagcagattc	240
tggaagat	gatcaactatt	gatgtagaaa	atgtgatgga	ggatatttg	agtaaactgc	300
aagagattag	gaacccaatc	catgcaattt	gactacttat	acggaaatg	gattatgaaa	360
cagaagtgta	aatgaaaaag	ggattcaatc	cagctcacct	ttgaatattc	gaatgaatct	420
tacccagctc	tatgttagta	acacagcagg	gtatatttg	tgccagangg	gtgcattaaa	480
atccgcccgt	acctgcccng	gccggccgnt	cgaaanggcc	naattccac	acactggcg	540
ggccgttact	angggaaatc	ccaagcttt	gganccaagc	nttggncgta	atcatggcc	600
ataanctnng	tnccctgggn	ngaaaaatnng	taatccggtt	aacaattncc	cncccaactt	660
tcccnaccctg	gnaaccctta	aagggttaaa	aaccctgggg	gggncccaa	gggagggggc	720
cttaaaccttc	ccctttaat	tggcn				745

<210> 684

<211> 628

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(628)

<223> n = A,T,C or G

<400> 684

ggttggagac	ccgagaaccg	gaggctggag	agcaaaatcc	gggagcactt	ggagaagaag	60
gacccccagg	tcagagactg	gagccattac	ttcaagatca	tcgaggacct	gagggtctag	120
accttcgcaa	atactgtgta	caatgcccgc	atcggtctgc	agattgacaa	tgcccgcttt	180
gctgctgatg	acttttaggt	caagtatgag	acagagctgg	ccatgcgcca	gtctgtggag	240
aacgacatcc	atgggctccg	caaggtcatt	gatgacacca	atatcacacg	actgcagctg	300
gagacagaga	tcgaggctct	caaggaggag	ctgctcttca	tgaagaagaa	ccacgaagag	360
gaagtaaaag	gcctacaagc	ccagattgcc	agctctgggt	tgaccgtgga	ggttagatgcc	420
cccaaatctn	aggacctcgc	aagatcatgg	cagacattcc	ggcccaatata	gacaactggc	480
tcggagaac	cnagangact	ngacaagtcc	ttgcggccg	ncgtcnaagg	caattcacca	540
ctgnggcgtc	tatgatccac	tgnncactgg	gantgctact	gtctgaaatg	ttcgtnatcc	600
cactcacgac	tagnactggc	tagggata				628

<210> 685

<211> 758

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(758)

<223> n = A,T,C or G

<400> 685

gcgtgggtcg	cggcccgagg	tacggagcaa	atgttttatt	taataagtta	taagatacaa	60
------------	------------	------------	------------	------------	------------	----

tttacagtcg	gcgtttgatt	ccagtttngg	cttcgtgg	ccaacttaac	acaccccg	120
ggcccttcac	aataagctc	cggctggc	acttctgt	ngggggct	tttacccc	180
caactnccca	gatctacacc	tgccacaaga	ntggccactt	tctnaggact	aagcagcaa	240
acctaaggn	ctgcctgcca	gaccacacta	cacattgg	ctcaggcaac	gtccctgaca	300
ctttaacctc	attccaaagc	cagctcaggt	ctgcaggaag	gcagggaaaa	ttccctacac	360
ctcatttctg	gatttctgca	ccacacagnt	ctnactgg	ctgccccatgg	tgaaaagagacc	420
ccaataagct	gntggccctn	tttcccccaac	cattcccaac	tttnaggg	cc aanc	480
agaggttcaa	tctggcctgc	tggacctggc	cggcngggcc	ntnnnaangg	ccaaantcca	540
ncacaattgg	gnggncggta	ctaaagggga	acccaactt	gggnccaaac	tttggggnaa	600
acatggggnn	naannngggn	ccnnggggn	aaaatngnna	ncccnnttcc	aaatnccn	660
ccaanntt	naacc	cgaa	accttaaang	gnnaaaanc	cggggggcc	720
ggccnannnn	ccc	ntt	aaan	gggnngggc	caaagggggg	758

<210> 686
<211> 697
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(697)
<223> n = A,T,C or G

<400> 686

ggtacagatt	ggcggaat	tggagaaggt	tggccacagt	ccagagccag	gagcccatgg	60
aacaacttgg	aaggta	aggtagggct	gtcaatgagg	aatccc	tgctgg	120
aatgggtgcta	ggctgg	cattcagtt	gaagacactc	tccaccactg	acagctctgt	180
gctgggtgt	tccagg	ccac	agaaggcaca	ccagtcat	accaccatcc	240
cacctcactg	cctcggtt	ca	cagtccccgc	cacaaggggg	acttgaagaa	300
ctcatcctgg	tcttcaatt	tg	aagtcttgg	atgcaccagc	cctccctgat	360
acagtagctt	cctactag	ca	cctggtcggc	cactgctgtc	tgaagacttc	420
acatctgcca	gaatttctc	tgnctctgt	ccaa	gtggaccaag	gnacgt	480
catttcaagt	ggt	gacatt	ccaaagg	ttcaacc	gn	540
ttggtctgg	aagg	ttt	ccatgtgt	ggcc	ttgt	600
ctgcccggc	cgg	ccgtt	aagg	ccat	gg	660
ancttggnc	caact	ttgg	naanatggc	nnaacgn		697

<210> 687
<211> 668
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(668)
<223> n = A,T,C or G

<400> 687

acataataac	ctcatcaact	aactttaaa	ttaactgaat	ggctattat	tat	60
tcaataacc	tccattac	aatataa	gag	cacta	agg	120
aatttattt	atagg	aaa	aacactgat	tcaagtt	ggact	180
gtcctcc	taactgt	ca	cacaacaat	actagaact	attgtcag	240
ttagtccact	gttctt	c	ttctaccata	agg	tttag	300

tactgcataa atattctgaa gtcagactta ctctaaggca ttcttccttc agaatacagg	360
ctaaagcaga atttacaag ctactgcctc tttttttttt tttttttta ataaacacag	420
aacatttgn tcaaaccaa tctaactcag aagtgnaaat aatgnaagcc aatcactatt	480
aaaaggcnga atttcctaaa gggaaaanta ccatttaacc aaccttcta aagtaaacat	540
ccttccang ggactggga tttagnctt cacttgaagg cttcctggga cctggcggn	600
acccttangg cnattcancc atggggcggt tctanggnnc cacttggcc annttggnn	660
attnngcn	668
<210> 688	
<211> 375	
<212> DNA	
<213> Homo sapiens	
<400> 688	
acatcaattc agtgagaaaa ggtgttagg gagccataag tctgcaaaga gaaagcagaa	60
cactaaacaa ggtttctagg gccatgacac aatcctccat cccattttca ccctttaatc	120
ttctgcgggtt cattctaaca taccaattgg tcagaatatac tacaaacttg accaggcgag	180
gcaccacagt ataaagccta taagctgcc a tttagtctc aaagaagcca atgagagact	240
gcatgaagga caggatccac cggtctgtaa t gttggggct ttctctaacc gtgttctcat	300
tgttagagaaa ttcttatttct tcctccttct ggagcctcag aacgttctgg attaagaagc	360
gataggcatt gtacc	375
<210> 689	
<211> 582	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(582)	
<223> n = A,T,C or G	
<400> 689	
ggtaccaaaa gttaaatgac ttacctggc t gtttagaaa ctctctacct agaaagattt	60
ccattaccgt cagatgttag gagaggatct aacataggaa aggtcaccag ttgtcacaga	120
aaaagccaaa gaacttaggt ctatgcctt tttgcccactg acaaactaat aacaccctct	180
agacatcctc aagtccctt ctttgcctcag gaattttctt ctaccaggc ttttctacca	240
acttctctgt ataactacat cttaactcatc tttccaaagcc cgactcagtt gccccttcca	300
tctagaaaaac ttccagacc aaactatccc agcacatggt tatgatctct caaacctctg	360
tgtttccccca tccctgttgc ccgttaaatt ctgccacaag ctcagaccga ctctctattt	420
ggcttattttg tgtctaattcc attgagttct cctccaaagc agagatcatg cttcactcat	480
ttctgcatct ncaggacctt atgaatgaat gaatgtgtga attataagga ttactaaagc	540
cncaggccct gactcaaagc caggaccctt gtaggngctt gg	582
<210> 690	
<211> 812	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(812)	
<223> n = A,T,C or G	

<400> 690	
actaaagcgg atggaatgt cgtttggcct ggagtcaggc aaatgcttc tggaggatct	60
gaaacttgcg aaatccctgg tgccaaaggc tttagaaggt tatatacag atatctcac	120
aggaccttct tggtaaatc agggactact tctgaactct acccaatcag tttcaaattt	180
agacacctgacc actggtgcca ctttacccc gtcagaatgtt aaccaagggt tatgcttgg	240
tgcagaatgt gccttaacaa ctgggcagtt cttggcccc aacagtccacc agtccagcag	300
tgcggncnt nactgnntcg agtcccgaag cgaagacccc ctggctgttc aatgatgaan	360
atgaaggaan atgatgaagg agggatccc tncttcccaa gaattaaaga ccangaagaa	420
agcccttaccc tttcaaatat ggtgaatgcc tcaatgggtgt ggtttggtaa ntgggtgaag	480
cctcnnttggg tttttgaaa atggaattgg ctttcaagtc cttttggccc tttgggttg	540
gcacttgggg ngggtcaan ngaaaaaanc ttngnggaa aacnccccat ttaggccaa	600
attcnccatt gaaanggctt tgaaaaatgn atttggnaaa ttgnaaaagg ttnaaccctt	660
aanggggna attgnaaaan tnttggccc aaccngaacc ccntnnnaan gggntttnc	720
cccaannnaa agcctggcnt ttttgaggg gaaaaaanng ggggataaaa nccccttaaa	780
aaaatttgcg cnntnnnaag ngccaccntt tt	812
<210> 691	
<211> 691	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(691)	
<223> n = A,T,C or G	
<400> 691	
acctactata atacagttagc taacatgttat tgagcacaga tttttttgg taaaactgtg	60
aggagctagg atatatactt ggtgaaacaa accagtatgt tccctgttct cttgagcttc	120
gactcttctg tgctctattt ctgcgcactg cttttctac aggcatcaca tcaactccta	180
aggggtcctc tggattagt taagcagcta ttaaatcacc cgaagacact aatttacaga	240
agacacacaact cttcccccag tgatcactgt cataaccagt gcttaccgt atcccatcac	300
tgaggactga tgttgactga catcattta tcgtaataaa catgtggctc tattagctgc	360
aagcttacc aagtaattgg catgacatct gagcacagaa attaaggnaa aaaaccaaag	420
caaaacaaat acatggctg aaantaactt gatgccaagc ccaaggcact gatttctggg	480
natttgaact tangccaaat cagagctaca cagacgccta cagaagggttc aggaagangc	540
agaaggcctc aatttggaaag aaatttatttgc acacccaaagt aaggccgga tnaaccttta	600
ggcnnnttta nggagggcct tttaaaaagg ntcccttggcc ggaacncntt angngaaatt	660
ccanccnttgg gggccgtatt aagggacccg n	691
<210> 692	
<211> 271	
<212> DNA	
<213> Homo sapiens	
<400> 692	
cgaggtactg ctgctaccac tggaaagcgct gcgcctttt cgggtttgt .cccgcccg	60
atccttctca ctcgactcct tggggcccc ttatctttt gagcgatcct tggacttctc	120
atctgagccgg tctttgcgtt tggtaggtga aggaccccta gtgctggact ttttattatg	180
agaaacgatc cctaattcgt tgcaatttac gccgaagagc agcatcttcc ctccggcc	240
acctcctcct gcttccctca gcccggagg c	271

<210> 693
<211> 730
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(730)
<223> n = A,T,C or G

<400> 693

cgaggttttt	tttgccgca	catgaaacat	tatttaatt	ggtttaaagt	ccctttataa	60
agagtgtcac	atggttttaga	taaaggaaac	atataactat	tgagttacag	gggattttat	120
taattataaa	atgcaatcaa	tttaaattac	gtaggtttaa	gactagtccc	ttggataaagc	180
cccaagcgaa	tttgtcttca	gattattaaa	attagtgtcg	taaatcaggg	ttggcaattc	240
acagccttc	tgaactgact	gaactagagc	ttgcagtgaa	gtgttctgt	gagactgagc	300
accttacaga	tattttctc	cagaagatgg	tgctggtaa	taaaatcatc	acaatttaggg	360
gaatggtaa	gtggtctcta	ctgnngccaaa	tgccaactgn	tggatttcac	tttattgttag	420
aaaaacccaa	actgagactc	ttaagttttg	gttaacaatg	nggttctggg	atgaaaccaa	480
ctactggggc	actgnccagg	taggaaacca	ttctttact	ggggtttcag	cataaatggg	540
aactggatgt	tngaaggcng	ggaattaacc	cttttaggc	caaaagaaaa	agcttaantg	600
gggnnttacc	aangggntcc	ctggggctta	aattcaannn	tgggnccctac	anngnccrna	660
anccctggnt	aaaccggat	taacccttta	acctggaaac	ccaaccttta	aanggggggt	720
tttaaaagg						730

<210> 694

<211> 700
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(700)
<223> n = A,T,C or G

<400> 694

cgaggttaca	aaccacaaag	acattggAAC	actataccta	ttattcggcg	catgagctgg	60
agtccctaggc	acagctctaa	gcctccttat	tcgagccgag	ctggggccagc	caggcaacct	120
tctaggtAAC	gaccacatct	acaacgttat	cgtcacagcc	catgcatttgc	taataatctt	180
cttcataatca	ataccatca	taatcggagg	cttggcaac	tgactatgttc	ccctaataat	240
cggtggcccc	gatatggcgt	ttcccccgt	aaacaacata	agcttctgac	tcttacctcc	300
ctctctctca	ctcctgctcg	catctgttat	agtggaggcc	ggagcaggaa	cagggttgaac	360
agtctaccct	cccttacagg	gaaactactcc	accctggagc	ttcgttagac	acaccttggaa	420
gttttttca	aatatgggtt	gggtttttgg	gcttttggg	tgaattaaaa	taaaatttaa	480
atgccttcac	gctgngatag	gtgccacatg	aactaccgag	nttcngaaaa	agaagggaga	540
actgacactt	cttanngntt	gcagactntt	aangggccct	taggactant	ngggctttg	600
ggggtaaaag	gtnccttna	agaanccng	nacctggcn	ggggggcggt	naaangggga	660
attcnancn	ctggggccg	tactaagggg	accactnng			700

<210> 695

<211> 690
<212> DNA
<213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(690)
 <223> n = A,T,C or G

<400> 695

ggtagacatg gcactgacaa tcccctttct ggtggggatc agtatcagaa catcacagt	60
cacagacatc ttagtgcattc agattttgat ttgctggagg acattgaaaq caaaaatccaa	120
ccagggttc aacaggctga cttcctggat gcactaatcg tgagcatgga tgtgattcaa	180
catgaaaacaa tagggaaagaa gtttgagaag aggcatattg aaatattcac tgacctcagc	240
agccgattca gcaaaaagtca gctggatatt ataattcata gcttgaagaa atgtgacatc	300
tccctgcaat tcttcttgcc tttctcactt ggcaaggaag atggaagtgg ggacagagga	360
gatggccctt ttcgctttagg tggccatggg ctttccttcc cactaaaagg aattacnnga	420
acagcaaaaaa gaaggctctg agatagtgaa aatggtgatg atatctttag aaggtgaaga	480
tgggttggat gaaattttt cattcatgag agtctgagaa aactgngccg tcttcaagaa	540
aattgagagg ctccattca ctggncctg ccgactgacc atggctccaa ttggctataa	600
ggttgcagcc tttaatcgat ttncnggna gggtaaaag ctggncctg tgggttccaa	660
acctaaaaaa aannnnnnnnn aaaaaanant	690

<210> 696

<211> 688

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(688)

<223> n = A,T,C or G

<400> 696

ggtagacaaa tgaggcgtcg cagaatagag gtcaatgtgg agctgaggga aagctaagaa	60
ggatgaccag atgctgaaga ggagaaatgt aagctcattt cctgatgatg ctacttctcc	120
gctgcaggaa aaccgcaaca accaggccac tgtaaattgg tctgttcatg acattgtcaa	180
aggcataaat agcagcaatg tggaaaatca gctccaagct actcaagctg ccaggaaact	240
actttccaga gaaaaaacagc ccccccataca caacataatc cgggctgggt tgattccgaa	300
atttgttcc ttcttggca gaactgattt tagtcccatt cagttgaat ctgcttggc	360
actcactaac attgcttctg ggacatcaga acaaaccaaag gctgtggtag atggaggtgc	420
catcccagca ttcatttctc tggtggcattt tccccatgct cacatnagtg aacaagctgt	480
ctgggctcta ggaaacattt caggtgatgg cttcaatggt nccagacttg ggtanttaag	540
acctggccgg ccggccgttc aaaaggccaa ntccacacct tggcggccgt ctanngatc	600
caactnggac caacttgggg naacatggca aactggttct tggggaaaatg gttccgttcc	660
aattcccaa ttccaccgag gctaaagg	688

<210> 697

<211> 732

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(732)

<223> n = A,T,C or G

<400> 697
 gcgggtcgcg gccgaggtac tcccgattga agccccatt cgtataataa ttacatcaca 60
 agacgtctg cactcatgag ctgtcccac attaggctt aaaacagatg caattccgg 120
 acgtctaaac caaaccacct tcaccgtac acgaccgggg gtataactacg gtcaatgctc 180
 tgaaatctgt ggagcaaacc acagttcat gcccattgtc ctagaattaa ttcccctaaa 240
 aatcttggaa atagggcccg tttttacccct atagcacccc ctctacccccc tctagagcca 300
 aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaagct tgtaccatct cccagtcgt gaggctggcc 360
 atgtgagacc caggtattgc agggctgggt gcttctgagg ctgagggtgt tcccgcttg 420
 ctccaggccc ttcccagctg gtcttctccc tacatttgca gacngatggc catccgaagn 480
 tgacatcatc tccttgggg ctggctctgg gnccattggg aattaatggt ttanagacng 540
 aattcaactgg ggtgcttaag cttgggcttc aaaccggtag gnttaaacnn nnttncttc 600
 ttagccttcc aagtaactng atnccnggt taanccctg ggcccanccc aaagttcccc 660
 ctttttaan gggcctctt ttaatnggt taaggncnc tggaggatt cntnttaact 720
 nggaaancnt na 732

<210> 698
 <211> 651
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(651)
 <223> n = A,T,C or G

<400> 698
 cgaggtgcca cgtaatgtcc cgtagttcgc tcatccgtc catgccagat ggattgtggg 60
 gaaggtgatt gggacaaaaa tgcaaaagac tgctaaagt agagtgacca ggcttgttct 120
 ggatccctat ttattaaagt attttataaa gggaaaaacc tactttgtc acgatgcct 180
 tcagcagtgc acagttgggg atattgtgct tctcagagct ttacctgttc cacgagcaaa 240
 gcatgtgaaa catgaactgg ctgagatcgt tttcaaagtt gggaaagtca tagatccagt 300
 gacagggaaag ccctgtgtcga aactaccta cctggagagt cccgttgagt tcggaaacca 360
 cccagctaag caaaaatctg gaagaactca atatctttc agcacagtga agcgggagtg 420
 gaagaaggat ctaaaaggaa aaactgacat gtttatgtta tggaaaaaga aattttctaa 480
 gttcatcaca actngttagt ttcttgnng ttatgaatac taaaccaatg aataanggt 540
 actatggtt tacaaaaaaa nnnaataaaa anaactgnct gccggggcgt naaggnaatn 600
 accatgngcngtcc ntntgnnc acttggccac ntggganngg cnantgtctg g 651

<210> 699
 <211> 709
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(709)
 <223> n = A,T,C or G

<400> 699
 actgttagcat attaatacccttgtgaactgc aaaaaaccaa atacattac agtagtattg 60
 gtcaccaaaa tagagggaa actttacaat tgtgagaatg tgtaaatggt ctcattaagg 120
 cagtttgac ccagacaacc atttagtatt catctatccc ctcaatgctc cataattctg 180

gaatgcctgt	tgtgaaaacat	gtcagtgcac	agtgtctcct	aaatttcac	acgtgcttga	240
ttttctgatt	catctggta	actggagta	ggaagtttgt	catagacaat	atgcctcct	300
tctcttgcct	gaccaagct	tgaagcaatc	acatctactg	ccaggttagc	tgttagtctc	360
gcctcttcct	ctgagggtgc	caactgagga	ttgacttcaa	caagatccag	tgctgatagc	420
aaccctgnat	tgggtattcc	tcagcaatat	acatgcctc	tcgatanggt	aagtcccccg	480
acacaggagt	tnctgtggct	tggagcccgt	gtaggggcaa	atgcntnaat	atcnaaactt	540
caaatggaat	gggctttgg	ctcttgccaa	tcancngaac	caaangttcg	ntccctgaac	600
cnttggaaa	cccagttnat	tcaanttnn	tcangggaaa	aaacctggga	atcnaagnct	660
tttaaaaaaa	aaggttcnga	ngggncncg	tttttnaacc	aaaaaaaccc		709
<210>	700					
<211>	656					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1) ... (656)					
<223>	n = A,T,C or G					
<400>	700					
ggtcagaacc	taaaggtttc	actgaatgcg	aaatgacgaa	atctagccct	ttgaaaataa	60
cattgtttt	agaagaggac	aaatccttaa	aagtaacatc	agacccaaag	tttgaggcaga	120
aaattgaagt	gatacgtgaa	attgagatga	gtgtggatga	tgatgatatc	aatagttcga	180
aagtaattaa	tgacctcttc	agtgtatgtcc	tagaggaagg	tgaactagat	atggagaaga	240
gccaaaggaga	gatggatcta	gcatttagcag	aaagcagcga	agaacaggaa	gtgcactga	300
atatctcctc	aatgtcttta	cttgcaccat	tggcacaaac	agttgggtgt	gtaagtccag	360
agagtttagt	gtcccacacct	agactggaaat	tgaaagacac	cagcagaagt	gtgaaaagt	420
caaaaaccagg	aaaatccaa	agaactcggt	tcctcgagct	gaatctggtg	atagccttgg	480
tctgaagatc	gtgacttctt	tacagcattt	atgcataatag	atctcaaaga	ttnaagaacn	540
gaacgtcnc	ataagcagt	atgtccgaag	ganatgtctt	aaactgntga	aaaatancct	600
tcttcagta	ttcacccgaaa	gcggactatc	caatattcnc	nacgggttta	ctgcnn	656
<210>	701					
<211>	716					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1) ... (716)					
<223>	n = A,T,C or G					
<400>	701					
ggtaccttga	cagggacgag	aggtcgaagg	agttgccagc	cccatctttg	aatgaacatt	60
cagttagatc	gaaaggtggg	caggcatact	gcgttcgcca	ctcaaaacaag	taggaacaat	120
ctgaagtctc	ctttagaaat	actggccgt	gggtggcgcg	gtcacagtag	aagaagatgg	180
ctgtggagcg	ctgataaaacc	ttatggcaag	tgtccccccc	gtgaagttca	tttttaacaa	240
gccattttca	taagtttagct	tctgagtctag	gagacctgcc	actttgtgaa	atccctgcgg	300
ttccccgttt	tcctgacatg	aggagaccac	cttggacttg	ncacttgg	gggcagacgt	360
ctgaggaaaa	gctttccaca	gaccccgaaa	gtaataaaagt	gtattcgcca	gctgtnacga	420
atggtgtcgt	tgaagccaa	gggcttnang	tcataacaagt	tgccatgccc	ttgggtctt	480
caccttacaa	gttgcccccn	ttcacttttgc	acaacgggac	caggcttca	caagtttcc	540

aantaacccg taccttgc	ccc nggccggccg tttnaaangg	qcnattcca nncaattggn	600
ggccgtacta agggatccc	aactttggac ccaacttgg	gnaaanatng ggcntaactg	660
gttccctgg gnaaaatgtt	tcccgtaa aattccn	ncn aantttgagc cggaag	716

<210> 702
<211> 707
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(707)
<223> n = A,T,C or G

<400> 702

tgnatntgtc agcggcgcag	tgtatggtat ctgnagaatt	cgccttcga gcggcgccgg	60
gcaggtaact atcttatact	gaaagaacgt ggtggctcta	aatatgaagc tgcaaagaag	120
tgaattttac ctgcgttac	tatacgctgg ctgttgaga	ctgctagaac gggaaagaga	180
gcagacgaaa gccattttct	gattgaaaat tcaactaaag	aagaacgaag ttggaaaca	240
gaaaataacaa atggaatcaa	tctaaattca gatactgcag	agcatctgg cacacgcctg	300
caaactcaca gaaaaaccgt	cgttacacct ttagatatga	accgcttca gactaaagct	360
ttccgtgctg tggctcaca	acatgccaga cagtcgcag	cctccagca gttaggacaac	420
cacttcagaa ggagccctcg	ttacacctgg atacaccatc	aaaattctg tccaggaca	480
aactcttnaa gccttcctt	gatgtgaagg atgcacttgc	agccttgaa acttcangac	540
gtccagccac agaaaaggaa	ccgagtccn ggccgcgacc	ccctaaggca attcacacac	600
tggcggcgtc tagggaccac	ttgggccaac ttngaactg	gctactggtc tgggatgtn	660
ccgtacatcc ncaatnaccg	actaagtaac tggctnngg	gctatcn	707

<210> 703
<211> 703
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(703)
<223> n = A,T,C or G

<400> 703

acctgccaga attagcaaga	gctttcttta agaagacatt	tgtcaaaactc aacaaattga	60
agtttaacac cttaaagagtt	gtagttactg accagaaaata	tggacagact tcttagactt	120
ggaggaggtt tgcctggact	ggcccgagggg ccacccatag	atgctcctgc agtggacaca	180
gcagaacaaag tctatatactc	ttccctggca ctgtaaaaaa	tgttaaaaca tggccgtgct	240
ggagttccaa tggaatgttat	gggtttgatg cttggagaat	ttgttgatga ttataccgtc	300
agagtatttgc atgtgtttgc	tatgccacag tcaggaacag	gtgtcagtgt ggaggcagtt	360
gatccagtgt tccaaagctaa	aatgttgat atgttgaaca	gacagggaaag cccgaaatgg	420
ttggttgggt ggtatcacaa	gtcaccctgg ctttgggtgg	tggcttctg gtgtggatan	480
tcaacacttn agcagagctt	ttgaagcctt ttccggaaaa	nagcttggc antgggttgt	540
ggatcccttt canaatggta	aaaggaaaagg ttgtaattt	atgccttcan aatggancaa	600
ggctaaatna agggcttagg	acttgaaccc ggacaanaan	tttaaatng gncccttaaa	660
caaggctttt ntcnngctt	attttggctt accnncttt tnn		703

<210> 704

<211> 683
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(683)
<223> n = A,T,C or G

<400> 704

cgaggtactg	agggatagga	gagtatatgg	gttggcacc	acagggtggg	taggcaaaac	60
aatttggttt	ataaggctca	gatcctgaac	taacctgtaa	ggccttgtct	gttgcagaga	120
caggtgaaat	gggggaattt	taagtagagt	ttataggctt	taaaaggcca	tgctgttagca	180
ggcgagtgtat	aacaggctt	aatctttta	aagcatgctg	tgggatggga	tattggcatt	240
gagcggggta	agggtgatta	ggtttaatg	agatggtaag	gggtccatga	tcggtcacca	300
aggagggagt	agaggtatct	tatacttgg	ggttaaggtg	gggggataca	agaggaggac	360
gcanaggagg	ctttggattt	ggaaaaaaagg	gcaccaatga	gatgtaccnt	aatccagggaa	420
tagtcaggga	aacnnatagt	tanttaaaag	tgtctcggt	aatangggac	tggcagttgg	480
ggatactaaa	aaggatgttt	aaaaagtatg	nctaagttgc	accnnattna	ngagtttaaa	540
aagggttaaaa	acttgctgg	aatcctanca	ccnntttgga	gcnagaaaac	aggcccttna	600
aanaaggtat	ntgaatggga	accncnttt	aaaagggcg	gcntaatttc	cctgnaaagt	660
cttnaactnt	nnaaggccct	acn				683

<210> 705

<211> 463

<212> DNA

<213> Homo sapiens

<400> 705

ctgaaaagtgc	atgaaggacg	cgattacctg	cgataagctt	cgtggagttg	gaaataaaact	60
atgatacgg	gattccgaa	tgggtaacc	taactgagca	aaccttagtt	gcattttgat	120
gaatccatag	tcaaatttagc	gagacacggt	gcgaattgaa	acatcttagt	agcaacagga	180
aaagaaaata	aataatgatt	tcgtcagtag	tggcgagcga	aagcgaaaga	gcccaaacct	240
gtaaaaaagg	gtttaggac	atcttacatt	gagttacaaa	attttatgat	agtagaaagaa	300
gttggaaagc	ttcaacatag	aaggtgatat	tcctgtatac	gaaatcataa	aatctcatag	360
atgtatcctg	agttagggcgg	ggcacccgtga	aaccctgtct	gaatctgccc	ggaccacccg	420
gtaaggctaa	atactaatac	gacaccgata	gtgaactagt	acc		463

<210> 706

<211> 651

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(651)

<223> n = A,T,C or G

<400> 706

actatagcat	ctgtggaaaa	tcttagaaaa	aaacatttc	tcccccaccc	tctctttcc	60
ctgttaagac	catcccaaaa	tgcttcaagt	aaaaaataac	aagtttaagg	ggttaagcac	120
ttttaaagtc	tgattaagg	ggtgggggg	aaaaagagta	actaccagcc	atttctccaa	180
tggacatctc	ttccacagac	ctcaacgtga	gaactgctct	agtttctata	aactgtaaac	240

ctgtggtgtt	ctgattatcc	tgatattgga	tttcttgtt	ttctgttaca	ccttgagtca	300
ttgcctta	ggattctaga	cagacctaag	ggaaaaagaa	ctgaaaacat	atttgccccc	360
caccccca	aaaaaaaaata	ctgaaaactc	ccccccgcct	cagttacaca	tccaaactct	420
acatttacaa	aacgaattca	gggtgaggaa	gtaaaacagg	tcatctattc	acaaaactga	480
aatacttcat	taccccaact	aaacatacaa	actgnntaca	gattgctgaa	atggctcaat	540
ttggctatca	aattcatttg	ggttccctca	aatcgngtaa	aaaaaaaaaa	aaaaaaaaagct	600
tggnccnngg	ccgnaacacn	cttangggca	aatccanccc	ctgggnggccc	g	651
<210>	707					
<211>	625					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(625)					
<223>	n = A,T,C or G					
<400>	707					
ggggcggct	cgggacggag	gacgcgctag	tgttcttctg	tgtggcagtt	cagaatgtg	60
gatcaagcta	gatcagcatt	ctctaacttg	tttgggtggag	aaccattgtc	atatacccg	120
ttagcctgg	ctcgcaagt	agatggcgat	aacagtcatg	tggagatgaa	acttgcgtg	180
gatgaagaag	aaaatgctga	caataacaca	aaggccaatg	tcacaaaacc	aaaaagggtg	240
atggaaagta	tctgttatgg	gacttattgt	gtgatcgtct	ttttcttgat	tggatttatg	300
attggctact	tgggtattg	taaagggtta	gaaccaaaaa	ctgagtgta	gagactggca	360
ggaacccgag	tctcagtgta	gggaggagcc	aggagaggac	ttcctgcaca	cgtcgcttat	420
attggatgta	cctgaagaga	aagtgtcg	agaaaactggc	agcacagact	tcaccagcac	480
catcaagctg	ctgaatgaaa	atcatatgtc	cctcgtgang	ctggatctca	aaagatgaaa	540
atctgcttga	tgtgaaatc	aattcgtgaa	ttaactcaca	agttgcgtg	cacatttgc	600
aatcngcaaa	cacntnaaac	tgggn				625
<210>	708					
<211>	209					
<212>	DNA					
<213>	Homo sapiens					
<400>	708					
actgttccat	ctggaagtca	agattggtgc	cacctaagt	ggttcctgct	gcaaggaact	60
taaggacatc	ctcctccttc	atttgcagga	catcaagg	tccggacatt	gtgaaagtt	120
ccctttaagt	tacgacgg	atccagaaca	acgcccgtat	gaccctctg	caggtac	180
gaaaaaaaaaa	aaaaaaaaaa	gcttgc				209
<210>	709					
<211>	643					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(643)					
<223>	n = A,T,C or G					
<400>	709					

ggtactcctt	agagccagtt	gctgtagaac	tcaaatatctct	gctggcaag	gatgttctgt	60
tcttgaaggaa	ctgtgttaggc	ccagaagtgg	agaaaagcctg	tgccaaaccca	gctgctgggt	120
ctgtcatcct	gctggagaac	ctccgcttgc	atgtggagga	agaagggaaag	ggaaaaagatg	180
cttctggaa	caaggtaaa	gccgagccag	ccaaaataga	agcttccga	gttcaactt	240
ccaagctagg	ggatgtctat	gtcaatgatg	ctttggcac	tgctcacaga	gcccacagct	300
ccatggtagg	agtcaatctg	ccacagaang	ctgggtgggtt	tttgatgaag	aaggagctga	360
actactttgc	aaaggccttgc	gagagccag	agcgaccctt	cctggccatt	ctngggcggac	420
taaaagttgca	gaccagatcc	agctcatcaa	taatatgctg	gacaaaagtc	aatgagatga	480
ttatttgggg	ttgaaatggct	tttaccttcc	ttaangngct	caacaccatg	gagattggca	540
cttctctggt	tgatgaaaaaa	gggncccaga	ttgcaaagac	tatgtccaa	actgagaaaaa	600
agggntgaan	ataccttgcc	tgtgctttgc	nctgtncaa	ttg		643

<210> 710
<211> 390
<212> DNA
<213> Homo sapiens

<400> 710

ggtactcttc	tagcatttag	atctacactc	tcgagttaaa	gatggggaaa	ctgagggcag	60
agaggtaaac	agatttatct	aaggccccca	gcagaattga	cagttgaaca	gagctagagg	120
ccatgtctcc	tgcatalogt	ttccctgtcc	tgacaccagg	caagaaaagc	gcagagaaaat	180
cggtgtctga	cgattttgga	aatgagaaca	atctaaaaaa	aaaaaaaaaa	gaaaagagaaa	240
aaaaaaagact	agccagccag	gaagatgaat	cctagttct	tccattggaa	aatttaagac	300
aagttcaaca	acaaaaacatt	tgctctgggg	ggcagggaaa	acacagatgt	gttgc当地	360
taggttgaag	ggacctctct	cttaccaagt				390

<210> 711
<211> 683
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(683)
<223> n = A,T,C or G

<400> 711

cgaggtcaag	aaggcagccc	gagaagaaac	gggaggacaa	agctaagaag	aagcacgaca	60
ggaaatccaa	acgcctggat	gaggaggagg	aggacaatga	aggcggggag	tggaaaggg	120
tccggggcgg	agtgcgttg	gttaaggaga	agccaaaaat	gtttgccaag	ggaactgaga	180
tcacccatgc	tgttgttatac	aagaaactga	atgagatcct	acaggcacga	ggcaagaagg	240
gaactgatcg	tgctgcccag	attgagctgc	tgcaactgct	gttcaagatt	gcagcggaaa	300
acaacctggg	agagggcgtc	attgtcaaga	tcaagttcaa	tatcatcgcc	tctctctatg	360
actacaaccc	caacctggca	acctacatga	agccagat	gtggggaaag	tgcctggact	420
gcatcaatga	gctgatggat	atcctgttg	caaattccaa	cattttgtnt	gggggagaat	480
attcttgaa	gaaaagttag	aacctgcaca	acgctgaccc	agcccttgcg	tgtccctggc	540
ttgcatnctn	acttttggtg	ggaaccnaat	gggttaaaga	aattanccaa	ataatgccaa	600
atacttgacc	cttatttccc	aaaaataacct	tgcccgccg	ggcccnntca	aaagggccaa	660
atccancnc	ccttggggc	ccg				683

<210> 712
<211> 605
<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(605)

<223> n = A,T,C or G

<400> 712

ggtacaagct	ttttttttt	ttttttttt	tttctaaaca	atagtgtttt	attgataaaaa	60
ggtagttta	aatggataca	aaattgtctgt	gtaaaataag	tgtttcaaa	atacatttct	120
ataggtagag	actatgtctt	agtaaaagag	cagttatcta	ttatcaaaag	tatctattta	180
nattgggta	gtaaaaccaa	aggggatcag	aagtgtanca	gtgtgggtcc	tcctccctcg	240
catagctgtt	accaggaggc	agcgtgcctg	aagtacttgg	aggaacgaag	aataaaggag	300
attgtgaaga	aacattctca	gcttattgga	tatcccatta	ctcttttgt	ggagaaggaa	360
ccgtgataaa	gaagtaagcg	atgatgaggc	tgaagaaaag	gaagaccaag	aagaagaata	420
ngaanaagaa	gagaagagt	cggaaagacaa	acctgaaatt	gaanatgttg	gtctgtatgag	480
gaagaaaaaa	gaaggtggtg	cnagaagaan	anaagaagat	taggaaagtc	ctgccggcg	540
ccgtcaangc	aatccaccct	gcggcgtcta	ngaccactgn	ncactngat	atgctctgtc	600
tggnna						605

<210> 713

<211> 376

<212> DNA

<213> Homo sapiens

<400> 713

ggtaccaagg	ttattgtatca	agtgcgcctt	ggtcattcca	attccagttat	ccacaatagt	60
gagagttcga	tcttgggtgt	tccgtataag	gttaatatgc	agctcttcc	cagagtctaa	120
tttactggga	tctgtcaagc	tttcataacgg	gattttgtcc	aatgcacatcg	atgaatttga	180
aatgagctct	ctcagaaaga	tctttttgtt	cgagtagaaa	gtattgtatga	tcaatgacat	240
caactgggca	atttctgcct	gaaaggcgaa	cgtctcaacc	tcctccctct	ccatcggttg	300
gtcttgggtc	tgggtttcct	caggcatctt	ggctaagtga	ccgcacagg	accaacggca	360
cagccacacc	gacctg					376

<210> 714

<211> 378

<212> DNA

<213> Homo sapiens

<400> 714

cgaggtacca	aggttatttga	tcaagtcagc	cttggtcatt	ccaattccag	tatccacaat	60
agtgagagt	cgatcttggtt	tgttcggtat	aaggtaata	tgcagctctt	tcccagagtc	120
taatttactg	ggatctgtca	agctttcata	ccggattttg	tccaatgcac	ctgatgaatt	180
tggaaatgagc	tctctcagaa	agatctcttt	gttcgagtag	aaagtattga	tcatcaatga	240
catcaactgg	geaatttctg	ctctgaaaggc	gaacgtctca	acccctccct	cctccatcg	300
tgggttttgg	gtctgggttt	cctcaggcat	cttggctaag	tgaccgcaca	ggaccaacgg	360
cacagccaca	ccgacactg					378

<210> 715

<211> 310

<212> DNA

<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(310)
<223> n = A,T,C or G

<400> 715
actttttagt gtgtgtgtgc atgtgtgtgt gtgtgtgtat gtgagagatt      60
ctgtgatctt ttaaaagtgtt actttttgtta aacgacaaga ataattcaat tttaaagact    120
caaggtggtc agtaaataaac aggcatgttgc tcactgaagg tgattcacca aaatagtctt    180
ctcaaattag aaagtttaacc ccatgtcctc agcatttctt ttctggccaa aagcagtaaa    240
tttgcttagca gtaaaaagatg aagttttata cacacagcan aaaaaaaaaa aaaaaaaaaa    300
agcttgtacc                                         310

<210> 716
<211> 624
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(624)
<223> n = A,T,C or G

<400> 716
ggtaccggatt gccaggctgt ggtctcctcc cagtgtgaca cggctgttagc catctgacac   60
agctctgcta accacctcag ccagttcctg gtggcaaga cccactgagc gtggattcac   120
tatcaggttg ttgttagagat catctttggg gactggagta aaattcaaat ctccaaagtc   180
tttaggtgg cagccaaac tggagagcct tttcatcaag ccagcttctc ttatggcagc   240
gggaccatgc tccactccgt ttctttctg tccttgcag aacggggctc ctatcacagc   300
cacggagtttgg acggatttct tcaggatggg atgcactcgc gtctggagga gacgcgagag   360
gctgccctta gggacatgtat cccgcagcac tgagaatctc caaggcagag gctccacatg   420
gccgggtgtt tgaaggcttc aaacataatc tgagtcatct tctctgtt ggccttgggg   480
ttcaaggggg cctccggcaca gcactgggtg ctctncggg ccacgcgcac ttgttaaaaa   540
gtgngtgcca nacttcatg cgnccaattt gngaccatcc tctnatggga ctgcccgggc   600
cgtnaagggg gaatcacnt ggng                                         624

<210> 717
<211> 652
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(652)
<223> n = A,T,C or G

<400> 717
cgaggtacaa aaatttagctg ggtgtcgtga tgggtgcctg taatcacagc tatgtggag   60
gctgaggcag gagaatttgct tgaacctggg aggcgaaggt tgcaagtgcgcaagatcacg   120
tcactgcact ccagcctctt tgacagagtg cgactctgtc tcagaaaaaaa aaaaaaaaaaga   180
aagaaaagag attacatatt atttagaaaaa cagcagctaa acagttttg ggtctctggc   240
aaagatgaag tgagccagtc ttcttccgac taaatcacca actggacaaa gttctcagct   300
ggaaaacact ccccttctgg gatcctgcgc ccagaagtgg tagcaagaac ttcttggaaat   360

```

agaatggagc agaaccttcc tgaggcttag	gaacccaacaa aaagtcaaag aatgaactct	420
ttcgaacaca aaataaaaatt tctcaaagcc caggtcatgc	tttttctgta aatctttatc	480
cctgcgtcag tatggacatg acatagtcca gagagaaaaat	tctcagcccta ccttatgcnc	540
aagaaaaatgc catgatgccg ccagcttgg t gatgccc nag	gacantgctn ttgangccg	600
gaaaataggn ctgcagengg gaaccaaagg ctgttnnecct	gnntcttaaa ag	652

<210> 718
<211> 544
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(544)
<223> n = A,T,C or G

<400> 718

cacagaggga gtgagggtgca tttgcagtca gctttcgctc	accactaaga tggatgcaga	60
gcatccggaa ctcaggagtt acgctcagag ccaagggttg	tggacgggag agggcgagtt	120
caattttcc gaagtctttt ctccagttga ggatcatcta	gactgcggtg ctggcaaaga	180
cagcttagaa aaacaagaag aaagcatcac agtgcagact	atgatgaaca ctttacggga	240
caaagccagc ggagtgtgca tagactctga gtttttcctc	accacagcca gtggagtgtc	300
tgtcctgccc cagaatagaa gctctccgtg cattcaactac	ttcaactggaa cccctgtatcc	360
ttccaggtcc atattcaagc ttttcatctt tggtgatgac	gtaaaaacttg tccccaaaac	420
acaagtctcc ctgttttggg ggtatgacgac ccttgc当地	aaggagcctc gggttnccagg	480
agaaaaccnnga accggccggc attgaacctg taccttgncc	ggggccggccg ntctnaangg	540
gcga		544

<210> 719
<211> 626
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(626)
<223> n = A,T,C or G

<400> 719

accaaagaaa agctgaacag gaaaatgaga agagaagaaa tgtagaaaat	gaagtttcta	60
cattaaagga tcagttggaa gacttaaaga aagtca gta	gaattcacag cttgctaatg	120
agaagctgtc ccagtacaa aagcagctag aagaagccaa tgacttactt	aggacagaat	180
cggacacacgc tgtaagattt aggaagagtc acacagagat	gaacaagtca attagtcagt	240
tagagtccctt gaacagagag ttgcaagaga gaaatcgaat	tttagagaat tctaagtcc	300
aaacagacaa agattattac cagctgcaag ctatattaga	agctgaacga agagacagag	360
gtcatgattt tgagatgatt ggagacccctc aagctcgaat	tacatctta nagaggaggt	420
gaacatctca acataatctc gaaaaatgtgg aaggagaaaag aaaagagctc aagacatgt	480	
taatcactca gaaaaggaaa gaatatttag agatagattt aactacaact taatcnntc	540	
acacggtaga ccagangtaa tgacccctg accaagctcg ttactgcaac atcattntt	600	
agaggcaagc ttggcatggg taaaaaa		626

<210> 720
<211> 469

<212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(469)
 <223> n = A,T,C or G

 <400> 720
 ggtactcttt agcattaaat tacatcggtc atataacaact acaccattt agatttgctt 60
 tggaatataa tttcaaggcc ttaaatatta aaaataattt tataactatt tcatagttta 120
 attggcttta aaatagttt gctaggagg aaacattttg tgttcttaa gaaattgata 180
 tgtgtaaatg tgttcactta aatcttgaga aaacctaagg atgaagtctg ttgtttgtt 240
 tttcctaaaa aagggaaaaaa gaaccaaaga aaaatgtga agaacaagaa tatttaccat 300
 taaaaagaag aaacattatc caacaaaaag gagacatata gatttggaaa cacttatttt 360
 actgncttca acaacaacaa caaacagata ggcaggggaa gtccagagga ctcagaattg 420
 aagcagctct atacaataat gaaggtggac ctgcggggcg ggcgctcg 469

 <210> 721
 <211> 644
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(644)
 <223> n = A,T,C or G

 <400> 721
 acaagggtcaa tctcaactcg agtgaccaca atccggacca gggtggagtc atctgtgcca 60
 gcaccttca tagcatagta gagcctctca gcaaagaagg cagggcggtt cagggcacac 120
 tgcaagatgg tcttcaaacc actttctaca tatccggaaa actcacggct cacactgctt 180
 aacaagtctc gattagccat cctagaataa gcctccatgg tagctctcag ctgagggaaag 240
 cttcttgttgg caaggatcat gttaaagcaa gattcatcggt tcccttagtct cccctcacca 300
 gcttgataga gacgctgagc atcttcctga gccatttggg gtttataact ctgggtctca 360
 tcacgatttc cctggcacat ggacacaagt aaacgttcaa aatgtcctga tgtatctgac 420
 ctaatgnctt tttcaagggtc tcgtccaaat tctgactgat aacatctgac aatttctcg 480
 atttcctgat ttggcttgn gcacaaaatc ttcaatcaat acaccgttcc tgagttcctg 540
 ntncctgcat tgnttccga agttcaggg atcgnaatcc taggangctt gaaaaggccn 600
 ggatcagttt ttccttattcn cttactttga ttgaaacntt gata 644

 <210> 722
 <211> 510
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(510)
 <223> n = A,T,C or G

 <400> 722
 cgaggtcgga gatctcgccg gtttacgtt cacctcggtg tctgcagcac cctccgcttc 60

ctctccttagg	cgacgagacc	cagtggctag	aagttcacca	tgtctattct	caagatccat	120
gccaggaga	tcttgactc	tcgcggaaat	cccactgtt	agggttatct	cttcaccta	180
aaaggctct	tcagagctgc	tgtgcccagt	ggtgcttcaa	ctggtatcta	tgaggcccta	240
gagctccggg	acaatgataa	gactcgctat	atgggaaagg	gtgtctaaa	ggctgttgag	300
cacatcaata	aaactattgc	gcctgcctg	gttagcaaga	aactgaacgt	cacagaacaa	360
gagaagattg	acaaaactgat	gatcgagatg	gatggaacag	aaaataaatac	taagtttgt	420
gccaacgcca	ttctgggggt	gtcccttgcc	gctgcaaagc	tggtgccgtt	gagaanggg	480
tccccctgtac	ctgcccngcg	gccgtcgaaa				510
<210>	723					
<211>	640					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(640)					
<223>	n = A,T,C or G					
<400>	723					
ggtaccaagc	gtatcagcat	tcacccctt	gcctcacatg	ccagtggct	caatcacaaac	60
cctgcctgt	aatctgtat	tgactcctca	acatttggag	aaggcaaagc	tccaggtccc	120
cctttcctc	aaactcttgg	catagccaaac	gtggccaccc	gcctctcttc	catccagctg	180
ggccagctg	agaaggagag	acctgaggag	gccagggagc	tggactcatc	tgataggat	240
attagttcag	ctactgacct	ccagccagat	caggctgaga	ctgaagatac	agaagaagaa	300
ctagtagatg	gttttggaaaga	ctgntgttagc	cgtgatgaga	atgaagagga	ggagggagac	360
tcagagtct	cctcattaag	tgctgctccc	ccagcgaatc	ggtggccatg	atctctagaa	420
ctgtatggaa	attctgacca	aaccctttc	caatcatgag	aaaagttgtc	cgaccagct	480
catctacagc	tcttccaaac	gttcccttac	catctattt	ggcactcggg	atgaaaaant	540
ggagaaaactt	tccttggaaac	cnangaagtt	gcttchatgg	aagatgagcn	cagggacccc	600
aacattgcaa	ccnaccattt	gacggncccc	tttaaatang			640
<210>	724					
<211>	593					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(593)					
<223>	n = A,T,C or G					
<400>	724					
ggtacctgcg	cgccctcgac	gtcaatgtgg	ccttgcgcaa	aatcgccaaac	ttgctgaagc	60
cagacaaaaga	gatcgtgcag	gacggtgacc	atatgatcat	ccgcacgctg	agcactttta	120
gaaactacat	catggacttc	caggttggga	aggagttga	ggaggatctg	acaggcata	180
atgaccgc	gtgcata	acagtggact	gggacggaga	caagctccag	tgtgtgcaga	240
agggtgagaa	ggaggggcgt	ggctggaccc	agtggatcga	gggtgatgag	ctgcacctgg	300
agatgaga	ggaagggtgt	gtctgcaagc	aagtattcaa	gaaggtgcag	tgaggccca	360
gcagacaacc	ttgtcccaag	gaatcagcag	gatgtgtgg	ccaggatccc	cttttgacaca	420
gatgaggca	aaaatgtcca	ccaccccccag	cattgttagc	agatctgctc	ttgctttgca	480
cttttcttcc	ttaaacaaac	ctgcataagt	gatctgtgtt	agaaaaactg	ccggcggcca	540
agcaatcacc	atgcgcgtct	atgaccactn	nnactgcna	tatgctantg	tct	593

```

<210> 725
<211> 606
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(606)
<223> n = A,T,C or G

<400> 725
acngcagctg ctccacggcc ccagcacgaa atgtatcaca ggcagcaatg aggacactga      60
agccattctc taacaaccag aaggaaatct tggcaagatt agtagatttc cccactccat      120
taacgcgcga gaaggtgacg acataaggc gctggcgacg ctgggcattc atgatgtccc      180
ggagcatgtc tacacgacgc tgtggctgca gaatctgcac cagggactcc tgttagggctt      240
gctttactgt ggaagtccacc gtgctgaacg tccccatcac cttcccttcc aacttgttgg      300
caacagattc acagagctgg acggcaatgt ctgcagccac gttcttagca atgagatgat      360
cacgcattctt gtccagcaca gattccatgt cttcacgact caagctctt gaacccacaa      420
ggcccttcag cataccaaac atgccaccca gtgttccttg gtcgcactan gtttggtaga      480
gttttgagca gcccctcgcc atcaanctgt gcattccagat ctgaactgcc ccagaccagc      540
cttgaatagg tgatgcctaa caggagctag ggtcatgngg tggagactgg cgncacctag      600
gcaatc      606

<210> 726
<211> 594
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(594)
<223> n = A,T,C or G

<400> 726
accacatcat ccatgctgac atctaccgct gggttaacat ttctgttgc atttttggc      60
gcaccaccac tccacagcag accaaaatca cccaggacat ttccacgcag ttgtgttgc      120
gagggtttgt gctgcaagat actgtggagc aactgcgtat tgagcactgt gtcgttcc      180
ttgtgttgc cttcggtgg ggcgtgtgc cttctgtgg ctatgaggag gtcgggggtg      240
accagtgtga caagtgtggc aagctcatca atgtgtcga gcttaagaag ctcagtgta      300
aagtctgccc atcatgccc gtgggtcact cgagccagca cctgtttctg gacctgccta      360
agctggagaa gcgactggag gagttgtgg ggaggacatt gcctgcgtg actggacacc      420
caatgcccac ttatcaccgg ttcttgcttc ngatggcct caaccacgct gataacccga      480
gacctcaatg gggAACCTGT cctcgccgaa cacctaggca atcacacact gcggccgtct      540
agtgtatccac tcgaccactt gcgtatgttgc tantgtctgg taatgtatgtt acat      594

<210> 727
<211> 665
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

```

<222> (1)...(665)
 <223> n = A,T,C or G

<400> 727

gcgtggtcgc	gccgagggtgc	cgtcaaggag	tagaaattgg	tatgcttaga	agcagattct	60
aaaaggcagg	tctcttcaga	acatctttt	tcataaccact	tgataagcat	cttggaaacac	120
catggctgta	gctgcagtaa	aatgggtgat	gtcaaagaga	actatcttga	aacatttatt	180
tccagtccaa	aatggagctt	tatattgtgt	ttgtcataaa	tctacgtatt	ctccctctacc	240
agatgactat	aattgcaacg	tagagcttgc	tctgacttct	gatggcagga	caatagtatg	300
ctaccaccct	tctgtggaca	ttccatata	acacacaaaa	cctatccctc	ggccagatct	360
gtgcataata	atgaagaaac	acatgatcaa	gtgctgaaaa	ccagattgga	agaaaaaagtt	420
gaacacacctg	aggaaagacc	tatgtatngaa	ccacttancc	aatggtcnt	tactactaa	480
caccctgtgn	attcctcatg	gacngnnatc	agatgtcnta	agaatctgaa	tcctccaa	540
accgatgtg	ccganggtcc	tggggggatc	aaaagaaaaag	gncccattt	gcatttgna	600
aaagccanct	gggggttccn	tatfffftgt	aaggataat	gntaaaaatc	tttctnttt	660
anaag						665

<210> 728

<211> 624

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(624)

<223> n = A,T,C or G

<400> 728

ggttacccag	gcagtatctc	tagagtcctt	aacttaatat	tagtaactaa	agaaaaagggt	60
tgcgcgtt	gcaggactta	acctaacatc	tcacgacacg	agctgacgac	aaccatgcac	120
catctgtcat	tctgttaacc	tccactatat	ctctatagct	ttcagaaga	tgtcaagagt	180
gggttaagggt	ctacgcgtag	aatcaaatta	aaccacatgc	tccaccgctt	gtgcggggtc	240
ccgtcaattc	ctttaaattt	cactcttgcg	agcatactac	tcaggcgat	catttaacgc	300
gttagctg	tttagtgaat	tattccacca	actaatgatc	atcgttacg	gcgtggacta	360
ccagggtatc	taatctgtt	tgctcccac	gcttcgtcc	cttagtgcaa	tatataacca	420
gttagctgcc	ttcgccatt	gggncttcc	taatatctac	gcattccacc	gttcactag	480
gaattccgtt	accttattat	aatctatgg	gcagttcca	agcggctgaa	tttgagctta	540
acatttactt	cagacttaca	aaaactacgc	gcttacgccc	aatattccga	tacgttgcac	600
natgattacc	gggggtgtgcc	aaaa				624

<210> 729

<211> 449

<212> DNA

<213> Homo sapiens

<400> 729

actgacacac	aaagtgcctt	cactggacct	tacagttctc	actgcgcgtt	gactccagtc	60
cagctttggg	gctggggaca	agtcggcctc	gcttgaccct	caggccctct	ctggggctgt	120
cagtcggact	tctctcagga	agattattga	ctgggacgga	tttcgtgg	gttctcgga	180
ggatgggtcc	tgaatctact	gggctccgt	gagcaacttt	gacctttgt	gatctgtgc	240
caccagctgt	tggtttggag	gactctgcaa	gattttctt	gccgagactc	agtggggata	300
gchgctaactt	ctgtgcacc	aggcgggggc	tggtcccagt	tgccatggtt	gttcttcgca	360
ggatatatgg	gctaagtctt	tcctgtcg	atgtcagcaa	acccttctt	tacaacttct	420

ggaagtccct ctggctcaaa ctcagtacc

449

<210> 730
<211> 646
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(646)
<223> n = A,T,C or G

<400> 730

actcattaat cagggaggct caatcttagt aaaagattac attttgaaga ggacacctat	60
tcatgcagca gcaacaatg gtcattcaga atgcttacgg ctattaatag gaaatgcaga	120
accacagaat gcagtggata ttcaagatgg aatggacag acgcctctga tgctatctgt	180
tctcaacggg cacacagact gtgtttactc attgctgaac aaaggagcaa atgtagatgc	240
caaagataag tgggaagga cagcggttgc tagaggggca gttacaggcc atgaagaatg	300
tgttagatgca ttacttcaac atggtgctaa gtgcttactt cgggatagca ggggccccgga	360
cgcctataca cctgtctgt gcctgtggac acattgggtgt tcttgagcc cttttgcagt	420
cagcagcatc tatggatgca aatccagcca cagcagacaa tcatggatat ccgnacttac	480
tgggcttgc taatggtcac gagacatgtg tagaactgnt tttagaacag gaagtttcc	540
agaaaacgga agggaaatgct tttagtccat tgcatattngnc cgtgataaat gccaccaaag	600
ggctgttaaa ngttaattga tcnnttanggg ccacattggg aacccc	646

<210> 731
<211> 639
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(639)
<223> n = A,T,C or G

<400> 731

acagacttgt ttttgagggt tgagtagcag ggacaaaata aggaaatgtt attttttaag	60
aaaattcatt ttcattgttg tctccttcct ttctgtgaa agtcctcata ctgagaaatt	120
tgtatattt atataaaatc acttactatt gatttttgtt gtgatttca aaggtggatt	180
cccacagata aaatcttggc tattgccccaa aacatagtaa agggtcacgt gtgactttt	240
ataatagggaa gaaaattctg cttttgtgag tgcacatgtc cacatttcat ccctccttcc	300
ctcaaaaccc tagagagggg cattaaagaa ttgttgatgt atatgcaatg tctgttaaag	360
catgcactat gtatttcatc ctcatattt gggctctggga ctgaagttt taacccacat	420
ggacctaacc tacttttgg gataaaattc tctgtttggt acaggaaaa ttctggatag	480
gcgtgaatgc catgggtcat tctgaatata tttttctgg aatttatcat acacgatgtt	540
gcaatacgtg ctgggtttt taatttgaag ccaactttc tactgtgaa agacattttt	600
gccaactggn cttctanaa tggagtctaa gttaggnncg	639

<210> 732
<211> 538
<212> DNA
<213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(538)
 <223> n = A,T,C or G

<400> 732

ggtaactcgtc	ccttcaaaca	gtaaacaaga	aagtgcagac	agtgctgcc	gagacaggag	60
gattttcaca	tgagactgaa	aaagccgaca	cacccttaca	actaagtcat	ggtcgagt	120
gacctgccat	ccaccccac	cagtccctgg	aaccggcag	gtcagagttt	tctctaattc	180
tattccccgg	catcaagtga	acactagaac	tcacacggaa	ggcccccggc	aaccactggc	240
ctcggggctg	ggtgcaccca	ctcctcaccc	aggagattt	tcacaaaaca	cgcttaggggg	300
cagagacgct	gtaaactgga	cacacacgga	acacaatgcc	ctttccactt	acacagcgtg	360
gggatgataa	aaaggaatct	tttgagcaag	tctataattt	tacagaattt	agaggtggga	420
aagatggcca	attttccctc	tttatgcctg	gggcagacca	cctgcttctg	gggtaaaagt	480
tttgagaagg	aaaaagaccc	tgnacctgcc	nngggcggcg	ctcgaaaggc	caattcna	538

<210> 733

<211> 351

<212> DNA

<213> Homo sapiens

<400> 733

cgaggtaccc	tatggcctat	gttgactata	agactgtgct	gcagattgtat	gataatgtga	60
cgtcagccgt	agaaggcatc	aacagaatga	ccagagctct	catggactcg	cttggccctg	120
agtggcgcct	gaagctgccc	tcaatccct	tggcctgt	ttcagttcg	aagaggtgg	180
atcccttgcc	ttcggagaac	cacaaagaga	tggctaaaag	caaatccaaa	gaaaccacag	240
ctacaaagaaa	cagagtgcct	tctgctgggg	atgtggagaa	agccagagtt	ctgaaggaag	300
aaggcaatga	gcttgtaaag	aaggaaacc	ataagaaagc	tattgagaag	t	351

<210> 734

<211> 625

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(625)

<223> n = A,T,C or G

<400> 734

cgaggtacaa	tccttgacct	tgtgcattat	agcattccat	tagcaagagt	tgtaccatcc	60
ttcatccaaa	tggcaacatc	acagagctcc	tcctgaagga	aggtttcgca	cgctgtgtgg	120
actggtcgat	tgcagtttac	acccggggcg	cagaaaagct	gagggccgca	gagaggtttt	180
ccaaagagcg	caggctgaga	atatggagag	actatgtggc	tcccacagct	aatttggacc	240
aaaaggacaa	gcagtttgtt	gccaaggtga	tgcaggttct	aatgtctgat	gccattgttg	300
tgaagctgaa	ctcagggcgat	tacaagacga	ttcacctgtc	cagcatccga	ccaccgaggg	360
tggaggggga	gaacacctag	gataagaaca	agaaaactgcg	tcccctgtat	gacattcctt	420
acatgtttga	ggccccggga	atttcttcga	aaaaagctta	ttggggaaaa	gtcaatgtga	480
cngtggacta	cattagacca	ccagccacgc	cacagagaca	gtgctgcctt	tcaaacgtcc	540
tgccggggcg	ccgtcaaagg	cnattcacca	tggcggcg	tatggaccac	tcggaccact	600
ggaaactggc	tactgtctgg	gaatg				625

<210> 735

<211> 677
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(677)
<223> n = A,T,C or G

<400> 735

actttctatg agaagcgtat gaccacagaa gttgctgctg acgctctggg tgaagaatgg	60
aagggttatg tggcccaat cagtggtggg aacgacaaaac aaggttccc catgaagcag	120
ggtgtcttga cccatggccg tgtccgcctg ctactgagta aggggcattc ctgttacaga	180
ccaaggagaa ctggagaaaag aaagagaaaaa tcagttcggt gttgcattgt ggatgcaaat	240
ctgagcgtc tcaaccttggg tattgtaaaaa aaaggagaga aggatattcc tggactgact	300
gatactacag tgcctcgccg cctggggcccc aaaagagacta gcagaatccg caaactttc	360
aatctctcta aagaagatga tgtccgcccag tatgttgtaa gaaagccctt aaatanngaa	420
ggtaagaaac cttaggaccaa agcacaaga ttcaanngtc ttggacttcc acgtgtcctg	480
cagcacaaaac cggccgtgta ttgcctnnna aaaaccagcg taccttnggc cgngaacacc	540
cttangccg aatttccagn ccacttggcn ggccgntnct aatgggaatc canttcggg	600
acccannctt ggcgaaatca tggcatanc ttggttccct gggtaaaaat ggtattccgt	660
tcaaaaattcc nccaaann	677

<210> 736
<211> 651
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(651)
<223> n = A,T,C or G

<400> 736

ggtactattg aagaactggc tccaaatcaa tatgtgatta gtggggagt agctattctt	60
aattctacaa ccatgaaat ctcagagctt cccgtcagaa catggaccca gacataaaaa	120
gaacaagttc tagaaccat gttgaatggc accgagaaga cacctctct cataacagac	180
tatagggaat accatacaga taccactgtg aaatttggtt tgaagatgac tgaagaaaaaa	240
ctggcagagg cagagaggt tggactacac aaagtcttca aactccaaac tagtctcaca	300
tgcaactcta tggtgtttt tgaccacgtt ggctgtttaa agaaatatga cacgggtttg	360
gatattctaa gagacttttt tgaactcaga cttaaatatt atggattaag aaaagaatgg	420
ctccttaggaa tgcttgggtgc tgaatctgtc aaactgaata atcaggtcg ctatctta	480
gagaaaatag atggcaaaat aatcatttggaa aataaggctta agaaaagatt attaaaggt	540
ctgattcaga ngggatatga ttccggatcct gtgaaggcnt ggaaagaaac ccannaaang	600
gttcngatta agaaaaaaat naanaagagn gccancaaaag gaacttggaa n	651

<210> 737
<211> 404
<212> DNA
<213> Homo sapiens

<400> 737

cgaggtactg tgtggccacc atgccatgtc tagagccagg ctcccgttgt tggccatgcc	60
---	----

ttgcttttag	gtttggctc	tgcacgagac	gccgcagaqa	acgtctttagat	gcctcgctcc	120
ccttatcctc	accacttcct	tcttaggggt	gaaatgctg	gatcaaagg	tcttcacgtt	180
ttctgacttt	tccacgcatt	gggttagcct	gtgctccgga	gaccctgtga	gcacacatgt	240
ccccagcgca	gcttgtact	cctgccttc	tgaccccgcc	aggtggatta	caaagctgac	300
gagtggctga	tgaagaacat	ggatcccctg	aatgacaaca	tcgcccacact	gctccaccag	360
tcctctgaca	agtttgtctc	ggagctgtgg	aaggatggta	cctg		404
<210>	738					
<211>	250					
<212>	DNA					
<213>	Homo sapiens					
<400>	738					
acatcaaaga	ttacatgaaa	tcaatcaaag	ggaaacttga	agaacagaga	ccagaaagag	60
taaaacctt	tatgacaggg	gctgcagaac	aaatcaagca	catccttgct	aatttcaaaa	120
actaccagg	ctttattgg	gaaaacatga	atccagatgg	catggttgct	ctattggact	180
accgtggag	ttgtgtgacc	ccatatatga	tttctttaa	ggatggttt	gaaatggaaa	240
aaaaaaaaacc						250
<210>	739					
<211>	582					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(582)					
<223>	n = A,T,C or G					
<400>	739					
acagtaagga	caaccccaac	ctgctgttca	acatgtgtgg	cttcgagtgc	cgcacccctgc	60
ctaagtgcgg	caccagctat	gaggagtca	cccacaaagg	cggggtctgg	aacctgcaga	120
atgagggtac	taaggagcgc	acagctcagt	gtttcctgct	tgtggacat	gagtcaatgc	180
agcgcttcca	caaccgcgt	cgtcagattc	tcatggcctc	tgggtccacc	acccitcacca	240
agattgtgaa	taagtggaaat	acagctctca	ttggccttat	gacatactt	cgggaggctg	300
tggtaaacac	ccaagagctc	ttggacttac	tggtaagtg	tgagaacaaa	atccagacac	360
gtatcaagat	tggactcaac	tccaagatgc	caagtcggtc	cccccggtt	tgttctacac	420
ccctaaggaa	ttgggtggac	tccgcatgtct	ctcaatgggc	catgtgctca	tnccccaatc	480
cgacctcagg	tgggtccaaa	cagaacngat	taggtatcac	acacttctgt	tcaggaatga	540
gccttgaaga	agaccactta	ttcccacttg	nacctcgcc	gg		582
<210>	740					
<211>	576					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(576)					
<223>	n = A,T,C or G					
<400>	740					
ggtaggacac	cgaacccctg	attcagacag	caaaaaccac	gctggctcc	aaagtggta	60

acagttgtca	ccgacagatg	gctgagattg	ctgtaatgc	cgtcctca	gtacagata	120
tggagcggag	agacgttgac	tttgagctt	tcaaagttaga	aggcaaagt	ggcgccag	180
tggaggcac	taaactgatt	aaggcggt	tttgtgacaa	ggatttcagt	caccacaga	240
tgcacaaaaaa	agtggaaagat	gcgaagattg	caattctcac	atgtccattt	gaaccaccca	300
aacccaaaaac	aaagcataag	ctggatgtga	cctctgtcga	agattataaa	gcccttcaga	360
aatacgaaaa	ggagaaaattt	gaagagatga	ttcaacaaat	taaagagact	ggtgctaacc	420
tacaatttgt	cagtgggct	ttgtatgtga	agcaaatcac	ttacttcttc	agaacacttg	480
ccttgcgg	ccttggtagg	aggacctgaa	attgagctga	ttgccatcgc	aacaggangg	540
cggatcgccc	cagttctcaa	gctnacagcc	gagaan			576

<210> 741
<211> 579
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(579)
<223> n = A,T,C or G

<400> 741

accttatctg	aaactcttgc	acttccccaa	ccagggcaga	aatgaggtgg	gagaagttt	60
actaaaaatga	gggatggggg	aaagtaaaag	atgtttttt	tttttgaga	ctcgctttgt	120
cacccaggct	ggagtgcata	ggcacaaatct	caactcac	caacctccgc	ctcccggtt	180
caagcgattc	tcctgcctca	gcctcccgag	tagttggat	tacaggcgcc	tgccctccatg	240
cctggctaat	tttgtatttt	tagtagagac	agggtttctt	catgttggtc	aggctggtct	300
caaactccta	acctcgtgat	ccgcctgcct	cgacctccca	aagtgtggg	attacaggca	360
tgagccacca	tgcccagcca	aagatcattt	ttttatata	acttcaccct	ttgtaaat	420
tgtactgggg	gagtatagag	tagaaaaaaa	gtttagttaa	aacatttgg	tacaaattaa	480
cctttaaaaa	tntaattact	gctaaaaata	gaaggctgtt	ncccttaagg	aaaatttagng	540
ccattttgga	aatganactt	gggcataaa	tncaggtgg			579

<210> 742
<211> 578
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(578)
<223> n = A,T,C or G

<400> 742

ggtaactttgg	gatgtttac	taggtgttt	ccatttagaat	tagacc	ttttaaatcc	60
aagcaagctt	gaagccccctt	ggcttacagc	attgcctgc	tgaataactaa	acactcacat	120
ggcaagagtt	gctctggaga	ggtagggcca	gaggaatgct	gctgcactgc	caactcaggc	180
acatgcttag	ctgtaaaagg	aagcgagg	aatgcgtcct	gcagcgtatt	agagtaaaag	240
tctacccctc	tgaagcacta	ttaagcgctt	aaccgtat	ttaaatact	ccatgtgcta	300
tctactgagg	aagattcatg	ttcaattt	tgaaaataat	gcaagcatcc	actaagg	360
ttaagcttt	cttgattat	aattaagtt	catttaagt	tntttttt	cttcaacca	420
gtgtgccatc	tccaatattt	ctatagtata	ccaaccaccc	caggaatgc	ctttaacaat	480
atcagggatt	tatataacca	aatagttca	aatccaacaa	aattccctt	atgaactt	540
gcttttaag	actactgatg	ggtacctg	ggcgg			578

<210> 743
<211> 592
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(592)
<223> n = A,T,C or G

<400> 743

ggctttaga aagtccatg attctgcata tactgttga actgaatcat gatgtctta	60
gaaagtatat gcagaatcag aatgttcgg gaaatattga gttaactgtg aatatcctga	120
caatggccta ttggccgaca tatgtgccta tggaaagttca tttaccacca gagatggtaa	180
aacctcaggaa gatttcaag acatttacc taggcaaaca tagtggcagg aaacttcagt	240
ggcagtcaac cctaggacac tgtgtgttaa agcagaattt aaagagggtt aaaaaggaaact	300
ccaggtctct cttttcaaa cactgggtct gctaatgttt aatgaggggag aggagttcag	360
tttagaagag atcaagcagg caactggaa agaaggatgg agagtttaagg agaacactgc	420
agtcattagc ctgggtggaa aagctagagt tctggcgaaa aaatnccaan ggccaaagac	480
ctttaaanat ggtgacaagt tcanttnpta atngatgatt caaaccttaa actttcagga	540
tnaaggatca atcaaatenca aaaaaaaaaa nnnaaaaaaaaaa agcttggcc ga	592

<210> 744
<211> 578
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(578)
<223> n = A,T,C or G

<400> 744

ggtaccaaac atagccctta ggcctggct aggctctcaa aggtctttcc cagaaatggaa	60
ggcagcagta gcttcaaaaca ggcacaaaaa cagccaggag gaggcagcat ccactccatg	120
aaggcctaag acaatgaaag gaagccagag caacagacca cttgggatc cggggagaag	180
ggtaaatggg caaaagggtt gtatccctg atgtctcag aacatcagac cacaccatgt	240
gaatttaagc aggactattt taagtggga aacaatacta gaagcatttg gtgtatttc	300
ctggcactca cctcttaggt aagcaggaga gcgggacact caggagttgt gactaaactc	360
acacttaagc tgccctgtcca gaccgtcccc ttggctgaac acaacactga aattgtggca	420
.gtgtctgttg cnccagtgga cctncactta ctaatgagta tgtaaaacag angagccaca	480
gtgaggcnnn tcacaaaaacc canggctctt gggggaaaaa cgggttccca ccttctgnct	540
tttggtgctg gaaagtnccct gaggganaag aagtttg	578

<210> 745
<211> 581
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(581)

<223> n = A,T,C or G

<400> 745

acagatcagg caactgtgga	aaatctaaac	gaactgcgcc	aagatctgtc	aaaattccga	60
aatgaaataa gggatttacc	tggcttcgg	acttctaaat	atgctatgtt	ttatccaaga	120
aattaaccat tttctaaatc	atggagcgaa	taattttcaa	taacagatcc	aaaagactat	180
attgcataac ttgcaatgaa	attaatgaga	tatataattga	aataaagaat	tatgtaaaag	240
ccattctta aaatatttat	agcataaata	tatgttatgt	aaagtgtgt	tatagaatta	300
gtttttaaa ccttctgtta	gtggctttt	gcagaagcaa	aacagattaa	gtagatagat	360
tttgttagca tgctgcttg	ttttcttact	tagtgcttta	aatgttttt	ttttatgttt	420
aagaaggggc agttataaaa	tggacacatt	gcccaaaaag	gtttggaaa	antggaagac	480
ccagcaaatg gtanggctt	acctcctca	caaggataca	cttggaaata	tagaaagtta	540
tgtttaaata tctctggttt	aggagttcac	atatagttaa	g		581

<210> 746

<211> 506

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(506)

<223> n = A,T,C or G

<400> 746

ggtacaagct tttttttttt	ttttttttttt	ttttttttttt	tagtagtgg	gtgttgagct	60
tgaacgctt cttattgg	ggctgnnttt	aggcctacta	tgggtgttaa	attttttact	120
ctctctacaa ggnttttcc	tantgtccaa	agagctgttc	ctntttggac	taacagttaa	180
atttacáagg ggatttaaag	ggttctgtgg	gcaaatttaa	agttgaacta	agattctatc	240
ttggacaacc agctntcacc	aggctcgta	ggtttgcgc	ctctacctat	aaatcttccc	300
actatttgc tacatanacg	ggtgtgcct	tttanctgtt	cttaggtanc	tcgtctgggt	360
tcgggggtct tancttggc	tctcettgca	aagttatttc	tagtaattc	attatgcana	420
agnataggg gttaaatgcct	tgctatatta	tgcttggta	taattttcat	cttnccctg	480
cggnacctgc cggccggcc	gtttna				506

<210> 747

<211> 454

<212> DNA

<213> Homo sapiens

<400> 747

ggtactttgg cttaaatgtat	tggcaacttc	tacaggggcc	agtctttga	actggacaaac	60
cttacaagta tatgagtatt	atttataagg	agtgtttac	atatgagtcg	ggaccaaaga	120
gaactggatc cacgtgaagt	cctgtgtgt	gctggccct	acctgggcag	tctcatttgc	180
accatagcc cccatctatg	gacaggctgg	gacagaggca	gatgggttag	atcacacata	240
acaatagggt ctatgtata	tcccaagtga	acttgagccc	tgttgggct	caggagatag	300
aagacaaaaat ctgtctcccc	cgtctgccat	ggcatcaagg	gggaagagta	gatggtgctt	360
gagaatgggt tgaaatggtt	gccatctcag	gagtagatgg	cccggtcac	ttctggatc	420
tgtcaccctg agcccatgag	ctgccttta	gggt			454

<210> 748

<211> 569

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(569)

<223> n = A,T,C or G

<400> 748

ggtaccagct	ggcacaggag	cagggggcat	ggcacctctg	ttgttatgc	ccatagcacc	60
tcccatagcc	atctgaccca	tccgaatctc	ctgctctctc	gcatcaggga	aggttccctt	120
gaatccttcc	tgctgtcgcc	gcatcatttc	ttcttgcgtgc	cgccgcacatct	cttcttcacg	180
gcccgcgc	tcttcctctt	gcctgagctc	cagttgcctt	cgttttgca	cctcttgggt	240
gtgcagctct	tccatcctcc	gaagttcttc	ttggcgcttc	atcaaatcct	gtctcattag	300
catgacctgg	tgctcatggc	gtgcagctc	catctccatc	tccagcttct	cacgagcctc	360
ctttagtttgc	cggtccactt	gtcctgtcg	ctgcttctcc	atctcaatga	gtgccttnca	420
gcccgcgc	tattcatact	caaaggaacc	aggctgtgca	aatctgggt	gctgctctcg	480
ttccttgtga	aatgctgggt	ttataaccag	cttcnttga	agccctcttc	atcaatctaa	540
cctggtccat	gggctccaca	gtcacaagg				569

<210> 749

<211> 428

<212> DNA

<213> Homo sapiens

<400> 749

acatggatat	tcccaaacc	ttccattaga	aaactgcacct	ccctgcacac	acaacaaaaaa	60
cagcgctatt	tcctacaccc	attggactga	aagtgcgtgg	aaatggaaatg	gttttagaat	120
atgaagaaga	acacaaacc	atgtactgt	ggttgaacct	ggacgtgagc	tggtgcagg	180
gccgttgggt	agaaaaccag	catctcataa	acagtcact	ccactggatg	gtttgtcact	240
ggatggtttgc	ttgggggtgt	ggtcacaggc	gcaaaggaca	tgcacacggc	cacgctacgc	300
tactgttaacc	aagagggtgac	ttcagccatg	aataaggtga	agaggttaca	catctaccta	360
cggaatataa	taacatacaa	tgacttataa	agtactaca	tgcataatgag	caagcaaagt	420
acctcgcc						428

<210> 750

<211> 569

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(569)

<223> n = A,T,C or G

<400> 750

acctggcaga	attagcaaga	gtttcttta	agaagacatt	tgtcaaactc	aacaaattga	60
aggtaacac	cttaagagtt	gtagttactg	accagaaata	tggacagact	tcttagactt	120
ggaggaggta	tgcctggact	ggccagggg	ccacatcag	atgctcctgc	atggacacaca	180
gcagaacaag	tctatatctc	ttccctggca	ctgtaaaaaa	tgttaaaaca	tggccgtgt	240
ggagttccaa	ttgaaagttat	gggttgatg	cttgagaaat	ttgttgatga	ttataccgtc	300
agagtgattt	atgtgtttgc	tatgccacag	tcaggaacag	gtgtcagtgt	ggaggcagtt	360
gatccagtgt	tccaagctaa	aatgttgat	atgtgaagc	agacaggaag	gccggagatg	420
gttgggtgtt	gggtatcaca	gtcaccctgg	cttgggtgn	tggcttctg	gtgtggatat	480

caacactcag cagagcttg aagccttgc gganagaact tgtggcaagt ggttgtggat 540
cccattcaga gtgtaaaagg aaaggttgt 569

<210> 751
<211> 568
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(568)
<223> n = A,T,C or G

<400> 751

acctgaagct	caggaggaga	tgaaagaagt	agccaaacac	ccaaagaatc	ctgaggttgg	60
cttgaagcct	gtgtggtata	gtcccaaagt	tttcattgaa	ggtgctgatg	cagagacttt	120
ttcggagggt	gagatggta	catttataaa	ttggggcaac	ctcaacatta	caaaaataca	180
caaaaatgc	gatggaaaaaa	tcatatctt	tgatgcaaag	ttgaatttgg	aaaacaaaaga	240
ctacaagaaa	accactaagg	tcacttggt	tgcagagact	acacatgctc	ttccttattcc	300
agtaatctgt	gtcacttatg	agcacttgat	cacaaagcca	gtgctaggaa	aagacgagga	360
ctttaagcag	tatgtcaaca	agaacagtna	gcatgaagag	ctaatgctag	gggatccctg	420
ccttaaggat	tttggaaaaaa	ggagatatta	tacaacttca	gagaagagga	ttttcatatg	480
tcatcaacct	tatgaacctg	taacccatgt	agttgcaagg	aanccgtgt	gtttgatata	540
catcctgtat	ggcacacaan	gaaatgcc				568

<210> 752
<211> 312
<212> DNA
<213> Homo sapiens

<400> 752

accgccagg	atgtcccttc	cagccctggg	atggactaga	ggagcacagc	caagccctga	60
gtgggaggct	gcgggcatt	ctccagaatc	agggaaactg	aaggatggc	ctcagtctct	120
aaggaaggca	gagacctggg	ttgagcagca	gaataaaaaga	tcttcttcca	agaaatgcaa	180
acagaccgtt	caccaccatc	tccagctgt	cacagacacc	agcaaagcaa	tgtgctcctg	240
atcaagttaga	ttttttaaaaa	atcagagtca	attaatttta	attgaaaatt	tctcttatgt	300
tccaaagtgt	cc					312

<210> 753
<211> 334
<212> DNA
<213> Homo sapiens

<400> 753

ggtacaagcg	tctgcagcag	actgtggcgg	gcgaaggagc	aggattccag	ggcgctgttg	60
ggcttggtca	cgaacgcccag	cagcagggt	gcaagggcct	tggggaaata	gtccctgctgc	120
accatgtgg	tcagcgccat	cagggggccg	tacagtttt	tcccacggga	caaaaaatgc	180
ctaaggaagg	gagaacataa	taaagggtt	tcttctctc	cctcttctt	tcacattaag	240
acctacactt	aaatatttcc	catagaaaac	catcttccta	attgtcttt	gaatgaaatt	300
ctgacttgg	gccacaagga	ctaatacccg	ccga			334

<210> 754
<211> 533

<212> DNA
<213> Homo sapiens

```
<220>
<221> misc_feature
<222> (1)...(533)
<223> n = A,T,C or G
```

<400> 754

ggtcgcggcc	actgtccggc	cacagctaa	cgctttcgc	tgtcggttgc	ggtctcgcg	60
aggcgcccc	cgttctgg	gtttggcg	ggaattaaac	aaccaccatg	tcgagcaaaa	120
aggcaagac	caagaccacc	aagaagcgcc	ctcagcgtgc	aacatccaat	gtgttgc	180
tgtttgacca	gtcacagatt	caggagttca	aagaggcctt	caacatgatt	gatcagaaca	240
gggatggctt	catcgacaag	gaagatttgc	atgatatgt	tgcttctcta	gggaagaatc	300
ccactgatgc	ataccttgat	gccatgatga	atgaggcccc	agggccatc	aatttcacca	360
tgttcctgac	catgtttgg	gagaagttaa	atggcacaga	tcctgaagat	gtatcagaaa	420
cgcccttgct	tgttttgat	aagaagnaca	ggcaccattc	aggaagatac	ctaagagact	480
gttgcacca	tggggggatc	ggtttacana	ataagaagt	gatgantgtc	ctg	533

<210> 755

211 <211> 571

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) . . . (571)

<223> n = A, T, C or G

<400> 755

ggtaaaaaat	tagaaagcgaa	cggcaaaacta	tgtgccagca	gccgcggtaa	tacataggc	60
gcaaggcgta	tccggaaatta	ttggggcgtaa	agcgtccgta	ggttttttgc	taagtctgga	120
gttaaatgct	gaagctcaac	ttcagtcgc	tttggatact	ggcaaaaatag	aattataaaag	180
aggtagcggt	aattccctagt	gaagcggtgg	aatgcgtaga	tattaggaag	aacaccaata	240
ggcgaaggca	gctaactgggt	tatataattga	cactaaggga	cggaaagtgtg	gggagcaaac	300
aggattagat	accctggtag	tccacccgt	aaacgatgat	cattagttgg	tggaataatt	360
tcaactaacgc	agctaacgcg	ttaaatgatc	cgcctgagta	gtatgctgc	angagtgaaa	420
tttaaaggaa	ttgacgggaa	cccggnacaag	cggtggagca	tgtggttaa	tttnngattct	480
acgcgtagaa	ccttacccac	tcttgacatc	ttctgcaagc	tatagagata	tagtggaggt	540
tacagaatga	cagatggtgc	atggttgtcc	g			571

<210> 756

<211> 570

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) . . . (570)

<223> n = A, T, C or G

<400> 756

ggtccactgg aaaggcaaca tgaccaggtc gccccgcctc ctggttctgc ccaagttctc 60

cctggagact	gaagtgcacc	ttaggaagcc	cctagagaac	ctggaatga	ccgacatgtt	120
cagacagttt	caggctgact	tcacgagtct	ttcagaccaa	gagcctctcc	acgtcgcgca	180
ggcgctgcag	aaagtgaaga	tcgaggtgaa	cgagagtggc	acgggtggcct	cctcatccac	240
agctgtcata	gtctcagccc	gcatggcccc	cgaggagatc	atcatggaca	gacccttcct	300
ctttgtggtc	cggcacaacc	ccacaggaac	agtccctttc	atgggccaag	tgatggaaacc	360
ctgaccctgg	ggaaaagacgc	cttcatctgg	gacaaaactg	gagatgcattc	gggaaagaag	420
aaactccgaa	gaaaagaatt	ttagtgtaa	tgactctttc	tgaaggaaga	gaaacatttg	480
ccttggta	aaagatggta	aaccagatct	ggcttccaag	acctngccct	ttcttgagg	540
accttttaggt	caaactccct	agttcacct				570

<210> 757
<211> 578
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(578)
<223> n = A,T,C or G

<400> 757

acaagctttt	ttttttttt	ttttttttt	ttttttttgg	gagtaagaaa	agggtggggat	60
taagaanacg	tttctggagg	cttagggacc	aaggctggtc	tctttcccc	ctcccaaccc	120
ccttgcattcc	tttctctgat	caggggaaag	gagctgagtg	agggaggtag	agttggaaag	180
ggaaggattc	cacttgacag	antggcacan	actcctccag	agtanagctt	ggagggagat	240
tgaaagtgg	gataatactg	ctgacaccc	ccttgaagct	nagatggaa	atggacatac	300
ttagaaattt	agtgacttta	atagcctgga	tttccctntn	caaaaactttt	agaatggaaa	360
atcccatccc	cttccttata	tagtgcattc	taccactac	cttctaccat	tttctacttt	420
gggcttatga	tgatggccat	tatctacatg	ngttttagn	accctggttt	ggttctaaan	480
ggggatctt	gaaccnagn	ttnttggag	attttaaga	aggaagttt	aactgaacaa	540
atggaatgg	cnccagaaaag	aaatccaggg	tnncccnng			578

<210> 758
<211> 567
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(567)
<223> n = A,T,C or G

<400> 758

ggtagcggat	tgaaagggtt	agggttctac	tgcaggaaga	aggcacccgg	aagagagaat	60
ataaaaatga	gctggcaaag	gtaagaaaacc	actataatga	ggagatgagt	aatttaagga	120
acaaggatga	aacagagatt	aacattacga	agaccacca	caaggagata	tccatgcaaa	180
aagaggatga	ttccaaaaat	cttagaaacc	agcttgcata	acttcaagg	aaaaatcgag	240
atctgaaggg	tgaaattgtc	aggctcaatg	acagcatctt	gcaggccact	gagcagcgaa	300
ggcgagctga	agaaaaacgcc	cttcagcaaa	aggcctgtgg	ctctgagata	atgcagaaga	360
agcagcatct	ggagatagaa	ctgaaggcagg	tcatgcagna	gctgtcgag	gacaatgcc	420
ggcacaagca	gtccctggag	gaggctgcca	agaccattca	ggacaaaaat	aaggagatcg	480
agagactcaa	agctgagttc	aggaggaggc	caaccccggtt	ggaaatatga	aaatgactga	540
taaggtagaa	acattatgtat	gaggagg				567

<210> 759
 <211> 266
 <212> DNA
 <213> Homo sapiens

<400> 759
 ggtcaccgac ctctctcccc agctgtattt ccaaaatgtc gctttctaac aagctgacgc 60
 tggacaagct ggacgttaaa gggaaaggccc tcgttatgag agtcgacttc aatgttccta 120
 tgaagaacaa ccagataaca aacaaccaga ggattaaggc tgctgtccca agcatcaaata 180
 tctgcttggc caatggagcc aagtccgttag tccttatgag ccacctaggc cggcctgatg 240
 gtgtgccccat gcctgacaag tacctg 266

<210> 760
 <211> 381
 <212> DNA
 <213> Homo sapiens

<400> 760
 ggtacactag aaagtctttt acaaaaataat catcttagat caacagaaga ccaatcttca 60
 atgtcgccct gcaagatggg ttactttaac atctcctcct gttttctcca atgttctcct 120
 ttagtatggc tggtaattgt tttggtgatt gccacccccc cgagatgcct tgccataaagt 180
 gctctgtgg ccactgttagt ctgcataatcc ctgtccatat ccatagttcc catagttata 240
 cccagtataaa tcatatccgc catagccact atagtttga tcaccaccat aggcactatt 300
 gtaatttcca tatcctttagt cataatagtt attaaatcct tggttccagt tttggccctg 360
 acctcgccca cgaccctcg t 381

<210> 761
 <211> 401
 <212> DNA
 <213> Homo sapiens

<400> 761
 actcagctcc aattatctaa tattcttggaa aggatgctga tattgtttgg ttgtgtcccc 60
 ccacaaaatct caacttgaat tggatctccc agaattccca cgtgttgtgg gacagaccca 120
 gggggaggtt attaatcat gggggccagt cttttccgtg ctattctcgat gacagtgaat 180
 aagtctctatg agatctgtatc agtttatcgt gggtttctgc ttttgcttct tcctcatttt 240
 ttcttgccac aatgtttagaa gtgtcttttgc cttccacca tgattctgag gcctcccccag 300
 ccatgtggaa cttaagtcc aattaaacca ctttttcttc ccagtctcggt gtatgtcttt 360
 atcagcagcgt tgaaaacggc ctaatacagt aaatttggtagt c 401

<210> 762
 <211> 610
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(610)
 <223> n = A,T,C or G

<400> 762
 acgcttggttt atttcattcct catacttggtt cttgaagtct tccaccaggt cctgcatttt 60

tcttagctct	gagtcaggc	ggccccgttc	ccccacgatg	ctgtccagct	gcctcctgag	120
gttgtttagt	tacagtaaaa	acacatctaa	catcttgaa	gaccAAattt	cctgctgaac	180
agtattacag	atttcatgag	cactggaggt	ttgtgttgca	gcgcttggtc	ttcttggcag	240
catttgggt	gtatttggaa	acagaaaacac	tagtgactcg	agaagcagtt	acagaaaattc	300
ttggcattga	gccagatcgg	gagaaaggat	ttcatctgga	tgttagaaagat	tatctctcag	360
gagttcta	tcttgccagt	gaactgtcga	ggctgtctgt	caacagcgtg	actgctggag	420
actactcccg	accctccac	atctccacct	tcatcaatga	gctggattcc	ggttttcgcc	480
ttctcaacct	aaaaaatgac	tccctgagga	agcgtacga	cggttggaaa	tatgacgtga	540
agaaaagtata	aggaagtgg	ctatgatctc	tncatccggg	ctttaataag	gagacggcag	600
cagcttgtgn						610

<210> 763
<211> 578
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(578)
<223> n = A,T,C or G

<400> 763

cgaggta	ccccc	tgaagaactt	ccctaatgcc	atcgagcaca	ccctgcagtg	ggctcgggat	60
gagtttga	gcctt	caa	gcagccagca	aaaaatgtca	accagta	atgctacttg	120
tccaatgat	gtaaaagg	gt	agcttactgg	ttgtcctccg	attcaggtt	aatgaggag	180
gtctgcgg	c	agg	gtcaat	aaagtgattt	gcttagtggg	cgaaatatta	240
tttggatata	tggaggatgg	ggattattgc	taggatgagg	atggatagta	atagggcaag	300	
gacgcctc	cct	atgtt	tttag	ggacggatcg	gagaattgtg	taggcgaaata	360
ttcgggct	tg	atgt	gggg	gggtgtttaa	gggggtggct	agggtataat	420
gcctangagg	tctgg	gaga	atgt	gtgtttaa	tgtcattaag	gagagaagga	480
agccnagg	gc	tttg	gtgt	tantaag	ggtggaa	agaagaagta	540
tgattcctaa	gggg	ttgg	ttatcg	gggtt	gatccgttc	aatggaa	578

<210> 764
<211> 500
<212> DNA
<213> Homo sapiens

<400> 764

actatataac	agttggcaca	acccacccca	caacagaaga	gaacacattt	ttctcaagca	60
tatgttgg	aat	ttccagg	agaaaccatg	tgttaggcca	caaaacaaat	120
tgtaaaagac	tgaa	acacaa	agtacagcat	cactcgatt	ctgtgtccaa	180
aggaaaggat	ttc	cggaatt	tggcacgaac	catgccactg	tttccatggg	240
ttttccccag	atgact	ctgg	tttgtttgg	tttgccgcca	ggagtgactg	300
tgc	tttat	at	acataagcgc	atctcttgcc	tctgtttcat	360
taaacac	caat	tttaag	aagagctgtg	tgctccctt	ttcggggccg	420
tagccag	caa	aatggcc	ttt	gggtccggag	accccgtta	480
acttcgg	ccg	g	ggaccacaag	ccttcagac	atagttcc	500

<210> 765
<211> 578
<212> DNA
<213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(578)
 <223> n = A,T,C or G

<400> 765
 ttccagagca tattgtatgag agaaggatct gcaatgctgt ttctccagac aaggatgttg 60
 atggctttca tgtaattaat gtaggacgaa tgtgtttgga tcagtattcc atgttaccgg 120
 ctactccatg gggtgtgtgg gaaataatca agcgaactgg cattccaacc cttagggaga 180
 atgtgggtgt ggctggaagg tcaaaaaacg ttggaatgcc cattgcaatg ttactgcaca 240
 cagatggggc gcatgaacgt cccggaggtg atgccactgt tacaatatct catcgatata 300
 ctcccaaaga gcagttgaag aaacatacaa ttcttcaga tattgtataa tctgctgcag 360
 gtattccaaa tctgtatcaca gcagatataa tcaaggaagg agcacagtca ttgatgtggg 420
 gaattaaatag agttcacat cctgttaactg tcaaaacccaa gttgggttgg 480
 tttgaaggag tcagacaaaa agctgggtat atcactccag ttccctgggan gtgtttggcc 540
 ccatgacatggcaatgcta atgaagaata ccattntt 578

<210> 766
 <211> 569
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(569)
 <223> n = A,T,C or G

<400> 766
 actgtattta tattgtttat attattttag taatgtatg ttttgcttcc aaagattgcc 60
 ttgccttac attttgtca aaaatagcag ctatacatta atgacataat aagtatgtct 120
 agtattattt aagtgcctat tcatatttc tcatcaaagc ttttatgaa tgattataat 180
 gcattttcta taaaatatta ttgctttcac tgtataccag tgattcaaac tttattgtct 240
 tcaacacgaa tgacatgaaa tcaactctagt tgcccatcag tggtggttgg 300
 atgtggact atgtgactat cattgtatgcc ccaggacaca gagactttat caaaaacatg 360
 attacagggg acatctcaag ctgactgtgc tgtccctgatt gttgctgctg gtgttgggtga 420
 atttgaagct ggtatctcca agaatggca gacccgaaag catgcccttc tggcttacac 480
 ctgggtgtga aacaacctaa tggccggggt taccaaaatg ggattccact ggaccaccta 540
 cagccagaag agatntgaag gaaattnnnt 569

<210> 767
 <211> 580
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(580)
 <223> n = A,T,C or G

<400> 767
 acgaagctac ccagggagat ctgaatgatg ctaaaaataa acagaaattt gtttaaagg 60
 tccaaaagcc tgccaaacccc tggaaattct acattggac ccagttgatg gaaagactaa 120

agccatctat	gcagcacatg	tttatgaagt	tctattctgc	ccacttattc	cagaatggca	180
gtgtattagt	aggagagctc	tacagctatg	gaacattatt	aatgccatt	aacctctata	240
aaaatacccc	tgaaaaagtg	atgcctcaag	gtcttgtcat	ctctttgct	atgagaatgc	300
tttacatgt	tgagcaagtg	catgactgtg	aaatcattca	tggagacatt	aaaccagaca	360
atttcatact	tggaaacgga	tttttggAAC	agatgtatg	agatgatttA	tctgtcgct	420
tggactgt	tgacctgggt	canagtatag	atatgaaact	tttccaaaa	ggaactata	480
tcacagcaa	gtgtgaaaca	tctgggntt	caatgggtt	gaaaatgctc	ancaacaaac	540
catggaaact	accagaatcg	attactttgg	ggttgctgca			580

<210> 768
<211> 355
<212> DNA
<213> Homo sapiens

<400> 768

ggcaggtaacc	ctatggccta	tgttgactat	aagactgtgc	tgcatgattga	tgataatgtg	60
acgtcagccg	tagaaggcat	caacagaatg	accagagctc	tcatggactc	gcttgggcct	120
gagtggcgg	tgaagctgccc	ctcaatcccc	ttgggtgcctg	tttcagctca	gaagagggtgg	180
aattccttgc	cttccggagaa	ccacaaaagag	atggctaaaa	gcaaatccaa	agaaaccaca	240
gctacaaaaga	acagagtgc	ttctgctggg	gatgtggaga	aagccagagt	tctgaaggaa	300
gaaggcaatg	agcttgtaaa	gaagggaaac	cataagaaag	ctattgagaa	gtacc	355

<210> 769
<211> 611
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(611)
<223> n = A,T,C or G

<400> 769

cgaggtacca	cgatcctgat	gatgaaccag	tggccgatcc	ttatgatcag	tcctttgaaa	60
gcagggaccc	ccttatacgat	gagtggaaaa	gcctgaccta	tgatgaagtc	atcagctttg	120
tgcaccacc	ccttgaccaa	gaagagatgg	agtcctgagc	acctggttcc	tgttctgttg	180
atcccacttc	actgtgaggg	gaaggccctt	tcacgggaac	tctccaaata	ttattcaagt	240
gcctcttgc	gcagagattt	cctccatgg	ggaaggggggt	gtgcgtgcg	tgtgcgtgcc	300
gtgttagtgt	gtgtgcatgt	gtgtgtctgt	ctttgtggga	gggtaagaca	atatgaaaca	360
actatgatca	cagtacttt	acaggaggtt	gtggatgctc	cagggcancc	ttcaccccttg	420
ctcttcttgc	tgagaagttg	gcttaaggca	gaccaaganc	tgctggccct	tttaaggaat	480
atgttcaatg	ccaaaggtaa	aaaaattntg	aaattggtcc	ccaaatnccc	gggcattgcc	540
tttcggccact	ttngcttct	tcctggngan	ccccacctt	gaccgggtggg	ggccgtanac	600
nttgacaacn	n					611

<210> 770
<211> 508
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(508)

<223> n = A,T,C or G

<400> 770

ggacaaaacc	agctgaagat	gaaagtgtgg	agacccaggt	aatgacagc	atcagtgc	60
agacagcaga	gcagatggat	gtagatcagc	aggagcacag	tgctgaagag	ggttctgttt	120
gtgatcccc	acccgctacc	aaagctgact	ctgtggacgt	tgaagtggagg	gtgccagaaa	180
accatgcata	taaaggtaaa	ggtgataata	ccaaagaaaag	agacttggat	agagccagtg	240
agaagggtgga	acctagagat	gaagatttgg	tggtagctca	gcaaataaaat	gcccaaaggc	300
ccgagccccc	gtcagacaat	gattccagt	ccacgtgcag	cgctgatgag	gatgtggatg	360
gagagccaga	gaggcagaga	atgtttctca	tggactcaaa	gcctttactg	ntaaacccca	420
ctggatctat	actcgncatca	tcttcggtn	aaacccaatt	cnctgggatc	tggcccaant	480
tnancattna	ncttgggnta	ttncnncc				508

<210> 771

<211> 587

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(587)

<223> n = A,T,C or G

<400> 771

acttgttttg	ggaatatatag	agagaagaaa	ctgctgagca	ggtcagtaaa	gaacagtcca	60
tttcagctgc	aggacagttc	tcttcccg	gacaaggcta	catagcctcc	aaggaggcca	120
aactatccct	tccatcaac	aagacaccc	gcatggatac	tctagccatg	acttgcttt	180
ggacaaaaat	caactgctaa	cgttttcat	ctctaataatc	attaacacca	tggagaaaaaa	240
agaaaaaaaaat	tcaaccctag	aaaacttgac	aacgagaata	agaaaatcca	caaggaaagg	300
tcatgctaaa	actgatttga	cagttgttcc	atcacccgc	accacatggg	cttgagactg	360
gtgacttcat	ggatgcatcc	tttcgatgcc	ctgccaaatg	tcaagcttcaa	gtctgtcagt	420
gaccggcgtg	tgatgctgcc	tgccttctat	tcaccaactn	ctattcaaga	gatccaagg	480
ggccttgggc	cgtggtaagc	acanggacac	ncaggtgcca	agaagccca	gnaaccctt	540
tagaaaaactt	tgnccctggga	tttggggccc	ggnaaccaac	cngtgg		587

<210> 772

<211> 577

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(577)

<223> n = A,T,C or G

<400> 772

ggtacactgc	aggagagtgc	ctggaaaaaa	gatcaaatgg	ggctgggact	tctcattggc	60
caacctgcct	ttccccagaa	ggagtgattt	ttctatcg	acaaaagcac	tatatggact	120
ggtaatgggt	acaggttcag	agattaccca	gtgaggcctt	attcctccct	tccccccaaa	180
actgacaccc	ttgttagcca	cctccccacc	cacatacatt	tctgccagtg	ttcacaatga	240
cactcagcgg	ccatgtctgg	acatgagtgc	ccagggata	tgcccaagct	atgccttg	300
ctcttgcctt	gtttgcattt	cactgggagc	ttgcactatg	cagctccagt	ttcctgcagt	360
gatcagggtc	ctgcaagcag	tggggaaagg	ggccaaggt	ttggaggact	ccctccagct	420

ttggaagcct catccgcgtg tgtgtgtgt tatgtgtaga caagctcttn gctctgtcac	480
ccaagctgga attgcantgg tgcaatcatg gttcaattgc agtcttgacc ttttggctca	540
agtgtatcctt ccacctnacc tcctgagttac tgggacc	577

<210> 773
 <211> 580
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(580)
 <223> n = A,T,C or G

<400> 773

ggtaccacct cctttcccta caaaaacaaaa acagattaat ttgccttatt ttggacaaac	60
taatcagcca ccttcagaca ttaagccaga cgaaaggttct cagcagttgt caacagttgt	120
tccgtccatg ggaactaaac caaaaaccaggc agggcagcag ccgagagtgc tgctatctcc	180
cagcataacct tcgggtggcc aagaccagac cctttctcca ggttctaagg aagaaagtcc	240
acctgctgct gccgtccggc cctttactcc ccagccttcc aaagacacct tacttccacc	300
cttcagaaaa ccccgagaccg tggcagcaag ttcaatatat tccatgtata cgcaacagca	360
ggcgccagga aaaaacttca gcaggctgtc cagagcgcgt tgaccaagac tcataccaga	420
gggccacact tttcaagtgt atatggtaag cctgttaattt ctgnngncca aaatcaacag	480
cagcaccagg agacatttat tcaatagcca gggcaagcct ggcagtcaga acctgaacag	540
acctgttctt tagttcagga gaaccntgaa acnaaaagaat	580

<210> 774
 <211> 680
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(680)
 <223> n = A,T,C or G

<400> 774

ggtacacctggc catgggcttc cttcccacac ctgccaggac acagcctgca ggtcaggggg	60
ctaaactggg gagtttctc caaagggtggg aaaggatggg aagagtaggt gggaatgggg	120
aagttacaca gctacagcag tcaggcctgt ttagtaagaa gaatcacatt taatgagtt	180
ctttcttgcg gtttcagatg ctcaagtaca agtaagttat atgacaacgta taacacacag	240
gaggaaagcc acggaagcac actgttgtga agttctcatg ctctacgtga agtgttatct	300
ttttttcttta agtgacagca agtttataa gaaagtaaag gaataaaaagg aatggctatt	360
tcattggcag agcaccaata aaatcatctg aagnagatt gtgatgagtt aaangcgat	420
atgataaaacc tgaagaccaa cnagaaanta gcccacngag atntagtgaa ttaagttaac	480
caagggaaatt aacttgaatc attaaaaatt cttaatctgg gggAACCTT naanaanggg	540
agcttacccc ttggggcaat ttnaaaccna aagccaggtt gattgaattt aagcttaccc	600
tttttcaata atcccttttta aannaanggt ttnaacctt cncttaaang gcnnnnanttt	660
tcnaattgga nttaagccg	680

<210> 775
 <211> 658
 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(658)

<223> n = A,T,C or G

<400> 775

ggtagctgtg ccagatgaaa ggtttgactt tctttgtcaa taccacaaac cagcaagcaa	60
aatttcctgccc tttctaaatg tgggtggatat tgctggcctt gtgaaaggag ctcacaatgg	120
gcaggccctg gggaatgctt ttttatctca tattagtgcc tggatggca tctttcatct	180
aacacgtgct tttgaagatg atgatatacac gcacgttcaa ggaagtgttag atcctattcg	240
agatataaaaa ataatacatg aagagcttca gcttaaagat gaggaaatga ttgggccccat	300
tatagataaaa cttagaaaagg tggctgtgag aggaggagat aaaaaactaa aacctgaata	360
tgtatataatg tgcaaaagtaa aatcctgggt tataagatcaa aaagaaaacctt ggtcgcttct	420
atcatgattt gaatgaccaa gagattgaag tggtaataaa acccttaatt ttgactcnaa	480
anccatggnc tacttggttna acnttctgaa aaagcttcnt ttgaaggaaa ccaanggtga	540
taaaaattaag aagggggtggc cagtttancc agggccttgg catccttaa gggggcttgg	600
accttaagtt ccanaattga tcttangnna anccaagttt tggaaccacc tgncccaa	658

<210> 776

<211> 659

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(659)

<223> n = A,T,C or G

<400> 776

ggtagttac ggcctgatct aattgaaaagt gcattccctt tggcaagtgg caaagctgaa	60
ctcatcaaaa cccatcacaa tgacacagag ctcatacgaa ggtttagaga ggaggggaaaa	120
gtaatagaac ctctgaaaga ttttcataaaa gatgaagtga gaattttggg cagagaactt	180
ggacttccag aagagttagt ttccaggcat ccatatccag gtctggcct ggcataatcaga	240
gtaatatgtg ctgaagaacc ttatatttgc aaggactttc ctgaaaccaa caatattttg	300
aaaatagtag ctgattttc ttgcaagtgt taaaaagcca cataccctat tcagagatc	360
aaagcctgca caacagaaga ggatcaggag aagctgatgc caaataccag tctgcattcc	420
tgaatgcctt cttgctgcca attaaaactt naggtgtca nngtgaactg gnngtnctac	480
cgnntccnngn nnggaatnt caggnnaaga tgaaccctgc tgggnnaatcn cttattnn	540
ggnntangnnt aaaccttnga tggggccaaac cttaccnngt ggttattttt tggnnccccn	600
ntaaagaacc tcntnaaang tnccccnntt ttganacggg ggnntaaacc tnccccggg	659

<210> 777

<211> 728

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(728)

<223> n = A,T,C or G

<400> 777

acttcttgca	tgttgctcaca	tgttgctgtg	agaatcaggt	gctgcctata	tggctccact	60
gggagagggc	agatggaagc	cgtcgccctca	tctgtcgtgg	aacgtgtgct	gtgcacctcc	120
tccctttgt	gatctaattc	tctgtccctt	tactgtata	aactgttaact	gtgagcctaa	180
cagcttcct	gagtctagt	agtcccttca	gcaaataaaa	ggagggtgg	cttggagacc	240
tatgaacttg	cacccccc	cgtcggtttg	agggtctggc	acaggggagg	gaagggctgg	300
gcctttttg	gaagggggtc	ttcaatccat	ttgggggtcg	gggtcccaac	ttcttggang	360
ggcccaacgt	tccttgccca	gcttccaagn	ctcttcttcc	cttcttaagt	ccccganct	420
tgcaaccttt	ggggccctnt	ggctgttgg	atccctggaa	aaaacttngt	cttttnnntt	480
ancacttggaa	tnngaanaac	tggccat	actnaagccc	ttgcatnnct	tnactnott	540
nnatgggcaa	ccttnaaggg	atcccaagg	gncccctggg	tttangggaa	taatgggggg	600
aaaatttttt	nggaanttna	anaataancc	ccccccaaaa	ncggggganc	cttngggccc	660
gnaacccccc	ttaaggccn	aaattccnngn	canatntggg	ggggccggtn	ctaagggat	720
						728

<210> 778

<211> 603

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(603)

<223> n = A,T,C or G

<400> 778

caggtacact	gctgccactg	ttgtgtcctc	gctctgctt	ctgttgccctc	acgccaggcc	60
ccgtcctgcc	gtgacaccct	tcatcttacc	cttggAACCC	caaggccaag	ttgggttcaaa	120
ctgttggaga	acagagttgg	cctgcacatcg	gaacacactt	gtcctcagct	taccatctcc	180
tcacacccca	gagtggaaag	gtgaacacct	gcagctgagg	cttggaaacg	tttcttgtgt	240
tgccctgaaa	aatcttttag	acctcaggg	ggctctgtct	ctcttAAAAG	gtggagaaaag	300
atgccattct	ctccctaagg	tctggtgag	tctcccccatt	ttgcatacc	ttctgcaagc	360
catctatctc	tgctcactct	ccaattgacc	cgcttggaa	caaggatga	aggaggaagt	420
tgggggcttg	ggggaaatcc	gccagtttgt	gaancctgtg	gcangaagga	tatgtgacnt	480
agagatcctg	atcttttnn	ancctgtgt	tggttggctt	gnatatatgg	atggtgactg	540
tttgnaaagn	ggagtataag	atgcctgtct	gatngngta	tgctatgctn	ttangatgg	600
						603

<210> 779

<211> 654

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(654)

<223> n = A,T,C or G

<400> 779

cgaggttttt	ttttttttt	tttccagtt	gtgatgtcgt	atttcaaaat	aggtcgaaac	60
ttcagagaaa	tgaaaatcgg	gatatcagt	aagttattgc	tctcggtgtt	cctaattcctc	120
ggacttccaa	tgaagttcag	tatgaccaaa	ggctnttcaa	ccaatccaag	gttatggaca	180
gtggatttgc	aggtggagaa	gatgaaattt	ataatgtta	tgatcaagcc	tggagaggtg	240

gtaaagatat ggcccagagt atttataggc ccagtaaaaa tntggacaag gacatgtatg 300
 gtgatgacct agaagccaga ataaaagacca acagatttg tcccgacaag gagttttctg 360
 gttcaaaccg taaacngaga ggccgagaag gaccagtgcg gtttgaggaa aatcctttg 420
 gtttgacaa gttttggaa aaaacccaac ncatggngg ctntaaaaga cccttagata 480
 ccacccgnc aaggacnnag cctgaagcca gaaaaggngg aaggattggc caggtttcc 540
 aagngaatga cttnanccta acctaangag ccagnnngg ggaccctnt aaagggccgg 600
 taaaaccnat ttggggccca nnccncctn tttttctgg gaaanggggg gtta 654

<210> 780
<211> 570
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(570)
<223> n = A,T,C or G

<400> 780
acagtggcga caaaaacctgt gcagagtccg cagaagaggc caataaccaa gcgacccagg 60
atcagcatt caaccgactt agctactta cacagtccca taaagcagcc accagtgaca 120
gccaaacaggt tgacaatcag cattgaatttgcg cgcctgccaa agcggttgcg gaagagtccg 180
acggaaaagg agccgatcat accccnngacg gaaaatatgg ccacagacaa ggaccagaga 240
gacgtgagca gcacccctcaga ggggtgggca tttcccttgc cgtcaaaatgg ttattgataa 300
atccctttat gatcttctca ggagcatatgc tgacccccagt ggttgttaacc naattggaaa 360
gaaccgattt nagccactgg tgatggccaa tatcaanact ggggtgaccc tctggggccc 420
catcgctgga atctaattca agtctttaag aaagatctan ggggtgatttc agaaacnagn 480
tttnaggcc acaaaccctt aaanggcctt ttaacagcaa ggttnttcc cgtcttagga 540
aggatncnaa nccnttggcc ggaaccncct 570

<210> 781
<211> 664
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(664)
<223> n = A,T,C or G

<400> 781
acccaaagtt ctctggggag ggccaggaa gaggctgggt gtcaaaccaa acagattttt 60
atttgcagtc gtcactgggg ccgtttcttgc ctgcattttt gtctgctagc ctgctcttcc 120
agctgcattgg ccaggcgcaa ggccttgatg acatctcgca gggctgagaa atgcttggct 180
tgctgggcca gagcagattc cgctttgtc acaaaggctt ccaggtcata gtctggctgc 240
tcggtcatct cagagagctc aagccaaatgc tggtccttgc tttatgtatct ctttggctc 300
ttccatagcc ttctcccttca gcttccttgc ctgaagtcat ggctttcggtt aaaactggac 360
atctggaaa gacagtccctt ctctttcttgc gataaaatgg cctggaaatca ncggcccggt 420
aaaacaagct ttcatctttc tggttccant ttnattaact ggttttcaact nggnccactg 480
ngggggctta ncttcttgc ctggctggna aatttaaggn ggtttaagnt tntncccg 540
acctattncn tggnnaaaac cnnggaatna tgcnagnctt aaaatttnc ccaangaagg 600
agtcccttaan accnggntaa ntgggnttca cggaacnggg tggnnacctt gtttnccag 660
gncc 664

<210> 782
<211> 669
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(669)
<223> n = A,T,C or G

<400> 782

caggtacaag	ctttttttt	ttttttttt	tttttggaaat	agaatacAAC	tttattttca	60
gtcatttcta	tttccttggt	tatgaacaaa	ggtagcaaag	tgcagggtta	tcagcagtgc	120
caatagaaat	tacagagttt	ttcatatccc	tttacagttt	gccacaggt	tcttaaaata	180
ttgnntcacac	tcatctctct	tcagtttacc	attgtttaat	aggcctaccc	tcgatcttt	240
tattcaatat	gttaataaaag	aaacctatac	acatagtatc	accgttatca	ttttaaaaat	300
attttgacac	tgnatataaa	tataacttagc	ttactttgga	atcctaccta	ttttaatggt	360
gnatgaaaat	attattctga	aattagccng	gcntggnggt	gcatgcctan	aggcccagct	420
acttggaaag	cttaaggggg	aaggatccct	gaacccaagg	gangggcang	nttcnnggan	480
ctnggatgnn	caatggcttc	ancctngna	atngaatggg	anccctttt	aaaggaaagg	540
aaangggaaaat	ttggattttg	gnaacngann	cctggnccaa	aaaaggccaa	aancctgct	600
ggaangggccc	tntggacctt	aaatgccccn	nccaaangng	gnnattncca	ttaannggn	660
cccnccaggg						669

<210> 783
<211> 735
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(735)
<223> n = A,T,C or G

<400> 783

acacagaagc	agtgaaggac	tgcacagaag	ccctcaagct	ggatggaaag	aacgtgaagg	60
cattctacag	acgggctcaa	gcccacaaaag	cactcaagga	ctataaatcc	agctttgcag	120
acatcagcaa	cctcctacag	attgagccta	ggaatggtcc	tgcacagaag	ttgcggcagg	180
aagtgaagca	gaacctacac	taaaaaccca	acagggcaac	tgaaacccct	gcctgacctt	240
acccagagaa	gccatgggccc	acctgctctg	tgcccgtcc	tgaaacccag	catgccccaa	300
gtgagctctg	aagccccctc	ctcaatccct	tgatggcctc	caccctgtaa	gaagctttgc	360
tttggtcaaa	ttaaacttaa	gtgtaatcaa	accccagacc	atgggtggtt	gcacccagaa	420
agggnnccac	tnagaaccta	aacgttgaag	ctgnaacttt	ngccccata	tcccnaagcc	480
caagtttagct	tgatccncc	accggaaatcc	ttatTTAGCC	aaagccnttt	ngggntttgg	540
ncctggnccc	aaanggggct	ttgaaaaact	ggaaggcttgc	gcccnnttgg	agctttnccc	600
caaaaanccc	aaatttaatt	ggggagntna	tttggaaacn	aaccttggc	tttttngggc	660
cccggtttt	gaaaggaagg	ggggataaaaa	ccttaaggcc	cctggttcca	aaannanccc	720
tttttnaacc	ggggn					735

<210> 784
<211> 660
<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(660)

<223> n = A,T,C or G

<400> 784

cgaggtacac attgtattat atacaaacaa gcaacaacaa aaagttcat catgtaaaca	60
aaagaatata aattatagac ataattgaa gttccaaaca gtccttaat cattgtgagc	120
ttctctaaa ggcacaggc ttggagtgt ggcacagagc cattagtcg atgtctgggt	180
ggtctccat aatagcaatg tatactctaa agtgggctt ttgtgaactc tgtcagggt	240
aatgagttag gcctctaaa ggaatgaaat gcttcacat ttggggcaac aagtgaaaaa	300
tactgaaagg agggatacaa ctagggtag attattggt gacagtgatt ttagaaatac	360
cactaaaaag gtggaaaag atttctagat taaattctga ctactgnaaa tnagaaagga	420
tccttttgn a nctcacca tggttngtga aaaattaaaa gggagaaaagt gaccaggag	480
aaaccnaatt gggagctan ggaggttcca gaaaatnccc agtcttacac gaaaaaacct	540
tganagggcc ttttaaggc caannnttggg aaattacctt tgtaacttaa cttgaaaaan	600
acctgccggc ggccgttnaa aggncaattn accnctggng gccgtcttag ggnccncctc	660

<210> 785

<211> 254

<212> DNA

<213> Homo sapiens

<400> 785

actgctgctg gttaaggtca acctgggtg caatgctgct gtcttcatct tcggccccga	60
agtaatgctc aataagatca aaggcctttt ggtagatctc ctggtttca tgactctgt	120
agaactcaat ttatccaga ccataagctt ctcaatcaa agcacagtaa gggtaatgc	180
cagtgccatt cctttggct tccctttctc caagcctcag gatatttcc aagccattta	240
gggcaacctg tacc	254

<210> 786

<211> 688

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(688)

<223> n = A,T,C or G

<400> 786

ggtaactggct gagcttggaaag cactcctggc tgcttcgggt tccatctgat	60
gatgtatgtca cacacactgc taaaagggcc caagcaggc aagtggatg gctgaaggag	120
ggaaggagggg gttcagaac ccactggct ggatggaga actgggtgg ggcttccccca	180
agagggaaaga cagataaaaca aaacaaaaca aaaactgggt aaagaggaat gaatcactca	240
ccctgttgtt ttcaattcta cactgcattc ctggccagtc gcatttttt aatgcaggca	300
tggccacagc ttccttagag aattatctca aagacccaga agggacctgg angaggccta	360
tttcttaagg tttccagtt ggaccaaggg aangantggg ttcacttagc ttctaaaaaa	420
ggntttgaac cctaaggta actqcctccg gaaqctgctt gctttgggt tggcttccca	480
aaaaggnttc agaatagntt tggacccctt angaaaactt ggtcaagcc cggnancca	540
anacttnctt ggtngaaaa tcaagggggg ctnttgggg ntanccgga agtttgggnc	600

aggntgtntt aacagggtgg ggantgacca nccngngcc caggggcctt antaacntg	660
ggaancccct gnganggaan ccttnacc	688

<210> 787
<211> 708
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(708)
<223> n = A,T,C or G

<400> 787

acagtaaacac aacatcaaaa gcaacacagg ctgtatacag aaacgtgggt cattctttc	60
agccctaatg gagatgtat taacagtatc gggactctg gaaaatcact ctgcagggtt	120
atatggacta catggagatc atatcctgtt gtgttagtcaa agctaagtcc tcaagagcca	180
tatgtataga tacacaatgt ttttaataa tctttaaaac agagatcaaa gttcatttaa	240
gtcctgtttt cattaacaaa aataaaaatg aaataaaaat gggAACAAA tggatcatct	300
aaaagggtta aaaattccta aattgnccaa ttatccaac tggtgggaga cttatttcag	360
gtttttggaa agtccaggac tggttcagc tgaacccaga aggccccaa ttttgcttac	420
tgaacttgc cctgggttaa gncatggat taaaatngct tanccnccctc ccctnggtt	480
tgaacttttg gccgggtnga attattgtt aaaggcaggg tttaaaccaa gtttnccaa	540
ctgggttatt taacttggat cccattggaa aaaatttca aangggaaatt ttttatttgg	600
ggccatttca atcnaangga aaattntggg aactttggaa atnccgantc cttgntggaa	660
anaaaaaaacc cnngggaaaat gggnnnnnnn nccttngggcc cccaaaccc	708

<210> 788
<211> 647
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(647)
<223> n = A,T,C or G

<400> 788

ggtaactctgt ctgctgaggg aatgggttat ttgactccc atagaaagca ctggctaa	60
tcaccaaatg actgcttggg ccccactgaa gcagtgttagc tctccatagt atttttgggt	120
gttatggatt acatgtgtgg ccagctcatg cttttcttg agcagggtct gtccatgacc	180
tgtgctata ccatgctttc taagttctct ttggacaggg cctcagctgc tgcctcagcc	240
tgagttttaggagggtgtta ggagtccctgg taatcttggaa gcagtttgcac cacctccaa	300
tgggtgaact gcacagcatc atccaggggaa atggtgccca cctgtcccttgc gaaaaaggat	360
tcaactttgca agccttgatc aggaatttac caacttcgaa tgtgccctta nctgcagcaa	420
catgcnaanc tgggcnccaa gcataagctt tctggtccat atccatggct gacaaggcaa	480
ccttnaana ncttancatt ggcnctntnn gcncaaata ccaggtggcc nnagcttgg	540
cccaattntg gccttacncc cggggntaan tccaaaccaan gccttagtgn caaatnngga	600
aattgaanan accccacttt ggcaaaactgg cccctnggtt gncccat	647

<210> 789
<211> 650
<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(650)

<223> n = A,T,C or G

<400> 789

acctgcgcgc cctcgacgtc aatgtggcct	tgcgcaaaat cgccaaacttg ctgaagccag	60
acaagaagat cgtgcaggac ggtgaccata	tgatcatccg cacgctgagc acttttagga	120
actacatcat ggacttccag gttggaaagg	agtttgagga ggatctgaca ggcataagatg	180
accgcaagtg catgacaaca gtgagctggg	acggagacaa gctccagtgt gtgcagaagg	240
gtgagaagga gggcgtggc tggaccagg	ggatcgaggg ttagttagctg cacctggaga	300
tgagagtggc aggtgtggc tgcaagcaag	tattcaagaa ggtgcagtga agcccaggca	360
gacnacccctg tcccaaagga atcagcaagg	atgtgtggc caagatcccc ctnnttgccc	420
agcatgaggg aaaaatgtnc agccacccca	ggctttnnta acanagctgg ctcttggtt	480
tggactttt ccttttctta aacaaacctg	ccattaagng anttggggtt caaaaaaaaaa	540
aattntnnna naataaaaaan ttttntttt	cgcacccneet tnnggggaaa cnchntngng	600
gcggtnnttt ggancnctnn tccncnttgg	gnntangtat aatntttttt	650

<210> 790

<211> 646

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(646)

<223> n = A,T,C or G

<400> 790

ggtaattcc ggctgttgca ccatggcgtc catggggacc	ctcgccctcg atgaatatgg	60
gcgccttcc ctcatcatca aggatcaga	ccgcaagtcc cgtcttatgg gacttgaggc	120
cctcaagtct catataatgg cagaaaggc	tgtgcaaat acaatgagaa catcaactgg	180
accaaattggg cttgataaga tgatgggta	taaggatggg gatgtgactg taactaatga	240
tggggccacc atcttaagca tgatggatgt	tgatcatcg attgccaagc tgatgggta	300
actgnccaag tctcaggatg atgaaattgg	agatgaaacc acaggagttt ttgtccctggc	360
tggtccttg gtagaagaag cggagcaatt	gctanaccca ggcattcacc caatcagaat	420
annccatngc tattacaag ctgnntcccg	ttgttattga acactggaca agaacaacga	480
tacncncctg gtgacttaan ggcacccgaa	cctgattaaa ccgnaaaaccc cnctngttc	540
aanggnaca gttgcncccc cnatngttaa	atctggangc cgcctnttgc ccantggac	600
gaaacntta tttgcttca attaaggcaa	tggccgcagn tgagan	646

<210> 791

<211> 656

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(656)

<223> n = A,T,C or G

<400> 791

accatgata	ctggcagatg	tataagaagg	cagaggcttc	cttttgacc	gccgaggagg	60
tgacctctc	caaggacatt	cagcaactgg	aatccctgaa	acccgaggag	agatatttta	120
tatcccattgt	tctggcttgc	tttgcagcaa	gcgatggcat	agtaaatgaa	aacttggtgg	180
acgcatttag	ccaagaagtt	cagattacag	aagcccgctg	tttctatggc	ttccaaattg	240
ccatggaaaa	catacattct	gaaatgtata	gtcttcttat	tgacacttac	ataaaagatc	300
ccaaagaaaag	ggaatttctc	ctcaatgca	ttgaaacgat	gccttggc	aagaagaagg	360
cagactgggc	ccttgcgctg	gattgggac	caagaggcta	cctatggtga	acgtgttga	420
acctttgctg	cntggaaggc	atttcttgc	cggcttttgc	cgcgatattc	tggcttaaga	480
aacgaggctg	agcctggcct	acantttcta	angaacttat	taccganatt	aagggttacn	540
ctgggatttg	cttgcctgaa	gttnaacccc	tgggacctng	gccgnacccc	ntangggcaa	600
ttccanccac	tggnnnnccg	tactaaggga	accaacttgg	gcccaacntg	gggnat	656

<210> 792

<211> 640

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(640)

<223> n = A,T,C or G

<400> 792

ggctgtacac	aatcagaaat	tcgagacatc	atccctggta	tggagatctc	ggcacccgtca	60
cagcagcggc	agcagatcgc	tgagatcgag	aagcagacca	aggaacaatc	gcagctgacg	120
gcaacacaga	ctcgactgt	caacaagcat	ggcgatgaga	tcatcacctc	caccaccagc	180
aactatgaga	cccagacttt	ctcatccaag	actgagtgga	gggtcaggc	catctctgt	240
gccaacactgc	acctaaggac	caatcacatc	tatgtttcat	ctgacgacat	caaggagact	300
ggctacaccc	acatccctcc	caaagaatgt	gcttaagaaa	gttcatctgc	atatctgacc	360
ttcgggcccc	aattgcagga	tacctatatg	gggtgagccc	accagatacc	cccaggtgaa	420
agagatcccc	tgcattgtga	tggtgcucca	atggggcctt	accanaacgn	gcacctgctg	480
gcaantgnct	aactgagacc	tgcggggcgg	ccgttcaang	gcaattcngn	nactggngc	540
cgtctaaagg	accnacttgg	gccaacttgg	gnaatatggc	nnactggtcc	tgggaaatgg	600
tntccgtcca	ttccancatc	anccggaaanc	taanggtAAC			640

<210> 793

<211> 615

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(615)

<223> n = A,T,C or G

<400> 793

acctacaact	atatctactc	cattttccaa	aacagagagc	tgatccggg	ctgcaacacc	60
tccaaattatc	agaagctccc	ttaattttagg	attatcaatg	tatttcttaa	actgcttgc	120
gttattcaaa	gtttgttcag	ctaaactcccg	ggaagggtca	acaatgagag	ctttcggagc	180
attggggaga	aactttgttt	gtgtcacctg	tgcattacct	gagtgtgtg	atttgacaat	240
gtaaccatcc	ggtgccttgg	aaagagcaac	aaagccatct	tttgggtggaa	acttaaatc	300
ctcttcaccc	gaagttaaat	ttcagttcag	cattctcaa	aacacaggca	ggaaagagggg	360

cttggtttt catatgtggt ggtatttcaa atgccagacc aagancttt ccattttgg	420
agaacttgc acatgtccttat ctatatcnng tacatccatg ggatcatgcc tagngaatnc	480
tttcataata tcaaatggtg gtatggaatc ttctgtccc caagccaatc caactggaga	540
ccttggcgcc ccntangca atcancctgn gccgcttaggn ccactggcca ctgggnacagg	600
cnntgtctgg aatgn	615
<210> 794	
<211> 709	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(709)	
<223> n = A,T,C or G	
<400> 794	
acttctgaat aagttcagag ccaaccactc tcaagaaaagt ggctgagggtt tggtttgcta	60
ctgctttggc taacaagggtt ttacctgtgc caggtggacc atagagaatg acccccttag	120
gaggctttat acccatctct tcataatatt caggatgggc gagaggaagc tccacagatt	180
ccttaatttc ctgaatttgg ttgtccaacc ccccaatatac tgcataggtc tcctgggggg	240
cctttctac cttcatact gtgaccaggg gatccgtgtc atccatcagc accccatatca	300
cggnatgcac cttgtgggtt agcaggaccg agcagccagg ttccagcaga tccttgctac	360
aaatgaaaaga atgctgacgt antgttctga gcccacagat gtagacacga atggcatgat	420
ggcatcaatg atctcttcc aaggttctta ctgacatcg ggtccccctc agaatcatcc	480
acttttggat ctttccttcn tcttgnttt ccttctaaag gggttcaatt tggtnccccc	540
atttcttaag ngaatcttcc cttncnttga aaaaaaaaaaag gccnttnaaa tnctntttta	600
acctttangn aantttaaa cccgggcctt gaatnnnaa gggggcnccc cnnggggcaa	660
ttttncttgg cnnaatttg gggccccctt gggnttnntt tttttttt	709
<210> 795	
<211> 693	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(693)	
<223> n = A,T,C or G	
<400> 795	
ggtacggcaa tcaatcttaa taatccagag agccagtcca tgcatttgg aaccagactt	60
gttcagctgg acagtgcatac cagcatggaa ttgtggcagg aagcattcaa agctgtggaa	120
gatattcacg ggcttattctc cttgtctaaa aaaccaccta aacctcagtt gatggcaaat	180
tactataaca aagtctcaac ttttgtttgg aaatctggaa atgctcttt tcatgcacatc	240
acactccatc gtcttacca tctctctaga gaaatgagaa agaatctcac acaagacgag	300
atgcaaagaa tgtctactag agtcctttt gcoactctt ccattccat tactcctgag	360
ccgtacatgt gcataggaac tgggatatac acaggcacag ggtatggcac tggaaacat	420
tctgnctnca agtacatct gctgaccaag aattggnctg catgtgaagg ttacagtaag	480
tacttttggc attggtaan gggtgcacaa aaactgnntt ggnccctnan cnctttggta	540
aggggttggaa aaaaggggtg gggcttaaac ctggcanttt nggttcnana agtntggaaa	600
ncctggganc ttaagggaaag gtttttangg gccntttga aatggcaatg tgggcnaat	660
ttgggtggccc gtnaaaaccc cntanncaag gtn	693

```

<210> 796
<211> 452
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(452)
<223> n = A,T,C or G

<400> 796
ggtacattca cgtctccgg ccgcttcacc taaaagccat cggtctcctg ggtagtggcg      60
gtcctgtgcc attctaccag atggttgtct ggcccataca ggtcttggtc cagttcaatc      120
accaaggatt taaaaaagga agagaacctc ctctttgtt tagtggcatc atatttggac      180
aaggctgaat cctccaggag ccgtccttct acccgaagct cccaggaagc caccgtccct      240
tccccatctc cggcatctga ctttagccgga ttgaaaagtgt tagaaatgaa aatcgacgc      300
ttccgttttt gcttgatggg acgtttcaag gcctcttggg tatctagccg ttctctatgaa      360
tagtctggtc cagttccctt caaaagccaa gagatccata taggcctggg attctggtaa      420
ctgcncnggcc ggccgctcnaa ngccaattc aa                                452

<210> 797
<211> 333
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(333)
<223> n = A,T,C or G

<400> 797
ggtacaagct ttttttttt tttttttt ttttttatta ngcgcaagtg gtcaaaagtt      60
gtcaaaaattt tcctcattcc tcgattgtct cttttttacc agtctcttgc ctttcaaaca      120
gaggataacctt ggcctccaca tcagcccatt tgatgttgcc attggctagg tcttggacta      180
tgcggcag ctcagagatc tctgcttta tctgcccatt tgagtacagg tccctcagag      240
ttgcagtgtg ggggtcttg ttcaactgtgt caaaagtcaat ggtgacacca aaagccacgc      300
caatctcattc aagtccctggc atancgcattt ccg                                333

<210> 798
<211> 632
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(632)
<223> n = A,T,C or G

<400> 798
ggtgcttttt ttttttttt tttttttt tttttggaca cagatcactt tattggcatg      60
gttttgtttt aagaaaagga aaagtgacaa agccaaagaga cagactctgc taacagatgc      120
ctgggggtgg ctggacattt ttgcctcatg ctgtgcaaag agggggatcc tggcccacac      180

```

atcctgctga	ttccttggga	caagggttgc	tgcctggcc	tcantgcacc	ttcttgaata	240
cttgctgca	gaccacacct	tccactctca	tctccaggtg	cagntcatca	ccctcgatcc	300
actgggtcca	gccacgcccc	tccttctcac	ccttctgcac	acactggagc	ttgnctccgc	360
cnagctcact	gntgcatgca	cttgcggcat	ctatgcctgn	caaatcctcn	ttaaaactctt	420
tnccaacctg	gaagtnatg	gatgttagtcc	taaaaagtgt	ancngccga	tgatcatatq	480
gnacccggnc	tgnaccnact	tttggctggc	ttancaagtt	gcaattgcnn	aggccattga	540
cttaggcnc	agtctcccg	gcccgttnaa	ggcaatcncc	attggcggnn	tctaggggncc	600
nntggncagt	tggtnatngg	caantntcng	ga			632

<210> 799
<211> 462
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(462)
<223> n = A,T,C or G

<400> 799

ggtaactgcgt	ctgtttttgt	taccccacaa	ggaccagcgc	cagatgttct	ttgtgatca	60
cctggatccc	ccaatcaagc	aaggccaaac	tcgctaccac	ttcctgatcc	tcctttctc	120
caaggacgag	gacatttcgt	tgactctgaa	catgaacgag	gaagaagtgg	agaagcgctt	180
tgagggtcgg	ctcacaaga	acatgtcagg	atccctctat	gagatgtca	gccgggtcat	240
gaaagcactg	gtaaaccgca	agatcacagt	gccaggcaac	ttccaagggc	actcaggggc	300
ccagtgcatt	acctgttcc	acaaggcaaa	gctcaggact	gctctacccg	ctggagcggg	360
gcttcatcta	cgtccacaaa	gccacctgtg	cacatncgct	tcgatgagac	tcctttgcaa	420
cntttgtcgt	ggtacactgcc	cggccggncg	ttcgaaangg	cc		462

<210> 800
<211> 702
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(702)
<223> n = A,T,C or G

<400> 800

gaggtgtcct	ccccctccaag	cagaccacact	gtccccttct	atcccagctc	agaggcagctg	60
acccaactca	gaatctctt	cctacaggat	gaagtgcctt	ttgaatgtta	tttaagccg	120
agagttaatt	tttctacaca	acatattttc	agacatctt	tagtctttt	ttgttctttaga	180
tactataaga	agatgaacat	gacaattttc	tagaacctgg	tagcgtgtgt	gtgtgtggcg	240
gggggtgctg	agggagggga	gtgagtcaca	ggagcctgtc	cccccaacagg	tgtgattgct	300
ctgacaacct	gtggcatgct	gcagggtcag	gctcctgata	ggaggatttc	atgactatgt	360
cattgnctcc	actcatttt	gaccaggatt	ggaatgtatc	tgcaatttgt	gtggctcaac	420
actttaggaa	acaatagaat	tatTTTtat	aataattctg	atggtgacca	agtttngnct	480
tggagggcca	caattttctt	cctttgaaaa	agtggacant	ncctggncac	ttctggnttt	540
ttaaaactta	ctnggccatt	ccatTTTggg	ggttttttg	ggnngtaaa	ttgggtttgg	600
gggttaaaaa	cccgtttncc	agggaaaanc	ccctaaaaaa	ncccttggg	gaatTTaaa	660
anggaaaaat	tctgggntaa	atnnggntt	ttttaaaaac	cc		702

<210> 801
<211> 719
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(719)
<223> n = A,T,C or G

<400> 801

aggtaactgcc	cagagaattt	tgttagacatc	aagaaaactt	tggaacgaga	gactcgccag	60
tgccaggctc	tgggtatctg	gactgactgt	gatagagaag	gcgaaaacat	cggttttag	120
attatccacg	tgtgttaaggc	tgtaaagccc	aatctgcagg	tgttgcgagc	ccgattctct	180
gagatcacac	cccatgccgt	caggacagct	tgtaaaaacc	tgaccgagcc	tgatcagagg	240
gtgagcgatg	ctgtggatgt	gaggcaggag	ctggaccta	ggattggagc	tgcctttact	300
aggttccaga	ccctgcggct	tcagaggatt	tttccctgagg	tgctgcaga	gcagctcatc	360
atttacggca	gctggcagtt	ccccacactg	ggcttgtgg	tggaaccgg	tcaaagccat	420
tcaggcttt	gnacccttgg	ggccgnnaac	accttaagg	ccgaatttcc	agcacaactg	480
ggcggggcgt	tactaagngg	gantnccgaa	cttnggnan	cccaagctt	ggcgtnaat	540
catnngggnc	ataaaacttgg	gttnccctgg	ngngnnaaaa	ttgggntaat	cccggtttna	600
caaatttccc	cccccaactt	tttccnaaac	cccgggaaag	cctttaaaaa	ggggtnaaaaa	660
accctnnggg	ggngggccct	aatggagtn	ggggnc	accc	tttanant	719

<210> 802

<211> 646

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(646)

<223> n = A,T,C or G

<400> 802

actcatcgcc	attgacctgg	cctataactt	gcacagtgcc	tatggaaact	ggttcccagg	60
cagcaagcct	ctcatacaac	aggccatggc	caagatcatg	aaggcaaacc	ctgcccgt	120
tgtgttacgt	gaacggatcc	gcaagggct	acagctctat	tcatctgaac	ccactgagcc	180
ttatgttct	tctcagaact	atggtgagct	cttctccaac	cagattatct	gttttgg	240
tgacaccaac	gtctacagag	tgacttattca	caagacctt	gaagggact	tgacaaccaa	300
gcccataac	ggagccatct	tcatcttcaa	cccacgcaca	ggcagctgt	tcctcaagat	360
aatccacacg	tccgtgtgg	ccgggacacga	agcgttgg	gcagttggct	aagtggaaaga	420
cagctgang	ggtgccggc	ctggatccga	cttctggctt	gtggaggaa	cagcccaagc	480
cagaatcatt	ggcanccagg	aanggcattgc	tngacccact	ngaagngcc	cttactnng	540
cttcccaaa	attggcatt	aaagggnctn	gggctcnna	ttccctt	aggccnggtt	600
tnangnggg	aaaaattcgg	ggaattnat	ccttaaagcc	nttgnc		646

<210> 803

<211> 544

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature
 <222> (1)...(544)
 <223> n = A,T,C or G

<400> 803

acacgtcgct	ctccggc	aggccc	tcaa	agaagg	gat	gagg	tcc	cag	gc	ag	ctcc	gtgt	60		
ccgtcatgtc	atcgaa	accag	gactgc	acag	gca	ctgcatt	tc	caggat	gg	aag	atgtat	g	120		
aggcagg	ggta	ttgtca	aca	atgatc	actt	tgc	tgc	ccca	agg	cg	actc	agg	180		
ccttcacgt	gttccc	acga	tgaaaa	acac	atgatt	ctc	gaagag	ccgg	gccc	ggaa	caca	240			
cacccc	aggcg	gtctagg	agg	tcagcc	acag	gg	tctgc	ata	cttgg	ccaag	ctggc	agtaa	300		
agagcacaca	ttcaaaa	agc	tgccc	atc	t	ctgg	agg	aaac	tcgtcc	acat	gtggcc	gc	360		
cagcacatac	ac	ctgtat	gt	tagt	ccatc	gat	tcaac	ccg	gaaca	ataaa	atn	agcanta	420		
ctaaataggc	ttaaa	acgaa	ctgtgc	acca	atggtt	catt	ctaaat	caat	ggaccac	cccc	540		480		
ttctttcca	tagt	chag	ca	ccgt	tac	ctn	tgg	anaa	ang	tnc	cttg	ggc	gn	gnacc	544
ttan															

<210> 804
 <211> 642
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(642)
 <223> n = A,T,C or G

<400> 804

cgagg	ta	cat	c	ttgtgg	ga	gagaac	c	tca	attt	c	cattt	tcc	aagt	tct	tctt	60	
ccct	gag	ac	gg	at	tct	cat	cg	tttgg	aa	gg	cac	c	ta	g	act	gacat	120
tcact	ttt	gtt	tt	gg	tc	at	tca	attt	cc	aa	aa	gt	cc	ta	at	tc	180
aaaa	acg	gag	cc	ttt	ct	gt	ca	ac	aa	aa	aa	at	tt	tt	tt	tt	240
cg	ggat	gaaa	aa	act	gt	ct	tttgc	ttt	aa	aa	aa	at	cc	gg	ttt	ttt	300
tttt	cct	tag	tt	tttgc	ttt	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	360
ct	cc	ttt	ttt	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	420
tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	480
tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	540
tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	600
tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	642

<210> 805
 <211> 261
 <212> DNA
 <213> Homo sapiens

<400> 805

cgagg	tacta	c	ag	ggccc	ct	gg	ac	gg	ttgtgt	at	gttgg	aaa	agg	at	gtt	ttt	ct	tc	aa	c	ct	ttt	cc	60		
gaa	att	at	gat	ta	ttt	g	at	ttt	ttt	gt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	120	
ggat	gct	cta	aat	ttt	gt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	180
aat	ttt	gt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	240
aat	ttt	gt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	261

<210> 806
 <211> 311

<212> DNA
 <213> Homo sapiens

<400> 806

gcggagagcg gctgatcgca	gtccggaggt gaggcgaaac tctgagcagg	tggccatta	60
tggctgacat gcaaaaatctg	gtagaagat tggagagggc agtggccgc	ctggaggcag	120
tatctcatac ctctgacatg	caccgtgggt atgcagacag	tccttcaaaa gcaggagcag	180
ctccatatgt gcagggattt	gactcgctgc ttgctggtcc	tgtggcagag tactccagtt	240
ctcagccaga accccgcaca	ggtcttcct tatgggatac	cagcccccta tacattgata	300
aattgggtac c			311

<210> 807
 <211> 591
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(591)
 <223> n = A,T,C or G

<400> 807

gttacctgtt cttgccagt	taagatacat atcttattat	ctttgttttt ttcaagtcta	60
tgctcctgtt tgaagctttt	cctgtatattt agttgtctg	tgaaataacct ataacatata	120
attcctatacg agtatgccac	attttttttc taactcattt	caaataaaat tctctcagat	180
tctagttttt gagcttgtcc	actagatctg aaaataaaagc	atccttcctt gagtccactt	240
gaactaatgg tgaatttgtt	acttaattta ctggcatctt	ggaaacaag ttttgcgttg	300
gcaggaaggc tggtttgaga	gtgagccgtt gaagtctact	ctgggttgc gatgacattt	360
cattagggtt tatttcctgn	attaccatgt cccccttgc	gcaatataact ttatgacttg	420
gaatgcaaca ccacttttaa	aaggctgggt tcaagttttt	aaagcattgg ttctgtntg	480
ccataatctg aagnntctgt	gaaggattat tnaagcttta	aacctncaa ggtaaaggcc	540
aaatttaggcc tggaatttacc	tggaccttgg ncaaaaaattn	aanattncn n	591

<210> 808
 <211> 641
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(641)
 <223> n = A,T,C or G

<400> 808

actaaatgga ggcacgtggg	agaagggagg ggccatttag	gaacaaaaat gtgttttaag	60
gaagagatgg gaaagcagag	accaggataga ggagcttagt	aagctgatag gtgttgtcat	120
tggtagaaaa gaagaagata	aatggatgtt aggattgagg	cttggaaag tagcataggc	180
aggaaaaagag gaattagaag	aatacgtgaa gaagtggaa	tcatggctg ggaaggaaaa	240
ttttggaaaa ggagcacatt	aaggcagaaa actcttttag	agcagtggtt taaaacttca	300
gcaatggta tcctttata	caagtatccc ttactttgga	atcccaggaa gtaaaaggca	360
cattcttgc	gaaggtaggg aggagcatt	gaaaccctgc ttgctaact tttttctt	420
tggcccttg aagtgttagta	tattttaaaa tccactggtc	tanaaggag tagttaagtt	480
naaggaaan aaaggatgt	tggaaaaaga tcngaccgaa	agggactttt tggtnaccca	540

aaagtttng gtncccttgg aaagggaaagg ggcccctttt nggaattang ggaaatggaa	600
acttggaaact gggnaantt cctntnagct taaccttgan g	641
<210> 809	
<211> 388	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(388)	
<223> n = A,T,C or G	
<400> 809	
acaagagggt gggctgggcc aggatgccc agggctggcc acagccaccc ccctcaaagg	60
tgttgatgag aaaagagaca ccttcttccct tgagaacatc tttcagccac aaatttagggg	120
atctgttgc tggcaataaaa ggaacgaatt tataaaagag ttcaatggat ttgtgtcgac	180
attctgtctg gggctccca caatgagcta aaagccactt gaccagatcc aataaacaca	240
atgatgcgga aggtgaaat cctcgcggca aacgtcggtt ctgtgtttta tttaaagaaa	300
catgcttcctt ttcaatgatg cgccataggt gatcaatggc atcacaacac ttttggat	360
tacctcggnnc gngaccacgc taaaggcc	388
<210> 810	
<211> 175	
<212> DNA	
<213> Homo sapiens	
<400> 810	
ggtacatcct cggccgggag tccccactgt ctctctacaa tgaggagctg gtgagcatga	60
acgtgcaggg tgattatgag ccaactgatg ccacccgggtt catcaacatc aattccctca	120
ggctgaaggaa atatcatcgat ctccagagca aggtcactgc caaatagacc cgtgt	175
<210> 811	
<211> 329	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(329)	
<223> n = A,T,C or G	
<400> 811	
ctgcgcgggtt gttctcttggaa gcagcggttct tttatctccg tccgccttct ctcttaccta	60
agtgcgtgcc gccaccccgat ggaagattcg atggacatgg acatgagccc cctgaggccc	120
cagaactatc ttttcgggttgg tgaactaaag gccgacaaag attatcactt taaggtggat	180
aatgatgaaa atgagcacca gttatcttta agaacggtca gtttaggggc tggtgcaaag	240
gatgagttgc acattgttga agcagangca atgaattacg aaggcagtcc aattaaagata	300
acacttggcaa ctgttggaaat gtctgttacc	329
<210> 812	
<211> 668	
<212> DNA	

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (668)

<223> n = A,T,C or G

<400> 812

acggatgcta	cttgc当地	aat gatggtaaaa	gggttagctta	ctgggtgtcc	tccgattcag	60
gttagaatga	ggaggctgc	ggctaggagt	caataaaagt	attggcttag	tgggc当地	120
attatgcttt	gttggggaa	tatatggagg	atggggatta	ttgctaggat	gaggatggat	180
agtaataggg	caaggacgcc	tcctagttt	ttagggacgg	atcggagaat	tgtgtangcg	240
aataggaaat	atcattcggg	cttgatgtgg	ggaggggtgt	ttaagggggtt	ggctagggtt	300
taattgtctg	ggtc当地	gagggtcttgt	gagaatagt	ttaatgtcat	taaggagaga	360
aggaagagaa	gtaccgaag	ggc当地	nttggtaat	aanggttgg	aggtgattt	420
tatccgnaat	tgggangtga	tccctaaagg	ggttgggtga	nccccnttc	ctgccc当地	480
tagganggtg	ganttctgct	tagggcttcc	aataattgan	gggc当地	tnaanttgn	540
aanggttaat	aaaacctttt	naagggttgg	gaccttgg	cttgnngtnna	ncccccttan	600
nattccattt	gaacttaggc	ttggncat	gtnttgg	tggc当地	ataantttt	660
aaatttncc						668

<210> 813

<211> 312

<212> DNA

<213> Homo sapiens

<400> 813

ggtagggca	gggttagatct	aactatttga	aggaatccct	aacactttc	caggtagaa	60
ttctggctag	tccaaaaagg	gtc当地	taagggtttt	gagaactag	acactgcaac	120
ttatttagat	cggc当地	tgttggggc	aaattttagt	ccaggagctg	cacgggttga	180
tgcaggagga	gttccaccaa	ttgccc当地	tcccttccatt	gtagcagcct	gaccaaagcg	240
ttcagttgtt	ggtggggtca	atcccaaagt	tccatccggc	atcatagtgg	caggtc当地	300
aggagctggg	gt					312

<210> 814

<211> 551

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (551)

<223> n = A,T,C or G

<400> 814

caggtactct	gaagtataca	caacaggct	aaacatctcc	cttgc当地	gtatgtgt	60
aaaattcaag	ataaaagattt	agtctcatct	tttaatgtca	gttttttcc	ccatgttaaa	120
ggaatgagg	aggaggctc	ttttattccc	ccacaagaaa	aaggagcca	cattaatatg	180
tgatattcc	cataactcta	atgttaatgc	ggatctccaa	agcctaggga	tttttccgt	240
aaagagagtg	ggccgttctg	tttaccctt	tattagaagg	gtattccacc	acagagagcc	300
ggagggtttc	cagatgtgt	taagagagca	ggtgc当地	gcaagcaa	gagc当地	360
agtattatgg	aaaacattt	agaagttagc	tccatgagga	ctgtgg	cacaagagga	420
ctcgactggg	tagccctggc	tgacanagga	cctgaaaagc	ngagtattgc	ttcaaacttg	480

gaaccnttca taggaggccta acactgttgg aagaagtacc ttggcnggac caccttangg	540
gcaattcnag c	551
<210> 815	
<211> 619	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(619)	
<223> n = A,T,C or G	
<400> 815	
ggtaactgata acttcttgct tcagttcatc tacaatgatc tttccctcta aatcccagat	60
cttgcgtctg gggcctgtgg cagcacacag ccagtagcgg ttagggctga agcacagggc	120
gttgcgtatg tccccaccat ctgcgtgt aaggtgttg cttcggtga gatcccataa	180
catggcctgg ccatccctgc ctccagaagc acagagggat ccatctggag agacagtac	240
cgtgttcaga tagcgtgtg ggccaatgtg gtgggtcttc agcttgcgt tagccagggt	300
ccatacctg accagctgt cccaaaccaca ggagacgtat atagggttgc tgctgttggg	360
cgagaagcgg acacaagaca cccactgtg gtggctctca tcctggacag tgtatttgc	420
acacaccctg ggtattccat agcttgggtg gttaacctgn ccggcggccg tcnaaanggc	480
gaattcacca tggcggccgt actagnatn caacttggnc caacttggcg gaatctggca	540
tactggttcc tnngaaatt gttcngtcc aattccnchaa aattnaaccg gaagnntaaa	600
ggtaaaactt gggggccta	619
<210> 816	
<211> 658	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(658)	
<223> n = A,T,C or G	
<400> 816	
actccagcag ccaggcatcc cagatctcct gtcctggagg gtgctgggc ccctggctcc	60
ccagagtgtg caggcagacc cccagagccc tagctcatcc atttatccat tcctcataat	120
ccagtgtcca aagagtaccc ccagcaggc agggaaaggtc cctccgggg tttacatgac	180
tgattcctc tcagaggcga ccgtggatc ccctgcgggc ccccgatagt gtttggagag	240
gggggttctt tcctcaggct ctgtgtttt cgaactccgtt caagcttttt tttttttttt	300
ttttttttt tggaaaggaga acaatttat tctaaaaataa gaacttggta acaatgaaat	360
acaaaaagct ggtcattata ataaaaagaa aagaanagttaaactttttt tttgtgaaaa	420
ttcnaaaattt atcataataa tatactgcca actntggtna atnnganttt gaattatttc	480
ctttcatnng attatttcaa gggaaatttt taaaatnng ttttggctta aaaccttngg	540
ccgggnacccn cncttanggg gcnaaaattcc aatccaantg ggggggnccg taacttaagg	600
gggancccaa ctttgggnnc caancnttgg gngttaatc atggggcana ncntgttt	658
<210> 817	
<211> 141	
<212> DNA	
<213> Homo sapiens	

<pre> <400> 817 actttcttct gccataactt cttcctcagt tcctacaggt gtgacacttt tcaacttctt 60 tggaaagaggc atttccactg tatcatcaga gacttggct gatgcttcta tggtgctatc 120 ctcttcctct tcacgtgtac c 141 <210> 818 <211> 280 <212> DNA <213> Homo sapiens <400> 818 ggtaacttaag aactcaagta tagaaataaa ctgtgggctg aagtaacatt gtaacctgct 60 cccaacatga ctgcataagggt gtctaagggtt aagtgtgaag attactgtga ggtctcaagt 120 tacttgacta atcaatccca tttgaatttc aatccaagca gcataattta cacacacctg 180 aaggaaatat cttaagtgtg ttcatgtgtg tgtctatgtg catgtatgtg taggggatag 240 gtgttaattag ggaagggctg accgaacaac attgataagt 280 <210> 819 <211> 635 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(635) <223> n = A,T,C or G <400> 819 ggtaacttgag tccttctcat ggggggggtg attgccttctt ctcatcagga gccaggagag 60 agggggacac ataggagggtg gcccatacga gcagtcccgcc tgccacaatgg taggcataagg 120 ccatggcact ggactgcctc taaggactgc taaaaagaat attttttgt ggtgtcagaa 180 ctggaaaaag cacttccct tcgggcattt ctggaaatga ttattaatcc acaaagaaga 240 actctgttaag cttttcttg aattgtancc agtgagaaaaa gcagatagac tgaagaatat 300 gaaggatagc tgagctgtnc ctncatagtg gggcatgcct aggcatatgg ctggcttgg 360 gactactgat gctttccct gagtttgtat tggcaactgan gtatggccgg ctggggccac 420 tgacttccca ntaatggaat ctgnntaaaaa ctgggggatt ccttagctt nntactgaa 480 gaaaanttt gtancnnaaa gatttataac cnnttagnaa taagtttncc agcanccng 540 gattttttt nngcttgggg gttnttggcg nccttannn aaggacnggg cnntgnnnntt 600 cnctttaacn aggcttgnt ntgancntgg agaan 635 <210> 820 <211> 276 <212> DNA <213> Homo sapiens <400> 820 acatcttctt cctgagttac gcttacaaaaa ttttcaaaca tagcaaccat tgatgggctg 60 gcaatcacat gacaattcac aagatcagat aaaaaacggc ccaaatacac ggcttcattta 120 taattgttg ctttcaatga ttctttaagt tgacgaatca tggcttctac aaattctcca 180 ccaaaattgt aattcctggc attcagtagt ccaactaatg ttgtataaat tgtcagctc 240 tcaggtataa ggcgtgcact ggattcataa atcacc 276 </pre>	60 120 141 120 180 240 280 60 120 180 240 280 60 120 180 240 300 360 420 480 540 600 635 60 120 180 240 276
---	--

```

<210> 821
<211> 728
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(728)
<223> n = A,T,C or G

<400> 821
acaatgatgc cagaagcttt cttcaagaa gctcagataa tgaaaaattt aagacatgtat 60
aaacttgttc cactatatgc tgggtttctt gaagaaccaa tttacattgt cactgaattt 120
atgtcaaaag gaagtttattt agatttcctt aaggaggat atggaaagta tttgaagctt 180
ccacagctgg ttgatatggc tgctcagatt gctgatggta tggcatatat tgaaagaatg 240
aactatattc accgagatct tcgggctgtt aatattctt taggagaaaa tcttgtgtc 300
aaaatagcag actttggttt agcaaggnta attgaagaca atgaatacac agcaagacaa 360
ggtgc当地at ttccaatcaa atggacaagc tcctgaagct gcactgnatg gcccgnta 420
caataaaatgc tgaaggcctg gncattttgg aattcttgca aaccgcgaact tagttacca 480
aangggnccc aatngccntt attcccaggat antnggggaa aaccgcgnna aagtaaccn 540
ttggggcccg gggaaaccacc nccttaangg ggcnaattt ttccaggcnn cnacttggg 600
cgcccccccg ttancttaag ggggaatcc ccnaacntt ggggacccca anacntttgg 660
cgccccaaac cnatnggggn cccaaanacc gngntncc cccngngngg naaaaaatttg 720
gnnttnnc 728

<210> 822
<211> 632
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(632)
<223> n = A,T,C or G

<400> 822
actttacggc ctgatctaattt tgaaagtgc tcccttggca caagtggcaa agctgaactc 60
atcaaaaccc atcacaatga cacagagctc atcagaaatgt tgagagagga gggaaaagta 120
atagaacctc tgaagattt tcataaaatgtt gaagtggaa ttttggcag agaacttgg 180
cttccagaag agtagtttc caggcatcca tttccaggc tcggcctggc aatcagatgt 240
atatgtgtc aagaacccat tatttggaa gactttcttgg aaaccaacaa tattttggaa 300
atagtagtgc attttctgc aagtggtaaa aagccacata ccctattaca gagatgtcaa 360
gcctgcacaa cagaagagga tcaggagaag ctgatgcata ttaccaggc tgcattcact 420
aatgccttc ttgctggca tttaaactgtt aggtgtgc ggtgactggc cggtcctcag 480
ntncttgg ggaatcttcc gttaagatgtt acctgacttg ggancactta ttttttnggc 540
tangnttaaa ccttncatng ngncaactt tacccangt gnttantatt tngnccccc 600
ttaanaccc tctncnnngt cctccatttt tg 632

<210> 823
<211> 649
<212> DNA
<213> Homo sapiens

```

```

<220>
<221> misc_feature
<222> (1)...(649)
<223> n = A,T,C or G

<400> 823
actgctgcaa cccatgcagc gtcaacttcg tctcatcatc cacgaagatc tccattggat      60
cttgcataaa cttgcggcag actggacgga tctctttgt caaggtagca ctgaacatca      120
tgacctgctt ctcgtgggg gtcatacgaa aaatttcctg gacatcccga cgcatgtcga      180
gctgttcaag catcttatca cattcatcca aaataaaagtg tttaatgtgt ttgagggttga      240
ggctcttatt tcgagccagg gctaggatac ggcctggagt ccccacgacg atatgcggc      300
agttcttctt cagcacctct tcataccttct tgatagacag accaccaaaa aaaacagcaa      360
ccttgacatt gggcatgtat ttagagaagc gctcatattc cttgctgatc taaaaagcca      420
actcccgagt ggtgacacca tcaccagcac agacacactgc ccagtaacct ggcttccaac      480
tggttgcant gnngggccaa gaacaaacac tggtggctt tccatcccc natttggct      540
tggcnccagg aaattcantt cccaaaatgg gcttgaaggg atgccontnt gcttggactt      600
ttgacggat gttnaaggcc ccagnttna aatgggncccg gagcaattn      649

<210> 824
<211> 603
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(603)
<223> n = A,T,C or G

<400> 824
accccttata aaccagcaat gtcatactgtg aggaagcaaa ttctcaagtg tctgtcattt      60
acttggttct ttttctttgt ggtcttcacc ctataccct ggaaaagtct gtaattacct      120
tagccagggaa gatacatgtt catggcaagc gcacagcacc agacttactg gtcaccaag      180
atgatggaaa aaggcagatg atttttaaa aagccgtaat gactccttta gaccagccat      240
ttagcgtgtt aattttgaaa ggcctagctc cattgcagac ttccaaaggg tcagctctga      300
gactgccctc caggtggca gttgattatt tccaccagtg tttccagag ccttaaactg      360
cctaagtgac aactaccta gttggcagga aaagagacat atagtagaaa gtaaaaatg      420
agcagtattt gggcagatgc tatgggtac agttgaangg taaaanggac tttccttggg      480
aacccttatac ccctgngaaat atgacctngg ccggacacnt taaggcnatt cacnntgngg      540
ggcgcttaan ggnncactt ggnancntt gngnaaaaggc aaactgtnt gngnaatgtn      600
ccc                                         603

<210> 825
<211> 634
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(634)
<223> n = A,T,C or G

<400> 825
tggaaaaataa actattntat ttcagtgttt gtccttgcg gttcagaagc acatctactg      60

```

cctgggttggaa acccaaggct	tttataaaaac cgttagagaaaa	tatgagctct atgtatagag	120
aaaatataca tggttattaa	tttgtgtgact ctccctgtg	caaagcagaa agttctaaat	180
gcaacagcat gattctctcc	aagtccctcc ctgggatttg	ggggccctg gaggctgtga	240
tctcacctcc aatagagaat	cccccaattct tccagccaa	gggaggccca gncatgtaga	300
aagagcagga gataaaagtca	aagctgacaa ctcatgggtt	ccccaaagctt ctccggggca	360
ggggctatgt ttggggcct	taccctgcaa agaagggtta	gctgggggtgc cnaccttgg	420
gggttaagtgc cacactggca	ctaaagctgt tggaaagtct	agcattgcan ccggccaggt	480
ttatgggtna accagggtgt	ccaangggtt ttttcccta	aaactnnggg ctnaaagng	540
gggaccctng gcncgaaccc	ccttangcc aaatcccggc	aattgggggc ntnttaan	600
gggnnccaac ttgggaccaa	acttggngna atnn		634

<210> 826
<211> 507
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(507)
<223> n = A,T,C or G

<400> 826

ggtacctgaa gaacaaatcc	cttcagggtt aagctcgaca	ggacactttc cccagtc	60
ggtttccatt tccctcattc	ccaaaagggg cccctccctc	tccatgcgc	120
ttcgctcacc caaaaagtccc	ttctgtctga tctttccca	tcatcttct	180
tactactccc tctagaacag	tggattttaa atatactaca	cctcaggac	240
aagttaagca agcagggttc	caagtgc	ccccaactt	300
ttcctggaa ttccaaagta	aggatactg tataaaagga	caacaagaat	360
aaccactgt ctaaaagagt	tttctgc	tgccttttaa	420
cagccatga ttccacttct	tcacgtattc ttctaantcc	tcccttctg	480
ttttnangg ctcaaaactt	aaattcn	gctatgctac	507

<210> 827
<211> 617
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(617)
<223> n = A,T,C or G

<400> 827

cgccagcgct gcaggagctg	acatggaccc aaatcctcg	gccgcctgg agcgccaaca	60
gctccgcctt cgggagcggc	aaaaattctt cgaggacatt	ttacagccag agacagagg	120
tgtcttcct ctgtcccattc	cgcatctcg	gtcgagaga ccccccata	180
atccatggaa gtgaatgtgg	acacactgga	gcaagtagaa cttattgacc	240
ggatgcagca gatgtttct	tgccttgca	agatcctcca ccaaaaaaaa	300
gatggacaac cattggagg	agctgagcct	gcccgtgc acatcagaca	360
taggacctt tctnctnctc	ctnccactcc	tncaccaacc tgcataagcc	420
gatgatggag cagatacgcc	cttggcacag	tengatnaga ggagggaaaag	480
ngggcaaaaan cttgannctg	cagntagcaa	tggccctgc tanaantgnc	540
ttttccaatn nnacncaggc	caccnaactt	cacccatn tgcgnngccc	600

aaggggaaagn ngnggat

617

<210> 828
<211> 448
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(448)
<223> n = A,T,C or G

<400> 828

actgtcacct ttttaagtgg aaagaatata	agtgtggatg atttacactc aatgggagca	60
ggggatctgc taaactctat gtttgaattt agtgagaagc taaatgcctt ccaacttagt		120
gatgaagaga tgagttgtt tacagctgtt gtccctggat ctgcagatcg atctggata		180
aaaaacgtca gctctgtgga ggcttgcag gaaactctca ttctgtcact aaggaccta		240
ataatgaaa accatccaa tgaggcctct attttacaa aactgcttct aaagttgcca		300
gatcttcgtat cttaaacaa catgcactct gaggagctct tggcctttaa agntcacct		360
taaggccttn gtttatttaa ncataactg atggtaactg nacctcngnc gcgaccacnc		420
taaggccaat tccananaact gnccggcg		448

<210> 829

<211> 619
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(619)
<223> n = A,T,C or G

<400> 829

cgggttactt taaaaggcagg gagtggggaa aagtattttt agggacatt ttcatcatca	60
gttcagctt ttttttttgg ttgttgcctt tttttggggg gggtgggtt gttggttca	120
ctgaaacatt taactacctg taaaatctaa acatggctgt tagtgcaca ccaattcggg	180
acacaaaatg gctaacactg gaagtatgtt gagagttcca gagggggact tgctcacggc	240
cagacacgga atgtaaattt gcacatccctt cgaaaagctg ccaagttgaa aatggacgag	300
taatcgctt ctgttgcattt ttgaaaggcc gttgctccag ggagaactgc aaatatctt	360
atccacccccc acatttaaaa acgcagggttgg agataaatgg acgcaataac ttgattcagc	420
agaagaacat ggccatgttg gnccagcaaa tggccactagn ccatgccatg atgcctggtg	480
cccattacaa cccgngccat ngttcaattt nccaacttac cnccatgcnt aacagccgct	540
ttannccctt tggaccccttt ttccancttg gcccgccaaa atttccant ggccaatttgg	600
ttccgggant ccgggtcctt	619

<210> 830

<211> 618
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(618)

<223> n = A,T,C or G

<400> 830

ggtacaccct	agccaaacggg	acaaaatccta	gagggtataa	aatcatctct	gctcagataa	60
tcatgactta	gcaagaataa	gggcaaaaaaa	tcctgttggc	ttaacgtcac	tgttccac	120
ggtgtaatat	ctctcatgac	agtgacacca	aggaaagttt	actaagtcac	atgtaaaat	180
ggagtggttt	aaagaatgcc	atagatgtt	attcttaact	gctacagata	acctgttaatt	240
gagcagattt	aaaattcagg	catactttc	catttatcca	agtgc	tttttccaga	300
tggcttcaga	agttaggctcg	tggcagg	gcagac	tcttata	agg gttgacat	360
aaagcagtaa	gttgggggt	gaaagg	gcag	tttttgc	tttgcata	420
ttnnctatac	ctccatgaac	attgactcg	gtgttca	aactctgtga	gttgcata	480
gtctngctnt	ttggc	tttgc	tttgc	tttgc	tttgc	540
gctttgaaac	ttggc	tttgc	tttgc	tttgc	tttgc	600
ggncatnctt	acc	anggt	naagg	nctt	tanaagg	618
ccaaaacc						

<210> 831

<211> 648

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(648)

<223> n = A,T,C or G

<400> 831

acatgaaaga	cacgtccaca	tcacagttgc	ccccaaactg	cctgtgtcc	tcgatgggt	60
ctctccctcc	agaaaaacgc	tgcttattga	ccttggttt	gatctgtt	gccgtgtcg	120
tgaggaagat	ggaggagtt	gggtcgctgg	cactcat	ggtctggcg	ccctgcagg	180
ctggaaagaa	ggtggagtgc	aacagg	gtttaggata	gccgatc	ggggcgac	240
cccttgtcat	tctaaagtaa	ggatcctggt	caatggcaca	tggataagg	cactggat	300
ccgtcctgtc	tcgaaagatc	tgtggaaatg	agttgctgaa	ggagggagca	gcctggat	360
cagaaaaact	gatcttccc	atgcagtc	tgtcagt	acncgaaaa	tgcctt	420
tttggtttga	aggtaaacat	cctttt	tcttacc	atttttgt	gaaac	480
nccttnatnc	cccatgtagn	nccaggttca	naanaatntt	gaaaagn	tgg	540
tcaaancnc	caggcaant	aaagg	tttgc	ttcc	ggnt	600
nggcctgggn	ccaaggtcaa	ngcc	tttgc	cnaannaact	tttnggn	648

<210> 832

<211> 689

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(689)

<223> n = A,T,C or G

<400> 832

gtccccacga	actggcctgg	ccaagcaccc	cacactggag	ccatctt	ctcatatt	60
agcagtgcag	ccggggggca	gggaagg	ggcagg	gttgggt	cttttat	120
ttattcctcc	ccgacctaa	ttgtctt	tctgt	ttgggg	aca	180
tccagacaat	gccagcataa	atccatccat	ccaaagg	agaac	ccatg	240

aggttctctg	tgctcctcct	acccttccag	tgccttaggc	ctggcgactg	cccctgcctt	300
ttagacccgc	ctcccttta	tacctgtct	tgnctactg	agaaaagcct	ctcagcaata	360
atgntttcta	gtcacttcct	ccgncttcgg	gacgggcgtg	cctggacact	tgtaccttng	420
gcccgcgaac	cacgcttaag	ggcgaaatt	ccaagcacnc	ttggccggcc	ggttaccttn	480
gtngggatnc	ccaaccttng	gnnncccaa	ccttgggcgg	taaaccatng	gnnccttaac	540
ctngngttcc	ctgggggngn	aaaantngta	atttccgggt	ttacccaatt	ttccnccccca	600
aacntntcc	caaancccgg	aaaaaccctt	aaaagggnggg	aaaaancccc	ttgggggggg	660
gccctnaann	nggagggtgg	ngcnttanc				689

<210> 833
<211> 726
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(726)
<223> n = A,T,C or G

<400> 833

ggtaataatg	tgaattgttc	ctcagaaaacg	cttctttcc	atcctagtga	gaagctggcc	60
ctgcagggtgg	tggcagcaat	ggtgtttaa	gatttcctcc	cgtagttttt	tctcctcatg	120
gatttgaatg	aaatgccaat	aacacgtcca	cttcaacgt	gtagttacg	cgaggactt	180
tcgaggcctg	gccgggttgg	gcctacttct	cacctggcc	tatcttctga	actcgttagg	240
ttcttatcaa	cattggggg	ataactttgt	atatttttt	catnngctt	ttctttacca	300
gtttctgatt	tttattctca	atatatttt	gctaaaacct	atttcacaaa	tnaccaccng	360
actgaaagtg	tgtgttact	gatgcggccc	ttgagcttcc	atggcgaaa	ggagtgactt	420
ttgcagcnnc	cgtnaagaac	ccgnaaatct	ggttnanag	cnccanggaa	agtngaccac	480
cnttangggg	agcccccnng	tangggggcg	cttgtaaang	ccncncnngg	ggaacccccc	540
annnaccggt	gggggtcctt	aaaagnaana	nanaccgggg	gtcttaagc	ttnttcctt	600
gggccachccc	cccaaannnn	gggnntttcc	caatttntta	anacnctntc	ttgngggggg	660
tcctngggngg	aatggngga	aaaaaangcc	cnnntnntt	ttngggnggg	gnaccncaan	720
gtggng						726

<210> 834
<211> 628
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(628)
<223> n = A,T,C or G

<400> 834

ggtacgagag	tgtagccaaa	gtgagaggct	gagagcaaag	gagacatttt	tttcagttt	60
gagtcgagta	tccagacaga	ggcaaatcat	tttggtaac	tttttattaa	agtgttaacta	120
tagaaacaca	tcaatgattt	ttcacaagtg	gagcaactgt	catacaatcg	gcaccccaaga	180
agccccccgt	cagattccct	tccagttaac	tacctctcca	agggaaacca	ctatcctgag	240
ttctaagcgc	atagattagt	ttctgtctgg	tttggggaga	tatataaatg	gaattatgca	300
ttcttcgtat	ctgggtnctt	ttcaccaata	ttatgtttgt	gagattttg	gtgcatgtat	360
ttgtacagt	ttgctgattt	taggtgttgc	gcctcattgg	gaacagtttgc	ctataggttgc	420
aagagaaaat	ttgctcttcc	ggtttattgg	caccanggag	canaatgccc	ncagtgtntg	480

gnctcngata atgggtcgaa attgggangt gggctggacn tttttnactt gntcttcg	540
atctngantc ggtnccat tcnatattg gntntctcg gaattnntg ntngaacttg	600
cctgggccng gctttctan agggnnag	628
<210> 835	
<211> 602	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(602)	
<223> n = A,T,C or G	
<400> 835	
ggtaactgaaa tcacaaggagc tataactgcc agagaaaaat taaatgggtt cttcaagtag	60
tgactgagcc agcaaactaa gtggccaaga gggagacaag agcagctcct aaagaaggtt	120
gaagtcaagc aatctccgga acacagagga tctgaagcat ctgggcagag ccacaggcag	180
gcanggcaag gacacacagc acaccagagc agcacccgtcc ttcaactgtgt gagagcaact	240
ctcaggctgc agaaccattt gccatctcca ctgcctacag ctcaggcttc caactaccag	300
atagggagta aaaaacagtt tgatTTTATT cacctaagt ctaaacacgg nggaaaaaaa	360
aactggtcta nagatggaaa ctatattca tgggggttta ttaaacagag aaagaggaga	420
atTTTcacat ttcacaggc ttttcntgaa ataaagactt gatctgaaaa ggcaccctta	480
tggcangctt taacctccta agntngggna gnncccaaattttccannaa tcttgggacc	540
ncttggccag tngatTTTTT ttaaataact nagctnaatt gntngntaa tttnataana	600
ng	602
<210> 836	
<211> 355	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(355)	
<223> n = A,T,C or G	
<400> 836	
acacaatgtc tctggccagtc ctattcaggg ccaaggacat gtgcttataa ccatctgcca	60
aattttccaa actgtcacag taacaaccat caaatTTTAG cagatctact ccccagtca	120
caaaggctcg ggcataatg tcgttagtac caaaaactccc aggaaagcct ggcgcaggtt	180
tatttccaaat atctgcataa atccctagct tcagtcctt gctgtgaaca taatttagcta	240
gctggcgaat cccatgagga aagcgctgag ggtctgcctg aagtctgcct tctgaatctc	300
tttggggagc catccaacag tcatcaatgc agaggtacct cggnncngac cacgc	355
<210> 837	
<211> 611	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(611)	

<223> n = A,T,C or G

<400> 837

ggttttttttt	ttcgtgattg	tattccata	aagctttatt	tgtggactct	aaaatttcaa	60
tttatgtga	tttcacata	tcacaaacat	tcttcttctt	ttaattttc	taaccattaa	120
aattataaaa	aactttctta	ttttgcagg	ccatacaaaa	ttaggcagtg	ggccaaatct	180
ggccgctagt	tttagaaggc	cacggtagtc	tcgctcgag	gcatggcagt	tgccagctggc	240
tggggcaccc	tggttctct	ccacaaggcc	tttcatcctc	cagaagtctg	aattggcctt	300
gttcatggca	ctttcagggc	agcattccaa	gaggtggaag	ggagagtctg	caaagacttc	360
tgaggctggc	tccagaccc	actcagttatc	cccactgctc	catttcagtc	agagtnaagt	420
cactagtnct	gcccagactc	aagggtatgaa	gggaactgnnc	tntanctcat	gatgaagata	480
acntgtgaaa	tactggggc	tgagttttc	anttancncc	agggagtaat	tttcatggnt	540
taaanggc	tcccccttat	tttgaagcc	ntaanttcng	gcnttanng	ggaantaatt	600
aaccncctt a						611

<210> 838

<211> 650

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(650)

<223> n = A,T,C or G

<400> 838

ggtaacttcca	cctcgggcac	atttggaa	gttgcattcc	tttgtcttca	aactgtgaag	60
catttacaga	aacgcattca	gcaagaatat	tgtccctttg	agcagaaatt	tatcttccaa	120
agaggtatat	ttgaaaaaaaaa	aaaaagtata	tgtgaggatt	tttattgatt	ggggatcttg	180
gagtntttca	ttgtcgctat	tgattttac	ttcaatgggc	tcttccaaca	aggaagaagc	240
ttgctggtag	cacttgctac	cctgagttca	tccaggccca	actgtgagca	aggagcacaa	300
gccacaagtc	ttccagagga	tgcttgattc	cagtggttct	gcttcaaggc	tttcaactgca	360
anacactaaa	gatccaagaa	ggccttcatg	gcccnccca	ngccggatc	gggtanctgg	420
ccgggcnggn	cngtnnnaaa	gggcnaaatt	tcngcacact	tggccgnccg	ttactaagtn	480
ggantccnaa	gcttggnntan	ccaagctttg	gnngaattct	ngggcatann	nctgggtnc	540
ttgnnggnnaa	aatgntantic	ccgttnnnaaa	ttcccttcan	cnnanctgan	cctgaaagct	600
ttaantgggn	aaacnttggg	ggtcccta	tnnnnnnnnn	taacntctnt		650

<210> 839

<211> 626

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(626)

<223> n = A,T,C or G

<400> 839

actaaacgag	caggtgaagg	aggctgaagg	atcgctgct	gaatacaaga	aagaaattga	60
ggaactaaag	gaactgctac	ccgaaattag	agagaagata	gaagatgcaa	aggagtctca	120
gcgttagtgg	aatgtagctg	aactggctct	gaaagctact	ctggggaga	gttctacttc	180
aggtttca	cctgggtggag	gaggcttcc	agtctccatg	attgccagta	gaaagccaa	240

agacgggtgct	tcctcatcaa	attgtgtgac	tgatattcc	caccttgc	gaaagaagcc	300
ttcacatta	tatctttaga	ggaaaccaga	ggaaganagt	ccncggaaag	atgatgcaaa	360
gaaaaggccaaa	caagagcncg	gaagtgaacg	gaaggcnntt	ggggatgcct	gtcccccaagt	420
ggaaaaatgaa	gttcngaaa	acantggagg	aggangctga	naatcaggt	gaaagccnng	480
ccnccaatgg	aagggaccat	tgtanggctt	gganctcng	gtngaaagcc	nttgctttt	540
aaaaangggg	cccagnccctt	tcttccangg	gaaaagggn	tttgaaatta	aangntttt	600
tnacntttt	ganggatcct	tttgggt				626

<210> 840
 <211> 323
 <212> DNA
 <213> Homo sapiens

<400> 840

ggtacagcgag	ccttccttgc	tggaggccct	tgaacttcct	cctcctcctc	gctgctgtcc	60
tcaactgtcac	tggatgaggc	cttcttccta	gctttcttag	ccactggtcc	atttgcctgt	120
aaccttcgct	ctgggacctt	ggcagacctg	ttgagccaga	agctatacgat	gtctaagagg	180
gaagaggcat	tggcatcctg	ctgtgtagct	cctgtcgctt	tggcgaactt	attggccacc	240
tctgagagtt	gttatcgcg	caggaagccg	agcacgagg	gatacaggc	gctgggaacc	300
acgcggcgaa	tgccggcg	cgc				323

<210> 841
 <211> 614
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(614)
 <223> n = A,T,C or G

<400> 841

acattgaaaa	tgagggttaag	atgatcatgc	aggataaact	ggagaaggag	cggaatgatg	60
ctaagaacgc	agtggaggaa	tatgtgtatg	aatgagaga	caagcttagt	ggtgaatatg	120
agaagttgt	gagtgaagat	gatcgtaaca	gttttacttt	gaaactggaa	gatactgaaa	180
atgggttcta	tgaggatgga	gaagaccagc	caaagcaagt	ttatgttcat	aagttggctg	240
aattaaaaaa	tcttagtcaa	cctattaaga	taccgttcc	aggaatctga	agaacgacca	300
aaattatttt	aagaactagg	ggaaacagat	ccaacagtt	atganaataa	tcaagctctt	360
caanaaaacaa	ggaggaccng	tattgatcat	ttggatgctg	ctgacatgac	caaggtagna	420
naaagcncaa	atgaaagcaa	tggaatttga	tgaataacca	agcttaattc	tgctgancaa	480
gcnatagtt	gnccatggnt	nnagttgtt	ngtccnaaga	gnattgaanc	ttaaanttna	540
gggctgccaa	ngncttggc	cggnacncnc	ntnagggcna	tttcagccnc	ttggcggccg	600
ttctatggmn	ncnn					614

<210> 842
 <211> 609
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(609)
 <223> n = A,T,C or G

<400> 842

ggtagacttg	ctaaatttga	atgggcangc	agcaaactct	gggaagactt	ctaattgttt	60
acgataacaag	cgaactgcct	cttcaatgtt	tccctgttct	cgtttgatat	tggcttagtt	120
attcagagag	tctgcatggg	tgggacacag	acggagagct	gtattataac	aatcttctgc	180
ttcagcaacc	tgtaaaaat	gcgtgcctct	ttcaagacat	tccctaaatt	gatataagca	240
tccagaaaat	ttgggtcaag	ggtgacagcc	tttcaaaagt	gatgaattgc	aagccaaatt	300
cccccttg	cattgaaaac	acagccaaga	ttactccaag	ctactgcaaa	gttcgggtgc	360
gtctcaattt	cttccaaata	acatgcctt	gcttcttcca	agcgacccaa	ggcttttaca	420
gttncccagg	tcactgcgaa	cacagtacct	gcccgccggc	cgttcaaang	gcgaaatca	480
gcacacttgc	ggncgtanta	gtggantncn	agcntcggnc	caacttgggn	ntataatggg	540
canaacttgtt	ccctggggga	aantggtnnc	cnntaccatt	tcnccacttn	cgaccggaag	600
cttaaangg						609

<210> 843

<211> 610

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(610)

<223> n = A,T,C or G

<400> 843

ggtttttttt	cgcaggtatt	tcctctgctt	taatagacaa	tttttagaaag	acatgttaac	60
gggggaaaat	cacacaatac	taaggatctg	aggccataa	acatcacata	tgttgagttt	120
gcttttagtt	ttgttccaa	cagttcttaa	ccaatgttcc	tggctgtaat	ctaggtgcta	180
gacgcactgc	aaatccctga	aagtgtttaa	gatgaaagag	caatacactt	aagatcttca	240
aaagtttaca	ttaacagaat	aagcatttagc	tccttttaac	acacacacac	aactaaatta	300
acaaatgaaa	tgtgtctact	tttatatatg	cccataaaggc	agacacttaa	cattgaaatt	360
tactatttta	gatttcact	cctttaagag	ctatcaatat	agacactnaa	gataattcac	420
atttnaaaaa	ttatctacct	ggaagaatag	aacttcttta	agaaggaaaa	agnaaaagct	480
ggtaaacca	aggattgcct	ggggtnngaa	ggaccgnntt	naacctggc	cttaaatgnc	540
ntgagnacaa	ttgattggtc	nnncttggc	tntnttggta	acacoggcct	tcanggttt	600
cttgaccnc						610

<210> 844

<211> 675

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(675)

<223> n = A,T,C or G

<400> 844

ggtagacttg	aattccaggc	caatgaagtt	cgaaaaagtga	agaaatatga	acagggattc	60
atcacagacc	ctgtggtcct	cagccccaaag	gatgcgtgc	gggatgtttt	tgaggccaaag	120
gcccggcatg	gtttctgcgg	tatcccaatc	acagacacag	gccggatggg	gagccgcttgc	180
gtggggcatca	tctcctccag	ggacattgtat	tttctcaaag	aggaggaaca	tgactgttc	240
ttggaagaga	taatgacaaa	gagggaagac	ttgggtggtag	cccctgcagg	catcacactg	300

aaggaggcaa atgaaattct gcagcgac aagaaggaa agttgccat tgtaaatgaa	360
gatgatgagc ttgtggccat cattgcccgg acagacctga agaagaatcg ggactacca	420
ctagccttcc aaagatgccc aagaaaccag ctgcttgc ttggcaagc cattggcac	480
tccattgaag gattgaccaa gtttttangg ccttgaccc ttggttggc cccaaggctt	540
tggtgttgcg attgtaaatg gggttttgg gactttttt nccangggg aaaatttccc	600
ttttttcnc nantccaat ttngatcc aaagtnccct tggccccggg gccgggccc	660
tttcaaaaan gggcc	675
<210> 845	
<211> 620	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(620)	
<223> n = A,T,C or G	
<400> 845	
acagcctaag acacaaggat ctaggcgaag tagccgccaa ataaaaaaac gaagggtcat	60
atcagattct gagagtgaca ttggcggctc tgatgtggaa tttaagccag acactaagga	120
ggaaggaagc agtgcgtaaa taagcagtgg agtggggat agtgcgtgt aaggcctgaa	180
cagccctgcc aaagggtgctc gaaagcgaa gagaatgggt actggaaatg gctctttaa	240
aaggaaaaagc tcttcgtggaa aaacgcctc agccaccaaa caagcaacta gcatttcatc	300
agaaacccaag aatactttgtc gagcttctc tgccctca aattctgtat cccaaagccca	360
cgttagtggaa ggtgggtatc acagtagtgc cctactgttt ggtatcatgt aacttttagaa	420
tggcttaagg gagaaaaaga gaanaaatga ncncaggang aaggcctgtat caccggatt	480
ttgtatgcctt tnccctntnt gggnccctgaa ggatttcntc aaatctttgg anccttggcc	540
nnnaccccn ttangggcgn aatccagccc ttggngncc gttcttaggg gatcncagct	600
tgggnccaaac tttgggttan	620
<210> 846	
<211> 617	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(617)	
<223> n = A,T,C or G	
<400> 846	
caggtacata aagcagattc aagggttaaa ataaaaacag aattttggag tgtggtcaaa	60
taagggtgac agattccaga accctcagag ggcctgctgg ccctctccag acattctgtg	120
tccgtggcgc aggagctggg cccgtcccta acagctccgc actggcttag tgcaagtgg	180
ctcacagttt caggaactac taggtgaagt gtctggctca agtctgcca gtgtcttac	240
tccatcgtca gaagtggagc actatcccta gttcgattc ccatgaaata ttttatgatt	300
tccatcctct ttgcccgtc ttccaaataa ggcctgtga tgccaaacnaa gggggcatgg	360
ttgagggtct aaggctctca ttagggctca attctgtgt gatatnaaca catgacagac	420
acttgctgca ncattnanga catttaaggc agaggggtca tttaangnta cttnncaaa	480
ttaatattt gnngatnggg cagttcttac ctgnnactgg tnnttattgg ggnattnnn	540
taccanggg ctgtcttattt taaatngctt nggnattacn ngttngnac cctcnaannn	600
ctngggaaac ttnntnc	617

<210> 847
 <211> 638
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(638)
 <223> n = A,T,C or G

<400> 847

ggtacaagct	ttttttttt	ttttttttt	tttttttagc	ctttccttat	gagcatgcct	60
gtgttggtt	gacagtgagg	gtaataatga	cttgttgggt	gattgttagat	attgggctgt	120
taattgtcag	ttcagtgtt	taatctgacg	caggctttagt	cggaggagaa	tgtttccatg	180
ttacttatac	taacattagt	tcttctatag	ggtgatagat	tggtccaatt	gggtgtgagg	240
agttcagtt	tatgtttggg	attttttagg	tagtgggtgt	tgagcttgaa	cgctttctta	300
attggtggt	gttttaggc	ctactatggg	tgttaaattt	tttactctc	ctacaagggt	360
ttttccta	aan tggccaaag	agctggcct	tcttgggac	taaccagtta	aattttacca	420
ngggggaaatt	taanagggt	tcttggggc	caaattttaa	aggtcngaac	ttaagantct	480
tatcttggga	caancagnt	tttcaccagg	cnttggnaag	ggttngtcn	gcctttacn	540
aaaaaatctt	tcccncnt	ttnctaccnn	aaccgggggg	cnctttaaa	cgnnnnttan	600
ggganccccc	ccngtttng	gggggttnaa	ctttgcnn			638

<210> 848
 <211> 347
 <212> DNA
 <213> Homo sapiens

<400> 848

ggtttttttt	ttttcaaca	gacaaaaaaaaa	gtttattgaa	tacaaaactc	aaaggcatca	60
acagtccctgg	gcccaagaga	tccatggcag	gaagtcaaga	gttctgcttc	agggtcggtc	120
tgggcagccc	tggagaaga	cattgcacat	gacagtgtat	agtgcacca	aaacagcata	180
ctccttggaa	tccacctgt	ggtaactgtt	ctcatccagg	ctgccccatca	gtttcttcag	240
cccttcctca	tccactttct	cccccacaaa	gctgggcagc	tccttgcga	gaagttcctt	300
cattttccccc	ttactcagct	tgaacttgc	gccctcttgg	caggagt		347

<210> 849
 <211> 624
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(624)
 <223> n = A,T,C or G

<400> 849

actgctggaa	atacaatctt	cagcaggtgc	tgtatgcaggg	tggaaatttgg	ctggagcgga	60
ccctccca	ttttagaag	ttgtttagt	gggtggagca	ggcttggctg	gcatgctaac	120
tttggctttc	tctagcatgg	ccaataacctg	atctttagaa	gttggcttta	gtttccca	180
agccttggcc	atttttcat	atcctaaatg	catcatgaag	aatggcaagg	catcttgggc	240
cttcttgc	acatctccat	ttcgatctc	taggcaggag	tagagatgag	gaacacaaaag	300

gataaggctc	gtaggggtgg	aacgaagagt	aggttagttc	tcaaccagcc	agcccagaag	360
ctcttgcctc	aagaaaaggat	tttctttga	gctcttcaga	aagaacttct	ccttcaacca	420
ttcccttnatg	cccantctgg	ttntggccaa	gcatttcaca	ggtcgctang	ggcaagcact	480
tcgaacatg	gtcttgcttg	ctccaaggac	ttgggaatna	anggggangc	ctnaaaattt	540
ttancgggtg	gcttaaaatt	tggggccnan	ggttattgcc	aaattgttcc	cagggatttn	600
aacggtttgg	tggncctcg	cccg				624

<210> 850
<211> 636
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(636)
<223> n = A,T,C or G

<400> 850

acaagttatac	aaacttctgt	ttggtaacag	aatcattgac	gttcatggcc	ggaacacaga	60
gctccccagc	tttggagagc	tgatacagcc	tgtgaacacc	agtcacgctc	tcttccacaa	120
tgcctcgat	cttcttaaac	acgtttggat	acttcttata	aacctcgtgg	gttaagtctc	180
ccccatcatc	caggatcatg	ttggcctgcc	accatccat	gttcacacag	cggtcaatac	240
accaccagaa	gtcatctct	gactcgccct	tccaagcgaa	cactgcaact	ccagcctcag	300
ccagtgtgc	agctacttca	ttctgagttg	agtagatgtt	acaaggcagac	cagcggcact	360
gagccccccag	agcacagagt	gtctcaatca	acacccgctg	tctggctgt	gatgtgtgt	420
tcttngggccq	ngaacangct	taagggcgaa	ttncacacaa	cttggcggcc	ggtacttagt	480
ggaaatccan	cttngnntacc	caagcttggg	cgttaantcat	ngggcatang	cntggttcct	540
nggggaaant	ggtatnccgt	tanaanttcc	accaacnttc	naancccgga	agnnttaaan	600
gntaaaanct	tngggggcct	aantgagnng	anntac			636

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number:	WO 99/64576
C07K 14/47, C12Q 1/68, C07K 16/18, C12N 9/00, 15/10	A3	(43) International Publication Date:	16 December 1999 (16.12.99)
(21) International Application Number:	PCT/IB99/01062		
(22) International Filing Date:	9 June 1999 (09.06.99)		
(30) Priority Data:	60/088,801 10 June 1998 (10.06.98)	US	ROLL, Eddie, III [US/US]; 24 Eddy Street, Waltham, MA 02154 (US). CATINO, Theodore, J. [US/US]; 18 Jo Paul Drive, Attleboro, MA 02702 (US). DERTI, Adnan [US/US]; 7 Wigglesworth Street, Boston, MA 02120 (US). FORD, Donna, M. [US/US]; 8 Morningside Road, Plainville, MA 02762 (US). LEWIS, Marcia, E. [US/US]; 67 Wheelwright Farm, Cohasset, MA 02025 (US). MONAHAN, John, E. [US/US]; 942 West Street, Walpole, MA 02081 (US). SCHLEGEL, Robert [US/US]; 211 Melrose Street, Auburndale, MA 02466 (US).
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application	US 60/088,801 (CON) Filed on 10 June 1998 (10.06.98)		(74) Agents: ROESLER, Judith, A.; Bayer Corporation, 63 North Street, Medfield, MA 02052 (US) et al.
(71) Applicant (<i>for all designated States except US</i>):	BAYER CORPORATION [US/US]; 333 Coney Street, East Walpole, MA 02032 (US).		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(72) Inventors; and			Published <i>With international search report.</i>
(75) Inventors/Applicants (<i>for US only</i>):	ENDEGE, Wilson, O. [KE/US]; 222 Normandy Drive, Norwood, MA 02062 (US). STEINMANN, Kathleen, E. [US/US]; 115 Washington Street, Unit 3B, Winchester, MA 01890 (US). ASTLE, Jon, H. [US/US]; 42 Short Street, Taunton, MA 02780 (US). BURGESS, Christopher, C. [US/US]; 97 Canton Terrace, Westwood, MA 02090 (US). BUSHNELL, Steven, E. [US/US]; 41 South Street, Medfield, MA 02052 (US). CAR-		(88) Date of publication of the international search report: 13 April 2000 (13.04.00)

(54) Title: HUMAN GENES DIFFERENTIALLY EXPRESSED IN COLON CANCER

(57) Abstract

This invention relates to novel human genes, to proteins expressed by the genes, and to variants of the proteins. The invention also relates to diagnostic assays and therapeutic agents related to the genes and proteins, including probes, antisense constructs, and antibodies. The subject nucleic acids have been found to be differentially regulated in tumor cells, particularly colon cancer cell lines and/or tissue.

Differential Expression Analysis

SW480 Clone Number

5 5 2 3 5

Cancer Probe

Normal Probe

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

INTERNATIONAL SEARCH REPORT

International Application No.
PCT/IB 99/01062

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6	C07K14/47	C12Q1/68	C07K16/18	C12N9/00	C12N15/10
-------	-----------	----------	-----------	----------	-----------

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6	C07K
-------	------

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	HILLIER L. ET AL.: "Stratagene human cDNA clone 550176 3' end;" EMBL SEQUENCE DATABASE, 30 October 1996 (1996-10-30), XP002119315 HEIDELBERG DE Accession Nr.: AA101246 --- MARRA M. ET AL.: "Mouse cDNA clone 779685 5' end" EMBL SEQUENCE DATABASE, 14 June 1997 (1997-06-14), XP002119316 HEIDELBERG DE Accession Nr.: AA466948 ---	2,8,10
X		2,8,10 - / --

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

20 October 1999

Date of mailing of the international search report

25 Jan 2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

De Kok, A

INTERNATIONAL SEARCH REPORT

Inte rnational Application No
PCT/IB 99/01062

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	SCHWEINFEST C W ET AL: "Subtraction hybridization cDNA libraries from colon carcinoma and hepatic cancer" GENE ANALYSIS TECHNIQUES, vol. 7, 1 January 1990 (1990-01-01), pages 64-70, XP002089887 ISSN: 0735-0651 page 64 ---	1,18
A	VIDER B ET AL: "Human colorectal carcinogenesis is associated with deregulation of homeobox gene expression" BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 232, no. 3, March 1997 (1997-03), pages 742-748, XP002104685 ISSN: 0006-291X page 742 ---	1
A	JAU MIN WONG ET AL: "UBIQUITIN-RIBOSOMAL PROTEIN S27A GENE OVEREXPRESSES IN HUMAN COLORECTAL CARCINOMA IS AN EARLY GROWTH RESPONSE GENE" CANCER RESEARCH, vol. 53, no. 8, 15 April 1993 (1993-04-15), pages 1916-1920, XP002024627 ISSN: 0008-5472 page 1916 ---	1
A	VAN BELZEN N ET AL: "A novel gene which is up-regulated during colon epithelial cell differentiation and down-regulated in colorectal neoplasms" LABORATORY INVESTIGATION, vol. 77, no. 1, 1 July 1997 (1997-07-01), pages 85-92, XP002089891 ISSN: 0023-6837 page 85 ---	1
A	KONDOK N ET AL.: "Differential expression of S19 ribosomal protein, laminin-binding protein, and human lymphocyte antigen class-I messenger RNAs associated with colon-carcinoma progression and differentiation" CANCER RESEARCH., vol. 52, no. 4, 15 February 1992 (1992-02-15), pages 791-796, XP002119317 BALTIMORE, US ISSN: 0008-5472 the whole document ---	1

INTERNATIONAL SEARCH REPORT

International Application No
PCT/IB 99/01062

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 95 11923 A (DANA FARBER CANCER INST INC) 4 May 1995 (1995-05-04) page 1, line 29 -page 6, line 17 page 19, line 7 -page 29, line 11 ---	1-6,9, 10,14, 17-25, 31-34
A	EP 0 284 362 A (ICI PLC) 28 September 1988 (1988-09-28) the whole document ---	1-25, 27-34
P,X	KUTAY U ET AL.: "A human homologue of yeast Mtr10p and its role in nuclear protein import" EMBL SEQUENCE DATABASE, 10 May 1999 (1999-05-10), XP002119318 HEIDELBERG DE Accession Nr.: AJ133769 abstract -----	1-6,8,10

INTERNATIONAL SEARCH REPORT

International application No.

PCT/IB 99/01062

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 26 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

1-25, 27-34, all partially

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 26

Claim 26, relating to an agent which alters the expression in a cell of a nucleic acid, could not be searched as its subject-matter is not disclosed

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: 1-25, 27-34, all partially

Invention 1:

An isolated nucleic acid, comprising a nucleotide sequence which hybridizes under stringent conditions to SEQ.ID. No.1 or a sequence complementary thereto; an isolated nucleic acid, comprising a nucleotide sequence at least 80% identical to at least 15 consecutive nucleotides of SEQ.ID. No.1 or a sequence complementary thereto; an isolated nucleic acid comprising nucleotide sequence of SEQ.ID No.1 or a sequence complementary thereto; an expression vector comprising said nucleic acids; an host cell comprising said vector; a transgenic animal having a transgene comprising said nucleic acids; a nucleic acid hybridizing to a nucleic acid probe corresponding to at least 12 consecutive nucleotides of SEQ.ID.No.1; a probe/primer hybridizing to a nucleic acid probe corresponding to at least 12 consecutive nucleotides of SEQ.ID.No.1; an isolated polypeptide encoded by said nucleic acid; an antibody that specifically binds to said polypeptide; an antisense oligonucleotide which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.1; a test kit comprising said probe/primer; a testkit comprising said antibody; a method for determining the phenotype of a cell comprising detecting the differential expression of a nucleic acid which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.1 or a protein encoded by said nucleic acid; a method for determining the presence or absence of a nucleic acid which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.1; a method for detecting a mutation in a test nucleic acid which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.1; a method for identifying an agent which alters the level of expression in a cell of a nucleic acid which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.1; a pharmaceutical composition comprising a nucleic acid which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.1; a pharmaceutical composition comprising a polypeptide encoded by said nucleic acid; a method for detecting cancer using SEQ.ID.No.1 or an antibody to a protein encoded by said sequence, as a probe.

2. Claims: 1-25, 27-34, all partially

Inventions 2 to 127 :

Idem as invention 1, wherein each invention relates to the nucleic acid encoded by SEQ.ID.No. 2 to 127 in stead of SEQ.ID.No.1.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

3. Claims: 15-21, 24-26, 28-34, all partially

Invention 128:

An isolated nucleic acid, comprising a portion of a nucleotide sequence of SEQ.ID No.128 or a sequence complementary thereto; a gene which hybridizes to SEQ.ID. No.128; an isolated polypeptide encoded by said nucleic acid; an antibody that specifically binds to said polypeptide; an antisense oligonucleotide which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.128; a method for determining the phenotype of a cell comprising detecting the differential expression of a nucleic acid which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.128 or a protein encoded by said nucleic acid; a method for detecting a mutation in a test nucleic acid which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.128; a method for identifying an agent which alters the level of expression in a cell of a nucleic acid which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.128; a pharmaceutical composition comprising a nucleic acid which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.128; a pharmaceutical composition comprising a polypeptide encoded by said nucleic acid; a method for detecting cancer using SEQ.ID.No.128 or an antibody to a protein encoded by said sequence, as a probe.

4. Claims: 15-21, 24-26, 28-34, all partially

Inventions 129 to 383:

Idem as invention 128, wherein each invention relates to the nucleic acid encoded by SEQ.ID.No. 129 to 383 in stead of SEQ.ID.No.128.

5. Claims: 15-21, 25,26,28,31-34, all partially

Invention 384:

A nucleic acid hybridizing to a nucleic acid probe corresponding to at least 12 consecutive nucleic acids of SEQ.ID. No.384; an isolated polypeptide encoded by said nucleic acid; a probe/primer hybridizing to a nucleic acid probe corresponding to at least 12 consecutive nucleic acids of SEQ.ID. No.384; an antibody that specifically binds to said polypeptide; an antisense oligonucleotide which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.384; a method for

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

determining the phenotype of a cell comprising detecting the differential expression of a nucleic acid which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.384 or a protein encoded by said nucleic acid; a method for identifying an agent which alters the level of expression in a cell of a nucleic acid which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.384; a pharmaceutical composition comprising a nucleic acid which hybridizes under stringent conditions to at least 12 consecutive nucleic acids of SEQ.ID. No.384; a pharmaceutical composition comprising a polypeptide encoded by said nucleic acid; a method for detecting cancer using SEQ.ID.No.384 or an antibody to a protein encoded by said sequence, as a probe.

6. Claims: 15-21, 25,26,28,31-34, all partially

Inventions 385 to 850:

Idem as invention 384, wherein each invention relates to the nucleic acid encoded by SEQ.ID.No. 385 to 850 in stead of SEQ.ID.No.384.

INTERNATIONAL SEARCH REPORT

Information on patent family members			Inte. .ional Application No PCT/IB 99/01062	
Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
WO 9511923	A 04-05-1995	CA 2175380 A EP 0725799 A US 5889159 A US 5872235 A	04-05-1995 14-08-1996 30-03-1999 16-02-1999	
EP 0284362	A 28-09-1988	AU 625169 B AU 1337888 A DK 159788 A FI 881388 A JP 1034291 A NO 881273 A NZ 223985 A PT 87055 A,B	02-07-1992 22-09-1988 24-09-1988 24-09-1988 03-02-1989 26-09-1988 28-05-1991 01-04-1988	

THIS PAGE BLANK (USPTO)