CHAPTER 5. INVERSE FUNCTIONS

Section 5.4. The General Exponential and Logarithmic Functions

1. The Exponential Function.

Let a > 0, we define the exponential function with base a by

$$a^x = e^{x \ln a}$$

• Graph of $y = a^x$. In the space provided below, sketch the graph of $y = 2^x$, and $y = \left(\frac{1}{2}\right)^x$. What do you notice?

- Domain and range of $y = a^x$. The domain of $y = a^x$ is $(0, \infty)$, and its range is $(0, \infty)$.
- Properties of $y = a^x$
 - If a > 1, $y = a^x$ is increasing decreasing (circle one answer), and

$$\lim_{x \to \infty} a^x = \underline{\qquad \qquad }, \lim_{x \to -\infty} a^x = \underline{\qquad \qquad }$$

- If 0 < a < 1, $y = a^x$ is **increasing/decreasing** (circle one answer), and $\lim_{x \to \infty} a^x = \underline{\hspace{1cm}}, \lim_{x \to -\infty} a^x = \underline{\hspace{1cm}}$
- What happens if a = 1?

y= 1x = 1 is not an exponential function.

Use the definition of
$$y = a^x$$
 as $e^{x \ln a}$ to show that

as
$$e^{x \ln a}$$
 to show that why?! $a^x = e^{x \ln a}$ $a^x = e^{x \ln a}$ $a^x = e^{x \ln a}$ $a^x = e^{x \ln a}$ an above to conclude that $a^x = e^{x \ln a}$ a^x

$$\bullet$$
 Integral. Use the information above to conclude that

$$\int a^x dx = \frac{a^x}{\ln a} + C, \text{ where } C \text{ is a constnt}$$

(a) Differentiate the function
$$g(x) = x^4 4^x$$
.

$$g'(x) = 4x^{3} 4^{x} + x^{4} 4^{x} \ln 4$$

= $x^{3} 4^{x} (4 + x \ln 4)$

(b)
$$\int_{\frac{2^{x}+1}{2^{x}+1}}^{\frac{1}{2^{x}}} dx$$
 $u = 2^{x}+1$ $du = 2^{x} \ln 2 dx$

$$\frac{1}{\ln 2} \int \frac{1}{u} du = \frac{1}{\ln 2} \ln |u| + C$$

$$\int \frac{2^{x}}{2^{x}+1} dx = \frac{1}{\ln 2} \ln (2^{x}+1) + C$$
or $\frac{1}{\ln 2} \ln |2^{x}+1| + C$

2. The General Logarithmic Function.

Although it is possible to define a logarithmic function with base 0 < a < 1, we only study the case where a > 1.

Definition: Since $y = a^x$ is increasing for a > 1, it is one-to-one. Therefore, it has an inverse function denoted \log_a such that

$$y = \log_a x$$
 if and only if $x = a^y$ \(\left(\left(\text{nx} = \left(\text{log} \ext{e}^\text{\text{\text{\text{log}}} \ext{e}}\)

• Graph of $y = \log_a x$. In the space provided below, sketch the graph of $y = 2^x$, and $y = \log_2 x$.

What do you notice?

- Domain and range of $y = \log_a x$. The domain of $y = \log_a x$ is $(0, \infty)$, and its range is $(-\infty, \infty)$
- Properties of $y = \log_a x$
 - $\bullet \log_a(a^x) = x \text{ if } x \text{ is in } \underline{\hspace{1cm}} \bullet \underline{\hspace{1cm}} o$
 - \bullet $a^{\log_a x} = x$ if x is in \bigcirc
 - $\lim_{x \to \infty} \log_a x = \underline{\qquad}, \lim_{x \to 0^+} \log_a x = \underline{\qquad}$
- Derivative.

Use the definition of $y = \log_a x$ as the inverse function of $y = a^x$ to show that

$$\frac{d}{dx}\log_a x = \frac{1}{x\ln a}$$

$$y = \log_a x \text{ is equivalent to } x = a$$

$$\frac{dy}{dx} = \frac{d}{dx}\log_a x$$

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

• Another definition of e.

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

- Exercises:
 - Evaluate the limit. $\lim_{x\to 3^+} \log_{10}(x^2 5x + 6)$

= lieu logio [
$$(x-3)(x-2)$$
] = $-\infty$
 $x \to 3^{+}$
As $x \to 3^{+}$ $(x-3)(x-2) \to 0^{+}$
 $|ag_{10}[x-3)(x-2)] \to -\infty$

- Differentiate the function $y = x^{\ln x} = (+(x))^{3(x)}$

logarithmic differentiation
$$lny = lnx \cdot lnx = (lnx)^{2}$$

$$lny = lnx \cdot lnx = (lnx)^{2}$$