Laboratory 3 Force table and Vector Addition of Forces

PRE-LABORATORY ASSIGNMENT

- 1. Scalars are physical quantities that can be completely specified by their **magnitudes.**
- 2. A vector quantity is one that both magnitude and direction.
- 3. Classify each of the following physical quantities as vectors or scalars.
 - a. Volume Scalar
 - b. Force **Vector**
 - c. Density **Scalar**
 - d. Velocity **Vector**
 - e. Acceleration Vector
- 4. If F_1 stands for a force vector of magnitude 30.0 N and F_2 stands for a force vector of magnitude 40.0 N acting in the directions shown in the Figure 3-6, what are the magnitude and direction of the resultant obtained by the vector addition of these two vectors using the analytical method? Show your work

$$F_x = 30 + 40 \cos 60^{\circ} = 50 N$$

$$F_{y} = 40 \sin 60 \circ = 34.64 N$$

So,
$$F = \sqrt{\left(F_x^2 + F_y^2\right)} = 60.83 N$$
,

$$\theta = \tan^{-1} \left(\frac{F_y}{F_x} \right) = 34.7 degrees$$

Hence, the magnitude is 60.83 N, Direction = $34.7 ^{\circ}$.

5. What in the equivalence force that would be needed to compensate for the resultant force of the vectors F_x and F_y that you calculated in question 4?

Magnitude = **60.83** N and the Direction relative to x axis is $(180+34.7) = 214.7^{\circ}$.

6. Figure 3-6 has been constructed to scale with 1.00 cm = 10.0N. Use the parallelogram graphical method to construct (on figure), the resultant vector F_R for the addition F_1 and F_2 . Measure the length of the resultant vector and record it below. Solve the force represented by this length, Measure with a protractor the angle that the resultant makes with the x axis.

Resultant vector length=**6.083 cm**Force represented by this length=**60.83 N**Direction of resultant relative to x axis=**34.7° degrees**.

LABORATORY 3: Force Table and Vector Addition of Forces LABORATORY REPORT

Data Table 1

Force	Mass(kg)	Force(N)	Direction
F_1	0.100	0.98	20.0 °
F ₂	0.200	1.96	90.0 °
Equilibriant F 21	0.251	2.76	111.9 °
Resultant F _R	0.251	2.76	68.1 °

Data Table 2

Force	Mass(kg)	(kg) Force(N) Direct	
F_3	0.150 1.47		30 °
F ₄	0.200	1.96	100°
F ₅	0.100	0.98	145°
Equilibriant F	0.329586	3.229943	92.1°
Resultant F	0.329586	3.229943	87.9°

Calculation Table 1

Graphical Solution

Force	Mass(kg)	Force(N)	Direction
F_1	0.100	0.98	20 °
F ₂	0.200	1.96	90 °

Resultant F _{R1}	0.250	2.73	67.9 °
I TOSAICAITE I NI	0.230	2173	0713

Analytical Solution

Force	Mass(kg)	Force(N)	Direction	X-	у-
				component	component
F_1	0.100	0.98	20 °	0.92N	0.33N
F ₂	0.200	1.96	90 °	ON	1.96N
Resultant	0.158374	1.552063	53.6 °	0.92N	1.2N5
F _{R1}					

PART 1: ERROR CALCULATIONS

Percent error magnitude experimental compared to analytical = 1.08 %

Percent error magnitude graphical compared to analytical = 43.2 %

Absolute error in angle experimental compared to analytical = 0.029

degrees

Absolute error in angle graphical compared to analytical = 21.06 degrees

Calculations Table 2

Graphical Solution

Force	Mass(kg)	Force(N)	Direction(degrees	
)	
F ₃	0.150	1.47	30.0	
F ₄	0.200	1.96	100	
F ₅	0.100	0.98	145.0	
Resultant F _{R2}	0.35	3.43	86.5	

Analytical Solution

Force	Mass(kg)	Force(N)	Direction(degre	X-	y-
			es)	compone	compone
				nt	nt
F ₃	0.150	1.47	30.0	1.27	0.74
F ₄	0.200	1.96	100	-0.34	1.93
F ₅	0.100	0.98	145.0	-0.56	0.56
Resultant	0.33	3.234	87.5	0.37	3.23
F _{R2}					

PART 2

: ERROR CALCULATIONS

Percent error magnitude experimental compared to analytical = 1.06 %

Percent error magnitude graphical compared to analytical = 40.9 %

Absolute error in angle experimental compared to analytical = 0.03 degrees

Absolute error in angle graphical compared to analytical = 20.04 degrees

Questions

- Ans 1. It would have no effect in g on the percentage error calculation
- Ans 2. The equilibrant will lie in the third quadrant.

Ans 3a) correct option is d because maximum resultant is 5N and minimum resultant is 1 N.

Ans 4) F1=-0.1cos20 °i - 0.1sin20° F2=0 i - 0.2 j Fnet = -0.094 i -0.234 j
$$|F|$$
 = 0.25 N

Ans 5) Frictional pulleys are one of the best known lab methods to lift loads.