ZMA - BI-SPOL-35

Základy integrálního počtu (primitivní funkce, neurčitý integrál, Riemannův integrál (definice, vlastnosti a geometrický význam)).

Obsah

2	Neu	Neurčitý integrál			
_	2.1	Inverze			
	$\frac{2.1}{2.2}$	Operace			
	2.2	2.2.1 Sčtání a násobení konstantou			
		P			
		2.2.3 Substituce			
3	Rie	emannův integrál			
	3.1	Infimum			
	3.2	Supremum			
	3.3	Norma dělení			
	3.4	Součet funkce			
	3.5	Horní a dolní integrál			
	3.6	Definice Riemanova integrálu			
	3.7	Postačujíící podmínka pro existenci RI			
	3.8	Integrální součet			
		3.8.1 Vztah s Riemannovým integrálem			
	3.9	Vlastnosti			
		3.9.1 Aditivita integrálu			
		3.9.2 Multiplikativita integrálu			
		3.9.3 Aditivita integrálu v mezích			
		3.9.4 Nerovnosti mezi integrály			
		3.9.5 Newtonova formule			
	3 10) Zobecněný RI			
		Vlastnosti RI			
	5.12	2 Výpočet obsahů plošných útvarů			
	Tah	nulky			

1 Primtivní funkce

Nechť f je funkce definovaná na intervalu (a,b), kde $-\infty \le a < b \le +\infty$. Funkci F splňující podmínku

$$F'(x) = f(x)$$
 pro každé $x \in (a, b)$

nazýváme **primitivní funkcí** k funkci f na intervalu (a, b).

Nechť F je primitivní funkcí k funkci f na intervalu (a,b). Pak G je primitivní funkcí k funkci f na intervalu (a,b) právě tehdy, když existuje konstanta $c \in \mathbb{R}$ taková, že

$$G(x) = F(x) + c, \quad \text{pro každ\'e } x \in (a,b).$$

2 Neurčitý integrál

Nechť k funkci f existuje primitivní funkce na intervalu (a, b). Množinu všech primitivních funkcí k funkci f na (a, b) nazýváme neurčitým integrálem a značíme jej $\int f$ nebo $\int f(x) dx$.

2.1 Inverze

$$\int g'(x) dx = g(x) + c, \quad x \in (a, b)$$

$$\left(\int f\right)'(x) = f(x), \quad x \in (a,b).$$

2.2 Operace

2.2.1 Sčtání a násobení konstantou

$$\int (f+g) = \int f + \int g$$
 a $\int (\alpha f) = \alpha \int f$,

2.2.2 Per partes

Nechť funkce f je diferencovatelná na intervalu (a,b) a G je primitivní funkce k funkci g na intervalu (a,b) a konečně nechť existuje primitivní funkce k funkci f'G. Potom existuje primitivní funkce k funkci fg a platí

$$\int fg = fG - \int f'G.$$

2.2.3 Substituce

Věta o substituci I

Nechť pro funkce fa φ platí

- f má primitivní funkci F na intervalu (a, b),
- φ je na intervalu (α, β) diferencovatelná,
- $\varphi((\alpha,\beta)) \subset (a,b)$

Pak funkce $f(\varphi(x)) \cdot \varphi'(x)$ má primitivní funkci na intervalu (α, β) a platí

$$\int f(\varphi(x)) \cdot \varphi'(x) \, \mathrm{d}x = F(\varphi(x)).$$

Věta o substituci II

Nechť f je definována na intervalu (a,b) a nechť φ je bijekce¹ intervalu (α,β) na (a,b) s nenulovou konečnou derivací. Pak platí

$$\int f(\varphi(t))\varphi'(t) dt = G(t) + C \implies \int f(x) dx = G(\varphi^{-1}(x)) + C$$

3 Riemannův integrál

3.1 Infimum

Buď A neprázdná zdola omezená podmnožina množiny reálných čísel. Číslo $\alpha \in \mathbb{R}$ nazveme infimem množiny A, značíme inf A, právě když

- 1. pro každé $x \in A$ platí $\alpha \le x$ (α je dolní závora A),
- 2. pokud $\beta \in \mathbb{R}$ také splňuje předchozí bod, pak $\beta \leq \alpha$ (α je největší dolní závora A).

Pokud množina A není zdola omezená, pak klademe inf $A:=-\infty$. Pro prázdnou množinu klademe inf $\emptyset:=+\infty$.

3.2 Supremum

Buď A neprázdná zdola omezená podmnožina množiny reálných čísel. Číslo $\alpha \in \mathbb{R}$ nazveme supremem množiny A, značíme sup A, právě když

- 1. pro každé $x \in A$ platí $\alpha \geq x$ (α je horní závora A),
- 2. pokud $\beta \in \mathbb{R}$ také splňuje předchozí bod, pak $\beta \geq \alpha$ (α je nejmenší honrní závora A).

Pokud množina A není shora omezená, pak klademe sup $A:=+\infty$. Pro prázdnou množinu klademe sup $\emptyset:=-\infty$.

 $^{^1}$ zobrazení f,které přiřazuje každému prvku ${\cal H}_f$ právě jeden prvek z D_f

3.3 Norma dělení

Buď dán interval $\langle a,b \rangle$. Konečnou množinu $\sigma = \{x_0, x_1, \dots, x_n\}$ takovou, že $a = x_0 < x_1 < \dots < x_n = b$ nazýváme dělením intervalu $\langle a,b \rangle$. Bodům $x_k, k = 1, 2, \dots, n-1$ říkáme dělící body intervalu $\langle a,b \rangle$. Intervalu $\langle x_k, x_k \rangle$ říkáme částečný interval intervalu $\langle x_k, x_k \rangle$ při dělení σ . Číslo

$$\nu(\sigma) := \max\{\Delta_k \mid k = 1, 2, \dots, n\}, \text{ kde } \Delta_k := x_k - x_{k-1}, \ k = 1, 2, \dots, n,$$

nazýváme **normou dělení** σ .

3.4 Součet funkce

Buďte funkce f definovaná a omezená na intervalu $J=\langle a,b\rangle$ a $\sigma=\{x_0,x_1,,x_n\}$ dělení intervalu J. Součty

$$S(\sigma, f) := \sum_{i=1}^{n} \Delta_{i} \sup_{\langle x_{i-1}, x_{i} \rangle} f \quad \text{a} \quad s(\sigma, f) := \sum_{i=1}^{n} \Delta_{i} \inf_{\langle x_{i-1}, x_{i} \rangle} f$$

nazýváme horním součtem funkce a dolním součtem funkce f při dělení σ .

3.5 Horní a dolní integrál

Pro funkci f definovanou a omezenou na uzavřeném intervalu $J = \langle a, b \rangle$ definujeme čísla

$$\overline{\int_a^b} f(x) \, \mathrm{d} x := \inf \{ S(\sigma) \mid \sigma \text{ dělení } J \} \text{ a } \underline{\int_a^b} f(x) \, \mathrm{d} x := \sup \{ s(\sigma) \mid \sigma \text{ dělení } J \}.$$

a nazýváme horním integrálem, resp. dolním integrálem, funkce f na intervalu J.

3.6 Definice Riemanova integrálu

Pokud pro funkci f definovanou a omezenou na uzavřeném intervalu J platí

$$\overline{\int_a^b} f(x) \, \mathrm{d}x = \underline{\int_a^b} f(x) \, \mathrm{d}x \in \mathbb{R},$$

pak jejich společnou hodnotu nazýváme **Riemannovým integrálem** funkce f na intervalu J a toto číslo značíme symboly

$$\int_a^b f$$
, případně $\int_a^b f(x) dx$.

Posloupnost dělení σ_n nazveme **normální**, pokud pro její normy platí $\lim_{n\to\infty}\nu(\sigma_n)=0$.

3.7 Postačujíící podmínka pro existenci RI

Buď f spojitá funkce na intervalu $\langle a,b\rangle$. Potom existuje její Riemannův integrál na intervalu $\langle a,b\rangle$. Pokud je navíc (σ_n) normální posloupnost dělení intervalu $\langle a,b\rangle$ potom limity

$$\lim_{n \to \infty} s(\sigma_n, f) \quad \text{a} \quad \lim_{n \to \infty} S(\sigma_n, f)$$

existují, a jsou rovny Riemannově integrálu funkce f na intervalu $\langle a, b \rangle$.

3.8 Integrální součet

Pro funkci f spojitou na uzavřeném intervalu $\langle a, b \rangle$ a dělení $\sigma = x_0, x_1, x_n$, kde $x_0 = a$ a $x_n = b$, tohoto intervalu definujeme integrální součet funkce f při dělení předpisem

$$\mathcal{J}(\sigma, f) = \sum_{i=1}^{n} f(\alpha_i) \Delta_i,$$

kde α_i patří do intervalu $\langle x_{i1}, x_i \rangle$, i = 1, 2, n.

3.8.1 Vztah s Riemannovým integrálem

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \mathcal{J}(\sigma_n, f),$$

3.9 Vlastnosti

3.9.1 Aditivita integrálu

Nechť f a g jsou spojité funkce na intervalu $\langle a, b \rangle$. Potom pro Riemannův integrál funkce f + g (která je také automaticky spojitá na $\langle a, b \rangle$) platí

$$\int_{a}^{b} (f+g)(x) \, \mathrm{d}x = \int_{a}^{b} f(x) \, \mathrm{d}x + \int_{a}^{b} g(x) \, \mathrm{d}x.$$

3.9.2 Multiplikativita integrálu

Nechť f je spojitá na intervalu $\langle a,b\rangle$ a $c\in\mathbb{R}$ je konstanta. Potom pro Riemannův integrál funkce cf platí

$$\int_{a}^{b} (cf)(x) dx = c \int_{a}^{b} f(x) dx.$$

3.9.3 Aditivita integrálu v mezích

Riemannův integrál funkce f na intervalu $\langle a, b \rangle$ existuje, právě když pro každé $c \in \langle a, b \rangle$ existují Riemannovy integrály funkce f na intervalech $\langle a, c \rangle$ a $\langle c, b \rangle$. V takovém případě navíc platí

$$\int_{a}^{b} f(x) x = \int_{a}^{c} f(x) x + \int_{c}^{b} f(x) x.$$

3.9.4 Nerovnosti mezi integrály

Nechť jsou f a g spojité funkce na intervalu $\langle a,b\rangle$ a nechť platí nerovnost $f(x)\leq g(x)$ pro všechna $x\in\langle a,b\rangle$. Potom pro jejich Riemannovy integrály platí

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} g(x) \, \mathrm{d}x.$$

3.9.5 Newtonova formule

Nechť f je funkce spojitá na intervalu $\langle a, b \rangle$ s primitivní funkcí F. Pak platí rovnost

$$\int_{a}^{b} f(x) dx = F(b) - F(a) =: \left[F(x) \right]_{a}^{b}.$$

3.10 Zobecněný RI

Nechť f je funkce definovaná na intervalu $\langle a, b \rangle$ pro nějaké $a \in \mathbb{R}$ a $b \in (a, +\infty)$, která je Riemanovsky integrabilní na intervalu $\langle a, c \rangle$ pro každé $c \in (a, b)$. Pokud existuje konečná limita

$$\lim_{c \to b_{-}} \int_{a}^{c} f(x) x,$$

pak její hodnotu značíme

$$\int_a^b f(x) \, x,$$

nazýváme zobecněným Riemannovým integrálem funkce f na intervalu $\langle a,b\rangle$ a říkáme, že integrál $\int_a^b f(x) \, x$ konverguje.

3.11 Vlastnosti RI

Nechť f je funkce spojitá na uvažovaných intervalech.

- Je-li f sudá funkce na $\langle -a,a\rangle$, pak $\int_{-a}^a f(x) \mathrm{d}x = 2 \int_0^a f(x) \mathrm{d}x$
- Je-li f lichá funkce na $\langle -a, a \rangle$, pak $\int_{-a}^{a} f(x) dx = 0$
- Je-li f periodická na $\mathbb R$ s periodou T, pak pro každé $a,b\in\mathbb R$ platí $\int_a^{a+T}f(x)\mathrm{d}x=\int_b^{b+T}f(x)\mathrm{d}x$

3.12 Výpočet obsahů plošných útvarů Nechť f a g jsou funkce spojité na $\langle a,b\rangle$ takové, že $f(x)\geq g(x)$ pro každé $x\in\langle a,b\rangle$. Pak obsah plochy P ohraničené přímkami x=a a x=b a grafy funkcí f a g je roven

$$P = \int_{a}^{b} (f(x) - g(x)) dx.$$

4 Tabulky

vzorec	interval, parametry
$\int x^n\mathrm{d}x = rac{x^{n+1}}{n+1} + C$	$x\in\mathbb{R},n\in\mathbb{N}_0$
$\int x^n\mathrm{d}x = rac{x^{n+1}}{n+1} + C$	$x\in \mathbb{R}\smallsetminus \{0\}, n\in \mathbb{Z}, n\leq -2$
$\int x^{lpha} \mathrm{d}x = rac{x^{lpha+1}}{lpha+1} + C$	$x\in(0,+\infty), lpha ot\in\mathbb{Z}$
$\int rac{1}{x} \mathrm{d}x = \ln x + C$	$x \in \mathbb{R} \setminus \{0\}$
$\int a^x \mathrm{d}x = rac{a^x}{\ln a} + C$	$x\in\mathbb{R}, a>0$ a $a eq 1$
$\int \sin(x) \mathrm{d}x = -\cos(x) + C$	$x\in\mathbb{R}$
$\int \cos(x)\mathrm{d}x = \sin(x) + C$	$x\in\mathbb{R}$
$\int rac{1}{\cos^2(x)} \mathrm{d}x = \mathrm{tg}(x) + C$	$x\inig(-rac{\pi}{2}+k\pi,\ rac{\pi}{2}+k\piig), k\in\mathbb{Z}$
$\int rac{1}{\sin^2(x)} \mathrm{d}x = -\mathrm{cotg}(x) + C$	$x\in \big(k\pi,\ \pi+k\pi\big), k\in\mathbb{Z}$
$\int rac{1}{\sqrt{1-x^2}} \mathrm{d}x = rcsin(x) + C$	$x\in (-1,1)$
$\int rac{1}{1+x^2} \mathrm{d}x = \mathrm{arctg}(x) + C$	$x\in\mathbb{R}$