Test Pattern

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2024 - 2025)

JEE (Advanced)
PART TEST
29-12-2024

JEE(Main + Advanced): ENTHUSIAST COURSE (SCORE-I)

ANSWER KEY PAPER-2 (OPTIONAL)

$P\Delta$	R1	Γ ₋ 1	•	PH	IY!	SICS

SECTION-I (i)	Q.	1	2	3	4	5	6		
	A.	B,C,D	в,с	A,B,C	A,C	B,C,D	A,B,C,D		
SECTION-I (ii)	Q.	7	8	9	10		•	•	
	A.	В	Α	D	Α				
SECTION-II	Q.	1	2	3	4	5	6	7	8
	A.	2.40	7.10	3.42 to 3.43	20.00	2.42	8.00	9.00	1.37 to 1.38

PART-2: CHEMISTRY

SECTION-I (i)	Q.	1	2	3	4	5	6		
	A.	A,C,D	A,C,D	A,C	A,B,C,D	B,C,D	A,B,C		
SECTION-I (ii)	Q.	7	8	9	10				
	A.	Α	С	В	D				
SECTION-II	Q.	1	2	3	4	5	6	7	8
	A.	24.00	0.25	8.00	9.00	4.00	5.00	6.00	87.00

PART-3: MATHEMATICS

SECTION-I (i)	Q.	1	2	3	4	5	6		
	A.	в,с	A,C,D	в,с	A,C	B,C	В,С		
SECTION-I (ii)	Q.	7	8	9	10				
	A.	С	D	В	D				
SECTION-II	Q.	1	2	3	4	5	6	7	8
	A.	3.00	1.00	4975.00	7.00	967.00	5049.00	6.00	10.00

(HINT - SHEET)

PART-1: PHYSICS SECTION-I (i)

1. Ans (B,C,D)

Compressing the hexagonal box and folding about the line PQ, the circuit is reduced as shown in the figure (ii).

Now, let a battery is connected between point P and Q as shown in the figure (iii) and its equivalent is shown in the figure (iv).

Applying KVL in loop 1

$$(i-i_1)\frac{R}{2}(i-i_1+i_2)\frac{R}{2}+(i-i_1)\frac{R}{2}=V$$
(i)

Applying KVL in loop 2

$$i_1 \frac{5R}{2} + i_2 R - (i - i_1) \frac{R}{2} = 0$$
(ii)

Applying KVL in loop 3

$$i_2R + (i - i_1 + i_2)\frac{R}{2} + i_2R = (i_1 - i_2)\frac{R}{2}$$
(ii)

From (i), (ii) and (iii)

$$i = \frac{20V}{23r} = \frac{V}{R_{eq}} \Rightarrow R_{eq} = \frac{23R}{20}$$

2. Ans (B,C)

$$x^2 = 2y$$

Area of circular shape = $\pi x^2 = 2\pi y$

Volume of liquid flowing out in dt sec. is

$$=\sqrt{2gv}(10\times10^{-4})m^3$$

Let level of liquid decrease by dy in dt sec.

So
$$-2\pi y \, dy = 10^{-3} = \sqrt{2gy} \, dt$$

$$\int\limits_{2}^{0} -2\pi \times 10^{3} \ y^{1/2} dy = \int\limits_{0}^{t} \sqrt{2g} \ dt$$

$$2\pi \times 10^3 \frac{(2)^{3/2}}{3/2} = \sqrt{2}\sqrt{g}t$$

$$\frac{8\pi}{3} \times 10^3 = \sqrt{g}t$$

$$t = \frac{8}{3} \times 10^3 \text{ sec} = \frac{8}{3} \times \frac{1000}{60 \times 60} = \frac{40}{9 \times 6} = \frac{20}{27} \text{hr}$$

3. Ans (A,B,C)

Let ℓ be the length of the capillary tube. Let x be the length of the capillary tube dipped in the liquid at which the liquid level inside and outside the tube is the same.

 \therefore Initial pressure $P_1 = p_a$ (atmospheric)

Final pressure $p_2 = p_a + \frac{2\sigma}{r}$, where σ is surface tension and r is radius of the tube.

Initial volume of air $V_1 = \ell a$, where a is area of cross-section.

Final volume of air $V_2 = (\ell - x)a$.

By Boyle's law, $p_1V_1 = p_2V_2$

$$p_a \times \ell a = (p_a + p) (\ell - x)a,$$

where $p = \frac{2\sigma}{r}$ is the excess pressure over and above the atmosphere.

HS-2/11

$$\therefore x = \frac{p\ell}{(p_a + p)} = \frac{\left(\frac{2\sigma}{r}\right)\ell}{p_a + \frac{2\sigma}{r}} = \frac{\ell}{1 + \frac{p_a}{\left(\frac{2\sigma}{r}\right)}}$$

$$= \frac{0.11}{1 + \frac{10^5}{5 \times 10^3}} = \frac{0.11}{1 + 20} = \frac{0.11}{21} = 5.23 \times 10^{-3} \text{m}$$

Excess pressure = $\frac{(2 \times 5.06 \times 10^{-2})}{(2 \times 10^{-5})} = 5.06 \times 10^{3} \text{ N/m}^{2}$

∴ Excess pressure is 5 kN/m² (approximately)

4. Ans (A,C)

Least count = $\frac{0.5}{100}$ = 0.005 mm

Zero error = $0 + 0.005 \times 2 = 0.01 \text{ mm}$

So, true diameter = $0.5 \times 8 + 0.005 \times 83 - 0.01$ = 4.405 mm

5. Ans (B,C,D)

Let potential of point A is x and potential of point B is zero. Consider charge flown through 3V battery is q_0 .

$$2(3-x) + q_0 + (0-x)2 = 0$$
 ...(1)
- $q_0 - (x-3) \times 1 + (2-x+3)2 = 0$...(2)

6. Ans (A,B,C,D)

After redrawing the circuit.

- (a) $I_4 = 5A$
- (b) From loop (1) to (1)

$$-8(3) + E_1 - 4(e) = 0$$

 \Rightarrow E₁ = 36 volt

From loop (2) to (2)

$$+4(5)+5(2)-E_2+8(3)=0$$

$$E_2 = 54 \text{ volt}$$

(c) From loop (3) to (3)

$$-2R - E_1 + E_2 = 0$$

$$R = \frac{E_2 - E_1}{2} = \frac{54}{2} - 36 = 9 \Omega$$

Ans. (a) 5.00 A (b) 36.0 V, 54.0 V (c) 9.00Ω

PART-1: PHYSICS

SECTION-I (ii)

7. Ans (B)

A generalised circuit for all the circuit can be given by

Applying KVL in mesh - I

$$4 - i_2 \times 2 - (i_1 - i_2) \times 4 - 6 = 0$$

$$\Rightarrow 2i_1 + 4i_1 - 4i_2 + 2 = 0$$

$$\Rightarrow$$
 $3i_1 - 2i_2 = -1$...(i)

Applying KVL in mesh - II

$$6 - (i_2 - i_1) \times 4 - i_2 \times R - E = 0$$

$$4i_1 - i_2 (4 + R) = E - 6$$
 ...(ii)

Now

(I)
$$i_1 - i_2 = 0 \Rightarrow i_1 = i_2$$

Putting in (i) and (ii) we get

$$4 + R = E - 2 \implies R = E - 6$$

& R should be positive and non-zero.

(II)
$$i_2 - i_1 > 0 \implies i_2 > i_1$$

Now from (i)

$$2(i_1 - i_2) + i_1 = -1 \implies 2(i_1 - i_2) = -1 - i_1$$

Now as $i_2 > i_1$

$$i_1 - i_2 < 0$$

$$\therefore -1 - i_1 < 0 \Rightarrow i_1 + 1 > 0$$

$$i_1 > -1 \& i_2 > i_1$$

$$\therefore$$
 $i_1 > -1$

Now from (ii)

$$4(i_1 - i_2) - i_2 R = E - 6$$

$$\Rightarrow$$
 4(i₁ - i₂) = E - 6 + i₂R

$$\Rightarrow 4(i_1 - i_2) < 0$$

8. Ans (A)

As branch CD is not a part of any closed loop, I = 0.

Current through BC : $i_1 = \frac{1}{10} = 0.1 \text{ A}$

Current through DA: $i_2 = \frac{3}{6} = 0.5 \text{ A}$

$$V_A - 1 \times 0.5 - 3 \times 0.5 + 0.5 - 4 \times 0 + 5 \times 0.1 = V_B$$

$$V_A + 2 - 3 = V_B$$
 or $V_A - V_B = 1 \text{ V}$

$$I = 0, V_{AB} = 1V$$

$$I = i_1 + i_2$$

$$1.5 = (i_1 + i_2) \times 1.5 + 2.5 i_1$$

(i.e.)
$$4i_1 + 1.5i_2 = 1.5 \Rightarrow 8i_1 + 3i_2 = 3$$
 ...(1)

and
$$5 = 3.5 i_1 + 1.5 (i_1 + i_2) = 1.5 i_1 + 5 i_2$$

$$\therefore$$
 3 $i_1 + 10 i_2 = 10$

$$(1) \times 10 - (2) \times 3$$
;

$$(80-9) i_1 = 0 \implies i_1 = 0, i_2 = 1A$$

$$I = i_1 + i_2 = 1A$$
; $V_A - V_B = 0 = V_{AB}$

Hence, I = 1A, $V_{AB} = 0$.

$$(R) \stackrel{P}{\overset{1\Omega}{\overset{1\Omega}{\overset{}}{\overset{}}}} \stackrel{1\Omega}{\overset{}{\overset{}}} \stackrel{A}{\overset{2V}{\overset{}}} \stackrel{1\Omega}{\overset{}} \stackrel{B}{\overset{}} \stackrel{IV}{\overset{}} \stackrel{2\Omega}{\overset{}} \stackrel{Q}{\overset{}} \stackrel{Q}{\overset{Q}} \stackrel{Q}$$

$$4-I_1-2(I_1-I)+1-2I_1=0$$

(i.e.)
$$5-5I_2+2I=0 \Rightarrow 5I_1-2I=5$$

$$4-I_1-2-3-3I-I=0$$

$$4 = 4I \text{ or } I = 1A$$

$$V_A + 1 - 1 \times 1 + 1 - 1 \times 1 = V_B$$

$$V_{A} - V_{B} = 0 = V_{AB}$$

Hence,
$$I = 1A$$
, $V_{AB} = 0$

PQ – symmetry line

Perpendicular to PQ will be at same potential.

$$V_R = V_S$$
 and $V_T = V_U$

No current in RS and UT.

$$I = \frac{6}{2} = 2A$$

$$V_A - V_B = V_{AB} = 2V$$

Thus,
$$I = 2A$$
, $V_{AB} = 2V$

9. Ans (D)

- (I) From free body diagram of the liquid above the sphere, $F_x = P_0 \pi R^2 + \frac{1}{3} \pi R^2 \rho g$ Force of buoyancy on the sphere $= \frac{4}{3} \pi R^3 \rho g$ So, $F_y = P_0 \pi R^2 + \frac{5}{3} \pi R^3 \rho g$
- (II) Force of buoyancy on the disc $F_x = \frac{1}{3}\pi R^2 \rho g$ $F_y = P_0 \pi R^2 + \frac{5}{3}\pi R^2 \rho g$
- (III) From the free body diagram of the liquid in the container F_x and F_y are different with option (p) and (q)

(IV)
$$F_x = \left(P_0 + \rho g \frac{R}{3}\right) 4\pi R^2 = 4\pi P_0 R^2 + \frac{4}{3} \rho g \pi R^3$$
$$F_y = \left(P_0 + \rho g \frac{5R}{3}\right) \pi R^2 = P_0 \pi R^2 + \frac{5}{3} \rho g \pi R^3$$
Force on the part open to atmosphere

Force on the part open to atmosphere $= P_0 3\pi R^2$

So,
$$F_B = \frac{1}{3} \rho g \pi R^3 = 4 \pi R^2 \frac{4R}{3} \rho g - N$$

$$(N = normal reaction)$$

$$\therefore \quad \sigma \geqslant \frac{\rho}{16}$$

PART-1: PHYSICS

SECTION-II

1. Ans (2.40)

$$(\pi r^2) \sqrt{2gy} = \pi x^2 \left(-\frac{dy}{dt}\right)$$

$$\Rightarrow$$
 $(r^2)\sqrt{2gy} = x^2\lambda$

$$\Rightarrow y\alpha x^4$$

$$\Rightarrow$$
 n = 4

2. Ans (7.10)

$$1 \text{ MSD} = 1 \text{ mm}$$

$$1 \text{ VSD} = 0.9 \text{ mm}$$

$$L.C. = 0.1 \text{ mm}$$

$$-ve error = 4 \times 0.1 mm = 0.4 mm$$

Reading =
$$6 \text{ mm} + 7 \times 0.1 \text{ mm} = 6.7 \text{ mm}$$

Diameter =
$$6.7 + 0.4 = 7.1 \text{ mm}$$

3. Ans (3.42 to 3.43)

$$C = \frac{K \in A}{d} = a \text{ constant.}$$

For A to be minimum, d must be minimum. The separation between the plates is limited by the

breakdown strength of the dielectric.

For air capacitor
$$\frac{V}{d_{min}} = E_{air}$$

 $[E_{air} = Breakdown field for air]$

$$\therefore d_{\min} = \frac{V}{E_{air}}$$

Now
$$\frac{\epsilon_0 A_{min}}{d_{min}} = C$$

$$\Rightarrow A_{min} = \frac{C}{\epsilon_0} \frac{V}{E_{air}}$$

$$\therefore A_1 = \frac{CV}{\epsilon_0 E_{air}}$$

With dielectric, similar calculation gives

$$A_2 = \frac{CV}{K \in_0 E_{dielect}}$$

$$\therefore \frac{A_1}{A_2} = \frac{KE_{dielec}}{E_{air}} = 3 \times 8 = 24$$

4. Ans (20.00)

$$\frac{q_1}{C_1} = \frac{q_2}{C_2}$$
; $q_1 + q_2 = 2Q_0$

$$C_1 = \frac{\varepsilon_0 A}{d_0 + vt}; \quad C_2 = \frac{\varepsilon_0 A}{d_0 - vt}$$

$$\frac{q_1}{q_2} = \frac{d_0 - vt}{d_0 + vt}$$

$$q_2 \left(\frac{d_0 - vt}{d_0 + vt} \right) + q_2 = 2Q_0; \quad q_2 \left[\frac{2d_0}{d_0 + vt} \right] = 2Q_0$$

$$q_2 = \frac{2Q_0}{2d_0}(d_0 + vt); \quad I = \frac{dq_2}{dt} = \frac{Q_0v}{d_0} = 20 \text{ amp}$$

$$\therefore$$
 n = 5

5. Ans (2.42)

Least count of screw gauge = $\frac{1}{100}$ mm = 0.01 mm

Diameter of the wire = $(1 + 25 \times 0.01)$ mm = 0.125 cm

Since
$$Y = \frac{4T \ell}{\pi d^2 \delta \ell}$$

$$\therefore \frac{\Delta Y}{Y} = \frac{\Delta \ell}{\ell} + \frac{2\Delta d}{d} + \frac{\Delta(\delta \ell)}{\delta \ell}$$
$$= \frac{0.01}{50} + \frac{2 \times 0.001}{0.125} + \frac{0.001}{0.125} = 0.0242$$

Percentage error =
$$\frac{\Delta Y}{Y} \times 100 = 2.42$$

6. Ans (8.00)

$$0 + \frac{\rho_1 \omega^2}{2} \left(\frac{\ell}{2}\right) - \rho_2 g h_2 = P_0$$

$$\frac{\rho_1 \omega^2}{8} \ell^2 = P_0 + \rho_2 g h_2$$

$$\omega = \sqrt{\frac{8(P_0 + \rho_2 g h_2)}{\rho_1 \ell^2}}$$

7. Ans (9.00)

$$Q = C_{eq}V = \frac{a\varepsilon_0}{d+x}V$$

$$\frac{dQ}{dt} = -\frac{a\epsilon_0}{\left(d+x\right)^2}V\frac{dx}{dt} = -\frac{a\epsilon_0}{\left(d+x\right)^2}V\nu$$

Rate of work done on the battery

$$= -\left(\frac{dQ}{dt}\right)V = \frac{a\epsilon_0 \nu V^2}{9d^2}$$

ALLEN®

8. Ans (1.37 to 1.38)

Initial charge (q_1) on the capacitor = $36 \text{ V} \times 250$

Final charge (q_f) on the capacitor =

$$\left[\frac{4}{12+4} \times 12\right] \times \frac{250}{1000} C = \frac{3}{4} C$$

Time constant (τ) of the circuit =

$$\left(\frac{4 \times 12}{4 + 12} + 3\right) \times \frac{250}{1000} \,\mathrm{s} = 1.5 \,\mathrm{s}$$

Equation of charge on the capacitor

$$=q_f+(q_i-q_f)e^{-\frac{t}{\tau}}=\frac{3}{4}+\left(9-\frac{3}{4}\right)e^{\frac{-2t}{3}}=\frac{3}{4}+\frac{33}{4}e^{\frac{-2t}{3}}$$

Equation of current in the 3Ω resistor

$$i = \frac{-dq}{dt} = \frac{11}{2}e^{\frac{-2t}{3}}A$$
.

Current at $t = 3 \ln 2s$ $i = \frac{11}{2}e^{-\frac{2}{3}\times 3\ln 2} = \frac{11}{6}A$.

So x = 1.375

PART-2: CHEMISTRY

SECTION-I (i)

1. Ans (A,C,D)

Wacker process is used to convert alkene to carbonyl group.

$$\begin{array}{c} \text{Me} & + \text{PdCl}_2 + \text{H}_2\text{O} \xrightarrow{\text{CuCl}_2} & \xrightarrow{\text{O}} & + \text{Pd} + 3\text{HCl} \\ \text{CH}_2 = \text{CH}_2 + \text{PdCl}_2 + \text{H}_2\text{O} \xrightarrow{\text{CuCl}_2} & \text{CH}_2\text{CHO} + \text{Pd} \\ + 2\text{HCl} & \end{array}$$

(i) Reagent (A)
$$H_2+Pt$$
(or)
(ii) Sia_2BH+CH_3COOH
(or)
(iii) $BH_3+THF+CH_3COOH$

2. Ans (A,C,D)

Hg lies below H in ECS.

Hence, it does not liberate H₂ with HCl

4. Ans (A,B,C,D)

$$\begin{array}{c|c} & \xrightarrow{HOAc} & \xrightarrow{S_N 1} & \xrightarrow{1,2-R} \stackrel{\ominus}{\circ} \\ \hline \end{array}$$

$$= \bigoplus_{\substack{H \ddot{O} Ac}} \xrightarrow{+HOAc} OAc$$

$$\begin{array}{c|c} & & & & \\ & & & \\ \hline \\ \text{Et}_2\text{N:} & & & \\ \hline \end{array} \begin{array}{c} & & -\text{Cl}^{\Theta} \\ \hline \\ & & \\ \hline \end{array} \begin{array}{c} & & \\ \\ & & \\ \hline \end{array}$$

$$\begin{array}{c} \text{HO} \overset{:}{\ominus} \\ \downarrow \\ \text{Et} \end{array} \overset{:}{\text{Ph}} \\ \begin{array}{c} \text{S}_{\aleph^2} \end{array} \overset{:}{\text{OH}} \end{array}$$

$$\begin{array}{c|c} & DMF \\ & -I \stackrel{\ominus}{\circ} \\ & S_{N}1 \end{array}$$

$$\longrightarrow \begin{array}{c} & & \\ & \\ & \\ & \\ \end{array}$$

PART-2: CHEMISTRY SECTION-I (ii)

9. Ans (B)

$$KO_2 + H_2O \longrightarrow KOH + H_2O_2 + O_2$$

$$Na_2O_2 + H_2O \longrightarrow NaOH + H_2O_2$$

NaCl
$$\xrightarrow{\text{Electrolysis}} H_2$$
 (at cathode)

$$NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + CO_2 + H_2O_3$$

10. Ans (D)

(P)
$$2KMnO_4 + 3HCOOK \xrightarrow{\text{alkaline}} 2MnO_2 + KHCO_3 + 2K_2CO_3 + H_2O_3$$

$$\begin{array}{c} \text{(P) } 2\text{KM}\text{nO}_4 + 3\text{HCOOK} \xrightarrow{\text{alkaline}} 2\text{M}\text{nO}_2 + \text{KHCO}_3 + 2\text{K}_2\text{CO}_3 + \text{H}_2\text{O} \\ \text{(Q) } 2\text{M}\text{nO}_4^- + 2\text{OH}^- \xrightarrow{\text{alkaline}} 2\text{M}\text{nO}_4^{2-} + \text{H}_2\text{O} + \text{O} \\ \text{then} \end{array}$$

$$2MnO_4^{2-} + 2H_2O \rightarrow 2MnO_2 + 4OH^{\Theta} + 2O$$

(R)
$$2KMnO_4 + H_2O + KI \rightarrow 2MnO_2 + 2KOH + KIO_3$$

$$(S) \ MnO_4^\Theta + H_2C_2O_4 + H^{ \, \oplus } \rightarrow Mn^{2+} + CO_2 + H_2O$$

PART-2: CHEMISTRY SECTION-II

1. Ans (24.00)

Product is CH₂=CH-CH=CH₂

value of $\mathbf{x} = 2$

value of y = 4

value of z = 3

 $2 \times 4 \times 3 = 24$

2. Ans (0.25)

$$X = 4(3, 4, 7, 9)$$

$$Y = 3(3, 7, 9)$$

$$Z = 4 (5, 6, 7, 8)$$

Value of
$$\frac{X - Y}{Z}$$
 is

$$=\frac{4-3}{4}=0.25$$

3. Ans (8.00)

1, 2, 3, 4, 7, 8, 9, 10 gives Tollen's test.

4. Ans (9.00)

1, 3, 5, 6, 8, 9, 10, 11, 12 will give diastereomeric pair.

6. Ans (5.00)

AlCl₃, MgCl₂, FeCl₃, BCl₃, BeCl₂

7. Ans (6.00)

N₂, O, N, F, He, Ne

8. Ans (87.00)

$$M_a = Zn$$

$$M_b = Cu$$

$$M_c = Ni$$

$$2H_2O + 2MnO_4^- + 3Mn^{2+} \xrightarrow{ZnSO_4} 5MnO_2 + 4H^+$$

•
$$E^{\Theta}/V(Ni^{2+}/Ni) = -0.25$$

• 'Silver' UK coins are a Cu/Ni alloy

PART-3: MATHEMATICS SECTION-I (i)

1. Ans (B,C)

$$x^{2}f''(x) + 4f'(x) + 2f(x) > 0$$

$$\left(x^2 f(x)\right)^{"} > 0$$

2. Ans (A,C,D)

$$\lim_{x\to 0}\frac{f(x)}{x^2}=\pi.$$

$$f(0) = 0 = f'(0)$$

$$f''(0) = 2\pi$$
; i. e. $f''(0) > 2\pi$.

$$f'(x) = 0$$
 only for $x = 0$

i.e., f'(x) changes sign at x = 0 only

3. Ans (B,C)

$$f(\mathbf{x}) = \mathbf{x}^2 + \mathbf{x} + 1 + \sin \mathbf{x}$$

$$f'(x) = 2x + 1 + \cos x$$

$$f''(x) = 2 - \sin x > 0 \ \forall \ x \in \mathbb{R}$$

 \Rightarrow f'(x) is monotonically increasing

Now
$$f'(-1) < 0 \& f'(0) = 2 > 0$$

 \therefore f'(x) = has exactly one root in (-1, 0) as f'(x)

is increasing function

4. Ans (A,C)

$$\lim_{n \to \infty} \left(n + 1 - \sum_{i=2}^{n} \sum_{k=2}^{i} \frac{1}{\lfloor k - 1} - \frac{1}{\lfloor k} \right)$$

$$\lim_{n\to\infty} \left(1 + \sum_{i=2}^{n} \frac{1}{|i|}\right) = e$$

5. Ans (B,C)

Maxima at $x = 4k + 1 \Rightarrow 24$ points

Minima at $x = 4k + 2 \Rightarrow 25$ points

6. Ans (B,C)

For x > 2

$$f(x) = \int_{0}^{1} (6-t)dt + \int_{1}^{x} (t+4)dt =$$

$$\left(6t - \frac{t^2}{2}\right)_0^1 + \left(\frac{t^2}{2} + 4t\right)_1^x =$$

$$\left(6-\frac{1}{2}\right)+\left(\frac{x^2}{2}+4x\right)-\left(\frac{1}{2}+4\right)$$

$$= \frac{11}{2} + \frac{x^2}{2} + 4x - \frac{9}{2} = \frac{x^2}{2} + 4x - 1$$

$$f(x) = \begin{cases} 5x + 1, & x \le 2\\ \frac{x^2}{2} + 4x - 1, & x > 2 \end{cases}$$

$$f'(x) = \begin{cases} 5, & x < 2 \\ x + 4, & x > 2 \end{cases}$$

 $f'(2^-) \neq f'(2^+) \implies f \text{ is not differentiable}$

PART-3: MATHEMATICS SECTION-I (ii)

7. Ans (C)

$$f(x) = \begin{cases} -6x & -1 < x < -\frac{2}{3} \\ 4 & -\frac{2}{3} \le x \le \frac{2}{3} \\ 6x & \frac{2}{3} < x < 1 \end{cases}$$

$$g(x) = \{x\}$$

$$f(g(x)) = \begin{cases} 4 & 0 \leqslant \{x\} \leqslant \frac{2}{3} \\ 6\{x\} & \frac{2}{3} < \{x\} < 1 \end{cases}$$

 \therefore c = 1 and d = 3

8. Ans (D)

$$f(x) = \frac{x^2 + 4x + 3}{x^2 + 7x + 14}$$

$$f'(x) = \frac{(3x+7)(x+5)}{x^2+7x+4}$$

$$f(x)_{max} = 2 \text{ at } x = -5$$

$$f(x)_{min} = \frac{-2}{7}$$
 at $x = \frac{-7}{3}$

Graph of y = f(x)

$$g(x) = \frac{x^2 - 5x + 10}{x^2 + 5x + 20}$$

$$\frac{10(x+5)(x-3)}{(x^2+5x+20)^2}$$

$$g(x)_{max.} = 3 \text{ at } x = -5$$

$$g(x)_{min} = \frac{1}{11}$$
 at $x = 3$

Graph of y = g(x)

HS-8/11

9. Ans (B)

(I) Equation of circle is
$$x^2 + \left(y - \frac{10}{3}\right)^2 = 1$$

Consider a general point $(2t^2, 2t^3)$ on the curve $x^3 = 2y^2$.

$$\ell^2 = 4t^4 + \left(2t^3 - \frac{10}{3}\right)^2 = 4\left[t^4 + \left(t^3 - \frac{5}{3}\right)^2\right]$$

$$\frac{d(\ell)^2}{dt} = 8t^2 (t - 1) (3t^2 + 3t + 5) \Rightarrow t = 1 \text{ is a point of}$$

local minima
$$\Rightarrow \ell_{\min} = \frac{2}{3}\sqrt{13}$$

(II) Let
$$t = -x - \frac{\pi}{6}$$
, $t \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$

$$\Rightarrow \tan\left(x + \frac{2\pi}{3}\right) - \tan\left(x + \frac{\pi}{6}\right) + \cos\left(x + \frac{\pi}{6}\right)$$

$$\Rightarrow$$
 cot t + tan t + cos t \Rightarrow $\frac{2}{\sin 2t}$ + cos t of decreasing

in
$$\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$$

$$\Rightarrow$$
 Greatest value occur at $t = \frac{\pi}{6} \Rightarrow \frac{11\sqrt{3}}{6}$

(III)
$$I_1 = \lim_{x \to \infty} -x^2 \left(\left(1 + \frac{1}{x} + \frac{1}{x^3} \right)^{\frac{1}{3}} + \left(1 - \frac{1}{x} + \frac{1}{x^3} \right)^{\frac{1}{3}} - 2 \right)$$

$$= \lim_{x \to \infty} -x^2 \left((1+\alpha)^{\frac{1}{3}} + (1-\beta)^{\frac{1}{3}} - 2 \right)$$

where,
$$\alpha = \frac{1}{x} + \frac{1}{x^3}$$
, $\beta = \frac{1}{x} - \frac{1}{x^3}$

$$= \lim_{x \to \infty} -x^2 \left(\frac{\alpha - \beta}{3} + \frac{1}{3} \left(\frac{1}{3} - 1 \right) \frac{\alpha^2 + \beta^2}{2!} + \dots \right)$$

$$= \lim_{x \to \infty} -x^2 \left(\frac{2}{3x^3} - \frac{1}{9} \left(\frac{2}{x^2} + \frac{2}{x^6} \right) + \dots \right) = \frac{2}{9}$$

(IV) Put
$$n = 1$$
; $f'(x) = f(x+1) - f(x)$, $n = 2$;

$$f'(x) = \frac{f(x+2) - f(x)}{}$$

$$f'(x) = \frac{f(x+2) - f(x)}{2}$$
So, f'(x) =
$$\frac{f(x+2) - f(x+1) + f(x+1) - f(x)}{2}$$
,

$$f'(x) = \frac{1}{2}f'(x+1) + \frac{1}{2}f'(x)$$

$$\Rightarrow f'(x) = f'(x+1) \forall x \in R$$

$$\Rightarrow (f(x+1)-f(x))' = 0 \forall x \in R$$

$$\Rightarrow$$
 f(x + 1) - f(x) = c for a constant c \in R

$$\Rightarrow$$
 f'(x) = c \Rightarrow f(x) = cx + d

$$f'(x) = c : c = 2$$

$$f(0) = d = 3$$
 : $f(x) = 2x + 3$

$$\frac{f(6)}{f(1)} = 3$$

10. Ans (D)

(I)
$$\frac{1}{0} \frac{1}{2} 2 3 \frac{7}{2} 4 \frac{9}{2} 5 6 \frac{15}{2} 8 9$$

 $f\left(\frac{x+13}{2}\right) = f\left(\frac{3-x}{2}\right)$

$$f(x) = f(8 - x)$$

$$f'(x) = -f'(8-x)$$

$$f'(2) = -f'(6) = 0$$

$$f'(3) = -f'(5) = 0$$

$$f'(4) = -f'(4) = 0$$

$$f'\left(\frac{9}{2}\right) = -f'\left(\frac{7}{2}\right) = 0$$

$$f'(0) = -f'(8); h(x) = \frac{d}{dx} (f'(x) f''(x))$$

Clearly: h(x) has minimum 20 zeroes

(II)
$$x^4 - 7x^2 - 4x + 20 = (x^2 - 4)^2 + (x - 2)^2$$

$$x^4 + 9x^2 + 16 = (x^2 + 4)^2 + x^2$$

Take the curve $y = x^2$. Both square roots can be interpreted as distances.

(III)
$$x = y = 1 \implies f^2(1) + f^2(2023) = 2 \times f(1)$$

$$\Rightarrow f(1) = 1$$

$$y = 1 \Rightarrow f(x) \cdot f(1) + f(2023/x) f(2023) = 2f(x)$$

$$\Rightarrow$$
 f(x) = f(2023/x) f $\left(\frac{2023}{x}\right)$

$$yby \frac{2023}{x} \Rightarrow f(x) f(2023/x) = 1$$

$$\Rightarrow f(x) = 1, \forall x > 0$$

(IV)
$$\lim_{t \to \infty} \frac{\sqrt{tx}}{\sqrt{tx^2 - 3tx + t - 1 - x}}$$

$$\tan\left[\sin\left(\cos\frac{\pi}{6}\right)\right]$$

$$\frac{\sqrt{x}}{\sqrt{x^2 - 3x + 1}} = \frac{\sqrt{3}}{1}$$

$$x = 3x^2 - 9x + 3$$

$$3x^2 - 10x + 3 = 0$$

$$\Rightarrow (3x - 1)(x - 3) = 0$$

$$\Rightarrow$$
 x = $\frac{1}{3}$, 3

$$(8^{\alpha} + 2^{\beta} - \alpha\beta) = 8^{\frac{1}{3}} + 2^{3} - 1$$

$$\Rightarrow$$
 2 + 8 - 1 = 9

1001CJA101021240033

HS-9/11

PART-3: MATHEMATICS SECTION-II

1. Ans (3.00)

Let
$$f(x) = x^4 + 4bx^3 + 12x^2 + 4x + 1$$

$$f'(x) = 4x^3 + 12bx^2 + 24x + 4$$

$$f''(x) = 12x^2 + 24bx + 24$$

if f(x) does not changes its concavity, then f''(x)

is always non negative \Rightarrow D \leq 0

$$\Rightarrow$$
 576b² - 4.12.24 \leq 0

$$\Rightarrow$$
 b² - 2 \le 0 \Rightarrow b \in [-\sqrt{2}, \sqrt{2}]

hence number of integral values of b is 3.

2. Ans (1.00)

Let
$$\frac{16r^2 + 16r + 6}{(2r+1)(2r+2)(2r+3)}$$

$$=\frac{A}{2r+1}+\frac{B}{2r+2}+\frac{C}{2r+3}$$

$$\Rightarrow$$
 A = 1, B = -6 , C = 9

$$L = \lim_{n \to \infty} \sum_{r=0}^{n} 3^{2r+1} \left(\frac{1}{2r+1} - \frac{3}{2r+2} - \frac{3}{2r+2} + \frac{9}{2r+3} \right)$$

$$= \lim_{n \to \infty} \sum_{r=0}^{n} \frac{3^{2r+1}}{2r+1} - \frac{3^{2r+2}}{2r+2} - \frac{3^{2r+2}}{2r+2} + \frac{3^{2r+3}}{2r+3}$$

$$= \ln (1+3) + \ln (1+3) - 3 = 2 \ln 4 - 3$$

$$\therefore [2 \ln 4 - 3] = -1$$

3. Ans (4975.00)

$$y = [x] + \{x\}^2 \Rightarrow [y] = [x]$$

Now,
$$y - [x] = \{x\}^2 \Rightarrow \{y\} = \{x\}^2$$

$$x = [x] + \{x\} = [y] + \sqrt{\{y\}}$$

$$g(x) = [x] + \sqrt{x}$$

Differentiable every where except integral values

of x

In
$$x \in (0, 1) \Rightarrow g(x) = \sqrt{x} \Rightarrow g'(x) = \frac{1}{2\sqrt{x}}$$

Now,
$$g'(x) = 1 = \frac{1}{2\sqrt{x}} \Rightarrow x = \frac{1}{4}$$

$$\therefore \text{ sum} = \sum_{r=0}^{99} r + \frac{1}{4} = 4950 + 25 = 4975$$

4. Ans (7.00)

$$f'(x) = x \ln x - e$$

$$\Rightarrow f^{'}(x) \begin{cases} <0 & ; \quad x \in (0,e) \\ >0 & ; \quad x \in (e,\infty) \end{cases}$$

$$f(x)_{min} = f(e) = k - \frac{3}{4}e^2$$

$$\Rightarrow k - \frac{3}{4}e^2 \geqslant 0$$

$$k \geqslant \frac{3}{4}e^2 \implies (a+b) = 7$$

5. Ans (967.00)

Let 1, 3, 5, 7 and α are roots of f(x)

$$\Rightarrow$$
 f(x) = A (x - 1) (x - 3) (x - 5) (x - 7) (x - α)

$$\Rightarrow \frac{f'(x)}{f(x)} = \left[\frac{1}{x-1} + \frac{1}{x-3} + \frac{1}{x-5} + \frac{1}{x-7} + \frac{1}{x-\alpha} \right]$$

Now,
$$f'(11) = 0$$

$$o = \frac{1}{10} + \frac{1}{8} + \frac{1}{6} + \frac{1}{4} + \frac{1}{11 - \alpha}$$

$$\Rightarrow 77\alpha = 967$$

HS-10/11

6. Ans (5049.00)

$$f(x) = e^{x} \lim_{n \to \infty} \sum_{r=1}^{n} \frac{\left(e^{r+1} - e^{r}\right)}{\left(e^{r} - 1\right)\left(e^{r+1} - 1\right)}$$

$$f(x) = e^x \lim_{n \to \infty} \left(\frac{1}{e-1} - \frac{1}{e^2-1} + \frac{1}{e^2-1} - \frac{1}{e^3-1} + \dots - \frac{1}{e^{n+1}-1} \right)$$

$$f(x) = \frac{e^x}{e - 1}$$

Now,
$$\frac{e^x}{x^2} = k(e-1)$$

$$y = \frac{e^x}{x^2}$$

$$\frac{dy}{dx} = \frac{e^x \cdot (x-2)}{x^3}$$

for three solution

$$k(e-1) > \frac{e^2}{4}$$

$$\therefore k \in I \quad k > \frac{e^2}{4(e-1)}$$

Now, $k = 2, 3, 4, \dots, 99, 100$

$$S = \sum_{k=2}^{100} k = \frac{100 \times 101}{2} - 1$$

$$=5050-1=5049$$

7. Ans (6.00)

$$\lim_{x\to 0} \left(3 - \frac{P(x)}{x}\right) = 27$$

 \Rightarrow P(x) has no constant term

let
$$P(x) = ax^4 + bx^3 + cx^2 + dx$$

$$\Rightarrow$$
 3 - d = 27 \Rightarrow d = -24

$$P(x) = ax^4 + bx^3 + cx^2 - 24x$$

$$P'(2) = 0$$
, $p(1) = -9$, $p'''(2) = 0$

$$P'(x) = 4ax^3 + 3bx^2 + 2cx - 24$$

$$P''(x) = 12ax^2 + 6bx + 2c$$

$$P'''(x) = 24ax + 6b$$

$$a + b + c - 24 = -9$$

$$\Rightarrow a + b + c = 15$$
 ... (1)

$$P'(2) = 0$$

$$\Rightarrow$$
 4a(8) + 3b(4) + 2c(2) - 24 = 0

$$\Rightarrow 8a + 3b + c = 6$$
 ... (2)

$$P'''(2) = 0$$

$$\Rightarrow$$
 24a(2) + 6(b) = 0

$$\Rightarrow 8a + b = 0$$
 ... (3)

Solving (1), (2) & (3)

$$a = 1, b = -8, c = 22$$

$$\Rightarrow$$
 P(x) = $x^4 - 8x^3 + 22x^2 - 24x$

$$P'(x) = 4x^3 - 24x^2 + 44x - 24$$

$$=4[x^3-6x^2+11x-6]$$

$$P'(x) = 4[(x-1)(x-2)(x-3)]$$

$$P''(x) = 4[3x^2 - 12x + 11] > 0 \ \forall \ x \in [3, 4]$$

$$\Rightarrow$$
 P'(x) = 4[(4-1)(4-2)(4-3)]

$$=4[(3)(2)(1)]$$

$$= 24 = 4M$$

$$\Rightarrow$$
 M = 6

8. Ans (10.00)

Let
$$g(x) = f(x + 3) - f(x)$$
 and $g(0) = k (k > 0)$

$$g(3) = -k$$
, $g(6) = k$, $g(9) = -k$, $g(12) = k$, $g(15) = -k$,

$$g(18) = k$$

 \Rightarrow g(x) = 0 has at least 6 solutions in x \in (0, 18)

$$\Rightarrow$$
 g'(x) = 0 has at least 5 solutions in x \in (0, 18)

Let

$$\Rightarrow h(x) = g(x) \cdot g'(x)$$

$$\Rightarrow$$
 h(x) = 0 has at least 11 solutions in x \in (0, 18)

$$\Rightarrow$$
 h'(x) = 0 has at leat 10 solutions in x \in (0, 18)