Advanced quantum theory, 9th July 2019 Quantum channels

Problem 1 Spin flips

- 1. Consider an operation $\mathcal{E}_{sf}(\rho) = \sigma_x \rho \sigma_x$. Prove that $\mathcal{E}_{sf}(\cdot)$ is a channel.
- 2. Apply $\mathcal{E}_{sf}(\cdot)$ to a state $|\uparrow\rangle\langle\uparrow|$ and $|\downarrow\rangle\langle\downarrow|$. By taking a convex combination with an identity channel, construct a channel that flips a spin with probability p.
- 3. Let there be N spins. How does a channel that flips any spin with probability p look like? How does a channel that flips that flips all the spins with probability p look like?

Problem 2 Depolarizing channel

In this problem we will study Kraus operators of a depolarizing channel $T(\rho) = tr(\rho) \frac{1}{d}$ for a d-dimensional Hilbert space.

- 1. Let $|\psi_i\rangle \in \mathbb{C}^D$, $i=1,\ldots,D$ and $\sum_i |\psi_i\rangle \langle \psi_i| = \mathbb{1}$. Prove that $|\psi_i\rangle$ are an orthonormal basis.
- 2. Apply Choi-Jamiolkowski isomorphism to the depolarizing channel, that is, compute $(T \otimes 1)(|\Omega\rangle\langle\Omega|)$, where $|\Omega\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^{d} |ii\rangle$. Use the result and previous subexercise to calculate the Kraus rank (the minimal number of Kraus operators) of T.
- 3. Find a Kraus decomposition of T using d^2 unitary operators.
- 4. What is the Kraus rank of $T_p(\rho) = p\rho + (1-p)tr(\rho)\frac{1}{d}$?

Problem 3 Stinespring's dilation

In this exercise we will obtain an alternative form of Stinespring's dilation.

1. Suppose you would like to map a set of states state $\rho_1(t)$ to $\rho_2(t)$. Show that this operation can be written in a form

$$\rho_2(t) = \operatorname{tr}_2\left[U\rho_1(t) \otimes \rho_2(t)U^{\dagger}\right] \tag{1}$$

where U is a unitary matrix.

- 2. Apply Choi-Jamiolkowski isomorphism to show that the map (1) can be written in a form $\rho_2(t) = \operatorname{tr}_2 \left[U \rho_1(t) \otimes |\phi\rangle \langle \phi| U^{\dagger} \right]$ for some vector $|\phi\rangle$.
- 3. Let us choose a vector $|G\rangle$ of a sufficiently large dimension. Prove that for any ρ_1 and ρ_2 there exists a unitary matrix U such that

$$\rho_2(t) = \operatorname{tr}_2 \left[U \rho_1(t) \otimes |G\rangle \langle G|U^{\dagger} \right]. \tag{2}$$

What is a sufficient dimension of $|G\rangle$?

4. What does the result from the previous subexercise imply about CPTP maps?