

ML System Design, Diagnoses and Learning Curves
Prof. Lamberto Ballan

What we will learn today?

- A bit more on model selection and evaluation: advice for applying machine learning
- Diagnosing machine learning models

Recap: Supervised Learning

Classification (discrete) vs Regression (real-valued output)

h approximates the unknown target f

$$h \sim f: X \longrightarrow Y$$

Model Selection and Evaluation

- **Hold-out**: we keep a subset of v samples from the training set (the validation set) to evaluate our model
 - \blacktriangleright A classifier/regressor is trained on m-v samples
 - Parameters are optimized on the <u>training</u>-<u>validation</u> sets: then you should evaluate performances on the <u>test</u> set
 - Size (cardinality) of training+validation sets should be greater than test set, e.g. 70%, 15%, 15%
- **k-fold cross validation**: iterate on **k** disjoint subsets
- Given a task, pick the "right" evaluation metric

- If your learning model doesn't work as expected, almost all the time it will be because you have either a high bias problem or a high variance problem
 - How to figure out what's happening (in practice)?
 - What can we do to fix/alleviate the problem?

 We can now look again at this example taking into account hold-out and bias-variance tradeoff

- "Measuring" bias vs variance:
 - Training Error: $J_{train}(\boldsymbol{\theta}) = \frac{1}{2m_t} \sum_{i=1}^{m_t} (h_{\theta}(x^{(i)}) y^{(i)})^2$
 - Validation Error: $J_{val}(\boldsymbol{\theta}) = \frac{1}{2m_v} \sum_{i=1}^{m_v} (h_{\theta}(\mathbf{x}^{(i)}) \mathbf{y}^{(i)})^2$

41

 Our learning model doesn't work as expected; is it a bias problem or a variance problem?

High bias (underfit):

 $J_{train}(\theta)$ will be high

$$J_{\text{val}}(\boldsymbol{\theta}) \approx J_{\text{train}}(\boldsymbol{\theta})$$

High variance (overfit):

 $J_{train}(\theta)$ will be low

$$J_{\text{val}}(\boldsymbol{\theta}) \gg J_{\text{train}}(\boldsymbol{\theta})$$

What's the contribution of regularization?

$$\min_{\theta} \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_{j^2} \right]$$

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 \mathbf{x} + \theta_2 \mathbf{x}^2 + \theta_3 \mathbf{x}^3 + \theta_4 \mathbf{x}^4$$

• Choosing the regularization parameter λ :

$$\min_{\theta} \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 \mathbf{x} + \theta_2 \mathbf{x}^2 + \theta_3 \mathbf{x}^3 + \theta_4 \mathbf{x}^4$$

- ullet Note: our definition of J_{train} , J_{val} , J_{test} don't change
 - Training Error: $J_{train}(\boldsymbol{\theta}) = \frac{1}{2m_t} \sum_{i=1}^{m_t} (h_{\theta}(\mathbf{x}^{(i)}) \mathbf{y}^{(i)})^2$
 - Validation Error: $J_{val}(\boldsymbol{\theta}) = \frac{1}{2m_v} \sum_{i=1}^{m_v} (h_{\theta}(\mathbf{x}^{(i)}) \mathbf{y}^{(i)})^2$
 - Test Error: $J_{\text{test}}(\theta) = \frac{1}{2m_e} \sum_{i=1}^{m_e} (h_{\theta}(x^{(i)}) y^{(i)})^2$

• Choosing the regularization parameter λ :

$$\min_{\theta} \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_{j^2} \right]$$

Model:
$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 \mathbf{x} + \theta_2 \mathbf{x}^2 + \theta_3 \mathbf{x}^3 + \theta_4 \mathbf{x}^4$$

Model Selection

1:
$$\operatorname{try} \lambda = 0$$
 \longrightarrow $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \boldsymbol{\theta}^{(1)}$ \longrightarrow $J_{\operatorname{val}}(\boldsymbol{\theta}^{(1)})$

2: $\operatorname{try} \lambda = 0.01$ \longrightarrow $\boldsymbol{\theta}^{(2)}$ \longrightarrow $J_{\operatorname{val}}(\boldsymbol{\theta}^{(2)})$

3: $\operatorname{try} \lambda = 0.02$ \longrightarrow $\boldsymbol{\theta}^{(3)}$ \longrightarrow $J_{\operatorname{val}}(\boldsymbol{\theta}^{(3)})$ (lowest)

4: $\operatorname{try} \lambda = 0.04$ \longrightarrow $\boldsymbol{\theta}^{(4)}$ \longrightarrow $J_{\operatorname{val}}(\boldsymbol{\theta}^{(4)})$

5: $\operatorname{try} \lambda = 0.08$ \longrightarrow $\boldsymbol{\theta}^{(5)}$ \longrightarrow $J_{\operatorname{val}}(\boldsymbol{\theta}^{(5)})$
 \vdots

12: $\operatorname{try} \lambda \approx 10$ \longrightarrow $\boldsymbol{\theta}^{(12)}$ \longrightarrow $J_{\operatorname{val}}(\boldsymbol{\theta}^{(12)})$

• Bias/Variance as a function of the parameter λ :

$$\min_{\theta} \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_{j^2} \right]$$

$$J_{\text{train}}(\boldsymbol{\theta}) = \frac{1}{2m_t} \sum_{i=1}^{m_t} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2$$

$$J_{\text{val}}(\boldsymbol{\theta}) = \frac{1}{2m_{\text{v}}} \sum_{i=1}^{m_{\text{v}}} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2$$

- By now you have seen bias and variance from a lot of different perspectives
- Let's now take all the insights we have gone through in order to build a "diagnostic tool" for ML systems

 Learning curves can be used to diagnose if a model may be suffering from bias, variance or a bit of both

$$J_{train}(\boldsymbol{\theta}) = \frac{1}{2m_t} \sum_{i=1}^{m_t} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \qquad J_{val}(\boldsymbol{\theta}) = \frac{1}{2m_v} \sum_{i=1}^{m_v} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

 That's the general intuition... but what's about bias and variance problems?

Note: in case of high bias, getting more training data will not help much

 That's the general intuition... but what's about bias and variance problems?

Note: in case of high variance, getting more training data is likely to help

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 \mathbf{x} + ... + \theta_{50} \mathbf{x}^{50}$$
 (and small λ)

 You can compute learning curves w.r.t. different "dimensions" (e.g. evaluation measures, no. samples)

What to do next

- Debugging (and babysitting) a learning algorithm:
 - Suppose you have implemented a regularized linear regression model for predicting housing prices
 - It doesn't work on new data; what should you do next?
 - You can get more training data → Fixes high variance
 - ▶ Try smaller set of features → Fixes high variance
 - ▶ Try getting more features → Fixes high bias
 - Try adding complexity to the model (e.g. polynomial features)
 - Try decreasing λ \rightarrow Fixes high bias
 - Try increasing $\lambda \rightarrow Fixes high variance$

Diagnosing our datasets

 Learning curves can be also used to diagnose the quality of our training/validation sets

Unrepresentative Training Set

- The training set does not provide sufficient information to learn the problem
- It may occur if the training set has too few examples as compared to the validation set

Diagnosing our datasets

 Learning curves can be also used to diagnose the quality of our training/validation sets

Unrepresentative Validation Set

Contact

- Office: Torre Archimede 3CD, room 320
- Office hours (ricevimento): Monday 11:00-13:00

- <u>lamberto.ballan@unipd.it</u>
- ♠ http://www.lambertoballan.net
- ♠ http://vimp.math.unipd.it
- @ twitter.com/lambertoballan