5

6

7

8

1

Please note that with autoISF you are in an early-dev. environment, where the user interface is **not optimized for safety** of users who stray away from intended ways to use. Good safety features exist, but these are only as good as the development-oriented user understands and implements them. This is not a medical product, refer to disclaimer in section 0

9

11

12

13

14

15

16

18

21

24

25

27

28

10 10.1 Installing the Emulator on your PC

10.1.1 File structure on your PC

10.1.2 Load config and py files

10.1.3 Desktop button "Emulation start"

10.1.4 Other software requirements

10.2 Analyzing **loop decisions** in logfiles

10.2.1 **noChange**.vdf

17 10.2.2/3 Locate logfiles / prepare Emulator

10.2.4 Run emulation and inspect results

19 10.2.4.1 .txt (all SMB tab infos)

20 10.2.4.2 Tabular (.csv) presentation of all loop decisions

10.2.4.3 Manual extraction of key data into .xls or .odc

22 10.2.4. 4 .pdf chart

23 10.3 What-if analysis

10.3.1 Define (yourChanges).vdf

10.3.2 Run emulation

26 10.3.3 Inspect results

10.3.3.1 Logs (all SMB tab infos)

10.3.3.2 Tabular (.csv) presentation of all loop decisions

10.3.3.3 Semi-automated extraction of key data

10.3.3.4 .pdf chart

29 30 31

32

33

Available related case studies:

Case studies still missing:

Based on older autoISF and older emulator versions, examples from emulator use can be found in case study 6.2, in case study 4.1 (last pages there), and case study 8.2

You can set up and tune the system for Full Closed Loop as described in previous sections.

Doing this by frequently analyzing screenshots that must be taken in real-time of the AAPS SMB tab is tedious, however.

34 35 36

More elegant and precise tuning can be done with a special evaluation software for the AAPS

37 logfiles, by using the **emulator.** It is described here: https://github.com/ga-zelle/APS-what-if

38 Documentation-in-English. There (under / Software) you find the files needed to download on your

39 PC, and the primary instructions:

In the emulator, you can see in tabular and graphical form, which autoISF component, and other settings, contributed to SMB values that determined the glucose curve.

In the following, we look into how you create your relevant data.

45 Application examples for tuning are given in associated case studies (we newer ones).

Note that the iOS based variants of autoISF for Trio or iAPS (oref loops for i-Phone) can not use the emulator. Refer to section 11.3.

Join https://discord.gg/n3tD5eXExC for seeking (and giving) help with the emulator set-up or use, and to exchange experience.

10.1 Installation of the emulator on your PC

Installation is a one-time process, and you best refer to the installation guide of the developer, here:

57 https://github.com/ga-zelle/APS-what-

42

43

44

46 47

48

49 50

51

52 53

54

55

56

if/blob/A3.2.0.4_ai3.0.1/Documentation%20in%20English/Installation%20Guide.pdf

59 Below, I attempt to spell out some additional details "for IT dummies" (like myself)

10.1.1 Create your PC folder structure

61 On your PC, create a folder "Logfiles_Emulator" with 3 sub-folders: "AAPS _logs", "Emulator" and

62 "Emulator_Studies"

63 64

65

66

67

68

70

71

72

60

AAPS_logs: Put all your stored AAPS logfiles into that sub-folder. My folder structure for Logfiles and Emulation on the PC has 3 monthly folders, plus one folder with data from previous months and years (which I am less likely to analyze).

The logfiles you ALWAYS must copy-in from your phone before they get automatically erased there after x days

(about 2 weeks, much shorter for 1-minute Libre3). 69

It is advisable to additionally store a pdf from **Nightscout**

Reporter in the file for every month, with daily glucose

charts, 24h scatter graph, etc. From it, you can much easier

find which days and times are of high interest to analyze

with the emulator.

73 74

Emulator: Neighboring "AAPS_logs" is the "Emulator" folder into which most downloads from the

developer's repo will go in section 10.1.2

76

78

75

77 Emulator_studies is a folder, where, for now, you should provide some sub-folders "Study_1", "Study_2"

etc.. Later, when you use the emulator, you will use these "addresses" for the program to dump results from

79 the emulation into.

80

81

10.1.2 Downloads

82 1).Download from: https://github.com/ga-zelle/APS-what-if/ software, the .config and four py. files.

83 To do this, you must (5x, one at a time): click on the name here, and for download here

Always make sure you use the files fro

the example above: These files will work with AAPS dev version 3.2.0.4 with autoISF version 3.0.1).

Always keep your AAPS x autoISF <u>and also</u> the emulator related files up-to-date. If you can't get your Emulator run, look in the Github repo whether there is a newer .py file (even with the same name; there may be updates that iron out problems that may have been reported only with certain AndroidOS versions etc etc))!!

2). Retrieve these 5 downloaded files on your **PC** (list of recent downloads), then:

3). Shift each of these 5 into your "Emulator" folder:

Note: Use 1minute:emulator_std.config in case you use Libre3 (1 min) as your CGM

4).From another section in Github, "Scan-APS-logfiles", fetch two more .py files by

99 repeat steps <u>1)-3).</u> for these two. They are from: <u>https://github.com/ga-zelle/Scan-APS-logfiles/blob/main</u>

5)-Retrieve in your PC's downloads folder, and move them into your emulator file (as already was included 2 pictures higher up).

- 106 10.1.3 Create an "emulation start button" on your desktop
- One of the files in your "Emulator" folder is "emulator_GUI.py"
- Create, in your Emulator folder, a **link to** it
- Drag that link onto your desktop
- Name it something like "Emulator_start": This is your **start button** for emulations on the PC
- 111
- 112 10.1.4 Other software requirements
- 113 Make sure you have **Notepad++** on your PC (see <u>section 10.2.1</u>).
- 114 QPython 3L will be needed on the smartphone, later (see section 11).
- 115
- 116117
 - 10.2 Analyzing loop decisions in logfiles
- 118 Instead of making many screenshots every 5 (or, w/ Libre3, every 1) minutes after meals, and analyzing them
- later, a much more elegant and powerful way to analyze your loop decisions (and how you might want to
- influence them with different settings, see <u>section 10.3</u> for this), is to use the emulator.

Sketch of Running the Emulator on a Windows PC

Github/ga-zelle / APS-what-if

121

122

- 124 10.2.1 Set up a "no change" .vdf file. 125 126 1). To do this, just open **Notepad++** (from list of all programs on your PC). 127 128 2). Name your file "noChange.vdf". 129 It is just empty in the lines that would define any change to be investigated. 130 Note: for "what-if" analysis, entries will be made (in a second .vdf later, see section 10.3) 131 The no change .vdf should look like something like this: C:\Users\\end\Documents\B_Looping\Logfiles_Emulator\Emulator_Studien\Studie_1\noChange.vdf - Notepad++ Bearleiten Suchen Ansicht Codierung Sprache Einstellungen Werkzeuge Makros Ausführen Plugins Fenster ? ; 🚔 등/😘 😘 😘 🐴 🔏 🐚 🖍 🕦 🐚 ⊃ C | ## 🐄 | 🖎 🤏 | 🖫 🖫 | 🖫 🖫 | 🖫 🚳 🚳 🐔 🖭 👁 | 💽 🗉 🕑 🗷 github-recovery-codes.txt 🗵 📙 AndroidAPS_2024-05-01_19-12-52_.5.zip.noChange.txt 🗵 📙 AndroidAPS_2024-05-01_19-12-52_.5.zip.orig.txt 🗵 🛗 noChange.vdf 🗵 132 133 Erase any entries after CR LF and also in lines 2 ff, if any 134 135 3). Store that "noChange.vdf" in your "Emulator studies" folder, on the top level, besides the single studies 136 folders → Dokumente → B_Looping → Logfiles_Emulator → Emulator_Studien → 137 ↑ Sortieren · ■ Anzeigen · 107 138 4). From that position, you always make a Name Änderungsdatum 139 copy, and paste into each Study_1 ...n: Studie_1 15.05.2024 18:17 Dateiordn 140 Studie 2 10.05.2024 21:58 Dateiordn Studie 3 18.05.2024 18:03 Dateiordn 141 See section 10.3.3.3. regarding this -> autoISF_factors_proforma,ods OpenDoci 15.05.2024 17:30 142 inoChange.vdf 07.05.2024 19:57 VDF-Datei 3x copy / paste 143 144 145 10.2.2 Locate relevant logfiles and prepare the Study in folder 146 1). Make sure you have the AAPS logfiles that you want to analyze in your Emulator Studies-I 147 148 Study n "AAPS logs folder" 149 150 2). In your "Emulator Studies" folder, create (or use a prepared) "Study n" sub-folder, with a 151 copied-in (not: moved!) your noChange.vdf (It must be in all Study n files). 152 153 154 10.2.3 Prepare your emulator run for Study n
- Now go to your PC **desktop**, and start the emulator by **just pressing the button "emulator start"** that you installed in step <u>10.1.3</u>

This opens a big dialogue box with 3 fields that you must fill in with the applicable path (without any quotation marks "..") from your Windows Explorer file system, best done via (3x) Browse button:

161 162

a) The top box marks the path to your current emulator project ("Studie 3" is my "Study n" where I want to store results)

164

163

b) The middle box marks the path to your current vdf (what kind of analysis; here:

165

"...noChange.vdf" = read-only. (For what-if, see section 10.3)

166 167 c) The third box marks the path to your AAPS logfiles you wish to look into. A good way to do this is:

Replace the time with an asterix * (this means you look at **all-day** data, in UTZ time).

168

Browse in your Windows Explorer to any logfile from the desired day (2024-05-09 in above ex-

169

ample)

170

Check whether this will work by pressing Show matches.

clicked the bottom left two boxes

171

172 You should see all logfiles from that day in a pop-up info box.

173

As I wanted to look at 11 am –midnight (for lunch and dinner related data), I:

174

175

176 177

178

179 180

181

182

183

after T (for time), I entered the desired time of analysis AFTER conversion into my local

time (Central EU summer time minus 2 hours = UTZ; so to look at 11 to midnight of my AAPS screen, I must enter here 09.00:00Z, and below it 22:00:00Z).

copied the date 2024-05-09 over the default date in the bottom right two data fields

Entries at the bottom are not mandatory, but when clicking these little boxes (bottom left) you can define a start and/or an end-point for analyzing, within the logfiles specified in the field above.

10.2.4 Run emulation

186

188

189

190

Now we are ready to go: Press "Run emulation"

This produces sometimes an error message (e.g. if you have a syntax error, or incompatible software versions: => seek help, in the Github materials provided by ga-zelle, or in Discord/Full-Closed-

Looping/emulate-aaps here: https://discord.gg/n3tD5eXExC

191192

After a short moment results should show up, which you can look into in a couple of ways. First you could have a quick look into the **.log** file to see whether the run had errors (see <u>section 3.8</u>)

193194195

198

199

200201

10.2.4.1 SMB tab contents in (date..) **noChange.txt** result file

This ...txt file basically gives you "all the SMB tab" infos, in a super long list (but without needing to make screenshots, in real-time, every 5 minutes.)

Search options help find what lines are of interest to your analysis:

By using the **search function** you can jump, in that super long list, to all places that e.g. have "autoISF" in it or "script debug", or "SMB disabled" (if you want to analyze when that happened). Precise spelling, as in this .txt (or in SMB tab) is of course important.

202 203

204

10.2.4.2 Table of results (...**noChange.csv** file)

205206

207

208

The .csv file in your project folder gives a tabular presentation of how parameters like bg, iob, iobTH, the various ISF contributors, bg target, insulinRequired etc. develop every 5 minutes, and what SMB size and %TBR resulted.

It is a vast table, so you may want to reduce it to something more "digestible", either after transfer to your standard calculation program (next section 10.2.4.3). Or you can also make settings to suppress information you are usually not interested in (or do not know how to interpret, anyways) under "Select

212 Graphics Options" when you open the emulator, before executing any analysis:

- 213 First, select your preferred way of outputting decimals (point or comma).
- Then select whether you want "All" possible outputs in the graph, or "Most" = all except those you tick "off" in the boxes for each output parameter.
- In case you would use "Some/just a few", you would have to tick those few you that do want to see, by ticking the corresponding boxes.
- 218 Recommendation is to look at (nearly) everything offered (as your default setting that you can leave 219 untouched in most of your emulator runs):

- It might be easier, to not deal with customizing the csv file, and rather copy the data into your favorite calculation program:
- 224 10.2.4.3 Analysis of the **noChange.csv** table in Excel or LibreOffice calc.

222

223

225

227

228

229

- 226 Best copy the entire table into a new .xls or .ods sheet, where you can:
 - add right next to the UTC (Unix Time Code) your corresponding "AAPS time"
 - For instance, adding +2/24 translates the UTC column into central European summer time column next to it (where currently a row of Z stands). Likewise, subtract like -5/24 from UTC for an US East Coast time scale.
- (Fun fact: Our oref loop stubbornly works on UTC, un-impressed by our folly to jump twice a year into or out of a local summer time, or to travel across time zones. If some data get lost in translation there, it is only to us, with our stupid time change. For the loop, its database (e.g. on insulin activity) remains unambiguously intact).

235236237	Highlight all time fields (both entire columns), and switch from hh:mm:ss format to hh:mm. (While the seconds are important for the loop's calculations, for our comparison with Nightscout or other charts and data, it is much easier without the seconds attached)
238	hide any column you find less important to look at for your intended analysis
239	That way, "boxes" (data fields) retain their original position in tables
240 241	Also, in case later you want to look into additional info, you can simply un-hide the relevant columns (or lines:.)
242	• hide lines (time segments) you find less important to look at for your intended analysis
243244245246247	Usually you will color mark where relevant SMBs were given, which of the ISFs (and underlying weights) was strongly contributing (note that this can be good or not good). Also where iobTH was exceeded, whether an Automation kicked in e.g. setting a TT, or when there were periods with zero insulinRequired.
248249	In $\underline{\text{section } 10.3.4}$ we present an extra tool that does a standardized table reduction and color marking for you!
250 251	You may be able to formulate a hypothesis or two, what settings (ISF_weights, iobTH%, SMB_range_extention, autoISFmax) should be changed for improvement (then go to $\underline{10.3}$)
252 253 254 255 256 257	10.2.4.4 Graph noChange.pdf After your emulation run, under Inspect Results, you can open the pdf file that is last in the results list offered.
258	This noChange.pdf is a chart that shows along the time axis (down), from right to left:
259	• Red: the bg curve
260 261	• Yellow: the bg target (note that I do no manual "EatingSoonTT" but for bg rises over +10 mg/dl I have an Automation that sets low TT for a couple of minutes)
262263	• Light blue corridor: Left edge is set iobTH, and bandwidth +30% (would be +20% at elevated TT)
264	Dark blue line: iob (exceeding twice the iobTH, with temp. SMB shut-off
265 266	As bg did not convincingly come down enough, one could hypothesize that iobTH should be elevated. ((But, again, this would have to be confirmed also with other kinds of meals)).
267	Thin yellow line: Insulin activity

- Green dotted line: ISF as would result from AAPS w/Autosens
- Green scatter points: autoISF ISF no Chage (lighter points) or what-if (darker points)
- Black line: Profile ISF

272

273 274

275

276277

278

279280

281

282283

284

285

- Gray scatter points: ISF weakened (to the left of black line) or strengthened (to the right)
- Orange line: cob=0 at all times (in FCL)

More see discussed together with (yourChanges).pdf in section 10.3.3.4

10.3 "What-if" analysis using the emulator

In the following you see an example how you can analyze a day of logfiles, and selecting the time span of interest, for instance 11-24 h to look at how autoISF managed lunch and dinner.

You will go through the emulator exactly as you already did in <u>section 10.2</u>. where you exclusively had the noChange.vdf on bord.

However, this time you focus on (yourChange).vdf, see below, <u>10.3.1.</u>.

286	Repeat, if you have two or more such vdf defined.									
287	(Just clear old results before pressing "execute analysis" each time.)									
288										
289	All results are automatically captured for all runs, all in your selected "Study_n" folder, together with									
290	the noChange results									
291	• Results files with noChange in their name are always your actual loop data									
292 293	• as opposed to results on "whatif, that contain name of the (yourChange).vdf in their file name see e.g. at around <u>line 380</u>									
294										
295296	How to proceed, step by step:									
297	10.3.1 Define your investigated changes in (yourChange).vdf (one,. or several)									
298										
299	1). Define for which one (I suggest max three) parameter(s) in your current profile settings you want to look									
300	into a different setting. Recommendation is to use a factor, like for example: current setting * 0.9 , or current									
301	setting * 1.2, and use that in your naming for this vdf file, too.									
302	You may want to consult APS-what-if / Documentation in English/Guide to VDF Files for the									
303 304	AAPS Emulator.pdf Access directly, or via section 3.8									
305	Within one study, you can make several emulator runs with several (yourChange).vdf files (all based on what									
306	really happened, as captured with the noChange.vdf).									
307	All results, like the csv results table, will appear then several times in your study file, only with different									
308	name endings as in the underlying vdf.									
309										
310	Example: I like to check in my actual data (they are in my noChange.vdf emulator run), in which time									
311	points the following parameter changes would make a (how) big difference in the loop's decision:									
312	• 20% higher bgAccel_ISF_weight to boost the first SMBs stronger: How would that tend to ramp									
313	up early iob; and might that get too strong in other parts of the data? Or does it bounce into a									
314	restriction (maxSMB size; autoISFmax; iobTH) that I might need to widen?									
315	• Doubling my cautiously set bgBrake_ISF_weight shall give me insight into the workings of that									
316	parameter (and whether using a much smaller weight than for bgAccel_ISF_weight is really									
317	what I should keep doing)									
318	 As my bg came down from a persistent high quite slowly, I elevate the dura_ISF by 20% 									
319										
320	Tuning advice: Actually, it would make more sense to first find my "optimal", maybe indeed									
321	elevated, bgAccel_ISF_weight. <i>Then</i> , in a <i>new</i> project_n+1, do (automatically) a noChange run									

322	with that, plus a (yourChange) run with the stronger dura weight, investigated on that basis.
323	Reason: 1) As we always say, better do only one change at a time. 2) A better job with bg control
324	via bgAccel_ISF will reduce the peak height and provide a different (easier) scenario for
325	dura_ISF to manage.
326	
327	2). Now, to write your (yourChange). vdf for the emulator (this is same procedure as you did in section
328	10.2.1 for the noChange.vdf):
329	
330	• just open Notepad++ (from list of all programs on your PC) to create a new vdf:.
331	Alternatively you can also take another pre-existing vdf file, copy it into your current
332	project, edit as desired, and give it a new name (re-name it)
333 334 335	Caution: Make absolutely sure (best by looking it up in the SMB tab, down in the profile set section) to spell each term exactly as your loop uses it (probably w/ decimal points, not comma)
336	•when you make one line per parameter (separating entries with spacers->):
337	<pre>profile->(parameter) ->->profile['(parameter)']*(factor)->->###(comment as you like)</pre>
338 339 340	The (yourChanges) .vdf should look like something like this:
	C:\Users\Bernd\Documents\B_Looping\Logfiles_Emulator\Emulator_Studien\Studie_3\1.2_bgAccel_2.0_bgBrake_1.2_dura.vdf = Notepad++
	itei Bearbeiten Suchen Ansicht Codierung Sprache Einstellungen Werkzeuge Makros Ausführen Plugins Fenster ?
	1.2_bgAccel_2.0_bgBrake_1.2_dura.vdf 🖸 📙 AndroidAPS2024-05-09_02-80-310.zip.orig.txt 🗵 🔛 2024-05-09T09-00-00Z.1.2_bgAccel_2.0_bgBrake_1.2_dura.txt 🗵 🔛 2024
	profile)> bgAccel_ISF_weight> profile['bgAccel_ISF_weight']*1.2> ###.20%.stronger.bgAccel_ISF@RB3 profile>> bgBrake_ISF_weight> profile['bgBrake_ISF_weight']*2.0> ###.100%.stronger.bgBrake_ISF@RB3 profile>> dura_ISF_weight>> profile['dura_ISF_weight']*1.2>> ###.20%.stronger.dura_ISF@RB3
341 342 343	CR = LF= Erase any entries after CR LF and also any entries in lines below, if any
344	• name your vdf (in example below: 1.2_bgAccel_2.0_bgBrake_1.2_dura.vdf)
345 346	• and store that in the folder for your current Study_n you are about to start (see my storage path C: Studie3vdf – Notepad++ in the top line:)
347	

10.3.2 Run the emulator with (yourChange).vdf

The "what-if" emulator run is done the same way as you did the noChange.vdf run (section 10.2), which had no (yourChange).vdf on bord => No surprise, running an emulation with only that noChange.vdf, yields same result in emul columns as is original columns (as we earlier had observed, section), - However, now:

the **(yourChange).vdf** must be loaded into the 2nd input field, where formerly you had the noChange.vdf.:

In the 3rd input field, give the path to your stored logfiles. A good way to do this is:

- Browse in your Windows Explorer to any logfile from the desired day (2024-05-09 in above example)
- Replace the time with an asterix * (this means you look at all-day data, in UTZ time). Check whether this will work by pressing Show matches . You should see all logfiles from that day in a pop-up info box.
- As I wanted to look at 11 am –midnight for lunch and dinner related data, I:
 - clicked the bottom left two boxes
 - o copied the date 2024-05-09 over the default date in the bottom right two data fields
 - o after T (for time), I entered the desired time of analysis AFTER conversion into my local time (Central EU summer time minus 2 hours = UTZ; so to look at 11 to midnight of my AAPS screen, I must enter here 09.00:00Z, and below it 22:00:00Z).

After making these entries, press Execute the Analysis, (evtl also Clear old Data) and then press Run Emulation, you can look the results up under "Inspect Results". First you could have a quick look into the .log file to see whether the run had errors (see section 3.)

10.3.3 Emulation results

375

376

377378

379

380 381

382

383

384

385

386

387

388 389 Your working directory C:/Users/Bernd/Documents/B_Looping/Logfiles_Emulator/Emulator_Studien/Studie_3 Reset All Browse Inspect Results Select Inputs Select Graphics Options Execute the Analysis *.log - Your file showing edits from the variant assignments C:/Users/Bernd/Documents/B_Looping/Logfiles_Emulator/Emulator_Studien/Studie_3/2024-05-09T09-00-00Z.1.2_bgAccel_2.0_bgBrake_1.2_dura.log *.csv - Your table comparing key values of original vs emulation $C:/Users/Bernd/Documents/B_Looping/Logfiles_Emulator/Emulator_Studien/Studie_3/2024-05-09709-00-00Z.1.2_bgAccel_2.0_bgBrake_1.2_dura.csv$ *.delta - Your table comparing bg deltas of original vs emulation $C:/Users/Bernd/Documents/B_Looping/Logfiles_Emulator/Emulator_Studien/Studie_3/2024-05-09T09-00-00Z.1.2_bgAccel_2.0_bgBrake_1.2_dura.delta$ *.orig.txt - Your short log of original analysis $C:/Users/Bernd/Documents/B_Looping/Logfiles_Emulator/Emulator_Studien/Studie_3/2024-05-09T09-00-00Z.orig.txt \\$ *.txt - Your short log of emulated analysis $C:/Users/Bernd/Documents/B_Looping/Logfiles_Emulator/Emulator_Studien/Studie_3/2024-05-09709-00-00Z.1.2_bgAccel_2.0_bgBrake_1.2_dura.txt$ *.pdf etc. - Your graphic file comparing key values of original vs emulation $C:/Users/Bernd/Documents/B_Looping/Logfiles_Emulator/Emulator_Studien/Studie_3/2024-05-09T09-00-00Z.1.2_bgAccel_2.0_bgBrake_1.2_dura.pdf$

All results from your (yourChanges).vdf emulator go automatically where the noChange.vdf results are already stored, in our example into the "Studie 3" file, below:

Besides the 1.2_bgAccel_2.0_bgBrake_1.2_dura.vdf case which I like to look into for the present high carb meal, I also prepared another vdf that investigates a factor 1.2 stronger pp_ISF and a weaker, factor 0.8, bgAccel_ISF (with the intention to test this, and a noChange (that ideally would already contain the conclusion on adapting the bgAccel_ISF_weight*), on a low carb meal later.

* Note the challenge here is to iterate between the typical meals of your personal spectrum to find **one** set of settings that work good-enough **for all** of them.

	Studie_3	Studie_3 durchsuchen				
☐ 🖺 😢 🗓 🔨 Sortieren 🗸 🧮 Anzeigen						
Name	Änderungsdatum	Тур	Größe			
№ 2024-05-09T09-00-00Z .noChange.pdf	15.05.2024 17:17	Adobe Acrobat-D	77 KB			
2024-05-09T09-00-00Z .noChange.csv	15.05.2024 17:17	Microsoft Excel C	51 KB			
≧ 2024-05-09T09-00-00Z .noChange.log	15.05.2024 17:17	Notepad++ Docu	35 KB			
≧ 2024-05-09T09-00-00Z .noChange.txt	15.05.2024 17:17	Notepad++ Docu	281 KB			
≧ 2024-05-09T09-00-00Z .orig.txt	15.05.2024 17:17	Notepad++ Docu	281 KB			
№ 2024-05-09T09-00-00Z .1.2_pp_0.8_bgAccel.pdf	15.05.2024 17:16	Adobe Acrobat-D	78 KB			
2024-05-09T09-00-00Z .1.2_pp_0.8_bgAccel.csv	15.05.2024 17:16	Microsoft Excel C	51 KB			
2024-05-09T09-00-00Z .1.2_pp_0.8_bgAccel.log	15.05.2024 17:16	Notepad++ Docu	57 KB			
2024-05-09T09-00-00Z .1.2_pp_0.8_bgAccel.txt	15.05.2024 17:16	Notepad++ Docu	281 KB			
2024-05-09T09-00-00Z.1.2_bgAccel_2.0_bgBrake_1.2_dura.csv	17.05.2024 21:29	Microsoft Excel C	51 KB			
2024-05-09T09-00-00Z.1.2_bgAccel_2.0_bgBrake_1.2_dura.log	17.05.2024 21:29	Notepad++ Docu	66 KB			
2024-05-09T09-00-00Z.1.2_bgAccel_2.0_bgBrake_1.2_dura.pdf	17.05.2024 20:40	Adobe Acrobat-D	78 KB			
2024-05-09T09-00-00Z.1.2_bgAccel_2.0_bgBrake_1.2_dura.txt	17.05.2024 21:29	Notepad++ Docu	282 KB			
1.2_bgAccel_2.0_bgBrake_1.2_dura.vdf	17.05.2024 20:38	VDF-Datei	1 KB			

10.3.4(yourChange).txt: "what-if" impact on loop decisions (as in SMB tab)

393 394

The **noChange.txt** has all the info your series of SMB tabs had that day.

How to search in this vast list is shown elsewhere (see <u>section 10.2.4.3</u>).

396397

398

399

400

401

395

Likewise, the **(yourChanges).txt** gives *for each loop decision* in all detail how and why each single decision *would have* changed with the different parameter inputs you are checking out here

In the two (yourChanges) examples here, , it was a check on the difference

- a 20% stronger pp_weight and 20% weaker bgAccel_weight
- a 20% stronger weight for both, bgAccel_ and dura_ISF, and a doubling of bgBrake_weight
- 402 would make.

403

404

- Note that all these "what if" data can only give rough hints, notably about **the first** greater change that you
- would see with the investigated changed setting. So it works quite well for our main problem in FCL,
- investigating how to ramp up iob quickly after detection of acceleration.
- Note that any relevant change would put your bg curve on a different trajectory, so that would influence *all*
- 408 *following* results. Therefore, what you get here is **not** a complete modelling how your bg would have
- 409 developed in the alternative scenario.
- 410 But you can investigate in which stages the parameter(s) you are looking at in your current "what-if" had big
- 411 influence, and in which direction the changes would go. (see also charts shown in section 10.3.3.4).
- 412 Analyzing how to safely come down from a high glucose plateau while limiting hypo danger towards the end
- 413 of digestion is also to some extent possible.

414 415

416

- A good other way to employ the what-if analysis is real time, on your smartphone, using speech synthesis (see section 11): Then you get real-time info, as to exactly when a significantly different proposal would
- emerge, and can decide (and watch!) real-time whether to follow the new idea and not was probably better.

418

- Observe that a setting change must work well for you
- not just in one point of time, and
- not just for one kind of meal,
- but you must look at all time slots in the investigated meal, plus analyze with the same tool a totally different
- 423 meal within your usual spectrum, how things work out there

425	10.3.3.2 Tabular results
426	
427	A) .csv results table and spreadsheet copies of it
428	
429	The noChange.csv table gives all relevant data. Besides development of bg and iob you see the calculated
430	insulinRequired in each loop decision, and how each of the autoISF categories contributed to the decision
431	(notably regarding SMB size).
432	
433	Note that the "acce_ISF" results are only in case of positive acceleration (that is our main focus)
434	driven by the $bgAccel_ISF_weight$ setting. (These are all positions > 1.0 in the "acce ISF" columns).
435	
436	In case of negative acceleration (decelerating rise, positions < 1.0 in the "acce ISF" columns),
437	bgBrake_ISF_weight is applied. As discussed in section 4.4, bgBrake_ISF might be most
438	important (and interesting to analyze) in slowly resorbing meals.
439 440 441	Note: maxBolus=0 means in this table that SMBs were not capped by maxBolus.
442	
443	The (your changes).csv shows in detail how every single loop decision would be influenced by the different
444	settings you are investigating.
445	To inspect that huge table, click on the Z behind the start UTC time entry (see black box in the Z column of
446	the table, next page).
447	If you like to see the bg in each screen, too, go 3 or 4 columns farther to the right with your black
448	box.
449	Then, go to window/fix. Now you can scroll through the data and always see headline and time (or time and
450	bg level).
451	To further ease analysis, feel free to temporarily erase (hide) any columns that you (think you) do not
452	need for the intended analysis. More suggestions see in section 10.2.4.2

Still, the csv tables are overwhelming. You could proceed **in either of two** directions now:

456 457

458

459

460

461

462

463

464

465

A) Convert both (or all 3) csv files into one table in Excel or into Libre office calculator. Hide columns (and eventually also lines) that are of no particular interest for your analysis. Mark differences between noChange and (yourChanges) column data with color, add extra columns with additional calculations ...

This route is good to compare quantitative impacts of autoISF categories in critical time points.

B) For the core data relevant to assessing your autoISF settings, there is an extra tool for convenient analysis - see the following section 10.3.3.3

That tool is quite a bit of work to set up. Decide for yourself whether you do it, or whether you rather work with extracting the csv table into Excel (A), and work freely from there.

- 466 10.3.3.3 Automated extraction from tabular results
- 467 Decide for yourself, whether you rather go from the csv results table into .xls and produce what you want to 468 see there for yourself.
- 469 With a bit of extra set-up effort (next 4 pages) you can install an adjunct tool that will always produce the nice 470 graph for you as shown on the end of this section 10.3.3.3:

472 1).autoISF_factors_proforma.ods is provided as an extra tool that you download from here:

473 474

471

Put that file on your PC one level above the single files for all your studies:

- 2). Now, if we want to use this tool on the two csv files of our Studie_3 file, we must proceed as follows (for *each* of the two .csv files, *separately*):
- 478 Click on the .csv file and open in Libre office calculator.
- 479 Make sure the time column is set to US_English:

3). Now start, in Libre office calculator, the $\,$ autoISF_factors_proforma.ods \dots

This turns the first 30-some lines of your csv table (left side) into a form in which important effects are highlighted in color, and formatting is improved:

Now, you want this for the entire table.

482

488 4).In the autoISF_factors_proforma table, highlight 20 or more lines (not including the first or last), and mouse right hand/insert above ...

		rs_proforma <u>A</u> nsicht					Da <u>t</u> en	Fen <u>s</u> te	r <u>H</u> ilfe										4
	· 🛅 •	PDF	-	7 (6	N W			<u>_</u>	.	· 🗇 •	Abc	⊘ ' №	Y		g E		A :U	: 6	P.
-		PDF			5 00						~				iii	1 1		0	
Arial		✓ 10	~	a	α	<u>a</u>	<u>a</u> -	= -		= =		🕌	† †	, J	%	0,0	.0 3	000	
AM.	134	~ %	2	=	0,026	5													П
	A	R	-0	P	Q	R	5	т	U	V	W	Х	Y	7	AA	AB	AC		
		-		auto	final	dura		lin.fit		parab	parab	parab	parab	auto	acce	bg		d	
		UTC		sens	ISF	min-	dura	min-▶	lin.fit	fit	fit	fit	fit	sens	ISF	ISF		IS	
id	I	ime	act	orig	orig	utes	avg.	utes▶	delta	correl	durat	last-∆	next-∆	emul	emul	emul	emul e	e	
	0	10:04:16	0	1	0,27	10	103,3	20	2,3	1	15	-3	-8	1	-0,1	0,96	1		
	1	10:09:15	0	1	-,	15	103,3	25	1,7	0,83	25	-1,14	-2,57	1		,	1	_ []	
٠	2	10:14:14	0	1	-	20	103,4	10	1	0,84	15	1,8	3,8	1		-	1		
_	3	10:19:15	0	1	- 1	25	104	10	1.5	0,99	15	2,6	3,6	1	- 1		1 04		
٠	4 5	10:29:16 10:34:17	0	1 1		35 0	105 117	25 30	1,5 2.2	0,96	25 15	1,5 7.2	1,53 11,2	1		1.01	1,04		
	6	10:34:17	0	1	.,	5	123,5	35	2,2	0,98	15	0,4	-4,1	1			1, 10		
	7	10:49:14	0	1	0.7	15		40	2.7	0.98	20	-2.37	-6.09	1	0,00		1		
	8	10:54:13	0	1		0	116	70	1,8	0,98	25	-5,89	-9,53	1		-	1		
	7 11 (-	1	0,99	5	115,5	15	-3	0,92	20	-3,57	-4,28	1	0,98	1,01	1		
	<u>Z</u> ellen for	matieren		1	1,26	10	114,7	10	-1,5	0,96	15	-0,8	1,2	1	1,26	1	1		
	Zeile <u>n</u> höł	ne		1	1,26	15		25	-1,7	0,94	20	2,77	5,49	1	1,26		1,08		
4	Optimale	Zeilenhöhe.		1	1,08	20	115,8	10	2,5	0,88	25	3,39	5,35	1		1,01	1,02		
+	<u> </u>			_ 1	1,1	10	119,3	15	3,1	0,95	15	3,6	4,1	1		-	1,1		
	Zeile(n) o	berhalb <u>e</u> inf	ügen	1	1,65	0	130 141	10 10	9.1	1	15 20	7,4	10,4 13,84	1	-,	-,	1,14		+
	Ausgewä	hlte Zeilen <u>l</u> ö	ische		1,81 1,81	0	141	10	9,1	1	20	10,7 10,7	13,84	1	1,81 1,81		1,22		Ė
_	_			1	.,	0	141	5	11,4	1	20	10,7	13,84	1	- 1		1,22		
⊗	Zeileninn	alte lö <u>s</u> chen.	••	1	- 1	0	149	5	8.1	0.99	20.1	10.03	11.39	1	-,		1.16		
	Ausblend	en		1	0,4	5	149	25	7,1	1	15	1,05	-4,39	1		-	1		
	Ein <u>b</u> lende			1	0,57	10	148,7	40	5,4	0,99	20	-2,41	-6,96	1	0,5	1,06	1		
	22.			1	1,11	20	146,6	10	-1,5	1	14,9	-2	-3,01	1	0,88	1,06	1		
×	Auss <u>c</u> hne	eiden		1	1,1	25	145,7	10	-3,5	0,99	15	-4,6	-6,6		-,	-1	1		
탈	<u>K</u> opieren			1	0,86	5	138,5	10	-5	1	24,9	-5,53	-7			,	1		
	- •			1	1,22	10	136,7	15	-4,4	1	15	-3,4	-2,4	1	-,		1		
	E <u>i</u> nfügen	•		1	1,21	10 15	136,7 136	5 5	-3 1	0.99	15 15	-3,4 0.6	-2,4 3,6	1	-,		1		
_	In <u>h</u> alte ei	nfügen			0,67	15		35	-3	0,96	30	-1,64	-1,07	1	-,	-	1		
	28	12:24:15	0	1	1,27	25		40	-1,8	0.99	15	6,4	11,4	1	2,04	-	1		
3	29	12:29:15	0	1		5	140,5	15	4,3	0,99	15	6	7,5				1,1		
	30	12:34:15	0	1		10		20	2,5	0,93	15	-3,2	-8,7				1		
,	31	12:39:14	0	1	0,25	0	122	10	-10,4	1	15	-15,8	-26,3	1	-1,31	0,97	1		
5	32	12:44:15	0	1	-,	0	108	10	-15	0,99	15	-16,61	-21,11	1	-,		1		
7		Minimum:		1	-,									1	-,	-,	1		
3		Maximum:		1	1,81									1	2,04	1,06	1,22	_	
)		Totals:																	
40	H you	r_title gi	raphs	4														_	

- Do this as often as you need to create the number of lines that your emulated csv file comes with.
- 493 If you ended up with too many lines, erase the superfluous number (any four, in the example):

- 5). Then just copy it in, by selecting all data lines in the emulated csv, and pasting (paste special, values only) into box A4 of your "elonged" autoISF_factors_performa.ods.
- 6). The bottom tab "your_title" should be re-named by you, best with day of log you analyze, and your whatif parameters (so, the name of your csv file could be put in here)

Now you have a table with optimized lay-out that incorporates key data from both your no change AND of your investigated changes.csv files.

A similar table is available on the (i-)phone if you use the autoISF dev variant of iAPS or Trio (see section 11.3)

7). A super neat extra feature is already pre-programmed, which you can see if you click on the bottom **tab** "**graphs**".

The top graph is the bg curve (the actually seen bg).

Note that for the what-if no bg development over the time range is available. (The noChange one is also given there).

The bottom graph (do one for each, the noChange or the (yourChanges) case) shows the amplification factors coming from each autoISF category, and the overall resulting ISF amplification.

You probably have to widen the time scale (double click on the time axis, and type the desired time span (min and max UTC)(and spacing of data points, 00:30:00 or 00:15:00) into this box:

518	In the given example above, the 2.5 hours were not enough yet to analyze this 10:30 UTC (12:30 AAPS)							
519	lunch; we need to look until bg is near target (hopefully before dinner starts).							
520								
521	10.3.3.4 Chart coming with the emulator							
522								
523	In case you find the extra steps described in the preceding section "too much", also the emulator offers one							
524	chart (the pdf offered at the bottom of the screen as shown below the " $\underline{10.3.3}$ Emulaton results" headline).							
525								
526	First look at the initial bg rise in the noChange.pdf chart (emulation results from your noChange.vdf run),							
527	and see how bgAccel_ISF and pp_ISF acted, or could have acted in improved ways.							
528	Then look into in (yourChange).pdf to see potential effects (or what other change to try). (Actually, you							
529	probably will have to go into a detailed analysis of several lines and columns of the tables as discussed in							
530	sections <u>10.3.3.2</u> and <u>10.3.3.3</u>).							
531								
532	Note that ideally we want FCL coverage of our entire "normal day" meal spectrum by one set of							
533	settings. So, not much is gained if you put a lot of effort in optimizing FCL settings for one							
534	meal.							
535								
536	You will need iterations. Do such analysis for two or three very different meals that you wish the							
537	algorithm to automatically handle. See $\underline{\text{section 4.2}}/\underline{4.3}$ on how meals with very different carb loads							
538	might benefit or also suffer from too aggressive or to mild (category)_ISF_weights you could set.							
539								
540	The initial iob received might be limited by allowed SMB sizes, autoISFmax, or the (dynamic!) iobTH. You							
541	will have to look into the data table to find out about this (a quick orientation - notably regarding the light							
542	blue iobTH band, see next page - is also possible in the pdf result files you have in your project file (project							
543	file example "Studie 3" in 2 nd chart under the <u>10.3.3</u> . headline).							
544								
545	Only once you found OK weights for bgAccel- and pp_ISF_weights, does it make sense to go tune the							
546	dura_ISF_weight. 12:00 – 12:45 UTC in above graph, the resulting effective ISF is dominated by dura_ISF.							
547	Just judging from the picture, a stronger weight might be worth trying. However, we really need to see the							
548	insulinRequired calculation and the further development because impatience about bringing bg values down							
549	faster too often results in hypoglycemia later.							
550								
551	The noChange.pdf is a chart that shows along the time axis (down), from right to left:							
552	Red: the bg curve							
553	 Yellow: the bg target (note that I do no manual "EatingSoonTT" but for bg rises over +10 mg/dl 							
554	I have an Automation that sets low TT for a couple of minutes)							

- Light blue corridor: Left edge is set iobTH, and bandwidth +30% (would be +20% at elevated TT)
 - Dark blue line: iob (exceeding twice the iobTH, with temp. SMB shut-off

As bg did not convincingly come down enough, one could hypothesize that iobTH should be elevated. ((But, again, this would have to be confirmed also with other kinds of meals)).

• Thin yellow line: Insulin activity

- Green dotted line: ISF as would result from AAPS w/Autosens
- Green scatter points: autoISF ISF no Change (lighter points) or what-if (darker points)

Foreseeably, this is the strongest difference between our noChange (left) and 120% bgAcel_ISF_weight (right) in the picture below. (Note the red bg curve is *both times* the really seen bg, because the what-if case only looks at each single loop decision). The first (->) time the dark green dot is far to the right, this *would* get the bg down, we *would start to see* a (<-) bg lowering effect, shifting the red curve to the left

- Black line: Profile ISF
- Gray scatter points: ISF weakened (to the left of black line) or strengthened (to the right)

Regarding the other changed parameters: Stronger dura_ISF would suggest more insulin towards the end of plateaus; this should have helped in the 1st plateau (red curve, top right quadrant of the picture). However, same setting would have to work also on 2nd plateau; the chart cuts off there, so too early to see whether a hypo danger might result.

Effect from doubling the bgBrake_ISF effect are hard to evaluate. Better probably to look in .csv tables, or run a separate emulation for that change only.

Always check for 2 or 3 kinds of your meals whether the "new" parameter settings really are on average better. (See negative example in <u>case study 8.2!</u>)

Part of both above shown charts (left side of each, with blue peaks) was cut out.....

(Unfinished / to be explained later) (...note: yourChanges = 1.2_bgAccel_2.0_bgBrake_1.2_dura)

Please share your experiences with the emulator in Discord / Full-Closed-Looping / HOW TO / emulate-aaps, at: https://discord.gg/n3tD5eXExC