华东师范大学期末试卷(A卷)

2012 - 2013 学年 第二学期

课程名称: 高等数学A(二)		二) 课程	课程性质: 专业必修 考试日期: 2013		3. 07. 01
学生姓名_			学 号_		<u> </u>
			年级/班级_	2012	
		三	总 分	阅卷人签名	
					ı
一、填空题(每小题4分,共20分)					
1. 已知函数 $z = \begin{cases} \frac{2 - \sqrt{xy + 4}}{xy}, & (x, y) \neq (0, 0) \\ a, & (x, y) = (0, 0) \end{cases}$ 在 $(0, 0)$ 处连续,则 $a = $					
2. 计算积	只分 $\int_0^2 dx \int_x^2$	$\int_{a}^{2} e^{-y^2} dy = \underline{}$.•	
3. 设函数 $u = e^x \cos(yz)$, 则 div (grad (u)) =					
4. 设函数 $y(x)$ 满足微分方程 $xy' = y \ln \frac{y}{x}$, 且 $y _{x=1} = e^2$. 则 $y _{x=-1} = \underline{\hspace{1cm}}$.					
5. 己知函数 $f(x) = x^2 + 1$, $x \in (0,1)$, $S(x) = \sum_{n=1}^{+\infty} b_n \sin n\pi x$, $x \in (-\infty, +\infty)$, 其中					
$b_n = 2$	$\int_0^1 f(x) \sin n$	$n\pi x dx, n =$	1,2,⋯. 则当 x ∈	E[-1,0] 时 S(x) =
二、简答题	(本题共40	分,要求绐	出主要解题步马	聚)	
1. (6分) 设函数 φ 可微, 且 $\varphi(x-az, y-bz)=0$. 求 $a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial y}$. (将结果化为最简)					

2. (6分) 求曲线积分 $\oint_L \frac{y^2 dx - x^2 dy}{x^2 + y^2}$, 其中 L 为单位圆 $x^2 + y^2 = 1$, 取逆时针方向.

3. (6分) 求微分方程 $y'' + \frac{1}{2-y}(y')^2 = 0$ 的通解.

4. (6分) 求方程 $x^2y' + xy = y^2$ 满足初始条件 $y|_{x=1} = 1$ 的特解.

5. (6分) 求函数 $f(x) = \arctan \frac{2x}{1-x^2}$ 在点 x = 0 处的幂级数展开式.

6. (10分) 判别下列级数的敛散性 (对于任意项级数,需讨论绝对收敛与条件收敛性).

$$(1) \sum_{n=1}^{+\infty} n^2 \arctan \frac{2}{3^n};$$

$$(2) \sum_{n=1}^{+\infty} (-1)^n \frac{\ln n}{\sqrt{n}}.$$

- 三、解答题 (本题共40分,要求给出主要解题步骤)
 - 1. (8分) 求二元函数 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值.

2. (8分) 计算曲线积分 $\oint_{\Gamma} yzdx + 3xzdy - xydz$, 其中 Γ 为圆柱面 $x^2 + y^2 = 4y$ 与平面 z = 3y + 1 的交线, 从 z 轴的正向看去为逆时针方向.

3. (8分) 求幂级数 $\sum_{n=1}^{+\infty} \frac{x^{n-1}}{n3^n}$ 的收敛域与和函数.

4. (10分) 设函数 $\varphi(x)$ 二阶连续可导, 且它在点 (0,1) 处的切线平行于 x 轴. 又已知

$$[\varphi'(x) + \varphi(x) - e^x] dy - \varphi(x)ydx = 0$$

是一全微分方程. 试求 $\varphi(x)$ 的表达式以及此全微分方程的通解.

5. (6分) 设对于半空间 x > 0 内的任意光滑有向封闭曲面 S 都有

$$\iint_{S} xf(x)dydz - xyf(x)dzdx - e^{2x}zdxdy = 0,$$

其中函数 f(x) 在 $(0,+\infty)$ 内连续可导, 且 $\lim_{x\to 0^+} f(x) = 1$. 求 f(x) 的表达式.