

Copyright © 2016 balabala

Published by Non

HTTPS://GITHUB.COM/LASERROGER/PHYSICS-FROM-SYMMETRY/

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.

0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

世界上最无法理解的事情是这个世界竟然是可以理解的.

— Albert Einstein

在物理课上, 我像任何一个物理系学生那样熟悉许多基本方程 与它们的解, 但我不是很清楚它们之间的联系.

当我理解它们中的大多数具有共同的起源 — 对称性 (Symmetry) 时我十分激动. 对我而言搞物理最美的经历莫过于原本费解的东西经过深入探究之后豁然开朗. 我因此深爱着对称性.

例如,有一段时间我不能真正理解自旋— 几乎所有基本粒子都具有的奇特的内禀角动量,后来我学到了原来自旋一种对称性(称为 Lorentz 对称性)的直接结果,于是有关自旋的内容开始充满意义.

本书的目的就是为读者提供这样的经历,在某种意义上,当我 开始学物理的时候我就有写这本书的愿望了.¹ 对称性漂亮地解释 了其它方面的许多复杂物理现象,这让我们认为可以从对称导出 物理学的基本理论,本书正是基于这个锐利而光芒耀眼的信念.² 引自 Jon Fripp, Deborah Fripp, and Michael Fripp. Speaking of Science. Newnes, 1st edition, 4 2000. ISBN 9781878707512

¹同感! 这就是物理系学生的中二病吗 2333333 — 译者 (SI)

 $^{^2}$ 锐 (するど) くギラつかせた希望 (きぼう), もっと本気 (ぼんき) 出 (だ) していいよ, あ \sim , あ \sim , あ \sim

可以说本书的写作顺序是倒过来的:在我们讨论经典力学与非相对论量子力学之前,我们将利用大自然 (据我们所知)精确的对称性导出量子场论的基本方程.不过尽管途径不同,本书的内容仍为标准物理学,我们不涉及仍有争议未经实验验证的内容,而是通过物理学的标准假设导出物理学的标准理论.

根据读者的物理水平, 本书可以有两种用途:

- 物理学的初学者³可以把这本书当成入门教材,它包含了经典力学,电动力学,量子力学,狭义相对论和量子场论的基本理论,在阅读之后,读者可再深入学习各部分内容.各部分有许多更加深入的优秀书籍,在各章的末尾列出了一些延伸阅读的推荐表.如果你觉得你属于这一种,我们建议你在阅读正文之前先从附录的数学补充开始.
- 另一种情况,身经百战见得多的学生可以通过本书将松散的各物理领域紧密联系起来.回顾历史的进程我们会发现许多物理思想可能看起来随意甚至乱来,但从对称性的观点看,它们往往就变得必然而直接.

とにかく,不管哪种情况都应该按顺序阅读本书,因为各章之间是递进的.

开始的短章节是关于狭义相对论的,它是之后讨论的所有内容的基础.我们会看到对物理理论最重要的限制之一是它们必须符合狭义相对论.

本书的第二部分引入了描述对称性的数学工具 (在物理味道的表述下), 大多数工具来自数学的重要分支 — 群论. 之后我们介绍拉格朗日形式 (Lagrangian formalism), 它使我们能够在物理体系中直接利用对称性.

第五章和第六章利用之前引入的拉格朗日形式和群论导出了现 代物理学的基本方程.

在最后一部分,我们把之前的基本方程加以应用:应用于粒子理论我们可以导出量子力学,应用于场理论我们可以导出量子场论.然后我们研究这些理论在非相对论极限与经典极限的变体,这样又导出了经典力学与电动力学.

每章的开始是本章内容的摘要. 如果你发现你在思考'这是在讲些啥',不妨回到章节开头看看摘要以明白某一部分的目的是什

开始自附录 A. 此外, 当 正文使用一个新的数学 概念时, 边注中会说明 相应的附录目录.

³这个'初学者'是'相对而言的'(relatively)... — 译者注

么. 书页留有巨大的页边空白⁴以防止想出 Fermat 大定理的证明 却没地方写 你可以一边阅读一边在页边记下笔记与灵感. 我希望你读这本书能够像我写这本书的时候一样愉悦.

许多页边注的内容是拓展信息与图景.

 ${\it Karlsruhe, 2015.01}$ Jakob Schwichtenberg

⁴给译文排版造成了小小的麻烦. — 译者

感谢所有帮我编写这本书的人. 我特别感激 Fritz Waitz, 他的评论, 想法与纠正让本书质量大大改善. 我十分感谢 Arne Becker和 Daniel Hilpert, 感谢他们无价的建议, 意见与细致的校对. 感谢Robert Sadlier 对我英文的帮助以及 Jakob Karalus 的解释.

我还想感谢与我有许多见解深刻的讨论的 Marcel Köpke, 感谢 Silvia Schwichtenberg 和 Christian Nawroth 的支持.

最后, 我亏欠最多的是我的父母, 他们支持着我, 教导我知识高于一切.

如果发现文中的错误, 我非常希望你能够寄一封短邮件到errors@jakobschwichtenberg.com. 勘误表的地址是 http://physicsfromsymmetry.com/errata.

-1	Foundations 基础	
1	简介	. 3
1.1	推不出来的事情	3
1.2	全书概览	5
1.3	基本粒子和基本相互作用力	7
Ш	Symmetry Tools 对称性工具	
2	The Framework (力学) 框架/体系	11
2.1	Lagrangian Formalism 拉格朗日形式	11
2.1.1	Fermat 原理	12
2.1.2	变分法: 基本思想	12
2.2	Restrictions 限制	13
2.3	粒子理论与场论	14

Foundations 基础

1	简介	3
1.1	推不出来的事情	

- 1.2 全书概览
- 1.3 基本粒子和基本相互作用力

1.1 What we Cannot Derive 推不出来的事情

在我们开始讲我们能从对称性里面了解到什么之前,我们首先 澄清一下我们需要在我们的理论中人为的加一些什么东西。首先, 目前没有任何理论可以得到自然界的常数。这些常数需要从实验 中提取出来,比如各种相互作用的耦合常数啊,基本粒子的质量 啊这种的。

除了这些,我们还有一些东西解释不了:**数字**3。这不是术数的那种神秘主义的东西,而是我们不能解释所有的直接与数字3相联系的限制。比如:

- 对应三种标准模型描述的基本作用力有三种规范理论¹。这些力是由分别对应于对称群 *U*(1), *SU*(2) 和 *SU*(3) 的规范理论描述的。为什么没有对应 *SU*(4) 带来的基本作用力?没人知道!
- 轻子有三代,夸克也有三代。为什么没有第四代?我们只能 从实验²中知道没有第四代。
- 我们只在拉格朗日量里面包含 Φ 的最低三阶 (Φ^0 , Φ^1 , Φ^2),其中 Φ 指代一些描述我们的物理系统的东西,是个通称,而这个拉格朗日量则是被我们用来得到我们的描述自由(= 无相互作用)场/粒子的靠谱的理论的。
- 我们只用三个基本的 Poincare 群双覆盖的表示,分别对应

¹ 如果你不理解这个简介中的某些名词,比如规范理论或者二重覆盖,不需要太过担心。本书将会详尽的解释,在这里提到只是为了完整性。

² 比如,现在宇宙中元素的丰度是依赖于 代的数量的。更进一步,对撞机实验中有对 此的很强的证据。(见 Phys. Rev. Lett. 109, 241802)

自旋 $0, \frac{1}{2}$ 和 1。没有基本粒子的自旋是 $\frac{3}{2}$ 。

在现代的理论中,这些是我们必须手动增加的假定。我们从实验上知道这些假定是正确的,但是目前为止我们没有更深刻的原理告诉我们为什么我们需要到3就停。

除此之外,还有两件事情我们没法从对称性中得到,但是他们对于一个严谨的理论来说有时必须被考虑到的:

- 我们只允许在拉格朗日量中引入尽可能低阶的非平庸的微分算符 ∂_{μ} 。对于一些理论,我们使用一阶的微分算符 ∂_{μ} ,而另一些理论 Lorentz 不变形禁止了一阶导数,从而二阶导数 $\partial_{\mu}\partial^{\mu}$ 是最低阶的可能的非平庸阶项。除此之外我们就再也得不到一个合理的理论了。存在高阶导数项的理论没有下界,这导致能量可以是一个任意大小的负值;因此,这些理论中的态总可以变到能量更低的态,从而永远不会稳定。
- 我们处于类似的原因,我们可以说如果半整数自旋的粒子和整数自旋的粒子拥有完全一样的行为的话,宇宙中就不会有稳定的物质。因此,这两者必然有某些东西不一样,而我们没得选,只有一种可能而且合理的选择³是正确的。这引出了半整数自旋粒子的 Fermi-Dirac 统计的概念和整数自旋粒子的 Bose-Einstein 统计的概念。半整数自旋的粒子从而通常被称为 Fermion,它们中永远不存在两个粒子处在完全一样的态上。而与之相反的,这种情况对整数自旋的粒子—通常被称为 Boson—是可能的。

最后呢,我们提一下剩下的一个我们不能从这本书的其他理论中得到的东西:引力。当然,实际上,大名鼎鼎的广义相对论就是优美而准确的描述引力的理论;然而这个理论与其他理论完全不一样,超出了本书的研究范围。而尝试将引力问题划入相同框架下的量子引力理论仍待完善:目前没有人能够成功得出它。除此之外,在最后一章我们会做一些对引力的一些评述。

³ 我们在最开始的量子场论里使用反对易 子而不是对易子,从而防止我们的理论变成 没有下界的理论。

1.2 全书概览 5

1.2 Book Overview 全书概览

这本书使用**自然单位制**,也就是说 Planck 常数 $\hbar = 1$,光速 c = 1。这是基本理论中使用的惯例,它免除了很多不必要的笔墨。而对于应用来说呢,这些常数需要被再一次的加上去从而回到标准的 SI 单位制。

狭义相对论的基本假设是我们的起始点;它们是:在所有的惯性参考系--一些相互之间的速度保持恒定的参考系--中,光的速度不变,为c;而且物理规律在在所有惯性系中相同。

满足这些对称性的所有的变换构成的集合叫做 Poincare 群。为了能够得到它们,我们接下来介绍一些数学知识从而使得我们能够利用好对称性。数学的这一分支叫群论。我们会得到 Poincare 群⁴的不可约表示——你可以当成是组其它所有表示的"地基"。这些表示就是我们后面用来描述粒子和场的不同自旋的表示。自旋一方面是对不同种类的粒子和场的标记,而另一方面也可以视为内禀角动量。

在这以后,我们要介绍拉格朗日形式,它使得我们可以方便的在物理问题里面使用对称性。这里面的核心对象是拉格朗日量,我们可以从对不同的物理系统的对称性的考虑出发来得到¹。而在此之上我们就得到了欧拉-拉格朗日方程,从而我们可以得到给定拉格朗日量的运动方程。利用 Poincare 群的不可约表示,我们实际上得到了场和粒子的基本运动方程。

这里面的中心思想是在 Poincare 群中元素的的变换下,拉格

¹实际上,拉格朗日量是人为写出来的,而不是能够推导出来的。它是我们对 某类体系『唯相』且经验的刻画---译者注

⁴ 技术上正确的讲,我们会得到 Poincare 群的双覆盖而不是 Poincare 群本身。"双覆盖" 这个词是由于一个群的双覆盖和这个群的关系是前者的两个元素与后者的一个元素相对应。这在后面的节??中会讲到。

朗日量必须是不变的。这使得我们在任意的参考系中得到的运动 方程都是一样的,就像我们之前说的那样"物理规律在在所有惯 性系中相同"。

之后我们就会发现对于自旋 $\frac{1}{2}$ 场的拉格朗日量的另一个对称性: 在 U(1) 变换下的对称性。类似的,对于自旋 1 的场的内禀对称性也可以找到。局域的 U(1) 对称性可以使得我们得到自旋 $\frac{1}{2}$ 场和自旋 1 场之间的耦合。带这样的耦合项的拉格朗日量是量子电动力学的拉格朗日量的正确形式。类似的局域 SU(2) 和 SU(3) 变换会得到弱和强相互作用的拉格朗日量的正确形式。

作为补充,我们会讨论**对称性自发破缺**和 **Higss 机制**。这些使得我们能够去描述有质量的粒子⁵。

之后我们得到 Nother 定理,它给我们展示了对称性和守恒量之间深刻的联系。我们会通过鉴别每个物理量和它对应的对称性生成元来展现这种联系。这使得我们看到量子力学中最重要的方程²

$$[\hat{x}_i, \hat{p}_j] = i\delta_{ij} \tag{1.1}$$

和量子场论中

$$[\hat{\Phi}(x), \hat{\pi}(y)] = i\delta(x - y) \tag{1.2}$$

我们接下来通过对自旋 0 粒子的运动方程,即 Klein-Gordon 方程,取非相对论性⁶极限,得到了著名的 **Schrödinger 方程**。这一点,同我们认识到的物理量与对称性生成元之间的联系,一起构成了**量子力学**的基石。

接下来我们从不同的运动方程⁷的解,和方程(1.2)出发来考察 自由场的量子场论。这之后我们通过仔细审视包含不同自旋场之 间的耦合的拉格朗日量来考虑相互作用。这使得我们可以讨论散 射过程的概率振幅是如何得到的。

通过得到 Ehrenfest 定理,量子和经典力学的联系被我们展现出来。更进一步,我们够得了经典电动力学的基本方程,包括 Maxwell 方程组和 Lorentz 力定律。

最后简要的介绍现代**引力**理论,**广义相对论**,的基本结构,并 点出一些在构建**引力的量子理论**中的困难。

5 在对称性自发破缺前,拉格朗日量中的描述质量的项会破坏对称性从而被禁止

²原书有 typo

⁶ 非相对论性指所有物体相比光速来说都 运动的十分缓慢,从而狭义相对论的古怪的 特性很小不会被观察到。

⁷Kelin-Gordan, Dirac, Proka 和 Maxwell 方程

这本书的主要部分是我们需要的处理对称性的数学工具,和被称为标准模型的理论的导出。标准模型用量子场论来描述所有已知的基本粒子的行为。直到现在,所有的标准模型的实验预言都是正确的。这里介绍的任何其他的理论都可以看作标准模型下的一个特殊情况,比如宏观物体(经典力学),或者低能的基本粒子(量子力学)。对于那些从来没听说过现今已知的基本粒子和它们之间相互作用的读者,我们在接下来一节会进行一个快速的概述。

1.3 Elementary Particles and Fundamental Forces 基本粒子和基本相互作用力

基本粒子分成两个主要的大类: bosons 和 fermions。Pauli 不相容原理是的不能有两个 fermions 处在完全相同的态上,而 boson 则可以有任意多个粒子处在同一个态上。这种自然界奇怪 的事实导致了这些粒子截然不同的性质:

- Fermions 构成物质³
- Bosons 构成自然界的力

这说明,比如,原子是由 fermions⁸组成的,但是电磁相互作用力是通过被称为光子的 bosons 传播的。这带来的一个最令人震惊的结果是能有稳定的物质形成了。如果允许有无限多的 fermions处在相同的状态,根本就不会有稳定的物质,我们会在第??中讨论。

目前我们知道四种基本作用力

- 电磁相互作用力,通过无质量的光子传播
- ● 弱相互作用力,通过有质量的 W⁺,W⁻ 和 Z bosons 传播。
- 强相互作用力通过无质量的胶子传播。
- 引力,(或许)通过引力子传播。

⁸ 原子有电子,质子和中子组成,它们都是 fermions。然而注意质子和中子都不是基本的粒子,它们有夸克组成,而夸克也是

 $^{^3}$ 这里,『构成』实际上不是很合适的翻译。直译的话应该叫 Fermions 对物质 『负责』。不过大体上就是那么个意思吧。---译者注

Symmetry Tools 对称性工具

2	The Framework (力学) 框架/体系	11
2.1	Lagrangian Formalism 拉格朗日形式	

- 2.2 Restrictions 限制
- 2.3 粒子理论与场论

2. The Framework (力学) 框架/体系

这一章的基本思路是, 我们要在尽可能少的使用某些东西的前提下, 得到正确的关于自然的方程。某些东西是什么? 有一件事是确定的: 它不应该在 Lorentz 变换下改变, 否则我们会在不同的参考系下得到不同的自然规律。在数学意义上, 它意味着我们寻找的这个东西是个标量, 依照洛伦兹群的 (0,0) 表示作变换。再考虑到自然总依简单而行, 我们已经足够导出关于自然的方程了。

从这个想法出发,我们将会引入**拉格朗日形式**(Lagrangian formalism)。通过极小化理论的中心对象,我们可以得到用以描述问题中的物理系统的运动方程。极小化过程的结果被称作Euler-Lagrange 方程。

通过拉格朗日形式,我们可以得到物理中最重要的定理: Noether 定理。这个定理揭示了对称性和守恒量⁹之间的深刻联系。 我们将在下一章中利用它来理解, 理论是如何来描述实验测量量 的。

2.1 Lagrangian Formalism 拉格朗日形式

拉格朗日形式是在基础物理中被广泛运用的一个强有力的框架¹⁰。由于理论的基本对象—**拉格朗日量 (Lagrangian)** 是一个标量¹¹,它相对简单。如果你希望从对称性的观点考虑问题,这种形式将会是非常有用的。如果我们要求拉格朗日量的积分,**作用量**

⁹ 守恒量指的是不随时间变化的物理量。例 如一个给定体系的能量或动量。数学上意味 着 $\partial_t Q = 0 \to Q =$ 常数。

¹⁰ 物理中当然有其他框架,例如以哈密顿量 (Hamiltonian) 为中心对象的哈密顿形式 (Hamiltonian formalism)。哈密顿量的问题在于它不是洛伦兹不变的,因为它所代表的能量,仅仅是四动量 (covariant energy-impulse vector)的一个分量

¹¹ 标量指依照洛伦兹群的 (0,0) 表示作变换的对象。这意味着它不在洛伦兹变换下改变

(action),在某些对称变换下不变,我们即要求体系的动力学遵 从该对称性。

2.1.1 Fermat 原理

Whenever any action occurs in nature, the quantity of action employed by this change is the least possible.

- Pierre de Maupertius ¹²

拉格朗日形式的思想源于 Fermat 原理: 光在两空间点间传播总依耗时最短的路径 q(t) 而行。数学上来讲,如果我们定义给定路径 q(t) 的作用量为

$$S_{\text{light}}[\mathbf{q}(t)] = \int dt$$

而我们的任务便是找到一条特定的路径 q(t) 使作用量取极小值¹³为了得到一个给定**函数**的极小值¹⁴,我们可以求得其导函数并令其为零;而为了找到**泛函**S[q(t)]——函数 q(t) 的函数 S——的极小值,就得要一个新的数学工具:**变分法**。

2.1.2 变分法: 基本思想

在思考如何发展一套能够找到泛函极值的新理论之前,我们需要倒回去想想什么给出一个数学上的极小点。变分法给出的答案是,极小点由极小点邻域的性质决定。例如,让我们尝试寻找一个寻常函数 $f(x)=3x^2+x$ 的极小点 x_{\min} 。我们从一个特定点x=a 出发,仔细考察其邻域。数学上它意味着 $a+\epsilon$,其中 ϵ 代表无穷小量(可正可负)。我们将 a 的变分代入函数 f(x):

$$f(a+\epsilon) = 3(a+\epsilon)^2 + (a+\epsilon) = 3(a^2 + 2a\epsilon + \epsilon^2) + a + \epsilon$$

如果 a 是极小点, ϵ 的一阶变分必需为零,否则我们可以取 ϵ 为 负 $\epsilon < 0$,这样 $f(a + \epsilon)$ 就会比 f(a) 更小 。因此,我们将线性依赖于 ϵ 的项取出并令其为零。

$$3 \cdot 2a\epsilon + \epsilon \stackrel{!}{=} 0 \rightarrow 6a + 1 \stackrel{!}{=} 0$$

 12 Recherche des loix du mouvement (1746)

13 此处的作用量仅仅是沿给定路径对时间的积分,但一般而言作用量会更加复杂,我们待会儿就能见到

 14 一般而言,我们希望找到最值 (extremums),即最小值和最大值。

¹译注:此处讨论有误

由此我们找到极小点

$$x_{\min} = a = -\frac{1}{6},$$

它自然和我们求导 $f(x) = 3x^2 + x \leftarrow f'(x) = 6x + 1$ 并令其为零的办法得到的结果一致。对于寻常函数而言,这只是一个用来干同一件事不同方法而已²,但是变分法却能找到泛函的极值点。我们马上就能看到,应当如何处理一个一般的作用量泛函。

拉格朗日形式的中心思想在于对于有质量的物体,也存在一个与对光的 Fermat 原理相类似的原理。当然,它不可能直接遵从费马原理,但是我们可以从一个更一般的形式出发

$$S[q(t)] = \int \mathcal{L} \, \mathrm{d}t$$

其中 \mathcal{L} 一般是一个非常数的参量,被称为拉格朗日量。对于光而言,这个参量是个常数。一般的,拉格朗日量依赖于物体的坐标和速度 $\mathcal{L} = \mathcal{L}(q(t), \frac{\partial}{\partial t}q(t))$ 。在下一节中我们将仔细讨论这件事¹⁵。在仔细讨论如何对这样一个泛函使用变分法之前,我们需要先讲讲两个小问题。

2.2 Restrictions 限制

正如我们在1.1节中所提到的,现有理论中有一些限制条件是 无法从第一性原理中得到的。我们所能知道是,如果想得到一个 有意义的理论,我们必须加上这些限制。

一个重要的限制是,我们仅允许拉格朗日量中出现尽可能低阶的非平凡³导数。这里平凡指的是对于系统的动力学,即运动方程,没有影响。某些理论会包含一阶导数,另外一些带二阶导数。一个给定理论所含的最低阶导数由该条件决定:拉格朗日量在 Lorentz变换下不变¹⁶,否则我们将在不同的参考系下导出不同的运动方程⁴。对于某些理论,我们无法写出一个仅含一阶导数项的不变量,那么此时二阶导数便成了最低阶导数项。

我们并不清楚如何处理包含高阶导数的理论,它们有一些根本 的困难¹⁷。另外,拉格朗日量中的高阶导数会使得运动方程中也包

²译注:对于受微元法茶毒的物竞生而言,求导才是用来干这件事的不同方法。 ³译注:Non-trival. Trival 这个词常包含简单、弱智、无意义之义。

⁴译注: 此处讨论疑有误,作者此前并没有说明积分中的时间是坐标时还是固有时

¹⁵ 我们的任务是找到对于给定拉格朗日量和初始条件有着最小作用量的路径 q(t)。在此之前,我们得先找到正确的拉格朗日量,用以描述问题中的物理系统。这是我们在上一章中所讨论的对称性所能发挥作用的地方。通过要求拉格朗日量在洛伦兹群的所有变换下不变,我们就能找到正确的拉格朗日量

¹⁶ 实际上,作用量才应该是 Lorentz 不变的。但如果拉格朗日量满足这个条件,那作用量自然也是。

¹⁷ 这些困难包括 Ostrogradski 不稳定 性,即包含高阶导数的系统的能量没有下 界,以至于系统中的所有态总会自发衰变到 能量更低的态上去。这类系统中找不到稳定 的状态。

含高阶导数,这样我们必须知道更多的初始条件才能决定物体的运动。

有些人会宣称对理论所包含导数阶数的限制源于我们希望得到一个局域¹⁸理论,但这个要求仅会排除掉那些无穷阶导数。一个非局域相互作用有如下形式¹⁹

$$\Phi(x-h)\Phi(x) \tag{2.1}$$

即,时空中距离为 h 的两个点的场相互作用。利用 Taylor 展开我们有 5

$$\Phi(x-h) = \sum_{k=0}^{\inf} \left(\left(\frac{\partial}{\partial x} \right)^k \Phi(x) |_{x=n} \right) \frac{(x-h)^k}{k!}$$
 (2.2)

即包含无穷阶导数会导致一个非局域的理论。

另外一个限制是,要得到一个自由(无相互作用)场/粒子的理论,我们只能写到二次项。这意味着我们只会考虑²⁰

$$\Phi^0, \Phi^1, \Phi^2$$

这样的项。例如,形如 $\Phi^2 \partial_\mu \Phi$ 的项是 Φ 的三阶项,因而不会被包含在我们自由理论的拉格朗日量中。

2.3 Particle Theories vs. Field Theories 粒子理论与场论

我们目前有两套用以描述自然的理论框架。一套是粒子理论,用依赖于时间的粒子位置描述物理系统,即 $\vec{q} = \vec{q}(t)$ 。由于我们不是非得在使用笛卡尔坐标系²¹,所以用的是字母 q 而不是 x。对于这样的理论,拉格朗日量依赖于坐标 \vec{q} ,速度 $\partial_t \vec{q}$ 和时间 t: 6

$$\mathcal{L} = \mathcal{L}(\vec{q}, \partial_t \vec{q}, t) \tag{2.3}$$

一个著名的例子是这个能导出经典力学的牛顿运动方程的拉格朗日量 $\mathcal{L} = \frac{1}{3}m\vec{q}^2$ 。我们将在稍后进行相当详细的讨论。

另一套是场论: 使用场而不是独立粒子的坐标来描述自然 22 。 在这套理论中,时空构成了场 $\Phi(\vec{x},t)$ 表演的舞台。利用前面提到 过的限制,我们得到 23

18 局域性是狭义相对论的基本假定,??已 作阐述

19 我们将会讨论粒子的拉格朗日理论: 寻求粒子的路径; 也会讨论场的拉格朗日理论: 寻求场函数 $\phi(x)$ 。这将是下一节的主题。

20 从另外一个角度来看,这再次表示我们只引入最低阶的非平凡项。我们随后就会看到,含 Φ^0 和 Φ^1 的项是平凡的,因此我们这次用的是 Φ 的最低阶非平凡项

21 例如,我们可以用球坐标系

⁵译注: 此式有误

 $^{^{6}}$ 译注: 严格说来, 依赖于坐标函数 $\vec{q}(t)$, 速度函数 $\partial_{t}\vec{q}(t)$ 和时间 t

²² 量子场论的一个特别优美的性质是关于 粒子如何进入舞台的。我们将在??中看到 场有能力产生和湮灭粒子

 $egin{array}{ll} 23 & {\rm id} {\rm E}_{
m A} {\rm E}_{
m A}$

$$\mathcal{L} = \mathcal{L}(\Phi(\vec{x}, t), \partial_{\mu}\Phi(\vec{x}, t), \vec{x}) \tag{2.4}$$

一个著名的例子是我们将用以导出 Klein-Gordon 方程的拉格 朗日量 $\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \Phi \partial^{\mu} \Phi - m^2 \Phi^2 \right)$ 。

场论的一大优点是它将时空等价的对待。在粒子理论中我们使用空间坐标 $\vec{q}(t)$ 作为时间的函数来描述我们的粒子。尤其是,拉格朗日量中没有类似于 $\partial_{\vec{q}}t$ 的项(如果出现了这类项,我们该怎样理解它呢?)当我们讨论粒子的坐标时,意义是清楚的,但对时间做类似的陈述时,却很难有明确的意义。⁷

讨论了这么多,我们终于可以回到这章开头所说的极小化问题 上来了。我们希望找到某些泛函

$$S = \int \mathcal{L} \, dt$$

的极小值,以得到正确的运动方程。

对于粒子而言,方程的解是使得泛函取极小值的正确路径;而 对于场而言,解是正确的场函数。

此刻请不用担心 \mathcal{L} ,在下面数章中我们将详细讨论如何对问题中的系统导出正确的拉格朗日量 L。现在,我们将使用之前所介绍过的变分法,对于一个一般的 \mathcal{L} 导出泛函 S[q(t)] 的极小值。极小化过程将给出系统的运动方程。

⁷译注:利用不那么古老的相对论性语言,粒子理论下时空坐标是可以在形式上被同等对待的:用以求导的东西只能是曲线的参数,它可以取作粒子世界线的固有时、某一坐标系的坐标时、或者其他什么东西(只要性质合适,也可以是空间坐标);而时空坐标则被同样的求导。