

Algorithms and Data Structures (CSci 115)

California State University Fresno
College of Science and Mathematics
Department of Computer Science
H. Cecotti

Learning outcomes

- Shortest path algorithms
 - ➤ Using graph data structures

Introduction

Problem

- Find the sequence of vertices and edges in a graph G=(V,E) from
 - Vertex "start" to vertex "end": single-source shortest-paths problem

Rationale

To **not** test all the possible paths, many paths are pointless, large detours

Remark

- ➤ Breadth First Search (BFS):
 - It is a shortest path algorithm for unweighted graphs (weight=1 for all edges)
 - It can be used for the project IF the terrain is simple ③
 - Wall + No-Wall : you pass or you don't

Definitions

- Weighted Directed Graph
 - > G=(V,E)
 - \triangleright Weight function w : E \rightarrow R (set of real numbers)
 - Mapping of edges to real valued weights
 - \circ w(p) of path p= $\langle v_0, v_1, ..., v_k \rangle$ = sum of all the weights
 - Definition:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

- > We want to find a shortest path from a given *source* vertex
- \triangleright Shortest-path weight $\delta(u,v)$ from u to v

$$\delta(u, v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{if there is a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$

 \triangleright A shortest path from u to v is any path p with weight w(p)= $\delta(u,v)$

Variants

Single-destination shortest-paths problem:

- Find a shortest path to a given destination vertex t from each vertex v.
- ➤ By reversing the direction of each edge in the graph, we can reduce this problem to a single-source problem.

Single-pair shortest-path problem:

- Find a shortest path from u to v for given vertices u and v.
- If we solve the single-source problem with source vertex u, this problem is also solved.
- ➤ All known algorithms for this problem have the same worst-case asymptotic running time as the best single-source algo

■ **All-pairs** shortest-paths problem:

- Find a shortest path from u to v for every pair of vertices u and v.
- Although we can solve this problem by running a single source algorithm once from each vertex, we usually can solve it faster.

Property

- A shortest path between 2 vertices contains other shortest paths within it
 - ➤ Notion of subproblen → Dynamic programming or greedy algo could work ©
- Lemma: Subpaths of shortest paths are shortest paths
 - \triangleright Directed Weighted graph G=(V,E) with weight function w: E \rightarrow R
 - \triangleright Let p= $\langle v_0, v_1, ..., v_k \rangle$ be a shortest path from v_0 to v_k ,
 - For any (i,j) $\mid 0 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ be the subpath of p from v_i to v_j
 - \triangleright Then, p_{ij} is a shortest path from v_i to v_j

Property

Proof

- ➤ Decompose p into p_{0i}, p_{ii}, p_{ik}
- \triangleright Then w(p)=w(p_{0i})+w(p_{ii})+w(p_{ik})
- \triangleright We assume \exists a path p'_{ij} from v_i to v_j with weight $w(p'_{ij}) < w(p_{ij})$
- Then p_{0i} , p'_{ii} , p_{jk} is a path from v_0 to v_k and $w(p_{0i})+w(p'_{ij})+w(p_{jk})< w(p)$
- \rightarrow Contradiction! We assumed p is a shortest path from v_0 to v_k

Special cases

Negative weight edges

- Negative edge weights in a directed graph.
- The shortest-path weight from source s is within each vertex.
- As vertices e and f form a negative-weight cycle reachable from s, they have shortest-path weights of -∞.
- As vertex g is reachable from a vertex whose shortest-path weight is ∞, it, too, has a shortest-path weight of ∞.
- Vertices like h, i, and j are not reachable from s, and so their shortest-path weights are ∞
 - even though they lie on a negative-weight cycle.

Special cases

- It cannot contain a negative-weight cycle.
- It cannot contain a positive-weight cycle
 - ➤ Because removing the cycle from the path produces a path with the same source and destination vertices and a lower path weight.
- $\blacksquare \rightarrow$
 - > If there is a shortest path
 - from a source vertex s
 - o to a destination vertex that contains a 0-weight cycle
 - > Then there is another shortest path from s to without this cycle
- → the shortest path will not have a cycle (otherwise it s not the shortest path)
- Remark
 - As long as a shortest path has 0-weight cycles, we can repeatedly remove these cycles from the path **until** we have a shortest path that is cycle-free.

Representation of shortest paths

- Let G=(V,E)
 - \triangleright For each vertex veV a **predecessor** v. π (another vertex or NIL)
- The shortest-paths algorithms set the π attributes
 - > so that the chain of **predecessors**
 - o originating at a vertex v runs **backwards** along a shortest path from s to v.
- Same as Breadth-Fist Search (BFS)
 - \triangleright predecessor subgraph $G_{\pi}=(V_{\pi},E_{\pi})$ induced by the values.
 - \circ V_{π} : the set of vertices of $G\pi$ with non-NIL predecessors + the source s
 - $\circ V_{\pi} = \{ v \in V : v \cdot \pi! = NIL \} \cup \{ s \}$
 - \circ E_{π}: the set of edges induced by the values for vertices
 - \circ $E_{\pi} = \{(v.\pi, v) \in E : v \in V_{\pi} \{s\}\}$
- A shortest-paths tree
 - > Same as the breadth-first tree **but** it contains shortest paths
 - o from the source defined in terms of **edge weights** instead of **numbers of edges**.

Representation of shortest paths

- Let G=(V,E)
 - \triangleright a weighted, directed graph with weight function w: E \rightarrow R
 - \triangleright Assumption: G contains no negative-weight cycles reachable from the source vertex seV (for well defined shortest paths)
- → A **shortest-paths tree** rooted at s is:
 - ➤ A directed subgraph G=(V',E') with V' C V and E' C E |
 - V' is the set of vertices reachable from S in G
 - G' forms a rooted tree with root s
 - \circ For all $v \in V'$ the unique simple path from s to v in G' is a shortest path from s to v in G

Example

Example

- >A weighted, directed graph with shortest-path weights from source s.
- The shaded edges form a shortest-paths tree rooted at the source s.
- Another shortest-paths tree with the **same** root.

Relaxation

- For each vertex v∈V
 - ➤ We maintain an attribute v.d : an upper bound on the weight of a shortest path from source s to v.
- Principle
 - The process of **relaxing** an edge (u,v) consists of testing whether
 - \circ we can improve the shortest path to v found so far by going through u and, if so, updating v.d and v. π

Relaxation

Algorithms

INITIALIZE-SINGLE-SOURCE (G, s)1 **for** each vertex $v \in G.V$ 2 $v.d = \infty$ 3 $v.\pi = \text{NIL}$ 4 s.d = 0

RELAX(u, v, w)1 **if** v.d > u.d + w(u, v)2 v.d = u.d + w(u, v)3 $v.\pi = u$

Example

Just a few lines, but very important functions to be used in the algorithms

Properties

Triangle inequality

 \triangleright For any edge (u,v) \in E, we have $\delta(s,v)\leq \delta(s,u)+w(u,v)$

Upper-bound property

- We always have v.d≥ δ(s,v) for all vertices v∈V and
- \triangleright once v.d achieves the value $\delta(s,v)$ it never changes.

No-path property

 \triangleright If there is no path from s to v, then we always have v. $d = \delta(s,v) = \infty$

Convergence property

- \triangleright If s ->u \rightarrow v is a shortest path in G for some u,v \in V , and if u.d= δ (s,u) at any time prior to relaxing edge (u,v)
- \triangleright then v.d= δ (s,u) at all times afterward.

Path-relaxation property

- ightharpoonup If p= $\langle v_0, v_1, ..., v_k \rangle$ is a shortest path from s= v_0 to v_k , and we relax the edges of p in the order (v_0, v_1) (v_1, v_2) ... (v_{k-1}, v_k)
- \succ then $v_k.d=\delta(s,v_k)$
- This property holds **regardless** of any other relaxation steps that occur, even if they are intermixed with relaxations of the edges of p.

Predecessor-subgraph property

 \triangleright Once v.d= δ (s,v) for all veV, the predecessor subgraph is a shortest-paths tree rooted at s.

Algorithms

- Shortest path methods
 - ➤ Bellman Ford algorithm
 - ➤ Dijsktra algorithm (better running time than Bellman Ford algorithm)

Bellman Ford algorithm

Features

- ➤ Detect whether a negative-weight cycle is reachable from the source
- ➤ Returns a Boolean value (true/false):
 - whether or not there is a negative-weight cycle that is reachable from the source

Principle

It relaxes edges, progressively decreasing an estimate v.d on the weight of a shortest path from the source s to each vertex v until it achieves the shortest path weight from s

Complexity

➤ Run time O(VE)

Bellman Ford algorithm

■ Pseudo-code

```
BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 for i = 1 to |G.V| - 1

3 for each edge (u, v) \in G.E

4 RELAX (u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```

INITIALIZE-SINGLE-SOURCE (G, s)

```
1 for each vertex v \in G.V

2 v.d = \infty

3 v.\pi = \text{NIL}

4 s.d = 0
```

Example

Order of the relaxation:

$$(t,x)$$
 (t,y) (t,z) (x,t) (y,x) (y,z) (z,x) (z,s) (s,t) (s,y)

- Greedy algorithm
- Edge weights in the input graph are non-negative,
 - ➤ As in the road-map example
 - >w(u,v)≥0 for each edge (u,v)∈E

Principle

- \triangleright Repeatedly select the vertex ueV-S with the minimum shortest-path estimate
- >Adds u to S
- ➤ Relaxes all edges leaving u.
- Data structure needed:
 - min-priority queue of vertices (Q)
 - Vertex added/removed from Q: only 1 time

■ Pseudo code

Priority queue

➤ Need of Insert, Extract-Min, Decrease-Key

CSci 115 20

INITIALIZE-SINGLE-SOURCE (G, s)

Example

- ➤ Shortest-path estimates appear within the vertices
- > Shaded edges indicate predecessor values

CSci 115

21

- Why is it a greedy algorithm?
 - ▶Because it always chooses the "lightest" or "closest" vertex in V-S to add to set S → greedy strategy
 - ➤ Dijkstra's algorithm **does** compute shortest paths.
- To show that it is correct
 - \triangleright u.d= δ (s,u) for all vertices u \in V

Proof

- \triangleright At the start of each iteration of the **while** loop of lines 4–8, v.d= δ (s,v) for each vertex v \in S.
- >It is enough to show for each vertex $u \in V$, we have $u.d = \delta(s,u)$ at the time when u is added to set S.
 - we rely on the upper-bound property to show that the equality holds at all times thereafter!
- ➤ Initialization: S=ø (empty set) (invariant is true)

- Proof (Maintenance part part 1)
 - \triangleright Show that in each iteration, u.d= $\delta(s,u)$ for the vertex added to set S.
 - For the purpose of contradiction,
 - Let u be the first vertex for which $u.d!=\delta(s,u)$ when it is added to set S.
 - \circ Focus on the situation at the beginning of the iteration of the **while** loop in which u is added to S and derive the contradiction that u.d= $\delta(s,u)$ at that time by examining a shortest path from s to u.
 - \circ We must have (u!=s) because s is the 1st vertex added to set S and s.d= δ (s,s)=0 at that time.
 - \circ As (u!=s), we have also that (S!= \emptyset); just before u is added to S. \odot

- Proof (Maintenance part part 2)
 - There must be some path from s to u, for otherwise u.d= $\delta(s,u)$ =inf
 - \circ by the no-path property that would violate our assumption that (u.d!= δ (s,u)).
 - o Because there is at least one path, there is a shortest path p from s to u.
 - ➤ Before adding u to S, path p connects
 - \circ a vertex s \in S \rightarrow a vertex u \in V-S
 - \triangleright Let us consider the first vertex y along p such that yeV-S and let xeS be y's predecessor along p.
 - \rightarrow we can decompose path p into p1 and p2 connected by the edge (x,y)
 - o p1: path **from** s **to** x
 - o p2: path **from** y **to** u

- Proof (Maintenance part part 3)
 - \triangleright We claim that (y.d= δ (s,y)) when u is added to S.
 - ➤ To prove this claim
 - \circ Observe that x \in S.
 - \circ Then, because we pick u as the 1st vertex for which (u.d!= $\delta(s,u)$) when it is added to S,
 - \circ we had (x.d!= δ (s,x)) when x was added to S
 - Edge (x,y) was relaxed at that time, and the claim follows from the convergence property.
 - \circ We can now obtain a **contradiction** to prove that u.d= $\delta(s,u)$.
 - Because y comes before u on a shortest path from s to u and all edge weights are nonnegative, we have
 - $\delta(s,y) \le \delta(s,u) \rightarrow y.d \le u.d$ (through upper bound property)
 - **> But** because u and y are in V-S, we have u.d≤y.d!
 - \triangleright So we have $\delta(s,y)=\delta(s,u)=y.d=u.d \rightarrow \delta(s,u)=u.d \rightarrow$ contradicts the choice of u
 - $\rightarrow \delta(s,u)=u.d$ when u is added to S.

Proof

- **≻**Termination
 - Q=Ø along with our earlier invariant that Q=V-S
 - \circ \rightarrow it implies that S=V
 - $\circ \rightarrow \delta(s,u)=u.d$ for all vertices ueV.

About the weights

Applications

- ➤ Vertices = states
- > Edges = probability to go from one state to another after a particular action
 - From a set of actions
- The weights in a graph can be used to model probabilities
 - Vertex v with a set of input n vertices
 - $\circ \rightarrow$ sum of all the vertices = 1
- ➤ Probability after a particular action to go to different vertex
- ➤ To explore further:
 - Markovian Decisional Processes (MDP)

Conclusion

- Shortest path algorithms
 - ➤ For robotics, navigation
 - Path planning for cars, robots, ...
 - ➤ For video games
 - Example: Project #2
- You should know how to
 - ➤ Define and describe formally a graph
 - o and its properties
 - ➤ Implement Bellman-Ford
 - >Implement Dijkstra algorithm with appropriate data structures
 - (data structures from previous labs)

Questions?

- Reading
 - ➤ Csci 115 book Section 9.3
 - ➤Introduction to Algorithms, Chapter 24, 25.

