Income Tax Incentives for Electronic Payments: Evidence from Greece's Electronic Consumption Tax Discount

Panayiotis Nicolaides

EU Tax Observatory
Paris School of Economics
&
Hertie School, Berlin

6 October 2021

Several schemes for "last mile" problem in VAT $\,$

Several schemes for "last mile" problem in VAT

But only few in economic literature (Naritomi, 2019; Brockmeyer & Somarriba, 2021)

Several schemes for "last mile" problem in VAT

But only few in economic literature (Naritomi, 2019; Brockmeyer & Somarriba, 2021)

Schemes rely on active consumer participation (ask/register receipts)

Several schemes for "last mile" problem in VAT

But only few in economic literature (Naritomi, 2019; Brockmeyer & Somarriba, 2021)

Schemes rely on active consumer participation (ask/register receipts)

Aim: Generate third-party information to improve tax compliance

Third-Party Information through Income Tax

Research question: How effective are incentives through the income tax system in changing behaviour?

Third-Party Information through Income Tax

Research question: How effective are incentives through the income tax system in changing behaviour?

In this case incentives to change payments behaviour (from cash to electronic payments)

Third-Party Information through Income Tax

Research question: How effective are incentives through the income tax system in changing behaviour?

In this case incentives to change payments behaviour (from cash to electronic payments)

Advantages using income tax features? Applies widely, implemented immediately

But how do taxpayers respond?

The Electronic Consumption Tax Discount (ECTD)

Implemented in Greece since 2017 (year of this study 2017-2018)

Part of a strategy to incentivise electronic payments

The Electronic Consumption Tax Discount (ECTD)

Implemented in Greece since 2017 (year of this study 2017-2018)

Part of a strategy to incentivise electronic payments

Idea: Condition the annual personal tax allowance on electronic payments

Administrative Setup

- 1. Banks report monthly on aggregate volume of payments per taxpayer
- 2. Tax authority matches IBAN and tax ID
- 3. Annual payment amount is **pre-filled** in tax returns
- 4. Taxpayers can **report** a different amount during filing
- 5. Tax discount calculated: Immediate effect on tax bill

Incentive: \in 0.22 tax discount per \in 1 spent in electronic payments

Incentive: \in 0.22 tax discount per \in 1 spent in electronic payments

Up to a Threshold: determined by income and rate set by government

Incentive: \in 0.22 tax discount per \in 1 spent in electronic payments **Up to a Threshold:** determined by income and rate set by government

Determining the Threshold:

Income Bracket	Marginal Rate	Threshold Bracket	ECTD		
€	%	€	€		
0 - 10,000	10	0 - 1,000	0 - 220		
10,001 - 30,000	15	1,000 - 4,000	220 - 880		
30,001 - 160,000	20	4,000 - 30,000	880 - 6,600		
160,000 <	0	30,000	6,600		

Incentive: \in 0.22 tax discount per \in 1 spent in electronic payments **Up to a Threshold:** determined by income and rate set by government

Determining the Threshold:

Income Bracket	Marginal Rate	Threshold Bracket	ECTD		
€	%	€	€		
0 - 10,000	10	0 - 1,000	0 - 220		
10,001 - 30,000	15	1,000 - 4,000	220 - 880		
30,001 - 160,000	20	4,000 - 30,000	880 - 6,600		
160,000 <	0	30,000	6,600		

Example:

- ► Suppose € 10,000 income
- ▶ Threshold: 10% of income = € 1,000 in e-payments
- ▶ 0 tax discount for e-payments >€ 1,000
- Maximum tax discount: € 220

Taxpayer's Choice (Margin of Responses)

Increase (pre-filled) consumption, c_e , or report additional, c_r

Costs: electronic consumption $\xi(c_e)$ and reporting $\psi(c_r)$

Exogenous income z

Taxpayer's Choice (Margin of Responses)

Increase (pre-filled) consumption, c_e , or report additional, c_r

Costs: electronic consumption $\xi(c_e)$ and reporting $\psi(c_r)$

Exogenous income z

$$U(c_c, c_e, c_r, z) = c_c + c_e - \xi(c_e) - \psi(c_r) - z$$
 (1)

s.t
$$c_c + c_e = (1 - \tilde{t})z - tF(z, a) + t(c_e + c_r)$$
 (2)

Taxpayer's Choice (Margin of Responses)

Increase (pre-filled) consumption, c_e , or report additional, c_r

Costs: electronic consumption $\xi(c_e)$ and reporting $\psi(c_r)$

Exogenous income z

$$U(c_c, c_e, c_r, z) = c_c + c_e - \xi(c_e) - \psi(c_r) - z$$
 (1)

s.t
$$c_c + c_e = (1 - \tilde{t})z - tF(z, a) + t(c_e + c_r)$$
 (2)

Predictions:

- 1. Threshold-targeting
- 2. Either increase electronic consumption on/above threshold
- 3. And/or report higher consumption amounts during tax filing

Data

Random sample of 50,000 taxpayers in 2017

Data

Random sample of 50,000 taxpayers in 2017

Monthly electronic consumption (Calculate the pre-filled consumption)

Declared income (Calculate threshold)

Reported electronic consumption (Assess pre-filled versus reported)

Result 1: Threshold Targeting

Result 2: Reporting Responses

Result 2: Reporting - Below Threshold

Responses in Electronic Consumption

Empirical Strategy:

Variation in individuals reaching their threshold in different months Monthly event studies using **end-of-year deadline as a cut-off**

Responses in Electronic Consumption

Empirical Strategy:

Variation in individuals reaching their threshold in different months Monthly event studies using **end-of-year deadline as a cut-off** Specification:

$$\widetilde{C}_{i,m} = \alpha + \sum_{k=1}^{11} \beta_k (\text{Lag } k)_{i,m} + \sum_{j=1}^{7} \gamma_j (\text{Lead } j)_{i,m} + \varepsilon_{i,m}$$
 (3)

where
$$\widetilde{C}_{i,m} = rac{C_{i,m}}{Y_i} imes 100$$

Result 3: Responses in E-Consumption

Estimation Results

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Threshold Reached in:	Not Reached	February	March	April	May	June	July	August	September	October	November	December
Month to Deadline:												
-10	0.037*** (0.012)	12.454*** (1.827)	0.197**		0.162***		0.043	0.149***	0.129*** (0.048)	0.070	-0.000 (0.043)	0.007 (0.037)
-9	0.012)	8.181***								0.101**	0.062	0.020
-8	(0.011) 0.018	(2.280) 5.717***	(0.677) 2.768***			(0.049) 0.651***			(0.046) 0.281***	(0.045) 0.199***	(0.042) 0.043	(0.037) 0.097**
-7	(0.011) 0.010	(1.405) 6.613***		(1.206)		(0.054)			(0.051) 0.394***	(0.049)	(0.043) 0.086**	(0.040) 0.066*
	(0.011)	(1.553)	(0.569)	(0.157)	(1.330)	(0.058)	(0.052)	(0.051)	(0.050)	(0.050)	(0.043)	(0.038)
-6	0.036*** (0.012)	5.710*** (1.302)	(0.350)			5.400*** (0.855)			0.375*** (0.053)	0.314*** (0.050)	(0.049)	0.200*** (0.041)
-5	0.076*** (0.012)	6.151*** (1.433)		2.216***		2.858*** (0.444)			0.777***	0.590***	0.331***	0.216*** (0.041)
-4	0.088***	5.996***	1.873***	2.405***	5.074**	2.850***	2.952***	6.442***	1.151***	0.901***	0.495***	0.410***
-3	(0.013) 0.067***	(1.877) 5.921***	(0.382) 2.546***			(0.715) 2.498***			(0.077) 10.031***	(0.064) 1.061***	(0.059) 0.617***	(0.047) 0.331***
-2	(0.012) 0.117***	(1.425)	(0.543)	(0.344)	(1.587)		(0.291)	(0.387)	(2.477) 4.139***	(0.072)	(0.066)	(0.046) 0.568***
	(0.014) 0.151***	(1.363)	(0.426)	(0.285)	(1.120)	(0.608)	(2.219)	(0.269)	(0.600) 4.659***	(0.441)	(0.085)	(0.053)
-1	(0.014)	(1.416)	(1.346)	(0.299)	(0.852)	(0.557)	(2.113)	(0.615)	(1.559)	(0.357)	(3.901)	(0.069)
Deadline - Dec 2017	0.457*** (0.019)	9.967***	4.794***	3.743*** (0.294)		4.054*** (0.458)			4.577***	6.251** (2.608)	7.348*** (1.748)	12.546*** (1.831)
+1	0.978***	7.387***	4.037***	2.753***	6.559***	3.161***	3.326***	4.536***	4.005***	3.304***	4.179***	4.565***
+2	(0.080) 1.118***	(1.495) 6.605***	2.829***	2.032***	6.005***		2.827***	3.839***				(0.597) 4.781***
+3	(0.163) 1.854***	(1.414) 7.565***		(0.272) 2.546***		(0.341)			(0.251) 3.595***	(0.293)	(1.812) 4.059***	(1.098) 5.244***
+4	(0.429) 2.994**	(1.574) 8.983***				(0.968)			(0.546) 3.777***	(0.272) 6.006*	(0.577) 3.404***	(1.182) 5.516***
	(1.166)	(2.005)	(0.801)	(0.301)	(1.947)	(0.418)	(0.693)	(0.524)	(0.831)	(3.460)	(0.287)	(1.363)
+5	2.697*** (0.821)	10.598*** (2.694)	(0.625)	(0.378)	(1.835)	(0.603)	(1.024)	(0.547)	(0.504)	2.816*** (0.339)	(0.415)	3.357*** (0.305)
+6	3.584*** (0.962)	13.451*** (3.054)	3.566***	3.069*** (0.363)	6.717*** (2.354)		2.841*** (0.477)		4.307*** (0.734)	3.617***	10.409*	5.242*** (1.616)
Constant	0.220	5.380***	3.565***	2.484***	1.825*	1.408***	1.190***	0.795***	0.640**	0.561	0.515	0.423
	(0.185)	(1.349)	(0.385)	(0.169)	(1.021)	(0.340)	(0.390)	(0.246)	(0.299)	(0.448)	(0.559)	(0.290)
Observations $(N \times T)$ Taxpayers (N)	108,918 6.051	22,086 1.227	29,430 1.635	33,066 1.837	31,032 1.724	24,930 1.385	22,590 1.255	19,854 1.103	16,056 892	15,228 846	13,230 735	17,244 958
runpayers (14)	0,031	1,221	1,000	1,057	1,124	1,505	1,233	1,103	092	040	133	930

An Explanation using Adjustment Costs

Interplay of adjustment costs produce mixed policy outcome:

(a) Policy inattention (b) Liquidity constraints (c) Perceived audit costs

An Explanation using Adjustment Costs

Interplay of adjustment costs produce mixed policy outcome:

(a) Policy inattention (b) Liquidity constraints (c) Perceived audit costs

Define marginal costs explicitly:

Reporting higher amounts

$$\psi(c_r) = \pi \rho c_r \tag{4}$$

An Explanation using Adjustment Costs

Interplay of adjustment costs produce mixed policy outcome:

(a) Policy inattention (b) Liquidity constraints (c) Perceived audit costs

Define marginal costs explicitly:

Reporting higher amounts

$$\psi(c_r) = \pi \rho c_r \tag{4}$$

Increasing electronic consumption

$$\xi(c_e) = \sum_{m=1}^{12} \theta_m \delta^m c_{e,m} \tag{5}$$

Policy inattention $(\theta_m > 1)$ and excess attention $(\theta_m < 1)$

Liquidity constraints ($\delta^m > 1$) and excess liquidity ($\delta^m < 1$)

Policy attention - Excess liquidity

Policy attention - Constraint Liquidity

Conclusion

- Third-party reporting incentives through the income tax system generates strong responses
- 2. Evidence of higher amounts reported to gain the full tax discount
 - Unintended consequence of the policy
 - Effectiveness implications
- 3. Variety of responses in electronic consumption
- 4. Mixed policy outcome can be explained through adjustment costs

Results suggest that linking incentives to existing features of the income tax system can trigger large responses, but the overall effect depends on adjustment costs in the taxpayer population.