Homework #4: Boosting, Dimension reduction, Clustering

We will analyze data from the Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and moLecular Analysis (I-SPY TRIAL) breast cancer trial. This dataset contains patients with measurements derived from MRI scans. The outcome of interest is to predict the final diameter of the tumor as measured through the MRI, which is stored in the column MRI_LD_Tfinal. We have longitudinal measurements from each patient, collected at timepoints T0, T1, T2, and Tfinal. T0 is pre-treatment. T1 is early treatment. T2 is inter-regimen. Tfinal is the final measurement.

1. Load the iSPY1 dataset by running the following. Notice that there is a fakeSite column with values ranging from 1-8. We've added this column to simulate combining data from 8 different sites.

```
ispy_dat <- read.csv("ispy1doctored_site.csv")
ispy_dat$HR_HER2status <- as.factor(ispy_dat$HR_HER2status)</pre>
```

Boosting

We will create and evaluate a gradient boosted model that predicts MRI_LD_Tfinal using all the predictors measured before Tfinal.

2. (1 point) Hold out sites 7 and 8 for testing. Store the training data in datTrain and the test data in datTest.

```
datTest <- ispy_dat[ispy_dat["fakeSite"]==7|ispy_dat["fakeSite"]==8,]
datTrain <- ispy_dat[ispy_dat["fakeSite"]!=7&ispy_dat["fakeSite"]!=8,]</pre>
```

3. (2 points) In this homework, we will manually implement site-wise 3-fold cross-validation (i.e. two sites per fold) rather than using the caret package. Create vector with True and False values to split the rows in datTrain into 3 folds, where sites 1 and 2 are in the first fold, sites 3 and 4 are in the second fold, and sites 5 and 6 are in the third fold. Create a list with these three True/False vectors. It may be helpful to reference this list later in this homework.

```
cv1 <- datTrain$fakeSite %in% c(1,2)
cv2 <- datTrain$fakeSite %in% c(3,4)
cv3 <- datTrain$fakeSite %in% c(5,6)

cv_list <- list(as.numeric(cv1),as.numeric(cv2),as.numeric(cv3))</pre>
```

4. Load the gbm package.

Loaded gbm 2.1.9

```
library(gbm)

## Warning: package 'gbm' was built under R version 4.3.2
```

This version of gbm is no longer under development. Consider transitioning to gbm3, https://g
ithub.com/gbm-developers/gbm3

5. (3 points) We will select the hyperparameters for a gradient boosted model using site-wise three-fold CV. Create a function named fit_fold that takes as input the fold number fold_idx, number of trees, and interaction depth. The function will fit a gradient boosted model using gbm using the aforementioned predictors. Also exclude fakeSite. Train on all the folds except for the fold_idx -th one. The function should output the mean squared error of the fitted model on the held out fold. Use the folds you made in question 3. Fix the shrinkage hyperparameter in gbm as 0.01.

```
fit_fold <- function(fold_idx, n_trees, interaction_depth){</pre>
  X <- datTrain[,!(names(datTrain) %in% c('fakeSite', 'MRI LD Tfinal'))]</pre>
  y <- datTrain$MRI_LD_Tfinal
  train_row <- !cv_list[[fold_idx]]</pre>
  test_row <- cv_list[[fold_idx]]</pre>
  train_data <- X[train_row,]</pre>
  test_data <- X[test_row,]</pre>
  train_outcome <- y[train_row]</pre>
  test_outcome <- y[test_row]</pre>
  gbm_mdl <- gbm(</pre>
  formula = train outcome ~ .,
  data = train_data,
  distribution = "gaussian",
  n.trees = n_trees,
  interaction.depth = interaction_depth,
  shrinkage = 0.01,
  n.minobsinnode = 10,
  verbose = FALSE
  )
  pred <- predict(gbm mdl, newdata= test data, n.trees = n trees)</pre>
  mse <- mean((test_outcome - pred)^2)</pre>
  return(mse)
}
```

6. (4 points) Using the function you made in question 5, tune the number of trees and interaction depth using site-wise three-fold CV. Search over the values n.trees=100, 200, 400, 800, 1600 and interaction.depth=1, 2. Which hyperparameter values minimize the cross-validated mean squared error?

```
n trees values <- c(100, 200, 400, 800, 1600)
interaction depth values <- c(1, 2)
# Initialize a variable to store the results
best mse <- Inf
results <- data.frame(n trees = integer(), interaction depth = integer(), avg mse = numeric())
best_params <- list(n_trees = NA, interaction_depth = NA)</pre>
# Evaluate all combinations of hyperparameters
for (n_trees in n_trees_values) {
 for (interaction_depth in interaction_depth_values) {
    # Initialize a vector to store MSEs
    mse values <- numeric(length(cv list))</pre>
    # Perform 3-fold CV
    for (fold_idx in seq_along(cv_list)) {
     mse_values[fold_idx] <- fit_fold(fold_idx, n_trees, interaction_depth)</pre>
    }
    # Calculate the average MSE
    avg mse <- mean(mse values)</pre>
    results <- rbind(results, data.frame(n_trees = n_trees, interaction_depth = interaction_dept
h, avg_mse = avg_mse))
    # Update best hyperparameters if the current combination has a Lower average MSE
    if (avg mse < best mse) {</pre>
      best_mse <- avg_mse
      best_params <- list(n_trees = n_trees, interaction_depth = interaction_depth)</pre>
    }
 }
}
# Print the best hyperparameters and the Lowest MSE
print(paste("Best n trees:", best params$n trees))
## [1] "Best n trees: 1600"
print(paste("Best interaction depth:", best params$interaction depth))
## [1] "Best interaction depth: 2"
print(paste("Lowest cross-validated MSE:", best_mse))
## [1] "Lowest cross-validated MSE: 8.07412546170622"
```

Define the sets of potential hyperparameters

set.seed(7)

7. (2 points) Plot the cross-validated error with respect to n.trees for the interaction depth that attained the lowest CV error.

```
plot(results$n_trees[results$interaction_depth==1], results$avg_mse[results$interaction_depth==
1],
    type = "b", col="red",xlab="Number of trees", ylab = "Average MSE", xlim = c(min(results$n_trees),max(results$n_trees)), ylim = c(min(results$avg_mse), max(results$avg_mse)), pch=19, lty=
1)

points(results$n_trees[results$interaction_depth == 2], results$avg_mse[results$interaction_depth == 2],
    type = "b", col = "blue", pch = 19, lty = 2)

legend("top", legend = c("interaction_depth = 1", "interaction_depth = 2"),
    col = c("red", "blue"), pch = 19, lty = 1:2)
```


8. (1 point) Refit the gradient boosted model on all the training data (datTrain) using the hyperparameters that minimized the CV error.

```
# Check the best parameters and set them
opt_n_trees <- 1600
opt_interaction_depth <- 2</pre>
# Set the target and features
X <- datTrain[, !(names(datTrain) %in% c('fakeSite', 'MRI_LD_Tfinal'))]</pre>
y <- datTrain$MRI_LD_Tfinal</pre>
# Fit the model on the all train data
best_gbm_model <- gbm(</pre>
  formula = y \sim .,
  data = X,
  distribution = "gaussian",
  n.trees = opt_n_trees,
  interaction.depth = opt_interaction_depth,
  shrinkage = 0.01,
  n.minobsinnode = 10,
  verbose = TRUE
)
```

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	806.4364	nan	0.0100	5.1388	
##	2	796.6885	nan	0.0100	8.5387	
##	3	786.8402	nan	0.0100	9.6934	
##	4	777.5080	nan	0.0100	9.0974	
##	5	770.1237	nan	0.0100	5.3455	
##	6	760.8756	nan	0.0100	8.0408	
##	7	753.1938	nan	0.0100	7.4499	
##	8	743.4184	nan	0.0100	7.2395	
##	9	735.5992	nan	0.0100	6.3347	
##	10	729.5958	nan	0.0100	5.8279	
##	20	653.9902	nan	0.0100	5.1653	
##	40	542.4794	nan	0.0100	2.4892	
##	60	453.6630	nan	0.0100	2.9926	
##	80	391.8812	nan	0.0100	2.0529	
##	100	347.6759	nan	0.0100	0.7893	
##	120	311.9355	nan	0.0100	1.1754	
##	140	290.0601	nan	0.0100	-0.1587	
##	160	270.7253	nan	0.0100	1.0622	
##	180	253.2096	nan	0.0100	0.4521	
##	200	240.3764	nan	0.0100	-0.0919	
##	220	228.5378	nan	0.0100	-0.9384	
##	240	218.7614	nan	0.0100	0.0132	
##	260	211.2403	nan	0.0100	0.1441	
##	280	204.3398	nan	0.0100	-0.5538	
##	300	199.8679	nan	0.0100	-0.4728	
##	320	194.3170	nan	0.0100	-0.4069	
##	340	188.7469	nan	0.0100	-0.3721	
##	360	184.7131	nan	0.0100	-0.1238	
##	380	180.7707	nan	0.0100	-0.2276	
##	400	175.8266	nan	0.0100	-0.1436	
##	420	172.1787	nan	0.0100	-0.2954	
##	440	168.2319	nan	0.0100	0.1000	
##	460	164.9999	nan	0.0100	-0.4498	
##	480	161.7935	nan	0.0100	-0.1838	
##	500	159.2395	nan	0.0100	-0.1074	
##	520	155.9049	nan	0.0100	-0.1099	
##	540	153.1775	nan	0.0100	-0.4268	
##	560	150.2953	nan	0.0100	-0.2861	
##	580	147.8680	nan	0.0100	-0.4435	
##	600	144.6684	nan	0.0100	-0.1660	
##	620	142.3697	nan	0.0100	-0.3934	
##	640	140.2654	nan	0.0100	-0.3305	
##	660	138.2703	nan	0.0100	-0.0986	
##	680 700	136.3267	nan	0.0100	-0.2439	
##	700 720	134.2245 131.6922	nan	0.0100 a a1aa	-0.3809 -0.3878	
##	720 740	131.6922	nan	0.0100 0.0100	-0.3878 -0.2734	
##	740 760	127.8547	nan	0.0100	-0.2734 -0.2613	
##	780	127.8347	nan	0.0100	-0.2613 -0.0802	
##	800	123.7761	nan	0.0100	-0.2306	
##	820	121.7287	nan nan	0.0100	-0.2306 -0.0667	
π#	020	121./20/	IIail	0.0100	-0.000/	

## 840 119.9784						
## 880 116.5736	##	840	119.9784	nan	0.0100	-0.2200
## 900 114.5591	##	860	118.2015	nan	0.0100	-0.1626
## 920 112.9851	##	880	116.5736	nan	0.0100	-0.2371
## 940 111.2883	##	900	114.5591	nan	0.0100	-0.1656
## 960 109.5806	##	920	112.9851	nan	0.0100	-0.1196
## 980 107.8985	##	940	111.2883	nan	0.0100	-0.2304
## 1000 106.5801	##	960	109.5806	nan	0.0100	-0.1310
## 1020 104.7583	##	980	107.8985	nan	0.0100	-0.2377
## 1040 103.0241	##	1000	106.5801	nan	0.0100	-0.1231
## 1060 101.7254	##	1020	104.7583	nan	0.0100	-0.3479
## 1080	##	1040	103.0241	nan	0.0100	-0.0623
## 1100 98.7143 nan 0.0100 -0.1534 ## 1120 97.4235 nan 0.0100 -0.2574 ## 1140 96.5062 nan 0.0100 -0.2059 ## 1160 95.1669 nan 0.0100 -0.2085 ## 1180 93.9834 nan 0.0100 -0.2596 ## 1200 92.9486 nan 0.0100 -0.2596 ## 1240 90.4865 nan 0.0100 -0.1568 ## 1280 89.3648 nan 0.0100 -0.1568 ## 1300 86.9108 nan 0.0100 -0.1341 ## 1320 85.8337 nan 0.0100 -0.2727 ## 1340 84.8670 nan 0.0100 -0.2727 ## 1360 83.6808 nan 0.0100 -0.2727 ## 1380 82.5478 nan 0.0100 -0.0818 ## 1400 81.6271 nan 0.0100 -0.0818 ## 1440 79.1057 nan 0.0100 -0.2341 ## 1440 79.9900 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235	##	1060		nan		
## 1100 98.7143 nan 0.0100 -0.1534 ## 1120 97.4235 nan 0.0100 -0.2574 ## 1140 96.5062 nan 0.0100 -0.2059 ## 1160 95.1669 nan 0.0100 -0.2085 ## 1180 93.9834 nan 0.0100 -0.2596 ## 1200 92.9486 nan 0.0100 -0.2596 ## 1240 90.4865 nan 0.0100 -0.1568 ## 1280 89.3648 nan 0.0100 -0.1568 ## 1300 86.9108 nan 0.0100 -0.1341 ## 1320 85.8337 nan 0.0100 -0.2727 ## 1340 84.8670 nan 0.0100 -0.2727 ## 1380 82.5478 nan 0.0100 -0.0220 ## 1340 81.6271 nan 0.0100 -0.1121 ## 1400 81.6271 nan 0.0100 -0.0705 ## 1420 79.9900 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1560 73.4533 nan 0.0100 -0.1799				nan		
## 1120 97.4235 nan 0.0100 -0.2574 ## 1140 96.5062 nan 0.0100 -0.2059 ## 1160 95.1669 nan 0.0100 -0.2085 ## 1180 93.9834 nan 0.0100 -0.1881 ## 1200 92.9486 nan 0.0100 -0.2596 ## 1220 91.8643 nan 0.0100 -0.2631 ## 1240 90.4865 nan 0.0100 -0.1568 ## 1280 89.3648 nan 0.0100 -0.2702 ## 1300 86.9108 nan 0.0100 -0.1341 ## 1320 85.8337 nan 0.0100 -0.2727 ## 1360 83.6808 nan 0.0100 -0.2727 ## 1380 82.5478 nan 0.0100 -0.0818 ## 1400 81.6271 nan 0.0100 -0.0818 ## 1440 79.1057 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.2341 ## 1440 79.3855 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1325 ## 1500 76.4349 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1140 96.5062 nan 0.0100 -0.2059 ## 1160 95.1669 nan 0.0100 -0.2085 ## 1180 93.9834 nan 0.0100 -0.1881 ## 1200 92.9486 nan 0.0100 -0.2596 ## 1220 91.8643 nan 0.0100 -0.2631 ## 1240 90.4865 nan 0.0100 -0.1568 ## 1280 89.3648 nan 0.0100 -0.2702 ## 1280 88.1566 nan 0.0100 -0.1274 ## 1300 86.9108 nan 0.0100 -0.1341 ## 1320 85.8337 nan 0.0100 -0.2727 ## 1360 83.6808 nan 0.0100 -0.2727 ## 1360 83.6808 nan 0.0100 -0.0818 ## 1400 81.6271 nan 0.0100 -0.1121 ## 1400 81.6271 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.3355 ## 1440 77.5392 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235				nan		
## 1160 95.1669 nan 0.0100 -0.2085 ## 1180 93.9834 nan 0.0100 -0.1881 ## 1200 92.9486 nan 0.0100 -0.2596 ## 1220 91.8643 nan 0.0100 -0.2631 ## 1240 90.4865 nan 0.0100 -0.1568 ## 1280 89.3648 nan 0.0100 -0.2702 ## 1280 88.1566 nan 0.0100 -0.1274 ## 1300 86.9108 nan 0.0100 -0.1341 ## 1320 85.8337 nan 0.0100 -0.2727 ## 1360 83.6808 nan 0.0100 -0.2727 ## 1360 83.6808 nan 0.0100 -0.0818 ## 1380 82.5478 nan 0.0100 -0.0818 ## 1400 81.6271 nan 0.0100 -0.0705 ## 1420 79.9900 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.3355 ## 1480 77.5392 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1799						
## 1180 93.9834 nan 0.0100 -0.1881 ## 1200 92.9486 nan 0.0100 -0.2596 ## 1220 91.8643 nan 0.0100 -0.2631 ## 1240 90.4865 nan 0.0100 -0.1568 ## 1260 89.3648 nan 0.0100 -0.2702 ## 1280 88.1566 nan 0.0100 -0.1274 ## 1300 86.9108 nan 0.0100 -0.1341 ## 1320 85.8337 nan 0.0100 -0.0220 ## 1340 84.8670 nan 0.0100 -0.2727 ## 1360 83.6808 nan 0.0100 -0.2727 ## 1380 82.5478 nan 0.0100 -0.1121 ## 1400 81.6271 nan 0.0100 -0.0705 ## 1440 79.1057 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.3535 ## 1460 78.3485 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1540 74.5213 nan 0.0100 -0.1799 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1799						
## 1200 92.9486						
## 1220 91.8643 nan 0.0100 -0.2631 ## 1240 90.4865 nan 0.0100 -0.1568 ## 1260 89.3648 nan 0.0100 -0.2702 ## 1280 88.1566 nan 0.0100 -0.1274 ## 1300 86.9108 nan 0.0100 -0.1341 ## 1320 85.8337 nan 0.0100 -0.0220 ## 1340 84.8670 nan 0.0100 -0.2727 ## 1360 83.6808 nan 0.0100 -0.0818 ## 1380 82.5478 nan 0.0100 -0.1121 ## 1400 81.6271 nan 0.0100 -0.0705 ## 1420 79.9900 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.1325 ## 1460 78.3485 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.3535 ## 1500 76.4349 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1540 74.5213 nan 0.0100 -0.1229 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1240						
## 1260						
## 1280				nan		
## 1300 86.9108 nan 0.0100 -0.1341 ## 1320 85.8337 nan 0.0100 -0.0220 ## 1340 84.8670 nan 0.0100 -0.2727 ## 1360 83.6808 nan 0.0100 -0.0818 ## 1380 82.5478 nan 0.0100 -0.1121 ## 1400 81.6271 nan 0.0100 -0.0705 ## 1420 79.9900 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.1325 ## 1460 78.3485 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1955 ## 1500 76.4349 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1320 85.8337 nan 0.0100 -0.0220 ## 1340 84.8670 nan 0.0100 -0.2727 ## 1360 83.6808 nan 0.0100 -0.0818 ## 1380 82.5478 nan 0.0100 -0.1121 ## 1400 81.6271 nan 0.0100 -0.0705 ## 1420 79.9900 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.1325 ## 1460 78.3485 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1955 ## 1500 76.4349 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1540 74.5213 nan 0.0100 -0.209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1340 84.8670 nan 0.0100 -0.2727 ## 1360 83.6808 nan 0.0100 -0.0818 ## 1380 82.5478 nan 0.0100 -0.1121 ## 1400 81.6271 nan 0.0100 -0.0705 ## 1420 79.9900 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.1325 ## 1460 78.3485 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1955 ## 1500 76.4349 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1368 ## 1540 74.5213 nan 0.0100 -0.2099 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1360 83.6808 nan 0.0100 -0.0818 ## 1380 82.5478 nan 0.0100 -0.1121 ## 1400 81.6271 nan 0.0100 -0.0705 ## 1420 79.9900 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.1325 ## 1460 78.3485 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1955 ## 1500 76.4349 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1067 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1380 82.5478 nan 0.0100 -0.1121 ## 1400 81.6271 nan 0.0100 -0.0705 ## 1420 79.9900 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.1325 ## 1460 78.3485 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1955 ## 1500 76.4349 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1067 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1400 81.6271 nan 0.0100 -0.0705 ## 1420 79.9900 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.1325 ## 1460 78.3485 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1955 ## 1500 76.4349 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1067 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1420 79.9900 nan 0.0100 -0.2341 ## 1440 79.1057 nan 0.0100 -0.1325 ## 1460 78.3485 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1955 ## 1500 76.4349 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1067 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1440 79.1057 nan 0.0100 -0.1325 ## 1460 78.3485 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1955 ## 1500 76.4349 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1067 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1460 78.3485 nan 0.0100 -0.3535 ## 1480 77.5392 nan 0.0100 -0.1955 ## 1500 76.4349 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1067 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1480 77.5392 nan 0.0100 -0.1955 ## 1500 76.4349 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1067 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1500 76.4349 nan 0.0100 -0.1368 ## 1520 75.5284 nan 0.0100 -0.1067 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1520 75.5284 nan 0.0100 -0.1067 ## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1540 74.5213 nan 0.0100 -0.2209 ## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1560 73.4533 nan 0.0100 -0.1799 ## 1580 72.6055 nan 0.0100 -0.1235						
## 1580 72.6055 nan 0.0100 -0.1235						
111 1000 71.4225 Hall 0.0100 -0.2500						
	11711	1000	, 1,744	IIaII	0.0100	0.2500

summary(best_gbm_model)


```
##
                                              rel.inf
                                       var
## MRI_LD_T2
                                 MRI_LD_T2 45.7025693
## ftvPeT2
                                   ftvPeT2 8.1709222
## ftvPeT1
                                   ftvPeT1 7.5837720
## ftvPeTfinal
                               ftvPeTfinal 6.5793962
## MRI_LD_T1
                                 MRI_LD_T1 5.4166433
## MRI_LD_T0
                                 MRI_LD_T0 4.5408821
                                       age 4.2300717
## age
## ftvPeT0
                                   ftvPeT0 3.6673401
## ftvPePctChgT0_T1
                          ftvPePctChgT0_T1 3.5291705
## HR_HER2status
                             HR_HER2status
                                           3.2675751
## pixelVolT1
                                pixelVolT1 1.9706736
## pixelVolT0
                                pixelVolT0 1.4228526
## pixelVolTfinal
                            pixelVolTfinal 1.4040006
## pixelVolT2
                                pixelVolT2
                                           1.3099910
## pixelVolPctChgT0_T1 pixelVolPctChgT0_T1
                                            0.9202991
## race
                                      race
                                            0.2838404
```

9. (1 point) Evaluate the MSE of the fitted model on the test data. How much of the variance have we explained using the GBM?

```
test_predictions <- predict(best_gbm_model, newdata = datTest[, !(names(datTest) %in% c('fakeSit
e', 'MRI_LD_Tfinal'))], n.trees = opt_n_trees)

# Observed data in the test dataset
test_actual <- datTest$MRI_LD_Tfinal

# Calculate MSE and R^2 score
mse_test <- mean((test_actual - test_predictions)^2)
print(paste("Test MSE:", mse_test))</pre>
```

```
## [1] "Test MSE: 383.480561993256"
```

```
ss_total <- sum((test_actual - mean(test_actual))^2)
ss_res <- sum((test_actual - test_predictions)^2)
r_squared <- 1 - (ss_res / ss_total)
print(paste("R^2 Score:", r_squared))</pre>
```

```
## [1] "R^2 Score: 0.534967769074254"
```

Kmeans

Let's perform K-means on the iSPY data.

10. (1 point) Create a new data frame named <code>ispy_subdat</code> that only contains the continuous variables measured before Tfinal.

```
drop_col <- c('age', 'race', 'HR_HER2status', 'fakeSite')
ispy_subdat <- ispy_dat[, !(names(ispy_dat) %in% drop_col)]</pre>
```

11. (1 point) Before we run K-means, center and scale all the variables so that they have mean 0 and variance 1 (hint: use the scale command).

```
ispy_subdat_scaled <- scale(ispy_subdat)</pre>
```

12. (3 points) Tune the number of clusters used in K-means. To do this, use the function <code>fviz_nbclust</code> from the <code>factoextra</code> library. The function <code>fviz_nbclust</code> determines and visualizes the optimal number of clusters using different methods (within cluster sums of squares, average silhouette and gap statistics). Plot the average silhouette with respect to the number of clusters by passing in the argument <code>method="silhouette"</code>. What is the optimal number of clusters according to the silhouette statistic?

```
library(factoextra)
```

```
## Warning: package 'factoextra' was built under R version 4.3.2
```

```
## Loading required package: ggplot2
```

```
## Warning: package 'ggplot2' was built under R version 4.3.2
```

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

```
fviz_nbclust(ispy_subdat, kmeans, method = "silhouette")
```


The optimal number of clusters is two.

13. (3 points) Refit k-means using the optimal number of clusters with 15 random initializations. Use the function fviz_cluster() to plot the clusters from K-means. Observations are represented by points in the plot, using principal components if p>2. An ellipse is drawn around each cluster.

```
n_cluster <- 2
set.seed(42)
km <- kmeans(ispy_subdat, centers = n_cluster, nstart = 15)
fviz_cluster(km, data = ispy_subdat)</pre>
```

Cluster plot

13. (1 point) Plot the distribution of MRI_LD_Tfinal for each cluster created by K-means. How do they differ across the clusters?

```
ispy_subdat$cluster <- km$cluster
boxplot(MRI_LD_Tfinal ~ cluster, data = ispy_subdat, xlab = "Cluster", ylab = "MRI_LD_Tfinal")</pre>
```


The cluster 1 is the subgroup of smaller MRI_LD_Tfinal and the cluster 2 is the bigger MRI_LD_Tfinal group.