Week-3 Lab Programs

- 1) Write an OpenMP program to implement Matrix multiplication.
 - a. Analyze the speedup and efficiency of the parallelized code.
 - b. Vary the size of your matrices from 200, 400, 600, 800 and 1000 and measure the runtime with one thread and four threads.
 - c. For each matrix size, change the number of threads from 2,4,6 and 8 and plot the speedup versus the number of threads. Compute the efficiency.
- 2) Write an OpenMP program to perform Matrix times vector multiplication. Vary the matrix and vector size and analyze the speedup and efficiency of the parallelized code.
- 3) Write an OpenMp program to read a matrix A of size 5x5. It produces a resultant matrix B of size 5x5. It sets all the principal diagonal elements of B matrix with 0. It replaces each row elements in the B matrix in the following manner. If the element is below the principal diagonal it replaces it with the maximum value of the row in the A matrix having the same row number of B. If the element is above the principal diagonal it replaces it with the minimum value of the row in the A matrix having the same row number of B. Analyze the speedup and efficiency of the parallelized code.
- 4) Write a parallel program using OpenMP that reads a matrix of size MxN and produce an output matrix B of same size such that it replaces all the non-border elements of A with its equivalent 1's complement and remaining elements same as matrix A. Also produce a matrix D as shown below.

Example:

F	7
_	

1	2	3	4
6	5	8	3
2	4	10	1
9	1	2	5

_						
1	2	3	4			

6	10	111	3
2	11	101	1
9	1	2	5

ı	r	-	١	

_						
	1	2	3	4		
	6	2	7	3		
	2	3	5	1		
	9	1	2	5		

- 5) Write a parallel program in OpenMP to reverse the digits of the following integer array of size 9. Initialize the input array to the following values:
 - a. Input array: 18, 523, 301, 1234, 2, 14, 108, 150, 1928
 - b. Output array: 81, 325, 103, 4321, 2, 41, 801, 51, 8291