Variáveis Aleatórias Discretas

Função Probabilidade

$$F(x) = P(X = x_i)$$

Valor Esperado E(X)

$$\mu_X = E(X) = \sum_{i=1}^n x_i . P(X = x_i)$$

Variância

$$Var(X) = \sigma_x^2 = E(X^2) - [E(X)]^2 = E(X^2) - \mu_x^2$$

Onde: $E(X^2) = \sum_{i=1}^{n} x_i^2 . p_i$

O desvio padrão de $X\left(\sigma_{x}\right)$ é a raiz quadrada positiva da variância:

$$\sigma_x = \sqrt{\sigma_x^2}$$

Média

$$\mu_X = E(X) = \sum_{i=1}^{n} x_i . P(X = x_i)$$

Distribuição de Bernoulli

Função de probabilidade:

$$P(X=x)=p^x.q^{1-x}$$

Média:

$$E(X) = \mu_X = \sum_{i=0}^{1} x. P(X = x) = 0. q + 1. p = p$$

Variância:

$$Var(X) = E(X^2) - [E(X)]^2$$

 $E(X^2) = \sum_{i=1}^n x_i^2 \cdot p_i = 0^2 \cdot q + 1^2 \cdot p = p$
 $Var(X) = p - p^2 = p \cdot (1 - p) = p \cdot q$

Distribuição Binomial

· Função de probabilidade:

$$P(X = x) = \binom{n}{x} \cdot p^x \cdot q^{n-x}, x = 1, 2, ..., n$$

Onde
$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

No qual:

- n é número de repetições dos experimentos;
- x é o número desejado de sucessos;
- (n-x) é o número esperado de fracassos;
- p é a probabilidade de sucesso em um ensaio individual;
- q é a probabilidade de fracasso num ensaio individual.

FAMAT/UFU

Média:

$$\mu_{x} = E(X) = n.p$$

Variância:

$$Var(X) = n. p. q$$

Distribuição Poisson

· Função de probabilidade:

$$P(X = x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$$

Onde:

x=número de sucessos em um intervalo;

e=2,718 (número de Euler);

 λ é a média de ocorrência de sucessos (tempo, área ou volume)

Média:

$$E(X) = \mu_x = \lambda$$

· Variância:

$$V(X) = \sigma_{x}^{2} = \lambda$$

Modelos Probabilísticos para v.a. Discretas		
BERNOULLI X ~ Ber(p)	BINOMIAL X ~ Bin(n,p)	POISSON $X \sim Po(\lambda)$
 Única realização de um experimento aleatório; Sucesso (X=1) ou fracasso (X=0) 	 n experimentos de Bernoulli em sequência; Cada ensaio: sucesso ou fracasso; A probabilidade de sucesso p é constante em cada ensaio. 	Interesse em contar o número de sucessos ocorridos em um experimento, em um intervalo de tempo, superfície ou volume.
$P(X=x) = p^x \cdot q^{1-x}$	$P(X = x) = \binom{n}{x} \cdot p^{x} \cdot q^{n-x}$ $\binom{n}{x} = \frac{n!}{x! (n-x)!}$	$P(X = x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$
$E(X) = \mu_X = p$	$E(X) = \mu_X = n. p$	$E(X) = \mu_{x} = \lambda$
$Var(X) = \sigma_{X}^{2} = p. q$	$Var(X) = \sigma_{x}^{2} = n. p. q$	$V(X) = \sigma_{\chi}^{2} = \lambda$

Distribuição Normal

- Notação: $X \sim N(\mu, \sigma^2) \rightarrow X$ tem distibuição normal com média $\mu = E(X)$ e variância $\sigma^2 = Var(x)$
- Suponha $X \sim N(\mu, \sigma^2)$ e deseja-se calcular P(a<X<b):

$$P(a < X < b) = \int_{a}^{b} f(x) dx = \int_{a}^{b} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^{2}\right) dx$$

Padronização da distribuição Normal

Distribuição Normal Padrão

- Existe uma infinidade de distribuições normais.
- Então, utiliza-se a variável normal padronizada Z :

$$Z = \frac{X - \mu}{\sigma}$$

Distribuição reduzida:

$$P(X \le x) = P\left(Z \le \frac{x - \mu}{\sigma}\right) = F(x)$$

- Z tem média zero e variância igual a 1;
- Z~N(0,1): Z tem distribuição normal padronizada média 0 e variância 1;

FAMAT/UFU

TIPOS DE AMOSTRAGENS PROBABILÍSTICAS

Amostragem Aleatória Estratificada

1° CASO:

$$N_1 = N_2 = N_3 = \dots = N_L$$

$$n_i = \frac{n}{L}$$

Amostragem Aleatória Estratificada 2º CASO:

$$n_i = n \frac{N_i}{N}$$

Amostragem Aleatória Estratificada

- Sabendo que o tamanho da amostra é n, como determinar o nº de indivíduos (n_i) a serem selecionados em cada um dos estratos?
- 3° CASO:
- Tamanho ótimo (considera a variabilidade)

$$n_i = \left(\frac{N_i S_i}{\sum N_i S_i}\right) n$$

Teorema do Limite Central (TLC)

Considere uma população de tamanho N com média μ e variância σ^2 . Se forem retiradas k amostras de tamanho n desta população, a média amostral (\overline{x}) terá uma distribuição aproximadamente normal, com média das médias amostrais iguais a média da população (amostragem com reposição)

$$\mu_{\overline{x}} = \mu_x$$

e com variância e desvio padrão das médias amostrais iguais a

$$\sigma_{\overline{x}}^2 = \frac{\sigma_x^2}{n}$$

$$\sigma_{\overline{\chi}} = \frac{\sigma_{\chi}}{\sqrt{n}}$$

Para distribuição amostral das médias: quando se conhece a variância da população ou a **amostra é grande** (n ≥ 30), utiliza-se a estatística Z da distribuição Normal, independente da distribuição da população.

$$z = \frac{\bar{x} - \mu_{\bar{x}}}{\sigma_{\bar{x}}}$$

- Distribuição amostral da média em pequenas amostras (n<30);
- Não se conhece σ (desvio padrão populacional);
- Conhece-se apenas a estimativa s do desvio padrão amostral;

$$t = \frac{\overline{x} - \mu_{\overline{x}}}{s_{\overline{x}}} = \frac{\overline{x} - \mu_{\overline{x}}}{\frac{s_x}{\sqrt{n}}}$$

Distribuição do Qui-Quadrado (\mathcal{X}^2)

- É uma distribuição amostral de variâncias;
- Ao retirar uma amostra de **n** elementos de uma população normal com média μ e variância σ^2 , tem-se que a distribuição amostral da variância ($\mathbf{s^2}$) segue uma distribuição de χ^2 (qui-quadrado) com **n-1** graus liberdade : $\chi^2 = \frac{(n-1)s^2}{\sigma^2}$

- 1º caso: amostras grandes (n≥30)
 - a. Intervalo de confiança (IC):

$$IC(\mu)_{1-\alpha}: \bar{x} \pm e$$

b. Margem de erro:

$$z = \frac{\bar{x} - \mu_{\bar{x}}}{\sigma_{\bar{x}}} \qquad e = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} ; e = z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

Intervalo de Confiança para Média

- 1º caso: amostras grandes (n≥30)
- c. Tamanho da amostra

$$e = z\alpha_{/2} \cdot \frac{\sigma}{\sqrt{n}}$$

$$\blacksquare$$

$$n = \left(\frac{z\alpha_{/2} \cdot \sigma}{e}\right)^2$$

Intervalo de Confiança para Média

 $X \sim N(\mu, \sigma^2)$ μ desconhecido, mas σ^2 conhecido

Intervalo de Confiança para Média

- 2º caso: amostras pequenas (n<30)
- a. Intervalo de confiança (IC):

$$IC(\mu)_{1-\alpha}$$
: $x \pm e$

b. Margem de erro:

Intervalo de Confiança para uma Proporção

a. Intervalo de confiança (IC):

$$IC(p)_{1-\alpha}$$
: $\hat{p} \pm e$ $\hat{p} = \frac{x}{n} = \frac{n \text{úmero de sucessos}}{t \text{amanho da amostra}}$

b. Margem de erro:

$$e = Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Tamanho da amostra

$$e = Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$n = \frac{z_{\alpha/2}^2 \ \hat{p}(1 - \hat{p})}{e^2}$$

Intervalo de Confiança para variância e desvio padrão

a. Intervalo de confiança (IC):

$$IC(\sigma^2)_{1-\alpha} = s^2 \pm e$$
 $IC(\sigma)_{1-\alpha} = s \pm e$

$$IC(\sigma)_{1-\alpha} = s \pm e$$

b. Margem de erro:

$$e = \frac{(n-1)s^2}{\chi^2}$$

$$e = \sqrt{\frac{(n-1)s^2}{\chi^2}}$$

Teste de hipóteses

- · Passo a passo para a realização de um teste de hipóteses
- 1. Escreva a hipótese nula H_o e a hipótese alternativa H_1
- 2. Calcule o valor observado (z_{obs}, t_{obs}...) utilizando a fórmula correspondente ao caso que está analisando.

Teste de hipóteses

3. Escolher o nível de significância (α) e estabelecer a **região crítica (RC)**

Teste de hipóteses

- 4. Obtenha o valor crítico (z_c, t_c...) do teste de acordo com o nível se significância do teste e com a região crítica (RC) utilizando a tabela de distribuição correspondente.
- 5. Marque o valor observado $(z_{obs}, t_{obs}...)$ no gráfico
- 6. Conclua o teste:
 - se o valor observado ∈ RC, então rejeita H_o
 - se o valor observado ∉ RC, então aceita H_o
- População infinita, normal ou aproximadamente normal, variância populacional conhecida (amostra grande n≥30)

Но	H ₁	R. CRITICA
$\mu \ge \mu_0$ $\mu \le \mu_0$ $\mu = \mu_0$	μ<μ _ο μ>μ _ο μ ≠ μ _ο	z<-z _α z>z _α z<-z _{α/2} e z>z _{α/2}

Estatística a ser utilizada =>

$$Z = \frac{\overline{X} - \mu_O}{\sigma / \sqrt{n}}$$

Teste de hipótese para média

 População infinita, normal ou aproximadamente normal, variância populacional desconhecida e amostra pequena (n<30).

Но	H ₁	R. CRITICA
$\mu \ge \mu_0$ $\mu \le \mu_0$ $\mu = \mu_0$	μ<μo $ μ>μo $ $ μ ≠ μo$	$ ext{t<-}t_{lpha} ext{t>}t_{lpha} ext{t<-}t_{lpha/2}$

Estatística a ser utilizada =>

$$t = \frac{\overline{X} - \mu_O}{S / \sqrt{n}} \qquad \text{com v = n-1}$$

Teste de hipótese - diferença entre médias

 População infinita, normal ou aproximadamente normal, variância populacional conhecida (amostras grandes e pequenas)

Но	H ₁	R. CRITICA
$\mu_1 - \mu_2 \ge d_0 \mu_1 - \mu_2 \le d_0 \mu_1 - \mu_2 = d_0$	$ \mu_{1}-\mu_{2} < d_{o} $ $ \mu_{1}-\mu_{2} > d_{o} $ $ \mu_{1} - \mu_{2} \neq d_{o} $	Z <- Z_{lpha} Z > Z_{lpha} Z <- $Z_{lpha/2}$ e Z > $Z_{lpha/2}$

Estatística a ser utilizada =>

$$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\sigma_{1}^{2} / n_{1} + \sigma_{2}^{2} / n_{2}}}$$

Teste de hipótese – uma proporção

Но	H₁	R. CRITICA
$p \ge p_0$ $p \le p_0$	p < p _o p > p _o	z<-z _α z>z _α
$p = p_0$	$p \neq p_{\circ}$	$z<-z_{\alpha/2} e z>z_{\alpha/2}$

Estatística a ser utilizada =>

$$Z = \frac{\hat{p} - p_o}{\sqrt{\hat{p}\hat{q}/n}}$$

Teste de hipótese – diferença entre proporções

Но	H₁	R. CRITICA
$p_1 - p_2 \ge p_0 p_1 - p_2 \le p_0 p_1 - p_2 = p_0$	$p_1-p_2 < p_0$ $p_1-p_2 > p_0$ $p_1 - p_2 \neq p_0$	Z<-Z _α Z>Z _α Z<-Z _{α/2} e Z>Z _{α/2}

Estatística a ser utilizada =>

$$Z = \frac{(\hat{p}_{1} - \hat{p}_{2}) - (p_{1} - p_{2})}{\sqrt{(\hat{p}_{1}\hat{q}_{1}/n_{1}) + (\hat{p}_{2}\hat{q}_{2}/n_{2})}}$$

TESTE DE QUI-QUADRADO (χ^2)

A estatística do teste de Qui-Quadrado é dada por:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(fo_{i} - fe_{i})^{2}}{fe_{i}}$$

Onde:

fo_i = a frequência observada na classe i;

fe_i = a frequência esperada (calculada) para a classe i;

k = o número de classes.

TESTE DE QUI-QUADRADO (χ^2)

Os graus de liberdade associados ao teste de qui-quadrado são:

- Se o teste for de **aderência**: gl = k r 1, (k = número de classes; r = número de parâmetros necessário para a determinação das fe_i).
- De uma forma geral, tem-se:
 - r = 0 para distribuições uniformes ou polinomiais;
 - r = 1 para distribuições binomial, Poisson, exponencial, etc;
 - r = 2 para a distribuição normal.
- Se o teste for de **independência**: gl = (l 1)(c 1), (l = número de linhas; <math>c = número de colunas)

O TESTE DE QUI-QUADRADO (χ^2)

· Teste de Independência

Ho: variável linha independe da variável coluna

H1: variável linha depende da variável coluna

$$\chi_{obs}^2 = \sum_{i=1}^k \frac{(fo_i - fe_i)^2}{fe_i}$$

$$gI = (I-1) (c-1)$$

$$fe = \frac{(total\ linha).(total\ coluna)}{total\ geral}$$

I=número de opções variável linha pode assumir

c=número de opções variável coluna pode assumir

$$RRH_0 = \left\{ \chi_{obs}^2 > \chi_{\alpha}^2(gl) \right\}$$

TESTE DE QUI-QUADRADO (χ^2)

Teste de Aderência

Ho: Dados observados seguem a distribuição esperada

H1: Dados observados não seguem a distribuição esperada

α: Nível de significância (geralmente: 0,05 ou 0,01)

$$\chi^2 = \sum_{i=1}^k \frac{(fo_i - fe_i)^2}{fe_i}$$
 v = k-r-1

$$fe_i = n.Probabilidade$$
 RRH₀= $\left\{\chi^2 > \chi^2_{\alpha}(v)\right\}$

Determinar o valor de χ^2 , comparar com RRH $_0$ e concluir.

Regressão Linear Simples

- Linear: porque a disposição dos pontos permite interpolar-lhes uma Reta;
- Simples: porque só há 2 variáveis envolvidas no processo.

Regressão Linear Simples

• Equação geral da regressão linear simples

$$y_i = a + bx_i$$

- Obter as estimativas "a" e "b" dos parâmetros α e β
- α : coeficiente linear da reta
- β : coeficiente angular da reta

FAMAT/UFU

Regressão Linear Simples

Equação da Reta

$$y_i = a + b.x_i$$

$$a = \bar{y} - b.\bar{x}$$

$$b = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{n}}{\sum X^{2} - \frac{(\sum X)^{2}}{n}} = \frac{SPxy}{SQx}$$

Coeficiente de Determinação (r^2)

 Representa a proporção da variação total explicada pela regressão de Y para X

$$0 \le r^2 \le 1$$

• É o quanto da variabilidade total dos dados é explicada pelo modelo de regressão. Quanto maior o r² mais a variação total de Y pode ser deduzida pela introdução da variável preditora X no modelo.

A variável preditora X é responsável por toda a variação nas observações Y_i .

A variável preditora X não ajuda na redução g da variação de Y_i com a Reg. Linear

Coeficiente de Determinação (r^2)

· Coeficiente de Correlação Linear

$$r = \frac{\sum xy - \frac{\sum x \cdot \sum y}{n}}{\sqrt{\left(\sum x^2 - \frac{(\sum x)^2}{n}\right) \cdot \left(\sum y^2 - \frac{(\sum y)^2}{n}\right)}}.$$

$$r = \frac{1589.2 - \frac{69 * 141.2}{8}}{\sqrt{\left(767 - \frac{69^2}{8}\right) * (3299.42 - \frac{141.2^2}{8})}} = 0.99$$

• Coeficiente de Determinação (r^2)

 $r^2=0.98$, o que significa que 98% da variação total de y podem ser explicados pela regressão.

EAMAT/HEH