1 Lecture 2

Review:

Monotonicity: If $\alpha \models \beta$ then $\alpha \land \gamma \models \beta$.

Proof. Assume $\alpha \models \beta$, then $M(\alpha) \subseteq M(\beta)$. Then $M(\alpha \land \gamma) = M(\alpha) \cap M(\gamma) \subseteq M(\beta)$, so $\alpha \land \gamma \models \beta$.

Literal: $X, \neg X$

Clause: Disjunction of literals

Conjunctive Normal Form (CNF): A conjunction of clauses. $(X \lor Y) \land (\neg Y \lor Z)$

- 1. Remove all logical connectives but \neg, \land, \lor using equivalences. (i.e $\alpha \to \beta \equiv \neg \alpha \lor \beta$)
- 2. Push negations inward using De morgan's laws $(\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta)$ and $\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$ and double negation $(\neg(\neg\alpha) \equiv \alpha)$.
- 3. Distribute \vee over \wedge using distributive law $(\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma))$.

Example: $\Delta = (A \vee B) \Rightarrow C$

$$1.\Delta \equiv \neg(A \lor B) \lor C$$

$$2. \equiv (\neg A \land \neg B) \lor C$$

$$3. \equiv (\neg A \lor C) \land (\neg B \lor C)$$

Clausal form is as follows, you represent $(\neg A \lor C) \land (\neg B \lor C)$ as the set of clauses $\{\{\neg A, C\}, \{\neg B, C\}\}.$

If α is true at world ω , then β is true at world ω . Is equivalent to $\omega \models \alpha \Rightarrow \omega \models \beta$.

1.1 Quantified Boolean Logic

1.1.1 Logical Operators

Conditioning (Restriction):

Given a sentence Δ and variable P, condition $\Delta|P$ is the result of replacing every occurrence of P in Δ with true and every occurrence of $\neg P$ in Δ with false.

Example:
$$\Delta = A \vee \neg B \vee C \vee \neg D$$

$$\Delta|B = A \lor C \lor \neg D$$

$$\Delta | B = A \vee B \vee \neg D$$

$$\Delta | \neg B = A \lor \text{true} \lor C \lor \neg D$$

This is referred to Boole's expansion / Shannon's expansion: $\Delta = P \wedge (\Delta | P) \vee \neg P \wedge (\Delta | \neg P)$

$$\Delta = (A \lor B \lor \neg C) \land (\neg A \lor D) \land (B \lor C \lor D)$$

$$\Delta|C = (A \vee B \vee \text{false}) \wedge (\neg A \vee D) \wedge (B \vee \text{true})$$

$$\Delta | C = \{ \{A, B\}, \{ \neg A, D \} \}$$

$$\Delta|A,B,C,D=\{\}$$
 Means True

$$\Delta | A, \neg B, C, D = \{ \{ \} \}$$
 Means False

Empty Clause Means contradiction where empty set means True.

Existential Quantification: \exists

 $\exists P \cdot \Delta = \Delta | P \vee \Delta | \neg P$ We have existentially quantified variable P out of Δ .

$$\Delta = (A \Rightarrow B) \land (B \Rightarrow C)$$

$$\Delta = (\neg A \lor B) \land (\neg B \lor C)$$

$$\Delta | B = C$$

$$\Delta | \neg B = \neg A$$

$$\exists B \cdot \Delta = C \vee \neg A$$

Forgetting operator / Existential Operator: You are getting rid of a variable while still containing all of the information about the other variables.

If α is a sentence that does not mention the variable P, then $\Delta \models \alpha$ iff $\exists P \cdot \Delta \models \alpha$.

Say we have a KB with 1000 variables and we only care about the output based on 10 of them. Then we can existentially quantify out the other 990 variables to get a smaller KB that only mentions the 10 variables we care about.

Universal Quantification: $\forall P \cdot \Delta = \Delta | P \wedge \Delta | \neg P$ We have universally quantified variable P out of Δ .

$$\exists P \cdot \Delta \models \alpha = \neg(\Delta \models \forall P \cdot \alpha)$$

2 Resolution

Resolution is referred to as an inference rule, or a rule for deduction. Modeus Ponens is a inference rule that says the following:

$$\Delta = \{..., \alpha, ..., \alpha \Rightarrow \beta\} \tag{1}$$

$$\frac{\alpha, \alpha \Rightarrow \beta}{\beta} \tag{2}$$

For resolution, input must be a CNF.

$$\frac{\alpha \vee X, \beta \vee \neg X}{\alpha \vee \beta}$$

Denominator is a resolvent and we say we resolved on variable X.

$$\Delta = (P \Rightarrow R) \land (Q \Rightarrow R) \land (\neg R) \land (P \lor Q)$$

- 1. $\{\neg P, R\}$
- 2. $\{\neg Q, R\}$
- 3. $\{\neg R\}$
- 4. $\{P, Q\}$
- 5. $\{\neg Q\}$ resolve 2 and 3. Unit resolution step
- 6. $\{P\}$ resolve 3 and 5. Unit resolution step
- 7. $\{R\}$ resolve 1 and 4. Unit resolution step
- 8. $\{\}$ resolve 6 and 7. Contradiction found.

If resolution is applied to a CNF then it is capable of discoverying a contradiction if one exists.

Refutation Theorem: $\Delta \models \alpha$ iff $\Delta \land \neg \alpha$ is inconsistent. Resolution is refutation complete. (When applied to CNF)

$$\Delta = (A \lor B \Rightarrow C) \land (C \Rightarrow D)$$

$$\alpha = \neg D \Rightarrow \neg A$$

$$1.\{\neg A, C\}$$

$$2.\{\neg B, C\}$$

$$3.\{\neg C, D\}$$

$$4.\{D, A\}$$

$$5.\{\neg D\}$$

$$6.\{\neg A, C\} resolve 3 and 5.$$

$$7.\{\neg B, C\} resolve 6 and 4.$$

$$9.\{C\} resolve 7 and 4.$$

$$10.\{\} resolve 8 and 2.$$