Literate Scientific Software

Spencer Smith, Dan Szymczak and Jacques Carette

Computing and Software Department Faculty of Engineering McMaster University

PASC, MS06, June 16, 2016

Slide 2 of 21

Background

Lit SS

Drasil

vext Steb

Conclusion

Important SS Qualities

- Reusability
- Maintainability
- Verifiability
- Reproducibility

Slide 3 of 21

Background

Lit SS

Drasi

Next Step

Conclusion

Challenges

- Up front requirements
- Rapid change for numerical algorithms
- Information duplication
- Synchronization headaches between artifacts
- Perceived over-emphasis on non-executable artifacts

Slide 4 of 21

Background

1 it Q

Drasi

Next Step

Conclusion

"Faked" Rational Design Process

Slide 5 of 21

Background

Lit SS

Drasil

Vext Sten

Conclusion

Solar Water Heating Tank

https://github.com/smiths/swhs

Slide 6 of 21

Background

Lit SS

Drasi

Next Step

Literate Scientific Software

SRS (verbose)

SRS (LaTeX)

SRS (html)

MG

MIS

Test cases

C Code) (checks)

Makefile

Matlab (no checks)

Recipes

$$\begin{array}{c}
-\nabla \cdot \mathbf{q} + q''' \\
= \rho C \frac{\partial T}{\partial t}
\end{array}$$

uncertainty, typical values etc.

$$W = J/s =$$

$$kg m2 s-3$$

L > 0

h_c is the heat transfer coeff between clad and coolant

Slide 7 of 21

Backgroun

Lit. SS

Drasi

Next Step

Conclusion

How LSS Addresses Challenges

- Supports changing requirements and design
 - Generation
 - Automated traceability
- Supports duplication
 - Knowledge is entered once, generated/transformed
 - Eases maintenance
 - If incorrect, incorrect everywhere
- Non-executable artifacts are generated

Slide 8 of 21

Lit. SS

D......

Nevt Ston

. Toxt Otop

Conclusion

Verifiability

Var	Constraints	Typical Value	Uncertainty
L	<i>L</i> > 0	1.5 m	10%
D	D > 0	0.412 m	10%
V_P	$V_P > 0$	$0.05 \; {\rm m}^3$	10%
A_P	$A_P > 0$	1.2 m ²	10%
$ ho_{P}$	$ ho_P>0$	1007 kg/m ³	10%

$$E_W = \int_0^t h_C A_C (T_C - T_W(t)) dt - \int_0^t h_P A_P (T_W(t) - T_P(t)) dt$$

- Sanity checks captured and reused
- Generate guards against invalid input
- Generate test cases

Slide 9 of 21

Backgrou

Lit. SS

Drasi

Next Step

Conclusion

Reusability

Num.	T1	
Label	Conservation of energy	
Eq	$-\nabla \cdot \mathbf{q} + q''' = \rho C \frac{\partial T}{\partial t}$	

Descrip The above equation gives the conservation of energy for time varying heat transfer in a material of specific heat capacity C and density ρ , where \mathbf{q} is the thermal flux vector, q''' is the volumetric heat generation, T is the temperature, ∇ is the del operator and t is the time.

Slide 10 of 21

Backgrou

Lit. SS

NI---- Ot---

Conclusion

Maintainability

- A1: The only form of energy that is relevant for this problem is thermal energy. All other forms of energy, such as mechanical energy, are assumed to be negligible [T1].
- A2: All heat transfer coefficients are constant over time [GD1].
- A3: The water in the tank is fully mixed, so the temperature is the same throughout the entire tank [GD2, DD2].
- A4: The PCM has the same temperature throughout [GD2, DD2, LC1].
- A5: etc.

Slide 11 of 21

Dackgrot

Lit. SS

Diasii

ivext Step

Conclusion

Reproducibility

- Knowledge is explicitly stored for the future
- Recipes used to regenerate all artifacts, not just code or results
- Recipes include build instructions

Slide 12 of 21

Background

1 # 00

Drasil

Next Sten

Conclusion

Drasil Framework Design

Slide 13 of 21

Backgroun

Lit. Ot

Drasil

Next Step

Conclusion

Simple SRS from LaTeX

SRS from LaTeX

```
s1, s2, s3, s4 :: LayoutObj
s1=table_of_units si_units
s2=table_of_symbols vars
s3=Section 0 (S "Data Definitions") $ map (Definition.Data) vars
s4=Section 0 (S "Code") $ map (CodeBlock.toCode CLang Calc) [h_c]
srs :: Quantity s => [s] -> String -> [LayoutObj] -> Document
srs Is author body =
   Document ((S "SRS for ") :+:
      (foldr1 (:+:) (intersperse (S " and ")
      (map (\x -> U $ x ^. symbol) Is))))
```

srsBody = srs vars "Spencer Smith" [s1, s2, s3, s4]

vars :: [EqChunk]vars = $[h_g, h_c]$

(S author) body

srsBody :: Document

```
table_of_symbols :: (Unit s, Quantity s) => [s] -> LayoutObj
table_of_symbols Is=Section 0 (S "Table of Sym") [intro,table Is]
```

intro :: LavoutObi

intro = Paragraph \$S "The table that follows ..."

table :: (Unit s, Quantity s) => [s] -> LayoutObj table Is=Table [S "Symbol", S "Description", S "Units"] (mkTable

 $[(\c ch -> U (ch ^. symbol)),$

 $(\c ch -> ch \hat{\ }. descr),$

 $(\c ch -> Sy \ ch \ . \ unit)] \ ls)$ (S "Table of Symbols") False

```
fundamentals :: [FundUnit]
fundamentals = [metre, kilogram, second, ...]
derived :: [DerUChunk]
derived = [centigrade, joule, watt, calorie, kilowatt]
si_units :: [UnitDefn]
si_units = map UU fundamentals ++ map UU derived
          — Fundamental SI Units ——
fund :: String -> String -> FundUnit
fund nam desc sym = UD (CC nam (S desc)) (UName $ Atomic sym)
metre, kilogram, second, ... :: FundUnit
metre = fund "Metre" "length"
                                                 "m"
```

fund nam desc sym = UD (CC nam (S desc)) (UName \$ Atomic s metre, kilogram, second, ...: FundUnit metre = fund "Metre" "length" "m" kilogram = fund "Kilogram" "mass" "kg" second = fund "Second" "time" "s" kelvin = fund "Kelvin" "temperature" "K" mole = fund "Mole" "amount of substance" "mol" ampere = fund "Ampere" "electric current" "A" candela = fund "Candela" "luminous intensity" "cd"

$$h_c = \frac{2k_ch_b}{2k_c + \tau_ch_b}$$

heat_transfer :: DerUChunk heat_transfer = DUC (UD ht_con ht_symb) heat_transfer_eqn

 $ht_con = makeCC$ "Heat transfer" "Heat transfer"

ht_symb :: USymb ht_symb = from_udefn heat_transfer_eqn

ht_con :: ConceptChunk

heat_transfer_eqn = USynonym (UProd
 [kilogram ^. unit , UPow (second ^. unit) (-3),
 UPow (centigrade ^. unit) (-1)])

 h_c_eq :: Expr $h_c_eq = 2*(C k_c)*(C h_b)/(2*(C k_c)+(C tau_c)*(C h_b))$

h_c :: EqChunk
h_c = fromEqn "h_c" (S "convective heat transfer ...")
 (IH 'sub' IC) heat_transfer h_c_eq

Slide 18 of 21

Background

Lit S

Drasi

Next Steps

. . .

Conclusion

Next Steps: Design Documentation

Slide 19 of 21

Background

Lit. SS

Next Steps

Conclusion

Generate Code for IMs

Input m_P , C_P^S , C_P^L , h_P , A_P , t_{final} , T_{init} , T_{melt}^P , $T_W(t)$ from IM1

Output $T_P(t)$, $0 \le t \le t_{\text{final}}$, with initial conditions, $T_W(0) = T_P(0) = T_{\text{init}}$ (A12), and $T_W(t)$ from IM1, such that the following governing ODE is satisfied. The specific ODE depends on T_P as follows:

$$\frac{dT_P}{dt} = \begin{cases} \frac{dT_P}{dt} = \frac{1}{\tau_P^S} (T_W(t) - T_P(t)) & \text{if } T_P < T_{\text{melt}}^P \\ \frac{dT_P}{dt} = \frac{1}{\tau_P^L} (T_W(t) - T_P(t)) & \text{if } T_P > T_{\text{melt}}^P \\ 0 & \text{if } T_P = T_{\text{melt}}^P \\ & \text{and } 0 < \phi < 1 \end{cases}$$

Slide 20 of 21

Backgroun

Lit. S

Diasii

Next Steps

Conclusion

Approach to Developing Drasil

- Case studies
 - Solar water heating tank
 - Slope stability analysis
 - Glass safety analysis
 Game abusing analysis
 - Game physics engine
- Practical
- · Not trying to automate everything
- Small chunks of knowledge
- Look for patterns
- Attempt to capture design decisions
 - Version control
 - Issue tracking

Slide 21 of 21

Backgrour

Lit. S

Conclusions

Concluding Remarks

- SS has the opportunity to lead other software fields by leveraging its solid existing knowledge base
- Document driven design is feasible with a knowledge-based approach
- Documentation for QA and software certification does not have to be painful, expensive or time consuming
- Drasil will be developed via practical case studies