BUNDESREPUBLIK DEUTEGHLAND 72

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 15 ECC 2003
WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 102 53 379.2

Anmeldetag: 15. November 2002

Anmelder/Inhaber: Brueninghaus Hydromatik GmbH,

Elchingen/DE

Bezeichnung: Axialkolbenmaschine, Rückzugplatte und Verfahren

zum Herstellen einer Rückzugplatte

IPC: F 04 B 1/20

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 23. Oktober 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Wehner

Axialkolbenmaschine, Rückzugplatte und Verfahren zum Herstellen einer Rückzugplatte

Die Erfindung betrifft eine Axialkolbenmaschine sowie eine 5 dafür vorgesehene Rückzugplatte und ein Verfahren zum Herstellen der Rückzugplatte.

Bei einer Axialkolbenmaschine dreht sich eine Zylindertrommel relativ zu einer schräg angeordneten 10 Ebene. In die Zylindertrommel sind mehrere Zylinderbohrungen eingebracht, in denen axial verschieblich angeordnete Kolben eine Hubbewegung ausführen. Zum Erzeugen der Hubbewegung sind die Kolben mit jeweils einem Gleitschuh gelenkig verbunden, sich die Gleitschuhe auf der schrägen Ebene abstützen und 15 somit bei einer relativen Drehbewegung den Hub der Kolben erzeugen. Um während eines Saughubs das Anliegen der Gleitschuhe an der schrägen Ebene sicherzustellen, ist es bekannt, die Gleitschuhe mittels einer Rückzugplatte auf der Lauffläche zu halten. 20

Eine solche Rückzugplatte ist beispielsweise aus der DE 197 51 994 **A**1 bekannt. Die dort vorgeschlagene Rückzugplatte weist auf einem Umfangskreis angeordnete Ausnehmungen auf, die zur Aufnahme der Gleitschuhe vorgesehen sind. Zudem ist eine zentrale Öffnung vorgesehen, mit der sich die Rückzugplatte an Gegenlager abstützt, wobei das Gegenlager kugelförmige Außengeometrie aufweist und auf der Welle der Axialkolbenmaschine angeordnet ist. Die zentrale Öffnung ist von einem Kragen umgeben. Die Haltekraft wird von einer zu der schrägen Ebene hin orientierten Oberfläche der Rückzugplatte ausgeübt, welche an den Gleitschuhen anliegt. Die Ausnehmungen, die die Gleitschuhe aufnehmen, werden von einem teilweise zylindrischen Teil des Gleitschuhs durchdrungen.

25

30

35

Nachteilig an der bekannten Rückzugplatte ist, dass radiale Kräfte, wie sie beim Betrieb der

Axialkolbenmaschine zwischen dem Gleitschuh und Rückzugplatte auftreten, lediglich an der Innenfläche der Ausnehmungen übertragen werden können. Um frühzeitigen Verschleiß zu verhindern. ist es daher erforderlich, eine entsprechende Materialdicke für die Rückzugplatte vorzusehen, damit die Länge der Bohrungen in axialer Richtung eine ausreichende Führungshöhe gewährleistet. Damit verbunden ist der Einsatz spanenden Bearbeitungsverfahren, die neben einem unnötig hohen Materialeinsatz auch die Kosten in der Bearbeitung erhöhen.

Insbesondere für Axialkolbenmaschinen in Schrägscheibenbauweise ist zudem das hohe Gewicht der 15 Rückzugplatte ein entscheidender Nachteil, da die Rückzugplatte dort ein rotierendes Bauteile ist.

Weiterhin ist problematisch, dass bei Verwendung einer ebenfalls in der DE197 51 994 A1 vorgeschlagenen Rückzugplatte vorgespannten die Verformung der Rückzugplatte während des Einbaus in die Axialkolbenmaschine berücksichtigt werden muss, um eine parallele Ausrichtung der Bohrungen mit dem zylindrischen Teil des Gleitschuhs zu erreichen.

25

30

35

20

10

Der Erfindung liegt die Aufgabe zugrunde, eine Rückzugplatte und eine Axialkolbenmaschine zu schaffen, die einfach herstellbar sind und die bei verbesserter Funktion im Gewicht reduziert sind, sowie ein Verfahren zur vereinfachten Herstellung einer Rückzugplatte anzugeben.

Die Aufgabe wird durch die erfindungsgemäße Rückzugplatte nach Anspruch 1, die erfindungsgemäße Axialkolbenmaschine nach Anspruch 12 sowie das erfindungsgemäße Verfahren nach Anspruch 23 gelöst.

Die erfindungsgemäße Rückzugplatte weist neben einem Kragen, welcher an einer zentralen Durchgangsöffnung

ausgebildet ist, in entgegengesetzter Richtung ausgebildete Führungskragen auf. Die Führungskragen umfassen jeweils eine Gleitschuhaufnahmeöffnung erhöhen damit gegenüber der Dicke der scheibenförmigen Rückzugplatte die Führungshöhe Gleitschuhaufnahmeöffnungen. Durch die Erhöhung der Führungshöhe wird im Betrieb der Axialkolbenmaschine eine größere Auflagefläche zum Übertragen der Kraft in radialer Richtung zwischen dem Gleitschuh und der Rückzugplatte erreicht. Die größere Auflagefläche führt letztlich einer Verbesserung der Verschleißeigenschaften.

10

15

20

25

30

35

Gleichzeitig kann gegenüber der bekannten Rückzugplatte die Materialstärke der Scheibe verringert werden, so dass sich eine Reduzierung der rotierenden Masse ergibt. Dabei wird insbesondere durch das erfindungsgemäße Herstellverfahren der Rückzugplatte eine erhebliche Reduzierung des Materials erreicht, da durch die vorzugsweise kalte Umformung im Bereich der Gleitschuhaufnahmeöffnungen eine Verfestigung des Materials hervorgerufen wird.

In den Unteransprüchen sind vorteilhafte Weiterbildungen der erfindungsgemäßen Rückzugplatte, der erfindungsgemäßen Axialkolbenmaschine sowie des erfindungsgemäßen Verfahren zum Herstellen der Rückzugplatte angegeben.

Insbesondere ist es vorteilhaft, dass die Innenfläche der Führungskragen die Form einer Zylindermantelfläche aufweist, wobei besonders vorteilhaft ist, dass die Höhe der Zylindermantelfläche einen wesentlichen Anteil an der Gesamthöhe der Gleitschuhaufnahmeöffnungen und damit der Führungshöhe aufweist. Damit wird ein größtmöglicher Teil der nutzbaren Bauhöhe der Rückzugplatte zum Ausbilden der Führungshöhe verwendet, wodurch wiederum der Verschleiß, der an der Kontaktfläche zwischen dem zylindrischen Teil des Gleitschuhs und der Rückzugplatte entsteht, reduziert wird.

Besonders vorteilhaft ist weiterhin, dass ausgehend von einem Grundkörper in einem einzigen Arbeitsschritt durch ein kombiniertes Stanz-Präge-Verfahren sowohl Öffnungen in der Rückzugplatte erzeugt werden, als auch der die Öffnungen umgebende Rand zu dem Kragen bzw. Führungskragen umgeformt wird. Weitere Bearbeitungsschritte, welche die Bearbeitungszeit erhöhen sind damit auf ein Minimum beschränkt. Insbesondere ist der Anteil an spanender Bearbeitung auf das Ebnen und Erzeugen einer hohen Oberflächegüte der Fläche, welche die zentrale Durchgangsöffnung in radialer Richtung nach außen umgibt, reduziert.

Durch den Grundkörper, der die Form einer Kreisscheibe hat, wird auch eine hohe Belastbarkeit sichergestellt, da zwischen den Gleitschuhaufnahmeöffnungen das Material des Grundkörpers erhalten bleibt. Die daraus resultierende Steifigkeit verbessert die Dauerbelastbarkeit vor allem hinsichtlich Materialermüdung.

20

25

10

15

Zudem ist es vorteilhaft, dass im Bereich der zentralen Durchgangsöffnung lediglich ein kleiner Abschnitt Laserverfahrens gehärtet wird. eines Der sonst übliche Verzug der Rückzugplatte beim Härten, der eine Nachbearbeitung erforderlich macht, um eine ebene Fläche zu erhalten, kann dadurch entfallen. Gehärtet wird somit lediglich ein kleiner Bereich, bei dem eine solche Oberflächenbehandlung im Hinblick auf die spätere Verschleißfestigkeit erforderlich ist.

30

Eine bevorzugte Ausführungsform ist in der Zeichnung dargestellt und wird anhand der nachfolgenden Beschreibung näher erläutert. Es zeigen:

- 35 Fig. 1 eine Schnittdarstellung einer erfindungsgemäßen Axialkolbenmaschine;
 - Fig. 2a, b eine erfindungsgemäße Rückzugplatte vor und nach der spanenden Bearbeitung;

- Fig. 3a, b eine Vergrößerung im Ausschnitt IIIa bzw. IIIb aus der Fig. 2a, b;
- 5 Fig. 4 eine Aufsicht auf eine erfindungsgemäße Rückzugplatte; und
 - Fig. 5 eine perspektivische Darstellung einer erfindungsgemäßen Rückzugplatte.

10

Bevor die Einzelheiten auf der erfindungsgemäßen Axialkolbenmaschine bzw. der erfindungsgemäßen Rückzugplatte eingegangen wird, sollen zunächst wesentlichen Bauteile einer Axialkolbenmaschine, sowie deren Funktion zum besseren Verständnis der Erfindung 15 erläutert werden. Fig. 1 zeigt eine Axialkolbenmaschine 1, welche eine in einem Gehäuse 2 drehbar gelagerte Welle 3 aufweist, auf der eine Zylindertrommel 4 angeordnet ist, wobei die Zylindertrommel 4 und die Welle 3 miteinander drehfest verbunden sind. Die Welle 3 durchdringt 20 Zylindertrommel 4 und. ist auf beiden Seiten Zylindertrommel 4 in jeweils einem Wälzlager 5 und 6 gelagert, wobei ein äußerer Lagerring 7 des Wälzlagers 6 in eine entsprechende Ausnehmung eines Gehäusedeckels 8 25 eingesetzt ist.

In der Zylindertrommel 4 sind über den Umfang verteilt mehrere Zylinderbohrungen 9 ausgebildet, die Mittelachsen der Zylinderbohrungen 9 parallel zu der 30 Mittelachse der Welle 3 verlaufen. In den Zylinderbohrungen 9 sind axial verschieblich Kolben 10 eingesetzt, welche an der von dem Gehäusedeckel abgewandten Seite einen kugelförmigen Kopf 11 aufweisen, der mit einer korrespondierenden Ausnehmung Gleitschuhs 12 zu einer Gelenkverbindung zusammenwirkt. 35 Mittels der Gleitschuhe 12 stützen sich die Kolben 10 an einer Schrägscheibe 13 ab. Bei einer Drehung der Zylindertrommel 4 führen die Kolben 10 daher den Zylinderbohrungen 9 eine Hubbewegung aus. Die Höhe des

Hubs wird dabei durch die Stellung der Schrägscheibe 13 vorgegeben, wobei die Stellung der Schrägscheibe 13 im Ausführungsbeispiel durch eine Stellvorrichtung 14 einstellbar ist.

5

10

15

Die Zylindertrommel 4 weist eine zentrale Öffnung 15 auf, in der eine Druckfeder 16 angeordnet ist, welche zwischen einem ersten Federlager 17 und einem zweiten Federlager 18 gespannt ist. Das erste Federlager 17 ist dabei seitens der Welle 3 in axialer Richtung fixiert, das Federlager 18 wird im dagegen dargestellten Ausführungsbeispiel durch einen in eine Nut Zylindertrommel 4 eingesetzten Seegerring gebildet. Durch die Kraft der Druckfeder 16 wird daher die Zylindertrommel 4 in axialer Richtung soweit verschoben, dass sie mit ihrer Stirnfläche 19 an einer Steuerplatte 20 dichtend anliegt.

Die in der Steuerplatte 20 angeordneten Steueröffnungen 22 20 23 stehen ihrer von auf der Zylindertrommel abgewandten Seite in permanentem Kontakt mit zumindest einem Hochdruck- bzw. Niederdruckanschluss. Ein Hochdruckbzw. Niederdruckanschluss ist beispielhaft dargestellt und mit dem Bezugszeichen 26 versehen. Die Zylinderbohrungen 9 25 sind über Öffnungen 21 zu der Stirnfläche 19 der Zylindertrommel 4 hin offen. Die Öffnungen 21 überstreichen bei einer Rotation der Zylindertrommel 4 eine dichtende Umgebung 27 der Steuerplatte 20 und werden dabei während eines Umlaufs alternierend mit den 30 Steueröffnungen 22 bzw. 23 des Hochdruckbzw. Niederdruckanschlusses verbunden.

In axialer Richtung stützt sich die Steuerplatte 20 an einer Einsetzscheibe 30 ab. Die Einsetzscheibe 30 ist in eine Ausnehmung des Gehäusedeckels 8 eingesetzt und hinsichtlich ihrer Position mit einem Passstift 31 festgelegt, der auch die Steuerscheibe 20 gegen Verdrehen sichert.

der Bearbeitung der Stirnfläche 19 der Zylindertrommel 4 sowie der dichtenden Umgebung 27 Steuerplatte 20 mit Verfahren, die eine Oberflächengüte ermöglichen, tritt eine Leckage zwischen der Zylindertrommel 4 und der Steuerplatte 20 auf, die 5 zum Ausbilden eines hydrodynamischen Gleitlagers erforderlich ist. Die zentrale Öffnung 15 Zylindertrommel 4 begrenzt ein inneres Leckagevolumen 44, das einen Teil des Lecköls aufnimmt. Um einen Druckaufbau in dem an sich abgeschlossenen inneren Leckagevolumen 44 10 ist eine nicht dargestellte Verbindung zu verhindern, zwischen dem inneren Leckagevolumen 44 und einem äußeren Leckagevolumen 45 des übrigen Gehäusevolumens vorgesehen, so dass ein Druckausgleich möglich ist. Das im äußeren 15 Leckagevolumen 45 des Gehäuses gesammelte Leckagefluid wird auf nicht dargestellte Weise dem Druckmittelkreislauf wieder zugeführt.

Bei der in der Fig. 1 dargestellten Axialkolbenmaschine 1 in Schrägscheibenbauweise wird, wie bereits ausgeführt 20 wurde, die Hubbewegung der Kolben 10 durch Schrägscheibe 13 erzeugt, welche schräg bezüglich der Mittelachse der sich drehenden Zylindertrommel angeordnet ist. Beim Betrieb einer solchen 25 Axialkolbenmaschine 1 z.B. als Pumpe wird dabei durch Antreiben der Welle 3 die Zylindertrommel 4 gedreht. Durch den in den Zylinderbohrungen 9 herrschenden Druck wird während eines Druckhubs der Gleitschuh 12 mit einer Gleitfläche 25 in Anlage auf der Schrägscheibe 30 gehalten. Während der zweiten Hälfte eines Umlaufs der Zylindertrommel 4 entsteht jedoch in den Zylinderbohrungen ein Unterdruck, durch den die Gleitschuhe insbesondere bei einem Betrieb der Axialkolbenmaschnine 1 in einem offenen Kreislauf von der Schrägscheibe 35 abheben könnten. Ūm dies zu verhindern, ist eine Rückzugplatte 24 vorgesehen, welche eine Haltekraft auf Gleitschuhe 12 ausübt und diese so auf einer Lauffläche 28 der Schrägscheibe 13 hält.

Die Rückzugplatte 24, die nachstehend noch Bezugnahme auf die Figuren 2 bis 5 im Detail erläutert wird, weist eine zentrale Durchgangsöffnung 32 auf, der sie sich an einem Gegenlager 29 abstützt. 5 Gegenlager 29 ist im dargestellten Ausführungsbeispiel an Welle 3 fixiert, so dass es in Richtung des Gehäusedeckels 8 axial nicht verschiebbar ist. Gegenlager 29 besitzt eine sphärische Außenkontur, die mit einer die zentrale Durchgangsöffnung 32 begrenzenden korrespondiert 10 und eine Änderung Neigungswinkels der Rückzugplatte 24 relativ zu der Welle ermöglicht. Um eine Haltekraft zwischen Rückzugplatte 24 und den Gleitschuhen 12 übertragen zu können, ist an dem Gleitschuh 12 eine Haltefläche 15 ausgebildet, die in Kontakt mit einer ebenen ersten-Oberfläche 34' der Rückzugplatte 24 steht. Die Gleitschuhe weisen ferner einen Führungsabschnitt 35 auf. Führungsabschnitt 35 eines Gleitschuhs durchdringt 12 jeweils eine Gleitschuhaufnahmeöffnung 36, die Rückzugplatte 24 vorgesehen ist. Die radiale Ausdehnung 20 der Gleitschuhaufnahmeöffnungen 36 ist größer als der in zylindrische Führungsabschnitt diesem Bereich 35 der Gleitschuhe 12.

25 entsprechend der Neigung der Schrägscheibe 13 Verkippen der Gleitschuhe 12 relativ zu den Kolben 10 zu ermöglichen, ist im Bereich des Führungsabschnitts 35 in dem Gleitschuh 12 eine Ausnehmung 37 vorgesehen, Geometrie mit dem kugelförmigen Kopf 11 des Kolbens 10 korrespondiert. Die kugelförmige Ausnehmung 37 ist dabei 30 soweit um den kugelförmigen Kopf 11 geschlossen, dass auch Zugkräfte zwischen dem Gleitschuh 12 und dem jeweiligen Kolben 10 übertragbar sind. Die Kontaktfläche wird durch eine Schmierölbohrung in dem Kolben 10 aus der 35 Zylinderbohrung 9 mit Schmiermittel versorgt.

In der Fig. 2a ist eine Rückzugplatte 24 dargestellt, bei der bereits aus einem scheibenförmigen Grundkörper der Dicke d die Führungskragen 38 sowie der Kragen 39 der zentralen Durchgangsöffnung 32 ausgeformt wurden. Der Kragen 39 wird dabei so ausgeformt, dass an seiner die zentrale Durchgangsöffnung 32 begrenzenden Innenfläche 41 eine kugelförmige Geometrie ausgebildet wird, welche der Kugelgeometrie 42 entspricht, die schematisch dargestellt ist und der Außenkontur des Gegenlagers 29 entspricht. Der Kragen 39 ist so aus dem Grundkörper der Rückzugplatte 24 ausgeformt, dass er sich von einer ersten Oberfläche 34 mit einer axialen Richtungskomponente von der ersten Oberfläche 34 aus erstreckt.

5

10

Zudem sind an der in Fig. 2a gezeigten Rückzugplatte 24 bereits die Führungskragen 38 ausgebildet, durch welche die Gleitschuhaufnahmeöffnungen 36 vollständig geschlossen umfasst werden. Die Führungskragen 38 erstrecken sich in 15 entgegengesetzter Richtung zu dem Kragen 39, so dass sich die Führungskragen 38 sich von einer zweiten Oberfläche 40 der Rückzugplatte 24 aus ebenfalls mit einer Richtungskomponente erstrecken. Das Umformen des als ebene 20 Kreisscheibe ausgebildeten Grundkörpers vorzugsweise in einem einzigen Arbeitsschritt gleichzeitig mit dem Stanzen der zentralen Durchgangsöffnung 32 und der Gleitschuhaufnahmeöffnungen 36. Durch das Prägen der die zentrale Durchgangsöffnung 32 und die Gleitschuhaufnahmeöffnungen 36 begrenzenden Ränder 25 des Grundkörpers zu dem Kragen 39 und den Führungskragen 38 wird zudem eine Verfestigung des Materials der Rückzugplatte 24 erreicht. Damit kann die Dicke d des Materials des Grundkörpers noch einmal reduziert werden, ohne Probleme mit einer Dauerhaltbarkeit beim Betrieb der 30 Axialkolbenmaschine 1 zu bekommen.

Fig. 2b zeigt eine fertig bearbeitete Rückzugplatte 24. Im Unterschied zu der in Fig. 2a dargestellten Rückzugplatte 35 24 wurde bei der in Fig. 2b dargestellten Rückzugplatte 24 die erste Oberfläche 34 so bearbeitet, dass eine ebene erste Fläche 34' entsteht, welche den Kragen 39 in radialer Richtung außen umgibt. Bei der Bearbeitung der ersten Fläche 34 zu der ebenen ersten Fläche 34' wird

dabei genau so viel Material abgetragen, dass die Höhe der Führungskragen 38 zusammen mit der Materialdicke d sich zu einer Gesamthöhe Η der Gleitschuhaufnahmeöffnung ergänzen. Die Umformhöhe h der Führungskragen 38 beträgt vorzugsweise zwischen 50% und 75% der Dicke Grundkörpers. Besonders bevorzugte wird die Umformhöhe h so gewählt, dass ihr Anteil an der Gesamthöhe H etwa 40% beträgt.

- 10 3a zeigt einen Ausschnitt IIIa aus Fig. Fig. 2a in vergrößerter Darstellung. Dabei ist sowohl die erste Oberfläche 34 als auch eine Bearbeitungszugabe dargestellt, die durch die gestrichelte Linie angedeutet ist. Gleitschuhaufnahmeöffnung 36 weist eine 15 Innenfläche 43 auf, welche die Form einer Zylindermantelfläche hat. Beim Ausbilden der Führungskragen 38 wird der Grundkörper so umgeformt, dass die Innenfläche 43 in axialer Richtung die Form einer Zylindermantelfläche hat, wobei Höhe die des Zylindermantelfläche sich über einen wesentlichen Teil der 20 Funktionshöhe erstreckt. Die Zylindermantelfläche direkt durch den Prägevorgang erzeugt, ohne dass spanende Nachbearbeitung erforderlich ist.
- 25 Bei der Innenfläche 41 der zentralen Durchgangsöffnung 32 ist neben dem sphärischen Anteil auch ein Bereich 41' vorgesehen, der die Form der Mantelfläche eines Kegelstumpfs hat. Der Bereich 41' ist dabei derjenige Teil der Innenfläche 41 des Kragens 39, der von der ersten 30 Oberfläche 34 am weitesten entfernt ist.

In Fig. 3b ist der Ausschnitt IIIb aus Fig. 2b vergrößert dargestellt. Wie schon unter Bezugnahme auf Fig. 2b erläutert wurde, wird mittels spanender Bearbeitung an der Rückzugplatte 24 die ebene erste Oberfläche 34' erzeugt. Um eine größere Bewegungsfreiheit der Gleitschuhe 12 in radialer Richtung zu ermöglichen, ist an einem Übergang zwischen dem Kragen 39 und der ebenen ersten Oberfläche 34' ein Freistich 47 vorgesehen. Bei der spanenden

Bearbeitung der ebenen ersten Oberfläche 34' wird Übergang zwischen der ebenen ersten Oberfläche 34' und der Innenfläche 43 ein Radius 46 ausgearbeitet. Dabei wird derjenige Anteil der Innenfläche 43, der durch den Radius 46 von der Form einer Zylindermantelfläche abweicht, 5 Vergleich zu der Gesamthöhe H klein gehalten. Bei einer Gesamthöhe H von beispielsweise etwa 5,5 mm beträgt der Radius 46 vorzugsweise nur etwa 0,6 mm. Allgemeiner kann angegeben werden, dass der Radius 46 vorzugsweise einen Anteil an der Führungshöhe H von weniger als 15% einnimmt. 10

vorstehend Wie bereits ausgeführt wurde, Innenfläche 41 der zentralen Durchgangsöffnung 32 einen Bereich 41' auf, der die Form eines Kegelmantels besitzt. 15 Ein Teil dieses Bereichs 41' wird gehärtet, wobei vorzugsweise ein Laserverfahren zum Härten eines schmalen Abschnittes 48 zum Einsatz kommt. Der Wärmeeintrag beim Laserhärten ist lokal begrenzt und der auftretende Materialverzug vernachlässigbar. Eine spanende 20 Nachbearbeitung ist deshalb nicht erforderlich.

ist eine Aufsicht auf die erfindungsgemäße Rückzugplatte 24 von Seiten der Führungskragen dargestellt. Im dargestellten Ausführungsbeispiel ist die Rückzugplatte 24 aus einer Kreisscheibe als Grundkörper 25 gefertigt, so dass die Rückzugplatte 24 eine kreisförmige Außenkontur 50 aufweist. Die zentrale Durchgangsöffnung 32 ist konzentrisch zu der kreisförmigen Außenkontur 50 in die Rückzugplatte 24 eingebracht. Die Gleitschuhaufnahmeöffnungen 36 sind auf einem Umfangskreis 30 51 angeordnet, der ebenfalls konzentrisch zu der Außenkontur 50 der Rückzugplatte 24 angeordnet Ιm dargestellten Ausführungsbeispiel sind neun Gleitschuhaufnahmeöffnungen 36 gleichmäßig entlang des Umfangskreises 51 verteilt angeordnet. 35

Der Durchmesser der kreisförmigen Außenkontur 50 ist so gewählt, dass um die Gleitschuhaufnahmeöffnungen 36 die Führungskragen 38 vollständig geschlossen sind. Die

In Fig.

4

Führungskragen 38 sind außerdem durch einen äußeren Bereich 52 umgeben, der sämtliche Führungskragens 38 als eine geschlossene Kreisscheibe umschließt. Zwischen den Führungskragen 38 benachbarter Gleitschuhaufnahmeöffnungen 36 sind Scheibenelemente 53 mit der Dicke d des Grundkörpers ausgebildet, durch welche die Rückzugplatte 24 ein hohes Maß an Steifigkeit erreicht.

In Fig. 5 ist ein Beispiel für eine Rückzugplatte 24 als 10 Perspektive Darstellung noch einmal dargestellt.

An Stelle der Verwendung erfindungsgemäßen der Rückzugplatte 24 in der Axialkolbenmaschine Schrägscheibenbauweise ist der Einsatz auch in 15 Axialkolbenmaschinen in Taumelscheibenbauweise oder Schrägachsenbauweise möglich.

Ansprüche

5 1. Rückzugplatte für eine Axialkolbenmaschine, wobei die Rückzugplatte (24) scheibenförmig ausgebildet ist und eine zentrale Durchgangsöffnung (32) aufweist, die von einem Kragen (39) umfasst ist, der sich von einer ersten Oberfläche (34, 34') der Rückzugplatte (24) mit einer 10 axialen Richtungskomponente erstreckt, und wobei (24)Rückzugplatte mehrere Gleitschuhaufnahmeöffnungen (36) aufweist,

dadurch gekennzeichnet,

die Gleitschuhaufnahmeöffnungen (36) jeweils einem Führungskragen (38) umfasst sind, der sich von einer zweiten Oberfläche (40)der Rückzugplatte entgegengesetzt dem zu Kragen (39)der zentralen Durchgangsöffnung (32)mit einer axialen Richtungskomponente erstreckt.

20

25

15

2. Rückzugplatte nach Anspruch 1,

dadurch gekennzeichnet,

dass zumindest Teil einer jeweils die Gleitschuhaufnahmeöffnung (36) begrenzenden Innenfläche (43)des Führungskragens (38)die Form einer Zylindermantelfläche aufweist.

3. Rückzugplatte nach Anspruch 2, dadurch gekennzeichnet,

- dass die Höhe der Zylindermantelfläche einen wesentlichen Anteil an einer Gesamthöhe (H) der Gleitschuhaufnahmeöffnung (36) hat.
 - 4. Rückzugplatte nach einem der Ansprüche 1 bis 3,
- 35 dadurch gekennzeichnet,

dass die erste Oberfläche (34, 34') der Rückzugplatte (24) in einem Bereich, der den Kragen (39) in radialer Richtung außen umgibt, eine ebene Fläche ist.

5. Rückzugplatte nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,

dass die Gleitschuhaufnahmeöffnungen (36) von einem radial äußeren Bereich (52) der Rückzugplatte (24) geschlossen umgeben sind.

 Rückzugplatte nach Anspruch 5, dadurch gekennzeichnet,

dass der radial äußere Bereich (52) der Rückzugplatte (24) 10 eine kreisförmige Außenkontur (50) aufweist.

7. Rückzugplatte nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet,

dass ein Teil einer die zentrale Durchgangsöffnung (32) in 15 radialer Richtung begrenzenden Innenfläche (41) des Kragens (39) eine sphärische Form aufweist.

- 8. Rückzugplatte nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet,
- 20 dass zumindest ein Abschnitt (41') der die zentrale Durchgangsöffnung (32) begrenzenden Innenfläche (41) des Kragens gehärtet ist.
- 9. Rückzugplatte nach einem der Ansprüche 1 bis 8, 25 dadurch gekennzeichnet,
 - dass der Kragen (39) und die Führungskragen (38) durch Umformen eines ebenen Grundkörpers ausgebildet sind.
 - 10. Rückzugplatte nach Anspruch 9,
- 30 dadurch gekennzeichnet, dass der Grundkörper eine Kreisscheibe ist.
 - 11. Rückzugplatte nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet,
- 35 dass der Kragen (39) sowie die entgegengesetzten Führungskragen (38) in einem Stanz-Präge-Verfahren ausgebildet sind.

12. Axialkolbenmaschine mit einer Zylindertrommel (4), die sich relativ zu einer schräg dazu angeordneten Lauffläche dreht, auf der sich Gleitschuhe (12)mit Gleitfläche (25) zur Erzeugung einer Hubbewegung von in 5 Zylinderbohrungen (9) der Zylindertrommel (4)axial Kolben verschiebbaren (10)abstützen, wobei die Gleitschuhe (12)während eines Saughubs durch eine Rückzugplatte (24) in Anlage mit der Lauffläche (28)gehalten sind und die Rückzugplatte (24) zur Aufnahme der 10 Gleitschuhe (12)Gleitschuhaufnahmeöffnungen aufweist, jeweils eine entgegengesetzt zu der Gleitfläche (25) der Gleitschuhe (12) orientierte Haltefläche (33) des Gleitschuhs (12) an einer ersten Oberfläche (34) Rückzugplatte (24) anliegt und die Rückzugplatte (24) sich 15 Innenfläche einer (41)eines eine zentrale Durchgangsöffnung (32) umfassenden Kragens (39) an einem Gegenlager (29) abstützt und der Kragen (39) sich mit einer axialen Richtungskomponente von der Oberfläche (34) erstreckt,

20 dadurch gekennzeichnet,

25

dass die Gleitschuhaufnahmeöffnungen (36) jeweils von einem Führungskragen (38) umfasst sind, der sich von einer zweiten Oberfläche (40)der Rückzugplatte entgegengesetzt zum Kragen (39)der zentralen Durchgangsöffnung (32) mit einer axialen Richtungskomponente erstreckt.

13. Axialkolbenmaschine nach Anspruch 12, dadurch gekennzeichnet,

30 dass zumindest ein Teil einer jeweils die Gleitschuhaufnahmeöffnung (36) begrenzenden Innenfläche (43)des Führungskragens (38) die Form einer Zylindermantelfläche aufweist.

35 14. Axialkolbenmaschine nach Anspruch 13, dadurch gekennzeichnet,

dass die Höhe der Zylindermantelfläche einen wesentlichen Anteil an einer Gesamthöhe (H) der Gleitschuhaufnahmeöffnung (36) hat. 15. Axialkolbenmaschine nach einem der Ansprüche 12 bis 14,

dadurch gekennzeichnet,

- 5 dass die erste Oberfläche (34, 34') der Rückzugplatte (24) in einem Bereich, der den Kragen (39) in radialer Richtung außen umgibt, eine ebene Fläche (34') ist.
- 16. Axialkolbenmaschine nach einem der Ansprüche 12 bis 10 15,

dadurch gekennzeichnet,

dass die Gleitschuhaufnahmeöffnungen (36) von einem radial äußeren Bereich (52) der Rückzugplatte (24) geschlossen umgeben sind.

15

17. Axialkolbenmaschine nach Anspruch 16,

dadurch gekennzeichnet,

dass der radial äußere Bereich (52) der Rückzugplatte (24) eine kreisförmige Außenkontur (50) aufweist.

20

18. Axialkolbenmaschine nach einem der Ansprüche 12 bis 17,

dadurch gekennzeichnet,

dass ein Teil einer die zentrale Durchgangsöffnung (32) in 25 radialer Richtung begrenzenden Innenfläche (41) des Kragens (39) eine sphärische Form aufweist.

19. Axialkolbenmaschine nach einem der Ansprüche 12 bis 18,

30 dadurch gekennzeichnet,

dass zumindest ein Abschnitt (41') der die zentrale Durchgangsöffnung (32) begrenzenden Innenfläche (41) des Kragens (39) gehärtet ist.

35 20. Axialkolbenmaschine nach einem der Ansprüche 12 bis 19,

dadurch gekennzeichnet,

dass der Kragen (39) und die Führungskragen (38) durch Umformen eines ebenen Grundkörpers ausgebildet sind. 21. Axialkolbenmaschine nach Anspruch 20, dadurch gekennzeichnet,

dass der Grundkörper eine Kreisscheibe ist.

5

22. Axialkolbenmaschine nach einem der Ansprüche 12 bis 21,

dadurch gekennzeichnet,

dass der Kragen (39) sowie die entgegengesetzten 10 Führungskragen (38) in einem Stanz-Präge-Verfahren ausgebildet sind.

- 23. Verfahren zum Herstellen einer Rückzugplatte (24) für eine Axialkolbenmaschine (1) mit folgenden
- 15 Verfahrensschritten:
 - Herstellen eines scheibenförmigen Grundkörpers;
 - Stanzen von Gleitschuhaufnahmeöffnungen (36);
 - Stanzen einer zentralen Durchgangsöffnung (32);
- Umformen eines die zentrale Durchgangsöffnung 20 begrenzenden inneren Rands des scheibenförmigen Grundkörpers zu einem Kragen (39), so dass sich der (39) von einer ersten Oberfläche (34)Rückzugplatte (24) mit einer axialen Richtungskomponente erstreckt; und
- Umformen eines die Gleitschuhaufnahmeöffnungen (36) jeweils begrenzenden Rands des scheibenförmigen Grundkörpers zu jeweils einem Führungskragen (38), so dass die Führungskragen (38) sich von einer zweiten Oberfläche (40) der Rückzugplatte (24) mit einer axialen Richtungskomponente erstrecken.
 - 24. Verfahren nach Anspruch 23, dadurch gekennzeichnet,

dass zumindest ein Abschnitt (41') einer Innenfläche (41) 35 des Kragens (39) gehärtet wird.

25. Verfahren nach Anspruch 24, dadurch gekennzeichnet,

dass der Abschnitt (41') der Innenfläche (41) mit Hilfe eines Lasers gehärtet wird.

26. Verfahren nach einem der Ansprüche 23 bis 25,

5 dadurch gekennzeichnet,

dass die Ränder der Gleitschuhaufnahmeöffnungen (36) und der innere Rand der zentralen Durchgangsöffnung (32) in einem gemeinsamen Prägeprozess zu den Führungskragen (38) und dem Kragen (39) umgeformt werden.

10

15

27. Verfahren nach Anspruch 26, dadurch gekennzeichnet,

dass das Ausstanzen der zentralen Durchgangsöffnung (32) und der Gleitschuhaufnahmeöffnungen (36) und das Umformen der Ränder in einem einzigen Arbeitsschritt in einem Stanz-Präge-Prozess durchgeführt wird.

28. Verfahren nach einem der Ansprüche 23 bis 27, dadurch gekennzeichnet,

20 dass die von den Führungskragen (38) abgewandte erste Oberfläche (34) des scheibenförmigen Grundkörpers nach dem Umformen hinsichtlich ihrer Ebenheit und Oberflächengüte bearbeitet wird.

Zusammenfassung

Die Erfindung betrifft eine Axialkolbenmaschine sowie eine 5 Rückzugplatte für eine Axialkolbenmaschine und Verfahren zur Herstellung einer Rückzugplatte. Die Rückzugplatte (24) ist scheibenförmig ausgebildet weist eine zentrale Durchgangsöffnung (32) auf, die von einem Kragen (39) umfasst ist, der sich von einer ersten 10 Oberfläche (34, 34') der Rückzugplatte (24) mit einer axialen Richtungskomponente erstreckt. Die Rückzugplatte außerdem mehrere Gleitschuhaufnahmeöffnungen (24)die Gleitschuhaufnahmeöffnungen (36)auf, wobei jeweils von einem Führungskragen (38) umfasst sind, der 15 sich von einer zweiten Oberfläche der Rückzugplatte (24) entgegengesetzt zu dem Kragen (39) der zentralen Durchgangsöffnung (32)mit einer axialen Richtungskomponente erstreckt.

20

(Fig. 5)

P27121

Fig. 2b

36 43 49 40 39

Fig. 3a

Fig. 2a

Fig. 3b

40

Fig. 5

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

X	BLACK BORDERS
×	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
X	FADED TEXT OR DRAWING
a	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
×	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
0	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox