In the Claims

1	10. (Previously Amended) An apparatus for selectively forming a sincide
2	comprising:
3	a semiconductor substrate having a surface, a portion of said surface having
4	silicon thereon and a portion of said surface having an insulator thereon, said
5	surface further having an oxide thereover;
6	a chamber;
7	at least one workpiece holder within said chamber adapted to hold said
8	substrate;
9	at least one pump adapted to evacuate said chamber to maintain a continuous
0	vacuum in said chamber;
1	at least one line operatively connected between said at least one pump and said
2	chamber for evacuating said chamber;
3	at least one input line adapted to provide a chemical agent into said chamber
14	while in said continuous vacuum, said chemical agent adapted to remove
15	said oxide from said surface of said substrate;
16	at least one output line adapted to remove said cleaning agent and said removed
1 <i>7</i>	oxide from said chamber;

18	a reactor in said chamber, said reactor adapted to deposit a metal onto said
19	silicon and insulator portions on said substrate surface while in said
20	continuous vacuum;
21	a heating element, said heating element adapted to heat said substrate to an
22	elevated temperature to form a silicide on said substrate surface over the
23	silicon portion by reaction with the metal deposited thereon, while the metal
24	remains unreacted over the insulator portion; and
25	an etchant to remove unreacted metal from the substrate surface while leaving
26	said silicide over portions of said semiconductor substrate.
1	
1	12. (Previously Amended) The apparatus of claim 10 wherein said chamber
2	comprises a plurality of interior chambers, at least one interior chamber adapted to
3	remove said oxide from said surface of said substrate while under said continuous
4	vacuum, and at least one interior chamber adapted to deposit said metal on said
5	surface of said substrate while under said continuous vacuum.
1	13. (Original) The apparatus of claim 12 further comprising at least one interior
2	chamber adapted to heat said substrate.
1	14 (Proviously Amended) The apparatus of claim 12 wherein said apparatus is

adapted to transfer said substrate between said interior chamber adapted to remove

2 .

- 3 said oxide from said surface of said substrate and said interior chamber adapted to
- deposit said metal on said surface of said substrate without breaking said continuous
- 5 vacuum.
- 1 15. (Original) The apparatus of claim 14 wherein said substrate is a silicon
- 2 substrate.
- 1 16. (Original) The apparatus of claim 15 wherein said apparatus is adapted to
- 2 remove said oxide from said surface of said substrate using a nitrogen triflouride
- 3 cleaning process.
- 1 17. (Original) The apparatus of claim 16 wherein said metal is cobalt.
- 1 18. (Original) The apparatus of claim 17 wherein said interior chamber adapted
- 2 to deposit said metal on said surface of said substrate is a vapor sputtering device.
- 1 19. (Original) The apparatus of claim 18 wherein said apparatus is further
- adapted to transfer said substrate to said heating chamber from said metal
- 3 deposition chamber.
- 1 20. (Original) The apparatus of claim 19 wherein said silicide is cobalt silicide.

1	21. (Previously Added) A system for selectively forming a silicide on a surface of
2	a semiconductor substrate comprising:
3	said semiconductor substrate having said surface, a portion of said surface
4	having silicon thereon and a portion of said surface having an insulator
5	thereon, said surface further having an oxide thereover;
6	a chamber;
7	at least one pump adapted to evacuate said chamber to maintain a continuous
8	vacuum in said chamber;
9	a chemical agent input into said chamber adapted to remove said oxide from
10	said surface of said substrate while said chamber is under said continuous
11	vacuum;
12	a reactor in said chamber, said reactor adapted to deposit a metal onto said
13	silicon and insulator portions on said substrate surface while under said
14	continuous vacuum;
15	a heating element, said heating element adapted to heat said substrate to an
16	elevated temperature to form a silicide on said substrate surface over the
17	silicon portion by reaction with the metal deposited thereon, while the metal
18	remains unreacted over the insulator portion; and
19	an etchant to remove unreacted metal from the substrate surface while leaving
20	said silicide over portions of said semiconductor substrate.

- 1 22. (Previously Added) The system of claim 21 wherein said chamber comprises
- a plurality of interior chambers, at least one interior chamber adapted to remove
- 3 said oxide from said surface of said substrate while under said continuous vacuum,
- 4 and at least one interior chamber adapted to deposit said metal on said surface of
- 5 said substrate while under said continuous vacuum.
- 1 23. (Previously Added) The system of claim 22 wherein said apparatus is
- adapted to transfer said substrate between said interior chamber adapted to remove
- 3 said oxide from said surface of said substrate and said interior chamber adapted to
- deposit said metal on said surface of said substrate without breaking said continuous
- 5 vacuum.
- 1 24. (Previously Added) The system of claim 21 wherein said metal is cobalt.
- 1 25. (Previously Added) The system of claim 21 wherein said chemical agent is
- 2 selected from the group consisting of nitrogen triflouride and argon.
- 1 26. (Previously Added) The system of claim 21 wherein said reactor for
- depositing said metal on said surface of said substrate is a vapor sputtering device.

- 1 27. (Previously Added) The system of claim 21 wherein said heating element
- 2 resides within said chamber.
- 1 28. (Previously Added) The system of claim 21 wherein said heating element is
- 2 external thereto said chamber.
- 1 29. (Previously Added) The system of claim 21 wherein said unreacted cobalt is
- 2 removed using an etchant comprising hydrogen peroxide and sulfuric acid.
- 1 30. (Previously Added) An apparatus in combination with a semiconductor
- 2 substrate for selectively forming a silicide thereon a surface of said semiconductor
- 3 substrate comprising:
- a portion of said semiconductor substrate surface having silicon thereon and a
- 5 portion of said surface having an insulator thereon, said surface further
- 6 having an oxide thereover;
- 7 a chamber;
- at least one workpiece holder within said chamber adapted to hold said
- 9 semiconductor substrate;
- at least one pump adapted to evacuate said chamber to maintain a continuous
- 11 vacuum in said chamber;

12	at least one line operatively connected between salu at least one pump and salu
13	chamber for evacuating said chamber;
14	at least one input line adapted to provide a chemical agent into said chamber
15	while in said continuous vacuum, said chemical agent adapted to remove
16	said oxide from said surface of said substrate;
1 <i>7</i>	at least one output line adapted to remove said cleaning agent and said removed
18	oxide from said chamber;
19	a reactor in said chamber, said reactor adapted to deposit a metal onto said
20	silicon and insulator portions on said substrate surface while in said
21	continuous vacuum;
22	a heating element, said heating element adapted to heat said substrate to an
23	elevated temperature to form a silicide on said substrate surface over the
24	silicon portion by reaction with the metal deposited thereon, while the metal
25	remains unreacted over the insulator portion; and
26	an etchant to remove unreacted metal from the substrate surface while leaving
27	said silicide over portions of said semiconductor substrate.