

Exploring Size-Speed Trade-Offs in Static Index Pruning

Juan Rodriguez

Torsten Suel

Tandon School of Engineering
New York University
Brooklyn, NY

Supported by NSF Grant IIS-1718680 and by Amazon.

Paper, slides and code:

https://github.com/JC-R/BD2018

Motivation

- Suppose a search engine indexes 4 trillion documents
- 250 index entries per document → 10^15 entries
- 5B queries per day, with 3.4 terms on average
- < 170 billion index entries lead to top-10 in a month Actually, far less ...
- Can we find and remove useless entries from the index?

Introduction

Inverted Index

term

posting (inverted) list

posting

aardvark	3425	3889	111232	234432			
aaruvark	3423	3009	111232	234432			
			•				
			•				
cat	23	44	123	454	1224	4432	
cataract	1121	22365	33498	100223	122344	15001	•••
catering	4434	9845	10554	54665	98001	203400	•••
catering		30.0		0.000	30002	200.00	
			•				
			•				
mouse	~ 44	454	4332	5565	9980	13443	•••
			•				
			•				
zebra	44	123	454	4432	6547	10012	•••
20010			1.51	52	0017	10012	

Problem Definition

Query processing in a nutshell:

- Traverse inverted lists for query terms
- Apply a ranking function to docs in union or intersection
- E.g., cosine, BM25, or more complex ranker
- Then return the top-k results to the user

Problem Definition

- Many inverted lists are very long, millions of entries long...
- We cannot afford to traverse and rank all candidates
- Search engines use shortcuts: "early termination techniques":
 - Index tiering, impact ordering, maxscore/wand etc.
 - Index pruning is one early such termination (ET) techn.

Index Pruning

"would anybody search for doc 454 using this term?"

"will this posting ever lead to a top-k result for a likely query?"

If "no", remove this posting from the index

Goal: Remove postings that are (fairly) useless, while keeping quality "almost" the same; make query processing as fast as possible.

Why? Shorter lists lead to faster query processing

Smaller indexes need less RAM or disk accesses

Smaller indexes: move search to devices at the edge

Index pruning is a non-safe ET technique (lossy)

Not the same as spam detection/removal

Our Objectives

- **1. Optimize index quality, given a constraint on size** Given a bound *S* on index size, produce a pruned index *I'* of size at most *S* that maximizes the average quality of queries under distribution *Q*.
- **2.** Trade-off between index size and query cost Given a lower bound *S* on index size, and a bound *R* on result quality, produce a pruned index *I'* that satisfies the constraints while minimizing query cost *C*.

Definitions used in this paper

- posting p = (t, d) is part of a top-k result for query q if document d is among the top-k results for q.
- $Pr(p \in q)$ is the probability the term associated with p occurs in query q.
- $Pr(p \in top-k)$ is the probability that p is part of a top-k result for query q.

$$Pr(p \in top-k) = Pr(p \in q) \cdot Pr(p \in top-k|p \in q)$$

Objective 1. Optimize index quality, given a constraint on size

Approach:

- Estimate $Pr(p \in q)$ with a language model
- Machine learn $Pr(p \in top k | p \in q)$
- Predict $Pr(p \in top k | p \in q)$ for all postings

Prune Policy

 Select postings based on the global order of predicted values until a desired size is achieved

Estimating $Pr(p \in q)$

- Language model from 100k TREC 01-09 and 2002-2009 relevance and ad-hoc track queries.
- Interpolate with 5M random-sampled pages from the corpus.
- Use the unigram probability as $Pr(p \in q)$.

Machine learning: $Pr(p \in top-k|p \in q)$

Family	Feature	Description		
term	tf tl p_bm25 $Pr[p \in q]$	term frequency in the corpus term list size partial BM25 score probability of posting in a random query		
document	docSize docTerms xdoc	# words in document # unique terms in document promise of document		
dochits	bins 1 - 17 top10 top1k	dochit ranges, quantized by rank top10 dochits from language model queries top1k dochits from language model queries		
posthits	bins 1 - 17 top10 top1k	posthit ranges, quantized by rank top10 posthits from language model queries top1k posthits from language model queries		

- Random Forest
- Training size: 2M
- Predict on entire index16 billion postings
- Spark cluster on Hadoop1024 Vcores3Tb RAM
- 200 Tb HD

Experimental Results

Machine Learned Pruning

- Very high pruning ratios
- Quality metrics
 P@10
 Postings Kept*
 Results Kept*

Objective 2. Trade-Off between Index Size and Query Cost

Benefit of a posting:

$$Pr(p \in top-k|p \in q)$$

Cost of a posting: first define a simple model for query processing cost:

 \sum (lenght of lists for disjunctive query q)

Cost of posting under this model:

$$Pr(p \in q)$$

Cost Model Validation

 Actual query speed measurements show near linear relationship to our cost model

(Exhaustive OR evaluation)

Size Cost Trade-Off

LP formulation:

n =billions or more of entries

$$min(\sum_{i=1}^{n} x_i \cdot c_i)$$

$$(\sum_{i=1}^n b_i) \ge B$$

$$\sum_{i=1}^{n} i = S + \Delta$$

$$x_i$$
 = posting i
 b_i = benefit for x_i
 c_i = cost for x_i
 B = total benefit

$$S = size$$

 $\Delta = \text{size increment}$

Size Cost Trade-Off

- Cannot express an LP formula for all postings (billions)
- We quantize all postings using simple logarithmic quantization
- Assign each posting into one of k classes, k = 1000 in our work
- Result in 1 million variables, easily solvable and fast

$$min(\sum^{1000} x_i \cdot c_i)$$

Summary

- 1. Learning to prune: optimize for size.
- 2. Significantly increase query processing speed if we allow a very small increment in index size: optimize for speed
- 1 + 2 = optimal size/cost at any index pruning size

Thanks!

Questions?

Acknowledgements

