Homework 07

Duplicate this Jupyter Notebook in your week-08 folder (right-click -> Duplicate) and then add your last name to the beginning of it (ie. blevins-hw-07.ipynb - otherwise you risk having all your work overwritten when you try to sync your GitHub repository with your instructor's repository.

We're going to be practing using the Pandas library to explore another dataset: a famouse collection of information about some passengers on board the *Titanic*. To find out more information about this dataset look at the data dictionary on this page: https://www.kaggle.com/c/titanic/data#:~:text=should%20look%20like.-,data%20dictionary, Variable

Import the pandas library.

```
In [6]: import pandas as pd
```

Read in the CSV file.

```
In [8]: titanic_df = pd.read_csv('titanic.csv', delimiter=",")
```

Display the first 12 rows of your dataset.

```
In [10]: titanic_df.head(12)
```

Out[10]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450
	5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877
	6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463
	7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909
	8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742
	9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736
	10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549
	11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783

What are the different data types contained in each column?

```
In [12]: titanic_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype					
0	PassengerId	891 non-null	int64					
1	Survived	891 non-null	int64					
2	Pclass	891 non-null	int64					
3	Name	891 non-null	object					
4	Sex	891 non-null	object					
5	Age	714 non-null	float64					
6	SibSp	891 non-null	int64					
7	Parch	891 non-null	int64					
8	Ticket	891 non-null	object					
9	Fare	891 non-null	float64					
10	Cabin	204 non-null	object					
11	Embarked	889 non-null	object					
dtypes: float64(2), int64(5), object(5)								

memory usage: 83.7+ KB

In your own words, what is the difference in the data types for Survived vs. Age columns?

Survived is an integer, whereas age is a float. Integers will have to be whole numbers (e.g. not decimals) whereas floats are decimal values. The survived is using integers to represent a true/false situation, where the only numbers should be 1 and 0.

Use the .isna() or .notna() methods in conjunction with a filter to only select rows from your dataframe consisting of passengers for which we have information about the cabin they were in.

```
In [15]: cabin_filter = titanic_df['Cabin'].notna()
   titanic_cabin = titanic_df[cabin_filter]
   titanic_cabin
```

Out[15]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803
	6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463
	10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549
	11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783
	•••			•••		•••		•••	•••	
	871	872	1	1	Beckwith, Mrs. Richard Leonard (Sallie Monypeny)	female	47.0	1	1	11751
	872	873	0	1	Carlsson, Mr. Frans Olof	male	33.0	0	0	695
	879	880	1	1	Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)	female	56.0	0	1	11767
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369

204 rows × 12 columns

What percentage of rows (passengers) in the dataset have information about their cabin number?

```
In [17]: titanic_df['Cabin'].isna().value_counts(normalize=True)

Out[17]: Cabin
    True     0.771044
    False     0.228956
    Name: proportion, dtype: float64
```

23% of passengers in the dataset have information about their cabin number

Some of our columns are hard to read. **Rename the following columns:**

- The SibSp column contains information about whether the passenger had family on board (siblings or spouses). **Rename the column siblings_spouses**.
- The Pclass column stands for the ticket class (1st, 2nd, or 3rd). Rename the column ticket_class.

Hint: remember to change it permanently rather than temporarily.

```
In [20]: titanic_df = titanic_df.rename(columns={'SibSp': 'siblings_spouses'})
    titanic_df = titanic_df.rename(columns={'Pclass': 'ticket_class'})
    titanic_df
```

Out[20]:		PassengerId	Survived	ticket_class	Name	Sex	Age	siblings_spouses
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0
	•••							
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0

 $891 \text{ rows} \times 12 \text{ columns}$

Which passengers bought the nine most expensive tickets?

In [22]: titanic_df[['Name','Fare']].sort_values(by='Fare', ascending=False)[:9]

Out[22]:

	Name	Fare
258	Ward, Miss. Anna	512.3292
737	Lesurer, Mr. Gustave J	512.3292
679	Cardeza, Mr. Thomas Drake Martinez	512.3292
88	Fortune, Miss. Mabel Helen	263.0000
27	Fortune, Mr. Charles Alexander	263.0000
341	Fortune, Miss. Alice Elizabeth	263.0000
438	Fortune, Mr. Mark	263.0000
311	Ryerson, Miss. Emily Borie	262.3750
742	Ryerson, Miss. Susan Parker "Suzette"	262.3750

What was the median age of passengers on the Titanic?

```
In [24]: titanic_df['Age'].median()
Out[24]: 28.0
```

Who was the oldest passenger on the Titanic in our dataset?

Use the **groupby** function to count how many passengers bought each class of ticket.

Use the **groupby** function to group passengers into different classes of ticket and then calculate the median age of passengers within each ticket class.

```
In [30]: titanic_df.groupby('ticket_class')[['Age']].median()
```

Out[30]:		Age
	ticket_class	
	1	37.0
	2	29.0
	3	24.0

Use the **groupby** function to group passengers into different classes of ticket and then calculate the median ticket fare within each ticket class.

Bonus Questions

Bonus: Make the Survived column more legible. Write a function and apply it to the dataframe that changes the 0 and 1 values to "Died" and "Lived." Then display the first 10 rows to see if it worked.

Note: when changing the values in columns, you might make mistakes. That's okay! You can always reload the dataframe from the original file to start over. When trying to answer this questions, each time you run it I'm going to have you start with the "original" dataframe so that you don't have to go back to the beginning of the notebook and run all the cells again.

```
In [35]: titanic_df=pd.read_csv('titanic.csv')
    replacements = {0: 'Died', 1: 'Lived'}
    titanic_df['Survived'] = titanic_df['Survived'].replace(replacements)
    titanic_df
```

Out[35]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
	0	1	Died	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171
	1	2	Lived	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599
	2	3	Lived	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282
	3	4	Lived	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803
	4	5	Died	3	Allen, Mr. William Henry	male	35.0	0	0	373450
	•••						•••			
	886	887	Died	2	Montvila, Rev. Juozas	male	27.0	0	0	211536
	887	888	Lived	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053
	888	889	Died	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607
	889	890	Lived	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369
	890	891	Died	3	Dooley, Mr. Patrick	male	32.0	0	0	370376

 $891 \text{ rows} \times 12 \text{ columns}$

Bonus: What percentage of people survived the Titanic?

```
In [37]: survived_filter = titanic_df['Survived'] == 'Lived'
survived_df = titanic_df[survived_filter]
```

```
percent_survived = len(survived_df)/len(titanic_df)*100
print(f"{percent_survived}% of passengers survived the Titanic.")
```

38.38383838383838% of passengers survived the Titanic.

Bonus: Make a pie chart visualizing the proportion of people who survived the

Titanic. Hint: use the total number of rows in the dataframe to calculate the percentage.

```
In [39]: titanic_df['Survived'].value_counts().plot(kind='pie', title = 'Titanic Surv
Out[39]: <Axes: title={'center': 'Titanic Survival'}>
```

Titanic Survival

In []: