实验二 Image Warping

ID: 58 陈文博

February 26, 2020

1 实验要求

- * 实现 Image Warping 的两种算法
 - Inverse distance-weighted interpolation method (IDW)
 - Radial basis functions interpolation method (RBF)
- * 对实验产生的白色裂缝进行填补

2 开发环境

IDE: Microsoft Visual Studio 2019 community

CMake: 3.16.3

Qt: 5.14.1

Eigen: 3.3.7

ANN: 1.1.2

3 算法原理

3.1 基本原理

- 输入: n 对控制点对 (p_i, q_i) , $i = 1, 2, \dots, n$, 其中 $p_i \in \mathbb{R}^2$ 为控制源点, $q_i \in \mathbb{R}^2$ 为控制目标点
- 目标: 找到一个映射 $f: \mathbb{R}^2 \to \mathbb{R}^2$, 满足 $f(\mathbf{p_i}) = \mathbf{q_i}, i = 1, 2, \cdots, n$

3.2 Inverse distance-weighted interpolation methods(IDW)[1]

IDW 算法基本原理是根据给定的控制点对和控制点对的位移矢量,计算控制点对周围像素的反距离加权权重影响,实现图像每一个像素点的位移。

选择 n 组控制点对 (p_i, q_i) , $i = 1, 2, \dots, n$, 目标映射 $f: \mathbb{R}^2 \to \mathbb{R}^2$ 可表示为以下形式:

$$f(\mathbf{p}) = \sum_{i=1}^{n} \omega_i(\mathbf{p}) f_i(\mathbf{p})$$
(3.1)

其中,权重 $w_i(\mathbf{p})$ 满足:

$$w_i(\mathbf{p}) = \frac{\sigma_i(\mathbf{p})}{\sum_{j=1}^{n} \sigma_j(\mathbf{p})}$$
(3.2)

 $\sigma_i(p)$ 反映第 i 对控制点对像素 p 的反距离加权权重影响程度,可以直接取

$$\sigma_i(\mathbf{p}) = \frac{1}{\|\mathbf{p} - \mathbf{p}_i\|^{\mu}} (\mu > 1) \tag{3.3}$$

也可以取 locally bounded weight:

$$\sigma_i(\mathbf{p}) = \left[\frac{(R_i - d(\mathbf{p}, \mathbf{p_i}))}{R_i d(\mathbf{p}, \mathbf{p_i})}\right]^{\mu}$$
(3.4)

 f_i 为线性函数,满足:

$$f_i(\mathbf{p}) = \mathbf{q}_i + T_i(\mathbf{p} - \mathbf{p}_i) \tag{3.5}$$

 T_i 为二阶矩阵

$$T_{i} = \begin{bmatrix} t_{11}^{(i)} & t_{12}^{(i)} \\ t_{21}^{(i)} & t_{22}^{(i)} \end{bmatrix}$$
(3.6)

矩阵 T 的确定,可通过求解最优化问题:

$$\min_{\boldsymbol{T_i}} E_i(\boldsymbol{T_i}) = \sum_{j=1, j \neq i}^n \sigma_i(\boldsymbol{p_j}) \|\boldsymbol{q_j} - f_i(\boldsymbol{p_j})\|^2$$
(3.7)

对上式矩阵T的各个元素分别求导,令方程为0可得

$$T \sum_{j=1, j\neq i}^{n} \sigma_{i}(\boldsymbol{p}_{j}) \Delta \boldsymbol{p} \Delta \boldsymbol{p}^{T} = \sum_{j=1, j\neq i}^{n} \sigma_{i}(\boldsymbol{p}_{j}) \Delta \boldsymbol{q} \Delta \boldsymbol{p}^{T}$$
(3.8)

其中 $\Delta p = (p_j - p_i \mathbf{0})$, $\Delta q = (q_j - q_i \mathbf{0})$, 当 $\sum_{j=1, j \neq i}^n \sigma_i(p_j) \Delta p \Delta p^T$ 非奇异时,可得

$$T = \left(\sum_{j=1, j\neq i}^{n} \sigma_{i}(\boldsymbol{p}_{j}) \Delta \boldsymbol{q} \Delta \boldsymbol{p}^{T}\right) \left(\sum_{j=1, j\neq i}^{n} \sigma_{i}(\boldsymbol{p}_{j}) \Delta \boldsymbol{p} \Delta \boldsymbol{p}^{T}\right)^{-1}$$
(3.9)

 $T_i(i=1,2,\cdots,n)$,确定以后映射 f 也就相应确定

3.3 Radial basis functions interpolation method(RBF)[2]

选择 n 组控制点对 $(\mathbf{p_i}, \mathbf{q_i}), i = 1, 2, \dots, n$, 目标映射 $f: \mathbb{R}^2 \to \mathbb{R}^2$ 可表示为以下形式:

$$f(\mathbf{p}) = \sum_{i=1}^{n} \alpha_i g_i(\|\mathbf{p} - \mathbf{p_i}\|) + A\mathbf{p} + \mathbf{B}$$
 (3.10)

其中, g_i 是径向基函数,通常可取 Hardy multiquadrics $g(t) = (t^2 + c^2)^{\pm \frac{1}{2}}$ 或高斯函数 $g_{\sigma} = e^{-t^2/\sigma^2}$,为了计算方便,这里取 Hardy multiquadrics:

$$g_i(d) = (d + r_i)^{\pm \frac{1}{2}}$$

$$r_i = \min_{j \neq i} d(\boldsymbol{p_i}, \boldsymbol{p_j})$$
(3.11)

对于线性部分分量 Ap+B,本例简单的取 A=I 和 B=0

4 程序架构

4.1 文件结构

Figure 4.1: 文件结构

4.2 面向对象设计

Figure 4.2: 类图

在样例的基础上新增 Warping 父类,声明了初始化控制点、计算距离、像素点坐标变换、白缝填补的方法,子类 WarpingRBF 和 WarpingIDW继承 Warping,分别定义了各自的 Image Warping 算法。

5 设计难点与解决

5.1 图像位置的影响

样例中的图像是默认处于窗口正中心,这会导致读取的控制点坐标系和图像内像素点坐标系不一致。需要在控制点初始化过程中,传入窗口大小信息对控制点对序列做平移变换预处理

5.2 白缝的消除

由于算法映射不完全,处理后图像会出现许些白缝,这里采用 ANN 库提供的邻域搜索,利用空像素周边的非空像素取均值进行插值。在配置 ANN 的过程中遇到不少困难,该库官方只提供 Win32 的链接库,而本例采用 x64,无法正常链接。于是我利用 Homework0 中编译动态链接库的方法重新编译 ANN 源码,得到 x64 版本的链接库,经测试可正常使用。(注意:需要将 ANN.dll 置于/bin 文件夹中程序才能正常运行)

5.3 内存管理

为了避免内存泄漏,用 Qt 附带的模板类 QVector 代替 STL Vector,不需要显式释放内存,同时图像指针 ptr_image_和 ptr_image_backup_需要在析构函数中进行释放,否则会发生内存泄漏。

6 实验效果

6.1 标准图像测试

如下图所示,固定四角,蓝色为控制起始点,绿色为控制终止点

Figure 6.1: 拉伸情况

6.2 IDW 算法

6.2.1 $\mu = -1$ 情况

Figure 6.2: 修复前

Figure 6.3: 修复后

$6.2.2 \mu = 1$ 情况

Figure 6.4: 修复前

Figure 6.5: 修复后

6.3 RBF 算法

 $6.3.1 \mu = 0.5 情况$

Figure 6.6: 修复前

Figure 6.7: 修复后

$6.3.2 \mu = -0.5 情况$

Figure 6.8: 修复前

Figure 6.9: 修复后

6.4 其他测试

6.4.1 柴犬表情包

原图片:

Figure 6.10: 原始图片

处理后:

Figure 6.11: Happy

Figure 6.12: Emmm...

6.4.2 平头哥也忍不住笑了

原图片:

Figure 6.13: 高冷

处理后:

Figure 6.14: 微笑

Figure 6.15: 扭曲的微笑

7 总结

本例中使用 IDW 和 RBF 两种方法进行图像的拉伸变换,理论上 IDW 和 RBF 的运算复杂度均为 $O(n^2 + nN)$,而由于实际运算中,IDW 计算一个像素点的浮点乘法加法次数比 RBF 方法更多,在实验中也可以发现 RBF 处理速度要比 IDW 快 3 到 4 倍。

REFERENCES

- [1] Detlef Ruprecht and Heinrich Muller. Image warping with scattered data interpolation. *IEEE Computer Graphics and Applications*, 15(2):37–43, 1995.
- [2] Nur Arad and Daniel Reisfeld. Image warping using few anchor points and radial functions. In *Computer graphics forum*, volume 14, pages 35–46. Wiley Online Library, 1995.