

I:
$$Price = -797.81 - 6.960pCost + 76.50CoolSize + 213.88FreezeSize + 37.94Shelves + 23.76Features$$

$$\textbf{II:} \quad Price = -797.81 - 6.960pCost + 76.50RefSize + 137.38FreezeSize \\ + 37.94Shelves + 23.76Features$$

I:
$$Price = -797.81 - 6.960pCost + 76.50CoolSize + 213.88FreezeSize + 37.94Shelves + 23.76Features$$

II:
$$Price = -797.81 - 6.960pCost + 76.50RefSize + 137.38FreezeSize + 37.94Shelves + 23.76Features$$

I:
$$Price = -797.81 - 6.960pCost + 76.50CoolSize + 213.88FreezeSize + 37.94Shelves + 23.76Features$$

II:
$$Price = -797.81 - 6.960pCost + 76.50RefSize + 137.38FreezeSize + 37.94Shelves + 23.76Features$$

I:
$$Price = -797.81 - 6.960pCost + 76.50CoolSize + 213.88FreezeSize + 37.94Shelves + 23.76Features$$

II:
$$Price = -797.81 - 6.960pCost + 76.50RefSize + 137.38FreezeSize + 37.94Shelves + 23.76Features$$

I:
$$Price = -797.81 - 6.960pCost + 76.50CoolSize + 213.88FreezeSize + 37.94Shelves + 23.76Features$$

II:
$$Price = -797.81 - 6.960pCost + 76.50RefSize + 137.38FreezeSize + 37.94Shelves + 23.76Features$$

I:
$$Price = -797.81 - 6.960pCost + 76.50CoolSize + 213.88FreezeSize + 37.94Shelves + 23.76Features$$

II: Price = -797.81 - 6.960pCost + 76.50RefSize + 137.38FreezeSize + 37.94Shelves + 23.76Features

I:
$$Price = -797.81 - 6.960pCost + 76.50CoolSize + 213.88FreezeSize + 37.94Shelves + 23.76Features$$

When FreezeSize increases 1 cubic feet

- All other variables at the same level
- CoolSize maintained at same level
- □ RefSize increases 1 cubic feet

II:
$$Price = -797.81 - 6.960pCost + 76.50RefSize + 137.38FreezeSize + 37.94Shelves + 23.76Features$$

I:
$$Price = -797.81 - 6.960pCost + 76.50CoolSize + 213.88FreezeSize + 37.94Shelves + 23.76Features$$

When FreezeSize increases 1 cubic feet

All other variables at the same level $\sqrt{\ }$ CoolSize maintained at same level

□ RefSize increases 1 cubic feet

II:
$$Price = -797.81 - 6.960pCost + 76.50RefSize + 137.38FreezeSize + 37.94Shelves + 23.76Features$$

I:
$$Price = -797.81 - 6.960pCost + 76.50CoolSize + 213.88FreezeSize + 37.94Shelves + 23.76Features$$

When FreezeSize increases 1 cubic feet

All other variables at the same level

CoolSize maintained at same level

√□ RefSize increases 1 cubic feet

II:
$$Price = -797.81 - 6.960pCost + 76.50RefSize + 137.38FreezeSize + 37.94Shelves + 23.76Features$$


```
I: Price = -797.81 - 6.960pCost + 76.50CoolSize + 213.88FreezeSize + 37.94Shelves + 23.76Features
```

When FreezeSize increases 1 cubic feet

All other variables at the same level

— CoolSize maintained at same level

□ RefSize increases 1 cubic feet

$$\label{eq:price} \begin{split} \textbf{II:} \quad & \textit{Price} = -797.81 - 6.960 p \textit{Cost} + 76.50 \textit{RefSize} + 137.38 \textit{FreezeSize} \\ & \quad + 37.94 \textit{Shelves} + 23.76 \textit{Features} \end{split}$$

When FreezeSize increases 1 cubic feet

All other variables at the same level

RefSize maintained at same level

CoolSize reduces 1 cubic feet

I:
$$Price = -797.81 - 6.960pCost + 76.50CoolSize + 213.88FreezeSize + 37.94Shelves + 23.76Features$$

When FreezeSize increases 1 cubic feet

All other variables at the same level

— CoolSize maintained at same level

□ RefSize increases 1 cubic feet

$$\begin{aligned} \textbf{II:} \quad \textit{Price} &= -797.81 - 6.960 p \textit{Cost} + 76.50 \textit{RefSize} + 137.38 \textit{FreezeSize} \\ &\quad + 37.94 \textit{Shelves} + 23.76 \textit{Features} \end{aligned}$$

When FreezeSize increases 1 cubic feet

All other variables at the same level $\sqrt{RefSize}$ maintained at same level

CoolSize reduces 1 cubic feet

I:
$$Price = -797.81 - 6.960pCost + 76.50CoolSize + 213.88FreezeSize + 37.94Shelves + 23.76Features$$

When FreezeSize increases 1 cubic feet

All other variables at the same level

— CoolSize maintained at same level

□ RefSize increases 1 cubic feet

$$\begin{aligned} \textbf{II:} \quad \textit{Price} &= -797.81 - 6.960 p \textit{Cost} + 76.50 \textit{RefSize} + 137.38 \textit{FreezeSize} \\ &\quad + 37.94 \textit{Shelves} + 23.76 \textit{Features} \end{aligned}$$

When FreezeSize increases 1 cubic feet

All other variables at the same level \neg RefSize maintained at same level \checkmark CoolSize reduces 1 cubic feet

Regression I

Increase in *FreezeSize* increases *RefSize*, because *CoolSize* needs to be kept at the same level.

Regression II

Increase in FreezeSize is at the cost of reducing CoolSize, so that RefSize remains the same.

Regression I

Increase in *FreezeSize* increases *RefSize*, because *CoolSize* needs to be kept at the same level.

Regression II

Increase in FreezeSize is at the cost of reducing CoolSize, so that RefSize remains the same.

Regression I

Increase in *FreezeSize* increases *RefSize*, because *CoolSize* needs to be kept at the same level.

Regression II

Increase in *FreezeSize* is at the cost of reducing *CoolSize*, so that *RefSize* remains the same.

Trading off Cooler size for Freezer size

Regression I

Increase in *FreezeSize* increases *RefSize*, because *CoolSize* needs to be kept at the same level.

Increasing overall size of Refrigerator

Regression II

Increase in *FreezeSize* is at the cost of reducing *CoolSize*, so that *RefSize* remains the same.

Trading off Cooler size for Freezer size

Example (Cars.xlsx)

Example (Cars.xlsx)

$$MPG = \beta_0 + \beta_1 Displacement + \beta_2 Cylinders$$

Example (Cars.xlsx)

$$MPG = \beta_0 + \beta_1 Displacement + \beta_2 Cylinders$$

Example (Cars.xlsx)

$$MPG = \beta_0 + \beta_1 Displacement + \beta_2 Cylinders$$

Example (Cars.xlsx)

$$MPG = \beta_0 + \beta_1 Displacement + \beta_2 Cylinders$$

Example (Cars.xlsx)

$$MPG = \beta_0 + \beta_1 Displacement + \beta_2 Cylinders$$

Regression S	tatistics					
Multiple R	0.80989358					
R Square	0.6559276					
Adjusted R Square	0.63626632					
Standard Error	3.94870705					
Observations	38					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	1040.360731	520.1804	33.36139	7.787E-09	
Residual	35	545.7300585	15.59229			
Total	37	1586.090789				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	40.6162798	3.187176157	12.74366	1.05E-14	34.1459682	47.08659
Displacement	-0.0182092	0.021457446	-0.84862	0.401861	-0.0617701	0.025352
Cylinders	-2.3406998	1.189665452	-1.96753	0.057087	-4.75584908	0.074449

		p-value > α			p-value > α		
			/		1		
Cylinders	-2.3406998	1.189665452	-1.96753	0.057087	-4.75584908	0.074449	
Displacement	-0.0182092	0.021457446	-0.84862	0.401861	-0.0617701	0.025352	
Intercept	40.6162798	3.187176157	12.74366	1.05E-14	34.1459682	47.08659	
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	
Total	37	1586.090789					
Residual	35	545.7300585	15.59229				
Regression	2	1040.360731	520.1804	33.36139	7.787E-09		
	df	SS	MS	F	Significance F		
ANOVA							
Observations	38						
Standard Error	3.94870705						
Adjusted R Square	0.63626632						
R Square	0.6559276						
Multiple R	0.80989358						
Regression S	tatistics						

		p-value $> \alpha$		p-value > α		
			/		\	
Cylinders	-2.3406998	1.189665452	-1.96753	0.057087	-4.75584908	0.074449
Displacement	-0.0182092	0.021457446	-0.84862	0.401861	-0.0617701	0.025352
Intercept	40.6162798	3.187176157	12.74366	1.05E-14	34.1459682	47.08659
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Total	37	1586.090789				
Residual	35	545.7300585	15.59229			
Regression	2	1040.360731	520.1804	33.36139	7.787E-09	
	df	SS	MS	F	Significance F	
ANOVA						
Observations	38					
Standard Error	3.94870705					
Adjusted R Square	0.63626632					
R Square	0.6559276					
Multiple R	0.80989358					
Regression St	tatistics					

$$MPG = \beta_0 + \beta_1 Displacement$$

$$MPG = \beta_0 + \beta_1 Cylinders$$

$$MPG = \beta_0 + \beta_1 Displacement$$

$$MPG = \beta_0 + \beta_1 Cylinders$$

$$MPG = \beta_0 + \beta_1 Displacement$$

$$MPG = \beta_0 + \beta_1 Cylinders$$

$$MPG = \beta_0 + \beta_1 Displacement$$

$$MPG = \beta_0 + \beta_1 Cylinders$$

$$MPG = \beta_0 + \beta_1 Displacement$$

$$MPG = \beta_0 + \beta_1 Cylinders$$

$$MPG = \beta_0 + \beta_1 Displacement$$

$$MPG = \beta_0 + \beta_1 Cylinders$$