Caractéristiques de l'avion:

Données d'inertie

Poids 130,000 lbs

Iyy: 1.766e+010 lb.in^2

Xcg = 0%

Données Géométriques

	Aile	Stabilisateur
Surface	$122.40 m^2$	$31 m^2$
Corde	4.19 m	2.70 m
Incidence par rapport au fuselage	0°	Variable (-12° à +5°)
Distance longitudinale entre les quarts de corde	N/A	17.59 m
Distance verticale entre les quarts de corde	N/A	1.26 m

Données Aérodynamiques

Portance:

 $\overline{C_{L\;wb}\!=0.23}+0.\underline{09}\;\alpha\;{}_{(DEG)}$

Position des volets de bord de fuite	0	1 (décollage)	2 (atterrissage)
ΔC_{Lwb}	0	0.45	1.01

Mach	0	0.2	0.6	0.7	0.75	0.80	0.85
Ratio C _{Lα}	1.0	1.0	1.05	1.19	1.25	1.34	1.34

 $a_1 = 3.08 \text{ rad}_{-1}$

 $a_2 = 1.73 \text{ rad}_{-1}$

 $C_{L\,q}$ = 8.1 rad-1

 $\varepsilon_h = 1.18 + 0.37 \alpha (DEG)$

Cii 1.10 0.57 & (BEd)			
Position des volets de bord de fuite	0	1 (décollage)	2 (atterrissage)
$\Delta arepsilon_{ m h}$	0	2.36	3.55

Traînée:

 $C_{D A/C} = 0.020 + 0.0379 CL^2$

Mach	0	0.2	0.6	0.7	0.75	0.80	0.85
ΔC_{D0}	0.0	0.0	0.0025	0.0035	0.0045	0.0055	0.013

Moment de tangage :

 $C_{mwbn} = -0.11 + 0.013 \alpha$ (DEG)

Position des volets de bord de fuite	0	1 (décollage)	2 (atterrissage)
ΔC_{m0}	0	-0.17	-0.34

Mach	0	0.2	0.6	0.7	0.75	0.80	0.85
Ratio C _{mα}	1.0	1.0	1.0	0.97	0.93	0.80	0.43

 $C_{m q} = -24.0 \text{ rad}_{-1}$

 $C_{m \dot{\alpha}} = -1.4 \text{ rad}_{-1}$

Effet aérodynamique de la poussée :

 $\frac{\overline{c_m}}{c_T} = 0.25$

Caractéristiques des moteurs:

Inclinaison des moteurs par rapport à l'axe de l'avion = 2 deg

Position longitudinale des moteurs = 9.8 pi (en avant la c.a.m.)

Position verticale des moteurs = 5 pi (en dessous de la c.a.m.)

Poussée statique (0 noeuds) = 20,000 lbf par moteur

Ratio de réduction de la poussée avec l'altitude = 1.2% par 1,000 pi

Ratio de réduction de la poussée avec la vitesse = 0% en dessous de 0.25 M, puis 5% par 0.1Mach