ASEN 3112

Spring 2020

Lecture 6

January 30, 2020

6

Torsion of Closed Thin Wall (CTW) Sections

Recall the Classification of Thin Wall (TW) Cross Sections Under Torque

Closed Thin Wall (CTW) Sections

at least one cell shear flow circuit can be established Single Cell: just one cell Multicell: more than one cell

Open Thin Wall (OTW) Sections no cell shear flow circuit can be established

Hybrid Thin Wall (HTW) Sections contains both OTW and CTW components

Sample CTW Cross Sections

wing torque box

Single-Cell CTW Section

Shear Stress Formula

Equilibrium of internal torque T with the assumed shear stress distribution (constant across wall thickness, directed along tangent to midline) gives

$$T = \oint dT = \oint q.h \, ds = q \oint h \, ds = q \oint 2 \, dA_E = q.2A_E = 2 \, q \, A_E$$

in which A_E is the *enclosed area* defined by the wall midline (which should NOT be confused with the *cross section area* or material area) Solving for q gives the shear flow and wall stress formula

$$q = \frac{T}{2A_E} \qquad \tau = \frac{q}{t} = \frac{T}{2t A_E}$$

Since q is constant along the contour, plainly the maximum shear stress occurs where the wall thickness t is minimum:

$$\tau_{max} = \frac{q}{t_{min}} = \frac{T}{2t_{min}A_E}$$

Twist Angle Formula

It can be shown that the twist-angle rate is given by

$$\phi' = \frac{d\phi}{dx} = \frac{q}{2GA_E} \oint \frac{ds}{t} = \frac{T}{4GA_E^2} \oint \frac{ds}{t} = \frac{T}{GJ} \text{ in which } J = \frac{4A_E^2}{\oint \frac{ds}{t}}$$

Here G is the shear modulus. Derivation of this formula requires the use of energy methods in mechanics, which is a graduate-level topic.

If the wall thickness t is constant along the cell contour, the foregoing formula simplifies to

$$\phi' = \frac{d\phi}{dx} = \frac{q \ p}{2A_E \ t} = \frac{T}{GJ} \quad \text{in which} \quad J = \frac{4A_E^2 \ t}{p}$$

where $p = \oint ds$ is the midline perimeter length, or simply the *perimeter*.

Multicell CTW Sections Are Not Treated in This Course

Worked Out Example Cross Sections

All d's are midline dimensions

Torqued Hybrid TW (HTW) "A" Section For Recitation

 $b_1 = 200 \text{ mm}, \quad b_2 = b_3 = 400 \text{ mm}, \quad t_1 = t_2 = t_3 = 6 \text{ mm}$ $G = 80 \text{ GPa (steel)}, \quad T = 604 \cdot 10^3 \text{ mm-N}, \quad L = 2514 \text{ mm}$