第9讲:关系及其性质

姓名: 林凡琪 学号: <u>211240042</u>

评分: _____ 评阅: ____

2021年12月3日

请独立完成作业,不得抄袭。 若得到他人帮助,请致谢。 若参考了其它资料,请给出引用。 鼓励讨论,但需独立书写解题过程。

• "关系"至关重要

1 作业(必做部分)

题目 1 (UD Problem 10.9)

解答:

This relation is an equivalence relation.

reflexive: $\forall (x_1, x_2), x_1 - x_1 = 0; x_2 - x_2 = 0;$ and 0 is even; therefore $(x_1, x_2) \sim (x_1, x_2)$ symmetry: $\forall (x_1, x_2), (y_1, y_2)$ if $x_1 - y_1 = 2m; x_2 - y_2 = 2n$ then $(x_1, x_2) \sim (y_1, y_2)$; therefore $y_1 - x_1 = -2m; y_2 - x_2 = -2n$, therefore $(y_1, y_2) \sim (x_1, x_2)$. transitive: if $(x_1, x_2) \sim (y_1, y_2)$ and $(z_1, z_2) \sim (y_1, y_2)$, then $x_1 - y_1 = 2m; x_2 - y_2 = 2n$ and $z_1 - y_1 = 2p; z_2 - y_2 = 2q$; therefore $x_1 - z_1 = (x_1 - y_1) - (z_1 - y_1) = 2(m - p), x_2 - z_2 = (x_2 - y_2) - (z_2 - y_2) = 2(n - q)$; therefore $(x_1, x_2) \sim (z_1, z_2)$

题目 2 (UD Problem 10.10)

解答:

如果 $E_x = E_y$ 则 $\forall x \in E_x$, 满足 $x \in E_y$, 且 $\forall x \in E_y$, 满足 $x \in E_x$. 不妨设 $z \in E_x$ 且 $z \in E_y$, 则 $z \sim x$ 且 $z \sim y$ 根据传递性, $x \sim y$. 反推亦成立.

题目 3 (UD Problem 10.13)

证明:

(a) 是一个等价关系.

自反性:p(0) = p(0) = a0;

对称性: 因为 p(0) = q(0) 所以 $p \sim q$; 又因为 q(0) = p(0), 所以 $q \sim p$

传递性: 因为 p(0) = q(0), 所以 a0 = b0;

因为 q(0) = r(0), 所以 b0 = c0;

所以 a0 = c0, 所以 q(0) = r(0)

E = 任何常数项为 0 的多项式

(b) 是一个等价关系;

 $E_r = \{a_2 * x^2 + a_1 * x + a_0 | a_2 \neq 0\}$

(c) 不是一个等价关系. 不满足对称性.

题目 4 (UD Problem 11.4)

解答:

- (a) 是 partition. 是法向量为 (1,1,1) 的无数个平行平面的集合.
- (b) 是 partition. 是无数个球心在原点半径为 r 的球壳的集合.

题目 5 (UD Problem 11.8)

证明:

(a) 对于条件一: 每一个级数的多项式都存在, 所以 A 必不是空集.

对于条件二: $\cup_A = X$ 所有级数的多项式的集合就是所有多项式的集合

对于条件三: 不妨设 A 集合中的多项式级数为 a,B 集合中的多项式级数为 b, 若级数相同, 则 a = b, $\forall x \in A, x \in B$ 即 A = B;

若级数不同, $a \neq b$, 则 $\forall x \in A, x \notin B$ 即 $A \cap B = \emptyset$

(b) 条件一:c 一定存在, 所以 Ac 必不是空集

条件二: $\cup A_c = A_c | c \in R$ 又因为 c 是实数, 所以 $\cup A_c$ 是所有多项式的集合.

条件三: 不妨设 A_c 中 P(0) = c, A_d 中 P(0) = d, 若 c = d 则 $\forall P(P(0) = c = d) \in A_c$ 并且 $\forall P(P(0) = c = d) \in A_d$, 所以 $A_c = A_d$

(c) 不是 partition. 违反了条件三.

p = qr, 若 q = m * n; 则 $p \in A_q \perp p \in A_m \perp p \in A_n$. 即 $A_m \neq A_n \perp p \in A_n \perp p \in A_n$. 包 $A_m \neq A_n \perp p \in A_n \perp p \in A_n$.

反例如下: 令 $p = x^2 - 3x + 2$; p(1) = p(2) = 0; 则 $p \in A_1$ 且 $p \in A_2$. 即 $A_1 \neq A_2$ 且 $A_1 \cap A_2 \neq \emptyset$.

题目 6 (UD Problem 11.10)

证明:

(a) 是 partition.

条件一显然符合.

条件二: $\bigcup A_{\alpha} = X$, 则 $\bigcup (A_a l p h a \cap B) = \bigcup A_{\alpha} \cap B = X \cap B = B$

因为 $\{A_{\alpha}\}$ 是 X 的 partition, 所以 $\{A_{\alpha}\}$ 必满足条件三, 又因为 $\{A_{\alpha} \cap B\} \subseteq \{A_{\alpha}\}$, 所以 $A_{\alpha} \cap B$ 一定也满足条件三.

(b) 当 $A_{\alpha} = \emptyset$ 则 $X \setminus A_a lpha$ 是 X 的 partition. 否则 $X \setminus A_a \cap X \setminus A_b = X \setminus (A_a \cap A_b)$ 即不满足条件三.

题目 7 (UD Problem 12.11 (a, b))

解答:

(a) 假设 $supS > sup(S \cup T)$, 因为 supS 是上确界, 所以任意 y<supS, 都会 $\exists x \in S$ 使得 x < y 所以若 $supS > sup(S \cup T)$, 则 $existsx \in (S \cup T), x > sup(S \cup T)$, 此时 $sup(S \cup T)$ 不符合定义. 所以假设不成立.

同理可证 $supT <= sup(S \cup T)$

(b) 若 $sup(S \cup T) \neq supS$ 则 $\exists x \in T, x > supS, x <= supT$, 所以 $sup(S \cup T) = supT$ 同理可证若 $sup(S \cup T) \neq supT$, 则 $sup(S \cup T) = supS$ 得证.

题目 8 (UD Problem 12.12)

解答:

(a) $\exists M, (M \in \mathbb{R} \land \forall y, (y \in S \rightarrow y \subseteq M)) \rightarrow \exists N, (N = M + x \land \forall y, (y \in x + S \rightarrow y < = M))$ N))

(b) $\forall y, (y \in S, \rightarrow y \leq supS) \rightarrow \forall y, (y \in x + supS)$

 $(c) \forall y, (y \in x + S \rightarrow y \le x + supS)$

 $\forall M, (M \in \mathbb{R} \land \forall y, (y \in S \rightarrow y \leq M) \rightarrow M >= supS)$

 $\rightarrow \forall N, (N \in \mathbb{R} \land \forall y, (y \in x + supS \rightarrow y \le N) \rightarrow N >= x + supS)$

 $(1) \land (2) \rightarrow x + \sup S = \sup (x + S).$

题目 9 (UD Problem 13.14)

解答:

- 1. $\forall x \in S, x \subseteq x$
- $2. \ \forall x, y \in S, y \subseteq x, \rightarrow x = y$
- 3. $\forall x, y, z \in S, x \subseteq y, y \subseteq z, \rightarrow x \subseteq z$
- 4. <math> $A = \{a | a \in P(A)\}, B = \{b, c | b, c \in P(A)\}, \rightarrow A \nsubseteq B, B \nsubseteq A$ 前三条满足偏序, 第四条不满足全序.

得证.

作业(选做部分)

题目 1 (关系的复合)

定义二元关系 R 与 S 的复合为:

$$S \circ R = \{(x, z) \mid \exists y \big((x, y) \in R \land (y, z) \in S \big) \}.$$

请证明复合操作满足结合律:

$$T \circ (S \circ R) = (T \circ S) \circ R.$$

图 1: "舅老爷" 是什么关系复合而成的?

证明:

Open Topics 3

Open Topics 1 (二元关系)

介绍花样繁多的"二元关系", 如 (不限于):

- Preorder
- Strict weak order
- Strict partial order

基本要求:

• 举例说明每种二元关系的应用

参考资料:

• Binary relation @ wiki

Open Topics 2 (实数)

介绍实数的完备性 (Completeness), 如 (不限于):

- 概念
- 等价形式
- 实数的构造方式

参考资料:

• Completeness of the real numbers @ wiki

订正

5 反馈