

INFO-6003

O/S & Application Security

Week 12

Agenda

- Exam in Next Week
- More Access and File System Control
- More detail on PAM
- Patching
- Logging
- init, Upstart init, systemd init
- Managing Services
- chroot

Next Week

- Final Exam
- FOL Respondus Browser
- 90 minutes long
- 3 long answer questions, also MC and TF

More Access Control

INFO-6003 4

Access Control

- Control and Manage the following:
 - User accounts and system administrator functions
 - Access to files, utilities and services
- SUID/SGID and sudo command allow users to assume root permissions for specific commands
 - Only when needed
- Visudo can be used to manage who can use sudo

Visudo

- visudo is the command used to edit the sudoers file
- Contains a list of users who can perform operations with the sudo command
- You can limit the commands a user can use with sudo (sudo tcpdump for example)
- We will be doing this in the lab today

Changing Passwords

- The passwd command can be used to set password options on accounts
 - Length of password
 - Lock or Unlock account
 - Number of days a password can be used
 - Days before password can be changed
 - Expiration date
 - File remain intact, but account is locked
- Similar options to what we saw in Windows

Passwd Options

-a,all	report password status on all accounts
-d,delete	delete the password for the named account
-e,expire	force expire the password for the named account
-i,inactive INACTIVE	set password inactive after expiration to INACTIVE
-l,lock	lock the password of the named account
-n,mindays MIN_DAYS	set minimum number of days before password change to MIN_DAYS
-S,status	report password status on the named account
-u,unlock	unlock the password of the named account
-w,warndays WARN_DAYS	set expiration warning days to WARN_DAYS
-x,maxdays MAX_DAYS	set maximum number of days before password change to MAX_DAYS

File Security & Integrity

- File Integrity Checkers
 - Monitor system files
 - Creates snapshot of files: a hashed signature (message digest) for each file
 - After an attack, compare post-hack signature with snapshot
 - This allows systems administrator to determine which files were changed
- Tripwire is file integrity checker that can be used for some Linux systems
 - Red Hat and SUSE

Tripwire & AIDE

Tripwire

- Tripwire detects changes to file system objects
- Tripwire creates a cryptographic hash of a file and stores the hash on each file scanned in a database
- Hashes created on next scan are compared to stored hash
- Changes could indicate a hacker altering files

AIDE

- Advanced Intrusion Detection Environment
- Developed as a free replacement to Tripwire

Samhain

Samhain

- Host intrusion detection & integrity checker
- Host & network scan options
- uses cryptographic checksums of files to detect modifications,
- can find rogue SUID executable files anywhere on disk
- Supports logging to a central server

http://www.la-samhna.de/samhain/

More on Pluggable Authentication Modules

INFO-6003 12

PAM

- PAM provides a library containing functions for proper authentication procedures
- Allows for a separate module to provide authentication so it does not have to be in the program API

PAM

- PAM configuration files have 3 entries
 - The first entry indicates one of four categories which identify different types of modules for controlling access to a particular service
 - The second field in each entry is called the control flag and determines the action taken when the module succeeds or fails
 - The third field contains the values

password [success=2 default=ignore] pam_unix.so obscure sha512

PAM

Authentication

 Provides the actual authentication (perhaps asking for and checking a password) and sets credentials, such as group membership or Kerberos tickets

Account

 Checks the account has not expired, the user is allowed to log in at this time of day, and so on

Password

Module is used to set passwords

Session

- Used after a user has been authenticated
- Performs additional tasks which are needed to allow access such as mounting the user's home directory

PAM Control Options

Required

- The module must succeed
- Regardless of whether the module fails or succeeds, processing will continue with the next line (other modules of the same module type will be executed)
- At the end of all of the processing, a failure will be recorded

Requisite

- The module must succeed for the module type to succeed
- If it fails, processing stops immediately
- If it succeeds, processing continues with the next line

PAM Control Options

Sufficient

- If the module succeeds, then the module type succeeds and processing stops immediately
- If it fails, processing continues with the next line

Optional

 The module is executed, but the failure or success of the module is ignored

Include

- In place of a module name, another configuration file is given
- All of the lines of the same type from that configuration file are treated as if they were present in this configuration file

INFO-6003 18

- Logging is used to record system events
 - This is sometimes called auditing
- Linux syslogd, rsyslogd and kernel log daemon, klogd, write events to log files
- The /etc/syslog.conf or /etc/rsyslog.conf file specifies were log files are located
 - Exact location depends on the version of Linux
 - In addition to log location the .conf files also specify additional parameters such as log file format

- /var/log/secure
 - Successful & failed logins
- /var/log/messages
 - General error messages from kernel or other services
- /var/log/boot.log
 - Information logged during system boot
- Specific services that have a lot of activity can have their own log file
 - /var/log/httpd
 - Web service messages

- /var/log or /var/adm hold the following files that are used to investigate hacking or suspicious activity
 - utmp
 - Current status of system: boot time, logins, logouts, system events
 - wtmp
 - Historical record of utmp
 - btmp
 - Records failed login attempts
 - lastlog
 - Last time and location of user's last login to system
 - Console, ssh or telnet

Patching

INFO-6003 22

Update Manager

- Most Linux distributions have an update tool to download patches for OS or software packages
 - Some have more than one package manager
- Red Hat, Fedora, CentOS
 - up2date (Red Hat Update Agent) & YUM (Yellowdog Updater, Modified), RPM (Red Hat Package Mgr.)
- SUSE Linux
 - YaST (Yet another Setup Tool)
- Debian
 - APT (Advanced Packaging Tool)

Apt Command Examples

- apt-get update
 - Updates packages listings from the repo, should be run at least once a week
- apt-get upgrade
 - Upgrades all currently installed packages with those updates available from the repo. should be run once a week
- You may need to turn off your AV to get these commands to work
 - Especially when we start downloading hacking tools

Apt Command Examples

- apt-cache search <pattern>
 - Searches packages and descriptions for <pattern>
- apt-get install <package>
 - Downloads <package> and all of its dependencies, and installs or upgrades them
- apt-cache search extundelete
 - Will search the repository for extundelete
- apt-cache install extundelete
 - Will install extundelete on your system

Hardening or Hardened

INFO-6003 26

Hardening or Hardened

- When is comes to securing your Linux distribution you have a couple choices
- Hardening
 - This is the process of locking down an existing distribution to make it more secure
- Hardened
 - Choosing a distribution that has been specifically developed with security in mind

Hardening or Hardened

- EnGarde Secure Linux (hardened distro)
 - http://www.engardelinux.org
- Hardened Linux (hardened distro)
 - http://hardenedlinux.sourceforge.net
- Bastille (hardening program)
 - http://bastille-linux.sourceforge.net
- SELinux (security enhancements)
 - http://selinuxproject.org
- AppArmor (security enhancements)
 - http://wiki.apparmor.net

Bastille

- The Bastille hardening program
 - Designed to lock a system down based on best practices
 - Interactively configures the system
 - Can be used to analyze the systems state
 - Supports a wide variety of platforms
 - Red Hat / Fedora Core / SUSE / Mandrake
 - Debian
 - Gentoo
 - HP-UX
 - Mac OS X

SELinux

- SELinux is not a hardened distribution
 - It is a set of Kernel modifications and tools that can be added to Linux distributions
- Primarily developed by the NSA
- Makes heavy use of MACLs and Linux Security Modules (LSMs) in the Linux Kernel
 - The MACLs are used in place of DACLs
- Great for hardening the system, but does make management more difficult

SELinux

- Makes use of subjects, objects, labels and policies to lock the system down
- Subjects
 - Users, applications, process, etc.
- Objects
 - Files, sockets
- Labels
 - Metadata applied to objects
- Policies
 - Access permissions for subjects and objects

Init Daemons

INFO-6003 32

init Daemon

- The first process to start, aside from the kernel, is the init daemon
 - The Linux Kernel has a process ID of 0
 - The init daemon has a process ID of 1
- The init daemon starts all the other processes and services as the system boots
- The traditional init isn't used in modern distros
 - System V init
- Modern versions of init
 - Upstart init
 - systemd init

init Daemon

- The newer init Daemons were developed to deal with dynamic environments
 - USB keys
 - Other hot-plug devices
- The newer init Daemons have some backwards compatibility built in, but the move is towards getting rid of this

Run Levels

- Allow users to start the OS in different operating modes
 - Depending on the run level different functionality will be available
 - Single User
 - Multi-User
 - Network Services start, or Stopped
- Windows also has this functionality, but implemented differently
 - Safe Mode, Safe Mode with Networking, Command Prompt, etc.

Run Levels

- Run Level 0
 - Used to Halt or shutdown the system
- Run Level 1
 - Single user mode minimal configuration
- Run Level 2
 - Multi user mode without networking
- Run Level 3
 - Multi user mode with networking
- Run Level 5
 - X Window mode (Full GUI)
- Run Level 6
 - Used to reboot the system D

Variations in Run Levels

- Run levels vary by distribution
 - Especially run levels 2 through 4
- You can use the init command to change run levels (good for troubleshooting)
 - init 0: Will shutdown the system
 - init 1: Will start the system in single user mode
 - init 6: Will reboot the system
- You can see your current run level a couple ways
 - runlevel
 - who -r

init

init

- Uses the /etc/inittab file to determine the default run level
 - This is used if you don't actually specify a run level
 - id:5:initdefault:
 - Would start an X windows sessions (GUI)
- Based on the run level, certain scripts are run
 - /etc/rc.d/rc#.d
 - /etc/rc.d/rc5.d in the example above
 - The location of the files varies by distro

init rc#.d

- The rc#.d directories contain scripts that start or kill processes
 - S for starting process
 - K for killing process
- The scripts are also numbered which allows them to be started or stopped in a particular order

K73winbind
K73ypbind
K74nscd
K74ntpd
K84btseed
K84bttrack
K87multipathd

_
S13mcstrans
S13rpcbind
S13setroubleshoot
S14nfslock
S15mdmonitor
S18rpcidmapd
S19rpcgssd

	_
S97dhcdbd	
S97yum-upo	datesd
S98avahi-d	daemon
S98haldaer	non
S99firstbo	oot
S99local	
S99smartd	

Dependencies

- The fact that the administrator can control the order the services start allows dependencies to be taken into account
 - If service A is a dependency for service B it will need to have a lower number, so that service A is up and running before service B

- Used in many newer distributions
 - Fedora 9 to 14
 - Ubuntu 6.10 and later
 - Google's Chrome OS
- The primary difference between Upstart init and init is the handling of starting and stopping services
 - Geared towards handling and ever changing environment
 - Hot pluggable devices

- Handles services through defined jobs
 - Jobs can be either a task of a service
- Tasks
 - Preforms a limited duty, and when finished returns to the waiting state
 - stop/waiting
- Service
 - Long running program that never self-terminates
 - Stays in the running state
 - start/running

- /usr/share/upstart
- Good way of finding out that you are on an Upstartbased system

```
root@artmack:/usr/share/upstart

File Edit View Search Terminal Help

root@artmack:/usr/share/upstart# ls -ail
total 24
579286 drwxr-xr-x 3 root root 4096 Aug 10 2015 .
666353 drwxr-xr-x 449 root root 16384 Jan 25 19:46 ...
579287 drwxr-xr-x 2 root root 4096 Aug 10 2015 sessions
root@artmack:/usr/share/upstart#
```


The various jobs are defined in /etc/init

```
root@artmack: /etc/init
File Edit View Search Terminal Help
root@artmack:~# cd /etc/init
root@artmack:/etc/init# ls
                                   rpcbind.override
anacron.conf
binfmt-support.conf
                                   samba-ad-dc.conf
cryptdisks.conf
                                   samba-ad-dc.override
cryptdisks-udev.conf
                                   smbd.conf
irqbalance.conf
                                   smbd.override
networking.conf
                                   ssh.conf
network-interface.conf
                                   ssh.override
network-interface-container.conf startpar-bridge.conf
network-interface-security.conf
                                   udev.conf
nmbd.conf
                                   udev-fallback-graphics.conf
nmbd.override
                                   udev-finish.conf
                                   udevmonitor.conf
portmap-wait.conf
reload-smbd.conf
                                   udevtrigger.conf
rpcbind-boot.conf
                                   usb-modeswitch-upstart.conf
rpcbind.conf
root@artmack:/etc/init#
```


- The job definition files determine what services are started, stopped, restarted, etc.
- When certain conditions are met certain actions are taken
 - Allows for a much more dynamic environment
 - Ability to respond to change

- Alternative to init and Upstart init
- Runs on a variety of distributions
 - Arch Linux (since 2012)
 - Fedora 15 and later
 - Mandriva (since 2011)
 - openSUSE 12.1 and later
- Some key differences as compared to Upstart init
 - Starts fewer services
 - Starts services in a parallel manner
 - Supervises all processes

- Instead of run levels systemd uses target units
- A unit is a group consisting of
 - name
 - type
 - configuration file
- A unit is focused on a particular service or action

- There are eight unit types
 - automount
 - device
 - mount
 - path
 - service
 - snapshot
 - socket
 - target
- The service and target units primarily deal with services

- A service unit is used to manage a daemon
 - rsyslog.service
 - sshd.service
- A target unit is a group of other units
 - sysinit.target
 - All the actions required for system initialization
 - syslog.target

Auditing Services

Auditing Services

- For init systems
 - chkconfig –list
 - Lets you know what services are on or off for particular run levels
 - service –status-all
 - Allows you to see if a service is running or not
- For Upstart init systems
 - initctl list
 - Let you see the service state
 - start/running
 - stop/waiting

Auditing Services

- For systemd init systems
 - systemctl list-unit-files –type=unittype
- With all of the auditing commands you can use grep to filter your results
 - | grep running
 - for running services
 - | grep wait
 - for stopped services

- All the init daemons have built in mechanisms for manually controlling/polling the services
 - start
 - stop
 - restart (will stop and start the service)
 - reload (only reloads the configuration file)
 - status
- These can be helpful when troubleshooting
- Additionally, you can restart a service without rebooting the server

With init

- service cups status
- service cups start
- service cups stop
- service cups restart

With Upstart init

- initctl status cups
- initctl start cups
- initctl stop cups
- initctl restart cups
- initctl reload cups

- With systemd init
 - systemctl status cups.service
 - systemctl start cups.service
 - systemctl stop cups.service
 - systemctl restart cups.service
 - systemctl reload cups.service
 - systemctl condrestart cups.service
- The condrestart is a conditional restart that will only restart the service if it is already running
 - inactive services stay inactive

- Pronounced "cha-root"
- This is also sometimes referred to as "chroot jail"
- Chroot will limit access to only that part of the file system defined by chroot
 - Normally implemented to restrict access for untrusted or anonymous users, untrusted applications etc.
 - The initial process and all its child processes will perceive the root directory to be that which is defined when setting up the chroot environment

- The directory configured for chroot is treated as the root of the files system for all processes started in the chroot directory
 - Impossible to access any files or binaries outside of the chroot directory
 - As long as no privilege escalation exists
- Because an application running within a chroot jail can't access any files outside, all its required files need to be within the chroot jail
 - passwd files
 - libraries
 - binaries, etc.

Directory Structure

You match the expected directory structure within the chroot environment

Bash and Is example

- If you wanted to run a bash shell and use the ls command in a chroot environment you would need the following
 - /tmp/newroot/bin/bash
 - to hold bash and Is
 - /tmp/newroot/lib
 - to hold the libraries

- You can determine which libraries will be required to run your programs
 - Will vary by distribution

- After copying all the bin, Is and library files to the chroot environment you need to enable to environment
- Most distributions contain a program called chroot that invokes the chroot() system call for you
 - The program takes two variable
 - chroot directory
 - command we want to run
- In our example chroot /tmp/newroot /bin/bash

- It can be difficult to find all the libraries and other dependencies required
- There are tools available to find these dependencies
 - Idd finds the library dependencies
 - strace finds the system calls
 - Isof lists the open files and the processes that opened them

chroot Cautions

- Never add any files into chroot that have functions that can be used to escape
 - No compilers
 - No interpreter
 - No services that require root to run
- Daemons placed in chroot should not run with root permissions
 - They would be able to break out

Homework

- Read Online Chapter 25
- 25.1 25.9 Linux Security

Lab 10 - initCtl & Sudo

Lab 10 Details

- Create LAN Segment for VMs
- Configure Network Interfaces
- Use Sudo for administration