Аналитическая геометрия

Текущий контроль 3

Стоимость: 5 б.

Направление подготовки: Физика

ФИО студента: Иванов Иван Иванович

Преподаватель: В. Н. Кожухова

Прямая на плоскости

Задача 1. 16.

Две точки на плоскости заданы координатами: $M_1(0, -3)$ и $M_2(-3, -3)$, $\angle \alpha = 30^\circ$ – некоторый угол.

Составить:

- 1. Уравнение прямой, проходящей через точку M_1 и образующей с осью абсцисс $\angle \alpha$.
- 2. Уравнение прямой на плоскости, проходящей через точки M_1 и M_2 . Записать это уравнение в следующих видах:
 - а) общем;
 - б) каноническом;
 - в) параметрическом;
 - г) с угловым коэффициентом;
 - д) в отрезках;
 - е) нормальном.

Указать направляющие косинусы данной прямой.

Задача 2. 1б.

Даны вершины треугольника ABC и прямая L:

$$A(4, -6), B(1, 1), C(9, 0), L: -4x + 5y + 2 = 0$$

- 1. Составить уравнения прямой L_1 , проходящей через точку A параллельно прямой L и прямой L_2 , проходящей через точку A перпендикулярно прямой L.
- 2. Определить точку пересечения высот треугольника.
- 3. Вычислить длину перпендикуляра, опущенного из вершины A на медиану, проведенную из вершины C.

Задача 3. 16.

По данным задачи 2:

- 1. Составить уравнения биссектрис внутреннего и внешнего углов треугольника ABC при вершине A.
- 2. Найти координаты точки Q, симметричной точке A относительно прямой CB.

Задача 4. 16.

Дана точка N и две прямые L_1 и L_2 :

$$N(0,5), L_1: 3x - y - 4 = 0, L_2: 2x - 3y - 7 = 0$$

- 1. Пусть прямые L_1 и L_2 стороны параллелограмма, а N точка пересечения его диагоналей. Написать уравнения остальных сторон и диагоналей параллелограмма.
- 2. Составить уравнения сторон треугольника, если одна из его вершин точка N, а прямые L_1 и L_2 высоты этого треугольника.
- 3. Найти расстояние от точки N до прямой L_1 .
- 4. Написать нормальное уравнение прямой L_1 . Пересекает прямая L_2 отрезок ON или нет? (точка O начало координат).

Задача 5. 16.

По данным задачи 4:

- 1. Написать уравнения прямых, параллельных L_1 и отстоящих от нее на расстоянии d=7.
- 2. Пусть L_1 одна из сторон квадрата, а точка N его вершина. Написать уравнения остальных сторон квадрата.
- 3. Определить аналитически, какой из углов, тупой или острый, образованный прямыми L_1 и L_2 , содержит точку N. Определить величину угла между прямыми L_1 и L_2 .
- 4. Составить уравнение биссектрисы угла между прямыми L_1 и L_2 , смежного с углом, содержащим точку N.

Ответ 1.

через точку под углом:
$$y=\frac{1}{3}\sqrt{3}\Big(x-3\sqrt{3}\Big)$$
 общее уравнение: $y+3=0$, направляющий вектор: $M_1M_2=(-3,0)$, каноническое: $\frac{x}{-3}=\frac{y+3}{0}$, параметрическое: $y=t-3$ с угловым коэффициентом: $y=(-3)$, в отрезках: $-\frac{1}{3}y=1$, нормальное: $-y-3=0$, направляющие косинусы: $(0,-1)$

Ответ 2.

параллельно: -4x+5y+46=0 перпендикулярно: -5x-4y-4=0 точка пересечения высот: $-8x+y+38=0, -3x+7y+27=0, \left[\left[x=\left(\frac{239}{53}\right),y=\left(-\frac{102}{53}\right)\right]$ медиана: -10x+26y+90=0, перпендикуляр: -13x-5y+22=0, длина перпендикуляра: $53\sqrt{\frac{1}{194}}$

Ответ 3.

биссектрисы: $-\Big(427\sqrt{29}\sqrt{2}-348\sqrt{61}\Big)x-\Big(183\sqrt{29}\sqrt{2}+290\sqrt{61}\Big)y+610\sqrt{29}\sqrt{2}-3132\sqrt{61}=0$ – биссектриса внешнего угла $\Big(427\sqrt{29}\sqrt{2}+348\sqrt{61}\Big)x+\Big(183\sqrt{29}\sqrt{2}-290\sqrt{61}\Big)y-610\sqrt{29}\sqrt{2}-3132\sqrt{61}=0$ симметричная точка: $\Big(\frac{366}{65},\frac{458}{65}\Big)$

Ответ 4.

стороны параллелограмма: 3x-y+14=0, 2x-3y+37=0 диагонали параллелограмма: 48x+5y-25=0, 12x-7y+35=0

уравнения сторон треугольника:

$$-x-3y+15=0, -3x-2y+10=0, -5x+48y-86=0$$
 расстояние от N до L_1 : $\frac{9}{10}\sqrt{10}\approx 2.846$

нормальное уравнение L_1 : $\frac{1}{10}\sqrt{10}(3x-y-4)=0$

Ответ 5.

прямые, параллельные L_1 на расстоянии 7:

$$3x - y + 7\sqrt{10} - 4 = 0, 3x - y - 7\sqrt{10} - 4 = 0$$

стороны квадрата:
$$-x - 3y + 15 = 0, 3x - y + 5 = 0$$

$$-x - 3y + 24 = 0, -x - 3y + 6 = 0$$

угол между
$$L_1$$
 и L_2 : $\arccos\left(\frac{9}{130}\sqrt{13}\sqrt{10}\right) \approx 38^\circ$

N расположена в тупом углу

O и N находятся в одном углу

биссектрисы углов между L_1 и L_2 :

$$(39\sqrt{5}\sqrt{2} - 20\sqrt{13})x - (13\sqrt{5}\sqrt{2} - 30\sqrt{13})y - 52\sqrt{5}\sqrt{2} + 70\sqrt{13} = 0$$

$$(39\sqrt{5}\sqrt{2} + 20\sqrt{13})x - (13\sqrt{5}\sqrt{2} + 30\sqrt{13})y - 52\sqrt{5}\sqrt{2} - 70\sqrt{13} = 0$$

Вопрос	1.	2.	3.	4.	5.	Всего
Баллы	1	1	1	1	1	5
Набрано						