CSCE 465 Computer & Network Security

Instructor: Abner Mendoza

Security Theory II: Security Policies and Models

Roadmap

- Security policy
 - What they cover
- Access control model: express security policy
 - Confidentiality Policy and BLP Model
 - Integrity Policy and Biba model
 - Hybrid Policy Model
 - Chinese Wall
 - RBAC

Security Policy

- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)
 - If the system enters any of these states, it's a security violation
- Secure system
 - Starts in authorized state
 - Never enters unauthorized state
 - A breach of security occurs when a system enters an unauthorized state

Confidentiality

- X set of entities, I information
- I has confidentiality property with respect to X if no x
 ∈ X can obtain information from I
- I can be disclosed to others
- Example:
 - X set of students
 - I final exam answer key
 - I is confidential with respect to X if students cannot obtain final exam answer key

Integrity

- X set of entities, I information
- I has integrity property with respect to X if all x ∈ X trust information in I
- Types of integrity:
 - trust I, its conveyance and protection (data integrity)
 - Information about origin of something or an identity (origin integrity, authentication)
 - I resource: means resource functions as it should (assurance)

Availability

- X set of entities, I resource
- I has availability property with respect to X if all x ∈ X
 can access I
- Types of availability:
 - traditional: x gets access or not
 - quality of service: promised a level of access (for example, a specific level of bandwidth) and not meet it, even though some access is achieved

Example Question

- Policy disallows cheating
 - Includes copying homework, with or without permission
- CSE class has students do homework on computer
- Anne forgets to read-protect her homework file
- Bill copies it
- Who cheated?
 - Anne, Bill, or both?

Answer Part 1

- Bill cheated
 - Policy forbids copying homework assignment
 - Bill did it
 - System entered unauthorized state (Bill having a copy of Anne's assignment)
- If not explicit in computer security policy, certainly implicit
 - Not credible that a unit of the university allows something that the university as a whole forbids, unless the unit explicitly says so

Answer Part 2

- Anne didn't protect her homework
 - Not required by security policy
- She didn't breach security
- If policy said students had to read-protect homework files, then Anne did breach security
 - She didn't do this

Mechanisms

- Entity or procedure that enforces some part of the security policy
 - Access controls (like bits to prevent someone from reading a homework file)
 - E.g., Disallowing people from bringing flash drives into a computer facility to control what is placed on systems

Access Control

- An access control system determines what rights a particular entity (subjects) has for a set of objects
- It answers the questions like
 - Do you have the right to read /etc/passwd
 - Does Alice have the right to view the CSE website?
 - Do students have the right to share project data?
 - Does TA have the right to change your grades?

Access Control Policy

- An access control policy can be considered as a function:
 - P(S,O,R) -> { accept, deny }
 - Where, set S=subjects, O=objects, R=rights
- The policy is a lot of these tuples, whether explicitly represented that way or not
- Access control matrix (as we learned from last class) is the common way to represent policy

Access Control Administration

There are two central ways to specify a policy

- Discretionary Access Control (DAC) object "owners" define policy
 - individual user sets access control mechanism to allow or deny access to an object
 - E.g., UNIX file system
 - RWX assigned by file owners
- Mandatory Access Control (MAC) Environment enforces static policy
 - Environment (system mechanism) controls access to object, and individual cannot alter that access
 - E.g., process labeling
 - System assigns labels for processes, objects, and a dominance calculus is used to evaluate rights

Access Control Models

- What language should I use to express policy?
 - Access Control Model (Security model)
- A security model is a model that represents a particular policy or set of policies
 - Abstracts details relevant for analysis
- Focus on specific characteristics of policies
 - Some specialize in secrecy, e.g., Bell-LaPadula
 - Some specialize in integrity, e.g., Biba
 - Some focus on conflict of interest, e.g., Chinese
 Wall
 - Some focus on jobs, e.g., RBAC

Types of Security Policies

- Military (governmental) security policy
 - Policy primarily protecting confidentiality
- Commercial security policy
 - Policy primarily protecting integrity
- Confidentiality policy
 - Policy protecting only confidentiality
- Integrity policy
 - Policy protecting only integrity

Confidentiality Policy and BLP Model

Confidentiality Policy

- Goal: prevent the unauthorized disclosure of information
 - Deals with information flow
 - Extensive redundancy in military makes integrity/availability less of a problem
- Multi-level security (MLS) models are bestknown examples
 - Bell-LaPadula Model basis for many, or most, of these

Bell-LaPadula Model

Security levels arranged in linear ordering

- Subjects have security clearance L(s)
- Objects have security classification L(o)

Example

security level	subject	object
Top Secret	Tamara	Personnel Files
Secret	Samuel	E-Mail Files
Confidential	Claire	Activity Logs
Unclassified	Ulaley	Telephone Lists

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists

Lattice Model

- Used by the US military (and many others), the Lattice model uses MLS to define policy
- Expand notion of security level to include categories
 - Categories (actually unbounded set)
 - NUC(lear), INTEL(igence), CRYPTO(graphy)
 - Note that these levels are used for physical documents in the governments as well.
- Security level is (*clearance*, *category set*), or formally (*L*,*C*) where *L* is the clearance level, and *C* is the set of categories
- Examples
 - Alice: (SECRET, {CRYTPO, NUC})
 - Bob: (CONFIDENTIAL, {INTEL})
 - Charlie: (TOP SECRET, {CRYPTO, NUC, INTEL})
 - DocA: (CONFIDENTIAL, {INTEL})
 - DocB: (SECRET, {CRYPTO})

Reading Information

- Information flows up, not down
 - "Reads up" disallowed, "reads down" allowed
- Simple Security Condition
 - Subject s can read object o iff $L(o) \le L(s)$ and C(o) ⊆ C(s), and s has permission to read o
 - The security level (L,C) dominates the security level (L',C') if $L' \leq L$ and $C' \subseteq C$
 - Sometimes called "no reads up" rule

Example

Writing Information

- Information flows up, not down
 - "Writes up" allowed, "writes down" disallowed
- *-Property
 - Subject s can write object o iff $L(s) \le L(o)$ and C(s) ⊆ C(o), and s has permission to write o
 - Sometimes called "no writes down" rule

Basic Security Theorem

 If a system is initially in a secure state, and every transition of the system satisfies the simple security condition and the *-property, then every state of the system is secure

Integrity Policy Model

Integrity Policy

- MLS as presented before talks about who can "read" a document (confidentiality)
- Integrity is considered who can "write" to a document
 - Thus, who can affect the integrity (content) of a document
 - Example: You may not care who can read DNS records, but you better care who writes to them!

Biba Integrity Model

- I is a set of integrity levels
 - Function *i*: $S \cup O \rightarrow I$
- Important point: Integrity labels are different from security labels
 - Security labels limit the flow of information; integrity labels inhibit modification of information
- The higher the level, the more confidence
 - That a program will execute correctly
 - That data is accurate and/or reliable
- Note relationship between integrity and trustworthiness

Biba Model

- Biba defined a dual of secrecy for integrity
 - Lattice policy with, "no read down, no write up"
 - Users can only create content at or below their own integrity level (a monk may write a prayer book that can be read by commoners, but not one to be read by a high priest).
 - Users can only view content at or above their own integrity level (a monk may read a book written by the high priest, but may not read a pamphlet written by a lowly commoner).

Examples

Which users can modify what documents?

Charlie: TS, {CRYPTO, NUC, INTEL})

Alice: (SEC., {CRYTPO, NUC})

?????

DocB: (SECRET, {CRYPTO})

DocA: (CONFIDENTIAL, {INTEL})

Bob: CONF., {INTEL})

DocC: (UNCLASSIFIED, {NUC})

Low-Water Mark integrity

Change integrity level based on actual

dependencies

- But integrity level can change based on objects accessed
- Ultimately, subject has integrity of lowest object read

Hybrid Policy Model: Chinese Wall and RBAC

Chinese Wall Model

- A model of a security policy that refers equally to confidentiality and integrity
 - Deals with conflict of interest situations
- Problem:
 - Tony advises American Bank about investments
 - He is asked to advise Toyland Bank about investments
 - Conflict of interest to accept, because his advice for either bank would affect his advice to the other bank

Organization

- Organize entities into "conflict of interest" classes
- Control subject accesses to each class
- Control writing to all classes to ensure information is not passed along in violation of rules
- Allow sanitized data to be viewed by everyone

Definitions

- The objects are items of information related to a company
- A company dataset (CD) contains objects related to a single company
- A conflict of interest (COI) class contains the datasets of companies in competition
- CD(O): the company dataset that contains object O; COI(O): the COI class that contains object O

Example

CW-Simple Security Condition

- If Anthony reads any CD in a COI, he can never read another CD in that COI
 - Possible that information learned earlier may allow him to make decisions later
- S can read O if and only if any of the following holds
 - There is an object O' such that S has accessed O' and CD(O') = CD(O)
 - For all objects O', O' ∈ $PR(S) \rightarrow COI(O') \neq COI(O)$
 - PR(S) is the set of objects S has read
 - O is a sanitized object

Writing

- Anthony, Susan work in same trading house
- Anthony can read Bank 1's CD, Gas' CD
- Susan can read Bank 2's CD, Gas' CD
- If Anthony could write to Gas' CD, Susan can read it
 - Hence, indirectly, she can read information from Bank 1's CD, a clear conflict of interest

CW-*-Property

- s can write to o iff both of the following hold:
 - 1. The CW-simple security condition permits *s* to read *o*; and
 - 2. For all *unsanitized* objects o', if s can read o', then CD(o') = CD(o)
- Says that s can write to an object if all the (unsanitized) objects it can read are in the same dataset

RBAC: Role-Based Access Control

- In an enterprise, we don't really do anything as ourselves, we do things as some job function
 - E.g., student, professor, doctor
- Access depends on function, not identity
 - Example:
 - Allison, bookkeeper for Math Dept, has access to financial records.
 - She leaves.
 - Betty hired as the new bookkeeper, so she now has access to those records
 - The role of "bookkeeper" dictates access, not the identity of the individual

Roles

 A role is a collection of privileges/permissions associated with some function or affiliation

- Important: the permissions are static, the userrole membership is transient
- Not direct MAC and DAC, but may one or either of these.

Summary

- Access control model: express security policy
- Confidentiality Policy and BLP Model (no read up, no write down)
- Integrity Policy and Bida model (no read down, no write up)
- Hybrid Policy Model
 - Chinese Wall (conflict of interest)
 - RBAC (the importance of role)

Appendix

Role-Based Access Control

Definitions

- A role is a collection of job functions.
 Each role r is authorized to perform one or more transactions. The set of authorized transactions for r is trans(r)
- The active role of subject s, actr(s), is the role that s is currently performing
- The authorized roles of a subject s, authr(s), is the set of roles that s is authorized to assume

Role-Based Access Control

Axioms

- If a subject can execute any transaction,
 then that subject has an active role
 - Binds the notion of execution to role rather than user
- A subject must be authorized to assume its active role
 - Cannot assume an unauthorized role
- A subject cannot execute a transaction for which its current role is not authorized

