Tarea 1 INF 396

Rodrigo Cayazaya Marín

Rol: 201773538-4

1) Considere N el número de personas en Valparaíso, N es conocido. Hay pN personas en Valparaíso que apoyan al candidato A y (1-p)N persona que apoyan al candidato B, con $p \in [0, 1]$.

El día de la votación cada persona decide si ir a votar o no con probabilidad 0.5 de votar. Sea N_A el número de personas que votan por el candidato A y N_B el número de personas que votan por el candidato B.

1. Proponga una distribución de probabilidad para N_B y N_A . Debido a que nuestra variable aleatoria es continua, ya representa el número de personas que van a votar por N_A o por N_B , tenemos 3 opciones de distribución: Bernoulli, Binomial y Poisson.

NA ~ B(pN,0.5) NB ~ B((1-p)N,0.5)

2. ¿Cuál es su esperanza? $E[N_A] = pN$ $E[N_B] = (1-p)N$

- 2) Estudie y explique los siguientes conceptos (conceptual y matemáticamente):
 - 1. **Estimador insesgado**: Es aquel estimador cuyo sesgo es cero, es decir, cuya esperanza matemática coincide con el valor del parámetro que se quiere estimar. Matemáticamente se puede denotar como:

Un ejemplo sería el estimador media:

$$\overline{X} = MEDIA$$
 MUESTRAL = $\frac{\sum_{i=1}^{n} X_i}{m}$

$$E[\overline{X}] = \frac{1}{m} \sum_{i=1}^{n} E[X_i] = \frac{1}{m} \sum_{i=1}^{n} M = \frac{m \cdot M}{m} = M$$

$$E[\overline{X}] = M$$

Así podemos denotar que la esperanza de la media es la media.

2. Estimador consistente en error cuadrático medio: Es una herramienta que permite comprobar si un estimador es consistente. Esto significa que el sesgo del estimador se aproxima a cero cuando el tamaño de la muestra tiende a infinito. Esto cumple con la siguiente ecuación matemática:

$$\lim_{n\to\infty} E[(Estimador - Valor\ verdadero\ del\ parámetro)^2] = 0$$

Lo que significa que la esperanza del error de estimación (estimador menos el valor verdadero del parámetro) debe ser cero o cerca de cero para que se considere como un estimador consistente en error cuadrático medio.

3. **Estimador eficiente**: Un estimador es eficiente cuando su varianza es menor que otro estimador.

Esta eficiencia mide la confianza con la que el estadístico obtenido en la muestra aproxime al parámetro poblacional.

4. **Estimador suficiente**: Un estimador se considera suficiente para un parámetro θ si es capaz de resumir toda la información de la muestra. Esto se puede verificar utilizando el teorema de factorización de Fisher-Neyman, el cual dice que un estimador es suficiente si y solo si la función de densidad de la muestra se puede escribir como:

$$f(x_1, ..., x_n) = h(x_1, ..., x_n) \times g(T, \theta)$$

Siendo:

f(x1,...,xn) la función de densidad de la muestra sobre la variable aleatoria X. h(x1,...,xn) una función no negativa para los valores que conforman la muestra. $g(T,\theta)$ una función que dependa del estadístico y del parámetro a calcular.

En otras palabras, si es posible escribir la función de densidad de la muestra de aquella forma, entonces se cumple el teorema de Fisher-Neyman, por lo que se consideraría un estimador suficiente para el parámetro θ .

3) Considere la siguiente función de densidad:

$$f(x, \alpha, \beta) = \frac{x^{\alpha} e^{-x/\beta}}{\beta^{\alpha+1} \Gamma(\alpha+1)} I_{x>0}(x),$$

donde $\alpha > 0, \beta > 0$.

1. Encuentre el estimador de máxima verosimilitud para β , asumiendo α conocido.

$$\begin{array}{l}
\mathcal{L}_{m}(\mathcal{L}(Q)) = \mathcal{L}_{m}\left(\prod_{i=1}^{m} f(x, \gamma, \beta)\right) = \sum_{i=1}^{m} \mathcal{L}_{m}\left(f(x, \gamma, \beta)\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(\frac{X_{i}^{*}}{\beta^{*+1}} \left(\frac{Y_{i}^{*}}{Y_{i}^{*+1}}\right)\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*} \left(\frac{Y_{i}^{*}}{\beta^{*+1}} \left(\frac{Y_{i}^{*}}{Y_{i}^{*+1}}\right)\right)\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) \\
= \sum_{i=1}^{m} \mathcal{L}_{m}\left(X_{i}^{*}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right) - \mathcal{L}_{m}\left(\beta^{*+1}\right$$

2. ¿Es el estimador insesgado?

Debido a que el estimador coincide en la media (dividido en un número conocido) y sabemos del ejercicio 2 que la media es un estimador insesgado, ya que coincide con el promedio. Entonces podemos replicar el procedimiento:

$$B = \frac{1}{m(974)} \sum_{i}^{n} X_{i}$$

$$E[\hat{\beta}] = \frac{1}{(944)m} \sum_{i=1}^{n} E[X_{i}] = \frac{1}{(944)m} \sum_{i=1}^{n} X_{i} = \frac{X}{(944)m} = \frac{X}{974}$$

$$E[\hat{\beta}] = X = B$$

Así se concluye que sí es un estimador insesgado.

3. ¿Es el estimador consistente en error cuadrático medio?

Para comprobar que el estimador es consistente en error medio, se debe cumplir:

 $\lim_{n\to\infty} E[(Estimador - Valor\ verdadero\ del\ parámetro)^2] = 0$

$$\lim_{N\to\infty} E[(\beta - \beta)^2] = \lim_{N\to\infty} E[\beta^2 - 2\beta\beta + \beta^2]$$

$$= \lim_{N\to\infty} E[\beta^2] - E[2\beta\beta] + E[\beta^2]$$

$$= \lim_{N\to\infty} \beta^2 - 2\beta\beta + \beta^2 = 0$$

Debido a que se cumplen los requerimientos, entonces sí es ECM.

4. ¿Es el estimador eficiente?

Una forma de comprobar su eficiencia es a través de su varianza, sabemos que:

$$\mathrm{ECM}[\hat{\theta}] = \mathbb{E}[(\hat{\theta} - \theta)^2] = \mathrm{var}[\hat{\theta}] + \mathrm{sesgo}[\hat{\theta}]^2.$$

Debido a que el sesgo es 0 y el ECM es 0, entonces su varianza es 0. Por lo tanto, **sí** es eficiente.