FIGURE 1

FIGURE 2

Seq. ID					
No.	Gene	Strain	TATA Box	Coding Start	TATA to Start (bp
81 82	Hypoth 03	A AAGCTAGACT B AAGCTAAACT	TTTAAT TGGG ATCCGGCGGG	GCGGCGCATG	25
83 84	Hypoth 02		ATTATA CGGG CGTGCTGCCC		
85	ORF 02	A AAGGCAAGGT	AATAAT AGCC TGCCGTCTGT	AACGGCCGTA TG	27
86 87 88	ORF 03	A CATGGAACTA	GATATT AACC GGTTCCGCGG GATAAT AACC GGTCCCGCGG	ATCCCATGCA TG	27
89 90	PPI	A ATACCGAGAA	GTTATA GCAG GGTATGGAAT GTTATA GCAG GGTACAAAGG	GTGCGCGCGC ATG	28
91	GSAT	A ATCCGCCCTG	ATTANA TTAT GGGGGGAGCG ATTANA TTAC GGGGGGTACA	GCCTGCTGCC GTG	28
92 93	ORF 05	a CCTTCATACA	CATAAA TCCC GCTTGGATGT CATAAA TCCC GCCTGAACGG	GCGGCTGCGC ATG	28
94 95	deaminase	A GCCATATAC	CATAAT ATGC CGGGCGGTGG CATAAT ATGC CGGGCGGGGG	CACCATGGCC GTTG	29
96 97 98	RNA helic	A TGTACGAAAC	CATAAA ACAA CAGGCCGCGT CATAAA ACAA CAGGCCGCGG	CAGGGCCGCG CGTG	29
98 99 100	ORF 06	AACACGCAG	TATANA CGGG GGCCCGGGCG	GCGCGTATCA CATG	29
101	tRNA-tyr	A GCGATAGTTA	TTTAAA ACTA GGATGCCGAT	CACGGATCGT CCCA	~~~ 29
102	TBP	A CCGGGCCCCG	GTTANA ATAG CG.CACGGGC GTTANA ATAG AGTGCGGCCG	GGATCCTGAC CAATG	30
105	TIM .	A GCGTCGATAG	AATAAA TACG CGCAGGGGCC	CCCGTGGCGC GATCGCCCGT	G 36
107	Hypoth 01	A ATTTCAACTA	CATAAA TGCC TAGTTACGCA	GAAATAGCAA ACGACGTACT	TCGACTAATG 45
109	ORF 01	A ACGGCAGGCT B ACGGCAGGCT	ATTATT ACCT TGCCTTGCGT ATTATT ACCT TGCCGTGTG.	TGTA //G CGGGGTGCGG TACA //G AGGGGGCCTG	CAGGGGATG 52 CCGGGAGTG
111	Hethylaso	A CTACAACGAT	TITANG TOGG CGCCGGGGCA	GCCG.//G ATGTGGGGCA	GGCAACATG 104
113	16S RNA	A TCGGCGATGC	TTTATA TGCC CATGGACGGG	CCGATCCGAT CGTACGTGAC	GC.//AAT 220

Archaeal promoter

YTTAWA

Control of the contro

FIGURE 3

