Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

Efektívne hľadanie minimálne dominujúcej množiny na reálnych sieťach

Magisterská práca

2014 Viktor Tomkovič

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

Efektívne hľadanie minimálne dominujúcej množiny na reálnych sieťach

Magisterská práca

Študijný program: Aplikovaná informatika

Študijný odbor: 2511 Aplikovaná informatika

Školiace pracovisko: Katedra aplikovanej informatiky FMFI

Vedúci práce: Mgr. Martin Čajági

Bratislava, 2014 Viktor Tomkovič

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Viktor Tomkovič

Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)

Študijný odbor: 9.2.9. aplikovaná informatika

Typ záverečnej práce: diplomová slovenský

Názov: Efektívne hľadanie minimálnej dominujúcej množiny na reálnych sieťach

Ciel': Prvým z cieľov práce je implementovať aktuálne úplne efektívne algoritmy

poskytujúce riešenia pre problém minimálnej dominujúcej množiny s rôznymi obmedzeniami na danú množinu. Ako je napríklad súvislosť, či minimálna vzdialenosť medzi vrcholmi v pokrytí. Tieto budú slúžiť ako benchmark pri menších grafoch. Druhým krokom je implementovať heuristické algoritmy, aproximatívne algoritmy a urobiť vzájomný pomer efektívnosť (čas-priestor) / veľkosť chyby plus porovnanie oproti úplným algoritmom z prvého cieľu.

Tretím cieľom je vyvinúť čo najefektívnejšie algoritmy pracujúce na sieťach v rádoch desiatok až stá tisícov vrcholov a miliónov hrán a otestovať ich

na dátach reálnych existujúcich sietí.

Pod najneefektívnejším sa rozumie zlepšenie pre konkrétne typy sietí v čase alebo v chybe. Z nášho pohľadu je prioritnejší čas, pretože cieľom je rýchlo získavať požadované informácie aby sme ich vedeli spracovať a poskytnúť ako

vstup pre d'alšie aplikácie.

Vedúci: Mgr. Martin Čajági

Katedra: FMFI.KAI - Katedra aplikovanej informatiky

Vedúci katedry: doc. PhDr. Ján Rybár, PhD.

Dátum zadania: 04.12.2012

Dátum schválenia: 04.12.2012 prof. RNDr. Roman Ďurikovič, PhD.

garant študijného programu

študent	vedúci práce

Poďakovanie

Ďakujem.

Abstrakt

Táto práca skúma rôzne algoritmy na riešenie problému hľadania minimálnych dominantných množín (MDS). Konkrétne skúma ich využitie v sieťach malého sveta.

Kľúčové slová: minimálna dominujúca množina, MDS, algoritmy a dátové štruktúry, siete malého sveta.

Abstract

This work is.

Keywords: minimal dominating set, MDS, algorithms and date structures, small-world network.

Obsah

Úvod					
1	Defi	nície	2		
	1.1	Grafy	2		
	1.2	Vlastnosti grafu	3		
	1.3	Cesta a cyklus	4		
	1.4	Strom	4		
		Toky			
	1.6	Siete	5		
Zá	iver		7		
Li	terati	'ira	8		

Úvod

Toto je úvod do mojej diplomovej práce. Bude doplnený neskôr.

Kapitola 1

Definície

V tejto kapitole sme zaviedli niektoré pojmy, s ktorými sa budeme stretávať počas nasledujúcich kapitol. Sú to prevažne pojmy z teórie grafov. Keďže väčšina článkov, ktorými sme sa zaoberali v ďalších častiach je anglického pôvodu, rozhodli sme sa pre značenie uprednostniť knihu Graph Theory (Diestel 2000) pred knihou Grafové algoritmy (Plesník 1983).

Základným pojmom je pre nás množina, čo je súbor navzájom rôznych objektov. Množinu prirodzených čísel vrátane nuly označujeme $\mathbb N$. Množinu celých čísel označujeme $\mathbb Z$. Množinu reálnych čísel $\mathbb R$. Pre reálne číslo x označujeme hornú celú časť $\lceil x \rceil$ a označuje najmenšie celé číslo väčšie alebo rovné ako x. Podobne dolnú celú časť označujeme $\lfloor x \rfloor$ a označuje najväčšie celé číslo menšie alebo rovné ako x. Základ logaritmov napísaných ako "log" je 2 a základ logaritmov napísaných ako "ln" je e. Množina $=\{A_1,\ldots,A_k\}$ navzájom disjunktných podmnožín množina A je rozdelenie ak $A=\bigcup_{i=1}^k A_i$ a všetky i platí, že $A_i=\emptyset$.

1.1 Grafy

Graf G=(V,E) je usporiadaná dvojica množiny vrcholov a množiny hrán, ktorá má následujúce vlastnosti:

- $V \cap E = \emptyset$ (hrany a vrcholy sú rozlíšiteľné)
- $E \subseteq \{\{u, v\} : u \neq v; u, v \in V\}$ (hrana spája dva vrcholy)

Graf sa zvyčajne znázorňuje nakreslením bodov pre každý vrchol a čiar medzi dvoma bodmi tam, kde existuje hrana. Rozmiestenie bodov a čiar nemá význam.

O grafe s množinou vrcholov V hovoríme, že je grafom na V. Množina vrcholov grafu G je označovaná V(G) a to aj v prípade, kedy graf G má za množinu vrcholov inú množinu ako V. Napríklad, pre graf H=(W,F) označujeme množinou vrcholov V(H) a platí V(H)=W. Podobne označujeme množinu brán grafu E(G) (v hore uvedenom príklade platí E(H)=F). Pre jednoduchosť hovoríme, že vrchol (hrana) patrí grafu a nie množine vrcholov (hrán) grafu a preto sa občas vyskytuje označenie $v \in G$ a nie $v \in V(G)$.

Rád grafu je počet vrcholov v grafe a označujeme ho ako |G|. Prázdny graf (\emptyset, \emptyset) označujeme \emptyset . Grafy rádu 0 alebo 1 sa označujeme ako triviálne.

Vrchol v je incidentný s hranou e ak platí $v \in e$. Hranu $\{x,y\}$ jednoduchšie označujeme ako xy. Hranami X-Y označujeme množinu hrán $E(X,Y)=\{\{x,y\}:x\in X,y\in Y\}$. Namiesto $E(\{x\},Y)$ píšeme E(x,Y) a podobne aj namiesto $E(X,\{y\})$ píšeme E(X,y). s Zápisom E(v) označujeme E(v,V(G)) a hovoríme o branách vrchola v.

Dva vrcholy x, y grafu G sú *susedia*, ak existuje hrana xy v grafe G. Dve hrany $e \neq f$ sú susedné, ak majú spoločný jeden vrchol. Ak sú všetky vrcholy v grafe navzájom susedné, graf je *kompletný* (alebo *úplný*). Kompletný graf s n vrcholmi označujeme K^n .

Majme dva grafy G=(V,E) a G'=(V',E'). Potom $G\cup G':=(V\cup V',E\cup E')$. Podobne $G\cap G':=(V\cap V',E\cap E')$. Ak platí $G\cap G'=\emptyset$ tak hovoríme, že grafy sú *disjunktné*. Ak platí $V\subseteq V'$ a $E\subseteq E'$, tak potom je graf G' podgrafom grafu G. Zapisujeme $G'\subseteq G$.

Ak $G' \subseteq G$ a G' obsahuje všetky hrany $xy \in E$ pre $x, y \in V'$, tak hovoríme, že graf G' je indukovaný podgraf grafu G. Taktiež hovoríme, že V' indukuje G' na G a zapisujeme G' =: G[V']. Zápis $G[\{v\}]$ skracujeme na G[v].

Ak je U nejaká množina vrcholov, tak zápisom G-U (operátory - a \ budeme občas zamieňať) označujeme $G[V(G)\setminus U]$. Inými slovami graf G-U dosiahneme tak, že z grafu G vymažeme všetky vrcholy z množiny U a všetky incidentné hrany k nim. Pre $G-\{u\}$ používame aj zápis G-u. Pre graf G=(V,E) a množinu hrán $F=\{xy:x,y\in V\}$ zapisujeme $G+F=(V,E\cup F)$ a $G-F=(V,E\setminus F)$.

Komponent grafu je taký maximálny podgraf, kde medzi každou dvojicou vrcholov existuje cesta.

1.2 Vlastnosti grafu

Uvažujme o grafe G=(V,E). Množinu susedov vrchola v označujeme $N_G(v)$. Pokiaľ to bude z kontextu jasné, tak iba skrátene N(v). Zápis rozšírme na množiny. Pre množinu $U\subseteq V$ zapisujeme N(U) množinu susedov všetkých vrcholov $u\in U$. Množinu N(U) nazývame susedmi U. Susedov vrátane vrchola označujeme susedov vrchola s vrcholom samotným. Pre vrchol v susedov vrátane vrchola zapisujeme ako $N[v]:=N(v)\cup \{v\}$. Podobne môžeme rozšíriť zápis aj na množiny. Pokrytím množiny $U\subseteq V$ nazývame množinu $N[U]:=N(U)\cup U$.

Číslo $d_G(v)=d(v):=|E_G(v)|$ sa nazýva stupeň vrchola. Je to počet susedov vrchola (neplatí pre digrafy, multigrafy a iné zložité grafy, ktorými sa tu však nezaoberáme). Vrchol stupňa 0 je izolovaný. Číslo $\delta(G):=\min\{d(v),v\in G\}$ je minimálny stupeň grafu G. Podobne číslo $\Delta(G):=\max\{d(v),v\in G\}$ je maximálny stupeň grafu G.

1.3 Cesta a cyklus

Cesta je graf P = (V, E) v tvare:

$$V = \{x_0, x_1, x_2, x_3, \dots, x_k\} \qquad E = \{x_0, x_1, x_1, x_2, x_2, x_3, \dots, x_{k-1}, x_k\},\$$

kde všetky vrcholy x_i sú navzájom rôzne. Vrcholy x_0 a x_k sa nazývajú konce cesty a zvyšné vrcholy sú vnútorné vrcholy. Cestu zjednodušene označujeme sledom vrcholov: $P = x_0x_1x_2\cdots x_k$. Aj keď nevieme rozlíšiť medzi cestami $P_1 = x_0x_1x_2\cdots x_k$ a $P_2 = x_kx_{k-1}x_{k-2}\cdots x_0$, často si zvolíme jednu možnosť a hovoríme o ceste z x_0 do x_k (v tomto prípade sme si vybrali cestu P_1). Dĺžka cesty je číslo k (cesta môže mať dĺžku 0).

Cyklus je cesta P = (V, E) v tvare

$$V = \{x_0, x_1, x_2, x_3, \dots, x_{k-1}\} \qquad E = \{x_0 x_1, x_1 x_2, x_2 x_3, \dots, x_{k-2} x_{k-1}, x_{k-1} x_0\}$$

O ceste má zmysel hovoriť iba ak $k \geq 3$. Dĺžka cyklu je číslo k. Je to počet vrcholov (a zároveň aj hrán) v grafe.

V nasledujúcej časti si ukážeme dátové štruktúry, s ktorými sme v práci pracovali.

1.4 Strom

Strom je súvislý graf, ktorý má n vrcholov a n-1 hrán.

TODO: treba uviesť základnú vlastnosť a nejaké kecy o tom, čo a ako

1.5 Toky

Veľa vecí z reálneho sveta sa dá modelovať pomocou grafov alebo štruktúr podobných grafom. Ide napríklad o elektrickú rozvodnú sieť, cestnú sieť, vlakovú/dráhovú sieť, komunikačnú sieť. Pri týchto znázorneniach vystupujú vždy dvojice komunikácií a "križovatiek" (elektrické vedenie s trafostanicami, cesty s mestami, dráhy so zástavkami, linky s prepojovacími stanicami). Každá komunikácia má svoju kapacitu. V týchto štruktúrach má zmysel sa pýtať otázky, ako napríklad koľko veľa prúdu, zásob, dát dokáže prúdiť medzi dvoma vrcholmi. V teórii grafov hovoríme o tokoch.

Konkrétne komunikáciu si môžeme predstaviť ako hranu e=xy, ktorá vyjadruje aj smer prúdenia. K usporiadanej dvojici (x,y) môžeme priradiť hodnotu k vyjadrujúcu kapacitu komunikácie. Znamená to, že k jednotiek môže prúdiť z vrcholu x do vrcholu y. Alebo usporiadanej dvojici (x,y) môžeme priradiť zápornú hodnotu -k a to znamená, že k jednotiek prúdi opačným smerom. To znamená, že pre zobrazenie $f:V^2\to\mathbb{Z}$ (množina V označuje vrcholy), bude platiť, že f(x,y)=-f(y,x), keď x a y sú susedné vrcholy.

Keď už máme vrcholy a komunikácie, musíme mať aj zdroj vecí, ktoré po komunikáciach budú

prúdiť a taktiež miesta, z ktorých budú tieto veci odchádzať z modelu. Tie sa označujú ako *stoky*. Okrem týchto špeciálnych vrcholov platí, že

$$\sum_{y \in N(x)} f(x, y) = 0$$

Pokiaľ platia pre graf G:=(V,E) a zobrazenie $f:V^2\to\mathbb{Z}$ vlastnosti f(x,y)=-f(y,x) pre susedné vrcholy x a y a pre vrcholy mimo zdrojov a stôk, že $\sum_{y\in N(x)}f(x,y)=0$, tak budeme hovoriť o toku na grafe G.

Graf sme si zadefinovali ako štruktúru, ktorá má hrany *neorientované*, to znamená, že nevieme rozlíšiť, kde hrana "začína" a kde "končí". Pri tokoch sme ale začali rozlišovať túto vlastnosť a tým sa hrany stali *orientovanými*. Grafy sa nazývajú neorientované, pokiaľ sú aj ich hrany neorientované a naopak, ak sú orientované hrany, tak hovoríme aj o orientovanom grafe. V ďalšom texte budeme orientovanosť uvádzať iba vtedy, keď nebude jasne vyplávať z kontextu.

1.6 Siete

Ďalšie veci, ktoré môžeme pri modelovaní sietí z reálneho sveta skúmať sú veci ohľadne štruktúry. Má zmysel sa pýtať na to, aký je priemer grafu, či vieme určiť hierarchiu vrcholov a jej, aké komunikácie treba prerušiť na to, aby sa sieť rozpadla, kam treba nasadiť obmedzený počet špiónov, aby sme získali čo najviac informácií a podobne.

Zaujímavou vlastnosťou grafu je klasterizačný koeficient vrchola. Je definovaný ako pomer počtu hrán medzi susediacimi vrcholmi daného vrchola a všetkými možnými (aj potenciálnymi) hranami medzi susediacimi vrcholmi. Formálne, pre graf G:=(V,E) je klasterizačný koeficient vrchola v hodnota:

$$c_v = \frac{|E(N(v))|}{\binom{|N(v)|}{2}}$$

Priemerný klasterizačný koeficient \bar{c} grafu G je definovaný ako:

$$\bar{c} = \frac{\sum_{v \in V}^{c_v}}{|V|}$$

Pri modeloch reálnych sietí má zmysel zaoberať sa nielen stupňami jednotlivých vrcholov ale aj distribúciou stupňov a priemerným stupňom vrchola. Priemerný stupeň grafu G=(V,E) označujeme $\overline{d_G}=\bar{d}$ a vypočítame ako:

$$\overline{d_G} = \bar{d} = \frac{\sum_{v \in V} d_v}{|V|}$$

Distribúcia stupňov vrcholov grafu G je stacionárna funkcia

TODO: pozri slovenský ekvivalent

p(d) reprezentujúca pravdepodobnosť toho, že vrchol má stupeň d. Platí, že:

$$p(d) = \frac{\sum_{v \in V} \delta(d - d_v)}{|V|}$$

TODO: vysvetli, čo to znamená..

Podobne ako distribúciu stupňov vrcholov zadefinujeme aj distribúciu klasterizačných koeficientov. Distribúcia klasterizačných koeficientov grafu G je stacionárna funkcia c(d), ktorá hovorí o tom, aký je priemer klasterizačných koeficientov pre všetky vrcholy stupňa d. Vypočítame ho ako:

$$c(d) = \frac{\sum_{v \in V} \delta(d - d_v) c_v}{d}$$

V následujúcich kapitolách sme sa zamerali a prebrali si jednotlivé existujúce algoritmy, ktoré boli implementované.

Záver

 $\rm V$ práci sme popísali niektoré algoritmy a porovnali ich implementácie. Fomin (Fomin, Grandoni and Kratsch 2005) napísal dobrú prácu... ...

Bibliografie

Diestel, Reinhard (2000). Graph theory. 2000.

Fomin, Fedor V, Fabrizio Grandoni and Dieter Kratsch (2005). "Measure and conquer: domination—a case study". In: *Automata, Languages and Programming*. Springer, s. 191–203.

Plesník, Ján (1983). Grafové algoritmy.