Assignment 2 Machine Learning Course

Farhad Mohammad Kazemi

1.a)

Actually I implemented Batch Gradient Descent and Stochastic Gradient Descent for comparison them using matlab.

```
응응응응응응응응응응
888888888888888
close all
clc
clear all;
load('A2T1.mat');
x=A2T1(:,1:2);
y=A2T1(:,3);
m = length(y); % store the number of training examples
n = size(x, 2); % number of features
theta batch vec = [0 0]';
theta stoch vec = [0 0]';
alpha = 0.002;
err = [0 \ 0]';
%theta batch vec v = zeros(10000,2);
theta_batch_vec_v = zeros(5000,2);
theta_stoch_vec_v = zeros(500*5000,2);
for kk = 1:5000
    % batch gradient descent - loop over all training set
    h theta batch = (x*theta batch vec);
    h theta batch v = h theta batch*ones(1,n);
    y v = y*ones(1,n);
    theta batch vec = theta batch vec - alpha*1/m*sum((h theta batch v -
y v).*x).';
    theta batch vec v(kk,:) = theta batch vec;
    j theta batch(kk) = 1/(2*m)*sum((h theta batch - y).^2);
    % stochastic gradient descent - loop over one training set at a time
    for (jj = 1:500)
       h theta stoch = (x(jj,:)*theta stoch vec);
       h theta stoch v = h theta stoch*ones(1,n);
       y v = y(jj,:) *ones(1,n);
       theta stoch vec = theta stoch vec - alpha*1/m*((h theta stoch v -
y v).*x(jj,:)).';
        j theta stoch(kk) = 1/(2*m)*sum((h theta stoch - y).^2);
        theta stoch vec v(500*(kk-1)+jj,:) = theta stoch vec;
end
figure;
j theta stoch10epoch=[];
for (f=1:10:5000)
```

```
j_theta_stoch10epoch=[j_theta_stoch10epoch, j_theta_stoch(1,f)];
end
plot(1:10:5000, j_theta_stoch10epoch);
xlabel('epochs');
ylabel('J(theta)');
title(sprintf('Stochastic Gradient Descent'));

figure;
plot(j_theta_batch);
xlabel('epochs');
ylabel('J(theta)');
title(sprintf('Batch Gradient Descent'));
```

1.b)

- 1) Starts with some initial θ
- 2) Repeatedly changes θ to make $J(\theta)$ smaller until (hopefully) converges into a value of θ that

minimizes $J(\theta)$

Actually,

in the ${\bf Batch\ Gradient\ Descent},$ the parameter vector θ is updated as,

$$\theta_i := \theta_i - \alpha \sum_{j=1}^m \left[h_{\theta}(x^j) - y^j \right] x_i^j.$$

(loop over all elements of training set in one iteration)

For **Stochastic Gradient Descent**, the vector gets updated as, at each iteration the algorithm goes over only one among j^{th} training set, i.e. for j=1 to m:

$$\theta_i := \theta_i - \alpha \left[h_{\theta}(x^j) - y^j \right] x_i^j$$

When the training set is large, Stochastic Gradient Descent can be useful (as we need not go over the full data to get the first set of the parameter vector θ)

For this dataset, we can see that both batch and stochastic gradient descent converged to reasonably close values.

Source Code

1.c)

Plotting the variation of $J^{(\theta)}$ for different values of θ As you can see, Batch Gradient Descent converged earlier in comparison to Stochastic Gradient Descent for 5000 epoch.

1.d) The final values I found for the theta after 5000 epoch.

As you see, the quantities of theta that we reached for **Stochastic Gradient Descent**

theta_stoch_vec (in the source code)

theta0=1.66441078748969

theta1=-2.51585976441818

And for Batch Gradient Descent

theta_batch_vec (in the source code)

theta0=1.66451097780882

theta1=-2.51591109111926