Algorithmen und Datenstrukturen

Reiner Hüchting

19. April 2025

Listen-Datentypen

Suchverfahren

Sortierverfahren

Komplexität

Baumstrukturen

Listen-Datentypen

Abstrakte Listen-Datentypen Konkrete Listen-Datentypen Dynamische Arrays Verkettete Listen

Suchverfahrer

Sortierverfahren

Komplexität

Baumstrukturer

Listen-Datentypen

Abstrakte Listen-Datentypen

Konkrete Listen-Datentypen Dynamische Arrays Verkettete Listen

Suchverfahren

Sortierverfahren

Komplexität

Baumstrukturer

Gemeinsame Eigenschaften von Listen

- Elemente gleichen Typs
- Zugriff auf einzelne Elemente möglich
- Durchlaufen möglich
- Operationen: Hinzufügen und Löschen von Elementen

Gemeinsame Eigenschaften von Listen

- Elemente gleichen Typs
- Zugriff auf einzelne Elemente möglich
- Durchlaufen möglich
- Operationen: Hinzufügen und Löschen von Elementen

Abstrakter Datentyp "Liste"

- Wird durch abstrakte Eigenschaften wie oben definiert.
- Wird nicht durch konkrete Implementierungsdetails definiert.
 - nicht durch die konkrete Anordnung im Speicher
 - nicht durch Performance-Eigenschaften

Abstrakter Datentyp "Liste"

- Elemente gleichen Typs
- Zugriff/Durchlaufen möglich
- Hinzufügen und Löschen von Elementen

Abstrakter Datentyp "Liste"

- Elemente gleichen Typs
- Zugriff/Durchlaufen möglich
- Hinzufügen und Löschen von Elementen

Konkrete Listen-Datentypen

- Arrays
- dynamische Arrays
- verkettete Listen

Listen-Datentypen

Abstrakte Listen-Datentypen

Konkrete Listen-Datentypen

Dynamische Arrays

Verkettete Listen

Suchverfahren

Sortierverfahren

Komplexität

Baumstrukturer

Arrays

- zusammenhängender Bereich im Speicher
- ► Zugriff und Durchlaufen mittels *Pointerarithmetik*

Arrays

- zusammenhängender Bereich im Speicher
- Zugriff und Durchlaufen mittels Pointerarithmetik

Vorteile

- Zugriff/Durchlauf sehr schnell
- wahlfreier Zugriff

Arrays

- zusammenhängender Bereich im Speicher
- Zugriff und Durchlaufen mittels Pointerarithmetik

Vorteile

- Zugriff/Durchlauf sehr schnell
- wahlfreier Zugriff

Nachteile

- keine Größenänderung möglich
- ► Einfügen ggf. aufwendig oder unmöglich
- zusammenhängender Platz nötig

Dynamische Arrays

- verwendet intern Arrays
- wahlfreier Zugriff
- ▶ fügt die Möglichkeit zur Größenänderung hinzu

Dynamische Arrays

- verwendet intern Arrays
- wahlfreier Zugriff
- fügt die Möglichkeit zur Größenänderung hinzu

Vorteile

- Zugriff/Durchlauf sehr schnell
- Größenänderung möglich

Dynamische Arrays

- verwendet intern Arrays
- wahlfreier Zugriff
- fügt die Möglichkeit zur Größenänderung hinzu

Vorteile

- Zugriff/Durchlauf sehr schnell
- Größenänderung möglich

Nachteile

- ► Einfügen ggf. aufwendig
- zusammenhängender Platz nötig

Verkettete Listen

- ► Elemente bestehen aus zwei Teilen:
 - Daten
 - ► Pointer/Referenz auf benachbarte Elemente

Verkettete Listen

- ▶ Elemente bestehen aus zwei Teilen:
 - Daten
 - ► Pointer/Referenz auf benachbarte Elemente

Vorteile

- Größenänderung möglich
- Einfügen bei bekannter Position schnell
- kein zusammenhängender Speicherbereich
 - dadurch bessere Speicher-Ausnutzung

Verkettete Listen

- ► Elemente bestehen aus zwei Teilen:
 - Daten
 - ► Pointer/Referenz auf benachbarte Elemente

Vorteile

- Größenänderung möglich
- Einfügen bei bekannter Position schnell
- kein zusammenhängender Speicherbereich
 - dadurch bessere Speicher-Ausnutzung

Nachteile

- Durchlauf und Zugriff aufwendig
- kein wahlfreier Zugriff

Listen-Datentypen

Abstrakte Listen-Datentypen Konkrete Listen-Datentypen

Dynamische Arrays

Verkettete Listen

Suchverfahren

Sortierverfahren

Komplexität

Baumstrukturen

Attribute eines dynamischen Arrays

- Array für die Daten
- tatsächliche und maximale Länge

Attribute eines dynamischen Arrays

- Array für die Daten
- tatsächliche und maximale Länge

Zentrale Operation: reallocate

- neues Array für die Daten mit neuer Länge erzeugen
- alle Elemente an die neue Stelle kopieren
- maximale Länge aktualisieren

Attribute eines dynamischen Arrays

- Array für die Daten
- tatsächliche und maximale Länge

Zentrale Operation: reallocate

- neues Array für die Daten mit neuer Länge erzeugen
- alle Elemente an die neue Stelle kopieren
- maximale Länge aktualisieren

Anhängen von Elementen

- ▶ Element an erste freie Stelle schreiben und Größe aktualisieren
- ggf. vorher reallocate durchführen

Anhängen von Elementen

- ▶ falls Array voll: reallocate durchführen
- ▶ neues Element an erste freie Stelle schreiben
- Größe aktualisieren

Anhängen von Elementen

- falls Array voll: reallocate durchführen
- ▶ neues Element an erste freie Stelle schreiben
- Größe aktualisieren

Wie viel Speicher sollte bei reallocate reserviert werden?

Anhängen von Elementen

- falls Array voll: reallocate durchführen
- neues Element an erste freie Stelle schreiben
- Größe aktualisieren

Wie viel Speicher sollte bei reallocate reserviert werden?

- Antwort: Z.B. immer verdoppeln.
- Ziel: Der Speicher muss exponentiell wachsen, damit reallocate nicht zu oft notwendig ist.

Listen-Datentypen

Abstrakte Listen-Datentypen Konkrete Listen-Datentypen Dynamische Arrays

Verkettete Listen

Suchverfahren

Sortierverfahren

Komplexität

Baumstrukturer

Attribute eines Listenelements

- Datensatz
- ► Zeiger/Referenzen auf die Nachbarelemente

Attribute eines Listenelements

- Datensatz
- Zeiger/Referenzen auf die Nachbarelemente

Zwei typische Varianten

- einfach verkettete Liste
- doppelt verkettete Liste

Attribute eines Listenelements

- Datensatz
- Zeiger/Referenzen auf die Nachbarelemente

Zwei typische Varianten

- einfach verkettete Liste
- doppelt verkettete Liste

Anhängen von Elementen

- Ende der Liste suchen
- neues Element anhängen

Anhängen von Elementen

- ► Ende der Liste suchen
- neues Element anhängen

Anhängen von Elementen

- Ende der Liste suchen
- neues Element anhängen

Markierung des Listen-Endes: Sentinel-Prinzip

- Verwendung eines Dummy-Elements
- wird nicht für Daten verwendet
- markiert das Ende der Liste

Anhängen von Elementen

- Ende der Liste suchen
- neues Element anhängen

Markierung des Listen-Endes: Sentinel-Prinzip

- Verwendung eines Dummy-Elements
- wird nicht für Daten verwendet
- markiert das Ende der Liste

Vorteil des Dummy-Elements

keine Sonderbehandlung der leeren Liste notwendig

Implementierung der ganzen Liste

- ► Ein Listenelement ist gleichzeitig auch eine Liste.
- Listen haben eine rekursive Struktur!
- Container-Klasse für Liste ist dennoch oft nützlich

Implementierung der ganzen Liste

- Ein Listenelement ist gleichzeitig auch eine Liste.
- Listen haben eine rekursive Struktur!
- Container-Klasse für Liste ist dennoch oft nützlich

Attribute einer verketteten Liste

Zeiger/Referenz auf Anfang der Liste oder Dummy

Implementierung der ganzen Liste

- Ein Listenelement ist gleichzeitig auch eine Liste.
- Listen haben eine rekursive Struktur!
- Container-Klasse für Liste ist dennoch oft nützlich

Attribute einer verketteten Liste

Zeiger/Referenz auf Anfang der Liste oder Dummy

Vorteil der Container-Klasse

- kann Dummy vor Benutzer verstecken
- manche Operationen einfacher umsetzbar

Listen-Datentypen

Suchverfahren Lineare Suche Binäre Suche

Sortierverfahren

Komplexität

Baumstrukturer

Themenüberblick

Listen-Datentypen

Suchverfahren Lineare Suche

Sortierverfahren

Komplexität

Baumstrukturen

Hashverfahren

Suchverfahren – Lineare Suche

Ziel: Finde die Position eines Elements in einer Liste

Naiver Ansatz: Durchsuche die Liste Element für Element von Anfang bis Ende.

Suchverfahren – Lineare Suche

Ziel: Finde die Position eines Elements in einer Liste

Naiver Ansatz: Durchsuche die Liste Element für Element von Anfang bis Ende.

Vorteil

Funktioniert für jede Liste.

Suchverfahren – Lineare Suche

Ziel: Finde die Position eines Elements in einer Liste

Naiver Ansatz: Durchsuche die Liste Element für Element von Anfang bis Ende.

Vorteil

Funktioniert für jede Liste.

Komplexität

- Linear in der Länge der Liste (Schreibe: O(n)).
- ▶ Bei Länge *n* müssen im Worst Case alle *n* Elemente mit dem gesuchten verglichen werden.

Themenüberblick

Listen-Datentypen

Suchverfahren
Lineare Suche
Binäre Suche

Sortierverfahren

Komplexität

Baumstrukturen

Hashverfahren

Suchverfahren – Binäre Suche

Ziel: Finde die Position eines Elements in einer Liste

- Ansatz: Vergleiche das mittlere Element mit dem gesuchten.
- Fahre entweder nur links oder nur rechts der Mitte fort.

Suchverfahren – Binäre Suche

Ziel: Finde die Position eines Elements in einer Liste

- Ansatz: Vergleiche das mittlere Element mit dem gesuchten.
- Fahre entweder nur links oder nur rechts der Mitte fort.

Vor- und Nachteile

- ► Funktioniert nur für sortierte Listen.
- Ist erheblich schneller als die lineare Suche.

Suchverfahren – Binäre Suche

Ziel: Finde die Position eines Elements in einer Liste

- Ansatz: Vergleiche das mittlere Element mit dem gesuchten.
- Fahre entweder nur links oder nur rechts der Mitte fort.

Vor- und Nachteile

- Funktioniert nur für sortierte Listen.
- Ist erheblich schneller als die lineare Suche.

Komplexität

- ▶ Logarithmisch in der Länge der Liste (Schreibe: $O(\log n)$).
- In jedem Schritt wird der Suchraum halbiert ("Divide and Conquer").
- ▶ Bei Länge *n* müssen im Worst Case nur log₂ *n* Elemente mit dem gesuchten verglichen werden.

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Insertion Sort Selection Sort Bubble Sort Quick Sort Merge Sort

Komplexitä

Baumstrukturer

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren Insertion Sort Selection Sort Bubble Sort Quick Sort

Merge Sort

Komplexität

Baumstrukturer

Sortieren durch Einfügen

Ansatz: Nimm das n\u00e4chstbeste Element und f\u00fcge es an der passenden Stelle ein.

Sortieren durch Einfügen

Ansatz: Nimm das n\u00e4chstbeste Element und f\u00fcge es an der passenden Stelle ein.

Vorteil

- schnell f
 ür kurze Listen
- einfach zu verstehen und zu implementieren.
- typischer Aufräum-Ansatz

Sortieren durch Einfügen

Ansatz: Nimm das n\u00e4chstbeste Element und f\u00fcge es an der passenden Stelle ein.

Vorteil

- schnell f
 ür kurze Listen
- einfach zu verstehen und zu implementieren.
- typischer Aufräum-Ansatz

Komplexität

- ▶ Quadratisch in der Länge der Liste (Schreibe: $O(n^2)$).
- ▶ Bei Länge *n* müssen *n* Elemente einsortiert werden.
- Jedes Einsortieren dauert bis zu n Schritte.

Sortieren durch Einfügen

Ansatz: Nimm das n\u00e4chstbeste Element und f\u00fcge es an der passenden Stelle ein.

Sortieren durch Einfügen

Ansatz: Nimm das n\u00e4chstbeste Element und f\u00fcge es an der passenden Stelle ein.

typische Implementierung für das Einsortieren eines Elements

- Füge das nächste Element am Ende der Liste an.
- Tausche es solange nach links, bis es größer als sein linker Nachbar ist.

Sortieren durch Einfügen

Ansatz: Nimm das n\u00e4chstbeste Element und f\u00fcge es an der passenden Stelle ein.

typische Implementierung für das Einsortieren eines Elements

- Füge das nächste Element am Ende der Liste an.
- Tausche es solange nach links, bis es größer als sein linker Nachbar ist.

Beobachtung

- kann sehr effizient in place umgesetzt werden.
- d.h. ohne eine separate Hilfsliste

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Insertion Sort

Selection Sort

Bubble Sort Quick Sort

Merge Sort

Komplexitä¹

Baumstrukturen

Sortieren durch Auswählen

Ansatz: Suche das kleinste Element aus dem noch unsortierten Teil und hänge es ans Ende der sortierten Liste.

Sortieren durch Auswählen

Ansatz: Suche das kleinste Element aus dem noch unsortierten Teil und hänge es ans Ende der sortierten Liste.

Vorteil

- schnell f
 ür kurze Listen
- einfach zu verstehen und zu implementieren.
- typischer Aufräum-Ansatz

Sortieren durch Auswählen

Ansatz: Suche das kleinste Element aus dem noch unsortierten Teil und hänge es ans Ende der sortierten Liste.

Vorteil

- schnell f
 ür kurze Listen
- einfach zu verstehen und zu implementieren.
- typischer Aufräum-Ansatz

Komplexität

- ▶ Quadratisch in der Länge der Liste (Schreibe: $O(n^2)$).
- Bei Länge n müssen n Elemente gesucht werden.
- Jede Suche dauert bis zu n Schritte.

Sortieren durch Auswählen

Ansatz: Suche das kleinste Element aus dem noch unsortierten Teil und hänge es ans Ende der sortierten Liste.

Sortieren durch Auswählen

Ansatz: Suche das kleinste Element aus dem noch unsortierten Teil und hänge es ans Ende der sortierten Liste.

typische Implementierung für das Einsortieren eines Elements

- ▶ Suche das kleinste Element im unsortierten Teil der Liste.
- Vertausche das Element mit dem ersten noch nicht einsortierten.

Sortieren durch Auswählen

Ansatz: Suche das kleinste Element aus dem noch unsortierten Teil und hänge es ans Ende der sortierten Liste.

typische Implementierung für das Einsortieren eines Elements

- ▶ Suche das kleinste Element im unsortierten Teil der Liste.
- Vertausche das Element mit dem ersten noch nicht einsortierten.

Beobachtung

- kann sehr effizient in place umgesetzt werden.
- ▶ d.h. ohne eine separate Hilfsliste

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Insertion Sort Selection Sort

Bubble Sort

Quick Sort

Merge Sort

Komplexität

Baumstrukturer

Sortieren durch Aufsteigen

Ansatz: Tausche nach und nach Elemente nach rechts, wenn sie größer als ihre Nachbarn sind.

Sortieren durch Aufsteigen

Ansatz: Tausche nach und nach Elemente nach rechts, wenn sie größer als ihre Nachbarn sind.

Vorteile

- schnell f
 ür kurze Listen
- sehr intuitiv
- ► Lokales Verhalten: Vergleiche nur benachbarte Elemente.

Sortieren durch Aufsteigen

Ansatz: Tausche nach und nach Elemente nach rechts, wenn sie größer als ihre Nachbarn sind.

Vorteile

- schnell f
 ür kurze Listen
- sehr intuitiv
- Lokales Verhalten: Vergleiche nur benachbarte Elemente.

Komplexität

- ▶ Quadratisch in der Länge der Liste (Schreibe: $O(n^2)$).
- Bei Länge n müssen n Elemente aufsteigen.
- Jeder Durchlauf dauert bis zu n Schritte.

Sortieren durch Aufsteigen

Ansatz: Tausche nach und nach Elemente nach rechts, wenn sie größer als ihre Nachbarn sind.

Sortieren durch Aufsteigen

Ansatz: Tausche nach und nach Elemente nach rechts, wenn sie größer als ihre Nachbarn sind.

Beobachtung

- kann sehr effizient in place umgesetzt werden.
- d.h. ohne eine separate Hilfsliste

Sortieren durch Aufsteigen

Ansatz: Tausche nach und nach Elemente nach rechts, wenn sie größer als ihre Nachbarn sind.

Beobachtung

- kann sehr effizient in place umgesetzt werden.
- ▶ d.h. ohne eine separate Hilfsliste

Analyse

- Große Elemente am Anfang steigen schnell auf.
- Kleine Elemente am Ende sinken nur langsam ab.
- ▶ ⇒ langsam bei (fast) umgekehrt sortierten Listen

Beobachtung bei BubbleSort

► Große Elemente steigen schnell auf, kleine sinken langsam ab.

Beobachtung bei BubbleSort

Große Elemente steigen schnell auf, kleine sinken langsam ab.

Weiterentwicklung: CombSort/GapSort

- Ansatz: Vergleiche und vertausche am Anfang Elemente mit größerem Abstand
- ▶ Komplexität im Best Case: $O(n \log n)$.
- ► Komplexität im Worst Case: $O(n^2)$.

Beobachtung bei BubbleSort

Große Elemente steigen schnell auf, kleine sinken langsam ab.

Weiterentwicklung: CombSort/GapSort

- Ansatz: Vergleiche und vertausche am Anfang Elemente mit größerem Abstand
- ► Komplexität im Best Case: $O(n \log n)$.
- ► Komplexität im Worst Case: $O(n^2)$.

Weiterentwicklung: CocktailSort

- ► Ansatz: Wie bei BubbleSort, aber wechsele die Richtungen ab.
- ▶ Vorteil: Alle Elemente bewegen sich ungefähr gleich schnell.
- ► Komplexität im Best und Worst Case: $O(n^2)$.

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Insertion Sort Selection Sort Bubble Sort

Quick Sort Merge Sort

Baumstrukturer

Sortierverfahren – Quick Sort

Schnelles Divide and Conquer-Verfahren

Ansatz: Sortiere Elemente bzgl eines Referenzelements vor. Sortiere anschließend rekursiv die Teillisten.

Sortierverfahren – Quick Sort

Schnelles Divide and Conquer-Verfahren

Ansatz: Sortiere Elemente bzgl eines Referenzelements vor. Sortiere anschließend rekursiv die Teillisten.

Vorteile

- schnell für lange Listen
- Gilt (mit Modifikationen) als das schnellste verfügbare Sortierverfahren.

Schnelles Divide and Conquer-Verfahren

Ansatz: Sortiere Elemente bzgl eines Referenzelements vor. Sortiere anschließend rekursiv die Teillisten.

Vorteile

- schnell für lange Listen
- Gilt (mit Modifikationen) als das schnellste verfügbare Sortierverfahren.

Komplexität

- ▶ Worst Case: $O(n^2)$.
- Average- und Best-Case: $O(n \log n)$.
- Vorsortieren braucht n Vergleiche.
- Im Idealfall wird mit jedem Schritt die Liste halbiert.

Schnelles Divide and Conquer-Verfahren

Ansatz: Sortiere Elemente bzgl eines Referenzelements vor. Sortiere anschließend rekursiv die Teillisten.

Schnelles Divide and Conquer-Verfahren

Ansatz: Sortiere Elemente bzgl eines Referenzelements vor. Sortiere anschließend rekursiv die Teillisten.

Modifikationen

- Für kurze Listen auf *InsertionSort* ausweichen.
- ▶ Rekursionstiefe begrenzen: Auf MergeSort wechseln, um O(n log n)im Worst-Case zu garantieren.

Schnelles Divide and Conquer-Verfahren

Ansatz: Sortiere Elemente bzgl eines Referenzelements vor. Sortiere anschließend rekursiv die Teillisten.

Modifikationen

- Für kurze Listen auf *InsertionSort* ausweichen.
- Rekursionstiefe begrenzen: Auf MergeSort wechseln, um O(n log n)im Worst-Case zu garantieren.

Beobachtung

- kann sehr effizient in place umgesetzt werden.
- Der Worst-Case ist gerade die umgekehrt sortierte Liste.
- gut parallelisierbar

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Insertion Sort Selection Sort Bubble Sort Quick Sort

Merge Sort

Komplexitä

Baumstrukturer

Schnelles Divide and Conquer-Verfahren

Ansatz: Halbiere die Liste rekursiv, bis nur noch einzelne Elemente übrig sind. Setze dann sortierte Listen zu längeren sortierten Listen zusammen.

Schnelles Divide and Conquer-Verfahren

Ansatz: Halbiere die Liste rekursiv, bis nur noch einzelne Elemente übrig sind. Setze dann sortierte Listen zu längeren sortierten Listen zusammen.

Vorteile

schnell für lange Listen

Schnelles Divide and Conquer-Verfahren

Ansatz: Halbiere die Liste rekursiv, bis nur noch einzelne Elemente übrig sind. Setze dann sortierte Listen zu längeren sortierten Listen zusammen.

Vorteile

schnell für lange Listen

Komplexität

- ▶ Worst Case: $O(n \log n)$.
- Mit jedem Schritt wird die Liste halbiert.
- Zusammensetzen dauert n Schritte.

Schnelles Divide and Conquer-Verfahren

Ansatz: Halbiere die Liste rekursiv, bis nur noch einzelne Elemente übrig sind. Setze dann sortierte Listen zu längeren sortierten Listen zusammen.

Schnelles Divide and Conquer-Verfahren

Ansatz: Halbiere die Liste rekursiv, bis nur noch einzelne Elemente übrig sind. Setze dann sortierte Listen zu längeren sortierten Listen zusammen.

Modifikationen

- TimSort: Identifiziere bereits sortierte Teillisten und spare diese bei der Rekursion aus.
- Standard-Sortierverfahren in Python

Schnelles Divide and Conquer-Verfahren

Ansatz: Halbiere die Liste rekursiv, bis nur noch einzelne Elemente übrig sind. Setze dann sortierte Listen zu längeren sortierten Listen zusammen.

Modifikationen

- TimSort: Identifiziere bereits sortierte Teillisten und spare diese bei der Rekursion aus.
- Standard-Sortierverfahren in Python

Beobachtung

- ▶ i.d.R. nicht in place umgesetzt (braucht Hilfsarrays der Länge n/2)
- gut für verkettete Listen
- gut parallelisierbar

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Komplexität

O-Notation

Optimierung von Algorithmen

Baumstrukturer

Hashverfahren

Themenüberblick

Listen-Datentyper

Suchverfahren

Sortierverfahren

Komplexität

O-Notation

Optimierung von Algorithmer

Baumstrukturer

Hashverfahren

Bisher: Informelle Komplexitätsabschätzungen

- Laufzeitabschätzungen in Abhängigkeit der Größe einer Datenstruktur
 - z.B. Länge einer Liste oder Anzahl der Elemente eines Baumes

Bisher: Informelle Komplexitätsabschätzungen

- Laufzeitabschätzungen in Abhängigkeit der Größe einer Datenstruktur
 - z.B. Länge einer Liste oder Anzahl der Elemente eines Baumes
- ▶ Beobachtung: Laufzeit wird i.d.R. *ungenau* angegeben.
 - z.B. Schleifendurchläufe zählen, aber nicht die Anzahl der Operationen innerhalb der Schleife
 - z.B. geschachtelte Schleifen berücksichtigen, hintereinander ausgeführte Schleifen aber nicht

Bisher: Informelle Komplexitätsabschätzungen

- Laufzeitabschätzungen in Abhängigkeit der Größe einer Datenstruktur
 - z.B. Länge einer Liste oder Anzahl der Elemente eines Baumes
- Beobachtung: Laufzeit wird i.d.R. ungenau angegeben.
 - z.B. Schleifendurchläufe zählen, aber nicht die Anzahl der Operationen innerhalb der Schleife
 - z.B. geschachtelte Schleifen berücksichtigen, hintereinander ausgeführte Schleifen aber nicht

Ziel: Formalisierung dieser Ungenauigkeiten

- ▶ Wie kommen diese Abschätzungen zustande?
- Welche Operationen müssen gezählt werden?

Beispiel: Maximum einer Liste bestimmen

```
func SearchMax(list []int) int {
   max := list[0]
   for _, v := range list {
      if v > max {
        max = v
      }
   }
   return max
}
```

Beispiel: Maximum einer Liste bestimmen

```
func SearchMax(list []int) int {
   max := list[0]
   for _, v := range list {
      if v > max {
        max = v
      }
   }
   return max
}
```

Komplexität

- n Schleifendurchläufe (Vergleiche v > max)
- ► Komplexitätsklasse: *O*(*n*)

Beispiel: Differenz zw. Minimum und Maximum bestimmen

```
func DiffMinMax(list []int) int {
  return SearchMax(list) - SearchMin(list)
}
```

Beispiel: Differenz zw. Minimum und Maximum bestimmen

```
func DiffMinMax(list []int) int {
  return SearchMax(list) - SearchMin(list)
}
```

Komplexität

- ▶ Je ein Durchlauf von searchMax und searchMin
 - ightharpoonup Diese haben jeweils lineare Komplexität (O(n)).
- ► Komplexitätsklasse: *O*(*n*)
 - ▶ Warum nicht O(2n)?

Beispiel: Minimale Differenz von Elementen bestimmen

```
func ClosestPair(list []int) int {
  min := DiffMinMax(list)
  for i, v1 := range list {
    for _, v2 := range list[i+1:] {
      diff := int(math.Abs(float64(v1 - v2)))
      if diff < min {</pre>
        min = diff
 return min
```

Beispiel: Minimale Differenz von Elementen bestimmen

```
func ClosestPair(list []int) int {
  min := DiffMinMax(list)
  for i, v1 := range list {
    for _, v2 := range list[i+1:] {
      diff := int(math.Abs(float64(v1 - v2)))
      if diff < min {</pre>
        min = diff
  return min
```

Komplexität

- ightharpoonup n Durchläufe der äußeren Schleife, $\leq n$ mal innere Schleife
- ► Komplexitätsklasse: $O(n^2)$

Beobachtungen

- ► Komplexitätsklassen geben nur die Größenordnung an.
- Konstante Faktoren und nicht-dominante Terme werden vernachlässigt.

Beobachtungen

- Komplexitätsklassen geben nur die Größenordnung an.
- Konstante Faktoren und nicht-dominante Terme werden vernachlässigt.

Beispiele

$$O(n) = O(2n) = O(\frac{n}{2})$$

$$O(n^2) = O(n^2 + n + 1) = O((\frac{n}{2})^2)$$

$$O(n \log n) = O(2n \log n + 50n)$$

Intuition:

- ▶ Der Unterschied zwischen O(n)und O(2n) kann durch schnellere Hardware ausgeglichen werden.
- ▶ Ebenso der Unterschied zwischen $O(n^2)$ und $O(2(n^2))$.
- ▶ Der Unterschied zwischen O(n)und $O(n^2)$ kann nicht so einfach kompensiert werden.
- Das Verhalten von Polynomen (Funktionen) wird i.W. vom Leitterm bestimmt.

Intuition:

- ▶ Der Unterschied zwischen O(n)und O(2n) kann durch schnellere Hardware ausgeglichen werden.
- ▶ Ebenso der Unterschied zwischen $O(n^2)$ und $O(2(n^2))$.
- ▶ Der Unterschied zwischen O(n)und $O(n^2)$ kann nicht so einfach kompensiert werden.
- Das Verhalten von Polynomen (Funktionen) wird i.W. vom Leitterm bestimmt.

Ziel bei der Entwicklung:

- Komplexitätsklasse möglichst klein halten.
- Komplexität kann nicht durch Hardware ausgeglichen werden!
- Konstante oder lineare Faktoren sind weniger von Bedeutung.

Definition: O-Komplexität

Gegeben eine Funktion f(n), ist f(n) = O(g(n)) genau dann, wenn es eine positive Konstante c gibt, so dass für alle $n \ge n_0$ gilt:

$$f(n) \le c \cdot g(n)$$

Definition: O-Komplexität

Gegeben eine Funktion f(n), ist f(n) = O(g(n)) genau dann, wenn es eine positive Konstante c gibt, so dass für alle $n \ge n_0$ gilt:

$$f(n) \leq c \cdot g(n)$$

Intuitiv:

- ► Falls $f(n) \ge g(n)$ für alle n gilt, dann unterscheiden sich die Funktionen nur durch einen konstanten Faktor.
- Für große n ist g(n) eine gute Abschätzung für f(n).

Definition: O-Komplexität

$$f \in O(g) \Leftrightarrow \exists_{c>0} \exists_{n_0} \forall_{n \geq n_0} : f(n) \leq c \cdot g(n)$$

Intuitiv:

- ▶ Die Funktion f(n) wächst nicht schneller als g(n).
- Für fast alle n gilt $f(n) \le c \cdot g(n)$.

Definition: O-Komplexität

$$f \in O(g) \Leftrightarrow \exists_{c>0} \exists_{n_0} \forall_{n>n_0} : f(n) \leq c \cdot g(n)$$

Intuitiv:

- ▶ Die Funktion f(n) wächst nicht schneller als g(n).
- Für fast alle n gilt $f(n) \le c \cdot g(n)$.

Konstante Faktoren sind nicht relevant:

- Bewegen sich im Bereich der Ungenauigkeit, die durch unterschiedliche Hardware entsteht.
- ▶ Bieten geringes Optimierungspotenzial.
- Können ggf. durch Hardware ausgeglichen werden.

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Komplexität

O-Notation

Optimierung von Algorithmen

Baumstrukturer

Hashverfahren

Ziel: Prüfung, ob zwei Listen die gleichen Elemente haben

- Gegeben: Zwei Listen von Zahlen A und B
- Ergebnis: true, falls jedes Element aus Liste A auch in Liste B vorkommt und umgekehrt.

Ziel: Prüfung, ob zwei Listen die gleichen Elemente haben

- Gegeben: Zwei Listen von Zahlen A und B
- Ergebnis: true, falls jedes Element aus Liste A auch in Liste B vorkommt und umgekehrt.

Naiver Ansatz

- Durchlaufe Liste A.
 - Suche jedes Element in Liste B.
- Wiederhole für Liste B.

Ziel: Prüfung, ob zwei Listen die gleichen Elemente haben

- Gegeben: Zwei Listen von Zahlen A und B
- Ergebnis: true, falls jedes Element aus Liste A auch in Liste B vorkommt und umgekehrt.

Naiver Ansatz

- Durchlaufe Liste A.
 - Suche jedes Element in Liste B.
- Wiederhole für Liste B.

Komplexität

- n Durchläufe der äußeren Schleife
- ▶ pro Durchlauf: ≤ n Durchläufe der inneren Schleife
- ► Komplexitätsklasse: $O(n^2)$

Ziel: Prüfung, ob zwei Listen die gleichen Elemente haben

- Gegeben: Zwei Listen von Zahlen A und B
- Ergebnis: true, falls jedes Element aus Liste A auch in Liste B vorkommt und umgekehrt.

Ziel: Prüfung, ob zwei Listen die gleichen Elemente haben

- Gegeben: Zwei Listen von Zahlen A und B
- Ergebnis: true, falls jedes Element aus Liste A auch in Liste B vorkommt und umgekehrt.

Optimierte Lösung

- Sortiere beide Listen.
- Vergleiche die Listen in einem einzigen Durchlauf.

Ziel: Prüfung, ob zwei Listen die gleichen Elemente haben

- Gegeben: Zwei Listen von Zahlen A und B
- Ergebnis: true, falls jedes Element aus Liste A auch in Liste B vorkommt und umgekehrt.

Optimierte Lösung

- Sortiere beide Listen.
- Vergleiche die Listen in einem einzigen Durchlauf.

Komplexität

- ▶ Sortieren: $O(n \log n)$
- ► Vergleichen: *O*(*n*)
- Gesamt: $O(n \log n) + O(n) = O(n \log n)$

Ziel: Suche nach dem größten Produkt benachbarter Elemente einer Liste

- ► Gegeben: Eine Liste von Zahlen der Länge *n*.
- Ergebnis: Das größte Produkt von *m* benachbarten Elementen.

Ziel: Suche nach dem größten Produkt benachbarter Elemente einer Liste

- ► Gegeben: Eine Liste von Zahlen der Länge *n*.
- Ergebnis: Das größte Produkt von *m* benachbarten Elementen.

Naiver Ansatz

- ▶ Durchlaufe die Liste von Stelle 0 bis n m.
 - ► Von jeder Position aus berechne das Produkt der nächsten *m* Elemente.

Ziel: Suche nach dem größten Produkt benachbarter Elemente einer Liste

- ► Gegeben: Eine Liste von Zahlen der Länge *n*.
- Ergebnis: Das größte Produkt von *m* benachbarten Elementen.

Naiver Ansatz

- ▶ Durchlaufe die Liste von Stelle 0 bis n m.
 - ▶ Von jeder Position aus berechne das Produkt der n\u00e4chsten m Elemente.

Komplexität

- ▶ $n m \le n$ Durchläufe der äußeren Schleife
- pro Durchlauf: m Durchläufe der inneren Schleife
- ► Komplexitätsklasse: $O(n \cdot m)$ (für große m grob $O(n^2)$)

Ziel: Suche nach dem größten Produkt benachbarter Elemente einer Liste

- ► Gegeben: Eine Liste von Zahlen der Länge n.
- Ergebnis: Das größte Produkt von *m* benachbarten Elementen.

Ziel: Suche nach dem größten Produkt benachbarter Elemente einer Liste

- ► Gegeben: Eine Liste von Zahlen der Länge n.
- Ergebnis: Das größte Produkt von *m* benachbarten Elementen.

Optimierter Ansatz

- ▶ Berechne das Produkt der ersten *m* Elemente.
- Durchlaufe die Liste von Stelle m bis n.
 - ▶ Multipliziere das Produkt mit dem Element an Stelle i.
 - ▶ Dividiere das Produkt durch das Element an Stelle i m.

Ziel: Suche nach dem größten Produkt benachbarter Elemente einer Liste

- ► Gegeben: Eine Liste von Zahlen der Länge *n*.
- Ergebnis: Das größte Produkt von *m* benachbarten Elementen.

Optimierter Ansatz

- ▶ Berechne das Produkt der ersten *m* Elemente.
- Durchlaufe die Liste von Stelle m bis n.
 - ▶ Multipliziere das Produkt mit dem Element an Stelle i.
 - ightharpoonup Dividiere das Produkt durch das Element an Stelle i-m.

Komplexität

- \triangleright Berechnung des Anfangsprodukts: O(m)
- ightharpoonup Schleife O(n-m)
- ightharpoonup Gesamt: O(n)

Ziel: Suche nach einem String in einem Text

- Gegeben: Ein Text (String) der Länge n und ein zu suchender String der Länge m.
- Ergebnis: Alle Positionen, an denen der Suchstring vorkommt.

Ziel: Suche nach einem String in einem Text

- Gegeben: Ein Text (String) der Länge n und ein zu suchender String der Länge m.
- Ergebnis: Alle Positionen, an denen der Suchstring vorkommt.

Naiver Ansatz

- Durchlaufe den gesamten Text.
 - An jeder Position vergleiche den dortigen Teilstring mit dem gesuchten String.

Ziel: Suche nach einem String in einem Text

- Gegeben: Ein Text (String) der Länge n und ein zu suchender String der Länge m.
- Ergebnis: Alle Positionen, an denen der Suchstring vorkommt.

Naiver Ansatz

- Durchlaufe den gesamten Text.
 - An jeder Position vergleiche den dortigen Teilstring mit dem gesuchten String.

Komplexität

- n Durchläufe der äußeren Schleife
- pro Durchlauf: *m* Schritte für den Vergleich.
- ► Komplexitätsklasse: $O(n \cdot m)$.

Ziel: Suche nach einem String in einem Text

- Gegeben: Ein Text (String) der Länge n und ein zu suchender String der Länge m.
- Ergebnis: Alle Positionen, an denen der Suchstring vorkommt.

Ziel: Suche nach einem String in einem Text

- Gegeben: Ein Text (String) der Länge n und ein zu suchender String der Länge m.
- Ergebnis: Alle Positionen, an denen der Suchstring vorkommt.

Optimierung

- Durchlaufe den gesamten Text.
 - An jeder Position vergleiche den dortigen Teilstring mit dem gesuchten String.
 - ▶ Bei Nicht-Übereinstimmung berechne, wie weit gesprungen werden kann.

Ziel: Suche nach einem String in einem Text

- Gegeben: Ein Text (String) der Länge n und ein zu suchender String der Länge m.
- ▶ Ergebnis: Alle Positionen, an denen der Suchstring vorkommt.

Ziel: Suche nach einem String in einem Text

- Gegeben: Ein Text (String) der Länge n und ein zu suchender String der Länge m.
- Ergebnis: Alle Positionen, an denen der Suchstring vorkommt.

Optimierung bei häufiger Suche

- Baue einen Suchindex auf:
- Z.B. ein Präfixbaum, der für mögliche Suchbegriffe die Positionen im Text enthält.
- Kann aus einer Datenbank häufiger Anfragen erstellt werden.
- ► Kann nebenbei erstellt und aktualisiert werden.

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Komplexität

Baumstrukturen

Binärbäume

Binäre Suchbäume

AVL-Bäume

Heaps

Präfixbäume

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Komplexität

Baumstrukturen

Binärbäume

Binäre Suchbäume

AVL-Bäume

Heaps

Präfixbäume

Baumstrukturen – Binärbäume

Definition: Binärbaum

Für jeden Binärbaum gilt eine der folgenden Möglichkeiten:

- Der Baum ist leer.
- ▶ Der Baum besteht aus einer Wurzel und zwei Teilbäumen.

Baumstrukturen – Binärbäume

Definition: Binärbaum

Für jeden Binärbaum gilt eine der folgenden Möglichkeiten:

- Der Baum ist leer.
- Der Baum besteht aus einer Wurzel und zwei Teilbäumen.

Bemerkungen

- Rekursive Definition beschreibt direkt die Struktur.
- Verallgemeinerung zu Bäumen möglich.
- Häufig vorkommende Struktur in Mathematik und Informatik.

Baumstrukturen - Binärbäume

Beispiele

- ► Turnierbäume bei Wettbewerben
- Wahrscheinlichkeitsbäume
- Stammbäume
- ► Modellierung von Abhängigkeiten

Baumstrukturen – Binärbäume

Beispiele

- ► Turnierbäume bei Wettbewerben
- Wahrscheinlichkeitsbäume
- Stammbäume
- ► Modellierung von Abhängigkeiten

Anwendung in der Informatik

Strukturierung und Sortierung von Daten

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Komplexität

Baumstrukturen

Binärbäume

Binäre Suchbäume

AVL-Bäume

Heaps

Präfixbäume

Definition: Binärer Suchbaum

Ein binärer Suchbaum ist ein Binärbaum mit folgenden

Eigenschaften:

- ▶ Die Knoten enthalten Schlüssel und Werte (engl. key/value).
- Auf den Schlüsseln ist eine totale Ordnung definiert.

Definition: Binärer Suchbaum

Ein binärer Suchbaum ist ein Binärbaum mit folgenden

Eigenschaften:

- Die Knoten enthalten Schlüssel und Werte (engl. key/value).
- Auf den Schlüsseln ist eine totale Ordnung definiert.
- Für jeden Knoten gilt:
 - Die Schlüssel aller Knoten im linken Teilbaum sind kleiner als der Schlüssel der Wurzel.
 - Die Schlüssel aller Knoten im rechten Teilbaum sind größer als der Schlüssel der Wurzel.
 - (Gleichheit muss ggf. einer der Seiten zugeschlagen werden.)

Definition: Binärer Suchbaum

Ein binärer Suchbaum ist ein Binärbaum mit folgenden Eigenschaften:

- ▶ Die Knoten enthalten Schlüssel und Werte (engl. key/value).
- Auf den Schlüsseln ist eine totale Ordnung definiert.
- Für jeden Knoten gilt:
 - Die Schlüssel aller Knoten im linken Teilbaum sind kleiner als der Schlüssel der Wurzel.
 - Die Schlüssel aller Knoten im rechten Teilbaum sind größer als der Schlüssel der Wurzel.
 - ► (Gleichheit muss ggf. einer der Seiten zugeschlagen werden.)

Ziel: Effiziente Implementierung von Listen und Datenbanken

▶ Idee: Binärer Suche und effiziente Sortierverfahren direkt in einer Datentstruktur verankern.

Auffinden von Elementen mit einem bestimmten Suchschlüssel

- ► Suchschlüssel in Wurzel gefunden, liefere (Wert der) Wurzel.
- ► Suchschlüssel kleiner als Wurzel: Suche im linken Teilbaum.
- Suchschlüssel größer als Wurzel: Suche im rechten Teilbaum.

Auffinden von Elementen mit einem bestimmten Suchschlüssel

- ▶ Baum leer: Nicht gefunden.
- ► Suchschlüssel in Wurzel gefunden, liefere (Wert der) Wurzel.
- ▶ Suchschlüssel kleiner als Wurzel: Suche im linken Teilbaum.
- Suchschlüssel größer als Wurzel: Suche im rechten Teilbaum.

Auffinden von Elementen mit einem bestimmten Suchschlüssel

- ▶ Baum leer: Nicht gefunden.
- Suchschlüssel in Wurzel gefunden, liefere (Wert der) Wurzel.
- ► Suchschlüssel kleiner als Wurzel: Suche im linken Teilbaum.
- ► Suchschlüssel größer als Wurzel: Suche im rechten Teilbaum.

Einfügen von Elementen mit einem bestimmten Suchschlüssel

- Suchschlüssel kleiner Wurzel: Füge in linken Teilbaum ein.
- Suchschlüssel größer Wurzel: Füge in rechten Teilbaum ein.

Auffinden von Elementen mit einem bestimmten Suchschlüssel

- ▶ Baum leer: Nicht gefunden.
- Suchschlüssel in Wurzel gefunden, liefere (Wert der) Wurzel.
- ► Suchschlüssel kleiner als Wurzel: Suche im linken Teilbaum.
- Suchschlüssel größer als Wurzel: Suche im rechten Teilbaum.

Einfügen von Elementen mit einem bestimmten Suchschlüssel

- ▶ Baum leer: Hier einfügen.
- Suchschlüssel kleiner Wurzel: Füge in linken Teilbaum ein.
- Suchschlüssel größer Wurzel: Füge in rechten Teilbaum ein.

Löschen von Elementen mit einem bestimmten Suchschlüssel

- Suche das zu löschende Element.
- ► Falls Blatt: Entfernen.
- Ansonsten: Suche den direkten Nachfolger oder Vorgänger.
- Vertausche Element mit Nachfolger/Vorgänger.
- Entferne Element aus entsprechendem Teilbaum.

Verhalten im Optimalfall

- Linker und rechter Teilbaum in allen Knoten gleich tief.
- Logarithmisches Verhalten beim Suchen, Einfügen und Löschen.

Verhalten im Optimalfall

- Linker und rechter Teilbaum in allen Knoten gleich tief.
- Logarithmisches Verhalten beim Suchen, Einfügen und Löschen.

Verhalten im Worst Case

- ► Eine Seite hat starkes Übergewicht.
- Extremfall: Jeder Knoten hat nur einen Teilbaum.
- Der Baum ist dann de facto eine Liste.

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Komplexität

Baumstrukturen

Binärbäume

Binäre Suchbäume

AVL-Bäume

Heaps

Präfixbäume

Ziel: Optimierung von binären Suchbäumen

- ▶ Problem: Bäume können aus der Balance geraten.
- Lösung: Reorganisieren, wenn das Ungleichgewicht zu groß wird.

Ziel: Optimierung von binären Suchbäumen

- Problem: Bäume können aus der Balance geraten.
- Lösung: Reorganisieren, wenn das Ungleichgewicht zu groß wird.

Vorgehensweise

- Beim Einfügen oder Löschen Struktur des Baumes analysieren.
- Bei Bedarf Knoten umsortieren, damit linker und rechter Teilbaum jedes Knotens ungefähr gleich groß sind.
- ▶ Problem: Analyse darf nicht zu teuer sein.
- ► Frage: Was bedeutet "ungefähr gleich groß" überhaupt?

Definition: Tiefe

Die Tiefe eines Knotens ist die Länge des Pfades von der Wurzel bis zu diesem Knoten.

Definition: Tiefe

Die Tiefe eines Knotens ist die Länge des Pfades von der Wurzel bis zu diesem Knoten.

Bemerkungen

- Berechnung rekursiv:
 - ► Tiefe der Wurzel: 0.
 - ► Tiefe eines Knotens: 1 + Tiefe des Elternknotens
- Kann beim Einfügen/Löschen nebenbei berechnet werden.
- Kann bei Bedarf im Knoten gespeichert und gepflegt werden.

Definition: Höhe

Die Höhe eines Baums ist die Tiefe des tiefsten Knotens im Baum.

Definition: Höhe

Die Höhe eines Baums ist die Tiefe des tiefsten Knotens im Baum.

Bemerkungen

- ► Berechnung rekursiv:
 - ► Höhe eines Blatts Wurzel: 1.
 - ► Höhe eines Knotens: 1 + Höhe des höheren Kindes
- ► Kann beim Einfügen/Löschen nebenbei berechnet werden.
- ► Kann bei Bedarf im Knoten gespeichert und gepflegt werden.

Definition: Balancefaktor

Der Balancefaktor eines Knotens ist die Differenz zwischen der Höhe des rechten und des linken Teilbaums.

Definition: Balancefaktor

Der Balancefaktor eines Knotens ist die Differenz zwischen der Höhe des rechten und des linken Teilbaums.

Bemerkungen

- Kann beim Einfügen/Löschen nebenbei berechnet werden.
- Gutes Maß für die Ausgeglichenheit des Baumes.

Definition: AVL-Baum

Ein AVL-Baum ist ein binärer Suchbaum mit folgender Eigenschaft:

▶ Der Balancefaktor jedes Knotens liegt im Intervall [-1,1].

Definition: AVL-Baum

Ein AVL-Baum ist ein binärer Suchbaum mit folgender Eigenschaft:

▶ Der Balancefaktor jedes Knotens liegt im Intervall [-1,1].

Umsetzung

- ▶ Beim Einfügen/Löschen Balancefaktoren bestimmen.
- Nach Einfügen in Teilbaum: Umorganisieren der Knoten.

Definition: AVL-Baum

Ein AVL-Baum ist ein binärer Suchbaum mit folgender Eigenschaft:

▶ Der Balancefaktor jedes Knotens liegt im Intervall [-1,1].

Umsetzung

- ▶ Beim Einfügen/Löschen Balancefaktoren bestimmen.
- Nach Einfügen in Teilbaum: Umorganisieren der Knoten.
- Nach Einfügen in Teilbaum bedeutet: Nach Rekursion.

Analyse der Balancefaktoren

Nach Einfügen eines Knotens Balancefaktor prüfen.

- ► Falls −2: Linker Teilbaum zu hoch.
- Falls 2: Rechter Teilbaum zu hoch.
- ▶ Prüfe Balancefaktor des linken/rechten Teilbaumes.
- Führe passende *Rotation* durch.

Analyse der Balancefaktoren

Nach Einfügen eines Knotens Balancefaktor prüfen.

- ► Falls —2: Linker Teilbaum zu hoch.
- ► Falls 2: Rechter Teilbaum zu hoch.
- Prüfe Balancefaktor des linken/rechten Teilbaumes.
- Führe passende Rotation durch.

Ungleichgewichts-Situationen und Rotationen

- Links-Links
- Links-Rechts
- ► Rechts-Rechts
- Rechts-Links

Verhalten beim Einfügen/Löschen/Suchen

- Linker und rechter Teilbaum in allen Knoten fast gleich tief.
- Logarithmisches Verhalten beim Suchen, Einfügen und Löschen.

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Komplexität

Baumstrukturen

Binärbäume

Binäre Suchbäume

AVL-Bäume

Heaps

Präfixbäume

Erinnerung: Binäre Suchbäume

- ▶ Idee: Optimales Such- und Einfügeverhalten sortierter Listen.
- ► Komplexität: Logarithmisches Verhalten wie bei binärer Suche.

Erinnerung: Binäre Suchbäume

- ▶ Idee: Optimales Such- und Einfügeverhalten sortierter Listen.
- ► Komplexität: Logarithmisches Verhalten wie bei binärer Suche.

Es geht besser, wenn keine perfekte Sortierung benötigt wird!

Erinnerung: Binäre Suchbäume

- ▶ Idee: Optimales Such- und Einfügeverhalten sortierter Listen.
- ► Komplexität: Logarithmisches Verhalten wie bei binärer Suche.

Es geht besser, wenn keine perfekte Sortierung benötigt wird!

Idee: Fordere nur eine partielle Sortierung

- Knoten müssen größer oder kleiner als ihre Kinder sein.
- ► Keine Relation zwischen den Kindern.
- Beobachtung: Größtes/Kleinstes Element steht an der Wurzel.
- Ermöglicht sehr schnellen Zugriff auf Wurzel.

Definition: Vollständiger Binärbaum

Ein vollständiger Binärbaum ist ein Binärbaum mit folgenden Eigenschaften:

- Jede Ebene ist vollständig besetzt.
- Nur in der untersten Ebene dürfen Elemente fehlen.
- Ebenen werden beim Einfügen von links nach rechts aufgefüllt.

Definition: Vollständiger Binärbaum

Ein vollständiger Binärbaum ist ein Binärbaum mit folgenden Eigenschaften:

- ▶ Jede Ebene ist vollständig besetzt.
- Nur in der untersten Ebene dürfen Elemente fehlen.
- Ebenen werden beim Einfügen von links nach rechts aufgefüllt.

Bemerkungen

- Ein vollständiger Binärbaum hat keine Lücken.
- Kann deshalb effizient als Liste gespeichert werden.
- ► Einfache Berechnung der Indizes:
 - Elternknoten an Stelle n
 - \triangleright Kinder an Stellen 2n+1 und 2n+2

Definition: Min-Heap

Ein Min-Heap ist ein vollst. Binärbaum mit folgender Eigenschaft:

- ► Jeder Knoten ist kleiner als seine Kinder
- ► (Definition *Max-Heap* analog.)

Definition: Min-Heap

Ein Min-Heap ist ein vollst. Binärbaum mit folgender Eigenschaft:

- ▶ Jeder Knoten ist kleiner als seine Kinder
- ► (Definition *Max-Heap* analog.)

Einfügen von Elementen

- ▶ Neues Element am Ende einfügen.
- Aufsteigen lassen, bis es richtig eingeordnet ist.

Definition: Min-Heap

Ein Min-Heap ist ein vollst. Binärbaum mit folgender Eigenschaft:

- Jeder Knoten ist kleiner als seine Kinder
- ▶ (Definition *Max-Heap* analog.)

Einfügen von Elementen

- Neues Element am Ende einfügen.
- Aufsteigen lassen, bis es richtig eingeordnet ist.

Entfernen der Wurzel

- Wurzel durch letztes Element ersetzen (tauschen).
- ▶ Absteigen lassen, bis es richtig eingeordnet ist.

Verhalten beim Einfügen/Löschen von Elementen

- ▶ Zugriff auf Wurzel in konstanter Zeit (O(1)).
- ▶ Einfügen und Löschen in $O(\log n)$.

Verhalten beim Einfügen/Löschen von Elementen

- ightharpoonup Zugriff auf Wurzel in konstanter Zeit (O(1)).
- ▶ Einfügen und Löschen in $O(\log n)$.

Anwendungen

- Priority Queues
- Routingverfahren, z.B. Navigationssysteme, Netzwerke
- Optimierungs- und Planungsprobleme
- effiziente Sortierverfahren (HeapSort)

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Komplexität

Baumstrukturen

Binärbäume Binäre Suchbäume AVL-Bäume Heaps

Heaps

Präfixbäume

Baumstrukturen – Präfixbäume

Präfixbäume: Effiziente Speicherung von Zeichenketten

- Speichere Zeichenketten in einer Baumstruktur ab.
- Annotiere Knoten mit Eigenschaften dieser Zeichenketten.
- Zeichenketten mit gemeinsamem Präfix haben gemeinsame Pfade im Baum.
- ► Vorteile: Kompression und schnelle Suche.

Baumstrukturen – Präfixbäume

Präfixbäume: Effiziente Speicherung von Zeichenketten

- Speichere Zeichenketten in einer Baumstruktur ab.
- Annotiere Knoten mit Eigenschaften dieser Zeichenketten.
- Zeichenketten mit gemeinsamem Präfix haben gemeinsame Pfade im Baum.
- Vorteile: Kompression und schnelle Suche.

Anwendungen

- Metadaten von Textdokumenten
- Aufbau eines Suchindex für Texte
- Aufbau von Wörterbüchern (z.B. für Predictive Text)
- Kompressionsverfahren

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Komplexität

Baumstrukturer

Hashverfahren Hashmaps Hashfunktionen

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Komplexität

Baumstrukturen

Hashverfahren Hashmaps Hashfunktioner

Erinnerung: Binäre Suchbäume

- effiziente Speicherung von Schlüssel-Wert-Paaren
- schnelles Einfügen, Löschen und Suchen (z.B. O(log n) bei AVL-Bäumen)
- Pointerstrukturen mit bekannten Vor- und Nachteilen

Erinnerung: Binäre Suchbäume

- effiziente Speicherung von Schlüssel-Wert-Paaren
- schnelles Einfügen, Löschen und Suchen (z.B. O(log n) bei AVL-Bäumen)
- Pointerstrukturen mit bekannten Vor- und Nachteilen

Erinnerung: Heaps

- vollständige Binärbäume mit Teil-Sortierung der Elemente
- ► Einfügen und Löschen in $O(\log n)$
- ightharpoonup Zugriff auf Wurzel sogar in O(1)
- Speicherung als Array, effizienter als binäre Suchbäume

Neues Ziel: Average-Case-Zugriff auf jeden Schlüssel in O(1)

Neues Ziel: Average-Case-Zugriff auf jeden Schlüssel in O(1)

Neues Ziel: Average-Case-Zugriff auf jeden Schlüssel in O(1)

Wie könnte das gehen?

▶ Warum geht der Zugriff auf die Wurzel bei Heaps schnell?

Neues Ziel: Average-Case-Zugriff auf jeden Schlüssel in O(1)

- Warum geht der Zugriff auf die Wurzel bei Heaps schnell?
 - Position ist bekannt und muss nicht gesucht werden!

Neues Ziel: Average-Case-Zugriff auf jeden Schlüssel in O(1)

- ▶ Warum geht der Zugriff auf die Wurzel bei Heaps schnell?
 - ▶ Position ist bekannt und muss nicht gesucht werden!
- Können wir das für alle Elemente erreichen?

Neues Ziel: Average-Case-Zugriff auf jeden Schlüssel in O(1)

- ▶ Warum geht der Zugriff auf die Wurzel bei Heaps schnell?
 - ▶ Position ist bekannt und muss nicht gesucht werden!
- Können wir das für alle Elemente erreichen?
 - ► Idee: Verwende ein Array und berechne die Position des Elements aus dem Element selbst.

Neues Ziel: Average-Case-Zugriff auf jeden Schlüssel in O(1)

Wie könnte das gehen?

- Warum geht der Zugriff auf die Wurzel bei Heaps schnell?
 - Position ist bekannt und muss nicht gesucht werden!
- Können wir das für alle Elemente erreichen?
 - ► Idee: Verwende ein Array und berechne die Position des Elements aus dem Element selbst.

Welchen Preis müssen wir dafür bezahlen?

Neues Ziel: Average-Case-Zugriff auf jeden Schlüssel in O(1)

Wie könnte das gehen?

- Warum geht der Zugriff auf die Wurzel bei Heaps schnell?
 - ▶ Position ist bekannt und muss nicht gesucht werden!
- Können wir das für alle Elemente erreichen?
 - Idee: Verwende ein Array und berechne die Position des Elements aus dem Element selbst.

Welchen Preis müssen wir dafür bezahlen?

- Erheblich mehr Speicherverbrauch
- schlechtere Worst-Case-Komplexität

Idee zu Hashmaps

- ► Speichere Elemente in einem Array (Hashtabelle).
- ▶ Berechne Position des Schlüssels mittels einer Hashfunktion.

Idee zu Hashmaps

- Speichere Elemente in einem Array (Hashtabelle).
- ▶ Berechne Position des Schlüssels mittels einer Hashfunktion.

Eigenschaften der Hashfunktion

- Eingabe: Das Element bzw. dessen Schlüssel
- Ergebnis: Die Position des Elements im Array oder eine Zahl, aus der diese Position berechnet werden kann.

Idee zu Hashmaps

- ► Speichere Elemente in einer Hashtabelle.
- ▶ Berechne Position des Schlüssels mittels einer Hashfunktion.

Idee zu Hashmaps

- Speichere Elemente in einer Hashtabelle.
- ▶ Berechne Position des Schlüssels mittels einer Hashfunktion.

Eingabe	Ergebnis
ein String	Summe der ASCII-Werte

Idee zu Hashmaps

- Speichere Elemente in einer Hashtabelle.
- ▶ Berechne Position des Schlüssels mittels einer Hashfunktion.

Eingabe	Ergebnis
ein String	Summe der ASCII-Werte
ein String	nach Position gewichtete Summe der ASCII-Werte

Idee zu Hashmaps

- Speichere Elemente in einer Hashtabelle.
- ▶ Berechne Position des Schlüssels mittels einer Hashfunktion.

Eingabe	Ergebnis
ein String	Summe der ASCII-Werte
ein String	nach Position gewichtete Summe der ASCII-Werte
ein Integer	der Wert selbst

Idee zu Hashmaps

- Speichere Elemente in einer Hashtabelle.
- ▶ Berechne Position des Schlüssels mittels einer Hashfunktion.

Eingabe	Ergebnis
ein String	Summe der ASCII-Werte
ein String	nach Position gewichtete Summe der ASCII-Werte
ein Integer	der Wert selbst
ein Integer	(gewichtete) Quersumme

Idee zu Hashmaps

- Speichere Elemente in einer Hashtabelle.
- ▶ Berechne Position des Schlüssels mittels einer Hashfunktion.

Ergebnis
Summe der ASCII-Werte
nach Position gewichtete Summe der ASCII-Werte
der Wert selbst
(gewichtete) Quersumme
Summe der Hashwerte aller Member

Idee zu Hashmaps

- Speichere Elemente in einer Hashtabelle.
- ▶ Berechne Position des Schlüssels mittels einer Hashfunktion.

Idee zu Hashmaps

- Speichere Elemente in einer Hashtabelle.
- ▶ Berechne Position des Schlüssels mittels einer Hashfunktion.

Beobachtungen

Hashfunktion berechnet Zahlen aus beliebigen Elementen.

Idee zu Hashmaps

- Speichere Elemente in einer Hashtabelle.
- ▶ Berechne Position des Schlüssels mittels einer Hashfunktion.

Beobachtungen

- ► Hashfunktion berechnet Zahlen aus beliebigen Elementen.
- Ziel-Position kann z.B. durch Modulo errechnet werden.

Idee zu Hashmaps

- Speichere Elemente in einer Hashtabelle.
- Berechne Position des Schlüssels mittels einer Hashfunktion.

Beobachtungen

- ► Hashfunktion berechnet Zahlen aus beliebigen Elementen.
- Ziel-Position kann z.B. durch Modulo errechnet werden.
- Die Hashfunktion ist i.d.R. nicht injektiv.
- D.h. es sind Kollisionen möglich.

Idee zu Hashmaps

- Speichere Elemente in einer Hashtabelle.
- ▶ Berechne Position des Schlüssels mittels einer Hashfunktion.

Beobachtungen

- Hashfunktion berechnet Zahlen aus beliebigen Elementen.
- ► Ziel-Position kann z.B. durch *Modulo* errechnet werden.
- Die Hashfunktion ist i.d.R. nicht injektiv.
- ▶ D.h. es sind Kollisionen möglich.
- Anforderung: Berechnung muss schnell gehen!

Themenüberblick

Listen-Datentypen

Suchverfahren

Sortierverfahren

Komplexität

Baumstrukturen

Hashverfahren

Hashmaps

Hashfunktionen

Anforderungen an Hashfunktionen

- Hashfunktion berechnet Zahlen aus beliebigen Elementen.
- ► Kollisionen sind nicht zu vermeiden, sollten aber so selten wie möglich auftreten.
- Berechnung des Hashes muss schnell gehen.

Anforderungen an Hashfunktionen

- Hashfunktion berechnet Zahlen aus beliebigen Elementen.
- ► Kollisionen sind nicht zu vermeiden, sollten aber so selten wie möglich auftreten.
- ▶ Berechnung des Hashes muss schnell gehen.

Vermeidung von Kollisionen

- Werte sollten möglichst gleichmäßig verteilt sein.
- Viel mehr Speicher verwenden als benötigt wird, damit die Wahrscheinlichkeit einer Kollisiton gering ist.

Anforderungen an Hashfunktionen

- Hashfunktion berechnet Zahlen aus beliebigen Elementen.
- Kollisionen sind nicht zu vermeiden, sollten aber so selten wie möglich auftreten.
- Berechnung des Hashes muss schnell gehen.

Vermeidung von Kollisionen

- Werte sollten möglichst gleichmäßig verteilt sein.
- Viel mehr Speicher verwenden als benötigt wird, damit die Wahrscheinlichkeit einer Kollisiton gering ist.

Umgang mit Kollisionen

- geschlossenes Hashing: Neue Position berechnen (Sondieren)
- offenes Hashing Mehrere Elemente pro Position erlauben
 - Z.B. als Liste pro Position

geschlossenes Hashing

- Berechne so lange neue Hash-Werte, bis eine freie Stelle in der Hashtabelle gefunden wurde.
- Auch beim Suchen nach Schlüsseln müssen wiederholt Hashes berechnet und die gefundenen Elemente geprüft werden.

geschlossenes Hashing

- Berechne so lange neue Hash-Werte, bis eine freie Stelle in der Hashtabelle gefunden wurde.
- Auch beim Suchen nach Schlüsseln müssen wiederholt Hashes berechnet und die gefundenen Elemente geprüft werden.

Beispiel: Doppel-Hashing

- ▶ Weiche bei Kollisionen auf eine zweite Hashfunktion aus.
- Multipliziere die Hash-Werte mit der Anzahl der Versuche.

geschlossenes Hashing

- Berechne so lange neue Hash-Werte, bis eine freie Stelle in der Hashtabelle gefunden wurde.
- Auch beim Suchen nach Schlüsseln müssen wiederholt Hashes berechnet und die gefundenen Elemente geprüft werden.

Beispiel: Doppel-Hashing

- ▶ Weiche bei Kollisionen auf eine zweite Hashfunktion aus.
- Multipliziere die Hash-Werte mit der Anzahl der Versuche.

Beispiel: Kuckucks-Hashing

- Verwende zwei Hashtabellen mit zwei Hashfunktionen.
- Verdränge bei Kollisionen ggf. das vorgefundene Element
- Füge verdrängte Elemente in die andere Hashtabelle ein.

Zusammenfassung

- Speichere Elemente in einer Hashmap, bei der Positionen berechnet werden.
- ▶ Verwende Hashfunktion mit möglichst wenigen Kollisionen.
- Verwende viel Speicher, um Kollisionen zu vermeiden.
- Bei Kollisionen verwende finde eine neue Position oder speichere Elemente in Listen.

Zusammenfassung

- Speichere Elemente in einer Hashmap, bei der Positionen berechnet werden.
- Verwende Hashfunktion mit möglichst wenigen Kollisionen.
- Verwende viel Speicher, um Kollisionen zu vermeiden.
- Bei Kollisionen verwende finde eine neue Position oder speichere Elemente in Listen.

Eigenschaften von Hashmaps

- Effizienz: Hashfunktion berechnet schnell Positionen.
- Average Case: O(1) für Suchen und Einfügen.
- Worst Case: O(n) für Suchen und Einfügen.
 - geschlossenes Hashing: Ggf. viele Berechnungen notwendig.
 - offenes Hashing: Ggf. lange Listen an wenigen Positionen.