3 Discrete Random Variables

We need good data and good statistical thinking in order to make good predictions.

3.1 Random variables

It is better to define a random variable as a *function* mapping the sample space to the real line.

Definition of Random Variable:

Given an experiment with sample space S, a *random variable* is a function from the sample space S to the real numbers \mathbb{R} .

A random variable X assigns a numerical value X(s) to each possible outcome s of the experiment. The randomness comes from the fact that we have a random experiment the mapping itself is **deterministic**.

Example: coin tosses

We toss a fair coin twice. The sample space S = HH, HT, TH, TT.

Some random variables on this space:

- X is the number of Heads. So X(HH)=2, X(TH)=X(HT)=1, X(TT)=0;
- ullet Y is the number of Tails. Y=2-X or Y(s)=2-X(s) orall s;
- *I* is 1 is the first toss lands Heads and 0 otherwise. This is an example of *indicator random variable*.

We also can encode sample space as (1,1),(1,0),(0,1),(0,0). Then we can give explicit formulas for X,Y,I:

$$X(s_1,s_2)=s_1+s_2, Y(s_1,s_2)=2-s_1-s_2, I(s_1,s_2)=s_1$$

After we perform the experiment and the outcome s has been realized, the random variable *crystallizes* into the numerical value X(s).

3.2 Distributions and probability mass functions

X is said to be **discrete** if there is a finite list of values a_1, a_2, \ldots such that $P(X = a_j \ for \ some \ j) = 1$. If X is a discrete, then set of values x such that P(X = x) > 0 is called the **support** of X.

In contrast, a *continuous* RV can take on any real value in an interval (possibly even the entire real line);

It is also possible to have an RV that is a *hybrid* of discrete and continuous.

The *distribution* of a RV specifies (for example) the probabilities of all events associated with the random value, such as the probability of it equaling 3 and the probability of it being at least 110.

For a discrete RV, the most natural way to do so is with a **probability mass function (PMF)**:

PMF of discrete RV X is the function p_X given by $p_X(x) = P(X = x)$. If x not in support of X, $p_X(x) = 0$. X = x denotes as an *event*, all outcomes s to which X assigns to the number x.