void flipStack2 (StackOfT& s)	Name:
//! updates s //! requires s = 2	Name:
//: requires s - 2 //! ensures s = #s[1,2) * #s[0,1)	One CM:

Reasoning Table for flipStack2

S	Code	Assume	Confirm	
0		s0 = 2	true	
	T y; StackOfT t;		/ / / / / /	
1		T.Init(y1) ^ t1 = <> ^ s1 = s0	s1 /= <>	
	s.pop(y)		/ / / / / /	
2		<pre><y2> is prefix of s1 ^ s2 = s1[1, s1) ^ t2 = t1</y2></pre>	true	
	t.push(y);	/ / / / / / / / / / /	/ / / / / /	
3		t3 = <y2> * t2 ^ s3 = s2 ^ T.Init(y3)</y2>	s3 /= <>	
	s.pop(y)		/ / / / / /	
4		<pre><y4> is prefix of s3 ^ s4 = s3[1, s3) ^ t4 = t3</y4></pre>	true	
	t.push(y)		/ / / / / /	
5		t5 = <y4> * t4 ^ s5 = s4 ^ T.Init(y5)</y4>	true	
	s.transferFrom(t);	/ / / / / / / / / / /	/ / / / / /	
6		s6 = t5 ^ t6 = <> ^ y6 = y5	s6 = s0[1,2) * s0[0,1)	

To do: Prove VC6

Steps:

- 1. Assume all the *premises* on the lhs of \rightarrow are true
- 2. Use the premises from the lhs to show that the *conclusion* on the rhs cannot be false
- The proof goes through if the conclusion is shown to be true
- The proof fails if the conclusion cannot be shown to be true

<pre>void flipStack2-Defective (StackOfT& s)</pre>	Name:
//! updates s //! requires s = 2	Name:
//! requires s = 2 //! ensures s = #s[1,2) * #s[0,1)	One CM:
	One civi.

Reasoning Table for flipStack2-Defective

S	Code	Assume	Confirm	
0		s0 = 2	true	
	T y; StackOfT t;	/ / / / / / / / / / / / /	/ / / / / /	
1		T.Init(y1) ^ t1 = <> ^ s1 = s0	s1 /= <>	
	s.pop(y)	/ / / / / / / / / / /	/ / / / / /	
2		<pre><y2> is prefix of s1 ^</y2></pre>	true	
	t.push(y);	/ / / / / / / / / / /	/ / / / / /	
3		t3 = <y2> * t2 ^ s3 = s2 ^ T.Init(y3)</y2>	s3 /= <>	
	s.pop(y)		/ / / / / /	
4		<y4> is prefix of s3 ^ s4 = s3[1, s3) ^ t4 = t3</y4>	true	
	s.push(y)		/ / / / / /	
5		s5 = <y4> * s4 ^ t5 = t4 ^ T.Init(y5)</y4>	true	
	s.transferFrom(t);	/ / / / / / / / / / /	/ / / / / /	
6		s6 = t5 ^ t6 = <> ^ y6 = y5	s6 = s0[1,2) * s0[0,1)	

To do: Prove VC6