4

Vector Spaces

4.5

THE DIMENSION OF A VECTOR SPACE

- **Theorem 9:** If a vector space V has a basis $B = \{b_1, ..., b_n\}$, then any set in V containing more than n vectors must be linearly dependent.
- **Proof:** Let $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ be a set in V with more than n vectors.

The coordinate vectors $[\mathbf{u}_1]_B$, ..., $[\mathbf{u}_p]_B$ form a linearly dependent set in \square^n , because there are more vectors (p) than entries (n) in each vector.

• So there exist scalars $c_1, ..., c_p$, not all zero, such that

$$c_{1} \left[\mathbf{u}_{1} \right]_{\mathbf{B}} + \dots + c_{p} \left[\mathbf{u}_{p} \right]_{\mathbf{B}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$
 The zero vector in $\begin{bmatrix} n \\ 0 \end{bmatrix}$

 Since the coordinate mapping is a linear transformation,

$$\left[c_{1}\mathbf{u}_{1} + \dots + c_{p}\mathbf{u}_{p}\right]_{\mathbf{B}} = \begin{vmatrix}0\\ \vdots\\0\end{vmatrix}$$

• The zero vector on the right displays the n weights needed to build the vector $c_1\mathbf{u}_1 + ... + c_p\mathbf{u}_p$ from the basis vectors in B.

- That is, $c_1 \mathbf{u}_1 + ... + c_p \mathbf{u}_p = 0 \cdot \mathbf{b}_1 + ... + 0 \cdot \mathbf{b}_n = 0$.
- Since the c_i are not all zero, $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ is linearly dependent.
- Theorem 9 implies that if a vector space V has a basis $B = \{b_1, ..., b_n\}$, then each linearly independent set in V has no more than n vectors.

■ **Theorem 10:** If a vector space *V* has a basis of *n* vectors, then every basis of *V* must consist of exactly *n* vectors.

- **Proof:** Let B_1 be a basis of n vectors and B_2 be any other basis (of V).
- Since B_1 is a basis and B_2 is linearly independent, B_2 has no more than n vectors, by Theorem 9.
- Also, since B₂ is a basis and B₁ is linearly independent,
 B₂ has at least n vectors.
- Thus B_2 consists of exactly n vectors.

- **Definition:** If *V* is spanned by a finite set, then *V* is said to be **finite-dimensional**, and the **dimension** of *V*, written as dim *V*, is the number of vectors in a basis for *V*. The dimension of the zero vector space {**0**} is defined to be zero. If *V* is not spanned by a finite set, then *V* is said to be **infinite-dimensional**.
- **Example 1:** Find the dimension of the subspace

$$H = \begin{cases} \begin{bmatrix} a - 3b + 6c \\ 5a + 4d \\ b - 2c - d \\ 5d \end{bmatrix} : a, b, c, d \text{ in } \Box$$

• *H* is the set of all linear combinations of the vectors

$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 5 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_{2} = \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_{3} = \begin{bmatrix} 6 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \mathbf{v}_{4} = \begin{bmatrix} 0 \\ 4 \\ -1 \\ 5 \end{bmatrix}$$

- Clearly, $\mathbf{v}_1 \neq 0$, \mathbf{v}_2 is not a multiple of \mathbf{v}_1 , but \mathbf{v}_3 is a multiple of \mathbf{v}_2 .
- By the Spanning Set Theorem, we may discard \mathbf{v}_3 and still have a set that spans H.

SUBSPACES OF A FINITE-DIMENSIONAL SPACE

- Finally, \mathbf{v}_4 is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .
- So $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$ is linearly independent and hence is a basis for H.
- Thus $\dim H = 3$.

■ **Theorem 11:** Let *H* be a subspace of a finite-dimensional vector space *V*. Any linearly independent set in *H* can be expanded, if necessary, to a basis for *H*. Also, *H* is finite-dimensional and

$$\dim H \leq \dim V$$

SUBSPACES OF A FINITE-DIMENSIONAL SPACE

- **Proof:** If $H = \{0\}$, then certainly dim $H = 0 \le \dim V$.
- Otherwise, let $S = \{u_1, ..., u_k\}$ be any linearly independent set in H.

- If S spans H, then S is a basis for H.
- Otherwise, there is some \mathbf{u}_{k+1} in H that is not in Span S.

SUBSPACES OF A FINITE-DIMENSIONAL SPACE

- But then $\{u_1,...,u_k,u_{k+1}\}$ will be linearly independent, because no vector in the set can be a linear combination of vectors that precede it (by Theorem 4).
- So long as the new set does not span H, we can continue this process of expanding S to a larger linearly independent set in H.
- But the number of vectors in a linearly independent expansion of *S* can never exceed the dimension of *V*, by Theorem 9.

THE BASIS THEOREM

• So eventually the expansion of S will span H and hence will be a basis for H, and $\dim H \leq \dim V$.

■ **Theorem 12:** Let V be a p-dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

• **Proof:** By Theorem 11, a linearly independent set *S* of *p* elements can be extended to a basis for *V*.

THE BASIS THEOREM

- But that basis must contain exactly p elements, since $\dim V = p$.
- So *S* must already be a basis for *V*.
- Now suppose that *S* has *p* elements and spans *V*.
- Since V is nonzero, the Spanning Set Theorem implies that a subset S' of S is a basis of V.
- Since $\dim V = p$, S' must contain p vectors.
- Hence S = S'.

THE DIMENSIONS OF NUL A AND COL A

Let A be an $m \times n$ matrix, and suppose the equation Ax = 0 has k free variables.

• A spanning set for Nul A will produce exactly k linearly independent vectors—say, $\mathbf{u}_1, \dots, \mathbf{u}_k$ —one for each free variable.

• So $\{u_1,...,u_k\}$ is a basis for Nul A, and the number of free variables determines the size of the basis.

DIMENSIONS OF NUL A AND COL A

• Thus, the dimension of Nul A is the number of free variables in the equation Ax = 0, and the dimension of Col A is the number of pivot columns in A.

Example 2: Find the dimensions of the null space and the column space of

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

DIMENSIONS OF NUL A AND COL A

• **Solution:** Row reduce the augmented matrix $\begin{bmatrix} A & 0 \end{bmatrix}$ to echelon form:

$$\begin{bmatrix} 1 & -2 & 2 & 3 & -1 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- There are three free variable— x_2 , x_4 and x_5 .
- Hence the dimension of Nul A is 3.
- Also dim Col A = 2 because A has two pivot columns.

4

Vector Spaces

4.5

RANK

- If A is an $m \times n$ matrix, each row of A has n entries and thus can be identified with a vector in \square^n .
- The set of all linear combinations of the row vectors is called the **row space** of *A* and is denoted by Row *A*.
- Each row has n entries, so Row A is a subspace of \square^n .
- Since the rows of A are identified with the columns of A^T , we could also write $\operatorname{Col} A^T$ in place of $\operatorname{Row} A$.

- **Theorem 13:** If two matrices *A* and *B* are row equivalent, then their row spaces are the same. If *B* is in echelon form, the nonzero rows of *B* form a basis for the row space of *A* as well as for that of *B*.
- **Proof:** If *B* is obtained from *A* by row operations, the rows of *B* are linear combinations of the rows of *A*.

• It follows that any linear combination of the rows of *B* is automatically a linear combination of the rows of *A*.

• Thus the row space of *B* is contained in the row space of *A*.

• Since row operations are reversible, the same argument shows that the row space of *A* is a subset of the row space of *B*.

So the two row spaces are the same.

- If *B* is in echelon form, its nonzero rows are linearly independent because no nonzero row is a linear combination of the nonzero rows below it. (Apply Theorem 4 to the nonzero rows of *B* in reverse order, with the first row last).
- Thus the nonzero rows of *B* form a basis of the (common) row space of *B* and *A*.

Example 1: Find bases for the row space, the column space, and the null space of the matrix

• **Solution:** To find bases for the row space and the column space, row reduce *A* to an echelon form:

$$A \square B = \begin{bmatrix} 1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- By Theorem 13, the first three rows of B form a basis for the row space of A (as well as for the row space of B).
- Thus

Basis for Row $A: \{(1,3,-5,1,5), (0,1,-2,2,-7), (0,0,0,-4,20)\}$

• For the column space, observe from *B* that the pivots are in columns 1, 2, and 4.

• Hence columns 1, 2, and 4 of A (not B) form a basis

for Col *A*:

Basis for Col A: $\begin{vmatrix} -2 & | & -5 & | & 0 \\ 1 & | & 3 & | & 1 \\ 3 & | & 11 & | & 7 \\ 1 & | & 7 & | & 5 \end{vmatrix}$

Notice that any echelon form of A provides (in its nonzero rows) a basis for Row A and also identifies the pivot columns of A for Col A.

• However, for Nul A, we need the *reduced echelon* form.

• Further row operations on B yield

$$A \square B \square C = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

• The equation Ax = 0 is equivalent to Cx = 0, that is,

$$x_1 + x_3 + x_5 = 0$$
$$x_2 - 2x_3 + 3x_5 = 0$$
$$x_4 - 5x_5 = 0$$

• So $x_1 = -x_3 - x_5$, $x_2 = 2x_3 - 3x_5$, $x_4 = 5x_5$, with x_3 and x_5 free variables.

The calculations show that

Basis for Nul
$$A$$
: $\begin{cases} -1 & -1 \\ 2 & -3 \\ 1 & 0 \\ 0 & 5 \\ 0 & 1 \end{cases}$

• Observe that, unlike the basis for Col A, the bases for Row A and Nul A have no simple connection with the entries in A itself.

- **Definition:** The **rank** of A is the dimension of the column space of A.
- Since Row A is the same as $Col A^T$, the dimension of the row space of A is the rank of A^T .
- The dimension of the null space is sometimes called the **nullity** of *A*.
- **Theorem 14:** The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. This common dimension, the rank of A, also equals the number of pivot positions in A and satisfies the equation

 $\operatorname{rank} A + \operatorname{dim} \operatorname{Nul} A = n$

- **Proof:** By Theorem 6, rank A is the number of pivot columns in A.
- Equivalently, rank A is the number of pivot positions in an echelon form B of A.
- Since *B* has a nonzero row for each pivot, and since these rows form a basis for the row space of *A*, the rank of *A* is also the dimension of the row space.
- The dimension of Nul A equals the number of free variables in the equation Ax = 0.
- Expressed another way, the dimension of Nul A is the number of columns of A that are *not* pivot columns.

• (It is the number of these columns, not the columns themselves, that is related to Nul A).

Obviously,

This proves the theorem.

Example 2:

- a. If A is a 7×9 matrix with a two-dimensional null space, what is the rank of A?
- b. Could a 6×9 matrix have a two-dimensional null space?

Solution:

- a. Since A has 9 columns, $(\operatorname{rank} A) + 2 = 9$, and hence $\operatorname{rank} A = 7$.
- b. No. If a 6×9 matrix, call it B, has a two-dimensional null space, it would have to have rank 7, by the Rank Theorem.

THE INVERTIBLE MATRIX THEOREM (CONTINUED)

■ But the columns of B are vectors in \square ⁶, and so the dimension of Col B cannot exceed 6; that is, rank B cannot exceed 6.

- **Theorem:** Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.
 - m. The columns of A form a basis of \square^n .
 - n. Col $A = \square^n$
 - o. Dim Col A = n
 - p. rank A = n

RANK AND THE INVERTIBLE MATRIX THEOREM

- **q.** Nul $A = \{0\}$
- r. Dim Nul A = 0

• **Proof:** Statement (m) is logically equivalent to statements (e) and (h) regarding linear independence and spanning.

• The other five statements are linked to the earlier ones of the theorem by the following chain of almost trivial implications:

$$(g) \Rightarrow (n) \Rightarrow (o) \Rightarrow (p) \Rightarrow (r) \Rightarrow (q) \Rightarrow (d)$$

RANK AND THE INVERTIBLE MATRIX THEOREM

- Statement (g), which says that the equation Ax = b has at least one solution for each **b** in \square , implies (n), because Col A is precisely the set of all **b** such that the equation Ax = b is consistent.
- The implications $(n) \Rightarrow (o) \Rightarrow (p)$ follow from the definitions of dimension and rank.

• If the rank of A is n, the number of columns of A, then dim Nul A = 0, by the Rank Theorem, and so Nul $A = \{0\}$.

RANK AND THE INVERTIBLE MATRIX THEOREM

- Thus $(p) \Rightarrow (r) \Rightarrow (q)$.
- Also, (q) implies that the equation Ax = 0 has only the trivial solution, which is statement (d).

• Since statements (d) and (g) are already known to be equivalent to the statement that *A* is invertible, the proof is complete.