K-means in spark

Spark run time support

Spark-submit, example

```
>spark-submit \
--master yarn
--deploy-mode cluster \
--executor-cores 4 \
--num-executors 11 \
--executor-memory 2g \
--conf spark.yarn.executor.memoryOverhead=2g \
--conf spark.driver.memory=5g \
--conf spark.driver.cores=2 \
--conf spark.yarn.jars="file:///home/cluster/shared/vms/spark-current/jars/*.jar" \
kmeans-dario-x.py
```

Basic notions

 Borrowed from Francis Back's nice notes at ENS (<u>https://www.di.ens.fr/~fbach/courses/fall2013/lecture3.pdf</u>)

K- means clustering is a method of vector quantization. K-means clustering is an algorithm of alternate minimization that aims at partitioning n observations into K clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype to the cluster (see Figure 3.1).

Figure 3.1. Clustering on a 2D point data set with 3 clusters.

Notations

We will use the following notations:

- $x_i \in \mathbb{R}^p$, $i \in \{1, ..., n\}$ are the observations we want to partition.
- $\mu_k \in \mathbb{R}^p$, $k \in \{1, ..., K\}$ are the means where μ_k is the center of the cluster k. We will denote μ the associated matrix.
- z_i^k are indicator variables associated to x_i such that $z_i^k = 1$ if x_i belongs to the cluster $k, z_i^k = 0$ otherwise. z is the matrix which components are equal to z_i^k .

Finally, we define the distortion $J(\mu, z)$ by:

$$J(\mu, z) = \sum_{i=1}^{n} \sum_{k=1}^{K} z_i^k ||x_i - \mu_k||^2.$$

The K-means algorithm

The aim of the algorithm is to minimize $J(\mu, z)$. To do so we proceed with an alternating minimization :

- Step 0: We choose a vector μ
- Step 1: we minimize J with respect to $z: z_i^k = 1$ if $||x_i \mu_k||^2 = \min_s ||x_i \mu_s||^2$, in other words we associate to x_i the nearest center μ_k .
- Step 2: we minimize J with respect to μ : $\mu_k = \frac{\sum_i z_i^k x_i}{\sum_i z_i^k}$.
- Step 3: we come back to step 1 until convergence.

Data

 We will use a simple (classical) data set describing features of flowers (available at https://www.dropbox.com/s/9kits2euwawcsj0/iris.data.txt)

Le jeu de données [modifier | modifier le code]

Fisher's Iris Data

longueur des sépales (en cm) \$ (Sepal length)	largeur des sépales (en cm) \$ (Sepal width)	longueur des pétales (en cm) (Petal length)	largeur des pétales (en cm) (Petal width)	Espèce (Species)
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa
				_

source: https://fr.wikipedia.org/wiki/Iris_(jeu_de_données)