涉及具体数值的计算结果保留三位有效数字, 计算过程请标注必要的单位。

- 1. (1) 画出 N 型 Si 衬底理想 MOS 电容的三种状态(积累、耗尽、反型)的能 带图,标出金属费米能级 (E_{FM}) 、半导体费米能级 (E_{FS}) 、导带 (E_C) 、价带 (E_V) 、本征费米能级 (E_i) 、表面势 (qV_S) 及不同状态时的栅压条件(栅压大于、小于、远大于或远小于 0)。(2)针对上述电容,在不考虑金属-半导体功函数差、界面电荷等非理想因素时,推导出强反型时的表面势 (V_S) 及外加栅压 (V_g) 的表达式,其中氧化层电容、n 型衬底掺杂浓度、本征载流子浓度分别为 C_{ox} 、 N_D 、 n_i 。
- 2. 考虑一 t_{ox} =35 nm 的铝栅-二氧化硅-p 型 Si 的 MOS 结构。Si 掺杂浓度为 3×10^{17} cm⁻³,平带电压 V_{FB} 为-1.5 V,试确定固定氧化层电荷 Q_{ss} (不考虑氧化层移动电荷 Q_{ox}),并指明的固定电荷的正负。若其他条件不变,已知固定氧化层电荷密度 Q_{ss} 为-2×10⁻⁷ C/cm²,求此时的平带电压值。Si 的电子亲和能、禁带宽度、本征载流子浓度分别按照 4.05 eV、1.12 eV、1.5×10¹⁰ cm⁻³ 计算,铝的功函数按照 4.1 eV 计算。
- 3.理想 n 沟道(p 型衬底)MOSFET,说明以下结构的改变将分别对阈值电压 V_T 产生什么影响并简单解释原因。(注:a. 此处"理想"指无氧化层固定正电荷 Q_{ss} 和氧化层移动电荷 Q_{ox} 。b. Al 的功函数为 4.1 eV,Cu 的功函数为 4.7 eV)
 - (1) 进行离化辐射,导致明显的氧化层固定正电荷 Qss≠0;
 - (2) 将栅极材料由 Al 改为 Cu;
 - (3) 提高衬底的掺杂浓度
 - (4) 减薄氧化层的厚度:
 - (5) 在硅表面附近注入硼离子。
- 4. 一个 MOSFET,其器件参数为 $Φ_{ms}$ =-0.46 eV, Q_{ss}/q =2×10¹¹ cm⁻²,氧化硅厚度 t_{ox} =0.05 μm,衬底施主杂质掺杂浓度为 N_D =5×10¹⁵ cm⁻³。(Si 的电子亲和能、禁带宽度、本征载流子浓度分别按照 4.05 eV、1.12 eV、1.5×10¹⁰ cm⁻³ 计算,SiO₂ 相对介电常数为 3.9, k_0 T=26 meV)
- (1) 求 V_{FB} 及 V_T:
- (2) 假设利用离子注入技术在靠近硅-氧化硅界面处注入了剂量为 $1.5 \times 10^{12} \ cm^{-2}$ 的硼离子,求 ΔV_T ;
- (3) 离子注入前后的 MOSFET 是增强型还是耗尽型?
- 5. 一铝栅-二氧化硅-Si MOS 电容器的高频特性曲线如图 1 所示。器件的面积为 2×10^{-3} cm²,Si 掺杂浓度为 2×10^{16} cm³。(1)半导体是 n 型的还是 p 型的?(2) 求平带电容。(3)画出其低频 CV 曲线,并标出耗尽、弱反型、强反型的区域及条件(表面势 V_S 与 $|V_B|$ 的关系)。

