STA2002: Probability and Statistics II Hypothesis Testing I

Fangda Song and Ka Wai Tseng

School of Data Science, CUHK(SZ)

September, 2025

Introduction

In this lecture we will introduce

- Important concepts in hypothesis testing
 - Null hypothesis H_0 and alternative hypothesis H_1
 - Test statistic T and critical region C
 - Type I and Type II error
 - ullet Significance level lpha
 - p-value
- Hypothesis testing for mean
- Suggested reading: Chapter 8.1 of the textbook.

Motivating example

Example

Let X equal the breaking strength of a steel bar. If the bar is manufactured by process I, $X \sim N(50,36)$. It is hoped that if process II (a new process) is used, $X \sim N(55,36)$. Given a large number of steel bars manufactured by process II, how could we test whether the five-unit increase in the mean breaking strength was realized?

- Based on the observed the breaking strength of steel bars under process II
- Make a judgment: five-unit increase or not

Formulate H_0 and H_1

Suppose we have $X_1, X_2, \cdots, X_n \overset{\text{i.i.d.}}{\sim} N(\mu, 36)$

- Null hypothesis H_0 : An initial belief/claim/assumption on the values that μ can take
- Alternative hypothesis H_1 : The competing belief/claim/assumption against which we would like to test the initial belief/claim/assumption
- Simple hypothesis: a hypothesis in which μ only takes on one value.
- Composite hypothesis: a hypothesis in which μ takes on a range of values.

Example

Simple null hypothesis H_0 : $\mu=50$

Composite null hypothesis $H_0: \mu \leq 50$

Simple alternative hypothesis H_1 : $\mu=55$

Composite alternative hypothesis $H_1: \mu > 55$

Formulate H_0 and H_1

Different types of hypothesis

- H_0 : $\mu = 50$, H_1 : $\mu = 55$.
- (One-sided hypothesis test) H_0 : $\mu = 55$, H_1 : $\mu > 55$.
- (One-sided hypothesis test) H_0 : $\mu = 55$, H_1 : $\mu < 55$.
- (Two-sided hypothesis test) $H_0: \mu = 55, H_1: \mu \neq 55.$
- $H_0: \mu \leq 55, H_1: \mu > 55.$

Critical Region C and Test Statistic T

ullet Denote the space of the sample by \mathcal{D} , that is,

$$\mathcal{D} := \{(x_1, x_2, \dots, x_n) | x_i \in S_X, i = 1, 2, \dots, n\}.$$

- A test of H_0 versus H_1 is based on a subset C of D. This set C that we reject H_0 is called the **critical region**
- ullet The region is usually specified in terms of **test statistic** T.

Example

In the previous example, we have

Test statistics $T = \bar{X} \sim N(\mu, 36/n)$

Critical region $C = \{(x_1, x_2, \cdots, x_n) \in \mathcal{D} | \bar{x} \geq 53\}$

Decision Rule

- Once we formulate H_0 and H_1 , we collect data, say x_1, \ldots, x_n , to see whether H_0 is favoured or H_1 is favoured.
- Then we can come up with a corresponding decision rule, based on the data x_1, \ldots, x_n :
 - Reject H_0 (Accept H_1), if $(x_1, \ldots, x_n) \in C$,
 - Retain H_0 (Reject H_1), if $(x_1, \ldots, x_n) \notin C$.

Example

If $\bar{x} \geq 53$, we reject H_0 . Otherwise, if $\bar{x} < 53$, we fail to reject H_0 .

Recall the example

Example

Let X equal the breaking strength of a steel bar. If the bar is manufactured by process I, $X \sim N(50,36)$. It is hoped that if process II (a new process) is used, $X \sim N(55,36)$. Given a large number of steel bars manufactured by process II, how could we test whether the five-unit increase in the mean breaking strength was realized?

Suppose we have $X_1, X_2, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, 36)$

- Simple null hypothesis $H_0: \mu = 50$
- Simple alternative hypothesis H_1 : $\mu = 55$
- Critical region $C = \{x \ge 53\}$
- Test statistics $\bar{X} \sim N(\mu, 36/n)$
- Decision rule: if $\bar{x} \geq 53$, we reject H_0 . Otherwise, if $\bar{x} < 53$, we fail to reject H_0 .

We may draw incorrect conclusion and commit errors in hypothesis testing. It can happen in two ways:

	H_0 true	H_1 true
Reject H ₀	Type I error	Correct
Fail to Reject H ₀	Correct	Type II Error

- Type I error: Reject H_0 when H_0 is true.
- Type II error: Fail to reject H_0 when H_0 is false.

The probability of a type I error

$$\alpha = \Pr(\text{Test makes Type I Error}) = \Pr(T \in C; H_0).$$

The probability of a type II error

$$\beta = \Pr(\text{Test makes Type II Error}) = \Pr(T \notin C; H_1).$$

Example

 $X_1,\ldots,X_n \overset{i.i.d.}{\sim} \mathcal{N}(\mu,36)$ with n=16. We take the critical region $\mathcal{C}=\{\bar{x}\geq 53\}$. What is the probability of a type I error and a type II error in the following test

$$H_0$$
: $\mu = 50$ against H_1 : $\mu = 55$?

Solution: We know test statistic $T = \bar{X} \sim N(\mu, 36/n)$. Under H_0 ,

$$\bar{X} \sim N(50, 36/16),$$

and under H_1 ,

$$\bar{X} \sim N(55, 36/16)$$
.

As a result,

$$\alpha = \Pr(\bar{X} \ge 53; H_0) = \Pr\left(Z \ge \frac{53 - 50}{\sqrt{36/16}}\right) = 0.0228.$$

$$\beta = \Pr(\bar{X} < 53; H_1) = \Pr\left(Z < \frac{53 - 55}{\sqrt{36/16}}\right) = 0.0913.$$

Note: by changing the critical region C, α increases (decreases) while β decreases (increases), so both errors cannot be reduced at the same time.

PDF of \bar{X} under $H_0: \mu = 50$ and $H_1: \mu = 55$.

Significance Level

- Most of the time we fix the probability of type I error α , for example, we take $\alpha=0.05=5\%$, and determine the corresponding critical region.
- The value of α is called the **significance level** of the test.
- We can also be more conservative, and for example, take $\alpha = 0.01$.

Example

Let

$$\Pr(\bar{X} \ge c; H_0) = \Pr\left(Z \ge \frac{c - 50}{\sqrt{36/16}}\right) = 0.05,$$

we have
$$\frac{c-50}{\sqrt{36/16}} = z_{0.05} \Rightarrow c = 52.48$$

p-value: Observed Significance Level

- p-value is the probability of observing a more extreme test statistic (in the direction that favours H_1), given that H_0 is true.
- A small p-value indicates the data is unlikely coming from H_0 , and so the data is perhaps better explained by H_1 .
- We reject H_0 if the p-value $\leq \alpha$, where α is the significance level.
- p-value is also called the observed significance level.

Example

Given the observed test statistics $\bar{x} = 56$, "more extreme" means:

- $\bar{X} \ge 56$, for $H_0: \mu = 50$ versus $H_1: \mu = 55$;
- $\bar{X} \ge 56$, for $H_0: \mu = 55$ versus $H_1: \mu > 55$,
- $\bar{X} \leq$ 56, for $H_0: \mu =$ 55 versus $H_1: \mu <$ 55,
- ullet $ar{X} \geq$ 56 or $ar{X} \leq$ 54, for $H_0: \mu =$ 55 versus $H_1: \mu \neq$ 55,

Hypothesis Testing for Normal Mean

Suppose that $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$. We would like to conduct hypothesis testing on μ , and the discussion is separated into the following two cases:

- Case 1: σ^2 is known
- Case 2: σ^2 is unknown

Three Approaches to Hypothesis Testing

- P-value approach:
 - ullet Compute p-value and compare it to significance level lpha
 - Reject H_0 if p-value $\leq \alpha$
- Critical region approach
 - Define rejection region under H_0 and calculate test statistic
 - Reject H_0 if statistic falls in critical region
- Confidence interval approach
 - ullet Construct (1-lpha) confidence interval and check if null value is included in CI
 - Reject H₀ if null value is not included in CI

These three approaches are equivalent!

We consider the test statistic

$$T:=\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}.$$

- Under $H_0: \mu = \mu_0, \ T \sim N(0,1).$
- Once we observe the data x_1, \ldots, x_n , we can compute

$$z=\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}.$$

For the one-sided test H_0 : $\mu = \mu_0$, H_1 : $\mu > \mu_0$

p-value is

$$p = \Pr(T > z; H_0) = \Pr(Z > z),$$

$$p ext{-value} = \Pr(Z > z) \le \alpha \quad (p ext{-value approach})$$

 $\Leftrightarrow z \ge z_{\alpha} \quad \text{(critical region approach)}$
 $\Leftrightarrow \mu_0 \notin \left(\bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right) \quad \text{(confidence interval approach)}$

For the one-sided test H_0 : $\mu = \mu_0$, H_1 : $\mu < \mu_0$

p-value is

$$p = \Pr(T < z; H_0) = \Pr(Z < z),$$

$$p\text{-value} = \Pr(Z < z) \le \alpha$$

$$\Leftrightarrow z \le -z_{\alpha}$$

$$\Leftrightarrow \mu_0 \notin \left(-\infty, \bar{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)$$

For two-sided test H_0 : $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$

p-value is

$$p = \Pr(|T| > |z|; H_0)$$

= $\Pr(Z > |z|) + \Pr(Z < -|z|)$
= $2\Pr(Z > |z|).$

$$\begin{aligned} & p\text{-value} = 2 \Pr(Z > |z|) \le \alpha \\ \Leftrightarrow & |z| \ge z_{\alpha/2} \\ \Leftrightarrow & \mu_0 \notin \left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right) \end{aligned}$$

- Essentially, we replace the standard normal distribution by t-distribution with df= (n-1) and σ^2 by S^2 in Case 1.
- We consider the test statistic

$$T:=\frac{\bar{X}-\mu_0}{S/\sqrt{n}}.$$

- Under H_0 : $\mu = \mu_0$, $T \sim t(n-1)$, t distribution with n-1 degrees of freedom.
- Once we observe the data x_1, \ldots, x_n , we can compute

$$t=\frac{\bar{x}-\mu_0}{s/\sqrt{n}}.$$

For the one-sided test $H_0: \mu = \mu_0$, $H_1: \mu > \mu_0$,

p-value is

$$p = \Pr(T > t; H_0) = \Pr(T > t; T \sim t(n-1)).$$

$$p ext{-value} = \Pr(T > t; T \sim t(n-1)) \le \alpha$$

 $\Leftrightarrow t \ge t_{\alpha}(n-1)$
 $\Leftrightarrow \mu_0 \notin \left(\bar{x} - t_{\alpha}(n-1)\frac{s}{\sqrt{n}}, \infty\right)$

For the one-sided test H_0 : $\mu = \mu_0$, H_1 : $\mu < \mu_0$,

p-value is

$$p = \Pr(T < t; H_0) = \Pr(T < t; T \sim t(n-1)).$$

$$p$$
-value = $\Pr(T < t; T \sim t(n-1)) \le \alpha$
 $\Leftrightarrow t \le -t_{\alpha}(n-1)$
 $\Leftrightarrow \mu_0 \notin \left(-\infty, \bar{x} + t_{\alpha}(n-1) \frac{s}{\sqrt{n}}\right)$

For the one-sided test H_0 : $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$,

p-value is

$$\begin{split} p &= \Pr(|T| > |t|; H_0) \\ &= \Pr(T > |t|; T \sim t(n-1)) + \Pr(T < -|t|; T \sim t(n-1)) \\ &= 2\Pr(T > |t|; T \sim t(n-1)). \end{split}$$

$$\begin{aligned} & p\text{-value} = 2 \Pr(T > |t|; T \sim t(n-1)) \le \alpha \\ \Leftrightarrow & |t| \ge t_{\alpha/2}(n-1) \\ \Leftrightarrow & \mu_0 \notin \left(\bar{x} - t_{\alpha/2}(n-1) \frac{s}{\sqrt{n}}, \bar{x} + t_{\alpha/2}(n-1) \frac{s}{\sqrt{n}}\right) \end{aligned}$$

Example of two-sided test

Example

Let X (in millimeters) equal the growth in 15 days of a tumor induced in a mouse. Assume that the distribution of X is $N(\mu,\sigma^2)$. We shall test the null hypothesis $H_0: \mu=4.0$ against the two-sided alternative hypothesis $H_1: \mu \neq 4.0$. We observe n=9 observations with $\bar{x}=4.3, s=1.2$ and set a significance level of $\alpha=0.10$.

We have

$$t = \frac{4.3 - 4}{1.2/\sqrt{9}} = 0.75$$

and $t_{0.05}(8) = 1.86$

Example of two-sided test

• p-value approach:

$$p = 2 \Pr(T > 0.75; T \sim t(8)) = 0.4747 > 0.1,$$

so we fail to reject H_0 at 10% significance level.

Critical region approach:

$$|t| = 0.75 < 1.86,$$

so we fail to reject H_0 at 10% significance level.

Confidence interval approach: The 90% two-sided Cl is

$$4.3 \pm 1.86 \frac{1.2}{\sqrt{9}} = [3.556, 5.044],$$

which includes 4, so we fail to reject H_0 at 10% significance level.

Example of one-sided test

Example

Suppose that we have n=25, $\bar{x}=308.8$, s=115.15. We would like to test $H_0: \mu=500$ against $H_1: \mu<500$. We take the significance level $\alpha=0.01=1\%$.

Then we have

$$t = \frac{308.8 - 500}{115.15/\sqrt{25}} = -8.30$$

and $t_{0.01}(24) = 2.492$

Example of one-sided test

• *p*-value approach:

$$p = \Pr(T < -8.30; T \sim t(24)) = 8.17 \times 10^{-9} < 0.01,$$

so we reject H_0 at 1% significance level.

Critical region approach:

$$t = -8.30 < -2.492$$

so we reject H_0 at 1% significance level.

Confidence interval approach: The 99% one-sided Cl is

$$(-\infty, 308.8 + 2.492 \times 115.15/\sqrt{25}] = (-\infty, 366.191],$$

which does not include 500, so we reject H_0 at 1% significance level.

Summary

Tab	le	1:	Tests	of	hypothe	ses for	one	mean
-----	----	----	-------	----	---------	---------	-----	------

H_0	H_1	p-value	Critical Region			
σ^2 known, $Z \sim N(0,1), z = \frac{\tilde{x} - \mu_0}{\sigma/\sqrt{n}}$						
$\mu = \mu_0$	$\mu > \mu_0$	Pr(Z > z)	$z \geq z_{\alpha}$			
$\mu = \mu_0$	$\mu < \mu_0$	Pr(Z < z)	$z \leq -z_{\alpha}$			
$\mu = \mu_0$	$\mu \neq \mu_0$	$2\Pr(Z> z)$	$ z \ge z_{\alpha/2}$			
σ^2 unknown, $T \sim t(n-1), t = \frac{x-\mu_0}{s/\sqrt{n}}$						
$\mu = \mu_0$	$\mu > \mu_0$	Pr(T > t)	$t \geq t_{\alpha}(n-1)$			
$\mu = \mu_0$	$\mu < \mu_0$	$\Pr(T < t)$	$t \leq -t_{\alpha}(n-1)$			
$\mu = \mu_0$	$\mu \neq \mu_0$	$2\Pr(T> t)$	$ t \geq t_{\alpha/2}(n-1)$			

- p-value approach: Reject H_0 if p-value $\leq \alpha$
- Critical region approach: Reject H₀ if z or t belongs to the critical region
- Confidence interval approach: Reject H_0 if CI excludes μ_0