2

3

4

1

2

3

CLAIMS

What is claimed is:

1	1. A laser-programmable fuse structure for an integrated circuit device,
2	comprising:
3	a conductive layer, said conductive layer completing a conductive path
4	between wiring segments included in a wiring layer; and
5	an organic material encapsulated underneath said conductive layer;
6	wherein the fuse structure is blown open by application of a beam of laser
7	energy thereto.

- 2. The fuse structure of claim 1, further comprising:

 a liner material in electrical contact with said wiring segments and said conductive layer, said liner material further encapsulating said organic material between said wiring layer and said conductive layer.
- 3. The fuse structure of claim 1, wherein said organic material is selected from a group that includes a polyimide, a polyamide, a polyarlyene ether, a polyaromatic hydrocarbon (PAH), and a conductive polyaniline.
- 4. The fuse structure of claim 1, wherein said liner material is selected from a group that includes TaN, Ta, TiN, Ti, W, WN, TaSiN, TiSiN, or alloys therefrom.

2

1	5.	The fuse structure of claim 1, wherein said conductive layer is selected			
2	from a group that includes TaN, Ta, TiN, Ti, W, WN, TaSiN, TiSiN, or alloys therefrom.				
1	6.	The fuse structure of claim 2, further comprising:			
2		a pair of vias formed within an insulating layer and extending down to said			
3	wiring segments; and				
4		a mesa region of said insulating layer formed between said pair of vias;			
5		wherein said liner material is formed upon sides of said mesa region and			
6	said wiring segments.				
1	7.	The fuse structure of claim 6, wherein said pair of vias is filled with said			
2	organic material.				
1	8.	The fuse structure of claim 7, wherein said organic material further			
2	occupies an inner area of the fuse structure, said inner area between the top of said mesa				
3	region and sa	aid conductive layer.			

inner area and said organic material, thereby completing said conductive path.

The fuse structure of claim 8, wherein said conductive layer covers said

9.

1	10.	A method for forming a laser-programmable fuse structure for an			
2	integrated circuit device, the method comprising:				
3		forming a conductive layer to complete a conductive path between wiring			
4	segments included in a wiring layer; and				
5		encapsulating an organic material underneath said conductive layer;			
6	•	wherein the fuse structure is blown open by application of a beam of laser			
7	energy thereto.				
1	11.	The method of claim 10, further comprising:			
1	11.	•			
2		forming a liner material in electrical contact with said wiring segments and			
3	said conductive layer, said liner material further encapsulating said organic material				
4	between said	wiring layer and said conductive layer.			
1	12.	The method of claim 10, wherein said organic material is selected from a			
2	group that includes a polyimide, a polyamide, a polyarlyene ether, a polyaromatic				
3	hydrocarbon (PAH), and a conductive polyaniline.				
		Till 1 C 1 10 ob with a id live a material in calcated from a			
1	13.	The method of claim 10, wherein said liner material is selected from a			
2	group that inc	cludes TaN, Ta, TiN, Ti, W, WN, TaSiN, TiSiN, or alloys therefrom.			
1	14.	The method of claim 10, wherein said conductive layer is selected from a			

group that includes TaN, Ta, TiN, Ti, W, WN, TaSiN, TiSiN, or alloys therefrom.

1	15.	The method of claim 11, further comprising:				
2		forming a pair of vias within an insulating layer, said vias extending down				
3	to said wiring	to said wiring segments; and				
4		a mesa region of said insulating layer thereby being formed between said				
5	pair of vias;					
6		wherein said liner material is formed upon sides of said mesa region and				
7	said wiring so	aid wiring segments.				
1	16.	The method of claim 15, further comprising filling said pair of vias with				
2	said organic	said organic material.				
1	17.	The method of claim 16, wherein said organic material further occupies ar				
2	inner area of	nner area of the fuse structure, said inner area between the top of said mesa region and				
3	said conducti	ve layer.				
1	18.	A laser-programmable fuse structure for an integrated circuit device,				
2	comprising:					
3		an electrically conductive organic material, said electrically conductive				
4	organic mate	organic material completing a conductive path between wiring segments included in a				
5	wiring layer;	wiring layer; and				
6		said electrically conductive organic material further filling a pair of vias				
7	formed withi	formed within an insulating layer, said pair of vias extending down to said wiring				
8	segments;					
9		wherein the fuse structure is blown open by application of a beam of laser				
10	energy to said	d electrically conductive organic material.				