Optimization 1 — Tutorial 2

October 29, 2020

Definition (Matrix Classification)

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then,

- 1. If $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$ for any $\mathbf{x} \in \mathbb{R}^n$, then $\mathbf{A} \succeq 0$ is called positive semidefinite (PSD) (if and only if all eigenvalues are non-negative).
- 2. If $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for any $\mathbf{0}_n \neq \mathbf{x} \in \mathbb{R}^n$, then $\mathbf{A} \succ 0$ is called positive definite (PD) (if and only if all eigenvalues are positive).
- 3. If there exist $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$ such that $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ and $\mathbf{y}^T \mathbf{A} \mathbf{y} < 0$, then \mathbf{A} is called indefinite (if and only if there exist at least one positive and one negative eigenvalue).

Definition (Point Classification)

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function. Then,

- 1. Let $\mathbf{x}^* \in \operatorname{interior}(U)$ such that f is differentiable in some neighborhood of \mathbf{x}^* . If $\nabla f(\mathbf{x}^*) = \mathbf{0}_n$ then \mathbf{x}^* is called a stationary point.
- 2. Suppose that U is open and that f is continuously differentiable. Then a stationary point is called a saddle point if it is neither a local minimum point nor a local maximum point.

Proposition (Optimality Conditions)

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function.

1. 0-order conditions:

- (a) (Weierstrass Theorem). Suppose that f is continuous over a non-empty and compact set $C \subseteq U$. Then f attains a minimum and a maximum value over C.
- (b) (Coerciveness). Suppose that f is continuous over $U = \mathbb{R}^n$ and that $\lim_{\|\mathbf{x}\| \to \infty} f(\mathbf{x}) = \infty$, then f is called coercive. If f is a coercive function and $S \subseteq \mathbb{R}^n$ is a non-empty closed set, then f attains a minimum value over S. In particular, f attains a global minimum value over \mathbb{R}^n if $S = \mathbb{R}^n$.
- 2. First-order condition: If $\mathbf{x}^* \in \text{interior}(U)$ is a local optimum point and all partial derivatives of f exist at \mathbf{x}^* , then $\nabla f(\mathbf{x}^*) = \mathbf{0}_n$.

3. Second-order conditions:

- (a) (Hessian Matrix). Suppose that U is open, and that f is twice continuously differentiable over U. Suppose that \mathbf{x}^* is a stationary point. Then, if \mathbf{x}^* is a local minimum [maximum] point of f, then $\nabla^2 f(\mathbf{x}^*) \succeq 0$ [$\nabla^2 f(\mathbf{x}^*) \preceq 0$]. Additionally, if $\nabla^2 f(\mathbf{x}^*)$ is indefinite, then \mathbf{x}^* is a saddle point.
- (b) (Convexity). Suppose that f is twice continuously differentiable over $U = \mathbb{R}^n$. Suppose that $\nabla^2 f(\mathbf{x}) \succeq 0$ for all $\mathbf{x} \in \mathbb{R}^n$. Then, if \mathbf{x}^* is a stationary point, it is a global minimum point over \mathbb{R}^n .

Problem 1

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Show that $\|\mathbf{A}\|_2 = \sqrt{\lambda_{\max}(\mathbf{A}^T \mathbf{A})}$.

Problem 2

Classify the stationary points of the following functions:

(a)
$$f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$
.

(b)
$$f(x,y) = (x^2 + y^2 - 1)^2 + (y^2 - 1)^2$$
.

Problem 3

Find the minimum and maximum points of the function $f(x,y)=x^2+y^2$ over the set $C=\{(x,y)\in\mathbb{R}^2\colon x+y\leq -1\}$.