Wstęp teoretyczny

Półprzewodniki

- Półprzewodnikami nazywamy substancje, na których konduktywność można wpływać przez różne czynniki (najczęściej przez domieszkowanie lub zmianę temperatury). Jest to spowodone posiadaniem przerwy energetycznej, ze specyficznego zakresu, między pasmem walencyjnym a przewodnictwa (gdzie w przewodnikach ta przerwa jest jeszcze mniejsza, a w izolatorach większa). Wyróżniamy następujące typy półprzewodników:
 - Samoistne posiadają niezanieczyszczoną sieć krystaliczną (uporządkowane I symetryczne ułożenie atomów),
 - Domieszkowane wprowadzenie do sieci krystalicznej elektronów swobodnych innego atomu. W zależności różnicy liczby elektronów domieszki od liczby elektronów półprzewodnika, domieszkowania dzielimy na:
 - Typ p pobieranie elektronu z półprzewodnika I powstanie tzw. dziur elektronowych (naładowanie dodatnie)
 - Typ n pobieranie elektronu z domieszki ułatwiając przechodzenie w stan swobodny (naładowanie ujemne)

Teoria pasmowa ciał stałych

- Jest to teoria opisująca przwodnictwo elektryczne. Pasmami energetycznymi nazywamy przedziały energetyczne jakie osiągają elektrony w danym atomie. Przerwami energetyczną (bądź pasmo wzbronione), więc jest to przedział energetyczny jakiego elektron w atomie nie może osiągnąć (na wskutek okresowości funkcji falowej). W elektronice najbardziej istotne są dwa pasma:
 - Walencyjne przedział energetyczny elektronów walencyjnych.
 - Przewodności przedział energetyczny elektronów swobodnych, które stają się nośnikami prądu elektrycznego.

Pomiary

1. Wykres zależności oporu R od temperatury T dla obu termistorów

Do wykonania pomiarów użyliśmy tranzystora, który podgrzewa dwa termistory i potencjometr, który reguluje natężenie prądu płynącego przez termistory. Opór i temperatura mierzone są miernikami cyfrowymi. Dzięki temu zmierzyliśmy opory jakie ma prąd po przejściu przez termistory.

Pomiary podczas nagrzewania:

Tz , [°C]	Tr , [°C]	R1, [kΩ]	R2, [kΩ]
30	29,6	16,35	25,0
34	33,7	13,98	20,6
38	37,6	11,63	17,12
42	41,5	9,76	14,35
46	45,4	8,25	12,12
50	49,3	7,02	10,28
54	53,1	5,97	8,74
58	57,2	5,12	7,48
62	61,1	4,37	6,38
66	65,1	3,76	5,47
70	69,1	3,29	4,71

Pomiary podczas chłodzenia:

Tz , [°C]	Tr , [°C]	R1, [kΩ]	R2, [kΩ]
70	69,1	3,23	4,71
66	65,1	3,80	5,54
62	51,1	4,41	6,46
58	57,1	5,08	7,44
54	53,3	5,98	8,75
50	49,3	7,06	10,35
46	45,5	8,31	12,20
42	41,6	9,85	14,48
38	37,7	11,67	17,17
34	33,7	14,02	20,72
30	30,3	16,56	24,57

Gdzie:

Tz – Temperatura ustawiona

Tr – Temperatura rzeczywista

R1 - opór termistora 1

 R_2 - opór termistora 2

Następnie by sporządzić wykres zależności oporu od temperatury dla obu termistorów, na jednym wykresie należy wyliczyć niepewności poszczególnych pomiarów.

Niepewność u(V) (po zamianie temperatury T na natężenie prądu) dla miernika Mastech M-830B można wyliczyć ze wzoru:

$$u(V) = \frac{a\% \cdot wynik + b \cdot rozdzielczość}{\sqrt{3}}$$

Gdzie (z instrukcji):

a% - to klasa i wynosi 1,0%

b – stała która wynosi 2

I rozdzielczość miernika wynosi 1

Niepewność u(R₁) I u(R₂) dla mierników Metex M-4350D I Metex M-3870D można wyliczyć niepewności z wyżej wymienionego wzoru po podstawieniu:

a% - 0,5%

b-1

rozdzielczość - 0,01

Podgrzewanie:

Tr , [mV]	u(Tr), [V]	R1, [kΩ]	u(R ₁), [kΩ]	R2, [kΩ]	u(R2), [kΩ]
296	2.86	16,350	0.053	25,000	0.078
337	3.10	13,980	0.046	20,600	0.065
376	3.33	11,630	0.039	17,120	0.055
415	3.55	9,760	0.034	14,350	0.047
454	3.78	8,250	0.030	12,120	0.041
493	4.00	7,020	0.026	10,280	0.035
531	4.22	5,970	0.023	8,740	0.031
572	4.46	5,120	0.021	7,480	0.027
611	4.68	4,370	0.018	6,380	0.024
651	4.91	3,760	0.017	5,470	0.022
691	5.14	3,290	0.015	4,710	0.020

Chłodzenie:

Tr , [mV]	u(Tr), [V]	R1, [kΩ]	u(R ₁), [kΩ]	R2, [kΩ]	u(R ₂), [kΩ]
691	5.14	3,230	0.015	4,710	0.019
651	4.91	3,800	0.017	5,540	0.022
511	4.10	4,410	0.019	6,460	0.024
571	4.45	5,080	0.020	7,440	0.027
533	4.23	5,980	0.023	8,750	0.031
493	4.00	7,060	0.026	10,350	0.036
455	3.78	8,310	0.030	12,200	0.041
416	3.56	9,850	0.034	14,480	0.048
377	3.33	11,670	0.040	17,170	0.055
337	3.10	14,020	0.046	20,720	0.066
303	2.90	16,560	0.054	24,570	0.077

Wykres:

2. Sporządzić wykres zależności logarytmu naturalnego oporności od odwrotności temperatury (wyrażonej w kelwinach): In R = f(1/T). Metodą regresji liniowej dopasować prostą do punktów pomiarowych. Narysować na wykresie prostą regresji.

By sporządzić wykres zależności logarytmu naturalnego oporności od odwrotności temperatury należy podstawić konkretne pomiary do wzoru:

$$\ln(R) = f\left(\frac{1}{T}\right)$$

Podgrzewanie:

Tr , [mV]	$\frac{1}{T'}\left[\frac{1}{K}\right]$	R1, [kΩ]	In(R ₁)	R2, [kΩ]	In(R ₂)
296	0.00330	16,35	2.79423	25,0	3.21888
337	0.00326	13,98	2.63763	20,6	3.02529
376	0.00322	11,63	2.45359	17,12	2.84025
415	0.00318	9,76	2.27829	14,35	2.66375
454	0.00314	8,25	2.11021	12,12	2.49486
493	0.00310	7,02	1.94876	10,28	2.33020
531	0.00307	5,97	1.78675	8,74	2.16791
572	0.00303	5,12	1.63315	7,48	2.01223
611	0.00299	4,37	1.47476	6,38	1.85317
651	0.00296	3,76	1.32442	5,47	1.69928
691	0.00292	3,29	1.19089	4,71	1.54969

Chłodzenie:

Tr , [mV]	$\frac{1}{T'}\left[\frac{1}{K}\right]$	R1, [kΩ]	In(R ₁)	R2, [kΩ]	In(R ₂)
	1 LKJ				
691	0.00292	3,23	1.17248	4,71	1.54969
651	0.00296	3,80	1.33500	5,54	1.71199
511	0.00308	4,41	1.48387	6,46	1.86563
571	0.00303	5,08	1.62531	7,44	2.00687
533	0.00306	5,98	1.78842	8,75	2.16905
493	0.00310	7,06	1.95445	10,35	2.33699
455	0.00314	8,31	2.11746	12,20	2.50144
416	0.00318	9,85	2.28747	14,48	2.67277
377	0.00322	11,67	2.45702	17,17	2.84316
337	0.00326	14,02	2.64048	20,72	3.03110
303	0.00330	16,56	2.80699	24,57	3.20153

3. Obliczenia

Przewodnictwo elektryczne materiałów opisuje się za pomocą wielkości σ , zwanej przewodnością elektryczną:

$$\sigma = \sigma_0 \cdot \exp\left(-\frac{\Delta E}{2kT}\right)$$

Gdzie:

σο - to stała materiałowa o wymiarze elektrycznego przewodnictwa właściwego (jej zależność od temperatury można pominąć wobec wykładniczej zależności sąsiadującego z nią czynnika)

ΔE - to energia aktywacji. W przybliżeniu można przyjąć, że jest to szerokość przerwy energetycznej danego półprzewodnika, o czym decyduje zakres temperatur, w którym przeprowadzany jest pomiar przewodnictwa elektrycznego,

k - to stała Boltzmanna (1,380649 \cdot 10⁻²³ $\frac{J}{K}$)

Opór elektryczny półprzewodnika w funkcji temperatury przedstawia zależność:

$$R = R_0 \cdot \exp\left(-\frac{\Delta E}{2kT}\right)$$

Logarytmując wzór otrzymuje się liniową zależność pomiędzy logarytmem naturalnym rezystancji półprzewodnika a energią aktywacji ΔΕ:

$$\ln(R) = \ln(R_0) + \frac{\Delta E}{2kT}$$

Następnie można z tego wzoru wyznaczyć współczynnik kierunkowy funkcji liniowej dopasowanej do punktów pomiarowych za pomocą metody regresji liniowej:

$$a = \frac{\Delta E}{2K}$$

Przerabiając współczynnik kierunkowy możemy otrzymać wzór na przerwę energetyczną termistorów:

$$\Delta E = 2ka$$

Wyliczymy też niepewność współczynnika nachylenia prostej ze wzoru:

$$u(a) = \sqrt{\frac{n}{n-2} \cdot \frac{S_{\varepsilon\varepsilon}}{nS_{xx} - S_x^2}}$$

Gdzie:

$$S_{x} = \sum_{i=1}^{n} x_{i}$$

$$S_{\varepsilon\varepsilon} = \sum_{i=1}^{n} (y_{i} - ax_{i} - b)$$

$$S_{xx} = \sum_{i=1}^{n} x_{i}^{2}$$

Dla Termistora nr I, przy ogrzewaniu:

Dla Termistora nr I, przy chłodzeniu:

$$a_2 = -4312 \text{ K}$$
; $u(a_2) = 81 \text{ K}$

Dla Termistora nr II, przy ogrzewaniu:

Dla Termistora nr II, przy chłodzeniu:

By obliczyć szerokość przerwy energetycznej termistora 1 i 2 potrzeba użyć następującego wzoru

$$\Delta E = 2 \cdot k \cdot a \cdot s$$

Gdzie:

k - to tała Boltzmanna (1,3806488 \cdot 10⁻²³ $\frac{J}{K}$)

a – współczynnik funkcji liniowej dopasowanej do punktów pomiarowych za pomocą metody regresji liniowej

s – stała użyta do uzyskania wyniku w elektronovoltach (0,62415 · 10¹⁹ eV)

Później podstawiamy dane z termistora 1:

$$\Delta E_1 = 2 \cdot k \cdot a_1 \cdot s = 0.73820 \, eV$$

Obliczamy niepewność wyznaczonej szerokości przerwy energetycznej przy pomocy prawa propagacji niepewności:

$$u(\Delta E_1) = 2 \cdot k \cdot u(a_1) \cdot s = 0.00012eV$$

Powtarzamy obliczenia dla Termistora 2:

$$\Delta E_2 = 2 \cdot k \cdot a_2 \cdot s = 0.75570 \text{ eV}$$
$$u(\Delta E_2) = 2 \cdot k \cdot u(a_2) \cdot s = 0.00013 \text{eV}$$

By sprawdzić czy wyniki są zgodne I czy termistory są jednakowe należy podstawić wyniki pod wzory oceny zgodności dwóch eksperymentów:

$$|\Delta E_1 - \Delta E_2| < U(\Delta E_1 - \Delta E_2)$$

Gdzie:

$$U(\Delta E_1 - \Delta E_2) = 2 \cdot \sqrt{u(\Delta E_1)^2 + u(\Delta E_2)^2}$$

Podstawiając:

$$\left| 0.7382 - 0.7557 \right| < 2 \cdot \sqrt{0.00012^2 + 0.00013^2} \right|$$

$$0.0175 > 0.000353836$$

$$L > P$$

Pokazuje to, że termistory nie są takie same.

4. Podsumowanie

Wykresy które wykonaliśmy pokazują, że opór prądu przepływającego przez półprzewodnik maleje wraz ze wzrostem temperatury. Udowadnia to prawdziwość wzoru na przepływowość prądu w zależności od temperatury. Logarytmując ten wzór dostaliśmy zależność liniową temperatury od oporu co pozwoliło stworzyć wykres regresji liniowej i jej współczynniki. Pozwoliły one na wyznaczenie przerwy energetycznej w termistorach. Wyszło nam, Są one różne, więc nie są wykonane z tych samych materiałów.

5. Bibliografia

- https://cnx.org/contents/u2KTPvIK@3.37:KMSxgvoz@2/9-5-Teoria-pasmowa-cia%C5%82-sta%C5%82ych
- https://cnx.org/contents/u2KTPvIK@3.37:JvtOp8wh@3/9-6-P%C3%B3%C5%82przewodniki-i-domieszkowanie
- https://pl.wikipedia.org/wiki/P%C3%B3%C5%82przewodniki
- https://pl.wikipedia.org/wiki/Sie%C4%87_krystaliczna
- https://pl.wikipedia.org/wiki/Pasmowa_teoria_przewodnictwa
- https://www.youtube.com/watch?v=jcxQxky6wrQ