Name: _		 	
	ID#:		

PHILOSOPHY 279 Lec 03 Winter 2015

TEST #2

Friday, March 20, 2015

1.	Indicate which	of the follo	wing are true	and which	are false.
----	----------------	--------------	---------------	-----------	------------

(6 marks)

- (i) True False All satisfiable sentences are logically equivalent.
- (ii) True False No two unsatisfiable sentences are logically equivalent.
- (iii) True False All invalid sentences are logically equivalent.
- (iv) True False All valid sentences are logically equivalent.
- (v) True False All valid arguments have valid conclusions.
- (vi) True False Only invalid arguments have invalid conclusions.
- 2. For each of the sentences on the next page in List A find its correct symbolization from List B, given the following dictionary:

(10 marks)

$$T^1$$
: -is a triangle; F^1 : -is a figure; L^1 : -is large; S^1 : -is a circle

List A:

- (A₁) Every triangle is a figure.
- (A₂) Some figures are not triangles.
- (A₃) Some large figures are triangles.
- (A₄) Some large figures are not triangles.
- (A_5) Every figure is either a triangle or a circle.
- (A₆) If all figures are triangles, then there are no circles.
- (A_7) No circle is a triangle.
- (A₈) If any circle is large, then some circle is large.
- (A₉) If some circle is large, then any circle is large.
- (A₁₀) Only triangles are large.

List B:

- $(B_1) \exists x (Tx \land Fx)$
- $(B_2) \forall x(Tx \rightarrow Fx)$
- $(B_3) \forall x(Lx \rightarrow Tx)$
- $(B_4) -\exists x(Sx \land Tx)$
- (B_5) $-\exists x(Sx \rightarrow Tx)$
- (B₆) $\exists x(Lx \land Fx \land -Tx)$
- (B_7) $(\forall x(Fx \rightarrow Tx) \rightarrow -\exists xSx)$
- (B₈) $(\forall x(Fx \land Tx) \rightarrow -\exists xSx)$
- (B₉) $\exists x(Lx \land Fx \land Tx)$
- (B_{10}) $(\exists x(Sx \land Lx) \rightarrow \exists x(Sx \land Lx))$
- (B_{11}) $(\exists x(Sx \land Lx) \rightarrow \forall x(Sx \rightarrow Lx))$
- (B_{12}) $(\exists x(Sx \land Lx) \rightarrow \forall x(Lx \rightarrow Sx))$
- $(B_{13}) \forall x(Fx \rightarrow (Tx \vee Sx))$
- $(B_{14}) \ \forall x((Tx \ v \ Sx) \rightarrow Fx)$
- (B_{15}) $\exists x(Fx \land -Tx)$

Answer:

A ₁	
A ₂	
A ₃ A ₄	
A ₄	
A_5	
A ₆ A ₇	
A ₇	
A ₈	
A ₈ A ₉ A ₁₀	
A ₁₀	

3.	For each of the following sentences specify an interpretation in which it is true, and
	another interpretation in which it is false.

(10 marks)

(i) $\exists x (Fx \land Gx)$

True: False:

Domain: {1, 2} Domain: {1, 2}

Ext. of \mathbf{F}^1 :

Ext. of \mathbf{G}^1 :

Ext. of \mathbf{G}^1 :

Ext. of \mathbf{G}^1 :

(ii) $\exists x (Fx \lor Gx)$

True: False:

Domain: {1, 2} Domain: {1, 2}

Ext. of \mathbf{F}^1 : Ext. of \mathbf{F}^1 : Ext. of \mathbf{G}^1 :

(iii) $\forall x(Fx \rightarrow Gx)$

True: False:

Domain: {1, 2} Domain: {1, 2}

Ext. of \mathbf{F}^1 :

Ext. of \mathbf{G}^1 :

Ext. of \mathbf{G}^1 :

Ext. of \mathbf{G}^1 :

(iv) ∀x ∃y Lxy

True: False:

Domain: $\{1, 2\}$ Domain: $\{1, 2\}$ Ext. of L^2 :

(v) ∃y ∀x Lxy

True: False:

Domain: {1, 2} Domain: {1, 2}

Ext. of L^2 : Ext. of L^2 :

4.	Using the tree method test the following argument for validity. Identify a counterexample from an open path of a finished tree, if there is one.			
			(4 marks)	
		$\frac{(\exists x Lxa \to P)}{\exists x (Lxa \to P)}$		
	Answer:			