Définition de la fonction logarithme népérien

Exercice 1

- **1.** Pour quelles valeurs de x, ln(x) est-il défini?
- 2. Donner la valeur de $e^{\ln 7}$.
- 3. Donner la valeur de $ln(e^5)$ et de $ln(e^{-3})$.
- **4.** On note \mathcal{C} la courbe représentative de la fonction ln dans un repère orthonormé. Indiquer si les affirmations suivantes sont vraies ou fausses :
 - **a.** \mathcal{C} est au-dessus de l'axe des abscisses.
 - **b.** \mathcal{C} passe par le point de coordonnées (1,0).
- 1. ln(x) est défini pour x > 0.
- 2. $e^{\ln 7} = 7$.
- 3. $ln(e^5) = 5$ et $ln(e^{-3}) = -3$.
- **4. a.** Faux, C est en-dessous de l'axe des abscisses pour sur]0; 1[.
 - **b.** Vrai, ln(1) = 0. C passe par le point de coordonnées (1,0).

Exercice 2

Simplifier les expressions suivantes :

$$1. \ \frac{\ln\left(e^{-2}\right)}{\ln\left(e^{4}\right)}$$

2.
$$\ln\left(e^9\right) \times \ln\left(e^{-2}\right)$$

3.
$$\ln(e) + \ln\left(\frac{1}{e}\right)$$

1.
$$\frac{\ln(e^{-2})}{\ln(e^4)} = \frac{-2}{4} = -\frac{1}{2}$$
.

2.
$$\ln (e^9) \times \ln (e^{-2}) = 9 \times (-2) = -18.$$

3.
$$\ln(e) + \ln\left(\frac{1}{e}\right) = \ln(e^1) + \ln(e^{-1}) = 1 + (-1) = 0.$$

Parmi les courbes suivantes, quelle est la représentation graphique de la fonction ln?

La courbe rouge est la représentation graphique de la fonction ln.

Exercice 4

Sans les calculer, déterminer le signe de chacun des nombres suivants :

3.
$$\ln\left(\frac{1}{6}\right)$$

2.
$$\ln(0,1)$$

4.
$$\ln(1,9)$$

6.
$$\ln (2 \times 10^{-3})$$

1.
$$\ln(8) > 0$$
.

$$3. \ln\left(\frac{1}{6}\right) < 0.$$

5.
$$\ln(100) > 0$$
.

2.
$$\ln(0,1) < 0$$
.

4.
$$\ln(1,9) > 0$$
.

6.
$$\ln (2 \times 10^{-3}) < 0$$
.

Exercice 5

Dans chaque cas, pour quelles valeurs de x, les expressions suivantes sont-elles définies?

1.
$$\ln(x-5)$$

2.
$$\ln (6-3x)$$

3.
$$\ln(x) + \ln(4-x)$$

1.
$$\ln(x-5)$$
 est défini pour $x-5>0$ soit $x>5$.

2.
$$\ln (6-3x)$$
 est défini pour $6-3x>0$ soit $x<2$.

3.
$$\ln(x) + \ln(4-x)$$
 est défini pour $x > 0$ et $4-x > 0$ soit $0 < x < 4$.

Résoudre des équations et des inéquations

Exercice 6

1. On sait que $e^x = 5$. Que vaut x?

2. On sait que ln(x) = 0. Que vaut x?

3. On sait que ln(x) = 9. Que vaut x?

4. On sait que ln(x) = -3. Que vaut x?

1. $e^x = 5 \text{ donc } x = \ln(5)$.

2. ln(x) = 0 donc $x = e^0 = 1$.

3. $ln(x) = 9 donc x = e^9$.

4. $ln(x) = -3 \text{ donc } x = e^{-3}$.

Exercice 7

Résoudre les équations suivantes dans $]0 ; +\infty[$:

1. ln(x) = 1

2. ln(x) = 7

3. ln(x) = -2 4. ln(x) = -1

1. $ln(x) = 1 \iff x = e^1$

 $\mathcal{S}_1 = \{e\}$

 $2. \ln(x) = 7 \quad \iff \quad x = e^7$

 $\mathcal{S}_2 = \left\{ e^7 \right\}$

3. $ln(x) = -2 \iff x = e^{-2}$ $\iff x = \frac{1}{e^2}$ $S_3 = \left\{\frac{1}{e^2}\right\}$

4. $\ln(x) = -1$ \iff $x = e^{-1}$ \Leftrightarrow $x = \frac{1}{e}$

 $S_4 = \left\{ \frac{1}{e} \right\}$

Exercice 8

Résoudre les équations suivantes dans $]0; +\infty[$:

1. $e^x = 10$

2. $3e^x + 5 = 14$

3. ln(2x) + 1 = 0 4. ln(x) = ln(2x + 1)

1.
$$e^x = 10 \iff x = \ln(10)$$

$$\mathcal{S}_1 = \{ ln(10) \}$$

2.
$$3e^x + 5 = 14$$
 \iff $3e^x = 9$ \Leftrightarrow $e^x = 3$

$$\iff e = \mathbf{3}$$

$$\iff x = \ln(3)$$

$$\mathcal{S}_2 = \{ \ln(3) \}$$

3.
$$ln(2x) + 1 = 0 \iff ln(2x) = -1$$

$$\iff$$
 $2x = e^{-1}$

$$\iff 2x = e^{-1}$$

$$\iff x = \frac{1}{2e}$$

$$S_3 = \left\{ \frac{1}{2e} \right\}$$

4.
$$ln(x) = ln(2x+1)$$
 \iff $x = 2x+1$

$$\iff x = -1$$

$$\mathcal{S}_4 = \{-1\}$$

Dans chaque cas, déterminer l'ensemble des nombres réels x pour lesquels les expressions sont bien définies puis résoudre l'inéquation :

1.
$$ln(x) \leq 2$$

3.
$$ln(1-x) > 0$$

3.
$$\ln(1-x) > 0$$
 5. $\ln(x-4) \le \ln(1+2x)$ 7. $3e^x - 1 < 8$

7.
$$3e^x - 1 < 8$$

2.
$$ln(3x) \ge ln(6)$$

4.
$$\ln(3-2x) \leqslant 1$$

2.
$$\ln(3x) \geqslant \ln(6)$$
 4. $\ln(3-2x) \leqslant 1$ **6.** $\ln(x^2-9) > \ln(2)$ **8.** $e^{2x} - 3e^x \geqslant 0$

8.
$$e^{2x} - 3e^x \ge 0$$

1. ln(x) est bien défini pour x > 0.

$$\ln(x) \leqslant 2 \quad \iff \quad x \leqslant e^2$$

$$\mathcal{S}_1 = \left]0\;;\; e^2\right]$$

2. ln(3x) est bien défini pour 3x > 0 soit x > 0.

$$\ln(3x) \geqslant \ln(6) \quad \iff \quad 3x \geqslant 6$$

$$\iff \quad x \geqslant 2$$

$$\mathcal{S}_2 = [2 ; +\infty[$$

3. ln(1-x) est bien défini pour 1-x>0 soit x<1.

$$\ln(1-x) > 0 \quad \iff \quad \ln(1-x) > \ln(1)$$

$$\iff \quad 1-x > 1$$

$$\iff \quad x < 2$$

$$S_3 =]0; 1[$$

4. $\ln(3-2x)$ est bien défini pour 3-2x>0 soit $x<\frac{3}{2}$.

$$\ln(3-2x) \leqslant 1 \quad \iff \quad \ln(3-2x) \leqslant \ln(e)$$

$$\iff \quad 3-2x \leqslant e$$

$$\iff \quad x \geqslant \frac{3-e}{2}$$

$$\mathcal{S}_4 = \left\lceil \frac{3-e}{2} \; ; \; \frac{3}{2} \right\rceil$$

5. $\ln(x-4)$ est bien défini pour x-4>0 soit x>4. $\ln(1+2x)$ est bien défini pour 1+2x>0 soit $x>-\frac{1}{2}$. Les deux expressions sont donc bien définies pour x>4.

$$\ln(x-4) \leqslant \ln(1+2x) \quad \iff \quad x-4 \leqslant 1+2x$$

$$\iff \quad -4 \leqslant 1+x$$

$$\iff \quad x \geqslant -5$$

$$S_5 =]4 ; +\infty[$$

6. $\ln(x^2-9)$ est bien défini pour $x^2-9>0$ soit $x\in]-\infty;-3[\cup]3;+\infty[$.

$$\begin{split} \ln(x^2-9) > \ln(2) &\iff & x^2-9 > 2 \\ &\iff & x^2 > 11 \\ &\iff & x \in \left]-\infty; -\sqrt{11} \right[\cup \left] \sqrt{11}; +\infty \right[\end{split}$$

$$\mathcal{S}_6 = \left] -\infty; -\sqrt{11} \right[\cup \left] \sqrt{11}; +\infty \right[$$

7. $3e^x - 1$ est bien défini pour tout $x \in \mathbb{R}$.

$$3e^x - 1 < 8$$
 \iff $3e^x < 9$ \Leftrightarrow $e^x < 3$ \Leftrightarrow $x < \ln(3)$

$$S_7 =]-\infty$$
; $\ln(3)$

8. $e^{2x} - 3e^x$ est bien défini pour tout $x \in \mathbb{R}$.

$$e^{2x} - 3e^x \geqslant 0 \quad \iff \quad e^{2x} \geqslant 3e^x$$

$$\iff \quad e^x \times e^x \geqslant 3e^x$$

$$\iff \quad e^x \geqslant 3$$

$$\iff \quad x \geqslant \ln 3$$

$$\mathcal{S}_8 = [\ln 3 \; ; \; +\infty[$$

Exercice 10 ★

On veut résoudre l'équation $e^{2x} - 2e^x = 8$ (E).

1. On pose $y=e^x$. Montrer que l'équation précédente est équivalente à $y^2-2y-8=0$ (E').

- 2. Résoudre l'équation (E').
- 3. En déduire les solutions de l'équation initiale (E).

1. Soit $x \in \mathbb{R}$.

$$e^{2x} - 2e^x = 8 \quad \Longleftrightarrow \quad e^x \times e^x - 2e^x = 8$$
$$\iff \quad (e^x)^2 - 2e^x - 8 = 0$$
$$\iff \quad y^2 - 2y - 8 = 0$$

2. $y^2 - 2y - 8 = 0$ est une équation du second degré.

$$\Delta = 4 + 32 = 36$$
 et $y_1 = \frac{2+6}{2} = 4$ et $y_2 = \frac{2-6}{2} = -2$.

Les solutions de l'équation (E') sont $y_1 = 4$ et $y_2 = -2$.

3.
$$e^{2x} - 2e^x = 8$$
 \iff $e^x = 4$ ou $\underbrace{e^x = -2}_{\text{impossible}}$ \iff $x = \ln 4$

L'équation (E) a donc une seule solution : $\ln 4$.

Propriétés algébriques du logarithme népérien

Exercice 11

Exprimer les nombres suivants en fonction de ln 2.

3.
$$\ln \frac{1}{2}$$

7.
$$\ln \sqrt{2}$$

4.
$$\ln \frac{1}{8}$$

6.
$$\ln{(4e^2)}$$

8.
$$\ln \sqrt{32}$$

1.
$$\ln 4 = 2 \ln 2$$

2.
$$\ln 8 = 3 \ln 2$$

3.
$$\ln \frac{1}{2} = -\ln 2$$

4.
$$\ln \frac{1}{8} = -3 \ln 2$$

5.
$$ln(8e) = ln 8 + ln e = 3 ln 2 + 1$$

6.
$$\ln (4e^2) = \ln 4 + \ln e^2 = 2 \ln 2 + 2$$

7.
$$\ln \sqrt{2} = \frac{1}{2} \ln 2$$

8.
$$\ln \sqrt{32} = \frac{1}{2} \ln 32 = \frac{1}{2} \times 5 \ln 2 = \frac{5}{2} \ln 2$$

Exercice 12

Écrire les nombres suivants en utilisant une seule fois le symbole ln.

1.
$$A = 5 \ln 2 + \ln 8 - \ln 4$$

3.
$$C = \ln 3 - \ln 2 + \ln 5$$

2.
$$B = 2 \ln 3 + \ln 81 - \ln 9$$

4.
$$D = \ln 14 - \ln 19$$

1.
$$A = 5 \ln 2 + \ln 8 - \ln 4$$

= $5 \ln 2 + \ln 2^3 - \ln 2^2$
= $5 \ln 2 + 3 \ln 2 - 2 \ln 2$
= $6 \ln 2$

2.
$$B = 2 \ln 3 + \ln 81 - \ln 9$$

= $2 \ln 3 + \ln 3^4 - \ln 3^2$
= $2 \ln 3 + 4 \ln 3 - 2 \ln 3$
= $4 \ln 3$

3.
$$C \ln 3 - \ln 2 + \ln 5$$

= $\ln \frac{3 \times 5}{2}$
= $\ln \frac{15}{2}$

4.
$$D \ln 14 - \ln 19$$

$$= \ln \frac{14}{19}$$

- 1. Écrire le réel $\ln 7 + \ln 2$ en utilisant une seule fois le symbole $\ln 2$
- 2. En déduire les solution de l'équation $\ln x = \ln 7 + \ln 2$ dans]0; $+\infty[$.

1.
$$\ln 7 + \ln 2 = \ln(2 \times 7) = \ln 14$$
.

2.
$$\ln x = \ln 7 + \ln 2$$
 \iff $\ln x = \ln 14$ \iff $x = 14$

Donc l'équation $\ln x = \ln 7 + \ln 2$ a une seule solution dans $]0; +\infty[: 14.$

Exercice 14

On considère l'équation (E): $\ln(x) + \ln(2x) = \ln(18)$ pour x appartenant à $[0; +\infty[$.

- **1.** Montrer que l'équation (E) est équivalente à $x^2 = 9$ pour x > 0.
- 2. En déduire l'ensemble des solutions de l'équation (E).
- **1.** Soit x > 0.

$$\ln(x) + \ln(2x) = \ln(18) \quad \iff \quad \ln(x \times 2x) = \ln(18)$$

$$\iff \quad \ln(2x^2) = \ln(18)$$

$$\iff \quad 2x^2 = 18$$

$$\iff \quad x^2 = 9$$

2. Les solutions de l'équation (E) dans R sont 3 et -3. Seule la solution 3 appartient à]0; $+\infty[$ donc l'équation (E) admet une seule solution dans]0; $+\infty[:3]$.

Exercice 15 🖈

On veut résoudre l'équation $(\ln x)^2 + 4 \ln \frac{1}{x} - 5 = 0$ (E).

- **1.** On pose $y = \ln x$. Montrer que l'équation précédente est équivalente à $y^2 4y 5 = 0$ (E').
- **2.** Résoudre l'équation (E').
- 3. En déduire les solutions de l'équation initiale (E).
- **1.** Soit x > 0.

$$(\ln x)^2 + 4 \ln \frac{1}{x} - 5 = 0$$
 \iff $(\ln x)^2 + 4(-\ln x) - 5 = 0$
 \iff $y^2 + 4(-y) - 5 = 0$
 \iff $y^2 - 4y - 5 = 0$

2. $y^2 - 4y - 5 = 0$ est une équation du second degré.

$$\Delta = 16 + 20 = 36$$
 et $y_1 = \frac{4+6}{2} = 5$ et $y_2 = \frac{4-6}{2} = -1$.

Les solutions de l'équation (E') sont $y_1 = 5$ et $y_2 = -1$.

3.
$$(\ln x)^2 + 4 \ln \frac{1}{x} - 5 = 0$$
 \iff $\ln x = 5$ ou $\ln x = -1$ \iff $x = e^5$ ou $x = e^{-1}$

Les solutions de l'équation (E) sont e^5 et e^{-1} .

Exercice 16

Dans chaque cas, utiliser la fonction logarithme népérien pour résoudre les équations suivantes dans $]0 ; +\infty[$:

1.
$$x^5 = 100$$

2.
$$x^7 = 42$$

3.
$$x^6 = 1, 5$$

 $\iff \quad \ln x = \frac{1}{7} \ln 42$

 $\iff \quad x = e^{\frac{1}{7} \ln 42}$

1.
$$x^5 = 100$$
 \iff $\ln(x^5) = \ln 100$ \iff $5 \ln x = \ln 100$ \iff $\ln x = \frac{1}{5} \ln 100$ \iff $x = e^{\frac{1}{5} \ln 100}$

3.
$$x^6 = 1, 5$$
 \iff $\ln x^6 = \ln 1, 5$ \iff $6 \ln x = \ln 1, 5$ \iff $\ln x = \frac{1}{6} \ln 1, 5$ \iff $x = e^{\frac{1}{6} \ln 1, 5}$

2.
$$x^7 = 42$$
 \iff $\ln x^7 = \ln 42$ \iff $7 \ln x = \ln 42$

 (u_n) est la suite géométrique de premier terme $u_0 = 4$ et de raison 1, 5.

- **1.** Pour tout entier naturel n, exprimer u_n en fonction de n.
- **2.** Calculer la limite de la suite (u_n) .
- 3. Déterminer par le calcul le rang n à partir duquel $u_n > 1000$.

1.
$$u_n = u_0 \times q^n = 4 \times 1, 5^n$$
.

2.
$$4 > 0$$
 et $q = 1, 5 > 1$ donc $\lim_{n \to +\infty} u_n = +\infty$.

3.
$$u_n > 1000$$
 \iff $4 \times 1, 5^n > 1000$ \Leftrightarrow $1, 5^n > 250$ \Leftrightarrow $\ln 1, 5^n > \ln 250$ \Leftrightarrow $n \ln 1, 5 > \ln 250$ \Leftrightarrow $n > \frac{\ln 250}{\ln 1, 5}$ \Leftrightarrow $n \ge 14$

 (u_n) dépasse 1000 à partir du rang 14.

Exercice 18

 (v_n) est la suite géométrique de premier terme $v_0 = 100$ et de raison 0, 86.

- **1.** Pour tout entier naturel n, exprimer v_n en fonction de n.
- **2.** Calculer la limite de la suite (v_n) .
- 3. Déterminer par le calcul le rang n à partir duquel $v_n < 10^{-3}$.

1.
$$v_n = v_0 \times q^n = 100 \times 0,86^n$$
.

$$2. \ q=0,86<1 \ \text{donc} \quad \lim_{n\to +\infty} v_n=0.$$

$$\begin{array}{lll} \textbf{3.} \ v_n < 10^{-3} & \iff & 100 \times 0, 86^n < 10^{-3} \\ & \iff & 0, 86^n < 10^{-5} \\ & \iff & \ln 0, 86^n < \ln 10^{-5} \\ & \iff & n \ln 0, 86 < \ln 10^{-5} \\ & \iff & n > \frac{\ln 10^{-5}}{\ln 0, 86} & \operatorname{car} \ln 0, 86 < 0. \\ & \iff & n \geqslant 77 \end{array}$$

 (v_n) devient inférieure à 10^{-3} à partir du rang 77.

Une infographiste simule la croissance d'un bambou d'une taille initiale de 1 m.

Pour tout entier naturel $n \ge 1$, on modélise la taille, en cm, qu'aurait le bambou à la fin du n-ième mois par la suite (u_n) définie par $u_n = 500 \times 1, 5^n - 400$.

- 1. Calculer la taille, en cm, du bambou à la fin du 3^e mois. Arrondir au dixième.
- **2.** Résoudre dans **N** l'inéquation $u_n > 300$. Interpréter le résultat dans le contexte de l'exercice.
- 3. Déterminer, en résolvant une inéquation, le nombre de mois nécessaires pour que le bambou dépasse 10 m.

1.
$$u_3 = 500 \times 1, 5^3 - 400$$

= $500 \times 3,375 - 400$
= $1687, 5 - 400$
= $1287, 5$ cm

La taille du bambou à la fin du 3^e mois est de 1287,5 cm.

2.
$$u_n > 300 \iff 500 \times 1, 5^n - 400 > 300$$

$$\iff 500 \times 1, 5^n > 700$$

$$\iff 1, 5^n > \frac{700}{500}$$

$$\iff 1, 5^n > 1, 4$$

$$\iff \ln 1, 5^n > \ln 1, 4$$

$$\iff n \ln 1, 5 > \ln 1, 4$$

$$\iff n > \frac{\ln 1, 4}{\ln 1, 5}$$

$$\iff n \ge 1$$

Le bambou mesure plus de 3 m à partir du 1^{er} mois.

3.
$$u_n > 1000 \iff 500 \times 1, 5^n - 400 > 1000$$

 $\iff 500 \times 1, 5^n > 1400$
 $\iff 1, 5^n > \frac{1400}{500}$
 $\iff 1, 5^n > 2, 8$
 $\iff \ln 1, 5^n > \ln 2, 8$
 $\iff n \ln 1, 5 > \ln 2, 8$
 $\iff n > \frac{\ln 2, 8}{\ln 1, 5}$
 $\iff n \geqslant 3$

Le bambou mesure plus de 10 m à partir du 3^e mois.

Exercice 20

Le carbone 14 (C_{14}) présent dans l'organisme d'un être vivant se désintègre au fil des années après sa mort. Le nombre d'années N nécessaires à l'observation de la proportion p de C_{14} restante dans l'organisme peut être modélisé par : $N=-8310\ln p$.

- 1. Le squelette d'un homme de Cro-Magnon contient 9 % de C₁₄ par rapport à un squelette vivant. Combien d'années se sont écoulées depuis sa mort?
- **2.** Lucy est la plus ancienne hominidé connue. Les paléontologues estiment à au moins 3,5 millions d'années son âge. A-t-on pu dater les fragments de son squelette à l'aide du carbone 14? Justifier.

3. Découverte en 1991 en Italie, la momie d'Ötzi contenait 53,3 % (à 1% près) de C₁₄ par rapport à un homme vivant. Donner un encadrement de l'âge d'Ötzi.

1.
$$N=-8310 \ln p$$
 \iff $N=-8310 \ln 0,09$ \iff $N\approx 20\ 010$

Le squelette de l'homme de Cro-Magnon date d'environ 20 000 ans.

2.
$$N=-8310\ln p$$
 \iff $3,5\times 10^6=-8310\ln p$ \iff $\ln p=-\frac{3,5\times 10^6}{8310}$ \iff $p=e^{-\frac{3,5\times 10^6}{8310}}$ \Leftrightarrow $p\approx 10^{-183}$

La proportion de C_{14} restante dans le squelette est de l'ordre de 10^{-183} , ce qui est extrèmement faible. On ne peut donc pas dater les fragments de son squelette à l'aide du carbone 14.

3.
$$0,523 \iff $\ln 0,523 < \ln p < \ln 0,543$ \Leftrightarrow $-8310 \times \ln 0,523 > -8310 \ln p > -8310 \times \ln 0,543$ \Leftrightarrow $5387 > N > 5074$$$

L'âge d'Ötzi est compris entre 5074 et 5387 ans.

Exercice 21

Dans une réserve marine, on a recencé 3000 cétacés au 1^{er} janvier 2020. Les responsables sont inquiets car le classement de la zone en « réserve marine » ne sera pas reconduit si le nombre de cétacés de cette réserve devient inférieur à 2000.

Une étude permet d'élaborer un nodèle selon lequel :

- entre le 1^{er} juin et le 31 octobre, 80 cétacés arrivent dans la réserve marine;
- entre le 1^{er} novembre et le 31 mai, la réserve subit une baisse de 5 % de son effectif par rapport à celui du 31 octobre.

On modélise le nombre de cétacés dans la réserve marine au 1^{er} juin de l'année 2020 +n par le terme u_n . Ainsi $u_0=3000$.

- **1.** Justifier que $u_1 = 2926$.
- 2. Justifier que pour tout $n \in \mathbb{N}$, $u_{n+1} = 0.95u_n + 76$.
- 3. Démontrer que pour tout $n \in \mathbb{N}$, $u_n = 1480 \times 0,95^n + 1520$.
- **4.** Déterminer la limite de la suite (u_n) .
- 5. La réserve marine fermera-elle? Si oui, en quelle année? Répondre à l'aide d'un calcul.
- 1. $u_1 = 0.95 \times (3000 + 80) = 2926$.
- **2.** Soit $n \in \mathbb{N}$.

$$u_{n+1} = 0,95 \times (u_n + 80)$$

= 0,95 \times u_n + 0,95 \times 80
= 0,95 \times u_n + 76

3. On a pour tout $n \in \mathbb{N}$, $u_{n+1} = 0.95u_n + 76$ et $u_0 = 3000$. (u_n) est une suite arithmétique de premier terme $u_0 = 3000$ et de raison q = 0.95.

Suite constante vérifiant la relation de récurrence :

Soit
$$x \in \mathbb{R}$$
 $x = 0,95x + 76 \iff x - 0,95x = 76$ $\iff 0,05x = 76$ $\iff x = 1520.$

La suite constante (c_n) égale à 1520 vérifie donc la relation $c_{n+1}=0,95c_n+76$ pour tout $n\in\mathbb{N}$.

Suite géométrique auxiliaire :

On définit la suite (v_n) sur **N** par $v_n = t_n - c_n$. Montrons que (v_n) est une suite géométrique :

Soit
$$n \in \mathbb{N}$$

$$v_{n+1} = u_{n+1} - c_{n+1}$$

$$= 0,95u_n + 76 - (0,95c_n + 76)$$

$$= 0,95u_n + 76 - 0,95c_n - 76$$

$$= 0,95(u_n - c_n)$$

$$= 0,95v_n.$$

 (v_n) est donc une suite géométrique de raison q=0,95 et de premier terme $v_0=u_0-c_0=3000-1520=1480$.

On a donc pour tout $n \in \mathbb{N}$, $v_n = v_0 \times 0$, $95^n = 1480 \times 0$, 95^n .

Terme général de la suite (u_n) :

On a donc pour tout $n \in \mathbb{N}$, $u_n = c_n + v_n = 1520 + 1480 \times 0,95^n$.

4.
$$0 < 0,95 < 1 \text{ donc } \lim_{n \to +\infty} u_n = 1520.$$

5.
$$u_n < 2000$$
 \iff $1520 + 1480 \times 0,95^n < 2000$ \iff $1480 \times 0,95^n < 480$ \iff $0,95^n < \frac{480}{1480}$ \iff $0,95^n < \frac{12}{37}$ \iff $\ln 0,95^n < \ln \frac{12}{37}$ \iff $n \ln 0,95 < \ln \frac{12}{37}$ \iff $n > \frac{\ln \frac{12}{37}}{\ln 0,95}$ \iff $n > 22$

La réserve marine fermera donc à partir de l'année 2042.

Exercice 22

Une agence bancaire propose un placement à tous ses clients. Ce placement a rapporté 30 % d'intérêts sur les 5 dernières années.

On note t % le taux d'intérêt annuel moyen de ce placement sur ces 5 dernières années.

- **1.** Justifier que le taux d'intérêt annuel moyen t est tel que $1,3=\left(1+\frac{t}{100}\right)^5$.
- 2. Résoudre l'équation précédente en utilisant la fonction logarithme népérien. Donner la valeur exacte, puis l'arrondi au centième.
- 3. Interpréter le résultat obtenu dans le contexte de la situation.
- 1. Soit t le taux d'intérêt annuel moyen de ce placement sur ces 5 dernières années. Chaque année, le montant du placement est multiplié par $1+\frac{t}{100}$.

Après 5 ans, le montant du placement est multiplié par $\left(1 + \frac{t}{100}\right)^5$.

On a donc
$$\left(1 + \frac{t}{100}\right)^5 = 1 + \frac{30}{100} = 1, 3.$$

2.
$$\left(1 + \frac{t}{100}\right)^5 = 1,3 \quad \iff \quad \ln\left(\left(1 + \frac{t}{100}\right)^5\right) = \ln 1,3$$

$$\iff \quad 5\ln\left(1 + \frac{t}{100}\right) = \ln 1,3$$

$$\iff \quad \ln\left(1 + \frac{t}{100}\right) = \frac{\ln 1,3}{5}$$

$$\iff \quad 1 + \frac{t}{100} = e^{\frac{\ln 1,3}{5}}$$

$$\iff \quad \frac{t}{100} = e^{\frac{\ln 1,3}{5}} - 1$$

$$\iff t = 100 \times \left(e^{\frac{\ln 1}{3}} - 1\right)$$

$$\iff t \approx 5.39$$

3. Le taux d'intérêt annuel moyen de ce placement sur ces 5 dernières années est de 5,39%. Ce placement a donc rapporté en moyenne 5,39% d'intérêts par an sur les 5 dernières années.

Étude de la fonction logarithme népérien

Exercice 23

Dans chaque cas, donner la fonction dérivée de la fonction f définie sur]0; $+\infty[$.

1.
$$f(x) = 5 \ln(x)$$

3.
$$f(x) = x \ln(x) - 1$$

5.
$$f(x) = \ln(x^2)$$

2.
$$f(x) = 3 - 2\ln(x)$$

4.
$$f(x) = \ln(2x)$$

6.
$$f(x) = \ln(3x^2 + 1)$$

1.
$$f'(x) = 5 \times \frac{1}{x}$$
$$= \frac{5}{x}$$

3.
$$f'(x) = \ln(x) + x \times \frac{1}{x}$$
 5. $f'(x) = \frac{2x}{x^2}$
$$= \ln(x) + 1$$

$$= \frac{2}{x}$$

5.
$$f'(x) = \frac{2x}{x^2}$$

= $\frac{2}{x}$

2.
$$f'(x) = -2 \times \frac{1}{x}$$

= $-\frac{2}{x}$

4.
$$f'(x) = \frac{2}{2x}$$

= $\frac{1}{x}$

4.
$$f'(x) = \frac{2}{2x}$$

$$= \frac{1}{x}$$
6. $f'(x) = \frac{3 \times 2x}{3x^2 + 1}$

$$= \frac{6x}{3x^2 + 1}$$

Exercice 24

Soit f la fonction définie sur]0; $+\infty[$ par $f(x) = \ln x + x$.

- 1. Déterminer les limites de f aux bornes de son ensemble de définition.
- **2.** Calculer la dérivée de f et dresser le tableau de variation de f sur]0; $+\infty[$.

1.
$$\lim_{x\to 0}\ln x=-\infty$$
 et $\lim_{x\to 0}x=0$. D'où $\lim_{x\to 0}f(x)=-\infty$.

$$\lim_{x\to +\infty} \ln x = +\infty \quad \text{ et } \quad \lim_{x\to +\infty} x = +\infty.$$
 D'où
$$\lim_{x\to +\infty} f(x) = +\infty.$$

2.
$$f'(x) = \frac{1}{x} + 1$$

= $\frac{x+1}{x} > 0$

On a donc le tableau de variations suivant :

x	0	$+\infty$
f'(x)	+	
f	$-\infty$	+∞

Soit f la fonction définie sur]0; $+\infty[$ par $f(x)=-\frac{1}{x}+\ln x.$

- 1. Déterminer les limites de f aux bornes de son ensemble de définition.
- 2. Calculer la dérivée de f, en déduire son sens de variation sur]0; $+\infty[$ et son signe.
- 1. $\lim_{x\to 0} -\frac{1}{x} = -\infty \quad \text{et} \quad \lim_{x\to 0} \ln x = -\infty.$ $\text{D'où } \lim_{x\to 0} f(x) = -\infty.$ $\lim_{x\to +\infty} -\frac{1}{x} = 0 \quad \text{et} \quad \lim_{x\to +\infty} \ln x = +\infty.$ $\text{D'où } \lim_{x\to +\infty} f(x) = +\infty.$
- 2. $f'(x) = \frac{1}{x^2} + \frac{1}{x}$ = $\frac{x+1}{x^2} > 0$

On a donc le tableau de variations suivant :

Exercice 26

Soit f la fonction définie sur]0; 14[par $f(x)=2-\ln\left(\frac{x}{2}\right)$.

La courbe représentative \mathcal{C}_f de la fonction f est donnée dans le repère orthonormé ci-dessous.

À tout point M appartenant à \mathcal{C}_f , on associe le point P projeté orthogonal de M sur l'axe des abscisses et le point Q projeté orthogonal de M sur l'axe des ordonnées.

- **1.** Montrer que la fonction $g: x \mapsto 2x x \ln\left(\frac{x}{2}\right)$ modélise l'aire du rectangle OPMQ.
- 2. Dresser le tableau de variation de g sur $]0\ ;\ 14[.$
- 3. En déduire les coordonnées du point M pour lesquelles l'aire du rectangle OPMQ est maximale. On admettra que $\lim_{x\to 0^+}g(x)=0$.

Un peu d'histoire

Portrait du mathématicien Luca Pacioli expliquant le théorème d'Euclide (oeuvre attribuée à Jacopo de Barbari, 1495).

pour le doubler. t

Partie A : la règle des 72

t désigne un nombre réel strictement positif et n est un nombre entier naturel non nul.

1. Utiliser la règle de Pacioli pour estimer le nombre n d'années nécessaires pour doubler un capital lorsqu'il est placé à un taux d'intérêts composés de :

$$t = 1 \%$$
 $t = 5 \%$ $t = 10 \%$

- **2.** Au bout de n années de placement au taux d'intérêt de t %, le capital est multiplié par $\left(1 + \frac{t}{100}\right)^n$.
 - a. Dans chaque cas, déterminer, en utilisant la fonction ln, le plus petit nombre entier naturel n tel que $\left(1+\frac{t}{100}\right)^n\geqslant 2$.

$$\cdot$$
 $t=1 \%$ \cdot $t=5 \%$ \cdot $t=10 \%$

b. Comparer les résultats obtenus dans les questions 1 et 2.

Partie B: une autre estimation

- **1.** f et g sont les fonctions définies sur l'intervalle $[0; +\infty[$ par $f(x) = \ln(1+x) x + \frac{x^2}{2}$ et $g(x) = \ln(1+x) x$.
 - a. Étudier les variations de f et g sur $[0 ; +\infty[$.
 - **b.** En déduire que pour tout réel x de l'intervalle $[0; +\infty[, x-\frac{x^2}{2} \le \ln(1+x) \le x]$
- 2. Pour des petites valeurs de x, $\frac{x^2}{2}$ étant très petit, on choisit d'utiliser l'approximation $\ln(1+x) \approx x$.
 - a. Justifier que le nombre de périodes nécessaires au doublement d'un capital placé à un taux d'intérêt annuel de t % est proche de $\frac{70}{t}$ (pour des petites valeurs de t).

16

b. Que devient cette règle si l'on veut tripler le capital?