

Page 1 of 93

APPLICATION CERTIFICATION On Behalf of SHENZHEN FORTAT SKYMARK TECHNOLOGY CO. LTD

Bluetooth Speaker Model No.: MK-SPB11-BC8, MK-SPB11-BP8, MK-SPB11-TPC

FCC ID: 2AD8S-MKSPB11BC8

Prepared for : SHENZHEN FORTAT SKYMARK TECHNOLOGY

CO. LTD

Address : NO. 1, DUNBEI INDUSTRIAL AREA, LONGHUA

DISTRICT, SHENZHEN, CHINA

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A, Chan Yuan New Material Port, Keyuan

Rd. Science & Industry Park, Nan Shan, Shenzhen,

Guangdong P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20150279

Date of Test : Feb 04, 2015-Feb 10, 2015

Date of Report : Feb 10, 2015

Report No.: ATE20150279 Page 2 of 93

TABLE OF CONTENTS

Descri	iption	Page
Test R	Report Certification	
	-	_
	ENERAL INFORMATION	
1.1.	Description of Device (EUT)	
1.2. 1.3.	Description of Test Facility	
	EASURING DEVICE AND TEST EQUIPMENT	
3. O	PERATION OF EUT DURING TESTING	
3.1.	Operating Mode	
3.2.	Configuration and peripherals	
4. TI	EST PROCEDURES AND RESULTS	9
5. 20	DDB BANDWIDTH TEST	
5.1.	Block Diagram of Test Setup	
5.2.	The Requirement For Section 15.247(a)(1)	
5.3.	EUT Configuration on Measurement	10
5.4.	Operating Condition of EUT	
5.5.	Test Procedure	
5.6.	Test Result	
6. C	ARRIER FREQUENCY SEPARATION TEST	
6.1.	Block Diagram of Test Setup	
6.2.	The Requirement For Section 15.247(a)(1)	
6.3.	EUT Configuration on Measurement	
6.4.	Operating Condition of EUT	
6.5. 6.6.	Test Procedure Test Result	
	UMBER OF HOPPING FREQUENCY TEST	
7.1.	Block Diagram of Test Setup	
7.2. 7.3.	The Requirement For Section 15.247(a)(1)(iii)	
7.3. 7.4.	Operating Condition of EUT	
7. - . 7.5.	Test Procedure	
7.6.	Test Result	
8. D'	WELL TIME TEST	26
8.1.	Block Diagram of Test Setup.	
8.2.	The Requirement For Section 15.247(a)(1)(iii)	
8.3.	EUT Configuration on Measurement	
8.4.	Operating Condition of EUT	
8.5.	Test Procedure	26
8.6.	Test Result	
9. M	AXIMUM PEAK OUTPUT POWER TEST	42
9.1.	Block Diagram of Test Setup	
9.2.	The Requirement For Section 15.247(b)(1)	42
9.3.	EUT Configuration on Measurement	42

Test Result43

9.4.

9.5.9.6.

10. RA	ADIATED EMISSION TEST	49
10.1.	Block Diagram of Test Setup	49
10.2.	The Limit For Section 15.247(d)	49
10.3.	Restricted bands of operation	50
10.4.	Configuration of EUT on Measurement	
10.5.	Test Procedure	
10.6.	The Field Strength of Radiation Emission Measurement Results	51
11. BA	AND EDGE COMPLIANCE TEST	64
11.1.	Block Diagram of Test Setup	64
11.2.	The Requirement For Section 15.247(d)	
11.3.	EUT Configuration on Measurement	64
11.4.	Operating Condition of EUT	64
11.5.	Test Procedure	65
11.6.	Test Result	65
12. AC	C POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 1	5.207(A)88
12.1.	Block Diagram of Test Setup	88
12.2.	Shielding Room Test Setup Diagram	
12.3.	The Emission Limit	
12.4.	Configuration of EUT on Measurement	
12.5.	Operating Condition of EUT	
12.6.	Test Procedure	89
12.7.	Power Line Conducted Emission Measurement Results	89
13. AN	TENNA REQUIREMENT	93
13.1.	The Requirement	
13.2	Antenna Construction	03

Page 4 of 93

Test Report Certification

Applicant& address

SHENZHEN FORTAT SKYMARK TECHNOLOGY CO. LTD NO. 1, DUNBEI INDUSTRIAL AREA, LONGHUA DISTRICT,

SHENZHEN, CHINA

Manufacturer& address

Data of Toot

er&: SHENZHEN FORTAT SKYMARK TECHNOLOGY CO. LTD NO. 1, DUNBEI INDUSTRIAL AREA,LONGHUA DISTRICT.

SHENZHEN, CHINA

Product : Bluetooth Speaker

Model No. : MK-SPB11-BC8, MK-SPB11-BP8, MK-SPB11-TPC

(Note: These samples are same except for the model number is different for the

marketing requirement. So we prepare the MK-SPB11-BC8 for test.)

Trade name : MERKURY

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4- 2009

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Fab 04 2045 Fab 40 2045

Date of Test.	reb 04, 2015-reb 10, 2015
Date of Report :	Feb 10, 2015
Prepared by :	7 in Zhang
	(Tim.zhang, Engineer)
	6. 1.

Approved & Authorized Signer : _____ (Sean Liu, Manager)

Page 5 of 93

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Bluetooth Speaker

Model Number : MK-SPB11-BC8, MK-SPB11-BP8, MK-SPB11-TPC

Frequency Band : 2402MHz-2480MHz

Number of Channels : 79

Modulation type : GFSK, $\Pi/4$ -DQPSK, 8DPSK

Antenna Gain : -0.68 dBi

Bluetooth version : Bluetooth V2.1+EDR

Antenna type : PCB Antenna

Power Supply : DC3.7V(Lithium ion battery) &

DC 5V(Powered by USB Port)

Applicant : SHENZHEN FORTAT SKYMARK TECHNOLOGY CO.

LTD

Address : NO. 1, DUNBEI INDUSTRIAL AREA,LONGHUA

DISTRICT, SHENZHEN, CHINA

Manufacturer : SHENZHEN FORTAT SKYMARK TECHNOLOGY CO.

LTD

Address : NO. 1, DUNBEI INDUSTRIAL AREA, LONGHUA

DISTRICT, SHENZHEN, CHINA

Date of sample received: Feb 04, 2015

Date of Test : Feb 04, 2015-Feb 10, 2015

Page 6 of 93

1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

ATC

Report No.: ATE20150279 Page 7 of 93

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 11, 2015	Jan. 10, 2016
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 11, 2015	Jan. 10, 2016
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2015	Jan. 10, 2016
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 11, 2015	Jan. 10, 2016
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2015	Jan. 14, 2016
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2015	Jan. 14, 2016
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2015	Jan. 14, 2016
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1067	Jan. 15, 2015	Jan. 14, 2016
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 11, 2015	Jan. 10, 2016
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 11, 2015	Jan. 10, 2016
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 11, 2015	Jan. 10, 2016
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 11, 2015	Jan. 10, 2016

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

3.2. Configuration and peripherals

(EUT: Bluetooth Speaker)

Note: USB port of EUT is only used to charge, there is no data transfer function

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Power Line Conducted Emission	Compliant
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.203	Antenna Requirement	Compliant

Page 10 of 93

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

5.5.Test Procedure

- 5.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz.
- 5.5.3.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.6.Test Result

	Emagyamay	GFSK	∏/4-DQPSK	8DPSK	
Channel	Frequency (MHz)	20dB Bandwidth	20dB Bandwidth	20dB Bandwidth	Result
	(IVIIIZ)	(MHz)	(MHz)	(MHz)	
Low	2402	0.975	1.285	1.256	Pass
Middle	2441	0.897	1.274	1.268	Pass
High	2480	0.929	1.274	1.256	Pass

The spectrum analyzer plots are attached as below.

Mode 1: GFSK Link Mode

Date: 6.Feb.2015 16:35:21

Date: 6.Feb.2015 16:36:19

Date: 6.Feb.2015 16:37:34

Mode 2: $\pi/4$ DQPSK Link Mode

Date: 6.Feb.2015 16:43:22

Date: 6.Feb.2015 16:42:18

High Channel: 2480MHz Spectrum Ref Level 20.00 dBm Offset 0.50 dB • RBW 30 kHz 30 dB SWT 63.1 µs 🍅 **VBW** 100 kHz Mode Auto FFT ●1Pk Max M1[1] -1.55 dBn 2.47997680 GHz 10 dBm ndB 20.00 dB 1.273500000 MHz Bw 0 dBm Q factor 1947.3 -10 dBm -20 dBm -30 dBm 40 dBri -50 dBm--60 dBm -70 dBm-Span 2.0 MHz CF 2.48 GHz 691 pts Marker Type | Ref | Trc Stimulus Response Function **Function Result** 2.4799768 GHz 2.479343 GHz 1.2735 MHz M1 T1 -1.55 dBm -21.59 dBm ndB down 20.00 dB ndB

Measuring...

Date: 6.Feb.2015 16:40:49

Mode 3: 8DPSK Link Mode

Date: 6.Feb.2015 16:44:55

Date: 6.Feb.2015 16:46:20

Date: 6.Feb.2015 16:47:24

Page 16 of 93

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

6.5. Test Procedure

- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- $6.5.2. Set\ RBW$ of spectrum analyzer to $100\ kHz$ and VBW to $300\ kHz.$ Adjust Span to $3\ MHz.$
- 6.5.3.Set the adjacent channel of the EUT maxhold another trace.
- 6.5.4. Measurement the channel separation

6.6.Test Result

GFSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.0058	25KHz or 20dB	PASS
Low	2403	1.0038	bandwidth	rass
Middle	2440	1.0029	25KHz or20dB	PASS
Middle	2441	1.0029	bandwidth	TASS
High	2479	1.0029	25KHz or 20dB	PASS
	2480	1.0029	bandwidth	LASS

∏/4-DQPSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.0029	25KHz or 2/3*20dB	PASS
Middle	2403 2440	1.0029	bandwidth 25KHz or 2/3*20dB	PASS
Middle	2441	1.0029	bandwidth	PASS
High	2479 2480	1.0029	25KHz or 2/3*20dB bandwidth	PASS

8DPSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.0029	25KHz or 2/3*20dB	PASS
Low	2403	1.0029	bandwidth	rass
Middle	2440	1.0029	25KHz or 2/3*20dB	PASS
Middle	2441	1.0029	bandwidth	rass
High	2479	1.0029	25KHz or 2/3*20dB	PASS
	2480	1.0029	bandwidth	rass

The spectrum analyzer plots are attached as below.

Mode 1: GFSK Link Mode

Date: 6.Feb.2015 17:12:44

Date: 6.Feb.2015 17:13:21

High Channel: 2480MHz \blacksquare Spectrum **Offset** 0.50 dB **● RBW** 100 kHz **SWT** 18.9 µs **● VBW** 300 kHz Ref Level 20.00 dBm Mode Auto FFT 30 dB Att ●1Pk Max D2[1] 1.00290 MHz -1.22 dBm -M1[1] 10 dBm 2.47897900 GHz 0 dBm 10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Span 3.0 MHz CF 2.4795 GHz 691 pts

Measuring...

Date: 6.Feb.2015 17:13:59

Mode 2: π /4 DQPSK Link Mode

Date: 6.Feb.2015 17:10:06

Date: 6.Feb.2015 17:09:27

Date: 6.Feb.2015 17:08:33

Page 21 of 93

Mode 3: 8DPSK Link Mode

Date: 6.Feb.2015 17:06:10

Date: 6.Feb.2015 17:07:04

Date: 6.Feb.2015 17:07:48

Report No.: ATE20150279 Page 23 of 93

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5.Test Procedure

- 7.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=83.5MHz, RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)
hopping channel	79	≥15

The spectrum analyzer plots are attached as below.

Number of hopping channels(GFSK)

Date: 6.Feb.2015 17:11:55

Date: 6.Feb.2015 17:04:26

Number of hopping channels(8DPSK)

Date: 6.Feb.2015 17:11:09

Page 26 of 93

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

8.5. Test Procedure

- 8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time.

Report No.: ATE20150279 Page 27 of 93

8.5.4.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

GFSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
	2402	0.5362	171.58	400	
DH1	2441	0.5290	169.28	400	
	2480	0.5362	171.58	400	
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pu	alse time \times (1600/(2*)	79))×31.6	
	2402	1.8261	292.18	400	
DH3	2441	1.8116	289.86	400	
	2480	1.8116	289.86	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pt	alse time \times (1600/(4*)	79))×31.6	
	2402	3.0725	327.73	400	
DH5	2441	3.0725	327.73	400	
	2480	3.0725	327.73	400	
A period transr	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

$\Pi/4$ -DQPSK

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
	2402	0.5507	176.22	400	
DH1	2441	0.5507	176.22	400	
	2480	0.5435	173.92	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pt	alse time \times (1600/(2*)	79))×31.6	
	2402	1.8261	292.18	400	
DH3	2441	1.8261	292.18	400	
	2480	1.8043	288.69	400	
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pt	alse time \times (1600/(4*)	79))×31.6	
	2402	3.0435	324.64	400	
DH5	2441	3.0652	326.95	400	
	2480	2.9783	317.69	400	
A period transr	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

8DPSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
DH1	2402	0.5435	173.92	400
	2441	0.5435	173.92	400
	2480	0.5435	173.92	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$				
DH3	2402	1.8188	291.01	400
	2441	1.8188	291.01	400
	2480	1.8188	291.01	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$				
DH5	2402	3.0797	328.50	400
	2441	3.0580	326.19	400
	2480	3.0797	328.50	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

The spectrum analyzer plots are attached as below.

Date: 6.Feb.2015 17:17:31

Page 29 of 93

Date: 6.Feb.2015 17:16:42

Date: 6.Feb.2015 10:52:51

Page 30 of 93

Date: 6.Feb.2015 17:18:35

Date: 6.Feb.2015 17:19:27

Date: 6.Feb.2015 17:20:10

Date: 6.Feb.2015 17:22:24

Date: 6.Feb.2015 17:21:42

Date: 6.Feb.2015 17:21:05

Page 33 of 93

Date: 6.Feb.2015 17:29:05

Date: 6.Feb.2015 17:29:38

Date: 6.Feb.2015 17:30:15

Date: 6.Feb.2015 17:27:43

2DH3 Middle channel

Date: 6.Feb.2015 17:26:58

2DH3 High channel

Date: 6.Feb.2015 17:26:13

Page 36 of 93

Date: 6.Feb.2015 11:01:07

Date: 6.Feb.2015 10:59:49

Date: 6.Feb.2015 10:58:57

Date: 6.Feb.2015 17:32:16

3DH1 Middle channel

Date: 6.Feb.2015 17:31:38

3DH1 High channel

Date: 6.Feb.2015 17:31:01

Page 39 of 93

Date: 6.Feb.2015 17:33:04

Date: 6.Feb.2015 17:33:38

Date: 6.Feb.2015 17:34:16

Date: 6.Feb.2015 17:36:56

1.5 ms/

3DH5 Middle channel Spectrum Ref Level 20.00 dBm Offset 0.50 dB 🖷 RBW 1 MHz 15 ms 🅌 **VBW** 3 MHz Att 30 dB 🅌 SWT SGL ●1AP Clrw D2[1] -1.10 dB 3.0580 ms 10 dBm-M1[1] -54.30 dBm 5.2246 m -40 d<mark>B</mark>m -50 d<mark>B</mark>m -60 d -70 di

691 pts

Date: 6.Feb.2015 17:36:20

CF 2.441 GHz

Date: 6.Feb.2015 17:35:41

Report No.: ATE20150279

Page 42 of 93

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz for GFSK mode
- 9.5.3.Set RBW of spectrum analyzer to 3MHz and VBW to 3MHz for other mode
- 9.5.4. Measurement the maximum peak output power.

Report No.: ATE20150279

Page 43 of 93

9.6.Test Result

GFSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W		
Low	2402	2.31/0.0017	30 / 1.0		
Middle	2441	1.65/0.0015	30 / 1.0		
High	2480	-1.02/0.0008	30 / 1.0		

Π /4-DQPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W		
Low	2402	1.98/0.0016	21 / 0.125		
Middle	2441	1.23/0.0013	21 / 0.125		
High	2480	-0.45/0.0009	21 / 0.125		

8DPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W			
Low	2402	2.11/0.0016	21 / 0.125			
Middle	2441	1.42/0.0014	21 / 0.125			
High	2480	-0.24/0.0009	21 / 0.125			

The spectrum analyzer plots are attached as below.

GFSK Mode

Low channel

Date: 6.Feb.2015 16:54:00

Middle channel

Date: 6.Feb.2015 16:53:28

High channel

Date: 6.Feb.2015 16:52:59

\prod /4-DQPSK Mode

Low channel

Date: 6.Feb.2015 16:50:45

_ _ _ _

Date: 6.Feb.2015 16:51:13

High channel

Date: 6.Feb.2015 16:52:02

Page 47 of 93

8DPSK Mode

Low channel

Date: 6.Feb.2015 16:49:57

Middle channel

Date: 6.Feb.2015 16:49:21

High channel

Date: 6.Feb.2015 16:48:43

10. RADIATED EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and simulators

(EUT: Bluetooth Speaker)

10.1.2. Anechoic Chamber Test Setup Diagram

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

Report No.: ATE20150279 Page 50 of 93

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	$(^2)$	
13.36-13.41				

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Report No.: ATE20150279

Page 51 of 93

10.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The frequency range from 30MHz to 25000MHz is checked.

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

10.6. The Field Strength of Radiation Emission Measurement Results

Note: 1.We tested GFSK mode, $\Pi/4$ -DQPSK Mode & 8DPSK mode and recorded the worst case data (GFSK mode) for all test mode.

2. The 18-25GHz emissions are not reported, because the levels are too low against the limit.

Report No.: ATE20150279 Page 52 of 93

Below 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Tel:+86-0755-26503290 Fax:+86-0755-26503396

Site: 1# Chamber

Job No.: Ricky2015 #194 Polarization
Standard: FCC Class B 3M Radiated Power So

Test item: Radiation Test
Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

Mode: TX 2402MHz
Model: MK-SPB11-BC8

Manufacturer: FORTAT SKYMARK

Note: Report No.:ATE20150279

Polarization: Horizontal Power Source: DC 5V

Date: 2015/02/08 Time: 13:42:51

Engineer Signature: STAR

Report No.: ATE20150279

Page 53 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Ricky2015 #195

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

Mode: TX 2402MHz MK-SPB11-BC8 Model:

Manufacturer: FORTAT SKYMARK

Note: Report No.:ATE20150279

Polarization: Vertical Power Source: DC 5V

Date: 2015/02/08 Time: 13:44:37

Engineer Signature: STAR

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20150279

Page 54 of 93

Job No.: Ricky2015 #198

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

Mode: TX 2441MHz Model: MK-SPB11-BC8

Manufacturer: FORTAT SKYMARK

Note: Report No.:ATE20150279

Polarization: Horizontal Power Source: DC 5V

Date: 2015/02/08 Time: 13:50:19

Engineer Signature: STAR

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Vertical

Distance: 3m

Report No.: ATE20150279

Page 55 of 93

Job No.: Ricky2015 #197 Polarization:
Standard: FCC Class B 3M Radiated Power Source

Standard: FCC Class B 3M Radiated Power Source: DC 5V
Test item: Radiation Test Date: 2015/02/08
Temp.(C)/Hum.(%) 25 C / 55 % Time: 13:49:22

EUT: Bluetooth Speaker Engineer Signature: STAR

Mode: TX 2441MHz
Model: MK-SPB11-BC8

Note: Report No.:ATE20150279

Manufacturer: FORTAT SKYMARK

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20150279

Page 56 of 93

Job No.: Ricky2015 #199

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

Mode: TX 2480MHz Model: MK-SPB11-BC8

Manufacturer: FORTAT SKYMARK

Note: Report No.:ATE20150279

Polarization: Horizontal

Power Source: DC 5V

Date: 2015/02/08 Time: 13:51:41

Engineer Signature: STAR

Report No.: ATE20150279 Page 57 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Ricky2015 #200

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

Mode: TX 2480MHz
Model: MK-SPB11-BC8

Manufacturer: FORTAT SKYMARK

Note: Report No.:ATE20150279

Polarization: Vertical Power Source: DC 5V Date: 2015/02/08 Time: 13:52:37

Engineer Signature: STAR

Report No.: ATE20150279 Page 58 of 93

Site: 1# Chamber Tel:+86-0755-26503290

Above 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

n,P.R.China Fax:+86-0755-26503396
Polarization: Horizontal

Power Source: DC 5V Date: 2015/02/08
Time: 9/39/04

Engineer Signature:
Distance: 3m

Job No.: alen #3597 Standard: FCC 3M Radiated Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Bluetooth Speaker

Mode: TX 2402MHz Model: MK-SPB11-BC8

Manufacturer: FORTAT SKYMARK

Note: Report No.:ATE20150279

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2401.753	96.29	-6.76	89.53	114.00	35.53	peak			
2	2401.753	90.02	-6.76	83.26	94.00	29.26	peak			
3	4804.110	54.51	-1.59	52.92	54.00	-1.08	peak			
4	11735.245	42.89	6.25	49.14	54.00	-4.86	peak			

ACCURATE TECHNOLOGY CO., LTD.

Report No.: ATE20150279 Page 59 of 93

Job No.: alen #3596 Standard: FCC 3M Radiated Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Bluetooth Speaker

Mode: TX 2402MHz Model: MK-SPB11-BC8

Manufacturer: FORTAT SKYMARK

Note: Report No.:ATE20150279 Polarization: Vertical

Power Source: DC 5V

Date: 2015/02/08 Time: 9/37/17

Engineer Signature: Distance: 3m

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20150279

Page 60 of 93

Job No.: alen #3598 Polarization: Horizontal Standard: FCC 3M Radiated Power Source: DC 5V

Test item: Radiation Test Date: 2015/02/08

Temp.(C)/Hum.(%) 25 C / 55 % Time: 9/42/01

EUT: Bluetooth Speaker Engineer Signature:

Mode: TX 2441MHz Model: MK-SPB11-BC8

Manufacturer: FORTAT SKYMARK

Note: Report No.:ATE20150279

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2440.751	99.30	-6.64	92.66	114.00	38.66	peak			
2	2440.751	93.01	-6.64	86.37	94.00	32.37	peak			
3	4888.151	53.33	-1.33	52.00	54.00	-2.00	peak			
4	11803.280	43.28	6.32	49.60	54.00	-4.40	peak			