Camino más corto: algoritmo de Dijkstra Rodrigo Maranzana

Algoritmo de Dijkstra: concepto

Algoritmo de Dijkstra *Algoritmo de resolución específico para camino más corto.*

- . Encuentra siempre la solución óptima.
- La complejidad depende del problema. Pero es muy eficiente.
- . No sirve si los pesos de los arcos son negativos

Algoritmo de Dijkstra: pseudocódigo

Pseudo código

Inicializar etiquetas de todos los nodos a infinito

Algoritmo en ejemplo básico

Tabla de precedencias y grafo de actualización

Inicialización

INICIALIZACIÓN

VECINOS DE "s"

S	2	3	4	5	t
	S				

VECINOS DE "s"

S	2	3	4	5	t
	S	S			

S ya explorado

S	2	3	4	5	t
	S	S			

VECINOS DE "2"

S	2	3	4	5	t
	S	S	2		

VECINOS DE "2"

S	2	3	4	5	t
	S	S	2		2

"2" ya explorado

S	2	3	4	5	t
	S	S	2		2

VECINOS DE "3"

S	2	3	4	5	t
	S	S	2	3	2

"3" ya explorado

S	2	3	4	5	t
	S	S	2	3	2

VECINOS DE "4"

S	2	3	4	5	t
	S	S	2	3	B
					4

"4" ya explorado

S	2	3	4	5	t
	S	S	2	3	B
					4

6 No es menor que 5, no actualiza!

"5" ya explorado

S	2	3	4	5	t
	S	S	2	3	B
					4

Nodo "t" final, sin vecinos. Fin del algoritmo

S	2	3	4	5	t
	S	S	2	3	B
					4

Distancia mínima s-t

Distancia mínima s-t

Reconstrucción inversa con tabla de precedencias

Reconstrucción del camino más corto

Distancia mínima s-t

Comentarios adicionales sobre Dijkstra

- Dijkstra puede resolver todos los caminos más cortos desde cualquier nodo.
- . No tiene heurística.
- Para acelerarlo, agregar heurística. Ej: Algoritmo A*