

Metody sztucznej inteligencji

laboratorium

Opis aplikacji

Aplikacja Internetowa do klasyfikacji opinii

Adrian Matys Sara Fijołek Vladyslav Kutsyn Mykyta Mykulskyi

Prowadzący mgr inż. Zdzisław Pawelec

Typy danych, zapis i działanie systemu	3
1. Typy danych używane w systemie	3
• Tekst (string):	3
Liczby zmiennoprzecinkowe (float):	. 3
• Lista (list):	3
Label (string):	. 3
JSON / Dict (słownik Python):	
Pliki modelu (nph5, .pt):	. 3
2. Zapis danych	4
Dane wejściowe:	. 4
Dane do trenowania:	4
3. Opis działania systemu	. 5
Krok 1: Wprowadzenie danych przez użytkownika	. 5
Krok 2: Przesłanie danych do backendu	5
Krok 3: Przetwarzanie w backendzie	. 5
Krok 4: Klasyfikacja wyniku	5
Krok 5: Wyświetlenie wyniku	5
4. Technologie i formaty danych	6
Frontend:	6
Backend:	. 6
Biblioteki ML:	6
Format modelu:	6
Format danych treningowych:	6

Typy danych, zapis i działanie systemu

1. Typy danych używane w systemie

W aplikacji będą wykorzystywane następujące typy danych:

• Tekst (string):

Główne dane wejściowe pochodzące od użytkownika – opinia wprowadzona w pole tekstowe. Przykład: "Ten produkt jest świetny, polecam każdemu!".

Liczby zmiennoprzecinkowe (float):

Wartości reprezentujące ocenę sentymentalną poszczególnych słów (np. +0.8 dla "świetny", -0.9 dla "okropny").

• Lista (list):

Tekst użytkownika zostanie rozbity na listę tokenów (słów lub fraz), które będą analizowane indywidualnie.

Label (string):

Wynik klasyfikacji: "pozytywna", "negatywna" lub "neutralna".

• JSON / Dict (słownik Python):

Reprezentacja pośrednich danych w czasie przetwarzania, np. lista słów z przypisanymi ocenami.

2. Zapis danych

• Dane wejściowe:

Tekst wprowadzony przez użytkownika nie będzie przechowywany na serwerze w celu ochrony prywatności (chyba że użytkownik wyrazi zgodę). Można jednak tymczasowo zapisać dane sesji w pamięci RAM.

• Dane do trenowania:

Opinie z etykietami ("pozytywna", "negatywna", "neutralna") zapisane będą w pliku CSV lub bazie danych SQLite/PostgreSQL w formacie:

Opinia	Klasa
Produkt spełnił moje oczekiwania	pozytywna
Nie polecam – bardzo słaba jakość	negatywna
Wszystko było w porządku, nic specjalnego	neutralna

3. Opis działania systemu

Krok 1: Wprowadzenie danych przez użytkownika

Użytkownik na stronie wpisuje opinię w pole tekstowe i klika przycisk "Analizuj opinię".

Krok 2: Przesłanie danych do backendu

Tekst zostaje przesłany przez frontend (Vue.js) do backendu Flask przy użyciu zapytania HTTP POST.

Krok 3: Przetwarzanie w backendzie

- 1. Tekst jest tokenizowany rozbijany na pojedyncze słowa.
- 2. Każde słowo trafia do wytrenowanej sieci neuronowej.
- 3. Sieć przypisuje każdemu słowu wartość sentymentalną (zwykle w zakresie od -1 do 1).
- 4. Obliczana jest średnia wartość sentymentalna całego tekstu.

Krok 4: Klasyfikacja wyniku

- Jeżeli średnia wartość > 0.2 → opinia pozytywna
- Jeżeli wartość < -0.2 → opinia negatywna
- W przeciwnym wypadku → opinia neutralna

Krok 5: Wyświetlenie wyniku

Wynik klasyfikacji jest przesyłany z backendu do frontend i wyświetlany użytkownikowi w ustalonej formie.

4. Technologie i formaty danych

• Frontend:

Vue 3 + Vite (dane w formacie JSON)

Backend:

Flask (Python), komunikacja REST API

Biblioteki ML:

TensorFlow/Keras lub PyTorch

• Format modelu:

.h5 (Keras) lub .pt (PyTorch)

• Format danych treningowych:

.csv lub baza SQL