1806 LOGIC

5.281 non_overlap_sboxes

DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [38]

Constraint non_overlap_sboxes(K, DIMS, OBJECTS, SBOXES)

Synonyms non_overlapping.

INTEGERS : collection(v-int)
POSITIVES : collection(v-int)

Arguments K : int

DIMS : sint

 $\begin{array}{lll} \texttt{OBJECTS} & : & \texttt{collection}(\texttt{oid-int}, \texttt{sid-dvar}, \texttt{x} - \texttt{VARIABLES}) \\ \texttt{SBOXES} & : & \texttt{collection}(\texttt{sid-int}, \texttt{t} - \texttt{INTEGERS}, \texttt{1} - \texttt{POSITIVES}) \end{array}$

Restrictions

```
|VARIABLES| \ge 1
|INTEGERS| > 1
|POSITIVES| \ge 1
required(VARIABLES, v)
|VARIABLES| = K
required(INTEGERS, v)
|INTEGERS| = K
required(POSITIVES, v)
|POSITIVES| = K
{\tt POSITIVES.v}>0
K > 0
\mathtt{DIMS} \geq 0
{\tt DIMS} < {\tt K}
increasing_seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
{\tt OBJECTS.oid} > 1
OBJECTS.oid \leq |OBJECTS|
{\tt OBJECTS.sid} \geq 1
\texttt{OBJECTS.sid} \leq |\texttt{SBOXES}|
required(SBOXES, [sid, t, 1])
{\tt SBOXES.sid} \geq 1
\mathtt{SBOXES.sid} \leq |\mathtt{SBOXES}|
```

20070622 1807

Holds if, for each pair of objects (O_i,O_j) , i< j, O_i and O_j do not overlap with respect to a set of dimensions depicted by DIMS. O_i and O_j are objects that take a shape among a set of shapes. Each *shape* is defined as a finite set of shifted boxes, where each shifted box is described by a box in a K-dimensional space at a given offset (from the origin of the shape) with given sizes. More precisely, a *shifted box* is an entity defined by its shape id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted boxes sharing the same shape id. An *object* is an entity defined by its unique object identifier oid, shape id sid and origin x.

An object O_i does not overlap an object O_j with respect to a set of dimensions depicted by DIMS if and only if, for all shifted box s_i associated with O_i and for all shifted box s_j associated with O_j , there exists a dimension $d \in \text{DIMS}$ such that the start of s_i in dimension d is greater than or equal to the end of s_j in dimension d, or the start of s_j in dimension d is greater than or equal to the end of s_i in dimension d.

```
 \left( \begin{array}{c} 2, \{0,1\}, \\ \text{oid} - 1 & \text{sid} - 1 & \text{x} - \langle 4,1 \rangle \,, \\ \text{oid} - 2 & \text{sid} - 3 & \text{x} - \langle 2,2 \rangle \,, \\ \text{oid} - 3 & \text{sid} - 4 & \text{x} - \langle 5,4 \rangle \\ \text{sid} - 1 & \text{t} - \langle 0,0 \rangle & 1 - \langle 1,1 \rangle \,, \\ \text{sid} - 1 & \text{t} - \langle 1,0 \rangle & 1 - \langle 1,3 \rangle \,, \\ \text{sid} - 1 & \text{t} - \langle 0,2 \rangle & 1 - \langle 1,1 \rangle \,, \\ \text{sid} - 2 & \text{t} - \langle 0,0 \rangle & 1 - \langle 3,1 \rangle \,, \\ \text{sid} - 2 & \text{t} - \langle 0,1 \rangle & 1 - \langle 1,1 \rangle \,, \\ \text{sid} - 2 & \text{t} - \langle 2,1 \rangle & 1 - \langle 1,1 \rangle \,, \\ \text{sid} - 2 & \text{t} - \langle 0,0 \rangle & 1 - \langle 1,2 \rangle \,, \\ \text{sid} - 3 & \text{t} - \langle 0,0 \rangle & 1 - \langle 1,2 \rangle \,, \\ \text{sid} - 4 & \text{t} - \langle 0,0 \rangle & 1 - \langle 1,1 \rangle \end{array} \right)
```

Figure 5.605 shows the objects of the example. Since O_1 and O_2 do not overlap, since O_1 and O_3 do not overlap, and since O_2 and O_3 also do not overlap, the non_overlap_sboxes constraint holds.

```
Typical
```

$|\mathtt{OBJECTS}| > 1$

Symmetries

- Items of OBJECTS are permutable.
- Items of SBOXES are permutable.
- Items of OBJECTS.x, SBOXES.t and SBOXES.1 are permutation used).
- SBOXES.1.v can be decreased to any value ≥ 1 .

Arg. properties

Suffix-contractible wrt. OBJECTS.

Remark

In addition from preventing objects to overlap, the disjoint_sboxes constraint also enforces that borders and corners of objects are not directly in contact.

See also

```
common keyword:contains_sboxes,coveredby_sboxes,covers_sboxes(geometrical constraint betweenshifted boxes),diffn(geometrical constraint,non-overlapping),disjoint_sboxes,
```

Purpose

Example

1808 LOGIC

(D) Three objects where O_1 does neither overlap O_2 nor O_3 and where O_2 and O_3 also do not overlap

Figure 5.605: (D) the three pairwise non-overlapping objects O_1 , O_2 , O_3 of the **Example** slot respectively assigned shapes S_1 , S_3 , S_4 ; (A), (B), (C) shapes S_1 , S_2 , S_3 and S_4 are respectively made up from 3, 3, 1 and 1 disjoint shifted box.

```
equal_sboxes(geometrical constraint between shifted boxes), geost, geost_time(geometrical constraint,non-overlapping), inside_sboxes, meet_sboxes, overlap_sboxes(geometrical constraint between shifted boxes), visible(geometrical constraint).
```

implied by: disjoint_sboxes.

Keywords

constraint type: logic.

geometry: geometrical constraint, non-overlapping.

Logic

```
\bullet \; \mathtt{origin}(\mathtt{O1},\mathtt{S1},\mathtt{D}) \stackrel{\mathrm{def}}{=} \mathtt{O1}.\mathtt{x}(\mathtt{D}) + \mathtt{S1.t}(\mathtt{D})
• end(01,S1,D) \stackrel{\text{def}}{=} 01.x(D) + S1.t(D) + S1.1(D)
• non_overlap_sboxes(Dims, 01, S1, 02, S2) \stackrel{\text{def}}{=}
         \exists \mathtt{D} \in \mathtt{Dims}
                      end(01, S1, D) \leq
                       end(02, S2, D) \leq
 \bullet \quad \mathtt{non\_overlap\_objects}(\mathtt{Dims}, \mathtt{O1}, \mathtt{O2}) \overset{\mathrm{def}}{=} \\
        \forall \mathtt{S1} \in \mathtt{sboxes}([\mathtt{01.sid}])
           \forall \mathtt{S2} \in \mathtt{sboxes} ( \ [ \ \mathtt{02.sid} \ ] \ )
                                                          Dims,
                                                           01,
           non_overlap_sboxes
                                                           S1,
                                                          02,
                                                          S2
 \bullet \quad \texttt{all\_non\_overlap}(\texttt{Dims}, \texttt{OIDS}) \overset{\text{def}}{=} 
        \forall 01 \in \mathtt{objects}(\mathtt{OIDS})
          \forall 02 \in \mathtt{objects} (\mathtt{OIDS})
                01.oid < ⇒
                02.oid
             non_overlap_objects
```

• all_non_overlap(DIMENSIONS, OIDS)