Lepton scale factors

Richard Hughes, <u>Darren Puigh</u>, Geoff Smith, Brian Winer *The Ohio State University*

Andrew Brinkerhoff, Kevin Lannon, Wuming Luo, Jason Slaunwhite, Anna Woodard

University of Notre Dame

Sarah Boutle, Joey Goodell, Chris Neu, John Wood

University of Virginia

Overview

- Lepton scale factors (electrons and muons)
 - ▶ ID: PFlepton -> passes "tight" id requirement
 - ▶ Isolation: tight PFlepton -> passes isolation requirement
 - ▶ HLT: tight, iso PFlepton -> matched (ΔR<0.3) to trigger lepton
 - Specifically for single lepton triggers
 - Samples (53xOn52x)
 - SingleElectron (2012 A+B) 75 M events
 - SingleMu (2012 A+B) 61 M events
 - DYJetsToLL 30 M events
 - ▶ PU, b-tag re-weighting
 - Z-mass window: 70 130 GeV
 - Tag-and-probe cut and count efficiency
 - Tag: lepton with p_T > 30 GeV, passing "tight" cuts, trigger matched
 - Assume no non-Z backgrounds

Different binning used

- Binning matches Muon POG
 - ▶ Eta
 - -2.4, -2.1, -1.6, -1.2, -0.9, -0.6, -0.3, -0.2, 0.2, 0.3, 0.6, 0.9, 1.2, 1.6, 2.1, 2.4
 - For now, muons only have |η| < 2.1</p>
 - ▶ pT
 - **1**0, 15, 20, 25, 30, 35, 40, 50, 60, 90, 140, 500
 - numJet
 - **■** -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 10.5
 - numTag
 - **■** -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 10.5
 - numPV
 - -0.5, 2.5, 4.5, 6.5, 8.5, 10.5, 12.5, 14.5, 16.5, 18.5, 20.5, 22.5, 24.5, 26.5, 28.5, 30.5, 40.5

Tag-and-probe

- The tag and the probe are required to have
 - Invariant mass within 70 and 130 GeV
 - Opposite charge
- Negligible non-Z backgrounds in inclusive sample SingleElectron data

Probe: PFelectron

Probe: tight PFelectron

Probe: tight, iso PFelectron

Electron: id

Electron: iso

Electron: HLT

Muon: id

Muon: iso

Muon: HLT

Electron scale factors: figures

• In general, good agreement between data and MC

Electron scale factors: numbers

id + isolation

eta / pT	(30, 35)	(35, 40)	(40, 50)	(50, 60)	(60, 90)	(90, 140)	(140, 500)
(-2.4, -2.1)	1.031 ± 0.012	1.043 ± 0.009	1.030 ± 0.006	1.019 ± 0.012	0.995 ± 0.022	1.043 ± 0.059	0.831 ± 0.105
(-2.1, -1.6)	1.002 ± 0.006	0.997 ± 0.005	1.010 ± 0.003	1.008 ± 0.006	1.012 ± 0.011	0.992 ± 0.028	0.971 ± 0.057
(-1.6, -1.2)	0.984 ± 0.005	0.991 ± 0.004	0.995 ± 0.002	1.001 ± 0.005	0.999 ± 0.007	0.986 ± 0.019	0.995 ± 0.041
(-1.2, -0.9)	0.982 ± 0.004	0.987 ± 0.003	0.992 ± 0.002	0.999 ± 0.004	1.005 ± 0.006	0.990 ± 0.012	0.993 ± 0.021
(-0.9, -0.6)	0.977 ± 0.004	0.985 ± 0.003	0.995 ± 0.002	0.987 ± 0.003	0.997 ± 0.005	1.008 ± 0.015	0.985 ± 0.026
(-0.6, -0.3)	0.989 ± 0.003	0.994 ± 0.003	0.991 ± 0.001	0.994 ± 0.003	0.987 ± 0.004	0.990 ± 0.011	1.021 ± 0.021
(-0.3, -0.2)	0.985 ± 0.006	0.994 ± 0.005	0.991 ± 0.002	0.995 ± 0.005	0.999 ± 0.009	0.979 ± 0.020	1.016 ± 0.009
(-0.2, 0.2)	0.989 ± 0.003	0.986 ± 0.002	0.991 ± 0.001	0.994 ± 0.002	0.990 ± 0.004	0.994 ± 0.009	0.991 ± 0.010
(0.2, 0.3)	0.996 ± 0.006	0.995 ± 0.004	0.992 ± 0.002	0.992 ± 0.005	0.983 ± 0.007	0.988 ± 0.013	0.975 ± 0.018
(0.3, 0.6)	0.990 ± 0.003	0.991 ± 0.002	0.995 ± 0.001	0.998 ± 0.003	0.997 ± 0.005	0.992 ± 0.013	1.015 ± 0.015
(0.6, 0.9)	0.989 ± 0.004	0.994 ± 0.003	0.995 ± 0.002	0.996 ± 0.003	1.006 ± 0.006	0.995 ± 0.013	0.977 ± 0.019
(0.9, 1.2)	0.988 ± 0.004	0.991 ± 0.003	0.997 ± 0.002	0.997 ± 0.003	1.002 ± 0.006	0.983 ± 0.014	0.985 ± 0.021
(1.2, 1.6)	0.995 ± 0.006	0.991 ± 0.004	0.990 ± 0.002	0.991 ± 0.005	0.991 ± 0.007	0.990 ± 0.024	0.986 ± 0.032
(1.6, 2.1)	1.015 ± 0.006	1.009 ± 0.005	1.012 ± 0.003	1.004 ± 0.006	1.000 ± 0.010	0.996 ± 0.026	1.056 ± 0.065
(2.1, 2.4)	1.057 ± 0.013	1.040 ± 0.009	1.028 ± 0.006	1.027 ± 0.012	1.037 ± 0.021	0.938 ± 0.059	0.957 ± 0.114

id + isolation + HLT

	10. 1 10 010101011						
eta / pT	(30, 35)	(35, 40)	(40, 50)	(50, 60)	(60, 90)	(90, 140)	(140, 500)
(-2.4, -2.1)	$) 0.945 \pm 0.020$	0.975 ± 0.016	0.945 ± 0.010	0.947 ± 0.022	0.973 ± 0.039	1.087 ± 0.106	0.518 ± 0.114
(-2.1, -1.6)	$) \mid 0.946 \pm 0.012$	0.961 ± 0.009	0.976 ± 0.005	0.976 ± 0.010	0.985 ± 0.018	0.907 ± 0.044	0.948 ± 0.101
(-1.6, -1.2)	0.906 ± 0.008	0.942 ± 0.006	0.970 ± 0.004	0.969 ± 0.007	0.985 ± 0.011	0.972 ± 0.025	0.991 ± 0.047
(-1.2, -0.9)	0.934 ± 0.006	0.962 ± 0.005	0.978 ± 0.003	0.978 ± 0.006	1.002 ± 0.009	0.957 ± 0.017	0.944 ± 0.028
(-0.9, -0.6)	0.956 ± 0.006	0.970 ± 0.004	0.991 ± 0.003	0.990 ± 0.005	1.002 ± 0.009	1.021 ± 0.025	0.971 ± 0.037
(-0.6, -0.3)	0.973 ± 0.006	0.998 ± 0.005	0.999 ± 0.003	1.004 ± 0.006	0.980 ± 0.008	1.001 ± 0.022	1.086 ± 0.057
(-0.3, -0.2)) 1.000 ± 0.012	1.002 ± 0.008	1.009 ± 0.005	1.003 ± 0.010	1.034 ± 0.018	0.976 ± 0.033	1.043 ± 0.034
(-0.2, 0.2)	0.965 ± 0.006	0.972 ± 0.004	0.984 ± 0.002	0.992 ± 0.005	0.987 ± 0.007	0.991 ± 0.015	0.980 ± 0.025
(0.2, 0.3)	0.970 ± 0.011	0.973 ± 0.008	0.992 ± 0.005	0.985 ± 0.010	0.979 ± 0.014	1.014 ± 0.032	1.004 ± 0.040
(0.3, 0.6)	0.959 ± 0.006	0.971 ± 0.004	0.984 ± 0.003	0.983 ± 0.005	0.980 ± 0.008	0.973 ± 0.020	0.966 ± 0.025
(0.6, 0.9)	0.958 ± 0.006	0.972 ± 0.004	0.988 ± 0.003	0.981 ± 0.005	0.997 ± 0.008	0.977 ± 0.020	0.963 ± 0.036
(0.9, 1.2)	0.951 ± 0.007	0.964 ± 0.004	0.979 ± 0.003	0.983 ± 0.005	0.985 ± 0.009	0.999 ± 0.024	0.988 ± 0.033
(1.2, 1.6)	0.924 ± 0.009	0.962 ± 0.006	0.973 ± 0.004	0.968 ± 0.007	0.979 ± 0.011	0.993 ± 0.029	0.965 ± 0.040
(1.6, 2.1)	0.967 ± 0.011	0.994 ± 0.009	0.991 ± 0.005	0.979 ± 0.010	0.974 ± 0.017	0.916 ± 0.039	1.008 ± 0.095
(2.1, 2.4)	1.034 ± 0.023	1.044 ± 0.018	1.002 ± 0.011	1.012 ± 0.023	1.012 ± 0.039	0.972 ± 0.115	1.067 ± 0.310

Muon scale factors: figures

• In general, good agreement between data and MC

Muon scale factors: numbers

id + isolation

eta / pT	(30, 35)	(35, 40)	(40, 50)	(50, 60)	(60, 90)	(90, 140)	(140, 500)
(-2.1, -1.6)	0.986 ± 0.003	0.990 ± 0.003	0.988 ± 0.001	0.987 ± 0.003	0.989 ± 0.006	0.998 ± 0.018	0.929 ± 0.029
(-1.6, -1.2)	0.987 ± 0.003	0.995 ± 0.002	0.993 ± 0.001	0.987 ± 0.002	0.989 ± 0.004	0.998 ± 0.011	0.988 ± 0.019
(-1.2, -0.9)	0.973 ± 0.003	0.981 ± 0.003	0.979 ± 0.001	0.982 ± 0.003	0.973 ± 0.005	0.987 ± 0.013	0.990 ± 0.024
(-0.9, -0.6)	0.987 ± 0.003	0.985 ± 0.002	0.988 ± 0.001	0.985 ± 0.003	0.987 ± 0.005	0.996 ± 0.015	0.991 ± 0.014
(-0.6, -0.3)	0.987 ± 0.003	0.986 ± 0.002	0.989 ± 0.001	0.986 ± 0.002	0.995 ± 0.004	0.976 ± 0.009	1.004 ± 0.020
(-0.3, -0.2)	0.995 ± 0.007	0.985 ± 0.005	0.984 ± 0.003	0.978 ± 0.007	0.992 ± 0.010	0.971 ± 0.025	0.992 ± 0.045
(-0.2, 0.2)	0.982 ± 0.003	0.980 ± 0.002	0.983 ± 0.001	0.981 ± 0.003	0.984 ± 0.004	0.973 ± 0.009	1.000 ± 0.017
(0.2, 0.3)	0.979 ± 0.006	0.973 ± 0.005	0.980 ± 0.003	0.975 ± 0.006	0.983 ± 0.011	0.978 ± 0.027	0.878 ± 0.043
(0.3, 0.6)	0.987 ± 0.003	0.989 ± 0.002	0.990 ± 0.001	0.990 ± 0.002	0.988 ± 0.004	1.003 ± 0.009	1.015 ± 0.024
(0.6, 0.9)	0.981 ± 0.003	0.989 ± 0.002	0.987 ± 0.001	0.990 ± 0.003	0.995 ± 0.005	1.002 ± 0.013	0.968 ± 0.019
(0.9, 1.2)	0.988 ± 0.004	0.978 ± 0.003	0.987 ± 0.001	0.982 ± 0.003	0.978 ± 0.005	0.977 ± 0.011	0.984 ± 0.027
(1.2, 1.6)	0.992 ± 0.003	0.993 ± 0.002	0.992 ± 0.001	0.993 ± 0.002	0.991 ± 0.004	0.990 ± 0.014	0.976 ± 0.016
(1.6, 2.1)	1.000 ± 0.003	0.995 ± 0.002	0.995 ± 0.001	0.990 ± 0.003	0.992 ± 0.004	1.002 ± 0.015	0.960 ± 0.031

id + isolation + HLT

	eta / pT	(30, 35)	(35, 40)	(40, 50)	(50, 60)	(60, 90)	(90, 140)	(140, 500)
	(-2.1, -1.6)	0.983 ± 0.007	0.991 ± 0.006	0.978 ± 0.004	0.972 ± 0.007	0.978 ± 0.014	0.982 ± 0.038	0.910 ± 0.064
	(-1.6, -1.2)	0.981 ± 0.006	0.982 ± 0.005	0.975 ± 0.003	0.964 ± 0.006	0.955 ± 0.009	0.954 ± 0.025	0.950 ± 0.042
	(-1.2, -0.9)	0.964 ± 0.006	0.959 ± 0.005	0.946 ± 0.003	0.945 ± 0.006	0.941 ± 0.010	0.918 ± 0.024	0.993 ± 0.065
	(-0.9, -0.6)	1.011 ± 0.005	0.993 ± 0.003	0.989 ± 0.002	0.979 ± 0.004	0.978 ± 0.007	1.019 ± 0.022	0.926 ± 0.023
	(-0.6, -0.3)	1.011 ± 0.004	1.012 ± 0.003	0.998 ± 0.002	0.989 ± 0.004	0.991 ± 0.006	0.979 ± 0.017	0.995 ± 0.024
	(-0.3, -0.2)	0.968 ± 0.009	0.962 ± 0.007	0.951 ± 0.004	0.938 ± 0.009	0.952 ± 0.015	0.897 ± 0.034	0.986 ± 0.074
	(-0.2, 0.2)	1.015 ± 0.004	1.002 ± 0.003	0.993 ± 0.002	0.979 ± 0.004	0.986 ± 0.006	0.976 ± 0.020	0.986 ± 0.025
	(0.2, 0.3)	0.994 ± 0.009	0.974 ± 0.007	0.964 ± 0.004	0.952 ± 0.009	0.963 ± 0.016	0.961 ± 0.039	0.800 ± 0.051
	(0.3, 0.6)	1.013 ± 0.004	1.008 ± 0.003	0.999 ± 0.002	0.987 ± 0.004	0.986 ± 0.006	0.997 ± 0.015	1.021 ± 0.037
T	(0.6, 0.9)	1.010 ± 0.005	1.001 ± 0.003	0.990 ± 0.002	0.984 ± 0.004	0.986 ± 0.007	1.001 ± 0.020	0.937 ± 0.041
	(0.9, 1.2)	0.971 ± 0.007	0.964 ± 0.005	0.959 ± 0.003	0.948 ± 0.006	0.916 ± 0.009	0.900 ± 0.021	0.855 ± 0.043
	(1.2, 1.6)	0.963 ± 0.006	0.954 ± 0.005	0.945 ± 0.003	0.939 ± 0.006	0.949 ± 0.010	0.956 ± 0.031	0.980 ± 0.060
Ĭ_	(1.6, 2.1)	1.037 ± 0.007	1.013 ± 0.005	1.010 ± 0.003	0.990 ± 0.007	1.006 ± 0.012	0.971 ± 0.031	0.930 ± 0.070

Low p_T id + iso scale factors: DIL

electrons

eta / pT	(10, 15)	(15, 20)	(20, 25)	(25, 30)
(-2.4, -2.1)	0.735 ± 0.052	0.933 ± 0.038	0.959 ± 0.021	1.037 ± 0.017
(-2.1, -1.6)	0.872 ± 0.029	0.942 ± 0.018	0.976 ± 0.012	1.001 ± 0.009
(-1.6, -1.2)	0.866 ± 0.039	0.956 ± 0.022	0.957 ± 0.011	0.994 ± 0.008
(-1.2, -0.9)	0.878 ± 0.040	0.936 ± 0.021	0.976 ± 0.010	0.979 ± 0.006
(-0.9, -0.6)	0.843 ± 0.047	0.963 ± 0.025	0.988 ± 0.011	0.983 ± 0.006
(-0.6, -0.3)	0.822 ± 0.054	0.928 ± 0.022	1.001 ± 0.010	0.996 ± 0.006
(-0.3, -0.2)	0.945 ± 0.142	0.925 ± 0.042	0.975 ± 0.016	0.990 ± 0.010
(-0.2, 0.2)	0.707 ± 0.055	0.892 ± 0.020	0.975 ± 0.008	0.980 ± 0.005
(0.2, 0.3)	0.761 ± 0.101	0.914 ± 0.036	1.007 ± 0.017	0.998 ± 0.010
(0.3, 0.6)	0.794 ± 0.050	0.949 ± 0.022	0.986 ± 0.009	0.986 ± 0.005
(0.6, 0.9)	0.786 ± 0.042	0.949 ± 0.023	0.977 ± 0.010	0.992 ± 0.006
(0.9, 1.2)	0.811 ± 0.039	0.958 ± 0.024	0.968 ± 0.010	0.979 ± 0.006
(1.2, 1.6)	0.871 ± 0.039	0.927 ± 0.020	0.966 ± 0.011	0.987 ± 0.008
(1.6, 2.1)	0.891 ± 0.030	0.951 ± 0.018	0.998 ± 0.013	0.995 ± 0.008
(2.1, 2.4)	0.784 ± 0.049	0.857 ± 0.031	0.957 ± 0.022	1.022 ± 0.016

muons

eta / pT	(10, 15)	(15, 20)	(20, 25)	(25, 30)
(-2.1, -1.6)	0.992 ± 0.016	0.980 ± 0.010	0.992 ± 0.007	0.990 ± 0.005
(-1.6, -1.2)	0.956 ± 0.013	0.981 ± 0.010	0.983 ± 0.006	0.990 ± 0.004
(-1.2, -0.9)	0.957 ± 0.021	0.983 ± 0.013	0.982 ± 0.008	0.983 ± 0.006
(-0.9, -0.6)	0.977 ± 0.023	0.971 ± 0.012	0.978 ± 0.008	0.986 ± 0.005
(-0.6, -0.3)	1.082 ± 0.040	0.972 ± 0.012	0.981 ± 0.008	0.982 ± 0.005
(-0.3, -0.2)	1.004 ± 0.043	1.009 ± 0.032	0.982 ± 0.016	0.993 ± 0.010
(-0.2, 0.2)	1.008 ± 0.030	0.992 ± 0.013	0.972 ± 0.007	0.974 ± 0.004
(0.2, 0.3)	0.991 ± 0.070	0.915 ± 0.020	0.988 ± 0.018	0.975 ± 0.010
(0.3, 0.6)	0.945 ± 0.021	0.987 ± 0.014	0.999 ± 0.009	0.980 ± 0.005
(0.6, 0.9)	0.965 ± 0.019	0.989 ± 0.014	0.994 ± 0.008	0.982 ± 0.005
(0.9, 1.2)	0.970 ± 0.018	0.960 ± 0.011	0.994 ± 0.009	0.990 ± 0.006
(1.2, 1.6)	0.952 ± 0.014	0.980 ± 0.011	1.005 ± 0.008	0.990 ± 0.005
(1.6, 2.1)	0.972 ± 0.013	0.988 ± 0.010	0.999 ± 0.007	0.992 ± 0.004

Scale factors (DYJetsToLL)

electrons

muons

- August 22, 2

Summary

- Derived lepton scale factors for electrons and muons
- Implemented in BEANsUtilities.h
 - Different behavior for isLJ = true/false
 - DIL includes id + iso SF
 - LJ includes id + iso + HLT SF
 - Works for loose and tight leptons
- No uncertainties
 - ▶ Use flat error: SF +/- 0.04 (open for debate)
- Can be improved in the future
 - Better binning
 - Run2012C + additional data
 - Feedback is very welcome

