# Multiple Choice Problem Sample

## **Problem** (Software Engineering Concepts)

Which of the following are correct statements about software qualities? Answer: A, B.

- A. Software is **correct** if it satisfies functional specifications.
- B. Software can be maintainable but not reliable.
- C. Software is **robust** if it can be easily ported to different environments.
- D. Software can be correct but not reliable.

#### **Problem** (Software Architecture)

Which category of design patterns does the observer design pattern belong to? Answer: <u>C</u>.

- A. creational patterns
- B. structural patterns
- C. behavioral patterns
- D. none of the above

### **Problem** (Tech Presentations)

Which of the following describes the Unreal framework? Answer: B.

- A. web server framework
- B. game engine
- C. database
- D. web frontend engine

# Short Answer Problem Sample

### **Problem** (Software Production Process)

What are the three basic roles in Scrum?

Answer: Scrum master, product owner, and team member

# **Problem** (Software Engineering Concepts)

Please list two aspects that make software engineering different from programming.

Answer: (i) Software engineering often requires a team to develop the software and (ii) the software often involves multiple versions.

# **Problem** (Software Engineering Principles)

Give an example of one of the seven software engineering principles as applied to your course project.

Answer: N/A

Tip: consider the design, implementation, testing, as well as the development process.

# Comprehensive Problem Sample

# **Problem** (Theoretical Foundation of Testing)

Assume the following program is a correct implementation:

```
enum E = {NONE=-1, FQ=0, SQ=1, TQ=2, HQ=2};
E quartiles (int x) {
   if (x==25) then
      return FQ;
   else if (x==50) then
      return SQ;
   else if (x==75) then
      return TQ;
   else if (x==100) then
      return HQ;
   else
      return NONE;
   end if; end if; end if;
}
```

Please indicate the input domain **D**, output domain/range **R**, and output requirement **OR**.

#### Answer:

```
D = Z
R = \{-1, 0, 1, 2\}
OR = \{\langle 25, 0 \rangle, \langle 50, 1 \rangle, \langle 75, 2 \rangle, \langle 100, 2 \rangle\} \cup \{\langle i, -1 \rangle | i \in Z \land i \neq 25 \land i \neq 50 \land i \neq 75 \land i \neq 100\}
```

### **Problem** (White-box Testing)

Consider the following program:

```
test_sign (int x, int y) 

{
    if (x<0 && y<0)
        write ("both negative");
    else
        write ("at least one positive");

    if (x \geq 0 && y \geq 0)
        write ("none is negative");
    write("done");
}
```

- 1) Please indicate the input domain **D**;
- 2) Draw the control flow graph (CFG);
- 3) Give a minimal test set that ensures full *statement* coverage;
- 4) Label the edges in the CFG, then list all the *paths* in the CFG.
- 5) Is there a minimal test set that ensures full *path* coverage (all paths listed in 4)? If so, provide one; otherwise, explain the reasons. Tips: draw a coordinate system to help figure out the ranges (areas) that satisfy the conditions of different branches.

#### Answer:

- 1) Input domain:  $D = Z \times Z$
- 2) The control flow graph of the code is as follows:



- 3) A minimal test set that ensures full statement coverage is: {<-1, -1>, <1, 1>}
- 4) There are four paths:

Path 1:  $a \rightarrow c \rightarrow e \rightarrow g$ 

Path 2:  $a \rightarrow c \rightarrow f$ 

Path 3:  $b \rightarrow d \rightarrow e \rightarrow g$ 

Path 4:  $b \rightarrow d \rightarrow f$ 

5) There does not exist a minimal test set that ensures full path coverage, since Path 1 is infeasible. (To cover the other three paths, a minimal test set could be {<-1, -1>, <1, 1>, <1, -1>})