Discrete Mathematics Lecture 15

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Summary of Lecture 14

LHRR of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_i a_{n-i}$$

- Existence and uniqueness: given *k* initial terms
- characteristic equation: $r^k \sum_{i=1}^k c_i r^{k-i} = 0$
 - k distinct roots $r_1, r_2, ..., r_k$: $x_n = \sum_{j=1}^k \alpha_j r_j^n$
 - Roots $\{m_1 \cdot r_1, ..., m_t \cdot r_t\}$: $x_n = \sum_{j=1}^t \left(\sum_{\ell=0}^{m_j-1} \alpha_{j,\ell} n^{\ell}\right) r_j^n$

LNRR of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_i a_{n-i} + F(n)$$

- Existence and uniqueness: given *k* initial terms
- General solutions: $z_n = x_n + y_n$
- Particular solutions: if $F(n) = (f_l n^l + \dots + f_1 n + f_0) s^n$ and s is a root of multiplicity $m, x_n = (p_l n^l + \dots + p_1 n + p_0) s^n n^m$

Generating Functions

DEFINITION: The **generating function** of a sequence $\{a_r\}_{r=0}^{\infty}$

is defined as
$$G(x) = \sum_{r=0}^{\infty} a_r x_r^r$$

- is defined as $G(x) = \sum_{r=0}^{\infty} a_r x_r^r$.

 Generating functions are **formal power series**.
- We do not discuss their convergence.

EXAMPLE: generating functions of sequences

•
$$a_r = 3$$
, $G(x) = 3(1 + x + \dots + x^r + \dots)$

•
$$a_r = 2^r$$
, $G(x) = 1 + 2x + \dots + (2x)^r + \dots$

•
$$a_r = \binom{n}{r}$$
, $G(x) = \binom{n}{0} + \binom{n}{1}x + \dots + \binom{n}{n}x^n$ $\not\subset$ $(n+1)$

DEFINITION: Let $A(x) = \sum_{r=0}^{\infty} a_r x^r$, $B(x) = \sum_{r=0}^{\infty} b_r x^r$

•
$$A(x) = B(x)$$
 if $a_r = b_r$ for all $r = 0,1,2,...$

Operations

DEFINITION: Let $A(x) = \sum_{r=0}^{\infty} a_r x^r$, $B(x) = \sum_{r=0}^{\infty} b_r x^r$

- $A(x) + B(x) = \sum_{r=0}^{\infty} (a_r + b_r) x^r$
- $A(x) B(x) = \sum_{r=0}^{\infty} (a_r b_r) x^r$
- $A(x) \cdot B(x) = \sum_{r=0}^{\infty} (\sum_{j=0}^{r} a_j b_{r-j}) x^r$
- $\lambda \cdot A(x) = \sum_{r=0}^{\infty} \lambda a_r x^r$ for any constant $\lambda \in \mathbb{R}$
- We say that B(x) is an **inverse** of A(x) if A(x)B(x) = 1.
 - The inverse of A(x): $A^{-1}(x)$
 - When A(x) has an inverse, define $\frac{C(x)}{A(x)} = A^{-1}(x) \cdot C(x)$

Operations

THEOREM: $A(x) = \sum_{r=0}^{\infty} a_r x^r$ has an inverse iff $a_0 \neq 0$.

EXAMPLE: Let
$$A(x) = \sum_{r=0}^{\infty} x^r$$
. Find $A^{-1}(x)$.

- $a_0 = 1 \neq 0$: $A^{-1}(x)$ exists
- Denote $A^{-1}(x) = \sum_{r=0}^{\infty} b_r x^r$; b_0, b_1, \dots are undetermined coefficients
- $A(x)A^{-1}(x) = 1$:

•
$$(1+x+x^2+\cdots)(b_0+b_1x+b_2x^2+\cdots)=1+0\cdot x+0\cdot x^2+\cdots$$

- Coefficient of x^0 : $b_0 = 1$
- Coefficient of x^1 : $b_1 + b_0 = 0$
- Coefficient of x^2 : $b_2 + b_1 + b_0 = 0$
- Coefficient of x^r : $b_r + b_{r-1} + \cdots + b_0 = 0$
 - $b_1 = -1, b_2 = 0, ..., b_r = 0$
 - $A^{-1}(x) = 1 x$

Operations

DEFINITION:
$$A(x) = \sum_{r=0}^{\infty} a_r x^r$$

- $A'(x) = \sum_{r=1}^{\infty} r a_r x^{r-1}$
 - $A^{(0)}(x) = A(x)$
 - $A^{(k)}(x) = (A^{(k-1)}(x))'$ for all integers $k \ge 1$
- $\int A(x) dx = \sum_{r=0}^{\infty} \frac{1}{r+1} a_r x^{r+1} + C$, where C is a constant

THEOREM: Let $A(x) = \sum_{r=0}^{\infty} a_r x^r$ and $B(x) = \sum_{r=0}^{\infty} b_r x^r$.

- $(\alpha A(x) + \beta B(x))' = \alpha A'(x) + \beta B'(x)$
- $\bullet \quad (A(x)B(x))' = A'(x)B(x) + A(x)B'(x)$
- $\left(A^k(x)\right)' = kA^{k-1}(x) A'(x)$

$(1+\alpha x)^u$

DEFINITION: Let $u \in \mathbb{R}$ and $r \in \mathbb{N}$. The **extended binomial**

coefficient
$$\binom{u}{r} = \begin{cases} u(u-1)\cdots(u-r+1)/r! & r>0\\ 1 & r=0 \end{cases}$$

THEOREM: Let x be a real number with |x| < 1 and let u be a real number. Then $(1+x)^u = \sum_{r=0}^{\infty} {u \choose r} x^r$.

EXAMPLE:

•
$$(1 - \alpha x)^{-1} = \sum_{r=0}^{\infty} \alpha^r x^r$$

•
$$(1 - \alpha x)^{-1} = \sum_{r=0}^{\infty} \alpha^r x^r$$

• $(1 - \alpha x)^{-n} = \sum_{r=0}^{\infty} {r+n-1 \choose r} \alpha^r x^r$

「连族 >>用(I+XX)~展开

QUESTION: Let $n > 0, R_1, ..., R_n \subseteq \mathbb{N}$. For every $r \geq 0$, let a_r be the number of r-combinations of [n] with repetition where every $i \in [n]$ appears R_i times.

- $a_r = |\{(r_1, \dots, r_n): r_1 \in R_1, \dots, r_n \in R_n, r_1 + \dots + r_n = r\}|$
 - This is also the number of ways of distributing r unlabeled objects into n labeled boxes such that R_i objects are sent to box i

THEOREM: $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^n \sum_{r_i \in R_i} x^{r_i}$.

•
$$\prod_{i=1}^{n} \sum_{r_i \in R_i} x^{r_i} = \sum_{r_1 \in R_1} x^{r_1} \cdot \sum_{r_2 \in R_2} x^{r_2} \cdots \sum_{r_n \in R_n} x^{r_n}$$

$$= \sum_{r=0}^{\infty} \left(\sum_{r_1 \in R_1, \dots, r_n \in R_n, r_1 + \dots + r_n = r} 1 \right) x^r$$

$$= \sum_{r=0}^{\infty} a_r x^r$$

EXAMPLE: Let a_r be the number of r-combinations of [n] without repetition. Determine a_r .

- a_r = the number of r-combinations of the multiset $\{1 \cdot 1, 1 \cdot 2, ..., 1 \cdot n\}$
- a_r = the number of r-subsets of the multiset $\{1 \cdot 1, 1 \cdot 2, ..., 1 \cdot n\}$
- $a_r = |\{(r_1, \dots, r_n): r_1, \dots, r_n \in \{0,1\}, r_1 + \dots + r_n = r\}|$
 - $R_1 = \{0,1\}, R_2 = \{0,1\}, \dots, R_n = \{0,1\}$
 - $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^n \sum_{r_i \in R_i} x^{r_i}$ = $(1+x)^n$
 - a_r = the coefficient of x^r in the expansion of $(1 + x)^n$
 - We know that $(1 + \alpha x)^u = \sum_{r=0}^{\infty} {u \choose r} \alpha^r x^r$
 - $(1+x)^n = \sum_{r=0}^{\infty} \binom{n}{r} x^r$
 - $a_r = \binom{n}{r}$

EXAMPLE: Let a_r be the number of r-combinations of [n] with repetition. Determine a_r .

- a_r = the number of r-combinations of the multiset $\{\infty \cdot 1, \infty \cdot 2, ..., \infty \cdot n\}$
- a_r = the number of r-subsets of the multiset $\{\infty \cdot 1, \infty \cdot 2, ..., \infty \cdot n\}$
- $a_r = |\{(r_1, \dots, r_n): r_1, \dots, r_n \ge 0, r_1 + \dots + r_n = r\}|$
 - $R_1 = \{0,1,\dots\}, R_2 = \{0,1,\dots\}, \dots, R_n = \{0,1,\dots\}$

•
$$\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^n \sum_{r_i \in R_i} x^{r_i}$$

= $(1 + x + \cdots)^n$
= $(1 - x)^{-n}$

- a_r = the coefficient of x^r in the expansion of $(1-x)^{-n}$
 - We know that $(1 + \alpha x)^u = \sum_{r=0}^{\infty} {u \choose r} \alpha^r x^r$
 - $(1-x)^{-n} = \sum_{r=0}^{\infty} {\binom{-n}{r}} (-1)^r x^r$
 - $a_r = {\binom{-n}{r}} (-1)^r = {\binom{n+r-1}{r}}$

EXAMPLE: Let a_r be the number of ways of distributing r identical books to 5 persons such that person 1, 2, 3, and 4 receive $\geq 3, \geq 2, \geq 4, \geq 6$ books, respectively. Calculate a_{20} .

•
$$a_r = |\{(r_1, \dots, r_5): r_1 \ge 3, r_2 \ge 2, r_3 \ge 4, r_4 \ge 6, r_5 \ge 0, r_1 + \dots + r_5 = r\}|$$

•
$$R_1 = \{3,4,...\}; R_2 = \{2,3,...\}; R_3 = \{4,5,...\};$$

 $R_4 = \{6,7,...\}; R_5 = \{0,1,2...\}$

•
$$\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^{5} \sum_{r_i \in R_i} x^{r_i}$$

$$= (x^3 + \dots)(x^2 + \dots)(x^4 + \dots)(x^6 + \dots)(1 + x + \dots)$$

$$= \frac{x^3}{1 - x} \frac{x^2}{1 - x} \frac{x^4}{1 - x} \frac{x^6}{1 - x} \frac{1}{1 - x} = \frac{x^{15}}{(1 - x)^5}$$

$$= x^{15} \sum_{r=0}^{\infty} {\binom{-5}{r}} (-1)^r x^r$$

•
$$a_{20} = {\binom{-5}{5}} (-1)^5 = 126$$

2.影胶传编) ⇒ 巴居开

QUESTION: Let $n > 0, R_1, ..., R_n \subseteq \mathbb{N}$. For every $r \geq 0$, let a_r be the number of r-permutations of [n] with repetition where every $i \in [n]$ appears R_i times.

- every $i \in [n]$ appears R_i times. • $a_r = \sum_{r_1 \in R_1, r_2 \in R_2, \dots, r_n \in R_n, r_1 + r_2 + \dots + r_n = r} \frac{r!}{r_1! r_2! \dots r_n!}$
 - This is the number of ways of distributing r labeled objects into n labeled boxes such that R_i objects are sent to box i for all $i \in [n]$

THEOREM:
$$\sum_{r=0}^{\infty} \frac{a_r}{r!} x^r = \prod_{i=1}^n \sum_{r_i \in R_i} \frac{x^{r_i}}{r_i!}$$
.

$$\begin{split} \bullet & \quad \prod_{i=1}^{n} \sum_{r_{i} \in R_{i}} \frac{x^{r_{i}}}{r_{i}!} = \sum_{r_{1} \in R_{1}} \frac{x^{r_{1}}}{r_{1}!} \cdot \sum_{r_{2} \in R_{2}} \frac{x^{r_{2}}}{r_{2}!} \cdots \sum_{r_{n} \in R_{n}} \frac{x^{r_{n}}}{r_{n}!} \\ & = \sum_{r=0}^{\infty} \left(\sum_{r_{1} \in R_{1}, r_{2} \in R_{2}, \dots, r_{n} \in R_{n}, r_{1} + r_{2} + \dots + r_{n} = r} \frac{r!}{r_{1}! r_{2}! \cdots r_{n}!} \right) \frac{x^{r}}{r!} \\ & = \sum_{r=0}^{\infty} \frac{a_{r}}{r!} x^{r} \end{split}$$

EXAMPLE: Let a_r be the number of r-permutations of [n] without repetition. Determine a_r .

- a_r = the number of r-permutations of [n] with repetition where every $i \in [n]$ appears 0 or 1 time.
 - $R_1 = \{0,1\}, R_2 = \{0,1\}, \dots, R_n = \{0,1\}$

•
$$\sum_{r=0}^{\infty} \frac{a_r}{r!} x^r = \prod_{i=1}^n \sum_{r_i \in \{0,1\}} \frac{x^{r_i}}{r_i!}$$

 $= \prod_{i=1}^n (1+x)$
 $= (1+x)^n$
 $= \sum_{r=0}^{\infty} \binom{n}{r} x^r$

- $\frac{a_r}{r!} = \binom{n}{r} = \frac{n(n-1)\cdots(n-r+1)}{r!}$
 - $a_r = n(n-1)\cdots(n-r+1)$

EXAMPLE: Let a_r be the number of r-permutations of [n] with repetition. Determine a_r .

• a_r = the number of r-permutations of [n] with repetition where every $i \in [n]$ appears ≥ 0 times.

•
$$R_1 = \{0,1,\dots\}, R_2 = \{0,1,\dots\}, \dots, R_n = \{0,1,\dots\}$$

•
$$\sum_{r=0}^{\infty} \frac{a_r}{r!} x^r = \prod_{i=1}^n \sum_{r_i \in \{0,1,\dots\}} \frac{x^{r_i}}{r_i!}$$

$$= \prod_{i=1}^n \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots \right)$$

$$= e^{nx}$$

$$= \sum_{r=0}^{\infty} \frac{1}{r!} (nx)^r$$

$$\bullet \quad \frac{a_r}{r!} = \frac{1}{r!} n^r$$

•
$$a_r = n^r$$

EXAMPLE: Show that
$$S_2(r,n) = \frac{1}{n!} \sum_{i=0}^n (-1)^i \binom{n}{i} (n-i)^r$$

- We proved that $S_2(n,j) = \frac{1}{j!} \sum_{i=0}^{j} (-1)^i {j \choose i} (j-i)^n$ in lecture 9.
- $S_2(r,n)$ = the number of ways of distributing r different objects into n identical boxes such that ≥ 1 objects are sent to box i for all $i \in [n]$.
- Let a_r be the number of ways of distributing r different objects into n different boxes such that ≥ 1 objects are sent to box i for all $i \in [n]$.
- $a_r = S_2(r, n) \cdot n!$
- $R_1 = R_2 = \cdots = R_n = \{1, 2, \dots\}$

•
$$\sum_{r=0}^{\infty} \frac{a_r}{r!} x^r = \prod_{i=1}^n \sum_{r_i \in R_i} \frac{x^{r_i}}{r_i!} = \sum_{i=0}^n (-1)^i \binom{n}{i} e^{(n-i)x}$$

 $= \prod_{i=1}^n \left(\frac{x}{1!} + \frac{x^2}{2!} + \cdots \right) = \sum_{i=0}^n (-1)^i \binom{n}{i} \sum_{r=0}^{\infty} \frac{(n-i)^r}{r!} x^r$
 $= \prod_{i=1}^n (e^x - 1) = \sum_{r=0}^{\infty} \frac{1}{r!} \sum_{i=0}^n (-1)^i \binom{n}{i} (n-i)^r x^r$
 $= (e^x - 1)^n$

EXAMPLE: Find $a_r = \{s \in \{1,2,3,4\}^r : s \text{ has an even number of } 1s\}$

- a_r = the number of r-permutations of {1,2,3,4} with repetition where 1 appears an even number of times
- $R_1 = \{0,2,4,...\}, R_2 = R_3 = R_4 = \{0,1,2,...\}$

•
$$\sum_{r=0}^{\infty} \frac{a_r}{r!} x^r = \left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots\right) \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots\right)^3$$

$$= \frac{e^x + e^{-x}}{2} \cdot e^{3x}$$

$$= \frac{e^{4x} + e^{2x}}{2}$$

$$= \frac{1}{2} \sum_{r=0}^{\infty} \left(\frac{(4x)^r}{r!} + \frac{(2x)^r}{r!}\right)$$

- $\bullet \quad \frac{a_r}{r!} = \frac{1}{2} \cdot \left(\frac{4^r}{r!} + \frac{2^r}{r!} \right)$
 - $\bullet \quad a_r = \frac{4^r + 2^r}{2}$

Counting Integer Partitions with GFs

THEOREM: Let $p_k(r)$ be the number of **partitions of** r that has

k parts. Then
$$\sum_{r=0}^{\infty} p_k(r) x^r = x^k \prod_{j=1}^{k} \frac{1}{1-x^j}$$
.

- $p_k(r) = p_{k-1}(r-1) + p_k(r-k)$ $(r \ge k)$ // contain 1; do not contain 1
- $Q_k(x) = \sum_{r=0}^{\infty} p_k(r) x^r = \sum_{r=0}^{\infty} (p_{k-1}(r-1) + p_k(r-k)) x^r$ $= \sum_{r=k}^{\infty} (p_{k-1}(r-1) + p_k(r-k)) x^r$ $= \sum_{r=k}^{\infty} p_{k-1}(r-1) x^r + \sum_{r=k}^{\infty} p_k(r-k) x^r$ $= xQ_{k-1}(x) + x^kQ_k(x)$

•
$$Q_k(x) = \frac{x}{1-x^k} Q_{k-1}(x) = \dots = \frac{x^{k-1}}{(1-x^k)\dots(1-x^2)} Q_1(x)$$

$$= \frac{x^{k-1}}{(1-x^k)\dots(1-x^2)} \frac{x}{1-x}$$

$$= x^k \prod_{j=1}^k \frac{1}{1-x^j}$$

Partial Fraction Decomposition

LEMMA: Let Q(x), P(x) be two polynomials s.t. $\deg(Q) > \deg(P)$. If $Q(x) = (1 - r_1 x)^{m_1} \cdots (1 - r_t x)^{m_t}$ for distinct non-zero numbers r_1, \dots, r_t and integers $m_1, \dots, m_t \ge 1$, then there exist unique coefficients $\{\alpha_{j,u} : j \in [t], u \in [m_j]\}$ such that

$$\frac{P(x)}{Q(x)} = \sum_{j=1}^{t} \sum_{u=1}^{m_j} \frac{\alpha_{j,u}}{(1-r_j x)^u} .$$

EXAMPLE: Find the partial fraction decomposition of $\frac{1-9x}{1-18x+80x^2}$

- P(x) = 1 9x; $Q(x) = 1 18x + 80x^2$
 - $\deg(P) < \deg(Q)$
- Q(x) = (1 8x)(1 10x)
 - t = 2; $r_1 = 8$, $m_1 = 1$; $r_2 = 10$, $m_2 = 1$
- By the lemma, there exist constants $\alpha_{1,1}$, $\alpha_{2,1}$ such that $\frac{P(x)}{Q(x)} = \frac{\alpha_{1,1}}{1-8x} + \frac{\alpha_{2,1}}{1-10x}$

•
$$\frac{P(x)}{Q(x)} = \frac{1}{2(1-8x)} + \frac{1}{2(1-10x)}$$

Solving LNRR with GFs

EXAMPLE: Solve the LNRR $a_n = 8a_{n-1} + 10^{n-1}$ with the initial condition $a_0 = 1$ using generating function.

•
$$A(x) = \sum_{n=0}^{\infty} a_n x^n$$

 $= 1 + \sum_{n=1}^{\infty} (8a_{n-1} + 10^{n-1}) x^n$
 $= 1 + 8xA(x) + \frac{x}{1-10x}$

•
$$A(x) = \frac{1-9x}{(1-8x)(1-10x)} = \frac{1}{2} \left(\frac{1}{1-8x} + \frac{1}{1-10x} \right)$$

$$= \sum_{n=0}^{\infty} \frac{1}{2} (8^n + 10^n) x^n$$

•
$$a_n = \frac{1}{2}(8^n + 10^n) \quad (n \ge 0)$$