

COURSE DESCRIPTION FORM

INSTITUTION National University of Computer and Emerging Sciences (NUCES-FAST) BS(CS)

PROGRAM (S) TO BE EVALUATED

A. Course Description

Course Code	CS2001
Course Title	Data Structures
Credit Hours	3+1
Prerequisites by Course(s) and Topics	Object-oriented Programming (CS217)
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Midterm Exam 1: 15 (1 Hour written exam) Midterm Exam 2: 15 (1 Hour written exam) Project: 8 Quizzes: 12 (Quizzes and one hackathon) Final: 50 (3 Hours Written Exam)
Course Coordinator	Dr. Jawwad A Shamsi
URL (if any)	-
Current Catalog Description	-
Textbook (or Laboratory Manual for Laboratory Courses)	Textbook: Data Structures and Algorithms in C++ 4th Edition by Adam Drozdek Reference books: Data Structure and Algorithms Analysis in C++ Mark Allen

	Using C++ A Pract Tripathy	tical Implementation by Sachi Nandan Mohanty and Pab	itra Kumar
Reference Material			
Course Goals	A. Course Learning	g Outcomes (CLOs)	
	describe their usage	ain concepts related to basic and advanced data structures in terms of common algorithmic operations by Level: 3, Learning Domain: Cognitive]	s and
	[Bloom's Taxonom	sive problems efficiently using Backtracking y Level: 3, Learning Domain: Cognitive]	
	effective solutions a	fferent data structures in terms of their relative efficiency and algorithms that make use of them. y Level: 6, Learning Domain: Cognitive & Psychomotomy.	
	traversal	cycling-bearing graphs into acyclic tree structures for mir y Level: 6, Learning Domain: Cognitive & Psychomot	
	B. Program I	Learning Outcomes	
	1. Computing Knowledge	Apply knowledge of mathematics, natural sciences, computing fundamentals, and a computing specialization to the solution of complex computing problems.	CLO-1
	2. Problem Analysis	Identify, formulate, research literature, and analyze complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences.	CLO-2

3.Design/Develop	Design solutions for complex computing problems and design systems, components, and processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.	CLO-3	
4. Investigation & Experimentation	Conduct investigation of complex computing problems using research based knowledge and research based methods	CLO-4	

C. Relation between CLOs and PLOs (CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)													
PLOs													
		1	2	3	4	5	6	7	8	9	10	11	12
	1	>											
C	2		\										
O s	3			~									
	4				~								

Topics Covered in the Course, with Number of Lectures on Each Topic (assume 15-week instruction and one-hour lectures)

1. Topics to be covered:			
List of Topics	No. of Weeks	Contact Hours	CLO
ADT, C++ Language Specification, Pointers revisited, Rule of Three, Dynamic Safe Arrays	1	3	1
Elementary Sorting Techniques	1	3	1,3

	List (Singly Linked List), List (Doubly Linked List), List (Circular				
		2	6	1, 3	
4					
			NCE.	AC.FORM.001.D	

Total	16	48	
======= Final	Exam ====		_
Minimum Spanning Trees, Graph Algorithms, Topological Sort	1	3	4
Graphs and their representation and traversal, Shortest Path Problem,	1	3	4
Hashing, Hash Functions, Collision-resolution Techniques, Rehashing	1	3	1, 3
Priority Queues, Heaps as Priority Queues	1	3	1, 3
====== Mid-term	2 Exam ==	======	
Balance in Binary Search Trees, AVL Trees	1	3	2, 3
Binary Search Trees, their operations and applications, skewness and issues			
Binary trees and their properties (Full Binary Tree, Complete Binary Tree), Multi-way Trees/Tries	2	7	1, 2, 3
Stack, Queue, their implementation strategies and applications(Simulation of recursion)	1	3	1, 3
Advanced Sorting Techniques and their issues, Linear, Binary & Interpolation Search	1	3	3
:===== Mid-term	1 Exam ==		
Recursion, it's types, issues and Backtracking (with examples)	1	3	2

Laboratory Projects/Experiments Done in the Course

There will be weekly labs starting from the first week.

The following is a summary of the Lab exercises given to Students:

- Introduction to Data Structures and their implementation.
- Writing & using dynamic safe arrays
- Solving recursive problems using Backtracking in programs
- Implementation of Linked Lists
- Linked List based implementation of primitive Data Structures
- Implementing Sorting Algorithms
- Implementing Binary Trees and writing functions for their properties
- Implementing Binary Search Trees using Structures and Classes

	 Writing functions for tree traversal and maintaining balance Implementing graphs and writing functions for their traversal 						
Programming Assignments Done in the Course	to Backtracking, Stacks & Queues, Binary Search Trees and traversal						
Class Time Spent on (in credit hours)	Theory	Problem Analysis Solution Design Social and Ethical Issues					
	15 15 13 0						
Oral and Written Communications	Every student is required to submit at least1_ written report of typically _6_ pages and to make _1_ oral presentations of typically10_ minute's duration. Include only material that is graded for grammar, spelling, style, and so forth, as well as for technical content, completeness, and accuracy.						

Instructor Name:	
Instructor Signature:	
Date:	