Auxiliar #3

Análisis de sistemas dinámicos y estimación

Erik Saez A.

Department of Electrical Engineering Universidad de Chile

September 2, 2025

1/12

Contenidos

- 1 Resumen
- 2 Pregunta 1
- 3 Pregunta 2

Ingeniería Eléctrica

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

Fig.: Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile.

Función de transferencia

¿Qué es y para qué sirve?

Describe la relación entrada-salida de un sistema LTI con condiciones iniciales nulas: Y(s) = H(s) U(s) (o Y(z) = H(z) U(z) en discreto). Resume la dinámica en el dominio transformado y permite:

- identificar polos y ceros (estabilidad y dinámica);
- analizar la respuesta en frecuencia y el desempeño:
- componer sistemas (cascada/paralelo/retroalimentación);
- **p** pasar entre $H(\cdot)$ y realizaciones en variables de estado.

Definición (continuo)

Para
$$\dot{x} = Ax + Bu$$
, $y = Cx + Du$:

$$H(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D.$$

Discreto

Para
$$x[k+1] = Ax[k] + Bu[k]$$
, $y[k] = Cx[k] + Du[k]$:
 $H(z) = C(zI - A)^{-1}B + D$.

De EDO a variables de estado (resumen)

Definición (VVEE)

Continuo: $\dot{x} = Ax + Bu$, y = Cx + Du. Discreto: x[k+1] = Ax[k] + Bu[k], y[k] = Cx[k] + Du[k]. $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$.

Método 1 (directo desde la EDO)

Para $\ddot{y} + 2\dot{y} - 15y = u$, defina $x_1 = y$, $x_2 = \dot{y}$:

$$\dot{x} = \underbrace{\begin{pmatrix} 0 & 1 \\ 15 & -2 \end{pmatrix}}_{A} x + \underbrace{\begin{pmatrix} 0 \\ 1 \end{pmatrix}}_{B} u, \quad y = \underbrace{\begin{pmatrix} 1 & 0 \end{pmatrix}}_{C} x.$$

Pros: directo. Contras: A no diagonal \Rightarrow cálculos largos para $\Phi(t)$.

Método 2 (desde H(s))

$$H(s) = \frac{1}{(s-3)(s+5)} = \frac{1/8}{s-3} - \frac{1/8}{s+5} \Rightarrow \text{realización}$$

$$A = diag(3, -5), B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, C = \begin{pmatrix} \frac{1}{8} & -\frac{1}{8} \end{pmatrix}.$$

Ventajas: A diagonal simplifica $\Phi(t)$ e h(t); polos de H(s) en la diagonal de A.

Erik Saez A. (UChile) September 2, 2025

Matriz de transición de estados (MTE)

Definición y propiedades

Recordemos: $\Phi(t, t_0)$ (o $\Phi[k, k_0]$) es la *solución fundamental* que propaga estados:

$$x(t) = \Phi(t, t_0) x(t_0), \qquad \Phi(t_0, t_0) = I.$$

Dinámica general

$$\frac{\partial}{\partial t} \Phi(t, t_0) = A(t) \Phi(t, t_0), \qquad \Phi(t_0, t_0) = I, \qquad (1)$$

$$\Phi[k+1, k_0] = A[k] \Phi[k, k_0], \qquad \Phi[k_0, k_0] = I.$$
 (2)

Caso LTI

Matrices constantes:

$$\Phi(t, t_0) = e^{A(t-t_0)} = \mathcal{L}^{-1}\{(sI - A)^{-1}\},\tag{3}$$

$$\Phi[k, k_0] = A^{k-k_0} = \mathcal{Z}^{-1} \{ z (zI - A)^{-1} \}. \tag{4}$$

Variación de parámetros

Entrada no nula (continuo):

$$x(t) = \Phi(t, t_0) x(t_0) + \int_{t_0}^t \Phi(t, \tau) B(\tau) u(\tau) d\tau.$$

Diagonalización (idea y receta)

Diagonalización

¿Por qué diagonalizar? Escribir $A = TDT^{-1}$ desacopla la dinámica por modos y hace inmediata la MTE: $\Phi(t) = e^{At} = T e^{Dt} T^{-1}$ (con e^{Dt} diagonal). Esto simplifica el cálculo de f(A) (p. ej., A^k , e^{At}), clarifica la interpretación (autovalores λ_i como polos/estabilidad) y facilita análisis y diseño por modos (REN(C)/RESC, control y observación) al reducir operaciones matriciales a exponenciales escalares.

Condición de diagonalizabilidad

A es diagonalizable \iff la suma de *multiplicidades geométricas* es n (equiv.: para cada λ , mult. geom. = mult. alg.)..

Receta (pasos prácticos)

- II Calcular el polinomio característico $p(\lambda) = \det(\lambda I A)$ y sus raíces λ_i (autovalores).
- 2 Para cada λ_i , resolver $(A \lambda_i I)v = 0$ y obtener una base del subespacio propio $\mathcal{N}(A \lambda_i I)$.
- 3 Si se obtienen n autovectores linealmente independientes, formar $T = [v_1 \cdots v_n]$ y $D = \text{diag}(\lambda_1, \dots, \lambda_n)$.

Casos útiles

- Si $A = A^{\top}$ (real simétrica) \Rightarrow diagonalizable por matriz ortogonal: $A = Q\Lambda Q^{\top}$ (teorema espectral).
- Si no hay *n* autovectores L.I. ⇒ *no* es diagonalizable: usar forma canónica de Jordan.

Conexión con MTE

Si $A = TDT^{-1}$, entonces $f(A) = Tf(D)T^{-1}$. En particular: $\Phi(t) = e^{At} = Te^{Dt}T^{-1}$ y $e^{Dt} = \operatorname{diag}(e^{\lambda_i t})$.

Erik Saez A. (UChile) Auxiliar #3 September 2, 2025 6 /

Forma canónica de Jordan

Una matriz no diagonalizable se escribe $A = PJP^{-1}$, donde J es block-diagonal con bloques de Jordan $J_i(\lambda)$:

$$J_i(\lambda) = egin{pmatrix} \lambda & 1 & & 0 \ & \lambda & \ddots & \ & & \ddots & 1 \ 0 & & & \lambda \end{pmatrix}.$$

Cada bloque corresponde a una cadena de autovectores generalizados. Consecuencia clave para e^{At} :

- $e^{J(\lambda)t}=e^{\lambda t}$ multiplicado por una matriz triangular con potencias $t^k/k!$ sobre superdiagonales.
- Si hay bloques de tamaño m, aparecen términos $t^k e^{\lambda t}$, $k=0,\ldots,m-1$ en las respuestas.

Erik Saez A. (UChile) September 2, 2025

Respuesta impulsional y funciones base

Continuo: $h(t) = C \Phi(t) B + D \delta(t)$. Discreto: $h[k] = CA^{k-1}B$ para $k \ge 1$ y h[0] = D.

Ejemplo (realización del Método 2):

$$h(t) = \frac{1}{8}e^{3t} - \frac{1}{8}e^{-5t}, \quad t \ge 0.$$

Respuesta a entrada cero: $y_0(t) = C \Phi(t) x(0)$. Las funciones base son las componentes L.I. que aparecen en $y_0(t)$.

Ejemplo: $\{e^{3t}, e^{-5t}\}$. Si hay cadenas de Jordan de tamaño m, aparecen términos $t^k e^{\lambda t}, k = 0, \dots, m-1$.

Erik Saez A. (UChile) Auxiliar #3 September 2, 2025

Estabilidad: BIBS y BIBO

extbfBIBS (continuo): Re $\{\lambda_i(A)\}$ < 0. BIBS (discreto): $|\lambda_i(A)|$ < 1. En la frontera puede haber comportamientos marginales.

extbfBIBO: continuo $\int_0^\infty |h(t)| \, dt < \infty$; discreto $\sum_{k \geq 0} |h[k]| < \infty$.

Ejemplo: $\lambda_1=3,\ \lambda_2=-5\ \Rightarrow\$ no BIBS. Como h(t) contiene e^{3t} , tampoco es BIBO. Relación continuo-discreto: $z=e^{sT}$.

Erik Saez A. (UChile) Auxiliar #3 September 2, 2025

Controlabilidad y observabilidad (resumen)

extbfControlable si rank
$$\begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n$$
. extbfObservable si rank $\begin{bmatrix} C & CA & \cdots & CA$

extbfPBH: rank $[sI - A \ B] = n$ y rank $[sI - A \ C^T] = n$ para todo $s \in \mathbb{C}$.

extbfGramianos (continuo, horizonte $[0, \infty)$, si A Hurwitz):

$$AW_c + W_c A^T + BB^T = 0,$$
 $A^T W_o + W_o A + C^T C = 0.$

Erik Saez A. (UChile) September 2, 2025

Pregunta #1

Enunciado Pregunta #1

Considere un sistema modelado por la siguiente ecuación diferencial:

$$\ddot{y} + 2\dot{y} - 15y = u. \tag{5}$$

- Encuentre la función de transferencia del sistema.
- Pormule el sistema en variables de estado.
- 3 Obtenga la MTE del sistema y encuentre las funciones base.
- 4 Encuentre la respuesta al impulso del sistema.
- 5 Determine la estabilidad BIBS y BIBO del sistema.

Pregunta #2

Enunciado Pregunta #2

Considere el siguiente sistema formulado en variables de estado:

$$\dot{x}(t) = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} x(t) + \begin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix} u(t), \qquad y(t) = \begin{pmatrix} 1 & 0 & 1 & 1 \end{pmatrix} x(t). \tag{6}$$

- Encuentre la MTE y las funciones base del sistema.
- 2 Encuentre la respuesta al impulso del sistema.
- 3 Determine estabilidad BIBS y BIBO.
- 4 Determine observabilidad y controlabilidad.