Contents

1	INTRODUCTION	6
2	RESEARCH OVERVIEW	8
	2.1 MULTIPROCESSOR SYSTEMS	8
	2.2 FAULT TOLERANCE	
	2.3 FT RECONFIGURATION AND RELATED RESEARCH AREAS	
	2.3.1 Reconfiguration from hardware viewpoint	14
	2.3.2 Reconfiguration from software viewpoint	
	2.3.3 Scheduling and mobility of software elements	
	2.4 Overview conclusion	
	2.5 RESEARCH STARTING-POINTS	23
3	THESIS OBJECTIVE	24
4	THESIS METHODOLOGY	25
5	DATA DRIVEN GRAPH	27
	5.1 What is DDG?	28
	5.2 DDG TASKS AND VARIABLES	
	5.3 Graphical representation	32
	5.4 DDG Architecture	
	5.5 DDG APPLICATION PROGRAMMING INTERFACE	
	5.6 COMPARISON WITH ANOTHER MODELS AND EXISTING APPROACHES	
	5.7 CONCLUSION ON DATA DRIVEN GRAPH	
6		
	6.1 FAULT-TOLERANT ENVIRONMENT OVERVIEW	
	6.2 DATA AND CHECKPOINT MANAGEMENT	
	6.2.1 Complete data checkpointing	
	6.2.2 Removing obsolete data	
	6.2.3 Recovery loosing checkpoints	
	6.2.5 Combined data checkpointing	
	6.3 FAULT DIAGNOSTICS	
	6.4 TASK RECONFIGURATION	
	6.4.1 Control of reconfiguration	
	6.4.2 Reconfiguration module	
	6.4.3 Task reallocation	
	6.5 CONCLUSION ON FAULT-TOLERANT DDG ENVIRONMENT	
7	IMPLEMENTATION OF FAULT-TOLERANT ENVIRONMENT	58
	7.1 DATA STRUCTURES AND TASK OBJECTS	59
	7.1.1 Data structures	
	7.1.2 Task objects	
	7.1.3 Data and checkpoint management	61
	7.2 TASK RECONFIGURATION	
	7.2.1 Initialization	
	7.2.2 Mapping states	
	7.2.3 Computing a new configuration.	
	7.2.4 Applying the new configuration	
	7.2.5 Recovery losing communications of the last task on the faulty node	
	7.3 FAULT DIAGNOSTICS	69 70

8	CASE STUDY	71
	8.1 HARDWARE PLATFORM	71
	8.2 GAUSSIAN ELIMINATION ALGORITHM (GEM)	
	8.3 SCHEDULING AND RECONFIGURATION ALGORITHMS	
	8.4 APPLICATION PERFORMANCE IN FT DDG ENVIRONMENT WITHOUT FAULT OCCURRENCE	
	8.4.1 Application speedups in FT DDG environment	76
	8.4.2 Fault-tolerant additional overheads	
	8.5 Partial versus combined checkpointing	
	8.6 User-defined versus default DDG reconfiguration algorithm	
	8.7 Summary	83
9	THESIS EVALUATION	. 84
10	0 CONCLUSION	86
A	APPENDIX	. 88
	LIST OF ACRONYMS	88
	LIST OF DEFINITIONS	90
	LIST OF RULES	90
	LIST OF THEOREMS	90
	LIST OF ILLUSTRATIONS	
	LIST OF TABLES	93
В	BIBLIOGRAPHY	94