ML diagram

(from Sengupta et al. 2020)

Week 6

- Regression revisited
 - Polynomial regression
 - Model selection
 - Overfitting
 - Periodic functions
 - a bit about logistic regression
- K-Nearest Neighbours
- Support Vector Machines
- Decision trees

Continuous target variable

Discrete target variable

Example 1

Example 2

Example 2

K Nearest Neighbours (kNN) algorithm

- Labelling by association
- We have a training data set consisting of N entries X_i , P_i , where X_i is the position and P_i is the label. We need to evaluate P_i the label for some test data entry with known position X_t . P_t of that test data entry will be the same as the prevalent label of its k nearest neighbours.

Basic algorithm (without optimisation)

- Assume P can be -1 or 1
- Measure N distances $L_i = \sqrt{(X_t X_i)^2}$
- Sort linked arrays L and P so that L is in ascending order (values increasing)
- $P_t = \operatorname{sign}(\sum_{i=0}^{k-1} P_i)$
- For test data consisting of M entries and training data consisting of N entries we will need to evaluate M×N distances. Obviously, for large data sets we need some optimisation

Lower k

Higher k

Choice of k

- It affects the fine structure of your distribution
- Low k = fine structure retained but with higher noise level
- High k = Smooth (low noise level) but fine structure is lost
- Optimal choice of k depends on what you know about your data
- One possible strategy:
 - you what to keep the structure with the characteristic length of *l*;
 - you evaluate the average number of points (entries) K within the area πl^2 ,
 - use K as a parameter for kNN

Weighting

The effect of neighbours may change with distance. We might want neighbours which are further away to have lower significance. How do we do this? – Weighting!

$$P_t = \operatorname{sign}(\sum_{i=0}^{k-1} g_i P_i)$$

- In our basic example $P_t = \operatorname{sign}(\sum_{i=0}^{k-1} P_i)$ weights $g_i = 1$
- Weight can decrease with the distance, e.g. $P_t = \operatorname{sign}(\sum_0^{k-1} e^{-L_i} P_i)$ in this case weights exponentially decrease with distance to the corresponding neighbour

'Curse of dimensionality'

- The method becomes inefficient when dimensionality of the problem is high.
- Imagine a case when the number of dimensions is not much lower than the number of entries in the test data -> too many neighbours at similar distances