ГУАП

КАФЕДРА № 44

ЕПОДАВАТЕЛЬ		
старший преподаватель		А.Н. Долидзе
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
ПОЯСНИТЕЛЬНАЯ	ЗАПИСКА К КУРСОВ	ОМУ ПРОЕКТУ
поз	курсу: СХЕМОТЕХНИКА	
БОТУ ВЫПОЛНИЛ		
ТУДЕНТ гр. №		

Проектное задание

Задание на курсовое проектирование выдается индивидуально каждому студенту. В задании указывается тема и исходные данные для проектирования.

Разработка устройства включает в себя следующие этапы:

- составление и обоснование выбора функциональной схемы; разработку проектируемой схемы в САПР Quartus с использованием стандартных блоков, предоставляемых САПР (И, НЕ, дешифратор, триггер и т.д.) и описание ее работы с использованием временных диаграмм;
- разработку проектируемой схемы в САПР Quartus с использованием языка описания аппаратуры SystemVerilog и описание ее работы с использованием временных диаграмм;
- анализ двух подходов к разработке проектируемой схемы;
- обоснование и выбор FPGA на базе которого будет синтезироваться разрабатываемая схема;
- моделированием с применением САПР Quartus.
- назначение входов и выходов проектируемой схемы на выбранном FPGA.

Согласно варианту (схема 1, вариант 3), устройство является преобразователем кодов и должно переводить код Грея в 8421. Функция: необходимо определить какому десятичному числу соответствует сформированное слово В, чётному или нечётному (смотрите таблицу кодов). Добавьте в схему счётчик, увеличивающий своё значение при чётном числе и уменьшающий при нечётном. Предложенная схема устройства представлена на рисунке 1.

Схема преобразователя кода

Рисунок 1 – Схема преобразователя кодов (Схема №1)

В таблице №1 представлено соответствие двоично-десятичное представление входных и выходных кодов, с которыми работает устройство.

Таблица №1

Входной код "Грея"	Выходной код "8421"
0000	0000
0001	0001
0011	0010
0010	0011
0110	0100
0111	0101
0101	0110
0100	0111
1100	1000
1101	1001

Также есть дополнительное условие: необходимо определить какому десятичному числу соответствует сформированное слово В, чётному или нечётному (смотрите таблицу

кодов). Добавьте в схему счётчик, увеличивающий своё значение при чётном числе и уменьшающий при нечётном.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	6
1. РАЗРАБОТКА ФУНКЦИОНАЛЬНОЙ СХЕМЫ	7
1.1 ВЫБОР ФУНКЦИОНАЛЬНОЙ СХЕМЫ	7
1.2 СОСТАВЛЕНИЕ СХЕМЫ УСТРОЙСТВА С ИСПОЛЬЗОВАНИЕМ СТАНДАРТНЫХ БЛОКОВ САПР QUARTUS И ПОСТРОЕНИЕ ВРЕМЕННЫХ ДИАГРАММ В КОНТРОЛЬНЫХ ТОЧКАХ	9
1.3 СОСТАВЛЕНИЕ СХЕМЫ УСТРОЙСТВА С ИСПОЛЬЗОВАНИЕМ ЯЗЫКА ОПИСАНИЯ АППАРАТУРЫ SYSTEM VERILOG	
2. Bыбор FPGA	14
ЗАКЛЮЧЕНИЕ	15
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	16

ВВЕДЕНИЕ

Целью курсового проектирования является освоение методов расчета, схемотехнического проектирования и конструирования элементов и блоков ЦВМ на базе программируемых логических интегральных схема (ПЛИС, далее FPGA).

При выполнении проекта автор должен разработать электронное устройство в соответствии с предложенной схемой и исходными данными, которое обеспечило бы заданную точность и качество работы. Работоспособность устройства обязательно подтверждается моделированием с применением САПР Quartus.

В ходе выполнения курсового проекта должны быть получены схема устройства и программный код на языке описания аппаратуры System Verilog, соответствующие заданному в проектном задании функционалу. Устройство представляет собой преобразователь кодов, включающее в себя схемы контроля выдачи входного и выходного кодов.

1. РАЗРАБОТКА ФУНКЦИОНАЛЬНОЙ СХЕМЫ

1.1 ВЫБОР ФУНКЦИОНАЛЬНОЙ СХЕМЫ

По ходу выполнения проекта в качестве реализации для разработки заданного функционала в виде функциональной схемы были выбраны стандартные модули из пакета Quartus, а именно компоненты шифратор и дешифратор с выходом в виде логических выражений дешифратора.

Составим таблицу, в которой каждая входная последовательность будет соответствовать определенному выходу блока 16dmux.

Таблица №2

A_3	A_2	A_1	A_0	NºQ
0	0	0	0	0
0	0	0	1	1
0	0	1	0	3
0	0	1	1	2
0	1	0	0	7
0	1	0	1	6
0	1	1	0	4
0	1	1	1	5
1	0	0	0	15
1	0	0	1	14
1	0	1	0	12
1	0	1	1	13
1	1	0	0	8
1	1	0	1	9
1	1	1	0	11
1	1	1	1	10

Из таблицы видно, что начиная с Q_{10} , на вход начинают подаваться последовательности, которые отсутствуют по заданию. Соответственно их мы не будем выводить. При этом их мы будем использовать для контроля выдачи входного кода, аналогичным образом поступим и с выходным кодом.

Сопоставив входную и выходную последовательность, можно определить при каких выходных Q, на каждый бит выходной последовательности приходится единица. Исходя

из этого составим логическое выражение для каждого биты выходной последовательности:

$$\begin{split} Q_{14} \vee Q_{15} &= B_3 \\ Q_4 \vee Q_5 \vee Q_6 \vee Q_7 &= B_2 \\ Q_2 \vee Q_3 \vee Q_4 \vee Q_5 &= B_1 \\ Q_1 \vee Q_2 \vee Q_5 \vee Q_6 \vee Q_{14} &= B_0 \end{split}$$

1.2 COCTABЛЕНИЕ СХЕМЫ УСТРОЙСТВА С ИСПОЛЬЗОВАНИЕМ СТАНДАРТНЫХ БЛОКОВ САПР QUARTUS И ПОСТРОЕНИЕ ВРЕМЕННЫХ ДИАГРАММ В КОНТРОЛЬНЫХ ТОЧКАХ

В ходе разработки схемы устройства были использован стандартный модуль 16dmux, а также стандартные модули, такие как ог и and. Для создания счётчика был добавлен тактирующий сигнал clk, который подаёт 1 при изменении смене подающего числа. Используется сумматор с разрешением счёта при подаче значений, которые присутствуют по заданию и проверке на ноль. Чётность определяется по нулевому разряду (соотв-но 1-нечётный, 0-чётный). На рисунках 2- 3 представлен результат моделирования схемы в графическом редакторе среды Quartus.

Рисунок 2 – Схема преобразователя кодов

Рисунок 3 — Схема контроля выдачи кодов и счётчика На рисунке 4 результат выполнения схемы в виде временной диаграммы.

1.3 СОСТАВЛЕНИЕ СХЕМЫ УСТРОЙСТВА С ИСПОЛЬЗОВАНИЕМ ЯЗЫКА ОПИСАНИЯ АППАРАТУРЫ SYSTEM VERILOG

```
Листинг программы:
      module InputAnalyzer (
         input wire [3:0] inputCode,
         output reg result
      );
         always @* begin
                result <=
                inputCode == 4'b1000 ||
                inputCode == 4'b1001 ||
                inputCode == 4'b1010 ||
                inputCode == 4'b1011 ||
                inputCode == 4'b1100 ||
                inputCode == 4'b1101;
         end
      endmodule
      module OutputAnalyzer (
         input wire [3:0] outputCode,
         output reg result
      );
         always @* begin
                result <=
                outputCode == 4'b1010 ||
                outputCode == 4'b1011 ||
                outputCode == 4'b1100 ||
                outputCode == 4'b1101 ||
                outputCode == 4'b1110 ||
                outputCode == 4'b1111;
         end
      endmodule
```

```
module Logic (
   input wire [3:0] inputCode,
   output reg [3:0] outputCode
);
   always @* begin
          case (inputCode)
                 4'b0000: outputCode = 4'b0000;
                 4'b0001: outputCode = 4'b0001;
                 4'b0011: outputCode = 4'b0010;
                 4'b0010: outputCode = 4'b0011;
                 4'b0110: outputCode = 4'b0101;
                 4'b0111: outputCode = 4'b0100;
                 4'b0101: outputCode = 4'b0111;
                 4'b0100: outputCode = 4'b0110;
                 4'b1111: outputCode = 4'b1000;
                 4'b1110: outputCode = 4'b1001;
                 default: outputCode = 4'b0000;
          endcase
   end
endmodule
module KursCode (
   input clk,
   input wire [3:0] A,
   output wire [3:0] B,
   output wire incorrect,
   output wire [3:0] Sum
);
   wire incorrectA;
   wire incorrectB;
   Logic m logic(
          .inputCode(A),
          .outputCode(B)
```

```
);
   InputAnalyzer m_inputAnalyzer(
          .inputCode(A),
          .result(incorrectA)
   );
   OutputAnalyzer m_outputAnalyzer(
          .outputCode(B),
          .result(incorrectB)
   );
   assign incorrect = incorrectA || incorrectB;
   always @(posedge clk) begin
   if (incorrect==0) begin
          if (B[0]==1'b1) Sum=Sum-1;
          else Sum=Sum+1;
          end
          end
endmodule
```


Рисунок 5 – Временная диаграмма языка описания аппаратуры

2. BЫБОР FPGA

В ходе выполнения проекта было принято решение использовать ПЛИС Stratix II — EP2S15F484C3 ввиду того, что память в ПЛИС требует большое количество ресурсов и пинов. На рисунке 6 представлена схема подключения к ПЛИС. Схема подключения представлена на рисунке 6.

×	Filter: Pins: all				
	Node Name	Direction	Location	I/O Bank	VREF Group
	A[3]	Input	PIN_B5	4	B4_N1
	A[2]	Input	PIN_B6	4	B4_N1
	A[1]	Input	PIN_B7	4	B4_N1
	A[0]	Input	PIN_B8	4	B4_N1
•	B[3]	Output	PIN_A5	4	B4_N1
•	B[2]	Output	PIN_A6	4	B4_N1
•	B[1]	Output	PIN_A7	4	B4_N1
•	B[0]	Output	PIN_A8	4	B4_N1
•	Sum[3]	Output	PIN_C5	4	B4_N1
•	Sum[2]	Output	PIN_C6	4	B4_N1
•	Sum[1]	Output	PIN_C7	4	B4_N1
•	Sum[0]	Output	PIN_C8	4	B4_N1
	clk	Input	PIN_B9	9	B4_N1
•	incorrect	Output	PIN_C9	9	B4_N1
	< <new node="">></new>				

Рисунок 6 – Схема подключения

ЗАКЛЮЧЕНИЕ

В ходе выполнения проекта было разработано электронное устройство в соответствии с предложенной схемой и исходными данными. Также была подтверждена работоспособность устройства при помощи моделирования с применения САПР Quartus. В ходе выполнения работы были выполнены следующие этапы: разработка проектируемой схемы в САПР Quartus с использованием стандартных блоков и описание ее работы с использованием временных диаграмм, разработка проектируемой схемы в САПР Quartus с использованием языка описания аппаратуры SystemVerilog и описание ее работы с использованием временных диаграмм. Обе реализации дали одинаковый результат. Устройство работает конкретно и уверенно и соответствует поставленной задачи и заданному функционалу, исправно преобразовывает входной код в выходной, сообщает об ошибках, в случае некорректных кодов, счётчик выполняет работы соответственно заданию.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ