03 Algorithm Analysis

Chapter 3

Algorithm

- An algorithm is a finite set of instructions to be followed to solve a problem that is guaranteed to halt.
 - There can be more than one solution (more than one algorithm) to solve a given problem.
 - An algorithm can be implemented using different programming languages on different platforms.
- An algorithm must be correct. It should correctly solve the problem.
 - e.g. For sorting, even if the input is already sorted, or it contains repeated elements, it should work as expected.
- Once we have a correct algorithm for a problem, we have to determine the efficiency of that algorithm.

Algorithm

Shamelessly borrowed from: https://www.programiz.com/dsa/algorithm

Algorithm

There are two aspects of algorithmic performance:

- Time
 - Instructions take time.
 - How fast does the algorithm perform?
 - What affects its runtime?

Space

- Data structures take space
- What kind of data structures can be used?
- How does choice of data structure affect the runtime?

> We will focus on time:

- How to estimate the time required for an algorithm
- How to reduce the time required

Analysis of Algorithms

- Analysis of Algorithms is the area of computer science that provides tools to analyze the efficiency of different methods of solutions.
- How do we compare the time efficiency of two algorithms that solve the same problem?
 - **Naïve Approach**: implement these algorithms in a programming language (e.g., Python, Java, C++), and run them to compare their time requirements. Comparing the programs (instead of algorithms) has difficulties.
 - How are the algorithms coded?
 - Comparing running times means comparing the implementations.
 - We should not compare implementations, because they are sensitive to programming style that may cloud the issue of which algorithm is inherently more efficient.
 - What computer should we use?
 - We should compare the efficiency of the algorithms independently of a particular computer.
 - What data should the program use?
 - Any analysis must be independent of specific data.

Analysis of Algorithms

 When we analyze algorithms, we should employ mathematical techniques that analyze algorithms independently of specific implementations, computers, or data.

- To analyze algorithms:
 - First, we start to count the number of significant operations in a particular solution to assess its efficiency.
 - Then, we will express the efficiency of algorithms using growth functions.

Each operation in an algorithm (or a program) has a cost. Each operation takes a certain amount of time.

count = count + 1 take a certain amount of time, it is constant.

A sequence of operations:

count = count + 1
$$Cost: c_1$$

$$sum = sum + count$$
 Cost: c_2

Total Cost =
$$c1 + c2$$

Example: Simple If-Statement

	<u>Cost</u>	<u>Times</u>
if n < 0:	c1	1
absval = -n	c2	1
else:		
absval = n	c3	1

Total Cost \leq c1 + max(c2,c3)

Example: Simple Loop

	<u>Cost</u>	<u>Times</u>
i = 1	c1	1
sum = 0	c2	1
while (i <= n):	c 3	n+1
i = i + 1	c4	n
sum = sum + i	c5	n

Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*c5The time required for this algorithm is proportional to **n**.

Example: Nested Loop

	Cost	<u>l imes</u>
i=1	c1	1
sum = 0	c2	1
while $(i \le n)$:	c3	n+1
j=1	c4	n
while $(j \le n)$:	c5	n*(n+1)
sum = sum + i	с6	n*n
j = j + 1	c7	n*n
i = i + 1	c8	n

Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5+n*n*c6+n*n*c7+n*c8The time required for this algorithm is proportional to n^2 .

General Rules for Estimation

- Loops: The running time of a loop is at most the running time of the statements inside of that loop times the number of iterations.
- **Nested Loops**: (The running time of the inner loop + other statements in the outer loop) * number of iterations in the outer loop.
- Consecutive Statements: Just add the running times of those consecutive statements.
- If/Else: Never more than the running time of the test plus the larger of running times of "if" and "else" parts.

Algorithm Growth Rates

- We measure an algorithm's time requirement as a function of the problem size.
 - e.g. number of elements in a list for a sorting algorithm, the number users for a social network search.
- So, for instance, we say that (if the problem size is n)
 - For problem of size n, Algorithm A requires 5*n² time units.
 - For problem of size n, Algorithm B requires 7*n² time units.

Algorithm Growth Rates

- The most important thing to learn is how quickly the algorithm's time requirement grows as a function of the problem size.
 - Algorithm A requires time proportional to n².
 - Algorithm B requires time proportional to n.
- An algorithm's proportional time requirement is known as growth rate.
- We can compare efficiencies of two algorithms by comparing their growth rates.

Algorithm Growth Rates

Time requirements as a function of the problem size n

Common Growth Rates

Function	Growth Rate Name
c	Constant
log N	Logarithmic
$\log^2 N$	Log-squared
N	Linear
N log N	Log-linear
N^2	Quadratic
N^3	Cubic
2 ^N	Exponential

Running Times for Small Inputs

Running Times for Large Inputs

Big O Notation

If Algorithm A requires time proportional to g(n), Algorithm A is said to be in **order g(n)**, and it is denoted as O(g(n)).

The function g(n) is called the algorithm's growth-rate function.

Since the capital O is used in the notation, this notation is called the **Big O notation**.

If Algorithm A requires time proportional to n^2 , it is $O(n^2)$. If Algorithm A requires time proportional to n, it is O(n).

Big O Notation (upper bound)

Definition:

Algorithm A is said to be in order g(n) (denoted as O(g(n))) if constants k and n_0 exist such that A requires no more than k*g(n) time units to solve a problem of size $n \ge n_0$. \Rightarrow $f(n) \le k*g(n)$ for all $n \ge n_0$

- The requirement of $n \ge n_0$ in the definition of O(f(n)) formalizes the notion of sufficiently large problems.
 - In general, many values of k and n can satisfy this definition.

Order of an Algorithm

• If an algorithm requires $f(n) = n^2 - 3*n + 10$ seconds to solve a problem of size n and if constants k and n_0 exist such that

$$k*n^2 > n^2-3*n+10$$
 for all $n \ge n_0$,

then we can state that the algorithm is order n²

For k = 3 and $n_0 = 2$, we have

$$3*n^2 > n^2-3*n+10$$
 for all $n \ge 2$.

Thus, the algorithm requires no more than k^*n^2 time units for $n \ge n_0$,

So it is $O(n^2)$.

O-notation provides an upper bound.

Order of an Algorithm

Small O Notation (strict upper bound)

Definition:

Algorithm A is said to be in order g(n) (denoted as o(g(n))) if constants k and n_0 exist such that A requires no more than k*g(n) time units to solve a problem of size $n \ge n_0$. \Rightarrow f(n) < k*g(n) for all $n \ge n_0$

Order of an Algorithm

- Show $2^x + 17$ is $O(2^x)$
- $2^x + 17 \le 2^x + 2^x = 2^*2^x$ for $x \ge 5$
- Hence k = 2 and $n_0 = 5$

Order of an Algorithm

- Show $2^x + 17$ is $O(3^x)$
- $2^{x} + 17 \le k3^{x}$
- Easy to see that rhs grows faster than lhs over time → k=1
- However when x is small 17 will still dominate \rightarrow skip over some smaller values of x by using $n_0 = 3$
- Hence k = 1 and $n_0 = 3$

Omega Notation (lower bound)

Definition:

Algorithm A is said to be omega g(n) (denoted as $\Omega(g(n))$) if constants k and n_0 exist such that A requires more than k*g(n) time units to solve a problem of size $n \ge n_0$. \Rightarrow $f(n) \ge k*g(n)$ for all $n \ge n_0$

Omega notation provides a lower bound.

Small Omega Notation (strict lower bound)

Definition:

Algorithm A is said to be omega g(n) (denoted as ω (g(n))) if constants k and n_0 exist such that A requires more than k*g(n) time units to solve a problem of size $n \ge n_0$. \Rightarrow f(n) > k*g(n) for all $n \ge n_0$

Theta Notation

Definition:

Algorithm A is said to be theta g(n) (denoted as $\Theta(g(n))$) if constants k_1 , k_2 , and n_0 exist such that

 $k_1^*g(n) \le f(n) \le k_2^*g(n)$ for all $n \ge n_0$

Order of an Algorithm

• Show $f(n) = 7n^2 + 1$ is $\Theta(n^2)$

- You need to show f(n) is O(n²) and f(n) is Ω(n²)
- f(n) is $O(n^2)$ because $7n^2 + 1 \le 7n^2 + n^2 \forall n \ge 1 \implies k_1 = 8 \cdot n_0 = 1$
- f(n) is $\Omega(n^2)$ because $7n^2 + 1 \ge 7n^2 \ \forall n \ge 0 \implies k_2 = 7 \ n_0 = 0$
- Pick the largest n_0 to satisfy both conditions naturally \rightarrow $k_1 = 8$, $k_2 = 7$, $n_0 = 1$

A Comparison of Growth-Rate Functions

(a) n 10 100 1,000 10,000 100,000 1,000,000 Function 3 6 13 16 19 log₂n 10^{2} 10 10^{3} 10^{4} 10^5 10^6 n 664 9,965 10^5 10^{7} * log₂n 30 10^6 10^{10} 10^{12} n^2 10^2 10^4 10^6 10⁸ 10^{18} n^3 10^3 10⁶ 10^{9} 10^{12} 10^{15} 10^{3} 10^{30} 10^{301} 103,010 1030,103 10301,030 **2**ⁿ

Growth-Rate Functions

- **O(1)** Time requirement is **constant**, and it is independent of the problem's size.
- O(log₂n) Time requirement for a logarithmic algorithm increases increases slowly as the problem size increases.
- **O(n)** Time requirement for a **linear** algorithm increases directly with the size of the problem.
- $O(n*log_2n)$ Time requirement for a $n*log_2n$ algorithm increases more rapidly than a linear algorithm.
- O(n²) Time requirement for a quadratic algorithm increases rapidly with the size of the problem.
- O(n³) Time requirement for a cubic algorithm increases more rapidly with the size of the problem than the time requirement for a quadratic algorithm.
- O(2ⁿ) As the size of the problem increases, the time requirement for an exponential algorithm increases too rapidly to be practical.

Growth-Rate Functions

- If an algorithm takes 1 second to run with the problem size 8, what is the time requirement (approximately) for that algorithm with the problem size 16?
- If its order is:

O(1)
$$T(n) = 1 \text{ second}$$

O(log₂n) $T(n) = (1*log216) / log28 = 4/3 \text{ seconds}$
O(n) $T(n) = (1*16) / 8 = 2 \text{ seconds}$
O(n*log₂n) $T(n) = (1*16*log216) / 8*log28 = 8/3 \text{ seconds}$
O(n²) $T(n) = (1*16^2) / 8^2 = 4 \text{ seconds}$
O(n³) $T(n) = (1*16^3) / 8^3 = 8 \text{ seconds}$
O(2ⁿ) $T(n) = (1*2^{16}) / 2^8 = 2^8 \text{ seconds} = 256 \text{ seconds}$

Properties of Growth-Rate Functions

We can ignore low-order terms in an algorithm's growth-rate function.

- If an algorithm is $O(n^3+4n^2+3n)$, it is also $O(n^3)$.
- We only use the higher-order term as algorithm's growth-rate function.

We can ignore a multiplicative constant in the higher-order term of an algorithm's growth-rate function.

– If an algorithm is $O(5n^3)$, it is also $O(n^3)$.

$$O(f(n)) + O(g(n)) = O(f(n)+g(n))$$

- We can combine growth-rate functions.
- If an algorithm is $O(n^3) + O(4n)$, it is also $O(n^3 + 4n^2)$ So, it is $O(n^3)$.
- Similar rules hold for multiplication.

Properties of Growth-Rate Functions

$$f(n) = \Theta(g(n))$$
 iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

$$f(n) = \Theta(g(n))$$
 iff $g(n) = \Theta(f(n))$

$$f(n) = O(g(n))$$
 iff $g(n) = \Omega(f(n))$

$$f(n) = o(g(n))$$
 iff $g(n) = \omega(f(n))$

$$f(n) = \Theta(f(n))$$
 $f(n) = O(f(n))$ $f(n) = \Omega(f(n))$

Properties of Growth-Rate Functions

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$ implies $f(n) = \Theta(h(n))$

This still holds when Θ above is replaced by any other asymptotic notation we have introduced (O,Ω,o,ω) .

Not All Functions Comparable

Growth-Rate Functions (Example-1)

	<u>Cost</u>	<u>Times</u>
i = 1	c1	1
sum = 0	c2	1
while $(i \le n)$:	c3	n+1
i = i + 1	c4	n
sum = sum + i	c5	n

$$T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*c5$$
$$= (c3+c4+c5)*n + (c1+c2+c3)$$
$$= a*n + b$$

So, the growth-rate function for this algorithm is O(n)

Growth-Rate Functions (Example-2)

```
for i in range(n):

for j in range(n):

for k in range(m):

x = x + 1

x = x + 1

x = x + 1

x = x + 1

x = x + 1

x = x + 1

x = x + 1

x = x + 1

x = x + 1
```

```
T(n) = n+1+n*(n+1)+n*n*(m+1)+n*n*m
= 2n^2m+2n^2+2n+1
For k=3, n_0=3, and m_0 =3,
kn^2m >= 2n^2m+2n^2+2n+1
```

Find k, n_0 , and m_0 such that for all $n \ge n_0$ and $m \ge m_0$, $kn^2m \ge 2n^2m+2n^2+2n+1$

So, the growth-rate function for this algorithm is O(n²m).

Growth-Rate Functions (Example-3)

	<u>Cost</u>	<u>Times</u>
i=1	c1	1
sum = 0	c2	1
while $(i \le n)$:	c3	n+1
j=1	c4	n
while $(j \le n)$:	c5	n*(n+1)
sum = sum + i	c6	n*n
j = j + 1	c7	n*n
i = i + 1	c8	n

$$T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5 + n*n*c6 + n*n*c7 + n*c8$$
$$= (c5 + c6 + c7)*n^2 + (c3 + c4 + c5 + c8)*n + (c1 + c2 + c3)$$
$$= a*n^2 + b*n + c$$

So, the growth-rate function for this algorithm is $O(n^2)$

Growth-Rate Functions (Example-4)

• For nxn matrices, time complexity is: $O(n^3)$

Matrix Multiplication (naïve):

```
for(int i = 0; i < m.length; i++) {
  for(int j = 0; j < m2.length - 1; j++) {
    for(int k = 0; k < m2.length; k++) {
        m[i][j] += m[i][k] * m2[k][j];
    }
}</pre>
```

How about this one? O(logn)

```
for (int j = 1; j < n; j = 2 * j)
sum += j;</pre>
```


Growth-Rate Functions (Example-5)

Fill in the boxes.

$$O$$
 Ω Θ o ω \sim

$$6n^2 + 7n - 10 = O, \Omega, \Theta$$
 (n^2)

$$O$$
 Ω Θ o ω \sim

$$6^n = \Omega, \omega \quad (n^6)$$

$$O$$
 Ω Θ o ω \sim

$$n! = O, o (n^n)$$

$$O$$
 Ω Θ o ω \sim

$$\sum_{j=1}^{n} rac{1}{j} = O, \Omega, \Theta, \sim (\ln n)$$

$$O$$
 Ω Θ o ω \sim

$$\ln(n^3) = O, \Omega, \Theta \left(\ln n \right)$$

