05

PDF

4

1.

Da die Sprache endlich ist, gibt es immer midestens eine möglichkeit (maximaler DNA), eine endliche Sprache darzustellen

2.

Jede endliche Sprache kann durch einen Regulären ausdrück dargestellt werden:

$$\forall w \in L \rightarrow R = w_1 + w_2 + \cdots + w_n$$

3.

Der Satz von Myhill-Nerode besagt, dass eine Sprache L genau dann regulär ist, wenn die Anzahl der Äquivalenzklassen der Rechtskongruenz \equiv_L endlich ist.

Für eine endliche Sprache L definieren wir die Relation \equiv_L wie folgt: Für alle Wörter x,y gilt $x\equiv_L y$, wenn für alle Wörter z gilt, dass $xz\in L$ genau dann, wenn $yz\in L$.

Da L endlich ist, gibt es nur endlich viele verschiedene Fortsetzungen z, so dass $xz \in L$. Dies führt dazu, dass die Anzahl der verschiedenen Äquivalenzklassen von \equiv_L endlich ist.

Daher ist die Rechtskongruenz \equiv_L endlich indexiert, was nach dem Satz von Myhill-Nerode bedeutet, dass L regulär ist.