Análisis II - Matemática 3 - Análisis Matemático II Curso de Verano de 2021

Primer Parcial (25/02/21)

1	2	3	4					CALIF.
Apellido:					Nombre:			
No. de documento:				L.U.:		Carrera:		
		Grupo:	1		2	3		

- 1. Consideramos la curva C determinada por la intersección entre la superficie dada por la ecuación $x^2+y^2-1=0$ y la superficie dada por y+z-2=0. Calcular $\int_C f\ ds$ donde $f(x,y,z)=\sqrt{1+x^2}$.
- 2. Considerar el campo \mathbf{F} :

$$\mathbf{F}(x,y) = \left(e^{x^2y}(2xy\sin(y^2x) + \cos(y^2x)y^2) - y, e^{x^2y}\left(\sin(y^2x)x^2 + \cos(y^2x)2xy\right) + x\right)$$

Evaluar

$$\int_{\mathcal{C}} \mathbf{F} \ d\mathbf{s}$$

donde $\mathcal{C} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ orientada en sentido horario.

3. Sea la superficie $S=\{(x,y,z)\in\mathbb{R}^3/y=4-x^2-z^2,y\geq 0\}$ orientada de manera que la normal en el punto (0,4,0) es (0,1,0). Considerar el campo vectorial $\mathbf{F}:\mathbb{R}^3\to\mathbb{R}^3$ dado por $\mathbf{F}(x,y,z)=(z^3,\ln(x^2+y^2+z^2+1),xe^y-x^3)$. Calcular

$$\iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S}$$

4. Sea S la superficie dada por la sección del cono $z^2=x^2+y^2$ entre los planos z=0 y z=2 orientada con normal exterior. Sea $\mathbf{F}:\mathbb{R}^3\to\mathbb{R}^3$ dado por $\mathbf{F}(x,y,z)=(x^2ye^{z^2},-xy^2e^{z^2},z)$. Calcular

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S}$$

JUSTIFIQUE TODAS LAS RESPUESTAS