SEQUENCE LISTING

<110>	Cytos	Biotechnology	AG
-------	-------	---------------	----

<120> Polypeptides involved in cell-entry of the Adenoviruses of Subtype B

<130> C62115EP

<160> 21

<170> PatentIn version 3.1

<210> 1

<211> 1134

<212> DNA

<213> homo sapiens

<400> 1 atggageete eeggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca 300 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480 ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 540 tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 60 Ö 660 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 720 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780 840 tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt

ccaaagtgte ttaaagtgte gacttettee actacaaaat etecagegte eagtgeetea 900 ggteetagge ctaettacaa geeteeagte teaaattate eaggatatee taaacetgag 960 gaaggaatae ttgacagttt ggatgtttgg gteattgetg tgattgttat tgeeatagtt 1020 gttggagttg eagtaatttg tgttgteeeg tacagatate tteaaaggag gaagaagaaa 1080 ggeacatace taactgatga gacceacaga gaagtaaaat ttaetteete etga 1134

<210> 2

<211> 377

<212> PRT

<213> homo sapiens

<220>

<221> SIGNAL

<222> (1)..(34)

<223>

<220>

<221> MISC_FEATURE

<222> (35)..(328)

<223> Extracellular domain

<220>

<221> TRANSMEM

<222> (329)..(351)

<223>

<220>

<221> MISC_FEATURE

<222> (35)..(95)

<223> SCR-1 domain

<220>

<221> MISC_FEATURE

<222> (98)..(158)

<223> SCR-2 domain

<220>

<221> MISC_FEATURE

<222> (161)..(224)

<223> SCR-3 domain

<220>

<221> MISC_FEATURE

<222> (227)..(284)

<223> SCR-4 domain

<220>

<221> MISC_FRATURE

<222> (286)..(300)

<223> STP-B region

<220>

<221> MISC_FEATURE

<222> (301)..(314)

<223> STP-C region

<400> 2

Met Glu Pro Pro Gly Arg Arg Glu Cys Pro Phe Pro Ser Trp Arg Phe

Pro Gly Leu Leu Leu Ala Ala Met Val Leu Leu Tyr Ser Phe Ser 25

Asp Ala Cys Glu Glu Pro Pro Thr Phe Glu Ala Met Glu Leu Ile Gly

Lys Pro Lys Pro Tyr Tyr Glu Ile Gly Glu Arg Val Asp Tyr Lys Cys

Lys Cly Tyr Phe Tyr Ile Pro Pro Leu Ala Thr His Thr Ile Cys 70 75 80

Asp Arg Asn His Thr Trp Leu Pro Val Ser Asp Asp Ala Cys Tyr Arg 85 90 95

Glu Thr Cys Pro Tyr Ile Arg Asp Pro Leu Asn Gly Gln Ala Val Pro 100 105 110

Ala Asn Gly Thr Tyr Glu Phe Gly Tyr Gln Met His Phe Ile Cys Asn 115 120 125

Glu Gly Tyr Tyr Leu Ile Gly Glu Glu Ile Leu Tyr Cys Glu Leu Lys 130 135 140

Gly Ser Val Ala Ile Trp Ser Gly Lys Pro Pro Ile Cys Glu Lys Val 145 150 155 160

Leu Cys Thr Pro Pro Pro Lys Ile Lys Asn Gly Lys His Thr Phe Ser 165 170 175

Glu Val Glu Val Phe Glu Tyr Leu Asp Ala Val Thr Tyr Ser Cys Asp 180 185 190

Pro Ala Pro Gly Pro Asp Pro Phe Ser Leu Ile Gly Glu Ser Thr Ile 195 200 205

Tyr Cys Gly Asp Asn Ser Val Trp Ser Arg Ala Ala Pro Glu Cys Lys 210 215 220

Val Val Lys Cys Arg Phe Pro Val Val Glu Asn Gly Lys Gln Ile Ser 225 230 235

Gly Phe Gly Lys Lys Phe Tyr Tyr Lys Ala Thr Val Met Phe Glu Cys 245 250 255

Asp Lys Gly Phe Tyr Leu Asp Gly Ser Asp Thr Ile Val Cys Asp Ser 260 265 270

Asn Ser Thr Trp Asp Pro Pro Val Pro Lys Cys Leu Lys Val Ser Thr 275 280 285

Ser Ser Thr Thr Lys Ser Pro Ala Ser Ser Ala Ser Gly Pro Arg Pro 290 295 300

- 5 -

Thr 1	ľyr	ГÀЕ	Pro	Pro	Val 310	ser	Asn	Tyr	Pro	Gly 315	Tyr	Pro	Lys	Pro	Glu 320	
Glu G	3ly	Ile	Leu	Asp 325	Ser	Leu	ĄaĄ	Val	Trp 330	Val	Ile	Ala	Val	Ile 335	Val	
Ile A	Ala	Ile	Val 340	Val	Gly	Val.	Ala	Val 345	Ile	Суз	Val	Val	Pro 350	Tyr	Arg	
Tyr I	Leu	Gln 355	Arg	Arg	ГÀв	Lys	Lys 360	Gly	Thr	Tyr	Leu	Thr 365	Asp	Glu	Thr	
His A	Arg 370	Glu	Val	Lys	Phe	Thr 375	Ser	Leu								
<210:	> 3	1														
<211:	> 1	.5														
<212:	> I	PRT														
<213	> a	rtif	ficia	al se	equer	ıce										
<220:	>															
<223															nsert s of	ed befor CD46
<400	> 3	3														
Val I 1	Leu	Pro	Pro	Ser 5	Ser	Thr	ГÀв	Pro	Pro 10	Ala	Leu	Ser	His	Ser 15		
<210:	> 4	ļ														
<211:	> 1	110														
<212:	> I	And														
<213	> 1	omo	sap:	iens												
<400; atgga		_	cgg	ccgc	eg eg	gagt	gteed	e tti	tcctl	cct	ggc	gettt	caa f	tgggl	ttgct	t 60
ctgg	cggc	ca t	ggt	gttgo	ct go	tgta	actco	e tto	etce	gatg	cct	gtgag	gga g	gcca	ccaac	a 120
tttga	aago	ta t	ggag	gata	at to	ggta	aacca	a aaa	accci	act	atga	agatt	gg	tgaa	cgagt	a 180
gatta	ataa	ıgt g	gtaaa	aaaa	gg at	act	cctat	t ata	accto	cctc	ttg	caco	ca '	tacta	atttg	t 240
gatc	ggaa	itc a	ataca	atggo	ct ac	ctg	tata	a gat	tgac	gaat	gtta	ataga	iga a	aacat	tgtcc	a 300

tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt

360

-6-

tatcagatgc	actttatttg	taatgagggt	tattacttaa	ttggtgaaga	aattctatat	420
tgtgaactta	aaggatcagt	agcaatttgg	agcggtaagc	ccccaatatg	tgaaaaggtt	480
ttgtgtacac	cacctccaaa	aataaaaat	ggaaaacaca	cctttagtga	agtagaagta	540
tttgagtatc	ttgatgcagt	aacttatagt	tgtgatcctg	cacctggacc	agatccattt	600
tcacttattg	gagagagcac	gatttattgt	ggtgacaatt	cagtgtggag	tcgtgctgct	660
ccagagtgta	aagtggtcaa	atgtcgattt	ccagtagtcg	aaaatggaaa	acagatatca	720
ggatttggaa	aaaaatttta	ctacaaagca	acagttatgt	ttgaatgcga	taagggtttt	780
tacctcgatg	gcagcgacac	aattgtctgt	gacagtaaca	gtacttggga	tcccccagtt	840
ccaaagtgtc	ttaaaggtcc	taggcctact	tacaagcete	cagtctcaaa	ttatccagga	900
tatcctaaac	ctgaggaagg	aatacttgac	agtttggatg	tttgggtcat	tgctgtgatt	960
gttattgcca	tagttgttgg	agttgcagta	atttgtgttg	tcccgtacag	atatcttcaa	1020
					ccagactaaa	1080
	cagcagagca					1110

<210> 5

<211> 1089

<212> DNA

<213> homo sapiens

<400> 5 60 atggagecte eeggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gateggaate atacatgget acetgtetea gatgacgeet gttatagaga aacatgteea 300 360 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 480 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 540 ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 600 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 660 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720

-7-

ggatttggaa	aaaaatttta	ctacaaagca	acagttatgt	ttgaatgcga	taagggtttt	780
tacctcgatg	gcagcgacac	aattgtctgt	gacagtaaca	gtacttggga	teccccagtt	840
ccaaagtgtc	ttaaaggtcc	taggcctact	tacaagcctc	cagtetcaaa	ttatccagga	900
tatcctaaac	ctgaggaagg	aatacttgac	agtttggatg	tttgggtcat	tgctgtgatt	960
gttattgcca	tagttgttgg	agttgcagta	atttgtgttg	tecegtacag	atatcttcaa	1020
aggaggaaga	agaaaggcac	atacctaact	gatgagaccc	acagagaagt	aaaatttact	1080
tctctctga						1089

<210> б

<211> 1110

<212> DNA

<213> homo sapiens

<400> 6 atggageete eeggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gatoggaato atacatggot acotgtotea gatgacgoot gttatagaga aacatgtoca 300 tatatacggg atcotttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480 ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 540 tttgagtate ttgatgeagt aacttatagt tgtgateetg cacetggace agatecattt 600 tracttattg gagagagrar gatttattgt ggtgaraatt ragtgtggag trgtgrtgrt 660 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720 ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780 tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt 840 ccaaagtgtc ttaaaggtcc taggcctact tacaagcctc cagtctcaaa ttatccagga 900 tatectaaac etgaggaagg aataettgae agtttggatg tttgggteat tgetgtgatt 960 gttattgcca tagttgttgg agttgcagta atttgtgttg tcccgtacag atatcttcaa 1020 aggaggaaga agaaagggaa agcagatggt ggagctgaat atgccactta ccagactaaa 1080 tcaaccactc cagcagagca gagaggctga 1110

-8-

<210> 7 <211> 1110 <212> DNA

<213> homo sapiens

_						
<400> 7 atggagcctc	ccggccgccg	cgagtgtccc	tttccttcct	ggegetttee	tgggttgctt	60
ctggcggcca	tggtgttgct	gctgtactcc	ttctccgatg	cctgtgagga	gccaccaaca	120
tttgaagcta	tggageteat	tggtaaacca	aaaccctact	atgagattgg	tgaacgagta	180
gattataagt	gtaaaaaagg	atacttctat	atacctcctc	ttgccaccca	tactatttgt	240
gatcggaatc	atacatggct	acctgtctca	gatgacgcct	gttatagaga	aacatgtcca	300
tatatacggg	atcctttaaa	tggccaagca	gtccctgcaa	atgggactta	cgagtttggt	360
tatcagatgc	actttatttg	taatgagggt	tattacttaa	ttggtgaaga	aattctatat	420
tgtgaactta	aaggatcagt	agcaatttgg	agcggtaagc	ccccaatatg	tgaaaaggtt	480
ttgtgtacac	cacctccaaa	aataaaaaat	ggaaaacaca	cctttagtga	agtagaagta	540
tttgagtatc	ttgatgcagt	aacttatagt	tgtgatcctg	cacctggacc	agatccattt	600
tcacttattg	gagagagcac	gatttattgt	ggtgacaatt	cagtgtggag	tegtgetget	660
ccagagtgta	aagtggtcaa	atgtcgattt	ccagtagtcg	aaaatggaaa	acagatatca	720
ggatttggaa	aaaaatttta	ctacaaagca	acagttatgt	ttgaatgcga	taagggtttt	780
tacctcgatg	gcagcgacac	aattgtetgt	gacagtaaca	gtacttggga	tccccagtt	840
ccaaagtgtc	ttaaaggtcc	taggcctact	tacaagcctc	cagtotcaaa	ttatccagga	900
tatcctaaac	ctgaggaagg	aatacttgac	agtttggatg	tttgggtcat	tgctgtgatt	960
gttattgcca	tagttgttgg	agttgcagta	atttgtgttg	tecegtacag	atatcttcaa	1020
aggaggaage	agaaagggaa	. agcagatggt	ggagctgaat	atgccactta	ccagactaaa	1080
tcaaccacto	cagcagagca	gagaggctga	Ļ			1110

<210> 8

<211> 1134

<212> DNA

<213> homo sapiens

<400> 8

-9-

atg	gagecte	ccggccgccg	cgagtgtccc	tttccttcct	ggcgctttcc	tgggttgctt	60
ctg	geggeea	tggtgttgct	gctgtactcc	ttctccgatg	cctgtgagga	gccaccaaca	120
ttt	gaagcta	tggagctcat	tggtaaacca	aaaccctact	atgagattgg	tgaacgagta	180
gat	tataagt	gtaaaaaagg	atacttctat	atacctcctc	ttgccaccca	tactatttgt	240
gat	cggaatc	atacatggct	acctgtctca	gatgacgcct	gttatagaga	aacatgtcca	300
tat	atacggg	atcctttaaa	tggccaagca	gtccctgcaa	atgggactta	cgagtttggt	360
tat	cagatgc:	actttatttg	taatgagggt	tattacttaa	ttggtgaaga	aattctatat	420
tgt	gaactta	aaggatcagt	agcaatttgg	agcggtaagc	ccccaatatg	tgaaaaggtt	480
ttg	tgtacac	cacctccaaa	aataaaaaat	ggaaaacaca	cctttagtga	agtagaagta	540
ttt	gagtatc	ttgatgcagt	aacttatagt	tgtgatcctg	cacctggacc	agatccattt	600
tca	cttattg	gagagagcac	gatttattgt	ggtgacaatt	cagtgtggag	tegtgetget	660
cca	agagtgta	aagțggtcaa	atgtcgattt	ccagtagtcg	aaaatggaaa	acagatatca	720
gga	atttggaa	aaaaatttta	ctacaaagca	acagttatgt	ttgaatgcga	taagggtttt	780
tac	cctcgatg	gcagcgacac	aattgtctgt	gacagtaaca	gtacttggga	tcccccagtt	840
CC	aagtgtc	ttaaagtgtc	gacttcttcc	actacaaaat	ctccagcgtc	cagtgcctca	900
ggt	tcctaggc	ctacttacaa	gcctccagtc	tcaaattatc	caggatatec	taaacctgag	960
gaa	aggaatac	ttgacagttt	ggatgtttgg	gtcattgctg	tgattgttat	tgccatagtt	1020
gti	tggagttg	cagtaatttg	tgttgtcccg	tacagatato	ttcaaaggag	gaagaagaaa	1080
gge	cacatacc	taactgatga	gacccacaga	gaagtaaaat	ttacttctct	ctga	1134

<210> 9

<211> 1092

<212> DNA

<213> homo sapiens

atggagcete ceggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggeggeea tggtgttget getgtactee tteteegatg cetgtgagga gccaccaaca 120 tttgaagcta tggageteat tggtaaacca aaaccetaet atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttetat ataceteete ttgecaccea tactatttgt 240 gateggaate atacatgget acctgtetea gatgaegeet gttatagaga aacatgteea 300 tatatacggg atcetttaaa tggecaagca gteeetgeaa atgggaetta egagtttggt 360 tatcagatge actttattg taatgagggt tattaettaa ttggtgaaga aattetatat 420

- 10 -

tgtgaactta	aaggatcagt	agcaatttgg	agcggtaagc	ccccaatatg	tgaaaaggtt	480
ttgtgtacac	cacctccaaa	aataaaaaat	ggagaacaca	cctttagtga	agtagaagta	540
tttgagtatc	ttgatgcagt	aacttatagt	tgtgatcctg	cacctggacc	agatccattt	600
tcacttattg	gagagagcac	gatttattgt	ggtgacaatt	cagtgtggag	tegtgetget	660
ccagagtgta	aagtggtcaa	atgtcgattt	ccagtagtcg	aaaatggaaa	acagatatca	720
ggatttggaa	aaaaatttta	ctacaaagca	acagttatgt	ttgaatgcga	taagggtttt	780
tacctcgatg	gcagcgacac	aattgtctgt	gacagtaaca	gtacttggga	tcccccagtt	840
ccaaagtgtc	ttaaagtgtc	gacttcttcc	actacaaaat	ctccagcgtc	cagtgcctca	900
ggatatccta	aacctgagga	aggaatactt	gacagtttgg	atgtttgggt	cattgctgtg	960
attgttattg	ccatagttgt	tggagttgca	gtaatttgtg	ttgtcccgta	cagatatett	1020
caaaggagga	. agaagaaagg	cacataccta	. actgatgaga	cccacagaga	agtaaaattt	1080
acttctctct	ga					1092

<210> 10

<211> 1095

<212> DNA

<213> homo sapiens

<400> 10 atggagcctc ccggccgccg cgagtgtccc tttccttcct ggcgctttcc tgggttgctt 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca 300 tatatacggg atcotttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480 ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 540 tttgagtate ttgatgcagt aacttatagt tgtgateetg cacetggace agatecattt 600 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 660 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720 ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780

-11-

tacctegatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tccccagtt 840 ccaaagtgtc ttaaaggtcc taggcctact tacaagcctc cagtctcaaa ttatccagga 900 tatcctaaac ctgaggaagg aatacttgac agtttggatg tttgggtcat tgctgtgatt 960 gttattgcca tagttgttgg agttgcagta atttgtgttg tcccgtacag atatcttcaa 1020 aggaaagcag atggtggagc tgaatatgcc acttaccaga ctaaatcaac cactccagca 1080 gagcagagag gctga

<210> 11

<211> 1134

<212> DNA

<213> homo sapiens

<220>

<221> misc feature

<222> (35)..(35)

<223> n can be A, C, G or T

<220>

<221> misc_feature

<222> (1109)..(1109)

<223> n can be A, C, G or T

<400> 11 atggagcete ceggeegeeg egagtgteee tttentteet ggegetttee tgggttgett 60 otggeggeca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgggattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca 300 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 480 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 540 tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 600

- 12 -

tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 660 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720 gqatttqgaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780 tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt 840 ccaaagtgtc ttaaagtgtc gacttcttcc actacaaaat ctccagcgtc cagtgcctca 900 ggtcctaggt ctacttacaa gcctccagtc tcaaattatc caggatatcc taaacctgag 960 gaaggaatac ttgacagttt ggatgtttgg gtcattgctg tgattgttat tgccatagtt 1020 gttggagttg cagtaatttg tgttgtcccg tacagatatc ttcaaaggag gaagaagaaa 1080 ggcacatacc taactgatga gacccacana gaagtaaaat ttacttctct ctga 1134

<210> 12

<211> 942

<212> DNA

<213> homo sapiens

<400> 12 atggageete eeggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctqqcqqcca tqqtqttqct gctqtactcc ttctccgatg cctqtgagga gccaccaaca 120 tttgaageta tggageteat tggtaaacea aaaceetaet atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 300 gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 480 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 540 ttqtqtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 600 tttgagtate ttgatgeagt aacttatagt tgtgateetg cacetggace agateeattt. tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 660 720 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 780 ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt 840 ccaaagtgtc ttaaaggtcc taggcctact tacaagcctc cagtctcaaa ttatccagga 900 942 tatcctaaac ctgaggaagg aatacttgac agtttggatg tt

<210> 13

<211> 314

<212> PRT

<213> homo sapiens

<400> 13

Met Glu Pro Pro Gly Arg Arg Glu Cys Pro Phe Pro Ser Trp Arg Phe 1 5 10 15

Pro Gly Leu Leu Ala Ala Met Val Leu Leu Leu Tyr Ser Phe Ser 20 25 30

Asp Ala Cys Glu Glu Pro Pro Thr Phe Glu Ala Met Glu Leu Ile Gly 35 40 45

Lys Pro Lys Pro Tyr Tyr Glu Ile Gly Glu Arg Val Asp Tyr Lys Cys 50 55 60

Lys Lys Gly Tyr Phe Tyr Ile Pro Pro Leu Ala Thr His Thr Ile Cys 65 70 75 80

Asp Arg Asn His Thr Trp Leu Pro Val Ser Asp Asp Ala Cys Tyr Arg 85 90 95

Glu Thr Cys Pro Tyr Ile Arg Asp Pro Leu Asn Gly Gln Ala Val Pro 100 105 110

Ala Asn Gly Thr Tyr Glu Phe Gly Tyr Gln Met His Phe Ile Cys Asn 115 120 125

Glu Gly Tyr Tyr Leu Ile Gly Glu Glu Ile Leu Tyr Cys Glu Leu Lys 130 140

Gly Ser Val.Ala Ile Trp Ser Gly Lys Pro Pro Ile Cys Glu Lys Val 145 150 155 160

Leu Cys Thr Pro Pro Pro Lys Ile Lys Asn Gly Lys His Thr Phe Ser 165 170 175

Glu Val Glu Val Phe Glu Tyr Leu Asp Ala Val Thr Tyr Ser Cys Asp 180 185 190

Pro Ala Pro Gly Pro Asp Pro Phe Ser Leu Ile Gly Glu Ser Thr Ile 195 200 205

- 14 -

Tyr Cys Gly Asp Asn Ser Val Trp Ser Arg Ala Ala Pro Glu Cys Lys 210 215 220

Val Val Lys Cys Arg Phe Pro Val Val Glu Asn Gly Lys Gln Ile Ser 225 230 235 240

Gly Phe Gly Lys Lys Phe Tyr Tyr Lys Ala Thr Val Met Phe Glu Cys 245 250 255

Asp Lys Gly Phe Tyr Leu Asp Gly Ser Asp Thr Ile Val Cys Asp Ser 260 265 .270

Asn Ser Thr Trp Asp Pro Pro Val Pro Lys Cys Leu Lys Gly Pro Arg 275 280 285

Pro Thr Tyr Lys Pro Pro Val Ser Asn Tyr Pro Gly Tyr Pro Lys Pro 290 295 300

Glu Glu Gly Ile Leu Asp Ser Leu Asp Val 305 310

<210> 14

<211> 945

<212> DNA

<213> homo sapiens

<400> 14 atggageete ceggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gateggaate atacatgget acctgtetea gatgacgeet gttatagaga aacatgteea 300 tatatacggg atcotttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480 ttgtgtacac cacctccaaa aataaaaaat ggagaacaca cctttagtga agtagaagta 540 tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 600 660 teacttattg gagagageac gatttattgt ggtgacaatt cagtgtggag tegtgetget

- 15 -

ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720
ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780
tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt 840
ccaaagtgtc ttaaagtgtc gacttcttcc actacaaaat ctccagcgtc cagtgcctca 900
ggatatccta aacctgagga aggaatactt gacagtttgg atgtt 945

<210> 15

<211> 315

<212> PRT

<213> homo sapiens

<400> 15

Met Glu Pro Pro Gly Arg Arg Glu Cys Pro Phe Pro Ser Trp Arg Phe 1 5 10 15

Pro Gly Leu Leu Ala Ala Met Val Leu Leu Tyr Ser Phe Ser 20 25 30

Asp Ala Cys Glu Glu Pro Pro Thr Phe Glu Ala Met Glu Leu Ile Gly 35 40

Lys Pro Lys Pro Tyr Tyr Glu Ile Gly Glu Arg Val Asp Tyr Lys Cys 50 55 60

Lys Lys Gly Tyr Phe Tyr Ile Pro Pro Leu Ala Thr His Thr Ile Cys 65 70 75 80

Asp Arg Asn His Thr Trp Leu Pro Val Ser Asp Asp Ala Cys Tyr Arg 85 90 95

Glu Thr Cys Pro Tyr Ile Arg Asp Pro Leu Asn Gly Gln Ala Val Pro 100 105 110

Ala Asn Gly Thr Tyr Glu Phe Gly Tyr Gln Met His Phe Ile Cys Asn 115 120 125

Glu Gly Tyr Tyr Leu Ile Gly Glu Glu Ile Leu Tyr Cys Glu Leu Lys 130 140

Gly Ser Val Ala Ile Trp Ser Gly Lys Pro Pro Ile Cys Glu Lys Val 145 150 155 160

- 16 -

Leu	Cys	Thr	Pro	Pro 165	Pro	ГХв	Ile	Lys	Asn 170	Gly	Glu	His	Thr	Phe 175	Ser
Glu	Val	Glu	Val 180	Phe	Glu	Tyr	Leu	Asp 185	Ala	Val	Thr	Туг	Ser 190	Сув	Asp
Pro	Ala	Pro 195	Gly	Pro	qaA	Pro	Phe 200	Ser	Leu	Ile	Gly	Glu 205	Ser	Thr	Ile
Tyr	Cys 210	Gly	двр	Asn	Ser	Val 215	Trp	Ser	Arg	Ala	Ala 220	Pro	Glu	Сув	Lys
Val 225	Val	Lуs	Сув	Arg	Phe 230	Pro	Val	Val	Glu	Asn 235	Gly	ГÀв	Gln	Ile	Ser 240
Gly	Phe	Gly	Lys	Lys 245	Phe	Tyr	Tyr	Lys	Ala 250	Thr	Val	Met	Phe	Glu 255	Сув
Asp	Lys	Gly	Phe 260	Tyr	Leu	Asp	Gly	Ser 265	Aap	Thr	Ile	Val	Cys 270	Asp	Ser
Asn	Ser	Thr 275	Trp	Asp	Pro	Pro	Val 280	Pro	Lys	Сув	Leu	Lys 285	Val	Ser	Thr
Ser	Ser 290	Thr	Thr	Гуз	Ser	Pro 295	Ala	Ser	Ser	Ala	Ser 300	Gly	Tyr	Pro	Lys
Pro 305	Glu	Glu	Gly	Ile	Leu 310	Asp	Ser	Leu	Авр	Val 315					
<21	0 >	16													
<21	1>	987													
<21	2> :	AND													
<21	3>	homo	sap	iens											
<40 atg		16 ctc	ccgg	ccgc	cg c	gagt	gtcc	c tt	tcct	tcct	ggc	gctt	tcc	tggg	ttgctt
															ccaaca
ttt	gaag	cta	tgga	gete	at t	ggta	aacc	a aa	accc	tact	atg	agat	tgg	tgaa	cgagta

gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt

gateggaate atacatgget acetgtetea gatgaegeet gttatagaga aacatgteea

tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt

60 120 180

240

300

360

tatcagatgc	actttatttg	taatgagggt	tattacttaa	ttggtgaaga	aattctatat	420
tgtgaactta	aaggatcagt	agcaatttgg	agcggtaagc	ccccaatatg	tgaaaaggtt	480
ttgtgtacac	cacctccaaa	aataaaaaat	ggaaaacaca	cctttagtga	agtagaagta	540
tttgagtatc	ttgatgcagt	aacttatagt	tgtgatcctg	cacctggacc	agatccattt	600
tcacttattg	gagagagcac	gatttattgt	ggtgacaatt	cagtgtggag	tegtgetget	660
ccagagtgta	aagtggtcaa	atgtcgattt	ccagtagtcg	aaaatggaaa	acagatatca	720
ggatttggaa	aaaaatttta	ctacaaagca	acagttatgt	ttgaatgcga	taagggtttt	780
tacetegatg	gcagcgacac	aattgtctgt	gacagtaaca	gtacttggga	teccccagtt	840
ccaaagtgtc	ttaaagtgtc	gacttcttcc	actacaaaat	ctccagegtc	cagtgcctca	900
ggtectagge	ctacttacaa	gcctccagtc	tcaaattatc	caggatatcc	taaacctgag	960
gaaggaatac	ttgacagttt	ggatgtt				987

. <210> 17

<211> 329

<212> PRT

<213> homo sapiens

<400> 17

Met Glu Pro Pro Gly Arg Arg Glu Cys Pro Phe Pro Ser Trp Arg Phe 10

Pro Gly Leu Leu Ala Ala Met Val Leu Leu Tyr Ser Phe Ser

Asp Ala Cys Glu Glu Pro Pro Thr Phe Glu Ala Met Glu Leu Ile Gly

Lys Pro Lys Pro Tyr Tyr Glu Ile Gly Glu Arg Val Asp Tyr Lys Cys

Lys Lys Gly Tyr Phe Tyr Ile Pro Pro Leu Ala Thr His Thr Ile Cys

Asp Arg Asn His Thr Trp Leu Pro Val Ser Asp Asp Ala Cys Tyr Arg

Glu Thr Cys Pro Tyr Ile Arg Asp Pro Leu Asn Gly Gln Ala Val Pro 100 105

- 18 -

Ala Asn Gly Thr Tyr Glu Phe Gly Tyr Gln Met His Phe Ile Cys Asn 115 120 125

Glu Gly Tyr Tyr Leu Ile Gly Glu Glu Ile Leu Tyr Cys Glu Leu Lys 130 140

Gly Ser Val Ala Ile Trp Ser Gly Lys Pro Pro Ile Cys Glu Lys Val 145 150 155 160

Leu Cys Thr Pro Pro Pro Lys Ile Lys Asn Gly Lys His Thr Phe Ser 165 170 175

Glu Val Glu Val Phe Glu Tyr Leu Asp Ala Val Thr Tyr Ser Cys Asp 180 185 190

Pro Ala Pro Gly Pro Asp Pro Phe Ser Leu Ile Gly Glu Ser Thr Ile 195 . 200 205

Tyr Cys Gly Asp Asn Ser Val Trp Ser Arg Ala Ala Pro Glu Cys Lys 210 215 220

Val Val Lys Cys Arg Phe Pro Val Val Glu Asn Gly Lys Gln Ile Ser 225 230 235 240

Gly Phe Gly Lys Lys Phe Tyr Tyr Lys Ala Thr Val Met Phe Glu Cys 245 250 255

Asp Lys Gly Phe Tyr Leu Asp Gly Ser Asp Thr Ile Val Cys Asp Ser 260 270

Asn Ser Thr Trp Asp Pro Pro Val Pro Lys Cys Leu Lys Val Ser Thr 275 280 285

Ser Ser Thr Thr Lys Ser Pro Ala Ser Ser Ala Ser Gly Pro Arg Pro 290 295 300

Thr Tyr Lys Pro Pro Val Ser Asn Tyr Pro Gly Tyr Pro Lys Pro Glu 305 310 315 320

Glu Gly Ile Leu Asp Ser Leu Asp Val

<210> 18

<211> 1671

<212> DNA

- 19 -

<213> artificial sequence

<220>

<223> Construct encoding a fusion polypeptide between the extracellular domain of CD46 at the N-terminus and a human Fc-gamma3 domain at the C-terminus

<400> 18 atggageete eeggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gateggaate atacatgget acctgtetea gatgacgeet gttatagaga aacatgteea 300 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 420 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 480 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 540 600 tttgagtatc ttgatgcagt aacttatagt tgtgatcetg cacctggacc agatccattt tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 660 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720 ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780 tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt 840 ccaaagtgte ttaaagtgte gacttettee actacaaaat etccagegte cagtgeetca 900 960 ggtcctaggc ctacttacaa gcctccagtc tcaaattatc caggatatcc taaacctgag gaaggaatac ttgacagttt ggatgttaag cttactcaca catgcccacc gtgcccagca 1020 cctgaagceg agggggcacc gtcagtette etettecece caaaacceaa ggacaccete 1080 atgatetece ggacecetga ggteacatge gtggtggtgg aegtgageca egaagaceet 1140 gaggtcaagt tcaactggta cgtggacggc gtggaggtgc ataatgccaa gacaaagccg 1200 egggaggage agtacaacag cacgtaccgt gtggtcagcg tectcaccgt cetgcaccag 1260 gactggctga atggcaagga gtacaagtgc aaggtctcca acaaagccct cccagcctcc 1320 atogagaaaa ccatctccaa agccaaaggg cagccccgag aaccacaggt gtacaccctg 1380 cccccatccc gggatgagct gaccaagaac caggtcagcc tgacctgcct ggtcaaaggc 1440 ttctatccca gcgacatcgc cgtggagtgg gagagcaatg ggcagccgga gaacaactac 1500 1560 aagaccacgc ctcccgtgtt ggactccgac ggctccttct tcctctacag caagctcacc

- 20 -

gtggacaaga gcaggtggca gcaggggaac gtcttctcat gctccgtgat gcatgaggct 1620 ctgcacaacc actacacgca gaagagcctc tccctgtctc cgggtaaatg a 1671

<210> 19

<211> 556

<212> PRT

<213> artificial sequence

<220>

<223> fusion polypeptide between the extracellular domain of CD46 at th e N-terminus and a human Fc-gamma3 domain at the C-terminus

<400> 19

Met Glu Pro Pro Gly Arg Arg Glu Cys Pro Phe Pro Ser Trp Arg Phe 1 5 10 15

Pro Gly Leu Leu Leu Ala Ala Met Val Leu Leu Leu Tyr Ser Phe Ser 20 25 30

Asp Ala Cys Glu Glu Pro Pro Thr Phe Glu Ala Met Glu Leu Ile Gly 35 40 45

Lys Pro Lys Pro Tyr Tyr Glu Ile Gly Glu Arg Val Asp Tyr Lys Cys 50 55 60

Lys Lys Gly Tyr Phe Tyr Ile Pro Pro Leu Ala Thr His Thr Ile Cys 65 70 75 80

Asp Arg Asn His Thr Trp Leu Pro Val Ser Asp Asp Ala Cys Tyr Arg 85 90 95

Glu Thr Cys Pro Tyr Ile Arg Asp Pro Leu Asn Gly Gln Ala Val Pro 100 105 110

Ala Asn Gly Thr Tyr Glu Phe Gly Tyr Gln Met His Phe Ile Cys Asn 115 120 125

Glu Gly Tyr Tyr Leu Ile Gly Glu Glu Ile Leu Tyr Cys Glu Leu Lys 130 140

Gly Ser Val Ala Ile Trp Ser Gly Lys Pro Pro Ile Cys Glu Lys Val 145 150 155 160

Leu Cys Thr Pro Pro Pro Lys Ile Lys Asn Gly Lys His Thr Phe Ser

- 21 -

165 170 175 Glu Val Glu Val Phe Glu Tyr Leu Asp Ala Val Thr Tyr Ser Cys Asp 180 185 Pro Ala Pro Gly Pro Asp Pro Phe Ser Leu Ile Gly Glu Ser Thr Ile 200 Tyr Cys Gly Asp Asn Ser Val Trp Ser Arg Ala Ala Pro Glu Cys Lys Val Val Lys Cys Arg Phe Pro Val Val Glu Asn Gly Lys Gln Ile Ser Gly Phe Gly Lys Lys Phe Tyr Tyr Lys Ala Thr Val Met Phe Glu Cys 245 250 Asp Lys Gly Phe Tyr Leu Asp Gly Ser Asp Thr Ile Val Cys Asp Ser 260 265 270 Asn Ser Thr Trp Asp Pro Pro Val Pro Lys Cys Leu Lys Val Ser Thr 275 280 Ser Ser Thr Thr Lys Ser Pro Ala Ser Ser Ala Ser Gly Pro Arg Pro Thr Tyr Lys Pro Pro Val Ser Asn Tyr Pro Gly Tyr Pro Lys Pro Glu 305 310 315 Glu Gly Ile Leu Asp Ser Leu Asp Val Lys Leu Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Ala Glu Gly Ala Pro Ser Val Phe Leu Phe 345 Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe 375 380 Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro 385 390 395 Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

405 410

- 22 -

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val 420 425 430

Ser Asn Lys Ala Leu Pro Ala Ser Ile Glu Lys Thr Ile Ser Lys Ala 435 440 445

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg 450 455 460

Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly 465 470 475 480

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro
485 490 495

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser 500 505 510

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln 515 520 525

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 530 535 540

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 545 550 555

<210> 20

<211> 1746

<212> DNA

<213> artificial sequence

<220>

<223> Construct encoding a fusion polypeptide between the extracellular domain of CD46 at the N-terminus and the scFv FRP5 against ErbB-2 at the C-terminus

<400> 20
atggagcctc ccggccgccg cgagtgtccc tttcctcct ggcgctttcc tgggttgctt 60
ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120
tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180
gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240
gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca 300

tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt	360
tatcagatge actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat	420
tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt	480
ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta	540
tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt	600
tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct	660
ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca	720
ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt	780
tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt	840
ccaaagtgte ttaaagtgte gacttettee actacaaaat etecagegte cagtgeetea	900
ggtcctaggc ctacttacaa gcctccagtc tcaaattatc caggatatcc taaacctgag	960
gaaggaatac tigacagitt ggatgitggc ggccgctctc aggtacaact gcagcagict	1020
ggacctgaac tgaagaagcc tggagagaca gtcaagatct cctgcaaggc ctctgggtat	1080
cctttcacaa actatggaat gaactgggtg aagcaggctc caggacaggg tttaaagtgg	1140
atgggctgga ttaacacttc cactggagag tcaacatttg ctgatgactt caagggacgg	1200
tttgacttct ctttggaaac ctctgccaac actgcctatt tgcagatcaa caacctcaaa	1260
agtgaagaca tggctacata tttctgtgca agatgggagg tttaccacgg ctacgttcct	1320
tactggggcc aagggaccac ggtcaccgtt tcctctggcg gtggcggttc tggtggcggt	1380
ggctccggcg gtggcggttc tgacatccag ctgacccagt ctcacaaatt cctgtccact	1440
tcagtaggag acagggtcag catcacctgc aaggccagtc aggatgtgta taatgctgtt	1500
gcctggtatc aacagaaacc aggacaatct cctaaacttc tgatttactc ggcatcctcc	1560
cggtacactg gagtcccttc tcgcttcact ggcagtggct ctgggccgga tttcactttc	1620
accatcagca gtgtgcaggc tgaagacctg gcagtttatt tctgtcagca acattttcgt	1680
actocattea egiteggete ggggacaaaa tiggagateg actacaagga tgaegaegae	1740
aagtag	1746

<210> 21

<211> 581

<212> PRT

<213> artificial sequence

<220>

<223> fusion polypeptide between the extracellular domain of CD46 at the N-terminus and the scFv PRP5 against ErbB-2 at the C-terminus

<400> 21

Met Glu Pro Pro Gly Arg Arg Glu Cys Pro Phe Pro Ser Trp Arg Phe 1 5 10 15

Pro Gly Leu Leu Leu Ala Ala Met Val Leu Leu Leu Tyr Ser Phe Ser 20 25 30

Asp Ala Cys Glu Glu Pro Pro Thr Phe Glu Ala Met Glu Leu Ile Gly 35 40

Lys Pro Lys Pro Tyr Tyr Glu Ile Gly Glu Arg Val Asp Tyr Lys Cys
50 55 60

Lys Lys Gly Tyr Phe Tyr Ile Pro Pro Leu Ala Thr His Thr Ile Cys 65 70 75 80

Asp Arg Asn His Thr Trp Leu Pro Val Ser Asp Asp Ala Cys Tyr Arg 85 90 95

Glu Thr Cys Pro Tyr Ile Arg Asp Pro Leu Asn Gly Gln Ala Val Pro 100 105 110

Ala Asn Gly Thr Tyr Glu Phe Gly Tyr Gln Met His Phe Ile Cys Asn 115 120 125

Glu Gly Tyr Tyr Leu Ile Gly Glu Glu Ile Leu Tyr Cys Glu Leu Lys 130 140

Gly Ser Val Ala Ile Trp Ser Gly Lys Pro Pro Ile Cys Glu Lys Val 145 150 155 160

Leu Cys Thr Pro Pro Pro Lys Ile Lys Asn Gly Lys His Thr Phe Ser

Glu Val Glu Val Phe Glu Tyr Leu Asp Ala Val Thr Tyr Ser Cys Asp 180 185 190

Pro Ala Pro Gly Pro Asp Pro Phe Ser Leu Ile Gly Glu Ser Thr Ile 195 200 205

Tyr Cys Gly Asp Asn Ser Val Trp Ser Arg Ala Ala Pro Glu Cys Lys 210 215 220 Val Val Lys Cys Arg Phe Pro Val Val Glu Asn Gly Lys Gln Ile Ser 225 230 235 240

Gly Phe Gly Lys Lys Phe Tyr Tyr Lys Ala Thr Val Met Phe Glu Cys 245 250 255

Asp Lys Gly Phe Tyr Leu Asp Gly Ser Asp Thr Ile Val Cys Asp Ser 260 265 270

Asn Ser Thr Trp Asp Pro Pro Val Pro Lys Cys Leu Lys Val Ser Thr 275 280 285

Ser Ser Thr Thr Lys Ser Pro Ala Ser Ser Ala Ser Gly Pro Arg Pro 290 295 300

Thr Tyr Lys Pro Pro Val Ser Asn Tyr Pro Gly Tyr Pro Lys Pro Glu 305 310 315 320

Glu Gly Ile Leu Asp Ser Leu Asp Val Gly Gly Arg Ser Gln Val Gln 325 330 335

Leu Gln Gln Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu Thr Val Lys 340 345 350

Ile Ser Cys Lys Ala Ser Gly Tyr Pro Phe Thr Asn Tyr Gly Met Asn 355 360 365

Trp Val Lys Gln Ala Pro Gly Gln Gly Leu Lys Trp Met Gly Trp Ile 370 375 380

Asn Thr Ser Thr Gly Glu Ser Thr Phe Ala Asp Asp Phe Lys Gly Arg 385 390 395 400

Phe Asp Phe Ser Leu Glu Thr Ser Ala Asn Thr Ala Tyr Leu Gln Ile 405 410 415

Asn Asn Leu Lys Ser Glu Asp Met Ala Thr Tyr Phe Cys Ala Arg Trp
420 425 430

Glu Val Tyr His Gly Tyr Val Pro Tyr Trp Gly Gln Gly Thr Thr Val 435 440 445

Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly 450 450

Gly Gly Ser Asp Ile Gln Leu Thr Gln Ser His Lys Phe Leu Ser Thr 465 470 475 480 Ser Val Gly Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val 485 490 495

Tyr Asn Ala Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys 500 505 510

Leu Leu Ile Tyr Ser Ala Ser Ser Arg Tyr Thr Gly Val Pro Ser Arg 515 520 525

Phe Thr Gly Ser Gly Ser Gly Pro Asp Phe Thr Phe Thr Ile Ser Ser 530 535 540

Val Gln Ala Glu Asp Leu Ala Val Tyr Phe Cys Gln Gln His Phe Arg 545 550 555 560

Thr Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Asp Tyr Lys 565 570 575

Asp Asp Asp Lys 580