Date
Dimensionality Reduction:
Dimension - features
High dimensionality data
-> Training Time T
-) Computational Resources requirement
-> chances of overfilting,
-> Visualualization (EDA) is difficult.
most of the variables will be correlated.
inensionality Reduction:-
The process of reducing dimensions features).

Principal Component Analysis (PCA)
-> Unsupervised Algorithm.
Jealure extraction technique
Feature selection: (subset of original jeanues)
The process of selecting the most important feature using any of FS techniques (wrapper method, filter method, Embedded method) you can remove the juelevant features.
method, Embedded method) you can remove the inelevant features.
Feature Extraction: - (Create new Component)
Combine the existing features to create new components.
PCA: Extract obtain the important data in the form of components. Priorcipal Components

Date

Date Principal Component . -Combination of original dimensions which has explained variance Ratio 12 high Select any 1 feature (mora 21, -2 deopped. intol -202 > bcoz, it has more information -> eigen vector (PCI) From this we cannot select the feature, 50 here we can use PCA Technique first PC (each other) sperpendicular y perpendicular.

Date
PC, PC, PC, P Variance? -> 951.
PC, PC2, PC3 -> Variance is explained 798,
Steps:- PCA identifies the Correlation/pattern
in the dataset so that it can be
transformed into a dataset of significantly
lower dimension without loss of any
imp information.
PC, -> most significant Component PC2 -> second most " " PC3 -> Third most " "

steps: scale the data (PCA tries to get the features will be high for higher was magnitude feature so scale the data). a Calculate the Covariance. that are highly correlated. 3 Calculates eigen values & eigen -) Computed by Co-vairance, Eigen vector - Determine in direction of new feature space Eigen Values - determines the magnitude (scalar of the eigen vectors) This tells how the dectaset is spread out on the eigen vector.

Date
EVR OF PC2 = 5 = 0.08.
PC 761 7. (0.61) PC + PC2 = 92% (0.92)
Scree plot -> Used to find the Optimal no of PCs to be Considered.
Pros:
-> Model training time is reduced. -> Overfitting is reduced.
Ability to handle noise
The resultant PC are less interpreted than the original data Some Can lead to information loss, if explained variance threshold is not considered