

TMA4183 Opt. II Spring 2017

Exercise set 2

Norwegian University of Science and Technology Department of Mathematical Sciences

1 a) Show that the weak derivative of $f: \mathbb{R} \to \mathbb{R}$ defined as f(x) = |x| is

$$g(x) = \begin{cases} -1, & x < 0, \\ 1, & x > 0. \end{cases}$$

Note that it is not necessary to define g at 0, which has measure 0. Thus $f \in W^{1,p}(a,b)$ for an arbitrary a < b and arbitrary $1 \le p \le \infty$.

- b) Show that f in the previous example is *not* twice weakly differentiable. (This example shows than not all functions are weakly differentiable.)

 Hint: take an arbitrary $\phi \in C_0^{\infty}(\mathbb{R})$, such that $\phi(0) \neq 0$, and put $\phi_k(x) = \phi(kx)$. Assume that equality (2.1) in the book holds for some integrable function (=potential weak derivative), and consider the limit of both sides of the equality for $k \to \infty$. Use the dominated Lebesgue convergence theorem to switch from the pointwise convergence of ϕ_k to the convergence of the integrals.
- c) * Cet B be an open unit ball in \mathbb{R}^n , and define $f(x) = ||x||^{-\gamma}$, $\gamma > 0$. Note that the function "blows up" at 0 but is in $C^{\infty}(B \setminus \{0\})$. Let $g(x) = \nabla f(x)$ for $x \neq 0$. Derive the conditions on γ to show that g is the weak derivative of f in B. This example shows that some discontinuous/unbounded functions are weakly differentiable.

Hint: fix an arbitrary $\phi \in C_0^{\infty}(B)$. Then derive bounds on γ under which both f and g are integrable in B, and the integrals in red converge to zero as $\varepsilon \to 0$:

$$\begin{split} \int_{B} f D_{i} \phi &= \int_{B \backslash \varepsilon B} f D_{i} \phi + \int_{\varepsilon B} f D_{i} \phi, \\ \int_{B} g_{i} \phi &= \int_{B \backslash \varepsilon B} g_{i} \phi + \int_{\varepsilon B} g_{i} \phi, \\ \int_{B \backslash \varepsilon B} f D_{i} \phi + \int_{B \backslash \varepsilon B} g_{i} \phi &= \int_{\partial \varepsilon B} f \phi \nu_{i}, \end{split}$$

where ν is the unit normal to $B \setminus \varepsilon B$. Note that the last equation is the classical integration by parts formula, which can be used because both $f,g,\phi \in C^{\infty}(B \setminus \varepsilon B)$. Use spherical coordinates to estimate the "small" integrals.

Conclude the proof by observing that

$$\int_{B} f D_{i} \phi + \int_{B} g_{i} \phi \to \int_{B \setminus \varepsilon B} f D_{i} \phi + \int_{B \setminus \varepsilon B} g_{i} \phi \to 0$$

2 Let Ω be an non-empty open set, $1 \leq p \leq \infty$, and let $u_a, u_b \in L^p(\Omega)$ be such that $u_a(x) \leq u_b(x)$, for almost all $x \in \Omega$. Define $U_{\text{adm}} = \{u \in L^p(\Omega) \mid u_a(x) \leq u(x) \leq u(x) \leq u(x) \leq u(x) \}$

 $u_b(x)$, for almost all x }. Show that U_{adm} is a closed, convex, and bounded subset of $L^p(\Omega)$. (Hint: to prove closedness, use the fact that convergence of functions in $L^p(\Omega)$ implies, up to a subsequence, convergence almost everywhere in Ω . To show boundedness you could e.g. use the fact that $\max\{|u_a|, |u_b|\} = (|u_a| + |u_b| + ||u_a| - |u_b||)/2$.)

- $\boxed{\mathbf{3}}$ Let H be a Hilbert space.
 - a) Exercise 2.8 [Tr]: Assume that $H \ni u_n \rightharpoonup u \in H$ and $H \ni v_n \rightarrow v \in H$. Show that $(u_n, v_n) \rightarrow (u, v)$.
 - **b)** Construct an example where $H \ni u_n \rightharpoonup u \in H$ and $H \ni v_n \rightharpoonup v \in H$, but $(u_n, v_n) \not\to (u, v)$. (Hint: it is sufficient to consider $u_n = v_n$.)
 - c) Show that if $H \ni u_n \rightharpoonup u \in H$ and in addition $||u_n|| \to ||u||$ then also $u_n \to u$.
- $\boxed{4}$ * Let H be a Hilbert space, $L \in H'$, and $a: H \times H \to \mathbb{R}$ be a bilinear form, which is bounded and coercive. That is, $\exists M > 0, \beta > 0$: $\forall x,y \in H$ we have the inequalities $|a(x,y)| \leq M||x|| ||y||$ and $\beta ||x||^2 \leq a(x,x)$. Note that we do not assume the symmetry of a.

We consider the variational problem: find $x \in H$ such that $\forall y \in H$: a(x,y) = L(y).

- a) Show that the operator $A: H \to H'$ defined by (Ax)(y) = a(x,y) is linear and bounded.
- b) Show that our variational problem is equivalent to solving the equation Ax = L.
- c) Let $R: H \to H'$ be the Riesz map, that is, (Rx)(y) = (x, y). Recall that Riesz representation theorem says that this map is 1:1 and is an isometry. Show that our variational problem is equivalent to the equation $R^{-1}(L-Ax) = 0$.
- d) Given some $\omega \neq 0$, define an operator $T: H \to H$ by $Tx = x + \omega R^{-1}(L Ax)$. Show that our variational problem is equivalent to a fixed-point problem x = Tx.
- e) * Show that we can always find $\omega \neq 0$ such that Tx is a contraction, that is, there is $0 \leq \delta < 1$ such that $\forall x, y \in H$: $||Tx Ty|| \leq \delta ||x y||$.
- f) We now select and fix $\omega \neq 0$ found in the previous part. For an arbitrary $x_0 \in H$ we consider the Richardson's iteration: $x_{k+1} = Tx_k$. Show that the sequence $\{x_k\}$ is Cauchy and thus converges towards the unique fixed point of T.

¹This part is the classical Banach fixed point theorem.