Oppgave 1

Lar $U=\mathbb{N}$ og definerer mengdene

$$A = \{x + 1 \mid x \in \mathbb{N}\} \tag{1}$$

Kandidat: Tien Tran

$$B = \{2x + 1 \mid x \in \mathbb{N}\}\tag{2}$$

$$C = \{3x \mid x \in \mathbb{N}\}\tag{3}$$

$$D = \{4x \mid x \in \mathbb{N}, x \le 3\} \tag{4}$$

Oppgave 1a

Finn $B \cap C$

Snittet av B og C krever at elementene passer både for $2a+1 \wedge 3b$, hvor $a,b \in \mathbb{N}$. Vi observerer at B inneholder alle oddetall og C inneholder alle tall i 3-gangen. Funksjonen f(n)=6n+3, hvor $n \in \mathbb{N}$, gir alle tall som både er i 3-gangen og er oddetall. 6n leddet gjør at man «hopper over» partallsverdiene i 3-gangen.

$$B \cap C = \{6x + 3 \mid x \in \mathbb{N}\}\tag{5}$$

Oppgave 1b

Finn $A \setminus B$

A er en mengde med positive heltall utenom 0.~B, som nevnt tidligere, består av alle oddetall. Differansen mellom disse mengdene er derfor alle partallene. En formel for partall med 0 ekskludert kan være 2n+2, hvor $n\in\mathbb{N}$

$$A \setminus B = \{2x + 2 \mid x \in \mathbb{N}\} \tag{6}$$

Oppgave 1c

 $\operatorname{Finn} B \setminus C$

Vi ønsker å finne alle oddetall (B) utenom tallene i 3-gangen (C). En måte å løse det på er å bruke modulusoperatoren. Et heltall n er delelig på 3 dersom $n \mod 3 = 0$. Vi kan bruke dette til å ekskludere tallene i 3-gangen

$$B \setminus C = \{2x+1 \mid x \in \mathbb{N}, (2x+1) \operatorname{mod} 3 \neq 0\}$$
 (7)

Oppgave 1d

Vis følgende påstand $B \subseteq A \cup D$

A mangler kun 0 for å være lik $\mathbb N$. Denne verdien finnes i D. Vi vet derfor at

$$A \cup D = \mathbb{N} \tag{8}$$

Kandidat: Tien Tran

Siden $\mathbb N$ er universet og B er definert utifra det må $B\subseteq A\cup D$ stemme

Oppgave 1e

Vis følgende påstand $\overline{D} \subseteq A$

Siden $A=\mathbb{N}\setminus\{0\}$ trenger vi bare sjekke om $0\in\overline{D}$ siden dette er det eneste punktet som kan gjøre at $\overline{D}\nsubseteq A$. Siden $0\in D$ er $0\notin\overline{D}$ og dermed må $\overline{D}\subseteq A$ stemme

Oppgave 1f

Forklar hvorfor følgende ikke er sant $B \cup C = A$

Unionen av B og C består av oddetall og tall i 3-gangen. Forutenom partallene i 3-ganen, for eksempel 6, 12, 18, mangler resten av partallene. I tillegg er ikke 0 i A men 0 er i C. Dette gjør at $B \cup C \neq A$

Oppgave 2

La A og B være vilkårlige mengder i et vilkårlig univers. Bevis eller motbevis følgende påstander.

Oppgave 2a

$$P(A \cap B) \subseteq P(B) \tag{9}$$

La $X \in P(A \cap B)$ og $x \in X$. Da følger:

$$X \in P(A \cap B) \Rightarrow X \subseteq A \cap B \Rightarrow x \in A \land x \in B \tag{10}$$

Siden alle $x \in B \Rightarrow X \subseteq B$. Og siden P(B) inneholder alle delmengder av B betyr det at $X \in P(B)$

Påstanden stemmer.

Oppgave 2b

$$\emptyset = P(\emptyset)$$

$$\{\} = \{S \mid S \subseteq \emptyset\}$$

$$\{\} = \{\emptyset\}$$

$$(11)$$

Vi ser at påstanden ikke stemmer.

Oppgave 2c

$$A \cap B \in P(A \cup B)$$

$$P(A \cup B) = \{S \mid S \subseteq A \cup B\}$$

$$A \cap B \subseteq A \cup B \Rightarrow A \cap B \in P(A \cup B)$$
 (12)

Kandidat: Tien Tran

Vi sjekker om $A\cap B$ er en gyldig verdi for S, og siden den er det, er påstanden sann Påstanden stemmer

Oppgave 2d

$$P(A) \cup P(B) = P(A \cup B)$$

$$\{S_1 \mid S_1 \subseteq A\} \cup \{S_2 \mid S_2 \subseteq B\} = \{S_3 \mid S_3 \subseteq A \cup B\}$$
(13)

Siden S_1 eller S_2 ikke nødvendigvis er nøyaktig lik S_3 , for eksempel $A=\{1\}$, $B=\{2\}$ mangler unionen mellom S_1 og S_2 potensmengdeverdien $\{1,2\}$. Altså stemmer ikke påstanden

Oppgave 2e

$$P(A \setminus B) \subseteq P(\overline{A}) \cap P(B) \tag{14}$$

La $X \in P(A \setminus B)$ og $x \in X$. Da følger:

$$X \in P(A \setminus B) \Rightarrow x \in A \land x \notin B \tag{15}$$

La nå $Y \in P\left(\overline{A}\right) \cap P(B)$ og $y \in Y$. Da følger:

$$Y \in P\left(\overline{A}\right) \cap P(B) \Rightarrow y \in \overline{A} \land y \in B \Rightarrow y \not\in A \land y \in B$$

Vi observerer at x og y har stikk motsatte egenskaper. Siden $X \neq Y$ utenom det trivielle tilfellet $X = Y = \emptyset$, vil potensmengdene ikke ha noe overlapp i det hele tatt (utenom \emptyset). Påstanden blir derfor usann.