Die Klasse NP und die polynomielle Reduktion

Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Dezember 2011

Beim Rucksackproblem (KP) suchen wir eine Teilmenge K von N gegebenen Objekten mit Gewichten w_1, \ldots, w_N und Nutzenwerten p_1, \ldots, p_N , so dass die Objekte aus K in einen Rucksack mit Gewichtsschranke b passen und dabei der Nutzen maximiert wird.

Beim Rucksackproblem (KP) suchen wir eine Teilmenge K von N gegebenen Objekten mit Gewichten w_1, \ldots, w_N und Nutzenwerten p_1, \ldots, p_N , so dass die Objekte aus K in einen Rucksack mit Gewichtsschranke b passen und dabei der Nutzen maximiert wird.

Problem (Rucksackproblem, Knapsack Problem – KP)

Eingabe: $b \in \mathbb{N}$, $w_1, \ldots, w_N \in \{1, \ldots, b\}$, $p_1, \ldots, p_N \in \mathbb{N}$

zulässige Lösungen: $K \subseteq \{1, ..., N\}$, so dass $\sum_{i \in K} w_i \leq b$

Zielfunktion: *Maximiere* $\sum_{i \in K} p_i$

Beim Rucksackproblem (KP) suchen wir eine Teilmenge K von Ngegebenen Objekten mit Gewichten w_1, \ldots, w_N und Nutzenwerten p_1, \ldots, p_N , so dass die Objekte aus K in einen Rucksack mit Gewichtsschranke b passen und dabei der Nutzen maximiert wird.

Problem (Rucksackproblem, Knapsack Problem – KP)

Eingabe: $b \in \mathbb{N}, w_1, ..., w_N \in \{1, ..., b\}, p_1, ..., p_N \in \mathbb{N}$

zulässige Lösungen: $K \subseteq \{1, ..., N\}$, so dass $\sum_{i \in K} w_i \leq b$

Zielfunktion: Maximiere $\sum_{i \in K} p_i$

Entscheidungsvariante: $p \in \mathbb{N}$ sei gegeben. Gibt es eine zulässige Lösung mit Nutzen mindestens p?

Beim Bin Packing Problem suchen wir eine Verteilung von N Objekten mit Gewichten w_1, \ldots, w_N auf eine möglichst kleine Anzahl von Behältern mit Gewichtskapazität jeweils b.

Beim Bin Packing Problem suchen wir eine Verteilung von N Objekten mit Gewichten w_1, \ldots, w_N auf eine möglichst kleine Anzahl von Behältern mit Gewichtskapazität jeweils b.

Problem (Bin Packing Problem – BPP)

Eingabe: $b \in \mathbb{N}$, $w_1, \ldots, w_N \in \{1, \ldots, b\}$

zulässige Lösungen: $k \in \mathbb{N}$ und Fkt $f : \{1, \dots, N\} \rightarrow \{1, \dots, k\}$,

so dass
$$\forall i \in \{1, \dots, k\}$$
: $\sum_{j \in f^{-1}(i)} w_j \leq b$

Zielfunktion: *Minimiere k (= Anzahl Behälter)*

Beim Bin Packing Problem suchen wir eine Verteilung von N Objekten mit Gewichten w_1, \ldots, w_N auf eine möglichst kleine Anzahl von Behältern mit Gewichtskapazität jeweils b.

Problem (Bin Packing Problem – BPP)

Eingabe: $b \in \mathbb{N}$, $w_1, \ldots, w_N \in \{1, \ldots, b\}$

zulässige Lösungen: $k \in \mathbb{N}$ und Fkt $f : \{1, \dots, N\} \rightarrow \{1, \dots, k\}$,

so dass
$$\forall i \in \{1, \dots, k\} : \sum_{j \in f^{-1}(i)} w_j \leq b$$

Zielfunktion: *Minimiere k (= Anzahl Behälter)*

Entscheidungsvariante: $k \in \mathbb{N}$ ist gegeben. Passen die Objekte in k Behälter?

Beim TSP ist ein vollständiger Graph aus N Knoten (Orten) mit Kantengewichten (Kosten) gegeben. Gesucht ist eine Rundreise (ein *Hamiltonkreis*, eine *Tour*) mit kleinstmöglichen Kosten.

Beim TSP ist ein vollständiger Graph aus N Knoten (Orten) mit Kantengewichten (Kosten) gegeben. Gesucht ist eine Rundreise (ein *Hamiltonkreis*, eine *Tour*) mit kleinstmöglichen Kosten.

Problem (Traveling Salesperson Problem – TSP)

Eingabe: $c(i,j) \in \mathbb{N}$ für $i,j \in \{1,\ldots,N\}$ mit c(j,i) = c(i,j)

zulässige Lösungen: Permutationen π auf $\{1,\ldots,N\}$

Zielfunktion: Minimiere $\sum_{i=1}^{N-1} c(\pi(i), \pi(i+1)) + c(\pi(N), \pi(1))$

Beim TSP ist ein vollständiger Graph aus N Knoten (Orten) mit Kantengewichten (Kosten) gegeben. Gesucht ist eine Rundreise (ein *Hamiltonkreis*, eine *Tour*) mit kleinstmöglichen Kosten.

Problem (Traveling Salesperson Problem – TSP)

Eingabe: $c(i,j) \in \mathbb{N}$ für $i,j \in \{1,\ldots,N\}$ mit c(j,i) = c(i,j)

zulässige Lösungen: Permutationen π auf $\{1,\ldots,N\}$

Zielfunktion: Minimiere $\sum_{i=1}^{N-1} c(\pi(i), \pi(i+1)) + c(\pi(N), \pi(1))$

Entscheidungsvariante: $b \in \mathbb{N}$ ist gegeben. Gibt es eine Tour der Länge höchstens b?

Optimierungsproblem versus Entscheidungsproblem

 Mit Hilfe eines Algorithmus, der ein Optimierungsproblem löst, kann man offensichtlich auch die Entscheidungsvariante lösen. (Wie?)

Optimierungsproblem versus Entscheidungsproblem

- Mit Hilfe eines Algorithmus, der ein Optimierungsproblem löst, kann man offensichtlich auch die Entscheidungsvariante lösen. (Wie?)
- Häufig funktioniert auch der umgekehrte Weg. Wir illustrieren dies am Beispiel von KP.
- In den Ubungen zeigen wir dasselbe auch für TSP und BPP.

Optimierungsproblem versus Entscheidungsproblem

- Mit Hilfe eines Algorithmus, der ein Optimierungsproblem löst, kann man offensichtlich auch die Entscheidungsvariante lösen. (Wie?)
- Häufig funktioniert auch der umgekehrte Weg. Wir illustrieren dies am Beispiel von KP.
- In den Ubungen zeigen wir dasselbe auch für TSP und BPP.

Satz

Wenn die Entscheidungsvariante von KP in polynomieller Zeit lösbar ist, dann auch die Optimierungsvariante.

Zwischenvariante: Gesucht ist nicht eine optimale Lösung sondern nur der optimale Zielfunktionswert.

Zwischenvariante: Gesucht ist nicht eine optimale Lösung sondern nur der optimale Zielfunktionswert.

Polynomialzeitalgorithmus für die Zwischenvariante

Wir verwenden eine Binärsuche mit folgenden Parametern:

- Der minimale Profit ist 0. Der maximale Profit ist $P := \sum_{i=1}^{N} p_i$.
- Wir finden den optimalen Zielfunktionswert durch Binärsuche auf dem Wertebereich $\{0, P\}$.

Zwischenvariante: Gesucht ist nicht eine optimale Lösung sondern nur der optimale Zielfunktionswert.

Polynomialzeitalgorithmus für die Zwischenvariante

Wir verwenden eine Binärsuche mit folgenden Parametern:

- Der minimale Profit ist 0. Der maximale Profit ist $P:=\sum_{i=1}^N p_i$.
- Wir finden den optimalen Zielfunktionswert durch Binärsuche auf dem Wertebereich $\{0, P\}$.
- Sei A ein Polynomialzeitalgorithmus für die Entscheidungsvariante von KP.
- In jeder Iteration verwenden wir Algorithmus A, der uns sagt in welche Richtung wir weitersuchen müssen.

Beweis: Entscheidungsvariante → Zwischenvariante

Die Anzahl der Iterationen der Binärsuche ist $\lceil \log(P+1) \rceil$.

Die Anzahl der Iterationen der Binärsuche ist $\lceil \log(P+1) \rceil$.

Diese Anzahl müssen wir in Beziehung zur Eingabelänge n setzen.

Untere Schranke für die Eingabelänge:

- Die Kodierungslänge von $a \in \mathbb{N}$ ist $\kappa(a) := \lceil \log(a+1) \rceil$.
- Die Funktion κ ist subadditiv, d.h. für alle $a,b \in \mathbb{N}$ gilt $\kappa(a+b) < \kappa(a) + \kappa(b)$.

Die Anzahl der Iterationen der Binärsuche ist $\lceil \log(P+1) \rceil$.

Diese Anzahl müssen wir in Beziehung zur Eingabelänge n setzen.

Untere Schranke für die Eingabelänge:

- Die Kodierungslänge von $a \in \mathbb{N}$ ist $\kappa(a) := \lceil \log(a+1) \rceil$.
- Die Funktion κ ist subadditiv, d.h. für alle $a,b\in\mathbb{N}$ gilt $\kappa(a+b)\leq \kappa(a)+\kappa(b)$.
- Die Eingablänge *n* ist somit mindestens

$$\sum_{i=1}^{N} \kappa(p_i) \geq \kappa \left(\sum_{i=1}^{N} p_i \right) = \kappa(P) = \lceil \log(P+1) \rceil.$$

Die Anzahl der Iterationen der Binärsuche ist $\lceil \log(P+1) \rceil$.

Diese Anzahl müssen wir in Beziehung zur Eingabelänge n setzen.

Untere Schranke für die Eingabelänge:

- Die Kodierungslänge von $a \in \mathbb{N}$ ist $\kappa(a) := \lceil \log(a+1) \rceil$.
- Die Funktion κ ist subadditiv, d.h. für alle $a,b\in\mathbb{N}$ gilt $\kappa(a+b)\leq \kappa(a)+\kappa(b)$.
- Die Eingablänge *n* ist somit mindestens

$$\sum_{i=1}^{N} \kappa(p_i) \geq \kappa \left(\sum_{i=1}^{N} p_i \right) = \kappa(P) = \lceil \log(P+1) \rceil.$$

Also reichen n Aufrufe von A um den optimalen Zielfunktionswert zu bestimmen.

Aus einem Algorithmus B für die Zwischenvariante konstruieren wir jetzt einen Algorithmus C für die Optimierungsvariante.

Aus einem Algorithmus B für die Zwischenvariante konstruieren wir jetzt einen Algorithmus C für die Optimierungsvariante.

Algorithmus C

- $K := \{1, \ldots, N\};$
- **2** p := B(K);
- \bullet for i := 1 to N do if $B(K \setminus \{i\}) = p$ then $K := K - \{i\}$;
- Ausgabe K.

Beweis: Zwischenvariante → Optimierungsvariante

Aus einem Algorithmus B für die Zwischenvariante konstruieren wir jetzt einen Algorithmus C für die Optimierungsvariante.

Algorithmus C

- \bullet $K := \{1, \ldots, N\};$
- **2** p := B(K);
- Ausgabe K.

Laufzeit: N+1 Aufrufe von Algorithmus B, also polynomiell beschränkt, falls die Laufzeit von B polynomiell beschränkt ist.

Beweis: Zwischenvariante → Optimierungsvariante

Korrektheit:

Es gilt die Schleifeninvariante B(K) = p.

Für die ausgegebene Menge K gilt somit B(K) = p.

Korrektheit:

Es gilt die Schleifeninvariante B(K) = p.

Für die ausgegebene Menge K gilt somit B(K) = p.

Korrektheit:

Es gilt die Schleifeninvariante B(K) = p.

Für die ausgegebene Menge K gilt somit B(K) = p.

Aber ist die ausgegebene Menge K auch zulässig?

• Zum Zweck des Widerspruchs nehmen wir an $\sum_{i \in K} w_i > b$.

Korrektheit:

Es gilt die Schleifeninvariante B(K) = p.

Für die ausgegebene Menge K gilt somit B(K) = p.

- Zum Zweck des Widerspruchs nehmen wir an $\sum_{i \in K} w_i > b$.
- Dann gibt es $i \in K$, so dass $B(K \setminus \{i\}) = p$.

Korrektheit:

Es gilt die Schleifeninvariante B(K) = p.

Für die ausgegebene Menge K gilt somit B(K) = p.

- Zum Zweck des Widerspruchs nehmen wir an $\sum_{i \in K} w_i > b$.
- Dann gibt es $i \in K$, so dass $B(K \setminus \{i\}) = p$.
- Dies steht aber im Widerspruch dazu, dass der Algorithmus das Objekt i nicht aus K gestrichen hat.

Korrektheit:

Es gilt die Schleifeninvariante B(K) = p.

Für die ausgegebene Menge K gilt somit B(K) = p.

- Zum Zweck des Widerspruchs nehmen wir an $\sum_{i \in K} w_i > b$.
- Dann gibt es $i \in K$, so dass $B(K \setminus \{i\}) = p$.
- Dies steht aber im Widerspruch dazu, dass der Algorithmus das Objekt i nicht aus K gestrichen hat.
- Also gilt $\sum_{i \in K} w_i \leq b$ und somit ist K zulässig.

Alternative Charakterisierung der Klasse NP

Satz

Eine Sprache $L \subseteq \Sigma^*$ ist genau dann in NP, wenn es einen Polynomialzeitalgorithmus V (einen sogenannten Verifizierer) und ein Polynom p mit der folgenden Eigenschaft gibt:

$$x \in L \Leftrightarrow \exists y \in \{0,1\}^*, |y| \le p(|x|) : V \text{ akzeptiert } y \# x.$$

Gegeben:

- Sei M eine NTM, die $L \in NP$ in polynomieller Zeit erkennt.
- M's Laufzeit sei beschränkt durch ein Polynom q.
- O.B.d.A. sehe die Überführungsrelation von δ immer genau zwei Übergänge vor, die wir mit 0 und 1 bezeichnen.

Gegeben:

- Sei M eine NTM, die $L \in NP$ in polynomieller Zeit erkennt.
- M's Laufzeit sei beschränkt durch ein Polynom q.
- O.B.d.A. sehe die Überführungsrelation von δ immer genau zwei Übergänge vor, die wir mit 0 und 1 bezeichnen.

Konstruktion von Zertifikat und Verifizierer:

• Für die Eingabe $x \in L$ beschreibe $y \in \{0,1\}^{q(n)}$ den Pfad von M auf einem akzeptierenden Rechenweg.

Gegeben:

- Sei M eine NTM, die $L \in NP$ in polynomieller Zeit erkennt.
- M's Laufzeit sei beschränkt durch ein Polynom q.
- O.B.d.A. sehe die Überführungsrelation von δ immer genau zwei Übergänge vor, die wir mit 0 und 1 bezeichnen.

Konstruktion von Zertifikat und Verifizierer:

- Für die Eingabe $x \in L$ beschreibe $y \in \{0,1\}^{q(n)}$ den Pfad von M auf einem akzeptierenden Rechenweg.
- Wir verwenden y als Zertifikat.

Gegeben:

- Sei M eine NTM, die $L \in NP$ in polynomieller Zeit erkennt.
- M's Laufzeit sei beschränkt durch ein Polynom q.
- O.B.d.A. sehe die Überführungsrelation von δ immer genau zwei Übergänge vor, die wir mit 0 und 1 bezeichnen.

Konstruktion von Zertifikat und Verifizierer:

- Für die Eingabe $x \in L$ beschreibe $y \in \{0,1\}^{q(n)}$ den Pfad von M auf einem akzeptierenden Rechenweg.
- Wir verwenden y als Zertifikat.
- Der Verifizierer V erhält als Eingabe y#x und simuliert einen Rechenweg der NTM M für die Eingabe x.

Korrektheit der Konstruktion:

Gemäß Konstruktion gilt

$$x \in L \Leftrightarrow M$$
 akzeptiert x
 $\Leftrightarrow \exists y \in \{0,1\}^{q(n)} : V$ akzeptiert $y \# x$.

- Der Verifizierer kann die durch das Zertifikat y beschriebene Rechnung mit polynomiellem Zeitverlust simulieren.
- ullet Somit erfüllen y und V die im Satz geforderten Eigenschaften.

Beweis: Von Zertifikat & Verifizierer zur NTM

Gegeben:

Verifizierer V mit polynomieller Laufzeitschranke und Polynom p mit der Eigenschaft:

$$x \in L \Leftrightarrow \exists y \in \{0,1\}^*, |y| \le p(|x|) : V \text{ akzeptiert } y \# x.$$

Gegeben:

Verifizierer V mit polynomieller Laufzeitschranke und Polynom p mit der Eigenschaft:

$$x \in L \Leftrightarrow \exists y \in \{0,1\}^*, |y| \le p(|x|) : V \text{ akzeptiert } y \# x.$$

Konstruktion der NTM:

1 M rät das Zertifikat $y \in \{0,1\}^*, |y| \le p(n)$.

Gegeben:

Verifizierer V mit polynomieller Laufzeitschranke und Polynom p mit der Eigenschaft:

$$x \in L \Leftrightarrow \exists y \in \{0,1\}^*, |y| \le p(|x|) : V \text{ akzeptiert } y \# x.$$

Konstruktion der NTM:

- **1** *M* rät das Zertifikat $y \in \{0,1\}^*, |y| \le p(n)$.
- ② M führt V auf y#x aus und akzeptiert, falls V akzeptiert.

Korrektheit der Konstruktion:

M erkennt die Sprache L, weil gilt

 $x \in L \Leftrightarrow \exists y \in \{0,1\}^*, |y| \leq p(n) : V \text{ akzeptiert } y \# x$ $\Leftrightarrow \text{ Es gibt einen akzeptierenden Rechenweg für } M$ $\Leftrightarrow M \text{ akzeptiert } x.$

Korrektheit der Konstruktion:

• M erkennt die Sprache L, weil gilt

$$x \in L \Leftrightarrow \exists y \in \{0,1\}^*, |y| \leq p(n) : V \text{ akzeptiert } y \# x$$

 $\Leftrightarrow \text{ Es gibt einen akzeptierenden Rechenweg für } M$
 $\Leftrightarrow M \text{ akzeptiert } x.$

- Die Laufzeit von *M* ist polynmiell beschränkt, denn
 - die Laufzeit von Schritt 1 entspricht der Länge des Zertifikats, und
 - die Laufzeit von Schritt 2 entspricht der Laufzeit des Verifizierers.

Satz

Die Entscheidungsvarianten von KP, BPP und TSP sind in NP.

Satz

Die Entscheidungsvarianten von KP, BPP und TSP sind in NP.

Beweis:

Entscheidungsvarianten von Opt.problemen haben einen natürlichen Kandidaten für ein Zertifikat

Satz

Die Entscheidungsvarianten von KP, BPP und TSP sind in NP.

Beweis:

Entscheidungsvarianten von Opt.problemen haben einen natürlichen Kandidaten für ein Zertifikat, nämlich zulässige Lösungen.

Es muss allerdings gezeigt werden, dass

Satz

Die Entscheidungsvarianten von KP, BPP und TSP sind in NP.

Beweis:

Entscheidungsvarianten von Opt.problemen haben einen natürlichen Kandidaten für ein Zertifikat, nämlich zulässige Lösungen.

Es muss allerdings gezeigt werden, dass

- diese Lösungen eine polynomiell in der Eingabelänge beschränkte Kodierungslänge haben, und
- ihre Zulässigkeit durch einen Polynomialzeitalgorithmus überprüft werden kann.

• KP: Die Teilmenge $K \subseteq \{1, ..., N\}$ kann mit N Bits kodiert werden. Gegeben K kann die Einhaltung von Gewichts- und Nutzenwertschranke in polynomieller Zeit überprüft werden.

- KP: Die Teilmenge $K \subseteq \{1, \ldots, N\}$ kann mit N Bits kodiert werden. Gegeben K kann die Einhaltung von Gewichts- und Nutzenwertschranke in polynomieller Zeit überprüft werden.
- BPP: Die Abbildung $f:\{1,\ldots,N\}\to\{1,\ldots,k\}$ kann mit $O(N\log k)$ Bits kodiert werden. Gegeben f kann die Einhaltung der Gewichtsschranken in polynomieller Zeit überprüft werden.

- KP: Die Teilmenge $K \subseteq \{1, ..., N\}$ kann mit N Bits kodiert werden. Gegeben K kann die Einhaltung von Gewichts- und Nutzenwertschranke in polynomieller Zeit überprüft werden.
- BPP: Die Abbildung $f:\{1,\ldots,N\} \to \{1,\ldots,k\}$ kann mit $O(N\log k)$ Bits kodiert werden. Gegeben f kann die Einhaltung der Gewichtsschranken in polynomieller Zeit überprüft werden.
- TSP: Für die Kodierung einer Permutation π werden $O(N \log N)$ Bits benötigt. Es kann in polynomieller Zeit überprüft werden, ob die durch π beschriebene Rundreise die vorgegebene Kostenschranke b einhält.

Definition (Polynomielle Reduktion)

 L_1 und L_2 seien zwei Sprachen über Σ_1 bzw. Σ_2 . L_1 ist polynomiell reduzierbar auf L_2 , wenn es eine Reduktion von L_1 nach L_2 gibt, die in polynomieller Zeit berechenbar ist. Wir schreiben $L_1 \leq_p L_2$.

Definition (Polynomielle Reduktion)

 L_1 und L_2 seien zwei Sprachen über Σ_1 bzw. Σ_2 . L_1 ist polynomiell reduzierbar auf L_2 , wenn es eine Reduktion von L_1 nach L_2 gibt, die in polynomieller Zeit berechenbar ist. Wir schreiben $L_1 \leq_p L_2$.

D.h. $L_1 \leq_p L_2$, genau dann, wenn es eine Funktion $f: \Sigma_1^* \to \Sigma_2^*$ mit folgenden Eigenschaften gibt:

- f ist in polynomieller Zeit berechenbar
- $\forall x \in \Sigma_1^* : x \in L_1 \iff f(x) \in L_2$

Lemma

$$L_1 \leq_{\textit{p}} L_2, \; L_2 \in \textit{P} \Rightarrow L_1 \in \textit{P}.$$

Lemma

$$L_1 \leq_p L_2, L_2 \in P \Rightarrow L_1 \in P.$$

Beweis: Die Reduktion f habe die polyn. Laufzeitschranke $p(\cdot)$. Sei B ein Algorithmus für L_2 mit polyn. Laufzeitschranke $q(\cdot)$.

Lemma

$$L_1 \leq_p L_2, L_2 \in P \Rightarrow L_1 \in P.$$

Beweis: Die Reduktion f habe die polyn. Laufzeitschranke $p(\cdot)$. Sei B ein Algorithmus für L_2 mit polyn. Laufzeitschranke $q(\cdot)$.

Algorithmus A für L_1 :

- Berechne f(x).
- 2 Starte Algorithmus B für L_2 auf f(x).

Lemma

$$L_1 \leq_p L_2, L_2 \in P \Rightarrow L_1 \in P.$$

Beweis: Die Reduktion f habe die polyn. Laufzeitschranke $p(\cdot)$. Sei B ein Algorithmus für L_2 mit polyn. Laufzeitschranke $q(\cdot)$.

Algorithmus A für L_1 :

- Berechne f(x).
- ② Starte Algorithmus B für L_2 auf f(x).

Schritt 1 hat Laufzeit höchstens p(|x|). Schritt 2 hat Laufzeit höchstens $q(|f(x)|) \le q(p(|x|) + |x|)$.

COLORING \leq_p SAT

Die eigentliche Stärke des Reduktionsprinzips ist es, dass man Probleme unterschiedlichster Art aufeinander reduzieren kann. Wir demonstrieren dies an einem Beispiel.

COLORING \leq_n SAT

Die eigentliche Stärke des Reduktionsprinzips ist es, dass man Probleme unterschiedlichster Art aufeinander reduzieren kann. Wir demonstrieren dies an einem Beispiel.

Problem (Knotenfärbung – COLORING)

Eingabe: Graph G = (V, E), Zahl $k \in \{1, ..., |V|\}$

Frage: Gibt es eine Färbung c : $V \rightarrow \{1, ..., k\}$ der Knoten von G mit k Farben, so dass benachbarte Knoten verschiedene Farben

haben, d.h. $\forall \{u, v\} \in E : c(u) \neq c(v)$.

Problem (Erfüllbarkeitsproblem / Satisfiability — SAT)

Eingabe: Aussagenlogische Formel ϕ in KNF Frage: Gibt es eine erfüllende Belegung für ϕ ?

Zwei Beispiele zum Erfüllbarkeitsproblem

SAT-Beispiel 1:

$$\phi = (\bar{x}_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_3 \vee \bar{x}_4) \wedge (x_2 \vee x_3 \vee x_4)$$

 ϕ ist erfüllbar, denn $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$ ist eine erfüllende Belegung.

Zwei Beispiele zum Erfüllbarkeitsproblem

SAT-Beispiel 1:

$$\phi = (\bar{x}_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_3 \vee \bar{x}_4) \wedge (x_2 \vee x_3 \vee x_4)$$

 ϕ ist erfüllbar, denn $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$ ist eine erfüllende Belegung.

SAT-Beispiel 2:

$$\phi' = (x_1 \vee x_2) \wedge (\bar{x}_2 \vee x_1) \wedge (\bar{x}_1 \vee x_3) \wedge (\bar{x}_3 \vee \bar{x}_1)$$

 ϕ' ist *nicht erfüllbar*. (Warum?)

Satz

 $COLORING \leq_p SAT.$

Beweis:

Wir beschreiben eine polynomiell berechenbare Funktion f, die eine Eingabe (G,k) für das COLORING-Problem auf eine Formel ϕ für das SAT-Problem abbildet, mit der Eigenschaft

G hat eine k-Färbung $\Leftrightarrow \phi$ ist erfüllbar .

Beschreibung der Funktion f:

Die Formel ϕ hat für jede Knoten-Farb-Kombination (v, i), $v \in V$, $i \in \{1, ..., k\}$, eine Variable x_v^i . Die Formel für (G, k) lautet

$$\phi \ = \ \bigwedge_{v \in V} \underbrace{\left(x_v^1 \vee x_v^2 \vee \ldots \vee x_v^k\right)}_{\mathsf{Knotenbedingung}} \land \bigwedge_{\{u,v\} \in E} \bigwedge_{i \in \{1,\ldots,k\}} \underbrace{\left(\bar{x}_u^i \vee \bar{x}_v^i\right)}_{\mathsf{Kantenbedingung}} \ .$$

Beschreibung der Funktion f:

Die Formel ϕ hat für jede Knoten-Farb-Kombination (v, i), $v \in V$, $i \in \{1, ..., k\}$, eine Variable x_v^i . Die Formel für (G, k) lautet

$$\phi \ = \ \bigwedge_{v \in V} \underbrace{\left(x_v^1 \vee x_v^2 \vee \ldots \vee x_v^k\right)}_{\mathsf{Knotenbedingung}} \land \bigwedge_{\{u,v\} \in E} \bigwedge_{i \in \{1,\ldots,k\}} \underbrace{\left(\bar{x}_u^i \vee \bar{x}_v^i\right)}_{\mathsf{Kantenbedingung}} \ .$$

Anzahl der Literale = $O(k \cdot |V| + k \cdot |E|) = O(|V|^3)$.

Beschreibung der Funktion f:

Die Formel ϕ hat für jede Knoten-Farb-Kombination (v, i), $v \in V$, $i \in \{1, ..., k\}$, eine Variable x_v^i . Die Formel für (G, k) lautet

$$\phi \ = \ \bigwedge_{v \in V} \underbrace{(x_v^1 \vee x_v^2 \vee \ldots \vee x_v^k)}_{\mathsf{Knotenbedingung}} \land \bigwedge_{\{u,v\} \in E} \bigwedge_{i \in \{1,\ldots,k\}} \underbrace{(\bar{x}_u^i \vee \bar{x}_v^i)}_{\mathsf{Kantenbedingung}}$$

Anzahl der Literale = $O(k \cdot |V| + k \cdot |E|) = O(|V|^3)$.

Die Länge der Formel ist somit polynomiell beschränkt und die Formel kann in polynomieller Zeit konstruiert werden.

Beschreibung der Funktion f:

Die Formel ϕ hat für jede Knoten-Farb-Kombination (v, i), $v \in V$, $i \in \{1, ..., k\}$, eine Variable x_v^i . Die Formel für (G, k) lautet

$$\phi \ = \ \bigwedge_{v \in V} \underbrace{\left(x_v^1 \vee x_v^2 \vee \ldots \vee x_v^k\right)}_{\mathsf{Knotenbedingung}} \land \bigwedge_{\{u,v\} \in E} \bigwedge_{i \in \{1,\ldots,k\}} \underbrace{\left(\bar{x}_u^i \vee \bar{x}_v^i\right)}_{\mathsf{Kantenbedingung}}$$

Anzahl der Literale =
$$O(k \cdot |V| + k \cdot |E|) = O(|V|^3)$$
.

Die Länge der Formel ist somit polynomiell beschränkt und die Formel kann in polynomieller Zeit konstruiert werden.

Aber ist die Konstruktion auch korrekt?

Korrektheit:

zz: G hat eine k Färbung $\Rightarrow \phi$ ist erfüllbar

• Sei c eine k-Färbung für G.

Korrektheit:

- Sei c eine k-Färbung für G.
- Für jeden Knoten v mit c(v) = i setzen wir $x_v^i = 1$ und alle anderen Variablen auf 0.

Korrektheit:

- Sei c eine k-Färbung für G.
- Für jeden Knoten v mit c(v) = i setzen wir $x_v^i = 1$ und alle anderen Variablen auf 0.
- Knotenbedingung: Offensichtlich erfüllt.

Korrektheit:

- Sei c eine k-Färbung für G.
- Für jeden Knoten v mit c(v) = i setzen wir $x_v^i = 1$ und alle anderen Variablen auf 0.
- Knotenbedingung: Offensichtlich erfüllt.
- Kantenbedingung: Für jede Farbe i und jede Kante $\{u, v\}$ gilt $\bar{x}_u^i \vee \bar{x}_v^i$, denn sonst hätten u und v beide die Farbe i.

Korrektheit:

- Sei c eine k-Färbung für G.
- Für jeden Knoten v mit c(v) = i setzen wir $x_v^i = 1$ und alle anderen Variablen auf 0.
- Knotenbedingung: Offensichtlich erfüllt.
- Kantenbedingung: Für jede Farbe i und jede Kante $\{u, v\}$ gilt $\bar{x}_u^i \vee \bar{x}_v^i$, denn sonst hätten u und v beide die Farbe i.
- Damit erfüllt diese Belegung die Formel ϕ .

zz: ϕ ist erfüllbar \Rightarrow G hat eine k Färbung

• Fixiere eine beliebige erfüllende Belegung für ϕ .

- Fixiere eine beliebige erfüllende Belegung für ϕ .
- Wegen der Knotenbedingung gibt es für jeden Knoten v mindestens eine Farbe mit $x_v^i = 1$.

- Fixiere eine beliebige erfüllende Belegung für ϕ .
- Wegen der Knotenbedingung gibt es für jeden Knoten v mindestens eine Farbe mit $x_v^i = 1$.
- Für jeden Knoten wähle eine beliebige derartige Farbe aus.

- Fixiere eine beliebige erfüllende Belegung für ϕ .
- Wegen der Knotenbedingung gibt es für jeden Knoten v mindestens eine Farbe mit $x_{\nu}^{i} = 1$.
- Für jeden Knoten wähle eine beliebige derartige Farbe aus.
- Sei $\{u,v\} \in E$. Wir behaupten $c(u) \neq c(v)$.

- Fixiere eine beliebige erfüllende Belegung für ϕ .
- Wegen der Knotenbedingung gibt es für jeden Knoten v mindestens eine Farbe mit $x_v^i = 1$.
- Für jeden Knoten wähle eine beliebige derartige Farbe aus.
- Sei $\{u,v\} \in E$. Wir behaupten $c(u) \neq c(v)$.
- Zum Widerspruch nehmen wir an, c(u) = c(v) = i. Dann wäre $x_u^i = x_v^i = 1$ und die Kantenbedingung $\bar{x}_u^i \vee \bar{x}_v^i$ wäre verletzt.

COLORING \leq_p SAT impliziert

Korollar

Wenn SAT einen Polynomialzeitalgorithmus hat, so hat auch COLORING einen Polynomialzeitalgorithmus.

Ein Problem $L \in NP$ heißt NP-vollständig, wenn für jedes Problem $L' \in NP$ gilt $L' \leq_p L$.

Ein Problem $L \in NP$ heißt NP-vollständig, wenn für jedes Problem $L' \in NP$ gilt $L' \leq_p L$.

Satz (Cook und Levin)

SAT ist NP-vollständig.

Ein Problem $L \in NP$ heißt NP-vollständig, wenn für jedes Problem $L' \in NP$ gilt $L' \leq_p L$.

Satz (Cook und Levin)

SAT ist NP-vollständig.

Es folgt: Wenn SAT einen Polynomialzeitalgorithmus hätte, so gäbe es auch einen Polynomialzeitalgorithmus für jedes andere Problem aus NP, und somit wäre P = NP.

Ein Problem $L \in NP$ heißt NP-vollständig, wenn für jedes Problem $L' \in NP$ gilt $L' \leq_p L$.

Satz (Cook und Levin)

SAT ist NP-vollständig.

Es folgt: Wenn SAT einen Polynomialzeitalgorithmus hätte, so gäbe es auch einen Polynomialzeitalgorithmus für jedes andere Problem aus NP, und somit wäre P = NP.

Im Umkehrschluss gilt:

SAT hat keinen Polynomialzeitalgorithmus, es sei denn P = NP.