1 Measurements & Parameter Extraction

1.1 Line Width/Misalignment

1.1.1 Measured line widths

Nominal	ACTV	POLY	CONT	METAL
Linewidth	(dark field)	(clear field)	(dark field)	(clear field)
$2\mu\mathrm{m}$	3	4	1.869	2.520

1.1.2 Misalignment

1.2 Four-Point Resistors [2a, 2b]

1.2.1 Measurement Setup

Figure 1: Device 2a is a diffusion resistor and 2b is a poly resistor.

1.2.2 I-V plot for the diffusion resistor, 2a

Figure 2: A plot of the measurement data taken for resistor 2a. The plot is based off of 2 data points.

From the plot above we can calculate our resistance. Note that the slope of the above plot will be equal to 1/R. Since I = V/R, where I is our dependent variable (y axis) and V is our independent variable (X axis). A resistance of $R = 17 \Omega$ was calculated. Our width and length values are $10 \mu m$ and $200 \mu m$. However our final $2 \mu m$ line was $2.520 \mu m$ which means that we had a underetch of about 26%. This means that

$$R_s = \frac{W}{L}R_{\text{diff}} = \frac{10(1.26)}{200}17 = 1.07\,\Omega$$

From the previous lab report we have a junction depth of $1 \mu m$. This means that our Resistivity is $\rho = R_s x_j = 1.07 \times 10^{-4}$ Ω -cm. Using the Irvin curves in Jaeger [1], we can estimate the surface concentration $N_0 \approx 10^{21}$. Now the mobility can be calculated using a table of values from Appendix xx.

$$\mu_e = \mu_{\min} + \frac{\mu_0}{1 + (N/N_{\text{ref}})^{\alpha}} = 92 + \frac{1268}{1 + (10^{21}/1.3 \times 10^{17})^{0.91}} = 92.4 \,\text{cm}^2/V - s$$

1.2.3 I-V plot for the poly resistor, 2b

Figure 3: A plot of the measurement data taken for resistor 2b. The plot is based off of 2 data points.

From the plot above we calculate a 1/slope value of 15. Hense $R = 15 \Omega$. This means that

$$R_s = \frac{W}{L}R_{\text{poly}} = \frac{10(1.26)}{200}15 = 0.945\,\Omega$$

Our Resistivity is then $\rho = R_s t_{\text{poly}}$ where t_{poly} is the polysilicon thickness which is 0.4 μm , Hense $\rho = 0.378 \,\Omega$ - μm .

1.3 Four-Point Contact Resistor [17a, 17b]

1.3.1 Measurement Setup

Figure 4: Measurement setup for 17a poly contact resistor. The same setup is used for the diffusion contact resistor, 17b.

1.3.2 I-V plot for 17a, poly reisistor

Figure 5: A plot of the measurement data taken for resistor 17a.

From the above plot we calculated a resistance of $R=8.54\Omega$. Note that the slope above gives us 1/R so we need to take the inverse to find the resistance.

1.3.3 I-V plot for 17b, diffusion resistor

Figure 6: A plot of the measurement data taken for resistor 17b.

Similarly, from the above plot we calculated a resistance of $R = 1.46\Omega$.

1.4 Four-Point Contact-Chain Resistor [2c, 2d]

1.4.1 Measurement Setup

Figure 7: Chain resistor setup for diffusion and poly resistors.

1.4.2 b. I-V plot for diffusion resistor, 2c

Figure 8: A plot of the measurement data taken for resistor 2c. The plot is based off of 2 data points.

The resistance calculated from the graph here is $R = 91.2\Omega$. Using sheet resistance from 2a/b and the total resistance from the slope above, we can solve for the contact resistance

$$R_{\rm total~diff} = 7(\eta R_{\rm S~diff} + R_{\rm C~diff}) \Rightarrow R_{\rm C~diff} = \frac{1}{7} R_{\rm total~diff} - \eta R_{\rm S~diff} = \frac{1}{7} (91.2\Omega) - 2.3(1.07\Omega) = 10.6\Omega$$

.4.3 b. I-V plot for poly resistor, 2d

Figure 9: A plot of the measurement data taken for resistor 2d. The plot is based off of 2 data points.

The resistance calculated from the graph here is $R = 370\Omega$. Using sheet resistance from 2a/b and the total resistance from the slope above, we can solve for the contact resistance

$$R_{\rm total~poly} = 7(\eta R_{\rm S~poly} + R_{\rm C~poly}) \Rightarrow R_{\rm C~poly} = \frac{1}{7} R_{\rm total~poly} - \eta R_{\rm S~poly} = \frac{1}{7} (370\Omega) - 2.3(0.945\Omega) = 50.7\Omega$$

1.5 Gate Oxide Capacitor, 4

1.5.1 Measurement Setup

Stage connector set to GND

V sweep, -10 to 10 V, step 0.2 V, oscillation 0.02Hz, integration medium

Figure 10: Gate capacitor setup.

1.5.2 C-V plot of gate oxide capacitor w/ lights ON

Figure 11: A plot of the measurement data taken for the gate capacitor, 4. Lights on.

The minimum capacitance from the plot above is 7.48 pF. The accumulation region capacitance at about 5 V is 15.7 pF. The active area is 200 μm by 200 μm while the pad+ring area is 240 μm by 335 μm . Also note the gate oxide thickness calculated below for the field oxide capacitors is 1.15 μm .

$$C_{\rm measured} = A_{\rm active} \frac{\epsilon_{\rm ox}}{t_{\rm gox}} + A_{\rm pad\text{-}ring} \frac{\epsilon_{\rm ox}}{t_{\rm fox}}$$

$$t_{\rm gox} = [\frac{1}{A_{\rm active}}(\frac{C_{\rm measured}}{\epsilon_{\rm ox}} - \frac{A_{\rm pad\text{-}ring}}{t_{\rm fox}})]^{-1} = [\frac{1}{4\times10^{-8}}(\frac{15.7\times10^{-12}}{(3.9)8.85\times10^{-12}} - \frac{8.04\times10^{-8}}{1.15\times10^{-6}})]^{-1} = 0.104\,\mu{\rm m}$$

The capacitance per unit area in this case would be 15.7 pF / $(240\mu m \times 335\mu m)$. C/area = 1.95 pF/ μ m. Now in order to calculate the maximum depletion region we use an equation from lecture notes. Note the max and min capacitance we calculated earlier,

$$\frac{1}{C_{\min}} = \frac{1}{C_{\max}} + \frac{1}{A_{\text{pad-ring}}C_{\text{Dmin}}}, \text{ where } C_{\text{Dmin}} = \frac{\epsilon_{\text{si}}}{x_{\text{dmax}}}$$
(1)

Solving for the maximum depletion region we get,

$$x_{\rm dmax} = A_{\rm pad\text{-}ring} \epsilon_{\rm si} (\frac{1}{C_{\rm min}} - \frac{1}{C_{\rm max}}) = (8.04 \times 10^{-8}) (11.7 \times 8.85 \times 10^{-12}) (\frac{1}{7.48 \times 10^{-12}} - \frac{1}{15.7 \times 10^{-12}}) = 0.583 \mu m$$

Another equation from lecture will help us solve for the substrate doping concentration,

$$x_d = \sqrt{\frac{2\epsilon_{\rm si}}{q} \frac{1}{N_A} |\psi_s|} \tag{2}$$

where ψ_s is the potential drop and has a typical value of 0.3, q is the charge of an electron 1.602×10⁻¹⁹ C, and N_A is the doping concentration.

$$N_A = \frac{2\epsilon_{\rm si}|\psi_s|}{qx_d^2} = \frac{2(11.7 \times 8.85 \times 10^{-12})(0.3)}{1.602 \times 10^{-19}(0.583 \times 10^{-6})^2} = 1.14 \times 10^{21} \,\rm cm^{-3}$$

From the curve above (Figure 11) we can see that the flatband voltage is $V_{FB} \approx 5.5$ and the corresponding $C_{FB} \approx 15.5 \text{pF}$. To find the charge per unit area at the oxide silicon interface we can use the Q = CV equation.

$$\frac{Q_{ss}}{A} = \frac{C_{FB}V_{FB}}{A_{\text{pad-ring}}} = \frac{(5.5)(15.5 \times 10^{-12})}{8.04 \times 10^{-8}} = 1.06 \,\text{mF/m}^2$$

To calculate the threshold voltage we will assume that $V_{SB} = 0$. First we must also calculate Q_{BO} which is the charge stored in the depletion region,

$$Q_{BO} = \sqrt{2q\epsilon_{si}N_B 2\phi_F} = \sqrt{2(1.602 \times 10^{-19})(11.7 \times 8.85 \times 10^{-12})(1.14 \times 10^{21})(2 \times 0.3)} = 1.51 \times 10^{-4} \, \text{C/m}^2$$

Now to calculate/estimate threshold voltage. Note that the work function ϕ_{ms} is zero for n+ doped poly gate.

$$V_t = \phi_{ms} - 2\phi_f - \frac{Q_{ss}}{C_{\max}} - \frac{Q_{BO}}{C_{\max}} = 0 - 0.6 - \frac{2.06 \times 10^{-3}}{15.7 \times 10^{-15}} - \frac{1.51 \times 10^{-4}}{15.7 \times 10^{-15}} = -1.41 \times 10^{11} V_{max}$$

1.5.3 C-V plot of gate oxide capacitor w/ lights OFF

Figure 12: A plot of the measurement data taken for the gate capacitor, 4. Lights off.

minimum capacitance ...

1.6 Field Oxide Capacitor, 3

1.6.1 Measurement Setup

Stage connector set to GND

V sweep, -5 to 5 V, step 0.2 V, oscillation 0.02Hz, integration medium

Figure 13: Field oxide capacitor setup.

1.6.2 C-V plot of field oxide capacitor

Figure 14: A plot of the measurement data taken for the field oxide capacitor, 3

From the plot above we see that at the accumulation region of ≈ 10 volts we have a corresponding capacitance of $C \approx 1.2 \mathrm{pF}$. Noting that the area of the capacitor plate is 200 μm by 200 μm , we can now solve for the dieletric (oxide) thickness.

$$C = \frac{A\epsilon_{\rm ox}}{t_{\rm fox}} \Rightarrow t_{\rm fox} = \frac{3.9A\epsilon_0}{C} = \frac{3.9(4\times 10^{-8})(8.85\times 10^{-12})}{1.2\times 10^{-12}} = 1.15\,\mu{\rm m}$$

1.7 Intermediate Oxide Capacitors, 5

1.7.1 Measurement Setup

V sweep, -5 to 0 V, step 0.2 V, oscillation 0.02Hz, integration medium

Figure 15: Intermediate oxide capacitor setup.

1.7.2 C-V plot of intermediate oxide capacitor

Figure 16: A plot of the measurement data taken for the Intermediate oxide, 5

The capacitance at the accumulation region of ≈ 5 V is about 3.0725 pF.

1.8 Diode, 7

1.8.1 Measurement setups for forward and reverse operations

Figure 17: Two tests were performed on this diode; both measurement setups are shown above.

1.8.2 I-V plots for forward and reverse operation

Figure 18: Plots of forward and reverse operation of Diode 7.

1.8.3 Extract the turn-on voltage and the series resistance

1.9 MOSFETs of Varying Length, [8a-d]

1.9.1 Measurement setups

Figure 19: Measurement setup for Mosfet 8a. The same setup is used for Mosfets 8a-d. The only difference is the channel length which changes from 4 (8a) to 6 (8b) to 8 (8c) to 10 (8d) microns.

1.9.2 Plots of I_D - V_D , sweeping V_G

Figure 20: Test 1 for Mosfet 8a

Figure 21: Test 1 for Mosfet 8b

Figure 22: Test 1 for Mosfet $8\mathrm{c}$

Figure 23: Test 1 for Mosfet 8d

1.9.3 Plots of I_D - V_G , sweeping V_B

Figure 24: Test 2 for Mosfet 8a

Calculate stuff here...

Figure 25: Test 2 for Mosfet 8b

Figure 26: Test 2 for Mosfet 8c

Figure 27: Test 2 for Mosfet 8d

1.10 MOSFETs of varying width [9a-c]

1.10.1 Measurement setup

Figure 28: Measurement setup for Mosfet 9a. The same setup is used for Mosfets 9a-c. The only difference is the channel widths which changes from 10 (9a) to 15 (9b) to 20 (9c) microns.

1.10.2 Plots of I_D - V_D , sweeping V_G

Figure 29: Test 1 for Mosfet 9a

Figure 30: Test 1 for Mosfet 9b

Figure 31: Test 1 for Mosfet 9c

1.10.3 Plots of I_D - V_G , sweeping V_B

Figure 32: Test 2 for Mosfet 9a

Calculate stuff here...

Figure 33: Test 2 for Mosfet 9b

Figure 34: Test 2 for Mosfet 9c

1.11 Large MOSFET, 10

1.11.1 Measurement setup

Figure 35: Measurement setup for Mosfet 10. This mosfet has very large dimensions compared to others.

1.11.2 Plots of I_D - V_D , sweeping V_G

Figure 36: Test 1 for Mosfet 10

Calculate stuff here...

1.11.3 Plots of I_D - V_G , sweeping V_B

Figure 37: Test 2 for Mosfet 10

1.12 Inverter, 14

1.12.1 Measurement setup

Figure 38: Setup for the inverter. Note that the source is connected to a GND and not the stage connector.

1.12.2 b. $V_{in} - V_{out}$ plot

Figure 39: Plot for Inverter. Note both axis are in units of Volts.

1.12.3 Estimate V_M

calculations here....

2 Theoretical Calculations

2.1 Measured Physical Dimensions and Parameters

Parameter	Measured Value	
Field t_{ox}	477.2 nm	
Gate t_{ox}	86.5 nm	
Intermediate t_{ox}	320 nm	
X_j	1000 nm	
$X_{j,\text{lateral}}$	880 nm	
N_D	$10^{21}\mathrm{cm}^{-3}$	

2.2 Resistors [2a,2b]

2.3 Contact Resistances [17a,17b]

From jaeger Figure 7.6 [1] we that the specific contact resistivity $10^{-2} \mu\Omega$ -cm². The contact area of resistors 17a and 17b is $5\mu m$ by $5\mu m$. This means the theoretical contact resistance for our contact resistors is

$$R_c = \frac{\rho_c}{A} = \frac{10^{-2}\mu\Omega - \text{cm}^2}{25\mu m} = \frac{10}{25} = 0.4\Omega$$

2.4 Contact-Chain Resistors [2c, 2d]

2.4.1 Diffusion chain resistor, 2c

 R_c is the contact resistance calculated earlier and R_s is the sheet resistance calculate for the diffused resistor. η is a geometrical constant that has a value of 2.3

$$R_{\text{total}} = 7(\eta R_s + R_c) = 7((2.3)(R_s) + (0.4)) = ?$$

2.4.2 Poly chain resistor, 2d

 R_c is the contact resistance calculated earlier and R_s is the sheet resistance calculate for the poly resistor. η is a geometrical constant that has a value of 2.3

$$R_{\text{total}} = 7(\eta R_s + R_c) = 7((2.3)(R_s) + (0.4)) = ?$$

- 2.5 Gate/Field Oxide Capacitors[3,4]
- 2.6 Diode
- 2.7 MOSFETs
- 2.7.1 MOSFETs of varying length [8] and width [9]
- 2.7.2 Large MOSFET
- 2.8 Inverter
- 3 Discussion
- 4 Optional Questions
- 5 Appendix
- 6 References
 - 1. Jaeger, Richard. Introduction to microelectronic fabrication. New Jersey: Prentice Hall, 2002. Print.