Semaine du 18/03 au 22/03

1 Cours

Polynômes

Polynômes à une indéterminée à coefficients dans \mathbb{K} Définitions : polynôme à coefficients dans \mathbb{K} , ensemble $\mathbb{K}[X]$. Deux polynômes sont égaux si et seulement si leurs coefficients sont égaux. Polynômes pairs, impairs. $(K[X], +, \times)$ est un anneau intègre commutatif. $(\mathbb{K}[X], +, \cdot)$ est un \mathbb{K} -espace vectoriel. Base canonique de $\mathbb{K}[X]$. Degré d'un polynôme. Degré d'une combinaison linéaire, d'un produit. Définition de $\mathbb{K}_n[X]$. $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$. Base canonique de $\mathbb{K}_n[X]$. Famille de polynômes à degrés échelonnés. Fonction polynomiale associée à un polynôme. Racine d'un polynôme. Cas des polynômes pairs/impairs et des polynômes à coefficients réels. Polynôme dérivé. La dérivation est linéaire. Formule de Leibniz. Formule de Taylor.

Arithmétique de $\mathbb{K}[X]$ Relation de divisibilité. Division euclidienne. Algorithme de division euclidienne. Un polynôme P admet a pour racine **si et seulement si** il est divisible par X - a. Existence et unicité d'un PGCD unitaire ou nul. Algorithme d'Euclide pour les polynômes. Théorème de Bézout. Polynômes premiers entre eux. Lemme de Gauss. Un polynôme de degré n admet au plus n racines. Polynômes interpolateurs de Lagrange. Existence et unicité d'un PPCM unitaire ou nul.

Racines multiples Définition. Un polynôme de degré n admet au plus n racines comptées avec multiplicité. Caractérisation de la multiplicité d'une racine par les dérivées successives.

Factorisation Polynômes irréductibles. Théorème de d'Alembert-Gauss. Polynômes irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$.

2 Méthodes à maîtriser

- ▶ Pour résoudre des équations d'inconnue polynomiale, chercher dans un premier temps à déterminer le degré du polynôme inconnu.
- ▶ Déterminer le reste d'une division euclidienne (utiliser les racines du diviseur).
- ▶ Montrer qu'un polynôme est nul en montrant qu'il admet une infinité de racines.
- ► Caractériser la multiplicité d'une racine via les dérivées successives.
- ▶ Passer de la décomposition en facteurs irréductibles sur $\mathbb{C}[X]$ à celle sur $\mathbb{R}[X]$ (regrouper les racines conjuguées).
- ▶ Utiliser la parité et le fait qu'un polynôme est à coefficients réels pour obtenir de nouvelles racines à partir d'une racine donnée.
- ▶ Savoir résoudre des équations polynomiales de degré 2 à coefficients complexes.
- ► Savoir déterminer des racines n^{èmes} d'un nombre complexe.

3 Questions de cours

- ▶ Soient $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$. Montrer que a est racine de P si et seulement si X a divise P.
- ▶ Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que P(X + 1) = P(X).

▶ Banque CCP 85

- 1. Soient $n \in \mathbb{N}^*$, $P \in \mathbb{R}_n[X]$ et $a \in \mathbb{R}$.
 - (a) Donner sans démonstration, en utilisant la formule de Taylor, la décomposition de P(X) dans la base $((X-a)^k)_{0 \le k \le n}$ de $\mathbb{R}_n[X]$.
 - (b) Soit $r \in \mathbb{N}$. En déduire que \mathfrak{a} est une racine de P d'ordre de multiplicité r si et seulement si $P^{(r)}(\mathfrak{a}) \neq 0$ et $\forall k \in [0, r-1], P^{(k)}(\mathfrak{a}) = 0$.
- 2. Déterminer deux réels a et b pour que 1 soit racine double du polynôme $P = X^5 + aX^2 + bX$ et factoriser alors ce polynôme dans $\mathbb{R}[X]$.
- ▶ Banque CCP 87 Soient $a_0, ..., a_n$ des réels deux à deux distincts.
 - 1. Montrer que si $(b_0, \ldots, b_n) \in \mathbb{R}^{n+1}$, il existe un unique polynôme P tel que deg $P \le n$ et $P(a_i) = b_i$ pour tout $i \in [0, n]$.
 - $\text{2. Soit } k \in [\![0,n]\!]. \text{ Expliciter ce polynôme P, que l'on notera } L_k \text{ lorsque } b_i = \begin{cases} 0 & \text{si } i \neq k \\ 1 & \text{sinon} \end{cases}.$
 - 3. Prouver que pour tout $p \in [0, n]$, $\sum_{k=0}^{n} \alpha_k^p L_k = X^p$.

- ▶ Banque CCP 90 Soient a_1, a_2, a_3 trois scalaires distincts donnés d'un corps \mathbb{K} .
 - 1. Montrer que $\Phi \colon \left\{ \begin{array}{ccc} \mathbb{K}_2[X] & \longrightarrow & \mathbb{K}^3 \\ P & \longmapsto & (P(\alpha_1, P(\alpha_2), P(\alpha_3)) \end{array} \right.$ est un isomorphisme d'espaces vectoriels.
 - $2. \ \ \text{On note } e_1,e_2,e_3 \ \text{la base canonique de } \mathbb{K}^3 \ \text{et on pose } L_k=\Phi^{-1}(e_k) \ \text{pour } k \in \{1,2,3\}.$
 - (a) Justifier que (L_1,L_2,L_3) est une base de $\mathbb{K}_2[X]$.
 - (b) Exprimer les polynômes L_1, L_2 et L_3 en fonction de a_1, a_2 et a_3 .
 - (c) Soit $P \in \mathbb{K}_2[X]$. Déterminer les coordonnées de P dans la base (L_1,L_2,L_3) .
 - 3. On se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3) et C(2,1). Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.