Элементы теории категорий в функциональном программировании

Андрей Ляшин, FProg SPb 26.05.2016

Категория

Категорией С называется следующая совокупность определений:

- Класс объектов Ob_c (|C|);
- Каждой паре объектов A,B из Ob_c ставится в соответствие множество морфизмов (или стрелок) Hom(A,B);
- Для каждой пары морфизмов f∈Hom(A,B), g∈Hom(B,C) определен морфизм, называемый композицией f∘g∈Hom(A,C);
- Для каждого объекта А существует тождественный морфизм id_A∈Hom(A,A). Данный факт, в частности, позволяет обойтись без отдельного класса объектов, считая что они заданы своими тождественными морфизмами;
- Операция композиции ассоциативна $f \circ (g \circ h) = (f \circ g) \circ h$;
- Тождественная стрелка действует тривиально $f \circ id_A = id_B \circ f = f$, $f \in Hom(A,B)$.

Примеры категорий

Следующие категории могут служить иллюстрациями определения:

- Категория множеств **Set**: объектами служат множества, морфизмами отображения множеств;
- Категория групп *Grp*: объектами служат группы, морфизмами гомоморфизмы групп;
- Категория типов языка Haskell *Hask*: объектами являются типы данных, морфизмами функции между ними (функции, преобразующие экземпляры одного типа в экземпляры другого).

Наглядное представление категорий

Категории частно иллюстрируют диаграммами (графами) следующего вида:

Коммутативные диаграммы

Примеры утверждений в ТК иллюстрируют т.н. коммутативными диаграммами. Коммутативность означает равенство объектов, полученных различными путями по направлениям стрелок.

Морфизмы категорий. Функторы.

Для отображения из одной категории в другую используют функторы. Поскольку в категории изначально рассматривают два типа компонент объекты и стрелки, функтор действует на элементы обеих.

А именно (ковариантный) функтор F:C→D имеет в себе два отображения

- F(id_A) = id_{F(A)};
 F(g) · F(f) = F(g · f).

Примеры

- Функтор вложения в подкатегорию;
- Забывющий функтор, например, Grp → Set сохраняет группы, как "просто" множества, а гомоморфизмы как "просто" отображения множеств;
- PowerSet функтор P : Set → Set, ставящий каждому множеству множество его подмножеств P (S) = 2^s, P (f) = map f.
- Эндофунктор Maybe : Hask → Hask.
 - t объект в *Hask* (тип), Maybe (t) = Maybe t;
 - \circ f: a \rightarrow b морфизм типов, mf = Maybe f : Maybe a \rightarrow Maybe b: mf (Just x) = Just (f x), mf (Nothing) = Nothing;
 - o Maybe (id) = id;
 - Maybe $(f \circ g)$ (Just x) = Just $(f \circ g x)$ = Maybe $(f) \circ$ Maybe (g) (Just x)
 - \circ Maybe (f \circ g) Nothing = Nothing = Maybe (f) \circ Maybe (g) (Nothing).

Примеры (продолжение)

- Эндофунктор list : $Hask \rightarrow Hask$.
 - list (a) = list a;
 - \circ f: a -> b морфизм типов, If = list f : list a \rightarrow list b: If = map f;
 - o If (id) = map id_a = id_{list a};
 - If $(f \circ g) = map (f \circ g) = map f \circ map g$.
- Бифункторы, из категории произведения категорий, например, гомофунктор Hom: C^{Op}×C -> **Set** для локально малой категории C:
 - B объект в C, Hom(A,-) B = Hom (A,B);
 - \circ f морфизм в C из X в Y, Hom(A,-) f : Hom (A,X) \rightarrow Hom (A,Y), Hom(A,f) (h_{AX}) = f \circ h_{AX};
 - $\circ \quad \mathsf{Hom}(\mathsf{A},\mathsf{id}_{\mathsf{X}}) = \mathsf{id}_{\mathsf{Hom}(\mathsf{A},\mathsf{X})};$
 - $\circ \quad \text{Hom}(A, f \circ g) \ h = f \circ g \circ h = (\text{Hom}(A, f) \circ \text{Hom}(A, g)) \ h.$
- Функторы образуют категорию, являясь объектами, а морфизмами естественные преобразования. Можно считать, что ЕП появились как попытка сделать из функторов кактгорию.

Естественное преобразование

Связь между функторами выражает понятие естественного преобразования: для двух функторов F,G : C \rightarrow D естественным преобразованием называется совокупность отображений η_{χ} : F(X) \rightarrow G(X) в категории D, делающих следующую диаграмму коммутативной:

Примеры

- Естественные преобразования являются морфизмами в категории функторов.
- $id_F : F \rightarrow F, F : C \rightarrow D. (id_F)_A = id_{F(A)}.$
- Синглетон sing : $Id_{Set} \to P$ (: $Set \to Set$). $sing_X$: $Id(X) \to P(X)$, $sing_X x = \{x\}$, $x \in X$.

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\uparrow^{\eta_X} \qquad \qquad \downarrow^{\eta_Y}$$

$$G(X) \xrightarrow{G(X)} G(Y)$$

Моноид

- Моноид как алгебраическая структура является более общим случаем, чем группа, и более частным, чем полугруппа, а именно:
- Совокупность элементов М с ассоциативной бинарной операцией (умножение) μ :М×М \rightarrow М и единицей η :М, действующей тривиально относительно умножения;
- В ТК моноид может быть представлен в терминах моноидальной категории с объектом M и морфизмами α , μ , η , λ , ϱ .

Монада

Эквивалентом моноида в категории функторов является монада - совокупность трех объектов (T, η , μ):

- Эндофунктора Т : K → K;
- Естественного преобразования $\eta: \mathrm{id}_{\kappa} \to \mathsf{T};$
- Естественного преобразования $\mu: T^2 \to T$.

Монадные правила

- $\mu \circ \mathsf{T} \mu = \mu \circ \mu \mathsf{T}$ или $\mu_{\mathsf{X}} \circ \mathsf{T} (\mu_{\mathsf{X}}) = \mu_{\mathsf{X}} \circ \mu_{\mathsf{T}(\mathsf{X})};$
- $\mu \circ \mathsf{T} \eta = \mu \circ \eta \mathsf{T} = \mathsf{id}_{\mathsf{T}}$ или $\mu_{\mathsf{X}} \circ \mathsf{T} (\eta_{\mathsf{X}}) = \mu_{\mathsf{X}} \circ \eta_{\mathsf{T}(\mathsf{X})} = \mathsf{id}_{\mathsf{T}};$
- Данные правила являются ничем другим, как свойствами моноида в моноидальной категории эндофункторов - ассоциативности и левой/правой единицы;
- В языке Haskell монада определяется как функтор (* \rightarrow *) операцией fmap: (a \rightarrow b) \rightarrow f a \rightarrow f b, fmap id = id, fmap (f . g) = fmap f . fmap g, c двумя дополнительными преобразованиями unit и (finite join = 1). Преобразование finite join = 10 введено для удобства записи последовательности монадных вычислений. Вот эти определения
- unit: $X \to M X$; join: $M M X \to M X$; bind: $M X \to (X \to M Y) \to M Y$;
- join mmx := mmx >>= id; mx >>= f := join (fmap f mx);
- join . (fmap join) = join . join;
- join . (fmap unit) = join . unit = id; (три моноидных правила)
- *join* . *fmap* (*fmap* f) = (*fmap* f) . *join*;
- (fmap f) . unit = unit . f (два правила из определения $E\Pi$)

Примеры

Монада PowerSet (P, *unit*_p, *join*_p):

- P: S \mapsto 2^S, P(f)(W) = {f (x), x \in W};
- $unit_P$: Id \rightarrow P; $unit_{PX}$ = sing_X;
- $join_P : P^2 \mapsto P; join_{PX} : P^2(X) \rightarrow P(X); join_{PX}(W) = U W$
- $join \cdot (fmap \ join) = join \cdot join \cdot (: P^3 \rightarrow P), \{A,B\} \mapsto \{ \cup A, \cup B \} \mapsto (\cup A) \cup (\cup B) \mapsto \cup (A \cup B) \mapsto A \cup B \mapsto \{A,B\} \mapsto \{A,$
- join . (fmap unit) = join . unit = id. (: P → P), {a,b} → {{a,b}} → {a,b} ← {{a,b}} ← {{a,b}}
- join . fmap $(fmap\ f) = (fmap\ f)$. join. $(: P^2 \to P)$, $\{A,B\} \mapsto \{f \twoheadrightarrow A, f \twoheadrightarrow B\} \mapsto (f \twoheadrightarrow A) \cup (f \twoheadrightarrow B) \leftrightarrow (f \to A \cup B) \leftrightarrow \{A,B\}$
- $(fmap \ f)$. unit = unit . f. (: $Id \rightarrow P$), $a \mapsto \{a\} \mapsto \{f \ a\} \leftarrow f \ a \leftarrow a$.

Монадные правила и do нотация

Монадные правила создают возможность использовать do нотацию с ожидаемым результатом, а именно:

return x >>= f`=' f x	do { v <- return x; f v } `=' do { f x }	
m >>= return `=' m	do { v <- m; return v } `=' do { m }	
$(m >>= f) >>= g '=' m >>= (\x -> f x >>= g)$	<pre>do { y <- do { x <- m; f x };</pre>	

Монады в языке Haskell

- Монады и функторы представлены в языке Haskell как классы над унарными конструкторами типов $^* \rightarrow ^*$
 - class Functor (f :: * -> *) where fmap :: (a -> b) -> f a -> f b
 - class Functor m => Monad m where

```
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
```

- Примерами монад выступают Maybe, list, Either *, ST * и т.д.
- Монады выступают в качестве специального вычислительного контекста;
- Кроме того важной конструкцией являются монадные преобразования (monad transformers):
 - o t: (* -> *) -> * -> *; lift :: m a -> t m a
 - lift . return = return
 - lift (m `bind` k) = (lift m) `bind` (lift . k)
- С их помощью выражаются такие сущности как option MT, reader/writer MT, state MT, exception MT, и другие.

Категория Kleisli

Пусть дана монада <T, μ, η> и категория С. Категорией Клейсли над С, связанной с монадой Т, называется категория К:

```
 \begin{array}{ll} \circ & \mathsf{Ob}(\mathsf{K}) = \mathsf{Ob}(\mathsf{C}); \\ \circ & \mathsf{Hom}_{\mathsf{K}}(\mathsf{X},\mathsf{Y}) = \mathsf{Hom}_{\mathsf{C}}(\mathsf{X},\mathsf{TY}); \\ \circ & \mathsf{g}_{\mathsf{K}}^{\circ}\mathsf{f} = \mu \circ \mathsf{Tg} \circ \mathsf{f}; \ \mathsf{x} \mapsto_{\mathsf{f}} \mathsf{T} \ \mathsf{y} \mapsto_{\mathsf{Tg}} \mathsf{T} \ \mathsf{T} \ \mathsf{z} \ \mapsto_{\mu} \mathsf{T} \ \mathsf{z}; \\ \circ & \mathsf{id}_{\mathsf{K}\mathsf{x}} = \eta_{\mathsf{X}}. \end{array}
```

class Kleisli m where

```
idK :: a -> m a

(*>) :: (a -> m b) -> (b -> m c) -> (a -> m c)

○ (+>) :: Kleisli m => (a -> m b) -> (b -> c) -> (a -> m c)

f +> g = f *> (g >> idK)
```

Категория Клейсли порождает монадные композиции как обычные for free.

Категория Клейсли для монады Maybe

instance Kleisli Maybe where

```
idK = Just

f *> g = \a -> case f a of

Nothing -> Nothing

Just b -> g b
```

• С помощью стрелок Клейсли мы можем элегантно композировать частично определнные функции.

Понятия гомотопической теории типов

Различные интерпретации теоретико-типовых понятий

Интуиционистская теория типов	Логика	Теория множеств	Теория гомотопий
тип A	высказывание A	множество A	пространство A
a:A	доказательство высказывания ${\cal A}$	a — элемент множества A	a- точка пространства A
зависимый тип $B(x)$	предикат $B(x)$	семейство множеств	расслоение B_x
b(x):B(x)	условное доказательство	семейство элементов	сечение ^[en]
0, 1	⊥,⊤	Ø, {Ø}	Ø,*
A + B	$A \vee B$	$A \uplus B$ (дизъюнктное объединение)	$A\oplus B$ (копроизведение)
$A \times B$	$A \wedge B$	A imes B (декартово произведение)	A imes B (произведение пространств)
$A \rightarrow B$	$A \Rightarrow B$	множество функций $\{f\mid f:A o B\}$	функциональное пространство B^A
$\Sigma_{x:A}B(x)$	$\exists_{x:A}B(x)$	$\biguplus_{x \in A} B(x)_{\text{(ДИЗЪЮНКТНОЕ}}$ объединение)	тотальное пространство
$\Pi_{x:A}B(x)$	$\forall_{x:A}B(x)$	$\prod_{x \in A} B(x)$ (декартово произведение)	пространство сечений
Id_A	равенство (=)	$\{(x,x) \mid x \in A\}$	пространство путей $A^{\mathbb{I}}$

Литература

- http://learnyouahaskell.com/a-fistful-of-monads
- https://en.wikipedia.org/wiki/Monad_(category_theory)
- https://en.wikipedia.org/wiki/Monad_(functional_programming)
- https://ncatlab.org/nlab/show/monad+%28in+computer+science%29
- https://anton-k.github.io/ru-haskell-book/book/6.html
- Mac Lane, Saunders (1998). Categories for the Working Mathematician. Graduate Texts in Mathematics 5 (2nd ed.). Springer-Verlag. ISBN 0-387-98403-8. Zbl 0906.18001
- https://en.wikibooks.org/wiki/Haskell/Category_theory
- https://en.wikipedia.org/wiki/Kleisli_category
- https://homotopytypetheory.org/
- https://en.wikipedia.org/wiki/Homotopy_type_theory