

COLLEGE OF ENGINEERING, PUNE (An Autonomous Institute of Government of Maharashtra.)

END Semester Examination

Programme: B.Tech			Semester: III			
Course Code: CT 16005			Course Name: Digital Logic Design			
Branch: Computer Engineering & IT			Academic Year:2018-19			
Duration: 3 Hr			Max Marks: 60			
Stúc	dent	PRN No.			T	
Inst	ructi	ons:		<u> </u>	<u>, I </u>	
 N V E 	Nobile Vritin Excha	es to the right indicate the full marks. phones and programmable calculators are strictly programmable calculators are strictly programything on question paper is not allowed. Inge/Sharing of stationery, calculator etc. not allowed. Iyour PRN Number on Question Paper.	hibited.			
				Mark	CO	PO
Q1	a	 i. If 1013 = X2, then X is (show step wis ii. Simplify the following expression into sum of pr Karnaugh map: F(A, B, C, D) = Σ(1, 3, 4, 5, 6, 7, 2) 	roducts using	3	1	.1.
	b	Simplify the following Boolean function by using a $F(A,B,C,D)=\sum m(0,2,3,6,7,8,10,12,13)$ also list out a		7	1,2	1,3
Q 2	a	Input to combinational circuit is 4-bit binary number minimum hardware for the following i. Output P=1 if the number is prime. ii. Output Q=1 if number is divisible by 3.	er. Design the circuit with	6	2	1,3,
	b	Implement the given Boolean function with 8x1 mu connected to select lines S2, S1 and S0 respectively. $F(A,B,C,D)=\sum m(0,1,3,4,8,9,15)$	Itiplexer with A, B and D	4	2	.4
Q3	a	Design Mod 13 asynchronous down counter. What is avoid glitch?	is glitch problem? How to	7	2,3	4,6
	b	Realize F $(A,B,C) = A'B'+B'C'+ABC$ using suitable	DeMUX.	3	1,2	3,4
Q 4	а	Design a synchronous counter for the random count set Use JK flip-flop for design.	equence as 4->6->7->3->4.	6	2,3	4,6

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra.)

b	How many flip-flops are required to build a binary counter circuit to count from	2
	0 to 2048. What is the frequency of the output of last flip-flop for an input clock	
	frequency of 6MHz?	

c Assume that all flip-flops are in reset condition initially. What is the count 2 3 4.7 sequence (for first seven clock input signals) observed at QA in the given circuit.

- Q 5 a A clocked sequential circuit has three states, A,B and C and one input X. As long as the input X is '0', the circuit alternates between the states A and B. If the input becomes '1' (either in state A or state B), the circuit goes to state C and remain in state C as long as X continues to become '1'. The circuit returns to state A if the input becomes '0' once again and from then repeats its behaviour. Assume that state assignments are A=00, B=01, C=10.
 - a. Draw the state diagram of circuit
 - b. Give the state table of circuit.
 - c. Draw the circuit using D Flip-flops.
 - b Write VHDL (entity-architecture) declaration of 2-bit NOR and AND gate.
- Q 6 a Draw State table, State diagram and ASM chart for 3-Bit octal number 6 2,3, 4,7 UP/DOWN counter with control input M such that if M=1 counter counts in UP direction and if M=0 counter counts in DOWN direction.

OR

A two bit UP counter with output ' Q_1Q_0 ' and enable signal 'X' is to be designed. If 'X' = 1, counter changes the state as '00-01-10-11-00'. If 'X'=0, counter should remain in same state. Design your circuit using D flip flops and suitable MUXs.

b Write short note on Random Access Memory. 4 4