Notae an	Intro du eti	on to Cruo	alaatia Tan	ala ess	
Notes on	Introduction	on to Symp	olectic Top	ology	

はじめに

2023 年度の数学独立探求で行う [MS17] のセミナーのノート. 次の記号は断りなく使う.

- 添字: なんらかの族 $(a_i)_{i\in I}$ を $(a_i)_i$ とか (a_i) と略記することがある.
- ullet ラグランジアン: (V,ω) のラグランジュ部分多様体全体を $\mathcal{L}(V,\omega)$ で表す.

第2章

線形シンプレクティック幾何

2.5 線形複素構造

実ベクトル空間 V 上の (線形) 複素構造 ((linear) complex structure) とは自己同形

$$J \colon V \to V$$

で

$$J^2 = -1$$

をみたすものをいう.*1複素構造を一つ固定することにより,J に対応する $i=\sqrt{-1}$ の作用で V は複素ベクトル空間になる.すなわち,スカラー倍は

$$\mathbb{C} \times V \to V : (s + it, v) \mapsto sv + tJv$$

で与えられる。とくに V は実次元が偶数でなければならない。V 上の線形複素構造の空間*2を $\mathcal{J}(V)$ で表す。複素構造の基本的な例としては,行列

$$J_0 \coloneqq \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

から定まる \mathbb{R}^{2n} の自己同形が挙げられる. \mathbb{R}^{2n} と \mathbb{C}^n の間には $x,y\in\mathbb{R}^n$ としたとき $(x,y)\mapsto x+iy$ という同形が定まる. これを通じて \mathbb{R}^{2n} と \mathbb{C}^n を同一視すれば,行列 J_0 は i を掛けることに対応する.

■この節の内容

- 複素構造の空間の性質
- シンプレクティック構造と同調する複素構造
- シンプレクティック形式で統制された複素構造の集合

 $^{^{*1}}$ 』は単位行列.

^{*2} のちに見るように, $\mathcal{J}(V)$ は等質空間になる. ベクトル空間ではない. $(0 \notin \mathcal{J}(V).)$

■複素構造の空間の性質 次の命題は、任意の線形複素構造が標準複素構造 J_0 と同形であるという主張である.

命題 2.5.1. V を 2n 次元実ベクトル空間とし J を V 上の線形複素構造とする. このとき, ベクトル空間の同形 Φ : $\mathbb{R}^{2n} \to V$ で $J\Phi = \Phi J_0$ をみたすものが存在する.

- 命題 **2.5.2.** (i) 空間 $\mathcal{J}(\mathbb{R}^{2n})$ は等質空間 $\mathrm{GL}(2n,\mathbb{R})/\mathrm{GL}(n,\mathbb{C})$ と微分同相であり、したがって連結成分の数は 2 つである.
- (ii) J_0 を含む連結成分 $\mathcal{J}^+(\mathbb{R}^{2n})$ は,標準的な向きと同調する \mathbb{R}^{2n} 上の複素構造全体のなす空間である.
- ■同調する複素構造 (V,ω) をシンプレクティックベクトル空間とする. $J \in \mathcal{J}(V)$ が ω に同調する (compatible) とは、 すべての $v,w \in V$ に対し、

$$\omega(Jv, Jw) = \omega(v, w) \tag{2.5.2}$$

をみたし、 $v \neq 0$ に対し

$$\omega(v, Jv) > 0. \tag{2.5.3}$$

であることをいう.

Jが ω と同調するとき,

$$g_J(v, w) \coloneqq \omega(v, Jw)$$
 (2.5.4)

がV上の内積を定め、Jは g_J に対し、歪共役、すなわち

$$g_J(v, Jw) + g_J(Jv, w) = 0 \quad (v, w \in V)$$

である.

 g_J が内積になることの証明. 双線形性: ω の性質と J の線形性から従う.

正定値性: $v \neq 0$ を V のベクトルとすると, (2.5.3) から,

$$g_J(v,v) = \omega(v,Jv) > 0.$$
 (2.5.3)

対称性: $v, w \in V$ に対し,

$$g_J(w,v) = \omega(w,Jv) \underset{\omega \text{ o} \equiv \text{MPM}}{=} -\omega(Jv,w)$$

$$\underset{\omega \text{ o} \neq \text{MPM}}{=} \omega(Jv,-w) = \omega(Jv,J^2w)$$

$$\underset{(2.5.2)}{=} \omega(v,Jw).$$

2.5 線形複素構造 7

J が g_J に関して歪共役であることの証明. $v,w \in V$ とする.

$$g_J(v,Jw) + g_J(Jv,w) = \omega(v,-w) + \omega(Jv,Jw)$$

$$= -\omega(v,w) + \omega(v,w) = 0.$$
(2.5.2)

ωと同調する複素構造全体を

 $\mathcal{J}(V,\omega)$

とかく.

命題 **2.5.4.** (V,ω) をシンプレクティックベクトル空間とする. $J\in\mathcal{J}(V)$ とする. 次の (i)–(iv) は同値である.

- (i) $J \in \mathcal{J}(V, \omega)$.
- (ii) (V,ω) のシンプレクティック基底で $v_1,\ldots,v_n,Jv_1,\ldots,Jv_n$ と表せるものがある.
- (iii) $\Psi \colon \mathbf{R}^{2n} \xrightarrow{\sim} V$ $\nabla \Psi^* \omega = \omega_0$, $\Psi^* J = J_0$ となるものがある.
- (iv) J は (2.5.3) をみたし、次が成り立つ.

$$\Lambda \in \mathcal{L}(V,\omega) \Longrightarrow J\Lambda \in \mathcal{L}(V,\omega).$$
 (2.5.5)

- $\blacksquare \mathcal{J}(V,\omega)$ は可縮 ここからの目標は $\mathcal{J}(V,\omega)$ は可縮であることの証明. 3 つの証明法が書いてある.
 - 1. $\mathcal{J}(V,\omega)$ を対称正定値シンプレクティック行列の空間と同一視.
 - 2. $\mathcal{J}(V,\omega)$ と $\mathfrak{Met}(V) = \{ 内積全体 \}$ の間のホモトピー同値の構成.
 - 3. $\mathcal{J}(V,\omega)$ をジーゲル上半空間と同一視.

ここでは第1証明を扱う.

第1証明. 定理2.1.3より,

第3章

シンプレクティック多様体

3.1 基本的な概念

例 3.1.1. シンプレクティック多様体の最初の例は \mathbf{R}^{2n} 自体と 1 章で定義した標準 シンプレクティック形式

$$\omega_0 = \sum_{j=1}^n dx_j \wedge dy_j$$

の組である.

例 3.1.2. 2 次元球面に標準面積形式を合わせたものも基本的な例である. S^2 を単位球面

$$S^2 := \left\{ (x_1, x_2, x_3) \in \mathbf{R}^3 \mid x_1^2 + x_3^2 + x_3^2 = 1 \right\}$$

として定める場合,面積形式は $\xi, \eta \in T_xS^2$ に対し

$$\omega_x(\xi,\eta) = \langle x, \xi \times \eta \rangle$$

で与えられる. 特に S^2 の全面積は 4π である.

参考文献

 $[{\rm MS17}]$ McDuff, Dusa, and Dietmar Salamon, Introduction to Symplectic Topology, 3rd edn (Oxford, 2017).