Final Paper

RSM2129 Forecasting Models and Econometric Methods

Course Instructor: Prof. Peter Dungan

Submitted by: Bhanvi Gupta

Topic: Retail sales at a supermart

The dataset I am analysing was published by Walmart for a prediction competition on Kaggle, a data-science platform. It contains information on weekly retail sales for 45 stores along with other attributes like department of sale, whether there was a holiday or not, fuel price, temperature, unemployment rate, consumer price index (CPI) and markdown on items. Since markdown data is very limited (approximately 50 entries), we will not be studying it's impact on weekly sales. The data was available in the form of 3 different datasets namely stores.csv, test.csv, features.csv. For the purpose of this report, I created another dataset with data belonging to 3 departments of store 1. In total, we have 143 entries of data for analysis.

Here's a gist of variables we will be considering in this report:

- 1. Weekly_sales: Weekly sales at a store 1 and department 1 in dollar terms.

 I will be dividing it by CPI to get it to real terms while estimating.
- 2. Weekly_sales01: Weekly sales at store 1 and department 2 in dollar terms.

 I will be dividing it by CPI to get it to real terms while estimating.
- 3. Weekly_sales02: Weekly sales at store 1 and department 3 in dollar terms.

 I will be dividing it by CPI to get it to real terms while estimating.
- 4. CPI: Consumer price index
- 5. IsHoliday whether the week is a special holiday week. It has data in binary form which will be used like a dummy variable in the analysis
- 6. Dept the department number of a store
- 7. Date reflects the week
- 8. Fuel_Price cost of fuel in the region in dollar terms. I will be dividing it by CPI to get it to real terms while estimating
- 9. Unemployment the unemployment rate

The following dates have been configured as true in the IsHoliday field:

 Super Bowl:
 12-Feb-10, 11-Feb-11, 10-Feb-12, 8-Feb-13

 Labor Day:
 10-Sep-10, 9-Sep-11, 7-Sep-12, 6-Sep-13

 Thanksgiving:
 26-Nov-10, 25-Nov-11, 23-Nov-12, 29-Nov-13

 Christmas:
 31-Dec-10, 30-Dec-11, 28-Dec-12, 27-Dec-13

The data was divided into 3 groups for analysis based on the department number of store 1. To begin the analysis, some exploratory data analysis was performed groupwise.

Group 1: Weekly sales for department 1 with 3 explanatory variables: fuel price, unemployment rate, cpi and temperature

Group 2: Weekly sales for department 2 with 3 explanatory variables: fuel price, unemployment rate, cpi and temperature

Group 3: Weekly sales for department 3 with 3 explanatory variables: fuel price, unemployment rate, cpi and temperature

In this report, we will mostly be talking about the sales in department 1. But some analysis has also been performed on departments 2 and 3 for comparison.

Descriptive Statistics

Department 1:

Date: 04/20/23 Time: 14:31 Sample: 2/05/2010 10/26/2012

	CPI	FUEL_PRICE	TEMPERATURE	UNEMPLOYMENT	WEEKLY_SALES
Mean	215.9969	3.219699	68.30678	7.610420	22513.32
Median	215.4599	3.290000	69.64000	7.787000	18535.48
Maximum	223.4443	3.907000	91.65000	8.106000	57592.12
Minimum	210.3374	2.514000	35.40000	6.573000	14537.37
Std. Dev.	4.350890	0.427313	14.25049	0.383749	9854.349
Skewness	0.265983	-0.151813	-0.402643	-1.046172	1.992864
Kurtosis	1.547967	1.600071	2.114668	3.043197	6.202758
Jarque-Bera	14.24867	12.22644	8.534116	26.09612	155.7728
Probability	0.000805	0.002213	0.014023	0.000002	0.000000
Sum	30887.56	460.4170	9767.870	1088.290	3219405.
Sum Sq. Dev.	2688.095	25.92863	28836.84	20.91137	1.38E+10
Observations	143	143	143	143	143

Some key observations include mean and standard deviation of weekly sales for department 1, values being \$22513.32 and \$9854.34 respectively.

Similarly for group 2 and 3 which have descriptive statistics for department 2 and 3 respectively can be referred in Figure 1 and 2 from the appendix. We can see that the mean weekly sales for department 2 are \$46102 and standard deviation is \$35819 and mean weekly sales for department 3 are \$13150 and standard deviation is \$8709. From these stats, it's clear that department 2 has the highest number of sales.

Correlation Matrix:

To rule out multicollinearity, a correlation plot for the relevant variables was plotted From the plot, we can see fuel price, unemployment are moderately correlated to cpi. Since it's not high, we can conclude that there is no multicollinearity.

Covariance Analysis: Ordinary Date: 04/20/23 Time: 14:35 Sample: 2/05/2010 10/26/2012 Included observations: 143

Correlation					_
t-Statistic					
Probability	CPI	FUEL PRICE	TEMPERATURE	UNEMPLOYMENT	WEEKLY SALES
CPI	1.000000				
FUEL PRICE	0.755259	1.000000			
FULL_FRICE	13.68299	1.000000			
	0.0000				
	0.0000				
TEMPERATURE	0.118503	0.228493	1.000000		
-	1,417135	2.786927			
	0.1586	0.0061			
UNEMPLOYMENT	-0.813471	-0.513944	-0.180695	1.000000	
	-16.60820	-7.114221	-2.181544		
	0.0000	0.0000	0.0308		
WEEKLY SALES	-0.043533	-0.066396	-0.473860	0.103399	1.000000
	-0.517413	-0.790150	-6.389703	1,234415	1.000000
	0.6057	0.4308	0.0000	0.2191	

When we visualized data using weekly_sales, we could see a lot of seasonality from the repeated peaks. These seasonal factors probably correspond to the holidays mentioned in the dataset.

To resolve the seasonality, I invoked the seasonal adjustment method in eViews and got a graph called Weekly_sales_sa that was not so favourable for analysis. It has structural breaks which will cause mushy coefficients in the equation. Here's a linear regression I tried using 2 variables, temperature and fuel price in real terms. Since the weekly retail sales and fuel prices are nominal variables (in dollar terms), we will be dividing them by CPI to convert them to real terms in our equations.

Dependent Variable: WEEKLY_SALES/CPI Method: Least Squares

Date: 04/20/23 Time: 14:39 Sample: 2/05/2010 10/26/2012 Included observations: 143

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TEMPERATURE FUEL_PRICE/CPI UNEMPLOYMENT	127.7581 -1.531123 1120.348 8.470704	95.12467 0.247247 2167.979 9.905351	1.343060 -6.192676 0.516771 0.855164	0.1814 0.0000 0.6061 0.3939
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.232624 0.216061 40.64699 229652.7 -730.6839 14.04555 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	104.3109 45.90790 10.27530 10.35818 10.30898 1.170184

From the results, we can see that only temperature is statistically significant. The coefficient is -1.53, which means that with one unit increase in temperature, there is a 1.53 unit decrease in retail sales for department 1 at store 1.

To resolve this issue, I decided to use the isHoliday variable from my dataset which has binary data and has value 1 in places of expected holidays. So, I didn't have to create another dummy variable for these seasonal changes.

Dependent Variable: WEEKLY_SALES/CPI

Method: Least Squares Date: 04/22/23 Time: 18:47 Sample: 2/05/2010 10/26/2012 Included observations: 143

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C UNEMPLOYMENT	127.9585 8.495972	95.50097 9.946205	1.339866 0.854192	0.1825 0.3945
TEMPERATURE FUEL_PRICE/CPI ISHOLIDAY	-1.534708 1115.445 -1.069377	0.252336 2176.675 13.67520	-6.082001 0.512454 -0.078198	0.0000 0.6092 0.9378
R-squared	0.232658	Mean depen		104.3109
Adjusted R-squared S.E. of regression	0.210416 40.79309	S.D. depend Akaike info d	riterion	45.90790 10.28924
Sum squared resid Log likelihood F-statistic	229642.5 -730.6808 10.46037	Schwarz cri Hannan-Qui Durbin-Wats	10.39284 10.33134 1.169100	
Prob(F-statistic)	0.000000	Duibin-wats	our sidl	1.109100

From these results, we can see that all variables except temperature still remain statistically insignificant. Also, the fitted graph thus generated looks much better than the seasonally adjusted graph generated by eViews.

After performing a similar activity for department 2 and 3, we can see somewhat similar results. Temperature is statistically significant for department 3 but none of the variables are statistically significant for department 2. (Figure 4 and 3)

After that, to rule out more specification errors, I tried using lagged weekly_sales in the equations for different departments to see if any other variable becomes statistically significant.

Dependent Variable: WEEKLY_SALES/CPI

Method: Least Squares Date: 04/21/23 Time: 13:54

Sample (adjusted): 2/12/2010 10/26/2012 Included observations: 142 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TEMPERATURE WEEKLY_SALES(-1)/CPI(-1) FUEL_PRICE/CPI ISHOLIDAY UNEMPLOYMENT	88.96883 -0.917659 0.433629 277.0495 -1.903398 3.802418	86.58130 0.256046 0.076136 1975.836 12.38076 9.042311	1.027576 -3.583959 5.695450 0.140219 -0.153738 0.420514	0.3060 0.0005 0.0000 0.8887 0.8780 0.6748
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.382164 0.359449 36.86043 184782.0 -710.6377 16.82461 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	dent var criterion terion nn criter.	104.2140 46.05572 10.09349 10.21838 10.14424 1.624259

For department 1, we can see that the lagged variable is statistically significant along with the previously significant variable, temperature.

But, when the same regression was used for department 2 and 3, isHoliday also became statistically significant. (Figure 6 and 7). This means there is a lagged behaviour present when it comes to retail sales and holidays by 1 time period for these departments. Now that we know that temperature and isholiday are the only variables with a significant effect along with the lagged variables, we will further dive into the ARIMA methods to implement time- series methods.

ARIMA MODELLING

From our previous findings, we can see a lagged effect of weekly sales present on actual sales. To make a training dataset, I have made another dataset with 100 entries from 2010 and 2011 and reserved 43 entries from 2012 for an ex-post forecast. But to proceed with these methods, we will first check if the series is stationary.

From the correlogram on the left below for weekly sales of department 1, we can see that initially, the values decline quite quickly. But the observations from 19 to 33 do not decline as quickly as before, which is a sign of non-stationarity.

Date: 04/23/23 Time: 12:12 Sample: 2/05/2010 12/30/2011 Included observations: 100

Date: 04/23/23 Time: 12:16 Sample (adjusted): 2/12/2010 12/30/2011 Included observations: 99 after adjustments

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	Α	AC P	PAC	Q-Stat	Prob
		1 0.582	0.582	34.846	0.000	1.1.1	l ili	1 0	020 0	020	0.0394	0.843
i III		2 0.142									12.818	
	_	3 -0.002				7					14.030	
(n i)	(1	4 -0.052				13					15.086	
1 (1 10 1	5 -0.018					i 📑 i				17.182	
1 🛅 1	i i	6 0.134				il i					17.334	
. 🗀	i i	7 0.317					7				25.358	
ı İ		8 0.273	-0.077	58.515	0.000	1	i ini i				26.478	
(🛅)		9 0.137	0.055	60.612	0.000	(d)	i i l i i				27.083	
(🐧)		10 0.066	0.017	61.099	0.000	(in)	i ili i				27.769	
(□)	<u> </u>	11 -0.066	-0.148	61.597	0.000	ı (İ)	j (d) j				28.244	
=	(1)	12 -0.143	-0.017	63.966	0.000	1 0 1	<u> </u>	12 -0	.065 0	.114	28.726	0.004
-		13 -0.166	-0.181	67.192	0.000	101		13 -0	.036 0	.038	28.877	0.007
= +	· II ·	14 -0.159	-0.119	70.179	0.000	(1)		14 -0	.031 -0	.015	28.991	0.010
· I	III	15 -0.126	-0.073	72.076	0.000	() (15 0	.044 0	.039	29.225	0.015
· I	- I	16 -0.129	-0.133	74.096	0.000	([] (16 -0	.074 -0	.140	29.889	0.019
(□)		17 -0.070				(1)		17 0	.035 -0	.077	30.036	0.026
([])		18 -0.041	-0.010	74.909	0.000	i (18 0	.137 0	.018	32.347	0.020
· I	III	19 -0.126				1.0		19 -0	.023 -0	.100	32.415	0.028
=	1 1 1	20 -0.191				(1)		20 -0	.027 -0	.024	32.505	0.038
- I		21 -0.234				1.0 1	[21 -0	.047 -0	.054	32.784	0.049
— •	ļ (Ū)	22 -0.238				(1)	[]				32.895	
<u> </u>	<u> </u>	23 -0.218				([])	[]				33.124	
<u> </u>	<u> </u>	24 -0.163				1 1 1					33.187	
'	' !! '	25 -0.125					'-				33.446	
(!	'] '	26 -0.124				[]	'				33.656	
· 🖳 ·	! <u>'</u> !'	27 -0.091				1 11 1	']'				34.024	
'- '-	'" '	28 -0.101				'] '	'圓'				34.182	
'' '	' '	29 -0.138				'Щ'	'Щ '				35.121	
'' '	'' '	30 -0.108				· 🏴 ·	' '				35.617	
'' '	' "	31 -0.127				' 📗 '	'[] '				35.642	
<u>"</u>		32 -0.136				' " '	'‼'		.061 -0			
! !! !	'9'	33 -0.093				1111	'0 '				36.336	
! ! !	!!!	34 -0.025				1 11 1	'				37.054	
1 1	III	35 -0.015				<u> </u>	🗏				37.677	
		36 0.047	υ.118	124.10	0.000	10 1		36 -0	.100 -0	.194	39.271	0.325

After taking the first difference, from the correlogram on the right we can see the ACs decline rather quickly. But, on conducting the ADF tests on both level and 1st difference, we can see that the series is stationary. Figure 5 shows the correlogram for level

Null Hypothesis: D(WEEKLY SALES) has a unit root Exogenous: Constant, Linear Trend Lag Length: 5 (Automatic - based on AIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic	-8.260194	0.0000
Test critical values:	1% level	-4.059734	
	5% level	-3.458856	
	10% level	-3.155470	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(WEEKLY_SALES,2) Method: Least Squares Date: 04/23/23 Time: 13:38

Date: 04/23/23 Time: 13:38 Sample (adjusted): 3/26/2010 12/30/2011 Included observations: 93 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(WEEKLY_SALES(-1))	-3.138419	0.379945	-8.260194	0.0000
D(WEEKLY_SALES(-1),2)	1.946154	0.322995	6.025343	0.0000
D(WEEKLY_SALES(-2),2)	1.392788	0.275117	5.062520	0.0000
D(WEEKLY SALES(-3),2)	1.063354	0.216955	4.901262	0.0000
D(WEEKLY_SALES(-4),2)	0.648542	0.151549	4.279429	0.0000
D(WEEKLY_SALES(-5),2)	0.304057	0.102400	2.969297	0.0039
С	-1307.193	1788.712	-0.730801	0.4669
@TREND("2/05/2010")	26.04156	30.19264	0.862513	0.3908
R-squared	0.644899	Mean depen	dent var	-263.7755
Adjusted R-squared	0.615655	S.D. depend	lent var	12469.39
S.E. of regression	7730.466	Akaike info o	riterion	20.82582
Sum squared resid	5.08E+09	Schwarz cri	terion	21.04368
Log likelihood	-960.4007	Hannan-Qui	nn criter.	20.91379
F-statistic	22.05265	Durbin-Wats	son stat	1.957776
Prob(F-statistic)	0.000000			

From the ADF tests, we can see that the absolute ADF value is greater than the critical values which confirms that the series is stationary. We can also see that all the lagged variables are statistically significant.

When we plot the log differenced graph for the ADF, we can see that the retail sales is stationary at first difference as the trend line moves around 0.00

I started off with lag 1 in both AR and MA which yielded in a non-significant MA coefficient. Then, I tried different lags based on the spikes in the AC and PAC values in the correlogram.

Dependent Variable: D(WEEKLY_SALES) Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 04/24/23 Time: 11:28 Sample: 2/12/2010 12/30/2011 Included observations: 99

Failure to improve objective (non-zero gradients) after 30 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) MA(1) SIGMASQ	-2.750068 0.591676 -1.000000 68853152	123.1395 0.122176 486.6703 7.45E+08	-0.022333 4.842829 -0.002055 0.092362	0.9822 0.0000 0.9984 0.9266
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.208910 0.183929 8470.669 6.82E+09 -1035.462 8.362507 0.000054	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-15.89515 9376.778 20.99923 21.10409 21.04166 1.590808
Inverted AR Roots Inverted MA Roots	.59 1.00			

Dependent Variable: WEEKLY_SALES/CPI Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 04/24/23 Time: 12:44

Sample: 2/05/2010 12/30/2011 Included observations: 100

Convergence achieved after 46 iterations

Coefficient covariance computed using outer product of gradients

Dependent Variable: D(WEEKLY_SALES/CPI)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 04/24/23 Time: 13:13

Sample: 2/12/2010 12/30/2011 Included observations: 99 Convergence achieved after 33 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(7) MA(1) SIGMASQ	108.9683 0.294636 0.636219 1265.986	11.80728 0.061818 0.094124 152.7152	9.228910 4.766203 6.759338 8.289854	0.0000 0.0000 0.0000 0.0000	AR(7) MA(2)	0.036074 0.233142 -0.459549 1446.963	2.849487 0.070406 0.092823 150.3351	0.012660 3.311383 -4.950824 9.624916	0.0013 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.438816 0.421279 36.31440 126598.6 -499.6638 25.02231 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	47.73581 10.07328 10.17748 10.11545	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.244640 0.220787 38.83153 143249.3 -501.1300 10.25595 0.000007	Mean deper S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wat	dent var criterion iterion inn criter.	-0.118252 43.99023 10.20465 10.30950 10.24707 2.178969
Inverted AR Roots Inverted MA Roots	.84 19+.82i 64	.52+.66i 7636i	.5266i 76+.36i	1982i	Inverted AR Roots Inverted MA Roots	.81 18+.79i .68	.5163i 7335i 68	.51+.63i 73+.35i	1879i

From the above results when dependent variable weekely_sales/cpi was used, we can see the combinations which worked out of the numerous ones I tried. On the left we can see the equation with AR(7) and MA(1) values which yielded statistically significant coefficients. I tried AR(7) due to the spike present in AC in the correlogram for the weekly_sales at levels format.

Later, I got another significant result from the first difference of weekly sales/cpi with AR(7) and MA(2). Since the alternating PAC signs are not very clear from the correlogram, this value of MA was achieved on the basis of trial and error. As we can see from this set of equations, the adjusted R squared is much better in a level form than the first difference form. Therefore, we can rule out the first difference from weekly_sales/cpi specification.

Dependent Variable: WEEKLY_SALES
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 04/24/23 Time: 15:26
Sample: 2/05/2010 12/30/2011
Included observations: 100
Convergence achieved after 42 iterations
Coefficient covariance computed using outer product of gradients

Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 04/24/23 Time: 22:36
Sample: 2/12/2010 12/30/2011
Included observations: 99
Convergence achieved after 30 iterations

Dependent Variable: D(WEEKLY_SALES)

Convergence achieved after 30 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(7) MA(1) SIGMASQ	23287.66 0.294054 0.638346 57681460	2512.820 0.062642 0.093102 7047948.	9.267537 4.694239 6.856417 8.184149	0.0000 0.0000 0.0000 0.0000	AR(7) MA(2)	19.54293 0.234677 -0.460253 65722616	607.6113 0.070837 0.092964 6889319.	0.032164 3.312909 -4.950866 9.539784	0.0013 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.440026 0.422527 7751.442 5.77E+09 -1036.007 25.14554 0.000000	Mean deper S.D. depen Akaike info Schwarz cr Hannan-Qu Durbin-Wat	dent var criterion iterion inn criter.	10200.39 20.80014 20.90435 20.84231	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.244879 0.221033 8275.862 6.51E+09 -1031.958 10.26920 0.000006	Mean deper S.D. depend Akaike info Schwarz cr Hannan-Qu Durbin-Wat	dent var criterion iterion inn criter.	-15.89515 9376.778 20.92845 21.03330 20.97087 2.174941
Inverted AR Roots Inverted MA Roots	.84 19+.82i 64	.52+.66i 7636i	.5266i 76+.36i	1982i	Inverted AR Roots Inverted MA Roots	.81 18+.79i .68	.51+.64i 7335i 68	.5164i 73+.35i	1879i

On using only weekly_sales as the dependent variable, we can see a similar behaviour as before in which the first difference equations does not fair well in terms of the adjusted R squared but the Aakike and Schwarz values changed significantly.

I found another equation for first difference with AR(7) and MA(8) specification which yielded statistically significant coefficients but the adjusted R squared values were much lower so will be discarding this ARIMA (Figure 14)

Then I combined the significant AR and MA terms to produce the following equation:

Dependent Variable: D(WEEKLY_SALES) Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 04/24/23 Time: 23:09 Sample: 2/12/2010 12/30/2011 Included observations: 99

Convergence achieved after 29 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	45.89453	770.4967	0.059565	0.9526
AR(7)	0.255022	0.074988	3.400847	0.0010
MA(2)	-0.490829	0.097630	-5.027438	0.0000
MA(8)	0.237987	0.087772	2.711412	0.0080
SIGMASQ	61484086	6406858.	9.596606	0.0000
R-squared	0.293577	Mean depe	ndent var	-15.89515
Adjusted R-squared	0.263517	S.D. depen		9376.778
S.E. of regression	8047.019	Akaike info		20.88971
Sum squared resid	6.09E+09	Schwarz ci	riterion	21.02077
Log likelihood	-1029.041	Hannan-Qu	ıinn criter.	20.94274
F-statistic	9.766204	Durbin-Wa	tson stat	2.162806
Prob(F-statistic)	0.000001			
Inverted AR Roots	.82	.51+.64i	.5164i	18+.80i
	1880i	7436i	74+.36i	
Inverted MA Roots	.84+.27i	.8427i	.34+.71i	.3471i
	34+.71i	3471i	84+.27i	8427i

As we can see, the adjusted R squared value is much lesser (0.26) for this equation as compared to the previous one (0.42).

Therefore our final equation for retail sales of store 1 and department 1 is: Retail_sales = c + AR(7) + MA(1)

I also did the same activity for department 2 and 3 of store 1.

From figure 9,11, AR(3) and MA(3) were found to statistically significant indicators for department 2 and AR(3) and MA(6) were found to statistically significant indicators for department 3 which were configured on the basis of their correlograms containing stationary data points.

For the ex-post forecast, I used 2 equations to compare the efficacy for the equations and to see how closely it is able to predict the actual sales in 2012; the final equation generated $D(Retail_sales) = c + AR(7) + MA(2)$ and $D(Retail_sales) = c + AR(7) + MA(2) + MA(8)$

As we have already looked at the other factors to determine the health of these equations, we will now look at how well these two equations performed during forecast. From the theil statistics, we can see that the Theil statistic is slightly better for equation. The Bias 0.17 and for equation 2 is 0.099 and therefore is better for equation 2 but the variance is lower for equation 1. When it comes to covariance, the covariance is closer to 1 for equation 1. Looking at all these factors, neither one of the equations is a clear winner and can be used on a case to case basis.

Equation 1: $D(Retail_sales) = c + AR(7) + MA(2)$

Forecast: WEEKLY_SALF Actual: WEEKLY_SALES Forecast sample: 2/05/2010 4/27/2012 Adjusted sample: 4/02/2010 4/27/2012 Included observations: 109 Root Mean Squared Error 10705.09 Mean Absolute Error 9596.762 Mean Abs. Percent Error 46.99436 Theil Inequality Coef. 0.206709 Bias Proportion 0.176299 Variance Proportion 0.661741 Covariance Proportion 0.161961 Theil U2 Coefficient 2.206660 Symmetric MAPE 38.89949

Equation 2: $D(Retail_sales) = c + AR(7) + MA(2) + MA(8)$

Forecast: WEEKLY_SALF Actual: WEEKLY_SALES Forecast sample: 2/05/2010 4/27/2012 Adjusted sample: 4/02/2010 4/27/2012 Included observations: 109 Root Mean Squared Error 10318.67 Mean Absolute Error 8945.201 42.45288 Mean Abs. Percent Error Theil Inequality Coef. 0.204246 Bias Proportion 0.099226 Variance Proportion 0.810439 Covariance Proportion 0.090335 Theil U2 Coefficient 2.009527 Symmetric MAPE 36.53154

Later, I again tried to use the isHoliday dummy to see if it becomes statistically significant now that we have our final equations at hand and viola, it did! While the Theil coefficients did not improve much, but the forcast started showing some much

needed trend. Since we have only one AR term in our model, we don't have to check for the sum of coefficients to be lesser than 1.

Equation 3: $D(\text{weekly_sales}) = c + AR(7) + MA(2) + \text{isholiday}$

Forecast: WEEKLY SALF Actual: WEEKLY_SALES Forecast sample: 2/05/2010 4/27/2012 Adjusted sample: 4/02/2010 12/30/2011 Included observations: 92 Root Mean Squared Error 14141.89 Mean Absolute Error 12964.40 68.28312 Mean Abs. Percent Error Theil Inequality Coef. 0.250497 Bias Proportion 0.409146 Variance Proportion 0.244531 Covariance Proportion 0.346324 Theil U2 Coefficient 3.313967 Symmetric MAPE 49.26352

Using the significant factors from both the types of models, here is an attempt at modelling a mix of multivariate and arima models.

Dependent Variable: D(WEEKLY_SALES/CPI)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 04/25/23 Time: 02:01
Sample: 2/12/2010 12/30/2011
Included observations: 99
Convergence achieved after 33 iterations

Coefficient covariance computed using outer product of gradients

Dependent Variable: D(WEEKLY_SALES/CPI) Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 04/24/23 Time: 13:13 Sample: 2/12/2010 12/30/2011 Included observations: 99

Convergence achieved after 33 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Coefficient covariance computed using outer product of gradients				
С	104.1593	22.34099	4.662251	0.0000	Variable	Coefficient	Std. Error	t-Statistic	Prob.
ISHOLIDAY TEMPERATURE	-27.40924 -0.796264	10.04170 0.221272	-2.729541 -3.598577	0.0076 0.0005	_	0.036074	2.849487	0.012660	0.9899
WEEKLY_SALES(-1)/CP	I -0.448966	0.101317	-4.431279	0.0000	AR(7)	0.233142	0.070406	3.311383	0.0013
AR(7) MA(2)	0.237470 -0.458335	0.076861 0.117144	3.089611 -3.912586	0.0027 0.0002		-0.459549 1446.963	0.092823 150.3351	-4.950824 9.624916	0.0000
SIGMASQ	1072.952	115.1057	9.321442	0.0000	_	0.044040	Mana danas		0.440050
R-squared	0.439886	Mean deper	ndent var	-0.118252	R-squared Adjusted R-squared	0.244640 0.220787	Mean deper S.D. depen		-0.118252 43.99023
Adjusted R-squared S.E. of regression	0.403356 33.97925	S.D. depen Akaike info	ueni vai	43.99023 9.966323	S.E. of regression	38.83153	Akaike info		10.20465
Sum squared resid	106222.2	Schwarz cr		10.14982 10.04056		143249.3 -501.1300	Schwarz cr Hannan-Qu		10.30950 10.24707
Log likelihood F-statistic Prob(F-statistic)	-486.3330 12.04203 0.000000	Hannan-Qu Durbin-Wat		1.723918		10.25595 0.000007	Durbin-Wat	son stat	2.178969
Inverted AR Roots	.81	.5164i		1879i	Inverted AR Roots	.81	.5163i		1879i
Inverted MA Roots	18+.79i .68	7335i 68	73+.35i		Inverted MA Roots	18+.79i .68	7335i 68	73+.35i	

Here, I am comparing the first difference of dependent variable weekly_sales/cpi ARIMA and multivariate models. From the results above, we can see a lot of explanatory power has been adding more X variables in the multivariate model. While there us not a significant difference in the Akakie and Shwartz values for the 2 models, we can definitely better adjusted R squared values and a smaller standard

error in the multivariate equation. The forecast for this models has a more trended graph, since it is taking other factors into account and quite intuitively has a vey low bias as per the forecast details. (Figure 15)

Running tests on this final equation to check it's fitness. Since we have used ARIMA methods, it is only possible to have the following issues:

1. Heteroskedasticity: The first test we will check if the variance is consistent in the equation or not. I have used the White test to check it. The null hypothesis of this test is that the data is homoscedastic and the alternate hypothesis is that there is heteroskedasticity present in the data. From figure 16, we can see that the probability is 0, which is lesser than 0.05, therefore, we can say that heterskedasticity is present. (Figure 16)

To correct for it, I should have used the white correction or the newey west correction which would have reduced the standard error but unfortunately, I could not find the correction option in the student version.

2. Structural breaks: By looking at the peaks in actual weekly sales graph, we can check if these structural breaks persist in the forecast model. For this I have used the Chow breakpoint test. I set the breakpoint at 12/24/2010 which was the highest peak present in the plot. The null hypothesis in the chow test is that there are no structural breaks and the alternative hypothesis is that there is a structural break. On running the test for the equation, the p value was found to be greater than 0.05. Therefore, we can say that there are no structural breaks present. (Figure 17)

In conclusion, while I may not be sure if the equation is perfect for a real forecast, it sure covers a lot of breath in terms of the kind of variables used and tests conducted. It would have been helpful if there was more explanatory data available in the dataset about retail_sales such as number of visits by customers and consumer confidence index. I am particularly happy about using both estimation techniques (ARIMA and multivariate regression) in conjunction to get a consolidated equation because, in my opinion that's how a true equation would be made for a real life scenario since it is hard to rely only on one of the techniques.

APPENDIX

FIGURE1

Date: 04/22/23 Time: 00:43 Sample: 2/05/2010 10/26/2012

	UNEMPLOYMENT	TEMPERATURE	СРІ	FUEL_PRICE	WEEKLY
Mean	7.610420	68.30678	215.9969	3.219699	46102.09
Median	7.787000	69.64000	215.4599	3.290000	45561.85
Maximum	8.106000	91.65000	223.4443	3.907000	65615.36
Minimum	6.573000	35.40000	210.3374	2.514000	35819.83
Std. Dev.	0.383749	14.25049	4.350890	0.427313	3440.673
Skewness	-1.046172	-0.402643	0.265983	-0.151813	1.721073
Kurtosis	3.043197	2.114668	1.547967	1.600071	10.79032
Jarque-Bera	26.09612	8.534116	14.24867	12.22644	432.2020
Probability	0.000002	0.014023	0.000805	0.002213	0.000000
Sum	1088,290	9767.870	30887.56	460.4170	6592599.
Sum Sq. Dev.	20.91137	28836.84	2688.095	25.92863	1.68E+09
Observations	143	143	143	143	143

FIGURE 2

Date: 04/20/23 Time: 14:53 Sample: 2/05/2010 10/26/2012

	WEEKLY_SALES02	UNEMPLOYMENT	TEMPERATURE	FUEL_PRICE
Mean	13150.48	7.610420	68.30678	3.219699
Median	10366.85	7.787000	69.64000	3.290000
Maximum	51159.17	8.106000	91.65000	3.907000
Minimum	6165.730	6.573000	35.40000	2.514000
Std. Dev.	8708.979	0.383749	14.25049	0.427313
Skewness	2.801496	-1.046172	-0.402643	-0.151813
Kurtosis	10.72404	3.043197	2.114668	1.600071
Jarque-Bera	542.5320	26.09612	8.534116	12.22644
Probability	0.000000	0.000002	0.014023	0.002213
Sum	1880518.	1088.290	9767.870	460.4170
Sum Sq. Dev.	1.08E+10	20.91137	28836.84	25.92863
Observations	143	143	143	143

FIGURE 3

Dependent Variable: WEEKLY_SALES01/CPI

Method: Least Squares
Date: 04/20/23 Time: 14:49
Sample: 2/05/2010 10/26/2012 Included observations: 143

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TEMPERATURE UNEMPLOYMENT FUEL_PRICE/CPI	189.8342 0.003634 5.055332 -1012.623	37.03962 0.096273 3.856943 844.1672	5.125166 0.037751 1.310709 -1.199552	0.0000 0.9699 0.1921 0.2324
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.038946 0.018204 15.82712 34819.17 -595.8063 1.877631 0.136178	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	213.4856 15.97317 8.388900 8.471777 8.422577 1.785755

FIGURE 4

Dependent Variable: WEEKLY_SALES02/CPI

Method: Least Squares
Date: 04/20/23 Time: 14:55
Sample: 2/05/2010 10/26/2012 Included observations: 143

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TEMPERATURE UNEMPLOYMENT	65.01343 0.987940 -4.745532	89.07242 0.231516 9.275129	0.729894 4.267259 -0.511641	0.4667 0.0000 0.6097
FUEL_PRICE/CPI	-2387.555	2030.043	-1.176110	0.2416
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.120368 0.101383 38.06085 201359.3 -721.2833 6.340200 0.000463	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	60.84879 40.15052 10.14382 10.22670 10.17750 0.473092

FIGURE 5

Dependent Variable: WEEKLY_SALES01/CPI

Method: Least Squares

Date: 04/21/23 Time: 13:53 Sample (adjusted): 2/12/2010 10/26/2012 Included observations: 142 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TEMPERATURE WEEKLY_SALES01(-1)/CPI(-1) FUEL_PRICE/CPI ISHOLIDAY UNEMPLOYMENT	158.4440 -0.014413 0.177620 -873.0102 -11.78398 4.172212	40.08673 0.097294 0.091674 834.5036 5.727507 3.824806	3.952530 -0.148137 1.937514 -1.046143 -2.057436 1.090830	0.0001 0.8825 0.0548 0.2974 0.0416 0.2773
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.072028 0.037912 15.57174 32977.14 -588.2790 2.111234 0.067744	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		213.3008 15.87558 8.370127 8.495021 8.420879 2.015849

Dependent Variable: WEEKLY_SALES01/CPI Method: Least Squares Date: 04/21/23 Time: 13:53 Sample (adjusted): 2/12/2010 10/26/2012 Included observations: 142 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	158.4440	40.08673	3.952530	0.0001
TEMPERATURE WEEKLY_SALES01(-1)/CPI(-1)	-0.014413 0.177620	0.097294 0.091674	-0.148137 1.937514	0.8825 0.0548
FUEL_PRICE/CPI ISHOLIDAY	-873.0102 -11.78398	834.5036 5.727507	-1.046143 -2.057436	0.2974 0.0416
UNEMPLOYMENT	4.172212	3.824806	1.090830	0.2773
R-squared	0.072028	Mean depen	dent var	213.3008
Adjusted R-squared	0.037912	S.D. depend		15.87558
S.E. of regression	15.57174	Akaike info o	riterion	8.370127
Sum squared resid	32977.14	Schwarz cri	terion	8.495021
Log likelihood	-588.2790	Hannan-Qui	nn criter.	8.420879
F-statistic	2.111234	Durbin-Wats	son stat	2.015849
Prob(F-statistic)	0.067744			

FIGURE 7

Dependent Variable: WEEKLY_SALES02/CPI

Method: Least Squares
Date: 04/23/23 Time: 00:20
Sample (adjusted): 2/12/2010 10/26/2012
Included observations: 142 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C UNEMPLOYMENT TEMPERATURE FUEL_PRICE/CPI ISHOLIDAY WEEKLY_SALES02(-1)/CPI(-1)	18.90054 -0.733103 0.202420 -882.9622 -21.76536 0.792380	55.86823 5.824582 0.158643 1277.984 8.172871 0.053748	0.338306 -0.125864 1.275946 -0.690903 -2.663123 14.74257	0.7357 0.9000 0.2041 0.4908 0.0087 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.662685 0.650284 23.82684 77209.72 -648.6795 53.43679 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	dent var criterion terion inn criter.	60.81892 40.29105 9.220838 9.345732 9.271590 1.800085

FIGURE 8

Null Hypothesis: WEEKLY_SALES has a unit root

Exogenous: Constant
Lag Length: 1 (Automatic - based on AIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-6.428270 -3.498439 -2.891234 -2.582678	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(WEEKLY_SALES) Method: Least Squares Date: 04/23/23 Time: 13:52 Sample (adjusted): 2/19/2010 12/30/2011 Included observations: 98 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
WEEKLY_SALES(-1) D(WEEKLY_SALES(-1)) C	-0.556569 0.319563 12473.42	0.086581 0.097846 2126.143	-6.428270 3.265966 5.866690	0.0000 0.0015 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.303446 0.288782 7737.602 5.69E+09 -1015.010 20.69285 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	-231.5164 9174.976 20.77571 20.85484 20.80771 1.929904

FIGURE 9 weekly_sales01

Date: 04/24/23 Time: 13:35 Sample: 2/05/2010 12/30/2011

Date: 04/24/23 Time: 13:36 Sample (adjusted): 2/12/2010 12/30/2011

Sample: 2/05/2010							ns: 99 after adjustme				
Included observation Autocorrelation	Partial Correlation	AC	PAC	Q-Stat		Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
Autocorrelation	Fartial Correlation	AC	FAC	Q-Stat	FIUD						
1 🛅 1	I 1 10 1	1 0.114	0.11/	1 3351	0.248			1 -0.44	9 -0.449	20.533	0.000
i l i	F			1.9223		1 🗓 1		2 0.07	4 -0.159	21.096	0.000
i d i		3 -0.131				-		3 -0.20	6 -0.307	25.519	0.000
		4 0.035				, (iii)		4 0.17	9 -0.074	28.905	0.000
ı d i 1	i n a in	5 -0.135				ı = ı	III	5 -0.10	1 -0.103	29.982	0.000
1 1	i ili	6 -0.115				1 ()	🔳	6 -0.00	6 -0.164	29.986	0.000
1	i ili	7 -0.085				1 1	III	7 0.00	4 -0.086	29.988	0.000
101	i uniu	8 -0.055				1 (1	<u> </u>	8 -0.01	9 -0.141	30.029	0.000
1 1 1	i uiu	9 -0.007	-0.004	8.3743	0.497	1 1	III	9 0.02	3 -0.107	30.089	0.000
1 🗓 1	j uju	10 -0.006	-0.018	8.3783	0.592	1 (1	I	10 -0.05	0 -0.148	30.367	0.001
ı İ	j iti			9.2769		· 🛅 ·	1 1 1	11 0.14	0.023	32.595	0.001
1011	ji.i.i	12 -0.059	-0.101	9.6746	0.644	□		12 -0.09	7 -0.037	33.680	0.001
1 🗓 1	j (d)	13 -0.029	-0.055	9.7743	0.712	 		13 0.04	3 -0.026	33.899	0.001
1011	1001	14 -0.090	-0.071	10.728	0.707	101	1 1 1	14 -0.05	3 -0.022	34.235	0.002
1 🗓 1	101	15 -0.046	-0.077	10.985	0.754	1 🗓 1	<u> </u>	15 -0.03	2 -0.158	34.356	0.003
ı İ I ı		16 0.050	0.087	11.287	0.791	1 1	I	16 0.00	0 -0.140	34.356	0.005
ı 🛅	 -	17 0.145	0.124	13.880	0.676	ı İ		17 0.13	5 0.065	36.592	0.004
1 (1)		18 -0.000	-0.072	13.880	0.737	1 4 1			2 0.044		
101	III	19 -0.069	-0.093	14.483	0.755	1 (1	1 1 1	19 -0.05	9 -0.024	37.248	0.007
1 (1)		20 -0.027	-0.023	14.578	0.800	1 [] 1		20 0.08	4 0.122	38.147	0.008
· □ ·	🔳 :	21 -0.138	-0.187	17.042	0.709	· I I ·	III	21 -0.13	4 -0.107	40.437	0.007
1 (1)		22 -0.014	0.026	17.068	0.760	i 🛅 i		22 0.12	1 0.001	42.344	0.006
I □ I		23 -0.112	-0.063	18.736	0.716	· II ·		23 -0.12	4 -0.051	44.362	0.005
1 1	1 (1)	24 0.018	-0.016	18.782	0.764	1 🏚 1		24 0.08	5 -0.071	45.330	0.005
1 (1)		25 -0.005	0.023	18.786	0.807	1 [] 1		25 -0.05	2 -0.011	45.690	0.007
1 þ 1	(1)	26 0.060	-0.029	19.281	0.824	1 [] 1		26 0.06	6 0.026	46.295	0.008
1 (1)	III	27 -0.005	-0.087	19.285	0.859	□		27 -0.07	1 -0.052	46.986	0.010
1 () 1	1 1 1	28 0.064	-0.009	19.859	0.870	1 D 1		28 0.08	0.015	47.895	0.011
1 (1)		29 -0.023	-0.048	19.934	0.895	1 (1		29 -0.05	9 -0.054	48.385	0.013
1 (1		30 -0.000	-0.012	19.934	0.918	1 1		30 0.04	3 -0.026	48.652	0.017
1 🗓 1		31 -0.048	-0.022	20.281	0.930	1 (1)		31 -0.03	0 -0.023	48.781	0.022
1 (1		32 -0.036	-0.029	20.475	0.943	141		32 -0.04	3 -0.045	49.057	0.027
1 [] 1		33 0.052	0.002	20.888	0.950	i ji i i		33 0.09	7 0.058	50.483	0.026
1 (1	III	34 -0.022	-0.090	20.962	0.961	1 🗐 1	III	34 -0.10	9 -0.099	52.294	0.023
ı b ı		35 0.093	0.071	22.312	0.952	1 (1) 1		35 0.07	9 -0.034	53.266	0.025
1 [] 1	1 11	36 0.055	0.036	22.802	0.957	1 1		36 0.00	3 0.050	53.268	0.032

Dependent Variable: WEEKLY_SALES01

Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 04/24/23 Time: 15:01
Sample: 2/05/2010 12/30/2011 Included observations: 100

Convergence achieved after 46 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	45751.93	131.1147	348.9458	0.0000
AR(3)	0.584838	0.144405	4.049982	0.0001
MA(3)	-0.915936	0.072886	-12.56667	0.0000
SIGMASQ	11385556	1322680.	8.607945	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.133100 0.106009 3443.828 1.14E+09 -955.3498 4.913138 0.003217	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		45899.56 3642.294 19.18700 19.29120 19.22917 1.806943
Inverted AR Roots	.84	42+.72i	4272i	
Inverted MA Roots	.97	49+.84i	4984i	

FIGURE 10- weekly_sales02

Date: 04/24/23 Time: 13:37			Sample (adjusted): 2/12/2010 12/30/2011					
Sample: 2/05/2010 12/30/2011			Included observations: 99 after adjustments					
Included observations: 100			Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
Autocorrelation Partial Correla	ion AC PAC Q-S	tat Prob						
			(10)		1 0.081	0.081		0.416
	1 0.791 0.791 64.5			ļ ' □ '	2 -0.096			0.447
' = ' = '	2 0.552 -0.198 96.2				3 0.022	0.040	1.6605	0.646
		.39 0.000	_	ļ Q !	4 -0.158			0.368
	4 0.144 -0.189 111			[4.9445	0.423
	5 -0.001 0.015 111			' '	6 -0.079			0.468
- 場: ! !!!!	6 -0.114 -0.100 112			III	7 -0.132			
= : : : : : : : : : : : : : : : : : : :	7 -0.193 -0.034 117				8 -0.027			
	8 -0.218 -0.004 122 9 -0.232 -0.067 128			ļ ' □ '	9 -0.058			
= : : : : : : : : : : : : : : : : : : :	10 -0.221 -0.008 133						7.9836	
				III	11 -0.010	-0.099	7.9953	0.714
		.21 0.000 .10 0.000		1 🗓 1	12 -0.001	-0.038	7.9954	0.785
	13 -0.195 -0.074 148				13 -0.013			0.843
	14 -0.179 -0.014 152			III	14 -0.053	-0.106	8.3459	0.871
	15 -0.141 0.007 154				15 0.007	-0.059	8.3510	0.909
	16 -0.105 -0.033 156				16 0.065	-0.007	8.8533	0.919
	17 -0.095 -0.085 157				17 0.085	0.035	9.7312	0.915
		.79 0.000			18 -0.122	-0.211	11.575	0.868
		.79 0.000			19 0.035	0.030	11.732	0.897
	20 -0.041 -0.117 159				20 0.055	-0.046	12.112	0.912
		.81 0.000	1 1 1		21 -0.004	-0.001	12.114	0.936
		.01 0.000		III	22 -0.013	-0.092	12.134	0.955
		.20 0.000			23 -0.063	-0.089	12.653	0.959
		.23 0.000			24 0.002	-0.013	12.654	0.971
		.23 0.000		[[[25 0.060	-0.011	13.146	0.975
		.24 0.000			26 -0.051	-0.076	13.507	0.979
		.25 0.000			27 0.031	-0.027	13.638	0.985
111 1 111		.25 0.000			28 -0.006	-0.050	13.644	0.990
tit i tit		.25 0.000			29 -0.001	-0.027	13.644	0.993
		.26 0.000			30 0.023	-0.026	13.723	0.995
11 11		.26 0.000			31 -0.026	-0.052	13.819	0.997
		.26 0.000		1 1	32 0.056	0.017	14.295	0.997
in in the second of the second		.31 0.000		1 1	33 0.038	-0.001	14.511	0.998
1011 1011		.73 0.000		III	34 -0.101	-0.111	16.076	0.996
1011		.04 0.000			35 0.017	0.023	16.119	0.997
ini ji ini	36 -0.043 -0.101 161				36 0.037	-0.032	16.338	0.998

Date: 04/24/23 Time: 13:37

Dependent Variable: WEEKLY_SALES02 Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 04/24/23 Time: 14:51

Sample: 2/05/2010 12/30/2011 Included observations: 100

Convergence achieved after 22 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(3)	12789.84 0.389278	1692.419 0.084978	7.557135 4.580920	0.0000 0.0000
MA(6) SIGMASQ	-0.289424 56959323	0.131239 7159340.	-2.205317 7.955946	0.0298 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.176762 0.151036 7702.768 5.70E+09 -1035.161 6.870897 0.000305	Mean deper S.D. depen Akaike info Schwarz cr Hannan-Qu Durbin-Wat	dent var criterion iterion inn criter.	12758.94 8359.920 20.78321 20.88742 20.82539 0.594712
Inverted AR Roots Inverted MA Roots	.73 .81 41+.70i	37+.63i .4170i 81	3763i .41+.70i	4170i

FIGURE 12

Dependent Variable: WEEKLY_SALES02/CPI Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 04/24/23 Time: 14:54 Sample: 2/05/2010 12/30/2011 Included observations: 100

Convergence achieved after 21 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FUEL_PRICE/CPI AR(3) MA(6)	70.79296 -756.2596 0.388272 -0.294211	32.20769 2113.141 0.084699 0.132244	2.198014 -0.357884 4.584148 -2.224750	0.0304 0.7212 0.0000 0.0285
SIGMASQ	1246.689	157.8517	7.897846	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.177773 0.143153 36.22573 124668.9 -498.6868 5.134963 0.000866	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	dent var criterion iterion inn criter.	59.74808 39.13501 10.07374 10.20399 10.12645 0.596257
Inverted AR Roots Inverted MA Roots	.73 .82 41+.71i	36+.63i .4171i 82	3663i .41+.71i	4171i

Correlogram of residuals- q stat for ar(7) ma(1) on weekly sales

Date: 04/24/23 Time: 17:26 Sample: 2/05/2010 12/30/2011 Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
· 🗀 ı		1 0.127	0.127	1.6675	
ı İ	j j	2 0.117	0.102	3.0924	
1 🗐 1	II	3 -0.071	-0.100	3.6166	0.057
1 🖡 1	1 1 1	4 0.003	0.011	3.6175	0.164
ı (1		5 -0.036	-0.019	3.7602	0.289
ı þ i		6 0.053	0.053	4.0606	0.398
ı İ ı		7 0.041	0.037	4.2442	0.515
· 🛅		8 0.198	0.178	8.5907	0.198
1 🕴 1		:	-0.017	8.6857	0.276
ı İ	 -	10 0.148	0.117	11.165	0.193
1₫ 1	II	11 -0.104		12.410	0.191
<u> [</u>]	' [] '	12 -0.045		12.642	0.244
' <u>"</u> '	<u> </u>	13 -0.103		13.896	0.239
' !	" '	14 -0.142		16.272	0.179
[]	' '	15 -0.063		16.752	0.211
' 📮 '	!	16 -0.088		17.682	0.222
[]	'	17 -0.050		17.993	0.263
 		18 0.076	0.069	18.715	0.284
 		19 -0.081		19.532	0.299
<u>.</u>		20 -0.061		20.003	0.333
. <u></u>		21 -0.156		23.152	0.231
	'U''	22 -0.099		24.433	0.224
		23 -0.145		27.232	0.163
' u '		24 -0.066	0.006	27.822	0.182
' u '	' " '	25 -0.060 26 -0.056		28.319 28.745	0.204 0.230
' u '	' '	27 -0.033		28.901	0.268
' u '		i	-0.009	28.931	0.200
	'¶' 	29 -0.114		30.800	0.314
' <u>'</u>	, 	30 -0.033		30.961	0.279
. . .	i i i	31 -0.126		33.308	0.265
. <u> </u>	i i i	32 -0.025		33.406	0.305
ı n	i , i	33 -0.057		33.903	0.329
 		34 0.041	0.016	34.164	0.364
ı İ ı	i i i	35 -0.002		34.165	0.412
ı 🖡 ı	i i i	36 -0.013		34.190	0.459

Correlogram of residuals ar(7) ma(2)

Date: 04/24/23 Time: 17:29 Sample (adjusted): 2/12/2010 12/30/2011 Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation	AC PAC Q-Stat Prob
· II ·		1 -0.126 -0.126 1.6190
1 1		2 0.003 -0.013 1.6201
	🔳 :	3 -0.224 -0.228 6.8263 0.00
1 🗓 1	<u> </u>	4 -0.064 -0.131 7.2628 0.02
ı = 1	🔲 :	5 -0.132 -0.184 9.1096 0.02
1 1	<u> </u>	6 0.009 -0.114 9.1178 0.05
1 1		7 0.012 -0.081 9.1342 0.10
· 🗀		8 0.180 0.086 12.712 0.04
[]		9 -0.036 -0.053 12.852 0.07
· 🗀		10 0.175 0.160 16.275 0.03
1 二 1		11 -0.122 -0.016 17.954 0.03
1 🚺 1	1 1 1	12 -0.005 0.016 17.957 0.05
1 [] 1		13 -0.065 0.048 18.443 0.07
1 🔲 1		14 -0.085 -0.091 19.284 0.08
1 1		15 0.004 -0.000 19.286 0.11
I 🗓 I	III	16 -0.034 -0.099 19.427 0.14
1 1		17 0.004 -0.086 19.429 0.19
· 🗀	101	18 0.159 0.074 22.554 0.12
ı (ı		19 -0.037 -0.045 22.723 0.15
1 1 1	[]	20 0.023 -0.036 22.790 0.19
1 🗐 1	[]	21 -0.098 -0.046 24.023 0.19
T (T		22 -0.009 -0.018 24.035 0.24
[]		23 -0.080 -0.082 24.878 0.25
1 1		24 0.018 0.008 24.921 0.30
1 1 1	[]	25 0.007 -0.046 24.928 0.35
1 1		26 0.007 -0.075 24.936 0.40
1 1		27 0.019 -0.005 24.989 0.46
1 (1) 1		28 0.084 0.006 25.991 0.46
1 .		29 -0.088 -0.061 27.093 0.45
- I 🌡 I		30 0.038 0.008 27.301 0.50
1 [] 1	III -	31 -0.105 -0.076 28.931 0.46
1 1	[]	32 0.010 -0.037 28.947 0.52
1 [] 1	III -	33 -0.058 -0.069 29.461 0.54
i j i i		34 0.054 -0.021 29.912 0.57
1 🚺 1	j (d)	35 -0.013 -0.066 29.937 0.62
1 (1	📹 -	36 -0.045 -0.164 30.259 0.65

FIGURE 14

Dependent Variable: D((WEEKLY_SALES/CPI)) Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 04/24/23 Time: 13:22

Sample: 2/12/2010 12/30/2011 Included observations: 99

Convergence achieved after 33 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(7) MA(8) SIGMASQ	0.333778 0.321021 0.205971 1692.088	7.106224 0.062664 0.086146 174.0597	0.046970 5.122884 2.390949 9.721307	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.116677 0.088782 41.99207 167516.7 -508.9980 4.182806 0.007925	Mean depe S.D. depen Akaike info Schwarz ci Hannan-Qu Durbin-Wat	dent var criterion riterion iinn criter.	-0.118252 43.99023 10.36360 10.46845 10.40602 1.921950
Inverted AR Roots Inverted MA Roots	.85 19+.83i .76+.31i 3176i	.53+.66i 7737i .7631i 31+.76i	.5366i 77+.37i .3176i 7631i	1983i .31+.76i 76+.31i

FIGURE 15

Forecast: WEEKLY_SALF Actual: WEEKLY_SALES Forecast sample: 2/05/2010 4/27/2012 Adjusted sample: 4/02/2010 12/23/2011 Included observations: 91 Root Mean Squared Error 8368.012 Mean Absolute Error 5820.615 Mean Abs. Percent Error 23.61902 Theil Inequality Coef. 0.175654 Bias Proportion 0.000424 0.381237 Variance Proportion Covariance Proportion 0.618338 Theil U2 Coefficient 1.359352 22.61041 Symmetric MAPE

FIGURE 16

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic	7.76E+20	Prob. F(44,53)	0.0000
Obs*R-squared	98.00000	Prob. Chi-Square(44)	0.0000
Scaled explained SS	205.2560	Prob. Chi-Square(44)	0.0000

Test Equation:
Dependent Variable: RESID/2
Method: Least Squares
Date: 04/25/23 Time: 02:27
Sample: 2/12/2010 12/23/2011
Included observations: 98

Variable	Coefficient	Std. Error	t-Statistic	Prob.
variable	COGINCIGIAL	Old. LITUI	i-Otalistic	1 100.
С	1082.791	1.53E-06	7.06E+08	0.0000
GRADF_01/2	-1.077258	0.155676	-6.919859	0.0000
GRADF_01*GRADF_02	-0.005753	0.036787	-0.156385	0.8763
GRADF_01*GRADF_03	0.001631	0.000589	2.770146	0.0077
GRADF_01*GRADF_04	0.000382	0.000299	1.277305	0.2071
GRADF_01*GRADF_05	54.47546	7.541245	7.223669	0.0000
GRADF_01*GRADF_06	0.000466	0.000175	2.661439	0.0103
GRADF_01*GRADF_07	0.000783	0.000267	2.930684	0.0050
GRADF_01*GRADF_08	0.191594	0.291082	0.658213	0.5133
GRADF_01	0.000394	0.000129	3.062081	0.0034
GRADF_02/2	0.001727	0.002603	0.663495	0.5099
GRADF_02*GRADF_03	-0.000108	5.91E-05	-1.835903	0.0720
GRADF_02*GRADF_04	-4.78E-05	2.41E-05	-1.979092	0.0530
GRADF_02*GRADF_05	0.546997	0.962978	0.568027	0.5724
GRADF 02*GRADF 06	2.30E-05	3.34E-05	0.687332	0.4949
GRADF_02*GRADF_07	2.78E-05	3.86E-05	0.722003	0.4735
GRADF_02*GRADF_08	-0.181573	0.057291	-3.169323	0.0025
GRADF 02	-0.000108	3.04E-05	-3.553896	0.0008
GRADF 03/2	-2.42E-06	6.71E-07	-3.615345	0.0007
GRADF 03*GRADF 04	-8.08E-07	4.35E-07	-1.857511	0.0688
GRADF 03*GRADF 05	-0.033077	0.013860	-2.386499	0.0206
GRADF 03*GRADF 06	-9.77E-07	4.38E-07	-2.230942	0.0299
GRADF 03*GRADF 07	-7.46E-07	4.78E-07	-1.560709	0.1245
GRADF_03*GRADF_08	1.70E-05	0.000422	0.040174	0.9681
GRADF_03	-4.67E-08	2.35E-07	-0.198459	0.8434
GRADF 04/2	-3.87E-07	1.40E-07	-2.757851	0.0080
GRADF_04*GRADF_05	-0.006476	0.006986	-0.926936	0.3582
GRADF 04*GRADF 06	-2.74E-08	1.77E-07	-0.154680	0.8777
GRADF 04*GRADF 07	2.42E-07	1.30E-07	1.864268	0.0678
GRADF_04*GRADF_08	0.000869	0.000279	3.121201	0.0029
GRADF 04	6.93E-07	1.25E-07	5.559997	0.0000
GRADF 05/2	-702.4445	97.03271	-7.239255	0.0000
GRADF 05*GRADF 06	-0.011077	0.004168	-2.657640	0.0104
GRADF 05*GRADF 07	-0.021107	0.007153	-2.950763	0.0047
GRADF 05*GRADF 08	-9.300625	7.514166	-1.237746	0.2213
GRADF 05	-0.013277	0.003489	-3.805870	0.0004
GRADF 06/2	4.31E-08	4.30E-08	1.003260	0.3203
GRADF_06*GRADF_07	2.74E-07	9.37E-08	2.925400	0.0051
GRADF 06*GRADF 08	0.000516	0.000212	2.438384	0.0181
GRADF 06	-2.34E-07	1.47E-07	-1.596407	0.1163
GRADF 07/2	1.64E-07	1.13E-07	1.452369	0.1523
GRADF_07*GRADF_08	-0.000106	0.000386	-0.275086	0.7843
GRADF 07	-2.42E-07	1.16E-07	-2.082090	0.0422
GRADF_08/2	0.832460	0.259040	3.213634	0.0022
GRADF_08	2344874.	0.003348	7.00E+08	0.0000
D. a sure and	4.000000	Mana -1	ala.a.t.,	4000 704
R-squared	1.000000	Mean depen		1082.791
Adjusted R-squared	1.000000	S.D. depend		2425.523
S.E. of regression	1.29E-07	Akaike info c		-28.58079
Sum squared resid	8.86E-13	Schwarz crit		-27.39381
Log likelihood	1445.459	Hannan-Qui		-28.10068
F-statistic	7.76E+20	Durbin-Wats	on stat	1.606977
Prob(F-statistic)	0.000000			

FIGURE 17

Chow Breakpoint Test: 12/24/2010

Null Hypothesis: No breaks at specified breakpoints

Equation Sample: 2/12/2010 12/23/2011

F-statistic	1.162552	Prob. F(8,82)	0.3318
Log likelihood ratio	11.36252	Prob. Chi-Square(8)	0.1820
Wald Statistic	7.628229	Prob. Chi-Square(8)	0.4706

WARNING: the MA backcasts differ for the original and test equation. Under the null hypothesis, the impact of this difference vanishes asymptotically.