# Statistical Natural Language Processing

Prof. Dr. Axel Ngonga

Student lecture notes by Tanja Tornede & Alexander Hetzer Status: August 20, 2018

# Contents

| 1 | Intro | oduction                                          | 1 |
|---|-------|---------------------------------------------------|---|
|   | 1.1   | Origins                                           | 1 |
|   |       | 1.1.1 Linguistic Science                          | 1 |
|   | 1.2   | Goal of SNLP                                      | 1 |
|   | 1.3   | Applications                                      | 2 |
| 2 | Text  | t Normalization                                   | 3 |
|   | 2.1   | Eliza                                             | 3 |
|   | 2.2   | Regular Expressions                               | 3 |
|   |       | 2.2.1 Assumptions                                 | 3 |
|   |       | 2.2.2 Operators                                   | 3 |
|   |       | 2.2.3 Kinds of Errors                             | 5 |
|   |       | 2.2.4 Substitutions                               | 5 |
|   | 2.3   | Finite State Automata                             | 6 |
|   |       | 2.3.1 Formal Definition                           | 6 |
|   |       | 2.3.2 Deterministic FSA                           | 6 |
|   |       | 2.3.3 Deterministic Recognition                   | 6 |
|   |       | 2.3.4 Formal Languages                            | 6 |
|   |       | 2.3.5 Non-Deterministic FSA                       | 7 |
|   |       | 2.3.6 Non-Deterministic Recognition               | 7 |
|   | 2.4   | Formal Languages vs. Regular Expressions vs. FSAs | 7 |
|   |       | 2.4.1 DFSAs vs. NFSAs                             | 7 |
|   | 2.5   | Text Normalization                                | 8 |
|   |       | 2.5.1 Tokenization                                | 8 |
|   |       | 2.5.2 Normalization                               | 9 |
|   |       | 2.5.3 Stemming and Lemmatization                  | 9 |
|   | 2.6   | Sentence Segmentation                             | 0 |
|   |       | 2.6.1 Idea                                        | 1 |
|   |       | 2.6.2 Decision Trees for Sentence Segmentation    | 1 |
| 3 | (Pro  | obabilistic) Language Modeling 1                  | 3 |
|   | 3.1   | Probabilistic Language Models                     | 3 |
|   |       | 3.1.1 Formal Definition                           | 3 |
|   |       | 3.1.2 Computing Probabilities                     |   |
|   |       | 3.1.3 N-Grams Models                              |   |
|   | 3.2   | Estimating N-Gram Probabilities                   |   |
|   |       | 3.2.1 Maximum Likelihood Estimation               |   |

iv

|   |      | 3.2.2 Practical Considerations          | 15 |
|---|------|-----------------------------------------|----|
|   | 3.3  | Evaluation and Perplexity               | 15 |
|   |      | 3.3.1 Components                        | 16 |
|   |      | 3.3.2 Extrinsic Evaluation              | 16 |
|   |      | 3.3.3 Intrinsic Evaluation (Perplexity) | 16 |
|   | 3.4  | Model Visualization                     | 17 |
|   | 3.5  | Generalization and Zeros                | 17 |
|   |      | 3.5.1 Dangers of Overfitting            | 17 |
|   |      | 3.5.2 Smoothing: Laplace / Add-One      | 18 |
|   |      | 3.5.3 Smoothing: Absolute Discounting   | 18 |
|   |      | 3.5.4 Smoothing: Kneser-Ney             | 18 |
|   |      | 3.5.5 Backoff and Interpolation         | 19 |
|   |      | 3.5.6 Linear Interpolation              | 19 |
|   |      | 3.5.7 Dealing with Unknown Words        | 20 |
|   |      | 3.5.8 Huge Web-Scale n-Gram Corpora     | 20 |
|   | 3.6  | Advanced Language Models                | 21 |
| 4 | Snol | II Checking                             | 23 |
| • | 4.1  | Error Classification                    |    |
|   | 1.1  | 4.1.1 Associated Problems               |    |
|   | 4.2  | Distance Measures                       |    |
|   |      | 4.2.1 Edit Distance                     |    |
|   |      | 4.2.2 Soundex (Distance)                |    |
|   | 4.3  | Noisy Channel Model                     |    |
|   |      | 4.3.1 Concept                           |    |
|   |      | 4.3.2 Complete Approach                 |    |
|   |      | 4.3.3 Probability Estimation            |    |
|   |      | 4.3.4 Improved Channel Model            |    |
|   |      | 4.3.5 Implicit Assumptions              |    |
|   | 4.4  | Evaluation                              |    |
|   | 4.5  | Real-Word Spelling Correction           |    |
|   |      | 4.5.1 Basic Approach                    |    |
|   |      | 4.5.2 Noisy Channel Model Approach      |    |
|   | 4.6  | Further Considerations                  |    |
|   |      | 4.6.1 Showing Errors to the User        | 30 |
|   |      | 4.6.2 Classifier Based Methods          | 30 |
|   |      |                                         |    |
| 5 |      | luplication                             | 31 |
|   | 5.1  | Introduction                            |    |
|   |      | 5.1.1 Formal Definition                 |    |
|   |      | 5.1.2 Applications                      |    |
|   |      | 5.1.3 Issues for Recognizing Duplicates |    |
|   |      | 5.1.4 Similarity Functions              | 32 |

Contents

|   | 5.2  | Dedupl    | ication with Jaccard                     | 2 |
|---|------|-----------|------------------------------------------|---|
|   |      | 5.2.1     | Approach Overview                        | 2 |
|   |      | 5.2.2     | Shingling                                | 2 |
|   |      | 5.2.3     | MinHashing                               | 3 |
|   |      | 5.2.4     | Locality Sensitive Hashing               | 5 |
| 6 | Text | Classifi  | cation 39                                | 9 |
|   | 6.1  | Applica   | tions                                    | 9 |
|   | 6.2  | Classifie | cation Methods                           | 9 |
|   |      | 6.2.1     | Rule Based Classification                | 9 |
|   |      | 6.2.2     | Statistical/Probabilistic Classification | 9 |
|   | 6.3  |           | Definition                               | ) |
|   | 6.4  |           | est Neighbor Classifier                  | 0 |
|   |      |           | Idea                                     |   |
|   |      | 6.4.2     | Learning $k$ and Importance of $k$       | 0 |
|   |      |           | Probabilistic Interpretation             | 1 |
|   |      |           | Weighted (Probabilistic) kNN             | 1 |
|   |      |           | Advantages and Disadvantages             |   |
|   | 6.5  |           | ive Bayes Classifier                     |   |
|   |      |           | Concept                                  |   |
|   |      |           | Practical Considerations                 |   |
|   |      |           | Parameter Estimation                     |   |
|   |      |           | Time Complexity                          |   |
|   |      |           | Derivation of Naive Bayes                |   |
|   |      |           | Features & Language Model                |   |
|   |      |           | Violation of Assumptions                 |   |
|   |      |           | Positive Aspects                         |   |
|   | 6.6  |           | omial Logistic Regression                |   |
|   | 0.0  |           | Approach                                 |   |
|   |      |           | Overfitting and Regularization           |   |
|   | 6.7  |           | Binary Classification                    |   |
|   | 0.1  | ·         | Multivalue Classification                |   |
|   |      |           | Multinomial Classification               |   |
|   | 6.8  |           | ion                                      |   |
|   | 0.0  |           | Precision & Recall (Measure)             |   |
|   |      |           | F-Measure                                |   |
|   |      |           |                                          |   |
|   |      |           | 1                                        |   |
|   | 6.0  |           | N-Fold Cross-Validation                  |   |
|   | 6.9  | -         | le Task: Sentiment Analysis              |   |
|   |      |           | Applications                             |   |
|   |      |           | Definition                               |   |
|   |      | 6.9.3     | Baseline Algorithm                       | L |

vi

| 7 | Seq | uence Labeling & Part of Speech Tagging 53          |
|---|-----|-----------------------------------------------------|
|   | 7.1 | Introduction                                        |
|   | 7.2 | Hidden Markov Models                                |
|   |     | 7.2.1 Markov Chains                                 |
|   |     | 7.2.2 Hidden Markov Model                           |
|   | 7.3 | Observation Sequence Likelihood Estimation          |
|   |     | 7.3.1 Problem                                       |
|   |     | 7.3.2 Idea                                          |
|   |     | 7.3.3 Forward Algorithm                             |
|   | 7.4 | Decoding Observation Sequences                      |
|   |     | 7.4.1 Problem                                       |
|   |     | 7.4.2 Idea                                          |
|   |     | 7.4.3 Viterbi Algorithm                             |
|   | 7.5 | Learning an HMM                                     |
|   |     | 7.5.1 Problem                                       |
|   |     | 7.5.2 Idea: Forward-Backward / Baum-Welch Algorithm |
|   |     | 7.5.3 Estimating Transition Probabilities           |
|   |     | 7.5.4 Estimating Emission Probabilities             |
|   |     | 7.5.5 Complete Algorithm                            |
|   |     | 7.5.6 Excursion: Computation of $\beta$             |
|   | 7.6 | Part of Speech (POS) Tagging                        |
|   |     | 7.6.1 Problem and Goal                              |
|   |     | 7.6.2 Challenges                                    |
|   |     | 7.6.3 POS-Tag Classes                               |
|   | 7.7 | Learning POS Taggers                                |
|   |     | 7.7.1 Model                                         |
|   |     | 7.7.2 Considerations                                |
| 8 | Gra | mmar and Parsing 65                                 |
| J | 8.1 | Fundamentals                                        |
|   | 8.2 | Context Free Grammars (CFG)                         |
|   | 0.2 | 8.2.1 Formal Model                                  |
|   |     | 8.2.2 Equivalence                                   |
|   |     | 8.2.3 Chomsky Normal Form (CNF)                     |
|   |     | 8.2.4 Derivation Representations                    |
|   | 8.3 | Treebanks                                           |
|   | 8.4 | Lexicalized Grammars                                |
|   | 0.4 | 8.4.1 Components                                    |
|   |     | 8.4.2 Further Development                           |
|   |     | 8.4.3 Combinatory Categorical Grammar (CCG)         |
|   |     | 0.4.0 Combinatory Categorical Grammar (CCG)         |

Contents

| 9  | Synt | actic and Probabilistic Parsing 7                 |
|----|------|---------------------------------------------------|
|    | 9.1  | Problem of Ambiguity                              |
|    |      | 9.1.1 Structural Ambiguity                        |
|    | 9.2  | Cocke-Kasami-Younger (CKY) Parsing                |
|    |      | 9.2.1 Idea                                        |
|    |      | 9.2.2 Chomsky Normal Form Normalization           |
|    |      | 9.2.3 CKY Recognition                             |
|    |      | 9.2.4 CKY Parsing                                 |
|    | 9.3  | Probabilistic CKY                                 |
|    |      | 9.3.1 Probabilistic CFG (PCFG)                    |
|    |      | 9.3.2 PCFGs for Disambiguation                    |
|    |      | 9.3.3 PCFGs for Language Modeling                 |
|    |      | 9.3.4 Probabilistic CKY Parsing for PCFGs         |
|    | 9.4  | Augmented PCFGs                                   |
|    |      | 9.4.1 Problems of PCFGs as Probability Estimators |
|    |      | 9.4.2 Splitting Non-Pre-Terminal Nodes            |
|    |      | 9.4.3 Splitting Pre-Terminal Nodes                |
|    |      | 9.4.4 Probabilistic Lexicalized PCFGs             |
|    | 9.5  | Probabilistic CCG Parsing                         |
|    |      | 9.5.1 Ambiguity in CCGs                           |
|    |      | 9.5.2 Parsing                                     |
|    | 9.6  | Dependency Parsing                                |
|    |      | 9.6.1 Formal Specification                        |
|    |      | 9.6.2 Property: Projectivity                      |
|    |      | 9.6.3 Dependency Treebanks                        |
|    |      | 9.6.4 Transition-Based Dependency Parsing         |
| 10 | Wor  | d Vectors 89                                      |
|    | 10.1 | Vector Model                                      |
|    |      | 10.1.1 Co-Occurrence Matrix (Sparse Vector Model  |
|    |      | 10.1.2 Term Document Matrix                       |
|    |      | 10.1.3 Word-Context Matrix                        |
|    |      | 10.1.4 Pointwise Mututal Information (PMI)        |
|    |      | 10.1.5 Considerations                             |
|    |      | 10.1.6 Problems of Sparse Vector Models           |
|    | 10.2 | Similarity between Vectors                        |
|    |      | 10.2.1 Naive Approach: Dot Product                |
|    |      | 10.2.2 Cosine-Similarity                          |
|    |      | 10.2.3 Syntax-Based Similarity                    |
|    | 10.3 | Counting Based Dense Vector Models                |
|    |      | 10.3.1 Singular Value Decomposition               |
|    | 10.4 | Prediction Based Dense Vector Models              |
|    |      | 10.4.1 Skip-Grams                                 |
|    |      |                                                   |

| viii |  | Contents |
|------|--|----------|
|      |  |          |

| 10.4.2 | Brown | Clustering . |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ę | <b>)</b> 2 |
|--------|-------|--------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|------------|
|        |       |              |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |            |

## Introduction

## 1.1 Origins

#### 1.1.1 Linguistic Science

- **definition**: aim of a linguistic science is to be able to **characterize and explain** the multitude of linguistic observations circling around us
- three main concerns:
  - cognitive: how do humans acquire, produce and understand language?
  - model: how are linguistic utterances related to the real world?
  - structural: by which means to languages communicate semantics?

#### 1.2 Goal of SNLP

- **definition**: find **common patterns** that occur in language use and exploit them to process natural language automatically
- two main groups of people
  - rationalists: natural language processing cannot be modeled by statistics
  - empiricists: statistical considerations are essential to an understanding of NL
    - processing of NL automatically demands finding set of regularities
    - clear that they do not always exist
    - ability to teach language systematically points to automatic processing
    - complex statistical models can predict and capture rare phenomena
  - $\Rightarrow$  we follow empiricists

2 1 Introduction

## 1.3 Applications

- $\blacksquare$  machine translation
- knowledge extraction (transform text into structured knowledge)
- knowledge graphs (fact checking, efficient queries, verbalization)
- question and answering
- sentiment analysis
- text summarization
- natural language generation

## **Text Normalization**

## 2.1 Eliza

- one of the first chatbots
- uses pattern matching and substitutions to simulate psychologist
- $\blacksquare$  simplest implementation: regular expressions and text normalization

## 2.2 Regular Expressions

- formal language for specifying text strings
- allows to search for similar forms of a word (e.g. woodchuck, Woodchuck, woodchucks...)

#### 2.2.1 Assumptions

- process one document at a time
- every document is a **sequence** of lines

#### 2.2.2 Operators

#### Disjunction

■ simple disjunctive patterns

| Pattern      | Matches                 |
|--------------|-------------------------|
| woodchuck    | Fails to find Woodchuck |
| [wW]oodchuck | Woodchuck, woodchuck    |
| [1234567890] | Any digit               |

 $\blacksquare$  pipe as disjunction

4 2 Text Normalization

| Pattern                   | Matches                |
|---------------------------|------------------------|
| groundhog woodchuck       | My woodchuck is blue   |
| yours mine                | This is yours.         |
| a b c                     | = [abc]                |
| [gG]roundhog [Ww]oodchuck | Woodchucks aren't blue |

#### $\blacksquare$ ranges

| Pattern | Matches              |                                 |
|---------|----------------------|---------------------------------|
| [A-Z]   | An upper case letter | Drenched Blossoms               |
| [a-z]   | A lower case letter  | my beans were impatient         |
| [0-9]   | A single digit       | Chapter 1: Down the Rabbit Hole |

■ negations: Carat (^) means negation only when first in []

| Pattern | Matches                  |                           |
|---------|--------------------------|---------------------------|
| [^A-Z]  | Not an upper case letter | Oyfn pripetchik           |
| [^Ss]   | Neither 'S' nor 's'      | have no exquisite reason" |
| [^e^]   | Neither e nor ^          | Look here                 |
| [a^b]   | The pattern a carat b    | Look up <u>a^b</u> now    |

## **Kleene Operators**

 $\blacksquare$  form of wild cards

| Pattern | Matches                      | Example                    |
|---------|------------------------------|----------------------------|
| colou?r | Optional<br>previous<br>char | <u>color</u> <u>colour</u> |
| oo*h!   | 0 or more of previous char   | oh! ooh! oooh! ooooh!      |
| o+h!    | 1 or more of previous char   | oh! ooh! oooh!             |
| baa+    |                              | baa baaa baaaa             |
| beg.n   |                              | begin begun began beg3n    |

## Beginning and End of Line

| Pattern    | Matches          |
|------------|------------------|
| ^[A-Z]     | Palo Alto        |
| ^[^A-Za-z] | <u>1</u> "Hello" |
| \.\$       | The end.         |
| .\$        | The end?The end! |

#### **More Operators**

| RE             | Expansion       | Match                       | Examples          |
|----------------|-----------------|-----------------------------|-------------------|
| \d             | [0-9]           | any digit                   | Party of <u>5</u> |
| \D             | [^0-9]          | any non-digit               | <u>B</u> lue moon |
| \w             | [a-zA-Z0-9_]    | any alphanumeric/underscore | <u>D</u> aiyu     |
| $\backslash W$ | [^\w]           | a non-alphanumeric          | <u>!</u> !!!!     |
| \s             | $[\r \t \n \f]$ | whitespace (space, tab)     |                   |
| \S             | [^\s ]          | Non-whitespace              | in Concord        |

#### 2.2.3 Kinds of Errors

- 1) false positive (type 1): expression matches things which it should NOT match
- 2) false negatives (type 2): expressions does not match things which it should match

#### 2.2.4 Substitutions

- $\blacksquare$  operator:  $s/\langle regexp \rangle/\langle replacement \rangle/$
- e.g.: s/colour/color/: replaces "colour" by "color"

#### Remembering Words to Replace

- $\blacksquare$  sometimes we want to replace a word with a form of it where we added a part  $\Rightarrow$  remembering the string which matches is required
- number operators/registers: e.g.:  $s/([0-9]+)/a \setminus 1a/$ 
  - adds "a" around numbers
- $\blacksquare$  usage: use round brackets () to surround regex and  $\backslash number$  to refer to the word matching the regex
- can also be used for complex pattern matching
  - e.g.: "the (.\*) they were, the  $\ 1$  they became" matches "the hungrier they were, the hungrier they became"
- multiple occurrences of "()" can be referred to by multiple numbers (i.e. first bracket is referred to by 1, second by 2, etc.)

6 2 Text Normalization

#### 2.3 Finite State Automata

#### 2.3.1 Formal Definition

```
FSA (Q, \Gamma, q_0, F, \delta) where
```

- $Q = (q_0, q_1, \dots, q_{N-1})$ : finite set of N states
- Γ: finite **input alphabet** of symbols
- $\blacksquare$   $q_0$ : start state
- $F \subseteq Q$ : set of final states
- $\delta: Q \times \Gamma \to Q$ : transition function

#### 2.3.2 Deterministic FSA

■ FSA is **deterministic** if we have no  $\epsilon$  transitions and a given input symbol clearly indicates which transition has to be used in all states

#### 2.3.3 Deterministic Recognition

• given a formally specified DFSA, we can check if a given character sequence is part of a language or not

■ can be adapted in order to find matches in text (i.e. instead of "reject", restart process from the second token on which we have considered)

#### 2.3.4 Formal Languages

- formal language definition: set of strings from  $\Gamma^*$
- $\blacksquare$  model m which can both **generate and recognize all and only** the strings of a formal language acts as a definition of the formal language
- L(m): formal language characterized by m
- models are often useful as they are finite but express an infinite language

#### 2.3.5 Non-Deterministic FSA

- FSA is called **non-deterministic**, if the behavior of the automaton in any state is NOT uniquely determined by its current state and the given input
- two main forms:
  - $\epsilon$ -transition: allows to move to another state without reading any input
  - two transitions with the same character leaving a state



#### 2.3.6 Non-Deterministic Recognition

three main approaches

- backup-strategy: if taking a choice does not work out, we jump back to the latest choice and take another option
  - need to remember where our choice points are and which paths we already explored (i.e. search algorithm!)
- look-ahead: we look ahead in the input to help decide which option to take
- parallelism: we look at alternative paths in parallel

## 2.4 Formal Languages vs. Regular Expressions vs. FSAs

- any FSA can be described by a regular expression
- any regular expression (except one which make use of memory registers) can be implemented as FSAs
- both regular expressions and FSAs can describe a regular language

#### 2.4.1 DFSAs vs. NFSAs

- NFSAs and DFSAs have the same expression power
- for any NFSA there exists a formally equivalent DFSA
  - can be constructed via the power method
  - idea: construct equivalence state for any states which can be reached via the same symbol from a state
  - $\bullet$  if NFSA has N states, constructed DFSA might have up to  $2^N$  states

8 2 Text Normalization

#### 2.5 Text Normalization

- NLP tasks perform 3 important text normalizations:
  - 1) segmenting / tokenizing words in running text
  - 2) normalizing word formats
  - 3) segmenting sentences in running text

#### 2.5.1 Tokenization

- idea: define what we consider a unit of a text (i.e. "word") to consider
- also called word segmentation

#### **Definitions**

- lemma: two words have the same lemma if they have
  - same stem
  - same part of speech
  - same rough word sense
  - (e.g. "cats" and "cat")
- wordform: fully inflected surface form of a word
  - e.g. both "cats" and "cat" are different wordforms of the same lemma
- **type**: an element of the vocabulary V
- token: an instance of a type in running text
- law of Church and Gale

$$|V| > O\left(N^{\frac{1}{2}}\right) \tag{2.1}$$

where

 $\bullet$  N: number of tokens

#### **Common Problems**

- one or two word problem: "San Francisco", "data base", "Hewlett-Packard"
- numbers
- segmentation problem / missing whitespace (mostly for languages like Inuit, etc.)
- multiple alphabets in same language (Japanese)
- different writing directions (Arabic)
  - text and numbers are written in different directions
- accents and umlauts
  - usually removed, but can be problematic

2.5 Text Normalization 9

#### Maximum Matching Algorithm

- used e.g. for Chinese
- assumption: given a vocabulary of the language and a string to tokenize
- idea: always take longest word in the dictionary which matches the next sequence from the string

#### 2.5.2 Normalization

- most common way: define equivalence classes of terms
  - can be done implicitly by removing characters like hyphens
  - BUT: only easy when removing characters (but not when adding chars)
- alternative: asymmetric expansion
  - examples
    - window  $\rightarrow$  window, windows
    - windows  $\rightarrow$  Windows, windows
    - Windows (no expansion)
  - idea: create expansion lists of different terms which can overlap without being identical
  - more powerful but less efficient than equivalence classes
- normalization and language detection interact (mit Hund vs. go to M.I.T)

#### **Case Folding**

- idea: reduce all letters to lower case
- only good in some applications:
  - IR
  - case is important for: sentiment analysis, machine translation and information extraction

#### 2.5.3 Stemming and Lemmatization

- documents use different forms of words (e.g.: organize, organizing, organizes)
- overall goal of stemming and lemmatization: reduce inflectional form and sometimes derivationally related forms of a word to a common base form

10 2 Text Normalization

#### Lemmatization

- process uses a vocabulary and morphological analysis of words
- aims at removing inflectional endings only in order to return the base form of a word (lemma)

#### Stemming

- crude heuristic process that chops off end of words (in the hope to be right most of the time)
- language dependent
- most common algorithm: Porter's stemmer
- in general: stemmer use language specific rules but require less knowledge than a lemmatizer
- stemming tends to be worse them lemmatization in languages with a lot of morphology

#### Porter's Stemmer

- empirically very effective
- consists of five phases of word reduction, applied sequentially
- in each phase: conventions to select rules

#### Morphology

- morphemes: small meaningful units that make up words
- two types:
  - stems: core meaning-bearing units (e.g. man, woman, health...)
  - affixes: bits and pieces that adhere to stems (e.g. -ly, -er, -ism, -ness, ...)
- morphological phenomena depend on language
- some languages require complex morpheme segmentation (e.g. Turkish)

## 2.6 Sentence Segmentation

- "!" and "?" are relatively clear symbols of ends of sentences
- "." is more problematic (e.g. abbreviations, numbers, etc.)

#### 2.6.1 Idea

- idea: build a binary classifier, deciding if a given character marks the end of a sentence or not
- possible classifiers
  - hand-written rules
  - regular expressions
  - machine learned
    - e.g. decision trees

#### 2.6.2 Decision Trees for Sentence Segmentation

#### **Decision Tree**

- each inner node represents a decision based on one attribute (i.e. feature)
- each leaf is a final decision (i.e. usually "yes" or "no")
- at query time: start at root and take decisions until a leaf node is reached ⇒ value is final decision



#### **Building a Decision Tree**

- can be constructed by experts (only for simple features and small trees)
- but are usually machine learned based on a training corpus
- choosing the features is the interesting part

#### **Possible Features**

- case of word before/after ".": upper, lower, cap and number
- numeric features:
  - length of word before "."
  - P(word with "." occurs at end-of-sentence)
  - $\mathbb{P}(\text{word with "." occurs at beginning-of-sentence})$

# (Probabilistic) Language Modeling

## 3.1 Probabilistic Language Models

- idea: model assigns a probability to a sentence (or sequence of words)
  - $\Rightarrow$  allows to predict words based on preceding words
- applications:
  - machine translation
  - spell correction (which alternative has the higher probability?)
  - speech recognition
  - question and answering
  - etc.

#### 3.1.1 Formal Definition

- language models compute either
  - probability of a sentence

$$\mathbb{P}(W) = \mathbb{P}(w_1 w_2 \dots w_n) \tag{3.1}$$

• or probability of an upcoming word

$$\mathbb{P}(w_i|w_1, w_2 \dots w_{i-1}) \tag{3.2}$$

■ note: a language model actually models grammar!

#### 3.1.2 Computing Probabilities

■ idea: compute  $\mathbb{P}(w_1w_2\dots w_n)$  by applying the **chain rule of probability** 

$$\mathbb{P}(w_1 w_2 \dots w_n) = \mathbb{P}(w_1) \cdot \mathbb{P}(w_2 | w_1) \cdot \mathbb{P}(w_3 | w_1, w_2) \cdot \dots \cdot \mathbb{P}(w_n | w_1, w_2, \dots, w_{n-1}) 
= \prod_{i=1}^n \mathbb{P}(w_i | w_1, \dots, w_{i-1})$$
(3.3)

- valid approach in theory, BUT
- infeasible in practice due to huge amount of parameters
  - reliably estimating all probabilities would require a ridiculously huge amount of data
     ⇒ not possible
- $\Rightarrow$  Makov assumption

#### **Markov Assumption**

- idea: we can predict the probability of some future unit without looking too far into the past
- implementation:

$$\mathbb{P}(w_1 w_2 \dots w_n) \approx \prod_{i=1}^n \mathbb{P}(w_i | w_{i-\mathbf{k}}, \dots, w_{i-1})$$
(3.4)

where k can be seen as a parameter

- $\blacksquare$  k determines how far we look into the past
- k is usually defined via **k-grams** (n-grams)

#### 3.1.3 N-Grams Models

■ unigram model - no look into the past

$$\mathbb{P}(w_1 w_2 \dots w_n) \approx \prod_{i=1}^n \mathbb{P}(w_i)$$
 (3.5)

■ bigram model - look one word into the past

$$\mathbb{P}(w_1 w_2 \dots w_n) \approx \prod_{i=1}^n \mathbb{P}(w_i | w_{i-1})$$
(3.6)

- can be generalized to n-grams
- in general insufficient for language modeling
  - cannot capture long-distance dependencies
  - BUT often good enough

## 3.2 Estimating N-Gram Probabilities

- need for a training corpus
- mark start  $(\langle s \rangle)$  and end  $(\langle /s \rangle)$  of sentence with special tokens
- for bigrams: take the count of a particular bigram, and divide this count by the sum of all the bigrams that share the same first word

$$\widehat{\mathbb{P}}(w_i|w_{i-1}) = \frac{c(w_{i-1}, w_i)}{\sum\limits_{w \in V} c(w_{i-1}, w)} = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$
(3.7)

lacktriangledown for k-grams:

$$\widehat{\mathbb{P}}\left(w_i|w_{i-k+1}^{i-1}\right) = \frac{c\left(w_{i-k+1}^{i-1}, w_i\right)}{c\left(w_{i-k+1}^{i-1}\right)}$$
(3.8)

divisor in the formulas above is for scaling to the unit interval

#### 3.2.1 Maximum Likelihood Estimation

- estimates above are relative frequencies
- estimating probabilities based on relative frequencies is a maximum likelihood estimation
  - estimates are parameters of a model M
  - MLE maximizes the likelihood of the training set T given the model M (i.e. its parameters)
  - i.e. parameters are chosen such that the given data is the most likely one (compared to other data)

#### 3.2.2 Practical Considerations

- perform multiplication of small probabilities in log-space
  - we can sum instead of multiply
  - is faster and avoids risks of underflow

## 3.3 Evaluation and Perplexity

- idea: evaluate if our language model prefers good to bad sentences
- two main methods:
  - extrinsic
  - $\bullet$  intrinsic

#### 3.3.1 Components

- training dataset (used to learn parameters of our model)
- test dataset (used to test the models performance)
  - needs to be untouched for training!
- evaluation metric

#### 3.3.2 Extrinsic Evaluation

- perform a specific NLP task with each model you want to compare (e.g. spelling correction)
- measure accuracy of each model and rank them accordingly
- **problem**: very time-consuming

#### 3.3.3 Intrinsic Evaluation (Perplexity)

- idea: play the Shannon game of predicting the next word / sentence
  - better model is the one which assigns the higher probability to the word that actually comes next
- formalization via **perplexity**
- problem: bad approximation (unless test data looks just like the training data)

#### **Perplexity**

- measure of how well a probability model predicts a sample
- **definition**: inverse probability of the test set (or a sentence of it) normalized by the number of words

$$PP(W) = \mathbb{P}(w_1 \dots w_n)^{-\frac{1}{n}} = \sqrt[n]{\frac{1}{\mathbb{P}(w_1 \dots w_n)}}$$
approx: Markov (3.9)

- minimizing perplexity is the same as maximizing probability
- i.e.: best model has minimal perplexity!
- perplexity of two models can only be compared if they use the same vocabulary
- perplexity improvement does not guarantee an extrinsic performance improvement
- perplexity can also be seen as a weighted average branching factor
  - model the prediction of a sentence as a tree
  - nodes represent decision points, edges are decisions which we take according to the probability assigned by the model

3.4 Model Visualization 17

#### 3.4 Model Visualization

#### **Shannon Method**

- lacktriangle assume we have a bigram model
- approach
  - 1) choose a random bigram  $(\langle s \rangle, w)$  according to its probability (where  $w_0 \in V$  is any word)
  - 2) choose a random bigram (w, x) according to its probability  $(x \in V)$
  - 3) continue until we choose  $\langle s \rangle$
  - 4) concatenate bigrams in order together (removing duplicate words due to bigram overlap)

```
I want to eat Chinese food  < s > \text{I}  I want  \text{want to}  to eat  \text{eat Chinese}   \text{Chinese food}   \text{food} < /s >
```

#### 3.5 Generalization and Zeros

#### 3.5.1 Dangers of Overfitting

- n-gram models only word well for word prediction of the test corpus looks like the training corpus (i.e. we overfit very easily)
- one option to train a more robust model (i.e. generalizes better): **smoothing** out 0s
  - problem: we might not have seen bigrams from the test set in the training set
  - $\Rightarrow$  0 probabilities
  - ullet when trying to compute the probability of a sentence containing an unseen bigram, the product becomes 0
  - $\Rightarrow$  perplexity cannot be computed (division by 0)

#### 3.5.2 Smoothing: Laplace / Add-One

- idea: add one to all counts
- for bigrams:

$$\widehat{\mathbb{P}}(w_i|w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + |V|}$$
(3.10)

- problems:
  - variances of counts is worse than the unsmoothed counts
  - much worse at predicting the actual probability than other methods for smoothing
- not used for n-grams anymore, BUT okay for other applications
  - text classification (predicting the right class, not the exact probability is important!)
- alternative view on concept: we **discount** non-zero values

#### 3.5.3 Smoothing: Absolute Discounting

- idea: substract probability mass from bigrams with a certain count to save probability mass for the zeros
- amount to substract: can be learned by looking at the difference in counts between a training and held-out set
  - BUT: very time consuming
  - easier: just substract some d (e.g. d = 0.75)
- approach: create standard model on training set and new model for held-out set based on original one, where

$$\mathbb{P}_{\text{AbsDisc}}(w_i|w_{i-1}) = \frac{c(w_{i-1}, w_i) - d}{c(w_{i-1})} + \lambda(w_{i-1}) \cdot \mathbb{P}(w_i)$$
(3.11)

where

- $\lambda(w_{i-1})$ : interpolation weight
- problem:  $\mathbb{P}(w_i)$  is not a good estimate for lower-order unigram distributions  $\Rightarrow$  Kneser-Ney smoothing

#### 3.5.4 Smoothing: Kneser-Ney

- better unigram approximation:  $\mathbb{P}_{\text{continuation}}(w)$  how likely is w to appear as a novel continuation
  - estimation: for each word, count the number of bigram types it completes

$$\mathbb{P}_{\text{continuation}}(w) \propto |\{w_{i-1}|c(w_{i-1}, w) > 0\}|$$
(3.12)

• normalize by total number of bigram types (to obtain a probability)

$$\mathbb{P}_{\text{continuation}}(w) \propto \frac{|\{w_{i-1}|c(w_{i-1}, w) > 0\}|}{|\{w_{j-1}|c(w_{j-1}, w_j) > 0\}|}$$
(3.13)

- ⇒ frequent words occurring in only one or few contexts: low continuation probability
- final Kneser-Ney for bi-grams

$$\mathbb{P}_{KN}(w_i|w_{i-1}) = \frac{\max(c(w_{i-1}, w_i) - d, 0)}{c(w_{i-1})} + \lambda(w_{i-1}) \cdot \mathbb{P}_{continuation}(w_i)$$
(3.14)

where  $\lambda$  is a normalizing constant (i.e. the probability mass we have discounted)

$$\lambda(w_{i-1}) = \frac{d}{c(w_{i-1})} \cdot |\{w|c(w_{i-1}, w) > 0\}|$$
(3.15)

#### 3.5.5 Backoff and Interpolation

- idea: if we have 0-counts (i.e. few knowledge about certain n-grams), we can **condition** on less context (in the hope to have more knowledge about the smaller context)
- two strategies:
  - backoff: use n-gram if we have enough evidence, otherwise n-1-gram, etc..
  - interpolation: mix different n-gram models (with different n)
- also a form of smoothing

#### 3.5.6 Linear Interpolation

#### Simple Interpolation

■ tri-gram example:

$$\widehat{\mathbb{P}}_{\lambda}(w_i|w_{i-2}, w_{i-1}) = \lambda_1 \cdot \widehat{\mathbb{P}}(w_i|w_{i-2}, w_{i-1}) + \lambda_2 \cdot \widehat{\mathbb{P}}(w_i|w_{i-1}) + \lambda_3 \cdot \widehat{\mathbb{P}}(w_i)$$
where  $\sum_i \lambda_i = 1$  (3.16)

#### **Lambdas Conditional on Context Interpolation**

- $\blacksquare$  idea: make weights ( $\lambda$  dependent on context of the original tri-gram
- weights  $\lambda_k(w_{i-2}, w_{i-1})$  is essentially now a function defining the weight for a given context (words  $w_{i-2}, w_{i-1}$ )
- tri-gram example:

$$\widehat{\mathbb{P}}_{\lambda}(w_{i}|w_{i-2}, w_{i-1}) = \lambda_{1}(w_{i-2}, w_{i-1}) \cdot \widehat{\mathbb{P}}(w_{i}|w_{i-2}, w_{i-1}) + \lambda_{2}(w_{i-2}, w_{i-1}) \cdot \widehat{\mathbb{P}}(w_{i}|w_{i-1}) + \lambda_{3}(w_{i-2}, w_{i-1}) \cdot \widehat{\mathbb{P}}(w_{i})$$
(3.17)

where 
$$\sum_{k} \lambda_k = 1$$

■ advantage: since we have one parameter per bi-gram now, we can increase weights for bi-grams with more evidence

- both versions:
  - separate from actual training corpus used for learning the probability estimates
  - choose  $\lambda_k$  s.t. the likelihood of the held-out corpus is maximized

#### Learning $\lambda$ Parameters

- assume we have training data, held-out data (i.e. smaller training set, but separate from it) and test data
- process
  - 1) estimate probabilities for n-grams based on training data
  - 2) learn parameters  $\lambda_k$  which maximize the likelihood on the held-out data (with the fixed estimates from above):

$$\arg\max_{\lambda}\log\left(\widehat{\mathbb{P}}_{\lambda}\left(w_{1},\ldots,w_{n}\right)\right)\tag{3.18}$$

where  $w_1, \ldots, w_n$  is the held-out data

#### 3.5.7 Dealing with Unknown Words

- two kinds of tasks
  - $\bullet$  closed vocabulary task: vocabulary V is fixed from the beginning
  - open vocabulary task: vocabulary is not fixed
- unknown words are called **out of vocabulary words** (OOV words)
- $\blacksquare$  can be handled by creating an **unknown word token** <UNK>
- $\blacksquare$  estimating  $\langle UNK \rangle$  probabilities:
  - 1) create a fixed lexicon L of size V (by deleting all words under a certain threshold wrt frequency)
  - 2) in normalization phase: change any word not in V to  $\langle UNK \rangle$
  - 3) estimate probabilities as usual
- $\blacksquare$  during model usage: treat unknown words as  $\langle UNK \rangle$

#### 3.5.8 Huge Web-Scale n-Gram Corpora

- for huge web-scale n-Gram corpora, we have to be very efficient
- use pruning
  - only store n-grams with a frequency over a threshold
  - entropy (i.e. relevance) based pruning
- consider efficiency
  - efficient datastructures

- bloom filters: approximate language models
- store words as indexes

#### **Smoothing for Web-Scale n-Grams**

- stupid backoff
- no discouting just use relative frequencies
- S instead of  $\mathbb{P}$  as symbol for k-gram-probability

$$S(w_i|w_{i-k+1}^{i-1}) = \begin{cases} \frac{c(w_{i-k+1}^i)}{c(w_{i-k+1}^{i-1})} & \text{if } c(w_{i-k+1}^i) > 0\\ 0.4 \cdot S(w_i|w_{i-k+2}^{i-1}) & \text{otherwise} \end{cases}$$
(3.19)

where

$$S(w_i) = \frac{c(w_i)}{T} \tag{3.20}$$

where T: number of tokens in corpus

■ **note**: NOT a true probability distribution anymore

## 3.6 Advanced Language Models

- discriminative models
  - choose n-gram weights to improve a task not to fit the training set
- parsing-based models
- caching models
  - recently used words are more likely to appear

# **Spell Checking**

## 4.1 Error Classification

two types or errors

- non-word errors
  - words which do not exist in reference language
- (real-)word errors
  - words which exist in reference language but are wrong in the context (flew form Heathrow)
  - two subtypes:
    - typos
    - cognitive errors (piece vs peace)

#### 4.1.1 Associated Problems

- 1) non-word error detection
- 2) isolated-word error correction
  - mapping a non-word error to the correct word
- 3) context-dependent error detection and correction
  - using context to detect and correct non-and real-word errors

24 4 Spell Checking

#### Non-Word Error Detection

- any word not in a **dictionary** is considered an error
- size of dictionary
  - original approach: keep it small (in order to detect common spelling errors involving uncommon words)
  - BUT: large dictionaries are more helpful
    - precision is increase as words detected as errors are more likely true errors
    - recall is decreased as we might miss some errors

#### **Non-Word Error Correction**

- given a word, generate set of **candidates** (correct words similar to error)
  - similar wrt. e.g. edit distance, soundex, etc.
- rank according to some measure (e.g. edit distance) among candidates

#### **Real-Word Error Correction**

- problem: we do not know if a word is wrong or not
- solution:
  - 1) for each word w in the sentence, generate a candidate set as above (including w)
  - 2) let a method (e.g. classifier) choose the best candidate separately or looking at all combinations of words

#### 4.2 Distance Measures

#### 4.2.1 Edit Distance

- distance between string  $s_1$  and  $s_2$  is the minimum number of basic operations required to transform  $s_1$  into  $s_2$
- example implementations:
  - Levenshtein basic operations: insert, delete and replace
  - Damerau-Levenshtein basic operations: additionally transposition

4.2 Distance Measures 25

```
LEVENSHTEINDISTANCE(s_1, s_2)

1 for i \leftarrow 0 to |s_1|

2 do m[i, 0] = i

3 for j \leftarrow 0 to |s_2|

4 do m[0, j] = j

5 for i \leftarrow 1 to |s_1|

6 do for j \leftarrow 1 to |s_2|

7 do if s_1[i] = s_2[j]

8 then m[i, j] = \min\{m[i-1, j]+1, m[i, j-1]+1, m[i-1, j-1]\}

9 else m[i, j] = \min\{m[i-1, j]+1, m[i, j-1]+1, m[i-1, j-1]+1\}

10 return m[|s_1|, |s_2|]
```

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy (cost 0)

- [ToDo: add annotations in algo (which operation is which equation part]
- how to read matrix (to get operations):
  - 1) start at bottom right
  - 2) at each step:
    - a) look which sub cell is minimum (at tie: select any)
    - b) note down the action corresponding to it
    - c) go tht ecell belonging to the winning sub-cell
  - 3) reverse order of actions
  - note: for "replace or copy" you have to check if the cost increased
  - left side of matrix: input, right side of matrix: output

| cost of getting here from | cost of getting here from |  |
|---------------------------|---------------------------|--|
| my upper left neighbor    | my upper neighbor (dele-  |  |
| (copy or replace)         | te)                       |  |
|                           | the minimum of the        |  |
| cost of getting here from | three possible "move-     |  |
| my left neighbor (insert) | ments"; the cheapest      |  |
|                           | way of getting here       |  |

4 Spell Checking

|   |   | S          | n          | 0          | w   |
|---|---|------------|------------|------------|-----|
|   | 0 | 1 1        | 2 2        | 3 3        | 4 4 |
|   | 1 | <b>1</b> 2 | <b>2</b> 3 | 2 4        | 4 5 |
| 0 | 1 | 2 <b>1</b> | 2 2        | 3 <b>2</b> | 3 3 |
| S | 2 | <b>1</b> 2 | <b>2</b> 3 | 3 3        | 3 4 |
| 5 | 2 | 3 1        | 2 2        | 3 3        | 4 3 |
|   | 3 | 3 <b>2</b> | <b>2</b> 3 | 3 4        | 4 4 |
|   | 3 | 4 2        | 3 <b>2</b> | 3 3        | 4 4 |
|   | 4 | 4 3        | 3 3        | 2 4        | 4 5 |
| 0 | 4 | 5 <b>3</b> | 4 3        | 4 2        | 3 3 |

| cost | operation | input | output |
|------|-----------|-------|--------|
| 1    | delete    | 0     | *      |
| 0    | (copy)    | S     | S      |
| 1    | replace   | 1     | n      |
| 0    | (copy)    | 0     | 0      |
| 1    | insert    | *     | W      |

 $\blacksquare$  runtime:  $O(|s_1| \cdot |s_2|)$ 

#### dynamic programming approach

- optimal substructures: optimal solution contais subsolutions
- subsolutions overlap: are computed over and over again when using a brute-force algorithm
- subproblem for edit distance: edit distance of two prefixes
- overlap for edit distance: distances of prefixes are required 3 times
- variant: weighted edit distance
  - weight of an operations depends on characters involved
  - used for keyboard errors ("m" more likely to be mistyped as "n" than as "q")

## 4.2.2 Soundex (Distance)

- represent words in a 4-char reduced form (signature) s.t. **homophones** (word which sound similar) are encoded in a similar fashion
- compute distance wrt. signatures instead of strings (e.g. using edit distance)
- several variants of original soundex for different languages

## 4.3 Noisy Channel Model

■ idea: original words go through a **noisy channel**, become a **noisy word** from which the real word must be guessed by **decoder** 



#### 4.3.1 Concept

- $\blacksquare$  given an observation x of a misspelled word
- approximate correct word by

$$\widehat{w} = \arg\max_{v \in V} \mathbb{P}(v|x) \tag{4.1}$$

- $\blacksquare$  problem: hard to estimate probabilities, as x might have never been seen before!
- solution: Bayes rule!

$$\widehat{w} = \arg\max_{v \in V} \mathbb{P}(v|x) = \arg\max_{v \in V} \frac{\mathbb{P}(x|v) \cdot \mathbb{P}(v)}{\mathbb{P}(x)} = \arg\max_{v \in V} \mathbb{P}(x|v) \cdot \mathbb{P}(v)$$
(4.2)

• last step is possible, as  $\mathbb{P}(v)$  is **constant** for all  $v \in V$ 

#### 4.3.2 Complete Approach

- 1) given an incorrect word x, generate a set of candidates C (as above)
- 2) return  $v \in C$  for which holds

$$\arg\max_{v \in C} \mathbb{P}(x|v) \cdot \mathbb{P}(v) \tag{4.3}$$

#### Remarks

- $\blacksquare$  using C instead of V is empirically good idea
- $\blacksquare$  80% of errors are within edit distance 1 and almost all in distance 2
- (if we allow insertion of **space** and **hyphen** as well
- ⇒ processing the whole vocabulary would be a waste!

#### 4.3.3 Probability Estimation

#### **Prior Probability Estimation**

- $\blacksquare$  estimating  $\mathbb{P}(v)$
- count frequency in large corpus  $(10^7 + \text{words})$  (maybe including +1 smoothing)

28 4 Spell Checking

#### Likelihood / Channel Probability Estimation

- $\blacksquare \mathbb{P}(x|v)$
- in general: unsolved problem (depends very much writer and many other factors)
- **a** approximate solution: estimate  $\mathbb{P}(x|v)$  by the **probability of edit**

$$P(x|w) = \begin{cases} \frac{\operatorname{del}[x_{i-1}, w_i]}{\operatorname{count}[x_{i-1}w_i]}, & \text{if deletion} \\ \frac{\operatorname{ins}[x_{i-1}, w_i]}{\operatorname{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\sup[x_i, w_i]}{\operatorname{count}[w_i]}, & \text{if substitution} \\ \frac{\operatorname{trans}[w_i, w_{i+1}]}{\operatorname{count}[w_iw_{i+1}]}, & \text{if transposition} \end{cases}$$

where

- $x_i$  is the *i*th character of the misspelled word x
- $w_i$  is the *i*th character of a correct word w

del[x, y]: count(xy typed as x) ins[x, y]: count(x typed as xy) sub[x, y]: count(x typed as y) trans[x, y]: count(xy typed as yx)

- assumption: each misspelling of a word can be reached via one of the 4 confusion matrices
  - plausible as most typos involve one 1 or 2 characters
- counts can be obtained from confusion matrices (one for each edit operation)
- confusion matrices computed based on some large dataset of errors and corrections

#### 4.3.4 Improved Channel Model

- channel model can be used to create a ranking on the candidates
- take top-k elements and re-rank using using a given language model
- ⇒ this way we can use surrounding words for more context

## 4.3.5 Implicit Assumptions

- implicit assumption: independence between words in sentence
  - of course not true
- ⇒ add weighting scheme to prior and likelihood multiplication

$$\arg\max_{v\in C} \mathbb{P}(x|v) \cdot \mathbb{P}(v)^{\lambda} \tag{4.4}$$

where  $\lambda$  is a weight learned on a development test set

4.4 Evaluation 29

# 4.4 Evaluation

- measures
  - precision/recall/f-measure of detection
  - suggestion quality (correct word is first suggestion? correct word is in top-n suggestions?)

# 4.5 Real-Word Spelling Correction

■ 25-40 % of spelling errors are real word errors

# 4.5.1 Basic Approach

- 1) generate candidate set
- 2) choose best candidate
  - via noisy channel model OR
  - task-specific classifier

# 4.5.2 Noisy Channel Model Approach

- 1) given a sentence  $w_1, w_2, \ldots, w_n$
- 2) generate a set of candidates for each word  $w_i$
- 3) choose sequence W maximizing  $\mathbb{P}(W)$ 
  - note: we choose the sequence from the set of all possible sequences based on the candidate sets

### Problem

- huge number of alternative sequences
  - $\bullet$  assume k alternatives per candidate set and n words in the sentence
  - $\Rightarrow k^n$  sequences!

### Simplification: One Error per Sentence

- instead of choosing each word out of the associated candidates, we generate sequences where only ONE word differs from the original one
- $\Rightarrow n\dot{k}$  sequences

30 4 Spell Checking

### **Channel Model Adaptation**

■ for real-word errors, channel model has to additionally consider the **probability of no** error  $\mathbb{P}(w|w)$ 

 $\blacksquare \mathbb{P}(w|w)$  can be estimated by counting the error frequency in a corpus (including smoothing!)

# 4.6 Further Considerations

# 4.6.1 Showing Errors to the User

- the more confident we are about an error, the more drastic we can be about the correction
- $\blacksquare$  e.g.: very confident  $\Rightarrow$  autocorrect
- e.g.: unconfident  $\Rightarrow$  flag as potential error

# 4.6.2 Classifier Based Methods

- instead of just channel model and language model
- use many features in a classifier
- build classifier deciding between common misspellings: e.g. (whether vs. weather)

# **Deduplication**

# 5.1 Introduction

■ idea: given a large number of documents, find near duplicate pairs

#### 5.1.1 Formal Definition

- given
  - set of documents D
    - similarity function  $\sigma: D \times D \to \mathbb{R}$
    - similarity threshold  $\phi \in \mathbb{R}$
- goal: find

$$M = \{ (d, d') \in D^2 | \sigma(d, d') \ge \phi \}$$
(5.1)

# 5.1.2 Applications

- crawling (do not crawl duplicates)
- (approximate) mirror pages (do not show both in search results)
- similar news articles
- fact checking (near duplicates contain similar facts)

# 5.1.3 Issues for Recognizing Duplicates

- many small pieces of one document can appear out of order in another
  - e.g. due to plagiarism
  - $\Rightarrow$  need for robust similarity function  $\sigma$
- too man documents
  - naive approach: compare all pairs of documents  $\Rightarrow O(|D|^2)$

32 5 Deduplication

- $O(|D|^2)$  is too long in practice!
- documents are so large or so many that they cannot fit into main memory
  - $\Rightarrow$  need for compressed representation

# 5.1.4 Similarity Functions

- Damerau-Levenshtein distance (negative)
- Soundex
- Jaccard similarity

$$Jaccard(X,Y) = \frac{|X \cap Y|}{|X \cup Y|} \in [0,1] \tag{5.2}$$

where X, Y are sets

# 5.2 Deduplication with Jaccard

# 5.2.1 Approach Overview

- 1) **Shingling**: convert documents to sets (of k-shingles)
  - $\blacksquare$  sets of strings of length k to describe documents
- 2) MinHashing: convert large sets to short signatures, while preserving similarity
  - integer vectors to represent sets
  - vectors encapsulate similarity
- 3) Locality-Sensitive Hashing (LSH): instead of comparing all pairs of documents, find possibly similar documents by hashing documents based on their signatures
  - only compare actual similarity on candidate pairs found by LSH

# 5.2.2 Shingling

- idea: convert documents to sets
- simplest approach: represent document by set of words it contains
  - problem: we do not account in any way for the ordering of words
  - ullet solution: shingles  $\Rightarrow$  represent a document by the set (or multiset) of shingles it contains
- **\blacksquare k-shingle** (or k-gram): sequence of k tokens
  - token: can be a character, a word or something else
  - we assume: token = character
- working assumption: documents which have many shingles in common have similar text (even if text appears in different order)
- **\blacksquare important**: k must be large enough!

- if k is too small, we have a huge number of candidate pairs (as the e.g. same 2-shingles appear in almost any document)
- rule of thumb
  - short documents:  $k \approx 5$
  - long documents:  $k \approx 10$

### **Efficient Representation**

- explicit set representation is not well suited for rest of deduplication process
- solution: represent a set as binary vector  $d \in \{0,1\}^{|\mathcal{S}|}$  in the space of k-shingles  $\mathcal{S}$  where

$$d_i = \begin{cases} 1 & \text{if shingle } i \text{ is present in set} \\ 0 & \text{else} \end{cases}$$
 (5.3)

- $\Rightarrow$  vectors are very sparse
- important operations
  - set intersection: bitiwse AND (of two vectors)
  - set union: bitwise OR (of two vectors)
  - e.g. d = 10111,  $d' = 10011 \Rightarrow d \cap d' = 10011$  and  $d \cup c' = 10111$

# 5.2.3 MinHashing

- goal: convert large sets to short signatures (e.g. hashes) while preserving similarity
- **goal**: find hash function h such that
  - 1) if  $\sigma(d, d')$  is high  $\Rightarrow h(d) = h(d')$  with high probability
  - 2) if  $\sigma(d, d')$  is low  $\Rightarrow h(d) \neq h(d')$  with high probability
- ⇒ compare similarity of signatures instead of original document vectors!

# From Sets to Boolean Matrices

- lacksquare we can place the vector representation of all documents  $d \in D$  in a matrix
  - each document vector is a column
  - $\Rightarrow$  each row represents a shingle
- $\Rightarrow\,$  matrix is very sparse

34 5 Deduplication

- 4 documents (columns)
- 7 singles (rows)

**column similarity** (between two columns): Jaccard similarity of the corresponding sets

### Signature / Hash Function Computation

- idea: compute signature of column by looking at several row permutations of boolean matrix
- $\blacksquare$  let  $\pi$  be a row permutation
- let  $h_{\pi}(d)$  = index of first row in which column of d has a 1 (under row permutation  $\pi$ )

$$h_{\pi}(d) = \min\{i | d_{\pi(i)} = 1\} \tag{5.4}$$

- signature:
  - use several **independent** hash functions (i.e. permutations) and aggregate their values as a vector (for a column)
- $\Rightarrow$  dimension of signature vector = number of hash functions
- $\blacksquare$  signature matrix M:
  - M is a  $K \times |D|$  matrix, where K is the number of hash functions
  - M each column in M represents the MinHash signature of the corresponding document
- $\blacksquare$  example: 4 docs, 2 permutations, i.e. hash functions  $\Rightarrow$  dimension of signatures: 2

$$D = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad \Pi = \begin{bmatrix} 2 & 4 \\ 3 & 2 \\ 7 & 1 \\ 6 & 3 \\ 5 & 6 \\ 1 & 7 \\ 4 & 5 \end{bmatrix} \qquad sig(D) = \begin{bmatrix} 1 & 1 & 3 & 1 \\ 2 & 2 & 3 & 1 \end{bmatrix}$$

■ in practice: the more hash functions, the better

# MinHash Property

- assume we pick the document vector representations at random
- for any permutation  $\pi$  it holds that

$$\mathbb{P}\left(h_{\pi}(d) = h_{\pi}(d')\right) = \sigma(d, d') \tag{5.5}$$

■ proof

- let  $y \in X$  be a shingle where X is the set of shingles (we assume we represent shingles by a number)
- it holds that

$$\mathbb{P}(y = \min(\pi(X))) = \frac{1}{X} \tag{5.6}$$

- let y be s.t.  $\pi(y) = \min(\pi(d \cup d'))$
- then
  - 1)  $\pi(y) = \min(\pi(d))$  OR
  - 2)  $\pi(y) = \min(\pi(d'))$
- probability that both events are true, i.e.  $\mathbb{P}(\min(\pi(d)) = \pi(y) = \min(\pi(d')))$ , is equivalent to

$$\mathbb{P}(y \in d \cap d') = \frac{|d \cap d'|}{|d \cup d'|} \tag{5.7}$$

• hence

$$\mathbb{P}(h_{\pi}(d)) = h_{\pi}(d') = \mathbb{P}(\min(\pi(d)) = \min(\pi(d')))$$

$$= \mathbb{P}(y \in d \cap d')$$

$$= \frac{|d \cap d'|}{|d \cup d'|} = \sigma(d, d')$$
(5.8)

### Similarity of Signatures

- similarity of signatures: fraction of the hash functions for which the signatures agree
- expected similarity of signatures = similarity of vector representations of documents

# **Practical Considerations**

- the more hash functions  $\Rightarrow$  the better
- signature of document is usually a lot smaller than the original vector

# 5.2.4 Locality Sensitive Hashing

#### Idea

- we want to avoid computing the similarity between all pairs of documents
- ⇒ we only compare the actual similarity of candidate document-pairs
- $\Rightarrow$  find a function  $f: D \times D \rightarrow \{true, false\}$  telling whether two given documents resemble a candidate pair
- for MinHash matrices:
  - 1) hash columns of signature matrix to many buckets
  - 2) pairs of documents in the same bucket are candidate pairs

36 5 Deduplication

### **Approach**

- 1) divide matrix M into b bands, each of r rows
  - hence:  $K = b \cdot r$  (K: signature size)
- 2) for each band: hash its part of each column (i.e. a partial document) to a hash table with  $\kappa$  buckets
  - lacktriangleright  $\kappa$  should be as large as possible to avoid accidental collisions
- 3) candidate document pairs: those which hash to the same bucket for  $\geq 1$  band(s)



- Suppose  $N=10^5$ , ergo M has  $10^5$  columns
- Signature size K = 100
- Choose b = 20 and r = ?5
- Goal: Find pairs of documents with  $\sigma \geq 0.8$

# If $\sigma(d_1, d_2) = 0.8$

- Probability that they share a common signature =  $(0.8)^5 \approx 0.326$
- Probability that they are not similar in any of the bands = ?  $(1-0.326)^{20} \approx 0.00035$
- What is our expected recall? 99.965%
- $\Rightarrow$  We have false negatives

# **Parameter Tuning Considerations**

- $\blacksquare$  parameters b are r need to be tuned s.t.
  - 1) most of the similar document pairs are found
  - 2) and only few non-similar document pairs are found
- note: the fewer bands, the fewer false positives, but also more false negatives
- $\blacksquare$  parameter K (signature length) can also be tuned

### **Approach Analysis**

- $\blacksquare \text{ let } \sigma(d, d') = \tau$
- for any band (r rows):
  - prob. that all rows in band are equal:  $\tau^r$
  - ullet prob. that any row in the band is not equal to the others:  $1- au^r$
  - prob. that no band is identical:  $(1 \tau^r)^b$
  - $\bullet$  prob. that at least one band is identical:  $(1-(1-\tau^r)^b)$
- function  $\tau \to (1 (1 \tau^r)^b)$  is sigmoid
  - function is (roughly) 1/2 for  $\tau = \left(\frac{1}{b}\right)^{1/r}$  (for large b and r)  $\Rightarrow$  optimal value without further application knowledge
  - $\Rightarrow$  in general: try to set b and r s.t.  $\theta = \left(\frac{1}{b}\right)^{1/r}$
  - for specific applications it might make more sense to shift the value into one of the two directions (e.g. lower threshold to avoid false positives)



### Remarks

■ LSH has the risk of BOTH false negatives and false positives!

# **Text Classification**

# 6.1 Applications

- spam detection
- authorship identification
- language identification
- sentiment analysis

# 6.2 Classification Methods

# 6.2.1 Rule Based Classification

- complex rules determine the class of a given document
- very high accuracy if rules are refined carefully over time by an expert
- building and maintaining rather complicated and expensive
- (e.g. used by Google Alerts)

# 6.2.2 Statistical/Probabilistic Classification

- see classification as a machine learning problem
- use supervised learning to learn a classifier
- no free lunch: requires hand-classified training data
- BUT: this manual classification can be done by none-experts
- e.g.: Naive Bayes

40 6 Text Classification

# 6.3 Formal Definition

- given:
  - document space  $\mathcal{X}$ : vector space which is used to represent documents
  - fixed set of classes  $C = \{c_1, \ldots, c_i\}$
  - a training dataset  $\mathcal{D} \subseteq \mathcal{X} \times \mathcal{C}$  consisting of entries (d, c), representing a document labeled with its class
    - data should be identically independently distributed (i.i.d assumption)
- idea:
  - use learning algorithm to learn a model  $h: \mathcal{X} \to \mathcal{C}$  predicting the correct class for given document (representation)

# **6.4** *k*-Nearest Neighbor Classifier

### 6.4.1 Idea

- given a document vector d, find the k nearest neighbors  $\mathcal{K}(d) \subseteq \mathcal{D}$  wrt. some distance (in the training set)
- $\blacksquare$  classify d as class c which is the most common class among those k neighbors
  - we can also use a probability interpretation according to number of times a class is found in the neighbor set
  - i.e.  $\mathbb{P}(c|d) = \frac{|\mathcal{K}_c|}{k}$  ( $\mathcal{K}_c$ : number of neighbors with class c in  $\mathcal{K}(d)$

### **6.4.2** Learning k and Importance of k

- $\blacksquare$  k acts as a smoothing factor
  - with small k: high chance to overfit due to small sample size (high chance for outliers to influence result)
  - larger k: lower change of overfitting due to larger sample size
- $\blacksquare$  optimize k via **cross-validation** 
  - idea: split data into training, validation and test set
  - choose k which maximizes target measure on validation set
  - simplest form leave-1-out cross-validation
    - train on all but one data points and validate on the remaining one
    - repeat for all possible combinations of training and validation dataset and aggregate results (e.g. sum)
    - choose k with best performance on aggregated results

# 6.4.3 Probabilistic Interpretation

lacktriangle basic idea: given a document d create a hyperball of volume V centered around d covering k points



- hyperball contains  $k_j$  points from class  $c_j$
- $N_j$  is the total number of points from class  $c_j$  in the whole training data
- $N = \sum_{j=1}^{|\mathcal{C}|} N_j$  is the total number of points in the training data
- lacktriangle unconditional density around x

$$\mathbb{P}(x) = \frac{k}{N \cdot V} \tag{6.1}$$

 $\blacksquare$  conditional density around x

$$\mathbb{P}(x|c_j) = \frac{k_j}{N_j \cdot V} \tag{6.2}$$

■ with Bayes rule

$$\mathbb{P}(c_j|x) = \frac{\mathbb{P}(x|c_j) \cdot \mathbb{P}(c_j)}{\mathbb{P}(x)} = \frac{k_j}{k}$$
(6.3)

as 
$$\mathbb{P}(c_j) = \frac{N_j}{N}$$

# 6.4.4 Weighted (Probabilistic) kNN

- idea: weight the contribution of each neighbor based on distance to the point of interest
- lacktriangle (Gaussian) weight function motivated by Gaussian distribution

$$w(\mathbf{x}, \mathbf{x}_i) = exp(-\lambda||x - x_i||_2^2)$$
 with  $\lambda > 0$ 



42 6 Text Classification

■ prediction: return class according to

$$\arg\max_{c\in\mathcal{C}} \mathbb{P}(c|x) = \frac{\sum\limits_{(x',c')\in\mathcal{K}(x)} w(x,x') \cdot \llbracket c' = c \rrbracket}{\sum\limits_{(x',c')\in\mathcal{K}(x)} w(x,x')}$$
(6.4)

### Learning $\lambda$

- learn using cross-validation (e.g. leave-1-out cross-validation)
- $\Rightarrow$  look for  $\lambda$  maximizing the **total prediction accuracy** (over all validation folds)
- $\Rightarrow$  look for  $\lambda$  maximizing the (log)likelihood of the given data (i.e. maximize the probability that the left-out point in each fold gets assigned the correct class)

$$\lambda^* = \arg \max_{\lambda > 0} \mathcal{L}$$

$$= \arg \max_{\lambda > 0} \sum_{j=1}^{|\mathcal{D}|} \log \left( \mathbb{P}(c_j | x_j, \mathcal{D}_j) \right)$$

$$= \arg \max_{\lambda > 0} \sum_{j=1}^{|\mathcal{D}|} \left( \log \left( \sum_{(x_i, c_i) \in \mathcal{K}(x_j)}^{x_i \neq x_j} w(x_j, x_i) \cdot \llbracket c_i = c_j \rrbracket \right) - \log \left( \sum_{(x_i, c_i) \in \mathcal{K}(x_j)}^{x_i \neq x_j} w(x_j, x_i) \right) \right)$$

$$= \arg \max_{\lambda > 0} \sum_{j=1}^{|\mathcal{D}|} \left( \log \left( \sum_{(x_i, c_i) \in \mathcal{K}(x_j)}^{x_i \neq x_j} \exp(-\lambda \cdot \parallel x_j - x_i \parallel_2^2) \cdot \llbracket c_i = c_j \rrbracket \right) \right)$$

$$- \sum_{j=1}^{|\mathcal{D}|} \left( \log \left( \sum_{(x_i, c_i) \in \mathcal{K}(x_j)}^{x_i \neq x_j} \exp(-\lambda \cdot \parallel x_j - x_i \parallel_2^2) \right) \right)$$

$$(6.5)$$

where  $\mathcal{D}_j$ : dataset  $\mathcal{D}$  except example  $(x_j, c_j)$ 

- $\Rightarrow \mathcal{L}$  is difference of two **convex** functions
- ⇒ gradient descent/ascent works well for finding the minimum/maximum

#### **Convex Function**

•  $f: X \to \mathbb{R}$  is **convex** if  $\forall x_1, x_2 \forall t \in [0, 1]$  it holds that

$$f(t \cdot x_1 + (1-t) \cdot x_2) \le t \cdot f(x_1) + (1-t) \cdot f(x_2) \tag{6.6}$$

■ roughly speaking: if we take any two points of the function and draw a line between them, the complete line is **above or on** the function



# 6.4.5 Advantages and Disadvantages

- advantages
  - 1) easy to implement (use efficient data structure for searching nearest neighbors, e.g. R-tree)
  - 2) training is fast (mainly setting up the datastructure)
  - 3) learns complex target functions
- disadvantages
  - slow at query time (need find nearest neighbor)
  - easily fooled by irrelevant features ( $\leq 20$  features recommended)
  - usually large amounts of training data needed

# 6.5 The Naive Bayes Classifier

# Idea

- represent documents as set of words
- $\Rightarrow$  we use a **bag-of-words** model as we ignore the positions of the words

# 6.5.1 Concept

 $\blacksquare$  compute probability of document d being in class c as

$$\mathbb{P}(c|d) \propto \mathbb{P}(c) \cdot \prod_{1 \le k \le n_d} \mathbb{P}(d|c)$$
 (6.7)

where

- $n_d$ : number of tokens in the document
- $\mathbb{P}(t_k|c)$ : conditional probability of term  $t_k$  occurring in a document of class c
  - measure of how much evidence  $t_k$  contributes that c is the correct class
  - if evidence is identical for all terms, P(c) becomes the only important variable

44 6 Text Classification

- $\mathbb{P}(c)$ : prior probability of class c
- return best class according to maximum a posteriori (MAP) principle:

$$\arg\max_{c\in\mathcal{C}}\widehat{\mathbb{P}}(c|d) = \arg\max_{c\in\mathcal{C}}\widehat{\mathbb{P}}(c) \cdot \prod_{1\leq k\leq n_d}\widehat{\mathbb{P}}(t_k|c)$$
(6.8)

where all quantities with a hat are estimates

#### 6.5.2 Practical Considerations

- computing the product can be arithmetically problematic (underflow when multiplying small probabilities)
- since log is a monotonic function, we can also take the log of the product without changing the ranking
- $\Rightarrow$  in practice we compute

$$\arg\max_{c\in\mathcal{C}}\log\left(\widehat{\mathbb{P}}(c)\cdot\prod_{1\leq k\leq n_d}\widehat{\mathbb{P}}(t_k|c)\right) = \arg\max_{c\in\mathcal{C}}\log\left(\widehat{\mathbb{P}}(c)\right) + \sum_{1\leq k\leq n_d}\log\left(\widehat{\mathbb{P}}(t_k|c)\right) \quad (6.9)$$

- interpretation
  - each  $\log\left(\widehat{\mathbb{P}}(c)\right)$  is a weight indicating the relative frequency of class c
  - complete term is measure of how much evidence there is for the document being in the class

### 6.5.3 Parameter Estimation

prior:

$$\widehat{\mathbb{P}}(c) = \frac{N_c}{N} \tag{6.10}$$

where

- $N_c$ : number of docs in class c
- $\bullet$  N: total number of docs
- conditional probabilities:

$$\widehat{\mathbb{P}}(t|c) = \frac{T_{c,t}}{\sum_{t' \in V} T_{c,t'}}$$

$$\tag{6.11}$$

where

- $T_{c,t}$ : number of tokens of t in training docs of class c (counting multiple occurrences!)
- we use a **Naive Bayes assumption** here: we assume  $\widehat{\mathbb{P}}(t|c)$  is independent of the terms position in the document!

#### Problems with 0s

- when one term of the product / log sum is 0, the whole probability gets 0 / is undefined!
  - $\bullet$  happens easily if a vocabulary term t does not occur in any document of class c
  - $\Rightarrow$  we would never assign a document containing term t to c
- solution: **smoothing** 
  - simplest form: add-1-smoothing

$$\widehat{\mathbb{P}}(t|c) = \frac{T_{c,t} + \mathbf{1}}{\sum_{t' \in V} (T_{c,t'} + \mathbf{1})} = \frac{T_{c,t} + \mathbf{1}}{\left(\sum_{t' \in V} T_{c,t'}\right) + |V|}$$
(6.12)

# 6.5.4 Time Complexity

| mode     | time complexity                                                 |
|----------|-----------------------------------------------------------------|
| training | $\Theta( \mathbb{D} L_{ave} +  \mathbb{C}  V )$                 |
| testing  | $\Theta(L_{a} +  \mathbb{C} M_{a}) = \Theta( \mathbb{C} M_{a})$ |

- $L_{\text{ave}}$ : average length of a training doc,  $L_{\text{a}}$ : length of the test doc,  $M_{\text{a}}$ : number of distinct terms in the test doc,  $\mathbb{D}$ : training set, V: vocabulary,  $\mathbb{C}$ : set of classes
- $\Theta(|\mathbb{D}|L_{ave})$  is the time it takes to compute all counts.
- $\Theta(|\mathbb{C}||V|)$  is the time it takes to compute the parameters from the counts.
- Generally:  $|\mathbb{C}||V| < |\mathbb{D}|L_{\mathsf{ave}}$
- Test time is also linear (in the length of the test document).
- Thus: Naive Bayes is linear in the size of the training set (training) and the test document (testing). This is optimal.

### 6.5.5 Derivation of Naive Bayes

#### **Basics**

 $\blacksquare$  find the class that is most likely given a document d of text

$$c^* = \arg\max_{c \in \mathcal{C}} \mathbb{P}(c|d) \stackrel{\text{Bayes}}{=} \arg\max_{c \in \mathcal{C}} \frac{\mathbb{P}(d|c) \cdot \mathbb{P}(c)}{\mathbb{P}(d)}$$
(6.13)

■ since  $\mathbb{P}(x)$  is constant for all classes it can be dropped:

$$c^* = \arg\max_{c \in \mathcal{C}} \mathbb{P}(d|c) \cdot \mathbb{P}(c) = \arg\max_{c \in \mathcal{C}} \mathbb{P}(\langle t_1, \dots, t_k \dots t_{n_d} \rangle | c) \cdot \mathbb{P}(c)$$
 (6.14)

- extreme amount of parameters  $\mathbb{P}(\langle t_1, \dots, t_k \dots t_{n_d} \rangle | c)$  (one for each combination of a class and a sequence of words)
  - to estimate this, we would need tons of data, which we usually do not have  $\Rightarrow$  problem of data sparseness

46 6 Text Classification

■ Naive Bayes conditional independence assumption to reduce number of parameters to manageable size:

$$\mathbb{P}(d|c) = \mathbb{P}(\langle t_1, \dots, t_k \dots t_{n_d} \rangle | c) = \prod_{1 \le k \le n_d} \mathbb{P}(X_k = t_k | c)$$
(6.15)

where

- $X_k$ : k'th term of the document
- further simplifying assumption for practical estimation: **positional independence** 
  - probability of a term is identical for all positions:  $\widehat{\mathbb{P}}(X_{k_1} = t|c) = \widehat{\mathbb{P}}(X_{k_2} = t|c)$
  - note that this assumption is made only for computing the practical estimates!

# 6.5.6 Features & Language Model

- NB can use any sort of features instead of words
- if we use only words and all words in the corpus, then NB is similar to language modeling
  - essentially we have a **unigram** language model for each class
  - we can compute the probabilities of sentences assuming they are in a given class

# 6.5.7 Violation of Assumptions

- conditional independence is usually **badly violated**: e.g. probability of "Bieber" coming after "Justin" a lot higher than after "Angela"
- positional independence is usually **badly violated** as well: e.g. "Hello" appears a lot more likely at the start of a sentence / doc
- NB is horrible at correctly estimating probabilities
- BUT: classification is about predicting the correct class and NOT correctly estimating probabilities
- ⇒ NB's estimates are good enough to get good class predictions

# 6.5.8 Positive Aspects

- robust to nonrelevant features (compared to some more complicated learning methods)
- robust to concept drift (changing of definition of class over time)
- better than methods like trees when there exist many equally important features
- good baseline for text classification (not the best, e.g. SVM is usually better)
- optimal if independence assumptions hold (true for some domains)
- very fast
- low storage requirements

# 6.6 Multinomial Logistic Regression

- both Naive Bayes and kNN are generative classifiers
  - used **prior** and **conditional** probabilities to **generate the probability** we are actually interested in (indirect computation)
  - more formally: they learn **joint probability distributions**  $\mathbb{P}(\mathcal{X}, \mathcal{C}) = \mathbb{P}(\mathcal{X}|\mathcal{C}) \cdot \mathbb{P}(\mathcal{C})$  and transform them into the actual conditional distribution  $\mathbb{P}(\mathcal{C}|\mathcal{X})$  we are interested in (using Bayes)
  - BUT:  $\mathbb{P}(\mathcal{X}, \mathcal{C})$  allows to **generate** labeled examples based on their probability occurring
- discriminative classifiers learn  $\mathbb{P}(\mathcal{C}|\mathcal{X})$  directly and use it to classify examples
  - e.g. logistic regression!

# 6.6.1 Approach

- assume d binary features/ feature indicator functions  $f_i : \mathcal{C} \times \mathcal{X} \to \{0,1\}$  ( $f_i$  gives feature i)
- for a given example x, return class  $c^*$  according to

$$c^* = \arg\max_{c \in \mathcal{C}} \mathbb{P}(c|x) \tag{6.16}$$

■ where

$$\mathbb{P}(c|x) = \frac{\exp\left(\sum_{i=1}^{d} w_i \cdot f_i(c, x)\right)}{\sum_{c' \in \mathcal{C}} \exp\left(\sum_{i=1}^{d} w_i \cdot f_i(c', x)\right)}$$

$$(6.17)$$

where  $w = (w_1, \dots w_d)$  is the **weight vector** we want to learn

- $\exp(\cdot)$  required to get rid of negative values
- scaling factor is required to generate outputs between 0 and 1
- simplification:
  - if we are only interested in the ranking of the classes (but NOT the probabilities), we can ignore both  $\exp(\cdot)$  and scaling

### Learning the Weight Vector

- find weights  $w^* \in \mathbb{R}^d$  s.t. the give training data is maximally likely
  - maximum likelihood estimation

48 6 Text Classification

$$w^* = \arg \max_{w} \prod_{(x,c) \in \mathcal{D}} \mathbb{P}(c|x)$$

$$= \arg \max_{w} \sum_{(x,c) \in \mathcal{D}} \log \left( \mathbb{P}(c|x) \right)$$

$$= \arg \max_{w} \sum_{(x,c) \in \mathcal{D}} \log \left( \frac{\exp \left( \sum_{i=1}^{d} w_i \cdot f_i(c,x) \right)}{\sum_{c' \in \mathcal{C}} \exp \left( \sum_{i=1}^{d} w_i \cdot f_i(c',x) \right)} \right)$$

$$(6.18)$$

- $\log(\mathcal{L}(w))$ : log-likelihood function
  - convex function ⇒ can be efficiently maximized / minimized using **gradient ascent** / **descent**
  - basic learning idea:
    - 1) initialize  $w_0$  randomly
    - 2) until convergence iterate:  $w_{t+1} = w_t + \beta \nabla \mathcal{L}(w)$

# 6.6.2 Overfitting and Regularization

- overfitting: weights are optimized too much towards to training data and thus fail to generalize
- ⇒ regularization: adapting objective function in order to penalize "model complexity"

$$w^* = \arg\max_{w} \sum_{(x,c)\in\mathcal{D}} \log\left(\mathbb{P}(c|x)\right) - \alpha \cdot R(w)$$
(6.19)

where

- R(w): regularization function
- $\alpha$ : regularization weight

### $L_2$ Regularization / Ridge Regression

 $\blacksquare$  definition

$$R(w) = L_2(w) = \sum_k w_k^2$$
 (6.20)

- easy to to use due to simple gradient (i.e. easy to optimize)
- prefers small weights
- can be interpreted as Bayesian classification with Gaussian prior
  - $\alpha \cdot R(w)$  is essentially a Gaussian prior with special parameters

# $L_1$ Regularization / Lasso

definition

$$R(w) = L_1(w) = \sum_{k} |w_k|$$
(6.21)

- $\blacksquare$  not as easy to use as  $L_2$  due to more complicated gradient
- prefers sparse weight vectors

# 6.7 Beyond Binary Classification

#### 6.7.1 Multivalue Classification

- multilabel classification
- simple solution: binary relevance learning
  - for each label/class learn a binary classifier, telling if the example belongs to the class or not
  - at query time, assign example to all classes for which the corresponding classifier outputs true

# 6.7.2 Multinomial Classification

- (multi-class classification)
- simple solution: one-vs-rest decomposition
  - train one classifier for each class, predicting a probability if an example belongs to the class or not
  - return class whose classifier gives the highest probability for the example

# 6.8 Evaluation

# 6.8.1 Precision & Recall (Measure)

■ **precision**: fraction of correct decisions over decisions made

$$Precision = \frac{TP}{TP + FP}$$
 (6.22)

■ recall: fraction of correct decisions over all data

$$Recall = \frac{TP}{TP + FN} \tag{6.23}$$

6 Text Classification

### 6.8.2 F-Measure

■ combines recall and precision

$$F = \frac{(1+\beta^2) \cdot P \cdot R}{\beta^2 \cdot P + R} \tag{6.24}$$

where  $\beta^2 \in [0, \infty]$ 

• for  $\beta = 1$ : balanced **F**, i.e. harmonic mean of P and R (equally weights P and R):

$$F_1 = \frac{2 \cdot P \cdot R}{P + R} \tag{6.25}$$

- $\beta$  < 1: emphasizes precision
- $\beta > 1$ : emphasizes recall
- harmonic mean is kind of a smooth minimum of P and R
  - minimum punishes really bad performance on either P or R
  - BUT is not smooth and hard to weight
  - e.g. arithmetic mean := 0.5 when returning NO results (too high)

# 6.8.3 For Multiple Classes

- Micro- vs. Macro Averaging Measure ( $F_1$  measure)
  - Macro Averaging
    - compute  $F_1$  for each class
    - compute average of these  $F_1$  values
  - Micro Averaging
    - compute TP, FP, FN for each class
    - create sums of TP, FP, FN over all classes
    - compute  $F_1$  for aggregate values
  - note: micro and macro-averaging are identical for precision and recall

### 6.8.4 N-Fold Cross-Validation

- $\blacksquare$  can compute measure on *n*-fold cross-validation
- $\blacksquare$  split dataset into *n* equally sized parts and in each run
  - train on all but one part
  - evaluate on remaining part (validation part)
- cycle validation part through
- aggregate results for each validation part to a final result

# 6.9 Example Task: Sentiment Analysis

# 6.9.1 Applications

- reviews: positive or negative?
- products: what do people think about it?
- public sentiment: high consumer confidence?
- politics: what do people think of candidate X?
- prediction: predict outcomes of e.g. elections based on sentiment

# 6.9.2 Definition

- detection of attitudes, i.e. of enduring, affectively colored beliefs, dispositions towards objects or persons
- wording
  - holder / source: source (e.g. human) showing attitude
  - target / aspect: target towards the attitude is shown
  - **type** of attitude
    - from a set of types (e.g. like, love, hate, value, desire)
    - or simple weighted **polarity**: weighted values for positive, neutral and negative
  - text containing the attitude
- simplest task: **sentiment polarity detection**: is the attitude of given text positive or negative (we focus on this)

# 6.9.3 Baseline Algorithm

assume we have a training dataset of texts (e.g. reviews) and binary rating (like or dislike)

- 1) tokenization of texts
- 2) feature extraction on tokenized texts
- 3) learn a binary classifier based on the extracted features and the ratings (from the training data)
  - Naive Bayes
  - SVM
  - Decision Trees
  - etc.

52 6 Text Classification

#### **Tokenization Issues**

- deal with markup
- capitalization (angry people write in CAPS!!!11)
- phone numbers, dates, etc.
- emoticons
- negation
  - add "NOT\_" to any word between occurrence of negation and next punctuation:
  - e.g.: "I didn't like the movie, but"  $\rightarrow$  "I didn't NOT\_like NOT\_this NOT\_movie, but"

### **Feature Extraction**

- use words as features
  - only adjectives
  - all words (usually better)
- word occurrence does matter more than frequency (in sentiment analysis!)
  - we can work with binary features for words

### **Challenges**

- text can be tricky (people rarely are precise and concise)
- failed expectations
  - e.g. "This film should be good, as it has all of these great actors. However it sucks."

# Sequence Labeling & Part of Speech Tagging

# 7.1 Introduction

- learning sequences is required in many places in NLP
  - POS tagging: annotate each word in a sentence with its syntactic category

# 7.2 Hidden Markov Models

# 7.2.1 Markov Chains

# Definition

Markov Chain  $C = (Q, q_0, q_F, A)$ 

- $\blacksquare$  set of states  $Q = \{q_1, \dots, q_N\}$
- start  $q_0$  and end state  $q_F$ 
  - instead of start state, we can have an initial state distribution  $\pi$
  - we might not have a final state at all
- transition probability matrix  $A((N+2) \times (N+2))$ 
  - with  $\forall i : \sum_{j} a_{i,j} = 1$
  - $a_{i,j}$ : probability of moving from state i to j

### **Assumptions**

■ Markov assumption:

$$\mathbb{P}(q_i|q_1,\dots,q_{i-1}) = \mathbb{P}(q_i|q_{i-1})$$
(7.1)

### **Computation Example**

■ compute state sequence probability: e.g. states 3-3-3-3

$$\mathbb{P}(3-3-3-3) = a_{0,3} \cdot a_{3,3} \cdot a_{3,3} \cdot a_{3,3} \tag{7.2}$$

### 7.2.2 Hidden Markov Model

#### Idea

- Markov Chains: state = output symbol/event
- Hidden Markov models: extension of Markov Chains in which the events/output symbols differ from states
  - states: hidden (e.g. POS tags)
  - events/output symbols: observable (e.g. words for which we search a POS tag)

### **Definition**

Markov Chain  $C = (Q, q_0, q_F, A, V, B)$ 

- set of states  $Q = \{q_1, \dots, q_N\}$
- start  $q_0$  and end state  $q_F$ 
  - instead of start state, we can have an initial state distribution  $\pi$
  - we might not have a final state at all
- transition probability matrix  $A((N+2) \times (N+2))$ 
  - with  $\forall i : \sum_{j} a_{i,j} = 1$
  - $a_{i,j}$ : probability of moving from state i to  $j^a$
- lacktriangledown vocabulary V: set of output symbols
- emission probability matrix B with  $b_i(k)$ : probability of outputting  $o_k \in V$  in state  $i \in Q$



### **Assumptions**

■ Markov assumption:

$$\mathbb{P}(q_i|q_1,\dots,q_{i-1}) = \mathbb{P}(q_i|q_{i-1})$$
(7.3)

■ Output independence: output probability of a symbol depends only on the current state

$$\mathbb{P}(o_t|(q_1,\ldots,q_t),(o_1,\ldots,o_{t-1})) = P(o_t|q_t)$$
(7.4)

### **Problems and Tasks**

- 1) **Observation Sequence Likelihood**: given a HMM  $\lambda = (A, B)$  and an observation sequences O, determine the likelihood (i.e. probability) of the sequence  $\mathbb{P}(O|\lambda)$ 
  - Forward algorithm
- 2) **Decoding Observation Sequences**: given a HMM  $\lambda = (A, B)$  and an observation sequences O, determine the sequence of hidden states which most likely produced O
  - Viterbi algorithm
- 3) **Learning an HMM**: given an observation sequence O and a HMM without A and B, learn the HMM parameter A and B
  - Forward-Backward algorithm

# 7.3 Observation Sequence Likelihood Estimation

#### 7.3.1 Problem

■ given a HMM  $\lambda = (A, B)$  and an observation sequences  $O = (o_1, \dots, o_T)$ , determine the likelihood (i.e. probability) of the sequence  $\mathbb{P}(O|\lambda)$ 

### 7.3.2 Idea

- different sequences of states can possibly produce a given observation sequence
- ⇒ sum over all possible state sequences which could produce sequence
- $\Rightarrow$  sum over joint probability distribution of given observation sequence and all possible state sequences Q

$$\mathbb{P}(O) = \sum_{Q} \mathbb{P}(O, Q) = \sum_{Q} \mathbb{P}(O|Q) \cdot \mathbb{P}(Q)$$
 (7.5)

• where the  $\mathbb{P}(O,Q)$  is the joint probability distribution defined as

$$\mathbb{P}(O,Q) = \mathbb{P}(O|Q) \cdot \mathbb{P}(Q) = \prod_{t=1}^{T} \mathbb{P}(o_t|q_t) \cdot \prod_{t=1}^{T} \mathbb{P}(q_t|q_{t-1})$$
 (7.6)

 $\blacksquare$  problem: exponential number of possible state sequences:  $N^T$ 

# 7.3.3 Forward Algorithm

- dynamic programming approach (runtime  $O(N^2 \cdot T)$ )
- fold paths into so called **foward trellis**  $\alpha$   $(T \times (N+1) \text{ matrix})$
- $\bullet$   $\alpha_t(j)$ : probability of being in state j after seeing the first t observations
- approach

1) initialization: 
$$\forall 1 \leq j \leq N$$
 
$$\alpha_1(j) = a_{0,j} \cdot b_j(o_1) \tag{7.7}$$

2) recursion (states 0 and F have not outputs):  $\forall 1 \leq j \leq N, 1 < t \leq T$ 

$$\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) \cdot a_{i,j} \cdot b_j(o_t)$$
(7.8)

3) termination

$$\mathbb{P}(O) = \alpha_T(F) = \sum_{i=1}^{N} \alpha_T(i) \cdot a_{i,F}$$
(7.9)

# 7.4 Decoding Observation Sequences

### 7.4.1 Problem

■ given an HMM  $\lambda = (A, B)$  and an observation sequences  $O = (o_1, \ldots, o_T)$ , determine the sequence of hidden states  $Q = (q_1, \ldots, q_T)$  which most likely produced O

# 7.4.2 Idea

- simple approach
  - 1) get all possible sequences Q

2) compute 
$$\arg\max_{Q}\mathbb{P}(O|Q) \tag{7.10}$$

- **problem**:  $N^T$  possible state sequences!
- solution: find the most likely sequence of states directly using dynamic programming

# 7.4.3 Viterbi Algorithm

- dynamic programming approach (runtime  $O(N^2 \cdot T)$ )
- computes **viterbi path probabilities**  $v_t$  for each timestep t (and according backpointers  $bp_t$  for reverse-construction of the state sequence)
- $v_t(j)$ : probability of the most likely path producing O until timestep t with  $q_t = j$
- approach
  - 1) initialization:  $\forall 1 \leq j \leq N$

$$v_1(j) = a_{0,j} \cdot b_j(o_1)$$
  

$$bp_1(j) = 0$$
(7.11)

2) recursion:  $\forall 1 \leq j \leq N, 1 < t \leq T$ 

$$v_{t}(j) = \max_{1 \le i \le N} v_{t-1}(i) \cdot a_{i,j} \cdot b_{j}(o_{t})$$

$$bp_{t}(j) = \arg \max_{1 \le i \le N} v_{t-1}(i) \cdot a_{i,j}$$
(7.12)

3) termination:

$$v_T(F) = \max_{1 \le i \le N} v_T(i) \cdot a_{i,F}$$

$$bp_T(F) = \arg\max_{1 \le i \le N} v_T(i) \cdot a_{i,F}$$
(7.13)

- $\blacksquare$  interpretation
  - $v_T(F)$ : probability of "best" fitting state sequence
  - $bp_T(F)$ : last state of "best" fitting state sequence

#### Construction of state sequence

- 1) start with  $q_T = bp_T(F)$  (last state)
- 2) last but one state is  $q_{T-1} = bp_{T-1}(q_T)$
- 3) last but two state is  $q_{T-2} = bp_{T-2}(q_{T-1})$
- 4) etc.

# 7.5 Learning an HMM

### 7.5.1 Problem

■ given an observation sequence  $O = (o_1, \ldots, o_T)$  and the set of states Q, learn transition probability matrix A and emission probability matrix B

# 7.5.2 Idea: Forward-Backward / Baum-Welch Algorithm

- start with initial estimate (e.g. random)
- iterative process powered by one main idea
  - 1) estimate probabilities by computing the forward probability of an observation and dividing this probability mass along all paths which contributed to the forward probability
- two main quantities involved
  - $\beta$ : backward probability
  - $\xi$  condition transition probability

# 7.5.3 Estimating Transition Probabilities

■ intuition:

$$\widehat{a}_{i,j} = \frac{\text{expected number of transitions from state } i \text{ to } j \text{ given the observation sequence}}{\text{expected number of transitions from state } i \text{ given the observation sequence}}$$
(7.14)

- let  $\xi_t(i,j)$  probability to transition from state i to j at timestep t
- numerator: compute  $\xi_t(i,j)$  for all timesteps and sum over all timesteps
- denominator: compute  $\xi_t(i,j)$  for each timestep and sum over timesteps and all states (as targets)
- definition:

$$\widehat{a}_{i,j} = \frac{\sum_{t=1}^{T} \xi_t(i,j)}{\sum_{t=1}^{T} \sum_{k=1}^{N} \xi_t(i,k)}$$
(7.15)

# Computation of $\xi$

■ formal definition

$$\xi_{t}(i,j) = \mathbb{P}(q_{t} = i, q_{t+1} = j | O) = \underbrace{\frac{\xi_{t}^{*}(i,j)}{\mathbb{P}(q_{t} = i, q_{t+1} = j, O)}}_{\xi_{t}^{*}(i,j)}$$
(7.16)

- interpretation of  $\xi_t^*(i,j)$ 
  - situation: we have seen the first t observations and want to be in state i, then transition to state j and want to see the remaining states of the observations
  - recall: forward probability  $\alpha_t(i)$ : probability of being in state i after seeing the first t observations
  - backward probability  $\beta_t(i)$ : probability of seeing the future observations  $(o_{t+1}, \ldots, o_T)$  given we are in state i at timestep t (computed similar to  $\alpha_t(i)$ )

 $\Rightarrow$  computation of  $\xi_t^*(i,j)$ 

$$\xi_t^*(i,j) = \mathbb{P}(q_t = i, q_{t+1} = j, O) = \alpha_t(i) \cdot [a_{i,j} \cdot b_j(o_{t+1})] \cdot \beta_{t+1}(j) \tag{7.17}$$

■ all together

$$\xi_{t}(i,j) = \mathbb{P}(q_{t} = i, q_{t+1} = j | O) = \underbrace{\frac{\xi_{t}^{*}(i,j)}{\mathbb{P}(q_{t} = i, q_{t+1} = j, O)}}_{\alpha_{T}(F)} = \frac{\alpha_{t}(i) \cdot [a_{i,j} \cdot b_{j}(o_{t+1})] \cdot \beta_{t+1}(j)}{\alpha_{T}(F)}$$
(7.18)

# 7.5.4 Estimating Emission Probabilities

■ intuition:

$$\widehat{b}_{j}(v_{k}) = \frac{\text{expected number of times in state } j \text{ seeing symbol } v_{k}}{\text{expected number of times in state } j}$$
(7.19)

- let  $\gamma_t(j)$ : probability of being in state j at timestep t given the observation sequence
- numerator: sum  $\gamma_t(j)$  over all timesteps where we see symbol  $v_k$
- denominator: sum  $\gamma_t(j)$  over all timesteps
- definition:

$$\widehat{b}_{j}(v_{k}) = \frac{\sum_{1 \leq t \leq T}^{o_{t}=v_{k}} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

$$(7.20)$$

# Computation of $\gamma_j(v_k)$

• formal definition:

$$\gamma_t(j) = \mathbb{P}(q_t = j|O) = \frac{\mathbb{P}(q_t = j, O)}{\underbrace{\mathbb{P}(O)}_{\alpha_T(F)}} = \frac{\alpha_t(j) \cdot \beta_t(j)}{\alpha_T(F)}$$
(7.21)

# 7.5.5 Complete Algorithm

function FORWARD-BACKWARD(observations of len 
$$T$$
, output vocabulary  $V$ , hidden state set  $Q$ ) returns  $HMM=(A,B)$ 

initialize  $A$  and  $B$ 
iterate until convergence

E-step

$$\gamma(j) = \frac{\alpha_t(j)\beta_t(j)}{\alpha_T(q_F)} \,\forall t \text{ and } j$$

$$\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\alpha_T(q_F)} \,\forall t, i, \text{ and } j$$
M-step

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)}$$

$$\hat{b}_j(v_k) = \frac{\sum_{t=1}^{T} \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)}$$
return  $A, B$ 

Figure 9.16 The forward-backward algorithm.

- $\blacksquare$  part of each E-step: run both backward and forward algorithm to compute  $\beta$  and  $\alpha$  values
- parameter-free
- $\blacksquare$  initialization of A and B affects convergence
- $\blacksquare$  initial A and B depend on application
  - speech recognition
    - -A is known
    - only need to compute B

# **7.5.6** Excursion: Computation of $\beta$

• Probability of seeing future observations given current state

$$\beta_t(i) = P(o_{t+1} \dots o_T | q_t = i, \lambda) \tag{7}$$

- Implementation in three steps
  - Initialization

$$\beta_T(i) = a_{iF} \ 1 \le i \le N \tag{8}$$

Recursion Why are states 0 and F not included?

$$\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(o_{t+1}) \beta_{t+1}(j) \ 1 \le i \le N, 1 \le t < T$$
 (9)

3 Termination

$$\beta_0(q_0) = \sum_{j=1}^N a_{0j} b_j(o_1) \beta_1(j)$$
 (10)

# 7.6 Part of Speech (POS) Tagging

### 7.6.1 Problem and Goal

- definition POS tag: category to which a word is assigned in accordance with its syntactic functions
  - also known as word classes, syntactic categories
- annotate each word in a sentence with its syntactic category
- useful for subsequent syntactic parsing

# 7.6.2 Challenges

- magnitude of the set of tags
  - different tag sets per corpus
  - different tag sets per language (some languages do not have articles...)
- unknown words
- use of sequence information

# 7.6.3 POS-Tag Classes

two main classes

- 1) open classes
  - nouns
  - verbs
  - adjectives
  - adverbs

### 2) closed classes

- prepositions (on, under, over)
- articles (a,an,the)
- pronouns (she, who, I, others)
- conjunctions (and, but, or)q
- auxiliary verbs (can, may, should)
- particles (up, down, on, off, in, out)
- numerals (one, two, three)
- not all languages have all subclasses

#### **Nouns**

- part of speech inflected for case, signifying a concrete or abstract entity
- two subclasses
  - proper nouns: names for particular entities (Germany, Alex, Tanja)
  - common nouns: name general items/people (not specific ones) (country, man, woman)

# 7.7 Learning POS Taggers

- commonly learning of sequences (HMM: hidden states = tags, observations = words)
- $\blacksquare$  training data = annotated corpora
- learning assumes tokenization has taken place (shouldn't  $\rightarrow$  should + n't)
- POS tagging sometimes is considered a solved problem
  - overall accuracy (per token): 0.92 0.97 (pretty good)
  - even better if we assume that even judges disagree and some terms are ambiguous
  - BUT: accuracy per sentence (getting a whole sentence right gives one point):  $\approx 0.55$  (not so good anymore!)

### 7.7.1 Model

- hidden state are POS tags  $t_j$  and **known** (annotated corpus, e.g. Penn Treebank)
- $\blacksquare$  observations are words  $w_i$

#### Learning Task

1) learn transition probabilities A via counting

$$\mathbb{P}(t_i|t_{i-1}) = \frac{c(t_{i-1}, t_i)}{c(t_{i-1})} \tag{7.22}$$

where

- $c(t_{i-1}, t_i)$ : number of times tag  $t_i$  follows tag  $t_{i-1}$
- $c(t_{i-1})$ : number of times tag  $t_{i-1}$  is used
- 2) learn emission probabilities B via counting

$$\mathbb{P}(w_i|t_i) = \frac{c(t_i, w_i)}{c(t_i)} \tag{7.23}$$

where

- $c(t_i, w_i)$ : number of times tag  $t_i$  was used on word  $w_i$
- $c(t_i)$ : number of times tag  $t_i$  was used

#### **Prediction Task**

- given the learned HMM, we want to **decode the observation sequence** (i.e. find the sequence of best POS tags)
- $\Rightarrow$  Viterbi algorithm

# 7.7.2 Considerations

■ main assumption:

$$\mathbb{P}(t_1^n) = \prod_{i=1}^n \mathbb{P}(t_i|t_{i-1})$$
 (7.24)

■ practical applications use more history, e.g. **trigrams** 

$$\mathbb{P}(t_1^n) = \prod_{i=1}^n \mathbb{P}(t_i|t_{i-1}, t_{i-2})$$
(7.25)

- problem: cannot be handled by standard Viterbi algorithm
- solution: adapt algorithm to find

$$\arg\max_{t_1^n} \left[ \prod_{i=1}^n \mathbb{P}(w_i|t_i) \cdot \mathbb{P}(t_i|t_{i-1}, t_{i-2}) \right] \cdot \mathbb{P}(t_{n+1}|t_n)$$
 (7.26)

- add special symbols  $t_{-1}$ ,  $t_0$ ,  $t_{n+1}$
- another problem: data sparsity
  - counting as before yields unreliable data
  - solution: deleted interpolation

$$\mathbb{P}_{di}(t_i|t_{i-1}, t_{i-2}) = \lambda_3 \cdot \mathbb{P}(t_i|t_{i-1}, t_{i-2}) + \lambda_2 \cdot \mathbb{P}(t_i|t_{i-1}) + \lambda_1 \cdot \mathbb{P}(t_i)$$
where  $\sum_i \lambda_i = 1$  (7.27)

- one more **problem**: **unknown words** 
  - use morphological clues

# **Grammar and Parsing**

# 8.1 Fundamentals

- constituency
  - detect groups of words which behave as a single unit, called **constituents**
  - inventory of constituents is core of grammar development

# 8.2 Context Free Grammars (CFG)

- other name: **phrase-structure** grammar
- equivalent to Backus-Naur form
- CFG for natural language
  - idea: grammar on constituents

#### 8.2.1 Formal Model

CFG  $G = (N, \Sigma, R, S)$  where

- $\blacksquare$  N: set of **non-terminal** symbols
- $\Sigma$ : set of **terminal** symbols  $(\Sigma \cap N = \emptyset)$
- R: set of rules/productions, each of the form  $A \to \beta$  where
  - $A \in \mathbb{N}$ , i.e. A is a non-terminal
  - $\beta \in (\Sigma \cup N)^*$ , i.e.  $\beta$  is a string of symbols
- $S \in N$ : start symbol

#### Language of a CFG

- language of CFG G:  $\mathcal{L}(G) = \{w | w \in \Sigma^* \land S \stackrel{*}{\Rightarrow} w\}$ 
  - $\bullet$  set of **non-terminal-free strings** which can be derived starting at S
- direct derivation:  $\alpha A \gamma \Rightarrow \alpha \beta \gamma$ 
  - if  $A \to \beta \in R$ , then  $\alpha A \gamma$  directly derives  $\alpha \beta \gamma$
- derivation:  $\alpha_1 \stackrel{*}{\Rightarrow} \alpha_m$ 
  - if there exists  $\alpha_i \in (\Sigma \cup N)^*$  with  $\alpha_1 \Rightarrow \ldots \Rightarrow \alpha_m$ , then  $\alpha_1$  derives  $\alpha_m$
- $\blacksquare$  grammatical sentences: sentences derived from S
- ungrammatical sentences: all other

# 8.2.2 Equivalence

- two distinct grammars  $G_1$  and  $G_2$  can generate the same language
- $G_1$  and  $G_2$  are strongly equivalent if
  - 1) they accept the same languages AND
  - 2) they assign the same parse tree to every sentence
- $G_1$  and  $G_2$  are weakly equivalent if
  - 1) they accept the same languages AND
  - 2) do NOT assign the same parse tree to every sentence

#### 8.2.3 Chomsky Normal Form (CNF)

- $\blacksquare$  grammar G is in CNF if and only if the following conditions hold
  - 1) each rule in R is in one of the following forms
    - $A \to a \ (a \in \Sigma)OR$
    - $A \rightarrow BC$
  - 2) it is  $\epsilon$ -free
- idea: binary branching (no parse tree will have more than two branches at any level)
- usage: allows for efficient syntactic parsing using CKY algorithm
- every grammar can be transformed into CNF by splitting rules

#### Modeling NL

- $\blacksquare$  terminals := words
- non-terminal := abstractions over terminals
- CFGs can be used for language generation and structure assignment

8.3 Treebanks 67

### 8.2.4 Derivation Representations

#### **Bracketed Notation**



#### Parse Tree

- node is said to **dominate** all nodes in tree
- syntactic parsing: maps a word to its parse tree



# 8.3 Treebanks

- treebank: repository of parsed sentences for a given language
- main assumption: sufficiently complex grammar allows parsing every grammatical sentence of a given language
- well known example: Penn Treebank
- $\blacksquare$  note: rules for parsing can be directly extracted from tree banks

```
((S
   (NP-SBJ (DT That)
                                       NP-SBJ
                                                         VP
     (JJ cold) (, ,)
     (JJ empty) (NN sky) )
                                                   VBD ADJP-PRD
   (VP (VBD was)
     (ADJP-PRD (JJ full)
                                That cold
                                           empty
                                                    was
                                                         JJ
        (PP (IN of)
                                                         full IN
                                                                    NP
          (NP (NN fire)
            (CC and)
                                                                   CC
            (NN light) ))))
   (. .) ))
                                                                fire and light
```

## 8.4 Lexicalized Grammars

- problems of CFGs: focus on rules
  - poor context modeling
  - long, redundant set of rules
- lexicalized grammars focus on the lexicon

#### 8.4.1 Components

- $\blacksquare$  set of categories  $\mathcal{C}$
- lacktriangledown lexicon:  $\mathcal{W} \to 2^{\mathcal{C}}$  (i.e. maps words to a category or combinations of categories)
- lacksquare set of rules for combining categories

#### **Categories**

- two types
  - 1) set of atomic elements  $\mathcal{A} \subseteq \mathcal{C}$
  - 2) single-argument functions  $\mathcal{C} \to \mathcal{C}$ 
    - $(X \backslash Y) \in \mathcal{C}$  if  $X, Y \in \mathcal{C}$  and
    - $(X/Y) \in \mathcal{C}$  if  $X, Y \in \mathcal{C}$
- $\blacksquare$  interpretation  $(X \backslash Y)$ 
  - seeks value of type Y to its **left**
  - $\bullet$  returns a value of X
- $\blacksquare$  interpretation (X/Y)
  - seeks value of type Y to its **right**
  - $\bullet$  returns a value of X

#### Lexicon

- assignment of categories to words
- nouns are commonly assigned to atomic categories
- verbs can be assigned to composite categories (allows for subcategorization)
  - flight: N
  - Miami: NP
  - cancel: (S\NP)/NP
  - give: ((S\NP)/NP)/NP

8.4 Lexicalized Grammars 69

#### **Rules**

- $\blacksquare$  two basic templates
  - 1) forward function application  $X/YY \rightarrow X$
  - 2) backward function application  $YX \setminus Y \to X$
- output in both cases: value of the function being applied



#### Metarule

 $\blacksquare XCONJUNCTIONX \rightarrow X$ 



#### 8.4.2 Further Development

- core of categorical grammar (most facts in lexicon, only 3 rules BUT not more expressive than CFG)
- extended to Combinatory Categorical Grammar (CCG) by operators over functions

# 8.4.3 Combinatory Categorical Grammar (CCG)

- additionally: **operators over functions**
- $\blacksquare$  two operators
  - composition (denoted as B in rules)
    - 1) forward composition:  $X/YY/Z \rightarrow X/Z$
    - 2) backward composition  $Y \setminus ZX \setminus Y \to X \setminus Z$
  - type raising (denoted as T in rules)
    - 1)  $X \to T/(T \setminus X)$
    - $2) X \to T \setminus (T/X)$



# **Properties**

- allows for linear processing (computationally really relevant lexicalized grammar)
- $\blacksquare$  does not allow conjunction
- allows processing long-distance dependencies

# Syntactic and Probabilistic Parsing

# 9.1 Problem of Ambiguity

- ambiguity is a major problem for parsers
- two types of ambiguity
  - part-of-speech ambiguity (words can have one more possible POS tags) **structural ambiguity**: several parses possible for the same sentence

#### 9.1.1 Structural Ambiguity

- attachment ambiguity
  - constituent can be attached at different places in the parse tree
  - e.g.: "We saw the Eiffel Tower flying to Paris."
- coordination ambiguity
  - different parts of phrases can be conjoined by a conjunction like "and"
  - "old (men and women)" vs "(old men) and women"
- more general: **syntactic ambiguity**: many grammatically correct but semantically unreasonable parses for naturally occurring sentences
  - parsers need to perform **syntactic disambiguation** in order to find the right parse for a sentence

# 9.2 Cocke-Kasami-Younger (CKY) Parsing

#### 9.2.1 Idea

- dynamic programming approach
  - exploits context-freeness

- if we found a constituent in a part of the input, we can record its presence and use it for any later derivation if required
- assumes grammar is in CNF (Chomsky Normal Form)

### 9.2.2 Chomsky Normal Form Normalization

process of transforming any ( $\epsilon$ -free) CFG to CNF

- 1) copy all conforming rules unchanged
- 2) for each terminal  $\gamma$  in **mixed rules** (RHS contains terminal and non-terminals) create dummy terminals  $X_{\gamma}$ 
  - replace occurrences of  $\gamma$  with  $X_{\gamma}$
  - add rules  $X_{\gamma} \to \gamma$
- 3) remove all unit productions (rules with only a single non-terminal on RHS)
  - $\blacksquare$  assume rule  $X \to Y$
  - $\blacksquare$  search for all rules making use of X and add replace X with Y
  - $\blacksquare$  delete rule  $X \to Y$
- 4) make all rules binary
  - assume non-binary rule  $A \to BC\gamma$
  - $\blacksquare$  create rules  $A \to X\gamma$  and  $X \to BC$

main advantage of CNF: binary parse trees for all derivations (except for leaves)

## 9.2.3 CKY Recognition

#### Representation

- due to CNF: parse trees are **binary**  $\Rightarrow$  two-dimensional matrix can be used to represent the whole tree
- $\blacksquare$  assuming a given sentence with n words, we index the **gaps** between the words (including before first and after last word) from 0 to n
- use upper right triangle of  $(n+1) \times (n+1)$  matrix C to encode parse tree
- $\blacksquare$  cell  $c_{i,j}$ : contains the set of non-terminals that represent all the tokens between positions i and j (in the input)
  - $\Rightarrow$  cell  $c_{0,n}$  represents entire input
  - since we have binary rules, every non-terminal represented by a cell  $c_{i,j}$  can be split into two parts at a position k (in the input) such that i < k < j
  - left part of derivation  $c_{i,k}$  must lie to the left of entry  $c_{i,j}$  in row i
  - right part of derivation  $c_{k,j}$  must lie below  $c_{i,j}$  in column j



- lower diagonal contains possible constituents for the according words
- recognition algorithm fills this table correctly

#### Algorithm

```
Algorithm 1 Recognize(grammar G, sentence s of length n)
 1: for j \leftarrow 1 \dots n do
                                                                                                ▷ over columns
        for \{A|A \rightarrow s[j] \in G\} do
                                                                                          ⊳ fill lower diagonal
 2:
             table[j-1,j] \leftarrow table[j-1,j] \cup \{A\}
 3:
        end for
 4:
        for i \leftarrow j - 2 \dots 0 do
                                                                                                    ⊳ over rows
 5:
            for k \leftarrow i+1 \dots j-1 do
                                                                                        ▷ possible split points
 6:
                 for \{A|A \to BC \in G\} do
                                                                      ▶ all possible rules resulting in splits
 7:
                     if B \in table[i, k] \land C \in table[k, j] then
 8:
                         table[i, j] \leftarrow table[i, j] \cup \{A\}
 9:
                     end if
10:
                 end for
11:
            end for
12:
        end for
13:
14: end for
```

#### Recognizer is not a Parser

- it only **recognizes** if an input is part of a grammar or not (if S is in cell  $c_{0,n}$  after running, it accepts, otherwise not)
- parsers need to return all possible parses of a sentence!

#### 9.2.4 CKY Parsing

- recognition can be extended to parsing by
  - 1) pair non-terminals with pointers to entries from which it was derived

- 2) permit for multiple versions of a non-terminal in each cell
- $\Rightarrow$  using this information we can return all possible parses
- problem: possibly exponential many parses
- solution: return only the "best" parse
  - probabilistic CKY: probabilistic model + modified Viterbi algorithm

#### 9.3 Probabilistic CKY

# 9.3.1 Probabilistic CFG (PCFG)

- same as CFG BUT
  - rules are extended, s.t, each rule has a probability:  $A \to \beta[\mathbf{p}]$
  - meaning:  $\mathbb{P}(A \to \beta) = p$  or more precisely  $\mathbb{P}(A \to \beta | A) = p$
- consistent PCFG: for all  $A \in N$  it holds that

$$\sum_{\beta} \mathbb{P}(A \to \beta) = 1 \tag{9.1}$$

#### 9.3.2 PCFGs for Disambiguation

- PCFG assigns a probability to each parse tree T of a given sentence  $S \Rightarrow$  we can return the one with the highest probability
- definition for parse tree T with n non-terminal nodes (which have to expanded by n rules  $LHS \rightarrow RHS$ )

$$\mathbb{P}(T,S) = \mathbb{P}(S|T) \cdot \mathbb{P}(T) = \mathbb{P}(T) = \prod_{i=1}^{n} \mathbb{P}(RHS_i|LHS_i)$$
(9.2)

■ note: since T includes all words in S:  $\mathbb{P}(S|T) = 1$ 

#### **Formalization**

- yield of a parse tree T: string S corresponding to the tree
- best parse tree:

$$\widehat{T}(S) = \arg \max_{\{T|yield(T)=S\}} \mathbb{P}(T|S)$$

$$\stackrel{\text{Bayes}}{=} \arg \max_{\{T|yield(T)=S\}} \frac{\mathbb{P}(T,S)}{\mathbb{P}(S)}$$

$$= \arg \max_{\{T|yield(T)=S\}} \mathbb{P}(T,S)$$

$$= \arg \max_{\{T|yield(T)=S\}} \mathbb{P}(T)$$
(9.3)

#### 9.3.3 PCFGs for Language Modeling

- $\blacksquare$  PCFGs can describe (long-distance) dependencies which cannot be described by n-gram models
- probability of a sentence can be computed as

$$\mathbb{P}(S) = \sum_{\{T|yield(T)=S\}} \mathbb{P}(T,S) = \sum_{\{T|yield(T)=S\}} \mathbb{P}(T)$$
(9.4)

■ note: when converting a PCFG to CNF, we also have to adapt the probabilities

#### 9.3.4 Probabilistic CKY Parsing for PCFGs

- $\blacksquare$  representation: tensor of dimensions  $(n+1) \times (n+1) \times |N|$  (N: set of non-terminals)
- $c_{i,j,A}$ : probability of constituent A spanning the interval i to j (of the input)
- algorithm: very similar to standard CKY, BUT
  - make use of probabilities
  - keep backpointers

```
function Probabilistic-CKY(words, grammar) returns most probable parse and its probability  \begin{aligned} &\text{for } j \leftarrow \text{from 1 to Length}(words) \text{ do} \\ &\text{for all } \{A \mid A \to words[j] \in grammar\} \\ &table[j-1,j,A] \leftarrow P(A \to words[j]) \\ &\text{for } i \leftarrow \text{from } j-2 \text{ downto 0 do} \\ &\text{for all } \{A \mid A \to BC \in grammar, \\ &\text{ and } table[i,k,B] > 0 \text{ and } table[k,j,C] > 0 \} \\ &\text{if } (table[i,j,A] < P(A \to BC) \times table[i,k,B] \times table[k,j,C]) \text{ then} \\ &table[i,j,A] \leftarrow P(A \to BC) \times table[i,k,B] \times table[k,j,C] \\ &table[i,j,A] \leftarrow \{k,B,C\} \end{aligned}  return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]
```

# 9.4 Augmented PCFGs

#### 9.4.1 Problems of PCFGs as Probability Estimators

- 1) poor independence assumptions
  - rules modeled as context-independent
  - not correct for many languages (e.g. English)
- 2) lack of lexical conditioning
  - i.e. lack of lexical sensitivity of words in parse tree
  - parse trees independent of syntactic facts about specific words (e.g. some words bind stronger to each other)

■ not correct many languages (e.g. English)

# 9.4.2 Splitting Non-Pre-Terminal Nodes

- solves problem of poor independence assumption
- idea: make **non-pre-terminals** dependent on parent (**pre-terminal**: node with a terminal as child)
- implementation: annotate them with the parent



### 9.4.3 Splitting Pre-Terminal Nodes

- can be done in addition to splitting non-pre-terminal nodes
- solves problem of lexical conditioning
- idea: make pre-terminal nodes (and thus terminal nodes) dependent on their parent
- implementation: annotate with parent



#### 9.4.4 Probabilistic Lexicalized PCFGs

- alternative approach for coping with problems of PCFGS
- instead of modifying the grammar rules, we modify the probabilistic model of the parser to allow for lexicalized rules
  - i.e. modify rules to account for lexicon entries



#### **Lexicalized Parsing**

- make some further independence assumptions to break down each rule so that we would estimate the probability of a rule as the product of smaller independent probability estimates for which we could acquire reasonable counts
- one such parser: Collins Parser

#### **Collins Parser**

■ idea: thinks of RHS of rules as head non-terminal together with the non-terminals left of the head and right of the head

$$LHS \to L_n \dots L_1 \mathbf{H} R_1 \dots R_m$$
 (9.5)

- simplification:
  - add stop symbol left and right of the rule
  - compute MLE probabilities for rule: compute MLE probabilities for head, left and right side and aggregate
    - apply **generative model**: first head, then left, then right

### dumped sacks into

- Generate head: P(H|LHS) = P(VBD(dumped,VBD) | VP(dumped,VBD))
- **2** Generate left dependent:  $P_I(STOP|VP(dumped,VBD)VBD(dumped,VBD))$
- Generate right dependents
  - $P_r(NP(sacks,NNS \mid VP(dumped,VBD), VBD(dumped,VBD))$
  - P<sub>r</sub>(PP(into,P) | VP(dumped,VBD), VBD(dumped,VBD))
  - $P_r(STOP \mid VP(dumped, VBD), VBD(dumped, VBD))$

# 9.5 Probabilistic CCG Parsing

# 9.5.1 Ambiguity in CCGs

- ambiguity in CFGs caused by **rules**
- ambiguity in CCGs caused by **lexicon** 
  - large number of complex lexical categories combined with the very general nature of the grammatical rules

#### 9.5.2 Parsing

- option 1: apply CKY problems
  - large number of possible categories added to the table
  - large, but sparse tensor with lots of zombie constituents
  - $\Rightarrow$  solution: supertagging
    - assign **most probable** lexicon entries to each cell
    - building a supertagger: HMMs
- option 2: A\* Parser model parsing as heuristic search problem
  - cost function f(n) composed of
    - exact cost function g(n): exact cost of partial solution
    - heuristic approximation h(n): approximation cost to complete partial solution to a full one
  - require condition (for optimality):  $f(n) = g(n) + h(n) \le f^*(n)$  (i.e. we have to **underestimate** real cost)

### $A^*$ Parsing

- assumptions:
  - assume supertagger with probability scores
  - assume rules do not influence model (we only work with the lexicon)
- $\blacksquare$  given a sentence S of length |S| and derivation D with tag sequence T we have
- node n = (S,T): combination of sentence  $S = (s_1, \ldots s_{|S|})$  and tag sequence  $T = (t_1, \ldots, t_{|T|})$

$$\mathbb{P}(D,S) = \mathbb{P}(T,S) = \prod_{i=1}^{|S|} \mathbb{P}(t_i|s_i)$$
(9.6)

- note: equation above is a **utility**, but we want a **cost measure**
- $\blacksquare$  easier if g is additive cost measure

$$g((S,T)) = \sum_{i=1}^{|S|} -\log(\mathbb{P}(t_i|s_i))$$
(9.7)

- $\blacksquare$  more general: let n stand for sequence  $s_i^j$  with tags  $t_i^j$  where  $1 \leq i < j \leq |S|$
- $\blacksquare$  heuristic function: worst possible costs from 1 to i and j to n

$$g(s_{i}^{j}, t_{i}^{j}) = \sum_{k=i}^{j} -\log (\mathbb{P}(t_{k}|s_{k}))$$

$$h(s_{i}^{j}, t_{i}^{j}) = \sum_{k=1}^{i-1} \max_{t \in \text{tags}} (-\log(\mathbb{P}(t|s_{k}))) + \sum_{k=i+1}^{n} \max_{t \in \text{tags}} (-\log(\mathbb{P}(t|s_{k})))$$
(9.8)

- approach:
  - initialize storage with pairs of words (from sentence) and possible tags for each words
  - in each step
    - remove node with minimal h from storage
    - check if it is a complete solution
    - if not generate new nodes based on the rules of the CCG and the node (and add them to the storage)
  - process terminates if either a complete solution is found or storage is empty

# 9.6 Dependency Parsing

- idea: compute typed dependency structure
  - analysis as token level
  - focus not on word order but dependency relations
  - typed, because relations are from fixed vocabulary
- goal: make relations hidden in sentence structure explicit (e.g. long distance dependencies)



## 9.6.1 Formal Specification

- **dependency structure** G = (V, E, I) is graph with
  - V: set of words in the phrase
  - $E \subseteq V^2$ : set of directed arcs
  - $I: E \to T$ : labeling functions for edges (labels edges with types from set of types T)
- head: source of an edge
- **dependent**: target of edge
- requirements
  - 1) single designated root node without incoming edges
  - 2) each node has exactly one incoming arc (except for root)
  - 3) there is a **unique path** from the root node to each node in V

#### 9.6.2 Property: Projectivity

- edge is called **projective** if there exists a path from the head to every word that lies between the head and the dependent in the sentence
- dependency parse tree is **projective** if all of its arcs are projective
- important property
  - most approaches can only produce such trees, i.e. sentences without such a tree, can only be parsed with errors by the parser
  - dependency trees generated from CFG derivation trees are always projective

### 9.6.3 Dependency Treebanks

- can be generated from constituent treebanks
- two main tasks involved in generation
  - 1) identify head-dependent relations in the structure
  - 2) identify correct dependency relations for these relations
- usually post-processing by experts to correct for errors

### 9.6.4 Transition-Based Dependency Parsing

- class of algorithms to compute dependency trees
- very common algorithm: **shift-reduce parsing**
- works with
  - an oracle
  - a stack
  - a list of tokens to be parsed

### **Shift-Reduce Parsing**

- general idea:
  - shift input tokens one by one onto stack
  - reduce: top two elements of the stack are checked for a head-dependent relation (both ways)
    - oracle checks if such a relation is present
    - if true, the current dependency tree is adapted



- important notion: **configuration** set of
  - current stack
  - current input buffer
  - current (partial) dependency tree

- $\Rightarrow$  algorithm transitions between configurations
  - model parsing as **search algorithm** in configuration space

#### **Configuration Search Space**

- initial configuration
  - stack = ROOT (EMPTY)
  - input buffer = input sentence
  - relations = empty
- final configuration
  - stack = ROOT (EMPTY)
  - input buffer = empty
  - relations = complete parse (dependency) tree
- transitions: arc standard approach 3 standard operations
  - LeftArc
    - 1) assert head-dependent relation between the word at the top of stack and word directly beneath it
    - 2) remove lower word from stack (as a node can have only one incoming edge)
  - RightArc
    - 1) assert head-dependent relation between the second word of the stack and the top of the stack
    - 2) remove the top of the stack
  - Shift
    - 1) remove first token from the input buffer and push it onto the stack
- search algorithm:

```
DEPENDENCYPARSE(Words w)

1  state \leftarrow {[ROOT], [w], []}; initial configuration

2  while state is not final

3  do t \leftarrow ORACLE(state); //choose a transition operator to apply

4  state \leftarrow APPLY(t, state); //apply it, creating a new state

5  return state
```

• always produces projective trees

#### **Learning the Oracle**

- use ML to learn a model predicting a transition given a configuration
- required training data: pairs of configurations and transitions
- problem: treebanks have only complete trees but not the pairs we need
- solution: **generate training data** using **training** oracle
  - simulate shift-reduce algorithm on sentences AND correct dependency tree
  - take transitions given by the **training oracle** (choosing transition based on correct dependency tree)
  - one training example: configuration + chosen transition

### Training Oracle

- Choose LEFTARC if it produces a correct head-dependent relation
- Otherwise, choose RIGHTARC if
  - 1 it produces a correct head-dependent relation given the reference parse
  - all of the dependents of the word at the top of the stack have already been assigned
- Otherwise, choose SHIFT

# **Word Vectors**

# 10.1 Vector Model

- model the meaning of a word as a **vector** of features (sometimes called **embedding**)
  - using information about the words it is surrounded by
- intuition behind idea: words have similar meaning if they have similar word contexts
- four models
  - mutual-information weighted word co-occurrence matrices (sparse vectors)
  - singular value decomposition(SVD) and Latent Semantic Analysis (LSA)(dense)
  - neural network inspired models (dense)
  - brown clusters (dense)

#### 10.1.1 Co-Occurrence Matrix (Sparse Vector Model

# 10.1.2 Term Document Matrix

- $\blacksquare$  assume we have D documents and a vocabulary of size V
- **term document matrix**: matrix M with V rows and D columns
- lacksquare entry  $M_{i,j}$  contains frequency of term i in document d (term frequency)
- $\blacksquare$  document: count vector  $d \in \mathbb{N}^V$
- word: count vector  $w \in \mathbb{N}^D$
- $\Rightarrow$  two words are similar if their vectors are similar
- problem: documents are poor context models for words

86 10 Word Vectors

#### 10.1.3 Word-Context Matrix

- also known as word-word matrix
- idea: use smaller context (than a document) in the matrix
- lacktriangledown word representation: vector of length V over counts of context words
  - e.g. counts wrt. how often a word appears in a given windows around the term
- $\blacksquare$  word-context matrix:  $V \times V$
- problem: raw word frequency is not a great measure of association between words
  - very skewed
  - high-frequency words are commonly not very informative

#### 10.1.4 Pointwise Mututal Information (PMI)

- idea: consider whether a context word is **informative** about the target word
  - $\bullet$  concept: how much more do events x and y co-occur than fi they were independent

$$PMI(w, w') = \log_2 \left( \frac{\mathbb{P}(w, w')}{\mathbb{P}(w) \cdot \mathbb{P}(w')} \right)$$
(10.1)

where w, w' are words (and w' is usually the context)

- $\blacksquare$   $PMI(w, w') \in [-\infty, \infty]$
- problem:negative values
  - things are co-occurring less than expected by chance
  - unreliable without extreme amount of data
  - solution: replace negative values by 0 **PPMI**

$$PPMI(w, w') = \max \left(PMI(w, w'), 0\right) = \max \left(\log_2 \left(\frac{\mathbb{P}(w, w')}{\mathbb{P}(w) \cdot \mathbb{P}(w')}\right), 0\right)$$
(10.2)

#### **PPMI Computation from Word-Context Matrix**

- lacksquare assume matrix with W words and C contexts
- $f_{i,j}$ : number of times word i occurs in context j (entry (i,j) of matrix

10.1 Vector Model 87

$$\begin{aligned} \rho_{ij} &= \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \\ \rho_{i*} &= \frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \\ \rho_{*j} &= \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \\ \rho_{mi_{ij}} &= \log_2 \frac{\rho_{ij}}{\rho_{i*} \rho_{*j}} \\ \rho_{mi_{ij}} &= \begin{cases} \rho_{mi_{ij}} & \text{if } \rho_{mi_{ij}} > 0 \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

- problem: PMI is biased towards infrequent events
  - very rare words have very high PMI values
- solutions:
  - Laplace smoothing OR
  - give rare words slightly higher probabilities

$$PPMI_{\alpha}(w, w') = \max\left(\log_2\left(\frac{\mathbb{P}(w, w')}{\mathbb{P}(w) \cdot \mathbb{P}_{\alpha}(w')}\right), 0\right)$$

$$\mathbb{P}_{\alpha}(w) = \frac{\operatorname{count}(w)^{\alpha}}{\sum_{w'} \operatorname{count}(w')^{\alpha}}$$
(10.3)

• helps since  $\mathbb{P}_{\alpha}(w) > \mathbb{P}(w)$  for rare w

#### 10.1.5 Considerations

- real matrices are often **very sparse** and  $50.000 \times 50.000$
- size of windows depends on goals
- 2 kinds of co-occurrences
  - **first-order co-occurrence** (syntagmatic association): two words are typically nearby each other
  - second-order co-occurrence (paradigmatic association): words with similar neighbors

88 10 Word Vectors

### 10.1.6 Problems of Sparse Vector Models

- vectors are long but sparse
- ⇒ many weights need to be learned in ML approaches
- explicit counts usually do not generalize too well
- models usually bad in capturing **synonymy** 
  - "car" is represented as another context as "automobile"

# 10.2 Similarity between Vectors

#### 10.2.1 Naive Approach: Dot Product

• dot product between vectors  $v, w \in \mathbb{R}^D$ 

$$sim(v, w) = v \cdot w = \sum_{i=1}^{D} v_i \cdot w_i$$
(10.4)

- problem: metric sensitive to word frequency
  - dot product is longer if vector is longer and vectors are longer if they have higher values in each dimension
- solution: **cosine-similarity**

#### 10.2.2 Cosine-Similarity

■ normalize dot-product by vector length

$$cossim(v, w) = \frac{v \cdot w}{|v| \cdot |w|} = \frac{\sum_{i=1}^{D} v_i \cdot w_i}{\sqrt{\sum_{i=1}^{D} v_i^2} \cdot \sqrt{\sum_{i=1}^{D} w_i^2}}$$
(10.5)

- lacktriangle interpretation: cosine of angle between v and w
- $cos sim(v, w) \in [-1, +1]$ 
  - if only non-negative vector entries:  $cossim(v, w) \in [0, +1]$

## 10.2.3 Syntax-Based Similarity

- idea: two words are similar if they have similar syntactic contexts
- result: word vector  $w \in V \cdot R$  where each entry is the value for a (context,grammatical relation) pair (R: number of grammatical relations)
- $\blacksquare$  can be compressed to a vector of size V by summing up counts for all grammatical relations of a context
  - difference to simple word-context counts: we only count instances of a context which stands in a grammatical relation to the word and not ALL instances

# 10.3 Counting Based Dense Vector Models

- idea: represent a word by **short** and **dense** representation by **learning** it
- concept: approximate N-dimensional dataset using fewer dimensions (dimensionality reduction)
  - rotate axes into a new space
  - order dimensions by how much variance of the original dataset they capture and get rid of low-variance dimensions (e.g. PCA)

### 10.3.1 Singular Value Decomposition

 $\blacksquare$  definition: every rectangular  $w \times c$  matrix X equals the product of 3 matrices

$$X = W \cdot S \cdot C \tag{10.6}$$

where

- W: matrix of latent word representations
  - dimension:  $w \times m$
  - columns are ordered by the amount of variance in the dataset each new dimension accounts for
- $\bullet$  S: singular value matrix
  - dimension:  $m \times m$  diagonal matrix
  - expresses the importance of each dimension
- C: context matrix
  - dimension:  $m \times c$
  - columns corresponding to original contexts
  - -m rows corresponding to singular values

90 10 Word Vectors

#### **Latent Semantic Analysis**

- SVD applied to word-context matrices
- idea: keep top-k dimensions and represent words by latent representation in  $W \Rightarrow$  result

■ in practice:  $k \approx 300$ 



- positive aspects:
  - can be seen as a process for removing noise from data
  - smaller number of dimensions make it easier to use ML approaches
- problem: interpretability is worse

### 10.4 Prediction Based Dense Vector Models

- idea: learn representations as part of the process of word prediction
- examples
  - skip-grams: predicts context given input word
  - CBOW: predicts a word given a context
- process: train a neural network to predict neighboring words
- $\blacksquare$  advantages:
  - fast, easy to train (faster than SVD)
  - usually pretrained models found online (e.g. word2vec)

### 10.4.1 Skip-Grams

- skip-grams are given a word and predict a context (word)
- $\blacksquare$  learns two different representations of a word w: the **word embedding** v and the **context embedding** c
  - ullet embeddings are encoded in word matrix W and context matrix C
  - $\bullet$  column *i* of word matrix is **word embedding** representation of word *i*
  - row i of input matrix is **context embedding** representation of word i
- since we need only one representation, we can either use one of the two or aggregate the two in some way

#### **Prediction Task**

- situation
  - $\bullet$  we walk though corpus and are at word corpus(t) at position t
  - index of corpus(t) in the vocabulary is j, so we call it  $w_i$
- **g** goal: predict  $\mathbf{corpus}(t+1)$  (whose index in vocabulary will be called k)
- actual task: compute  $\mathbb{P}(w_k|w_j)$  and return  $w_k$  maximizing this probability
- **a** approximate **probability**  $\mathbb{P}(w_k|w_i)$  by **similarity**  $sim(c_k,v_i)$  (e.g. dot-product)
  - i.e. we multiply one word vector embedding with a context vector embedding
  - problem: we need a probability, i.e. value in [0,1]
  - solution: softmax normalization

$$\mathbb{P}(w_k|w_j) = \frac{\exp(c_k \cdot v_j)}{\sum\limits_{1 \le i \le V} \exp(c_i \cdot v_j)}$$
(10.7)

#### Learning

- 1) start with some initial vectors (e.g. random)
- 2) iteratively make the vectors for a word
  - more like the embeddings of its neighbors
  - less like the embeddings of other words

92 10 Word Vectors



#### **Practical Considerations**

• computing the probabilities requires summing over all words in the vocabulary (too expensive)

$$\mathbb{P}(w_k|w_j) = \frac{\exp(c_k \cdot v_j)}{\sum\limits_{1 \le i \le V} \exp(c_i \cdot v_j)}$$
(10.8)

 $\blacksquare$  solution: just sample k negative contexts and sum over these

#### **Properties of Embeddings**

- embeddings capture relational meaning
  - ⇒ vector('king') vector('man') + vector('woman') ≈ vector('queen')
  - ⇒ vector('Paris') vector('France') + vector('Italy') ≈ vector('Rome')





#### 10.4.2 Brown Clustering

- agglomerative clustering algorithm which clusters words based on near words
  - in the beginning each word has its own cluster
  - in each step pairs of clusters are merged to create larger ones
- word clusters can be turned into kind of vector
- algorithm makes use of **class based** language model in which each word  $w \in V$  belongs to a class c with probability  $\mathbb{P}(w|c)$
- class based LMs assign a probability to a pair of words as

$$\mathbb{P}(w_i|w_{i-1}) = \mathbb{P}(c_i|c_{i-1}) \cdot \mathbb{P}(w_i|c_i) \tag{10.9}$$

■ probability of an entire corpus:

$$\mathbb{P}(corpus|C) = \prod_{i=1}^{n} \mathbb{P}(c_i|c_{i-1}) \cdot \mathbb{P}(w_i|c_i)$$
(10.10)

 $\blacksquare$  merge clusters s.t. we minimize the decrease of  $\mathbb{P}(corpus|C)$ 

#### **Brown Clusters as Vectors**

- by tracing the order in which clusters are merged, the model builds a binary tree from bottom to top
- each word represented by binary string := path from root to leaf
  - Chairman is 0010, "months" = 01, and verbs = 1

