"누구나 쉽게 배우는 딥러닝 스타트_1쇄" 정오표

이 자료는 인피니티북스 "누구나 쉽게 배우는 딥러닝 스타트(2023년 12월 출간)"책 내용에 있는 오류를 정리한 페이지 입니다. 불편을 끼쳐드려 대단히 죄송합니다. 다음 인쇄 때 수정하여 반영하겠습니다.(2025년 8월 4일)

오류: 잘못된 코드 오류, 실행 결과 오류, 잘못된 설명, 잘못된 참조 번호(그림, 코드 등)

오류 페이지: 38 page

오류 위치와 오류 : 페이지 중간(아래 첨자 i를 빼야함)

x에 대해서 미분하여 얻어지는 함수 f'(x)를 f(x)의 도함수라고도 한다. 도함수는 f'(x)로 표기하기도 하지만 $\frac{d}{dx}f(x)$ 또는 $\frac{df(x)}{dx}$ 로 나타내기도 한다.

오류 페이지: 42 page

오류 위치와 오류 : 페이지 아래 수식에서 y에 대한 편미분이므로 dx가 아닌 dy로 표기할 것

반대로 x라는 변수를 상수로 취급하고 y에 대한 편미분을 한다면 다음과 같을 것이다.

$$\frac{\partial f}{\partial \mathcal{E}}(x, y) = x + 2y$$

오류 페이지: 108 page

오류 위치와 오류 : 예측값 수식 \hat{y} 에 아래 첨자 i를 추가

따서 e_i 와 같이 표기한다.

i번째 실제 데이터의 값을 y_i 라고 하고 예측값을 \hat{y}_i 이라고 할 때 오차 e_i 는 다음과 같이 두 값의 차이에 절대값을 취해야 한다.

可证出

$$e_i = |y_i - \hat{y}_i|$$

오류 페이지: 109 page

오류 위치와 오류 : 예측값 수식 \hat{y} 에 아래 첨자 i를 추가

i번째 데이터의 실제값을 y_i 로, 예측값을 \hat{y}_i 으로, 데이터의 개수를 N으로 나타낼 때 평균 절대값 오차(MAE)는 다음과 같은 식으로 일반화할 수 있다.

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

오류 페이지: 111 page

오류 위치와 오류 : 본문 중간의 예측값 수식 \hat{y} 에 아래 첨자 i를 추가, 새 수식 추가

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \frac{1}{N} \sum_{i=1}^{N} e_i^2$$

오류 페이지: 128 page

오류 위치와 오류 : 오차 곡면에 대한 이해를 돕기 위한 수식 추가

$$\nabla E^{2} = \left(\frac{\partial E^{2}}{\partial \omega}, \frac{\partial E^{2}}{\partial b}\right) \qquad E_{1}^{2}(\omega, b) = \left(\omega \chi_{i} + b - y_{i}\right)^{2}$$

$$\frac{\partial E^{2}}{\partial \omega} = \frac{\partial(\omega x + b - y)^{2}}{\partial \omega} = 2(\omega x + b - y)x = 2Ex$$

$$\frac{\partial E^2}{\partial b} = \frac{\partial (\omega x + b - y)^2}{\partial b} = 2(\omega x + b - y) \cdot 1 = 2E$$

오류 페이지: 129 page

오류 위치와 오류 : "오차가"-> "오차를" 오타 수정

습률 값을 0.005로 사용하였으며, 그리스 문자 η (에타)로 표기하였다. n개의 데이터 x_i 에 대한 예측 오차 $\sqrt[4]{2}$ E_i 라고 할 때 다음과 같이 기울기 ω 와 절편 b를 오차를 이용하여 수정할 수 있다.

오류 페이지: 177 page

오류 위치와 오류 : "가중치"-> "편향" 오타 수정

편향

물론 이 수식에 (가중치) 행렬 B까지 추가된다면 다음과 같이 표현할 수 있다.

$$A = XW + B$$

오류 페이지: 196 page

오류 위치와 오류 : 수식 오타

하지만 위의 계산 그래프에 나타난 바와 같이 x에 대한 f의 편미분 $\frac{\partial f}{\partial x}$ 는 직접적으로 구할 수는 없다. 대신 다음과 같은 연쇄 법칙을 사용한다면 이를 구하는 것이 가능하다.

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial z}$$

이를 위하여 q에 대한 f의 변화량 $\frac{\partial f}{\partial q}$ 와 x에 대한 q의 변화량 $\frac{\partial q}{\partial Q}$ 를 구한 다음, 이를 이용하여 x에 대한 f의 변화량을 구할 수 있다.

오류 페이지: 197 page

오류 위치와 오류 :수식 오타

이 결과를 이용하여 위의 식을 풀어보면 다음과 같은 결과를 쉽게 얻을 수 있다.

$$\frac{\partial f}{\partial \mathcal{O}} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = z \cdot 1 = z, \quad \frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y} = z \cdot 1 = z$$

오류 페이지: 201 page

오류 위치와 오류 : 오타

오류 페이지: 220 page

오류 위치와 오류 : 시그모이드 함수에 대한 설명 오류

오류 페이지: 252 page

오류 위치와 오류 : 원-핫 인코딩 설명 오류

원-핫 인코딩은 위에서 다룬 0, 1, 2, 3, 4 또는 '빨강', '파랑', '녹색' 등과 같은 카테고리 값을 이진수의 벡터로 사상시키는 기법이다. 0에서 1 사이의 다섯 카테고리가 있는 레이블을 원-핫 인코딩시켜 보자. 이 방법은 그림과 같이 1이라는 레이블을 나타내기 위해서 10,

오류 페이지: 277 page

오류 위치와 오류 : https:// 오타

https://tensorflow.org/#playground

오류 페이지: 335 page

오류 위치와 오류 : 문맥 오류

앞서 다룬 게임 이용자의 데이터를 살펴보면 게임 이용 시간은 0에서 100 사이의 값들이지만 게임 레벨은 0에서 1000 사이의 값들이다. 이렇게 값의 범위가 크게 다른 특징들을 입력 변수로 사용할경우, 앞 절에서 살펴본 바와 같이 게임 레벨 값에 의해서만 분류가 일어나게 된다. k-평균 알고리즘

오류 페이지: 348 page

오류 위치와 오류: "Trouser"-> "Shirt" 오타 수정

도전 문제 9.6: 테스트용 데이터 시각화

앙 중 <mark>하</mark>

패션 MNIST 데이터 중에서 테스트용 데이터를 시각화하자. 테스트용 데이터 1만 개 중에서 가장 먼저 나타나는 5개의 데이터를 시각화하자. 이때 다음과 같이 이미지의 왼쪽 위에 레이블을 함께 나타내도록 하자.

오류 페이지 : 391 page

오류 위치와 오류: "데이트"-> "데이터" 오타 수정

러

다음으로 훈련 과정에서 본 적이 없는 새로운 데이터인 테스트 데이트를 이용하여 모델의 학습 결과를 테스트하도록 하자. 90% 수준의 정확도를 보이고 있다. 이것은 다층 퍼셉트론을 사용했던 실습에 비해 4% 포인트의 향상을 나타낸다.

오류 페이지: 412 page

오류 위치와 오류: "model"-> "new model" 오타 수정

입력 데이터에 합성곱층을 적용시키자

배치 정규화를 통해서 데이터의 분포를 일정하게 하자

new_model.add(layers.BatchNormalization())

오류 페이지: 415 page

오류 위치와 오류 : 그림의 인덱스 값 오류

