

CMSC 471 Artificial Intelligence

Constraints

General Methods of Solving CSPs

- Generate-and-Test, aka Brute Force
- Search (backtracking)
- Consistency checking
 - Forward checking
 - Arc consistency
 - Domain splitting
 - Variable Elimination
- Localized search

Is AC3 Alone Sufficient?

Consider the four queens problem

Solving a CSP still requires search

- Search:
 - can find good solutions, but must examine non-solutions along the way

- Constraint Propagation:
 - can rule out non-solutions, but this is not the same as finding solutions

Solving a CSP still requires search

- Search:
 - can find good solutions, but must examine non-solutions along the way
- Constraint Propagation:
 - can rule out non-solutions, but this is not the same as finding solutions
- Interweave constraint propagation & search:
 - perform constraint propagation at each search step

X2=3 eliminates { X3=2, X3=3, X3=4 } ⇒ inconsistent!

X2=4 ⇒ X3=2, which eliminates { X4=2, X4=3} ⇒ inconsistent!

X1 can't be 1, let's try 2

Can we eliminate any other values?

Can we eliminate any other values?

Can we eliminate any other values?

Arc constancy eliminates x3=3 because it's not consistent with X2's remaining values

There is only one solution with X1=2

<u>Sudoku</u>

- Digit placement puzzle on 9x9 grid with unique answer
- Given an initial partially filled grid, fill remaining squares with a digit between 1 and 9
- Each column, row, and nine 3 × 3 sub-grids must contain all nine digits

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
Н	8			2		3			9
-1			5		1		3		

	1	2	3	4	5	6	7	8	9
		8	3	9	2	1	6	5	7
3	9	6	7	3	4	5	8	2	1
				8				9	3
		4	8	1	3	2	9	7	6
	7			5			1	3	8
=	1	3	6	7	9	8	2	4	5
à	3	7	2	6	8	9	5	1	4
4	8	1	4	2	5	3	7	6	9
١	6	9	5	4	1	7	3	8	2

 Some initial configurations are easy to solve and others very difficult

Sudoku Example

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
Н	8			2		3			9
-			5		1		3		

initial	probl	lem

	1	2	3	4	5	6	7	8	9
Α	4	8	3	9	2	1	6	5	7
В	9	6	7	3	4	5	8	2	1
С	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
Е	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
Н	8	1	4	2	5	3	7	6	9
1	6	9	5	4	1	7	3	8	2

a solution

How can we set this up as a CSP?


```
def sudoku(initValue):
                                                                                                            # Sample problems
  p = Problem()
                                                                                                            easy = [
  # Define a variable for each cell: 11.12.13...21.22.23...98.99
                                                                                                              [0,9,0,7,0,0,8,6,0],
  for i in range(1, 10):
                                                                                                              [0,3,1,0,0,5,0,2,0],
                                                                                                              [8,0,6,0,0,0,0,0,0],
    p.addVariables(range(i*10+1, i*10+10), range(1, 10))
                                                                                                              [0,0,7,0,5,0,0,0,6],
  # Each row has different values
                                                                                                              [0,0,0,3,0,7,0,0,0],
  for i in range(1, 10):
                                                                                                              [5,0,0,0,1,0,7,0,0],
    p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10))
                                                                                                              [0,0,0,0,0,0,1,0,9],
  # Each column has different values
                                                                                                              [0,2,0,6,0,0,0,5,0],
 for i in range(1, 10):
                                                                                                              [0,5,4,0,0,8,0,7,0]]
    p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
                                                                                                            hard = [
  # Fach 3x3 box has different values
                                                                                                              [0,0,3,0,0,0,4,0,0],
  p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
                                                                                                              [0,0,0,0,7,0,0,0,0],
  p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63])
                                                                                                              [5,0,0,4,0,6,0,0,2],
  p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])
                                                                                                              [0,0,4,0,0,0,8,0,0],
                                                                                                              [0,9,0,0,3,0,0,2,0],
  p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36])
                                                                                                              [0,0,7,0,0,0,5,0,0],
  p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
                                                                                                              [6,0,0,5,0,2,0,0,1],
  p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])
                                                                                                              [0,0,0,0,9,0,0,0,0],
                                                                                                              [0,0,9,0,0,0,3,0,0]]
  p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39])
  p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
                                                                                                            very hard = [
  p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])
                                                                                                              [0,0,0,0,0,0,0,0,0]
                                                                                                              [0,0,9,0,6,0,3,0,0],
  # add unary constraints for cells with initial non-zero values
                                                                                                              [0,7,0,3,0,4,0,9,0],
  for i in range(1, 10):
                                                                                                              [0,0,7,2,0,8,6,0,0],
    for j in range(1, 10):
                                                                                                              [0,4,0,0,0,0,0,7,0],
      value = initValue[i-1][j-1]
                                                                                                              [0,0,2,1,0,6,5,0,0],
      if value:
                                                                                                              [0,1,0,9,0,5,0,4,0],
                                                                                                              [0,0,8,0,2,0,7,0,0],
        p.addConstraint(lambda var. val=value: var == val. (i*10+i.))
                                                                                                              [0,0,0,0,0,0,0,0,0]]
  return p.getSolution()
```


Local search for constraint problems

- Basic idea:
 - generate a random "solution"
 - Use metric of "number of conflicts"
 - Modifying solution by reassigning one variable at a time to decrease metric until solution found or no modification improves it
- Has all features and problems of local search like...?

Min Conflict Example

- States: 4 Queens, 1 per column
- Operators: Move a queen in its column
- Goal test: No attacks
- Evaluation metric: Total number of attacks (direct and indirect)

How many conflicts does each state have?

Basic Local Search Algorithm

```
Assign one domain value d<sub>i</sub> to each variable v<sub>i</sub>
While no solution & not stuck & not timed out:
      for each variable v_i where Cost(Value(v_i)) > =0:
           bestCost ← ∞; bestList ← [];
           domain value d<sub>i</sub> of v<sub>i</sub>
                     if Cost(d<sub>i</sub>) < bestCost
                           bestCost ← Cost(d<sub>i</sub>)
                           bestList← [d<sub>i</sub>]
                     else if Cost(d<sub>i</sub>) = bestCost
                           bestList ← bestList ∪ d<sub>i</sub>
           Take a randomly selected move from bestList
```


Try Queen 1

Try Queen 2

Try Queen 3

Try Queen 4

Try Queen 5
Stuck!

Undo move for Queen 5

Try next value for Queen 5
Still Stuck

Undo move for Queen 5 no move left

Backtrack and undo last move for Queen 4

Try next value for Queen 4

Try Queen 5

Try Queen 6

Try Queen 7
Stuck Again

Eight Queens using Backtracking

Undo move for Queen 7 and so on...

Place 8 Queens randomly on the board

Pick a Queen: Calculate cost of each move

Take least cost move then try another Queen

Answer Found

Backtracking Performance

Local Search Performance

Min Conflict Performance

- Performance depends on quality and informativeness of initial assignment; inversely related to distance to solution
- Min Conflict often has astounding performance
- Can solve arbitrary size (i.e., millions) N-Queens problems in constant time
- Appears to hold for arbitrary CSPs with the caveat...

Challenges for constraint reasoning

- What if not all constraints can be satisfied?
 - Hard vs. soft constraints vs. preferences
 - Degree of constraint satisfaction
 - Cost of violating constraints
- What if constraints are of different forms?
 - Symbolic constraints
 - Logical constraints
 - Numerical constraints [constraint solving]
 - Temporal constraints
 - Mixed constraints

Summary

- Many problems can be effectively modeled as constraints solving problems
- The approach is very good at reducing the amount of search needed
- Arc consistency is simple yet powerful
- Constraints are also useful for local search
- There's a lot of complexity in many realworld problems that require additional ideas and tools