Part I

Combos de Teoremas

1 Primer Combo de Teoremas

1.1 Teorema del Filtro Primo

Enunciado Sea (L, s, i) un reticulado terna distributivo y F un filtro. Supongamos $x_0 \in L - F$. Entonces hay un filtro primo P tal que $x_0 \notin P$ y $F \subseteq P$.

Prueba Sea

$$\mathcal{F} = \{F_1 : F_1 \text{ es un filtro, } x_0 \notin F_1 \text{ y } F \subseteq F_1\}.$$

Notese que $\mathcal{F} \neq \emptyset$, por lo cual (\mathcal{F}, \subseteq) es un poset. Veamos que cada cadena en (\mathcal{F}, \subseteq) tiene una cota superior. Sea C una cadena. Si $C = \emptyset$, entonces cualquier elemento de \mathcal{F} es cota de C. Supongamos entonces $C \neq \emptyset$. Sea

$$G = \{x : x \in F_1, \text{ para algun } F_1 \in C\}.$$

Veamos que G es un filtro. Es claro que G es no vacio. Supongamos que $x, y \in G$. Sean $F_1, F_2 \in \mathcal{F}$ tales que $x \in F_1$ y $y \in F_2$. Si $F_1 \subseteq F_2$, entonces ya que F_2 es un filtro tenemos que x i $y \in F_2 \subseteq G$. Si $F_2 \subseteq F_1$, entonces tenemos que x i $y \in F_1 \subseteq G$. Ya que G es una cadena, tenemos que siempre x i $y \in G$. En forma analoga se prueba la propiedad restante por lo cual tenemos que G es un filtro. Ademas $x_0 \notin G$, por lo que $G \in \mathcal{F}$ es cota superior de G. Por el lema de Zorn, G tiene un elemento maximal G veamos que G es un filtro primo. Supongamos G is G and G is a propiedad restante por lo que G es un filtro el cual contiene propiamente a G. Entonces ya que G es un elemento maximal de G is un elemento maximal de G is un elemento que G es un filtro el cual contiene propiamente a G is un elemento maximal de G is un elemento que G is un elemento maximal de G is un elemento G is un elemento que G is un elemento G is un elemento que G is un elemento G i

$$x_0 \ge p_1 \mathsf{i} \dots \mathsf{i} p_n \mathsf{i} x$$

(se deja como ejercicio justificar esto). Ya que $x_0 \in [P \cup \{y\})$, tenemos que hay elementos $q_1, ..., q_m \in P$, tales que

$$x_0 \geq q_1 \mathsf{i} \dots \mathsf{i} q_m \mathsf{i} y$$

Si llamamos p al siguiente elemento de P

$$p_1$$
 i ... i p_n i q_1 i ... i q_m

tenemos que

$$x_0 \ge p$$
 i x

$$x_0 \ge p i y$$

Se tiene entonces que $x_0 \ge (p \mid x)$ s $(p \mid y) = p \mid (x \mid y) \in P$, lo cual es absurdo ya que $x_0 \notin P$.

1.2 Propiedades basicas de la consistencia

Enunciado Sea (Σ, τ) una teoria.

- 1. Si (Σ, τ) es inconsistente, entonces $(\Sigma, \tau) \vdash \varphi$, para toda sentencia φ .
- 2. Si (Σ, τ) es consistente y $(\Sigma, \tau) \vdash \varphi$, entonces $(\Sigma \cup \{\varphi\}, \tau)$ es consistente.
- 3. Si $(\Sigma, \tau) \not\vdash \neg \varphi$, entonces $(\Sigma \cup \{\varphi\}, \tau)$ es consistente.

Prueba

- 1. Si (Σ, τ) es inconsistente, entonces por definicion tenemos que $(\Sigma, \tau) \vdash \psi \land \neg \psi$ para alguna sentencia ψ . Dada una sentencia cualquiera φ tenemos que φ se deduce por la regla del absurdo a partir de $\psi \land \neg \psi$ con lo cual (2) del Lema «Propiedades basicas de \vdash » nos dice que $(\Sigma, \tau) \vdash \varphi$
- 2. Supongamos (Σ, τ) es consistente y $(\Sigma, \tau) \vdash \varphi$. Si $(\Sigma \cup \{\varphi\}, \tau)$ fuera inconsistente, entonces $(\Sigma \cup \{\varphi\}, \tau) \vdash \psi \land \neg \psi$, para alguna sentencia ψ , lo cual por (1) del Lema «Propiedades basicas de \vdash » nos diria que $(\Sigma, \tau) \vdash \psi \land \neg \psi$, es decir nos diria que (Σ, τ) es inconsistente.
- 3. Es dejada al lector

2 Segundo Combo de Teoremas

2.1 Teorema de Dedekind

Enunciado Sea (L, s, i) un reticulado terna. La relacion binaria definida

$$x \le y$$
 si y solo si x s $y = y$

es un orden parcial sobre L para el cual se cumple que:

$$\sup(\{x,y\}) = x \mathsf{s} y$$
$$\inf(\{x,y\}) = x \mathsf{i} y$$

cualesquiera sean $x, y \in L$

Prueba Dejamos como ejercicio para el lector probar que \leq es reflexiva y antisimetrica con respecto a L. Veamos que \leq es transitiva con respecto a L. Supongamos que $x \leq y$ e $y \leq z$. Es decir que por definicion de \leq tenemos que

$$x$$
 s $y = y$
 y s $z = z$

Entonces

$$x \operatorname{s} z = x \operatorname{s} (y \operatorname{s} z) = (x \operatorname{s} y) \operatorname{s} z = y \operatorname{s} z = z$$

por lo cual $x \le z$. O sea que ya sabemos que (L, \le) es un poset. Veamos ahora que $\sup(\{x,y\}) = x$ s y. Primero debemos ver que x s y es una cota superior del conjunto $\{x,y\}$, es decir

$$x \le x \mathsf{s} y$$
$$y \le x \mathsf{s} y$$

Por la definicion de \leq debemos probar que

$$x s (x s y) = x s y$$

 $y s (x s y) = x s y$

Estas igualdades se pueden probar usando (I1), (I2) y (I4). Dejamos al lector hacerlo como ejercicio.

Nos falta ver entonces que x **s** y es menor o igual que cualquier cota superior de $\{x,y\}$. Supongamos $x,y \le z$. Es decir que por definicion de \le tenemos que

$$x$$
 s $z = z$
 y s $z = z$

Pero entonces

$$(x \operatorname{s} y) \operatorname{s} z = x \operatorname{s} (y \operatorname{s} z) = x \operatorname{s} z = z$$

por lo que $x \le y \le z$. Es decir que $x \le y$ es la menor cota superior.

Para probar que $\inf(\{x,y\}) = x i y$, probaremos que para todo $u,v \in L$,

$$u \le v$$
 si y solo si u i $v = u$

lo cual le permitira al lector aplicar un razonamiento similar al usado en la prueba de que $\sup(\{x,y\}) = x$ s y. Supongamos que $u \le v$. Por definicion tenemos que u s v = v. Entonces

$$u i v = u i (u s v)$$

Pero por (I7) tenemos que u i (u s v) = u, lo cual implica u i v = u. Reciprocamente si u i v = u, entonces

$$u \circ v = (u \circ v) \circ v$$

= $v \circ (u \circ v) \text{ (por (I2))}$
= $v \circ (v \circ u) \text{ (por (I3))}$
= $v \text{ (por (I6))}$

lo cual nos dice que $u \leq v$.

2.2 Lemma 25

Enunciado Supongamos que \vec{a}, \vec{b} son asignaciones tales que si $x_i \in Li(\varphi)$, entonces $a_i = b_i$. Entonces $\mathbf{A} \models \varphi[\vec{a}]$ sii $\mathbf{A} \models \varphi[\vec{b}]$

Prueba Probaremos por induccion en k que el lema vale para cada $\varphi \in F_k^{\tau}$. El caso k=0 se desprende del Lema «Independencia del valor». Veamos que Teo_k implica Teo_{k+1}. Sea $\varphi \in F_{k+1}^{\tau} - F_k^{\tau}$.

Hay varios casos:

CASO
$$\varphi = (\varphi_1 \wedge \varphi_2).$$

Ya que $Li(\varphi_i) \subseteq Li(\varphi)$, i = 1, 2, Teo_k nos dice que $\mathbf{A} \models \varphi_i[\vec{a}]$ sii $\mathbf{A} \models \varphi_i[\vec{b}]$, para i = 1, 2. Se tiene entonces que

$$\begin{aligned} \mathbf{A} &\models \varphi[\vec{a}] \\ \updownarrow & \text{(por (3) en la def de } \mathbf{A} \models \varphi[\vec{a}]) \\ \mathbf{A} &\models \varphi_1[\vec{a}] \text{ y } \mathbf{A} \models \varphi_2[\vec{a}] \\ \updownarrow & \text{(por Teo}_k) \\ \mathbf{A} &\models \varphi_1[\vec{b}] \text{ y } \mathbf{A} \models \varphi_2[\vec{b}] \\ \updownarrow & \text{(por (3) en la def de } \mathbf{A} \models \varphi[\vec{a}]) \\ \mathbf{A} &\models \varphi[\vec{b}] \end{aligned}$$

CASO
$$\varphi = (\varphi_1 \vee \varphi_2).$$

Es completamente similar al anterior.

CASO
$$\varphi = (\varphi_1 \to \varphi_2).$$

Es completamente similar al anterior.

CASO
$$\varphi = (\varphi_1 \leftrightarrow \varphi_2).$$

Es completamente similar al anterior.

CASO
$$\varphi = \neg \varphi_1$$
.

Es completamente similar al anterior.

CASO
$$\varphi = \forall x_j \varphi_1.$$

Supongamos $\mathbf{A} \models \varphi[\vec{a}]$. Entonces por (8) en la def de $\mathbf{A} \models \varphi[\vec{a}]$ se tiene que $\mathbf{A} \models \varphi_1[\downarrow_j^a(\vec{a})]$, para todo $a \in A$. Notese que $\downarrow_j^a(\vec{a})$ y $\downarrow_j^a(\vec{b})$ coinciden en toda $x_i \in Li(\varphi_1)$ ya que $Li(\varphi_1) \subseteq Li(\varphi) \cup \{x_j\}$. O sea que por Teo_k se tiene que $\mathbf{A} \models \varphi_1[\downarrow_j^a(\vec{b})]$, para todo $a \in A$, lo cual por (8) en la def de $\mathbf{A} \models \varphi[\vec{a}]$ nos dice que $\mathbf{A} \models \varphi[\vec{b}]$. La prueba de que $\mathbf{A} \models \varphi[\vec{b}]$ implica que $\mathbf{A} \models \varphi[\vec{a}]$ es similar.

CASO
$$\varphi = \exists x_j \varphi_1.$$

Es similar al anterior.

3 Tercer Combo de Teoremas

3.1 Lectura unica de terminos

Enunciado Dado $t \in T^{\tau}$ se da una de las siguientes:

- 1. $t \in Var \cup C$
- 2. Hay unicos $n \geq 1, f \in \mathcal{F}_n, t_1, ..., t_n \in T^{\tau}$ tales que $t = f(t_1, ..., t_n)$.

Prueba En virtud del Lema «Menu para terminos» solo nos falta probar la unicidad en el punto (2). Supongamos que

$$t = f(t_1, ..., t_n) = g(s_1, ..., s_m)$$

con $n, m \ge 1$, $f \in \mathcal{F}_n$, $g \in \mathcal{F}_m$, $t_1, ..., t_n, s_1, ..., s_m \in T^{\tau}$. Notese que f = g. O sea que n = m = a(f). Notese que t_1 es tramo inicial de s_1 o s_1 es tramo inicial de t_1 , lo cual por el lema anterior nos dice que $t_1 = s_1$. Con el mismo razonamiento podemos probar que debera suceder $t_2 = s_2, ..., t_n = s_n$.

3.2 Lemma 27

Enunciado Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo. Sea $\varphi \in F^{\tau}$. Entonces

$$\mathbf{A} \models \varphi[(a_1, a_2, ...)] \text{ sii } \mathbf{B} \models \varphi[(F(a_1), F(a_2), ...)]$$

para cada $(a_1, a_2, ...) \in A^{\mathbf{N}}$. En particular **A** y **B** satisfacen las mismas sentencias de tipo τ .

Prueba Por induccion. Sea

• Teo_k: Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo. Sea $\varphi \in F_k^{\tau}$. Entonces

$$\mathbf{A} \models \varphi[(a_1, a_2, ...)] \text{ sii } \mathbf{B} \models \varphi[(F(a_1), F(a_2), ...)]$$

para cada $(a_1, a_2, ...) \in A^{\mathbf{N}}$

Prueba de Teo₀. Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo, $\varphi \in F_0^{\tau}$ y $(a_1, a_2, ...) \in A^{\mathbf{N}}$. Probaremos que

$$\mathbf{A} \models \varphi[(a_1, a_2, \ldots)] \text{ sii } \mathbf{B} \models \varphi[(F(a_1), F(a_2), \ldots)]$$

Hay dos casos. Caso $\varphi = r(t_1, ..., t_n)$, con $n \ge 1$, $r \in \mathcal{R}_n$ y $t_1, ..., t_n \in T^\tau$. Denotemos con \vec{a} a $(a_1, a_2, ...)$ y con $F(\vec{a})$ a $(F(a_1), F(a_2), ...)$. Tenemos entonces

$$\begin{split} \mathbf{A} &\models \varphi[\vec{a}] \quad \text{sii} \quad (t_1^{\mathbf{A}}[\vec{a}], ..., t_m^{\mathbf{A}}[\vec{a}]) \in r^{\mathbf{A}} \text{ (def de } \models) \\ &\quad \text{sii} \quad (F(t_1^{\mathbf{A}}[\vec{a}]), ..., F(t_n^{\mathbf{A}}[\vec{a}])) \in r^{\mathbf{B}} \text{ } (F \text{ es iso}) \\ &\quad \text{sii} \quad (t_1^{\mathbf{B}}[F(\vec{a})]), ..., t_n^{\mathbf{B}}[F(\vec{a})]) \in r^{\mathbf{B}} \text{ (Lema \ref{eq:main_property})} \\ &\quad \text{sii} \quad \mathbf{B} \models \varphi[F(\vec{a})] \end{split}$$

Dejamos al lector completar la prueba de que Teo_k implica Teo_{k+1}

3.3 Teorema 28

Enunciado Sea $T=(\Sigma,\tau)$ una teoria. Entonces $(S^{\tau}/\dashv \vdash_T, \mathsf{s}^T, \mathsf{i}^T, \mathsf{c}^T, 0^T, 1^T)$ es un algebra de Boole. Pruebe solo el item (6)

Prueba Por definicion de algebra de Boole, debemos probar que cualesquiera sean $\varphi_1, \varphi_2, \varphi_3 \in S^{\tau}$, se cumplen todas las igualdades de algebras de Boole, luego, probamos solo la (6)

es decir veamos que

$$[\varphi_1]_T \mathbf{s}^T ([\varphi_2]_T \mathbf{s}^T [\varphi_3]_T) = ([\varphi_1]_T \mathbf{s}^T [\varphi_2]_T) \mathbf{s}^T [\varphi_3]_T$$

cualesquiera sean $\varphi_1, \varphi_2, \varphi_3 \in S^{\tau}$. Sean $\varphi_1, \varphi_2, \varphi_3 \in S^{\tau}$ fijas. Por la definicion de la operacion \mathbf{s}^T debemos probar que

$$[(\varphi_1 \vee (\varphi_2 \vee \varphi_3))]_T = [((\varphi_1 \vee \varphi_2) \vee \varphi_3)]_T$$

es decir, debemos probar que

$$T \vdash ((\varphi_1 \lor (\varphi_2 \lor \varphi_3)) \leftrightarrow ((\varphi_1 \lor \varphi_2) \lor \varphi_3))$$

Notese que por (2) del Lema «Propiedades basicas de \vdash », basta con probar que

$$T \vdash ((\varphi_1 \lor (\varphi_2 \lor \varphi_3)) \to ((\varphi_1 \lor \varphi_2) \lor \varphi_3))$$
$$T \vdash (((\varphi_1 \lor \varphi_2) \lor \varphi_3) \to (\varphi_1 \lor (\varphi_2 \lor \varphi_3)))$$

La siguiente es una prueba formal de $((\varphi_1 \vee (\varphi_2 \vee \varphi_3)) \rightarrow ((\varphi_1 \vee \varphi_2) \vee \varphi_3))$ en T y dejamos al lector la otra prueba formal

1.	$(\varphi_1 \lor (\varphi_2 \lor \varphi_3))$	HIPOTESIS1
2.	$arphi_1$	HIPOTESIS2
3.	$(\varphi_1 \lor \varphi_2)$	DISJUNCIONINTRODUCCION(2)
4.	$((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	TESIS2DISJUNCIONINTRODUCCION(3)
5.	$\varphi_1 \to ((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	CONCLUSION
6.	$(\varphi_2 \lor \varphi_3)$	HIPOTESIS3
7.	$arphi_2$	HIPOTESIS4
8.	$(\varphi_1 \lor \varphi_2)$	DISJUNCIONINTRODUCCION(6)
9.	$((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	TESIS4DISJUNCIONINTRODUCCION(7)
10.	$\varphi_2 \to ((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	CONCLUSION
11.	$arphi_3$	HIPOTESIS5
12.	$((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	TESIS5DISJUNCIONINTRODUCCION(11)
13.	$\varphi_3 \to ((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	CONCLUSION
14.	$((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	TESIS3DIVISIONPORCASOS(6, 10, 13)
15.	$(\varphi_2 \vee \varphi_3) \to ((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	CONCLUSION
16.	$((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	TESIS1DIVISIONPORCASOS(1, 5, 15)
17.	$(\varphi_1 \vee (\varphi_2 \vee \varphi_3)) \to ((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	CONCLUSION

4 Cuarto Combo de Teoremas

4.1 Propiedades basicas de la deduccion o Propiedades basicas de \

Enunciado Sea (Σ, τ) una teoria.

- 1. (Uso de Teoremas) Si $(\Sigma, \tau) \vdash \varphi_1, ..., \varphi_n$ y $(\Sigma \cup \{\varphi_1, ..., \varphi_n\}, \tau) \vdash \varphi$, entonces $(\Sigma, \tau) \vdash \varphi$.
- 2. Supongamos $(\Sigma, \tau) \vdash \varphi_1, ..., \varphi_n$. Si R es una regla distinta de GENERALIZACION y ELECCION y φ se deduce de $\varphi_1, ..., \varphi_n$ por la regla R, entonces $(\Sigma, \tau) \vdash \varphi$.
- 3. $(\Sigma, \tau) \vdash (\varphi \to \psi)$ si y solo si $(\Sigma \cup \{\varphi\}, \tau) \vdash \psi$.

Prueba

- 1. Notese que basta con hacer el caso n=1. El caso con $n\geq 2$ se obtiene aplicando n veces el caso n=1. Supongamos entonces que $(\Sigma,\tau) \vdash \varphi_1$ y $(\Sigma \cup \{\varphi_1\},\tau) \vdash \varphi$. Sea $(\alpha_1...\alpha_h,I_1...I_h)$ una prueba formal de φ_1 en (Σ,τ) . Sea $(\psi_1...\psi_m,J_1...J_m)$ una prueba formal de φ en $(\Sigma \cup \{\varphi_1\},\tau)$. Notese que por los Lemas «Cambio de indice de hipotesis» y «Cambio de ctes auxiliares» podemos suponer que estas dos pruebas no comparten ningun nombre de constante auxiliar y que tampoco comparten numeros asociados a hipotesis o tesis. Para cada i=1,...,m, definamos \widetilde{J}_i de la siguiente manera.
 - 1. Si $J_i = \alpha \text{AXIOMAPROPIO}$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\}$ y $\psi_i = \varphi_1$, entonces $\widetilde{J}_i = \alpha \text{EVOCACION}(\overline{h})$
 - 2. Si $J_i = \alpha AXIOMAPROPIO$, con $\alpha \in \{\varepsilon\} \cup \{TESIS\overline{k} : k \in \mathbb{N}\}$ y $\psi_i \notin \{\varphi_1\}$, entonces $\widetilde{J}_i = \alpha AXIOMAPROPIO$.
 - 3. Si $J_i = \alpha$ AXIOMALOGICO, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbf{N}\}$, entonces $\widetilde{J}_i = \alpha$ AXIOMALOGICO
 - 4. Si $J_i = \alpha \text{CONCLUSION}$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbb{N}\}$, entonces $\widetilde{J}_i = \alpha \text{CONCLUSION}$.
 - 5. Si $J_i = \text{HIPOTESIS}\bar{k}$, entonces $\widetilde{J}_i = \text{HIPOTESIS}\bar{k}$
 - 6. Si $J_i = \alpha R(\overline{l_1}, ..., \overline{l_k})$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\}$, entonces $\widetilde{J}_i = \alpha R(\overline{l_1 + h}, ..., \overline{l_k + h})$

Es facil chequear que

$$(\alpha_1...\alpha_h\psi_1...\psi_m, I_1...I_h\widetilde{J_1}...\widetilde{J_m})$$

es una prueba formal de φ en (Σ, τ)

2. Notese que

1.
$$\varphi_1$$
 AXIOMAPROPIO
2. φ_2 AXIOMAPROPIO
 \vdots \vdots \vdots n . φ_n AXIOMAPROPIO
 $n+1$. φ $R(\bar{1},...,\bar{n})$

es una prueba formal de φ en $(\Sigma \cup \{\varphi_1, ..., \varphi_n\}, \tau)$, lo cual por (1) nos dice que $(\Sigma, \tau) \vdash \varphi$.

3.

- (\rightarrow) Supongamos $(\Sigma, \tau) \vdash (\varphi \to \psi)$. Entonces tenemos que $(\Sigma \cup \{\varphi\}, \tau) \vdash (\varphi \to \psi), \varphi$, lo cual por (2) nos dice que $(\Sigma \cup \{\varphi\}, \tau) \vdash \psi$.
- (\leftarrow) Supongamos ahora que $(\Sigma \cup \{\varphi\}, \tau) \vdash \psi$. Sea $(\varphi_1...\varphi_n, J_1..., J_n)$ una prueba formal de ψ en $(\Sigma \cup \{\varphi\}, \tau)$. Para cada i = 1, ..., n, definamos \widetilde{J}_i de la siguiente manera.
 - 1. Si $\varphi_i = \varphi$ y $J_i = \alpha AXIOMAPROPIO$, con $\alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in \mathbb{N}\}$, entonces $\widetilde{J}_i = \alpha EVOCACION(1)$
 - 2. Si $\varphi_i \neq \varphi$ y $J_i = \alpha$ AXIOMAPROPIO, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbf{N}\}$, entonces $\widetilde{J}_i = \alpha$ AXIOMAPROPIO
 - 3. Si $J_i = \alpha \text{AXIOMALOGICO}$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbb{N}\}$, entonces $\widetilde{J}_i = \alpha \text{AXIOMALOGICO}$
 - 4. Si $J_i = \alpha \text{CONCLUSION}$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbb{N}\}$, entonces $\widetilde{J}_i = \alpha \text{CONCLUSION}$
 - 5. Si $J_i = \text{HIPOTESIS}\bar{k}$, entonces $\tilde{J}_i = \text{HIPOTESIS}\bar{k}$
 - 6. Si $J_i = \alpha R(\overline{l_1}, ..., \overline{l_k})$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\}$, entonces $\widetilde{J}_i = \alpha P(\overline{l_1+1}, ..., \overline{l_k+1})$ Sea m tal que ninguna J_i es igual a HIPOTESIS \overline{m} . Notese que \widetilde{J}_n no es de la forma TESIS $\overline{k}\beta$ ni de la forma HIPOTESIS \overline{k} (por que?) por lo cual TESIS $\overline{m}\widetilde{J}_n$ es una justificacion. Es facil chequear que

$$(\varphi\varphi_1...\varphi_n(\varphi \to \psi), \text{HIPOTESIS}\overline{m}\widetilde{J_1}...\widetilde{J_{n-1}}\text{TESIS}\overline{m}\widetilde{J_n}\text{CONCLUSION})$$

es una prueba formal de $(\varphi \to \psi)$ en (Σ, τ)

4.2 Theorem 30

Enunciado Sea (L, s, i, c, 0, 1) un álgebra de Boole y sean $a, b \in B$. Se tiene que:

- 1. $(a i b)^c = a^c s b^c$
- 2. $(a \, \mathsf{s} \, b)^c = a^c \, \mathsf{i} \, b^c$
- 3. $a^{cc} = a$
- 4. a i b = 0 si y solo si $b \le a^c$
- 5. $a \le b$ si y solo si $b^c \le a^c$

Probar solo 1. $((a i b)^c = a^c s b^c)$ y 4. $(a i b = 0 si y solo si b \le a^c)$

Prueba

- 1. Es facil ver que $a^c \, s \, b^c$ es un complemento de $a \, i \, b$ (hacer!). Pero ya que (L, s, i, c, 0, 1) es un reticulado complementado, tenemos que $(a \, i \, b)^c$ es un complemento de $a \, i \, b$. El Lema «Complementos unicos» nos dice que $(a \, i \, b)^c \, y \, a^c \, s \, b^c$ deben ser iguales.
- 4. Supongamos a i b = 0. Se tiene

$$b = (b i a) s (b i a^c)$$

$$= (a i b) s (b i a^c)$$

$$= 0 s (b i a^c)$$

$$= (b i a^c)$$

lo cual dice que $b \le a^c$. Supongamos $b \le a^c$. Entonces $a \, \mathrm{i} \, b \le a \, \mathrm{i} \, a^c = 0$ por lo cual $a \, \mathrm{i} \, b = 0$.

4.3 Lemma 31

Enunciado Sean $(L, \mathsf{s}, \mathsf{i})$ y $(L', \mathsf{s}', \mathsf{i}')$ reticulados terna y sean $(L \leq)$ y (L', \leq') los posets asociados. Sea $F: L \to L'$ una funcion. Entonces F es un isomorfismo de $(L, \mathsf{s}, \mathsf{i})$ en $(L', \mathsf{s}', \mathsf{i}')$ si y solo si F es un isomorfismo de (L, \leq) en (L', \leq') .

Prueba

Ida Supongamos F es un isomorfismo de (L, s, i) en (L', s', i'). Sean $x, y \in L$, tales que $x \leq y$. Tenemos que y = x s y por lo cual F(y) = F(x) s y = F(x) s y = F(x) produciendo $F(x) \leq x$. En forma similar se puede ver que F^{-1} es tambien un homomorfismo de (L', s') en (L, s).

Vuelta Si F es un isomorfismo de (L, \leq) en (L', \leq') , entonces (g) y (h) del Lema «Isomorfismos de posets» nos dicen que F y F^{-1} son homomorfismos (de reticulados terna terna) por lo cual F es un isomorfismo de (L, s, i) en (L', s', i').

5 Quinto Combo de Teoremas

5.1 Teorema de Completitud

Enunciado Sea $T = (\Sigma, \tau)$ una teoria de primer orden. Si $T \models \varphi$, entonces $T \vdash \varphi$. Haga solo el caso en que τ tiene una cantidad infinita de nombres de cte que no ocurren en las sentencias de Σ . En la exposicion de la prueba no es necesario que demuestre los items (1) y (5).

Prueba Lo probaremos por el absurdo, es decir supongamos que hay una sentencia φ_0 tal que $T \models \varphi_0$ y $T \not\vdash \varphi_0$. Notese que ya que $T \not\vdash \varphi_0$, tenemos que $[\neg \varphi_0]_T \neq 0^T$. Sabemos por lema que hay una infinitupla $(\gamma_1, \gamma_2, ...) \in F^{\tau \mathbf{N}}$ tal que:

- $|Li(\gamma_i)| \leq 1$, para cada j = 1, 2, ...
- Si $|Li(\gamma)| \leq 1$, entonces $\gamma = \gamma_j$, para algun $j \in \mathbf{N}$

Para cada $j \in \mathbf{N}$, sea $w_j \in Var$ tal que $Li(\gamma_j) \subseteq \{w_j\}$. Para cada j, declaremos $\gamma_j =_d \gamma_j(w_j)$. Notese que por el Lema «Lema del infimo» tenemos que inf $\{[\gamma_j(t)]_T : t \in T_c^{\tau}\} = [\forall w_j \gamma_j(w_j)]_T$, para cada $j = 1, 2, \ldots$ Por el Teorema de Rasiova y Sikorski tenemos que hay un filtro primo \mathcal{U} de \mathcal{A}_T , el cual cumple:

- (a) $[\neg \varphi_0]_T \in \mathcal{U}$
- (b) Para cada $j \in \mathbb{N}$, $\{ [\gamma_j(t)]_T : t \in T_c^{\tau} \} \subseteq \mathcal{U}$ implica que $[\forall w_j \gamma_j(w_j)]_T \in \mathcal{U}$

Ya que la infinitupla $(\gamma_1, \gamma_2, ...)$ cubre todas las formulas con a lo sumo una variable libre, podemos reescribir la propiedad (b) de la siguiente manera:

(b)' Para cada $\varphi =_d \varphi(v) \in F^{\tau}$, si $\{ [\varphi(t)]_T : t \in T_c^{\tau} \} \subseteq \mathcal{U}$ entonces $[\forall v \varphi(v)]_T \in \mathcal{U}$

Definamos sobre T_c^{τ} la siguiente relacion:

$$t \bowtie s$$
 si y solo si $[(t \equiv s)]_T \in \mathcal{U}$.

Veamos entonces que:

- (1) ⋈ es de equivalencia.
- (2) Para cada $\varphi =_d \varphi(v_1,...,v_n) \in F^{\tau}$, $t_1,...,t_n,s_1,...,s_n \in T_c^{\tau}$, si $t_1 \bowtie s_1$, $t_2 \bowtie s_2$, ..., $t_n \bowtie s_n$, entonces $[\varphi(t_1,...,t_n)]_T \in \mathcal{U}$ si y solo si $[\varphi(s_1,...,s_n)]_T \in \mathcal{U}$.
- (3) Para cada $f \in \mathcal{F}_n, t_1, ..., t_n, s_1, ..., s_n \in T_c^{\tau}$

$$t_1 \bowtie s_1, t_2 \bowtie s_2, ..., t_n \bowtie s_n \text{ implica } f(t_1, ..., t_n) \bowtie f(s_1, ..., s_n).$$

• Probaremos (2). Notese que

$$T \vdash ((t_1 \equiv s_1) \land (t_2 \equiv s_2) \land \dots \land (t_n \equiv s_n) \land \varphi(t_1, \dots, t_n)) \rightarrow \varphi(s_1, \dots, s_n)$$

lo cual nos dice que

$$[(t_1 \equiv s_1)]_T \ \mathsf{i}^T \ [(t_2 \equiv s_2)]_T \ \mathsf{i}^T \ \dots \ \mathsf{i}^T \ [(t_n \equiv s_n)]_T \ \mathsf{i}^T \ [\varphi(t_1,...,t_n)]_T \leq^T [\varphi(s_1,...,s_n)]_T$$

de lo cual se desprende que

$$[\varphi(t_1,...,t_n)]_T \in \mathcal{U} \text{ implica } [\varphi(s_1,...,s_n)]_T \in \mathcal{U}$$

ya que \mathcal{U} es un filtro. La otra implicacion es analoga

- Para probar (3) podemos tomar $\varphi = (f(v_1, ..., v_n) \equiv f(s_1, ..., s_n))$ y aplicar (2).
 - Definamos ahora un modelo $\mathbf{A}_{\mathcal{U}}$ de tipo τ de la siguiente manera:
 - Universo de $\mathbf{A}_{\mathcal{U}} = T_c^{\tau}/\bowtie$
 - $-c^{\mathbf{A}_{\mathcal{U}}}=c/\bowtie$, para cada $c\in\mathcal{C}$.
 - $-f^{\mathbf{A}_{\mathcal{U}}}(t_1/\bowtie,...,t_n/\bowtie)=f(t_1,...,t_n)/\bowtie$, para cada $f\in\mathcal{F}_n,\,t_1,...,t_n\in T_c^{\tau}$
 - $-r^{\mathbf{A}_{\mathcal{U}}} = \{(t_1/\bowtie, ..., t_n/\bowtie) : [r(t_1, ..., t_n)]_T \in \mathcal{U}\}, \text{ para cada } r \in \mathcal{R}_n.$

Notese que la definicion de $f^{\mathbf{A}_{\mathcal{U}}}$ es inambigua por (3).

Luego, probaremos las siguientes propiedades basicas

(4) Para cada $t =_d t(v_1,...,v_n) \in T^{\tau},\, t_1,...,t_n \in T^{\tau}_c,$ tenemos que

$$t^{\mathbf{A}_{\mathcal{U}}}[t_1/\bowtie,...,t_n/\bowtie] = t(t_1,...,t_n)/\bowtie$$

(5) Para cada $\varphi =_d \varphi(v_1,...,v_n) \in F^\tau,\, t_1,...,t_n \in T_c^\tau,$ tenemos que

$$\mathbf{A}_{\mathcal{U}} \models \varphi[t_1/\bowtie, ..., t_n/\bowtie] \text{ si y solo si } [\varphi(t_1, ..., t_n)]_T \in \mathcal{U}.$$

La prueba de (4) es directa por induccion. Pero ahora notese que (5) en particular nos dice que para cada sentencia $\psi \in S^{\tau}$, $\mathbf{A}_{\mathcal{U}} \models \psi$ si y solo si $[\psi]_T \in \mathcal{U}$. De esta forma llegamos a que $\mathbf{A}_{\mathcal{U}} \models \Sigma$ y $\mathbf{A}_{\mathcal{U}} \models \neg \varphi_0$, lo cual contradice la suposicion de que $T \models \varphi_0$.

Ahora supongamos que τ es cualquier tipo. Sean s_1 y s_2 un par de simbolos no pertenecientes a la lista

$$\forall \exists \neg \lor \land \rightarrow \leftrightarrow (), \equiv X 0 1 \dots 9 0 1 \dots 9$$

y tales que ninguno ocurra en alguna palabra de $\mathcal{C} \cup \mathcal{F} \cup \mathcal{R}$. Si $T \models \varphi$, entonces usando el Lema de Coincidencia se puede ver que $(\Sigma, (\mathcal{C} \cup \{s_1s_2s_1, s_1s_2s_2s_1, ...\}, \mathcal{F}, \mathcal{R}, a)) \models \varphi$, por lo cual

$$(\Sigma, (\mathcal{C} \cup \{s_1s_2s_1, s_1s_2s_2s_1, ...\}, \mathcal{F}, \mathcal{R}, a)) \vdash \varphi.$$

Pero por Lema «Tipos parecidos», tenemos que $T \vdash \varphi$.

6 Sexto Combo de Teoremas

6.1 Teorema de Completitud

Enunciado Sea $T = (\Sigma, \tau)$ una teoria de primer orden. Si $T \models \varphi$, entonces $T \vdash \varphi$. Haga solo el caso en que τ tiene una cantidad infinita de nombres de cte que no ocurren en las sentencias de Σ . En la exposicion de la prueba no es necesario que demuestre los items: (1), (2), (3) y (4)

Prueba Probaremos entonces (5)

Enunciado 5

5. Para cada $\varphi =_d \varphi(v_1,...,v_n) \in F^{\tau}, t_1,...,t_n \in T_c^{\tau}$, tenemos que

$$\mathbf{A}_{\mathcal{U}} \models \varphi[t_1/\bowtie, ..., t_n/\bowtie] \text{ si y solo si } [\varphi(t_1, ..., t_n)]_T \in \mathcal{U}.$$

Probaremos por induccion en el k tal que $\varphi \in F_k^{\tau}$. El caso k=0 es dejado al lector. Supongamos (5) vale para $\varphi \in F_k^{\tau}$. Sea $\varphi =_d \varphi(v_1,...,v_n) \in F_{k+1}^{\tau} - F_k^{\tau}$. Hay varios casos:

CASO $\varphi = (\varphi_1 \vee \varphi_2)$.

Notese que por la Convencion Notacional 6, tenemos que $\varphi_i =_d \varphi_i(v_1,...,v_n)$. Tenemos entonces

$$\begin{aligned} \mathbf{A}_{\mathcal{U}} &\models \varphi[t_1/\bowtie,...,t_n/\bowtie] \\ &\updownarrow \\ \mathbf{A}_{\mathcal{U}} &\models \varphi_1[t_1/\bowtie,...,t_n/\bowtie] \text{ o } \mathbf{A}_{\mathcal{U}} &\models \varphi_2[t_1/\bowtie,...,t_n/\bowtie] \\ &\updownarrow \\ &[\varphi_1(t_1,...,t_n)]_T \in \mathcal{U} \text{ o } [\varphi_2(t_1,...,t_n)]_T \in \mathcal{U} \\ &\updownarrow \\ &[\varphi_1(t_1,...,t_n)]_T \text{ s}^T \left[\varphi_2(t_1,...,t_n)]_T \in \mathcal{U} \\ &\updownarrow \\ &[(\varphi_1(t_1,...,t_n) \vee \varphi_2(t_1,...,t_n))]_T \in \mathcal{U} \\ &\updownarrow \\ &[\varphi(t_1,...,t_n)]_T \in \mathcal{U}. \end{aligned}$$

CASO $\varphi = \forall v \varphi_1$, con $v \in Var - \{v_1, ..., v_n\}$. Notese que por la Convencion Notacional 6, tenemos que $\varphi_1 =_d \varphi_1(v_1, ..., v_n, v)$. Tenemos entonces

$$\mathbf{A}_{\mathcal{U}} \models \varphi[t_1/\bowtie, ..., t_n/\bowtie] \\ \updownarrow \\ \mathbf{A}_{\mathcal{U}} \models \varphi_1[t_1/\bowtie, ..., t_n/\bowtie, t/\bowtie], \text{ para todo } t \in T_c^{\tau} \\ \updownarrow \\ [\varphi_1(t_1, ..., t_n, t)]_T \in \mathcal{U}, \text{ para todo } t \in T_c^{\tau} \\ \updownarrow \\ [\forall v \varphi_1(t_1, ..., t_n, v)]_T \in \mathcal{U} \\ \updownarrow \\ [\varphi(t_1, ..., t_n)]_T \in \mathcal{U}.$$

CASO $\varphi = \exists v \varphi_1$, con $v \in Var - \{v_1, ..., v_n\}$. Notese que por la Convencion Notacional 6, tenemos que $\varphi_1 =_d \varphi_1(v_1, ..., v_n, v)$. Tenemos entonces

$$\mathbf{A}_{\mathcal{U}} \models \varphi[t_1/\bowtie, ..., t_n/\bowtie] \\ \updownarrow \\ \mathbf{A}_{\mathcal{U}} \models \varphi_1[t_1/\bowtie, ..., t_n/\bowtie, t/\bowtie], \text{ para algun } t \in T_c^{\tau} \\ \updownarrow \\ [\varphi_1(t_1, ..., t_n, t)]_T \in \mathcal{U}, \text{ para algun } t \in T_c^{\tau} \\ \updownarrow \\ ([\varphi_1(t_1, ..., t_n, t)]_T)^{\mathsf{c}^T} \not\in \mathcal{U}, \text{ para algun } t \in T_c^{\tau} \\ \updownarrow \\ [\neg \varphi_1(t_1, ..., t_n, t)]_T \not\in \mathcal{U}, \text{ para algun } t \in T_c^{\tau} \\ \updownarrow \\ [\forall v \neg \varphi_1(t_1, ..., t_n, v)]_T \not\in \mathcal{U} \\ \updownarrow \\ ([\forall v \neg \varphi_1(t_1, ..., t_n, v)]_T)^{\mathsf{c}^T} \in \mathcal{U} \\ \updownarrow \\ [\neg \forall v \neg \varphi_1(t_1, ..., t_n, v)]_T \in \mathcal{U} \\ \updownarrow \\ [\varphi(t_1, ..., t_n)]_T \in \mathcal{U}.$$

7 Septimo Combo de Teoremas

7.1 Propiedades basicas de la deduccion o Propiedades basicas de \vdash

Enunciado Sea (Σ, τ) una teoria.

- 1. (Uso de Teoremas) Si $(\Sigma, \tau) \vdash \varphi_1, ..., \varphi_n$ y $(\Sigma \cup \{\varphi_1, ..., \varphi_n\}, \tau) \vdash \varphi$, entonces $(\Sigma, \tau) \vdash \varphi$.
- 2. Supongamos $(\Sigma, \tau) \vdash \varphi_1, ..., \varphi_n$. Si R es una regla distinta de GENERALIZACION y ELECCION y φ se deduce de $\varphi_1, ..., \varphi_n$ por la regla R, entonces $(\Sigma, \tau) \vdash \varphi$.
- 3. $(\Sigma, \tau) \vdash (\varphi \to \psi)$ si y solo si $(\Sigma \cup \{\varphi\}, \tau) \vdash \psi$.

Prueba

- 1. Notese que basta con hacer el caso n=1. El caso con $n\geq 2$ se obtiene aplicando n veces el caso n=1. Supongamos entonces que $(\Sigma,\tau) \vdash \varphi_1$ y $(\Sigma \cup \{\varphi_1\},\tau) \vdash \varphi$. Sea $(\alpha_1...\alpha_h,I_1...I_h)$ una prueba formal de φ_1 en (Σ,τ) . Sea $(\psi_1...\psi_m,J_1...J_m)$ una prueba formal de φ en $(\Sigma \cup \{\varphi_1\},\tau)$. Notese que por los Lemas «Cambio de indice de hipotesis» y «Cambio de ctes auxiliares» podemos suponer que estas dos pruebas no comparten ningun nombre de constante auxiliar y que tampoco comparten numeros asociados a hipotesis o tesis. Para cada i=1,...,m, definamos \widetilde{J}_i de la siguiente manera.
 - 1. Si $J_i=\alpha {\rm AXIOMAPROPIO},\ {\rm con}\ \alpha\in\{\varepsilon\}\cup\{{\rm TESIS}\bar{k}:k\in{\bf N}\}$ y $\psi_i=\varphi_1,\ {\rm entonces}\ \widetilde{J}_i=\alpha {\rm EVOCACION}(\overline{h})$
 - 2. Si $J_i = \alpha AXIOMAPROPIO$, con $\alpha \in \{\varepsilon\} \cup \{TESIS\overline{k} : k \in \mathbb{N}\}$ y $\psi_i \notin \{\varphi_1\}$, entonces $\widetilde{J}_i = \alpha AXIOMAPROPIO$.
 - 3. Si $J_i = \alpha \text{AXIOMALOGICO}$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbf{N}\}$, entonces $\widetilde{J}_i = \alpha \text{AXIOMALOGICO}$
 - 4. Si $J_i = \alpha \text{CONCLUSION}$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbf{N}\}$, entonces $\widetilde{J}_i = \alpha \text{CONCLUSION}$.
 - 5. Si $J_i = \text{HIPOTESIS}\bar{k}$, entonces $\tilde{J}_i = \text{HIPOTESIS}\bar{k}$
 - 6. Si $J_i = \alpha R(\overline{l_1}, ..., \overline{l_k})$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\}$, entonces $\widetilde{J}_i = \alpha R(\overline{l_1} + \overline{h}, ..., \overline{l_k} + \overline{h})$

Es facil chequear que

$$(\alpha_1...\alpha_h\psi_1...\psi_m, I_1...I_h\widetilde{J_1}...\widetilde{J_m})$$

es una prueba formal de φ en (Σ, τ)

2. Notese que

1.
$$\varphi_1$$
 AXIOMAPROPIO
2. φ_2 AXIOMAPROPIO
 \vdots \vdots \vdots n . φ_n AXIOMAPROPIO
 $n+1$. φ $R(\bar{1},...,\bar{n})$

es una prueba formal de φ en $(\Sigma \cup \{\varphi_1, ..., \varphi_n\}, \tau)$, lo cual por (1) nos dice que $(\Sigma, \tau) \vdash \varphi$.

- 3. Supongamos $(\Sigma, \tau) \vdash (\varphi \to \psi)$. Entonces tenemos que $(\Sigma \cup \{\varphi\}, \tau) \vdash (\varphi \to \psi), \varphi$, lo cual por (2) nos dice que $(\Sigma \cup \{\varphi\}, \tau) \vdash \psi$. Supongamos ahora que $(\Sigma \cup \{\varphi\}, \tau) \vdash \psi$. Sea $(\varphi_1...\varphi_n, J_1..., J_n)$ una prueba formal de ψ en $(\Sigma \cup \{\varphi\}, \tau)$. Para cada i = 1, ..., n, definamos \widetilde{J}_i de la siguiente manera.
 - 1. Si $\varphi_i = \varphi$ y $J_i = \alpha$ AXIOMAPROPIO, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbf{N}\}$, entonces $\widetilde{J}_i = \alpha$ EVOCACION(1)
 - 2. Si $\varphi_i \neq \varphi$ y $J_i = \alpha$ AXIOMAPROPIO, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbf{N}\}$, entonces $\widetilde{J}_i = \alpha$ AXIOMAPROPIO
 - 3. Si $J_i = \alpha \text{AXIOMALOGICO}$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbb{N}\}$, entonces $\widetilde{J}_i = \alpha \text{AXIOMALOGICO}$
 - 4. Si $J_i = \alpha \text{CONCLUSION}$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbb{N}\}$, entonces $\widetilde{J}_i = \alpha \text{CONCLUSION}$
 - 5. Si $J_i = \text{HIPOTESIS}\bar{k}$, entonces $\tilde{J}_i = \text{HIPOTESIS}\bar{k}$
 - 6. Si $J_i = \alpha R(\overline{l_1},...,\overline{l_k})$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\}$, entonces $\widetilde{J}_i = \alpha P(\overline{l_1+1},...,\overline{l_k+1})$

Sea m tal que ninguna J_i es igual a HIPOTESIS \bar{m} . Notese que $\widetilde{J_n}$ no es de la forma TESIS $\bar{k}\beta$ ni de la forma HIPOTESIS \bar{k} (por que?) por lo cual TESIS $\bar{m}\widetilde{J_n}$ es una justificacion. Es facil chequear que

$$(\varphi\varphi_1...\varphi_n(\varphi\to\psi), \mathrm{HIPOTESIS} \widetilde{mJ_1}...\widetilde{J_{n-1}} \mathrm{TESIS} \widetilde{mJ_n} \mathrm{CONCLUSION})$$

es una prueba formal de $(\varphi \to \psi)$ en (Σ, τ)

7.2 Lema 35

7.2.1 $(L/\theta, \tilde{s}, \tilde{i})$ es un reticulado terna

Enunciado Sea (L, s, i) un reticulado terna y sea θ una congruencia de (L, s, i). Entonces $(L/\theta, \tilde{s}, \tilde{i})$ es un reticulado terna

Prueba

Veamos que la estructura $(L/\theta, \tilde{s}, \tilde{i})$ cumple (I4). Sean x/θ , y/θ , z/θ elementos cualesquiera de L/θ . Tenemos que

$$\begin{array}{rcl} (x/\theta \ \S \ y/\theta) \ \S \ z/\theta &=& (x \ \S \ y)/\theta \ \S \ z/\theta \\ &=& ((x \ \S \ y) \ \S \ z)/\theta \\ &=& (x \ \S \ (y \ \S \ z))/\theta \\ &=& x/\theta \ \S \ (y \ \S \ z)/\theta \\ &=& x/\theta \ \S \ (y/\theta \ \S \ z/\theta) \end{array}$$

En forma similar se puede ver que la estructura $(L/\theta, \tilde{s}, \tilde{i})$ cumple el resto de las identidades que definen reticulado terna.

7.2.2 $x/\theta \leq y/\theta \sin y\theta(x s y)$

Enunciado Sea (L, s, i) un reticulado terna y sea θ una congruencia de (L, s, i). Entonces:

$$x/\theta \leq y/\theta \sin y\theta(x s y)$$

cualesquiera sean $x, y \in L$.

Prueba Por definicion de $\tilde{\le}$ tenemos que $x/\theta\tilde{\le}y/\theta$ sii $y/\theta=x/\theta$ \tilde{s} y/θ . Pero x/θ \tilde{s} $y/\theta=(x$ s $y)/\theta$ (por definicion de \tilde{s}) por lo cual tenemos que $x/\theta\tilde{\le}y/\theta$ sii $y/\theta=(x$ s $y)/\theta$.

7.3 Lemma 36

Enunciado Sean (L, s, i) y (L', s', i') reticulados terna y sean $(L \leq)$ y (L', \leq') los posets asociados. Sea $F: L \to L'$ una funcion. Entonces F es un isomorfismo de (L, s, i) en (L', s', i') si y solo si F es un isomorfismo de (L, \leq) en (L', \leq') .

Prueba Supongamos F es un isomorfismo de (L, s, i) en (L', s', i'). Sean $x, y \in L$, tales que $x \leq y$. Tenemos que y = x s y por lo cual F(y) = F(x s y) = F(x) s' F(y), produciendo $F(x) \leq' F(y)$. En forma similar se puede ver que F^{-1} es tambien un homomorfismo de (L', \leq') en (L, \leq) . Si F es un isomorfismo de (L, \leq) en (L', \leq') , entonces (g) y (h) del Lema «Isomorfismos de posets» nos dicen que F y F^{-1} son homomorfismos (de reticulados terna terna) por lo cual F es un isomorfismo de (L, s, i) en (L', s', i').

8 Octavo Combo de Teoremas

8.1 Lemma 37

Enunciado Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo. Sea $\varphi \in F^{\tau}$. Entonces

$$\mathbf{A} \models \varphi[(a_1, a_2, ...)] \text{ sii } \mathbf{B} \models \varphi[(F(a_1), F(a_2), ...)]$$

para cada $(a_1, a_2, ...) \in A^{\mathbf{N}}$. En particular **A** y **B** satisfacen las mismas sentencias de tipo τ .

Prueba Probamos por induccion.

Sea

• Teo_k: Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo. Sea $\varphi \in F_k^{\tau}$. Entonces

$$\mathbf{A} \models \varphi[(a_1, a_2, ...)] \text{ sii } \mathbf{B} \models \varphi[(F(a_1), F(a_2), ...)]$$

para cada
$$(a_1, a_2, ...) \in A^{\mathbf{N}}$$

Prueba de Teo₀. Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo, $\varphi \in F_0^{\tau}$ y $(a_1, a_2, ...) \in A^{\mathbf{N}}$. Probaremos que

$$\mathbf{A} \models \varphi[(a_1, a_2, \ldots)] \text{ sii } \mathbf{B} \models \varphi[(F(a_1), F(a_2), \ldots)]$$

Hay dos casos. Caso $\varphi = r(t_1, ..., t_n)$, con $n \ge 1$, $r \in \mathcal{R}_n$ y $t_1, ..., t_n \in T^{\tau}$. Denotemos con \vec{a} a $(a_1, a_2, ...)$ y con $F(\vec{a})$ a $(F(a_1), F(a_2), ...)$. Tenemos entonces

$$\mathbf{A} \models \varphi[\vec{a}] \quad \text{sii} \quad (t_1^{\mathbf{A}}[\vec{a}], ..., t_n^{\mathbf{A}}[\vec{a}]) \in r^{\mathbf{A}} \text{ (def de } \models)$$

$$\text{sii} \quad (F(t_1^{\mathbf{A}}[\vec{a}]), ..., F(t_n^{\mathbf{A}}[\vec{a}])) \in r^{\mathbf{B}} \text{ (F es iso)}$$

$$\text{sii} \quad (t_1^{\mathbf{B}}[F(\vec{a})]), ..., t_n^{\mathbf{B}}[F(\vec{a})]) \in r^{\mathbf{B}} \text{ (Lema ??)}$$

$$\text{sii} \quad \mathbf{B} \models \varphi[F(\vec{a})]$$

Dejamos al lector completar la prueba de que Teo_k implica Teo_{k+1}

8.2 Isomorfismo de Posets

Enunciado Sean (P, \leq) y (P', \leq') posets. Supongamos F es un isomorfismo de (P, \leq) en (P', \leq') .

- 1. Para cada $S \subseteq P$ y cada $a \in P$, se tiene que a es cota superior (resp. inferior) de S si y solo si F(a) es cota superior (resp. inferior) de F(S).
- 2. Para cada $S \subseteq P$, se tiene que existe $\sup(S)$ si y solo si existe $\sup(F(S))$ y en el caso de que existan tales elementos se tiene que $F(\sup(S)) = \sup(F(S))$.

Prueba

- 1. Supongamos que a es cota superior de S. Veamos que entonces F(a) es cota superior de F(S). Sea $x \in F(S)$. Sea $s \in S$ tal que $s \in S$ tal que $s \in S$, tenemos que $s \in S$ tal que $s \in S$. Sea $s \in S$ tal que $s \in S$, and que $s \in S$ tal que $s \in S$. Ya que $s \in S$ tal que $s \in S$ tal que $s \in S$. Ya que $s \in S$ tal que
- 2. Supongamos existe $\sup(S)$. Veamos entonces que $F(\sup(S))$ es el supremo de F(S). Por (e) $F(\sup(S))$ es cota superior de F(S). Supongamos b es cota superior de F(S). Entonces $F^{-1}(b)$ es cota superior de S, por lo cual $\sup(S) \leq F^{-1}(b)$, produciendo $F(\sup(S)) \leq' b$. En forma analoga se ve que si existe $\sup(F(S))$, entonces $F^{-1}(\sup(F(S)))$ es el supremo de S.