Applied Analytics Alm

Text Analytics & Topic Analysis

Terminology
History
Linguistics
Statistical Machine Learning

STAT 656 – Applied Analytics using SAS[©] Enterprise Miner™

Week 8

✓ Topics – Week 8

WEEK	DATE	TOPICS	ASSIGNMENT (due following week)		
1	May 21	Introduction to Data Mining, Python and SAS Enterprise Miner	HW1: RIE & Linear Reg with Diamond Price Data		
2	May 28	Data Preprocessing & Linear Regression	HW2: Linear Reg with Oil Production Data & 70/30 Assessment		
3	June 4	Logistic Regression, The Confusion Matrix and Model Metrics	HW3: Logistic Regression with Fraud Detection		
4	June 11	Decision Trees & Cross Validation	HW4: Cell Phone Activity Classification		
5	June 18	Random Forests	Midterm Exam – Take Home		
6	June 25	Neural Networks	HW6: Optional: Apply Keras to building a Neural Network		
7	July 2	Genetic Algorithms for Advanced Feature Selection	HW7: Optional: Apply GA Selection to Diamond Prices		
8	July 9	Speaker (6-7) & Introduction to Text Analytics (7-9)	HW8: Analysis of Wine Reviews in SAS EM and Python		
9	July 16	Capstone Updates (6-7) & Topic Analysis (7-9)	HW9: Topic Analysis		
10	July 23	Degree Plans (6-6:30) & Sentiment Analysis (6:30-9)	HW10: Sentiment Analysis		
11	July 30	Final Exam & Web Scraping	Final Exam Open – Return Thursday, Aug 6		
12	Aug. 10	Review of Final Exam & Grades	This is an optional Q&A Session		

Text Analytics Topic Analysis

✓ WEEK 8 LEARNING OBJECTIVES – Able to...

Understand unsupervised topic analysis in EM & Python

Practice Topic Analysis using NTHSA DATA

Week 7 **Optional Assignment GA Feature Selection**

STAT 656 – Applied Analytics using SAS[©] Enterprise Miner™

✓ Optional Assignment – Feature Selection

Data: diamonds_train (Excel File) Select the best features then build a linear regression model using these features. Compare GA selection to Stepwise, the Full Model, and Lasso or Regularized Regression

Data Dictionary: DiamondsDictionary(PDF file) The target is an interval attribute labeled "price". The predictors consist of 6 interval features and 3 nominal features.

Hold-Out Sample: diamonds_validation(Excel file) File contains the same columns as the training data.

Assignment: This is an optional assignment, but since GA Selection is not in SAS EM, you can only use Python for this assignment.

✓ Python Template for GA Features with Interval Target

Data: OilProduction(Excel File) Data on the oil production from fracking wells.

Data Dictionary: OilProduction_Data_Dictionary(PDF file) The target is an interval attribute labeled "Log_Cum_Production". The predictors consist of 10 interval and 2 nominal features.

Template: GA_OilProduction(Python .py file) This code contains the latest template for implementing GA Selection, Stepwise and Lasso Selection for Interval Targets

Assignment: Modify this template to conduct a similar analysis of the diamond price data.

✓ Python Imports for GA Features with Interval Target

deap: A python package for genetic algorithms. Install using from inside your working Anaconda environment:

conda install -c conda-forge deap

```
from deap import creator, base, tools, algorithms
import random, sys, time, warnings
import pandas as pd
import numpy as np
import matplotlib.pyplot
                                 as plt
import statsmodels.api
import statsmodels.tools.eval_measures as em
from AdvancedAnalytics.ReplaceImputeEncode import ReplaceImputeEncode, DT
from AdvancedAnalytics.Regression import linreg, stepwise
                      import log, isfinite, sqrt, pi
from math
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression, Lasso
import qr_multiply, solve_triangular
from scipy.linalg
```


GA_HW7.py: A solution to this assignment is posted in the week 7 assignment folder.

GA Solution: Found you can minimize BIC with 20 features: carat, depth, table, x, and most of the levels from the 3 nominal features..

✓ Python Template for GA Features with Interval Target

Full Model: 23 Features. Train BIC = 880,159 & Validation ASE = 471,688

Interval Features(6): carat, depth, table, x, y and z

Nominal Features (17): All except the last column for each nominal feature.

Cut(5-1): All except cut=very good

Color(7-1): All levels except color=J

Clarity(8-1): All levels except clarity=VVS2

GA Selection: 20 Features. Train BIC = 880,133 & Validation ASE = 472,808

Interval Features(4): carat, depth, table and x

Nominal Features (16):

Cut(5-2): Fair, Good and Ideal (missing 2)

Color(7-1): All levels except color=G

Clarity(8-1): All levels except clarity=VS1

✓ All Features: logreg.display_split_metrics

*******	************	k********
******* FIT	FULL MODEL	******
********	*****	***************
Model Metrics	. Training	Validation
	•	
Observations		1941
Coefficients	. 24	24
DF Error	51975	1917
R-Squared	0.9204	-0.5395
Adj. R-Squared		-0.5580
Mean Absolute Error		584.1012
Median Absolute Error	541.2481	536.8049
Avg Squared Error	1307150.7510	471687.6517
Square Root ASE	1143.3069	686.7952
Log Likelihood	-439943.7116	-15432.8419
AIČ	879937.4232	30915.6837
AICc	879937.4482	30916.3626
BIC	880158.8977	31054.9577

✓ GA Selection from 50 Generations

```
GA Selection using
                                       bic Fitness
************ statsmodels Models and
                                       star Initialization *********
                                                                        Ln(Fit)
       nevals features
                                       min
gen
                                range
                                                avq
                                                        max
        27
                1
                                98883
                                       912602 999316
                                                      1.01149e+06
                                                                        13.7241
        26
                3
                               100326 911156 949506
                                                      1.01148e+06
                                                                        13.7225
        22
                5
                               30560.9 909707 919459 940268
                                                                        13.7209
                6
                               6391.54 906211 910627 912602
        21
                                                                       13.717
       25
                               4705.73 905002 907761 909707
                5
                                                                        13.7157
        26
                8
                               4741.6 904351 905874 909093
                                                                        13.715
       27
                               6557.05 899844
                                               904612 906401
                9
                                                                        13.71
        23
               10
                               5463.23 899535 901566 904998
                                                                        13.7096
                               33574.1 891437 900772 925011
        23
               11
                                                                        13.7006
       25
                               8296.67 891437 898081 899734
               11
                                                                        13.7006
10
        25
               12
                                10533
                                       889002 894046 899535
                                                                        13.6979
                               7616.86 887704 890498 895321
11
        24
               14
                                                                        13.6964
12
        24
                               3822.19 886963 888837 890785
               12
                                                                        13.6956
13
                               10872.6 885311 888193 896183
        24
               12
                                                                        13,6937
                               12692.2 883149 887533 895841
14
        22
               13
                                                                        13.6912
15
        26
               15
                               4013.76 882949 885091 886963
                                                                        13.691
16
        20
                14
                                35537.7 882607
                                               884652 918145
                                                                        13.6906
17
        26
                               4761.98 882266 883016 887028
                16
                                                                        13.6902
```

```
26
        20
                        3354.25 880133
                                        880488
                                                 883487
                                                                 13.6878
25
        20
                        6.268
                                880133 880133 880139
                                                                 13.6878
```

GA Runtime 50.29810309410095 sec.

Individuals in HoF: 306

Best Fitness: 880133.0512437393

Number of Features Selecterd: 20

Features: ['carat', 'depth', 'table', 'x', 'cut0:Fair', 'cut1:Good', 'cut2:Ideal', 'color0:D', 'color1:E', 'color2:F', 'color4:H', 'color5:I', 'color6:J', 'clarity0:I1', 'clarity1:IF', 'clarity2:SI1', 'clarity3:SI2', 'clarity5:VS2', 'clarity6:VVS1', 'clarity7:VVS2']

✓ GA Selection

	OLS Regression Results					
Dep. Variable		price	 R-square	========= ed :		0.920
Model:		0LS	Adj. R-s			0.920
Method:	L	east Squares	F-statis		3	.003e+04
Date:		08 Jul 2020	Prob (F-	-statistic):		0.00
Time:		16:30:41	Log-Like	elihood:	-4.:	3995e+05
No. Observati	ons:	51999	AIČ:		8	.799e+05
Df Residuals:		51978	BIC:		8	.801e+05
Df Model:		20				
Covariance Ty	pe:	nonrobust				
========	coef	std err	t	P> t	[0.025	0.975]
const	7081.4814	390.716	18.124	0.000	6315.675	7847.288
carat	1.115e+04	49.869	223.612	0.000	1.11e+04	1.12e+04
depth	-66.9923	4.228	-15.844	0.000	-75.280	-58.705
table	-27.0153	3.002	-8.999	0.000	-32.899	-21.131
X	-980.7739	21.087	-46.511	0.000	-1022.105	-939.443
cut0:Fair	-754.0449	32.470	-23.222	0.000	-817.687	-690.403
cut1:Good	-169.1948	18.589	-9.102	0.000	-205.630	-132.760
cut2:Ideal	82.6635	12.880	6.418	0.000	57.419	107.908
color0:D	472.4248	18.254	25.881	0.000	436.647	508.202
color1:E	271.7293	16.332	16.638	0.000	239.718	303.740
color2:F	211.4119	16.272	12.993	0.000	179.519	243.305
color4:H	-503.8405	16.922	-29.774	0.000	-537 . 008	-470.673
color5:I	-986.1247	19.583	-50.356	0.000	-1024.507	-947.742
color6:J	-1912.3640	24.825	-77.033	0.000	-1961.022	-1863.707
clarity0:I1	-4641.1988	46.047	-100.794	0.000	-4731.450	-4550.947
clarity1:IF	772.3894	30.557	25.277	0.000	712.497	832.282
clarity2:SI1	-914.8049	16.658	-54.916	0.000	-947.455	-882.154
clarity3:SI2	-1898.8833	18.350	-103.484	0.000	-1934.849	-1862.918
clarity5:VS2	-306.9829	16.624	-18.466	0.000	-339.566	-274.400
clarity6:VVS1		23.438	18.464	0.000	386.816	478.692
clarity7:VVS2	384.6304	20.956 	18.354 	0.000 	343.557 	425.704

✓ GA Selection: logreg.display_split_metrics

Training Data Metrics			
ASE	1307319.9522		
Square Root of ASE	1143.3809		
AIC			
BIC			
Adj. R-Squared			
naji k squareaiiiiiiii	0.5205		
Validation Data Metrics			
ASE	472808.3070		
Square Root of ASE			
Square Root of Aserri	00710100		
Model Metrics	Training	Validation	
	_		
Observations			
Coefficients			
DF Error			
R-Squared			
Adj. R-Squared			
Mean Absolute Error	753.0048	585.1926	
Median Absolute Error	541.8592	535.7668	
Avg Squared Error	1307319.9522	472808.3070	—
Square Root ASE	1143.3809	687.6106	
Log Likelihood	-439947.0768	-15435.1449	
AIČ	879938.1537	30914.2897	
AICc	879938.1732		
BIC	880133.0512		

✓ Stepwise vs. Lasso (same features different model)

Stepwise: 21 Features. Train BIC = 880,139 & Validation ASE = 471,775

Interval Features(4): carat, depth, table and x

Nominal Features (17): All except the last column for each nominal feature.

Cut(5-1): All except cut=very good

Color(7-1): All levels except color=J

Clarity(8-1): All levels except clarity=VVS2

Lasso: 21 Features. Train BIC = 880,945 & Validation ASE = 458,401

Interval Features(4): carat, depth, table and x

Nominal Features (17): missing last column of each nominal feature

Cut(5-1): Fair, Good, Ideal and Good

Color(7-1): All levels except color=J

Clarity(8-1): All levels except clarity=VVS2

✓ stepwise: logreg.display_split_metrics

Model Metrics	Training	Validation
Observations	51999	1941
Coefficients	22	22
DF Error	51977	1919
R-Squared	0.9203	-0.5398
Adj. R-Squared	0.9203	-0.5567
Mean Absolute Error	752.6798	584.1389
Median Absolute Error	541.1422	536.8332
Avg Squared Error	1307204.5307	471775.4825
Square Root ASE	1143.3305	686.8591
Log Likelihood	-439944.7813	-15433.0225
AIČ	879935.5626	30912.0451
AICc	879935.5838	30912.6210
BIC	880139.3191	31040.1771

✓ Lasso alpha=4: logreg.display_split_metrics

✓ Lasso Coefficients vs Alpha

✓ Lasso Coefficients vs Alpha

Applied Analytics Alm

Introduction to Text Analytics

Week 8

STAT 656 – Applied Analytics using SAS[©] Enterprise Miner™

DATA HIERARCHY

UNSTRUCTURED

SEMI-STRUCTURED

STRUCTURED

History & Evolution 1950-1985

Rationalist Views

Advocated by Noam Chomsky (MIT)

"Language is an innate human faculty. Children do not learn natural language from limited input during their early years"

- Humans are born with language processing, not just pattern recognition.
- Al researchers developed application-specific rules and algorithms for solving problems.

History & Evolution Post 1985

Rise of Empiricist & Computational Linguistics

- Computers and large collections of annotated text became available.
- Humans are born with the biology for learning language, not a detailed set of language rules.
- Language is learned using pattern recognition and statistical thinking.
- Example:

"The British left waffle on the Falklands."

Corpus: Linguistic Data (60s-Present)

- Brown Corpus (1960s)
 - Developed at Brown University by Kucera and Francis
 - Balanced annotated corpus of 500 fiction and nonfiction documents
 - Used for IR Research Statistical Similarity of Documents
- London-Lund Corpus (LLC, 1970s)
- Lancaster-Oslo-Bergen (LOB, 1980s) Corpus
 - Similar to Brown Corpus, but for British English
- Penn TreeBank Corpus (1980s)
 - Developed at Penn State University
 - 2,499 Wall Street Journal stories.
 - Available in different languages, and as recorded speech.
- American National Corpus (ANC, 2000s)
 - 22 million word subcorpus
- Google N-Gram Corpus (2000s) (up to 5-gram)
 - 1 trillion words from web pages
- New ISO and Specialized Corpus Developed (2010s)
 - Twitter, Facebook and Blogs
 - Specialized Domains

Computational Linguistics

- The use of rule-based and/or statistical modeling of natural language
- Rule-based approaches are rules for extract parts-of-speech and convert raw text into meaningful data structures.
 - Used for speech recognition and synthesis
- Statistical approaches use annotated text, dictionaries and rules to model the relationships between text and meaning.
 - Used for POS tagging, colocation, entity Extraction
 - Reduce language ambiguity
 - Used for extracting domain specific knowledge

Statistical Machine Learning

- Statistical approaches for NLP that develop models from corpus designed to discover topics.
- The annotated corpus is data where each word is tagged with a POS.
- Statistical Machine Learning develops a model for predicting word POS, identifying noun groups, entities and topics.
- A corpus is valuable for customizing the model. A corpus is language specific and often topic specific.

Linguistics – Statistical Machine Learning

- Manning C.D. and Schutze, H. (1999) Foundations of Statistical Natural Language Processing, MIT Press.
- Indurkhya, N. and Damerau, R. J. (2010) Handbook of Natural Language Processing; CRC Press.
- Pustejovsky, J. and Stubbs, A. (2012) Natural Language Annotation for Machine Learning; O'Reilly.
- Others Google Stanford Natural Language Laboratory

Text Analysis using Word Counts

✓ Approaches to Text Analysis in Non-HP SAS Enterprise Miner: Sample-Parse-Filter-Cluster

✓ Approaches to Text Analysis in Non-HP SAS Enterprise Miner: Sample-Parse-Filter-Cluster

✓ Approaches to Text Analysis in HP SAS Enterprise Miner: Sample-Parse-Filter-Cluster

✓ Approaches to Text Analysis in HP SAS Enterprise Miner: Sample-Parse-Filter-Cluster

Term Frequency

- The Term Matrix is a t by d matrix where t is the number of terms (words) in the collection and d is the number of documents.
- Element f_{ij} is the number of times the ith term occurs in the jth document.
- Many of the term frequencies are zero.
- Raw term frequencies are larger for larger documents.

Term-Doc Matrix

✓ A matrix with t rows and d columns

- Many values will be zero.
- Larger docs will have larger term frequencies

Term
Frequencies
by Document

Term-Doc Matrix

✓ Create the Matrix – Sample-Parse-Filter

Term-Doc Matrix

Text Filter Node

✓ Text Filter Node – Frequency Weights

Frequency Weighting Methods

The following frequency weighting functions, q(.), are available in the Text Filter node.

Default

The default frequency weighting method is Log with one exception. In a process flow that has multiple Text Filter nodes, the default frequency weighting method that is used in a node is determined by the setting that was specified in the previous Text Filter node.

Binary

an indicator function, where g(f_n)= 1 if a term appears in the document, and g(f_n)= 0 if it does not. This function removes the effect of terms that occur repeatedly in the same document.

Log

 $g(f_{\parallel}) = \log_2(f_{\parallel} + 1)$. This function dampens the effect of terms that occur many times in a document.

Default Frequency Weight is Log(f+1)

None

g(f_{ii})= 1. In other words, no change is applied to the raw frequency for the term.

Must Set to None for Sentiment Analysis

Text Filter Node

✓ Text Filter Node – Term Weights

Entropy

$$w_i = 1 + \sum_j \frac{(f_{ij}/g_i) \cdot \log_2(f_{ij}/g_i)}{\log_2(n)}$$

Default Weight is **Entropy for Interval Targets**

Here, g, is the number of times that term i appears in the document collection, and n is the number of documents in the collection. Log(.) is taken to be 0 if f_{II}=0. This method gives greater weight to terms that occur infrequently in the document collection by using a derivative of the entropy measure found in information theory.

Inverse Document Frequency

$$w_i = \log_2\left(\frac{1}{P(t_i)}\right) + 1$$

IDF – Popular **Alternative**

Here, P(t_i) is the proportion of documents that contain term t_i. This method gives greater weight to terms that occur infrequently in the document collection by placing the number of documents that contain the term in the numerator of the formula.

Mutual Information

$$w_{i} = \max_{C_{k}} \left[\log \left(\frac{P(t_{i}, C_{k})}{P(t_{i}) P(C_{k})} \right) \right]$$

Here, $P(t_i)$ is the proportion of documents that contain term t_i , $P(C_k)$ is the proportion of documents that belong to category C_k , and $P(t_i, C_k)$ is the proportion of documents that contain term t, and belong to category C_v. Log(.) is taken to be 0 if P(t, C_v)=0 or P(C_v)=0.

This weight is valid only if the data source includes a categorical target variable. The weight is proportional to the similarity of the distribution of documents that contain the term to the distribution of documents that are contained in the respective category.

None

w_i= 1. In other words, no term weight is applied.

Default Weight is Mutual Information for **Categorical Targets**

Term-Doc Matrix

✓ Import

✓ Two Approaches

- Cluster Analysis
 - Mathematically Determined
 - Independent Topics:
 Documents assigned only 1 topic
- Topic Analysis Node
 - User Driven
 - Allows for Non-Independent Topics:
 Documents can be assigned multiple topics

- Both approaches start with a Singular Value Decomposition of the Term-Document Matrix
- The Matrix can be weighted and customized with POS,
 Synonyms, Stop Words and Stemming
- Cluster Analysis is the SVD solution followed by the Min-Max Rotation of the Solution to better identify independent document clusters.
- Topic Analysis uses SVD and Rotations but allows user to further refine topic clusters.

SVD

✓ Singular Value Decomposition of Term-Doc Matrix

SVD: Singular Value Decomposition

SVD Transforms the Term-Document Matrix - T:

$$T = USV^{0}$$

Where U is a t x k **orthonormal** matrix, with t=number of terms V is k x d **orthonormal**, with d=number of documents, and Σ is k x k **diagonal** matrix containing the eigenvalues of T. k is the rank of T, where k \leq t and k \leq d.

Normally k is equal to the number of topic clusters

SVD Rotations

The Term-Document matrix can be rotated:

$$T = USV^{\downarrow} = (U \times P)S(P \times V)^{\downarrow} = U_*SV_*^{\downarrow}$$

- Given an SVD solution there are an infinite number of equally good solutions defined by P.
- Most software do not allow for rotations. The SAS EM uses a Varimax Rotation to better identify meaningful topic clusters.
- This rotation is not done in Python SVD.

Normalized Term Frequency

- Term frequencies depend on the size of the document.
- There are several ways to normalize the term frequencies.
- Normalize using largest frequency or total word count

$$- tf_{ij} = f_{ij} / max(f_{1j}, f_{2j}, ... f_{nj})$$

$$- tf_{ij} = f_{ij} / sum(f_{1j}, f_{2j}, ... f_{nj})$$

Inverse Document Frequency

- If d = total number of documents, the *idf*_i for the ith term is:
 - $idf_i = log(d/d_i)$ where d_i is the number of documents in the collection that contain the ith term.
 - $-0 \le idf_i \le log(d)$, for all terms
- The inverse document frequency is a measure of how many documents contain the ith term.
 - $-idf_i = 0$, if every document contains the ith term
 - $idf_i = log(d)$, if the ith term appears in only one document

IDF for Python Sklearn

- If d = total number of documents, the *idf*_i for the ith term is:
 - $idf_i = log[(d+1)/(d_i+1)]$ where d_i =number of documents containing the ith term.
 - $-0 \le idf_i \le log((d+1)/2)$, for all terms
- The inverse document frequency is a measure of how many documents contain the ith term.
 - $-idf_i = 0$, if every document contains the ith term
 - $idf_i = log[(d+1)/2]$, if the ith term appears in only one document

TF-IDF (most software)

- The term weight TF-IDF is the term frequency weighted by the inverse document frequency.
 - $w_{ij} = f_{ij} x i df_i$
 - If all documents contain the ith term, $w_{ij} = 0$.
 - If only one document contains the ith term then the raw term frequency f_{ii} is increased by log(d).
 - Essentially TF-IDF reduces the term frequency for terms that appear in all or most documents and increases the term frequency when the term appears only in a small number of documents.

TF-IDF (Python sklearn)

- The term weight TF-IDF is the term frequency weighted by the inverse document frequency.
 - $w_{ij} = f_{ij} x \log[(d+1)/(d_i+1)]$ If all documents contain the ith term, $w_{ij} = 0$.
 - If only one document contains the ith term then the raw term frequency f_{ii} is increased by log(d/2).
 - Essentially TF-IDF reduces the term frequency for terms that appear in all or most documents and increases the term frequency when the term appears only in a small number of documents.

Other Term Weights

- TF-IDF is only one of a class of term weighting schemes. In general the weight term weight can be expressed as:
 - $-t_{ij} = wgt_i \times g(f_{ij})$, where g(f) is a non-decreasing function of f.
- Typical values for the term weight wgt; are:
 - Entropy
 - Mutual Information for applications with a categorical target
 - $wgt_i = 1$

Choices for g(f)

- The function $g(f_{ij})$ is typically selected to reduce the extreme spread in term frequencies. The most frequent terms often have values over 1,000; whereas the 10^{th} ranked term might have a value in the 10's.
- Typical values for the term function are:
 - $-g(f_{ij}) = 1$ $-g(f_{ij}) = log(f_{ij}+1)$ $-Binary: g(f_{ii}) = 1 \text{ if } f_{ii} > 0; \text{ otherwise } g(f_{ii}) = 0$

Recommendations

- The choice for wgt_i and $g(f_{ii})$ depends on the application.
- Applications where the documents in the collection are about the same size and the documents are large, the choice for wgt_i and $g(f_{ii})$ are not important.
- If the raw term frequencies are large for a few terms and smaller for the rest, use $g(f_{ij}) = log(f_{ij}+1)$ or the binary function.
- If the size of the documents vary considerably, weight $g(f_{ij})$ by the inverse document frequency $wgt_i = log(d/df_i)$

Applied Analytics A M

Text Cluster Node

STAT 656 – Applied Analytics using SAS[©] Enterprise Miner™

✓ Customer Reviews of Las Vegas Hotels

- Data
 - 1,671 customer reviews of Las Vegas Hotels
- Objective
 - Identify major review topics (categories)
 - Identify hotels associated with topics

Cluster Analysis

✓ Cluster Analysis Default Properties

Default Properties

Common Property Changes:

- 1. Maximum to Exact
- 2. Number of Clusters to less than 10
- 3. SVD Resolution to Medium

Cluster Analysis

✓ Results from using default properties

Cluster ID	Descriptive Terms	Frequency	
	l encore wynn +floor beautiful +service +late +restaurant +credit +desk +wait +area +pool 'front desk' +hour +en	408	i
2	excalibur +upgrade +clean tower +tower +location +value +price +casino +great +pay +money +kid +night sout	309	
;	bellagio +view +fountain oct beautiful +show +pool +restaurant +staff +hotel great +service +bathroom +buffet	357	
4	+desk front +charge 'front desk' +credit +card +late +check +wait +know +line +hour +back +day +book	100	
!	circus +kid +value +cheap strip +place +money +good +buffet +price +hotel +tower +end +walk +clean	347	
(bally north paris south tower +location +tower +upgrade +clean great +value +great +casino +walk +look	150	

Cluster **Analysis**

✓ Example – Six Topic Clusters using SVD

Cluster Analysis Description

Frequency	Percentage	Coordinate 1	Coordinate 2	Coordinate 3	Coordinate 4
408	24%	0.586512	0.129415	0.039732	-0.03933
309	18%	0.617309	-0.20197	0.008146	0.053029
357	21%	0.628894	-0.02962	0.134059	-0.04731
100	6%	0.55446	-0.03027	-0.1421	-0.08149
347	21%	0.575499	-0.27352	-0.01744	-0.03493
150	9%	0.569563	-0.22299	0.0519	-0.23496

Number of **Documents for Each** of the 6 Topics

> **Total Number is** 1,671 The number of Reviews

SVD Vectors (U)

Applied Analytics A M

Text Topic Node

STAT 656 – Applied Analytics using SAS[©] Enterprise Miner™

✓ Text Topic Node Default Properties

✓ Results from using default properties

Category	Topic ID	Document Cutoff	Term Cutoff	Торіс	Number of Terms	# Docs
Multiple	1	0.060	0.021	+coffee,+suite,+maker,+buffet,+breakfast	356	16
Multiple	2	0.087	0.020	wynn,encore,encore,+property,xs	286	20
Multiple	3	0.089	0.021	+desk,front,front desk,+line,+manager	338	23
Multiple	4	0.092	0.020	bally,paris,tower,north,south	248	18
Multiple	5	0.079	0.020	excalibur,luxor,york,mandalay,mgm	296	18
Multiple	6	0.100	0.020	bellagio,+fountain,+show,beautiful,+view	292	24
Multiple	7	0.080	0.021	+suite,+tv,+bathroom,+shower,+tub	381	22
Multiple	8	0.072	0.021	+play,+drink,+slot,+poker,+eat	391	22
Multiple	9	0.113	0.020	+value,+great,great value,excellent,good value	271	23
Multiple	10	0.071	0.020	amp,+clean,+customer,+guest,+travel	208	14
Multiple	11	0.070	0.020	quot,+suite,awesome,+experience,+customer	253	30
Multiple	12	0.095	0.021	+review,+read,+love,+check,+check	351	27
Multiple	13	0.078	0.020	+smoke,+smoke room,+non-smoke,smoke,+smell	299	13
Multiple	14	0.065	0.021	+credit,+charge,+card,+charge,free	344	18
Multiple	15	0.089	0.020	circus,circus,west,+manor,first	257	16
Multiple	16	0.060	0.021	+bus,+ticket,+walk,+walk,+taxi	411	17
Multiple	17	0.073	0.020	+hot,+water,hot water,+spa,+shower	284	14
Multiple	18	0.057	0.021	+suite,las,bally,+staff,vegas	436	21
Multiple	19	0.079	0.020	circus,+kid,circus circus,vegas amily	261	17
Multiple	20	0.078	0.021	+place,+pay,+cheap,+hotel,st	372	26
Multiple	21	0.075	0.020	+tower,north,north tower,sor	306	13
Multiple	22	0.060	0.021	+sh Default Number of	418	19
Multiple	23	0.067	0.021	+sn Default Number of	375	23
Multiple	24	0.069	0.021	tar Identified Topics	388	24
Multiple	25	0.065	0.021	ball lacitumed topics	337	18

✓ Text Topic Node Modified Properties

✓ Results from using default properties

✓ Results from Restricting Number of Topics to 7

Topic ID	Topic	Document Cutoff	Term Cutoff	Number of Terms	# Docs
	1 bally,paris,north,+tower,+location	0.136	0.020	257	193
	2wynn,encore,encore,+pool,+spa	0.110	0.020	287	232
	3 quot,+desk,front,front desk,+manager	0.111	0.021	358	240
	4 circus, circus, +kid, circus circus, strip	0.120	0.020	260	216
	5 excalibur,york,luxor,mgm,mandalay	0.104	0.020	303	196
	6 bellagio,+fountain,+view,beautiful,+amaze	0.118	0.020	313	238
	7+bed,+bathroom,+tv,+shower,+area	0.079	0.021	300	259

Initial Number of Identified Topics (7)

Total Number is 1,574 a Little Less than Number of Reviews

Number of Docs Associated with **Each Topic**

✓ Topic Viewer – Used to Shape Topics

✓ Topic Viewer – Used to Shape Topics

Select a Topic to View Associated Documents

Name	Omitted	Size	Text
bally_s_las_vegas_hotel_casino187.txt	0.0	3386.0	Jun 2 2009 Welcome to
encore_at_wynn_las_vegas236.txt	0.0	4350.0	Jun 21 2009 The Fish
encore_at_wynn_las_vegas151.txt	0.0	3157.0	Aug 13 2009 Great
encore_at_wynn_las_vegas234.txt	0.0	7138.0	Jun 22 2009 Glitchy My
encore_at_wynn_las_vegas30.txt	0.0	2402.0	Nov 2 2009 Encore
bellagio_las egas 164. txt	0.0	2217.0	Oct 2 2009 Overpriced I
bally_s_la as_hotel_casino306.txt	0.0	2460.0	Feb 4 2009 Bally's
encorelas_vegas232.txt	0.0	1655.0	Jun 22 2009 TERRIBLE

Individual Customer Reviews

Top 3 Reviews Representing Topic 6

Topic 6 Documents Ordered by Relevance

bally_s_las_vegas_hotel_casino 187.txt | 0. | 33 Jun 2 2009 Welcome to the worst of the strip I booked a flight+stay package thru Allegiant air 2 months before my trip, they made a mistake when booking 86 the hotel though which I found out at 11:00 pm when I arrived to the hotel after waiting 35 minutes in line, they blamed Allegiant for the mistake without .0 offering any solution. The manager called &guot;LARRY&guot; came and made us feel that it was our fault he said, &guot;...we had NOTHING available... squot; even though the kid who was helping us first said that if we wanted to stay we had to pay \$219.00 per night. Of course that's the price for a " high end " suite, the helpful manager wouldn't want us to stay in a expensive suite but please, don't say there is nothing available. One hour later and without receiving any help at all (The manager didn't call another hotel) we grabbed our bags and started walking towards the Monte Carlo, Next day encore_at_wynn_las_vegas236.txt 0. 43 Jun 21 2009 The Fish Stinks from the Head My wife and I just returned from a three night stay at Encore (6/17 6/20). The stay started out well. Check-in 0 |50 |went smoothly and we upgraded to a slightly larger room on the 53rd floor that was nicely appointed and included a panoramic view of Las Vegas through .0 floor to ceiling windows. Being a new hotel, the room had some nice amenities, such as bedside controls for the blinds and curtains. You can also request privacy or maid service from the bedside controls. As other reviewers have stated, the pool experience is subpar, even for a lesser hotel. The waitress service in the euro deck area was sometimes non existent and we had to go to the bar three times ourselves to get drinks and food. They were out of several food tems and even some of the supplies need to make all of the standard drinks on the menu. When you do get the food, it is disappointing to see that it is 0. [31]Aug 13 2009 Great hotel but not great service My husband and I invited some family to stay at the Encore for one week. In the past we've been at the Wynn encore at wynn las vegas151.txt 0 57 many times, at least once/year since it opened. Since they were our guests, all rooms were recorded under his name. The last day we wanted to treat the .0 women of the group with a massage. We booked the spa treatments, all five of us, under my husband's last name, giving different first names, because it was simpler. The lady at the reception - Yulia - informed us that my husband was the only one who could charge the treatments to the room, but that we could have paid with credit cards. No problem. At the time of the treatment, coming directly from the pool where we spent the day, we were informed we needed IDs to be able to pay with the credit card. The same credit card had been accepted in the restaurants during the week, to pay for dinners much more

✓ Label Topic With Meaningful Description

Topic Descriptions

Document Cutoff Number of Documents

-Topics

		•			
Topic	Category	Term Cutoff	Document Cutoff	Number of Terms	# Docs 🛆
bally,paris,north,+tower,+location	Multiple	0.02	0.136	257	193
excalibur,york,luxor,mgm,mandalay	Multiple	0.02	0.104	303	196
circus,circus,+kid,circus circus,strip	Multiple	0.02	0.12	260	216
wynn,encore,encore,+pool,+spa	Multiple	0.02	0.11	287	232
bellagio,+fountain,+view,beautiful,+amaze	Multiple	0.02	0.118	313	238
Desk and Mangement Problems	User	0.021	0.111	358	240
+bed,+bathro v,+tv,+shower,+area	Multiple	0.021	0.079	392	259

User Described Topic

Category Automatically
Changes to User

✓ Labeled 4 USER Topics

Topic Descriptions

The total number of Docs from all topics should be close to the total number of Docs in the Data (N=1,671)

					7
Topic	Category	Term Cutoff	Document Cutoff	Number of Terms	# Docs 🛆
bally,paris,north,+tower,+location	Multiple	0.02	0.136	257	193
excalibur,york,luxor,mgm,mandalay	Multiple	0.02	0.104	303	196
Circus Circus	User	0.02	0.12	260	216
wynn,encore,encore,+pool,+spa	Multiple	0.02	0.11	287	232
Bellagio	User	0.02	0.118	313	238
Desk and Mangement Problems	User	0.021	0.111	358	240
Accomodations	User	0.021	0.079	392	259
			1		Total = 1,574

User Described Topic

Topics -

4 USER Topics

The SVD score for a document must be above the Cutoff for it to be considered in that topic.

✓ Save USER Topics and Request More

Request only 2-3 New Multiple Topics

Near the End, Allow **Correlated Topics**

Return to the Topic Viewer to See New Topics

		Property	Value
	(General	
	N	lode ID	TextTopic
	I	mported Data	
	E	xported Data	
	N	lotes	
		Train	
	٧	'ariables	
	U	lser Topics	
	_	erm Topics	
	_		0
		earned Topics	
		lumber of Multi-term Topics	2
-	_		No
		tesults	
	- 1	opic Viewer	
	_	Status	
	_ C	Create Time	7/20/16 9:02 PM
	R	tun ID	3dd9f150-948b-45cd-8773-04c5
	-	ast Error	
	-	ast Status	Complete
	Ш	ast Run Time	7/20/16 9:04 PM
	R	tun Duration	0 Hr. 0 Min. 3.20 Sec.
	_	Grid Host	
	U	Iser-Added Node	No

✓ Review New Topics Using Topic Viewer

Topic	Category	# Docs 🛆	Term Cutoff	Document Cutoff	Number of Terms
Excalibur	User	193	0.02	0.106	314
Circus Circus	User	216	0.02	0.12	260
Encore	User	235	0.02	0.11	290
Bellliagio	User	238	0.02	0.118	313
Front Desk Issues	User	240	0.021	0.111	358
Accomodations	User	259	0.021	0.079	392

All USER Topics

Check Total Number of Docs to See If This is Close to Number in Data (N=1,671)

Cluster Topics Vs. Text Topic Node

Cluster ID	Descriptive Terms
	1circus +kid +cheap +place +end +price +tower +money strip +buffet +walk las +good +look +hotel
	2bally +tower +location north paris south +clean +upgrade great +great strip +walk +stay +time +casino
	3+coffee south +suite +food +end +floor +look +upgrade bally paris +service north +bathroom +book +day
	4bellagio +fountain beautiful +view excellent +show +staff +hotel +restaurant +buffet great +service +great +pool
	5encore wynn beautiful +suite +service +restaurant +floor +pool +area las +view excellent +staff +coffee first
	6 excalibur +kid quot +money +pay +day +bed +buffet +want +casino first +check +upgrade +cheap +price

Cluster Analysis **Topics**

Text Topic Node Solution

Topic	Category	# Docs 🛆	Term Cutoff	Document Cutoff	Number of Terms
Excalibur	User	193	0.02	0.106	314
Circus Circus	User	216	0.02	0.12	260
Encore	User	235	0.02	0.11	290
Bellliagio	User	238	0.02	0.118	313
Front Desk Issues	User	240	0.021	0.111	358
Accomodations	User	259	0.021	0.079	392

Topic Analysis and Document Classification

Sentiment Analysis (Week 10)

Final Exam (Week 11)