

Теория вероятностей и математическая статистика

Практическое занятие 4.

Основные законы распределения случайных величин. Системы случайных величин.

Биноминальный закон распределения

Производится 3 независимых выстрела по цели. Вероятности попадания при разных выстрелах одинаковы и равны p = 0.9. Найти MX и DX, где X — число попаданий в цель.

$$MX = np, \qquad DX = npq.$$

С. в. X имеет биномиальное распределение. Здесь n=3, p=0.9, q=0.1. По формулам (2.24) находим MX и DX: $MX=3\cdot 0.9=2.7, DX=3\cdot 0.9\cdot 0.1=0.27.$

Геометрическое распределение

Задача Вероятность попадания в цель при отдельном выстреле для данного стрелка равна 0,1. Найти математическое ожидание и дисперсию с. в. X — числа выстрелов по цели до первого попадания.

С. в. X имеет геометрическое распределение с параметром p=0,1.

$$MX = \frac{1}{p}, DX = \frac{q}{p^2}$$

$$MX = \frac{1}{0.1} = 10, DX = \frac{0.9}{(0.1)^2} = 90 \ (\sigma_X = \sqrt{90} = 3\sqrt{10}).$$

Значение функции
$$\Phi_0(x)=rac{1}{\sqrt{2\pi}}\int\limits_0^x e^{-rac{t^2}{2}}\,dt$$

							0			
					Сотые	доли х				
x	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0040	0080	0112	0160	0199	0239	0279	0319	0359
0,1	0398	0438	0478	0517	0557	0596	0636	0675	0714	0754
0,2	0793	0832	0871	0910	0948	0987	1026	1064	1103	1141
0,3	1179	1217	1255	1293	1331	1368	1406	1443	1480	1517
0,4	1554	1591	1628	1664	1700	1736	1772	1808	1844	1879
0,5	1915	1950	1985	2019	2054	2088	2123	2157	2190	2224
0,6	2258	2291	2324	2357	2389	2422	2454	2486	2518	2549
0,7	2580	2612	2642	2673	2704	2734	2764	2794	2823	2852
0,8	2881	2910	2939	2967	2996	3023	3051	3079	3106	3133
0,9	3159	3186	3212	3238	3264	3289	3315	3340	3365	3389
1,0	3413	3438	3461	3485	3508	3531	3553	3577	3599	3621
1,1	3643	3665	3686	3708	3729	3749	3770	3790	3810	3830
1,2	3849	3869	3888	3907	3925	3944	3962	3980	3997	4015
1,3	4032	4049	4066	4082	4099	4115	4131	4147	4162	4177
1,4	4192	4207	4222	4236	4251	4265	4279	4292	4306	4319
1,5	4332	4345	4357	4370	4382	4394	4406	4418	4430	4441
1,6	4452	4463	4474	4485	4495	4505	4515	4525	4535	4545
1,7	4554	4564	4573	4582	4591	4599	4608	4616	4625	4633
1,8	4641	4649	4656	4664	4671	4678	4686	4693	4700	4706
1,9	4713	4719	4726	4732	4738	4744	4750	4756	4762	4767
					Десяты	е доли <i>х</i>		· · · · · · · · · · · · · · · · · · ·		
x	0	1	2	3	4	5	6	7	8	9
2,	4773	4821	4861	4893	4918	4938	4953	4965	4974	4961
3,	4987	4990	4993	4995	4997	4998	4998	4999	4999	5000^{1}

Нормальный закон распределения

Задача При измерении детали получаются случайные ошибки, подчиненные нормальному закону с параметром $\sigma = 10$ мм. Производится 3 независимых измерения детали. Найти вероятность того, что ошибка хотя бы одного измерения не превосходит по модулю 2 мм.

По формуле
$$P\{|X-a|< l\}=2\Phi_0\left(rac{l}{\sigma}
ight)$$
 $P\{|X-a|< 2\}=2\Phi_0\left(rac{2}{10}
ight)pprox 2\cdot 0{,}07926=0{,}15852.$

Вероятность того, что эта ошибка (погрещность) превышает 2 мм в одном опыте (измерении), равна

$$P\{|X-a|>2\}=1-P\{|X-a|<2\}=0.84148.$$

По теореме умножения вероятность того, что во всех трех опытах ошибка измерения превышает 2 мм, равна $0.84148^3 \approx 0.5958$. Следовательно, искомая вероятность равна 1-0.5958 = 0.4042.

Нормальный закон распределения

Известно, что с. в. $X \sim N(3,2)$. Найти

$$P\{-3 < X < 5\}, P\{X \le 4\}, P\{|X - 3| < 6\}.$$

$$P\{-3 < X < 5\} = \Phi_0\left(\frac{5-3}{2}\right) - \Phi_0\left(\frac{-3-3}{2}\right) = \Phi_0(1) + \Phi_0(3) = 0.8413;$$

$$P\{X \le 4\} = P\{-\infty < X \le 4\} = \Phi_0\left(\frac{4-3}{2}\right) - \Phi_0\left(\frac{-\infty - 3}{2}\right) = \Phi_0(0.5) + \Phi_0(\infty) = 0.19146 + 0.5 = 0.69146; P\{|X-3| < 6\} = P\{|X-3| < 3 \cdot 2\} = 2\Phi_0(3) = 0.9973.$$

Нормальный закон распределения

Нормально распределенная с. в. X задана плотностью вероятностей

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

Найти: а) вероятность попадания с. в. в интервал (1,3); б) симметричный относительно математического ожидания интервал, в который с вероятностью 0,8926 попадет с. в. X в результате опыта;

По условию $a=0,\ \sigma=1$ а) $P\{X\in(1,3)\}=\Phi_0\left(\frac{3-0}{1}\right)-\Phi_0\left(\frac{1-0}{1}\right)=\Phi_0(3)-\Phi_0(1)=0.49865-0.34134=0.1573;$ б) $2\Phi_0\left(\frac{l}{1}\right)=0.8926,$ отсюда $\Phi_0(l)=0.4463.$ По таблицам находим, l=1.62, и интервал имеет вид (-1.62;1.62)

Пример Бросаются две игральные кости. Пусть с. в. X — число выпавших очков на первой кости, с. в. Y — на второй; ПЭС состоит из 36 элементов: $\Omega = \{(1,1),(1,2),\ldots,(1,6),(2,1),(2,2),\ldots,(6,4),(6,5),(6,6)\}$. Элементарному событию, например, $(6,5) = w_{65}$ соответствует пара чисел x = 6 и y = 5. Совокупность этих значений — функция элементарного события w.

Задача В урне 4 шара: 2 белых, 1 черный, 1 синий. Из нее наудачу извлекают два шара. Пусть с. в. X — число черных шаров в выборке, с. в. Y — число синих шаров в выборке. Составить закон распределения для системы (X,Y). Найти законы распределения X и Y.

 \mathbf{Q} С. в. X может принимать значения 0, 1; с. в. Y — значения 0, 1. Вычислим соответствующие вероятности: $p_{11} = P\{X = 0, Y = 0\} = \frac{C_2^2}{C_4^2} = \frac{1}{6}$ (или: $\frac{2}{4} \cdot \frac{1}{3} = \frac{1}{6}$); $p_{12} = P\{X = 0, Y = 1\} = \frac{C_2^1}{C_4^2} = \frac{2}{6}$; $p_{21} = P\{X = 1, Y = 0\} = \frac{2}{6}$; $p_{22} = P\{X = 1, Y = 1\} = \frac{1}{6}$. Таблица распределения системы (X, Y) имеет вид:

$X \setminus Y$	0	1
0	$\frac{1}{6}$	$\frac{2}{6}$
1	$\frac{2}{6}$	$\frac{1}{6}$

Задача В урне 4 шара: 2 белых, 1 черный, 1 синий. Из нее наудачу извлекают два шара. Пусть с. в. X — число черных шаров в выборке, с. в. Y — число синих шаров в выборке. Составить закон распределения для системы (X,Y). Найти законы распределения X и Y.

$X \setminus Y$	0	1
0	$\frac{1}{6}$	$\frac{2}{6}$
1	$\frac{2}{6}$	$\frac{1}{6}$

Отсюда следует: $P\{X=0\}=\frac{1}{6}+\frac{2}{6}=\frac{1}{2},\ P\{X=1\}=\frac{2}{6}+\frac{1}{6}=\frac{1}{2};$ $P\{Y=0\}=\frac{1}{6}+\frac{2}{6}=\frac{1}{2},\ P\{Y=1\}=\frac{2}{6}+\frac{1}{6}=\frac{1}{2}.$ Законы распределения составляющих X и Y имеют вид:

\boldsymbol{X}	0	1	
p	$\frac{1}{2}$	$\frac{1}{2}$	

Функция распределения двумерной случайной величины

Задача В урне 4 шара: 2 белых, 1 черный, 1 синий. Из нее наудачу извлекают два шара. Пусть с. в. X — число черных шаров в выборке, с. в. Y — число синих шаров в выборке. Составить закон распределения найти $F_1(x)$, $F_2(y)$, F(x,y)

Используя формулу $F(x) = \sum_{x_i < x} p_i$ находим функции распределения

$$F_1(x) = \begin{cases} 0, & \text{при } x \leq 0, \\ 0.5, & \text{при } 0 < x \leq 1, \\ 1, & \text{при } x > 1, \end{cases} \qquad F_2(y) = \begin{cases} 0, & \text{при } y \leq 0, \\ 0.5, & \text{при } 0 < y \leq 1. \\ 1, & \text{при } y > 1. \end{cases}$$

Используя формулу $F(x,y) = \sum_{x_i < x} \sum_{y_i < y} p_{ij}$ находим функцию распределения F(x,y):

_		- 4	
$X \setminus Y$	$y \leqslant 0$	$0 < y \leqslant 1$	1 < y
$x \leqslant 0$	0	0	0
$0 < x \leqslant 1$	0	$\frac{1}{6}$	$\frac{1}{2} \left(= \frac{1}{6} + \frac{2}{6} \right)$
1 < x	0	$\frac{1}{2} \left(= \frac{1}{6} + \frac{2}{6} \right)$	$1 \left(= \frac{1}{6} + \frac{2}{6} + \frac{2}{6} + \frac{1}{6} \right)$

Плотность распределения вероятностей двумерной случайной величины

Задача Двумерная случайная величина (X,Y) задана плотностью распределения вероятностей $f(x,y)=\frac{A}{(1+x^2)(1+y^2)}$. Найти: 1) A; 2) F(x,y); 3) $P\{X<1,Y<1\};$ 4) $f_1(x)$ и $f_2(y)$.

Постоянную A найдем, используя условие нормировки:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{A}{(1+x^2)(1+y^2)} dxdy = 1,$$

$$A \int_{-\infty}^{\infty} \frac{dx}{1+x^2} \int_{-\infty}^{\infty} \frac{dy}{1+y^2} = 1,$$

$$A \cdot \arctan \left(\frac{x}{1+x^2} \right) = 1,$$

$$A \cdot \arctan \left(\frac{x}{1+x^2} \right) = 1,$$

$$A \cdot \pi^2 = 1.$$

Следовательно, $A = \frac{1}{\pi^2}$.

Плотность распределения вероятностей двумерной случайной величины

Задача Двумерная случайная величина (X,Y) задана плотностью распределения вероятностей $f(x,y)=\frac{A}{(1+x^2)(1+y^2)}$. Найти: 1) A; 2) F(x,y); 3) $P\{X<1,Y<1\};$ 4) $f_1(x)$ и $f_2(y)$.

$$F(x,y) = \int\limits_{-\infty}^x \int\limits_{-\infty}^y f_{X,Y}(u,v) \, du dv.$$
 находим:

$$F(x,y) = \int_{-\infty}^{y} \left(\int_{-\infty}^{x} \frac{1}{\pi^2} \cdot \frac{dx}{1+x^2} \right) \frac{dy}{1+y^2} = \frac{1}{\pi^2} \left(\operatorname{arctg} x + \frac{\pi}{2} \right) \cdot \operatorname{arctg} y \Big|_{-\infty}^{y} = \left(\frac{1}{\pi} \operatorname{arctg} x + \frac{1}{2} \right) \left(\frac{1}{\pi} \operatorname{arctg} y + \frac{1}{2} \right).$$

Плотность распределения вероятностей двумерной случайной величины

Задача Двумерная случайная величина (X,Y) задана плотностью распределения вероятностей $f(x,y)=\frac{A}{(1+x^2)(1+y^2)}$. Найти: 1) A; 2) F(x,y); 3) $P\{X<1,Y<1\};$ 4) $f_1(x)$ и $f_2(y)$.

Используя формулу
$$F(x,y) = P\{X < x, Y < y\}$$

3)
$$P\{X < 1, Y < 1\} = F(1,1) = \left(\frac{1}{\pi} \cdot \frac{\pi}{4} + \frac{1}{2}\right) \left(\frac{1}{\pi} \cdot \frac{\pi}{4} + \frac{1}{2}\right) = \frac{9}{16}$$

4) По формуле
$$\int\limits_{-\infty}^{+\infty}f(x,y)\,dy=f_1(x)=f_x(x), \quad \int\limits_{-\infty}^{+\infty}f(x,y)\,dx=f_2(y)=f_y(y)$$

$$f_1(x) = \int_{-\infty}^{\infty} \frac{1}{\pi^2} \cdot \frac{dy}{(1+x^2)(1+y^2)} = \frac{1}{\pi^2(1+x^2)} \operatorname{arctg} y \Big|_{-\infty}^{\infty} =$$

$$= \frac{1}{\pi^2(1+x^2)} \left(\frac{\pi}{2} + \frac{\pi}{2}\right) = \frac{1}{\pi(1+x^2)},$$

$$f_2(y) = \int \frac{1}{\pi^2} \cdot \frac{dx}{(1+x^2)(1+y^2)} = \dots = \frac{1}{\pi(1+y^2)}.$$

Коэффициент корреляции

Задача Закон распределения дискретной двумерной с.в. задан таблицей:

$X \setminus Y$	-1	0	1
0	0,15	0,40	0,05
1	0,20	0,10	0,10

Найти коэффициент корреляции r_{XY} .

 \bigcirc Находим законы распределения составляющих X и Y:

X	0	1	и
p	0,6	0,4	и

Находим математическое ожидание составляющих: $m_x=0.0,6+1.0.4=0.4$, $m_y=-1.0,35+0.0,50+1.0,15=-0.20$ (их можно было бы найти, используя формулу $MX=m_x=\sum_{i=1}^n\sum_{j=1}^mx_ip_{ij}, \quad MY=m_y=\sum_{i=1}^n\sum_{j=1}^my_jp_{ij}$

$$m_x = \sum_{i=1}^{2} \sum_{i=1}^{3} x_i p_{ij} = 0.0,15 + 0.0,40 + 0.0,05 + 1.0,20 + 1.0,10 + 1.0,10 = 0,4).$$

Коэффициент корреляции

Задача Закон распределения дискретной двумерной с.в. задан таблицей:

$X \setminus Y$	-1	0	1
0	0,15	0,40	0,05
1	0,20	0,10	0,10

Найти коэффициент корреляции r_{XY} . Находим дисперсии составляющих:

$$DX = [MX^2 - (MX)^2] = (0^2 \cdot 0.6 + 1^2 \cdot 0.4) - (0.4)^2 = 0.24,$$

$$DY = ((-1)^2 \cdot 0.35 + 0^2 \cdot 0.50 + 1^2 \cdot 0.15) - (-0.20)^2 = 0.46.$$

$$MXY = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j p_{ij}$$

Стало быть: $\sigma_x=\sqrt{0,24}\approx 0,49,\ \sigma_y=\sqrt{0,46}\approx 0,68.$ Находим MXY, используя формулу (3.26): $MXY=0\cdot (-1)\cdot 0,15+0\cdot 0\cdot 0,40+0\cdot 1\cdot 0,05+1\cdot (-1)\cdot 0,20+1\cdot 0\cdot 0,10+1\cdot 1\cdot 0,10=-0.10$ (можно было бы составить закон распределения Z=XY, а затем найти MZ=MXY:

Z = XY	-1	-0	1	
p	0,20	0,70	0,10	,

Коэффициент корреляции

Задача Закон распределения дискретной двумерной с. в. задан

таблицей:

$X \setminus Y$	-1	0	1
0	0,15	0,40	0,05
1	0,20	0,10	0,10

Найти коэффициент корреляции r_{XY} .

Z = XY	-1	-0	1
p	0,20	0,70	0,10

 $MZ = MXY = -1 \cdot 0.20 + 0 \cdot 0.70 + 1 \cdot 0.10 = -0.10$). Находим корреляционный момент, используя формулу

$$K_{XY} = \cos(X,Y) = MXY - MX \cdot MY, \qquad K_{XY} = [MXY - MX \cdot MY] =$$
 $= -0.10 - 0.4 \cdot (-0.20) = -0.10 + 0.08 = -0.02 \neq 0.$ Находим коэффициент корреляции $r_{XY} = \frac{K_{XY}}{\sigma_x \sigma_y} = \frac{\cot(X,Y)}{\sqrt{DX}\sqrt{DY}} \qquad r_{XY} = \left[\frac{K_{XY}}{\sigma_x \sigma_y}\right] = \frac{-0.02}{0.49 \cdot 0.68} \approx -0.06,$

 Π ример. Пусть дан случайный вектор (ξ , η) дискретного типа с законом распределения

ξ \ η	0	1	2
0	1/4	1/3	1/9
1	0	1/6	1/9
2	0	0	1/36

Найти одномерные законы распределения, математические ожидания и дисперсии, ковариацию

Найдём одномерные законы распределения

$$\begin{array}{ll} \text{P\{}\xi=0\text{\}}=1/4+1/3+1/9=25/36, & \text{P\{}\eta=0\text{\}}=1/4+0+0=1/4, \\ \text{P\{}\xi=1\text{\}}=0+1/6+1/9=10/36, & \text{P\{}\eta=1\text{\}}=1/3+1/6+0=1/2, \\ \text{P\{}\xi=2\text{\}}=0+0+1/36=1/36. & \text{P\{}\eta=2\text{\}}=1/9+1/9+1/36=1/4. \end{array}$$

 Π ример. Пусть дан случайный вектор (ξ , η) дискретного типа с законом распределения

ξ \ η	0	1	2
0	1/4	1/3	1/9
1	0	1/6	1/9
2	0	0	1/36

Найти одномерные законы распределения, математические ожидания и дисперсии, ковариацию

Найдём математические ожидания и диспер сии.

$$\begin{array}{ll} \text{M}\xi = 0 \cdot 5/36 + 1 \cdot 10/36 + 2 \cdot 1/36 = 1/3, & \text{D}\xi = \text{M}\xi^2 - (\text{M}\xi)^2 = 7/18 - 1/9 = 5/18, \\ \text{M}\eta = 0 \cdot 1/4 + 1 \cdot 1/2 + 2 \cdot 1/4 = 1, & \text{D}\eta = \text{M}\eta^2 - (\text{M}\eta)^2 = 3/2 - 1 = 1/2. \\ \text{M}\xi^2 = 0 \cdot 5/36 + 1 \cdot 10/36 + 4 \cdot 1/36 = 7/18, & \text{M}\eta^2 = 0 \cdot 1/4 + 1 \cdot 1/2 + 4 \cdot 1/4 = 3/2. \end{array}$$

 Π ример. Пусть дан случайный вектор (ξ , η) дискретного типа с законом распределения

ξ \ η	0	1	2
0	1/4	1/3	1/9
1	0	1/6	1/9
2	0	0	1/36

Найти одномерные законы распределения, математические ожидания и дисперсии, ковариацию

Вычислим ковариацию.

$$\mathsf{M}\xi\eta = 1 \cdot 1 \cdot 1/6 + 1 \cdot 2 \cdot 1/9 + 2 \cdot 1 \cdot 0 + 2 \cdot 2 \cdot 1/36 = 1/2.$$

Следовательно,

$$cov(\xi, \eta) = M\xi\eta - M\xi M\eta = 1/2 - 1/3 = 1/6.$$

Коэффициент корреляции равен

$$\rho(\xi,\eta) = \frac{\text{cov}(\xi,\eta)}{\sqrt{\text{D}\xi}\sqrt{\text{D}\eta}} = \frac{1}{\sqrt{5}}.$$