

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

PCT

(43) Internationales Veröffentlichungsdatum
15. September 2005 (15.09.2005)

(10) Internationale Veröffentlichungsnummer
WO 2005/085783 A1

(51) Internationale Patentklassifikation⁷: **G01K 1/26**, 7/20

Thomas [DE/DE]; Veilchenweg 8, 70563 Stuttgart (DE).
KASCHUBE, Carsten [DE/DE]; Sigmaringer Str. 52,
72622 Nuertingen (DE). **DIDRA, Hans-Peter** [DE/DE];
Sandackerstr. 20, 72127 Kusterdingen-Jettenburg (DE).
KOTT, Michael [DE/DE]; Heilbronner Str. 63, 72760
Reutlingen (DE).

(21) Internationales Aktenzeichen: PCT/EP2004/053020

(74) Gemeinsamer Vertreter: **ROBERT BOSCH GMBH**,
Postfach 30 02 20, 70442 Stuttgart (DE).

(22) Internationales Anmeldedatum:
19. November 2004 (19.11.2004)

(81) Bestimmungsstaaten (*soweit nicht anders angegeben, für
jede verfügbare nationale Schutzrechtsart*): AE, AG, AL,
AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
10 2004 009 272.9
26. Februar 2004 (26.02.2004) DE

[Fortsetzung auf der nächsten Seite]

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von
US*): **ROBERT BOSCH GMBH** [DE/DE]; Postfach 30 02
20, 70442 Stuttgart (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): **MOELKNER,**

(54) Title: HIGH-PRESSURE SENSOR FOR TEMPERATURE MEASUREMENT INDEPENDENT OF PRESSURE

(54) Bezeichnung: HOCHDRUCKSENSOR ZUR DRUCKUNABHÄNGIGEN TEMPERATURMESSUNG

(57) Abstract: The invention relates to a method of temperature determination independent of pressure by means of a metal membrane (1). A bridge circuit (5) with several resistances is (6, 7, 8, 9) mounted thereon. A resistance pair (10) of the resistances (6, 7, 8, 9) is located close to the centre, another resistance pair (11) of the resistances (6, 7, 8, 9) is located remote from the centre. The resistances (6, 7, 8, 9) are arranged on the metal membrane such that the tensile elongation (Δl) of the resistance pair (10) of the resistances (6, 7, 8, 9) near the centre is of the order of the compression ($-\Delta l$) of the resistance pair (11) of the resistances (6, 7, 8, 9) remote from the centre.

[Fortsetzung auf der nächsten Seite]

WO 2005/085783 A1

(84) **Bestimmungsstaaten** (*soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) **Zusammenfassung:** Die Erfindung bezieht sich auf ein Verfahren zur druckunabhängigen Temperaturbestimmung mittels einer Metallmembran (1). An dieser ist eine Brückenschaltung (5) mit mehreren Widerständen (6, 7, 8, 9) aufgenommen. Ein Widerstandspaar (10) der Widerstände (6, 7, 8, 9) ist zentrumsnah, ein anderes Widerstandspaar (11) der Widerstände (6, 7, 8, 9) ist zentrumsfrem angeordnet. Die Widerstände (6, 7, 8, 9) werden auf der Metallmembran so angeordnet, dass die Zugdehnung ($\Delta 1$) des zentrumsnahen Widerstandspaares (10) der Widerstände (6, 7, 8, 9) bezugsmäßig den Stauchungen $-\Delta 1$ des zentrumsfremen Widerstandspaares (11) der Widerstände (6, 7, 8, 9) entsprechen.

5

Hochdrucksensor zur druckunabhängigen Temperaturmessung

10

Technisches Gebiet

Als Brennraumdrucksensoren kommen heute neben piezoelektrischen Quarzen Sensorchips zum Einsatz. Werden diese zur Erfassung des im Brennraum einer Verbrennungskraftmaschine herrschenden Drucks eingesetzt, ist es erforderlich, dass der Si-Chip nicht unmittelbar den dort herrschenden hohen Temperaturen, die in der Größenordnung von etwa 600°C liegen, ausgesetzt ist. Dies geschieht mit Hilfe einer metallischen Trennmembran und einem angeschweißten Stößel ausreichender Länge. Durch mikromechanisches Aufbringen eines winziges Podests in der Membranmitte wird der Sensor zum Kraftsensor.

20

Stand der Technik

Aus dem Kraftfahrtechnischen Taschenbuch/Bosch [Chefredakteur: Horst Bauer]; 23., aktualisierte und erweiterte Auflage Braunschweig; Wiesbaden: Vieweg 1999, ISBN 3-528-03876-4, Seiten 110/111 ist ein Brennraumdrucksensor bekannt, der als Sensorchip ausgebildet ist. Um zu vermeiden, dass der Si-Chip nicht unmittelbar den hohen Temperaturen von maximal 600°C ausgesetzt ist, ist eine metallische Trennmembran und ein angeschweißter Stößel von einigen Millimetern Länge vorgesehen. Die von der Frontmembran aufgenommenen Druckkräfte werden über den Stößel mit geringer zusätzlicher Verfälschung über das Podest in den Sensorchip eingeleitet. Dieser ist in der zurückgezogenen Montageposition nur noch Betriebstemperaturen unterhalb von 150°C ausgesetzt.

Auf Seite 110, rechte Spalte unten, Abbildung Halbleiter-Drucksensor, ist eine Brückenschaltung bekannt, die durch eine Versorgungsspannung U_0 beaufschlagt ist. Die Brückenschaltung umfasst Messwiderstände R_1 , die bei einer Beanspruchung gedehnt sowie Messwiderstände R_2 , die bei mechanischer Beanspruchung eines Siliziumsubstrats, auf dem sie aufgebracht sind, gestaucht werden.

Derart ausgebildete, piezoresistive Hochdrucksensoren auf Basis einer Dehnungsmessung, seien sie auf einer Stahlmembran oder seien sie auf einer Siliziummembran aufgetragen, kommen in zahlreichen Systemen im KFZ-Bereich zum Einsatz. Dazu sind die Benzindirekteinspritzung, die Hochdruckspeichereinspritzung (Common Rail), die Fahrdynamikregelung sowie die elektrohydraulische Bremse zu zählen. Eine künftige Anwendung der piezoresistiven Hochdrucksensoren liegt in der zylinderselektiven Druckmessung im Brennraum einer Verbrennungskraftmaschine.

Zur Druckmessung werden auf einer geeignet dimensionierten Stahlmembran mehrere Widerstände angeordnet und in Form einer Wheatstone-Brücke verschaltet. Durch Dehnung bzw. Stauchung der Widerstände wird die Wheatstone-Brücke verstimmt und liefert ein dem Beaufschlagungsdruck proportionales elektrisches Signal. Neben der gewünschten Druckabhängigkeit des Brückensignals weist das Brückensignal jedoch eine Temperaturabhängigkeit auf, die aufgrund der hohen Genauigkeitsanforderungen kompensiert werden muss. Dies erfolgt bei bisher bekannten Ausführungsformen entweder durch direkt auf der Stahlmembran angebrachte zusätzliche Kompensationswiderstände oder durch eine Temperaturmessung im Bereich der Auswerteelektronik mit anschließender Berücksichtigung bei der Ausgangssignalberechnung.

20

Darstellung der Erfindung

Nach der erfindungsgemäß vorgeschlagenen Lösung wird durch geeignete Dimensionierung der Membrangeometrie sowie entsprechender Positionierung von Dehnmessstreifen (DMS) auf der Membran die Brückenschaltung so beeinflusst, dass der Gesamtwiderstand der Messbrücke unabhängig von der Auslenkung der Membran wird und der Gesamtwiderstand somit nur von der Temperatur der Membran abhängt. Dadurch kann unabhängig vom zu messenden Druck mit derselben Messbrücke, die als Wheatstone-Brücke ausgebildet ist, die Temperatur der Membran mit der Messbrücke bestimmt werden und zu Kompensationszwecken eingesetzt werden. Dadurch ist eine druckunabhängige Temperaturbestimmung der Membran mit der als Sensorelement dienenden Messbrücke möglich, ohne dass zusätzliche auf der Metallmembran aufzubringende Kompensations- oder Temperaturmesswiderstände erforderlich sind.

In vorteilhafter Weise wird durch die erfindungsgemäß vorgeschlagene Lösung keine zusätzliche Fläche der Metallmembran durch Kompensations- oder Temperaturmesswiderstände sowie deren elektrische Anschlusspunkte mehr benötigt. Dadurch wiederum lässt sich ein höherer Miniaturisierungsgrad erreichen, was bei den heutigen Platzverhältnissen im Zylinderkopfbereich von Verbrennungskraftmaschinen, in denen die Drucksensoren einge-

-3-

setzt werden, von nicht unerheblicher Bedeutung ist. Die Miniaturisierung der Sensorelemente bietet wiederum Vorteile hinsichtlich der Herstellkosten. Aufgrund der miniaturisierten Brennraumdrucksensoren werden die Applikationsmöglichkeiten solcher Sensorelemente an Verbrennungskraftmaschinen erheblich erweitert.

5

Außerdem entfallen durch die erfindungsgemäß vorgeschlagene Lösung zusätzliche elektrische Kontaktierungspunkte, was einerseits den Fertigungsprozess erheblich vereinfacht und andererseits potentielle Ausfallstellen, etwa durch Kontaktbruch, vermieden werden können. Bei Brennraumdrucksensoren befindet sich die Auswertelektronik aufgrund maximal zulässiger Temperatur von etwa 140°C weit entfernt von der eigentlichen Druckmessstelle, in deren Bereich Spitzentemperaturen von bis zu 600°C auftreten können. Eine Temperaturmessung im Bereich der Auswertelektronik gemäß den bisher eingesetzten Drucksensoren liefert somit ein zur Temperaturkompensation der Wheatstone-Messbrücke viel zu unge naues Signal. Durch die erfindungsgemäß vorgeschlagene Messung und Auswertung des druckunabhängigen Brückenwiderstands kann die Messgenauigkeit des Brennraumdrucksensors erheblich verbessert werden.

Zeichnung

20

Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.

Es zeigt:

25 Fig. 1a, 1b, 1c, 1d Ausführungsvarianten von auf einer Metallmembran angeordneten Dehnmessstreifen (DMS),

Fig. 2 eine Metallmembran mit darauf aufgebrachten Dehnmessstreifen im ausgelenkten Zustand und

30

Fig. 3 einen Querschnitt durch das Membranmaterial mit Dehnungs- und Stauchungsmaxima.

35

Ausführungsvarianten

Die in der Figurensequenz 1a, 1b, 1c und 1d dargestellten Brückenschaltungen auf einer Stahlmembran repräsentieren den derzeitigen Stand der Technik.

Auf einer Metallmembran 1 ist eine Brückenschaltung 5 aufgebracht, welche als Wheatstone'sche Brückenschaltung ausgebildet sein kann. Die Brückenschaltung 5 umfasst mehrere Widerstände R_1 , R_2 , R_3 und R_4 , gekennzeichnet durch die Bezugszeichen 6, 7, 8 und 9. Bei der Metallmembran 1 handelt es sich bevorzugt um eine Stahlmembran, deren Zentrum durch Bezugszeichen 2 gekennzeichnet ist und die in einem Radius r ausgebildet ist. Die peripheren Bereiche, d.h. die weiter vom Zentrum 2 der Metallmembran 1 entfernt liegenden Bereiche sind jeweils durch Bezugszeichen 3 angedeutet. Der Rand der Metallmembran 1 ist durch Bezugszeichen 4 bezeichnet.

Bei den innerhalb der Brückenschaltung 5 verschalteten Widerständen R_1 , R_2 , R_3 und R_4 handelt es sich bevorzugt um Dehnmessstreifen. Die Brückenschaltung 5 ist an eine Versorgungsspannung U_0 angeschlossen; der Abgriff der Messspannung U_A liegt zwischen den Widerständen R_1 und R_4 bzw. R_2 und R_3 .

Die auf der Metallmembran 1 angeordneten Widerstände R_1 , R_2 , R_3 und R_4 sind so angeordnet, dass diese bei Druckbeaufschlagung der Metallmembran 1 eine Dehnung bzw. eine Stauchung erfahren. Dadurch wird die Brückenschaltung verstimmt und liefert ein dem die Metallmembran 1 beaufschlagenden Druck proportionales Spannungssignal U_A , was einer Auswertungsschaltung zugeführt wird. Dieses Signal U_A ist nicht nur druckabhängig, sondern auch temperaturabhängig. Die Druckabhängigkeit ist gewünscht, jedoch macht die Temperaturabhängigkeit des erhaltenen Signals U_A den Einsatz von Kompensationswiderständen RT_1 , RT_2 erforderlich, um den hohen Genauigkeitsanforderungen, die bei einem Einsatz als Brennraumdrucksensor gestellt werden, gerecht zu werden. Bei der in Fig. 1 dargestellten Lösung, sind zur Kompensation der Temperaturabhängigkeit des Messsignals U_A auf der Metallmembran 1 zusätzliche Kompensationswiderstände RT_1 , RT_2 aufgebracht. Diese Kompensationswiderstände RT_1 , RT_2 beeinflussen jedoch nur die Temperaturabhängigkeit der Empfindlichkeit, der Nullpunkt bleibt unkompensiert. Eine weitere Möglichkeit, die die Signalgenauigkeit beeinflussende Temperaturabhängigkeit auszuschalten, liegt darin, eine Temperaturmessung im Bereich der Auswertelektronik vorzunehmen und das Ausgangssignal U_A um den Einfluss der Temperatur zu korrigieren und auf diese Weise die Genauigkeit des Messsignals U_A zu verbessern. Beim Einsatz als Brennraumdrucksensor findet sich die Auswertelektronik aufgrund ihrer Temperaturlimitierung von etwa 140°C jedoch weit entfernt von der eigentlichen Druckmessstelle, in deren Bereich Spitzentemperaturen von bis zu 600°C auftreten. Eine Temperaturmessung im Bereich der Auswertelektronik liefert somit ein zur Temperaturkompensation der Brückenschaltung viel zu ungenaues Signal, was aus der Temperaturlimitierung der Auswertelektronik herröhrt. Bei den in den

Figuren 1a, 1b, 1c und 1d dargestellten Varianten bedingen die zusätzlich gesetzten Kompressionswiderstände RT_1 , RT_2 (optional) einen erhöhten Flächenbedarf auf der Metallmembran einerseits und andererseits ein zusätzliches Kontaktierungspad.

- 5 Der Darstellung gemäß Fig. 2 ist die erfundungsgemäß vorgeschlagene Konfiguration einer Brückenschaltung, die auf eine Metallmembran aufgebracht ist, zu entnehmen.

Die in Fig. 2 dargestellte Metallmembran 1, bei der es sich bevorzugt um eine Stahlmembran handelt, umfasst ein Zentrum 2 sowie Peripheriebereiche 3, die sich in radialer Richtung erstrecken. Die Metallmembran 1 ist durch den Rand 4 begrenzt und mit der Brückenschaltung 5 versehen, die analog zur in Fig. 1 dargestellten, aus dem Stand der Technik bekannten Ausführung, beschaffen ist. Die Brückenschaltung 5 ist ebenfalls als Wheatstone'sche Brücke ausgebildet und umfasst vier miteinander verschaltete Widerstände R_1 , R_2 , R_3 sowie R_4 , die durch die Bezugszeichen 6, 7, 8 und 9 identifiziert sind. Die Brückenschaltung 5 wird durch eine Versorgungsspannung U_0 gespeist; der Spannungsgriff für das erhaltene Messsignal, d.h. die Messspannung U_A , erfolgt zwischen den Widerständen R_1 und R_4 einerseits und den Widerständen R_2 und R_3 andererseits.

Die Widerstände R_1 , R_2 , R_3 sowie R_4 sind bevorzugt als Dehnmessstreifen ausgebildet. Die Positionen, an denen die Widerstände R_1 , R_2 , R_3 und R_4 auf der Metallmembran 1 aufgebracht werden, können mit Hilfe der Finite-Elemente-Methode (FEM) bestimmt werden. Nach der Erstellung eines geometrischen Modells der Metallmembran 1 und der Festlegung geeigneter Randbedingungen liefert die Finite-Elemente-Methode als Ergebnis die Dehnungstopologie der Metallmembran 1 unter Druckbeanspruchung.

25 Die Randbedingungen, unter denen die Finite-Elemente-Methode angewendet wird, berücksichtigen neben weiteren Optimierungsparametern, dass die Radialdehnung der Metallmembran 1 betragsmäßig gleich der Stauchung (ε_{stauch}) der Metallmembran 1 ist. Als Modulationsparameter kann weiterhin der Nenndruck berücksichtigt werden, mit dem die Metallmembran 1 beaufschlagt ist. Als geometrische Randbedingungen wird der Durchmesser der Metallmembran 1 berücksichtigt sowie die Membrandicke. Die Membrandicke kann in radiale Richtung gesehen auch durchaus variieren, was bei der Finite-Elemente-Methode als Einflussparameter berücksichtigt werden kann. Des Weiteren können die Membranhöhe der Metallmembran 1 sowie die Werkstoffeigenschaften des Materials berücksichtigt werden, aus denen die Metallmembran 1 gefertigt wird. Neben einer Ausbildung der Membran als Metallmembran 1 können diese beispielsweise auch aus keramischem Werkstoff gefertigt sein.

Aus der Dehnungstopologie der Metallmembran 1 gehen die Bereiche hervor, in denen sowohl die Dehnungsmaxima als auch die Stauchungsmaxima bei Druckbeaufschlagung der Metallmembran 1 auftreten. Üblicherweise liegt das Dehnungsmaximum 12 im Zentrum 2 der Metallmembran 1, da dieses am weitesten von der Einspannstelle, d.h. dem Rand 4 der Metallmembran 1 entfernt liegt und demzufolge durch den die Metallmembran 1 beaufschlagenden Druck am weitesten ausgelenkt werden kann. Die Stauchungsmaxima 13 liegen üblicherweise im Peripheriebereich 3 der Metallmembran 1, d.h. in der Regel im Bereich des Randes 4 der Metallmembran 1, die bevorzugt als Stahlmembran ausgebildet ist. Die Randbedingungen der FEM-Simulation werden in vorteilhafter Weise so gewählt, dass im Zuge einer geometrischen Optimierung das in Zentrum 2 der Metallmembran 1 auftretende Dehnungsmaximum 12 vom Betrag her den Beträgen der im Peripheriebereich 3 der Metallmembran 1 liegenden Stauchungsmaxima 13 entspricht. Aufgrund der am geometrischen Modell ermittelten und durch geeignete Formgebung der Metallmembran 1 optimierten Dehnungstopologie können die Positionen der vier Widerstände R_1 , R_2 , R_3 sowie R_4 so gewählt werden, dass die Absolutwerte der Dehnungen Δl denen der Stauchungen $-\Delta l$ entsprechen.

In diesen Positionen, die durch Ermittlung der Dehnungstopologie der Metallmembran 1 ermittelt werden, werden die vier Widerstände R_1 , R_2 , R_3 und R_4 , ausgebildet als Dehnmessstreifen, auf der Metallmembran 1 angeordnet. Bei Anordnung der vier Widerstände der Brückenschaltung 5 in den in Fig. 2 dargestellten Positionen auf der Metallmembran 1 ist der Betrag der Widerstandsänderung unter Druckbeanspruchung aller vier Widerstände R_1 , R_2 , R_3 sowie R_4 betragsmäßig identisch. Aus der Darstellung gemäß Fig. 2 geht hervor, dass die beiden Widerstände R_1 und R_3 , identifiziert durch die Bezugszeichen 6 bzw. 8 im zentrumsnahen Bereich der Metallmembran 1, ein zentrumsnahes Widerstandspaar 10 bildend angeordnet sind. Die beiden Widerstände werden aufgrund der im Bereich des Zentrums 2 der Druckbeaufschlagung der Metallmembran 1 herrschenden Dehnungen von ihrer ursprünglichen Länge auf eine Länge $l+\Delta l$ gestreckt. Die Streckung Δl (d.h. die Dehnung) der beiden als Dehnmessstreifen ausgebildeten Widerstände R_1 und R_3 ist identisch. Anstelle der in Fig. 2 dargestellten Orientierung der beiden Widerstände R_1 und R_2 könnten diese auch parallel zur Horizontalachse oder auch parallel zur Vertikalachse der Metallmembran 1 angeordnet werden. Demgegenüber liegen die Positionen eines peripheren Widerstandpaars 11 in der Peripherie 3 der Metallmembran 1 und dort in den Bereichen, in denen die Stauchungsmaxima 13 auftreten. Bei einer Druckbeaufschlagung der Metallmembran 1 von einer Seite her, wird das zentrumsnahen Widerstandspaar 10 auf Dehnung beansprucht, d.h. um den Betrag Δl gestreckt.

Das periphere Widerstandspaar 11 wird demgegenüber um die Strecke $-\Delta l$ gestaucht, ange deutet durch die gestrichelte Wiedergabe der beiden Widerstände R_2 bzw. R_4 . Die Stauchung

l- Δl gibt die Länge an, um die die im Stauchungsbereich der Metallmembran 1 liegenden beiden Widerstände R₂ bzw. R₄ bei Druckbeaufschlagung der Metallmembran 1 gestaucht werden. Die Streckung der beiden zentrumsnah angeordneten Widerstände R₁ und R₃, das zentrumssnahe Widerstandpaar 10 bildend, ist durch l+ Δl dargestellt und ebenfalls gestrichelt angedeutet. Durch die Anordnung des zentrumsnahen Widerstandspaares 10 und des peripheren Widerstandspaares 11 ist der absolute Betrag Δl der gestauchten Widerstände R₂ und R₄ identisch zur Länge Δl des zentrumsnah angeordneten Widerstandspaares 10. Aufgrund dieser Tatsache entsprechen die Zugdehnungen Δl der beiden zentrumsnahen Widerstände R₁ und R₃ den Stauchungen $-\Delta l$ der weiter außen in der Peripherie 3 der Metallmembran 1 liegenden, auf Druck beanspruchten Widerstände R₂ und R₄. In diesem Falle ist der Gesamtwiderstand der Brückenschaltung 5 nur noch von der Temperatur abhängig und somit unabhängig vom anliegenden Druck, welcher über die Auslenkung der Metallmembran 1 zu ermitteln ist. Damit lässt sich durch eine Messung des Gesamtwiderstands R_{GES} die Temperatur der Brückenschaltung 5 bestimmen und zur Kompensation des Temperatureinflusses heranziehen.

Durch die in Fig. 2 anhand eines Beispiels dargestellte Anordnung der Widerstände R₁, R₂, R₃ sowie R₄ wird erreicht, dass der Gesamtwiderstand der Brückenschaltung 5 unabhängig von der Auslenkung der Metallmembran 1 wird und somit nur von der Temperatur der Metallmembran 1 abhängt. Dadurch kann unabhängig vom zu messenden Druck mit der Brückenschaltung 5 die Temperatur der Metallmembran 1 durch die Brückenschaltung 5 bestimmt und zu Kompensationszwecken eingesetzt werden. Damit ist sichergestellt, dass die Temperatur, der die Brückenschaltung 5 ausgesetzt ist, die wahre Temperatur ist, um deren Einfluss das erhaltene Messsignal U_A der Brückenschaltung 5 zu kompensieren. Messungenauigkeiten durch eine Temperaturkompensation im Bereich der Auswerteelektronik, die aus Gründen der thermischen Beanspruchung weit entfernt von der Metallmembran 1 liegt, können durch die erfindungsgemäß vorgeschlagene Temperaturkompensation unmittelbar durch die Auslegung, d.h. die Positionierung der Widerstände R₁, R₂, R₃ und R₄ der Brückenschaltung 5, behoben werden. Damit lässt sich durch die erfindungsgemäß vorgeschlagene Lösung eine wesentlich genauere, druckunabhängige Temperaturbestimmung der Metallmembran 1 erreichen. Im Gegensatz zur aus dem Stand der Technik bekannten Lösung kann durch die erfindungsgemäß vorgeschlagene Lösung auf die Anordnung zusätzlicher Kompensations- oder Temperaturmesswiderstände verzichtet werden. Ferner wird die zum Aufbringen der Kompensations- oder Temperaturmesswiderstände erforderliche Brennraumfläche eingespart, wobei die elektrischen Anschlusspunkte für die Kompensations- und Temperaturmesswiderstände ebenfalls entfallen können. Damit lässt sich die Metallmembran 1 insgesamt gesehen wesentlich kleiner auslegen, da wesentlich weniger Fläche benötigt wird. Durch den Entfall der elektrischen Kontaktierungsstellen zusätzlich vorzuhalender Kompensations- oder Temperaturmesswiderstände gemäß den aus dem Stand der

Technik bekannten Lösungen werden Schwachstellen, die potentielle Ausfallstellen darstellen, vermieden.

Der Darstellung gemäß Fig. 3 ist ein Querschnitt durch das Membranmaterial mit Lage der
5 Dehnungs- bzw. Stauchungsmaxima zu entnehmen.

Die in Fig. 3 teilweise im Querschnitt dargestellte Metallmembran 1 ist symmetrisch zur Symmetriearchse 14. Bei dem Membranmaterial kann es sich einerseits um einen metallischen Werkstoff, andererseits auch um Keramikmaterial handeln. Bei Druckbeaufschlagung
10 der Metallmembran 1 nimmt diese die in Fig. 3 dargestellte Form an. Die Metallmembran 1 wird im Bereich des Zentrums 2 gedeckt und an der Peripherie 3 gestaucht. Die Position des zentrumsnahen Widerstands 10 ist in Fig. 3 durch das Bezugszeichen 16 angedeutet, während die Position des in der Peripherie 3 der Metallmembran 1 angeordneten zentrumsfernen Widerstandspaares 5 durch Bezugszeichen 17 angedeutet ist. Aufgrund der geometrischen Verformung des Membranmaterials 15 erfährt das Zentrum 2 eine Dehnung in radiale Richtung. Die sich im Zentrum 2 der Metallmembran 1 einstellende Radialdehnung $\varepsilon_{r,\text{dehn}}$ entspricht betragsmäßig der radialen Stauchung $\varepsilon_{r,\text{stauch}}$ im Bereich der Peripherie 3 der Metallmembran 1. Die Dehnung in radiale Richtung im Radialdehnungsbereich 18 entspricht betragsmäßig der Radialstauchung $\varepsilon_{r,\text{stauch}}$, angedeutet durch Bezugszeichen 19 im Peripheriebereich 3 der Metallmembran 1.
15
20

Bezugszeichenliste

- 1 Metallmembran
2 Zentrum
5 3 Peripherie
4 Rand
 U_0 Versorgungsspannung
 U_A Ausgangsspannung U_ϑ
5 Brückenschaltung
10 6 erster DMS (R_1)
7 zweiter DMS (R_2)
8 dritter DMS (R_3)
9 vierter DMS (R_4)
 RT_1 erster Temperatur-Kompensationswiderstand
15 RT_2 zweiter Temperatur-Kompensationswiderstand
10 zentrumsnahes Widerstandspaar (R_1, R_3)
11 peripheres Widerstandspaar (R_2, R_4)
 Δl Dehnung zentrumsnaher Widerstände
 $-\Delta l$ Stauchung peripherer Widerstände
20 $|\Delta l|$ Absolutbetrag Dehnung/Stauchung
12 Dehnungsmaximum
13 Stauchungsmaximum
14 Symmetriearchse
15 Membranmaterial
25 E_r Radialdehnung
16 Position zentrumsnahes Widerstandspaar
17 Position peripheres Widerstandspaar
18 Radialdehnungsbereich $\varepsilon_{r,dehn}$
19 Radialstauchungsbereich $\varepsilon_{r,stauch}$

Patentansprüche

1. Verfahren zur druckunabhängigen Temperaturbestimmung mittels einer Membran (1), auf der eine Brückenschaltung (5) mit mehreren Widerständen (6, 7, 8, 9) aufgenommen ist, von denen ein Widerstandpaar (10) zentrumsnah und ein Widerstandspaar (11) zentrumsfrem angeordnet ist, dadurch gekennzeichnet, dass die Widerstände (6, 7, 8, 9) auf der Membran (1) so angeordnet werden, dass die Zugdehnung Δl des zentrumsnah angeordneten Widerstandspaares (10) der Stauchung $-\Delta l$ des zentrumsfrem angeordneten Widerstandspaares (11) entsprechen.
5
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das zentrumsnah angeordnete Widerstandspaar (10) auf der Metallmembran (1) im Bereich der bei Druckbeaufschlagung der Metallmembran (1) auftretenden Dehnungsmaxima (12) angeordnet wird.
10
3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das zentrumsfrem angeordnete Widerstandspaar (11) auf der Metallmembran (1) in dem Bereich (3) angeordnet wird, in dem Stauchungsmaxima (13) auftreten.
15
4. Verfahren gemäß der Ansprüche 2 und 3, dadurch gekennzeichnet, dass die Bereiche der Metallmembran (1), an denen die Dehnungsmaxima (12) und an denen die Stauchungsmaxima (13) auftreten, mittels der Finite-Elemente-Methode bestimmt werden.
20
5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass der Absolutbetrag ($|\Delta l|$) der Dehnungen (Δl) und der Stauchungen ($-\Delta l$) der Brückenschaltung (5) identisch ist.
25
6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass eine geometrische Optimierung der Konfiguration der Metallmembran (1) im Rahmen der FEM-Simulation erfolgt.
30
7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass im Rahmen der FEM-Simulation geometrische Randbedingungen wie der Durchmesser der Metallmembran (1), die Dicke der Metallmembran (1) sowie die Höhe der Metallmembran (1) berücksichtigt werden.
35
8. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass im Rahmen der FEM-Simulation der Nenndruck berücksichtigt wird, mit welchem die Metallmembran 1 beaufschlagt wird.

1 / 6

Fig. 1a

2 / 6

Fig. 1b

3 / 6

Fig. 1c

4 / 6

Fig. 1d

5 / 6

Fig. 2

6 / 6

Fig. 3

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/053020

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 G01K1/26 G01K7/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G01K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, WPI Data, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 33 27 653 A1 (VEB GERAETE- UND REGLER-WERKE TELTOW) 16 February 1984 (1984-02-16) the whole document -----	1
A	US 2003/217603 A1 (ISHIO SEIICHIRO) 27 November 2003 (2003-11-27) paragraphs '0008!, '0013! - '0015!, '0061!, '0062!; claims 1-4; figures 11,12 -----	1-8
A	BAUER, H.: "Kraftfahrtechnisches Taschenbuch" 1 January 1999 (1999-01-01), BOSCH GMBH , STUTTGART , XP002321596 cited in the application page 110 - page 111 -----	1-8
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document but published on or after the international filing date	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&" document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means	
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the International search	Date of mailing of the international search report
17 March 2005	04/04/2005
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Thomte, M

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/053020

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 6 382 031 B1 (MAST FRIEDRICH ET AL) 7 May 2002 (2002-05-07) abstract ----- DE 88 04 598 U1 (STS SENSOR TECHNIK SIRNACH AG, SIRNACH, CH) 19 May 1988 (1988-05-19) claim 1 ----- DE 36 16 379 A1 (BAUMANN,HEINRICH,DIPL.-ING) 19 November 1987 (1987-11-19) the whole document -----	1
A		1
A		1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/053020

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
DE 3327653	A1	16-02-1984	DD	209705 A1		16-05-1984
US 2003217603	A1	27-11-2003	JP CN DE FR	2003337072 A 1460846 A 10322523 A1 2840067 A1		28-11-2003 10-12-2003 04-12-2003 28-11-2003
US 6382031	B1	07-05-2002	DE AT DE WO EP ES JP	19711874 A1 207613 T 59801867 D1 9843058 A1 0968407 A1 2165164 T3 2001517313 T		24-09-1998 15-11-2001 29-11-2001 01-10-1998 05-01-2000 01-03-2002 02-10-2001
DE 8804598	U1	19-05-1988		NONE		
DE 3616379	A1	19-11-1987		NONE		

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/053020

A. Klassifizierung des Anmeldungsgegenstandes
IPK 7 G01K1/26 G01K7/20

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 G01K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ, WPI Data, INSPEC

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	DE 33 27 653 A1 (VEB GERAETE- UND REGLER-WERKE TELTOW) 16. Februar 1984 (1984-02-16) das ganze Dokument ----	1
A	US 2003/217603 A1 (ISHIO SEIICHIRO) 27. November 2003 (2003-11-27) Absätze '0008!, '0013! - '0015!, '0061!, '0062!; Ansprüche 1-4; Abbildungen 11,12 ----	1-8
A	BAUER, H.: "Kraftfahrtechnisches Taschenbuch" 1. Januar 1999 (1999-01-01), BOSCH GMBH , STUTTGART , XP002321596 in der Anmeldung erwähnt Seite 110 - Seite 111 ----	1-8

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

° Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldeatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldeatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfiederischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfiederischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

17. März 2005

Absendedatum des internationalen Recherchenberichts

04/04/2005

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Thomte, M

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/053020

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	US 6 382 031 B1 (MAST FRIEDRICH ET AL) 7. Mai 2002 (2002-05-07) Zusammenfassung -----	1
A	DE 88 04 598 U1 (STS SENSOR TECHNIK SIRNACH AG, SIRNACH, CH) 19. Mai 1988 (1988-05-19) Anspruch 1 -----	1
A	DE 36 16 379 A1 (BAUMANN,HEINRICH,DIPL.-ING) 19. November 1987 (1987-11-19) das ganze Dokument -----	1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/053020

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
DE 3327653	A1	16-02-1984	DD	209705	A1	16-05-1984
US 2003217603	A1	27-11-2003	JP	2003337072 A		28-11-2003
			CN	1460846 A		10-12-2003
			DE	10322523 A1		04-12-2003
			FR	2840067 A1		28-11-2003
US 6382031	B1	07-05-2002	DE	19711874 A1		24-09-1998
			AT	207613 T		15-11-2001
			DE	59801867 D1		29-11-2001
			WO	9843058 A1		01-10-1998
			EP	0968407 A1		05-01-2000
			ES	2165164 T3		01-03-2002
			JP	2001517313 T		02-10-2001
DE 8804598	U1	19-05-1988		KEINE		
DE 3616379	A1	19-11-1987		KEINE		