Классная работа 11 (от 21.04).

ALG 1.

- (а) Пусть V_1 множество последовательностей $\{a_n\}_{n\in\mathbb{N}}$ вещественных чисел таких, что для любого натурального n>2 верно, что $a_n=a_{n-1}+a_{n-2}$. Докажите, что существуют ϕ_1 и ϕ_2 , что $\{a_n\}_{n\in\mathbb{N}}\in V_1$ тогда и только тогда, когда существуют такие вещественные c_1 и c_2 , что для любого n выполнено равенство $a_n=c_1\phi_1^n+c_2\phi_2^n$.
- (б) Пусть V_2 множество последовательностей $\{a_n\}_{n\in\mathbb{N}}$ вещественных чисел таких, что для любого натурального n>2 верно, что $a_n=6a_{n-1}-9a_{n-2}$. Докажите, что существует ϕ , что $\{a_n\}_{n\in\mathbb{N}}\in V_1$ тогда и только тогда, когда существуют такие вещественные c_1 и c_2 , что для любого n выполнено равенство $a_n=c_1\phi^n+c_2n\phi^n$.
- (в) Исследуйте последовательности удовлетворяющие рекуррентному соотношению: $a_n+m=d_1a_{n+m-1}+\cdots+d_ma_n$.

ALG 2. Пусть $A, B \in \mathbb{R}_{n,n}$ — некоторые матрицы, докажите, что $\mathrm{rk}(A+B) \leq \mathrm{rk}(A) + \mathrm{rk}(B)$.

 ${f ALG~3.}$ Пусть $A \in \mathbb{R}_{n,n}$ — некоторая матрица и r — ее ранг. Докажите, что

- (a) существуют B_1, \ldots, B_r такие, что $A = \sum_{i=1}^r B_i$ и $rk(B_i) = 1$;
- (б) если существуют B_1, \ldots, B_m такие, что $A = \sum_{i=1}^m B_i$ и $rk(B_i) = 1$, то $m \ge r$.

ALG 4. Исследуйте систему уравнений:

$$\begin{cases} x_1 - 2x_2 + 3x_3 - x_4 = 4 \\ x_2 - x_3 + x_4 = -3 \\ x_1 + 3x_2 - 3x_4 = 1 \\ -7x_2 + 3x_3 + x_4 = -3. \end{cases}$$