Notas em Computação Quântica

Ricardo Alvarenga 2024 SUMÁRIO SUMÁRIO

Sumário

1	Álgebra L	inear]
	1.1 Vetore	es	1
	1.1.1	Vetores com duas dimensões - \mathbb{R}^2	1
	1.1.2	Vetores com três dimensões - \mathbb{R}^3	4
	1.1.3	Vetores com n dimensões - \mathbf{R}^n	4
	1.1.4	Como colocar um vetor no plano $\mathbf{R}^3(x, y, z)$	4
	1.1.5	Tipos de Vetores	4
	1.1.6	Igualdade de Vetores	
	1.1.7	Soma de Vetores	
	1.1.8	Subtração de Vetores	4
	1.1.9	Multiplicação de Dois Vetores (Produto Escalar)	4
	1.1.10		
	1.1.11	Módulo/Norma (Norm) de um Vetor	١
		Ângulo entre dois Vetores (Ângulo Θ de dois Vetores)	
		Vetores Colineares	
	1.1.14	Ortogonalidade de Dois Vetores	١
	1.1.15	Vetores Perpendiculares	(
2	Tosto		í

Lista de Figuras

1	Vetores u e v	1
2	Vetores em \mathbb{R}^2	1
3	Vetores em \mathbb{R}^3	2
4	Vetor em \mathbb{R}^3	3
5	Subtração de Vetores	4

1 Álgebra Linear

1.1 Vetores

Vetores são seguimentos orientados (início em 0, 0) que estão sempre no plano cartesiano. Vetores são usados para representar grandezas escalares (massa, pressão, etc.) e grandezas físicas vetoriais (velocidade, força e deslocamento).

Figura 1: Exemplos de Vetores, **u** e **v**

1.1.1 Vetores com duas dimensões - \mathbb{R}^2

x, y podem assumir qualquer valor Real.

Figura 2: Vetores em $\mathbf{R}^2(x,y)$

1.1.2 Vetores com três dimensões - \mathbb{R}^3

x, y, z podem assumir qualquer valor Real.

Figura 3: Vetores em $\mathbf{R}^3(x,y,z)$

1.1.3 Vetores com n dimensões - \mathbb{R}^n

Os vetores com n dimensões são de difícil (ou impossível) representação gráfica. Um vetor \mathbf{R}^4 é indicado da seguinte forma: $\mathbf{R}^4(x,y,z,w)$

1.1.4 Como colocar um vetor no plano $R^3(x, y, z)$

Veja na figura 4 o vetor u = (2, 4, 3).

1.1.5 Tipos de Vetores

- Vetor Nulo: Todos valores iguais a zero. Ex: v = (0,0,0)
- Vetor simétrico ou oposto: Ocorre quando dois vetores são opostos e contêm o mesmo módulo e mesma direção. Ex: v = (x, y), -v = (-x, -y)
- \bullet Vetor unitário: Possui módulo (tamanho) igual a 1. |v|=1
- Vetores colineares ou paralelos: Ocorrem quando dois vetores tiverem a mesma direção, na mesma reta ou retas paralelas.
- Vetores coplanares: Quando dois vetores fazem parte de um mesmo plano.

Figura 4: Vetor em \mathbb{R}^3

1.1.6 Igualdade de Vetores

Dois vetores serão iguais se:

- $x_1 = x_2$
- $y_1 = y_2$
- $z_1 = z_2$ vetores em \mathbb{R}^3
- $w_1 = w_2$ vetores em \mathbb{R}^4

 $u=(3,x+4)\ v=(3,8)$ se x=4os vetores serão iguais.

Sejam: u = (x - 1, 3), v = (3, 2y - 1). Determine o valor de x e y para que u = v.

$$x=4,\,y=2$$

1.1.7 Soma de Vetores

Para realizar a soma de dois vetores temos que efetuar a soma de cada elemento com seu correspondente.

Exemplo:

$$u = (2,3), v = (5,6)$$

$$u + v = (7,9)$$

Figura 5: Subtração de Vetores

1.1.8 Subtração de Vetores

 $A=(-1,2)\ B=(2,1).\ v=\overrightarrow{AB}$ o vetor está "perdido"
no plano cartesiano. Para corrigir isso, realizamos a subtração:

B-A=(2,1)-(-1,2)=(3,-1). Que resulta no vetor t=(3,-1), conforme figura 5. Outro exemplo: Dois vetores u=(-1,3) e v=(10,20), a subtração u-v resulta em (-11,-17). Sejam u e v vetores no $\mathbf{R}^n[1]$: $u=(a_1,a_2,...,a_n)$ e $v=(b_1,b_2,...,b_n)$ $u-v=(a_1-b_1,a_2-b_2,...,a_n-b_n)$.

1.1.9 Multiplicação de Dois Vetores (Produto Escalar)

Assim como na soma e subtração de vetores, podemos multiplicar vetores. O nome correto deste tipo de operação é *Produto Escalar*.

Sejam u e v vetores no \mathbf{R}^n : $u=(a_1,a_2,...,a_n)$ e $v=(b_1,b_2,...,b_n)$ $u*v=(a_1*a_2+b_1*b_2,...,+a_n*b_n)$. Exemplo: u=(1,2), v=(5,3) Então: u*v=(1,2,3,4)*(5,3,1,4)=(5+6+3+16)=30

1.1.10 Multiplicação por um Escalar

Multipliacação por um escalar é multiplicar um número por um vetor.

Sejam: $t = (x_1, x_2, ..., x_n)$ e um número aTemos: $at = a(x_1, x_2, ..., x_n) = (a * x_1, a * x_2, ..., a * x_n)$ Exemplo:

$$u = (4,5)$$
 e $a = 2$, $au = 2(4,5) = (8,10)$

1.1.11 Módulo/Norma (Norm) de um Vetor

A norma ou módulo de um vetor é o comprimento desse vetor, que pode ser calculado por meio da distância de seu ponto final até a origem.

A norma de u é denotada por ||u||.

Considerando o vetor $u=(a_1,a_2,...,a_n)$, calculamos sua norma, ou módulo, da seguinte forma[1, 2]: $||u||=\sqrt{u*u}=\sqrt{a_1^2+a_2^2+...+a_n^2}$

Exemplo:
$$v = (5,6), ||v|| = \sqrt{(v * v)} = \sqrt{(5,6)} * (5,6) = \sqrt{61}$$

ou de forma direta:

$$||v|| = \sqrt{(5^2 + 6^2)} = \sqrt{61}$$

Se ||u|| = 1, temos um vetor unitário.

1.1.12 Ângulo entre dois Vetores (Ângulo Θ de dois Vetores)

Considerando dois vetores que partem do mesmo ponto, o ângulo entre eles é representado por Θ . O ângulo Θ é dado por:

$$cos\Theta = \frac{u*v}{\|u\|*\|v\|}$$

Exemplo:

Sendo os vetores u=(2,2) e v=(0,-2), encontre o ângulo Θ :

$$cos\Theta = \frac{u*v}{\|u\|*\|v\|} = \frac{-4}{\sqrt{(8)*2}} = \frac{-2}{\sqrt{8}} = \frac{-2}{\sqrt{2}*\sqrt{4}} = \frac{\frac{-2}{2}}{\sqrt{2}} = \frac{-1}{\sqrt{2}} = \frac{-1}{\sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}} = \frac{-\sqrt{2}}{2} = 135^{\circ}$$

1.1.13 Vetores Colineares

Dois vetores são colineares (paralelos), quando:

$$v = (x_1, y_1) e t = (x_2, y_2)$$

 $\frac{x_1}{x_2} = \frac{y_1}{y_2} = a$

Exemplo: Verifique se u e v são colineares, sendo u=(-3,2) e v=(6,-4)

$$\frac{-3}{6} = -\frac{1}{2}$$
 e $\frac{2}{-4} = -\frac{1}{2}$ então: $a = -\frac{1}{2}$

1.1.14 Ortogonalidade de Dois Vetores

Considerando dois vetores coplanares (em R^2), eles serão ortogonais se o Θ , entre eles, for 90° .

Matematicamente: u * v = 0

Exemplo: Verifique se os vetores u=(1,2) e v=(-2,1), são ortogonais:

$$u*v = (1*-2+2*1) = (-2+2) = 0$$

1.1.15 Vetores Perpendiculares

Dois vetores, em \mathbb{R}^n com $n \geq 3$, são perpendiculares entre si, se o seu produto escalar for igual a zero.

2 Teste

O estado quântico $|\psi\rangle$ é representado como um ket vector.

 $|0\rangle, |1\rangle$

 $\alpha_1, \alpha_2, \alpha_3$

 $\alpha_4, \alpha_5, \alpha_6$

O conjunto dos números reais é denotado por \mathbb{R} .

REFERÊNCIAS REFERÊNCIAS

Referências

[1] Seymour Lipschutz. Álgebra linear - $2^{\underline{a}}$ Edição. McGraw-Hill, 1972.

[2] Howard Anton and Chris Rorres. Álgebra Linear com Aplicações - $10^{\underline{a}}$ Edição. Bookman Editora, 2012.