Lenguaje matemático, conjuntos y números

Pregunta 1 (3 puntos)

Sea (A, \preceq) un conjunto ordenado con al menos dos elementos distintos. Consideremos las siguientes proposiciones:

p; $\forall x \in A \ \exists y \in A \setminus \{x\} \ \text{tal que } x \leq y$

q; $\forall x \in A \ \forall y \in A \setminus \{x\}$ se tiene que $x \leq y$

r; $\exists x \in A \ \exists y \in A \setminus \{x\} \ \text{tales que } x \leq y$

s; $\exists x \in A$ tal que $\forall y \in A \setminus \{x\}$ se tiene $x \leq y$

¿De las siguientes afirmaciones cuáles son siempre verdaderas y cuáles no? Justifique las respuestas en el caso de que el condicional sea siempre verdadero y ponga un contraejemplo en caso contrario.

a)
$$p \to q$$

b)
$$q \to p$$

c)
$$p \to r$$

d)
$$r \to p$$

e)
$$p \rightarrow s$$

f)
$$s \to p$$

Solución:

- a) La afirmación de a) no es siempre verdadera. Por ejemplo, considerando el orden usual en $A=\mathbb{N},\ p$ es verdadera, basta tomar y=x+1, mientras que q es falsa, basta tomar dos elementos distintos, x=2 e y=1 que no cumplen $2\leqslant 1$. Por tanto la proposición $p\to q$ es falsa.
- b) La afirmación de b) es siempre verdadera. Observemos que q siempre es falsa pues si fuera verdadera, tomando dos elementos distintos x,y de A, que existen pues A tiene al menos dos elementos, tendríamos que $x \preccurlyeq y$ e $y \preccurlyeq x$. Aplicando la propiedad antisimétrica de la relación de orden, se deduciría que x=y, en contradicción con la elección de $x \neq y$. Al ser el antecedente falso, el condicional $q \to p$ es verdadero independientemente del valor de p.
- c) La afirmación de c) es verdadera. En efecto, supongamos que p es verdadera y sea x un elemento fijo de A, que existe pues A tiene al menos dos elementos, Para ese x existe $y \in A \setminus \{x\}$ tal que $x \leq y$. Y por tanto r es verdadera. En consecuencia, $p \to r$ es verdadera.
- d) La afirmación de d) no es siempre verdadera. Por ejemplo, considerando el orden usual de \mathbb{N} en $A = \{1, 2\}$, se tiene que p es falsa pues para x = 2 no existe ningún elemento en $y \in A \setminus \{2\}$ tal que $x \leq y$, mientras que r es verdadera, tomando x = 1 e y = 2. Por tanto, la proposición $r \to p$ es falsa.
- e) La afirmación de e) no es siempre verdadera. Por ejemplo, considerando el orden usual en $A = \mathbb{Z}$, p es verdadera, basta tomar y = x + 1, mientras que s es falsa, pues \mathbb{Z} no es un conjunto acotado inferiormente. Por tanto, la proposición $p \to s$ es falsa.
- f) La afirmación de f) no es siempre verdadera. Por ejemplo, considerando el orden usual de \mathbb{N} en $A = \{1, 2\}$, vimos en el apartado d) que p es falsa, mientras que s es verdadera, tomando x = 1. Por tanto, la proposición $s \to p$ es falsa.

Pregunta 2 (2 puntos)

Se define en \mathbb{N} la relación definida para todo $x, y \in \mathbb{N}$ mediante:

$$x \mathcal{R} y$$
 si y sólo si $\exists p, q \in \mathbb{N}^*$ tales que $y = px^q$

Determine si la relación $\mathcal R$ es reflexiva, simétrica, antisimétrica o transitiva.

Solución: Veamos las propiedades de $\mathcal R$ que nos piden.

Es reflexiva: para todo $x \in \mathbb{N}$ se tiene que $x \mathcal{R} x$ ya que $x \mathcal{R} x$ pues $\exists p,q \in \mathbb{N}^*$ tales que $x = px^q$. Se toma p = q = 1

Es antisimétrica: para todo $x, y \in \mathbb{N}$ si $x \mathcal{R} y$ e $y \mathcal{R} x$ entonces $\exists p, q \in \mathbb{N}^*$ tales que $y = px^q$ y $\exists p', q' \in \mathbb{N}^*$ tales que $x = p'y^{q'}$. Sustituyendo la expresión de y en la segunda igualdad se obtiene:

$$x = p'(px^q)^{q'} = p'p \ x^{qq'}$$

Si x = 0, entonces se obtiene que $y = px^q = p0^q = 0 = x$.

Si $x \neq 0$, teniendo en cuenta que $p, p', q, q' \in \mathbb{N}^*$, de x = p'p $x^{qq'}$ se deduce que p'p = qq' = 1 y en consecuencia p = p' = q = q' = 1. Por tanto x = y.

No es simétrica. Por ejemplo $1 \mathcal{R} 7$ pues $7 = 7 \cdot 1^q$ para cualquier $q \in \mathbb{N}^*$ mientras que no es cierto que $7 \mathcal{R} 1$ pues la ecuación $1 = p \cdot 7^q$ no tiene solución $p, q \in \mathbb{N}^*$.

Es transitiva: sean $x, y, z \in \mathbb{N}$ tales que $x \mathcal{R} y$ e $y \mathcal{R} z$. Por tanto, $\exists p, q \in \mathbb{N}^*$ tales que $y = px^q$ y $\exists p', q' \in \mathbb{N}^*$ tales que $z = p'y^{q'}$. Sustituyendo la expresión de y en la segunda igualdad se obtiene:

$$z = p'(px^q)^{q'} = p'p \ x^{qq'}$$

En consecuencia $x \Re z$ pues $p'p \ y \ qq' \in \mathbb{N}^*$.

Pregunta 3 (2 puntos)

¿Cuántas aplicaciones biyectivas f del conjunto $\{1, 2, 3, \dots, 12\}$ en sí mismo hay cumpliendo las siguientes propiedades:

- a) Si n es par entonces f(n) es par.
- b) Si n es divisible por 3 entonces f(n) es divisible por 3.
- c) Las aplicaciones cumplen las propiedades de a) y b) simultáneamente.
- d) Repita la cuestión a) pero contando el número de aplicaciones distintas (biyectivas o no) de $\{1, 2, 3, \dots, 12\}$ en sí mismo.

Solución:

- a) Sean $A = \{1, 2, 3, ..., 12\}$ y $B = \{2, 4, 6, 8, 10, 12\}$. Toda biyección f de A en A tal que si n es par entonces f(n) es par, está formada por un par de biyecciones (f_1, f_2) siendo f_1 una biyección de B en B y f_2 una biyección de $A \setminus B$ en $A \setminus B$. Como hay 6! biyecciones de B en B y otras tantas de $A \setminus B$ en $A \setminus B$ el número de biyecciones que transforman pares en pares es $(6!)^2$.
- b) Sean $A = \{1, 2, 3, ..., 12\}$ y $C = \{3, 6, 9, 12\}$. Toda biyección f de A en A tal que si n es es divisible por 3 entonces f(n) es divisible por 3 está formada por un par de biyecciones (f_1, f_2) siendo f_1 una biyección de C en C y f_2 una biyección de $A \setminus C$ en $A \setminus C$. Como hay 4! biyecciones de B en B y 8! biyecciones de $A \setminus B$ en $A \setminus B$ el número de biyecciones que transforman múltiplos de 3 es 4! 8!.
- c) Necesariamente una biyección que cumple las propiedades de a) y b) simultánemente transforma un par múltiplo de 3 en un par múltiplo de 3 y lo mismo con los pares e impares que no son múltiplo de 3. Sean pues los conjuntos $D = \{6,12\}$, $F = \{3,19\}$, $G = \{2,4,8,10\}$ y $H = \{1,5,7,11\}$. En consecuencia, una biyección que cumpla las dos propiedades de a) y b) simultáneamente está compuesta por cuatro biyecciones, de D en D, de F en F, de G en G y de H en H. Por tanto el número es $(2!)^2(4!)^2$.
- d) Si $A = \{1, 2, 3, ..., 12\}$ y $B = \{2, 4, 6, 8, 10, 12\}$, la diferencia ahora sobre el apartado a), es que toda aplicación f de A en A tal que si n es par entonces f(n) es par, está formada por un par de aplicaciones (f_1, f_2) siendo f_1 una aplicación de B en B y f_2 una aplicación de $A \setminus B$ en A. Observemos que en este caso la imagen de un número impar podría ser par pues f no es necesariamente inyectiva. Por tanto el número es 6^612^6 .

Pregunta 4 (3 puntos)

- a) Calcule las raíces *n*-ésimas de $z_1 = 1 + i$ y de $z_2 = -i$.
- b) Resuelva en \mathbb{C} la ecuación: $z^2 z + 1 i = 0$.
- c) Resuelva en \mathbb{C} la ecuación: $z^{2n} z^n + 1 i = 0$.

Solución:

a) Teniendo en cuenta que $z_1 = 1 + i = \sqrt{2}_{\pi/4}$ las raíces *n*-ésimas de $z_1 = 1 + i$ se obtienen resolviendo la ecuación $(R^n)_{n\alpha} = \sqrt{2}_{\pi/4}$. Por tanto,

$$R^n = \sqrt{2}$$
 y $n\alpha = \pi/4 + 2k\pi$, $k \in \mathbb{Z}$

Resolviendo se obtienen n raíces distintas

$$R = \sqrt[2n]{2}$$
 y $\alpha = \pi/(4n) + 2k\pi/n = \frac{(1+8k)\pi}{4n}, k = 0, 1, \dots, n-1$

Análogamente para $z_2 = -i = 1_{3\pi/2}$ se obtiene

$$r^n = 1$$
 y $n\beta = 3\pi/2 + 2k\pi$, $k \in \mathbb{Z}$

Resolviendo se obtienen n raíces distintas

$$r = 1 \text{ y } \beta = 3\pi/(2n) + 2k\pi/n = \frac{(3+4k)\pi}{2n}, \ k = 0, 1, \dots, n-1$$

b) El discriminante de la ecuación es $z^2-z+1-i=0$ es $\Delta=1-4(1-i)=-3+4i$. Buscamos una raíz cuadrada de Δ : $(a+bi)^2=-3+4i$ y por tanto $\begin{cases} a^2-b^2&=-3\\ 2ab&=4 \end{cases}$

Teniendo en cuenta que $|a + bi|^2 = |\Delta|$, resulta:

$$a^2 + b^2 = \sqrt{(-3)^2 + 4^2} = \sqrt{25} = 5$$

Al despejar $b^2 = 5 - a^2$ y sustituir b^2 en la primera ecuación del sistema se obtiene:

$$\begin{cases} a^2 - 5 + a^2 = -3 \\ ab = 2 \end{cases}$$
 es decir,
$$\begin{cases} a^2 = 1 \\ ab = 2 \end{cases}$$

de donde las raíces cuadradas de Δ son $w_0=1+2i$ y $w_1=-1-2i$. Las soluciones de la ecuación son $\frac{1+(1+2i)}{2}=1+i$ y $\frac{1-(1+2i)}{2}=-i$.

c) Haciendo el cambio $Z = z^n$ en $z^{2n} - z^n + 1 - i = 0$ se obtiene la ecuación $Z^2 - Z + 1 - i = 0$, cuyas soluciones son las del apartado b) $Z_1 = 1 + i$ y $Z_2 = -i$. Por tanto las soluciones de la ecuación $z^{2n} - z^n + 1 - i = 0$ son las raíces n-ésimas de 1 + i y de -i halladas en el apartado a).