

planetmath.org

Math for the people, by the people.

monodromy

Canonical name Monodromy

Date of creation 2013-03-22 13:26:20 Last modified on 2013-03-22 13:26:20 Owner mathcam (2727) Last modified by mathcam (2727)

Numerical id 8

Author mathcam (2727)

Entry type Definition Classification msc 55R05

Related topic MonodromyGroup

Defines monodromy

Defines monodromy action

Defines monodromy homomorphism

Let (X,*) be a connected and locally connected based space and $p: E \to X$ a covering map. We will denote $p^{-1}(*)$, the fiber over the basepoint, by F, and the fundamental group $\pi_1(X,*)$ by π . Given a loop $\gamma: I \to X$ with $\gamma(0) = \gamma(1) = *$ and a point $e \in F$ there exists a unique $\tilde{\gamma}: I \to E$, with $\tilde{\gamma}(0) = e$ such that $p \circ \tilde{\gamma} = \gamma$, that is, a lifting of γ starting at e. Clearly, the endpoint $\tilde{\gamma}(1)$ is also a point of the fiber, which we will denote by $e \cdot \gamma$.

Theorem 1. With notation as above we have:

1. If γ_1 and γ_2 are homotopic relative ∂I then

$$\forall e \in F \quad e \cdot \gamma_1 = e \cdot \gamma_2.$$

2. The map

$$F \times \pi \to F$$
, $(e, \gamma) \mapsto e \cdot \gamma$

defines a right action of π on F.

3. The stabilizer of a point e is the image of the fundamental group $\pi_1(E, e)$ under the map induced by p:

$$Stab(x) = p_* (\pi_1(E, e)) .$$

Proof. 1. Let $e \in F$, $\gamma_1, \gamma_2 \colon I \to X$ two loops homotopic relative ∂I and $\tilde{\gamma}_1, \tilde{\gamma}_2 \colon I \to E$ their liftings starting at e. Then there is a homotopy $H \colon I \times I \to X$ with the following properties:

- $H(\bullet,0)=\gamma_1$,
- $H(\bullet,1)=\gamma_2$
- $H(0,t) = H(1,t) = *, \forall t \in I.$

According to the lifting theorem H lifts to a homotopy $\tilde{H}: I \times I \to E$ with H(0,0) = e. Notice that $\tilde{H}(\bullet,0) = \tilde{\gamma}_1$ (respectively $\tilde{H}(\bullet,1) = \tilde{\gamma}_2$) since they both are liftings of γ_1 (respectively γ_2) starting at e. Also notice that that $\tilde{H}(1,\bullet)$ is a path that lies entirely in the fiber (since it lifts the constant path *). Since the fiber is discrete this means that $\tilde{H}(1,\bullet)$ is a constant path. In particular $\tilde{H}(1,0) = \tilde{H}(1,1)$ or equivalently $\tilde{\gamma}_1(1) = \tilde{\gamma}_2(1)$.

2. By (1) the map is well defined. To prove that it is an action notice that firstly the constant path * lifts to constant paths and therefore

$$\forall e \in F, e \cdot 1 = e$$
.

Secondly the concatenation of two paths lifts to the concatenation of their liftings (as is easily verified by projecting). In other words, the lifting of $\gamma_1 \gamma_2$ that starts at e is the concatenation of $\tilde{\gamma}_1$, the lifting of γ_1 that starts at e, and $\tilde{\gamma}_2$ the lifting of γ_2 that starts in $\gamma_1(1)$. Therefore

$$e \cdot (\gamma_1 \gamma_2) = (e \cdot \gamma_1) \cdot \gamma_2$$
.

3. This is a tautology: γ fixes e if and only if its lifting starting at e is a loop.

Definition 2. The action described in the above theorem is called the *monodromy action* and the corresponding homomorphism

$$\rho \colon \pi \to \operatorname{Sym}(F)$$

is called the monodromy of p.