Sistemas Distribuidos: Comunicación

Introducción.

- En un sistema distribuidos, el sistema de comunicación es la espina dorsal.
- La diferencia entre un sistemas distribuido y un sistema con un procesador es la comunición entre procesos.
- Memoria compartida vs Paso de mensajes
- Para tener comunicación en los sistemas distribuidos debe tener muchos puntos en los que deben estar de acuero.

Comunicación entre sistemas distribuidos PROTOCOLO DE APLICACION INTERFAZ PROTOCOLO DE SESION SESION PROTOCOLO DE TRANSPORTE PROTOCOLO DE RED FISICO RED

Factores a tomar en cuenta:

Los diferentes mecanismos de comunicación se caracterizan por los siguientes factores:

- Rendimiento: Latencia, ratio de transferencia, ancho de banda, ...
- Escalabilidad: Número de elementos activos.
- Fiabilidad: Pérdida de mensajes.
- Seguridad: Cifrado, certificación, ...
- Movilidad: Equipos móviles.
- Calidad de Servicio (QoS): Reserva y garantía de anchos de banda.
- Comunicación en grupo: Multicast.

Niveles de comunicación

1) Paso de mensajes puro. Aplicaciones en red.

2) Funcionalidades de comunicación de bajo nivel. Sistemas Operativos Distribuidos. 3) Llamadas a procedimientos remotos y objetos distribuidos.

Aplicaciones
y
Servicios

API (sockets)
TCP/UDP

Interfaz
y
Lógica de
Comunicación

ATM/Ethernet

App./Servicios

RMI/RPC

Protocolo y
Representación

TCP/UDP

Primitivas de Comunicación.

Cada una de las funciones de comunicación de una tecnología determinada. Las primitivas básicas son:

- Envio: send (destino, mensaje).
- Recepción: receive (fuente, mensaje).

Otras primitivas:

- Conexión: connect (destino).
- Desconexión: close().

Cada una de las primitivas tiene las siguientes características:

- Boqueantes vs No-bloqueantes.
- Síncronas vs Asíncronas.
- Fiables vs No-fiables.

Bloqueantes vs No Bloqueantes

Las características de bloqueo son:

- Primitivas bloqueantes: La operación bloquea al elemento que la solicita hasta que ésta sea completada.
- Primitivas no-bloqueantes: La operación no detiene la ejecución del elemento que la solicita.

Las llamadas no bloqueantes tienen distinto sentido dependiendo de la primitiva que se trate:

- Envío no bloqueante: El emisor almacena el dato en un buffer del núcleo (que se encarga de su transmisión) y reanuda su ejecución.
- Recepción no bloqueante: Si hay un dato disponible el receptor lo lee, en otro caso indica que no había mensaje.

Síncrona vs Asícrona

- Esta caracteristica afecta la transmision del mensaje :
 - Comunicación síncrona: Envio y recepción se realizan de forma simultanea.
 - Comunicación Asíncrona: El envio no requiere que el receptor este esperando

La comunicación asíncrona usa un buffer de almacenamiento. Implica ciertas condiciones de bloqueo en el envió y recepción.

Fiabilidad

El envío fiable de datos garantiza que un mensaje enviado ha sido recibido por el receptor.

Implica la retransmisión de mensajes de validación (ACKs).

La fiabilidad la puede garantizar:

- El protocolo de comunicación (TCP si y UDP no).
- Los elementos emisor y receptor.