FONDAMENTI DI ELETTRONICA – INGEGNERIA BIOMEDICA TEMA PROPOSTO 3

Il tempo a disposizione è 2 ore e 30 minuti.

PROBLEMA P1

Dato il circuito riportato nella figura sottostante, determinare:

- 1) il valore delle resistenze R_3 e R_5 in modo che le correnti di drain di M_1 e M_2 valgano rispettivamente $I_{D1} = 2$ mA e $I_{D2} = 10$ mA;
- 2) il punto di lavoro dei transistor M_1 , M_2 , M_3 e M_4 ;
- 3) il guadagno di tensione ai piccoli segnali ac $A_v = v_o/v_{sig}$;
- 4) le resistenze di ingresso e uscita ai piccoli segnali ac R_i e R_o .

PROBLEMA P2

Dato il circuito che usa amplificatori operazionali e componenti passivi ideali:

- ricavare l'espressione (simbolica, senza sostituire i valori dei componenti) della funzione di trasferimento W(s)=V_{out}(s)/V_{in}(s);
- 2) tracciare il diagramma di Bode asintotico dell'ampiezza e della fase di H(jω), usando, nel caso della fase, l'approssimazione senza discontinuità;
- 3) determinare il valore della tensione di uscita sapendo che la tensione di ingresso vale $V_{in} = 0.1 sin(\omega t) \ [V]$ $con \ \omega = 400 \ rad/s.$

DATI: $R_1 = 330\Omega$, $R_2 = 3k\Omega$, $R_3 = 30k\Omega$, $R_4 = 90k\Omega$, $R_5 = 10k\Omega$ $C_3 = 3.3nF$, $C_4 = 1\mu F$

PROBLEMA Q1

L'amplificatore differenziale illustrato in figura ha un guadagno di modo differenziale pari ad $A_d = 100 \text{ V/V}$ e un guadagno di modo comune pari ad $A_c = 1 \text{ V/V}$. Si calcoli il valore della tensione di uscita V_o , giustificando chiaramente la risposta.

PROBLEMA Q2

Data la seguente tabella della verità

- 1) Ricavare la mappa di Karnaugh corrispondente;
- 2) Trovare una F minimizzata
- 3) Disegnare la rete logica minimizzata tramite porte logiche fondamentali.

Α	В	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1