TDT4136 Introduction to Artificial Intelligence Assignment Lecture: Propositional Logic

Håkon Måløy

Norwegian University of Science and Technology

Propositional Logic is a declarative language that deals with propositions.

A proposition is a declarative statement that is either True or False

- A proposition is a declarative statement that is either True or False
- Propositional Logic contains:

- A proposition is a declarative statement that is either True or False
- Propositional Logic contains:
 - Atomic Sentences: Single propositional symbols.

- A proposition is a declarative statement that is either True or False
- Propositional Logic contains:
 - Atomic Sentences: Single propositional symbols.
 - Complex Sentences: Contstructed from simple sentences combined with logical connectives.

- A proposition is a declarative statement that is either True or False
- Propositional Logic contains:
 - Atomic Sentences: Single propositional symbols.
 - Complex Sentences: Contstructed from simple sentences combined with logical connectives.
 - Rules of Entailment/Reasoning Patterns: modus ponens, and-elimination etc.

- A proposition is a declarative statement that is either True or False
- Propositional Logic contains:
 - Atomic Sentences: Single propositional symbols.
 - Complex Sentences: Contstructed from simple sentences combined with logical connectives.
 - Rules of Entailment/Reasoning Patterns: modus ponens, and-elimination etc.
 - Semantics: Models and truth tables

We use logical connectives to form complex sentences in propositional logic. There are five connectives:

NOT: ¬

- NOT: ¬
- AND: ∧

- NOT: ¬
- AND: ∧
- OR: ∨

- NOT: ¬
- AND: ∧
- OR: ∨
- Implication: \Rightarrow or \rightarrow

- NOT: ¬
- AND: ∧
- OR: V
- Implication: \Rightarrow or \rightarrow
- Biconditional: \iff or \longleftrightarrow

Logical connectives have an ordering of precedence which allows us to use a lot less parentheses:

Logical connectives have an ordering of precedence which allows us to use a lot less parentheses:

Name	Operator	Precedence
NOT (Negation)	7	1
AND (Conjunction)		2
OR (Disjunction)	V	3
Implication	\Rightarrow	4
Biconditional	\iff	5

We have the following truth table for the simple logical connectives:

We have the following truth table for the simple logical connectives:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \iff Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Logical entailment is the idea that a sentence *follows logically* from another sentence.

Logical entailment is the idea that a sentence *follows logically* from another sentence.

We write this as: $\alpha \models \beta$, meaning that α entails β .

Logical entailment is the idea that a sentence *follows logically* from another sentence.

We write this as: $\alpha \models \beta$, meaning that α entails β .

 $\alpha \models \beta$ iff $M(\alpha) \subseteq M(\beta)$, meaning α entails β if and only if, in every model in which α is true, β is also true.

Entailment Example:

Two sentences are logically equivalent (\equiv) iff they are true in the same models:

Two sentences are logically equivalent (\equiv) iff they are true in the same models:

$$\alpha \equiv \beta$$
 iff $\alpha \models \beta$ and $\beta \models \alpha$

Two sentences are logically equivalent (\equiv) iff they are true in the same models:

$$\alpha \equiv \beta$$
 iff $\alpha \models \beta$ and $\beta \models \alpha$

Equivalence	Name
<u> </u>	
$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$	commutativity of ∧
$(\alpha \vee \beta) \equiv (\beta \vee \alpha)$	commutativity of ∨
$((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma))$	associativity of ∧
$((\alpha \land \beta) \lor \gamma) \equiv (\alpha \lor (\beta \land \gamma))$	associativity of ∨
$\neg(\neg \alpha) \equiv \alpha$	double-negation elimination
$(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$	contraposition
$(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$	implication elimination
$(\alpha \iff \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$	biconditional elimination
$\neg(\alpha \land \beta) \equiv (\neg\alpha \lor \neg\beta)$	De Morgan
$\neg(\alpha \lor \beta) \equiv (\neg\alpha \land \neg\beta)$	De Morgan
$(\alpha \land (\beta \lor \gamma)) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma)$	distributivity of ∧ over ∨
$(\alpha \vee (\beta \wedge \gamma)) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$	distributivity of \lor over \land

Validity and Satisfiability

Validity and Satisfiability

A Sentence is valid if it is true in <u>all</u> models. A valid sentence is also a tautology.

Validity and Satisfiability

A Sentence is valid if it is true in <u>all</u> models. A valid sentence is also a tautology.

A sentence is satisfiable if it is true in some model. That is, if there exists a model where the sentence is true, it is satisifiable.

Conjunctive Normal Form

Conjunctive Normal Form

A sentences that is expressed as a conjunction of clauses (disjunction of literals) is said to be in conjunctive normal form (CNF).

Conjunctive Normal Form

A sentences that is expressed as a conjunction of clauses (disjunction of literals) is said to be in conjunctive normal form (CNF).

We can express any sentence in Propositional Logic in CNF

To express a sentence $B_{1,1} \iff (P_{1,2} \vee P_{2,1})$ in CNF we:

• Eliminate \iff , replacing $\alpha \iff \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$: $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$

- Eliminate \iff , replacing $\alpha \iff \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$: $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$

- Eliminate \iff , replacing $\alpha \iff \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$: $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- CNF requires ¬ to appear only in literals, so we move ¬ inwards by repeated application the following equivalences:

- Eliminate \iff , replacing $\alpha \iff \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$: $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- CNF requires ¬ to appear only in literals, so we move ¬ inwards by repeated application the following equivalences:
 - $\neg(\neg \alpha) \equiv \alpha$ Double negation elimination

- Eliminate \iff , replacing $\alpha \iff \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$: $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- CNF requires ¬ to appear only in literals, so we move ¬ inwards by repeated application the following equivalences:
 - $\neg(\neg \alpha) \equiv \alpha$ Double negation elimination
 - $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ De Morgan

- Eliminate \iff , replacing $\alpha \iff \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$: $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- CNF requires ¬ to appear only in literals, so we move ¬ inwards by repeated application the following equivalences:
 - $\neg(\neg \alpha) \equiv \alpha$ Double negation elimination
 - $-\neg(\alpha\wedge\beta)\equiv(\neg\alpha\vee\neg\beta)$ De Morgan
 - $-\neg(\alpha\vee\beta)\equiv(\neg\alpha\wedge\neg\beta)$ De Morgan

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,2}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

To express a sentence $B_{1,1} \iff (P_{1,2} \vee P_{2,1})$ in CNF we:

- Eliminate \iff , replacing $\alpha \iff \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$: $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- CNF requires ¬ to appear only in literals, so we move ¬ inwards by repeated application the following equivalences:
 - $\neg(\neg \alpha) \equiv \alpha$ Double negation elimination
 - $-\neg(\alpha\wedge\beta)\equiv(\neg\alpha\vee\neg\beta)$ De Morgan
 - $-\neg(\alpha\vee\beta)\equiv(\neg\alpha\wedge\neg\beta)$ De Morgan

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,2}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

• Finally we distribute \vee over \wedge wherever possible: $(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg P_{2,1} \vee B_{1,1})$

In Logic, inference is deriving new sentences from already known ones.

In Logic, inference is deriving new sentences from already known ones.

The notation of inference is similar to fractions, but have a different meaning:

In Logic, inference is deriving new sentences from already known ones.

The notation of inference is similar to fractions, but have a different meaning:

$$\frac{\alpha \Rightarrow \beta, \ \alpha}{\beta} \tag{1}$$

This inference rule notation means, whenever a sentences of the form $\alpha \Rightarrow \beta$ and α are given, then the sentence β can be inferred.

Resolution gives us a way to to proof by contradiction.

Resolution gives us a way to to proof by contradiction.

To show $KB \models \alpha$ we show that $KB \land \neg \alpha$ is not satisfiable.

Resolution gives us a way to to proof by contradiction.

To show $KB \models \alpha$ we show that $KB \land \neg \alpha$ is not satisfiable.

To do this, we apply resolution to $KB \land \neg \alpha$ in CNF.

Resolution gives us a way to to proof by contradiction.

To show $KB \models \alpha$ we show that $KB \land \neg \alpha$ is not satisfiable.

To do this, we apply resolution to $KB \wedge \neg \alpha$ in CNF.

The resolution algorithm takes two clauses and produces a new clause containing all the original literals except the two complementary literals. Then adds the new clauses to KB until:

Resolution gives us a way to to proof by contradiction.

To show $KB \models \alpha$ we show that $KB \land \neg \alpha$ is not satisfiable.

To do this, we apply resolution to $KB \land \neg \alpha$ in CNF.

The resolution algorithm takes two clauses and produces a new clause containing all the original literals except the two complementary literals. Then adds the new clauses to KB until:

- there are no new clauses to be added

Resolution gives us a way to to proof by contradiction.

To show $KB \models \alpha$ we show that $KB \land \neg \alpha$ is not satisfiable.

To do this, we apply resolution to $KB \land \neg \alpha$ in CNF.

The resolution algorithm takes two clauses and produces a new clause containing all the original literals except the two complementary literals. Then adds the new clauses to KB until:

- there are no new clauses to be added
- two clauses resolve to the empty class, meaning $\mathit{KB} \models \alpha$

Resolution gives us a way to to proof by contradiction.

To show $KB \models \alpha$ we show that $KB \land \neg \alpha$ is not satisfiable.

To do this, we apply resolution to $KB \land \neg \alpha$ in CNF.

The resolution algorithm takes two clauses and produces a new clause containing all the original literals except the two complementary literals.

Then adds the new clauses to KB until:

- there are no new clauses to be added
- two clauses resolve to the empty class, meaning $\mathit{KB} \models \alpha$

The resolution rule can be stated as such:

Resolution gives us a way to to proof by contradiction.

To show $KB \models \alpha$ we show that $KB \land \neg \alpha$ is not satisfiable.

To do this, we apply resolution to $KB \wedge \neg \alpha$ in CNF.

The resolution algorithm takes two clauses and produces a new clause containing all the original literals except the two complementary literals. Then adds the new clauses to KB until:

- there are no new clauses to be added
- two clauses resolve to the empty class, meaning $\mathit{KB} \models \alpha$

The resolution rule can be stated as such:

$$\frac{I_1 \vee ... I_k, \quad m_1 \vee ... \vee m_n}{I_1 \vee ... I_{i-1} \vee I_{i+1} \vee ... \vee I_k \vee m_1 \vee ... \vee m_{i-1} \vee m_{i+1} \vee ... \vee m_n},$$

where l_i and and m_i are complementary literals.

Resolution Algorithm

```
function PL-RESOLUTION(KB, α) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
            \alpha, the query, a sentence in propositional logic
  clauses ← the set of clauses in the CNF representation of KB \wedge \neg \alpha
  new \leftarrow \{\}
  loop do
       for each pair of clauses C<sub>i</sub>, C<sub>i</sub> in clauses do
            resolvents \leftarrow PL-RESOLVE(C_i, C_i)
            if resolvents contains the empty clause then return true
            new ← new U resolvents
       if new ⊆ clauses then return false
       clauses ← clauses ∪ new
```

Resolution Example

Let the agent be in [1, 1], there is no breeze, so no pits can be there. We want to prove that there is no pit in [1, 2]: $\alpha = \neg P_{1,2}$

$$KB = (B_{1,1} \iff (P_{1,2} \vee P_{2,1})) \wedge \neg B_{1,1}$$

CNF:
$$KB \land \neg \alpha = (\neg P_{2.1} \lor B_{1.1}) \land (\neg B_{1.1} \lor P_{1.2} \lor P_{2.1}) \land (\neg P_{1.2} \lor B_{1.1}) \land (\neg B_{1.1}) \land (P_{1.2})$$

