Chemie ZF L. Hoffmann & D. Vermee Ihoffma & dvermee Edited/translated by N. Sendlhofer & C. Leser

1.1 Unit conversions

- 1. Energy: $1eV = 1.602 \cdot 10^{-19} J$, 1cal = 4.18 J
- 2. Pressure: 1Pa=9.892atm=1.0 10⁻⁵bar=7.5 10⁻³torr
- 3. Amount of substance: $1 \text{mol} = 6.022 \cdot 10^{23}$ elementary entities (Avogadro constant)
- 4. Length: $1 \text{Å} = 10^{-10} m$
- 5. **STP** thermodynamics: 25C = 298K, 1bar, 1mol, 1 cal
- 6. STP electrochemistry: 25C = 298K, 1atm, concentration 1M

1.2 General

- $\begin{array}{ll} \bullet & \text{Kinetic energy: } E_{kin} = \frac{1}{2} \cdot m \cdot v^2 \\ \bullet & \text{Potential energy: } E_{pot} = m \cdot g \cdot \Delta h \\ \bullet & \text{electrostatic: } E_{el} = \frac{\kappa Q_1 Q_2}{d^3} \quad \kappa = \frac{1}{4\pi\epsilon_0} \end{array}$
- Photon energy: $E_{\gamma} = \tilde{h} \cdot f = \frac{h \cdot c}{\lambda}$
- De Broglie wavelength: $\lambda = \frac{h}{m \cdot v}$ Specific heat capacity: $C_s = \frac{q}{m \cdot \Delta T}$

1.3 Trends im Periodensystem

- Ionisierungsenergie: Energie, die nötig ist, um ein Elektron aus der neutral geladenen Atom zu entfernen.
- Elektronenaffinität: Frei werdende Energie, wenn ein neutrales Atom ein Flektron aufnimmt
- Elektronegativität: Die Elektronegativität ist ein Maß für das Bestreben eines Atoms, innerhalb eines Moleküls von benachbarten Atomen die Elektronen anzuziehen

2.1 Quantum mechanics

- Atomic number = #protons = #electrons
- mass number = #protons + #neutrons

Heisenbergs uncertainty principle $\Delta x \cdot \Delta p \geqslant \frac{h}{4\pi}$ Due to duality of electrons (acting like waves and elementary entities at the same time), impossible to exactly describe position and momentum simultaneously.

Effective nuclear charge (approx.): $Z_{eff} = Z - S$

 $Z=\# {\sf protons}, \ S=\# e^-$ on all full shells

In periodic table: Z_{eff} increases from left to right Innerhalb einer Periode nimmt effektive Kernladung von links nach rechts zu. Daraus folgt, dass stärker an den Kern gebunden sind, der Atomradius nimmt ab.

- Orbitale mit dem selben n- und I-Werten heissen Unterschalen.
- · Jede Schale mit Quantenzahl n hat n Unterschalen.
- Die Drehimpulszahl bestimmt die Form der Orbitale.
- Jede Unterschale hat 2l + 1 Orbitale.

Hauptquantenzahl n: Je grösser n, desto weiter ist das elektron vom Kern entfernt. $n \in [1, 2, 3, 4]$. n bedingt l & m

Drehimpulsquantenzahl l: Bestimmt Form der Orbitale. $l \in [0, n-1]$

Magnetische Quantenzahl m_l : Beschreibt Orientierung des Orbitals im Raum $m_l \in [-l, l]$

Spinnquantenzahl m_s : Zu verstehen als Drehimpuls. Spin up \uparrow , Spin-

- s-Orbital → Kugelförmig.
- p-Orbital → Hantelförmig.
- d-Orbital → Meistens Vierblättriges Kleeblatt.

Pauli-Prinzip: Jedes Orbital kann von maximal zwei Elektronen besetzt werden (Eins mit Spin-up, eins mit Spin-down).

Hund'sche Regel: Möglichst viele Elektronen haben den gleichen Spin, weswegen es energetisch günstiger ist, wenn alle Orbitale der äussersten Schale gefüllt werden, als wenn die Hälfte dieser Orbitale ganz gefüllt werden

Schale	n	l	Orbitaltyp	m	8	Anzahl Quantenzi	
K	1	0	1s	0	±1/2	2	2
L	2	0	2s	0	±1/2	2	8
		1	2p	-1 0 +1	± 1/2	6	8
M	3	0	3s	0	±1/2	2	
		1	3p	-1 0 +1	± 1/2	6	18
		2	3d	-2 -1 0 +1	+2 +1/2	10	
N	4	0	4s	0	±1/2	2	
		1	4p	-1 0 +1	± 1/2	6	32
		2	4d	-2 -1 0 +1	+2 +1/2	10	32
		3	4f	-3 -2 -1 0 +1	+2 +3 +1/2	14	

3. Chemische Bindungstypen

3.1 Kovalente Bindungen

Zwei Atome teilen sich ein Elektronenpaar. Bsp.:

Oktettregel: #Bindungen =8-#VE

Nur für Elemente der 1. & 2. Hauptgruppe gilt Oktettregel strikt. Ab dritten HG können Elemente auch mehr Bindungen eingehen. !Bei H und He → #Bindungen = 2 - #VE

3.2 Polarität & Dipolmoment

- ullet ΔEN < 0.5: Gleichmässige Verteilung der Elektronen zwischen Atomen, kein Dipolmoment.
- $\Delta EN > 0.5$: Polare Bindung, e^- näher beim elektronegativen Atom (δ^-). Ungleichmässige Verteilung der Elektronen \rightarrow Dipolmoment

3.3 Formalladung

Wenn ein Atom mehr/weniger Bindungen macht, als nötig sind um ein VE-Oktett zu erreichen, resultiert eine Formalladung auf den Atom. Bestimmung der Formalladung:

- 1. Alle Bindungen im Molekül spalten (gleichmässige Aufteilung zwischen Bindungspartnern.)
- 2. Formalladung je Atom = $\#VE \#e^{-}$ (nach Spaltung)
- Formalladungen aufsummieren → effektive Ladung des Moleküls.
- 4. Homolytische Spaltung: Bindung gleichmässig in der Mitte trennen

3.4 Bindungslänge & Bindungsstärke

Länge: Dreifach < Doppelt < Einfach Stärke: Dreifach > Doppelt > Einfach Ein Molekül ist am stabilsten, wenn:

- am wenigsten Formalladungen.
- · Formalladung nicht zu vermeiden sind, wenn geringste Ladungstrennung auftritt
- negative (positive) Formalladungen auf elektronegativen (-positiven) Atomen.

3.5 Ionische Bindung

Ein Atom gibt einem anderen Atom Elektronen ab → Kationen(+) und Anionen(-) entstehen. Bindung durch elektrostatische Anziehung. Ionische Bindung erst ab $\Delta EN > 1.7$

Atom mit niedrigerer EN gibt Elektron ab ↔.

Die freiwerdende Energie, wenn sich Anion & Kation im Gitter anordnen nennt man : ΔH_{Gitter}

3.6 Metallische Bindung

Positiv geladene Kerne umgeben von einer negativ geladenen Elektronenwolke. Metalle haben Defizit an VE → zu wenig VE, um Kovalente Bindung einzugehen. Frei bewegliche Ladungen (Elektronenwolke) sind Ursache für gute Strom- und Wärmeleitfähigkeit.

4. Molekülmodelle

4.1 VSEPR

Bestimmung des Modells:

- 1. Zentralatom des Moleküls bestimmt.
- 2. Anzahl Liganden Bestimmen
- 3. Bestimmung der freien Elektronenpaare → Tabelle

Bindungsordnung (BO)= $0,5 (\# e^{-}$ in bindenden MO anti-bindenden MO)

höher ВO, desto stabiler System. die Bindung die Bindung. und kürzer

starker die Dilidung			unu	uie	Dilluulig.		
Number of	Electron-	Molecular Geometry					
Electron Dense Areas	Pair Geometry	No Lone Pairs	1 Ione Pair	2 Ione Pairs	3 Ione Pairs	4 Ione Pairs	
2	Linear 180°	Linear					
3	Trigonal planar	Trigonal planar	Bent				
4	Tetrahedral	Tetrahedral	Trigonal pyramidal	Bent			
5	Trigonal bipyramidal 120°/90°	Trigonal bipyramidal	Sawhorse	T-shaped	Linear		
6	Octahedral 90°	Octahedral	Square pyramidal	Square planar	T-shaped	Linear	

4.2 Molekül-Orbital-Modell

Bindung entsteht durch das Überlappen der Atomorbitale zweier Atome wodurch zwei neue Molekülorbitale gebildet werden.

 σ -Bindung: Atomorbitale überlappen entlang der internuklearen Achse

Atomorbitale überlappen parallel zur internuklearen Achse. Diagramm von unten nach oben

auffüllen. Mit * markierte Orbitale sind antibindend

sp-Hybridorbitale

Ferromagnetische Eigenschaften von Molekülen:

Paramagnetisch: Das Molekül hat ungepaarte Elektronen und wird daher von einem Magnetfeld angezogen.

Diamagnetisch: Das Molekül hat keine ungepaarten Elektronen und wird daher von einem Magnetfeld leicht abgestossen.

1 Pfeil in Box → Paramagnetisch, sonst Diamagnetisch

4.3 Hybridisierung

Verschmelzen von verschiedenen Orbitalen in einem Molekül.

- Bei der sp-Hybridisierung verschmelzen ein s- und ein p-Orbital miteinander. Bsp.: ethin (HC≡CH)
- Bei der sp^2 -Hybridisierung kommt zu einer Hybridisierung eines s-Orbitals und zwei p-Orbitalen. Bsp.: Ethen (H2C=CH2)
- Bei der sp^3 -Hybridisierung verbindet sich ein kugelförmiges s- und drei hantelförmige p-Orbitale. Bsp.: Methan(CH4)

Bei sp-Hybridiserung:

Bei sp²-Hybridiserung:

Bei sp³-Hybridiserung:

5. Aggregatszustände

5.1 Intermolekulare Wechselwirkungen

1. Wasserstoffbrücken (stark)

Entstehen zwischen H und O, N, F Atomen 2. Dipol-Dipol-Wechselwirkungen (mittel)

Entstehen durch polare Bindungen ($\Delta EN > 0.5$) 3. Van-der-Waals-WW/Dispersionskräfte (schwach)

Entstehen durch temporäre Fluktuationen der Elektronen → temporärer Dipol, Gibts es immer. Grosse und lange Moleküle haben die stärksten Dispersionskräfte.

5.2 Flüssigkeiten

Gefrierpunktserniedrigung: $\Delta T_f = K_f m$

 $K_f = \text{Kryoskopische Konst.} \ m = \text{Molalität} \left[\frac{mol}{ka} \right]$

Je tiefer die Viskosität, desto grösser die Mobilität der Moleküle. Viskosität proportional zur Stärke der WW. Je höher die Viskosität, desto dickflüssiger.

5.3 Ideale Gase

- Wir machen 2 Annahmen:
- Gasteilchen wechselwirken nicht
- Gasteilchen haben kein Volumen.
- Ideales Gasgesetz: pV = nRT = NkT
- Dichte $\rho = M \frac{n}{V} = M \frac{p}{RT}$
- R ist die universelle Gaskonstante
- Quadr. Mittelwert der Geschwindigkeit der Gasmoleküle:

 $u_{rms} = \sqrt{3RT/M}$

$$ullet$$
 $M \left[gmol^{-1} \right], d \left[gL^{-1} \right], V \left[L \right]$

Bei hohen Drücken verhalten sich Gase nicht mehr ideal → korrigierte ideale Gasgleichung:

$$(p + \frac{n^2 A}{V^2})(V - nb) = nRT$$

Partialdruck: Der Partialdruck ist der Anteil eines Gases am Druck des betrachteten Gasgemisches. Partialdrücke einer Gasmischung sind immer kleiner als der Gesamtdruck

$$p_i = n_i \cdot \frac{RT}{V}$$
 Gesamtdruck = Σ aller Partialdrücke

5.4 Osmotischer Druck

Der Druck der benötigt würde, um Fluss von Lösungsmittelteilchen zu unterdrücken heisst osmotischer Druck.

$$\Pi = \left(rac{n}{V}
ight) RT = MRT \quad M = ext{Molarität}$$

6. Thermodynamik

6.2 0. Haupsatz

- Sind 2 Systeme wärmeleitend verbunden, dann haben beide Systeme die gleiche Temperatur. Thermisches Gleichgewicht.
- Wenn drittes System mit den anderen Systemen wärmeleitend verbunden ist → drittes System hat gleiche Temperatur.

6.2 1. Haupsatz

- Energie kann weder aus dem Nichts erzeugt werden, noch kann sie vernichtet werden Energieerhaltung.
- Energie kann von einem System nur mit der Umgebung mittels Wärme oder Arbeit ausgetauscht werden.
- Der 1. Hauptsatz der Thermodynamik verbindet die innere Energie eines Systems mit der am System/vom System verrichteten Arbeit und der aufgenommenen/abgegebenen Wärme:

 $\Delta U = \Delta W + \Delta Q$

 $\Delta E < 0
ightarrow {
m exergon}, \, \Delta E > 0
ightarrow {
m endergon}$

Q = Wärme W = Arbeit U = Innere Energie (manchemal E)

6.3 2. Hauptsatz

Entropie: Mass an Unordnung. Ist eine Zustandsfunktion

- irreversibler Prozess: $\Delta S > 0$, reversibler Prozess $\Delta S = 0$
- Die Entropie nimmt immer zu.

$$\Delta S = \frac{q_{rev}}{T} = S_{Ende} - S_{Anfang}$$

$$\Delta S = nR \cdot \ln \left(\frac{V_{Ende}}{V_{Anfang}} \right)$$

 $q_{rev} = \text{Wärmemenge bei reversiblem Prozes}$

6.5 Gibbs Energie ΔG

$$\begin{array}{l} \Delta G = \Delta H - T \cdot \Delta S \\ \Delta G_{rxn} = \Delta G_{Produkte} - \Delta G_{Edukte} \\ \Delta G_f^o = 0 \text{ für Elemente} \end{array}$$

• Spontan: $\Delta G < 0$, Nicht spontan: $\Delta G > 0$

ΔH	ΔS	$-T\Delta H$	ΔG	Reaktion Char.
-	+	-	-	Spontan bei allen T
+	-	+	+	Nicht spontan
-	-	+	+/-	Spontan bei low T, Nicht spontan bei high T
+	+	-	+/-	Spontan bei high T, Nicht spontan bei low T

6.4 Enthalpie ΔH

Bei konstantem Druck aufgenommenen/ abgegebenen Wärmemenge $\Delta H = \Delta E + p\Delta V = (q_p + w) - w = q_p$

- 1. Endotherm: $\Delta H > 0$ (System nimmt Wärme auf)
- 2. Exotherm: $\Delta H < 0$ (System gibt Wärme ab)

Reaktionsenthalpie:

 $\Delta H = \Delta H_{Produkte} - \Delta_{Edukte}$

Bildungsenthalpie:

 $\Delta H_f = \sum n \ H_f(Produkte) - \sum m \ H_f(Edukte)$ n, m = Anzahl Moleküle

Falls Edukt/Produkt nur 1 Element $\rightarrow H_f = 0$

Intensive Zustandsgrößen: Druck, absolute Temperatur Extensive Zustandsgrößen: Volumen, Stoffmenge, Entropie

Thermodynamische Potentiale (Zustandsgröße): innere Energie, freie Energie, Enthalpie, Gibbs-Energie

Prozessgrößen: Wärme, Arbeit

Satz von Hess: $\Delta H_{rxn} = \Delta H_1 + \Delta H_2 + \cdots + \Delta H_n$

7. Kinetik

7.1 Reaktionsgeschwindigkeit

$$-aV - bB - (...) + cC + dD + (...) = 0$$

Reaktionsgesetz:
$$r = \frac{1}{\nu} \frac{d \left[X_i \right]}{dt} = k \prod_{i=1} \left[N_i \right]^{|\nu_i|}$$
 (1)

 $u = \text{St\"{o}}\text{chiometrischer Koeffizient, f\"{u}r Edukte} + f\"{u}r Produkte}$ $k = A \cdot \exp\left(-\frac{E_a}{RT}\right)$ A=Frequenzfak., E_a =Aktivierungsenergie, k = Geschwindigkeitskoeffizient.

Bestimmung der reaktionsgeschwindigkeit an Bildungsgeschwindigkeit 1. Schauen, von welchem Molekül Geschwindigkeit gefragt, von welchem

- 2. Koeffizienten der betroffenen Moleküle merken
- 3. In 1 einsetzen und nach gesuchter Geschwindigkeit auflösen

7.2 Reaktionsordnung

Reaktionsordnung bezüglich eines Edukts = Betrag seines stöch. Koeffizienten. Gesamtordnung = Summe aller Ordnungen der Edukte.

$$\begin{array}{ll} \text{Bsp.. NH}_4{}^+ + \text{NO}_2{}^- \longrightarrow \text{N}_2 + 2\,\text{H}_2\text{O mit} \\ \text{Geschwindigkeitsgesetz: } r = k \Big[\text{NH}_4{}^+ \Big]^1 \Big[\text{NO}_2{}^- \Big]^1 \end{array}$$

$$m_{NH_{A}^{+}}^{+} = 1; \quad m_{NO_{2}^{-}}^{-} = 1; \quad m_{N_{2}}^{} = 0; \quad m_{H_{2}O}^{} = 0$$

Gesamtordnung der Reaktion ist: $m_{tot} = \sum m_i = 2$

- 0. Ordnung: konzentrationsunabhängig
- 1. Ordnung: Abhängig von Konzentration 1 Reaktanten
- 2. Ordnung: Abhängig von Konzentration 2 Reaktanten

Reaktion 0. Ordnung Reaktion 1. Ordnung [A](t) Reaktion 2. Ordnung [A](t)

A → Produkte $r = -\frac{d[A]}{dt} = k$ $[A]_t = -kt + [A]_0$ $t_{1/2} = \frac{[A]_0}{2k}$ A → Produkte

 $r = -\frac{d[A]}{dt} = k[A]$ $[A]_{\mathsf{t}} = [A]_0 \mathrm{e}^{-k\mathsf{t}}$ $_{1/2} = \frac{\ln{(2)}}{1/2} = \frac{0.693}{1}$ k A → Produkte $r = -\frac{1}{2} \cdot \frac{d[A]}{dt} = k[A]$

 $\tfrac{1}{[A]_t} = 2kt + \tfrac{1}{[A]_0}$

7.3 Molekularität einer Reaktion

Anzahl der an Elementarreaktionen teilnehmenden Molekülen.

Elementarreaktion: Einzelner, irreversibel Schritt.

Unimolekular: A → Produkten Bimolekular: A + B → Produkten

Trimolekular: 2A + B → Produkten Mehrstufige reaktion: Reaktion aus mehreren Elementarreaktion Bsp.

$$NO_2 + CO \longrightarrow NO + CO_2 \longrightarrow \frac{2 NO_2 \longrightarrow NO_3 + NO}{NO_3 + CO \longrightarrow NO_2 + CO_2}$$

Geschwindigkeitsgebender Schritt: Einzelne Elementarreaktionen oftmals nicht gleich schnell -> Geschwindigkeit annäherbar durch Geschwindigkeit des langsamsten Schritts.

Reaktions und Geschwindigkeitsgesetz bestimmen:

- 1. Alle Gleichungen addieren, Gleiches kürzen → Reaktion
- Produkte langsamster reaktion → Geschwindigkeitsgesetz

• Qualitative Temperaturabhängigkeit von k:

Die Erhöhung der Temperatur um $10^{\circ}C$ hat eine Verdoppelung der reaktionsgeschwindigkeit r bzw. des Geschwindigkeitskoeffizient k

Qualitative Temperaturabhängigkeit von k:

$$k(T) = A \cdot \exp(-\frac{E_a}{RT}) \quad \ln(k(T)) = -\frac{E_a}{RT} + \ln(A)$$

8. Säure und Basen

Allgemein

Für die Reaktion $aA + bB \subseteq cC + dD$

$$K = \frac{k \text{-}Hin}{k \text{-}R\ddot{u}ck} = \frac{[Produkte]}{[Edukte]} = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$

 $K\gg 1 \to \mathsf{GGW}$ rechts $K\ll 1 \to \mathsf{GGW}$ links

8.1 Prinzip von le Châtélier

- Konzentrationsänderung: Erhöhung der Reaktanten führt zu Beschleunigung der Hin-Reaktion
- Druckänderung: Wird Druck in System erhöht → GGW verschiebt sich in Richtung Seite mit weniger teilchen.
- Temperaturänderung: Endotherme Reaktion wird bei Erhöhung bevorzugt.

8.2 Brönsted-Definition

S-B-Reaktion sind GGW- HCI + H₂O
$$\rightleftharpoons$$
 Cl⁻ + H₃O' Reaktionen.

Säuren geben H^+ ab (Protonendonatoren).

Basen nehmen H^+ auf (Protonenakzeptoren).
Schwache Säure: $K \ll 1$ GGW bei HA
Starke Säure: $K \gg 1$

HA+H₂O \rightleftharpoons H₂O' \rightleftharpoons NH½ + OH-
Saure 1 Base 2
Säure 1 Base 2

GGW bei
$$A^ pH = -\lg(\left[H_3O^+\right]), \ pOH = -\lg(\left[OH^-\right])$$
 $14 = pOH + pH$

8.3 PH-Skala $pK_S = -\log K_S$

- Saure Lsg. pH-Wert < 7 ■ Basische Lsg. pH-Wert > 7
- hoher $K_S \to \operatorname{starke} \mathsf{S\"{a}}\mathsf{ure}$ • tiefer $K_S \rightarrow$ starke Base
- pH-Wert bestimmen: $pH = -\log(c([S\"{a}ure])) = 14 pOH$

8.4 Redoxreaktion

Allgemeines

- · Reaktion bei welcher Elektronen zwischen reaktionspartnern ausgetausch werden
- Oxidation: Abgabe von e^- , Oxidationszahl wird erhöht (Reduktionsmittel wird oxidiert)
- Reduktion: Annahme von e⁻, Oxidationszahl wird gesenkt (Oxidationsmittel wird reduziert).

Oxidationszahl: # VE eines Atoms-#Elektronen verbleibend am Atom nach heterolytischer Spaltung:

8.5 Heterolytische Spaltung

N=C=S

Heterolytische Bindungsspaltung:

 \overline{N} : #VE - e nach het.Sp. = 5 - 8 = -III C #VE - e nach het.Sp. = 4 - 0 = +IV

 \overline{S} : #VE - e nach het.Sp. = 6 - 8 = -II

Kontrolle: Die Oxidationszahlen summieren sich zu -I, was auch der effektiven Ladung des Moleküls entspricht.

- 1. Gesamtladung = Summe der Oxidationszahlen.
- Homonukleare Moleküle An haben die Oxidationszahl
- Bei einatimigen Ionen: Ladung = Oxidationszahl.
- Wasserstoff am Metall → Hydrid (-I)
- Wasserstoff am Nichtmetall → Proton (+I)
- 6. Sauerstoff oft -II
- 7. Fluor immer -I, da elektronegativestes Element

Oxidationsmittel: Stoff, welcher andere Stoffe oxidiert und dabei selbst reduziert wird, da er gerne Elektronen aufnimmt. Reduktionsmittel: Stoff, welcher andere Stoffe reduziert und dabei selbst oxidiert wird, da er gerne Elektronen abgibt.

8.6 Galvanische Zelle

e fliessen von der Anode zur Kathode. Anode gibt e ab. Kathode nimmt e auf. Oxidation an Anode. Reduktion an Kathode.

ausgleich.

Die Zellspannung E_{zelle} gibt Unterschied zwischen den Elektrodenpotentialen wieder. Der Unterschied in diesem Potential ist die EMK. . Zellspannung in Volt. $E_{Zelle} = E_{Red}(Kat.) - E_{Red}(Ano.) = E_{Red}(Kat.)$ $E_{Red}(Red) - E_{Red}(Ox)$