Child Safety Alert System

User Guide

Table of Contents

- 1. Introduction
- 2. System Requirements
- 3. Installation
- 4. Configuration
- 5. Running the Application
- 6. How It Works
- 7. Customizing Your Model
- 8. File Structure
- 9. Troubleshooting
- 10. License
- 11. Contact

1. Introduction

The **Child Safety Alert System** is a real-time computer vision application that detects children near potential hazards such as:

- Fire
- Pools
- Roads
- Weapons

Using a YOLO object detection model, it processes video streams and triggers visual alerts whenever a child is detected close to dangerous areas.

2. System Requirements

- Operating System: Windows, macOS, or Linux
- Python version: 3.8 or higher
- Recommended Hardware:
 - o CPU with at least 4 cores
 - Discrete GPU (optional for faster detection)

3. Installation

Clone the Repository

bash

CopyEdit

git clone https://github.com/nikhilitz/child-safety-alert.git
cd child-safety-alert

Install Dependencies

Install required Python packages:

bash

CopyEdit

pip install -r requirements.txt

4. Configuration

Open the file:

CopyEdit

child_alert.py

Edit these variables if needed:

Variable	Description	Default
WEIGHTS	Path to your YOLO model weights	besttop.p t
SRC	Video source:	0
IOU_THRESHOL D	Minimum overlap between child and hazard for alert	0.01
ALERT_DURATI ON	How long to show the alert text (in seconds)	2.0

5. Running the Application

Run with Default Settings

To start the system with your webcam:

bash
CopyEdit
python child_alert.py

Run with a Video File

Replace SRC in the script:

```
python
CopyEdit
SRC = "your_video_file.mp4"
```

6. How It Works

- The application captures video frames.
- YOLO detects objects:
 - \circ Children \rightarrow Green bounding box
 - Hazards → Red bounding box
- Calculates IoU (Intersection over Union) to check overlap.
- Displays an alert if a child is too close to a hazard.
- Alerts appear as red warning text on the video.

7. Customizing Your Model

Supported Classes

Class ID	Label
0	child
1	fire
2	pool
3	road
4	weapo n

Training a Custom YOLO Model

- 1. Prepare a dataset labeled with these classes.
- 2. Train your model:

```
python
CopyEdit
from ultralytics import YOLO

model = YOLO('yolov8n.pt')
model.train(data='data.yaml', epochs=100, imgsz=640)
model.export(format='pt')
```

3. Replace besttop.pt in the project with your trained weights.

8. File Structure

CopyEdit

9. Troubleshooting

- ✓ Problem: Webcam not working
 - Check the value of SRC (should be 0 for webcam).
 - Ensure your webcam drivers are installed.
- ✓ Problem: Model file too large
 - Check if besttop.pt is under 100 MB (GitHub limit). Otherwise, use Git LFS or store externally.
- ✓ Problem: "Could not open video source"
 - Ensure the video file path is correct.
 - Test with your webcam to confirm the script works.

10. License

This project is licensed under the MIT License.

11. Contact

Created by Nikhil Gupta

For issues, please open an issue on the GitHub repository.

End of User Guide