Linear Regression - 4

Assumptions of Linear Regression:

a. Assumption of Linearity:

linear relationship between the features x and target variable y

b. Features are not multi-collinear:

What is collinearity?

Ans: 2 features (f_1, f_2) , have a linear relationship between them. $f_1 = \alpha f_2$

What is Multicollinearity?

Ans: the feature f_1 has collinearity across multiple features f_2 , f_3 , f_4

$$f_1 = \alpha_1 f_2 + \alpha_2 f_3 + \alpha_3 f_4$$

Why is multi-collinearity a problem?

Ans: MultiCollinearity → non-reliability on the feature importance and model interpretability. (instability in feature weights.)

How to resolve multi-collinearity?

Ans: Using Variance Inflation factor (VIF), defined as:

VIF for
$$f_j = \frac{1}{1 - R_j^2}$$
; where R^2 is Rsquared

VIF algorithm works as:

- Calculate the VIF of each feature
- if VIF >= 5 → high Multicollinearity
 - Remove the feature having the highest VIF
 - Recalculate the VIF for the remaining feature

- Again remove the next feature having the highest VIF
- Repeat till all VIF<5 or some number of iterations is reached

c. Errors are normally distributed:

Used to ensure there are no outliers present in the data

d. Heteroskedasticity should not exist:

Heteroskedasticity → unequal scatter of the error term → not having the same variance

Why Heteroskedasticity is a problem?

Ans: model inaccurate or outliers in the data.

How to check Heteroskedasticity?

Ans: Plotting a Residual plot \rightarrow Errors $(y - \hat{y})$ vs prediction (\hat{y})

e. No AutoCorrelation:

What is AutoCorrelation?

Ans: When the current feature value depends upon its previous value

Why is AutoCorrelation a problem?

Ans: Linear regression assumes $\hat{y_1} = f(x)$ has to be independent of $\hat{y_2} = f(x+1) \rightarrow \text{AutoCorrelation contradicts this assumption.}$

Is there any other way to solve Linear Regression?

Ans: Closed Form/ Normal Equation

Why use Normal Equations?

Ans: Finds the optimal weights without any iterating steps as done in Gradient Descent.

The optimal weights:
$$W = (X^T X)^{-1} X^T Y$$

Where
$$X \to \text{feature matrix: } R^{n \, (Sample \, size) \, \times d \, (d \, dimensional)}$$
, and $Y \to \text{target vector: } R^{n \, (Sample \, size) \, \times 1}$

Why even use gradient descent?

Ans: $(X^TX)^{-1} \to \text{computationally expensive operation} \Rightarrow \text{Not used when the number of features is high.}$

Dimension of matrix multiplication: [$(d \times n) * (n \times d) => (d \times d)$]