

DATA SHEET

CURRENT SENSOR - LOW TCR AUTOMOTIVE GRADE PA series 5%, 1%, 0.5%

sizes 0100/0201/0402/0603/0805/1206/2010/2512

RoHS compliant & Halogen free

YAGEO

SCOPE

This specification describes PA0100 to 2512 series current sensor - low TCR with metal substrate.

APPLICATIONS

- Smart Phone
- **Batteries**
- Computer
- Telecom / Datacom
- Industrial / Power supply
- Car electronics

<u>FEATURES</u>

- · AEC-Q200 qualified
- Halogen-free Epoxy
- · Total lead free without RoHS exemption
- RoHS compliant
- · Reduce environmentally hazardous wastes
- · High component and equipment reliability
- · Non-forbidden materials used in products/production
- · Low resistances applied to current sensing
- Moisture sensitivity level: MSL I

ORDERING INFORMATION - GLOBAL PART NUMBER

Global part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

PA XXXX X X X XX XXXX X (2) (3) (4) (5) (1)

(I) SIZE

0100/0201/0402/0603/0805/1206/2010/2512

(2) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1\%$

 $| = \pm 5\%$

(3) PACKAGING TYPE

R = Paper taping reel (PA0100~PA1206)

K = Embossed taping reel (PA2010/PA2512)

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

 $E = \pm 50$ ppm/°C

 $M = \pm 75$ ppm/°C

 $F = \pm 100 ppm/^{\circ}C$

 $L = \pm 150 \text{ppm/}^{\circ}\text{C}$

 $G = \pm 200 \text{ppm/}^{\circ}\text{C}$

 $I = \pm 300$ ppm/°C

(5) TAPING REEL

07 / 7W / 7T / 47 / 57 / 87 / 0L / WL / 4L inch dia. Reel and specific rated power Detailed power rating are shown in the Table 2.

(6) RESISTANCE VALUE

 $0.5~\text{m}\Omega$ to $20~\text{m}\Omega$

(7) DEFAULT CODE

Letter $L\ /\ Z$ is the system default code for ordering only. (Note)

L is for 0100/0201/0402/0603/0805

Z is for only 1206/2010/2512

Resistance rule of global part

Resistance code rule	Example
0UX	0U5=0.0005Ω
0RXXX	$0R001 = Im\Omega$
	$0R02 = 20m\Omega$

ORDERING EXAMPLE

The ordering code for a PA0805 0.125W chip resistor, TC50 value 0.01Ω (10mR) with \pm 1% tolerance, supplied in 7-inch tape reel with 5Kpcs quantify is: PA0805FRE070R01L.

NOTE

I. All our RChip products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead-Free Process"

MARKING

PA0100/0201/0402/0603/0805/1206/2010

No Marking

PA2512

4 digits

The "m" is used as decimal point; the other 3 digits are significant and the unit is milliohm

PA2512: $0.5 \text{m}\,\Omega$ and $0.75 \text{m}\,\Omega$

4 digits

The "R" is used as a decimal point; the other 3 digits are significant PA2512: $Im\Omega$ to $20m\Omega$

CONSTRUCTION

The resistors are constructed by using outstanding TCR level materials, which make Yageo PA resistors excellent for current sensing application in battery charger circuit & DC-DC converter.

The advanced resistive materials are adopted to get the precisely required resistance.

Finally, the three materials of external terminations (Cu / Ni / matte Tin) are added, as shown in Fig. 5.

Outlines

Product specification

4

12

Chip Resistor Surface Mount PA SERIES 0100 to 2512

DIMENSION

Table I For outlines, please refer to Fig. 5

TYPE	RESISTANCE RANGE	L (mm)	W (mm)	H (mm)	II (mm)
PA0100	$10m\Omega \le R < 100m\Omega$	0.40±0.03	0.20±0.03	Max. 0.15	0.10±0.03
PA0201	$5m\Omega \le R < 50m\Omega$	0.60±0.03	0.31±0.04	Max. 0.30	0.15±0.06
PA0402	$2m\Omega \le R \le 20m\Omega$	1.00±0.10	0.55±0.10	Max. 0.40	0.25±0.10
	l mΩ	1.60±0.20	0.80±0.20	0.55±0.15	0.38±0.12
PA0603	$2 m \Omega$	1.60±0.20	0.80±0.20	0.45±0.15	0.38±0.12
	$2.5 \text{m}\Omega \le R \le 20 \text{m}\Omega$	1.60±0.20	0.80±0.20	0.30±0.15	0.38±0.12
	0.5mΩ	2.03±0.20	1.27±0.20	Max. 0.90	0.70± 0.10
PA0805	lmΩ	2.03±0.20	1.27±0.20	0.55±0.15	0.60±0.15
1 70003	1.5/ 2mΩ	2.03±0.20	1.27±0.20	0.45±0.15	0.50±0.15
	$2.5 \text{m}\Omega \leq R \leq 20 \text{m}\Omega$	2.03±0.20	1.27±0.20	0.30±0.15	0.35±0.20
PA1206	lmΩ	3.20±0.25	1.60±0.25	0.50±0.10	1.04±0.25
(0L/WL/4L)	$2 m \Omega$	3.20±0.25	1.60±0.25	0.45±0.10	1.04±0.25
	lmΩ	3.20±0.25	1.60±0.25	0.65±0.25	0.51±0.25
PA1206	2mΩ	3.20±0.25	1.60±0.25	0.55±0.25	0.60±0.25
(07/7W/47)	$2.5/~3 m\Omega$	3.20±0.25	1.60±0.25	0.40±0.25	0.80±0.30
	$4m\Omega \le R \le 20m\Omega$	3.20±0.25	1.60±0.25	0.40±0.25	0.60±0.30
PA2010	$Im\Omega \le R \le 3m\Omega$	5.08±0.25	2.54±0.25	0.50±0.25	1.40±0.25
	$4m\Omega \le R \le 20m\Omega$	5.08±0.25	2.54±0.25	0.40±0.25	0.70±0.25
	$0.5 \text{m}\Omega \leq R \leq 0.75 \text{m}\Omega$	6.35±0.25	3.18±0.25	0.40±0.25	2.72±0.25
PA2512	$Im\Omega \leq R \leq 4m\Omega$	6.35±0.25	3.18±0.25	0.40±0.25	2.21±0.25
174214	$5m\Omega \le R \le 6m\Omega$	6.35±0.25	3.18±0.25	0.40±0.25	1.19±0.25
	$7m\Omega \leq R \leq 20m\Omega$	6.35±0.25	3.18±0.25	0.40±0.25	0.76±0.25

Note:

^{1.} For relevant physical dimensions, please refer to construction outlines.

^{2.} Please contact with sales offices, distributors and representatives in your region before ordering.

Product specification

5

Chip Resistor Surface Mount РΑ SERIES 0100 to 2512

ELECTRICAL CHARACTERISTICS

Table 2

'	POWER RATING(4) @ 70°C								TEME	PERATURE COEFFICIENT OF
SIZE	07 0L ⁽⁵⁾	7W WL ⁽⁵⁾	7T	47 4L ⁽⁵⁾	57	87	TOLERANCE ⁽²⁾	RESISTANCE RANGE	I EI IF	RESISTANCE ⁽³⁾
0100	1/32W	1/16W					±1%(F) ±5%(J)	$10m\Omega \le R < 100m\Omega$		±300 ppm/°C(I)
							±0.5%(D)	20mΩ		
0201	1/20W	1/10W	3/20W	1/5W			±1%(F) ±5%(J)	$5m\Omega \le R < 50m\Omega$		±150 ppm/°C(L)
							±0.5%(D)	$15\text{m}\Omega \le R \le 20\text{m}\Omega$		
0402	1/16W	1/8W	1/6W	1/4W	1/3W		±1%(F) ±5%(J)	$2m\Omega \le R \le 20m\Omega$		±150 ppm/°C(L)
							±0.5%(D)	$10 \text{m}\Omega \leq R \leq 20 \text{m}\Omega$	$\text{Im}\Omega$	±200 ppm/°C(G)
0603	1/10W	1/5W	1/3W	2/5W	1/2W		±1%(F) ±5%(J)	$Im\Omega \le R \le 20m\Omega$	$2/2.5 m\Omega$ $3 m\Omega \le R \le 20 m\Omega$	±150 ppm/°C(L) ±50 ppm/°C(E), ±75 ppm/°C(M)
							±0.5%(D)	$10 \text{m}\Omega \leq R \leq 20 \text{m}\Omega$	$0.5 m\Omega$	±100 ppm/°C(F)
0805	1/8W	I/4W		1/2W		IW	±1%(F) ±5%(J)	$0.5 \text{m}\Omega \le R \le 20 \text{m}\Omega$	$1/1.5m\Omega$ $Im\Omega \le R \le 20m\Omega$	±150 ppm/°C(L) ±50 ppm/°C(E)
1206 (0L/WL/4L)	1/4W	1/2W		IW			±1%(F) ±5%(J)	lm/2mΩ		±50 ppm/°C(E)
1206							±0.5%(D)	$5m\Omega \le R \le 20m\Omega$	I/2mΩ	±100 ppm/°C(F)
(07/7W/47)	I/4W	1/2W		IW			±1%(F) ±5%(J)	$Im\Omega \le R \le 20m\Omega$	$Im\Omega \le R \le 20m\Omega$	±50 ppm/°C(E)
			2.60.4.4	0			±0.5%(D)	$5m\Omega \le R \le 20m\Omega$ (2W: $5m\Omega \le R \le 10m\Omega$)		
2010	1/2W	IW	3/2W	2W			±1%(F) ±5%(J)	$Im\Omega \le R \le 20m\Omega$ $(2W: Im\Omega \le R \le 10m\Omega)$		±50 ppm/°C(E)
2512	IW	2W					± 0.5%(D) ± 1%(F) ± 5%(J)	$(IW:0.5m\Omega \le R \le 20m\Omega)$ $(2W:0.5m\Omega \le R \le 5m\Omega)$	$Im\Omega \le R \le 20m\Omega$ $0.5m\Omega \le R \le 0.75m\Omega$	±50 ppm/°C(E) ±75 ppm/°C(M)

Note: I. Please contact with sales offices, distributors and representatives in your region before ordering.

- 2. Global part number (code7)
- 3. Global part number (code9)
- 4. Global part number (code I 0- I I)
- 5. 0L/WL/4L are only for PA1206 Im/2m Ω

6 12

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

PA0100 to PA0402 Range: -55°C to +125°C PA0603/ 0805 Range: -55°C to +155°C PA1206/ 2010/ 2512 Range: -55°C to +170°C

POWER RATING

Standard rated power at 70°C: For detail power value, please refer to Table 2.

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(PxR)}$$

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	PA0100	PA0201	PA0402	PA0603	PA0805	PA1206	PA2010	PA2512
Paper Taping Reel (R)	7" (178 mm)	20,000	10,000	10,000	5,000	5,000	4,000	-	-
Embossed Taping Reel (K)	7" (178 mm)	-	-	-	-	-	-	4,000	4,000

PAPER TAPE

EMBOSSED TAPE

Table 4 Dimensions of paper tape for relevant chip resistors size

CIZE	SYMBOL									Unit: mm
SIZE	A ₀	B ₀	W	Е	F	P ₀	Pı	P ₂	ΦD ₀	Т
PA0100	0.24±0.03	0.45±0.03	8.00±0.20	1.75±0.10	3.50±0.05	4.00±0.05	2.00±0.10	2.00±0.05	1.50±0.10	0.31±0.10
PA0201	0.39±0.10	0.70±0.10	8.00±0.30	1.75±0.10	3.50±0.10	4.00±0.10	2.00±0.10	2.00±0.10	1.55±0.05	0.43±0.10
PA0402	0.59±0.10	1.10±0.10	8.00±0.30	1.75±0.10	3.50±0.10	4.00±0.10	2.00±0.10	2.00±0.10	1.55±0.05	0.53±0.10
PA0603	1.08±0.10	1.90±0.10	8.00±0.30	1.75±0.10	3.50±0.10	4.00±0.10	4.00±0.10	2.00±0.10	1.55±0.05	0.60±0.10
PA0805	1.60±0.10	2.35±0.10	8.00±0.30	1.75±0.10	3.50±0.10	4.00±0.10	4.00±0.10	2.00±0.10	1.55±0.05	0.60±0.10 ⁽¹⁾
	1.60±0.10	2.35±0.10	8.00±0.30	1.75±0.10	3.50±0.10	4.00±0.10	4.00±0.10	2.00±0.10	1.55±0.05	0.53±0.10 ⁽²⁾
PA1206	1.90±0.10	3.50±0.10	8.00±0.30	1.75±0.10	3.50±0.10	4.00±0.10	4.00±0.10	2.00±0.10	1.55±0.05	0.85±0.15

Note: I. Im $\Omega \le R \le 2m\Omega$ (T = 0.60± 0.10mm)

2.2.5m $\Omega \le R \le 20$ m $\Omega (T = 0.53 \pm 0.10$ mm)

 Table 5
 Dimensions of embossed tape for relevant chip resistors size

SIZE	SYMBOL									Unit: mm
3125	A ₀	B ₀	W	E	F	P ₀	Pı	P ₂	ФDο	Т
PA2010	3.40±0.15	6.70±0.15	12.0±0.30	1.75±0.10	5.50±0.10	4.00±0.10	4.00±0.10	2.00±0.10	1.55±0.10	0.85±0.15
PA2512	3.40±0.15	6.70±0.15	12.0±0.30	1.75±0.10	5.50±0.10	4.00±0.10	4.00±0.10	2.00±0.10	1.55±0.10	0.80±0.15

8 12

Chip Resistor Surface Mount PA 0100 to 2512 SERIES

REEL SPECIFICATION

Table 6 Dimensions of reel specification for relevant chip resistors size

	QUANTITY -	REEL SIZE	REEL SIZE			SYMBOL		
SIZE	PER REEL	8mm TAPE WIDE	I 2mm TAPE WIDE	Α	N	С	D	Wı
PA0100	20,000	7" (Φ178mm)	-	180.0+0/-3.0	60.0+1/-0	13.00±0.2	21.0±0.8	9.0±0.3
PA0201	10,000	7" (Φ 178mm)	-	178.0±1.0	60.0+1/-0	13.50±0.5	21.0±0.8	9.0±0.5
PA0402	10,000	7" (Φ178mm)	-	178.0±1.0	60.0+1/-0	13.50±0.5	21.0±0.8	9.0±0.5
PA0603	5,000	7" (Φ178mm)	-	178.0±1.0	60.0+1/-0	13.50±0.5	21.0±0.8	9.0±0.5
PA0805	5,000	7" (Φ178mm)	-	178.0±1.0	60.0+1/-0	13.50±0.5	21.0±0.8	9.0±0.5
PA1206	4,000	7" (Φ178mm)	-	178.0±1.0	60.0+1/-0	13.50±0.5	21.0±0.8	9.0±0.5
PA2010	4,000	-	7" (Ф 178mm)	178.0±1.0	60.0+1/-0	13.50±0.5	21.0±0.8	13.6±0.5
PA2512	4,000	-	7" (Ф 178mm)	178.0±1.0	60.0+1/-0	13.50±0.5	21.0±0.8	13.6±0.5

$\frac{9}{12}$

LEADER/TRAILER TAPE SPECIFICATION

FOOTPRINT AND SOLDERING PROFILES

For recommended soldering profiles, please refer to data sheet "Chip resistors mounting".

FOOTPRINT

Table 7 Footprint	dimensions				Unit: mm
TYPE	resistance range	Α	В	С	D
PA0100	$10m\Omega \le R < 100m\Omega$	0.5~0.8	0.16~0.2	0.17~0.3	0.2~0.4
PA0201	$5m\Omega \le R < 50m\Omega$	1.00	0.30	0.35	0.40
PA0402	$2m\Omega \le R \le 20m\Omega$	2.00	0.40	0.80	0.60
PA0603 —	lmΩ	2.20	0.80	0.70	0.90
PA0603 —	$Im\Omega < R \le 20m\Omega$	2.20	0.80	0.70	0.90
PA0805 —	$0.5 \mathrm{m}\Omega/\mathrm{Im}\Omega$	4.10	0.50	1.80	1.44
PA0603 —	$1.5 \text{m}\Omega \le R \le 20 \text{m}\Omega$	4.60	1.00	1.80	1.44
PA I 206 (0L/WL/4L)	Im Ω / 2m Ω	3.90	0.90	1.50	1.78
	ImΩ / 2mΩ	4.20	1.00	1.60	1.84
PA1206 — (07/7W/47) —	$2.5 \mathrm{m}\Omega$ / $3 \mathrm{m}\Omega$	4.80	1.00	1.90	1.84
(0/// 1// 1/)	$4m\Omega \le R \le 20m\Omega$	4.80	1.20	1.80	1.84
PA2010 —	$Im\Omega \le R \le 3m\Omega$	6.00	1.60	2.30	3.00
PA2010 —	$4m\Omega \le R \le 20m\Omega$	6.00	3.50	1.25	3.00
	$0.5 \text{m}\Omega \leq R \leq \text{Im}\Omega$	7.36	0.50	3.43	3.68
PA2512 —	$Im\Omega \leq R \leq 4m\Omega$	7.37	1.27	3.05	3.68
FA2312 —	$5m\Omega \le R \le 6m\Omega$	7.40	3.18	2.11	3.68
	$7m\Omega \le R \le 20m\Omega$	7.36	4.06	1.65	3.68

Chip Resistor Surface Mount PA SERIES 0100 to 2512

TESTS AND REQUIREMENTS

Table 8 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENT
Short time overload	IEC60115-1 4.13	5 times of rated power for 5 seconds at room temperature	$0100: \pm (2.0\% + 0.0005 \Omega)$ $0201 \sim 2010:$ $\pm (1.0\% + 0.0005 \Omega)$ $2512: \pm (0.5\% + 0.0005 \Omega)$ No visible damage
High Temperature Exposure/ Endurance at Upper Category Temperature	MIL-STD-202G- Method 108	I,000 hours at maximum operating temperature depending on specification, unpowered No direct impingement of forced air to the parts Tolerances: 0100/0201/0402: 125±3°C 0603/0805: 155±3°C 1206/2010/2512: 170±3°C	0100 : \pm (3.0%+0.0005Ω) Others : \pm (1.0%+0.0005Ω)
Temperature Cycling	JESD22-A104	1,000 cycles, -55/+125°C for 1 cycle per hour	Others :± (1.0%+0.0005 Ω) 2512 :± (0.5%+0.0005 Ω)
Moisture Resistance	MIL-STD-202G- Method 106	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d with 25°C / 65°C 95% R.H, without steps 7a & 7b, unpowered	0100 : ± (3.0%+0.0005Ω) Others : ± (0.5%+0.0005Ω)
Biased Humidity	MIL-STD-202 Method 103	I,000 hours; 85°C / 85% RH I0% of operating power	$0100: \pm (3.0\% + 0.0005\Omega)$ $0201 \sim 2010: \pm$ $(1.0\% + 0.0005\Omega)$ $2512: \pm (0.5\% + 0.0005\Omega)$
Operational Life/ Endurance	MIL-STD-202G- Method 108 IEC 60115-1 4.25.1	1,000 hours at 125±3°C, de-rated power applied for 1.5 hours on, 0.5 hour off, still-air required 1,000 hours at 70±2°C applied rated power 1.5 hours on, 0.5 hour off, still air required	0100 : \pm (3.0%+0.0005Ω) others \pm (1.0%+0.0005Ω)
Resistance to Solvents	MIL-STD-202 Method 215	Immerse in isopropyl alcohol for 5 min with ultrasonic at room temperature	No visible damage
Mechanical Shock	MIL-STD-202 Method 213	Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen. Peak value: 100 g's Duration: 6 ms Velocity change: 12.3 ft/s Waveform: Half sine	0100 : ± (1.0%+0.0005Ω) Others : ± (0.5%+0.0005Ω)
Vibration	MIL-STD-202 Method 204	5 g's for 20 min., 12 cycles each of 3 orientations Test from 10-2000 Hz.	0100 : ± (1.0%+0.0005Ω) Others : ± (0.5%+0.0005Ω)
Resistance to Soldering Heat	MIL-STD-202G- Method 210	Condition B, no pre-heat of samples Leadfree solder, 260°C, 10 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	0100 : \pm (1.0%+0.0005 Ω) Others : \pm (0.5%+0.0005 Ω) No visible damage

Chip Resistor Surface Mount PA 0100 to 2512 SERIES

TEST	TEST METHOD	PROCEDURE	REQUIREMENT
Thermal Shock	MIL-STD-202 Method 107	-55/+125°C, Number of cycles is 300. Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air -Air	Others :±(1.0%+0.0005 Ω) 2512 : ± (0.5%+0.0005 Ω) No visible damage
Electrostatic Discharge	AEC-Q200-002	Human Body Model, I pos + I neg. 0805/ I206/ 2010/ 2512 : 2KV 0402/ 0603 : IKV 0100/ 0201: 500V	$\pm (1.0\% + 0.0005\Omega)$ No visible damage
Solderability - Wetting	J-STD-002	 0201 to 2512: (a) Method B, aging 4 hours at 155°C dry heat, dipping at 235±3°C for 5±0.5 seconds. (b) Method B, steam aging 8 hours, dipping at 215±3°C for 5±0.5 seconds. (c) Method D, steam aging 8 hours, dipping at 260±3 °C for 30±0.5 seconds. 0100: 1st step: Method B, aging 4 hours at 155°C dry heat. 2nd step: Lead-free solder bath at 245±3°C, dipping at 245±3°C for 3±0.5 seconds 	Well tinned (>95% covered) No visible damage
Flammability	UL94	Try to inflame a specimen by a needle flame	No ignition of specimen; V-0
Board Flex / Bending	AEC-Q200-005	Chips mounted on a 90mm glass epoxy resin PCB (FR4), Bending for 0100: 5mm 0201: 3mm 0402 and above: 2mm Holding time: Min.60 seconds	±(1.0%+0.0005Ω)
Terminal Strength (SMD)	AEC-Q200-006	Applied 0100: IN 0201: 3N 0402: 5N 0603/0805/1206/2010/2512:17.7N for 60±1 seconds.	±(1.0%+0.0005Ω) No visible damage
Flame Retardance	AEC-Q200-001	Apply voltage to increase the surface temp to 350 °C	No flame, no explosion
Temperature Coefficient of Resistance (T.C.R.)	IEC 60115-1 4.8	0100~2010 at +25/+125 °C 2512 at +25/+150°C Formula: R2-R1 T.C.R= ×106 (ppm/°C) R1(t2-t1) Where t_1 =+25 °C or specified room temperature 0100 ~2010: $t2$ =+125 °C test temperature 2512 : $t2$ =+150°C test temperature t_1 =resistance at reference temperature in ohms t_2 =resistance at test temperature in ohms	Refer to table 2

Product specification $\frac{12}{12}$

Chip Resistor Surface Mount РΑ SERIES 0100 to 2512

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 3	Jan. 05, 2023	-	- Extend PA01005, PA0201 and PA0805's resistance range
Version 2	Aug. 06, 2021	-	- Add size of PA2512 and PA1206(0L/WL/4L)
Version I	Jun. 10, 2021	-	- Add size of PA0100 and tol. ±0.5% for 0201/0402/0603/2010
Version 0	May. 07, 2020	-	- New datasheet for automotive grade current sensor – PA0201/0402/0603/0805/1206/2010 series.