Kodovi za otkrivanje i popravku grešaka

Greške u radu sa memorijom

Istraživanje iz 2010, sistem Jaguar, 360TB ECC RAM (engl. Error-Correcting Code)

- greške u radu sa memorijom: 350 u minuti
- skalirano na računar sa 8 GB memorije:
 otprilike I greška na svaka 2 sata

Google istraživanje iz 2009: oko 5 single-bit grešaka na 8 GB memorije na sat

Manji tranzistori – manje energije za pobudu

Pozadinsko zračenje (mahom od kosmičkih zraka)

Izvori: How To Kill A Supercomputer: Dirty Power, Cosmic Rays, and Bad Solder, *IEEE Spectrum*, 2016; Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, Proc. ISCA 2014.

Kodovi za otkrivanje i popravku grešaka

Zasnivaju se na **dodavanju** (**redundantnih**) **informacija** u podatak

Dodavanjem **bita provere** (engl. *check bit*) podatku se dobija **kodna reč** (engl. *codeword*)

Svi bitovi kodne reči moraju zadovoljiti neko pravilo

Skup kodnih reči je podskup svih kombinacija bitova

Kodovi za otkrivanje i popravku grešaka

Jednostavan način – **bit parnosti** (engl. *parity bit*)

parna parnost (ukupan broj jedinica je paran)

kodne	reči
biti podataka	bit parnosti
00	0
01	1
10	1
11	0

sve kodne reči se razlikuju u dva bita =>
 može detektovati promenu jednog bita

Hamingova udaljenost – broj različitih bitova

Hamingov (7, 4) kod (1950)

Više bita parnosti može omogućiti i korekciju

Hamingov (7, 4) kod (1950)

Više bita parnosti može omogućiti i korekciju

	redni brojevi bita kodne reči						
biti parnosti	1	2		4			s .
biti podataka			3		5	6	7
podskup 1. bita parnosti	\rightarrow		+		+		+
podskup 2. bita parnosti		\rightarrow	+			+	+
podskup 3. bita parnosti				→	+	+	+
primer kodne reči	0	1	1	0	0	1	1

- I. ako je netačan samo jedan od bita parnosti, tada je on pogrešan
- 2. ako su netačni biti parnosti 1 i 2, tada je pogrešan bit podataka 3
- 3. ako su netačni biti parnosti 1 i 4, tada je pogrešan bit podataka 5
- 4. ako su netačni biti parnosti 2 i 4, tada je pogrešan bit podataka 6, a
- 5. ako su netačni biti parnosti 1, 2 i 4, tada je pogrešan bit podataka 7

Reed-Muller-ov kod i Mariner 9

000000 - bela

000 | | | - siva

IIIIII – crna

Kodne reči:

- dužine 32 bita
- ukupno 64 različitih
- Hamingova distanca 16 (ispravlja do 7 grešaka)

Slika sa 64 nivoa sive – 6 bitova + 26 bitova za ECC

Operativni sistem

Operativni sistem

Rad sa BIOS-om i komandnim režimom oslonjenim na BIOS podrazumeva

- poznavanje šta je zauzeto, a šta slobodno u radnoj memoriji
- poznavanje šta je zauzeto, a šta slobodno u masovnoj memoriji
- poznavanje mašinskog formata naredbi

Operativni sistem

Mnogo je lakše

- čuvati podatke i programe u obliku datoteka
 - datoteke sa podacima
 - datoteke sa programima
- pokretati programe bez ulaženja u detalje kao što su:
 - gde će se program smestiti u memoriji
 - koje naredbe ga čine

Koncept **procesa** (engl. *process*)

angažovanje procesora koje daje neki rezultat

Koncept datoteke (engl. file)

- razdvaja upotrebu sadržaja datoteke od načina organizacije

Struktura operativnog sistema

Modul za rukovanje datotekama

- podržava operacije za rad sa datotekama: stvaranje, brisanje, čitanje, pisanje...
- omogućava razlikovanje datoteka putem naziva
- deskriptor datoteke: sadrži atribute datoteke
 - naziv
 - veličina
 - redni brojevi blokova
 - vreme nastanka, izmene, prava pristupa, ...
 - ...

Struktura operativnog sistema

Modul za rukovanje procesima

- podržava operacije za rad sa procesima: stvaranje, pokretanje, uništavanje
- slika procesa
 - naredbe koje čine program
 - vrednosti promenljivih
 - sadržaj steka
- deskriptor procesa: sadrži atribute procesa
 - broj lokacija za smeštanje
 - evidencija zauzetih lokacija
- inicijalna slika procesa se nalazi u izvršnoj datoteci

236

Struktura operativnog sistema

Modul za rukovanje radnom memorijom

- neophodan za rad prethodna dva modula
- rukovanje slobodnim i zauzetim lokacijama

Modul za rukovanje kontrolerima

skup drajvera

modul za rukovanje procesima modul za rukovanje datotekama modul za rukovanje radnom memorijom modul za rukovanje kontrolerima

Iznad OS-a su korisnički programi

Interpreter komandi operativnog sistema

Kada se uvedu datoteke i procesi, više nije poželjno da se

- direktno pristupa lokacijama memorije
- direkno pristupa blokovima na disku

Interpreter ostaje sa samo jednom funkcijom

- pokretanje zadatog programa (putem naziva)
 - preuzimanje imena izvršne datoteke
 - modul za rad sa kontrolerima
 - pokretanje programa
 - modul za rukovanje datotekama
 - modul za rukovanje procesima i radnom memorijom

Interpreter komandi operativnog sistema

Spada u korisničke programe

- izvršavanje se oslanja na OS
- OS se prema korisničkim programima odnosi kao prema svojim potprogramima

Dva nivoa korišćenja OS-a

- interaktivni
- programski
 - pozivanje operacija modula operativnog sistema –
 sistemski pozivi

Sistemski programi

- editor
- makro pretprocesor
- prevodilac (engl. assembler/compiler)
- povezivač (engl. linker)
- punilac (engl. loader)
- dibager (eng. debugger)
- pomoćni programi za rad sa datotekama

BIOS i OS

Računar započinje rad izvršavanjem BIOS-a

Inicijalni punilac (engl. bootstrap loader)

- obično se nalazi u nultom bloku diska (engl. boot block)
 - MBR Master Boot Record
 - GPT GUID Partition Table
- BIOS (nakon početnih inicijalizacija računara) učitava nulti blok, smešta ga u memoriju i pokrene
- puni u radnu memoriju preostale delove OS-a

Više operativnih sistema – multiboot

Promena konteksta – preključivanje (engl. context switch)

Promena konteksta

Izbegavanje radnog čekanja

Višeprocesni režim rada

- više slika procesa istovremeno u memoriji
- prebacivanje (preključivanje) procesora sa jedne na drugu sliku

Stanja procesa

- aktivan
- čeka
- spreman

Sistemski proces

aktivan kada svi ostali čekaju

Promena konteksta

Do promene konteksta dolazi

- kada se završi aktivnost procesa
- kada aktivnost procesa zavisi od spoljašnjeg događaja
 - komunikacija sa diskom
 - komunikacija sa terminalom
- Ul vođeno preključivanje obavljaju ga drajveri

Modul za rukovanje procesorom

bira proces kome će se dodeliti procesor

modul za rukovanje procesima
modul za rukovanje datotekama
modul za rukovanje radnom memorijom
modul za rukovanje kontrolerima
modul za rukovanje procesorom

Promena konteksta

- Ako su svi procesi nezavisni (zasebna memorija i datoteke), zajednički resurs su samo registri procesora, svakom procesu se dodeljuje registarski bafer
- %0 bafer tekućeg aktivnog procesa, % I bafer novog aktivnog procesa

	POČETAK	preključivanje	IZBACI	%12
IZBACI	MAKRO	R	IZBACI	%13
	PREBACI RP	R,(%0)	IZBACI	%14
	DODAJ 1	%0	IZBACI	%15
	KRAJ -		UBACI	%2
UBACI	MAKRO	R	UBACI	%3
	PREBACI PR	(%1),R	UBACI	%4
	DODAJ 1	%1	UBACI	%5
	KRAJ -		UBACI	%6
preključivanje:	IZBACI	%2	UBACI	%7
1	IZBACI	%3	UBACI	% 8
	IZBACI	% 4	UBACI	%9
	IZBACI	%5	UBACI	%10
	IZBACI	% 6	UBACI	%11
	IZBACI	% 7	UBACI	%12
	IZBACI	% 8	UBACI	%13
	IZBACI	% 9	UBACI	%14
	IZBACI	% 10	UBACI	%15
	IZBACI	%11	NATRAG	
	IZBACI	OTT	KRAJ	

Prekid (engl. interrupt)

Prekid

Provera spoljašnjih događaja samo prilikom preključivanja nije efikasna

 do reakcije na spoljašnji događaj dolazi tek kada dođe trenutak preključivanja, iako se događaj mogao desiti i ranije

Dešavanje spoljašnjeg događaja treba da **odmah pokrene** izvršavanje odgovarajućeg drajvera

- prekid izvršavanja tekućeg procesa
- obrada događaja
- nastavak aktivnosti prekinutog procesa

Prekid

Prekid (engl. interrupt)

- obrađivač prekida (engl. interrupt handler)
 - preko vektora prekida (ulazna adresa obrađivača)
- svaka vrsta prekida (tastatura, disk, ...) ima svoj vektor i obrađivač
- prekide izazivaju kontroleri
 - javi procesoru da se desio događaj
 - dostavi vektor obrađivača prekida

Mehanizam prekida

Svi vektori prekida čine **tabelu vektora prekida** kojoj se pristupa preko broja prekida

Linija najave prekida (engl. IRQ - interrupt request)

kontroler javlja da se desio događaj

Linija potvrde prekida (engl. interrupt acknowledge)

procesor traži broj vektora

Čuvanje programskog brojača (%13) i status registra (%14) pre obrade prekida

Obrađivač prekida čuva preostale registre

Mehanizam prekida

Obrađivači prekida po završetku treba da restauriraju i programski brojač i status registar

- naredba NASTAVI
- kod KONCEPT-a nema prekida unutar prekida
 SR₄ bit prekida (I-omogućeni)
- postavlja se na 0 čim se uđe u obradu prekida

Stek omogućava prekide u više nivoa

Realizacija prekida

Upravljačka jedinica

registar prekida:

sadrži adresu mikroprograma prekida

Realizacija prekida

Logička promenljiva NAJAVA

Izvršavanje mikro programa prekida – pre faze dobavljanja sledeće naredbe

Mikro-program dobavljanja na 000000 l₂

 $PRE_DOBAVLJANJA = \sim RS_6 \& \sim RS_5 \& \sim RS_4 \& \sim RS_3 \& \sim RS_2 \& \sim RS_1 \& RS_0$

Mogućnost obavljanja prekida

PREKID = NAJAVA&SR₄&PRE_DOBAVLJANJA

Rukovanje P56 i P54

P56 = R&T&PREKID

P54 = R&T&~IZA_DOBAVLJANJA&~PREKID

Serijsko povezivanje kontrolera na liniju potvrde

Arhitektura računara SIIT

Realizacija prekida

Svaki kontroler ima u sebi registar broja prekida

stavlja ga na linije podataka po dobijanju potvrde

Mikro-program prekida

```
1. ciklus: programski brojač → %13
```

2. ciklus: status registar \rightarrow %14

3. ciklus: $0 \rightarrow sR_4$

4. ciklus: 1 → POTVRDA PREKIDA linije podataka → pomoćni registar

5. ciklus: pomoćni registar → adresne linije

 $1 \rightarrow \check{c}$

linije podataka → programski brojač

Mikro-program naredbe NASTAVI

```
1. ciklus: %13 → programski brojač
```

2. ciklus: $\$14 \rightarrow \text{status registar}$

Odnos obrade prekida i preključivanja

Obrada prekida ne zahteva preključivanje, ali ga može izazvati

Prioritet procesa

Na početku rada

- inicijalizacija tabele prekida (funkcija modula za rukovanje kontrolerima)
- omogućavanje prekida

Podela drajvera

- donji deo obrađivač prekida
- gornji deo komunikacija sa višim slojevima

Organizacija drajvera terminala

Donji deo

- obrađivač prekida tastature
- obrađivač prekida ekrana

Gornji deo

- potprogrami terminala

Organizacija drajvera diska

Donji deo

obrađivač prekida diska

Gornji deo

 ulazna i izlazna operacija (prijavljuju kraj rada tek kada ceo blok bude prenet)

Usklađivanje rada kontrolera i uređaja

Asinhroni rad:

- kontroleri
- procesor

Sinhroni rad:

- kontroler
- uređaj

Rukovanje (engl. handshaking)

- logička promenljiva KONTROLER
- logička promenljiva UREĐAJ
- samo kada su obe na 1 moguća je komunikacija