EC204 Digital System Design Lab Lab – 3

Utkarsh R Mahajan 201EC164

1] Design a circuit to convert 4 bit Binary to Gray and 4 bit Gray to Binary Code using XOR gates

Result: Results Obtained can be seen via the analyzed circuit Table, which matches the initial Truth table for the convertors.

2]Design an Excess-3 to BCD code converter and implement using 8:1 multiplexer. Use the multiplexer available in Plexers library in logisim.

We take input excess-3 as ABCD (A is MSB)

We can send the input BCD Via Selector and then A via Input I.

Result: the table obtained via analyzing circuit matches the required result.

3] Design a circuit to implement the following functions using (a) 4 to 16 decoder (b) 4 to 1 Multiplexer. Use the Multiplexer and decoder available in Plexers library in logisim.

$$F_1(A,B,C,D) = \sum m (11,12,13,14,15)$$

 $F_2(A,B,C,D) = \sum m (3,7,11,12,13,15)$
 $F_3(A,B,C,D) = \sum m (3,7,12,13,14,15)$

a) Using decoder

We can take input as ABCD while using OR gates for getting the correct output for required functions.

(b) 4 to 1 Multiplexer

Taking AB as input in Selector for MUX and C and D at inputs I0-I4. We can obtain the following diagram.

Results: from the Logic table obtained from circuit analysis, we can see that it matches with the given functions.

4] Design a circuit to implement the following function using 16 to 1 Multiplexer. Use the Multiplexer available in Plexers library in logisim. F = A'B'C'D'(R'+S) + AB'C'D' + A'B'C'D + ABC'DQR + AB'C'D + A'B'CD (Q'+T) + ABCDS'T + AB'CD + A'BCD

Taking selection input as ABCD for Mux, and using logic gates for setting up specific inputs, we can

obtain our circuit as follows.

Results:

We obtain the result as required.

5] Implement (a) 4 bit controllable adder/subtractor (b) 8 bit controllable adder/subtractor. Use the Adder available in Arithmetic library in Logisim

By settings a toggle for Subtraction or Addition, and using xor gates with b input and the toggle input. Connecting them with respective A's bit to full adders which are in series. Connecting consecutive Couts to each other we can obtain the following circuit.

(a) 4bit adder/subtractor

(b) Similarly for 8bit adder/subtractor

