10000 Hz

500 samples

50 Hz

Fs

buffer size

f_stop

N_buffers_in_deque	21 int	
deque_size N_taps		= buffer_size * N_buffers_in_deque = buffer_size * (N_buffers_in_deque - 1) + 1 == max that fits using deque_size

Fred Harris' approximation

f_pass

Multirate Signal Processing for Communication Systems, Fredric J. Harris, 2004, page 216, equation (8.16)

filter attenuation	22.00	dB	= N_taps * 22 * ((f_stop - f_pass) / F	S
			¬	

			_
N_sig_into_conv	10500	samples	= buffer_size + N_taps - 1 == deque_size by optimal design
offset_deque	0	samples	= deque_size - N_sig_into_conv == 0 by optimal design
N_conv_valid_out	500	samples	= deque_size - N_taps + 1 == buffer_size by optimal design
offset_valid	5000	samples	= INT((N_taps - 1) / 2)
offset_total	5000	samples	= offset_valid + offset_deque == offset_valid by optimal design
offset_total	0.50	S	= offset_total / Fs