

properties of symmetric difference

Canonical name PropertiesOfSymmetricDifference

Date of creation 2013-03-22 14:36:56 Last modified on 2013-03-22 14:36:56

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 14

Author CWoo (3771) Entry type Derivation Classification msc 03E20 Recall that the symmetric difference of two sets A, B is the set $A \cup B - (A \cap B)$. In this entry, we list and prove some of the basic properties of \triangle .

- 1. (commutativity of \triangle) $A\triangle B=B\triangle A$, because \cup and \cap are commutative.
- 2. If $A \subseteq B$, then $A \triangle B = B A$, because $A \cup B = B$ and $A \cap B = A$.
- 3. $A\triangle\varnothing=A$, because $\varnothing\subseteq A$, and $A-\varnothing=A$.
- 4. $A \triangle A = \emptyset$, because $A \subseteq A$ and $A A = \emptyset$.
- 5. $A\triangle B = (A-B) \cup (B-A)$ (hence the name symmetric difference).

Proof.
$$A \triangle B = (A \cup B) - (A \cap B) = (A \cup B) \cap (A \cap B)' = (A \cup B) \cap (A' \cup B') = ((A \cup B) \cap A') \cup ((A \cup B) \cap B') = (B \cap A') \cup (A \cap B') = (B - A) \cup (A - B).$$
 □

- 6. $A' \triangle B' = A \triangle B$, because $A' \triangle B' = (A' B') \cup (B' A') = (A' \cap B) \cup (B' \cap A) = (B A) \cap (A B) = A \triangle B$.
- 7. (distributivity of \cap over \triangle) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$.

Proof. $A \cap (B \triangle C) = A \cap ((B \cup C) - (B \cap C))$, which is $(A \cap (B \cup C)) - (A \cap (B \cap C))$, one of the properties of set difference (see proof http://planetmath.org/PropertiesOfSetDifferencehere). This in turns is equal to $((A \cap B) \cup (A \cap C)) - ((A \cap B) \cap (A \cap C)) = (A \cap B) \triangle (A \cap C)$.

8. (associativity of \triangle) $(A\triangle B)\triangle C = A\triangle (B\triangle C)$.

Proof. Let U be a set containing A, B, C as subsets (take $U = A \cup B \cup C$ if necessary). For a given B, let $f: P(U) \times P(U) \to P(U)$ be a function defined by $f(A, C) = (A \triangle B) \triangle C$. Associativity of \triangle is then then same as showing that f(A, C) = f(C, A), since $A \triangle (B \triangle C) = (B \triangle C) \triangle A = (C \triangle B) \triangle A$.

By expanding f(A, C), we have

$$(A\triangle B)\triangle C = ((A\triangle B) - C) \cup (C - (A\triangle B))$$

$$= (((A - B) \cup (B - A)) \cap C') \cup (C - ((A \cup B) - (A \cap B)))$$

$$= (((A \cap B') \cup (B \cap A')) \cap C') \cup ((C \cap A \cap B) \cup (C - (A \cup B))$$

$$= ((A \cap B' \cap C') \cup (B \cap A' \cap C')) \cup ((C \cap A \cap B) \cup (C \cap A' \cap B'))$$

$$= (B \cap A' \cap C') \cup (B \cap A \cap C) \cup (B' \cap A \cap C') \cup (B' \cap A' \cap C).$$

It is now easy to see that the last expression does not change if one exchanges A and C. Hence, f(A,C) = f(C,A) and this shows that \triangle is associative. \square

Remark. All of the properties of \triangle on sets can be generalized to http://planetmath.org/DerivedBooleanOperations \triangle on Boolean algebras.