This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)5年医特许厅(JP)

灬公開特許公報 (A)

(11) 特拉出籍公路会員

特開平8-306853

(43)公然日 平成8年(1996) 11月22日

(51) Int. C1. HOIL 22/50 21/60 22/12 23/28	政制記号 111	厅内整理番号	F 1 * NUIL 23/50 21/60 23/28 23/12	311 C	证别表示医所
			电子记录 东	技术 技术項の款17 01	L (全20页)
(21)出班委号	特別平7-110	3 8 0	(71)出票人	0 0 0 0 0 5 2 2 3	
(22) 出 五 6	平成7年(199	5) 5月9日		富士通牒式会社 神孫川県川崎市中原区上小 1号	田中4丁81章
			(72) 完明者	祥田 静大 神奈川県川崎市中原区上小	⊞中1015 €
			(72) 発明者	神奈川県川崎市中原区上小	田中1015€
				地 宫士通锋弦会让内 弁理士 伊克 忠彦	
	-				最終質に抗く

(54) 【兒明の名称】 半導体装置及びその製造方法及びリードフレームの製造方法

(57) (星約)

(目的) 本見明に半退体チップ及びリードを製作制止した機成を有した半退体製度及びその製造方法及び並び半退体装度に用いるリードフレームの製造方法に関し、半退体チップの機能性を維持しつつ外部電極第子の医球化、製品コストの低級及び生産効率の向上を図ることを目的とする。

【成成】第1のピッチで電優パッド6が形成された半年体チップ2と、電優パッド6とウイヤ8を介して電気的に技術されるリード3と、半線体チップ2を対止する対比所能はとを具備する半線体建度において、前記リード3に外記様環境子となる突起9を上記第1のピッチと異なる第2のピッチで形成すると共に、前記対止関係4が登低パッド6とリード3との間に引き回されたワイヤ8を対止し、かつ前記交起9を対出させるよう配位したものである。

(特許は求の範囲)

【鉄束項1】 第1のピッチにて形成された党長パッド が形成された半導体チップと、

前記章をバッドと記載を介して電気的に推放されるリー

前記半退体チップを封止する封止能離とを具備する単調 **作装置において、**

飛記リードに外抵住院端子となる突起を、上記集1のビ ッテと異なる第2のピッチで形成すると共に、

を固された配珠を封止し、かつ前記交起を貸出させるよ う記録されることを特徴とする半導体数値。

【基本項2】 第1のピッチにて形成された電圧パッド が形成された半導体チップと、

和記章様パッドと配象を介して電気的に住席されるリー

前記半導体チップを封止する封止出館とを具備する半導 体装置において、

前記リードに外部接続端子となる交配を上記第1のピッ チと異なる第2のピッチで形成すると共に、

南記半導体チップに形成された前記電極パッドの配益面 を基準とし、収配配政策における前記針止機構の序さ が、前足配改面から前記突起までの高さ寸圧以下で、か つ前記配数面から和記配数までの高さ寸低以上となるよ う構成したことを特徴とする半導体装置。

【請求項3】 請求項1または2記載の半導体装置にお ١T.

D記半基体チップと前記り一ドとモボリイミド頭を接着 『として役合したことを特徴とする単繊体装置。

□装置において.

1足突起を前記リードと一体的に形成したことを特定と "る牛婆体装法。

「薪水項5」 放水項1乃至4のいずれかに記収の半さ ・基置において、

記記載としてワイヤモ用いたことを特殊とする ずば体

技术項6) 対求項1乃至5のいずれかに記載の半退 装置において...

記典起にバンブを形成したことを特徴とする半導体学 (0)

黒木塔?】 外部接技械子となる部位に突起が形成さ てなるリードを形成するリード形成工程と、

記り一ド 成いは半導体チップの少なくとも一方にポリ ミド瓜を皮致し、痰足ポリイミド属を介在させて収収 一ドと胸記半選体チップを原定性圧力で体圧しかつ乐 異国に広撃することにより、 昨夜ボリイミド原をはな 化丁醇 萨拉克 化人物抗生素过去的 化人名格雷尔人姓

一ドとを配辞を引き回し技統することにより、 約記章権 パッドと前記り一ドとを戛気的に技術する投稿工程と、 前記記舞及び前記申導体チップの历史紀四歳いは全部を 封止すると共に、前記突呂の少なくとも草面を貫出する よう耐止製施を配設する財産制度配益工権とを具備する ことを特殊とする半導体装置の製造方法。

2

【就求項8】 請求項7記載の半退休装置の製造方法に おいて、

前記は合工程でポリイミド質により向記リードと向記率 取記針止権限が応記を極バッドと前記リードとの間に引 10 媒体チップを推荐する数。約記ポリイミド駅として展面 に熱可型性を有する推撃剤を記載したものを用いたこと を特徴とする半導体基置の製造方法。

【証求項9】 ・ 放求項7または8記載の半導体装置の型 進方圧において、

前記技能工程で、前記を極パッドと前記リードとモダイ レクトリードボンディング注により電気的に接続したこ とも特徴とする半導体製造の製造方法。

【៨末項10】 インナーリード部とアウターリード部 とも有した複数のリードが形成されたリードフレームに 20 BUT.

前記アウターリード郡のリードピッチに対して前記イン ナーリード起のリードピッチモ小さく設定すると共に、 **和記アウターリード部に一体的に突起を形成したことを** 特徴とするリードフレーム。

【技术項11】 は木項10記載のリードフレームにお いて.

和記アウターリード部のリードピッチ (P...) と前記 突尼の形成位置における前記リードの序を(W)とが略 等しく(P... ≒W)、かつ前記インナーリード部のリ 【放求項4】 「技术項1万至3のいずれかに記載の半導 10 ードビッチ(P...)が応記フワターリード部のリードビ ッチ (P...) の基本分のピッチ (P...=P... /2) であることを特徴とするリードフレーム。

> 【は水項1.2】 は水項1.0または1.1記載のリードラ レームの製造方法において、

> 基材に和記交起の形成位置にマスクを記載した上で、和 記載材に対してハーフエッチングを行う第1のエッチン グエ独と、

刷記第1のエッチング工程の終了後、前記リード形成位 産にマスクモ配登した上で、前記番材に対してエッテン グモ行いリードモ形成する第2のエッチング工程とモ具 催することを特徴とするリードフレームの製造方法。

【雑求項13】 超求項10または11記載のリードフ レームの製造方法において、

重ね合わせることにより前記交配の所定をさせたとなる。 よう低度が退定された第1の基材と第2の基材を用き L.

前記第1の差状に、圧面視した際に前記り上りの形式と 对关于女性上述对力上的数数数字法 (三) 化分类 (数字 屋するよう交配パターンを形成する交配パターン形成工 役と、

前記リードパターンが形成された前記第1の基材と、前記突起パターンが形成された前記第2の基材を貫わ合わせ、前記突起の形成位置において前記リードパターンと前記突起パターンが接着されるよう前記第1の基材と前記第2の基材とを接合する接合工程と、

前記第1の基材及び第2の番材の不要部分を除立する終 差工程とも具備することを特殊とするリードフレームの 製造方法。

【ロス項14】 は末項10または11尼粒のリードフレームの製造方法において、

る村に、平面技した底に向記リードの形状となるようリードパターンを形成するリードパターン形成工程と、 和記リードパターン形成工程法、形成されたリードパターンの所定位置に和記典起を形成する突起形成工程とを 共振することを特徴とするリードフレームの製造方法。 【蘇求項15】 は求項14 応収のリードフレームの製造方法において、

前紀突起形成工程は、前記リードパターンの所定位置に 10 パンプを単数或いは推数限み重ねることにより前紀交起 を形成したことを特徴とするリードフレームの製造方 注。

【諸求項』6) 故求項1 4 尼載のリードフレームの最近方法において、

和記染起形成工程は、前記リードパターンの所定位置に 連載性都材を配設することにより前記突起を形成したこ とを特徴とするリードフレームの製造方法。

【算求項17】 算求項14記載のリードフレームの数 後方法において、

前記突起形成工程は、前記リードパターンの所定位置を 型性加工することにより前記突起を形成したことを特徴 とするリードフレームの保証方法。

【発明の存肥な収明】

(0001)

【屋葉上の利用分野】本見明は半線作業医及びその製造 方法及びリードフレームの製造方在に係り、特に半線作 チップ及びリードを避難対止した映成を有した半線作業 定及びその製造方法及び当該半線作名置に用いるリード フレームの製造方法に関する。

【0002】近年、電子限制のダウンサイジング化に伴い、中国体装度の高速度化及び中退体装置の高速度実変化が図られている。一方で、電子保証の信頼性の向上も受まれており、これに伴い主選体装置の信頼性も向上させる必要がある。更に、主導体装置は変命ニストの係長も望まれている。

(0002)よって、上記したさを大を成足しうを出場 体保室が空まれている。 ップチャブ方式の実装様達がたられており、マルチ・デップ・モジュール(MCM)において広く用いられて加る。このMCMで用いるフリッ(ペアチャブ)の電性に、を極い、サービスング・ファック・ファック・ファック・ファック・ファック・ファックでは、大にパングでは、大阪により、アチャーとは、アインのでは、カー・大阪により、一番では、アチャーのでは、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪では、カー・大阪のでは、カー・大阪の大阪の・元気の特性を向上させることができる。

[0006]

【見明が解決しようとする反應】しからに、推奨打止がされていないペアチップは、耐熱性、反似的強度、及び耐度性が高いという問題点がある。また、ペアチップに形成されている電板パッドに直接パンプが形成されず配換環境子を形成するため、ペアチップに形成されているでは、ドのレイアウトがそのままが面接環境子(パンプ)のレイアウトとなってしまう。

【0007】一般に半線体チップの電性パッドのレイアウトは半線体を送送メーカ紙に具なっており、従って両一板既を有する半線体は使であっても、ユーザ側で半線体は使であっても、ユーザ側で半ボードの配線パターンを設計する必要がある。このように、従来のペアチップを用いた実は構造では、半迭体を使いれば発生能子の原体化がされていないことにより、半減体疾症とマザーボードとのマッチング性に欠け、ユーザ側での負担が重くなるるという問題点があった。

30 (0008) また、これを解決するためにチップ表面に プロセス処理を行い、反路を引き回すことにより選集化 を図ることが考えられるが、このは成でに配異の引き回 しに本な皮を有する多くの工程を必要とし、製品コスト の上昇及び生産効率の低下を招いてしまうという問題点 があった。

【0009】 本見数は上記の点に低みてなされたものであり、半線体チップの体質性を維持しつつ外部電極電子の標準化 製品コストの低減及び主産効率の向上を図りうる半退体装定及びその製造方法及びリードフレームの (0 製造方法を提供することを目的とする。

(0010)

された配牌を封止し、かつ府紀突尼を耳出させるよう配 及されることを特徴とするものである。

{0011} また、請求項2足式の見明では、第1のビ ッチにて形成された電極パッドが形成された単導体チッ ブと、前記を極パッドと配線を介して意気的に接続され ろりードと、前記半端体チップを討止する対止説置とを 見貫する半導体装置において、前記リードに外部技術業 子となる疾症を上記集1のピッチと異なる第2のピッチ で形成すると共に、前記半導体チップに形成された前記 党優パッドの配設面を蓄ほとし、前記配設面における船 ID ード部に一体的に突起を形成したことを特定とするもの 尼封止部院の序さが、前記記章をから前記交名までの高 さ寸法以下で、かつ和記記及面から飛記記載までのあさ 寸柱以上となるよう構成したことも特徴とするものであ

【0012】また、排水原3記数の発明では、約記録次 項1または2記載の半導体装置において、約記半導体チ ップと前記リードとをポリイミド癖を接着剤として接合 したことを特征とするものである。

【0013】生た、技术項4記載の発明では、和記録求 項1乃至3のいずれかに定義の半退体装置において、約 20 勢では、前記算求項10または11記載のリードフレー 紀史起を前記リードと一体的に形成したことを特徴とす ろものである。また、pp:状項5.記載の発明では、pp.記載 **求項1乃至4のいずれかに記載の半導体装置において、** 前記配練としてワイヤを用いたことを特徴とするもので **55.**

【0014】また、森水頂6記載の発明では、麻記森水 項1万至5のいずれかに記載の半減体装置において、紋 記突起にパンプを形成したことを特定とするものであ る。また、技术項7記載の発明では、半導体装置の製造 れてなるリードを形成するリード形成工程と、和足リー ド或いは半週はチップの少なくとも一方にポリイミド膜 を配放し、前花ボリイミド棋モ介在させて約記り一ドと **利記半導体チップを所定押圧力で押圧しかつ所定温度に** 加熱することにより、前記ポリイミド県を信息前として 可応り一ドと向応半導体チップとを接合する接合工程 と、前記中選体チップに形成されている名様パッドと前 記り一ドとを配款を引き回し接続することにより、 前記 を経パッドと印記リードとを電気的に使用する複数工程 5.毛紅止するど共に、和記兵名の少なくとも卒庫を奪出 「るよう封止技術を配放する封止制能配設工程とを負債 ⁻ろことを行世とすろものである。

(0015)また、鉄水項8記載の発明では、前記は水 17 記載の単語体装置の製造方法において、前記後合工 でポリイミド無により約記り一ドと前記半導体チップ 推荐文名称,的经常用一定中枢として严重证料可量性 東下を接受前を反않したものを思いたことを決定して

項7または5に記載の中途体室図の製造方法において、 前記度校工程で、前記電極パッドと前記り一ドとモダイ レクトリードポンディング性により考集的に程度したこ とを料理とするものである。

【0017】また、は本項10記載の兄弟では、インナ ーリード配とアウターリード部とそ奪したな色のリード かお成されたリードフレームにおいて、前足アウターリ ード部のリードビッチに対して乾燥インナーリード部の リードピッチを小さく意定すると共に、 和応アウターリ

【0018】また、雑念項11足数の発明では、前記録 求項10記載のリードフレームにおいて、 京足アウター リード部のリードピッチ(P...) と成記交配の形成位 置における前記リードの厚さ (W) とが略等しく (P ... ≒W) . かつ何記インナーリード區のリードビッチ (P:.) が粒紀アウターリード群のリードピッチ (P ...) の結半分のピッテ (P...=P... / 2) であるこ とを特徴とするものである。また、ロボ県12記載の兒 ムの製造方法において、基材に前記交配の形成位置にマ スクモ配投したよで、前記書材に対してハーフェッチン グを行う第1のエッチング工程と、前足第1のエッチン グ工程の終了後、前記リード形成位置にマスクを配致し た上で、収記基材に対してエッチングを行いリードモ形 成ずる第2のエッチング工程とそ具備することを特徴と . すうものである。

【0019】また、武术項13記載の発気では、前記試 求項10または11記載のリードフレームの製造方法に 方法において、外部接取第子となる部位に突起が形成さ 10 おいて、重ね合わせることにより抑死突起の原定高さす 注となるよう仮厚が選定された第1の基材と第2の基材 **を用意し、前記第1の基材に、平面視した際に前記リー** ドの形状となるようリードパターンモ形成するリードパ ターン形成工程と、約記第2の基材に、少なくとも前記 突起の形成位置に位置するよう突起パターンを形成する 交尾パターン形成工程と、前記リードパターンが形成さ れた前記第1の芒材と、前記交易パターンが形成された RR第2の基材を實たをわせ、前記突起の形式位置にお いて前記リードパターンと前記史尼パターンが後居され ェ、和記記規及び前記半導体チップの所定範医症いは全 40 ろよう前記第1の基材と前記第2の基材とを接合する推 合工程と、航記第1の基料及び第2の基料の不要部分を 除去する除去工程とを具属することを特徴とするもので ある.

> 【0020】 至九、建环煤14花栽的免税では、和花井 **ルティッまたは11記載のリードフレームの製造方法に** おいて、名材に、平面接した際に飛起り一ドの乱けとな さようリートバターンを形成するリードバターン形成立 G - + ::'

【0021】至た、技术項15花板の兄弟では、前花注 求項14記載のリードフレームの製造方法において、薊 尼央起形成工権は、収記リードパターンの所定位置にパ ンプを単数或いは技数状み重ねることにより前足疾起を 形成したことを特質とするものである。

【0022】また、顕末項16尼虹の見明では、前記録 求項14記載のリードフレームの製造方法において。前 記兵尼形成工程は、前記リードパターンの所定位置に導 名位即村を配取することによりれた交易も形成したこと を特定とするものである。

[0023] 芝仁、技术項17尼酯の発明では、麻花蔵 求項14記載のリードフレームの製造方法において、飼 記典起形成工程は、和記り一ドパターンの所定位置を登 性加工することにより前足交起を形成したことを特別と するものである。

100241

【作用】上記した各手段は、下記のように作用する。 ほ 求項1及び請求項2記数の発明によれば、半額体チップ は対止例類により対止されるため、耐熱性、提展的社民 、ドモリード及び配理を用いて引き回すことができるだ。 め、リードのレイアウトを電板パッドのレイアウトに向 わらず設定することが可能となり、実装各版とのマッチ ング性を向上させることができる。また、対止指肩は引 き回された配数を確実に保護するためこれによっても保 類性を向上させることができ、また外部性収録子は封止 掛版から再出しているため実装器仮との電気的技規を経 実に行うことができる。

【0025】至た、建求集3記載の発明によれば、選索 半導体チップとリードとの絶迹材として配位されるポリー10 イミド原を推着剤として用いてるため、半端体チップと リードの絶縁と注合を一括的に行うことができる。よっ て、地球材と接着剤とも別位に配設する構成に比べて構。。 造の簡単化及び製造の容易化を図ることができる。

【0026】また、雄木羽4記載の発明によれば、突起 をリードと一体的に形成したことにより、交配とリード を別程の材料により構成する場合に比べて構造の簡単化 を図ることができる。また、は水頂5記点の発明によれ ば、配珠としてワイヤモ用いたことにより、肉花したな に行うことができる。

【0027】また、森水頂6記載の発明によれば、突足 にパンプを形成したことにより、交起を直接実芸を抵に 突張する横成に比べて、半選邦装置の実装基底への技法 モ要島に行うことができる。また、森太原7疋駐の兌明 によれば、接き工程においてポリイミド蘇を無定権度が、 つ所定理圧力下に置くことによりはぞ訴化させ、これに

【0028】また、豚原工程では半端体チップに形成さ れている電極パッドと前記り一ドとを配牌を引き回し床 **成ずるため、この引き回しを速度な走することにより、 電極パッドのレイアウトにおしてリードのレイアウトを** 変更することが可能となる。また、単興体装置にリード 形成工程,接合工程,接现工程及び封止能靠配款工程の 4工程のみで製造される。このように少ない工程で半さ 仏界屋が製造されるため、全産効果も同上させることが てきる. - 🛼

【0029】また、は水理8記載の見明によれば、ボリ イミド語として関節に無可愛性を有する技能形を配設し たものを用いることにより、ポリイミド底に印加するほ 皮等を所定範囲内に制御することなく接合処理を行うこ とができるため、ほ合蛇理を容易に行うことができる。 【0030】また、森水頂9記載の発明によれば、接収 工程で、意味パッドとリードとをダイレクトリードポン ディング住を用いて意気的に接続するため、原単かつ程 実に電極パッドとリードとの技統処理を行うことができ る。また、は求項10及びは求項11記載の兄朔によれ 及び耐症性を向上させることができる。また、竜極パッ 10 ば、アウターリード部のリードビッチに対してインナー リード部のリードピッチが小さく立定されているため、 インナーリード部が電気的に推放される半導体チップの 3年パッドの配数ピッチが小さくてもこれに対応させる ことができ、かつ実装基依と電気的に接続されるアウタ ーリード邱のリードピッチは大きいため、実芸芸伝への 実集性を向上させることができる。また、突起がアウタ ーリード部に形成されることにより、この交配を外配は 決執子して用いることができ、これによっても実践性を 向上させることができる。

> 【0031】また、西水頂12記載の見明によれば、気 1のエッチング工程において突起の形成位置にマスクを 配改した上で基材に対してハーフェッチングを行うこと により 卒紀形成位置を除く部分の坂原を得くし、更に 第2のエッチング工程においてリード形成位置にマスク を配款した上で第1のエッテング工程が終了した番目に 対してエッチングを行うことにより、交起が一体的に形 成されたリードを形成することができる。

【0032】ここで、リードを形成する口にリードのビ ッチは番材の仮事により改定されてしまう。長年的に 極パッドとリードとの間における配数の引き回しを言る。(0)は、リードのピッチは基材の版理と結算しいピッチにし か形成することはできない。よって、ほい坂厚を用いる 投リードビッチを挟ビッチ化することができる.

> 【0033】ところが、交包が形成されるリードでは基 材の仮厚は突起の高さにより決まってしまい。突起の高 さと苦しい佐厚を有する高材を単にエッチング処理した のでは狂ビッチのリードを形成することができない。し かるに、上記のようにおりのエッチング工程におりてデート

も趺ピッチのリード形成を行うことが可能となる。尚、 上記説明から明らかなように、交起の記載ビッチは基材 の仮耳と略等しいピッチまで狭ピッチ化することができ

【0034】また、株本項13記載の発明によれば、第 1 の蓄材及び第 2 の番材は重ね合わせることにより発起 の死定高さ寸圧となるよう低厚が逆足されているため、 各番材の仮厚は突起の高さ寸法より小さな厚さとされて、 いる。リードパターン形成工程では、この低度の深い無 1 の名材に対してリードの形状となるようリードパター $10 = \{0.0.4.1\}$ また、インナーリード試 3 a と半さ体チッ ンを形成するため、先に苁耕した板原とリードピッチの 関係により、形成されるリードパターンのリードピッチ モ铁ピッチ化することができる。

【0035】また、突起パターン形成工程において第2 の基材に少なくとも前記会話の形成位度に位置するよう 交包パターンを形成し、接合工程において上記第1の基 村と第2の基材を重ね合わせ接合することにより、安配 の形成位置においてリードパターンと英ピパターンが技 **着され、この位置における依単は突起の所定高さとな** る。続く除去工程では不要部分が除去されリードが形成 70 ている。

【0036】従って、上足のようにリードパターンの形 成時には依原は薄いためリードピッチを狭ピッチ化する ことができ、また突起形成位置においてはリードパター ンと死起パターンが核磨されることにより所定者さの疾 尼を形成することができる。また、は水項14記載の発 朝によれば、リードパターンを形成するリードパターン 形成工程と、突起を形成する突起形成工程とを別位に行 うことにより、番材の厚さも央尼の高さに向わらず選定 ードパターンの狭ビッチ化を図ることができる。また、 突起形成工程においては、任意の高さを有する突起も形 成することが可能となり、設計の自由度を向上させるこ とができる.

【0037】更に、資水項15万至17記載の発明によ れば、突起形成工程において突起の形成を写真に行うこ とができる。

(003B)

【実施例】次に本発明の実施例について感節と共に反映 する。図1及び図2は、半発明の一葉範囲である半温体(0) 装置 1 を示している。 図 1 は半進体装置 1 の新面図であ り、また図2は半端体装置1を底面図である。

【0039】 お図に示されるように、半選体装置1は大 結すると半途はチップ2、推立のリード3、対止を除 1.及びパンプ5年によりは成されている。半点はテッ ブ2は、底面の中央位置にはちの電域パッドもが一邦に 利望されている。また、複数のサード3は、云々として

【0040】このポリイミド度7は、半端体チップ2の ≟ニに応成された回幕医2Aとリード3とを電気的に絶 歴する絶縁節材として複雑すると共に、 ほ迹するように ポリイミド膜7は半導体チップ2とリード3とを収合す ろぼ撃敗として最終している。このように、ポリイミド 戻 7 に絶縁部材と推着筋の双方の機能を所たせることに より、絶縁材と接着剤とも別園に配設する機成に比べ、 丰選体装置 1 の横道の簡単化及び製造の容易化を図るこ _とがてきる、

10

プ2に形成された電極パッド6との間にはワイヤ6か足 泣されており、このワイヤ8を介して半端体チップ2と リード3は電気的に程度された様式とされている。美 に、モリード3に載けられたアウターリード載36の所 定位屋には、外庭後院第子となる交起9が一体的に形成 されている。上記異症とされたリード3は、各回に示さ れるようにその大部分が半導体デップ 2 の底面上に配位 された様式の、いわゆるリード・オン・チップ(LO C) 検達となっており、半年体装置1の小型化が図られ

(ここにの) また、対止困難 4 は例えばエポキシ制度よ りなり、後述するようにモールディングにより形成され ている。この対止密度4は、半年年チップ2の底面及び 剣笛の所定範囲に記載されている。しかろに本実施例で は、半導体チップでの上面においては、放熱性を向上さ せる而より対止概率4は配置されていない様式とされて いる. .

【0043】上記封止世路4は、半点はチップ2の電塔 パッド6の配数節(底面)も基準とし、この底面からの することができ、よって違い基材を用いることによりり、10 厚さ(図中、矢印Hで示す)が、底匠から突起9の先識 までの高さ寸法(区中、矢印Wで示す)以下で、かつ底 面からワイヤ8のルーブ量上記までの本さ寸法(区中、 矢印りで示す)以上となるよう構成されている(NSH ≦W)。この構成とすることにより、突起9の少なくと も先端部9aは従来に封止樹龍4から自出し、またウイ 〒8及び突起9の森出部分を除くリードコは討止出籍4 に封止された構成となる。

> 【0044】このように、本実施例の単導体装置1は、 半退体チップ 2 の研定範囲(上面を許く部位)を對止能 昨 4. 当社でれた機械となるため、耐熱性、機械的技度 及び耐燃性を向上させることができる。また、射止能症 4はワイヤ8を確実に保護するため、これによっても半 選件架関1の信頼性を向上させることができ、更に外部 住民菜子となる完起9の少なくとも先輩部92は夜宮に 料止機能もから耳出するため、実は左右10との名気的。 存成を確実に行うことができる。

【0045】ここで、正文を用いても基本を、できた品

【0046】上記のように、アウターリード部38のリードピッチP... に対してインナーリード部38のリードピッチP... が小さく設定されることにより、デットで38が最大的に提及される半途体チップ2の最近パッド6の配設ピッチが小さくてもこれに対応させることができ、かつ実装高近10と気気的に接続されるアウターリード起3b(突起9)のリードピッチP... は大きいため、半個体装置1の実装高近10に対する実装住を向上させることができる。

【0047】一方、本実施例に係る単編体をは1は、単編体テップ2に配設されている電医パッド6に直接パンプ5を形成し実装蓄板10に接続するのではなく、電質パッド6とインナーリード部3aとの間にワイヤ8を引き回した上でリード3を介して実装基板10に接続する機成とされている。従って、電極パッド6をリード3及びワイヤ8を用いて引き回すことができるため、リード3のレイアウトを電極パッド6のレイアウトに向わらず設定することが可能となる。

【0048】具体的には、図2に示す例では、半迭体チョ0ップ2の中央に形成されている電医パッド6をワイヤ8及びリード3を用いて引き回し、外部検索選子となる突起9を半端体チップ2の外隔位置に引き出している。また、図3に示されるように、電極パッド6が半退体チップ2の外角位置に形成されている場合には、本発明を追溯して電極パッド6をワイヤ8及びリード3を用いて引き回すことにより、電極パッド6の形成位置より内割に外部接続域子となる突起9を形成することも可能である。更に、図4に示されるように、外部検索型子となる突起9を半迭体デップ2の外側位置に促設することも可能を表る。

(0049) このように、電医パッド6をリード3及びワイヤ8を用いて引き値すことが可能となることにより、実体基底10と半導体装庫1とのマッチング住を向上させることができ、外部技術域子となる交配9のレイアクトを環境外部性反響子のレイアクトになるに数定ることができる。よって、主席体表面:を思いるユーザ制の発信を呼ばれることができる。

は、リード形成工程、存金工程、技術工程及び封止を提 記成工程の基本となる4工程と、これに付成するパンプ 形成工程、技技工程の2工程を行うことにより製造される。以下、各工程度に放送するものとする。

【0051】図5万室図9はリード形成工程の第1 実施例を示している。このリード形成工程は、リード3の番材となるリードフレーム11を形成するための工程であっ、リードフレーム11を形成するには、先ず図5に示されずような平板状の変材12を角象する。この姿で)2は、例えば4.27ロイギのリードフレーム材料であり、またその板庫は形成しようとする実起9の高さけ后Wと等しいものが選定されている。

(005.21 上記の番材1.2に対しては、先十回6に示されるようと7.2.2.1.3 (製地で系す)が日かられる。このマスク1.3 は、所定の疾医9の形成位置(図中、お思口号1.4 で示す)及びクレドール形成位置(図中、お理符号1.5 で示す)に記立される。

【0053】上記のようにマスク13が配放されると、 戌いて番材12に対してハーフェッチング処理(第1の エッチング工程)が実施される。本実路例においては、 ウエットエッチング法により基材12に対してハーフェッチング処理を行っている(ドライエッチング処理を行っている)。また エッチング方柱を用いることも可能である)。また エッチング時間は、エッチングにより設全される配分 (図6で白はきで示される配分)の厚さが、基材12の 板厚Wの半分の寸法(W/2)となるよう設定されてい

(0054) このハーフエッチング処理が終了し、マスク13を取り除いた状態を図7に示す。この状態では、 突起9の形成位は14及びクレドール形成位置15のみが元の基材12の序をWを検付しており、他の部分(を 原布号16で示す) はハーフエッチングによりそのほご 寸法はW/2となっている。

【0055】上記のようにハーフェッチング処理が共下 する。 続いて図8に示されるように所定のリード3の形式位置(学録符号18で示す)及びクレドール形成位置 15にマスク17(製地で示す)を記載した上で、この 基材12に対してエッチング処理を行う。

(0056)上記のようにマスク17が配款されると、 現いて基材12に対してエッテング処理(第2のエッチング工程)が実施され基材12のマスク17が配成され た位置以外の部分を除去する。これにより、図9に示す リードコの所定形状を有した状態のリード3を担偏する リードフレーム11が形成される。向、必要に応じてこ のリードフレーム11の所定形位(リード3の形成位 二、にニッツキ等を厳してもよい。

(10057) このようにお祀されたサードアンーム 1.1 に リードミヤン・ナーリー・ロフィー マウケーソード

ーリード 町3a及び突起9の形成位置を除くアウターリ ード節30の厚さ寸法はW/2となってる。

[0058] ここで、リードピッチと番材12の佐厚と の保保について収明する。前記したように、リード3を 形成する以にリード3のピッチは差材12の低厚により 決定されてしまい、具体的にはリードピッチは正材 1-2 の低厚とは等しいピッチにしか形成することはできな い。よって、蓋材12の毎年が高い世リードピッチを映っ ピッチ化することができる。

は番材12の坂原は突起9の高さにより決まってしま い。突尼9の高さと写しい近摩を有する基材12を単に エッチング処理したのでは狭ヒッチのリードを形成する_ ことができない。しかるに、上足したようにあるのエッ チング工程においてハーフエッチング処理を実施するこ とにより、突尼形成位属14を除き基材12の低度を買 くし(約W/2の仮序となるようにする)、 更にこの様 くされた坂厚を有する部分に第2のエッチング工程を実 応してリード3を形成することにより、突起9を有する リード3であっても狭ピッチ(図1に示されるリードビ 26 のは位置決めれてあり、リードパターン23の形式時に ッチP...) のリード形成を行うことが可能となる。ま た、同様の理由により、交起9(アウターリード部3) b) の配款ピッチ (P...) は、 益村 1 2 の版序Wと助 そしいビッチミではビッチ化することが可能となる。 【0060】尚、具体例としては、一般にリード基材と して用いられている仮序0, iOam, 0, iSam, 0, iOamの基材を 所に挙げれば、板厚0.10mmの高材ではアウターリード部 3 b及び突起 9 の最小ピッチP... を0.10mm (P.,. = 1. 10ee) 、インナーリード包3gの最小ピッチPie0.)Sam (P., = 0,05mm) とすることができる。また、仮居 10 (0066)上記検収とされた第1,の基材21及び第2 5.15回の高材ではアウターリードは36及び突起9の最 トピッチP... そ0.15mm (P... = 0.15mm) . インナー **リード部3gの泉小ピッチP。。 €0.075mg (P。。 =0.07** en)とすることができる。更に、抜厚0、10mmの基材では プワターリード部3b及び突起9の点小ピッチP... モ 20em (P.., =0.20em) . インナーリード記3 m の最 ·ビッチ P., を 0.10em (P., = 0.10em) とすることがで

【0061】一方、突起9の形成位置に往目すると、突 「より挟められる。即ち、この図をに示されるマスク1 の配収位配を建立変更することにより、突起9の形成 国を任意設定することが可能となる。 このため、 本賞 例に係るリード形成方圧では、 弁部技統以子となる英 9の形成位属を自由属をもって設定することができ、 って子の定められているはほれ都は民族子位はに会長 も夢見に形成することが可能となる。

ム20を形成するには、先ず四10に示されるような第 1の蓋材21と、図11に示されるような第2の差材2 2 を用意する。

14

【0063】このを基材21、22は、重ね合わせるこ とにより突起9の所定高さ寸法Wとなるよう低度が遺定 されており、本実施例では各番材で1、22の日原寸圧 は共にW/2に放定されている。尚、き番材21、22 の低厚はこれに展定されるものではなべ、 異ね合わせる ことにより突起9の所足高さ寸注wとなる気片の益にそ [0059] ところが、交起9が形成されるリード3で 10 基材21、22で仮席を異ならせた構成としてもよい。 【0064】四10に示される第1の高材21は、例え ば42アロイ年のリードフレーム材料により形成されて * おり、エッチング処理或いはプレス打ちはそ処理事を干 の重集することにより、平面技じた場合にリード3と何 一形状のリードパターン23が形成された株成とされて いる。しかろに、第1実務例で説明したリード形成工程 と異なり、この状態のリードパターン23には衰尽9は 形成されておらず、よってリードパターン23は全体的 にその仮尽がW/2とされている。 尚、 図中25で示す 一括的に形成されるものである。

【0065】一方、図11に示される第2の基料22 は、予め42アロイ年のリードフレーム材料に対しエッ テング処理式いはブレス打ち住き処理等を実施すること により、交配パターン24が形成された根底とされてい る。この突起パターン24は直旋状のパターン形状を有 しており、、所定の英起9の形式位置を検禁するよう様 丘されている。 尚、 図 2 6 は位置決め孔であり、 交配パ **ソーン24の形成時に一括的に形成されるものである。** の基材22は、位置決め孔25、26を用いて位置点の されつつ裏な合わされ頂合される。この第1及び第2の 至村21、22の複合は、英な性技管剤を用いて性をし てもよく。また環境により接合してもよい。図12は、 第1の番材21と第2の番料22とが複合された状態を 示している.

【0067】上記のように第1の基材21と第2の基材 2.2とが接合された状態で、第2の基材2.2に形成され ている突起パターン24は、第1の益料21に形成され 39 の形成位置は図6に示されるマスク13の配益位置(0)でいるリードパターン23の所定交易形成位置の上系に 異な合わされるよう状式されている。

> 【0068】②13は、リードパターン23と点尼バタ ーン24とが重なり合った既位を拡大して示す平面区で あり、また四14はリードパターン23と交近パターン 24とが異なり合った部位を拡大して示す動産区であ る。各区から明らかなように、毎年7年Wノミのリード パターンででも、声じく広歩ではW/での中枢(ター)

【0069】上記のように第1の基材21と第2の基材 2.2 とのほ合処理が終了すると、戌いて不要配分、具体 的には突起パターン 24のリードパターン 23と文差し 、 た部分を除く部位をプレス加工等により除去することに より、図15に示すように突起9が一体的に形成された リード3を有するリードフレーム20が形成される。

【0070】上記のように、本実施例により製造された リードフレーム20も第1実施例で製造されたリードフ レーム11と同様に、リード3はインナーリードの3 れた祝紅となる。また、図10に示すリードパターン2 3の形成時においては、第1の番料21の板庫はW/2 とされているため、先に説明したែ原とリードピッチの 関係から明らかなように、狭ピッチのリードパターン 2 3を形成することができる。

【0071】一方、突起9の形成位置に注目すると、突 記9の形成位置は第2の番材22に形成される突尼パタ ーン24の形成位度により決められる。即ち、´この交易 パターン24の形成位置を重复変更することにより、突 ため、本実施例に低るリード形成方法においても、外部 接現様子となる突起9の形成位度を自由度をもって設定 することができ、よって子の定められている保証外配接 原電子位置に突起9を容易に形成することが可能とな

【0072】上記のようにリード形成工程を実施するこ とによりリードフレーム11、20(以下の反射では、 リードフレーム11を用いた場合を例に挙げて気氛す る)が形成されると、統いてリードフレーム11と半年 16万至図20を用いて接合工程について表明する。 【0073】接合工程においては、先ず回16に示され るようにリードフレーム11のインナーリード瓜3a (検索すれば、後述する接続工程においてワイヤ8がポ ンディングされる群位)に全メッキを指丁ことにより、 ポンディングパッド部27を形成する。

【0074】また、図17に示されるように、半導体チ ップ2の電極パッド6の形成された面には、この電極パ ッドもの形成部位のみが森出する県成でポリイミド取り が配設される。このボリイミド県7はガラスモ移点が1 (0) 00~300℃のものが選定されており、図17に示さ れる状態では単に半点体チップ2に載置されただけの状 旅となっている。従って、ポリイミド度 7 が収度しない よう、半導体チップ2は危疫パッド6の形成面が上部に 位置するよう配置されている。向、主選体チップ2は形 雁目止に行われておらずペアチップはとされている。 ま ない 上記のポリイミドはては、三点はデップでも形成で

なされ半導体チップでは、反1をに示されるようにし ードフレーム11が軽速される。この年、リードフレー ニュュに形成されているリード3(インナーリード 邸 3 a)と、半端体チップでに形成されている電極パッドを とが状度よく対向するよう。リードフレーム11は立定 決めされる.

【0076】上記のようにリードフレーム~1 1 が半退床 チップ2上の所定位屋に転覆されると、戻いて図19に 示されるように指集28が終下し、リードフレーム11 a.アウターリード部36及び突起9が一体的に形成さ 10 モキ選体チップ2に向け界圧する。また、この岩裏28 は加熱盆屋を食管しており、治具28で発生する熱はリ ードフレーム11を介してポリイミドぼ?に印加され

【0077】上記ポリイミド厚7は、牛薬体テップ2と リードフレーム11とモ党気的に延停する絶縁配材とし て従来より一般的に用いられているものであるが、工発 朝者はこのポリイミド第7を所定の製埃条件下に従くこ とにより接着剤として触能することを発見した。具体的 には、ポリイミド級7としてガラス症移点が100~3 起 9 の形成位度を任意設定することが可能となる。この、10、0 0 でのものを使用し、かつこのポリイミド度 7 ぞガラ ス伝移点+100~200℃に加熱すると共に、1~1 レスェミ/cm'の神圧力を印加することにより、ポリ イミド眠?は推着剤として複粒するようになる。

【0078】よって、本実施的では上記の点に注目し、 半級体テップ2とリードフレーム11とのほ合時に、 治 具28に設けられているヒータによりポリイミド展7モ ガラスを移点+100~200℃に加熱すると共に、治 具28の加工によりポリイミド膜に J~10kg (/ c m'の押圧力を印加する秩丸としている。これにより、 体チップ2を接合するほち工役が実施される。以下、図 30 ポリイミド度?は接着点として出発するようになり、中 事体テップ2とリードフレーム11とモポリイミドログ を用いて推撃することが可能となる。

> 【0079】上記機成とすることにより、従来では必复 とされたポリイミド間を半導体チップ2及びリードフレ ーム11と移草するための住を飛ば不要となり。 仮あコ ストの危険及び半導体装置1の組み立て工芸の低彩を図 ることができる。図20は、平温はチップ2とリードフ レーム11とがポリイミド磨?により付合された状態を 示している.

【0080】 前、半導体チップ2とリードフレーム11 こうはこは、ポリイミド鉄フを用いて圧合する方法に陥 定されるものではなく、従来のようにポリイミド床の両 面に推着剤を塗布しておき、この接着剤によりポリイミ ド級を介在させた状態で半週のテップでとりードフレー ム11とも推合する方法を用いてもよい。この様式で は、ポリイミド痛に共する速度制御及び存度力制のが不 ひとなり、現台工程を中央には新せることができる。

ド3と半導体テップ2に形成されている電極パッド6と をワイヤ 8 て電気的に住放する技統工程が実施される。 【0082】 図21は、キャピラリ29を用いてワイヤ (例えば金ワイヤ) Eをリード3に形成されたポンディ ングパッド郎27(図16巻煎)と電極パッド6との間 に配設する処理を示している。原知のように、半進は装 置1の電気的特性を同上させる逆からはワイヤ8の長さ は短い方がよく、また半迭体装置1の小型化度型化のた めにはワイヤ8は低ループであることが复ましい。

[0083] このため、ワイヤ 8 を配放するのに低ルー 10 ブポンディング住を採用することが夏ましい。低ルーブ ポンディング法も種々の方法が建業されているが、例え ば先ず半導体チップ2に形成されている危軽パッド6に ワイヤ δ をポンディングし、炊いて重直上方にキャピラ リ29を移動させた後に水平方向に移動させてリード3 にポンディングする。いわゆる逆打ち肚も用いる根底と してもよい.

【0084】上記のように、リード3と電極パッド6と を電気的に接続するのにウイヤボンディング技を用いる きる。また、リード3と電板パッド6との間におけるワ イヤ8の引き回しも比較的自由度を持って行うことがで きる。尚、図22は、接続工程を実施することによりり ード3と電位パッド6との間にワイヤ8が記載された状 息を示している.

【0085】上記のように復送工程を実施することによ り、な様パッド6とリード3とがワイヤ8により電気的 に視聴されると、 続いて半導体チップ 2 の所定部分に対 止削減4を配款する對止能減配設工程が実施される。以 下、図23万至図25を用いて封止指揮配設工程につい 10 て放明する.

【0086】図23は、上記のき工権を実施することに よりリードフレーム11.ワイヤ8年が記載された半導 体チップ2を全型30に狭着した状態を示している。全 熨30は上型31と下型32とにより接成されており、 リードフレーム11が上型31と下型32との間にクラ ンプされることにより、半導体チップ2は玄型30内に なぎされる.

【0087】上型31は、半点体チップ2が装着された 状型で共起9及びリードフレーム11のクレドール33 (0) と当なする構成とされている。交記9の高さとクレドー ル33の高さは等しいため、よって上型31の形状は平 低形状とされている。また、下型32は金岩された半点 体チップ2の側部に空間部を有したキャビティ形状を有 しており、また牛は体チップ2の区における底面にキャ ピティ33の尼囲と当事でる構成とされている。

(0088)このように、対比を存配数工程で無いると

装置1の製品コストの低級に寄与することができる。 (0089) 図24は金型30に對止用盾4(製地で示 丁)を充填した状態を示している。 金型30に対止性語 4 を充填することにより、半選はチップ2の下型31と 自推した上面(図 2 3 乃至図 2 5 では下底に位置する) も除く外席面は対止根原4により対止される。また、※ 耳はチップ2の底断に配立されているリード3及びワイ 〒8も針止左旋4により針止された状態となる。また。 突尼9も上型31と当接している解節を除き對此を握く により封止された模成となる。

1.3

【0090】 図25は、封止樹原4が充壌処理された半 編化チップ2モ会型30から触型した状態を示してい る。同回に示されるように、半導体チップ2の上面 2 a は対止を握4より基出しており、よってこの上版28よ り半端体チップでで発生する熱を効率よく放急させるこ とができる。また、突起9の雑餌9aも対止巣躍4から . 外部に貫出しており、 従ってこの袋部9ae外部投航途 子として用いることができる。

【0091】図25に示される状葉において、図中一点 ことにより、容易かつ高速度に技成処理を行うことがで、10 経緯で示す箇所でリードフレーム11を切断することに より半導体装置を摂成しても、図1に示す半導体装置1 と同様の効果を実現することができる。しかるに、図2 5に示す状態では、外部技技媒子として製能する交配 9 の雑節9aが封止併解4の表面と話面一となっているた め、実装基底10に対する実装性が不良である。このた め、本実施例においては、対止総理記載工程が終了した 後、戦略90にパン部5を形成するパンプ形成工程を実 類している。以下、パンプ形成工程を図26万至図30 モ用いて広明する。

> 【0092】パンプ形成工程においては、元丁四26に 示すように、 封止樹脂 4 が配設された半導体チップ 2 の 全面に対してホーニング処理を行い、双宮する治路無等 を禁五すると共に、突起9の攻部9aを発表に外部に攻 出させる。ホーニング処理が終了すると、疣いて図27 に示すように、対止密理4が配位された半導はチップ2 を平田様ろ4に投票し、突起9の雑就98に半日を用い て外なメッキを行う(半田額を参照符号35で示す)。 この外名メッキに用いる半田としては、例えばPb:S n=1:9の地域はを有する半田の適用が考えられる。 図2 8 は、上記の方はメッキにより突起9の攻撃9 a に 半田峡35が形成された状態を示している。

【0093】上記のように外袋メッキ処理が終了する と、戌いて半年ほろろが形成された突起9のは貼9aに パンプSが形成される。このパンプSの形成方ほとして に信々の方法を採用することができ、例えば効率よくか つぞ名にパンプSをお成しうる在事ハンプ方法を用いて、 も成してもよい。 図でらは、バンブミガデ君をの女気を

リードフレームココの切断処理が行われ、これにより、 図30に示される半導体装置1が形成される。尚、この リードフレーム11の切断処理に先立ち、切断処理を容 **あにするためにリードフレーム11の切断型所にハーフ** エッチング処理を行ってもよい.

【0095】上記のように製造された半導体装置1に対 しては、肥いて適正に作動するかどうかをは数するはは 工程が実施される。図3:1及び図3.3は、夫々異なる牛 幕体鉄屋1の試験方法を示している。 図31に示される **単数方法では、パンプ5を装着しうる構成とされたソケー10** ット36を用い、このソケット36に半導体装置1を祭 君することによりパーイン等のは故を行うものである。 【0096】また、四32に示されるは以方法は、プロ ープ37を用いて半導体装置1の以致を行う方法であ る。半導体装置1は、針止性脂4の飢怠位置にリード3 の雑部が封止器館4から募出した模式とされている。本 試験方法では、これを利用して對止樹脂4から貸出した リード3にプロープ37を推放させて試験を行う機成と されている。よって、本以駄方法を採用することによ り、中導体整備1モ実装蓄板10に実在した後において 10 も以款を行うことが可能となる。

【0097】図33は、半導体装置1モ実装器板10に 実践する実験工程を示している。半導体整理1を実容器 版10に実装する方法としては、用知の種々の方法を基 用すすることが可能である。例えば、赤外菜リフロー方 法を用い、半導体装置1に設けられているパンプ5を実 装器板10に形成されている電極部38にペースト等を 吊いて仮止めし、その上で赤外翼リフロー声においてパ ンプ5を移起させることによりパンプ5と電径部38と を接合する方法を用いてもよい。 .

【0098】焼いて、上記した半導体展展の製造方法の 変形例について以下取明する。図34万至図37は、夫 々央尼9の変形例を示している。図34(A)、(B) に示される突起9Aは、その形状を円柱状とした様式で ある。また、数37(C)に示される突起9Bは、その 形状を角柱状とした様成である。このように、突起9. 9 A。 9 B の平面形状は程々選定できるものであり、パー ンプ5の接合性及び契款基値10に形成されている電値 33.8の形状なに応じて任意に形状を選定することが可 成である。真体的には、例えばエッチング性により突起(0)916形成する構成としてもよい。この構成の場合、突 9. 9A、9Bを形成する場合には、図6に示す突尼形 成位は14に反抗するマスク13の形状を正面固定する ことにより突起9、9A、98の平面形状を容易に所望 する尼状とすることができる。

【0099】また、図35 (A) に示される共起90の ように上面に店曲状凹部を形成した様成としてもよくご 図35(B)に示される共長9Dのように上面中央民に *******************************

Eによれば、突起表面における面積を大きくすることが できパンプ3との複合性の向上を図ることができる。 尚、上記の英起9C~9Eは、リード3の所定英尼形成 位置に、福電性機能開発を用いて固定された構成とされ ている.

(0100)また区35 (D) に示すのは、リード3を プレス加工等により連携豊臣党形させることにより突起 9Fを形成したものである。このようにプレス応工与の 豊住加工を用いて突起9Fモ形成することにより、 近り て容易に突起9Fモ形成することができる。しかるに、 この形成方法では、突起9Fのあさは世性加工展界値を 上陸とし、それ以上の高さに以定することはできないと いう問題点も有する。

【0101】また、回35に示すのは、突起9GE形成 するのにワイヤポンディングは祈を用い、スタッドバン プラボセの交配経路位置に形成することにより突起 9 G としたことを特定とするものである。 図36 (A) は交 起9Gの形成方法を示しており、また回36(B)は交 尼9GE拡大して示している。

【0102】上記のように、突起9Cモワイヤポンディ ング技術も用いスタッドパンプで形成することにより. 任意の位置に突起するも形成することが可能となり、外 部推設竣子となる英記9GE所定位置にお易に形成する ことができる。また、突起9Gの形成は、半導体装属の 製造工程の内、接続工程においてワイヤ 8 の配収時に一 活的に形成することが可能となり、製造工程の祭略化を 囚ることができる。

【0103】また、突起9Gの高さはスタッドバンブモ 複数電視み重ねて配設することにより任意に設定するこ 30 とができる。区37 (A) に示される交配9日は、スタ ッドパンプモ3個程み重ねることにより回36(B)に 示される1低のスタッドパンプにより英尼9Gモ形成し た協成に比べて高さを高くしたものである。

【0】04】また突起の裏さを高くする地の方法として ゖ 「中11(B)に示されるようにテめリードろにプロ ック状の基準性部材41を基準性推着所等により固定し ておき、この調電性部材41の上部に図37 (C) に示 されるようにスタッドパンプ426形成し、ほ居された 革電性部材 4.1 とズタッドパンプ 4.2 とが旧刷して発尼 尼91の不さは進竜性部は41の不さにより氏められる こととなるが、プロック状の進電性配材 4.1 に雇々の大 きさのものが後供されており、よって突起91の高さを 任意に設定することができる.

【0105】◎38は、排名工権の反形例を示してい を、上記した実施的では、図16万里図20に示したよ うに半島はデップでとリードフレーム11cを形定事件 ----

ム11とも後合する母成としてもよい。

[0106] また、テープ状性を刺45の配験位位は、 半導体チップ2の上面だけではなく、図38に示される ようリードフレーム11の下面にも設けてもよく、また リードフレーム11の下面のみに設けた様式としてもよ い。更に、テープ状態差別45の配数範囲は、電極パッ ド6の形成位置を除く区中矢印义で示す着低であれば、 自由に設定することができる。尚、テーブ状態を取45 は、半導体チップ2とリードフレーム11とを電気的に 絶縁する必要があるため、絶縁性技を関である必要があ 10

【0107】図39万三図42は、接放工程の変形例を 示している。上記した実施例では、図21及び図22に 示されるように電医パッド6とリード3とを接続するの にワイナ8を用いた構成を示したが、図39万至図42 に示す変形的では電極パッド6とリード3とを直接技技 するダイレクトリードホンディング (DLB) 方法を用 いたことを特徴としている。

【0108】図39及び図40に示す例では、リード3 を例えば超音波振動子に接続された複合始具46を用い、10、の効果を実現することができる。森水項1及び抹水項2 て直接的に双弧パッド6に左合する検式とされている。 しかろに、この構成では超音波振動する独合指具4.6に より、草槿パッド6にグメージが発生するおそれがあ

【0109】そこで図41及び図42に示す例では、子 める低パッド6にスタッドパンプ47モ配款しておき、 このスタッドパンプ47にリード3を当住させた上で加 熱治具 4 8 を用いてスタッドパンプ 4 7 を加熱熔融し登 近パッド6とリード3を推放する構成とされている。こ の接続方法によれば、電極パッド6が接係するおそれは、10 的実装基板との電気的程度を展異に行うことができる。 なく、接続工程の信頼性を向上させることができる。

【0110】また、図39乃至図42に示した核助工程 によれば、ワイヤ8を用いて竜区パッド6とリード36 技統する核紋に比べて電気抵抗を低減できるため、単導 体装匠1の電気特性を向上させることができ、点面の半 34チップ2に対応することができる。

【0111】四43万至四44は、対止資源配設工程の 文形例を示している。上記した実施的では、図23及び 図24に示されるように全型30を検成する下型32の キャピティ 底面は半週体チップ 2 の上面 2 a と直接当復(10)を図ることができる。また、武太県 5 花気の発明によれ し、この上面28には最熱特性を向上させる屋から封止 形指 4 が配益されない模成とされていた。

【0112】しかろに、半導体装置1が使用される要換 が迸しい(例えば、多歴要検)時には厳熱性よりも耐症 性等をより必要とする場合が生じ、このような場合には 好止出版 4 により 主選 はチップ 2 を完全に昇止する必要 がある。匿ちる及び匿ちゃに示す金型50ほ。半年にデ シブグを対立を指して完全に打止する構成ともださい。

ャピティ5.2 が、図4.3 に示されるように半退化チップ 2の外角節から経筋しており、よって図4.4に示される ように封止閉路4を金型に完装した状態で半端はチップ 1912円上に封止樹稿(に封止された根成となる。このよ うに、半導体チップ2に対する封止機能4の配設位置 は、重要30、50に形成されるキャビディ33、52 の形状を確宜変更することにより任意に必定することが できる.

2 2

【0114】また、上型31にリード3に形成された来 足りを装着する凹部を形成しておくことにより、 匹45 に示されるような突起9が対止制度4から大きく突出し た構成の半導体装置もりを形成することも可能である。 図45に示す半導体装置60は、突起9が対止形成6か ら大きく突出しているため実築基板10に対する実装性 は良好であり、よってお記した実施供に低る半路は芸量 1のようにパンプ5を設ける必要はなく、半導体装置 6 0の製造工程の簡単化を図ることができる。

(0115)

【見明の効果】上述の如くを見明によれば、下足の僅々 記載の発明によれば、半導体チップは対止側段により針 止されるため、耐熱性、磁気的生成及び割退性を向上さ こてここができる。また、常色パッドとリードとの間で 記載を引き回すことができるため、リードのレイアウト を草紙パッドのレイアウトに拘わらず設定することが可じ 能となり、実装差板とのマッチング性を向上させること ができる。また、対止樹緑は引き回された配葉を確実に 保護するためこれによってもは無性を向上させることが でき、また外部推決第子は封止樹脂から貸出しているだ 【0116】また、彼本項3花転の発明によれば、追加

半導体チップとリードとの地及材として配収されるポリ イミド棋を推着剤として用いてるため、半導体チップと リードの絶異とは合を一括的に行うことができ、よって 絶縁材と技者剤とモ制御に配立する病症に比べて核治の 簡単化及び製造の容易化も図ろことができる。 【0117】また、は米項4記載の発明によれば、交起

モリードと一体的に形成したことにより、交配とリード モ別庫の材料により構成する場合に比べて構造の簡単化 ば、配乗としてワイヤを用いたことにより、何足した常 ピパンドミリードとの間における配義の引き回しを容易 に行うことができる。

【0118】また、建本係を記載の発明によれば、疾忌 にパンプを形成したことにより、突起を直接実営基紙に 実はする様式に比べて、半導が盆面の実は基準への反抗 を容易に行うことができる。また、技术項を記載の民仰 けばたば、現在で成り上、アイ・ビス・ビスを示します。

構成としているため、リードと半端体チップとの絶縁と 接合を一括的に行うことができる。

【0119】また、採焼工程では半葉体チップに形成さ れている危極パッドと前記リードとを記録を引き回し接 成するため、この引き回しも悪重数定することにより、 **宅伍パッドのレイアウトに対してリードのレイアウトモ** 変更することが可能となる。また、半導体装置はリード 形成工程、接合工程、接続工程及び對止附近配益工程の 4 工程のみで製造される。このように少ない工程で半さ 体装定が製造されるため、生産効率を向上させることが、10 てきる.

【0120】また、脚坎塚8記載の発明によれば、ポリ イミド級に印加する歴度等を所定範囲内に制御すること なく複合処理を行うことができるため、複合処理を容易 に行うことができる。また、諸求項8記載の発明によれ ば、住民工程で、電低パッドとリードとモダイレクトリ ードボンディング注を用いて電気的に投放するため、点 単かつ検索に電板パッドとリードとの技統処理を行うこ とができる。

明によれば、アウターリード部のリードビッチに対して インナーリード部のリードピッチが小さく放定されてい るため、インナーリード部が電気的に接続される半導体 チップの常権パッドの配位ピッチが小さくてもこれに対 応させることができ、かつ実装蓄板と電気的に技統され るアウターリード邸のリードピッチは大きいため、天芸 基仮への実装住を向上させることができる。また、交起 がアウターリード部に形成されることにより、この交起 を外部技法は子して用いることができ、これによっても 実装性を向上させることができる。

【0122】また、請求項12及び請求項13記載の見 劈によれば、突起が一体的に形成された袋ピッチのリー ドモ事為に形成することができる。また、如果項14記 虹の晃劈によれば、リードパターンを形成するリードパ ターン形成工性と、交配を形成する交配形成工程とも別 四に行うことにより、基材の年さそ英記の高さに向わら ず逆定することができ、よって薄い益材を用いることに よりリードパターンの衣ピッチ化も図ることができる。 また、突起形成工程においては、低量の高さを有する突 起を形成することが可能となり、設計の自由度を向上さ (0) ド森を配設する処理を収明するための区である。 せることができる.

【0123】更に、技术項15万至17花数の兄弟によ れば、英足形成工程において突起の形成を容易に行うこ とができる.

【図面の原単な反明】

【図1】 本発明の一実施的である半導体生産を示す断面 日である。

1万つ1 カロヴァニアロホームスティックサイエディス

示す底面図である。

【図4】本見明の一変範囲である半進体装置の変形のモ 赤寸底面区である。

14

【図5】本発明に係るリードフレームの製造方圧の第2 実筋例を収明するための窓であり、 番材を示す器であ

【図6】本発明に係るリードフレームの製造方法の第3 天英州を収明するための区であり、 历史位置にマスクを 足以した世界を示す区である。

【図7】本見朝に係るリードフレームの製造方法の第1 **実施例を収明するための間であり、第1のエッチングエ** 世が終了した状態を示す図である。

【図8】本見朝に係るリードフレームの製造方法の第1 実施例を説明するための盛であり、所定位置にマスクを 配益した状態を示す感である。

【図9】本見朝に任るリードフレームの設造方在の第1 実筋肉を説明するための図であり、完成したリードフレ ームモ示す望である。

【図10】本発明に係るリードフレームの製造方法の第 【0121】また、紋水項10及び欧水項11記数の兒 20 2実施例を設明するための図であり、第1の差材を示す 図である.

> 【図11】本発明に低るリードフレームの製造方法の第一 2 実施例を説明するための図であり、 第 2 の基材を示す 図である。

【図12】本発料に係るリードフレームの製造方法の第 2 実施例を説明するための図であり、第1の基材と第2 の基材を接合した状態を示す図である。

【図13】リードパターンと突起パターンとが重なり合 った部位を拡大して示す平面図である。

30 【図14】リードパターンと交起パターンとが異なり合 った即位を拡大して示す側面包である。

【図15】本見朝に係るリードフレームの設造方法の第 2 実施例を説明するための②であり、完成したリードフ レームを示す図である。

【図16】本見明に低る半萬体装置の製造工程のほ合工 程を取明するための区であり、ポンディングパッド部の 形成を放明するための回である。

【図17】本見明に任る半歳体装置の製造工程の復合工 怪を説明するための回であり、半導体チップにポリイミ

【図18】本見明に係る半高体装置の製造工程の接合工 程を取明するための図であり、半路体チップにリードフ レームを配収する処理を表明するための図である。

【図19】本発明に係る半速体装置の製造工程の指合工 左を放射するための包であり、ポリイミド葉を指着剤と して既転させてキばはチップとリードフレームとを混合 下る処理を表現でるための包である。

【図21】本見明に伝る半路は至屋の製造工程の接段工 伐を設明するための図であり、キャピラリを用いてワイ ヤの配は処理を行っている状態を示す図である。

【図22】本見防に低る半端体拡進の伝送工程の程度工 役を放明するための図であり、電極パッドとリードとの 間にワイヤが配政された状態を示す図である。

【図23】本発明に係る半導体装置の製造工程の封止樹 **灰配以工程を説明するための図であり、半導体チップが 业型には考された状態を放射するための図である。**

【図24】本発明に係る半導体装置の製造工程の封止層 **延配設工程を説明するための図であり、企型に対止制度** が充填された状態を説明するための回である。

【図25】本兒明に氏る半導体装置の製造工程の對止樹 都配益工程を説明するための図であり、 樹脂封止された 半導体チップが企型から解型された状態を放明するため の区である.

【図26】本発明に係る半導体装置の製造工程のパンプ 形成工程を攻明するための図であり、ホーニング処理を 実施している状態を示す図である。

【図27】本発明に採る半導体装置の収法工程のパンプ 形成工匠を説明するための図であり、外弦メッキ処理を 灰矩している状態を示す図である。

【図 2 8】 本発明に築る半導体装置の製造工程のパンプ 形成工程を収明するための図であり、外装メッキ処理が 終了した状態を示す囚である。

【図 2 9】 本見明に係る半導体装置の製造工程のパンプ 形成工程を収明するための数であり、バンブを形成した 状球を示す図である。

【図30】本見明に採る半端体装置の製造工程のパンプ 30 9、9A~9 1 突起 形成工程を説明するための区であり、完成した半温は芸 屋を示す窓である。

【図31】本見明に係る半進体拡圧のは貧工程を提明す るための囚であり、ソケットも用いては駄を行う方法も 示す図である。

【図32】本発明に係る半途体装置の試験工程を説明す るための空であり、プローブを用いては数を行う方法を 示す区である。

【図33】半導体装置を実営を抵に実気する実践工程を 表明するための囚である。

【四34】交起の平面形状を異ならせた変形性を示す図 てある.

【図35】 突起の断距形状を異ならせた変形性を示す図 てあろ.

【図36】 スタッドパンプにより交起を形成する構成を 記憶するための②である。

【図37】スタッドバンでにより芽胞を形成でも成式の

【図39】提供核成の変形的を示す区であり、電極バッ ドに直接リードを接接する方法を放明するための図であ

26

【図40】 使取機成の変形のモボす図であり、電極バッ ドに直接リードが接続された状態を示す区である。

【図41】性疣核成の変形例を示す図であり、電極バッ ドにリードモスタッドパンプを介して推検する方法を放 男するための回である.

【図42】接続観点の変形術を示す図であり、竜極パッ 10 ドにリードモスタッドパンプを介して復復した状態を示 す回である.

【個43】対止原程配及工程の変形のも取明するための 図であり、金型に半導体チップが基常された状態を示す 図である.

【図4.4】対止器線配設工程の変形例を放射するための 図であり、全型に対止を溶が充填された状態を示す図で ある.

【図45】突起が封止密羅より大きく突出した模成の半 導体装置を示す図である。

20 【符号の反明】

- 1.60 华英传集团
- 2 単導体テップ
- 3 4- 8
- 3 a インナーリード部
- 3 b アウターリード戦
- 4 對止附加
- 5 バンブ
- 6 電極パッド
- 8 714
- - 10 異學基板
 - 11.20 リードフレーム
 - 12 54
 - 13.17 722
 - 21 第1の番材
 - 2.2 第2の基材
 - 23 リードバターン
 - 24 交配パターン
 - 28 松果
- 10 29 キャピラリ
 - 30.50 全型
 - 3 1 上型
 - 32.51 下型
 - 33.52 #+ 274
 - 3 4 辛任福
 - 35 半日福
 - 41 22580

[🖾 3]

4.8 灰热抬臭

1 FIME 2 1 1 FIME 2 2 FIME 2 2

ļ

(2 4 5]

フロントページの炊きる

(72) 発明者 字野 正

神奈川県川崎市中原区上小田中1015春

地 富士通牒式会社内

(72)兒明者 庭択 哲也

神奈川県川崎市中原区上小田中1015番

地,富士通牒式会征内

(72) 発明者 脇 政樹

度児島県羅摩部入来町制田5950参地 株式会社九州省士通エレクトロニクス内

JAPANESE PATENT LAID-OPEN PUBLICATION NO. HEISEI 8-306853

[TITLE OF THE INVENTION]

SEMICONDUCTOR DEVICE, FABRICATION METHOD THEREOF,

AND FABRICATION METHOD FOR LEAD FRAME

[CLAIMS]

5

10

15

1. A semiconductor device including a semiconductor chip provided with electrode pads formed to have a first pitch, leads electrically connected to the electrode pads by a wiring, respectively, and a resin encapsulate for encapsulating the semiconductor chip, wherein:

protrusions are formed on the leads, respectively, in such a fashion that they have a second pitch different from the first pitch; and

the resin encapsulate is arranged to encapsulate the wiring connected between the electrode pads and the leads while allowing the protrusions to be exposed.

- 2. A semiconductor device including a semiconductor chip provided with electrode pads formed to have a first pitch, leads electrically connected to the electrode pads by a wiring, respectively, and a resin encapsulate for encapsulating the semiconductor chip, wherein:
- 25 protrusions are formed on the leads, respectively, in

\$91561 vi

such a fashion that they have a second pitch different from the first pitch; and

the resin encapsulate has a thickness from a surface of the semiconductor chip formed with the electrode page not more than a height from the semiconductor chip surface to each protrusion, but not less than the height from the semiconductor chip surface to the wiring.

- 3. The semiconductor device according to claim 1 or 2,
 wherein the semiconductor chip and the leads are bonded together
 by an adhesive comprised of a polyimide film.
- 4. The semiconductor device according to any one of claims 1 to 3, wherein each of the protrusions is formed in such a fashion that it is integrally with an associated one of the leads.
 - 5. The semiconductor device according to any one of claims 1 to 4, wherein the wiring comprises wires.

20

5

- 6. The semiconductor device according to any one of claims 1 to 5, wherein each of the protrusions is formed with a bump.
- 7. A method for fabricating a semiconductor device

10

comprising the steps of:

forming leads each provided with a protrusion at a region where an outer connecting terminal is to be formed;

arranging a polyimide film on at least one of the leads and the semiconductor chip, pressing the leads and the semiconductor chip by a desired pressure while interposing the polyimide film between the leads and the semiconductor chip, and heating the polyimide film to a desired temperature to allow the polyimide film to serve as an adhesive, thereby bonding the leads and the semiconductor chip together;

connecting the electrode pads formed on the semiconductor chip to the leads by a wiring, respectively, thereby electrically connecting the electrode pads and the leads together; and

- forming a resin encapsulate adapted to partially or completely encapsulating the wiring and the semiconductor chip while allowing each of the protrusions to be exposed at a tip surface thereof.
- 8. The method according to claim 7, wherein a thermoplastic adhesive is applied to both surfaces of the polyimide film when the leads and the semiconductor chip are bonded together by the polyimide film at the bonding step.
- 25 9. The method according to claim 7 or 8, wherein the

electrode pads and the leads are electrically connected together using a direct lead bonding process at the connecting step.

10. A lead frame provided with a plurality of leads each having an inner lead portion and an outer lead portion, wherein

the inner lead portion have a lead pitch less than a lead pitch of the outer lead portions, and each of the outer lead portion has a protrusion integrally formed therewith.

- 10. It is lead frame according to claim 10, wherein the lead pitch (Pout) of the outer lead portions is substantially equal to the thickness (W) of each lead at a region where the protrusion is formed, and the lead pitch (Pin) of the inner lead portions corresponds to about half the lead pitch (Pout) of the outer lead portions (Pin = Pout/2).
 - 12. A method for fabricating a lead frame according to claim 10 or 11, comprising:
- a primary etching step for conducting a half-etching

 process for a blank while using a mask arranged on the blank at the protrusion forming region; and

a secondary etching step for conducting a half-etching process for the blank while using a mask arranged on the blank at the lead forming region.

25

13. A method for fabricating a lead frame according to claim 10 or 11, comprising the steps of:

preparing a first blank and a second blank respectively having thicknesses selected in such a fashion that they have a total thickness corresponding to the height of the protrusions when they are overlapped with each other;

forming a lead pattern having a planar shape corresponding to the shape of the leads on the first blank;

forming a protrusion pattern on the second blank in such

a fashion that the protrusion pattern is arranged at the

protrusion forming region;

overlapping the first blank formed with the lead pattern and the second blank formed with the protrusion pattern together, and bonding the first and second blanks to each other in such a fashion that the lead pattern and the protrusion pattern are overlapped with each other at the protrusion forming region; and

removing unnecessary portions of the first and second blanks.

20

25

15

5

14. A method for fabricating a lead frame according to claim 10 or 11 comprising the steps of:

forming a lead pattern having a planar shape corresponding to a shape of the leads on a blank; and forming the protrusions at a desired region on the lead

591561 vi

pattern after completion of the lead pattern forming step.

- 15. The method according to claim 14, wherein the protrusion forming step is achieved by overlapping one or more bumps on the lead pattern at a desired region to form the protrusion.
- 16. The method according to claim 14, wherein the protrusion forming step is achieved by arranging a conductive member on the lead pattern at a desired region to form the protrusion.
- 17. The method according to claim 14, wherein the protrusion forming step is achieved by subjecting a desired portion of the lead pattern to a plastic shaping process to form the protrusion.

[DETAILED DESCRIPTION OF THE INVENTION] [FIELD OF THE INVENTION]

The present invention relates to a semiconductor device, a method for fabricating the semiconductor device, and a method for fabricating a lead frame used in the semiconductor device.

In particular, the present invention relates to a semiconductor device having a structure encapsulating a semiconductor chip and leads by resin, a method for fabricating the semiconductor

10

20

25

device, and a method for fabricating a lead frame used in the semiconductor device.

The recent trend of electronic appliances to be down-sized has resulted in efforts to achieve an increased density and increased mounting efficiency of semiconductor devices. It is also expected to obtain an improvement in the reliability of electronic appliances. In addition, there is demand for an improvement in the reliability of semiconductor devices.

Furthermore, it is expected for semiconductor devices to achieve a reduction in costs.

Accordingly, developments of semiconductor devices capable of satisfying the above mentioned demands are strongly required.

15 [DESCRIPTION OF THE PRIOR ART]

Recently, a flip chip type mounting structure has been proposed as a scheme capable of achieving a high-density mounting. Such a flip chip type mounting structure is widely used in multi chip modules (MCMs). In accordance with the flip chip mounting scheme applied to MCMs, no resin encapsulate is formed. Instead, bumps are formed on electrode pads of a semiconductor chip (bare chip), respectively. In this case, mounting of the bare chip is achieved by bonding the bare chip to electrode portions formed on a circuit board (mother board) in a face down bonding fashion.

10

15

20

25

In accordance with the use of the flip chip type mounting structure, it is possible to mount semiconductor devices on a mother board at a high density. An improvement in electrical characteristics is also achieved because the semiconductor devices are electrically connected to the mother board by means of bumps directly formed on the bare chips of the semiconductor devices.

(SUBJECT MATTERS TO BE SOLVED BY THE INVENTION)

However, the bare chips not encapsulated by resin involve problems in that they exhibit a degradation in heat resistance, mechanical strength, and temperature resistance. Furthermore, since bumps are directly formed on electrode pads formed on each bare chip, the layout of the electrode pads formed on the bare chip is rendered to be the layout of outer connecting terminals (bumps) as it is.

Generally, semiconductor chips have different layouts of electrode pads thereof in accordance with the manufacturers thereof. Accordingly, even for semiconductor devices having the same function, the user should design a wiring pattern of the mother board to match the kind of those semiconductor devices (manufacturer). In the conventional mounting structure using bare chips, there are problems of a degradation in the matching ability of semiconductor devices to the mother board and an increased burden to the user because no standardization for

15

25

outer electrode terminals of semiconductor devices is made.

In order to solve the above mentioned problems, the standardization may probably be made by processing the surface of a chip and forming a wiring on the processed chip surface.

However, this scheme requires a number of processes with a high accuracy to form a desired wiring. Furthermore, there are problems of an increase in costs and a degradation in the efficiency of production.

The present invention has been made in view of the above mentioned problems, and an object of the invention is to provide a semiconductor device, a method for fabricating the semiconductor device, and a method for fabricating a lead frame used in the semiconductor device, which are capable of achieving a standardization of outer electrode terminals to keep the reliability of a semiconductor chip used, a reduction in costs, and an improvement in the efficiency of production.

[MEANS FOR SOLVING THE SUBJECT MATTERS]

The above subject matters can be solved by the following 20 means.

The invention of claim 1 is characterized by a semiconductor device including a semiconductor chip provided with electrode pads formed to have a first pitch, leads electrically connected to the electrode pads by a wiring, respectively, and a resin encapsulate for encapsulating the

1.0

15

20

25

semiconductor chip, wherein: protrusions are formed on the leads, respectively, in such a fashion that they have a second pitch different from the first pitch; and the resin encapsulate is arranged to encapsulate the wiring connected between the electrode pads and the leads while allowing the protrusions to be exposed.

The invention of claim 2 is characterized by a semiconductor device including a semiconductor chip provided with electrode pads formed to have a first pitch, leads electrically connected to the electrode pads by a wiring, respectively, and a resin encapsulate for encapsulating the semiconductor chip, wherein: protrusions are formed on the leads, respectively, in such a fashion that they have a second pitch different from the first pitch; and the resin encapsulate has a thickness from a surface of the semiconductor chip formed with the electrode pads not more than a height from the semiconductor chip surface to each protrusion, but not less than the height from the semiconductor chip surface to the wiring.

The invention of claim 3 is characterized by the semiconductor device according to claim 1 or 2, wherein the semiconductor chip and the leads are bonded together by an adhesive comprised of a polyimide film.

The invention of claim 4 is characterized by the semiconductor device according to any one of claims 1 to 3, wherein each of the protrusions is formed in such a fashion that

10

15

20

it is integrally with an associated one of the leads. The invention of claim 5 is characterized by the semiconductor device according to any one of claims 1 to 4, wherein the wiring comprises wires.

The invention of claim 6 is characterized by the semiconductor device according to any one of claims 1 to 5, wherein each of the protrusions is formed with a bump. The invention of claim 4 is characterized by a method for fabricating a semiconductor device comprising the steps of: forming leads each provided with a protrusion at a region where an outer connecting terminal is to be formed; arranging a polyimide film on at least one of the leads and the semiconductor chip, pressing the leads and the semiconductor chip by a desired pressure while interposing the polyimide film between the leads and the semiconductor chip, and heating the polyimide film to a desired temperature to allow the polyimide film to serve as an adhesive, thereby bonding the leads and the semiconductor chip together; connecting the electrode pads formed on the semiconductor chip to the leads by a wiring, respectively, thereby electrically connecting the electrode pads and the leads together; and forming a resin encapsulate adapted to partially or completely encapsulating the wiring and the semiconductor chip while allowing each of the protrusions to be exposed at a tip surface thereof.

The invention of claim 8 is characterized by the method

10

15

20

25

according to claim 7, wherein a thermoplastic adhesive is applied to both surfaces of the polyimide film when the leads and the semiconductor chip are bonded together by the polyimide film at the bonding step.

The invention of claim 9 is characterized by the method according to claim 7 or 8, wherein the electrode pads and the leads are electrically connected together using a direct lead bonding process at the connecting step.

The invention of claim 10 is characterized by a lead frame provided with a plurality of leads each having an inner lead portion and an outer lead portion, wherein the inner lead portion have a lead pitch less than a lead pitch of the outer lead portions, and each of the outer lead portion has a protrusion integrally formed therewith.

The invention of claim 11 is characterized by the lead frame according to claim 10, wherein the lead pitch (Pout) of the outer lead portions is substantially equal to the thickness (W) of each lead at a region where the protrusion is formed, and the lead pitch (Pin) of the inner lead portions corresponds to about half the lead pitch (Pout) of the outer lead portions (Pin = Pout/2). The invention of claim 12 is characterized by a method for fabricating a lead frame according to claim 10 or 11, comprising: a primary etching step for conducting a half-etching process for a blank while using a mask arranged on the blank at the protrusion forming region; and a secondary etching step for

10

15

20

conducting a half-etching process for the blank while using a mask arranged on the blank at the lead forming region.

The invention of claim 13 is characterized by a method for fabricating a lead frame according to claim 10 or 11, comprising the steps of: preparing a first blank and a second blank respectively having thicknesses selected in such a fashion that they have a total thickness corresponding to the height of the protrusions when they are overlapped with each other; forming a lead pattern having a planar shape corresponding to the shape of the leads on the first blank; forming a protrusion pattern on the second blank in such a fashion that the protrusion pattern is arranged at the protrusion forming region; overlapping the first blank formed with the lead pattern and the second blank formed with the protrusion pattern together, and bonding the first and second blanks to each other in such a fashion that the lead pattern and the protrusion pattern are overlapped with each other at the protrusion forming region; and removing unnecessary portions of the first and second blanks.

The invention of claim 14 is characterized by a method for fabricating a lead frame according to claim 10 or 11 comprising the steps of: forming a lead pattern having a planar shape corresponding to a shape of the leads on a blank; and forming the protrusions at a desired region on the lead pattern after completion of the lead pattern forming step.

The invention of claim 15 is characterized by the method

10

according to claim 14, wherein the protrusion forming step is achieved by overlapping one or more bumps on the lead pattern at a desired region to form the protrusion.

The invention of claim 16 is characterized by the method according to claim 14, wherein the protrusion forming step is achieved by arranging a conductive member on the lead pattern at a desired region to form the protrusion.

The invention of claim 17 is characterized by the method according to claim 14, wherein the protrusion forming step is achieved by subjecting a desired portion of the lead pattern to a plastic shaping process to form the protrusion.

[FUNCTIONS]

Each of the above mentioned means serves as follows.

In accordance with the invention of claims 1 and 2, it is possible to achieve an improvement in heat resistance, mechanical strength, and temperature resistance. Since the electrode pads and leads are connected together using wires, it is possible to set the layout of the leads irrespective of the layout of the electrode pads. An improvement in the matching ability of the semiconductor device to the circuit board. The resin encapsulate provides an improvement in reliability because it surely protects the connected wires. Since the outer connecting terminals are exposed from the resin encapsulate, the electrical connection of the semiconductor device to the circuit

10

15

20

25

board can be surely provided.

In accordance with the invention of claim 3, the insulating and bonding processes for the semiconductor chip and leads can be simultaneously conducted because the polyimide film, as an insulating member, interposed between the semiconductor chip and the leads serves as an adhesive.

Accordingly, it is possible to simplify the structure of the semiconductor device while achieving an easy fabrication of the semiconductor device, as compared to the case in which the insulating member and the adhesive are separately provided.

In accordance with the invention of claim 4, each protrusion is integrally formed with an associated one of the leads. Accordingly, it is possible to achieve a simplification in structure, as compared to the case in which the protrusion and lead are formed using separate materials, respectively. In accordance with the invention of claim 5, a wire is used for the connection between the electrode pad and lead. Accordingly, it is possible to achieve an easy connection for the wire between the electrode pad and lead.

In accordance with the invention of claim 6, a bump is formed on each protrusion. Accordingly, it is possible to achieve an easy connection of the semiconductor device to the circuit board, as compared to the case in which the protrusion is directly mounted on the circuit board. In accordance with the invention of claim 7, the leads and semiconductor chip are

15

20

25

bonded together by maintaining the polyimide film at a certain temperature and a certain pressure, thereby causing the polyimide film to serve as an adnesive. Accordingly, the insulating and bonding processes for the leads and semiconductor chip can be simultaneously conducted.

Since each electrode pad formed on the semiconductor chip is connected to an associated one of the leads by means of a wire in the bonding process, it is possible to vary the layout of the leads with respect to the layout of the electrode pads by selecting an appropriate connection method. The fabrication of the semiconductor device involves only four processes, that is, a lead forming process, a bonding process, a connecting process, and a resin encapsulating process. Since the fabrication of semiconductor device is achieved using a reduced number of processes, as mentioned above, an improvement in production efficiency is obtained.

In accordance with the invention of claim 8, an easy bonding process can be achieved because the bonding process can be conducted without a control for the temperature applied to the polyimide film within a desired range.

In accordance with the invention of claim 9, the connection between the electrode pads and the leads can be simply and surely achieved because the electrode pads and leads are electrically connected together in accordance with a direct lead bonding process. In accordance with the invention of claim

10

15

than the lead pitch of the outer lead portions is less than the lead pitch of the inner lead portions. Accordingly, the inner leads can cope with a small pitch of the electrode pads on the semiconductor chip to which the inner lead portions are electrically connected. Furthermore, the mounting efficiency of the semiconductor device to the circuit board is improved because the lead pitch of the outer lead portions electrically connected to the circuit board is large. Since each protrusion is formed on an associated one of the outer lead portions, it can be used as an outer connecting terminal. Accordingly, it further improves the mounting efficiency.

In accordance with the invention of claim 12, it is possible to form leads each integrally formed with a protrusion by conducting a primary etching process for the blank in accordance with a half-etching method in such a fashion that the blank has a reduced thickness at its portion except for the region to be formed with the protrusions—and then conducting a secondary etching process for the thickness-reduced portion of the blank to form the leads.

The pitch of the leads is determined by the thickness of the blank upon forming the leads. In other words, it is only possible to form leads having a pitch substantially equal to the thickness of the blank. Accordingly, a reduced lead pitch can be obtained when the blank has a reduced thickness.

25 Meanwhile, where leads provided with protrusions are

10

15

20

25

formed, the thickness of the blank is determined by the height of the protrusions. It is impossible to form leads having a small pitch by simply etching the blank having a thickness equal to the height of the protrusions. In accordance with the present invention, however, it is possible to form leads having a small pitch, even when the leads have a structure provided with protrusions, by conducting a primary etching process for the blank in accordance with a half-etching method in such a fashion that the blank has a reduced thickness at its portion except for the region to be formed with the protrusions, and then conducting a secondary etching process for the thickness-reduced portion of the blank to form the leads. As apparent from the above description, the pitch of the protrusions can be reduced to a pitch substantially equal to the thickness of the blank.

. ..

In accordance with the invention of claim 13, the first and second blanks have thicknesses respectively selected in such a fashion that they have a total thickness corresponding to the height of the protrusions when they are overlapped with each other. For this reason, each of the first and second blanks has a thickness less than the height of the protrusions. In the lead pattern forming step, a lead pattern having the same shape as the whole shape of the leads is formed on the thin first blank. Accordingly, it is possible to reduce the lead pitch of the lead pattern formed in accordance with the above mentioned

10

15

20

relation between the blank thickness and lead pitch.

In the protrusion pattern forming step, a protrusion pattern is formed on the second blank in such a fashion that it is arranged at the protrusion forming region. In the bonding step, the first and second blanks are bonded together in a state in which they are overlapped with each other. The lead pattern and protrusion pattern are overlapped with each other at the protrusion forming region. The blank thickness at the protrusion forming region corresponds to a desired height of the protrusions. At the removing step, unnecessary portions of the blanks are removed, thereby forming leads.

Accordingly, a reduction in lead pitch is achieved because the thickness of the blank used in the formation of the lead pattern is small. On the other hand, since the lead pattern and protrusion pattern are overlapped with each other at the protrusion forming region, it is possible to form protrusions having a desired thickness. In accordance with the invention of claim 14, the lead pattern forming step and the protrusion forming step are conducted in a separate fashion. Accordingly, the thickness of a blank used can be selected irrespective of the height of the protrusion. Therefore, it is possible to reduce the pitch of a lead pattern when a thin blank is used. In the protrusion forming process, it is possible to

25 the freedom of design is also achieved.

form protrusions having an optional height. An improvement in

In accordance with the invention of claims 15 to 17, it is possible to easily conduct the protrusion forming process.

[EMBODIMENTS]

5

10

15

20

25

Now, preferred embodiments of the present invention will be described in conjunction with the annexed drawings. Figs. 1 and 2 illustrate a semiconductor device 1 according to an embodiment of the present invention. Fig. 1 is a cross-sectional view of the semiconductor device 1 whereas Fig. 2 is a bottom view of the semiconductor device 1.

As shown in the figures, the semiconductor device 1 mainly includes a semiconductor chip 2, a plurality of leads 3, a resin encapsulate 4, and bumps 5. The semiconductor chip 2 is provided at the central portion of its lower surface with a plurality of electrode pads 6 arranged in a line. Each of the leads 3 has an inner lead portion 3a and an outer lead portion 3b. The leads 3 are bonded to the lower surface of the semiconductor chip 2 by means of a polyimide film 7.

The polyimide film 7 serves as an insulating member for electrically insulating the leads 3 from a circuit surface 2A formed on the lower surface of the semiconductor chip 2. The polyimide film 7 also serves as an adhesive for bonding the leads 3 to the semiconductor chip 2 as described hereinafter. Since the polyimide film 7 functions as both the insulating member and the adhesive, it is possible to simplify the

10

15

20

25

structure of the semiconductor device 1 which achieving an easy fabrication of the semiconductor device 1, as compared to the case in which the insulating member and the adhesive are separately provided.

. ..

Wires 8 are arranged between the inner leads 3a and the electrode pads 6 of the semiconductor chip 2, respectively. The semiconductor chip 2 is electrically connected with the leads 3 by the wires 8, respectively. A protrusion 9 is formed at a desired position of the outer lead portion 3b included in each lead 3 in such a fashion that it is integral with the outer lead portion 3b. In most cases, the leads 3 having the above mentioned structure are arranged on the lower surface of the semiconductor chip 2. This arrangement is called a "lead on chip (LOC)" structure. By virtue of this arrangement, the semiconductor device 1 can be miniaturized.

The resin encapsulate 4 is made of, for example, epoxy resin. This resin encapsulate 4 is formed in accordance with a molding process, as described hereinafter. The resin encapsulate 4 is disposed at the lower surface and side surfaces of the semiconductor chip 2 to have desired thicknesses, respectively. In the illustrated embodiment, the resin encapsulate 4 does not exist at the upper surface of the semiconductor chip 2, that is, a heat dissipation surface.

The resin encapsulate 4 is configured in such a fashion that its thickness (indicated by the arrows H) from the surface

10

15

20

25

of the semiconductor chip 2 formed with the electrode pads ℓ , that is, the lower surface of the resin encapsulate 4, is not more than the height (indicated by the arrows W; from the lower surface of the resin encapsulate 4 to the tip of the protrusion 9, but not less than the height (indicated by the arrows h) from the lower surface of the resin encapsulate 4 to the apex of a roof of the wire 8 (h \leq H \leq W). By virtue of this configuration, at least the tip 9a of each protrusion 9 is surely exposed from the resin encapsulate 4. In this case, the wires 8 and the leads 3, except for the exposed portions of the protrusions 9, are encapsulated by the resin encapsulate 4.

Since the semiconductor device 1 of this embodiment is configured in such a fashion that a desired portion of the semiconductor chip (that is, the portion except for the upper surface) is encapsulated by the resin encapsulate, it is possible to achieve an improvement in heat resistance, mechanical strength, and temperature resistance. Also, an improvement in the reliability of the semiconductor device 1 is achieved because the resin encapsulate 4 surely protects the wires 8. In addition, it is possible to surely obtain an electrical connection to a circuit board 10 because at least the tip 9a of each protrusion 9 serving as an outer connection terminal is surely exposed from the resin encapsulate 4.

Now, a description will be made in conjunction with a plurality of leads 3 arranged on the lower surface of the

10

15

20

25

semiconductor chip 2 while referring to Fig. 2. For the convenience of description, the resin encapsulate 4 arranged on the lower surface of the semiconductor chip 2 is removed from Fig. 2. As shown in Fig. 2, the leads 3 are configured in such a fashion that the lead pitch of adjacent inner lead portions la (indicated by the arrows Pin) is less than the lead pitch of adjacent outer lead portions 3b (indicated by the arrows Pout). In detail, the lead pitch Pin of the inner lead portions 3a corresponds to about half the lead pitch Pout of the outer lead portions 3b (Pin = Pout/2). The lead pitch Pout of the outer lead portions 3b is substantially equal to the thickness W of each lead 3 at a region where the protrusion 9 is formed.

Since the lead pitch Pin of the inner lead portions 3a is small as compared to the lead pitch Pout of the outer lead portions 3b, the inner lead portions 3a can cope with a possible small pitch of the electrode pads 6 of the semiconductor chip 2 to which the inner lead portions 3a are electrically connected. On the other hand, since the lead pitch Pout of the outer lead portions 3b (protrusions 9) electrically connected to the circuit board 10 is large, it is possible to achieve an improvement in the mounting efficiency of the semiconductor device 1 on the circuit board 10.

Meanwhile, the semiconductor device 1 according to the illustrated embodiment has a configuration in which the electrical connection of the electrode pads 6 arranged on the

semiconductor chip 2 to the circuit board 10 is not achieved by the bumps 5 directly formed on the electrode pads 6, but achieved by the wires 8 arranged between the electrode pads 6 and the inner leads 3a. Accordingly, an electrical signal from each electrode pad 6 can be transferred to the outside of the semiconductor device 1 via the associated lead 3 and wire 8. This makes it possible to set the layout of the leads 3 irrespective of the layout of the electrode pads 6.

In the case of Fig. 2, electrical signals from the 10 electrode pads 6 centrally formed on the semiconductor chip 2 are outwardly transferred via the wires 8 and leads 3. Also, the protrusions 9, which serve as outer connecting terminals, are arranged at the peripheral portion of the semiconductor chip 2. Where the electrode pads 6 are formed at the peripheral 15 portion of the semiconductor chip 2, as shown in Fig. 3, it is possible to arrange the protrusions 9 serving as outer connecting terminals at a region inside the electrode pads 6 because electrical signals from the electrode pads 6 can be outwardly transferred via the wires B and leads 3. Furthermore, 20 the protrusions 9 serving as outer connecting terminals may be arranged at a region outside the semiconductor chip 2, as shown in Fig. 4.

Since electrical signals from the electrode pads 6 can be outwardly transferred using the leads and wires 8, an improvement in the matching ability of the semiconductor device

25

30

I to the circuit board 10 is achieved. It is also possible to easily set the layout of the protrusions 9, which serve as outer connecting terminals, to be the layout of standard outer connecting terminals. Accordingly, a reduction in the burden to the user of the semiconductor device 1 is achieved.

Now, a method for fabricating the semiconductor device I having the above mentioned configuration will be described. The semiconductor device I according to the present invention is fabricated using four basic processes, that is, a lead forming process, a bonding process, a connecting process, and a resin encapsulating process, along with two additional processes, that is, a bump forming process and a testing process. The fabrication method will be described in conjunction with the above mentioned processes, respectively.

Figs. 5 to 9 illustrate a first embodiment associated with the lead forming process. This lead forming process is a process for forming a lead frame 11 which is a blank for forming the leads 3. For the formation of the lead frame 11, a flat blank 12 is first prepared, as shown in Fig. 5. The blank 12 may be a lead frame blank made of, for example, 42 Alloy and having a thickness corresponding to the height W of the protrusions 9.

Thereafter, a mask 13 (indicated by small dots) is arranged on the blank 12, as shown in Fig. 6. The mask 13 covers a region (denoted by the reference numeral 14) to be

25

15

20

formed with the protrusions 9 and a region (denoted by the reference numeral 15) to be formed with cradles.

After the arrangement of the mask 13, a half-etching process (primary etching process) is conducted for the blank 11. In the illustrated embodiment, the half-etching process for the blank 12 is carried out in accordance with a wet etching method (of course, other etching methods, for example, a dry etching method, may be used). The etching time is set so that the thickness of an etched portion (the white portion in Fig. 6) corresponds to about half the thickness W of the blank 12 (W/2).

Fig. 7 shows a state in which the mask 13 is removed after completion of the half-etching process. In this state, the blank 12 maintains the thickness W only at its portion corresponding to the region 14 to be formed with protrusions 9 and its portion corresponding to the region 15 to be formed with cradles 15. The remaining portion of the blank 12 (denoted by the reference numeral 16) has a thickness corresponding to W/2 by virtue of the half-etching.

After completion of the half-etching process as mentioned above, the blank 12 is subjected to another etching process under the condition in which a mask 17 (indicated by small dots) is arranged to cover a region (denoted by the reference numeral 18) to be formed with leads 3 along with the region 15 to be formed with cradles.

25 In accordance with the etching process (secondary etching

10

process), the portions of the blank 12 not covered with the mask 17 are removed. Thus, a lead frame 11 provided with a plurality of leads 3 having a structure as shown in Fig. 9 is obtained. If necessary, silver may be plated on a desired portion of the lead frame 11 (corresponding to the region formed with the leads 3).

The lead frame 11 formed as mentioned above has a structure in which each lead 3 has an inner lead portion 3a, an outer lead portion 3b, and a protrusion 9 integrally formed together. In this structure, the protrusion 9 has a thickness corresponding to W whereas the inner lead portion 3a and the outer lead portion 3b except for its part corresponding to the region formed with the protrusion 9 have a thickness corresponding to W/2.

The relation between the lead pitch and the thickness of the blank 12 will now be described. The pitch of the leads 3 is determined by the thickness of the blank 12 upon forming the leads 3. In other words, it is only possible to form leads having a pitch substantially equal to the thickness of the blank 12. Accordingly, a reduced lead pitch can be obtained when the blank 12 has a reduced thickness.

Meanwhile, where leads 3 provided with protrusions 9 are formed, the thickness of the blank 12 is determined by the height of the protrusions 9. It is impossible to form leads having a small pitch by simply etching the blank 12 having a

25

10

thickness equal to the height of the protrusions 9. In accordance with the present invention, however, it is possible to form leads 3 having a small pitch (the lead pitch Fin in Fig. 11a), even when the leads 3 have a structure provided with protrusions 9, by conducting a primary etching process for the blank 12 in accordance with a half-etching method in such a fashion that the blank 12 has a reduced thickness (a thickness corresponding to about W/2) at its portion except for the region 14 to be formed with the protrusions 9, and then conducting a secondary etching process for the thickness-reduced portion of the blank 12 to form the leads 3. For the same reason, the pitch Pout of the protrusions 9 (outer lead portions 3b) can be reduced to a pitch substantially equal to the thickness W of the blank 12.

15 For instance, where a typical lead frame blank having a thickness of 0.10 mm is used, it is possible to obtain a minimum pitch Pout of the outer lead portions 3b and protrusions 9 corresponding to 0.10 mm (Pout = 0.10 mm) and a minimum pitch Pin of the inner lead portions 3a corresponding to 0.05 mm (Pin = 0.05 mm). In the case of a typical lead frame blank having a thickness of 0.15 mm, it is possible to obtain a minimum pitch Pout of the outer lead portions 3b and protrusions 9 corresponding to 0.15 mm (Pout = 0.15 mm) and a minimum pitch Pin of the inner lead portions 3a corresponding to 0.075 mm (Pin = 0.075 mm). Where a typical lead frame blank having a thickness

20

25

of 0.20 mm is used, it is possible to obtain a minimum pitch.

Pout of the outer lead portions 3b and protrusions 9

corresponding to 0.20 mm (Pout = 0.20 mm) and a minimum pitch.

Pin of the inner lead portions 3a corresponding to 0.10 mm (Fin = 0.10 mm).

On the other hand, the position of each protrusion 9 is determined by the position of the mask 13 shown in Fig. 6. That is, the position of each protrusion 9 can be optionally determined by appropriately varying the position of the mask 13.

For this reason, the positions of the protrusions 9 serving as outer connecting terminals can be set within a certain degree of freedom in accordance with a lead forming method included in the illustrated embodiment. Therefore, it is possible to easily form the protrusions 9 at predetermined positions for standard.

outer connecting terminals, respectively.

Next, a second embodiment associated with the lead forming process will be described. Figs. 10 to 15 illustrate the second embodiment associated with the lead forming process. For the formation of a lead frame 20 in this embodiment, a first blank 21 shown in Fig. 10 and a second blank 22 shown in Fig. 11 are first prepared.

The thicknesses of the blanks 21 and 22 are determined so that the total thickness obtained in an overlapping state of the blanks 21 and 22 corresponds to the height W of each protrusion 9. In this embodiment, the thicknesses of the blanks 21 and 22

30

15

20

25

are set to be W/2, respectively. The blanks 21 and 22 have different thicknesses, respectively, in so far as the total thickness obtained in an overlapping state of the blanks 21 and 22 corresponds to the height W of each protrusion 9.

frame material such as 42 ALLOY. This first blank 21 has a structure formed with a lead pattern 23 having the same pattern shape as that of the leads 3 when viewed in a plan view. This structure of the first blank 21 is obtained by previously conducting an etching process or a press-punching process for the first blank 21. However, the lead pattern 23 of the first blank 21 has no protrusion in accordance with this lead forming process, as different from the lead forming process in which the protrusions 9 are formed. Accordingly, the lead pattern 23 has a thickness of W/2 at the entire portion thereof. In Fig. 10, the reference numeral 25 denotes a position determining slot which is formed during the formation of the lead pattern 23.

On the other hand, the second blank 22 shown in Fig. 11 is made of a lead frame material such as 42 ALLOY. This second blank 22 has a structure formed with a protrusion pattern 24. This structure of the second blank 22 is obtained by conducting an etching process or a press-punching process for the second blank 22. The protrusion pattern 24 has a straight line pattern shape. In the protrusion pattern 24, regions to be formed with a certain number of protrusions 9 are arranged in parallel while

10

15

20

25

being laterally spaced from one another. In Fig. 11, the reference numeral 26 denotes a position determining slot which is formed during the formation of the protrusion pattern 24.

The first and second blanks 21 and 22 having the above mentioned structures are then overlapped with each other by vertically aligning the position determining slots 25 and 26 with each other. In the overlapping state, the first and second blanks 21 and 22 are bonded together. The bonding of the first and second blanks 21 and 22 may be achieved using a conductive adhesive or a welding process. Fig. 12 shows the bonded state of the first and second blanks 21 and 22.

In the bonded state of the first and second blanks 21 and 22, the protrusion pattern 24 of the second blank 22 overlaps with protrusion forming regions on the lead pattern 23 of the first blank 22.

Fig. 13 is a plan view illustrating, in a enlarged scale, the overlapping region between the lead pattern 23 and protrusion pattern 24. Also, Fig. 14 is a cross-sectional view illustrating, in an enlarged scale, the overlapping region between the lead pattern 23 and protrusion pattern 24. As shown in Figs. 13 and 14, the lead pattern 23 having a thickness of W/2 corresponding to half the total thickness of the blanks overlaps, in a cross fashion, with the protrusion pattern 24 having a thickness of W/2 corresponding to half the total thickness of the blanks. Accordingly, the regions to be formed

with the protrusions 9 have a thickness W corresponding to the total blank thickness. Accordingly, this thickness W is rendered to be the height of each protrusion 9 (Fig. 14).

After completion of the bonding process for the first and second blanks 21 and 22, the resulting structure is partially removed at its portion except for the portion where the lead pattern 23 and protrusion pattern 24 cross, using a pressing process or the like, thereby forming a lead frame 20 having leads 3 integrally formed with protrusions 9, as shown in Fig. 15.

Similarly to the lead frame 11 fabricated in accordance with the first embodiment, each lead 3 of the lead frame 20 fabricated in accordance with this embodiment has an inner lead portion 3a, an outer lead portion 3b, and a protrusion 9 integrally formed together. In accordance with this embodiment, the lead pattern 23 can be formed to have a small pitch because the first blank 21 has a thickness corresponding to W/2. This will be apparent by referring to the above mentioned relation between the lead pitch and the blank thickness.

Meanwhile, the position of each protrusion 9 is determined by the position of the protrusion pattern 24 formed at the second blank 22. That is, the position of each protrusion 9 can be optionally determined by appropriately varying the position of the protrusion pattern 24. For this reason, the positions of the protrusions 9 serving as outer

10

15

20

25

connecting terminals can be set within a certain degree of freedom in accordance with the lead forming method included in this embodiment. Therefore, it is possible to easily form the protrusions 9 at predetermined positions for standard outer connecting terminals, respectively.

After the lead frame 11 or 20 (in the following description, only the lead frame 11 will be referred) is fabricated in accordance with the above mentioned lead forming process, a bonding process for bonding the lead frame 11 and semiconductor chip 2 together is conducted. Now, the bonding process will be described in conjunction with Figs. 16 to 20.

In this bonding process, gold is plated on the inner lead portions 3a of the lead frame 11 at regions where wires 8 are to be bonded in a subsequent connecting process, thereby forming bonding areas 27, as shown in Fig. 16.

Also, a polyimide film 7 is arranged on the surface of the semiconductor chip 2 formed with the electrode pads 6 in such a fashion that only the electrode pads 6 are exposed. The polyimide film 7 is made of a polyimide material having a glass transition point of 100 to 300 °C. In the state of Fig. 17, the polyimide film 7 is simply in a state laid on the semiconductor chip 2. In order to prevent the polyimide film 7 from being separated from the semiconductor chip 2, accordingly, the semiconductor chip 2 is arranged in such a fashion that its surface formed with the electrode pads 6 is upwardly positioned.

10

15

20

25

In other words, the semiconductor chip 2 is in a bare chip state not encapsulated by resin. The polyimide film 7 may be previously formed on the semiconductor chip 2 during a wafer process for forming the semiconductor chip 2.

Subsequently, the lead frame 11 shown in Fig. 1E is laid on the semiconductor chip 2 on which the polyimide film 7 is laid. The leads 3 (inner lead portions 3a) formed on the lead frame 11 face, in a high accuracy, the electrode pads 6 formed on the semiconductor chip 2. Thus, the position of the lead frame 11 is determined.

After the lead frame 11 is laid in position on the semiconductor chip 2, as mentioned above, a die 28 is lowered to press the lead frame 11 against the semiconductor chip 2, as shown in Fig. 19. The die 28 is equipped with a heating unit. Heat generated from the die 28 is applied to the polyimide film 7 via the lead frame 11.

The polyimide film 7 typically serves as an insulating member for electrically insulating the semiconductor chip 2 and lead frame 11 from each other, as in conventional cases.

However, the inventors found the fact that the polyimide film 7 can serve as an adhesive when it is under a certain condition.

In detail, where the polyimide film 7 is made of a polyimide material having a glass transition point of 100 to 300°C, it can serve as an adhesive when it is heated to a temperature higher than the glass transition point by 100 to 200°C while being

10

applied with a pressure of 1 to 10 Kgf/cm².

In view of the above mentioned fact, the polyimide film T is heated to a temperature higher than the glass transition point by 100 to 200°C by the heater equipped in the die 28 upon bonding the semiconductor chip 2 and lead frame 11 to each other while being applied with a pressure of 1 to 10 Kgf/cm² by the die 28 in accordance with the present invention. Accordingly, the polyimide film 7 can serve as an adhesive. Thus, it is possible to bond the semiconductor chip 2 and lead frame 11 to each other by means of the polyimide film 7.

In accordance with the above mentioned configuration, it is unnecessary to use a separate adhesive for bonding the semiconductor chip 2 and lead frame 11 to each other, as compared to conventional cases using a polyimide film.

- Accordingly, it is possible to achieve a reduction in costs and a reduction in the number of processing steps used in the fabrication of the semiconductor device 1. Fig. 20 illustrates a state in which the semiconductor chip 2 and lead frame 11 are bonded to each other by the polyimide film 7.
- Although the bonding between the semiconductor chip 2 and lead frame 11 is achieved in accordance with the bonding method using the polyimide film 7, it may be achieved using other methods. For example, the bonding between the semiconductor chip 2 and lead frame 11 may be achieved using a method in which an adhesive is applied to both surfaces of the polyimide film

15

20

25

interposed between the semiconductor chip 2 and lead frame 11, as in conventional cases. Where this method is used, it is unnecessary to carry out a temperature control and a pressure control for the polyimide film. Accordingly, the bonding process is simply achieved.

After the semiconductor chip 2 and lead frame 11 are bonded to each other in accordance with the bonding process, a connecting process is carried out to electrically connect the leads 3 formed on the lead frame 11 to the electrode pads 6 formed on the semiconductor chip 2 by means of wires 8, respectively.

Fig. 21 illustrates a process for mounting each wire (for example, a gold wire) 8 between the bonding pad 27 (Fig. 16) formed on an associated one of the leads 3 and an associated one of the electrode pads 6 using capillaries 29. As well known, it is desirable for each wire 8 to be short in terms of an improvement in the electrical characteristics of the semiconductor device 1. On the other hand, in terms of a miniaturization and thinness of the semiconductor device 1, it is desirable for each wire 8 to have a low roof.

For this reason, it is preferred that a low-roof bonding process be used in mounting the wires 8. For such a low-roof bonding process, a variety of methods are known. For example, a method may be used in which each wire 8 is bonded at one end thereof to an associated one of the electrode pad 6 formed on

10

the semiconductor chip 2 and then bonded at the other end thereof to an associated one of the leads 3 by upwardly moving the capillary 29 associated with the other end of the wire 8, and then horizontally moving the capillary 29. A method called a "reverse stamping method" may also be used.

Since the leads 3 and electrode pads 6 are electrically connected together in accordance with the wire bonding process, it is possible to achieve the connecting process in an easy fashion and in a high accuracy. The shaping and connection of each wire 8 between the associated lead 3 and electrode pad 6 can be carried out within a certain degree of freedom. Fig. 22 illustrates the state of each wire 8 mounted between the associated lead 3 and electrode pad 6 after the connecting process is conducted.

20 After the leads and electrode pads 6 are electrically connected together in accordance with the connecting process, a resin encapsulating process is carried out to form a resin encapsulate 4 at a desired portion of the semiconductor chip 2. This resin encapsulating process will now be described in conjunction with Figs. 23 to 25.

Fig. 23 illustrates a state in which the semiconductor chip 2 mounted with the lead frame II and wires B is loaded in a mold 30. The mold 30 includes an upper mold 31 and a lower mold 32. The lead frame II is clamped between the upper and lower molds 31 and 32. Thus, the semiconductor chip 2 is mounted in

25

the mold 30.

5

10

15

20

25

The upper mold 31 is configured to come into contact with the protrusions 9 and the cradles 33 of the lead frame 11 in a loaded state of the semiconductor chip 2. Since the protrusions 9 have the same height as the cradles 33, the upper mold 31 maintains a flat plate shape. The lower mold 32 has a cavity defined with a space at each side of the semiconductor chip 2 loaded in the lower mold 32. The lower surface of the semiconductor chip 2 is in contact with the lower surface of the cavity 33.

Since the upper mold 31 used in the resin encapsulating process has a flat plate shape, and the cavity 33 defined in the lower mold 32 has a simple structure, it is possible to reduce the costs taken in the manufacture of the mold 30. Accordingly, a reduction in the costs taken in the fabrication of the semiconductor device 1 can be achieved.

Fig. 24 illustrates a state in which a resin encapsulate 4 (indicated by a number of small dots) is molded in the mold 30. As the resin encapsulate 4 is molded in the mold 30, the peripheral surface of the semiconductor chip 2 except for its upper surface (viewed as a lower surface in Figs. 23 to 25) contacting the lower mold 32 is encapsulated by the resin encapsulate 4. The leads 3 and wires 8 mounted to the lower surface of the semiconductor chip 2 are also encapsulated by the resin encapsulate 4. Also, each protrusion 9 except for its

10

portion contacting the upper mold 31 is encapsulated by the resin encapsulate 4.

Fig. 25 illustrates a state in which the semiconductor chip 2 encapsulated by the resin encapsulate 4 is unloaded from the mold 30. As shown in this figure, the upper surface la of the semiconductor chip 2 is exposed from the resin encapsulate 4. Accordingly, it is possible to effectively dissipate heat generated from the semiconductor chip 2 at the exposed upper surface 2a. The end 9a of each protrusion 9 is also outwardly exposed from the resin encapsulate 4. Accordingly, the end 9a can be used as an outer connecting terminal.

A semiconductor device is obtained by cutting the lead frame 11 from the structure shown in Fig. 25 along portions indicated by a dotted line in Fig. 25. Although this semiconductor device can achieve the same effect as the 25 semiconductor device shown in Fig. 1, it exhibits a degradation in the mounting efficiency thereof to the circuit board 10 because the end 9a of each protrusion 9 serving as an outer connecting terminal is substantially flush with the surface of 20 the resin encapsulate 4, as shown in Fig. 25. To this end, in accordance with the illustrated embodiment, a bump forming process for forming a bump 5 on the end 9a is conducted after completion of the resin encapsulating process. Hereinafter, the bump forming process will be described in conjunction with Figs. 25 26 to 30.

10

In the bump forming process, the semiconductor chip 3 encapsulated by the resin encapsulate 4 is subjected to a homing process at the entire surface thereof, as shown in Fig. 26. By this homing process, a resin layer existing on the end 9a of each protrusion 9 is completely removed, there causing the end 9a to be completely exposed. After completion of the homing process, the semiconductor chip 2 encapsulated by the resin encapsulate 4 is immersed in a solder bath 34, thereby causing the end 9a of each protrusion 9 to be plated by solder. The plated solder film is denoted by the reference numeral 35. The solder used in the solder plating process may be one having a composition of Pb : Sn = 1 : 9. Fig. 28 shows a state in which a solder film 35 is formed on the end 9a of each protrusion 9 in accordance with the solder plating process.

20 After completion of the above mentioned solder plating process, a bump 5 is formed on the end 9a of each protrusion 9 formed with the solder film 35. The formation of the bump 5 may be carried out using various methods. For example, a conventional bump forming method capable of effectively and easily forming bumps 5 may be used. Fig. 29 shows a state in which bumps 5 are formed on the ends 9a of the protrusions 9, respectively.

After the formation of the bump 5 on the end Fa of each protrusion 9, a process for cutting the lead frame 11 at positions indicated dotted lines in Fig. 29 is carried out.

25

After the cutting process is completed, a semiconductor device I shown in Fig. 30 is obtained. Prior to the process for cutting the lead frame 11, the portions of the lead frame 11 to be out may be subjected to a half-etching process in order to allow the cutting process to be more easily conducted.

A testing process is then conducted for the semiconductor device 1 fabricated as mentioned above, in order to determine whether or not the fabricated semiconductor device 1 operates normally. Figs. 31 to 33 illustrate different testing methods for the semiconductor device 1, respectively. The testing method shown in fig. 31 uses a socket 36 having a configuration for mounting the bumps 5. In accordance with this testing method, a test such as a burning test is conducted in a state the semiconductor device 1 is mounted on the socket 36.

The testing method shown in Fig. 32 is a method for testing the semiconductor device I using probes 37. The semiconductor device I has a structure in which the end of each lead 3 is exposed from the side surface of the resin encapsulate 4. In view of this structure of the semiconductor device 1, the testing method is adapted to test the semiconductor device 1 using the probes 37 contacting the leads 3 exposed from the resin encapsulate 4. In accordance with this testing method, it is possible to conduct the testing process even after the semiconductor device 1 is mounted on the circuit board 10.

25 Fig. 33 illustrates a mounting process for mounting the

10

10

15

20

semiconductor device 1 on the circuit board 10. The process for mounting the semiconductor device 1 on the circuit board 10 can be achieved using a variety of well-known methods. For instance, an infrared reflow method may be used. In accordance with this infrared reflow method, each pump 5 formed on the semiconductor device 1 is temporarily fixed to an associated one of electrode portions 28 formed on the circuit board 10 suing a paste. The bump 5 is then melted by an infrared reflow furnace arranged over the semiconductor device 1, thereby causing it to be bonded to the associated electrode portion 38.

. ..

Now, examples modified from the above mentioned semiconductor device fabrication method will be described.

Figs. 34 to 37 illustrate modified structures of the protrusions 9, respectively. Figs. 34A and 34B illustrate a protrusion 9A having a circular column shape, respectively. Also, Fig. 34C illustrates a protrusion 9B having a square column shape. That is, the protrusion may have various planar shape, as in the protrusions 9, 9A, and 9B. The protrusion can have an optional shape in accordance with the bonding characteristics of the bump 5 and the shape of the electrode portion 3B formed on the circuit board 10. For example, the protrusion 9, 9A or 9B is formed using an etching method, it can have a desired planar shape by appropriately selecting the shape of the mask 13 arranged at the protrusion forming region 14 shown in Fig. 6.

25 The protrusion may also have a structure provided with a

10

15

round recess at the upper surface thereof, as in the protrusion 9C shown in Fig. 35(A). Also, the protrusion may have a structure provided with a lump at a central portion of the upper surface thereof, as in the protrusion 9D shown in Fig. 35B. The protrusion may also have a structure provided with a rectangular recess at a central portion of the upper surface thereof, as in the protrusion 9E shown in Fig. 35C. In all the protrusions 9C to 9E, it is possible to obtain an increased protrusion surface area resulting in an improvement in the bondability to the bump 5. Furthermore, the protrusions 9C to 9E are adapted to be fixed to the lead 3 at a desired protrusion forming region.

Referring to Fig. 35D, a protrusion 9F is illustrated which is formed in accordance with a direct plastic deformation of the lead 3 by a pressing process. In this case, the protrusion 9F can be easily formed using a desired process such as a pressing process. However, this method has a problem in that the protrusion 9F cannot have a height more than a limitation for the plastic deformation.

Referring to Fig. 36, a protrusion 9G is illustrated

which is formed by forming a stud bump at a desired protrusion forming region in accordance with a wire bonding technique.

Fig. 36A illustrates a method for forming the protrusion 9G whereas Fig. 36B illustrates, in an enlarged scale, the protrusion 9G.

25 Where the protrusion 9G is formed to have a stud bump

20

25

shape in accordance with a wire bonding technique, it is possible for the protrusion 9G to be formed at an optional position. The protrusion 9G serving as an outer connecting terminal can also be easily formed at a desired position. The formation of the protrusion 9G can be achieved simultaneously with the mounting of the wires 9 conducted in the connecting process included in the semiconductor device fabrication process. Thus, the entire fabrication process is simplified.

The height of the protrusion 9G can be optionally set by

vertically overlapping a plurality of stud bumps together.

Referring to Fig. 37A, a protrusion 9H is illustrated which is formed by vertically overlapping three stud bumps together. In this case, the protrusion 9H has an increased height, as compared to the protrusion 9G of Fig. 36B constituted by one stud bump.

Another method for increasing the height of the protrusion is illustrated in Fig. 37B. In accordance with the method of Fig. 37B, a conductive member 41 having a plug shape is fixed to the lead 3 by means of a conductive adhesive. A stud bump 42 is then formed on the conductive member 41, as shown in Fig. 37C, so that the overlapping conductive member 41 and stud bump 42 cooperate to form a protrusion 91. In this case, the height of the protrusion 91 is determined by the height of the conductive member 41. Accordingly, the height of the protrusion 91 can be optionally set by using a plug-shaped

conductive member having a diverse size for the plug-snaped conductive member 41.

rig. 38 illustrates a modified bonding process. Although the semiconductor chip 2 and lead frame II are bonded together using the polyimide film 7 serving as an adhesive under a certain condition in accordance with the above mentioned embodiment, as shown in Figs. 16 to 20, they may be bonded together using a tape-shaped adhesive 45 in place of the polyimide film 7.

The tape-shaped adhesive 45 may be formed not only at the upper surface of the semiconductor chip 2, but also at the lower surface of the lead frame 11, as shown in Fig. 38.

Alternatively, the tape-shaped adhesive 45 may be formed only at the lower surface of the lead frame. Furthermore, the distribution range of the tape-shaped adhesive 45 may be freely set in so far as it is within a range indicated by the arrow X in Fig. 38, except for the region where the electrode pads 6 are formed. In addition, it is necessary for the tape-shaped adhesive 45 to be an insulating adhesive because the semiconductor chip 2 and lead frame 11 should be electrically insulated from each other.

Figs. 39 to 42 illustrate modified embodiments of the connecting process, respectively. Although the wires 8 are used for the connection between the electrode pads 6 and the leads 3 in accordance with the above mentioned embodiment, as shown in

25

10

15

20

Figs. 21 and 22, a direct lead bonding method is used to directly bond the electrode pads and leads 3 together in accordance with the modified embodiments of Figs. 39 to 42.

In the embodiment of Figs. 39 and 40, each lead 3 is directly bonded to an associated one of the electroce pads 6 using a bonding tool 46 connected to, for example, an ultrasonic vibrator. In this configuration, however, the electrode pad 6 may be damaged by the bonding tool 46 vibrating at an ultrasonic frequency. In the embodiment of Figs. 41 and 42, a stud bump 47 is mounted on each electrode pad 6. The stud bump 47 is then melted by a heating unit 48 in a state in which it comes into contact with the lead 3, thereby causing the electrode pad 6 to be connected to the lead 3. In accordance with this connecting method, there is no damage to the electrode pad 6. An improvement in the reliability of the connecting process is also achieved.

In accordance with the connecting processes of Figs. 39 to 42, it is possible to achieve a reduction in electrical resistance, as compared to a configuration in which the connection between the electrode pads 6 and the leads 3 is provided by the wires B. Accordingly, an improvement in the electrical characteristics of the semiconductor device 1 is achieved. The semiconductor device 1 also cope with a high-speed semiconductor chip.

25 Figs. 43 and 44 illustrated a modified embodiment of the

10

15

20

resin encapsulating process. In the above mentioned embodiment, the bottom surface of the cavity defined in the lower mold 30 included in the mold 30 is in direct contact with the upper surface 2a of the semiconductor chip 2. The upper surface Ia of the semiconductor chip 2 is not encapsulated by the resin encapsulate 4 so that it serves as a surface for improving the heat dissipation characteristics.

. ..

Under strict environment, for example, high-temperature environment, the semiconductor device 1 may require a temperature resistance rather than the heat dissipation characteristics. In such a case, it is necessary to completely encapsulate the semiconductor chip 2 by the resin encapsulate 4. Referring to Figs. 43 and 44, a mold 50 is illustrated which is configured to completely encapsulate the semiconductor chip 2 by the resin encapsulate 4.

In detail, a cavity 52 defined in a lower mold 51 is spaced apart from the peripheral surface of the semiconductor chip 2 at its side surface, as shown in Fig. 43. Accordingly, when the resin encapsulate 4 is molded in the mold, the semiconductor chip 2 is completely encapsulated by the resin encapsulate 4, as shown in Fig. 44. The formation region of the resin encapsulate 4 encapsulating the semiconductor chip 2 can be optionally set by appropriately varying the shape of the cavity 33 or 52 of the mold 30 or 50.

Where the upper mold 31 has a recess for mounting the

protrusion 9 formed on each lead 3 therein, it is possible to obtain a semiconductor device 60 in which the protrusion 9 is greatly protruded from the resin encapsulate 4, as shown in Fig. 45. The semiconductor device 60 shown in Fig. 45 exhibits an improved mounting efficiency to the circuit board 10 because the protrusion 9 is greatly protruded from the resin encapsulate 4. Also, it is unnecessary to form the bumps 5, as in the above mentioned embodiments. Accordingly, it is possible to simplify the fabrication process for the semiconductor device 60.

10

15

20

25

5

[EFFECTS OF THE INVENTION]

As apparent from the above description, various effects are obtained in accordance with the present invention.

In accordance with the invention of claims 1 and 2, it is possible to achieve an improvement in heat resistance, mechanical strength, and temperature resistance. Since the electrode pads and leads are connected together using wires, it is possible to set the layout of the leads irrespective of the layout of the electrode pads. An improvement in the matching ability of the semiconductor device to the circuit board. The resin encapsulate provides an improvement in reliability because it surely protects the connected wires. Since the outer connecting terminals are exposed from the resin encapsulate, the electrical connection of the semiconductor device to the circuit board can be surely provided.

10

15

20

25

In accordance with the invention of claim 3, the insulating and bonding processes for the semiconductor chip and leads can be simultaneously conducted because the polymide film, as an insulating member, interposed between the semiconductor chip and the leads serves as an adhesive.

Accordingly, it is possible to simplify the structure of the semiconductor device which achieving an easy fabrication of the semiconductor device, as compared to the case in which the insulating member and the adhesive are separately provided.

. ..

In accordance with the invention of claim 4, each protrusion is integrally formed with an associated one of the leads. Accordingly, it is possible to achieve a simplification in structure, as compared to the case in which the protrusion and lead are formed using separate materials, respectively. In accordance with the invention of claim 5, a wire is used for the connection between the electrode pad and lead. Accordingly, it is possible to achieve an easy connection for the wire between the electrode pad and lead.

In accordance with the invention of claim 6, a bump is formed on each protrusion. Accordingly, it is possible to achieve an easy connection of the semiconductor device to the circuit board, as compared to the case in which the protrusion is directly mounted on the circuit board. In accordance with the invention of claim 7, the leads and semiconductor chip are bonded together by maintaining the polyimide film at a certain

10

15

20

25

temperature and a certain pressure, thereby causing the polyimide film to serve as an adhesive. Accordingly, the insulating and bonding processes for the leads and semiconductor chip can be simultaneously conducted.

Since each electrode pad formed on the semiconductor this is connected to an associated one of the leads by means of a wire in the bonding process, it is possible to vary the layout of the leads with respect to the layout of the electrode pads by selecting an appropriate connection method. The fabrication of the semiconductor device involves only four processes, that is, a lead forming process, a bonding process, a connecting process, and a resin encapsulating process. Since the fabrication of semiconductor device is achieved using a reduced number of processes, as mentioned above, an improvement in production efficiency is obtained.

In accordance with the invention of claim 8, an easy bonding process can be achieved because the bonding process can be conducted without a control for the temperature applied to the polyimide film within a desired range. In accordance with the invention of claim 9, the connection between the electrode pads and the leads can be simply and surely achieved because the electrode pads and leads are electrically connected together in accordance with a direct lead bonding process.

In accordance with the invention of claim 10 and 11, the lead pitch of the outer lead portions is less than the lead

10

pitch of the inner lead portions. Accordingly, the inner leads can cope with a small pitch of the electrode pads on the semiconductor chip to which the inner lead portions are electrically connected. Furthermore, the mounting efficiency of the semiconductor device to the circuit board is improved because the lead pitch of the outer lead portions electrically connected to the circuit board is large. Since each protrusion is formed on an associated one of the outer lead portions, it can be used as an outer connecting terminal. Accordingly, it further improves the mounting efficiency.

In accordance with the invention of claim 12 and 13, it is possible to easily form leads of a small pitch integrally formed with protrusions. In accordance with the invention of claim 14, the lead pattern forming process and the protrusion forming process are conducted in a separate fashion.

Accordingly, the thickness of a blank used can be selected irrespective of the height of the protrusion. Therefore, it is possible to reduce the pitch of a lead pattern when a thin blank is used. In the protrusion forming process, it is possible to form protrusions having an optional height. An improvement in the freedom of design is also achieved.

In accordance with the invention of claims 15 to 17, it is possible to easily conduct the protrusion forming process.