Cursul 8

Generatorul Mersenne-Twister

Algoritmii de generare de numere pseudo—aleatoare uniform distribuite pe [0,1), de ultimă generație, sunt bazați pe recurențe liniare modulo 2. Acești algoritmi se bazează pe operații cu stringuri de biți.

Se consideră corpul finit $\mathbb{Z}_2 = \{0,1\}$, al claselor de resturi modulo 2, relativ la operațiile de adunare și înmulțire modulo 2. Adunarea modulo 2 se numește exclusive or și se notează XOR (în C operația pe biți XOR se notează $\hat{}$, iar în criptografie \oplus):

XOR	0	1
0	0	1
1	1	0

 \mathbb{Z}_2 fiind corp, \mathbb{Z}_2^n are structură de spațiu vectorial peste corpul \mathbb{Z}_2 , tot așa cum \mathbb{R}^n are structură de spațiu vectorial peste \mathbb{R} . Deoarece

$$\mathbb{Z}_2^n = \underbrace{\mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots \times Z_2}_{n},$$

cardinalul mulţimii \mathbb{Z}_2^n este 2^n .

O matrice A de tip $n \times n$ cu elemente în \mathbb{Z}_2 definește un operator liniar pe \mathbb{Z}_2^n , $A: \mathbb{Z}_2^n \to \mathbb{Z}_2^n$. A asociază stringului de biţi $b_{n-1}b_{n-2}\dots b_1b_0$, stringul $c_{n-1}c_{n-2}\dots c_1c_0$ şi relația dintre cele două stringuri exprimată matriceal este:

$$\left[\begin{array}{ccccc} b_{n-1} & \dots & b_1 & b_0 \end{array}\right] \cdot A = \left[\begin{array}{cccc} c_{n-1} & \dots & c_1 & c_0 \end{array}\right].$$

Prezentăm în continuare un algoritm de generare de numere pseudo—aleatoare pe w biţi, unde w este lungimea unui cuvânt (w=32 pe sistemele pe 32 de biţi, respectiv w=64, pe cele pe 64 de biţi), datorat lui M. Matsumoto şi T. Nishimura. Şirul de numere este definit de o transformare liniară particulară, ce acţionează asupra unui spaţiu \mathbb{Z}_2^N , cu N ales într-un mod special.

Notații:

- w, lungimea unui cuvânt pe un calculator (w=32, 64);
- n, întreg pozitiv fixat;
- r, întreg cu $0 \le r \le w 1$, ce indică punctul de separare al unui cuvânt;
- $\mathbf{x} = (b_{w-1}b_{w-2}\dots b_r|b_{r-1}\dots b_0) \in \mathbb{Z}_2^w;$

Vectorului \mathbf{x} i se asociază

$$\mathbf{x}^{u} = (b_{w-1}b_{w-2}\dots b_{r}0\dots 0), \ \mathbf{x}^{l} = (0\dots 0b_{r-1}\dots b_{0});$$

- m, întreg pozitiv fixat, $1 \le m \le n$;
- $k = 0, 1, 2 \dots$, ordinul recurenței;

Algoritmul este definit de următoarea recurență liniară:

$$\mathbf{x}_{n+k} = \mathbf{x}_{m+k} \oplus (\mathbf{x}_k^u | \mathbf{x}_{k+1}^l) A, \quad k = 0, 1, 2, \dots$$

$$(8.1)$$

unde matricea:

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ a_{w-1} & a_{w-2} & a_{w-3} & \dots & a_0 \end{pmatrix}$$
(8.2)

este asociată unui vector (string) cuvânt $\mathbf{a} = (a_{w-1}, a_{w-2}, \dots, a_1, a_0) \in \mathbb{Z}_2^w$;

• $(\mathbf{x}_k^u | \mathbf{x}_{k+1}^l)$ notează concatenarea substringurilor lui \mathbf{x}_k^u , \mathbf{x}_{k+1}^l , formate respectiv din cei mai reprezentativi w-r biţi din \mathbf{x}_k şi cei mai puţin reprezentativi r biţi din \mathbf{x}_{k+1} . Mai precis, dacă $\mathbf{x}_k = (b_{w-1} \dots b_r b_{r-1} \dots b_0)$, iar $\mathbf{x}_{k+1} = (c_{w-1} \dots c_r c_{r-1} \dots c_0)$, atunci avem:

$$\begin{split} &(\mathbf{x}_k^u | \mathbf{x}_{k+1}^1) = \\ &((b_{w-1} \dots b_r b_{r-1} \dots b_0) \text{ AND } (1 \dots 1 \underbrace{0, \dots 0}_r)) \text{ OR} \\ &((c_{w-1} \dots c_r c_{r-1} \dots c_0) \text{ AND } (0 \dots 0 \underbrace{1 \dots 1}_r)). \end{split}$$

Evident că $(\mathbf{x}_k^u | \mathbf{x}_{k+1}^l)$ este un w-string.

• Operatorul \oplus din (8.1) este adunarea modulo 2.

Detalierea relației (8.1):

Se pornește cu condițiile inițiale $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{n-1}$, ce sunt n numere întregi fără semn, pe w-biți, nu toate nule.

Relația de recurență (8.1) calculează pentru $k=0,1,\dots,n-1,$ un nou set de n numere:

$$\mathbf{x}_{n} = \mathbf{x}_{m} \oplus (\mathbf{x}_{0}^{u}|\mathbf{x}_{1}^{l})A,$$

$$\mathbf{x}_{n+1} = \mathbf{x}_{m+1} \oplus (\mathbf{x}_{1}^{u}|\mathbf{x}_{2}^{l})A,$$

$$\vdots \qquad \vdots$$

$$\mathbf{x}_{2n-2} = \mathbf{x}_{m+n-2} \oplus (\mathbf{x}_{n-2}^{u}|\mathbf{x}_{n-1}^{l})A,$$

$$\mathbf{x}_{2n-1} = \mathbf{x}_{m+n-1} \oplus (\mathbf{x}_{n-1}^{u}|\mathbf{x}_{n}^{l})A.$$

$$(8.3)$$

Particularizând aceste relații pentru n = 5, m = 3:

$$\mathbf{x}_{5} = \mathbf{x}_{3} \oplus (\mathbf{x}_{0}^{u}|\mathbf{x}_{1}^{l})A,$$

$$\mathbf{x}_{6} = \mathbf{x}_{4} \oplus (\mathbf{x}_{1}^{u}|\mathbf{x}_{2}^{l})A,$$

$$\mathbf{x}_{7} = \mathbf{x}_{5} \oplus (\mathbf{x}_{2}^{u}|\mathbf{x}_{3}^{l})A,$$

$$\mathbf{x}_{8} = \mathbf{x}_{6} \oplus (\mathbf{x}_{3}^{u}|\mathbf{x}_{4}^{l})A,$$

$$\mathbf{x}_{9} = \mathbf{x}_{7} \oplus (\mathbf{x}_{4}^{u}|\mathbf{x}_{5}^{l})A,$$

$$(8.4)$$

observăm că se poate folosi ca memorie de lucru doar zona alocată pentru

$$\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_{n-1}, n = 5,$$

făcând atribuirile din (8.5), care sunt cele din (8.4), în care fiecare indice mai mare sau egal cu 5 se înlocuiește cu restul împărțirii sale la 5:

$$\mathbf{x}_{0} = \mathbf{x}_{3} \oplus (\mathbf{x}_{0}^{u}|\mathbf{x}_{1}^{l})A,$$

$$\mathbf{x}_{1} = \mathbf{x}_{4} \oplus (\mathbf{x}_{1}^{u}|\mathbf{x}_{2}^{l})A,$$

$$\mathbf{x}_{2} = \mathbf{x}_{0} \oplus (\mathbf{x}_{2}^{u}|\mathbf{x}_{3}^{l})A,$$

$$\mathbf{x}_{3} = \mathbf{x}_{1} \oplus (\mathbf{x}_{3}^{u}|\mathbf{x}_{4}^{l})A,$$

$$\mathbf{x}_{4} = \mathbf{x}_{2} \oplus (\mathbf{x}_{4}^{u}|\mathbf{x}_{0}^{l})A.$$

$$(8.5)$$

În relațiile (8.3) indicii se calculează modulo n, adică pentru $k \in \{0, 1, \dots, n-m-1\}$ avem:

$$\mathbf{x}_{n+k \pmod{n}} = \mathbf{x}_{m+k} \oplus (\mathbf{x}_k^u | \mathbf{x}_{k+1}^l) A,$$

pentru $k \in \{n - m, ..., n - 2\}$:

$$\mathbf{x}_{n+k \pmod{n}} = \mathbf{x}_{m-n+k} \oplus (\mathbf{x}_k^u | \mathbf{x}_{k+1}^l) A,$$

iar pentru k = n - 1:

$$\mathbf{x}_{2n-1 \pmod{n}} = \mathbf{x}_{n-1} = \mathbf{x}_{m-1} \oplus (\mathbf{x}_{n-1}^u | \mathbf{x}_0^l) A.$$

Pentru a deduce modul de transformare a înmulțirii la dreapta a vectorului linie

$$\mathbf{x} = [b_{w-1}, \dots, b_1, b_0]$$

cu matricea A, în operații pe biți, în care să fie implicați \mathbf{x} și \mathbf{a} , luăm cazul particular w=4 și avem:

$$\begin{bmatrix} b_3 & b_2 & b_1 & b_0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a_3 & a_2 & a_1 & a_0 \end{bmatrix} = \begin{bmatrix} b_0 a_3 & b_3 + b_0 a_2 & b_2 + b_0 a_1 & b_1 + a_0 b_0 \end{bmatrix}. (8.6)$$

Analizând produsul, constatăm că în general avem pentru $\mathbf{x} = (b_{w-1} \dots b_2 b_1 b_0)$:

$$\mathbf{x} \cdot A = \begin{cases} \mathbf{x} >> 1 = (0b_{w-1} \dots b_1), & \text{dacă } b_0 = 0, \\ \mathbf{x} >> 1 \oplus a = (0b_{w-1} \dots b_2 b_1) \oplus (a_{w-1} a_{w-2} \dots a_1 a_0), & \text{dacă } b_0 = 1. \end{cases}$$
(8.7)

Precizăm că >> reprezintă operatorul pe biți de deplasare la dreapta.

Fiecărui vector $\mathbf{x} \in \mathbb{Z}_2^w$ i se aplică un şir de transformări, numite transformări de temperare, care îmbunătățesc proprietățile statistice (echidistribuția) ale şirului generat. Aceste transformări sunt:

$$\mathbf{y} = \mathbf{x} \oplus (\mathbf{x} >> u) \tag{8.8}$$

$$\mathbf{y} = \mathbf{y} \oplus ((\mathbf{y} << s) \text{ AND b}) \tag{8.9}$$

$$\mathbf{y} = \mathbf{y} \oplus ((\mathbf{y} << t) \text{ AND c}) \tag{8.10}$$

$$\mathbf{z} = \mathbf{y} \oplus (\mathbf{y} >> v), \tag{8.11}$$

unde s,t, u,v sunt numere întregi fără semn, iar b,c sunt măști adecvate de lungime w biţi.

După ce s-au aplicat tranformările de temperare, numărului întreg z i se asociază un număr din [0,1), prin transformarea de ieșire $g(\mathbf{z}) = \mathbf{z}/M$, unde M este cel mai mare număr întreg fără semn (în C, pentru w = 32, acest număr este 0xfffffff).

In concluzie, pentru a calcula N > n numere întregi fără semn, de w biți, cu ajutorul relației de recurență (8.1), pe baza a n numere inițiale, avem nevoie doar de un domeniu de lucru constând dintr-un tablou x[n] de n numere întregi de tip unsigned long.

Se poate demonstra că relațiile (8.3) se pot scrie în forma:

$$s^{\ell} = s^{\ell-1}M,\tag{8.12}$$

unde M este o matrice cu elemente din Z_2 , de tip $(nw-r) \times (nw-r)$, iar s^{ℓ} este un vector linie de nw-r biţi. Perioada maximă a generatorului se realizează dacă polinomul caracteristic al matricei M este un polinom primitiv cu coeficienți din \mathbb{Z}_2 .

Autorii algoritmului au arătat că dacă n, w, r sunt astfel încât $2^{nw-r}-1$ este un număr prim, atunci polinomul asociat matricei M a generatorului (8.1) este polinom primitiv.

Matsumoto și Nishimura au dat în lucrarea respectivă și parametrii ce definesc prin metoda prezentată mai sus cel mai bun generator de numere pseudo-aleatoare uniform distribuite pe [0, 1) existent la ora actuală:

- \bullet n=624; m=397
- vectorul a: 0x9908b0df
- \bullet masca umsk pentru calculul lui \mathbf{x}_k^u : 0x80000000
- masca lmsk pentru calculul lui \mathbf{x}_{k+1}^l : 0x7fffffff, deci r=31
- parametrii de temperare:
 - b: 0x9d2c5680
 - c: 0xefc60000
 - 11, adică se calculează (y>>11)
 - 7 s:
 - t: 15
 - 18. v:

Generatorul definit de acești parametri se numește generatorul Mersenne-Twister. El are următoarele proprietăți:

- \bullet Perioada maximă a șirului generat este de $2^{nw-r}-1.$ Deci pentru $n=624,\,w=32$ $\sin r = 31$, perioada este $2^{19937} - 1$;
- A trecut teste de k-uniformitate pentru orice $k \leq 623$, adică s-a studiat distribuția punctelor în hypercuburi de dimensiuni de la 2 până la 623 și s-a constatat că nu are proprietăți de regularitate ca generatorul liniar congruențial;
 - Necesită $624 \times 4 = 2496$ bytes ca memorie de lucru pe un calculator pe 32 de biți.