# Support Vector Machines



Want to classify objects as boats and houses.



- All objects before the coast line are boats and all objects after the coast line are houses.
- Coast line serves as a decision surface that separates two classes.







- The methods that build classification models (i.e., "classification algorithms")
  operate very similarly to the previous example.
- First all objects are represented geometrically.



Then the algorithm seeks to find a decision surface that separates classes of objects



Unseen (new) objects are classified as "boats" if they fall below the decision surface and as "houses" if the fall above it

## Main ideas of SVMs



- Consider example dataset described by 2 genes, gene X and gene Y
- Represent patients geometrically (by "vectors")

## Main ideas of SVMs



 Find a linear decision surface ("hyperplane") that can separate patient classes and has the largest distance (i.e., largest "gap" or "margin") between border-line patients (i.e., "support vectors");

## Main ideas of SVMs



- If such linear decision surface does not exist, the data is mapped into a much higher dimensional space ("feature space") where the separating decision surface is found;
- The feature space is constructed via very clever mathematical projection ("kernel trick").

# Support vector machines for binary classification: classical formulation

# Case I: Linearly separable data; "Hard-margin" linear SVM



- Want to find a classifier (hyperplane) to separate negative instances from the positive ones.
- An infinite number of such hyperplanes exist.
- SVMs finds the hyperplane that maximizes the gap between data points on the boundaries (so-called "support vectors").
- If the points on the boundaries are not informative (e.g., due to noise), SVMs will not do well.

## Statement of linear SVM classifier



In addition we need to impose constraints that all instances are correctly classified. In our case:

$$\vec{w} \cdot \vec{x}_i + b \le -1 \quad \text{if} \quad y_i = -1$$

$$\vec{w} \cdot \vec{x}_i + b \ge +1 \quad \text{if} \quad y_i = +1$$

Equivalently:

$$y_i(\vec{w}\cdot\vec{x}_i+b)\geq 1$$

In summary:

Want to minimize  $\frac{1}{2} \|\vec{w}\|^2$  subject to  $y_i (\vec{w} \cdot \vec{x}_i + b) \ge 1$  for i = 1, ..., N

Then given a new instance x, the classifier is  $f(\vec{x}) = sign(\vec{w} \cdot \vec{x} + b)$ 

## SVM optimization problem: Primal formulation

Minimize 
$$\underbrace{\begin{bmatrix} \frac{1}{2} \sum_{i=1}^n w_i^2 \end{bmatrix}}_{\text{Subject to}}$$
 subject to  $\underbrace{\begin{bmatrix} y_i (\vec{w} \cdot \vec{x}_i + b) - 1 \geq 0 \end{bmatrix}}_{\text{Constraints}}$  for  $i = 1, \dots, N$ 

- This is called "primal formulation of linear SVMs".
- It is a convex quadratic programming (QP) optimization problem with n variables  $(w_i, i = 1,...,n)$ , where n is the number of features in the dataset.

# Case 2: Not linearly separable data; "Soft-margin" linear SVM

What if the data is not linearly separable? E.g., there are outliers or noisy measurements, or the data is slightly non-linear.

Want to handle this case without changing the family of decision functions.



#### Approach:

Assign a "slack variable" to each instance  $\xi_i \geq 0$ , which can be thought of distance from the separating hyperplane if an instance is misclassified and 0 otherwise.

Want to minimize  $\frac{1}{2} \|\vec{w}\|^2 + C \sum_{i=1}^N \xi_i$  subject to  $y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1 - \xi_i$  for i = 1, ..., NThen given a new instance x, the classifier is  $f(x) = sign(\vec{w} \cdot \vec{x} + b)$ 

# Parameter C in soft-margin SVM

Minimize 
$$\frac{1}{2} \|\vec{w}\|^2 + C \sum_{i=1}^{N} \vec{\xi}_i$$
 subject to  $y_i (\vec{w} \cdot \vec{x}_i + b) \ge 1 - \vec{\xi}_i$  for  $i = 1, ..., N$ 







C = 0.15





C = 0.1

- When C is very large, the softmargin SVM is equivalent to hard-margin SVM;
- When C is very small, we admit misclassifications in the training data at the expense of having w-vector with small norm;
- C has to be selected for the distribution at hand as it will be discussed later in this tutorial.

# Case 3: Not linearly separable data; Kernel trick



Data is not linearly separable in the input space

Data is linearly separable in the feature space obtained by a kernel

 $\Phi: \mathbf{R}^N \to \mathbf{H}$ 

## Kernel trick

Original data  $\vec{x}$  (in input space)

$$f(x) = sign(\vec{w} \cdot \vec{x} + b)$$

$$f(x) = sign(\vec{w} \cdot \vec{x} + b)$$
$$\vec{w} = \sum_{i=1}^{N} \alpha_i y_i \vec{x}_i$$

Data in a higher dimensional feature space  $\Phi(\vec{x})$ 

$$f(x) = sign(\vec{w} \cdot \Phi(\vec{x}) + b)$$

$$\vec{w} = \sum_{i=1}^{N} \alpha_i y_i \Phi(\vec{x}_i)$$

$$f(x) = sign(\sum_{i=1}^{N} \alpha_i y_i \Phi(\vec{x}_i) \cdot \Phi(\vec{x}) + b)$$

$$f(x) = sign(\sum_{i=1}^{N} \alpha_i y_i K(\vec{x}_i, \vec{x}) + b)$$

Therefore, we do not need to know  $\Phi$  explicitly, we just need to define function  $K(\cdot, \cdot)$ :  $\mathbb{R}^{N} \times \mathbb{R}^{N} \to \mathbb{R}$ .

Not every function  $\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$  can be a valid kernel; it has to satisfy so-called Mercer conditions. Otherwise, the underlying quadratic program may not be solvable.

## Popular kernels

### A kernel is a dot product in some feature space:

$$K(\vec{x}_i, \vec{x}_j) = \Phi(\vec{x}_i) \cdot \Phi(\vec{x}_j)$$

### **Examples:**

$$K(\vec{x}_i, \vec{x}_j) = \vec{x}_i \cdot \vec{x}_j$$

$$K(\vec{x}_i, \vec{x}_j) = \exp(-\gamma ||\vec{x}_i - \vec{x}_j||^2)$$

$$K(\vec{x}_i, \vec{x}_j) = \exp(-\gamma ||\vec{x}_i - \vec{x}_j||^2)$$

$$K(\vec{x}_i, \vec{x}_j) = (p + \vec{x}_i \cdot \vec{x}_j)^q$$

$$K(\vec{x}_i, \vec{x}_j) = (p + \vec{x}_i \cdot \vec{x}_j)^q \exp(-\gamma ||\vec{x}_i - \vec{x}_j||^2)$$

$$K(\vec{x}_i, \vec{x}_j) = \tanh(k\vec{x}_i \cdot \vec{x}_j - \delta)$$

Linear kernel
Gaussian kernel
Exponential kernel
Polynomial kernel
Hybrid kernel
Sigmoidal

## Understanding the Gaussian kernel

Consider Gaussian kernel:  $K(\vec{x}, \vec{x}_j) = \exp(-\gamma ||\vec{x} - \vec{x}_j||^2)$ 

Geometrically, this is a "bump" or "cavity" centered at the training data point  $\vec{x}_i$ :



The resulting mapping function is a combination of bumps and cavities.

## Understanding the Gaussian kernel

Several more views of the data is mapped to the feature space by Gaussian kernel





## Understanding the Gaussian kernel



# Understanding the polynomial kernel

Consider polynomial kernel:  $K(\vec{x}_i, \vec{x}_j) = (1 + \vec{x}_i \cdot \vec{x}_j)^3$ 

Assume that we are dealing with 2-dimensional data (i.e., in  $\mathbb{R}^2$ ). Where will this kernel map the data?

# Example of benefits of using a kernel



- Data is not linearly separable in the input space (R<sup>2</sup>).
- Apply kernel  $K(\vec{x}, \vec{z}) = (\vec{x} \cdot \vec{z})^2$  to map data to a higher dimensional space (3-dimensional) where it is linearly separable.

$$K(\vec{x}, \vec{z}) = (\vec{x} \cdot \vec{z})^2 = \begin{bmatrix} x_{(1)} \\ x_{(2)} \end{bmatrix} \cdot \begin{pmatrix} z_{(1)} \\ z_{(2)} \end{bmatrix}^2 = \begin{bmatrix} x_{(1)}z_{(1)} + x_{(2)}z_{(2)} \end{bmatrix}^2 = \begin{bmatrix} x_{(1)}z_{(2)} + x_{(2)}z_{(2)} \end{bmatrix}^2 = \begin{bmatrix} x_{(1)}z_{(2)} + x_{(2)}z_{(2)} \end{bmatrix}^2 =$$

$$= x_{(1)}^2 z_{(1)}^2 + 2 x_{(1)} z_{(1)} x_{(2)} z_{(2)} + x_{(2)}^2 z_{(2)}^2 = \begin{pmatrix} x_{(1)}^2 \\ \sqrt{2} x_{(1)} x_{(2)} \\ x_{(2)}^2 \end{pmatrix} \cdot \begin{pmatrix} z_{(1)}^2 \\ \sqrt{2} z_{(1)} z_{(2)} \\ z_{(2)}^2 \end{pmatrix} = \Phi(\vec{x}) \cdot \Phi(\vec{z})$$

# Example of benefits of using a kernel

Therefore, the explicit mapping is  $\Phi(\vec{x}) = \begin{pmatrix} x_{(1)}^2 \\ \sqrt{2}x_{(1)}x_{(2)} \\ x_{(2)}^2 \end{pmatrix}$ 

