How to Solve the Stochastic Six Vertex Model

Leonid Petrov

At 19:09, on Monday $10^{\rm th}$ July, 2023

Introduction

These are lecture notes for PANEM-2023 at Texas A&M on the integrability and asymptotics of the stochastic six vertex model.

1 Six vertex model through different lenses

In the first lecture, we describe the stochastic six vertex model from two diverse perspectives — as a model of statistical mechanics, and as a stochastic particle system.

1.1 Gibbs measures and the six vertex model

1.1.1 Finite-volume Gibbs measures

We begin with describing the useful framework of Gibbs measures. For simplicity, we work on the two-dimensional lattice \mathbb{Z}^2 . Let $\Lambda \subset \mathbb{Z}^2$ be a finite subset (for example, a rectangle). We are interested in spin configurations inside Λ which are encoded as $\omega = \{\sigma_e : e \text{ is an edge in } \Lambda\}$, where $\sigma_e \in \{0,1\}$. By an "edge in Λ " we mean that both endpoints of this edge must be inside Λ . Each spin configuration is equipped with boundary conditions, which are fixed spins on all the boundary edges of Λ (an edge is called boundary if it connects Λ to $\mathbb{Z}^2 \setminus \Lambda$).

With each spin configuration ω , we associate its energy $H(\omega) \in \mathbb{R}$. This energy may depend on global parameters (e.g., inverse temperature) and local parameters (e.g., edge capacities or vertex rapidities). If a particular spin configuration ω is forbidden, we have $H(\omega) = +\infty$.

Definition 1.1. A (finite-volume) Gibbs measure in Λ with fixed boundary conditions and the energy function $H(\cdot)$ is the probability distribution on spin configurations whose probability weights have the form

$$\operatorname{Prob}(\omega) = \frac{1}{Z} \exp \{-H(\omega)\}.$$

Here Z is the partition function, which is simply the probability normalizing constant.

Example 1.2 (Domino tilings on the square grid). A perfect matching on Λ is any subset M of its edges such that every vertex is covered by exactly one edge from M. For example, here is a perfect matching on the four by four rectangle:

If the set of allowed spin configurations is the set of perfect matchings, and

$$H(\omega) = \begin{cases} 0, & \omega \text{ is a perfect matching;} \\ +\infty, & \omega \text{ is not a perfect matching,} \end{cases}$$

then the corresponding Gibbs measure is the uniform distribution on the space of *domino tilings*. That is, we identify each covered edge with a 2×1 domino. The domino tiling corresponding to

the above perfect matching is

Computing partition functions of various Gibbs measures may be challenging. For example, the number of domino tilings of the 8×8 chessboard is 12,988,816, but its theoretical computation (not via a computer program) requires several nontrivial steps.

ref

Parameter-dependent partition functions represent many important quantities across all of mathematics, including various families of symmetric functions (such as Schur or Hall-Littlewood functions), and related objects.

1.1.2 Infinite-volume Gibbs measures

- 1.1.3 Six vertex model
- 1.2 Stochastic six vertex model and its particle system limits
- 1.3 Gibbs properties of the stochastic six vertex model
- 1.4 Basic coupling and colored (multispecies) models

Figure 1: Colored stochastic six vertex model and its monochrome version.

1.5 Stationary distributions and hydrodynamics

Bernoulli is Stationary; also for all the limits we had.

1.6 Limit shape and fluctuation problem

2 Integrability

3 Asymptotics

References

University of Virginia, Charlottesville, VA E-mail: lenia.petrov@gmail.com