UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: FYS 1120 Elektromagnetisme

Eksamensdag: 4. desember 2013 Tid for eksamen: 14:30 (4 timer) Oppgavesettet er på 2 sider

Vedlegg: Liste over likninger (3 sider)

Tillatte hjelpemidler: Angell/Øgrim og Lian: Fysiske størrelser og enheter

Rottman: Matematisk formelsamling Elektronisk kalkulator av godkjent type

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1

a) Beskriv matematisk det elektriske feltet fra en punktladning, og definer alle symboler som benyttes.

En tynn rett stav med lengde 2a og jevnt fordelt ladning Q er plassert på x-aksen som vist over.

- **b)** Finn uttrykk for E-feltet i punktet x = a + r.
- c) Plasser en ladning q i punktet x = a + r, og beregn kraften på ladningen i det tilfellet at q = Q = 1 C, og a = r = 10 cm. Finn et analytisk uttrykk for kraften når r >> a. Kommenter svaret.
- d) En plate med konstant tykkelse 2a, og stort areal har uniform ladningstetthet per volum, ρ . Finn uttrykk for E-feltet utenfor og inne i platen.

Oppgave 2

Beskriv/forklar med ord og figur (0.5 - 1 side per deloppgave);

- a) Hall effekten.
- **b)** Virkemåten til en transformator

Oppgave 3

En kvadratisk ledningssløyfe med sidekant a = 1.0 cm er plassert i avstanden a fra en uendelig lang og rett ledning, se figuren over. Den rette ledningen fører en konstant strøm $I_0 = 1.0$ A.

a) Beregn den magnetiske fluksen gjennom sløyfen, og vis at svaret blir $\Phi_B = (\mu_0/2\pi) I_0 a \ln 2$.

Strømkilden slås av ved tiden t = 0, og I avtar eksponensielt til null med tidskonstant $\tau = 1.0 \mu s$. Dvs. for $t \ge 0$ er $I(t) = I_0 \exp(-t/\tau)$.

- **b**) Beregn strømmen I' indusert i den kvadratiske sløyfen som funksjon av tid. Sløyfen har resistans $R = 1.0 \Omega$.
- c) Finn størrelsen på kraften som virker på sløyfen rett etter t = 0. Forklar også kraftens retning.

Oppgave 4

Figuren viser en krets bestående av et batteri med elektromotorisk spenning $\mathcal{E} = 36 \text{ V}$, to motstander med resistans $R_0 = 50 \Omega$ og $R = 150 \Omega$, en spole med induktans L = 4.0 H, samt en bryter som brått slutter kretsen ved tiden t = 0.

- a) Hva er strømmen i kretsen rett etter t = 0? Grunngi svaret. Hva er da spenningen V_{ab} mellom punktene a og b, og spenningen V_{bc} mellom b og c?
- **b)** Etter lang tid stabiliseres strømmen i(t) til verdien I. Hvor stor er I, samt de stabiliserte verdiene for V_{ab} og V_{bc} ?
- c) Finn uttrykk for hele strømforløpet, i(t), samt $V_{ab}(t)$ og $V_{bc}(t)$. Skisser tidsforløpene grafisk.