THIS PAPER IS NOT TO BE REMOVED FROM THE EXAMINATION HALLS

UNIVERSITY OF LONDON

CO3326 ZA

BSc Examination

COMPUTING AND INFORMATION SYSTEMS, CREATIVE COMPUTING AND COMBINED DEGREE SCHEME

Computer Security

Friday 4 May 2018: 10.00 - 12.15

Time allowed: 2 hours and 15 minutes

There are **FIVE** questions on this paper. Candidates should answer **THREE** questions. All questions carry equal marks, and full marks can be obtained for complete answers to a total of **THREE** questions. The marks for each part of a question are indicated at the end of the part in [.] brackets.

Only your first **THREE** answers, in the order that they appear in your answer book, will be marked.

There are 75 marks available on this paper.

A handheld calculator may be used when answering questions on this paper but it must not be pre-programmed or able to display graphics, text or algebraic equations. The make and type of machine must be stated clearly on the front cover of the answer book.

© University of London 2018

UL18/0486

Consider a generalised Caesar cipher: the letters of an alphabet of size m are first mapped to the integers in the range $0 \dots m-1$. Then modular arithmetic is used to transform the integer that each plain-text letter corresponds to. The encryption function for a single letter is $\mathsf{E}(x) = (ax+b) \mod m$, where m is the size of the alphabet and a and b are the keys – integers – of the cipher. Consider that our alphabet consists of the lower case letters of the English alphabet – hence m=26 – and we know that the cipher is deterministically invertible.

(a) Why is this a generalised Caesar cipher? [2]
(b) What is the decryption function? [5]
(c) What are the restrictions on a? Why? What are the possible values of a? [5]
(d) The following ciphertext has been encrypted with a generalised Caesar cipher using a = 7 and b = 15:

I t v z o p s t j c

Decrypt it. Show all your working. [7]
(e) What is a block cipher? What is the purpose of diffusion and confusion in the design of block ciphers? [6]

Alice and Bob intend to communicate securely using the RSA cryptosystem. Bob constructs his public key (e,n) using the two primes p=5 and q=13 and the value e=7. Alice sends him a message consisting of the single number m=38 which she encrypts using Bob's public key.

(a) What are the values in Bob's public and private keys? [5]
(b) Explain in detail how Alice encrypts the message m to obtain the ciphertext c. [6]
(c) Explain in detail how Bob decrypts the ciphertext c sent to him by Alice to recover the message m. [4]
(d) Write out a table of modular inverses modulo 11, i.e. (x - 1) mod 11. [4]
(e) Use Euclid's Algorithm to find the inverse of 25 mod 302. [6]

- (a) State Fermat's Little Theorem concerning powers modulo prime numbers and explain how it can be used for primality check.
- [5]
- (b) Use Fermat's Little Theorem with base 4 to show that 121 is not a prime number.

[5]

(c) Consider a room with n people. What is the smallest n, for which the probability of two people having the same birthday is greater than 50% (*i.e.* it is more likely than not)? Show your working. Note: this is also referred to as the *Birthday Paradox*. Why is this relevant to cryptography?

[7]

- (d) In the context of cryptographic hash functions, briefly explain the following notions:
 - i. fingerprint
 - ii. collision resistance
 - iii. second pre-image resistance
 - iv. determinism.

[8]

In a secure system based on the Bell-LaPadula model, four subjects and three objects are distinguished, with given security levels as shown:

Level
1
2
3

The actions which the subjects may perform on the objects are specified in the following access table:

	S1	S2	S3	S4
01	r	rwx	rx	rw
02	rx	rx	rx	rw
О3	r	-	rwx	_

- (a) What does the entry rwx mean? Explain what no read-up and no writedown mean in this context, and why they are important. [3]
- (b) Why might the *no write-down* policy make interaction difficult between S1 and S2, and how does the Bell-LaPadula model allow for this difficulty? [4]
- (c) Identify **THREE** cases in which the access table violates the rules of Bell-LaPadula and explain why they constitute violations. [6]
- (d) A 2 of 3 escrow is to be generated for the key value K=14. Using the prime p=17 (which is assumed to be public) and the four random numbers $a=7, x_1=4, x_2=5, x_3=9$, generate the three key pieces. Show your working. [4]
- (e) Show how the key pieces computed in *(d)* can be combined to reconstruct the key value K = 14: X_1 and X_2 , X_1 and X_3 . [8]

Alice and Bianca intend to communicate securely by exchanging a secret key using the El Gamal cryptosystem. Conrad, who is eavesdropping on their exchange, intercepts the following values:

$$p = 283$$

 $g = 12$
 $A = 77$
 $B = 46$.

He assumes that (p,g,A) is Alice's public key and (p,g,B) is Bianca's public key.

- (a) State the condition that must be satisfied for g to be a *generator* for prime p=283. Write a function in pseudocode that tests whether g is a generator for p.
- (b) Assume you are Conrad. Break Alice's and Bianca's keys. Show all your working. [6]

[5]

- (c) Show how Alice and Bianca compute the shared key using the private keys they generated, which have been broken by Conrad in point (b). [4]
- (d) Explain briefly the concepts: *one-way function*, *one-way hash function* and *trapdoor one-way function*. [6]
- (e) Describe briefly how a one-way hash function may be used for message authentication. [2]
- (f) Explain why a stream cipher fails to protect message integrity. [2]

END OF PAPER