A Fine-Grained Perspective on Approximating Subset Sum and Partition

Authors: Karl Bringmann and Vasileios Nakos (Appeared in SODA'21)

Presented by Ce Jin

March 22, 2021

1 / 19

Overview

2 / 19

Subset Sum

Given a (multi-)set X of n positive integers and a target integer t, compute OPT := $\max\{\Sigma(Y): Y\subseteq X, \Sigma(Y)\leq t\}$.

3 / 19

 $^{{}^1\}tilde{O}(f)$ means $f \cdot (\log f)^{O(1)}$

Subset Sum

Given a (multi-)set X of n positive integers and a target integer t, compute OPT := max{ $\Sigma(Y) : Y \subseteq X, \Sigma(Y) \le t$ }.

Example: $X = \{1, 3, 4, 4\}, t = 6$

3 / 19

 $^{{}^{1}\}tilde{O}(f)$ means $f \cdot (\log f)^{O(1)}$

Subset Sum

Given a (multi-)set X of n positive integers and a target integer t, compute OPT := max{ $\Sigma(Y) : Y \subseteq X, \Sigma(Y) \le t$ }.

Example: $X = \{1, 3, 4, 4\}$, t = 6OPT = 1 + 4 = 5

3 / 19

Subset Sum

Given a (multi-)set X of n positive integers and a target integer t, compute OPT := max{ $\Sigma(Y) : Y \subseteq X, \Sigma(Y) \le t$ }.

Example:
$$X = \{1, 3, 4, 4\}$$
, $t = 6$
OPT = $1 + 4 = 5$

A classic NP-hard problem.

3 / 19

Subset Sum

Given a (multi-)set X of n positive integers and a target integer t, compute OPT := $\max\{\Sigma(Y): Y\subseteq X, \Sigma(Y)\leq t\}$.

Example:
$$X = \{1, 3, 4, 4\}, t = 6$$

OPT = $1 + 4 = 5$

A classic NP-hard problem.

 $O(2^{n/2})$ time algorithm [Horowitz and Sahni, JACM'74]

3 / 19

Subset Sum

Given a (multi-)set X of n positive integers and a target integer t, compute OPT := max{ $\Sigma(Y) : Y \subseteq X, \Sigma(Y) \le t$ }.

Example:
$$X = \{1, 3, 4, 4\}$$
, $t = 6$
OPT = $1 + 4 = 5$

A classic NP-hard problem.

 $O(2^{n/2})$ time algorithm [Horowitz and Sahni, JACM'74] $\tilde{O}(n+t)$ time randomized algorithm¹ [Bringmann, SODA'17]

3 / 19

Subset Sum

Given a (multi-)set X of n positive integers and a target integer t, compute OPT := max{ $\Sigma(Y): Y \subseteq X, \Sigma(Y) \le t$ }.

Example:
$$X = \{1, 3, 4, 4\}$$
, $t = 6$
OPT = $1 + 4 = 5$

A classic NP-hard problem.

 $O(2^{n/2})$ time algorithm [Horowitz and Sahni, JACM'74] $\tilde{O}(n+t)$ time randomized algorithm¹ [Bringmann, SODA'17]

Partition Problem

A special case of Subset Sum where the input set X and target integer satisfy $t = \Sigma(X)/2$.

 $^{{}^{1}\}tilde{O}(f)$ means $f \cdot (\log f)^{O(1)}$

(Exact) Subset Sum

Given a (multi-)set X of n positive integers and a target integer t, compute OPT := max{ $\Sigma(Y) : Y \subseteq X, \Sigma(Y) \le t$ }.

$(1-\varepsilon)$ -approximate Subset Sum

Find a subset $Y \subseteq X$ such that

$$(1-\varepsilon)\cdot\mathsf{OPT}\leq\Sigma(Y)\leq t.$$

4 / 19

(Exact) Subset Sum

Given a (multi-)set X of n positive integers and a target integer t, compute OPT := max{ $\Sigma(Y) : Y \subseteq X, \Sigma(Y) \le t$ }.

$(1-\varepsilon)$ -approximate Subset Sum

Find a subset $Y \subseteq X$ such that

$$(1 - \varepsilon) \cdot \mathsf{OPT} \le \Sigma(Y) \le t.$$

There are algorithms in poly $(n, 1/\varepsilon)$ time! ("FPTAS")

4 / 19

(Exact) Subset Sum

Given a (multi-)set X of n positive integers and a target integer t, compute OPT := max{ $\Sigma(Y) : Y \subseteq X, \Sigma(Y) \le t$ }.

$(1-\varepsilon)$ -approximate Subset Sum

Find a subset $Y \subseteq X$ such that

$$(1-\varepsilon)\cdot\mathsf{OPT}\leq\Sigma(Y)\leq t.$$

There are algorithms in $poly(n, 1/\varepsilon)$ time! ("FPTAS")

Previous best $\tilde{O}(\min\{n/\varepsilon,n+1/\varepsilon^2\})$ time [Kellerer-Mansini-Pferschy-Speranza'03]

◆ロト ◆個ト ◆恵ト ◆恵ト 恵 めらで

4 / 19

(Exact) Subset Sum

Given a (multi-)set X of n positive integers and a target integer t, compute OPT := $\max\{\Sigma(Y): Y\subseteq X, \Sigma(Y)\leq t\}$.

$(1-\varepsilon)$ -approximate Subset Sum

Find a subset $Y \subseteq X$ such that

$$(1-\varepsilon)\cdot\mathsf{OPT}\leq\Sigma(Y)\leq t.$$

There are algorithms in $poly(n, 1/\varepsilon)$ time! ("FPTAS")

Previous best $\tilde{O}(\min\{n/arepsilon,n+1/arepsilon^2\})$ time [Kellerer-Mansini-Pferschy-Speranza'03]

Approximating Subset Sum in $O((n+1/\varepsilon)^{1.99})$ time?

4□ > 4□ > 4 = > 4 = > = 90

(Exact) Subset Sum

Given a (multi-)set X of n positive integers and a target integer t, compute OPT := max{ $\Sigma(Y): Y \subseteq X, \Sigma(Y) \le t$ }.

$(1-\varepsilon)$ -approximate Subset Sum

Find a subset $Y \subseteq X$ such that

$$(1-\varepsilon)\cdot\mathsf{OPT}\leq\Sigma(Y)\leq t.$$

There are algorithms in $poly(n, 1/\varepsilon)$ time! ("FPTAS")

Previous best $\tilde{O}(\min\{n/arepsilon,n+1/arepsilon^2\})$ time [Kellerer-Mansini-Pferschy-Speranza'03]

Approximating Subset Sum in $O((n+1/\varepsilon)^{1.99})$ time?

Partition: $\tilde{O}(n+1/\varepsilon^{5/3})$ (randomized) [Mucha-Węgrzycki-Włodarczyk SODA'19]

4 D > 4 B > 4 E >

Main results in this paper (1)

Conditional hardness of approximating Subset Sum

If (min, +)-convolution requires $n^{2-o(1)}$ time, then $(1-\varepsilon)$ -approximating Subset Sum requires $(n+1/\varepsilon)^{2-o(1)}$ time.

(min, +)-convolution: Given a[1..n], b[1..n], compute $c[i] = \min_{j+k=i} a[j] + b[k]$ for all i.

4□ > 4□ > 4 = > 4 = > = 90

5 / 19

Main results in this paper (1)

Conditional hardness of approximating Subset Sum

If (min, +)-convolution requires $n^{2-o(1)}$ time, then $(1-\varepsilon)$ -approximating Subset Sum requires $(n+1/\varepsilon)^{2-o(1)}$ time.

(min, +)-convolution: Given a[1..n], b[1..n], compute $c[i] = \min_{j+k=i} a[j] + b[k]$ for all i.

Previously, such a lower bound was only known for the harder problem of approximating Knapsack. [Cygan-Mucha-Węgrzycki-Włodarczyk'17, Künnemann-Paturi-Schneider'17]

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Main results in this paper (2)

Reduction from Subset Sum to (min, +)-convolution

If $(\min, +)$ -convolution can be solved in T(n) time, then Subset Sum can be $(1 - \varepsilon)$ -approximated w.h.p.^a in $\tilde{O}(n + T(1/\varepsilon))$ time.

^awith high probability, i.e., $1-1/n^C$ for arbitrary constant C.

$$(T(n) \le n^2/2^{\Omega(\sqrt{\log n})}$$
 [Williams'14, Chan-Williams'16])

6 / 19

Main results in this paper (2)

Reduction from Subset Sum to (min, +)-convolution

If (min, +)-convolution can be solved in T(n) time, then Subset Sum can be $(1-\varepsilon)$ -approximated w.h.p.^a in $\tilde{O}(n+T(1/\varepsilon))$ time.

^awith high probability, i.e., $1-1/n^C$ for arbitrary constant C.

$$(T(n) \le n^2/2^{\Omega(\sqrt{\log n})}$$
 [Williams'14, Chan-Williams'16])

Improves the previous algorithm by a super-polylog-factor.

Main results in this paper (2)

Reduction from Subset Sum to (min, +)-convolution

If (min, +)-convolution can be solved in T(n) time, then Subset Sum can be $(1-\varepsilon)$ -approximated w.h.p.^a in $\tilde{O}(n+T(1/\varepsilon))$ time.

^awith high probability, i.e., $1-1/n^C$ for arbitrary constant C.

$$(T(n) \le n^2/2^{\Omega(\sqrt{\log n})}$$
 [Williams'14, Chan-Williams'16])

Improves the previous algorithm by a super-polylog-factor.

 $(\min, +)$ -convolution and approximating Subset Sum are *fine-grained* equivalent!

◆ロト ◆個ト ◆恵ト ◆恵ト 恵 めらで

6 / 19

Main results in this paper (3)

Better approximation algorithm for Partition

Partition can be approximated deterministically in $\tilde{O}(n+(1/\varepsilon)^{3/2}/2^{\Omega(\sqrt{\log 1/\varepsilon})})$ time.

Improves the previous $\tilde{O}(n+(1/\varepsilon)^{5/3})$ -time randomized algorithm.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Conditional lower bound

8 / 19

Knapsack

(Exact) Knapsack

Given a set X of n items each having weight $w_i \in \mathbb{N}^+$ and value $v_i \in \mathbb{N}^+$, and a capacity $W \in \mathbb{N}^+$, compute $\max\{v(Y): Y \subseteq X, w(Y) \leq W\}$, where v(Y) (and w(Y)) denote the total value (and weight) of items in Y.

We know O(nW) or $\tilde{O}(n+W^2)$ algorithms (quadratic time).

9 / 19

Knapsack

(Exact) Knapsack

Given a set X of n items each having weight $w_i \in \mathbb{N}^+$ and value $v_i \in \mathbb{N}^+$, and a capacity $W \in \mathbb{N}^+$, compute $\max\{v(Y): Y \subseteq X, w(Y) \leq W\}$, where v(Y) (and w(Y)) denote the total value (and weight) of items in Y.

We know O(nW) or $\tilde{O}(n+W^2)$ algorithms (quadratic time).

From (min, +)-convolution to Knapsack [Cygan et al.'17, Künnemann et al.'17]

A T(n, W)-time algorithm for Knapsack would imply a $\tilde{O}(T(\sqrt{n}, \sqrt{n}) \cdot n)$ -time algorithm for (min, +)-convolution.

Knapsack

(Exact) Knapsack

Given a set X of n items each having weight $w_i \in \mathbb{N}^+$ and value $v_i \in \mathbb{N}^+$, and a capacity $W \in \mathbb{N}^+$, compute $\max\{v(Y): Y \subseteq X, w(Y) \leq W\}$, where v(Y) (and w(Y)) denote the total value (and weight) of items in Y.

We know O(nW) or $\tilde{O}(n+W^2)$ algorithms (quadratic time).

From (min, +)-convolution to Knapsack [Cygan et al.'17, Künnemann et al.'17]

A T(n,W)-time algorithm for Knapsack would imply a $\tilde{O}(T(\sqrt{n},\sqrt{n})\cdot n)$ -time algorithm for (min, +)-convolution.

From Knapsack to Apx-SubsetSum (this paper)

A $T(n, 1/\varepsilon)$ -time algorithm for approximating Subset Sum would imply a $\tilde{O}(T(n, W) + W)$ -time algorithm for Knapsack.

4 U P 4 DP P 4 E P 4 E P 9 Q C

Decision version of Knapsack

Given a set X of n items each having weight w_i and value v_i , and a capacity W and a target total value V. Is there a $Y \subseteq X$ such that $w(Y) \leq W$ and $v(Y) \geq V$?

10 / 19

Decision version of Knapsack

Given a set X of n items each having weight w_i and value v_i , and a capacity W and a target total value V. Is there a $Y \subseteq X$ such that $w(Y) \leq W$ and $v(Y) \geq V$?

Assume all input integers are in $\{1, 2, ..., M\}$. Let M' = 4nM.

• Add items with $w_i = 0$ and $v_i = -1, -2, -4, \dots, -2^{\log M}$. Add items with $v_i = 0$ and $w_i = 1, 2, 4, \dots, 2^{\log M}$.

10 / 19

Decision version of Knapsack

Given a set X of n items each having weight w_i and value v_i , and a capacity W and a target total value V. Is there a $Y \subseteq X$ such that $w(Y) \leq W$ and $v(Y) \geq V$?

Assume all input integers are in $\{1, 2, ..., M\}$. Let M' = 4nM.

• Add items with $w_i=0$ and $v_i=-1,-2,-4,\ldots,-2^{\log M}$. Add items with $v_i=0$ and $w_i=1,2,4,\ldots,2^{\log M}$. Now we can replace " $w(Y)\leq W$ and $v(Y)\geq V$ " by "w(Y)=W and v(Y)=V"!

Decision version of Knapsack

Given a set X of n items each having weight w_i and value v_i , and a capacity W and a target total value V. Is there a $Y \subseteq X$ such that $w(Y) \leq W$ and $v(Y) \geq V$?

Assume all input integers are in $\{1, 2, ..., M\}$. Let M' = 4nM.

- Add items with $w_i = 0$ and $v_i = -1, -2, -4, \dots, -2^{\log M}$. Add items with $v_i = 0$ and $w_i = 1, 2, 4, \dots, 2^{\log M}$. Now we can replace " $w(Y) \leq W$ and $v(Y) \geq V$ " by "w(Y) = W and v(Y) = V"!
- ② Define the Apx-Subset Sum instance: t := WM' V, $\varepsilon = 1/(2W)$, and $x_i := w_i \cdot M' v_i$.

Decision version of Knapsack

Given a set X of n items each having weight w_i and value v_i , and a capacity W and a target total value V. Is there a $Y \subseteq X$ such that $w(Y) \leq W$ and $v(Y) \geq V$?

Assume all input integers are in $\{1, 2, ..., M\}$. Let M' = 4nM.

- Add items with $w_i = 0$ and $v_i = -1, -2, -4, \dots, -2^{\log M}$. Add items with $v_i = 0$ and $w_i = 1, 2, 4, \dots, 2^{\log M}$. Now we can replace " $w(Y) \leq W$ and $v(Y) \geq V$ " by "w(Y) = W and v(Y) = V"!
- ② Define the Apx-Subset Sum instance: t := WM' V, $\varepsilon = 1/(2W)$, and $x_i := w_i \cdot M' v_i$.

Knapsack has a solution \Longrightarrow Subset Sum has an exact solution.

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

Decision version of Knapsack

Given a set X of n items each having weight w_i and value v_i , and a capacity W and a target total value V.

Is there a $Y \subseteq X$ such that $w(Y) \leq W$ and $v(Y) \geq V$?

Assume all input integers are in $\{1, 2, ..., M\}$. Let M' = 4nM.

- Add items with $w_i = 0$ and $v_i = -1, -2, -4, \dots, -2^{\log M}$. Add items with $v_i = 0$ and $w_i = 1, 2, 4, \dots, 2^{\log M}$. Now we can replace " $w(Y) \leq W$ and $v(Y) \geq V$ " by "w(Y) = W and v(Y) = V"!
- ② Define the Apx-Subset Sum instance: t := WM' V, $\varepsilon = 1/(2W)$, and $x_i := w_i \cdot M' v_i$.

Knapsack has a solution \Longrightarrow Subset Sum has an exact solution. Knapsack has no solution \Longrightarrow Every subset sum is either > t or $< (1 - \varepsilon)t$.

Algorithm for Partition

11 / 19

Partition

$(1-\varepsilon)$ -Approximating Partition

Given a (multi-)set X of n positive integers, let

OPT := $\max\{\Sigma(Y): Y \subseteq X, \Sigma(Y) \le t\}$, where $t = \Sigma(X)/2$.

Find a subset $Y \subseteq X$ such that $(1 - \varepsilon) \cdot \mathsf{OPT} \leq \Sigma(Y) \leq t$.

12 / 19

Sumset

For $A, B \subseteq \mathbb{N}$, define

$$A+B=\{a+b:a\in A,b\in B\}.$$

13 / 19

Sumset

For $A, B \subseteq \mathbb{N}$, define

$$A+B=\{a+b:a\in A,b\in B\}.$$

Exact algorithm: compute $\{0, x_1\} + \{0, x_2\} + \cdots + \{0, x_n\}$. (the sumset is too big!)

13 / 19

Sumset

For $A, B \subseteq \mathbb{N}$, define

$$A+B=\{a+b:a\in A,b\in B\}.$$

Exact algorithm: compute $\{0, x_1\} + \{0, x_2\} + \cdots + \{0, x_n\}$. (the sumset is too big!)

Approximation algorithm: compute an approximate version of the sumset (which can be sparse)

A notion of approximation

Approximation

For $b \in \mathbb{N}$ and $A \subseteq \mathbb{N}$, define

$$apx^{-}(b,A) := \max\{a \in A : a \leq b\}$$

$$apx^+(b,A) := \min\{a \in A : a \ge b\}$$

We say A Δ -approximates B if $A \subseteq B$ and for every $b \in B$,

$$apx^+(b,A) - apx^-(b,A) \leq \Delta.$$

14 / 19

Approximation

For $b \in \mathbb{N}$ and $A \subseteq \mathbb{N}$, define

$$apx^-(b,A) := \max\{a \in A : a \le b\}$$

$$apx^+(b,A) := min\{a \in A : a \ge b\}$$

We say $A \triangle$ -approximates B if $A \subseteq B$ and for every $b \in B$,

$$apx^+(b,A) - apx^-(b,A) \leq \Delta.$$

This² is stronger than the usual definition of $apx^+(b,A) - b \le \Delta$ and $b - apx^-(b,A) \le \Delta$.

14 / 19

Approximation

For $b \in \mathbb{N}$ and $A \subseteq \mathbb{N}$, define

$$apx^-(b,A) := \max\{a \in A : a \le b\}$$

$$apx^+(b,A) := \min\{a \in A : a \ge b\}$$

We say $A \triangle$ -approximates B if $A \subseteq B$ and for every $b \in B$,

$$apx^+(b,A) - apx^-(b,A) \leq \Delta.$$

This² is stronger than the usual definition of $apx^+(b,A)-b \leq \Delta$ and $b-apx^-(b,A) \leq \Delta$.

Sumset property

If A_1 Δ -approximates B_1 and A_2 Δ -approximates B_2 , then $A_1 + A_2$ Δ -approximates $B_1 + B_2$.

Notice that the approximation error Δ doesn't blow up to 2Δ !

²Inspired by Kellerer et al.'03

14 / 19

Transitivity

If A Δ -approximates B, and B Δ -approximates C, then A Δ -approximates C.

15 / 19

Transitivity

If A Δ -approximates B, and B Δ -approximates C, then A Δ -approximates C.

Sparsification

Given a set $B \subseteq [t]$ ^a, we can compute in linear time a set A that sparsely Δ -approximates B, where $|A| \leq O((t/\Delta) + 1)$.

^aHere we define $[t] = \{0, 1, 2, ..., t\}$

15 / 19

Transitivity

If A Δ -approximates B, and B Δ -approximates C, then A Δ -approximates C.

Sparsification

Given a set $B \subseteq [t]$ ^a, we can compute in linear time a set A that sparsely Δ -approximates B, where $|A| \leq O((t/\Delta) + 1)$.

^aHere we define $[t] = \{0, 1, 2, \dots, t\}$

Approximate Sumset computation:

If A_1 sparsely Δ -approximates $B_1\subseteq [t]$, A_2 sparsely Δ -approximates $B_2\subseteq [t]$, then we can compute a sparse Δ -approximation of B_1+B_2 in $O(T_{minconv}(t/\Delta))$ time. $(T_{minconv}(n)\leq n^2/2^{\Omega(\sqrt{\log n})}))$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ からで

A simple algorithm for Partition

Recall $t = \Sigma(X)/2$.

Every non-trivial instance satisfies $\mathsf{OPT} \geq \Sigma(X)/4$.

16 / 19

A simple algorithm for Partition

Recall $t = \Sigma(X)/2$.

Every non-trivial instance satisfies $\mathsf{OPT} \geq \Sigma(X)/4$.

Set $\Delta = \varepsilon \Sigma(X)/4$.

Goal: compute a sparse Δ -approximation of $\{0, x_1\} + \cdots + \{0, x_n\}$.

16 / 19

A simple algorithm for Partition

Recall $t = \Sigma(X)/2$.

Every non-trivial instance satisfies $OPT \ge \Sigma(X)/4$.

Set $\Delta = \varepsilon \Sigma(X)/4$.

Goal: compute a sparse Δ -approximation of $\{0, x_1\} + \cdots + \{0, x_n\}$.

Algorithm: Use approximate sumset computation to merge in a binary-tree-like fashion.

The total time in each level is at most $O(n+(\Sigma(X)/\Delta)^2)=O(n+1/\varepsilon^2)$

Recall $t = \Sigma(X)/2$. Set $\Delta = \varepsilon \Sigma(X)/4$.

17 / 19

Recall $t = \Sigma(X)/2$.

Set $\Delta = \varepsilon \Sigma(X)/4$.

Choose a parameter $1 \le L \le 1/\varepsilon$

Divide $\{x_1, x_2, \dots, x_n\}$ into L groups of balanced sizes.

17 / 19

Recall $t = \Sigma(X)/2$.

Set $\Delta = \varepsilon \Sigma(X)/4$.

Choose a parameter $1 \le L \le 1/\varepsilon$

Divide $\{x_1, x_2, \dots, x_n\}$ into L groups of balanced sizes.

Compute Z_1, \ldots, Z_L which Δ -approximate the sumsets of these groups

17 / 19

Recall $t = \Sigma(X)/2$.

Set $\Delta = \varepsilon \Sigma(X)/4$.

Choose a parameter $1 \le L \le 1/\varepsilon$

Divide $\{x_1, x_2, \dots, x_n\}$ into L groups of balanced sizes.

Compute Z_1, \ldots, Z_L which Δ -approximate the sumsets of these groups

Round every integer in Z_i down to the nearest integer multiple of Δ/L .

```
Recall t = \Sigma(X)/2.
```

Set
$$\Delta = \varepsilon \Sigma(X)/4$$
.

Choose a parameter $1 \le L \le 1/\varepsilon$

Divide $\{x_1, x_2, \dots, x_n\}$ into L groups of balanced sizes.

Compute Z_1, \ldots, Z_L which Δ -approximate the sumsets of these groups

Round every integer in Z_i down to the nearest integer multiple of Δ/L . Use FFT to merge these sumsets in a binary-tree-like fashion

Recall $t = \Sigma(X)/2$.

Set $\Delta = \varepsilon \Sigma(X)/4$.

Choose a parameter $1 \le L \le 1/\varepsilon$

Divide $\{x_1, x_2, \dots, x_n\}$ into L groups of balanced sizes.

Compute Z_1, \ldots, Z_L which Δ -approximate the sumsets of these groups

Round every integer in Z_i down to the nearest integer multiple of Δ/L . Use FFT to merge these sumsets in a binary-tree-like fashion

Because of rounding, the values in the final sumset may not be realizable. Each y in the final sumset corresponds to a subset $Y\subseteq X$ with $\Sigma(Y)\in [y,y+L\cdot(\Delta/L)]=[y,y+\Delta].$

Recall $t = \Sigma(X)/2$.

Set $\Delta = \varepsilon \Sigma(X)/4$.

Choose a parameter $1 \le L \le 1/\varepsilon$

Divide $\{x_1, x_2, \dots, x_n\}$ into L groups of balanced sizes.

Compute Z_1, \ldots, Z_L which Δ -approximate the sumsets of these groups

Round every integer in Z_i down to the nearest integer multiple of Δ/L . Use FFT to merge these sumsets in a binary-tree-like fashion

Because of rounding, the values in the final sumset may not be realizable. Each y in the final sumset corresponds to a subset $Y\subseteq X$ with $\Sigma(Y)\in [y,y+L\cdot(\Delta/L)]=[y,y+\Delta].$

Issue: what if $y \le t$ but $\Sigma(Y) > t$ (an invalid subset)?

- 4 □ b - 4 @ b - 4 분 b - - 분 - - - 9 Q @

Recall $t = \Sigma(X)/2$.

Set $\Delta = \varepsilon \Sigma(X)/4$.

Choose a parameter $1 \le L \le 1/\varepsilon$

Divide $\{x_1, x_2, \dots, x_n\}$ into L groups of balanced sizes.

Compute Z_1, \ldots, Z_L which Δ -approximate the sumsets of these groups

Round every integer in Z_i down to the nearest integer multiple of Δ/L . Use FFT to merge these sumsets in a binary-tree-like fashion

Because of rounding, the values in the final sumset may not be realizable. Each y in the final sumset corresponds to a subset $Y \subseteq X$ with $\Sigma(Y) \in [y, y + L \cdot (\Delta/L)] = [y, y + \Delta].$

Issue: what if $y \le t$ but $\Sigma(Y) > t$ (an invalid subset)?

Take
$$Y' = X - Y$$
 with $\Sigma(Y') = \Sigma(X) - Y \ge \Sigma(X) - (t + \Delta) = t - \Delta$.

17 / 19

Divide $\{x_1, x_2, \dots, x_n\}$ into L groups of balanced sizes $s_1 + s_2 + \dots + s_L = \Sigma(X), s_i \approx \Sigma(X)/L$.

18 / 19

Divide $\{x_1, x_2, \ldots, x_n\}$ into L groups of balanced sizes $s_1 + s_2 + \cdots + s_L = \Sigma(X), s_i \approx \Sigma(X)/L$. Compute Z_1, \ldots, Z_L which Δ -approximate the sumsets of these groups, in $\approx L \cdot (s_i/\Delta)^2 \approx L \cdot (\frac{1}{s_I})^2$ total time.

18 / 19

Divide $\{x_1, x_2, \ldots, x_n\}$ into L groups of balanced sizes $s_1 + s_2 + \cdots + s_L = \Sigma(X), s_i \approx \Sigma(X)/L$. Compute Z_1, \ldots, Z_L which Δ -approximate the sumsets of these groups, in $\approx L \cdot (s_i/\Delta)^2 \approx L \cdot (\frac{1}{s_L})^2$ total time.

Round every integer in Z_i down to the nearest integer multiple of Δ/L . Use FFT to merge these sumsets in a binary-tree-like fashion in $\tilde{O}(\sum_{1 \leq i \leq L} \frac{s_i}{\Delta/L}) = \tilde{O}(L/\varepsilon)$ total time.

Divide $\{x_1, x_2, \ldots, x_n\}$ into L groups of balanced sizes $s_1 + s_2 + \cdots + s_L = \Sigma(X), s_i \approx \Sigma(X)/L$. Compute Z_1, \ldots, Z_L which Δ -approximate the sumsets of these groups, in $\approx L \cdot (s_i/\Delta)^2 \approx L \cdot (\frac{1}{s_L})^2$ total time.

Round every integer in Z_i down to the nearest integer multiple of Δ/L . Use FFT to merge these sumsets in a binary-tree-like fashion in $\tilde{O}(\sum_{1 \leq i \leq L} \frac{s_i}{\Delta/L}) = \tilde{O}(L/\varepsilon)$ total time.

Choose $L \approx 1/\varepsilon^{1/2}$, the total time is $\approx n + 1/\varepsilon^{3/2}$.

This paper settled the complexity of approximating **Subset Sum**. There are a few other open problems.

19 / 19

This paper settled the complexity of approximating **Subset Sum**. There are a few other open problems.

Faster approximation algorithms for Partition? Or better lower bounds? No $poly(n)/\varepsilon^{1-\Omega(1)}$ -time algorithms exist, assuming SETH. [Abboud-Bringmann-Hermelin-Shabtay'19] Upper bound: $\tilde{O}(n+\varepsilon^{1.5})$ [Bringmann-Nakos'21 (this paper)]

This paper settled the complexity of approximating **Subset Sum**. There are a few other open problems.

Faster approximation algorithms for **Partition**? Or better lower bounds? No poly(n)/ $\varepsilon^{1-\Omega(1)}$ -time algorithms exist, assuming SETH. [Abboud-Bringmann-Hermelin-Shabtay'19] Upper bound: $\tilde{O}(n+\varepsilon^{1.5})$ [Bringmann-Nakos'21 (this paper)]

Faster approximation algorithms for Knapsack? No $(n+1/\varepsilon)^{2-\Omega(1)}$ -time algorithms exist, assuming (min, +)-convolution conjecture. [Cygan et al.'17, Künnemann et al.'17]

Upper bound: $\tilde{O}(n + \varepsilon^{2.25})$ [Jin'19]

This paper settled the complexity of approximating **Subset Sum**. There are a few other open problems.

Faster approximation algorithms for **Partition**? Or better lower bounds? No poly $(n)/\varepsilon^{1-\Omega(1)}$ -time algorithms exist, assuming SETH. [Abboud-Bringmann-Hermelin-Shabtay'19]

Upper bound: $ilde{O}(n+arepsilon^{1.5})$ [Bringmann-Nakos'21 (this paper)]

Faster approximation algorithms for **Knapsack**?

No $(n+1/\varepsilon)^{2-\Omega(1)}$ -time algorithms exist, assuming (min, +)-convolution conjecture. [Cygan et al.'17, Künnemann et al.'17]

Upper bound: $\tilde{O}(n + \varepsilon^{2.25})$ [Jin'19]

Thanks!

