Определение моментов инерции твердых тел с помощью трифилярного подвеса. (1.2.3)

Балдин Виктор Б01-303

30 октября 2023

1 Введение

Цели работы: измерение момента инерции тел и сравнение результатов с расчетами по теоретическим формулам; проверка аддитивности моментов инерции и справедливости формулы Гюйгенса-Штейнера.

Оборудование: трифилярный подвес, секундомер, счетчик числа колебаний, набор тел, момент инерции которых надлежит измерить (диск, стержень, полный цилиндр и другие).

2 Теоретические сведения

Инерционность при вращении тела относительно оси определяется моментом инерции тела относительно этой оси. Момент инерции твердого тела относительно неподвижной оси вращения вычисляется по формуле:

$$I = \int r^2 dm$$

Здесь r — расстояние элемента массы тела dm от оси вращения. Интегрирование проводится по всей массе тела m.

Если пренебречь потерями энергии на трение о воздух и крепление нитей, то уравнение сохранения энергии при колебаниях можно записать следующим образом:

$$\frac{I\dot{\varphi}^2}{2} + mg(z_0 - z) = E \tag{1}$$

Здесь I — момент инерции платформы вместе с исследуемым телом, m — масса платформы с телом, φ — угол поворота платформы от положения равновесия системы, z_0 — координата по вертикали центра нижней платформы O' при равновесии ($\varphi=0$), z — координата той же точки при некотором угле поворота φ . Правый член в левой части уравнения — кинетическая энергия вращения, второй член — потенциальная энергия в поле тяжести, E — полная энергия системы (платформы с телом).

Воспользуемся системой координат x,y,z, связанной с верхней платформой, как показано на Рис. 1. Координаты верхнего конца одной из нитей подвеса точки C в этой системе – (r,0,0). Нижний конец данной нити C', находящийся на нижней платформе, при равновесии имеет координаты $(R,0,z_0)$, а при повороте платформы на угол φ эта точка переходит в C'' с координатами $(R\cos\varphi,R\sin\varphi,z)$. расстояние между точками C и C'' равно длине нити, поэтому, после некоторых преобразований, получаем:

$$(R\cos\phi - r)^2 + R^2\sin^2\phi + z^2 = L^2$$

$$z^{2} = L^{2} - R^{2} - r^{2} + 2Rr\cos\phi \approx z_{0}^{2} - 2Rr(1 - \cos\phi) \approx z_{0}^{2} - Rr\phi^{2}$$
$$z = \sqrt{z_{0}^{2} - Rr\phi^{2}} \approx z_{0} - \frac{Rr\phi^{2}}{2z_{0}}$$

Подставляя z в уравнение (1), получаем:

$$\frac{1}{2}I\dot{\varphi^2} + mg\frac{Rr}{2z_0}\varphi^2 = E$$

Дифференцируя по времени и сокращая на $\dot{\varphi}$, находим уравнение крутильных колебаний системы:

$$I\ddot{\varphi}^2 + mg\frac{Rr}{2z_0}\varphi^2 = 0$$

Производная по времени от E равна нулю, так как потерями на трение, как уже было сказано выше, пренебрегаем.

Решение этого уравнения имеет вид:

$$\varphi = \varphi_0 \sin\left(\sqrt{\frac{mgRr}{Iz_0}}t + \theta\right)$$

Здесь амплитуда φ_0 и фаза θ колебаний определяются начальными условиями. Период крутильных колебаний нашей системы равен:

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}}$$

Из формулы для периода получаем:

$$I = \frac{mgRrT^2}{4\pi^2 z_0} = kmT^2$$

3 Методика измерений

Рис. 1: Физический маятник

Для наших целей удобно использовать устройство, показанное на Pис. 1 и называемое трифилярным подвесом. Оно состоит из укрепленной на некоторой высоте неподвижной платформы P и подвешенной к ней на трех симметрично расположенных нитях AA', BB' и CC', вращающейся платформы P'.

Чтобы не вызывать дополнительных раскачиваний, лучше поворачивать верхнюю платформу, укрепленную на неподвижной оси. После поворота верхняя платформа остается неподвижной в течение всего процесса колебаний. После того, как нижняя платформа P' оказывается повернутой на угол φ относительно верхней платформы P возникает момент сил, стремящийся вернуть нижнюю платформу в положение равновесия, при котором относительный поворот платформ отсутствует. В результате платформа совершает крутильные колебания.

где $k=\frac{gRr}{4\pi^2z_0}$ — величина, постоянная для данной установки.

4 Оборудование

Трифилярный подвес, секундомер, счетчик числа колебаний, набор тел, момент инерции которых надлежит измерить (диск, стержень, полный цилиндр и другие).