Solomon Huynh Jonathan Lagrew Yunsik Choi

CS325 Group 3 Project 1

Theoretical Run-time Analysis

Algorithm 1: Enumeration O(n^3)

$$T(n) = n * n * n$$

Note: Pseudocode was provided in Project 1 Video MaxSubarray(a[1,...,n]) for each pair (i,j) with $1 \le i < j \le n$ compute a[i]+a[i+1]+···+a[j-1]+a[j] keep max sum found so far return max sum found

Algorithm 2: Better Enumeration O(n^2)

$$T(n) = n * n$$

Note: Pseudocode was provided in Project 1 Video

MaxSubarray(a[1,...,n])

for i = 1, ..., n

sum = 0

for j = i, ..., n

sum = sum + a[j]

keep max sum found so far

return max sum found

Algorithm 3: Divide and Conquer O(n lg n)

$$T(n) = \{ c \text{ if } n = 1 \\ \{ 2T(n/2) + cn \text{ if } n > 1 \}$$

$$T(n) = 2T(n/2) + cn$$

Using the master theorem,
 $a = 2$, $b = 2$, $f(n) = cn$
 $n^{loga(b)} = n^{log2(2)} = n$

Therefore, case #2 will be applied.

```
MaxSubarray(a[1,...,n], int n)
      //base case if n = 1
       if n = 1
              return a[0]
       else
              mid = n / 2
              leftMSS = MaxSubarray(a, mid)
              rightMSS = MaxSubarray(a+mid, n-mid)
       sum = 0
       for i = mid to n
              sum += a[i]
              rightSum = max(rightMSS.sum, sum)
       sum = 0
       for i = 0 to mid
              sum += a[i]
              leftSum = max(leftMSS.sum, sum)
       MSS = max(leftMSS.sum, rightMSS.sum)
       return max(MSS, rightSum + leftSum)
```

Algorithm 4: Linear-time O(n)

T(n) = n

Note: Pseudocode was provided in maxsumsubLinear.pdf given by professor

```
MAX-SUBARRAY-LINEAR(A)

n = A.length

max-sum = -\infty

ending-here-sum = -\infty

for j = 1 to n

ending-here-high = j

if ending-here-sum > 0

ending-here-sum = ending-here-sum + A[j]

else ending-here-low = j

ending-here-sum = A[j]

if ending-here-sum > max-sum

max-sum = ending-here-sum

low = ending-here-low

high = ending-here-high

return (low, high, max-sum)
```

Proof of Correctness

Claim 1:

Given an array A containing n integers a_0 , a_1 ,... a_{n-1} for n > 0, the divide and conquer algorithm 3 will correctly generate the sum of the maximum subarray, $s=max(\sum_{k=i}^{j} a_k)$ for integers i, j < n

The max subarray will be contained entirely in the first half denoted as leftMSS.sum
The max subarray will be contained entirely in the second half denoted as rightMSS.sum
The max subarray will be made of a suffix of the first half of the subarray and a prefix of the second half denoted as crossMSS.sum

Proof:

By induction using top-down method:

Base Case:

As a base case, let n = 1. Then sum will be the value of n denoted as variable pass, a[0]. This is found when high equals low. This returns in $\Theta(1)$ time.

Inductive hypothesis: leftMSS = algorithm3(A[0: $\frac{n}{2}$ -1]) rightMSS = algorithm3(A[$\frac{n}{2}$:n]) crossMSS = findMaxCrossingSubarray(A[0:n])

We can consider three possible cases:

Case 1: Max Subarray contained entirely in first half

Case 2: Max Subarray contained entirely in second half

Case3: Max Subarray made of a suffix of the first half of the subarray and a prefix of the second half

Claim 2: The algorithm terminates

Proof: Since n > 0 then n must be at least a value of 1 and the algorithm returns. This proves the base case.

For the inductive hypothesis, assume that the algorithm returns for an array of length $n \le q$ for some positive integer q > 1. Consider n = q + 1. The array will be split into two branches of positive lengths, which means each branch will have lengths less than or equal to q. In conclusion, the algorithm will return for each branch and the algorithm returns follows.

Claim 3: Algorithm 3 computes the sum of the maximum subarray in O(n log n) time.

Proof: Let n be the size of the array of integers, a. For n > 1, the recurrence for the recursive step of the algorithm can be found to be:

$$T(n) = \Theta(1) + 2T(\frac{n}{2}) + \Theta(n) + \Theta(1)$$
$$= 2T(\frac{n}{2}) + \Theta(n)$$

The base case will be $\Theta(1)$. We know recursive calls take $2T(\frac{n}{2})$, the max() calculations take $\Theta(n)$, and the last return will take $\Theta(1)$.

$$\mathsf{T(n)} = \begin{cases} \theta(1) & \text{if } = 1 \\ 2T \left(\frac{n}{2}\right) + \theta(n) & \text{if } n > 1 \end{cases}$$

Suppose $T(n) \le cn \log n + n = O(n \log n)$. Then

$$T(n) \le 2(c \cdot \frac{n}{2} \log \frac{n}{2}) + n$$

$$\le cn \log \frac{n}{2} + n$$

$$= cn \log n - cn \log 2 + n$$

$$\le cn \log n$$

$$= O(n \log n)$$

Testing Procedure

The project included a menu option to test both the test problems provided by the professor and the run times based on n inputs where n is the number of inputs the user enters. The programming team compared the results of the test problems with the answers and it produced the correct results in all four algorithms. They also used their own inputs to test for the results. Note that the test results outputs the set of inputs, the set of maximum sub subarrays, and the total sum to test for correct responses.

Average Running Times

Algorithm 1		Algorithm 2	
# of inputs	Average Run Time	# of inputs	Average Run Time
100	0.027	1000	0.057
200	0.113	2000	0.215
300	0.268	3000	0.457
400	0.65	4000	0.814
500	1.247	5000	1.268
600	2.165	6000	1.853
700	3.397	7000	2.52
800	5.062	8000	3.262
900	7.118	9000	4.165
1000	9.734	10000	5.078
Alg	gorithm 3	Al	gorithm 4
# of inputs	Average Run Time	# of inputs	Average Run Time
5000	0.047	100000	0.012
6000	0.067	200000	0.023
7000	0.087	300000	0.036
8000	0.113	400000	0.046
9000	0.139	500000	0.059
10000	0.166	600000	0.083
20000	0.772	700000	0.093
30000	2.07	800000	0.12
	5.836	900000	0.123
40000	5.050	200000	0.11

Graph Functions

Algorithm 1: $y = 9E-09x^3 + 1E-06x^2 - 0.0004x + 0.0586$

Algorithm 2: $y = 5E-08x^2 + 4E-06x - 0.0029$

Algorithm 3: $y = 0.0399e^{(0.0001x)}$ Algorithm 4: y = 1E-07x - 0.0081

Number of Inputs to Take 10 Minutes of Runtime

Algorithm 1: n = 4,022 Algorithm 2: n = 109,505 Algorithm 3: n = 15,038

Algorithm 4: n = 6,000,081,000

Any Discrepancies between experimental and theoretical running times?

There isn't much difference between experimental and theoretical running times as long as input is far great reaching upto millions.

When the number of inputs reach millions, experimental running times grows exponentially compared to theoretical running times.

Log-Log Plots

Graph Containing All Algorithms

Resources:

- 1) http://www.geeksforgeeks.org/largest-sum-contiguous-subarray/
- 2) http://codeforces.com/blog/entry/13713
- 3) http://www.wolframalpha.com/
- 4) http://www.geeksforgeeks.org/divide-and-conquer-maximum-sum-subarray/