Chapitre I: Protocoles d'accès

Niveau: LFSI 3

A.U:2020/2021

- Introduction
- Accès par invitation à émettre: Polling
- Techniques à jeton
 - ☐ IEEE 802.5 ou Token Ring.
 - ☐ IEEE 802.4 ou Token Bus.
- Technique de la tranche vide
- Techniques à accès aléatoire
 - **ALOHA**
 - □ CSMA

- Introduction
- Accès par invitation à émettre: Polling
- Techniques à jeton
 - ☐ IEEE 802.5 ou Token Ring.
 - ☐ IEEE 802.4 ou Token Bus.
- Technique de la tranche vide
- Techniques à accès aléatoire
 - □ ALOHA
 - □ CSMA

Introduction (1/3)

- Un réseau local permet à plusieurs stations de communiquer sur un même support:
 - Conflits d'accès apparaissent si plusieurs stations émettent simultanément
 - Risque de collision

• Il existe de nombreuses méthodes ou politiques d'accès, permettant de résoudre ce conflit d'accès

Introduction (2/3)

Exemples de méthodes d'accès

- Accès par invitation à émettre ("polling")
- Les techniques à jeton
 - jeton sur anneau
 - jeton sur bus
- Technique de la tranche vide ou anneau en tranches ("empty slot" ou "slotted ring")
- Techniques à accès aléatoire
 - ALOHA
 - CSMA

ntroduction (3/3)

Classification des méthodes d'accès

• Classification 1:

- ✓ accès **déterministe** où un mécanisme permet de désigner la station (primaire) qui peut émettre.
- ✓ accès aléatoire (par contention), ne nécessite pas une autorisation préalable,

• Classification 2:

- ✓ accès statique où l'allocation de la bande passante est définitive,
- ✓ accès **dynamique** (**adaptatif**) où l'allocation de la bande passante évolue selon les besoins.

• Classification 3:

- ✓ l'approche **centralisée** où seul un nœud primaire attribue des droits d'accès,
- ✓ l'approche distribuée où les différents nœuds participent de la même façon aux contrôles d'accès.

• Classification 4:

- ✓ partage **temporel** (TDMA : "Time Division Multiple Access"),
- ✓ partage fréquentiel (FDMA : "Frequency Division Multiple Access").

- Introduction
- Accès par invitation à émettre: Polling
- Techniques à jeton
 - ☐ IEEE 802.5 ou Token Ring.
 - ☐ IEEE 802.4 ou Token Bus.
- Technique de la tranche vide
- Techniques à accès aléatoire
 - □ ALOHA
 - □ CSMA

Accès par invitation à émettre: Polling

- Approche centralisée
- Une invitation à émettre est issue d'un nœud primaire
- Si le nœud secondaire ayant reçu cette invitation veut émettre, il répond positivement à cette invitation.
- Utilisé dans les LAN avec la topologie en étoile ou en bus
- ☼ Réseau fortement chargé pour assurer uniquement la gestion (même si les stations n'ont rien à émettre)

- Accès par invitation à émettre: Polling
- Techniques à jeton
 - □ IEEE 802.5 ou Token Ring.
 - □ IEEE 802.4 ou Token Bus.
- Technique de la tranche vide
- Techniques à accès aléatoire
 - □ ALOHA
 - □ CSMA

Les techniques à jeton

- Faire circuler sur le réseau une permission d'émettre, appelée jeton
- Seul le nœud qui détient le jeton a l'autorisation (droit) d'émettre un message.
- Le jeton possède deux états : libre ou occupé.
- Le nœud désirant émettre, attend la réception du jeton libre, le met dans l'état occupé et entame son émission
- A la fin de l'émission, le jeton est remis à l'état libre
- Un nœud doit éviter de monopoliser l'anneau

Les techniques à jeton

- plusieurs techniques à jeton existent, elles diffèrent selon :
 - prochain nœud qui aura la possibilité de détenir le jeton
 - Jeton non adressé:
 - le destinataire est la station qui suit physiquement celle qui le détient
 - * IEEE 802.5 ou Token Ring.
 - Jeton adressé:
 - le jeton est adressé à nœud spécifique
 - * IEEE 802.4 ou Token Bus.
 - instant de renvoi du jeton libre.
 - gestion des priorités.

- Accès par invitation à émettre: Polling
- Techniques à jeton
 - □IEEE 802.5 ou Token Ring.
 - **❖** Principe du protocole
 - ❖ Format de la trame 802.5
 - Transmission, réception et retrait de la trame
 - Mécanisme de priorité
 - **Station moniteur**
 - ☐ IEEE 802.4 ou Token Bus.
- Technique de la tranche vide
- Techniques à accès aléatoire
 - □ ALOHA
 - □ CSMA

- Accès par invitation à émettre: Polling
- Techniques à jeton
 - □IEEE 802.5 ou Token Ring.
 - **❖** Principe du protocole
 - ❖ Format de la trame 802.5
 - Transmission, réception et retrait de la trame
 - Mécanisme de priorité
 - Station moniteur
 - ☐ IEEE 802.4 ou Token Bus.
- Technique de la tranche vide
- Techniques à accès aléatoire
 - □ ALOHA
 - □ CSMA

Le protocole Token Ring-Principe

- Chaque station de l'anneau:
 - se comporte comme un répéteur
 - renvoie les trames qui ne la concernent pas vers la station située en aval selon le sens de rotation de l'anneau
- Lorsque le destinataire reçoit le message :
 - garde une copie pour lui-même
 - le ré-émet sur l'anneau
- Lorsqu'une station se reconnaît comme l'origine du message:
 - arrête sa propagation (retire le message)
 - transmet le jeton libre à son successeur
- Une station peut émettre plusieurs trames de suite pendant 10 ms, le temps maximum de détention du jeton (THT)

- Accès par invitation à émettre: Polling
- Techniques à jeton
 - □IEEE 802.5 ou Token Ring.
 - Principe du protocole
 - ❖ Format de la trame 802.5
 - * Transmission, réception et retrait de la trame
 - Mécanisme de priorité
 - Station moniteur
 - ☐ IEEE 802.4 ou Token Bus.
- Technique de la tranche vide
- Techniques à accès aléatoire
 - □ ALOHA
 - □ CSMA

PPP T M RRR

- → •T (Token) : l'état du jeton est matérialisé par la valeur du bit T.
 - •Si T = 0, le jeton est libre et la station qui le détient peut transmettre un message.
 - Si T = 1, le jeton est occupé et un message suit.

- •M: Monitor
- toujours à zéro dans un jeton libre et dans le message émis par la station émettrice.
- positionné à 1 par le contrôleur de réseau (Monitor)
- si le contrôleur voit passer la trame avec M=1, la retire du réseau
- la trame a circulé plus d'un tour dans l'anneau
- la station émettrice ne l'a pas retirée

- •Huit niveaux de priorité (3 bits).
- •PPP, *Priority*: bits de priorité: niveau de priorité courante
- •RRR, *Réservation*: bits de réservation de priorité: niveau de priorité réservée

SD	AC	FC	DA	SA	RI	Données	FCS	ED	FS
JK0JK000	PPPTMRRR		6octets	6 octets	2 à 30 octets		4 octets	JK1JK1IE	ACrrACrr

- •définit le type de trame qui circule sur l'anneau.
- •Les deux premiers bits distinguent les trames d'information (trames LLC) des trames de gestion de l'anneau (trames MAC).

Frame Control		Type de trame	Fonction		
00		MAC			
	000 000 000 010 000 011 000 100 000 101 000 110	Test duplication d'adresse Beacom Claim Token Purge de l'anneau Moniteur actif présent (AMP) Standby Moniteur présent (SMP)	Teste si deux stations ont la même adresse Localisation d'une station défaillante Élection d'un moniteur Initialisation de l'anneau Utilisé par le moniteur pour signaler sa présence Utilisé par chaque station pour signaler sa présence		
01		Trame LLC (Data)			
	000 PPP	Priorité de la trame	Transfert de données		

DSAP: Destination Service Access Point. 7 bits d'adresse et 1 bit indiquant @ Individuelle ou @ Groupe

le bit I (Intermediate):

- •mis à 1 si la trame sera suivie par d'autres trames de la même source (transmission multiple)
- •mis à o si trame unique ou si c'est la dernière trame d'une transmission multiple.

le bit **E** (**Error**) : mis à 1 si une erreur de trame détectée par la première station

SD	AC	FC	DA	SA	RI	Données	FCS	ED	FS
JK0JK000	PPPTMRRR		6octets	6 octets	2 à 30 octets		4 octets	JK1JK1IE	ACrrACrr
								/	
					Α (:rr	A C	rr	

- •Deux paires de bits A (Adresse du destinataire reconnue) et C (trame copiée).
- informations répétées afin de sécuriser leur transmission
- A=1 si une station reconnaît une trame qui lui est destinée
- recalcule le FCS; si celle-ci est correcte, C=1

• Format du jeton:

SD	AC	ED
Start Delimitor	Access Control	End Delimitor

- Accès par invitation à émettre: Polling
- Techniques à jeton
 - □IEEE 802.5 ou Token Ring.
 - Principe du protocole
 - Format de la trame 802.5
 - Transmission, réception et retrait de la trame
 - Mécanisme de priorité
 - Station moniteur
 - ☐ IEEE 802.4 ou Token Bus.
- Technique de la tranche vide
- Techniques à accès aléatoire
 - □ ALOHA
 - □ CSMA

Transmission de la trame

- Une station ne désirant pas émettre, se contente de répéter le signal entrant en aval de l'anneau
- La station se saisit du jeton si le niveau de priorité de sa (ses) trame (s) est supérieur ou égal à celui du jeton
- Lorsqu'elle se saisit du jeton :
 - elle déclenche un temporisateur THT (Timer Holding Token) pour contrôler le temps maximum de détention du jeton
 - elle modifie le bit T (Token) du champ AC de sa trame et transmet les champs nécessaires à une trame

ransmission de la trame

- La station émet toutes les trames de priorité supérieure ou égale à celle du jeton jusqu'à ce que :
 - il n'y ait plus de données ou
 - le temporisateur THT expire
- La station émet une séquence de fin de trame ED (bit I=o) pour indiquer la dernière trame et FS
- La station déclenche ensuite un temporisateur TRR (Timer Return to Repeat)
 - définit le temps maximum de propagation sur l'anneau

Réception d'une trame

• Chaque station vérifie si la trame reçue lui est destinée

- Si oui:
 - la copie localement,
 - la répète dans l'anneau,
 - positionne les bits A et C du champ FS
 - ✓ A=1, la station destinataire a reconnu son adresse
 - ✓ C=1, la trame a été copiée
- Si la trame a subi des erreurs de transmission, E=1 du champ ED.

Retrait de la trame et remise du jeton

- Après avoir transmis ses trames de données, la station attend la réception de l'entête de sa première trame
- Vérifie le champ SA (Source Address) par rapport à son adresse (My_Address)
- Renvoie le jeton libre dès:
 - qu'elle reçoit cette trame
 - la réception de l'en-tête de la trame
 - la fin de l'émission de la trame
- Continue de retirer de l'anneau toutes les trames qu'elle a émises
- Si le temporisateur TRR expire sans qu'elle ne reçoive de trame portant son adresse, le compteur de trames perdues est incrémenté

- Accès par invitation à émettre: Polling
- Techniques à jeton
 - □IEEE 802.5 ou Token Ring.
 - Principe du protocole
 - Format de la trame 802.5
 - Transmission, réception et retrait de la trame
 - **❖** Mécanisme de priorité
 - Station moniteur
 - ☐ IEEE 802.4 ou Token Bus.
- Technique de la tranche vide
- Techniques à accès aléatoire
 - □ ALOHA
 - □ CSMA

Mécanisme de priorité

Principes

- jeton géré par toutes les stations qui coopèrent sur l'anneau
- tout jeton a un niveau de priorité courante P, et un niveau de priorité réservée R
- toute trame à émettre a un niveau de priorité Pm
- à un instant donné le jeton est soit libre, soit occupé,
- P et R sont initialisées à la priorité la plus basse o.

Mécanisme de priorite

- *Cas 1 : le jeton est libre et P* <= *Pm*, la station capture le jeton, transmet sa trame de priorité
- *Cas 2 : le jeton est libre et P > Pm, la station laisse* passer le jeton mais peut effectuer la réservation :
 - si Pm > R (valeur courante) alors R = Pm
 - sinon R garde sa valeur courante
- *Cas 3 : le jeton n'est pas libre et R < Pm* la station réserve un jeton de priorité Pm en positionnant R=Pm;
- *Cas 4*: *le jeton n'est pas libre et R* > *Pm* la station devra attendre le prochain passage du jeton pour soit transmettre soit le réserver.

Mécanisme de priorite

Les règles

- **R1**. Tout nœud ayant augmenté la valeur de P devient une station de stockage et mémorise l'ancienne valeur de P dans une pile Sr et la nouvelle valeur de P dans une autre pile Sx.
- **R2**. Lorsque le jeton revient libre, ou vient d'être libéré, avec la même nouvelle valeur (de Sx),
 - si la valeur de R est inférieure ou égale à l'ancienne valeur de P, tête de Sr, celle ci est dépilée et affectée à P (la tête de Sx est aussi dépilée) et R reste tel qu'il est.
 - Sinon la valeur de R est affectée à P (P<- R), cette même valeur devient la nouvelle tête de la deuxième pile (Sx) et R est mise à o.
- **R3.** Le jeton est libéré au retour et lorsque le nœud qui le détient ne dispose plus de message de priorité supérieure ou égale à Max (P,R) ou aussi lorsque le THT a expiré, R est mis à jour à Max(R,Pm). Lors de la libération du jeton, si R>P, la valeur de R est affectée à P et R est mise à o.

- Accès par invitation à émettre: Polling
- Techniques à jeton
 - □IEEE 802.5 ou Token Ring.
 - Principe du protocole
 - ❖ Format de la trame 802.5
 - * Transmission, réception et retrait de la trame
 - * Mécanisme de priorité
 - **Station moniteur**
 - ☐ IEEE 802.4 ou Token Bus.
- Technique de la tranche vide
- Techniques à accès aléatoire
 - □ ALOHA
 - □ CSMA

Station moniteur

Fonction du moniteur

- Si un jeton libre fait plus d'un tour sans que la priorité ne redescende alors le moniteur purge l'anneau (trame PRG) et le jeton, est re-généré.
- Une trame de données ayant fait plus d'un tour est éliminée par le moniteur.
- Si aucune trame ne passe par le moniteur, au bout d'une certaine temporisation l'anneau est purgé et le jeton est regénéré.
- La surveillance de la présence du moniteur se fait grâce aux trames AMP ("Active Monitor Present") envoyés par le moniteur et surveillé par les autres stations

Station moniteur

Election du moniteur

- Une station ne recevant pas de trame AMP pendant un certain temps émet une trame CT (Claim Token);
- Recevant un CT:
 - si l'adresse de l'émetteur est plus grande que la sienne, la station ré-émet le CT
 - sinon elle émet son CT ;
- La station ayant la plus grande adresse MAC devient le moniteur.