

Fast Fourier Transformation (FFT) How-to implement a FFT in Real Time

Rainer Nitsche / February 2024

Introduction

General objectives of the discrete fourier transformation

- Numerisch effiziente Methode zur Berechnung einer diskreten Fouriertransformation
- Mein FFT Arbeitsverzeichnis für die Simulationen liegt
 C:/workspace/1027_pJoint_squeakVEAE/SCALEXIO/myDevelop
 bzw. FFT4dSpace.slx und Postprocessing VisFFTsimResults.m

FESTO

This is a text in second frame. For the sake of showing an example. See also [1]

The goal is to analyze to following signal:

$$A(t) = c + a_1 \sin(\omega t) + a_2 \cos(\omega t)$$
 (1)

4□ > 4□ > 4≡ > 4≡ > 900

Some Remarks on FFT

FESTO

This is a text in second frame. For the sake of showing an example. See also [1]

- Good youtube videos from Steve Brunton about Fourier Transformations: Link
- Good help from dSpace home page...

The goal is to analyze to following signal:

$$A(t) = c + a_1 \sin(\omega t) + a_2 \cos(\omega t)$$
 (1)

Some Remarks on FFT

FESTO

This is a text in second frame. For the sake of showing an example. See also [1]

- Good youtube videos from Steve Brunton about Fourier Transformations: Link
- Good help from dSpace home page...
- Simulink Implementations
- Plotting results as post processing tool

The goal is to analyze to following signal:

$$|A(t) = c + a_1 \sin(\omega t) + a_2 \cos(\omega t)|$$
 (1)

Some Remarks on FFT

FESTO

This is a text in second frame. For the sake of showing an example. See also [1]

- Good youtube videos from Steve Brunton about Fourier Transformations: Link
- Good help from dSpace home page...
- Simulink Implementations
- Plotting results as post processing tool
- Text visible on slide 4

The goal is to analyze to following signal:

$$A(t) = c + a_1 \sin(\omega t) + a_2 \cos(\omega t)$$
 (1)

A motivating Example for SMC

FESTO

Example

Sliding mode of the system [2]:

$$\ddot{x} = \sin(3t) + u \tag{2}$$

with sliding surface

$$s = c\dot{x} + x \tag{3}$$

with control law

$$u = -M\operatorname{sgn}(s) \tag{4}$$

Simulation results for M = 3 and $c = 1 \text{ s}^{-1}$

If the system is in sliding mode, *i. e.* s=0, the dynamics is $s=\dot{x}+x=0$ and therefore indepentend of system parameters or disturbance \leadsto robust !

Simple Example

Sample frame title

FESTO

In this slide, some important text will be highlighted because it's important. Please, don't abuse it.

Remark

Sample text

Important theorem

Sample text in red box

Examples

Sample text in green box. The title of the block is "Examples".

Introduction

FESTO

- [1] S.L. Brunton and J.N. Kutz. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2022. ISBN: 9781009098489. URL: https://books.google.de/books?id=rxNkEAAAQBAJ.
- [2] Vadim I. Utkin et al. *Road map for sliding mode control design*. 6330 Cham, Switzerland: Springer, 2020. ISBN: 978-3030417086. DOI: 10.1007/978-3-030-41709-3.