HOCHSCHULE LUZERN

Informatik
FH Zentralschweiz

Einführung in die Zahlentheorie 1 - Übung

Prof. Dr. Josef F. Bürgler

I.BA_DMATH, Semesterwoche 9

Die Aufgaben sind zusammen mit dem Lösungsweg in möglichst einfacher Form darzustellen. Numerische Resultate sind mit einer Genauigkeit von 4 Stellen anzugeben. Skizzen müssen qualitativ und quantitativ richtig sein

Sie sollten im Durchschnitt 75% der Aufgaben bearbeiten. Die mit grossen römischen Zahlen gekennzeichneten Aufgaben **müssen** bearbeitet werden und die Lösungen dieser Aufgaben werden kontrolliert und bewertet. Abgabetermin ihrer Übungsaufgaben ist die letzte Vorlesungsstunde in der Woche, nachdem das Thema im Unterricht besprochen wurde.

Referenz: Kenneth H. Rosen, Discrete Mathematics and its Applications, McGraw-Hill International Edition, 6.

Auflage, kurz: KR

- 1. **KR, Abschnitt 3.4, Aufgabe 17:** Berechnen Sie die folgenden Ausdrücke: 13 mod 3, -97 mod 11, 155 mod 19 und -221 mod 23.
- 2. **KR**, **Abschnitt 3.4**, **Aufgabe 19**: Entscheiden Sie, welche der folgenden Zahlen kongruent zu 5 modulo 17 sind: 80, 103, -29 und -122.
- 3. Sei n eine natürliche Zahl mit $n \ge 2$. Bestimmen Sie die folgenden Ausdrücke. Sie können das Ergebnis natürlich erraten, wenn Sie einige n ausprobieren. Geben Sie dann aber eine nachvollziehbare allgemeine (für alle $n \ge 2$ gültige) Begründung für Ihr Ergebnis.
 - a) $(n+2) \mod (n+1)$,
 - b) $(2n+2) \mod (n+1)$,
 - c) $(n^2+1) \mod (n+1)$,
 - d) $n^2 \mod (n+1)$,
 - e) $(n+1)^2 \mod n$,
 - f) $(n+1)^{1000} \mod n$,
 - g) $(n-1)^2 \mod n$.
- I. Sei n eine natürliche Zahl mit $n \ge 2$. Bestimmen Sie die folgenden Ausdrücke. Sie können das Ergebnis natürlich erraten, wenn Sie einige n ausprobieren. Geben Sie dann aber eine nachvollziehbare allgemeine (für alle $n \ge 2$ gültige) Begründung für Ihr Ergebnis.
 - a) $(n+1) \mod n$,
 - b) $n^2 \mod n$,

- c) $(3n+6) \mod n$,
- d) $(4n-1) \mod n$,
- e) $((n+1)n) \mod n$,
- f) $(n^3 + 2n^2 + 4) \mod n$,
- g) ((2n+2)(n+1)) **mod** n und
- h) $n! \mod n$.
- 4. KR, Abschnitt 3.6, Aufgabe 23: Bestimmen Sie mit dem Euklidschen Algorithmus
 - a) ggT(12, 18),
 - b) ggT(111,201) und
 - c) ggT(1001,1331).
- II. Bestimmen Sie mit dem Euklidschen Algorithmus Schritt für Schritt ggT(587, 392). Bestimmen Sie dann ebenfalls von Hand eine Zahl x ($0 \le x \le 587$) so, dass gilt: $392 \cdot x \equiv (1 \mod 587)$.
- 5. a) Bestimmen Sie **Schritt für Schritt und per Hand** eine ganzzahlige Lösung (x, y) der diophantischen Gleichung

$$144 \cdot x + 37 \cdot y = 1.$$

b) Bestimmen Sie zwei **natürliche** Zahlen a_1 und a_2 , so dass Folgendes gilt:

$$144 \cdot a_1 \equiv 1 \pmod{37}$$
 und $37 \cdot a_2 \equiv 1 \pmod{144}$.

III. KR, Abschnitt 3.7, Aufgabe 19: Bestimmen Sie alle Lösungen des Systems von linearen Kongruenzen:

$$x \equiv 1 \pmod{2}$$

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 4 \pmod{11}$$

- 6. KR, Abschnitt 3.7, Aufgabe 27:
 - a) Beweisen Sie mit Hilfe des kleinen Satzes von Fermat, dass $2^{340} \equiv 1 \pmod{11}$ gilt. (Hinweis: $2^{340} = (2^{10})^{34}$)
 - b) Beweisen Sie, dass $2^{340} \equiv 1 \pmod{31}$ gilt. (Hinweis: $2^{340} = (2^5)^{68} = 32^{68}$)
 - c) Nutzen Sie die beiden obigen Resultate, um zu zeigen dass, $2^{340} \equiv 1 \pmod{341}$ gilt.
- 7. Berechnen Sie $\phi(6)$, $\phi(11)$ und $\phi(13)$, indem Sie jeweils die Menge \mathbb{Z}_n für n=6, n=11 und n=13 aufschreiben. Verifizieren Sie anhand dieser Beispiele, dass $\phi(p)=p-1$ falls p eine Primzahl ist!
- IV. Rechnen Sie **nicht** 12! aus, sondern faktorisieren 12! und verwenden Sie dann den Satz auf den Folien um die ϕ -Funktion einer zusammengesetzten Zahl zu berechnen.
 - 8. Bestimmen Sie die ungefähre Anzahl der Primzahlen mit 512 Bit. Hinweis: Schätzen Sie den Wert $\pi(2^{513}) \pi(2^{512})$.

- 9. a) Berechnen Sie die Binomialkoeffizienten $\binom{5}{1}$, $\binom{5}{2}$, $\binom{5}{3}$ und $\binom{5}{4}$ (per Hand) und zeigen Sie, dass diese durch 5 teilbar sind.
 - b) Sei p eine Primzahl. Zeigen (bzw. begründen) Sie, dass die Binomialkoeffizienten

$$\binom{p}{1}, \binom{p}{2}, \dots, \binom{p}{p-1}$$

durch p teilbar sind

Lösungen

- 1. 1, 2, 3 und 9
- 2. nein, nein, ja, nein
- 3. a) (n+2) mod (n+1) = 1, denn $(n+2) = 1 \cdot (n+1) + 1$
 - b) (2n+2) mod (n+1) = 0, denn $(2n+2) = 2 \cdot (n+1) + 0$
 - c) (n^2+1) mod (n+1) = 2, denn $(n^2+1) = (n-1) \cdot (n+1) + 2$ (binomische Formel)
 - d) $n^2 \mod (n+1) = 1$, denn $n^2 = (n-1) \cdot (n+1) + 1$ (binomische Formel)
 - e) $(n+1)^2$ mod n = 1, denn $(n+1)^2 = (n+2) \cdot n + 1$
 - f) $(n+1)^{1000}$ mod n=1, denn mit Hilfe des binomischen Lehrsatzes gilt:

$$(n+1)^{1000} = \sum_{k=0}^{1000} {1000 \choose k} n^k$$

$$= {1000 \choose 0} n^0 + {1000 \choose 1} n^1 + {1000 \choose 2} n^2 + \dots + {1000 \choose 1000} n^{1000}$$

$$= 1 + {1000 \choose 1} n^0 + {1000 \choose 2} n^1 + \dots + {1000 \choose 1000} n^{999} \cdot n$$

g) $(n-1)^2 \mod n = 1$, denn $(n-1)^2 = (n-2) \cdot n + 1$.

I. -

4.
$$ggT(12,18) = 6$$
, $ggT(111,201) = 3$ und $ggT(1001,1331) = 11$

II. -

5. a)

$$144 \cdot 9 + 37 \cdot (-35) = 1.$$

b)

$$144 \cdot 9 \equiv 1 \pmod{37}$$
 und $37 \cdot 109 \equiv 1 \pmod{144}$

III.
$$x \equiv \underbrace{(1 \cdot 165 \cdot 1 + 2 \cdot 110 \cdot (-1) + 3 \cdot 66 \cdot 1 + 4 \cdot 30 \cdot (-4))}_{=-337} \pmod{330}$$

6.

7.

IV. Wegen $12! = 2^{10} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11$ hat man mit Hilfe der Rechenregel für die ϕ -Funktion einer zusammengesetzten Zahl

$$\phi(12!) = \phi\left(2^{10} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11\right) = 1 \cdot 2^9 \cdot 2 \cdot 3^4 \cdot 4 \cdot 5^1 \cdot 6 \cdot 10 = 2^{13} \cdot 3^4 \cdot 5^2 \cdot 6 = 99'532'800.$$

8. $\pi(2^{513}) - \pi(2^{512}) \approx 2^{503}$ (Primzahlsatz)

- 9. a) Direkte Rechnung: 5, 10, 10, 5
 - b) Hinweis:

$$\binom{p}{k} = \frac{p!}{k!(p-k)!} = \frac{p \cdot (p-1) \cdots (p-k+1)}{1 \cdot 2 \cdots k}$$