Embracing monotonicity in F*

Danel Ahman @ INRIA Paris

joint work with

Cătălin Hrițcu and Kenji Maillard @ INRIA Paris Cédric Fournet, Aseem Rastogi, and Nikhil Swamy @ MSR

> ICE-TCS Seminar January 29, 2018

Outline

- F*
- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see POPL'18 paper)
- Monadic reification and reflection (if time permits, or see paper)
- Meta-theory and correctness results (see POPL'18 paper)

Outline

- F*
- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see POPL'18 paper)
- Monadic reification and reflection (if time permits, or see paper)
- Meta-theory and correctness results (see POPL'18 paper)

F*

[fstar-lang.org]

- F* is
 - a functional programming language
 - ML, OCaml, F#, Haskell, ...
 - extracted to OCaml or F#; subset compiled to efficient C code
 - an interactive proof assistant
 - Agda, Coq, Lean, Isabelle, ...
 - interactive modes for Emacs and Atom
 - a semi-automated verifier of imperative programs
 - Dafny, Why3, FramaC, . . .
 - Z3-based SMT automation
- Application-driven development
 - Project Everest

- project-everest.github.io
- Microsoft Research (US, UK, India), INRIA (Paris), . . .
- miTLS, HACL*, Vale, . . .

```
F*
```

[fstar-lang.org]

- F* is
 - a functional programming language
 - ML, OCaml, F#, Haskell, ...
 - extracted to OCaml or F#; subset compiled to efficient C code
 - an interactive proof assistant
 - Agda, Coq, Lean, Isabelle, ...
 - interactive modes for Emacs and Atom
 - a semi-automated verifier of imperative programs
 - Dafny, Why3, FramaC, ...
 - Z3-based SMT automation
- Application-driven development
 - Project Everest

[project-everest.github.io]

- Microsoft Research (US, UK, India), INRIA (Paris), ...
- miTLS, HACL*, Vale. . . .

F* - programming language/proof assistant

module Talk // Inductive type families type vector 'a : nat -> Type = I Nil: vector 'a 0 | Cons : #n:nat -> 'a -> vector 'a n -> vector 'a (n + 1) // Dependently typed recursive total functions val append: #a:Type -> #n:nat -> wector a n -> vector a m -> Tot (vector a (n + m)) let rec append #a #n #m xs vs = match xs with | Nil -> vs | Cons #n x xs -> Cons x (append xs vs) // Refinement types x:t{phi x} val $lkp : \#a:Type \rightarrow \#n:nat \rightarrow vector a n \rightarrow i:nat{\emptyset < i / i <= n} \rightarrow a$ let rec lkp #a #n xs i = match xs with I Cons $x \times s \rightarrow if i = n then x else lkn xs i$ // Type-theoretic predicates type prefix_of (#a:Type) (#n:nat) (#m:nat{ $n \leftarrow m$ }) (xs:vector a n) (zs:vector a m) = forall (i:nat) . $(0 < i \land i <= n) \Longrightarrow lkp xs i \Longrightarrow lkp zs i$ // Extrinsic reasoning val theorem : #a:Type -> #n:nat -> #m:nat -> xs:vector a n -> ys:vector a m -> Lemma (prefix_of xs (append xs vs)) let rec theorem #a #n #m xs vs = match vs with I Nil -> () I Cons x xs -> admit () // need to call an appropriate lemma here // Intrinsic reasoning val append': #a:Type -> #n:nat -> *m:nat -> xs:vector a n -> vector a m -> Pure (vector a (n + m)) (requires (True)) (ensures (fun zs -> prefix_of xs zs))

F* – not just a pure programming language

- Tot, Pure, ... are just some effects amongst many
 - Tot t
 - Pure t (requires pre) (ensures post)
 - Lemma (requires pre) (ensures post)
 - Div t (requires pre) (ensures post)
 - Exc t (requires pre_{Exc}) (ensures post_{Exc})
 - ST t (requires pre_{ST}) (ensures post_{ST})
 - . . .
- Some connected by monad morphisms
- All derived from respective WP-calculi (see our POPL'17 paper)

(Global state +) monotonicity is really useful!

Its essence can be captured very neatly!

Outline

- F*
- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see POPL'18 paper)
- Monadic reification and reflection (if time permits, or see paper)
- Meta-theory and correctness results (see POPL'18 paper)

Consider a program operating on set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

To prove the assertion (say, in a Floyd-Hoare style logic),
 we could prove that the code maintains a stateful invarian

```
\{\lambda\, 	extsf{s}\,.\, 	extsf{v} \in 	extsf{s}\} complex_procedureig(ig)\, \{\lambda\, 	extsf{s}\,.\, 	extsf{v} \in 	extsf{s}\}
```

- likely that we have to carry λ s . v ∈ s through the proof of c_p
 does not guarantee that λ s . v ∈ s holds at every point in c_p
- However, if c_p never removes, then λs. v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

Consider a program operating on set-valued state

```
\verb"insert v; complex_procedure(); \verb"assert" (v \in \texttt{get}())
```

To prove the assertion (say, in a Floyd-Hoare style logic),
 we could prove that the code maintains a stateful invariant

```
\{ \textcolor{red}{\lambda \, \mathtt{s} \, . \, \mathtt{v} \in \mathtt{s}} \} \,\, \texttt{complex\_procedure} \big( \big) \,\, \{ \textcolor{red}{\lambda \, \mathtt{s} \, . \, \mathtt{v} \in \mathtt{s}} \}
```

- likely that we have to carry $\lambda s.v \in s$ through the proof of c_p • does not guarantee that $\lambda s.v \in s$ holds at every point in c_p • sensitive to proving that c_p maintains $\lambda s.w \in s$ for some other w
- However, if c_p never removes, then λs. v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

Consider a program operating on set-valued state

```
\verb|insert v; complex_procedure(); assert (v \in get())|
```

To prove the assertion (say, in a Floyd-Hoare style logic),
 we could prove that the code maintains a stateful invariant

```
\{\lambda s. v \in s\} complex_procedure() \{\lambda s. v \in s\}
```

- likely that we have to carry $\lambda s. v \in s$ through the proof of c_p
 - does not guarantee that $\lambda s \cdot v \in s$ holds at every point in c_p
 - sensitive to proving that c_p maintains $\lambda s.w \in s$ for some other w
- However, if c_p never removes, then λs. v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

Consider a program operating on set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

To prove the assertion (say, in a Floyd-Hoare style logic),
 we could prove that the code maintains a stateful invariant

```
\{\lambda s. v \in s\} complex_procedure() \{\lambda s. v \in s\}
```

- likely that we have to carry $\lambda s. v \in s$ through the proof of c_p
 - does not guarantee that $\lambda s.v \in s$ holds at every point in c_p
 - \bullet sensitive to proving that c_p maintains $\lambda\, s\,.\, w\in s$ for some other w
- However, if c_p never removes, then λs. v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

- Programming also relies on monotonicity, even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a proof of existence of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation stores an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from global state + general monotonicity

- Programming also relies on monotonicity, even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a proof of existence of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation stores an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - 3) So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from global state + general monotonicity

- Programming also relies on monotonicity, even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a **proof of existence** of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation stores an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - 3) So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from global state + general monotonicity

- Programming also relies on monotonicity, even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a **proof of existence** of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation **stores** an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - 3) So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from **global state** + **general monotonicity**

Monotonicity is really useful!

- In this talk
 - our motivating example and monotonic counters
 - typed references (ref t) and untyped references (uref)
 - more flexibility with monotonic references (mref t rel)
- See our POPL 2018 paper for more
 - temporarily violating monotonicity via snapshots
 - two substantial case studies in F*
 - a secure file-transfer application
 - Ariadne state continuity protocol [Strackx, Piessens 2016]
 - pointers to other works in F* relying on monotonicity for
 - sophisticated region-based memory models [fstar-lang.org]
 - crypto and TLS verification [project-everest.github.io]

Monotonicity is really useful!

- In this talk
 - our motivating example and monotonic counters
 - typed references (ref t) and untyped references (uref)
 - more flexibility with monotonic references (mref t rel)
- See our POPL 2018 paper for more
 - temporarily violating monotonicity via snapshots
 - two substantial case studies in F*
 - a secure file-transfer application
 - Ariadne state continuity protocol [Strackx, Piessens 2016]
 - pointers to other works in F* relying on monotonicity for
 - sophisticated region-based memory models [fstar-lang.org]
 - crypto and TLS verification | project-everest.github.io

Monotonicity is really useful!

- In this talk
 - our motivating example and monotonic counters
 - typed references (ref t) and untyped references (uref)
 - more flexibility with monotonic references (mref t rel)
- See our POPL 2018 paper for more
 - temporarily violating monotonicity via snapshots
 - two substantial case studies in F*
 - a secure file-transfer application
 - Ariadne state continuity protocol [Strackx, Piessens 2016]
 - pointers to other works in F* relying on monotonicity for
 - sophisticated region-based memory models [fstar-lang.org]
 - crypto and TLS verification [project-everest.github.io]

Outline

- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see POPL'18 paper)
- Monadic reification and reflection (if time permits, or see paper)
- Meta-theory and correctness results (see POPL'18 paper)

- We make use of monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - set inclusion, heap inclusion, increasing counter values, . . .
 - a stateful program e is monotonic (wrt. rel) when

$$\forall\,\mathtt{s}\,\mathtt{e}'\,\mathtt{s}'.\;(\mathtt{e},\mathtt{s})\rightsquigarrow^*(\mathtt{e}',\mathtt{s}')\implies\mathtt{rel}\,\mathtt{s}\,\mathtt{s}'$$

$$orall$$
 s s $'$. p s \wedge rel s s $'$ \Longrightarrow p s $'$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a state-independent proposition
 - a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- We make use of monotonic programs and stable predicates
 - per verification task, we **choose a preorder rel** on states
 - a stateful program e is monotonic (wrt. rel) when

$$\forall \, \mathbf{s} \, \mathbf{e}' \, \mathbf{s}'. \, (\mathbf{e}, \mathbf{s}) \leadsto^* (\mathbf{e}', \mathbf{s}') \implies \mathbf{rel} \, \mathbf{s} \, \mathbf{s}'$$

$$\forall \, \mathtt{s} \, \mathtt{s}' . \, \mathtt{p} \, \mathtt{s} \, \wedge \, \mathtt{rel} \, \mathtt{s} \, \mathtt{s}' \implies \mathtt{p} \, \mathtt{s}'$$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a state-independent proposition
 - a means to recall the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- We make use of monotonic programs and stable predicates
 - per verification task, we **choose a preorder rel** on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is monotonic (wrt. rel) when

$$\forall\,\mathtt{s}\,\mathtt{e}'\,\mathtt{s}'.\,\,(\mathtt{e},\mathtt{s}) \leadsto^* (\mathtt{e}',\mathtt{s}') \implies \mathtt{rel}\,\,\mathtt{s}\,\,\mathtt{s}'$$

$$\forall$$
ss'.ps \land relss' \Longrightarrow ps'

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a state-independent proposition
 - a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- We make use of monotonic programs and stable predicates
 - per verification task, we **choose a preorder rel** on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is **monotonic** (wrt. rel) when

$$\forall \, s \, e' \, s'. \, (e, s) \leadsto^* (e', s') \implies rel \, s \, s'$$

$$\forall$$
ss'.ps \land relss' \Longrightarrow ps'

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a state-independent proposition
 - a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- We make use of monotonic programs and stable predicates
 - per verification task, we **choose a preorder rel** on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is monotonic (wrt. rel) when

$$\forall\,\mathtt{s}\,\mathtt{e}'\,\mathtt{s}'.\; \big(\mathtt{e},\mathtt{s}\big) \leadsto^* \big(\mathtt{e}',\mathtt{s}'\big) \implies \mathtt{rel}\,\,\mathtt{s}\,\,\mathtt{s}'$$

$$\forall \, s \, s'. \, p \, s \, \wedge \, \underset{\mathsf{rel}}{\mathsf{rel}} \, s \, s' \implies p \, s'$$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a state-independent proposition
 - a means to recall the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- We make use of monotonic programs and stable predicates
 - per verification task, we **choose a preorder rel** on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is monotonic (wrt. rel) when

$$\forall \, \mathrm{s} \, \mathrm{e}' \, \mathrm{s}'. \, (\mathrm{e}, \mathrm{s}) \leadsto^* (\mathrm{e}', \mathrm{s}') \implies \mathrm{rel} \, \mathrm{s} \, \mathrm{s}'$$

$$\forall \, s \, s'. \, p \, s \, \wedge \, {\tt rel} \, s \, s' \implies p \, s'$$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a **state-independent proposition**
 - a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- We make use of monotonic programs and stable predicates
 - per verification task, we **choose a preorder rel** on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is monotonic (wrt. rel) when

$$\forall s e' s'. (e, s) \leadsto^* (e', s') \implies rel s s'$$

$$\forall ss'. ps \land rel ss' \Longrightarrow ps'$$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a state-independent proposition
 - a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

Outline

- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see POPL'18 paper)
- Monadic reification and reflection (if time permits, or see paper)
- Meta-theory and correctness results (see POPL'18 paper)

F* supports Hoare-style reasoning about state via the comp. type

```
ST<sub>state</sub> t (requires pre) (ensures post)
```

where

```
\texttt{pre}: \texttt{state} \to \texttt{Type} \qquad \quad \texttt{post}: \texttt{state} \to \texttt{t} \to \texttt{state} \to \texttt{Type}
```

ST is an abstract pre-postcondition refinement of

```
st t \stackrel{\text{def}}{=} state \rightarrow t * state
```

The global state actions have types

```
get: unit \to ST state (requires (\lambda_-, \top)) (ensures (\lambda s_0 s s_1, s_0 = s = s_1))
put: s:state \to ST unit (requires (\lambda_-, \top)) (ensures (\lambda_-, s_1, s_1 = s))
```

• **Refs.** and **local state** are defined in F* using **monotonicity**

• F* supports Hoare-style reasoning about state via the comp. type

```
ST<sub>state</sub> t (requires pre) (ensures post)
```

where

```
{\tt pre}: {\tt state} \to {\tt Type} \qquad \qquad {\tt post}: {\tt state} \to {\tt t} \to {\tt state} \to {\tt Type}
```

• ST is an abstract pre-postcondition refinement of

$$\mathtt{st} \ \mathtt{t} \overset{\mathtt{def}}{=} \ \mathtt{state} \to \mathtt{t} * \mathtt{state}$$

The global state actions have types

```
get: unit \to ST state (requires (\lambda_-, \top)) (ensures (\lambda_s_0 s s_1, s_0 = s = s_1))
put: s:state \to ST unit (requires (\lambda_-, \top)) (ensures (\lambda_-, s_1, s_1 = s))
```

Refs. and local state are defined in F* using monotonicity

• F* supports Hoare-style reasoning about state via the comp. type

```
ST<sub>state</sub> t (requires pre) (ensures post)
```

where

```
\begin{picture}(100,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){10
```

• ST is an abstract pre-postcondition refinement of

```
\mathtt{st} \ \mathtt{t} \overset{\mathtt{def}}{=} \mathtt{state} \to \mathtt{t} * \mathtt{state}
```

The global state actions have types

```
get: unit \rightarrow ST state (requires (\lambda_-.\top)) (ensures (\lambda s_0 s s_1 . s_0 = s = s_1))
put: s:state \rightarrow ST unit (requires (\lambda_-.\top)) (ensures (\lambda_-s_1 . s_1 = s))
```

Refs. and local state are defined in F* using monotonicity

• F* supports Hoare-style reasoning about state via the comp. type

```
ST<sub>state</sub> t (requires pre) (ensures post)
```

where

```
\begin{tabular}{ll} pre: state \rightarrow Type & post: state \rightarrow t \rightarrow state \rightarrow Type \\ \end{tabular}
```

• ST is an abstract pre-postcondition refinement of

```
\mathtt{st} \ \mathtt{t} \overset{\mathtt{def}}{=} \mathtt{state} \to \mathtt{t} * \mathtt{state}
```

• The global state actions have types

```
get: unit \rightarrow ST state (requires (\lambda_-.\top)) (ensures (\lambda s_0 s s_1. s_0 = s = s_1))
put: s:state \rightarrow ST unit (requires (\lambda_-.\top)) (ensures (\lambda_-s_1. s_1 = s))
```

• Refs. and local state are defined in F* using monotonicity

New: Monotonic global state in F*

We capture monotonic state with a new computational type

```
{
m MST}_{
m state,rel} t (requires pre) (ensures post)
```

The get action is typed as in ST

```
\label{eq:get:mit} \texttt{get}: \texttt{unit} \to \texttt{MST} \; \texttt{state} \; \big( \texttt{requires} \; \big( \lambda \; \_. \top \big) \big) \\ \big( \texttt{ensures} \; \big( \lambda \; \texttt{s}_0 \; \texttt{s} \; \texttt{s}_1 \, . \; \texttt{s}_0 = \texttt{s} = \texttt{s}_1 \big) \big)
```

To ensure monotonicity, the put action gets a precondition

```
put: s:state \rightarrow MST unit (requires (\lambda s_0.rel s_0s))
(ensures (\lambda_- s_1.s_1=s))
```

So intuitively, MST is an abstract pre-postcondition refinement of

```
\texttt{mst} \ \texttt{t} \ \stackrel{\text{def}}{=} \ \texttt{s}_0 \texttt{:state} \to \texttt{t} * \texttt{s}_1 \texttt{:state} \{ \texttt{rel} \ \texttt{s}_0 \ \texttt{s}_1 \}
```

New: Monotonic global state in F*

• We capture monotonic state with a new computational type

```
MST<sub>state,rel</sub> t (requires pre) (ensures post)
```

• The **get** action is typed as in ST

```
\label{eq:get:unit} \begin{split} \text{get}: \text{unit} & \to \text{MST state (requires } (\lambda_-.\top)) \\ & \quad \quad \left(\text{ensures } (\lambda \, \text{s}_0 \, \text{s} \, \text{s}_1 \, , \text{s}_0 = \text{s} = \text{s}_1)\right) \end{split}
```

Io ensure monotonicity, the put action gets a precondition
 put: s:state → MST unit (requires (λ s₀ . rel s₀ s))
 (ensures (λ _ _ s₁ . s₁ = s))

• So intuitively, MST is an **abstract** pre-postcondition refinement of

New: Monotonic global state in F*

• We capture monotonic state with a new computational type

```
MST<sub>state,rel</sub> t (requires pre) (ensures post)
```

• The get action is typed as in ST

```
\begin{aligned} \texttt{get}: \texttt{unit} & \to \texttt{MST} \; \texttt{state} \; \big( \texttt{requires} \; \big( \lambda_-.\top \big) \big) \\ & \big( \texttt{ensures} \; \big( \lambda \, \texttt{s}_0 \, \texttt{s} \, \texttt{s}_1 \, . \, \texttt{s}_0 = \texttt{s} = \texttt{s}_1 \big) \big) \end{aligned}
```

To ensure monotonicity, the put action gets a precondition put: s:state → MST unit (requires (λ s₀ . rel s₀ s))
 (ensures (λ _ s₁ . s₁ = s))

• So intuitively, MST is an **abstract** pre-postcondition refinement of

New: Monotonic global state in F*

• We capture monotonic state with a new computational type

```
MST<sub>state,rel</sub> t (requires pre) (ensures post)
```

The get action is typed as in ST

```
\begin{aligned} \texttt{get}: \texttt{unit} & \to \texttt{MST} \; \texttt{state} \; \big( \texttt{requires} \; \big( \lambda_-.\top \big) \big) \\ & \big( \texttt{ensures} \; \big( \lambda \, \texttt{s}_0 \, \texttt{s} \, \texttt{s}_1 \, . \, \texttt{s}_0 = \texttt{s} = \texttt{s}_1 \big) \big) \end{aligned}
```

• To ensure monotonicity, the put action gets a precondition

So intuitively, MST is an abstract pre-postcondition refinement of

```
	exttt{mst} \; 	exttt{t} \; \stackrel{	exttt{def}}{=} \; 	exttt{s}_0 	exttt{:state} \{ 	exttt{rel} \; 	exttt{s}_0 \; 	exttt{s}_1 \}
```

New: Monotonic global state in F*

We capture monotonic state with a new computational type

```
MST<sub>state,rel</sub> t (requires pre) (ensures post)
```

• The get action is typed as in ST

```
\begin{aligned} \texttt{get}: \texttt{unit} & \to \texttt{MST} \; \texttt{state} \; \big( \texttt{requires} \; \big( \lambda_-.\top \big) \big) \\ & \big( \texttt{ensures} \; \big( \lambda \, \texttt{s}_0 \, \texttt{s} \, \texttt{s}_1 \, . \, \texttt{s}_0 = \texttt{s} = \texttt{s}_1 \big) \big) \end{aligned}
```

• To ensure monotonicity, the put action gets a precondition

```
put: s:state \rightarrow MST unit (requires (\lambda s_0.rel s_0 s))
(ensures (\lambda_{--}s_1.s_1 = s))
```

So intuitively, MST is an abstract pre-postcondition refinement of

```
\texttt{mst t} \ \stackrel{\text{def}}{=} \ \textbf{s_0} \text{:state} \rightarrow \textbf{t} * \textbf{s_1} \text{:state} \big\{ \texttt{rel } \textbf{s_0} \ \textbf{s_1} \big\}
```

We extend F* with a logical capability

```
	exttt{witnessed}: (	exttt{state} 
ightarrow 	exttt{Type}) 
ightarrow 	exttt{Type}
```

together with a weakening principle (functoriality)

```
\label{eq:wk:pq:state} \begin{split} \text{wk:p,q:} (\text{state} \to \text{Type}) \to \text{Lemma (requires ($\forall \, \text{s.p s} \implies \text{q s}$))} \\ & \qquad \qquad \text{(ensures (witnessed $p$ $\Longrightarrow$ witnessed $q$)} \end{split}
```

```
[\![\mathtt{witnessed}\ \mathtt{p}]\!](\mathtt{s}) \stackrel{\mathsf{def}}{=} \ orall \, \mathtt{s}' . \mathtt{rel}\ \mathtt{s}\ \mathtt{s}' \implies [\![\mathtt{p}\ \mathtt{s}']\!](\mathtt{s})
```

- As usual, for natural deduction, need world-indexed sequents
- Oh, wait a minute . . .

• We extend F* with a logical capability

```
\mathtt{witnessed} : (\mathtt{state} \to \mathtt{Type}) \to \mathtt{Type}
```

together with a weakening principle (functoriality)

```
\begin{tabular}{ll} wk:p,q:(state \to Type) \to Lemma (requires (\forall \, s.\, p \, s \implies q \, s)) \\ & (ensures \, (witnessed \, p \implies witnessed \, q)) \end{tabular}
```

```
\llbracket \mathtt{witnessed} \ \mathtt{p} \rrbracket (\mathtt{s}) \stackrel{\mathtt{def}}{=} \ \forall \ \mathtt{s'} \, . \, \mathtt{rel} \ \mathtt{s} \ \mathtt{s'} \implies \llbracket \mathtt{p} \ \mathtt{s'} \rrbracket (\mathtt{s})
```

- As usual, for natural deduction, need world-indexed sequents
- Oh, wait a minute . . .

• We extend F* with a logical capability

```
witnessed : (state 	o Type) 	o Type
```

together with a weakening principle (functoriality)

```
\begin{tabular}{ll} wk:p,q:(state \to Type) \to Lemma (requires (\forall \, s.\, p \, s \implies q \, s)) \\ & (ensures \, (witnessed \, p \implies witnessed \, q)) \end{tabular}
```

```
\llbracket \mathtt{witnessed} \ \mathtt{p} \rrbracket (\mathtt{s}) \stackrel{\mathsf{def}}{=} \ \forall \, \mathtt{s'} \, . \, \mathtt{rel} \, \, \mathtt{s} \, \, \mathtt{s'} \implies \llbracket \mathtt{p} \, \, \mathtt{s'} \rrbracket (\mathtt{s})
```

- As usual, for natural deduction, need world-indexed sequents
- Oh, wait a minute . . .

• We extend F* with a logical capability

```
witnessed : (state 	o Type) 	o Type
```

together with a weakening principle (functoriality)

```
\begin{tabular}{ll} wk:p,q:(state \to Type) \to Lemma (requires (\forall \, s.\, p \, s \implies q \, s)) \\ & (ensures \, (witnessed \, p \implies witnessed \, q)) \end{tabular}
```

```
\llbracket \mathtt{witnessed} \ \mathtt{p} \rrbracket (\mathtt{s}) \stackrel{\mathsf{def}}{=} \ \forall \, \mathtt{s'} \, . \, \mathtt{rel} \, \, \mathtt{s} \, \, \mathtt{s'} \implies \llbracket \mathtt{p} \, \, \mathtt{s'} \rrbracket (\mathtt{s})
```

- As usual, for natural deduction, need world-indexed sequents
- Oh, wait a minute . . .

• We extend F* with a logical capability

```
witnessed : (state \rightarrow Type) \rightarrow Type
```

together with a weakening principle (functoriality)

```
\begin{tabular}{ll} wk:p,q:(state \to Type) \to Lemma (requires (\forall \, s.\, p \, s \implies q \, s)) \\ & (ensures \, (witnessed \, p \implies witnessed \, q)) \end{tabular}
```

```
\llbracket \mathtt{witnessed} \ \mathtt{p} \rrbracket (\mathtt{s}) \stackrel{\mathsf{def}}{=} \ \forall \, \mathtt{s'} \, . \, \mathtt{rel} \, \, \mathtt{s} \, \, \mathtt{s'} \implies \llbracket \mathtt{p} \, \, \mathtt{s'} \rrbracket (\mathtt{s})
```

- As usual, for natural deduction, need world-indexed sequents
- Oh, wait a minute . . .

- ... Hoare-style logics are essentially world/state-indexed, so
- we include a stateful introduction rule for witnessed

and a stateful elimination rule for witnessed

```
\begin{split} \text{recall} &: \text{ p:}(\text{state} \rightarrow \text{Type}_0) \\ &\rightarrow \text{ MST unit (requires } (\lambda_-. \text{witnessed p})) \\ & \qquad \qquad \left(\text{ensures } (\lambda \, \text{s}_0 \, \_ \, \text{s}_1 \, . \, \text{s}_0 = \text{s}_1 \, \land \, \text{p 'stable\_from' s}_1)\right) \end{split}
```

- ... Hoare-style logics are essentially world/state-indexed, so
- we include a stateful introduction rule for witnessed

```
\label{eq:state} \begin{split} \text{witness} \; : \; \; & p{:}\big(\text{state} \to \text{Type}_0\big) \\ & \to \; \text{MST unit (requires } \big(\lambda \, s_0 \, . \, p \; \text{`stable\_from'} \; s_0\big)\big) \\ & \qquad \qquad \big(\text{ensures } \big(\lambda \, s_0 \, . \, s_1 \, . \, s_0 = s_1 \; \land \; \text{witnessed p}\big)\big) \end{split}
```

and a stateful elimination rule for witnessed

```
\begin{split} \text{recall} \; : \; & \text{p:}(\text{state} \rightarrow \text{Type}_0) \\ & \rightarrow \; \text{MST unit (requires } (\lambda_-. \text{witnessed p})) \\ & \qquad \qquad \left( \text{ensures } (\lambda \, \text{s}_0 \, - \, \text{s}_1 \, . \, \text{s}_0 = \, \text{s}_1 \, \land \, \text{p 'stable\_from' s}_1) \right) \end{split}
```

- ... Hoare-style logics are essentially world/state-indexed, so
- we include a stateful introduction rule for witnessed

```
\label{eq:state} \begin{split} \text{witness} \; : \; \; & p{:}\big(\text{state} \to \text{Type}_0\big) \\ & \to \; \text{MST unit (requires } \big(\lambda \, s_0 \, . \, p \; \text{`stable\_from'} \; s_0\big)\big) \\ & \qquad \qquad \big(\text{ensures } \big(\lambda \, s_0 \, . \, s_1 \, . \, s_0 = s_1 \; \land \; \text{witnessed p}\big)\big) \end{split}
```

and a stateful elimination rule for witnessed

```
\begin{split} \text{recall} &: \ p\text{:}(\texttt{state} \to \texttt{Type}_0) \\ &\to \texttt{MST} \ \text{unit} \ (\texttt{requires} \ (\lambda_-. \texttt{witnessed} \ p)) \\ &\quad \left(\texttt{ensures} \ (\lambda \, \texttt{s}_0 \, - \, \texttt{s}_1 \, . \, \texttt{s}_0 = \, \texttt{s}_1 \ \land \ p \ \text{`stable\_from'} \ \texttt{s}_1)) \end{split}
```

Outline

- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see POPL'18 paper)
- Monadic reification and reflection (if time permits, or see paper)
- Meta-theory and correctness results (see POPL'18 paper)

Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick **set inclusion** ⊆ as our preorder **rel** on states
- We prove the assertion by inserting a witness and recall

```
\texttt{insert } v; \texttt{ witness } (\lambda \texttt{ s} . \texttt{ v} \in \texttt{ s}); \texttt{ c\_p()}; \texttt{ recall } (\lambda \texttt{ s} . \texttt{ v} \in \texttt{ s}); \texttt{ assert } (\texttt{ v} \in \texttt{get()})
```

For any other w, wrapping

```
insert w; []; assert (w \in get())
```

around the program is handled similarly easily by

```
\texttt{insert w; witness } (\lambda \, \texttt{s.w} \in \texttt{s}); \; [ \; ]; \; \texttt{recall } (\lambda \, \texttt{s.w} \in \texttt{s}); \; \texttt{assert } (\texttt{w} \in \texttt{get}())
```

• Monotonic counters are analogous, by picking $\mathbb N$ and \leq , e.g., create 0; incr(); witness (λ c.c > 0); c.p(); recall (λ c.c > 0)

Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick **set inclusion** \subseteq as our preorder rel on states
- We prove the assertion by inserting a witness and recall

```
insert\ v;\ witness\ (\lambda\, s\,.\, v\in s);\ c\_p();\ recall\ (\lambda\, s\,.\, v\in s);\ assert\ (v\in get()
```

For any other w, wrapping

```
insert w; []; assert (w \in get())
```

around the program is handled similarly easily by

```
\texttt{insert w; witness } (\lambda \, \texttt{s.w} \in \texttt{s}); \; [ \; ]; \; \texttt{recall } (\lambda \, \texttt{s.w} \in \texttt{s}); \; \texttt{assert } (\texttt{w} \in \texttt{get}())
```

• Monotonic counters are analogous, by picking $\mathbb N$ and \leq , e.g., create 0; incr(); witness $(\lambda \, \text{c.c} > 0)$; c-p(); recall $(\lambda \, \text{c.c} > 0)$

Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick set inclusion ⊆ as our preorder rel on states
- We prove the assertion by inserting a witness and recall

```
\texttt{insert } \texttt{v}; \texttt{ witness } (\texttt{\lambda} \texttt{s.v} \in \texttt{s}); \texttt{ c\_p()}; \texttt{ recall } (\texttt{\lambda} \texttt{s.v} \in \texttt{s}); \texttt{ assert } (\texttt{v} \in \texttt{get()})
```

For any other w, wrapping

```
insert w; [ ]; assert (w \in get())
```

around the program is handled similarly easily by

```
\texttt{insert w}; \ \texttt{witness} \ (\lambda \, \texttt{s.w} \in \texttt{s}); \ [ \ ]; \ \texttt{recall} \ (\lambda \, \texttt{s.w} \in \texttt{s}); \ \texttt{assert} \ (\texttt{w} \in \texttt{get}())
```

• Monotonic counters are analogous, by picking $\mathbb N$ and \leq , e.g., create 0; incr(); witness $(\lambda \, \text{c.c} > 0)$; c-p(); recall $(\lambda \, \text{c.c} > 0)$

Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick set inclusion ⊆ as our preorder rel on states
- We prove the assertion by inserting a witness and recall

```
\texttt{insert } \texttt{v}; \texttt{ witness } (\texttt{\lambda} \texttt{ s}. \texttt{v} \in \texttt{s}); \texttt{ c\_p()}; \texttt{ recall } (\texttt{\lambda} \texttt{ s}. \texttt{v} \in \texttt{s}); \texttt{ assert } (\texttt{v} \in \texttt{get()})
```

For any other w, wrapping

```
insert w; [ ]; assert (w \in get())
```

around the program is handled similarly easily by

```
insert w; witness (\lambda s.w \in s); [ ]; recall (\lambda s.w \in s); assert (w \in get())
```

• Monotonic counters are analogous, by picking $\mathbb N$ and \leq , e.g., create 0; incr(); witness $(\lambda \, \text{c.c} > 0)$; c-p(); recall $(\lambda \, \text{c.c} > 0)$

• Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick **set inclusion** \subseteq as our preorder rel on states
- We prove the assertion by inserting a witness and recall

```
\texttt{insert } v; \texttt{ witness } (\lambda \, \texttt{s} \, . \, \texttt{v} \in \texttt{s}); \ \texttt{c}\_\texttt{p}(); \ \texttt{recall } (\lambda \, \texttt{s} \, . \, \texttt{v} \in \texttt{s}); \ \texttt{assert } (\texttt{v} \in \texttt{get}())
```

For any other w, wrapping

```
insert w; [ ]; assert (w \in get())
```

around the program is handled **similarly easily** by

```
insert w; witness (\lambda s.w \in s); []; recall (\lambda s.w \in s); assert (w \in get())
```

Monotonic counters are analogous, by picking N and ≤, e.g.,
 create 0; incr(); witness (λc.c > 0); c_p(); recall (λc.c > 0)

First, we define a type of heaps as a finite map

```
\label{eq:type-heap} \begin{split} & | \ H: h: (\mathbb{N} \to \text{cell}) \to \text{ctr}: \mathbb{N} \{ \forall \, n \, . \, \text{ctr} \leq n \implies h \, \, n = \text{Unused} \} \to \text{heap} \\ & \text{where} \\ & \text{type cell} = \\ & | \ \text{Unused} : \text{cell} \\ & | \ \text{Used} : a: Type \to v: a \to \text{cell} \end{split}
```

Next, we define a preorder on heaps (heap inclusion)

```
let heap_inclusion (H h<sub>0</sub> _) (H h<sub>1</sub> _) = \forall id.match h<sub>0</sub> id, h<sub>1</sub> id with | Used a _,Used b _ \rightarrow a = b | Unused, Used _ _ \rightarrow \top | Unused, Unused \rightarrow \top
```

• First, we define a type of **heaps** as a finite map

```
type heap =
      | \text{H} : \mathbf{h}: (\mathbb{N} \to \text{cell}) \to \mathbf{ctr}: \mathbb{N} \{ \forall \, \text{n.ctr} \leq \text{n} \implies \text{h n} = \text{Unused} \} \to \text{heap}
where
  type cell =
      Unused : cell
      | Used : a:Type \rightarrow v:a \rightarrow cell
```

• First, we define a type of heaps as a finite map

```
\label{eq:type-heap} \begin{split} & | \; \text{H} : h \text{:} (\mathbb{N} \to \text{cell}) \to \text{ctr:} \mathbb{N} \{ \forall \, n \, . \, \text{ctr} \leq n \implies h \, \, n = \text{Unused} \} \to \text{heap} \\ & \text{where} \\ & \text{type cell} = \\ & | \; \text{Unused} : \text{cell} \\ & | \; \text{Used} : \, \textbf{a} \text{:} \text{Type} \to \textbf{v} \text{:} \textbf{a} \to \text{cell} \end{split}
```

Next, we define a preorder on heaps (heap inclusion)

```
let heap_inclusion (H h_0 _) (H h_1 _) = \forall id.match h_0 id, h_1 id with 
 | Used a _, Used b _ \rightarrow a = b 
 | Unused, Used _ \rightarrow \rightarrow \top 
 | Unused, Unused \rightarrow \rightarrow \bot 
 | Used _ _ , Unused \rightarrow \bot
```

• As a result, we can define new local state effect

```
\texttt{MLST} \texttt{ t pre post} \stackrel{\text{def}}{=} \texttt{MST}_{\texttt{heap},\texttt{heap\_inclusion}} \texttt{ t pre post}
```

Next, we define the type of **references** using monotonicity abstract type ref $a = id: \mathbb{N}\{\text{witnessed } (\lambda \, h \, . \, \text{contains } h \, id \, a)\}$ where

```
let contains (H h \_) id a = match h id with  | \text{Used b } \_ \rightarrow \text{ a} = \text{b}
```

Important: contains is stable wrt. heap_inclusion

• As a result, we can define new local state effect

```
MLST t pre post \stackrel{\text{def}}{=} MST<sub>heap,heap_inclusion</sub> t pre post
```

• Next, we define the type of references using monotonicity

```
\texttt{abstract type ref a} = \texttt{id} : \mathbb{N} \{ \texttt{witnessed ($\lambda$ h. contains h id a)} \}
```

where

```
let contains (H h \_) id a =  match h id with | Used b \_ \rightarrow a = b | Unused \rightarrow \bot
```

Important: contains is stable wrt. heap_inclusion

• As a result, we can define new local state effect

```
MLST t pre post \stackrel{\text{def}}{=} MST<sub>heap,heap_inclusion</sub> t pre post
```

• Next, we define the type of references using monotonicity

```
\texttt{abstract type ref a} = \texttt{id} : \mathbb{N} \{ \texttt{witnessed ($\lambda$ h. contains h id a)} \}
```

where

```
let contains (H h \_) id a =  match h id with | Used b \_ \rightarrow a = b | Unused \rightarrow \bot
```

Important: contains is stable wrt. heap_inclusion

- Finally, we define MLST's actions using MST's actions
 - let alloc (a:Type) (v:a): MLST (ref a) ... = ...
 - get the current heap
 - create a fresh ref., and add it to the heap
 - put the updated heap back
 - witness that the created ref. is in the heap
 - let read (r:ref a): MLST t ... = ...
 - recall that the given ref. is in the heap
 - get the current heap
 - **select** the given reference from the heap
 - let write (r:ref a) (v:a): MLST unit ... = ...
 - recall that the given ref. is in the hear
 - get the current heap
 - update the heap with the given value at the given ref.
 - put the updated heap back

- Finally, we define MLST's actions using MST's actions
 - let alloc (a:Type) (v:a): MLST (ref a) ... = ...
 - get the current heap
 - create a fresh ref., and add it to the heap
 - put the updated heap back
 - witness that the created ref. is in the heap
 - let read (r:ref a): MLST t ... = ...
 - recall that the given ref. is in the heap
 - get the current heap
 - select the given reference from the heap
 - let write (r:ref a) (v:a): MLST unit ... = ...
 - recall that the given ref. is in the heap
 - get the current heap
 - update the heap with the given value at the given ref.
 - put the updated heap back

- Untyped references (uref) with strong updates
 - Used heap cells are extended with tags

```
|\mbox{ Used}:a:Type \to v:a \to t:tag \to cell where type \mbox{ tag } = \mbox{ Typed}:tag \ | \mbox{ Untyped}:tag
```

- actions corresponding to urefs have weaker types than for refs
- Monotonic references (mref a rel)
 - Used heap cells are extended with typed tags

```
where

| Used: a:Type → v:a → t:tag a → cell

where

type tag a = Typed: rel:preorder a → tag a | Untyped: tag a
```

- mrefs provide more flexibility with ref.-wise monotonicity
- Further, all three can be extended with manually managed refs.

- Untyped references (uref) with strong updates
 - Used heap cells are extended with tags

```
| \mbox{ Used: a:Type} \rightarrow \mbox{v:a} \rightarrow \mbox{t:tag} \rightarrow \mbox{cell} where  \mbox{type tag} \ = \mbox{ Typed: tag} \ | \mbox{ Untyped: tag}
```

- actions corresponding to urefs have weaker types than for refs
- Monotonic references (mref a rel)
 - Used heap cells are extended with typed tags

```
| \  \, \text{Used} : a: Type \rightarrow v: a \rightarrow t: tag \ a \rightarrow \text{cell} \\ \text{where} \\
```

- type tag a = Typed:rel:preorder a \rightarrow tag a | Untyped:tag a
- mrefs provide more flexibility with ref.-wise monotonicity
- Further, all three can be extended with manually managed refs.

- Untyped references (uref) with strong updates
 - Used heap cells are extended with tags

```
| \mbox{ Used: a:Type} \rightarrow \mbox{v:a} \rightarrow \mbox{t:tag} \rightarrow \mbox{cell} where  \mbox{type tag} \ = \mbox{ Typed: tag} \ | \mbox{ Untyped: tag}
```

- actions corresponding to urefs have weaker types than for refs
- Monotonic references (mref a rel)
 - Used heap cells are extended with **typed tags**

```
| \mbox{ Used : a:Type} \rightarrow \mbox{ v:a} \rightarrow \mbox{ t:tag } \mbox{ a} \rightarrow \mbox{ cell} \\ \mbox{ where} \\ \mbox{ type tag a} = \mbox{ Typed : rel:preorder a} \rightarrow \mbox{ tag a} \mbox{ } | \mbox{ Untyped : tag a} \\
```

- mrefs provide more flexibility with ref.-wise monotonicity
- Further, all three can be extended with manually managed refs.

- Untyped references (uref) with strong updates
 - Used heap cells are extended with tags

```
| \  \, \text{Used} : \texttt{a:Type} \to \texttt{v:a} \to \texttt{t:tag} \to \texttt{cell} where  \  \, \texttt{type} \ \texttt{tag} \ = \ \texttt{Typed} : \texttt{tag} \ | \  \, \texttt{Untyped} : \texttt{tag}
```

- actions corresponding to urefs have weaker types than for refs
- Monotonic references (mref a rel)
 - Used heap cells are extended with typed tags

```
| \  \, \text{Used} : a\text{:} \text{Type} \rightarrow \text{v:a} \rightarrow \text{t:tag } \text{a} \rightarrow \text{cell} \\ \text{where} \\
```

```
\texttt{type tag a} \ = \ \texttt{Typed} : \\ \texttt{rel:preorder a} \rightarrow \texttt{tag a} \ | \ \texttt{Untyped} : \\ \texttt{tag a}
```

- mrefs provide more flexibility with ref.-wise monotonicity
- Further, all three can be extended with manually managed refs.

Conclusion

- Monotonicity
 - can be distilled into a simple and general framework
 - is useful for programming (refs.) and verification (Prj. Everest)
- See our POPL 2018 paper for
 - further examples and case studies
 - meta-theory and correctness results for MST
 - based on an instrumented operational semantics

$$\left(\texttt{witness}\;x.\varphi\,,\,s\,,\,W\right)\;\leadsto\;\left(\texttt{return}\;\left(\right),\,s\,,\,W\cup\{x.\varphi\}\right)$$

- and cut elimination for the witnessed-logic
- first steps towards monadic reification for MST
 - useful for extrinsic reasoning, e.g., for relational properties
 - but have to be careful when breaking abstraction

Conclusion

- Monotonicity
 - can be distilled into a simple and general framework
 - is **useful** for **programming** (refs.) and **verification** (Prj. Everest)
- See our POPL 2018 paper for
 - further examples and case studies
 - meta-theory and correctness results for MST
 - based on an instrumented operational semantics

```
(witness x.\varphi, s, W) \leadsto (return (), s, W \cup \{x.\varphi\})
```

- and cut elimination for the witnessed-logic
- first steps towards monadic reification for MST
 - useful for extrinsic reasoning, e.g., for relational properties
 - but have to be careful when breaking abstraction

• In F* every abstract ST computation

```
e:ST t (requires pre) (ensures post) can be reified into its underlying Pure representation  \text{reify e:} s_0\text{:state} \rightarrow \text{Pure } (\texttt{t*state}) \text{ (requires (pre } s_0\text{))} \\ \text{ (ensures } (\lambda \text{ (x,} s_1) \cdot \text{post } s_0 \text{ x } s_1\text{))}
```

and vice versa using reflection (see our POPL 2017 paper)

- Useful for extrinsic reasoning, e.g., for relational properties
- We also need it for MST!

• In F* every abstract ST computation

```
e:ST t (requires pre) (ensures post)

can be reified into its underlying Pure representation

reify e:s_0:state \rightarrow Pure (t*state) (requires (pre s_0))

(ensures (\lambda (x,s_1).post s_0 x s_1))

and vice versa using reflection (see our POPL 2017 paper)
```

- Useful for extrinsic reasoning, e.g., for relational properties
- We also need it for MST!

• In F* every abstract ST computation

```
e:ST t (requires pre) (ensures post)
```

can be reified into its underlying Pure representation

```
\label{eq:s0} \begin{split} \text{reify e: } s_0\text{:state} &\to \text{Pure } \left( \texttt{t} * \texttt{state} \right) \left( \text{requires } \left( \text{pre } s_0 \right) \right) \\ & \left( \text{ensures } \left( \lambda \left( \texttt{x}, s_1 \right) . \, \text{post } s_0 \, \texttt{x} \, s_1 \right) \right) \end{split}
```

and vice versa using reflection (see our POPL 2017 paper)

- Useful for extrinsic reasoning, e.g., for relational properties
- We also need it for MST!

We cannot simply turn an abstract MST computation

```
e: MST t (requires pre) (ensures post) into a state-passing function s_0 : \texttt{state} \to \texttt{Pure} \ (\texttt{t} * \texttt{s}_1 : \texttt{state} \{ \texttt{rel} \ \texttt{s}_0 \ \texttt{s}_1 \}) \ (\texttt{req}. \ (\texttt{pre} \ \texttt{s}_0)) \\ (\texttt{ens.} \ (\lambda \ (\texttt{x}, \texttt{s}_1) . \, \texttt{post} \ \texttt{s}_0 \ \texttt{x}_1) )
```

• For example, consider the recalling action

```
\begin{aligned} \texttt{recall}: \texttt{p:}(\texttt{state} \rightarrow \texttt{Type}) \rightarrow \texttt{MST unit (requires ($\lambda$\_.witnessed p))} \\ & (\texttt{ensures ($\lambda$ $\texttt{s}_0$\_$\texttt{s}_1$.$\texttt{s}_0 = \texttt{s}_1$ $\land$ p $\texttt{s}_1$))} \end{aligned}
```

which we would like to reduce as

```
reify (recall p) \rightsquigarrow \lambda s_0.return ((), s_0)
```

but we cannot prove $p s_0$ from witnessed p in the pure logic

• We cannot simply turn an abstract MST computation

```
e: MST t (requires pre) (ensures post)
```

into a state-passing function

```
\begin{split} \mathbf{s_0} : & \mathtt{state} \to \mathtt{Pure} \ \big( \mathtt{t} * \mathbf{s_1} : \mathtt{state} \{ \mathtt{rel} \ \mathbf{s_0} \ \mathbf{s_1} \} \big) \ \big( \mathtt{req.} \ \big( \mathtt{pre} \ \mathbf{s_0} \big) \big) \\ & \big( \mathtt{ens.} \ \big( \lambda \ \big( \mathtt{x}, \mathbf{s_1} \big) . \, \mathtt{post} \ \mathbf{s_0} \ \mathtt{x} \ \mathbf{s_1} \big) \big) \end{split}
```

For example, consider the recalling action

```
\begin{aligned} \text{recall}: p: & (\text{state} \rightarrow \text{Type}) \rightarrow \text{MST unit } \left( \text{requires } (\lambda_-. \text{witnessed p}) \right) \\ & \left( \text{ensures } (\lambda \, \mathbf{s_0} \, \_ \, \mathbf{s_1} \, . \, \mathbf{s_0} = \mathbf{s_1} \, \land \, \mathbf{p} \, \, \mathbf{s_1} \right) \end{aligned}
```

which we would like to reduce as

```
reify (recall p) \rightsquigarrow \lambda s_0.return ((), s_0)
```

but we cannot prove p so from witnessed p in the pure logic

• We cannot simply turn an abstract MST computation

```
e: MST t (requires pre) (ensures post)
```

into a state-passing function

```
\begin{split} \mathbf{s_0} : & \mathtt{state} \to \mathtt{Pure} \ \big( \mathtt{t} * \mathbf{s_1} : \mathtt{state} \{ \mathtt{rel} \ \mathbf{s_0} \ \mathbf{s_1} \} \big) \ \big( \mathtt{req.} \ \big( \mathtt{pre} \ \mathbf{s_0} \big) \big) \\ & \big( \mathtt{ens.} \ \big( \lambda \ \big( \mathtt{x}, \mathbf{s_1} \big) . \ \mathtt{post} \ \mathbf{s_0} \ \mathtt{x} \ \mathbf{s_1} \big) \big) \end{split}
```

For example, consider the recalling action

```
\begin{split} \text{recall}: p:&(\text{state} \rightarrow \text{Type}) \rightarrow \text{MST unit (requires ($\lambda_-$. witnessed p))} \\ & (\text{ensures ($\lambda_{s_0-s_1}$. $s_0=s_1$. $\rho_{s_1}$))} \end{split}
```

which we would like to **reduce** as

```
reify (recall p) \rightsquigarrow \lambda s_0.return ((), s_0)
```

but we cannot prove p so from witnessed p in the pure logic

- In our POPL 2018 paper, we support reification and reflection by
 - indexing MST_{state,rel,b} with a **boolean flag** b (reifiable?), and
 - guarding the pre-postconditions of witness and recall with b
 so if b = true then witness and recall are logically no-ops.
- This works but leads to duplication of pre- and postconditions!
- Instead, ongoing work is taking (hybrid) modal logic seriously

```
\mathbf{s_0} : \mathtt{state} \rightarrow \mathtt{Pure} \; \big( \mathtt{t} * \mathbf{s_1} : \mathtt{state} \{ \mathtt{rel} \; \mathbf{s_0} \; \mathbf{s_1} \} \big) \; \big( \mathtt{req.} \; \big( \mathtt{pre} \; \mathbf{s_0} \; \mathbf{@} \; \mathbf{s_0} \big) \big) \\ \qquad \qquad \big( \mathtt{ens.} \; \big( \lambda \; \big( \mathtt{x}, \mathbf{s_1} \big) . \, \mathtt{post} \; \mathbf{s_0} \; \mathtt{x} \; \mathbf{s_1} \; \mathbf{@} \; \mathbf{s_1} \big) \\
```

where **@** is the **standard translation** of modal logic

- In our POPL 2018 paper, we support reification and reflection by
 - indexing MST_{state,rel,b} with a **boolean flag** b (reifiable?), and
 - guarding the pre-postconditions of witness and recall with b
 so if b = true then witness and recall are logically no-ops.
- This works but leads to duplication of pre- and postconditions!
- Instead, ongoing work is taking (hybrid) modal logic seriously

```
\mathbf{s}_0:state 	o Pure (t * \mathbf{s}_1:state{rel \mathbf{s}_0 \mathbf{s}_1}) (req. (pre \mathbf{s}_0 \mathbf{0} \mathbf{s}_0))

(ens. (\lambda (x, \mathbf{s}_1).post \mathbf{s}_0 x \mathbf{s}_1 \mathbf{0} \mathbf{s}_1)
```

where **@** is the **standard translation** of modal logic

- In our POPL 2018 paper, we support reification and reflection by
 - indexing MST_{state,rel,b} with a **boolean flag** b (reifiable?), and
 - guarding the pre-postconditions of witness and recall with b
 so if b = true then witness and recall are logically no-ops.
- This works but leads to duplication of pre- and postconditions!
- Instead, ongoing work is taking (hybrid) modal logic seriously

```
\begin{split} \mathbf{s_0} : & \mathsf{state} \to \mathsf{Pure} \ \big( \mathsf{t} * \mathbf{s_1} : \mathsf{state} \{ \mathsf{rel} \ \mathbf{s_0} \ \mathbf{s_1} \} \big) \ \big( \mathsf{req.} \ \big( \mathsf{pre} \ \mathbf{s_0} \ \mathbf{0} \ \mathbf{s_0} \big) \big) \\ & \big( \mathsf{ens.} \ \big( \lambda \ \big( \mathbf{x}, \mathbf{s_1} \big) . \ \mathsf{post} \ \mathbf{s_0} \ \mathbf{x} \ \mathbf{s_1} \ \mathbf{0} \ \mathbf{s_1} \big) \big) \end{split}
```

where ${\bf 0}$ is the **standard translation** of modal logic