INTRODUCTION

AU

DESSIN ELECTRONIQUE

Table des matières

1	Hardware		2
	1.1 TP1		2
	1.1.1	Composant	2
	1.1.2	Schematic	3
	1.1.3	Output Job	3
		1.1.3.1 Schematic Prints	3
	1.2 TP2		4
	1.2.1	Composant	4
		1,2,1.1 Pic	4
	1.2.2	Schematic	5
		1,2,2,1 Pic	6
		1,2,2,2 Power	7
		1,2,2,3 Led	7
	1.2.3	Output Job	8
			8
			8
	1.3 TP3		9
	1.3.1	Footprint	9

Chapitre 1 Hardware

1.1 TP1

Allez à l'option $File \to New \to Project$. Depuis la boîte de dialogue NewProject, saisir Name à « TP1 » et Location à C: \Work\0042-001-cours\Electronique puis valider.

1.1.1 Composant

Allez à l'option $File \to New \to Library \to Schematic Library$ afin de créer un nouveau composant.

Allez à l'option $File \rightarrow Save$ afin de sauvegarder le composant à P.SchLib.

Pour le repère orthonormé ci-suivant :

 \circ Allez à l'option $Place \to Rectangle \overleftrightarrow{OR}$ afin de placer le composant O à R: [-20; -30]. \circ Allez à l'option $Place \to Pin$, presser \Longrightarrow , depuis la boîte de dialogue PinProperties saisir les champs DisplayName et Designator à 1 et décochez la case Visible de Designator afin de placer les pattes recourbées pour les coordonnées cartésiennes $\overrightarrow{P_1P_1}$ et $\overrightarrow{P_2P_2}$.

o Sauvegardez.

1.1.2 Schematic

Allez à l'option $File \to New \to Schematic$ afin de créer un nouveau schéma. Allez à l'option $File \to Save$ ou pressez [Ctr] + [S] afin de sauvegarder le schéma à TP1.SchDoc.

Pour le schéma à électrique ci-suivant :

- \circ Allez à l'option $Place \to Part... \to Chooce \to Librairies : <math>P.SchLib$ afin de placer le composant noté P_1 .
- \circ Allez à l'option $Place \rightarrow Part... \rightarrow Chooce \rightarrow Librairies : <math>MiscellaneousDevices.SchLib$ afin de placer les composants ci-suivants : [Diode, Res1, LED2, Cap, Battery, SW-PB].
- \circ Allez à l'option $Tools \to Annotate Schematics Quietly... afin d'annoter tout les composants.$
 - o Sauvegardez.

1.1.3 Output Job

1.1.3.1 Schematic Prints

Allez à l'option $File \to New \to Output Job Files$ afin de créer une configuration de sortie de fichiers.

Allez à l'option $File \to Save$ ou pressez [Ctr] + [S] afin de sauvegarder le schéma à TP1.OutJob.

- \circ Allez à l'option $Edit \to AddDocumentationOutputs \to SchematicPrints <math>\to TP1.SchDoc.$
- o Allez à l'option $File \to PageSetup...$, depuis le cadre ColorSet sélectionné Color.
- \circ Depuis le panneau Output, cocher la case Enabled de l'occurence Schematicprints puis depuis le panneau OutputContainers, selectionnez PDF et GenerateContent afin d'exporter le schéma.
 - o Sauvegardez.

Allez à l'option $File \to SaveAll$ pour sauvegarder le projet.

Allez à l'option $File \rightarrow Exit$ pour quitter le programme.

1.2 TP2

Allez à l'option $File \rightarrow New \rightarrow Project$.

Depuis la boîte de dialogue NewProject, saisir Name à « TP2 » et Location à C:\Work\ 0042-002-cours\Electronique puis valider.

1.2.1 Composant

1.2.1.1 Pic

Allez à l'option $File \to New \to Library \to SchematicLibrary$ afin de créer un nouveau composant .

Allez à l'option $File \to Save$ ou pressez [Ctrl] + [S] afin de sauvegarder le composant à Pic.SchLib.

Pour le repère orthonormé ci-suivant :

- \circ Allez à l'option $Place \to Rectangle \overleftrightarrow{OU}$ afin de placer le composant de O à U:[-150;-380].
 - o Allez à l'option $Place \rightarrow Pin$, presser $[\leftrightarrows]$.
- \circ Depuis la boîte de dialogue PinProperties; vider le champ DisplayName, saisir le champ Designator à « »1 et cocher leurs cases Visible puis valider.
- \circ Placer les pattes recourbées pour les ensembles : $\{1,2,3\},\{4,5,6\}$, 8, 9, 10, $\{11,\ldots,16\},\{17,18\}$, 19, 20, $\{21,\ldots,24\},25,26,\{27,\cdots,30\}$, $\{31,32,33\},34,35,\{36,37\}$, 38, 39, 40, 41, $\{42,\ldots,45\},46,\{47,48\}$, $\{49,\ldots,55\},56,57,\{58,59\},\{60,\ldots,64\}$.

- \circ Allez à l'option $Tools \to Componant Properties... \to Edit Pins... afin de nommer et définir le type de toutes les pattes.$
 - o Sauvegardez.

1.2.2 Schematic

Allez à l'option $File \to New \to Schematic$ afin de créer un nouveau schéma. Allez à l'option $File \to Save$ ou pressez [Ctr] + [S] afin de sauvegarder le schéma à TP2.SchDoc.

Pour le schéma à électrique ci-suivant :

- \circ Allez à l'option $Place \rightarrow Part... \rightarrow Chooce \rightarrow Librairies : <math>MiscellaneousDevices.SchLib$ afin de placer les composants ci-suivants : [RPotSM].
- \circ Allez à l'option $Place \rightarrow SheetSymbol$ afin de placer les feuilles de schéma de désignateur [PWD, PIC, LED0, LED1, LED2, LED3] et de nom de fichier [Power.ShcDoc, PIC.SchDoc, Led.SchDoc, Led.SchDoc, Led.SchDoc, Led.SchDoc].
- o Allez à l'option $Place \to AddSheetentry$ afin de placer les entrées LED[0...3] et POTARD de LED, ENABLE de LED0, ENABLE de LED1, ENABLE de LED2 et ENABLE de LED3.
- \circ Allez à l'option $Tools \rightarrow Annotate Schematics Quietly... afin d'annoter tout les composants.$
 - o Sauvegardez.

1.2.2.1 Pic

Allez à l'option $File \to New \to Schematic$ afin de créer un nouveau schéma. Allez à l'option $File \to Save$ ou pressez [Ctrl] + [S] afin de sauvegarder le schéma à TP2\pic.SchDoc.-

Pour le schéma à électrique ci-suivant :

- o Allez à l'option $Place \to Part... \to Chooce \to Librairies: Pic.SchLib$ afin de placer les composants notés U_1 .
- \circ Allez à l'option $Place \rightarrow Part... \rightarrow Chooce \rightarrow Librairies$ MiscellaneousDevices.SchLib afin de placer les composants ci-suivants [Res2, Res3, LED2, Cap, XTAL].
- \circ Allez à l'option $Tools \to Annotate Schematics Quietly... afin d'annoter tout les composants.$
 - o Sauvegardez.

1.2.2.2 Power

Allez à l'option $File \to New \to Schematic$ afin de créer un nouveau schéma. Allez à l'option $File \to Save$ ou pressez [Ctrl] + [S] afin de sauvegarder le schéma à Power.SchDoc.-

- o Allez à l'option $Place \rightarrow Part... \rightarrow Chooce \rightarrow Librairies : P.SchLib$ afin de placer les composants notés P_1 et P_2 .
- o Allez à l'option $Place \to Part... \to Chooce \to Librairies : AP117.SchLib$ afin de placer le composant noté U_3 .
- \circ Allez à l'option $Place \rightarrow Part... \rightarrow Chooce \rightarrow Librairies : <math>MiscellaneousDevices.SchLib$ afin de placer les composants ci-suivants : [Res2, LED2].
- \circ Allez à l'option $Tools \to Annotate Schematics Quietly... afin d'annoter tout les composants.$
 - o Sauvegardez.

1.2.2.3 Led

Allez à l'option $File \to New \to Schematic$ afin de créer un nouveau schéma. Allez à l'option $File \to Save$ ou pressez [Ctr] + [S] afin de sauvegarder le schéma à Led.SchDoc.-

Pour le schéma à électrique ci-suivant :

- \circ Allez à l'option $Place \to Port$, presser \Longrightarrow , depuis la boîte de dialogue PortProperties saisir Name à « ENABLE » puis valider afin de placer le Net Label.
- \circ Allez à l'option $Place \rightarrow Part... \rightarrow Chooce \rightarrow Librairies : <math>MiscellaneousDevices.SchLib$ afin de placer les composants ci-suivants : [Res2, LED2].
- \circ Allez à l'option $Tools \rightarrow Annotate Schematics Quietly... afin d'annoter tout les composants.$
 - o Sauvegardez.

1.2.3 Output Job

1.2.3.1 Schematic Prints

Allez à l'option $File \to New \to Output Job Files$ afin de créer une configuration de sortie de fichiers.

Allez à l'option $File \to Save$ ou pressez [Ctr] + [S] afin de sauvegarder le schéma à TP2.OutJob.

- \circ Allez à l'option $Edit \to AddDocumentationOutputs \to SchematicPrints <math>\to TP2.SchDoc.$
- o Allez à l'option $File \to PageSetup...$, depuis le cadre ColorSet sélectionné Color.
- \circ Depuis le panneau Output, cocher la case Enabled de l'occurence Schematicprints puis depuis le panneau OutputContainers, selectionnez PDF et GenerateContent afin d'exporter le schéma.
 - o Sauvegardez.

1.2.3.2 Bill of materiel

Allez à $Tool \rightarrow Parameter Manager$, cocher uniquement la case Parts puis valider; Allez à l'option Addcolumn... pour ajouter les champs : [Logical Designator, Fabricant, Ref Fabricant, Fournisseur, Ref Fournisseur, Precison].

			CARACTERISTIC	FABRICANT		FOURNISSEUR		
QUANTITY	Logical Designator.	Comment.	Footprint.	Description.	Fabricant.	RefFabricant.	Fournisseur,	Ref Fournisseur.
2	C(1,,6,15)	100 nF	CAPC1608N	Capacitor	50VX5R			
2	C{7,8}	20 pF	CAPC1005N	Capacitor	50VX5R			
4	C{9,11,,13}	10 μF	CAPC2012N	Capacitor	TDK	C2012X5R0J106M/1.25	Farnell	2309029
2	C{10,14}	1 μF	CAPC1608N	Capacitor	6,3VX5R			
5	D(1,4)	GreenLED	LED0805	Typical INFRARED GaAs LED	KINGBRIGHT	KPT-2012SGC	Farnell	2099239
2	D(2,3)	GF1A	$SMA/DO - 214AC_21$	DefaultDiode	VISHAY	GF1A - E3/67A	Farnell	9549560
1	FB1	600r	INDC1608AN	Inductor	Wurth	742792651	Farnell	1635706
1	J1	Program/Debug	MOLEX6P	1.25CMS	Molex	53398 - 0671	Farnell	1125368
1	P1	12VMain	$PHOENIX_1985195$	Header, 2-Pin	PHOENIXCONTACT	PTSA1.5/2 - 3, 5 - Z	Farnell	1792769
1	P2	12VBattery	$PHOENIX_1985195$	Header, 2-Pin	PHOENIXCONTACT	PTSA1.5/2 - 3, 5 - Z	Farnell	1792769
1	R1	1K	PDB181 - K415K - 102A2	Potentiometer	BOURNS	PDB181 - K415K - 102A2	Farnell	1823540
4	R2	330r	RESC1608N	Resistor				
1	R3	4.7k	RESC1608N	Resistor				
1	R4	470r	RESC1608N	Resistor				
1	U1	PIC32MX764F128H-I/PT	QFP50P1200X1200X120 - 64	PIC32MX764F128H	Microchip	PIC32MX764F128H - I/PT	Farnell	1971889
1	U2	AP1117	$TD03B_N$	1ALDO, 18Vinput, DPAK	DIODESINC	AP1117D33G - 13	Farnell	1825285
1	Y1	8MHz	XTAL139X50X45	CrystalOscillator	FOXELECTRONICS	FOXSDLF/080 - 20	Farnell	2063972

- \circ Allez à l'option $Edit \rightarrow AddReportOutputs \rightarrow BillofMaterials \rightarrow [Projects].$
- \circ Depuis le panneau Output, cocher la case Enabled de l'occurence BillofMaterials puis depuis le panneau OutputContainers, selectionnez FolderStructure et GenerateContent afin d'exporter la liste de composants.
 - o Sauvegardez.

Allez à l'option $File \rightarrow SaveAll$ pour sauvegarder le projet.

Allez à l'option $File \rightarrow Exit$ pour quitter le programme.

1.3 TP3

Allez à l'option $File \to New \to Project$. Depuis la boîte de dialogue NewProject, saisir Name à « TP3 » et Location à C:\Work\ 0042-003-cours\Electronique puis valider.

1.3.1 Footprint

Allez à l'option $File \to New \to Library \to PCBLibrary$. Allez à l'option $File \to Save$ ou pressez [Ctrl] + [S] afin de sauvegarder l'empreinte à Lib.PchLib.

- \circ Allez à l'option $File \rightarrow New \rightarrow Library \rightarrow PCBLibrary$.
- \circ Allez à l'option $File \rightarrow Edit \rightarrow Jump \rightarrow NewLocation$.
- o Depuis la boîte de dialogue JumpToLocation; saisir les champs $\{x,y\}Location$ à 0 puis valider.

Pour le composant PIC32MX764F128H, la fiche technique du nous apprends que selon la page « TABLE 3 : PIC32MX7XX USB, ETHERNET, AND CAN FEATURES » notre boîtier est un TQFP et QFN; et que la page « 34.2 Package Details » nous décrit le footprint.

- \circ Allez à l'option $File \rightarrow Tool \rightarrow IPCCompliantFootprintWizard....$
- o Depuis la boîte de dialogue IPCCompliantFootprintWizard; allez à l'option Next, sélectionner la ligne PQFP; PlasticQuadFlatPack; PQFP, PQFPExposedPad, allez à l'option Next, remplicer puis valider.
 - o Sauvegardez.

Pour le composant CAPC2012N ci-suivant :

- \circ Allez à l'option $Tools \rightarrow NewBlankComponent$.
- \circ Allez à l'option $Tools \rightarrow IPCCompliantFootprintWizard....$
- o Depuis la boîte de dialogue IPCCompliantFootprintWizard; allez à l'option Next, sélectionner l'élement CHIP (Capacitor, Inductor, Resistor); allez à l'option Next, remplicer puis valider.
 - o Sauvegardez.

Pour le composant FOXSDLF/080-20 ci-suivant :

- \circ Allez à l'option $Tools \rightarrow NewBlankComponent.$
- \circ Allez à l'option $Tools \rightarrow IPCCompliantFootprintWizard....$
- o Depuis la boîte de dialogue IPCCompliantFootprintWizard; allez à l'option Next, sélectionner l'élement CHIP (Capacitor, Inductor, Resistor); allez à l'option Next, remplicer puis valider.
 - o Sauvegardez.

Pour le composant PTSA 1.5/2-3,5-Z ci-suivant :

- \circ Allez à l'option $Tools \rightarrow NewBlankComponent.$
- \circ Allez à l'option $Tools \rightarrow IPCCompliantFootprintWizard....$
- o Sauvegardez.

 $File \rightarrow NewPcb$