数学分析 II(MA102a) 期中考试题 (2021.4.10) (共八题 2 页)

- 一. (20分) 计算
- (1) $\lim_{(x,y)\to(0,0)} \frac{e^x + e^y}{\cos x \sin y};$
- (2) $\lim_{x \to +\infty, y \to +\infty} (1 + \frac{1}{x})^{\frac{x}{x+y}};$
- (3) 当 $(x,y) \neq (0,0)$ 时, $f(x,y) = x^2 \ln(x^2 + y^2)$, 并且 f(0,0) = 0, 求 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$;
 - (4) 设 $u = \frac{z}{x^2 + y^2}$, 求 du.
- 二. $(15 \, \mathcal{G})$ 给出下列极限的定义: $\lim_{x \to a, \ y \to +\infty} f(x,y) = A$, 其中 $0 < a < +\infty$. 并用此定义,证明: $\lim_{x \to a, \ y \to +\infty} \frac{2x^5 + 3xy^2}{x + y^2} = 3a$.
- 三. $(10 \, f)$ 求出曲线 $x = y^2 1$ 和 x y = 11 在上半平面围成的图形绕 x 轴旋转一周所得的旋转体体积。
 - 四. (10 分) 求点集 E 的边界 ∂E , 内部 E° 和闭包 \bar{E} :
 - (1) $E = \{(r\cos\theta, r\sin\theta); 0 < r < 1, 0 < \theta < 2\pi\};$
 - (2) $E = \{(x, y); x \neq y \}$ 无理数, $|x| < 1, |y| < 1\}$.
- 五. (10 分) 设 $F 为 R^n$ 中非空闭集, $G 为 R^n$ 中非空开集,请证明:
 - (1) $F \setminus G$ 为 R^n 中闭集; (2) $G \setminus F$ 为 R^n 中开集。
 - 六. (15 分) 设 $f(x,y) = \frac{x^3}{x^2 + y^2}$, $x^2 + y^2 > 0$, 并且 f(0,0) = 0.
 - (1) 证明 f(x,y) 于 (0,0) 处沿任何方向的方向导数都存在;
 - (3) f(x,y) 于 (0,0) 处是否可微?证明你的结论。

七. (10 分) 设 $f(x,y) = \sin(xy), (x,y) \in \mathbb{R}^2$.

- (1) 证明: f(x,y) 于区域 $D_a = \{(x,y); x^2 + y^2 < a\}$ ($0 < a < +\infty$) 上一致连续;
 - (2) f(x,y) 是否于 R^2 上一致连续?证明你的结论。

八. $(10 \, \mathcal{G})$ 设 $f(x_1, x_2, \dots, x_n)$ 是 n 维 Euclid 空间中点集 $S = \{(x_1, x_2, \dots, x_n); x_1^2 + x_2^2 + \dots + x_n^2 = a^2\}$ $(0 < a < +\infty)$ 上的连续函数,试证明:

- (1) 存在 S 中的两点, 使得 f 于此两点处分别取得最大值 M 和最小值 m.
- (2) 当 n=2 时,如果 M>m,则对任意实数 $\eta\in(m,M)$,存在至少 S 中两个互异的点,使得 f 在这两点处都等于 η .