Предварительные пояснения для вычисления погрешностей косвенных измерений.

1. Пусть $Z = k \prod_{i=1}^{m} x_{i}^{a_{i}}$ - величина которая косвенно измеряется по прямым измерениям x_{i} . При измерении x_{i} имеется относительная погрешность δ_{i} . Тогда относительная погрешность косвенного измерения величины Z будет равна

$$\delta_z = \sum_{1}^{m} |a_i| \, \delta_i$$

2. Пусть $Z = \sum_{i=1}^{m} a_i x_i$ - величина которая косвенно измеряется по прямым измерениям x_i . При измерении x_i имеется абсолютная погрешность Δ_i . Тогда абсолютная погрешность косвенного измерения величины Z будет равна

$$\Delta z = \sum_{1}^{m} |a_i| \, \Delta_i$$

Задание.

1. Вывести формулу для вычисления абсолютной и относительной погрешностей косвенного измерения емкости конденсатора C_x , которое выполняется по формуле

$$C_x = C_{\text{ofl}} - C_{\text{of2}},$$

где C_{061} и C_{062} измеряются непосредственно с одинаковыми относительными погрешностями δ_c .

2. Вывести формулу для вычисления абсолютной и относительной погрешностей косвенного измерения емкости конденсатора C_L , которое выполняется по формуле

$$C_L = \frac{C_{\text{of 1}} - 4C_{\text{of 2}}}{3}$$

где C_{061} и C_{062} измеряются непосредственно с одинаковыми относительными погрешностями δ_c .

3. Вывести формулу для вычисления абсолютной и относительной погрешностей косвенного измерения тангенса угла потерь tgδ, которое выполняется по формуле

$$tg\delta = \frac{C_{001}(Q_1 - Q_2)}{C_x Q_1 Q_2}.$$

где $C_{\text{об1}}$, C_{x} , Q_{1} и Q_{2} измеряются непосредственно с относительными погрешностями $\delta_{\text{соб1}}$, δ_{x} , δ_{Q1} и δ_{Q2} .

4. Вычислить относительную погрешность косвенного измерения индуктивности L, которое выполняется по формуле

$$L = \frac{1}{4\pi^2 f_1^2 C_{001}}.$$

где относительные погрешности $\delta_{\text{cool}_1}, \delta_{\text{fl}}$ одинаковы и равняются 1%.