## DEPARTMENT OF MATHEMATICS

## Indian Institute of Technology, Guwahati

Midsem MA321 Optimization 23-09-2021

Maximum Score : 20 of 33 Time : 14:00–15:59

Instructor : Sukanta Pati Submit before : 15:59

Write appropriate and precise justifications. Draw neatly. Use pencils for convenience. Submit in the portal. If that does not work, only then send it to my email pati@iitg.ac.in before 16:05.

## 1. Consider the problem table

| bv | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $x_8$ | b |
|----|-------|-------|-------|-------|-------|-------|-------|-------|---|
| *  | 1     | 1     | 1     | 0     | 1     | 0     | 0     | 0     | 1 |
| *  | 1     | 1     | 0     | 1     | 0     | 1     | 0     | 0     | 1 |
| *  | 1     | 0     | 1     | 1     | 0     | 0     | 1     | 0     | 1 |
| *  | 0     | 1     | 1     | 1     | 0     | 0     | 0     | 1     | 1 |
| *  | -1    | -1    | -1    | -1    | 0     | 0     | 0     | 0     | * |

Write the simplex table for the basis  $(x_2, x_1, x_5, x_6)$ .

3

- 2. Continue from the previous table. Taking  $x_5$  as the outgoing variable, use dual simplex method to reach the next simplex table.
- 3. Consider the problem table given above. Write the simplex table at the ordered basis  $(x_4, x_5, x_6, x_7)$ . What is the current vertex? What is the direction given by the nonbasic variable  $x_1$ ? What is the next ordered basis to consider using Bland's rule?  $\boxed{2+1+2+1}$
- 4. Consider optimizing  $x^2 + y$  over the set  $P = \{(x,y) \mid \frac{x^2}{4} + \frac{y^2}{16} = 1\}$ . Use graphical method to solve it. 4
- 5. Consider a  $4 \times 5$  btp with the cost matrix  $C = \begin{bmatrix} 1 & 2 & 1 & 3 & 1 \\ 3 & 2 & 1 & 2 & 2 \\ 2 & 1 & 1 & 3 & 1 \\ 1 & 1 & 3 & 3 & 3 \end{bmatrix}$ , where the availabilities at the sources

 $S_1, S_2, S_3, S_4$  are 50, 60, 60, 70, respectively and the demands at the sinks  $T_1, \ldots, T_5$  are 40, 60, 30, 30, 80, respectively.

- a) Write the corresponding transportation array.
- b) Is  $\{x_{11}, x_{12}, x_{21}, x_{23}, x_{24}, x_{25}, x_{31}, x_{45}\}$  a basis? Argue using any of the three methods.
- c) What is the corresponding basic solution to the above basis? Is it feasible?
- d) Select the initial bfs using nw-corner rule.

e) Verify whether the bfs in d) is a minimal bfs.

3

f) Find a better bfs.

2

## 6. (Write properly) Consider the set

$$P = \{x \in \mathbb{R}^4 \mid x \ge 0, \ x_1 + x_2 + x_3 \le 1, \ x_1 + x_2 + x_4 \le 1, \ x_1 + x_3 + x_4 \le 1, \ x_2 + x_3 + x_4 \le 1\}.$$

Which of the following statements are correct?



- a) It has a vertex with no coordinates 0.
- b) It has a vertex with exactly one coordinate 0.
- c) It has a vertex with exactly two coordinates 0.
- d) It has a vertex with exactly three coordinates 0.
- e) It has a vertex with all coordinates 0.