$$V(k_0) = \sum_{t=0}^{\infty} \left[\beta^t \ln(1 - \alpha \beta) + \beta^t \alpha \ln k_t \right]$$

Quantum Mechanics Note of links

$$= \frac{\alpha}{1 - \alpha} \frac{1}{1 - \alpha} \frac{$$

$$= \frac{\alpha}{1 - \alpha \beta} \ln k_0 + \frac{\ln(1 - \alpha \beta)}{1 - \beta} + \frac{\alpha \beta}{(1 - \beta)(1 - \alpha \beta)} \ln(\alpha \beta)$$

左边 =
$$V(k) = \frac{\alpha}{1 - \alpha\beta} \ln k + \frac{\ln(1 - \alpha\beta)}{1 - \beta} + \frac{\alpha\beta}{(1 - \beta)(1 - \alpha\beta)} \ln(\alpha\beta)$$

$$\stackrel{\triangle}{=} \frac{\alpha}{1 - \alpha\beta} \ln k + A$$

右边 =
$$\max_{\{y\}} \{y\} \{y\} + \beta V(y)$$

$$= u(f(k) - g(k)) + \beta \left[\frac{\alpha}{1 - \alpha\beta} \ln g(k) + A\right]$$

Victory won't come to us unless we go to it.

$$= \ln(1 - \alpha\beta) + \alpha \ln k + \beta \left[\frac{\alpha}{1 - \alpha\beta} \left[\ln \alpha\beta + \alpha \ln k \right] + k \right]$$

$$= \alpha \ln k + \frac{\alpha \beta}{1 - \alpha \beta} \alpha \ln k + \ln(1 - \alpha \beta) + \frac{\alpha \beta}{1 - \alpha \beta} \ln \alpha \beta + \beta A$$

$$= \frac{\alpha}{1 - \alpha\beta} \ln k + \ln(1 - \alpha\beta) + \frac{\alpha\beta}{1 - \alpha\beta} \ln \alpha\beta + \beta A$$

$$= \frac{\alpha}{1 - \alpha \beta} \ln k + (1 - \beta)A + \beta A$$
 整理: AuroraDysis 整理时间: January 6, 2017

$$= \frac{\alpha}{1 - \alpha\beta} \ln k + A$$

整理: AuroraDysis

Email: auroradysis@gmail.com

Version: 1.00

你好这是测试

