Stable classification of 4-manifolds 2019-06-14 Regensburg Plan: LKS-Seminar 1) The Whitney trick - and why it does not work in dimension 4 (2) Removing intersections by tubing into other things, -#  $5^2 \times 5^2$ (3) Spin thickenings & equivariant intersection forms Everything in this talk will be smooth! Sources: [Scorpan: The wild world of 4-manifolds] [Kaspronshi, Powell, Teichner: Algebraic criteria for stable diffeomorphism of 4-manifolds] [Arunima Ray, Peter Teichner: The topology of 4-manifolds Class taught at the university of Bonn in the winter of 2018]





Need to turn algebraic cancellation into geometric cancellation









| howtopy equalent  An diffeomorphic to N after connected summing with sufficiently many capes of \$\frac{1}{2}\times \frac{1}{2}\times \frac | W     | oll '      | [196 | 05]  | :     | Μ,          | N   | c    | lose | d , s  | omo   | oth      | sim    | rply | cc  | nnec | tec         | k          | 4     | – m           | ani-          | folds   | >   |                 |                    |        |        |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|------|------|-------|-------------|-----|------|------|--------|-------|----------|--------|------|-----|------|-------------|------------|-------|---------------|---------------|---------|-----|-----------------|--------------------|--------|--------|---|
| honotopy equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Į.    | 1 2        | N    |      | =     | <b>&gt;</b> | /   | Λ    | h -  | cob    | مرما  | lant     | 5      | Łc   | ,   | N    |             |            |       |               |               |         |     |                 |                    |        |        |   |
| An diffeomorphic to N after connected summing with sufficiently many capies of $\mathbb{S}^2 \times \mathbb{S}^2$ stabilization  Proof:  Of $\textcircled{O}$ : The program for the proof of the h-cob. theorem now works: Assuming that we believe that the only Whenever we need to get rid of intersection points, sections of whitney add a copy of $\mathbb{S}^2 \times \mathbb{S}^2$ .  Rem: With Luck, can use the same $\mathbb{S}^2 \times \mathbb{S}^2$ - term to eliminate several intersections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 5          |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
| many copies of $\mathbb{S}^2 \times \mathbb{S}^2$ Stabilization  Proof:  Of $\textcircled{\Rightarrow}$ : The program for the proof of the h-cob. theorem now works: Assuming that we believe that the only Whenever we need to get rid of intersection points, predom ore self-intersections of whitney of closes of whitney of the same $\mathbb{S}^2 \times \mathbb{S}^2$ .  Rem.: With Luck, can use the same $\mathbb{S}^2 \times \mathbb{S}^2$ - term to eliminate several intersections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | homo       | Hopy | equi | volei | nt          |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
| many copies of $\mathbb{S}^2 \times \mathbb{S}^2$ Stabilization  Proof:  Of $\textcircled{\Rightarrow}$ : The program for the proof of the h-cob. theorem now works: Assuming that we believe that the only Whenever we need to get rid of intersection points, predom ore self-intersections of whitney of closes of whitney of the same $\mathbb{S}^2 \times \mathbb{S}^2$ .  Rem.: With Luck, can use the same $\mathbb{S}^2 \times \mathbb{S}^2$ - term to eliminate several intersections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             | J.  | d:   | Mea. | 440~0  | hic   | 1,       |        | λJ   |     | Hoc  |             | 240.00     | ote   | 7             | Clin          | -ha 140 |     | مالم            | cull:              | cio. t | 1.,    |   |
| Stabilization  Proof:  Of $\textcircled{\Rightarrow}$ : The program for the proof of the h-cob. theorem now works: Assuming that we believe that the only Whenever we need to get rid of intersection points, and a copy of $\mathbb{S}^2 \times \mathbb{S}^2$ .  Rem.: With Luck, can use the same $\mathbb{S}^2 \times \mathbb{S}^2$ - term to eliminate several intersections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |            |      |      | 3     |             | /V\ | Oli  | MCO  | lvoi F | JAG C | U        | ,<br>  | /V   | ųτ  | rcer | ~~          | $\sim$     |       | $\overline{}$ | $\overline{}$ | $\sim$  |     |                 |                    |        | 9      |   |
| Proof:  Of $\bigcirc$ : The program for the proof of the h-cob. theorem now works: Assuming that we believe that the only Whenever we need to get rid of intersection points, redson are self-intersections of whitney dishes add a copy of $\mathbb{S}^2 \times \mathbb{S}^2$ .  Rem.: With Luck, can use the same $\mathbb{S}^2 \times \mathbb{S}^2$ - term to eliminate several intersections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      | mc          | any        | ထ     | pies          |               | 7+      | Ð   | ×               | <b>D</b>           |        |        |   |
| Proof:  Of $\bigcirc$ : The program for the proof of the h-cob. theorem now works: Assuming that we believe that the only Whenever we need to get rid of intersection points, redson are self-intersections of whitney dishes add a copy of $\mathbb{S}^2 \times \mathbb{S}^2$ .  Rem.: With Luck, can use the same $\mathbb{S}^2 \times \mathbb{S}^2$ - term to eliminate several intersections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             | ct         |       | 1,2           | 1             |         |     |                 |                    |        |        |   |
| Of (3): The program for the proof of the h-cob. theorem now works: Assuming that we believe that the only Whenever we need to get rid of intersection points, problem are self-intersection of intersection points, and a copy of $\mathbb{S}^2 \times \mathbb{S}^2$ .  Rem.: With Luck, can use the same $\mathbb{S}^2 \times \mathbb{S}^2$ - term to eliminate several intersections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             | ا <i>ر</i> | رد بی | 47            | uci           | ON      |     |                 |                    |        |        |   |
| Whenever we need to get rid of intersection points, points, sections of whitney add a copy of $\mathbb{S}^2 \times \mathbb{S}^2$ .  Rem.: With Luck, can use the same $\mathbb{S}^2 \times \mathbb{S}^2$ - term to eliminate several intersections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
| Whenever we need to get rid of intersection points, sections of whitney add a copy of $S^2 \times S^2$ .  Rem.: With Luck, can use the same $S^2 \times S^2$ - term to eliminate several intersections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OF (= | <u>) :</u> | The  | pro  | graw  | 1 fo        | У . | the  | - p  | rcof   | o-    | f th     | e      | h-   | -00 | Ь.   | Ehe         | 200        | em    | N             | o₩            | Ma      | -k. | <b>&gt;</b> : / |                    |        |        |   |
| add a copy of $S^2 \times S^2$ .  Rem.: With luck, can use the same $S^2 \times S^2$ - term to eliminate several intersections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W     | nen        | eve  | r ,  | we    | nee         | ed  | to   | , ge | t      | rid   | of       | \<br>- | tni  | جد  | sec  | stic        | DN.        | poi   | nte           | ١,            |         |     |                 | proble,<br>Section | n ores | whitne |   |
| Rem.: With luck, can use the same $5^2 \times 5^2$ -term to eliminate several intersections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |      |      |       |             |     |      |      |        |       | <u>'</u> |        |      |     |      |             |            | l     |               | 1             |         |     | \               | (                  | Salzik | 11     | / |
| intersections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |      | 17   |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ren   | n.: \      | WHL  | 1 L  | ck,   | са          | n ( | se   | th   | e s    | same  | و        | \$2    | £×   | 2   | – £  | erw         | 1          | to    | el            | imi           | nate    | 2   | sev             | eal                |        |        |   |
| We don't know any example where more than one stabilization is necessary!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | . (        | nter | -sec | tions | <b>.</b>    |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | We    | do         | * 't | k    | 1011  | Olns        | v e | 'XOW | mle  | . \.   | here  | · \      | ore    | Ŧ    | hai | ис   | MP          | ς.         | طما   | liza          | rki           | na io   | . v | e ce            | ·590v              | ~      | +++    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      | Υ-   | W      | 11-5  | - 11     |        |      |     |      | <i>/</i> (C |            |       |               |               |         | ,   |                 |                    | /      |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        | +      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |      |      |       |             |     |      |      |        |       |          |        |      |     |      |             |            |       |               |               |         |     |                 |                    |        | #      |   |









"conjugate transpose" Question: Parity? Def.:  $\lambda_M$  is called even if  $\lambda_M^{ad} = q + q^*$ for some qE Hom ZIT (IT2(M), IT2(M)\*)  $\lambda_{\mathbb{S}^2 \times \mathbb{S}^2} = \begin{pmatrix} \sigma & 1 \\ 1 & \sigma \end{pmatrix} = \begin{pmatrix} \sigma & 1 \\ \sigma & \sigma \end{pmatrix} + \begin{pmatrix} \sigma & \sigma \\ 1 & \sigma \end{pmatrix}$ Question: It finitely presented group Is Double (M) even? Rem: The owner does not depend on the presentation of It / Choice of Myc, because all nullbordant elements in Str (BI) are stably diffeomorphic (by Kreck) and > 5×52 is even Proposition: For  $\pi = \frac{Z}{m} \times \frac{Z}{n}$ , it is even! Rough idea: .) It is actually enough to check the evenness on any

Rough idea: ·) It is actually enough to check the evenness on any closed, spin,... 4-mfld. with  $\pi_1 \cong \mathbb{Z}_m \times \mathbb{Z}_n$ 

- ·) Use an action  $\frac{22}{m} \times \frac{22}{n}$   $\int_{1}^{1} rotote$   $\int_{2}^{3} rotote$
- •) Then perform surgery on the quotient to get rid of the contribution of the  $5^{\prime}$ -factor to  $\overline{\tau}_{3}$
- construct explicit representatives and court intersections