## 데이터베이스시스템

1. 데이터베이스 개념

나홍석 <sub>교수</sub>



# LESSON

## 데이터베이스개념

#### • Goals •

## 학습 목표

- 1 데이터의 정의와 특성을 설명할 수 있다.
- 2 데이터베이스 구축 필요성을 설명할 수 있다.
- 3 데이터베이스의 구성요소를 나열할 수 있다.

• Goals •

## 학습 목표

- 1 데이터와 정보
- 2 데이터베이스(Database)
- 3 데이터베이스 구성요소

<u>Chapter 01</u> 데이터와 정보

#### 데이터, 정보, 지식, 지혜



#### Data

facts, symbols

#### Information

data that are processed to be useful

#### Knowledge

application of data information

#### Wisdom

appreciation of "why"





### 데이터(Data)의정의

#### 현실세계를 관찰하거나 측정하여 수집한 사실

예) 우리 매장의 직원은 총 5명이다. 오늘 매출은 1000만원이다.

| 지점  | 날씨   |          |            |          | 기온(°C)   |           |          |
|-----|------|----------|------------|----------|----------|-----------|----------|
|     | 현재일기 | 시정<br>km | 운량<br>1/10 | 중하<br>운량 | 현재<br>기온 | 이슬점<br>온도 | 체감<br>온도 |
| 서울  | 구름조금 | 20.0     | 5          | 3        | 6.8      | -14.0     | 6.8      |
| 백령도 | 구름조금 | 15.0     | 5          | 5        | 3.8      | -9.9      | 3.8      |
| 동두천 |      |          |            |          | 6.6      | -16.0     | 5.6      |
| 문산  |      |          |            |          | 5.8      | -18.1     | 4.5      |
| 인천  | 구름조금 | 20.0     | 4          | 2        | 6.4      | -13.8     | 4.9      |
| 수원  | 구름조금 | 20.0     | 5          | 3        | 6.0      | -7.6      | 4.5      |



#### 데이터(Data)의 특징

객관적 사실이라는 존재적 특성을 지님

그 자체로도 가치가 있으며, 다른 데이터와의 상호관계 속에서 더 큰 가치를 가짐



## 데이터의 유형

| 유형                    |                              | 특징                                                                                                                  |  |  |  |
|-----------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|
| 범주형 데이터               | 명목형 데이터<br>(Norminal Data)   | <ul> <li>특정 카테고리가 갖을 수 있는 값의 집합을 의미한다.</li> <li>순서를 매길 수 없지만 셀 수 있다.</li> <li>예) 성별, 색깔, 취미, 혈액형 등</li> </ul>       |  |  |  |
| (categorical<br>data) | 순서형 데이터<br>(Ordinal Data)    | <ul> <li>특정 카테고리가 갖을 수 있는 값이 순서로 구분할수 있는 데이터를 의미한다.</li> <li>순서를 매길 수 있고 셀 수 있다.</li> <li>예) 5점 척도, 학점 등</li> </ul> |  |  |  |
| 수치형 데이터               | 이산형 데이터<br>(Discrete Data)   | ■ 셀 수 있는 형태의 값을 표현하는 자료로 주로<br>정수 값으로 표현된다.<br>예) 반별 학생수, 불량품 수, 나이 등                                               |  |  |  |
| (numerical<br>data)   | 연속형 데이터<br>(Continuous Data) | <ul> <li>연속인 어떤 구간에서 값을 취하는 자료로 주로<br/>측정되는 양을 표현하는데 사용된다.</li> <li>예) 시간, 온도, 무게, 길이 등</li> </ul>                  |  |  |  |



#### 1 정보(Information)

- Understanding of a relationship
- □ 유용하게 사용할 수 있도록 데이터를 처리한 것

에) 날씨가 쌀쌀해 지더니 비가 내리기 시작했다. 이번 달 매출은 지난달에 비해서 10% 감소했다.





### 지식(Knowledge)





🛂 판단과 예측이 가능



예) 습도가 매우 높을 때 온도가 떨어지면 대기가 수분을 많이 포함하게 되고, 이로 인해 비가 내린다.



3 | 지혜(Wisdom)

#### 근본적인 원리(principles)에 대한 이해

"Wisdom is a deep understanding and realization of people, things, events or situations, resulting in the ability to apply perceptions, judgments and actions in keeping with this understanding."

- Wikipedia -



Chapter 02 데이터베이스(Database)



Elmasri and Navathe

a collection of related data 서로 관련 있는 데이터들의 모임



### 데이터베이스 정의



2 위키피디아

#### 정보로서 처리되는 구조화된 데이터의 집합

- 위키피디아 -

#### Database

From Wikipedia, the free encyclopedia

A **database** is an organized collection of data, generally stored and accessed electronically from a computer system. Where databases are more complex they are often developed using formal design and modeling techniques.



#### │ 데이터 관리 패러다임의 변화

[ 프로세스 중심 프로그래밍 ]

[데이터 중심 프로그래밍]





4 정보시스템 관점에서 정의



□ 어느 한 조직의 여러 응용 시스템들이 공용할 수 있도록 통합, 저장된 운영데이터의 집합





#### 인사관리/영업관리/생산관리





#### 데이터베이스 예제



#### 온라인 쇼핑몰/철도 예매





### 데이터베이스 예제



#### 3 |문화예술 데이터베이스 〉







## 1 데이터베이스 특성 - 개요





#### 2 | 실시간 접근성(Real-time Accessibility)

- ☑ 데이터베이스는 사용자의 데이터 요구에 실시간으로 응답해야 함
- ☑ 사용자의 개인 특성이나 제공되는 서비스 유형에 따라 허용되는 응답 시간이 다르지만 대개 몇 초를 넘지 않는 시간 내에 데이터를 제공할 수 있어야 함



#### 계속적인 변화(Continuous Evolution)

- ☑ 데이터베이스는 현실 세계의 상태를 정확히 반영해야 하며 데이터베이스에 저장된 데이터도 계속 변해야 함
- ☑ 데이터를 계속 삽입(insert)·삭제(delete)·수정(update)하여 현재의 정확한 데이터를 유지함



#### 4 동시 공용(Concurrent Sharing)

- ☑ 데이터베이스는 여러 사용자가 동시에 이용할 수 있어야 함
- ☑ 동시 공유는 사용자가 서로 다른 데이터를 동시에 사용하는 것뿐만 아니라,같은 데이터를 동시에 사용하는 것도 모두 지원해야 함
- ☑ 여러 사용자가 함께 사용하지만 단독으로 사용하는 것과 같은 일관성을 유지해야 함



#### 내용에 의한 참조(Content Reference)

- ☑ 일반적으로 컴퓨터에 저장된 데이터는 저장 주소를 알아야 검색이 가능
- ☑ 데이터베이스는 저장된 주소나 위치가 아닌 데이터의 내용(content), 즉 값(value)으로 참조
- ☑ 찾고자 하는 데이터의 내용 조건만 제시하면 조건에 맞는 데이터가 저장된 위치에 관계없이 모두 검색



- 1 서로 다른 형태의 데이터(사용자 관점)의 <mark>통합화(Integrated)</mark>
- 2 중복된 데이터의 <mark>일관성(Consistency)</mark> 유지
- 3 데이터의 정확성을 보장하는 <mark>무결성 (Integrity)</mark> 유지
- 4 데이터 <mark>중복(Redundancy)</mark>의 최소화
- 5 업무상 데이터의 <mark>공유(Shared)</mark>
- 6 데이터의 보안성(Security) 달성
- 7 데이터의 논리적, 물리적 독립성 (Independency)
- 8 데이터의 표준화(Standard) 달성



#### 1 데이터 일관성



■ 보통예금 계정 테이블

| 보통예금 계좌번호     | 고객성명 | 주소  | 전화번호         | 기타정보 |
|---------------|------|-----|--------------|------|
| 111-123-456-0 | 김하늘  | 마천동 | 010-222-2222 |      |
| 111-124-324-0 | 장나라  | 잠실동 | 010-555-6666 |      |
| 111-765-723-0 | 김민정  | 충정로 | 010-666-7777 |      |

■ 정기예금 계정 테이블

| 정기예금 계좌번호     | 고객성명 | 주소  | 전화번호         | 기타정보 |
|---------------|------|-----|--------------|------|
| 999-123-456-0 | 김하늘  | 마천동 | 010-222-2222 |      |
| 999-124-324-0 | 장나라  | 잠실동 | 010-555-6666 |      |
| 999-765-723-0 | 김민정  | 충정로 | 010-666-7777 |      |



데이터 무결성

데이터베이스에 저장된 데이터 값과 그것이 표현하는 현실 세계의 실제 값이 일치하는 정확성

예) 은행 계정의 잔고가 정해진 금액(예:1000원) 미만으로 떨어져서는 안된다. 사람의 출생 년도는 마이너스 값이 들어올 수 없다.



데이터 무결성

의미 무결성

데이터 값 자체의 의미를 유지하기 위한 무결성

개체 무결성

기본키와 관련된 무결성

참조 무결성

외래키를 통한 다른 테이블과의 관계를 정의

Chapter 03 데이터베이스 구성요소

#### 데이터베이스의 발전과정



#### 1963년 6월 📦 제1차 심포지움

"Development and Management of a Computer-centered Data base"

- 1960s Navigational DBMS
- 1970s relational DBMS
- Late-1970s SQL DBMS
- 1980s object-oriented databases
- 21st century NoSQL databases





1 스키마의 정의

데이터베이스의 논리적 정의, 데이터 구조와 제약조건에 대한 명세(Specification)



개체 entity 속성 attribute 관계 relationship 제약조건 constraint



#### 2 | 3단계 데이터베이스 구조 #1





#### 2 3단계 데이터베이스 구조 #2



- 일반 사용자나 응용 프로그래머가 접근하는 계층으로 전체 데이터베이스 중에서 하나의 논리적인 부분을 의미
- 여러 개의 외부 스키마(external schema)가 있을 수 있음



#### 2 | 3단계 데이터베이스 구조 #2



- 전체 데이터베이스의 정의를 의미
- 하나의 데이터베이스에는 하나의 개념 스키마(conceptual schema)가 있음



#### 2 | 3단계 데이터베이스 구조 #2



- 물리적 저장 장치에 데이터베이스가 실제로 저장되는 방법의 표현
- 테이블 구조, 인덱스, 데이터 레코드의 배치 방법, 데이터 압축 등에 관한 사항이 포함됨

# 데이터베이스 스키마(Schema)



#### 데이터 독립성 #1

- 1 논리적 데이터 독립성(logical data independence)
  - 외부 단계(외부 스키마)와 개념 단계(개념 스키마) 사이의 독립성
  - 개념 스키마가 변경되어도 외부 스키마에는 영향을 미치지 않도록 지원
  - 논리적 구조가 변경되어도 응용 프로그램에는 영향이 없도록 하는 개념
  - 개념 스키마의 테이블을 생성하거나 변경하여도 외부 스키마가 직접 다루는 테이블이 아니면 영향이 없음

# 데이터베이스 스키마(Schema)



#### 데이터 독립성 #2

- 2 물리적 데이터 독립성(physical data independence)
  - 개념 단계(개념 스키마)와 내부 단계(내부 스키마) 사이의 독립성
  - 저장장치 구조 변경과 같이 내부 스키마가 변경되어도 개념
     스키마에 영향을 미치지 않도록 지원
  - 성능 개선을 위하여 물리적 저장 장치를 재구성할 경우 개념
     스키마나 응용 프로그램 같은 외부 스키마에 영향이 없음
  - 물리적 독립성은 논리적 독립성보다 구현하기 쉬움



#### 1 |사용자 유형

일반사용자

터미널에서 질의어(Query Language)를 이용하여 데이터베이스를 접근하는 사용자

응용 프로그래머

일반 호스트 프로그래밍 언어로 프로그램을 작성할 때 데이터조작어(DML)를 삽입시켜 데이터베이스를 접근하는 사람

데이터베이스 관리자

데이터정의어(DDL)과 데이터제어어(DCL)을 사용하여 데이터베이스를 DBMS에 정의하고 저장된 데이터를 제어(관리)할 목적으로 데이터베이스를 접근하는 사람





#### DataBase Administrator

데이터베이스 설계와 운영

데이터 표준 관리 및 행정 불편 해소

시스템 감시 및 성능 분석



- 1 데이터베이스 설계와 운영
  - 스키마 정의
  - 저장 구조와 접근 방법을 설정(물리 설계, 인덱스 설정 등)
  - 보안 및 권한 부여 정책, 데이터의 유효성 검사방법을 수립
  - 백업(Backup), 회복(Recovery) 절차를 수립
  - 시스템의 성능 향상과 새로운 요구에 대응하기 위해 데이터베이스를 재구성
  - 데이터 사전이나 카탈로그, 메타데이터를 유지 관리



- 2 데이터 표준 관리 및 행정 불편 해소
  - 데이터의 표현이나 시스템의 문서화에 표준을 정하여 시행
  - 사용자의 요구와 불평을 청취하고 해결



#### 3 시스템 감시 및 성능 분석

- 시스템 자원의 이용도, 병목현상, 장비 및 시스템 성능을 감시
- 데이터 접근 방법과 저장 구조, 재구성의 요인이 되는 사용자의 요구의 변화
- 데이터의 이용 추세, 각종 통계 등을 종합 분석



정의와 종류

#### 데이터베이스를 정의하고 접근하기 위한 목적으로 만들어진 언어

#### 데이터 정의어

**Data Definition** Language

#### 데이터 조작어

**Data Manipulation** Language

#### 데이터 제어어

**Data Control** Language



## 데이터 정의어(Data Definition Language)

- ☑ 데이터베이스를 정의하거나 그 정의를 수정할 목적으로 사용하는 언어
- ☑ 데이터베이스 스키마를 컴퓨터가 이해할 수 있게끔 기술하는데 사용
- ☑ 데이터베이스 관리자나 데이터베이스 설계자가 주로 사용
- ☑ DDL로 기술된 스키마는 통상 DDL 컴파일러가 컴파일하여 데이터 사전(Data Dictionary)나 시스템 카탈로그에 저장하여 놓고 필요한 경우에 시스템이 활용

예) 테이블 생성, 변경 등



# 데이터 조작어(Data Manipulation Language)

- ☑ 사용자로 하여금 데이터를 처리할 수 있게 하는 도구
- ☑ 사용자(응용프로그램)와 DBMS간의 인터페이스를 제공

예) 데이터의 검색, 삽입, 삭제, 변경 등



## 데이터 제어어(Data Control Language)

- ☑ 여러 사용자가 데이터베이스를 올바르게 공용하고 정확하게 유지하기 위해 관리 및 통제 기능을 목적으로 사용하는 언어
- ☑ 주로 데이터 관리 목적으로 데이터베이스 관리자가 사용



- 불법적인 사용자로부터 데이터를 보호하기 위한 데이터보안(security)
- 데이터 정확성을 위한 무결성 (integrity)
- 시스템 장애에 대비한 데이타회복(recovery)
- 데이터베이스의 동시 접근을 가능하게 하는 병행수행(concurrency) 제어



# 학습 정리



## 데이터, 정보, 지식, 지혜





# 정리



## 🜏 데이터베이스(Database)

- 데이터베이스는 **통합된 데이터(Integrated Data)** 이다.
- 데이터베이스는 저장된 데이터(Stored Data) 이다.
- 데이터베이스는 운영 데이터(Operational Data) 이다.
- 데이터베이스는 <mark>공용 데이터(Shared Data)</mark> 이다.

Summary

# 학습 정리



# 데이터베이스 구성요소

데이터베이스 스키마

데이터베이스 사용자

데이터베이스 언어

References

# 문헌



<u></u> 데이터베이스 시스템 7판, Ramez Elmasri, Shamkant B. Navathe 지음, 황규영 등 옮김, 홍릉과학출판사, 2018년 8월



www.wikipedia.org

