Algebraic Theory I

Thomas Fleming

November 17, 2021

Contents

1 Polynomial Rings

1

1 Polynomial Rings

Lecture 35: Polynomials

Mon 15 Nov 2021 11:32

Definition 1.1 (Polynomial Ring). Let R be a commutative ring and we define R[X] to be the ring of polynomials in the variable x with coefficients from R defined as follows.

An element $f \in R[X]$ has the form

$$f = a_0 + a_1 x + \ldots + a_n x^n$$

for some $n \ge 0$ and each $a_i \in R$. This is a formal sum in the sense that two polynomials

$$f = a_0 + a_1 x + \dots + a_n x^n$$

$$g = b_0 + b_1 x + \dots + b_m x^m$$

have f = g if and only if $a_i = b_i$ for every i.

For the polynomial f, we call a_0 the **constant term** and a_n to be the **leading coefficient** and n to be the **degree**, denoted $\deg(f) = n$.

For the polynomial f = 0, we specifically define $\deg(f) = -1$. For all other constant polynomials g, we define $\deg(g) = 0$.

Remark. Occasionally, we will write $f = \sum_{i=0}^{\infty} a_i x^i$ with almost every $a_i = 0$. With this form we see elements of R[X] are in a bijective correspondence with finite support tuples from $R^{\mathbb{N}}$.

We see R[X] forms a ring with two polynomials $f,g\in R[X]$ as defined earlier having sum

$$(f+g) = \sum_{i=0}^{\infty} (a_i + b_i) x^i$$

and

$$fg = \sum_{i=0}^{\infty} a_i x^i \sum_{j=0}^{\infty} b_j x^j = \sum_{n=0}^{\infty} \sum_{\substack{i,j\\i+j=n}} a_i b_j x^n.$$

Definition 1.2 (Multivariate Polynomial Rings). We define a **multivariate polynomial ring** $R[x_1, \ldots, x_n] = (R[x_1, \ldots, x_{n-1}])[x_n]$ with addition and multiplication defined similarly. It is worth noting that while degree and constants are well defined, the leading coefficient may be poorly defined without adding extra constraints.

Definition 1.3 (Projected Degree). For a multivariate polynomial $f \in R[x_1, \ldots, x_n]$ we define $\deg(f)_{x_i}$ to be the degree when considered only in the variable x_i .

Remark. It is of note that polynomials are more formal objects and not necessarily functions. The distinction is mostly moot, but we can induce a function from a polynomial by defining a function

$$f: R \longrightarrow R$$

$$b \longmapsto f(b) = \sum_{i=0}^{\infty} a_i b^i.$$

The point of this distinction is that polynomials over finite (or otherwise non-standard spaces) may not be distinct. For example $x \mapsto x^5 - x$ and $x \mapsto 0$ are completely equivalent in \mathbb{F}_5 . This, of course, cannot happen over \mathbb{R} unless the coefficients are precisely equal.

We can construct a function in a different way as follows:

Definition 1.4 (Evaluation Map). Fixing $b \in R$ we define the **evaluation** map on R[x] as

$$\operatorname{ev}_b: R[x] \longrightarrow R$$

$$f \longmapsto \operatorname{ev}_b(f) = f(b).$$

We find this map to be a ring homomorphism, essentially compressing R[x] down into R.

Lecture 36: Polynomials (2)

Mon 07 May 2018 03:55

Recall. For a commutative ring R, we define the polynomial ring $R[x_1, \ldots, x_n]$ as formal sums of powers of x_i with coefficients in R.

Moreover, if we have two commutative rings R, R' with a ring homomorphism $\varphi: R \to \overline{\mathbb{R}}$, then there is a complementary ring homomorphism extending to

the polynomial ring:

$$\overline{\varphi}: R[x] \longrightarrow \overline{\mathbb{R}}[x]$$

$$\sum_{i=0}^{\infty} \alpha_i x^i \longmapsto \sum_{i=0}^{\infty} \varphi(a_i) x^i.$$

Definition 1.5 (Map Space). Now, define Map $(Y \to R)$ to be the set of all maps $f: Y \to R$ with R being a commutative ring and Y being an arbitrary set. We equip Map $(Y \to R)$ with pointwise operations \times , + such that

$$(f+g)(x) = f(x) + g(x)$$
$$(fg)(x) = f(x)g(x)$$

These operations induce a ring over Map $(Y \to R)$.

Then, we see a polynomial $f \in R[x]$ defines a corresponding map $\overline{f} \in \operatorname{Map}(R \to R)$ with $\overline{f}(a) = \operatorname{ev}_a(f)$ for all $a \in R$.

Remark. The map $f \mapsto \overline{f}$ need not be injective. See the example $f = x^5 - x$ and g = 0 in \mathbb{F}_5 .

Proposition 1.1. If R is an integral domain, then R[x] is also an integral domain. Moreover, for nonzero polynomials $f, g \in R[x]$ we have $\deg(fg) = \deg(f) + \deg(g)$.

This prove is completely trivial hence it is omitted.

Theorem 1.1. If F is a field, then F[x] is a euclidean domain, a principal ideal domain, and a unique factorization domain.

Proof. Applying standard (euclidean) polynomial division with euclidean norm deg(f) for $f \in F[x]$ yields a euclidean domain (hence a PID and UFD).

Theorem 1.2. If R is a commutative ring then R[x] is a principal ideal domain if and only if R is a field.

Proof. One direction has already been shown.

Moreover if R[x] is a PID, then R is an integral domain. Hence, if ab = a with $a, b \in R$, then a = 0 or b = 0, so R is an integral domain as its a subring of R[x].

Now, let $y \in R$ be an arbitrary nonzero element. We wish to show y a unit. Let $I = (y, x) \subseteq R[x]$. Then, since R[x] is a Principal ideal domain, we have an $f \in I$ so that (y, x) = (f). Note that we must have $f \neq 0$ as $x \neq 0$ and as $y \in (f)$ we see y = hf for an $h \in R[x]$ which is nonzero. Since R is an integral

domain, we see $\deg(f) = \deg(h) = 0$. Hence, f is a nonzero constant $\alpha \in R$. Hence, we have $x \in I = (\alpha)$ so $x = g\alpha$ for some $g \in [x]$. But, R is an integral domain, so $1 = \deg(x) = \deg(\alpha) + \deg(g) = \deg(g)$. So, we have g = ax + b for some nonzero $a \in R \setminus \{0\}$ and $b \in R$. Thus, $x = (ax + b)\alpha = (a\alpha + b\alpha)$, hence $a\alpha = 1$ and $b\alpha = 0$ by the coefficient property of polynomial rings. Thus,

$$(\alpha) = (f) = I = (y, x) = R[x].$$

Hence, $1 \in (y, x) = R[x](y) + Rx$. So, $1 = g_1y + g_2x$ for some $g_1, g_2 \in R[x]$. Hence letting $g_1 = g_{11} + g_{12}x$ and similarly $g_2 = g_{21} + g_{22}x$ for some $g_{11}, g_{12}, g_{21}, g_{22} \in R$, we see $1 = yg_{11}$. So, y is a unit, hence R is a field. \square

Corollary 1. If F is a field F[x,y] is not a principal ideal domain.

Proof. F[x,y]=(F[x])[y] and F[x] is not a field (take f=x, there is no inverse), so F[x,y] is not a principal ideal domain by applying the previous characterization.

Theorem 1.3. If F is a field with f being a polynomial having $\deg(f) = n \ge 0$ in F[x]. If, f(a) = 0 for $a \in R$, then $(x - a) \mid f$. Moreover, f has at most n roots in F.

Proof. Since $f \neq 0$ and f has a zero, we see $\deg(f) \geq 1$. Hence, using polynomial long division yields f = q(x-a) + r for some $q, r \in F[x]$ with $\deg(r) < \deg((x-a))$, hence $\deg(r) \leq 0$, that is r is a constant polynomial. We see f(a) = r = 0, hence f = q(x-a), so $(-a) \mid f$. Letting a_1, \ldots, a_n be distinct real zeros of f, then $(x-a_1) \mid f$ implying $f = f_1(x-a_1)$ with $\deg(f_1) = \deg(f) - 1$. Inducing on the roots a_i , we see that more than n roots would imply $f = f_1 \cdot f_2 \cdot \ldots \cdot f_n \cdot f_{n+1} \cdot g$ where g is the final polynomial obtained by dividing by $x - a_{n+1}$ and is of degree $\deg(g) = \deg(f) - (n+1) = -1$ implying g is the zero polynomial. But, we have $f = g \prod_{i=1}^{n+1} (x - a_i)$, so f = 0 f. Hence there are at most f zeroes.