

Topics

Machine learning motivation

Image classification via machine learning

- Approach
- ► How algorithms learn
- ightharpoonup Simple example : k nearest neighbors

Statistical learning theory

Hyperparameter selection

Let's build an image classifier

- ► Should support the classes {dog, cat}
- ▶ Using the CIFAR10 dataset

Image from cs.toronto.edu

How can we write an algorithm for this purpose?

Image from cs.toronto.edu

We cannot!

- ► No obvious unique and reliable features
- ▶ Not clear how to represent and use them

Image from cs.toronto.edu

We can classify images easily

But we cannot describe formally how to do so

► Thus the standard if {} else {} approach fails

This applies to most vision problems

Machine Learning (ML) to the rescue!

ML algorithms are able to learn from data

Learning from data

- ▶ Performance of algorithm improves with experience
- Algorithm improves as it sees more cat and dog images

ML is central in modern Computer Vision

DL is branch of ML

- ▶ Important ML concepts also apply to DL
- ▶ Why we review them in this lecture

Image Classification via ML Approach

Show (image, label) pairs to ML algorithm

Algorithm somehow learns to predict labels for unseen samples

Finite number of different labels

▶ We have a classification problem (vs. regression)

We have samples and target labels

► Called supervised learning (vs. unsupervised learning)

How Algorithms Learn

Images are points in D-dimensional space

- ► Stack image rows/columns to obtain vector x
- ▶ D is usually large (CIFAR10 : $D = 32 \cdot 32 \cdot 3 = 3072$)

Assuming D=2 and three classes (colors)

Image Classification via ML How Algorithms Learn – Discriminative

Discriminative models learn decision boundaries

Image from cs231n.github.io

Image Classification via ML How Algorithms Learn – Discriminative

Ideally such models are probabilistic

Measure of uncertainty

Let w encode the class label, e.g. $w \in \{\text{cat}, \text{dog}\}$

Such models compute $Pr(w|\mathbf{x})$

- ightharpoonup Conditional probability of w given \mathbf{x}
- Probability for every class given image x

Decision boundaries where $\arg\max_{w}\Pr(w|\mathbf{x})$ changes

Generative models learn class-conditional densities $\Pr(\mathbf{x}|w)$

Image Classification via ML How Algorithms Learn – Generative

Classification from $Pr(\mathbf{x}|w)$

- ▶ Compute $Pr(\mathbf{x}|w) Pr(w)$ for all w
- Assign class where product is maximal

Or to obtain $Pr(w|\mathbf{x})$

- ▶ Compute $Pr(\mathbf{x}|w) Pr(w)$ for all w
- Divide each product by sum over all products

 $\Pr(w)$ is fraction of training samples with class w

Image Classification via ML How Algorithms Learn – Generative

This is Bayes' rule in action

$$\Pr(w|\mathbf{x}) = \frac{\Pr(\mathbf{x}|w)\Pr(w)}{\Pr(\mathbf{x})} = \frac{\Pr(\mathbf{x}|w)\Pr(w)}{\sum_{w}\Pr(\mathbf{x},w)} = \frac{\Pr(\mathbf{x}|w)\Pr(w)}{\sum_{w}\Pr(\mathbf{x}|w)\Pr(w)}$$

Don't remember this stuff?

▶ See slide 21

Image Classification via ML

How Algorithms Learn – Generative

For example, assume that

- ► Classifier says $Pr(\mathbf{x}|\mathsf{cat}) = 0.03$ and $Pr(\mathbf{x}|\mathsf{dog}) = 0.022$
- We know that $Pr(\mathsf{cat}) = 0.4$ and $Pr(\mathsf{dog}) = 0.6$

We obtain

- $ightharpoonup \Pr(\mathbf{x}|\mathsf{cat}) \Pr(\mathsf{cat}) = 0.0120$
- $\Pr(\mathbf{x}|\mathsf{dog}) \ \Pr(\mathsf{dog}) = 0.0132$
- $ightharpoonup \Pr(\mathsf{cat}|\mathbf{x}) = 0.48 \text{ and } \Pr(\mathsf{dog}|\mathbf{x}) = 0.52$

So we cannot be sure whether image shows cat or dog

Image Classification via ML How Algorithms Learn

Discriminative models are more popular

► CNNs are discriminative and probabilistic

Different discriminate models/algorithms differ in

- ► Decision boundary properties (e.g. linear)
- How boundaries are computed

Image Classification via ML How Algorithms Learn

Models vs. algorithms

- Model specifies boundary properties
- Algorithm specifies how to compute boundaries

Linear SVMs and logistic regression are both linear models

But training and prediction algorithms differ

In practice, both terms often used interchangeably

Image Classification via ML How Algorithms Learn

See "Computer Vision Models" book for details

- ► Available at computervisionmodels.com
- Highly recommended

Image Classification via ML k Nearest Neighbors

Simple ML algorithm

Simply store the training set (images as vectors $\boldsymbol{x})$

Classify new image using labels of \boldsymbol{k} nearest training samples

Need distance measure between two images x_1, x_2

L1 distance :
$$\sum_{i=1}^{D} \left| x_i^1 - x_i^2 \right|$$

L2 (Euclidean) distance :
$$\sum_{i=1}^{D} \sqrt{\left(x_i^1 - x_i^2\right)^2}$$

Image Classification via ML k Nearest Neighbors

Resulting cat vs. dog classifier

Algorithm Performance

Performance Measures

Looks like our classifier does not work so well

How can we quantify algorithm performance?

Need a suitable performance measure

Algorithm Performance

Performance Measures

Accuracy is popular for classification

- ► Let algorithm predict labels for dataset
- ► Compare predictions and true (ground truth) labels
- Accuracy is fraction of correctly classified samples

Measure 1 - accuracy is called error rate

Algorithm Performance Training and Test Sets

What happens if we test on training data with k=1?

Must test algorithm on data unseen during training!

- ▶ Want to assess its ability to generalize to unseen data
- Indicates how well it will perform in real world

Need two disjoint datasets

- ► Training set for learning
- ► Test set for assessing performance

Algorithm Performance

Training and Test Sets

How can this even work?

- ▶ We show the algorithm some data
- ▶ It should then perform well on different data

Proper training and test sets are highly correlated

- ▶ Both reflect problem we want to solve
- Implies relationship between training and test accuracy

Samples of both sets generated by same underlying distribution

So sets also have similar distribution

In our case, the underlying distribution

- ▶ Is distribution of *all* images that capture problem
- ► All possible cat and dog images (of certain size)

We clearly don't know how this distribution looks like

- But we can sample from this distribution
- By taking photos of cats and dogs

Can only collect so many samples

- ► Distributions more or less dissimilar
- ► Test error equal or greater than training error

Distributions of sets dissimilar to underlying distribution

- ▶ Problem known as dataset bias
- ▶ Test set performance generally upper bound

Two factors determine algorithm performance

- Ability to minimize training error
- Ability to minimize gap between training and test error

Related to two main challenges in ML

- Unable to reach low training error (underfitting)
- ► Gap between training and test error too large (overfitting)

Must select suitable algorithm capacity

▶ Ability to compute complex decision boundaries

Lower capacity

- May struggle to fit the training set (higher bias)
- More prone to underfitting, less prone to overfitting

Higher capacity

- May fit the training set too well (higher variance)
- Less prone to underfitting, more prone to overfitting

Test (generalization) error usually U-shaped function of capacity

▶ Decreases until some point, then increases again

Increasing training set size

- ▶ Increases performance as data reflect problem better
- Increases optimal capacity until adequate for problem

Image adapted from [1]

Hyperparameter Selection

k Nearest Neighbors

Capacity governed by \boldsymbol{k}

Hyperparameter Selection

Validation Sets

k is a hyperparameter

Manually set, controls algorithm behavior

How should we set k?

- Depending on data, different k work best
- Must find good choice experimentally

For this purpose we

- Use part of training set as validation set
- ▶ Use this set to see how different k perform

Hyperparameter Selection

Validation set is split away from training set

▶ Never use test set during training!

Usually 10% to 30% of training data used for validation

▶ Depends on dataset size, number of hyperparameters

Alternatively we can use cross-validation

Usually not done in DL (takes too long)

Hyperparameter Selection Validation Sets

We thus need three disjoint datasets

Hyperparameter Selection Search Strategies

We cannot test all hyperparameter combinations

- ▶ Testing one combination can take long
- Number blows up if we have several hyperparameters
- Large and/or continuous intervals

Use an approximative search strategy

- ► Grid search
- ► Random search

Hyperparameter Selection Search Strategies – Grid Search

For each hyperparameter

- ► Define search interval
- ► Sample from interval (often uniformly)

Test all sample combinations

(Repeat with smaller intervals based on previous results)

Hyperparameter Selection Search Strategies – Random Search

Define search interval for each hyperparameter

For each trial

- Randomly sample value from each interval
- ► Test sample combination

Hyperparameter Selection Search Strategies

Random search usually works better

▶ Wastes less time on unimportant hyperparameters

Bibliography

- [1] C. M. Bishop, Pattern recognition, , 2006.
- [2] I. Goodfellow, Y. Bengio, and A. Courville, *Deep learning*, 2016.
- [3] J. Bergstra and Y. Bengio, *Random search for hyper-parameter optimization*, Journal of Machine Learning Research, 2012.