

Table of Contents

1
 1
 2
 2
 2
 4
 5

Capítulo 1. Introducción.

Sobre el libro

Este es un curso para principiantes así que intentaré que no haga falta ningún conocimiento anterior para seguirlo. Muchos otros cursos suponen conocimientos previos pero voy a intentar que eso no suceda aquí. NOTA IMPORTANTE: Si te pierdes no te desanimes, ponte en contacto conmigo y consúltame (al final del libro tienes varias formas para contactarme). Puede que alguna sección esté mal explicada. De esta forma estarás colaborando a mejorar el libro.

Cómo resolver tus dudas

En la última sección del libro podrás encontrar varias formas de contactar conmigo (email, Twitter, mi blog, etc).

El lenguaje C

El lenguaje C es uno de los más rápidos y potentes que hay hoy en día. Hay quien dice que está desfasado. No se si tendrá futuro pero está claro que presente si tiene. No hay más que decir que el sistema operativo Linux está desarrollado en C en su práctica totalidad. Así que creo que no sólo no perdemos nada aprendiéndolo sino que ganamos mucho. Para empezar nos servirá como base para aprender C++ e introducirnos en el mundo de la programación Windows. Si optamos por Linux existe una biblioteca llamada gtk (o librería, como prefieras) que permite desarrollar aplicaciones estilo Windows con C.

No debemos confundir C con C, que no son lo mismo. Se podría decir que C es una extensión de C. Para empezar en C conviene tener una sólida base de C. Existen otros lenguajes como Visual Basic que son muy sencillos de aprender y de utilizar. Nos dan casi todo hecho. Pero cuando queremos hacer algo complicado o que sea rápido debemos recurrir a otros lenguajes (C, Delphi,...).

Peculiaridades de C

Una de las cosas importantes de C que debes recordar es que es Case Sensitive (sensible a las mayúsculas o algo así). Es decir que para C no es lo mismo escribir Printf que printf. Conviene indicar también que las instrucciones se separan por ";".

Compiladores de C

Un compilador es un programa que convierte nuestro código fuente en un programa ejecutable (me imagino que la mayoría ya lo sabéis pero más vale asegurar). El ordenador trabaja con 0 y 1. Si escribiéramos un programa en el lenguaje del ordenador nos volveríamos locos. Para eso están lenguajes como el C. Nos permiten escribir un programa de manera que sea fácil entenderlo por una persona (el código fuente). Luego es el compilador el que se encarga de convertirlo al complicado idioma de un ordenador.

En la practica a la hora de crear un programa nosotros escribimos el código fuente, en nuestro caso en C, que normalmente será un fichero de texto normal y corriente que contiene las instrucciones de nuestro programa. Luego se lo pasamos al compilador y este se encarga de convertirlo en un programa.

Si tenemos el código fuente podemos modificar el programa tantas veces como queramos (sólo tenemos que volver a compilarlo), pero si tenemos el ejecutable final no podremos cambiar nada (realmente sí se puede pero es mucho más complicado y requiere más conocimientos).

Existen multitud de compiladores. Yo suelo recomendar el Geany y Code::Blocks, que tiene versiones tanto para Linux como para Windows. Estos programas usa el compilador GNU GCC (http://gcc.gnu.org) y se pueden descargar aquí:

- Geany http://www.geany.org/
- Code::Blocks http://www.codeblocks.org/

Nota: Cuando comencé a escribir el curso solía usar el DJGPP en Windows, sin embargo, ahora me decanto más bien por el Geany por la comodidad y facilidad que supone para los principiantes.

El editor de código fuente

El compilador en sí mismo sólo es un programa que traduce nuestro código fuente y lo convierte en un ejecutable. Para escribir nuestros programas necesitamos un editor. La mayoría de los compiladores al instalarse incorporan ya un editor; es el caso de los conocidos Turbo C, Borland C, Code::Blocks, Visual C++,... Pero otros no lo traen por defecto. No debemos confundir por tanto el editor con el compilador. Estos editores suelen tener unas características que nos facilitan mucho el trabajo: permiten compilar y ejecutar el programa directamente, depurarlo (corregir errores), gestionar complejos proyectos, etc. Si nuestro compilador no trae editor la solución más simple usar un editor de texto plano (sin formato).

IDE: Entorno de desarrollo integrado

Para la comodidad de los desarrolladores se crearon lo que se llaman Entornos de Desarrollo Integrado (en inglés IDE). Un IDE es un software que incluye todo lo necesario para la programación: un compilador (con todos sus programas accesorios), un editor con herramientas que ayudan en la creación de programas, un depurador para buscar errores, etc... Es la solución más completa y recomendada. Existen multitud de IDE que puedes utilizar. Geany y Code::Blocks anteriormente mencionados son muy recomendables en entornos MS Windows, para Linux tenemos montones de opciones, como el Geany, Anjuta o el Kdevelop.

El primer programa: Hola Mundo

En un alarde de originalidad vamos a hacer nuestro primer programa: hola mundo. Nadie puede llegar muy lejos en el mundo de la programación sin haber empezado su carrera con este original y funcional programa. Allá va: #include <stdio.h>

int main() { /* Aquí va el cuerpo del programa */ printf("Hola mundo\n"); return 0; }

Nota: Hay mucha gente que programa en Windows que se queja de que cuando ejecuta el programa no puede ver el resultado. Para evitarlo se puede añadir antes de return 0; la siguiente línea:

```
system("PAUSE");
```

Si esto no funciona prueba a añadir getch();

Otra nota: En compiladores MS Windows, para poder usar la función system() debes añadir al principio del fichero la línea:

#include <windows.h>

¿Qué fácil eh? Este programa lo único que hace es sacar por pantalla el mensaje:

Hola mundo

Vamos ahora a comentar el programa línea por línea (Esto no va a ser más que una primera aproximación).

#include <stdio.h>

#include es lo que se llama una directiva. Sirve para indicar al compilador que incluya otro archivo. Cuando en compilador se encuentra con esta directiva la sustituye por el archivo indicado. En este caso es el archivo stdio.h que es donde está definida la función printf, que veremos luego.

int main()

Es la función principal del programa. Todos los programas de C deben tener una función llamada main. Es la que primero se ejecuta. El int (viene de Integer=Entero) que tiene al principio significa que cuando la función main acabe devolverá un número entero. Este valor se suele usar para saber cómo ha terminado el prorama. Normalmente este valor será 0 si todo ha ido bien, o un valor distinto si se ha producido algún error (pero esto lo decidimos nosotros, ya lo veremos). De esta forma si nuestro programa se ejecuta desde otro el programa *padre* sabe como ha finalizado, si ha habido errores o no. Se puede usar la definición *void main()*, que no necesita devolver ningún valor, pero se recomienda la forma con *int* que es más correcta. Es posible que veas muchos ejemplos que uso *void main* y en los que falta el return 0; del final; el código funciona correctamente pero puede dar un *warning* (un aviso) al compilar dado que no es una práctica correcta.

{

Son las llaves que indican, entre otras cosas, el comienzo de una función; en este caso la función main.

/* Aquí va el cuerpo del programa */

Esto es un comentario, el compilador lo ignorará. Sirve para describir el programa a otros desarrolladores o a nosotros mismos para cuando volvamos a ver el código fuente dentro de un tiempo. Conviene acostumbrarse a comentar los programas pero sin abusar de ellos (ya hablaremos sobre esto más adelante). Los comentarios van encerrados entre /* y */.

Un comentario puede ocupar más de una línea. Por ejemplo el comentario:

```
/* Este es un comentario que ocupa dos filas */
```

es perfectamente válido.

```
printf("Hola mundo\n");
```

Aquí es donde por fin el programa hace algo que podemos ver al ejecutarlo. La función printf muestra un mensaje por la pantalla.

Al final del mensaje "Hola mundo" aparece el símbolo |n|; este hace que después de imprimir el mensaje se pase a la línea siguiente. Por ejemplo:

```
printf( "Hola mundo\nAdiós mundo" );
```

mostrará:

Hola mundo Adiós mundo

Fíjate en el ";" del final. Es la forma que se usa en C para separar una instrucción de otra. Se pueden poner varias en la misma línea siempre que se separen por el punto y coma.

```
return 0;
```

Como he indicado antes el programa al finalizar develve un valor entero. Como en este programa no se pueden producir errores (nunca digas nunca jamás) la salida siempre será 0. La forma de hacer que el programa devuelva un 0 es usando return. Esta línea significa 'finaliza la función main haz que devuelva un 0.

}

...y cerramos llaves con lo que termina el programa. Todos los programas finalizan cuando se llega al final de la función main.

¿Cómo se hace?

Primero debemos crear el código fuente del programa. Para nuestro primer programa el código fuente es el del listado anterior. Arranca tu compilador de C, sea cual sea. Crea un nuevo fichero y copia el código anterior. Llámalo por ejemplo primero.c. Ahora, tenemos que compilar el programa para crear el ejecutable. Si estás usando un IDE busca una opción llamada "compile", o make, build o algo así. Si estamos usando GCC sin IDE tenemos que llamarlo desde la línea de comando:

gcc primero.c -o primero

Nota adicional sobre los comentarios

Los comentarios se pueden poner casi en cualquier parte. Excepto en medio de una instrucción. Por ejemplo lo siguiente no es válido:

```
pri/* Esto es un comentario */ntf( "Hola mundo" );
```

No podemos cortar a printí por en medio, tendríamos un error al compilar. Lo siguiente puede no

```
dar un error, pero es una fea costumbre:

printf( /* Esto es un comentario */ "Hola mundo" );

Y por último tenemos:

printf( "Hola/* Esto es un comentario */ mundo" );

Que no daría error, pero al ejecutar tendríamos:

Hola /* Esto es un comentario */ mundo
```

porque /* Esto es un comentario */ queda dentro de las comillas y C lo interpreta como texto, no como un comentario.

¿Qué sabemos hacer?

Pues la verdad es que todavía no hemos aprendido mucho. Lo único que podemos hacer es compilar nuestros programas. Pero paciencia, en seguida avanzaremos. 1.12 Ejercicios Busca los errores en este programa: int main() { /* Aquí va el cuerpo del programa */ Printf("Hola mundo\n"); return 0; } Solución: Si lo compilamos obtendremos un error que nos indicará que no hemos definido la función *Printf*. Esto es porque no hemos incluído la dichosa directiva #include <stdio.h>. (En algunos compiladores no es necesario incluir esta directiva, pero es una buena costumbre hacerlo). Si lo corregimos y volvemos a compilar obtendremos un nuevo error. Otra vez nos dice que desconoce *Printf*. Esta vez el problema es el de las mayúsculas que hemos indicado antes. Lo correcto es poner *printf* con minúsculas. Parece una tontería, pero seguro que nos da más de un problema.