Computational Linear Algebra - Assignment 5

(points: 40)

Problem 1 (points: 4)

Suppose $\mathbb V$ is finite-dimensional with $\dim(\mathbb V)\geqslant 1$ and $\mathbb W$ is infinite-dimensional. Prove that $\mathcal L(\mathbb V,\mathbb W)$ is infinite-dimensional.

Problem 2 (points: 2+2 = 4)

Given an example of $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ such that $N(\mathbf{A}) = R(\mathbf{A})$. On the other hand, show that there does not exist an $\mathbf{A} \in \mathbb{R}^{3 \times 3}$ such that $N(\mathbf{A}) = R(\mathbf{A})$.

Problem 3 (points: 2)

Let $\ell_1, \ell_2 \in \mathcal{L}(\mathbb{V})$ be such that $R(\ell_2) \subseteq N(\ell_1)$. Prove that $(\ell_2 \circ \ell_1)^2 = 0$ (zero transform).

Problem 4 (points: 4+3+2 = 9)

Suppose $\mathbb V$ is finite-dimensional and $\ell \in \mathcal L(\mathbb V)$. Prove that ℓ is one-to-one (injective) if and only if there exists $\ell' \in \mathcal L(\mathbb V)$ such that $\ell' \circ \ell$ is the identity map on $\mathbb V$. Moreover, prove that $\ell' \circ \ell$ is the identity transform if and only if $\ell \circ \ell'$ is the identity transform. State the above results in terms of matrices.

Problem 5 (points: 3)

Do the set of invertible $n \times n$ matrices form a subspace of the set of $n \times n$ matrices? What about the set of invertible $n \times n$ matrices with $n \ge 2$?

Problem 6 (points: 7)

Suppose \mathbb{V} is finite-dimensional and $\ell \in \mathcal{L}(\mathbb{V})$. Prove that ℓ is a scalar multiple of the identity map if and only if $\ell' \circ \ell = \ell \circ \ell'$ for every $\ell' \in \mathcal{L}(\mathbb{V})$.

Problem 7 (points: 5)

Suppose \mathbb{V} is finite-dimensional and $\ell', \ell \in \mathcal{L}(\mathbb{V})$. Prove that

$$\dim(N(\ell' \circ \ell)) \leqslant \dim(N(\ell)) + \dim(N(\ell')).$$

Problem 8 (points: 6)

Suppose $\mathbb V$ is finite-dimensional and $\ell_1,\ell_2\in\mathcal L(\mathbb V)$. Prove that $R(\ell_1)\subset R(\ell_2)$ if and only if there exists $\ell'\in\mathcal L(\mathbb V)$ such that $\ell_1=\ell_2\circ\ell'$.
