administration, 145-149, 418. See also self-Index administration in drinking water, 148, 172 intravenous, 146, 156, 410 oral, 148, 154, 412 adolescent(s) alcohol use by, 516 α4β2 nAChRs, 166, 168 cognitive control, 358, 380 α7 nAChR receptors, 168 delay discounting choices, 350 α7 nAChR subunit knockout mice, 159 depression in, 351–352 abstainers (nonsmokers) event-related potential, 429 characteristics of, 22 extraversion in, 349 inclusion versus exclusion of, 222-223, 235, 323 first mood effects, 375–376 nicotine patches, 377 neuroticism in, 351, 352 abstinence nicotine deprivation learning deficits, 436 in behavioral economics effects, 420 nicotine response in, 194–195 deficits, 350-351 novelty seeking behavior, 27, 348 effects of, 405, 408 P300 amplitude in, 360 event-related potential, 429 physiological changes in, 589 abstinence-induced craving, 438 protective factors, 343 effects of, 405 research limitations, 367 measurements, 403 social influences on, 346-347, 517 during smoking cessation, 441 substance-use vulnerability of, 195, 199, 200α-bungarotoxin binding, 165, 167 201, 212, 233–234, 261, 292–293 ACE model, 249–250 transition to adulthood, 195 acetaldehyde (alcohol studies), 86-87 use of genetic information by, 46–47 acoustic startle reflex. See startle response adolescent developmental trajectories, 189–235, active avoidance, 435 acute stress mimicry of withdrawal symptoms, 448 age of smoking onset, 200-201 acute tolerance, 162-163 empirically identified, 202-214 ADA (Americans with Disabilities Act), 49 example of, 223-233 Add Health (National Longitudinal Study of future research directions, 233-234 Adolescent Health), 197–198, 261, 517 psychopathology, 191-202, 292-293 addiction. See also nicotine dependence; statistical models, 214-223 substance use clinical manifestations of, 79 substance use, 295-296 (See also substanceas dependence, 77 use comorbidity; *specific substance*) adolescent nicotine dependence, 191–195 DRD2 gene and, 32 animal models of, 155, 194-195 versus habituation, 24 biological vulnerability for, 100, 193–195, models of, 293 200-201, 233 versus smoking, 24 future research directions, 233 stress and, 36 genetic studies of, 86, 264–266, 342 additive components, 511 individual symptoms of, 192 adenosine knockout mice, 159 measurement of, 192, 230-231, 264 adenosine systems, in nicotine reinforcement, time and exposure required for, 192–193 159-160 withdrawal symptoms, 192 ADH1*2 alleles (alcohol studies), 86-87

ADHD. See attention deficit hyperactivity disorder

adipose tissue, nicotine concentrations in, 145

419

ad libitum (ad lib) self-administration, 415-416,

adolescent smoking, 371

antisocial behavior and, 200, 202, 211, 232

environmental influences on, 196–197

ethnic differences in, 213-214, 279

gender differences in, 196, 199, 260, 263–264, 342	in smoking initiation assessment, 261–262, 279, 281, 322
gene-environment interactions in, 197–200,	in substance-use comorbidity, 322-323
259	age-gene-environment interactions, 589
genetic research on, 195-200, 259-269	age of onset, 26, 100, 371–372
heterogeneity in, 190, 233	developmental trajectories by, 200–201
as indicator of adult nicotine dependence,	age-related macular degeneration, 46
230–231	age-specific risk, measurement of, 35
latency between cigarettes, 371	aggregate effects in complex pathways, 541
molecular genetic studies of, 198–199	aggression, 357
parental smoking and, 196–197, 200	agonists (activators), 143
peer smoking and, 197	AHe mice, 435
	AIC (Akaike Information Criterion), 274, 312
prevalence of, 191	A inbred mice, 154, 165, 412, 422
twin studies of, 196, 259–262	A/J mice, 435
adolescent smoking initiation, 191	A/J×NMRI cross-bred mice, 154, 412
age range in, 261–262	Akaike Information Criterion (AIC), 274, 312
heterogeneity of, 196, 201–202, 233	alcohol use
progression to dependence, 341	adolescent, 516
genetic studies of, 263–264	in ATBC analysis, 496
rate of acceleration, 201–202	Edwards's theory of, 82–83
psychosocial factors, 200, 202, 211	Iowa gambling task as predictor, 350
risk profile, 211–212, 232	nasal spray use correlated with, 373
shared environmental factors in, 260-261,	in NHANES III analysis, 502
264,280	policies influencing, 294–295
adoption studies, 196, 279	
ADRAIA gene, 42	as secondary reinforcement, 413 side effects, 86–87
adulthood, transition to, 195	tobacco use concurrent with, 98, 290, 296–298
adult nicotine dependence, adolescent smoking	empirical examples of, 307–323, 496, 502
indicators of, 230–231	health effects of, 290
adult-onset events, 100	modeling, 299–305
adult smoking phenotype, limitations of, 190	nicotine-dependence correlation, 369, 406,
advertising	411–412, 420
costs of, 21	trajectories of, 295
in movies, 7, 20, 523	ALDH2*2 alleles (alcohol studies), 86–87
novelty seeking as response to, 348	alertness, 361–362
protobacco, 7, 20, 30, 348	allele(s)
smoking index variable and, 30	identical by descent (IBD), 257, 258
aerosols, nicotine, 147	variants of, 554
affective coping, 112–113	allele frequency, 48, 258
affective response, 373–376	alpha subunits, 153
future research directions, 456	Alpha-Tocopherol, Beta-Carotene Cancer
physiological measures of, 377-378, 445-446	Prevention Study (ATBC), 487, 494–497
regulation of, 358, 403, 443-449	alternative reinforcement, 417
affiliation/empathy system, 362	Americans with Disabilities Act (ADA), 49
African Americans	amphetamine, 412
adolescent smoking in, 213-214	analysis of variance (ANOVA), 215
genotypes linked to dependence, 47	analytic methods. <i>See also specific method</i>
linkage study focused on, 267	developmental trajectories, 214–223
age effects, 170–171	molecular genetic studies, 257–259
factor loadings by, 271–276	phenotypic research, 96–103, 113–118

anger, palliative effects on, 357	aversive mood symptoms, 443
animal studies. See also mouse models; rat	avoidance-related risk, 339, 351-354, 362
models; specific strain or study	
ad lib administration in, 415	D.
adolescent nicotine exposure, 194-195, 589	В
affective regulation, 443	backcrossed mice, 151
dependence, 134–135	bacterial contamination, during administration,
fetal nicotine exposure, 357	145
impulsivity research in, 449–450	BALB/cBy mice, 164-165, 430-431, 435
reward studies, 372–373	Barratt Impulsivity Scale, 450
transfer to, 350	Bayes factors, 552, 570
ANOVA (analysis of variance), 215	Bayesian analysis, 548–549, 570, 572
antagonists (inhibitors)	Bayesian False Discovery Probability (BFDP), 573
CB1 receptors, 160	Bayesian Information Criterion (BIC), 310, 312
for mu opioid receptors, 160	Bayesian model averaging, 117
muscarinic receptors, 141	Bayes model, 543
nicotine as, 143	BAY K 8644, 167
for nicotine dependence, 159	behavior
anti-inflammatory effects of nicotine, 148–149	analysis of, 163-164
antinociception, 162	antisocial
antisaccade task, 359	adolescent smoking and, 200, 202, 211, 232
antisocial behavior	substance use and, 292–293, 304
adolescent smoking and, 200, 202, 211, 232	drug-motivated, 404
substance use and, 292–293, 304	measurements of, 103
antitobacco stimuli, 20	nicotine and, 151–157
anxiety	phenotypes, 171
adolescent smoking and, 201	response systems, 362
nicotine linkage with, 352–353, 445	smoking indices, 80
anxiogenic effects of nicotine, 168	substance-use comorbidity and, 322
apolipoprotein E testing, 48	tolerance, 168
approach, versus impulsivity, 378–379	traits, 344
approach-related risk, 339, 346–349, 362	undercontrol, 98–99
arousal, 378	behavioral economics, 417, 420, 454
ASN40ASP polymorphism, 407	behavioral genetics
aspartame, 412	phenotypes in, 492
association analysis, 258–259, 268–269, 280	of self-administration, 153–155
assortative mating, 251, 259, 280	in social context, 514–518
ATBC (Alpha-Tocopherol, Beta-Carotene Cancer	behavioral modeling
Prevention Study), 487, 494–497	methodological issues with, 247–248
ATR (Australian Twin Registry), 197, 260–261, 267	of parental smoking, 246
attention, 361, 378, 432–434	BFDP (Bayesian False Discovery Probability), 573
attentional bias, 440, 456	BIC (Bayesian Information Criterion), 310, 312
attention deficit hyperactivity disorder (ADHD),	bioavailability of nicotine, 7, 20
354–357	biochemical indices of smoking, 80, 415
adolescent smoking and, 201, 211	biochemical measures of self-administration, 97
as risk factor, 350, 433	biochemical pathways, 561
substance use and, 292–293, 304	BioCyc, 561
attrition biases, 224	biological pathways, candidate, 105
Australian Twin Registry (ATR), 197, 260–261, 267	biological plausibility
Automaticity subscale, 90–91	affective regulation, 443–445

attention/vigilance, 432–433	cancer genetics, 50
craving, 438–439	candidate biological pathways, 105
event-related potential, 427-428, 429	candidate gene studies, 40–45
impulsivity, 449–450	adolescent smoking, 342
mood effects, 374	discordant phenotype associations, 36
reinforcement, 368-369, 410-414	epigenetic differences, 37
resting EEG activity, 425–426	linkage analysis, 32, 40–42, 267–268, 280–281,
rewards, 372-373, 421-423	589
startle response, 430–431	multivariant data, 543–546
working memory, 434–436	nicotine dependence, 42
biological vulnerability, in adolescent nicotine	prior knowledge of, 559
dependence, 194–195	smoking association with, 24
biomedical ontologies, 561	SNP relationships over, 545
biometric factor model, 253	substance-use comorbidity, 325
biometric modeling, 37–45, 86, 88–89, 514	trait pathways, 553
BioPAX Ontology, 561	variants, 25, 35
bitter taste, 84, 148	candidate neural systems, 343-346
BKW mice, 443	cannabis. See marijuana use
blood pressure, 448–449	Card Arranging Reward Responsivity Objective
β2 nAChRs, 153	Test, 350–351
β2 nAChR subunit knockout mice, 159, 166	CART (cocaine- and amphetamine-regulated
Bonferoni correction, 546, 573	transcript), 36
brain	cases, in association analysis, 258
nicotine concentrations in, 145	catechol-O-methyl transferase (COMT) gene, 269,
stimulation, 373	408–409, 430
upregulation in, 144	categorical covariates, 276–278
of young people, 589	causal contingent common (CCC) pathway model
brain imaging, 360	253, 263, 278–279
breakpoint	causal differences between groups, 492
drug use, 418	causal paths
nicotine use, 420	phenotypic research, 102, 107–110
preferring to wait, 350	sensitivity to, 105
breast milk, nicotine concentrations in, 145	smoking as, 352
breeding	types of, 111–113
mice, 150–151, 411	CBA mice, 435
rats, 411	CB1 knockout mice, 160, 422
Brown University Transdisciplinary Tobacco Use	C57BL/6 inbred mice
Research Center (TTURC), 89, 521, 526	conditioned place preference in, 159, 422
BUB/Bn mice, 165, 412	dose-dependent effects, 165
BUB inbred mice, 154	fear conditioning in, 169, 432
buzz, 374	five choice serial reaction time task in, 433
,	nicotine consumption, 155, 159
0	nicotine-dependence risk, 161
C	nicotine effects in, 435
calcium, 136, 139–140	novelty-seeking behavior in, 156
calcium calmodulin protein kinase II, 168	oral self-administration in, 412–413
calcium channel blockers, 162, 167, 168	prepulse inhibition in, 430–431
calcium signaling, 167–168	strain comparisons, 153–154, 164–165
Canadian National Longitudinal Survey of	in tolerance, 167
Children and Youth, 212	C57BL/10 mice, 435

C57BR/cd mice, 435	electrophysiological measures, 425–432
CCC (causal contingent common) pathway model,	future research directions, 452–457
253, 263, 278–279	impulse control, 449–452
CCK gene, 269	investigation rationale, 406–410
CD-1 mice, 443	motivational mechanisms, 410–424
CellDesigner, 561	summary/conclusions, 457–458
cell signaling, 161, 167–168	chronic tolerance, 163
Center for Antisocial Drug Dependence, 260	CIDI (Composite International Diagnostic
Centers for Disease Control and Prevention, 498	Interview), 81
central nervous system (CNS), 344, 348, 353, 354	cigarette(s)
centroid. See mean	availability of, 99
chain smoking, 37	consumption of, 4, 20
children	design of, 7, 20
effortful control in, 358	pricing of, 20, 21, 520
secondhand smoke from parental smoking, 246	vendor locations, 521, 522
self-control in, 344	Cigarette Dependence Scale, 79n
sleep problems in, 357	Cigarette Evaluation Scale, 423
smoking by, 371	cigarettes per day (CPD)
children of twins (COT) design, 251–252, 279, 511	in ATBC analysis, 496
C3H inbred mice	with <i>CYP2A6</i> gene variants, 418
dose-dependence, 165	delay discounting correlation, 452
nicotine effects in, 431, 435	as dependence measure, 79, 80
oral self-administration, 412	in factor analysis, 88–89
strain comparisons, 154, 164–165	in NHANES III analysis, 502
tolerance in, 162	nicotine metabolism and, 406
chippers (light smokers)	predictive value of, 80
adolescent, 213, 232	recall reliability, 26–27
delay discounting, 350	as smoking cessation predictor, 81, 413
genetic factors and, 29	in TUS-CPS analysis, 498, 499
versus heavy smokers, 43, 81, 83-84, 90, 94	cigarettes per month, 91
prevalence of, 193	class extraction, model misspecification related
choice procedure, 369-370, 416, 419-420	to, 222
cholecystokinin (CCK) gene, 269	classic dependence criteria, 84, 86
Christchurch, New Zealand (CNZ) study, 266	classification bias, 493
CHRNA2 gene, 42, 376–377	class I–IV phenotypes, 28–31
CHRNA3 gene, 376–377	class membership, for familial resemblance,
CHRNA4 gene, 268, 407-409, 412	256–257
CHRNA5 gene, 342, 376–377	clinical preventive services, 4
CHRNA7 gene, 408, 409, 428	Clinical Research Support System, 415
CHRNA5-A3-B4 haplotypes, 100, 407	cluster analysis
CHRNA5-CHRNA3-CHRNB4 nicotinic receptor	developmental trajectories, 211, 217–223
genes, 43	discrete versus continuous phenomena in, 219
CHRNB2 gene, 268, 407, 408, 409	static <i>versus</i> dynamic, 219–220, 232
CHRNB3 gene, 342	within-class variability in, 220–221, 233
CHRNB3-CHRNA6 nicotinic receptor locus, 43	CNS (central nervous system), 344, 348, 353, 354
chronic exposure, 405, 449	CNZ (Christchurch, New Zealand) study, 266
chronic smoker endophenotypes, 403, 404–406	cocaine, 374, 456–457
affective regulation, 443–449	cocaine- and amphetamine-regulated transcript
cognitive control, 432–438	(CART), 36
craving, 438–443	coexpression of receptors, 141, 142

COGA (Collaborative Studies on Genetics of	conduct disorder
Alcoholism), 266	adolescent smoking and, 201, 211, 232
cognition changes, 163–164	definition of, 357
cognitive control, 403, 424-425, 432-438	substance use and, 292–293, 304
during adolescence, 380	confounding factors, 32
alertness in, 361	consensus, across indicators, 77
electrophysiological measures, 425–432	constitutional hypothesis, 24
as endophenotype measurements, 358, 360	construct
impairment, 113	definition of, 75
impulsivity and, 112, 378–379	emerging, 520
physiological basis of, 381	proximal, 522
cognitive deficits reversal, 434–435	refinement of, 25–27
cognitive measures, of craving, 440	construct properties, 75
cohorts	construct validation, 33, 34, 35, 75–78
effects of, 515	consumption level
research models for, 519	during adolescence, as indicator of adult
Collaborative Studies on Genetics of Alcoholism	dependence, 230–231
(COGA), 266	adolescent nicotine dependence and, 193
colorectal polyps, 542	assessment of, 415, 418
commercial testing, 50	contamination, during administration, 145
common pathway model, 252, 270	context-sensitive physiological measures, 363
common-vulnerability model, 291–294, 306,	contextual conditioning, 163–164
315–316	contingency table, smoking-drinking, 313,
communication of genetic findings, issues in,	315–316
45–50	contingent factors, 247
comorbidity	continuant, 541, 559
psychiatric (See psychiatric comorbidity)	continuous factors, 256
substance-use (See substance-use comorbidity)	continuous-level information, for behavioral
complementary dimensions of dependence, 97	modeling, 247
complex traits	continuous performance task (CPT), 362, 378,
defining features, 31	433
genetic factors in, 35	continuous phenomena, <i>versus</i> discrete
genome-wide association studies for, 46	phenomena, 219
multiple determinations of, 22	control, endophenotype measures of, 357–362
replication difficulties, 45	control-related risk, 339, 354–357, 362
sensitive genetic measures, 341	controls, in association analysis, 258
similarity of, 24–25	copy-number variation, 36
Composite International Diagnostic Interview	core criteria, 76, 77
(CIDI), 81	core dependence dimension, 87–95
	core factors, 97, 168
compulsive smoking, 80	core strategy, 510
computational symbolic theory, 559–560	cortisol, 447
COMT gene, 269, 408–409, 430	cosegregation of smoking behaviors, 24
concurrent choice procedure, 416	cost(s)
conditional independence, 256	genetic testing, 50
conditional triggers to smoke, 588	smoking cessation, 593
conditioned place preference (CPP)	tobacco use, 4, 21
biological plausibility of, 372–374, 421	COT (children of twins) design, 251–252, 279, 511
in mice, 157–158, 161, 422	cotinine
in rats, 423	biological activity of, 148
conditioning, contextual, 163–164	clearance factors, 39–40

as nicotine by-product, 406	coding for, 408–409
covariance, 32, 95–96, 341–342	mood effects with, 376
in latent growth curve models, 254–255 in structural equation modeling, 248, 250	in nicotine metabolism, 22, 39–40, 149, 342, 406
CPD. See cigarettes per day	in smokers, 413
CPP. See conditioned place preference	variants in, 371, 418
CPT (continuous performance task), 362, 378,	<i>Cyp2a5</i> gene variants, 149, 155, 413
433	<i>CYP2B6</i> gene, 39
craving, 438–443	<i>CYP2D6</i> gene, 39
abstinence-induced (See abstinence-induced	Cys-Cys pairs, 136
craving)	cytochrome P-450 (CYP) system, 268
in adolescents, 192	· · · · · · · · · · · · · · · · · · ·
cue-induced (See cue-induced craving)	D.
dopaminergic systems associated with, 111	D
effects of, 405	danger-alarm responses, 353, 354
measurement of, 403, 439–440	data-mining techniques, 541–542
Craving subscale, 90–91	data sets
CREB activation, 160–161	ATBC analysis, 495
CREB mice, 422	NHANES III analysis, 500–501
critical constituents, 25	smoking cessation analysis, 493–494, 494
cross-cultural differences, 515–516	TUS-CPS analysis, 498
cross-sectional studies, of substance-use	DAT/SLC6A3 (dopamine transporter protein), 268
comorbidity, 291	DBA/2 inbred mice
cross-species analysis, 348	conditioned place preference, 422
cue(s)	dose-dependent effects, 165
in animal studies, 411	IV self-administration, 156
relapse, 99	
reward signaling, 350	nicotine consumption, 159
cue-induced craving, 438–439	nicotine effects, 435
with dependence, 441–443	oral self-administration, 412
effects of, 405	prepulse inhibition in, 430–431
	strain comparisons, 153–154, 164–165
future research directions, 456–457	tolerance in, 162, 163
measurements, 403	DDC (DOPA decarboxylase), 269
physiological basis of, 111, 588	definition variables, in structural equation
procedures to elicit, 440–441	modeling, 248
research limitations in, 456	dehydroepiandrosterone (DHEA), 447
cue-self-administration response, 94	delay discounting
cultural transmission	definition of, 348
adolescent smoking and, 198	in impulsivity, 349, 449, 450–452
effects of, 515	physiological basis of, 379
as environmental factor, 21	study subjects for, 350
phenotypic, 251	deleterious effect prediction, 554
research models for, 519	dependence. See also nicotine dependence
twin studies of, 262	addiction as, 77
cumulative effects, of pathogens, 103	core features of, 592
cumulative risk, measurement of, 35	definition of, 75
CYP2A6 gene	distal measures of (See distal measures)
adolescent smoking and, 199	maintenance of, 598
analysis of, 554, 555	model evaluation of, 78
association analysis of, 268	patterns, 94

severity with comorbidity, 98	distal measures
study of, 24	agreement among, 88
depression, 351–352	early <i>versus</i> mature states, 74
nicotine amelioration and, 443	genetic mapping, 78–81, 86–87, 103–105
smoking association with, 444	versus proximal measures, 516
subthreshold, 352	distress tolerance, 448
desensitization, 146	distributional assumptions
developmental pathways, 100, 589	in growth curve models, 255
impact on trajectory study, 222	in structural equation modeling, 249
developmental psychopathology, 191-202,	DNA methylation, 36
292–293	DNA sequences analysis, 554
developmental trajectories. See adolescent	DO (Disease Ontology), 560
developmental trajectories	
DHβE, 159, 169	DOPA decarboxylase (DDC), 269
DHEA (dehydroepiandrosterone), 447	dopamine
diabetes mellitus, 46	in attention deficit hyperactivity disorder, 356
Diagnostic and Statistical Manual of Mental	attention-vigilance associations with, 434
Disorders (DSM) criteria	impulsivity linkage with, 451–452
adolescent smoking, 192, 264	inactivation of, 430
attention deficit hyperactivity disorder, 356	mesotelecephalic, 171
dependence, 37-38, 40, 81, 86	midbrain circuits, 348, 349, 350
poor agreement with FTND, 25–26	in nicotine binding role, 406–407
scales in, 79	in nicotine dependence, 43, 410
substance-use disorder, 291	receptors, 156, 343
as syndromal medical model, 80-81	regulation of, 540
diagnostic criteria, heritability of, 30, 38	reinforcement role of, 374, 407
diagnostic inferences, 77	reward pathways, 342, 349, 352
Diagnostic Interview Schedule (DIS), 501	signaling, 160
diary prompts/responses, 527, 528–529, 530	dopamine β-hydroxylase (DβH), 269
Digit Span test, 433	dopamine hypothesis of dependence, 588
diltiazem, 168	dopaminergic neurons, in ventral tegmental area,
direct drug infusion, 152-153	588
direct-to-consumer marketing, 50	dopaminergic systems
DIS (Diagnostic Interview Schedule), 81, 501	adolescent smoking and, 198–199, 201
disadvantaged youth, 520	association analysis of, 268–269
discrete phenomena, versus continuous	craving associated with, 111
phenomena, 219	dopamine transporter protein (DAT/SLC6A3), 268
discrimination, against nicotine dependence,	dopamine transporter protein (DAT/SECOAS), 200 dopamine transporter (SLC6A3) *9-repeat allele,
46–47, 49	441
discriminative validity, 77	
discussion groups (OBO Foundry project), 560	dose of nicotine, 161, 165
Disease Ontology (DO), 560	differences in, 367, 416
disease risk, 541, 550	distribution of, 370
disinhibition, common trait of, 292-293	standardization, 152
disorder markers, 107	dose-response curve, 162, 444
dispositional tolerance	double variant haplotype, 545
acquisition of, 162	downregulation, 144–145, 588
versus behavioral tolerance, 164	downstream processes, 81–82, 106
in tolerance, 168	DRD4 (dopamine receptor), 268
distal influence, versus proximal influence,	DRD5 (dopamine receptor), 268
519–522	DRD4 exon III polymorphism, 199

DRD2 gene, 409	employment discrimination, 49
addiction association with, 32	employment status, of hard-core smokers, 35
coding for, 408	encoding prior knowledge, 571
commercial testing for, 50	endogenous cannabinoid systems, 159, 160
dependence association with, 407	endogenous enkephalin system, 160
in craving, 441	endogenous event-related potentials (ERPs),
variants, 198	427
DRD4*7-repeat allele, 376	endophenotypes, 5, 408-410
drinking. See alcohol use	caveats, 110-111
drinking-water administration, 147–148, 172	characteristics of, 107–110
drug addiction. See addiction; substance use; specific drug	in chronic smokers (<i>See</i> chronic smoker endophenotypes)
drug-motivated behavior, 404	conceptual issues, 381–383
drug response comparison, 490–492, 491	criteria, 413
DSM. See Diagnostic and Statistical Manual of	disorders associated with, 106
Mental Disorders criteria	future research directions, 455–457, 594
dual-trajectory model, of smoking-drinking	gene linking in, 347, 409
trajectories, 315–316 dynamic clustering	measurement of, 349–351, 353–354, 355, 357–362
versus static clustering, 219–220, 232	motivational effects, 452, 454–455
within-class variability in, 220–221, 233	in network models, 558
	nicotine dependence, 409, 453
_	phenotypes associated with, 5, 33–34
E	pre-exposure risk, 340–347
arriv amargant mativa 01	in psychiatric genetics research, 25
early-emergent motive, 91 early-onset smokers	replicability of, 27
risk for persistence, 200, 212–213, 230–231	transitional, 107, 108, 200, 233
substance use and, 292, 296–297, 315, 320	types of, 340
early smoking experiences (ESE), 375	enhanced clearance. See dispositional tolerance
early tobacco exposure, 101, 155	entities, 541, 559, 560
ecological momentary assessment (EMA), 255, 525	environmental factors, 99–103. <i>See also</i> social context; <i>specific factor</i>
economic deprivation, 520	adolescent smoking, 196–197
educational attainment, adolescent smoking and,	comorbidity, 99
227–228, 232	cue-induced craving, 438–439
Edwards's theory of alcohol dependence syndrome,	enrichment, 36
82–83	in experimentation, 31
EEA (equal environments assumption), 516–517	gender differences in, 38
EEG (electroencephalogram), 354, 403, 425–427	gene expression variation from, 36–37
effortful control, 358	genetic factors in, 35, 515
elasticity of demand, 417	importance of, 29
elation, 374	linkage analysis, 258
electroencephalogram (EEG), 354, 403, 425–427	measurement of, 35
electromyography (EMG), 431	in nicotine dependence, 22, 23
electrophysiological measures, 378, 425–432	nicotine use, 158
EMA (ecological momentary assessment), 255,	relative contribution of, 30
525	in smoking decline, 20
EMG (electromyography), 431	substance use, 294–295
empirical-Bayes approach, 549, 551	twin studies, 251, 262, 279, 280
empirical search strategies 117	environmental nathogens 5 25 35

epidemiology, 31–37	extreme groups
future research in, 594	alternatives to, 116–118
genetic, 257	constructing, 114–116
extended, 250-252, 262-269, 279, 280	eyeblink response, 448
hierarchical modeling in, 570-571	
perspectives from, 514	E.
phenotypic definitions in, 493	F
public health outcomes in, 492	factor analysis, 37–38, 265
triangle, 513	consistency, 88
epigenetics, 36	correlation among, 80, 87
epistasis, 32–33	DSM-IV correspondence with, 103
epistemology, 74, 77	factor loadings, 271–278
equal environments assumption (EEA), 516–517	factor mixture model (FMM), 256
equifinality, 191, 220	factor models, 256
ERPs (event-related potentials), 403, 427	Fagerström Test for Nicotine Dependence (FTND),
ESE (early smoking experiences), 375	79–80
ethanol, 412. See also alcohol use	as assessment tool, 405
ethnic differences, in developmental trajectories,	dependence criteria, 37–38
213–214, 279	FTQ as precursor to, 24
etiological architecture, 510–511, 515–518, 519,	linkage analysis, 40–42, 589
527, 530	poor agreement with DSM, 25–26
etiology	reliability and validity of, 26, 79–80
diverse, 82, 106	scales in, 79
matrix of, 509	visuospatial attention association with, 434
of phenotypic assay, 83	Fagerström Tolerance Questionnaire (FTQ),
of symptoms, 78	79–80
euphoria, 374	for adolescent smoking, 192, 230-231, 264
Event Ontology (EVO), 560	as physical dependence measure, 79
event-related potentials (ERPs), 403, 427	startle response inconsistency, 448
EVO (Event Ontology), 560	in susceptibility loci mapping, 24
exchangeable classes, 551	test-retest reliability, 26
excitatory tone, 141	false discovery rates (FDRs), 542, 546, 570, 573
executive function	false positive reports, 570
cognitive control and, 379	familial resemblance, class membership for,
definition of, 361	256–257
nicotine dependence and, 34	family-based studies
Executive Order 13145, 49	design of, 518
exogenous event-related potentials (ERPs), 427	ecological momentary assessment in, 526-527
experimental design, basics of, 149-150	heritability documentation, 28-29
experimentation	new methodologies in, 521
influences on, 31	family dysfunction scores, 33
progression from, 30	family environment, adolescent smoking and,
exposure model, 365	196–197
extended structural equation modeling (XSEM), 249	family history analysis, example of, 225, 230, 232
extended twin family studies, 250–252, 262, 279,	fast-ionotropic nicotinic receptors, 136
280	FDRs (false discovery rates), 542, 546, 570, 573
extra-nicotinic mechanisms, 156–157	fear conditioning, 169, 432, 435
extraversion, 346, 348–349	fear responses, 353, 354
extreme group membership, 96, 97	feeder stream influences, 81–82, 106

female smokers. See also gender differences	gender differences. See also female smokers;
adolescent, 343	male smokers
blood pressure changes in, 448	adolescent smoking, 196, 199, 227–228, 260 263–264, 342
nicotine-dependence factors, 37, 38, 99	animal studies, 155, 164
OPRM1 gene in, 419	cross-cultural, 515
statistics on, 21	factor loadings by, 271–276
twin studies, 515, 517	
fetal nicotine exposure, 357	nasal spray use, 373
FHS (Framingham Heart Study), 266	nicotine-dependence factors, 38, 99
final common pathway, 82, 93, 106	nicotine-dependence heritability estimates,
finite mixture model, 256	279, 281
Finnish Twin Registry, 262	OPRM1 gene, 419
Finn Twin16-25 study, 307–323	smoking initiation, 267
methods, 307–310	startle response, 378
results, 310–323	substance-use comorbidity, 304
first experience with smoking. See initial	twin studies, 262, 517
sensitivity	gender heterogeneity, 273–274, 276–278
first-stage estimates, 572	gene(s). See also candidate gene studies
Fisher, Ronald Aylmer, 22, 24	endophenotype linkage risks, 347, 409
five choice serial reaction time task (5CSRTT),	in nicotine dependence, 32, 43
432	gene-environment interaction, 33, 515
five-class solution, example of, 226	adolescent smoking, 197–200, 259, 346
fixed effects, 215–216	biological process initiation, 591
flunarizine, 168	environmental pathogens in, 25
FMM (factor mixture model), 256	in etiology, 509
focused interaction testing framework, 542	investigation of, 546
forced choice procedure, 416	substance-use comorbidity, 320
formal model, 541, 559	underuse of, 5
Fosb knockout mice, 161	gene expression, 36–37
Foundational Model of Anatomy, 560	gene-gene interaction, 199, 343, 546
four-point Likert scale, 375	gene-nicotine dependence associations, 45-46
Framingham Heart Study (FHS), 266	Gene Ontology, 560
F344 rats, 423	gene-pathogen relations, 100-101
	general growth mixture modeling (GGMM),
FTND. See Fagerström Test for Nicotine Dependence	308–311
FTQ. See Fagerström Tolerance Questionnaire	generational changes, in smoking, 515
_	Genes, Environment and Health Initiative, 53
future research. See also specific topics	genetically informative designs, 527
crosscutting issues, 595–596	genetically modified mice, 444
implications of, 588–591	Genetic Analysis Workshops (GAW), 266
understanding, 588–596	genetic architecture, 510
	genetic association studies, 554, 556–559
C	genetic drift, 150
G	genetic epidemiology, 257
γ-aminobutyric acid (GABA), 157, 406–407	extended, 250–252, 262–269, 279, 280
γ-aminobutyric acid receptors, 43	genetic factors
GABA (γ-aminobutyric acid), 157, 406–407	acute tolerance, 162–163
GABAergic interneurons, 142	conditioned place preference, 159
gateway theory of substance use, 292	craving, 441
GAW (Genetic Analysis Workshops), 266	detection of, 493
,	,

in experimentation, 31	gene-to-phenotype influence, 78
importance of, 29	gene-transcription cascades, 169
measured, 4	genome(s)
in nicotine effects, 22, 39-40, 539	candidate genes in, 24
quantitative models, 512	data, 561
in reinforcement, 418	studies of, 589
relative contribution of, 30	genome markers, linkage analysis, 257–258
selecting for, 96–97	genome scan, 266–267
genetic heterogeneity, 32	genome-wide association studies (GWAS), 25, 44,
adolescent smoking initiation, 196, 201-202,	269
233	event-related potentials, 428, 430
in developmental trajectories, 190, 233-234	FTND, 42–45
gender, 273–274, 276–278	genetic variant findings, 589
phenotypes, 341	genotyping technologies used in, 258-259
population, 217	potential of, 45–46
estimating, 218, 221–222	results from, 342
receptor, 139	susceptibility loci identification, 407-408
genetic heterogeneity models, difference in fit	genotyping
between homogeneity models and, 274–275	effects of variables on, 553
Genetic Information Nondiscrimination Act	mouse strains, 150
(GINA), 49	P450, 39
genetic latent class models. See latent class	with phase interaction, 545
analysis	phenotypes and, 560–562
genetic latent growth curve models. See latent	technologies, 257–259
growth curve models	geographic information systems (GIS), 520-521
genetic mapping, 73–75. <i>See also</i> phenotypic research	GGMM (general growth mixture modeling), 308–311
analytic strategies, 96–103	GINA (Genetic Information Nondiscrimination
construct validation, 75–78	Act), 49
core dependence dimension, 87–95	GIS (geographic information systems), 520–521
covariation among measures, 95-96	global use, 4, 21
distal measures of dependence, 78-81, 86-87,	GluR (glutamate receptor), 157, 169
103–105	glutamate receptor (GluR), 157, 169
multidimensional measures, 81–86	GMM (growth mixture modeling), 202, 218, 221,
person factors implications in, 97–98	308
genetic modeling, 245–281	go/no-go task, 358–359, 451
methodological and conceptual issues, 247–248	government policies, 7, 20
statistical framework for, 248–259	effect on adolescent smoking, 193
genetic polymorphism effects, 553–554	substance use, 294–295
genetic substrata, associated with tolerance, 162	grant funding, 45–46
genetic testing, 46, 50	graph connectivity, 571
genetic variants	grouping variables, for growth curve modeling,
biological processes associated with, 109	216–217, 232–233
causal, 546	group membership, stability of, across statistical
disease association with, 550	models, 229–230
evaluation context for dependence, 76	growth curve, nonlinear, 255
phenotypes with, 102, 106, 109, 111	growth curve mixture modeling, 215–217,
pleiotropic associations of, 47–50	248–249
selection of, 101	growth mixture modeling (GMM), 202, 218, 221,
value of, 110	308

growth process, random effects for, 220–221	resting EEG, 426
gum. See nicotine gum	smoking cessation, 406
gustatory reaction to tobacco, 75, 84	smoking heaviness, 90
GWAS. See genome-wide association studies	withdrawal symptoms, 30
	working memory, 437
H	heterogeneity. See genetic heterogeneity
	hierarchical modeling
habituation, versus addiction, 24	estimation for, 575–576
half-life of nicotine, 147	with ontologies, 551–552
haplotypes	with prior knowledge, 570
dependence and, 100	for statistical modeling, 117
disease association with, 544	stochastic variable selection and, 547-549, 572
double variant, 545	573
hard-core smokers, characteristics of, 35–36	weighting in, 570
Hardy-Weinberg equilibrium, 545	high-affinity nAChRs, 156, 159
head rush, 374	higher-order joint actions, 546
health care access, disparities in, 47	high genetic proneness, 96
health effects of smoking, statistics on, 4, 21	hippocampal activity, 141, 142
heart rate, 351, 354, 440, 447	HISTONE proteins, 36
Heaviness of Smoking Index (HSI)	home smoking bans, 99
components of, 37, 413	homogeneity models, 271
predictive value of, 80, 89–90	difference in fit between heterogeneity models
scales in, 79	and, 274–275
zero-order correlations in, 80	homogeneous population
heavy smokers, 93	assumption of, 248
delay discounting, 350	for growth curve modeling, 216–217
diagnostic variance in, 89	Hooked on Nicotine Checklist, 26
genetic factors in, 29	Horn-Russell Scale, 34
versus light smokers, 43, 81, 83–84, 90, 94	hostility, 357, 362, 377
substance use and, 296–297, 315	Household Adult Questionnaire, 501
Heavy Smoking Index, 265	HSI. See Heaviness of Smoking Index
hedonic impact of nicotine, 158, 372, 424	HTR5A gene, 42
heritability 06.249	<i>5-HTT</i> gene, 33, 269, 441
adolescent nicotine dependence, 86, 342	5-HTTLPR gene, 101, 199, 409
antisocial scores, 33	in adolescent girls, 343
anxiety, 445	in affective response, 112, 446
delay aversion, 351	coding for, 408
dependence, 37–38, 86, 433–434	human clinical research
diagnostic criteria, 30, 38	affective regulation, 444–445
endophenotypes, 107	electrophysiological measures, 426
estimates, 29–30	event-related potential, 428
event-related potential, 428, 429–430	impulsivity, 450
factors in, 28–29	reinforcement, 413–414
gender differences in, 279, 281	HumanCyc database, 556
impulsivity, 451 neuroticism, 101	human genome, similarity with mice genome,
nicotine metabolism/clearance, 38–40	134
P450 genotype, 39	3-hydroxycotinine, 406
prepulse inhibition startle response, 431–432	hyperactivity, 354, 356
response inhibition, 359	hypertensive rats, 449
100001100 11111101110111, 000	11, porteriore 1400, 110

I	International Statistical Classification of Diseases and Related Health Problems, Tenth Revision
IBD (identical by descent), 257, 258	(ICD-10) criteria, 80–81, 192
ICD-10 criteria, 80–81, 192	interpersonal dynamics, 517, 522–525
ICR mice, 159, 162, 163	interval level, 247
ICSS (intracranial self-stimulation), 372–373, 421	intracranial self-stimulation (ICSS), 372–373, 421
identical by descent (IBD), 257, 258	intrathecal administration, 162
illicit substances. See substance use; specific drug	intrauterine events, 100
impulse control, 449–452	intravenous administration, 146
impulsivity, 348	humans, 415
in attention deficit hyperactivity disorder, 354,	rodents, 152–157, 410–412
356	in utero nicotine exposure, 357
clinical research, 433, 450-451	inveterate smokers, 87
cognitive control and, 112, 378-379	ion-channel receptors, 143
delay discounting with, 349, 350, 449, 450-	Iowa gambling task, 350
452	IRT. See item response theory
heritability, 451	item difficulty, 270
measurement of, 450-451	item response theory (IRT), 254
neural incentive system association, 346	empirical example of, 269–279
preclinical research, 449–450	versus sum score approach, 278
in response inhibition, 359	
incubation effect of initial exposure, 371	The second secon
independent pathway model, 253	J
Indiana University Smoking Survey, 223–233	Jarvik, Murray, 24
data analysis, 225–226	journal publishing requirements, 45–46
discussion, 231–233	,
measures, 224–225	
procedures, 224	K
results, 226–231	
individual pathways to mature state, 105, 106	kinship model, twin studies extended to, 250–
"infectious disease" model, 522	252, 262, 279, 280
inflammation masking, 145	k-means clustering, 217
inhibitors. See antagonists	knockout mice, 159, 160, 161, 166, 422
inhibitory interneurons, 141, 142	Kraepelinian approach to diagnosis, 291
initial exposure response measures, 339	Kyoto Encyclopedia of Genes and Genomes, 561
initial sensitivity, 27, 363–364	
future research directions, 380–381	1
innate sensitivity, 364–368	E
other responses, 373–380	laboratory-based measurements
reinforcement, 368–372	attention deficit hyperactivity disorder, 356
rewards, 372–373	consumption, 418
innate sensitivity, 364–368	endophenotypes, 349-351, 353-354, 357-362
instrumental learning, 158	late emergent symptoms, 90–91
in a company of a south a toating and 10	
insurance companies, genetic testing and, 49	latency to first puff, 415
integrative model of nicotine dependence, 22, 23	latent class analysis, 80, 92, 98, 248–249, 256–257,
integrative model of nicotine dependence, 22, 23 integrative theory of triadic influence, 293	latent class analysis, 80, 92, 98, 248–249, 256–257, 266, 280
integrative model of nicotine dependence, 22, 23 integrative theory of triadic influence, 293 intercept, distribution of, 219, 306, 310	latent class analysis, 80, 92, 98, 248–249, 256–257, 266, 280 latent class growth analysis (LCGA), 218, 226–229,
integrative model of nicotine dependence, 22, 23 integrative theory of triadic influence, 293 intercept, distribution of, 219, 306, 310 intercept models, initiation-based, 322	latent class analysis, 80, 92, 98, 248–249, 256–257, 266, 280 latent class growth analysis (LCGA), 218, 226–229, 248–249
integrative model of nicotine dependence, 22, 23 integrative theory of triadic influence, 293 intercept, distribution of, 219, 306, 310	latent class analysis, 80, 92, 98, 248–249, 256–257, 266, 280 latent class growth analysis (LCGA), 218, 226–229,

association data integrated into, 259	low genetic proneness, 96
substance-use comorbidity, 306, 308, 321	LPAAT-delta gene, 42
latent phenotype model, 252, 270	lung, nicotine concentration in, 145
latent profile modeling, 90–91	lung cancer, predisposition to, 44, 50
latent trait, 270	
latent variables, 77, 248, 256	R.A
substance-use comorbidity, 306, 321, 324	M
LCGA (latent class growth analysis), 218, 226–229, 248–249	macrocontextual factors, 509, 514 as moderators, 515–516
LD (linkage disequilibrium), 543, 545–546	macroenvironment proximal indicators, 521–522
learning associations, 349	macular degeneration, age-related, 46
learning differences, 158, 169	magnetic resonance imaging (MRI), 351, 439,
letter cancellation task, 433	456–457
level, in latent growth curve models, 254	maintenance of dependence, 589
Lewis rats, 411, 423	male smokers. See also gender differences
LGC. See latent growth curve models	adolescent, 342, 348
liability models, of smoking behavior stages, 264,	blood pressure changes in, 449
280	nicotine-dependence factors, 37, 38, 99
lifetime regular smoking, definition of, 29	OPRM1 gene in, 419
ligand-activated ion channels, 143	statistics on, 21
light smoking. See chippers	twin studies, 515, 517
likelihood-based approaches, in cluster analysis,	manifestations of dependence, 75
217–218	Mannheim Study of Risk Children, 199
likelihood ratio tests, 310, 312–313	MAO. See monoamine oxidase
linear growth, assumption of, 255	<i>MAP3K4</i> gene, 42
linear model, 116	marginalization
linear regression, in structural equation modeling,	of smoking, 4, 21
248	of social groups, 47
linear relations, 25	marginal nonnormality, 221
linkage analysis, 257–258, 266–268	marijuana use
candidate gene studies, 32, 40–42, 267–268, 280–281, 589	early pleasurable, 374 tobacco use concurrently with, trajectories of,
environmental factors, 258	296–298
genome markers, 24, 257–258	modeling, 304–305
nicotine-dependence indices, 40–42	trajectories of, 295–296
linkage disequilibrium (LD), 543, 545–546	marketing direct-to-consumer, 50
Lister rats, 432–433, 444	Markov chain Monte Carlo (MCMC) methods, 542
lithium-chloride conditioned place aversion, 161	masking etiology, 82
liver cytochrome P-450 enzyme CYP2A6. See	masking of causal factors, 74
<i>CYP2A6</i> gene	maternal care, 36
location of smoking, 527	mature subphenotypes, 82, 110–111
loci segregation, 40	maximum acute tolerance, 162, 165
locomotor activity, 369, 422	maximum price assessment, 418
logarithm of odds (LOD) score, 40–42, 258, 267	McGill University Study on the National History
logistic regression curves, 91	of Nicotine Dependence, 199
Long-Evans rats, 411	MCMC (Markov chain Monte Carlo) methods, 542
longitudinal data	mean (centroid)
growth curve modeling of, 218–219, 234	cluster analysis, 217
on substance-use comorbidity, 291, 320	growth curve modeling, 255
Loss of Control subscale, 90–91	structural equation modeling, 248–249

measured genetic factors, 4	modeling. See also specific types of modeling
measurement invariance, 247, 255, 276, 280	phenotype (See phenotype modeling)
mecamylamine, 159	with prior knowledge, 570
mediation	selection algorithm, 577–578
of conditioned place preference, 161	uncertainties in, 546, 547, 549
by endophenotypes, 107–108	model misspecification, 222
of nicotine, 160	moderation of relationships, 248
memantine, 156, 171	modified pairwise interaction, 545
memory, 379, 434–438	modulation
Mendelian randomization, 118	dopamine receptors, 156
mesolimbic dopaminergic system, 410, 411	nicotine rewards, 160
metabolic tolerance, 97	molecular genetic studies, 266
metabotropic glutamate receptor 5 (mGluR5), 156	of adolescent smoking, 198–199
methodological issues	analytic framework for, 257–259
assessment precision, 520	Monitoring the Future project, 299, 304
behavioral modeling, 247–248	monoamine oxidase (MAO)
family-based studies, 521	in anxiety disorders, 353
future research directions, 383–384, 594	neuroticism and, 351
genetic modeling, 247–248	in neurotransmitter breakdown, 540
innate sensitivity research, 366–368	monoamine oxidase (MAOA/MAOB) gene, 269
real-time interaction, 524–525	mood effects, 373-376, 380-381
research limitations, 366–368, 376, 383–384	in ATBC analysis, 497
	measures of, 372
substance-use comorbidity, 321–323	of nicotine, 366
methyllycaconitine citrate (MLA), 159	Mood Form of Diener and Emmons, 374-375, 446
mGluR5 (metabotropic glutamate receptor 5), 156	morning smoking. See time to first cigarette
mice. See mouse models	morphine, as nicotine substitute, 153
microchip analysis, 170, 258–259	Morris water maze, 435
microcontextual factors, 509, 514	mortality statistics, 4, 21
coding of real-time interaction, 524	motivational mechanisms, 84, 403, 408
as moderators, 516–518	reinforcement, 410-420
microsatellites, 543, 551	rewards, 420–424
microsocial context, quantifying, 522–525	Mouse Genome Informatics database, 150
midbrain dopamine circuits, 348, 349	mouse models, 134-135, 418
Mid-South Tobacco Family (MSTF), 267	adolescent exposure, 194–195
migration levels, 516	behavioral changes, 151-157
Minnesota Nicotine Withdrawal Scale, 446	future research directions, 168–172
Minnesota Twin Family Study (MTFS), 196, 260,	nicotine administration, 145-149
360	nicotine dependence, 149–151
mirror tracing, 448	nicotinic receptors, 135
misleading claims, 50	customizing, 141–143
misspecification, model, 222	functional diversity of, 136–141
mixed models, developmental trajectories, 215	molecular biology of, 136
MLA (methyllycaconitine citrate), 159	nicotine as agonist/antagonist, 143-144
model(s)	upregulation, 144–145
clarification of, 559	reward, 157–161
searching, 551	startle inconsistency, 444
selection of, 547	strains, 134 (See also strain-specific differences;
with stochastic variable selection, 549-550,	specific strain)
551–552	research options with, 592
model fit, evaluation of, 310, 312-313	selection of, 150–151

tolerance, 162–168	National Comorbidity Study, 445
mouse-rat differences, 150	National Health and Nutrition Examination
movies, smoking in, 7, 20, 523	Survey (NHANES III), 487, 494, 500-503
MRI (magnetic resonance imaging), 351, 439,	National Institute of Mental Health Diagnostic
456–457	Interview Schedule (DIS), 81, 501
MSTF (Mid-South Tobacco Family), 267	National Institute on Drug Abuse Genetics
MTFS (Minnesota Twin Family Study), 196, 260,	Consortium, 43
360	National Institutes of Health, 531
multidimensional measures, of nicotine	National Longitudinal Study of Adolescent Health
dependence, 81–86	(Add Health), 197-198, 261, 517
multifinality, 191	National Survey on Drug Use and Health, 93
multilevel analysis, difficulties of, 248	N-back task, 436
multiple trajectories, developmental, 191–202,	NCBO (National Center for Biomedical Ontology),
232–234	561
multivariate analysis	NDSS. See Nicotine Dependence Syndrome Scale
developmental trajectories, 215	NEAD (Nonshared Environment in Adolescent
latent growth curve models, 255	Development) Project, 509, 524–525
substance-use comorbidity, 315–316, 321	Netherlands Twin Register, 262
twin studies, 262–263	Netherlands Twin Study of Anxious Depression
multivariate factor model, 252–253	(NETSAD), 266–267
multivariate normal distribution	network models, 554, 556–558
in growth curve models, 255	neural analysis, 349–351, 353–354, 357–362
in structural equation modeling, 249	neural incentive system, 346
multivariate normality, within-class, 221, 233	neural networks modeling, 340–341
mu opioid knockout mice, 422	neural substrata, associated with tolerance, 162
mu opioid receptors	neural systems, candidate, 343–346
in conditioned place preference, 160	neurexin 1 (NRXN1) gene, 43
in nicotine replacement therapy, 407	neurobiological analysis, 348
reward mediation, 419	neurobiological dependence pathways, 43
in tolerance, 167, 168	neurobiological systems, 344
muscarinic acetylcholinergic systems, 166, 168	neuroendocrine response, to stress, 354
muscarinic receptors	neuroimaging, 360, 379–380
in aging, 170	neuropeptide systems, 159, 160
blockading, 140–141	neuroprotection, 170
metabotropic, 136	neuroticism, 101, 351–353
muscle tension, 377–378	neurotransmitter systems
mutations	in chronic tolerance, 166–167
	in conditioned place preference, 159-161
rate predictions, 554	New England Family Study, 526
for tolerance, 166	NHANES III (National Health and Nutrition
Muthén, Bengt, 218	Examination Survey), 487, 494, 500–503
	nicotine
N	administration of (See administration)
•	age-related response differences, 194–195
nAChRs. See nicotinic acetylcholine receptors	as agonist/antagonist, 143–144
Nagin, Daniel, 218	anti-inflammatory effects of, 148-149
naloxone, 160	anxiogenic effects of, 168
nasal spray. See nicotine nasal spray	behavioral changes from, 151-157
National Cancer Institute, 498	bioavailability of, 7, 20
National Center for Biomedical Ontology (NCBO),	enforcement timing, 369
561	in free-base form, 148

frequency of use, 4, 21, 369–371, 413, 420	as assessment tool, 405
hedonic impact of, 158, 372, 424	subscales of, 90
neuronal activity induced by, 43	in TUS-CPS analysis, 498
physical changes from, 162	nicotine deprivation memory deficits, 436
pre-exposure risk (See pre-exposure risk)	nicotine gum
pretreatment, 420	as consumption assessment, 415
reinforcement (See reinforcement)	effect on EEG activity, 426
rewards and (See reward)	in memory effects, 435
tolerance (See tolerance)	versus placebo, 370
nicotine aerosols, 147	nicotine metabolism
nicotine-binding sites, 135, 144	association analysis of, 268
nicotine choice, 369	catabolism of, 149
nicotine choice procedure, 416, 419–420	CPD variation and, 34
nicotine cigarette choice paradigm, 419	CYP2A6 gene in, 39-40, 149, 342, 406, 418
nicotine clearance	in dependence risk, 22, 342
dispositional tolerance, 162, 164, 168	in ontology example, 562–569
genetic factors in, 39–40, 539	pathway, 556
nicotine dependence, 20–22, 149–151	nicotine nasal spray
in adolescence (See adolescent nicotine	aversion with DRD4*7-repeat allele, 376
dependence)	as consumption assessment, 415
concurrent with substance use (See substance-	in current smokers, 374
use comorbidity)	memory effects of, 435–436
construct refinement, 25–27	versus placebo, 369–370
craving associated with (See craving)	pleasurable responses to, 373
crosscutting issues, 595–596	nicotine patches
developmental pathways in, 589	effect on EEG activity, 426
distal measures of (See distal measures)	in memory effects, 435
endophenotypes in, 409, 453	on nonsmoking adults, 377
epidemiological concepts, 31–37	Nicotine Pharmacokinetics Ontology (NPKO),
future research directions, 455–457	539, 561, 571
heritability of (See genetic factors; heritability)	nicotine replacement therapy (NRT), 406. See
historical perspective of, 22–25	also smoking cessation
inference of, 77	nicotinic acetylcholine receptors (nAChRs), 134
mouse models of (See mouse models)	association analysis, 268
phenotype (See phenotype(s))	as attention factor, 362
progression research, 592	beta2-subunit (CHRNB2), 268
psychiatric disorders correlated with, 98	binding to, 588
risk with, 375–376	blockading, 140–141, 143–144
smoking compared with, 87	chromosomal regions, 43, 44, 50
versus tobacco dependence, 75	in chronic tolerance, 166–167
treatment of (See smoking cessation)	coding for, 408
understanding of, 588–596	customizing, 141–143
nicotine-dependence measures, 26, 28, 37–45, 73,	desensitization of, 146
78, 79	fast-ionotropic, 136
adolescents, 192, 230–231, 264	functional diversity of, 136–141
example of, 225	high-affinity, 157
invariance, 276, 280	illustration, 409
Nicotine Dependence Syndrome Scale (NDSS),	as impulsivity mediator, 449
82–84	inactivation of, 143
abbreviated, 500	inferences from, 152–153

initial sensitivity response with, 376–377	observed variables, in structural equation
molecular biology of, 136	modeling, 248
in nicotine binding role, 406–407	occurrent, 541, 559
in nicotine dependence, 411	oddball stimulus, 429
structure of, 136–138, 138	olanzapine, 456
tissue-specific responses, 71, 133	ontologies, 539–541
in tolerance, 168	definition of, 541, 559
upregulation of, 135, 144–145, 588	development process, 560–562
nicotinic receptor subunits, 136–140	discussion of, 570–574
CHRNA5/CHRNB3 genes, 342	methods, 541–543, 550–562
composition of, 139	nicotine metabolism, 562–569
functional variants of, 140	statistical approaches, 543–550
limiting expression, 141–143	Ontology Web Language (OWL), 561
structure of, 136, 137	Open Biomedical Ontologies (OBO), 560
nimodipine, 162, 167, 168	Open Source software, 561
nitric oxide, in conditioned place preference, 161	OPRM1 gene, 409
7-nitroindazole, 161	coding for, 408
N-methyl-D-aspartic acid (NMDA) glutamate	gender differences in, 419
receptors, 156	in nicotine replacement therapy, 407
NMRI outbred mice, 154, 412, 430	in smokers, 423
nomological net, 76	support interval proximity, 42
noncoding DNA sequences, 554	oral administration, 147–149, 172, 412–413
nonlinear growth curves, 255	oral mucosa exposure to nicotine, 148
nonnicotinic systems, 166	ordinal data, analytical framework for, 247, 255
nonnormality, 221	osmotic minipump, 147
Nonshared Environment in Adolescent	outcomes of dependence, 75
Development (NEAD) Project, 509, 524–525	outliers, controlling for, 281
nonsmokers (abstainers)	OWL (Ontology Web Language), 561
characteristics of, 22	oxotremorine, 166–167
inclusion versus exclusion of, 222–223, 235, 323	
nicotine patches, 377	P
Northern California Twin Registry, 539, 540	F
novelty seeking, 155–156, 199, 348–349	P3 amplitude, 294
by adolescents, 27	panic disorder, 353
nasal spray use in, 373	PANTHER Pathways databases, 556, 561
neural incentive system association with, 346	parent(s)
in substance use, 292–293, 348–349	educational level of, 519
NPKO (Nicotine Pharmacokinetics Ontology), 539	twin studies extended to, 251, 262, 279, 280
NRT (nicotine replacement therapy), 406. See	parental monitoring, as smoking counterforce, 22
also smoking cessation	parental smoking
NRXN1 gene, 43	adolescent smoking and, 196–197, 200, 262,
NRXN3 gene, 43	346
nutritional cancer prevention, 497	behavioral modeling of, 246
	nasal spray non-response, 377
0	smoke-free home with, 523
0	socialization effects from, 517
OBO (Open Biomedical Ontologies), 560	parenting behavior, 342
OBO-Edit, 561	partition variation, 270, 280
OBO Foundry project, 560	passive avoidance, 435
OBO Relation Ontology 561	natch See nicotine natches

path diagrams, in structural equation modeling,	substance-use disorders, 316-318, 321, 324
248–250	Phenotype and Trait Ontology (PATO), 560, 571
pathogen modeling, 100–101, 103	phenotype modeling, 487, 488–492
PATO (Phenotype and Trait Ontology), 560, 571	examples, 493–503
Pavlovian learning, 158	methods, 492–494
PBT (problem behavior theory), 198, 292–294,	summary, 503–505
322	phenotypic assortative mating, 251
PDAs (personal digital assistants), 525–527	phenotypic cultural transmission, 251
peers	phenotypic research, 105-106
as influence, 100, 346, 517	analytic strategies, 113–118
as smoking predictors, 523	causal paths, 107–110, 111–113
peer smoking, effect on adolescent smoking, 197	caveats, 110–111
penetrance, incomplete, 31	summary, 118–119
peripheral nervous system (PNS), 344, 348	phenylthiocarbamide (PTC) haplotype, 84
P50 ERP, 427–428	phosphatase and tensin homolog (PTEN) gene,
persistence	269
drug use, 417–418	physical aggression, 357
negative affect with, 447	physical responses to nicotine, 169
smoking (See smoking persistence)	symptoms, 26
personal digital assistants (PDAs), 525–527	in tolerance, 162–163, 164–165
personalized health care, 49–50	physiological measures of response reward, 351
person factors, 97–99	physiological startle. See startle response
PET (positron emission tomography), 439	physiology
P300 event-related potential (ERP), 359–360,	of affect, 377–378
429–430	of behavioral traits, 344, 345, 346
P450 genotype, 39	Pittsburgh Youth Study, 214
pharmacokinetics, 37, 39, 118, 149, 542, 590	placebo, versus nicotine, 369–370, 420
pharmacokinetics ontology, 539, 561, 571	placenta, 145
phenotype(s)	plasma nicotine levels
assays, 83	with IV injection, 146
association of, 33	tissue nicotine levels compared with, 145
behavioral, 171, 492	in tolerance studies, 163–164
characteristics of, 109	pleiotropy, 32, 47–50
components, 341	PNS (peripheral nervous system), 344, 348
developmental progression of, 74	point mutation, 444
effects of variables on, 553	policy interventions, 34–35
as endophenotypes, 5, 33–34	polymorphisms, 553–554. See also single
environmental, 34–36	nucleotide polymorphism
framework, 27–31	associations with, 116
genetic mapping, 96–103	different priors for, 571
genetic variants to, 102	in dopamine reward pathway, 342
genotyping and, 560–562	emphasis within genes, 547
heterogeneity, 341	investigation of, 546–547
intermediate, 341, 342 (See also	numerous, challenges of, 546-547
endophenotypes)	perturbations from, 554
of mouse strains, 150	trait variation effect of, 549
pathways, 23, 590	PolyPhen (polymorphism phenotyping), 554
as points in smoking trajectory, 490	polysubstance use, 43, 296
research pitfalls, 489	population
stages, 109	frequency of genetic factors in, 86

for growth curve modeling, 216–217, 234	protective factors
homogeneous, assumption of, 248	in adolescents, 343
in latent class analysis, 256	versus vulnerabilities, 87, 114
response distribution in, 370, 373, 376–380	protein sequence data, 561
in structural equation modeling, 248–249	protobacco advertising, 7, 20, 30, 348
population heterogeneity, 217	prototypes, of nicotine-dependence research,
estimating, 218, 221–222	27–28
Positive and Negative Affect Schedule, 374–375,	proximal indicators, 509
446	proximal influence, 519–522
positron emission tomography (PET), 439	proximal measures
postural hypotension, 449	versus distal measures, 516
PPI (prepulse inhibition), 378, 403, 430–432	of social context, 518–527
preclinical research. See also animal studies;	psychiatric comorbidity, 81, 98–99
mouse models	with <i>DSM-IV</i> dependence, 26, 81
affective regulation, 443–444	empirical examples of, 496, 502
electrophysiological measures, 425–426	resolving, 115
event-related potential, 427–428	psychiatric genetics research, 25, 27
impulsivity, 449–450	psychoactive alkaloid, 22
reinforcement, 410	psychological traits
	approach-related risk, 346–349
rewards, 421–423	avoidance-related risk, 351
precursors, class III phenotypes as, 30	control-related risk, 354–357
predictive validity	psychometric common factor model, 252
of genetic testing, 50	psychopathology
of primary motives scales, 90–91	developmental, 191–202, 292–293
pre-exposure risk, 339, 340. See also smoking	indices, 32
initiation and progression risk	physiological basis of, 344
endophenotypes, 340–347	substance use and, 292–293, 304
future research directions, 381–385	psychophysiological responses
initial sensitivity endophenotypes (See initial	to acute stressors, 448–449
sensitivity)	craving, 440
preproenkephalin knockout mice, 160, 422	psychosocial factors
prepulse inhibition (PPI), 378, 403, 430–432	in adolescent nicotine dependence, 195
price-demand curve, 417	in adolescent smoking initiation, 200, 202,
pricing, of tobacco products, 20, 21, 520	211
primary motive scales, as predictors, 90–93	PTC (phenylthiocarbamide) haplotype, 84
prior covariate specification, 570–571	PTEN gene, 269
prior knowledge, ontologies and, 553–562	public health messages, 47
PR (progressive ratio) measures, 417–418, 420,	public health outcomes, 492
454	
probability discounting, 450–451	public settings, smoking in, 4, 20–21 putative endophenotypes, 341
problem behavior theory (PBT), 198, 292–294, 322	putative endopnenotypes, 341
problem use, 196, 198, 263, 294	0
Profile of Mood States, 374–375, 446	
programmed lapse procedure, 454	QSU (Questionnaire on Smoking Urges), 439
progression to smoking, 491	QTL (quantitative trait locus), 258
progressive ratio (PR) measures, 417–418, 420, 454	quantitative genetic models, 512, 522
Project on Human Development in Chicago	quantitative trait locus (QTL), 258
Neighborhoods, 520	quantity smoked measures, 28
"proof of concept" analyses, 493, 494	Questionnaire on Smoking Urges (QSU), 439

R	repeated-measures data, developmental trajectories, 215, 222
racial background, 439. <i>See also</i> African Americans	replication, of gene-nicotine dependence associations, 45–46
racism, associated with genetic information, 47	research findings, communication of, issues in, 45–50
random effects, 216	research limitations
within-class, 220–221, 233	adolescent smoking, 367
rapid-decision context, 358	adult smoking phenotype, 190
Rapid Visual Information Processing (RVIP) task,	ATBC analysis, 497, 504
433	behavioral measures, 104
rat models	cue-induced craving, 456
adolescent nicotine exposure in, 194–195	data, 572
alcohol/nicotine correlation, 369	distal measures, 103
conditioned place preference in, 423	DSM, 103
self-administration of electrical stimulation,	extreme groups, 114–116
421	methodology, 366–368, 376, 383–384
sensitivity in, 364	NHANES III analysis, 503–505
strains, 411 (See also specific strain)	nicotine-dependence measures, 103–104
Reactome, 561	Nicotine Dependence Syndrome Scale, 84
real-time contexts, 526	retrospective reporting, 367
real-time interaction, 524–525	self-report measures, 367
recall, 379	smoking cessation research, 454–455
receptor heterogeneity, 139	statistics modeling, 570
recovery, from acute tolerance, 162	tobacco dependence assessments, 95
regression models, 248, 542, 543, 550–551, 572	TUS-CPS analysis, 500, 504
regular smoking	twin studies, 279–280
definition of, 29	Wisconsin Inventory of Smoking Dependence
genetic factors in, 29–30	Motives, 85–86
reinforcement, 151–152, 155–156, 366–372, 380	residual familial factors (F), 258
alternative, 417	residual item variances, 270
in cognitive control, 349	respiratory sinus arrhythmia (RSA), 361
enhancing, 413	response inhibition, 358–359
genetic influences in, 418	resting EEG activity, 425–427
in initial sensitivity, 368–372	retail tobacco outlets, 520, 521
measurement of, 414–420	retrospective reporting limitations, 367
motivational mechanisms, 410-420	reward, 157–161
secondary, 411, 413	definition of, 349
relapse	for depressed smokers, 352
environmental influences in, 95	future research directions, 454–455
physiological basis of, 588	immediacy over magnitude, 348, 349
predictors of, 77, 413, 434, 442, 444-445	in initial sensitivity, 372–373
time to first cigarette as predictor of, 80, 89	measurement of, 351, 366, 372–373, 380,
relations between entities, 541, 559, 560	423–424
relative measurements, 571	modulation of, 160
reliability. See also test-retest reliability	motivational mechanisms, 420–424
of developmental trajectory research, 234	mu opioid receptor mediation, 419
of nicotine-dependence measures, 26, 79-80	preclinical studies, 157–161, 372–373, 421–423
recall, 26–27	signaling, 350
reliability coefficients, 79	reward and pleasure pathways, 22
religiosity, adolescent smoking and, 198	reward-discounting tasks, 350

rimonabant, 160	intravenous, 146, 152-157, 410-412
risk. See also pre-exposure risk; smoking	oral, 412–413
initiation and progression risk	self-control, in children, 344
age-specific, measurement of, 35	self-insuring firms, 49
approach-related, 339, 346-349, 362	self-report measures
avoidance-related, 339, 351-354, 362	of affect, 446-447
control-related, 339, 354-357, 362	components of, 79
cumulative, measurement of, 35	of craving, 439–440
disease, 541, 550	ecological momentary assessment in, 525
with nicotine dependence, 375–376	limitations of, 367
nicotine metabolism and, 22, 342	SEM. See structural equation modeling
risk factors	semi-Bayes approach, 549
adolescent smoking initiation, 211-212, 232,	semistructured paradigms, 524
350, 433	Sensation Seeking Scale, 377
substance use, 306, 340	sensitivity
risk-taking behavior, by adolescents, 195, 199	of measurements, 341
RNA analysis, 142	modeling, 363–364, 364
rodent models. See also mouse models; rat models;	periodic, 96
specific strain	sensitivity analysis, 570
adolescent nicotine exposure, 194-195	sensory measures, 403
adolescent sensitivity, 371	Sensory Questionnaire, 423
intravenous self-administration, 410	sequential process model, of substance-use
nicotine effects, 368, 435	comorbidity, 304
strain-specific differences, 418	serotonin
RSA (respiratory sinus arrhythmia), 361	association analysis, 268–269
*RS578776 subunit gene, 43	genetic variation in, 343
*RS16969968 subunit gene, 43	metabolism of, monoamine oxidase in, 353
Russell, M.A.H., 24	regulation of, 540
RVIP (Rapid Visual Information Processing) task,	smoking cessation and, 407
433	SES. See socioeconomic status
	seven-point Likert scale, 372
S	shared environment effects
3	in adolescent smoking, 197, 260-261, 264, 280
saccharin, 148, 154, 159	twin studies, 251, 280
S allele, 112, 113	Shiffman-Jarvik Withdrawal Scale, 440
sample size/followup	Shiffman Nicotine Dependence Syndrome Scale.
in ATBC analysis, 497	See Nicotine Dependence Syndrome Scale
for developmental trajectory research, 234	sibling(s)
in TUS-CPS analysis, 498	IBD configurations for, 257–258
saturated model, 547	smoking epochs of, 531
SBML (Systems Biology Markup Language), 561	as smoking predictors, 523
schizophrenia, 428, 443	socialization studies, 517
secondary criteria of nicotine dependence, 76, 77	twin studies extended to, 251, 262, 279, 280
secondary motives scales, 92-93	Sibling Partners Study, 526
secondary reinforcement, 411, 413	sickle cell discrimination, 47
secondhand smoke, 20, 246	side effects
second-stage mixture model, 572	from drinking-water administration, 172
self-administration	from intravenous administration, 146
ad libitum (ad lib), 415–416, 419	SIFT (Sorting Intolerant From Tolerant)
genetic effects on, 146	procedure, 554

simultaneous effect of genes, 32-33	delay discounting factor in, 350
single-factor dependence, 79n	demand for, 21
single-factor structure, 81	difficulties of, 97
single-group growth curve model, 219	drugs for, 160
single nucleotide polymorphism (SNP)	failures in, 44–45
candidate gene variants, 25	FTND predictions of, 80
disease association with, 544	future research directions, 454
genotyping, 43, 257–259	gender differences in, 38
nonsynonymous coding, 554	heritability in, 406
as reflection of underlying effects, 546	monoamine oxidase decrease during, 351
relationships over candidate genes, 545	research limitations in, 454–455
relevance of, 570	serotonin pathway and, 407
in whole-genome research, 4	subthreshold pretreatments, 162
situational dependence, 27	success predictors, 81, 89, 413, 434
six-class solution, example of, 227–228	symptoms of, 447
skin conductance, 354, 377-378	tailored, 48
skin temperature, 440	smoking index variable, 30
<i>SLC6A3</i> gene, 198	Smoking in Families Study (SMOFAM), 267
SLC6A4 gene, 32, 101, 112, 113	smoking initiation, 31, 42
sleep problems, in children, 357	adolescent (See adolescent smoking initiation)
slope	assessment of, age effects in, 279, 322
distribution of, 219	definition of, 29
factor loading and, 275–276	gender differences in, 267
in latent growth curve models, 254, 306, 310	linkage analysis of, 267
129S6 mice, 430	versus persistence, 406
SMOFAM (Smoking in Families Study), 267	smoking initiation and progression risk, 346, 491
smoke-free laws, 520	See also pre-exposure risk
smoke-free settings, 20, 30, 523	approach-related, 346–349
smokeless tobacco, 147	avoidance-related, 351–353
smokers, characteristics of, 22	control-related, 354–357
smoking	endophenotypic measures, 349–351, 353–354,
bans on, 99	357–362
decline in, 20	future research directions, 362–363
developmental phenotypes (See adolescent	smoking level
developmental trajectories)	measurement of, example of, 224-225
first experience with (See initial sensitivity)	substance-use comorbidity and, 308, 322
frequency of, 369-371, 413, 420	smoking pattern, factor analysis of, 265
during illness, 79, 80	smoking persistence, 29, 30, 406
nicotine dependence compared with, 87	definition of, 29
quantitative genetic model and, 512	early-onset smokers' risk for, 200, 212-213,
status, 28	230–231
transition levels, 42–43, 488–490	smoking topography devices, 415, 418
smoking cessation	SNP. See single nucleotide polymorphism
age-related changes in, 170	social context, 509, 510–511
barriers to, 4–5, 46	adolescent smoking, 193, 198
CHRNB2 gene in, 407	behavioral genetics in, 514-518
commercial testing, 50	future research directions, 527–532
comparison groups changes, 493	proximal measures of, 518-527
data sets in, 493–494, 494	rationale for, 511–514
definition of, 492	substance use, 294–295

social development model, 293	conditioned place preference, 158
socioeconomic status (SES)	DNA markers, 151
adolescent smoking and, 232	five choice serial reaction time task, 432–433
distal to proximal influence, 519–522	genetic, 150
of hard-core smokers, 35	mouse models, 153–154, 164–165, 412–413
nuanced approaches to, 519–520	nicotine effects of, 135, 161, 169, 418
socioregional influences, 515–516	nicotinic acetylcholine receptors, 172
"softening" of smoking, 193	rat models, 411
software	tolerance, 164
association analysis, 259	unraveling of, 142
item response theory, 270	strain surveys, 422
linkage analysis, 258	stress, 351
ontology, 561, 562	as influence, 100
Sorting Intolerant From Tolerant (SIFT)	influences on, 36
procedure, 554	neuroendocrine response to, 354
SourceForge Web site, 562	response mediators, 143
species-specific responses, 134	Stroop interference task, 379, 440, 451, 452
specific-factor models, of substance use, 306–307,	Stroop paradigm, 113
315–316	structural equation modeling (SEM), 248–249
speed congenics, 151	combined with latent class models, 256
spinal cord minipumps, 163	of developmental trajectories, 215
spouses, socialization effects from, 517	linkage analysis and, 257–258
Sprague-Dawley rats, 411, 431, 432–433	for twin data, 249–257
stage models, developmental trajectories, 233	study participants, selection of, 490–492
startle-probe measures, 113	subcutaneous administration, 147, 172
startle response	subpopulation
as affective response, 447–448	in latent class analysis, 256
in humans, 377	in structural equation modeling, 248–249
increases in, 444	subPSEC (substitution position-specific
prepulse inhibition of, 378, 403, 430–432	evolutionary conservation), 554
test-retest reliability of, 446–447	substance use. See also specific substance
state laws, against genetic discrimination, 49	adolescent, shared environmental influences
static clustering, versus dynamic clustering,	in, 261
219–220, 232	age-dependent vulnerability to, 195, 198,
statistics	200–201, 212, 233–234, 292–293
approaches to, 543–550	attention deficit hyperactivity disorder in,
combining genetic studies with, 248	356
developmental phenotypes, 214–231	common-vulnerability model, 291-294, 306,
modeling, 248–259, 570	315–316
ontological knowledge in, 572	dopamine in, 410, 588
ST/b inbred mice, 154, 155, 412–413	early pleasurable use, 374
stem cells, 151	environmental factors influencing, 294-295
Sternberg Memory Task, 379, 436–437	interpersonal dynamics in, 522
stigma, nicotine dependence as, 46–47	Iowa gambling task as predictor, 350
stochastic variable selection	modeling of, 43
hierarchical modeling and, 547-548, 572, 573	nasal spray non-response, 377
model selection with, 549–550, 551–552	novelty seeking in, 292–293, 348–349
stop-go task, 359	prevention of, research approaches, 294–295
strain-specific differences	risk factors for, 340
aging, 170	specific-factor models, 306–307, 315–316

substance-use comorbidity, 289–325	diagnostic tools, 81
association between smoking trajectories and,	event-related potential, 429
296–298	mood effects tests, 375
empirical examples of, 307-323, 496, 502	nicotine-dependence measures, 26–27, 29
future research directions, 323-324	prepulse inhibition startle response, 431
gender differences in, 304	thapsigargin, 167
gene-environment interactions in, 320	theta rhythm (slow-wave activity), 362
importance of studying, 290–292	TH (tyrosine hydroxylase) gene, 198–199, 269
informative phenotypes for, 316–318, 321, 324	threshold
literature review, 295–296	factor loading and, 275–276
mechanisms underlying, 291–292	as "smoker," 42
methodological issues, 321–323	time to first cigarette (TTFC)
modeling, 298–307	during adolescence, as indicator of adult
risk factors, 306	nicotine dependence, 230–231
two-stage models of, 323	correlations with, 90
substance-use disorders	factor analysis of, 88–89
common <i>versus</i> specific liability to, 292–295	nicotine metabolism association, 34
	as physical dependence measure, 79
diagnosis of, 291	as quitting predictor, 80
shared genetic risk for, 294	time to maximum tolerance, 162
substitution position-specific evolutionary	tissue levels of nicotine, <i>versus</i> plasma levels,
conservation (subPSEC), 554	145
subthreshold depression, 352	Tobacco Craving Questionnaire, 440
sucrose, 154–155, 412	tobacco dependence, versus nicotine dependence,
support interval, 40, 42	75
Surgeon General's Report (1964), 24	tobacco industry, 24
Surgeon General's Report (1979), 24	tobacco policies, 7, 20
susceptibility loci mapping, 24. See also candidate	effect on adolescent smoking, 193
gene studies	substance use policies and, 294–295
sweat gland activity, 440 Swedish Twin Registry, 515	tobacco settlement dollars, 4
	tobacco use. See also nicotine
Swiss mice, 435	frequency of, 4, 21, 369-371, 413, 420
Swiss-Webster mice, 158, 161	history of, 27–28
switching, between trajectory groups, 255–256	smoke compounds, 588
systems biology, genetic association studies and,	Tobacco Use Supplement, U.S. Census Bureau'
554, 556–559 Suntana Biology Maylyun Languago (SBML) 561	Current Population Survey (TUS-CPS), 487,
Systems Biology Markup Language (SBML), 561	494, 498–500
	tolerance, 162–168
T	genetic effects on, 146
•	to repeated doses, 158
targeted treatment, 21–22	Tolerance subscale, 90–91
task performance, with nicotine deprivation,	<i>TPH</i> gene, 269
436	trace fear conditioning, 435
Taste/Sensory Processes subscale, 84	transcription factor CREB, 160–161, 422
taxon, nicotine dependence as, 93–94	transcription factor Fosb, 161
team sports, as protective factor, 343	transcription levels, alterations in, 40
temperament-based model, 343–344	transdisciplinary framework, 521
test performance, definition of, 75	Transdisciplinary Tobacco Use Research Center
test-retest reliability	(TTURC), 89, 521, 526
acoustic startle reflex, 446–447	transitional endophenotypes, 107, 108, 200, 233
ad lib smoking, 415	translational validation, 172

TRPC7 gene, 43	V
129T2/SvEmsJ mice, 431	V
TTFC. See time to first cigarette	validity
TTURC (Transdisciplinary Tobacco Use Research	of developmental trajectory research, 234
Center), 89, 521, 526	discriminative, 77
TUS-CPS (Tobacco Use Supplement, U.S. Census	predictive, 50, 90–91
Bureau's Current Population Survey), 487,	variables
494, 498–500	independent, 495–496, 498–499
twin studies. See also specific study	observable, 77
adolescent smoking, 196, 259–262	ontologies to represent knowledge about,
affective regulation, 446–447	558–559
cross-substance concordance, 317, 319-320	perturbations from, 554
CYP2A6 effect, 40	in structural equation modeling, 248
delay aversion, 351	variance
ecological momentary assessment, 527	in latent growth curve models, 254
epigenetic regulation, 36	partitioning, 270, 280
equal environments assumption in, 516-517	ventral tegmental area (VTA), 152–153, 588
event-related potential, 428, 429	verapamil, 167, 168
extended family, 250–252, 262, 279, 280	VET (Vietnam Era Twin) Registry, 263–264
factor analysis, 88–89	videotaped paradigms, 524
factor mixture models, 256	Vietnam Era Twin (VET) Registry, 263–264
genomic studies, 589	vigilance, 432–434
heritability of dependence, 28–29, 86, 342,	Virginia 30,000 Study, 262
406	Virginia Twin Registry, 264, 269–279
impulsivity, 451	measures, 269–270
limitations of, 279–280	methods, 270
multivariate, 252–253, 262–263	results, 270–276
P300 amplitude, 360	study conclusions, 276–279
prepulse inhibition startle response, 431	subjects, 269
resting EEG, 426	Virginia Twin Study of Adolescent Behavioral
smoking habits, 22, 24	Development, 260
smoking initiation, 31	visuospatial attention, 434
structural equation modeling, 249–257	VLMR LR (Vuong-Lo-Mendell-Rubin likelihood
substance-use comorbidity, 307–323, 324	ratio) test, 310, 312
tobacco use history, 38–39	VTA (ventral tegmental area), 152–153, 588
working memory, 437	vulnerability
two-factor structure, 81	of adolescents, 343
two-stage genetic models, initiation versus	differences in, 22
progression, 323	modeling, 363–364
tyrosine hydroxylase (TH) gene, 198–199, 269	protective factors, 87, 114
	Vuong-Lo-Mendell-Rubin likelihood ratio
11	(VLMR LR) test, 310, 312
U	
univariate analysis, substance-use comorbidity, 322	W
unmeasured genetic factors, 4, 511	Wald test, 544
upregulation, of nicotinic receptors, 135, 144–	watershed model, 78-79, 81-82
145, 588	WCST (Wisconsin Card Sorting Test), 378, 436
U.S. Task Force on Community Preventive	Wechsler Adult Intelligence Test-Revised, 433

Services, 4

whole-environment scan, 530

whole-genome association studies, 4 whole-genome linkage scans, 589 whole-genome quantitative transcript screening, wild-type mice conditioned place preference in, 159, 160, 161, in CREB activation studies, 160 in nicotine reinforcement, 159 WinBUGS, 549 Wisconsin Card Sorting Test (WCST), 378, 436 Wisconsin Inventory of Smoking Dependence Motives (WISDM), 84-86, 85 as assessment tool, 405 subscales of, 90–93 Wistar rats, 425, 431, 449 withdrawal symptoms in adolescents, 192, 194 cellular changes, 147 environmental influences in, 95

heritability of, 30

negative affect, 443
physical dependence inference from, 77
physiology of, 588
severity of, 97, 413, 447
support interval for, 40
within-class variability, estimation of, 220–221, 233
working memory, 434–438
World Health Organization, 80–81
World Mental Health Survey Initiative, 81

XSEM (extended structural equation modeling), 249

Z

zygosity, function of, in substance-use phenotypes, 316–317, 320