Bipolar Junction Transistor (BJT)

HBT

BJT in equilibrium

$$x_{p,BE} = \sqrt{\frac{2k_z \varepsilon_0}{q} \frac{N_E}{N_B (N_E + N_B)}} V_{bi} \qquad x_{p,BC} = \sqrt{\frac{2k_z \varepsilon_0}{q} \frac{N_C}{N_B (N_C + N_B)}} V_{bi}$$

$$x_{n,E} = \sqrt{\frac{2k_z \varepsilon_0}{q} \frac{N_B}{N_E (N_B + N_E)}} V_{bi}$$

$$x_{n,C} = \sqrt{\frac{2k_z \varepsilon_0}{q} \frac{N_B}{N_C (N_C + N_B)}} V_{bi}$$
Emitter

Base

Collector

BJT under bias

Current components

Essence of current gain

Common Emitter

Current gain

$$\beta_{DC} = \frac{I_C}{I_R} \approx \frac{D_n}{W_B} \frac{W_E}{D_p} \frac{n_{i,B}^2}{n_{i,E}^2} \frac{N_E}{N_B}$$

$$\beta_{DC} \approx \frac{D_n}{W_B} \frac{W_E}{D_n} \frac{N_E^2}{N_E^2} \frac{N_E}{N_B}$$
 Homojunction

Common-emitter

Common-base

$$\alpha_{DC} = \frac{I_C}{I_E} \implies \beta_{DC} = \frac{I_C}{I_B} = \frac{I_C}{I_E - I_C} = \frac{\alpha_{DC}}{1 - \alpha_{DC}}$$

BJT design

CMOS Latch-up

BCD Technology

Merged in one process platform

BCD Technology

IGBT

