Übungen zu Lineare Algebra II

Jendrik Stelzner

22. Juni 2016

Übung 1.

Ein Endomorphismus $f\colon V\to V$ eines K-Vektorraums V heißt lokal nilpotent, falls es für jedes $v\in V$ ein $n\in\mathbb{N}$ mit $f^n(v)=0$ gibt.

- 1. Zeigen Sie, dass jeder nilpotente Endomorphismus auch lokal nilpotent ist.
- 2. Zeige Sie, dass 0 der einzige mögliche Eigenwert eines lokal nilpotenten Endomorphismus ist.
- 3. Geben Sie ein Beispiel für einen Vektorraum V und einen Endomorphismus $f \colon V \to V$ an, so dass f zwar lokal nilpotent, nicht aber nilpotent ist.
- 4. Zeigen Sie, dass jeder lokal nilpotente Endomorphismus eines endlichdimensionalen Vektorraums bereits nilpotent ist.

Übung 2.

Es sei V ein K-Vektorraum und $f: V \to V$ ein Endomorphismus. Zeigen Sie:

- 1. Ist $f^2 = f$, so ist $V = \operatorname{im} f \oplus \ker f$, und es gilt im $f = V_1(f)$ und $\ker f = V_0(f)$.
- 2. Ist $f^2 = id_V$, so ist f diagonalisierbar mit (möglichen) Eigenwerten 1 und -1.
- 3. Sind $\lambda, \mu \in K$ mit $\lambda \neq \mu$ und $(f \lambda)(f \mu) = 0$, so ist f diagonalisierbar mit (möglichen) Eigenwerten λ und μ . Inwiefern sind die vorherigen beiden Aufgabenteile Sonderfälle hiervon?

Übung 3.

Es sei V ein K-Vektorraum. Zeigen Sie, dass die folgenden Aussagen allgemein gelten, oder geben Sie jeweils ein Gegenbeispiel an.

1. Ist $V=V_1\oplus V_2$ für Untervektorräume $V_1,V_2\subseteq V$, so gilt für jeden Untervektorraum $U\subseteq V$ die Zerlegung

$$U = (U \cap V_1) \oplus (U \cap V_2).$$

2. Ist $V = U_1 \oplus W_1 = U_2 \oplus W_2$ mit $W_1 \supseteq W_2$, so ist

$$W_1 = (U_2 \cap W_1) \oplus W_2.$$

- 3. Ist $f\colon V\to V$ ein Endomorphismus und $U\subseteq V$ ein f-invarinter Untervektorraum, so gibt es einen f-invarianten Untervektorraum $W\subseteq V$ mit $V=U\oplus W$.
- 4. Für alle Untervektorräume $W, U_1, U_2 \subseteq V$ mit $U_1 \subseteq U_2$ gilt

$$(U_1 + W) \cap U_2 = U_1 + (W \cap U_2).$$

- 5. Ist $\mathcal{E} \subseteq V$ ein Erzeugendensystem und $U \subseteq V$ ein Untervektorraum, so ist die Einschränkung $\mathcal{E}' \coloneqq \mathcal{E} \cap U$ ein Erzeugendensystem von U.
- 6. Ist $(U_i)_{i\in I}$ eine Famlie von Untervektorräumen $U_i\subseteq V$ mit $V=\sum_{i\in I}U_i$ und $U_i\cap U_j=0$ für $i\neq j$, so ist $V=\bigoplus_{i\in I}U_i$.

Übung 4.

Ein Endomorphismus $f \colon V \to V$ eines K-Vektorraums V heißt algebraisch (über K), falls es ein Polynom $P \in K[T]$ mit $P \neq 0$ gibt, so dass P(f) = 0 gilt.

- 1. Zeigen Sie, dass jeder Endomorphismus eines endlichdimensionalen Vektorraums algebraisch ist.
- 2. Geben Sie ein Beispiel für einen K-Vektorraum V und einen Endomorphismus $f\colon V\to V$ an, der nicht algebraisch ist.

Übung 5.

Es sei V ein K-Vektorraum und $U\subseteq V$ ein K-Untervektorraum. Konstruieren Sie für den Annihilator

$$U^{\circ} = \{ \varphi \in V^* \mid \varphi|_U = 0 \}$$

einen Isomorphismus $F \colon U^{\circ} \to (V/U)^*$.

Übung 6.

Es sei V ein Vektorraum und $f\colon V\to V$ ein Endomorphismus. Es sei $(U_i)_{i\in I}$ eine Familie von f-invarianten Untervektorräumen, und $U\subseteq V$ ein f-invarianter Untervektorraum. Zeigen Sie:

- 1. Auch der Schnitt $\bigcap_{i \in I} U_i$ ist f-invariant.
- 2. Auch die Summe $\sum_{i \in i} U_i$ ist f-invariant.
- 3. f induziert eine lineare Abbildung

$$\bar{f}: V/U \to V/U, \quad [x] \mapsto [f(x)].$$

Übung 7.

Es sei K ein algebraisch abgeschlossener Körper und $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V. Zeigen Sie, dass die folgenden beiden Aussagen äquivalent sind:

- 1. f ist diagonalisierbar.
- 2. Für jeden f-invarianten Untervektorraum $U\subseteq V$ gibt es einen f-invarianten Untervektorraum $W\subseteq V$ mit $V=U\oplus W$.

Übung 8.

Es sei V ein K-Vektorraum und $U\subseteq V$ ein Untervektorraum. Es sei $\pi\colon V\to V/U, v\mapsto [v]$ die kanonische Projektion.

- 1. Es sei $(b_i)_{i\in I}$ eine Basis von V, und für eine Teilmenge $J\subseteq I$ sei $(b_j)_{j\in J}$ eine Basis von U. Zeigen Sie, dass $([b_i])_{i\in I\smallsetminus J}$ eine Basis von V/U ist.
- 2. Es sei $(b_i)_{i\in I}$ eine Basis von U und $(c_j)_{j\in J}$ eine Basis von V/U, wobei $I\cap J=\emptyset$. Für $j\in J$ sei $b_j\in V$ mit $\pi(b_j)=c_j$. Zeigen Sie, dass $(b_l)_{l\in L}$ für $L\coloneqq I\cap J$ ist eine Basis von V ist.

Übung 9.

Es sei V ein reeller Vektorraum und $(U_i)_{i\in I}$ eine Familie von Untervektorräumen $U_i\subseteq V$. Zeigen Sie, dass genau dann $V=\bigoplus_{i\in I}U_i$, wenn $V_{\mathbb C}=\bigoplus_{i\in I}(U_i)_{\mathbb C}$.

Übung 10.

Es seien V und W zwei reelle Vektorräume, und $f:V\to W$ sei \mathbb{R} -linear.

- 1. Zeigen Sie, dass $\ker(f_{\mathbb{C}}) = (\ker f)_{\mathbb{C}}$.
- 2. Folgern Sie, dass $f_{\mathbb{C}}$ genau dann injektiv ist, wenn f injektiv ist.
- 3. Folgern Sie ferner, dass $(V_{\mathbb{C}})_{\lambda}(f_{\mathbb{C}}) = V_{\lambda}(f)_{\mathbb{C}}$ für jedes $\lambda \in \mathbb{R}$.
- 4. Zeigen Sie, dass $\operatorname{im}(f_{\mathbb{C}}) = (\operatorname{im} f)_{\mathbb{C}}$.
- 5. Folgern Sie, dass $f_{\mathbb{C}}$ genau dann surjektiv ist, wenn f surjektiv ist.

Übung 11.

Es sei V ein reeller Vektorraum und $f\colon V\to V$ ein Endomorphismus. Zeigen Sie, dass f genau dann diagonalisierbar ist, wenn $f_{\mathbb C}$ diagonalisierbar mit reellen Eigenwerten ist.

Übung 12.

Es sei

$$\iota \colon \mathbb{R}[X] \to \mathbb{C}[X], \quad \sum_{k=0}^{n} a_k X^k \mapsto \sum_{k=0}^{n} a_k X^k$$

die Teilmengeninklusion.

- 1. Zeigen Sie, dass ι \mathbb{R} -linear ist.
- 2. Zeigen Sie, dass ι einen Isomorphismus $\mathbb{R}[X]_{\mathbb{C}} \to \mathbb{C}[X]$ von \mathbb{C} -Vektorräumen induziert.

Übung 13.

Es sei V ein K-Vektorraum, wobei $V \neq 0$ und K algebraisch abgeschlossen ist. Es seien $f_1, \ldots, f_n \colon V \to V$ paarweise kommutierende Endomorphismen. Zeigen Sie, dass die Endomorphismen f_1, \ldots, f_n einen gemeinsamen Eigenvektor besitzen, d.h. dass es ein $v \in V$ gibt, das für jedes f_i eine Eigenvektor ist.

Übung 14.

Es sei $A \in M_2(\mathbb{R})$ mit trA = 0 und tr $A^2 = -2$. Bestimmen Sie det A.

Übung 15.

Zeigen Sie, dass es für $A \in \mathrm{GL}_n(K)$ ein Polynom $P \in K[T]$ mit deg $P \leq n-1$ gibt, so dass $A^{-1} = P(A)$.

Übung 16.

Es sei K ein algebraisch abgeschlossener Körper mit char $K \notin \{2,3\}$. Zeigen Sie, dass

$$\det A = \frac{1}{6} (\operatorname{tr} A)^3 - \frac{1}{2} (\operatorname{tr} A^2) (\operatorname{tr} A) + \frac{1}{3} (\operatorname{tr} A^3) \quad \text{für jedes } A \in \mathcal{M}_3(K).$$

(Hinweis: Wenn die Rechnungen zu kompliziert werden, dann macht man es falsch.)

Übung 17.

Für alle $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ sei

$$\operatorname{diag}(\lambda_1,\ldots,\lambda_n)\coloneqq \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \in \operatorname{M}_n(\mathbb{C}).$$

Es sei

$$\mathrm{D}_n(\mathbb{C}) \coloneqq \left\{ S \operatorname{diag}(\lambda_1, \dots, \lambda_n) S^{-1} \, \middle| \, S \in \operatorname{GL}_n(\mathbb{C}), \lambda_1, \dots, \lambda \in \mathbb{C} \right\} \subseteq \mathrm{M}_n(\mathbb{C})$$

die Menge der diagonalisierbaren komplexen $n \times n$ -Matrizen. Wir zeigen, dass $D_n(\mathbb{C}) \subseteq \mathrm{M}_n(\mathbb{C})$ dicht ist, d.h. dass es für jede Matrix $A \in \mathrm{M}_n(\mathbb{C})$ und jedes $\varepsilon > 0$ eine diagonalisierbare Matrix $D \in \mathrm{D}_n(\mathbb{C})$ mit $\|A - D\| < \varepsilon$ gibt.

Es sei $S\in \mathrm{GL}_n(\mathbb{C})$, so dass SAS^{-1} eine obere Dreiecksmatrix mit Diagonaleinträgen $\lambda_1,\ldots,\lambda_n$ ist, also

$$SAS^{-1} = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ & \ddots & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_n \end{pmatrix}.$$

Es seien $z_1,\ldots,z_n\in\mathbb{C}$ paarweise verschieden und

$$B(t) := A + tS \operatorname{diag}(z_1, \dots, z_n) S^{-1}$$
 für alle $t \in \mathbb{R}$.

1. Zeigen Sie, dass $\mu_1(t), \ldots, \mu_n(t) \in \mathbb{C}$ mit

$$\mu_i(t) \coloneqq \lambda_i + tz_i \quad \text{für } i = 1, \dots, n$$

die Eigenwerte von B(t) ist.

- 2. Zeigen Sie, dass die Zahlen $\mu_1(t),\ldots,\mu_n(t)$ für fast alle $t\in\mathbb{R}$ paarweise verschieden sind.
- 3. Folgern Sie, dass B(t) für fast alle $t \in \mathbb{R}$ diagonalisierbar ist.
- 4. Folgern Sie, dass es ein $\delta > 0$ gibt, so dass alle $D \in B_{\delta}(A) \setminus \{A\}$ diagonalisierbar sind.
- 5. Folgern Sie, dass es für alle $\varepsilon>0$ ein $D\in \mathrm{D}_n(\mathbb{C})$ mit $\|A-D\|<\varepsilon$ gibt.
- 6. Folgern Sie außerdem, dass $D_n(\mathbb{C}) \subseteq M_n(\mathbb{C})$ eine offene Teilmenge ist.

Wir wollen die Dichtheit von $\mathrm{D}_n(\mathbb{C})\subseteq\mathrm{M}_n(\mathbb{C})$ nutzen, um den Satz von Cayley-Hamilton zu zeigen:

7. Zeigen Sie, dass die Abbildung

$$F: M_n(\mathbb{C}) \to M_n(\mathbb{C}), A \mapsto \chi_A(A)$$

stetig ist, wobe
i $\chi_A(T)\in\mathbb{C}[T]$ das charakteristische Polynom von Aist.

- 8. Zeigen Sie, dass F(D) = 0 für jede Diagonalmatrix $D \in M_n(\mathbb{C})$.
- 9. Zeigen Sie, dass $P(SAS^{-1}) = SP(A)S^{-1}$ für alle $P \in \mathbb{C}[T]$, $A \in M_n(\mathbb{C})$ und $S \in GL_n(\mathbb{C})$. Folgern Sie, dass F(D) = 0 für jede Matrix $D \in D_n(\mathbb{C})$.
- 10. Folgern Sie, dass F(A) = 0 für alle $A \in M_n(\mathbb{C})$.

Übung 18.

Es seien V und W zwei endlichdimensionale euklidische Vektorräume. Ferner sei $f\colon V\to W$ eine $\mathbb R$ -lineare Abbildung.

1. Zeigen Sie, dass die Abbildung

$$\Phi_V \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

ein \mathbb{R} -linearer Isomorphismus ist.

- 2. Geben Sie die Definition der dualen Abbildung $f^* \colon W^* \to V^*$ an. Zeigen Sie, dass f^* \mathbb{R} -linear ist.
- 3. Zeigen Sie, dass die Abbildung $g \coloneqq \Phi_V^{-1} \circ f^* \circ \Phi_W$ \mathbb{R} -linear ist, und dass

$$\langle f(v), w \rangle = \langle v, g(w) \rangle$$
 für alle $v \in V, w \in W$.

4. Inwiefern ändern sich die obigen Resultate für denn fall $\mathbb{K}=\mathbb{C}$, wenn also V und W endlichdimensionale unitäre Vektorräume sind?

Übung 19.

Es sei $V := \mathcal{C}([0,1],\mathbb{R})$ der Raum der stetigen Funktionen $[0,1] \to \mathbb{R}$. Ferner sei $U := \{f \in V \mid f(0) = 0\}$.

- 1. Zeigen Sie, dass U ein Untervektorraum von V ist.
- 2. Zeigen Sie, dass

$$\langle f,g \rangle \coloneqq \int_0^1 f(t)g(t)\,\mathrm{d}t \quad \text{für alle } f,g \in V$$

ein Skalarprodukt auf V definiert.

- 3. Zeigen Sie, dass $U^\perp=0$. Folgern Sie, dass $V\neq U\oplus U^\perp$. (*Hinweis*: Betrachten Sie für $g\in U^\perp$ die Funktion $h\colon [0,1]\to \mathbb{R}$ mit $h(t)=t^2g(t)$.)
- 4. Zeigen Sie ferner, dass $V/(U \oplus U^{\perp})$ eindimensional ist.

Übung 20.

Es sei

$$W = \{(a_n)_{n \in \mathbb{Z}} \mid a_n \in \mathbb{R} \text{ für alle } n \in \mathbb{Z}\}\$$

der Vektorraum der beidseitigen reellwertigen Folgen. Wir betrachten den Untervektorraum

$$V := \left\{ (a_n)_{n \in \mathbb{Z}} \in W \left| \sum_{n \in \mathbb{Z}} |a_n|^2 < \infty \right. \right\}$$

der quadratsummierbaren Folgen.

- 1. Zeigen Sie, dass V ein Untervektorraum von W ist.
- 2. Zeigen Sie für alle $(a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}}\in V$, dass

$$\sum_{n\in\mathbb{Z}}a_nb_n<\infty.$$

(*Hinweis*: Zeigen sie zunächst, dass $ab \leq (a^2 + b^2)/2$ für alle $a,b \in \mathbb{R}$.)

3. Zeigen sie, dass

$$\langle (a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}}\rangle \coloneqq \sum_{n\in\mathbb{Z}} a_n b_n \quad \text{für alle } (a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}}\in V$$

ein Skalarprodukt auf V definiert.

4. Es sei

$$R: V \to V, \quad (a_n)_{n \in \mathbb{Z}} \mapsto (a_{n-1})_{n \in \mathbb{Z}}$$

der Rechtsshift-Operator. Zeigen Sie, dass R ein Adjungiertes besitzt, und entscheiden Sie, ob R selbstadjungiert, orthogonal, bzw. normal ist.

- 5. Zeigen Sie, dass R keine Eigenwerte besitzt.
- 6. Es sei

$$S \colon V \to V, \quad (a_n)_{n \in \mathbb{N}} \mapsto (a_{-n})_{n \in \mathbb{N}}.$$

Zeigen Sie, dass S ein Adjungiertes besitzt, und entscheiden Sie, ob R selbstadjungiert, orthogonal, bzw. normal ist.

- 7. Zeigen Sie, dass S diagonalisierbar ist.
- 8. Es sei

$$U := \{(a_n)_{n \in \mathbb{Z}} \in V \mid a_n = 0 \text{ für fast alle } n \in \mathbb{Z}\}.$$

Bestimmen Sie U^{\perp} und entscheiden Sie, ob $V = U \oplus U^{\perp}$.

9. Bestimmen Sie eine Orthonormalbasis von U.

Übung 21.

1. Zeigen Sie, dass durch

$$\sigma(A, B) := \operatorname{tr}(A^T B)$$
 für alle $A, B \in M_n(\mathbb{R})$

ein Skalarprodukt auf $M_n(\mathbb{R})$ definiert wird.

2. Zeigen Sie, dass die Standardbasis $(E_{ij})_{i,j=1,\dots,n}$ von $\mathrm{M}_n(\mathbb{R})$ mit

$$(E_{ij})_{kl} := \delta_{ik}\delta_{jl}$$
 für alle $1 \le i, j, k, l \le n$

eine Orthonormalbasis von $M_n(\mathbb{R})$ bezüglich σ bilden.

3. Es sei

$$S_+ \coloneqq \{A \in \mathsf{M}_n(\mathbb{R}) \mid A^T = A\}$$

der Untervektorraum der symmetrischen Matrizen, und

$$S_{-} := \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A^T = -A \}$$

der Untervektorraum der schiefsymmetrischen Matrizen. Zeigen Sie, dass

$$M_n(\mathbb{R}) = S_+ \oplus S_-,$$

und dass die Summe orthogonal ist.

Übung 22.

Es sei V ein Skalarproduktraum und

$$O(V) := \{ f \in \text{End}(V) \mid ff^* = \text{id} \}.$$

Zeigen Sie, dass O(V) eine Untergruppe von $\operatorname{GL}(V)$ bildet.

Übung 23.

Zeigen sie, dass für eine Matrix $A\in \mathrm{M}_n(\mathbb{K})$ die folgenden Bedingungen äquivalent sind:

- 1. A ist invertierbar mit $A^{-1} = A^*$.
- 2. $AA^* = I$.
- 3. $A^*A = I$.
- 4. Die Spalten von A bilden eine Orthonormalbasis des \mathbb{K}^n .
- 5. Die Zeilen von A bilden eine Orthonormalbasis des \mathbb{K}^n .

Übung 24.

Es sei $A \in M_n(\mathbb{C})$.

- 1. Zeigen Sie, dass es eindeutige hermitsche Matrizen $B,C\in \mathrm{M}_n(\mathbb{C})$ mit A=B+iC gibt.
- 2. Zeigen Sie, dass A genau dann normal ist, wenn B und C kommutieren.

Übung 25.

Für je zwei K-Vektorräume V und W sei

$$\mathrm{Bil}(V,W) \coloneqq \{b \colon V \times W \to K \mid b \text{ ist bilinear}\}$$

der Raum der Bilinearformen $V \times W \to K$.

1. Zeigen Sie, dass die Flipabbildung

$$F \colon \text{Bil}(V, W) \to \text{Bil}(W, V), \quad b \mapsto F(b) \quad \text{mit} \quad F(b)(w, v) = b(v, w)$$

ein Isomorphismus von K-Vektorräumen ist.

2. Es sei $b \in Bil(V, W)$ eine Bilinearform. Zeigen Sie, dass b ein lineare Abbildung

$$\Phi_{V,W}(b) \colon V \to W^*, \quad v \mapsto b(v,-)$$

induziert. Dabei ist

$$b(v, -): W \to K, \quad w \mapsto b(v, w).$$

3. Zeigen Sie, dass die Abbildung

$$\Phi_{V,W} \colon \operatorname{Bil}(V,W) \to \operatorname{Hom}(V,W^*), \quad b \mapsto \Phi_{V,W}(b)$$

ein Isomorphismus von K-Vektorräumen ist.

4. Geben Sie mithilfe der vorherigen Aufgabenteile explizit einen Isomorphismus

$$\operatorname{Hom}(V, W^*) \to \operatorname{Hom}(W, V^*)$$

an.

Wir betrachten nun den Fall $W = V^*$.

5. Zeigen Sie, dass die Evaluation

$$e: V \times V^* \to K, \quad (v, \varphi) \mapsto \varphi(v)$$

eine Bilinearform ist.

- 6. Nach den vorherigen Aufgabenteilen entspricht die Bilinearform e einer linearen Abbildung $V \to V^{**}$, sowie einer linearen Abbildung $V^* \to V^*$. Bestimmen Sie diese Abbildungen.
- 7. Woher kennen Sie diese Abbildung?

Übung 26

Es seien V und W zwei K-Vektorräume und $f: V \to W$ eine lineare Abbildung.

- 1. Geben Sie die Definition der dualen Abbildung $f^*\colon W^*\to V^*$ an, und zeigen sie ihre Linearität.
- 2. Zeigen Sie für jeden K-Vektorraum U, dass die Abbildung

$$\langle \cdot, \cdot \rangle \colon U \times U^* \to K \quad \text{mit} \quad \langle v, \varphi \rangle = \varphi(v) \quad \text{für alle } v \in V, \varphi \in V^*$$

eine Bilinearform ist.

3. Zeigen Sie, dass

$$\langle f(v), \psi \rangle = \langle v, f^*(\psi) \rangle$$
 für alle $v \in V, \psi \in W^*$.

Übung 27.

1. Zeigen Sie, dass die Abbildung

$$\sigma \colon \operatorname{M}_n(K) \times \operatorname{M}_n(K) \to K \quad \operatorname{mit} \quad \sigma(A, B) \coloneqq \operatorname{tr}(AB)$$

eine symmetrische Bilinearform ist.

2. Zeigen Sie, dass σ in dem Sinne assoziativ ist, dass

$$\sigma(AB,C) = \sigma(A,BC)$$
 für alle $A,B,C \in \mathcal{M}_n(K)$.

Übung 28.

Es sei V ein K-Vektorraum und $m\colon V\times V\to V$ eine bilineare Abbildung. Eine lineare Abbildung $D\colon V\to V$ heißt m-Derivation, falls

$$D(m(x,y)) = m(D(x),y) + m(x,D(y))$$
 für alle $x, y \in V$.

Es sei

$$Der(m) := \{D \colon V \to V \mid D \text{ ist eine } m\text{-Derivation}\}.$$

1. Zeigen Sie für den Fall V = K[X] und die Multiplikation

$$m(p,q) := p \cdot q$$
 für alle $p, q \in K[X]$,

dass die Ableitung

$$D \colon K[X] \to K[X], \quad \sum_{d=0}^{n} a_d X^d \mapsto \sum_{d=1}^{n} a_d dX^{d-1}$$

eine m-Derivation ist. Unter welchem Namen ist dieser Umstand für gewöhnlich bekannt?

- 2. Zeigen Sie, dass $\mathrm{Der}(m)$ ein Untervektorraum von $\mathrm{End}(V)$ ist.
- 3. Zeigen Sie, dass $\operatorname{Der}(m)$ eine Lie-Unteralgebra von $\operatorname{End}(V)$ ist, d.h. dass für alle $D_1, D_2 \in \operatorname{Der}(m)$ auch $[D_1, D_2] \in \operatorname{Der}(m)$.

Übung 29.

Es sei V ein K-Vektorrraum und $[-,-]\colon V\times V\to V$ eine alternierend bilineare Abbildung. Für jedes $x\in V$ sei

$$\mathrm{ad}_x \coloneqq [x,-] \colon V \to V, \quad y \mapsto [x,y].$$

Zeigen Sie, dass die folgenden beiden Aussagen äquivalent sind:

1. [-,-] erfüllt die Jacobi-Identität, d.h. es ist

$$[[x, y], z] + [[y, z], x] + [[z, y], x] = 0$$
 für alle $x, y, z \in V$.

2. Es gilt

$$\mathrm{ad}_x([y,z]) = [\mathrm{ad}_x(y),z] + [x,\mathrm{ad}_y(z)] \quad \text{für alle } x,y,z \in V.$$

(Für jedes $x \in V$ ist also ad_x eine Derivation bezüglich [-,-].)

Übung 30.

Es seien E und H zwei Endomorphismen eines \mathbb{C} -Vektorraums V, so dass [H, E] = 2E.

- 1. Zeigen Sie, dass $E(V_{\lambda}(H)) \subseteq V_{\lambda+2}(H)$ für alle $\lambda \in K$.
- 2. Folgern Sie: Ist V endlichdimensional und H diagonalisierbar, so ist E nilpotent.

Übung 31.

Für einen endlichdimensionalen \mathbb{K} -Vektorraum V und eine Bilinearform $\beta\colon V\times V\to \mathbb{K}$ sei

$$O(\beta) := \{ \phi \in GL(V) \mid \beta(\phi(x), \phi(y)) = \beta(x, y) \text{ für alle } x, y \in V \}$$

die Isometriegruppe von β , und

$$g(\beta) := \{ f \in End(V) \mid \beta(f(x), y) + \beta(x, f(y)) = 0 \text{ für alle } x, y \in V \}$$

die assoziierte Lie-Algebra.

- 1. Zeigen Sie, dass $O(\beta)$ eine Untergruppen von GL(V) ist.
- 2. Zeigen Sie, dass $\mathfrak{g}(\beta)$ eine Lie-Unteralgebra von $\mathfrak{gl}(V)$ ist, d.h. dass $[f,g]\in\mathfrak{g}(\beta)$ für alle $f,g\in\mathfrak{g}(\beta)$.
- 3. Zeigen Sie, dass $\exp(f) \in O(\beta)$ für alle $f \in \mathfrak{g}(\beta)$.
- 4. Es sei $\mathbb{K}=\mathbb{R}$ und $\langle\cdot,\cdot\rangle$ ein Skalarprodukt auf V. Unter welchen Begriffen sind die Elemente aus $G(\langle\cdot,\cdot\rangle)$ und $\mathfrak{g}(\langle\cdot,\cdot\rangle)$ bekannt?