实验四 不同进制计数器构成及译码显示

台号 - 日期 2020-06-29 实验成绩

一、实验目的

- (1)通过实验,掌握基本的数字显示方法及其所用器件的基本使用方法。
- (2)通过实验,掌握集成计数器 74LS161 的工作原理,掌握 74LS161 四位二进制计数器 各控制端的作用及触发方式,进位方式。学会利用 74LS161 和门电路设计构成不同进制计数器的方法。

二、实验仪器

(1)YLSD 双组型数字电路实验装置

(2)实验芯片: 74LS47 一片

74LS00 一片

74LS161 一片

共阳数码管 一个

74LS190 两片

三、实验电路图

(1) 六讲制计数器电路图

(2) 十进制计数器电路图

四、预习内容

1.数码管共有多少个引脚?的3号、8号引脚是什么功能?

孔天欣

- 1、共有10个引脚,其中3号、8号引脚是公共脚
- 2. 74LS47 芯片功能是什么?它的控制端有几个,分别是什么?
 - 孔天欣 2. 741547是BOD 7段数码管译码器驱动器,用于 将BCD 码转化成数码块中角数字 控制端有4个,分别是LT,BI,RBI,RBO,分别 控制端有4个,分别是LT,BI,RBI,RBO,分别 对应试灯输入、灭灯输入、灭空输入和灭空输出
- 3.74LS161 是什么类型的计数器? 是同步置数还是异步置数?

孔天欣 3·74L5161是4位二进制同步加估计数器,是 同步器数

五、实验原始数据记录

1.数字显示电路功能测试(填表 7-50)

表 7-50 数字显示实验输出结果

DCBA	1) 亮段显示	2) 亮段显示	3) 亮段显示	4) 亮段显示	4号引脚电平		
0000	8	8	/	/	0		
0001	-	8	/	-	1		
0010	2	8	/	2	1		
0011	3	8	/	3	1		
0100	4	8	/	4	1		
0101	5	8	/	5	1		
0110	Ь	8	/	Ь	1		
0111	٦	8	/	٦	1		
1000	8	8	/	8	1		
1001	9	8	/	9	1		
1010	С	8	/	С	1		
1011	5	8	/	5	1		
1100	ŭ	8	/	Ü	1		

1101	Ē	8	/	ū.	1
1110	E	8	/	Ъ	1
1111	/	8	/	/	1

2.计数译码显示实验

将显示情况记录在表 7-51 中。

表 7-51 计数译码显示记录表

脉冲	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
显示情况	1	\cap \cup	m	4	5	٥٠	7	8	9	С	b	U	Ē	۲	/	8

3.采用置数法改变计数制,实现六进制和十进制的计数器 六进制显示情况记录在表 7-52 中。

表 7-52 六进制显示情况记录表

脉冲	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
显示情况	1	ΩU	m	57	5	0		ΩU	m	37	S	0		70	70	37

十进制显示情况记录在表 7-53 中。

表 7-53 十进制显示情况记录表

脉冲	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
显示情况	-	ſυ	m	J.	U)	ال	Γ-	8	0"	CD		ſυ	00	31	5	O

六、误差分析与实验结论

通过本次实验,掌握了计数器和数码管译码器驱动器、数码管的基本知识和原理。

计数器通过对脉冲的个数进行计数,可以实现计数的功能,

数码管译码器驱动器是数码管七段字形译码器,其中 LT 灯测试端是为了检查各段能否正常发光而设置的,因此七段全都发亮,BI 灭灯输入是用来进行灭灯,因此数码管各段全都熄灭,RBI 灭零输入可以将 0 熄灭,其他正常显示

对于计数器,可以通过置数法,增加与非门的方式来设计任意进制的计数器。实验截图如下:

六进制计数器

十进制计数器

