Modelos Gerativos em ML

com uma pitada de redes neurais.

Rafael S. Calsaverini

O que é um modelo de Aprendizagem de Máquina?

Modelos discriminativos

Entradas:

Dados: $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$

Parâmetros: $\Theta = \{\theta_1, \theta_2, \dots, \theta_K\}$

Em que o algoritmo consiste?

Aprendizado: $\hat{\Theta} = \operatorname{Learn}(D)$

Inferência: $y = \operatorname{Infer}(X, \hat{\Theta})$

Tipicamente tratado como um problema de otimização

Abordagem probabilística

Um modelo discriminativo versa a respeito do mecanismo pelo qual as entradas geram as saídas:

 $oldsymbol{y}$ target, saída, variável a ser predita

P(y|X, heta) X features, entradas, variáveis independentes

heta parâmetros do modelo

Por exemplo, um modelo de regressão:

$$f(X,\theta)$$

$$y \sim ext{Normal}(f(X, heta), \sigma)$$

$$P(y|X, heta) = rac{1}{\sqrt{2\pi}} \exp\left(-rac{1}{2\sigma}\left(y-f(X, heta)
ight)^2
ight)$$

Aprendizado vs. Inferência

 $oldsymbol{y}$ target, saída, variável a ser predita

$$P(y|X, heta)$$
 X features, entradas, variáveis independentes

heta parâmetros do modelo

Aprendizado: dado um conjunto de dados, desejamos encontrar os parâmetros do modelo¹

Inferência: dado um conjunto de parâmetros conhecido e uma entrada, prever a saída.

$$heta^\star = rg \max_{ heta} \log P(y|X, heta)$$

$$\hat{y} = rg \max_{y} P(y|X, heta^{\star}) \ \hat{y} = E[y|X, heta^{\star}]$$

. .

Modelos Gerativos

SPRINKLER RAIN T	
F T 0.	

Modelos gerativos

Uma prescrição de como todas as variáveis (observáveis ou não) são gerados!!!

P(todas as variáveis observáveis e não observáveis)

... e é sobre isso que vamos passar as próximas 3 horas falando.

Inferência

Inferência: dado um modelo probabilístico sobre todas as variáveis e medições das variáveis observadas, estimar as variáveis não-observadas.

Exemplo clássico:

$$P(R, S, G) = P(G|R, S)P(S|R)P(R)$$

$$P(R, S|G) = rac{P(G|R, S)P(R)P(S)}{P(G)} = rac{P(G|R, S)P(R)P(S)}{\sum_{R, S} P(G|R, S)P(R)P(S)}$$

Aprendizado

Aprendizado: o modelo probabilistico pode ter parâmetros. Com um conjunto de dados externos esses parâmetros (ou suas distribuições) devem ser aprendidos para posterior inferência.

Exemplo clássico:

$$P(R, S, G|\theta) = P(G|R, S, \theta)P(S|R, \theta)P(R|\theta)$$

$$P(R, S, G, \theta) = P(G|R, S, \theta)P(S|R, \theta)P(R|\theta)P(\theta)$$

$$\theta, Z \sim P(\theta, Z|X)$$

Máxima verossimilhança

X variáveis observáveis

P(X,Z| heta) Z variáveis não-observáveis

heta parâmetros do modelo

Aprendizado:

$$heta^\star = rg \max_{ heta} \log \left(\sum_{Z} P(X, Z | heta)
ight)$$

$$X,Z\sim P(X,Z| heta^\star)$$
 ou $Z\sim P(Z| heta^\star,X)=rac{P(X,Z| heta^\star)}{\sum_Z P(X,Z| heta^\star)}$

Máxima verossimilhança Máximo a Posteriori

X variáveis observáveis

$$P(X,Z| heta)P(heta)$$
 Z variáveis não-observáveis

heta parâmetros do modelo

Aprendizado:

$$heta^\star = rg \max_{ heta} \log \left(\sum_{Z} P(X, Z | heta) P(heta)
ight)$$

$$X,Z\sim P(X,Z| heta^\star)$$
 ou $Z\sim P(Z| heta^\star,X)=rac{P(X,Z| heta^\star)}{\sum_Z P(X,Z| heta^\star)}$

Inferência Bayesiana

 $P(X, Z|\theta)P(\theta)$

X variáveis observáveis

Z variáveis não-observáveis

heta parâmetros do modelo

Aprendizado (teorema de Bayes):

$$P(ilde{ ext{Nao}} ext{ observado} | ext{Observado}) = rac{P(ext{Observado} | ilde{ ext{Nao}} ext{ observado}) P(ilde{ ext{Nao}} ext{ observado})}{P(ext{Observado})}$$

$$P(heta,Z|X) = rac{P(X| heta,Z)P(heta,Z)}{P(X)}$$

$$heta, Z \sim P(heta, Z|X)$$

Inferência Variacional

Aprendizado:

$$Q(\theta,Z) = egin{array}{l} A & ext{ distribuição mais parecida com} \\ P(\theta,Z|X) & ext{ que eu conseguir achar.} \end{array}$$

$$Q(\theta, Z) = \min_{Q} \text{Divergencia}[Q(\theta, Z); P(\theta, Z|X)]$$

$$heta, Z \sim Q(heta, Z|X)$$

... e as redes neurais?

Modelos discriminativos

Nosso exemplo de regressão:

$$egin{aligned} y &\sim P(y|f(X, heta)) \ heta^\star &= rg\max_{ heta} \log P(y|X, heta) \end{aligned}$$

Distribuição	Loss equivalente
Normal (gaussiana)	Erro quadrático médio
Exponencial	Erro absoluto médio
Binomial	Entropia cruzada

Modelos gerativos

Redes neurais podem ser usadas para representar distribuições complexas em espaços de dimensionalidade alta, e ainda assim prover formas eficientes de aprendizado e inferência.

- Máxima verossimilhança / máximo a posteriori
- Inferência variacional
- Modelos adversários

$$P(X|f(Z,\theta))P(Z)$$

Bibliotecas

Inferência bayesiana via MCMC:

- pymc & pymc3
- pystan
- emcee

Inferência Variacional:

bayespy

Inferência Variacional com redes neurais:

- Edward (tensorflow)
- tf.probability ("Edward2")
- pyro (pytorch)

O que raios são probabilidades?

Considere as sentenças:

- A probabilidade de obter cara em um lance de cara ou coroa é 1/2.
- Com a saída dos EUA, o acordo provavelmente será cancelado.
- A probabilidade de chuva amanhã é em torno de 80%.
- Vou chamar o Rafael para sair. Quais são as minhas chances?
- Diante das evidências é muito **improvável** que o réu seja inocente.

Probabilidade vs. Frequência

É comum ver a definição "probabilidade é o limite para a freqüência de um evento em um grande número de experimentos repetidos":

$$\operatorname{Prob}\left(A
ight) = \lim_{N o \infty} rac{\operatorname{ocorr\hat{e}ncias\ do\ evento}\ A}{N}$$

Será que essa definição é de fato útil?

Será que sequer é uma definição?

Será que bate com o nosso conceito intuitivo de probabilidade?

Lógica e incerteza

Considere as seguintes frases:

- "Quando chove, a grama fica molhada. Choveu, logo a grama está molhada."
- "Quando chove, a grama fica molhada. A grama está molhada, logo..."

 $\therefore p \rightarrow r$

Probabilidades!

Probabilidades são uma forma de raciocinar sobre informação incompleta e incerteza:

"Quando chove, a grama fica molhada. A grama está molhada,
 isso aumenta minha suspeita de que tenha chovido."

$$Prob\left(chuva|grama\ molhada\right) = \frac{Prob(grama\ molhada|chuva)Prob(chuva)}{Prob(grama\ molhada)}$$

Em resumo...

Se $a \Rightarrow b$, e sabemos que a é verdadeiro.

- O lógico sabe que **b** é verdade.
- O probabilista atribui a **b** probabilidade 1.

Se $a \Rightarrow b$, e sabemos que b é verdadeiro.

- O lógico não sabe dizer nada sobre a.
- O probabilista sabe atualizar seu probabilidade de a.

$$P(b|a, Model) = modelo causal conectando a e b$$

$$P(a|b, ext{Model}) = rac{P(b|a, ext{Model})P(a| ext{Model})}{P(b| ext{Model})}$$