TP PCFOL (Propositional Calculus and First Order Logic) Techniques of AI [INFO-H-410]

Correction

v1.0.0

Source files, code templates and corrections related to practical sessions can be found on the UV or on github (https://github.com/iridia-ulb/INFOH410).

Representation and Interpretation of Boolean Functions

Symbol	Name
0	FALSE
1	TRUE
$A / \neg A$	NOT A
$A \wedge B$	A AND B
$A \lor B$	A OR B
$A \oplus B$	A XOR B

Propositional Calculus

Question 1. Use truth tables to prove the following equivalences:

a)
$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

b)
$$P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$$

c)
$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

d)
$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

e)
$$P \Rightarrow Q \equiv \neg P \lor Q$$

Answer:

a)
$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

P	Q	R	$(Q \vee R)$	$(P \wedge Q)$	$(P \wedge R)$	$P \wedge (Q \vee R)$	$(P \land Q) \lor (P \land R)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	0	1	1	1
1	1	0	1	1	0	1	1
1	1	1	1	1	1	1	1

b) $P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$

P	Q	R	$(Q \wedge R)$	$(P \lor Q)$	$(P \vee R)$	$P \lor (Q \land R)$	$(P \vee Q) \wedge (P \vee R)$
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

c) $\neg (P \land Q) \equiv \neg P \lor \neg Q$

P	Q	$(P \wedge Q)$	$\neg P$	$\neg Q$	$\neg (P \land Q)$	$\neg P \lor \neg Q$
0	0	0	1	1	1	1
0	1	0	1	0	1	1
1	0	0	0	1	1	1
1	1	1	0	0	0	0

d) $\neg (P \lor Q) \equiv \neg P \land \neg Q$

P	Q	$(P \lor Q)$	$\neg P$	$\neg Q$	$\neg (P \lor Q)$	$\neg P \wedge \neg Q$
0	0	0	1	1	1	1
0	1	1	1	0	0	0
1	0	1	0	1	0	0
1	1	1	0	0	0	0

e) $P \Rightarrow Q \equiv \neg P \lor Q$

P	Q	$P \Rightarrow Q$	$\neg P$	$\neg P \lor Q$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	1	0	1

Question 2. Formulate the following expressions as propositional sentences:

- a) If the unicorn is magical, then it is immortal.
- b) If the unicorn is not magical, then it is a mortal mammal.
- c) If the unicorn is either immortal or a mammal, then it is horned.

Using truth tables, can you prove whether the unicorn is magical? Immortal? Horned?

Answer: We use G for magical, O for mortal, M for mammal and H for horned.

a)
$$G \Rightarrow \neg O$$

b)
$$\neg G \Rightarrow (O \land M)$$

c)
$$(\neg O \lor M) \Rightarrow H$$

We can prove that the Unicorn is horned, but not whether it is magical, mortal nor mammal.

First Order propositions

Question 3. Convert those expressions to first order logic expressions.

- a) All roads lead to Rome.
- b) All that glitters is not gold.
- c) The enemy of my enemy is my friend.
- d) A dog is a man's best friend.

Answer:

- a) $\forall x, Road(x) \Rightarrow GoToRome(x)$
- b) $\neg(\forall x, Glitters(x) \Rightarrow Gold(x))$
- c) $\forall x, y, Enemy(Me, x) \land Enemy(x, y) \Rightarrow Friend(Me, y)$
- d) $\forall x, y, Man(x) \land BestFriend(x, y) \Rightarrow Dog(y)$

Resolution

Question 4. Prove the following using resolution (negate conclusion, convert to CNF, prove contradiction)

- a) Given $KB = \{P \land Q\}$, prove that $KB \models P \lor Q$.
- b) Given $KB = \{P \vee Q, Q \Rightarrow (R \wedge S), (P \vee R) \Rightarrow U\}$, prove that $KB \models U$.

Answer:

- a) Given $KB = \{P \land Q\}$, prove that $KB \models P \lor Q$.
 - Negate conclusion: $\neg P \land \neg Q$
 - Four sentences: $P, Q, \neg P, \neg Q$
 - Resolve P with $\neg P$, and Q with $\neg Q$ gives $\{\}$. This means we have a contradiction, or $KB \models P \lor Q$ is true.
- b) Given $KB = \{P \vee Q, Q \Rightarrow (R \wedge S), (P \vee R) \Rightarrow U\}$, prove that $KB \models U$.
 - Negate conclusion: $\neg U$.

- Convert to CNF: $KB = \{P \lor Q, (\neg Q \lor R) \land (\neg Q \lor S), (\neg P \lor U) \land (\neg R \lor U)\}.$
- 6 sentences.
- Resolve $\neg P \lor U$ with $\neg U$ which gives $\neg P$. $\neg R \lor U$ with $\neg U$ gives $\neg R$.
- $\neg P \lor Q$ and $\neg P$ resolves in Q.
- Q and $\neg Q \lor R$ resolves in R which contradicts with $\neg R$ from the first resolution. Thus, $KB \models U$ is true.

Question 5. On the island of Knights and Knaves, everything a Knight says is true and everything a Knave says is false. You meet two people, Alice and Bob:

- Alice says "Neither Bob nor I are Knaves"
- Bob says "Alice is a Knave"

Using the proposition A to represent "Alice is a Knight" ($\neg A$ means "Alice is a Knave") and B to represent "Bob is a Knight".

- a) Formulate what Alice and Bob said.
- b) Formulate that what they said is true if and only if they are knights.
- c) Put those into CNF form.
- d) Use resolution to prove who is what.

Answer:

a) Formulate what Alice and Bob said.

Alice: $A \wedge B$, Bob: $\neg A$.

b) Formulate that what they said is true if and only if they are knights.

Alice: $A \Leftrightarrow A \wedge B$, Bob: $B \Leftrightarrow \neg A$

- c) Put those into CNF form.
 - $A \Leftrightarrow A \wedge B$
 - $A \Rightarrow A \land B, A \land B \Rightarrow A$
 - $\neg A \lor (A \land B), \neg (A \land B) \lor A$
 - $\neg A \lor A$ (tautology), $\neg A \land B$, $\neg A \lor A \lor \neg B$ (tautology)
 - $B \Leftrightarrow \neg A$
 - $B \Rightarrow \neg A, \neg A \Rightarrow B$
 - $\neg B \lor \neg A, A \lor B$
- d) Use resolution to prove who is what.
 - $\neg A \lor B$, $A \lor B$: B (proof that Bob is a knight)

page 5

• Now we know that B is true, so since $B \Rightarrow \neg A$: $\neg A$. (Alice is a Knave)

Question 6. From "Sheep are animals", it follows that "The head of a sheep is the head of an animal." Demonstrate that this inference is valid by carrying out the following steps:

- a) Translate the premise and the conclusion into the language of first-order logic. Use three predicates: H(h,x) (meaning "h is the head of x"), S(x) (Sheep(x)), and A(x) (Animal(x)).
- b) Negate the conclusion, and convert the premise and the negated conclusion into conjunctive normal form.
- c) Conclude.

Answer:

- a) $\forall x, S(x) \Rightarrow A(x)$, and $\forall x, y, H(y, z) \land S(z) \Rightarrow H(y, z) \land A(z)$
- b) Which translate to, once the arrows are transformed: $\forall x, \neg S(x) \lor A(x)$, and $\forall y, z, \neg (H(y, z) \land S(z) \lor (H(y, z) \land A(z))$

then we negate the conclusion: $\neg(\forall y, z, \neg(H(y, z) \land S(z) \lor (H(y, z) \land A(z)))$ switch to existential to move the negation: $\exists y, z, \neg(\neg(H(y, z) \land S(z) \lor (H(y, z) \land A(z)))$

Use De Morgan laws twice: $\exists y, z, H(y, z) \land S(z) \land (\neg H(y, z) \lor \neg A(z))$

Skolemize: $H(Y0, Z0) \wedge S(Z0) \wedge (\neg H(Y0, Z0) \vee \neg A(Z0))$

Knowledge base of the problem:

- H(Y0, Z0)
- *S*(*Z*0)
- $\neg H(Y0, Z0) \lor \neg A(Z0)$
- $\bullet \neg S(x) \lor A(x)$
- c) Resolve H(Y0, Z0) with $\neg H(Y0, Z0) \lor \neg A(Z0)$ gives $\neg A(Z0)$ Then resolve $\neg S(x) \lor A(x)$ with $\neg A(Z0)$ with unifier $\{Z0/x\}$ Resolve $\neg S(Z0)$ with S(Z0) gives contradiction.