5

5

5

## Total No. of Printed Pages:3

## F.E. Semester- II (Revised Course 2016-17) EXAMINATION AUGUST 2021

# Fundamentals Of Electronics And Telecommunication Engineering

[Duration: Two Hours] [Total Marks: 60]

#### **Instructions:**

- 1) Answer THREE FULL QUESTIONS with ONE QUESTION FROM EACH PART.
- 2) Assume suitable data if necessary.
- 3) Figures to right indicate full marks.

### PART-A

- Q.1 a) With the help of neat sketch explain reverse biasing of PN junction diode.
  - b) Draw the V/I characteristic of Ge diode and explain the term threshold or knee 5 voltage.
  - c) Differentiate between half wave rectifier and a center-tapped full wave rectifier. 5
  - d) For the network shown below, determine the range of  $R_L$  and  $I_L$  that will result in  $VR_L$  being maintained at 20 V.



- Q.2
- a) Drive the relation between leakage currents of  $CB(I_{CBO})$  and  $CE(I_{CEO})$  configuration. A certain transister has  $\alpha_{dc}$  of 0.98 and a collector leakage current  $I_{co}$  of  $1\mu A$ . Calculate the collector and the base currents, when  $I_E = 1mA$ .
- b) With the help of a neat circuit diagram explain the output characteristics of a npn BJT connected in common Emitter (CE) configuration.
- c) What is a biasing circuit and what area the requirements from a biasing circuit?
- d) For the emitter-bias network shown below, determine:
  - i)  $I_B$
  - ii)  $I_C$
  - iii)  $V_{CE}$
  - iv)  $V_C$
  - V)  $V_{R}$



Q.3 a) Derive an expression for the rectification efficiency of a full wave bridge rectifier. 5 Explain different types of atomic bonds. 5 With the help of a neat diagram explain the construction of P-channel JFET. 5 What are the various ways in which transfer characteristics of a JEFT can be plotted? 5 PART-B Q.4 a) Draw the pin configuration of IC 741, and explain the use of each pin. 5 b) With the help of neat diagram, explain the circuit of a inverting amplifier using opamp 5 and give the expression of its closed loop voltage Gain. 5 c) State the associative Law of Boolean Algebra and prove it using the truth Table method 5 d) Draw the symbol of SCR and with the help of a neat diagram explain the construction of Silicon Controlled Rectifier. Q.5 a) With the help of neat sketches explain the construction, working and characteristics of 5 light dependent resistor (LDR). Also give an application of LDR. b) With the help of neat block diagram explain the components of PLC. 5 c) What is printed circuit board? What are the advantages of having a PCB over point to 5 point soldered circuit? 5 d) With the help of waveforms, explain the basic concept of amplitude modulation. Q.6 Two square waves, A of 1 KHz and B of 2 KHz frequency are applied as input to the 5 following logic gates. Draw the output waveform in each case. i) NAND Gate ii) XOR Gate

5

5

5

5

- b) With respect to op-amp explain the term common mode rejection Ratio. Also explain 5 what is the need of feedback in an op-amp?
- c) Explain the working principle of piezoresistive gauges. 5
- d) With the help of a flowchart give the steps involved in design and fabrication of single sided PCB.

#### PART-C

- Q.7 a) A crystal diode having internal resistance  $r_d = 20$  is used for half wave rectification. 5 If the applied voltage v=50 sin wt and load resistance  $R_L = 800$  ohms find:
  - i) Im,Idc ii) A.C. power input and D.C. power output iii) D.C. output voltage
  - b) With the help of neat diagram explain how complementary MOSFET (CMOS) can be used as an inverter.
  - c) With the help of neat diagram explain the characteristics of an SCR.
  - d) What is a programmable Logic Controller?
  - a) In the bridge rectifier circuit shown in figure below, the diodes are assumed to be ideal 5 find:
    - i) The d.c. output voltage
    - ii) The peak inverse voltage
    - iii) The output frequency
    - iv) Ripple factor

Q.8

Assume primary to secondary turns ratio to be 5:1.



- b) Differentiate between emitter, base and collector region of transistor.
- c) With the help of logic diagrams, explain NOR gate is called as an Universal Gate.
- d) Explain the following steps involved in the manufacturing of a single –sided printed circuit Board:
  - i) Artwork Generation
  - ii) Panel preparation

