# COT 4521: INTRODUCTION TO COMPUTATIONAL GEOMETRY



#### Segment Intersection

Paul Rosen Assistant Professor University of South Florida



# PROBLEM STATEMENT





# PROBLEM STATEMENT





## REPRESENTING CURVES

- CURVES OFTEN REPRESENTED BY A POLYNOMIAL OR POLYNOMIAL SPLINE
  - Bezier, NURBS, etc.
- TESSELATE CURVE INTO MANY SMALL LINE SEGMENTS





## REPRESENTING CURVES

- CURVES USUALLY REPRESENTED BY A POLYNOMIAL OR POLYNOMIAL SPLINE
  - Bezier, NURBS, etc.
- TESSELATE CURVE INTO MANY SMALL LINE SEGMENTS





## REPRESENTING CURVES

- CURVES USUALLY REPRESENTED BY A POLYNOMIAL OR POLYNOMIAL SPLINE
  - Bezier, NURBS, etc.
- TESSELATE CURVE INTO MANY SMALL LINE SEGMENTS





## SEGMENT-SEGMENT INTERSECTION

- A LINE SEGMENT  $\overline{pq}$  IS DENOTED BY ITS TWO **ENDPOINTS PAND Q:** 
  - $\alpha p_{x} + (1 \alpha)q_{x}$
  - $\alpha p_y + (1 \alpha) q_y$ ) where  $0 \le \alpha \le 1$
- LINE SEGMENTS ARE ASSUMED TO BE CLOSED WITH ENDPOINTS, NOT OPEN
- TWO LINE SEGMENTS <u>INTERSECT IF THEY HAVE</u> SOME POINT IN COMMON.
- IT IS A PROPER INTERSECTION IF IT IS EXACTLY ONE INTERIOR POINT OF EACH LINE SEGMENT





# DO THEY INTERSECT?

- OBSERVATION: IF THE TWO SEGMENTS INTERSECT, THE TWO RED POINTS MUST LIE ON DIFFERENT SIDES OF THE BLACK LINE (OR LIE EXACTLY ON IT)
- THE SAME HOLDS WITH BLACK/RED SWITCHED





# DO THEY INTERSECT?

- WHAT DOES "DIFFERENT SIDES" MEAN?
- Use the cross product to determine sidedness





## REPRESENTING A LINE

SLOPE-INTERCEPT FORM:

$$y = mx + b$$

- GIVEN 2 POINTS,  $P_1$  AND  $P_2$ , HOW DO YOU COMPUTE m AND b?
- GIVEN 2 LINES,  $m_1$ ,  $b_1$  and  $m_2$ ,  $b_2$ , how do you compute the intersection point,  $P_I$ , between them?
- How do you know if  $P_I$  is on the segment defined by  $P_1$  and  $P_2$ ?



## REPRESENTING A LINE

STANDARD FORM:

$$Ax + By + C = 0$$

- GIVEN 2 POINTS,  $P_1$  AND  $P_2$ , HOW DO YOU COMPUTE A, B AND C?
- GIVEN 2 LINES,  $A_1$ ,  $B_1$ ,  $C_1$  and  $A_2$ ,  $B_2$ ,  $C_2$ , how do you compute the intersection point,  $P_I$ , between them?
- How do you know if  $P_I$  is on the segment defined by  $P_1$  and  $P_2$ ?



## REPRESENTING A LINE

PARAMETRIC FORM:

$$P = P_0 + Dt$$

- GIVEN 2 POINTS,  $P_1$  AND  $P_2$ , HOW DO YOU REPRESENT THE PARAMETRIC LINE?
- GIVEN 2 LINES, HOW DO YOU COMPUTE THE INTERSECTION POINT,  $P_I$ , BETWEEN THEM?
- How do you know if  $P_I$  is on the segment defined by  $P_1$  and  $P_2$ ?



