Introduction to Cryptography

Chapter 0: Course information

Manuel

Summer 2017

Outline

1 Logistics

2 Evaluations

3 Resources

Who?

Teaching team:

- Instructor: Manuel (charlem@sjtu.edu.cn)
- Teaching assistants:
 - Guoyi (louguoyi@sjtu.edu.cn)
 - Hao (hot_hao@sjtu.edu.cn)

Who?

Teaching team:

- Instructor: Manuel (charlem@sjtu.edu.cn)
- Teaching assistants:
 - Guoyi (louguoyi@sjtu.edu.cn)
 - Hao (hot_hao@sjtu.edu.cn)

Important notes:

- When contacting a TA for an important matter such as updating a grade cc the message to the instructor
- Add the tag [ve475] in the email subject
 e.g. Subject: [ve475] late homework
- Do not send large files (> 2 MB) by email, use Sakai Dropbox

When?

Course organisation:

- Lectures:
 - Tuesday 10:00 11:40
 - Thursday 10:00 11:40
 - Friday 8:00 9:40 (odd weeks)
- Office hours: Tuesday 15:40 17:40

Appointments outside of the office hours can be taken by email

What?

Main general goals:

- Understand the basics of cryptology and security
- Become familiar with the most common cryptographic protocols
- Be able to relate theory and practice in cryptology

What?

Main general goals:

- Understand the basics of cryptology and security
- Become familiar with the most common cryptographic protocols
- Be able to relate theory and practice in cryptology

Ultimate goal: decide on the validity and security of some given cryptographic solutions

How?

Learning strategy:

- Course side:
 - 1 Understand the basic concept of cryptography
 - 2 Know the most common problems and their solutions
 - 3 Get an overview of all the subfields of cryptography

How?

Learning strategy:

- Course side:
 - 1 Understand the basic concept of cryptography
 - 2 Know the most common problems and their solutions
 - 3 Get an overview of all the subfields of cryptography
- Personal side:
 - 1 Perform extra research
 - 2 relate known strategies to new problems
 - 3 Read/write code

Course outcomes

Detailed goals:

- Know the most common symmetric key cryptography protocols
- Know the most common public key cryptography protocols
- Understand the importance of true randomness in cryptography
- Understand the basics on hash functions in cryptography
- Know the various security levels and be able to derive their corresponding key length depending on the most efficient attacks available
- Know the basic algorithms to solve real life problems such as digital signatures, secret sharing, or traitor tracing
- Be able to perform basic programming in a cryptographic context,
 i.e. using large numbers or low level logical operations
- Get a high level overview of the various sub-fields of cryptography
- Understand the mathematics used in cryptography

Outline

1 Logistics

2 Evaluations

3 Resources

Assignments and projects

Assignments:

• Total: 10

• Content: basic concepts, coding, mathematics

Projects:

• Total: 2

• Content: expand understanding of cryptography

Grading policy

Grade weighting:

• Assignments: 30%

• Projects: 20%

• Final exam: 25%

• One midterm exam: 25%

Grading policy

Grade weighting:

• Assignments: 30%

• Projects: 20%

• Final exam: 25%

• One midterm exam: 25%

Late submission: -10% per day, not accepted after 3 days

A curve will be applied for the median to be in the range B - B+

LATEX policy

Details of the policy:

- LATEX is a programming language
- Several implementations available
- Cross-platform
- ullet 10% bonus on a mark for a homework **totally** written is LATEX

LATEX policy

Details of the policy:

- LATEX is a programming language
- Several implementations available
- Cross-platform
- 10% bonus on a mark for a homework totally written is LATEX

An assignment not written in a neat and legible fashion can be deducted up to 10% of the awarded mark

Honor code

General rules:

- Not allowed:
 - Reuse the code/work from other students
 - Reuse the code/work from the internet
 - Give too many details on how to solve an exercise

Honor code

General rules:

- Not allowed:
 - Reuse the code/work from other students
 - Reuse the code/work from the internet
 - Give too many details on how to solve an exercise
- Allowed:
 - Reuse part of the code/work from the course/textbooks under the condition of quoting its origin
 - Share ideas and understandings on the course
 - Give hints (not solutions)

Special circumstances

Contact us as early as possible when:

- Facing special circumstances (e.g. full time work, illness...)
- Feeling late in the course
- Feeling to work hard without any result

Any late request will be rejected

Outline

1 Logistics

2 Evaluations

3 Resources

Canvas

On Canvas platform:

- Course materials, assignments, projects
- Announcements and notifications
- Polls
- Challenges

References

Places where to find information:

- Introduction to Modern Cryptography (J. Katz and Y. Lindell)
- Cryptography, theory and practice (D. Stinson)
- Search the web

References

Places where to find information:

- Introduction to Modern Cryptography (J. Katz and Y. Lindell)
- Cryptography, theory and practice (D. Stinson)
- Search the web
- Do not use baidu

Key points

- Work regularly, do not wait the last minute/day
- Respect the Honor Code
- Go beyond what is taught
- Do not learn, understand
- Keep in touch with us
- Any advice/suggestions will be much appreciated

Thank you!