Coding Task Data Generation

Table of Contents

- Data Generation
- Simulating Treatment Effects
- Post-Simulation Analysis

Data Generation

Google Collab Setup

Uncomment and run this block of code only if you are attempting to run this notebook on google collab

```
In [1]:
    """
    from google.colab import drive
    drive.mount("/content/drive/")
    %cd "/content/drive/MyDrive/vaccine_experiment_datatask"
    !pip install stargazer
    """
```

Out[1]: '\nfrom google.colab import drive\ndrive.mount("/content/drive/")\n%cd "/content/drive/MyDrive/vaccine_experiment_datatask"\n!pip install s targazer\n'

Importing Needed libraries

This notebook assumes that the working directory is the root of the project folder. Otherwise, change the directory using os.chdir().

```
In [2]: # Importing Libraries
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from matplotlib.ticker import MaxNLocator
plt.style.use('ggplot')
import seaborn as sns

# Importing Custom Scripts For This Project
from scripts.network_generation import diffusion_network
from scripts.data_generation import generate_weights,generate_demographics,generate_attitudes
from scripts.treatment_simulation import apply_treatment, assign_block_treatment

# Set random seed for reproducibility
np.random.seed(111)
```

Generating Demographic Information

Generating Attitudes Towards Vaccination

Generating Network Structure

```
In [5]: this_network = diffusion_network(attitudes_df)

Network Generation Successful
Network Fully Connected: True
Number of Nodes: 5000
Number of Edges: 14400
```

Average Clustering: 0.19223701147097985 Modularity: 0.9027644410686728

Degree distribution of network 10³ 10¹

Degree centrality

Network Shortest Path Length Between Nodes

10¹

Simulate the diffusion of initial attitudes

```
In [6]: fig, ax = plt.subplots(nrows=2,ncols=4,squeeze=False,figsize=(10,5))
        for i, attitude in enumerate(attitudes_df.columns):
            # Plot distribution of pre diffusion values
            ax[0,i].hist(attitudes_df[attitude],bins = range(1,9))
            ax[0,i].set_title('Pre-diffusion ' + str(attitude),fontsize=12)
            ax[0,i].xaxis.set_major_locator(MaxNLocator(integer=True))
            ax[0,i].set_yscale('log')
            # Plot distribution of post diffusion values
            attitudes_df[attitude] = this_network.fj_diffusion(attitudes_df[attitude])
            ax[1,i].hist(attitudes_df[attitude])
            ax[1,i].set_title('Post-diffusion ' + str(attitude), fontsize=12)
            ax[1,i].xaxis.set_major_locator(MaxNLocator(integer=True))
            ax[1,i].set_yscale('log')
        fig.tight_layout(pad=1.0)
        plt.savefig('figures/pre_treatment_diffusion.png')
        plt.show()
```


Saving Data

Export edgelist and nodelist to csv for Gephi visualizations

```
# Export community list for Gephi visualization
this_network.node_community.to_csv('figures/gephi/community.csv')
# Export edgelist for Gephi visualization
this_network.export_edgelist(filename='figures/gephi/edgelist.csv') # export to gephi folder
# Export nodelist for Gephi
nodelist = attitudes_df['att_safety']
nodelist.index.name = 'id'
nodelist.to_csv('figures/gephi/nodelist.csv')
```

Export pre-treatment survey to csv

```
pre_treatment_df = pd.merge(attitudes_df,demographics_df,how='inner',left_index=True,right_index=True)
In [8]:
        pre_treatment_df = pre_treatment_df.drop(columns=['att_unobserved','demographic_unobs_grp']) # Drop unobserved columnns
        pre_treatment_df.head(1)
```

Out[8]: att_covid att_vaccine att_safety demographic_age demographic_income demographic_education

```
id
0
          3.0
                        4.0
                                    4.0
                                                         53
                                                                         137.883039
                                                                                                              6
```

```
In [9]:
        # Save to file
        pre_treatment_df.to_csv('data/pre_treatment.csv')
```

Simulating Treatment Effects

```
treatment_assignment_df = assign_block_treatment(this_network)
treatment_assignment_df.to_csv('data/treatment_assignment.csv') # Save to file
treatment_assignment_df.head(1)
```

```
93
        93
                 None
        96
              emotion
        61
               reason
        65
              emotion
        25
              emotion
        17
                 None
        17
                  None
        46
                 None
        42
               reason
        Name: treatment, Length: 5000, dtype: object
Out[10]:
             community treatment_emotion treatment_reason
          id
```

0 93 False False

Model propensity to vaccinate

```
In [12]: # Probability of vaccinating
    weights = generate_weights(4)
    vaccine_prob = np.zeros_like(attitudes_df.iloc[:,1])
    for i,attitude in enumerate(attitudes_df.columns): # Weighted mean of each attitude
        vaccine_prob += attitudes_df[attitude] * weights[i]
    vaccine_prob = vaccine_prob/10 # Normalize 10-point attitude scale into probability
    vaccine_prob = vaccine_prob + np.random.normal(0,0.1) # Add random error

# Convert vaccine probability into vaccination outcome
    post_survey = attitudes_df.copy(deep=True)
    post_survey['vaccine'] = (vaccine_prob > np.random.uniform(0,1,5000))
    post_survey.head(1)
```

True

```
Out[12]: att_covid att_vaccine att_safety att_unobserved vaccine
id
```

5

6

Save post-treatment survey

5

0

Drop random rows to simulate 500 entries with attrition

```
In [13]: # Mask 500 random entries
    rows_to_drop = np.random.choice(range(0,5000),500,replace=False)
    post_survey = post_survey.astype('int').astype('float')
    post_survey.loc[rows_to_drop,:] = np.nan

# Drop unobserved variable
    post_survey = post_survey.drop(columns=['att_unobserved'])

    post_survey.head(1)
```

```
Out[13]:
                              att_covid att_vaccine att_safety vaccine
                      id
                        0
                                           5.0
                                                                     5.0
                                                                                             6.0
                                                                                                                1.0
                      post_survey.to_csv('data/post_treatment.csv')
In [14]:
                      Post-Simulation Analysis
                      Clear data cache and re-import packages
In [15]: %reset -f
                      # Re-import packages
                      import pandas as pd
                      import numpy as np
                      from matplotlib import pyplot as plt
                      from stargazer.stargazer import Stargazer
                      from sklearn.linear_model import LogisticRegression
                      import statsmodels.api as sm
                      import seaborn as sns
                      Combining the dataframes
                     pre_treatment_df = pd.read_csv('data/pre_treatment.csv',index_col='id')
In [16]:
                      random_assignment_df = pd.read_csv('data/treatment_assignment.csv',index_col='id')
                      post_treatment_df = pd.read_csv('data/post_treatment.csv',index_col='id')
                      # Rename variables to indicate if they're from pre or post_treatment
                      pre_treatment_df.columns = ['pre_' + x for x in pre_treatment_df.columns]
                      post_treatment_df.columns = ['post_' + x for x in post_treatment_df.columns]
                      # Merge all dataframes together
                      merged_df = pre_treatment_df.merge(random_assignment_df,left_index=True,right_index=True,how='inner',validate='1:1')
                      merged_df = merged_df.merge(post_treatment_df,how='inner',left_index=True,right_index=True,validate='1:1')
                      merged_df.head(50)
                      # Drop attritioned entries
                      merged_df = merged_df.dropna()
                      merged_df.head(1)
Out[16]:
                              pre_att_covid pre_att_vaccine pre_att_safety pre_demographic_age pre_demographic_income pre_demographic_education community treatment_emographic_income pre_demographic_education community treatment_emographic_education community treatment_emographic_
                       id
                                                   3.0
                                                                                      4.0
                                                                                                                      4.0
                                                                                                                                                                                                                                                                                             6
                                                                                                                                                                                                                                                                                                                     93
                        0
                                                                                                                                                                       53
                                                                                                                                                                                                             137.883039
```

```
In [17]: # Defining a few sets of variables
         base_att = ['att_covid', 'att_safety', 'att_vaccine']
         pre_att = ['pre_att_covid','pre_att_safety','pre_att_vaccine']
         post_att = ['post_att_covid','post_att_safety','post_att_vaccine']
         demographics = ['pre_demographic_age', 'pre_demographic_income', 'pre_demographic_education']
         treatments = ['treatment_emotion','treatment_reason']
         outcome = 'post_vaccine'
```

Basic regression table:

Analyzing the experiment's treatment effects on an individual-level suggests that the treatments do have a statistically significant effect on increasing vaccine uptake.

- The table below suggests that the emotion-based ads increased one's tendency to vaccinate by ~6.9%
- The table below suggests that the reason-based ads increased one's tendency to vaccinate by ~8.3%
- However, few covariances do a good job of predicting vaccination outcome, suggesting that treatment

```
In [18]: regressions = [treatments,demographics + treatments,pre_att + demographics + treatments]
         reg_outcomes = []
         for regression in regressions:
             X = sm.add_constant(merged_df[regression]).astype('float')
             Y = merged_df[outcome].astype('float')
             reg_outcomes.append(sm.OLS(Y,X).fit())
         reg_table = Stargazer(reg_outcomes)
         reg_table
```

	Dependent variable: post_vaccine			
	(1)	(2)	(3)	
const	0.506***	0.491***	0.283**	
	(0.013)	(0.028)	(0.113)	
pre_att_covid			0.014	
			(0.017)	
pre_att_safety			0.039**	
			(0.016)	
pre_att_vaccine			0.004	
			(0.018)	
pre_demographic_age		0.000	0.000	
		(0.000)	(0.000)	
pre_demographic_education		-0.004	-0.005	
		(0.004)	(0.004)	
pre_demographic_income		0.000*	0.000	
		(0.000)	(0.000)	
treatment_emotion	0.066***	0.066***	0.069***	
	(0.018)	(0.018)	(0.018)	
treatment_reason	0.084***	0.084***	0.083***	
	(0.018)	(0.018)	(0.018)	
Observations	4500	4500	4500	
R^2	0.005	0.006	0.008	
Adjusted R ²	0.005	0.005	0.006	
Residual Std. Error	0.496 (df=4497)	0.496 (df=4494)	0.496 (df=4491)	
F Statistic	12.154*** (df=2; 4497)	5.731*** (df=5; 4494)	4.395*** (df=8; 4491)	
Note: *p<0.1; **p<0.05; ***p<0.01				

Attitudes as mechanism

As the Directed Acyclic Graph (DAG) below shows, we generate the data in a way that treatment affects vaccination propensity indirectly through component attitudes.

The below analysis firstly confirms a correlation between vaccinate attitudes, treatment, and vaccination propensity.

- The regression below suggests that the treatment did significantly push individual attitudes towards pro-vaccination by around **1-2 points** on the likert scale. This effect varied for each attitude towards vaccination.
- The regression table shows that **individuals who already have a high opinion of vaccination were less affected by the treatment**. This phenomenon is likely because the diffusion of opinions throughout the network homogenized in-group opinions, thus reducing extremely high opinions. The network structure is likely responsible for this phenomenon because this feature was not part of the treatment effect generation process.

```
In [19]: # Initialize heterogenous treatment effect's interactive variables
    regressions = []
    for att in pre_att:
        merged_df[att +' * treatment_emotion'] = merged_df[att] * merged_df['treatment_emotion']
        merged_df[att +' * treatment_reason'] = merged_df[att] * merged_df['treatment_reason']
        regressions.append(treatments + [att,att +' * treatment_emotion',att + ' * treatment_reason'])

outcome_vars = post_att
    reg_outcomes = []

for i in range(0,len(outcome_vars)):
    X = sm.add_constant(merged_df[regressions[i]]).astype('float')
    Y = merged_df[outcome_vars[i]].astype('float')
    reg_outcomes.append(sm.olS(Y,X).fit())

reg_table = Stargazer(reg_outcomes)
    reg_table.custom_columns(outcome_vars)
    reg_table
```

	nost att sovid	noct att cafety	post att vassina
	post_att_covid (1)	post_att_safety (2)	post_att_vaccine (3)
const	2.502***	2.05=***	2 770***
const	3.693***	3.857***	3.770***
	(0.095)	(0.094)	(0.086)
pre_att_covid	0.506***		
	(0.025)		
pre_att_covid * treatment_emotion	-0.199***		
	(0.034)		
pre_att_covid * treatment_reason	-0.258***		
	(0.036)		
pre_att_safety		0.479***	
		(0.025)	
pre_att_safety * treatment_emotion		-0.138***	
		(0.035)	
pre_att_safety * treatment_reason		-0.121***	
		(0.036)	
pre_att_vaccine			0.447***
			(0.022)
pre_att_vaccine * treatment_emotion			-0.329***
			(0.032)
pre_att_vaccine * treatment_reason			-0.276***
			(0.032)
treatment_emotion	1.419***	1.203***	1.817***
	(0.130)	(0.131)	(0.122)
treatment_reason	1.548***	1.195***	1.682***
	(0.138)	(0.137)	(0.125)
Observations	4500	4500	4500
R^2	0.393	0.432	0.418
Adjusted R ²	0.393	0.432	0.417
Residual Std. Error	0.416 (df=4494)	0.445 (df=4494)	0.357 (df=4494)
F Statistic	582.938*** (df=5; 4494)	684.307*** (df=5; 4494)	645.328*** (df=5; 4494)

Block-Level Treatment Effect

Note:

Out[19]:

Observing the underlying network structure, one would realize that vaccination-rate is highly correlated with the community that the individual is part of. This suggests that block-level treatment has been effective because one primarily sees between-group differences, rather than in-group differences in vaccine propensity.

*p<0.1; **p<0.05; ***p<0.01

The following code allows us to shade a node based on its predicted propensity towards vaccination (PPV), rather than actual observed outcome. Visualizing the PPV on a network using Gephi, one can observe that vaccination propensity is highly homogenous within each community, supporting the hypothesis that the treatment primarily worked by converting the opinion of entire 'blocks'.

```
In [20]: # Create a predicted probability of vaccination based on post-attitudes. Train model:
    Y = merged_df['post_vaccine']
    X = merged_df[post_att]
    reg = LogisticRegression().fit(X, Y)

# Predict probability of vaccination
    merged_df['post_vaccine_proba'] = reg.predict_proba(X)[:,1]

# Rank transform the probabilities to highlight contrast
    merged_df['post_vaccine_proba'] = merged_df['post_vaccine_proba'].rank()
In [21]: # Export vaccination information to Gephi for visualization
```

Gephi visualization: (black nodes represents nodes with missing data)

vaccine_nodelist = merged_df['post_vaccine_proba'].to_csv('figures/gephi/vaccine_nodelist.csv')

Running the same regression table on a block level also confirms the earlier hypothesis, showing a significant block-level treatment effect. The magnitudes of the treatment effect between block and individual-level analysis are also highly similar, which increases one's confidence in the magnitude of the estimate.

- The table below suggests that the emotion-based ads increased one's tendency to vaccinate by 7.3%
- The table below suggests that the reason-based ads increased one's tendency to vaccinate by 9.3%

X = sm.add_constant(merged_df[treatments + pre_att]).astype('float')

outcome_vars = post_att + ['post_vaccine',]

Y = merged_df[att].astype('float')
reg_outcomes.append(sm.OLS(Y,X).fit())

for att in outcome_vars:

```
reg_table = Stargazer(reg_outcomes)
reg_table.custom_columns(outcome_vars)
reg_table
```

\bigcirc	$\Gamma \cap \cap \Gamma$	

	post_att_covid	post_att_safety	post_att_vaccine	post_vaccine
	(1)	(2)	(3)	(4)
const	4.376***	4.239***	4.649***	0.566***
	(0.148)	(0.155)	(0.150)	(0.163)
pre_att_covid	0.334***	0.020	-0.004	0.000
	(0.023)	(0.024)	(0.023)	(0.025)
pre_att_safety	-0.005	0.359***	-0.004	0.017
	(0.021)	(0.022)	(0.021)	(0.023)
pre_att_vaccine	-0.004	-0.002	0.229***	-0.034
	(0.025)	(0.026)	(0.025)	(0.028)
treatment_emotion	0.666***	0.682***	0.548***	0.073***
	(0.017)	(0.018)	(0.017)	(0.019)
treatment_reason	0.569***	0.742***	0.616***	0.093***
	(0.017)	(0.018)	(0.017)	(0.019)
Observations	100	100	100	100
R^2	0.956	0.963	0.945	0.246
Adjusted R ²	0.954	0.962	0.942	0.206
Residual Std. Error	0.069 (df=94)	0.072 (df=94)	0.069 (df=94)	0.076 (df=94)
F Statistic	409.987*** (df=5; 94)	495.750*** (df=5; 94)	325.265*** (df=5; 94)	6.147*** (df=5; 94)
Note: *p<0.1; **p<0.05; ***p<0.01				

Network Interference

This section shows that due to the effects of interference, the treatment also had an effect on the control group.

- The graphs below shows that compared to pre-treatment levels, the treatment increased the control group's propensity to vaccinate by **about 17.5%**, while treatments increased the treated groups' propensity to vaccinate by **about 25%**.
- This means that network interference caused the previous analysis comparing control and treated groups to return a highly conservative estimate of the treatment effect, causing the project to underestimate the treatment effect by **about 17.5%**.
- It would be difficult to measure the true magnitude of underestimation due to network interference in a real-life situation because one cannot know/assume that no other factors (besides the treatment) intervened to cause this difference between pre-treatment and post-treatment. Thus, this simulation illustrates how real-life surveys need to use domain specific knowledge to determine whether network interference effects exist it's hard to quantitatively measure interference effects unless the experiment takes place in a fully controlled lab environment.

End of Notebook