Notazione: $\sqrt{x} := \frac{1}{\sqrt{x}}$

Stati

Principio 1 Funzione d'onda e densità di probabilità Trasformata di Fourier Basi generalizzate
$$\mathcal{S} \mapsto \mathcal{H} \qquad P(x) = \frac{|\psi(x)|^2}{||\psi(x)||^2} \qquad \widetilde{\psi}(p) = \sqrt[]{2\pi\hbar} \int \mathrm{d}x \psi(x) e^{-\frac{ipx}{\hbar}} \qquad |x\rangle = \xi_x(x) = \delta(x-x_0)$$

$$\Sigma \mapsto \hat{\psi} := \{\lambda \, |\psi\rangle \, |\, \lambda \in \mathbb{C} \setminus \{0\}\} \qquad P(x) \geq 0, \quad \int \mathrm{d}x P(x) = 1 \qquad P(p) = \frac{|\psi(p)|^2}{||\psi(p)||^2} \qquad |p\rangle = v_p(x) = \sqrt[]{2\pi\hbar} \, e^{\frac{ipx}{\hbar}} \qquad \langle x_0 | x_0' \rangle = \delta(x_0 - x_0') \\ \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$$

Osservabili

Posizione e impulso Principio 2 Principio 3 Principio 4
$$X\psi(x) = x\psi(x) \qquad \mathcal{A} \mapsto \mathcal{A} \qquad \mathcal{A} \mid a \rangle = a \mid a \rangle \qquad w(a_k) = \frac{|\langle a_k \mid \psi \rangle|^2}{||\psi||^2} \qquad w(a_k) = \sum_{i=1}^{d_k} \frac{|\langle a_{k,i} \mid \psi \rangle|^2}{||\psi||^2} \qquad \mathrm{d}w(a) = \rho(a) \, \mathrm{d}a = \frac{|\langle a \mid \psi \rangle|^2}{||\psi||^2}$$

$$P\psi(x) = -i\hbar \frac{\mathrm{d}\psi(x)}{\mathrm{d}x} \qquad \langle \mathcal{A} \rangle_{\Sigma} = \frac{\langle \psi \mid A \mid \psi \rangle}{\langle \psi \mid \psi \rangle} \qquad \sigma(\mathcal{A}) = \sigma(A) \qquad |\psi\rangle = \sum_{k=1}^{N} c_k \mid a_k \rangle \qquad |\psi\rangle = \sum_{k=1}^{N} \sum_{i=1}^{d_k} c_k^i \mid a_k \rangle \qquad |\psi\rangle = \int \mathrm{d}a \, c(a) \mid a \rangle$$

$$[X, P] = i\hbar \qquad \Delta A = \sqrt{\langle A^2 \rangle - \langle A \rangle^2} \qquad w(a_k) = \frac{|c_k|^2}{||\psi||^2} \qquad w(a_k) = \sum_{i=1}^{d_k} \frac{|c_k^i|^2}{||\psi||^2} \qquad \rho(a) = \frac{|c(a)|^2}{||\psi||^2}$$

Proiettori e misure

Definizione di proiettore
$$(P, \mathcal{D}(P))$$
 Principio 6 Osservabili compatibili P è proiettore $\Leftrightarrow P^{\dagger} = P \land P^2 = P$ $|\psi\rangle \rightarrow |\psi'\rangle = \frac{P_{a_k}|\psi\rangle}{\sqrt{\langle\psi|P_{a_k}|\psi\rangle}}$ \mathcal{A}, \mathcal{B} compatibili $\Leftrightarrow [A, B] = 0$

 $P_q = \sum_i |\varphi_i\rangle \langle \varphi_i|, \{|\varphi_i\rangle\}$ base ON di \mathcal{H}_q \mathcal{A}, \mathcal{B} compatibili \Leftrightarrow hanno una base di autovettori comuni Per trovare una base di autovettori comuni (sapendo già che gli operatori commutano, e se entrambi hanno degenerazioni):

- 1. Trovo autovalori e autovettori di $A \in B$;
- 2. Autovettori associati ad autovalori **non** degeneri sono automaticamente autovettori comuni;
- 3. Per autovettori associati ad autovalori degeneri, faccio la prova (applico B a un autovettore degenere di A);
- 4. Se è anche autovettore di B, sono a posto (è autovettore comune);
- 5. Se non lo è:
 - (a) Definisco un nuovo vettore come combinazione lineare degli autovettori della base dell'autospazio degenere in questione;
 - (b) Impongo che questo nuovo vettore sia autovettore di B;
 - (c) Risolvo il sistema di equazioni trovando i coefficienti della combinazione lineare:
 - (d) Per come è stato definito, questo vettore è autovettore sia di A che di B.

Per capire se un insieme di osservabili compatibili costituisce un ICOC:

- 1. Se gli osservabili sono compatibili, esiste una base comune di autovettori;
- 2. A ogni autovettore, associo una label costituita da una lista dei corrispondenti autovalori per ogni osservabile;
- 3. Se **ogni** *label* è unica, l'insieme è un ICOC.

Evoluzione temporale e trasformazioni unitarie

Equazione di Schrödinger Trasformazioni unitarie Operatore di evoluzione temporale Sistema conservativo
$$-i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = H(t) |\psi(t)\rangle \qquad \begin{cases} |\psi\rangle \mapsto |\psi'\rangle = U |\psi\rangle \\ A \mapsto A' = UAU^{\dagger} \end{cases} \qquad U(t,t_0) |\psi(t_0)\rangle = |\psi(t)\rangle \qquad U(t+\mathrm{d}t,t) = \mathbb{1} - \frac{i}{\hbar}H(t)\mathrm{d}t \qquad U(t,t_0) = e^{-\frac{i}{\hbar}H(t-t_0)} \end{cases}$$
 Visuale di Heisenberg Equazione di heisenberg
$$\begin{cases} |\psi(t)\rangle_S = U(\Delta t) |\psi(t_0)\rangle_S \\ A_S(t) = A_S(0) \end{cases} \qquad \begin{cases} |\psi(t)\rangle_H = |\psi(t_0)\rangle_H \\ A_H(t) = U^{\dagger}(\Delta t)A_H(t_0)U(\Delta t) \end{cases} \qquad -i\hbar \frac{\mathrm{d}}{\mathrm{d}t}A_H(t) = [A_H, H]$$

Matrice densità

Stato puro Stato misto Proprietà (stato generico) SOLO PER STATI PURI
$$\rho(t) = |\psi(t)\rangle \langle \psi(t)| \qquad \{|\psi_k(t)\rangle\}, \ p_k \qquad \rho^\dagger(t) = \rho(t) \qquad \langle A\rangle_\psi(t) = Tr(\rho(t)A) \qquad \rho^2(t) = \rho(t)$$

$$\rho_{pn}(t) = \langle u_p | \rho(t) | u_n \rangle = \bar{c}_n(t)c_p(t) \qquad \rho(t) = \sum_k p_k \rho_k(t) \qquad Tr(\rho(t)) = 1 \qquad i\hbar \frac{\mathrm{d}\rho(t)}{\mathrm{d}t} = [H(t), \rho(t)] \qquad Tr(\rho^2(t)) = 1$$

Oscillatore armonico

Problema agli autovalori $H\left|\psi\right>=E\left|\psi\right>$ $H=\frac{P^{2}}{2m}+\frac{1}{2}m\omega^{2}X^{2}$

Definizioni utili $\hat{X} := \sqrt{\frac{m\omega}{\hbar}} X \qquad a = \sqrt[7]{2} (\hat{X} + i\hat{P})$ $\hat{P} := \sqrt[7]{m\hbar\omega} P \qquad a^{\dagger} = \sqrt[7]{2} (\hat{X} - i\hat{P})$ $\hat{H} = \frac{H}{\hbar\omega} = \frac{1}{2} (\hat{X}^2 + \hat{P}^2) \qquad N = a^{\dagger}a$

Nuovo problema agli autovalori
$$\begin{split} N\left|\varphi_{\nu}^{i}\right\rangle &=\nu\left|\varphi_{\nu}^{i}\right\rangle \\ E_{\nu} &=\hbar\omega\left(\nu+\frac{1}{2}\right) \\ \nu\in\mathbb{N} \end{split}$$

Autostati $a |n\rangle = \sqrt{n} |n-1\rangle$ $a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$