Finite-volume based inversion of the wave equation for elastography applications

Joaquín Mura

BIOQIC Seminar

MRE group @ Charité

27.11.2018

Biomedical Imaging Center
Pontificia Universidad Católica de Chile
Santiago, Chile

Index

Elasticity from scratch

• Some inversion approaches

Our proposal

Elasticity from scratch

Elasticity OD-1D

Elasticity OD-1D

$$F + kx = 0$$

Hooke's Law = Static Equilibrium (pure elasticity, no inertia)

(Linear) Elasticity OD-1D

$$F + kx = 0$$

Valid in "linear regime" = small |x|

Figures from Wikipedia

(Linear) Elasticity OD-1D

More models ... → Equations of motion

$$m\frac{d^2u}{dt^2} + ku = F_{ext}$$

$$m\frac{d^2u}{dt^2} + \eta \frac{du}{dt} = F_{ext}$$

$$m\frac{d^2u}{dt^2} + \eta\frac{du}{dt} + ku = F_{ext}$$

Elastic rod model:

Many small springs and masses

 σ : Stress

 $e = \frac{\delta u}{\delta x}$: Strain = Elongation rate at point x

 $\sigma = Ee$: Constitutive Law

Balance of forces over one single element

$$\frac{F_E}{A} = \frac{\delta \sigma}{\delta x} \qquad \left| \frac{F_\rho}{A} = \rho \frac{d^2 u}{dt^2} \right|$$
Elastic forces

Elastic rod model:

Many small springs and masses

Model valid at each point x between x=0 and x=L, and at any t from 0 to "infinity"

$$(\rho A)(x)\frac{\partial^2 u}{\partial t^2}(x,t) - \frac{\partial}{\partial x} \left(EA(x)\frac{\partial u}{\partial x}(x,t) \right) = 0$$

$$u = 0$$
 at $x = 0$

$$E\frac{\partial u}{\partial x} = P \qquad at \ x = L$$

Boundary conditions

$$u = 0$$
 when $t = 0$

$$\frac{\partial u}{\partial t} = 0$$
 when $t = 0$

Initial conditions

Small portion of tissue = 1 (differential) element

Rigid body motion (no deformation)

Deformation

displacement $u = (u_x, u_y, u_z)$

Angular deformation

Dilatation and/or compression

associated with

$$\nabla \cdot u = div(u) = \sum_{i=1}^{3} \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z}$$

Shear

associated with crossed derivatives

$$\frac{\partial u_x}{\partial y}$$
, $\frac{\partial u_y}{\partial x}$, $\frac{\partial u_z}{\partial y}$, $\frac{\partial u_y}{\partial z}$, $\frac{\partial u_x}{\partial z}$, $\frac{\partial u_z}{\partial x}$

In 3D, we can express different type of deformations using the (linear) strain tensor

$$e(u) = \begin{bmatrix} \frac{\partial u_x}{\partial x} & \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) & \frac{\partial u_y}{\partial y} & \frac{1}{2} \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right) \\ \frac{1}{2} \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right) & \frac{\partial u_z}{\partial z} \end{bmatrix} = \frac{1}{2} (\nabla u + \nabla u^T)$$

$$div(u) = tr(e(u))$$

And a constitutive law relates the elastic forces and their deformations in the **stress-strain** constitutive law

$$\sigma(u) = Ce(u) = \sum_{kl} C_{ijkl} e_{kl}(u)$$

where C is the Elasticity Tensor, and can represent different types of tissues

← Generalized Hooke's Law

= Linear constitutive Law

Anisotropic
With no preferred
microstructural orientation

Anisotropic
With one preferred
microstructural orientation

And a constitutive law relates the elastic forces and their deformations in the **stress-strain** constitutive law

$$\sigma(u) = Ce(u)$$

$$= \lambda \operatorname{div}(u) I + 2\mu e(u)$$

The equation of motion now yields

Some point "x"

$$\rho \frac{\partial^{2} u}{\partial t^{2}} - \operatorname{div} \sigma(u) = F_{ext} \qquad \forall x \in \Omega, \forall t > 0$$
$$\sigma(u) = \operatorname{Ce}(u) \qquad \forall x \in \Omega, \forall t > 0$$

- + initial conditions
- + boundary conditions

The equation of motion now yields

Some point "x"

$$\lambda = \lambda(x)$$

$$\mu = \mu(x)$$

- + initial conditions
- + boundary conditions

The equation of motion now yields

Some point "x"

$$\lambda = \lambda(x)$$

$$G = G(x)$$

+ initial conditions

+ boundary conditions

The equation of motion now yields

Some point "x"

$$\lambda = \lambda(x) \to \infty$$

$$G = G(x)$$

$$\rho \frac{\partial^2 u}{\partial t^2} - div \left(\lambda div(u)I + 2G e(u) \right) = F_{ext} \quad \forall x \in \Omega, \forall t > 0$$

$$div(u) = 0$$

Incompressibility constraint

- + initial conditions
- + boundary conditions

$$\forall x \in \Omega, \forall t > 0$$

The equation of motion now yields

Some point "x"

$$\lambda = \lambda(x) \to \infty$$

$$G = G(x)$$

$$\rho \frac{\partial^2 u}{\partial t^2} - div \left(-pI + 2G \ e(u) \right) = F_{ext}$$

$$div(u) = 0$$

Incompressibility constraint

- + initial conditions
- + boundary conditions

$$div(u) \to 0$$
$$\lambda \to \infty$$

$$p = -\lambda div(u)$$
 is finite

The equation of motion now yields

Some point "x"

$$\lambda = \lambda(x) \to \infty$$

$$G = G(x)$$

weight

$$\rho \frac{\partial^2 u}{\partial t^2} - div \left(2G \ e(u) \right) + \nabla p = \rho g$$
$$div(u) = 0$$

- + initial conditions
- + boundary conditions

Particular case:

Some point "x"

$$\lambda \approx const. \gg 1$$
 but finite $G \approx const.$

$$\rho \frac{\partial^2 u}{\partial t^2} - (\lambda + G) \nabla div(u) + G \Delta u = \rho g$$
 Navier's Equation
$$\rho \frac{\partial^2 u}{\partial t^2} - (\lambda + 2G) \nabla div(u) + G \nabla \times \nabla \times u = \rho g$$

- + initial conditions
- + boundary conditions

Laplacian operator :
$$\Delta f = div \nabla f = \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

Particular case:

Some point "x"

$$\lambda \approx const. \gg 1$$
 but finite $G \approx const.$

$$\rho \frac{\partial^2 u}{\partial t^2} - (\lambda + 2G)\nabla div(u) + G\nabla \times \nabla \times u = 0$$

$$u = \nabla \varphi + \nabla \times \Phi$$

$$\frac{\partial^2 \varphi}{\partial t^2} = \sqrt{\frac{\lambda + 2G}{\rho}} \Delta \varphi$$

Compressive waves or P-waves or Acoustic waves [No rotation]

Helmholtz-Hodge decomposition

→ Two volumetric WAVES!

$$\frac{\partial^2 \Phi}{\partial t^2} = \sqrt{\frac{G}{\rho}} \Delta \Phi$$

Shear waves [No volumetric variations]

Going back... when coefficients are not constants (heterogeneous media)

$$\rho \frac{\partial^2 u}{\partial t^2} - div \left(\lambda div(u)I + 2G e(u) \right) = \rho g$$

+ initial conditions

+ boundary conditions

$$\lambda = \lambda(x)$$

$$G = G(x)$$

$$u(x,\omega) = \int_{-\infty}^{\infty} u(x,t)e^{i\omega t} dx$$

Composition of plane waves

- → Harmonic motion!
- → Now u is complex-valued

Going back... when coefficients are not constants (heterogeneous media) Time-Harmonic motion:

$$\rho\omega^2 u + div\left(\lambda div(u)I + 2G e(u)\right) = 0 \quad in \Omega$$

+ boundary conditions

$$\lambda = \lambda(x)$$

$$G = G(x)$$

In our case, we have "u" and we are interested in the recovering of G, λ and ρ

https://www.helsinki.fi/en/researchgroups/inverse-problems/research/computational-inverse-problems

Some inversion approaches

$$\rho \omega^2 u + div \left(\lambda div(u)I + 2G e(u) \right) = 0 \quad in \Omega$$

Direct Problem:

We have G, λ and ρ We want u

$$u = A(G, \lambda, \rho)$$

"easy" if well posed← Stable and unique solution

Inverse Problem:

We have u
We want G, λ and ρ

$$(G,\lambda,\rho)=A^{-1}u$$

Ill-posed

- → instabilities, non-uniqueness
- → challenging!

Intermezzo

On the classification of Partial Differential Equations:

In 2D, we can write it as

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = const$$

In analogy to quadratic polynomials, we have that

- If $B^2 4AC < 0$ is an **Elliptic** equation \rightarrow smooth solutions
- If $B^2 4AC = 0$ is a **Parabolic** equation \rightarrow solutions get smoothed as x or y increase
- If $B^2 4AC > 0$ is a **Hyperbolic** equation \rightarrow Allow discontinuous and stiff solutions

Direct Problem:

Even for irregular G, λ and ρ The equation for u is "elliptic" \rightarrow u is "smooth"

$$\rho \omega^2 \mathbf{u} + div \left(\lambda div(\mathbf{u})I + 2G e(\mathbf{u}) \right) = 0$$

Inverse Problem:

Even for regular u and simplified model (shear only)

The equation for want G is "hyperbolic"

→ G is non-smooth

- Looks like a transport (advection) model
- Numerical solutions require special schemes (some standard discretization may fail)

$$\rho\omega^2 u + div\left(2G\ e(u)\right) = 0$$

$$\rho\omega^2 u + 2Gdiv\ e(u) + e(u)\nabla G = 0$$
 In the sense of distributions ...

$$\alpha \mathbf{G} + A \nabla \mathbf{G} = f$$

Two approaches

Direct

Uses an explicit relation between u and G, λ , ρ

Pros

- Very Fast
- Not many variables to tune-up in the model

Contras

- Requires many information (full knowledge of u) and/or high quality filtered input data.
- The model is often reduced: Sometimes too simplistic.

Iterative

Minimize the misfit between the data and computational simulations

Pros

- Can be solved using partial information (the more the best)
- Can be applied with complex models

Contras

- Very slow and often requires high-performance computing facilities.
- Complex problems have many coefficients to tune up (missing information)
- Sophisticated non-linear solvers often need finetuned parameters

Iterative

Minimize the misfit between the data and computational simulations.

The general approach can be established as

$$\min_{G,\lambda,\rho} \left\{ J(G,\lambda,\rho) = \left\| \mathbf{u}(G,\lambda,\rho) - u_{exp} \right\|^2 + R(G,\lambda,\rho) \right\}$$

Subject to

$$\rho \omega^2 \mathbf{u} + div \left(\lambda div(\mathbf{u})I + 2G e(\mathbf{u}) \right) = 0$$

+ boundary conditions

Iterative

Minimize the misfit between the data and computational simulations.

The general approach can be established as

Regularization: Penalization to ensure smoothness in coefficients

Subject to

$$\rho \omega^2 \mathbf{u} + div \left(\lambda div(\mathbf{u})I + 2G e(\mathbf{u}) \right) = 0$$

+ boundary conditions

Need sensitivity respect to G, λ, ρ \rightarrow Adjoint Problem

Iterative

Minimize the misfit between the data and computational simulations.

The general approach can be established as a sequence of updates

$$(G,\lambda,\rho)^{k+1} = (G,\lambda,\rho)^k - \alpha \frac{\partial J}{\partial (G,\lambda,\rho)}(\mathbf{u}^k,\mathbf{p}^k)$$

Subject to

$$\rho^{k}\omega^{2}u^{k} + div\left(\lambda^{k}div(u^{k})I + 2G^{k}e(u^{k})\right) = 0$$

+ boundary conditions

$$\rho^{k}\omega^{2}p^{k} + div\left(\lambda^{k}div(p^{k})I + 2G^{k}e(p^{k})\right) = \mathbf{u}(G^{k},\lambda^{k},\rho^{k}) - u_{exp}$$
+ boundary conditions

Inverse Problems in Elasticity

Direct

Uses an explicit relation between u and G, λ , ρ

If we could explicitly find some F such that

$$(G, \lambda, \rho) = F(u, \nabla u)$$

at any point of the tissue by using this model

$$\rho \omega^2 u + div \left(\lambda div(u) I + 2 G e(u) \right) = 0$$

Then there is a hope ... only if u is well-known and noise-free.

FEM solvers

Some iterative approaches use Finite-Element methods to solve PDEs in the full volume, generating a matrix that connects neighboring values

FV solvers

Finite Volume solvers also use the whole volume, and generates a matrix that connects neighboring values. However, this type of schemes is well suited for conservation laws (good idea for solving G)

Given material coefficients, find u solution to

$$\int_{\Omega} \rho \omega^2 u dx = \int_{\partial \Omega} Ce(u) n ds$$

Discretization of whole domain

M,K matrices of size
(3xN) x (3xN)
With N=number of voxels

$$\omega^2 M u - K u = F$$

There exist FV methods for unstructured meshes, but they are slower than FEM.

Our Proposal: a Finite-Volume based scheme

We apply FV directly to the image grid. FV methods are good for Hyperbolic problems.

In contrast to standard FEM, in FV we do not uses a variational formulation, but a direct integration of the model.

And, instead of solving the whole domain, we propose to go at the smallest scale possible: 1 voxel

Direct integration of elasticity equation leads to

$$\int_{V} \rho \omega^{2} u \, dx + \int_{V} div \left(\lambda div(u)I + 2G \, e(u) \right) dx = 0$$

Assumption: G, λ , ρ are constant voxel-wise.

$$\rho\omega^2 \int_V u \, dx + \lambda \int_V div \, (div(u)I) dx + 2G \int_V div \, (e(u)) dx = 0$$

Thus, applying Gauss theorem, we have

$$\rho\omega^2 \int_V u \, dx + \lambda \int_{\partial V} div(u) n ds + 2G \int_{\partial V} e(u) n ds = 0$$

$$\rho\omega^2 p_l + \lambda^* q_l + 2G^* b_l = 0$$

A set of 3 simple algebraic equations to solve ρ , λ , G.

And ... in an ideal world, we could possibly find all the values we need.

$$\begin{bmatrix} |\mathbf{q}_{V}|^{2} & \mathbf{q}_{V}^{\dagger} \mathbf{b}_{V} & \mathbf{q}_{V}^{\dagger} \mathbf{p}_{V} \\ \mathbf{b}^{\dagger} \mathbf{q}_{V} & |\mathbf{b}_{V}|^{2} & \mathbf{b}_{V}^{\dagger} \mathbf{p}_{V} \\ \mathbf{p}_{V}^{\dagger} \mathbf{q}_{V} & \mathbf{p}_{V}^{\dagger} \mathbf{b}_{V} & |\mathbf{p}_{V}|^{2} \end{bmatrix} \begin{bmatrix} \lambda \\ 2\mu \\ \rho\omega^{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

But it is too unstable, even for constant ho

The current model is (without acoustic waves)

$$\rho \omega^2 p_l + 2G^* b_l = 0$$

which yields

$$|G^*(\omega)| = \frac{\rho \omega^2}{2} \frac{\|p(\omega)\|_{l^p}}{\|b(\omega)\|_{l^p}}$$

With the lp-norm

$$||x||_{l^p}^p = \left(\sum_{k=1}^3 |x_k|^p\right)^{1/p}$$

And for multi-frequency:

$$|G^*|_{MF} = \frac{\rho}{2} \left(\frac{\sum_{j} |\omega_{j}^{2p} || p(\omega_{j}) ||_{l^{p}}^{p}}{\sum_{j} || b(\omega_{j}) ||_{l^{p}}^{p}} \right)^{1/p}$$
 \(\text{\alpha}^* \) \(\text{\alpha}^* = \text{\sum} \sum_{j} \left(p(\omega_{j}), \bar{b}(\omega_{j}) \right)

$$\angle G^* = \angle \sum_{j} (p(\omega_j), \overline{b}(\omega_j))$$

Some results: Absolute value

^{*} Ong et all. "Robust 4D Flow Denoising Using Divergence-Free Wavelet Transform", MRM 2015. https://people.eecs.Berkeley.edu/~mlustig/Software.html

Some results: Absolute value

^{*} Ong et all. "Robust 4D Flow Denoising Using Divergence-Free Wavelet Transform", MRM 2015. https://people.eecs.Berkeley.edu/~mlustig/Software.html

Some results: Absolute value

^{*} Ong et all. "Robust 4D Flow Denoising Using Divergence-Free Wavelet Transform", MRM 2015. https://people.eecs.Berkeley.edu/~mlustig/Software.html

Some results

Average execution time in seconds for different methods

(MDEV solution was already calculated)

	Helmholtz	HDMI	FV
avg(time)	0,81	138,41	1,41

In the MREdge pipeline, all the data is single precision. This reduces the computational cost.

Some results: Absolute value / Phase angle

Some issues

Divergence-Free filter helps to the model (reduce the divergence in the waveforms = reduces compression waves effects)

Some issues

Different amplitudes for different frequencies

Numerical artifacts

500

Final remarks

- We introduced a novel local solver based on FV schemes → only 1 derivative (but 2nd derivative of the model is hidden in boundary integrals, which may introduces instabilities.)
- Fast: Thanks to Eric's advices (and it has been conceived as a unique Matlab file)
- Divergence-Free filters seems to improve some results (to consider in future developments)
- As a local solver, a good delineation of interfaces produce interesting results, at expenses of stability. Magnitude of G^* show variations within the tissue \leftarrow work in progress
- Wide and narrow band analyses should shed some light about stability.

Vielen Dank!