Nyelvtani transzformációk

Formális nyelvek, 6. gyakorlat

Célja: A nyelvtani transzformációk bemutatása

Fogalmak: Megszorított típusok, normálformák, 0. típusú epszilon-mentesítés, 2. típusú epszilon-mentesítés, láncmentesítés, Chomsky-féle normálformává alakítás, reguláris műveletekre való zártságot bizonyító konstrukciók.

Feladatok jellege: Konkrét nyelvtanokból kiindulva a konstrukciók tényleges, mechanikus elvégzése.

2005/06 II. félév

Formális nyelvek (6. gyakorlat)

Nyelvtani transzformációk

2005/06 II. félév 1

Házi feladatok megoldása

1. feladat

Melyik nyelvet generálja a következő nyelvtan?
$$T = \{(,)\}$$

a.
$$S \rightarrow (S) \mid SS \mid \varepsilon$$

b.
$$S \rightarrow XS \mid \varepsilon \text{ \'es } X \rightarrow (S)$$

c.
$$S \rightarrow (SS|)$$

Állítás: Ha S $\stackrel{*}{\rightarrow} \alpha$, akkor $\phi(\alpha)$.

A levezetés hosszára vonatkozó teljes indukcióval bizonyítunk. Ha $\alpha=\mathcal{S}$, akkor igaz az állítás.

Tegyük fel, hogy $S \stackrel{n}{\rightarrow} \alpha = \alpha_1 S \alpha_2$.

Három eset lehetséges aszerint, hogy melyik szabályt alkalmazzuk. A kapott szavak legyenek rendre $\beta_1 = \alpha_1(S)\alpha_2$, $\beta_2 = \alpha_1SS\alpha_2$, $\beta_3 = \alpha_1\alpha_2$.

Legyen $u \in \text{Pre}(\beta_i)$, azaz $uv = \beta_i$ (i = 1, 2, 3).

Házi feladatok megoldása

1. feladat

Melyik nyelvet generálja a következő nyelvtan? $T = \{(,)\}$

a.
$$S \rightarrow (S) \mid SS \mid \varepsilon$$

b.
$$S \rightarrow XS \mid \varepsilon \text{ \'es } X \rightarrow (S)$$

c. $S \rightarrow (SS \mid)$

Megoldás:

a. és b.: HE, c.: HE). Például a:

Jelölje L a generált nyelvet.

"*L* ⊂ **HE**":

Minden újonnan behozott jobbzárójel elé valahova kerül ugyanakkor egy új balzárójel is. Így az aktuális jelsorozat minden prefixében legalább annyi balzárójel van mint jobb. Formálisan:

Ha $\alpha \in \{S, (,)\}^*$, legyen $\phi(\alpha)$ a következő tulajdonság:

$$\forall u \in \operatorname{Pre}(\alpha) : \ \ell_{\ell}(u) \geq \ell_{\ell}(u) \text{ és } \ell_{\ell}(\alpha) = \ell_{\ell}(\alpha).$$

Formális nyelvek (6. gyakorlat)

Nyelvtani transzformációk

2005/06 II. félév 2 / .

Házi feladatok megoldása

1. feladat

Melyik nyelvet generálja a következő nyelvtan? $T = \{(,)\}$

a.
$$S \rightarrow (S) \mid SS \mid \varepsilon$$

Formális nyelvek (6. gyakorlat)

b.
$$S \rightarrow XS \mid \varepsilon \text{ \'es } X \rightarrow (S)$$

c. $S \rightarrow (SS|)$

Ha $u \in \text{Pre}(\alpha_1)$, akkor az indukció alapján $\ell_i(u) \geq \ell_i(u)$.

Ha $v \in \operatorname{Suf}(\alpha_2)$, akkor $\exists u', \ u'v = \alpha$. Az indukció alapján $\ell_{(}(u') \geq \ell_{)}(u')$ és akármelyik szabályt is alkalmaztuk, ugyanannyival (i=2,3 esetén 0-val, i=1 esetén 1-gyel) nőtt a bal- és jobbzárójelek száma u-ban u'-höz képest. Tehát $\ell_{(}(u) \geq \ell_{)}(u)$.

Ha $u=\alpha_1\gamma_1$ és $v=\gamma_2\alpha_2$, (azaz γ_1 prefixe valamelyik levezetési szabály jobboldalának) akkor indukció alapján $\ell_{(}(\alpha_1) \geq \ell_{)}(\alpha_1)$ és könnyen ellenőrizhető, hogy $\ell_{(}(\gamma_1) \geq \ell_{)}(\gamma_1)$, tehát $\ell_{(}(u)=\ell_{(}(\alpha_1)+\ell_{(}(\gamma_1) \geq \ell_{)}(\alpha_1)+\ell_{)}(\gamma_1)=\ell_{)}(u)$.

 $\ell((\beta_i) = \ell_1(\beta_i)$, hiszen minden szabály jobboldala ugyanannyi bal- és jobbzárójelet tartalmaz (0-t vagy 1-et), tehát $\phi(\beta_i)$, (i = 1, 2, 3).

Formális nyelvek (6. gyakorlat) Nyelvtani transzformációk 2005/06 II. félév 3/17

Nyelvtani transzformációk

2005/06 II. félév 4

Házi feladatok megoldása

1. feladat

Melyik nyelvet generálja a következő nyelvtan?
$$T = \{(,)\}$$
 a. $S \to (S)|SS|\varepsilon$ **b.** $S \to XS|\varepsilon$ *és* $X \to (S)$

b.
$$S \to XS | \varepsilon \text{ \'es } X \to (S)$$

c.
$$S \rightarrow (SS|)$$

" *L* ⊃ **HE**" :

A zárójelek számára vonatkozó indukcóval belátjuk, hogy minden helyes zárójelezés levezethető.

Az üres zárójelezés az $S \rightarrow \varepsilon$ szabállyal levezethető.

Tekintsünk egy w helyes zárójelezést. Ekkor vagy $w = (w_1)$, vagy $w = w_1 w_2$, ahol w_1, w_2 helyes zárójelezések. (Attól függően, hogy van-e w-nek valódi prefixe, mely ugyanannyi bal- és jobbzárójelet tartalmaz.)

Indukció alapján w_1 és w_2 levezethető.

Az első esetben az $S \to (S) \stackrel{*}{\to} (w_1)$, a másodikban az $S \rightarrow SS \stackrel{*}{\rightarrow} w_1 S \stackrel{*}{\rightarrow} w_1 w_2$ levezetés w-nek egy jó levezetését adja.

Formális nyelvek (6. gyakorlat)

Nyelvtani transzformációk

2005/06 II. félév

Házi feladatok megoldása

2. feladat

Adjunk az $L = \{v; v = uu\}$ $(T = \{a, b\})$ nyelvet generáló nyelvtant a " vv^{-1} " alakú szavak nyelvénél látott módszerre való visszavezetéssel!

Megoldás:

$$S' \to \varepsilon \mid S$$

$$S \to tSX_t \mid tY_t \qquad \forall t \in T$$

$$Y_tX_{t'} \to Y_{t'}t \qquad \forall t, t' \in T$$

$$tX_{t'} \to X_{t'}t \qquad \forall t, t' \in T$$

$$Y_t \to t$$

Formális nyelvek (6. gyakorlat)

Nyelvtani transzformációk

2005/06 II. félév

Házi feladatok megoldása

3. feladat

Adjunk nyelvtant!
$$T = \{a\}$$

 $L = \{a^{2^n}; n \ge 0\}.$

Megoldás:

 $S \rightarrow LDaR$

 $LD \rightarrow \varepsilon$

 $R \rightarrow \varepsilon$

Da → aaD

 $DR \rightarrow ER$

 $ER \rightarrow \varepsilon$

 $L \rightarrow \varepsilon$

aE → Eaa

 $LE \rightarrow LD$

0. típusú nyelvtanok

ε-mentesítés

$$G = \langle \{a, b\}, \{S, X, Y\}, \mathcal{P}, S \rangle$$

 $S \to aXSbY \mid ab \mid \varepsilon$
 $Xb \to \varepsilon$

$$Xb \rightarrow \varepsilon$$

$$\textit{Xa} \rightarrow \textit{aaX}$$

Végezzük el a 0. típusú ε -mentesítést!

Megoldás:

$$S' \rightarrow \varepsilon \mid S$$

$$S \rightarrow aXSbY \mid ab$$

$$aS \rightarrow a$$
 $Sa \rightarrow a$ $aXb \rightarrow a$ $Xba \rightarrow a$ $bS \rightarrow b$ $Sb \rightarrow b$ $bXb \rightarrow b$ $Xbb \rightarrow b$

$$DS \rightarrow D$$
 $SD \rightarrow D$ $DXD \rightarrow D$ $XDD \rightarrow D$

$$XS \rightarrow X$$
 $SX \rightarrow X$ $XXb \rightarrow X$ $XbX \rightarrow X$ $YS \rightarrow Y$ $SY \rightarrow Y$ $YXb \rightarrow Y$ $XbY \rightarrow Y$

2005/06 II. félév Formális nyelvek (6. gyakorlat) Nyelvtani transzformációk Formális nyelvek (6. gyakorlat) Nyelvtani transzformációk

2005/06 II. félév

Kuroda normálforma (1. típusú nyelvtan)

A normálformára alakítás lépései

Alakítsuk át a négyzetszám hosszúságú szavakat generáló nyelvtan szabályait környezetfüggővé! Hozzuk a szabályokat Kuroda normálformára!

Példa: XY → YaX szabály:

1. lépés: új, lokális változók (álterminálisok) bevezetése:

 $XY \rightarrow YQ_2X$

- $Q_a \rightarrow a$
- 2. lépés: új nyelvtani jelekkel egyesével átírjuk a kívánt sorozatra (már csak " $AB \rightarrow CD$ " alakú rossz szabályok maradnak):

 $XY \rightarrow YZ_1$

$$Z_1 o Q_a X$$

3.lépés: Az "AB → CD" alakú szabályok eliminálása:

 $XY \rightarrow XW$

$$XW \rightarrow YW$$

$$YW \rightarrow YZ_1$$

Formális nyelvek (6. gyakorlat)

Nyelvtani transzformációk

2005/06 II. félév

2005/06 II. félév

Chomsky normálforma (2. típus)

1. lépés: ε-mentesítés

$$H_1 = \{S,C\},$$

$$\textit{H}_2 = \{\textit{S},\textit{C}\} \cup \{\textit{A},\textit{B}\},$$

$$H_3 = H_2 \Rightarrow H = \{S, A, B, C\}.$$

Képezzük az összes olyan szabályt, mely az eredetiből a jobboldalakon néhány H-beli elhagyásával kapható, de marad legalább egy terminális vagy nem terminális jel.

$$S \rightarrow AB \mid A \mid B$$

$$A \rightarrow aAa \mid aa \mid C$$

$$B \rightarrow bBb \mid bb \mid C$$

$$C \to Cccc \, | \, ccc \,$$

Mivel $S \in H$ hozzá kell adni még a következőt:

$$S' \rightarrow S \mid \varepsilon$$

Chomsky normálforma (2. típus)

1. lépés: ε-mentesítés

$$G = \{ a, b, c \}, \{ S, A, B, C \}, \mathcal{P}, S > \}$$

 $S \rightarrow AB \mid \varepsilon$

 $A \rightarrow aAa \mid C$

 $B \rightarrow bBb \mid C$

 $C \rightarrow Cccc \mid \varepsilon$

ε -mentesítés:

Konstruálunk egy $H \subset \{S, A, B, C\}$ segédhalmazt, melynek pontosan azok a nyelvtani jelek lesznek az elemei, melyekből levezethető ε . Ehhez segítségünkre lesznek a rekurzívan definiált Hi halmazok. A Hi halmaz a H_{i-1} halmaz bővítése azon nyelvtani jelekkel, amelyekből közvetlenül levezethető H_{i-1} -beli nyelvtani jel. A kiindulási halmaz H_1 , azon nyelvtani jelek halmaza, melyekből közvetlenül levezethető ε .

Formális nyelvek (6. gyakorlat)

Nyelvtani transzformációk

Chomsky normálforma (2. típus)

2. lépés: Álterminálisok bevezetése

Álterminálisok bevezetése:

Minden terminális jel helyett behozunk egy új nyelvtani jelet, a szabályokban a terminális jeleket ezekre cseréljük, és az álterminálisokat terminálsokra cserélő szabályokat hozzáadjuk.

$$S' \rightarrow S \mid \varepsilon$$

$$S \rightarrow AB \mid A \mid B$$

$$A \rightarrow Q_a A Q_a | Q_a Q_a | C$$

$$B \rightarrow Q_b B Q_b | Q_b Q_b | C$$

$$C \to CQ_cQ_cQ_c \mid Q_cQ_cQ_c$$

$$Q_a \rightarrow a$$

$$Q_b \rightarrow b$$

$$Q_{\boldsymbol{c}} \to \boldsymbol{c}$$

2005/06 II. félév 2005/06 II. félév Formális nyelvek (6. gyakorlat) Nyelvtani transzformációk Formális nyelvek (6. gyakorlat) Nyelvtani transzformációk 12/17

Chomsky normálforma (2. típus)

3. lépés: Láncmentesítés

Láncmentesítés:

Meghatározzuk minden nyelvtani jelhez azon nyelvtani jelek halmazát, melyek levezethetők belőle.

$$H(S') = \{S', S, A, B, C\}, \quad H(S) = \{S, A, B, C\},$$

 $H(A) = \{A, C\}, \quad H(B) = \{B, C\}, \quad H(C) = \{C\}.$

Minden $Y \in H(X)$ nyelvtani jelhez vesszük azon szabályokat, amelyeknek baloldalán X, jobboldalán pedig egy Y-ra vonatkozó eredeti szabály jobboldala áll, kivéve ha ez a jobboldal egyetlen nyelvtani jel.

Formális nyelvek (6. gyakorlat)

Nyelvtani transzformációk

2005/06 II. félév 13 / 1

3. típusú normálforma

Kiterjesztett 3. típusú nyelvtan normálformára hozása

$$S \rightarrow \varepsilon \mid bA$$

 $A \rightarrow aaA \mid S \mid b$

Láncmentesítés és hosszredukció után:

$$S \rightarrow \varepsilon \mid bA$$

 $A \rightarrow aZ_1 \mid \varepsilon \mid bA \mid b$
 $Z_1 \rightarrow aA$

A nyelvtani jelből terminális alakú szabályok átalakítása:

$$S \rightarrow \varepsilon \mid bA$$

 $A \rightarrow aZ_1 \mid \varepsilon \mid bA \mid bF_1$
 $Z_1 \rightarrow aA$
 $F_1 \rightarrow \varepsilon$

Formális nyelvek (6. gyakorlat)

Nyelvtani transzformációk

2005/06 II. félév

15/17

Chomsky normálforma (2. típus)

4. lépés: Hosszredukció

Tehát eddig kaptuk:

$$S' \rightarrow \varepsilon |AB| |Q_aAQ_a| |Q_aQ_a| |Q_bBQ_b| |Q_bQ_b| |CQ_cQ_cQ_c| |Q_cQ_cQ_c| |Q_cQ_c| |Q_c| |Q_cQ_c| |Q_c| |$$

Hosszredukció:

Például: $C \rightarrow CQ_cQ_cQ_c$ szabály:

$$C
ightarrow CZ_1 \hspace{0.5cm} Z_1
ightarrow Q_cZ_2 \hspace{0.5cm} Z_2
ightarrow Q_cQ_c$$

Formális nyelvek (6. gyakorlat)

Nyelvtani transzformációk

2005/06 II. félév 1