Linguagens Regulares

Linguagens Formais e Autômatos

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Sumário

Introdução

Linguagens regulares

Nas últimas aulas vimos diversos formalismos capazes de reconhecer, ou descrever, linguagens regulares, tais como: DFAs, NFAs, ϵ -NFAs e REGEXs.

Todos esses formalismos são equivalentes entre si, qualquer linguagem reconhecida (ou descrita) por um, pode ser reconhecida ou descrita pelo outro.

Contudo, nem todas as linguagens são regulares. Precisamos saber reconhecer que algumas linguagens podem ser reconhecidas/descritas pelos formalismos que aprendemos e outras não. Para isso, estudaremos as propriedades das linguagens regulares.

Sumário

2 Propriedades

rodução Propriedades Lema do bombeamento Exemplos

Propriedades das linguagens regulares

- As linguagens regulares possuem propriedades interessantes.
- Em especial elas são fechadas por complementação, união e interserção.

trodução Propriedades Lema do bombeamento Exemplo

Propriedades das linguagens regulares

Teorema (Linguagens regulares são fechadas pela união)

Se L_1 e L_2 são linguagens regulares, $L_1 \cup L_2$ também é regular.

Fecho por união

Demonstração

Como L_1 e L_2 são linguagens regulares, então existem expressões regulares E_1 e E_2 com $L(E_1)=L_1$ e $L(E_2)=L_2$.

A partir de E_1 e E_2 , podemos construir a expressão regular E_1+E_2 , a qual descreve a linguagem $L(E_1+E_2)=L_1\cup L_2$.

Fecho por complemento

Teorema (Linguagens regulares são fechadas por complementação)

Se L é uma linguagem regular, então \overline{L} também é.

Fecho por complemento

Demonstração

Se L é uma linguagem regular, então existe um DFA $D=(Q,\Sigma,\delta,q_0,F)$ que a reconhece. Podemos modificar D para $D'=(Q,\Sigma,\delta,q_0,Q-F)$, isto é, os estados que não eram de aceitação em D passaram a ser de aceitação em D', e os estados que eram de aceitação em D, não são de aceitação em D'.

Como D' reconhece \overline{L} , então \overline{L} é regular.

Fecho por interseção

Teorema (Linguagens regulares são fechadas por interseção)

Se L_1 e L_2 são linguagens regulares, então $L_1\cap L_2$ também é regular.

Fecho por interseção

Demonstração

 $L_1\cap L_2=\overline{L_1}\cup\overline{L_2}$ Como as linguagens regulares são fechadas por união e complementação, então $L_1\cap L_2$ é regular. \square

Fecho por diferença

 Como as linguagens regulares são fechadas por união, interseção e complemento, podemos estender esses resultados para provar outras propriedades.

Fecho por diferença

Teorema (Linguagens regulares são fechadas por diferença)

Se L_1 e L_2 são linguagens regulares, então L_1-L_2 também é regular.

Fecho por diferença

Demonstração

Temos que $L_1-L_2=L_1\cap\overline{L_2}$. Logo a diferença também de duas linguagens regulares também é regular. \square

crodução Propriedades Lema do bombeamento Exemplos

Linguagens regulares

Contudo, nem todas as linguagens são regulares. Isto é, existem problemas que não conseguiremos resolver com os formalismos mencionados.

Como determinar que uma linguagem não é regular?

Linguagens não-regulares

Tome a seguinte linguagem:

```
\{w \mid w \in \{0,1\}^* \text{ e } w \text{ possui o mesmo número de } 0s \text{ e } 1s\}
```

- Essa linguagem não parece regular, pois teríamos que ter a capacidade de contar o número 0s e 1s,e um autômato não tem essa capacidade.
- Contudo, essa intuição não é suficiente! Precisamos provar que a linguagem não é regular.
- ullet O Lema do bombeamento é capaz de demonstrar que uma linguagem L não é regular.

Sumário

3 Lema do bombeamento

Lema (Lema do bombeamento)

Tome L uma linguagem regular, então existe um p tal que, se $w \in L$ é uma palavra com tamanho de pelo menos p símbolos, w pode ser dividida em três partes, w=xyz, satisfazendo as seguintes condições:

- **2** |y| > 0.
- $|xy| \le p.$
- O número p é chamado de comprimento do bombeamento.

Lema (Lema do bombeamento)

Tome L uma linguagem regular, então existe um p tal que, se $w \in L$ é uma palavra com tamanho de pelo menos p símbolos, w pode ser dividida em três partes, w = xyz, satisfazendo as seguintes condições:

- Para todo i > 0, $xy^iz \in L$.
- **2** |y| > 0.
- $|xy| \leq p$.

O número p é chamado de comprimento do bombeamento.

Tanto z quando x podem ser ϵ , mas a condição 2 determina que $y \neq \epsilon$.

Lema (Lema do bombeamento)

Tome L uma linguagem regular, então existe um p tal que, se $w \in L$ é uma palavra com tamanho de pelo menos p símbolos, w pode ser dividida em três partes, w=xyz, satisfazendo as seguintes condições:

- **2** |y| > 0.
- $|xy| \le p.$

O número p é chamado de comprimento do bombeamento.

Sem a condição 2 o lema seria trivialmente verdadeiro.

Lema (Lema do bombeamento)

Tome L uma linguagem regular, então existe um p tal que, se $w \in L$ é uma palavra com tamanho de pelo menos p símbolos, w pode ser dividida em três partes, w = xyz, satisfazendo as seguintes condições:

- **2** |y| > 0.
- $|xy| \le p.$

O número p é chamado de comprimento do bombeamento.

A condição 3 especifica que o tamanho de xy não pode ser maior que p.

Intuição

- Tome um DFA D, com p estados, que reconheça uma linguagem regular L e uma string w, com $|w| \ge p$.
- Se D aceita w, ele o faz repetindo ao menos um estado q^{-1} . Isto é, existe um ciclo que passa por q.
- ullet Logo, w pode ser dividido em w=xyz, com |y|>0 e $|xy|\leq p$

¹Princípio da casa dos pombos

Intuição

- Tome um DFA D, com p estados, que reconheça uma linguagem regular L e uma string w, com $|w| \ge p$.
- Se D aceita w, ele o faz repetindo ao menos um estado q¹. Isto é, existe um ciclo que passa por q.
- ullet Logo, w pode ser dividido em w=xyz, com |y|>0 e $|xy|\leq p$

Podemos dizer que qualquer cadeia $w=xy^iz$, $i\geq 0$ será aceita por D

Pelo Lema do bombeamento, temos que, se uma linguagem é regular, **então** ela atende as condições descritas.

Pela contrapositiva, temos que, se uma linguagem não atende as condições descritas, ela não pode ser regular.

$$\begin{array}{ccc} \phi & \Rightarrow & \psi \\ \neg \psi & \Rightarrow & \neg \phi \end{array}$$

Sumário

4 Exemplos

Exemplos

Utilizaremos o Lema do bombeamento para mostrar a não-regularidade de algumas linguagens.

Exemplos

 $0^{n}1^{n}$

Teorema

A linguagem $\{0^n1^n\mid n\geq 0\}$ não é regular.

$$0^{n}1^{n}$$

Demonstração

Suponha, por absurdo que $L=\{0^n1^n\mid n\geq 0\}$ seja regular.

Tome $w=0^p1^p$, em que p é o comprimento de bombeamento dado pelo Lema do bombeamento.

Como $|w| \geq p$ e $w \in L$ o Lema do bombeamento garante que w pode ser dividido em w = xyz de forma que $xy^iz \in L$ para qualquer $i \geq 0$.

Iremos verificar que isso é impossível!

 $0^{n}1^{n}$

Demonstração

Se y é uma palavra que tem somente 0s, xy^2z terá mais zeros do que 1s, fazendo com que $xy^2z\notin L$.

 $0^{n}1^{n}$

Demonstração

Se y é uma palavra que tem somente 1s, xy^2z terá mais 1s do que 0s, fazendo com que $xy^2z\notin L$.

 $0^{n}1^{n}$

Demonstração

Se y contém 0s e 1s, pode até ser que xy^2z tenha o mesmo número de 0s e 1s, mas eles estarão intercalados, fazendo com que $xy^2z\notin L$.

Demonstração

Temos uma contradição, logo, L não é regular.

Nessa demonstração, poderiamos deixar de lado os casos em que y contém 0s e 1s, ou que y contém apenas 1s se aplicássemos a terceira condição do Lema do bombeamento, que diz que $|xy| \geq p$. Logo y só pode possuir 0s.

Mesmo número de 0s e 1s

Teorema

Mostre que a linguagem

 $L = \{w \mid w \in \{0,1\}^* \text{ e } w \text{ possui o mesmo número de } 0 \text{s e } 1 \text{s}\}$

não é regular.

Mesmo número de 0s e 1s

Demonstração

Suponha, por absurdo, que L é regular e tome p o comprimento do bombeamento dado pelo Lema do bombeamento.

Tome $w=0^p1^p$. Certamente $w\in L$, e como $|w|\geq p$, w pode ser dividido em w=xyz, em que qualquer wy^iz , $i\geq 0$ esteja em L.

Pela terceira condição do Lema do bombeamento, $|xy| \le p$, portanto y é composto somente de 0s, fazendo com que $xy^2z \notin L$, o que é um absurdo.

Portanto, L não é regular.

Mesmo número de 0s e 1s

A escolha de $w=0^p1^p$ foi crucial para fecharmos a demonstração. Se escolhêssemos $w=(01)^p$, então, poderíamos ter pego $x=\epsilon$, y=01 e $z=(01)^{p-1}$, fazendo com que $xy^iz\in L$ para qualquer $i\geq 0$. Se sua demonstração falhou, pode ser que, tentando outra palavra w, você consiga provar.

ww

Teorema

Mostre que a linguagem $L = \{ww \mid w \in \{0,1\}^*\}$ não é regular.

Demonstração

Suponha, por absurdo, que L é regular e tome p o comprimento do bombeamento dado pelo Lema do bombeamento.

Tome $w=0^p10^p1$, claramente $w\in L$ e $|w|\geq p$. Assim, w pode ser dividido em w=xyz, em que qualquer $wy^iz\in L$, $i\geq 0$.

Pela terceira condição do Lema do bombeamento, $|xy| \le p$, logo, y tem que possuir somente 0s. Nesta ocasição, $xy^2z \notin L$, o que é uma contradição.

Portanto, L não é regular.

Quadrado perfeito

Teorema

Mostra que a linguagem

$$L = \left\{ 1^{n^2} \mid n \ge 0 \right\}$$

não é regular.

Quadrado perfeito

Observações

- A sequência dos quadrados perfeitos é: 1,4,9,16,25,...
- A distância entre dois elementos consecutivos aumenta cada vez mais.
- Dois quadrados perfeitos grandes, não podem estar próximos.

Agora podemos ir para a demonstração:

Quadrado perfeito

Demonstração

Por absurdo, suponha L regular. Tome a string $w=1^{p^2}$, em que p é dado pelo Lema do bombeamento.

Temos que $w \in L$ e |w| > p. Portanto, w pode ser dividido em w = xyz e $wy^iz \in L$, i > 0.

Pela terceira condição do Lema do bombeamento, |xy| < p, e portanto, $|y| \le p$. Como $|xyz| = p^2$, temos que $|xu^2x| \le v^2 + v \le v^2 + 2v + 1 = (v+1)^2$, o próximo quadrado perfeito.

Assim, $xy^2z \notin L$, logo, L não é regular.

$0^{i}1^{j}$

Teorema

A linguagem

$$L = \left\{ 0^i 1^j \mid i > j \right\}$$

não é regular.

$0^{i}1^{j}$

Demonstração

Por absurdo, suponha L regular. Tome a palavra $w=0^{p+1}1^p$, em que p é dado pelo Lema do bombeamento.

Certamente, $w \in L$ e $|w| \ge p$. Logo, w pode ser dividido em w = xyz e $wy^iz \in L$, $i \ge 0$.

Como $|xy| \leq p$, y deve ser uma palavra formada apenas de 0s. Se tomarmos xy^0z , teremos uma palavra com uma quantidade de 0s menor ou igual à quantidade de 1, visto que |y|>0. Portanto, $xy^0z \notin L$ e L não é regular.