(Pick 4 questions to practice from both Question 1 and Question 2)

Question1:

Given the general form of the equation of a circle, find

- (a) the standard form of the circle
- (b) identify the center and the radius
- (c) the x and y intercepts
- (d) the graph of the circle

21				
$3.5x^2 + 5y^2 - 6x + 8y + \frac{21}{5} = 0$	0	0.2 0	0.4 0.6	0.8 1
	-0.2			
	-0.4			
	0:6		С	
	-0.8		A=	: (0.6, -0.8)
	1			
	1:2		<u> </u>	
$4. x^2 + y^2 + 10y + 9 = 0$	-4	-2	0	2 4
			-2	
		·		
			-4 A	
			-6	
			-8	
			$\overline{}$	

Question 2:

Given a circle $\,C_{\scriptscriptstyle 1}\,$ and a point P on $\,C_{\scriptscriptstyle 1}\,$,

- (a) find all possible equations of a circle $\,C_2^{}\,$ with a radius of r that intersect $\,C_1^{}\,$ at exactly one point, P.
- (b) graph both $\,C_{\scriptscriptstyle 1}\,{\rm and}$ all possible $\,C_{\scriptscriptstyle 2}\,{\rm to}$ verify your answer from (a)

Given C_1 , P	Radius of C_2	C_2
1. $(x-2)^2 + (y-3)^2 = 13$, P(4,6)	$\sqrt{2}$	$\left(x-4-\frac{2\sqrt{2}}{\sqrt{13}}\right)^2 + \left(y-6-\frac{3\sqrt{2}}{\sqrt{13}}\right)^2 = 2,$
		$\left(x-4+\frac{2\sqrt{2}}{\sqrt{13}}\right)^2 + \left(y-6+\frac{3\sqrt{2}}{\sqrt{13}}\right)^2 = 2$
2. $(x-2)^2 + (y-3)^2 = 13$, P(0,6)	5	$\left(x - \frac{10}{\sqrt{13}}\right)^2 + \left(y - 6 + \frac{15}{\sqrt{13}}\right)^2 = 25,$
		$\left(x + \frac{10}{\sqrt{13}}\right)^2 + \left(y - 6 - \frac{15}{\sqrt{13}}\right)^2 = 25$
3. $(x-5)^2 + y^2 = 10$, P(4,3)	3	$\left(x-4-\frac{3}{\sqrt{10}}\right)^2 + \left(y-3+\frac{9}{\sqrt{10}}\right)^2 = 9,$
		$\left(x-4+\frac{3}{\sqrt{10}}\right)^2 + \left(y-3-\frac{9}{\sqrt{10}}\right)^2 = 9$
4. $(x-5)^2 + y^2 = 10$,	$2\sqrt{10}$	$(x-14)^2 + (y+3)^2 = 40 ,$
P(8,-1)		$(x-2)^2 + (y-1)^2 = 40$

VD: Unit 9 Topic 1 Part 1

5. $(x-4)^2 + (y-3)^2 = 25$, P(0,0)	4	$\left(x - \frac{16}{5}\right)^2 + \left(y - \frac{12}{5}\right)^2 = 16,$
		$\left(x + \frac{16}{5}\right)^2 + \left(y + \frac{12}{5}\right)^2 = 16$
$6.(x+3)^2 + (y-4)^2 = 25,$ P(-6,0)	5√2	$(x+6-3\sqrt{2})^2 + (y-4\sqrt{2})^2 = 50 ,$
1 (-0,0)		$\left(x+6+3\sqrt{2}\right)^{2} + \left(y+4\sqrt{2}\right)^{2} = 50$
$7.(x+4)^2 + (y-4)^2 = 18,$	$6\sqrt{2}$	$(x+1)^2 + (y-7)^2 = 72$,
P(-7,1)		$(x+13)^2 + (y+5)^2 = 72$
8. $(x+10)^2 + (y+3)^2 = 20$	$\sqrt{5}$	$(x+11)^2 + (y+5)^2 = 5$,
P(-12, -7)		$(x+13)^2 + (y+9)^2 = 5$