On SNARKs with universal updatable setup

Ariel Gabizon
Aztec Protocol

Arithmetic circuit C. "Public input" x.

 $ightharpoonup \mathcal{P}$ can prove she knows w s.t. $\mathbf{C}(x, w) = 0$.

Arithmetic circuit C. "Public input" x.

- ▶ \mathcal{P} can prove she knows w s.t. $\mathbf{C}(x, w) = 0$.
- Proof size polylog|w|.

Arithmetic circuit \mathbb{C} . "Public input" x.

- ▶ \mathcal{P} can prove she knows w s.t. $\mathbf{C}(x, w) = 0$.
- ightharpoonup Proof size polylog|w|.
- Proof doesn't leak info on w.

Arithmetic circuit \mathbf{C} . "Public input" \mathbf{x} .

- ▶ \mathcal{P} can prove she knows w s.t. $\mathbf{C}(x, w) = 0$.
- ightharpoonup Proof size polylog|w|.
- Proof doesn't leak info on w.
- ightharpoonup One time setup procedure to generate common reference string (depends on \mathbb{C} , not on x).

Talk outline

- 1. The problem with prev constructions.
- 2. The solution with recent ones.

Talk outline

- 1. The problem with prev constructions.
- 2. The solution with recent ones.

We probably won't get too far with 2, unless you want to skip 1.

The QAP approach [GGPR,..]

Reduces to ${\mathcal P}$ knowing deg < n polynomials L, R, O with

- 1. $Z \mid L \cdot R O$,
- 2. $(L, R, O) \in V_C$.

$$Z(X) := X^n - 1$$
. $n = \text{num. of mult gates}$

 V_C := affine subspace depending on C

Verifying first cond. with pairings+KEA [Groth10,...]

Setup: uniform secret $s \in \mathbb{F}$, $g \in G$ -group with pairing.

CRS: g, g^s, \ldots, g^{s^n} .

Verifying first cond. with pairings+KEA [Groth10,...]

Setup: uniform secret $s \in \mathbb{F}$, $g \in G$ -group with pairing.

CRS: g, g^s, \ldots, g^{s^n} .

 \mathcal{P} computes $\mathbf{T} = (\mathbf{L} \cdot \mathbf{R} - \mathbf{O})/\mathbf{Z}$.

 $\boldsymbol{\mathcal{P}}$ computes and sends $g^{L(s)}$, $g^{R(s)}$, $g^{O(s)}$, $g^{T(s)}$.

Verifying first cond. with pairings+KEA [Groth10,...]

Setup: uniform secret $s \in \mathbb{F}$, $g \in G$ -group with pairing.

CRS: g, g^s, \ldots, g^{s^n} .

$$\mathcal{P}$$
 computes $T = (L \cdot R - O)/Z$.

 $\boldsymbol{\mathcal{P}}$ computes and sends $g^{L(s)}$, $g^{R(s)}$, $g^{O(s)}$, $g^{T(s)}$.

 ${\mathcal V}$ checks using pairings if

$$L(s) \cdot R(s) - O(s) = T(s) \cdot Z(s)$$

 $CRS:=g, g^s, \ldots, g^{s^n}.$

CRS is universal and updatable:

► Universal - depends only on circuit size

 $CRS:=\mathfrak{q},\mathfrak{q}^s,\ldots,\mathfrak{q}^{s^n}.$

CRS is universal and updatable:

- ▶ Universal depends only on circuit size
- ▶ Updatable: At any point new party P can update CRS with new secret s'

$$CRS_{new} := g, (g^s)^{s'}, \dots, (g^{s^n})^{s'^n}$$

 $CRS:=g, g^s, \ldots, g^{s^n}.$

CRS is universal and updatable:

- ▶ Universal depends only on circuit size
- Updatable: At any point new party P can update CRS with new secret s'

$$CRS_{new} := g, (g^s)^{s'}, \dots, (g^{s^n})^{s'^n}$$

Set of all updaters from all time is required to reconstruct secret of current CRS.

Verifying second condition

Now to check $(L, R, O) \in V_C$.

Include in CRS $g^{\alpha \cdot f(s)}$ for secret $\alpha \in \mathbb{F}$ (only) for $f \in V_C.$

Ruins universality and updatability of CRS.

Polynomial commitment schemes

[Groth10,GGPR,..] approach: check equation at secret point in the exponent, *limited to degree two checks because of pairings*

Polynomial commitment schemes

[Groth10,GGPR,..] approach: check equation at secret point in the exponent, *limited to degree two checks because of pairings*

"PCS approach:" [MBKM,...,..] \mathcal{P} will commit to its polynomials and open them later at random verifier point.

Polynomial commitment schemes

[Groth10,GGPR,...] approach: check equation at secret point in the exponent, *limited to degree two checks because of pairings*

"PCS approach:" [MBKM,..,..] \mathcal{P} will commit to its polynomials and open them later at random verifier point.

Can be done with single group element commit/opens using [KZG] scheme.

The KZG polynomial commitment scheme

SRS: [1],[s],...,[s^d], for random $s \in \mathbb{F}$.

$$f(X) = \sum_{i=0}^{d} a_i X^i$$

$$\mathsf{cm}(\mathsf{f}) \coloneqq \sum_{i=0}^d \alpha_i \left[\mathsf{s}^i \right] = \left[\mathsf{f}(\mathsf{s}) \right]$$

SRS: $[1],[s],...,[s^d],$ for random $s \in \mathbb{F}$.

cm(f) := [f(s)]

open(f, i) := [h(s)], where $h(X) := \frac{f(X) - f(i)}{X - i}$

Idealized Polynomials Protocols

Preprocessing: \mathcal{V} chooses polynomials $g_1, \ldots, g_t \in \mathbb{F}_{< d}[X]$.

Protocol:

- 1. \mathcal{P} 's msgs are to ideal party \mathbf{I} . Must be $f_i \in \mathbb{F}_{<\mathbf{d}}[\mathbf{X}]$.
- 2. At protocol end \mathcal{V} asks \mathbf{I} if some identities hold between $\{\mathbf{f}_1, \ldots, \mathbf{f}_{\ell}, g_1, \ldots, g_t\}$. Outputs \mathbf{acc} iff they do.

Plonk [GWC19]:

- 1. All you need is a permutation check.
- 2. Permutations are easier to check on mutliplicative subgroups

example: Prove knowledge of a, b, c with

example. Frove knowledge of
$$\mathfrak{a}, \mathfrak{o}, \mathfrak{c}$$
 with

 $(a+b) \cdot c = 7$

Right values: \mathbf{r}_1 , \mathbf{r}_2

Output values: o_1 , o_2

Left values: l_1 , l_2

Left values: l_1, l_2

Right values: \mathbf{r}_1 , \mathbf{r}_2

Output values: \mathbf{o}_1 , \mathbf{o}_2

Wire/copy checks: $\mathbf{o}_1 = \mathbf{l}_2$ Public input checks: $o_2 = 7$.

Gate checks: $l_1 + r_1 = o_1$, $l_2 \cdot r_2 = o_2$

Copy checks with permutations similar to [Groth09,BCGGHJ17]

$$V = (l_1, l_2, r_1, r_2, o_1, o_2)$$

Copy checks with permutations similar to [Groth09,BCGGHJ17]

For permutation $\sigma = (25)$

$$V = \left(l_1, l_2, r_1, r_2, o_1, o_2\right)$$
 $o_1 = l_2$ iff $V = \sigma(V)$

Part 2: Permutations are easier to check on mutliplicative subgroups

H-ranged Polynomials Protocols

Preprocessing: \mathcal{V} chooses polynomials $g_1, \ldots, g_t \in \mathbb{F}_{< d}[X]$, $H \subset \mathbb{F}$.

Protocol:

- 1. \mathcal{P} 's msgs are to ideal party \mathbf{I} . Must be $\mathbf{f_i} \in \mathbb{F}_{<\mathbf{d}}[\mathbf{X}]$.
- 2. At end, \mathcal{V} asks \mathbf{I} if some identities hold between $\{f_1, \ldots, f_\ell, g_1, \ldots, g_t\}$ on \mathbf{H} .

Checking permutations with **H**-ranged protocols

Permutation $\sigma:[n] \to [n]$. $H = \{\alpha, \alpha^2, ..., \alpha^n\}$.

 $\mathcal P$ has sent $f\in\mathbb F_{{}^{<}d}[X].$

Wants to prove $f = \sigma(f)$:

$$\forall i \in [n], f(\alpha^i) = f(\alpha^{\sigma(i)})$$

Using [BG12] reduces to:

$$H = \left\{\alpha, \, \alpha^2, \, \ldots, \, \alpha^n \right\}.$$

$${\mathcal P}$$
 has sent f, $g\in {\mathbb F}_{{<\!d}}[X].$

Wants to prove:

$$\prod_{i \in [n]} f(\alpha^i) = \prod_{i \in [n]} g(\alpha^i)$$

Checking products with **H**-ranged protocols

1.
$$\mathcal{P}$$
 computes \mathbf{Z} with $\mathbf{Z}(\alpha) = 1$, $\mathbf{Z}(\alpha^i) = \prod_{j < i} \mathbf{f}(\alpha^j) / \mathbf{g}(\alpha^j)$, $i = 2..n + 1$.

2. Sends **Z** to **I**.

Checking products with **H**-ranged protocols

- 1. \mathcal{P} computes Z with $Z(\alpha) = 1$, $Z(\alpha^i) = \prod_{j < i} f(\alpha^j)/g(\alpha^j)$.
- 2. Sends Z to I.
- 3. \mathcal{V} checks following identities on \mathcal{H} .
 - 3.1 $L_1(X)(Z(X)-1)=0$
 - 3.2 $Z(X)f(X) = Z(\alpha \cdot X)g(X)$
 - 3.3 $L_n(X)(Z(\alpha \cdot X) 1) = 0$

The bottom line (on BLS-381 curve)

600 byte proofs with one trusted setup for all fan-in two circuits of \boldsymbol{n} gates.

Prover does $11n \ G_1 \ \text{exp}$ (or $9n \ G_1 \ \text{exp}$ with 700 byte proof).

For batch of proofs on same circuit only 3n G_1 exp and 240 bytes for each additional proof.

Bonus material: The KZG polynomial commitment scheme

SRS: $[1],[x],\ldots,[x^d]$, for random $x \in \mathbb{F}$.

 $\mathsf{cm}(\mathsf{f}) \coloneqq \textstyle \sum_{i=0}^d \alpha_i \left[x^i \right] = \left[\mathsf{f}(x) \right]$

 $f(X) = \sum_{i=0}^{d} \alpha_i X^i$

SRS: $[1],[x],...,[x^d],$ for random $x \in \mathbb{F}$.

for random
$$x \in \mathbb{F}$$
.

cm(f) := [f(x)]

open(f, i) := [h(x)], where $h(X) := \frac{f(X) - f(i)}{X - i}$

$$cm(f) := [f(x)]$$

open
$$(f, i) := [h(x)]$$

verify (cm, π, z, i) :

 $e(cm - [z], [1]) \stackrel{?}{=} e(\pi, [x - i])$

open
$$(f, i) := [h(x)]$$
, where $h(X) := \frac{f(X) - f(i)}{X - i}$

$$cm(f) := [f(x)]$$

open
$$(f, i) := [h(x)]$$
, where $h(X) := \frac{f(X) - f(i)}{X - i}$

verify(cm, π , z, i):

$$e(cm - [z], [1]) \stackrel{?}{=} e(\pi, [x - i])$$

Thm[KZG,MBKM]: This works in the Algebraic Group

Model.