Unit 5: Sorting and Searching.

1. Searching

- 1. What is Searching. Types of searching.
- 2. Explain linear search.
- 3. Write algorithm and program of Linear search.
- 4. Explain Binary search.
- 5. Write Algorithm and program of Binary search.

2. Sorting

- 6. What is Sorting. Types of sorting
- 7. Explain Bubble sort.
- 8. Write algorithm and program of bubble sort.
- 9. Explain Selection sort.
- 10. write algorithm and program of selection sort.
- 11. Explain insertion sort.
- 12. Write an algorithm and program for Insertion sort method.
- 13. Explain Quick sort.
- 14. write algorithm and program of quick sort.
- 15. Explain Merge sort.
- 16. write algorithm and program of Merge sort.

1. What is searching.

Ans:

> Searching is a process of finding element within list of elements that stored in any order or randomly.

- > Searching is divided into two categories.
- ➤ 1.Linear or sequential search 2.Binary search

2. Explain linear search and Write algorithm and program of Linear search.

Ans:

- ➤ It simply sequentially compares the given search value with each value with list from start to end until value is found or list is ended.
- > Sequential search works for both sorted and unsorted data.
- If value is found then it will return the position of that search value.
- ► <u>Ex:</u> 50 45 42 78 65 86 34 40
- > Search 78 number and give its position.

First 78 will compare with 50 it does not match next 78 will compare with 45 it does not match next 78 will compare with 42 it does not match next 78 will compare with 78 it matches. So search value is found in 4th position

- Advantages:
- ➤ It is simple as it is easy to understand and implement.
- <u>Disadvantages:</u>
- > Search time is not unique. if value is in start position it takes less time and if value is near to end it takes more time.
- > Size of data increase search time also increase.

3. Algorithm of linear search.

Ans:

Algorithm

Algo. Linear search(L,N,X)

L→List of elements

N→number of elements in list

 $X \rightarrow$ value to be searched in list

Step 1: [initialization]

K**←**0 Flag**←**1

```
Step2: Repeat step 3 for k=0,1,2,...N-1
Step 3: if(L(k) = = X)
        then
        Fiag←0
        Write "search successful"
        Write "value found at location k+1"
Step 4: if(flag==1)
        Then
        Write "search is unsuccessful"
Step 5:[finished]
        Exit
   Programme
#include<stdio.h>
void main()
   int L[50],n,X,flag=0,i;
   printf("\n\n Enter Size of Array:->");
   scanf("%d",&n);
   for(i=0;i< n;i++)
          scanf("%d",&L[i]);
   printf("\n\nEnter Element To Search:->");
   scanf("%d",&X);
   for(i=0;i< n;i++)
          if (X == L[i])
                printf("data found in position %d",i+1);
                flag=1;
                break;
          }
if(flag==0)
printf("data not found");
```

getch();
}

• Output 1: enter size of array
5
12 10 23 45 5
Enter element to search
23

Output 2: enter size of array
5
12 10 23 45 5
Enter element to search
55
data not found

4. Explain Binary search.

Ans:

> Binary search requires sorted list.

Data found in position 2

- In binary search first it computes the middle ,which is index of the middle value in the list as
- ➤ Middle=(start +end)/2

,Start=index of first element

End=index

last

Page 4

of

element

- Then compare search value with middle value.
- ➤ If both matches then value is found and return middle position.
- ➤ If both does not match then list is divided into two parts called upper half and lower half.
- ➤ All values in upper half is greater than middle value and All values in lower half is less than middle value.
- ➤ If search value < middle value then

Search will start in lower half

- .

start=start End=middle -1

Again count middle value and compare until search found

➤ If search value > middle value then

Search will start in upper half

start=middle +1 End=end

Again count middle value and compare until search found

Ex. 9, 12, 24, 30, 36, 45, 70 Search 45

9 | 12 | 24 | 30 | 36 | 45 | 70

a[0] a[1] a[2] a[3] a[4] a[5] a[6]

Step 1 start=0 end=6 So middle=(0+6)/2 middle =3

Step 2
$$45 > 30$$

So start = middle + 1 =
$$3+1 = 4$$

$$End = end = 6$$

Step 3 middle=
$$(4+6)/2 = 10/2 = 5$$

Start middle end

Now a[mid]=a[5]=45

So search value 45 = middle value 45

Search successful position is 5

5. Algorithm and programme of Binary search.

Ans:

Algorithm

Algo. Binary search(L,N,X)

L→List of elements

N→number of elements in list

 $X \rightarrow$ value to be searched in list

Step 1: [initialization]

start**←**0

end←N-1

Flag**←**1

Step2: while (start<=end) Repeat step 3 to 4

Step 3: middle = (start+end)/2

Step 4: if (X <L[middle]) Then

End=middle-1

Else if (X > L[middle]) Then

```
Start =middle +1
Else if(X==L[middle])
Write "search successful ,middle+1"
Flag←0
Step 4: if (flag==1)
Then Write "search unsuccessful"
Step 5:[finished]
Exit
```

Programme

```
#include<stdio.h>
#include<conio.h>
void main()
   int L[50],n,middle,X,flag=0,i,start,end;
    clrscr();
   printf("\n\n Enter Size of Array:->");
   scanf("%d",&n);
   for(i=0;i< n;i++)
          scanf("%d",&L[i]);
   printf("\n\nEnter Element To Search:->");
scanf("%d",&X);
start=0:
end=n-1;
while (start<=end)
middle = (start+end)/2;
if (X <L[middle])
end=middle-1;
else if (X > L[middle])
start = middle + 1;
elseif(X==L[middle])
printf( " search successful %d ", middle+1);
```

```
flag=0;
break;
   if (flag==1)
printf( " search unsuccessful");
getch();
Output 1: enter size of array
                                                       Output 2: enter size of array
                                                                 5
          12 20 23 24 25
                                                                12 20 23 24 25
          Enter element to search
                                                                Enter element to search
          23
                                                                55
          Data found in position 2
                                                                data not found
```

6. What is sorting .Classify various sorting method.

Ans:

- > Sorting is an arrangement of data in some given sequence i.e. increasing order or decreasing order.
- ➤ There are so many sorting tech. available.
- Sorting methods:
- 1) Bubble sort
- 2) Selection sort
- 3) Quick sort
- 4) Insertion sort
- 5) Merge sort
- 6) Radix sort

7. Explain Bubble sort.

Ans:

- ➤ It is simple and easy tech.
- > In this tech., start with first element.
- > each element is compared with its adjacent(next) element.
- ➤ If first element is larger than second element then position of elements are interchanged(swap that two numbers) otherwise it is not changed.

- > Then next element is compared with its adjacent element and same process is repeated for all elements.
- Each pass places maximum value in last position.
- Ex: 1 10 5 2

1<5 no change	5>2 sw
Pass 3:	step 1
1	1
24	2
5	5
10	10

1<2 no change

8. Write Algo and Programme for Bubble sort.

Ans:

```
> Algorithm:
Step 1:
          [Initialization]
          i←0
Step 2:
          repeat step 3 to 7 while i < n-1
Step 3:
          set i \leftarrow 0
Step 4:
          repeat step 5 to 6 while j < n - i - 1
Step 5:
          if a[j] > a[j+1] then
          Set temp = a[j]
          Set a[j] = a[j+1]
          Set a[j+1] = temp
          End if
Step 6:
          j=j+1
Step 7:
          i=i+1
Step 8:
          [finished]
          Exit
    Programme:
void main()
int i,j,a[10], temp,n;
clrscr();
printf("enter size of array");
scanf("%d",&n);
for(i=0;i< n;i++)
scanf("%d",&a[i]);
for(i=0;i< n-1;i++)
          for(j=0;j< n-i-1;j++)
                 if(a[j]>a[j+1])
```

```
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}

for(i=0;i<n;i++)
printf("\n%d",a[i]);
getch();
}

• Output 1 enter size of array
5
10 2 1 3 12
Ans: 1 2 3 10 12
```

9. Explain Selection sort.

Ans:

- > Initialize the minindex with i variable.
- > Compare one by one element with minindex element.
- > If any element is found which having value less than the minindex element then "change the minindex".
- At the end of each pass if minindex value is updated then only swap two elements.
- Ex: 44 33 55 22 11

Pass 1: i=0 minindex=0

step 1	step 2	step 3	step 4	Result
0 44◀	0 44	0 44	0 44	11
1 33◀	1 33 ←	1 334	1 33	33
2 55	2 55 ←	2 55	2 55	55
3 22	3 22	3 22◀	3 22 ←	22
4 11	4 11	4 11	4 11	44
33<44	55<33	22<33	11<22	
minindex=1	minindex=1	minindex=3	minindex =4	minindex(4) != i(0)

swap a[minindex] and a[i]

swap a[4] and a[0] swap 11 and 44

Pass 2: i=1 minindex=1

step 1	step 2	step 3	Result
0 11	0 11	0 11	11
1 33◀	1 33 -	1 33	22
2 55◀	2 55	2 55	55
3 22	3 22	3 22←	33
4 44	4 44	4 44	44
55<33	22<33	44<22	
minindex=1	minindex=3	minindex=3	minindex(3) != i(1)

> swap a[minindex] and a[i]

swap a[3] and a[1] swap 22 and 33

swap a[3] and a[2] swap 33 and 55

Pass 3: i=2 minindex=2

> swap a[minindex] and a[i]

<u>PdSS 3.</u> 1–2	IIIIIIIIuex-2	
step 1	step 2	Result
0 11	0 11	11
1 22	1 22	22
2 55◀	2 55	33
3 33◀	3 33 ←	55
4 44	4 44	44
33<55	44<33	
minindex=3	minindex=3	minindex(3) != i(2)

Pass 4: i=3 minindex=3

step 1

Result

0 11

0 11

1 22

1 22

2 33

2 33

3 55◀

3 44

4 44 🕌

4 55

44<55

minindex=4

minindex(4) != i(3)

> swap a[minindex] and a[i]

swap a[4] and a[3] swap 44 and 55

10. Write Algo and Programme for selection sort.

Ans:

> Algorithm:

Step 1: [Initia

[Initialization] i←0

Step 2: repeat step 3 to 7 while i < n-1

Step 3: set minindex \leftarrow i \neq i+1

Step 4: repeat through step 5 while $j \le n-1$

Step 5: if a[j] < a[minindex] then set minindex = j
End if

Step 6: j=j+1

```
Step 7:
          if minindex != i then
          temp=a[i]
          a[i]=a[minindex]
          a[minindex]=temp
Step 8:
          i=i+1
Step 9:
          [finished]
          Exit
   Programme:
#include<stdio.h>
void main()
   int a[5],minindex,i,j,n,temp;
    printf("\n\n Enter Size of Array:->");
    scanf("%d",&n);
    printf("\n\n Enter List to Sort");
    for(i=0;i< n;i++)
          scanf("%d",&a[i]);
    for(i=0;i< n-1;i++)
          minindex=i;
          for(j=i+1;j <= n-1;j++)
                if(a[j]<a[minindex])</pre>
                       minindex=j;
          if(i!= minindex)
                temp=a[minindex];
                a[minindex]=a[i];
                a[i]=temp;
```

```
}
}
printf("\n\n Array in Ascending Order is :->");
for(i=0;i<n;i++)
{
    printf("\n\na[%d] ==> %d",i,a[i]);
}

Output : enter size of array
    5
    10 2 1 3 12
```

11. Explain Insertion sort.

1 2 3 10 12

Ans:

Ans:

- ➤ In insertion sort element is inserted at appropriate place.
- > It is simple to implement and efficient for small data set.
- For ex:to sort cards in one's hand one extract card, shift remaining cards, then insert extracted card in the correct place.
- > This process is repeated until all the cards are in the correct sequence.
 - Working
- > In each pass element is considered as input element and is compared with all the elements that appear before it.
- As there is no element before first element we can directly start from second element.
- ➤ All the element which are greater than input element are shifted by one position.
- ➤ At the end input element can be stored in the free slot.
- Ex: 7 3 4 1 8 2 6 5

12. Write Algo and Programme for Insertion sort.

Ans:

a: list of elements

N:number of elements in list

> Algorithm:

Step 1: repeat through step 2 to 4 For i=1,2,3,4... n-1

Step 2: temp=a[i]
Pointer= i- 1

Step 3: repeat step 4 while (a[pointer]>temp)&&(pointer>=0))

Step 4: a[pointer + 1]=a[pointer]

```
Pointer = pointer - 1
Step 5:
          a [pointer + 1] = temp
Step 6:
          [finished]
          Exit
> Programme:
void main()
   int a[5],temp,n,i,pointer;
   clrscr();
   printf("Enter the Size of Array:->");
   scanf("%d",&n);
   for(i=0;i< n;i++)
          scanf("%d",&a[i]);
    for(i=1;i \le n-1;i++)
          temp=a[i];
          pointer=i-1;
          while((a[pointer]>temp)&&(pointer>=0))
              a[pointer+1] = a[pointer];
              pointer=pointer - 1;
          a[pointer+1]=temp;
   for(i=0;i< n;i++)
          printf("\n\ \%d",a[i]);
   getch();
}
   Output: enter size of array
           5
           10 2 1 3 12
           1 2 3 10 12
 Ans:
```

13. Explain Quick sort.

Ans:

- > It is very efficient method for larger lists.
- ➤ It use divide and conquer technique.
- ➤ Step -1

An element is chosen as pivot element based on the value of pivot the array is splited into two subarray in such way that each element in left array is less than or equal to pivot element and each element in right array is greater than the pivot element.

➤ Step -2

Conquer:Recursively sort two subarray

➤ Step -3

Combine :- Combine all sorted elements in a group to form list of sorted elements.

If
$$a[I] <= a[pivot] \rightarrow i++$$
, If $a[J] > a[pivot] \rightarrow J--$
When I and J stop and If $I < J \rightarrow$ interchange $a[I]$ and $a[J]$
If $I > J \rightarrow$ interchange $a[pivot]$ and $a[J]$

Ex: **33,77,44,55,88,11,22,66**

0		1	2	3	4	5	6	7
33	77	4	4	55	88	11	22	66
i,piv	vot	L				l	l	j
33<=3	33 yes	s -> i+-	F		66>33	yes -> j		

0	1	2	3	4	5	6	7
33	22	44	55	88	11	77	66
	i	l	I			j	I
22<33	$yes \rightarrow$	<u>i</u> ++		77>33	yes -	→ j	
0	1	2	3	4	5	6	7
33	22	44	55	88	11	77	66
	•	i			j		·
44<33	11>	33 no -> s	stop	check i <j< td=""><td>yes sv</td><td>vap (a[i],a</td><td>[i])</td></j<>	yes sv	vap (a[i],a	[i])
	_				_		_
33	22	2 11	55	88	5 44	6 77	66
33	22		33	88		//	00
		i			j		
11<33	yes →	i++		44>33	yes –	→ j	
	•				J	3	
0	1	2	3	4	5	6	7
33	22	11	55	88	44	77	66
			i	j			
55<33	no -> s	top		_	yes -	→ j	
0	1	2	3	4	5	6	7
33	22	11	55	88	44	77	66
	I	L	i, j		_1	1	
55<33	no -> s	top		55>33	yes -	→ j—	
0	1	2	3	4	5	6	7
33	22	11	55	88	44	77	66
	1	j	i	1	-1	•	1
55<33	no ->stop	11>3	33 no ->s	top now	check:	i <j no<="" td=""><td>\rightarrow swap(a[</td></j>	\rightarrow swap(a[

0	1	2	3	4	5	6	7
11	22	33	55	88	44	77	66
	1	i	i		l	l	

now call function recursively

- quick_sort(a,low,j-1) quick_sort(a, 0,1)
- quick_sort(a,j+1,high) quick_sort(a, 3,7)

$$\begin{array}{c|c}
0 & 1 \\
\hline
11 & 22 \\
i & i
\end{array}$$

now check i $\leq j$ no \rightarrow swap(a[pivot],a[j])

$$\begin{array}{c|c}
0 & 1 \\
\hline
11 & 22
\end{array}$$

• quick_sort(a,3,7)

	0	1	2	3	4	5	6	7
				44	55	88	77	66
L			.	•	j	i	ı	

- quick_sort(a, 3, 3) : no processing
- quick_sort(a, 5, 7)
- <u>quick sort(a, 5, 7)</u>

- quick_sort(a, 5, 6)
- quick_sort(a, 9,7): no processing

• <u>quick_sort(a, 5, 6)</u>

0	1	2	3	4	5	6	7
					66	77	

0	1	2	3	4	5	6	7
11	22	33	44	55	66	77	88

14. Write Algo and Programme for Quick sort.

Ans:

a: list of array

low:leftmost element in array.

high:rightmost element in array.

pivot:As key value we chose first element.

> Algorithm:

Step 1: if (low < high) then perform step 2-11

Step 2: pivot<-low

i<-low

j<-high

Step 3: while (i < j) then perform step 4-9

Step 4: repeat step 5 while(a[i]<=a[pivot] && i<high)

Step 5: $i \leftarrow i + 1$

Step 6: repeat step 7 while (a[j]>a[pivot])

Step 7: J < -J - 1

Step 8: if (i < j) then perform step 9

Step 9: $temp \leftarrow a[i]$ $a[i] \leftarrow a[j]$ a[j] < temp

Step 10: temp \leftarrow a[pivot] a[pivot] \leftarrow a[j] a[j]<-temp

```
Step 11: Call Quick sort(a,low,j - 1)
          Call Quick sort(a, j + 1, high)
Step 12: [finished]
          Exit
   Programme:
#include<stdio.h>
#include<stdlib.h>
void quicksort(int ,int);
int a[20];
void main()
   int i,j,temp,n;
    printf("\n \tEnter size \n");
    scanf("%d",&n);
    printf("\n \tEnter the value of array \n");
    for(i=0;i< n;i++)
          printf("\n \tEnter A[%d] ",i);
          scanf("%d",&a[i]);
    printf("\n\n \tArray before sortting \n");
    for(i=0;i< n;i++)
          printf("\n \tEnter A[%d]=%d \n",i,a[i]);
    quicksort(0,n-1);
    printf("\n\n \tArray after quick short \n");
    for(i=0;i< n;i++)
          printf("\n \text{tEnter A[%d]=%d \n",i,a[i]);
void quicksort(int low,int high)
    int pivot, temp, i, j;
    if(low<high)
```

```
{
        pivot=low;
        i=low;
        j=high;
        while(i < j)
              while(a[i]<=a[pivot] && i<high)
                     i=i+1;
              while(a[j]>a[pivot])
                     j=j-1;
              if(i < j)
                     temp=a[i];
                     a[i]=a[j];
                     a[j]=temp;
               }
        temp=a[pivot];
        a[pivot]=a[j];
        a[j]=temp;
        quicksort(low,j-1);
        quicksort(j+1,high);
  }
 Output: enter size of array
         5
         10 2 1 3 12
         1 2 3 10 12
Ans:
```

15. Explain Merge sort.

Ans:

- > a merge sort works as follows:
 - 1. Divide the unsorted list into *n* sublists, each containing 1 element (a list of 1 element is considered sorted).
 - 2. Repeatedly <u>merge</u> sublists to produce new sorted sublists until there is only 1 sublist remaining. This will be the sorted list.

ge No.	Page No.
EX	SOAT following Elements using Merge sont
W	80, 40, 50, 20, 70, 30, 10, 60
	the first of the second of the
·	Mergeson (A, O, 7)
<u>~</u>	0 1 2 3 4 5 6 7
<u>-</u>	80 40 50 20 70 30 10 60
~	\$ T
<u>-</u>	1000 mid - 18 mot high
_	
	merge sunt (A, 0,3)
	merge cost (A, 4,7)
~	Compine (A, 0, 3,7)
¥-	SUB LABIN OF CUOL 2003 ACT
×	merge_solt (A, 0,3)
<u> </u>	megc_some citi ors
	0 1 2 3
<u>-</u>	80 40 50 20
×	
×	low mid high
~	merge sust CA,0,1)
*	
	Meye sunt (A,2,3) Combine (A,0,1,3)
>	Merge Cont (A,O,I)
<u></u>	
-	80 40
Y	www mid nigh
	

	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Merye-sort (A.O.O) > NO Processing
	merje rolt (A.1.1) To processing
	combine (A, 0,0,1)
	100 02 100 100 100 100 100 100 100 100 1
·=>	Combine (A, 0, 0, 1)
	K = 0
	$\ddot{i} = 0$ $(81,3,0)$ $=$
	j=4 Sansa
	Temp
	0 00 00 00 00 0 00 00 00 00
	80 40 40 80
->	Mense mot (A.2.3)
	merge sont (A,2,3)
	0 1 2 3
	75 5
	low mid high
1	monac list (A. 2.2) - No placessing
	1100 (300 (1) 2)
_	merge out (A,3,3) - no processing
	Combine (A, 2, 2, 3)
	120×1777
	EXTERNATION OF THE ADDRESS AND ASSESSMENT
-	The first of the second of the second

=) Combine (A, 4,8,5)	
Temp	
0 1 2 3 4 5 0 1 2 3 4 5	
to 30 1 30 70	
l mid j	
The state of the s	
=> merge sont (A, B, 7)	
	-
merge sont (A, 6,6) > NO Procession	
mergesont (A,7,7) - no p	
Sombine (A, 6, 6, 7)	
=> Combine (A, 6, 6, 78)	. *
7emp.	
10 60 10 60	
3 8 5 1 2	
menge 2011 (A, 6, 6, 7)	
=> merge-poor (A, 6,7)	*
	~ /
mergesont (A, 6, 6)	
10 (
	- state with

16. Write Algorithm and program of Merge sort.

Ans:

> Algorithm:

```
Step 1: if (low <high) then
mid =(low + high)/2
mergesort(a ,low ,mid)
mergesort(a, mid+1 ,high)
combine (a, low ,mid ,high)
```

Step 3: while (i
$$\leq$$
=mid && j \leq = high) do step 4

Step 4:
$$if(a[i] \le a[j])$$

 $temp [k] = a[i]$
 $i \leftarrow i+1$
 $k \leftarrow k+1$
 $else$
 $temp[k] = a[j]$
 $j \leftarrow j+1$
 $k \leftarrow k+1$

Step 6: temp
$$[k] = a[i]$$

 $i++$
 $k++$

Step 8: temp
$$[k] = a[j]$$

 $j++$
 $k++$

Step 9: for (x = low to high) do

```
a[x] = temp[x]
```

> Program:

```
#include<stdio.h>
   #include<conio.h>
   #define n 8
int A[n];
int Temp[n];
void Combine(int Low, int Mid, int High)
    int i,j,k,x;
    k=Low;
    i=Low;
    j=Mid+1;
    while (i \le Mid \&\& j \le High)
          if(A[i] \le A[j])
                Temp [k] = A[i];
                i++;
                k++;
          else
                Temp[k] = A[j];
                j++;
                k++;
          }
    }
    while( i <= Mid )
          Temp[k] = A[i];
          i++;
```

```
k++;
    }
    while(j <= High)</pre>
          Temp[k] = A[j];
          j++;
          k++;
    for(x = Low; x \le High; x++)
          A[x] = Temp[x];
void Merge_Sort(int Low,int High)
   int Mid;
   if(Low < High)
          Mid = (Low + High) / 2;
          Merge_Sort(Low, Mid);
          Merge_Sort(Mid + 1, High);
          Combine(Low, Mid, High);
    }
void main()
   int i;
   int Low, High;
   clrscr();
   for(i=0; i \le n-1; i++)
          printf("\n Enter A[%d] : ", i);
```

```
scanf("%d",&A[i]);
}
Low = 0;
High = n-1;
Merge_Sort(Low,High);
printf("\n\n ARRAY AFTER SORTING : \n\n");
for(i=0; i <= n-1; i++)
{
    printf(" A[%d] = %d \n\n", i, A[i]);
}
getch();
}</pre>
```

Gtu Question

- 1. Explain Sequential search method.
- 2. Explain Binary search method
- 3. Write an algorithm for Selection sort method. Explain each step with example.
- 4. Write an algorithm for Insertion sort method. Explain each step with example.
- 5. Write a 'C' program for insertion sort and discuss its efficiency.
- 6. Apply quicksort algorithm to sort the following data. Justify the steps. 42, 29, 74, 11, 65, 58