Better Understanding Triple Differences Estimators

Marcelo Ortiz-Villavicencio Emory University **Pedro H.C. Sant'Anna** Emory University

Nov 1, 2024
Midwest Econometrics Group Conference 2024

DiD Boom

- In the last few years, we have seen a big boom in DiD methods:
 - Role of covariates in DiD;
 - Variation in treatment timing;
 - Diagnostics for TWFE regressions;
 - Sensitivity Analysis for Violations of Parallel Trends (PT);
 - Non-binary treatments: Continuous and multi-valued treatments;
 - Nonlinear DiD.
- All these involve comparing groups of units with and without treatment across time.
- All these involve relying on a PT assumption between treated and untreated groups.

1

What about other DiD designs like Triple Differences?

■ Triple Differences (DDD) extend to cases where the PT assumption in DiD *may not hold*.

- Triple Differences (DDD) extend to cases where the PT assumption in DiD may not hold.
 - **Ex**: PT can be violated due to the presence of a *time-varying confounder* that *changes differently across states*.

- Triple Differences (DDD) extend to cases where the PT assumption in DiD *may not hold*.
 - **Ex**: PT can be violated due to the presence of a *time-varying confounder* that *changes differently across states*.
- When the PT assumption is questionable, researchers often augment the design by adding another placebo comparison group to "clean" the bias introduced by the confounder.

- Triple Differences (DDD) extend to cases where the PT assumption in DiD *may not hold*.
 - **Ex**: PT can be violated due to the presence of a *time-varying confounder* that *changes differently across states*.
- When the PT assumption is questionable, researchers often augment the design by adding another placebo comparison group to "clean" the bias introduced by the confounder.
- DDD designs address this issue by finding a within-state comparison group that is not exposed to the treatment but is affected by the time-varying confounder.

But... is not just a matter of adding another interaction term?

But... is not just a matter of adding another interaction term?

Is not DDD just a difference of 2 DiD?

Challenging folks wisdom: 3WFE?

Challenging folks wisdom: Difference of 2 DiD?

Challenging folks wisdom: DR DDD!

Challenging folks wisdom: DR DDD!

Contribution

- Although it is also widely used in empirical work, DDD hasn't received as much attention as DiD.
- The key question in this paper is: How can we leverage our DiD knowledge to approach DDD?
 - ▶ We study identification, estimation, and inference procedures for DDD designs.
 - ▶ We derive the semiparametric efficiency bound for DDD designs and demonstrate that DDD estimators using a doubly robust representation reach this bound.
 - We extend our framework to staggered DDD designs.

Running Example: Muralidharan and Prakash (2017)

Program: Impact of giving bicycles on girls' secondary school enrollment in Bihar, India.

Pre-program gap:

- Enrollment declines as the distance to school increases.
- Higher attrition rates for women compared to men before the program.

DDD to the rescue:

- PT Assumption challenged by concurrent economic growth and increased education spending in Bihar, unlike the control state, Jharkhand.
- Boys in Bihar are not exposed to the policy but are affected by the expansion in education spending.

Fig. 1 Distance on Female Enrollment

What's the appeal of DDD compared to DiD?

Putting everything together, in DDD we allow to use all the information to control for location-specific trends and partition-specific trends, which otherwise would arise questionable results using DiD.

Some notation

We have access to a sample of n units available, $i = 1, 2, \dots, n$

- T time periods: $t = 1, 2, \dots, T$.
- Different groups adopt a policy in different time periods g. Let $G \in \mathcal{G} \subset \{2, ..., T\} \cup \{\infty\}$ denote the time when group g is first-adopt the policy, with the notion that if a group is "never-treated", $G = \infty$.
- Within each set of groups, we have two partitions (defined by some well-known criterion), $\ell \in P \equiv \{0, 1\}$. This determines *eligibility status*.
- Let $D_i \in \mathcal{D} \subset \{2, ..., T\} \cup \{\infty\}$ denote the time unit i is first-treated, with the notion that if a unit is "never-treated", $D_i = \infty$.
- Note that $\mathcal{D} = \mathcal{G}$ such that:

$$D = egin{cases} d & ext{if } G = g \equiv d \wedge P = 1, \ \infty & ext{if } (G = g \wedge P = 0) ext{ or } (G = g' \wedge P \in \{0,1\}, ext{ with } g' > g) \end{cases}$$

Ex: Units in G=2 with P=1 are treated at time D=2, otherwise the unit remains untreated ($D=\infty$).

Building block of the analysis

- Let $Y_{i,t}(d)$ be the potential outcome for unit i, at time t, if this unit is first treated at time period d.
- A parameter that is interesting and has clear economic interpretation is the ATT(g,t) (Callaway and Sant'Anna, 2021).

Definition (Parameter of interest: ATT(g,t))

Average Treatment Effect at time t of starting treatment at time g, among the units that indeed started treatment at time g.

$$ATT(g,t) := \mathbb{E}\left[Y_t(d) - Y_t(\infty)|G = g, P = 1\right], \ \textit{for } t \geq g.$$

Building block of the analysis

- Let $Y_{i,t}(d)$ be the potential outcome for unit i, at time t, if this unit is first treated at time period d.
- A parameter that is interesting and has clear economic interpretation is the ATT(g,t) (Callaway and Sant'Anna, 2021).

Definition (Parameter of interest: ATT(g,t))

Average Treatment Effect at time t of starting treatment at time g, among the units that indeed started treatment at time g.

$$ATT(g,t) := \mathbb{E}\left[Y_t(d) - Y_t(\infty)|G = g, P = 1\right], \ \textit{for } t \geq g.$$

Then, our identification problem comes from the fact that we never observe $\mathbb{E}\left[Y_t\left(\infty\right)|G=g,P=1\right]$ in $t\geq g$.

Recovering the ATT using 3WFE Regression

- For simplicity, let us focus on the canonical 2x2x2 DDD. Thus, $G = \{2, \infty\}$ and $P = \{0, 1\}$.
- Let θ be the ATT.
- When there are only 2 time periods and *no covariates*, the following three-way fixed-effects (3WFE) regression specification can be used to recover the ATT:

$$\begin{array}{lcl} Y_{i,t} & = & \alpha_0 + \gamma_{0,1} \mathbf{1}_{\{G_i=2\}} + \gamma_{0,2} \mathbf{1}_{\{P_i=1\}} + \gamma_{0,3} \mathbf{1}_{\{T_i=2\}} \\ & & + \gamma_{0,4} \mathbf{1}_{\{G_i=2\}} \mathbf{1}_{\{P_i=1\}} + \gamma_{0,5} \mathbf{1}_{\{G_i=2\}} \mathbf{1}_{\{T_i=2\}} + \gamma_{0,6} \mathbf{1}_{\{P_i=1\}} \mathbf{1}_{\{T_i=2\}} \\ & & + \beta_0^{3wfe} \mathbf{1}_{\{G_i=2\}} \mathbf{1}_{\{P_i=1\}} \mathbf{1}_{\{T_i=2\}} + \varepsilon_{i,t}, \end{array}$$

• One can show that $\beta_0^{3wfe} = \theta$ (Olden and Møen, 2022).

Recovering the ATT using 3WFE Regression

- For simplicity, let us focus on the canonical 2x2x2 DDD. Thus, $G = \{2, \infty\}$ and $P = \{0, 1\}$.
- Let θ be the ATT.
- When there are only 2 time periods and *no covariates*, the following three-way fixed-effects (3WFE) regression specification can be used to recover the ATT:

$$\begin{array}{lcl} Y_{i,t} & = & \alpha_0 + \gamma_{0,1} \mathbf{1}_{\{G_i=2\}} + \gamma_{0,2} \mathbf{1}_{\{P_i=1\}} + \gamma_{0,3} \mathbf{1}_{\{T_i=2\}} \\ & & + \gamma_{0,4} \mathbf{1}_{\{G_i=2\}} \mathbf{1}_{\{P_i=1\}} + \gamma_{0,5} \mathbf{1}_{\{G_i=2\}} \mathbf{1}_{\{T_i=2\}} + \gamma_{0,6} \mathbf{1}_{\{P_i=1\}} \mathbf{1}_{\{T_i=2\}} \\ & & + \beta_0^{3wfe} \mathbf{1}_{\{G_i=2\}} \mathbf{1}_{\{P_i=1\}} \mathbf{1}_{\{T_i=2\}} + \varepsilon_{i,t}, \end{array}$$

• One can show that $\beta_0^{3wfe} = \theta$ (Olden and Møen, 2022).

In general, one can recover θ in the canonical DDD either (i) by a saturated 3WFE regression or (2) by a difference of 2 DiDs.

What happens when covariates play an important role?

- Adding covariates in the above 3WFE specification would imply additional restrictions to the DGP:
 - ▶ Homogeneous treatment effects in covariates.
 - ▶ Rule out covariate-specific trends in both the treated and comparison groups.

- Adding covariates in the above 3WFE specification would imply additional restrictions to the DGP:
 - ▶ Homogeneous treatment effects in covariates.
 - ▶ Rule out covariate-specific trends in both the treated and comparison groups.
- Our goal is to introduce an estimator for DDD under the condition that the PT assumption is valid after controlling for covariates, i.e., $X \in \mathcal{X} \subseteq \mathbb{R}^d$.

- Adding covariates in the above 3WFE specification would imply additional restrictions to the DGP:
 - ▶ Homogeneous treatment effects in covariates.
 - ▶ Rule out covariate-specific trends in both the treated and comparison groups.
- Our goal is to introduce an estimator for DDD under the condition that the PT assumption is valid after controlling for covariates, i.e., $X \in \mathcal{X} \subseteq \mathbb{R}^d$.

Assumption (Conditional Parallel Trends Assumption for DDD)

$$\mathbb{E}\left[Y_{t=2}(\infty) - Y_{t=1}(\infty)|G = 2, P = 1, X\right] - \mathbb{E}\left[Y_{t=2}(\infty) - Y_{t=1}(\infty)|G = 2, P = 0, X\right]$$

$$= \mathbb{E}\left[Y_{t=2}(\infty) - Y_{t=1}(\infty)|G = \infty, P = 1, X\right] - \mathbb{E}\left[Y_{t=2}(\infty) - Y_{t=1}(\infty)|G = \infty, P = 0, X\right] \ a.s.$$

- Adding covariates in the above 3WFE specification would imply additional restrictions to the DGP:
 - ▶ Homogeneous treatment effects in covariates.
 - ▶ Rule out covariate-specific trends in both the treated and comparison groups.
- Our goal is to introduce an estimator for DDD under the condition that the PT assumption is valid after controlling for covariates, i.e., $X \in \mathcal{X} \subseteq \mathbb{R}^d$.

Assumption (Conditional Parallel Trends Assumption for DDD)

$$\mathbb{E}\left[Y_{t=2}(\infty) - Y_{t=1}(\infty)|G = 2, P = 1, X\right] - \mathbb{E}\left[Y_{t=2}(\infty) - Y_{t=1}(\infty)|G = 2, P = 0, X\right]$$

$$= \mathbb{E}\left[Y_{t=2}(\infty) - Y_{t=1}(\infty)|G = \infty, P = 1, X\right] - \mathbb{E}\left[Y_{t=2}(\infty) - Y_{t=1}(\infty)|G = \infty, P = 0, X\right] \text{ a.s.}$$

Additional Assumptions: Strong Overlap & No Anticipation.

Doubly Robust and Semiparametric Efficiency

- Under the previous assumptions, the ATT can be identified via Regression Adjustments or IPW or any convex combination between them.
- However, this depends on the researcher's ability to accurately model outcome regression or propensity scores.
 - ▶ How would you choose this combination if the goal was to achieve **Doubly Robustness** (DR)?
 - ▶ How would you choose this combination if the goal was **efficiency**?
- We tackle these questions by deriving the semiparametric efficiency bound for the ATT in DDD setups.
- That usually leads to DR estimands, too.

Semiparametric Efficiency Bound

Proposition (Semiparametric Efficiency Bound for DDD)

Suppose that conditional PT, no-anticipation, and strong overlap assumptions are satisfied, and balanced panel data is available. Let $\theta(\Delta Y, X) := \Delta Y - m_{\Delta}^{G=2,P=0}(X) - m_{\Delta}^{G=\infty,P=1}(X) + m_{\Delta}^{G=\infty,P=0}(X)$, $S := (\Delta Y, G, P, X)$. Then, the efficient influence function for the ATT is given by

$$\begin{split} \eta_{eff}(S) &= \omega_1^{G=2,P=1} \cdot \left(\theta(\Delta Y, X) - \theta \right) \\ &- \omega_0^{G=2,P=0}(X) \cdot \left(\Delta Y - m_{\Delta}^{G=2,P=0}(X) \right) \\ &- \omega_0^{G=\infty,P=1}(X) \cdot \left(\Delta Y - m_{\Delta}^{G=\infty,P=1}(X) \right) \\ &+ \omega_0^{G=\infty,P=0}(X) \cdot \left(\Delta Y - m_{\Delta}^{G=\infty,P=0}(X) \right). \end{split}$$

Furthermore, the semiparametric efficiency bound for the set of all regular, and asymptotic linear estimators of the ATT is $\mathbb{E}[\eta_{eff}(S)^2]$.

Weights Notation

DR DDD as a function of 3 DiDs

- We can take the expected value of $\eta_{\text{eff}}(W)$ and isolate θ given that any influence function has mean zero.
- Let's conveniently rewrite the propensity scores $\forall (g',\ell) \in \{(\infty,0),(\infty,1),(2,0)\}$ as

$$p_{g',\ell}(X) = \mathbb{P}[G=2, P=1|X, (G=2, P=1) \cup (G=g', P=\ell)],$$

Finally, we get the following *DR-DDD* estimand for the ATT,

$$\theta^{DR} = \mathbb{E}\left[\left(\omega_{1}^{G=2,P=1} - \omega_{0}^{G=2,P=0}(p_{2,0}(X))\right)\left(\Delta Y - m_{\Delta}^{G=2,P=0}(X)\right)\right] \Leftarrow DRDiD_{(2,1)}^{(2,0)} + \mathbb{E}\left[\left(\omega_{1}^{G=2,P=1} - \omega_{0}^{G=\infty,P=1}(p_{\infty,1}(X))\right)\left(\Delta Y - m_{\Delta}^{G=\infty,P=1}(X)\right)\right] \Leftarrow DRDiD_{(2,1)}^{(\infty,1)} - \mathbb{E}\left[\left(\omega_{1}^{G=2,P=1} - \omega_{0}^{G=\infty,P=0}(p_{\infty,0}(X))\right)\left(\Delta Y - m_{\Delta}^{G=\infty,P=0}(X)\right)\right] \Leftarrow DRDiD_{(2,1)}^{(\infty,0)}$$

From here, we need to estimate the nuisance functions to get an estimator for θ .

What happens when we have variation in Treatment Timing?

Staggered DDD with never-treated groups

- Building on the previous intuition for T = 2, let's go back to the case with multiple time periods.
- We then explore two alternative assumptions that place constraints on how untreated potential outcomes develop over time:

Assumption (Conditional Parallel Trends for DDD based on "never-treated" groups)

For each $t \in \{2, \dots, T\}$, $g \in \mathcal{G}_{\textit{treated}}$ such that $t \geq g$, with probability one,

$$\begin{split} \mathbb{E}\left[Y_{t}(\infty)-Y_{t-1}(\infty)|G=g,P=1,X\right] &- \mathbb{E}\left[Y_{t}(\infty)-Y_{t-1}(\infty)|G=g,P=0,X\right] \\ &= \\ \mathbb{E}\left[Y_{t}(\infty)-Y_{t-1}(\infty)|G=\infty,P=1,X\right] &- \mathbb{E}\left[Y_{t}(\infty)-Y_{t-1}(\infty)|G=\infty,P=0,X\right]. \end{split}$$

Staggered DDD with not-yet-treated groups

Assumption (Conditional Parallel Trends for DDD based on "not-yet-treated" groups)

For each $(g',t) \in \mathcal{G} \times \{2,\ldots,\}$, $g \in \mathcal{G}_{\textit{treated}}$ such that $g' > t \geq g$, with probability one,

$$\mathbb{E}\left[Y_t(\infty) - Y_{t-1}(\infty)|G = g, P = 1, X\right] \quad - \quad \mathbb{E}\left[Y_t(\infty) - Y_{t-1}(\infty)|G = g, P = 0, X\right]$$

$$=$$

$$\mathbb{E}\left[Y_t(\infty)-Y_{t-1}(\infty)|G=g',P=1,X\right] \quad - \quad \mathbb{E}\left[Y_t(\infty)-Y_{t-1}(\infty)|G=g',P=0,X\right].$$

DR DDD for ATT(g,t) with never-treated as comparison group

Let

$$m_{g,t}^{G=g',P=\ell}(X) := \mathbb{E}\left[Y_t - Y_{g-1}|G = g', P = \ell, X\right];$$

$$p_{g,g',\ell} := \mathbb{P}\left[G = g, P = 1|X, (G = g, P = 1) \cup (G = g', P = \ell)\right];$$

$$\Delta Y_{g,t} := Y_t - Y_{g-1}$$

- With this notation, we can introduce a DR DDD estimand leveraging never-treated states as a comparison group.
- For any $g \in \mathcal{G}_{\mathsf{treated}}$ and $g' \in \{g, \infty\}$ with eligibility status $\ell \in \mathit{P}$,

$$\begin{split} A\Pi^{nt}(g,t) &= \mathbb{E}\left[\left(\omega_{1}^{G=g,P=1} - \omega_{0}^{G=g,P=0}\left(p_{g,g,0}\left(X\right)\right)\right)\left(\Delta Y_{g,t} - m_{g,t}^{G=g,P=0}\left(X\right)\right)\right] \Leftarrow \textit{CSDiD}_{(g,1)}^{(g,0)} \\ &+ \mathbb{E}\left[\left(\omega_{1}^{G=g,P=1} - \omega_{0}^{G=\infty,P=1}\left(p_{g,\infty,1}\left(X\right)\right)\right)\left(\Delta Y_{g,t} - m_{g,t}^{G=\infty,P=1}\left(X\right)\right)\right] \Leftarrow \textit{CSDiD}_{(g,1)}^{(\infty,1)} \\ &- \mathbb{E}\left[\left(\omega_{1}^{G=g,P=1} - \omega_{0}^{G=\infty,P=0}\left(p_{g,\infty,0}\left(X\right)\right)\right)\left(\Delta Y_{g,t} - m_{g,t}^{G=\infty,P=0}\left(X\right)\right)\right] \Leftarrow \textit{CSDiD}_{(g,1)}^{(\infty,0)} \end{split}$$

DR DDD for ATT(g,t) with not-yet-treated as comparison group

- Similarly, we can introduce a DR DDD estimand leveraging not-yet-treated states as a comparison group.
- For any $g \in \mathcal{G}_{\mathsf{treated}}$ and $g' > t \geq g$ with eligibility status $\ell \in \mathit{P}$,

$$ATT^{nyt}(g,t) = \mathbb{E}\left[\left(\omega_{1}^{G=g,P=1} - \omega_{0}^{G=g,P=0}\left(p_{g,g,0}\left(X\right)\right)\right)\left(\Delta Y_{g,t} - m_{g,t}^{G=g,P=0}\left(X\right)\right)\right] \Leftarrow CSDiD_{(g,1)}^{(g,0)} \\ + \mathbb{E}\left[\left(\omega_{1}^{G=g,P=1} - \omega_{0}^{G=g',P=1}\left(p_{g,g',1}\left(X\right)\right)\right)\left(\Delta Y_{g,t} - m_{g,t}^{G=g',P=1}\left(X\right)\right)\right] \Leftarrow CSDiD_{(g,1)}^{(g',1)} \\ - \mathbb{E}\left[\left(\omega_{1}^{G=g,P=1} - \omega_{0}^{G=g',P=0}\left(p_{g,g',0}\left(X\right)\right)\right)\left(\Delta Y_{g,t} - m_{g,t}^{G=g',P=0}\left(X\right)\right)\right] \Leftarrow CSDiD_{(g,1)}^{(g',0)}$$

Highlights

- DDD is widely used in empirical research, but its properties have receive little attention.
- In its basic format, it is equivalent to running two separate DiD estimators and subtracting one from another.
 - ▶ This equivalence breaks down when covariates play an important role in the analysis.
- We derived semiparametric efficiency bound for DDD and proposed DR DDD estimands.
- We can leverage these results to tackle staggered treatment setups, too.
- A very fast package implementation in R is under construction.

Thanks!

™ marcelo.ortiz@emory.edu

𝚱 marcelortiz.com

@marcelortizv

2x2x2 **DDD without covariates**

Let, $g \in G = \{2, \infty\}$ and $\ell \in P = \{0, 1\}$.

$$\theta = \left[\left(\mathbb{E} \left[Y_{t=2} | G = 2, P = 1 \right] - \mathbb{E} \left[Y_{t=1} | G = 2, P = 1 \right] \right) \\ - \left(\mathbb{E} \left[Y_{t=2} | G = 2, P = 0 \right] - \mathbb{E} \left[Y_{t=1} | G = 2, P = 0 \right] \right) \right] \\ - \left[\left(\mathbb{E} \left[Y_{t=2} | G = \infty, P = 1 \right] - \mathbb{E} \left[Y_{t=1} | G = \infty, P = 1 \right] \right) \\ - \left(\mathbb{E} \left[Y_{t=2} | G = \infty, P = 0 \right] - \mathbb{E} \left[Y_{t=1} | G = \infty, P = 0 \right] \right) \right]$$

Note that this is the difference of two DiD's: one among G = 2 across P groups, and one among $G = \infty$ across P groups.

Some additional notation

■ For $(g, \ell) \in \{2, \infty\} \times \{0, 1\}$, let $\Delta Y = Y_{t=2} - Y_{t=1}$, and

$$m_{\Delta}^{G=g,P=\ell}(X):=\mathbb{E}\left[\Delta Y|G=g,P=\ell,X
ight], \quad ext{(outcome regression)}.$$
 $p^{G=g,P=\ell}(X):=\mathbb{P}[G=g,P=\ell|X] \quad ext{(multi-valued propensity score)}.$

■ For $(g, \ell) \in S_c \equiv \{(\infty, 0), (\infty, 1), (2, 0)\}$, let

$$\omega_{1}^{G=2,P=1} := \frac{1_{\{G=2,P=1\}}}{\mathbb{E}[1_{\{G=2,P=1\}}]},$$

$$\omega_{0}^{G=g,P=\ell}(X) := \frac{\frac{1_{\{G=g,P=\ell\}} \cdot p^{G=2,P=1}(X)}{p^{G=g,P=\ell}(X)}}{\mathbb{E}\left[\frac{1_{\{G=g,P=\ell\}} \cdot p^{G=2,P=1}(X)}{p^{G=g,P=\ell}(X)}\right]}$$

Let $\theta(\Delta Y, X) := \Delta Y - m_{\Delta}^{G=2, P=0}(X) - m_{\Delta}^{G=\infty, P=1}(X) + m_{\Delta}^{G=\infty, P=0}(X)$, $S := (\Delta Y, G, P, X)$.

Regression Adjustment and IPW identification

We can show that if conditional PT, no-anticipation, and strong overlap assumptions are satisfied and balanced panel data is available, the ATT is identified via regression adjustments or IPW:

$$\theta = ATT^{RA} = ATT^{IPW}$$
,

where

$$ATT^{PA} := \mathbb{E} \left[\Delta Y | G = 2, P = 1 \right] - \mathbb{E} \left[m_{\Delta}^{G=2, P=0} (X) + \left(m_{\Delta}^{G=\infty, P=1} (X) - m_{\Delta}^{G=\infty, P=0} (X) \right) \middle| G = 2, P = 1 \right],$$

$$ATT^{IPW} := \mathbb{E} \left[\left(\left(w^{G=2, P=1} (G, P) - w^{G=2, P=0} (G, P, X) \right) - \left(w^{G=\infty, P=1} (G, P, X) - w^{G=\infty, P=0} (G, P, X) \right) \right] \Delta Y \right].$$

DR DDD as a function of 3 DiDs

- To get a DR-DDD estimand for the ATT, isolate θ given that any influence function has mean zero.
- We can conveniently rewrite the propensity scores $\forall (q', \ell) \in \mathcal{S}_c$ as

$$p_{g',\ell}(X) = \mathbb{P}[G = 2, P = 1 | X, (G = 2, P = 1) \cup (G = g', P = \ell)],$$

$$\implies \theta^{DR} = \mathbb{E}\left[\left(\frac{1_{\{G=2, P=1\}}}{\mathbb{E}\left[1_{\{G=2, P=1\}}\right]} - \frac{\frac{p_{2,0}(X) \cdot 1_{\{G=2, P=0\}}}{1 - p_{2,0}(X)}}{\mathbb{E}\left[\frac{p_{2,0}(X) \cdot 1_{\{G=2, P=0\}}}{1 - p_{2,0}(X)}\right]}\right) \left(\Delta Y - m_{\Delta}^{G=2, P=0}(X)\right)\right]$$

$$+\mathbb{E}\left[\left(\frac{1_{\{G=2, P=1\}}}{\mathbb{E}\left[1_{\{G=2, P=1\}}\right]} - \frac{\frac{p_{\infty,1}(X) \cdot 1_{\{G=\infty, P=1\}}}{1 - p_{\infty,1}(X)}}{\mathbb{E}\left[\frac{p_{\infty,1}(X) \cdot 1_{\{G=\infty, P=1\}}}{1 - p_{\infty,1}(X)}\right]}\right) \left(\Delta Y - m_{\Delta}^{G=\infty, P=1}(X)\right)\right]$$

$$-\mathbb{E}\left[\left(\frac{\frac{1_{\{G=2,P=1\}}}{\mathbb{E}\left[1_{\{G=2,P=1\}}\right]} - \frac{p_{\infty,0}(X) \cdot 1_{\{G=\infty,P=0\}}}{1 - p_{\infty,0}(X) \cdot 1_{\{G=\infty,P=0\}}}\right) \left(\Delta Y - m_{\Delta}^{G=\infty,P=0}(X)\right)\right]$$

Simulations for T=2 with covariates

- For simplicity, we consider the scenario for panel data with T=2 and we have access to generic data $W=(W_1,W_2,W_3,W_4)'$.
- WLOG, consider that the *eligibity of treatment* is given by binary well-know criterion $P = \{0, 1\}$ and let $(g, \ell) \in \mathcal{S}_c := \{(\infty, 0), (\infty, 1), (2, 0)\}$ and $\mathcal{S} := \mathcal{S}_c \cup \{(2, 1)\}$.
- Since we have 4 partitions in the data, we can model the selection into treatment as multinomial logistic link function.
- Outcome process can be modeled as linear regression onto *W*.
- We consider 4 DGPs:
 - both models are correctly specified;
 - Only propensity score is correctly specified;
 - Only outcome model is correctly specified;
 - **both** models are wrong.
- We compare our DR DDD estimator with:
 - > 3WFE specification.
 - ▶ Difference between 2 Doubly Robust DiD (Sant'Anna & Zhao, 2020).

Results

	DGP 1: $\mathbb{E}\left[\eta_{\mathrm{eff}}(\mathit{W})^2\right] = 32.82$			DGP 2: $\mathbb{E}\left[\eta_{\mathrm{eff}}(\mathit{W})^2\right] = 32.52$			DGP 3: $\mathbb{E}\left[\eta_{\mathrm{eff}}(W)^2\right] = 32.82$			DGP 4: $\mathbb{E}\left[\eta_{\mathrm{eff}}(W)^2\right] = 32.52$		
	$\hat{\theta}_{ddd}$	$\hat{ heta}_{3wfe}$	$\hat{\theta}_{dr}$	$\hat{\theta}_{ddd}$	$\hat{ heta}_{ ext{3wfe}}$	$\hat{\theta}_{dr}$	$\hat{\theta}_{ddd}$	$\hat{ heta}_{ ext{3wfe}}$	$\hat{\theta}_{dr}$	$\hat{\theta}_{ddd}$	$\hat{ heta}_{3\mathit{wfe}}$	$\hat{\theta}_{dr}$
	n = 1000											
Bias	0.0007	-7.3298	-4.0199	-0.0029	-6.3178	-3.4484	0.0255	-3.8366	-1.9826	0.0421	-5.6247	-3.4447
RMSE	0.1823	8.4185	5.0331	0.1799	7.4545	4.5122	1.4384	5.1171	3.3235	1.4498	6.5893	4.3858
$\mathbb{E}[Var]$	43.5075	47341.2395		43.1213	47906.9263		2121.5766	45057.4548		2163.0339	45102.7697	
Cov. 95	0.9650	0.9240		0.9730	0.9550		0.9600	0.9970		0.9530	0.9860	
avg. length	0.8110	26.9471		0.8071	27.1033		5.7012	26.2999		5.7553	26.3134	
	n = 50000											
Bias	0.0008	-7.3101	-4.0285	0.0007	-6.2891	-3.4389	-0.0039	-3.9647	-2.1148	0.1039	-5.4834	-3.3654
RMSE	0.0257	7.3348	4.0522	0.0257	6.3154	3.4636	0.2011	3.9929	2.1469	0.2345	5.5038	3.3857
$\mathbb{E}[Var]$	34.3777	47502.9417		33.9857	48240.7801		2059.7784	45339.0209		2113.8460	45453.0303	
Cov. 95	0.9550	0.0000		0.9470	0.0000		0.9540	0.0000		0.9130	0.0000	
avg. length	0.1028	3.8208		0.1022	3.8503		0.7956	3.7328		0.8060	3.7375	

Monte Carlo Design

Since we have 4 partitions in the data, we consider the following PS using a multinomial logistic link function:

$$p^{G=g,P=\ell}(W) = \begin{cases} \frac{\exp\left(f_{p_s^g,\ell}(W)\right)}{1+\sum_{(g,\ell)\in\mathcal{S}_c}\exp\left(f_{p_s^g,\ell}(W)\right)}, & \text{if } (g,\ell)\in\mathcal{S}_c\\ \frac{1}{1+\sum_{(g,\ell)\in\mathcal{S}_c}\exp\left(f_{p_s^g,\ell}(W)\right)}, & \text{if } (g,\ell)=(2,1). \end{cases}$$

where,
$$f_{ps}^{g,\ell}(W) = \alpha_1^{g,\ell}W1 + \alpha_2^{g,\ell}W_2 + \alpha_3^{g,\ell}W_3 + \alpha_4^{g,\ell}W_4$$

Monte Carlo Design

Let $U \sim \text{Uniform } [0,1]$. The partition groups are assigned as follows

$$(g,\ell) := \begin{cases} (\infty,0), & \text{if } U \leqslant p^{G=\infty,P=0}(W), \\ (\infty,1), & \text{if } p^{G=\infty,P=0}(W) < U \leqslant p^{G=\infty,P=0}(W) + p^{G=\infty,P=1)}(W), \\ (2,0), & \text{if } p^{G=\infty,P=0}(W) + p^{G=\infty,P=1}(W) < U \leqslant 1 - p^{G=2,P=1}(W), \\ (2,1), & \text{if } 1 - p^{G=2,P=1}(W) < U. \end{cases}$$

For the Outcome Regression process, define

$$f_{reg,G=2}^{g,\ell}(W) = \beta_{11}^{g,\ell}W1 + \beta_{21}^{g,\ell}W_2 + \beta_{31}^{g,\ell}W_3 + \beta_{41}^{g,\ell}W_4, \forall (g,\ell) \in \{(2,\ell)\}$$

$$f_{reg,G=\infty}^{g,\ell}(W) = \beta_{10}^{g,\ell}W1 + \beta_{20}^{g,\ell}W_2 + \beta_{30}^{g,\ell}W_3 + \beta_{40}^{g,\ell}W_4, \forall (g,\ell) \in \{(\infty,\ell)\}$$

Let time-invariant unobserved heterogeneity be defined as $\nu(W,G,P) \sim N\left(f_{het}^{g,\ell}(W),1\right), \forall (g,\ell) \in \mathcal{S}$ where,

$$f_{het}^{g,\ell}(W) = 1_{\{G=2\}} \cdot 1_{\{P=1\}} \cdot f_{reg,G=2}^{g,\ell}(W) + (1 - 1_{\{G=2\}}) \cdot 1_{\{P=1\}} \cdot f_{reg,G=\infty}^{s,\ell}(W)$$

