Analysis of Differential Gene Expression on Liver Hepatocellular Carcinoma

Mariona Torrens Ariadna Marín Alejandro Varela

Introduction

- Hepatocellular carcinoma is the most common primary type of liver cancer.
- It is also the second leading cause of cancer deaths worldwide.
- Risk factors:
 - cirrhosis
 - chronic hepatitis B or C.
 - diabetes and obesity
- Cure only possible in early stages, so medical treatment is usually palliative

• Need for biomarkers that detect it sooner → motivation of this project.

Data source:

-We used the Liver Hepatocellular Carcinoma set provided at The Cancer Genome Atlas (TCGA) Data Portal

Data manipulation and normalization:

- -SummarizedExperiment package to manipulate gene expression data
- -edgeR package to normalize the raw reads
- -log₂ scale to stabilize variability. Prior counts of 0.5.

Data filtering:

Paired data and coverage greater than 40 million reads per sample.

- -Initial data set of 30 normal and 30 tumour.
- -One subject was eliminated due to intensity-dependent biases (detected with MA-plot)
- -Another subject was discarded because the tumour sample clustered with normal samples in hierarchical clustering

Batch analysis:

-Batch effect detection was carried out using multidimensional scaling (plotMDS function from edgeR package). We did not detect any batch effect.

Linear regression analysis:

- -We looked for DE genes using a linear regression model which accounted for paired data design.
- -Surrogate variable analysis was employed to correct for unknown confounding factors, increasing statistical power.

- -Adjustment for mean-variance relationship was also carried out (voom function).
- -limma and sva packages were used.

Functional annotation and enrichment:

- -Functional annotation of genes to GO terms → GOstats package.
- -Enriched GO terms were extracted and ranked according to p-value and Odds ratio.
- -Redundancies due to hierarchical GO's were filtered
- -Gene sets with less than 5 genes were filtered out.

Gene Set Enrichment Analysis:

- -We used the GSVAdata and GSEABase packages
- -We studied the pathways from KEGG, REACTOME and BIOCARTA subcollections.
- -The analysis was conducted by z-score test and by Chi Squared Test (using Category)
- -Sets with significant adjusted p-values in at least one of the tests were considered as differently enriched pathways in HCC.
- -Gene sets with less than 10 genes or more than 200 were not considered.

Significance level:

-Differential expression of genes and sets was considered significant for p-values under 0.05, adjusted using FDR correction.

Data Availability:

-GitHub: alejandrovr/Hepatocarcinoma-RNA-seq-analysis

• DE genes:

-Average p-values corresponding to genes with increased transcription are smaller than those of genes with decreased expression.

-It is important to note that the genes with highest absolute FC are not the ones with smallest p-value

	FC < -2	FC > 2
# DE genes	335	85

Top 10 DE genes

• Sexual dimorphism in DE genes in hepatocellular carcinoma:

- -Only half of these genes are differentially expressed in both men and women.
- -Moreover, the number of male-specific genes is approximately three-fold that of female-specific genes

GO terms:

- -Most of them are related to normal liver function.
- -Some of them (not all included here) are cancer-related.

GO term	p-value	odds ratio	exp counts	counts	size	function
GO:0019373	0.00	Inf	7.22	12	12	epoxygenase P450 pathway
GO:0003094	0.01	Inf	6.02	10	10	glomerular filtration
GO:0009303	0.01	Inf	6.02	10	10	rRNA transcription
GO:0071941	0.01	Inf	6.02	10	10	nitrogen cycle metabolic process
GO:0006699	0.00	10.63	10.23	16	17	bile acid biosynthetic process
GO:0032369	0.01	8.63	8.42	13	14	negative regulation of lipid transport
GO:0042738	0.01	8.63	8.42	13	14	exogenous drug catabolic process
GO:1902622	0.01	8.63	8.42	13	14	regulation of neutrophil migration
GO:0003016	0.02	7.30	7.22	11	12	respiratory system process
GO:0001977	0.03	6.63	6.62	10	11	renal system process, regulation of blood volume
GO:0035640	0.03	6.63	6.62	10	11	exploration behavior
GO:0045909	0.03	6.63	6.62	10	11	positive regulation of vasodilation

Gene set analysis:

- -These sets refer mostly to specific cell cycle transitions, mitosis and pathways involved in differentiation (such as Notch).
- -All ten sets correspond to biological functions that are up-regulated in tumour.

Gene set	DB	num.
Cell cycle	KEGG	128
Notch signaling pathway	KEGG	47
Pathogenic <i>E. coli</i> infection	KEGG	59
Hypertrophic cardiomyopathy	KEGG	85
Cell cycle mitotic	Reactome	306
Centrosome maturation	Reactome	72
G2-M checkpoints	Reactome	43
G2-M transition	Reactome	84
Loss NLM mit. centrosomes	Reactome	62
S phase	Reactome	103

Discussion

- Through examination of individual genes, we have found that they are involved in functions related to cell cycle control, migration and calcium signaling.
- Results from GSEA show similar functions enriched, with an emphasis in progression of the cell cycle, from signaling pathways to phase transitions.
- On the other hand, GO term enrichment of differentially expressed genes highlights alterations of the biological functions that are carried out by a healthy liver, such as lipid metabolism and bile acid production, and, therefore, are specific to HCC
 - and other liver malignancies
- Our analysis has also shown differences in gene expression between male and female HCC samples.
- These same conclusions have been often reported in the literature.