Processamento de Imagens Aula 01

Livros

Computer Vision: Algorithms and Applications 2nd Edition

Richard Szeliski

Final draft, September 30, 2021 © 2022 Springer

This electronic draft was downloaded May 30, 2025 for the personal use of linder linder.candido@gmail.com

and may not be posted or re-distributed in any form.

Please refer interested readers to the book's Web site at https://szeliski.org/Book, where you can also provide feedback.

Avaliação

A avaliação será conduzida por meio de provas e trabalhos práticos, individuais ou em grupo.

- A nota final será computada de acordo com a média aritmética de duas avaliações parciais: (A1 + A2)/2.
 - □ Para cada avaliação parcial serão aplicadas uma prova e um ou mais trabalhos.
 - □ Cada prova contabilizará 70% da avaliação parcial e os trabalhos contabilizarão os outros 30%.

Agenda

- A área de Processamento de Imagens.
- Componentes Gerais de um Sistemas de Processamento de Imagens Digitais.
- Introdução ao Sistema Visual Humano.
- Luz Visível, cores e o Espectro Eletromagnético.
- Representação de Imagens.
- Introdução ao Numpy, Matplotlib, OpenCV.

Área da Disciplina

Processamento de Imagens x Visão Computacional

Visão Computacional é uma área multidisciplinar que vísa interpretar o conteúdo de imagens e vídeos. Aplicações incluem reconhecimento de objetos, reconhecimento facíal, navegação autônoma de veículos, análise de videos para segurança, entre outras.

O Processamento de Imagens envolve algoritmos de baixo nivel, que normalmente recebem uma imagem como entrada e produzem uma imagem modificada como saída – por exemplo, realce de contraste ou remoção de ruídos. Essa etapa é frequentemente usada como préprocessamento para fases posteriores, como análise ou interpretação da ímagem.

Processamento de Imagem

Imagem de Saída

Processamento de Imagem

Visão Computacional

Visão Computacional

Sistemas de Processamento de Imagens

Sistemas de Proc. de imagens e Visão Computacional

- 1. Sensores captam imagens.
- 2. Hardware especializado realiza a digitalização e a remoção de ruídos.
- 3. O **computador**, que pode variar de um PC a a um supercomputador, processa imagens usando software especializado (Matlab, OpenCV, etc.)
- 4. O armazenamento pode envolver grandes volumes de dados.
- 5. Monitores e sistemas de impressão são usados para exibir resultados.
- **6. Dados** e **resultados** podem ser transmitidos via rede (Internet).

Percepção Visual Humana

A Estrutura do Olho Humano

- 1. Conjuntiva;
- 2. Esclera;
- 3. Córnea;
- 4. Câmara anterior e posterior;
- 5. Cristalino (lente);
- 6. Pupila;
- 7. Conjuntiva;
- 8. Iris;

- 9. Corpo ciliar;
- 10. Coroide;
- 11. Humor vítreo;
- 12. Retina;
- 13. Fóvea;
- 14. Ponto cego;
- 15. Nervo óptico.

Os Olhos Atuam Como Sensores

- A luz entra no olho pela **pupila**, cuja abertura é controlada pela **íris**. A **córnea** e o **cristalino** agem como um sistema óptico que refrata a luz e a focaliza na **retina**, mais precisamente na **fóvea**, região com maior acuidade visual.
- Na retina, a luz é captada por células fotorreceptoras (cones e bastonetes) que convertem os estímulos luminosos em sinais elétricos por meio de processos fotoquímicos.

Os Olhos Atuam Como Sensores

Os sinais elétricos gerados pelos cones e bastonetes são processados localmente na retina por uma rede complexa de neurônios — incluindo células bipolares e células ganglionares — que realizam integrações e filtragens espaciais e temporais da informação visual.

Os Olhos Atuam Como Sensores

- Os sinais processados são então transmitidos pelo nervo óptico até o cérebro, onde são interpretados como imagens visuais.
- O processamento mais elaborado ocorre no córtex visual, que organiza e decodifica essas informações em percepções visuais coerentes.

Cones vs Bastonetes

Cones

- Entre 6 e 7 milhões em cada olho.
- Ficam concentrados principalmente na região da fóvea; proporcionam a visão fotópica ou de luz brilhante.
- Altamente sensíveis a cor e individualmente conectados a uma terminação nervosa dedicada.
- Nós humanos podemos resolver detalhes finos porque cada cone está conectado à sua própria extremidade nervosa.

Bastonetes

- Entre 75 e 150 milhões em cada olho.
- Distribuídos por toda a superfície da retina; não distinguem cores, mas são responsáveis pela visão periférica.
- Vários bastonetes se conectam a uma única terminação nervosa reduzindo a quantidade de detalhes que eles podem discernir.
- Responsáveis pela visão escotópica, isto é, em baixa intensidade de luz.

Distribuição de Cones e Bastonetes na Retina

- Considerando que a fóvea tem aproximadamente 1.5mm de diâmetro sua área é ≈ 1.7 mm².
- Na fóvea temos temos ≈
 150.000 Cones por mm²,
 portanto ≈ 255000 cones na região de maior acuidade visual.
- Essa resolução é facilmente alcançada com a tecnologia atual de câmeras.

Adaptação e Discriminação de Brilho

- Imagens digitais monocromáticas são compostas por pixels que assumem valores discretos de intensidade (níveis de cinza). Como essas imagens geralmente são analisadas visualmente, é importante considerar como o olho humano percebe o brilho.
- O sistema visual humano pode se adaptar a uma faixa extremamente ampla de intensidades luminosas, mas essa adaptação depende do tempo e das condições de iluminação.
- Evidências experimentais indicam que o brilho subjetivo (intensidade percebida pelo sistema visual humano) é uma função logarítmica da intensidade da luz incidente no olho.

Adaptação e Discriminação de Brilho

- Para um certo conjunto de condições B_a, por exemplo, a curva curta que intercepta a curva principal representa a faixa de brilho subjetivo que podemos perceber. Abaixo da intensidade B_b todos os estímulos são indistinguíveis (vistos como preto).
- Esse comportamento influencia diretamente certos métodos processamento de imagens voltados ao melhoramento visual de imagens.

Bandas de Mach

- O sistema visual humano tende a intensificar as diferenças de intensidade nas regiões de transição de intensidade. A figura ao lado mostra um exemplo notável desse fenômeno.
- Embora a intensidade das listras seja constante, percebemos um padrão de brilho que intensifica as diferenças perto das bordas.
- Essas bandas percebidas pelo sistema visual humano são chamadas de Bandas de March.

Contraste Simultâneo

O brilho percebido de uma região não depende apenas de sua intensidade local.

Todos os quadrados centrais têm exatamente a mesma intensidade, mas cada um parece se tornar mais escuro à medida que o fundo fica mais claro.

Cores e o Espectro Eletromagnético

Luz Visível e Cor

- A <u>luz visível</u> consiste em radiação eletromagnética com comprimento de onda na faixa entre 430 e 790nm. Tem caráter duplo: **onda** e **partícula**.
- O caráter ondulatório é evidenciado por fenômenos como interferência, reflexão, refração, etc.
- O caráter corpuscular surgiu para explicar o efeito fotoelétrico, de onde concluiu-se que a radiação eletromagnética é formada por partículas chamadas de fótons.

Luz visível e Cor

Relação entre o comprimento de onda (λ) e a frequência (ν) .

$$\lambda = \frac{c}{v}$$

 $c = 2.998 \times 10^8 \text{ m/s}.$

A energía de um fóton:

$$E = h\nu$$

 $h = 6,63 \times 10^{-34} \text{ m}^2.\text{kg/s} \acute{\text{e}} \text{ a}$ constante de Planck.

A Luz Branca

- Como um acorde na música, pode ser descrita como uma soma de suas partes.
- Luz branca é composta por todos os comprimentos de onda, de forma balanceada.

A Cor dos Objetos

- As cores percebidas de um objeto são determinadas pela natureza da luz refletida por ele.
- Um corpo que reflete luz relativamente equilibrada em todos os comprimentos de onda visíveis parece branco ao observador.
- Um corpo que favorece a reflexão em uma faixa limitada do espectro visível exibe algum tom de cor.

Objetos Sem Cor

- Quando a reflexão é balanceada em todos os comprimentos de onda visíveis, o único atributo que varia é a intensidade da luz refletida.
- Se a intensidade for alta, percebemos o objeto como branco, se for muito baixa percebemos o objeto como preto. Para valores intermediários, percebemos o objeto como tendo um determinado tom de cinza.

Sensibilidade de Cones à Luz Visível

Distribuição dos Cones

Aproximadamente 65% de todos os cones são sensíveis à luz vermelha (cones L), 33% são sensíveis à luz verde (cones M) e apenas cerca de 2% são sensíveis ao azul (cones S).

 Contudo, os cones azuis são os mais sensíveis.

Cones e Cores

- A "cor" que percebemos é fruto da adição das ativações relativas dos 3 tipos de cones.
- Consequentemente, nós humanos percebemos as cores como combinações variáveis das chamadas cores primárias:
 - □ Vermelho (Red),

□ Verde (Green)

□ Azul (Blue).

Modelos de Cores

Modelo de Cores RGB

- Os modelos de cores padronizam a especificação de cores definindo um sistema de coordenadas e um subespaço dentro desse sistema, onde cada cor é representada por um ponto.
- O modelo RGB emprega o sistema de coordenadas 3D cartesiano, com os eixos associados à componentes espectrais primários: Red, Green e Blue.
- O subespaço de cores é um cubo, no qual os valores primários **R**, **G** e B estão distribuídos ao longo dos eixos. As cores secundárias, ciano, magenta e amarelo, ocupam os outros três vértices do cubo. O preto está na origem (0, 0, 0) e o branco está no vértice oposto (1, 1, 1).
- A escala de cinza se estende do preto ao branco ao longo da diagonal que une esses dois pontos. As demais cores são representadas por pontos dentro ou sobre o cubo, definidas por vetores que se estendem da origem.

Modelo de Cores RGB

Modelo de Cores HSI

- Infelizmente, o modelo de cores RGB não é adequado para descrever cores em termos práticos para a interpretação humana. Por exemplo, nós não nos referimos à cor de um automóvel informando a porcentagem de cores primárias que a compõem.
- Quando observamos um objeto colorido, o descrevemos por sua matiz (hue), saturação e brilho. Matiz é um atributo que descreve uma cor pura (amarelo, laranja ou vermelho puros), enquanto a saturação fornece uma medida do grau em que uma cor pura é diluída pela luz branca. Brilho é um descritor subjetivo que incorpora a noção acromática de intensidade.
- O modelo de cores HSI (Hue, Saturation, Intensity) é útil porque desacopla o componente de intensidade da informação portadora de cor (matiz e saturação).

Modelo de Cores HSI

Relação Conceitual entre RGB e HSI

Representação de Imagens

Imagens Digitais Acromáticas

- Uma imagem acromática (sem cor) é uma matriz de pixels representados em tons de cinza (intensidade).
- Pode ser interpretada como uma função f(x, y) que retorna a intensidade de cada pixel nas posições x (linha) e y (coluna).

Representação de Imagens Digitais Coloridas RGB

- Representamos imagens coloridas com um tensor 3D.
- Cada pixel é identificado por sua linha (x), coluna (y) e canal de cor (c).
- O canal de cor tem 3 componentes: vermelho (R), verde (G) e azul (B).

Representação de Imagens Digitais Coloridas

■ Matematicamente, a imagem colorida RGB é uma função vetorial das coordenadas espaciais $f(x,y) = (f_r(x,y), f_g(x,y), f_b(x,y))$

Bibliotecas para Desenvolvimento de Programas

Numpy, Matplotlib, OpenCV

Softwares Necessário

- Neste curso precisaremos do seguinte:
 - □ Python (https://www.python.org)
 - □ Numpy (https://numpy.org)
 - □ Matplotlib (https://matplotlib.org)
 - □ OpenCV (https://opencv.org)
- A caminho mais fácil para instalar esses pacotes é usar um gerenciador de pacotes como pip (https://pypi.org/project/pip/).
- Vamos fazer uma introdução ao uso dessas bibliotecas usando um notebook preparado para o curso (intro-numpy-matplot-opency.ipynb)

Exercício

- Baixe o dataset Labeled Faces in Wild (google: LFW face dataset). Escolha uma face com pelo menos 100 imagens.
- Chame numpy.zeros() para criar um tensor float64 de 250 x 250 x 3 para armazenar o resultado.
- Leia cada imagens com cv2.imread, converta para float e acumule.
- Compute a imagem média de um conjunto de faces.
- Salve o resultado médio com cv2.imwrite.

Imagem média

Quem é ele?

