Class 14: RNASeq Mini-project

Michael McClellan (PID: A169692395)

Table of contents

Tidy counts to match metadata	3
Remove zero count genes	3
Setup DESeq object for analysis	4
Run DESeq analysis	5
Add Gene Annotation	6
Save my results to a CSV file	8
Result Visualization	g
Pathway Analysis	10
Gene Ontology Reactome analysis online	28

Here we will perform a complete RNASeq analysis from counts to pathways and biological interpretation.

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703.

The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1.

```
library(DESeq2)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(pathview)
library(gage)
library(gageData)
```

Data import

```
colData <- read.csv("GSE37704_metadata.csv", row.names = 1)
countData <- read.csv("GSE37704_featurecounts.csv", row.names = 1)</pre>
```

head(colData)

condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd

head(countData)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

Tidy counts to match metadata

Check the correspondence of colData rows and countData columns.

rownames(colData)

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

colnames(countData)

```
[1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" [7] "SRR493371"
```

Remove the troublesome first column so we match the metadata

```
counts <- countData[, -1]
```

head(counts)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
all (rownames(colData) == colnames(counts))
```

[1] TRUE

Remove zero count genes

We will have rows in **counts** for genes that we can not say anything about because they have zero expression in the particular tissue we are looking at.

head(counts)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

If the rowSums() is zero then a given gene (i.e. row) has no data and we should exclude these genes from further consideration.

```
to.keep <- rowSums(counts) != 0
cleancounts <- counts[to.keep, ]</pre>
```

Q. How many genes do we have left?

```
nrow(cleancounts)
```

[1] 15975

Setup DESeq object for analysis

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq analysis

```
dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
#Extract the results
res <- results(dds)</pre>
head(res)
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 6 columns
                 baseMean log2FoldChange
                                             lfcSE
                                                          stat
                                                                    pvalue
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                 <numeric>
ENSG00000279457
                  29.9136
                               0.1792571 0.3248216
                                                     0.551863 5.81042e-01
                               0.4264571 0.1402658
ENSG00000187634 183.2296
                                                      3.040350 2.36304e-03
ENSG00000188976 1651.1881
                              -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000187961 209.6379
                               0.7297556 0.1318599
                                                     5.534326 3.12428e-08
ENSG00000187583
                  47.2551
                               0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187642
                  11.9798
                               0.5428105 0.5215599 1.040744 2.97994e-01
                       padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

Add Gene Annotation

```
head(rownames(res))
[1] "ENSG00000279457" "ENSG00000187634" "ENSG00000188976" "ENSG00000187961"
[5] "ENSG00000187583" "ENSG00000187642"
res$symbol <- mapIds(x=org.Hs.eg.db,
                     keys=rownames(res),
                     keytype="ENSEMBL",
                     column="SYMBOL")
'select()' returned 1:many mapping between keys and columns
head(res)
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 7 columns
                 baseMean log2FoldChange
                                             lfcSE
                                                         stat
                                                                   pvalue
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                <numeric>
ENSG00000279457
                  29.9136
                               0.1792571 0.3248216
                                                     0.551863 5.81042e-01
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                     3.040350 2.36304e-03
ENSG00000188976 1651.1881
                              -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000187961 209.6379
                               0.7297556 0.1318599 5.534326 3.12428e-08
                               0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187583
                 47.2551
                               0.5428105 0.5215599 1.040744 2.97994e-01
ENSG00000187642
                11.9798
                                 symbol
                       padj
                  <numeric> <character>
ENSG00000279457 6.86555e-01
                                     NA
ENSG00000187634 5.15718e-03
                                 SAMD11
ENSG00000188976 1.76549e-35
                                 NOC2L
ENSG00000187961 1.13413e-07
                                 KLHL17
ENSG00000187583 9.19031e-01
                                PLEKHN1
ENSG00000187642 4.03379e-01
                                  PERM1
res$entrez <- mapIds(x=org.Hs.eg.db,</pre>
                     keys=rownames(res),
                     keytype="ENSEMBL",
                     column="ENTREZID")
```

head(res)

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 8 columns

```
baseMean log2FoldChange
                                           lfcSE
                                                       stat
                                                                 pvalue
                              <numeric> <numeric> <numeric>
               <numeric>
                                                              <numeric>
ENSG00000279457
                 29.9136
                              0.1792571 0.3248216
                                                   0.551863 5.81042e-01
ENSG00000187634 183.2296
                              0.4264571 0.1402658
                                                   3.040350 2.36304e-03
ENSG00000188976 1651.1881
                           -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000187961 209.6379
                              0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583 47.2551
                              0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187642
                11.9798
                              0.5428105 0.5215599 1.040744 2.97994e-01
                      padj
                                symbol
                                            entrez
                 <numeric> <character> <character>
ENSG00000279457 6.86555e-01
                                    NΑ
ENSG00000187634 5.15718e-03
                                SAMD11
                                           148398
ENSG00000188976 1.76549e-35
                                NOC2L
                                            26155
ENSG00000187961 1.13413e-07
                                KLHL17
                                           339451
ENSG00000187583 9.19031e-01
                               PLEKHN1
                                            84069
ENSG00000187642 4.03379e-01
                                 PERM1
                                            84808
```

head(res)

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

pvalue	stat	lfcSE	log2FoldChange	baseMean	
<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	
5.81042e-01	0.551863	0.3248216	0.1792571	29.9136	ENSG00000279457
2.36304e-03	3.040350	0.1402658	0.4264571	183, 2296	ENSG00000187634

^{&#}x27;select()' returned 1:many mapping between keys and columns

```
ENSG00000188976 1651.1881
                             -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000187961 209.6379
                              0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583
                47.2551
                              0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187642
                 11.9798
                              0.5428105 0.5215599 1.040744 2.97994e-01
                      padj
                                symbol
                                            entrez
                                                                     name
                 <numeric> <character> <character>
                                                              <character>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
                                SAMD11
                                            148398 sterile alpha motif ...
ENSG00000188976 1.76549e-35
                                NOC2L
                                            26155 NOC2 like nucleolar ...
ENSG00000187961 1.13413e-07
                                            339451 kelch like family me..
                                KLHL17
ENSG00000187583 9.19031e-01
                                             84069 pleckstrin homology ...
                               PLEKHN1
ENSG00000187642 4.03379e-01
                                 PERM1
                                             84808 PPARGC1 and ESRR ind..
```

```
res = res[order(res$pvalue),]
head(res)
```

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

	baseMean	log2FoldChang	e lfcSE	: stat	pvalue
	<numeric></numeric>	<numeric< td=""><td><pre>> <numeric></numeric></pre></td><td><pre><numeric></numeric></pre></td><td><numeric></numeric></td></numeric<>	<pre>> <numeric></numeric></pre>	<pre><numeric></numeric></pre>	<numeric></numeric>
ENSG00000117519	4483.63	-2.4227	2 0.0600016	-40.3776	0
ENSG00000183508	2053.88	3.2019	6 0.0724172	44.2154	0
ENSG00000159176	5692.46	-2.3137	4 0.0575534	-40.2016	0
ENSG00000150938	7442.99	-2.0596	3 0.0538449	-38.2512	0
ENSG00000116016	4423.95	-1.8880	2 0.0431680	-43.7366	0
ENSG00000136068	3796.13	-1.6497	9 0.0439354	-37.5504	0
	padj	symbol	entrez		name
	<numeric></numeric>	<character> <</character>	character>		<character></character>
ENSG00000117519	0	CNN3	1266		calponin 3
ENSG00000183508	0	TENT5C	54855	terminal n	ucleotidyl
ENSG00000159176	0	CSRP1	1465	cysteine a	nd glycine
ENSG00000150938	0	CRIM1	51232	cysteine r	ich transm
ENSG00000116016	0	EPAS1	2034	endothelia	l PAS doma
ENSG00000136068	0	FLNB	2317		filamin B

Save my results to a CSV file

```
write.csv(res, file = "results.csv")
```

Result Visualization

```
mycols <- rep("gray", nrow(res))
mycols[res$log2FoldChange <= -2] <- "blue"
mycols[res$log2FoldChange >= 2] <- "blue"

mycols[res$padj >= 0.05] <- "gray"

plot(res$log2FoldChange, -log(res$padj), col=mycols)
abline(v=-2, col="red")
abline(v=+2, col="red")
abline(h=-log(0.05), col="red")</pre>
```



```
library(ggplot2)

ggplot(res) +
  aes(log2FoldChange, -log(padj)) +
  geom_point(col = mycols)
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`).

Pathway Analysis

```
data(kegg.sets.hs)
data(sigmet.idx.hs)
head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                        "10720"
                                 "10941"
                                          "151531" "1548"
                                                             "1549"
                                                                      "1551"
 [9] "1553"
              "1576"
                        "1577"
                                          "1807"
                                 "1806"
                                                   "1890"
                                                             "221223" "2990"
[17] "3251"
              "3614"
                        "3615"
                                 "3704"
                                          "51733"
                                                   "54490"
                                                             "54575"
                                                                      "54576"
[25] "54577"
              "54578"
                       "54579"
                                 "54600"
                                          "54657"
                                                   "54658"
                                                             "54659"
                                                                      "54963"
[33] "574537" "64816"
                       "7083"
                                 "7084"
                                          "7172"
                                                   "7363"
                                                             "7364"
                                                                      "7365"
[41] "7366"
              "7367"
                        "7371"
                                 "7372"
                                          "7378"
                                                   "7498"
                                                             "79799"
                                                                      "83549"
                        "9"
                                 "978"
[49] "8824"
              "8833"
$`hsa01100 Metabolic pathways`
   [1] "10"
                   "100"
                                "10007"
                                            "100137049" "10020"
                                                                     "10026"
```

[7]	"100510686"	"10063"	"10157"	"10170"	"10195"	"10201"
[13]	"10229"	"10312"	"10317"	"10327"	"10331"	"1036"
[19]	"10380"	"10390"	"1040"	"10400"	"10402"	"10423"
[25]	"10449"	"10476"	"10554"	"10555"	"10558"	"1056"
[31]	"10588"	"10606"	"10621"	"10622"	"10623"	"10632"
[37]	"10654"	"1066"	"10678"	"10682"	"10690"	"10714"
[43]	"10720"	"10768"	"10797"	"10826"	"10841"	"10855"
[49]	"10873"	"10901"	"10905"	"10941"	"10975"	"10993"
[55]	"10998"	"11019"	"11041"	"1109"	"11112"	"11128"
[61]	"1119"	"1120"	"11226"	"11227"	"11232"	"112483"
[67]	"11253"	"11282"	"11285"	"113026"	"11320"	"11343"
[73]	"113451"	"113612"	"114805"	"1152"	"1158"	"1159"
[79]	"1160"	"116285"	"117248"	"119548"	"120227"	"121278"
[85]	"122481"	"122622"	"123099"	"123745"	"123876"	"124"
[91]	"124454"	"124975"	"125"	"125061"	"125965"	"125981"
[97]	"126"	"126328"	"126792"	"127"	"127124"	"128"
[103]	"128869"	"129607"	"129642"	"130"	"130013"	"131"
[109]	"1312"	"131669"	"132"	"132158"	"1327"	"132789"
[115]	"1329"	"1337"	"1339"	"1340"	"134147"	"1345"
[121]	"1349"	"1350"	"1351"	"135152"	"1352"	"1353"
[127]	"1355"	"1371"	"1373"	"137964"	"138050"	"138429"
[133]	"139596"	"140838"	"1431"	"144193"	"144245"	"145226"
[139]	"146664"	"1491"	"15"	"1503"	"150763"	"151056"
[145]	"151531"	"1537"	"154141"	"1543"	"1544"	"1548"
[151]	"1549"	"155066"	"1551"	"1553"	"1555"	"1557"
[157]	"1558"	"1559"	"1562"	"1571"	"1573"	"157506"
[163]	"1576"	"1577"	"1579"	"158"	"1581"	"1582"
[169]	"1583"	"1584"	"1585"	"1586"	"1588"	"1589"
[175]	"159"	"1593"	"1594"	"1595"	"160287"	"1603"
[181]	"1606"	"1607"	"1608"	"160851"	"1609"	"1610"
[187]	"1621"	"162417"	"162466"	"1629"	"1633"	"1635"
[193]	"1638"	"1644"	"1650"	"166929"	"168391"	"169355"
[199]	"170712"	"171568"	"1716"	"1717"	"1718"	"1719"
[205]	"1723"	"1737"	"1738"	"1743"	"1757"	"178"
[211]	"1786"	"1787"	"1788"	"1789"	"1798"	"18"
[217]	"1806"	"1807"	"1841"	"1854"	"189"	"1890"
[223]	"1892"	"191"	"192134"	"1962"	"197258"	"199857"
[229]	"201595"	"2023"	"2026"	"2027"	"203"	"204"
[235]	"205"	"2053"	"2058"	"210"	"211"	"212"
[241]	"2131"	"2132"	"2134"	"2135"	"2137"	"216"
[247]	"217"	"218"	"2180"	"2181"	"2182"	"2184"
[253]	"219"	"2194"	"220"	"2203"	"221"	"221223"
[259]	"221823"	"222"	"2222"	"2224"	"223"	"2235"

[265]	"224"	"226"	"2271"	"22845"	"22856"	"229"
[271]	"22928"	"22929"	"22934"	"22978"	"230"	"23057"
[277]	"231"	"23193"	"23236"	"23305"	"23382"	"23396"
[283]	"23417"	"23475"	"23483"	"23498"	"23530"	"23545"
[289]	"23553"	"23556"	"2356"	"23600"	"23649"	"23761"
[295]	"239"	"240"	"242"	"245972"	"245973"	"246"
[301]	"246721"	"247"	"248"	"249"	"250"	"251"
[307]	"2523"	"2524"	"2525"	"2526"	"2527"	"2528"
[313]	"2529"	"2530"	"2531"	"253558"	"2538"	"2539"
[319]	"254531"	"2548"	"256435"	"2571"	"2572"	"25796"
[325]	"2581"	"2582"	"2583"	"25834"	"2584"	"2585"
[331]	"2588"	"25885"	"2589"	"2590"	"25902"	"2591"
[337]	"2592"	"259230"	"2593"	"259307"	"2595"	"2597"
[343]	"26007"	"26035"	"2618"	"262"	"26227"	"26229"
[349]	"26275"	"26279"	"2628"	"26289"	"2629"	"26290"
[355]	"26301"	"2632"	"26330"	"2639"	"2643"	"2645"
[361]	"2650"	"2651"	"2673"	"2678"	"2683"	"2686"
[367]	"2687"	"270"	"27010"	"27034"	"27087"	"27089"
[373]	"27090"	"271"	"2710"	"2712"	"27124"	"27165"
[379]	"272"	"2720"	"27235"	"2729"	"2730"	"27306"
[385]	"2731"	"27349"	"27430"	"2744"	"2746"	"2747"
[391]	"275"	"2752"	"276"	"2762"	"277"	"278"
[397]	"279"	"2799"	"28"	"280"	"2805"	"2806"
[403]	"2821"	"283208"	"283871"	"284098"	"284541"	"2875"
[409]	"290"	"29071"	"2937"	"2954"	"29796"	"2987"
[415]	"29880"	"2990"	"29906"	"29920"	"29922"	"29925"
[421]	"29926"	"29929"	"29947"	"29958"	"29968"	"30"
[427]	"3028"	"3030"	"3032"	"3033"	"3034"	"3067"
[433]	"3073"	"3074"	"3081"	"30814"	"30815"	"30833"
[439]	"30834"	"3098"	"3099"	"31"	"3101"	"314"
[445]	"3141"	"3145"	"3155"	"3156"	"3157"	"3158"
[451]	"316"	"317749"	"32"	"3242"	"3251"	"326625"
[457]	"3283"	"3284"	"3290"	"3291"	"3292"	"3293"
[463]	"3294"	"3295"	"33"	"3340"	"3373"	"337876"
[469]	"339221"	"34"	"340485"	"341392"	"3417"	"3418"
[475]	"3419"	"341947"	"3420"	"3421"	"3422"	"3423"
[481]	"3425"	"348158"	"349565"	"35"	"353"	"36"
[487]	"3612"	"3613"	"3614"	"3615"	"3620"	"3628"
[493]	"3631"	"3632"	"3633"	"3636"	"37"	"3703"
[499]	"3704"	"3705"	"3706"	"3707"	"3712"	"374291"
[505]	"374378"	"3795"	"38"	"383"	"384"	"387787"
[511]	"39"	"3906"	"391013"	"3938"	"3939"	"3945"
[517]	33	3300	331013	3330	5959	33 4 3

[523]	"411"	"4121"	"4122"	"4124"	"4128"	"4129"
	"4143"	"4144"	"4190"	"4191"	"4199"	"4245"
[535]	"4247"	"4248"	"4249"	"427"	"4329"	"435"
[541]	"4351"	"4357"	"438"	"440"	"440138"	"440567"
[547]	"441024"	"441531"	"442117"	"445"	"4507"	"4508"
[553]	"4509"	"4512"	"4513"	"4514"	"4519"	"4522"
[559]	"4524"	"4535"	"4536"	"4537"	"4538"	"4539"
[565]	"4540"	"4541"	"4548"	"4594"	"4597"	"4598"
[571]	"4669"	"4694"	"4695"	"4696"	"4697"	"4698"
[577]	"47"	"4700"	"4701"	"4702"	"4704"	"4705"
[583]	"4706"	"4707"	"4708"	"4709"	"471"	"4710"
[589]	"4711"	"4712"	"4713"	"4714"	"4715"	"4716"
[595]	"4717"	"4718"	"4719"	"4720"	"4722"	"4723"
[601]	"4724"	"4725"	"4726"	"4728"	"4729"	"4731"
[607]	"48"	"4830"	"4831"	"4832"	"4833"	"4837"
[613]	"4842"	"4843"	"4846"	"4860"	"4907"	"493911"
[619]	"4942"	"4952"	"4953"	"4967"	"498"	"50"
[625]	"5009"	"501"	"5033"	"5048"	"50484"	"50487"
[631]	"5049"	"5050"	"5051"	"5053"	"506"	"50614"
[637]	"50617"	"50700"	"50814"	"509"	"5091"	"5095"
[643]	"5096"	"51"	"51004"	"5105"	"51056"	"5106"
[649]	"51074"	"51082"	"51084"	"51102"	"51109"	"51144"
[655]	"51166"	"51179"	"51181"	"51196"	"51227"	"51251"
[661]	"51268"	"513"	"5130"	"51301"	"51380"	"51382"
[667]	"514"	"51477"	"51478"	"515"	"51540"	"516"
[673]	"5160"	"51601"	"51604"	"51606"	"5161"	"5162"
[679]	"5167"	"5169"	"517"	"51703"	"51727"	"51728"
[685]	"51733"	"51763"	"518"	"51805"	"51809"	"5198"
[691]	"521"	"5211"	"5213"	"5214"	"522"	"5223"
[697]	"5224"	"5226"	"523"	"5230"	"5232"	"5236"
[703]	"525"	"526"	"527"	"5277"	"5279"	"528"
[709]	"5281"	"5283"	"5286"	"5287"	"5288"	"5289"
[715]	"529"	"5297"	"5298"	"5313"	"5315"	"5319"
[721]	"5320"	"5321"	"5322"	"533"	"5330"	"5331"
[727]	"5332"	"5333"	"5335"	"53354"	"5336"	"5337"
[733]	"5338"	"534"	"535"	"53630"	"537"	"5372"
[739]	"5373"	"539"	"53947"	"5406"	"5407"	"5408"
[745]	"5409"	"54107"	"54187"	"5422"	"5424"	"5425"
[751]	"5426"	"5427"	"5428"	"5430"	"5431"	"5432"
[757]	"5433"	"5434"	"54344"	"5435"	"5436"	"54363"
[763]	"5437"	"5438"	"5439"	"5440"	"5441"	"5444"
[769]	"5445"	"5446"	"54480"	"54490"	"54575"	"54576"
[775]	"54577"	"54578"	"54579"	"54600"	"54657"	"54658"

[781]	"54659"	"54675"	"5471"	"54802"	"548596"	"548644"
[787]	"549"	"54947"	"54963"	"54965"	"5498"	"54988"
[793]	"54995"	"55163"	"55191"	"55224"	"55229"	"55256"
[799]	"55276"	"55300"	"55301"	"55304"	"55312"	"55361"
[805]	"5538"	"55454"	"55500"	"55512"	"55568"	"5557"
[811]	"5558"	"55627"	"55650"	"55703"	"55750"	"55753"
[817]	"55790"	"55808"	"55821"	"55902"	"55907"	"56052"
[823]	"5625"	"56267"	"5631"	"5634"	"56474"	"56623"
[829]	"56624"	"56655"	"56848"	"56894"	"56895"	"56898"
[835]	"56901"	"56913"	"56922"	"56953"	"56994"	"570"
[841]	"57016"	"57026"	"57134"	"5723"	"5730"	"5740"
[847]	"5742"	"5743"	"57452"	"574537"	"57678"	"57804"
[853]	"57818"	"57834"	"5805"	"5831"	"5832"	"5833"
[859]	"58510"	"5859"	"586"	"5860"	"587"	"593"
[865]	"594"	"5980"	"60490"	"60495"	"6120"	"6184"
[871]	"6185"	"622"	"6240"	"6241"	"6296"	"6303"
[877]	"6307"	"6309"	"6342"	"635"	"6389"	"6390"
[883]	"6391"	"63917"	"6392"	"64087"	"64131"	"64132"
[889]	"64409"	"64425"	"6448"	"64579"	"64600"	"646625"
[895]	"6470"	"6472"	"6476"	"64768"	"6480"	"64802"
[901]	"64816"	"6482"	"6483"	"6484"	"6487"	"6489"
[907]	"64902"	"65220"	"65263"	"654364"	"6609"	"661"
[913]	"6610"	"6611"	"6652"	"6675"	"6677"	"669"
[919]	"6697"	"6713"	"6718"	"6723"	"683"	"686"
[925]	"6888"	"6898"	"6916"	"6999"	"7054"	"7083"
[931]	"7084"	"7086"	"7108"	"7166"	"7167"	"7173"
[937]	"7263"	"7264"	"729020"	"7298"	"7299"	"7306"
[943]	"7357"	"7358"	"7360"	"7363"	"7364"	"7365"
[949]	"7366"	"7367"	"7368"	"7371"	"7372"	"7378"
[955]	"7381"	"7384"	"7385"	"7386"	"7388"	"7389"
[961]	"7390"	"7498"	"7841"	"790"	"79053"	"79087"
[967]	"7915"	"79178"	"7923"	"79369"	"7941"	"79586"
[973]	"79611"	"79623"	"79646"	"79695"	"79717"	"79796"
[979]	"79799"	"79814"	"79868"	"79888"	"7991"	"80025"
[985]	"80055"	"80142"	"80146"	"80201"	"80270"	"80308"
[991]	"80339"	"80347"	"8050"	"81490"	"81579"	"81616"
[997]	"81849"	"81888"	"8277"	"8309"	"8310"	"83440"
[1003]	"83549"	"8372"	"8382"	"8394"	"8395"	"8398"
[1009]	"8399"	"84002"	"84076"	"84172"	"84245"	"84265"
[1015]	"84274"	"84284"	"84532"	"84618"	"84620"	"84647"
[1021]	"84649"	"84693"	"847"	"84701"	"84706"	"84720"
[1027]	"84735"	"84803"	"84812"	"84890"	"84920"	"84992"
[1033]	"8509"	"8513"	"8525"	"8526"	"8527"	"8529"

```
[1039] "85365"
                    "8540"
                                  "85465"
                                               "8560"
                                                            "8564"
                                                                         "8566"
[1045] "8608"
                                 "8612"
                                               "8613"
                                                            "8630"
                                                                         "8639"
                    "8611"
[1051] "8659"
                    "8681"
                                 "8692"
                                               "8693"
                                                            "8694"
                                                                         "8702"
[1057] "8703"
                    "8704"
                                 "8705"
                                               "8706"
                                                            "8707"
                                                                         "8708"
                    "8733"
                                 "874"
                                               "875"
[1063] "873"
                                                            "8760"
                                                                         "8789"
[1069] "8790"
                    "8801"
                                 "8802"
                                               "8803"
                                                            "8813"
                                                                         "8818"
[1075] "8821"
                    "883"
                                 "8833"
                                               "8854"
                                                            "8867"
                                                                         "8869"
[1081] "8871"
                    "8877"
                                 "8879"
                                               "8942"
                                                            "8972"
                                                                         "8974"
[1087] "89869"
                    "8992"
                                 "9"
                                               "90423"
                                                            "9060"
                                                                         "9061"
[1093] "9091"
                    "9114"
                                 "91373"
                                              "9162"
                                                            "91734"
                                                                         "9197"
[1099] "9245"
                    "92483"
                                 "9249"
                                               "9296"
                                                            "93034"
                                                                         "93183"
[1105] "9331"
                    "9348"
                                 "9374"
                                               "9377"
                                                            "9380"
                                                                         "9388"
[1111] "94005"
                                                                         "9489"
                    "9453"
                                 "9468"
                                               "9487"
                                                            "9488"
[1117] "95"
                                               "952"
                                                            "9533"
                                                                         "9536"
                    "9514"
                                 "9517"
                                                                         "978"
[1123] "9550"
                    "9551"
                                 "9563"
                                               "9588"
                                                            "9615"
[1129] "9791"
                    "9942"
                                 "9945"
```

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
1266 54855 1465 51232 2034 2317 -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
```

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

attributes(keggres)

\$names

[1] "greater" "less" "stats"

head(keggres\$less)

```
p.geomean stat.mean
hsa04110 Cell cycle 8.995727e-06 -4.378644
hsa03030 DNA replication 9.424076e-05 -3.951803
hsa05130 Pathogenic Escherichia coli infection 1.405864e-04 -3.765330
hsa03013 RNA transport 1.375901e-03 -3.028500
hsa03440 Homologous recombination 3.066756e-03 -2.852899
hsa04114 Oocyte meiosis 3.784520e-03 -2.698128
```

```
p.val q.val
hsa04110 Cell cycle
                                              8.995727e-06 0.001889103
hsa03030 DNA replication
                                              9.424076e-05 0.009841047
hsa05130 Pathogenic Escherichia coli infection 1.405864e-04 0.009841047
hsa03013 RNA transport
                                              1.375901e-03 0.072234819
hsa03440 Homologous recombination
                                              3.066756e-03 0.128803765
hsa04114 Oocyte meiosis
                                              3.784520e-03 0.132458191
                                              set.size
                                                               exp1
hsa04110 Cell cycle
                                                   121 8.995727e-06
hsa03030 DNA replication
                                                    36 9.424076e-05
hsa05130 Pathogenic Escherichia coli infection
                                                   53 1.405864e-04
hsa03013 RNA transport
                                                   144 1.375901e-03
hsa03440 Homologous recombination
                                                    28 3.066756e-03
hsa04114 Oocyte meiosis
                                                   102 3.784520e-03
```

pathview(gene.data=foldchanges, pathway.id="hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/michael/Desktop/BIMM143/class14

Info: Writing image file hsa04110.pathview.png

Figure 1: hsa04110

pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)

'select()' returned 1:1 mapping between keys and columns

Warning: reconcile groups sharing member nodes!

Info: Working in directory /Users/michael/Desktop/BIMM143/class14

```
Info: Writing image file hsa04110.pathview.pdf
```

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]</pre>
# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids
[1] "hsa04060" "hsa05323" "hsa05146" "hsa05332" "hsa04640"
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/michael/Desktop/BIMM143/class14
Info: Writing image file hsa04060.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/michael/Desktop/BIMM143/class14
Info: Writing image file hsa05323.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/michael/Desktop/BIMM143/class14
Info: Writing image file hsa05146.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/michael/Desktop/BIMM143/class14
Info: Writing image file hsa05332.pathview.png
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/michael/Desktop/BIMM143/class14

Info: Writing image file hsa04640.pathview.png

Figure 2: hsa04060

Figure 3: hsa05146

Figure 4: hsa0460

```
keggrespathways <- rownames(keggres$less)[1:5]</pre>
# Extract the 8 character long IDs part of each string
keggresids_2 = substr(keggrespathways, start=1, stop=8)
keggresids 2
[1] "hsa04110" "hsa03030" "hsa05130" "hsa03013" "hsa03440"
pathview(gene.data=foldchanges, pathway.id=keggresids_2, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/michael/Desktop/BIMM143/class14
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/michael/Desktop/BIMM143/class14
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/michael/Desktop/BIMM143/class14
Info: Writing image file hsa05130.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/michael/Desktop/BIMM143/class14
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/michael/Desktop/BIMM143/class14
```

Info: Writing image file hsa03440.pathview.png

Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)

gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
lapply(gobpres, head)
```

\$greater

p.geomean stat.mean

p.val

```
GO:0007156 homophilic cell adhesion
                                          8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                          1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior
                                          1.925222e-04 3.565432 1.925222e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
GO:0007156 homophilic cell adhesion
                                          0.1951953
                                                         113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                          0.1951953
                                                         424 1.432451e-04
                                                         426 1.925222e-04
GO:0007610 behavior
                                          0.1967577
GO:0060562 epithelial tube morphogenesis 0.3565320
                                                         257 5.932837e-04
                                          0.3565320
                                                         391 5.953254e-04
GO:0035295 tube development
$less
                                            p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0007059 chromosome segregation
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                       exp1
                                         5.841698e-12
GO:0048285 organelle fission
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0007067 mitosis
                                                           352 4.286961e-15
                                         5.841698e-12
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                           362 1.169934e-14
                                         1.658603e-08
GO:0007059 chromosome segregation
                                                           142 2.028624e-11
GO:0000236 mitotic prometaphase
                                                            84 1.729553e-10
                                         1.178402e-07
$stats
                                          stat.mean
                                                        exp1
GO:0007156 homophilic cell adhesion
                                           3.824205 3.824205
GO:0002009 morphogenesis of an epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesis
                                           3.643242 3.643242
GO:0007610 behavior
                                           3.565432 3.565432
GO:0060562 epithelial tube morphogenesis
                                           3.261376 3.261376
GO:0035295 tube development
                                           3.253665 3.253665
head(gobpres$less, 5)
```

p.geomean stat.mean p.val

```
GO:0048285 organelle fission
                                        1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                        4.286961e-15 -7.939217 4.286961e-15
GD:0007067 mitosis
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
                                               q.val set.size
                                                                     exp1
GO:0048285 organelle fission
                                        5.841698e-12
                                                         376 1.536227e-15
GO:0000280 nuclear division
                                        5.841698e-12
                                                         352 4.286961e-15
GO:0007067 mitosis
                                                         352 4.286961e-15
                                        5.841698e-12
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                         362 1.169934e-14
GO:0007059 chromosome segregation
                                        1.658603e-08
                                                         142 2.028624e-11
```

Reactome analysis online

We need to take a little file of our significant genes that we can upload to the reactom webpage:

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
sig_genes[6]
```

ENSG00000136068 "FLNB"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote
```

Then, to perform pathway analysis online go to the Reactome website (https://reactome.org/PathwayBrowser/# Select "choose file" to upload your significant gene list. Then, select the parameters "Project to Humans", then click "Analyze".

