CLAIMS:

5

What is claimed is:

1. A method of correcting an error in a processor of a computing system , comprising:

identifying a failure of a cache array of a
processor;

deferring deallocation of the processor until reboot of the computing system;

determining, at reboot of the computing system, if redundancy in the cache array may be used to correct the failure of the cache array; and

deallocating the processor, at reboot of the computing system, if it is determined that redundancy in the cache array cannot be used to correct the failure of the cache array.

- The method of claim 1, further comprising applying redundancy in the cache array to correct the
 failure, at reboot of the computing system, if redundancy in the cache array may be used.
- The method of claim 1, wherein identifying a failure of a cache array of a processor includes determining if a recoverable error threshold is exceeded for the cache array.
 - 4. The method of claim 3, further comprising: writing threshold exceeded information into
- 30 persistent memory, wherein deferring deallocation of the processor includes inhibiting marking the processor as unavailable.

- 5. The method of claim 1, wherein deallocating the processor, at reboot of the computing system, includes: marking the processor as unavailable if redundancy cannot be used to correct the failure of the cache array.
- 6. The method of claim 2, further comprising: performing an initial program load after one of applying redundancy in the cache array and deallocating the processor.
 - 7. The method of claim 5, further comprising:

 determining if a second failure of the cache array
 occurs at reboot of the computing system;
- determining if cache array redundancy may be applied to correct the second failure; and

applying cache array redundancy if cache array redundancy may be applied to correct the second failure.

20 8. The method of claim 7, further comprising:

removing cache array status bits and setting one or

more bits indicating the processor to be unavailable, if

cache array redundancy cannot be applied to correct the

second failure.

25

30

5

9. The method of claim 7, wherein applying cache array redundancy includes:

determining if status bits that are set for the processor are only status bits associated with the cache array; and

removing status bits for the processor and setting bits indicating that the processor is unavailable, if

status bits set for the processor include status bits other than those associated with the cache array.

10. The method of claim 5, further comprising:

determining if another failure of the cache array occurs at reboot of the computing system; and

determining if there are status bits set indicating that the cache array had a predictive failure during runtime, if another failure did not occur.

10

- 11. The method of claim 9, further comprising:

 removing the status bits and setting one or more
 bits indicating that the processor is unavailable, if
 there are status bits indicating that the cache array had
 a predictive failure during runtime.
- 12. The method of claim 1, wherein deallocating the processor includes setting one or more bits indicating the processor is unavailable.

20

15

13. An apparatus for correcting an error in a processor of a computing system, comprising:

means for identifying a failure of a cache array of
a processor;

25 means for deferring deallocation of the processor until reboot of the computing system;

means for determining, at reboot of the computing system, if redundancy in the cache array may be used to correct the failure of the cache array; and

means for deallocating the processor, at reboot of the computing system, if it is determined that redundancy in the cache array cannot be used to correct the failure

of the cache array.

- 14. The apparatus of claim 13, further comprising means for applying redundancy in the cache array to correct the failure, at reboot of the computing system, if redundancy in the cache array may be used.
- 15. The apparatus of claim 13, wherein the means for identifying a failure of a cache array of a processor includes means for determining if a recoverable error threshold is exceeded for the cache array.
- 16. The apparatus of claim 15, further comprising:
 means for writing threshold exceeded information
 15 into persistent memory, wherein the means for deferring deallocation of the processor includes means for inhibiting marking the processor as unavailable.
- 17. The apparatus of claim 13, wherein the means for deallocating the processor, at reboot of the computing system, includes:

means for marking the processor as unavailable if redundancy cannot be used to correct the failure of the cache array.

25

18. The apparatus of claim 14, further comprising:
 means for performing an initial program load after
one of applying redundancy in the cache array and
deallocating the processor.

30

19. The apparatus of claim 17, further comprising: means for determining if a second failure of the

cache array occurs at reboot of the computing system;

means for determining if cache array redundancy may
be applied to correct the second failure; and

means for applying cache array redundancy if cache
array redundancy may be applied to correct the second
failure.

- 20. The apparatus of claim 19, further comprising:

 means for removing cache array status bits and

 setting one or more bits indicating the processor to be unavailable, if cache array redundancy cannot be applied to correct the second failure.
- 21. The apparatus of claim 19, wherein the means for applying cache array redundancy includes:

means for determining if status bits that are set for the processor are only status bits associated with the cache array; and

means for removing status bits for the processor and setting bits indicating that the processor is unavailable, if status bits set for the processor include status bits other than those associated with the cache array.

25 22. The apparatus of claim 17, further comprising: means for determining if another failure of the cache array occurs at reboot of the computing system; and

means for determining if there are status bits set indicating that the cache array had a predictive failure during runtime, if another failure did not occur.

5

10

15

20

25

30

Docket No. AUS920010564US1

- 23. The apparatus of claim 21, further comprising:

 means for removing the status bits and setting one
 or more bits indicating that the processor is
 unavailable, if there are status bits indicating that the
 cache array had a predictive failure during runtime.
- 24. The apparatus of claim 13, wherein the means for deallocating the processor includes means for setting one or more bits indicating the processor is unavailable.

25. A computer program product in a computer readable medium for correcting an error in a processor of a computing system, comprising:

first instructions for identifying a failure of a cache array of a processor;

second instructions for deferring deallocation of the processor until reboot of the computing system;

third instructions for determining, at reboot of the computing system, if redundancy in the cache array may be used to correct the failure of the cache array; and

fourth instructions for deallocating the processor, at reboot of the computing system, if it is determined that redundancy in the cache array cannot be used to correct the failure of the cache array.

- 26. The computer program product of claim 25, further comprising fifth instructions for applying redundancy in the cache array to correct the failure, at reboot of the computing system, if redundancy in the cache array may be used.
- 27. The computer program product of claim 25, wherein

the first instructions for identifying a failure of a cache array of a processor include instructions for determining if a recoverable error threshold is exceeded for the cache array.

5

10

28. The computer program product of claim 27, further comprising:

fifth instructions for writing threshold exceeded information into persistent memory, wherein the second instructions for deferring deallocation of the processor include instructions for inhibiting marking the processor as unavailable.

29. The computer program product of claim 25, wherein 15 the fourth instructions for deallocating the processor, at reboot of the computing system, include:

instructions for marking the processor as unavailable if redundancy cannot be used to correct the failure of the cache array.

20

25

30. The computer program product of claim 26, further comprising:

sixth instructions for performing an initial program load after one of applying redundancy in the cache array and deallocating the processor.

31. The computer program product of claim 29, further comprising:

fifth instructions for determining if a second 30 failure of the cache array occurs at reboot of the computing system;

sixth instructions for determining if cache array

redundancy may be applied to correct the second failure; and

seventh instructions for applying cache array redundancy if cache array redundancy may be applied to correct the second failure.

32. The computer program product of claim 31, further comprising:

eighth instructions for removing cache array status

10 bits and setting one or more bits indicating the

processor to be unavailable, if cache array redundancy

cannot be applied to correct the second failure.

33. The computer program product of claim 31, wherein the seventh instructions for applying cache array redundancy include:

instructions for determining if status bits that are set for the processor are only status bits associated with the cache array; and

instructions for removing status bits for the processor and setting bits indicating that the processor is unavailable, if status bits set for the processor include status bits other than those associated with the cache array.

25

30

5

34. The computer program product of claim 29, further comprising:

fifth instructions for determining if another failure of the cache array occurs at reboot of the computing system; and

Sixth instructions for determining if there are status bits set indicating that the cache array had a

predictive failure during runtime, if another failure did not occur.

35. The computer program product of claim 33, further comprising:

instructions for removing the status bits and setting one or more bits indicating that the processor is unavailable, if there are status bits indicating that the cache array had a predictive failure during runtime.

10

36. The computer program product of claim 25, wherein the fourth instructions for deallocating the processor include instructions for setting one or more bits indicating the processor is unavailable.