Parsing: Bottom-Up Parsing LR(1)

A Powerful Parser: LR(1)

- Bottom-up predictive parsing with
 - L: Left-to-right scan
 - . R: Rightmost derivation
 - . (1): One token lookahead
- Substantially more powerful than the other methods we've covered so far (more on that later).
- Tries to more intelligently find handles by using a lookahead token at each step.

Lookahead

• Recall: Follow set.

Lookahead

Recall: Follow set.

Idea:

- Track series of productions.
- Use the information to find handles more efficiently.

Lookahead

Recall: Follow set.

Idea:

- Track series of productions.
- Use the information to find handles more efficiently.
- local follows or lookahead: i.e. what we expect follows after reduction.

```
S \rightarrow E
E \rightarrow T
E \rightarrow E + T
T \rightarrow int
T \rightarrow (E)
```



```
int + ( int + int ) $
```


+	(int	+	int	+	int)	\$
---	---	-----	---	-----	---	-----	---	----

T + (int + int + int) \$										
	Т	+	(int	+	int	+	int)	\$

Е	+	(١	int	+	int	+	int)	\$
		•			•	•	•	•	•	

The Intuition behind LR(1)

- Guess which series of productions we are reversing.
- Use this information to maintain what lookahead to expect.
- When deciding whether to shift or reduce, use lookahead to disambiguate.
- Construct an automaton to track lookaheads!

Tracking Lookaheads

 How do we know what lookahead to expect at each state?

Observation:

- There are only finitely many productions we can be in at any point.
- There are only finitely many positions we can be in each production.
- There are only finitely many lookahead sets at each point.

Construct an automaton to track lookaheads!

Constructing LR(1) Automata

```
S \rightarrow E
E \rightarrow T
E \rightarrow E + T
T \rightarrow int
T \rightarrow (E)
```

Begin with a state \$ [\$].

Begin with a state **S** [\$].

For each state A [t], for each production $A \rightarrow y$:

- 1. Construct states $A \to \alpha \cdot \omega$ [t] for all possible ways of splitting $\gamma = \alpha \omega$.
- 2. Add an ϵ -transition from A[t] to each $A \rightarrow \omega[t]$.
- 3. Add transitions on x between $A \rightarrow \alpha \cdot x\omega$ [t] and $A \rightarrow \alpha x$ · ω [t]

Begin with a state **S** [\$].

For each state A [t], for each production $A \rightarrow y$:

- 1. Construct states $A \rightarrow \alpha \cdot \omega$ [t] for all possible ways of splitting $\gamma = \alpha \omega$.
- 2. Add an ϵ -transition from A[t] to each $A \rightarrow \omega[t]$.
- 3. Add transitions on x between $A \rightarrow \alpha \cdot x\omega$ [t] and $A \rightarrow \alpha x$ · ω [t]

For each state $A \to \alpha \cdot B\omega$ [t], add an ϵ -transition from $A \to \alpha \cdot B\omega$ [t] to B[r] for each terminal $r \in FIRST^*(\omega t)$.


```
S \rightarrow . E $
E \rightarrow . T $
E \rightarrow . E + T $
E \rightarrow . E + T + E \rightarrow . E + T + E \rightarrow . int $
<math>T \rightarrow . (E) $
```

```
S \rightarrow . E $
E \rightarrow . T $
E \rightarrow . E + T $
E \rightarrow . E + T + C
E \rightarrow . E + T + C
E \rightarrow . E + T + C
E \rightarrow . E + C
E \rightarrow . E + C
E \rightarrow . C
E
```

```
S \rightarrow . E $
E \rightarrow . T $
E \rightarrow . E + T $
E \rightarrow . E + T + E \rightarrow . E + T + E \rightarrow . E + T + E \rightarrow . int $
T \rightarrow . int $
T \rightarrow . (E) $
T \rightarrow . int + T \rightarrow . (E) +
```


Constructing LR(1) Automata II

Begin in a state containing S → · E [\$],
 where S is the start symbol.

Constructing LR(1) Automata II

- Begin in a state containing S → ⁻ E [\$],
 where S is the start symbol.
- Compute the closure of the state:
 - If A → α · Bω [t] is in the state, add B → · γ [t] to the state for each production B → γ and for each terminal t ∈ FIRST*(ωt)

Constructing LR(1) Automata II

- Begin in a state containing S → · E [\$],
 where S is the start symbol.
- Compute the closure of the state:
 - If A → α · Bω [t] is in the state, add B → · γ [t] to the state for each production B → γ and for each terminal t ∈ FIRST*(ωt)
- Repeat until no new states are added:
 - If a state contains a production A → α · xω [t], add a transition on x from that state to the state containing the closure of A → αx · ω [t].

Structure of LR(1) Automata

- Every LR(1) automaton simulates two processes simultaneously:
 - An LR(0) automaton for finding handles.
 - A lookahead tracker for determining what the lookahead is.
- Removing the lookaheads from an LR(1) automaton results in a (much larger) LR(0) automaton for the same grammar.

Representing LR(1) Automata

As with LR(0), use action and goto tables.

goto table defined as before; encodes transition table as map from (state, token) to states.

action table maps pairs (state, lookahead) to actions.

Commonly combined into a single action/goto table.

		int	()	+	\$	Т	Е
,	1	s5					g4	g2
	2				s6	ACCEPT		
	3				r3	r3		
4	4				r2	r2		
ļ	5				r5	r5		
(6	s5	s7				g3	
-	7	s10	s14				g10	g8
8	8			s9	s12			
Ç	9				r5	r5		
1	0			r2	r2			
1	1			r4	r4			
1	2	s11					g13	
1	3			r3	r3			
1	4	s11		s14			g10	g15
1	5			s16	s12			
1	6			r5	r5			

 $\textbf{S} \rightarrow \textbf{E}$

 $\mathsf{E} \to \mathsf{T}$

 $E \rightarrow E + T$

 $T \rightarrow int$

T → **(E)**

(1)

(2)

(3)

(4)

(5)

Constructing LR(1) Parse Tables

- For each state X:
 - If there is a production $A \rightarrow \omega$ · [t], set action[X, t] = reduce $A \rightarrow \omega$.
 - If there is the special production S → E · [\$], where S is the start symbol, set action[X, t] = accept.
 - If there is a transition out of s on symbol t, set
 action[X, t] = shift.
- Set all other actions to error.
- If any table entry contains two or more actions, the grammar is not LR(1).

The LR(1) Parsing Algorithm

- Begin with an empty stack and the input set to ω \$, where ω is the string to parse. Set **state** to the initial state.
- Repeat the following:
 - Let the next symbol of input be t.
 - If action[state, t] is shift, then shift the input and set
 state = goto[state, t].
 - If action[state, t] is reduce $A \rightarrow \omega$:
 - Pop $|\omega|$ symbols off the stack; replace them with A. Let the
 - _ state atop the stack be **top-state**.
 - Set state = goto[top-state, A]
 - If action[state, t] is accept, then the parse is done. If
 - action[state, t] is error, report an error.

\$

\$

Representing LR(1) Automata

- As with LR(0), use action and goto tables.
- goto table defined as before; encodes transition table as map from (state, token) to states.
- action table maps pairs (state, lookahead) to actions.
- Commonly combined into a single action/goto table.

The Power of LR(1)

- Any LR(0) grammar is LR(1).
- . Any LL(1) grammar is LR(1).
- Any deterministic CFL (a CFL parseable by a deterministic pushdown automaton) has an LR(k) grammar.
- Any LL(k) language is LR(1), though individual LL(k) grammars might not be.
- Any LR(k) language is LR(1), though individual LR(k) grammars might not be.

LR(1) Automata are Huge

- In a grammar with n terminals,
 - -> n times larger of non-deterministic automata
 - -> 2^N vs 2^nN
 - LR(1) tables for practical programming languages can have hundreds of thousands or even *millions* of states.
 - Consequently, LR(1) parsers are rarely used in practice.

Is there a way to get the power of LR(1) without the huge table size?

Why is LR(1) so powerful?

- Intuitively, for two reasons:
- Lookahead makes handle-finding easier.
 - The LR(0) automaton says whether there could be a handle later on based on no right context.
 - The LR(1) automaton can predict whether it needs to reduce based on more information.
- More states encode more information.
 - LR(1) lookaheads are very good because there's a greater number of states to be in.
- Goal: Incorporate lookahead without increasing the number of states.

Revisiting Shift/Reduce Conflicts

A shift/reduce conflict is a state that looks like this:

$$A \rightarrow \omega$$
.

$$\mathbf{B} \rightarrow \alpha \cdot \beta$$

In LR(0), this is simply not allowed.

In LR(1), this can be avoided by using lookahead to determine whether to shift or reduce.

Can we get some of the lookahead power of LR(1) without the huge tables?

A Surprisingly Powerful Idea

In an LR(1) automaton, we have multiple states with the same core but different lookahead.

What if we merge all these states together?

This is called LALR(1)

Lookahead(1) LR(0)

LR(1) -> LALR

Merge states if the set of "cores of items" are equal

$$\mathsf{E} o$$
 . $\mathsf{E} + \mathsf{T} \{)+\}$
 $\mathsf{E} o$. $\mathsf{T} \qquad \{)+\}$

$$\begin{tabular}{|c|c|c|c|c|}\hline E \rightarrow . & E + T & \$)+ \\ E \rightarrow . & T & \$)+ \end{tabular}$$

```
S \rightarrow E
E \rightarrow L = R
From LR(1) to LALR(1)
E \rightarrow R
L \rightarrow id
L \rightarrow *R
R \rightarrow L
```

 $S \rightarrow E$ From LR(1) to LALR(1) $E \rightarrow L = R$ $E \rightarrow R$ $E \rightarrow L = R \cdot \$$ R $\textbf{L} \rightarrow \textbf{id}$ $E \rightarrow L = \cdot R$ $L \rightarrow *R$ $R \rightarrow L$ \$ ightharpoonup R
ightharpoonup\$ $L \rightarrow \cdot id\$$ $R \rightarrow L$ $I \rightarrow \star R$ \$ $S \rightarrow \cdot E$ \$ F $S \rightarrow \cdot E \$$ $E \rightarrow L \cdot = R \$$ id $E \rightarrow \cdot L = R \dot{s}$ $R \rightarrow L^{\cdot}$ \$ $L \rightarrow \cdot \star R$ $E \rightarrow \cdot R$ start $E \rightarrow R \cdot $$ $L \rightarrow id$ \$ R $L \rightarrow *R$ $I \rightarrow \star R$ id $L \rightarrow *R$. R $R \rightarrow \cdot L$ L → *R • $L \rightarrow id \cdot L =$ $L \rightarrow \cdot id$ = id \rightarrow id . \$ $L \rightarrow \cdot \star R$ = $R \to L \cdot$ $L \rightarrow \cdot id$ $R \rightarrow L$

 $S \rightarrow E$ From LR(1) to LALR(1) $E \rightarrow L = R$ $E \rightarrow R$ $E \rightarrow L = R \cdot \$$ R $\textbf{L} \rightarrow \textbf{id}$ $E \rightarrow L = \cdot R$ $L \rightarrow *R$ $R \rightarrow L$ \$ ightharpoonup R
ightharpoonup $L \rightarrow \cdot id\$$ $R \rightarrow L$ $I \rightarrow \star R$ \$ $S \rightarrow \cdot E$ \$ F $S \rightarrow \cdot E \$$ $E \rightarrow L \cdot = R \$$ id $E \rightarrow \cdot L = R \dot{s}$ $R \rightarrow L^{\cdot}$ \$ $L \rightarrow \cdot \star R$ $E \rightarrow R$ start $E \rightarrow R \cdot $$ $L \rightarrow id$ · $R \rightarrow L$ \$ R $L \rightarrow \cdot id$ $I \rightarrow \star R$ $L \rightarrow *R$. L → *R • id $R \rightarrow L s$ $L \rightarrow id \cdot L =$ $L \rightarrow \cdot id =$ id \rightarrow id ' $R \rightarrow$ L· R

 $S \rightarrow E$ From LR(1) to LALR(1) $E \rightarrow L = R$ $E \rightarrow R$ $E \rightarrow L = R \cdot \$$ R $\textbf{L} \rightarrow \textbf{id}$ $E \rightarrow L = \cdot R$ $L \rightarrow *R$ $R \rightarrow L$ \$ ightharpoonup R
ightharpoonup $L \rightarrow \cdot id\$$ $R \rightarrow L$ $I \rightarrow \star R$ \$ $S \rightarrow \cdot E$ \$ id F $S \rightarrow \cdot E \$$ $E \rightarrow L \cdot = R \$$ $E \rightarrow \cdot L = R \dot{s}$ $R \rightarrow L^{\cdot}$ \$ $L \rightarrow \cdot \star R$ $L \to \cdot \text{id}$ $\mathsf{E} \to \mathsf{R}$ $L \to \cdot \text{ id}$ start id i d \blacksquare E \rightarrow R \cdot \$ $R \rightarrow L$ \$ R $L \rightarrow \cdot id$ \$ $I \rightarrow \star R$ $L \rightarrow *R$ id L → *R • R $R \rightarrow L$ \$ $L \rightarrow \cdot id =$ $R \rightarrow$ $I \rightarrow \cdot \star R$ L· R \rightarrow id\$

 $S \rightarrow E$ From LR(1) to LALR(1) $E \rightarrow L = R$ $E \rightarrow R$ $\textbf{L} \rightarrow \textbf{id}$ **L** → ***R** $L \rightarrow * \cdot R$ $R \rightarrow L$ $R \rightarrow L$ \$ $L \rightarrow * R \cdot $=$ $L \rightarrow \cdot id$ $E \rightarrow R$ \$ L → • *R $L \rightarrow * \cdot R$ $E \rightarrow L = R$ $R \rightarrow \cdot L =$ $L \rightarrow \cdot id$ S → • E\$ $L \rightarrow *R$ $E \rightarrow L = R$ id $\mathsf{E} \to \mathsf{R}$ $E \rightarrow L = \cdot R \$$ $\underline{\text{start}} R \to L$ \$ $R \rightarrow L$ \$ $L \rightarrow \cdot id$ $L \rightarrow \cdot id$ $L \rightarrow \cdot *R$ id $L \rightarrow *R$ $L \rightarrow \cdot id$ id $I \rightarrow \cdot *R$ E $E \rightarrow L \cdot = R \$$ $L \rightarrow id \cdot \$ =$ \$ $S \rightarrow E$ $R \rightarrow L$ $R \rightarrow L$

 $S \rightarrow E$ From LR(1) to LALR(1) $E \rightarrow L = R$ $E \rightarrow R$ $\textbf{L} \rightarrow \textbf{id}$ **L** → ***R** $R \rightarrow L$ $L \rightarrow * R \cdot [\$=]$ [\$=] L → * ·R $E \rightarrow R$ [\$] $R \rightarrow L$ [\$=] $L \rightarrow \cdot id$ [\$=] R $E \rightarrow L = R$ $L \rightarrow \cdot *R$ [\$=] [\$] ▲ R $S \rightarrow \cdot E [\$] E$ $\rightarrow \cdot L = R [\$]$ id $E \rightarrow L = R [\$]$ $\underline{\text{start}} \quad \mathsf{E} \to \mathsf{R}$ [\$] $R \rightarrow L$ [\$] $R \rightarrow L$ [\$] $\mathsf{L} o \cdot \mathsf{id}$ [\$] $L \rightarrow \cdot id$ [\$=] id $L \rightarrow \cdot *R$ [\$] id L → • *R [\$=] Ε $S \rightarrow E$ [\$] $L \to \text{id}$ [\$=] $R \rightarrow L$ [\$] [\$]

 $S \rightarrow E$ From LR(1) to LALR(1) $E \rightarrow L = R$ $E \rightarrow R$ $\textbf{L} \rightarrow \textbf{id}$ **L** → ***R** $R \rightarrow L$ → * R [\$=] $L \rightarrow * \cdot R$ [\$=] [\$] $\mathsf{E} \to$ [\$=] $R \rightarrow L$ R. $\mathsf{L} o {}^\mathsf{L}$ id [\$=] $E \rightarrow L = R \cdot [\$]$ $L \rightarrow \cdot *R$ [\$=] R R $S \rightarrow \cdot E$ [\$] id $E \rightarrow \cdot L = R [\$]$ $E \rightarrow L = \cdot R[\$]$ $\underline{\text{start}} E \rightarrow R$ [\$] $R \rightarrow L$ [\$] $R \rightarrow L$ [\$] $L \rightarrow \cdot id$ [\$] id $L \rightarrow \cdot id$ [\$=] $L \rightarrow *R$ [\$] idL → • *R [\$=] E $S \rightarrow E$ $R \rightarrow L$ [\$] $L \rightarrow id$ [\$=] [\$] [\$]

Advantages of LALR(1)

- Maintains context.
 - Lookup sets based on the fine-grained LR(1) automaton.
 - Each state's lookup relevant only for that state.
- Keeps automaton small.
 - Resulting automaton has same size as LR(0) automaton.

LALR(1) is Powerful

- Every LR(0) grammar is LALR(1).
- Every SLR(1) grammar is LALR(1)
- Most (but not all) LR(1) grammars are LALR(1).
- It is powerful enough! i.e. most of PL's structures fit with LALR(1)

LALR(1) isn't LR(1)

 Merging LR(1) states cannot introduce a shift/reduce conflict.

Why?

- Since the items have the same core, a shift/reduce conflict in a LALR(1) state would have to also exist in one of the LR(1) states it was merged from.
- Merging LR(1) states can introduce a reduce/reduce conflict.
- Often these conflicts appear without any good reason; this is one limitation of LALR(1).

Constructing LALR(1) Automata

- It's not a good idea to build LALR(1) automata from LR(1) automata.
- Why?
- LR(1) automata are impractically large.
- Are there more efficient methods for LALR(1) automata construction?
- Yes; we'll see two.

The "Lazy Merging" Technique

- Idea: Merge together LR(1) states as they're generated.
- Maintain a worklist of states to process; begin with the initial LR(1) state.
- When adding a new state, if it has the same core (kernel/base) as an old state, update the old state and put it back in the worklist.

```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow id
L \rightarrow R
R \rightarrow L

LALR(1) Construction
```

```
s \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow id
L \rightarrow R
R \rightarrow L

LALR(1) Construction
```


$$s \rightarrow E$$
 $E \rightarrow L = R$
 $E \rightarrow R$
 $L \rightarrow id$
 $L \rightarrow id$
 $L \rightarrow R$
 $R \rightarrow L$

LALR(1) Construction

$$S \rightarrow \cdot E [\$]$$

$$E \rightarrow \cdot L = R [\$]$$

$$E \rightarrow \cdot R [\$]$$

$$S \rightarrow E$$
 $E \rightarrow L = R$
 $E \rightarrow R$
 $L \rightarrow id$
 $L \rightarrow id$
 $L \rightarrow *R$
 $R \rightarrow L$
LALR(1) Construction

```
S \rightarrow · E [$]

E \rightarrow · L = R [$]

E \rightarrow · R [$]

R \rightarrow · L [$]
```

```
s \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow id
L \rightarrow *R
R \rightarrow L
LALR(1) Construction
```

```
start
S \rightarrow \cdot E [\$]
E \rightarrow \cdot L = R [\$]
E \rightarrow \cdot R [\$]
R \rightarrow \cdot L [\$]
L \rightarrow \cdot id [\$]
L \rightarrow \cdot *R [\$]
```

```
s \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow id
L \rightarrow *R
R \rightarrow L
LALR(1) Construction
```

```
S \rightarrow · E [$]

E \rightarrow · L = R [$]

E \rightarrow · R [$]

R \rightarrow · L [$]

L \rightarrow · id [$=]

L \rightarrow · *R [$=]
```

```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow id
L \rightarrow *R
R \rightarrow L

LALR(1) Construction
```



```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow id
L \rightarrow *R
R \rightarrow L
LALR(1) Construction
```



```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow id
L \rightarrow *R
R \rightarrow L
LALR(1) Construction
```



```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow id
L \rightarrow R
R \rightarrow L

LALR(1) Construction
```



```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow *R
R \rightarrow L
```

LALR(1) Construction

$$S \rightarrow E$$
 $E \rightarrow L = R$
 $E \rightarrow R$
 $L \rightarrow id$
 $L \rightarrow *R$
 $R \rightarrow L$

LALR(1) Construction


```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow *R
R \rightarrow L
```

LALR(1) Construction


```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow *R
R \rightarrow L
```

LALR(1) Construction

$$S \rightarrow E$$
 $E \rightarrow L = R$
 $E \rightarrow R$
 $L \rightarrow id$
 $L \rightarrow *R$
 $R \rightarrow L$

LALR(1) Construction


```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow *R
R \rightarrow L
```

LALR(1) Construction

 $S \rightarrow E$ $E \rightarrow L = R$ LALR(1) Construction $E \rightarrow R$ $L \rightarrow id$ $L \rightarrow *R$ $L \rightarrow * \cdot R$ [\$] $R \rightarrow L$ $E \rightarrow R$ [\$] $E \rightarrow L = R \cdot [\$]$ R $S \rightarrow \cdot E [\$] E$ $\rightarrow \cdot L = R [\$]$ $E \rightarrow L = R [\$]$ start $\mathsf{E} \to \mathsf{R}$ $R \rightarrow L$ $R \rightarrow L$ [\$] [\$] $L \rightarrow \cdot id$ [\$=] $L \rightarrow id$ id $L \rightarrow \cdot *R$ [\$] [\$=] $L \rightarrow \cdot *R$ id E $S \rightarrow E$ $R \rightarrow L$ [\$] $L \to \text{id}$ [\$=] [\$] [\$]

 $S \rightarrow E$ $E \rightarrow L = R$ LALR(1) Construction $\mathsf{E} \to \mathsf{R}$ $L \rightarrow id$ $L \rightarrow *R$ L → * ·R [\$] $R \rightarrow L$ $R \rightarrow L$ [\$] $E \rightarrow R$ [\$] $E \rightarrow L = R \cdot [\$]$ R $S \rightarrow \cdot E [\$] E$ $\rightarrow \cdot L = R [\$]$ $E \rightarrow L = R [\$]$ start $\mathsf{E} \to \mathsf{R}$ $R \rightarrow L$ $R \rightarrow L$ [\$] [\$] $L \rightarrow \cdot id$ [\$=] $L \rightarrow \cdot id$ id $L \rightarrow \cdot *R$ [\$] [\$=] $L \rightarrow \cdot *R$ id E $S \rightarrow E$ $R \rightarrow L$ [\$] $L \to \text{id}$ [\$=] [\$] [\$]

$S \rightarrow E$ $E \rightarrow L = R$ LALR(1) Construction $\mathsf{E} \to \mathsf{R}$ $L \rightarrow id$ $L \rightarrow *R$ $L \rightarrow * \cdot R$ [\$] $R \rightarrow L$ $R \rightarrow L[\$]$ $L \rightarrow id$ [\$] $E \rightarrow R$ [\$] $L \rightarrow \cdot *R$ [\$] $E \rightarrow L = R \cdot [\$]$ R $S \rightarrow \cdot E [\$] E$ \rightarrow · L = R [\$] $E \rightarrow L = R [\$]$ start $\mathsf{E} \to \mathsf{R}$ $R \rightarrow L$ [\$] $R \rightarrow L$ [\$] [\$] $L \rightarrow \cdot id$ [\$=] $L \rightarrow \cdot id$ id $L \rightarrow \cdot *R$ [\$] [\$=] $L \rightarrow \cdot *R$ id E $S \rightarrow E$ $R \rightarrow L$ [\$] $L \to \text{id}$ [\$=] [\$] [\$]

$S \rightarrow E$ $E \rightarrow L = R$ LALR(1) Construction $\mathsf{E} \to \mathsf{R}$ $L \rightarrow id$ $L \rightarrow *R$ $L \rightarrow * \cdot R$ [\$] $R \rightarrow L$ $R \rightarrow L[\$]$ $L \rightarrow \cdot id$ [\$] $E \rightarrow R$ [\$] $L \rightarrow *R$ [\$] $E \rightarrow L = R \cdot [\$]$ R $S \rightarrow \cdot E [\$] E$ $\rightarrow \cdot L = R [\$]$ $E \rightarrow L = R [\$]$ $\mathsf{E} \to \mathsf{R}$ [\$] <u>star</u>t $R \rightarrow L$ [\$] $R \rightarrow L$ [\$] [\$] $L \rightarrow \cdot id$ [\$=] $L \rightarrow \cdot id$ id $L \rightarrow \cdot *R$ [\$] [\$=] $L \rightarrow \cdot *R$ id E $S \rightarrow E$ $R \rightarrow L$ [\$] $L \to \text{id}$ [\$=] [\$] [\$]

 $S \rightarrow E$ $E \rightarrow L = R$ LALR(1) Construction $\mathsf{E} \to \mathsf{R}$ $L \rightarrow id$ $L \rightarrow *R$ $L \rightarrow * \cdot R$ [\$] $R \rightarrow L$ $R \rightarrow L[\$]$ $L \rightarrow \cdot id$ [\$] $E \rightarrow R$ [\$] $L \rightarrow \cdot *R$ [\$] $E \rightarrow L = R \cdot [\$]$ id R $S \rightarrow \cdot E [\$] E$ \rightarrow · L = R [\$] $E \rightarrow L = R [\$]$ $\mathsf{E} \to \mathsf{R}$ [\$] start $R \rightarrow L$ [\$] $R \rightarrow L$ [\$] [\$] $L \rightarrow \cdot id$ [\$=] $L \rightarrow \cdot id$ id $L \rightarrow \cdot *R$ [\$] [\$=] $L \rightarrow \cdot *R$ id E $S \rightarrow E$ $R \rightarrow L$ [\$] $L \to \text{id}$ [\$=] [\$] [\$]

 $S \rightarrow E$ $E \rightarrow L = R$ LALR(1) Construction $\mathsf{E} \to \mathsf{R}$ $L \rightarrow id$ $L \rightarrow *R$ $L \rightarrow * \cdot R$ [\$] $R \rightarrow L$ $R \rightarrow L[\$]$ R $L \rightarrow * R \cdot [\$]$ $L \rightarrow \cdot id$ [\$] $E \rightarrow R$ [\$] $L \rightarrow *R$ [\$] $E \rightarrow L = R \cdot [\$]$ id R $S \rightarrow \cdot E [\$] E$ \rightarrow · L = R [\$] $E \rightarrow L = R [\$]$ $\mathsf{E} \to \mathsf{R}$ start [\$] $R \rightarrow L$ [\$] $R \rightarrow L$ [\$] [\$] $L \rightarrow \cdot id$ [\$=] $L \rightarrow \cdot id$ id $L \rightarrow *R$ [\$] [\$=] L → * *R id E $S \rightarrow E$ $R \rightarrow L$ [\$] $L \to \text{id}$ [\$=] [\$] [\$]

 $S \rightarrow E$ $E \rightarrow L = R$ LALR(1) Construction $E \rightarrow R$ $L \rightarrow id$ $L \rightarrow *R$ [\$] $R \rightarrow L$ $R \rightarrow L[\$]$ R $L \rightarrow * R \cdot [\$]$ $L \rightarrow \cdot id$ [\$] $E \rightarrow R$ [\$] $L \rightarrow \cdot *R$ [\$] $E \rightarrow L = R \cdot [\$]$ R id R $S \rightarrow \cdot E [\$]$ $E \rightarrow \cdot L = R [\$]$ $E \rightarrow L = R [\$]$ <u>star</u>t [\$] [\$] $R \rightarrow L$ [\$] [\$] $L \rightarrow \cdot id$ $L \to \text{id}$ [\$=] id $L \rightarrow *R$ [\$] [\$=] $L \rightarrow *R$ id E $S \rightarrow E$ $R \rightarrow L$ [\$] $L \to \text{id}$ [\$=] [\$] [\$]

 $S \rightarrow E$ $E \rightarrow L = R$ LALR(1) Construction $\mathsf{E} \to \mathsf{R}$ $L \rightarrow id$ $L \rightarrow *R$ [\$] $R \rightarrow L$ $R \rightarrow L[\$]$ R $L \rightarrow * R \cdot [\$]$ [\$] $_{ extsf{-}}
ightarrow$ $ext{id}$ $E \rightarrow R$ [\$] $L \rightarrow \cdot *R$ [\$] $E \rightarrow L = R \cdot [\$]$ id R $S \rightarrow \cdot E [\$]$ $E \rightarrow \cdot L = R [\$]$ $E \rightarrow L = R [\$]$ [\$] <u>star</u>t [\$] $R \rightarrow L$ [\$] [\$] $L \rightarrow \cdot id$ [\$=] $L \rightarrow \cdot id$ id $L \rightarrow *R$ [\$] [\$=] $L \rightarrow *R$ id E $S \rightarrow E$ $R \rightarrow L$ [\$] $L \to \text{id}$ [\$=] [\$] [\$]

 $S \rightarrow E$ $E \rightarrow L = R$ LALR(1) Construction $E \rightarrow R$ $L \rightarrow id$ $L \rightarrow *R$ [\$=] $R \rightarrow L$ [\$=] R $L \rightarrow * R \cdot [\$]$ [\$=] $E \rightarrow R$ [\$] $L \rightarrow \cdot *R$ [\$=] $E \rightarrow L = R \cdot [\$]$ id R $S \rightarrow \cdot E [\$]$ $E \rightarrow \cdot L = R [\$]$ $E \rightarrow L = R [\$]$ [\$] <u>star</u>t [\$] $R \rightarrow L$ [\$] [\$] $L \rightarrow \cdot id$ [\$=] $L \rightarrow \cdot id$ id $L \rightarrow *R$ [\$] [\$=] $L \rightarrow *R$ id E R [\$] $S \rightarrow E$ $R \rightarrow L$ [\$] $L \to \text{id}$ [\$=] [\$] [\$]

 $S \rightarrow E$ $E \rightarrow L = R$ LALR(1) Construction $E \rightarrow R$ $L \rightarrow id$ $L \rightarrow *R$ [\$=] $R \rightarrow L$ [\$=] R $L \rightarrow * R \cdot [\$=]$ [\$=] $E \rightarrow R$ [\$] $L \rightarrow \cdot *R$ [\$=] $E \rightarrow L = R \cdot [\$]$ id R $S \rightarrow \cdot E [\$]$ $E \rightarrow \cdot L = R [\$]$ $E \rightarrow L = R [\$]$ [\$] <u>star</u>t [\$] $R \rightarrow L$ [\$] [\$] $L \rightarrow \cdot id$ [\$=] $L \rightarrow \cdot id$ id $L \rightarrow *R$ [\$] [\$=] $L \rightarrow *R$ id E $S \rightarrow E$ $R \rightarrow L$ [\$] $L \to \text{id}$ [\$=] [\$] [\$]

 $S \rightarrow E$ $E \rightarrow L = R$ LALR(1) Construction $E \rightarrow R$ $L \rightarrow id$ $L \rightarrow *R$ [\$=] $R \rightarrow L$ [\$=] R $L \rightarrow * R \cdot [\$=]$ [\$=] $E \rightarrow R$ [\$] $L \rightarrow \cdot *R$ [\$=] $E \rightarrow L = R \cdot [\$]$ id R $S \rightarrow \cdot E [\$]$ $E \rightarrow \cdot L = R [\$]$ $E \rightarrow L = R [\$]$ [\$] <u>star</u>t [\$] $R \rightarrow L$ [\$] [\$] $L \rightarrow \cdot id$ $L \to \text{id}$ [\$=] id $L \rightarrow *R$ [\$] [\$=] $L \rightarrow *R$ id E [\$] $R \rightarrow L$ $S \rightarrow E$ $L \rightarrow id$ [\$=] [\$=] [\$]

Analysis of our Algorithm

- Since we merge as we go, size of the partial automaton never exceeds size of overall automaton.
- However, this algorithm could be very slow in practice.
 - We might still have to generate all the LR(1) states, even if they immediately get merged.
- This can be very slow.

SLR uses FOLLOW sets

 Recall: FOLLOW(A) is the set of terminals that can follow A in a derivation:

```
FOLLOW(A) = \{ t \mid S \Rightarrow^* \alpha A t \omega \}
```

- SLR is LR(0), with reductions augmented using FOLLOW sets.
- This is too weak for two reasons:
 - It ignores context (what state we're in). It
 - ignores which reduction we're doing.

LALR uses LA sets

Given an LR(0) state q and a production A → y, the lookahead set LA(q, A → y) is defined as

```
LA(q, A \rightarrow y) = \{ t \mid S \Rightarrow^* \alpha A t \omega \text{ and } \alpha y \text{ reaches } q \}
```

- Here, " αy reaches q" means that the LR(0) automaton, when run on αy , reaches state q.
 - Intuitively, if we're in some state q and are going to reduce A to γ , $LA(q, A \rightarrow \gamma)$ is the set of terminals that could actually follow A at this point, given that we're reducing $A \rightarrow \gamma$.
- Much more precise than FOLLOW sets.

LA and FOLLOW

- The lookahead set LA(q, $A \rightarrow y$) is defined as LA(q, $A \rightarrow y$) = { t | S \Rightarrow * α At ω and αy reaches q }
- The follow set FOLLOW(A) is defined as
 FOLLOW(A) = { t | S ⇒* αAtω }
- Note that LA(q, $A \rightarrow \gamma$) \subseteq FOLLOW(A); that is, LA sets are "more precise" than FOLLOW sets.
- If we can compute LA from FOLLOW, we can construct a LALR(1) parser efficiently.

$S \rightarrow E$ An LR(0) Automaton $E \rightarrow L = R$ $E \rightarrow R$ $L \rightarrow id$ **L** → ***R** $R \rightarrow L$ R L → * R · $extstyle L ightarrow \cdot$ id $E \rightarrow R$ L → *****R $E \rightarrow L = R$ R id R $S \rightarrow \cdot E$ $E \rightarrow L = R$ $E \rightarrow L = \cdot R$ $\underline{\text{start}} \to \mathbb{R}$ $R \rightarrow L$ $R \rightarrow L$ $L \rightarrow \cdot id$ id $L \rightarrow \cdot id$ L → * *R id $L \rightarrow \star R$ E $\mathsf{S}\to\mathsf{E}$ $L \to \text{id}$ $\mathsf{R}\to\mathsf{L}$ $R \rightarrow L$

$S \rightarrow E$ An LR(0) Automaton $E \rightarrow L = R$ $E \rightarrow R$ $L \rightarrow id$ **L** → ***R** $R \rightarrow L$ R L → * R · $extstyle L ightarrow \cdot$ id $E \rightarrow R$ $L \rightarrow *R$ $E \rightarrow L = R$ R id R $S \rightarrow \cdot E$ $E \rightarrow L = R$ $E \rightarrow L = R$ $\underline{\text{start}} \to \mathbb{R}$ $R \rightarrow L$ $R \rightarrow L$ $L \to \text{'id}$ id $L \rightarrow \cdot id$ L → * *R id $L \rightarrow *R$ Ε

 $R \rightarrow L$

 $L \rightarrow id$

 $S \rightarrow E$

What if we used the LR(0) automaton to add context to the grammar?

Prepare for one of the most beautiful constructions of the quarter...

$$S_1 \rightarrow E_{1-3}$$

$$S_1 \rightarrow E_{1-3}$$

$$S_1 \rightarrow E_{1-3}$$

Constructing Augmented Grammars

For each item $A \rightarrow \cdot \omega$ in some state q: Trace out the path ω takes through the LR(0) automaton starting at q.

Replace each nonterminal in ω with a nonterminal annotated with the state transitioned to and from by the edge labeled with that nonterminal.

Replace A with a nonterminal annotated with the start and end state of the transition on A out of q.

Result is a larger grammar with more precise productions.

Why is this Grammar Useful?

- At a high-level, separates out the nonterminals based on their context.
- This makes the FOLLOW sets more precise for their nonterminals.
- In fact, the FOLLOW sets are surprisingly precise.

Augmented FOLLOW Sets

$$S_{1} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow L_{1-6} = R_{7-8}$$

$$E_{1-3} \rightarrow R_{1-2}$$

$$R_{1-2} \rightarrow L_{1-6}$$

$$L_{1-6} \rightarrow \mathbf{id}$$

$$L_{1-6} \rightarrow \mathbf{id}$$

$$L_{1-6} \rightarrow L_{1-6}$$

$$R_{7-8} \rightarrow L_{7-5}$$

$$L_{7-5} \rightarrow \mathbf{id}$$

$$L_{7-5} \rightarrow \mathbf{id}$$

$$L_{7-5} \rightarrow L_{10-9}$$

$$R_{10-9} \rightarrow L_{10-5}$$

Augmented FOLLOW Sets

$$S_{1} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow L_{1-6} = R_{7-8}$$

$$\mathsf{E}_{\mathsf{1-3}} \to \mathsf{R}_{\mathsf{1-2}}$$

$$R_{1-2} \rightarrow L_{1-6}$$

$$L_{1-6} \rightarrow id$$

$$L_{1-6} \rightarrow R_{10-9}$$

$$R_{7-8} \rightarrow L_{7-5}$$

$$L_{7-5} \rightarrow id$$

$$L_{7-5} \rightarrow {}^{*}R_{10-9}$$

$$R_{10-9} \rightarrow L_{10-5}$$

S ₁	E 1-3	L 1-6	L 7-5	L 10-5	R ₁₋₂	R ₇₋₈	R
\$	\$	=	\$	=	\$	₩.	=

S ₁	E ₁₋₃	L 1-6	L 7-5	L 10-5	R ₁₋₂	R ₇₋₈	R ₁₀₋₉
\$	\$	=	\$	=	\$	\$	=

S ₁	E ₁₋₃	L 1-6	L 77-45	L 10-5	R ₁₋₂	R ₇₋₈	R ₁₀₋₉
\$	\$	=	=	=	\$	\$	=

\$ \$ = =			
7 7 -	=	\$ \$	=

S ₁	L 1-3	L 1-6	L 77-45	L 10-5	H ₁₋₂	R 7-8	K 10-9
\$	\$	=	=	=	\$	\$	=

\$ \$ = =			
7 7 -	=	\$ \$	=

S ₁	E ₁₋₃	L 1-6	L 77-45	L 10-5	R ₁₋₂	R ₇₋₈	R ₁₀₋₉
\$	\$	=	=	=	\$	\$	=

S ₁	E ₁₋₃	L 1-6	L 77-45	L 10-5	R ₁₋₂	R ₇₋₈	R ₁₀₋₉
\$	\$	=	=	=	\$	\$	=

S ₁	E ₁₋₃	L 1-6	L 77-45	L 10-5	R ₁₋₂	R ₇₋₈	R ₁₀₋₉
\$	\$	=	=	=	\$	\$	=

\$ \$ = = \$ \$ =	S ₁	E 1-3	L 1-6	L 77-45	L 10-5	R ₁₋₂	R ₇₋₈	R 10-9
	\$	\$	=	=	=	\$	\$	=

\$ \$ = =			
7 7 -	=	\$ \$	=

\$ \$ = =	=	\$ \$	=

S ₁	E ₁₋₃	L 1-6	L 77-45	L 10-5	R ₁₋₂	R ₇₋₈	R ₁₀₋₉
\$	\$	= \$	=	=	\$	\$	=

S ₁	E ₁₋₃	L 1-6	L 77-45	L 10-5	R ₁₋₂	R ₇₋₈	R ₁₀₋₉
\$	\$	= \$	=	=	\$	\$	=

S ₁	L 1-3	L 1-6	L 77-45	L 10-5	H ₁₋₂	R 7-8	K 10-9
\$	\$	=	=	=	\$	\$	=

s s = =			
T T	=	\$ \$	=

\$ \$ = = \$ \$ =	S ₁	E 1-3	L 1-6	L 77-45	L 10-5	R ₁₋₂	R ₇₋₈	R 10-9
	\$	\$	=	=	=	\$	\$	=

S ₁	E ₁₋₃	L 1-6	L 77-45	L 10-5	R ₁₋₂	R ₇₋₈	R ₁₀₋₉
\$	\$	=	=	=	\$	\$	=

S ₁	E ₁₋₃	L 1-6	L 77-45	L 10-5	R ₁₋₂	R ₇₋₈	R ₁₀₋₉
\$	\$	=	=	=	\$	\$	=

\$ \$ = = \$ \$ =	S ₁	E 1-3	L 1-6	L 77-45	L 10-5	R ₁₋₂	R ₇₋₈	R 10-9
	\$	\$	=	=	=	\$	\$	=

S ₁	E ₁₋₃	L 1-6	L 77-45	L 10-5	R ₁₋₂	R ₇₋₈	R ₁₀₋₉
\$	\$	= \$	=	=	\$	\$	=

Using Our FOLLOW Sets

\$ \$	= =	= =	\$ \$	=

Propagating Changes

- For each item $A \rightarrow \omega$ in a state q:
 - Let A_{q-r} be the nonterminal corresponding to
 A following the transition out of q into some state
 r.
 - Trace through the automaton along the path labeled by ω . This will lead to a state containing an item $A \to \omega$.
 - Add to the lookahead of $A \rightarrow \omega$ the contents of FOLLOW(A_{q-r})

LALR(1)-by-SLR(1)

Fast and simple construction of LALR(1)

- lookaheads:
- . Construct the LR(0) automaton for the grammar.
 - Construct the augmented grammar by replacing
 - nonterminals with new nonterminals based on the LR(0) transitions.
 - . Compute the FOLLOW sets for these nonterminals.
 - Propagate changes through the LR(0) automaton.
- Theorem (Bermudez and Logothetis): This correctly computes LALR(1) lookaheads.

Summary of LALR(1)

- Along with LL(k), one of the most popular parsing algorithms in use today.
- Produced by the bison parser generator; rarely generated by hand.
- Can handle most, but not all, LR(1) languages.

Practical Concerns

Where Theory Meets Practice

- We've just covered eight powerful parsing algorithms:
 - Leftmost DFS
 - Syntax Graph
 - LL(1)
 - RD-Parser
 - LR(0)
 - SLR(1)
 - LALR(1)

How do we make them work in practice?

• LR(1)

Two Practical Concerns

Ambiguity

- Real grammars are often ambiguous.
- Also they are more readable.
- Programmers are terrible at eliminating it.
- How do you build a parser to try to combat it?

Error-handling

- How do you report errors intelligently?
- How do you continue parsing after an error?

Ambiguity and Predictive Parsing

- The parsers we have seen so far only work on unambiguous grammars.
 - Intuitively: if grammar is ambiguous, cannot uniquely guess which production/reduction to use.
- Most grammars for programming languages, unless cleverly written, are ambiguous.
- How can we handle this?

Parsing Ambiguous Grammars

Consider this simple grammar for arithmetic expressions:

```
S \rightarrow E
E \rightarrow E + E
E \rightarrow E * E
E \rightarrow int
E \rightarrow (E)
```

This grammar is ambiguous.

e.g. Two trees for int + int * int What happens if we try parsing it?

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow ·

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{F} \mathsf{F} \to \mathsf{F} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$ Е
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E +$$

$$E \quad E \rightarrow \cdot E$$
* E \quad E \rightarrow \cdot E

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$ $|\cdot| \to E \cdot +$ $|\mathsf{F} \mathsf{F} \to \mathsf{F} \cdot$ * E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$ Е
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

$$E \rightarrow E * E \cdot$$

 $E \rightarrow E \cdot +$
 $E E \rightarrow E \cdot$
 $* E$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow ·

E → E * ·E |* E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$ $|\cdot| \to E \cdot +$ $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$ * E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$ Е
1	s10					
2						
3						
4						
5						
6						
7						
8						
9						
10						

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

E → E * ·E $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ |* E E → · int

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E +$$

$$E \quad E \rightarrow \cdot E$$
* E \quad E \rightarrow \cdot E

 $\mathsf{E} \to \cdot (\mathsf{E})$

$$\begin{array}{c} E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + \\ E E \rightarrow E \\ \cdot * E \end{array}$$

5

 $E \rightarrow E + E$ $|\cdot| \to E \cdot +$ $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$ * E

$$\mathsf{E} \to (\mathsf{E})$$
 .

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(S)	= {	\$	}
-----------	-----	----	---

 $FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$

	int	+	*	()	\$ Е
1	s10			s7		
2						
3						
4						
5						
6						
7						
8						
9						
10						

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $|\mathsf{E} \rightarrow \cdot \mathsf{E} + |$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow ·

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$ Е
1	s10			s7		s2
2						
3						
4						
5						
6						
7						
8						
9						
10						

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $|\mathsf{E} \rightarrow \cdot \mathsf{E} + |$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow ·

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$ Е
1	s10			s7		s2
2						
3						
4						
5						
6						
7						
8						
9						
10						

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow ·

E → E * ·E |* E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$ Е
1	s10			s7		s2
2		s3				
3						
4						
5						
6						
7						
8						
9						
10						

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$

 $\mathsf{E} \to \mathsf{E} + \mathsf{E}$

 $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$

* E E \rightarrow ·

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$ Е
1	s10			s7		s2
2		s3	s4			
3						
4						
5						
6						
7						
8						
9						
10						

5

 $E \rightarrow E + E$

 $|\cdot| E \rightarrow E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

 $\mathsf{E} \to (\mathsf{E})$.

 $\mathsf{E} \to \mathsf{int}$

10

* E

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $E \rightarrow E + \cdot E$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E \rightarrow .

 $E \rightarrow E * \cdot E$ |* E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3							
4							
5							
6							
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow .

E → E * ·E |* E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3							
4							
5							
6							
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow .

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{F} \mathsf{F} \to \mathsf{F} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Ε
1	s10			s7			s2
2		s3	s4			acc	
3	s10						
4							
5							
6							
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$

·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow .

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{F} \mathsf{F} \to \mathsf{F} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			
4							
5							
6							
7							
8							
9							
10							

5

 $E \rightarrow E + E$

 $|\cdot| E \rightarrow E \cdot +$

 $|\mathsf{F} \mathsf{F} \to \mathsf{F} \cdot$

 $\mathsf{E} \to (\mathsf{E})$.

 $\mathsf{E} \to \mathsf{int}$

10

* E

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $E \rightarrow E + \cdot E$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $\mathsf{E} \ \mathsf{E} \to \mathsf{E}$ * E E \rightarrow .

 $E \rightarrow E * \cdot E$ |* E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$

 $E E \rightarrow E$ ·* E

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4							
5							
6							
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow .

E → E * ·E |* E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4							
5							
6							
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow .

E → E * ·E |* E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10						
5							
6							
7							
8							
9							
10							

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

 $\mathsf{E} \to (\mathsf{E})$.

 $\mathsf{E} \to \mathsf{int}$

10

* E

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E +$$

$$E \quad E \rightarrow \cdot E$$
* E \quad E \rightarrow \text{int}

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			
5							
6							
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

$$E \rightarrow E * E \cdot$$

$$E \rightarrow E \cdot +$$

$$E E \rightarrow E \cdot$$

$$* E$$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E \rightarrow .

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$ $|\cdot| \to E \cdot +$ $|\mathsf{F} \mathsf{F} \to \mathsf{F} \cdot$ * E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5							
6							
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E \rightarrow .

 $E \rightarrow E * \cdot E$ * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| E \rightarrow E \cdot +$

 $|\mathsf{F} \mathsf{F} \to \mathsf{F} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5							
6							
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

$$E \rightarrow E * E \cdot$$

 $E \rightarrow E \cdot +$
 $E E \rightarrow E \cdot$
 $* E$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow .

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$ $|\cdot| \to E \cdot +$ $|\mathsf{F} \mathsf{F} \to \mathsf{F} \cdot$ * E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3					
6							
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

$$E \rightarrow E * E \cdot$$

$$E \rightarrow E \cdot +$$

$$E E \rightarrow E \cdot$$

$$* E$$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E \rightarrow .

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{F} \mathsf{F} \to \mathsf{F} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3	s4				
6							
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

$$E \rightarrow E * E \cdot$$

$$E \rightarrow E \cdot +$$

$$E E \rightarrow E \cdot$$

$$* E$$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow .

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4				
6							
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

$$E \rightarrow E * E \cdot$$

$$E \rightarrow E \cdot +$$

$$E E \rightarrow E \cdot$$

$$* E$$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E +$$

$$E \quad E \rightarrow \cdot E$$
* E \quad E \rightarrow \cdot E

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

$$\begin{array}{c} E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + \\ E E \rightarrow E \\ \cdot * E \end{array}$$

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(S)	= { \$	}
-----------	--------	---

 $FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2				
6							
7							
8							
9							
10							

5

 $E \rightarrow E + E$

 $|\cdot| E \rightarrow E \cdot +$

 $|\mathsf{F} \mathsf{F} \to \mathsf{F} \cdot$

 $\mathsf{E} \to (\mathsf{E})$.

 $\mathsf{E} \to \mathsf{int}$

10

* E

1

 $S \rightarrow \cdot E$ $E \rightarrow \cdot E +$ $E E \rightarrow \cdot E$ * $E E \rightarrow \cdot$ int

 $\mathsf{E} \to \cdot (\mathsf{E})$

2

 $S \rightarrow E \cdot$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ $\cdot * E$

6

$$E \rightarrow E * E \cdot$$

 $E \rightarrow E \cdot +$
 $E E \rightarrow E \cdot$
 $* E$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

4. $E \rightarrow (E)$

5. $E \rightarrow int$

3

 $E \rightarrow E + \cdot E$ $E \rightarrow \cdot E +$ $E \quad E \rightarrow \cdot E$ $* \quad E \quad E \rightarrow \cdot$ int

 $E \rightarrow \cdot (E)$

7

 $E \rightarrow (\cdot E)$ $E \rightarrow \cdot E +$ $E \quad E \rightarrow \cdot E$ * E \quad E \rightarrow \cdot E

4

 $E \rightarrow E * \cdot E$ $E \rightarrow \cdot E +$ $E E \rightarrow \cdot E$ $* E E \rightarrow \cdot$ int

 $\mathsf{E} \to \cdot (\mathsf{E})$

8

 $E \rightarrow (E \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ $\cdot * E$ FOLLOW(**E**) = { **+**, *****, **)**, **\$** }

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2		
6							
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$

 $\mathsf{E} \to \mathsf{E} + \mathsf{E}$

 $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$

* E E \rightarrow .

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6							
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

$$E \rightarrow E * E \cdot$$

 $E \rightarrow E \cdot +$
 $E E \rightarrow E \cdot$
 $* E$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow .

E → E * ·E |* E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6							
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $|\mathsf{E} \rightarrow \cdot \mathsf{E} + |$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow .

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3					
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \; \mathsf{E} \; + \mathsf{I}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

1.
$$S \rightarrow E$$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $E \rightarrow E * \cdot E$ * E E → · int

 $\mathsf{E} \to \mathsf{r} (\mathsf{E})$

5

 $E \rightarrow E + E$ $|\cdot| \to E \cdot +$ $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$ * E

6

$$E \rightarrow E * E \cdot$$

$$E \rightarrow E \cdot +$$

$$E E \rightarrow E \cdot$$

$$* E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E +$$

$$E \quad E \rightarrow \cdot E$$
* E \quad E \rightarrow \cdot E

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \\ \mathsf{E} \ \mathsf{E} \to \mathsf{E} \\ \cdot * \ \mathsf{E} \end{array}$$

 $\mathsf{E} \to (\mathsf{E})$.

10

 $E \rightarrow int$.

FOLLOW(S) = { \$	}			
$FOIIOW(F) = \{ + \}$	*)	Š	

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3	s4				
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow .

E → E * ·E |* E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

FOLLOW(**E**) = { +, *,), \$ }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4				
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E \cdot$ $E \rightarrow E \cdot * E$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E \rightarrow E \cdot + E \mid E \rightarrow \cdot E + E \mid E \rightarrow \cdot E + E \mid$ $E \rightarrow \cdot E * E \mid E \rightarrow \cdot E * E \mid$ $E \rightarrow \cdot int$ $E \rightarrow \cdot int$

 $\mathsf{E} \to \cdot (\mathsf{E})$

E → E * ·E

 $|\mathsf{E} \to \cdot (\mathsf{E})|$

FOLLOW(**S**) = { **\$** }

 $FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$

	int	+	*	()	\$	Ш
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3				
7							
8							
9							
40							

6

 $E \rightarrow E * E \cdot$ $\mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$ $E E \rightarrow E$ * E

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $\mathsf{E} \to \mathsf{E} +$

(E)

8

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* F

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow .

E → E * ·E |* E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5 $E \rightarrow E + E$ $|\cdot| \to E \cdot +$ $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$ * E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

FOLLOW(**E**) = { +, *,), \$ }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3		
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \; \mathsf{E} \; \mathsf{+} |$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$.

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \mathsf{E}$

 $E \rightarrow E \cdot + E \quad E \rightarrow \cdot E + E \quad E \rightarrow \cdot E + E$ $E \rightarrow E \cdot *E \quad E \rightarrow \cdot E *E \quad E \rightarrow \cdot E *E$ $E \rightarrow \cdot int$ $E \rightarrow \cdot int$ $\mathsf{E} \to \cdot (\mathsf{E})$

E → E * ·E

 $|\mathsf{E} \to \cdot (\mathsf{E})|$

8

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$

 $E E \rightarrow E$ ·* F

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

 $FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7							
8							
9							
10							

6 $E \rightarrow E * E \cdot$ $\mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$ $E E \rightarrow E$ * E

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $\mathsf{E} \to \mathsf{E} +$

(E)

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $S \rightarrow E \cdot E \rightarrow E + \cdot E \quad E \rightarrow E \cdot E$

 $E \rightarrow \cdot \text{ int}$ $E \rightarrow \cdot \text{ int}$ $E \rightarrow \cdot (E)$ $E \rightarrow \cdot (E)$

 $E \rightarrow E \cdot + E \quad E \rightarrow \cdot E + E \quad E \rightarrow \cdot E + E$ $E \rightarrow E \cdot * E \qquad E \rightarrow \cdot E * E \qquad E \rightarrow \cdot E * E$ 5

 $|\mathsf{E} \to \mathsf{E} + \mathsf{E}|$ $|\cdot| E \rightarrow E \cdot + |$ $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$ * E

6

 $E \rightarrow E * E \cdot$ $\mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$ $E E \rightarrow E$ * E

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $\mathsf{E} \to \cdot \mathsf{E} +$

(E)

8

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* F

 $\mathsf{E} \to (\mathsf{E})$.

10

 $E \rightarrow int$

FOLLOW(S) = { \$	}	
$FOIIOW(E) = \{ + \}$	*)	\$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7							
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \; \mathsf{E} \; + \mathsf{I}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

$$E \rightarrow E * E \cdot$$

$$E \rightarrow E \cdot +$$

$$E E \rightarrow E \cdot$$

$$* E$$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E +$$

$$E \quad E \rightarrow \cdot E$$
* E \quad E \rightarrow \cdot E

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$ $|\cdot| \to E \cdot +$ $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$ * E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(S)	= {	\$ }
-----------	-----	-------------

 $FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10						
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$.

- 1. $S \rightarrow E$
- 2. $E \rightarrow E + E$
- 3. $E \rightarrow E \star E$
- $4. E \rightarrow (E)$
 - 5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E \rightarrow E \cdot + E \quad E \rightarrow \cdot E + E \quad E \rightarrow \cdot E + E$ $E \rightarrow E \cdot *E \quad E \rightarrow \cdot E *E \quad E \rightarrow \cdot E *E$ $E \rightarrow \cdot int$ $E \rightarrow \cdot int$

 $\mathsf{E} \to \cdot (\mathsf{E})$

$E \rightarrow E * \cdot E$

 $|\mathsf{E} \to \cdot (\mathsf{E})|$

5

 $E \rightarrow E + E$ $|\cdot| E \rightarrow E \cdot +$ $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$ * E

6

 $E \rightarrow E * E \cdot$ $\mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$ $E E \rightarrow E$ * E

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $\mathsf{E} \to \mathsf{E} +$

(E)

8

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* F

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW	(S)) = {	{ \$	}
---------------	-------------	-------	------	---

 $FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$

		int	+	*	()	\$	Е
1		s10			s7			s2
2			s3	s4			acc	
3		s10			s7			s5
4		s10			s7			s6
5			s3 r2	s4 r2		r2	r2	
6			s3 r3	s4 r3		r3	r3	
7		s10			s7			
8								
9								
10)							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $E \rightarrow \cdot \text{ int}$ $E \rightarrow \cdot \text{ int}$

 $E \rightarrow \cdot (E)$ $E \rightarrow \cdot (E)$

 $S \rightarrow E \cdot E \rightarrow E + \cdot E \quad E \rightarrow E \cdot E$ $E \rightarrow E \cdot + E \quad E \rightarrow \cdot E + E \quad E \rightarrow \cdot E + E$ $E \rightarrow E \cdot * E \qquad E \rightarrow \cdot E * E \qquad E \rightarrow \cdot E * E$

 $|\cdot| E \rightarrow E \cdot + |$ $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$ * E

FOLLOW(**S**) = { **\$** }

FOLLOW(**E**) = { +, *,), \$ }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8							
9							
10							

6

 $E \rightarrow E * E \cdot$ $\mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$ $E E \rightarrow E$ * E

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $\mathsf{E} \to \cdot \mathsf{E} +$

(E)

8

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* F

5

 $|\mathsf{E} \to \mathsf{E} + \mathsf{E}|$

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

$$E \rightarrow E * E \cdot$$

 $E \rightarrow E \cdot +$
 $E E \rightarrow E \cdot$
 $* E$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E +$$

$$E \quad E \rightarrow \cdot E$$
* E \quad E \rightarrow \cdot E

 $E \rightarrow E * \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

$$E \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot +$$

$$E E \rightarrow E$$

$$\cdot * E$$

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(S)	= {	\$	}
-----------	-----	----	---

 $FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8							
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}$ $\mathsf{E} \ \mathsf{E} \to \mathsf{E}$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $E \rightarrow E \cdot * E$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $S \rightarrow E \cdot | E \rightarrow E + \cdot E$ $E \rightarrow E \cdot + E \mid E \rightarrow \cdot E + E \mid E \rightarrow \cdot E + E \mid$

 $\mathsf{E} \to \cdot (\mathsf{E})$

E → E * ·E

 $\mathsf{E} \to \mathsf{E} \mathsf{E} \mathsf{E} \mathsf{E} \to \mathsf{E} \mathsf{E} \mathsf{E}$ $E \rightarrow \cdot int$ $E \rightarrow \cdot int$

 $|\mathsf{E} \to \cdot (\mathsf{E})|$

* E

 $\mathsf{E} \to (\mathsf{E})$.

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

10

 $E \rightarrow int$.

FOLLOW(**S**) = { **\$** }

FOLLOW(**E**) = { +, *,), \$ }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3					
9							
10							

6 $E \rightarrow E * E \cdot$ $\mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$ $E E \rightarrow E$ * E

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E +$$

$$E \xrightarrow{\rightarrow} \cdot int$$

$$E \xrightarrow{\leftarrow} \cdot int$$

(E)

$$\begin{array}{c} & & & \\ E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + \\ E E \rightarrow E \\ \cdot * E \end{array}$$

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$.

- 1. $S \rightarrow E$
- 2. $E \rightarrow E + E$
- 3. $E \rightarrow E \star E$
- $4. E \rightarrow (E)$
- 5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E \rightarrow E \cdot + E \quad E \rightarrow \cdot E + E \quad E \rightarrow \cdot E + E$ $E \rightarrow E \cdot *E \quad E \rightarrow \cdot E \cdot *E \quad |E \rightarrow \cdot E \cdot *E|$

 $E \rightarrow \cdot int$ $E \rightarrow \cdot int$ $\mathsf{E} \to \cdot (\mathsf{E})$

$E \rightarrow E * \cdot E$

 $|\mathsf{E} \to \cdot (\mathsf{E})|$

$$FOLLOW(S) = { }$$

 $FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4				
9							

6

 $E \rightarrow E * E \cdot$ $E \rightarrow E \cdot + |$ $E E \rightarrow E$ * E

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $\mathsf{E} \to \mathsf{E} +$

(E)

8

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* F

5

 $|\mathsf{E} \to \mathsf{E} + \mathsf{E}|$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

10

 $\mathsf{E} \to \mathsf{int}$

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → ·

 $\mathsf{E} \to \cdot (\mathsf{E})$

int

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow .

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$

 $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

5

 $E \rightarrow E + E$ $|\cdot| \to E \cdot +$ $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$ * E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

FOLLOW(**E**) = { **+**, *****, **)**, **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $S \rightarrow E$ $E \rightarrow E + \cdot E$ $E \rightarrow E * \cdot E$

 $E \rightarrow \cdot \text{ int}$ $E \rightarrow \cdot \text{ int}$ $E \rightarrow \cdot (E)$ $E \rightarrow \cdot (E)$

 $E \rightarrow E \cdot + E \quad E \rightarrow \cdot E + E \quad E \rightarrow \cdot E + E$ $E \rightarrow E \cdot * E \qquad E \rightarrow \cdot E * E \qquad E \rightarrow \cdot E * E$

 $|\mathsf{E} \to \mathsf{E} + \mathsf{E}|$ $|\cdot| E \rightarrow E \cdot + |$ $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$ * E

6

 $E \rightarrow E * E \cdot$ $E \rightarrow E \cdot + |$ $E E \rightarrow E$ * E

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $\mathsf{E} \to \cdot \mathsf{E} +$

(E)

8

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* F

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** } FOLLOW(**E**) = { **+**, *****, **)**, **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9							
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$.

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $E \rightarrow E + \cdot E$ $E \rightarrow E \cdot + E \quad E \rightarrow \cdot E + E \quad E \rightarrow \cdot E + E$ $E \rightarrow E \cdot *E \quad E \rightarrow \cdot E \cdot *E \quad |E \rightarrow \cdot E \cdot *E|$ $E \rightarrow \cdot \text{ int}$ $|E \rightarrow \cdot \text{ int}|$

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $E \rightarrow E * \cdot E$

 $|\mathsf{E} \to \cdot (\mathsf{E})|$

FOLLOW(**S**) = { **\$** }

 $FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$

	int	+	*	()	\$	Ш
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4					
10							

6

 $E \rightarrow E * E \cdot$ $\mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$ $E E \rightarrow E$ * E

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $\mathsf{E} \to \cdot \mathsf{E} +$

(E)

8

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* F

5

 $|\mathsf{E} \to \mathsf{E} + \mathsf{E}|$ $|\cdot| E \rightarrow E \cdot + |$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \; \mathsf{E} \; + \mathsf{I}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E +$$

$$E \quad E \rightarrow \cdot E$$
* E \quad E \rightarrow \cdot E

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E +$$

$$E E \rightarrow \cdot E$$

$$* E E \rightarrow \cdot$$
int

 $\mathsf{E} \to \cdot (\mathsf{E})$

5

 $E \rightarrow E + E$

 $|\cdot| E \rightarrow E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

FOLLOW(S)	= {	\$ }
-----------	-----	-------------

$$FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4				
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $E \rightarrow \cdot \text{ int}$ $E \rightarrow \cdot \text{ int}$

 $S \rightarrow E \cdot E \rightarrow E + \cdot E \quad E \rightarrow E \cdot E$ $E \rightarrow E \cdot + E \quad E \rightarrow \cdot E + E \quad E \rightarrow \cdot E + E$ $E \rightarrow E \cdot * E \qquad E \rightarrow \cdot E * E \qquad E \rightarrow \cdot E * E$ $E \rightarrow \cdot (E)$ $E \rightarrow \cdot (E)$

5

 $|\mathsf{E} \to \mathsf{E} + \mathsf{E}|$ $|\cdot| E \rightarrow E \cdot + |$ $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$ * E

6

 $E \rightarrow E * E \cdot$ $E \rightarrow E \cdot + |$ $E E \rightarrow E$ * E

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E +$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot int$$

(E)

8

$$E \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot +$$

$$E E \rightarrow E$$

$$\cdot * E$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

10

 $E \rightarrow int$.

FOLLOW(S) = { \$	}		
$FOLLOW(E) = \{ +, \}$	*,),\$	}

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4		
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E \cdot$ $E \rightarrow E \cdot * E$ 1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E \rightarrow E \cdot + E \mid E \rightarrow \cdot E + E \mid E \rightarrow \cdot E + E \mid$ $E \rightarrow \cdot E * E \mid E \rightarrow \cdot E * E \mid$ $E \rightarrow \cdot int$ $E \rightarrow \cdot int$

 $\mathsf{E} \to \cdot (\mathsf{E})$

E → E * ·E

 $|\mathsf{E} \to \cdot (\mathsf{E})|$

FOLLOW(**S**) = { **\$** }

 $FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10							

6

 $E \rightarrow E * E \cdot$ $E \rightarrow E \cdot + |$ $E E \rightarrow E$ * E

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $\mathsf{E} \to \mathsf{E} +$

(E)

8

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* F

5

 $E \rightarrow E + E$

 $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

* E

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

5

 $E \rightarrow E + E$

 $\cdot \ \mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$

 $|\mathsf{E} \; \mathsf{E} \to \mathsf{E} \; .$

 $\mathsf{E} \to (\mathsf{E})$.

 $E \rightarrow int$.

10

* E

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \; \mathsf{E} \; \mathsf{+}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E \mid$ * E E \rightarrow · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $|\mathsf{E} \to \cdot \mathsf{E} +|$ $E E \rightarrow \cdot E$ * E E \rightarrow ·

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

FOLLOW(**S**) = { **\$** } $FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s 9		
9		r4	r4		r4	r4	
10							

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$.

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \mathsf{E}$

 $E \rightarrow E \cdot + E \quad E \rightarrow \cdot E + E \quad E \rightarrow \cdot E + E$ $E \rightarrow E \cdot *E \quad E \rightarrow \cdot E *E \quad E \rightarrow \cdot E *E$ $E \rightarrow \cdot \text{ int}$ $|E \rightarrow \cdot \text{ int}|$ $\mathsf{E} \to \cdot (\mathsf{E})$

E → E * ·E

 $|\mathsf{E} \to \cdot (\mathsf{E})|$

5

 $E \rightarrow E + E$ $|\cdot| \to E \cdot +$ $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$ * E

6

 $E \rightarrow E * E \cdot$ $E \rightarrow E \cdot + |$ $E E \rightarrow E$ * E

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $\mathsf{E} \to \mathsf{E} +$

(E)

8

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* F

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

 $FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5					

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $\mathsf{E} \ \mathsf{E} \to \mathsf{E}$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$.

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E * E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $E \rightarrow E + \cdot E$ $E \rightarrow E \cdot + E \quad E \rightarrow \cdot E + E \quad E \rightarrow \cdot E + E$ $E \rightarrow E \cdot * E \qquad E \rightarrow \cdot E * E \qquad E \rightarrow \cdot E * E$ $E \rightarrow \cdot \text{ int}$ $|E \rightarrow \cdot \text{ int}|$

 $\mathsf{E} \to \cdot (\mathsf{E})$

E → E * ·E

 $|\mathsf{E} \to \cdot (\mathsf{E})|$

FOLLOW(**S**) = { **\$** }

s10

10

 $FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$

	int	+	*	()	\$ Е
1	s10			s7		s2

s3 | s4 | acc

s10 **s**7 **s6**

s7

s5

s3 **s4** 5 r2 r2 r2

s3**s**4 r3 r3 6 r3

s7 s10 **s8**

8 s3**s**4 **s**9

r5

9 r4 r4 r4 r4

r5

 $E \rightarrow int$

 $E \rightarrow E * E \cdot$ $\mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$ $E E \rightarrow E \cdot$ * E

 $|\mathsf{E} \to (\cdot \mathsf{E})|$

(E)

8

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $\mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$ $E E \rightarrow E$ ·* F

* E

 $\mathsf{E} \to (\mathsf{E})$.

5

 $E \rightarrow E + E$

 $|\cdot| E \rightarrow E \cdot + |$

 $E E \rightarrow E$

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$. $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

6

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $\mathsf{E} \to \mathsf{E} + \cdot \mathsf{E}$ $E \rightarrow \cdot E + \mid E \rightarrow \cdot E + \mid$ $E E \rightarrow \cdot E \mid E E \rightarrow \cdot E$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $\mathsf{E} \to (\cdot \mathsf{E})$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $|\mathsf{E} \ \mathsf{E} \to \cdot \mathsf{E}|$ * E E \rightarrow .

E → E * ·E * E E → · int

 $\mathsf{E} o \cdot (\mathsf{E})$

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* E

 $E \rightarrow E + E$ $|\cdot| \to E \cdot +$ $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$ * E

5

 $\mathsf{E} \to (\mathsf{E})$.

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

FOLLOW(**E**) = { **+**, *****, **)**, **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5		

 $S \rightarrow \cdot E$ $\mathsf{E} \to \mathsf{E} + \mathsf{E}$ $\mathsf{E} \ \mathsf{E} \to \mathsf{E}$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

 $S \rightarrow E$.

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $E \rightarrow E + \cdot E$ $E \rightarrow E \cdot + E \quad E \rightarrow \cdot E + E \quad E \rightarrow \cdot E + E$ $E \rightarrow E \cdot * E \qquad E \rightarrow \cdot E * E \qquad E \rightarrow \cdot E * E$ $E \rightarrow \cdot \text{ int}$ $|E \rightarrow \cdot \text{ int}|$

 $\mathsf{E} \to \cdot (\mathsf{E})$

$E \rightarrow E * \cdot E$

 $|\mathsf{E} \to \cdot (\mathsf{E})|$

FOLLOW(**S**) = { **\$** }

 $FOLLOW(\mathbf{E}) = \{ +, *,), \$ \}$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5

- 4 s10 **s**7 **s6** s3
- **s4** 5 r2 r2 r2
- s3**s**4 r3 r3 6 r3
- **s**7 **s8** s10
- 8 s3**s**4 **s**9
- 9 r4 r4 r4 r4

r5

r5

r5

r5

 $E \rightarrow E * E \cdot$ $\mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$ $E E \rightarrow E \cdot$ * E

 $|\mathsf{E} \to (\cdot \mathsf{E})|$

(E)

8

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $\mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$ $E E \rightarrow E$ ·* F

 $\mathsf{E} \to (\mathsf{E})$.

10

5

 $|\mathsf{E} \to \mathsf{E} + \mathsf{E}|$ $|\cdot| E \rightarrow E \cdot + |$

 $E E \rightarrow E$

* E

 $E \to int \; \cdot$

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}$ $\mathsf{E} \ \mathsf{E} \to \mathsf{E}$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E \star E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

 $E \rightarrow \cdot \text{ int}$ $E \rightarrow \cdot \text{ int}$

 $S \rightarrow E$ $E \rightarrow E + \cdot E$ $E \rightarrow E * \cdot E$ $E \rightarrow E \cdot + E \quad E \rightarrow \cdot E + E \quad E \rightarrow \cdot E + E$ $E \rightarrow E \cdot *E \qquad E \rightarrow \cdot E *E \qquad E \rightarrow \cdot E *E$

 $E \rightarrow \cdot (E)$ $E \rightarrow \cdot (E)$

8

 $\mathsf{E} \to (\mathsf{E} \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ ·* F

* E

 $\mathsf{E} \to (\mathsf{E})$.

 $E \rightarrow E + E$ $|\cdot| \to E \cdot +$

 $|\mathsf{E} \ \mathsf{E} \to \mathsf{E} \cdot$

10

 $\mathsf{E} \to \mathsf{int}$

FOLLOW(**S**) = { **\$** }

FOLLOW(**E**) = { **+**, *****, **)**, **\$** }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

6 $E \rightarrow E * E \cdot$ $\mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$ $E E \rightarrow E$ * E

 $|\mathsf{E} \to (\cdot \mathsf{E})|$ $\mathsf{E} \to \cdot \mathsf{E} +$

(E)

```
S \rightarrow \cdot E
\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}
     \mathsf{E} \to \cdot \; \mathsf{E}
* E E \rightarrow ·
int
```

$$\mathsf{E} \to \cdot (\mathsf{E})$$

$$S \rightarrow E \cdot$$
 $E \rightarrow E \cdot +$
 $E E \rightarrow E$

$$\begin{array}{c}
6 \\
E \rightarrow E * E \cdot \\
E \rightarrow E \cdot * E
\end{array}$$

$$E \rightarrow E \cdot * E$$

1.
$$S \rightarrow E$$

2.
$$E \rightarrow E + E$$

3.
$$E \rightarrow E \star E$$

4.
$$E \rightarrow (E)$$

5.
$$E \rightarrow int$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E +$$

$$E \rightarrow \cdot E \rightarrow \cdot E \rightarrow$$

$$E \rightarrow \cdot E \rightarrow \cdot E \rightarrow$$

$$E \rightarrow \cdot E \rightarrow \cdot E \rightarrow$$

$$E \rightarrow \cdot E$$

$$\mathsf{E} \to \cdot (\mathsf{E})$$

$$\begin{array}{c}
\mathbf{4} \\
E \rightarrow E * \cdot E \\
E \rightarrow \cdot E + \\
E E \rightarrow \cdot E \\
* E E \rightarrow \cdot \\
\text{int} \\
E \rightarrow \cdot (E)
\end{array}$$

$$\begin{array}{c} \textbf{8} \\ \textbf{E} \rightarrow (\textbf{E} \cdot) \\ \textbf{E} \rightarrow \textbf{E} \cdot + \\ \textbf{E} \ \textbf{E} \rightarrow \textbf{E} \\ \cdot * \ \textbf{E} \end{array}$$

5
$E \rightarrow E + E$
$ \cdot E \to E \cdot +$
$ \begin{array}{ccc} \cdot & E \rightarrow E \cdot + \\ E & E \rightarrow E \cdot \end{array} $
* E

9
E → (E) ·
10
$E \to int$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

Resolving Ambiguity

- Although the grammar is ambiguous, there is clearly one intended parse tree because of operator precedence.
- How can we use this precedence information to avoid LR conflicts?

Precedence Declarations

- Tell the parser generator about the associativity and precedence of certain rules.
- Productions can be left-associative, right-associative, or nonassociative.
 - Productions can have their priorities ranked against one another.

 $S \rightarrow \cdot E$ $\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}$ $\mathsf{E} o \cdot \mathsf{E}$ * E E → · int

 $\mathsf{E} \to \cdot (\mathsf{E})$

$$S \rightarrow E$$
.
 $E \rightarrow E \cdot + E$.
 $E \rightarrow E \cdot * E$.

1. $S \rightarrow E$

2. $E \rightarrow E + E$

3. $E \rightarrow E * E$

 $4. E \rightarrow (E)$

5. $E \rightarrow int$

5
$E \rightarrow E + E$ $\cdot E \rightarrow E \cdot +$
$\cdot E \rightarrow E \cdot +$
$\cdot E \rightarrow E \cdot + E \cdot E \cdot E \rightarrow E \cdot E \cdot E \rightarrow E \cdot E \cdot E \cdot E \cdot$
* E

6 $E \rightarrow E * E$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ * E

$E o (\cdot E)$	
$E \rightarrow \dot{E} +$	
$\begin{array}{c} E & E & \rightarrow \cdot E \\ E & \rightarrow \cdot \text{ int} \\ E & \rightarrow \cdot \end{array}$	
•	Τ

(E)

8	
$E \rightarrow (E \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ $\cdot * E$	

	,
$E \to$	(E) ·
1	0
$E \to I$	int ·

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s 9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
       \mathsf{E} 	o \cdot \mathsf{E}
     \mathsf{E} \;\; \mathsf{E} \; 	o \; \cdot
int
```

1.
$$S \rightarrow E$$

- 2. $E \rightarrow E + E$ (Left-assoc, pri. 0)
- 3. $E \rightarrow E \star E$ (Left-assoc, pri.
 - $4. E \rightarrow (E)$
 - 5. $E \rightarrow int$

$$E \rightarrow \cdot (E)$$

$$2$$

$$S \rightarrow E \cdot \cdot \cdot$$

$$E \rightarrow E \cdot + \cdot$$

$$E \in E \rightarrow E$$

 $\mathsf{E} \to \mathsf{E} * \mathsf{E}$

 $\mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$

 $E E \rightarrow E$

·* E

* F

	3	
Ε	\rightarrow E + \cdot E	
EEE*	\rightarrow · E +	
Ε	$E \to \cdot E$	
*	$E \;\; E \; o \; .$	
in	t	
E	\rightarrow · (E)	•

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E +$$

$$E \rightarrow \cdot E$$
* E E \rightarrow \cdot \text{int}
$$E \rightarrow \cdot (E)$$

$L \rightarrow (L)$	_
7	
$E o (\cdot E)$	
$E o \cdot E +$	
$\begin{array}{c} E & E & \rightarrow \cdot E \\ E & \rightarrow \cdot \text{ int} \end{array}$	
I L \ .	l

(E)

4
E → E * ·E
$E \to \cdot E +$
$E \; E \to E$
* E E → ·
int
$E \rightarrow \cdot (E)$

	8
\mid E \rightarrow	(E ·) E ·+ → E

5	
$E \rightarrow E + \\ \cdot E \rightarrow E \\ E \rightarrow E \\ * E$	+

	9
E-	→ (E) ·
	10
F	int ⋅

1)	int	+	*	()	\$	Ш
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
9		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

 $E \rightarrow E + E$ $\cdot E \rightarrow E \cdot +$

 $E E \rightarrow E$

* E

```
\begin{array}{c}
1 \\
S \rightarrow \cdot E \\
E \rightarrow \cdot E + \\
E E \rightarrow \cdot E \\
* E E \rightarrow \cdot
\end{array}
```

- 2. $E \rightarrow E + E$ (Left-assoc, pri. 0)
- 3. $E \rightarrow E * E$ (Left-assoc, pri.
 - $4. E \rightarrow (E)$
 - 5. $E \rightarrow int$

$$\begin{array}{c}
E \rightarrow \cdot (E) \\
\hline
2 \\
S \rightarrow E \cdot \\
E \rightarrow E \cdot + \\
E E \rightarrow E
\end{array}$$

int

·* E

$$\begin{array}{c} \mathbf{3} \\ \mathsf{E} \to \mathsf{E} + \cdot \mathsf{E} \\ \mathsf{E} \to \cdot \; \mathsf{E} + \\ \mathsf{E} \; \mathsf{E} \to \cdot \; \mathsf{E} \\ ^* \; \mathsf{E} \; \; \mathsf{E} \to \cdot \\ \mathsf{int} \\ \mathsf{E} \to \cdot \; (\mathsf{E}) \end{array}$$

6	7
E → E * E · E → E · + E E → E · * E	$ \begin{array}{c cccc} E \rightarrow (\cdot E) \\ E \rightarrow \cdot E + \\ E E \rightarrow \cdot E \\ * E E \rightarrow \cdot \\ \text{int} \end{array} $

4
E → E * ·E
$E \rightarrow \cdot E +$
$E E \rightarrow \cdot E$
$ * F F \to .$
int
F → . (F)

- / - \	
$\Xi \rightarrow \cdot (E)$	
8	9
$E \to (E \cdot)$	E o (E) .
$E \rightarrow E \cdot + \hat{E}$ $E \rightarrow E$	10
·* E	E o int

1)	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

 $E \rightarrow E + E$

```
\begin{array}{c} \textbf{1} \\ \textbf{S} \rightarrow \cdot \textbf{E} \\ \textbf{E} \rightarrow \cdot \textbf{E} + \\ \textbf{E} \textbf{E} \rightarrow \cdot \textbf{E} \\ * \textbf{E} \textbf{E} \rightarrow \cdot \\ \text{int} \end{array}
```

1.
$$S \rightarrow E$$

- 2. $E \rightarrow E + E$ (Left-assoc, pri. 0)
- 3. $E \rightarrow E * E$ (Left-assoc, pri.
 - 4. $E \rightarrow (E)$
 - 5. $E \rightarrow int$

$$\begin{array}{c}
E \rightarrow \cdot (E) \\
\hline
2 \\
S \rightarrow E \cdot \\
E \rightarrow E \cdot + \\
E E \rightarrow E \\
\cdot * E
\end{array}$$

6	7
E → E * E · E → E · + E E → E · * E	$E \rightarrow (\cdot E)$ $E \rightarrow \cdot E +$ $E \xrightarrow{\rightarrow} \cdot \text{int}$ $E \xrightarrow{\leftarrow} \cdot$

(E)

4
E → E * ·E
$F \rightarrow \cdot F +$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
* E E → ·
int
$E o \cdot (E)$

nt	
E → · (E)	
8	9
$E \to (E \cdot)$ $E \to E \cdot +$	E → (E)
$E \; E \to E$	10
·* E	$E \to int$

1)	int	+	*	()	\$	Ε
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
\begin{array}{c} \textbf{1} \\ \textbf{S} \rightarrow \cdot \textbf{E} \\ \textbf{E} \rightarrow \cdot \textbf{E} + \\ \textbf{E} \textbf{E} \rightarrow \cdot \textbf{E} \\ * \textbf{E} \textbf{E} \rightarrow \cdot \\ \text{int} \end{array}
```

1.
$$S \rightarrow E$$

- 2. $E \rightarrow E + E$ (Left-assoc, pri. 0)
- 3. $E \rightarrow E \star E$ (Left-assoc, pri.
 - $4. E \rightarrow (E)$
 - 5. $E \rightarrow int$

$$\begin{array}{c}
E \rightarrow \cdot (E) \\
\hline
2 \\
S \rightarrow E \cdot \\
E \rightarrow E \cdot + \\
E E \rightarrow E
\end{array}$$

 $\mathsf{E} \to \mathsf{E} * \mathsf{E}$

 $\mathsf{E} \to \mathsf{E} \cdot \mathsf{+}$

 $E E \rightarrow E$

·* E

* E

3	
$E \rightarrow E + \cdot E$	-
$ E ightarrow \cdot E $	-
$\mid E \mid E ightarrow \cdot E$	-
* E E →	
int	
$E \to \cdot (E)$	_

Ε	→ · (E)
	7
Ε	\rightarrow (·E)
Ε	\rightarrow · E +
E	$E \rightarrow : E$ $\rightarrow : int$

(F)

4
E → E * ·E
$E \to \cdot E +$
$E E \rightarrow \cdot E$
* E E → ·
int
$E \to \cdot (E)$

8	
$E \rightarrow (E \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ $\cdot * E$	

5	
$E \rightarrow E + \cdot E \rightarrow E \cdot$	E
$E \to E$	
* E	

9	
E o (E) .	
10	
$E \to int$	

1 <i>)</i>	int	+	*	()	\$	Ш
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s 9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
   F F \rightarrow \cdot
```

- 2. $E \rightarrow E + E$ (Left-assoc, pri. 0)
- 3. $E \rightarrow E \star E$ (Left-assoc, pri.
 - $4. E \rightarrow (E)$
 - 5. $E \rightarrow int$

$$\begin{array}{c}
E \rightarrow \cdot (E) \\
\hline
2 \\
S \rightarrow E \cdot \\
E \rightarrow E \cdot + \\
E E \rightarrow E
\end{array}$$

int

·* E

5
$E \rightarrow E + \cdot E$
$E \to \cdot E +$
$E \rightarrow \cdot E + E \rightarrow \cdot E + E \rightarrow \cdot E + E \rightarrow \cdot E \rightarrow $
* E E \rightarrow ·
int
$E \rightarrow \cdot (E)$

4
E → E * ·E
$E \to \cdot E +$
E E → · E * E E → ·
int
$F \to \cdot (F)$

	5
l	→ E · +
· E -	$\rightarrow E \cdot +$
· E - E E * E	$\exists \rightarrow E : $
* E	

	6		
\rightarrow	E	*	Ε

E → E* E ·	$E o (\cdot E)$
$E \rightarrow E \cdot +$ $E E \rightarrow E \cdot$	$E \rightarrow \cdot E \rightarrow \cdot E$ $E \rightarrow \cdot E \rightarrow \cdot E$ $* E \rightarrow E \rightarrow \cdot E$
* E	* E E \rightarrow int

7	8
→ (·E) → · E + E → · E E → ·	$E \rightarrow (E \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ $\cdot * E$

9
E → (E) ·
10
E → int ·

1)	int	+	*	()	\$	Ш
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
     \mathsf{E} 	o \cdot \mathsf{E}
* E E \rightarrow ·
int
```

1.
$$S \rightarrow E$$

- 2. $E \rightarrow E + E$ (Left-assoc, pri. 0)
- 3. $\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$ (Left-assoc, pri.
 - $4. E \rightarrow (E)$
 - 5. $E \rightarrow int$

3						
$E \rightarrow E + \cdot E$	-					
$E \rightarrow E + \cdot E$ $E \rightarrow \cdot E + \cdot E$ $E \rightarrow \cdot E$ $* F \rightarrow \cdot E$	_					
$E \; E o \cdot E$	-					
* E E \rightarrow						
int						
$E \to \cdot (E)$						

	$E \to \cdot (E)$
6	7
E → E * E · E → E · + E E → E · * E	$E \rightarrow (\cdot E)$ $E \rightarrow \cdot E +$ $E \rightarrow \cdot int$ $E \rightarrow \cdot int$

(E)

4	5
$E \rightarrow E * \cdot E$ $E \rightarrow \cdot E +$ $E E \rightarrow \cdot E$ $* E E \rightarrow \cdot$	$E \rightarrow E + E$ $\cdot E \rightarrow E \cdot + E$ $E E \rightarrow E \cdot E$ * E
$ \begin{array}{c} \text{int} \\ E \rightarrow \cdot (E) \end{array} $	
8	9

E → ·	* E
· (E)	
8	9
E ·+	E → (E) ·
$\rightarrow E$	10
	$E \to int$

4.								
	1)	int	+	*	()	\$	Е
	1	s10			s7			s2
	2		s3	s4			acc	
	3	s10			s7			s5
	4	s10			s7			s6
	5		s3 r2	s4		r2	r2	
	6		r3	s4 r3		r3	r3	
	7	s10			s7			s8
	8		s3	s4		s9		
	9		r4	r4		r4	r4	
	10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}
     \mathsf{E} 	o \cdot \mathsf{E}
* E E \rightarrow ·
int
```

1.
$$S \rightarrow E$$

- 2. $E \rightarrow E + E$ (Left-assoc, pri. 0)
- 3. $E \rightarrow E * E$ (Left-assoc, pri.
 - 4. $E \rightarrow (E)$
 - 5. $E \rightarrow int$

* E

	_ (_/
6	7
→ E * E · → E · + E → E ·	$E \rightarrow (\cdot E)$ $E \rightarrow \cdot E +$ $E \xrightarrow{\rightarrow} \cdot int$ $E \xrightarrow{\rightarrow} \cdot$

(E)

4	5
$E \rightarrow E * \cdot E$ $E \rightarrow \cdot E +$ $E E \rightarrow \cdot E$ $* E E \rightarrow \cdot$ int $E \rightarrow \cdot (E)$	E → E + E · E → E · + E E → E · * E

Ξ → · (Ε)	
8	9
E → (E ·) E → E ·+	E → (E) ·
E	10
· · · E	$E \rightarrow int$

1)	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4		r2	r2	
6		r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}
     \mathsf{E} 	o \cdot \mathsf{E}
* E E \rightarrow ·
```

1.
$$S \rightarrow E$$

- 2. $E \rightarrow E + E$ (Left-assoc, pri. 0)
- 3. $E \rightarrow E \star E$ (Left-assoc, pri.
 - $4. E \rightarrow (E)$
 - 5. $E \rightarrow int$

$$\begin{array}{c}
E \rightarrow \cdot (E) \\
\hline
2 \\
S \rightarrow E \cdot \\
E \rightarrow E \cdot + \\
E E \rightarrow E
\end{array}$$

int

·* E

		3		
E	\rightarrow	E	+ -	E
E E E *	\longrightarrow		Ε	+
Ε	Ε		,	Ε
	E	Ε	\longrightarrow	•
in	t			
F	\rightarrow	• (E)	

	3	
Ε	→ E + ·E	
E	\rightarrow · E +	
E *	$E \to \cdot \; E$	
*	$E \ E \to .$	
int	t	
E	→ · (E)	•

5				
$E \rightarrow E + E$ $\cdot E \rightarrow E \cdot +$ $E E \rightarrow E \cdot$ $* E$				

		U			
E	→	E			+ .
Ē	É	_	- →	Ε	
* [Ξ				

/
$E o (\cdot E)$
$E \to \cdot E +$
$E E \rightarrow \cdot E$
* E E → ·
lint

$$\begin{array}{c} & & & \\ E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + \\ E \cdot E \rightarrow E \\ \cdot * \cdot E \end{array}$$

9
E → (E) ·
10
$E \rightarrow int$

1)	int	+	*	()	\$	Ш
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4		r2	r2	
6		r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
\begin{array}{c} \textbf{1} \\ \textbf{S} \rightarrow \cdot \textbf{E} \\ \textbf{E} \rightarrow \cdot \textbf{E} + \\ \textbf{E} \textbf{E} \rightarrow \cdot \textbf{E} \\ * \textbf{E} \textbf{E} \rightarrow \cdot \\ \text{int} \end{array}
```

- 2. $E \rightarrow E + E$ (Left-assoc, pri. 0)
- 3. $E \rightarrow E \star E$ (Left-assoc, pri.
 - 4. $E \rightarrow (E)$
 - 5. $E \rightarrow int$

6

 $E \rightarrow E * E \cdot$ $E \rightarrow E \cdot +$

 $E E \rightarrow E$

* E

E → · (E)	
7	
$E o (\cdot E)$	
$E \to \cdot E$	+
$E \rightarrow \cdot E$ $E E \rightarrow \cdot$ * F F \rightarrow	Ε
* E E →	
la a	

4	5
$E \rightarrow E * \cdot E$ $E \rightarrow \cdot E +$ $E E \rightarrow \cdot E$ $* E E \rightarrow \cdot$ int $F \rightarrow \cdot (F)$	E → E + E · E → E · + E E → E · * E
_ (_/	

$\Box \rightarrow \Box (\Box)$	
8	9
$E o (E \cdot)$ $E o E \cdot +$	E → (E)
$E \; E \to E$	10
·* E	$E \to int$

1)	int	+	*	()	\$	Ε
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		r2	s4		r2	r2	
6		r3	r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}
     \mathsf{E} 	o \cdot \mathsf{E}
* E E \rightarrow .
int
```

1.
$$S \rightarrow E$$

- 2. $E \rightarrow E + E$ (Left-assoc, pri. 0)
- 3. $E \rightarrow E \star E$ (Left-assoc, pri.
 - $4. E \rightarrow (E)$
 - 5. $E \rightarrow int$

$$\begin{array}{c}
E \rightarrow \cdot (E) \\
\hline
2 \\
S \rightarrow E \cdot \\
E \rightarrow E \cdot + \\
E E \rightarrow E
\end{array}$$

 $E \rightarrow E * E \cdot$ $E \rightarrow E \cdot + |$

 $E E \rightarrow E \cdot |$

·* E

* E

		3		
E E E *	\rightarrow	E	+	E
Ε	\longrightarrow		_	+
Ε	Ε		·	Ε
*	Ε	Ε	\longrightarrow	•
in	t			
F	$\overline{}$. (Εl	

3	
$E \rightarrow E + \cdot$	П
$E \to \cdot E$	+
E E → ·	Ε
$ ^*$ L L \rightarrow	•
int	
$E \to \cdot (E)$	

$$E \rightarrow \cdot (E)$$

$$7$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E +$$

$$E \rightarrow \cdot E$$

$$* E \rightarrow \cdot E$$

4
E → E * ·E
$E \to \cdot E +$
$E \; E \to E$
* E E → ·
int
$E \to \cdot (E)$

8
$E \rightarrow (E \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ $\cdot * E$

5	
$E \rightarrow E + E$	+ 111
$ \cdot F \to F \cdot \cdot$	+
E E → E * E	
* E	

9
E → (E) ·
10
E o int

1)	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		r2	s4		r2	r2	
6		r3	r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
```

$$\mathsf{E} \to \cdot (\mathsf{E})$$

$$S \rightarrow E$$
.
 $E \rightarrow E$.+

1.
$$S \rightarrow E$$

- 2. $E \rightarrow E + E$ (Rgt.-assoc, pri. 0)
- 3. $E \rightarrow E * E$ (Rgt.-assoc, pri.
 - $4. E \rightarrow (E)$
 - 5. $E \rightarrow int$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E \rightarrow \cdot E$$

$$E \rightarrow \cdot E$$

$$E \rightarrow \cdot E \rightarrow \cdot E$$

$$E \rightarrow \cdot E$$

$$\mathsf{E} \to \cdot (\mathsf{E})$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E +$$

$$E \quad E \rightarrow \cdot E$$
* E \quad E \rightarrow \cdot E

$$E \rightarrow E * \cdot E$$

 $E \rightarrow \cdot E +$
 $E E \rightarrow \cdot E$
 $E \rightarrow \cdot E$
int

$\mathsf{E} \to \cdot (\mathsf{E})$

5

$$\mathsf{E} \to (\mathsf{E})$$
 .

Ε	\longrightarrow	int	
ᆫ	\longrightarrow	Int	

1)	int	+	*	()	\$	Ш
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4		r2	r2	
6		r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
int
```

- 2. $E \rightarrow E + E$ (Rgt.-assoc, pri. 0)
- 3. $E \rightarrow E \star E$ (Rgt.-assoc, pri.
 - 4. $E \rightarrow (E)$
 - 5. $E \rightarrow int$

$$\begin{array}{c}
E \rightarrow \cdot (E) \\
\hline
2 \\
S \rightarrow E \cdot \\
E \rightarrow E \cdot + \\
E E \rightarrow E \\
\cdot * E
\end{array}$$

		3		
E E E *	\rightarrow	Ε	+	٠Ē
Ε	\rightarrow			+
Ε	Ε	_	·	Е
*	Ε	Ε	\longrightarrow	. •
in	t			
F	\rightarrow	. (E١	

3	4
→ E + ·E → · E + E → · E	$E \rightarrow E * \cdot I$ $E \rightarrow \cdot E + I$ $E \rightarrow \cdot F$
$\begin{array}{ccc} E & E \rightarrow \\ \end{array}$	$ \begin{array}{cccc} E & E \rightarrow \cdot E \\ * & E & E \rightarrow \cdot \\ & \text{int} \end{array} $
$E o \cdot (E)$	$E \to \cdot (E)$

	5
E → · E · E · * E	· E + E → E · + E → E ·
	9

	6	
Ε	→ E *	Ε·
E E * F	\rightarrow E	. +
Ε	E o	Ε·
* E	Ξ	

/	
$E \to (\cdot E)$	
$E \rightarrow \cdot E +$	
$\begin{array}{c} E & E \rightarrow \cdot E \\ E \rightarrow \cdot \text{ int} \\ E \rightarrow \cdot \end{array}$	

(E)

8
$E \rightarrow (E \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ $\cdot * E$

9
E o (E) .
10
E o int .

1)	int	+	*	()	\$	Ш
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4		r2	r2	
6		r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s 9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
\mathsf{E} \;\; \mathsf{E} \; \to \; \cdot
```

- 2. $E \rightarrow E + E$ (Rgt.-assoc, pri. 0)
- 3. $\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$ (Rgt.-assoc, pri.
 - $4. E \rightarrow (E)$
 - 5. $E \rightarrow int$

$$\begin{array}{c}
E \rightarrow \cdot (E) \\
\hline
2 \\
S \rightarrow E \cdot \\
E \rightarrow E \cdot +
\end{array}$$

 $E E \rightarrow E$

·* E

int

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + \cdot E$$

$$E \rightarrow \cdot E$$
* E E \rightarrow \cdot \text{int}

3	4
E → E + ·E	
$E \rightarrow \cdot E + $	$E \to \cdot E +$
$E \to E$	$E E \rightarrow \cdot E$
$E \ E \to \cdot$	* E E → ·
nt	int
E → · (E)	$E \to \cdot (E)$

5
$E \rightarrow E + E$ $\cdot E \rightarrow E \cdot +$ $E E \rightarrow E \cdot$ * E

	6	
Е	→ E * E	
E E E * F	\rightarrow E \cdot	+
Ε	$E \to E$	
* E	Ξ	

/	
$E \rightarrow (\cdot E)$ $E \rightarrow \cdot E +$ $E E \rightarrow \cdot E$ * E E \rightarrow \cdot \text{int}	8
11 16	

	, (L)
	8
E E .*	→ (E ·) → E ·+ E → E E

9
E → (E) ·
10
E o int

1)	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3	s4		r2	r2	
6		r3	s4		r3	r3	
7	s10			s7			s8
8		s3	s4		s 9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
      \rightarrow · E +
      \mathsf{E} 	o \cdot \mathsf{E}
    \mathsf{E} \;\; \mathsf{E} \; 	o \; \cdot
int
```

1.
$$S \rightarrow E$$

- 2. $E \rightarrow E + E$ (Rgt.-assoc, pri. 0)
- 3. $\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$ (Rgt.-assoc, pri.
 - $4. E \rightarrow (E)$
 - 5. $E \rightarrow int$

$$\begin{array}{c}
E \rightarrow \cdot (E) \\
\hline
2 \\
S \rightarrow E \cdot \\
E \rightarrow E \cdot + \\
E E \rightarrow E \\
\cdot * E
\end{array}$$

 \rightarrow E · +

 $\mathsf{E} \to \mathsf{E}$.

* E

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + \cdot E$$

$$E \rightarrow \cdot E$$

$$* E \rightarrow \cdot E$$
int
$$E \rightarrow \cdot (F)$$

3
$E \rightarrow E + \cdot E$
$E \to \cdot E +$
$E E \rightarrow \cdot E$
* E E → ·
int
$E \rightarrow \cdot (E)$

Ε	→ · (E)
	7
Ε	→ (·E)
Ε	\rightarrow · E +
Ε	$E o \cdot E$
*	$E E \ \to \ \cdot$

4	
$E \rightarrow E * \cdot E$ $E \rightarrow \cdot E +$ $E E \rightarrow \cdot E$	E .
* E E → ·	*
E → · (E)	

8	
$E \rightarrow (E \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ $\cdot * E$	

O
E → E + E · E → E · + E E → E · * E
9
E o (E) .
10

 $E \rightarrow int$

1)	int	+	*	()	\$	Ш
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3	s4		r2	r2	
6		r3	s4		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

Resolving Conflicts with Precedence

- When choosing whether to reduce a rule containing t or shift the terminal r: If t has higher priority, reduce. If r
 - has higher priority, **shift**.
 - If t and r have the same priority:
 - If t is left-associative, reduce.
 - If t is right-associative, shift.
 - If t is non-associative, error.

```
S \rightarrow \cdot E
\mathsf{E} \to \cdot \mathsf{E} + \mathsf{I}
     \mathsf{E} 	o \cdot \mathsf{E}
* E E \rightarrow .
int
```

1.
$$S \rightarrow E$$

- 2. $E \rightarrow E + E$ (Left-assoc, pri. 0)
- 3. $E \rightarrow E \star E$ (Left-assoc, pri.
 - $4. E \rightarrow (E)$
 - 5. $E \rightarrow int$

$$\begin{array}{c}
E \rightarrow \cdot (E) \\
\hline
2 \\
S \rightarrow E \cdot \\
E \rightarrow E \cdot + \\
E E \rightarrow E
\end{array}$$

 $E \rightarrow E * E \cdot$ $E \rightarrow E \cdot + |$

 $E E \rightarrow E \cdot |$

·* E

* E

		3		
E E E *	\rightarrow	E	+	E
Ε	\longrightarrow		_	+
Ε	Ε		·	Ε
*	Ε	Ε	\longrightarrow	•
in	t			
F	$\overline{}$. (Εl	

3	
$E \rightarrow E + \cdot$	П
$E \to \cdot E$	+
E E → ·	Ε
$ ^*$ L L \rightarrow	•
int	
$E \to \cdot (E)$	

$$E \rightarrow \cdot (E)$$

$$7$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E +$$

$$E \rightarrow \cdot E$$

$$* E \rightarrow \cdot E$$

4
E → E * ·E
$E \to \cdot E +$
$E \; E \to E$
* E E → ·
int
$E \to \cdot (E)$

8					
$E \rightarrow (E \cdot)$ $E \rightarrow E \cdot +$ $E E \rightarrow E$ $\cdot * E$					

5	
$E \rightarrow E + E$	+ 111
$ \cdot F \to F \cdot \cdot$	+
E E → E * E	
* E	

9
E → (E) ·
10
E o int

1)	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		r2	s4		r2	r2	
6		r3	r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

Error Handling

- What should the parser do when it encounters an error?
- Could just say "syntax error," but we'd like more detailed messages.
- How do we resume parsing after an error?

 $E \rightarrow E + E$ $\cdot E \rightarrow E \cdot +$

 $E E \rightarrow E$

* E

```
\begin{array}{c} \textbf{1} \\ \textbf{S} \rightarrow \cdot \textbf{E} \\ \textbf{E} \rightarrow \cdot \textbf{E} + \\ \textbf{E} \textbf{E} \rightarrow \cdot \textbf{E} \\ * \textbf{E} \textbf{E} \rightarrow \cdot \\ \text{int} \end{array}
```

1.
$$S \rightarrow E$$

- 2. $E \rightarrow E + E$ (Left-assoc, pri. 0)
- 3. $E \rightarrow E * E$ (Left-assoc, pri.
 - 4. $E \rightarrow (E)$
 - 5. $E \rightarrow int$

$$\begin{array}{c}
E \rightarrow \cdot (E) \\
\hline
2 \\
S \rightarrow E \cdot \\
E \rightarrow E \cdot + \\
E E \rightarrow E
\end{array}$$

 \rightarrow E · +

 $E E \rightarrow E$

·* E

* E

3								
E o	Ε-	+ ·	E					
E -	·	Ε	+					
E – E E * E	$\overline{\Xi} \rightarrow$		Ε					
* E	E	\rightarrow						
int								
F o	· (F	- / _						

IIII	ι			
E	\rightarrow	. (E)	
		7		
	\rightarrow			
Ε	→ E E		Ε	+
Ε	Ε		· ·	Ε
*	Ε	Ε	\rightarrow	

4						
E → E * ·E						
E → · E +						
$E E \rightarrow \cdot E$ * E E \rightarrow \cdot E						
int						
E → · (E)						

IIIL	
$E \to \cdot (E)$	
8	9
E → (E ·)	E o (E) .
$E \rightarrow E \cdot + \\ E E \rightarrow E$	10
·* E	$E \to int$

1)	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		r2	s4		r2	r2	
6		r3	r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s 9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

Next Time

- Error Recovery
 - Report all the errors!