

Algorytmy i struktury danych 1

Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów: Informatyka analityczna

Ścieżka: -

Jednostka organizacyjna: Wydział Matematyki i Informatyki

Poziom kształcenia: pierwszego stopnia

Forma studiów: studia stacjonarne

Profil studiów: ogólnoakademicki

Obligatoryjność: obowiązkowy

Cykl kształcenia: 2022/23

Kod przedmiotu: UJ.WMIIANS.140.03340.22

Języki wykładowe : polski

Dyscypliny: Informatyka

Klasyfikacja ISCED: 0613 Tworzenie i analiza oprogramowania i aplikacji

Kod USOS: WMI.TCS.ASD1.OL

Koordynator przedmiotu

Maciej Ślusarek

Prowadzący zajęcia

Okres Semestr 3

Maciej Ślusarek, Piotr Micek, Krzysztof Potępa

Forma weryfikacji uzyskanych efektów uczenia się

zaliczenie na ocenę

Forma prowadzenia i godziny zajęć

wykład: 30 ćwiczenia laboratoryjne: 30

Liczba punktów ECTS 5.0

Efekty uczenia się dla przedmiotu

Kod Efekty w zakresie Kierunkowe efekty uczenia Metody się weryfikacji

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji	
Wiedzy – Student zna i rozumie:				
W1	zna zaawansowane struktury danych oparte o drzewa wyszukiwań binarnych: drzewa AVL, drzewa czerwono-czarne, B- drzewa, kopcodrzewa, drzewa rozchylane i metody ich realizacji programistycznej	IAN_K1_W04, IAN_K1_W06, IAN_K1_W07, IAN_K1_W08, IAN_K1_W11	zaliczenie na ocenę, zaliczenie	
W2	ma pogłębioną wiedzę o technikach konstrukcji algorytmów, w szczególności o programowaniu dynamicznym i metodzie zachłannej	IAN_K1_W06, IAN_K1_W07, IAN_K1_W08, IAN_K1_W09, IAN_K1_W10, IAN_K1_W11, IAN_K1_W12	zaliczenie na ocenę, zaliczenie	
W3	zna podstawowe jak i wybrane zaawansowane algorytmy dla wielu problemów grafowych	IAN_K1_W06, IAN_K1_W07, IAN_K1_W09, IAN_K1_W10, IAN_K1_W11	zaliczenie na ocenę, zaliczenie	
Umiejętności – Student potrafi:				
U1	potrafi modelować problemy przedstawione w języku naturalnym posługując się językiem matematyki i koncepcjami algorytmicznymi	IAN_K1_U01, IAN_K1_U03, IAN_K1_U05, IAN_K1_U06, IAN_K1_U07, IAN_K1_U08, IAN_K1_U10, IAN_K1_U11, IAN_K1_U17, IAN_K1_U21, IAN_K1_U22	zaliczenie na ocenę	
U2	projektuje i implementuje algorytmy wykorzystując podstawowe i wybrane zaawansowane techniki algorytmiczne	IAN_K1_U06, IAN_K1_U07, IAN_K1_U08, IAN_K1_U10, IAN_K1_U11, IAN_K1_U17, IAN_K1_U21, IAN_K1_U22	zaliczenie na ocenę	
U3	potrafi testować swój program, szukać w nim błędów i optymalizować go	IAN_K1_U05, IAN_K1_U11, IAN_K1_U18	zaliczenie na ocenę	
Kompetencji społecznych – Student jest gotów do:				
K1	potrafi precyzyjnie formułować pytania, służące pogłębieniu lub uzupełnieniu własnego zrozumienia danego tematu	IAN_K1_K01	zaliczenie na ocenę	

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przeznaczonych na zrealizowane rodzaje zajęć	
wykład	30	
ćwiczenia laboratoryjne	30	
samodzielne rozwiązywanie zadań komputerowych	60	
przygotowanie do zajęć	30	
Łączny nakład pracy studenta	Liczba godzin 150	ECTS 5.0

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

Lp. Treści programowe Efekty uczenia się dla przedmiotu

wielkości pamięci. Przykłady: problem komiwojażera, problem plecakowy, najdłuższy wspólny podciąg i algorytm Hirschberga, optymalne drzewa BST. 2. Algorytmy zachłanne - wybrane przykłady: kody Huffmana, szeregowanie z minimalizacją opóźnień, optymalne buforowanie w pamięci podręcznej. 3. Drzewa zrównoważone: drzewa AVL, drzewa czerwono-czarne, B-drzewa. 4. Inne mechanizmy równoważenia drzew: probabilistyczny (kopcodrzewa), amortyzowany (drzewa rozchylane). 5. Problemy spójności w grafach, silnie spójne składowe, dwuspójne składowe. 6. Najkrótsze ścieżki w grafach, algorytmy: Bellmana/Forda, Dijkstry, Warshalla/Floyda, Johnsona. 7. Minimalne drzewa rozpinające, algorytmy: Jarnika/Prima, Boruvki/Sollina, Kruskala; problem sumowania zbiorów rozłącznych. 8. Przepływy w sieciach, algorytmy: Forda/Fulkersona, Edmondsa/Karpa, prześlij-przemianuj. 9. Skojarzenia w grafach dwudzielnych, algorytm "turbo matching", algorytm Hopcrofta/Karpa.

1. Programowanie dynamiczne: DAG podzadań, odtwarzanie rozwiązania, problem

W1, W2, W3, U1, U2, U3, K1

Informacje rozszerzone

Metody nauczania:

1.

wykład konwencjonalny, ćwiczenia laboratoryjne

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
--------------	---------------------	-------------------------------

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
wykład	zaliczenie	Uczestnictwo w wykładach.
ćwiczenia laboratoryjne	zaliczenie na ocenę	Zaliczenie laboratorium na podstawie programów zaliczeniowych, zadań domowych oraz kolokwiów.

Wymagania wstępne i dodatkowe

Metody programowania

Literatura

Obowiązkowa

1. T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, wydanie III, PWN, 2012

Dodatkowa

1. L.Banachowski, K.Diks, W.Rytter, Algorytmy i struktury danych, PWN, 2018