

Devoir surveillé 10 - 20/05/25

Exercice 1 (ECUE Géométrie dans les espaces euclidiens ~ 13):

Soit \mathbb{R}^n (avec $n \in \mathbb{N}^*$) muni du produit scalaire usuel (.|.) et de la norme euclidienne associée ||.||. On appelle **matrice de Hadamard d'ordre** n toute matrice $H_n \in \mathcal{M}_{n,n}(\mathbb{R})$ dont tous les coefficients sont égaux à 1 ou -1 et telle que $\frac{1}{\sqrt{n}}H_n \in \mathcal{O}_n(\mathbb{R})$.

On appelle matrice de distance euclidienne d'ordre n toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle qu'il existe $m \in \mathbb{N}^*$ et des points $A_1, ..., A_n \in \mathbb{R}^m$ tels que pour tous $i, j \in [|1, n|], A_{i,j} = ||A_i - A_j||^2$.

On note
$$e = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$$

- 1. (a) Soit $M \in \mathcal{S}_n^+(\mathbb{R})$, démontrer qu'il existe $B \in \mathcal{M}_n(\mathbb{R})$ telle que $M = B^2 = B^T B$.
 - (b) Soit $M \in \mathcal{S}_n(\mathbb{R})$ telle que $Sp(M) = \{\lambda, \lambda_2, ..., \lambda_n\}$ avec $\lambda > 0 \ge \lambda_2 \ge \lambda_3 ... \ge \lambda_n$ et $E_{\lambda}(M) = Vect(u)$ avec u unitaire.

On pose
$$N = \lambda u.u^T - M$$

- i. Déterminer Sp(N).
- ii. En utilisant la question précédente, démontrer qu'il existe $B \in \mathcal{M}_n(\mathbb{R})$ telle que $M = \lambda u.u^T B^T B$.
- 2. Quelques exemples pour n=2:
 - (a) Déterminer une matrice d'Hadamard d'ordre 2 dont la première ligne est constante égale à (1 1).
 - (b) Soit $M = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$, déterminer $B \in \mathcal{M}_2(\mathbb{R})$ telle que $M = B^T B$.
- 3. Soit H_n une matrice d'Hadamard d'ordre n dont la première ligne est constante égale à $(1 \ 1 \ ... \ 1)$. Soient $\lambda_1,...,\lambda_n \in \mathbb{R}$ tels que $\lambda_1 > 0 \ge \lambda_2 \ge ... \ge \lambda_n$ et $\sum_{i=1}^n \lambda_i = 0$ et D la matrice diagonale de coefficients $\lambda_1,...,\lambda_n$. On pose $S = (\frac{1}{\sqrt{n}}H_n)^T D(\frac{1}{\sqrt{n}}H_n)$
 - (a) Démontrer que S est une matrice symétrique, à coefficients positifs et à diagonale nulle, et a pour valeurs propres $\lambda_1, ..., \lambda_n$.
 - (b) i. Justifier que $\frac{1}{\sqrt{n}}H_n e = \begin{pmatrix} \sqrt{n} \\ 0 \\ . \\ 0 \end{pmatrix}$.
 - ii. En déduire que $E_{\lambda_1}(S) = Vect(e)$.
 - (c) Soient $P = I_n \frac{1}{n}e.e^T$ et $A = -\frac{1}{2}PSP$. En utilisant la question 1b pour la matrice S, démontrer que $A \in \mathcal{S}_n^+(\mathbb{R})$.
 - (d) On pose $K: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), M \mapsto e.m^T + me^T 2M$ avec $m \in \mathcal{M}_{n,1}(\mathbb{R})$ dont les coefficients sont les coefficients diagonaux de M. On note B la matrice de la question 1a associée à A. Démontrer que pour tous $i, j \in [|1, n|], (K(A))_{i,j} = \|C_i C_j\|^2$ en notant C_k la k-ème colonne de B. On admet que S = K(A) donc S est une matrice de distance euclidienne.
- 4. Application: Donner une matrice euclidienne d'ordre 2 dont le spectre est $\{1, -1\}$

Exercice 2 (ECUE Analyse dans $\mathbb{R}^n \sim 3$): On cherche les fonctions $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$ telles que $2\partial_1 f - \partial_2 f = 0$ (*)

- 1. Déterminer V tel que $\phi: V \to \mathbb{R}^2$, $\binom{x}{y} \mapsto \binom{x+y}{x+2y}$ soit une bijection. 2. Soit f une solution de (*), on pose $g = f \circ \phi^{-1}$, déterminer une équation aux dérivées partielles vérifiée par g.
- 3. En déduire que l'ensemble des solutions de (*) est $\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mapsto h(x+2y), h \in \mathcal{C}^1(\mathbb{R},\mathbb{R}) \right\}$

Exercice 3 (ECUE Analyse dans
$$\mathbb{R}^n \sim 1,5$$
): Soient $\binom{x}{y} \in \mathbb{R}^2$ et $f_{(x,y)}: \mathbb{R}^2 \to \mathbb{R}, (h,k) \mapsto (3x^2 + 2y)h + (2x + \cos(y))k$

- 1. Déterminer $F:\mathbb{R}^2 \to \mathbb{R}$ telle que la différentielle de F en $\binom{x}{y}$ soit égale à $f_{(x,y)}$.
- 2. En déduire l'ensemble des $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2, f_{(x,y)} = 0.$