Math Review Notes—Causal Inference and Econometrics

Gregory Faletto

Contents

1	Cau	Causal Inference and Econometrics			
	1.1	Gener	alized Method of Moments (Chapter 13 of Hansen [2020])	od of Moments (Chapter 13 of Hansen [2020])	
		1.1.1	Overidentified Moment Equations (Section 13.4 of Hansen [2020])	5	
	1.2	1.2 Instrumental Variables (Section 4.8 of Cameron and Trivedi [2005])		6	
		1.2.1	Inconsistency of OLS and Examples of Endogeneity (Section 4.8.1 of Cameron and Trivedi [2005], Section 12.3 in Hansen [2020])	6	
		1.2.2	Instrumental Variable	8	
		1.2.3	Instrumental Variables Estimator	9	
		1.2.4	Two-Stage Least Squares (Section 8.3.4 of Greene [2003])	9	
		1.2.5	GMM Estimator (Section 13.6 of Hansen [2020])	10	

Last updated August 12, 2020

G. Faletto

Chapter 1

Causal Inference and Econometrics

1.1 Generalized Method of Moments (Chapter 13 of Hansen [2020])

1.1.1 Overidentified Moment Equations (Section 13.4 of Hansen [2020])

Consider the instrumental variables model (see Section 1.2.2). The estimator $\hat{\beta}$ is the solution of the moment condition

$$\overline{g}_n(\beta) = \frac{1}{n} \sum_{i=1}^n g_i(\beta) = \frac{1}{n} \sum_{i=1}^n Z_i(Y_i - X_i^{\top} \beta) = \frac{1}{n} \left(\boldsymbol{Z}^{\top} \boldsymbol{Y} - \boldsymbol{Z}^{\top} \boldsymbol{X} \boldsymbol{\beta} \right).$$

If this model is overidentified (that is, the number of instruments ℓ —and therefore moment conditions to satisfy—exceeds the number of variables p in X—and therefore the number of parameters to estimate in β), in general this estimator does not exist, so the method of moments estimator is not defined.

The idea of the generalized method of moments estimator is to make $\overline{g}_n(\beta)$ as close to zero as possible. Define the vector $\boldsymbol{\mu} := \boldsymbol{Z}^{\top} \boldsymbol{Y} \in \mathbb{R}^{\ell}$, the matrix $\boldsymbol{G} := \boldsymbol{Z}^{\top} \boldsymbol{X} \in \mathbb{R}^{\ell \times p}$, and the "error" $\boldsymbol{\eta} := \boldsymbol{\mu} - \boldsymbol{G}\boldsymbol{\beta}$. Then we can write the finite-sample analogue of the above equation as

$$egin{aligned} oldsymbol{Z}^ op oldsymbol{Y} &= oldsymbol{Z}^ op oldsymbol{X}eta + oldsymbol{\eta} \ &\iff oldsymbol{\mu} &= oldsymbol{G}eta + oldsymbol{\eta}. \end{aligned}$$

Therefore the least squares estimator (if we take all moment conditions to be equally important) is $\hat{\boldsymbol{\beta}} = \left(\boldsymbol{G}^{\top}\boldsymbol{G}\right)^{-1}\boldsymbol{G}^{\top}\boldsymbol{\mu}$. In general, we may want to weigh some moment conditions as more important than others (possibly because errors are non-homogeneous, in which case this increases efficiency). Then by analogy to weighted least squares (see Section ??), for some positive definite weight matrix \boldsymbol{W} we have the **generalized method of moments estimator**

$$\hat{\boldsymbol{\beta}} := \left(\boldsymbol{G}^{\top} \boldsymbol{W} \boldsymbol{G} \right)^{-1} \boldsymbol{G}^{\top} \boldsymbol{W} \boldsymbol{\mu} = \left(\boldsymbol{X}^{\top} \boldsymbol{Z} \boldsymbol{W} \boldsymbol{Z}^{\top} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{Z} \boldsymbol{W} \boldsymbol{Z}^{\top} \boldsymbol{Y}. \tag{1.1}$$

This minimizes the weighted sum of squares $\eta^{\top}W\eta$.

Definition 1.1.1 (Generalized Method of Moments estimator; Definition 13.1 in Hansen [2020])). For a positive definite square weight matrix W, define the GMM criterion function

$$J(\boldsymbol{\beta}) := n \overline{g}_n(\boldsymbol{\beta})^\top \boldsymbol{W} \overline{g}_n(\boldsymbol{\beta}). \tag{1.2}$$

Then the generalized method of moments estimator is

$$\hat{\boldsymbol{\beta}}_{\mathrm{gmm}} := \operatorname*{arg\,min}_{\beta} \left\{ J_n(\boldsymbol{\beta}) \right\}.$$

Note that GMM includes the method of moments estimator as a special case. This implies that all results for GMM apply to any method of moments estimators. In this case \boldsymbol{W} does not matter. In the overidentified case, the choice of \boldsymbol{W} is important.

1.2 Instrumental Variables (Section 4.8 of Cameron and Trivedi [2005])

1.2.1 Inconsistency of OLS and Examples of Endogeneity (Section 4.8.1 of Cameron and Trivedi [2005], Section 12.3 in Hansen [2020])

• Measurement error in the regressor. Suppose $\mathbb{E}[Y \mid Z] = Z^{\top}\beta$, but Z is not observed; instead, X = Z + u is observed, where u is measurement error with $\mathbb{E}(u) = 0$ and u is independent of e and Z. We have

$$Y = Z^{\mathsf{T}}\beta + e = (X - u)^{\mathsf{T}}\beta + e = X^{\mathsf{T}}\beta + \nu$$

where $\nu = e - u^{\top} \beta$. Therefore

$$Y = X^{\top} \beta + \nu$$

but

$$\mathbb{E}[X\nu] = \mathbb{E}[(Z+u)(e-u^{\top}\beta)] = -\mathbb{E}[uu^{\top}]\beta \neq 0.$$

Therefore least squares estimation is inconsistent, and X is endogenous. The projection coefficient (the quantity least squares is consistent for) is (in the case p = 1)

$$\beta^* = \beta + \frac{\mathbb{E}[X\nu]}{\mathbb{E}[X^2]} = \beta \left(1 - \frac{\mathbb{E}[u^2]}{\mathbb{E}[X^2]}\right).$$

Since $\mathbb{E}[u^2]/\mathbb{E}[X^2] < 1$, the projection coefficient shrinks the structural parameter β towards zero. This is called **measurement error bias** or **attentuation bias**.

• Simultaneous equations bias. Suppose that quantity Q and price P are determined jointly by demand

$$Q = -\beta_1 Pe_1$$

and supply

$$Q = \beta_2 P + e_2,$$

with (for simplicity) $e = (e_1, e_2)$ satisfying $\mathbb{E}[e] = 0$ and $\mathbb{E}[ee'] = I_2$. In matrix notation, we have

$$\begin{pmatrix} 1 & \beta_1 \\ 1 & -\beta_2 \end{pmatrix} \begin{pmatrix} Q \\ P \end{pmatrix} = \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}$$

$$\iff \begin{pmatrix} Q \\ P \end{pmatrix} = \begin{pmatrix} 1 & \beta_1 \\ 1 & -\beta_2 \end{pmatrix}^{-1} \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}$$

$$= \frac{1}{\beta_1 + \beta_2} \begin{pmatrix} \beta_2 & \beta_1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}$$

$$= \begin{pmatrix} (\beta_2 e_1 + \beta_1 e_2)/(\beta_1 + \beta_2) \\ (e_1 - e_2)/(\beta_1 + \beta_2) \end{pmatrix}.$$

The projection of Q on P yields $Q = \beta^* P + e^*$ with $\mathbb{E}[Pe^*] = 0$ and the coefficient defined by projection as

$$\beta^* = \mathbb{E}[P^2]^{-1}\mathbb{E}[PQ] = \frac{\beta_2 - \beta_1}{2}.$$

The projection coefficient β^* equals neither the demand slope β_1 nor the supply slope β_2 , but equals an average of the two. (The fact that it is a simple average is an artifact of the covariance structure.) Hence the OLS estimate satisfies $\hat{\beta} \stackrel{p}{\to} \beta^*$, and the limit does not equal β_1 or β_2 . The fact that the limit is neither the supply nor demand slope is called **simultaneous equations bias**. This occurs generally when Y and X are jointly determined, as in market equilibrium. Generally, when both the dependent variable and a regressor are simultaneously determined, the variables should be treated as endogenous.

• Choice variables as regressors. Suppose we are interested in outcome y, log-earnings, and we have predictor x, years of schooling. We are interested in the causal effect on y of an exogenous change in x—a change in amount of schooling that is not the choice of the individual; for example, an increase in the minimum age at which students leave school. The OLS regression model specifies

$$y = \beta x + u$$

where u is an error term. Regression of y on x yields OLS estimate $\hat{\beta}$ of β . If we assume that x is uncorrelated with u, OLS yields a consistent estimator for the true causal effect. However, u (which contains the effects of all variables besides schooling on earnings) could be correlated with x. For example, unobserved *ability* may be correlated with both earnings and increased levels of schooling. In that case, OLS will be consistent for

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \beta + \frac{\mathrm{d}u}{\mathrm{d}x} > \beta.$$

That is, the positive correlation between x and u means that the linear projection coefficient β^* is upwardly biased relative to the structural coefficient β . The OLS estimator is therefore biased and inconsistent for β , over-estimating the causal effect of education on wages.

This type of endogeneity occurs generally when Y and X are both choices made by an economic agent, even if they are made at different points in time. Generally, when both the dependent variable and a regressor are choice variables made by the same agent, the variables should be treated as endogenous.

A more formal treatment of the linear regression model with K regressors leads to the same conclusion. Under standard assumptions, a necessary condition for consistency of OLS is that $\frac{1}{n} \mathbf{X}^{\top} \mathbf{u} \stackrel{p}{\to} \mathbf{0}$; we can see this because

$$\begin{split} \hat{\boldsymbol{\beta}} &= \left(\boldsymbol{X}^{\top} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y} \\ &= \left(\frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{X} \right)^{-1} \frac{1}{n} \boldsymbol{X}^{\top} \left(\boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{u} \right) \\ &= \left(\frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{X} \right)^{-1} \frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\beta} + \left(\frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{X} \right)^{-1} \frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{u} \\ &= \boldsymbol{\beta} + \left(\frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{X} \right)^{-1} \frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{u}; \end{split}$$

we see this converges to $\boldsymbol{\beta}$ in probability if $\frac{1}{n}\boldsymbol{X}^{\top}\boldsymbol{u} \stackrel{p}{\to} \boldsymbol{0}$ (see also Section 4.7.1 of Cameron and Trivedi [2005]).

1.2.2 Instrumental Variable

The inconsistency of OLS is due to the endogeneity of x, meaning that changes in x are associated not only with changes in y bu also changes in the error u. What is needed is a method to generate only exogenous variation in x. An obvious way is through a randomized experiment, but for many economic applications such experiments are too expensive, infeasible, or unethical. One alternative approach is using an instrument.

An **instrument** z is a variable that is correlated with x but not with u or directly with y (that is, z is associated with y only through its effect on x).

Definition 1.2.1 (Instrumental variable; Definition 12.1 in Hansen [2020]). The random vector $Z \in \mathbb{R}^{\ell}$ is an instrumental variable if the following are true:

$$\mathbb{E}[Z^{\top}e] = 0,$$
 $\mathbb{E}[ZZ^{\top}] = 0,$ and $\operatorname{rank}(\mathbb{E}[ZX^{\top}]) = p.$

The first component of this definition is that the instruments are uncorrelated with the regression error. Second, we must exclude linearly dependent instruments. The third condition is often called the **relevance condition** and is essential for the identification of the model. A necessary condition for the relevance condition is $\ell \geq p$.

1.2.3 Instrumental Variables Estimator

For regression with scalar regressor x and scalar instrument z, the instrumental variables (IV) estimator is defined as

$$\hat{eta}_{IV} := \left(oldsymbol{z}^ op oldsymbol{x}
ight)^{-1} oldsymbol{z}^ op oldsymbol{y}.$$

This estimator is consistent for the slope coefficient β in the linear model if z is correlated with x and uncorrelated with u.

We will derive this estimator. Note that under our assumptions,

$$\mathbb{E}\left[\boldsymbol{y}-\boldsymbol{x}\boldsymbol{\beta}\mid\boldsymbol{z}\right]=\mathbf{0}.$$

Using this, we have

$$\mathbf{0} = \mathbb{E}\left[\boldsymbol{z}^{\top}\mathbf{0}\right] = \mathbb{E}\left[\boldsymbol{z}^{\top}\mathbb{E}\left[\boldsymbol{y} - \boldsymbol{x}\boldsymbol{\beta} \mid \boldsymbol{z}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[\boldsymbol{z}^{\top}\left(\boldsymbol{y} - \boldsymbol{x}\boldsymbol{\beta}\right) \mid \boldsymbol{z}\right]\right] = \mathbb{E}\left[\boldsymbol{z}^{\top}\left(\boldsymbol{y} - \boldsymbol{x}\boldsymbol{\beta}\right)\right].$$

If the number of instruments equals the number of regressors $(\dim(z) = p)$, the method of moments estimator is then the solution to the corresponding sample moment condition

$$egin{aligned} &rac{1}{n}\sum_{i=1}^{n}oldsymbol{z}_{i}(y_{i}-oldsymbol{x}_{i}^{ op}\hat{eta})=oldsymbol{0}\ &\Longleftrightarrow oldsymbol{z}^{ op}\left(oldsymbol{y}-oldsymbol{x}\hat{eta}
ight)=oldsymbol{0}\ &\Longleftrightarrow oldsymbol{z}^{ op}oldsymbol{y}=oldsymbol{z}^{ op}oldsymbol{x}\hat{eta}\ &\Longleftrightarrow etaeta=\left(oldsymbol{z}^{ op}oldsymbol{x}
ight)^{-1}oldsymbol{z}^{ op}oldsymbol{y}, \end{aligned}$$

as shown in (1.4).

1.2.4 Two-Stage Least Squares (Section 8.3.4 of Greene [2003])

Suppose there may be more instruments than endogenous variables. Then $Z^{\top}X$ is not invertible (it is rank p but has ℓ rows), and a new analysis is required. Since Z is uncorrelated with e, we can express an approximation \hat{X} of X in the column space of Z by projection:

$$\hat{X} = Z(Z^{\top}Z)^{-1}Z^{\top}X.$$

Then we can regress y against \hat{X} to get a consistent estimator for the endogenous (structural) coefficient:

$$\beta_{\text{IV}} = \left(\hat{X}^{\top} \hat{X}\right)^{-1} \hat{X}^{\top} y
= \left(\left[Z(Z^{\top} Z)^{-1} Z^{\top} X \right]^{\top} Z(Z^{\top} Z)^{-1} Z^{\top} X \right)^{-1} \left[Z(Z^{\top} Z)^{-1} Z^{\top} X \right]^{\top} y
= \left(X^{\top} Z(Z^{\top} Z)^{-1} Z^{\top} Z(Z^{\top} Z)^{-1} Z^{\top} X \right)^{-1} X^{\top} Z(Z^{\top} Z)^{-1} Z^{\top} y
= \left(X^{\top} Z(Z^{\top} Z)^{-1} Z^{\top} X \right)^{-1} X^{\top} Z(Z^{\top} Z)^{-1} Z^{\top} y.$$
(1.3)

Similarly, when p endogenous regressors are in X and p (an equal number) of instruments are available, we have

$$\hat{\beta}_{IV} := \left(\boldsymbol{Z}^{\top} \boldsymbol{X} \right)^{-1} \boldsymbol{Z}^{\top} \boldsymbol{y}. \tag{1.4}$$

1.2.5 GMM Estimator (Section 13.6 of Hansen [2020])

As discussed in Section 1.1.1, the moment equations for instrumental variables are

$$\boldsymbol{Z}^{\top}\boldsymbol{Y} - \boldsymbol{Z}^{\top}\boldsymbol{X}\boldsymbol{\beta} = 0.$$

so the GMM criterion (1.2) can be written as

$$J(\beta) = n \left(\boldsymbol{Z}^{\top} \boldsymbol{Y} - \boldsymbol{Z}^{\top} \boldsymbol{X} \boldsymbol{\beta} \right)^{\top} \boldsymbol{W} \left(\boldsymbol{Z}^{\top} \boldsymbol{Y} - \boldsymbol{Z}^{\top} \boldsymbol{X} \boldsymbol{\beta} \right).$$

The GMM estimator minimizes $J(\beta)$. The first order conditions are

$$\begin{split} 0 &= \frac{\partial}{\partial \beta} J(\hat{\beta}) \\ &= 2 \frac{\partial}{\partial \beta} \overline{g}_n(\hat{\beta})^\top \boldsymbol{W} \overline{g}_n(\hat{\beta}) \\ &= -2 \left(\frac{1}{n} \boldsymbol{X}^\top \boldsymbol{Z} \right) \boldsymbol{W} \left(\frac{1}{n} \boldsymbol{Z}^\top (\boldsymbol{Y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}) \right). \end{split}$$

The solution is the GMM estimator for the overidentified IV model,

$$\hat{oldsymbol{eta}}_{\mathrm{gmm}} = \left(oldsymbol{X}^ op oldsymbol{Z} oldsymbol{W} oldsymbol{Z}^ op oldsymbol{X}
ight)^{-1} oldsymbol{X}^ op oldsymbol{Z} oldsymbol{W} oldsymbol{Z}^ op oldsymbol{Y},$$

the same estimator as in (1.1). The dependence on the estimator \boldsymbol{W} is only up to scale; that is, if \boldsymbol{W} is replaced by $c\boldsymbol{W}$ for some c>0, $\hat{\boldsymbol{\beta}}_{\rm gmm}$ does not change. When \boldsymbol{W} is fixed by the user, we call $\hat{\boldsymbol{\beta}}_{\rm gmm}$ a **one-step GMM** estimator. Note that by comparison to (1.3), we see that if $\boldsymbol{W}=\left(\boldsymbol{Z}^{\top}\boldsymbol{Z}\right)^{-1}$ then we have the two stage least squares estimator. Also note that if $\ell=p$ then $\boldsymbol{X}^{\top}\boldsymbol{Z}$ is invertible (as is \boldsymbol{W} since it is positive definite by assumption) and we have

$$\hat{oldsymbol{eta}}_{\mathrm{gmm}} = \left(oldsymbol{Z}^{ op} oldsymbol{X}
ight)^{-1} oldsymbol{W}^{-1} \left(oldsymbol{X}^{ op} oldsymbol{Z}
ight)^{-1} oldsymbol{X}^{ op} oldsymbol{Z}^{ op} oldsymbol{Y}$$

$$= \left(oldsymbol{Z}^{ op} oldsymbol{X}
ight)^{-1} oldsymbol{Z}^{ op} oldsymbol{Y},$$

which matches the estimator in (1.4).

G. Faletto	CHAPTER 1.	CAUSAL INFERENCE AND ECONOMETRICS

Bibliography

- A. C. Cameron and P. K. Trivedi. *Microeconometrics: Methods and Applications*. Cambridge University Press, 2005. doi: 10.1017/CBO9780511811241.
- W. H. Greene. *Econometric Analysis*. Pearson Education, fifth edition, 2003. ISBN 0-13-066189-9. URL http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm.
- B. E. Hansen. Econometrics. August 2020.