## Operating System

Lecture 19: Protection



Manoj Kumar Jain

M.L. Sukhadia University Udaipur

#### Module 18: Protection

- Goals of Protection
- Domain of Protection
- Access Matrix

#### **Protection**

- Operating system consists of a collection of objects, hardware or software
- Each object has a unique name and can be accessed through a well-defined set of operations.
- Protection problem ensure that each object is accessed correctly and only by those processes that are allowed to do so.

#### **Domain Structure**

- Access-right = < object-name, rights-set> where rights-set is a subset of all valid operations that can be performed on the object.
- Domain = set of access-rights



## Domain Implementation (UNIX)

- System consists of 2 domains:
  - User
  - Supervisor

#### UNIX

- Domain = user-id
- Domain switch accomplished via file system.
  - Each file has associated with it a domain bit (setuid bit).
  - When file is executed and setuid = on, then user-id is set to owner of the file being executed. When execution completes user-id is reset.

## Domain Implementation (Multics)

- Let  $D_i$  and  $D_i$  be any two domain rings.
- $\blacksquare \text{ If } j < I \Rightarrow D_j \subseteq D_j$



#### **Access Matrix**

- View protection as a matrix (access matrix)
- Rows represent domains
- Columns represent objects
- Access(i, j) is the set of operations that a process executing in Domain; can invoke on Object;

#### Access Matrix

| object | F <sub>1</sub> | F <sub>2</sub> | <i>F</i> <sub>3</sub> | printer |
|--------|----------------|----------------|-----------------------|---------|
| $D_1$  | read           |                | read                  |         |
| $D_2$  |                |                |                       | print   |
| $D_3$  |                | read           | execute               |         |
| $D_4$  | read<br>write  |                | read<br>write         |         |

Figure A

#### Use of Access Matrix

- If a process in Domain  $D_i$  tries to do "op" on object  $O_j$ , then "op" must be in the access matrix.
- Can be expanded to dynamic protection.
  - Operations to add, delete access rights.
  - Special access rights:
    - owner of O<sub>i</sub>
    - **copy** op from  $O_i$  to  $O_j$
    - control D<sub>i</sub> can modify D<sub>j</sub> access rights
    - transfer switch from domain  $D_i$  to  $D_j$

## Use of Access Matrix (Cont.)

- Access matrix design separates mechanism from policy.
  - Mechanism
    - Operating system provides access-matrix + rules.
    - If ensures that the matrix is only manipulated by authorized agents and that rules are strictly enforced.
  - Policy
    - User dictates policy.
    - Who can access what object and in what mode.

### Implementation of Access Matrix

Each column = Access-control list for one object Defines who can perform what operation.

```
Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read
:
```

Each Row = Capability List (like a key)
Fore each domain, what operations allowed on what objects.

```
Object 1 – Read
Object 4 – Read, Write, Execute
Object 5 – Read, Write, Delete, Copy
```

#### Access Matrix of Figure A With Domains as Objects

| object<br>domain | F <sub>1</sub> | F <sub>2</sub> | $F_3$         | laser<br>printer | D <sub>1</sub> | D <sub>2</sub> | $D_3$  | $D_4$  |
|------------------|----------------|----------------|---------------|------------------|----------------|----------------|--------|--------|
| $D_1$            | read           |                | read          |                  |                | switch         |        |        |
| $D_2$            |                |                |               | print            |                |                | switch | switch |
| $D_3$            |                | read           | execute       |                  |                |                |        |        |
| $D_4$            | read<br>write  |                | read<br>write |                  | switch         |                |        |        |

Figure B

## Access Matrix with Copy Rights

| object<br>domain | F <sub>1</sub> | F <sub>2</sub> | F <sub>3</sub> |  |  |  |  |
|------------------|----------------|----------------|----------------|--|--|--|--|
| $D_1$            | execute        |                | write*         |  |  |  |  |
| $D_2$            | execute        | read*          | execute        |  |  |  |  |
| $D_3$            | execute        |                |                |  |  |  |  |
| (a)              |                |                |                |  |  |  |  |
| object           | F <sub>1</sub> | $F_2$          | F <sub>3</sub> |  |  |  |  |
| $D_1$            | execute        |                | write*         |  |  |  |  |
| $D_2$            | execute        | read*          | execute        |  |  |  |  |
| $D_3$            | execute        | read           |                |  |  |  |  |
| (b)              |                |                |                |  |  |  |  |

## Access Matrix With Owner Rights

| object<br>domain      | F <sub>1</sub>   | F <sub>2</sub>           | F <sub>3</sub>           |  |  |  |  |
|-----------------------|------------------|--------------------------|--------------------------|--|--|--|--|
| <i>D</i> <sub>1</sub> | owner<br>execute | ;                        | write                    |  |  |  |  |
| $D_2$                 |                  | read*<br>owner           | read*<br>owner<br>write* |  |  |  |  |
| $D_3$                 | execute          |                          |                          |  |  |  |  |
|                       | (a)              |                          |                          |  |  |  |  |
| object<br>domain      | F <sub>1</sub>   | F <sub>2</sub>           | F <sub>3</sub>           |  |  |  |  |
| $D_1$                 | owner<br>execute |                          |                          |  |  |  |  |
| $D_2$                 |                  | owner<br>read*<br>write* | read*<br>owner<br>write* |  |  |  |  |
| $D_3$                 | 40               | write                    | write                    |  |  |  |  |
| (b)                   |                  |                          |                          |  |  |  |  |

## Modified Access Matrix of Figure B

| object<br>domain      | F <sub>1</sub> | F <sub>2</sub> | F <sub>3</sub> | laser<br>printer | D <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> | D <sub>4</sub>    |
|-----------------------|----------------|----------------|----------------|------------------|----------------|----------------|----------------|-------------------|
| <i>D</i> <sub>1</sub> | read           |                | read           |                  |                | switch         |                |                   |
| D <sub>2</sub>        |                |                |                | print            |                |                | switch         | switch<br>control |
| <i>D</i> <sub>3</sub> |                | read           | execute        |                  |                |                |                |                   |
| D <sub>4</sub>        | write          |                | write          |                  | switch         |                |                |                   |

# Thanks