Real Variables I: Homework I

Thomas Fleming

Fri 03 Sep 2021 09:05

Problem (1). Let $f: X \to Y$.

- 1. Show that for $A \subseteq X$, $B \subseteq Y$, $f(f^{-1}(B)) \subseteq B$ and $A \subseteq f^{-1}(f(A))$.
- 2. Give examples to show that the set inclusions can be proper.

Solution. 1. Let $b \in f(f^{-1}(B))$ and note that, as b is in the image of $f^{-1}(B)$, there is $a \in f^{-1}(B)$ such that f(a) = b. As $a \in f^{-1}(B)$, we see $f(a) \in B$. As $f(a) = b \in B$ this completes the proof.

Now, let $a \in A$. We see $f(a) \in f(A)$ by definition, and as $f(a) \in f(A)$ we see that for all $b \in A$ such that $f(b) = f(a) \in f(A)$, we have $b \in f^{-1}(f(A))$. It is clear that a is one such element, so $a \in f^{-1}(f(A))$. This completes the proof.

2. Let $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x) = x^2$ and denote B = [-1, 1]. We see $f^{-1}(B) = [-1, 1]$ and f([-1, 1]) = [0, 1]. Hence, $f(f^{-1}(B)) = [0, 1] \subset [-1, 1] = B$.

Now, let $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x) = 0$ and denote A = [0,1]. We see $f(A) = \{0\}$ and $f^{-1}(\{0\}) = \mathbb{R}$ as the function is zero everywhere. Hence $f^{-1}(f(A)) = \mathbb{R} \supset [0,1] = A$.

Problem (2). Let $A, B \subseteq X$. Prove or disprove

- 1. $A \triangle B = \emptyset \Leftrightarrow A = B$.
- 2. $A\triangle B = X \Leftrightarrow A = B^c$.
- **Solution.** 1. Suppose $A \triangle B = \varnothing$. Then, $(A \setminus B) \cup (B \setminus A) = \varnothing$, hence $A \setminus B = \varnothing$ and $B \setminus A = \varnothing$. If $A = \varnothing$, then $B \setminus \varnothing = B = \varnothing$, hence A = B. Similarly, if $B = \varnothing$, $A \setminus \varnothing = A = \varnothing$, hence we can assume $A, B \neq \varnothing$. Now, as $A \setminus B = \varnothing$, we see $A \subseteq B$, similarly as $B \setminus A = \varnothing$ we have $B \subseteq A$, hence A = B. Conversely,

$$\begin{split} A\triangle B &= A\triangle A \\ &= (A \setminus A) \cup (A \setminus A) \\ &= \varnothing \cup \varnothing \\ &= \varnothing \end{split}$$

.

2. Now, suppose $A \triangle B = X$. If $A = \emptyset <$ we have $A \triangle B = (\emptyset \setminus B) \cup (B \setminus \emptyset) = B = X$, hence $A = B^c$. Hence, we can assume A is nonempty and $B \subset X$ is proper, hence B^c is nonempty.

Then, let $a \in A$, then we have $a \in A \triangle B$ and $a \notin B \setminus A$ by definition, hence $a \in A \setminus B$, so $a \notin B$, hence $a \in B^c$, so $A \subseteq B^c$.

Similarly, if $b \in B^c$, then we have $b \in A \triangle B$ and $b \notin B \setminus A$ by definition, so $b \in A \setminus B$, hence $b \in A$, so $A = B^c$. Conversely,

$$A\triangle B = B^c \triangle B$$

$$= (B^c \setminus B) \cup (B \setminus B^c)$$

$$= B^c \cup B$$

$$= X.$$

Problem (3). Suppose $f: X \to Y$ and $g: Y \to Z$ are functions.

- 1. Show that $f: X \to Y$ is injective if and only if there is a map $g: Y \to X$ such that $g \circ f$ is the identity on X. If such a map g exists is it necessarily unique, injective, or surjective.
- 2. Show that f is onto if and only if there is a map $g: Y \to X$ such that $f \circ g$ is the identity on Y.

Solution. 1. Let $g: X \to Y$ be a map such that $g \circ f$ is the identity on X. Then, suppose f is not injective. Let $x, y \in X$ such that $x \neq y$ and f(x) = f(y). Then g(f(x)) = x element. WLOG, suppose g(f(x)) = g(f(y)) = x. Then, g(f(y)) = x contradicts the assumption that $g \circ f$ was the identity.

Now, let $f:[0,2] \to [0,5]$, $x \mapsto x^2$. This is clearly injective, and their exists a fuction $g:[0,5] \to [0,2]$, $y \mapsto g(y) = \left\{ \begin{array}{cc} \sqrt{y}, & 0 \leq y \leq 4 \\ 0, & 4 < y \leq 5 \end{array} \right.$ Then, note that for $x \in [0,2]$, $f(x) \in [0,4]$ hence $g(f(x)) = \sqrt{x^2} = x$. Hence, $g \circ f$ is the identity on [0,2]. Clearly, g is noninjective as g(0) = g(5) = 0. Furthermore the function

$$\hat{g}:\left[0,5\right]\rightarrow\left[0,2\right]:x\mapsto\hat{g}\left(x\right)=\left\{\begin{array}{cc}\sqrt{x},&&0\leq x\leq4\\1,&&4< x\leq5\end{array}\right.$$

is another function such that $\hat{g} \circ f$ is the idenity on X, so g need not be unique.

Lastly we show it is surjective. Let $f: X \to Y$ be injective with $g: X \to Y$ being a map such that $g \circ f$ is the identity and let $x \in X$. Then, note that $f(x) \in Y$, hence $g(f(x)) = x \in g(Y)$. Hence $X \subseteq g(Y)$, so g is surjective.

2. Suppose $g:Y\to X$ is a map such that $f\circ g$ is the identity on Y. Then, we have for each $y\in Y,$ $f\left(g\left(y\right)\right)=y,$ so, we see

$$\bigcup_{y \in Y} f\left(g\left(\{y\}\right)\right) = f\left(g\left(\bigcup_{y \in Y} \{y\}\right)\right) = f\left(g\left(Y\right)\right) = \bigcup_{y \in Y} \{y\} = Y.$$

That is, f(g(Y)) = Y, hence the image of f is Y, so f is a surjection.

Now, suppose f is onto, hence $\left|f^{-1}\left(\{y\}\right)\right| \geq 1$ for each $y \in Y$. Let $h: \{f^{-1}\left(\{y\}\right): y \in Y\} \to \bigcup_{y \in Y} f^{-1}\left(\{y\}\right)$ be a choice function mapping each singleton preinverse to an element within it.

Let $k: Y \to \{f^{-1}(y): y \in Y\}$, $y \mapsto f^{-1}(\{y\})$. Then denote $h \circ k = g$. Note that $g(y) \in f^{-1}(\{y\})$ by properties of choice function. Hence, $(f \circ g)(y) = y$ for each $y \in Y$, so it is the inverse on y. **Problem** (4). Prove or disprove the following. If \mathscr{A} is a σ -Algebra of subsets of Y and $f: X \to Y$ is a function, then the collection $\{f^{-1}(A): A \in \mathscr{A}\}$ is a σ -Algebra of subsets of X.

Solution. First, denote the collection $\{f^{-1}(A): A \in \mathscr{A}\} = \mathscr{B}$. We show all three conditions:

- 1. As $Y \in \mathscr{A}$ and $f(X) \subseteq Y$ necessarily, we see $X \subseteq f^{-1}(Y)$ (as X is the whole of the domain, we can even say $X = f^{-1}(Y)$). Hence, $f^{-1}(Y) = X \in \mathscr{B}$.
- 2. Let $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$. As $f^{-1}\left(A^c\right) = \left[f^{-1}\left(A\right)\right]^c$, we see $\left[f^{-1}\left(A\right)\right]^c \in \mathcal{B}$ (for all $f^{-1}\left(A\right) \in \mathcal{B}$).
- 3. Lastly, let $B_1, B_2, \ldots \in \mathscr{B}$ be a countable collection of elements with each $B_i = f^{-1}(A_i)$ for $A_i \in \mathscr{A}$ and define $\bigcup_{n \in \mathbb{N}} B_n = B$. We see $\bigcup_{n \in \mathbb{N}} A_n \in \mathscr{A}$ by hypothesis, hence

$$\mathcal{B} \ni f^{-1}(A)$$

$$= f^{-1}\left(\bigcup_{n \in \mathbb{N}} A_n\right) \text{ by construction of } \mathcal{B}$$

$$= \bigcup_{n \in \mathbb{N}} f^{-1}(A_n)$$

$$= \bigcup_{n \in \mathbb{N}} B_n$$

$$= B \in \mathcal{B}.$$

Hence \mathcal{B} is a σ -Algebra.

Problem (5). Prove the set of all polynomials with rational coefficients is rational.

Solution. Let $f = \sum_{i=0}^n a_i x^i$ be an arbitrary polynomial and define the finite sequence $(f_k)_{i=0}^n$ such that $f_k = a_k$ for each k and each polynomial f. Next, define $\mathscr{F} = \{(f_k)_{k=1}^n : n \text{ is finite}, f \in P_{\mathbb{Q}}(n)\}$ where $P_{\mathbb{Q}}(n)$ is the set of all rational polynomials of degree at most n. We see \mathscr{F} contains a sequence corresponding to each finite polynomial with rational coefficients, hence as \mathbb{Q} is countable, and \mathscr{F} is a subset of the set of all finite sequences from \mathbb{Q} (which is countable by a proposition in class), we see \mathscr{F} is countable. As each rational polynomial of finite length, f, has a corresponding sequence $(f_k) \in \mathscr{F}$, we see the set $\{f: f \text{ is a rational polynomial of finite length}\} \subseteq \mathscr{F}$. Hence, this set is also countable.

Problem (6). Prove the set of all infinite sequences (x_k) with $x_k \in \{0,1\}$ is uncountable.

Solution. Assume indirectly that such a set is countable. Let $f: \mathbb{N} \to \{(x_k)_{k \in \mathbb{N}} : x_k \in \{0,1\}\}, n \mapsto f(n) = (x_{n,k})_k$. Now define a sequence (y_k) such that

 $y_k = \begin{cases} 0, & x_{k,k} = 1\\ 1, & x_{k,k} = 0 \end{cases}$

We see (y_k) differs from each sequence, $f(n)=(x_{n,k})_k$ in the n-th position. Hence, f is not surjective, so there is no bijection from $\{(x_k):x_k\in\{0,1\}\}\to\mathbb{N}$, so the set is not countable.

Problem (7). Let A be a set and $B = \{0,1\}$. Prove there exists a bijection from $\mathcal{P}(A)$ to the set of all functions from A to B.

Solution. Define the set of all functions from A to B as $\mathscr{F}(A,B)$. Define a function $f:\mathscr{P}(A)\to\mathscr{F}(A,B)$ such that for $X\in\mathscr{P}(A),\,f(X)=g:A\to B$ such that for $a\in A$,

$$g\left(a\right) = \left\{ \begin{array}{ll} 0, & a \in X \\ 1, & a \notin X \end{array} \right..$$

This is clearly a function as each element $X \in \mathcal{P}(A)$ has either $a \in X$ or $a \notin X$ for every $a \in A$. Now, we check that it it bijective.

Suppose $X,Y\in \mathscr{P}(A)$ such that f(X)=g=f(Y). Then, we see for each element $a\in A$, f(X)(a)=g(a)=f(Y)(a), hence if $a\in X$, then $a\in Y$. Similarly, if $a\not\in X$, then $a\not\in Y$. Hence, as every $a\in X$ has $a\in Y$ and every $a\not\in X$ has $a\not\in Y$, we see X=Y, so f is an injection. Now, we wish to show that $f(\mathscr{P}(A))=\mathscr{F}(A,B)$. As we already know $f(\mathscr{P}(A))\subseteq \mathscr{F}(A,B)$, we must only show the reverse containment holds. Let $g\in \mathscr{F}(A,B)$. Then, for each element $a\in A$, g(a)=0 or 1. Define a new set J such that

$$\left\{ \begin{array}{ll} a \in J, & g\left(a\right) = 1 \\ a \not\in J, & g\left(a\right) \neq 1 \end{array} \right..$$

We see $J \subseteq A$, hence $J \in \mathscr{P}(A)$ as it contains some (perhaps all) of the elements of A, and

$$f(J)(a) = \begin{cases} 1, & a \in J \\ 0, & a \notin J \end{cases}$$
$$= g(a)$$

so $g \in f(\mathscr{P}(A))$. Hence $f(\mathscr{P}(A)) = \mathscr{F}(A,B)$, so f is a bijection.

Problem. Let $X = Z \times (Z \setminus \{0\})$. Define a relation \sim on X such that $(p,q) \sim (u,v)$ if pv = qu.

- 1. Show that \sim is an equivalence relation on X.
- 2. Show that there exists a bijection $f:(X/\sim)\to\mathbb{Q}$.
- **Solution.** 1. First we show is reflexive. Note that pq = pq, hence $(p,q) \sim (p,q)$.

Now, we show it is symmetric. Note that if pv = qu, then uq = vp, hence $(p,q) \sim (u,v) \Rightarrow (u,v) \sim (p,q)$.

Lastly, we show transitivity. Suppose $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$. Then this implies ad = bc and cf = de dividing through by the (guaranteed) nonzero term in both equations yields $\frac{a}{b} = \frac{c}{d}$ and $\frac{c}{d} = \frac{e}{f}$, hence $\frac{a}{b} = \frac{e}{f}$ so af = eb, so $(a,b) \sim (e,f)$.

Hence the relation is an equivalence relation.

2. Now, we wish to induce a bijection between (X/\sim) and \mathbb{Q} , this will follow directly from the proof of transitivity. For each equivalence class $[(a,b)] \in (X/\sim)$ define $f([(a,b)]) = \frac{a}{b}$ (we know this is well defined as the second element is guaranteed to be nonzero). Now, we wish to show that the choice of representative is unimportant, so let (a,b), $(c,d) \in [(a,b)]$ (hence $(a,b) \sim (c,d)$). From the previous proof, we see that dividing by the nonzero term yields $\frac{a}{b} = f([(a,b)]) = \frac{c}{d} = f([(c,d)])$ hence the choice of representative produces the same rational.

Now, we wish to show this mapping is injective. Suppose two different equivalence classes, $x,y\in (X/\sim)$ have f(x)=f(y). Let $(x_1,x_2)\in x$ and $(y_1,y_2)=y$ be representatives of each equivalence class. Then, this implies $f(x)=\frac{x_1}{x_2}=\frac{y_1}{y_2}=f(y)$. Multiplying through by the denominators yields $x_1y_2=y_1x_2$, hence $(x_1,x_2)\sim (y_1,y_2)$, so x=y. Lastly, we wish to show this is a surjection. Let $\frac{p}{q}\in\mathbb{Q}$ be a rational. Then, by definition, $p\in\mathbb{Z}$ and $q\in Z\setminus\{0\}$, so $[(p,q)]\in (X/\sim)$ and $f([(p,q)])=\frac{p}{q}$, so there is an equivalence class that produces each rational.

Hence, the mapping $f:(X/\sim)\to\mathbb{Q}:[x_1,x_2]\mapsto f([(x_1,x_2)])=\frac{x_1}{x_2}$ is a bijection.