Today's Content:

1) Shaggy & Distances (from prev class)

2) Tower of Hanoi

3) Sorting

Sorting Basics.

Stable Sorting In-place Sorting.

Selection Sort.

Bubble Sort. (revisited)

Hashmap Lintiint > hm <1:8> <2:77 <3:6> <6:3>

1: ans= min (ans, 4-0) = 4 2: am = min (ans, 5-1) = 4 3: ano= min (ano, 6-2) = 4 2: ano=min (ano, 7-5)=2 1: ans=mir (ans, 8-4) = &

```
Pseudo code:

int shaggy (int a []) {

n=a. length

Hashmap < int, int) hm

ans= \omega (INT-MAX)

for (i=0; i < n; i++) {

if (hm. Search (a []) == true) {

ans= min (ans, i - hm [a []])

hm [a []] = i

elee {

hm. ingert (a [], i)

sc: D(n)

return ans
```


-> Print the movement of the discs.

H

1: S-> D 2: S-H 1: D-14

3: S-D

S

2: H-D 1: S-D

D

Break till 8:48am

Time Complexity: Recurrence Relation T(n) = 2T(n-1) + 1 $2^{1}T(n-1)+2^{1}-1$ T(n-1) = 2T(n-2) + 1 $= 2 \left[2 \left[(n-2) + 1 \right] + 1 \right]$ $= 2 \left[2 \left[(n-2) + 2 \right] + 2 \right]$ T(n) = 4T(n-2) + 3T(n-2) = 27(n-3)+1 = 4[2T(n-3)+1]+3 $= 2^{3}T(n-3)+2^{3}-1$ T(n) = 8T(n-3) + 7T(n-3) = & T(n-4) +1 = 8[2T(n-u) + 1] + 7 $T(n) = 16T(n-u) + 15 \qquad 2^{4}T(n-u) + 2^{4} - 1$ $(n-k) = 2^{k} T(n-k) + 2^{k} - 1$, T(0) = 1n-K=0 $\therefore |n=K|$ $=2^{n} 7(0) + 2^{n} - 1$

> $= 2^{n} + 2^{n} - 1$ $= 2^{n+1} - 1 \Rightarrow 0(2^{n})$

SC = 0(n)

0 :: n-3 n-1 n

Sorting:

arranging data in some incldec order based on parameters.

Eg:- 4 8 10 14 24 (inc.)

Eg:- 24 14 10 8 4 (dec.)

 $\frac{8q}{7}$ $\frac{1}{7}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{7}{2}$ $\frac{4}{3}$ $\frac{9}{3}$ $\frac{6}{4}$ $\frac{10}{4}$ $\frac{12}{6}$ (no. 9 factors)

Eg: Famous Movie Star Names

tees		
100 cz	Salman	10 Cr
(00cr)	HnitiK	40 cr
100 (8	MBabu	7008
40 cr	Deepi Ka	100 cs
10 Cr	Sok	100cm
120 CY	Rajni Sir	100 cr
70 cr	Vijay	120 CY
	100 cs 100 cs 100 cs 10 cs 120 cs	100 cr Hritik 100 cr MBabu 40 cr Deepika 10 cr Srk 120 cr Rajni sir

* Relative order is preserved after sorting => Stable sort

Stable Sort: 2 data points having Same parameter value, their relative order before & after sorting remains same => STABLE SORT

On: Given a [N], find kth smallest elevent.

$$\frac{69}{9}: a^{[8]} = 284 - 167510$$

$$\frac{K=1}{-1} = \frac{k=2}{2} = \frac{k=3}{4} = \frac{k=4}{5}$$

idea? Sort the array & return (K-1)th index. TC: O(nlogn)

Min idx	Range	<u>idx</u>	
0	[0-7]	3	swap (ato], a[s])
1	[1-7]	3	Swap (ati3, at33)
2	[2-7]	2	swap (a[23, a[23)
3	[3-7]	6	Swap (a[3], a[6])
4	[4-7]	4	Swap (a[4], a[4])
5	[5-7]	5	Swap (als], als))
6	[6-7]	6	Swap (al6], a [6))
7	[7-7]	7	Swap (a[7], a[7))

* This is called <u>Selection sort</u> Geleck min in the range. int[] Selection Sort (int a[]) {

for (i=0; i < n; i++) {

// it iteration

min Val = a[], min Idx = i

for (j = i; j < n; j ++) {

y (a[j] < min Val) {

min Val = a[j]

min Idx = j

}

Swap (a[i], a [min Idx])

}

TC: O(n²) Sc: O(1) La in-place

22 x 4 1 2 2 4 => Not Stable

Best Case TC: D(n)