Eksperimentel fysik

Introduktion til Laboratorieøvelse 2

Omsætning af impuls, energi og impulsmoment under stød

Henrik B. Pedersen

Øvelse 2

- handler om kollisioner i 2D

Hvordan beskriver vi matematisk og numerisk kollisioner mellem to legemer ? Inspiration til at kunne regne numerisk på situationen i øvelse 2

- Påmindelse om vores redskaber fra mekanik
 - Newtons love
 - Kraftmoment og impulsmoment
 - Stive legemer → stive legemer med en fast rotations akse (eks. puck i en plan)
- Påmindelse om et resultat om differentialligninger
 - 1 x 2. ordens differentialligning \rightarrow 2 x 1. ordens diffrentialligninger
- Formulering af bevægelsesligninger for en puck i 2 dimensioner
 - 6 ligninger: 4 for translation (x,y,v_x,v_y) + 2 for rotation (θ,ω)
- Formulering af samlet set bevægelsesligninger for 2 pucke der støder
 - 12 ligninger: 6 for puck 1 + 6 for puck 2
 - Model for kraften mellem de to pucke
- Omsætning af impuls, impulsmoment og energi
- Implementering i matlab
- Nogle eksempler og videre overvejelser/inspiration

Vores redskaber fra mekanik - 1

Newtons love for bevægelse af et legeme i et inertial system

N1

Fastlægger hvad, der menes med et inertial system

N2
$$\frac{d\mathbf{p}}{dt} = \sum \mathbf{I}$$

Fortæller hvordan et legeme bevæger sig under givne kræfter

N3
$$\mathbf{F}_{12} = -\mathbf{F}_{21}$$

Fortæller hvordan legemer vekselvirker med hinanden

Kraftmoment og Impulsmoment

Definitioner i forhold til et valgt koordinatsystem

Kraftmoment

$$\tau = \mathbf{r} \times \mathbf{F}$$

Impulsmoment $L = r \times p$

Bevægelsen er fastlagt Når vi kender **r**, **p**

$$\frac{\text{differentier og}}{\text{anvend N2}} \quad \frac{d\mathbf{L}}{dt} = \sum \mathbf{r}$$

Gælder også for en samling af legemer (eks. et stift legeme)

$$\mathbf{L} = \sum_{i} \mathbf{L}_{i}$$

Vores redskaber fra mekanik - 2

Stift legeme - legeme med udstrækning, men med fast form

Bevægelses ligninger for et stift legeme

Bevægelse af det stive legeme kan beskrives som en translatoriske bevægelse af massemidtpunktet ifølge N2 og en rotation om en akse gennem masse midtpunktet

$$\frac{d\mathbf{p}_{cm}}{dt} = \sum_{ext} \mathbf{F}_{ext}$$

$$\frac{d\mathbf{p}_{cm}}{dt} = \sum_{ext} \mathbf{\tau}_{ext}$$
For en puck
$$i \text{ en plan}$$

$$I_{cm}$$

$$\frac{d\mathbf{p}_{cm}}{dt} = \sum_{cm} \mathbf{F}_{ext}$$

$$I_{cm} \frac{d\omega_z}{dt} = \sum_{c} \tau_z$$

Vores redskaber fra mekanik - 3

Stift legeme - PUCK i en PLAN

$$\frac{d\mathbf{p}_{cm}}{dt} = \sum \mathbf{F}_{ext}$$

$$I_{cm} \frac{d\omega_{z}}{dt} = \sum \tau_{z}$$

$$\mathbf{p}_{cm} = m \frac{d\mathbf{r}_{cm}}{dt}$$

$$\omega_{z} = \frac{d\theta}{dt}$$

$$I_{cm} \frac{d^{2}\mathbf{r}_{cm}}{dt^{2}} = \sum \tau_{z}$$

$$I_{cm} \frac{d^{2}\theta}{dt^{2}} = \sum \tau_{z}$$

For en puck i en plan

Den samlede impuls

$$\mathbf{p} = m\mathbf{v} = \begin{pmatrix} v_x \\ v_y \\ 0 \end{pmatrix} m$$

Det samlede impulsmoment

$$\mathbf{L} = \begin{pmatrix} 0 \\ 0 \\ L_z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \times \begin{pmatrix} v_x \\ v_y \\ 0 \end{pmatrix} m + I_z \omega_z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
translation rotation

Den samlede kinetiske energi
$$E = \frac{1}{2}mv_{cm}^2 + \frac{1}{2}I_z\omega_z^2 = \frac{p_{cm}^2}{2m} + \frac{1}{2}I_z\omega_z^2$$

- Påmindelse om vores redskaber fra mekanik
 - Newtons love
 - Kraftmoment og impulsmoment
 - Stive legemer \rightarrow stive legemer med en fast rotations akse (eks. puck i en plan)
- Påmindelse om et resultat om differentialligninger
 - 1 x 2. ordens differentialligning \rightarrow 2 x 1. ordens diffrentialligninger
- Formulering af bevægelsesligninger for en puck i 2 dimensioner
 - 6 ligninger: 4 for translation + 2 for rotation
- Formulering af samlet set bevægelsesligninger for 2 pucke der støder
 - 12 ligninger: 6 for puck 1 + 6 for puck 2
 - Model for kraften mellem de to pucke
- Omsætning af impuls, impulsmoment og energi
- Implementering i matlab
- Nogle eksempler og videre overvejelser/inspiration

Et resultat om differentialligninger

1 x 2. ordens differentialligning \rightarrow 2 x 1. ordens diffrentialligninger

Er der et ønske om at få en eksempel kode på blackboard?

- Påmindelse om vores redskaber fra mekanik
 - Newtons love
 - Kraftmoment og impulsmoment
 - Stive legemer \rightarrow stive legemer med en fast rotations akse (eks. puck i en plan)
- Påmindelse om et resultat om differentialligninger
 - 1 x 2. ordens differentialligning \rightarrow 2 x 1. ordens diffrentialligninger
- Formulering af bevægelsesligninger for en puck i 2 dimensioner
 - 6 ligninger: 4 for translation + 2 for rotation
- Formulering af samlet set bevægelsesligninger for 2 pucke der støder
 - 12 ligninger: 6 for puck 1 + 6 for puck 2
 - Model for kraften mellem de to pucke
- Omsætning af impuls, impulsmoment og energi
- Implementering i matlab
- Nogle eksempler og videre overvejelser/inspiration

Bevægelsesligninger for én puck

 $\begin{array}{ccc} \text{Masse} & & m_1 \\ \text{Radius} & & R_1 \end{array}$

Inertimoment $I_1 (= \frac{1}{2} m_1 R_1^2)$

Bevægelse $x_1, y_1, v_{x1}, v_{y1}, \theta_1, \omega_1$

$$\frac{d\mathbf{p}_{cm}}{dt} = \sum \mathbf{F}_{ext}$$

$$I_{cm} \frac{d\omega_z}{dt} = \sum \tau_z$$

NB – vi dropper nu notationen *cm*

To pucke der støder sammen

Hvordan skal vi forestille os kraften mellem de to legemer ?

Translation Rotation
$$\frac{dx_1}{dt} = v_{x1} \qquad \frac{d\theta_1}{dt} = \omega_1$$

$$m_1 \frac{dv_{x1}}{dt} = F_{21-x} \qquad I_1 \frac{d\omega_1}{dt} = \tau_{21} = \left[\mathbf{R}_1 \times \mathbf{F}_{21} \right]_z$$

$$\frac{dy_1}{dt} = v_{y1}$$

$$m_1 \frac{dv_{y1}}{dt} = F_{21-y}$$
PUCK 1

Translation Rotation
$$\frac{dx_2}{dt} = v_{x2} \qquad \frac{d\theta_2}{dt} = \omega_2$$

$$m_2 \frac{dv_{x2}}{dt} = F_{12-x} \qquad I_2 \frac{d\omega_2}{dt} = \tau_{12} = \left[\mathbf{R}_2 \times \mathbf{F}_{12}\right]_z$$

$$\frac{dy_2}{dt} = v_{y2}$$

$$m_2 \frac{dv_{y2}}{dt} = F_{12-y}$$
PUCK 2

To pucke der støder sammen

- Analyse af kraften

Nu kan vi lave en model for \mathbf{F}_{\parallel} og \mathbf{F}_{\perp}

Translation Rotation
$$\frac{dx_1}{dt} = v_{x1} \qquad \frac{d\theta_1}{dt} = \omega_1$$

$$m_1 \frac{dv_{x1}}{dt} = F_{21-x} \qquad I_1 \frac{d\omega_1}{dt} = \tau_{21} = \left[\mathbf{R}_1 \times \mathbf{F}_{21}\right]_z$$

$$\frac{dy_1}{dt} = v_{y1}$$

$$m_1 \frac{dv_{y1}}{dt} = F_{21-y}$$
PUCK 1

Opløs kraften i to komponenter

- 1. F₁₁
- langs aksen mellem de to cm
- virker kun på cm-bevægelsen
- 2. F₁
 - vinkelret på aksen mellem de to cm'er
 - modsat den relative bevægelse
 - virker på cm- og rot-bevægelsen
 - repræsentere gnidning

To pucke der støder sammen

- Model for kraften

$$\mathbf{r}_{21} = \mathbf{r}_2 - \mathbf{r}_1$$
- fra puck 1 mod puck 2

Translation
$$\frac{dx_1}{dt} = v_{x1}$$

$$\frac{d\theta_1}{dt} = \omega_1$$

$$m_1 \frac{dv_{x1}}{dt} = F_{21-x}$$

$$I_1 \frac{d\omega_1}{dt} = \tau_{21} = \left[\mathbf{R}_1 \times \mathbf{F}_{21}\right]_z$$

$$\frac{dy_1}{dt} = v_{y1}$$

$$m_1 \frac{dv_{y1}}{dt} = F_{21-y}$$
PUCK 1

Opløs kraften i to komponenter

- 1. F

 enhedsvektor

 langs aksen mellem de to cm
 - virker kun på cm-bevægelsen

$$\mathbf{F}_{1||} = -a \frac{\mathbf{r}_2 - \mathbf{r}_1}{|\mathbf{r}_2 - \mathbf{r}_1|} = -a \frac{\mathbf{r}_{21}}{|\mathbf{r}_{21}|}$$

- 2. \mathbf{F}_{\perp}
 - vinkelret på aksen mellem de to cm'er
 - modsat den relative bevægelse
 - virker på cm- og rot-bevægelsen
 - repræsentere gnidning

$$\mathbf{F}_{1\perp} = b \frac{\mathbf{n}_{21}}{|\mathbf{r}_2 - \mathbf{r}_1|} \qquad \mathbf{n}_{21} \perp \mathbf{r}_{21}$$

Det samlede set ligninger vi skal bruge

Translation Rotation
$$\frac{dx_1}{dt} = v_{x1} \qquad \frac{d\theta_1}{dt} = \omega_1$$

$$m_1 \frac{dv_{x1}}{dt} = F_{21-x} \qquad I_1 \frac{d\omega_1}{dt} = \tau_{21} = \left[\mathbf{R}_1 \times \mathbf{F}_{21} \right]_z$$

$$\frac{dy_1}{dt} = v_{y1}$$

$$m_1 \frac{dv_{y1}}{dt} = F_{21-y}$$
PUCK 1

Translation Rotation
$$\frac{dx_2}{dt} = v_{x2} \qquad \frac{d\theta_2}{dt} = \omega_2$$

$$m_2 \frac{dv_{x2}}{dt} = F_{12-x} \qquad I_2 \frac{d\omega_2}{dt} = \tau_{12} = \left[\mathbf{R}_2 \times \mathbf{F}_{12} \right]_z$$

$$\frac{dy_2}{dt} = v_{y2}$$

$$m_2 \frac{dv_{y2}}{dt} = F_{12-y}$$
PUCK 2

Vekselvirkning
$$\mathbf{F}_{21} = -\mathbf{F}_{12} = \mathbf{F}_{||} + \mathbf{F}_{\perp}$$

$$\mathbf{F}_{1||} = -a \frac{\mathbf{r}_{21}}{|\mathbf{r}_{21}|} \begin{cases} 0 & |\mathbf{r}_{21}| > R_1 + R_2 \\ 1 & |\mathbf{r}_{21}| \le R_1 + R_2 \end{cases}$$

$$\mathbf{F}_{1\perp} = b \frac{\mathbf{n}_{21}}{|\mathbf{r}_{21}|} \begin{cases} 0 & |\mathbf{r}_{21}| > R_1 + R_2 \\ 1 & |\mathbf{r}_{21}| \le R_1 + R_2 \end{cases}$$

$$\mathbf{n}_{21} \perp \mathbf{r}_{21}$$

Dette kan let sættes direkte ind i en matlab-funktion

Men det er nok en fordel at opbygge koden trinvis

- Påmindelse om vores redskaber fra mekanik
 - Newtons love
 - Kraftmoment og impulsmoment
 - Stive legemer \rightarrow stive legemer med en fast rotations akse (eks. puck i en plan)
- Påmindelse om et resultat om differentialligninger
 - 1 x 2. ordens differentialligning \rightarrow 2 x 1. ordens diffrentialligninger
- Formulering af bevægelsesligninger for en puck i 2 dimensioner
 - 6 ligninger: 4 for translation + 2 for rotation
- Formulering af samlet set bevægelsesligninger for 2 pucke der støder
 - 12 ligninger: 6 for puck 1 + 6 for puck 2
 - Model for kraften mellem de to pucke
- Omsætning af impuls, impulsmoment og energi
- Implementering i matlab
- Nogle eksempler og videre overvejelser/inspiration

Omsætninger under kollision

Impuls $\mathbf{p}_1 = m\mathbf{v}_1 \quad \mathbf{p}_2 = m_2\mathbf{v}_2$

For puck 1 (eller puck 2)

$$\frac{d\mathbf{p}_1}{dt} = \mathbf{F}_{21} \qquad \text{N2}$$

Samlede impuls

$$\frac{d\mathbf{p}_{1}}{dt} + \frac{d\mathbf{p}_{2}}{dt} = \mathbf{F}_{21} + \mathbf{F}_{12} = \mathbf{F}_{21} - \mathbf{F}_{21} = 0$$
N3

Kraften mellem puckene bevirker

- → Der sker omsætninger af impuls mellem de to legemer
- → Den totale impuls er bevaret til alle tider både i x og y retningen

Omsætninger under kollision

Impulsmoment

$$\mathbf{L}_1 = \mathbf{r}_1 \times \mathbf{p}_1 + I_1 \omega_1 \mathbf{e}_z \qquad \mathbf{L}_2 = \mathbf{r}_2 \times \mathbf{p}_2 + I_2 \omega_2 \mathbf{e}_z$$

$$\mathbf{L}_2 = \mathbf{r}_2 \times \mathbf{p}_2 + I_2 \omega_2 \mathbf{e}_z$$

Notation

$$\mathbf{F}_{\perp} = \mathbf{F}_{1\perp} = -\mathbf{F}_{2\perp}$$

$$\mathbf{F}_{\parallel} = \mathbf{F}_{\parallel} = -\mathbf{F}_{2\parallel}$$

For puck 1 (eller puck 2)

$$\frac{d\mathbf{L}_{1}}{dt} = \mathbf{R}_{1} \times \mathbf{F}_{21} \longrightarrow \frac{d\mathbf{L}_{1}}{dt} = \mathbf{R}_{1} \times \mathbf{F}_{\perp} \longrightarrow \frac{d\mathbf{L}_{1}}{dt} = \mathbf{R}_{1} \times \mathbf{F}_{\perp}$$

$$\mathbf{F}_{\parallel} \text{ er parallel med } \mathbf{R}_{1}$$

$$NB - \text{modsat den relative bevægelses retning}$$

Samlede impulsmoment

$$\frac{d\mathbf{L}_{1}}{dt} + \frac{d\mathbf{L}_{2}}{dt} = (R_{1} - R_{2})F_{\perp}\mathbf{e}_{z}$$
N3

NB - deformation kan ske

Gnidningskraften bevirker

- Der sker udveksling af impulsmoment mellem de to legemer
- \rightarrow Der sker omsætning af impulsmoment mellem translation og rotation
- Det totale impulsmomentet kan ændre sig

- regnes med fortegn

Omsætninger under kollision

Energi
$$E_1 = \frac{1}{2}mv_1^2 + \frac{1}{2}I_1\omega_1^2 = \frac{p_1^2}{2m} + \frac{1}{2}I_1\omega_1^2$$

For puck 1 (eller puck 2)

$$\frac{dE_1}{dt} = \frac{1}{m} \frac{d\mathbf{p}_1}{dt} \cdot \mathbf{p}_1 + I_1 \frac{d\omega_1}{dt} \cdot \omega_1 \longrightarrow \frac{dE_1}{dt} = \frac{1}{m} \mathbf{F}_{21} \cdot \mathbf{p}_1 + \left[\mathbf{R}_1 \times \mathbf{F}_{\perp} \right]_z \cdot \omega_1 \longrightarrow \frac{dE_1}{dt} = \mathbf{F}_{21} \cdot \mathbf{v}_1 + R_1 F_{\perp} \omega_1$$

uelastisk

Samlede energi

$$\frac{dE_1}{dt} + \frac{dE_2}{dt} = \mathbf{F}_{21} \cdot \left[\mathbf{v}_1 - \mathbf{v}_2 \right] + \left(R_1 \omega_1 - R_2 \omega_2 \right) F_f$$

$$\frac{dE_1}{dt} + \frac{dE_2}{dt} = F_{\parallel} \cdot \left[v_{1\parallel} - v_{2\parallel} \right] + \left(v_{1\perp} - v_{2\perp} + R_1 \omega_1 - R_2 \omega_2 \right) F_{\perp}$$

elastisk

Kraften bevirker

- → Der sker udveksling af energi mellem puckene (F_{||} og F_|)
- \rightarrow Der sker omsætning af energi mellem translation og rotation (gnidning F_{\perp})
- ightarrow Den totale energi kan ændre sig (gnidning F_{\perp})

Notation

$$\mathbf{F}_{\perp} = \mathbf{F}_{1\perp} = -\mathbf{F}_{2\perp}$$

$$\mathbf{F}_{\parallel} = \mathbf{F}_{1\parallel} = -\mathbf{F}_{2\parallel}$$

$$\mathbf{v}_1 = \mathbf{v}_{1||} + \mathbf{v}_{1\perp}$$

$$\mathbf{v}_2 = \mathbf{v}_{2||} + \mathbf{v}_{2\perp}$$

- Påmindelse om vores redskaber fra mekanik
 - Newtons love
 - Kraftmoment og impulsmoment
 - Stive legemer → stive legemer med en fast rotations akse (eks. puck i en plan)
- Påmindelse om et resultat om differentialligninger
 - 1 x 2. ordens differentialligning \rightarrow 2 x 1. ordens diffrentialligninger
- Formulering af bevægelsesligninger for en puck i 2 dimensioner
 - 6 ligninger: 4 for translation + 2 for rotation
- Formulering af samlet set bevægelsesligninger for 2 pucke der støder
 - 12 ligninger: 6 for puck 1 + 6 for puck 2
 - Model for kraften mellem de to pucke
- Omsætning af impuls, impulsmoment og energi
- Implementering i matlab
- Nogle eksempler og videre overvejelser/inspiration

Implementering i matlab

- Hvordan kan vi opbygge et samlet set af scripts?

Systematiske variationer

for-loop

Specifikation af parametre for puckene

Masser: m₁, m₂

Radier: R₁, R₂

• Impulsmomenter I₁, I₂

• Specifikation af kraften:

Parametrene a, b

Eller vores egen nye model

• Specifikation af begyndelsesbetingelser

• $x_1(0), y_1(0), vx_1(0), vy_1(0), \theta_1(0), \omega_1(0)$

• $x_2(0)$, $y_2(0)$, $vx_2(0)$, $vy_2(0)$, $\theta_2(0)$, $\omega_2(0)$

· Specifikations af integrationstid

• $T_{\text{start}}=0$, T_{stop}

Numerisk løsning af differentialligninger via en ode-solver

Kalder en funktion der udregner de afledede

Definer det fysiske problem

Her fastlægges de aktuelle kollisionsbetingelser

Løs de aktuelle ligninger

Denne har vi opstillet ligningerne for i dag

- Plot og analyser af løsninger
 - Omsætning af impuls, impulsmoment, energi
 - Parameterafhængigheder
 - •

- Påmindelse om vores redskaber fra mekanik
 - Newtons love
 - Kraftmoment og impulsmoment
 - Stive legemer → stive legemer med en fast rotations akse (eks. puck i en plan)
- Påmindelse om et resultat om differentialligninger
 - 1 x 2. ordens differentialligning \rightarrow 2 x 1. ordens diffrentialligninger
- Formulering af bevægelsesligninger for en puck i 2 dimensioner
 - 6 ligninger: 4 for translation + 2 for rotation
- Formulering af samlet set bevægelsesligninger for 2 pucke der støder
 - 12 ligninger: 6 for puck 1 + 6 for puck 2
 - Model for kraften mellem de to pucke
- Omsætning af impuls, impulsmoment og energi
- Implementering i matlab
- Nogle eksempler og videre overvejelser/inspiration

Eksempel - 1

- ingen friktion (F_{\perp} =0)
- Ingen initial rotation

- P Impulsbevarelse Udveksling
- L Inertimomentbevarelse
 Udveksling

 Trans ← → Rot
- E Energibevarelse
 Udveksling
 Kin→ Pot → Kin
 Trans ← → Rot

Eksempel - 2

- Med friktion $(F_{\perp} \neq 0)$
- Ingen initial rotation

- L Inertimomentbevarelse
 Udveksling
 Trans ← → Rot
- E Energibevarelse
 Udveksling
 Kin→ Pot → Kin
 Trans ← → Rot

Eksempel - 3

- Med friktion ($F_{\perp} \neq 0$)
- Med initial rotation

 $\times 10^{-3}$ Angular momentum exchange

næsten

- L Inertimomentbevarelse
 Udveksling
 Trans ← → Rot
- E Energibevarelse
 Udveksling
 Kin→ Pot → Kin
 Trans ← → Rot

0.2335

0.233

Time [s]

0.234

-0.15

0.2325

Parameterafhængigheder

Kan vi aflurer kraftens natur?

- Hvilken rolle spiller styrken af F_{||}?
 →påvirker kollisionstiden (blød/hård kollision)
- Hvilken rolle spiller styrken af F₁?
 - →inducere omsætningen til rotation
 - →inducere ændring af impulsmoment og energi

Vekselvirkning

$$\mathbf{F}_{21} = -\mathbf{F}_{12} = \mathbf{F}_{\parallel} + \mathbf{F}_{\perp}$$

$$\mathbf{F}_{1||} = -a \frac{\mathbf{r}_{21}}{|\mathbf{r}_{21}|} \begin{cases} 0 & |\mathbf{r}_{21}| > R_1 + R_2 \\ 1 & |\mathbf{r}_{21}| \le R_1 + R_2 \end{cases}$$

$$\mathbf{F}_{1\perp} = b \frac{\mathbf{n}_{21}}{|\mathbf{r}_{21}|} \begin{cases} 0 & |\mathbf{r}_{21}| > R_1 + R_2 \\ 1 & |\mathbf{r}_{21}| \le R_1 + R_2 \end{cases}$$

 $\mathbf{n}_{21} \perp \mathbf{r}_{21}$

 b_c = impaktparameteren

Parameterafhængigheder

- Varier styrken af F_{\parallel} , dvs a
- Varier styrken af F₁, dvs b

Før kollisionen