

Name:	Program:	Lab ID :	
Exp No:	Section	Date:	

Carey Foster's Bridge (CFB)

Determine the specific resistance of the given wire material.

MARKS DISTRIBUTION

	Max. Marks	Marks Obtained
Pre - lab preparation	10	
Observation	15	
Calculation	15	
Result	05	
Viva	05	
Total	50	

Staff signature with date

CAREY FOSTER'S BRIDGE

Aim: To determine (i) The specific resistance of the material of a wire and (ii) the unknown resistance of the given wire.

Apparatus Required: Meter bridge, Leclanché cell, two equal resistances, variable resistance box, unknown resistance, wire, high resistance, switches, galvanometer, jockey.

Formula:

- (i) Resistance of the given coil of wire $X = R + (l_1 l_2) \rho \Omega$ (1)
- (ii) Specific resistance of the given coil of wire $S = \frac{X\pi r^2}{L} \Omega m$ (2)

Symbol	Description	Unit
X	Unknown resistance	Ω
R	Known value of resistance in the resistance box	Ω
l_1 , l_2 , l_3 and l_4	Balancing lengths	m
ρ	Resistivity of the bridge wire	Ω/m
r	Radius of the given coil of wire	m
L	Length of the given wire	m

PART I - Determination of ρ (Resistance per unit length)

Fig 1- R in the left gap and the right gap shorted

Fig 2 – R in the right gap and the left gap shorted

PART II -Determination of unknown resistance

Fig 3 – Unknown resistance X in the left gap

Fig 4 - Unknown resistance X in the right gap

Principle:

Let two equal resistances P and Q be connected in gaps G_3 and G_4 . Let a known resistance R be connected in gap G_1 and unknown resistance X in gap G_2 . Let I_1 be the balance length measured from the end A (with known resistance R in the left gap). Therefore balancing length corresponding to X is $(100 - I_1)$

Therefore
$$\frac{P}{Q} = \frac{R + l_1 \rho + \alpha}{X + (100 - l_1)\rho + \beta}$$
 (3)

Where ρ = resistance per unit length of the bridge wire and α and β are the end corrections at the ends A and B. If the experiment is repeated with R and X interchanged in the gaps, and if l_2 is the balancing length measured from the same end A,

$$\frac{P}{Q} = \frac{X + l_2 \rho + \alpha}{R + (100 - l_2)\rho + \beta} \tag{4}$$

From the two equations, we get,

$$X = R + (l_1 - l_2) r_b \quad \Omega$$

Instead of resistance X, let a thick copper strip be connected in the gap G_2 . i.e, X = 0. Let l_3 be the balancing length measured from the end A (with known resistance R in gap G_1) With R in gap G_2 and the copper strip connected in G_1 , let l_4 be the balancing length measured from the same end A.

Using the above equation,

$$0 = R + (l_3 \sim l_4)\rho$$
Or,
$$\rho = \frac{R}{l_3 \sim l_4}$$

Specific resistance, $S = \frac{\pi r^2 X}{L}$, where r is the radius and L, the length of the wire.

Procedure:

Part I To determine the resistance/unit length (ρ) of the bridge wire.

- a) Connections are made as shown in the Figure 1. P and Q are two equal resistances.
- b) A low range resistance box R is connected in gap G₁ and short circuit to gap G₂ using a thick copper strip of Zero resistance.
 - c) A small resistance (order of 0.1Ω) is introduced in R. The balancing length l_3 from the end A is noted.

- d) The resistance R and the copper strip are interchanged in the gaps. (Refer Fig 2). The balancing length l_4 from the end A is again determined.
 - e) Hence $\rho = \frac{R}{l_3 \sim l_4}$ is calculated. The experiment is repeated for different values of R.
 - f) The mean value of ρ is calculated.

Part II To determine the unknown resistance (X):

- a) Instead of copper strip, the coil of unknown resistance of length 1 is connected in gap G_1 (refer Fig 3)
- b) The balancing lengths l_1 and l_2 are determined with R in the right and left extreme gaps respectively.
- c) Knowing ρ , the value X is calculated using $X = R + (l_1 l_2)\rho$.
- d) The experiment is repeated for different values of R and the mean value of X is taken.
- e) Measuring the radius r using screw gauge and using the given the length *l* of the coil, the specific resistance is calculated.

Observations:

(i) Determination of ρ

	Balancing Le	ength with R in		n
Resistance, R (Ω)	Left gap (l_3) (m)	Right gap (l_4) (m)	$(l_3 \sim l_4)$ (m)	$\rho = \frac{R}{(l_3 \sim l_4)} \ \Omega/m$

Mean $\rho = \underline{\hspace{1cm}} \Omega / n$

(ii) Determination of X

Resistance, R (Ω)	Balancing Length with R in			$X = R + (l_1 - l_2)\rho$
	Left gap (l ₁) (m)	Right gap (l ₂) (m)	$(l_1 - l_2)(\mathbf{m})$	(Ω)

Mean $X =$	Ω
	- -

- (iii) Radius of the wire (r) = _____ $x10^{-3}$ m
- (iv) Length of the wire (L) = _____m

Specific resistance
$$S = \frac{\pi r^2 X}{L} = \Omega m$$

Result:

- (i) The unknown resistance of the given coil of wire (X) = Ω
- (ii) Specific resistance of the material (S) = Ω m

Signature of Faculty In-charge

Sample viva questions:

- 1. What is the principle of Carey-Foster's bridge?
- 2. What is specific resistance?
- 3. When is Carey-Foster's Bridge more sensitive?

WORKSHEET