#### CS495 Optimiztaion

Waleed A. Yousef, Ph.D.,

Human Computer Interaction Lab., Computer Science Department, Faculty of Computers and Information, Helwan University, Egypt.

March 24, 2019

#### Lectures follow: Boyd and Vandenberghe (2004)



Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University Press.

Book and Stanford course: http://web.stanford.edu/ ~boyd/cvxbook/

#### Some examples from: Chong and Zak (2013)



Chong, E. K., & Zak, S. (2001). An introduction to optimization: Wiley-Interscience.

## **Course Objectives**

- Developing rigorous mathematical treatment for mathematical optimization.
- Building intuition, in particular to practical problems.
- Developing computer practice to using optimization SW.

#### **Prerequisites**

- 1. Discrete Mathematics
- 2. Calculus (single variable)
- 3. Calculus (multi variable)
- 4. Linear Algebra
- 5. Some Real Analysis and Topology



## Chapter 1 Introduction Snapshot on Optimization

| (          | C <b>o</b> 1               | ntents                               |          |            | 2.3<br>2.4<br>2.5<br>2.6 | 2.2.4       Polyhedra         2.2.5       The positive semidefinite cone         Operations that preserve convexity         Generalized inequalities         Separating and supporting hyperplanes |          |
|------------|----------------------------|--------------------------------------|----------|------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|            |                            |                                      |          | 3          |                          | functions                                                                                                                                                                                          | 46       |
|            |                            |                                      |          |            | 3.1                      |                                                                                                                                                                                                    | 47       |
|            |                            |                                      |          |            | 3.2                      | Operations that preserve convexity                                                                                                                                                                 |          |
|            |                            |                                      |          |            | 3.3                      | The conjugate function                                                                                                                                                                             |          |
| Contents v |                            |                                      |          | 3.4<br>3.5 | Quasiconvex functions    | 50<br>51                                                                                                                                                                                           |          |
|            |                            |                                      |          | 3.5        | U U                      | 52                                                                                                                                                                                                 |          |
|            | ÷.                         |                                      |          |            | 3.0                      | Convexity with respect to generalized mequalities                                                                                                                                                  | 32       |
| 1          | 1.1                        | duction  Mathematical Optimization   | 1<br>2   |            |                          |                                                                                                                                                                                                    |          |
|            | 1.1                        | 1.1.1 Motivation and Applications    | 4        | 4          |                          | optimization problems                                                                                                                                                                              | 67       |
|            |                            | 1.1.2 Solving Optimization Problems  | 6        |            | 4.1                      |                                                                                                                                                                                                    | 68       |
|            | 1.2                        | Least-Squares and Linear Programming | 7        |            | 4.2                      |                                                                                                                                                                                                    | 69       |
|            |                            | 1.2.1 Least-Squares Problems         | 7        |            | 4.3                      | <u></u>                                                                                                                                                                                            | 70       |
|            |                            | 1.2.2 Linear Programming             | 8        |            | 4.4<br>4.5               |                                                                                                                                                                                                    | 71<br>72 |
|            | 1.3                        | Convex Optimization                  | 9        |            | 4.6                      | 1 0 0                                                                                                                                                                                              | 73       |
|            | 1.4                        | Nonlinear Optimization               | 10       |            | 4.7                      | Vector optimization                                                                                                                                                                                |          |
|            |                            |                                      |          |            | 1.1                      | vector optimization                                                                                                                                                                                | ••       |
|            | mi.                        |                                      |          | 5          | Duality                  |                                                                                                                                                                                                    | 89       |
| I          | In                         | <b>eory</b>                          | 12       |            | 5.1                      | 8 . 8                                                                                                                                                                                              | 90       |
|            |                            |                                      |          |            | 5.2                      | 0 0 1                                                                                                                                                                                              | 91       |
| 2          |                            | rex sets                             | 13       |            | 5.3                      | •                                                                                                                                                                                                  | 92       |
|            | 2.1 Affine and convex sets |                                      |          |            | 5.4                      |                                                                                                                                                                                                    | 93       |
|            |                            | 2.1.1 Lines and line segments        | 14       |            | 5.5                      | -1                                                                                                                                                                                                 | 94       |
|            |                            | 2.1.2 Affine sets                    | 15       |            | 5.6<br>5.7               |                                                                                                                                                                                                    | 95<br>96 |
|            |                            | 2.1.4 Convex sets                    | 19<br>21 |            | 5. <i>1</i><br>5.8       |                                                                                                                                                                                                    | 96<br>97 |
|            |                            | 2.1.4 Convex sets                    | 21       |            | 5.6<br>5.9               |                                                                                                                                                                                                    | 98       |
|            |                            | 2.1.0                                | ~~       | 1          | 0.0                      | Generalized inequalities                                                                                                                                                                           | 50       |

2.2

Convright © 2019 2019 Waleed A Yousef All Rights Reserved

| II | App                                           | plications 109                                                                                                                                                                                                                                                                                                                                                                       | III   | Algo                                                         | rithms                                                                                                                                                                                                                             | 191                                                |
|----|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 6  | Appro<br>6.1<br>6.2<br>6.3<br>6.4<br>6.5      | eximation and fitting         110           Norm approximation         111           Least-norm problems         112           Regularized approximation         113           Robust approximation         114           Function fitting and interpolation         115                                                                                                             | 9     | Uncons<br>9.1<br>9.2<br>9.3<br>9.4<br>9.5<br>9.6<br>9.7      | Strained minimization Unconstrained minimization Descent methods Gradient descent method Steepest descent method Newton's method Self-concordance Implementation                                                                   | . 194<br>. 195<br>. 196<br>. 197<br>. 198          |
| 7  | 7.1<br>7.2<br>7.3<br>7.4<br>7.5               | tical estimation         142           Parametric distribution estimation         143           Nonparametric distribution estimation         144           Optimal detector design and hypothesis testing         145           Chebyshev and Chernoff bounds         146           Experiment design         147                                                                   | 10    | Equalit<br>10.1<br>10.2<br>10.3<br>10.4                      | y constrained minimization  Equality constrained minimization problems                                                                                                                                                             | . 228<br>. 229                                     |
|    |                                               |                                                                                                                                                                                                                                                                                                                                                                                      | 11    | Interior                                                     | r-point methods Inequality constrained minimization problems                                                                                                                                                                       | 239                                                |
| 8  | 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7 | etric problems         160           Projection on a set         161           Distance between sets         162           Euclidean distance and angle problems         163           Extremal volume ellipsoids         164           Centering         165           Classification         166           Placement and location         167           Floor planning         168 | Bibli | 11.1<br>11.2<br>11.3<br>11.4<br>11.5<br>11.6<br>11.7<br>11.8 | Logarithmic barrier function and central path The barrier method Feasibility and phase I methods Complexity analysis via self-concordance Problems with generalized inequalities Primal-dual interior-point methods Implementation | . 241<br>. 242<br>. 243<br>. 244<br>. 245<br>. 246 |

## Chapter 1

## Introduction

#### **Mathematical Optimization** 1.1

**Definition 1** A mathematical optimization problem  $| \bullet |$  minimize  $f_0 \equiv \text{maximize} - f_0$ . or just optimization problem, has the form (Boyd and Vandenberghe, 2004):

minimize 
$$f_0(x)$$
  
subject to:  $f_i(x) \le 0$ ,  $i = 1, ..., m$   
 $h_i(x) = 0$ ,  $i = 1, ..., p$ ,  
 $x = (x_1, ..., x_n) \in \mathbf{R}^n$ , (optimization variable)  
 $f_0 : \mathbf{R}^n \mapsto \mathbf{R}$ , (objective (cost/utility) function)  
 $f_i : \mathbf{R}^n \mapsto \mathbf{R}$ , (inequality constraints (functions))  
 $h_i : \mathbf{R}^n \mapsto \mathbf{R}$ , (equality constraints (functions))  
 $\mathcal{D} : \bigcap_{i=1}^m \mathbf{dom} f_i \cap \bigcap_{i=1}^p \mathbf{dom} h_i$  (feasible set)  
 $= \{x \mid x \in \mathbf{R}^n \land f_i(x) \le 0 \land h_i(x) = 0\}$   
 $x^* : \{x \mid x \in \mathcal{D} \land f_0(x) \le f_0(z) \ \forall z \in \mathcal{D}\}$  (solution)

- $f_i \le 0 \equiv -f_i \ge 0$ .
- 0s can be replaced of course by constants  $b_i$ ,  $c_i$
- unconstrained problem when m = p = 0.

#### Example 2:

minimize subject to:  $x \le 2 \land x \ge 1$ .



 $x^* = 1$ .

If the constraints are relaxed, then  $x^* = 0$ .



minimize  $f_0(x)$ 

subject to:  $f_i(x) \le 0, \qquad i = 1, \dots, m$ 

$$h_i(x) = 0, i = 1, \dots, p,$$

 $x = (x_1, \dots, x_n) \in \mathbf{R}^n$ , (optimization variable)

 $f_0: \mathbf{R}^n \mapsto \mathbf{R}$ , (objective (cost/utility) function)

 $f_i: \mathbf{R}^n \mapsto \mathbf{R}$ , (inequality constraints (functions))  $h_i: \mathbf{R}^n \to \mathbf{R},$  (equality constraints (functions))

$$\mathcal{D}: \bigcap_{i=1}^{m} \mathbf{dom} \, f_i \, \cap \bigcap_{i=1}^{p} \mathbf{dom} \, h_i \qquad (feasible \, set)$$

$$= \left\{ x \mid x \in \mathbf{R}^n \land f_i(x) \le 0 \land h_i(x) = 0 \right\}$$

 $x^*: \{x \mid x \in \mathcal{D} \land f_0(x) \le f_0(z) \ \forall z \in \mathcal{D}\}$  (solution)  $\mid x^* = (1/2, 3/2)'$ . (Let's see animation)

**Example 3** (*Chong and Zak, 2013, Ex. 20.1, P. 454*):

minimize 
$$(x_1 - 1)^2 + x_2 - 2$$

subject to: 
$$x_2 - x_1 = 1$$

$$x_1 + x_2 \le 2.$$

No global minimizer:  $\partial z/\partial x_2 = 1 \neq 0$ . However,  $z|_{(x_2-x_1=1)} = (x_1-1)^2 + (x_1-1)$ , which attains a minima at  $x_1 = 1/2$ .



#### 1.1.1 Motivation and Applications

cost (or utility)

- optimization problem is an abstraction of how to make "best" possible choice of  $x \in \mathbb{R}^n$ .
- *constrains* represent trim requirements or specifications that limit the possible choices.
- *objective function* represents the *cost* to minimize or the *utility* to maximize for each x.

#### **Examples:**

 $f_0$ 

sessment.

| <br>Any problem                               | Portfolio Optimization                | Device Sizing                         | Data Science              |
|-----------------------------------------------|---------------------------------------|---------------------------------------|---------------------------|
| <br>choice made firm requirements /conditions | investment in capitals overall budget | dimensions<br>engineering constraints | parameters<br>regularizer |

• Amazing variety of practical problems. In particular, data science: two sub-fields: construction and as-

overall risk

- The construction of: Least Mean Square (LMS), Logistic Regression (LR), Support Vector Machines (SVM), Neural Networks(NN), Deep Neural Networks (DNN), etc.
  - Managarah di managarah di malangarah di managarah di mana
- Many techniques are for solving the optimization problem:
  Closed form solutions: convex optimization problems
  - Numerical solutions: Newton's methods, Gradient methods, Gradient descent, etc.
  - "Intelligent" methods: particle swarm optimization, genetic algorithms, etc.

error

power consumption

#### **Example 4 (Machine Learning: construction)**:

Let's suppose that the best regression function is  $Y = \beta_0 + \beta_1 X$ , then for the training dataset  $(x_i, y_i)$  we need to minimize the MSE.

- Half of ML field is construction: NN, SVM, etc.
- In DNN it is an optimization problem of millions of parameters.
- Let's see animation.
- Where are Probability, Statistics, and Linear Algebra here? Let's re-visit the chart.
- Is the optimization problem solvable:
  - closed form? (LSM)
  - numerically and guaranteed? (convex and linear)
  - numerically but not guaranteed? (non-convex):
    - \* numerical algorithms, e.g., GD,
    - \* local optimization,
    - \* heuristics, swarm, and genetics,
    - \* brute-force with exhaustive search

$$\underset{\beta_o,\beta_1}{\text{minimize}} \sum_i (\beta_o + \beta_1 x_i - y_i)^2$$



#### 1.1.2 Solving Optimization Problems

- A solution method for a class of optimization problems is an algorithm that computes a solution.
- Even when the *objective function* and constraints are smooth, e.g., polynomials, the solution is very difficult.
- There are three classes where solutions exist, theory is very well developed, and amazingly found in many practical problems:

 $Linear \subset Quadratic \subset Convex \subset Non-linear (not linear and not known to be convex!)$ 

• For the first three classes, the problem can be solved very reliably in hundreds or thousands of variables!

#### 1.2 Least-Squares and Linear Programming

#### 1.2.1 Least-Squares Problems

A *least-squares* problem is an optimization problem with no constraints (i.e., m = p = 0), and an objective in the form:

minimize 
$$f_0(x) = \sum_{i=1}^k (a_i' x - b_i)^2 = ||A_{k \times n} x_{n \times 1} - b_{k \times 1}||^2$$
.

The solution is given in **closed form** by:

$$x = (A'A)^{-1}A'b$$

- Good algorithms in many SC SW exist; it is a very mature technology.
- Solution time is  $O(n^2k)$ .
- Easily solvable even for hundreds or thousands of variables.
- More on that in the Linear Algebra course.
- Many other problems reduce to typical LS problem:
  - Weighted LS (to emphasize some observations)

$$\underset{x}{\text{minimize}} f_0(x) = \sum_{i=1}^k w_i (a_i' x - b_i)^2.$$

- Regularization (to penalize for over-fitting)

minimize 
$$f_0(x) = \sum_{i=1}^k (a_i' x - b_i)^2 + \rho \sum_{i=1}^n x_j^2$$
.

#### 1.2.2 Linear Programming

A *linear programming* problem is an optimization problem with objective and all constraint functions are linear:

- minimize  $f_0(x) = C'x$ subject to:  $a_i'x \le b_i,$  i = 1, ..., m $h_i'x = q_i,$  i = 1, ..., p,
- No closed form solution as opposed to LS.
  Very robust, reliable, and effective set of methods for numerical solution; e.g., Dantzig's simplex, and interior point.
- Complexity is  $\simeq O(n^2 m)$ .
- Similar to LS, we can solve a problem of thousands of variables.

• Example is *Chebyshev minimization* problem:

- $\min_{x} \operatorname{minimize} f_0(x) = \max_{i=1} |a_i' x b_i|,$
- The objective is different from the LS: minimize the maximum error. Ex:
- After some tricks, requiring familiarity with optimization, it is equivalent to a LP:

#### 1.3 Convex Optimization

A *convex optimization* problem is an optimization problem with objective and all constraint function are convex:

$$\begin{aligned} & \underset{x}{\text{minimize}} & & f_0(x) \\ & \text{subject to:} & & f_i(x) \leq 0, & & i = 1, \dots, m \\ & & h_i(x) = 0, & & i = 1, \dots, p, \\ & & & f_i(\alpha x + \beta y) \leq \alpha f_i(x) + \beta f_i(y), & & \alpha + \beta = 1, & & 0 \leq \alpha, \ 0 \leq \beta, & & 0 \leq i \leq m \\ & & h_i(x) = a_i' x + b_i & & & 0 \leq i \leq p \end{aligned}$$

- The LP and LS are special cases; however, only LS has closed-form solution.
- Very robust, reliable, and effective set of methods, including *interior point methods*.
- Complexity is almost:  $O(\max(n^3, n^2m, F))$ , where F is the cost of evaluating 1st and 2nd derivatives of  $f_i$  and  $h_i$ .
- Similar to LS and LP, we can solve a problem of thousands of variables.
- However, it is not as very mature technology as the LP and LS yet.
- There are many practical problems that can be re-formulated as convex problem **BUT** requires mathematical skills; but once done the problem is solved. **Hint:** realizing that the problem is convex requires more mathematical maturity than those required for LP and LS.

#### 1.4 Nonlinear Optimization

A *non-linear optimization* problem is an optimization problem with objective and constraint functions are non-linear **BUT** not known to be convex (**so far**). Even simple-looking problems in 10 variables can be extremely challenging. Several approaches for solutions:

#### **Local Optimization**: starting at initial point in space, using differentiablity, then navigate

- does not guarantee global optimal.
- affected heavily by initial point.

• depends heavily on numerical algorithm and their parameters.

- More art than technology.
- In contrast to convex optimization, where a lot of art and mathematical skills are required to formulate the problem as convex; then numerical solution is straightforward.

#### **Global Optimization**: the true global solution is found; the compromise is complexity.

- The complexity goes exponential with dimensions.
- Sometimes it is worth it when: the cost is huge, not in real time, and dimensionality is low.

#### **Role of Convex Optimization:**

- Approximate the non-linear function to a convex one, finding the exact solution, then using it as a starting point for the original problem. (Also does not guarantee optimality)
- Setting bounds on the global solution.

**Evolutionary Computations**: Genetic Algorithm (GA), Simulated Annealing (SA), Particle Swarm Optimization (PSO), etc.

#### Example 5 (Nonlinear Objective Function): (Chong and Zak, 2013, Ex. 14.3, P.290)

$$f(x,y) = 3(1-x)^2 e^{-x^2 - (y+1)^2} - 10e^{-x^2 - y^2} \left( -x^3 + \frac{x}{5} - y^5 \right) - \frac{1}{3}e^{-(x+1)^2 - y^2}$$



## Part I

## **Theory**

## **Chapter 2**

## **Convex sets**

#### 2.1 Affine and convex sets

#### 2.1.1 Lines and line segments

## **Definition 6 (line and line segment)** Suppose $x_1 \neq x_2 \in \mathbb{R}^n$ . Points of the form

$$y = \theta x_1 + (1 - \theta)x_2$$
  
=  $x_2 + \theta(x_1 - x_2)$ ,

where  $\theta \in \mathbf{R}$ , form the line passing through  $x_1$  and  $x_2$ .

- As usual, this is a definition for high dimensions taken from a proof for  $n \le 3$ .
  - We have done it many times: angle, norm, cardinality of sets, etc.
  - if  $0 \le \theta \le 1$  this forms a line segment.



#### 2.1.2 Affine sets

## **Definition 7 (Affine sets)** A set $C \subset \mathbb{R}^n$ is affine if the

line through any two distinct points in C lies in C. I.e., 
$$\forall x_1, x_2 \in C$$
 and  $\theta \in \mathbb{R}$ , we have  $\theta x_1 + (1 - \theta)x_2 \in C$ .

*In other words, C contains any linear combination* (summing to one) of any two points in C.

**Examples:** what about line, line segment, circle,

disk, strip, first quadrant?

**Corollary 8** Suppose C is an affine set, and  $x_1, \ldots, x_k \in C$ , then C contains every general affine combination of the form  $\theta_1 x_1 + ... + \theta_k x_k$ , where  $\theta_1 + \ldots + \theta_k = 1$ .

**Wrong Proof.** Suppose  $y_1, y_2 \in C$ , then

$$x = \sum_{i=1}^{k} \theta_i x_i = \sum_{i=1}^{k} \theta_i (\alpha_i y_1 + (1 - \alpha_i) y_2);$$

and the summation of the coefficients will be

$$\sum_{i=1}^{k} \theta_i \alpha_i + \sum_{i=1}^{k} \theta_i (1 - \alpha_i) = \sum_{i=1}^{k} \theta_i (\alpha_i + 1 - \alpha_i) = \sum_{i=1}^{k} \theta_i = 1.$$

Where is the bug?

**Correct Proof.** base: k = 3.

$$x = \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$
  
=  $(1 - \theta_3) \left( \frac{\theta_1}{1 - \theta_3} x_1 + \frac{\theta_2}{1 - \theta_3} x_2 \right) + \theta_3 x_3.$ 

 $= (1 - \theta_3)(\cdot \in C) + \theta_3(\cdot \in C).$ 

**induction:** suppose it is true for some  $k \ge 3$ ; i.e.,  $\sum_{i=1}^k \theta_i x_i \in C$  when  $\sum_{i=1}^k \theta_i = 1$ . Then

$$x = \sum_{i=1}^{k+1} \theta_i x_i$$

$$= \sum_{i=1}^k \theta_i x_i + \theta_{k+1} x_{k+1}$$

$$= (1 - \theta_{k+1}) \sum_{i=1}^k \theta_i / (1 - \theta_{k+1}) x_i + \theta_{k+1} x_{k+1}$$

 $= (1 - \theta_{k+1})(\cdot \in C) + \theta_{k+1}(\cdot \in C),$ 

which completes the proof.

(from the induction hypothesis)

## $\forall v_1, v_2 \in V \text{ and } \forall \alpha, \beta \in \mathbf{R} \text{ we have } \alpha v_1 + \beta v_2 \in V.$

closed under sums and scalar multiplication. I.e.,

**Definition 9 (Subspace from Linear Algebra)** a set **Proof.** 

#### Remember:

• 
$$\alpha + \beta$$
 not necessarily equals 1

• 
$$\alpha = 0, \beta = 0 \rightarrow \mathbf{0} \in V$$
.

• Any subspace 
$$V$$
 is the solution set of  $A_{m \times n} x_{n \times 1} =$ 

0, which is 
$$\mathcal{N}(A)$$
 (the null space of  $A$ ). Geometry?  
I.e.,  $V = \{x \mid Ax = 0\}$ 

## • $\operatorname{rank}(A) = n - \dim(V)$ .

### Corollary 10.

1. If C is affine, then  $V = C - x_0 = \{x - x_0 \mid x, x_0 \in C\}$ 

is a subspace.

2. If V is a subspace, then 
$$C = V + x_0 = \{x + x_0 \mid x \in V\}$$
 is affine  $\forall x_0$ 

2. If 
$$V$$
 is a subspace is affine  $\forall x_0$ .

3. An affine set C can be represented as the solution set

of a nonhomogeneous linear system Ax = b, where  $V = C - x_0$  is  $\mathcal{N}(A)$ . 4. The solution set of any nonhomogeneous system is

an affine set. (Ex. 2.1)

 $V \subset \mathbf{R}^n$  of vector (here points) is a subspace if it is 1. Suppose  $x_1, x_2, x_0 \in C$ , an affine set. Both  $x_1 - x_0$ 

is a subspace.

Suppose  $x_1, x_2 \in V$ , a subspace. Both  $x_1 + x_0$  and  $x_2 + x_0$ , by construction,  $\in C$ ; then

 $x = \theta(x_1 + x_0) + (1 - \theta)(x_2 + x_0)$ 

 $= \theta x_1 + (1 - \theta)x_2 + x_0 = (\cdot \in V) + x_0 \in C$ If C is affine and  $x_0 \in C$ , then

and  $x_2 - x_0$ , by construction,  $\in V$ ; then

 $x = \alpha(x_1 - x_0) + \beta(x_2 - x_0) + x_0$  $=\alpha x_1 + \beta x_2 + (1 - \alpha - \beta)x_0 \in C$ 

Then  $x - x_0 = \alpha(x_1 - x_0) + \beta(x_2 - x_0) \in V$ ; hence V

 $C - x_0 = \{x \mid Ax = 0\}$  (since it is a subspace)

 $C = \{x + x_0 \mid A(x + x_0) = Ax_0\}$  $C = \{c \mid Ac = b\}.$ 

Convright © 2019 2019 Waleed A. Yousef, All Rights Reserv

4.  $C = \{x \mid Ax = b\}$ ; if  $x_0 \in C$  then  $Ax_0 = b$  and  $C - x_0 = \{x - x_0 \mid A(x - x_0) = b - Ax_0 = 0\}.$ 

Hence,  $C - x_0$  is a subspace and C is affine.

16

**Proof of the book.** Suppose  $x_1, x_2 \in C$ , where  $C = \{x \mid Ax = b\}$ . Then

$$A(\theta x_1 + (1 - \theta)x_2) = \theta Ax_1 + (1 - \theta)Ax_2 = \theta b + (1 - \theta)b = b,$$

which means  $\theta x_1 + (1 - \theta)x_2 \in C$  as well.

#### Remark 1:

- The dimension of affine is defined to be the dimension of the associate subspace.
- affine is a subspace plus offset.
- every subspace is affine but not the vice versa; i.e., subspace is a special case of affine.

**Corollary 12 aff** C *is affine.* **Proof.** For  $x_1 = \sum_i \alpha_i x_i$ ,  $\sum_i \alpha_i = 1$ , and  $x_2 = \sum_i \beta_i x_i$ ,  $\sum_i \beta_i = 1$ , we have

**Definition 11 (affine hull)** The "smallest" set of all affine combinations of some set C (not necessarily affine)

**aff**  $C = \{\sum_{i=1}^{k} \theta_i x_i \mid x_i \in C, \sum_{i=1}^{k} \theta_i = 1\}.$ 

$$\theta x_1 + (1 - \theta)x_2 = \theta \sum_i \alpha_i x_i + (1 - \theta) \sum_i \beta_i x_i = \sum_i (\theta \alpha_i + (1 - \theta)\beta_i)x_i$$

$$\sum_{i} (\theta \alpha_i + (1 - \theta)\beta_i) = \theta \sum_{i} \alpha_i + (1 - \theta) \sum_{i} \beta_i = \theta + (1 - \theta) = 1.$$

Hence, **aff** C is affine as well.

is called the affine hull (**aff** C):

**Example 13** Construct the affine hull of the set 
$$C = \{(-1,0), (1,0), (0,1)\}$$

$$\theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 = (1 - \theta_3) \left( \frac{\theta_1}{1 - \theta_3} x_1 + \frac{\theta_2}{1 - \theta_3} x_2 \right) + \theta_3 x_3$$

$$= (1 - \alpha_3) \left( (1 - \alpha_2) x_1 + \alpha_2 x_2 \right) + \alpha_3 x_3 \qquad = (1 - \alpha_2) (1 - \alpha_3) x_1 + \alpha_2 (1 - \alpha_3) x_2 + \alpha_3 x_3,$$

$$\theta_3 = \alpha_3$$
  $\theta_2 = \alpha_2(1 - \alpha_3)$   $\theta_3 = \theta_3$   $\alpha_2 = \theta_2/(1 - \theta_3)$ 

$$\theta_1 = 1 - \theta_2 - \theta_3 = (1 - \alpha_2)(1 - \alpha_3)$$
  
 $\alpha_1 = 1 - \alpha_2 = \theta_1/(1 - \theta_3).$ 

**HW:** Derive expressions for  $\alpha_i$  and  $\theta_i$  for n-point combination.

## 2.1.3 Affine dimension and relative interior

#### Definition 14 (some basic topology in $\mathbb{R}^n$ ): 1. The ball of radious r and center x in the norm $\|\cdot\|$ .

$$B(x,r) = \{ y \mid ||y - x|| \le r \}.$$

 $B(x,\epsilon) = \{y \mid ||y - x||_2 \le \varepsilon\} \subseteq C.$ 

2. An element 
$$x \in C \subseteq \mathbf{R}^n$$
 is called an interior point of  $C$  if  $\exists \varepsilon > 0$  for which

I.e.,  $\exists$  a ball centered at x that lies entirely in C.

3. The set of all points interior to C is called the interior of C and is denoted int C. 4. A set C is open if int C = C. I.e., every point in C is

an interior point. 5. A set C is closed if its complement is open

$$\mathbf{R}^n \setminus C = \{ x \in \mathbf{R}^n \mid x \notin C \}$$

6. The closure of a set 
$$C$$
 is defined as

cl 
$$C = \mathbf{R}^n \setminus \mathbf{int}(\mathbf{R}^n \setminus C)$$
.

7. The boundary C is defined as

**bd** 
$$C = \mathbf{cl} \ C \setminus \mathbf{int} \ C$$
.

**Corollary 15** A boundary point (a point  $x \in \mathbf{bd}C$ ) satisfies:  $\forall \epsilon > 0, \exists y \in C \text{ and } z \notin C \text{ s.t. } y, z \in B(x, \epsilon).$ 

int  $(\mathbf{R}^n \setminus C)$ cl  $C = \mathbb{R}^n \setminus \operatorname{int}(\mathbb{R}^n \setminus C)$ int C $\operatorname{bd} C = \operatorname{cl} C \setminus \operatorname{int} C$ 



Definition 16 (alter. equiv. def.) :

- **int** *C* and **bd** *C* are defined as 2,3, corollary.
- (It is obvious that: int  $C \cap \mathbf{bd}$   $C = \phi$ .)
- C is open if int  $C = C \equiv C \cap \mathbf{bd} \ C = \phi$ . • C is closed if **bd**  $C \subseteq C$ .
- cl  $C = \mathbf{bd} \ C \cup \mathbf{int} \ C$ .

19

Convright © 2019 2019 Waleed A. Vousef, All Rights Reserved

/B(0.3)

**Example 18** The unit circle in  $\mathbb{R}^2$ , i.e.,  $\{x \mid x_1^2 + x_2^2 = 1\}$  has affine hull of whole  $\mathbb{R}^2$ . So its affine dimension is 2. However, it has a dimensionality of 1 since it is parametric in just one parameter (manifold).

**Definition 19** We define the relative interior of the set C, denoted **relint** C, as its interior relative to **aff** C

relint 
$$C = \{x \in C \mid B(x,r) \cap \text{aff } C \subseteq C \text{ for some } r > 0\},$$

**Definition 17** We define the affine dimension of a set C as the dimension of its affine hull.

relbd  $C = \operatorname{cl} C \setminus \operatorname{relint} C$ .

and its relative boundary, denoted **relbd** C is defined as

**Example 20** Consider a square in the  $(x_1, x_2)$ -plane in  $\mathbb{R}^3$ , defined as:

$$C = \{ x \in \mathbf{R}^3 \mid -1 \le x_1 \le 1, \ -1 \le x_2 \le 1, \ x_3 = 0 \}.$$

Then:

$$int C = \Phi$$

$$cl C = \mathbf{R}^n \setminus int(\mathbf{R}^n \setminus C) = C$$

$$\mathbf{ci} \ C = \mathbf{R}^{\infty} \setminus \mathbf{int}(\mathbf{R}^{\infty} \setminus C) =$$

$$\mathbf{bd} \ C = \mathbf{ci} \ C \setminus \mathbf{int} \ C = C$$

$$\mathbf{bd} \ C = \mathbf{cl} \ C \setminus \mathbf{int} \ C = C$$

$$\mathbf{aff} \ C = \{x \in \mathbf{R}^3 \mid x_3 = 0\}$$

**relbd** 
$$C = \{x \in \mathbb{R}^3 \mid \max\{|x_1|, |x_2|\} = 1, x_3 = 0\}$$

**relint**  $C = \{x \in \mathbb{R}^3 \mid -1 < x_1 < 1, -1 < x_2 < 1, x_3 = 0\}$ 

#### Convex sets

2.1.4

have

## **Definition 21 (convex set)** A set C is convex if the line segment between any two points in C lies in C; i.e., if for any $x_1, x_2 \in C$ and any $\theta$ with $0 \le \theta \le 1$ , we

$$\theta x_1 + (1 - \theta)x_2 \in C.$$

**Corollary 22** Suppose C is convex set, and  $x_1, ..., x_k \in C$ , then C contains every general convex combination (also called mixture); i.e.,

$$\sum_{i} \theta_{i} x_{i} \in C, \sum_{i} \theta_{i} = 1, \ \theta_{i} \ge 0.$$

**Proof.** identical to proof of corollary 8.

**Definition 23 (convex hull)** The "smallest" set of all convex combinations of some set C (not necessarily

convex) is called the convex hull (conv C) 
$$\mathbf{conv} C = \Bigl\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in C, \ \sum_i \theta_i = 1, \ \theta_i \geq 0 \Bigr\}.$$

#### Corollary 24 conv C is convex.

•

**Proof.** identical to proof of corollary 12.



**Example 25** Revisit example 13.

**Example 26 (Applications)** :  $Suppose X \in C$  is a r.v.,

$$EX = \sum_{i=1}^{n} p_i x_i$$

C is convex. Then  $EX \in C$  if it exists:

$$EX = \sum_{i=1}^{\infty} p_i x_i$$

$$\mathbf{E}X = \int_{C} f_X(x)x \, dx \qquad \text{(Riemann sum)}$$

#### **2.1.5** Cones

**Definition 27** A set C is called a cone (or nonnegative homogeneous) if  $\forall x \in C$ ,  $\theta \ge 0$  we have  $\theta x \in C$ ; and it is a convex cone if it is convex in addition to being a cone.

**Definition 28** A point of the form  $\sum_{i=1}^{k} \theta_i x_i$ ,  $\theta_i \ge 0$  is called a conic combination.

**Corollary 29** A set C is a convex cone if and only if it contains all conic combinations of its elements; i.e.,

$$\sum_{i} \theta_{i} x_{i} \in C \ \forall x_{i} \in C \ and \ \theta_{i} \geq 0.$$

#### Proof.

**Sufficiency:** is obvious. Choosing  $\sum_i \theta_i = 1$  implies C is convex; and setting  $\theta_i = 0 \ \forall i > 1$  implies C is cone. **Necessity:** Since C is convex cone, then  $\forall x_i \in C, \theta_i \geq$ 

0 we have: 
$$\theta_i x_i \in C \qquad \qquad \text{(cone)}$$
 
$$\sum (1/n)(\theta, x_i) \in C \qquad \qquad \text{(convex)}$$

$$\sum_{i} (1/n)(\theta_{i}x_{i}) \in C \qquad \text{(convex)}$$
 
$$n \sum_{i} (1/n)(\theta_{i}x_{i}) = \sum_{i} \theta_{i}x_{i} \in C \qquad \text{(cone)}$$



**Definition 30** A conic hull of a set C is the minimum set of all conic combination:

**cone** 
$$C = \{ \sum_{i} \theta_{i} x_{i} \mid x_{i} \in C, \ \theta_{i} \geq 0, \ i = 1, \dots, n \}.$$

Corollary 31 cone C is convex cone.

**Proof.** If  $y \in \operatorname{cone} C, \alpha \geq 0$ , then  $\alpha y = \alpha \sum_i \theta_i x_i = \sum_i (\alpha \theta_i) x_i \in \operatorname{cone} C$ . And if  $y_1, y_2 \in \operatorname{cone} C$  then  $\alpha y_1 + (1 - \alpha) y_2 = \alpha \sum_i \theta_i x_i + (1 - \alpha) \sum_i \mu_i x_i = \sum_i (\alpha \theta_i + (1 - \alpha) \mu_i) x_i \in \operatorname{cone} C$ 



#### 2.2 Some important examples

#### **Fast Revision**

- Each of the sets:  $\phi$ ,  $x_0$  (a singleton),  $\mathbf{R}^n$  are affine and convex.
- Any line is affine. If it passes through zero, it is a subspace and a convex cone.
- Any subspace is convex cone but not vise versa.
- A line segment is convex, but not affine (unless it reduces to a singleton).
- A *ray*,  $\{x_0 + \theta v \mid \theta \ge 0, v \ne 0\}$  is convex but not affine. It is convex cone if  $x_0 = 0$ .

#### 2.2.1 Hyperplanes and halfspaces

#### **Definition 32** A hyperplane is a set of the form

$$S = \{x \mid a'x = b\}, \qquad a, b \in \mathbf{R}^n, \ a \neq 0$$
  
= \{x \left| a'(x - x\_0) = 0\}, \quad a'x\_0 = b.

• Vectors with inner product with a is b:  $\frac{a'}{\|a\|}x = \frac{b}{\|a\|}$ . I.e., from  $\mathbf{0}$ , walk a distance  $\frac{b}{\|a\|}$  (either + or -) in the direction of a, then draw perpendicular line.

## **Definition 33** A closed halfspace is the region generated by the hyperplane and defined as:

 $\mathcal{H} = \{x \mid a'x \le b\}, \qquad a, b \in \mathbf{R}^n, \ a \ne 0$ 

$$\equiv \{x \mid a'(x-x_0) \le 0\}, \qquad a'x_0 = b.$$

- region of all vectors with projection < b/||a||.</li>
   Vectors with obtuse angle with a: (cos θ = a'x | ||a||||x||).
- Line passing with  $p_0$  and  $\perp$  on S:

 $x_0 - p_0 = \frac{(b - a'p_0)}{\|a\|} \overline{a}.$ 

$$x = p_0 + \theta \overline{a}$$
 (parametric eq.) 
$$a'x_0 = a'p_0 + \theta_0 \|a\|$$

$$\theta_0 = (b - a'p_0) / \|a\| \quad (x_0 \text{ pt. of intersection.})$$



**Corollary 34** *S is affine,*  $\mathcal{H}$  *is convex and not affine,* **int**  $\mathcal{H} = \mathcal{H} \setminus \mathcal{S}$ *, and* **bd**  $\mathcal{H} = \mathcal{S}$ .

**Proof.** S is affine done. 
$$\mathcal{H}$$
 is convex: take  $0 \le \theta \le 1$   $\theta a' x_1 + (1 - \theta) a' x_2 \le \theta b + (1 - \theta) b = b$ . (why not affine?!)  $y = x + ru$ ,  $0 \le ||u|| \le 1$   $(y \in B(x, r))$ 

 $a'y = a'x + ra'u = b - (b - a'x) + r||a|||u|| \cos(a, u)$ If b = a'x, i.e.,  $x \in \mathcal{S}$ , a'u > 0 or < 0 (depending on the angle) and hence a'y > b or < b. Then  $\mathcal{S} \subseteq \mathbf{bd}$   $\mathcal{H}$ .

If a'x < b, i.e.,  $x \in \mathcal{H} \setminus \mathcal{S}$ ,  $\exists r < \frac{b-a'x}{\|a\|}$ , s.t. a'y < b. Hence:

int  $\mathcal{H} = \mathcal{H} \setminus \mathcal{S}$  and **bd**  $\mathcal{H} = \mathcal{S}$ .

Copyright © 2019, 2019 Walced A. Yousef. All Rights Reserved.

#### 2.2.2 Euclidean balls and ellipsoids

#### **Definition 35** A Euclidean ball in $\mathbb{R}^n$ is the set:

$$B(x_c, r) = \{x = x_c + ru \mid ||u||_2 \le 1\}$$

$$= \{x \mid ||x - x_c||_2 / r \le 1\}$$

$$= \{x \mid (x - x_c)' (x - x_c) / r^2 \le 1\}.$$

#### **Definition 36** *Ellipsoid in* $\mathbb{R}^n$ *is the set:*

$$\mathcal{E} = \left\{ x = x_c + Au \mid ||u||_2 \le 1, \ A > 0 \right\}$$

$$= \left\{ x \mid ||A^{-1}(x - x_c)|| \le 1, A > 0 \right\}$$

$$= \left\{ x \mid (x - x_c)'(A^{-1})'A^{-1}(x - x_c) \le 1 \right\}$$

#### **Spectral decomposition for** A = A'.

$$Au = (\lambda_1 v_1 v_1' + \lambda_2 v_2 v_2' + \dots + \lambda_n v_n v_n') u$$
  
=  $\lambda_1 v_1 (v_1' u) + \lambda_2 v_2 (v_2' u) + \dots + \lambda_n v_n (v_n' u),$ 

which reduces to a Ball when  $\lambda_i = r$ .

## **Remark 2** A does not have to be symmetric, since $(A^{-1})'A^{-1} = P^{-1}$ is symmetric either way and:

$$P^{1/2}u_2 = Au_1$$
 is bijection  $\|u_2\|^2 = u_1'A'P^{-1/2}P^{-1/2}Au_1 = \|u_1\|^2$ 



#### **Remark 3 (Contours of** $\mathcal{N}(\mu, \Sigma)$ ) :

$$f_X(x) = \frac{1}{((2\pi)^p |\Sigma|)^{1/2}} e^{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)}$$

#### **Corollary 37** An ellipsoid, hence a ball, is convex

**Proof.** For  $x_1, x_2 \in \mathcal{E}, 0 \le \theta \le 1$ ,

$$x_{1} = x_{c} + Au_{1}, ||u_{1}|| \le 1$$

$$x_{2} = x_{c} + Au_{2}, ||u_{2}|| \le 1$$

$$x = \theta(x_{c} + Au_{1}) + (1 - \theta)(x_{c} + Au_{2})$$

$$= x_{c} + A(\theta u_{1} + (1 - \theta)u_{2})$$

$$||u|| = ||(\theta u_{1} + (1 - \theta)u_{2})||$$

$$\le \theta||u_{1}|| + (1 - \theta)||u_{2}||$$

 $<\theta + (1 - \theta) = 1$ .

#### 2.2.3 Norm balls and norm cones

## **Definition 38** Let $x, y \in \mathbb{R}^n$ , $t \in \mathbb{R}$ ; a function $f : \mathbb{R}^n \to \mathbb{R}_+$ with dom $f = \mathbb{R}^n$ is called a norm if

1. 
$$f(x) = 0 \rightarrow x = 0$$
 (definite)

2. 
$$f(tx) = |t|f(x)$$
 (homogeneous)

3. 
$$f(x+y) \le f(x) + f(y)$$
 (triangle inequality)

## Remark 4: • norm is defined on the Euclidean

- norm is defined on the Euclidean vector space.
- f(0) = 0 is implied from (2)
- dist(x,0) = f(x)• dist(x,y) = f(x-y) = f(y-x)
- **dist**(x,0) = f(x) is a metric, but not the vice versa.

**HW:** verify that  $L^p$ -norm is a *norm*.



**Definition 39** ( $L^p$ -norm ( $\|\cdot\|_p$ )) is defined as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

•  $L_1$ -norm, Manhatan distance, Taxicab, absolute value

$$||x||_1 = \left(\sum_{i=1}^n |x_i|\right).$$

•  $L_2$ -norm, Euclidean distance (most meaningful)

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}.$$

•  $L_{\infty}$ -norm

$$||x||_{\infty} = \lim_{p \to \infty} \left( \sum_{i=1}^{n} |x_i|^p \right)^{1/p} = \max_i |x_i|$$



#### 2.2.4 Polyhedra



#### 2.2.5 The positive semidefinite cone



2.3 Operations that preserve convexity

#### 2.4 Generalized inequalities

2.5 Separating and supporting hyperplanes

2.6 Dual cones and generalized inequalities

# Part II Applications

## **Part III**

## **Algorithms**

## **Bibliography**

Boyd, S. and Vandenberghe, L. (2004), Convex Optimization, Cambridge: Cambridge University Press.

Chong, E. K. and Zak, Stanislaw, H. (2013), An Introduction to Optimization, Wiley-Interscience, 4th ed.