R-Lab

吴海旭 2016013223 软件61

R-Lab

- 1. 实验描述
- 2. 实验方案
- 3. 实验结果及分析
- 4. 实验总结

1. 实验描述

计算 Cauchy 分布的 MLE。

估计 Cauchy(a,1) 中位置参数 a , 使用如下方法:

- aEsti1=x1,...,xn的平均值;
- aEsti2=x1,...,xn的中位数;
- aEsti3= arg max L(a);
- aEsti4: 通过Newton方法或者二分法求方程 dl(a)/da=0;

比较四种方案。

2. 实验方案

取参数a为1,分别产生样本量为30、100、1000的随机数。

- 对于aEsti1、aEsti2直接计算得出,使用函数均值来估计。
- aEsti3使用optim实现。
- 选取合适的初值,使用Newton方法计算方程的根。
- 重复上述过程M次,取误差平均值。

3. 实验结果及分析

取M为100,对于方法四:newton方法的初始值为0,误差阈值为0.5。计算平均误差值如下:

方法	样本为30	样本为100	样本为1000
aEsti1	0.007482352	-0.003195387	-0.001612425
aEsti2	6.036528126	-0.487764692	0.865721033
aEsti3	0.01584436	-0.006774525	18.999950
aEsti4(newton误差为0.5)	-1.40928947	-1.401612523	-1.403299

• 波形性

对于四个方法来说,第二与第三中方法具有较大的波动,原因是:

- 中位数的变化本身会比较大,中位数不是一个很能体现数据整体的估计量
- 。 因为方法三选取的是似然函数,因为似然函数本身波动较大,所以影响了a的取值,若改成对数似然函数则会波动小很多(通过方法四可以体会到)

• 估计效果

- 随着样本数目的增加,方法一的效果越来越好,这是因为数据量愈多,样本越可以拟合平均值
- o 对于方法四,估计效果一直变化不大,这使因为我们使用的newton方解方程,设定了一样的估计阈值 (0.5),所以方程解出来的值相差不大。

4. 实验总结

本实验需要自己实现数据生成,变量估计,并且选取比较合适的估计方式。

一开始没有认真读题,在生成cauchy分布的随机量上浪费了很多时间。对于cauchy估计量可以使用rcauchy生成也可以使用正态分布的随机量来计算得到。