

TRIGONOMÉTRIE

Résumé

Trigonométrie vient du grec *trigônon*, trois angles, et de *metron*, mesurer. L'étude des angles est basée sur l'utilisation de deux fonctions emblématiques : le sinus et le cosinus.

1 Cercle trigonométrique

Définition

Dans un repère orthonormé (O; I; J), on appelle **cercle trigonométrique** le cercle $\mathscr C$ de centre O et de rayon 1, c'est-à-dire l'ensemble des points M(a; b) tels que $a^2 + b^2 = 1$.

Propriété | Enroulement de la droite des réels sur le cercle

Soit *d* la droite verticale d'équation x = 1 et $N(1; \alpha)$ un point de *d*.

En enroulant dans le sens anti-horaire la droite d autour de $\mathcal C$, on obtient une **correspondance** entre N et un unique point M du cercle.

 α est appelé **mesure en radian** de l'angle \widehat{IOM} .

Remarque En considérant le périmètre de \mathscr{C} , un tour complet autour du cercle trigonométrique correspond au réel $\alpha = 2\pi$.

Exemples Donnons des mesures en radian pour quelques angles \widehat{IOM} .

2 Cosinus et sinus d'un angle

Définitions

Soit M un point du cercle trigonométrique et x une mesure en radian de l'angle \widehat{IOM} .

On appelle **cosinus** de *x* l'abscisse de *M* et **sinus** de *x* l'ordonnée de *M*.

On note $M(\cos x; \sin x)$.

Propriétés

Soit *x* un réel.

- $ightharpoonup -1 \leqslant \cos x \leqslant 1 \text{ et } -1 \leqslant \sin x \leqslant 1$
- $ightharpoonup \cos(-x) = \cos x \text{ et } \sin(-x) = -\sin x$

Démonstration. ▶ Le premier point découle de l'équation du cercle trigonométrique

$$x^2 + y^2 = 1.$$

- ▶ Le second point vient du fait que les abscisses et ordonnées d'un point M du cercle trigonométrique sont bornées par -1 et 1 sinon on aurait $x^2 + y^2 > 1$.
- ► C'est trivial par construction de cos et sin.

Propriété | Valeurs particulières

Soit α exprimé en radian.

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Démonstration. \blacktriangleright Pour $\alpha = 0$ et $\alpha = \frac{\pi}{2}$, c'est direct en observant le cercle.

Pour $\alpha = \frac{\pi}{4}$, on constate que, par symétrie axiale, $\cos \alpha = \sin \alpha = t$:

Ainsi, $1 = \cos^2 \frac{\pi}{4} + \sin^2 \frac{\pi}{4} = t^2 + t^2 = 2t^2$ et l'unique solution à $2t^2 = 1$ sur [0;1] est $\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$.

▶ Pour $\alpha = \frac{\pi}{3}$ et $\alpha = \frac{\pi}{6}$, on traite les deux cas ensemble puisque par symétrie axiale, le cosinus de l'un est le sinus de l'autre.

On considère le triangle IOM qui semble équilatéral. On repère une symétrie axiale :

En raisonnant par symétrie et en utilisant que la somme des angles d'un triangle est égale à 180° , on obtient que IOM est équilatéral, c'est-à-dire IM=1 et $ON=\cos\frac{\pi}{3}=\frac{1}{2}$ car NM est aussi une médiane en plus d'être une hauteur.

Enfin, par Pythagore appliqué en NMI, on a $NM^2+NI^2=IM^2\Leftrightarrow\sin^2\frac{\pi}{3}+\frac{1}{4}=1$.

Ainsi,
$$\sin \frac{\pi}{3} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$
.

Remarques \blacktriangleright Ces définitions et propriétés sont parfaitement cohérentes avec l'approche trigonométrique du collège. Regardons le cas de $x \in \left]0; \frac{\pi}{2}\right[$.

OIM est rectangle en I donc [OH] est l'hypoténuse. Pour l'angle de mesure x, [OI] est le coté adjacent et [HI] le côté opposé.

On aurait donc:

$$\sin x = \frac{\text{opposé}}{\text{hypoténuse}} = \frac{HI}{OH}$$

$$\cos x = \frac{\text{adjacent}}{\text{hypoténuse}} = \frac{OI}{OH}.$$

En appliquant Thalès, on a $\frac{OH}{OM} = \frac{OI}{ON} = \frac{HI}{MN} = \alpha$ et ainsi,

$$\sin x = \frac{HI}{OH} = \frac{\alpha MN}{\alpha OM} = MN$$

$$\cos x = \frac{HI}{OH} = \frac{\alpha ON}{\alpha OM} = ON.$$

▶ Pour $x \in \left] - \frac{\pi}{2}; \frac{\pi}{2} \right[$, on pourrait aussi définir la **tangente** de x, tan x, comme l'ordonnée du point H dans la figure précédente.

C'est, heureusement, toujours en accord avec la formule $\frac{\text{oppos}\acute{e}}{\text{adjacent}}$ vue au collège.

Définitions | **Fonctions** cos **et** sin

- ▶ La fonction **cosinus**, notée cos, est définie sur \mathbb{R} par $x \mapsto \cos x$.
- ▶ La fonction **sinus**, notée sin, est définie sur \mathbb{R} par $x \mapsto \sin x$.

Les propriétés trigonométriques vues dans la section précédente permettent d'énoncer plusieurs de propriétés sur ces deux fonctions.

Propriétés

- ► La fonction cos est **paire**.
- ► La fonction sin est **impaire**.
- ightharpoonup cos et sin sont **périodiques** de période 2π .

C'est-à-dire, pour tout $x \in \mathbb{R}$, $\cos(x+2\pi) = \cos x$ et $\sin(x+2\pi) = \sin x$.

Par parité et périodicité, connaître les valeurs de $\cos x$ et $\sin x$ sur $[0; \pi]$ permet de connaître toutes leurs valeurs sur R et de construire leurs courbes représentatives.

Théorème | Fonctions dérivées

▶ La fonction cos est dérivable sur \mathbb{R} et sa dérivée est – sin.

$$\cos' = -\sin$$

ightharpoonup La fonction sin est dérivable sur \mathbb{R} et sa dérivée est cos.

$$\sin' = \cos$$

Démonstration. Hors-programme.

sin x On peut définir sur $\left]-\frac{\pi}{2}; \frac{\pi}{2}\right[$ la fonction **tangente** par tan : $x \leftarrow$ Elle est dérivable comme quotient de deux fonctions dérivables et :

$$\tan' = \frac{\sin' \cos - \cos' \sin}{\cos^2} = \frac{\cos^2 + \sin^2}{\cos^2} = \frac{1}{\cos^2} = 1 + \tan^2.$$