

Universidade Estadual de Feira de Santana Engenharia de Computação EXA868 Inteligência Artificial Não Simbólica Prof. Matheus Giovanni Pires

EPC 2

Data de Entrega: 15/03/2023

Um sistema de gerenciamento automático de ajuste de duas válvulas situado a 500 metros de um processo industrial envia um sinal codificado constituído de quatro grandezas {x1, x2, x3 e x4} que são necessárias para o ajuste de cada uma das válvulas. Conforme mostra a figura abaixo, a mesma via de comunicação é utilizada para acionamento de ambas as válvulas, sendo que o comutador localizado próximo das válvulas deve decidir se o sinal é para a válvula A ou B.

ic o comutador fo	canzado proximo das	s varvaras deve decidir se o	o sinai e para a	varvala 71 € V álvula		
		Comutador Adaline	Α	<u>+</u> arvula		
Sistema Gerenciador	Sistema					
X1 X2 X3 X4						
			Válvula B			

Entretanto, durante a transmissão dos sinais, eles sofrem interferências que alteram o conteúdo das informações contidas nos sinais transmitidos. Para resolver este problema, a equipe de engenheiros e cientistas pretende treinar uma rede ADALINE para classificar os sinais ruidosos e confirmar ao sistema comutador se os dados devem ser encaminhados para o comando de ajuste da válvula A ou B.

Assim, baseado nas medições dos sinais já com ruídos formou-se o conjunto de treinamento tomando por convenção o valor -1 para os sinais que devem ser encaminhados para o ajuste da válvula A e o valor +1 se os mesmos devem ser enviados para a válvula B. Assim, a estrutura do ADALINE é mostrada na figura abaixo.

Utilizando o algoritmo de treinamento da Regra Delta para classificação de padrões no ADALINE, realize as seguintes atividades:

1. Execute 5 treinamentos para a rede ADALINE inicializando o vetor de pesos em cada treinamento com valores aleatórios entre zero e um. Se for o caso, reinicie o gerador de números aleatórios em cada treinamento de tal forma que os elementos do vetor de pesos iniciais não sejam os mesmos. Utilize taxa de aprendizado $\eta = 0.0025$ e precisão $\varepsilon = 10^{-6}$.

2. Registre os resultados dos 5 treinamentos na tabela abaixo:

Treinament 0	Vetor de Pesos Inicial				Vetor de Pesos Final				Número de Épocas		
	W0	W 1	W2	W3	W4	W0	W 1	W2	W3	W4	
1°(T1)	0.425 1304 5	0.05 5201 49	0.71 6323 83	0.53 7458 25	0.69 0229 83	-1.8 1131 992	1.31 2580 44	1.6 414 052 2	-0. 426 425 01	-1.1 771 376 5	896
2°(T2)	0.971 6465	0.85 1207 84	0.00 5148 38	0.06 6826 34	0.17 4950 19	-1.8 1133 939	1.31 2566 15	1.6 413 930 6	-0. 426 473 71	-1.1 771 319 6	909
3°(T3)	0.411 9261 1	0.49 9939 27	0.25 1608 69	0.75 5126 98	0.55 5706 16	-1.8 1120 831	1.31 2587 6	1.6 413 808	-0. 426 295 01	-1.1 771 158 5	908
4°(T4)	0.053 0914 9	0.95 2051 79	0.13 3645 48	0.60 7179 35	0.64 2415 23	-1.8 1121 579	1.31 2569	1.6 413 596 6	-0. 426 339 76	-1.1 771 041 4	886
5°(T5)	0.702 8294 1	0.12 5916 78	0.55 8466 31	0.09 8088 26	0.26 0245 96	-1.8 1134 639	1.31 2545 3	1.6 413 69	-0. 426 522 3	-1.1 771 185 3	890

3. Para os treinamentos realizados acima, gere os respectivos gráficos dos valores de erro quadrático médio (EQM) em função de cada época de treinamento. Insira os gráficos numa mesma folha.

550 600 650 700 750 800 850 900

50 100 150 200 250 300 350 400 450 500

4. Para os treinamentos realizados acima, aplique a rede ADALINE para classificar e indicar ao comutador se os sinais abaixo devem ser encaminhados para a válvula A ou B.

	Comutador se os sinais adarxo devem ser encamminados para a varvura A ou D.									
Amost ra	X 1	X 2	X 3	X4	y (T1)	y (T2)	y (T3)	y (T4)	y (T5)	
1	0.9694	0.6909	0.4334	3.4965	A	A	A	A	A	
2	0.5427	1.3832	0.6390	4.0352	A	A	A	A	A	
3	0.6081	-0.9196	0.5925	0.1016	В	В	В	В	В	
4	-0.1618	0.4694	0.2030	3.0117	A	A	A	A	A	
5	0.1870	-0.2578	0.6124	1.7749	A	A	A	A	A	
6	0.4891	-0.5276	0.4378	0.6439	В	В	В	В	В	
7	0.3777	2.0149	0.7423	3.3932	В	В	В	В	В	
8	1.1498	-0.4067	0.2469	1.5866	В	В	В	В	В	
9	0.9325	1.0950	1.0359	3.3591	В	В	В	В	В	
10	0.5060	1.3317	0.9222	3.7174	A	A	A	A	A	
11	0.0497	-2.0656	0.6124	-0.6585	A	A	A	A	A	
12	0.4004	3.5369	0.9766	5.3532	В	В	В	В	В	
13	-0.1874	1.3343	0.5374	3.2189	A	A	A	A	A	
14	0.5060	1.3317	0.9222	3.7174	A	A	A	A	A	
15	1.6375	-0.7911	0.7537	0.5515	В	В	В	В	В	

- 5. Embora o número de épocas de cada treinamento realizado no item 2 seja diferente, explique por que então os valores dos pesos continuam praticamente inalterados.
- Acredito que pela natureza do problema, a região sobre a qual se consegue posicionar o hiperplano de forma a separar as classes de um modo que possibilite atingir esse nível de erro não é muito grande, portanto os pesos não mudem muito. Do contrário talvez, alterando a tolerância do erro os valores finais dos pesos pudessem variar mais significativamente.

OBSERVAÇÕES:

- 1. O EPC deve ser realizado individualmente.
- 2. Os resultados devem ser entregues em sequência, ou seja, de acordo com a numeração do EPC.