Théorie des langages et des automates 2020/2021

Série 1

Exercice 1 (Lemme de Levi)

Soient les 4 mots a, b, c, d sur un alphabet X vérifiant ab=cd.

- 1. Montrer que:
 - $\sin |a| = |c|$ alors a = c et b = d.
 - si |a|<|c| alors a est facteur gauche de c (et d est facteur droit de b)
 - si |a|>|c| alors c est facteur gauche de a (et b est facteur droit de d)
- 2. En déduire une propriété de simplification.

Exercice 2

Montrer que si 3 mots vérifient u²v²=w² alors uv=vu.

Exercice 3

Sur l'alphabet $X=\{a,b,c,d\}$ un mot w est dit parfait si et seulement si w=d ou w=aubvc, u et v étant parfaits.

- 1. Montrer que si w est parfait alors $|w|_a = |w|_b = |w|_c = |w|_d 1$
- 2. Montrer qu'aucun facteur gauche propre d'un mot parfait n'est parfait.

Exercice 4

Déterminer les automates finis déterministes reconnaissant les langages suivants où $X=\{a,b,c\}$.

 $L_1 = \{ w \in X^* | w \text{ contient un facteur abc} \}$

 $L_2=\{w\in X^*|\ w\ \text{se termine par aabb}\}$

Exercice 5

Soit l'alphabet $X=\{0,1\}$

- 1. Construire un automate fini déterministe reconnaissant le langage L de l'ensemble des représentations binaires des nombres entiers naturels n qui peuvent s'écrire sous la forme 3k+1. Formellement: $L=\{w\in X^*|\ n(w)=3k+1,\ k\in N\}$ où w est la représentation binaire de n(w).
- 2. En déduire une expression générale du langage L.

Exercice 6

1. Soit M l'automate fini non déterministe suivant: $(\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\})$ avec

```
\delta(q_0,a) = \{q_1,q_2\}
```

$$\delta (q_1,a) = \{q_0,q_1\}$$

$$\delta (q_2,a) = \{q_0,q_2\}$$

$$\delta (q_0,b) = \{q_0\}$$

$$\delta (q_1,b) = \emptyset$$

$$\delta (q_2,b)=\{q_1\}$$

Trouver un automate fini déterministe acceptant L(M).

2. Soit M' l'automate fini déterministe équivalent à M.

Trouver la grammaire régulière qui accepte le même langage que L(M').