### **Adaptive numerical solvers**

for Ordinary Differential Equations

Bruno Guindani Michele Vidulis



July 22, 2019

https://github.com/poliprojects/apc-project

# Introduction

## Ordinary differential equations (ODE)

Given 
$$I=[t_0,t_F]\subset\mathbb{R}, \quad f(t,\boldsymbol{y}):I\times\mathbb{R}^n\to\mathbb{R}^n, \quad f\in C^1$$
, and  $t_0\in I,\boldsymbol{y}_0\in\mathbb{R}^n$ :

### Initial Value Problem (IVP):

find a  $C^1$  function  ${\boldsymbol y}(t):I\to \mathbb{R}^n$  that solves

$$egin{cases} m{y}'(t) = f(t, m{y}(t)) & \quad ext{with } t \in I \ m{y}(t_0) = m{y}_0 \end{cases}$$

(first order ODE)

Existence and uniqueness guaranteed under  $\emph{Lipschitz}$  continuity of f

#### Iterative methods

- Discretization of time into N intervals:  $t_0,\ t_1,\ \ldots,\ t_N=t_F$  through a scretization step h:  $t_{n+1}=t_n+h$ , with  $n=0,1,\ldots,N$
- $\boldsymbol{y}(t_n)$  is numerically approximated by  $\boldsymbol{u}_n$ :

$$oldsymbol{u}_0 = oldsymbol{y}_0, oldsymbol{u}_1, \dots, oldsymbol{u}_N \in \mathbb{R}^n$$

#### Iterative methods

- Discretization of time into N intervals:  $t_0,\ t_1,\ \ldots,\ t_N=t_F$  through a scretization step h:  $t_{n+1}=t_n+h$ , with  $n=0,1,\ldots,N$
- $y(t_n)$  is numerically approximated by  $u_n$ :

$$oldsymbol{u}_0 = oldsymbol{y}_0, oldsymbol{u}_1, \dots, oldsymbol{u}_N \in \mathbb{R}^n$$

• In **single-step methods**,  $u_{n+1}$  depends directly only on the one previous step  $u_n$ :

$$u_{n+1} = u_n + h \ \phi(t_n, h, u_n, u_{n+1}, f)$$

- ullet In **explicit** methods,  $oldsymbol{u}_{n+1}$  does not appear in  $\phi$
- In **implicit** methods,  $u_{n+1}$  appears in  $\phi$   $\implies$  nonlinear equations

## Runge-Kutta methods

- Family of **single-step** methods
- Weighted average of s evaluations (stages) of f:

$$oldsymbol{u}_{n+1} = oldsymbol{u}_n + h \sum_{i=1}^s b_i oldsymbol{K}_i$$
 with

$$m{u}_{n+1} = m{u}_n + h \sum_{i=1}^s b_i m{K}_i$$
 with  $m{K}_i = f(t_0 + c_i h, \ m{u}_n + \sum_{j=1}^s a_{ij} m{K}_j)$ 

## Runge-Kutta methods

- Family of single-step methods
- Weighted average of s evaluations (stages) of f:

$$m{u}_{n+1} = m{u}_n + h \sum_{i=1}^s b_i m{K}_i \quad ext{with}$$
  $m{K}_i = f(t_0 + c_i h, \ m{u}_n + \sum_{j=1}^s a_{ij} m{K}_j)$ 

Butcher tableau:

$$\begin{array}{c|cccc} c_1 & a_{11} & \dots & a_{1s} \\ \vdots & & \ddots & \\ c_s & a_{s1} & & a_{ss} \\ \hline & b_1 & \dots & b_s \end{array} \quad \text{with } c_i = \sum_j a_{ij}$$

## Runge-Kutta methods

- Family of single-step methods
- Weighted average of s evaluations (**stages**) of f:

$$m{u}_{n+1} = m{u}_n + h \sum_{i=1}^s b_i m{K}_i$$
 with  $m{K}_i = f(t_0 + c_i h, \ m{u}_n + \sum_{j=1}^s a_{ij} m{K}_j)$ 

• Butcher tableau:

$$\begin{array}{c|cccc} c_1 & a_{11} & \dots & a_{1s} \\ \vdots & & \ddots & \\ c_s & a_{s1} & & a_{ss} \\ \hline & b_1 & \dots & b_s \end{array} \quad \text{with } c_i = \sum_j a_{ij}$$

- $O(sn^2)$  if f linear
- Explicit if  $[a_{ij}]_{ij}$  is lower triangular

## Examples of RK variants (1)

• Forward Euler (FE) (explicit):

$$a = 0, b = 1, c = 0$$
  
 $\mathbf{u}_{n+1} = \mathbf{u}_n + hf(t_n, \mathbf{u}_n)$ 

• RK4 (standard) (explicit):

| $0$ $\frac{1}{2}$ $\frac{1}{2}$ $1$ | $\frac{1}{2}$ | $\frac{1}{2}$ | 1             |               |
|-------------------------------------|---------------|---------------|---------------|---------------|
|                                     | $\frac{1}{6}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{6}$ |

## Examples of RK variants (2)

• Heun (explicit):

$$\begin{array}{c|cccc}
0 & & & \\
1 & 1 & & \\
\hline
& \frac{1}{2} & \frac{1}{2} & \\
\end{array}$$

• Iserles-Nørsett (implicit):

| $ \begin{array}{r} \frac{1}{3} \\ \frac{2}{3} \\ 21 + \sqrt{57} \\ 48 \\ 21 - \sqrt{57} \\ 48 \end{array} $ | $\frac{1}{3}$             | $\frac{1}{3}$             | $\frac{21 + \sqrt{57}}{48} \\ \frac{3 - \sqrt{57}}{24}$ | $\frac{21+\sqrt{57}}{48}$  |
|-------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------------------------------------|----------------------------|
|                                                                                                             | $\frac{9+3\sqrt{57}}{16}$ | $\frac{9+3\sqrt{57}}{16}$ | $-\frac{1+3\sqrt{57}}{16}$                              | $-\frac{1+3\sqrt{57}}{16}$ |

## Convergence analysis for RK

- Convergence  $\rightarrow$  absolute error:  $||y_n u_n|| \simeq O(h^q)$
- Consistence  $\to$  truncation error:  $\max_n ||\tau_n(h)|| \simeq O(h^q)$
- Under reasonable Lipschitz continuity assumptions on  $\phi$ , a single-step method which is consistent is also convergent

## Convergence analysis for RK

- Convergence  $\rightarrow$  absolute error:  $||y_n u_n|| \simeq O(h^q)$
- Consistence  $\to$  truncation error:  $\max_n ||\tau_n(h)|| \simeq O(h^q)$
- ullet Under reasonable Lipschitz continuity assumptions on  $\phi$ , a single-step method which is consistent is also convergent
- Runge-Kutta is consistent iff  $\sum_i b_i = 1 \implies$  convergent
- Steep limitations on order of convergence:
  - Maximum order is the number of stages
  - ▶ If  $s \ge 5$ , equality cannot be achieved in explicit variants

| order        | 5 | 6 | 7 | 8  |
|--------------|---|---|---|----|
| $minimum\ s$ | 6 | 7 | 9 | 11 |

## Adaptive methods

- Step h is updated at every iteration adaptively, i.e. based on the trend of the solution
  - ▶ Small h near steep slopes, large h near flat points
  - A posteriori estimate of error is needed
  - ▶ Compute two-round solution with  $\frac{h}{2}$ , with single-round solution with h
- No need for input of "correct" step
- Computational gain

## Consistency of adaptive methods

#### Forward Euler:

Truncation errors:

$$e_h = h^2/2y''(\xi), \qquad e_{h/2} = h^2/8y''(\eta) \cdot 2 + o(h^2)$$

Error estimate:

$$|u_{h/2} - u_h| \simeq |e_{h/2}| \simeq h^2/4|y''(\widehat{\eta})| + o(h^2) \stackrel{\downarrow}{<} \frac{\varepsilon}{2}$$
 (tolerance)

## Consistency of adaptive methods

#### Forward Euler:

Truncation errors:

$$e_h = h^2/2y''(\xi), \qquad e_{h/2} = h^2/8y''(\eta) \cdot 2 + o(h^2)$$

Error estimate:

$$|u_{h/2} - u_h| \simeq |e_{h/2}| \simeq h^2/4|y''(\widehat{\eta})| + o(h^2) \stackrel{\downarrow}{<} \frac{\varepsilon}{2}$$
 (tolerance)

#### Runge-Kutta:

• ...

# Code structure

#### Code structure



#### Base classes





## Adaptive classes



2019/07/22

## **Dependencies**



## Implementation choices

- Seven test functions are provided
- Separate FE class is much more efficient than RK specialized class:



Adaptive single\_step() class methods are not efficient

### Parallel Iserles-Nørsett

- Exploits block-diagonal structure of Butcher array
- Runs in parallel on 2 processors, each dealing with one indpendent 2-by-2 block
- Fixed point algorithm was used for nonlinear equations

# Results

## Comparison between methods



4□ > 4ⓓ > 4≧ > 4≧ > ½ 9<</p>

## Trend of step in adaptive methods



(test #7, adaptive Heun method)

## Actual efficiency of parallelism

Speedup is heavily dependent on the problem function:



Test #6 
$$f(t,y(t)) = \exp_2(-\frac{y(t)}{4} + 6 + 10t)$$



## Multiple run results





Why?

### Workload distribution



⇒ load imbalance

## A vectorial example

- Efficiency still depends on the function
- Here fixed point iterations are well-balanced among processors:

Test #4: 
$$f(t, y(t)) = \begin{bmatrix} -3 & -1 \\ 1 & -5 \end{bmatrix} y(t) + \begin{bmatrix} \sin(t) \\ -2t \end{bmatrix}$$





## **Bibliography**

- Nodhaisky, Parallel two-step Runge-Kutta methods
- Quarteroni, Saleri, Calcolo scientifico
- 🥦 Quarteroni, Sacco, Saleri, Gervasio, Matematica numerica
- Solodushkin, lumanova, Parallel Numerical Methods for Ordinary Differential Equations: a Survey