PROBABILITY & STATISTICS

Convergence of random variable

- [1] Let $\{X_n\}$ be a sequence of random variables with $E(X_n) \to c$ and $V(X_n) \to 0$ as $n \to \infty$. Show that $X_n \xrightarrow{p} c$.
- [2] Let $\{X_n\}$ be a sequence of random variables with $E(X_n) = \mu_n$ and finite variance such that $\frac{1}{n^2}V\left(\sum_{i=1}^n X_i\right) \to 0$ as $n \to \infty$. Show that WLLN holds and $\bar{X}_n \xrightarrow{p} \bar{\mu}_n = \frac{1}{n}\sum_{i=1}^n \mu_i$.
- [3] Let $X_1, X_2, ... X_n$ be a random sample from U(0,1). Let $Y_n = \min(X_1, ..., X_n)$ and $Z_n = \max(X_1, ..., X_n)$. Show that (a) $\sqrt{Y_n} \xrightarrow{p} 0$, (b) $Z_n^2 \xrightarrow{p} 1$ and (c) $Y_n^2 Z_n^2 \xrightarrow{p} 0$.
- [4] Let $X_1, X_2, ... X_n$ be i.i.d. N(0,1). Show that $\overline{X}_n / S_n \xrightarrow{p} 0$, where $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X}_n)^2$.
- [5] Suppose $Y_n \sim Bin(n, p)$, show that $(1 Y_n/n) \xrightarrow{p} 1 p$.
- [6] Let $\{X_n\}$ be a sequence of independent random variables with

$$P(X_n = x) = \begin{cases} 1/2, & x = -n^{1/4}, n^{1/4} \\ 0, & \text{otherwise.} \end{cases}$$

Show that $\bar{X}_n \xrightarrow{p} 0$.

[7] Let $\{X_n\}$ be a sequence of i.i.d. random variables with mean μ and finite variance. Show that

(a)
$$\frac{2}{n(n+1)} \sum_{i=1}^{n} i X_i \xrightarrow{p} \mu$$

(b)
$$\frac{6}{n(n+1)(2n+1)} \sum_{i=1}^{n} i^2 X_i \xrightarrow{p} \mu$$

- [8] Let $\{X_n\}$ be a sequence of i.i.d. random variables with U(0,1) distribution and $Z_n = \left(\prod_{i=1}^n X_i\right)^{1/n}$. Show that $Z_n \xrightarrow{p} e^{-1}$.
- [9] Let $\{X_n\}$ be a sequence of uncorrelated random variables with $E(X_n) = \mu_n$ and $V(X_n) = \sigma_n^2$. Show that if $\sum_{i=1}^n \sigma_i^2 \to \infty$ as $n \to \infty$, then WLLN holds for $\{X_n\}$.
- [10] Let $\{X_n\}$ be a sequence of i.i.d. random variables with U(0,1) distribution. Find c such that $\bar{X}_n \xrightarrow{p} c$.
- [11] Let $\{X_n\}$ be a sequence of $N\left(\frac{1}{n}, 1 \frac{1}{n}\right)$. Show that $X_n \xrightarrow{L} Z$, where $Z \sim N(0,1)$.

- [12] Let $\{X_n\}$ be a sequence of i.i.d. random variables with $E(X_i) = \mu$, $Var(X_i) = \sigma^2$ and $E(X_i \mu)^4 = \sigma^4 + 1$. Find $\lim_{n \to \infty} P \left[\sigma^2 \frac{1}{\sqrt{n}} \le \frac{(X_1 \mu)^2 + \dots + (X_n \mu)^2}{n} \le \sigma^2 + \frac{1}{\sqrt{n}} \right]$.
- [13] Let $X_1, X_2, ... X_n$ be i.i.d. B(1, p), $S_n = \sum_{i=1}^n X_i$. Find n which would guarantee $P\left(\left|\frac{S_n}{n} p\right| \ge 0.01\right) \le 0.01$, no matter whatever the unknown p may be.
- [14] Let $X_1, ..., X_n$ be i.i.d. from a distribution with mean μ and finite variance σ^2 . Prove that $\frac{\sqrt{n}(\bar{X}_n \mu)}{S_n} \xrightarrow{L} Z, \text{where } Z \sim N(0,1).$
- [15] The p.d.f. of a random variable X is

$$f(x) = \begin{cases} 1/x^2 & x \ge 1\\ 0 & \text{otherwise} \end{cases}$$

Consider a random sample of size 72 from the distribution having the above p.d.f. Compute, approximately, the probability that more than 50 of these observations are less than 3.

- [16] Let $X_1, ..., X_{100}$ be i.i.d. from Poisson (3) distribution and let $Y = \sum_{i=1}^{100} X_i$. Using CLT, find an approximate value of $P(100 \le Y \le 200)$.
- [17] Let $X \sim Bin(100, 0.6)$. Find an approximate value of $P(10 \le X \le 16)$.
- [18] The p.d.f. of X_n is given by

$$f_n(x) = \begin{cases} \frac{1}{\overline{\ln}} e^{-x} x^{n-1} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

Find the limiting distribution of $Y_n = X_n / n$.

[19] Let \bar{X} denote the mean of a random sample of size 64 from the Gamma distribution with density

$$f_n(x) = \begin{cases} \frac{1}{p\alpha^p} e^{-x/\alpha} x^{p-1} & x > 0\\ 0 & \text{otherwise.} \end{cases}$$

With $\alpha = 2$, p = 4. Compute the approximate value of $P(7 < \overline{X} < 9)$.

[20] $X_1,...,X_n$ is a random sample from U(0,2). Let $Y_n = \overline{X}_n$, show that $\sqrt{n}(Y_n-1) \xrightarrow{\mathcal{L}} N(0,1/3)$.

PROBABILITY & STATISTICS Unbiased Estimator, Sufficient Statistic

[1] Let $X_1, X_2, ... X_n$ be a random sample from an exponential distribution with p.d.f.

$$f_{X}(x) = \frac{1}{\beta} \exp\left(-\frac{x}{\beta}\right); x > 0$$

Show that $\overline{X} = \sum_{i=1}^{n} X_i / n$ is an unbiased estimator of β .

[2] Let $X_1, X_2, ... X_n$ be a random sample from $U(0, \theta)$; $\theta > 0$. Show that $\frac{n+1}{n} X_{(n)}$ and $2 \overline{X}$ are both unbiased estimators of θ .

[3] Let $X_1, X_2, ... X_n$ be a random sample from an exponential distribution with p.d.f.

$$f(x) = \beta \exp(-\beta x); x > 0$$

Show that \bar{X} is an unbiased estimator of $1/\beta$.

- [4] Let $X_1, X_2, ... X_n$ be a random sample from $N(\theta, \theta^2)$, $\theta > 0$. Show that $\left(\sum_{i=1}^n X_i\right)^2 / n(n+1)$ and $\sum_{i=1}^n X_i^2 / 2n$ are both unbiased estimators of θ^2 .
- [5] Let $X_1, X_2, ... X_n$ be a random sample from $P(\theta)$; $\theta > 0$. Find an unbiased estimator of $\theta e^{-2\theta}$
- [6] Let $X_1, X_2, ... X_n$ be a random sample from $B(1, \theta); 0 \le \theta \le 1$.
 - (a) Show that the estimator $T(X) = \frac{\frac{1}{2}\sqrt{n} + \sum_{i=1}^{n} X_i}{n + \sqrt{n}}$ is not unbiased θ ?
 - **(b)** Show that $\lim_{n\to\infty} E(T(X)) = \theta$.

(An estimator satisfying the condition in (b) is said to be unbiased in the limit)

- [7] $X_1,...,X_n$ be a random sample from $N(\mu,\sigma^2), \mu \in \Re, \sigma \in \Re^+$. Find unbiased estimators of μ/σ^2 and μ/σ .
- [8] Let $X_1, X_2, ... X_n$ be a random sample from $B(1, \theta); 0 \le \theta \le 1$. Find an unbiased estimator of $\theta^2(1-\theta)$.
- [9] Using Neyman Fisher Factorization Theorem, find a sufficient based on a random sample $X_1, X_2, ... X_n$ from each of the following distributions

(a)
$$f_{\alpha}(x) = \begin{cases} \frac{1}{\alpha} \exp\left(-\frac{x}{\alpha}\right) & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases}$$

(b) $f_{\beta}(x) = \begin{cases} \exp\left(-\left(x - \beta\right)\right) & \text{if } x > \beta \\ 0 & \text{otherwise.} \end{cases}$

(b)
$$f_{\beta}(x) = \begin{cases} \exp(-(x-\beta)) & \text{if } x > \beta \\ 0 & \text{otherwise} \end{cases}$$

(c)
$$f_{\alpha,\beta}(x) = \begin{cases} \frac{1}{\alpha} \exp\left(-\frac{(x-\beta)}{\alpha}\right) & \text{if } x > \beta \\ 0 & \text{otherwise.} \end{cases}$$

(d)
$$f_{\mu,\sigma}(x) = \begin{cases} \frac{1}{x \sigma \sqrt{2\pi}} & \exp\left(-\frac{(\log x_i - \mu)^2}{2\sigma^2}\right) & \text{if } x > 0\\ 0 & \text{otherwise.} \end{cases}$$

(e)
$$f_{\theta}(x) = \begin{cases} \frac{1}{\theta} & -\theta/2 \le x \le \theta/2 \\ 0 & \text{otherwise} \end{cases}$$

- [10] Let X_1 and X_2 be independent random samples with densities $f_1(x_1) = \theta e^{-\theta x_1}$ and $f_2(x_2) = 2\theta e^{-2\theta x_2}$ as the respective p.d.f.s where $\theta > 0$ is an unknown parameter and $0 < x_1, x_2 < \infty$. Using Neyman Fisher Factorization Theorem find a sufficient statistic for
- [11] Let $X_1,...,X_n$ be a random sample with densities

$$f_{X_i}(x) = \begin{cases} \exp(i\theta - x) & \text{if } x \ge i\theta \\ 0 & \text{otherwise.} \end{cases}$$

Using Neyman Fisher Factorization Theorem find a sufficient statistic for θ .

[12] Let $X_1, X_2, ... X_n$ be a random sample from a $Beta(\alpha, \beta)$ distribution $(\alpha > 0, \beta > 0)$ with p.d.f.

$$f(x) = \begin{cases} \frac{\overline{\alpha + \beta}}{\overline{\alpha} \overline{\beta}} x^{\alpha - 1} (1 - x)^{\beta - 1} & 0 < x < 1\\ 0 & \text{otherwise.} \end{cases}$$

Show that

- (a) $\prod_{i=1}^{n} X_i$ is sufficient for α if β is known to be a given constant.
- (b) $\prod_{i=1}^{n} (1-X_i)$ is sufficient for β if α is known to be a given constant.
- (c) $\left(\prod_{i=1}^{n} X_{i}, \prod_{i=1}^{n} (1 X_{i})\right)$ is jointly sufficient for (α, β) if both the parameters are unknown.

- [13] Let T and T^* be two statistic such that $T = \psi(T^*)$. Show that if T is sufficient then T^* is also sufficient.
- [14] $X_1,...,X_n$ be a random sample from $U(\theta-1/2,\theta+1/2)$, $\theta \in \Re$. Find a sufficient statistic for θ .
- [15] Let $X_1,...,X_n$ be independent random variables with X_i (i=1,2,...,n) having the probability density function

$$f_i(x_i) = \begin{cases} i \theta e^{-i\theta x_i} & x_i > 0\\ 0 & \text{otherwise} \end{cases}$$

Find a sufficient statistic for θ .

PROBABILITY & STATISTICS **Minimal and Complete Sufficient Statistic**

[1] Find minimal sufficient statistic based on a random sample $X_1,...,X_n$ in each of the following

(a)
$$f_{\alpha}(x) = \begin{cases} \frac{1}{\alpha} \exp\left(-\frac{x}{\alpha}\right) & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases}$$

(b) $f_{\beta}(x) = \begin{cases} \exp\left(-\left(x - \beta\right)\right) & \text{if } x > \beta \\ 0 & \text{otherwise.} \end{cases}$ $\beta \in \mathbb{R}$.

(b)
$$f_{\beta}(x) = \begin{cases} \exp(-(x-\beta)) & \text{if } x > \beta \\ 0 & \text{otherwise.} \end{cases} \beta \in \mathbb{R}$$

(c)
$$f_{\alpha,\beta}(x) = \begin{cases} \frac{1}{\alpha} \exp\left(-\frac{(x-\beta)}{\alpha}\right) & \text{if } x > \beta \\ 0 & \text{otherwise.} \end{cases}$$
 $\alpha > 0, \beta \in \mathbb{R}.$

(c)
$$f_{\alpha,\beta}(x) = \begin{cases} \frac{1}{\alpha} \exp\left(-\frac{(x-\beta)}{\alpha}\right) & \text{if } x > \beta \\ 0 & \text{otherwise.} \end{cases} \quad \alpha > 0, \beta \in \mathbb{R}.$$
(d)
$$f_{\mu,\sigma}(x) = \begin{cases} \frac{1}{x \sigma \sqrt{2\pi}} \exp\left(-\frac{(\log x_i - \mu)^2}{2\sigma^2}\right) & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases} \quad \mu \in \mathbb{R}; \sigma > 0.$$

(e)
$$f_{\theta}(x) = \begin{cases} \frac{1}{\theta} & -\theta/2 \le x \le \theta/2 \\ 0 & \text{otherwise} \end{cases} \theta > 0.$$

(f)
$$f(x) = \begin{cases} \frac{\alpha + \beta}{\alpha \beta} x^{\alpha - 1} (1 - x)^{\beta - 1} & 0 < x < 1 \\ 0 & \text{otherwise.} \end{cases} \quad \alpha > 0, \beta > 0.$$

- [2] Let $X_1,...,X_n$ be a random sample from $P(\theta),\theta\in(0,\infty)$. Show that $T=\sum_{i=1}^n X_i$ is complete sufficient statistic. Find the Uniformly Minimum Variance Unbiased Estimator (UMVUE) of the following parametric functions: (a) $g(\theta) = \theta$, (b) $g(\theta) = e^{-\theta}$ and (c) $g(\theta) = e^{-\theta} (1 + \theta)$.
- [3] Suppose $X_1,...,X_n$ be a random sample from $B(1,\theta),\theta\in(0,1)$. Show that $T=\sum_{i=1}^n X_i$ is complete sufficient statistic and hence find the UMVUE for each of the following parametric functions: (a) $g(\theta) = \theta$, (b) $g(\theta) = \theta^4$ and (c) $g(\theta) = \theta(1-\theta)^2$.
- [4] Let $X_1,...,X_n$ be a random sample from $Exp(\theta,1)$, i.e.

$$f(x \mid \theta) = \begin{cases} e^{-(x-\theta)} & \text{if } x > \theta \\ 0 & \text{otherwise} \end{cases}$$

Show that $T = X_{(1)} = \min\{X_1, ..., X_n\}$ is a complete sufficient statistic and hence find the UMVUE of $g(\theta) = \theta$.

- [5] $X_1,...,X_n$ is a random sample from $U(0,\theta),\theta>0$. Show that $T=X_{(n)}=\max\{X_1,...,X_n\}$ is a complete sufficient statistic and find the UMVUE of $g(\theta)=\theta^2$.
- [6] $X_1, ..., X_n$ is a random sample from $Gamma(2, \theta), \theta > 0$, i.e.

$$f(x \mid \theta) = \begin{cases} \frac{1}{|\overline{2} \theta^2|} e^{-x/\theta} x & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Show that $T = \sum_{i=1}^{n} X_i$ is complete sufficient statistic and find the UMVUE of θ .

- [7] Let $X_1,...,X_n$ be a random sample from $U(\theta-1/2,\theta+1/2)$. Show that the minimal sufficient statistic is not complete.
- [8] Let $X_1,...,X_n$ be a random sample from $N(0,\theta)$. Find the UMVUE of θ^2 .
- [9] Let $X_1,...,X_n$ be a random sample from $N(\mu,\theta)$. Find the UMVUE of (a) θ when μ is known, (b) θ when μ is not known and (c) δ such that $P(X \le \delta) = p$; p is a known fixed constant, both μ and θ are unknown parameters.
- [10] Let $X_1,...,X_n$ be a random sample from $U(0,\theta),\theta>0$. Of the following three estimators given below, which one would you prefer and why?

$$T_1(\bar{X}) = \frac{n+1}{n} X_{(n)}, T_2(\bar{X}) = 2\bar{X} \text{ and } T_3(\bar{X}) = X_{(1)} + X_{(n)}.$$

[11] $X_1,...,X_n$ be a random sample from $N(\mu,\sigma^2), \mu \in \Re, \sigma \in \Re^+$. Assuming completeness of the associated minimal sufficient statistic find the UMVUE of μ^2 and $\mu + \sigma$.