Introduction to Quantum Computing Workshop

Lesson 3: Building Qubits and Gates with Qiskit

Nico Kuijpers

nico.kuijpers@fontys.nl

Quantum Talent and Learning Center Fontys University of Applied Sciences

May 16, 2025

Building Qubits and Gates with Qiskit

Contents

Building Qubits and Gates with Qiskit:

- Bra-ket notation
- Quantum states
- Bloch sphere
- Quantum gates
- Measuring a qubit
- Qiskit
- Simulation of a quantum circuit in Qiskit
- Quantum Phase Estimation (single qubit)

Bra-ket notation

We use bra-ket notation to describe quantum states:

- |a\rangle ket: column vector with 1 in entry a and 0 everywhere else.
- $\langle a|$ bra: row vector with 1 in entry a and 0 everywhere else.
- $\langle a | b \rangle$ or $\langle a | b \rangle$ inner product of $\langle a |$ and $b \rangle$: 1 if a = b and 0 if $a \neq b$.
- $|a\rangle\langle b|$ outer product of $|a\rangle$ and $\langle b|$: matrix with 1 in entry (a,b) and 0 everywhere else.

Quantum states

A single qubit can be in *superposition* of two basis states: $|0\rangle$ and $|1\rangle$.

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
,

where $\alpha, \beta \in \mathbb{C}$ are probability amplitudes.

 α and β should satisfy the *normalization condition*:

$$|\alpha|^2 + |\beta|^2 = 1.$$

For a quantum circuit of one qubit, state vector $|\psi\rangle$ can be written as

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \rightarrow \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Bloch sphere

The Bloch sphere is used to visualise a quantum state:

- sphere in \mathbb{R}^3
- center in origin (0,0,0)
- radius 1
- state $|0\rangle$ at north pole (0,0,1)
- state $|1\rangle$ at south pole (0,0,-1)

Bloch sphere: state $|0\rangle$

Bloch sphere

Quantum state $|\psi\rangle$ is represented as a vector from the origin to $(r=1,\theta,\phi)$, where θ and ϕ are defined by

$$|\psi
angle = \cos(rac{ heta}{2})\,|0
angle + e^{i\phi} ext{sin}(rac{ heta}{2})\,|1
angle \,.$$

 $0 \le \theta \le \pi$ is the angle with the *z*-axis.

 $0 \le \phi \le 2\pi$ is the angle with the *x*-axis.

Assuming $\langle \psi | \psi \rangle = 1$, the *normalization condition*, r = 1 and (r, θ, ϕ) is a point on the Bloch sphere.

Unitary operations

A unitary operation on a quantum circuit of N qubits is represented by a $2^N \times 2^N$ unitary matrix of complex numbers.

A square matrix of complex numbers U is unitary if

$$U^{\dagger}U = \mathbf{I} = UU^{\dagger},$$

where U^{\dagger} is the *conjugate transpose* of U and I the identity matrix of the same size.

Quantum gates: Pauli operations

Quantum gates are unitary operations that can be performed on one or several qubits of a quantum circuit.

These operations can be applied to a state vector $|\psi\rangle$:

$$|\psi_{\mathsf{new}}\rangle = U |\psi\rangle$$
 .

Pauli operations I, X, Y, and Z are unitary operations on a single qubit:

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Quantum gates: Hadamard gate

The Hadamard operation H is defined by

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Example: apply Hadamard operation on basis state $|0\rangle$:

$$H\ket{0} = rac{1}{\sqrt{2}}egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}egin{bmatrix} 1 \ 0 \end{bmatrix} = rac{1}{\sqrt{2}}egin{bmatrix} 1 \ 1 \end{bmatrix}$$

This state is the *plus* state or *Hadamard* state and is denoted as $|+\rangle$.

With respect to basis states $|0\rangle$ and $|1\rangle$, the Hadamard state is defined by

$$H\ket{0}=rac{1}{\sqrt{2}}(\ket{0}+\ket{1})=\ket{+}.$$

Bloch sphere: state $|+\rangle$

Quantum gates: Phase operations

Phase operations $P(\varphi)$ are described by

$$P(\varphi) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\varphi} \end{bmatrix}.$$

The S-gate is the same as $P(\varphi)$ with $\varphi = \frac{\pi}{2}$:

$$S = P(\frac{\pi}{2}) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{2}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}.$$

The *T*-gate is the same as $P(\varphi)$ with $\varphi = \frac{\pi}{4}$:

$$T=P(rac{\pi}{4})=egin{bmatrix}1&0\0&\mathrm{e}^{irac{\pi}{4}}\end{bmatrix}.$$

The Pauli Z operation is the same as $P(\varphi)$ with $\varphi = \pi$:

$$Z = P(\pi) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Bloch sphere: Hadamard gate and 10 times $P(\frac{\pi}{8})$

Quantum gates: Rotations

Rotations $R_x(\varphi)$, $R_y(\varphi)$, and $R_z(\varphi)$ about the x, y, and z axes:

$$R_{\mathsf{x}}(\varphi) = \begin{bmatrix} \cos(\frac{\varphi}{2}) & -i\sin(\frac{\varphi}{2}) \\ -i\sin(\frac{\varphi}{2}) & \cos(\frac{\varphi}{2}) \end{bmatrix}$$

$$R_{y}(\varphi) = \begin{bmatrix} \cos(\frac{\varphi}{2}) & -\sin(\frac{\varphi}{2}) \\ \sin(\frac{\varphi}{2}) & \cos(\frac{\varphi}{2}) \end{bmatrix}$$

$$R_z(\varphi) = \begin{bmatrix} e^{-irac{arphi}{2}} & 0 \ 0 & e^{irac{arphi}{2}} \end{bmatrix}$$

Measuring a qubit

Consider quantum state $|\psi\rangle$ of a single qubit in super position:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle.$$

When measuring a qubit, its state collapses either to $|0\rangle$ or $|1\rangle$.

Suppose r is a random value between 0 and 1 drawn from a uniform distribution.

The measured state $|\psi_{\it m}\rangle$ is determined as follows:

$$|\psi_{\it m}\rangle = egin{cases} |0
angle, & ext{if } r < |lpha|^2 \ |1
angle, & ext{otherwise} \end{cases}$$

Note that the normalization condition holds:

$$|\alpha|^2 + |\beta|^2 = 1.$$

Measuring 1000 times: state $|+\rangle$

17 / 27

Qiskit: Quantum Information Software Kit

Qiskit is an open-source software development kit (SDK) for:

- Programming quantum circuits
- Simulating execution of quantum circuits
- Executing quantum circuits on real quantum computers

In this lesson we use Qiskit to simulate the effect of quantum gates applied to a qubit.

Qiskit documentation: https://docs.quantum.ibm.com/

To install Qiskit: pip install qiskit

Qiskit: Example circuit of one qubit

```
Import giskit libraries:
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
Create a quantum register of 1 qubit:
greg = QuantumRegister(1)
Create a classical register of 1 bit:
creg = ClassicalRegister(1)
Create a quantum circuit with greg and creg:
circuit = QuantumCircuit(greg, creg)
Apply the Hadamard gate to the qubit:
circuit.h(greg[0])
Measure the qubit:
circuit.measure(greg[0], creg[0])
```

Qiskit: Draw circuit

To draw the circuit: circuit.draw(output='mpl')

Figure: Circuit with Hadamard gate and measurement

Qiskit: simulate execution

```
Simulate the quantum circuit:
simulator = Aer.get_backend('aer_simulator')
Transpile the quantum circuit:
job = simulator.run(transpile(circuit, simulator), shots=1000)
Get the result:
result = job.result()
Get the counts:
counts = result.get_counts(circuit)
Print the counts
print(counts)
Plot the histogram:
plot_histogram(counts)
```

Qiskit: measuring 1000 times: state $|+\rangle$

Qiskit: many gates

Qiskit: Quantum Phase Estimation (single qubit)

```
phi = np.pi/4
circuit = QuantumCircuit(1, 1)
circuit.h(0)
circuit.p(phi, 0)
circuit.h(0)
Can we estimate φ by measuring multiple times?
```

Bloch sphere: Quantum Phase Estimation

Qiskit: measuring 1000 times for phase estimation

Thank you

Thank you for your attention!

Start working with Jupyter notebook for Lesson 3.

Contact: nico.kuijpers@fontys.nl