

Introduction to TensorFlow Hub

Bhavesh Bhatt

bhavesh Bhatt

echo \$(whoami)

Experts

Data Science/Machine Learning YouTube Channel

Google Developers

echo \$(whoami)

Python Channel

Google Developers

echo \$(whoami)

Google Developer Expert (Machine Learning)

 Awarded the prestigious 40 Under 40 Data Scientist award by Analytics India Magazine in January 2020.

Ideal audience

 ML Developers that have worked with TensorFlow and Keras

Agenda

- What is TensorFlow Hub?
- Why you should use it?
- TF-Hub Code Walk along
- A&Q •

Challenge

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language

{jacobdevlin, mingweichang, kentonl, kristout}@google.com

Abstract

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a re-sult, the pre-trained BERT model can be finetuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-

BERT is conceptually simple and empirically sults on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement). MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

2018a; Radford et al., 2018; Howard and Ruder, porate context from both directions. De Meulder, 2003; Rajpurkar et al., 2016).

There are two existing strategies for applying pre-trained language representations to downstream tasks: feature-based and fine-tuning. The feature-based approach, such as ELMo (Peters et al., 2018a), uses task-specific architectures that include the pre-trained representations as additional features. The fine-tuning approach, such as the Generative Pre-trained Transformer (OpenAI GPT) (Radford et al., 2018), introduces minimal task-specific parameters, and is trained on the downstream tasks by simply fine-tuning all pretrained parameters. The two approaches share the same objective function during pre-training, where they use unidirectional language models to learn general language representations

We argue that current techniques restrict the power of the pre-trained representations, especially for the fine-tuning approaches. The major limitation is that standard language models are unidirectional, and this limits the choice of architectures that can be used during pre-training. For example, in OpenAI GPT, the authors use a left-toright architecture, where every token can only attend to previous tokens in the self-attention layers of the Transformer (Vaswani et al., 2017). Such restrictions are sub-optimal for sentence-level tasks, Language model pre-training has been shown to and could be very harmful when applying finebe effective for improving many natural language tuning based approaches to token-level tasks such processing tasks (Dai and Le, 2015; Peters et al., as question answering, where it is crucial to incor-

2018). These include sentence-level tasks such as
In this paper, we improve the fine-tuning based natural language inference (Bowman et al., 2015; approaches by proposing BERT: Bidirectional Williams et al., 2018) and paraphrasing (Dolan Encoder Representations from Transformers. and Brockett, 2005), which aim to predict the relationships between sentences by analyzing them rectionality constraint by using a "masked lanholistically, as well as token-level tasks such as guage model" (MLM) pre-training objective, innamed entity recognition and question answering, spired by the Cloze task (Taylor, 1953). The where models are required to produce fine-grained masked language model randomly masks some of output at the token level (Tjong Kim Sang and the tokens from the input, and the objective is to predict the original vocabulary id of the masked

How do I use it?

Is it safe?

Is it fair?

Is it the latest version?

What is TensorFlow Hub?

A collection of SoTA* pre-trained models published by different teams as well community contributors.

*State of The Art

TensorFlow Hub

A comprehensive collection of models

Image

Text

Video

Audio

Model Diversity

Text

- Classification
- Embeddings
- Generation
- Question Answering
- ... your new model

Audio

- Classification
- Embeddings / Features
- your new model

Image

- Classification
- Object detection
- Semantic segmentation
- Generators
- Style transfer
- Embeddings / feature vectors
- Augmentation
- Pose detection
- ... your new model

Video

- Classification
- Generation
- ... your new model

Ready to use

Pre-trained models ready for transfer learning on your own datasets and deployable anywhere you want

Coral

Birds V1.1

Embed ≪

Disease-classification.1

SSD Openimages v4

Results Label: Boat

Food V1.1

Type/paste i €⊃

Drag/click to upload image 🏵

Results

armors Score: 0.87

Score: 0.87

Score: 0.38

shields

Score: 0.26

iMet Collection Attribute Classifier

← imagenet/mobilenet_v2_050_96/feature_vector

Model formats

TF2 SavedModel

This is a SavedModel in TensorFlow 2 format. Using it requires TensorFlow 2 (or 1.15) and TensorFlow Hub 0.5.0 or newer.

Overview

MobileNet V2 is a family of neural network architectures for efficient on-device image classification and related tasks, originally published by

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen: "Inverted Residuals and Linear Bottlenecks:
 Mobile Networks for Classification, Detection and Segmentation", 2018.

Mobilenets come in various sizes controlled by a multiplier for the depth (number of features) in the convolutional layers. They can also be trained for various sizes of input images to control inference speed.

Code Walkthrough

"Yeah I can do machine learning"

import tensorflow

"You're hired."

Google Developers

Slides & Code available here -

