

5A Low Dropout Positive Regulator

■ FEATURES

- Dropout Voltage 1.5V at 5A Output Current
- Fast Transient Response
- Extremely Tight Line and Load Regulation
- Current Limiting and Thermal Protection
- Adjustable Output Voltage or Fixed 1.8V, 2.5V, 3.3V
- Standard 3-Pin Power Packages

APPLICATIONS

- Mother Board I/O Power Supplies
- Microprocessor Power Supplies
- High Current Regulator
- · Post Regulator for Switching Supply

DESCRIPTION

The AIC1084 is a low dropout three terminal regulator with 5A output current capability. The output voltage is adjustable with the use of a resistor divider or fixed 1.8V, 2.5V and 3.3V. Dropout voltage is guaranteed to be at maximum of 1.5V with the maximum output current. Its low dropout voltage and fast transient response make it ideal for low voltage microprocessor applications. Current limit and thermal protection provide protection against any overload condition that would create excessive junction temperatures.

■ TYPICAL APPLICATION CIRCUIT

Adjustable Voltage Regulator

Fixed Voltage Regulator

 $V_{REF}=V_{OUT}$ - $V_{ADJ}=1.25V$ (typ.) $V_{OUT}=V_{REF}$ x (1+RF2/RF1)+ I_{ADJ} x RF2 $I_{ADJ}=55\mu A$ (typ.)

- (1) C1 needed if device is far away from filter capacitors.
- (2) C2 required for stability.

TEL: 886-3-5772500 FAX: 886-3-5772510

ORDERING INFORMATION

→ 1.8V version in TO252-3 Green Package & Taping & Reel Packing

Type

Example: AIC1084-18GMTR

→ 1.8V version in TO263-3 Green Package & Taping & Reel Packing

■ ABSOLUTE MAXIMUM RATINGS

VIN pin to ADJ/GND pin	7V
Ambient Temperature Range	_40°C to 85°C
Maximum Junction Temperature	125°C
Storage Temperature Range	_65°C ~ 150°C
Lead Temperature (Soldering) 10 sec.	260°C
Thermal Resistance Junction to Case TO252-3	12.5°C/W
TO263-3, TO220-3	3°C/W
Thermal Resistance Junction to Ambient TO252-3	100°C/W
(Assume no ambient airflow, no heatsink) TO263-3	60°C/W
TO220-3	50°C/W

Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

TEST CIRCUIT

Refer to TYPICAL APPLICATION CIRCUIT.

■ ELECTRICAL CHARACTERISTICS

(V_{IN}=5V, T_J=25°C, I_O=10mA, unless otherwise specified) (Note2)

PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Reference Voltage	AIC1084 (ADJ)	1.225	1.25	1.275	V
Output Voltage	AIC1084-18, V _{IN} =5V AIC1084-25, V _{IN} =5V AIC1084-33, V _{IN} =5V	1.76 2.45 3.23	1.80 2.50 3.30	1.84 2.55 3.37	V
Line Regulation	ADJ : 2.75V≤ V _{IN} ≤7V V _{OUT} =1.25V		0.015	0.2	%
	Fix : V _{OUT} +1.5V≤ V _{IN} ≤7V				
Load Regulation	10mA < I _O < 5A			0.6	%
Dropout Voltage	ΔV_{OUT} , ΔV_{REF} =1% 10mA $\leq I_O \leq 5A$		1.4	1.5	V
Current Limit		5	6		Α
GND Current (Fix)	V_{OUT} +1.5 $V \le V_{IN} \le 7V$		11.5	14	mA
Adjusted Pin Current	$2.75 V \leq V_{IN} \leq 7 V$		55	120	μΑ
Adjusted Pin Current Change (ΔI _{ADJ})	$2.75 V \leq V_{IN} \leq 7 V$		0.2	5	μΑ
Temperature Stability	I _O =0.5A		0.5		%
Minimum Load Current			5	10	mA
RMS Output Noise (% of V _{OUT})	10Hz ≤ f ≤ 10KHz		0.003		%
Ripple Rejection Ratio	120Hz input ripple C _{OUT} =25μF (V _{IN} -V _{OUT})=3V	60	72		dB
Thermal Shutdown Temperature	Note 3		165		°C

Note 1: To avoid output oscillation, aluminum electrolytic output capacitor is recommended and ceramic capacitor is not suggested.

Note 3: Guarantee by design.

Note 2: Specifications are production tested at T_A=25°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).

■ TYPICAL PERFORMANCE CHARACTERISTICS

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Fig. 7 AIC1084 (ADJ.) Ripple Rejection

■ BLOCK DIAGRAM

■ PIN DESCRIPTIONS

ADJ PIN - Providing V_{REF} =1.25V (typ.) for adjustable V_{OUT} . V_{REF} = V_{OUT} - V_{ADJ} and I_{ADJ} =55 μ A (typ.)

(GND PIN- Power ground.)

VOUT PIN - Adjustable output voltage.

VIN PIN - Power Input.

APPLICATION INFORMATION

INPUT-OUTPUT CAPACITORS

Linear regulators require input and output capacitors to maintain stability. Input capacitor at $10\mu F$ with a $10\mu F$ aluminum electrolytic output capacitor is recommended.

POWER DISSIPATION

The AIC1084 obtains thermal-limiting circuitry, which is designed to protect the device against condition. For continuous condition, junction maximum rating of temperature must not be exceeded. important to pay more attention in thermal resistance. It includes junction to case, junction to ambient. The maximum power dissipation of AIC1084 depends on the thermal resistance of its case and circuit board, the temperature difference between the die junction and ambient air, and the rate of airflow. The rate of temperature rise is greatly affected by the mounting pad configuration on the PCB, the board material, and the ambient temperature. When the IC mounting with good thermal conductivity is used, the junction temperature will be low even when large power dissipation applies.

The power dissipation across the device is

 $P = I_{OUT} (V_{IN}-V_{OUT}).$

The maximum power dissipation is:

$$P_{MAX} = \frac{(T_{J\text{-max}} - T_{A})}{R\theta_{JA}}$$

Where T_{J-max} is the maximum allowable junction temperature (125°C), and T_A is the ambient temperature suitable in application.

As a general rule, the lower temperature is, the better reliability of the device is. So the PCB mounting pad should provide maximum thermal conductivity to maintain low device temperature.

APPLICATION EXAMPLES

Fig. 8 V_{OUT}=3.3V with Shutdown

Fig. 10 V_{OUT}=1.25V Application Circuit

Fig. 9 Improving Ripple Rejection

Fig. 11 Low Dropout Negative Supply

■ PHYSICAL DIMENSIONS

• TO220-3

Note: 1. Refer to JEDEC TO-220AB.

- 2. Dimension "E" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side .
- 3. Dimension "D1" does not include inter-lead flash or protrusions.

SECTION A-A

4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

WITH PLATING

BASE METAL

S Y	TO220-3		
M B O	MILLIMETERS		
O L	MIN.	MAX.	
Α	3.56	4.82	
A1	0.51	1.39	
A2	2.04	2.92	
b	0.38	1.01	
b2	1.15	1.77	
С	0.35	0.61	
D	14.23	16.51	
D1	8.38	9.02	
D2	11.75	12.88	
Е	9.66	10.66	
E1	6.86	8.90	
е	2.54 BSC		
H1	5.85	6.85	
L	12.70	14.73	
L1		6.35	
Р	3.54	4.08	
Q	2.54	3.42	

Note: 1. Refer to JEDEC TO-252AA and AB.

- 2. Dimension "E" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side .
- 3. Dimension "D" does not include inter-lead flash or protrusions.
- 4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

S Y	TO252-3 MILLIMETERS		
M B			
O L	MIN.	MAX.	
Α	2.19	2.38	
A1	0.00	0.13	
b	0.64	0.89	
b3	4.95	5.46	
С	0.46	0.61	
c2	0.46	0.89	
D	5.33	6.22	
D1	4.60	6.00	
Е	6.35	6.73	
E1	3.90	5.46	
е	2.28 BSC		
Н	9.40	10.41	
L	1.40	1.78	
L1	2.67 REF		
L2	0.51 BSC		
L3	0.89	2.03	
L4		1.02	
θ	0°	8°	

TO263-3

Note: 1. Refer to JEDEC TO-263AB.

- 2. Dimension "E" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.
- 3. Dimension "D" does not include inter-lead flash or protrusions.
- 4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

S	S TO263-3 Y MILLIMETERS		
M B O			
O L	MIN.	MAX.	
Α	4.06	4.83	
A1	0.00	0.25	
b	0.51	0.99	
b2	1.14	1.78	
С	0.38	0.74	
c2	1.14	1.65	
D	8.38	9.65	
D1	6.86		
Е	9.65	10.67	
E1	6.23		
е	2.54 BSC		
Н	14.61	15.88	
L	1.78	2.79	
L1		1.68	
L2		1.78	
L3	0.25 BSC		
θ	0°	8°	

Note:

Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.