Bisimulación

Ingeniería del Software 2 1er cuat. 2020

Problema

- ¿Cuál es la noción de "equivalencia" apropiada para dos LTS?
- En otras palabras, ¿cuándo podemos decir que dos LTS son "iguales"?

• "Dos LTS son equivalentes si definen el mismo conjunto de trazas"

• "Dos LTS son equivalentes si y solo si son idénticos"

 "Dos LTS son equivalentes si y solo si al quitar sus estados no alcanzables son idénticos"

 "Dos LTS son equivalentes si y solo si al quitar sus estados no alcanzables son isomorfos"

¿Qué buscamos?

- Una relación entre LTS...
 - que sea una equivalencia
 - Reflexiva (P≡P)
 - Transitiva (P≡Q y Q≡R implica P≡R)
 - Simétrica (P≡Q implica Q≡P)
- que "encaje" con nuestro lenguaje de especificación
 - Ej: si P≡Q entonces P || R ≡ Q || R

Bisimilaridad Fuerte

Definición. (Strong Bisimulation) Sea \mathcal{P} el universo de todos los LTS. Una relacion binaria $R \subseteq \mathcal{P} \times \mathcal{P}$ es una bisimulación fuerte si y solo si cuando $(P,Q) \in R$ entonces para cada acción $a \in Act \cup \{\tau\}$:

•
$$(P \xrightarrow{a} P') \Rightarrow (\exists Q' \cdot Q \xrightarrow{a} Q' \land (P', Q') \in R)$$

•
$$(Q \xrightarrow{a} Q') \Rightarrow (\exists P' \cdot P \xrightarrow{a} P' \land (P', Q') \in R)$$

Definición. (Strong Bisimilarity) Dos LTS $P, Q \in \mathcal{P}$ son fuertemente bisimilares $(P \sim Q)$ si y solo si existe una bisimulación fuerte R tal que $(P, Q) \in R$.

$$\sim = \bigcup \{R \mid R \text{ es una bisimulacion fuerte } \}$$

Propiedades de ~

- ~ es una bisimulación fuerte
- ~ es una relación de equivalencia

Teorema 1. $(P \sim Q)$ entonces para cada acción $a \in Act$:

$$\bullet \ (P \xrightarrow{a} P') \Rightarrow (\exists Q' \cdot Q \xrightarrow{a} Q' \ \land \ P' \sim Q')$$

•
$$(Q \xrightarrow{a} Q') \Rightarrow (\exists P' \cdot P \xrightarrow{a} P' \land P' \sim Q')$$

Bisimilitud Fuerte

Ejemplo

- ¿Son estos dos FSPs bisimilares?
 - P = (a -> b -> STOP).
 - Q = (a -> STOP | a -> b -> STOP).

Ejemplo

 $P = (a \rightarrow b \rightarrow STOP).$

 $Q = (a \rightarrow STOP | a \rightarrow b \rightarrow STOP).$

Ejemplo

Puedo simular P con Q, pero no puedo simular Q con P

Por lo tanto, no son fuertemente bisimilares.

Bisimulación

En otras palabras, vamos a decir que dos procesos

PyQson "no equivalentes" (i.e. fuertemente bisimilares)

si un observador externo (i.e. otro proceso) los puede

distinguir.

Strong Simulation

Definición. (Strong Simulation) Sea \mathcal{P} el universo de todos los LTS. Una relacion binaria $R \subseteq \mathcal{P} \times \mathcal{P}$ es una simulación fuerte si y solo si cuando $(P,Q) \in R$ entonces para cada acción $a \in Act \cup \{\tau\}$

$$\bullet \ (P \xrightarrow{a} P') \Rightarrow (\exists Q' \cdot Q \xrightarrow{a} Q' \ \land \ (P', Q') \in R)$$

Es común utilizar el símbolo de orden \leq para representar simulación: $P \leq Q$ (Q simula a P).

En el ejemplo anterior, $P \le Q$ ("Q simula a P"),

pero no es cierto que $Q \leftarrow P ("P simula a Q")$.

Limitaciones de la Bisimilitud Fuerte

- ¿Qué pasa entre estos dos LTS?
- No son fuertemente bisimilares
- No obstante, nos gustaría poder capturar su similitud

Transición Débil

$$\stackrel{a}{\Longrightarrow} = \begin{cases} (\stackrel{\tau}{\longrightarrow})^* \circ \stackrel{a}{\longrightarrow} \circ (\stackrel{\tau}{\longrightarrow})^* & \text{if } a \neq \tau \\ (\stackrel{\tau}{\longrightarrow})^* & \text{if } a = \tau \end{cases}$$

Bisimilaridad Débil

Definicion 3 (Weak Bisimulation) Sea \mathcal{P} el universo de todos los LTS. Una relacion binaria $R \subseteq \mathcal{P} \times \mathcal{P}$ es una bisimulación debil si y solo si cuando $(P,Q) \in R$ entonces para cada accion $a \in Act \cup \{\tau\}$:

•
$$(P \xrightarrow{a} P') \Rightarrow (\exists Q' \cdot Q \xrightarrow{a} Q' \land (P', Q') \in R)$$

$$\bullet \ (Q \xrightarrow{a} Q') \Rightarrow (\exists P' \cdot P \stackrel{a}{\Longrightarrow} P' \ \land \ (P', Q') \in R)$$

Definicion 4 (Weak Bisimilarity) Dos LTS $P,Q \in \mathcal{P}$ son debilmente bisimilares $(P \approx Q)$ si y solo si existe una bisimulacion debil R tal que $(P,Q) \in R$.

$$\approx = \bigcup \{R \mid R \text{ es una bisimulacion debil }\}$$

Limitaciones de la Bisimilitud Fuerte

- No son fuertemente bisimilares
- Pero son débilmente bisimilares

Propiedades

- Es una relación de equivalencia
- Bisimulación fuerte implica Bisimiluación Débil