תרגילים 1: תורת המספרים

שאלה 1 מצאו את הפירוק מנה-שארית של השלמים הבאים:

- .a = 7503, b = 81 (x
- a = -7503, b = 81
 - a = 81, b = 7503
- .a = -81, b = 7503 (7

 $a \equiv b \pmod n$ אם ורק אם $a \mod n = b \mod n$ כי הוכיחו שאלה a,b,n>0 אם ורק אם a,b,n>0

12327s + 409t = d עבורם s,t,d שאלה 3 מצאו שלה 3

שאלה 4 הוכיחו כי 7563 ו- 526 מספרים זרים.

שאלה 5 יהיו a,b מספרים שלמים.

הוכיחו שאם קיימים שלמים s,t כך ש- s,t אז a+tb=1 ארים.

שאלה 6 יהיו a,b,n מספרים שלמים. הוכיחו את הטענה הבאה:

אם השלושה תנאים הבאים מתקיימים:

- ו-b זרים, a (1
 - , $a\mid n$ (2
 - , $b \mid n$ (3

 $.ab \mid n$ אז

שאלה **7** הוכיחו את הטענות הבאות:

- $.\gcd(ma,mb)=m\gcd(a,b)$ (x
- $\gcd\left(rac{a}{m},rac{b}{m}
 ight)=rac{\gcd(a,b)}{m}$ אז $m\mid b$ ואם m>0 אם m>0
 - . המספרים $\frac{b}{\gcd(a,b)}$ רו $\frac{a}{\gcd(a,b)}$ מספרים זרים.
 - $c \mid a$ אז b אם לר ביחס ל- $c \mid ab$ אז (7
- . אם ab -ו c אם ab -ו מספרים ארים או b מספרים ארים a

$$.\gcd(a,b) = \gcd(a+cb,b)$$
 (1)

 $ab \equiv c \mod m$ אם ורק אם $ab \equiv ac \mod m$ יהיו מספרים זרים. הוכיחו כי a,m אם ורק אם

שאלה 9 יהיו a, m מספרים (לא בהכרח זרים).

 $ab \equiv c \mod rac{m}{\gcd(a,m)}$ אם ורק אם $ab \equiv ac \mod m$ הוכיחו כי

שאלה 10

- $.\gcd(285,89)$ חשבו את (285,89)
- .285s + 89t = d עבורם s,t,d מצאו שלמים

 $a \mid c$ ארים אז a, b ו- $a \mid bc$ הוכיחו: אם אלה 11

שאלה 12

- $ac \equiv 1 \mod b$ אורים אז קיים א זרים אז a,b אם הוכיחו: אם
- $ac \equiv 1 \mod b$ הוכיחו: אם a,b לא זרים אז לא קיים a,b הוכיחו: אם

שאלה 13

- $a+c\equiv b+c \mod m$ אז $a\equiv b \mod m$ הוכיחו: אם
- $ac \equiv bd \mod m$ אז $a \equiv b \mod m$ הוכיחו: אם $a \equiv b \mod m$ הוכיחו: אם
 - $a^n \equiv b^n \mod m$ אז $a \equiv b \mod m$ הוכיחו: אם

 \mathbb{Z}_{20} -ם חשבו את האיבר ההופכי של 7 ב- \mathbb{Z}_{20}

שאלה 15

- gcd(285, 89) חשבו את (285, 89).
- 285s + 89t = d עבורם s,t,d מצאו שלמים

 $a \mid c$ ארים אז a, b ו- $a \mid bc$ הוכיחו: אם **16**

- $ac \equiv 1 \mod b$ אורים אז קיים a,b אם הוכיחו: אם א
- $ac \equiv 1 \mod b$ הוכיחו: אם a,b לא זרים אז לא קיים (ב

- $a+c\equiv b+c \mod m$ אז $a\equiv b \mod m$ הוכיחו: אם
- $ac \equiv bd \mod m$ אז $ac \equiv b \mod m$ ר- ו $a \equiv b \mod m$ הוכיחו: אם
 - $a^n \equiv b^n \mod m$ אז $a \equiv b \mod m$ הוכיחו: אם

שאלה 19 יהי שלם. הוכיחו או הפריכו על ידי דוגמה נגדית את הטענות הבאות: $m \geq 2$ יהי

- א) אספר ריבועי אם ורק אם כל אחד מהגורמים הראשוניים שלו מופיע עם חזקה זוגית בפירוק לראשוניים שלו. m
 - ב) אם \sqrt{m} מספר רצונלי אזי m מספר ריבועי.
 - אם m הוא לא מספר ריבועי אזי \sqrt{m} לא רציונלי.

שאלה 20 הוכיחו או הפריכו:

- $.54 \equiv 3 \pmod{17}$
- $.56 \equiv 3 \pmod{2}$
- $.578 \equiv 9 \pmod{1}$
- $.-23 \equiv 4 \pmod{9}$
- $.1001 \equiv 1 \pmod{7}$ (mod 7)
- $.2025 \equiv 5 \pmod{10}$
- $.85 \equiv -3 \pmod{11}$
 - $.2^8 \equiv 1 \pmod{5}$
 - $.45 \equiv 5 \pmod{8}$
- $.72 \equiv -1 \pmod{9}$

שאלה 21 חשבו:

$$.12^5 + 2^5 \pmod{11}$$

$$.7^4 + 3^5 \pmod{5}$$
 د (mod 5)

$$.9^6 - 4^7 \pmod{7}$$
 (x

$$.5^{2025} \pmod{13}$$

$$.10^{2025} \pmod{9}$$

$$.14^{12} \pmod{13}$$

$$.8^{17} - 3^{17} \pmod{5}$$
 (nod 5)

$$.6^{20} + 1 \pmod{7}$$
 (v

$$.11^{30} \pmod{12}$$

$$4x-3y\pmod 7$$
 חשבו $y\equiv 5\pmod 7$ ו־ $x\equiv 3\pmod 7$ אם ($x\equiv 3\pmod 7$

$$xy^2\pmod 9$$
, חשבו ק $y\equiv 7\pmod 9$ ו־ $x\equiv 2\pmod 9$, אם $x\equiv 2\pmod 9$

$$a \equiv 11 \pmod{15}$$
 אם ($a \equiv 11 \pmod{15}$ חשבו ($a \equiv 11 \pmod{15}$ אם ($a \equiv 11 \pmod{15}$

$$p^2q\pmod 6$$
 אם $p\equiv 4\pmod 6$ ו־ $p\equiv 4\pmod 6$ אם $p\equiv 4\pmod 6$

$$s \equiv 13 \pmod{20}$$
 ו־ $r \equiv 17 \pmod{20}$ אם $r \equiv 17 \pmod{20}$ אם $r \equiv 17 \pmod{20}$

(ש מתקיים:
$$u,v\in\mathbb{Z}$$
 אז לכל $b\equiv d\pmod n$ ו־ $a\equiv c\pmod n$ מתקיים:
$$ua+vb\equiv uc+vd\pmod n \ .$$

ב) מתקיים:
$$k\in\mathbb{N}$$
 אז לכל $a\equiv c\pmod n$ מתקיים:
$$a^k\equiv c^k\pmod n.$$

(א מקדמים שלמים מתקיים: אז לכל פולינום אז לכל
$$a \equiv c \pmod n$$
 הוכיחו: אם הוכיחו: אז לכל פולינום $P(a) \equiv P(c) \pmod n$.

- $a \equiv b \pmod n$ לא נובע $ac \equiv bc \pmod n$ לא נובע ($ac \equiv bc \pmod n$
- $a \equiv b \pmod n$ אז $ac \equiv bc \pmod n$ דכל $n \mid c \equiv bc \pmod n$ לכל $ac \equiv bc \pmod n$ לכל
 - $a \not\equiv b \pmod n$ אך $ac \equiv bc \pmod n$ שבה $\gcd(c,n)
 eq 1$ אך (1

אם $y\equiv 8\pmod{12}$ ו־ $x\equiv 5\pmod{12}$ אם ($x\equiv 5\pmod{12}$

- $x + y \pmod{12} \qquad \textbf{(1)}$
- $x-y \pmod{12}$
 - $xy \pmod{12}$
- $.x^3 + 2y \pmod{12}$ (4

ב), $c\equiv 5\pmod{11}$, $b\equiv -3\pmod{11}$, $a\equiv 2\pmod{11}$, $a\equiv b+bc+ca$, $a^5+b^5+c^5\pmod{11}$.

- ג) הוכיחו או הפריכו את הטענה:
- $a b \equiv c d \pmod{m}$.
- ד) הוכיחו או הפריכו את הטענה:
- $a^2 + b^2 \equiv c^2 + d^2 \pmod{m}.$
 - $ab \equiv cd \equiv 0 \pmod m$ אז $b \equiv d \equiv 0 \pmod m$ הוכיחו: אם

פתרונות

שאלה 1

שארית r	מנה q	b סימן	a סימן	מצב
$a \bmod b$	$\lfloor \frac{a}{b} \rfloor$	+	+	1
$a \bmod b $	$-\left\lfloor \frac{a}{ b } \right\rfloor$	_	+	2
$b- a \bmod b$	$-\left\lfloor \frac{ a }{b} \right\rfloor - 1$	+	_	3
$ b - a \mod b $	$\left\lfloor \frac{ a }{ b } \right\rfloor + 1$	_	_	4

(אכן:
$$b>0$$
 ו- $a>0$ השלם $a=qb+r$ לכן: q,r נחשב שלמים

$$q=\left\lfloor\frac{a}{b}\right\rfloor=\left\lfloor\frac{7503}{81}\right\rfloor=92$$

$$r=a\bmod b=a-b\left\lfloor\frac{a}{b}\right\rfloor=7503-(81)(92)=75$$

$$7503=(92)(81)+51\ .$$

ב) b > 0 ו- a < 0 לכן:

$$q = -\left\lfloor\frac{|a|}{b}\right\rfloor - 1 = -\left\lfloor\frac{7503}{81}\right\rfloor - 1 = -93$$

$$r = b - |a| \bmod b = b - \left(|a| - b\left\lfloor\frac{|a|}{b}\right\rfloor\right) = 81 - (7503 - (81)(92)) = 30 \ .$$

$$-7503 = (-93)(81) + 30 \ .$$

(ג) אור b > 0 ו- a > 0 לכן:

$$q = \left\lfloor \frac{a}{b} \right\rfloor = \left\lfloor \frac{81}{7503} \right\rfloor = 0 \ .$$

$$r = a \bmod b = \left(a - b \left\lfloor \frac{a}{b} \right\rfloor \right) = 81 - (7503) \left\lfloor \frac{81}{7503} \right\rfloor = 81 \ .$$

לכן

$$81 = (0)(7503) + 81$$
.

ירמיהו מילר קריפטוגרפיה קריפטוגרפיה תשפ"ו סמסטר א'

לכן: b > 0 ו- a < 0 לכן:

$$q = -\left\lfloor \frac{|a|}{b} \right\rfloor - 1 = -\left\lfloor \frac{81}{7503} \right\rfloor - 1 = -1$$

$$r = b - |a| \bmod b = b - \left(|a| - b \left\lfloor \frac{|a|}{b} \right\rfloor \right) = 7503 - (81 - (7503)(0)) = 7422 \ .$$

$$-81 = (-1)(7503) + 7422 \ .$$

שאלה 2 נראה את שני הכיוונים:

נניח כי \Rightarrow

 $a \bmod n = b \bmod n = r$.

כך ש: q_1,q_2 כלמים שלמים אוקלידס אוקלידס שלמים לפי לפי

$$a = q_1 n + r, \qquad b = q_2 n + r.$$

לכן:

 $a - b = (q_1 - q_2)n.$

 $a \equiv b \pmod n$, ולכן , $n \mid (a-b)$ כלומר

נניח כי

 $a \equiv b \pmod{n}$,

k כלומר קיים שלם k כך ש

a = b + kn.

:nנחלק את b ב־n

 $b = qn + r, \qquad 0 \le r < n.$

171:

a = b + kn = (q+k)n + r.

nמכאן: nמכאן בירוק על פי משפט החלוקה של אוקלידס, ולכן השארית של nבחלוקה ביn

 $a \mod n = b \mod n$.

שאלה 3

 $.d=\gcd(12327,2409)$ כאשר 12327s+2409t=d קיימים שלמים שלמים אוקליד. נסמן אוקליד. נסמן .a=12327,b=2409 נשתמש באלגוריתם המוכלל של אוקליד. נסמן

$$r_0 = a = 12327$$
, $r_1 = b = 2409$, $s_0 = 1$, $s_1 = 0$, $t_0 = 0$, $t_1 = 1$.

$q_1 = \left\lfloor \frac{r_0}{r_1} \right\rfloor$ $= \left\lfloor \frac{12327}{2409} \right\rfloor$ $= 5$	$r_2 = r_0 - q_1 r_1$ = 12327 - (5)(2409) = 282	$s_2 = s_0 - q_1 s_1$ $= 1 - (5)(0)$ $= 1$	$t_2 = t_0 - q_1 t_1$ $= 1 - (5)(1)$ $= -5$
$q_2 = \left\lfloor \frac{r_1}{r_2} \right\rfloor$ $= \left\lfloor \frac{2409}{282} \right\rfloor$ $= 8$	$r_3 = r_1 - q_2 r_2$ $= 2409 - (8)(282)$ $= 153$	$s_3 = s_1 - q_2 s_2$ $= 0 - (8)(1)$ $= -8$	$t_3 = t_1 - q_2 t_2$ $= 1 - (8)(-5)$ $= 41$
$q_3 = \left\lfloor \frac{r_2}{r_3} \right\rfloor$ $= \left\lfloor \frac{282}{153} \right\rfloor$ $= 1$	$r_4 = r_2 - q_3 r_3$ $= 282 - (1)(153)$ $= 129$	$s_4 = s_2 - q_3 s_3$ = 1 - (1)(-8) = 9	$t_4 = t_2 - q_3 t_3$ $= -5 - (1)(41)$ $= -46$
$q_4 = \left\lfloor \frac{r_3}{r_4} \right\rfloor$ $= \left\lfloor \frac{153}{129} \right\rfloor$ $= 1$	$r_5 = r_3 - q_4 r_4$ $= 153 - (1)(129)$ $= 24$	$s_5 = s_3 - q_4 s_4$ $= -8 - (1)(9)$ $= -17$	$t_5 = t_3 - q_4 t_4$ $= 41 - (1)(-46)$ $= 87$
$q_5 = \left\lfloor \frac{r_4}{r_5} \right\rfloor$ $= \left\lfloor \frac{129}{24} \right\rfloor$ $= 5$	$r_6 = r_4 - q_5 r_5$ $= 129 - (5)(24)$ $= 9$	$s_6 = s_4 - q_5 s_5$ $= 9 - (5)(-17)$ $= 94$	$t_6 = t_4 - q_5 t_5$ $= -46 - (5)(87)$ $= -481$
$q_6 = \left\lfloor \frac{r_5}{r_6} \right\rfloor$ $= \left\lfloor \frac{24}{9} \right\rfloor$ $= 2$	$r_7 = r_5 - q_6 r_6$ $= 24 - (2)(9)$ $= 6$		$t_7 = t_5 - q_6 t_6$ $= 87 - (2)(-481)$ $= 1049$
$q_7 = \left\lfloor \frac{r_6}{r_7} \right\rfloor$ $= \left\lfloor \frac{9}{6} \right\rfloor$ $= 1$	$r_8 = r_6 - q_7 r_7$ = 9 - (1)(6) = 3	$s_8 = s_6 - q_7 s_7$ $= 94 - (1)(-205)$ $= 299$	$t_8 = t_6 - q_7 t_7$ $= -481 - (1)(1049)$ $= -1530$
$q_8 = \left\lfloor \frac{r_7}{r_8} \right\rfloor$ $= \left\lfloor \frac{6}{3} \right\rfloor$ $= 2$	$r_9 = r_7 - q_8 r_8$ = 6 - (2)(3) = 0		

$q_1 = \left\lfloor \frac{r_0}{r_1} \right\rfloor$ $= \left\lfloor \frac{7563}{526} \right\rfloor$ $= 14$	$ r_2 = r_0 - q_1 r_1 $ $= 7563 - (14)(526) $ $= 199 $	$s_2 = s_0 - q_1 s_1$ $= 1 - (14)(0)$ $= 1$	$\begin{vmatrix} t_2 = t_0 - q_1 t_1 \\ = 0 - (14)(1) \\ = -14 \end{vmatrix}$
$q_2 = \left\lfloor \frac{r_1}{r_2} \right\rfloor$ $= \left\lfloor \frac{526}{199} \right\rfloor$ $= 2$	$\begin{vmatrix} r_3 = r_1 - q_2 r_2 \\ = 526 - (2)(199) \\ = 128 \end{vmatrix}$	$s_3 = s_1 - q_2 s_2$ $= 0 - (2)(1)$ $= -2$	$\begin{vmatrix} t_3 = t_1 - q_2 t_2 \\ = 1 - (2)(-14) \\ = 29 \end{vmatrix}$
$q_3 = \left\lfloor \frac{r_2}{r_3} \right\rfloor$ $= \left\lfloor \frac{199}{128} \right\rfloor$ $= 1$	$\begin{vmatrix} r_4 = r_2 - q_3 r_3 \\ = 199 - (1)(128) \\ = 71 \end{vmatrix}$	$s_4 = s_2 - q_3 s_3$ = 1 - (1)(-2) = 3	$\begin{vmatrix} t_4 = t_2 - q_3 t_3 \\ = -14 - (1)(29) \\ = -43 \end{vmatrix}$
$q_4 = \begin{bmatrix} \frac{r_3}{r_4} \end{bmatrix}$ $= \begin{bmatrix} \frac{128}{71} \end{bmatrix}$ $= 1$	$r_5 = r_3 - q_4 r_4$ $= 128 - (1)(71)$ $= 57$	$s_5 = s_3 - q_4 s_4$ $= -2 - (1)(3)$ $= -5$	
$q_5 = \left\lfloor \frac{r_4}{r_5} \right\rfloor$ $= \left\lfloor \frac{71}{57} \right\rfloor$ $= 1$	$r_6 = r_4 - q_5 r_5$ $= 71 - (1)(57)$ $= 14$	$s_6 = s_4 - q_5 s_5$ $= 3 - (1)(-5)$ $= 8$	
$q_6 = \left\lfloor \frac{r_5}{r_6} \right\rfloor$ $= \left\lfloor \frac{57}{14} \right\rfloor$ $= 4$	$r_7 = r_5 - q_6 r_6$ $= 57 - (4)(14)$ $= 1$	$s_7 = s_5 - q_6 s_6$ $= -5 - (4)(8)$ $= -37$	$t_7 = t_5 - q_6 t_6$ $= 72 - (4)(-115)$ $= 532$
$q_7 = \left\lfloor \frac{r_6}{r_7} \right\rfloor$ $= \left\lfloor \frac{14}{1} \right\rfloor$ $= 14$	$r_8 = r_6 - q_7 r_7$ $= 14 - (14)(1)$ $= 0$		

 $\gcd(526,7563)=1$ מכאן

 $\gcd(a,b)=1$ לכן d=1 לכן . לכן d=1 מחלק d=1 מחלק d=1 אז בהכרח אז בהכרח a של a של b ו- a של b פול יהי

$$a \mid n$$
, $b \mid n$

-לכן קיימים שלמים l ו- l כך ש

$$n = ak$$
, $n = bl$.

n=ak=bl ז"א $b\mid ak=bl$ מכאן . $b\mid ak$ מכאן געון כי $\gcd(a,b)=1$ לכן . $b\mid k$ לכן .ak=ak=abq

שאלה 7

או עבורם s,t או קיימים שלמים $d=\gcd(a,b)$ יהי

$$sa + tb = d$$
.

מכאן

 $msa + mtb = md \implies s(ma) + t(mb) = md$.

gcd(ma, mb) = md = m gcd(a, b) לכן

 $.d=\gcd(a,b)$ יהי \exists שלמים s,t כד ש-

$$sa + tb = d$$
. (*)

נחלק (\star) ב- m ונקבל

$$s\frac{a}{m} + t\frac{b}{m} = \frac{d}{m} . \tag{**}$$

נשים לבa ו-b ו-b .m לכן a שלם. m ו-b ו-b ו-b לכן m בהכרח שלם ולפי משפט בזו a לכן a בהכרח שלם ולפי משפט בזו a

$$\gcd\left(\frac{a}{m}, \frac{b}{m}\right) = \frac{\gcd(a, b)}{m} \ .$$

 $.d=\gcd(a,b)$ יהי איז יהי \exists

sa + tb = d.

נחלק ב- d ונקבל

$$s\frac{a}{d} + t\frac{b}{d} = 1 .$$

לכן . $\frac{b}{d}$ -ו $\frac{a}{d}$ של gcd -לפי משפט בזו, השלם בצד ימין הוא

$$\gcd\left(\frac{a}{d},\frac{b}{d}\right) = 1 \quad \Rightarrow \quad \gcd\left(\frac{a}{\gcd(a,b)},\frac{b}{\gcd(a,b)}\right) = 1$$

. זרים
$$\dfrac{b}{\gcd(a,b)}$$
 -ו $\dfrac{a}{\gcd(a,b)}$

עבורם s,t,d שלמים לכן קיימים שלמים a,b

$$sa + tb = d$$

 $d = \gcd(a, b)$ כאשר

מכאן

$$s\left(\frac{a}{d}\right) + t\left(\frac{b}{d}\right) = 1.$$

עבורם s,t שלמים. לכן קיבלנו שלמים לב הכרח לכן בהכרח לכן לכן בהכרח לכן לכן $d=\gcd(a,b)$

$$s\left(\frac{a}{\gcd(a,b)}\right) + t\left(\frac{b}{\gcd(a,b)}\right) = 1$$
.

לכן השלמים
$$\frac{b}{\gcd(a,b)}$$
 -ו $\frac{a}{\gcd(a,b)}$ זרים.

ורם אז קיימים t -ו s שלמים עבורם c -ו a

$$sa + tc = 1$$
.

ו-ם אז קיימים $ar{t}$ ו- שלמים עבורם c ו- b

$$\bar{s}b + \bar{t}c = 1$$
.

לכן

$$(sa + tc) (\bar{s}b + \bar{t}c) = 1$$

$$\Rightarrow s\bar{s}(ab) + (t\bar{s}b + t\bar{t}c + s\bar{t}a) c = 1$$

היים. c -ו ab לכן x(ab)+yc=1 עבורם x,y שלמים שלמים א"א קיימים א

מכאן $d=\gcd(a,b)$ כאשר sa+tb=d כאבורם t -ו s שלמים אז קיימים שלמים מור אם a,b אם

$$sa + tb = d$$

$$s(a + cb) + tb = d + scb$$

$$s(a + cb) + tb - scb = d$$

$$s(a + cb) + (t - sc)b = d$$

לכן קיימים שלמים x=s ו- y=t-cb עבורם

$$x(a+cb) + yb = d$$

gcd(a+cb,b)=d=gcd(a,b) ולכן

 $ab \equiv ac \mod m$ ניח כי 8 שאלה

$$ab \equiv ac \mod m \quad \Rightarrow \quad ab = ac + qm \quad \Rightarrow \quad ab - ac = qm \quad \Rightarrow \quad a(b-c) = qm \ .$$

 $a \mid qm$ מכאן

a=ak איים לכן $a \nmid m$ לכן $a \nmid m$ לכן $a \nmid m$ אלם עבורו a,m

$$a(b-c)=qm$$
 \Rightarrow $a(b-c)=akm$ \Rightarrow $b-c=km$ \Rightarrow $b=c+km$ \Rightarrow $b\equiv c\mod m$.
 ננית כי $b\equiv c\mod m$.

$$b = qm + c \quad \Rightarrow \quad ab = aqm + ac \quad \Rightarrow \quad ab \equiv ac \mod m$$
.

שאלה 9 $ab \equiv ac \mod m$ ננית כי 9 שאלה

$$ab=ac+qm$$
 \Rightarrow $ab-ac=qm$ \Rightarrow $m\mid a(b-c)$ \Rightarrow $\dfrac{m}{\gcd(a,m)}\mid \dfrac{a}{\gcd(a,m)}(b-c)$.
$$\operatorname*{accill} \frac{a}{\gcd(a,m)} - \mathrm{i} \ \dfrac{m}{\gcd(a,m)} -$$

$$\frac{m}{\gcd(a,m)}\mid (b-c)\ .$$

לכן

$$b \equiv c \mod \left(\frac{m}{\gcd(a,m)}\right) .$$

שאלה 10

.a = 285, b = 89

$$r_0 = a = 285$$
, $r_1 = b = 89$,
 $s_0 = 1$, $s_1 = 0$,
 $t_0 = 0$, $t_1 = 1$.

$q_1 = 3$	$t_2 = 0 - 3 \cdot 1 = -3$	$s_2 = 1 - 3 \cdot 0 = 1$	$r_2 = 285 - 3 \cdot 89 = 18$	$\cdot k=1$ שלב
$q_2 = 4$	$t_3 = 1 - 4 \cdot (-3) = 13$	$s_3 = 0 - 4 \cdot 1 = -4$	$r_3 = 89 - 4 \cdot 18 = 17$: k = 2 שלב
$q_3 = 1$	$t_4 = -3 - 1 \cdot (13) = -16$	$s_4 = 1 - 1 \cdot (-4) = 5$	$r_4 = 18 - 1 \cdot 17 = 1$:k=3 שלב
$q_4 = 17$	$t_5 = 13 - 17 \cdot (-16) = 285$	$s_5 = -4 - 17 \cdot 5 = -89$	$r_5 = 17 - 17 \cdot 1 = 0$:k=4 שלב

$$gcd(a,b) = r_4 = 1$$
, $s = s_4 = 5$, $t = t_4 = -16$.

$$ta + sb = 5(289) - 16(85) = 1$$
.

שאלה 11 $a \mid bc$ עבורו $a \mid bc$

$$bc = qa (#1)$$

xa+yb=1 לכן x,y שלמים עבורם $\gcd(a,b)=1$

מכאן

$$b = \frac{1 - xa}{y} . \tag{#2}$$

על די הצבה של (#2) ב- (#1) נקבל

$$\left(\frac{1-xa}{y}\right)c = qa$$

$$(1-xa)c = qay$$

$$c-xac = qay$$

$$c = qay + xac$$

$$c = a(xc + qy)$$
.

 $a \mid c$ לכן

שאלה 12

עבורם s,t שלמים אז קיימים שלמים a,b עבורם אז לפי משפט בזו, מכיוון ש

$$sa + tb = 1$$
.

נקח את b של הצד שמאל והצד ימין ונקבל $\mod b$

 $(sa+tb) \mod b = 1 \mod b \implies sa \mod b = 1 \mod b \implies sa \equiv 1 \mod b$.

 $ac \equiv 1 \mod b$ נוכיח את הטענה דרך השלילה. נניח כניח $c \equiv 1 \mod b$

.ac = qb + 1 א"א $q \; \exists \; n$ א"א

מכאן

$$ac - qb = 1 \implies ac + (-q)b - 1$$

 $d\mid b$ -ו $d\mid a$ כך ש- $d\neq 1$ כל משותף אינם זרים אז קיים מחלק משותף a,b

 $d \mid 1$ לכן $d \mid (ac + (-q)b)$ ז"א

סתירה!

a=qm+b שלם עבורו $a\equiv b \mod m$ (א

מכאו

$$a+c=qm+b+c \implies a+c \equiv b+c \mod m$$
.

a=qm+b שלם עבורו $a\equiv b \mod m$

c=q'm+d שלם עבורו q' \exists אז $c\equiv d \mod m$

מכאו

$$ac = (mq + b)(q'm + d) = qq'm^2 + bq'm + dqm + bd = (qq'm + bq' + dq)m + bd$$
.

-לכן $\exists ar{q} = qq'm + bq' + dq$ לכן

$$ac = \bar{q}m + bd$$

 $.ac \equiv bd \mod m$ לפיכך

n אינדוקציה על

שאלה 14

$$1 \cdot 7 = 7 \qquad \equiv 7 \mod 20 \ ,$$

$$2 \cdot 7 = 14 \equiv 14 \mod 20 ,$$

$$3 \cdot 7 = 21 \equiv 1 \mod 20$$
.

 $.7^{-1}\equiv 3\mod 20$ לכן

$$.a = 285, b = 89$$

$$r_0 = a = 285$$
, $r_1 = b = 89$,
 $s_0 = 1$, $s_1 = 0$,
 $t_0 = 0$, $t_1 = 1$.

$q_1 = 3$	$t_2 = 0 - 3 \cdot 1 = -3$	$s_2 = 1 - 3 \cdot 0 = 1$	$r_2 = 285 - 3 \cdot 89 = 18$	$\cdot k = 1$ שלב
$q_2 = 4$	$t_3 = 1 - 4 \cdot (-3) = 13$		$r_3 = 89 - 4 \cdot 18 = 17$	
	$t_4 = -3 - 1 \cdot (13) = -16$:k=3 שלב
$q_4 = 17$	$t_5 = 13 - 17 \cdot (-16) = 285$	$s_5 = -4 - 17 \cdot 5 = -89$	$r_5 = 17 - 17 \cdot 1 = 0$: k = 4 שלב

$$gcd(a,b) = r_4 = 1$$
, $s = s_4 = 5$, $t = t_4 = -16$.

$$ta + sb = 5(289) - 16(85) = 1$$
.

שאלה 16 $a \mid bc$ עבורו $a \mid bc$

$$bc = qa$$
 (#1)

xa + yb = 1 לכן $x, y \exists$ לכן $\gcd(a, b) = 1$

מכאן

$$b = \frac{1 - xa}{y} \ . \tag{#2}$$

על די הצבה של (#2) ב- (#1) נקבל

$$\left(\frac{1-xa}{y}\right)c = qa$$

$$(1-xa)c = qay$$

$$c-xac = qay$$

$$c = qay + xac$$

$$c = a(xc+qy) .$$

 $a \mid c$ לכן

שאלה 17

עבורם s,t עבורם אז קיימים שלמים a,b עבורם און מכיוון ש-

$$sa + tb = 1$$
.

נקח את b של הצד שמאל והצד ימין ונקבל $\mod b$

 $(sa+tb) \mod b = 1 \mod b \implies sa \mod b = 1 \mod b \implies sa \equiv 1 \mod b$.

 $ac \equiv 1 \mod b$ נוכיח את הטענה דרך השלילה. נניח $c \equiv 1 \mod b$ עבורו

.ac = qb + 1 שלם עבורו $q \; \exists \; \eta$ י"א

מכאן

$$ac - qb = 1 \implies ac + (-q)b - 1$$

 $d\mid b$ -ו $d\mid a$ כך ש- $d\neq 1$ כל משותף אינם זרים אז קיים מחלק משותף מחלק אינם אינם זרים אז אינם מחלק

$$d\mid 1$$
 לכן $d\mid (ac+(-q)b)$ ז"א

סתירה!

a=qm+b שלם עבורו $q \equiv b \mod m$ אז $a \equiv b \mod m$

מכאו

 $a+c=qm+b+c \quad \Rightarrow \quad a+c\equiv b+c \mod m$.

a=qm+b שלם עבורו $a\equiv b \mod m$ (2

c=q'm+d שלם עבורו q' אז מאז $c\equiv d \mod m$

מכאו

 $ac = (mq + b)(q'm + d) = qq'm^2 + bq'm + dqm + bd = (qq'm + bq' + dq)m + bd$.

-לכן $\exists ar{q} = qq'm + bq' + dq$ לכן

 $ac = \bar{q}m + bd$

 $.ac \equiv bd \mod m$ לפיכך

n אינדוקציה על

שאלה 19

נניח כי m מספר ריבועי. אזי קיים שלם n עבורו $m=n^2$ נניח כי הפירוק לראשוניים של n הוא

$$n=p_1^{e_1}\dots p_k^{e_k}.$$

אזי

$$m = n^2 = (p_1^{e_1} \dots p_k^{e_k})^2 = p_1^{2e_1} \dots p_k^{2e_k}$$
.

נניח כי בפירוק לראשוניים של m כל מספשר ראשוני מופיע עם חזקה זוגית. אזי

$$m = p_1^{f_1} \dots p_k^{f_k}$$

לכן $f_i=2e_i$ כאשר לכל חזקה ליים שלם קיים קיים לכל חזקה לכל

$$m = p_1^{2e_1} \dots p_k^{2e_k} = (p_1^{e_1} \dots p_k^{e_k})^2 = n^2$$

 $n=p_1^{e_1}\dots p_k^{e_k}$ כאשר n הוא השלם

(1

- אמת **(א**
- שקר (ב

- **ג)** אמת
- אמת (ד
- שקר **(ה**
- אמת (1
- אמת (ז
- אמת **(ח**
- אמת **(ט**
- .שקר (י

- 0 (x
- **5** (2
- 4 (x
- 5 **(T**
- 2 (n
- 1 (1
- 1 (*
- 0 (n
- 2 (v
- 1 (

<u>שאלה 22</u>

- 4 (x
- 8 (1
- 1 ()
- 22 (7

14 (ה

שאלה 23

עבורו
$$a=qn+c$$
 נכפיל ב- $a\equiv c\pmod n$ אז קיים $a\equiv c\pmod n$

$$ua = uqn + uc \implies ua = Qn + uc$$

 $.ua \equiv uc \pmod n$ ולכן וua = Qn + ucעבורו שקיים שקיים .Q = uq כאשר כאשר.

לכן לפי . $vb \equiv vd \pmod n$ - בנוסף זה נתון לנו ש $b \equiv d \pmod n$, לכן באותו דרך אפשר להוכיח ש $b \equiv vd \pmod n$ לכן לפי התכונת חיבוריות של יחס מודולרית אנחנו נקבל כי

$$ua + vb \equiv uc + vd \pmod{n}$$
.

(2

$$.3 \not\equiv 1 \pmod 4$$
 אך, $bc=2 \equiv 2 \pmod 4$ ר־ $ac=6 \equiv 2 \pmod 4$ אך, $bc=2, \ a=3, \ b=1$

$$x+y\pmod{12}\equiv 13\pmod{12}\equiv 1\pmod{12}$$

$$x - y \pmod{12} \equiv -3 \pmod{12} \equiv 15 \pmod{12}$$
 (2

$$.xy \pmod{12} \equiv 40 \pmod{12} \equiv 4 \pmod{12}$$
 (3

ולכן
$$x\equiv 5\pmod {12}$$
 ולכן $x\equiv 1\pmod {12}$

$$x^3 \equiv (1)(5) \pmod{12} \equiv 5 \pmod{12} .$$

לפיכך.
$$y \pmod{12} = 8 \pmod{12}$$

$$x^3y \pmod{12} = 40 \pmod{12} \equiv 4 \pmod{12}$$
.