



Vishay

# Surface Mount Multilayer Ceramic Chip Capacitors for Commodity Applications



#### **FEATURES**

- Available from 0402 to 1210 body sizes
- Ultra stable C0G (NP0) dielectric
- High capacitance in X5R, X7R
- Ni-barrier with 100 % tin terminations
- Dry sheet technology process
- Base Metal Electrode system (BME)
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912



ROHS COMPLIANT HALOGEN FREE

> GREEN (5-2008)

## **APPLICATIONS**

- · Consumer electronics
- Telecommunications
- Data processing
- Mobile applications

#### **ELECTRICAL SPECIFICATIONS**

## **Operating Temperature:**

COG (NP0): -55 °C to +125 °C X5R: -55 °C to +85 °C

## X7R: -55 °C to +125 °C Capacitance Range:

COG (NP0): 0.5 pF to 39 nF X5R: 47 nF to 220 µF X7R: 100 pF to 47 µF

## Voltage Range:

COG (NP0): 10  $V_{DC}$  to 100  $V_{DC}$  X5R: 6.3  $V_{DC}$  to 50  $V_{DC}$  X7R: 10  $V_{DC}$  to 100  $V_{DC}$ 

## Temperature Coefficient of Capacitance (TCC):

C0G (NP0): 0 ppm/°C  $\pm$  30 ppm/°C from -55 °C to +125 °C X5R:  $\pm$  15 % from -55 °C to +85 °C without voltage applied X7R:  $\pm$  15 % from -55 °C to +125 °C without voltage applied

## Insulation Resistance (IR) at UR:

 $\geq$  10 G $\Omega$  or R x C  $\geq$  500  $\Omega$  x F whichever is less

### **Test Conditions for Capacitance Tolerance:**

preconditioning for X5R, X7R MLCC: perform a heat treatment at +150  $^{\circ}$ C  $\pm$  10  $^{\circ}$ C for 1 h, then leave in ambient condition for 24 h  $\pm$  2 h before measurement

### **Test Conditions for Capacitance and DF Measurement:**

measured at conditions of 30 % to 70 % related humidity.

C0G (NP0): Apply 1.0 V<sub>RMS</sub>  $\pm$  0.2 V<sub>RMS</sub>, 1.0 MHz  $\pm$  10 % for caps  $\leq$  1000 pF, at +25 °C ambient temperature Apply 1.0 V<sub>RMS</sub>  $\pm$  0.2 V<sub>RMS</sub>, 1.0 kHz  $\pm$  10 % for caps > 1000 pF, at +25 °C ambient temperature

X5R / X7R: Caps  $\leq$  10  $\,\mu\text{F}\,$  apply 1.0  $\text{V}_{\text{RMS}}\,\pm\,$  0.2  $\text{V}_{\text{RMS}},$  1.0 kHz  $\pm\,$  10 %, at +25 °C ambient temperature  $^{(1)}$  Caps > 10  $\,\mu\text{F}\,$  apply 0.5  $\text{V}_{\text{RMS}}\,\pm\,$  0.2  $\text{V}_{\text{RMS}},$  120 Hz  $\pm\,$  20 %, at +25 °C ambient temperature

#### Note

 $^{(1)}$  Test conditions: 0.5  $V_{RMS} \pm 0.2 \ V_{RMS}, 1 \ kHz \pm 10 \ \%$ 

X7R:  $0603: \ge 2.2 \,\mu\text{F} / 10 \,\text{V}$  $0805: 10 \,\mu\text{F} (6.3 \,\text{V} \text{ and } 10 \,\text{V})$ 

X5R: 0402:  $\geq 4.7 \ \mu F / 6.3 \ V$  and  $\geq 2.2 \ \mu F / 10 \ V$ 

0603: 10  $\mu$ F (6.3 V and 10 V)

## **Aging Rate:**

C0G (NP0): 0 % per decade

X5R:  $6.3~V_{DC}$  /  $10~V_{DC}$ : 3 % maximum per decade  $16~V_{DC}$  /  $25~V_{DC}$ : 2 % maximum per decade X7R:  $\leq 10~V_{DC}$ : 1.5 % maximum per decade

 $10 \text{ V}_{DC}$ : 1.5 % maximum per decade  $\geq 16 \text{ V}_{DC}$ : 1 % maximum per decade

#### **Dielectric Strength Test:**

this is the maximum voltage the capacitors are tested 1 s to 5 s period and the charge / discharge current does not exceed 50 mA.

 $\leq$  100 V<sub>DC</sub>: 250 % of rated voltage

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000



Vishay

**Dissipation Factor (DF):** 

C0G (NP0): Cap.  $< 30 \text{ pF: } Q \ge 400 + 20C$ 

Cap. ≥ 30 pF: Q ≥ 1000

X5R, X7R:

| RATED<br>VOLTAGE | <b>D.F.</b> ≤ |      | EXCEPTION OF D.F. ≤                                                                                                                             |
|------------------|---------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |               | 3 %  | 1206 ≥ 0.47 μF                                                                                                                                  |
| ≥ 100 V          | 2.5 %         | 5 %  | 0603 ≥ 0.068 μF; 0805 > 0.1 μF;<br>1206 > 1 μF                                                                                                  |
|                  |               | 3 %  | $0603 \ge 0.047~\mu F;~0805 \ge 0.18~\mu F;~1206 \ge 0.47~\mu F$                                                                                |
| ≥ 50 V           | 2.5 %         | 5 %  | 1210 ≥ 4.7 μF                                                                                                                                   |
|                  |               | 10 % | $0402 \ge 0.1 \ \mu\text{F}; \ 0603 \ge 1 \ \mu\text{F}; \ 0805 \ge 1 \ \mu\text{F}; \ 1206 \ge 2.2 \ \mu\text{F}; \ 1210 \ge 10 \ \mu\text{F}$ |
|                  |               | 5 %  | 0805 ≥ 1 μF; 1210 ≥ 10 μF                                                                                                                       |
|                  |               | 7 %  | 0603 ≥ 0.33 μF; 1206 ≥ 4.7 μF                                                                                                                   |
| 25 V             | 3.5 %         | 10 % | $0402 \ge 0.10~\mu\text{F};~0603 \ge 0.47~\mu\text{F};~0805 \ge 2.2~\mu\text{F};~1206 \ge 6.8~\mu\text{F};~1210 \ge 22~\mu\text{F}$             |
| 10.1/            | 0.5.0/        | 5 %  | $0402 \ge 0.033$ μF; $0603 \ge 0.15$ μF; $0805 \ge 0.68$ μF; $1206 \ge 2.2$ μF; $1210 \ge 4.7$ μF                                               |
| 16 V             | 3.5 %         | 10 % | 0402 ≥ 0.22 $\mu$ F; 0603 ≥ 0.68 $\mu$ F;<br>0805 ≥ 2.2 $\mu$ F; 1206 ≥ 4.7 $\mu$ F;<br>1210 ≥ 22 $\mu$ F                                       |
| 10 V             | 5 %           | 10 % | 0402 ≥ 0.33 µF; 0402/X7R ≥ 0.22 µF<br>0603 ≥ 0.33 µF; 0805 ≥ 2.2 µF;<br>1206 ≥ 2.2 µF; 1210 ≥ 22 µF                                             |
|                  |               | 15 % | 0402 ≥ 1 μF                                                                                                                                     |
| 6.3 V            | 10 %          | 15 % | 0402 ≥ 1 $\mu$ F; 0603 ≥ 10 $\mu$ F; 0805 ≥ 4.7 $\mu$ F; 1206 ≥ 47 $\mu$ F; 1210 ≥ 100 $\mu$ F                                                  |
|                  |               | 20 % | 0402 ≥ 2.2 μF                                                                                                                                   |
| 4 V              | 15 %          | -    | -                                                                                                                                               |

| QUICK REFERENC | E DATA |                 |         |         |
|----------------|--------|-----------------|---------|---------|
| DIEL FOTDIO    | 0405   | MAXIMUM VOLTAGE | CAPAC   | ITANCE  |
| DIELECTRIC     | CASE   | (V)             | MINIMUM | MAXIMUM |
|                | 0402   | 100             | 0.5 pF  | 1.0 nF  |
| COC (NIDO)     | 0603   | 100             | 0.5 pF  | 3.3 nF  |
| C0G (NP0)      | 0805   | 100             | 0.5 pF  | 12 nF   |
|                | 1206   | 100             | 1.5 pF  | 39 nF   |
|                | 0402   | 50              | 47 nF   | 10 μF   |
|                | 0603   | 50              | 220 nF  | 22 μF   |
| X5R            | 0805   | 50              | 1.5 μF  | 47 μF   |
|                | 1206   | 50              | 1.5 μF  | 100 μF  |
|                | 1210   | 50              | 1.5 μF  | 220 μF  |
|                | 0402   | 50              | 100 pF  | 1.0 μF  |
|                | 0603   | 100             | 100 pF  | 2.2 µF  |
| X7R            | 0805   | 100             | 100 pF  | 10 μF   |
|                | 1206   | 100             | 150 pF  | 22 μF   |
|                | 1210   | 100             | 1.0 nF  | 47 μF   |

### Note

• Detail ratings see "Selection Chart"

www.vishay.com Vishay



#### **Notes**

- Detail rating see "Selection Chart"
- (1) DC voltage rating should not be exceeded in application. Other application factors may affect the MLCC performance. Consult for questions: mlcc@vishay.com
- (2) Not all values, see "Selection Chart"
- (3) No 5 % tolerance for X5R



Vishay

## **DIMENSIONS** in inches (millimeters)



| SIZE<br>CODE   | THICKNESS<br>SYMBOL | SOLDERING<br>METHOD (1) | L                                                 | w                                                 | Т                                                 | МВ                             |  |  |  |
|----------------|---------------------|-------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------|--|--|--|
| 0402           | N                   | R                       | 0.040 ± 0.002<br>(1.00 ± 0.05)                    | 0.020 ± 0.002<br>(0.50 ± 0.05)                    | 0.020 ± 0.002<br>(0.50 ± 0.05)                    | 0.010 + 0.002 / - 0.004        |  |  |  |
| (1005)         | E                   | R                       | $0.040 \pm 0.008$<br>(1.00 ± 0.20)                | 0.020 ± 0.008<br>(0.50 ± 0.20)                    | $0.020 \pm 0.008$<br>(0.50 ± 0.20)                | (0.25 + 0.05 / - 0.10)         |  |  |  |
|                | S                   | R/W                     | 0.063 ± 0.004<br>(1.60 ± 0.10)                    | 0.030 ± 0.004<br>(0.80 ± 0.10)                    | 0.030 ± 0.0028<br>(0.80 ± 0.07)                   |                                |  |  |  |
| 0603<br>(1608) | Х                   | R/W                     | 0.063 + 0.006 / - 0.004<br>(1.60 + 0.15 / - 0.10) | 0.030 + 0.006 / - 0.004<br>(0.80 + 0.15 / - 0.10) | 0.030 + 0.006 / - 0.004<br>(0.80 + 0.15 / - 0.10) | 0.016 ± 0.006<br>(0.40 ± 0.15) |  |  |  |
|                | X'                  | R/W                     | $0.063 \pm 0.008$<br>(1.60 ± 0.20)                | 0.030 ± 0.008<br>(0.80 ± 0.20)                    | $0.030 \pm 0.008$<br>(0.80 ± 0.20)                |                                |  |  |  |
|                | А                   | R/W                     |                                                   |                                                   | 0.024 ± 0.004<br>(0.60 ± 0.10)                    |                                |  |  |  |
|                | В                   | R/W                     | $0.080 \pm 0.006$<br>(2.00 ± 0.15)                | 0.050 ± 0.004<br>(1.25 ± 0.10)                    | 0.030 ± 0.004<br>(0.80 ± 0.10)                    |                                |  |  |  |
| 0805<br>(2012) | D                   | R                       |                                                   |                                                   | 0.049 ± 0.004<br>(1.25 ± 0.10)                    | 0.020 ± 0.008<br>(0.50 ± 0.20) |  |  |  |
|                | Т                   | R/W                     | 0.080 ± 0.008                                     | 0.050 ± 0.008                                     | 0.033 ± 0.004<br>(0.85 ± 0.10)                    |                                |  |  |  |
|                | ı                   | R                       | $(2.00 \pm 0.20)$                                 | (1.25 ± 0.20)                                     | 0.049 ± 0.008<br>(1.25 ± 0.20)                    |                                |  |  |  |
|                | В                   | R/W                     |                                                   |                                                   | 0.030 ± 0.004<br>(0.80 ± 0.10)                    |                                |  |  |  |
|                | С                   | R                       | $0.126 \pm 0.006$<br>(3.20 ± 0.15)                | 0.063 ± 0.006                                     | 0.037 ± 0.004<br>(0.95 ± 0.10)                    |                                |  |  |  |
| 1206           | D                   | R                       |                                                   | (1.60 ± 0.15)                                     | 0.049 ± 0.004<br>(1.25 ± 0.10)                    | 0.024 ± 0.008                  |  |  |  |
| (3216)         | J                   | R                       | 0.126 ± 0.008                                     |                                                   | 0.045 ± 0.006<br>(1.15 ± 0.15)                    | $(0.60 \pm 0.20)$              |  |  |  |
|                | G                   | R                       | $(3.20 \pm 0.20)$                                 | 0.063 ± 0.008<br>(1.60 ± 0.20)                    | $0.063 \pm 0.008$<br>(1.60 ± 0.20)                |                                |  |  |  |
|                | Р                   | R                       | 0.126 + 0.012 / - 0.004<br>(3.20 + 0.30 / - 0.10) | 0.063 + 0.012 / - 0.004<br>(1.60 + 0.30 / - 0.10) | 0.063 + 0.012 / - 0.004<br>(1.60 + 0.30 / - 0.10) |                                |  |  |  |
|                | С                   | R                       | 0.126 ± 0.012                                     | 0.098 ± 0.008                                     | 0.037 ± 0.004<br>(0.95 ± 0.10)                    |                                |  |  |  |
|                | D                   | R                       | $(3.20 \pm 0.30)$                                 | $(2.50 \pm 0.20)$                                 | 0.049 ± 0.004<br>(1.25 ± 0.10)                    |                                |  |  |  |
| 1210<br>(3225) | G                   | R                       |                                                   |                                                   | 0.063 ± 0.008<br>(1.60 ± 0.20)                    | 0.030 ± 0.010<br>(0.75 ± 0.25) |  |  |  |
|                | К                   | R                       | 0.126 ± 0.016<br>(3.20 ± 0.40)                    | 0.098 ± 0.012<br>(2.50 ± 0.30)                    | 0.078 ± 0.008<br>(2.00 ± 0.20)                    |                                |  |  |  |
|                | М                   | R                       |                                                   |                                                   | 0.098 ± 0.012<br>(2.50 ± 0.30)                    |                                |  |  |  |

## Note

 $^{(1)}$  "R" = Reflow soldering process; "W" = Wave soldering process

www.vishay.com

Vishay

| SELECTION  | ON CHA | RT |    |               |    |     |    |    |               |    |     |       |     |       |    |     |    |    |       |    |     |
|------------|--------|----|----|---------------|----|-----|----|----|---------------|----|-----|-------|-----|-------|----|-----|----|----|-------|----|-----|
| DIELECTRIC | ;      |    |    |               |    |     |    |    |               |    | CO  | G (NI | P0) |       |    |     |    |    |       |    |     |
| STYLE      |        |    | ,  | <b>/</b> J040 | 2  |     |    | ١  | <b>/</b> J060 | 03 |     |       |     | VJ080 | )5 |     |    | 1  | /J120 | 6  |     |
| SIZE CODE  |        |    |    | 0402          |    |     |    |    | 0603          | 3  |     |       |     | 0805  | 5  |     |    |    | 1206  |    |     |
| VOLTAGE (V | DC)    | 10 | 16 | 25            | 50 | 100 | 10 | 16 | 25            | 50 | 100 | 10    | 16  | 25    | 50 | 100 | 10 | 16 | 25    | 50 | 100 |
| VOLTAGE CO | ODE    | Q  | J  | Х             | Α  | В   | Q  | J  | Х             | Α  | В   | Q     | J   | Х     | Α  | В   | Q  | J  | Х     | Α  | В   |
| CAP. CODE  | CAP.   |    |    |               |    |     |    |    |               |    |     |       |     |       |    |     |    |    |       |    |     |
| 0R5        | 0.5 pF | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   |    |    |       |    |     |
| 1R0        | 1.0 pF | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   |    |    |       |    |     |
| 1R2        | 1.2 pF | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   |    |    |       |    |     |
| 1R5        | 1.5 pF | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 1R8        | 1.8 pF | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 2R2        | 2.2 pF | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 2R7        | 2.7 pF | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 3R3        | 3.3 pF | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 3R9        | 3.9 pF | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 4R7        | 4.7 pF | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 5R6        | 5.6 pF | N  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 6R8        | 6.8 pF | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 8R2        | 8.2 pF | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 100        | 10 pF  | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 120        | 12 pF  | N  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 150        | 15 pF  | N  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 180        | 18 pF  | N  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 220        | 22 pF  | N  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 270        | 27 pF  | N  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 330        | 33 pF  | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 390        | 39 pF  | N  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 470        | 47 pF  | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 560        | 56 pF  | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 680        | 68 pF  | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 820        | 82 pF  | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 101        | 100 pF | N  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 121        | 120 pF | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 151        | 150 pF | N  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 181        | 180 pF | Ν  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 221        | 220 pF | N  | N  | N             | N  | N   | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 271        | 270 pF | Ν  | N  | N             | N  |     | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 331        | 330 pF | Ν  | N  | N             | N  |     | S  | S  | S             | S  | S   | Α     | Α   | Α     | Α  | Α   | В  | В  | В     | В  | В   |
| 391        | 390 pF | Ν  | N  | N             | N  |     | S  | S  | S             | S  | S   | В     | В   | В     | В  | В   | В  | В  | В     | В  | В   |
| 471        | 470 pF | N  | N  | N             | N  |     | S  | S  | S             | S  | S   | В     | В   | В     | В  | В   | В  | В  | В     | В  | В   |
| 561        | 560 pF | N  | N  | N             | N  |     | S  | S  | S             | S  | S   | В     | В   | В     | В  | В   | В  | В  | В     | В  | В   |
| 681        | 680 pF | N  | N  | N             | N  |     | S  | S  | S             | S  | S   | В     | В   | В     | В  | В   | В  | В  | В     | В  | В   |

- Letters indicate product thickness, see packaging quantities
   (1) Only in 5 % (code "J") tolerance
   (2) Contact mlcc@vishay.com for availability



www.vishay.com

Vishay

| SELECTIO   | ON CHA | RT |    |               |    |     |    |    |               |    |     |       |       |       |       |     |    |    |                  |                  |     |
|------------|--------|----|----|---------------|----|-----|----|----|---------------|----|-----|-------|-------|-------|-------|-----|----|----|------------------|------------------|-----|
| DIELECTRIC |        |    |    |               |    |     |    |    |               |    | CO  | G (NI | P0)   |       |       |     |    |    |                  |                  |     |
| STYLE      |        |    | ,  | <b>/</b> J040 | 2  |     |    | 1  | <b>/</b> J060 | 03 |     |       |       | VJ080 | )5    |     |    | 1  | /J120            | 6                |     |
| SIZE CODE  |        |    |    | 0402          |    |     |    |    | 0603          | 3  |     |       |       | 0805  | 5     |     |    |    | 1206             |                  |     |
| VOLTAGE (V | oc)    | 10 | 16 | 25            | 50 | 100 | 10 | 16 | 25            | 50 | 100 | 10    | 16    | 25    | 50    | 100 | 10 | 16 | 25               | 50               | 100 |
| VOLTAGE CO | DDE    | ø  | J  | Х             | Α  | В   | q  | J  | Х             | Α  | В   | Q     | J     | Х     | Α     | В   | ø  | J  | Х                | Α                | В   |
| CAP. CODE  | CAP.   |    |    |               |    |     |    |    |               |    |     |       |       |       |       |     |    |    |                  |                  |     |
| 821        | 820 pF | Ν  | N  | N             | N  |     | S  | S  | S             | S  | S   | В     | В     | В     | В     | В   | В  | В  | В                | В                | В   |
| 102        | 1.0 nF | Ζ  | N  | N             | N  |     | S  | S  | S             | S  | S   | В     | В     | В     | В     | В   | В  | В  | В                | В                | В   |
| 122        | 1.2 nF |    |    |               |    |     | Χ  | Х  | Х             | Х  | Х   | В     | В     | В     | В     | В   | В  | В  | В                | В                | В   |
| 152        | 1.5 nF |    |    |               |    |     | Χ  | Χ  | Χ             | Χ  | Х   | В     | В     | В     | В     | В   | В  | В  | В                | В                | В   |
| 182        | 1.8 nF |    |    |               |    |     | Χ  | Χ  | Χ             | Χ  |     | В     | В     | В     | В     | В   | В  | В  | В                | В                | В   |
| 222        | 2.2 nF |    |    |               |    |     | Χ  | Χ  | Χ             | Х  |     | В     | В     | В     | В     | В   | В  | В  | В                | В                | В   |
| 272        | 2.7 nF |    |    |               |    |     | Χ  | Х  | Χ             | Х  |     | D     | D     | D     | D     | D   | В  | В  | В                | В                | В   |
| 332        | 3.3 nF |    |    |               |    |     | Χ  | Х  | Х             | Х  |     | D     | D     | D     | D     | D   | В  | В  | В                | В                | В   |
| 392        | 3.9 nF |    |    |               |    |     |    |    |               |    |     | D     | D     | D     | D     | D   | В  | В  | В                | В                | В   |
| 472        | 4.7 nF |    |    |               |    |     |    |    |               |    |     | D     | D     | D     | D     | D   | В  | В  | В                | В                | В   |
| 562        | 5.6 nF |    |    |               |    |     |    |    |               |    |     | D     | D     | D     | D     |     | В  | В  | В                | В                | В   |
| 682        | 6.8 nF |    |    |               |    |     |    |    |               |    |     | D     | D     | D     | D     |     | С  | С  | С                | С                | С   |
| 822        | 8.2 nF |    |    |               |    |     |    |    |               |    |     | D     | D     | D     | D     |     | D  | D  | D                | D                | D   |
| 103        | 10 nF  |    |    |               |    |     |    |    |               |    |     | D     | D     | D     | D     |     | D  | D  | D                | D                | D   |
| 123        | 12 nF  |    |    |               |    |     |    |    |               |    |     | T (1) | T (1) | T (1) | T (1) |     | Р  | Р  | P (1)            | P (1)            |     |
| 153        | 15 nF  |    |    |               |    |     |    |    |               |    |     |       |       | T (1) | T (1) |     | Р  | Р  | P (1)            | P (1)            |     |
| 183        | 18 nF  |    |    |               |    |     |    |    |               |    |     |       |       | T (1) | T (1) |     | Р  | Р  | P <sup>(1)</sup> | P <sup>(1)</sup> |     |
| 223        | 22 nF  |    |    |               |    |     |    |    |               |    |     |       |       |       |       |     | Р  | Р  | P (1)            | P (1)            |     |
| 273        | 27 nF  |    |    |               |    |     |    |    |               |    |     |       |       |       |       |     | Р  | Р  | P (1)            | P (1)            |     |
| 333        | 33 nF  |    |    |               |    |     |    |    |               |    |     |       |       |       |       |     | Р  | Р  | P <sup>(1)</sup> | P (1)            |     |
| 393        | 39 nF  |    |    |               |    |     |    |    |               |    |     |       |       |       |       |     | Р  | Р  | P (1)            | P (1)            |     |
| 473        | 47 nF  |    |    |               |    |     |    |    |               |    |     |       |       |       |       |     |    |    |                  |                  |     |
| 563        | 56 nF  |    |    |               |    |     |    |    |               |    |     |       |       |       |       |     |    |    |                  |                  |     |
| 683        | 68 nF  |    |    |               |    |     |    |    |               |    |     |       |       |       |       |     |    |    |                  |                  |     |
| 823        | 82 nF  |    |    |               |    |     |    |    |               |    |     |       |       |       |       |     |    |    |                  |                  |     |
| 104        | 100 nF |    |    |               |    |     |    |    |               |    |     |       |       |       |       |     |    |    |                  |                  |     |

- Letters indicate product thickness, see packaging quantities
   (1) Only in 5 % (code "J") tolerance
   (2) Contact mlcc@vishay.com for availability

Vishay

| SELECTIO                | N CHAF | RT       |          |          |       |          |                   |           |        |           |           |          |          |          |          |              |
|-------------------------|--------|----------|----------|----------|-------|----------|-------------------|-----------|--------|-----------|-----------|----------|----------|----------|----------|--------------|
| DIELECTRIC              |        |          |          |          |       |          |                   |           | X5R    |           |           |          |          |          |          |              |
| STYLE                   |        |          | ,        | VJ0402   |       |          |                   |           | VJ060  | 3         |           |          | ,        | VJ0805   |          |              |
| SIZE CODE               |        |          |          | 0402     |       |          |                   |           | 0603   |           |           |          |          | 0805     |          |              |
| VOLTAGE (V <sub>D</sub> | c)     | 6.3 V    | 10 V     | 16 V     | 25 V  | 50 V     | 6.3 V             | 10 V      | 16 V   | 25 V      | 50 V      | 6.3 V    | 10 V     | 16 V     | 25 V     | 50 V         |
| VOLTAGE CO              | DE     | Υ        | Q        | J        | Х     | Α        | Υ                 | Q         | J      | Х         | Α         | Υ        | Q        | J        | Х        | Α            |
| CAP. CODE               | CAP.   |          |          |          |       |          |                   |           |        |           |           |          |          |          |          |              |
| 473                     | 47 nF  |          |          | N        |       |          |                   |           |        |           |           |          |          |          |          |              |
| 563                     | 56 nF  |          | N        |          |       |          |                   |           |        |           |           |          |          |          |          |              |
| 683                     | 68 nF  |          | N        | N        |       |          |                   |           |        |           |           | N        |          |          |          |              |
| 823                     | 82 nF  | N        | N        | N        |       |          |                   |           |        |           |           |          |          |          |          |              |
| 104                     | 100 nF | N        | N        | N        | N     | N        |                   |           |        |           |           |          |          |          |          |              |
| 124                     | 120 nF |          |          |          |       |          |                   |           |        |           |           |          |          |          |          |              |
| 154                     | 150 nF |          | N        |          | N     |          |                   |           |        |           |           |          |          |          |          |              |
| 184                     | 180 nF |          |          |          |       |          |                   |           |        |           |           |          |          |          |          |              |
| 224                     | 220 nF | N        | N        | N        | N     | N        |                   |           | Х      | Х         |           |          |          |          |          |              |
| 274                     | 270 nF |          |          |          |       |          |                   | Х         | Х      |           |           |          |          |          |          |              |
| 334                     | 330 nF | N        | N        |          |       |          |                   | Х         | Х      | Х         |           |          |          |          |          |              |
| 394                     | 390 nF |          |          |          |       |          |                   | Х         | Х      |           |           |          |          |          |          |              |
| 474                     | 470 nF | N        | N        | Е        | Е     | E (2)(3) |                   | Х         | Х      | Х         | X (2)     |          |          |          |          |              |
| 564                     | 560 nF |          |          |          |       |          |                   |           |        |           |           |          |          |          |          |              |
| 684                     | 680 nF | N        | N        |          |       |          |                   | Х         | Х      | Х         |           |          |          |          |          |              |
| 824                     | 820 nF |          |          |          |       |          | Х                 | Х         | Х      |           |           |          |          |          |          |              |
| 105                     | 1.0 µF | N        | N        | N        | N     |          | Х                 | Х         | Х      | Х         | Х         |          |          |          |          |              |
| 155                     | 1.5 µF |          |          |          |       |          | Х                 |           |        |           |           | ı        | ı        | ı        | I        |              |
| 225                     | 2.2 µF | N        | N (3)    | E (3)    | E (3) |          | Х                 | Х         | X'     | X'        | X' (2)(3) | ı        | ı        | ı        | I        | <b> </b> (3) |
| 335                     | 3.3 µF |          |          |          |       |          |                   |           |        |           |           | I        | I        | I        | I        |              |
| 475                     | 4.7 µF | E (1)    | E (1)(3) | E (1)(3) |       |          | Х                 | Х         | X'     | X1 (5)(3) |           | I        | I        | I        | I        | J (3)        |
| 106                     | 10 μF  | E (1)(3) | E (1)(3) |          |       |          | X'                | X' (1)    | X' (3) | X' (1)(3) |           | I        | I        | I        | I        | l (3)        |
| 226                     | 22 µF  |          |          |          |       |          | X' <sup>(1)</sup> | X' (1)(3) |        |           |           | l (3)    | I (1)(3) | I (1)(3) | I (1)(3) |              |
| 476                     | 47 μF  |          |          |          |       |          |                   |           |        |           |           | I (1)(3) | I (1)(3) |          |          |              |
| 686                     | 68 μF  |          |          |          |       |          |                   |           |        |           |           |          |          |          |          |              |
| 107                     | 100 μF |          |          |          |       |          |                   |           |        |           |           |          |          |          |          |              |

## Notes

- · Letters indicate product thickness, see packaging quantities
- (1) Not in 10 % (code "K") tolerance
- (2) Not in 20 % (code "M") tolerance
- (3) Contact mlcc@vishay.com for availability

| SELECTIO    | N CHART |          |       |        |          |       |             |                  |          |                  |      |      |
|-------------|---------|----------|-------|--------|----------|-------|-------------|------------------|----------|------------------|------|------|
| DIELECTRIC  |         |          |       |        |          |       | X5R         |                  |          |                  |      |      |
| STYLE       |         |          |       | VJ1206 |          |       |             |                  | VJ1      | 210              |      |      |
| SIZE CODE   |         |          |       | 1206   |          |       |             |                  | 12       | :10              |      |      |
| VOLTAGE (VD | c)      | 6.3 V    | 10 V  | 16 V   | 25 V     | 50 V  | 4 V         | 6.3 V            | 10 V     | 16 V             | 25 V | 50 V |
| VOLTAGE CO  | DE      | Y        | Q     | J      | Х        | Α     | S Y Q J X A |                  |          |                  |      |      |
| CAP. CODE   | CAP.    |          |       |        |          |       |             |                  |          |                  |      |      |
| 105         | 1.0 µF  |          |       |        |          |       |             |                  |          |                  |      |      |
| 155         | 1.5 µF  |          | J     | J      |          |       |             |                  | K        | K                |      |      |
| 225         | 2.2 µF  |          | J     | J      | Р        | P (2) |             |                  | K        | K                |      |      |
| 335         | 3.3 µF  |          | Р     | Р      | Р        |       |             |                  |          |                  |      |      |
| 475         | 4.7 µF  | Р        | Р     | Р      | Р        | Р     |             |                  | K        | K                | K    |      |
| 685         | 6.8 µF  | Р        | Р     |        |          |       |             |                  |          |                  |      |      |
| 106         | 10 μF   | Р        | Р     | Р      | Р        | Р     |             |                  | K        | K                | K    | M    |
| 226         | 22 µF   | Р        | Р     | P (3)  | P (2)(3) |       |             | М                | М        | М                | М    |      |
| 476         | 47 μF   | P (3)    | P (3) |        |          |       |             | М                | М        | M <sup>(3)</sup> |      |      |
| 107         | 100 μF  | P (1)(3) |       |        |          |       |             | M <sup>(1)</sup> | M (1)(3) |                  |      |      |
| 227         | 220 μF  |          |       |        |          |       | M (1)(3)    |                  |          |                  |      |      |

#### Notes

- Letters indicate product thickness, see packaging quantities
- (1) Not in 10 % (code "K") tolerance
- (2) Not in 20 % (code "M") tolerance
- (3) Contact mlcc@vishay.com for availability

www.vishay.com

Vishay

|                   | TION CH          | ANI              |                  |                                                  |           |        |          |                                                  |                    |                |                |                  |                                                  |                  |               |                  |                                                  |
|-------------------|------------------|------------------|------------------|--------------------------------------------------|-----------|--------|----------|--------------------------------------------------|--------------------|----------------|----------------|------------------|--------------------------------------------------|------------------|---------------|------------------|--------------------------------------------------|
| DIELECTI          | RIC              |                  |                  | 1/10                                             | 100       |        |          |                                                  | X7                 |                | _              |                  |                                                  |                  | V 1000        | _                |                                                  |
| STYLE<br>SIZE COD | )E               |                  |                  |                                                  | 402<br>02 |        |          |                                                  |                    | VJ0603<br>0603 | 3              |                  |                                                  |                  | VJ080<br>0805 | 5                |                                                  |
| VOLTAGE           |                  | 6.3 V            | 10 V             | 16 V                                             | 25 V      | 50 V   | 100 V    | 10 V                                             | 16 V               | 25 V           | 50 V           | 100 V            | 10 V                                             | 16 V             | 25 V          | 50 V             | 100 V                                            |
| VOLTAGE           |                  | Y                | Q                | J                                                | X         | A      | B        | Q                                                | J                  | X              | A              | B                | Q                                                | J                | X             | A                | B                                                |
| CAP. COL          |                  | -                |                  |                                                  |           |        |          |                                                  |                    |                |                |                  |                                                  |                  |               |                  |                                                  |
| 101               | 100 pF           |                  | N                | N                                                | N         | N      |          | S (1)                                            | S (1)              | S (1)          | S (1)          | S (1)            | B (1)                                            | B (1)            | B (1)         | B (1)            | B (1)                                            |
| 121               | 120 pF           |                  | N                | N                                                | N         | N      |          | S (1)                                            | S (1)              | S (1)          | S (1)          | S (1)            | B (1)                                            | B (1)            | B (1)         | B <sup>(1)</sup> | B (1)                                            |
| 151               | 150 pF           |                  | Ν                | N                                                | Ν         | Ν      |          | S (1)                                            | S (1)              | S (1)          | S (1)          | S (1)            | B (1)                                            | B (1)            | B (1)         | B (1)            | B (1)                                            |
| 181               | 180 pF           |                  | N                | N                                                | N         | N      |          | S (1)                                            | S (1)              | S (1)          | S (1)          | S (1)            | B (1)                                            | B (1)            | B (1)         | B (1)            | B (1)                                            |
| 221               | 220 pF           |                  | N                | N                                                | N         | N      |          | S (1)                                            | S (1)              | S (1)          | S (1)<br>S (1) | S (1)            | B (1)                                            | B <sup>(1)</sup> | B (1)         | B (1)            | B (1)                                            |
| 271<br>331        | 270 pF<br>330 pF |                  | N<br>N           | N<br>N                                           | N<br>N    | N<br>N |          | S (1)<br>S (1)                                   | S (1)<br>S (1)     | S (1)<br>S (1) | S (1)          | S (1)<br>S (1)   | B (1)                                            | B (1)            | B (1)         | B (1)            | B (1)                                            |
| 391               | 390 pF           |                  | N                | N                                                | N         | N      |          | S (1)                                            | S (1)              | S (1)          | S (1)          | S (1)            | B (1)                                            | B (1)            | B (1)         | B (1)            | B (1)                                            |
| 471               | 470 pF           |                  | N                | N                                                | N         | N      |          | S                                                | S                  | S              | S              | S                | В                                                | В                | В             | В                | В                                                |
| 561               | 560 pF           |                  | N                | N                                                | N         | N      |          | Š                                                | Š                  | Š              | Š              | Š                | В                                                | В                | В             | В                | В                                                |
| 681               | 680 pF           |                  | Ν                | N                                                | Ν         | Ν      |          | S                                                | S                  | S              | S              | S                | В                                                | В                | В             | В                | В                                                |
| 821               | 820 pF           |                  | N                | N                                                | N         | N      |          | S                                                | S                  | S              | S              | S                | В                                                | В                | В             | В                | В                                                |
| 102               | 1.0 nF           |                  | N                | N                                                | N         | N      |          | S                                                | S                  | S              | S              | S                | В                                                | В                | В             | В                | В                                                |
| 122               | 1.2 nF           |                  | N                | N                                                | N         | N      |          | S                                                | S                  | Sc             | S              | S                | В                                                | В                | В             | В                | В                                                |
| 152<br>182        | 1.5 nF<br>1.8 nF |                  | N<br>N           | N<br>N                                           | N<br>N    | N<br>N |          | S                                                | S                  | S              | S              | S                | B<br>B                                           | B<br>B           | B<br>B        | B<br>B           | B                                                |
| 222               | 2.2 nF           |                  | N                | N                                                | N         | N      |          | S                                                | S                  | S              | S              | S                | В                                                | В                | В             | В                | В                                                |
| 272               | 2.7 nF           |                  | Ň                | N                                                | N         | N      |          | S                                                | S                  | S              | S              | S                | В                                                | В                | В             | В                | В                                                |
| 332               | 3.3 nF           |                  | N                | N                                                | N         | N      |          | S                                                | S                  | S              | S              | S                | В                                                | В                | В             | В                | В                                                |
| 392               | 3.9 nF           |                  | Ν                | N                                                | Ν         | Ν      |          | S                                                | S                  | S              | S              | S                | В                                                | В                | В             | В                | В                                                |
| 472               | 4.7 nF           |                  | Ν                | N                                                | N         | N      |          | S                                                | S                  | S              | S              | S                | В                                                | В                | В             | В                | В                                                |
| 562               | 5.6 nF           |                  | N                | N                                                | N         | N      |          | S                                                | S                  | S              | S              | S                | В                                                | В                | В             | В                | В                                                |
| 682<br>822        | 6.8 nF           |                  | N                | N                                                | N         | N      |          | S                                                | S                  | S              | S              | S                | В                                                | В                | В             | В                | В                                                |
| 103               | 8.2 nF<br>10 nF  |                  | N<br>N           | N<br>N                                           | N<br>N    | N<br>N |          | S                                                | S                  | S              | S              | S                | B<br>B                                           | B<br>B           | B<br>B        | B                | B                                                |
| 123               | 12 nF            |                  | N                | N                                                | N         | IN     |          | S                                                | S                  | S              | S              | 3                | В                                                | В                | В             | В                | В                                                |
| 153               | 15 nF            |                  | Ň                | N                                                | N         |        |          | S                                                | S                  | S              | S              |                  | В                                                | В                | В             | В                | В                                                |
| 183               | 18 nF            |                  | N                | N                                                | N         |        |          | S                                                | S                  | S              | S              |                  | В                                                | В                | В             | В                | В                                                |
| 223               | 22 nF            |                  | N                | N                                                | N         |        |          | S                                                | S                  | S              | S              | X <sup>(2)</sup> | В                                                | В                | В             | В                | В                                                |
| 273               | 27 nF            |                  | N                | N                                                | N         |        |          | S                                                | S                  | S              | S              |                  | В                                                | В                | В             | В                | D                                                |
| 333               | 33 nF            |                  | N                | N                                                | N         |        |          | S                                                | S                  | S              | X              |                  | В                                                | В                | В             | В                | D                                                |
| 393<br>473        | 39 nF<br>47 nF   |                  | N<br>N           | N<br>N                                           | N<br>N    | N (2)  |          | S                                                | S                  | S              | X              | χ (2)            | B<br>B                                           | B<br>B           | B<br>B        | B                | D<br>D                                           |
| 563               | 56 nF            |                  | N                | N                                                | IN        | 14 (-) |          | S                                                | S                  | S              | X              | A (=)            | В                                                | В                | В             | В                | D                                                |
| 683               | 68 nF            |                  | N                | N                                                |           |        |          | S                                                | S                  | S              | X              |                  | В                                                | В                | В             | В                | D                                                |
| 823               | 82 nF            |                  | Ň                | N                                                |           |        |          | Š                                                | S                  | Š              | X              |                  | В                                                | В                | В             | В                | D                                                |
| 104               | 100 nF           |                  | N                | N                                                | N         | E (2)  |          | S                                                | S                  | S              | Х              | X (2)            | В                                                | В                | В             | B/D              | D                                                |
| 124               | 120 nF           |                  |                  |                                                  |           |        |          | S                                                | S                  | Х              |                |                  | В                                                | В                | В             | D                |                                                  |
| 154               | 150 nF           |                  |                  |                                                  |           |        |          | S                                                | S                  | X              |                |                  | D                                                | D                | D             | D                |                                                  |
| 184               | 180 nF           |                  |                  |                                                  | N1 (2)(A) |        |          | S                                                | S                  | X              | V (2)          |                  | D                                                | D                | D             | D                | J (2)                                            |
| 224<br>274        | 220 nF<br>270 nF |                  |                  |                                                  | N (2)(4)  |        |          | S                                                | S                  | X              | X (2)          |                  | D<br>D                                           | D<br>D           | D<br>D        | D                | I ( <sup>2</sup> )                               |
| 334               | 330 nF           |                  |                  |                                                  |           |        |          | X                                                | X                  | X              |                |                  | D                                                | D                | D             |                  | <del>                                     </del> |
| 394               | 390 nF           |                  |                  | <u> </u>                                         |           |        |          | X                                                | X                  | X              |                |                  | D                                                | D                | D             | <u> </u>         |                                                  |
| 474               | 470 nF           |                  | N <sup>(2)</sup> |                                                  |           |        |          | X                                                | Х                  | X              | X (2)          |                  | D                                                | D                | D             | ı                | I <sup>(2)</sup>                                 |
| 564               | 560 nF           |                  |                  |                                                  |           |        |          | Χ                                                | X                  |                |                |                  | D                                                | D                | D             |                  |                                                  |
| 684               | 680 nF           |                  |                  |                                                  |           |        |          | Х                                                | X                  |                |                |                  | D                                                | D                | D             |                  |                                                  |
| 824               | 820 nF           | N1 /1\           |                  |                                                  |           |        |          | X                                                | X                  | V /1\          | V (DVA)        |                  | D                                                | D                | D             | 1 /11            |                                                  |
| 105<br>155        | 1.0 µF<br>1.5 µF | N <sup>(1)</sup> |                  | <del>                                     </del> |           |        |          | Х                                                | Х                  | X (1)          | X (2)(4)       |                  | D                                                | D<br>1 (1)       | D<br>1 (1)    | J (1)            | <u> </u>                                         |
| 225               | 2.2 µF           |                  |                  | 1                                                |           |        |          | X (1)                                            | X <sup>, (1)</sup> | 1              |                |                  | <del>                                     </del> | 1 (1)            | 1 1           | (2)(4)           | 1                                                |
| 335               | 3.3 µF           |                  |                  | 1                                                |           |        |          | 1                                                | ^ '                | 1              |                |                  | <u> </u>                                         | '-               | <u> </u>      | 1                |                                                  |
| 475               | 4.7 µF           |                  |                  | <u> </u>                                         |           |        |          | l                                                |                    | <u> </u>       |                |                  | J (1)                                            | [ (1)            | [ (1)         | 1                |                                                  |
| 685               | 6.8 µF           |                  |                  |                                                  |           |        |          |                                                  |                    |                |                |                  |                                                  |                  |               |                  |                                                  |
| 106               | 10 µF            |                  |                  |                                                  |           |        |          |                                                  |                    |                |                |                  | J (1)                                            | (3)(4)           |               |                  |                                                  |
| 156               | 15 µF            |                  |                  |                                                  |           |        |          |                                                  |                    |                |                |                  |                                                  |                  |               |                  |                                                  |
| 226               | 22 µF            |                  |                  |                                                  |           |        |          | <u> </u>                                         |                    |                |                |                  | <u> </u>                                         |                  |               |                  |                                                  |
| 336               | 33 µF            |                  |                  | -                                                |           |        |          |                                                  |                    |                |                |                  |                                                  |                  |               |                  | 1                                                |
| 476<br>686        | 47 μF<br>68 μF   |                  |                  | -                                                |           |        |          | <del>                                     </del> |                    | -              |                |                  | <del>                                     </del> |                  |               | 1                | 1                                                |
| lotes             | 00 με            |                  |                  | 1                                                |           |        | <u> </u> | l                                                | 1                  |                | <u> </u>       | l                | <u> </u>                                         | <u> </u>         | l             |                  | <u> </u>                                         |

## Notes

- Letters indicate product thickness, see packaging quantities

  1) Not in 5 % (code "J") tolerance

  2) Only in 10 % (code "K") tolerance

  3) Only in 20 % (code "M") tolerance

  4) Contact mlcc@vishay.com for availability



Vishay

| SELECTIO   | ON CHART         |                  |                  |                  |                  |                |                                                  |            |            |                  |                  |        |
|------------|------------------|------------------|------------------|------------------|------------------|----------------|--------------------------------------------------|------------|------------|------------------|------------------|--------|
| DIELECTRIC |                  | l                |                  |                  |                  |                | X7R                                              |            |            |                  |                  |        |
| STYLE      |                  |                  |                  | VJ1206           | ;                |                | <u> </u>                                         |            | VJ1        | 210              |                  |        |
| SIZE CODE  |                  |                  |                  | 1206             |                  |                |                                                  |            | 12         | 10               |                  |        |
| VOLTAGE (V | oc)              | 10 V             | 16 V             | 25 V             | 50 V             | 100 V          | 6.3 V                                            | 10 V       | 16 V       | 25 V             | 50 V             | 100 V  |
| VOLTAGE CO |                  | Q                | J                | Х                | Α                | В              | Υ                                                | Q          | J          | Х                | Α                | В      |
| CAP. CODE  | CAP.             |                  |                  |                  |                  |                |                                                  |            |            |                  |                  |        |
| 101        | 100 pF           |                  |                  |                  |                  |                |                                                  |            |            |                  |                  |        |
| 121        | 120 pF           | D (1)            | D (1)            | D (1)            | D (1)            | D (1)          |                                                  |            |            |                  |                  |        |
| 151<br>181 | 150 pF<br>180 pF | B <sup>(1)</sup> | B <sup>(1)</sup> | B <sup>(1)</sup> | B (1)            | B (1)<br>B (1) |                                                  |            |            |                  |                  |        |
| 221        | 220 pF           | B (1)            | B (1)            | B (1)            | B (1)            | B (1)          |                                                  |            |            |                  |                  |        |
| 271        | 270 pF           | B (1)            | B (1)            | B (1)            | B (1)            | B (1)          |                                                  |            |            |                  |                  |        |
| 331        | 330 pF           | B (1)            | B (1)            | B (1)            | B (1)            | B (1)          |                                                  |            |            |                  |                  |        |
| 391        | 390 pF           | B <sup>(1)</sup> | B (1)            | B <sup>(1)</sup> | B <sup>(1)</sup> | B (1)          |                                                  |            |            |                  |                  |        |
| 471        | 470 pF           | В                | В                | В                | В                | В              |                                                  |            |            |                  |                  |        |
| 561        | 560 pF           | В                | В                | В                | В                | В              |                                                  |            |            |                  |                  |        |
| 681        | 680 pF           | В                | В                | В                | В                | В              |                                                  |            |            |                  |                  |        |
| 821<br>102 | 820 pF<br>1.0 nF | B                | B<br>B           | B<br>B           | B                | B<br>B         | <del>                                     </del> | С          | С          | С                | С                | С      |
| 122        | 1.2 nF           | В                | В                | В                | В                | В              |                                                  | C          | C          | C                | C                | C      |
| 152        | 1.5 nF           | В                | В                | В                | В                | В              |                                                  | C          | Č          | Č                | Č                | Č      |
| 182        | 1.8 nF           | В                | В                | В                | В                | В              |                                                  | С          | С          | С                | C                | С      |
| 222        | 2.2 nF           | В                | В                | В                | В                | В              |                                                  | C          | C          | C                | C                | C      |
| 272        | 2.7 nF           | В                | В                | В                | В                | В              |                                                  | С          | C          | C                | C                | C      |
| 332<br>392 | 3.3 nF           | B<br>B           | В                | В                | B<br>B           | B<br>B         |                                                  | C          | C          | C                | C                | С      |
| 472        | 3.9 nF<br>4.7 nF | В                | B<br>B           | B<br>B           | В                | В              |                                                  | C          | C          | C                | C                | C      |
| 562        | 5.6 nF           | B                | В                | В                | В                | В              |                                                  | C          | C          | C                | C                | C      |
| 682        | 6.8 nF           | В                | В                | В                | B                | В              |                                                  | Č          | Č          | Č                | Č                | Č      |
| 822        | 8.2 nF           | В                | В                | В                | В                | В              |                                                  | C          | C          | C                | C                | Č      |
| 103        | 10 nF            | В                | В                | В                | В                | В              |                                                  | С          | С          | С                | С                | С      |
| 123        | 12 nF            | В                | В                | В                | В                | В              |                                                  | С          | С          | С                | C                | С      |
| 153<br>183 | 15 nF<br>18 nF   | B                | B<br>B           | B<br>B           | B<br>B           | B<br>B         |                                                  | C          | C          | C                | C                | C      |
| 223        | 22 nF            | В                | В                | В                | В                | В              |                                                  | C          | C          | C                | C                | C      |
| 273        | 27 nF            | В                | В                | В                | В                | В              |                                                  | C          | C          | C                | C                | C      |
| 333        | 33 nF            | В                | В                | В                | B                | В              |                                                  | Č          | Č          | Č                | Č                | Č      |
| 393        | 39 nF            | В                | В                | В                | В                | В              |                                                  | С          | С          | С                | С                | С      |
| 473        | 47 nF            | В                | В                | В                | В                | В              |                                                  | С          | С          | С                | C                | С      |
| 563        | 56 nF            | В                | В                | В                | В                | В              |                                                  | C          | Č          | C                | C                | C      |
| 683<br>823 | 68 nF<br>82 nF   | B                | B<br>B           | B<br>B           | B<br>B           | B<br>D         |                                                  | C          | C          | C                | C                | C      |
| 104        | 100 nF           | В                | В                | В                | В                | D              |                                                  | C          | C          | C                | C                | C      |
| 124        | 120 nF           | В                | В                | В                | В                | D              |                                                  | Č          | Č          | Č                | Č                | Č      |
| 154        | 150 nF           | С                | С                | С                | С                | G              |                                                  | С          | С          | С                | С                | D      |
| 184        | 180 nF           | С                | С                | С                | С                | G              |                                                  | С          | С          | С                | C                | D      |
| 224        | 220 nF           | C                | C                | C                | C                | G              |                                                  | C          | C          | C                | C                | D      |
| 274<br>334 | 270 nF<br>330 nF | C                | C                | CC               | D<br>D           | G<br>G         |                                                  | C          | C          | C                | C<br>D           | G<br>G |
| 394        | 390 nF           | Č                | C                | J                | P                | G              |                                                  | C          | C          | C                | D                | M      |
| 474        | 470 nF           | J                | J                | J                | P                | G              |                                                  | C          | C          | C                | D                | M      |
| 564        | 560 nF           | J                | Ĵ                | J                | P                | P              |                                                  | D          | D          | D                | D                | M      |
| 684        | 680 nF           | J                | J                | J                | Р                | Р              | -                                                | D          | D          | D                | D                | K      |
| 824        | 820 nF           | J                | J                | J                | P                | P              |                                                  | D          | D          | D                | D                | K      |
| 105        | 1.0 µF           | J                | J                | J                | Р                | Р              |                                                  | D          | D          | D                | D                | K      |
| 155<br>225 | 1.5 µF<br>2.2 µF | J                | J                | P<br>P           | P (1)            | P (1)          |                                                  |            | K          | G                | M <sup>(1)</sup> | M<br>M |
| 335        | 3.3 µF           | P                | P                | P                | 1 1              | 1 \ /          |                                                  |            | K (2)      | G (1)            | IVI V            | 141    |
| 475        | 4.7 μF           | P                | P                | P                | P (1)            |                |                                                  | K          | K          | K (1)            | M (1)            |        |
| 685        | 6.8 µF           |                  |                  |                  |                  |                |                                                  |            |            |                  |                  |        |
| 106        | 10 μF            | Р                | P (1)            | P <sup>(1)</sup> |                  |                |                                                  | K          | K          | K <sup>(1)</sup> | M <sup>(1)</sup> |        |
| 156        | 15 µF            | D /11/A1         | D (2)(A)         |                  |                  |                |                                                  | N A (2)(A) | N A /3\/A\ | N A /4\/A\       |                  |        |
| 226        | 22 µF            | P (1)(4)         | P (3)(4)         |                  | ļ                |                |                                                  | M (2)(4)   | M (1)(4)   | M (1)(4)         |                  |        |
| 336<br>476 | 33 μF<br>47 μF   |                  |                  |                  | <b>-</b>         |                | M (2)(4)                                         | M (1)(4)   |            |                  |                  |        |
| 686        | 68 μF            |                  |                  |                  | <b>†</b>         |                | IVI                                              | IVI        |            |                  |                  |        |
| 107        | 100 μF           | 1                |                  |                  |                  |                |                                                  |            |            |                  |                  |        |
|            |                  | -                |                  |                  | •                | •              | •                                                | •          | •          | •                | •                | •      |

## Notes

- Letters indicate product thickness, see packaging quantities
   Not in 5 % (code "J") tolerance
   Only in 10 % (code "K") tolerance
   Only in 20 % (code "M") tolerance
   Contact mlcc@vishay.com for availability

Revision: 30-May-2023 Document Number: 28548



www.vishay.com

Vishay

| PACKAGINO   | QUANTITIES     |           |             |              |             |              |
|-------------|----------------|-----------|-------------|--------------|-------------|--------------|
| SIZE CODE   | MAX. THICKNESS | THICKNESS | PAPE        | R TAPE       | PLAST       | IC TAPE      |
| (inch / mm) | (mm)           | SYMBOL    | 7" REEL (C) | 13" REEL (P) | 7" REEL (T) | 13" REEL (R) |
| 0402 (1002) | 0.55           | N         | 10K         | 50K          |             |              |
| 0402 (1002) | 0.70           | Е         | 10K         |              |             |              |
|             | 0.87           | S         | 4K          | 15K          |             |              |
| 0603 (1608) | 0.95           | X         | 4K          | 15K          |             |              |
|             | 1.00           | Χ'        | 4K          | 15K          |             |              |
|             | 0.75           | Α         | 4K          | 15K          |             |              |
| 0805 (2012) | 0.95           | В, Т      | 4K          | 15K          |             |              |
| 0003 (2012) | 1.40           | D         |             |              | ЗК          | 10K          |
|             | 1.45           | I         |             |              | ЗК          | 10K          |
|             | 0.95           | В         | 4K          | 15K          |             |              |
|             | 1.05           | С         |             |              | ЗК          | 10K          |
| 1206 (3216) | 1.30           | J         |             |              | ЗК          | 10K          |
| 1200 (3210) | 1.35           | D         |             |              | ЗК          | 10K          |
|             | 1.80           | G         |             |              | 2K          |              |
|             | 1.90           | Р         |             |              | 2K          |              |
|             | 1.05           | С         |             |              | 3K          | 10K          |
|             | 1.35           | D         |             |              | ЗК          | 10K          |
| 1210 (3225) | 1.80           | G         |             |              | 2K          |              |
|             | 2.20           | K         |             |              | 1K          |              |
|             | 2.80           | М         |             |              | 1K          |              |

Vishay

## TAPE AND REEL SPECIFICATION





Dimensions of paper tape

Dimensions of plastic tape

| DIMENSIONS          | PAPER TAPE i    | n millimeters   |                 |                 |                 |                 |
|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| SIZE CODE           | 04              | 02              | 0603            | 08              | 05              | 1206            |
| THICKNESS           | N               | E               | S, X, X'        | Α               | B, T            | В               |
| A <sub>0</sub>      | 0.62 ± 0.05     | 0.70 ± 0.10     | 1.02 ± 0.05     | 1.50 ± 0.10     | 1.50 ± 0.10     | 2.00 ± 0.10     |
| B <sub>0</sub>      | 1.12 ± 0.05     | 1.20 ± 0.10     | 1.80 ± 0.05     | 2.30 ± 0.10     | 2.30 ± 0.10     | 3.50 ± 0.10     |
| Т                   | $0.60 \pm 0.05$ | 0.70 ± 0.10     | 0.95 ± 0.05     | 0.75 ± 0.05     | 0.95 ± 0.05     | 0.95 ± 0.05     |
| K <sub>0</sub>      | -               | -               | -               | -               | -               | 1               |
| W                   | 8.00 ± 0.10     | 8.00 ± 0.10     | 8.00 ± 0.10     | 8.00 ± 0.10     | 8.00 ± 0.10     | 8.00 ± 0.10     |
| P <sub>0</sub>      | 4.00 ± 0.10     | 4.00 ± 0.10     | 4.00 ± 0.10     | 4.00 ± 0.10     | 4.00 ± 0.10     | 4.00 ± 0.10     |
| 10 x P <sub>0</sub> | 40.0 ± 0.10     | 40.0 ± 0.10     | 40.0 ± 0.10     | 40.0 ± 0.10     | 40.0 ± 0.10     | 40.0 ± 0.10     |
| P <sub>1</sub>      | 2.00 ± 0.05     | $2.00 \pm 0.05$ | 4.00 ± 0.10     | 4.00 ± 0.10     | 4.00 ± 0.10     | 4.00 ± 0.10     |
| P <sub>2</sub>      | 2.00 ± 0.05     | $2.00 \pm 0.05$ | 2.00 ± 0.05     | 2.00 ± 0.05     | 2.00 ± 0.05     | 2.00 ± 0.05     |
| D <sub>0</sub>      | 1.55 ± 0.05     | 1.55 ± 0.05     | 1.55 ± 0.05     | 1.55 ± 0.05     | 1.55 ± 0.05     | 1.50 ± 0.05     |
| D <sub>1</sub>      | -               | -               | -               | -               | -               | -               |
| E                   | 1.75 ± 0.05     | 1.75 ± 0.05     | 1.75 ± 0.05     | 1.75 ± 0.05     | 1.75 ± 0.05     | 1.75 ± 0.10     |
| F                   | $3.50 \pm 0.05$ |

| DIMENSIONS          | PLASTIC TAPI | <b>E</b> in millimeters |                 |             |             |                 |
|---------------------|--------------|-------------------------|-----------------|-------------|-------------|-----------------|
| SIZE CODE           | 0805         | 12                      | 206             |             | 1210        |                 |
| THICKNESS           | D, I         | C, J, D                 | G, P            | C, D        | G, K        | М               |
| A <sub>0</sub>      | < 1.57       | < 1.85                  | < 1.95          | < 2.97      | < 2.97      | < 2.97          |
| B <sub>0</sub>      | < 2.40       | < 3.46                  | < 3.67          | < 3.73      | < 3.73      | < 3.73          |
| Т                   | 0.23 ± 0.05  | 0.23 ± 0.05             | 0.23 ± 0.05     | 0.23 ± 0.05 | 0.23 ± 0.05 | 0.23 ± 0.05     |
| K <sub>0</sub>      | < 2.50       | < 2.50                  | < 2.50          | < 2.50      | < 2.50      | < 3.00          |
| W                   | 8.00 ± 0.10  | 8.00 ± 0.10             | 8.00 ± 0.10     | 8.00 ± 0.10 | 8.00 ± 0.10 | 8.00 ± 0.10     |
| P <sub>0</sub>      | 4.00 ± 0.10  | 4.00 ± 0.10             | 4.00 ± 0.10     | 4.00 ± 0.10 | 4.00 ± 0.10 | 4.00 ± 0.10     |
| 10 x P <sub>0</sub> | 40.0 ± 0.10  | 40.0 ± 0.10             | 40.0 ± 0.10     | 40.0 ± 0.10 | 40.0 ± 0.10 | 40.0 ± 0.10     |
| P <sub>1</sub>      | 4.00 ± 0.10  | 4.00 ± 0.10             | 4.00 ± 0.10     | 4.00 ± 0.10 | 4.00 ± 0.10 | 4.00 ± 0.10     |
| P <sub>2</sub>      | 2.00 ± 0.05  | 2.00 ± 0.05             | 2.00 ± 0.05     | 2.00 ± 0.05 | 2.00 ± 0.05 | $2.00 \pm 0.05$ |
| D <sub>0</sub>      | 1.50 ± 0.05  | 1.50 ± 0.05             | 1.50 ± 0.05     | 1.50 ± 0.05 | 1.50 ± 0.05 | 1.50 ± 0.05     |
| D <sub>1</sub>      | 1.00 ± 0.10  | 1.00 ± 0.10             | 1.00 ± 0.10     | 1.00 ± 0.10 | 1.00 ± 0.10 | 1.00 ± 0.10     |
| Е                   | 1.75 ± 0.10  | 1.75 ± 0.10             | 1.75 ± 0.10     | 1.75 ± 0.10 | 1.75 ± 0.10 | 1.75 ± 0.10     |
| F                   | 3.50 ± 0.05  | 3.50 ± 0.05             | $3.50 \pm 0.05$ | 3.50 ± 0.05 | 3.50 ± 0.05 | 3.50 ± 0.05     |



Vishay

## **REEL SPECIFICATION**



| REEL DIMENSIONS in millimeters |             |             |  |  |
|--------------------------------|-------------|-------------|--|--|
| SYMBOL                         | 7" REEL     | 13" REEL    |  |  |
| Α                              | 13.0 ± 0.5  | 13.0 ± 0.5  |  |  |
| В                              | 9.0 ± 1.0   | 9.0 ± 1.0   |  |  |
| С                              | 178.0 ± 1.0 | 330.0 ± 1.0 |  |  |
| D                              | 60.0 ± 1.0  | 100.0 ± 1.0 |  |  |

| CONSTRUCTION |                  |              |                          |                          |  |
|--------------|------------------|--------------|--------------------------|--------------------------|--|
| NO.          | NAME             |              | COG (NP0)                | X5R / X7R                |  |
| 1            | Ceramic material |              | CaZrO <sub>3</sub> based | BaTiO <sub>3</sub> based |  |
| 2            | Inner electrode  |              | Ni                       |                          |  |
| 3            |                  | Inner layer  | C                        | u                        |  |
| 4            | Termination      | Middle layer | Ni                       |                          |  |
| 5            |                  | Outer layer  | Sn (matt)                |                          |  |



## STORAGE AND HANDLING CONDITIONS

- (1) To store products at 5 °C to 40 °C ambient temperature and 20 % to 70 % relative humidity conditions.
- (2) The product is recommended to be used within one year after shipment. Check solderability in case of shelf life extension is needed.

#### Cautions:

- a. The corrosive gas reacts on the terminal electrodes of capacitors, and results in the poor solderability.

  Do not store the capacitors in the ambience of corrosive gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.)
- b. In corrosive atmosphere, solderability might be degraded, and silver migration might occur to cause low reliability.
- c. Due to the dewing by rapid humidity change, or the photochemical change of the terminal electrode by direct sunlight, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or dewing condition. To store products on the shelf and avoid exposure to moisture.



## **Legal Disclaimer Notice**

Vishay

## **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.