TSKS14 Multiple Antenna Communications

Lecture 11, 2020

Emil Björnson

Outline of this lecture

- Power control
 - Purpose and operating points
 - Structure of the SINR
- Max-min fairness power control
 - Uplink
 - Downlink
- Simulation example

Single-cell effective SINRs

• Capacity lower bound for user *k*

$$\log_2(1 + SINR_k)$$

where the "effective" SINR is

$$SINR_k = \frac{a_k \eta_k}{1 + \sum_{k'=1}^K b_k^{k'} \eta_{k'}}$$

• With MR:

Uplink	Downlink
$a_k = M \rho_{ul} \gamma_k$ $b_k^{k'} = \rho_{ul} \beta_{k'}$	$a_k = M \rho_{dl} \gamma_k$ $b_k^{k'} = \rho_{dl} \beta_k$

Same structure with other methods than MR

Different channel conditions

Nature and hardware setup determine the values of

$$a_k = M\rho_{ul}\gamma_k, \qquad b_k^{k'} = \rho_{ul}\beta_{k'}$$

• We can compensate by selecting η_1, \dots, η_K

Power control

- Effective SINRs depend on $\eta_1, ..., \eta_K$
 - Can be selected to achieve different operating points

Max-min fairness power control

- Maximize the minimum SINR (minimum rate)
 - Every user get the same performance (Prove by contradiction!)
- Power constraint
 - Uplink:

$$0 \le \eta_k \le 1, \qquad k = 1, \dots, K$$

• Downlink:

$$\sum_{k=1}^{K} \eta_k \le 1, \qquad \eta_k \ge 0, \qquad k = 1, ..., K$$

Formulation as an optimization problem

maximize \overline{SINR} with respect to $\eta_1, ..., \eta_K, \overline{SINR}$ subject to $\overline{SINR}_k \geq \overline{SINR}_k = 1, ..., K$ Power constraints

- Different solutions in uplink and downlink, since
 - SINR expressions are different
 - Power constraints are different

Uplink max-min fairness with MR

• Optimal power-control coefficients:

$$\eta_k = \frac{\min_{k'} \gamma_{k'}}{\gamma_k}$$

$$SINR_k = \frac{M\rho_{ul}\gamma_k\eta_k}{1 + \sum_{k'=1}^K \rho_{ul}\beta_{k'}\eta_{k'}}$$

• Max-min SINR:

$$\overline{\text{SINR}} = \frac{M\rho_{ul}}{\frac{1}{\min_{k'} \gamma_{k'}} + \rho_{ul} \sum_{k=1}^{K} \frac{\beta_k}{\gamma_k}}$$

Downlink max-min fairness with MR

 $SINR_k = \frac{M\rho_{dl}\gamma_k\eta_k}{1 + \rho_{dl}\beta_k \sum_{k'=1}^K \eta_{k'}}$

• Optimal power-control coefficients:

$$\eta_k = \frac{1 + \rho_{dl}\beta_k}{\rho_{dl}\gamma_k \left(\frac{1}{\rho_{dl}}\sum_{k'=1}^K \frac{1}{\gamma_{k'}} + \sum_{k'=1}^K \frac{\beta_{k'}}{\gamma_{k'}}\right)}$$

• Max-min SINR:

$$\overline{\text{SINR}} = \frac{M\rho_{dl}}{\sum_{k=1}^{K} \frac{1}{\gamma_k} + \rho_{dl} \sum_{k=1}^{K} \frac{\beta_k}{\gamma_k}}$$

Insights from max-min power control

Optimal power control

Uplink:

$$\eta_k = \frac{\min_{k'} \gamma_{k'}}{\gamma_k}$$

Downlink:

$$\eta_k = \frac{1 + \rho_{dl} \beta_k}{\rho_{dl} \gamma_k \left(\sum_{k'=1}^K \frac{1}{\gamma_{k'}} + \rho_{dl} \sum_{k'=1}^K \frac{\beta_{k'}}{\gamma_{k'}} \right)}$$

- Inversely proportional to $\gamma_k = \frac{\tau_p \rho_{ul} \beta_k^2}{1 + \tau_p \rho_{ul} \beta_k}$ (approximately)
- Inversely proportional to β_k (approximately)
- Spend more power on the weakest users

Who performs the optimization?

- Power-control coefficients depend on
 - Channel conditions: β_k , γ_k of all users
 - Maximum transmit power ρ_{ul} , ρ_{dl}
- Easiest to implement at the base station
 - Compute downlink coefficients and use them
 - Compute uplink coefficients and tell user k of η_k
- Update when users have moved or entered/exited

Simulation example: Urban deployment

- Single-cell setup
 - Circular cell with radius 500 m
 - Base station: M = 100 antennas
 - K = 10 uniformly users
- Important properties
 - Independent Rayleigh fading
 - No inter-cell interference
 - Carrier frequency: 2 GHz
 - Bandwidth 20 MHz

Some parameter values

Parameter	Value
Base station antenna gain	0 dBi
User terminal antenna gain	0 dBi
Base station receiver noise figure	7 dB
Terminal receiver noise figure	7 dB
Nominal noise temperature	300 K
Coherence time	1 ms
Coherence bandwidth	200 kHz

Parameter	Value	
Base station antenna height	25 m	
User terminal height	1.5 m	
Path loss model (3GPP): $-25.3 - 37.6 \log_{10} \left(\frac{\text{distance}}{1 \text{ m}}\right)$		
Maximum radiated power at base station	40 W	
Maximum radiated power per user terminal	0.1 W	

- 1 ms x 200 kHz = 200 samples per coherence interval
 - 10 for pilots, 63 for uplink (33%), 127 for downlink (67%)

Uplink signal-to-noise ratio (SNR)

- Users at different locations
 - Cell edge
 - Cell center

Simulation methodology

- 1) Drop K users in the cell
- 2) Compute β_k and γ_k
- 3) Compute power control η_k
- 4) Compute data rates

Case study: Uplink with power control

Case study: Downlink with power control

Summary

- User performance depends on transmit powers
 - Power control must be actively done
- Max-min fairness power control
 - Give everyone the same rate, maximize the common value
 - Power control coefficients can be computed in closed form
- Insight from simulation
 - Uplink is particularly affected by power control

End of Lecture 11

TSKS14 Multiple Antenna Communications

Case study: Fixed broadband access

- Deliver high data rates to homes
 - 7.5 homes/km²
 - 3000 homes within radius 11.3 km
 - Downlink: 20 Mb/s, Uplink: 10 Mb/s
- Deploy a "large" base station in center
 - No inter-cell interference
 - Carrier frequency: 800 MHz
 - Bandwidth 20 MHz

Case study: Some parameters

Parameter	Value
Base station antenna gain	0 dBi
Terminal antenna gain	6 dBi
Base station receiver noise figure	9 dB
Terminal receiver noise figure	9 dB
Nominal noise temperature	300 K
Terminal mobility	Stationary
Coherence time	50 ms
Coherence bandwidth	300 kHz

Parameter	Value
Shadow fading standard deviation	8 dB
Shadow fading diversity	best of two
Path loss model	Hata
Base station antenna height	32 m
Terminal antenna height	5 m
Total radiated power per base station	10 W
Radiated power per terminal	1 W

- 50 ms x 300 kHz = 15000 samples per coherence interval
 - 3000 for pilots, 4000 for uplink, 8000 for downlink

Case study: Uplink with power control

Required number of base station antennas, M

Figure 6.1 from Fundamentals of Massive MIMO

Deploying thousands of antennas

• Linköping Water Tower:

Deploy antennas on a cylinder

Case study: Downlink with power control

Figure 6.2 from Fundamentals of Massive MIMO

Case study: Power control coefficients

Figure 6.3 from Fundamentals of Massive MIMO