Teórico

Geometría I

September 14, 2025

1 Parcial 1

1.1 Axiomas

1.1.1 De tipo I: Incidencia

- 1. El plano es un conjunto infinito Π
- 2. $\exists \mathcal{R} \subseteq \mathcal{P}(\Pi)$ tal que cada $R \in \mathcal{R}$ es un subconjunto propio de Π que posee al menos dos elementos
- 3. Dados $a, b \in \Pi$ y $a \neq b$, existe una única $R \in \mathcal{R}$ tal que $a, b \in R$

1.1.2 De tipo II: Orden

- 1. Toda recta en Π posee un orden total estricto, ($\mathcal{R}^{-\infty}$ también lo posee), luego si en una recta A tomamos los puntos p y q con $p \neq q$, existe un orden total estricto en A tal que p < q
- 2. Dados dos puntos distintos en una recta A, existe al menos un punto de A entre ellos y, dado un punto cualquiera, siempre existe un punto que lo precede y otro que le sigue:
 - Si $p,q \in A$ con p < q entonces $\exists r \in A$ tal que p < r < q
 - Si $x \in A$ entonces $\exists y, z \in A$ tal que y < x < z para algún orden en A
- 3. Dada una recta A, su complemento A^c está dividido en dos subconjuntos convexos disjuntos, tales que si a pertenece a uno de ellos y b al otro, entocnes \overline{ab} corta a la recta A

1.1.3 De tipo III: Rígidez

- 1. La transformaciones rígidas del plano son funciones biyectivas del plano en sí mismo que mandan rectas en rectas y semirrectas en semirrectas.
- La composición de dos transformaciones rígidas es otra transformación rígida, la inversa de una transformación rígida es también una transformación rígida.
- 3. Si T es una transformación rígida entonces:

- $\overline{ab} \equiv \overline{cd}$ y sucede que $\overline{ab} \subseteq \overline{cd}$ o viceversa, entonces $\overline{ab} = \overline{cd}$
- $\hat{aob} \equiv \hat{cod}$ y sucede que $\sec(\hat{aob}) \subseteq \sec(\hat{cod})$ o viceversa, entonces $\hat{aob} = \hat{cod}$
- 4. Dados dos pares SR-SP (A,α) y (B,β) , existe una única transformación rígidad tal que $T(A,\alpha)=(B,\beta)$, es decir T(A)=B y $T(\alpha)=\beta$

1.2 Teorema 4

1.2.1 Enunciado

Sea A una recta, $a \in A$ y $p \notin A$ entonces $\overrightarrow{ap} \subseteq A_p$.

1.2.2 Demostración

Consideramos en \overrightarrow{ap} el orden < tal que a < p, quiero ir por el absurdo, supongo $\overrightarrow{ap} \nsubseteq A$, es decir, **existe** $q \in \overrightarrow{ap}$ **tal que** $q \notin A_p$.

Pero como $A \subset A_p$ entonces $q \in \check{A}_p$, más precisamente $q \in \check{A}_p - A$.

Por II.3 sabemos que $\overline{pq} \cap A \neq \emptyset$, pero a, p, q están alineados, entonces $\overline{pq} \subseteq \overrightarrow{ap}$.

- $\varnothing \neq \overline{pq} \cap A \subseteq \overleftrightarrow{ap} \cap A = \{a\} \text{ entonces } \overline{pq} \cap A = \{a\}$
- $\rightarrow q < a < p$ por definición de segmento,
- pero $q \in \overrightarrow{ap} \rightarrow a < q$ lo cual resulta absurdo

 $\overrightarrow{ap} \subseteq A_p$