Atmega128 8-bit Timer/Counter0

- 주요 기능
 - Single Channel Counter
 - Clear Timer on Compare Match
 - Phase Correct Pulse Width Modulator (PWM)
 - Frequency Generator
 - o 10-bit Clock Prescaler
 - Overflow / Compare Match Interrupt Sources (TOV0, OCF0)

Figure 34. 8-bit Timer/Counter Block Diagram

- Registers
 - o Timer/Counter (TCNT0)와 Output Compare Register (OCR0)를 Register로 가지고 있다.
 - TCNT0 와 OCR0 값을 비교해 PWM 신호 생성하는 Waveform Generator에 쓰이거나 Output Compare Pin(OC0)에 주파수 출력 값으로 사용된다.

- Interrupt Request 여부를 확인할 수 있는 Timer Interrupt Flag Register
 (TIFR)와 Interrupt Request를 결정하는 Timer Interrupt Mask Register
 (TIMSK) 또한 존재한다.
- Asynchronous Status Register (ASSR)은 비동기 연산을 control 한다. (보통 T/C Oscillator)
- o compare flag (OCF0)을 통해서 compare match event가 발생했을 시 output compare interrupt request가 발생하기도 한다.
- Timer/Counter Clock Sources (clk_{T0})
 - 1) Default 상태 : MCU clock을 통해 받은 clk _{I/O} 로부터 받는다.
 - 2) ASSR Resgister의 AS0 bit을 1로 설정하면 Timer/Counter Oscillator로부터 clock source를 받는다.
- Asynchronous Operation of Timer/Counter0
 - Oscillator는 32.768 kHz watch crystal 이용하는 데 최적화 되어있기 때문에 , TOSC1 pin에 외부 clock을 적용하면 Timer/Counter0 operation에 부정확 한 결과가 나올 수 있다.
- Asynchronous Status Register ASSR

Bit	7	6	5	4	3	2	1	0	_
	-	-	-	-	AS0	TCN0UB	OCR0UB	TCR0UB	ASSR
Read/Write	R	R	R	R	R/W	R	R	R	1
Initial Value	0	0	0	0	0	0	0	0	

• Bit 3 - AS0 : Asynchronous Timer/Counter0

ASO 이 0일 때 : Timer/Counter0이 I/O clock으로부터 clock source를 받음. ASO 이 1일 때 : Timer/Counter0dl Timer Oscillator1 (TOSC1 핀)으로부터 clock source를 받음.

ASO 값이 변화할 때 TCNTO, OCRO, TCCRO 값이 손상될 수 있으므로 Timer/CounterO Interrupt 해제한 이후 해당 레지스터 값을 변경해야한다.

Bit 2 - TCN0UB: Tuner/Counter0 Update Busy
 TCNT0 값이 1일 때 TCN0UB 값이 set 된다.
 TCNT0 값은 H/W에 의해 변경이 되는데, TCNT0 값이 0이면 TCN0UB도 0이된다.

- Bit 1 OCR0UB: Output Compare Register Update Busy
 OCR0 값이 1일 때 OCR0UB 값이 set 된다.
 OCR0 값은 H/W에 의해 변경이 되는데, OCR0 값이 0이면 OCR0UB도 0이된다.
- Bit 0 TCR0UB: Tuner/Counter Control Register0 Update Busy
 TCCR0 값이 1일때 TCR0UB 가 set 된다.
 TCCR0 값은 H/W에 의해 변경이 되는데, TCCR0 값이 0이면 TCR0UB 도 0이된다.
 - ==> TCN0UB, OCR0UB, TCR0UB 상태 검사 Register
- Timer/Counter Interrupt Mask Register TIMSK

Bit	7	6	5	4	3	2	1	0	_
	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	TIMSK
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

- o Bit 1 OCIE0 : Timer/Counter0 Output Compare Match Interrupt Enable OCIE0 bit 1이면 Timer/Counter0 Compare Match Interrupt enable됨.
- o Bit 0 TOIE0 : Timer/Counter0 Overflow Interrupt Enable 마찬가지로 Bit 0 값 1되면 Overflow Interrupt Enable 됨.
- Timer/Counter Interrupt Flag Register TIFR

Bit	7	6	5	4	3	2	1	0	_
	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	OCF0	TOV0	TIFR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

- Bit 1 OCF0 : Output Compare Flag0
 OCF0 bit 값 1 되면 OCR0 데이터 값과 Timer/Counter0에서 Compare
 Match Event 진행 함.
- Bit 0 TOV0 : Timer/Counter0 Overflow Flag0
 TOV0 bit 값 1 되면 Timer/Counter0에서 Overflow Event 진행함.

• Counter Unit

Figure 35. Counter Unit Block Diagram

- TCCR0 내의 WGM01, WGM00 bit로 Waveform Generation Mode(Normal, CTC, PWM, fast PWM)를 변경할 수 있으며, 해당 모드에 따라 TOV0 bit나 OCF0 bit에 의해 CPU Interrupt가 발생한다.
- \circ TCNT0 값은 $\operatorname{clk}_{I/O}$ 와 무관하게 Data Bus 통해서 CPU에서 접근할 수 있다.