1 Vektoranalízis

A fejezetben érintett témakörök

1.1	Ismétlés	2
1.2	Alapfogalmak	3
1.3	Lineáris leképezések	5
1.4	Differenciáloperátorok	7
1.5	Vonalmenti integrál	11
1.6	Felületmenti integrál	15
1.7	Integrálátalakító tételek	17

1.1. Ismétlés

Definíció 1.1.1 : Vektortér

Legyen V nemüres halmaz, és \circ , + két művelet, \mathbb{T} test. A $(V; +, \circ)$ a \mathbb{T} test feletti vektortér, ha teljesülnek az alábbiak:

- 1. (V; +) Abel-csoport,
- 2. $\forall \lambda; \mu \in T \land \forall x \in V : (\lambda \circ \mu) \circ x = \lambda \circ (\mu \circ x),$
- 3. ha ε a *T*-beli egységelem, akkor $\forall x \in V : \varepsilon \circ x = x$,
- 4. teljesül a disztributivitás:
 - $\forall \lambda; \mu \in T \land \forall x \in V : \lambda \circ (x + y) = \lambda \circ x + \lambda \circ y$,
 - $\forall \lambda; \mu \in T \land \forall x \in V : (\lambda + \mu) \circ x = \lambda \circ x + \mu \circ x$.

Definíció 1.1.2 : Lineáris leképezés

Legyenek V_1 és V_2 ugyanazon $\mathbb T$ test feletti vektorterek. Legyen $\varphi: V_1 \to V_2$ leképezés, melyet lineáris leképezésnek nevezünk, ha tetszőleges két V_1 -beli vektor $(\forall \boldsymbol{a}; \boldsymbol{b} \in V_1)$ és $\mathbb T$ -beli skalár $(\lambda \in \mathbb T)$ esetén teljesülnek az alábbiak:

- $\varphi(\mathbf{a} + \mathbf{b}) = \varphi(\mathbf{a}) + \varphi(\mathbf{b})$ ~ additív (összegre tagonként hat),
- $\varphi(\lambda a) = \lambda \varphi(a)$ ~ homogén (skalár kiemelhető).

Definíció 1.1.3: Homomorfizmus és endomorfizmus

 $\operatorname{Hom}(V_1; V_2) := \{ \varphi : V_1 \to V_2 \mid \varphi \text{ line\'aris } \}$ $\operatorname{End}(V) := \operatorname{Hom}(V; V)$

Lineáris leképezések mátrixreprezentációja

Legyen V_1 és V_2 ugyanazon test feletti vektorterek, $\dim(V_1) = n$ és $\dim(V_2) = k$. Ekkor a $\varphi: V_1 \to V_2$ leképezést reprezentáló mátrix $n \times k$ dimenziós.

 $(\text{Hom}(V_1; V_2); +; \lambda)$ és $(\mathcal{M}_{k \times n}; +; \lambda)$ vektorterek izomorfok egymással.

Definíció 1.1.4 : Skaláris szorzat

Legyen V egy $\mathbb R$ feletti vektortér, és $\langle \; ; \; \rangle : V \times V \to \mathbb R$ függvény, melyet skaláris szorzatnak nevezünk, ha teljesülnek az alábbiak:

- 1. $\langle x; y \rangle = \langle y; x \rangle$ minden $x; y \in V$ esetén, (szimmetrikus)
- 2. $\langle \lambda x; y \rangle = \lambda \langle x; y \rangle$ minden $x; y \in V$ és $\lambda \in \mathbb{R}$ esetén, (homogén)
- 3. $\langle x_1 + x_2; y \rangle = \langle x_1; y \rangle + \langle x_2; y \rangle$ minden $x_1; x_2; y \in V$ esetén, (additív)
- 4. $\langle x; x \rangle \ge 0$, egyenlőség akkor és csak akkor, ha x = 0. (nemnegatív)

A skaláris szorzás szimm. billineáris forma, amely az Euklideszi térben értelmezve van.

1.2. Alapfogalmak

Definíció 1.2.1: Konvektor

Legyen V egy $\mathbb R$ feletti vektortér. $V^*:=\operatorname{Hom}(V;\mathbb R)$ elemeit $(\alpha:V\to\mathbb R)$ lineáris funkcionáloknak, lineáris formáknak, vagy 1-formáknak nevezzük. Mivel α lineáris leképezés, ezért

$$\alpha(a\mathbf{v} + b\mathbf{w}) = a \alpha(\mathbf{v}) + b \alpha(\mathbf{w})$$
 teljesül.

Definíció 1.2.2 : Duális tér

Legyen $\alpha; \beta \in V^*, v \in V, a \in \mathbb{R}$. A fenti módon teljesülnek az alábbiak:

- $(\alpha + \beta)(\mathbf{v}) := \alpha(\mathbf{v}) + \beta(\mathbf{v}),$
- $(a \alpha)(\mathbf{v}) := a \alpha(\mathbf{v})$.

Ekkor V^* vektortérré tehető, V vektortér duális terének nevezzük.

Bázis jelölése

- $\{\hat{\boldsymbol{e}}_1; \hat{\boldsymbol{e}}_2; \dots; \hat{\boldsymbol{e}}_n\}$ ortonormált / standard bázis
- $\{\boldsymbol{b}_1; \boldsymbol{b}_2; \dots \boldsymbol{b}_n\}$ tetszőleges bázis

Einstein-féle konvenció

!∃ $(r^1; r^2; ...; r^n)$, melyre teljesül, hogy

$$\mathbf{v} = r^1 \mathbf{b}_1 + r^2 \mathbf{b}_2 + \dots + r^n \mathbf{b}_n = \sum_{j=1}^n r^j \mathbf{b}_j = r^j \mathbf{b}_j$$

Vezessük be a következő 1-formát: $\omega^i:V\to\mathbb{R},\ \forall\, \boldsymbol{v}\in V:\omega^i(\boldsymbol{v})=r^i$ Ekkor \boldsymbol{v} felírható az alábbi alakban:

$$\boldsymbol{v} = \underbrace{\omega^{1}(\boldsymbol{v})}_{r^{1}} \boldsymbol{b}_{1} + \underbrace{\omega^{2}(\boldsymbol{v})}_{r^{2}} \boldsymbol{b}_{2} + \dots + \underbrace{\omega^{n}(\boldsymbol{v})}_{r^{n}} \boldsymbol{b}_{2}$$

A fent definiált $\omega^i:V\to\mathbb{R}$ 1-formák (
 $i\in 1;\;2;\;\ldots;\;n)$ bázist alkotnak $V^*\text{-ban}.$

Bizonyítás (Egzisztencia):

Legyen $\alpha: V \to \mathbb{R}$ 1-forma:

$$\begin{split} \alpha\left(\omega^1(\boldsymbol{v})\,\boldsymbol{b}_1 + \cdots + \omega^n(\boldsymbol{v})\,\boldsymbol{b}_n\right) &= \omega^1(\boldsymbol{v})\,\alpha(\boldsymbol{b}_1) + \cdots + \omega^n(\boldsymbol{v})\,\alpha(\boldsymbol{b}_n) \\ \alpha(\boldsymbol{v}) &= \sum_{j=1}^n \omega^j(\boldsymbol{v})\,\alpha(\boldsymbol{b}_j) \\ \alpha &= \underbrace{\alpha(\boldsymbol{b}_1)}_{r_1}\,\omega^1 + \cdots + \underbrace{\alpha(\boldsymbol{b}_n)}_{r_n}\,\omega^n = \sum_{j=1}^n r_j\,\omega^j \end{split}$$

 r_i nem speciális, tetszőleges 1-forma felírható így.

Bizonyítás (Unicitás):

Tegyük fel, hogy:

$$\alpha = r_1 \omega^1 + r_2 \omega^2 + \dots + r_n \omega^n,$$

$$\alpha = s_1 \omega^1 + s_2 \omega^2 + \dots + s_n \omega^n.$$

Vonjuk ki egymásból a 2 egyenletet:

$$\mathcal{O} = (r_1 - s_1)\omega^1 + (r_2 - s_2)\omega^2 + \dots + (r_n - s_n)\omega^n$$

Ekkor \mathcal{O} egy 1-forma, melynek bármely vektort a nullvektorba visz, azaz

$$\mathcal{O}: V \to \mathbb{R} \quad \mathcal{O}(\boldsymbol{v}) = 0 \quad \forall \boldsymbol{v} \in V \qquad \Leftrightarrow \qquad r_i = s_i \quad \forall i\text{-re.}$$

Ezzel ellentmondásra jutottunk, tehát nem igaz a feltevés.

Kovariáns és kontravariáns koordináták

Kovariáns koordináták

Kontravariáns koordináták

 $\boldsymbol{v} = r^1 \boldsymbol{b}_1 + r^2 \boldsymbol{b}_2$, ahol $(r^1; r^2)$ a \boldsymbol{v} vektor kontravariáns koordinátái a $\{\boldsymbol{b}_1; \boldsymbol{b}_2\}$ bázisban. r_1 és r_2 pedig \boldsymbol{v} kovariáns koordinátái, melyek a következőképpen számíthatóak:

$$r_i = \frac{\langle \boldsymbol{v}; \boldsymbol{b}_i \rangle}{\|\boldsymbol{b}_i\|} \cdot \frac{\boldsymbol{b}_i}{\|\boldsymbol{b}_i\|} = \underbrace{\frac{\langle \boldsymbol{v}; \boldsymbol{b}_i \rangle}{\langle \boldsymbol{b}_i; \boldsymbol{b}_i \rangle}}_{r_i} \cdot \boldsymbol{b}_i$$

Kovariáns és kontravariáns koordináták ortonormált $\{\hat{\pmb{e}}_1;\hat{\pmb{e}}_2;\dots;\hat{\pmb{e}}_n\}$ bázisban megegyeznek.

Bizonyítás:

1.3. Lineáris leképezések

Definíció 1.3.1 : Lineáris leképezés adjungáltja

Legyen $(V; \langle ; \rangle)$ Euklideszi tér, $\varphi: V \to V$ lineáris leképezés. A $\varphi^*: V \to V$ lineáris leképezés a φ leképezés adjungáltjának hívjuk, ha $\forall \mathbf{v}_1; \mathbf{v}_2 \in V$ -re:

$$\langle \varphi(\boldsymbol{v}_1); \boldsymbol{v}_2 \rangle = \langle \boldsymbol{v}_1; \varphi^*(\boldsymbol{v}_2) \rangle$$

 $(\varphi^*)^* = \varphi$ – Idempotencia

Bizonyítás:

$$\left\langle \left(\varphi^{*}\right)^{*}(\boldsymbol{v}_{1});\boldsymbol{v}_{2}\right\rangle =\left\langle \boldsymbol{v}_{1};\varphi^{*}(\boldsymbol{v}_{2})\right\rangle =\left\langle \varphi(\boldsymbol{v}_{1});\boldsymbol{v}_{2}\right\rangle .$$

φ^* mátrix reprezentációja

Reprezentálja φ -t **A**, φ *-ot pedig **A***:

$$\langle \varphi(\boldsymbol{v}); \boldsymbol{w} \rangle = \langle \boldsymbol{v}; \varphi^*(\boldsymbol{w}) \rangle$$

$$\boldsymbol{A}\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{v} \cdot \boldsymbol{A}^* \boldsymbol{w}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \cdot \begin{bmatrix} a_{11}^* & a_{12}^* \\ a_{21}^* & a_{22}^* \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

$$\underline{a_{11}} v_1 w_1 + \underline{a_{12}} v_2 w_1 + \underline{a_{21}} v_1 w_2 + \underline{a_{22}} v_2 w_2 = \underline{a_{11}}^* w_1 v_1 + \underline{a_{12}}^* w_2 v_2 + \underline{a_{21}}^* w_1 v_2 + \underline{a_{22}}^* w_2 v_2$$

Megállapthatjuk, hogy $\mathbf{A}^* = \mathbf{A}^T$.

Szimmetrikus leképezés adjungáltja önmaga.

Leképezés felbontása

Legyen $\varphi \in \operatorname{End}(V)$, ekkor ! \exists olyan \mathcal{A} és \mathcal{S} antiszimmetrikus és szimmetrikus leképezés, ahol $\varphi = \mathcal{A} + \mathcal{S}$, melyek az endomorfizmusok vektorterét 2 diszjunkt halmazra bontják:

$$\mathcal{A} := \frac{\varphi - \varphi^*}{2}$$
 és $\mathcal{S} := \frac{\varphi + \varphi^*}{2}$.

Bizonyítás (Unicitás):

Tegyük fel hogy φ előáll $A_1 + S_1$ és $A_2 + S_2$ összegeként is. Vonjuk ki egymásból a két egyenletet, majd vegyük mindkét oldal adjungáltját!

$$\mathcal{O} = \varphi - \varphi = (\mathcal{A}_1 - \mathcal{A}_2) + (\mathcal{S}_1 - \mathcal{S}_2) = \overline{\mathcal{A}} + \overline{\mathcal{S}}$$

$$\mathcal{O}^* = \mathcal{O} = \overline{\mathcal{A}}^* + \overline{\mathcal{S}}^* = -\overline{\mathcal{A}} + \overline{\mathcal{S}}$$

Az előző két egyenletből következik, hogy $\mathcal{O}=\overline{\mathcal{A}}=\overline{\mathcal{S}}$. Feltevésünk hamisnak bizonyult.

Reguláris mátrix felbontása

Egy $\mathbf{M} \in \mathcal{M}_{n \times n}$ mátrix felbontható szimmetrikus és ferdeszimmetrikus (antiszimmetrikus) részekre:

$$\mathbf{S} = \frac{\mathbf{M} + \mathbf{M}^\mathsf{T}}{2} \qquad \text{\'es} \qquad \mathbf{A} = \frac{\mathbf{M} - \mathbf{M}^\mathsf{T}}{2}.$$

Ha mátrixunk 3×3 -as:

$$\mathbf{M} = \mathbf{S} + \mathbf{A} = \underbrace{\begin{bmatrix} a & d & e \\ d & b & f \\ e & f & c \end{bmatrix}}_{\text{szimmetrikus}} + \underbrace{\begin{bmatrix} 0 & x & y \\ -x & 0 & z \\ -y & -z & 0 \end{bmatrix}}_{\text{ferdeszimmetrikus}}.$$

Általános esetben:

$$\dim \mathbf{A} = \frac{n(n+1)}{2}, \qquad \dim \mathbf{S} = \frac{n(n-1)}{2}.$$

Az antiszimmetrikus leképezések és a V-beli vektorok között tudunk egy-egyértelmű hozzárendelést találni:

$$\mathbf{A} \in \mathcal{A} \leftrightarrow \mathbf{v} \in V$$

Keressünk egy olyan **v** vektort, melyre teljesül az alábbi egyenlet:

$$\mathbf{A}\mathbf{w} = \mathbf{v} \times \mathbf{w}$$

$$\begin{bmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \times \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$$

$$\begin{bmatrix} +a_{12} w_2 + a_{13} w_3 \\ -a_{12} w_1 + a_{23} w_3 \\ -a_{13} w_1 - a_{23} w_2 \end{bmatrix} = \begin{bmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ \hline v_1 w_2 - v_2 w_1 \end{bmatrix} \Rightarrow \mathbf{v} = \begin{bmatrix} -a_{23} \\ a_{13} \\ -a_{12} \end{bmatrix}$$

Definíció 1.3.2 : Vektorinvariáns

Egy antiszimmetrikus lineáris transzformáció mindig leírható egy rögzített vektorral való keresztszorzással. Ez a vektor a leképezés vektorinvariánsa.

Csak ortonormált, Descartes-féle bázisban számítható az előbbi módszerrel egy leképezés vektorinvariánsa.

Definíció 1.3.3 : Lineáris transzformáció nyoma

Egy lineáris transzformáció főátlójában lévő elemek összege minden koordinátarendszerben ugyanannyi, tehát a koordináta-transzformáció nem befolyásolja. Ezt nevezzük a lineáris leképezés nyomának. (trace / spur)

1.4. Differenciáloperátorok

Legyen $f: V \to V$ függvény (dim V = n), melynek vegyük a deriváltját:

$$\boldsymbol{f}\left(x_{1}; x_{2}; \dots; x_{n}\right) = \begin{bmatrix} f_{1}\left(x_{1}; x_{2}; \dots; x_{n}\right) \\ f_{2}\left(x_{1}; x_{2}; \dots; x_{n}\right) \\ \vdots \\ f_{n}\left(x_{1}; x_{2}; \dots; x_{n}\right) \end{bmatrix},$$

$$\mathbf{D}f = \begin{bmatrix} \partial_{1}f_{1} & \partial_{2}f_{1} & \dots & \partial_{n}f_{1} \\ \partial_{1}f_{2} & \partial_{2}f_{2} & \dots & \partial_{n}f_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{1}f_{n} & \partial_{2}f_{n} & \dots & \partial_{n}f_{n} \end{bmatrix} = \begin{bmatrix} \operatorname{grad}^{\top} f_{1} \\ \operatorname{grad}^{\top} f_{2} \\ \vdots \\ \operatorname{grad}^{\top} f_{n} \end{bmatrix} \in \mathcal{M}_{n \times n}$$

Definiáljuk az alábbi fogalmakat:

• rot
$$\mathbf{f} := \mathbf{D}f - \mathbf{D}f^*$$
 – rotáció,

• div $\mathbf{f} := \operatorname{tr}(\mathbf{D}f)$ – divergencia.

 $V = \mathbb{R}^3$ esetén:

$$\operatorname{rot} \boldsymbol{f} = \begin{bmatrix} 0 & \partial_2 f_1 - \partial_1 f_2 & \partial_3 f_1 - \partial_1 f_3 \\ \partial_1 f_2 - \partial_2 f_1 & 0 & \partial_3 f_2 - \partial_2 f_3 \\ \partial_1 f_3 - \partial_3 f_1 & \partial_2 f_3 - \partial_3 f_2 & 0 \end{bmatrix}.$$

A mátrix vektorinvariánsa:

$$\boldsymbol{v} = \begin{bmatrix} \partial_2 f_3 - \partial_3 f_2 \\ \partial_3 f_1 - \partial_1 f_3 \\ \partial_1 f_2 - \partial_2 f_1 \end{bmatrix} = \begin{bmatrix} \partial_1 \\ \partial_2 \\ \partial_3 \end{bmatrix} \times \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} = \nabla \times f.$$

 ∇ - Nabla operátor (formális differenciáloperátor) – nem vektor, de aként viselkedik.

Gradiens, divergencia és rotáció számítása

grad
$$\varphi = \nabla \varphi$$

div $\mathbf{v} = \langle \nabla; \mathbf{v} \rangle$
rot $\mathbf{v} = \nabla \times \mathbf{v}$

Differenciáloperátorok kompbinálása

Nem értelmezhető:

grad grad, grad rot, div div, rot div.

Laplace-operátor:

$$\operatorname{div}\operatorname{grad}\varphi=\nabla^2\varphi=\Delta\varphi$$

Tetszőleges ${\it v}$ vektormező és φ skalármező esetén:

$$\operatorname{div}\operatorname{rot}\boldsymbol{v}\equiv0,$$

rot grad $\varphi \equiv \mathbf{0}$.

Definíció 1.4.1 : Skalárpotenciálosság

Egy ${\pmb v}:V\to V$ vektormező skalárpotenciálos, ha létezik olyan $\varphi:V\to\mathbb{R}$ skalármező, hogy ${\pmb v}=\operatorname{grad}\varphi.$

Definíció 1.4.2 : Vektorpotenciálosság

Egy ${m v}:V\to V$ vektormező vektorpotenciálos, ha létezik olyan ${m u}:V\to V$ vektormező, hogy ${m v}={\rm rot}\,{m u}.$

Tétel 1.4.1

Legyen $\boldsymbol{v}:V\to V$ mindenhol értelmezett, legalább egyszer differenciálható vektormező. Ekkor:

- v skalárpotenciálos \Leftrightarrow rot v = 0, hiszen rot grad $\varphi \equiv 0$,
- \boldsymbol{v} vektorpotenciálos \Leftrightarrow div $\boldsymbol{v} = 0$, hiszen div rot $\boldsymbol{u} \equiv 0$.

Bizonyítás (⇒ könnyű, ← nehéz):

Ha \boldsymbol{v} skalárpotenciálos $\Rightarrow \exists \varphi : V \to \mathbb{R}$, hogy $\boldsymbol{v} = \operatorname{grad} \varphi$, ekkor rot $\boldsymbol{v} = \operatorname{rot} \operatorname{grad} \varphi \equiv \boldsymbol{0}$ Ha \boldsymbol{v} vektorpotenciálos $\Rightarrow \exists \boldsymbol{u} : V \to V$, hogy $\boldsymbol{v} = \operatorname{rot} \boldsymbol{u}$, ekkor div $\boldsymbol{v} = \operatorname{div} \operatorname{rot} \boldsymbol{u} \equiv 0$

 $!\Phi;\Psi:\mathbb{R}^3\to\mathbb{R}$ skalármezők, $\boldsymbol{u};\boldsymbol{v};\boldsymbol{w}:\mathbb{R}^3\to\mathbb{R}^3$ vektormezők, $\lambda;\mu\in\mathbb{R}$ pedig skalárok.

• Teljesül a linearitás:

grad(
$$\lambda \Phi + \mu \Psi$$
) = λ grad $\Phi + \mu$ grad Ψ
rot($\lambda \mathbf{v} + \mu \mathbf{w}$) = λ rot $\mathbf{v} + \mu$ rot \mathbf{w}
div($\lambda \mathbf{v} + \mu \mathbf{w}$) = λ div $\mathbf{v} + \mu$ div \mathbf{w}

Zérusság:

$$\operatorname{rot} \operatorname{grad} \Phi \equiv \mathbf{0}$$
$$\operatorname{div} \operatorname{rot} \mathbf{v} \equiv 0$$

• Deriválási szabályokhoz hasonló:

$$\operatorname{grad}(\Phi \Psi) = \Phi \operatorname{grad} \Psi + \Psi \operatorname{grad} \Phi$$
$$\operatorname{div}(\Phi \boldsymbol{v}) = \Phi \operatorname{div} \boldsymbol{v} + \langle \boldsymbol{v}; \operatorname{grad} \Phi \rangle$$
$$\operatorname{rot}(\Phi \boldsymbol{v}) = \Phi \operatorname{rot} \boldsymbol{v} - \boldsymbol{v} \times \operatorname{grad} \Phi$$

· Egyéb szabályok:

$$\operatorname{rot}\operatorname{rot} \boldsymbol{v} = \operatorname{grad}\operatorname{div}\boldsymbol{v} - \Delta\boldsymbol{v}$$

$$\operatorname{rot}(\boldsymbol{u} \times \boldsymbol{v}) = \boldsymbol{u} \operatorname{div}\boldsymbol{v} - \boldsymbol{v} \operatorname{div}\boldsymbol{u} + (\mathbf{D}\boldsymbol{u})\boldsymbol{v} - (\mathbf{D}\boldsymbol{v})\boldsymbol{u}$$

$$\operatorname{div}(\boldsymbol{u} \times \boldsymbol{v}) = \langle \boldsymbol{v}; \operatorname{rot}\boldsymbol{u} \rangle - \langle \boldsymbol{u}; \operatorname{rot}\boldsymbol{v} \rangle$$

$$\operatorname{grad}(\langle \boldsymbol{u}; \boldsymbol{v} \rangle) = (\mathbf{D}\boldsymbol{u})\boldsymbol{v} + (\mathbf{D}\boldsymbol{v})\boldsymbol{u} + \boldsymbol{v} \times \operatorname{rot}\boldsymbol{u} + \boldsymbol{u} \times \operatorname{rot}\boldsymbol{v}$$

3-dimenziós Levi-Civita-szimbólum

$$\varepsilon_{ijk} = \begin{cases} +1 & \text{ha } (i;j;k) \text{ az } (1;2;3) \text{ páros permutációja} \\ -1 & \text{ha } (i;j;k) \text{ az } (1;2;3) \text{ páratlan permutációja} \\ 0 & \text{ha } i=j, \text{vagy } j=k, \text{vagy } k=i \end{cases}$$

Vektoriális szorzat esetében

$$(\boldsymbol{v})_i = (\boldsymbol{x} \times \boldsymbol{y})_i = \sum_{j=1}^3 \sum_{k=1}^3 \varepsilon_{ijk} x_j y_k = \begin{bmatrix} \varepsilon_{123} x_2 y_3 + \varepsilon_{132} x_3 y_2 \\ \varepsilon_{231} x_3 y_1 + \varepsilon_{213} x_1 y_3 \\ \varepsilon_{312} x_1 y_2 + \varepsilon_{321} x_2 y_1 \end{bmatrix} = \begin{bmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{bmatrix}.$$

Minden koordinátában hat tag szerepelne, viszont:

1.
$$\varepsilon_{223} = \varepsilon_{232} = \varepsilon_{323} = \varepsilon_{332} = 0$$
,

2.
$$\varepsilon_{113} = \varepsilon_{131} = \varepsilon_{311} = \varepsilon_{311} = 0$$
,

3.
$$\varepsilon_{112} = \varepsilon_{121} = \varepsilon_{211} = \varepsilon_{221} = 0$$
.

A nemzérus tagok pedig:

1.
$$\varepsilon_{123} = +1$$
, $\varepsilon_{132} = -1$,

2.
$$\varepsilon_{231} = +1$$
, $\varepsilon_{213} = -1$,

3.
$$\varepsilon_{312} = +1$$
, $\varepsilon_{321} = -1$.

Linearitásos azonosságok bizonyítása

1.
$$\operatorname{grad}(\lambda \Phi + \mu \Psi) = \lambda \operatorname{grad} \Phi + \mu \operatorname{grad} \Psi$$

$$\left(\operatorname{grad}(\lambda \varPhi + \mu \varPsi)\right)_i = \partial_i(\lambda \varPhi + \mu \varPsi) = \lambda \, \partial_i \varPhi + \mu \, \partial_i \varPsi = \left(\lambda \operatorname{grad} \varPhi + \mu \operatorname{grad} \varPsi\right)_i.$$

2.
$$\operatorname{rot}(\lambda \boldsymbol{v} + \mu \boldsymbol{w}) = \lambda \operatorname{rot} \boldsymbol{v} + \mu \operatorname{rot} \boldsymbol{w}$$

$$(\operatorname{rot}(\lambda \boldsymbol{v} + \mu \boldsymbol{w}))_{i} = \varepsilon_{ijk} \partial_{j} (\lambda v_{k} + \mu w_{k}) = \lambda \varepsilon_{ijk} \partial_{j} v_{k} + \mu \varepsilon_{ijk} \partial_{j} w_{k} = (\lambda \operatorname{rot} \boldsymbol{v} + \mu \operatorname{rot} \boldsymbol{w})_{i}.$$

3.
$$\operatorname{div}(\lambda \boldsymbol{v} + \mu \boldsymbol{w}) = \lambda \operatorname{div} \boldsymbol{v} + \mu \operatorname{div} \boldsymbol{w}$$

$$\left(\operatorname{div}(\lambda \boldsymbol{v} + \mu \boldsymbol{w})\right)_{i} = \partial_{i}(\lambda v_{i} + \mu w_{i}) = \lambda \,\partial_{i}v_{i} + \mu \,\partial_{i}w_{i} = \left(\lambda \operatorname{div} \boldsymbol{v} + \mu \operatorname{div} \boldsymbol{w}\right)_{i}.$$

Zérusságos azonosságok bizonyítása

1. rot grad
$$\Phi \equiv \mathbf{0}$$

$$(\operatorname{rot}\operatorname{grad}\Phi)_{i} = \varepsilon_{ijk}\partial_{j}\partial_{k}\Phi = -\varepsilon_{ijk}\partial_{k}\partial_{j}\Phi = 0,$$

mert $\partial_j\partial_k$ szimmetrikus, ε_{ijk} pedig antiszimmetrikus $j,\!k$ indexekre.

2. $\underline{\text{div rot } \boldsymbol{v} \equiv 0}$

$$(\operatorname{div}\operatorname{rot}\boldsymbol{v})_{i} = \partial_{i}\varepsilon_{ijk}\partial_{j}\upsilon_{k} = \varepsilon_{ijk}\partial_{i}\partial_{j}\upsilon_{k} = -\varepsilon_{ijk}\partial_{j}\partial_{i}\upsilon_{k} = 0,$$

mert $\partial_i\partial_j$ szimmetrikus, ε_{ijk} pedig antiszimmetrikus i,jindexekre.

Deriválási szabályokhoz hasonló azonosságok bizonyítása

1. $\operatorname{grad}(\Phi \Psi) = \Phi \operatorname{grad} \Psi + \Psi \operatorname{grad} \Phi$

$$\big(\mathrm{grad}(\varPhi\Psi)\big)_i = \partial_i(\varPhi\Psi) = \varPhi \, \partial_i\Psi + \Psi \, \partial_i\Phi = \big(\varPhi \, \mathrm{grad} \, \Psi + \Psi \, \mathrm{grad} \, \varPhi\big)_i.$$

2. $\operatorname{div}(\Phi \mathbf{v}) = \Phi \operatorname{div} \mathbf{v} + \langle \mathbf{v}; \operatorname{grad} \Phi \rangle$

$$\left(\mathrm{div}(\varPhi \boldsymbol{v})\right)_i = \partial_i(\varPhi v_i) = \varPhi \, \partial_i v_i + \langle \boldsymbol{v}; \partial_i \operatorname{grad} \varPhi \rangle = \left(\varPhi \operatorname{div} \boldsymbol{v} + \langle \boldsymbol{v}; \operatorname{grad} \varPhi \rangle\right)_i.$$

3. $rot(\Phi \mathbf{v}) = \Phi rot \mathbf{v} - \mathbf{v} \times \operatorname{grad} \Phi$

$$\begin{split} \left(\mathrm{rot}(\varPhi \boldsymbol{v}) \right)_i &= \varepsilon_{ijk} \partial_j (\varPhi \upsilon_k) \\ &= \varepsilon_{ijk} (\varPhi \, \partial_j \upsilon_k + \upsilon_k \, \partial_j \varPhi) \\ &= \varPhi \, \varepsilon_{ijk} \partial_j \upsilon_k + \varepsilon_{ijk} \upsilon_k \, \partial_j \varPhi \\ &= \varPhi \, \varepsilon_{ijk} \partial_j \upsilon_k - \varepsilon_{ijk} \upsilon_j \, \partial_k \varPhi = \left(\varPhi \, \mathrm{rot} \, \boldsymbol{v} - \boldsymbol{v} \times \mathrm{grad} \, \varPhi \right)_i. \end{split}$$

Egyéb szabályok bizonyítása

1.5. Vonalmenti integrál

Definíció 1.5.1: Reguláris görbe

Legyen $I\subset\mathbb{R}$ nem feltétlenül korlátos intervallum. Ekkor az $\gamma:I\to\mathcal{C}\subset\mathbb{R}^3$ immerziót reguláris görbének nevezzük.

Definíció 1.5.2 : Pályasebesség, Ívhossz

A $v:I\subset\mathbb{R}\to\mathbb{R}, t\mapsto \|\dot{\gamma}(t)\|$ függvényt pályasebességnek hívjuk. A pályasebesség I feletti integrálját a görbe ívhosszának nevezzük:

$$L(\gamma) = \int_I \|\dot{\gamma}(t)\| dt = \int_I ds.$$

Számítsuk ki a $\gamma(t) = (t \cos t) \hat{i} + (t \sin t) \hat{j}, t \in [0, 1]$ görbe ívhosszát!

$$L = \int_0^1 \|\dot{\gamma}(t)\| \, dt = \int_0^1 \sqrt{(\cos t - t \sin t)^2 + (\sin t + t \cos t)^2} \, dt = \int_0^1 \sqrt{1 + t^2} \, dt$$

$$= \int_0^1 \cosh u \sqrt{1 + \sinh^2 u} \, du = \int_0^1 \cosh^2 u \, du = \int_{u_1}^{u_2} \frac{1 + \cosh 2u}{2} \, du$$

$$= \left[\frac{u}{2} + \frac{\sinh 2u}{4} \right]_{u_1}^{u_2} = \left[\frac{\arcsin t}{2} + \frac{t\sqrt{t^2 + 1}}{2} \right]_0^1 = \frac{\arcsin 1 + \sqrt{2}}{2} \approx 1,1478$$

Definíció 1.5.3 : Irányított görbe

Egy $\gamma:[a;b]\to\mathbb{R}^3$ görbe irányított, ha adott egy rendezés (\leq) a paraméterértékeken. Ekkor $t_1< t_2$ esetén $\gamma(t_1)$ a görbe korábbi pontja, $\gamma(t_2)$ -höz képest. Ha $\gamma(a)=\gamma(b)$, akkor a görbe zárt.

Irányítottság szemléltetése

Pozitív irányítottságú görbe

Negatív irányítottságú görbe

Ha létezik a $\sum_{i} \| \gamma(t_i) - \gamma(t_{i-1}) \|$ összeg supremuma, akkor a görbe rektifikálható.

Definíció 1.5.4 : Vonalmenti integrál

Ha a
$$\sum_i \langle \boldsymbol{v}(\boldsymbol{\gamma}(\xi_i)); \boldsymbol{\gamma}(t_i) - \boldsymbol{\gamma}(t_{i-1}) \rangle$$

összegnek létezika a határértéke a görbe beosztásának minden határon túli finomítására nézve, akkor azt monjuk, hogy a $\boldsymbol{v}: \mathbb{R}^3 \to \mathbb{R}^3$ vektormező integrálható az $\boldsymbol{\gamma}: I \subseteq \mathbb{R} \to \mathbb{R}^3$ görbe mentén, és ezt a \boldsymbol{v} vektor $\boldsymbol{\gamma}$ görbe menti vonalintegráljának nevezzük. Jelölése:

$$\int_{\mathcal{O}} \langle \boldsymbol{v}; \mathrm{d} \mathbf{r} \rangle$$

Belátható, hogy a görbe menti integrál létezéséhez elegendő, hogy a vektormező csak a görbe mentén van értelmezve, és ott szakaszonként folytonos.

Tétel 1.5.1

Ha γ egy görbe, melynek paraméteres egyenlete: $\gamma: I \subseteq \mathbb{R} \to \mathbb{R}^3$, $t \mapsto \gamma(t)$, akkor a $v: \mathbb{R}^3 \to \mathbb{R}^3$ vektormező γ görbén vett (skalárértékű) integrálja:

$$\int_{\mathcal{C}} \langle \boldsymbol{v}; d\mathbf{r} \rangle = \int_{I} \langle \boldsymbol{v}(\boldsymbol{\gamma}(t)); \dot{\boldsymbol{\gamma}}(t) \rangle dt$$

Legyen $\gamma:[0;1]\to\mathbb{R}^3,t\mapsto(t;t^2;t^3)$ görbe, $\boldsymbol{v}:\mathbb{R}^3\to\mathbb{R}^3,(x,y,z)\mapsto(x+y;y+z;z+x)$ vektormező. Számoljuk ki a görbe menti integrált!

$$\int_{\mathcal{C}} \langle \mathbf{v}; d\mathbf{r} \rangle = \int_{0}^{1} \left\langle \begin{bmatrix} t + t^{2} \\ t^{2} + t^{3} \\ t^{3} + t \end{bmatrix}; \begin{bmatrix} 1 \\ 2t \\ 3t^{2} \end{bmatrix} \right\rangle dt = \int_{0}^{1} (t + t^{2}) + 2(t^{2} + t^{3}) + 3(t^{3} + t) dt$$
$$= \int_{0}^{1} (6t + 6t^{2} + 5t^{3}) dt = 6 \left[\frac{t^{2}}{2} + \frac{t^{3}}{3} + \frac{5t^{4}}{4} \right]_{0}^{1} = \frac{37}{2}$$

Ha a görbe irányítását megváltoztatjuk, akkor az integrál értéke (-1)-szeresére változik.

Tétel 1.5.2 : Gradiens-tétel

Legyen $\varphi:U\subseteq\mathbb{R}^3\to\mathbb{R}$ differenciálható skalármező, $\gamma:[a;b]\to\mathcal{C}\subseteq U, t\mapsto\gamma(t)$ folytonos görbe, $\gamma(a)=p,\gamma(b)=q$ pedig a görbe kezdő és végpontja. Ekkor:

$$\int_{\mathcal{C}} \langle \operatorname{grad} \varphi(\boldsymbol{r}); \operatorname{d} \boldsymbol{r} \rangle = \varphi(\boldsymbol{q}) - \varphi(\boldsymbol{p}).$$

Vagyis, ha egy vektormező valamely skalármező gradiense, akkor annak bármely folytonos görbe mentén vett integrálja csak a kezdő- és végpontoktól függ.

Bizonyítás:

$$\int_{\mathcal{C}} \langle \operatorname{grad} \varphi(\boldsymbol{r}) ; \operatorname{d} \boldsymbol{r} \rangle = \int_{a}^{b} \langle \operatorname{grad} \varphi(\boldsymbol{\gamma}(t)) ; \dot{\boldsymbol{\gamma}}(t) \rangle \operatorname{d} t = \int_{a}^{b} \frac{\operatorname{d} \varphi(\boldsymbol{\gamma}(t))}{\operatorname{d} t} \operatorname{d} t = \varphi(\boldsymbol{\gamma}(b)) - \varphi(\boldsymbol{\gamma}(a))$$

Tétel 1.5.3 : Gradiens-tétel megfordítása

Ha \boldsymbol{v} egy olyan folytonosvektormező, hogy a vonalmenti integrál csak a kezdő- és végponttól függ, akkor $\exists \varphi$, skalármező, hogy grad $\varphi = \boldsymbol{v}$.

Körintegrál jelölése

Ha γ zárt görbe, akkor a v vektormező egy γ görbe mentén vett körintegrálja a következőképpen jelölhető:

$$\oint_{\mathcal{C}} \langle \boldsymbol{v}; d\mathbf{r} \rangle$$
.

Ha a görbe menti integrál értéke független az úttól, akkor az integrál bármely zárt görbe mentén zérus

menten zerus.

Bizonyítás:

Legyen γ_1 és γ_2 két görbe, melyek kezdő- és végpontjaik megegyeznek. Ekkor:

 $\int_{\mathcal{C}_1} \langle \boldsymbol{v}; \mathrm{d}\mathbf{r}_1 \rangle = \int_{\mathcal{C}_2} \langle \boldsymbol{v}; \mathrm{d}\mathbf{r}_2 \rangle.$

Képezzük a $\gamma = \gamma_1 \cup (-\gamma_2)$ zárt görbét. Ekkor:

$$\int_{\mathcal{C}} \langle \boldsymbol{v}; d\mathbf{r} \rangle = \int_{\mathcal{C}_1} \langle \boldsymbol{v}; d\mathbf{r}_1 \rangle - \int_{\mathcal{C}_2} \langle \boldsymbol{v}; d\mathbf{r}_2 \rangle = 0.$$

Definíció 1.5.5 : Skalármező görbe menti, ívhossz szerinti integrálja

$$\varphi: \mathbb{R}^3 \to \mathbb{R} \quad \gamma: I \to \mathcal{C}$$

Finomítsuk a végtelenségig a

$$\sum_{i} \varphi(\xi_i; \; \eta_i; \; \zeta_i) \, \|\Delta \boldsymbol{r}_i\|$$

összeget. Így a következő integrált kapjuk:

$$\int_{\mathcal{Q}} \varphi \, \mathrm{d}s.$$

Legyen $\gamma:[0;1]\to\mathcal{C}\subset\mathbb{R}^3,\,t\mapsto(t;t^2;t^4)$. Adjuk meg a $\varphi(r)=\sqrt{1+4x^2+16yz}$ skalármező γ görbe menti integrálját!

$$\begin{split} \int_{\gamma} \varphi(\mathbf{r}) \, \mathrm{d}s &= \int_{0}^{1} \varphi(\gamma(t)) \, \|\dot{\gamma}(t)\| \, \mathrm{d}t = \int_{0}^{1} \sqrt{1 + 4t^2 + 16t^6} \sqrt{1^2 + (2t)^2 + (4t^3)^2} \, \mathrm{d}t \\ &= \int_{0}^{1} 1 + 4t^2 + 16t^6 \, \mathrm{d}t = \left[t + \frac{4}{3}t^3 + \frac{16}{7}t^7\right]_{0}^{1} = 1 + \frac{4}{3} + \frac{16}{7} = \frac{97}{21} \end{split}$$

Definíció 1.5.6 : Skalármező vektorértékű vonalintegrálja

$$\int \varphi(\mathbf{r}) \, d\mathbf{r} = \begin{bmatrix} \int \varphi(\mathbf{r}) \, dx \\ \int \varphi(\mathbf{r}) \, dy \\ \int \varphi(\mathbf{r}) \, dz \end{bmatrix}$$

Definíció 1.5.7 : Vektormező vektorértékű vonalintegrálja

$$\boldsymbol{v}: \mathbb{R}^3 \to \mathbb{R}^3 \quad \boldsymbol{\gamma}: I \to \mathcal{C} \quad \xi_i \in [t_{i-1}; t_i]$$

Finomítsuk a végtelenségig a

$$\sum_{i} \boldsymbol{v}(\boldsymbol{\gamma}(\xi_{i})) \times \Delta \boldsymbol{\gamma}_{i}$$

összeget. Így a következő integrált kapjuk:

$$\int_{\mathcal{C}} \boldsymbol{v}(\boldsymbol{r}) \times \mathrm{d} \boldsymbol{r} = \int_{\mathcal{C}} \boldsymbol{v}(\boldsymbol{\gamma}(t)) \times \dot{\boldsymbol{\gamma}}(t) \, \mathrm{d} t$$

1.6. Felületmenti integrál

Definíció 1.6.1: Reguláris felület

Legyen $\mathcal{S} \subseteq \mathbb{R}^3$. Azt mondjuk, hogy az $\boldsymbol{\varrho}$ reguláris felület, ha $\forall \boldsymbol{p} \in \mathcal{S}$ ponthoz megadható olyan \boldsymbol{p} -t tartalmazó $V \subset \mathbb{R}^3$ nyílt halmaz és $\boldsymbol{\varrho}: U \subseteq \mathbb{R}^2 \to \mathcal{S} \cap V$ leképezés, melyre teljesülnek az alábbiak:

- *q* differenciálható homeomorfizmus,
- *q* immerzió (derivált leképezése injektív).

Ha ezek teljesülnek, akkor ${\it g}$ -t parametrációnak, $V \cap \mathcal{S}$ -t koordinátakörnyezetnek nevezzük.

Definíció 1.6.2 : Elemi felület

A $\varphi:U\subseteq\mathbb{R}^2\to\mathcal{S}\subseteq\mathbb{R}^3$ elemi felület, ha φ legalább egyszer differenciálható és injektív.

 $\partial([a;b] \times [a;b])$ a paramétertartomány pereme.

A felület irányítható, ha megadható rajta egy differenciálható egységvektormező.

Elemi felület

Definíció 1.6.3 : Skalármező skalárértékű felületmenti integrálja

Legyen $\varphi:\mathbb{R}^3\to\mathbb{R}$ skalármező, $\pmb{\varphi}:U\subseteq\mathbb{R}^2\to\mathcal{S}\subseteq\mathbb{R}^3$. Ekkor finomítsuk minden határon túl a

$$\sum_{i} \varphi\left(\xi_{i}; \eta_{i}; \zeta_{i}\right) \Delta S_{i}$$

összeget:

$$\int_{\mathcal{S}} \varphi(\mathbf{r}) \, \mathrm{d}S.$$

Számítása:

$$\iint_{U} \varphi(\boldsymbol{\varrho}(s;t)) \left\| \frac{\partial \boldsymbol{\varrho}}{\partial s} \times \frac{\partial \boldsymbol{\varrho}}{\partial t} \right\| \mathrm{d}s \, \mathrm{d}t \quad \to \quad \text{ha a felület paraméterezve van,}$$

$$\iint_{U} \varphi(x;y;\Phi(x;y)) \sqrt{1 + (\partial_{x}\Phi)^{2} + (\partial_{y}\Phi)^{2}} \, \mathrm{d}x \, \mathrm{d}y \quad \to \quad \text{ha } z = \Phi(x;y) \text{ alakban van.}$$

Integráljuk a $\varphi(\boldsymbol{r}) = x^2 + y^2$ skalármezőt az egységgömb z > 0 részén!

Az egységgömb paraméterezése:

$$g(s;t) = \begin{bmatrix} \sin s \cos t \\ \sin s \sin t \\ \cos s \end{bmatrix}, \quad s \in [0; \pi/2], \quad t \in [0; 2\pi], \quad \mathbf{n} = \left\| \frac{\partial g}{\partial s} \times \frac{\partial g}{\partial t} \right\| = \sin s.$$

A skalármező átparaméterezése:

$$\varphi(\varphi(s;t)) = \sin^2 s \cos^2 t + \sin^2 s \sin^2 t = \sin^2 s.$$

Az integrál kiszámítása:

$$\int_{\mathcal{S}} \varphi \, dS = \int_{0}^{\pi/2} \int_{0}^{2\pi} \sin^2 s \sin s \, dt \, ds = 2\pi \int_{0}^{\pi/2} (1 - \cos^2 s) \sin s \, ds$$
$$= 2\pi \int_{0}^{1} (1 - u^2) \, du = 2\pi \left[u - \frac{u^3}{3} \right]_{0}^{1} = \frac{4\pi}{3}.$$

Definíció 1.6.4 : Skalármező vektorértékű felületmenti integrálja

Felület implicit megadása esetén ($z = \Phi(x; y)$):

$$\int_{\mathcal{S}} \varphi(\mathbf{r}) \, d\mathbf{S} = \iint \varphi(x; y; \Phi(x; y)) \begin{bmatrix} \pm \partial_{x} \Phi \\ \pm \partial_{y} \Phi \\ \mp 1 \end{bmatrix} dx \, dy$$

Definíció 1.6.5 : Vektormező skalárértékű felületmenti integrálja

$$\boldsymbol{v}: \mathbb{R}^3 \to \mathbb{R}^3 \quad \boldsymbol{\varrho}: U \subset \mathbb{R}^2 \to \mathcal{S} \subset \mathbb{R}^3$$

Finomítsuk minden határon túl a $\sum_i \langle \boldsymbol{v}_i; \boldsymbol{n}_i \rangle$ összeget:

$$\int_{\mathcal{S}} \langle \boldsymbol{v}(\boldsymbol{r}); \mathrm{d}\boldsymbol{S} \rangle = \iint_{U} \left\langle \boldsymbol{v}(\boldsymbol{\varrho}(\boldsymbol{s};t)); \left\| \frac{\partial \boldsymbol{\varrho}}{\partial \boldsymbol{s}} \times \frac{\partial \boldsymbol{\varrho}}{\partial t} \right\| \right\rangle,$$

ahol d**S** = \hat{n} dS.

Definíció 1.6.6: Vektormező vektorértékű felületmenti integrálja

$$\int_{\mathcal{S}} \boldsymbol{v}(\boldsymbol{r}) \times d\boldsymbol{S} = \iint_{U} \boldsymbol{v}(\boldsymbol{g}(\boldsymbol{s};t)) \times \left(\frac{\partial \boldsymbol{g}}{\partial \boldsymbol{s}} \times \frac{\partial \boldsymbol{g}}{\partial t}\right) d\boldsymbol{s} dt$$

1.7. Integrálátalakító tételek

Tétel 1.7.1 : Stokes-tétel

Legyen $\boldsymbol{\varrho}: U \subset \mathbb{R}^2 \to \mathcal{S} \subset \mathbb{R}^3$ irányított, parametrizált, elemi felület. Legyen továbbá $\boldsymbol{v}: \mathbb{R}^3 \to \mathbb{R}^3$ legalább egyszer folytonosan differenciálható vektormező. Jelölje az $\boldsymbol{\gamma}: I \subset \mathbb{R} \to \partial \mathcal{S} = \mathcal{C}$ a $\boldsymbol{\varrho}$ peremét indukált, jobbézszabály szerinti irányítással. Ekkor:

$$\iint_{\mathcal{S}} \langle \operatorname{rot} \boldsymbol{v}; \mathrm{d} \mathbf{S} \rangle = \oint_{\partial \mathcal{S}} \langle \boldsymbol{v}; \mathrm{d} \mathbf{r} \rangle \,.$$

Ha \boldsymbol{v} skalárpotenciálos, akkor az integrál értéke zérus, hiszen rot $\boldsymbol{v}=\operatorname{rot}\operatorname{grad}\varphi=0$.

Definíció 1.7.1 : Elemi tértartomány

 $\Omega:D\subset\mathbb{R}^3 o\mathcal{V}\subset\mathbb{R}^3$ elemi tértartomány, ha legalább egyszer folytonosan differenciálható leképezés. Ekkor

$$\det(\mathbf{D}\mathbf{\Omega}(r;s;t)) = \left\| \frac{\partial \mathbf{\Omega}(r;s;t)}{\partial r \,\partial s \,\partial t} \right\| \neq 0.$$

Definíció 1.7.2 : Térfogat

Készítsünk egy olyan beleírt (c_i) és körülírt (C_i) kockarendszert, melyekre igaz, hogy $c_i \cap c_j$ csak lap, él, vagy csúcs lehet. Ekkor fennáll, hogy:

$$\bigcup_i c_i \subset \mathcal{V} \subset \bigcup_i C_j.$$

Finomítsuk minden határon túl ezeket a kockarendszereket. Ha ezek közös határértékhez tartanak, akkor:

Vol
$$\mathcal{V} = \iiint_{\mathcal{V}} dV = \iiint_{\mathcal{V}} |\det (\mathbf{D}\mathbf{\Omega}(r; s; t))| dr ds dt.$$

Pozitív az irányítás, ha det $\mathbf{D}\mathcal{V} > 0$.

Definíció 1.7.3 : Skalármező térfogaton vett skalárértékű integrálja

Legyen $\Omega: D \subset \mathbb{R}^3 \to \mathcal{V} \subset \mathbb{R}^3$ irányított, parametrizált, elemi tértartomány. Legyen továbbá $\varphi: \mathbb{R}^3 \to \mathbb{R}$ folytonos skalármező. Ekkor a φ térfogaton vett integrálja:

$$\iiint_{\mathcal{V}} \varphi \, dV = \iiint_{D} \varphi \left(\mathbf{\Omega}(r; s; t) \right) \det \left(\mathbf{D} \mathbf{\Omega}(r; s; t) \right) dr \, ds \, dt.$$

Tétel 1.7.2 : Gauss-Osztogradszkij-tétel

Legyen $\Omega: D \subset \mathbb{R}^3 \to \mathcal{V} \subset \mathbb{R}^3$, irányított,parametrizált tértartomány. Legyen továbbá $\boldsymbol{v}: \mathbb{R}^3 \to \mathbb{R}^3$ legalább egyszer folytonosan differenciálható vektormező. Jelölje a $\partial \mathcal{V} = \mathcal{S}$ az Ω peremét indukált irányítással. Ekkor:

$$\iiint_{\mathcal{V}} \operatorname{div} \boldsymbol{v} \, dV = \oiint_{\partial \mathcal{V}} \langle \boldsymbol{v}; d\mathbf{S} \rangle.$$

Ha v vektorpotenciálos, akkor az integrál értéke zérus, hiszen div v = div rot u = 0.

Tétel 1.7.3 : Green-tétel asszimetrikus alakja

Legyenek $\varphi;\psi:\mathbb{R}^3\to\mathbb{R}$ kétszeresen folytonos skalármezők, $\mathcal{V}\subset\mathbb{R}^3$ parametrizált, irányított tértartomány, $\partial\mathcal{V}=\mathcal{S}$ perem indukált irányítással. Ekkor:

$$\iiint_{\mathcal{V}} \psi \, \Delta \varphi + \langle \operatorname{grad} \psi; \operatorname{grad} \varphi \rangle \, \mathrm{d}V = \oiint_{\partial \mathcal{V}} \langle \psi \operatorname{grad} \varphi; \mathrm{d}\mathbf{S} \rangle.$$

Tétel 1.7.4 : Green-tétel szimmetrikus alakja

Legyenek $\varphi;\psi:\mathbb{R}^3\to\mathbb{R}$ kétszeresen folytonos skalármezők, $\mathcal{V}\subset\mathbb{R}^3$ parametrizált, irányított tértartomány, $\partial\mathcal{V}=\mathcal{S}$ perem indukált irányítással. Ekkor:

$$\iiint_{\mathcal{V}} \psi \, \Delta \varphi + \varphi \, \Delta \psi \, \, \mathrm{d}V = \oiint_{\partial \mathcal{V}} \langle \psi \, \mathrm{grad} \, \varphi - \varphi \, \mathrm{grad} \, \psi ; \mathrm{d}\mathbf{S} \rangle$$