

CS

WEEK 2-1

AGENDA

week	onderwerp	P&H	AT	Dijkstra
1	coderingen en talstelsels representatie van getallen optellen en aftrekken vermenigvuldigen en delen logische poorten schakelingen met poorten geheugen-elementen systeemklok & timers	App. B2, B3, B7, B8, B9 2.4 3.2 t/m 3.5 app B	App. A, B 3.1, 3.2, 3.3	H1 H2
2	typen computers 8 great ideas organisatie van de computer CPU intern, instructies uitvoeren geheugen systeem adres- en databus byte ordering pipelining de AVR MCU	1.1 t/m 1.4 2.12 4.1 t/m 4.5	1.3 2.1, 2.2 3.7	H3 6.1 en 6.2 7.1 en 7.2
3	typen geheugen caching opslag (ssd, harddisk) translating and starting a program parallelle architecturen - h/w multi-threading - multicore - GPU	5.2, 5.3 6.4 t/m 6.6	2.2, 2.3 7.3, 7.4 H8	4.1 7.3

OPGAVE'S

- x = 0xFFBB
- als x is opgeslagen in 16-bit 2's com. formaat, welke decimale waarde heeft x?
- Tel op in 8 bits two's complement: 71+70
- Tel op in 8 bits two's complement: 71+-70
- Tel op in 8 bits two's complement: -71-70
- Doe een AND van 0000 1111 en 01010101

OPGAVE 1

- x = 0xFFBB
- als x is opgeslagen in 16-bit 2's com. formaat, welke decimale waarde heeft x?
- merk op : x < 0
- ~ is bitwise NOT of 1's complement (unary operator)
- inverteren $x = 0 x = \sim x + 1$ (als x = 2's com.)
- \sim (OxFFBB) + 1= 0x0044+1 = 0x0045
- $0 \times 0045 = 69_{10}$
- dus $x = -69_{10}$

OPGAVE 2: GEEF DE WH-TABEL

AGENDA

- computer zoo
- embedded systemen
- 8 great ideas
- organisatie van de computer
- in de CPU

IBM BLUE GENE

IBM BLUE GENE

- Blue Gene is een IBM project met als doel het ontwikkelen van reeks supercomputers
- er zijn3 generaties : Blue Gene/L, /P en /Q
- Blue Gene/Q "Sequoia"
 - 96 racks
 - every rack consists of 1024 nodes
 - each node containing the Blue Gene/Q chip 1.6 GHz
 PowerPC A2 with 18 cores and 16 GB of memory
 - each core comprises 1.47 billion transistors

IPHONE

www.ifixit.com

removing the logic board

APPLE A5

WAT IS EMBEDDED?

- embedded systeem: computer systeem (hw+sw)
 'ingebed' in product/apparaat
- gemaakt voor één specifieke applicatie
- met speciaal UI (of geen UI)
- geen disk drive
- op microcontroller, CPU of DSP met geheugen
- gebruiker is zich niet bewust van computer
- applicatie ("firmware") is geïntegreerd

WAT IS EMBEDDED?

- enorme diversiteit, 'intelligentie' voor bijna alles
- grote afhankelijkheid samenleving
- jaarlijkse groei 25-60% (emb Linux > 60%)
- 100 x PC markt
 - 10 miljard CPU's per jaar
 - 0,2% in PC's
- s/w is 25-40% kosten auto

WAT IS EMBEDDED?

AGENDA

- computer zoo
- embedded systemen
- 8 great ideas
- organisatie van de computer
- in de CPU

COMPONENTS OF A COMPUTER

- same components for all kinds of computers
- input/output includes
 - user-interface devices
 - display, keyboard, mouse
 - storage devices
 - hard disk, CD/DVD, flash
 - network adapters

INSTRUCTIES EN DATA

INSTRUCTIES EN DATA

Figuur 3.2 De processor en het werkgeheugen Programma Databus CPU Adresbus Controlbus Data programma en data kunnen in hetzelfde geheugen, maar ook in Werkgeheugen afzonderlijke geheugens staan

INSTRUCTIES EN DATA

- lees data uit geheugen (kopieer naar register)
- CPU: bewerk data in registers
- schrijf resultaat naar geheugen (kopie van register)

HET PROGRAMMA

PC = program counter wijst naar de volgende instructie

AGENDA

- computer zoo
- embedded systemen
- 8 great ideas
- organisatie van de computer
- in de CPU

VON NEUMANN-CYCLUS

- wiskundige John von Neumann betrokken bij Manhattan Project
- voorstel voor scheiding CPU en geheugen en cyclus (1945/46):
 - lees instructie uit geheugen (fetch)
 - decodeer instructie (decode)
 - voer instructie uit (execute)
 - optioneel: schrijf resultaat naar geheugen (writeback)

BOUWSTENEN CPU

OPBOUW CPU

- data: interne registers (R1, R2, ...)
 - data wordt eerst uit geheugen gehaald naar CPU-registers
- PC: Program Counter
 - wijst naar volgende instructie in geheugen
- IR: Instructie Register
 - bevat huidige instructie
- decoder
 - vertalen instructie en aansturing ICU

OPBOUW CPU

- ICU, Internal Control Unit
 - aansturing door microcode
 - data verplaatsen binnen de CPU
 - ALU aansturen
- ALU: Arithmetic and Logic Unit
 - eenvoudige rekenkundige en logische bewerkingen
 - geheugenloze schakeling (= combinatorisch)

ALU

Figuur 3.7 De ALU

F3	F2	F1	F0	Functie
0 0 0 0 0 0	0 0 0 0 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	C = A C = B C = A + 1 C = A + B C = A - B C = A and B C = A or B

VON NEUMANN-CYCLUS

- zet inhoud PC op adresbus
- verhoog PC
- haal instructie uit geheugen naar IR
- decodeer instructie
- voer instructie uit

MICROCODE VOOR ADD R1, R2

actie	ALU-functie	uitleg
MAR := PC		om instructie op te halen
A := PC	increment	inhoud PC naar ALU
PC := C		PC ophogen
MDR := MEM		instructie zit nu in MDR
IR := MDR		instructie zit nu in IR
A := R1		R1 naar ALU
B := R2	optellen	R2 naar ALU
R1 := C		resultaat naar R1