AMS 231: Nonlinear Control Theory: Winter 2018 Homework #5

Name:

Due: March 06, 2018

NOTE: Please show all the steps in your solution. Turn in a hard copy of your HW stapled with this as cover sheet with your name written in the above field. Please submit your HW in class on the due date.

Problem 1

Stabilizing Controllers

$$(10+10+(5+5)+10+(5+5)+10+10=70 \text{ points})$$

Consider simple scalar control system

$$\dot{x} = -x^3 + u, \qquad x, u \in \mathbb{R}.$$

We want to design (static) state feedback control u = u(x) such that origin of the closed-loop system is G.A.S. We will design multiple stabilizing controllers for this system, and compare their performance.

- (a) Design a **feedback linearizing controller** $u_{FL}(x)$ by applying "cancel the nonlinearity and get a stable linear closed-loop system" idea.
- (b) Prove that a **linear feedback controller** $u_{\rm L}(x) = -x$ makes the origin of the closed-loop system G.A.S. (Hint: use $V(x) = \frac{1}{2} x^2$ and the Barbashin-Krasovskii theorem.)
- (c) Give two reasons why the controller $u_{\rm L}(x)$ in part (b) is a better controller than $u_{\rm FL}(x)$ in part (a). (Hint: think rate-of-convergence of the closed-loop system, and magnitude of control signal for large x.)
- (d) The answer in part (c) tells us that it is better not to kill "friendly nonlinearity". Consider another design idea: **doing nothing controller**, i.e., $u_0(x) \equiv 0$ for all $x \in \mathbb{R}$. Prove that $u_0(x)$ also makes the origin G.A.S.
- (e) Give one advantage and one disadvantage of $u_0(x)$ compared to $u_L(x)$. (Hint: again think in terms of the hint in part (c)).
- (f) Design another stabilizing controller $u_{\rm S}(x)$ using **Sontag's formula**. (Hint: use the Lyapunov function in part (b) as the CLF.)
- (g) From your answer in part (f), argue that near x = 0, we have $u_S(x) \approx u_L(x)$; and for $|x| \to \infty$,

we have $u_{\rm S}(x) \approx u_0(x)$, and therefore, $u_{\rm S}(x)$ outperforms all the previous controllers.

Problem 2

Integrator Backstepping

(30 points)

Consider the following 3 state control system which is a modification of the worked out example in Lecture 16 with an additional integrator at the input side:

$$\dot{x}_1 = x_1^2 - x_1^3 + x_2,$$

 $\dot{x}_2 = x_3,$
 $\dot{x}_3 = u.$

Design an integrator backstepping controller to make the origin G.A.S.