

Performance Measurement of Novice HPC Programmers' Code

Rola Alameh
Nico Zazworka
Jeffrey K. Hollingsworth
Presented by Rola Alameh

Outline

- Why study novice programmer's code performance?
- How to study performance? APMS
- Parameter Specification problem
- Preliminary studies

DARPA High Productivity Computing Systems

Problem

 Build sufficient knowledge about HPC to improve the time and cost of developing these codes

Project Goal

- Improve the buyers ability to select
 - the high end computer
 - for the problems to be solved
 - · based upon productivity

Time to Solution = Development Time + Execution Time

Research Goal

- Develop theories, hypotheses, and guidelines that allow us to characterize, evaluate, predict and improve how an HPC environment (hardware, software, human) affects the development of high end computing codes.
- Partners: MIT Lincoln Labs, MIT, UCSD, UCSB, UMD, USC, FC-MD

Study Locations

Areas of Studies

Effort

- OpenMP saves 35-75% of effort vs. MPI on most problems
- Experience with problem reduces effort, but effect of programming model is greater than effect of experience

Defects

- Defect Classification Scheme
- Defect "Experience Base": http://www.hpcbugbase.org

Process flow

- What is the normal process followed?
- What is the breakdown between work and rework?
- Can we discover the process steps from lo level automatically collected data?

Performance Studies #P6

- From a software engineering perspective
 - Relating performance to user and context variables
 - NOT machine and architectural parameters
 - Is there correlation between effort and performance?
 - When performance is the goal:
 - do experts and students spend the same amount of time?
 - do experts get significantly better performance?
- In this presentation
 - First look at these questions
 - Two class assignments:
 - conjugate gradient
 - game of life
 - Programmed using MPI + C

Performance Study challenges HPCS

- Need many runs
 - multiple versions
 - many students
 - different input sets
 - vary number of processors
- Similar assignments
 - differ in input and output formats
 - have differences even within the same class
- Our solution: Automated Performance Measurement System

APMS: Features

Supports multiple

- parallel programs
- sets of input parameters
- runs of the same program

Records

- program output
 - displays it for judging program correctness
- timing data
 - used to judge performance

The System Design

Example: Source Code Selection

Parameter Specification Language 4005

- Specify values for Run Parameters:
 - Number of processors
 - Maximum runtime allowed
 - Problem Specific Parameters
- Supports multiple input values per parameter
 - Defined as a comma separated list
 - APMS generates multiple input sets
 - Using all possible combinations with multiple parameters
 - Runs the program on each input set

Parameter Specification Language (Step 2) HPCS

- Specify order of parameters
 - Compile options pattern
 - Pattern attached to run command
 - Pattern to be inserted into input file

Preliminary Studies

Do novices achieve speedup? HPES

- Conjugate Gradient problem
- Class of 10 students
- 5 students used MPI
- 2 input sizes:
 - 8,000 x 8,000 matrix
 - 8,000,000 x 8,000,000 matrix

Do novices achieve speedup? 4000

Problem: conjugate Gradient

Input matrix size: 8,000 x 8,000

Input matrix size: 8,000,000 x 8,000,000

- Some students achieve better speedup than others.
- Novice code that exhibits O.K performance deteriorates under the pressure of large input size, while novice code with good performance conserves its quality with large input size

Does effort correlate with performance PLACS

- Game of life problem
- Class of 10 students
- All students used MPI
- 1 input size:
 - 250 x 250 grid

Does effort correlate with performance PLACS

Problem: Game of life

Input matrix size: 250 x 250

- Sometimes performance is bad even with a lot of effort
- •Two people with similar efforts can have widely different performance patterns

Conclusions

- APMS
 - Makes it easy and fast to collect the needed performance data
 - Is flexible to allow measurement on any code
- Novices achieve speedup
 - Consistently good performance
 - Consistently bad performance
 - Oscillating performance based on input size and number of processors
- Determining the relationship between effort and performance is not easy
- Model refinement:
 - Regularity of work
 - Distribution of effort across activities
 - Background information

Thank you

- **QV/es/ticasil?** Marv Zelkowitz, Jeff Hollingsworth,
- Taiga Nakamura, Sima Asgari, Forrest Shull, Nico Comments, Sima Asgari, Forrest Shull, Nico Zazworka, Rola Alameh, Daniela Suares Cruces
- UNL: Lorin Hochstein
- MSU: Jeff Carver
- UH: Philip Johnson
- Professors teaching classes: Alan Edelman [MIT], John Gilbert [UCSB], Mary Hall, Aiichiro Nakano, Jackie Charme [USC], Allan Snavely [UCSD], Alan Sussman, Uzi Vishkin [UMD], Ed Luke [MSU], Henri Casanova [UH], Glenn Leucke [ISU]
- Partners: MIT Lincoln Labs, MIT, UCSD, UCSB, UMD, USC, FC-MD

Do novices achieve speedup? HPES

Problem: conjugate Gradient

Input matrix size: 8000 x 8000

Do novices achieve speedup? HPES

Problem: conjugate Gradient

Input matrix size: 8000000 x 8000000

