Package 'Momocs'

April 30, 2012

Type Package

Version 0.1

Title Shape Analysis of Outlines

Date 2012-05-01
Author Vincent Bonhomme, Sandrine Picq, Julien Claude
Maintainer Vincent Bonhomme <bonhomme.vincent@gmail.com></bonhomme.vincent@gmail.com>
Description Momocs is intended to ease and popularize shape analysis of outlines (especially using elliptical Fourier analysis). It mostly hinges on the functions developed in Morphometrics with R (Claude, 2008). From outline extraction of images and elliptical Fourier calculation to multivariate analysis and the visualization of transformations within the morphological space, Momocs provides a complete and convenient toolkit to specialists within every field that are, or may be, interested in morphological comparisons of outlines.
License GPL(>=2)
Depends methods, sp, ReadImages
Collate global.R Coo.R Nef.R
R topics documented:
Momocs-package bottles dataset closed.outline col.sel cont.sample cont.smooth Coo-class dev.qual dev.quant draw.Fell eFa efourier get.cont get.Nef

2 Momocs-package

Index			23
	traj	 	22
	tps2d	 	21
	tps.grid	 	20
	tps	 	19
	show-methods	 	19
	plot	 	19
	pca2shp	 	18
	pca	 	16
	panel.lm	 	15
	Nef-class	 	15
	morph.sp	 	14
	morph.PC	 	13
	manova.nef	 	12
	iefourier	 	12

Momocs-package

Outline Analysis using Elliptical Fourier Analysis.

Description

Momocs is intended to ease and popularize shape analysis of outlines (especially using elliptical Fourier analysis). It mostly hinges on the functions developed in Morphometrics with R (Claude, 2008). From outline extraction of images and elliptical Fourier calculation to multivariate analysis and the visualization of transformations within the morphological space, Momocs provides a complete and convenient toolkit to specialists within every field that are, or may be, interested in morphological comparisons of outlines.

It comes with its vignette that details step by step how to perform Elliptical Fourier Analysis on a set of shapes, whether starting from images or coordinates in .txt files.

Author(s)

- 1. Vincent Bonhomme, French Institute of Pondicherry, India.
- 2. Sandrine Picq, UMR CBAE, Montpellier, France.
- 3. Julien Claude UMR, ISEM, Universite de Montpellier II, France.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

```
## Not run:
data(bottles.cont)
plot(bottles.cont)
dev.qual(bottles.cont)
dev.quant(bottles.cont)
harm.pow(bottles.cont)
nef <- get.Nef(bottles.cont)
fac <- factor(rep(c("beer","whisky"), each=20))
pca(nef, fac)</pre>
```

bottles dataset 3

```
pca3(nef, fac)
pca(tps(nef, fac)
from <- c(-0.5, 0.25)
to <- -from
tps.iso(nef, fr=from, to=to)
tps.vf(nef, fr=from, to=to)
tps.grid(nef, fr=from, to=to)</pre>
## End(Not run)
```

bottles dataset

Two "bottles" datasets of outlines and harmonic coefficients.

Description

Two datasets are provided. First, bottles.cont contains 20 whisky and 20 beer bottles full outlines coordinates. Then, bottles.nef consists of a Nef object obtained with default parameters (32 harmonics, no smoothing) on bottles.cont.

Usage

```
data(bottles.cont)
data(bottles.nef)
```

Format

A Coo- class object that contains in the slot @coo, the lists of (x; y) coordinates. A Nef-class object that contains in the slot @coeff, the matrix of harmonic coefficients.

Source

Images grabbed on the internet and prepared by the package's authors.

Examples

```
data(bottles.cont)
bottles.cont

data(bottles.nef)
bottles.nef
```

closed.outline

Closes outlines.

Description

Closes lists of outline coordinates.

```
closed.outline(cont)
```

4 col.sel

Arguments

cont list or matrix of (x; y) coordinates

Value

The list of (x; y) coordinates provided with the first coordinates added at the end of the list.

Examples

```
fake <- list(x=1:4, y=5:8)
closed.outline(fake)</pre>
```

col.sel

Helps to select the columns indices of an harmonic coefficient matrix.

Description

Returns the columns' indices of a matrix which colums are in the format:

$$(A_1,...,A_n,B_1,...,B_n,C_1,...,C_n,D_1,...,D_n)$$

Usage

```
col.sel(h.fr = 1, h.to = 8, h.max = 32, drop = FALSE)
```

Arguments

h.fr	integer indicating the first harmonic to retain
h.to	integer indicating the last harmonic to retain
h.max	${\tt integer}\ indicating\ the\ total\ number\ of\ harmonics\ (usually\ number\ of\ columns/4)$
drop	logical indicating whether to drop or not the first A_1 harmonic

Value

Returns a vector of integer indicating the selected columns indices.

```
col.sel(1, 8, 32)
col.sel(1, 4, 8, TRUE)
```

cont.sample 5

cont.sample

Samples points along a list of (x; y) coordinates.

Description

Given a list of (x; y) coordinates, samples equidistant points along this outline.

Usage

```
cont.sample(coo, n)
```

Arguments

coo the Coo object

n integer indicating the number of points to sample

Value

Returns a, usually shortened, list of eqn(x; y) coordinates.

Examples

```
fake <- list(x=1:100, y=101:200)
cont.sample(fake, 10)</pre>
```

cont.smooth

Smoothes a list or a matrix of (x; y) coordinates.

Description

Applies a simple algorithm to smooth outlines, particularly to remove, if needed, digitalization artefacts.

Usage

```
cont.smooth(M, n)
```

Arguments

M list or a matrix of (x; y) coordinates to smooth

n integer indicating how many smoothing iterations to perform

Details

The algorithm used is simplistic: the new $(x; y)_n$ coordinates are calculated as:

$$\frac{1}{4} \times (x;y)_{n-1} + \frac{1}{2} \times (x;y)_n + \frac{1}{4} \times (x;y)_{n+1}$$

6 Coo-class

Value

A list of smoothed coordinates.

Examples

```
fake <- list(x=1:10, y=20:11)
cont.smooth(fake, 1)
cont.smooth(fake, 10)</pre>
```

Coo-class

Class "Coo".

Description

This class contains, so far, a single slot @coo that contains list of (x;y) coordinates. Calibration methods and Elliptical Fourier Analysis can be applied to Coo-objects. Additional slots will be implemented and store the dataset structure. A Coo-object builder, Coo() is available to coerce a matrix and create a Coo-object.

Slots

```
coo: a list of (x; y) coordinates.
```

Methods

dev.qual Calculates and plots inverse reconstruction of outlines
dev.quant Calculates and plots deviations between original and reconstructed outlines
get.Nef Calculates Elliptical Fourier Analysis with specified parameters
harm.pow Calculates and plots the Fourier power spectrum
plot Plots a single or a range of outlines

```
data(bottles.cont)
## Not run:
bottles.cont
plot(bottles.cont)
dev.qual(bottles.cont)
dev.quant(bottles.cont)
(get.Nef(bottles.cont))
bottles.cont@coo # to access the coordinates list
## End(Not run)
```

dev.qual 7

dev.qual Calculates and plots reconstructed outlines.	
---	--

Description

Calculates and plots inverse reconstruction of outlines based on the list of coordinates in a Cooobject and a given number of harmonics and/or smoothing iterations. This methods is the visual way to calibrate Elliptical Fourier Analysis parameters.

Usage

```
dev.qual(Coo, id = 1:length(Coo@coo),
  nb.h = 32, smooth.it = 0, range = seq(1, nb.h, len=4))
```

Arguments

Coo	the Coo-object
id	integer indicating the single or the range of outlines indices to consider
nb.h	integer indicating how many harmonics to calculate
smooth.it	integer indicating how many smoothing iterations to perform
range	integer indicating the range of harmonics orders to explore

Examples

```
data(bottles.cont)
## Not run:
dev.qual(bottles.cont)
dev.qual(bottles.cont, id=24)
dev.qual(bottles.cont, id=24, nb.h=64)
dev.qual(bottles.cont, range=seq(1,16))
dev.qual(bottles.cont, smooth.it = 50)
## End(Not run)
```

dev.quant Calculates and plots sum of euclidean deviations between original and reconstructed outlines.

Description

Calculates and plots sum of euclidean deviations between one or a range of original and reconstructed shapes, normalized by the calliper length, *i.e.* the longest length measured between two outlines points.

```
dev.quant(Coo, id = 1:length(Coo@coo), nb.h = 32, smooth.it = 0, plot=TRUE)
```

8 draw.Fell

Arguments

Coo	the Coo object
id	integer indicating the single or the range of outlines indices to consider
nb.h	integer indicating how many harmonics to calculate
smooth.it	integer indicating how many smoothing iterations to perform
plot	a logical indicating whether to plot or not the results

Examples

```
## Not run:
data(bottles.cont)
dev.quant(bottles.cont, id=4)
dev.quant(bottles.cont, id=4, nb.h=12)
## End(Not run)
```

draw.Fell

Draws "Fourier Ellipses".

Description

Calculates and draws a "Fourier Ellipse" corresponding to the harmonic coefficients provided

Usage

```
draw.Fell(an = pi, bn = -pi, cn = pi, dn = pi,
n = 200, cols = topo.colors, title = FALSE)
```

Arguments

an	a numeric corresponding to the a_n harmonic coefficient
bn	a numeric corresponding to the b_n harmonic coefficient
cn	a numeric corresponding to the c_n harmonic coefficient
dn	a numeric corresponding to the d_n harmonic coefficient
n	integer indicating how many points to retrieve from outline reconstruction
cols	a color palette such as topo.colors, or those produced by colorRampPalette
title	integer indicating whether to add a title to the plot

```
draw.Fell()
draw.Fell(2*pi, -pi, pi, 3*pi, title=TRUE)
```

eFa 9

eFa	Elliptical Fourier Analysis on Coo objects.

Description

Once the number of harmonics to calculate and the number of smoothing iterations to perform have been determined, calculates elliptic Fourier transforms on the list of (x;y) outline coordinates included in Coo-objects.

Usage

```
eFa(coo, nb.h = 32, smooth.it = 0, fromrt = FALSE)
```

Arguments

coo the Coo-object

nb.h integer indicating how many harmonics to calculate

smooth.it integer indicating how many smoothing iterations to perform

from t logical indicating whether the position of the starting point has to be preserved

or not

Examples

```
data(bottles.cont)
eFa(bottles.cont@coo[[1]])
```

efourier

Computes the Fourier coefficients on a list of coordinates.

Description

Computes the Fourier coefficients a_o , a_n , b_n , c_o , c_n , d_n from a list of (x;y) coordinates of the sampled points.

Usage

```
efourier(coo, nb.h = 32, smooth.it = NULL)
```

Arguments

coo the Coo-object

nb.h codeinteger indicating how many harmonics to calculate

smooth.it codeinteger indicating how many smoothing iterations to perform

10 get.cont

Value

ao	numeric: the a_o harmonic coefficient
со	numeric: the c_o harmonic coefficient
an	a vector of numeric indicating the $a(1 \rightarrow n)$ harmonic coefficients
bn	a vector of numeric indicating the $b(1 \rightarrow n)$ harmonic coefficients
cn	a vector of numeric indicating the $c(1 \rightarrow n)$ harmonic coefficients
dn	a vector of numeric indicating the $d(1 \rightarrow n)$ harmonic coefficients

Author(s)

Originally written by Julien Claude. Claude, J. (2008) *Morphometrics Using R*, Use R! series, Springer 330 pp.

Examples

```
data(bottles.cont)
efourier(bottles.cont@coo[[1]])
```

get.cont

Extract (x; y) coordinates and create a Coo-object.

Description

Extracts from a set of black and white images or a list of coordinates written in a set of 2-columns ("x" and "y"). txt files.

Usage

```
get.cont(path)
```

Arguments

path

a path to indicate where are the images or the .txt files to use

Details

If no path is provided, the user is interactively asked to choose a folder.

get.cont uses the Conte algorithm that starts on the center of every outline in the Coo-object provided (or the imagematrix provided if Conte() is directly used). If this point does not correspond to a black pixel, *i.e.* not contained within the shape, the user is interactively asked to select interactively a point within the shape.

Value

a Coo-object is returned.

Author(s)

Conte was originally written by Julien Claude. Claude, J. (2008) *Morphometrics Using R*, Use R! series, Springer 330 pp.

get.Nef

Examples

```
## Not run:
data(bottles.cont)
get.cont()
## End(Not run)
```

get.Nef

Calculates Elliptical Fourier Analysis.

Description

Calculates Elliptical Fourier Analysis with specified parameters.

Usage

```
get.Nef(Coo, nb.h=32, smooth.it=0, fromrt=FALSE)
```

Arguments

Coo the Coo object

nb.h integer indicating how many harmonics to calculate

smooth.it integer indicating how many smoothing iterations to perform from t logical whether the position of the first point has to be preserved

Value

a Coo-object is returned.

Examples

```
data(bottles.cont)
nef <- get.Nef(bottles.cont)
pca3(nef)</pre>
```

harm.pow

Calculates and plots Fourier harmonic spectra.

Description

Calculates and plots Fourier power spectra calculated as: $Power_n = \frac{A_n^2 + B_n^2 + C_n^2 + D_n^2}{2}$.

Arguments

C00	the Coo object
nb.h	integer indicating how many harmonics to calculate
smooth.it	integer indicating how many smoothing iterations to perform
plot	logical indicating whether to plot the results
max.h	integer specifying the total number of harmonics to include
first	logical indicating whether to include the first harmonic

manova.nef

Description

Calculates inverse Fourier Elliptical if passed with harmonic coefficients.

Usage

```
iefourier(an, bn, cn, dn, k, n, ao = 0, co = 0)
```

Arguments

an	a vector of numeric indicating the $a_{1\rightarrow n}$ harmonic coefficient
bn	a vector of numeric indicating the $b_{1 o n}$ harmonic coefficient
cn	a vector of numeric indicating the $c_{1 o n}$ harmonic coefficient
dn	a vector of numeric indicating the $d_{1 o n}$ harmonic coefficient
k	integer indicating the number of harmonics to claculate
n	integer indicating the number of points to sample on the calculated outline
ao	numeric: the a_0 harmonic coefficient
со	numeric: c_0 harmonic coefficient

Value

```
a list of (x; y) coordinates.
```

Author(s)

Entirely written by Julien Claude. Claude, J. (2008) *Morphometrics Using R*, Use R! series, Springer 330 pp.

manova.nef	Calculates MANOVA on a harmonic coefficient matrix.
manova.nef	Calculates MANOVA on a harmonic coefficient matrix.

Description

Calculates Multivariate Analysis of Variance (MANOVA) on the harmonic coefficient matrix contained in Nef-objects.

```
manova.nef(Nef, fac, harmonics.retained, drop=FALSE)
```

morph.PC

Arguments

Nef the Nef-object

fac a factor indicating the grouping desing

harmonics.retained

codeinteger indicating how many harmonics to include

drop codelogical indicating whether to drop or retain the first harmonic

Details

This function is a wrapper to calculate MANOVAs *i.e.* test the significance of *between* vs. *within* geometric differences between sets of shapes. If not specified, the number of harmonics retained is calculated so that it is lower than the number of individuals minus two.

Examples

```
data(bottles.nef)
fac <- factor(rep(c("beer", "whisky"), each=20))
manova.nef(bottles.nef, fac=fac)</pre>
```

morph.PC

Plots the morphological space.

Description

Given a matrix of harmonic coefficients, a Nef-object, calculates and plots morphological space *i.e.* reconstructed shapes using and distributed on the orthonormal set defined by Principal Component axes.

Usage

```
morph.PC(Nef, sd.nb=1, pca.ax=seq(1, 3))
```

Arguments

Nef the Nef object

sd.nb a numeric given the number of standard deviation to represent shape deviation

along each PC axis

pca.ax a numeric or a vector of numeric indicating on which Principal Component to

display variation

```
data(bottles.nef)
fac <- factor(rep(c("beer", "whisky"), each=20))
morph.sp(bottles.nef)
morph.PC(bottles.nef, 1, 1:5)
morph.PC(bottles.nef, 2, 1:3)</pre>
```

14 morph.sp

morph.sp	Plots the morphological space.	

Description

Given a matrix of harmonic coefficients, a Nef-object, calculates and plots morphological space *i.e.* reconstructed shapes using and distributed on the orthonormal set defined by Principal Component axes.

Usage

Arguments

Nef	the Nef object
PCa	a numeric indicating the first Principal Component axis on which to reconstruct shape
PCb	a numeric indicating the second Pricipal Component axis on which to reconstruct shape
nb.PCa	a numeric indicating how many shape to reconstruct on the first PC axis considered
nb.PCb	a numeric indicating how many shape to reconstruct on the second PC axis considered
fac	a factor indicating the grouping desing
morph.sp.extend	
	integer how much to extend morphological space reconstruction beyond range on the first PC considered
zoom.extend	integer indicating how much to extend the graphical window
asp	numeric and optionnal indicating the asp of the plotting window
pch	integer or a character indicating the pch for each groups to plot
shp.col	integer or a character indicating the col of these shapes
shp.lwd	numeric indicating the 1wd of these shapes borders
shp.size	numeric for fine-tuning of shapes size
col	integer or a character indicating the col for each confidence ellipse to plot
ell	logical indicating whether to draw confidence ellipses for every group
r	numeric indicating the number of standard deviation for confidence ellipses computation
lwd	numeric indicating the 1wd for the confidence ellipses
title	character to change the title of the plot

Nef-class 15

Examples

```
data(bottles.nef)
fac <- factor(rep(c("beer", "whisky"), each=20))

morph.sp(bottles.nef)
morph.sp(bottles.nef, fac=fac, ell=TRUE)
morph.sp(bottles.nef, fac=fac, nb.PCa=10, nb.PCb=10, ell=TRUE)
morph.sp(bottles.nef, PCa=2, PCb=3)</pre>
```

Nef-class

Class "Nef".

Description

A class that contains all the information to visualize and performe multivariate analysis. Contains so far a single slot @coeff containing the harmonic coefficient matrix after an Elliptical Fourier Analysis. A Nef-object builder, Nef() is available.

Slots

coeff: a matrix of harmonic coefficients.

Methods

manova.nef Calculates MANOVA on a harmonic coefficient matrix

morph.sp Plots the morphological space

pca.tps Plots a single PCA with deformation grids

pca Plots a single PCA

pca3 Plots all the first three PCA axes

show A simple object description

tps.grid Thin Plate Splines deformation grids between two shapes

tps.iso TPS and iso-deformation lines between two shapes

tps.vf TPS and "vector field" of deformation between two shapes

traj Calculates shape intermediates

panel.lm

Calculates and plots confidence ellipses.

Description

Given a set of (x; y) coordinates, calculates confidence ellipses and plots them.

```
panel.lm(x, y, r = 1, col = "black", lwd = 1, lty = 1)
```

16 pca

Arguments

X	a vector of numeric x coordinates
У	a vector of numeric y coordinates
r	a numeric indicating the number of standard deviations to calculates confidence ellipses
col	codeinteger or a character indicating the color of the ellipses to draw
lwd	a numeric indicating the lwd to use when drawing ellipses
lty	codeinteger indicating the lty to use when drawing ellipses

Examples

```
plot(x \leftarrow rnorm(50), y \leftarrow rnorm(50))
panel.lm(x,y)
```

рса

Calculates and plots Principal Component Analysis.

Description

Calculates and plots Principal Component Analysis usng prcomp(). Methods for plotting a single PCA, a triple PCA and deformation grids are detailed below.

Usage

```
pca(Nef, fac = NA,PCa = 1, PCb = 2,
col = "black", pch = 1, lty=1, shp.nb=NA, shp.size,
shp.col="#00000022", shp.border="black", title = "Principal Component Analysis",
legend = TRUE, lab = FALSE, lab.txt = rownames(Nef@coeff), lab.cex = 1, lab.box = TRUE,
ell = TRUE, r = 1, lwd = 1, zoom.x = 0.25, zoom.y = 0.3)

pca3(Nef, fac = NA,
col = 1:nlevels(fac), pch = 1:nlevels(fac), lty = rep(1,nlevels(fac)),
lab = FALSE, lab.txt = rownames(Nef@coeff), lab.cex = 1, lab.box = TRUE,
ell = 1, r = 1, lwd = 1, zoom = 1.4, legend = FALSE)

pca.tps(Nef, fac = NA, PCa = 1, PCb = 2,
col = "black", pch = 1, ell = TRUE, zoom = 1.4, ncells = 20,
title = "Deformations alongs PC axes")
```

Arguments

Nef	the Nef object
fac	the grouping factor
PCa	integer corresponding to the a^th PCA axis to plot
PCb	integer corresponding to the a^th PCA axis to plot
col	integer or character indicating the col for each group to plot
pch	integer or character indicating the pch for each groups to plot
lty	integer indicating the 1ty for each confidence ellipse to plot

pca 17

shp.nb	integer indicating how many, if any, shapes to plot
shp.size	numeric indicating the size of these shapes
shp.col	integer or a character indicating the color of these shapes
shp.border	integer or a character indicating the border color of these shapes
title	character to add a better title to the plot
lab	logical indicating whether to plot labels for every point
lab.txt	character vector containing labels names
lab.cex	numeric indicating the cex size of these labels
lab.box	logical indicating whether to draw a border for these labs
ell	logical indicating whether to draw confidence ellipses for every group
r	numeric indicating the number of standard deviations for confidence ellipses computation
lwd	numeric indicating the 1wd for the confidence ellipses
zoom	numeric used to adjust the range of the plot
ZOOM.X	numeric used to adjust the x-range of the plot
zoom.y	numeric used to adjust the y-range of the plot
legend	logical indicating whether to add a legend on the plot
ncells	integer indicating the number of cells for deformation grids

```
## Not run:
data(bottles.nef)
fac <- factor(rep(c("beer", "whisky"), each=20))</pre>
### pca
pca(bottles.nef)
pca(bottles.nef, fac=fac)
pca(bottles.nef, fac=fac, pch=c(4,5))
pca(bottles.nef, fac=fac, pch=c(4,5), ell=FALSE)
pca(bottles.nef, fac=fac,pch=c(4,5), lty=c(2,3))
pca(bottles.nef,\ pch=c(4,5),\ fac=fac,\ lty=c(2,3),\ col=c("dodgerblue","firebrick"))
pca(bottles.nef, fac=fac, lab=T)
pca(bottles.nef, fac=fac, lab=T, lab.cex=0.8)
pca(bottles.nef, fac=fac, lab=T, lab.box=FALSE)
pca(bottles.nef, fac=fac, lab=T, lab.txt=c(letters[1:20],LETTERS[1:20]))
pca(bottles.nef, fac=fac, r=0.5)
pca(bottles.nef, fac=fac, r=0.5, zoom.x=0.1, zoom.y=0.1)
pca(bottles.nef, PCa=2, PCb=3)
pca(bottles.nef, shp.nb=5)
pca(bottles.nef, shp.nb=5, shp.col="#FF660033", shp.border="#FF6600")
### pca3
pca3(bottles.nef)
pca3(bottles.nef, fac=fac)
pca3(bottles.nef, fac=fac, pch=c(4,5))
pca3(bottles.nef, fac=fac, pch=c(4,5), lty=c(2,3))
pca3(bottles.nef, fac=fac, pch=c(4,5), lty=c(2,3), col=c("dodgerblue","firebrick"))
pca3(bottles.nef, fac=fac, pch=c(4,5), lty=c(2,3), col=c("dodgerblue","firebrick"), legend=T)
```

18 pca2shp

```
### pca.tps
pca.tps(bottles.nef)
pca.tps(bottles.nef, fac=fac)
## End(Not run)
```

pca2shp

Reconstructs a shape given using PCA.

Description

Provided with a harmonic matrix coefficient on which to perform PCA, and given the $(PC_1; PC_2)$ coordinates, it reconstructs the corresponding shape.

Usage

```
pca2shp(pc1 = 0, pc2 = 0, data, nb.h = ncol(data)/4, nb.pts = 500, amp = 1, col = "black", lwd = 2, plot = TRUE)
```

Arguments

pc1	numeric indicating the position on the first PC axis
pc2	numeric indicating the position on the second PC axis
data	the harmonic coefficient matrix
nb.h	integer indication how many harmonics to use
nb.pts	integer indicating the number of points sampled from the reconstructed outlines $% \left(1\right) =\left(1\right) \left(1\right) \left$
атр	numeric indicating the magnifying factor
col	integer or character indicating the color to ue for drawing the shape
lwd	numeric indicating the lwd for the shape
plot	codelogical indicating whether to plot the shape

```
data(bottles.nef)
pca2shp(0.5, 0.5, bottles.nef@coeff, amp=2)
pca2shp(0, 0, bottles.nef@coeff) # "average" shape
```

plot 19

plot

Plots coordinate outlines.

Description

Plots one or a range of the outline(s) contained in Coo-object.

Examples

```
data(bottles.cont)
## Not run:
plot(bottles.cont)
plot(bottles.cont, range=21:40)
## End(Not run)
```

show-methods

show methods for Momocs' objects

Description

Momocs objects have show methods. They will be expanded in further versions.

Methods

```
signature(object = "Coo") show a Coo-object
signature(object = "Nef") show a Coo-object
```

Examples

```
data(bottles.cont)
bottles.cont

data(bottles.nef)
bottles.nef
```

tps

Produces deformation grids.

Description

Produces deformation grids using Thin Plate Splines

```
tps(matr, matt, n, plot = TRUE, col = "black")
```

20 tps.grid

Arguments

matr	the reference configuration matrix
matt	the target configuration matrix
n	integer indicating the number of displayed column cells
plot	logical indicating whether to plot the grid
col	integer or a character indicating the grid color

Value

Deformation grid obtained by Thin Plate Splines interpolation.

Author(s)

Entirely written by Julien Claude. Claude, J. (2008) *Morphometrics Using R*, Use R! series, Springer 330 pp.

tps.grid

Thin Plate Splines deformation grids between two shapes.

Description

Passed with a Nef-object, and two positions on the set defined by PC_1 and PC_2 , calculates and plots deformation grids, "vector field" or iso-deformation lines between these two shapes.

Usage

```
tps.grid(Nef, fr, to, nb.pts = 50, amp = 1, grid.size = 50,
  grid.col = "grey40", cont = TRUE,
  cont.col = c("dodgerblue3", "firebrick3"), cont.lwd = rep(3,2))

tps.iso(Nef, fr, to, nb.pts = 200, amp = 1, iso.pts = 1000,
  col.pal = topo.colors, col.lev = 500,
  cont.to = TRUE, cont.fr = TRUE, cont.lev = 10,
  cont.col = c("dodgerblue3", "firebrick3"), cont.lwd = rep(3,2))

tps.vf(Nef, fr, to, nb.pts = 100, amp = 1, arr.nb = 300,
  arr.len = 0.05, arr.ang = 30, arr.col = "grey40",
  arr.pal = FALSE, arr.palette = topo.colors, arr.pal.lev = 20,
  arr.lwd = 1, cont.col = c("dodgerblue3", "firebrick3"),
  cont.lwd = rep(3, 2))
```

Arguments

Nef	the Nef object
fr	a vector with two numerics indicating the $(x;y)$ coordinates of the starting point. If not provided, locator(1) is called
to	a vector with two numerics indicating the $(x;y)$ coordinates of the ending point. If not provided, locator(1) is called
nb.pts	integer indicating the number of points used to calculate deformation grids

tps2d 21

amp	a numeric indicating magnifying factor for deformations
cont	logical indicating whether to plot original and deformed shapes
cont.to	logical indicating whether to plot the original shape
cont.fr	logical indicating whether to plot the deformed shape
cont.col	integer or character indicating the col of the two outlines compared
cont.lwd	a numeric indicating a vector containing the 1wd of the two outlines compared
grid.size	a numeric indicating deformation grid size
grid.col	codeinteger or a character indicatinf the deformation grid color
iso.pts	a integer indicating the number of iso points to use for isolines calculation
col.pal	a color palette such as rainbow, heat. colors or such as build by colorRampPalette for isolines drawing
col.lev	integer indicating how many color levels to use
cont.lev	integer indicating how many isolines to calculate
arr.nb	integer indicating how many arrows to display
arr.len	a numeric indicating the arrows length
arr.ang	a numeric indicating the arrows angle
arr.col	integer or a character indicating the arrows color
arr.pal	logical indicating whether to use or not a color palette for drawing arrows
arr.palette	a color palette such as rainbow, heat. colors or such as build by color RampPalette
arr.pal.lev	integer specifying how many levels to use for the color palette
arr.lwd	a numeric indicating the arrows 1wd

Examples

```
data(bottles.nef)
## Not run:
tps.grid(bottles.nef, fr=c(-0.05, -0.05), to=c(0.15, 0.05))
tps.vf(bottles.nef, fr=c(-0.05, -0.05), to=c(0.15, 0.05))
tps.iso(bottles.nef, fr=c(-0.05, -0.05), to=c(0.15, 0.05))
## End(Not run)
```

tps2d

Returns the position of interpolated coordinates.

Description

Returns the position of interpolated coordinates using Thin Plate Splines.

```
tps2d(M, matr, matt)
```

22 traj

Arguments

M original co	ordinates to be mapped by TPS
---------------	-------------------------------

matr Reference configuration matrix
matt Target configuration matrix

Value

Interpolated coordinates arranged in a matrix object.

Author(s)

Entirely written by Julien Claude. Claude, J. (2008) *Morphometrics Using R*, Use R! series, Springer 330 pp.

traj

Calculates shape intermediates.

Description

Given a Nef object, and two positions on the set defined by PC_1 and PC_2 , calculates and plots intermediate shapes along the euclidean distance between these two shapes.

Usage

```
traj(Nef, fr = c(0, 0), to = c(1, 1), nb.int = 50, nb.pts = 500, save = FALSE, prog = TRUE, pause = false, prog = true = false, prog = false, prog
```

Arguments

Nef	the Nef object
fr	a vector with two numerics indicating the $(x;y)$ coordinates of the starting point. If not provided, locator(1) is called
to	a vector with two numerics indicating the $(x;y)$ coordinates of the ending point. If not provided, locator(1) is called
nb.int	codeinteger giving the number of shape intermediates to calculate
nb.pts	codeinteger giving the number of points of the reconstructed outlines
save	logical indicating whether to save the images in a dedicated folder
prog	logical indicating whether to plot or not a progression bar
pause	logical indicating whether to ask the user to display successive intermediate shapes

```
## Not run:
data(bottles.nef)
traj(bottles.nef)
traj(bottles.nef, fr=c(-0.05, -0.05), to=c(0.15, 0.05))
## End(Not run)
```

Index

*Topic Coo methods	Coo (Coo-class), 6
Coo-class, 6	Coo-class, 6
dev.qual, 7	000 01033, 0
dev.quant, 7	dev.qual, 7
get.Nef, 11	dev.qual,Coo-method(dev.qual),7
harm.pow, 11	dev.qual-methods (dev.qual), 7
plot, 19	dev.quant, 7
*Topic Misc functions	dev.quant,Coo-method(dev.quant),7
closed.outline, 3	dev.quant-methods (dev.quant), 7
col.sel, 4	draw.Fell, 8
cont.sample, 5	
cont. smooth, 5	eFa, 9
draw.Fell, 8	efourier,9
eFa, 9	
efourier, 9	get.cont, 10
get.cont, 10	get.Nef, 11
iefourier, 12	<pre>get.Nef,Coo-method(get.Nef), 11</pre>
panel.lm, 15	<pre>get.Nef-methods (get.Nef), 11</pre>
pca2shp, 18	
tps, 19	harm.pow, 11
tps2d, 21	harm.pow,Coo-method(harm.pow),11
*Topic Nef methods	harm.pow-methods(harm.pow), 11
manova.nef, 12	informing 12
morph.PC, 13	iefourier, 12
morph.sp, 14	manova.nef, 12
Nef-class, 15	manova.nef, Nef-method (manova.nef), 12
pca, 16	manova.nef-methods (manova.nef), 12
tps.grid, 20	Momocs (Momocs-package), 2
traj, 22	Momocs-package, 2
*Topic Package	morph.PC, 13
bottles dataset, 3	morph.PC, Nef-method (morph.PC), 13
Momocs-package, 2	morph.PC-methods (morph.PC), 13
*Topic methods	morph.sp, 14
show-methods, 19	morph.sp, Nef-method (morph.sp), 14
	morph.sp-methods (morph.sp), 14
bottles dataset, 3	
bottles.cont(bottles dataset), 3	Nef (Nef-class), 15
bottles.nef (bottles dataset), 3	Nef-class, 15
closed.outline, 3	panel.1m, 15
col.sel, 4	pca, 16
cont.sample, 5	pca, Nef-method (pca), 16
cont.smooth, 5	pca-methods (pca), 16
Conte (get.cont), 10	pca.tps (pca), 16

24 INDEX

```
pca.tps, Nef-method (pca), 16
pca.tps-methods(pca), 16
pca2shp, 18
pca3 (pca), 16
pca3, Nef-method (pca), 16
pca3-methods (pca), 16
plot, 19
plot, ANY, ANY-method (plot), 19
plot, Coo, ANY-method (plot), 19
plot-methods (plot), 19
prcomp(), 16
show, Coo-method (show-methods), 19
show, Nef-method (show-methods), 19
show-methods, 19
topo.colors, 8
tps, 19
tps.grid, 20
{\tt tps.grid}, {\tt Nef-method}\,({\tt tps.grid}), \, \underline{20}
tps.grid-methods(tps.grid), 20
tps.iso(tps.grid), 20
tps.iso, Nef-method (tps.grid), 20
tps.iso-methods(tps.grid), 20
tps.vf (tps.grid), 20
tps.vf, Nef-method (tps.grid), 20
tps.vf-methods(tps.grid), 20
tps2d, 21
traj, 22
traj, Nef-method (traj), 22
traj-methods (traj), 22
```