Потоци

Трифон Трифонов

Функционално програмиране, 2017/18 г.

30 ноември 2017 г.

Отложени операции

- Има случаи на тежки операции, които могат да отнемат много време за изпълнение
- Удобно е да имаме механизъм да подготвяме операциите и да ги изпълняваме само при нужда

Дефиниция (Обещание)

Функция, която ще изчисли и върне някаква стойност в бъдещ момент от изпълнението на програмата. Нарича се още *promise* и *отложена операция*.

Изчислението на дадено обещание може да стане

- паралелно с изпълнението на основната програма (асинхронно)
- при поискване от основната програма (синхронно)

Примитивни операции force и delay

- (delay<израз>)
- връща обещание за оценяването на <израз> (специална форма)
- (force<обещание>)
- форсира изчислението на <обещание> и връща оценката на <израз> (примитивна функция)
- Примери:
 - (define bigpromise (delay (fact 30000)))

 - (define error (delay (car '())))
 - (force error) → Грешка!
 - (define undefined (delay (+ a 3)))
 - (define a 5)
 - (force undefined) \longrightarrow 8

All you need is λ — force и delay

- $(delay < uspas >) \iff (lambda () < uspas >)$
- (force <обещание>) ← (<обещание>)
- Не съвсем!
 - (define bigpromise (delay (fact 30000)))
 - (force bigpromise) \longrightarrow 2759537246...
 - (force bigpromise) \rightarrow 2759537246...
 - Обещанията в Scheme имат страничен ефект: "мемоизират" вече изчислената стойност

Потоци в Scheme

Дефиниция (Поток)

Списък, чиито елементи се изчисляват отложено.

По-точ но: Поток е празен списък () или двойка (h . t), където

- h е произволен елемент (глава на потока)
- t е обещание за поток (опашка на потока)

В R^5RS няма вградени примитиви за работа с поток, но можем да си ги дефинираме.

- (define the-empty-stream '())
- (define (cons-stream h t) (cons h (delay t)))
- (define head car)
- (define (tail s) (force (cdr s)))
- (define empty-stream? null?)

Примери

- (define s (cons-stream 1 (cons-stream 2 (cons-stream 3 the-empty-stream))))
- (head s) \longrightarrow 1
- (tail s) \longrightarrow (2 . #<promise>)
- (head (tail s)) \longrightarrow 2
- (head (tail (tail s))) \longrightarrow 3
- (define s2 (cons-stream 3 (cons-stream b the-empty-stream))) → Грешка!
- Защо?
- cons-stream трябва да оценява само първия си аргумент!
- cons-stream трябва да е специална форма

Дефиниране на специални форми

- (define-syntax <символ> (syntax-rules (){(<шаблон> <тяло>)}))
- дефинира специална форма <символ> така, че всяко срещане на <шаблон> се замества с <тяло>
- define-syntax има и други, по-сложни форми
- Повечето специални форми на Scheme могат да се дефинират с define-syntax (за справка: R⁵RS)

Примери:

```
(define-syntax delay
  (syntax-rules () ((delay x) (lambda () x))))
(define-syntax cons-stream
  (syntax-rules () ((cons-stream h t) (cons h (delay t)))))
```

Конструиране и деконструиране на потоци

Задача. Да се построи поток от целите числа в интервала [a;b]. **Решение**:

Задача. Да се намерят първите п елемента на даден поток.

Решение:

```
(define (first n s)
  (if (or (empty-stream? s) (= n 0)) '()
        (cons (head s) (first (- n 1) (tail s)))))
```

Приложение на потоци

Задача. Да се намери първата позиция в поток, на която има елемент с дадено свойство.

Решение.

Задача. Да се намери второто по големина просто число след 10000 със сума на цифрите кратна на 5.

Решение.

Безкрайни потоци

Отлагането на операции позволява създаването на безкрайни потоци!

Примери:

```
(define (from n) (cons-stream n (from (+ n 1))))
(define nats (from 0))
```

Задача. Да се генерира потокът от числата на Фибоначи.

Решение:

```
(define (generate-fibs a b)
  (cons-stream a (generate-fibs b (+ a b))))
(define fibs (generate-fibs 0 1))
```

- Функциите from и generate-fibs наричаме генератори
- Казваме, че потоците nats и fibs са индиректно дефинирани

Функции от по-висок ред за потоци

```
Трансформиране (тар)
(define (map-stream f s) (cons-stream (f (head s))
                           (map-stream f (tail s))))
Филтриране (filter)
(define (filter-stream p? s)
  (if (p? (head s))
    (cons-stream (head s) (filter-stream p? (tail s)))
    (filter-stream p? (tail s))))
Комбиниране (zip)
(define (zip-streams op s1 s2)
  (cons-stream (op (head s1) (head s2))
               (zip-streams (tail s1) (tail s2))))
```

Директна дефиниция на потоци

```
Можем да дефиниране на потоци с директна рекурсия!
(define ones (cons-stream 1 ones))
                    Построяване на nats:
(define nats (cons-stream 0 (map-stream 1+ nats)))
(define nats (cons-stream 0 (zip-streams + ones nats)))
                     Построяване на fibs:
(define fibs (cons-stream 0
             (cons-stream 1
              (zip-streams + fibs (tail fibs)))))
```

Решето на Ератостен

Алгоритъм за намиране на прости числа

- Започваме със списък от последователни цели числа
- Докато не стигнем до края на списъка, повтаряме:
 - ullet Намираме следващото незадраскано число p, то е просто
 - Задраскваме всички следващи числа, които се делят на р

Ще реализираме решетото над потенциално безкраен поток от числа: