# Dynamic Programming



#### Contents

Introduction

Calculation the binomial coefficient

Shortest paths problem

Complexity time of Floyd algorithm



### Introduction

- Divide-and-Conquer is a top-down method.
  - □ Divide the problem / instance into smaller and smaller sub-problem / sub-instances.
  - □ Combine the sub-solutions thus obtained the solution of the original problems.
  - □ It commonly uses with recursion.
  - But, it requires extra memory to all the intermediate arguments and return values on the system's internal stack.
  - □ And,



### Introduction

- Divide-and-Conquer is a top-down method.
  - Using recursive method to solve the problem, there would have some overlapping sub-instances to be solved.
  - These overlapping sub-instances / duplication will cause the algorithm inefficient.
- The dynamic programming is used to solve the above problem, avoid calculating the same thing twice.



### Introduction

- Dynamic programming on the other hand is bottom-up technique.
  - □ Start with the smallest, and hence the simplest, sub-problems / sub-instances.
  - By combining their solutions, obtain the answers to sub-problems / sub-instances of increasing size.
  - Until finally arrive at the solution of the original instance.
  - Usually keeps a table of known results which fills up as sub-instances are solved.



## Calculation the binomial coefficient

Consider the problem of calculating the binomial coefficient:

$$\square_n C_r = 1$$

$$\square_n \mathbf{C}_r = {}_{n-1}\mathbf{C}_{r-1} + {}_{n-1}\mathbf{C}_r$$

$$\Box_n \mathbf{C}_r = 0$$

if 
$$r = 0$$
 or  $r = n$ 

if 
$$0 < r < n$$

## Calculation the binomial coefficient

Use Recursion method to solve the binomial coefficient problem:

```
int C(int n, int r)
{
   if (r == 0 || n == r)
     return 1;
   else
   return C(n-1, r-1) + C(n-1,r);
}
```

## Calculation the binomial coefficient



Pascal's triangle.





Calculate the length of the shortest path between each pair of vertices.



### Floyd's algorithm



$$D_0 = L =$$

1 2 3 4

1 0 5 Inf Inf

2 50 0 15 5

3 30 Inf 0 15

4 15 Inf 5 0





$$D_1 =$$
1 2 3 4
1 0 5 Inf Inf
2 50 0 15 5
3 30 35 0 15
4 15 20 5 0



| 1  | 2   | 3   | 4   |
|----|-----|-----|-----|
| 0  | 5   | Inf | Inf |
| 50 | 0   | 15  | 5   |
| 30 | Inf | 0   | 15  |
| 15 | Inf | 5   | 0   |



| 1  | 2  | 3   | 4   |
|----|----|-----|-----|
| 0  | 5  | Inf | Inf |
| 50 | 0  | 15  | 5   |
| 30 | 35 | 0   | 15  |
| 15 | 20 | 5   | 0   |



| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 0  | 5  | 20 | 10 |
| 50 | 0  | 15 | 5  |
| 30 | 35 | 0  | 15 |
| 15 | 20 | 5  | 0  |





| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 0  | 5  | 20 | 10 |
| 45 | 0  | 15 | 5  |
| 30 | 35 | 0  | 15 |
| 15 | 20 | 5  | 0  |
| •  |    |    |    |



## Complexity time-

- > The complexity time is O(n<sup>3</sup>)
- > The inner loop needs O(n) times.
- ➤ The middle loop also needs n times, each time would do inner loop, so, if include the inner loop, the actual running times for middle loop is n\*n, O(n²).
- So, for the outer loop, the complexity time is n\* n², equals to O(n³).

