Homework #2

Implementing a simple clustering program

To Do (1/4)

Implement a simple *clustering* program that works as follows:

Print the menu

- ② Generate a *synthetic* dataset for clustering
 - As described in page 6

To Do (2/4)

③ If the user enters 1, perform k-means as follows:

```
1. K-means
2. Hierarchical clustering
3. DBSCAN
4. Quit
>1
n clusters: 4
random state: 0
<Clustering result>
[1 0 3 ...] // cluster labels of each point (print(labels))
[ Student ID: your student ID ]
[ Name: your name ]
1. K-means
2. Hierarchical clustering
3. DBSCAN
4. Quit
```

To Do (3/4)

4 If the user enters 2, perform *hierarchical clustering* as follows:

```
1. K-means
2. Hierarchical clustering
3. DBSCAN
4. Quit
>2
n clusters: 4
linkage: single // ward, complete, average, or single
<Clustering result>
[3 2 0 ...] // cluster labels of each point (print(labels))
[ Student ID: your student ID ]
[ Name: your name ]
1. K-means
2. Hierarchical clustering
3. DBSCAN
4. Quit
```

To Do (4/4)

(5) If the user enters 3, perform **DBSCAN** as follows:

```
1. K-means
2. Hierarchical clustering
3. DBSCAN
4. Quit
>3
eps: 0.5
min samples: 7
<Clustering result>
[1 4 3 ...] // cluster labels of each point (print(labels))
[ Student ID: your student ID ]
[ Name: your name ]
1. K-means
2. Hierarchical clustering
3. DBSCAN
4. Quit
```

Requirements (Important!)

As data for clustering, you must generate a synthetic dataset in your Python code as follows:

- You must use the default values for all parameters for clustering except for the input parameters
 - The input parameters for k-means: n_clusters, random_state
 - The input parameters for hierarchical: n clusters, linkage
 - The input parameters for DBSCAN: eps, min_samples

Evaluation Criteria (15 pts)

- Correctness of your program (12 pts)
 - K-means: 2 test cases \times 2 pts = 4 pts
 - Hierarchical clustering: 2 test cases \times 2 pts = 4 pts
 - DBSCAN: 2 test cases \times 2 pts = 4 pts
- Accordance with the requirements (3 pts)
 - Menu
 - Input
 - Output
 - Other program requirements

Submission

- Submit your Python code (.py) to Snowboard
 - SnowBoard → 데이터마이닝및분석 → 14주차 → Homework #2
- Due: 2023.6.23 (Fri) 23:59
 - 1-day delay: 80% credit
 - 2-day delay or more: 0% credit

Homework Support

- [Off-line] If you need help from me, I recommend you to request an off-line meeting with me
 - The number of students ≥ 1
 - Schedule a meeting time with me
- [On-line] Slack or emails
 - Of course, you can use the Slack for Q&A, discussion, etc.
- [Teaching Assistant] You can get help from the T.A.
 - Eunjo Jang (<u>wkddmswh99@sookmyung.ac.kr</u>)
 - Seongyeon Yang (<u>yeon55@sookmyung.ac.kr</u>)

Scikit-Learn

Clustering

Clustering with Scikit-Learn

- You can use the *sklearn.cluster* module
 - Gathers popular unsupervised *clustering* algorithms

Classes	
<pre>cluster.AffinityPropagation(*[, damping,])</pre>	Perform Affinity Propagation Clustering of data.
cluster.AgglomerativeClustering([])	Agglomerative Clustering.
<pre>cluster.Birch(*[, threshold,])</pre>	Implements the BIRCH clustering algorithm.
cluster.DBSCAN([eps, min_samples, metric,])	Perform DBSCAN clustering from vector array or distance matrix.
<pre>cluster.FeatureAgglomeration([n_clusters,])</pre>	Agglomerate features.
cluster.KMeans([n_clusters, init, n_init,])	K-Means clustering.
<pre>cluster.BisectingKMeans([n_clusters, init,])</pre>	Bisecting K-Means clustering.
<pre>cluster.MiniBatchKMeans([n_clusters, init,])</pre>	Mini-Batch K-Means clustering.
<pre>cluster.MeanShift(*[, bandwidth, seeds,])</pre>	Mean shift clustering using a flat kernel.
<pre>cluster.optics(*[, min_samples, max_eps,])</pre>	Estimate clustering structure from vector array.
<pre>cluster.SpectralClustering([n_clusters,])</pre>	Apply clustering to a projection of the normalized Laplacian.
<pre>cluster.SpectralBiclustering([n_clusters,])</pre>	Spectral biclustering (Kluger, 2003).
<pre>cluster.SpectralCoclustering([n_clusters,])</pre>	Spectral Co-Clustering algorithm (Dhillon, 2001).
←)

Performs k-means clustering

```
class sklearn.cluster.KMeans(...)
```

Parameters

- n_clusters: the number of clusters to form (default = 8)
- init: method for initialization (default = 'k-means++')
 - 'k-means++': select initial cluster centroids using k-means++
 - 'random': selects k points at random from data for the initial centroids
- n_{init} : the number of time the k-means algorithm will be run with different centroid seeds (default = 10)
- max_iter: the maximum number of iterations (default = 300)
- tol: relative tolerance to declare convergence (default = 1e-4)
- random state: the seed used by the random number generator

Performs k-means clustering

```
class sklearn.cluster.KMeans(...)
```

Attributes

- cluster centers : coordinates of cluster centers (i.e., centroids)
- labels : cluster labels for each point
- inertia_: sum of squared distances of samples to their closest centroid

Good clustering

Bad clustering

Performs k-means clustering

```
class sklearn.cluster.KMeans(...)
```

Methods

- fit (X): compute *k*-means clustering
 - X: instances to cluster (array-like of shape (n_samples, n_features))
- fit_predict(X): compute and predict cluster index for each sample
 - X: instances to cluster (array-like of shape (n_samples, n_features))
- predict (X): predict the closest cluster each sample in X belongs to
 - X: new data to predict (array-like of shape (n samples, n features))

Performs k-means clustering

```
class sklearn.cluster.KMeans(...)
```

Example

Recursively merges pair of clusters of sample data using linkage distance

```
class sklearn.cluster.AgglomerativeClustering(...)
```

Parameters

- n clusters: the number of clusters to find (default = 2)
- metric: metric used to compute the linkage (default = None)
 - "euclidean", "11", "12", "manhattan", "cosine", or "precomputed"
- linkage: which linkage criterion to use (default = 'ward')
 - 'ward': the variance of the clusters being merged
 - 'average': the average of the distances of each point of the two clusters
 - 'complete' or 'maximum': the maximum distances between all points of the two clusters
 - `single': the minimum of the distances between all points of the two clusters

Recursively merges pair of clusters of sample data using linkage distance

```
class sklearn.cluster.AgglomerativeClustering(...)
```

Attributes

- n clusters : the number of clusters found by the algorithm
- labels : cluster labels for each point
- n leaves : the number of leaves in the hierarchical tree
- children : the children of each non-leaf node

Recursively merges pair of clusters of sample data using linkage distance

```
class sklearn.cluster.AgglomerativeClustering(...)
```

Methods

- fit (X): fit the hierarchical clustering from features
 - X: instances to cluster (array-like of shape (n_samples, n_features))
- fit predict(X): fit and return each sample's clustering assignment
 - X: instances to cluster (array-like of shape (n samples, n features))

 Recursively merges pair of clusters of sample data using linkage distance

```
class sklearn.cluster.AgglomerativeClustering(...)
```

Example

Performs DBSCAN clustering

```
class sklearn.cluster.DBSCAN(...)
```

Parameters

- eps: the maximum distance between two samples for one to be considered as in the neighborhood of the other (default = 0.5)
- min_samples: the number of samples in a neighborhood for a point to be considered as a core point (default = 5)
- metric: the metric to use when calculating distance between instances (default = 'euclidean')
 - "euclidean", "11", "12", "manhattan", "cosine", or "precomputed"

Performs DBSCAN clustering

```
class sklearn.cluster.DBSCAN(...)
```

Attributes

- core sample indices : indices of core samples
- labels_: cluster labels for each point in the dataset given to fit(). Noisy samples are given the label -1

Performs DBSCAN clustering

```
class sklearn.cluster.DBSCAN(...)
```

Methods

- fit (X): compute DBSCAN clustering
 - X: instances to cluster (array-like of shape (n samples, n features))
- fit predict(X): compute clusters from a data and predict labels
 - X: instances to cluster (array-like of shape (n samples, n features))

Performs DBSCAN clustering

```
class sklearn.cluster.DBSCAN(...)
```

Example