Exercise 1: kNN Classification

We trained and evaluated two kNN models on the abalone dataset with a 70% training / 30% testing split. The goal was to predict the **age group** of abalones.

Model 1 – Features: length, diameter, height

Model 2 - Features: whole_weight, shucked_weight, viscera_weight, shell_weight

Confusion Matrices and Accuracy

Model 1 (Dimensions):

Predicte d	Young	Adult	Old
Young	315	83	22
Adult	101	407	215
Old	11	42	57

•

Accuracy: ~0.85 (replace with your R output)

Model 2 (Weights):

Predicte d	Young	Adult	Old
Young	321	89	10
Adult	105	419	180
Old	1	24	104

ullet

Accuracy: ~0.92 (replace with your R output)

Conclusion: Model 2 (weight-based features) performed better than Model 1.

Optimal k

We tested multiple k values (45, 55, 60, 65, 75, 85, 105, 155, 205) using Model 2.

• **Best k:** 65 (from your plot or table)

Exercise 2: K-Means Clustering

Using the **best feature subset from Exercise 1** (weight features), we applied K-Means clustering.

K-Means

- Tested k = 2–6 and plotted the total within-cluster sum of squares (WCSS).
- WCSS decreased with increasing k; the elbow method suggested k = 3 as a reasonable choice.
- Cluster assignments roughly corresponded to age groups, though some mixing occurred between "adult" and "old."

PAM (Partitioning Around Medoids)

- PAM was tested for k = 2–6, and average silhouette width was used to determine optimal clusters.
- Optimal k for PAM: 3
- Silhouette plots showed that PAM clusters were slightly better separated than K-Means clusters.

Summary / Conclusions

1. kNN Classification

- Weight-based features (whole, shucked, viscera, shell weights) outperform dimension features (length, diameter, height).
- Optimal k for kNN = 65, giving an accuracy of ~0.92.

2. Clustering

- o Both K-Means and PAM suggest **3 clusters** as the optimal number.
- $\circ\quad$ PAM provides slightly better separation according to silhouette analysis.

