Санкт-Петербургский политехнический университет имени Петра Великого Физико-Механический институт

Отчёт по лабораторной работе №1 по дисциплине «Математическая статистика»

Выполнил студент группы 5030102/00101 Преподаватель

Маковеев Лев Юрьевич Баженов Александр Николаевич

1 Постановка задачи

Для 5 распределений:

- Нормальное распределение N(x, 0, 1)
- Распределение Коши C(x,0,1)
- Распределение Лапласа $L(x,0,\frac{1}{\sqrt{2}})$
- Распределение Пуассона P(x, 10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$
- 1. Стенерировать выборки размером 10, 50 и 100 элементов. Построить на одном рисунке гистограмму и график плотности распределения
- 2. Сгенерировать выборки размером 10, 100 и 100 элементов.

Для каждой выборки вычислить следующие статистические характеристики положения данных: \overline{x} , medx, z_R , z_Q , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \overline{z} \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \overline{z^2} - \overline{z}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

- 3. Сгенерировать выборки размером 20 и 100 элементов. Построить для них боксплот Тьюки.
- 4. Сгенерировать выборки размером 20, 60 и 100 элементов. Построить на них эмпирические функции распределения на отрезке [-4;4] для непрерывных распределений и на отрезке [6;14] для распределения Пуассона.

2 Теория

2.1 Рассматриваемые распределения

Плотности:

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \tag{3}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{4}$$

• Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|}$$
 (5)

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{6}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{при } |x| \le \sqrt{3} \\ 0 & \text{при } |x| \ge \sqrt{3} \end{cases}$$
 (7)

2.2 Выборочные числовые характеристики

• Выборочное среднее

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

• Выборочная медиана

$$medx = \begin{cases} x_{(l+1)} & \text{при } n = 2l + 1\\ \frac{x_{(l+1)} + x_{(l)}}{2} & \text{при } n = 2l \end{cases}$$
 (9)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{10}$$

$$z_p = \begin{cases} x_{(\lfloor np \rfloor + 1)} & \text{при } np \text{ дробном} \\ x_{(np)} & \text{при } np \text{ целом} \end{cases}$$
 (11)

Полусумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{12}$$

• Усечённое среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_{(i)}, \ r = \frac{n}{4}$$
 (13)

• Выборочная дисперсия

$$D = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 (14)

3 Результаты

3.1 Гистограмма и график плотности распределения

Рис. 1 Гистограмма нормального распределения

Рис. 2 Гистограмма распределения Коши

Рис. 3 Гистограмма распределения Лапласа

Рис. 4 Гистограмма распределения Пуассона

Рис. 5 Гистограмма равномерного распределения

2.2 Характеристики положения и рассеяния

n = 10			n = 50			n = 100		
Char	E(z)	D(z)	Char	E(z)	D(z)	Char	E(z)	D(z)
Mean	-0.007	0.096	Mean	-0.001	0.022	Mean	0.004	0.01
Median	-0.015	0.136	Median	-0.001	0.031	Median	-0.001	0.016
zR	0.008	0.481	zR	-0.012	0.506	zR	-0.007	0.49
zQ	0.01	0.476	zQ	-0.009	0.474	zQ	0.024	0.488
ztr	-0.007	0.199	ztr	 0.002 	0.044	ztr	0.005	0.02

Рис. 6 Нормальное распределение

Рис. 7 Распределение Коши

n = 10 r			n = 50			n = 100		
Char	E(z)	D(z)	Char	E(z)	D(z)	Char	E(z)	D(z)
Mean	-0.005	0.204	Mean	-0.002	0.041	Mean	-0.001	0.02
Median	-0.002	0.15	Median	-0	0.025	Median	-0.002	0.012
zR	-0.031	1.036	zR	0.029	1.063	zR	-0.063	0.914
zQ	0.023	1.114	zQ	-0.041	0.947	zQ	-0.064	1.067
ztr	0.01	0.424	ztr	 -0.006	0.083	ztr	0.01	0.041

Рис. 8 Распределение Лапласа

n = 10			n = 50			n = 100		
Char	E(z)	D(z)	Char	E(z)	D(z)	Char	 E(z)	D(z)
Mean	10.003	1.006	Mean	10.018	0.205	Mean	10.024	0.094
Median	9.886	1.467	Median	9.859	0.382	Median	9.879	0.19
zR	9.96	4.859	zR	10.024	5.325	zR	9.921	4.768
zQ	10.009	5.008	zQ	10.039	5.159	zQ	9.999	5.221
ztr	 9.986 	2.001	ztr	 10.051 	0.41	ztr	 10.029 	0.197

Рис. 9 Распределение Пуассона

n = 10			n = 50		. 1	n = 100	o s	s 1941)
Char	E(z)	D(z)	Char	E(z)	D(z)	Char	E(z)	D(z)
Mean	-0.005	0.104	Mean	-0.004	0.021	Mean	-0.001	0.011
Median	-0.004	0.235	Median	-0	0.059	Median	-0.003	0.031
zR	-0.028	0.517	zR	0.01	0.507	zR	-0.044	0.497
zQ	0.025	0.519	zQ	-0.024	0.462	zQ	-0.043	0.517
ztr	0.009	0.21	ztr	-0.007	0.042	ztr	0.006	0.021

Рис. 10 Равномерное распределение

2.3 Боксплот Тьюки

Рис. 11 Нормальное распределение

Рис. 12 Распределение Коши

Рис. 13 Распределение Лапласа

Рис. 14 Распределение Пуассона

Рис. 15 Равномерное распределение

2.4 Эмпирическая функция распределения

Рис. 16 Нормальное распределение

Рис. 17 Распределение Коши

Рис. 18 Распределение Лапласа

Рис. 19 Распределение Пуассона

Рис. 20 Равномерное распределение

4 Обсуждение

4.1 Гистограмма и график плотности распределения

При рассмотрении построенных гистограмм можем сделать вывод о том, что чем больше выборка для каждого из распределений, тем ближе ее гистограмма к графику плотности вероятности распределения. Чем больше выборка тем лучше по ней определяется характер распределения величины.

4.2 Характеристики положения и рассеяния

Из построенных таблиц можно сделать вывод, что при увеличении числа элементов в выборке уменьшается дисперсия характеристик положения.

Из-за большой доли выбросов распределения Коши дисперсия характеристик положения достигает огромных значений.

Боксплоты Тьюки позволяют более наглядно и с меньшими усилиями оценивать важные характеристики распределений.

4.3 Эмпирическая функция распределения

При рассмотрении построенных графиков распределений можем сделать вывод о том, что чем больше выборка для каждого из распределений, тем лучше она приближает функцию распределения.