Running a DM Project

Jingpeng Li

© University of Stirling 2019

CSCU9T6 Information Systems

1 of 37

A Typical DM Project

- The client asks if you can use their data to build a system for predicting or classifying things in the future
- They say they have 'plenty' of data and they send you a file
- The data is incomplete, unsuitable to the task and would lead to a poor result
- · The end

© University of Stirling 2019

CSCU9T6 Information Systems

Sometimes, However

The data is suitable in quality and quantity and the project proceeds as follows:

- You obtain a base line for performance
- You spend a lot of time preparing the data
- You use the data to train several different models to see which is most suitable
- You choose the technique that led to the best model and build several to verify the robustness of the model

© University of Stirling 2019

CSCU9T6 Information Systems

3 of 37

CRISP DM Standard

 CRoss Industry Standard Process for Data Mining

Data Preparation

- We have a whole lecture on this topic, but in summary:
- · Clean the data
 - Remove rows with missing values
 - Remove rows with obvious data entry errors –e.g. Age = 200
 - Recode obvious data entry inconsistencies –
 e.g. If Gender = M or F, but occasionally Male
 - Remove rows with minority values

© University of Stirling 2019

CSCU9T6 Information Systems

5 of 37

Data Quantity

- Choose the variables to be used for the model
- Look at the distributions of the chosen values
- Look at the level of noise in the data
- Decide whether or not there are sufficient examples in the data
- Treat unbalanced data

© University of Stirling 2019

CSCU9T6 Information Systems

Consider Error Costs

- Imagine a system that classifies input patterns into one of several possible categories
- Sometimes it will get things wrong, how often depends on the problem:
 - Direct mail targeting very often
 - Credit risk assessment quite often
 - Medical reasoning very infrequently

© University of Stirling 2019

CSCU9T6 Information Systems

7 of 37

Error Costs

- An error in one direction can cost more than an error in the opposite direction
 - Blood test
 - Recommending a blood test based on a false positive is better than missing an infection due to a false negative
 - Insurance fraud
 - Missing a case of insurance fraud is more costly than flagging a claim to be double checked

© University of Stirling 2019

CSCU9T6 Information Systems

Model Building

- Choose a number of techniques suitable to the task:
 - Neural network (MLP or RBF for prediction or classification)
 - Decision tree for classification
 - Rule induction for classification
 - Regression for prediction
 - Bayesian network for classification

© University of Stirling 2019

CSCU9T6 Information Systems

9 of 37

Train Models

- For each technique:
 - Run a series of experiments with different parameters, e.g. number of hidden units in a MLP
 - Each experiment should use around 70% of the data for training and the rest for testing
 - When a good solution is found, use cross validation (10 fold is a good choice) to verify the result

© University of Stirling 2019

CSCU9T6 Information Systems

Cross Validation

 Split the data into ten subsets, then train 10 models – each one using 9 of the 10 subsets as training data and the 10th as test. The score is the average of all 10.

 This is a more accurate representation of how well the data may be modelled, as it reduces the risk of getting a lucky test set

© University of Stirling 2019

CSCU9T6 Information Systems

11 of 37

Assess Models

- You can measure the success of your model in a number of ways
 - Mean Squared error not always meaningful
 - Percentage correct for classification
 - Confusion matrix for classification

n=220

Output=	True	False
True	80	30
False	20	90

© University of Stirling 2019

CSCU9T6 Information Systems

Probability Outputs

- Most classification techniques provide a score with the classification – either a probability or some other measure
- This can be used:
 - Allow an answer of "unsure" for cases where no single class has a high enough probability
 - Weighting outputs to allow for unequal cost of outcomes
 - Cumulative Gains charts and ROC curves

© University of Stirling 2019

CSCU9T6 Information Systems

13 of 37

Cumulative Gains Chart

- Let's say we want to identify prospects for a mailing campaign
- A model could score every prospect in a large set
- Sorting that set by score would place the best prospects at the top
- Imagine we mail them all and see who responds
- We should find that the top 1000 produces more responses that the last 1000 do

© University of Stirling 2019

CSCU9T6 Information Systems

Cumulative Gains Chart

- Splitting the data into same sized bands and counting the number of respondents (correct predictions) in each produces a diminishing set of counts
- Plotting the cumulative total of these counts produces what is known as a lift curve

© University of Stirling 2019

CSCU9T6 Information Systems

15 of 37

Lift Curve

 The lift curve below shows the return you would get if you mailed at random in black and the lift curve after modelling in red

http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html

ROC Curves

- With a two-class problem, you might set the threshold probability at 0.5
- If the probability of rain is 0.8 and the probability of it being dry is 0.2, you would, if forced to make a prediction, say it will rain
- If you want to be optimistic, you could set the threshold at 0.7 for rain, so you need to be more certain before you will predict rain

© University of Stirling 2019

CSCU9T6 Information Systems

17 of 37

ROC Curves

- An ROC curve (Receiver Operating Characteristic) is similar to a lift curve
- It tells you how many false positives and true positives you would get for each possible threshold
- The threshold for a positive is varied from 0 to 1 and the number of true positives and false positives counted for each

© University of Stirling 2019

CSCU9T6 Information Systems

ROC Curves

- The idea is to optimise the trade-off between finding as many of the positives as possible, while wrongly including as few negatives as possible
- Every additional decision with a lower confidence (probability) is a move towards randomness
- You could get all the positives by saying "yes" to everything, but you would include all the negatives too, so the top RHS of the ROC curve is 100%, 100%

© University of Stirling 2019

CSCU9T6 Information Systems

19 of 37

An ROC Curve

 The ROC curve below shows that the more of the positives we identify, the more false positives creep in

Example

- A client of mine sells predictions to the record industry on how well new singles will do
- I built them a 'Hit Classifier' which classes a song as a Hit or a Miss
- The cost of not releasing a hit is low the record company forgets those
- The cost of releasing a miss is high the song flops, everyone looks bad

© University of Stirling 2019

CSCU9T6 Information Systems

21 of 37

Example

- The company wants to flag as many hits as it can (it can't sell a long list of misses!) without any false positives (saying Hit when it turns out to be a miss)
- We want to find the highest Hit threshold that excludes false positives
- The ROC curve tells us where this is

© University of Stirling 2019

CSCU9T6 Information Systems

Implementing the System

- Once the predictor is built and tested,
- The thresholds for classifications are set
- And the client is happy with the level of performance,
- You need to make the predictions available as part of their business process

© University of Stirling 2019

CSCU9T6 Information Systems

23 of 37

Embedding DM

- This could be a predictor behind a web site or a call centre, or any other 'customer facing part of a business', choosing offers specific to each customer
- It could be a desktop software package that a business analyst uses for planning
- It could be on a chip, built into a consumer product – washing machines, cars, microwave ovens all have them

© University of Stirling 2019

CSCU9T6 Information Systems

Summary

- Collect, check and process data
- Choose several techniques. For each:
 - Choose several different parameter sets
 - Use 10 fold validation to build models
 - Choose 1 model to use
 - Plot errors and ROC curves
- Pick the best model or use a combination of several
- Embed in a live system

© University of Stirling 2019

CSCU9T6 Information Systems

25 of 37

Commercial Data Mining

Opportunities and Challenges

© University of Stirling 2019

CSCU9T6 Information Systems

Contents

- DM What makes it so great?
- If DM is so great, why is it not ubiquitous?
 - Technical reasons
 - Cultural reasons
 - Conceptual reasons
- Commercialising DM

© University of Stirling 2019

CSCU9T6 Information Systems

27 of 37

Traditional Software Projects

- Selling, specifying, developing and delivering a traditional software system:
 - Specification describes exactly what it will do
 - Result can be measured against spec
 - Payment can be demanded when it is shown to be complete

© University of Stirling 2019

CSCU9T6 Information Systems

Data Driven Projects

- Specification can only say what the system will try to do
- Data quality might prevent it from working
- Who takes the risk? Will the client still have to pay if it doesn't work?
- What level of accuracy is expected?
- Speculatively building solutions is risky

© University of Stirling 2019

CSCU9T6 Information Systems

29 of 37

Barriers to Uptake Technical

- Lack of data
 - Insufficient quantity
 - Data unavailable when required
- Data does not contain the information required to support the task
- Specifying a project that relies on data for both its definition and its operation
- Handling errors many techniques are probabilistic

© University of Stirling 2019

CSCU9T6 Information Systems

Barriers to Uptake Cultural

- · Explaining and selling the concept
- Proving the concept before seeing the data
- Replacing intelligent workers with 'intelligent' computers
- · Managing expectations

© University of Stirling 2019

CSCU9T6 Information Systems

31 of 37

Replacing Experts

- Industrialisation has made a lot of manual labour redundant
- Doing the same for human experts in cerebral jobs is a greater challenge
- They usually have more power in a company
- They would need to help you build the system that might replace them

© University of Stirling 2019

CSCU9T6 Information Systems

Example – Insurance Risk

- Underwriters are skilled at assessing risk and managing the exposure of an insurance company
- An intelligent computer system would have a good chance of out performing them
- Could you persuade an insurance company to trust the most crucial aspect of their business to a computer system they can't understand?
- It would be easier to start your own insurance co.

© University of Stirling 2019

CSCU9T6 Information Systems

33 of 37

Selling a Solution

- DM solutions can be hard to sell because:
 - You can't be sure it will work until you have seen the data
 - You can't demonstrate it working at a sales pitch (not on their data, anyway)
 - You may need to sell the power of the technology in order to make the sale, but that can set expectations too high

© University of Stirling 2019

CSCU9T6 Information Systems

Barriers to Uptake Conceptual

- Computers can learn
- Computers can learn better than humans
- Computers can make mistakes based on what they have learned
- Concepts of data driven systems ...

© University of Stirling 2019

CSCU9T6 Information Systems

35 of 37

Concepts of data driven systems

- · Non-linearity, often in multiple dimensions
- · Confidence levels and errors
- · Generalisation and over fitting
- Data quality and quantity
- · Results dependent on data!!

© University of Stirling 2019

CSCU9T6 Information Systems