0.1 Macierz Grama układu wektorów

Weźmy V - nad \mathbb{R} . Mamy tutaj iloczyn skalarny $\langle . | . \rangle$. Ustalamy wektory v_1, \ldots, v_k - liniowo niezależne.

niech

$$x = \sum_{i=1}^{k} x^{i} v_{i}, \quad \langle x | x \rangle = \sum_{i,j} x^{i} \langle v_{i} | v_{j} \rangle x^{j}.$$

Definicja 1 Macierzą Grama układu wektorów v_1, \ldots, v_k nazywamy macierz

$$[\langle v_i|v_j\rangle] \stackrel{ozn}{=} G(v_1,\ldots,v_k).$$

Ustalmy wektor $v \in V$, odległość wynosi $dist(v, \langle v_1, \dots, v_k \rangle) = ||(1-P)v||$, gdzie P - rzut ortogonalny na $\langle v_1, \dots, v_k \rangle$. Niech $Pv = \sum_{i=1}^k x^i v_i$. Zauważmy, że

$$\langle v_i|v\rangle = \langle v_i|Pv\rangle + \langle v_i|(1-P)v\rangle = \langle v_i|Pv\rangle = \sum x^j \langle v_i|v_j\rangle.$$

Oznaczmy $\delta = dist(v, \langle v_1, \dots, v_k \rangle).$

$$\delta^2 = \langle (1-P)v|(1-P)v\rangle = \langle v|(1-P)v\rangle - \langle Pv|(1-P)v\rangle = \langle v|v\rangle - \sum_{j=1}^k \langle v|v_j\rangle x^j.$$

Macierzowy zapis:

$$\begin{bmatrix} \langle v_1 | v_1 \rangle & \langle v_1 | v_2 \rangle & \dots & \langle v_1 | v_k \rangle & \langle v_1 | v \rangle \\ \langle v_2 | v_1 \rangle & \dots & \langle v_2 | v_k \rangle & \langle v_2 | v \rangle \\ \vdots & & & & \\ \langle v | v_1 \rangle & \dots & \langle v | v_k \rangle & \langle v | v \rangle - \delta^2 \end{bmatrix} \begin{bmatrix} x^1 \\ \vdots \\ x^k \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}.$$

Zatem wyznacznik powyższej macierzy jest równy zero. Z liniowości wyznacznika względem ostatniej kolumny mamy:

$$0 = \det G(v_1, \dots, v_k, v) - \delta^2 \det(G(v_1, \dots, v_k)).$$

Zatem

$$\delta = \left(\frac{\det G(v_1, \dots, v_k, v)}{\det G(v_1, \dots, v_k)}\right)^{\frac{1}{2}}.$$

Definicja 2 Niech $(v_1, \ldots, v_k) \in V$ jw. Objętością równoległościanu rozpiętego przez (v_1, \ldots, v_k) $definiujemy\ indukcyjnie:$

$$vol(v_1, \dots, v_k) \stackrel{def}{=} vol(v_1, \dots, v_{k-1}) \cdot d(v_k, \langle v_1, \dots, v_{k-1} \rangle).$$
$$vol(v_1) = ||v_1||.$$

Stwierdzenie 1 Zachodzi równość

$$vol(v_1, ..., v_k) = \det(G(v_1, ..., v_k))^{\frac{1}{2}}.$$

Dowód 1 (indukcyjny)

Jeden wektor: $vol(v_1) = ||v_1|| = \det(G(v_1))^{\frac{1}{2}}$, $\det \langle v_1|v_1\rangle^{\frac{1}{2}}$ - dlugość wektora v_1 . Krok indukcyjny: $k \implies k+1$

$$vol(v_1, ..., v_k, v_{k+1}) = vol(v_1, ..., v_k) \cdot dist(v_{k+1}, \langle v_1, ..., v_k \rangle) =$$

= $\det(G(v_1, ..., v_k))^{\frac{1}{2}} \cdot dist(...) = \det G(v_1, ..., v_{k+1})^{\frac{1}{2}} \quad \Box.$

0.2 Powierzchnie kwadratowe

Klasyfikacja powierzchni kwadratowych.

Przykład 1
$$\{x \in \mathbb{R}^3 : x_1^2 - x_2^2 + x_3^2 - 4x_1x_3 + 6x_1x_2 + 10x_2x_3 = 1\}, Q = \begin{bmatrix} 1 & 3 & -2 \\ 3 & -1 & 5 \\ -2 & 5 & 1 \end{bmatrix}.$$

$$S = \{x \in \mathbb{R} : Q(x) = 1\}.$$

Definicja 3 Niech V - przestrzeń, $\langle .|. \rangle$ - iloczyn skalarny oraz $Q:V \to \mathbb{R}$ - forma kwadratowa, $c \in \mathbb{R}$.

Powierzchnie S postaci $S = \{x \in V : Q(x) = c\}$ nazywamy powierzchnią kwadratową typu

- I jeśli $c \neq 0$
- II jeśli c=0

Uwaga: jeśli $c \neq 0$, to bez straty ogólności możemy założyć, że c = 1.

Definicja 4 Mówimy, że dwie powierzchnie S_1, S_2 kwadratowe mają taki sam kształt, jeśli istnieje odwzorowanie ortogonalne $T: V \to V$ takie, że $S_2 = TS_1$.

Przypomnienie: postać kanoniczna formy kwadratowej.

$$Q = \sum_{i=1}^{p} \frac{\phi_i^2}{a_i^2} - \sum_{i=1}^{q} \frac{\phi_{i+p}^2}{a_{i+p}^2}, \quad (p,q) = sgn(Q).$$

 $(\phi_1,\dots,\phi_{p+q})$ - współrzędne ortonormalne na V.

 Q_1 i Q_2 mają tę samą postać kanoniczną, to istnieje $T:V\to V$ takie, że $Q_2=Q_1\cdot T$. Wówczas $S_1=\{x\in V:Q_1(x)=c\}$, $S_2=\{x\in V:Q_2(x)=c\}$ mają ten sam kształt: $S_2=\{x\in V:Q_1(Tx)=c\}=\{x\in V:Tx\in S_1\}=T^{-1}S_1\implies S_1=TS_2$

Twierdzenie 1
$$Q_1,Q_2:V\to\mathbb{R},S_i=\{x\in V:Q_i(x)=1\}\,i=1,2.$$
 Jeżeli $S_1=S_2,$ to $Q_1=Q_2$

Dowód 2 Ustalmy i=1 oraz rozważmy $\{x \in V : Q_1(x) > 0\}$. Zauważmy, że $\forall x \in S_1$ oraz t>0, $t \cdot x \in \mathcal{O}$, $gdy\dot{z}\ Q_1(tx) = t^2Q_1(x) = t^2>0$. Na odwrót, jeżeli $y \in \mathcal{O}$, to $\frac{y}{\sqrt{Q_1(y)}} \in S_1$. $(Q(\frac{y}{\sqrt{Q(y)}}) = \frac{Q(y)}{Q(y)} = 1)$.

Widzimy zatem, że:

$$1.\mathcal{O} = \mathbb{R}_{>0} S_1,$$

2. Wartość Q_1 na \mathcal{O} jest wyznaczona przez wartości na S_1 , gdyż $Q_1(tx)=t^2$ $\forall x \in S_1$.

Skoro \mathcal{O} jest zbiorem otwartym a funkcja $f: \mathcal{O} \to \mathbb{R}$ taka, że $f(x) = Q_1(x)$ jest różniczkowalna oraz $f''(x) = Q_1(x) \bigvee_{x \in V}$, to widzimy, że znajomość S_1 pozwala odtworzyć Q_1 \square

Uwaga: można pokazać, że powierzchnia kwadratowa typu II (generycznie) odtwarza Q z dokładnością do stałej multiplikatywnej.

Terminologia: niech dim V=3.

powierzchnia typu I:

$$\begin{split} \frac{\phi_1^2}{a_1^2} + \frac{\phi_2^2}{a_2^2} + \frac{\phi_3^2}{a_3^2} &= 1 \text{ - elipsoida}(3,0) \\ \frac{\phi_1^2}{a_1^2} + \frac{\phi_2^2}{a_2^2} - \frac{\phi_3^2}{a_3^2} &= 1 \text{ - hiperboloida jednopowłokowa}(2,1) \\ \frac{\phi_1^2}{a_1^2} - \frac{\phi_2^2}{a_2^2} - \frac{\phi_3^2}{a_3^2} &= 1 \text{ - hiperboloida dwupowłokowa}(1,2) \end{split}$$

powierzchnia typu II:

$$\begin{split} \frac{\phi_1^2}{a_1^2} + \frac{\phi_2^2}{a_2^2} + \frac{\phi_3^2}{a_3^2} &= 0 \text{ - punkt}(3,0) \\ \frac{\phi_1^2}{a_1^2} + \frac{\phi_2^2}{a_2^2} - \frac{\phi_3^2}{a_3^2} &= 0 \text{ - stożek eliptyczny}(2,1) \\ \frac{\phi_1^2}{a_1^2} - \frac{\phi_2^2}{a_2^2} - \frac{\phi_3^2}{a_3^2} &= 0 \text{ - punkt}(1,2) \end{split}$$

3