Université de Paris Saclay Géométrie 2024-2025

DEVOIR NUMÉRO 2: ALLEZ HOPF

Le but de ce devoir est de donner une autre interprétation de la caractéristique d'Euler-Poincaré d'une surface $S \subseteq \mathbb{R}^3$. Le devoir est à rendre par email en un unique pdf comportant votre nom et prénom au plus tard le **lundi 7 avril**.

NOTATIONS ET INTRODUCTION

Soit n un entier naturel non nul. Dans ce devoir, on notera $\overline{B}_n(x,\varepsilon)$ (respectivement $B_n(x,\varepsilon)$) la boule fermée (resp. ouverte) de \mathbb{R}^n de centre $x \in \mathbb{R}^n$ et de rayon $\varepsilon > 0$. On notera également $\chi(X)$ la caractéristique d'Euler-Poincaré d'un CW-complexe fini X. On rappelle que

$$\chi(X) = \sum_{k=0}^{+\infty} (-1)^k c_k$$
 avec $c_k = \text{card} \{\text{cellules ouvertes de dimension } k \text{ de } X\}$.

Soient U un ouvert de \mathbb{R}^n et X un champ de vecteurs C^{∞} sur U admettant un zéro isolé $x \in U$. Pour $\varepsilon > 0$ tel que X ne s'annule qu'en X sur $\overline{B}_n(x,\varepsilon)$, on définit l'indice de X en X, noté $\mathrm{Ind}(X,X)$, par

$$\operatorname{Ind}(X,x) := \operatorname{deg}\left(v \in \mathbb{S}_{n-1} \longmapsto \frac{X(x+\varepsilon v)}{||X(x+\varepsilon v)||} \in \mathbb{S}_{n-1}\right).$$

On rappelle que l'on a vu en TD que cette définition avait un sens et était indépendante du choix de arepsilon.

Soit $f:M\to N$ un C^∞ -difféomorphisme local entre deux sous-variétés lisses et X un champ de vecteurs C^∞ sur N. On définit alors un champ de vecteurs Y sur M par

$$\forall m \in M, Y(m) = (T_m f)^{-1} (X(f(m))).$$

On parle de tiré en arrière de X par f et on note $Y = f^*X$. Pour finir, soient M une sous-variété C^{∞} et X un champ de vecteurs C^{∞} sur M admettant un zéro isolé $x \in M$. Pour une carte locale (U, φ) de M en x telle que X ne s'annule qu'en x sur U, on définit l'indice de X en X par

$$\operatorname{Ind}(X,x):=\operatorname{Ind}\left(\left(\varphi^{-1}\right)^*X_{|_U},\varphi(x)\right).$$

QUESTIONS

Préliminaires

1. On considère les champs de vecteurs C^{∞} suivants sur \mathbb{R}^2 :

$$\forall (x,y) \in \mathbb{R}^2, \quad X \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad Y \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}, \quad Z \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}.$$

Déterminer le flot de ces champs de vecteurs, dessiner leurs courbes intégrales et déterminer leur indice en (0,0).

- **2.** Soient M une sous-variété C^{∞} de dimension n et X un champ de vecteurs C^{∞} sur M ayant un zéro isolé en $x \in M$. Le but de cette question est d'établir que l'indice de X en x est bien défini et indépendant du choix de la carte locale.
 - a) Soient (U, φ) et (V, ψ) deux cartes locales en x telles que X ne s'annule qu'en x sur U et sur V et telles que $\varphi(x) = \psi(x) = 0$. Montrer que si l'on pose $f = \varphi \circ \psi^{-1} : \psi(U \cap V) \longrightarrow \varphi(U \cap V)$, on a

$$\forall t \in \varphi(U \cap V), \quad \left(\varphi^{-1}\right)^* X(t) = d_{f^{-1}(t)} f \circ \left(\psi^{-1}\right)^* X \circ f^{-1}(t).$$

b) On suppose dans cette question que $\psi(U\cap V)$ est convexe et que f préserve l'orientation. Montrer qu'en tant que C^{∞} -plongements, f est C^{∞} -isotope à la restriction à $\psi(U\cap V)$ de l'application linéaire d_0f puis que f est C^{∞} -isotope à la restriction à $\psi(U\cap V)$ de l'identité. Conclure dans le cas où f préserve l'orientation.

Indication : On pourra utiliser librement qu'il existe g_1, \ldots, g_n des fonctions C^{∞} sur $\psi(U \cap V)$ telles que $g_i(0) = \frac{\partial f}{\partial x_i}(0)$ pour tout $i \in \{1, \ldots, n\}$ et telles que

$$\forall (x_1,\ldots,x_n)\in \psi(U\cap V), \quad f(x_1,\ldots,x_n)=\sum_{i=1}^n x_ig_i(x_1,\ldots,x_n).$$

c) Établir que si ρ est une réflexion 1, $\rho \circ (\varphi^{-1})^* X \circ \rho^{-1}$ a le même indice que $(\varphi^{-1})^* X$ en 0 et conclure.

^{1.} C'est-à-dire une symétrie orthogonale par rapport à un hyperplan.

Poincaré-Hopf

Soient S une surface compacte connexe orientée à bord vide de \mathbb{R}^3 et X un champ de vecteurs C^∞ sur S à zéros isolés. On note l'application de Gauß

$$G: \left\{ \begin{array}{ccc} S & \longrightarrow & \mathbb{S}_2 \\ x & \longmapsto & \hat{x} \end{array} \right.$$

où \hat{x} est l'unique élément de \mathbb{S}_2 orthogonal à T_xS tel que si (v_1, v_2) est une base directe de T_xS , alors (v_1, v_2, \hat{x}) est une base directe de \mathbb{R}^3 . On rappelle qu'on a établi que G est de classe C^{∞} dans le TD 5.

On considère alors $N: S \times \mathbb{R} \longrightarrow \mathbb{R}^3$ définie par N(x,t) = x + tG(x). On admettra que, pour $\delta > 0$ assez petit, $N_{|_{S \times [-\delta,\delta]}}$ est un plongement C^{∞} .

3. Justifier que pour $\delta > 0$ assez petit, $S_{\delta} = N(S \times [-\delta, \delta])$ est une sous-variété compacte connexe orientée à bord de \mathbb{R}^3 dont on précisera le bord et la dimension. Illustrer S_{δ} par un dessin. On rappelle que le bord de S_{δ} est orienté par la direction sortante.

On se fixe un tel choix de $\delta>0$ dans la suite. On étend alors X à S_δ via

$$\tilde{X}(N(x,t)) = \cos\left(\frac{\pi t}{2\delta}\right)X(x) + \sin\left(\frac{\pi t}{2\delta}\right)G(x).$$

- **4.** Comparer les zéros de \tilde{X} et ceux de X.
- **5.** Justifier l'existence de $\varepsilon > 0$ tel que pour tout $x \in S$ tel que X(x) = 0, on a $B_3(x, \varepsilon) \subseteq S_{\delta}$ et que l'on peut supposer ces boules d'adhérences disjointes et ne rencontrant pas le bord de S_{δ} . En considérant $M = S_{\delta} \setminus \bigcup_{\substack{x \in S \\ X(x) = 0}} B_3(x, \varepsilon)$, établir que

$$2\deg(G) = \sum_{\substack{x \in S \\ X(x) = 0}} \operatorname{Ind}(\tilde{X}, x).$$

6. Soit (U, φ) une carte locale en $x \in S$ telle que X ne s'annule qu'en x sur U, telle que $\varphi(x) = 0$ et telle que $\overline{B}_2(0, \varepsilon) \subseteq \varphi(U) = V$ avec $\varepsilon < \delta$. On définit alors $\tilde{\varphi} : N(U \times] - \delta, \delta[) \longrightarrow V \times] - \delta, \delta[$ par $\tilde{\varphi}(N(y, t)) = (\varphi(y), t)$. Justifier qu'il s'agit d'une carte locale de S_{δ} en x telle que $\overline{B}_3(0, \varepsilon) \subseteq V \times] - \delta, \delta[$. On pose alors

$$\Psi_1: \left\{ \begin{array}{cccc} \mathbb{S}_1 & \longrightarrow & \mathbb{S}_1 \\ v & \longmapsto & \dfrac{\left(\varphi^{-1}\right)^*X(\varepsilon v)}{\left\|\left(\varphi^{-1}\right)^*X(\varepsilon v)\right\|} \end{array} \right. & \text{et} & \Psi_2: \left\{ \begin{array}{cccc} \mathbb{S}_2 & \longrightarrow & \mathbb{S}_2 \\ w & \longmapsto & \dfrac{\left(\tilde{\varphi}^{-1}\right)^*\tilde{X}(\varepsilon w)}{\left\|\left(\tilde{\varphi}^{-1}\right)^*\tilde{X}(\varepsilon w)\right\|}. \end{array} \right.$$

Établir que si $v \in \mathbb{S}_1$ est une valeur régulière de Ψ_1 , alors $(v,0) \in \mathbb{S}_2$ en est une de Ψ_2 et que tous les antécédents de (v,0) par Ψ_2 sont de la forme (v',0). En déduire que $\operatorname{Ind}(\tilde{X},x) = \operatorname{Ind}(X,x)$ et conclure que

$$\sum_{x \in \mathcal{S} \atop X(x)=0} \operatorname{Ind}(X,x)$$

ne dépend pas de X.

On pourra notamment établir que $d_{N(x,t)}\tilde{\varphi}(T_xS) \subseteq \mathbb{R}^2 \times \{0\}$ et $d_{N(x,t)}\tilde{\varphi}\left((T_xS)^\perp\right) \subseteq \{(0,0)\} \times \mathbb{R}$, puis vérifier que pour tout $v \in T_xS$, $d_{N(x,0)}\tilde{\varphi}(v) = (d_x\varphi(v),0)$ et pour tout $h \in \mathbb{R}$, $d_{N(x,0)}\tilde{\varphi}(hG(x)) = (0,0,h)$.

7. Dessiner, pour tout $g \in \mathbb{N}$, un champ de vecteurs C^{∞} sur Σ_g , la somme connexe de g tores \mathbb{T}^2 , ne possédant que des zéros isolés et tel que la somme des indices des zéros de ce champ de vecteurs soit égal à $\chi(\Sigma_g)$. En déduire que pour tout champ de vecteurs lisse X à zéros isolés sur S, on a

$$\sum_{\substack{x \in S \\ X(x)=0}} \operatorname{Ind}(X,x) = \chi(S).$$

On ne demande ici pas de détails et un dessin convaincant de champ de vecteurs sur le 4g-gone qui s'annule au centre de chaque k-cellule avec indice $(-1)^k$ pour $k \in \{0,1,2\}$ suffira. On pourra notamment s'inspirer de la question $\mathbf{1}$, et on traitera à part le cas g=0.

► COMPLÉMENTS. – On peut utiliser ce résultat pour établir qu'une surface compacte connexe orientable et à bord vide possède un champ de vecteurs qui ne s'annule pas si, et seulement si, g=1. On a alors construit un tel champ de vecteurs dans le TD 5. Cette formule a par ailleurs de nombreuses autres applications telles qu'une nouvelle démonstration du théorème de d'Alembert–Gaußou une démonstration de la formule de Gauß–Bonnet.

^{2.} Si $v=(x,y)\in\mathbb{S}_1\subseteq\mathbb{R}^2$, on a alors bien $(v,0)=(x,y,0)\in\mathbb{S}_2\subseteq\mathbb{R}^3$.