

CATEGORY THEORY AND LAMBDA CALCULUS

MARIO ROMÁN

Trabajo Fin de Grado Doble Grado en Ingeniería Informática y Matemáticas

Tutores

Manuel Bullejos Lorenzo Pedro A. García-Sánchez

FACULTAD DE CIENCIAS

E.T.S. INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Granada, a junio de 2018

CONTENTS

Ι	LAMBDA CALCULUS	7
1	untyped λ -calculus	8
	1.1 The untyped λ -calculus	9
	1.2 Free and bound variables, substitution	10
	1.3 α -equivalence	11
	1.4 β -reduction	12
	1.5 η -reduction	12
	1.6 Confluence	13
	1.7 The Church-Rosser theorem	13
	1.8 Normalization	16
	1.9 Standarization and evaluation strategies	17
	1.10 SKI combinators	18
	1.11 Turing completeness	20
2	SIMPLY TYPED λ -CALCULUS	22
	2.1 Simple types	23
	2.2 Typing rules for simply typed λ -calculus	23
	2.3 Curry-style types	25
	2.4 Unification and type inference	26
	2.5 Subject reduction and normalization	28
3	THE CURRY-HOWARD CORRESPONDENCE	31
J	3.1 Extending the simply typed λ -calculus	31
	3.2 Natural deduction	33
	3.3 Propositions as types	35
4	OTHER TYPE SYSTEMS	39
•	4.1 λ -cube	39
II	MIKROKOSMOS	41
5	IMPLEMENTATION OF λ -EXPRESSIONS	42
	5.1 The Haskell programming language	42
	5.2 De Bruijn indexes	45
	5.3 Substitution	46
	5.4 De Bruijn-terms and λ -terms	47
	5.5 Evaluation	48
	5.6 Principal type inference	49
6	USER INTERACTION	52
	6.1 Monadic parser combinators	52
	6.2 Parsec	53

	6.3 Verbose mode	• 53
	6.4 SKI mode	• 54
7	USAGE	56
•	7.1 Installation	. 56
	7.2 Mikrokosmos interpreter	. 58
	7.3 Jupyter kernel	
	7.4 CodeMirror lexer	
	7.5 JupyterHub	
	7.6 Calling Mikrokosmos from Javascript	
8	PROGRAMMING ENVIRONMENT	65
	8.1 Cabal, Stack and Haddock	. 65
	8.2 Testing	. 65
	8.3 Version control and continuous integration	. 66
9	PROGRAMMING IN UNTYPED λ -CALCULUS	67
	9.1 Basic syntax	. 67
	9.2 A technique on inductive data encoding	. 68
	9.3 Booleans	. 69
	9.4 Natural numbers	. 70
	9.5 The predecessor function and predicates on numbers	. 71
	9.6 Lists and trees	. 72
	9.7 Fixed points	. 74
10	PROGRAMMING IN THE SIMPLY TYPED λ -CALCULUS	76
	10.1 Function types and typeable terms	. 76
	10.2 Product, union, unit and void types	. 77
	10.3 A proof in intuitionistic logic	. 79
III	CATEGORY THEORY	81
	CATEGORIES	82
	11.1 Definition of category	
	11.2 Morphisms	
	11.3 Terminal objects, products and coproducts	
	11.4 Examples of categories	
12	FUNCTORS AND NATURAL TRANSFORMATIONS	89
	12.1 Functors	_
	12.2 Natural transformations	_
	12.3 Composition of natural transformations	
13	CONSTRUCTIONS ON CATEGORIES	94
-)	13.1 Product categories	
	13.2 Opposite categories and contravariant functors	
	13.3 Functor categories	
	13.4 Comma categories	
11	UNIVERSALITY AND LIMITS	101
-7	14.1 Universal arrows	

	14.2 Representability	102
	14.3 Yoneda Lemma	102
	14.4 Limits	104
	14.5 Examples of limits	106
	14.6 Colimits	108
	14.7 Examples of colimits	109
15	ADJOINTS, MONADS AND ALGEBRAS	111
	15.1 Adjunctions	111
	15.2 Examples of adjoints	116
	15.3 Monads	117
	15.4 Algebras for a monad	118
	15.5 Kleisli categories	119
IV	CATEGORICAL LOGIC	120
16	CARTESIAN CLOSED CATEGORIES AND LAMBDA CALCULUS	121
	16.1 Lawvere theories	121
	16.2 Cartesian closed categories	_
	16.3 Simply-typed λ -theories	
	16.4 Working in cartesian closed categories	
	16.5 Bicartesian closed categories	
17	LOCALLY CARTESIAN CLOSED CATEGORIES AND DEPENDENT TYPES	_
	17.1 Quantifiers and subsets	_
	17.2 Locally cartesian closed categories	
	17.3 Dependent types	
	17.4 Dependent pairs	
	17.5 Dependent functions	
	17.6 Examples of dependent types	
	17.7 Soundness up to isomorphism	137
V	TYPE THEORY	138
18	UNIVERSE HIERARCHY	140
19	INTENSIONAL EQUALITY AND EQUIVALENCES	141
	19.1 Propositional equality	
	19.2 h-Propositions	
	19.3 h-Sets	
	19.4 Equivalences	
	19.5 Function extensionality and Univalence	145
20	SYNTHETIC TOPOLOGY	146
	20.1 Higher inductive types	
	20.2 The fundamental group of the circle	146
21	CONSTRUCTIVE ANALYSIS	147
22	COMPUTER VERIFICATION	148

	Contents	5
VI CONCLUSIONS	149	
VII APPENDICES	150	

ABSTRACT

This is the abstract.

Part I

LAMBDA CALCULUS

The λ -calculus is a collection of systems formalizing the notion of functions. They can be seen as programming languages and formal logics at the same time. We focus on the properties of the untyped λ -calculus and simply typed λ -calculus and its relation to logic.

UNTYPED λ -CALCULUS

When are two functions equal? Classically in mathematics, *functions are graphs*. A function from a domain to a codomain, $f: X \to Y$, is seen as a subset of the product space: $f \subset X \times Y$. Any two functions are identical if they map equal inputs to equal outputs; and a function it is completely determined by what its outputs are. This vision is called *extensional*.

From a computational point of view, this perspective could seem incomplete in some cases. Computationally, we usually care not only about the result but, crucially, about how it can be computed. Classically in computer science, functions are formulae; and two functions mapping equal inputs to equal outputs need not to be equal. For instance, two sorting algorithms can have a different efficiency or different memory requisites, even if they output the same sorted list. This vision, where two functions are equal if and only if they are given by essentially the same formula is called *intensional*.

The λ -calculus is a collection of formal systems, all of them based on the lambda notation introduced by Alonzo Church in the 1930s while trying to develop a foundational notion of functions (as formulae) on mathematics. It is a logical theory of functions, where application and abstraction are primitive notions; and, at the same time, it is also one of the simplest programming languages, in which many other full-fledged languages are based, as we will explain in detail later.

The **untyped** or **pure** λ **-calculus** is, syntactically, the simplest of those formal systems. In it, a function does not need a domain nor a codomain; every function is a formula that can be directly applied to any expression. It even allows functions to be applied to themselves, a notion that would be troublesome in our usual set-theoretical foundations. In particular, if f is a member of its own domain, the infinite descending sequence

$$f \ni \{f, f(f)\} \ni f \ni \{f, f(f)\} \ni \dots,$$

would exist, thus contradicting the **regularity axiom** of Zermelo-Fraenkel set theory (see, for example, [Kun11]). However, untyped λ -calculus presents some problems such as non-terminating functions.

This presentation of the untyped lambda calculus will follow [HSo8] and [Sel13].

1.1 THE UNTYPED λ -CALCULUS

As a formal language, the untyped λ -calculus is given by a set of equations between expressions called λ -terms, and equivalences between them can be computed using some manipulation rules. These λ -terms can stand for functions or arguments indistinctly: they all use the same λ -notation in order to define function abstractions and applications.

The λ -notation allows a function to be written and inlined as any other element of the language, identifying it with the formula it represents and admitting a more compact notation. For example, the polynomial function $p(x) = x^2 + x$ would be written in λ -calculus as λx . $x^2 + x$; and p(2) would be written as (λx) . $x^2 + x$ (2). In general, λx . M is a function taking x as an argument and returning M, which is a term where x may appear in.

The use of λ -notation also eases the writing of **higher-order functions**, functions whose arguments or outputs are functions themselves. For instance,

$$\lambda f.(\lambda y. f(f(y)))$$

would be a function taking f as an argument and returning λy . f(f(y)), which is itself a function; most commonly written as $f \circ f$. In particular,

$$((\lambda f.(\lambda y. f(f(y))))(\lambda x. x^2 + x))(1)$$

evaluates to 6.

Definition 1 (Lambda terms). λ -terms are constructed inductively using the following rules

- every *variable*, taken from an infinite countable set of variables and usually written as lowercase single letters (x, y, z, ...), is a λ -term;
- given two λ -terms M, N; its *application*, MN, is a λ -term;
- given a λ -term M and a variable x, its *abstraction*, $\lambda x.M$, is a λ -term;
- every possible λ -term can be constructed using these rules, no other λ -term exists.

Equivalently, they can also be defined by the following Backus-Naur form,

$$\mathsf{Term} ::= x \mid (\mathsf{Term} \, \mathsf{Term}) \mid (\lambda x. \mathsf{Term}) \quad ,$$

where *x* can be any variable.

By convention, we omit outermost parentheses and assume left-associativity, for example, MNP will always mean (MN)P. Note that the application of λ -terms is different from its composition, which is distributive and will be formally defined later. We consider λ -abstraction as having the lowest precedence. For example, $\lambda x.MN$ should be read as $\lambda x.(MN)$ instead of $(\lambda x.M)N$.

1.2 FREE AND BOUND VARIABLES, SUBSTITUTION

In λ -calculus, the scope of a variable restricts to the λ -abstraction where it appeared, if any. Thus, the same variable can be used multiple times on the same term independently. For example, in $(\lambda x.x)(\lambda x.x)$, the variable x appears twice with two different meanings.

Any ocurrence of a variable *x* inside the *scope* of a lambda is said to be *bound*; and any variable without bound ocurrences is said to be *free*. Formally, we can define the set of free variables on a given term as follows.

Definition 2 (Free variables). The **set of free variables** of a term *M* is defined inductively as

$$FV(x) = \{x\},\$$

 $FV(MN) = FV(M) \cup FV(N),\$
 $FV(\lambda x.M) = FV(M) \setminus \{x\}.$

Evaluation in λ -calculus relies in the notion of *substitution*. Any free ocurrence of a variable can be substituted by a term, as we do when we are evaluating terms. For instance, in the previous example, we evaluated $(\lambda x. x^2 + x)(2)$ by substituting 2 in the place of x inside $x^2 + x$; as in

$$(\lambda x. \ x^2 + x)(2) \xrightarrow{x \mapsto 2} 2^2 + 2.$$

This, however, should be done avoiding the unintended binding which happens when a variable is substituted inside the scope of a binder with the same name, as in the following example: if we were to evaluate the expression $(\lambda x. yx)(\lambda z. xz)$, where x appears two times (once bound and once free), we should substitute y by $(\lambda z. xz)$ on $(\lambda x. yx)$ and x (the free variable) would get tied to x (the bounded variable)

$$(\lambda y.\lambda x.yx)(\lambda z. xz) \xrightarrow{y \mapsto (\lambda z.xz)} (\lambda x.(\lambda z.xz)x).$$

To avoid this, the bounded *x* must be given a new name before the substitution, which must be carried as

$$(\lambda y.\lambda u.yu)(\lambda z. xz) \xrightarrow{y\mapsto (\lambda z.xz)} (\lambda u.(\lambda z.xz)u),$$

keeping the free character of *x*.

Definition 3 (Substitution on lambda terms). The **substitution** of a variable x by a term N on M is written as M[N/x] and is defined inductively as

$$x[N/x] \equiv N,$$

$$y[N/x] \equiv y,$$
 if $y \neq x$,
$$(MP)[N/x] \equiv (M[N/x])(P[N/x]),$$

$$(\lambda x.P)[N/x] \equiv \lambda x.P,$$

$$(\lambda y.P)[N/x] \equiv \lambda y.P[N/x]$$
 if $y \notin FV(N)$,
$$(\lambda y.P)[N/x] \equiv \lambda z.P[z/y][N/x]$$
 if $y \in FV(N)$,

where, in the last clause, *z* is a fresh unused variable.

We could define a criterion for choosing exactly what this new variable should be, or simply accept that our definition will not be exactly well-defined, but only well-defined up to a change on the name of the variables. This equivalence relation will be defined formally on the next section. In practice, it is common to follow the Barendregt's variable convention, which simply assumes that bound variables have been renamed to be distinct.

1.3 α -EQUIVALENCE

In λ -terms, variables are only placeholders and its name, as we have seen before, is not relevant. Two λ -terms whose only difference is the naming of the variables are called α -equivalent. For example,

$$(\lambda x.\lambda y.x \ y)$$
 is α -equivalent to $(\lambda f.\lambda x.f \ x)$.

 α -equivalence formally captures the fact that the name of a bound variable can be changed without changing the meaning of the term. This idea appears recurrently on mathematics; for example, the renaming of variables of integration or the variable on a limit are a examples of α -equivalence.

$$\int_0^1 x^2 \, dx = \int_0^1 y^2 \, dy; \qquad \lim_{x \to \infty} \frac{1}{x} = \lim_{y \to \infty} \frac{1}{y}.$$

Definition 4 (α – *equivalence*). α -equivalence is the smallest relation $=_{\alpha}$ on λ -terms that is an equivalence relation, that is to say that

- it is reflexive, $M =_{\alpha} M$;
- it is *symmetric*, if $M =_{\alpha} N$, then $N =_{\alpha} M$;
- and it is *transitive*, if $M =_{\alpha} N$ and $N =_{\alpha} P$, then $M =_{\alpha} P$;

and it is compatible with the structure of lambda terms,

• if $M =_{\alpha} M'$ and $N =_{\alpha} N'$, then $MN =_{\alpha} M'N'$;

- if $M =_{\alpha} M'$, then $\lambda x.M =_{\alpha} \lambda x.M'$;
- if *y* does not appear on *M*, $\lambda x.M =_{\alpha} \lambda y.M[y/x]$.

1.4 β -REDUCTION

The core idea of evaluation in λ -calculus is captured by the notion of β -reduction. Until now, evaluation has been only informally described; it is time to define it as a relation, \rightarrow_{β} , going from the initial term to any of its partial evaluations. We will firstly consider a *one-step reduction* relationship, called \rightarrow_{β} , which will be extended by transitivity to \rightarrow_{β} .

Ideally, we would like to define evaluation as a series of reductions into a canonical form which could not be further reduced. Unfortunately, as we will see later, it is not possible to find, in general, that canonical form.

Definition 5 (β – *reduction*). The **single-step** β -**reduction** is the smallest relation on λ -terms capturing the notion of evaluation and preserving the structure of λ -abstractions and applications. That is, the smallest relation containing

- $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$ for any terms M, N and any variable x,
- $MN \rightarrow_{\beta} M'N$ and $NM \rightarrow_{\beta} NM'$ for any M, M' such that $M \rightarrow_{\beta} M'$, and
- $\lambda x.M \rightarrow_{\beta} \lambda x.M'$, for any M, M' such that $M \rightarrow_{\beta} M'$.

The reflexive transitive closure of \rightarrow_{β} is written as $\twoheadrightarrow_{\beta}$. The symmetric closure of $\twoheadrightarrow_{\beta}$ is called β -equivalence and written as $=_{\beta}$ or simply =.

1.5 η -REDUCTION

Although we lost the extensional view of functions when we decided to adopt the *functions as formulae* perspective, the idea of function extensionality in λ -calculus can be partially recovered by the notion of η -reduction. This form of *function extensionality for* λ -terms can be captured by the notion that any term which simply applies a function to the argument it takes can be reduced to the actual function. That is, any $\lambda x.Mx$ can be reduced to M.

Definition 6 (η – *reduction*). The η -reduction is the smallest relation on λ -terms satisfying the same congruence rules as β -reduction and the following axiom

$$\lambda x.Mx \rightarrow_{\eta} M$$
, for any $x \notin FV(M)$.

We define single-step $\beta\eta$ -reduction as the union of β -reduction and η -reduction. This will be written as $\rightarrow_{\beta\eta}$, and its reflexive transitive closure will be $\twoheadrightarrow_{\beta\eta}$.

Note that, in the particular case where M is itself a λ -abstraction, η -reduction is simply a particular case of β -reduction.

1.6 CONFLUENCE

As we mentioned above, it is not possible in general to evaluate a λ -term into a canonical, non-reducible term. However, we will be able to prove that, in the cases where it exists, it is unique. This property is a consequence of a sightly more general one, *confluence*, which can be defined in any abstract rewriting system.

Definition 7 (Confluence). A relation \rightarrow on a set \mathcal{S} is **confluent** if, given its reflexive transitive closure \twoheadrightarrow , for any $M, N, P \in \mathcal{S}, M \twoheadrightarrow N$ and $M \twoheadrightarrow P$ imply the existence of some $Z \in \mathcal{S}$ such that $N \twoheadrightarrow Z$ and $P \twoheadrightarrow Z$.

Given any binary relation \rightarrow of which \rightarrow is its reflexive transitive closure, we can consider three seemingly related properties

- the **confluence** (also called *Church-Rosser property*) we have just defined,
- the **quasidiamond property**, which assumes $M \to N$ and $M \to P$,
- the **diamond property**, which is defined substituting → by → on the definition on confluence.

Diagrammatically, the three properties can be represented as

and we can show that the diamond relation implies confluence; while the quasidiamond does not. Both claims are easy to prove, and they show us that, in order to prove confluence for a given relation, we can use the diamond property instead of the quasidiamond property.

The statement of $\twoheadrightarrow_{\beta}$ and $\twoheadrightarrow_{\beta\eta}$ being confluent is what we call the *Church-Rosser Theorem*. The definition of a relation satisfying the diamond property and whose reflexive transitive closure is $\twoheadrightarrow_{\beta\eta}$ will be the core of our proof.

1.7 THE CHURCH-ROSSER THEOREM

The proof presented here is due to Tait and Per Martin-Löf; an earlier but more convoluted proof was discovered by Alonzo Church and Barkley Rosser in 1935 (see [Bar84] and [Pol95]). It is based on the idea of parallel one-step reduction.

Definition 8 (Parallel one-step reduction). We define the **parallel one-step reduction** relation on λ -terms, \triangleright , as the smallest relation satisfying that the following properties

- reflexivity, $x \triangleright x$;
- parallel application, $PN \triangleright P'N'$;
- congruence to λ -abstraction, $\lambda x.N > \lambda x.N'$;
- parallel substitution, $(\lambda x.P)N \triangleright P'[N'/x]$;
- and extensionality, $\lambda x.Px \triangleright P'$, if $x \notin FV(P)$,

hold for any variable x and any terms N, N', P, P' such that $P \triangleright P'$ and $N \triangleright N'$.

Using the first three rules, it is trivial to show that this relation is in fact reflexive.

Lemma 1. The reflexive transitive closure of \triangleright is $\twoheadrightarrow_{\beta\eta}$. In particular, given any λ -terms M, M',

```
1. if M \to_{\beta\eta} M', then M \rhd M'.
2. if M \rhd M', then M \to_{\beta\eta} M';
```

Proof. 1. We can prove this by exhaustion and structural induction on λ -terms, the possible ways in which we arrive at $M \to M'$ are

- $(\lambda x.M)N \to M[N/x]$; where we know that, by parallel substitution and reflexivity $(\lambda x.M)N \rhd M[N/x]$;
- $MN \to M'N$ and $NM \to NM'$; where we know that, by induction $M \rhd M'$, and by parallel application and reflexivity, $MN \rhd M'N$ and $NM \rhd NM'$;
- congruence to λ -abstraction, which is a shared property between the two relations where we can apply structural induction again;
- $\lambda x.Px \to P$, where $x \notin FV(P)$ and we can apply extensionality for \triangleright and reflexivity.
- 2. We can prove this by induction on any derivation of $M \triangleright M'$. The possible ways in which we arrive at this are
 - the trivial one, reflexivity;
 - parallel application $NP \triangleright N'P'$, where, by induction, we have $P \twoheadrightarrow P'$ and $N \twoheadrightarrow N'$. Using two steps, $NP \twoheadrightarrow N'P'$ we prove $NP \twoheadrightarrow N'P'$;
 - congruence to λ -abstraction $\lambda x.N > \lambda x.N'$, where, by induction, we know that $N \rightarrow N'$, so $\lambda x.N \rightarrow \lambda x.N'$;
 - parallel substitution, $(\lambda x.P)N \triangleright P'[N'/x]$, where, by induction, we know that $P \twoheadrightarrow P'$ and $N \twoheadrightarrow N'$. Using multiple steps, $(\lambda x.P)N \twoheadrightarrow (\lambda x.P')N' \rightarrow P'[N'/x]$;
 - extensionality, $\lambda x.Px \triangleright P'$, where by induction $P \rightarrow P'$, and trivially, $\lambda x.Px \rightarrow \lambda x.P'x$.

Because of this, the reflexive transitive closure of \triangleright should be a subset and a superset of \rightarrow at the same time.

Lemma 2 (Substitution Lemma). Assuming $M \triangleright M'$ and $U \triangleright U'$, $M[U/y] \triangleright M'[U'/y]$.

Proof. We apply structural induction on derivations of $M \triangleright M'$, depending on what the last rule we used to derive it was.

- Reflexivity, M = x. If x = y, we simply use $U \triangleright U'$; if $x \neq y$, we use reflexivity on x to get $x \triangleright x$.
- Parallel application. By induction hypothesis, $P[U/y] \triangleright P'[U'/y]$ and $N[U/y] \triangleright N'[U'/y]$, hence $(PN)[U/y] \triangleright (P'N')[U'/y]$.
- Congruence. By induction, $N[U/y] \triangleright N'[U'/y]$ and $\lambda x.N[U/y] \triangleright \lambda x.N'[U'/y]$.
- Parallel substitution. By induction, $P[U/y] \triangleright P'[U'/y]$ and $N[U/y] \triangleright N[U'/y]$, hence $((\lambda x.P)N)[U/y] \triangleright P'[U'/y][N'[U'/y]/x] = P'[N'/x][U'/y]$.
- Extensionality, given $x \notin FV(P)$. By induction, $P \triangleright P'$, hence $\lambda x.P[U/y]x \triangleright P'[U'/y]$.

Note that we are implicitely assuming the Barendregt's variable convention; all variables have been renamed to avoid clashes. \Box

Definition 9 (Maximal parallel one-step reduct). The **maximal parallel one-step** reduct M^* of a λ -term M is defined inductively as

- $x^* = x$, if x is a variable;
- $(PN)^* = P^*N^*$;
- $((\lambda x.P)N)^* = P^*[N^*/x];$
- $(\lambda x.N)^* = \lambda x.N^*$;
- $(\lambda x.Px)^* = P^*$, given $x \notin FV(P)$.

Lemma 3 (Diamond property of parallel reduction). *Given any* M' *such that* $M \triangleright M'$, $M' \triangleright M^*$. *Parallel one-step reduction has the diamond property.*

Proof. We apply again structural induction on the derivation of $M \triangleright M'$.

- Reflexivity gives us $M' = x = M^*$.
- Parallel application. By induction, we have $P \triangleright P^*$ and $N \triangleright N^*$; depending on the form of P, we have
 - *P* is not a λ -abstraction and $P'N' \triangleright P^*N^* = (PN)^*$.
 - $P = \lambda x.Q$ and $P \triangleright P'$ could be derived using congruence to λ -abstraction or extensionality. On the first case we know by induction hypothesis that $Q' \triangleright Q^*$ and $(\lambda x.Q')N' \triangleright Q^*[N^*/x]$. On the second case, we can take $P = \lambda x.Rx$, where, $R \triangleright R'$. By induction, $(R'x) \triangleright (Rx)^*$ and now we apply the substitution lemma to have $R'N' = (R'x)[N'/x] \triangleright (Rx)^*[N^*/x]$.
- Congruence. Given $N \triangleright N'$; by induction $N' \triangleright N^*$, and depending on the form of N we have two cases
 - *N* is not of the form Px where $x \notin FV(P)$; we can apply congruence to λ -abstraction.
 - N = Px where $x \notin FV(P)$; and $N \triangleright N'$ could be derived by parallel application or parallel substitution. On the first case, given $P \triangleright P'$, we know that $P' \triangleright P^*$ by induction hypothesis and $\lambda x.P'x \triangleright P^*$ by extensionality. On

the second case, $N = (\lambda y.Q)x$ and N' = Q'[x/y], where $Q \triangleright Q'$. Hence $P \triangleright \lambda y.Q'$, and by induction hypothesis, $\lambda y.Q' \triangleright P^*$.

- Parallel substitution, with $N \triangleright N'$ and $Q \triangleright Q'$; we know that $M^* = Q^*[N^*/x]$ and we can apply the substitution lemma (lemma 2) to get $M' \triangleright M^*$.
- Extensionality. We know that $P \triangleright P'$ and $x \notin FV(P)$, so by induction hypothesis we know that $P' \triangleright P^* = M^*$. \square

Theorem 1 (Church-Rosser Theorem). The relation $\rightarrow \beta_{\eta}$ is confluent.

Proof. Parallel reduction, \triangleright , satisfies the diamond property (lemma 3), which implies the Church-Rosser property. Its reflexive transitive closure is $\twoheadrightarrow_{\beta\eta}$ (lemma 1), whose diamond property implies confluence for $\rightarrow_{\beta\eta}$.

1.8 NORMALIZATION

Once the Church-Rosser theorem is proved, we can formally define the notion of a normal form as a completely reduced λ -term.

Definition 10 (Normal forms). A λ -term is said to be in β -normal form if β -reduction cannot be applied to it or any of its subformulas. We define η -normal forms and $\beta\eta$ -normal forms analogously.

Fully evaluating λ -terms usually means to apply reductions to them until a normal form is reached. We know, by virtue of Theorem 1, that, if a normal form for a particular term exists, it is unique; but we do not know whether a normal form actually exists. We say that a term **has** a normal form when it can be reduced to a normal form.

Definition 11. A term is **weakly normalizing** if there exists a sequence of reductions from it to a normal form. It is **strongly** normalizing if every sequence of reductions is finite.

A consequence of Theorem 1 is that a weakly normalizing term has a unique normal form. Strong normalization implies weak normalization, but the converse is not true; as an example, the term

$$\Omega = (\lambda x.(xx))(\lambda x.(xx))$$

is neither weakly nor strongly normalizing; and the term $(\lambda x.\lambda y.y)$ Ω $(\lambda x.x)$ is weakly but not strongly normalizing. It can be reduced to a normal form as

$$(\lambda x.\lambda y.y) \Omega (\lambda x.x) \longrightarrow_{\beta} (\lambda x.x).$$

1.9 STANDARIZATION AND EVALUATION STRATEGIES

We would like to find a β -reduction strategy such that, if a term has a normal form, it can be found by following that strategy. Our basic result will be the **standarization theorem**, which shows that, if a β -reduction to a normal form exists, then a sequence of β -reductions from left to right on the λ -expression will be able to find it. From this result, we will be able to prove that the reduction strategy that always reduces the leftmost β -abstraction will always find a normal form if it exists.

This section follows [Kasoo], [Bar94] and [Bar84].

Definition 12 (Leftmost one-step reduction). We define the relation $M \to_n N$ when N can be obtained by β -reducing the n-th leftmost β -reducible application of the expression. We call \to_1 the **leftmost one-step reduction** and we write it as \to_l ; accordingly, \to_l is its reflexive transitive closure.

Definition 13 (Standard sequence). A sequence of β -reductions $M_0 \to_{n_1} M_1 \to_{n_2} M_2 \to_{n_3} \cdots \to_{n_k} M_k$ is **standard** if $\{n_i\}$ is a non-decreasing sequence.

We will prove that every term that can be reduced to a normal form can be reduced to it using a standard sequence, from this result, the existence of an optimal beta reduction strategy, in the sense that it will always reach a normal form if one exists, will follow as a corollary.

Theorem 2 (Standarization theorem). *If* $M \rightarrow _{\beta} N$, there exists a standard sequence from M to N.

Proof. We start by defining the following two binary relations. The first one is the minimal reflexive transitive relation on λ -terms capturing a form of β -reduction called *head* β -reduction; that is, it is the minimal relation \rightarrow ^h such that

- $A \rightarrow_h A$,
- $(\lambda x.A_0)A_1A_2...A_m \rightarrow_h A_0[A_1/x]A_2...A_m$, for any term of the form $A_1A_2...A_n$, and
- $A \rightarrow_h C$ for any terms A, B, C such that $A \rightarrow_h B \rightarrow_h C$.

The second one is called *standard reduction*. It is the minimal relation between λ -terms such that

- $M \rightarrow_h x$ implies $M \rightarrow_s x$, for any variable x,
- $M \rightarrow_h AB$, $A \rightarrow_s C$ and $B \rightarrow_s D$, imply $M \rightarrow_s CD$,
- $M \rightarrow_h \lambda x.A$ and $A \rightarrow_s B$ imply $M \rightarrow_s \lambda x.B$.

We can check the following trivial properties by structural induction

- 1. \rightarrow_h implies \rightarrow_l ,
- 2. \rightarrow _s implies the existence of a standard β -reduction,
- 3. \rightarrow _s is reflexive, by induction on the structure of a term,

- 4. if $M \rightarrow_h N$, then $MP \rightarrow_h NP$,
- 5. if $M \rightarrow_h N \rightarrow_s P$, then $M \rightarrow_s P$,
- 6. if $M \rightarrow_h N$, then $M[P/x] \rightarrow_h N[P/x]$,
- 7. if $M \rightarrow_s N$ and $P \rightarrow_s Q$, then $M[P/z] \rightarrow_s N[Q/z]$.

And now we can prove that $K \to_s (\lambda x.M)N$ implies $K \to_s M[N/x]$. From the fact that $K \to_s (\lambda x.M)N$, we know that there must exist P and Q such that $K \to_h PQ$, $P \to_s \lambda x.M$ and $Q \to_s N$; and from $P \to_s \lambda x.M$, we know that there exists W such that $P \to_h \lambda x.W$ and $W \to_s M$. From all this information, we can conclude that

$$K \twoheadrightarrow_h PQ \twoheadrightarrow_h (\lambda x.W)Q \twoheadrightarrow W[Q/x] \twoheadrightarrow_s M[N/x];$$

which, by (3.), implies $K \rightarrow_s M[N/x]$.

We finally prove that, if $K \twoheadrightarrow_s M \to_{\beta} N$, then $K \twoheadrightarrow_s N$. This proves the theorem, as every β -reduction $M \twoheadrightarrow_s M \twoheadrightarrow_{\beta} N$ implies $M \twoheadrightarrow_s N$. We analyze the possible ways in which $M \to_{\beta} N$ can be derived.

- 1. If $K \rightarrow_s (\lambda x.M)N \rightarrow_{\beta} M[N/x]$, it has been already showed that $K \rightarrow_s M[N/x]$.
- 2. If $K \twoheadrightarrow_s MN \to_{\beta} M'N$ with $M \to_{\beta} M'$, we know that there exist $K \twoheadrightarrow_h WQ$ such that $W \twoheadrightarrow_s M$ and $Q \twoheadrightarrow_s N$; by induction $W \twoheadrightarrow_s M'$, and then $WQ \twoheadrightarrow_s M'N$. The case $K \twoheadrightarrow_s MN \to_{\beta} MN'$ is entirely analogous.
- 3. If $K \twoheadrightarrow_s \lambda x. M \to_{\beta} \lambda x. M'$, with $M \to_{\beta} M'$, we know that there exists W such that $K \twoheadrightarrow_h \lambda x. W$ and $W \twoheadrightarrow_s M$. By induction $W \twoheadrightarrow_s M'$, and $K \twoheadrightarrow_s \lambda x. M'$. \square

Corollary 1 (Leftmost reduction theorem). We define the *leftmost reduction strategy* as the strategy that reduces the leftmost β -reducible application at each step. If M has a normal form, the leftmost reduction strategy will lead to it.

Proof. Note that, if $M \to_n N$, where N is in β -normal form; n must be exactly 1. If M has a normal form and $M \to_{\beta} N$, by Theorem 2, there must exist a standard sequence from M to N whose last step is of the form \to_l ; as the sequence is non-decreasing, every step has to be of the form \to_l .

1.10 SKI COMBINATORS

As we have seen in previous sections, untyped λ -calculus is already a very syntactically simple system; but it can be further reduced to a few λ -terms without losing its expressiveness. In particular, untyped λ -calculus can be *essentially* recovered from only two of its terms; these are

- $S = \lambda x. \lambda y. \lambda z. xz(yz)$, and
- $K = \lambda x.\lambda y.x.$

A language can be defined with these combinators and function application. Every λ -term can be translated to this language and recovered up to $=_{\beta\eta}$ equivalence. For example, the identity λ -term, I, can be written as

$$I = \lambda x.x = SKK.$$

It is common to also add the $I = \lambda x.x$ as a basic term to this language, even if it can be written in terms of S and K, as a way to ease the writing of long complex terms. Terms written with these combinators are called *SKI-terms*.

The language of SKI-terms can be defined by the following Backus-Naus form

$$SKI ::= x \mid (SKI SKI) \mid S \mid K \mid I$$
 ,

where *x* are free variables.

Definition 14 (Lambda transform). The **Lambda-transform** of a SKI-term is a λ -term defined recursively as

- $\mathfrak{L}(x) = x$, for any variable x;
- $\mathfrak{L}(I) = (\lambda x.x);$
- $\mathfrak{L}(K) = (\lambda x. \lambda y. x);$
- $\mathfrak{L}(S) = (\lambda x. \lambda y. \lambda z. xz(yz));$
- $\mathfrak{L}(XY) = \mathfrak{L}(X)\mathfrak{L}(Y)$.

Definition 15 (Bracket abstraction). The **bracket abstraction** of the SKI-term U on the variable x is written as [x].U and defined recursively as

- [x].x = I;
- [x].M = KM, if $x \notin FV(M)$;
- [x].Ux = U, if $x \notin FV(U)$;
- [x].UV = S([x].U)([x].V), otherwise.

where FV is the set of free variables; as defined on Definition 2.

Definition 16 (SKI abstraction). The **SKI abstraction** of a λ -term M, written as $\mathfrak{H}(M)$ is defined recursively as

- $\mathfrak{H}(x) = x$, for any variable x;
- $\mathfrak{H}(MN) = \mathfrak{H}(M)\mathfrak{H}(N)$;
- $\mathfrak{H}(\lambda x.M) = [x].\mathfrak{H}(M);$

where [x].U is the bracket abstraction of the SKI-term U.

Theorem 3 (SKI combinators and lambda terms). *The SKI-abstraction is a retraction of the Lambda-transform of the term, that is, for any SKI-term U,*

$$\mathfrak{H}(\mathfrak{L}(U)) = U.$$

Proof. By structural induction on *U*,

- $\mathfrak{HL}(x) = x$, for any variable x;
- $\mathfrak{HL}(I) = [x].x = I;$
- $\mathfrak{HL}(K) = [x].[y].x = [x].Kx = K;$
- $\mathfrak{HL}(S) = [x].[y].[z].xz(yz) = [x].[y].Sxy = S$; and
- $\mathfrak{SL}(MN) = MN$. \square

In general this translation is not an isomorphism. As an example

$$\mathfrak{L}(\mathfrak{H}(\lambda u.vu)) = \mathfrak{L}(v) = v.$$

However, the λ -terms can be essentially recovered if we relax equality between λ -terms to mean $=_{\beta n}$.

Theorem 4 (Recovering lambda terms from SKI combinators). For any λ -term M,

$$\mathfrak{L}(\mathfrak{H}(M)) =_{\beta\eta} M.$$

Proof. We can firstly prove by structural induction that $\mathfrak{L}([x].M) = \lambda x.\mathfrak{L}(M)$ for any M. In fact, we know that $\mathfrak{L}([x].x) = \lambda x.x$ for any variable x; we also know that

$$\mathfrak{L}([x].MN) = \mathfrak{L}(S([x].M)([x].N))$$

$$= (\lambda x.\lambda y.\lambda z.xz(yz))(\lambda x.\mathfrak{L}(M))(\lambda x.\mathfrak{L}(N))$$

$$= \lambda z.\mathfrak{L}(M)\mathfrak{L}(N);$$

also, if *x* is free in *M*,

$$\mathfrak{L}([x].M) = \mathfrak{L}(KM) = (\lambda x.\lambda y.x)\mathfrak{L}(M) =_{\beta} \lambda x.\mathfrak{L}(M);$$

and finally, if x is free in U,

$$\mathfrak{L}([x].Ux) = \mathfrak{L}(U) =_{\eta} \lambda x.\mathfrak{L}(U)x.$$

Now we can use this result to prove the main theorem. Again by structural induction,

- $\mathfrak{L}\mathfrak{H}(x) = x$;
- $\mathfrak{LH}(MN) = \mathfrak{LH}(M)\mathfrak{LH}(N) = MN$;
- $\mathfrak{LH}(\lambda x.M) = \mathfrak{L}([x].\mathfrak{H}(M)) =_{\beta\eta} \lambda x.\mathfrak{LH}(M) = \lambda x.M.$

1.11 TURING COMPLETENESS

Three different notions of computability were proposed in the 1930s

- the **general recursive functions** were defined by Herbrand and Gödel. They form a class of functions over the natural numbers closed under composition, recursion and unbound search.
- the λ -definable functions were proposed by Church. They are functions on the natural numbers that can be represented by λ -terms.

• the **Turing computable functions**, proposed by Alan Turing as the functions that can be defined on a theoretical model of a machine, the *Turing machines*.

In [Chu₃₆] and [Tur₃₇], Church and Turing proved the equivalence of the three definitions. This lead to the metatheoretical *Church-Turing thesis*, which postulated the equivalence between these models of computation and the intuitive notion of *effective calculability* mathematicians were using. In practice, this means that the λ -calculus, as a programming language, is as expressive as Turing machines; it can define every computable function. It is Turing-complete.

A complete implementation of untyped λ -calculus is discussed in the chapter on Mikrokosmos; and a detailed description on how to use the untyped λ -calculus as a programming language is given in the chapter "".

SIMPLY TYPED λ -CALCULUS

Types were introduced in mathematics as a response to the Russell's paradox, found in the first naive axiomatizations of set theory. An attempt to use untyped λ -calculus as a foundational logical system by Church suffered from the *Rosser-Kleene paradox*, as detailed in [KR35] and [Cur46]; and types were a way to avoid it. Once types are added, a deep connection between λ -calculus and logic arises. This connection will be discussed in the next chapter.

In programming languages, types indicate how the programmer intends to use the data, prevent errors and enforce certain invariants and levels of abstraction in programs. The role of types in λ -calculus when interpreted as a programming language closely matches what we would expect of types in any common programming language, and typed λ -calculus has been the basis of many modern type systems for programming languages.

Simply typed λ **-calculus** is a refinment of the untyped λ -calculus. In it, each term has a type, which limits how it can be combined with other terms. Only a set of basic types and function types between any to types are considered in this system. Whereas functions in untyped λ -calculus could be applied over any term, now a function of type $A \to B$ can only be applied over a term of type A, to produce a new term of type B, where A and B could be, themselves, function types.

We will give now a presentation of simply typed λ -calculus based on [HSo8]. Our presentation will rely only on the *arrow type constructor* \rightarrow . While other presentations of simply typed λ -calculus extend this definition with type constructors providing pairs or union types, as it is done in [Sel13], it seems clearer to present a first minimal version of the λ -calculus. Such extensions will be explained later, and its exposition will profit from the logical interpretation that we will explain in "propositions as types".

2.1 SIMPLE TYPES

We start assuming a set of **basic types**. Those basic types would correspond, in a programming language interpretation, with the fundamental types of the language. Examples would be the type of strings or the type of integers. Minimal presentations of λ -calculus tend to use only one basic type.

Definition 17 (Simple types). The set of **simple types** is given by the following Backus-Naur form

Type
$$:= \iota \mid \mathsf{Type} \to \mathsf{Type}$$
,

where *i* would be any *basic type*.

That is to say that, for every two types A, B, there exists a **function type** $A \rightarrow B$ between them.

2.2 TYPING RULES FOR SIMPLY TYPED λ -CALCULUS

We will now define the terms of simply typed λ -calculus using the same constructors we used on the untyped version. Those are the *raw typed* λ -*terms*.

Definition 18 (Raw typed lambda terms). The set of **typed lambda terms** is given by the following Backus-Naus form

$$\mathtt{Term} ::= x \mid \mathtt{Term} \ \mathtt{Term} \mid \lambda x^{\mathtt{Type}}.\mathtt{Term}.$$

The main difference here with Definition 1 is that every bound variable has a type, and therefore, every λ -abstraction of the form $(\lambda x^A.M)$ can be applied only over terms type A; if M is of type B, this term will be of type $A \to B$.

However, the set of raw typed λ -terms contains some meaningless terms under this type interpretation, such as $(\lambda x^A.M)(\lambda x^A.M)$. **Typing rules** will give them the desired expressive power; only a subset of these raw lambda terms will be typeable, and we will choose to work only with that subset. When a particular term M has type A, we write this relation as M:A, where the : symbol should be read as "is of type".

Definition 19 (Typing context). A **typing context** is a sequence of type assumptions $\Gamma = (x_1 : A_1, \dots, x_n : A_n)$, where no variable x_i appears more than once. We will implicitely assume that the order in which these assumptions appear does not matter.

Every typing rule assumes a typing context, usually denoted by Γ . Concatenation of typing contexts is written as Γ, Γ' ; and the fact that ψ follows from Γ is written as $\Gamma \vdash \psi$. Typing rules are written as rules of inference; the premises are listed above and the conclusion is written below the line.

^{1:} In particular, we can not apply a function of type $A \to B$ to a term of type $A \to B$; it is expecting a term of type A.

1. The (var) rule simply makes explicit the type of a variable from the context. That is, a context that assumes that x : A can be written as $\Gamma, x : A$; and we can trivially deduce from it that x : A.

$$\overline{\Gamma,x:A\vdash x:A}$$
 (var)

2. The (abs) rule declares that the type of a λ -abstraction is the type of functions from the variable type to the result type. If a term M:B can be built from the assumption that x:A, then $\lambda x^A.M:A\to B$. It acts as a *constructor* of function terms.

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x.M : A \rightarrow B} (abs)$$

3. The (app) rule declares the type of a well-typed application. A term $f: A \to B$ applied to a term a: A is a term f: B. It acts as a *destructor* of function terms.

$$\frac{\Gamma \vdash f : A \to B \qquad \Gamma \vdash a : A}{\Gamma \vdash f \ a : B} (app)$$

Definition 20. A term M is **typeable** in a giving context Γ if a typing judgement of the form $\Gamma \vdash M : T$ can be derived using only the previous typing rules.

From now on, we only consider typeable terms as the only terms of simply typed λ -calculus. As a consequence, the set of λ -terms of simply typed λ -calculus is only a subset of the terms of untyped λ -calculus.

Example 1 (Typeable and non-typeable terms). The term $\lambda f.\lambda x.f(fx)$ is typeable. If we abbreviate $\Gamma = f: A \to A$, x: A, the detailed typing derivation can be written as

$$\frac{\frac{\Gamma \vdash f : A \to A}{\Gamma \vdash f : A \to A}(var) \quad \frac{\overline{\Gamma \vdash x : A}(var)}{\Gamma \vdash f : A \to A}(app)}{\frac{f : A \to A, x : A \vdash f(fx) : A}{f : A \to A \vdash \lambda x. f(fx) : A \to A}(abs)}{\frac{f : A \to A \vdash \lambda x. f(fx) : A \to A}{\vdash \lambda f. \lambda x. f(fx) : (A \to A) \to A \to A}(abs)}$$

The term $(\lambda x.x\ x)$, however, is not typeable. If x were of type ψ , it also should be of type $\psi \to \sigma$ for some σ in order for x x to be well-typed; but $\psi \equiv \psi \to \sigma$ is not solvable, as it can be shown by structural induction on the term ψ .

It can be seen that the typing derivation of a term somehow encodes the complete λ -term. If we were to derive the term bottom-up, there would be only one possible choice at each step on which rule to use. In the following sections we will discuss a type inference algorithm that determines if a type is typeable and what its type should be, and we will make precise these intuitions.

2.3 CURRY-STYLE TYPES

Two different approaches to typing in λ -calculus are commonly used.

- **Church-style** typing, also known as *explicit typing*, originated from the work of Alonzo Church in [Chu40], where he described a simply-typed lambda calculus with two basic types. The term's type is defined as an intrinsic property of the term; and the same term has to be always interpreted with the same type.
- Curry-style typing, also known as *implicit typing*; which creates a formalism where every single term can be given an infinite number of types. This technique is called *polymorphism* when it is a formal part of the language; but here, it is only used to allow us to build intermediate terms without having to directly specify their type.

As an example, we can consider the identity term $I = \lambda x.x$. It would have to be defined for each possible type. That is, we should consider a family of different identity terms $I_A = \lambda x.x : A \to A$. Curry-style typing allows us to consider parametric types with type variables, and to type the identity as $I = \lambda x.x : \sigma \to \sigma$ where σ would a free type variable.

Definition 21 (Parametric types). Given a infinite numerable set of *type variables*, we define **parametric types** or **type templates** inductively as

$$\mathtt{PType} ::= \iota \mid \mathtt{Tvar} \mid \mathtt{PType} \rightarrow \mathtt{PType},$$

where ι is a basic type, Tvar is a type variable and PType is a parametric type. That is, all basic types and type variables are atomic parametric types; and we also consider the arrow type between two parametric types.

The difference between the two typing styles is then not a mere notational convention, but a difference on the expressive power that we assign to each term. The interesting property of type variables is that they can act as placeholders for other type templates. This is formalized with the notion of type substitution.

Definition 22 (Type substitution). A **substitution** ψ is any function from type variables to type templates. Any substitution ψ can be extended to a function between type templates called $\overline{\psi}$ and defined inductively by

- $\overline{\psi}\iota = \iota$, for any basic type ι ;
- $\overline{\psi}\sigma = \psi\sigma$, for any type variable σ ;
- $\overline{\psi}(A \to B) = \overline{\psi}A \to \overline{\psi}B.$

That is, the parametric type $\overline{\psi}A$ is the same as A but with every type variable replaced according to the substitution ψ .

We consider a type to be *more general* than other if the latter can be obtained by applying a substitution to the former. In this case, the latter is called an *instance* of the former. For example, $A \to B$ is more general than its instance $(C \to D) \to B$, where

A has been substituted by $C \to D$. An crucial property of simply typed λ -calculus is that every type has a most general type, called its *principal type*; this will be proved in Theorem 5.

Definition 23 (Principal type). A closed λ -term M has a **principal type** π if $M:\pi$ and given any $M:\tau$, we can obtain τ as an instance of π , that is, $\overline{\sigma}\pi = \tau$.

2.4 UNIFICATION AND TYPE INFERENCE

The unification of two type templates is the construction of two substitutions making them equal as type templates; that is, the construction of a type that is a particular instance of both at the same time. We will not only aim for an unifier but for the most general one between them.

Definition 24 (Most general unifier). A substitution ψ is called an **unifier** of two sequences of type templates $\{A_i\}_{i=1,\dots,n}$ and $\{B_i\}_{i=1,\dots,n}$ if $\overline{\psi}A_i = \overline{\psi}B_i$ for any i. We say that it is the **most general unifier** if given any other unifier ϕ exists a substitution ϕ such that $\phi = \overline{\phi} \circ \psi$.

Lemma 4 (Unification). *If an unifier of* $\{A_i\}_{i=1,...,n}$ *and* $\{B_i\}_{i=1,...,n}$ *exists, the most general unifier can be found using the following recursive definition of* unify $(A_1,...,A_n;B_1,...,B_n)$.

- 1. unify(x; x) = id and $unify(\iota, \iota) = id$;
- 2. $unify(x; B) = (x \mapsto B)$, the substitution that only changes x by B; if x does not occur in B. The algorithm **fails** if x occurs in B;
- 3. unify(A; x) is defined symmetrically;
- 4. $\operatorname{unify}(A \to A'; B \to B') = \operatorname{unify}(A, A'; B, B');$
- 5. $\operatorname{unify}(A, A_1, \ldots; B, B_1, \ldots) = \overline{\psi} \circ \rho \text{ where } \rho = \operatorname{unify}(A_1, \ldots; B_1, \ldots) \text{ and } \psi = \operatorname{unify}(\overline{\rho}A; \overline{\rho}B);$
- 6. unify fails in any other case;

where x is any type variable. The two sequences $\{A_i\}$, $\{B_i\}$ of types have no unifier if and only if unify($\{A_i\}$; $\{B_i\}$) fails.

Proof. It is easy to notice by structural induction that, if unify(A; B) exists, it is in fact an unifier.

If the unifier fails in clause 2, there is obviously no possible unifier: the number of constructors on the first type template will be always smaller than the second one. If the unifier fails in clause 6, the type templates are fundamentally different, they have different head constructors and this is invariant to substitutions. This proves that the failure of the algorithm implies the non existence of an unifier.

We now prove that, if A and B can be unified, unify(A, B) is the most general unifier. For instance, in the clause 2, if we call $\psi = (x \mapsto B)$ and, if η were another unifier,

then $\eta x = \overline{\eta} x = \overline{\eta} B = \overline{\eta}(\psi(x))$; hence $\overline{\eta} \circ \psi = \eta$ by definition of ψ . A similar argument can be applied to clauses 3 and 4. In the clause 5, we suppose the existence of some unifier ψ' . The recursive call gives us the most general unifier ρ of A_1, \ldots, A_n and B_1, \ldots, B_n ; and since it is more general than ψ' , there exists an α such that $\overline{\alpha} \circ \rho = \psi'$. Now, $\overline{\alpha}(\overline{\rho}A) = \psi'(A) = \psi'(B) = \overline{\alpha}(\overline{\rho}B)$, hence α is a unifier of $\overline{\rho}A$ and $\overline{\rho}B$; we can take the most general unifier to be ψ , so $\overline{\beta} \circ \psi = \overline{\alpha}$; and finally, $\overline{\beta} \circ (\overline{\psi} \circ \rho) = \overline{\alpha} \circ \rho = \psi'$.

We also need to prove that the unification algorithm terminates. Firstly, we note that every substitution generated by the algorithm is either the identity or it removes at least one type variable. We can perform induction on the size of the argument on all clauses except for clause 5, where a substitution is applied and the number of type variables is reduced. Therefore, we need to apply induction on the number of type variables and only then apply induction on the size of the arguments.

Using unification, we can define type inference.

Theorem 5 (Type inference). The algorithm typeinfer(M, B), defined as follows, finds the most general substitution σ such that $x_1 : \sigma A_1, \ldots, x_n : \sigma A_n \vdash M : \overline{\sigma} B$ is a valid typing judgment if it exists; and fails otherwise.

- 1. typeinfer($x_i : A_i, \Gamma \vdash x_i : B$) = unify(A_i, B);
- 2. $\operatorname{typeinfer}(\Gamma \vdash MN : B) = \overline{\varphi} \circ \psi$, where $\psi = \operatorname{typeinfer}(\Gamma \vdash M : x \to B)$ and $\varphi = \operatorname{typeinfer}(\overline{\psi}\Gamma \vdash N : \overline{\psi}x)$ for a fresh type variable x;
- 3. $typeinfer(\Gamma \vdash \lambda x.M : B) = \overline{\varphi} \circ \psi \text{ where } \psi = unify(B; z \to z') \text{ and } \varphi = typeinfer(\overline{\psi}\Gamma, x : \overline{\psi}z \vdash M : \overline{\psi}z') \text{ for fresh type variables } z, z'.$

Note that the existence of fresh type variables is always asserted by the set of type variables being infinite. The output of this algorithm is defined up to a permutation of type variables.

Proof. The algorithm terminates by induction on the size of *M*. It is easy to check by structural induction that the inferred type judgments are in fact valid. If the algorithm fails, by Lemma 4, it is also clear that the type inference is not possible.

On the first case, the type is obviously the most general substitution by virtue of the previous Lemma 4. On the second case, if α were another possible substitution, in particular, it should be less general than ψ , so $\alpha = \beta \circ \psi$. As β would be then a possible substitution making $\overline{\psi}\Gamma \vdash N : \overline{\psi}x$ valid, it should be less general than φ , so $\alpha = \overline{\beta} \circ \psi = \overline{\gamma} \circ \overline{\varphi} \circ \beta$. On the third case, if α were another possible substitution, it should unify B to a function type, so $\alpha = \overline{\beta} \circ \psi$. Then β should make the type inference $\overline{\psi}\Gamma, x : \overline{\psi}z \vdash M : \overline{\psi}z'$ possible, so $\beta = \overline{\gamma} \circ \varphi$. We have proved that the inferred type is in general the most general one.

Corollary 2 (Principal type property). Every typeable pure λ -term has a principal type.

Proof. Given a typeable term M, we can compute typeinfer $(x_1 : A_1, ..., x_n : A_n \vdash M : B)$, where $x_1, ..., x_n$ are the free variables on M and $A_1, ..., A_n$, B are fresh type

variables. By virtue of Theorem 5, the result is the most general type of M if we assume the variables to have the given types.

2.5 SUBJECT REDUCTION AND NORMALIZATION

A crucial property is that type inference and β -reductions do not interfere with each other. A term can be β -reduced without changing its type.

Theorem 6 (Subject reduction). *The type is preserved on* β -reductions; that is, if $\Gamma \vdash M : A$ and and $M \twoheadrightarrow_{\beta} M'$, then $\Gamma \vdash M' : A$.

Proof. If M' has been derived by β -reduction, $M = (\lambda x.P)$ and M' = P[Q/x]. $\Gamma \vdash M : A$ implies $\Gamma, x : B \vdash P : A$ and $\Gamma \vdash Q : B$. Again by structural induction on P (where the only crucial case uses that x and Q have the same type) we can prove that substitutions do not alter the type and thus, $\Gamma, Q : B \vdash P[Q/x] : A$.

We have seen previously that the term $\Omega = (\lambda x.xx)(\lambda x.xx)$ is not weakly normalizing; but it is also non-typeable. In this section we will prove that, in fact, every typeable term is strongly normalizing. We start proving some lemmas about the notion of *reducibility*, which will lead us to the Strong Normalization Theorem. This proof will follow [GTL89].

The notion of *reducibility* is an abstract concept originally defined by Tait in [Tai67] which we will use to ease this proof. It should not be confused with the notion of β -reduction.

Definition 25 (Reducibility). We inductively define the set of **reducible** terms of type *T* for basic and arrow types.

- If t : T where T a basic type, $t \in RED_T$ if t is strongly normalizable.
- If $t: U \to V$, an arrow type, $t \in RED_{U \to V}$ if $t \ u \in RED_V$ for all $u \in RED_U$.

Properties of reducibility will be used directly in the Strong Normalization Theorem. We prove three of them at the same time in order to use mutual induction.

Proposition 1 (Properties of reducibility). *The following three properties hold;*

- 1. *if* $t \in RED_T$, then t is strongly normalizable;
- 2. if $t \in RED_T$ and $t \to_{\beta} t'$, $t' \in RED_T$; and
- 3. if t is not a λ -abstraction and $t' \in RED_T$ for every $t \to_{\beta} t'$, then $t \in RED_T$.

Proof. For basic types,

- 1. holds trivially;
- 2. holds by the definition of strong normalization;

3. if any one-step β -reduction leads to a strongly normalizing term, the term itself must be strongly normalizing.

For arrow types,

- 1. if x : U is a variable, we can inductively apply (3) to get $x \in RED_U$; then, $t \in RED_V$ is strongly normalizing and t in particular must be strongly normalizing;
- 2. if $t \to_{\beta} t'$ then for every $u \in RED_U$, $t \ u \in RED_V$ and $t \ u \to_{\beta} t'$ u. By induction, $t' \ u \in RED_V$;
- 3. if $u \in \text{RED}_U$, it is strongly normalizable. As t is not a λ -abstraction, he term t u can only be reduced to t' u or t u'. If $t \to_{\beta} t'$; by induction, t' $u \in \text{RED}_V$. If $u \to_{\beta} u'$, we could proceed by induction over the length of the longest chain of β -reductions starting from u and assume that t u' is irreducible. In every case, we have proved that t u only reduces to already reducible terms; thus, t $u \in \text{RED}_U$.

Lemma 5 (Abstraction lemma). *If* $v[u/x] \in \text{RED}_V$ *for all* $u \in \text{RED}_U$, *then* $\lambda x.v \in \text{RED}_{U \to V}$.

Proof. We apply induction over the sum of the lengths of the longest *β*-reduction sequences from v[x/x] and u. The term $(\lambda x.v)u$ can be β -reduced to

- $v[u/x] \in RED_U$; in the base case of induction, this is the only choice;
- $(\lambda x.v')u$ where $v \to_{\beta} v'$, and, by induction, $(\lambda x.v')u \in \text{RED}_V$;
- $(\lambda x.v)u'$ where $u \to_{\beta} u'$, and, again by induction, $(\lambda x.v)u' \in RED_V$.

Thus, by Proposition 1, $(\lambda x.v) \in \text{RED}_{U \to V}$.

A final lemma is needed before the proof of the Strong Normalization Theorem. It is a generalization of the main theorem, useful because of the stronger induction hypothesis it provides.

Lemma 6 (Strong Normalization lemma). *Given an arbitrary* t: T *with free variables* $x_1: U_1, \ldots, x_n: U_n$, and reducible terms $u_1 \in \text{RED}_{U_1}, \ldots, u_n \in \text{RED}_{U_2}$, we know that

$$t[u_1/x_1][u_2/x_2]\dots[u_n/x_n]\in \mathtt{RED}_T.$$

Proof. We call $\tilde{t} = t[u_1/x_1][u_2/x_2]...[u_n/x_n]$ and apply structural induction over t,

- if $t = x_i$, then we simply use that $u_i \in RED_{U_i}$,
- if t = v w, then we apply induction hypothesis to get $\tilde{v} \in \text{RED}_{R \to T}$, $\tilde{w} \in \text{RED}_R$ for some type R. Then, by definition, $\tilde{t} = \tilde{v}$ $\tilde{w} \in \text{RED}_T$,
- if $t = \lambda y.v : R \to S$, then by induction $\tilde{v}[r/y] \in \text{RED}_S$ for every r : R. We can then apply Lemma 5 to get that $\tilde{t} = \lambda y.\tilde{v} \in \text{RED}_{R \to S}$. \square

Theorem 7 (Strong Normalization Theorem). *In simply typed* λ -calculus, all terms are strongly normalizing.

Proof. It is the particular case of Lemma 6 where we take $u_i = x_i$.

Every term normalizes in simply typed λ -calculus and every computation ends. We know, however, that the Halting Problem is unsolvable, so simply typed λ -calculus must be not Turing complete.

THE CURRY-HOWARD CORRESPONDENCE

3.1 EXTENDING THE SIMPLY TYPED λ -CALCULUS

We will add now special syntax for some terms and types, such as pairs, unions and unit types. This syntax will make our λ -calculus more expressive, but the unification and type inference algorithms will continue to work. The previous proofs and algorithms can be extended to cover all the new cases.

Definition 26 (Simple types II). The new set of **simple types** is given by the following BNF

Type ::=
$$\iota \mid \text{Type} \rightarrow \text{Type} \mid \text{Type} \times \text{Type} \mid \text{Type} + \text{Type} \mid 1 \mid 0$$
,

where ι would be any basic type.

That is to say that, for any given types A, B, there exists a product type $A \times B$, consisting of the pairs of elements where the first one is of type A and the second one of type B; there exists the union type A + B, consisting of a disjoint union of tagged terms from A or B; an unit type 1 with only an element, and an empty or void type 0 without inhabitants. The raw typed λ -terms are extended to use these new types.

Definition 27 (Raw typed lambda terms II). The new set of raw **typed lambda terms** is given by the BNF

$$\begin{split} \operatorname{Term} &::= x \mid \operatorname{TermTerm} \mid \lambda x. \operatorname{Term} \mid \\ & \left\langle \operatorname{Term}, \operatorname{Term} \right\rangle \mid \pi_1 \operatorname{Term} \mid \pi_2 \operatorname{Term} \mid \\ & \operatorname{inl} \operatorname{Term} \mid \operatorname{inr} \operatorname{Term} \mid \operatorname{case} \operatorname{Term} \operatorname{of} \operatorname{Term}; \operatorname{Term} \mid \\ & \operatorname{abort} \operatorname{Term} \mid * \end{split}$$

The use of these new terms is formalized by the following extended set of typing rules.

1. The (var) rule simply makes explicit the type of a variable from the context.

$$(var) \frac{}{\Gamma \cdot x : A \vdash x : A}$$

2. The (abs) gives the type of a λ -abstraction as the type of functions from the variable type to the result type. It acts as a constructor of function terms.

$$(abs) \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x.M : A \rightarrow B}$$

3. The (app) rule gives the type of a well-typed application of a lambda term. A term $f: A \to B$ applied to a term a: A is a term of type B. It acts as a destructor of function terms.

$$(app) \frac{\Gamma \vdash f : A \to B \qquad \Gamma \vdash a : A}{\Gamma \vdash fa : B}$$

4. The (*pair*) rule gives the type of a pair of elements. It acts as a constructor of pair terms.

$$(pair) \frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash \langle a, b \rangle : A \times B}$$

5. The (π_1) rule extracts the first element from a pair. It acts as a destructor of pair terms.

$$(\pi_1)$$
 $\frac{\Gamma \vdash m : A \times B}{\Gamma \vdash \pi_1 \ m : A}$

6. The (π_1) rule extracts the second element from a pair. It acts as a destructor of pair terms.

$$(\pi_2)\frac{\Gamma \vdash m : A \times B}{\Gamma \vdash \pi_2 \ m : B}$$

7. The (*inl*) rule creates a union type from the left side type of the sum. It acts as a constructor of union terms.

$$(inl) \frac{\Gamma \vdash a : A}{\Gamma \vdash \text{inl } a : A + B}$$

8. The (*inr*) rule creates a union type from the right side type of the sum. It acts as a constructor of union terms.

$$(inr) \frac{\Gamma \vdash b : B}{\Gamma \vdash inr \ b : A + B}$$

9. The (*case*) rule extracts a term from an union and applies the appropriate deduction on any of the two cases

(case)
$$\frac{\Gamma \vdash m : A + B \quad \Gamma, a : A \vdash n : C \quad \Gamma, b : B \vdash p : C}{\Gamma \vdash (\text{case } m \text{ of } [a].n; \ [b].p) : C}$$

Note that we write [a].n and [b].p to indicate that n and p depend on a and b respectively.

10. The (*) rule simply creates the only element of 1. It is a constructor of the unit type.

$$(*)$$
 $\Gamma \vdash *:1$

11. The (abort) rule extracts a term of any type from the void type.

$$(abort) \frac{\Gamma \vdash M : 0}{\Gamma \vdash abort_A M : A}$$

The abort function must be understood as the unique function going from the empty set to any given set.

The β -reduction of terms is defined the same way as for the untyped λ -calculus; except for the inclusion of β -rules governing the new terms, each for every new destruction rule.

- 1. Function application, $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$.
- 2. First projection, $\pi_1 \langle M, N \rangle \rightarrow_{\beta} M$.
- 3. Second projection, $\pi_2 \langle M, N \rangle \rightarrow_{\beta} N$.
- 4. Case rule, (case m of [a].N; [b].P) $\rightarrow_{\beta} Na$ if m is of the form m = inl a; and (case m of [a].N; [b].P) $\rightarrow_{\beta} Pb$ if m is of the form m = inr b.

On the other side, new η -rules are defined, each for every new construction rule.

- 1. Function extensionality, $\lambda x.Mx \rightarrow_{\eta} M$.
- **2.** Definition of product, $\langle \pi_1 M, \pi_2 M \rangle \rightarrow_{\eta} M$.
- 3. Uniqueness of unit, $M \rightarrow_{\eta} *$.
- 4. Case rule, (case m of [a].P[inl a/c]; $[b].P[\text{inr } b/c]) \rightarrow_{\eta} P[m/c]$.

3.2 NATURAL DEDUCTION

The natural deduction is a logical system due to Gentzen. We introduce it here following [Sel13] and [Wad15]. Its relationship with the simply-typed lambda calculus will be made explicit in the next section.

We will use the logical binary connectives \rightarrow , \land , \lor , and two given propositions, \top , \bot representing the trivially true and false propositions, respectively. The rules defining natural deduction come in pairs; there are introductors and eliminators for every connective. Every introductor uses a set of assumptions to generate a formula and every eliminator gives a way to extract precisely that set of assumptions.

1. Every axiom on the context can be used.

$$\overline{\Gamma,A\vdash A}$$
 (Ax)

2. Introduction and elimination of the \rightarrow connective. Note that the elimination rule corresponds to *modus ponens* and the introduction rule corresponds to the *deduction theorem*.

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} (I_{\to}) \quad \frac{\Gamma \vdash A \to B}{\Gamma \vdash B} \quad \Gamma \vdash A \to B$$

3. Introduction and elimination of the \land connective. Note that the introduction in this case takes two assumptions, and there are two different elimination rules.

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} (I_{\land}) \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} (E_{\land}^{1}) \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} (E_{\land}^{2})$$

4. Introduction and elimination of the \lor connective. Here, we need two introduction rules to match the two assumptions we use on the eliminator.

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} (I^1_{\lor}) \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} (I^2_{\lor}) \quad \frac{\Gamma \vdash A \lor B}{\Gamma \vdash C} (E_{\lor})$$

5. Introduction for \top . It needs no assumptions and, consequently, there is no elimination rule for it.

$$\Gamma \vdash \top$$
 (I_{\top})

6. Elimination for \bot . It can be eliminated in all generality, and, consequently, there are no introduction rules for it. This elimination rule represents the "ex falsum quodlibet" principle that says that falsity implies anything.

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash C} (E_{\bot})$$

Proofs on natural deduction are written as deduction trees, and they can be simplified according to some simplification rules, which can be applied anywhere on the deduction tree. On these rules, a chain of dots represents any given part of the deduction tree.

1. An implication and its antecedent can be simplified using the antecedent directly on the implication.

$$\begin{array}{cccc}
 [A] & & & & \\
 & 1 & & & \\
 \vdots & & 2 & & A \\
 & \underline{B} & \vdots & & & 1 \\
 & \underline{A \to B} & A & & & \vdots \\
 & \underline{B} & & & & & \\
 & \underline{B} & & & & & \\
 & \vdots & & & & \\
 & \vdots & & & & \\
\end{array}$$

2. The introduction of an unused conjunction can be simplified as

$$\begin{array}{ccc}
\stackrel{1}{\vdots} & \stackrel{2}{\vdots} \\
\underline{A & B} \\
\underline{A \land B} \\
\underline{A} & \Longrightarrow & \stackrel{1}{\vdots} \\
\underline{A} & \vdots
\end{array}$$

and, similarly, on the other side as

$$\begin{array}{ccc}
 & 1 & 2 \\
 & \vdots & \vdots \\
 & \underline{A & B} \\
 & \underline{A \wedge B} \\
 & \underline{B} \\
 & \vdots & \vdots
\end{array}$$

$$\Rightarrow \quad \frac{B}{\vdots}$$

3. The introduction of a disjunction followed by its elimination can be also simplified

and a similar pattern is used on the other side of the disjunction

3.3 PROPOSITIONS AS TYPES

In 1934, Curry observed in [Cur34] that the type of a function $(A \to B)$ could be read as an implication and that the existence of a function of that type was equivalent to the provability of the proposition. Previously, the **Brouwer-Heyting-Kolmogorov interpretation** of intuitionistic logic had given a definition of what it meant to be a proof of an intuinistic formula, where a proof of the implication $(A \to B)$ was a function converting a proof of A into a proof of B. It was not until 1969 that Howard pointed a deep correspondence between the simply-typed λ -calculus and the natural deduction at three levels

- 1. propositions are types.
- 2. proofs are programs.

3. simplification of proofs is the evaluation of programs.

In the case of simply typed λ -calculus and natural deduction, the correspondence starts when we describe the following one-to-one relation between types and propositions.

Types	Propositions
Unit type (1)	Truth (⊤)
Product type (\times)	Conjunction (∧)
Union type (+)	Disjunction (∨)
Function type (\rightarrow)	Implication (\rightarrow)
Empty type (0)	False (⊥)

Where, in particular, the negation of a proposition $\neg A$ is interpreted as the fact that that proposition implies falsehood, $A \to \bot$; and its corresponding type is a function from the type A to the empty type, $A \to 0$.

Now it is easy to notice that every deduction rule for a proposition has a correspondence with a typing rule. The only distinction between them is the appearance of λ -terms on the first set of rules. As every typing rule results on the construction of a particular kind of λ -term, they can be interpreted as encodings of proof in the form of derivation trees. That is, terms are proofs of the propositions represented by their types.

Example 2 (Curry-Howard correspondence example). In particular, the typing derivation of the term

$$\lambda a.\lambda b.\langle a,b\rangle$$

can be seen as a deduction tree proving $A \to B \to A \land B$; as the following diagram shows, in which terms are colored in **red** and types are colored in *blue*.

$$\frac{\frac{\texttt{a} : A \quad \texttt{b} : B}{\texttt{} : A \times B} (pair)}{\lambda \texttt{b.} : B \to A \times B} (abs)}$$

$$\frac{\lambda \texttt{b.} : B \to A \times B}{\lambda \texttt{a.} \lambda \texttt{b.} : A \to B \to A \times B} (abs)$$

Furthermore, under this interpretation, *simplification rules are precisely* β -reduction rules. This makes execution of λ -calculus programs correspond to proof simplification on natural deduction. The Curry-Howard correspondence is then not only a simple bijection between types and propositions, but a deeper isomorphism regarding the way they are constructed, used in derivations, and simplified.

Example 3 (Curry-Howard simplification example). As an example of this duality, we will write a proof/term of the proposition/type A \rightarrow B + A and we are going to simplify/compute it using proof simplification rules/ β -rules. Similar examples can be found in [Wad15].

We start with the following derivation tree; in which terms are colored in **red** and types are colored in *blue*

$$\frac{\text{b}:[A+B]}{\text{case b of [c].inr c; [c].inl c}} \frac{\text{c}:B}{\text{inl c}:B+A} (inl) \frac{\text{c}:B+A}{\text{(case)}} (case) \frac{\text{a}:A}{\text{inl a}:A+B} (inl) \frac{\text{b.case b of [c].inr c; [c].inl c}}{\text{c}:B+A} (abs) \frac{\text{a}:A}{\text{inl a}:A+B} (app) \frac{\text{c}:B+A}{\text{c}:A+B+A} (abs) \frac{\text{c}:B+A}{\text{c}:A+B+A} (abs)} (app) \frac{\text{c}:B+A}{\text{c}:A+B+A} (abs)}{\text{c}:A+B+A} (abs)$$

which is encoded by the term $\lambda a.(\lambda c.case\ c\ of\ [a].inr\ a;\ [b].inl\ b)\ (\lambda z.inl\ z).$ We apply the simplification rule/ β -rule of the implication/function application to get

which is encoded by the term $\lambda a.case$ (inl a) of (inr) (inl). We finally apply the case simplification/reduction rule to get

$$\frac{\mathsf{a} : A}{\mathsf{inr} \; \mathsf{a} : B + A} (inr)$$

$$\lambda \; \mathsf{a.inr} \; \mathsf{a} : A \to B + A$$

which is encoded by $\lambda a.(inr a)$.

On the chapter on Mikrokosmos, we develop a λ -calculus interpreter which is able to check and simplify proofs in intuitionistic logic. This example could be checked and simplified by this interpreter as it is shown in image 1.

```
1 :types on
  # Evaluates this term
4 \a.((\c.Case c Of inr; inl)(INL a))
  # Draws the deduction tree
@ \a.((\c.Case c Of inr; inl)(INL a))
  9 # Simplifies the deduction tree
 10 @@ \a.((\c.Case c Of inr; inl)(INL a))
  evaluate
types: on
λa.ınr a ⇒ inr :: A → B + A
                                     c :: B
                               ınl c ∷ B + A
 ιnr c :: B + A
                                                              b :: A + B
                                                                          -(Case)
            case b of \lambda c.inr c; \lambda c.inl c :: B + A
                                                                                            inl a :: A + B
      \lambda b.case \ b \ of \ \lambda c.inr \ c; \ \lambda c.inl \ c :: (A + B) \rightarrow B + A
                        (\lambda b.case\ b\ of\ \lambda c.inr\ c;\ \lambda c.inl\ c) (inl a) :: B + A
                     \lambda a.(\lambda b._{CASE} \ b \ of \ \lambda c._{Inr} \ c; \ \lambda c._{Inl} \ c) \ (inl \ a) :: A \rightarrow B + A
       a :: A
                     -(ınr)
  ιnr a :: B + A
 \lambda a. \iota nr a :: A \rightarrow B + A
```

Figure 1: Curry-Howard example in Mikrokosmos.

OTHER TYPE SYSTEMS

4.1 λ -CUBE

The λ -cube is a taxonomy for Church-style type systems given by Barendregt in [Bar92]. It describes eight type systems based on the λ -calculus along three axes, representing three properties of the systems. These properties are

1. **parametric polymorphism**, terms that depend on types. This is achieved via universal quantification over types. It allows type variables and binders for them. An example is the following parametric identity function

id
$$\equiv \Lambda \tau . \lambda x . x : \forall \tau . \tau \rightarrow \tau$$
,

that can be applied to any particular type σ to obtain the specific identity function for that type as

$$id_{\sigma} \equiv \lambda x.x : \sigma \rightarrow \sigma.$$

System F is the simplest type system on the cube implementing polymorphism.

- 2. **type operators**, types that depend on types.
- 3. **dependent types**, types that depend on terms.

The following type systems

- Simply typed λ -calculus (λ_{\rightarrow}) ;
- **System F** (*λ*2);
- typed λ -calculus with **dependent types** ($\lambda\Pi$);
- typed λ -calculus with **type operators** ($\lambda \underline{\omega}$);
- System F-omega $(\lambda \omega)$;

The λ -cube is generalized by the theory of pure type systems.

All systems on the λ -cube are strongly normalizing.

A different approach to higher-order type systems will be presented in the chapter on Type Theory.

Part II

MIKROKOSMOS

We have developed **Mikrokosmos**, an untyped and simply typed λ -calculus interpreter written in the purely functional programming language Haskell [HHJWo7]. It aims to provide students with a tool to learn and understand λ -calculus and the relation between logic and types.

IMPLEMENTATION OF λ -EXPRESSIONS

5.1 THE HASKELL PROGRAMMING LANGUAGE

Haskell is the purely functional programming language of our choice to implement Mikrokosmos, our λ -calculus interpreter. Its own design is heavily influenced by the λ -calculus and is a general-purpose language with a rich ecosystem and plenty of consolidated libraries¹ in areas such as parsing, testing or system interaction; matching the requisites of our project. In the following sections, we describe this ecosystem in more detail.

In the 1980s, many lazy programming languages were independently being written by researchers such as *Miranda*, *Lazy ML*, *Orwell*, *Clean* or *Daisy*. All of them were similar in expressive power, but their differences were holding back the efforts to communicate ideas on functional programming. A comitee was created in 1987 with the mission of designing a common lazy functional language. Several versions of the language were developed, and the first standarized reference of the language was published in the **Haskell 98 Report**, whose revised version can be read in [P⁺03]. Its more popular implementation is the **Glasgow Haskell Compiler (GHC)**; an open source compiler written in Haskell and C. The complete history of Haskell and its design decisions is detailed on [HHJW07]. Haskell is

- 1. **strongly and statically typed**, meaning that it only compiles well-typed programs and it does not allow implicit type casting; the compiler will generate an error if a term is non-typeable;
- 2. **lazy**, with *non-strict semantics*, meaning that it will not evaluate a term or the argument of a function until it is needed; in [Hug89], John Hughes, codesigner of the language, argues for the benefits of a lazy functional language, which could solve the traditional efficiency problems on functional programming;
- 3. **purely functional**; as the evaluation order is demand-driven and not explicitly known, it is not possible in practice to perform ordered input/output actions or

^{1 :} In the central package archive of the Haskell community, Hackage, a categorized list of libraries can be found: https://hackage.haskell.org/packages/

- any other side-effects by relying on the evaluation order; this helps modularity of the code, testing, and verfication;
- 4. **referentially transparent**; as a consequence of its purity, every term on the code could be replaced by its definition without changing the global meaning of the program; this allows equational reasoning with rules that are directly derived from λ -calculus;
- 5. based on **System** $F\omega$ with some restrictions; crucially, it implements **System** F adding quantification over type operators even if it does not allow abstraction on type operators; the GHC Haskell compiler, however, allows the user to activate extensions that implement dependent types.

Example 4 (A first example in Haskell). This example shows the basic syntax and how its type system and its implicit laziness can be used.

```
-- The type of the term can be declared.

id :: a -> a -- Polymorphic type variables are allowed,

id x = x -- and the function is defined equationally.

-- This definition performs short circuit evaluation thanks

-- to laziness. The unused argument can be omitted.

(&&) :: Bool -> Bool

True && x = x -- (true and x) is always x

False && _ = False -- (false and y) is always false

-- Laziness also allows infinite data structures.

nats :: [Integer] -- List of all natural numbers,

nats = 1 : map (+1) nats -- defined recursively.
```

Where most imperative languages use semicolons to separate sequential commands, Haskell has no notion of sequencing, and programs are written in a purely declarative way. A Haskell program essentially consist on a series of definitions (of both types and terms) and type declarations. The following example shows the definition of a binary tree and its preorder as

```
-- A tree is either empty or a node with two subtrees.

data Tree a = Empty | Node a (Tree a) (Tree a)

-- The preorder function takes a tree and returns a list

preorder :: Tree a -> [a]

preorder Empty = []

preorder (Node x lft rgt) = preorder lft ++ [x] ++ preorder rgt
```

We can see on the previous example that function definitions allow *pattern matching*, that is, data constructors can be used in definitions to decompose values of the type. This increases readability when working with algebraic data types.

While infix operators are allowed, function application is left-associative in general. Definitions using partial application are allowed, meaning that functions on multiple

arguments can use currying and can be passed only one of its arguments to define a new function. For example, a function that squares every number on a list could be written in two ways as

```
squareList :: [Int] -> [Int]
squareList list = map square list
squareList' :: [Int] -> [Int]
squareList' = map square
```

where the second one, because of its simplicity, is usually preferred. A characteristic piece of Haskell are **type classes**, which allow defining common interfaces for different types. In the following example, we define Monad as the type class of types with suitably typed return and bind operators.

```
class Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> m b) -> m b
```

And lists, for example, are monads in this sense.

Haskell uses monads in varied forms. They are used in I/O, error propagation and stateful computations. Another characteristical syntax bit of Haskell is the do notation, which provides a nicer, cleaner way to work with types that happen to be monads. The following example uses the list monad to compute the list of Pythagorean triples.

Note that this list is infinite. As the language is lazy, this does not represent a problem: the list will be evaluated only on demand.

Another common example of an instance of the Monad typeclass is the *Maybe monad* used to deal with error propagation. A Maybe a type can consist of a term of type a, written as Just a; or as a Nothing constant, signalling an error. The monad is then defined as

```
instance Monad Maybe where
  return x = Just x
  xs >>= f = case xs of Nothing -> Nothing | Just a -> Just (f a)
```

and can be used as in the following example to use *exception-like* error treatment in a pure declarative language

For a more detailed treatment of monads, and their relation to categorical monads, see the chapter on Category Theory and the chapter on Type Theory, where we will program with monads in Agda.

```
5.2 DE BRUIJN INDEXES
```

Nicolaas Govert **De Bruijn** proposed in [dB72] a way of defining λ -terms modulo α -conversion based on indices. The main goal of De Bruijn indices is to remove all variables from binders and replace every variable on the body of an expression with a number, called *index*, representing the number of λ -abstractions in scope between the ocurrence and its binder.

Consider the following example: the λ -term

$$\lambda x.(\lambda y. y(\lambda z. yz))(\lambda t.\lambda z. tx)$$

can be written with de Bruijn indices as

$$\lambda (\lambda(1\lambda(21)) \lambda\lambda(23)).$$

De Bruijn also proposed a notation for the λ -calculus changing the order of binders and λ -applications. A review on the syntax of this notation, its advantages and De Bruijn indexes, can be found in [Kamo1]. In this section, we are going to describe De Bruijn indexes while preserving the usual notation of λ -terms; that is, the *De Bruijn indexes* and the *De Bruijn notation* are different concepts and we are going to use only the former.

Definition 28 (De Bruijn indexed terms). We define recursively the set of λ -terms using de Bruijn notation following this BNF

$$\begin{aligned} \text{Exp} &::= \underbrace{\mathbb{N}}_{variable} \mid \underbrace{(\lambda \text{ Exp})}_{abstraction} \mid \underbrace{(\text{Exp Exp})}_{application} \\ \mathbb{N} &::= 0 \mid 1 \mid 2 \mid \dots \end{aligned}$$

Our internal definition closely matches the formal one. The names of the constructors here are Var, Lambda and App:

```
-- | A lambda expression using DeBruijn indexes.

data Exp = Var Integer -- ^ integer indexing the variable.

| Lambda Exp -- ^ lambda abstraction

| App Exp Exp -- ^ function application

deriving (Eq, Ord)
```

This notation avoids the need for the Barendregt's variable convention and the α -reductions. It will be useful to implement λ -calculus without having to worry about the specific names of variables.

5.3 SUBSTITUTION

We define the substitution operation needed for the β -reduction on de Bruijn indices. In order to define the substitution of the n-th variable by a λ -term P on a given term, we must

- find all the ocurrences of the variable. At each level of scope we are looking for the successor of the number we were looking for before;
- decrease the higher variables to reflect the disappearance of a lambda;
- replace the ocurrences of the variables by the new term, taking into account that free variables must be increased to avoid them getting captured by the outermost lambda terms.

In our code, we apply Subs to any expression. When it is applied to a λ -abstraction, the index and the free variables of the replaced term are increased with increment-FreeVars; whenever it is applied to a variable, the previous cases are taken into consideration.

```
-- | Substitutes an index for a lambda expression

subs :: Integer -> Exp -> Exp -> Exp

subs n p (Lambda e) = Lambda (subs (n+1) (incrementFreeVars o p) e)

subs n p (App f g) = App (subs n p f) (subs n p g)

subs n p (Var m)

| n == m = p -- The lambda is replaced directly
```

```
| n < m = Var (m-1) -- A more exterior lambda decreases a number
| otherwise = Var m -- An unrelated variable remains untouched
```

Then β -reduction can be defined using this subs function.

```
betared :: Exp -> Exp
betared (App (Lambda e) x) = substitute 1 x e
betared e = e
```

```
5.4 DE BRUIJN-TERMS AND \lambda-TERMS
```

The internal language of the interpreter uses de Bruijn expressions, while the user interacts with it using lambda expressions with alphanumeric variables. Our definition of a λ -expression with variables will be used in parsing and output formatting.

The translation from a natural λ -expression to de Bruijn notation is done using a dictionary which keeps track of the bounded variables

```
tobruijn :: Map.Map String Integer -- ^ names of the variables used
                                   -- ^ names already binded on the scope
         -> Context
                                   -- ^ initial expression
         -> NamedLambda
         -> Exp
-- Every lambda abstraction is inserted in the variable dictionary,
-- and every number in the dictionary increases to reflect we are entering
-- a deeper context.
tobruijn d context (LambdaAbstraction c e) =
     Lambda $ tobruijn newdict context e
        where newdict = Map.insert c 1 (Map.map succ d)
-- Translation distributes over applications.
tobruijn d context (LambdaApplication f g) =
     App (tobruijn d context f) (tobruijn d context g)
-- We look for every variable on the local dictionary and the current scope.
tobruijn d context (LambdaVariable c) =
  case Map.lookup c d of
    Just n -> Var n
    Nothing -> fromMaybe (Var o) (MultiBimap.lookupR c context)
```

while the translation from a de Bruijn expression to a natural one is done considering an infinite list of possible variable names and keeping a list of currently-on-scope variables to name the indices.

```
-- | An infinite list of all possible variable names
-- in lexicographical order.
variableNames :: [String]
variableNames = concatMap (replicateM ['a'..'z']) [1..]
-- | A function translating a deBruijn expression into a
-- natural lambda expression.
nameIndexes :: [String] -> [String] -> Exp -> NamedLambda
nameIndexes _
                     (Var o) = LambdaVariable "undefined"
nameIndexes used _
                   (Var n) =
  LambdaVariable (used !! pred (fromInteger n))
nameIndexes used new (Lambda e) =
  LambdaAbstraction (head new) (nameIndexes (head new:used) (tail new) e)
nameIndexes used new (App f g) =
  LambdaApplication (nameIndexes used new f) (nameIndexes used new g)
```

5.5 EVALUATION

As we proved on Corollary 1, the leftmost reduction strategy will find the normal form of any given term provided that it exists. Consequently, we will implement reduction in our interpreter using a function that simply applies the leftmost possible reductions at each step. As a side benefit, this will allow us to show how the interpreter performs step-by-step evaluations to the final user, as discussed in the verbose mode section.

```
-- | Simplifies the expression recursively.
-- Applies only one parallel beta reduction at each step.
simplify :: Exp -> Exp
simplify (Lambda e)
                              = Lambda (simplify e)
simplify (App (Lambda f) x) = betared (App (Lambda f) x)
simplify (App (Var e) x)
                             = App (Var e) (simplify x)
                             = App (simplify a) (simplify b)
simplify (App a b)
simplify (Var e)
                              = Var e
-- | Applies repeated simplification to the expression until it stabilizes and
-- returns all the intermediate results.
simplifySteps :: Exp -> [Exp]
simplifySteps e
  | e == s
           = [e]
```

```
| otherwise = e : simplifySteps s
where s = simplify e
```

From the code we can see that the evaluation finishes whenever the expression stabilizes. This can happen in two different cases

- there are no more possible β -reductions, and the algorithm stops; or
- β -reductions do not change the expression. The computation would lead to an infinite loop, so it is immediately stopped. An common example of this is the λ -term $(\lambda x.xx)(\lambda x.xx)$.

5.6 PRINCIPAL TYPE INFERENCE

The interpreter implements the unification and type inference algorithms described in Lemma 4 and Theorem 5. Their recursive nature makes them very easy to implement directly on Haskell. We implement a simply-typed lambda calculus with Curry-style typing and type templates. Our type system has

- an unit type;
- a void type;
- product types;
- union types;
- and function types.

We will work with substitutions on type templates. They can be directly defined as functions from types to types. A basic substitution that inserts a given type on the place of a variable will be our building block for more complex ones.

```
| otherwise = Tvar y

subs x typ (Arrow a b) = Arrow (subs x typ a) (subs x typ b)

subs x typ (Times a b) = Times (subs x typ a) (subs x typ b)

subs x typ (Union a b) = Union (subs x typ a) (subs x typ b)

subs _ _ Unitty = Unitty

subs _ _ Bottom = Bottom
```

Unification will be implemented making extensive use of the Maybe monad. If the unification fails, it will return an error value, and the error will be propagated to the whole computation. The algorithm is exactly the same that was defined in Lemma 4.

```
-- | Unifies two types with their most general unifier. Returns the substitution
-- that transforms any of the types into the unifier.
unify :: Type -> Type -> Maybe Substitution
unify (Tvar x) (Tvar y)
  | x == y
              = Just id
  | otherwise = Just (subs x (Tvar y))
unify (Tvar x) b
  occurs x b = Nothing
  | otherwise = Just (subs x b)
unify a (Tvar y)
  | occurs y a = Nothing
  | otherwise = Just (subs y a)
unify (Arrow a b) (Arrow c d) = unifypair (a,b) (c,d)
unify (Times a b) (Times c d) = unifypair (a,b) (c,d)
unify (Union a b) (Union c d) = unifypair (a,b) (c,d)
unify Unitty Unitty = Just id
unify Bottom Bottom = Just id
unify _ _ = Nothing
-- | Unifies a pair of types
unifypair :: (Type,Type) -> (Type,Type) -> Maybe Substitution
unifypair (a,b)(c,d) = do
  p <- unify b d
  q <- unify (p a) (p c)</pre>
  return (q . p)
```

The type inference algorithm is more involved. It takes a list of fresh variables, a type context, a lambda expression and a constraint on the type, expressed as a type template. It outputs a substitution. As an example, the following code shows the type inference algorithm for function types.

^{-- |} Type inference algorithm. Infers a type from a given context and expression -- with a set of constraints represented by a unifier type. The result type must -- be unifiable with this given type.

```
typeinfer :: [Variable] -- ^ List of fresh variables
          -> Context -- ^ Type context
                      -- ^ Lambda expression whose type has to be inferred
          -> Exp
                   -- ^ Constraint
          -> Type
          -> Maybe Substitution
typeinfer (x:vars) ctx (App p q) b = do -- Writing inside the Maybe monad.
  sigma <- typeinfer (evens vars) ctx
                                                      p (Arrow (Tvar x) b)
      <- typeinfer (odds vars) (applyctx sigma ctx) q (sigma (Tvar x))
  return (tau . sigma)
 where
   -- The list of fresh variables has to be split into two
   odds [] = []
   odds [_] = []
   odds (_:e:xs) = e : odds xs
   evens [] = []
   evens [e] = [e]
   evens (e:_:xs) = e : evens xs
```

The final form of the type inference algorithm will use a normalization algorithm shortening the type names and will apply the type inference to the empty type context. The complete code can be found on the . A generalized version of the type inference algorithm is used to generate derivation trees from terms, as it was described in Propositions as types.

In order to draw these diagrams in Unicode characters, a data type for character blocks has been defined. A monoidal structure is defined over them; blocks can be joined vertically and horizontally; and every deduction step can be drawn independently.

```
newtype Block = Block { getBlock :: [String] }
  deriving (Eq, Ord)

instance Monoid Block where
  mappend = joinBlocks -- monoid operation, joins blocks vertically
  mempty = Block [[]] -- neutral element

-- Type signatures
joinBlocks :: Block -> Block -> Block
stackBlocks :: String -> Block -> Block
textBlock :: String -> Block
deductionBlock :: Block -> String -> [Block] -> Block
box :: Block -> Block
```

USER INTERACTION

6.1 MONADIC PARSER COMBINATORS

A common approach to building parsers in functional programming is to model parsers as functions. Higher-order functions on parsers act as *combinators*, which are used to implement complex parsers in a modular way from a set of primitive ones. In this setting, parsers exhibit a monad algebraic structure, which can be used to simplify the combination of parsers. A technical report on **monadic parser combinators** can be found on [HM96].

The use of monads for parsing was discussed for the first time in [Wad85], and later in [Wad90] and [HM98]. The parser type is defined as a function taking an input String and returning a list of pairs, representing a successful parse each. The first component of the pair is the parsed value and the second component is the remaining input. The Haskell code for this definition is

```
-- A parser takes a string an returns a list of possible parsings with
-- their remaining string.

newtype Parser a = Parser (String -> [(a,String)])

parse :: Parser a -> String -> [(a,String)]

parse (Parser p) = p

-- A parser can be composed monadically, the composed parser (p >>= q)
-- applies q to every possible parsing of p. A trivial one is defined.

instance Monad Parser where

return x = Parser (\s -> [(x,s)]) -- Trivial parser, directly returns x.

p >>= q = Parser (\s -> concat [parse (q x) s' | (x,s') <- parse p s ])
```

where the monadic structure is defined by bind and return. Given a value, the return function creates a parser that consumes no input and simply returns the given value. The »= function acts as a sequencing operator for parsers. It takes two parsers and applies the second one over the remaining inputs of the first one, using the parsed values on the first parsing as arguments.

An example of primitive **parser** is the item parser, which consumes a character from a non-empty string. It is written in Haskell code using pattern matching on the string as

```
item :: Parser Char
item = Parser (\s -> case s of "" -> []; (c:s') -> [(c,s')])
```

and an example of **parser combinator** is the many function, which creates a parser that allows one or more applications of the given parser

```
many :: Paser a -> Parser [a]
many p = do
    a <- p
    as <- many p
    return (a:as)</pre>
```

in this example many item would be a parser consuming all characters from the input string.

```
6.2 PARSEC
```

Parsec is a monadic parser combinator Haskell library described in [Leio1]. We have chosen to use it due to its simplicity and extensive documentation. As we expect to use it to parse user live input, which will tend to be short, performance is not a critical concern. A high-performace library supporting incremental parsing, such as **Attoparsec** [O'S16], would be suitable otherwise.

```
6.3 VERBOSE MODE
```

As we explained previously on the evaluation section, the simplification can be analyzed step-by-step. The interpreter allows us to see the complete evaluation when the verbose mode is activated. To activate it, we can execute :verbose on in the interpreter.

The difference can be seen on the following example, which shows the execution of 1 + 2, first without intermediate results, and later, showing every intermediate step.

```
mikro> plus 1 2
\lambda a.\lambda b.(a (a (a b))) \Rightarrow 3
mikro> :verbose on
verbose: on
```

```
mikro> plus 1 2 ((plus 1) 2) ((\lambda\lambda\lambda((4 2) ((3 2) 1)) \lambda\lambda(2 1)) \lambda\lambda(2 (2 1))) (\lambda\lambda\lambda((\lambda\lambda(2 1) 2) ((3 2) 1)) \lambda\lambda(2 (2 1))) \lambda\lambda((\lambda\lambda(2 1) 2) ((\lambda\lambda(2 (2 1)) 2) 1)) \lambda\lambda(\lambda(3 1) (\lambda(3 (3 1)) 1)) \lambda\lambda(2 (\lambda(3 (3 1)) 1)) \lambda\lambda(2 (\lambda(3 (3 1)) 1)) \lambda\lambda(2 (\lambda(3 (a (a (a b))) \Rightarrow 3
```

The interpreter output can be colored to show specifically where it is performing reductions. It is activated by default, but can be deactivated by executing :color off. The following code implements *verbose mode* in both cases.

```
-- | Shows an expression, coloring the next reduction if necessary

showReduction :: Exp -> String

showReduction (Lambda e) = "\lambda" ++ showReduction e

showReduction (App (Lambda f) x) = betaColor (App (Lambda f) x)

showReduction (Var e) = show e

showReduction (App rs x) =

"(" ++ showReduction rs ++ " " ++ showReduction x ++ ")"

showReduction e = show e
```

6.4 SKI MODE

Every λ -term can be written in terms of SKI combinators. SKI combinator expressions can be defined as a binary tree having S, K, and I as possible leafs.

```
data Ski = S | K | I | Comb Ski Ski | Cte String
```

The SKI-abstraction and bracket abstraction algorithms are implemented on Mikrokosmos, and they can be used by activating the *ski mode* with :Ski on. When this mode is activated, every result is written in terms of SKI combinators.

```
mikro> 2

\lambda a.\lambda b.(a (a b)) \Rightarrow S(S(KS)K)I \Rightarrow 2

mikro> and

\lambda a.\lambda b.((a b) a) \Rightarrow SSK \Rightarrow and
```

The code implementing these algorithms follows directly from the theoretical version in [HSo8].

```
-- | Bracket abstraction of a SKI term, as defined in Hindley-Seldin
-- (2.18).
bracketabs :: String -> Ski -> Ski
bracketabs x (Cte y) = if x == y then I else Comb K (Cte y)
bracketabs x (Comb u (Cte y))
  | freein x u && x == y = u
                         = Comb K (Comb u (Cte y))
  | freein x u
                        = Comb (Comb S (bracketabs x u)) (bracketabs x (Cte y))
  | otherwise
bracketabs x (Comb u v)
  | freein x (Comb u v) = Comb K (Comb u v)
  otherwise
                      = Comb (Comb S (bracketabs x u)) (bracketabs x v)
                       = Comb K a
bracketabs _ a
-- | SKI abstraction of a named lambda term. From a lambda expression
-- creates a SKI equivalent expression. The following algorithm is a
-- version of the algorithm (9.10) on the Hindley-Seldin book.
skiabs :: NamedLambda -> Ski
skiabs (LambdaVariable x)
                             = Cte x
skiabs (LambdaApplication m n) = Comb (skiabs m) (skiabs n)
skiabs (LambdaAbstraction x m) = bracketabs x (skiabs m)
```

USAGE

7.1 INSTALLATION

The complete Mikrokosmos suite is divided in multiple parts:

- 1. the **Mikrokosmos interpreter**, written in Haskell;
- 2. the **Jupyter kernel**, written in Python;
- 3. the **CodeMirror Lexer**, written in Javascript;
- 4. the Mikrokosmos libraries, written in the Mikrokosmos language;
- 5. the **Mikrokosmos-js** compilation, which can be used in web browsers.

These parts will be detailed on the following sections. A system that already satisfies all dependencies (Stack, Pip and Jupyter), can install Mikrokosmos using the following script, which is detailed on this section

```
# Mikrokosmos interpreter
stack install mikrokosmos
# Jupyter kernel for Mikrokosmos
sudo pip install imikrokosmos
# Libraries
git clone https://github.com/M42/mikrokosmos-lib.git ~/.mikrokosmos
```

The **Mikrokosmos interpreter** is listed in the central Haskell package archive, *Hackage*¹. The packaging of Mikrokosmos has been done using the **cabal** tool; and the configuration of the package can be read in the file mikrokosmos.cabal on the Mikrokosmos code. As a result, Mikrokosmos can be installed using the **cabal** and **stack** Haskell package managers. That is,

```
# With cabal cabal install mikrokosmos
```

^{1 :} Hackage can be accessed in: http://hackage.haskell.org/ and the Mikrokosmos package can be found in https://hackage.haskell.org/package/mikrokosmos

```
# With stack
stack install mikrokosmos
```

The **Mikrokosmos Jupyter kernel** is listed in the central Python package archive. Jupyter is a dependency of this kernel, which only can be used in conjunction with it. It can be installed with the pip package manager as

```
sudo pip install imikrokosmos
```

and the installation can be checked by listing the available Jupyter kernels with

```
jupyter kernelspec list
```

The **Mikrokosmos libraries** can be downloaded directly from its GitHub repository.

They have to be placed under ~/.mikrokosmos if we want them to be locally available or under /usr/lib/mikrokosmos if we want them to be globally available.

```
git clone https://github.com/M42/mikrokosmos-lib.git ~/.mikrokosmos
```

The following script installs the complete Mikrokosmos suite on a fresh system. It has been tested under Ubuntu 16.04.3 LTS (Xenial Xerus).

```
# 1. Installs Stack, the Haskell package manager
wget -q0- https://get.haskellstack.org | sh
STACK=$(which stack)
# 2. Installs the ncurses library, used by the console interface
sudo apt install libncurses5-dev libncursesw5-dev
# 3. Installs the Mikrokosmos interpreter using Stack
$STACK setup
$STACK install mikrokosmos
# 4. Installs the Mikrokosmos standard libraries
sudo apt install git
git clone https://github.com/M42/mikrokosmos-lib.git ~/.mikrokosmos
# 5. Installs the IMikrokosmos kernel for Jupyter
sudo apt install python3-pip
sudo -H pip install --upgrade pip
sudo -H pip install jupyter
sudo -H pip install imikrokosmos
```

^{2 :} The repository can be accessed in: https://github.com/M42/mikrokosmos-lib.git

7.2 MIKROKOSMOS INTERPRETER

Once installed, the Mikrokosmos λ interpreter can be opened from the terminal with the mikrokosmos command. It will enter a *read-eval-print loop* where λ -expressions and interpreter commands can be evaluated.

```
$> mikrokosmos
Welcome to the Mikrokosmos Lambda Interpreter!
Version 0.5.0. GNU General Public License Version 3.
mikro> _
```

The interpreter evaluates every line as a lambda expression. Examples on the use of the interpreter can be read on the following sections. Apart from the evaluation of expressions, the interpreter accepts the following commands

- :quit and :restart, stop the interpreter;
- :verbose activates verbose mode;
- :ski activates SKI mode;
- : types changes between untyped and simply typed λ -calculus;
- :color deactivates colored output;
- :load loads a library.

Figure 2 is an example session on the mikrokosmos interpreter.

7.3 JUPYTER KERNEL

The **Jupyter Project** [Jup] is an open source project providing support for interactive scientific computing. Specifically, the Jupyter Notebook provides a web application for creating interactive documents with live code and visualizations.

We have developed a Mikrokosmos kernel for the Jupyter Notebook, allowing the user to write and execute arbitrary Mikrokosmos code on this web application. An example session can be seen on Figure 3.

The implementation is based on the pexpect library for Python. It allows direct interaction with any REPL and collects its results. Specifically, the following Python lines represent the central idea of this implementation

```
# Initialization
mikro = pexpect.spawn('mikrokosmos')
mikro.expect('mikro>')

# Interpreter interaction
# Multiple-line support
output = ""
```

```
mario@kosmos 🔪 mikrokosmos
Welcome to the Mikrokosmos Lambda Interpreter!
Version 0.6.0. GNU General Public License Version 3.
mikro> :load std
Loading /home/mario/.mikrokosmos/logic.mkr...
Loading /home/mario/.mikrokosmos/nat.mkr...
Loading /home/mario/.mikrokosmos/basic.mkr...
Loading /home/mario/.mikrokosmos/ski.mkr...
Loading /home/mario/.mikrokosmos/datastructures.mkr...
Loading /home/mario/.mikrokosmos/fixpoint.mkr...
Loading /home/mario/.mikrokosmos/types.mkr...
Loading /home/mario/.mikrokosmos/std.mkr...
mikro> :verbose on
verbose: on
mikro> mult 3 2
((\lambda\lambda\lambda)((4 (3 2)) 1) \lambda\lambda(2 (2 (2 1)))) \lambda\lambda(2 (2 1)))
\lambda\lambda((\lambda\lambda(2 (2 (2 1))) (\lambda\lambda(2 (2 1)) 2)) 1)
\lambda\lambda((\lambda\lambda(2\ (2\ 1))\ 2)\ ((\lambda\lambda(2\ (2\ 1))\ 2)\ ((\lambda\lambda(2\ (2\ 1))\ 2)\ 1)))
\lambda\lambda(\lambda(3\ (3\ 1))\ (\lambda(3\ (3\ 1))\ (\lambda(3\ (3\ 1))\ 1)))
\lambda\lambda(2\ (2\ (\lambda(3\ (3\ 1))\ (\lambda(3\ (3\ 1))\ 1))))
\lambda\lambda(2 \ (2 \ (2 \ (2 \ (\lambda(3 \ (3 \ 1)) \ 1)))))
λλ(2 (2 (2 (2 (2 1))))))
\lambda a.\lambda b.(a (a (a (a (a b)))))) \Rightarrow 6
mikro> :verbose off
verbose: off
mikro> :types on
types: on
mikro > \x.fst (plus 2 x, mult 2 x)
\lambda a.\lambda b.\lambda c.(b (b ((a b) c))) :: ((A \rightarrow A) \rightarrow B \rightarrow A) \rightarrow (A \rightarrow A) \rightarrow B \rightarrow A
mikro > id = (\x.x)
mikro> id (id)
λa.a ⇒ I, id, ifelse :: A → A
mikro> :quit
 mario@kosmos ~
```

Figure 2: Mikrokosmos interpreter session.

Figure 3: Jupyter notebook Mikrokosmos session.

```
for line in code.split('\n'):
    # Send code to mikrokosmos
    self.mikro.sendline(line)
    self.mikro.expect('mikro> ')

# Receive and filter output from mikrokosmos
    partialoutput = self.mikro.before
    partialoutput = partialoutput.decode('utf8')
    output = output + partialoutput
```

A pip installable package has been created following the Python Packaging Authority guidelines. ³ This allows the kernel to be installed directly using the pip python package manager.

```
sudo -H pip install imikrokosmos
```

```
7.4 CODEMIRROR LEXER
```

CodeMirror ⁴ is a text editor for the browser implemented in Javascript. It is used internally by the Jupyter Notebook.

A CodeMirror lexer for Mikrokosmos has been written. It uses Javascript regular expressions and signals the ocurrence of any kind of operator to CodeMirror. It enables syntax highlighting for Mikrokosmos code on Jupyter Notebooks. It comes bundled with the kernel specification and no additional installation is required.

```
CodeMirror.defineSimpleMode("mikrokosmos", {
    start: [
    // Comments
    {regex: /\#.*/,
    token: "comment"},
    // Interpreter
    {regex: /\:load|\:verbose|\:ski|\:restart|\:types|\:color/,
    token: "atom"},
    // Binding
    {regex: /(.*?)(\s*)(=)(\s*)(.*?)$/,
    token: ["def",null,"operator",null,"variable"]},
    // Operators
    {regex: /[=!]+/,
    token: "operator"},
```

^{3 :} The PyPA packaging user guide can be found in its official page: https://packaging.python.org/

^{4 :} Documentation for CodeMirror can be found in its official page: https://codemirror.net/

```
],
  meta: {
     dontIndentStates: ["comment"],
     lineComment: "#"
}
```

7.5 JUPYTERHUB

JupyterHub manages multiple instances of independent single-user Jupyter notebooks. We used it to serve Mikrokosmos notebooks and tutorials to students studying λ -calculus.

In order to install Mikrokosmos on a server and use it as root user, we need

- to clone the libraries into /usr/lib/mikrokosmos. They should be available system-wide.
- to install the Mikrokosmos interpreter into /usr/local/bin. In this case, we chose not to install Mikrokosmos from source, but simply copy the binaries and check the availability of the ncurses library.
- to install the Mikrokosmos Jupyter kernel as usual.

Our server used a SSL certificate; and OAuth autentication via GitHub. Mikrokosmos tutorials were installed for every student.

```
7.6 CALLING MIKROKOSMOS FROM JAVASCRIPT
```

The GHCjs⁵ compiler allows transpiling from Haskell to Javascript. Its foreign function interface allows a Haskell function to be passed as a continuation to a Javascript function.

A particular version of the Main.hs module of Mikrokosmos was written in order to provide a mikrokosmos function, callable from Javascript. This version includes the standard libraries automatically and reads blocks of texts as independent Mikrokosmos commands. The relevant use of the foreign function interface is showed in the following code

```
foreign import javascript unsafe "mikrokosmos = $1"
  set_mikrokosmos :: Callback a -> IO ()
```

which provides mikrokosmos as a Javascript function once the code is transpiled. In particular, the following is an example of how to call Mikrokosmos from Javascript

^{5 :} The GHCjs documentation is available on its web page https://github.com/ghcjs/ghcjs

```
button.onclick = function () {
   editor.save();
   outputcode.getDoc().setValue(mikrokosmos(inputarea.value).mkroutput);
   textAreaAdjust(outputarea);
}
```

A small script has been written in Javascript to help with the task of embedding Mikrokosmos into a web page. It and can be included directly from

```
https://m42.github.io/mikrokosmos-js/mikrobox.js
```

using GitHub as a CDN. It will convert any HTML script tag written as follows

```
<div class="mikrojs-console">
<script type="text/mikrokosmos">
(\lambda x.x)
... your code
</script>
</div>
```

into a CodeMirror pad where Mikrokosmos can be executed. The Mikrokosmos tutorials are an example of this feature and can be seen on Figure 4.

Figure 4: Mikrokosmos embedded into a web page.

PROGRAMMING ENVIRONMENT

8.1 CABAL, STACK AND HADDOCK

The Mikrokosmos documentation as a Haskell library is included in its own code. It uses **Haddock**, a tool that generates documentation from annotated Haskell code; it is the *de facto* standard for Haskell software.

Dependencies and packaging details for Mikrokosmos are specified in a file distributed with the source code called mikrokosmos.cabal. It is used by the package managers stack and cabal to provide the necessary libraries even if they are not available systemwide. The stack tool is also used to package the software, which is uploaded to Hackage.

8.2 TESTING

Tasty is the Haskell testing framework of our choice for this project. It allows the user to create a comprehensive test suite combining multiple types of tests. The Mikrokosmos code is tested using the following techniques

- unit tests, in which individual core functions are tested independently of the rest of the application;
- property-based testing, in which multiple test cases are created automatically in order to verfiy that a specified property always holds;
- **golden tests**, a special case of unit tests in which the expected results of an IO action, as described on a file, are checked to match the actual ones.

We are using the **HUnit** library for unit tests. It tests particular cases of type inference, unification and parsing. The following is an example of unit test, as found in tests.hs. It checks that the type inference of the identity term is correct.

```
-- Checks that the type of λx.x is exactly A → A
testCase "Identity type inference" $
typeinference (Lambda (Var 1)) @?= Just (Arrow (Tvar 0) (Tvar 0))
```

We are using the **QuickCheck** library for property-based tests. It tests transformation properties of lambda expressions. In the following example, it tests that any De Bruijn expression keeps its meaning when translated into a λ -term.

```
-- Tests if translation preserves meaning

QC.testProperty "Expression -> named -> expression" $

\expr -> toBruijn emptyContext (nameExp expr) == expr
```

We are using the **tasty-golden** package for golden tests. Mikrokosmos can be passed a file as an argument to interpret it and show only the results. This feature is used to create a golden test in which the interpreter is asked to provide the correct interpretation of a given file. This file is called testing.mkr, and contains library definitions and multiple tests. Its expected output is testing.golden. For example, the following Mikrokosmos code can be found on the file

```
:types on
caseof (inr 3) (plus 2) (mult 2)
```

and the expected output is

```
-- types: on 
-- \lambda a.\lambda b.(a (a (a (a (a b)))))) \Rightarrow 6 :: (A \rightarrow A) \rightarrow A \rightarrow A
```

8.3 VERSION CONTROL AND CONTINUOUS INTEGRATION

Mikrokosmos uses **git** as its version control system and the code, which is licensed under GPLv₃, can be publicly accessed on the following GitHub repository:

```
https://github.com/M42/mikrokosmos
```

Development takes place on the development git branch and permanent changes are released into the master branch. Some more minor repositories have been used in the development; they directly depend on the main one

```
    https://github.com/m42/mikrokosmos-js
    https://github.com/M42/jupyter-mikrokosmos
    https://github.com/M42/mikrokosmos-lib
```

The code uses the **Travis CI** continuous integration system to run tests and check that the software builds correctly after each change and in a reproducible way on a fresh Linux installation provided by the service.

PROGRAMMING IN UNTYPED λ -CALCULUS

This section explains how to use untyped λ -calculus to encode data structures and useful data, such as booleans, linked lists, natural numbers or binary trees. All this is done on pure λ -calculus avoiding the addition of new syntax or axioms.

This presentation follows the Mikrokosmos tutorial on λ -calculus, which aims to teach how it is possible to program using untyped λ -calculus without discussing technical topics such as those we have discussed on the chapter on untyped λ -calculus. It also follows the exposition on [Sel13] of the usual Church encodings.

All the code on this section is valid Mikrokosmos code.

9.1 BASIC SYNTAX

In the interpreter, λ -abstractions are written with the symbol \setminus , representing a λ . This is a convention used on some functional languages such as Haskell or Agda. Any alphanumeric string can be a variable and can be defined to represent a particular λ -term using the = operator.

As a first example, we define the identity function (id), function composition (compose) and a constant function on two arguments which always returns the first one untouched (const).

```
id = \x.x
compose = \f.\g.\x.f (g x)
const = \x.\y.x
```

Evaluation of terms will be presented as comments to the code,

```
compose id id
-- [1]: λa.a ⇒ id
```

It is important to notice that multiple argument functions are defined as higher one-argument functions that return another functions as arguments. These intermediate functions are also valid λ -terms. For example

discard = const id

is a function that discards one argument and returns the identity, id. This way of defining multiple argument functions is called the **currying** of a function in honor to the american logician Haskell Curry in [CF₅8]. It is a particular instance of a deeper fact: exponentials are defined by the following adjunction

$$hom(A \times B, C) \cong hom(A, hom(B, C)).$$

9.2 A TECHNIQUE ON INDUCTIVE DATA ENCODING

We will implicitly use a technique on the majority of our data encodings that allows us to write an encoding for any algebraically inductive generated data. This technique is used without comment on [Sel13] and represents the basis of what is called the **Church encoding** of data in λ -calculus.

We start considering the usual inductive representation of a data type with constructors, as we do when representing a syntax with a BNF, for example,

Or, in general

$$D ::= C_1 | C_2 | C_3 | \dots$$

It is not possible to directly encode constructors on λ -calculus. Even if we were able, they would have, in theory, no computational content; the data structure would not be reduced under any λ -term, and we would need at least the ability to pattern match on the constructors to define functions on them. Our λ -calculus would need to be extended with additional syntax for every new data structure.

This technique, instead, defines a data term as a function on multiple arguments representing the missing constructors. In our example, the number 2, which would be written as Succ(Succ(Zero)), would be encoded as

$$2 = \lambda s. \ \lambda z. \ s(s(z)).$$

In general, any instance of the data structure D would be encoded as a λ -expression depending on all its constuctors

$$\lambda c_1$$
. λc_2 . λc_3 λc_n . (term).

This acts as the definition of an initial algebra over the constructors and lets us to compute over instances of that algebra by instantiating it on particular cases. Particular examples are described on the following sections.

```
9.3 BOOLEANS
```

Booleans can be defined as the data generated by a pair of constuctors

```
Bool ::= True | False.
```

Consequently, the Church encoding of booleans takes these constructors as arguments and defines

```
true = \t.\f.t
false = \t.\f.f
```

Note that true and const are exactly the same term up to α -conversion. The same thing happens with false and alwaysid. The absence of types prevents us to make any effort to discriminate between these two uses of the same λ -term. Another side-effect of this definition is that our true and false terms can be interpreted as binary functions choosing between two arguments, that is,

- true(a, b) = a,
 false(a, b) = b.
- We can test this interpretation on the interpreter to get

```
true id const
false id const
--- [1]: id
--- [2]: const
```

This inspires the definition of an ifelse combinator as the identity

```
ifelse = \b.b
(ifelse true) id const
(ifelse false) id const
--- [1]: id
--- [2]: const
```

The usual logic gates can be defined profiting from this interpretation of booleans

```
and = \p.\q.p q p
or = \p.\q.p p q
```

```
not = \b.b false true
xor = \a.\b.a (not b) b
implies = \p.\q.or (not p) q

xor true true
and true true
--- [1]: false
--- [2]: true
```

9.4 NATURAL NUMBERS

Our definition of natural numbers is inspired by the Peano natural numbers. We use two constructors

- zero is a natural number, written as Z;
- the successor of a natural number is a natural number, written as S;

and the BNF we defined when discussing how to encode inductive data.

```
0 = \s.\z.z
succ = \n.\s.\z.s (n s z)
```

This definition of 0 is trivial: given a successor function and a zero, return zero. The successor function seems more complex, but it uses the same underlying idea: given a number, a successor and a zero, apply the successor to the interpretation of that number using the same successor and zero.

We can then name some natural numbers as

```
1 = succ 0
2 = succ 1
3 = succ 2
4 = succ 3
5 = succ 4
6 = succ 5
```

even if we can not define an infinite number of terms as we might wish. The interpretation the natural number n as a higher order function is a function taking an argument f and applying them n times over the second argument.

```
5 not true
4 not true
double = \n.\s.\z.n (compose s s) z
double 3
```

```
--- [1]: false
--- [2]: true
--- [3]: 6
```

Addition n + m applies the successor m times to n; and multiplication nm applies the n-fold application of the successor m times to 0.

```
plus = \m.\n.\s.\z.m s (n s z)
mult = \m.\n.\s.\z.m (n s) z
plus 2 1
mult 2 4
--- [1]: 3
--- [2]: 8
```

9.5 THE PREDECESSOR FUNCTION AND PREDICATES ON NUMBERS

The predecessor function is much more complex than the previous ones. As we can see, it is not trivial how could we compute the predecessor using the limited form of induction that Church numerals allow.

Stephen Kleene, one of the students of Alonzo Church only discovered how to write the predecessor function after thinking about it for a long time (and he only discovered it while a long visit at the dentist's, which is the reason why this definition is often called the *wisdom tooth trick*, see [Cro75]). We will use a slightly different version of the definition that does not depend on a pair datatype.

We will start defining a *reverse composition* operator, called rcomp; and we will study what happens when it is composed to itself; that is

```
rcomp = \f.\g.\h.h (g f)
\f.3 (inc f)
\f.4 (inc f)
\f.5 (inc f)
--- [1]: λa.λb.λc.c (a (a (b a)))
--- [2]: λa.λb.λc.c (a (a (a (b a))))
--- [3]: λa.λb.λc.c (a (a (a (a (b a)))))
```

will allow us now to use the b argument to discard the first instance of the a argument and return the same number without the last constructor. Thus, our definition of pred is

```
pred = \n.\s.\z.(n (inc s) (\x.z) (\x.x))
```

From the definition of pred, some predicates on numbers can be defined. The first predicate will be a function distinguishing a successor from a zero. It will be user later to build more complex ones. It is built by appliying a const false function n times to a true constant. Only if it is applied 0 times, it will return a true value.

```
iszero = \n.(n (const false) true)
iszero 0
iszero 2
--- [1]: true
--- [2]: false
```

From this predicate, we can derive predicates on equality and ordering.

```
leq = \m.\n.(iszero (minus m n))
eq = \m.\n.(and (leq m n) (leq n m))
```

```
9.6 LISTS AND TREES
```

We would need two constructors to represent a list: a nil signaling the end of the list and a cons, joining an element to the head of the list. An example of list would be

```
cons 1 (cons 2 (cons 3 nil)).
```

Our definition takes those two constructors into account

```
nil = \c.\n.n
cons = \h.\t.\c.\n.(c h (t c n))
```

and the interpretation of a list as a higher-order function is its fold function, a function taking a binary operation and an initial element and appliying the operation repeteadly to every element on the list.

```
cons 1 (cons 2 (cons 3 nil)) \xrightarrow{fold plus 0} plus 1 (plus 2 (plus 3 0)) = 6
```

The fold operation and some operations on lists can be defined explicitly as

```
fold = \c.\n.\l.(l c n)
sum = fold plus 0
prod = fold mult 1
all = fold and true
any = fold or false
length = foldr (\h.\t.succ t) 0
```

```
sum (cons 1 (cons 2 (cons 3 nil)))
all (cons true (cons true nil)))
--- [1]: 6
--- [2]: true
```

The two most commonly used particular cases of fold and frequent examples of the functional programming paradigm are map and filter.

- The **map** function applies a function f to every element on a list.
- The **filter** function removes the elements of the list that do not satisfy a given predicate. It *filters* the list, leaving only elements that satisfy the predicate.

They can be defined as follows.

```
map = \f.(fold (\h.\t.cons (f h) t) nil)
filter = \p.(foldr (\h.\t.((p h) (cons h t) t)) nil)
```

On map, given a cons h t, we return a cons (f h) t; and given a nil, we return a nil. On filter, we use a boolean to decide at each step whether to return a list with a head or return the tail ignoring the head.

```
mylist = cons 1 (cons 2 (cons 3 nil))
sum (map succ mylist)
length (filter (leq 2) mylist)
--- [1]: 9
--- [2]: 2
```

Lists have been defined using two constructors and **binary trees** will be defined using the same technique. The only difference with lists is that the cons constructor is replaced by a node constructor, which takes two binary trees as arguments. That is, a binary tree is

- an empty tree; or
- a node, containing a label, a left subtree, and a right subtree.

Defining functions using a fold-like combinator is again very simple due to the chosen representation. We need a variant of the usual function acting on three arguments, the label, the right node and the left node.

```
-- Binary tree definition
node = \x.\l.\r.\f.\n.(f x (l f n) (r f n))
-- Example on natural numbers
mytree = node 4 (node 2 nil nil) (node 3 nil nil)
triplesum = \a.\b.\c.plus (plus a b) c
mytree triplesum 0
--- [1]: 9
```

9.7 FIXED POINTS

A fixpoint combinator is a term representing a higher-order function that, given any function f, solves the equation

$$x = f x$$

for x, meaning that, if fix f is the fixpoint of f, the following sequence of equations holds

$$\mathtt{fix}\, f = f(\mathtt{fix}\, f) = f(f(\mathtt{fix}\, f)) = f(f(f(\mathtt{fix}\, f))) = \dots$$

Such a combinator actually exists; it can be defined and used as

```
fix := (\f.(\x.f (x x)) (\x.f (x x)))
fix (const id)
--- [1]: id
```

Where := defines a function without trying to evaluate it to a normal form; this is useful in cases like the previous one, where the function has no normal form. Examples of its applications are a *factorial* function or a *fibonacci* function, as in

```
fact := fix (\f.\n.iszero n 1 (mult n (f (pred n))))
fib := fix (\f.\n.iszero n 1 (plus (f (pred n)) (f (pred (pred n)))))
fact 3
fib 3
--- [1]: 6
--- [2]: 5
```

Note the use of iszero to stop the recursion.

The fix function cannot be evaluated without arguments into a closed form, so we have to delay the evaluation of the expression when we bind it using !=. Our evaluation strategy, however, will always find a way to reduce the term if it is possible, as we saw in Corollary 1; even if it has intermediate irreducible terms.

```
fix -- diverges
true id fix -- evaluates to id
false id fix -- diverges
```

Other examples of the interpreter dealing with non terminating functions include infinite lists as in the following examples, where we take the first term of an infinite list without having to evaluate it completely or compare an infinite number arising as the fix point of the successor function with a finite number.

```
-- Head of an infinite list of zeroes

head = fold const false
head (fix (cons o))
-- Compare infinity with other numbers

infinity != fix succ
leq infinity 6
---- [1]: 0
---- [2]: false
```

These definitions unfold as

- fix (cons 0) = cons 0 (cons 0 (cons 0 ...)), an infinite list of zeroes;
- fix succ = succ (succ (succ ...)), an infinite natural number.

PROGRAMMING IN THE SIMPLY TYPED λ -CALCULUS

This section explains how to use the simply typed λ -calculus to encode compound data structures and proofs in intuitionistic logic. We will use the interpreter as a typed language and, at the same time, as a proof assistant for the intuitionistic propositional logic.

This presentation of simply typed structures follows the Mikrokosmos tutorial and the previous sections on simply typed λ -calculus. All the code on this section is valid Mikrokosmos code.

10.1 FUNCTION TYPES AND TYPEABLE TERMS

Types can be activated with the commmand :types on. If types are activated, the interpreter will infer the principal type of every term before its evaluation. The type will then be displayed after the result of the computation.

Example 5 (Typed terms on Mikrokosmos). The following are examples of already defined terms on lambda calculus and their corresponding types. It is important to notice how our previously defined booleans have two different types; while our natural numbers will have all the same type except from zero, whose type is a generalization on the type of the natural numbers.

If a term is found to be non-typeable, Mikrokosmos will output an error message signaling the fact. In this way, the evaluation of λ -terms that could potentially not

terminate is prevented. Only typed λ -terms will be evaluated while the option :types is on; this ensures the termination of every computation on typed terms.

Example 6 (Non-typeable terms on Mikrokosmos). Fixed point operators are a common example of non typeable terms. Its evaluation on untyped λ -calculus would not terminate; and the type inference algorithm fails on them.

```
fix
--- Error: non typeable expression
fix (\f.\n.iszero n 1 (plus (f (pred n)) (f (pred (pred n))))) 3
--- Error: non typeable expression
```

Note that the evaluation of compound λ -expressions where the fixpoint operators appear applied to other terms can terminate, but the terms are still non typeable.

10.2 PRODUCT, UNION, UNIT AND VOID TYPES

Until now, we have only used the function type. That is to say that we are working on the implicational fragment of the simply-typed lambda calculus we described on the first . We are now going to extend our type system in the same sense we extended that simply-typed lambda calculus. The following types are added to the system

Ty	pe	Name	Description
\rightarrow		Function type	Functions from a type to another
×		Product type	Cartesian product of types
+		Union type	Disjoint union of types
Т		Unit type	A type with exactly one element
\perp		Void type	A type with no elements

And the following typed constructors are added to the language,

Constructor	Type	Description
(-,-)	$A \rightarrow B \rightarrow A \times B$	Pair of elements
fst	$(A \times B) \rightarrow A$	First projection
snd	$(A \times B) \rightarrow B$	Second projection
inl	$A \rightarrow A + B$	First inclusion
inr	$B \rightarrow A + B$	Second inclusion
caseof	$(A + B) \rightarrow (A \rightarrow C) \rightarrow (B \rightarrow C) \rightarrow C$	Case analysis of an union
unit	Т	Unital element
abort	\perp \rightarrow A	Empty function
absurd	\perp \rightarrow \perp	Particular empty function

which correspond to the constructors we described on previous sections. The only new term is the absurd function, which is only a particular case of abort, useful when we want to make explicit that we are deriving an instance of the empty type. This addition will only make the logical interpretation on the following sections clearer.

Example 7 (Extended STLC on Mikrokosmos). The following are examples of typed terms and functions on Mikrokosmos using the extended typed constructors. The following terms are presented

- a function swapping pairs, as an example of pair types;
- two-case analysis of a number, deciding whether to multiply it by two or to compute its predecessor;
- difference between abort and absurd;
- example term containing the unit type.

```
:load types 

swap = \m.(snd m,fst m) 

swap 

--- [1]: \lambda a.((SND a),(FST a)) \Rightarrow swap :: (A \times B) \rightarrow B \times A 

caseof (inl 1) pred (mult 2) 

caseof (inr 1) pred (mult 2) 

--- [2]: \lambda a.\lambda b.b \Rightarrow nil, 0, false :: A \rightarrow B \rightarrow B 

--- [3]: \lambda a.\lambda b.(a (a b)) \Rightarrow 2 :: (A \rightarrow A) \rightarrow A \rightarrow A 

\x.((abort x),(absurd x)) 

--- [4]: \lambda a.((ABORT a),(ABSURD a)) :: \bot \rightarrow A \times \bot
```

Now it is possible to define a new encoding of the booleans with an uniform type. The type \top + \top has two inhabitants, inl \top and inr \top ; and they can be used by case analysis.

```
btrue = inl unit
bfalse = inr unit
bnot = \a.caseof a (\a.bfalse) (\a.btrue)
bnot btrue
--- [1]: (INR UNIT) ⇒ bfalse :: A + T
bnot bfalse
--- [2]: (INL UNIT) ⇒ btrue :: T + A
```

With these extended types, Mikrokosmos can be used as a proof checker on first-order intuitionistic logic by virtue of the Curry-Howard correspondence.

10.3 A PROOF IN INTUITIONISTIC LOGIC

Under the logical interpretation of Mikrokosmos, we can transcribe proofs in intuitionistic logic to λ -terms and check them on the interpreter. The translation between logical propositions and types is straightforward, except for the **negation** of a proposition $\neg A$, that must be written as $(A \to \bot)$, a function to the empty type.

Theorem 8. *In intuitionistic logic, the double negation of the Law of Excluded Middle holds for every proposition, that is,*

$$\forall A : \neg \neg (A \lor \neg A)$$

Proof. Suppose $\neg(A \lor \neg A)$. We are going to prove first that, under this specific assumption, $\neg A$ holds. If A were true, $A \lor \neg A$ would be true and we would arrive to a contradition, so $\neg A$. But then, if we have $\neg A$ we also have $A \lor \neg A$ and we arrive to a contradiction with the assumption. We should conclude that $\neg \neg(A \lor \neg A)$.

Note that this is, in fact, an intuitionistic proof. Although it seems to use the intuitionistically forbidden technique of proving by contradiction, it is actually only proving a negation. There is a difference between assuming A to prove $\neg A$ and assuming $\neg A$ to prove A: the first one is simply a proof of a negation, the second one uses implicitly the law of excluded middle.

This can be translated to the Mikrokosmos implementation of simply typed λ -calculus as the term

```
notnotlem = \f.absurd (f (inr (\a.f (inl a))))
notnotlem
--- [1]: \lambda a.(ABSURD (a (INR <math>\lambda b.(a (INL b))))) :: ((A + (A \rightarrow \bot)) \rightarrow \bot) \rightarrow \bot
```

whose type is precisely $((A + (A \rightarrow \bot)) \rightarrow \bot) \rightarrow \bot$. The derivation tree can be seen directly on the interpreter as Figure 1 shows.

```
1 :types on
2 notnotlem = \f.absurd (f (inr (\a.f (inl a))))
3 notnotlem
   4 @@ notnotlem
   evaluate
types: on
\lambda a. (a (inr (\lambda b.a (inl b)))) \Rightarrow notnotlem :: ((A + (A \rightarrow \bot)) \rightarrow \bot) \rightarrow \bot
                                                                                         b :: A
                                                                                                            -(ınl)
                                       a :: (A + (A \rightarrow \bot)) \rightarrow \bot \exists nl b :: A + (A \rightarrow \bot)
                                                                    a (inl b) ∷⊥
                                                                 \lambda b.a (inl b) :: A \rightarrow \bot
                                                         inr (\lambda b.a (inl b)) :: A + (A \rightarrow \bot)
 a :: (A + (A \rightarrow \bot)) \rightarrow \bot
                                               a (inr (λb.a (inl b))) :: ⊥
                                              ■ (a (inr (λb.a (inl b)))) :: ⊥
                                                                                                                                              —(λ)
                            \lambda a. \blacksquare (a (inr (\lambda b.a (inl b)))) :: ((A + (A \rightarrow \bot)) \rightarrow \bot
```

Figure 5: Proof of the double negation of LEM.

Part III CATEGORY THEORY

CATEGORIES

We will think of a category as the algebraic structure that captures the notion of composition. A category will be built from some sort of objects linked by composable arrows; to which associativity and identity laws will apply.

Thus, a category has to rely in some notion of *collection*. When interpreted inside set-theory, it is common to use this term to denote some unspecified formal notion of compilation of entities that could be given by sets or proper classes. We will want to define categories whose objects are all the possible sets and we will need the objects to form a proper class in order to avoid inconsistent results such as the Russell's paradox. This is why we will consider, from this approach, a particular class of categories of small set-theoretical size to be specially well-behaved.

Definition 29 (Small and locally small categories). A category will be said to be **small** if the collection of its objects can be given by a set (instead of a proper class). It will be said to be **locally small** if the collection of arrows between any two objects can be given by a set.

A different approach, however, would be to simply take the *objects* and the *arrows* as fundamental concepts of our theory. These foundational concerns will not cause any explicit problem in this presentation of category theory, so we will keep them deliberately open to both interpretations.

11.1 DEFINITION OF CATEGORY

Definition 30 (Category). A **category** C, as defined in [Lan78], is given by

- C_0 (sometimes denoted obj(C) or simply C), a *collection* whose elements are called **objects**, and
- C_1 , a *collection* whose elements are called **morphisms**.

Every morphism $f \in C_1$ is assigned two objects: a **domain**, written as dom $(f) \in C_0$, and a **codomain**, written as cod $(f) \in C_0$; a common notation for such morphism is

$$f : dom(f) \to cod(f)$$
.

Given two morphisms $f: A \to B$ and $g: B \to C$, there exists a **composition morphism**, written as $g \circ f : A \to C$; or simply by yuxtaposition, as gf. Morphism composition is a binary associative operation with an identity element $id_A: A \to A$ for every object A, that is,

$$h \circ (g \circ f) = (h \circ g) \circ f$$
 and $f \circ id_A = f = id_B \circ f$,

for any f, g, h, composable morphisms.

Definition 31 (Hom-sets). The **hom-set** of two objects A, B on a category is the collection of morphisms between them. It is written as hom(A, B). The set of **endomorphisms** of an object A is defined as end(A) = hom(A, A).

We can use a subscript, as in $hom_{\mathcal{C}}(A, B)$ to explicitly specify the category we are working in when necessary.

11.2 MORPHISMS

Objects in category theory are an atomic concept and can be only studied by their morphisms; that is, by how they are related to all the objects of the category. Thus, the essence of a category is given not by its objects, but by the morphisms between them and how composition is defined.

It is so much so, that we will consider two objects essentially equivalent (and we will call them isomorphic) whenever they relate to other objects in the exact same way; that is, whenever an invertible morphism between them exists. This will constitute an equivalence relation on the category.

In a certain sense, morphisms are an abstraction of the notion of the structurepreserving homomorphisms that are defined between algebraic structures. From this perspective, *monomorphisms* and *epimorphisms* can be thought as abstractions of the usual injective and surjective homomorphisms. We will see, however, how some properties that we take for granted, such as "isomorphism" meaning exactly the same as "both injective and surjective", are not true in general.

Definition 32 (Isomorphisms). A morphism $f: A \to B$ is an **isomorphism** if there exist a morphism $f^{-1}: B \to A$ such that

- $f^{-1} \circ f = \mathrm{id}_A$, $f \circ f^{-1} = \mathrm{id}_B$.

This morphism is called an *inverse morphism*.

We call automorphisms to the morphisms which are both endomorphisms and isomorphisms.

Proposition 2 (Unicity of inverses). *If the inverse of a morphism exists, it is unique. In fact,* if a morphism has a left-side inverse and a right-side inverse, they are both-sided inverses and they are equal.

Proof. Given $f: A \to B$ with inverses $g_1, g_2: B \to A$; we have that

$$g_1 = g_1 \circ id_A = g_1 \circ (f \circ g_2) = (g_1 \circ f) \circ g_2 = id \circ g_2 = g_2.$$

We have used associativity of composition, neutrality of the identity and the fact that g_1 is a left-side inverse and g_2 is a right-side inverse.

Definition 33. Two objects are **isomorphic** if an isomorphism between them exists. We write $A \cong B$ when A and B are isomorphic.

Proposition 3 (Isomorphy is an equivalence relation). *The relation of being isomorphic is an equivalence relation. In particular,*

- the identity, $id = id^{-1}$;
- the inverse of an isomorphism, $(f^{-1})^{-1} = f$;
- and the composition of isomorphisms, $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$;

are all isomorphisms.

Proof. We can check that those are in fact inverses. From their existance follows

- reflexivity, $A \cong A$;
- symmetry, $A \cong B$ implies $B \cong A$;
- transitivity, $A \cong B$ and $B \cong C$ imply $A \cong C$.

Definition 34 (Monomorphisms and epimorphisms). A **monomorphism** is a left-cancellable morphism, that is, $f: A \to B$ is a monomorphism if, for every $g, h: B \to A$,

$$f \circ g = f \circ h \implies g = h.$$

An **epimorphism** is a right-cancellable morphism, that is, $f: A \rightarrow B$ is an epimorphism if, for every $g, h: B \rightarrow A$,

$$g \circ f = h \circ f \implies g = h.$$

A morphism that is a monomorphism and an epimorphism at the same time is called a **bimorphism**.

Remark 1. A morphism can be a bimorphism without being an isomorphism. We will cover examples of this fact later.

Definition 35 (Retractions and sections). A **retraction** is a left inverse, that is, a morphism that has a right inverse; conversely, a **section** is a right inverse, a morphism that has a left inverse.

By virtue of Proposition 2, a morphism that is both a retraction and a section is an isomorphism. Thus, not every epimorphism is a section and not every monomorphism is a retraction.

11.3 TERMINAL OBJECTS, PRODUCTS AND COPRODUCTS

Products and coproducts are very widespread notions in mathematics. Whenever a new structure is defined, it is common to wonder what the product or sum of two of these structures would be. Examples of products are the cartesian product of sets, the product topology or the product of abelian groups; examples of coproducts are the disjoint union of sets, topological sum or the free product of groups.

We will abstract categorically these notions in terms of *universal properties*. This viewpoint, however, is an important shift with respect to how these properties are usually defined. We will not define the product of two objects in terms of its internal structure (categorically, objects are atomic and do not have any); but in terms of all the other objects, that is, in terms of the complete structure of the category. This turns inside-out the focus of definitions. Moreover, objects defined in terms of universal properties are usually not uniquely determined, but only determined up to isomorphism. This reinforces our previous idea of considering two isomorphic objects in a category as *essentialy* the same object.

Initial and terminal objects will be a first example of this viewpoint based on universal properties.

Definition 36 (Initial object). An object I is an **initial object** if every object is the domain of exactly one morphism from it. That is, for every object A exists an unique morphism $i_A \colon I \to A$.

Definition 37 (Terminal object). An object T is a **terminal object** (also called *final object*) if every object is the codomain of exactly one morphism to it. That is, for every object A exists an unique $t_A \colon A \to T$.

Definition 38 (Zero object). A **zero object** is an object which is both initial and terminal at the same time.

Proposition 4 (Initial and final objects are essentially unique). *Initial and final objects in a category are essentially unique; that is, any two initial objects are isomorphic and any two final objects are isomorphic.*

Proof. If A, B were initial objects, by definition, there would be only one morphism $f: A \to B$ and only one morphism $g: B \to A$. Moreover, there would be only an endomorphism in End(A) and End(B) which should be the identity. That implies,

- $f \circ g = id$,
- $g \circ f = id$.

As a consequence, $A \cong B$. A similar proof can be written for the terminal object. \square

Note, however, that these objects may not exist in any given category.

Definition 39 (Product object). An object *C* is the **product** of two objects *A*, *B* on a category if there are two morphisms

$$A \stackrel{\pi_A}{\longleftarrow} C \stackrel{\pi_B}{\longrightarrow} B$$

such that, for any other object D with two morphisms $f_1: D \to A$ and $f_2: D \to B$, an unique morphism $h: D \to C$, such that $f_1 = \pi_A \circ h$ and $f_2 = \pi_B \circ h$. Diagramatically,

Note that the product of two objects does not have to exist on a category; but when it exists, it is essentially unique. In fact, we will be able later to construct a category in which the product object is the final object of the category and Proposition 4 can be applied. We will write *the* product object of A, B as $A \times B$.

Definition 40 (Coproduct object). An object *C* is the **coproduct** of two objects *A*, *B* on a category if there are two morphisms

$$A \xrightarrow{i_A} C \xleftarrow{i_B} B$$

such that, for any other object D with two morphisms $f_1: D \to A$ and $f_2: D \to B$, an unique morphism $h: D \to C$, such that $f_1 = i_A \circ h$ and $f_2 = i_B \circ h$. Diagramatically,

The same discussion we had earlier for the product can be rewritten here for the coproduct only reversing the direction of the arrows. We will write *the* coproduct of *A*, *B* as *A* II *B*. As we will see later, the notion of a coproduct is dual to the notion of product; and the same proofs can be applied on both cases, only by reversing the arrows.

11.4 EXAMPLES OF CATEGORIES

Example 8 (Discrete categories). A category is **discrete** if it has no other morphisms than the identities. A discrete category is uniquely defined by the class of its objects

and every class of objects defines a discrete category. Thus, discrete categories are classes or sets, without any additional categorical structure.

Example 9 (Monoids, groups). A single-object category is a **monoid**. A monoid in which every morphism is an isomorphism is a **group**.

This definition is equivalent to the usual definition of monoid if we take the morphisms as elements of the monoid and composition of morphisms as the monoid operation. Groupoids are also a particular case of categories.

Example 10 (Groupoids). A category in which every morphism is an isomorphism is a **groupoid**.

Example 11 (Partially ordered sets). Every partial ordering defines a category in which the elements are the objects and an only morphism between two objects $\rho_{a,b}: a \to b$ exists

In particular, every ordinal can be seen as a partially ordered set and defines a category.

For example, if we take the finite ordinal $[n] = (0 < \cdots < n)$, it could be interpreted as the category given by the following diagram

in which every object p has an identity arrow and a unique arrow to every q such that $p \le q$. Note how the composition of arrows can be only defined in a single way.

In a partially ordered set, the product of two objects would be its join, the coproduct would be its meet and the initial and terminal objects would be the greatest and the least element, respectively.

Example 12 (The category of sets). The category Set is defined as the category with all the possible sets as objects and functions between them as morphisms. It is trivial to check associativity of composition and the existence of the identity function for any set.

In this category, the product is given by the usual cartesian product

$$A \times B = \{(a,b) \mid a \in A, b \in B\},\$$

with the projections $\pi_A(a,b) = a$ and $\pi_B(a,b) = b$. We can easily check that, if we have $f: C \to A$ and $g: C \to B$, there is a unique function given by h(c) = (f(c), g(c)) such that $\pi_A \circ h = f$ and $\pi_B \circ h = g$.

The initial object in Set is given by the empty set \varnothing : given any set A, the only function of the form $f: \varnothing \to A$ is the empty one. The final object, however, is only defined up to isomorphism: given any set with a single object $\{*\}$, there exists a unique function

of the form $f: A \to \emptyset$ for any set A; namely, the one defined as $\forall a \in A: f(a) = *$. Every two sets with exactly one object are terminal objects and they are trivially isomorphic.

Similarly, the coproduct is defined only to isomorphism. The coproduct of two sets A, B is given by its disjoint union $A \sqcup B$; but this union can be defined in many different (but equivalent) ways. For instance, we can add a label to the elements of each sets before joining them in order to ensure that this will be a disjoint union; that is,

$$A \sqcup B = \{(a,0) \mid a \in A\} \cup \{(b,1) \mid b \in B\}$$

with the inclusions $i_A(a) = (a,0)$ and $i_B(b) = (b,1)$, is a possible coproduct. Given any two functions $f: A \to C$ and $g: A \to C$, there exists a unique function $h: A \sqcup B \to C$, given by

$$h(x,n) = \begin{cases} f(x) & \text{if } n = 0, \\ g(x) & \text{if } n = 1, \end{cases}$$

such that $f = h \circ i_A$ and $g = h \circ i_B$.

The category of sets is a very special category, whose properties we will study in detail later.

Example 13 (The category of groups). The category Grp is defined as the category with groups as objects and group homomorphisms between them as morphisms.

Example 14 (The category of R-modules). The category *R*-Mod is defined as the category with *R*-modules as objects and module homomorphisms between them as morphisms. We know that the composition of module homomorphisms and the identity are also module homomorphisms.

In particular, abelian groups form a category as \mathbb{Z} -modules.

Example 15 (The category of topological spaces). The category Top is defined as the category with topological spaces as objects and continuous functions between them as morphisms.

FUNCTORS AND NATURAL TRANSFORMATIONS

"Category" has been defined in order to define "functor" and "functor" has been defined in order to define "natural transformation".

- **Saunders MacLane**, *Categories for the working mathematician*, [EM₄₂].

Functors and natural transformations were defined for the first time by Eilenberg and MacLane in [EM42] while studying Čech cohomology. While initially they were devised mainly as a language for studying homology, they have proven its foundational value with the passage of time. The notion of naturality will be a key element of our presentation of algebraic theories and categorical logic.

12.1 FUNCTORS

A *functor* will be interpreted as a homomorphism of categories preserving their structure. As we discussed in the previous section, the structure of a category is given by the composition of morphisms.

Definition 41 (Functor). Given two categories C and D, a **functor** between them, $F: C \to D$, is given by

- an **object function**, $F : obj(\mathcal{C}) \to obj(\mathcal{D})$;
- and an **arrow function**, *F* : hom(*A*, *B*) → hom(*FA*, *FB*) for any two objects *A*, *B* of the category;

such that

- $F(id_A) = id_{FA}$, identities are preserved; and
- $F(f \circ g) = Ff \circ Fg$, the functor respects composition.

Functors can be composed as we did with morphisms. In fact, a category of categories can be defined, having functors as morphisms. In order to avoid paradoxes, we will only define the category of all small categories as a non-small category so it will not contain itself.

Definition 42 (The category of categories). The category Cat is defined as the category of (small) categories as objects and functors as morphisms.

- Given two functors $F: \mathcal{C} \to \mathcal{B}$ and $G: \mathcal{B} \to \mathcal{A}$, their composite functor $G \circ F: \mathcal{C} \to \mathcal{A}$ is given by the composition of the object and arrow functions of the functors. This composition is trivially associative.
- The identity functor on a category $I_{\mathcal{C}} \colon \mathcal{C} \to \mathcal{C}$ is given by identity object and arrow functions. It is trivially neutral with respect to composition.

Definition 43 (Full functor). A functor F is **full** if the arrow map between any pair of objects is surjective. That is, if every $g: FA \to FB$ is of the form Ff for some morphism $f: A \to B$.

Definition 44 (Faithful functor). A functor F is **faithful** if the arrow map between any pair of objects is injective. That is, if, for every two arrows $f_1, f_2 \colon A \to B$, $Ff_1 = Ff_2$ implies $f_1 = f_2$.

It is easy to notice that the composition of faithful (respectively, full) functors is again a faithful functor (respectively, full).

Note that a faithful functor needs not to be injective on objects nor on morphisms. In particular, if A, A', B, B' are four different objects, it could be the case that FA = FA' and FB = FB'; and, if $f: A \to B$ and $f': A' \to B'$ were two morphisms, it could be the case that Ff = Ff'.

Definition 45 (Isomorphism of categories). An **isomorphism of categories** is a functor T whose object and arrow functions are bijections. Equivalently, it is a functor T such that there exists an *inverse* functor S such that $T \circ S$ and $S \circ T$ are identity functors.

However, the notion of isomorphism of categories may be too strict. Sometimes, it will suffice if the two compositions $T \circ S$ and $S \circ T$ are not exactly the identity functor, but isomorphic in some sense to it. We will develop these weaker notions in the next section.

12.2 NATURAL TRANSFORMATIONS

Definition 46 (Natural transformation). A **natural transformation** between two functors with the same domain and codomain, $\alpha: F \to G$, is a family of morphisms parameterized by the objects of the domain category, $\alpha_C: FC \to GC$ such that the following diagram commutes

$$\begin{array}{ccc}
C & SC & \xrightarrow{\tau_C} & TC \\
\downarrow f & sf \downarrow & \downarrow Tf \\
C' & SC' & \xrightarrow{\tau_{C'}} & TC'
\end{array}$$

for every arrow $f: C \to C'$.

Sometimes, it is also said that the family of morphisms τ is *natural* in its argument. This naturality property is what allows us to "translate" a commutative diagram from a functor to another.

Definition 47 (Natural isomorphism). A **natural isomorphism** is a natural transformation in which every component, every morphism of the parameterized family, is invertible.

The inverses of a natural transformation form another natural transformation, whose naturality follows from the naturality of the original transformation. We say that two functors T, S are **naturally isomorphic**, and we write this as $T \cong S$, if there is a natural isomorphism between them. The notion of a natural isomorphism between functors allows us to weaken the condition of strict equality that we imposed when talking about isomorphisms of categories. The generally more useful notion of *equivalence of categories* only needs the composition of the two functors to be naturally isomorphic to the identity.

Definition 48 (Equivalence of categories). An **equivalence of categories** is given by two functors T and S such that its two compositions are naturally isomorphic to the identity functor, $T \circ S \cong \operatorname{id}$ and $S \circ T \cong \operatorname{id}$.

12.3 COMPOSITION OF NATURAL TRANSFORMATIONS

There is an obvious way in which two natural transformations $\sigma:R\to S$ and $\tau:S\to T$ can be composed into a new natural transformation $R\to T$; this will be used later to define categories whose objects are functors and whose morphisms are natural transformations. But there is also a different notion of composition of natural transformations, which applies two natural transformations, in parallel, to the composition of two functors.

That is, if we draw a natural transformation between two functors as a double arrow

• we have a *vertical* composition of natural transformations, which, diagramatically, composes the two natural transformations of the left diagram into a transformation like in the right one

• and we have a *horizontal* composition of natural transformations, which composes the two natural transformations of the first diagram into the second one

Definition 49 (Vertical composition of natural transformations). The **vertical composition** of two natural transformations $\tau: S \to T$ and $\sigma: R \to S$, denoted by $\tau \cdot \sigma$ is the family of morphisms defined by the objectwise composition of the components of the two natural transformations, that is

Proposition 5 (Vertical composition is a natural transformation). *The vertical composition of two natural transformations is in fact a natural transformation.*

Proof. Naturality of the composition follows from the naturality of its two factors. In other words, the commutativity of the external square on the above diagram follows from the commutativity of the two internal squares. \Box

Definition 50 (Horizontal composition of natural transformations). The **horizontal composition** of two natural transformations $\tau: S \to T$ and $\tau': S' \to T'$, with domains and codomains as in the following diagram

is denoted by $\tau' \circ \tau \colon S'S \to T'T$ and is defined as the family of morphisms given by $\tau' \circ \tau = T'\tau \circ \tau' = \tau' \circ S'\tau$, that is, by the diagonal of the following commutative square

$$S'Sc \xrightarrow{\tau'_{Sc}} T'Sc$$

$$S'\tau_{c} \downarrow \qquad \qquad (\tau' \circ \tau)_{c} \downarrow T'\tau_{c}$$

$$S'Tc \xrightarrow{\tau'_{Tc}} T'Tc$$

Proposition 6 (Horizontal composition is a natural transformation). *The horizontal composition of two natural transformations is in fact a natural transformation.*

Proof. It is natural as the following diagram is the composition of two naturality squares

$$S'Sc \xrightarrow{S'\tau} S'Tc \xrightarrow{\tau'} T'Tc$$

$$\downarrow S'Sf \qquad \downarrow S'Tf \qquad \downarrow T'Tf$$

$$S'Sb \xrightarrow{S'\tau} S'Tb \xrightarrow{\tau'} T'Tb$$

defined respectively by the naturality of $S'\tau$ and τ' .

CONSTRUCTIONS ON CATEGORIES

13.1 PRODUCT CATEGORIES

Definition 51 (Product category). The **product category** of two categories C and D, denoted by $C \times D$ is a category having

- pairs $\langle c, d \rangle$ as objects, where $c \in \mathcal{C}$ and $d \in \mathcal{D}$;
- and pairs $\langle f, g \rangle : \langle c, d \rangle \to \langle c', d' \rangle$ as morphisms, where $f : c \to c'$ and $g : d \to d'$ are morphisms in their respective categories.

The identity morphism of any object $\langle c, d \rangle$ is $\langle id_c, id_d \rangle$, and composition is defined componentwise as

$$\langle f', g' \rangle \circ \langle f, g \rangle = \langle f' \circ f, g' \circ g \rangle.$$

We also define **projection functors** $P: \mathcal{C} \times \mathcal{D} \to \mathcal{C}$ and $Q: \mathcal{C} \times \mathcal{D} \to \mathcal{D}$ on arrows as $P\langle f,g \rangle = f$ and $Q\langle f,g \rangle = g$. Note that this definition of product, using these projections, would be the product of two categories on a category of categories with functors as morphisms.

Definition 52 (Product of functors). The **product functor** of two functors $F: \mathcal{C} \to \mathcal{C}'$ and $G: \mathcal{D} \to \mathcal{D}'$ is a functor $F \times G: \mathcal{C} \times \mathcal{D} \to \mathcal{C}' \times \mathcal{D}'$ which can be defined

- on objects as $(F \times G)\langle c, d \rangle = \langle Fc, Gd \rangle$;
- and on arrows as $(F \times G)\langle f, g \rangle = \langle Ff, Gg \rangle$.

It can be seen as the unique functor making the following diagram commute

$$\begin{array}{ccc}
\mathcal{C} & \stackrel{P}{\longleftarrow} & \mathcal{C} \times \mathcal{D} & \stackrel{Q}{\longrightarrow} & \mathcal{D} \\
\downarrow_{F} & & \downarrow_{F \times G} & & \downarrow_{G} \\
\mathcal{C}' & \stackrel{P'}{\longleftarrow} & \mathcal{C}' \times \mathcal{D}' & \stackrel{Q'}{\longrightarrow} & \mathcal{D}'
\end{array}$$

In this sense, the \times operation is itself a functor acting on objects and morphisms of the Cat category of all categories. A **bifunctor** is a functor from a product category;

and it also can be seen as a functor on two variables. As we will show in the following proposition, it is completely determined by the two families of functors that we obtain when we fix any of the elements.

Proposition 7 (Conditions for the existence of bifunctors). *Let* \mathcal{B} , \mathcal{C} , \mathcal{D} *categories with two families of functors*

$$\{L_c \colon \mathcal{B} \to \mathcal{D}\}_{c \in \mathcal{C}}$$
 and $\{M_b \colon \mathcal{C} \to \mathcal{D}\}_{b \in \mathcal{B}}$,

such that $M_b(c) = L_c(b)$ for all b, c. A bifunctor $S: \mathcal{B} \times \mathcal{C} \to \mathcal{D}$ such that $S(-,c) = L_c$ and $S(b,-) = M_b$ for all b, c exists if and only if for every $f: b \to b'$ and $g: c \to c'$,

$$M_{b'}g \circ L_c f = L_{c'}f \circ M_b g.$$

Proof. If the equality holds, the bifunctor can be defined as $S(b,c) = M_b(c) = L_c(b)$ in objects and as $S(f,g) = M_{b'}g \circ L_c f = L_{c'}f \circ M_b g$ on morphisms. This bifunctor preserves identities, as

$$S(\mathrm{id}_b,\mathrm{id}_c)=M_b(\mathrm{id}_c)\circ L_c(\mathrm{id}_b)=\mathrm{id}_{M_b(c)}\circ\mathrm{id}_{L_c(b)}=\mathrm{id},$$

and it preserves composition, as

$$S(f',g') \circ S(f,g) = Mg' \circ Lf' \circ Mg \circ Lf = Mg' \circ Mg \circ Lf' \circ Lf = S(f' \circ f,g' \circ g)$$

for any composable morphisms f, f', g, g'. On the other hand, if a bifunctor exists,

$$M_{b'}(g) \circ L_c(f) = S(\mathrm{id}_{b'}, g) \circ S(f, \mathrm{id}_c) = S(\mathrm{id}_{b'} \circ f, g \circ \mathrm{id}_c)$$

$$= S(f \circ \mathrm{id}_b, \mathrm{id}_{c'} \circ g) = S(f, \mathrm{id}_{c'}) \circ S(\mathrm{id}_b, g)$$

$$= L_{c'}(f) \circ M_b(f).$$

Proposition 8 (Naturality for bifunctors). *Given* S, S' *bifunctors*, $\alpha_{b,c} : S(b,c) \to S'(b,c)$ *is a natural transformation if and only if* $\alpha(b,c)$ *is natural in b for each c and natural in c for each b.*

Proof. If α is natural, in particular, we can use the identities to prove that it must be natural in its two components

$$S(b,c) \xrightarrow{\alpha_{b,c}} S'(b,c) \qquad S(b,c) \xrightarrow{\alpha_{b,c}} S'(b,c)$$

$$S\langle f, \mathrm{id}_c \rangle \downarrow \qquad \qquad \downarrow S'\langle f, \mathrm{id}_c \rangle \qquad S\langle \mathrm{id}_{b,g} \rangle \downarrow \qquad \qquad \downarrow S'\langle \mathrm{id}_{b,g} \rangle$$

$$S(b',c) \xrightarrow{\alpha_{b',c}} S'(b',c) \qquad S(b,c') \xrightarrow{\alpha_{b,c'}} S'(b,c')$$

If both components of α are natural, the naturality of the natural transformation follows from the composition of these two squares

$$S(b,c) \xrightarrow{lpha_{b,c}} S'(b,c) \ S\langle f, \mathrm{id}_c
angle igg| \qquad \qquad \downarrow S'\langle f, \mathrm{id}_c
angle \ S(b',c) \xrightarrow{lpha_{b',c}} S'(b',c) \ S\langle \mathrm{id}_{b'},g
angle igg| \qquad \qquad \downarrow S'\langle \mathrm{id}_{b'},g
angle \ S(b',c') \xrightarrow{lpha_{b',c'}} S'(b',c')$$

where each square is commutative by the naturality of each component of α .

13.2 OPPOSITE CATEGORIES AND CONTRAVARIANT FUNCTORS

Definition 53 (Opposite category). The **opposite category** C^{op} of a category C is a category with the same objects as C but with all its arrows reversed. That is, for each morphism $f: A \to B$, there exists a morphism $f^{op}: B \to A$ in C^{op} . Composition is defined as

$$f^{op} \circ g^{op} = (g \circ f)^{op},$$

exactly when the composite $g \circ f$ is defined in C.

Reversing all the arrows is a process that directly translates every property of the category into its *dual* property. A morphism f is a monomorphism if and only if f^{op} is an epimorphism; a terminal object in \mathcal{C} is an initial object in \mathcal{C}^{op} and a right inverse becomes a left inverse on the opposite category. This process is also an *involution*, where $(f^{op})^{op}$ can be seen as f and $(\mathcal{C}^{op})^{op}$ is trivially isomorphic to \mathcal{C} .

Definition 54 (Contravariant functor). A **contravariant** functor from \mathcal{C} to \mathcal{D} is a functor from the opposite category, that is, $F \colon \mathcal{C}^{op} \to \mathcal{D}$. Non-contravariant functors are often called **covariant** functors, to emphasize the difference.

Example 16 (Hom functors). In a locally small category C, the **Hom-functor** is the bifunctor

hom:
$$\mathcal{C}^{op} \times \mathcal{C} \to \mathsf{Set}$$
.

defined as hom(a, b) for any two objects $a, b \in C$. Given $f: a \to a'$ and $g: b \to b'$, this functor is defined on any $p \in hom(a, b)$ as

$$hom(f,g)(p) = f \circ p \circ g \in hom(a',b').$$

Partial applications of the functors give rise to

• hom(a, -), a covariant functor for any fixed $a \in C$. Given $g: b \to b'$,

$$hom(a, f) : hom(a, b) \rightarrow hom(a, b')$$

is defined as the postcomposition with g, that we write as $-\circ g$.

• hom(-,b), a contravariant functor for any fixed $b \in \mathcal{C}$. Given $f: a \to a'$,

$$hom(f,b): hom(a',b) \rightarrow hom(a,b)$$

is defined as the precomposition with f, that we write as $f \circ -$.

This kind of functor, contravariant on the first variable and covariant on the second is usually called a **profunctor**.

13.3 FUNCTOR CATEGORIES

Definition 55 (Functor category). Given two categories \mathcal{B}, \mathcal{C} , the **functor category** $\mathcal{B}^{\mathcal{C}}$ has all functors $\mathcal{C} \to \mathcal{B}$ as objects and natural transformations between them as morphisms.

If we consider the category of small categories Cat, there is a profunctor -: Cat $^{op} \times$ Cat \to Cat sending any two categories to their functor category.

In [LSo9], multiple examples of usual mathematical constructions in terms of functor categories can be found. Graphs, for instance, can be seen as functors; and graphs homomorphisms as the natural transformations between them.

Example 17 (Graphs as functors). We consider the category given by two objects and two non-identity morphisms,

usually called $\downarrow\downarrow$. To define a functor from this category to Set amounts to choose two sets E, V (not necessarily different) called the set of *edges* and the set of *vertices*; and two functions $s, t: E \to V$, called *source* and *target*. That is, our usual definition of directed multigraph,

$$E \xrightarrow{s} V$$

can be seen as an object in the category $\mathsf{Set}^{\downarrow\downarrow}$. Note how a natural transformation between two graphs (E,V) and (E',V') is a pair of morphisms $\alpha_E \colon E \to E'$ and $\alpha_V \colon V \to V'$ such that $s \circ \alpha_E = \alpha_V \circ s$ and $t \circ \alpha_E = \alpha_V \circ t$. This provides a convenient notion of graph homomorphism: a pair of morphisms preserving the incidence of edges. We can call Graph to this functor category.

Example 18 (Dynamical systems as functors). A set endowed with an endomorphism (S, α) can be regarded as a *dynamical system* in an informal way. Each state of the

system is represented by an element of the set and and the transition function is represented by the endomorphism. That is, if we start at an initial state $s \in S$ and the transition function is given by $\alpha \colon S \to S$, the evolution of the system will be given by

$$s$$
, $\alpha(s)$, $\alpha(\alpha(s))$, ...

and we could say that it evolves discretely over time, being $\alpha^t(s)$ the state of the system at the instant t.

This structure can be described as a functor from the monoid of natural numbers under addition. Note that any functor $D: \mathbb{N} \to \operatorname{Set}$ has to choose a set, and an image for the $1: \mathbb{N} \to \mathbb{N}$, the only generator of the monoid. The image of any natural number n is determined by the image of 1; if $D(1) = \alpha$, it follows that $D(t) = \alpha^t$, where $\alpha^0 = \operatorname{id}$.

Once the structure has been described as a functor, the homomorphisms preserving this kind of structure can be described as natural transformations. A natural transformation between two functors $D, D' \colon \mathbb{N} \to \mathsf{Set}$ describing two dynamic systems $(S, \alpha), (T, \beta)$ is given by a function $f \colon S \to T$ such that the following diagram commutes

$$\begin{array}{ccc}
S & \xrightarrow{f} & T \\
\alpha^n \downarrow & & \downarrow \beta^n \\
S & \xrightarrow{f} & T
\end{array}$$

that is, $f \circ \alpha = \beta \circ f$. A natural notion of homomorphism has arisen from the categorical interpretation of the structure.

A further generalization is now possible, if we want to consider continuously-evolving dynamical systems, we can define functors from the monoid of real numbers under adition instead of naturals, that is, considering functors $\mathbb{R} \to \mathrm{Set}$. Note that these functors are given by a set S and a family of morphisms $\{\alpha_r\}_{r\in\mathbb{R}}$ such that

$$\alpha_r \circ \alpha_s = \alpha_{r+s} \quad \forall r, s \in \mathbb{R}.$$

This example is described in [LSo₉].

13.4 COMMA CATEGORIES

The idea of functor categories leads us to think about categories whose objects are themselves diagrams on a category. The most relevant examples, which will be useful in our development of categorical logic, are the **comma categories**, and specially the particular case of a **slice category**.

Definition 56 (Comma category). Let C, D, \mathcal{E} be categories with functors $T: \mathcal{E} \to C$ and $S: \mathcal{D} \to C$. The **comma category** $(T \downarrow S)$ has

- morphisms of the form $f: Te \rightarrow Sd$ as objects, for $e \in \mathcal{E}, d \in \mathcal{D}$;
- and pairs $\langle k, h \rangle$: $f \to f'$, where k: $e \to e'$ and h: $d \to d'$ such that $f' \circ Tk = Sh \circ f$, as arrows.

Diagramatically, a morphism in this category is a commutative diagram

$$Te \xrightarrow{Tk} Te'$$

$$f \downarrow \qquad \qquad \downarrow f'$$

$$Sd \xrightarrow{Sh} Sd'$$

where the objects of the category are drawn in grey.

Definition 57 (Slice category). A **slice category** is a particular case of a comma category $(T \downarrow S)$ in which T = Id is the identity functor and S is a functor from the terminal category, a category with only one object and its identity morphism.

A functor from the terminal category simply chooses an object of the category. If we call a = S(*), objects of this category are morphisms $f : c \to a$, where $c \in C$; and morphisms are $\langle k \rangle : f \to f'$, where $k : c \to c'$ such that $f' \circ k = f$. Diagramatically a morphism is drawn as

$$c \xrightarrow{Tk} c'$$

$$f \xrightarrow{a} f'$$

This slice category is conventionally written as $(C \downarrow a)$. In general, we write $(T \downarrow a)$ when S is a functor from the terminal category picking an object a; and we write $(C \downarrow S)$ when T is the identity functor.

Definition 58 (Coslice category). **Coslice categories** are the categorical dual of slice categories. It is the particular case of a comma category $(T \downarrow S)$ in which S = Id is the identity functor and T is a functor from the terminal category, a category with only one object and its identity morphism.

If we call a = T(*), objects of this category are morphisms $f: c \to a$, where $c \in C$; and morphisms are $\langle k \rangle : f \to f'$, where $k: c \to c'$ such that $k \circ f' = f$. Diagramatically a morphism is drawn as

$$\begin{array}{c|c}
 & a \\
f' & f \\
c & Sk & c'
\end{array}$$

This slice category is conventionally written as $(a \downarrow C)$. In general, we write $(a \downarrow S)$ when T is a functor from the terminal category picking an object a; and we write $(T \downarrow C)$ when S is the identity functor.

Definition 59 (Arrow category). **Arrow categories** are a particular case of comma categories $(T \downarrow S)$ in which both functors are the identity. They are usually written as $\mathcal{C}^{\rightarrow}$.

Objects in this category are morphisms in C, and morphisms in this category are commutative squares in C. Diagramatically,

$$\begin{array}{ccc}
a & \xrightarrow{k} & b \\
f \downarrow & & \downarrow f' \\
a' & \xrightarrow{h} & b'
\end{array}$$

.

UNIVERSALITY AND LIMITS

14.1 UNIVERSAL ARROWS

A universal property is commonly given in mathematics by some conditions of existence and uniqueness on morphisms, representing some sort of natural isomorphism. They can be used to define certain constructions up to isomorphism and to operate with them in an abstract setting. We will formally introduce universal properties using universal arrows from an object c to a functor S; the property of these arrows is that every arrow of the form $c \to Sd$ will factor uniquely through the universal arrow.

Definition 60 (Universal arrow). A **universal arrow** from c to S is a morphism $u: c \to Sr$ such that for every $g: c \to Sd$ exists a unique morphism $f: r \to d$ making this diagram commute

Note how an universal arrow is, equivalently, the initial object of the comma category $(c \downarrow S)$. Thus, universal arrows must be unique up to isomorphism.

Proposition 9 (Universality in terms of hom-sets). The arrow $u: c \to Sr$ is universal if and only if $f \mapsto Sf \circ u$ is a bijection $hom(r,d) \cong hom(c,Sd)$ natural in d. Any natural bijection of this kind is determined by a unique universal arrow.

Proof. On the one hand, given an universal arrow, bijectivity follows from the definition of universal arrow; and naturality follows from the fact that $S(gf) \circ u = Sg \circ Sf \circ u$.

On the other hand, given a bijection φ , we define $u = \varphi(\mathrm{id}_r)$. By naturality, we have the bijection $\varphi(f) = Sf \circ u$, and every arrow is written in this way.

The categorical dual of an universal arrow from an object to a functor is the notion of universal arrow from a functor to an object. Note how, particularly in this case, we

avoid the name *couniversal arrow*; as both arrows are representing what we usually call a *universal property*.

Definition 61 (Dual universal arrow). A **universal arrow** from S to c is a morphism $v \colon Sr \to c$ such that for every $g \colon Sd \to c$ exists a unique morphism $f \colon d \to r$ making this diagram commute

14.2 REPRESENTABILITY

Definition 62 (Representation of a functor). A **representation** of a functor from an arbitrary category to the category of sets, $K: D \to Set$, is a natural isomorphism making it isomorphic to a partially applied hom-functor,

$$\psi$$
: hom $_D(r,-) \cong K$.

A functor is *representable* if it has a representation. The object r is called a *representing* object. Note that, for this definition to work, D must have small hom-sets.

Proposition 10 (Representations in terms of universal arrows). *If* $u: * \to Kr$ *is a universal arrow for a functor* $K: D \to \mathsf{Set}$, then $f \mapsto K(f)(u*)$ is a representation. Every representation is obtained in this way.

Proof. We know that $hom(*, X) \rightarrow X$ is a natural isomorphism in X; in particular $hom(*, K-) \rightarrow K-$. Every representation is built then as

$$hom_D(r,-) \cong hom(*,K-) \cong K,$$

for every natural isomorphism $D(r, -) \cong Set(*, K-)$. But every natural isomorphism of this kind is universal arrow.

14.3 YONEDA LEMMA

Lemma 7 (Yoneda Lemma). For any $K: D \to \mathsf{Set}$ and $r \in D$, there is a bijection

$$y : Nat(hom_D(r, -), K) \cong Kr$$

sending any natural transformation α : hom_D $(r, -) \rightarrow K$ to its image on the identity, $\alpha_r(\mathrm{id}_r)$.

Proof. The complete natural transformation α is determined by $\alpha_r(\mathrm{id}_r)$. By naturality, given any $f: r \to s$,

$$\begin{array}{c|c}
hom(r,r) & \xrightarrow{\alpha_r} & Kr \\
\downarrow & id_r & \longmapsto \alpha_r(id_r) & \downarrow \\
\downarrow f & \downarrow & \downarrow \\
hom(r,s) & \xrightarrow{\alpha_s} & Ks
\end{array}$$

it must be the case that $\alpha_s(f) = Kf(\alpha_r(id_r))$.

Corollary 3 (Characterization of natural transformations between representable functors). Given $r, s \in D$, any natural transformation $hom(r, -) \rightarrow hom(s, -)$ is of the form $-\circ h$ for a unique morphism $h: s \rightarrow r$.

Proof. Using Yoneda Lemma (Lemma 7), we know that

$$Nat(hom_D(r, -), hom_D(s, -)) \cong hom_D(s, r),$$

sending the natural transformation to a morphism $\alpha(id_r) = h \colon s \to r$. The rest of the natural transformation is determined as $- \circ h$ by naturality.

Proposition 11 (Naturality of the Yoneda Lemma). *The bijection on the Yoneda Lemma* (*Lemma 7*),

$$y: Nat(hom_D(r, -), K) \cong Kr$$
,

is a natural isomorphism between two functors from $\mathsf{Set}^D \times D$ to Set .

Proof. We define $N : \mathsf{Set}^D \times D \to \mathsf{Set}$ on objects as $N\langle r, K \rangle = \mathsf{Nat}(\mathsf{hom}(r, -), K)$. Given $f : r \to r'$ and $F : K \to K'$, the functor is defined on morphisms as

$$N\langle f, F\rangle(\alpha) = F \circ \alpha \circ (-\circ f) \in \text{Nat}(\text{hom}(r', -), K),$$

where $\alpha \in \text{Nat}(\text{hom}(r, -), K)$. We define $E \colon \text{Set}^D \times D \to \text{Set}$ on objects as $E\langle r, K \rangle = Kr$. Given $f \colon r \to r'$ and $F \colon K \to K'$, the functor is defined on morphisms as

$$E\langle f, F\rangle(a) = F(Kf(a)) = K'f(Fa) \in K'r',$$

where $a \in Kr$, and the equality holds because of the naturality of F. The naturality of y is equivalent to the commutativity of the following diagram

$$Nat(hom(r,-),K) \xrightarrow{y} Kr
N(f,F) \downarrow \qquad \qquad \downarrow E(f,F)
Nat(hom(r',-),K') \xrightarrow{y} K'r'$$

where, given any $\alpha \in \text{Nat}(\text{hom}(r, -), K)$, it follows from naturality of α that

$$y(N\langle f, F\rangle(\alpha)) = y(F \circ \alpha \circ (-\circ f)) = F \circ \alpha \circ (-\circ f)(\mathrm{id}_{r'}) = F(\alpha(f))$$

= $F(\alpha(\mathrm{id}_{r'} \circ f)) = F(Kf(\alpha_r(\mathrm{id}_r))) = E\langle f, F\rangle \alpha_r(\mathrm{id}_r)$
= $E\langle f, F\rangle (y(\alpha)).$

Definition 63. In the conditions of the Yoneda Lemma (Lemma 7) the **Yoneda functor**, $Y: D^{op} \to Set^D$, is defined with the arrow function

$$(f: s \to r) \mapsto \Big(\hom_D(f, -) \colon \hom_D(r, -) \to \hom_D(s, -) \Big).$$

It can be also written as $Y': D \to \mathsf{Set}^{D^{op}}$.

Proposition 12. The Yoneda functor is full and faithful.

Proof. By Yoneda Lemma, we know that

$$y: \operatorname{Nat}(\operatorname{hom}(r, -), \operatorname{hom}(s, -)) \cong \operatorname{hom}(s, r)$$

is a bijection, where y(hom(f, -)) = f.

14.4 LIMITS

In the definition of product, we chose two objects of the category, we considered all possible *cones* over two objects and we picked the universal one. Diagramtically,

c is a cone and $a \times b$ is the universal one: every cone factorizes through it. In this particular case, the base of each cone is given by two objects; or, in other words, by the image of a functor from the discrete category with only two objects, called the *index category*.

We will be able to create new constructions on categories by formalizing the notion of cone and generalizing to arbitrary bases, given as functors from arbitrarily complex index categories. Constant functors are the first step into formalizing the notion of *cone*.

Definition 64 (Constant functor). The **constant functor** $\Delta \colon \mathcal{C} \to \mathcal{C}^{\mathcal{J}}$ sends each object $c \in \mathcal{C}$ to a constant functor $\Delta c \colon \mathcal{J} \to \mathcal{C}$ defined as

- the constantly-*c* function for objects, $\Delta(j) = c$;
- and the constantly-id_c function for morphisms, $\Delta(f) = id_c$.

The constant functor sends a morphism $g: c \to c'$ to a natural transformation $\Delta g: \Delta c \to \Delta c'$ whose components are all g.

We could say that Δc squeezes the whole category \mathcal{J} into c. A natural transformation from this functor to some other $F \colon \mathcal{J} \to \mathcal{C}$ should be regarded as a *cone* from the object c to a copy of \mathcal{J} inside the category \mathcal{C} ; as the following diagram exemplifies

The components of the natural transformation appear highlighted in the diagram. The naturality of the transformation implies that each triangle

on that cone must be commutative. Thus, natural transformations are a way to recover all the information of an arbitrary *index category* \mathcal{J} that was encoded in c by the constant functor. As we did with products, we want to find the cone that best encodes that information; a universal cone, such that every other cone factorizes through it. Diagramatically an r such that, for each d,

That factorization will be represented in the formal definition of limit by a universal natural transformation between the two constant functors.

Definition 65 (Limit). The **limit** of a functor $F: \mathcal{J} \to \mathcal{C}$ is an object $r \in \mathcal{C}$ such that there exists a universal arrow $v: \Delta r \to F$ from Δ to F. It is usually written as $r = \varprojlim F$.

That is, for every natural transformation $w \colon \Delta d \xrightarrow{\cdot} F$, there is a unique morphism $f \colon d \to r$ such that

commutes. This reflects directly on the universality of the cone we described earlier and proves that limits are unique up to isomorphism.

By choosing different index categories, we will be able to define multiple different constructions on categories as limits.

14.5 EXAMPLES OF LIMITS

For our first example, we will take the following category, called $\downarrow \downarrow$ as index category,

A functor $F \colon \downarrow \downarrow \to \mathcal{C}$ is a pair of parallel arrows in \mathcal{C} . Limits of functors from this category are called **equalizers**. With this definition, the **equalizer** of two parallel arrows $f,g \colon a \to b$ is an object $\operatorname{eq}(f,g)$ with a morphism $e \colon \operatorname{eq}(f,g) \to a$ such that $f \circ e = g \circ e$; and such that any other object with a similar morphism factorizes uniquely through it

note how the right part of the cone is completely determined as $f \circ e$. Because of this, equalizers can be written without specifying it, and the diagram can be simplified to

Example 19 (Equalizers in Sets). The equalizer of two parallel functions $f,g:A\to B$ in Set is $\{x\in A\mid f(a)=g(a)\}$ with the inclusion morphism. Given any other function

 $h: D \to A$ such that $f \circ h = g \circ h$, we know that f(h(d)) = g(h(d)) for any $d \in D$. Thus, h can be factorized through the equalizer.

$$\{x \in A \mid f(a) = g(a)\} \xrightarrow{i} A \xrightarrow{g} B$$

Example 20 (Kernels). In the category of abelian groups, the kernel of a function f, $\ker(f)$, is the equalizer of $f: G \to H$ and a function sending each element to the zero element of H. The same notion of kernel can be defined in the category of RModules, for any ring R.

Pullbacks are defined as limits whose index category is $\cdot \to \cdot \leftarrow \cdot$. Any functor from that category is a pair of arrows with a common codomain; and the pullback is the universal cone over them.

Again, the central arrow of the diagram is determined as $f \circ q = g \circ p$; so it can be ommited in the diagram. The usual definition of a pullback for two morphisms $f \colon x \to z$ and $g \colon y \to z$ is pair of morphisms $p \colon a \to x$ and $q \colon a \to y$ such that $f \circ q = g \circ p$ which are also universal, that is, given any pair of morphisms $p' \colon d \to x$ and $q' \colon d \to y$, there exists a unique $u \colon d \to a$ making the diagram commute. Usually we write the pullback object as $x \times_z y$ and we write this property diagramatically as

The square in this diagram is usually called a *pullback square*, and the pullback object is usually called a *fibered product*.

14.6 COLIMITS

A colimit is the dual notion of a limit. We could consider cocones to be the dual of cones and pick the universal one. Once an index category \mathcal{J} and a base category \mathcal{C} are fixed, a *cocone* is a natural transformation from a functor on the base category to a constant functor. Diagramatically,

is an example of a cocone, and the universal one would be the r, such that, for each cone d,

and naturality implies that each triangle

commutes.

Definition 66 (Colimits). The **colimit** of a functor $F: J \to \mathcal{C}$ is an object $r \in \mathcal{C}$ such that there exists a universal arrow $u: F \to \Delta r$ from F to Δ . It is usually written as $r = \varinjlim F$.

That is, for every natural transformation $w \colon F \to \Delta d$, there is a unique morphism $f \colon r \to d$ such that

$$\begin{array}{ccc}
d & \Delta d \\
\exists! f \\
 & \Delta f \\
 & r & \Delta r \leftarrow v & F
\end{array}$$

commutes. This reflects directly on the universality of the cocone we described earlier and proves that colimits are unique up to isomorphism.

14.7 EXAMPLES OF COLIMITS

Coequalizers are the dual of *equalizers*; colimits of functors from $\downarrow\downarrow$. The coequalizer of two parallel arrows is an object coeq(f,g) with a morphism $e : b \to coeq(f,g)$ such that $e \circ f = e \circ g$; and such that any other object with a similar morphism factorizes uniquely through it

as the right part of the cocone is completely determined by the left one, the diagram can be written as

Example 21 (Coequalizers in Sets). The coequalizer of two parallel functions $f,g:A \to B$ in Set is $B/(\sim_{f=g})$, where $\sim_{f=g}$ is the minimal equivalence relation in which we have $f(a) \sim g(a)$ for each $a \in A$. Given any other function $h: B \to D$ such that h(f(a)) = h(g(a)), it can be factorized in a unique way by $h': B/\sim_{f=g} \to D$.

Pushouts are the dual of pullbacks; colimits whose index category is $\cdot \leftarrow \cdot \rightarrow \cdot$, that is, the dual of the index category for pullbacks. Diagramatically,

and we can define the pushout of two morphisms $f: z \to x$ and $g: z \to y$ as a pair of morphisms $p: x \to a$ and $q: y \to a$ such that $p \circ f = q \circ g$ which are also universal,

that is, given any pair of morphisms $p' \colon x \to d$ and $q' \colon y \to d$, there exists a unique $u \colon a \to d$ making the diagram commute.

The square in this diagram is usually called a *pushout square*, and the pullback object is usually called a *fibered coproduct*.

ADJOINTS, MONADS AND ALGEBRAS

15.1 ADJUNCTIONS

Definition 67 (Adjunction). An **adjunction** from categories \mathcal{X} to \mathcal{Y} is a pair of functors $F \colon \mathcal{X} \to \mathcal{Y}$, $G \colon \mathcal{Y} \to \mathcal{X}$ with a bijection

$$\varphi \colon \mathsf{hom}(Fx, y) \cong \mathsf{hom}(x, Gy),$$

natural in both $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. We say that F is *left-adjoint* to G and that G is *right-adjoint* to F. We write this as $F \dashv G$.

Naturality of φ means that both

$$\begin{array}{cccc}
\operatorname{hom}(Fx,y) & \xrightarrow{\varphi_{x,y}} & \operatorname{hom}(x,Gy) & \operatorname{hom}(Fx,y) & \xrightarrow{\varphi_{x,y}} & \operatorname{hom}(x,Gy) \\
 & & \downarrow_{-\circ h} & & \downarrow_{Gk\circ -} \\
\operatorname{hom}(Fx',y) & \xrightarrow{\varphi_{x,y}} & \operatorname{hom}(x',Gy) & & \operatorname{hom}(Fx,y') & \xrightarrow{\varphi_{x,y}} & \operatorname{hom}(x,Gy')
\end{array}$$

commute for every $h: x \to x'$ and $k: y \to y'$. That is, for every $f: Fx \to y$, $\varphi(f) \circ h = \varphi(f \circ Fh)$ and $Gk \circ \varphi(f) = \varphi(k \circ f)$. Equivalently, φ^{-1} is natural and that means that, for every $g: x \to Gy$, $k \circ \varphi^{-1}(g) = \varphi^{-1}(Gk \circ g)$ and $\varphi^{-1}(g) \circ Fh = \varphi^{-1}(g \circ h)$. A different and more intuitive way to write adjunctions is used by William Lawvere on his notes on logical operators (see [Lawb]). An adjunction $F \dashv G$ can be written as

$$\begin{array}{ccc}
Fx & \xrightarrow{f} & y \\
\hline
x & \xrightarrow{\varphi(f)} & Gy
\end{array}$$

to emphasize that, for each morphism $f: Fx \to y$, there exists a unique morphism $\varphi(f): x \to Gy$; written in a way that resembles bidirectional logical inference rules.

Naturality, in this setting, means that the precomposition and the postcomposition of arrows are preserved by the *inference rule*. Given morphisms $h: x' \to x$ and $k: y \to y'$, we have that the composition arrows of the following diagrams are adjoint to one another

In other words, that $\varphi(f) \circ h = \varphi(f \circ Fh)$ and $Gk \circ \varphi(f) = \varphi(k \circ f)$, as we wrote earlier. In the following two propositions, we will characterize all this information in terms of natural transformations made up of universal arrows.

Definition 68 (Unit and counit of an adjunction). Given an adjunction $F \dashv G$, we define

- the **unit** η as the family of morphisms $\eta_x = \varphi(\mathrm{id}_{Fx}) \colon x \to GFx$, for each x;
- the **counit** ε as the family of morphisms $\varepsilon_y = \varphi^{-1}(\mathrm{id}_{Gy}) \colon FGy \to y$, for each y.

Diagramatically, they can be obtained by taking y to be Fx and x to be Gy, respectively in the definition of adjunction

$$\begin{array}{ccc}
Fx & \xrightarrow{\mathrm{id}} & Fx \\
\hline
x & \xrightarrow{\eta_x} & GFx
\end{array}
\qquad
\begin{array}{c}
FGy & \xrightarrow{\varepsilon_y} & y \\
Gy & \xrightarrow{\mathrm{id}} & Gy
\end{array}$$

Proposition 13 (Units and counits are natural transformations). *The unit and the counit* are natural transformations such that

1. for each
$$f: Fx \to y$$
, $\varphi(f) = Gf \circ \eta_x$;

2. for each
$$g: x \to Gy$$
, $\varphi^{-1}(g) = \varepsilon_y \circ Fg$;

that follow the **triangle identities**, $G\varepsilon \circ \eta G = \mathrm{id}_G$ and $\varepsilon F \circ F \eta = \mathrm{id}_F$.

$$G \xrightarrow{\eta G} GFG \qquad FGF \xleftarrow{F\eta} F$$

$$\downarrow_{G\varepsilon} \qquad \varepsilon F \downarrow$$

$$G \qquad F$$

Proof. The right and left adjunct formulas are particular instances of the naturality equations we gave in the definition of φ ;

•
$$Gf \circ \eta = Gf \circ \varphi(\mathrm{id}) = \varphi(f \circ \mathrm{id}) = \varphi(f);$$

• $\varepsilon_{y} \circ Fg = \varphi^{-1}(\mathrm{id}) \circ Fg = \varphi^{-1}(\mathrm{id} \circ g) = \varphi^{-1}(g);$

•
$$\varepsilon_y \circ Fg = \varphi^{-1}(\mathrm{id}) \circ Fg = \varphi^{-1}(\mathrm{id} \circ g) = \varphi^{-1}(g)$$

diagramatically,

The naturality of η and ε can be deduced again from the naturality of φ ; given any two functions $h: x \to y$ and $k: x \to y$,

•
$$GFh \circ \eta_x = GFh \circ \varphi(\mathrm{id}_{Fx}) = \varphi(Fh) = \varphi(\mathrm{id}_{Fx}) \circ h = \eta_x \circ h;$$

•
$$\varepsilon_x \circ FGk = \varphi^{-1}(\mathrm{id}_{Fx}) \circ FGk = \varphi^{-1}(Gk) = k \circ \varphi^{-1}(\mathrm{id}_{Gx}) = k \circ \varepsilon_x;$$

diagramatically, we can prove that the adjunct of Fh is $GFh \circ \eta_x$ and $\eta_x \circ h$ at the same time; while the adjunct of Gk is $k \circ \varepsilon_x$ and $\varepsilon_x \circ FGk$,

$$\begin{array}{c}
x \xrightarrow{h} y \xrightarrow{\eta y} GFy \\
\hline
Fx \xrightarrow{id} Fx \xrightarrow{Fh} Fy \xrightarrow{id} Fy \\
\hline
x \xrightarrow{\eta_x} GFx \xrightarrow{GFh} GFy
\end{array}$$

$$\begin{array}{c}
FGx \xrightarrow{\varepsilon_x} x \xrightarrow{k} y \\
\hline
Gx \xrightarrow{id} Gx \xrightarrow{Gk} Gy \xrightarrow{id} Gy \\
\hline
FGx \xrightarrow{FGk} FGy \xrightarrow{\varepsilon_x} y$$

Finally, the triangle identities follow directly from the previous ones,

•
$$id = \varphi(\varepsilon) = G\varepsilon \circ \eta;$$

• $id = \varphi^{-1}(\eta) = \varepsilon \circ F\eta.$

Proposition 14 (Characterization of adjunctions). *Each adjunction is* $F \dashv G$ *between categories* \mathcal{X} *and* \mathcal{Y} *is completely determined by any of the following data,*

- 1. functors F, G and $\eta: 1 \xrightarrow{\cdot} GF$ where $\eta_x: x \to GFx$ is universal to G.
- 2. functor G and universals $\eta_x \colon x \to GF_0x$, where $F_0x \in \mathcal{Y}$, creating a functor F.
- 3. functors F, G and ε : $FG \to 1$ where ε_a : $FGa \to a$ is universal from F.
- 4. functor F and universals $\varepsilon_a \colon FG_0a \to a$, where $G_0x \in \mathcal{X}$, creating a functor G.
- 5. functors F, G, with natural transformations satisfying the triangle identities $G\varepsilon \circ \eta G = \operatorname{id}$ and $\varepsilon F \circ F \eta = \operatorname{id}$.

Proof. 1. Universality of η_x gives a isomorphism φ : hom $(Fx,y) \cong \text{hom}(x,Gy)$ between the arrows in the following diagram

$$\begin{array}{ccc}
Gy & y \\
\downarrow & & \uparrow & \downarrow \\
x & \xrightarrow{\eta_x} & GFx & Fx
\end{array}$$

defined as $\varphi(g) = Gg \circ \eta_x$. This isomorphism is natural in x; for every $h \colon x' \to x$ we know by naturality of η that $Gg \circ \eta \circ h = G(g \circ Fh) \circ \eta$. The isomorphism is also natural in y; for every $k \colon y \to y'$ we know by functoriality of G that $Gh \circ Gg \circ \eta = G(h \circ g) \circ \eta$.

2. We can define a functor F on objects as $Fx = F_0x$. Given any $h: x \to x'$, we can use the universality of η to define Fh as the unique arrow making this diagram commute

$$GFx' \qquad Fx'$$

$$\uparrow_{x'} \circ h \qquad \uparrow_{GFh} \qquad \uparrow_{\exists !Fh}$$

$$x \xrightarrow{\eta_x} GFx \qquad Fx$$

and this choice makes F a functor and η a natural transformation, as it can be checked in the following diagrams using the existence and uniqueness given by the universality of η in both cases

- 3. The proof is dual to that of 1.
- 4. The proof is dual to that of 2.
- 5. We can define two functions $\varphi(f) = Gf \circ \eta_x$ and $\theta(g) = \varepsilon_y \circ Fg$. We checked in 1 (and 3) that these functions are natural in both arguments; now we will see that they are inverses of each other using naturality and the triangle identities
 - $\varphi(\theta(g)) = G\varepsilon_a \circ GFg \circ \eta_x = G\varepsilon_a \circ \eta_x \circ g = g;$
 - $\bullet \ \theta(\varphi(f)) = \varepsilon \circ FGf \circ F\eta = f \circ \varepsilon \circ F\eta = f.$

Proposition 15 (Essential uniqueness of adjoints). *Two adjoints to the same functor* $F, F' \dashv G$ *are naturally isomorphic.*

Proof. Note that the two different adjunctions give two units η , η' , and for each x both $\eta_x \colon x \to GFx$ and $\eta'_x \colon x \to GF'x$ are universal arrows from x to G. As universal arrows are unique up to isomorphism, we have a unique isomorphism $\theta_x \colon Fx \to F'x$ such that $G\theta_x \circ \eta_x = \eta'_x$.

We know that θ is natural because there are two arrows, $\theta \circ Ff$ and $F'f \circ \theta$, making this universal diagram commute

$$y \xrightarrow{\eta'} GF'y \qquad F'y$$

$$f \uparrow \qquad \uparrow \qquad \uparrow \qquad \exists! \uparrow \qquad \\ x \xrightarrow{\eta} GFx \qquad Fx$$

because

• $G(\theta \circ Ff) \circ \eta = G\theta \circ GFf \circ \eta = G\theta \circ \eta \circ f = \eta' \circ f;$

•
$$G(F'f \circ \theta) \circ \eta = GF'f \circ G\theta \circ \eta = GF'f \circ \eta' = \eta' \circ f;$$

thus, they must be equal, $\theta \circ Ff = F'f \circ \theta$.

Theorem 9 (Composition of adjunctions). *Given two adjunctions between categories* \mathcal{X} , \mathcal{Y} *and* \mathcal{Y} , \mathcal{Z} *respectively,*

$$\varphi \colon \mathsf{hom}(Fx, y) \cong \mathsf{hom}(x, Gy) \qquad \theta \colon \mathsf{hom}(F'y, z) \cong \mathsf{hom}(y, G'z)$$

the composite functors yield a composite adjunction

$$\varphi \cdot \theta \colon \operatorname{hom}(F'Fx, z) \cong \operatorname{hom}(x, GG'z).$$

If the unit and counit of φ are $\langle \eta, \varepsilon \rangle$ and the unit and counit of θ are $\langle \eta', \varepsilon' \rangle$; the unit and counit of the composite adjunction are $\langle G\eta' F \circ \eta, \varepsilon' \circ F' \varepsilon G' \rangle$.

Proof. We saw previously that the componentwise composition of two natural isomorphisms is itself an natural isomorphism. Diagramatically, we compose

$$\begin{array}{c}
F'Fx \xrightarrow{f} y \\
Fx \xrightarrow{\theta(f)} G'y \\
\hline
x \xrightarrow{\varphi\theta(f)} GG'y
\end{array}$$

If we apply the two natural isomorphisms to the identity, we find the unit and the counit of the adjunction.

$$\begin{array}{c|c}
F'Fx & \xrightarrow{\mathrm{id}} F'Fx \\
\hline
Fx & \xrightarrow{\mathrm{id}} Fx & \xrightarrow{\eta'_{Fx}} G'F'Fx \\
\hline
x & \xrightarrow{\eta} GFx & \xrightarrow{G\eta'_{Fx}} GG'F'Fx
\end{array}$$

$$\begin{array}{c|c}
GG'z & \xrightarrow{\mathrm{id}} GG'z \\
\hline
FGG'z & \xrightarrow{\varepsilon_{G'z}} G'z & \xrightarrow{\mathrm{id}} G'z \\
\hline
F'FGG'z & \xrightarrow{F'\varepsilon_{G'z}} F'G'z & \xrightarrow{\varepsilon'} z
\end{array}$$

15.2 EXAMPLES OF ADJOINTS

Example 22 (Product and coproduct as adjoints). Given any category C, we define a **diagonal functor** to a product category $\Delta \colon C \to C \times C$, sending every object x to a pair (x, x), and each morphism $f : x \to y$ to the pair $\langle f, f \rangle \colon (x, x) \to (y, y)$.

The right adjoint to this functor will be the categorical product \times : $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$, sending each pair of objects to their product and each pair of morphisms to their unique product. The left adjoint to this functor will be the categorical sum, +: $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$, sending each pair of objects to their sum and each pair of morphisms to their unique sum. That is, we have the following chain of adjoints,

$$+ \dashv \Delta \dashv \times$$
.

More precisely, knowing that a morphism $(x, x') \to (y, z)$ is actually pair of morphisms $x \to y$ and $x' \to z$, the adjoint properties for the diagonal functor

$$\begin{array}{ccc}
\Delta x & \longrightarrow & (y,z) & & +(x,y) & \longrightarrow & z \\
\hline
x & \longrightarrow & \times (y,z) & & & (x,y) & \longrightarrow & \Delta z
\end{array}$$

can be rewritten as bidirectional inference rules with two premises

$$\frac{x \to y \qquad x \to z}{x \longrightarrow y \times z} \qquad \frac{x + y \longrightarrow z}{x \to z \qquad y \to z}$$

which are exactly the universal properties of the product and the sum. The necessary natural isomorphism is given by the existence and uniqueness provided by the inference rule.

Example 23 (Free and forgetful functors). Let Mon be the category of monoids with monoid homomorphisms. A functor U: Mon \rightarrow Set can be defined by sending each morphism to its underlying set and each monoid homomorphism to its underlying function between sets. Funtors of this kind are called **forgetful functors**, as they simply *forget* part of the algebraic structure.

Left adjoints to forgetful functors are called **free functors**. In this case, the functor $F \colon \mathsf{Set} \to \mathsf{Mon}$ taking each set to the free monoid over it and each function to its unique extension to the free monoid. Note how it preserves identities and composition. The adjunction can be seen diagramatically as

$$\begin{array}{c}
FA \xrightarrow{\overline{f}} M \\
\hline
A \xrightarrow{f} UM
\end{array}$$

where each monoid homormorphism from the free monoid, $FA \to M$ can be seen as the unique possible extension of a function from the set of generators $f: A \to UM$ to a full monoid homomorphism, \overline{f} .

Note how, while this characterizes the notion of free monoid, it does not provide an explicit construction of it. Indeed, given $f: A \to UM$, if we take the free monoid FA to consist on words over the elements of A endowed with the concatenation operator; the only way to extend f to an homomorphism is to define

$$\overline{f}(a_1a_2\ldots a_n)=f(a_1)f(a_2)\ldots f(a_n);$$

and note how every homomorphism from the free monoid is determined by how it acts on the generator set.

The notion of forgetful and free functors can be generalized to algebraic structures other than monoids.

15.3 MONADS

The notion of **monads** is pervasive in category theory. A monad is a certain type of endofunctor that arises naturally when considering adjoints. They will be useful to model algebraic notions inside category theory and to model a variety of effects and contextual computations in functional programming languages.

Definition 69 (Monad). A **monad** is a functor $T: X \to X$ with natural transformations

- $\eta: I \xrightarrow{\cdot} T$, called *unit*; and
- $\mu: T^2 \to T$, called *multiplication*;

such that the following two diagrams commute

$$T^{3} \xrightarrow{T\mu} T^{2} \qquad IT \xrightarrow{\eta T} T^{2} \xleftarrow{T\eta} TI$$

$$\downarrow^{\mu T} \qquad \downarrow^{\mu} \qquad \cong \qquad \downarrow^{\mu} \cong \qquad T$$

$$T^{2} \xrightarrow{\mu} T \qquad T$$

The first diagram is encoding some form of associativity of the multiplication, while the second one is encoding the fact that η creates a neutral element with respect to this multiplication. These statements will be made precise when we talk about algebraic theories.

Proposition 16 (Each adjunction gives rise to a monad). *Given* $F \dashv G$, *the composition* GF *is a monad.*

Proof. We take the unit of the adjunction as the monad unit. We define the product as $\mu = G \varepsilon F$. Associativity follows from these diagrams

where the first is commutative by Proposition and the second is obtained by applying functors G and F. Unit laws follow from the after applying F and G.

Definition 70 (Comonad). A **comonad** is a functor $L: X \to X$ with natural transformations

- ε : $L \to I$, called *counit*
- $\delta \colon L \to L^2$, called *comultiplication*

such that

15.4 ALGEBRAS FOR A MONAD

Definition 71 (T-algebra). For a monad T, a T-algebra is an object x with an arrow $h: Tx \to x$ called *structure map* making these diagrams commute

$$T^{2}x \xrightarrow{Th} Tx$$

$$\downarrow \mu \qquad \qquad \downarrow h$$

$$Tx \xrightarrow{h} x$$

Definition 72 (Morphism of T-algebras). A **morphism of T-algebras** is an arrow $f: x \to x'$ making the following square commute

$$Tx \xrightarrow{h} Tx$$

$$Tf \downarrow \qquad \qquad \downarrow f$$

$$Tx' \xrightarrow{h'} Tx'$$

Proposition 17 (Category of T-algebras). The set of all T-algebras and their morphisms form a category X^T .

Proof. Given $f: x \to x'$ and $g: x' \to x''$, T-algebra morphisms, their composition is also a T-algebra morphism, due to the fact that this diagram

$$Tx \xrightarrow{h} x$$

$$Tf \downarrow \qquad \qquad \downarrow f$$

$$Tx' \xrightarrow{h'} x'$$

$$Tg \downarrow \qquad \qquad \downarrow g$$

$$Tx'' \xrightarrow{h''} x''$$

commutes.

15.5 KLEISLI CATEGORIES

Definition 73 (Kleisli category). The **Kleisli category** of a monad $T: \mathcal{X} \to \mathcal{X}$ is written as \mathcal{X}_T and is given by

- an object x_T for every $x \in \mathcal{X}$; and
- an arrow $f^{\flat} \colon x_T \to y_T$ for every $f \colon x \to Ty$.

And the composite of two morphisms is defined as

$$g^{\flat} \circ f^{\flat} = (\mu \circ Tg \circ f)^{\flat}.$$

Theorem 10 (Adjunction on a Kleisli category). The functors $F_T \colon \mathcal{X} \to \mathcal{X}_T$ and $G \colon \mathcal{X}_T \to \mathcal{X}$ from and to the Kleisli category which are defined on objects as $F_T(x) = x_T$ and $G_T(x_T) = Tx$, and defined on morphisms as

$$F_T \colon (k \colon x \to y) \qquad \mapsto (\eta_y \circ k)^{\flat} \colon x_T \to y_T$$

 $G_T \colon (f^{\flat} \colon x_T \to y_T) \quad \mapsto (\eta_y \circ Tf) \colon Tx \to Ty$

form an adjunction $b \colon \mathsf{hom}(x, Ty) \to \mathsf{hom}(x_T, y_T)$ whose monad is precisely T.

Proof. \Box

Part IV

CATEGORICAL LOGIC

This section is based on [MM94].

Topos theory arises independently with Grothendieck and sheaf theory, Lawvere and the axiomatization of set theory and Paul Cohen with the forcing techniques with allowed to construct new models of ZFC.

CARTESIAN CLOSED CATEGORIES AND LAMBDA CALCULUS

16.1 LAWVERE THEORIES

Definition 74 (Lawvere algebraic theory). An **algebraic theory** [AB17] is a category \mathbb{A} with all finite products whose objects form a sequence A^0, A^1, A^2, \ldots such that $A^m \times A^n = A^{m+n}$ for any m, n.

The usual notion of algebraic theory is given by a set of k-ary operations for each $k \in \mathbb{N}$ and certain axioms between the terms that can be constructed inductively from free veriables and our operations. For instance, the theory of groups is given by a binary operation (\cdot) , a unary operation $(^{-1})$, and a constant or o-ary operation e; satisfying the following axioms

$$x \cdot x^{-1} = e$$
, $x^{-1} \cdot x = e$, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$, $x \cdot e = x$, $e \cdot x = x$,

for any free variables x, y, z. The problem with this notion of algebraic theory is that it is not independent from its representation: there may be multiple formulations for the same theory, with different but equivalent axioms. For example, [Mcc91] discusses many single-equation axiomatizations of groups, such as

$$x \mathrel{/} \big(((x/x)/y)/z) \mathrel{/} \big((x/x)/x)/z \big) = y$$

with the binary operation /, related to the usual multiplication as $x/y = x \cdot y^{-1}$. Our solution to this problem will be to capture all the algebraic information of a theory – all operations, constants and axioms – into a category. Differently presented but equivalent signatures and axioms will give rise to the same category.

An algebraic theory can be built from a signature as follows: objects represent natural numbers, A^0, A^1, A^2, \ldots , and morphisms from A^n to A^m are given by a tuple of m terms t_1, \ldots, t_m depending on n free variables x_1, \ldots, x_n , written as

$$(x_1 \ldots x_n \vdash \langle t_1, \ldots, t_k \rangle) \colon A^n \to A^m.$$

Composition is defined componentwise as the substitution of the terms of the first morphism into the variables of the second one; that is, given $(x_1 ... x_k \vdash \langle t_1, ..., t_m \rangle) : A^k \rightarrow$

 A^m and $(x_1...x_m \vdash \langle u_1,...,u_n\rangle)$: $A^m \to A^n$, composition is defined as $(x_1...x_k \vdash \langle s_1,...,s_n\rangle)$, where $s_i = u_i[t_1,...,t_m/x_1,...,x_m]$. Two morphisms are considered equal, $(x_1...x_n \vdash \langle t_1,...,t_k\rangle) = (x_1...x_n \vdash \langle t_1',...,t_k'\rangle)$ if componentwise equality of terms $t_i = t_i'$ follows from the axioms of the theory. Identity is the morphism $(x_1...x_n \vdash \langle x_1,...,x_n\rangle)$. The kth-projection from A^n is the term $(x_1...x_n \vdash x_k)$, and it is easy to check that these projections make it the n-fold product of A.

Definition 75 (Model). A **model** of an algebraic theory \mathbb{A} in a category \mathcal{C} is a functor $M: \mathbb{A} \to \mathcal{C}$ preserving all finite products.

The **category of models**, $\operatorname{Mod}_{\mathcal{C}}(\mathbb{A})$, is the subcategory of the functor category $\mathcal{C}^{\mathbb{A}}$ given by the functors preserving all finite products, with natural transformations between them. We say that a category is **algebraic** if it is equivalent to a category of the form $\operatorname{Mod}_{\mathcal{C}}(\mathbb{A})$.

Example 24 (The algebraic theory of groups). Let G be the algebraic theory of groups built from its signature; we have all the tuples of terms that can be inductively built with

$$(x,y \vdash x \cdot y) \colon G^2 \to G, \qquad (x \vdash x^{-1}) \colon G \to G, \qquad (\vdash e) \colon G,$$

and the projections $(x_1 ... x_n \vdash x_k) \colon G^n \to G$, where the usual group axioms hold. A model $H \colon \mathbb{G} \to \mathcal{C}$ is be determined by an object of \mathcal{C} and *morphisms of the catgeory* with the above signature for which the axioms hold; for instance,

- a model of G in Set is a classical **group**, a set with multiplication and inverse functions for which the axioms hold;
- a model of G in Top is a **topological group**, a topological space with continuous multiplication and inverse functions;
- a model of G in Mfd, the category of differentiable manifolds with smooth functions between them, is a **Lie group**;
- a model of G in Grp is an **abelian group**;
- a model of G in CRing, the category of commutative rings with homomorphisms, is a **Hopf algebra**.

The category of models $\mathsf{Mod}_{\mathsf{Set}}(\mathbb{A})$ is the usual category of groups, Grp ; note that the natural transformations are precisely the group homomorphisms, as they have to preserve the unit, product and inverse of the group in order to be natural.

By construction we know that, if an equation can be proved from the axioms, it will be valid in all models (our semantics are *sound*); but we will also like to prove that, if every model of the theory satisfies a particular equation, it can actually be proved from the axioms of the theory (our semantics are *complete*). In general, we can actually prove a stronger result.

Theorem 11 (Universal model). Given \mathbb{A} an algebraic theory, there exists a category \mathbb{A} with a model $U \in Mod_{\mathbb{A}}(\mathbb{A})$ such that, for every terms u, v,

$$u = v$$
 is satisfied under $U \iff A$ proves $u = v$.

A category with this property is called a universal model.

Proof. Indeed, taking A = A as a model of itself with the identity functor U = Id, u = v is satisfied under the identity functor if and only if it is satisfied in the original category.

This proof feels rather disappointing because this model is not even set-theoretic in general; but we can go further and assert the existence of a universal model in a presheaf category via the Yoneda embedding.

Corollary 4 (Completeness on presheaves). *The Yoneda embedding y*: $\mathbb{A} \to \mathsf{Set}^{\mathbb{A}^{op}}$ *is a universal model for* \mathbb{A} .

Proof. It preserves finite products because it preserves all limits, hence it is a model. As it is a faithful functor, we know that any equation proved in the model is an equation proved by the theory. \Box

Example 25 (Universal group). For instance, a universal model of the group would be the Yoneda embedding of \mathbb{G} in $\mathsf{Set}^{\mathbb{G}^{op}}$. The group object would be the functor

$$U = \hom_{\mathbb{G}}(-, A^1);$$

which can be thought as a family of sets parametrized over the naturals: for each n we have $U_n = \text{hom}_{\mathbb{G}}(A^n, A^1)$, which is the set of terms on n variables under the axioms of a group. In other words, the universal model for the theory of groups would be the free group on n generators, parametrized over n.

16.2 CARTESIAN CLOSED CATEGORIES

Definition 76 (Cartesian closed category). A **cartesian closed category** is a category \mathcal{C} in which the terminal, diagonal and product functors have right adjoints

$$!: \mathcal{C} \to 1, \qquad \Delta: \mathcal{C} \times \mathcal{C} \to \mathcal{C}, \qquad (- \times A): \mathcal{C} \to \mathcal{C}.$$

These adjoints are given by terminal, product and exponential objects, written as

Exponentials are characterized by the **evaluation morphism** ε : $B^A \times A \to B$ which is the counit of the adjunction

Example 26 (Presheaf categories are cartesian closed). Set is cartesian closed, with exponentials given by function sets. In general, any presheaf category $\mathsf{Set}^{\mathcal{C}^{op}}$ from a small \mathcal{C} is cartesian closed. Given any two presheaves Q, P, if the exponential exists, its component in any A should be

$$Q^{P}A \cong Nat(hom(-,A), Q^{P}) \cong Nat(hom(-,A) \times P, Q)$$

by the Yoneda lemma, which is a set when \mathcal{C} is small. A family of evaluation functions ε_A : Nat(hom(-, A) \times P, Q) \times $PA \to QA$ can be defined as $\varepsilon_A(\eta, p) = \eta(\mathrm{id}_A, p)$. We show that each is a universal arrow: given any n: $R \times P \to Q$, we can show that there exists a unique ϕ making the diagram

$$R \times P$$

$$\phi \times \operatorname{Id} \downarrow \qquad \qquad n$$

$$\operatorname{Nat}(\operatorname{hom}(-,A) \times P, Q) \times P \xrightarrow{\varepsilon} Q$$

commute. In fact, we know that, by commutativity $\phi_r(\mathrm{id},p) = \varepsilon_A(\phi_r,p) = n(r,p)$ must hold; and then by naturality, for every $f \colon B \to A$,

$$RA \xrightarrow{\phi_A} \text{Nat}(\text{hom}(-,A) \times P, Q)$$

$$Rf \downarrow \qquad \qquad \downarrow^{-\circ((f\circ -)\times \text{id})}$$

$$RB \xrightarrow{\phi_B} \text{Nat}(\text{hom}(-,B) \times P, Q)$$

Thus, the complete natural transformation is completely determined for any $r \in RA$, $p \in PA$ as

$$\phi(r)(f,p) = \phi(Rf(r))(\mathrm{id},p) = n(Rfr,p).$$

The existence of a universal family of evaluations characterizes the adjunction by Proposition 14.

In general, cartesian-closed categories with functors preserving products and exponentials form a category called Ccc.

16.3 SIMPLY-TYPED λ -THEORIES

If we read $\Gamma \vdash a : A$ as a morphism from the context Γ to the output type A, the rules of simply-typed lambda calculus with product and unit types match the adjoints that determine a cartesian closed category

$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash \langle a, b \rangle : A \times B} \qquad \frac{\Gamma, a : A \vdash b : B}{\Gamma \vdash (\lambda a.b) : A \to B}$$

A λ -theory $\mathbb T$ is the analog of a Lawvere theory for cartesian closed categories. It is given by a set of basic types and constants over the simply-typed lambda calculus and a set of equality axioms, determining a **definitional equality** \equiv , an equivalence relation preserving the structure of the simply-typed lambda calculus; that is

```
t \equiv *,
                                                         for each t : 1;
\langle a,b\rangle \equiv \langle a',b'\rangle,
                                                         for each a \equiv a', b \equiv b'
fst\langle a,b\rangle \equiv a, snd\langle a,b\rangle \equiv b,
                                                         for each a:A,b:B;
fst m \equiv fst m', snd m \equiv snd m',
                                                         for each m \equiv m';
m \equiv \langle \text{fst } m, \text{snd } m \rangle,
                                                         for each m: A \times B;
f x \equiv f' x'
                                                         for each f \equiv f', x \equiv x';
(\lambda x.f x) \equiv f,
                                                         for each f: A \rightarrow B;
(\lambda x.m) \equiv (\lambda x.m'),
                                                         for each m \equiv m';
(\lambda x.m) n \equiv m[n/x]
                                                         for each m: B, n: A.
```

Two types are *isomorphic*, $A \cong A'$ if there exist terms $f: A \to A'$ and $g: A' \to A$ such that $f(g|a) \equiv a$ for each a:A, and $g(f|a') \equiv a'$ for each a':A'.

Example 27 (System T). Gödel's **System T** [GTL89] is defined as a λ -theory with the basic types nat and bool; the constants 0:nat, S:nat \rightarrow nat, true:bool, false:bool, ifelse:bool $\rightarrow C \rightarrow C \rightarrow C$ and rec: $C \rightarrow (\text{nat} \rightarrow C \rightarrow C) \rightarrow \text{nat} \rightarrow C$; and the axioms

```
ifelse true a b \equiv a, \operatorname{rec} c_0 c_s 0 \equiv c_0, ifelse false a b \equiv b, \operatorname{rec} c_0 c_s (Sn) \equiv c_s n (\operatorname{rec} c_0 c_s n).
```

Example 28 (Untyped $\lambda - calculus$). Untyped λ calculus can be recovered as a λ theory with a single basic type D and a type isomorphism D \cong D \to D given by two constants $r: D \to (D \to D)$ and $s: (D \to D) \to D$ such that $r(s f) \equiv f$ for each $f: D \to D$ and $s(r x) \equiv x$ for each x:D. We assume that each term of the untyped calculus is of type D and apply r,s as needed to construct well-typed terms.

Definition 77 (Translation). The reasonable notion of homomorphism between lambda theories is called a **translation** between λ -theories $\tau \colon \mathbb{T} \to \mathbb{U}$, and it given by a function on types and terms

1. preserving type constructors

$$\tau 1 = 1$$
, $\tau(A \times B) = \tau A \times \tau B$, $\tau(A \to B) = \tau A \to \tau B$;

2. preserving the term structure

$$\tau(\mathsf{fst}\ m) \equiv \mathsf{fst}\ (\tau m), \ \ \tau(\mathsf{snd}\ m) \equiv \mathsf{snd}\ (\tau m), \ \ \tau\langle a,b\rangle \equiv \langle \tau a,\tau b\rangle, \ \tau(f\ x) \equiv (\tau f)\ (\tau x), \ \ \ \tau(\lambda x.m) \equiv \lambda x.(\tau m);$$

3. and preserving all equations, $t \equiv u$ implies $\tau t \equiv \tau u$.

We consider the category λ Thr of λ -theories with translations, note that the identity and composition of translations are translations. Our goal is to prove that this category is equivalent to that of cartesian closed categories with functors preserving products and exponentials.

Apart from the natural definition of isomorphism, we consider the weaker notion of **equivalence of theories**. Two theories with translations $\tau \colon \mathbb{T} \to \mathbb{U}$ and $\sigma \colon \mathbb{U} \to \mathbb{T}$ are equivalent $\mathbb{T} \simeq \mathbb{U}$ if there exist two families of *type isomorphisms* $\tau \sigma A \cong A$ and $\sigma \tau B \cong B$.

Proposition 18 (Syntactic category). Given a λ -theory \mathbb{T} , its **syntactic category** $\mathcal{S}(\mathbb{T})$, has an object for each type of the theory and a morphism $A \to B$ for each term $a: A \vdash b: B$. The composition of two morphisms $a: A \vdash b: B$ and $b': B \vdash c: C$ is given by $a: A \vdash c[b/b']: C$; and any two morphisms $\Gamma \vdash b: B$ and $\Gamma \vdash b': A$ are equal if $b \equiv b'$.

The syntactic category is cartesian closed and this induces a functor $S: \lambda \mathsf{Thr} \to \mathsf{Ccc}$.

Proof. The type 1 is terminal because every morphism $\Gamma \vdash t$:1 is $t \equiv *$. The type $A \times B$ is the product of A and B; projections from a pair morphism are given by fst $\langle a,b\rangle \equiv a$ and snd $\langle a,b\rangle \equiv b$. Any other morphism under the same conditions must be again the pair morphism because $d \equiv \langle \text{fst } d, \text{snd } d \rangle \equiv \langle a,b \rangle$.

Finally, given two types A, B, its exponential is $A \rightarrow B$ with the evaluation morphism

$$m:(A\to B)\times A\vdash (\mathtt{fst}\ m)\ (\mathtt{snd}\ m):B.$$

It is universal: for any $p:C \times A \vdash q:B$, there exists a morphism $z:C \vdash \lambda x.q[\langle z,x \rangle/p]:A \rightarrow B$ such that

$$(\lambda x.q[\langle \mathtt{fst}\ p,x\rangle/p])(\mathtt{snd}\ p) \equiv q[\langle \mathtt{fst}\ p,\mathtt{snd}\ p\rangle/p] \equiv q[p/p] \equiv q;$$

and if any other morphism $z:C \vdash d:A \rightarrow B \text{ satisfies } (d[\mathtt{fst}\ p/z](\mathtt{snd}\ p)) \equiv q \text{ then }$

$$\lambda x.q[\langle z,x\rangle/p] \equiv \lambda x.(d[\text{fst }p/z] \ (\text{snd }p))[\langle z,x\rangle/p] \equiv \lambda x.(d[z/z] \ x) \equiv d.$$

Given a translation $\tau \colon \mathbb{T} \to \mathbb{U}$, we define a functor $\mathcal{S}(\tau) \colon \mathcal{S}(\mathbb{T}) \to \mathcal{S}(\mathbb{U})$ mapping the object $A \in \mathcal{S}(\mathbb{T})$ to $\tau A \in \mathcal{S}(\mathbb{U})$ and any morphism $\vdash b : B$ to $\vdash \tau b : \tau B$. The complete structure of the functor is then determined because it must preserve products and exponentials.

Proposition 19 (Internal language). Given a cartesian closed category C, its **internal language** $\mathbb{L}(C)$ is a λ -theory with a type $\lceil A \rceil$ for each object $A \in C$, a constant $\lceil f \rceil$: $\lceil A \rceil \to \lceil B \rceil$ for each morphism $f: A \to B$, axioms

$$\lceil \mathrm{id} \rceil x \equiv x, \qquad \lceil g \circ f \rceil x \equiv \lceil g \rceil (\lceil f \rceil x),$$

and three families of constants

$$\mathtt{T}: 1 \to \ulcorner 1 \urcorner, \ \mathtt{P}_{AB}: \ulcorner A \urcorner \times \ulcorner B \urcorner \to \ulcorner A \times B \urcorner, \ \mathtt{E}_{AB}: (\ulcorner A \urcorner \to \ulcorner B \urcorner) \to \ulcorner B \urcorner,$$

that act as type isomorphisms, which means that they create the following pairs of two-side inverses relating the categorical and type-theoretical structures

$$t \equiv T * \qquad \qquad for each \ u : \lceil 1 \rceil,$$

$$m \equiv P \left\langle \lceil \pi_1 \rceil m, \lceil \pi_2 \rceil m \right\rangle \qquad for each \ z : \lceil A \times B \rceil,$$

$$n \equiv \left\langle \lceil \pi_0 \rceil (P n), \lceil \pi_1 \rceil (P n) \right\rangle \qquad for each \ n : \lceil A \rceil \times \lceil B \rceil,$$

$$f \equiv E \left(\lambda x. \lceil e \rceil (P \left\langle f, x \right\rangle) \right) \qquad for each \ f : \lceil B^A \rceil,$$

$$g \equiv \lambda x. \lceil e \rceil (P \left\langle E g, x \right\rangle) \qquad for each \ g : \lceil A \rceil \to \lceil B \rceil.$$

This extends to a functor \mathbb{L} : $Ccc \rightarrow \lambda Thr$.

Proof. Given any functor preserving products and exponentials $F: \mathcal{C} \to \mathcal{D}$, we define a translation $\mathbb{L}(F): \mathbb{L}(\mathcal{C}) \to \mathbb{L}(\mathcal{D})$ taking each basic type $\lceil A \rceil$ to $\lceil FA \rceil$ and each constant $\lceil f \rceil$ to $\lceil Ff \rceil$; equations are preserved because F is a functor and types are preserved up to isomorphism because F preserves products and exponentials.

Theorem 12 (Equivalence between cartesian closed categories and lambda calculus). *There exists a equivalence of categories* $\mathcal{C} \simeq \mathcal{S}(\mathbb{L}(\mathcal{C}))$ *for any* $\mathcal{C} \in \mathsf{Ccc}$ *and an equivalence of theories* $\mathbb{T} \simeq \mathbb{L}(\mathcal{S}(\mathbb{T}))$ *for any* $\mathbb{T} \in \lambda \mathsf{Thr}$.

Proof. On the one hand, we define $\eta: \mathcal{C} \to \mathcal{S}(\mathbb{L}(\mathcal{C}))$ as $\eta A = \lceil A \rceil$ in objects and $\eta f = (a: \lceil A \rceil \vdash f \ a: \lceil B \rceil)$ for any morphism $f: A \to B$. It is a functor because $\lceil \operatorname{id} \rceil \ a \equiv a$ and $\lceil g \circ f \rceil \ a \equiv g \ (f \ a)$. We define $\theta: \mathcal{S}(\mathbb{L}(\mathcal{C})) \to \mathcal{C}$ on types inductively as $\theta(1) = 1$, $\theta(\lceil A \rceil) = A$, $\theta(B \times C) = \theta(A) \times \theta(C)$ and $\theta(B \to C) = \theta(C)^{\theta(B)}$. Now there is a natural isomorphism $\eta \theta \to \operatorname{Id}$, using the isomorphisms induced by the constants T, P, E,

$$\begin{split} &\eta(\theta^{\lceil}A^{\rceil}) = \eta A = \lceil A^{\rceil}, \\ &\eta(\theta 1) = \eta 1 = \lceil 1 \rceil \cong 1, \\ &\eta(\theta(A \times B)) = \lceil \theta(A) \times \theta(B) \rceil \cong \lceil \theta A^{\rceil} \times \lceil \theta B^{\rceil} = \eta \theta A \times \eta \theta B \cong A \times B. \\ &\eta(\theta(A \to B)) = \lceil \theta(A) \to \theta(B) \rceil = \lceil \theta B^{\rceil} \lceil \theta A^{\rceil} = (\eta \theta B)^{(\eta \theta A)} = B^A; \end{split}$$

and a natural isomorphism $\operatorname{Id} \to \theta \eta$ which is in fact an identity, $A = \theta^{\Gamma} A^{\Gamma} = \theta \eta(A)$.

On the other hand, we define a translation $\tau\colon\mathbb{T}\to\mathbb{L}(\mathcal{S}(\mathbb{T}))$ as $\tau A=\lceil A\rceil$ in types and $\tau(a)=\lceil(\vdash a:\tau A)\rceil$ in constants. We define $\sigma\colon\mathbb{L}(\mathcal{S}(\mathbb{T}))\to\mathbb{T}$ as $\sigma\lceil A\rceil=A$ in types and as

$$\sigma(\lceil a:A \vdash b:B \rceil) = \lambda a.b, \quad \sigma T = \lambda x.x, \quad \sigma P = \lambda x.x, \quad \sigma E = \lambda x.x,$$

in the constants of the internal language. We have $\sigma(\tau(A)) = A$, so we will check that $\tau(\sigma(A)) \cong A$ by structural induction on the constructors of the type:

- if $A = \lceil B \rceil$ is a basic type, we apply structural induction over the type B to get if B is a basic type, $\tau \sigma(\lceil B \rceil) = \lceil B \rceil$;
 - if B = 1, then $\tau \sigma(\lceil 1 \rceil) = 1$ and $\lceil 1 \rceil \cong 1$ thanks to the constant T;
 - if $B = C \times D$, then $\tau \sigma(\lceil C \times D \rceil) = \lceil C \rceil \times \lceil D \rceil$ and $\lceil C \times D \rceil \cong \lceil C \rceil \times \lceil D \rceil$ thanks to the constant P;
 - if $B = D^C$, then $\tau \sigma(\lceil D^{C^{\neg}}) = \lceil C^{\neg} \to \lceil D^{\neg} \text{ and } \lceil D^{C^{\neg}} \cong \lceil C^{\neg} \to \lceil D^{\neg} \text{ thanks to the constant E.}$
- if A = 1, then $\tau \sigma 1 = 1$;
- if $A = C \times D$, then $\tau \sigma(C \times D) = \tau \sigma(C) \times \tau \sigma(D) \cong C \times D$ by induction hypothesis;
- if $A = C \to D$, then $\tau \sigma(C \to D) = \tau \sigma(C) \to \tau \sigma(D) \cong C \to D$ by induction hypothesis.

Thus, we can say that the simply-typed lambda calculus is the language of cartesian closed categories; each theory is a model inside a cartesian closed category.

16.4 WORKING IN CARTESIAN CLOSED CATEGORIES

We can now talk internally about cartesian closed categories using lambda calculus. Note each closed λ term $\vdash a : A$ can also be seen as a morphism from the terminal object $1 \to A$. We say that a morphism $f:A \to B$ in a cartesian closed category is **point-surjective** if, for every b:B, there exists an a:A such that $f \in B$.

Theorem 13 (Lawvere's fixed point theorem). *In any cartesian closed category, if there exists a point-surjective* $d:A \to B^A$, then each $f:B \to B$ has a fixed point, a b:B such that $f b \equiv b$. [lawa]

Proof. As d is point-surjective, there exists x:A such that d $x \equiv \lambda a.f$ (d a a), but then, d x $x \equiv (\lambda a.f$ (d a a)) $x \equiv f$ (d x x) is a fixed point.

This theorem has nontrivial consequences when interpreted in different contexts:

• **Cantor's theorem** is a corollary in Set; as there exists a nontrivial permutation of the two-element set, a point-surjective $A \rightarrow 2^A$ cannot exist;

- **Russell's paradox** follows because \in : Sets \to 2^{Sets} is point-surjective if we assume that for any property on the class of sets P: Sets \to 2 there exists a comprehension set $\{y \in \text{Sets} \mid P(y)\}$;
- the existence of fixed points for any term of in untyped λ-calculus follows from the fact that there exists a type isomorphism (in particular, a point-surjection)
 D → (D → D);
- Gödel first incompleteness theorem and Tarski's theorem follow a similar reasoning (see [Yano3] for details). Let our category be an (algebraic) theory A^0, A^1, A^2, \ldots with a supplementary object 2; we say that the theory is **consistent** if there exists a morphism not: $2 \to 2$ such that not $\circ \varphi \neq \varphi$ for every $\varphi \colon A \to 2$; we say that **satisfiability** is definable if there exists a map sat: $A \times A \to 2$ such that for every "predicate" $\varphi \colon A \to 2$, there exists a "Gödel number" $c \colon A$ such that $sat(c,a) = \varphi(a)$. We get that, if satisfiability is definible in a theory, then it is inconsistent.

16.5 BICARTESIAN CLOSED CATEGORIES

Definition 78 (Bicartesian closed category). A **bicartesian closed category** is a cartesian closed category in which the terminal and diagonal functors have left adjoints.

These adjoints are given by initial and coproduct objects, written as

The rules of union and void types in simply-typed lambda calculus can be rewritten to match the structure of these adjoints

$$\frac{\Gamma, a : A \vdash c : C \qquad \Gamma, b : B \vdash c' : C}{\Gamma, u : A + B \vdash \text{case } u \text{ of } c; c'}$$

In a similar way to how our previous fragment of simply-typed lambda calculus was the internal language of cartesian closed categories, this extended version is the internal language of bicartesian closed categories.

LOCALLY CARTESIAN CLOSED CATEGORIES AND DEPENDENT TYPES

17.1 QUANTIFIERS AND SUBSETS

A motivation for this section is the interpretation of logical formulas as subsets. Every predicate *P* on a set *A* can be seen as a subset

$${a \in A \mid P(a)} \subseteq A$$

determined by the inclusion monomorphism. Under this interpretation, logical implication between two propositions, $P \rightarrow Q$, can be seen as a morphism that commutes with the two inclusions; that is,

P implies Q if and only if each $a \in A$ such that P(a) is also in the subset of elements such that Q(a). Note how we are working in a full subcategory of the slice category Set/A. Any property in a set B induces a property on a set A for each $f: A \to B$ via **substitution** in the relevant logical formula. This substitution can be encoded categorically as a pullback: the pullback of a proposition along a function is this induced proposition.

$$\{a \in A \mid P(f(a))\} \longrightarrow \{b \in B \mid P(b)\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A \longrightarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B$$

A particular case of a substitution is **logical weakening**: a proposition on the set A can be seen as a proposition on $A \times B$ where we simply discard the B component of a pair.

$$\{(a,b) \in A \times B \mid P(\pi(a,b))\} \longrightarrow \{a \in A \mid P(a)\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$A \times B \xrightarrow{\pi} A$$

Although it seems like an uninteresting particular case, existential and universal quantifiers can be obtained as adjoints to weakening once we formalize what this means exactly.

Definition 79 (The pullback functor). Given a function $f: A \to B$ in any category \mathcal{C} with all pullbacks, the **pullback functor** $f^*: \mathcal{C}/B \to \mathcal{C}/A$ is defined for any object $y: Y \to B$ as the object $f^*y: (f^*Y) \to A$ such that

$$\begin{array}{ccc}
(f^*Y) & \longrightarrow & Y \\
f^*y \downarrow & & \downarrow y \\
A & \xrightarrow{f} & B
\end{array}$$

is a pullback square. The functor is defined on any morphism $\alpha: y \to y'$ between two objects $y: Y \to B$, $y': Y' \to B$ as the only morphism making the following diagram commute

where x and x' form pullback squares with y and y'. Note that the pullback functor is only defined up to isomorphism in objects and well-defined on morphisms by virtue of the universal property of pullbacks.

In Set, we can find two adjoints to the particular case of the weakening functor π^* : $\mathcal{C}/A \to \mathcal{C}/(A \times B)$. These two adjoints are $\exists \dashv \pi^* \dashv \forall$ because

• proving the implication $P(\pi(a,b)) \to Q(a,b)$ for each pair (a,b) amounts to prove that $P(a) \to (\forall b \in B, Q(a,b))$ for each a;

$$\begin{array}{c}
A \times B \\
 \hline
\{(a,b) \mid P(a)\} & \longrightarrow \{(a,b) \mid Q(a,b)\} \\
\hline
\{a \mid P(a)\} & \longrightarrow \{a \mid \forall b \in B, Q(a,b)\}
\end{array}$$

• and proving that $(\exists b \in B, P(a,b)) \to Q(a)$ for each a is the same as proving that $P(a,b) \to Q(\pi(a,b))$ for each pair (a,b).

Note how, in this case, we are drawing adjunction diagrams in the slice category. A generalization of this idea to other categories will extend our categorical logic with quantifiers.

17.2 LOCALLY CARTESIAN CLOSED CATEGORIES

Proposition 20 (Left adjoint of the pullback functor). Given any category C with all finite limits and $f: A \to B$, the pullback functor $f^*: C/A \to C/B$ has a left adjoint $\Sigma_f: C/B \to C/A$ defined as $\Sigma_f x = f \circ x$ in objects and trivially in morphisms.

Proof. We must find a natural bijection $hom(f \circ x, y) \cong hom(x, f^*y)$; but, precisely by the universal property of the pullback, we have a natural bijection between arrows $k \colon X \to f^*Y$ such that $x = f^*y \circ k$ and arrows $\widetilde{k} \colon X \to Y$ such that $f \circ x = y \circ \widetilde{k}$.

We define a **locally cartesian closed category** as a category \mathcal{C} where the pullback functor also has a right adjoint $\Pi_f \colon \mathcal{C}/A \to \mathcal{C}/B$. The rationale for this name becomes apparent in the following characterization.

Theorem 14 (Characterization). A category C with terminal object is locally cartesian closed if and only if C/A is cartesian closed for any object A.

Proof. (\Rightarrow) Suppose \mathcal{C} be locally cartesian closed. The terminal object of \mathcal{C}/A is trivially id_A: $A \to A$, and the product of $x: X \to A$ and $y: Y \to A$ is given by universal property of the pullback

We can notice that multiplying by $-\times y$ is the same as composing $\Sigma_y \circ y^* : \mathcal{C}/A \to \mathcal{C}/A$; and, as we have $\Sigma_y \dashv y^* \dashv \Pi_y$, for any $a, b : Z \to A$,

$$\begin{array}{ccc}
\Sigma_y(y^*a) & \longrightarrow & b \\
\hline
y^*a & \longrightarrow & y^*b \\
\hline
a & \longrightarrow & \Pi_y(y^*b)
\end{array}$$

and so, the product has a right adjoint and the exponential is given by $a^y = \Pi_y y^* a$.

(\Leftarrow) Suppose \mathcal{C} such that \mathcal{C}/A is always cartesian closed. In particular the slice on the terminal object is cartesian closed and so is $\mathcal{C} \cong \mathcal{C}/1$; we only need to prove the existence of pullbacks in \mathcal{C} and a right adjoint for each pullback functor f^* .

Again, if $f: X \to A$ and $g: Y \to A$ are objects in the slice category \mathcal{C}/A , their product creates a morphism $X \times_A Y \to A$ in \mathcal{C} and the universal property of the product in the slice category is exactly the universal property of the pullback in \mathcal{C} .

We proved earlier that "generalized sets", or presheaves, were cartesian closed; we will now prove that they are actually locally cartesian closed.

Theorem 15 (Presheaf categories are locally cartesian closed). *Any presheaf category* Set C^{op} from a small category C is locally cartesian closed.

Proof. We will prove that given any $A \in \mathsf{Set}^{\mathcal{C}^{op}}$, there exists a small category \mathcal{D} such that there is an equivalence of categories $\mathsf{Set}^{\mathcal{D}^{op}} \simeq \mathsf{Set}^{\mathcal{C}^{op}}/A$. Thus, every slice is cartesian closed as shown in Example 26 and by the characterization of Theorem 14, the whole category is locally cartesian closed.

We take \mathcal{D} as a particular case of a comma category where objects are arrows $f: yC \to A$ in Set^{C^{op}} from the Yoneda embedding of an object $C \in \mathcal{C}$ to the fixed object A. Morphisms are commutative triangles

where, as Yoneda is a full and faithful embedding, φ must be of the form $\varphi = yh$ for a unique $h: C \to C'$. Note how \mathcal{D} can be embedded inside $Set^{\mathcal{C}^{op}}/A$.

A functor $\Phi \colon \mathsf{Set}^{\mathcal{C}^{op}}/A \to \mathsf{Set}^{\mathcal{D}^{op}}$ can be now defined as $\Phi(q) = \mathsf{hom}_{\mathsf{Set}^{\mathcal{C}^{op}}/A}(-,q)$. \square

17.3 DEPENDENT TYPES

In the same way that cartesian closed categories model the types of the simply typed lambda calculus, locally cartesian closed categories model **dependent types** that can depend on elements of another type. Each dependent type B depending on values of type A can be also seen as a family of types parametrized over the other type $\{B(a)\}_{a:A}$. This extension of type theory forces us to revisit the notion of typing context.

Typing contexts for dependent type theory are given as a list of variables

$$\Gamma = (a_1 : A_1, a_2 : A_2, \dots, a_n : A_n)$$

where each type A_i can depend on the variables a_1, \ldots, a_{i-1} . The core syntax of dependent type theory can be expressed in terms of **substitutions** between contexts. A substitution from a context Δ to Γ is written as $\sigma: \Delta \to \Gamma$, and is given by a list of terms (t_1, \ldots, t_n) such that

$$\Delta \vdash t_1 : A_1, \quad \Delta \vdash t_2 : A_2[t_1/a_1], \quad \ldots, \quad \Delta \vdash t_n : A_n[t_1, \ldots, t_{n-1}/a_1, \ldots, a_{n-1}],$$

that is, a context can be substituted into another if the list of terms of the second one can be built from the first one. The interpretation of a dependent type theory as a category takes contexts Γ as objects $\llbracket \Gamma \rrbracket$ and substitutions as morphisms. Note how there exists an identity substitution $\sigma_{id} \colon \Gamma \to \Gamma$ that simply lists the variables of the context and how any two substitutions $\tau \colon \Gamma \to \Phi$ and $\sigma \colon \Delta \to \Gamma$ can be composed into $\tau \circ \sigma \colon \Delta \to \Phi$, which creates the terms of Γ from Δ following τ and uses again these terms to create the terms of Φ .

A particular kind of substitutions will be **display maps**. If a term can be constructed on a given context, $\Gamma \vdash a : A$, the context can be extended with that term to $\Gamma, a : A$. Display maps are substitutions of the form $\pi_A \colon (\Gamma, a : A) \to \Gamma$ that simply list the variables of Γ .

This way, each type A in a context Γ is represented by the object $\pi_A \colon (\Gamma, a : A) \to \Gamma$ of the slice category Γ/A ; and each term of the type, $\Gamma \vdash a : A$ is represented by a morphism from id: $\Gamma \to \Gamma$, the terminal object of Γ/A , as

$$\llbracket \Gamma \rrbracket \xrightarrow{a} \llbracket \Gamma, a : A \rrbracket$$

$$\downarrow^{\pi_A}$$

$$\llbracket \Gamma \rrbracket$$

17.4 DEPENDENT PAIRS

The locally cartesian closed structure of a category induces new type constructors in the type theory, dependent sums and dependent products. Their meaning under the Curry-Howard interpretation is that of the existential and universal quantifier, respectively.

Dependent pair types, or Σ**-types**, can be seen as a generalized version of product types. Given a family of types parametrized by another type, $\{B(a)\}_{a:A}$, the elements of $\sum_{a:A} B(a)$ are pairs $\langle a,b \rangle$ where the first element is a:A and the second element is b:B(a); that is, the type of the second component depends on the first component. This type is often written as $\Sigma(a:A)$, B(a) and it corresponds to the intuitionistic existential quantifier under the *propositions as types* interpretation. That is, the proof of $\exists (a:A), B(a)$ must be seen as a pair given by an element a and a proof of B(a).

In a locally closed cartesian category, a type B depending on Γ , a:A, as $\pi_B: \llbracket \Gamma, a:A,b:B \rrbracket \to \llbracket \Gamma,a:A \rrbracket$, the type $\sum_{a:A} B$ is given by the object

$$\Sigma_{\pi_A}\pi_B \colon \llbracket \Gamma, a:A,b:B \rrbracket \to \llbracket \Gamma \rrbracket.$$

That is, the sigma type over a type is left adjoint to the weakening that determines that type; this left adjoint, as we proved in Proposition 20, is given by postcomposition with π_A .

Thus, categorically, the type $\sum_{a:A} B(a)$ is given in the empty context by the composition of the projections that give rise to the types $\vdash A$ type and $a:A \vdash B$ type.

$$\llbracket x:A,y:B\rrbracket \xrightarrow{\pi_B} \llbracket x:A\rrbracket \xrightarrow{\pi_A} 1$$

Thus, elements of this type can be built categorically with an element of a: A, using a pullback to create the context $[\![B(a)]\!]$ and then providing an element b: B(a).

This can be rewritten as the introduction rule

$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B[a/x]}{\Gamma \vdash \langle a, b \rangle : \sum_{x:A} B}$$

The adjunction in the slice category can be particularized in the following two cases

that give the two elimination rules

$$\frac{\Gamma \vdash m : \sum_{x:A} C}{\Gamma \vdash \mathsf{fst}(m) : A} \quad \frac{\Gamma \vdash m : \sum_{x:A} C}{\Gamma \vdash \mathsf{snd}(m) : C[\pi_1(m)/a]}$$

while we have two beta rules $fst\langle a,b\rangle\equiv a$ and $snd\langle a,b\rangle\equiv b$, and a uniqueness rule $m\equiv\langle fst(m),snd(m)\rangle$.

17.5 DEPENDENT FUNCTIONS

Dependent function types, or Π**-types**, can be seen as a generalized version of function types. Given a family of types parametrized by another type, $\{B(a)\}_{a:A}$, the elements of $\prod_{x:A} B(x)$ are functions with the type A as domain and a changing codomain B(x), depending on the specific element x to which the function is applied. This type is often written also as $\Pi(x:A)$, B(x) to resemble the universal quantifier;

under the *propositions as types* interpretation, it would correspond to the proof that a proposition B holds for any x : A, that is, $\forall (x : A), B(x)$.

In a locally closed cartesian category, given a type A in a context Γ , as π_A : $\llbracket \Gamma, a : A \rrbracket \to \llbracket \Gamma \rrbracket$; and B a type depending the context $\Gamma, a : A$, as π_B : $\llbracket \Gamma, a : A, b : B \rrbracket \to \llbracket \Gamma, a : A \rrbracket$, the type $\prod_{a:A} B$ is given by the object

$$\Pi_{\pi_A}\pi_B \colon \llbracket \Gamma, a : A, b : B \rrbracket \to \llbracket \Gamma \rrbracket.$$

That is, the pi type over a type is right adjoint to the weakening that determines that type.

Thus, categorically, the type $\prod_{a:A} B(a)$ is given in the empty context as the adjoint $\pi_A^* \dashv \Pi_{\pi_A}$ of the morphism representing the type B. Elements of this type can be built applying the adjunction on the diagram of any term of type B that assumes a:A in the context.

$$\llbracket \Gamma, a : A \rrbracket \xrightarrow{b} \llbracket \Gamma, a : A, b : B \rrbracket \qquad \qquad \llbracket \Gamma \rrbracket \xrightarrow{(\lambda a.b)} \llbracket \Gamma, z : \prod_{a:A} B \rrbracket$$

$$\llbracket \Gamma, a : A \rrbracket \qquad \qquad \downarrow^{\pi_{\Pi}}$$

$$\llbracket \Gamma, a : A \rrbracket$$

That is, we have the following adjunction and counit in the slice category

$$\begin{array}{c}
\Gamma, A & \longrightarrow & \Gamma, A, B \\
\hline
\Gamma, A & \xrightarrow{b} & \Gamma, A, B \\
\hline
\Gamma & \xrightarrow{(\lambda a.b)} & \Gamma, \prod_{a:A} B \\
\hline
\Gamma & & & & & & & & & & & & \\
\hline
\Gamma & & & & & & & & & & & \\
\hline
\Gamma, A, \prod_{a:A} B & \xrightarrow{app} & \Gamma, A, B \\
\hline
\Gamma, \prod_{a:A} B & \xrightarrow{id} & \Gamma, \prod_{a:A} B \\
\hline
\Gamma, \prod_{a:A} B & \xrightarrow{id} & \Gamma, \prod_{a:A} B
\end{array}$$

which can be rewritten as an introduction and elimination rules

$$\frac{\Gamma, a: A \vdash b: B}{\Gamma \vdash (\lambda a.b): \prod_{a:A} B} \frac{\Gamma \vdash a: A \qquad \Gamma \vdash f: \prod_{a:A} B}{\Gamma \vdash f a: B(a)}$$

while the equalities $(\lambda a.b)$ $a' \equiv b[a'/a]$ and $(\lambda a.f\ a) \equiv f$ are consequences of naturality.

17.6 EXAMPLES OF DEPENDENT TYPES

17.7 SOUNDNESS UP TO ISOMORPHISM

Part V TYPE THEORY

In this chapter, we will exclusively work internally in dependent type theory and use it as a constructive foundation of mathematics. This will have the added benefit that every formal proof in the system will be a closed lambda term and checking that a proof is correct amounts to typechecking the term.

Martin-Löf type theory was developed [...] Two variants can be considered.

- Extensional type theory is the internal language of locally closed cartesian categories taking equalizers as identity types.
- **Intensional type theory** which defines identity types as a family of freely generated inductive types.

We will work in intensional type theory. Proofs will be formalized in the Agda proof assistant.

UNIVERSE HIERARCHY

INTENSIONAL EQUALITY AND EQUIVALENCES

19.1 PROPOSITIONAL EQUALITY

Given any type $A : \mathcal{U}$ and two elements x, y : A, we can consider the type of proofs of equality between the two, x = y. Note that this **propositional equality** x = y is conceptually different from the **definitional equality** $x \equiv y$ we have been considering so far.

Definitional equality, $x \equiv y$, is a judgement that is part of the theory, and we cannot work internally with it; two terms are definitionally equal if and only if they are the same term up to reduction rules. On the other hand, x = y is a type that could appear inside formulas of the theory, and we can build terms of that type, p : x = y, that would constitute proofs of the equality. These terms are called **paths**, for reasons that will become apparent as we study them.

The equality type is freely generated by only one introduction rule, the **reflexivity** path

$$\mathsf{refl}: \prod_{a:A} (a=a).$$

That is, we can always construct a trivial path a = a. Consequently, the induction principle says that if we want to proof something for all equalities, it suffices to do that for the reflexivity case. This induction principle is usually called **path induction**, and could be written in type theory as

$$\prod_{(C:\prod_{(x,y:A)}(x=y)\to\mathcal{U})} \left(\left(\prod_{a:A} C(a,a,\mathsf{refl})\right) \to \prod_{(x,y:A)} \prod_{(p:x=y)} C(x,y,p) \right).$$

Example 29 (Symmetry). The usual properties of equality can be proved from the principle of path induction; and each one of them will have a homotopical interpretation if we read equalities as paths. As a first example, we will prove that equality is symmetric: given a path p: x = y, we can create a new path y = x. This can be done by applying path induction over p and only providing a proof in the case that p is

reflexivity and x and y are actually the same element. In this case, refl : x = x is of type y = x and we are done.

This way, we have created a function

$$^{-1}: \prod_{x,y:A} (x=y) \to (y=x)$$

that inverts paths. Given p: x = y, we can construct $p^{-1}: y = x$.

Example 30 (Transitivity). As a second example, we will prove **transitivity of equality**: given two paths p: x = y and q: y = z, how can we build a new path $p \cdot q: x = z$? We can apply induction over the first equality and only provide a proof in the case where x and y are actually the same term. In this case, we only have to provide a term of type x = z and q : x = z is of exactly that type, so we are done.

This way we have created a function

$$\cdot: \prod_{x,y,z:A} (x=y) \to (y=z) \to (x=z)$$

that given two paths p: x = y and q: y = z, concatenates them into a new path $p \cdot q : x = z$.

Using path induction, simple lemmas about path composition can be proved. In particular, it can be proved that, given any type A with two elements x, y : A,

- $\prod_{x,y:A} \prod_{p:x=y} (p^{-1})^{-1} = p$,
- $\prod_{x,y:A} \prod_{p:x=y} p \cdot p^{-1} = \operatorname{refl}_x$,
- $\prod_{x,y:A} \prod_{p:x=y} p^{-1} \cdot p = \operatorname{refl}_y$, $\prod_{(x,y,z,w:A)} \prod_{(p:x=y)} \prod_{(q:y=z)} \prod_{(r:z=w)} (p \cdot q) \cdot r = p \cdot (q \cdot r)$.

The details of these proofs are swept under the rug here, but they are fully available on the computer formalization.

Example 31 (Transport). We want a principle of indiscernibility of identicals, that is, if we have a path p : x = y and a proof of a property P(x), we want to conclude that P(y). This is called **transport** over the path and notated as

$$\mathsf{transport}^P(p,-): P(x) \to P(y).$$

This is not a new axiom but a consequence of the path induction principle. Given the path p: x = y, we can apply induction and only worry about the case where x and y are equal. In this case, the identity function id : $P(x) \rightarrow P(x)$ is actually a function $P(x) \rightarrow P(y)$, as desired. We get a function

$$\mathsf{transport}: \prod_{(P:A \to \mathcal{U})} \prod_{(x,y:A)} \prod_{(p:x=y)} P(x) \to P(y).$$

Example 32 (Functoriality). Functions can be applied to both sides of equalities, this is known as **functoriality** of paths. If we have a path p : x = y between two elements x, y : A and a function $f : A \to B$, we want a path $\operatorname{ap}_f(p) : f \ x = f \ y$.

Again, this path can be constructed by path induction over p. Once we have applied induction, we only have to worry for the case where x and y are exactly the same, and then refl : f x = f x is a valid term of type f x = f y. We have thus constructed a function,

$$\mathsf{ap}: \prod_{(f:A\to B)} \prod_{(x,y:A)} \prod_{(p:x=y)} f\ x = f\ y.$$

The problem with this function is that it does not work in the case of dependent functions $f: \prod_{a:A} B(a)$. In that case, we would want a path $f \ x = f \ y$, but note that it is ill-typed! $f \ x : B(x)$ and $f \ y : B(y)$ have different types. We need to transport the element before and create a type $\operatorname{apd}_f(p)$: transport $f \ y : f \ y$.

By path induction, we only have to provide an element of type transport f(x) = f(x), but we know that transport, by definition, is the identity when applied to reflexivity. That is, we only have to provide a path refl : f(x) = f(x). The function we have constructed is

$$\mathsf{apd}: \prod_{\left(f: \prod_{(a:A)} B(a)\right)} \prod_{(x,y:A)} \prod_{(p:x=y)} \mathsf{transport}^B(p,f|x) = f|y.$$

From these examples, it would seem that the path induction principle is very strong and makes the identity type almost trivial. In particular, it would seem easy to prove by path induction that every path is equal to the reflexivity path, that is, given a type A,

$$\prod_{(x:A)} \prod_{(p:x=x)} (p = \mathsf{refl}).$$

This is called the principle of **uniqueness of identity proofs** and cannot be actually derived from path induction. The induction principle explicitly says that the two endpoints of a path must be independent variables in order to apply induction. We could still try to prove the more general theorem

$$\prod_{(x,y:A)} \prod_{(p:x=y)} (p = \mathsf{refl})$$

by path induction, hoping to particularize it later; but that term is ill-typed, p is of type x = y while refl is of type x = x, and equalities are only defined between terms of the same type.

In conclusion, every path with two free endpoints can be reduced to a trivial one, but a path with two fixed equal endopoints cannot be reduced. This situation resembles homotopy theory in that a path with two free endpoints can be continuously deformed into a point, while a loop does not need to be trivial.

Is the principle of *uniqueness of identity proof* independent from our theory? In 1996, Hofmann and Streicher proposed a model of type theory in groupoids where this principle does not hold, thus showing that it is independent (see [Hofmann]). This way, types must be interpreted not only as disconnected sets where all paths are trivial but as spaces where there exist paths, paths between paths, paths between paths between paths, and so on. Types have a homotopical structure.

19.2 H-PROPOSITIONS

In this section, we explore the homotopical structure a type may present and we will translate some notions from homotopy theory to type theory. A type *A* is an **h-proposition** or simply a **proposition** if a path exists between any two elements of the type. That is,

$$\mathsf{isProp}(A) :\equiv \prod_{(x,y:A)} x = y.$$

Under the Curry-Howard interpretation we saw that propositions could be seen as types; now we see that some types can be seen as propositions in a more classical sense without proof relevance: any two proofs of a proposition are equal. Once we have defined propositions, a natural notion to consider is **propositional truncations** that "truncate" each type into a proposition. Propositional truncations are left adjoints to the inclusion of propositions into types; that is, given any type A and any proposition P, the propositional truncation of A, written as $\|A\|$ is a type such that we have a natural bijection

$$\begin{array}{ccc}
A & \longrightarrow P \\
\hline
\|A\| & \longrightarrow P
\end{array}$$

In practical terms, this means that ||A|| is a type that is inhabited if and only if A is; but where any two elements are equal. To provide a proof of ||A|| is to provide a proof that A is inhabited without constructing an explicit element of A. Thus, truncations help us to embed classical notions into constructive logic, as we show in the following example.

Example 33 (Existential quantifier and the axiom of choice).

19.3 H-SETS

A type A is a **h-set** or simply a **set** if every two parallel paths are equal. That is,

$$\mathsf{isSet}(A) :\equiv \prod_{(x,y:A)} \prod_{(p,q:x=y)} p = q.$$

Sets can be seen as discrete spaces without any higher dimensional structure. In the following sections we give examples of sets but also of types that are not sets.

The **set truncation** of a type can be defined analogously to the propositional truncation, that is, as the left adjoint to the inclusion of the sets into the types in general. Given any set S and an arbitrary type A, its set truncation $||A||_0$ is defined with the following adjunction.

$$\frac{A \longrightarrow S}{\|A\|_0 \longrightarrow S}$$

What follows is a useful sufficient condition for a type to be a set.

Theorem 16 (Hedberg's theorem). A type A with decidable equality, that is, such that

$$\prod_{x,y:A} (x=y) + \neg (x=y),$$

is a set.

Proof. \Box

Example 34 (Naturals and integers are sets).

We will classify types into levels parametrized by the natural numbers, where a n-type will be a type with no nontrivial equalities above dimension n.

• Types are groupoids

19.4 EQUIVALENCES

$$\mathsf{isContrMap}(f) :\equiv \prod_{b:B} \mathsf{isContr}(\mathsf{fib}(f,y)).$$

It has some nice properties, such as being a proposition, that will be crucial in the next sections. However, working with this type is usually very tedious, and so it is better to define the type of **quasiinverses**, that gives a much more natural notion of what it means to be an equivalence: namely, having a two-sided inverse.

$$\mathsf{qinv}(f) :\equiv \sum_{(g:B \to A)} \left(\prod_{b:B} f(g(b)) = b \right) \times \left(\prod_{a:A} g(f(b)) = a \right)$$

This type is not a proposition, but we can prove that $qinv(f) \rightarrow isContrMap(f)$, and so, it is easier to use it to create equivalences.

19.5 FUNCTION EXTENSIONALITY AND UNIVALENCE

SYNTHETIC TOPOLOGY

20.1 HIGHER INDUCTIVE TYPES

A **higher inductive type** is the type freely generated by a set of constructors and a set of *equalities* between its freely generated elements. If inductive types are freely generated, higher inductive types could be seen as *presentations* of types. Each one of them comes with an induction principle that allows to map it into any type with a similar structure of elements and equalities.

Example 35 (The interval). The **interval** is defined as the higher inductive type I with two constructors i_0 , i_1 : I and a path between them seg : $i_0 = i_1$. This is a first example of a path that cannot be reduced to reflexivity.

The induction principle for the interval says that, given any type A with two elements $a_0, a_1 : A$ and a path between them $p : a_0 = a_1$, there exists a function $f : I \to B$ such that $f(i_0) \equiv a_0$, $f(i_1) \equiv a_1$ and $ap_f(s) = seg$. Note how the last equality is only judgemental; higher inductive types are easier to formalize in a proof assistant this way, for a more detailed discussion see [HoTT].

Example 36 (The circle). The **circle** is defined as the higher inductive type \mathbb{S}^1 with one constructor base : \mathbb{S}^1 and a path loop : \mathbb{S}^1 . Its induction principle says that, given any type A with an element a:A and a path s:a=a, there exists a function $f:\mathbb{S}^1\to A$ such that $f(\mathsf{base})\equiv a$ and $\mathsf{ap}_f(\mathsf{loop})=s$.

Example 37 (Quotients).

20.2 THE FUNDAMENTAL GROUP OF THE CIRCLE

CONSTRUCTIVE ANALYSIS

COMPUTER VERIFICATION

Part VI CONCLUSIONS

Part VII

APPENDICES

BIBLIOGRAPHY

- [AB17] Steven Awodey and Andrej Bauer. Lecture notes: Introduction to categorical logic, 2017.
- [Bar84] H.P. Barendregt. *The lambda calculus: its syntax and semantics*. Studies in logic and the foundations of mathematics. North-Holland, 1984.
- [Bar92] H. P. Barendregt. Handbook of logic in computer science (vol. 2). chapter Lambda Calculi with Types, pages 117–309. Oxford University Press, Inc., New York, NY, USA, 1992.
- [Bar94] Henk Barendregt Erik Barendsen. Introduction to lambda calculus, 1994.
- [CF58] H. B. Curry and R. Feys. *Combinatory Logic, Volume I.* North-Holland, 1958. Second printing 1968.
- [Chu36] Alonzo Church. An unsolvable problem of elementary number theory. *American Journal of Mathematics*, 58(2):345–363, 1936.
- [Chu40] Alonzo Church. A formulation of the simple theory of types. *Journal of Symbolic Logic*, 5(2):56–68, June 1940.
- [Cro75] J. N. Crossley. *Reminiscences of logicians*, pages 1–62. Springer Berlin Heidelberg, Berlin, Heidelberg, 1975.
- [Cur34] H. B. Curry. Functionality in combinatory logic. *Proceedings of the National Academy of Sciences of the United States of America*, 20(11):584–590, 1934.
- [Cur46] Haskell B. Curry. The paradox of kleene and rosser. *Journal of Symbolic Logic*, 11(4):136–137, 1946.
- [dB72] N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the church-rosser theorem. *Indagationes Mathematicae* (*Proceedings*), 75(5):381 392, 1972.
- [EM42] Samuel Eilenberg and Saunders MacLane. Group extensions and homology. *Annals of Mathematics*, 43(4):757–831, 1942.
- [GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. *Proofs and Types*. Cambridge University Press, New York, NY, USA, 1989.
- [HHJW07] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of haskell: Being lazy with class. In *Proceedings of the third ACM SIGPLAN conference on History of programming languages*, page 1. Microsoft Research, April 2007.

- [HM96] Graham Hutton and Erik Meijer. Monadic parser combinators, 1996.
- [HM98] Graham Hutton and Erik Meijer. Monadic parsing in haskell. *Journal of Functional Programming*, 8(4):437–444, July 1998.
- [HSo8] J. Roger Hindley and Jonathan P. Seldin. *Lambda-Calculus and Combinators: An Introduction*. Cambridge University Press, New York, NY, USA, 2 edition, 2008.
- [Hug89] J. Hughes. Why functional programming matters. *Comput. J.*, 32(2):98–107, April 1989.
- [Jup] Jupyter Development Team. Jupyter notebooks. a publishing format for reproducible computational workflows.
- [Kamo1] Fairouz Kamareddine. Reviewing the classical and the de bruijn notation for lambda-calculus and pure type systems. *Logic and Computation*, 11:11–3, 2001.
- [Kasoo] Ryo Kashima. A proof of the standardization theorem in lambda-calculus. page 6, 09 2000.
- [KR35] S. C. Kleene and J. B. Rosser. The inconsistency of certain formal logics. *Annals of Mathematics*, 36(3):630–636, 1935.
- [Kun11] K. Kunen. *Set Theory*. Studies in logic. College Publications, 2011.
- [Lan78] Saunders Mac Lane. *Categories for the Working Mathematician*. Graduate Texts in Mathematics. Springer New York, 1978.
- [lawa] Diagonal arguments and cartesian closed categories. (15).
- [Lawb] F. William Lawvere. Use of Logical Operators in mathematics. *Lecture notes in Linear Algebra*, 309.
- [Leio1] Daan Leijen. Parsec, a fast combinator parser. Technical Report 35, Department of Computer Science, University of Utrecht (RUU), October 2001.
- [LSo9] F. William Lawvere and Stephen H. Schanuel. *Conceptual Mathematics: A First Introduction to Categories*. Cambridge University Press, New York, NY, USA, 2nd edition, 2009.
- [Mcc91] William W. Mccune. Single axioms for groups and abelian groups with various operations. In *Preprint MCS-P270-1091*, *Mathematics and Computer Science Division*, *Argonne National Laboratory*, *Argonne*, *IL*, 1991.
- [MM94] I. Moerdijk and S. MacLane. *Sheaves in Geometry and Logic: A First Introduction to Topos Theory*. Universitext. Springer New York, 1994.
- [O'S16] Bryan O'Sullivan. The attoparsec package. http://hackage.haskell.org/package/attoparsec, 2007–2016.

- [P⁺03] Simon Peyton-Jones et al. The Haskell 98 language and libraries: The revised report. *Journal of Functional Programming*, 13(1):0–255, Jan 2003. http://www.haskell.org/definition/.
- [Pol95] Robert Pollack. Polishing up the tait-martin-löf proof of the church-rosser theorem, 1995.
- [Sel13] Peter Selinger. Lecture notes on the lambda calculus. Expository course notes, 120 pages. Available from 0804.3434, 2013.
- [Tai67] W. W. Tait. Intensional interpretations of functionals of finite type i. *The Journal of Symbolic Logic*, 32(2):198–212, 1967.
- [Tur37] A. M. Turing. Computability and λ -definability. *The Journal of Symbolic Logic*, 2(4):153–163, 1937.
- [Wad85] Philip Wadler. How to replace failure by a list of successes. In *Proc. Of a Conference on Functional Programming Languages and Computer Architecture*, pages 113–128, New York, NY, USA, 1985. Springer-Verlag New York, Inc.
- [Wad90] Philip Wadler. Comprehending monads. In *Proceedings of the 1990 ACM Conference on LISP and Functional Programming*, LFP '90, pages 61–78, New York, NY, USA, 1990. ACM.
- [Wad15] Philip Wadler. Propositions as types. *Commun. ACM*, 58(12):75–84, November 2015.
- [Yano3] Noson S. Yanofsky. A universal approach to Self-Referential Paradoxes, Incompleteness and Fixed points. pages 15–17, 2003.