

Regression and the Normal Curve

Suppose we have a list of points (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) and we draw a line (such as the regression line or perhaps some other line) to try to predict y from x. For each of the x-values x_i in our data list, we can use the line to get a predicted value $y_{\text{predicted}}$ of y. We also have the true value y_i of y. The difference

$$y_{\text{predicted}} - y_i$$

is the residual error at x_i . The RMS (root-mean-squared) size of these errors is:

$$RMS = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (residual \ error_i)^2}$$

It is a measure of the total error of the line that we are using to fit the data. The regression line is the line that minimizes this error. It is the *best fit* line. Its RMS can be computed using:

$$RMS_{reg} = sd_y \sqrt{1 - r^2}$$

where r is the correlation and sd_y is the standard deviation of the y-values in our data set. Notice that:

- For a fixed value of r, RMS increases with sd_y .
- If r = 1 or r = -1, the RMS is zero (since the points fall exactly on a line).
- If r = 0, then RMS = sd_{u} .

1. Compute the regression line RMS given sd_y and r

a)
$$\mathrm{sd}_y = 8$$
 and $r = \frac{\sqrt{3}}{2}$

b)
$$\mathrm{sd}_y = 1$$
 and $r = \frac{\sqrt{3}}{2}$

c)
$$\operatorname{sd}_y = 1$$
 and $r = -\frac{\sqrt{3}}{2}$

d)
$$sd_y = 5$$
 and $r = 0.1$

One of the assumptions of the regression model is that for any given x, the histogram of the possible y values is a normal curve. Its mean is the predicted y value (the point on the line). Its sd is the RMS. The figure below shows a normal curve moving along with the regression line. The y-value of each red dot is the mean of the corresponding normal curve.

2. Use the information given to find the mean and sd of the moving normal curve. If x = 3, find a range for 68% of the y-values.

a)
$$y - 8 = 2(x - 4)$$
, $sd_y = 8$, $r = \frac{\sqrt{3}}{2}$.

b)
$$y-2 = 5(x-1)$$
, $sd_y = 1$, $r = \frac{\sqrt{3}}{2}$.

c)
$$y - 8 = -2(x - 2)$$
, $sd_y = 1$, $r = -\frac{\sqrt{3}}{2}$.