AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1-23. Canceled.
- 24. (currently amended) A method for separating a mixture of biomolecules, comprising:
- (a 1) contacting the composition of claim 1 a composition comprising a buffer and an effective amount of a $poly(M_1-g-M_2)$ or a salt thereof, wherein:
 - (a) each M_1 has the formula (I):

$$\begin{array}{c|c} R_1 & R_3 \\ \hline C & C \\ R_2 & C \\ \hline R_4 & R_5 \end{array}$$

wherein each A_1 is independently O, S or NX_1 ;

 $\frac{\text{each of }R_1,\,R_2,\,R_3\,\text{and }R_4\,\text{is independently H,}\,C_1\text{-}C_{20}\,\text{alkyl},\,C_4\text{-}C_{12}\,\text{cycloalkyl},}{C_5\text{-}C_{12}\,\text{aryl},\,C_4\text{-}C_{12}\,\text{heteroaryl},\,-(C_1\text{-}C_{20}\,\text{alkyl})(C_5\text{-}C_{12}\,\text{aryl})\,\text{or}\,-(C_5\text{-}C_{12}\,\text{aryl})(C_1\text{-}C_{20}\,\text{alkyl});}{\text{each }R_5\,\text{ is independently }C_1\text{-}C_{20}\,\text{alkyl},\,C_1\text{-}C_{20}\,\text{heteroalkyl},\,C_4\text{-}C_{12}\,\text{cycloalkyl},}{C_4\text{-}C_{12}\,\text{heterocycloalkyl},\,C_5\text{-}C_{12}\,\text{aryl},\,C_4\text{-}C_{12}\,\text{heteroaryl},\,-(C_1\text{-}C_{20}\,\text{alkyl})(C_4\text{-}C_{12}\,\text{cycloalkyl}),\,-(C_4\text{-}C_{12}\,\text{cycloalkyl}),\,-(C_4\text{-}C_{12}\,\text{cycloalkyl}),\,-(C_4\text{-}C_{12}\,\text{cycloalkyl}),\,-(C_4\text{-}C_{12}\,\text{cycloalkyl}),\,-(C_4\text{-}C_{12}\,\text{cycloalkyl}),\,-(C_4\text{-}C_{12}\,\text{cycloalkyl}),\,-(C_4\text{-}C_{12}\,\text{heterocycloalkyl}),\,-(C_4\text{-}C_{12}\,\text{heterocycloalkyl}),\,-(C_4\text{-}C_{12}\,\text{heterocycloalkyl}),\,-(C_4\text{-}C_{12}\,\text{heterocycloalkyl}),\,-(C_4\text{-}C_{12}\,\text{heterocycloalkyl}),\,-(C_4\text{-}C_{12}\,\text{heterocycloalkyl}),\,-(C_5\text{-}C_{12}\,\text{aryl}),\,-(C_5\text{-}C_{12}\,\text{aryl}),\,-(C_5\text{-}C_{12}\,\text{aryl}),\,-(C_5\text{-}C_{12}\,\text{aryl}),\,-(C_5\text{-}C_{12}\,\text{aryl}),\,-(C_5\text{-}C_{12}\,\text{aryl}),\,-(C_5\text{-}C_{12}\,\text{aryl}),\,-(C_5\text{-}C_{12}\,\text{aryl}),\,-(C_1\text{-}C_{20}\,\text{heteroalkyl}),\,-(C_1\text{-}C_{20}\,\text{alkyl}),\,-(C_1\text{-}C_{20}\,\text{heteroalkyl}),\,-(C_1\text{-}C_{20}\,\text{heteroalkyl}),\,-(C_1\text{-}C_{20}\,\text{heteroalkyl}),\,-(C_1\text{-}C_{20}\,\text{heteroalkyl}),\,-(C_1\text{-}C_{20}\,\text{heteroalkyl}),\,-(C_1\text{-}C_{20}\,\text{heteroalkyl}),\,-(C_1\text{-}C_{20}\,\text{heteroalkyl}),\,-(C_1\text{-}C_20}\,\text{heteroalkyl}),\,-(C_1\text{-}C_20}\,\text{heteroalkyl}),\,-(C_1\text{-}C_20}\,\text{heteroaryl}),\,-(C_4\text{-}C_{12}\,\text{heteroaryl}),\,-(C_4\text{-}C_{12}\,\text{heteroaryl}),\,-(C_4\text{-}C_{12}\,\text{heteroaryl}),\,-(C_1\text{-}C_20}\,\text{heteroalkyl}),\,-(C_1\text{-}C_20}\,\text{heteroalkyl}),\,-(C_1\text{-}C_20}\,\text{heteroalkyl}),\,-(C_1\text{-}C_20}\,\text{heteroaryl}),\,-(C_1\text{-}C_20}\,\text{heteroaryl}),\,-(C_1\text{-}C_20}\,\text{heteroaryl}),\,-(C_1\text{-}C_20}\,\text{heteroaryl}),\,-(C_1\text{-}C_20}\,\text{heteroaryl}),\,-(C_1\text{-}C_20}\,\text{heteroaryl}),\,-(C_1\text{-}C_20}\,\text{heteroaryl}),\,-(C_1\text{-}C_20}\,\text{heteroaryl}),\,-(C_1\text{-}C_20}\,\text{heteroaryl}),\,-(C_1\text{-}C_20}\,\text{heteroary$

 $\frac{\text{each }X_1 \text{ is independently H, }C_1\text{-}C_{20} \text{ alkyl, }C_4\text{-}C_{12} \text{ cycloalkyl, }C_5\text{-}C_{12} \text{ aryl, }C_4\text{-}}{C_{12} \text{ heteroaryl, }-(C_1\text{-}C_{20} \text{ alkyl})(C_5\text{-}C_{12} \text{ aryl), }-(C_5\text{-}C_{12} \text{ aryl})(C_1\text{-}C_{20} \text{ alkyl), }-(C_1\text{-}C_4 \text{ alkyl})_q\text{NH}_2, \\-(C_1\text{-}C_4 \text{ alkyl})_q\text{CONH}_2, -(C_1\text{-}C_4 \text{ alkyl})\text{NHCONH}_2, -(C_1\text{-}C_4 \text{ alkyl})_q\text{NHCOH or }-(C_1\text{-}C_4 \text{ alkyl})_q\text{NHCOCH}_3, \text{ where each q is 0 or 1;}$

(b) each M_2 has the formula (II):

$$R_{6}$$
 R_{7}
 C
 C
 R_{9}
 R_{10}

wherein each A₂ is independently O, S or NX₂;

 $\frac{\text{each of }R_{6},\,R_{7},\,R_{8}\,\text{and}\,R_{9}\,\text{is independently }H,\,C_{1}\text{-}C_{20}\,\text{alkyl},\,C_{4}\text{-}C_{12}\,\text{cycloalkyl},}{C_{5}\text{-}C_{12}\,\text{aryl},\,C_{4}\text{-}C_{12}\,\text{heteroaryl},\,-(C_{1}\text{-}C_{20}\,\text{alkyl})(C_{5}\text{-}C_{12}\,\text{aryl})\,\text{or}\,-(C_{5}\text{-}C_{12}\,\text{aryl})(C_{1}\text{-}C_{20}\,\text{alkyl});}{\text{each }R_{10}\,\text{is independently }H,\,C_{1}\text{-}C_{20}\,\text{alkyl},\,C_{1}\text{-}C_{20}\,\text{heteroalkyl},\,C_{4}\text{-}C_{12}}\\ \frac{\text{cycloalkyl},\,C_{4}\text{-}C_{12}\,\text{heterocycloalkyl},\,C_{5}\text{-}C_{12}\,\text{aryl},\,C_{4}\text{-}C_{12}\,\text{heteroaryl},\,-(C_{1}\text{-}C_{20}\,\text{alkyl})(C_{4}\text{-}C_{12}\,\text{cycloalkyl})(C_{4}\text{-}C_{12}\,\text{cycloalkyl}),\,-(C_{1}\text{-}C_{20}\,\text{alkyl}),\,-(C_{1}\text{-}C_{20}\,\text{heteroalkyl})(C_{4}\text{-}C_{12}\,\text{cycloalkyl}),\,-(C_{4}\text{-}C_{12}\,\text{heterocycloalkyl}),\,-(C_{1}\text{-}C_{20}\,\text{alkyl})(C_{4}\text{-}C_{12}\,\text{heterocycloalkyl}),\,-(C_{4}\text{-}C_{12}\,\text{heterocycloalkyl}),\,-(C_{4}\text{-}C_{12}\,\text{heterocycloalkyl}),\,-(C_{4}\text{-}C_{12}\,\text{heterocycloalkyl}),\,-(C_{4}\text{-}C_{12}\,\text{heterocycloalkyl}),\,-(C_{4}\text{-}C_{12}\,\text{heteroalkyl}),\,-(C_{5}\text{-}C_{12}\,\text{aryl}),\,-(C_{5}\text{-}C_{12}\,\text{aryl}),\,-(C_{5}\text{-}C_{12}\,\text{aryl})(C_{1}\text{-}C_{20}\,\text{alkyl}),\,-(C_{1}\text{-}C_{20}\,\text{alkyl})$

each X_2 is independently H, C_1 - C_{20} alkyl, C_4 - C_{12} cycloalkyl, C_5 - C_{12} aryl, C_4 - C_{12} heteroaryl, -(C_1 - C_{20} alkyl)(C_5 - C_{12} aryl), -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl), -(C_1 - C_4 alkyl)_qNH₂, -(C_1 - C_4 alkyl)_qNHCOH or -(C_1 - C_4 alkyl)_qNHCOCH₃, where each q is 0 or 1;

(c) provided that at least one M_1 is different from at least one M_2 ;

with a mixture comprising a biomolecule; and

- (b 2) applying an electric field to the composition in an amount sufficient to facilitate the separation of a biomolecule from the mixture.
- 25. (original) The method of claim 24, wherein the separation is performed within a capillary tube and two or more biomolecules are polynucleotides.
- 26. (original) The method of claim 25, wherein the separation has a crossover of at least 400 base pairs.
 - 27. Canceled.
- 28. (new) The method of claim 24, wherein the composition further comprises a sieve polymer.

- 29. (new) The method of claim 28, wherein the sieve polymer is poly(acrylamide).
- 30. (new) The method of claim 28, wherein the sieve polymer is poly(*N*,*N*-dimethyl-acrylamide) and the sieve polymer has a weight-average molecular weight of at least about 3 MDaltons.
- 31. (new) The method of claim 24, wherein the $poly(M_1-g-M_2)$ or a salt thereof has a weight-average molecular weight of from about 150,000 Daltons to about 20 MDaltons.
- 32. (new) The method of claim 31, wherein the composition further comprises a sieve polymer or a salt thereof having a weight-average molecular weight of from about 100,000 Daltons to about 5 MDaltons.
- 33. (new) The method of claim 32, wherein the sieve polymer is substantially linear poly(acrylamide).
 - 34. (new) The method of claim 24, wherein the buffer is an aqueous buffer.
- 35. (new) The method of claim 34, wherein the composition has a pH of from about 5 to about 11.
- 36. (new) The method of claim 34, wherein the composition has a pH of from about 7 to about 10.
- 37. (new) The method of claim 35, wherein the composition further comprises formamide, urea, pyrrolidone, *N*-methyl pyrrolidone or a mixture thereof.
- 38. (new) The method of claim 35, wherein the composition further comprises urea.
- 39. (new) The method of claim 35, wherein the composition further comprises formamide.
- 40. (new) The method of claim 24, wherein M_1 is N,N-dimethyl-acrylamide and M_2 is acrylamide.
- 41. (new) The method of claim 25, wherein M_1 is N,N-dimethyl-acrylamide and M_2 is acrylamide.
- 42. (new) The method of claim 26, wherein M_1 is N,N-dimethyl-acrylamide and M_2 is acrylamide.
- 43. (new) The method of claim 28, wherein M_1 is N,N-dimethyl-acrylamide and M_2 is acrylamide.
- 44. (new) The method of claim 29, wherein M_1 is N,N-dimethyl-acrylamide and M_2 is acrylamide.

45. (new)	The method of claim 31, wherein M_1 is N,N -dimethyl-acrylamide and
M ₂ is acrylamide.	
46. (new)	The method of claim 32, wherein M_1 is N,N -dimethyl-acrylamide and
M ₂ is acrylamide.	
47. (new)	The method of claim 33, wherein M_1 is N,N -dimethyl-acrylamide and
M ₂ is acrylamide.	
48. (new)	The method of claim 34, wherein M_1 is N,N -dimethyl-acrylamide and
M ₂ is acrylamide.	
49. (new)	The method of claim 35, wherein M_1 is N,N -dimethyl-acrylamide and
M_2 is acrylamide.	
50. (new)	The method of claim 36, wherein M_1 is N,N -dimethyl-acrylamide and
M ₂ is acrylamide.	
51. (new)	The method of claim 37, wherein M_1 is N,N -dimethyl-acrylamide and
M ₂ is acrylamide.	