A New Replication Strategy in NVMe-oF Environment for Ceph

삼성전자, 손규호

CPU Not Getting Faster As Storage Does

But... Crimson targets fast networking & fast storage devices

Trend in Industry, Storage Disaggregation

- Storage Disaggregation with NVMe-oF
 - Separates servers into compute and storage nodes
 - Any-to-any access among components
 - Independent resource scaling
 - NVMe-oF enables remote I/O operation with line speed

Storage Disaggregation in Ceph

- Ceph itself does not support storage disaggregation
 - Ceph does not aware of OST
 - OSD and OST is tightly coupled → Cannot share storage devices
 - Additional network traffic & latency
- Considerations to support storage disaggregation in Ceph
 - How to separate OSD roles into two node?
 - Which OSD manages object? Which OST stores data?
 - Any performance optimization?

Ceph Write Operation

- Client sends write request to the primary OSD
- 2. Primary OSD sends replication to secondary OSDs
- Get OSD locations with CRUSH algorithm

- 3. Each OSD writes object data to its storage
- When I/O completes, secondary OSDs send Ack to the primary OSD
- 5. Primary OSD sends Ack to the client

Approaches for Storage Disaggregation

Replication

* We target systems where the CPU is bottleneck point (100Gbps↑, NVMe SSDs)

Replication

Consideration 1 – Separation of OSD

- OSD consists of OSD Core (control plane) and Backend Store (data plane)
 - OSD Core: object mapping, replication, recovery
 - Backend Store: data block management
- Backend Store should be located in OST to reduce data traffic

Traffic: 3 Data Copy

Latency: 2 Data Copy + 2 ACK

Not Support Storage Disaggregation

Traffic: 6 Data Copy

Latency: 3 Data Copy + 3 ACK

No Ceph Modification, Double Network Traffic, Additional Latency

Traffic: 4 Data Copy

Latency: 2 Data Copy + 2 ACK

No Additional Latency, Primary OSD Works Hard

Traffic: 4 Data Copy

Latency: 3 Data Copy + 3 ACK

Loadbalance, Implementation of Replication Feature in OST, Additional Latency

Traffic: 4 Data Copy

Latency: 2 Data Copy + 2 ACK

Replication in Background, Need Use of Persistent Memory

- CRUSH (Controlled, Scalable, Decentralized Placement of Replicated Data)
 - Data distribution algorithm designed for "dynamic" distributed storage system
 - Any party in a system can independently calculate the location of any object
 - Facilitate the addition and removal of storage while minimizing unnecessary data movement

Consideration3 - Separating Compute & Data Domain lential

Consideration3 – Separating Compute & Data Domain lential

Storage Disaggregation can bring new optimization opportunity to Ceph

Modules related to block operation should be moved from OSD to OST

- Replication model influences a lot on storage performance
- Compute and data domain should be decoupled in CRUSH

SOLUTION CORE VALUES

Speciality

Ownership

Leadership

Upgrowth

Together

Integrity

Openness

Now

Thank You