2D Liang-Barsky Clipping (Hearn and Baker)

The idea of the L-B clipping algorithm is to do as much testing as possible before computing line intersections. Consider first the usual parametric form of a straight line:

$$x = x_0 + u (x_1 - x_0) = x_0 + u \Delta x$$

 $y = y_0 + u (y_1 - y_0) = y_0 + u \Delta y$

A point is in the clip window if

$$x_{min} \le x_0 + u \Delta x \le x_{max}$$

 $y_{min} \le y_0 + u \Delta y \le y_{max}$

which can be expressed as the 4 inequalities

- 1. A line parallel to a clipping window edge has $p_k = 0$ for that boundary.
- 2. If for that k, $q_k < 0$, the line is completely outside and can be eliminated.
- 3. When $p_k < 0$ the line proceeds outside to inside the clip window and when $p_k > 0$, the line proceeds inside to outside.
- 4. For nonzero p_k , $u = q_k/p_k$ gives the intersection point.
- 5. For each line, calculate u₁ and u₂. For u₁, look at boundaries for which p_k < 0 (outside → in). Take u₁ to be the largest among (0, q_k/p_k). For u₂, look at boundaries for which p_k > 0 (inside → out). Take u₂ to be the minimum of (1, q_k/p_k). If u₁ > u₂, the line is outside and therefore rejected.