TPMplt: R Toolkit for Dynamic Materials Modeling

Chen ZHANG 1,2

¹Tohoku University, ²Institute for Material Research @ Sendai, Japan

Git URL: CubicZebra/TPMplt.git

2018.11.29

TPMplt: R Toolkit for Dynamic Materials Modeling

- Introduction
 - Depandencies & Installations
 - VBT Data Frame
 - Workflow Overview
- Practical Application
 - Hot Working Properties for Alloys
- Under Developement
 - Insufficiencies & Solutions
 - Modification for Next Version

Depandencies

- 1. R framework:
 - 1.1 For Windows & OS X: Install via official installer
 - 1.2 For linux: Install r-base as root
- 2. An IDE for R: RStudio, Visual Studio (Windows only), ...
- 3. X11 framework:
 - 3.1 For Windows & OS X: XQuartz via offical installer
 - 3.2 For linux: sudo apt-get install xorg openbox libx11-dev libglu1-mesa-dev libfreetype6-dev

Installation

Conventional Data Frame

- Including discrete and continous variables
- Discrete ones copied and aligned in individual columns
- Take iris3 as example →
 (*note: iris3 is a basic dataset
 for testing)

*	parts ‡	species ÷	L ‡	w ÷
1	Sepal	Setosa	5.1	3.5
2	Sepal	Setosa	4.9	3.0
3	Sepal	Setosa	4.7	3.2
4	Sepal	Setosa	4.6	3.1
5	Sepal	Setosa	5.0	3.6
6	Sepal	Setosa	5.4	3.9
7	Sepal	Setosa	4.6	3.4
8	Sepal	Setosa	5.0	3.4
9	Sepal	Setosa	4.4	2.9
10	Sepal	Setosa	4.9	3.1
11	Sepal	Setosa	5.4	3.7
12	Sepal	Setosa	4.8	3.4
13	Sepal	Setosa	4.8	3.0

VBT Data Frame

- Including discrete and continous variables
- Discrete ones contained in column names with specific structure
 - (*intuitively corresponding most experimental data)
- ullet Take iris3 as example o
- For details: VBTree package

•	Sepal- L- Setosa	Sepal- W- Setosa	Petal- L- Setosa	Petal- W- Setosa	Sepal-L- Versicolor
1	5.1	3.5	1.4	0.2	7.0
2	4.9	3.0	1.4	0.2	6.4
3	4.7	3.2	1.3	0.2	6.9
4	4.6	3.1	1.5	0.2	5.5
5	5.0	3.6	1.4	0.2	6.5
6	5.4	3.9	1.7	0.4	5.7
7	4.6	3.4	1.4	0.3	6.3
8	5.0	3.4	1.5	0.2	4.9
9	4.4	2.9	1.4	0.2	6.6
10	4.9	3.1	1.5	0.1	5.2
11	5.4	3.7	1.5	0.2	5.0
12	4.8	3.4	1.6	0.2	5.9
13	4.8	3.0	1.4	0.1	6.0
14	4.3	3.0	1.1	0.1	6.1
15	5.8	4.0	1.2	0.2	5.6
16	5.7	4.4	1.5	0.4	6.7
17	5.4	3.9	1.3	0.4	7 5.6

Workflow

```
raw_data

↓
vbt_data → SSplots()

↓
epsExtract()

↓
DMMprocess()

↓
SVRModel() → { TPM2dplt() , TPM3dplt() }
```


Summary VBT data frame

(32 columns with 4 temperatures * 4 strain rates * {Strain, Stress})

•	Strain- 900- 0.001- 60%	Stress- 900- 0.001- 60%	Strain- 900- 0.01- 60%	Stress- 900- 0.01- 60%	Strain- 900- 0.1- 60%	Stress- 900- 0.1- 60%	\$train- 900- 1-60%	Stress- 900- 1-60%	Stra 100 0.00 60%
1	0.00033	2.33	0.00000	0.00	0.00018	2.14	0.00000	0.00	0
2	0.00055	3.30	0.00000	0.00	0.00039	3.11	0.00005	3.69	0
3	0.00068	4.27	0.00010	4.47	0.00053	3.88	0.00033	5.05	0
4	0.00097	5.43	0.00022	6.02	0.00082	5.05	0.00037	6.41	0
5	0.00118	6.60	0.00042	7.38	0.00103	6.01	0.00041	7.77	0
6	0.00154	7.95	0.00061	9.12	0.00085	6.60	0.00036	9.13	0
7	0.00159	9.11	0.00087	11.26	0.00090	7.76	0.00041	10.29	0
8	0.00171	10.27	0.00114	13.00	0.00110	9.12	0.00045	11.65	0
9	0.00191	12.01	0.00142	14.54	0.00107	10.09	0.00049	13.01	0
10	0.00202	13.76	0.00153	16.48	0.00134	11.83	0.00060	14.75	0
11	0.00197	15.11	0.00179	18.41	0.00192	14.15	0.00103	16.88	0
12	0.00216	17.05	0.00199	20.15	0.00211	15.89	0.00112	19.20	0
13	0.00226	19.18	0.00201	22.28	0.00230	17.82	0.00137	21.72	0
14	0.00221	20 72	0 00218	24 79	0.00255	20.33	0.00169	24 62	0

• Stress-Strain plots grouped by temperature:

R> SSplot(vbt_data, 2, mfrow=c(2,2))

• Stress-Strain plots grouped by strain rate:

R> SSplot(vbt_data, 3, mfrow=c(2,2))

• Build dynamic materials model (at 0.7 strain):

R> SRT <- epsExtract(vbt_data, 0.7, 2, 3)

R> DMM <- DMMprocess(SRT)</pre>

R> print(DMM)

> print(DMM)

\$MaterialCoefficients

 ${\tt \$MaterialCoefficients\$m.StrainRateSensitivity}$

[1] 0.3345776 0.1792829 0.2157881 0.2402759

\$MaterialCoefficients\$n1.StressIndex

[1] 4.124033

\$MaterialCoefficients\$beta.StressIndex

[1] 0.06635972

\$MaterialCoefficients\$alpha.MaterialConstant

[1] 0.01609098

\$MaterialCoefficients\$0.ActivatingEnergy

[1] 44.01912

\$MatanialCoofficients &n DowenValue

Regression and 2d visulization (radial basis kernel (rbf) in SVM):
 R> SVR <- SVRModel(DMM)

• 3d visulization:

R> TPM3dplt(SVR)

- Similar as workflow of 13Cr
- Sequential plots are available using loop script:

Sequential 2d plots:

• Sequential 2d plots:

• 3d plot using 0.7 strain (unstable plan added for plot of ξ):

Insufficiencies

- 1. $\therefore m \in (0,1) \therefore \eta = 2m/(1+m) \in (0,1)$ However, some predicted η values are still out of range
- 2. Result of material constant A looks strange, since it's too small in magnitude
- 3. Values for contours generated by TPM2dplt() are invisible

Corresponding Solutions

- 1. Truncate the η using estimator $\tilde{\eta} = (\eta \eta_{\min})/(\eta_{\max} \eta_{\min})$
- 2. Modify related calculations in model-building function
- Updata 2d visualization function with the directlabels package

Functions to be Updated

- Functions required modification includes:
 - 1. DMMprocess()
 - 2. SVRModel()
 - 3. TPM2dplt()

Thanks for your attention.

