Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчёт по лабораторной работе №1 по дисциплине «Математическая статистика»

Тема: Гистограмма и эмпирическая функция распределения

Студент: Княжев А. В.

Группа: $\underline{\text{ИУ7-62Б}}$

Вариант: 9

Преподаватели: Власов П. А.

Оглавление

1.	Зад	ание	3
2.	Teo	ретическая часть	4
	2.1.	Формулы для вычисления величин	4
	2.2.	Определение эмпирической плотности и гистограммы	4
	2.3.	Эмпирическая функция распределения	5
	2.4.	Функция плотности и функция распределения нормальной случайной вели-	
		чины	5
3.	Практическая часть		
	3.1.	Код программы	7
	3.2.	Результат работы программы	8
		3.2.1. Числовые характеристики	8
		3.2.2. Графики	9

1. Задание

Цель работы: построение гистограммы и эмпирической функции распределения. Содержание работы:

- 1. Для выборки объема n из генеральной совокупности X реализовать в виде программы на ЭВМ:
 - вычисление максимального значения $M_m ax$ и минимального значения $M_m in$;
 - размаха R выборки;
 - вычисление оценок $\hat{\mu}$ и S^2 математического ожидания MX и дисперсии DX;
 - группировку значений выборки в $m = [\log_2 n] + 2$ интервала;
 - построение на одной координатной плоскости гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
 - построение на другой координатной плоскости графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 .
- 2. Провести вычисления и построить графики для выборки из индивидуального варианта.

Данные для лабораторной работы по индивидуальному варианту:

2. Теоретическая часть

2.1. Формулы для вычисления величин

Пусть X — случайная величина (CB). Генеральной совокупностью называется множество всех возможных значений CB X.

Случайной выборкой из генеральной совокупности X называется случайный вектор $\overrightarrow{X} = (X_1, X_2, ..., X_n)$, где X_i , $i = \overline{1, n}$ — независимы в совокупности и имеют одинаковое с X распределение. n называют объемом случайной выборки.

Выборкой объема n из генеральной совокупности X называется любая реализация \overline{x} случайной выборки \overrightarrow{X} объёма n из этой генеральной совокупности.

Пусть $\vec{x} = (x_1, ..., x_n)$ — выборка из генеральной совокупности X. Тогда:

- 1. Максимальное M_{max} и минимальное M_{min} значение выборки: $M_{max} = max(x_1, ..., x_n)$, $M_{min} = min(x_1, ..., x_n)$;
- 2. Размах R выборки: $R = M_{max} M_{min}$;
- 3. Оценки $\hat{\mu}$ и S^2 математического ожидания MX и дисперсии DX:
 - Выборочное среднее: $\hat{\mu}(\vec{x}) = \overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i;$
 - Исправленная выборочная дисперсия: $S^2(\vec{x}) = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i \overline{x})^2$.

2.2. Определение эмпирической плотности и гистограммы

Пусть \vec{x} — выборка из генеральной совокупности X. Расположим значения $x_1, x_2, ..., x_n$ в порядке неубывания: $x_{(1)} \leq x_{(2)} \leq ... \leq x_{(n)}$. Последовательность $x_{(1)}, x_{(2)}, ..., x_{(n)}$, удовлетворяющую правилу $x_{(1)} \leq x_{(2)} \leq ... \leq x_{(n)}$, называют вариационным рядом выборки \vec{x} . При этом $x_{(i)}$ — i-ый член вариационного ряда.

Если объем n выборки \vec{x} велик, то значения x_i группируют в интервальный статистический ряд. Для этого отрезок $J = [x_{(1)}, x_{(n)}]$ делят на m равновеликих частей:

$$J_i = [x_{(1)} + (i-1) \cdot \Delta, x_{(1)} + i \cdot \Delta), \quad i = \overline{1, m-1}.$$

$$J_m = [x_{(1)} + (m-1) \cdot \Delta, x_{(1)} + m \cdot \Delta].$$

$$\Delta = \frac{x_{(n)} - x_{(1)}}{m}.$$

Чаще выборку разбивают на $m = [\log_2 n] + 2$ интервалов, где n – размер выборки.

Интервальным статистическим рядом называется таблица вида:

где n_i – количество элементов выборки \vec{x} , попавших в J_i , $\overline{1,m}$.

Эмпирической функцией плотности, отвечающей выборке \vec{x} , называется функция

$$\hat{f}_n(x) = \begin{cases} \frac{n_i}{n\Delta}, x \in J_i, i = \overline{1; m}, \\ 0, \text{иначе}, \end{cases}$$
 (2.1)

где n_i – количество элементов выборки, входящих в полуинтервал.

Гистограмма – это график функции $\hat{f}_n(x)$.

2.3. Эмпирическая функция распределения

Пусть $\vec{x} = (x_1, ..., x_n)$ – выборка из генеральной совокупности X. Обозначим $n(x, \vec{x})$ – число элементов \vec{x} , которые приняли значение меньше x.

Эмпирической функцией распределения, отвечающей выборке \vec{x} , называют функцию $\hat{F}_n: \mathbb{R} \to \mathbb{R}$, определенную правилом:

$$\hat{F}_n(x) = \frac{n(x, \vec{x})}{n}, x \in \mathbb{R},$$

где $n(x, \vec{x})$ — количество элементов выборки \vec{x} , которые имеют значения, меньше x.

2.4. Функция плотности и функция распределения нормальной случайной величины

Говорят, что случайная величина X распределена по нормальному закону с параметрами m и σ^2 , если функция плотности распределения вероятностей X имеет вид:

$$f(x) = \frac{1}{\sigma \cdot \sqrt{(2 \cdot \pi)}} \cdot e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

Функция распределения случайной величины X, распределенной по нормальному закону, имеет вид:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \int_{-\infty}^{x} e^{-\frac{(t-m)^2}{2\sigma^2}} dt.$$

3. Практическая часть

3.1. Код программы

```
|X| = [1.52, 1.26, 2.17, 1.75, -0.19, 2.24, 2.76, 1.52, 1.89, 3.10, 2.61,
      1.18, 1.83, 1.85, 3.39, 2.31, 2.99, 1.61, 2.57, 1.81, 1.73, 1.89,
      -0.00, 2.27, 1.61, 2.57, 2.54, 1.67, 1.49, 0.12, -0.04, 1.36, 2.04,
      2.04, -0.05, 0.67, 1.32, 0.78, 0.89, 2.73, 1.51, 1.48, 1.67, 2.18,
      1.70, 4.20, 1.81, 2.66, 1.72, 0.77, 3.16, 1.86, 3.66, 4.30, 0.98, 3.00,
       0.99, 1.72, 2.71, 2.47, 2.56, 1.99, 0.23, 0.66, 2.47, 2.71, 2.28,
      2.59, 3.30, 2.08, 0.90, 0.49, 2.38, 0.71, 0.10, 1.50, 0.21, 0.44, 3.94,
       1.50, 1.70, -0.73, 1.76, 2.71, 1.95, -0.71, 1.32, 3.95, 2.64, -0.04,
      3.24, 1.67, 2.31, 0.18, 0.79, 3.26, 3.44, 2.64, 0.89, 2.47, 4.02, 2.12,
       0.61, 2.59, 1.44, 1.82, 2.94, 3.03, 1.97, 2.30, 0.80, 0.52, 1.21,
      2.13, 2.82, 1.56, 2.84, 3.54, 0.86, 0.42];
2
   M \max = \max(X)
3
   M \min = \min(X)
4
5
6
   R = M \max - M \min
7
8
   n = length(X);
9
   mu = sum(X) / n
10
   s2 = sum((X - mu) .^2) / (n - 1)
11
12
   m = round(log2(n)) + 2;
13
14
15
   [counts, edges] = histcounts(X, m, 'BinLimits', [M min, M max])
16
   delta = R / m;
17
   step = delta / 10;
18
   Xs = M \min : \underline{step} : M \max;
   Ys = normpdf(Xs, mu, sqrt(s2));
20
21
22
   hold on;
```

```
h = histogram();
  h.BinEdges = edges;
24
   h.BinCounts = counts / (n * delta);
25
26
   plot(Xs, Ys, "red");
27
28
   figure;
29
   hold on;
30
31
   [Ye, Xe] = ecdf(X);
32
   plot(Xe, Ye, "blue");
33
34
35
  Xs1 = M_{min}: step:M_{max};
36 \mid Ys1 = normcdf(Xs1, mu, s2);
   plot(Xs1, Ys1, "red");
37
```

3.2. Результат работы программы

3.2.1. Числовые характеристики

$$M_{\min} = -0.73$$
, $M_{\max} = 4.3$, $R = 5.03$, $m = 9$, $\hat{\mu}(\vec{x}) = 1.836$, $S^2(\vec{x}) = 1.153$

3.2.2. Графики

Рисунок 3.1 — Гистограмма и график функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2

Рисунок 3.2 — График эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2