

4RBI08 Traitement du signal audio

Henri Boutin boutin@ircam.fr

2021/2022

Plan

- ☐ 1- Introduction : contexte et objectifs
- ☐ 2- Chaine de traitement d'un signal sonore
 - > Acquisition : le CAN
 - > Restitution/reconstruction : le CNA
 - Quantification
- ☐ 3- Analyse en fréquence des signaux discrets
 - > Rappels : définitions et propriétés
 - > Analyse temps-fréquence
 - Principe d'incertitude
 - Transformée de Fourier à Court Terme

Plan

- ☐ 1- Introduction : contexte et objectifs
- ☐ 2- Chaine de traitement d'un signal sonore
 - > Acquisition : le CAN
 - > Restitution/reconstruction : le CNA
 - Quantification
- ☐ 3- Analyse en fréquence des signaux discrets
 - > Rappels : définitions et propriétés
 - > Analyse temps-fréquence
 - Principe d'incertitude
 - Transformée de Fourier à Court Terme

RAPPEL : Chaine de traitement d'un signal sonore

Définition:
$$X(f) = \sum x[n] \, e^{-\frac{2j\pi nf}{F_e}} : \mathbb{R} \to \mathbb{C}$$
 ou
$$X(\nu) = \sum x[n] \, e^{-2j\pi \nu n} \text{ avec } \nu = \frac{f}{F_e} : \mathbb{R} \to \mathbb{C}$$
 (ou parfois: $X^{\left(e^{\frac{2j\pi f}{F_e}}\right)} = \sum x[n] \, e^{-2j\pi \nu n} : \mathcal{C}_{\{0,1\}} \to \mathbb{C})$

Définition:
$$X(f) = \sum x[n] \, e^{-\frac{2j\pi nf}{F_e}} : \mathbb{R} \to \mathbb{C}$$
 ou
$$X(\nu) = \sum x[n] \, e^{-2j\pi \nu n} \text{ avec } \nu = \frac{f}{F_e} : \mathbb{R} \to \mathbb{C}$$
 (ou parfois: $X^{\left(e^{\frac{2j\pi f}{F_e}}\right)} = \sum x[n] \, e^{-2j\pi \nu n} : \mathcal{C}_{\{0,1\}} \to \mathbb{C})$

- Propriétés:
- **TFSD** $\in \mathbb{C}$ => représentation : |X| et Arg(X) en fonction de f ou v (ou Re(X) et Im(X) en fonction de f ou v).

Définition:
$$X(f) = \sum x[n] \, e^{-\frac{2j\pi nf}{F_e}} : \mathbb{R} \to \mathbb{C}$$
 ou
$$X(\nu) = \sum x[n] \, e^{-2j\pi \nu n} \text{ avec } \nu = \frac{f}{F_e} : \mathbb{R} \to \mathbb{C}$$
 (ou parfois: $X^{\left(e^{\frac{2j\pi f}{F_e}}\right)} = \sum x[n] \, e^{-2j\pi \nu n} : \mathcal{C}_{\{0,1\}} \to \mathbb{C})$

- Propriétés:
- **TFSD** $\in \mathbb{C}$ => représentation : |X| et Arg(X) en fonction de f ou ν (ou Re(X) et Im(X) en fonction de f ou ν).
- Périodicité: X(f) est F_e -périodique / X(v) est 1-périodique

$$\begin{array}{ll} \text{D\'efinition:} & X(f) = \sum x[n] \, e^{-\frac{2j\pi nf}{F_e}} : \mathbb{R} \to \mathbb{C} \\ & \text{ou} & X(\nu) = \sum x[n] \, e^{-2j\pi \nu n} \, \text{ avec } \nu = \frac{f}{F_e} : \mathbb{R} \to \mathbb{C} \\ & \text{(ou parfois:} & X^{\left(e^{\frac{2j\pi f}{F_e}}\right)} = \sum x[n] \, e^{-2j\pi \nu n} : \mathcal{C}_{\{0,1\}} \to \mathbb{C}) \end{array}$$

- Propriétés:
- **TFSD** $\in \mathbb{C}$ => représentation : |X| et Arg(X) en fonction de f ou v (ou Re(X) et Im(X) en fonction de f ou v).
- Périodicité: X(f) est F_e -périodique / X(v) est 1-périodique
 - \Rightarrow représentation de X(f) sur $\left[-\frac{F_e}{2}, +\frac{F_e}{2}\right]$, ou bien $\left[0, F_e\right]$
 - \Rightarrow représentation de X(v) sur $\left[-\frac{1}{2}, +\frac{1}{2}\right]$, ou bien [0,1]

$$\begin{array}{ll} \text{D\'efinition:} & X(f) = \sum x[n] \, e^{-\frac{2j\pi nf}{F_e}} : \mathbb{R} \to \mathbb{C} \\ & \text{ou} & X(\nu) = \sum x[n] \, e^{-2j\pi \nu n} \, \text{ avec } \nu = \frac{f}{F_e} : \mathbb{R} \to \mathbb{C} \\ & \text{(ou parfois:} \, X^{\left(e^{\frac{2j\pi f}{F_e}}\right)} = \sum x[n] \, e^{-2j\pi \nu n} : \mathcal{C}_{\{0,1\}} \to \mathbb{C}) \end{array}$$

- Propriétés:
- **TFSD** $\in \mathbb{C}$ => représentation : |X| et Arg(X) en fonction de f ou v (ou Re(X) et Im(X) en fonction de f ou v).
- Périodicité: X(f) est F_e -périodique / $X(\nu)$ est 1-périodique $\Rightarrow \text{représentation de } X(f) \text{ sur } \left[-\frac{F_e}{2}, +\frac{F_e}{2}\right], \text{ ou bien } \left[0, F_e\right]$ $\Rightarrow \text{représentation de } X(\nu) \text{ sur } \left[-\frac{1}{2}, +\frac{1}{2}\right], \text{ ou bien } \left[0,1\right[$
- Si x(t) est un signal réel, sa TFSD est à symétrie hermitienne :

$$\begin{array}{ll} \text{D\'efinition:} & X(f) = \sum x[n] \, e^{-\frac{2j\pi nf}{F_e}} \colon \mathbb{R} \to \mathbb{C} \\ & \text{ou} & X(\nu) = \sum x[n] \, e^{-2j\pi \nu n} \, \text{ avec } \nu = \frac{f}{F_e} \colon \mathbb{R} \to \mathbb{C} \\ & \text{(ou parfois:} & X^{\left(e^{\frac{2j\pi f}{F_e}}\right)} = \sum x[n] \, e^{-2j\pi \nu n} \colon \mathcal{C}_{\{0,1\}} \to \mathbb{C}) \end{array}$$

- Propriétés:
- **TFSD** $\in \mathbb{C}$ => représentation : |X| et Arg(X) en fonction de f ou v (ou Re(X) et Im(X) en fonction de f ou v).
- Périodicité: X(f) est F_e -périodique / $X(\nu)$ est 1-périodique

⇒ représentation de
$$X(f)$$
 sur $\left[-\frac{F_e}{2}, +\frac{F_e}{2}\right]$, ou bien $\left[0, F_e\right]$
⇒ représentation de $X(v)$ sur $\left[-\frac{1}{2}, +\frac{1}{2}\right]$, ou bien $\left[0,1\right]$

• Si x(t) est un signal réel, sa TFSD est à symétrie hermitienne :

$$X(-f) = X^*(f)$$
 et $X(-\nu) = X^*(\nu) \Leftrightarrow$ module pair et argument impair représentation sur $[0, \frac{F_e}{2}[$ pour $X(f) /$ sur $[0, \frac{1}{2}[$ pour $X(\nu)$ $\Rightarrow \{x[n]\}_n$ réel pair $=> X(\nu)$ est réelle pair $=> X(\nu)$ est imaginaire pure impaire

3.1 Rappels: **TFSD inverse**

TFSD $X(\nu)$ 1-périodique

3.1 Rappels: **TFSD inverse**

TFSD X(v) 1-périodique \Rightarrow développable en série de Fourier: $X(v) = \sum_{n \in \mathbb{Z}} c_n e^{2j\pi nv} = \sum_{n \in \mathbb{Z}} c_{-n} e^{-2j\pi nv}$ $\Rightarrow \forall n \in \mathbb{Z}, c_{-n} = x[n] \text{ avec } c_n = \frac{1}{1} \int_{[1]} X(v) e^{-2j\pi nv} dv, \forall n \in \mathbb{Z}$

3.1 Rappels: **TFSD inverse**

$$ho$$
 Définition: $orall n\in \mathbb{Z}, \;\; x[n]=\int_{[1]}X(v)\,e^{2\mathrm{j}\pi vn}dv$ $x[n]=rac{1}{F_e}\int_{[F_e]}X(f)\,e^{rac{2\mathrm{j}\pi f}{F_e}n}df$ car $v=rac{f}{F_e}$

- \triangleright Exemple: x[n] = A(> 0) pour $n \in [-M, M]$ et 0 ailleurs.
 - Tracer le module du spectre de x[n]: |X(v)| (et|X(f)|).
 - Calculer l'amplitude du lobe secondaire

3.1 Rappels: TFSD vs TFD

> Remarques:

X(v) continue en v (et X(f) continue en f)

Mais en pratique:

a- les signaux temporels sont de durée finie (N points, $N \in \mathbb{N}^*$) : $n \in [0, N-1]$

ex: x enregistrée sur une durée finie, multipliée par une fenêtre $w[n] \neq 0$ sur [0, N-1]

3.1 Rappels: **TFSD vs TFD**

> Remarques:

X(v) continue en v (et X(f) continue en f)

Mais en pratique:

a- les signaux temporels sont de durée finie (N points, $N \in \mathbb{N}^*$) : $n \in [0, N-1]$

b- l'ensemble des fréquences est aussi discret !: M valeurs de f régulièrement réparties sur $[0, F_e[$

$$\Rightarrow \Delta f = \frac{F_e}{M} \text{ et } f_k = \frac{kF_e}{M}, k \in [0, M-1]$$

Fréquences discrètes :

3.1 Rappels: **TFSD vs TFD**

> Remarques:

X(v) continue en v (et X(f) continue en f)

Mais en pratique:

a- les signaux temporels sont de durée finie (N points, $N \in \mathbb{N}^*$) : $n \in [0, N-1]$

b- l'ensemble des fréquences est aussi discret !: M valeurs de f régulièrement réparties sur $[0, F_e[$

$$\Rightarrow \Delta f = \frac{F_e}{M} \text{ et } f_k = \frac{kF_e}{M}, k \in [0, M-1] \text{ et } \nu_k = \frac{f_k}{F_e} = \frac{k}{M}, k \in [0, M-1]$$

Fréquences discrètes :

Fréquences réduites discrètes :

- > Définition: $\forall k \in [0, M-1], X[k] = \sum_{n=0}^{N-1} x[n] e^{-\frac{2j\pi kn}{M}}$
- Propriétés:
 - **TFD** ∈ ℂ
 - Symétrie hermitienne : si le signal discret $(x[n])_{n \in [0,N-1]}$ est réel, X[k] admet une symétrie hermitienne autour de M/2 :
 - $X[M-k] = \sum_{n \in \mathbb{Z}} x[n] e^{-\frac{2j\pi(M-k)n}{M}} = \sum_{n \in \mathbb{Z}} x[n] e^{+\frac{2j\pi kn}{M}} = \left(\sum_{n \in \mathbb{Z}} x[n] e^{-\frac{2j\pi kn}{M}}\right)^* = X^*[k]$

- ightharpoonup Définition: $\forall k \in [0, M-1], X[k] = \sum_{n=0}^{N-1} x[n] e^{-\frac{2j\pi kn}{M}}$
- > Propriétés
- Représentation de X[k] sur [0, M-1[(« fft » matlab / Python ..), ou bien sur $[-(\frac{M}{2}-1), +\frac{M}{2}]$ si M pair $[-\frac{M-1}{2}, +\frac{M-1}{2}[$ si M impair correspondant aux fréquences $[0, \frac{M-1}{M}F_e]$, ou bien $[-\frac{M-2}{M}\frac{F_e}{2}, \frac{F_e}{2}]$ si M pair

$$\left[-\frac{M-1}{M}\frac{F_e}{2}, \frac{M-1}{M}\frac{F_e}{2}\right]$$
 si M impair

ex.:
$$F_e = 44.1$$
 kHz et $M = 2^{15} = 32768$ « bins »

- ► Définition: $\forall k \in [0, M-1], X[k] = \sum_{n=0}^{N-1} x[n] e^{-\frac{2j\pi kn}{M}}$
- > Propriétés
- \triangleright Représentation de X[k] sur [0, M-1[
- TFD inverse: Soit $(X[k])_{k \in [0,M-1]}$, un signal discret admettant une symétrie hermitienne autour de $\frac{M}{2}$, $(X[k])_{k \in [0,M-1]}$ est alors la TFD d'un <u>unique</u> signal $(x[n])_{n \in [0,M-1]}$ <u>réel</u>, de taille M échantillons. $(x[n])_{n \in [0,M-1]}$ est la TFD-1 de $(X[k])_{k \in [0,M-1]}$ et est donnée par :

$$\forall n \in [0, M-1], \qquad x[n] = \frac{1}{M} \sum_{k=0}^{M-1} X[k] e^{+2j\pi \frac{kn}{M}}$$

- ightharpoonup Exemple: Soit $x(t) = e^{2j\pi f_0 t}$, calculer, tracer et comparer, sur l'intervalle de fréquence $[0, F_e]$:
 - sa Transformée de Fourier

- ightharpoonup Exemple: Soit $x(t) = e^{2j\pi f_0 t}$, calculer, tracer et comparer, sur l'intervalle de fréquence $[0, F_e]$:
 - sa Transformée de Fourier : $X(f) = \delta_{f_0}(f)$
 - la TFSD du signal échantillonné $x_e(nT_e)$ observé sur une fenêtre rectangulaire de valeur 1 sur N points : $x_e(nT_e)$ (noté x[n]) = $x(nT_e)$ pour $n \in [0, N-1]$ $x_e(t) = 0$ pour $t \neq nT_e$

- ightharpoonup Exemple: Soit $x(t) = e^{2j\pi f_0 t}$, calculer, tracer et comparer, sur l'intervalle de fréquence $[0, F_e]$:
 - sa Transformée de Fourier : $X(f) = \delta_{f_0}(f)$
 - la TFSD du signal échantillonné $x_e(nT_e)$ observé sur une fenêtre rectangulaire de valeur 1 sur une largeur W: $X(f) = \frac{\sin(\pi(f-f_0)N/F_e)}{\sin(\pi(f-f_0)/F_e)} e^{j\pi\frac{(f-f_0)}{F_e}(N-1)}$
 - La TFD de x[n] sur la fenêtre d'observation: $n \in [0, N-1]$

- \triangleright Exemple: Soit $x(t) = e^{2j\pi f_0 t}$, calculer, tracer et comparer, sur l'intervalle de fréquence $[0, F_e]$:
 - sa Transformée de Fourier : $X(f) = \delta_{f_0}(f)$
 - la TFSD du signal échantillonné $x_e(nT_e)$ observé sur une fenêtre rectangulaire de valeur 1 sur une largeur W: $X(v) = \frac{\sin(\pi(v-v_0)N)}{\sin(\pi(v-v_0))} e^{-j\pi(v-v_0)(N-1)}$
 - La TFD de x[n] sur la fenêtre d'observation: $n \in [0, N-1]$: $X[k] = X\left(\frac{kF_e}{M}\right)$, $\forall k \in [0, M-1]$

> Définitions :

<u>Précision</u>: correspond au nombre M de « bins » : et donc à l'inverse de la distance entre 2 « bins » fréquentiels

<u>Résolution</u>: capacité à réduire l'erreur entre:

- la position d'un pic dans le spectre d'un signal temps continu
- la position du pic correspondant dans sa TFD

- \Rightarrow information donnée par la TFD: uniquement aux fréquences $\frac{kF_e}{M}$, $k \in [0, M-1]$
- ⇒ Pour augmenter la précision, il faut augmenter M:

<u>1ère possibilité</u>: « zero-padding », i.e. on augmente le nombre de bins $M \Rightarrow$ Les bins, en $\frac{kF_e}{M}$, se rapprochent.

NB. Pour de nombreux logiciels, par défaut, M = durée d'observation.

Cette méthode revient donc à augmenter « artificiellement » la durée d'observation en ajoutant M-N zéros à la suite de la fenêtre initiale de façon à lui donner une longueur de M points.

D'où le nom de cette méthode: zero padding (« complétion de zéros »).

Alors le signal observé est : $\tilde{x}[n] = x[n]$ sur [0, N-1] et 0 sur [N, M-1] .

- \Rightarrow information donnée par la TFD: uniquement aux fréquences $\frac{kF_e}{M}$, $k \in [0, M-1]$
- ⇒ Pour augmenter la précision, il faut augmenter M:

<u>1ère possibilité</u>: « zero-padding », i.e. on augmente le nombre de bins $M \Rightarrow$ Les bins, en $\frac{kF_e}{M}$, se rapprochent.

Ex.: TFD de $x[n] = e^{2j\pi n f_1/F_e} + e^{2j\pi n f_2/F_e}$ avec $f_1 = 443$ Hz et $f_2 = 450$ Hz, $F_e = 44.1$ kHz:

- L'intervalle entre deux bins : $\frac{F_e}{M}$ \ lorsque $M \nearrow \Rightarrow$ de nouvelles valeurs apparaissent dans le spectre (lobes secondaires dans le cas d'une fenêtre rectangulaire) \Rightarrow précision fréquentielle \nearrow .
- Même signal observé ⇒ pas d'information ajoutée ⇒ la résolution reste inchangée.

- \Rightarrow information donnée par la TFD: uniquement aux fréquences $\frac{kF_e}{M}$, $k \in [0, M-1]$
- ⇒ Pour augmenter la précision, il faut augmenter M:

<u>2ème possibilité</u>: on augmente <u>simultanément</u> la durée d'observation N, et le nombre de bins $M \Rightarrow M = N \nearrow$

NB. Augmenter la durée d'observation revient à augmenter la largeur d'une fenêtre rectangulaire d'observation : $W_{rect}[n] = 1$ sur [0, N-1] et 0 ailleurs et le signal observé est : $\tilde{x}[n] = x[n] \times W_{rect}[n] = x[n]$ sur [0, N-1].

- \Rightarrow information donnée par la TFD: uniquement aux fréquences $\frac{kF_e}{M}$, $k \in [0, M-1]$
- ⇒ Pour augmenter la précision, il faut augmenter M:

<u>2ème possibilité</u>: on augmente <u>simultanément</u> la durée d'observation N, et le nombre de bins $M \Rightarrow M = N$

Ex.: TFD de $e^{2j\pi nf_1/F_e} + e^{2j\pi nf_2/F_e}$ avec $f_1 = 443$ Hz et $f_2 = 450$ Hz, $F_e = 44.1$ kHz:

- L'intervalle entre deux bins : $\frac{F_e}{M}$ \(\square \text{Intervalle} \) lorsque $M \nearrow \Rightarrow$ de nouvelles valeurs apparaissent dans le spectre \Rightarrow précision fréquentielle \nearrow .
- Signal observé plus long ⇒ ajout d'information
 - \Rightarrow la résolution augmente : les pics s'approchent de f_1 et f_2 .

- \Rightarrow information donnée par la TFD: uniquement aux fréquences $\frac{kF_e}{M}$, $k \in [0, M-1]$
- ⇒ Pour augmenter la précision, il faut augmenter *M*:

<u>2ème possibilité</u>: on augmente <u>simultanément</u> la durée d'observation N, et le nombre de bins $M \Rightarrow M = N$

Ex.: TFD de $e^{2j\pi nf_1/F_e} + e^{2j\pi nf_2/F_e}$ avec $f_1 = 443$ Hz et $f_2 = 450$ Hz, $F_e = 44.1$ kHz:

- L'intervalle entre deux bins : $\frac{F_e}{M}$ \(\square \text{lorsque } M \times \) \(\square \text{de nouvelles valeurs apparaissent dans le spectre } \(\square \) \(
- Signal observé plus long ⇒ ajout d'information
 - \Rightarrow la résolution augmente : les pics s'approchent de f_1 et f_2 .

> Conclusion:

M augmente ⇒ intervalle entre 2 bins \searrow ⇒ TFD calculée en plus de points $\frac{kF_e}{M}$ ⇒ précision \nearrow

- si N augmente aussi, i.e. durée d'observation = $NT_e \nearrow$, alors résolution \nearrow
- si N est inchangé, i.e. zero-padding pour avoir N artificiellement égal à M, alors pas d'information supplémentaire \Rightarrow résolution inchangée

NB: cas d'une fenêtre d'observation rectangulaire: $\tilde{x}[n] = x[n] \times \Pi_{[0,N-1]}(n)$ Alors la TFSD: $\tilde{X}[v] = X[v] * \frac{\sin(\pi vN)}{\sin(\pi v)} e^{-j\pi v(N-1)}$ s'annule en $\frac{k}{N}$.

Or $v_k = \frac{k}{M}$ \Rightarrow - si M = N on ne voit sur la TFD que le lobe principale - si M > N, les lobes secondaires apparaissent sur la TFD, et déforment le spectre.