FG Logik und Semantik Technische Universität Berlin Prof. Stephan Kreutzer

10. Hausaufgabe – Theoretische Grundlagen der Informatik 3

Abgabe: 17.1.2013 in der Vorlesung

Für alle Aufgaben gilt: Solange in der Aufgabenstellung nichts anderes steht, erwarten wir zu jeder Antwort eine Begründung. Es genügt nicht, nur eine Formel zu schreiben ohne Begründung.

Hausaufgabe 1 6 Punkte

Gegeben sind die folgenden Paare $(\mathcal{A}_i, \mathcal{B}_i)$ von Strukturen. Geben Sie das minimale $m \in \mathbb{N}$ an, so dass der Herausforderer das m-Runden-Ehrenfeucht-Fraïssé-Spiel $\mathfrak{G}_m(\mathcal{A}_i, \mathcal{B}_i)$ gewinnt. Geben Sie eine Gewinnstrategie für den Herausforderer in $\mathfrak{G}_m(\mathcal{A}_i, \mathcal{B}_i)$ an und eine Gewinnstrategie für die Duplikatorin in $\mathfrak{G}_{m-1}(\mathcal{A}_i, \mathcal{B}_i)$. Geben Sie auch Formeln φ_i minimalen Quantorenrangs an, sodass gilt $\mathcal{A}_i \models \varphi_i$ und $\mathcal{B}_i \not\models \varphi_i$.

- (i) $A_1 = (\mathbb{C}, M^{A_1})$ und $\mathcal{B}_1 = (\mathbb{R}, M^{\mathcal{B}_1})$, wobei M ein 3-stelliges Relationssymbol ist und es gilt $(a, b, c) \in M^{A_1}$ genau dann, wenn $a \cdot b = c$ für $a, b, c \in \mathbb{C}$ und $M^{\mathcal{B}_1} = M^{A_1} \cap \mathbb{R}^3$.
- (ii) $\mathcal{A}_2=(\mathbb{Z},R^{\mathcal{A}_2})$ und $\mathcal{B}_2=(\mathbb{Z},R^{\mathcal{B}_2})$, wobei R ein 3-stelliges Relationssymbol ist und es gilt $(a,b,c)\in R^{\mathcal{A}_2}$ genau dann, wenn a+b=c und $(a,b,c)\in R^{\mathcal{B}_2}$ genau dann, wenn $a\cdot b=c$.

Hausaufgabe 2 5 Punkte

Sei $\sigma = \{E\}$ die Signatur der Graphen. Wir definieren zwei σ -Strukturen $\mathcal{A} = (A, E^{\mathcal{A}}), \mathcal{B} = (B, E^{\mathcal{B}})$ durch

$$\begin{split} A &:= \{(i,j) \mid i,j \in \mathbb{N} \text{ und } j \leq i\} \\ E^{\mathcal{A}} &:= \{((i,j),(i,k)) \mid i,j,k \in \mathbb{N} \text{ und } j \leq i \text{ und } k \leq i\} \\ B &:= A \cup \{(\infty,j) \mid j \in \mathbb{N}\} \\ E^{\mathcal{B}} &:= E^{\mathcal{A}} \cup \{((\infty,j),(\infty,k)) \mid j,k \in \mathbb{N}\} \,. \end{split}$$

 \mathcal{A} ist also ein unendlicher Graph, der für jedes $n \in \mathbb{N} \setminus \{0\}$ genau eine Komponente der Größe n enthält. \mathcal{B} hat zusätzlich eine unendliche Komponente. Alle Komponenten sind vollständige Graphen.

Zeigen Sie, dass \mathcal{A} und \mathcal{B} elementar äquivalent aber nicht isomorph sind.

Hausaufgabe 3 4 Punkte

Sei $\sigma = \{E\}$ die Signatur der Graphen. Zeigen Sie, dass es keine Formel $\varphi \in FO[\sigma]$ gibt, so dass für jeden Graphen G gilt $G \models \varphi \Leftrightarrow$ jede Komponente von G ist endlich.

Hinweis: Sie dürfen die Aussage von Aufgabe 2 verwenden.

Hausaufgabe 4 5 Punkte

Seien \mathcal{A}, \mathcal{B} σ -Strukturen. Wir definieren das unendliche Ehrenfeucht-Fraïssé-Spiel $\mathfrak{G}_{\infty}(\mathcal{A}, \mathcal{B})$ wie folgt. Die Regeln für jede einzelne Runde entsprechen genau den Regeln des in der Vorlesung definierten Spiels, d.h., in jeder Runde $i \geq 1$ wählt der Herausforderer entweder ein Element $a_i \in A$ oder $b_i \in B$. Danach antwortet die Duplikatorin. Hat der Herausforderer ein $a_i \in A$ gewählt, so wählt sie ein $b_i \in B$.

WS 2012/2013 Stand: 9.1.2013 Andernfalls wählt sie $a_i \in A$. Der Herausforderer gewinnt, wenn es eine Runde i gibt, so dass die Abbildung $h: a_1 \mapsto b_1, \ldots, a_i \mapsto b_i$ kein partieller Isomorphismus von \mathcal{A} nach \mathcal{B} ist. Sonst gewinnt die Duplikatorin (in diesem Fall läuft das Spiel unendlich lange).

Zeigen Sie, dass dieses Spiel nicht äquivalent ist zum Spiel $\mathfrak{G}(\mathcal{A},\mathcal{B})$, in dem der Herausforderer im ersten Zug ein $m \in \mathbb{N}$ bestimmt und dann das m-Runden Spiel gespielt wird. D.h., zeigen Sie, dass Strukturen \mathcal{A}, \mathcal{B} existieren, für die nicht gilt, dass die Duplikatorin $\mathfrak{G}_{\infty}(\mathcal{A},\mathcal{B})$ gewinnt genau dann, wenn sie $\mathfrak{G}(\mathcal{A},\mathcal{B})$ gewinnt.

Hinweis: Sie dürfen die Aussage von Aufgabe 2 verwenden.