

Faculdade de Ciências e Tecnologia

Faculdade de Ciências e Tecnologias Licenciatura Engenharia Informática

Relatório Técnico: Projeto P5 – Jogo "O Cubão"

Computação Gráfica

Docentes

Prof. Doutora Maria Margarida Madeira e Carvalho de Moura Prof. Doutor Sérgio Manuel Machado Jesus

Discentes:

Bruno Susana, <u>a61024@ualg.pt</u>
Gonçalo Mascarenhas, <u>a64533@ualg.pt</u>
Guilherme Correia, <u>a61098@ualg.pt</u>
Henrique Cruz, <u>a61099@ualg.pt</u>
Rafael Gomes, <u>a61161@ualg.pt</u>
Vasco Brito, <u>a61131@ualg.pt</u>

Sumário	3
Introdução	3
Objetivo	4
Objetivo geral	4
Objetivo específico	4
Tecnologia usada	4
Organização do trabalho	4
Metodologia	4
Desenvolvimento	5
Inputs	5
Desenvolvimento dos Objetos	5
Desenvolvimento dos Níveis	5
Desenvolvimento dos Movimentos	5
Desenvolvimento das Colisões	6
Desenvolvimento da Iluminação	6
Colocação das texturas	6
Resultados Obtidos	7
Dificuldades Encontradas	9
Conclusão	10
Referências	11

Sumário

Este documento submetido à universidade do algarve para a unidade curricular de computação gráfica visa expor o trabalho desenvolvido pelo grupo 10 durante a realização do projeto final.

O tema escolhido pelo grupo é uma adaptação de um jogo publicado na internet e denominado "bloxorz". O objetivo deste jogo é fazer com que o bloco caia num buraco quadrado que fica no final de cada nível. O jogador irá jogar como um bloco e usará as setas do teclado para completar o objetivo do jogo. Se o jogador cair fora da plataforma de qualquer nível, o nível será reiniciado.[3]

Este projeto tem como objetivo a aplicação dos conhecimentos adquiridos de forma a consolidar os mesmos. Para a implementação foram utilizadas as bibliotecas utilizadas em aula, das quais *glad, glm, glfw*. Foi também utilizada um header de um repositório do *Github* para a importação das texturas nos objetos *stb_image.h*, tudo isto usando como linguagem de programação C++ e o ambiente de desenvolvimento *Cmake*.

Todo o processo de *build* e execução foram feitas utilizando a extensão do *Cmake* do editor de texto *VS Code*.

Introdução

Este projeto, para além do jogo desenvolvido, é constituído por dois entregáveis: uma proposta de projeto e um relatório de execução.

A proposta de projeto consistiu essencialmente na esquematização e planeamento do que se pretendia desenvolver. Neste primeiro entregável consta essencialmente: um documento de desenho, com uma descrição conceptual do jogo inspirado a partir do game design document(GDD); e um plano de trabalho, com uma descrição detalhada de cada tarefa, seus responsáveis, meios necessários, entregáveis, milestones e Gantt Chart de execução com interação entre tarefas.

O relatório de execução explica os objetivos do projeto, as tecnologias usadas para a realização do jogo, a metodologia adotada e o desenvolvimento das diferentes componentes que integram o jogo.

Objetivo

Objetivo geral

Este trabalho tem como objetivo desenvolver as nossas capacidades no âmbito da disciplina de Computação Gráfica, nomeadamente em implementar uma animação ou um jogo, em ambiente OpenGL.

Objetivo específico

- Desenvolvimento de objetos;
- Implementação de texturas nos objetos;
- Implementação de movimentos;
- Implementação da iluminação;
- Implementação de sombras;

Tecnologia usada

- · Cmake;
- OpenGL mais especificamente as bibliotecas glfw, glad e glm-0.9.7.1;
- Blender;
- Visual Studio Code e Visual Studio 2019;
- Guilherme Correia: Windows 10 gcc (MingGW.org GCC-8.2.0-5) 8.2.0;
- Henrique Cruz: Windows 10, com compilador Microsoft (R) C/C++ Optimizing Compiler Version 19.28.29913 for x64;
- Rafael Gomes: Windows 10 Pro, com gcc (MinGW.org GCC-6.3.0-1) 6.3.0;
- Vasco Brito: Windows 10 Pro, com gcc (MinGW.org GCC-8.2.0-5) 8.2.0;
- Gonçalo Mascarenhas: Windows 10; VS 2019; GCC 10.2.0;
- Bruno Susana: Windows 10, gcc 9.2;

Organização do trabalho

Este relatório está organizado em 3 partes: a primeira parte, na qual nos encontramos, com uma introdução ao trabalho, objetivos e metodologia; a segunda parte, onde é descrito o desenvolvimento do jogo; e por fim, a terceira parte com as conclusões finais.

Metodologia

A computação gráfica é a área da computação destinada à geração de imagens em geral. Ela pode possuir uma infinidade de aplicações para diversas áreas, desde a própria informática, ao produzir interfaces gráficas para software, sistemas operacionais e sites na Internet, assim como para produzir animações e jogos. [2]

O OpenGL (Open Graphics Library) é uma API livre (termo usado para classificar uma biblioteca de funções específicas disponibilizadas para a criação e desenvolvimento de aplicativos em determinadas linguagens de programação), utilizada na computação gráfica, para

TO ADE DO

desenvolvimento de aplicativos gráficos, ambientes 3D, jogos, entre outros. A OpenGL foi produzida com C e C++ em mente, mas pode ser utilizada para diversas outras com um alto nível de eficiência. [2]

O Blender é um programa de computador de código aberto desenvolvido para modelagem, animação, texturização, composição, renderização, e edição de vídeo. Este programa implementa avançadas ferramentas de simulação, tais como: dinâmica de corpo rígido, dinâmica de corpo macio e dinâmica de fluidos, ferramentas de modelagem baseadas em modificadores, ferramentas de animação de personagens, um sistema de composição baseado em "nós" de texturas, cenas e imagens, e um editor de imagem e vídeo, com suporte a pósprodução. [5,17]

Desenvolvimento

Inputs

Os inputs disponíveis são as setas do teclado que permitem mover o bloco principal, as teclas "C" que permite ter uma perspetiva de cima do nível, e a tecla "X" que permite retornar a perfectiva inicial. E a tecla "R" que permite reiniciar o nível.

Desenvolvimento dos Objetos

Com a intuição de acelerar o processo de colocação dos objetos no ambiente, foi usada a ferramenta Blender para a modelação dos objetos. Tendo em consideração os objetivos do jogo, foi necessário desenvolver um paralelepípedo, com o qual o jogador pudesse interagir, e também o conjunto de blocos que formam as plataformas dos diferentes níveis. Para além destes objetos indispensáveis, foram criados outros opcionais: blocos que representam a lava, com o propósito de adicionar obstáculos ao jogador; e uma ovelha, que nada mais é do que um objeto de decoração. [5,6,7]

Desenvolvimento dos Níveis

Durante a implementação dos três níveis, teve-se que colocar as diferentes plataformas no ambiente e calcular as coordenadas para saber a posição inicial do paralelepípedo, dando início ao nível. De acordo com o nível em questão foram adicionados mais elementos para dar uma dinâmica diferente ao jogo. À medida que se vai superando os níveis a plataforma é alterada aumentando a dificuldade. Após ter superado os 3 níveis o jogo termina e fecha automaticamente a janela. [7]

Desenvolvimento dos Movimentos

O desenvolvimento dos movimentos foi um ponto essencial para que o paralelepípedo se movimentasse ao longo da plataforma e alcançasse o objetivo. O paralelepípedo é movido de acordo com as setas do teclado. Inicialmente o paralelepípedo encontra-se numa posição vertical tendo uma das fases apoiada só num bloco, depois de movido o objeto este fica numa

posição horizontal ficando com uma das fases apoiada em dois blocos. A partir daqui caso seja premida uma seta na direção das extremidades do paralelepípedo este move-se e retoma uma posição vertical, caso contrário move-se mantendo uma posição horizontal.

Desenvolvimento das Colisões

As colisões foram um ponto crucial para o desenvolvimento do jogo, pois é a partir delas que se sabe se o paralelepípedo se encontra sobre a plataforma. No nível 2 usa-se as colisões para determinar quando é que o paralelepípedo colide com o bloco de lava, fazendo com que este se incendie tornando-se em cinzas. No nível 3 são também usadas para posicionar a ovelha na base do nível e na interação desta com o paralelepípedo no final do nível.[18]

Desenvolvimento da Iluminação

Na implementação da iluminação optou-se por uma iluminação dinâmica, ou seja, a fonte de luz desloca-se ao longo do tempo no sentido horário. [9,10,8,14,15]

Colocação das texturas

Para colocar as texturas foi analisado o que simbolizava cada vértice e face nos ficheiros .obj, os ficheiros consistiam em uma parte de vértices representadas por "v", os vértices das texturas eram representados por "vt" e esses vértices permitiam aplicar as texturas no 2D nos objetos 3D.[17]

Resultados Obtidos

Nível 1

Nível 2

Nível 3

Ovelha a interagir com o bloco de palha

Cinzas

Dificuldades Encontradas

Num modo geral, durante o desenvolvimento do trabalho deparou-se com várias dificuldades, tais como na utilização da ferramenta Blender e no carregamento dos objetos criados para OpenGL, na aplicação e texturas, na implementação das colisões, na implementação da luminosidade, entre outros. Sentiram-se estas dificuldades pois nunca se teve contacto anteriormente com trabalhos que envolvessem modelação de objetos e texturas e consequentemente perdeu-se tempo a perceber esses novos conceitos.

Estas dificuldades fizeram com que alguns objetivos a que nos tínhamos proposto inicialmente não fossem cumpridos com a qualidade que pretendíamos, tal como o movimento da ovelha que se trata de um movimento não realista, mas sim apenas uma translação diretamente até ao objeto. Outros objetivos que não foram realizados e que tinham um peso fundamental no trabalho, foram as sombras e os reflexos do paralelepípedo, que não foram realizados devido ao imenso tempo que dedicamos às luzes do cenário.

Conclusão

Neste projeto, desenvolveu-se uma adaptação do jogo publicado na internet denominado "bloxorz", no qual o jogador joga como um paralelepípedo e usa as setas do teclado para fazer com que o paralelepípedo caia num buraco quadrado que fica no final de cada nível e assim completar o objetivo do jogo.

Não foi possível cumprir todos os objetivos definidos na proposta de projeto devido às dificuldades anteriormente mencionadas na secção "Dificuldades Deparadas", ao tempo limitado para a desenvolvimento do projeto e a um possível excesso de confiança do grupo na elaboração dos objetivos a desenvolver na proposta de projeto.

Este projeto foi muito importante para aprofundar e consolidar os conhecimentos adquiridos ao longo da disciplina de Computação Gráfica, porque permitiu-nos ficar a compreender melhor como aplicar os conceitos de transformações, texturas e iluminação em OpenGL, além de nos ter permitido desenvolver e aperfeiçoar competências de investigação, seleção, organização e comunicação da informação.

Referências

- [1] "OpenGL," 07 06 2021. [Online]. Available: https://pt.wikipedia.org/wiki/OpenGL.
- [2] "Computação Gráfica," 07 06 2021. [Online]. Available: https://pt.wikipedia.org/wiki/Computação Gráfica.
- [3] "Bloxorz," 07 06 2021. [Online]. Available: https://miniclip.fandom.com/wiki/Bloxorz.
- [4] U. Studio, "Youtube," 07 02 2019. [Online]. Available: https://www.youtube.com/watch?v=P56Kvxr1uWU&t=204s.
- [5] D. 3D, "Youtube," 08 02 2019. [Online]. Available: https://www.youtube.com/watch?v=DJBal11B3UE&t=105s.
- [6] R. R. Cepeda, "raywenderlich," 2021. [Online]. Available: https://www.raywenderlich.com/2604-how-to-export-blender-models-to-opengl-espart-1-3.
- [7] K. KUKLO, "EVERMOTION," 2015. [Online]. Available: https://evermotion.org/tutorials/show/9267/create-stone-wall-in-blender-tip-of-the-week.
- [8] "Colors," [Online]. Available: https://learnopengl.com/Lighting/Colors.
- [9] "Basic Lighting," [Online]. Available: https://learnopengl.com/Lighting/Basic-Lighting.
- [10] "Multiple-lights," [Online]. Available: https://learnopengl.com/Lighting/Multiple-lights.
- [11] "Materials," [Online]. Available: https://learnopengl.com/Lighting/Materials.
- [12] S. Jesus, "Lighting," 2021. [Online]. Available: https://tutoria.ualg.pt/2020/pluginfile.php/246923/mod_resource/content/1/Lighting2.pdf.
- [13] S. Jesus, "Lighting2," 2021. [Online]. Available: https://tutoria.ualg.pt/2020/pluginfile.php/251742/mod_resource/content/1/Lighting2.pdf.
- [14] S. Jesus, "Texturas," 2021. [Online]. Available: https://tutoria.ualg.pt/2020/pluginfile.php/243255/mod_resource/content/1/Texturas. pdf.

- [15] S. Jesus, "Model-transforms," 2021. [Online]. Available: https://tutoria.ualg.pt/2020/pluginfile.php/227268/mod_resource/content/2/Model-transforms.pdf.
- [16] LearnOpengl, "Textures," 5 2021. [Online]. Available: https://learnopengl.com/Getting-started/Textures.
- [17] learnOpengl, "Coordinate Systems," 5 2021. [Online]. Available: https://learnopengl.com/Getting-started/Coordinate-Systems.
- [18] learnOpengl, "Collision detection," [Online]. Available: https://learnopengl.com/In-Practice/2D-Game/Collisions/Collision-detection. [Acedido em 5 2021].