Agenda

Visión geométrica de PL

Soluciones básicas

Espacios Vectoriales

- Un espacio vectorial es un conjunto no vacío de objetos, llamados vectores, en el que se han definido dos operaciones: la suma y el producto por un escala.
- V ⊂ Rⁿ es un subespacio lineal si es cerrado bajo adición y multiplicación por un escalar:
 - Si $a, b \in V$, entonces $a + b \in V$
 - Si $a \in V$, $\alpha \in \mathbb{R}$, entonces $\alpha a \in V$
 - El vector 0 siempre está en *V*
- Independencia lineal: $\alpha_1\nu_1 + \cdots + \alpha_k\nu_k = 0$
- Un conjunto $\{\nu_1, \dots, \nu_k\}$ es linealmente dependiente si y solo si alguno de los vectores es combinación lineal de los otros.

Espacios Vectoriales

Ejemplos:

- Son $\{(2,-1,3),(-6,3,-9)\}$ LI?
- Son $\{(2,-1,3),(3,-1,4)\}$ LI?

Espacios Vectoriales

- W = span[$\nu_1, ..., \nu_k$] = { $x : x = \sum_{i=1}^k \alpha_i \nu_i$ }
- Span de cualquier conjunto de vectores se le llama el subespacio generado por $\{\nu_1 + \cdots + \nu_k\}$.
- Si ν es combinación lineal de $\{\nu_1, \dots, \nu_k\}$, entonces span $[\nu_1, \dots, \nu_k] = \text{span}[\nu_1, \dots, \nu_k, \nu]$
- Una **base** de un subespacio V es un conjunto de vectores $\{\nu_1, \ldots, \nu_k\}$ linealmente independientes tales que span $W = [\nu_1, \ldots, \nu_k] = V$.
- Todas las bases de V tienen el mismo número de vectores, al que se le llama la dimensión de V.

Hiperplanos

- **Hiperplano:** el conjunto H de todos los puntos $x = [x_1, \ldots, x_n]$ que satisfacen la ecuación $\sum_{i=1}^n u_i x_i = \alpha$, donde $u_i, \alpha \in \mathbb{R}$, y al menos un $u_i \neq 0$
- $\bullet \ H = \{x \in \mathbb{R}^n : u'x = \alpha\}$
- u es la normal del hiperplano (gradiente)
- $\dim(H)$ es n-1
- Si el hiperplano contiene al origen, es un subespacio $H = \{x \in \mathbb{R}^n : u'x = 0\}$
- H divide \mathbb{R}^n en dos **semi-espacios**:
 - Semi-espacio positivo: $H_+ = \{x \in \mathbb{R}^n : u'x \ge \alpha\}$
 - Semi-espacio negativo: $H_- = \{x \in \mathbb{R}^n : u'x \leq \alpha\}$

Ejemplos de hiperplanos

- En \mathbb{R}^2 : líneas (dim=1)
- En \mathbb{R}^3 : planos (dim=2)

Ejemplo:
$$\min -x_1 - 3x_2$$

 $s.a. x_1 + x_2 \le 7$
 $-x_1 + 2x_2 \le 8$
 $x_1, x_2 > 0$

- Curvas de nivel de función objetivo: hiperplanos
- Restricciones: hiperplanos

Conjuntos convexos

- Un conjunto $\Omega \subset R^n$ es un **conjunto convexo** si $\forall x_1, x_2 \in \Omega$ y $\alpha \in (0,1), (1-\alpha)x_1 + \alpha x_2 \in \Omega$
- Todas las combinaciones lineales convexas o segmentos de linea están en el conjunto
- Intersección de una colección de conjuntos convexos es un conjunto convexo
- → Intersección de una colección de semi-espacios es un conjunto convexo
- ⇒ Región factible en PL: conjunto convexo

Politopos, poliedros e hiperplanos de soporte

- **Politopo**: conjunto que puede ser expresado como la intersección de un número finito de semi-espacios ($Ax \le b \times 0$ región factible)
- Poliedro: politopo acotado no vacío
- Hiperplano de soporte:
 - Sea y un punto en la frontera de un conjunto convexo
 - Hiperplano de soporte H: pasa por y y todos los puntos del conjunto quedan en uno solo de los semi-espacios generados por H
- Facetas de un poliedro de dimensión k:
 - Faceta es una cara de dimensión k-1
 - Una arista es una cara de dimensión uno
 - Un vértice es una cara de dimensión cero

Ejemplo

min
$$-x_1 - 3x_2$$

s.a. $x_1 + x_2 \le 7$
 $-x_1 + 2x_2 \le 8$
 $x_1, x_2 \ge 0$

- Gráfico región factible, curvas de nivel, óptimo.
- Hiperplanos de soporte
- Caras

Hiperplanos de soporte

- Región factible acotada no vacía: poliedro $M \subset \mathbb{R}^n$
- H: hiperplano de soporte de M
- Óptimo: intersección de $c'x = \beta$ (hiperplano de soporte) y la región factible M (poliedro)

Ejemplo

min
$$-x_1 - 3x_2$$

s.a. $x_1 + x_2 \le 7$
 $-x_1 + 2x_2 \le 8$
 $x_1, x_2 \ge 0$

- Gráfico región factible, curvas de nivel, óptimo
- Solución óptima única
- Infinitas soluciones óptimas: min $-x_1 x_2$
- Sin óptimo finito: s.a. $-2x_1 + x_2 \le 4$, $x_1 x_2 \le 2$, $x_1, x_2 \ge 0$
- Sin solución: región factible vacía

Agenda

Visión geométrica de PL

Soluciones básicas

Programas lineales en forma estándar

min
$$c'x$$

s.a. $Ax = b$
 $x \ge 0$

- $A \in \mathbb{R}^{m \times n}$, $m \le n$, $b \ge 0$
- Problemas en otros formatos se pueden poner en forma estándar
- $Ax \le b$: adicionar variables de holgura
- $Ax \ge b$: adicionar variables de exceso

Programas lineales en forma estándar

Ejemplo:

max
$$-5x + 5y + z - 15$$

s.a. $x - y + 3z \ge -3$
 $2x - 3y + z \le 8$
 $x + 2y - 2z \ge 5$
 $-y + z = -4$
 $x \ge 0, y \le 0$

Programas lineales en forma estándar

Sustitución de variables libres. Ejemplo:

$$\max x + 3y + 4z$$
s.a. $x + 2y + z = 5$

$$2x + 3y + z = 6$$

$$y \ge 0, z \ge 0$$

Soluciones básicas

Problema lineal en forma estándar:

max.
$$c'x$$

s.a. $Ax = b$
 $x \ge 0$

- $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $b \ge 0$, $m \le n$, r(A) = m
- $\bullet \ A = [B \quad N]$
- $B \in \mathbb{R}^{m \times m}$ (m cols. lin. ind.), $N \in \mathbb{R}^{m \times (n-m)}$

Soluciones básicas (cont.)

- $Ax = b \rightarrow Bx_B + Nx_N = b$
- $Bx_B = b$ tiene solución única: $x_B = B^{-1}b$
- $x_N = 0 \rightarrow x = \begin{bmatrix} x_B \\ 0 \end{bmatrix}$: solución básica (factible si $x_B \ge 0$)
- $x = \begin{bmatrix} x_B \\ 0 \end{bmatrix}$: solución básica con respecto a la base B
- Variables básicas y columnas básicas
- Solución básica degenerada
- Solución básica factible $(x \ge 0)$

Soluciones básicas (cont.)

Ejemplo:

• Región factible:

$$x_1 + x_2 \le 6$$
$$x_2 \le 3$$
$$x_1, x_2 \ge 0$$

• Región factible en formato estándar:

$$x_1 + x_2 + x_3 = 6$$

 $x_2 + x_4 = 3$
 $x_1, x_2, x_3, x_4 > 0$

Soluciones básicas? básicas factibles?

Soluciones básicas (cont.)

• Adicione $x_1 + 2x_2 \le 6$

$$x_1 + x_2 + x_3 = 6$$

$$x_2 + x_4 = 3$$

$$x_1 + 2x_2 + x_5 = 6$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

$$\bullet \ A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$\bullet \ B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix}$$

• Solución básica degenerada

Propiedades de las soluciones básicas

- Teorema fundamental de Programación Lineal:
 En un PL en forma estándar
 - Si existe una solución factible, existe una solución básica factible
 - Si existe una solución factible óptima, existe una solución básica factible óptima
- Resultado del Teorema: para resolver un PL es suficiente con examinar las soluciones básicas factibles
- Número de soluciones básicas factibles $\leq \binom{n}{m} = \frac{n!}{m!(n-m)!}$

Visión geométrica

Teorema

Sea $\Omega = \{x : Ax = b, x \ge 0\}$, $A \in \mathbb{R}^{m \times n}$, m < n. x es un punto extremo de Ω si y solo si x es una solución básica factible de Ax = b, $x \ge 0$

- \bullet Resultado del Teorema: Para resolver un PL es suficiente con examinar los puntos extremos del poliedro Ω
- Es suficiente con examinar las soluciones básicas factibles

Propiedades de las soluciones básicas (cont.)

Cambio de base.

Ejemplo:

$$x_1 + x_2 \le 6$$

 $x_2 \le 3$
 $x_1, x_2 \ge 0$

$$\bullet \ A = \begin{bmatrix} a_1 \ a_2 \ a_3 \ a_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

• Solución factible:
$$x = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 1 \end{bmatrix}$$

Solución básica factible?

 $x_1 + x_2 + x_3 = 6$

 $x_1, x_2, x_3, x_4 > 0$

 $x_2 + x_4 = 3$