Geodesics

Nick van Eijndhoven nick@icecube.wisc.edu http://www.iihe.ac.be

Vrije Universiteit Brussel - IIHE(ULB-VUB) Pleinlaan 2, B-1050 Brussel, Belgium

Contents

Introduction	1
The Classical Hamilton and Lagrange formalism	3
Going relativistic	18
The Geodesic equation	20

- Relativity provides a consistent framework to describe
 - High-Energy phenomena
 - Gravity
- * But how can we make predictions that can be tested experimentally?

 For example: The trajectory of a test body in curved space-time
- Test body:
 Object with negligible mass that does not significantly curve space-time itself
 For instance a satellite orbiting the Earth
- We need somehow to derive the equations governing the motion of test bodies
 Obviously Newtonian mechanics won't work
 We will limit ourselves to space-time curvature only (no Electric forces etc.)
 → We will see that a Hamilton-Lagrange approach can be applied
- But first we will investigate a relatively simple measurement which is in fact applied to correct timing via the GPS system

Exercise

- ullet Consider a satellite moving eastwards over the Earth equator at a height h above the Earth's surface with constant velocity v w.r.t. the ground The satellite contains a clock which measures the satellite's proper time au_s In a ground station at the equator an identical clock measures the proper time au_q of the station
- ullet Consider the Earth as a perfect sphere with mass M, radius R and Schwarzschild radius R_s
- ullet The Earth rotates around its axis with a constant angular velocity Ω
- When the satellite passes over the ground station, both clocks are synchronised
- ullet When the satellite passes over the ground station after one circumnavigation, the elapsed proper times Δau_s and Δau_q are compared
- * By assuming that all velocities are non-relativistic, show that

$$\left(rac{\Delta au_s}{\Delta au_g}
ight)^2 = rac{1-R_s/(R+h)-([(R+h)\Omega+v]/c)^2}{1-R_s/R-(R\Omega/c)^2}$$

- Observation: Nature is lazy
 - Systems evolve performing the least action
- Could we use this feature to derive the laws of nature ?
 - $\star d[action]/d[something] = 0 \rightarrow physical laws ?$
 - **★ Need to define action**
 - **★ Which parameters to describe system and action ?**
 - **★** Energy somehow involved → description via scalars ?
- Observation: Physicists (and also students!) are lazy
 - Choose the most convenient parameters
 - Choose minimal amount of parameters
 - \star Free motion o (x,y,z)
 - \star Spherical symmetry ightarrow (r, heta, arphi)
 - \star Planar motion $\to (\rho, \varphi)$ or (r, θ)

- Which and how many parameters to choose ?
 - We can measure coordinates and time
 - Velocity, acceleration etc... are derived observables but they describe the evolution of the system
 - Only independent parameters needed

Generalized coordinates

- The configuration of a system is uniquely described by any complete set of independent coordinates q_k $(k=1,\ldots,n)$
 - One is free to choose which coordinates q_k The q_k are called generalized coordinates
 - Easy to check if the q_k are independent
 - But what is the value of n?

Free particle

(x,y,z) or (r, heta,arphi) uniquely determine the position ightarrow n=3

ullet Particle confined to a plane (z=0)

(x,y), (r, heta) or (
ho,arphi) uniquely determine the position o n=2

- ullet Planar circular motion (
 ho=R=constant) arphi uniquely determines the position o n=1
- ullet System of N particles $o n=3N,\ 2N,\ N$ resp. in the above situations

Definition: Holonomic constraint

$$f(x_i, y_i, z_k, t) = 0$$
 $(i, j, k = 1, ..., N)$

* Consider the case of m holonomic constraints (all independent)

$$f_{lpha}(x_i,y_j,z_k,t)=0 \quad (i,j,k=1,\ldots,N) \; (lpha=1,\ldots,m)$$

 $\rightarrow n = (3N - m)$ generalized coordinates needed

- * Previous example of planar circular motion
 - -Only 1 particle $\rightarrow N=1$
 - Constraints : z=0 and $x^2+y^2-R^2=0 \to m=2$ $\Rightarrow n=3-2=1$ generalized coordinates needed
 - We had chosen φ for this case
- \star Add a second particle in the same plane at radius R_2 Use cylindrical coordinates (
 ho, arphi) for simplicity
 - Now we have 2 particles ightarrow N=2
 - Constraints : $z_1=0$ $ho_1-R=0$ $z_2=0$ $ho_2-R_2=0$
 - $\rightarrow m = 4$
 - $\Rightarrow n=6-4=2$ generalized coordinates needed
 - Obviously we can choose $arphi_1$ and $arphi_2$

- * Assume both particles have fixed relative position
 - \rightarrow fixed angle α between them
 - We still have 2 particles $\rightarrow N=2$

– Constraints :
$$z_1=0$$
 $ho_1-R=0$ $z_2=0$ $ho_2-R_2=0$ $arphi_1-arphi_2-lpha=0$

$$\rightarrow m = 5$$

 $\Rightarrow n=6-5=1$ generalized coordinates needed

- We can choose φ_1 in this case
- Note:

n is called the number of degrees of freedom of the system

Hamilton's variational principle

- Systems evolve along a certain path in space-time
- ullet Relate the action to the path-integral ${\cal P}=\int_{t_1}^{t_2}\!\!L\,{
 m d}t$

with : $L\equiv$ some function related to the system's energy ($L\sim E_{kin}$ and E_{pot})

- \star Use generalized coordinates for convenience ightarrow $L=L(q,\dot{q},t)$
- \bullet \mathcal{P} is an extremum along the actual path

Actual path
$$o \delta \mathcal{P} = \delta \int_{t_1}^{t_2} \!\! L(q,\dot{q},t) \, \mathrm{d}t = \int_{t_1}^{t_2} \!\! \delta L(q,\dot{q},t) \, \mathrm{d}t = 0$$

with : $\delta \equiv$ infinitessimal variation of any system parameter away from the actual path value

- ullet Note: The endpoints at t_1 and t_2 have to remain fixed on the actual path
- \star Regard $\delta \mathcal{P}$ as an investigation of the value of \mathcal{P}
 - Like estimating the weight of an object by trying to lift it

- Consider conservative systems with time-independent holonomic constraints
 - No explicit time dependence of $L o L = L(q, \dot{q})$
- As usual we can now write :

$$\int_{t_1}^{t_2} \! \delta L \, \mathrm{d}t = \int_{t_1}^{t_2} \sum_{k=1}^n \left(\frac{\partial L}{\partial q_k} \! \delta q_k + \frac{\partial L}{\partial \dot{q}_k} \! \delta \dot{q}_k \right) \! \mathrm{d}t \equiv 0 \quad (1)$$

 \star Note that : $\delta \dot{q}_k = \frac{\mathrm{d}}{\mathrm{d}t} (\delta q_k)$ (2)

Since :
$$\delta \dot{q} = \delta \lim_{\Delta t o 0} rac{q(t + \Delta t) - q(t)}{\Delta t} = \lim_{\Delta t o 0} rac{\delta q(t + \Delta t) - \delta q(t)}{\Delta t} = rac{\mathrm{d}}{\mathrm{d}t} (\delta q)$$

$$ullet$$
 (1)&(2) yields : $\int_{t_1}^{t_2} \sum_{k=1}^n \left(rac{\partial L}{\partial q_k} \delta q_k + rac{\partial L}{\partial \dot{q}_k} rac{\mathrm{d}}{\mathrm{d}t} (\delta q_k)
ight) \mathrm{d}t = 0$

Integration by parts of the second term yields :

$$\left[\sum_{k=1}^n rac{\partial L}{\partial \dot{q}_k} \delta q_k
ight]_{t_1}^{t_2} - \int_{t_1}^{t_2} \sum_{k=1}^n rac{\mathrm{d}}{\mathrm{d}t} \left(rac{\partial L}{\partial \dot{q}_k}
ight) \delta q_k \, \mathrm{d}t$$

$$\star$$
 Note : $\left[\sum_{k=1}^n rac{\partial L}{\partial \dot{q}_k} \delta q_k
ight]_{t_1}^{t_2} = 0$ (fixed endpoints)

- ullet This finally yields : $\int_{t_1}^{t_2} \sum_{k=1}^n \left[rac{\partial L}{\partial q_k} rac{\mathrm{d}}{\mathrm{d}t} \left(rac{\partial L}{\partial \dot{q}_k}
 ight)
 ight] \delta q_k \, \mathrm{d}t = 0$
- \star Should hold for all independent q_k and δq_k In other words :

$$\left|rac{\partial L}{\partial q_k} - rac{\mathrm{d}}{\mathrm{d}t}\left(rac{\partial L}{\partial \dot{q}_k}
ight) = 0
ight|$$

These equations are called the Lagrangian equations of motion and L is called the Lagrangian of the system

- ullet But what is the expression for $L(q,\dot{q})$?
 - The Lagrange equations should yield Newton's laws
 - Guesswork, try and error by Lagrange (~ 1800)

$$|L = T - V|$$

- \star No deep reason behind expression for L, it just works ! Note :
 - Lagrange equations only involve scalars → easy
 - Lagrange equations only valid for conservative systems

Recipe for Lagrangian analysis

- 1. Determine the number of degrees of freedom (n) of the system
- 2. Select a suitable set of generalized coordinates q_k
- 3. Find relation between Cartesian- and generalized coordinates
- 4. Express T and V in terms of Cartesian coordinates
- 5. Express T and V in terms of generalized coordinates
- 6. Write L in terms of generalized coordinates
- 7. Apply the Lagrange equations
- 8. Solve the diff. equations \rightarrow Problem solved!
- * Steps (3) and (4) may be skipped in obvious situations

- Example : Free particle
 - 1. Only 1 particle (N=1), no constraints $(m=0) \rightarrow n=3$
 - 2. Just choose the Cartesian (x, y, z)
 - 3. Trivial

4.
$$T=rac{1}{2}m(\dot{x}^2+\dot{y}^2+\dot{z}^2)$$
 and $V=0$

- 5. Same as above
- **6**. $L = \frac{1}{2} m (\dot{x}^2 + \dot{y}^2 + \dot{z}^2)$
- 7. Lagrange equations : $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}_k}\right) = \frac{\partial L}{\partial q_k}$

$$\star \frac{\mathrm{d}}{\mathrm{d}t}(m\dot{x}) = 0 \rightarrow \ddot{x} = 0$$

$$\star \frac{\mathrm{d}}{\mathrm{d}t}(m\dot{y}) = 0
ightarrow \ddot{y} = 0$$

$$\star rac{\mathrm{d}}{\mathrm{d}t}(m\dot{z}) = 0
ightarrow \ddot{z} = 0$$

- 8. Usual procedure → Newtonian results!
- \star Note : Lagrange equations yield $m\dot{x}=p_x=constant$ etc.

Obviously due to the fact that L independent of q_k

Generalized momenta

Define :
$$oxedcit{p_k \equiv rac{\partial L}{\partial \dot{q}_k}}$$
 $ightarrow$ Lagrange equations : $\dot{p}_k = rac{\partial L}{\partial q_k}$

• Fundamental physics law:

Translational invariance → **Momentum conservation**

• From Quantum Mechanics or Special Relativity we have seen that also :

Time invariance → **Energy conservation**

* Reflects the Noether theorem : Some invariance \Leftrightarrow Some Conservation

- Example: Particle in central force field
 - 1. Planar motion $(z=0) \rightarrow n=2$
 - 2. Choose plane polar coordinates (r, θ)
 - 3. Coordinate relations:

$$egin{aligned} x &= r\cos(heta) & \dot{x} &= \dot{r}\cos(heta) - r\dot{ heta}\sin(heta) \ y &= r\sin(heta) & \dot{y} &= \dot{r}\sin(heta) + r\dot{ heta}\cos(heta) \end{aligned}$$

4.
$$T = \frac{1}{2} m (\dot{x}^2 + \dot{y}^2)$$
 $V = V(\sqrt{x^2 + y^2})$

5.
$$T=rac{1}{2}m(\dot{r}^2+r^2\dot{ heta}^2)$$
 $V=V(r)$

6.
$$L=rac{1}{2}m(\dot{r}^2+r^2\dot{ heta}^2)-V(r)$$

7. Lagrange equations:

$$egin{aligned} \star \, mr\dot{ heta}^2 - rac{\partial V}{\partial r} - m\ddot{r} &= 0
ightarrow m\ddot{r} = mr\dot{ heta}^2 + f(r) \ \star rac{\mathrm{d}}{\mathrm{d}t}(mr^2\dot{ heta}) &= 0
ightarrow |ec{L}| = constant \end{aligned}$$

8. Identical to Kepler orbit situation \rightarrow Same results!

Hamilton's equations of motion

$$ullet$$
 Define the Hamiltonian : $egin{aligned} H \equiv \sum_{k=1}^n \! \dot{q}_k p_k - L \end{aligned}$

$$egin{aligned} egin{aligned} eta & \delta H = \sum_{k=1}^n \left[p_k \delta \dot{q}_k + \dot{q}_k \delta p_k - rac{\partial L}{\partial \dot{q}_k} \delta \dot{q}_k - rac{\partial L}{\partial q_k} \delta q_k
ight] \end{aligned}$$

$$\star$$
 Using : $p_k = rac{\partial L}{\partial \dot{q}_k}$ and $\dot{p}_k = rac{\partial L}{\partial q_k}
ightarrow \delta H = \sum_{k=1}^n [\dot{q}_k \delta p_k - \dot{p}_k \delta q_k]$ (1)

$$\star$$
 So: $H = H(p_k, q_k)
ightarrow \delta H = \sum_{k=1}^n \left[rac{\partial H}{\partial p_k} \delta p_k + rac{\partial H}{\partial q_k} \delta q_k
ight]$ (2)

$$ullet$$
 (1) & (2) directly yield : $egin{array}{c} rac{\partial H}{\partial p_k} = \dot{q}_k & ext{and} \ rac{\partial H}{\partial q_k} = -\dot{p}_k \end{array}$

- Hamilton's equations hold for more general systems (non-conservative, explicit time dependence of L, ...)
- ullet Simple conservative systems ullet H=T+V

And still something is wrong!

• In relativity everything is determined via the metric

Special relativity :
$$\mathrm{d}s^2 = \eta_{\mu\nu}\,\mathrm{d}x^\mu\,\mathrm{d}x^
u$$

General relativity :
$$\mathrm{d}s^2 = g_{\mu\nu}(\tilde{x})\,\mathrm{d}x^\mu\,\mathrm{d}x^
u$$

where
$$\mathrm{d} ilde{x} = (c\,\mathrm{d}t,\mathrm{d}ec{r})$$
 and $\eta_{\mu\nu} = \mathsf{diag}(1,-1,-1,-1)$

- ullet Consider two events A and B in space-time $o \Delta s = \int_A^B \mathrm{d}s$ where the integral follows some path (i.e. worldline) in space-time
- * Hey, this looks like the classical Hamilton-Lagrange path integral

$$\mathcal{P} = \int_{t_1}^{t_2} L \, \mathrm{d}t$$
 where $L = L(q_k, \dot{q}_k)$ and $q_k = q_k(t)$

ullet Consider A and B as two fixed endpoints of some worldline in space-time

Any worldline between A and B can be parametrized as $x^\mu = x^\mu(\lambda)$

which yields :
$$\mathrm{d} x^\mu = rac{\partial x^\mu}{\partial \lambda} \, \mathrm{d} \lambda = rac{\mathrm{d} x^\mu}{\mathrm{d} \lambda} \, \mathrm{d} \lambda$$

Going relativistic

• This then leads to the following expressions :

Special relativity :
$$\Delta s = \int_{\lambda_1}^{\lambda_2} \sqrt{\eta_{\mu\nu}} \, rac{\mathrm{d} x^\mu}{\mathrm{d} \lambda} \, rac{\mathrm{d} x^\nu}{\mathrm{d} \lambda} \, \, \mathrm{d} \lambda$$

General relativity :
$$\Delta s = \int_{\lambda_1}^{\lambda_2} \sqrt{g_{\mu\nu}(ilde{x})\,rac{\mathrm{d}x^\mu}{\mathrm{d}\lambda}\,rac{\mathrm{d}x^
u}{\mathrm{d}\lambda}}\,\,\mathrm{d}\lambda$$

which can be written as
$$\Delta s=\int_{\lambda_1}^{\lambda_2}L\,\mathrm{d}\lambda$$
 with $L=L\left(x^\mu,rac{\mathrm{d}x^\mu}{\mathrm{d}\lambda}
ight)$

- st Compare this with $\mathcal{P}=\int_{t_1}^{t_2} L\,\mathrm{d}t$ with $L=L(q_k,\dot{q}_k)$
- ullet If the actual worldline (called Geodesic) corresponds to an extremum of Δs we obtain the Relativistic Lagrange equations

$$\left|rac{\mathrm{d}}{\mathrm{d}\lambda}\left(rac{\partial L}{\partial(\mathrm{d}x^\mu/\mathrm{d}\lambda)}
ight)=rac{\partial L}{\partial x^\mu}$$

The Geodesic equation

• The Relativistic Lagrange equations provide the so called Geodesic equation of which the solution is the actual worldline or Geodesic

We will investigate free particles c.q. test bodies as examples

Special Relativity

$$ullet \,\mathrm{d} s^2 = \eta_{\mu
u}\,\mathrm{d} x^\mu\,\mathrm{d} x^
u \,\,\mathrm{with}\,\, \eta_{\mu
u} = \mathsf{diag} oldsymbol{(1,-1,-1,-1)}
ightarrow L = \sqrt{\eta_{\mu
u}\,rac{\mathrm{d} x^\mu}{\mathrm{d} \lambda}\,rac{\mathrm{d} x^
u}{\mathrm{d} \lambda}} = rac{c\,\mathrm{d} au}{\mathrm{d} \lambda}$$

$$ullet$$
 Lagrange equations : $rac{\mathrm{d}}{\mathrm{d}\lambda}\left(rac{\partial L}{\partial(\mathrm{d}x^\mu/\mathrm{d}\lambda)}
ight) = rac{\partial L}{\partial x^\mu}$

Since
$$\frac{\partial L}{\partial x^{\mu}} = 0$$
 we get $\frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\frac{1}{2L} \frac{\partial}{\partial (\mathrm{d}x^{\mu}/\mathrm{d}\lambda)} \left[\eta_{\mu\nu} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\lambda} \right] \right) = 0$

Using
$$\mathrm{d}\lambda = \frac{c\,\mathrm{d}\tau}{L}$$
 and $\eta_{\mu\nu}\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\lambda} = \pm\left(\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda}\right)^2$ we obtain : $\frac{\mathrm{d}^2x^{\mu}}{\mathrm{d}\tau^2} = 0$

This is indeed the correct equation of motion for a free particle

The Geodesic equation

General Relativity

$$ullet \,\mathrm{d} s^2 = g_{\mu
u}(ilde x)\,\mathrm{d} x^\mu\,\mathrm{d} x^
u o L = \sqrt{g_{\mu
u}(ilde x)\,rac{\mathrm{d} x^\mu}{\mathrm{d} \lambda}\,rac{\mathrm{d} x^
u}{\mathrm{d} \lambda}} = rac{c\,\mathrm{d} au}{\mathrm{d} \lambda}$$

$$ullet$$
 Lagrange equations : $rac{\mathrm{d}}{\mathrm{d}\lambda}\left(rac{\partial L}{\partial(\mathrm{d}x^\mu/\mathrm{d}\lambda)}
ight) = rac{\partial L}{\partial x^\mu}$

* Writing out the equations as before we obtain the General Geodesic Equation

$$rac{\mathrm{d}^2 x^\mu}{\mathrm{d} au^2} = \Gamma^\mu_{
u\gamma} rac{\mathrm{d}x^
u}{\mathrm{d} au} rac{\mathrm{d}x^\gamma}{\mathrm{d} au}$$

ullet Here the $\Gamma^{\mu}_{
u\gamma}$ are called the Christoffel Symbols with

$$oxed{g_{\mu\delta}\Gamma_{
u\gamma}^{\delta}=rac{1}{2}\left(rac{\partial g_{\mu
u}}{\partial x^{\gamma}}+rac{\partial g_{\mu\gamma}}{\partial x^{
u}}+rac{\partial g_{
u\gamma}}{\partial x^{\mu}}
ight)}$$