36 Ar(3 He, α) 1973Be26,1998VoAA

 J^{π} =0+ for ³⁶Ar ground state.

1973Be26: An 18-MeV 3 He beam was produced by the University of Pennsylvania tandem Van de Graaff accelerator. The target was pure argon gas enriched to 99.8% in 36 Ar. α particles were momentum analyzed in a multi-angle spectrograph and detected using Ilford K-1 nuclear emulsions with FWHM=35 keV. Measured $\sigma(E_{\alpha},\theta)$. Deduced levels, J, π , L-transfers, and spectroscopic factors from local zero-range DWUCK-DWBA analysis of the measured $\sigma(\theta)$. Comparisons with shell-model calculations and the mirror nucleus 35 Cl. Also see 1972MiZO.

1998VoAA: A 25-MeV 3 He at $0.5-\mu$ A intensity was provided from the FN Tandem accelerator at the Nuclear Structure Laboratory of the University of Notre Dame. The targets were made by implanting 75-keV 36 Ar into 40 μ g/cm² carbon foils from the University of Toledo ion source. The reaction products were momentum analyzed by the Notre Dame broad-range magnetic spectrograph. The particles were subsequently detected at the focal surface of the spectrograph by a position sensitive proportional gas detector backed with a plastic scintillator. Measured E_{α} . Deduced levels.

35 Ar Levels

Spectroscopic factor $C^2S=(2j+1)\times\sigma(\theta)_{exp}/\sigma(\theta)_{DWBA}/N$, where the isospin Clebsch-Gordan coefficient C^2 is 1/2 in this case, j is the total angular momentum of the transferred neutron, and the normalization factor N=16.8. 1973Be26 states that the overall normalization for the $(^3He,\alpha)$ reaction is not well determined and therefore resort to empirical means to determine N. N=15.5 deduced from shell-model calculated total S=3.52 for all four $1/2^+$ states and the 1973Be26 measured NS=54.6. N=18.1 deduced from the $^{35}Cl(^3He,d)^{36}Ar(g.s.)$ S=4.73 (1970Mo10) and the 1973Be26 measured $^{36}Ar(^3He,\alpha)^{35}Ar(g.s.)$ NS=85.4. 1973Be26 adopted the average N=16.8.

E(level)	$J^{\pi \ddagger}$	L	$C^2S^{\#}$	Comments
0	3/2+	2	2.545	
1175 2	1/2+	0	1.19	E(level): weighted average of 1179 10 (1973Be26) and 1175 2 (1998VoAA).
1747 2	5/2+	2	0.025	E(level): weighted average of 1738 10 (1973Be26) and 1747 2 (1998VoAA).
2649 2	3/2+	2	0.57	E(level): weighted average of 2637 10 (1973Be26) and 2649 2 (1998VoAA).
2983 2	5/2+	2	1.39	E(level): weighted average of 2982 10 (1973Be26) and 2983 2 (1998VoAA).
3197 2	7/2-	3	0.39	E(level): weighted average of 3193 10 (1973Be26) and 3197 2 (1998VoAA).
3882 5	1/2+	0	0.02	E(level): weighted average of 3884 10 (1973Be26) and 3881 5 (1998VoAA).
4001 <i>3</i>	$(3/2)^{-}$	1	0.065	E(level): weighted average of 4012 10 (1973Be26) and 4000 3 (1998VoAA).
4113 <i>4</i>				E(level): weighted average of 4110 10 (1973Be26) and 4113 4 (1998VoAA).
4135 4	$(3/2)^{-}$	1	0.025	E(level): weighted average of 4142 10 (1973Be26) and 4134 4 (1998VoAA).
4350 6				E(level): weighted average of 4350 10 (1973Be26) and 4350 6 (1998VoAA).
4515 5				E(level): weighted average of 4530 10 (1973Be26) and 4514 3 (1998VoAA).
4713 6	1/2+	0	0.05	E(level): weighted average of 4721 10 (1973Be26) and 4710 6 (1998VoAA).
4774 6				E(level): weighted average of 4782 10 (1973Be26) and 4771 6 (1998VoAA).
5059 11				E(level): unweighted average of 5048 10 (1973Be26) and 5069 4 (1998VoAA).
5116 2	$(3/2,5/2)^+$	2	0.25,0.145 [@]	E(level): weighted average of 5116 10 (1973Be26) and 5116 2 (1998VoAA).
5207 <i>3</i>				E(level): weighted average of 5205 10 (1973Be26) and 5207 3 (1998VoAA).
5389 8				E(level): weighted average of 5387 10 (1973Be26) and 5391 8 (1998VoAA).
5482 2	$(3/2,5/2)^+$	2	0.77,0.445 [@]	E(level): weighted average of 5484 10 (1973Be26) and 5482 2 (1998VoAA).
5594 2	$(3/2,5/2)^+$	2	1.98,1.14 [@]	E(level): weighted average of 5591 10 (1973Be26) and 5594 2 (1998VoAA).
5916 <i>3</i>	(-1)-1)		,	E(level): weighted average of 5911 10 (1973Be26) and 5916 3 (1998VoAA).
6036 <i>3</i>	$(3/2,5/2)^+$	2	1.3,0.755 [@]	E(level): weighted average of 6033 10 (1973Be26) and 6036 3 (1998VoAA).
6162 2	(0/=,0/=)	_	1.0,0.700	E(level): weighted average of 6153 10 (1973Be26) and 6162 2 (1998VoAA).
6262 10				E(level): weighted average of 6258 10 (1973Be26) and 6267 12 (1998VoAA).
6615 <i>3</i>	1/2+	0	0.36	E(level): weighted average of 6631 10 (1973Be26) and 6614 2 (1998VoAA).
	,			Probable doublet in 1973Be26.
6823 2				E(level): weighted average of 6827 10 (1973Be26) and 6823 2 (1998VoAA).
6948 2				E(level): weighted average of 6959 10 (1973Be26) and 6948 2 (1998VoAA).
7043 <i>4</i>				E(level): weighted average of 7055 10 (1973Be26) and 7042 3 (1998VoAA).
7117 [†] <i>10</i>				
7293 [†] 10				
1295 10				

36 Ar(3 He, α) 1973Be26,1998VoAA (continued)

³⁵Ar Levels (continued)

E(level)

7423 † 10

7502[†] *10*

7840[†] *10*

8019[†] *10*

 $^{^{\}dagger}$ From 1973Be26. ‡ As given in 1973Be26, also used for extracting C^2S . $^{\sharp}$ Converted from the S values in 1973Be26 with C^2 =1/2. $^{\textcircled{@}}$ 1973Be26 states that the differences for j=3/2 and 5/2 are small in the DWBA-calculated L=2 shapes. It is not possible to differentiate between the two allowed j values for L=2 transitions. Both C²S values are given for each level with two spin values. Assuming that all four levels have spins of 3/2 would lead to a summed L=2 C²S that exceeds the simple shell-model sum rule limit of 8 for combined $1d_{3/2}$ and $1d_{5/2}$ pickup, which suggests that all four of these levels probably have $5/2^+$.