Fitting the SIR Model to Data

Influenza in an English boarding school

Michael Robert
Yi Sun
Xiaojing Wang
Seonjoo Lee
Ci-Ren Jiang
Sylvie Tchumtchoua

English Boarding School

- January 1978 influenza epidemic in a boarding school in England.
- 763 boys in the school.
- 1 boy returned from winter break with illness
- Over the course of 13 days, 512 boys were affected.

Day	Infected
1	3
2	6
3	25
4	73
5	222
6	294
7	258
8	237
9	191
10	125
11	69
12	27
13	11
14	4

data = [3,6,25,73,222,294,258,237,191,125,69,27,11,4];

Estimating Parameters

- Try to find values of β and γ that provide a curve close to that of the data
- Experiment:

$$-\beta = 1$$
; $\gamma = 0.5$

$$-\beta = 3$$
; $\gamma = 0.5$

$$-\beta = .5$$
; $\gamma = 0.6$

Others

Data Fitting

- Goal: Estimate values of β,γ based on data
- Various methods can be used
- We will use a least squares approximation
- We wish to minimize the following:

$$\sum e^2 = \sum (I(t) - \hat{I}(t))^2$$

- I(t): observed values of infectives
- $\hat{I}(t)$: model solution for estimates of β , γ

MATLAB & Least Squares Fitting

- Various functions can be used
- We will use lsqnonlin
 - Robust for least squares problems
 - Minimizes the sum of the square of a function
- For more information type:

```
help lsqnonlin
```

[p,resnorm] = lsqnonlin(@SIR0,[b0 g0],[0 0],[inf inf])

Function to be optimized

Initial Guesses

[p,resnorm] = lsqnonlin(@SIR0,[b0 g0],[0 0],[inf inf])

Function to be optimized

Initial Guesses

[p,resnorm] = lsqnonlin(@SIR0,[b0 g0],[0 0],[inf inf])

Function to be optimized

Upper and Lower bounds for parameters

Returns the value of the residual norm

[p,resnorm]

Returns the optimal parameter values

[p,resnorm] = lsqnonlin(@SIR0,[b0 g0],[0 0],[inf inf])

What value(s) should @SIR0 return?

[p,resnorm] = lsqnonlin(@SIR0,[b0 g0],[0 0],[inf inf])

- What value(s) should @SIR0 return?
 - Model Solution Data

[p,resnorm] = lsqnonlin(@SIR0,[b0 g0],[0 0],[inf inf])

- What value(s) should @SIR0 return?
 - Model Solution Data

- How do we fit just one state equation?
 - We only have data for I(t)

Code for Data Fitting

- Three Functions
 - Setup and call lsqnonlin

 Solve the ODE for each parameter guess and return I(t) – Data

– The ODE (you already have this!)

Open OptimizeSIR.m