Bayesian Classifiers

Data Mining

Prof. Sujee Lee

Department of Systems Management Engineering

Sungkyunkwan University

Bayes' Theorem

Joint probability

Conditional probability

$$P(Y|X) = \frac{P(X,Y)}{P(X)}, P(X|Y) = \frac{P(X,Y)}{P(Y)}$$

Bayes' theorem

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} \qquad Pr(B_i|A) = \frac{Pr(B_i)Pr(A|B_i)}{\sum_{j=1}^{n} Pr(B_j)Pr(A|B_j)}$$

Example

There are 1,000 coins in a jar. 999 normal coins have both head and tail, but 1 coin has two heads. You randomly picked up a coin from the jar and tossed it 10 times. All outcomes are heads. What is the probability you picked up the coin having two heads?

Bayesian Classifiers

Bayesian Classifiers

• Consider each independent (predictor) variable X_i and the class variable Y as random variables.

- Goal : Given a record with variables (X_1, X_2, \dots, X_p) , predict its class Y.
- Specifically, we want to find the value of Y that maximizes

$$P(Y|X_1, X_2, \cdots, X_p)$$

• Can we estimate $P(Y|X_1, X_2, \dots, X_p)$ directly from data?

Bayesian Classifiers (cont.)

Approach:

• Compute the posterior probability $P(Y|X_1,X_2,\cdots,X_p)$ for all values of Y using the Bayes' theorem

$$P(Y|X_1, X_2, \cdots, X_p) = \frac{P(X_1, X_2, \cdots, X_p|Y)P(Y)}{P(X_1, X_2, \cdots, X_p)}$$

- Prior: the initial belief about the probability of a certain setting/an event
- Likelihood: how probable the observed data set is for the given setting
- Posterior: the updated probability of the setting/event after considering the observed data
- Choose value of Y that maximizes

$$P(Y|X_1,X_2,\cdots,X_p)$$

It is equivalent to choosing value of Y that maximizes

$$P(X_1, X_2, \cdots, X_p | Y) P(Y)$$

• How to estimate $P(X_1, X_2, \dots, X_p | Y) P(Y)$?

Naïve Bayes Classifier

The Chain Rule

$$P(X_{1}, X_{2}, ..., X_{p}|Y)P(Y)$$

$$= \frac{P(X_{1}, X_{2}, ..., X_{p}, Y)}{P(X_{2}, X_{3}, ..., X_{p}, Y)} \cdot \frac{P(X_{2}, X_{3}, ..., X_{p}, Y)}{P(Y)} \cdot P(Y)$$

$$= P(X_{1}|X_{2}, X_{3}, ..., X_{p}, Y) \cdot P(X_{2}, X_{3}, ..., X_{p}|Y) \cdot P(Y)$$

$$= P(X_{1}|X_{2}, X_{3}, ..., X_{p}, Y) \cdot P(X_{2}|X_{3}, X_{4}, ..., X_{p}, Y) \cdot P(X_{3}, X_{4}, ..., X_{p}|Y) \cdot P(Y)$$

$$\vdots$$

$$= P(X_{1}|X_{2}, X_{3}, ..., X_{p}, Y) \cdot P(X_{2}|X_{3}, X_{4}, ..., X_{p}, Y) \cdot \cdots P(X_{p}|Y) \cdot P(Y)$$

Not easy yet...

Naïve Bayes Classifier (cont.)

Conditional Independence

• Let X, Y, and Z denote three sets of random variables. The variables in X are said to be conditionally independent of Y, given Z, if the following condition holds.

$$P(X|Y,Z) = P(X|Z)$$

Example

P(Traffic, Rain, Umbrella)

= P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)

Conditional Independence

between Umbrella and Traffic

P(Traffic, Rain, Umbrella)

= P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

Naïve Bayes Classifier (cont.)

- Your life becomes much easier with Conditional Independence.
 - Assume independence among variables $(X_i's)$ when class is given.

$$P(X_1, X_2, ..., X_p | Y)P(Y)$$

$$= P(X_1 | X_2, X_3, ..., X_p, Y) \cdot P(X_2 | X_3, X_4, ..., X_p, Y) \cdot ... P(X_p | Y) \cdot P(Y)$$

$$= P(X_1 | Y) \cdot P(X_2 | Y) \cdot ... P(X_p | Y) \cdot P(Y)$$

- Can estimate $P(X_i|Y=j)$ for all X_i and Y=j.
- A new data is classified to j if $P(Y = j) \cdot \prod_{i=1}^{p} P(X_i | Y = j)$ is maximal.

How to Estimate Probabilities from Data

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes
	·			

• Class:
$$P(Y=j)=N(y_j)/N$$
- e.g.,
$$P(Y=\mathrm{No})=\frac{7}{10}, P(Y=\mathrm{Yes})=\frac{3}{10}$$

For discrete attributes:

$$P(X_i|Y=j) = |X_{ij}|/N(y_j)$$

- where $|X_{ij}|$ is the number of instances having variable X_i and belongs to class j
- Examples:

$$P(\text{Marital Status} = \text{Married}|\text{Defaulted Borrower} = \text{No}) = \frac{4}{7}$$

 $P(\text{Home Owner} = \text{Yes}|\text{Defaulted Borrower} = \text{Yes}) = 0$

How to Estimate Probabilities from Data (cont.)

For continuous variables:

- Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
- Two-way split: $(X \le v)$ or (X > v)
 - choose only one of the two splits as new attribute
- Probability density estimation:
 - Assume variable follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability

$$P(X_i|Y)$$

How to Estimate Probabilities from Data (cont.)

ID	Home	Marital	Annual	Defaulted	
	Owner	Status	Income	Borrower	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Normal distribution:

$$P(X_i|Y=j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} \exp\left(-\frac{(X_i - \mu_{ij})^2}{2\sigma_{ij}^2}\right)$$

- One for each $(X_i, Y = j)$ pair
- For (Income, Defaulted Borrower=No):
 - If Defaulted Borrower=No
 - sample mean = 110
 - sample variance = 2975

$$P(\text{Income} = 120|\text{Defaulted Borrower} = \text{No}) = \frac{1}{\sqrt{2\pi}(54.54)} \exp\left(-\frac{(120 - 110)^2}{2(2975)}\right) = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record:

```
X = (No, Married, Income = 120)
```

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7P(Refund=No|No) = 4/7

P(Refund=Yes|Yes) = 0

P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7

P(Marital Status=Divorced|No)=1/7

P(Marital Status=Married|No) = 4/7

P(Marital Status=Single|Yes) = 2/7

P(Marital Status=Divorced|Yes)=1/7

P(Marital Status=Married|Yes) = 0

For annual income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

$$\Pi P(X|DB=No) = P(HW=No|DB=No)$$

$$\times P(MS=Married|DB=No)$$

$$\times P(AI=120K|DB=No)$$

$$= 4/7 \times 4/7 \times 0.0072 = 0.0024$$

$$\Pi$$
 P(X|DB=Yes) = P(HW=No | DB=Yes)
 \times P(MS=Married | DB=Yes)
 \times P(AI=120K | DB=Yes)
 = 1 \times 0 \times 1.2 \times 10⁻⁹ = 0

Since $P(No) \prod P(X|No) > P(Yes) \prod P(X|Yes)$

=> Predict as (Defaulted Borrower = No)

Naïve Bayes Classifier

Probability Smoothing

- If one of the conditional probability is zero, then the entire expression becomes zero.
- Probability estimation:
 - Original:

$$P(X_i|Y=j) = \frac{|X_{ij}|}{N(y_j)}$$

• Laplace:

$$P(X_i|Y=j) = \frac{|X_{ij}|+1}{N(y_i)+J}$$

J: number of classes

p: prior probability

m: sample size

• m-estimate: $P(X_i|Y=j) = \frac{|X_{ij}| + mp}{N(y_j) + m}$

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(A|M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

Summary: Naïve Bayes Classifer

Robust to isolated noise points

 Handle missing values by ignoring the instance during probability estimate calculations

Robust to irrelevant attributes

- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Networks (BN)