Stat235 Problem Set 2

- 1. Show that if f and g are simple functions then f + g is a simple function and $\int (f + g) d\mu = \int f d\mu + \int g d\mu$.
- 2. Suppose that $\mu(A) < \infty$ and $\alpha \le f \le \beta$ on A. Show that $\alpha \mu(A) \le \int_A f \ d\mu \le \beta \mu(A)$.
- 3. Prove that if $f_n \ge 0$, $f_n \to f$ and $\int f_n d\mu \le A < \infty$ then $\int f d\mu \le A$.
- 4. Let $f_n \leq g_n \leq h_n$ with $f_n \to f$, $g_n \to g$, and $h_n \to h$. Suppose further that $\int f_n \ d\mu \to \int f \ d\mu$ and $\int h_n \ d\mu \to \int h \ d\mu$. Show that $\int g_n \ d\mu \to \int g \ d\mu$.
- 5. Suppose that f_n are integrable and $\sup_n \int f_n d\mu < \infty$. Show that if $f_n \uparrow f$ then $\int f_n d\mu \to \int f d\mu$.
- 6. Show that if f is integrable, then for each ε there is a δ such that $\mu(A) < \delta$ implies that $\int_A |f| d\mu < \varepsilon$.
- 7. Let S = [0,1], $\Sigma = \mathcal{B}([0,1])$ and μ Lebesgue measure. Define $f_n = nI_{(0,1/n)}$. Prove that $f_n(s) \to 0$ for every $s \in S$, but that $\lim_{n \to \infty} \int f_n \ d\mu \neq 0$.
- 8. Suppose that $\nu(\{y:(x,y)\in E\})=\nu(\{y:(x,y)\in F\})$ for all x. Show that $(\mu\times\nu)(E)=(\mu\times\nu)(F)$.
- 9. Let $f, g \in \mathcal{L}^2$. Prove that $||f + g||_2^2 + ||f g||_2^2 = 2||f||_2^2 + 2||g||_2^2$.
- 10. Let λ, ν , and μ be finite measures such that $\lambda < \nu$ and $\nu < \mu$. Show that $\lambda < \mu$ and that $\frac{d\lambda}{d\mu} = \frac{d\lambda}{d\nu} \cdot \frac{d\nu}{d\mu}$. (Note that for any measures λ and μ , $\frac{d\lambda}{d\mu}$ denotes the Radon Nikodym derivative of λ with respect to μ .)