1 Lezione del 27-09-24

1.0.1 Resistenza e cortocircuito in parallelo

Poniamo di avere la configurazione:

Dove un resistore è in parallelo ad un corto circuito. Intuitivamente, tutta la corrente passerà dal cortocircuito, e non dalla resistenza. Possiamo modellizzare questo fatto in due modi:

• Attraverso la formula per le resistenze in parallelo, avremo che:

$$R_{eq} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1} = \frac{R_1 R_2}{R_1 + R_2}, \quad R_1 = 0 \Rightarrow R_{eq} = \frac{0}{R_2} = 0$$

ergo resistenza nulla.

La prima trasformazione è necessaria in quanto rimuove i vincoli sul dominio di R_1 e R_2 (che altrimenti non potrebbero essere 0).

• Notiamo che A e B sono effettivamente allo stesso potenziale, ergo abbiamo differenza di potenziale $V_{AB}=0$ ai capi della resistenza. Applicando quindi la prima legge di Ohm $V_{AB}=i(t)R$ si ha i(t)=0, cioè corrente costante nulla sulla resistenza.

1.1 Altre configurazioni di resistenze

Esistono altri modi di configurare le resistenze, che permettono di studiare circuiti su cui i metodi studiati finora non funzionano.

1.1.1 Resistenze a triangolo

Nelle resistenze a triangolo, una singola maglia di 3 nodi forma un triangolo con i lati 3 resistenze:

1.1.2 Resistenze a stella

Nelle resistenze a stella, più resistenze vengono collegate, da un'estremo, ad un singolo nodo centrale:

$$R_3 \geqslant R_3$$

Si possono trasformare resistenze a triangolo in resistenze a stella aggiungendo un nodo centrale O e collegandovi i 3 nodi già esistenti attraverso le resistenze interne:

1.1: Resistenze da triangolo a stella

$$R_1 = \frac{R_{12}R_{13}}{R_{12} + R_{13} + R_{23}}$$

$$R_2 = \frac{R_{12}R_{23}}{R_{12} + R_{13} + R_{23}}$$

$$R_3 = \frac{R_{23}R_{13}}{R_{12} + R_{13} + R_{23}}$$

Allo stesso modo, si possono trasformare resistenze a stella in resistenze a triangolo unendo i nodi fra di loro attraverso le resistenze esterne:

1.2: Resistenze da stella a triangolo

$$R_{12} = \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_3}$$

$$R_{13} = \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_2}$$

$$R_{23} = \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_1}$$

1.2 Algoritmo per la resistenza equivalente

A questo punto, si possono semplificare circuiti di resistori arbitrari applicando l'algoritmo:

Algoritmo 1 Calcolo della resistenza equivalente

while ci sono > 1 resistenze do

Semplificare le resistenze in serie

Semplificare le resistenze in parallelo

Se non hai semplificato niente, trasforma un triangolo in stella o viceversa.

end while

La resistenza equivalente è a volte detta anche *resistenza vista*. Questo perchè l'intero circuito si comporterà, per una qualsiasi rete esterna, come un singolo resistore di resistenza R_{eq} , ovvero avrà la stessa **risposta** di un singolo resistore di resistenza R_{eq} . Analiticamente, questo significa che la funzione f in v(t) = f(i(t)) (o la sua inversa) sono uguali per i due circuiti.