Question 1:

A1) 10011011,

$$= [128 + 16 + 8 + 2 + 1]_{10} = 155_{10}$$

=
$$[(4 \times 7^2) + (5 \times 7^1) + (6 \times 7^0)]_{10} = 237_{10}$$

=
$$[(3 \times 16^2) + (8 \times 16^1) + (10 \times 16^0)]_{10} = 906_{10}$$

=
$$[(2 \times 5^3) + (2 \times 5^2) + (1 \times 5^1) + (4 \times 5^0)]_{10} = 309_5$$

B1) 69₁₀

$$\rightarrow$$
 69 / 2 = 34 R 1

$$\rightarrow$$
 34 / 2 = 17 R 0

$$\rightarrow$$
 17 / 2 = 8 R 1

$$\rightarrow$$
 8 / 2 = 4 R 0

$$\rightarrow$$
 4 / 2 = 2 R 0

$$\rightarrow$$
 2 / 2 = 1 R 0

$$\rightarrow$$
 1 / 2 = 0 R 1

B2) 485₁₀

$$\rightarrow$$
 485 / 2 = 242 R 1

$$\rightarrow$$
 242 / 2 = 121 R 0

$$\rightarrow$$
 121 / 2 = 60 R 1

$$\rightarrow$$
 60 / 2 = 30 R 0

$$\rightarrow$$
 30 / 2 = 15 R 0

$$\rightarrow$$
 15 / 2 = 7 R 1

$$\rightarrow$$
 7 / 2 = 3 R 1

$$\rightarrow$$
 3 / 2 = 1 R 1

$$\rightarrow$$
 1 / 2 = 0 R 1

= **111100101**₂

B3) 6D1A₁₆

Using the hexadecimal to binary chart 6 = 0110 D = 1101 1 = 0001 A = 1010 $6D1A_{16} = 0110110100011010_2$

= 110110100011010,

C1) 1101011₂

Going from right to left

$$\rightarrow$$
 1011 = B 0110 = 6

$$1101011_2 = 6B_{16}$$

C2) 895₁₀

$$\rightarrow$$
 895 / 16 = 55 R 15 (F)₁₆

$$\rightarrow$$
 55 / 16 = 3 R 7 (7)₁₆

$$\rightarrow$$
 3 / 16 = 0 R 3 (3)₁₆

$$= 37F_{16}$$

Hex	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Question 2:

Starting from right to left

$$\rightarrow$$
 6 + 5 = 3 carry 1

$$\rightarrow$$
 6 + 1 + 1 = 0 carry 1

$$\rightarrow$$
 5 + 5 + 1 = 3 carry 1

$$\rightarrow$$
 7 + 4 + 1 = 4 carry 1

$$\rightarrow$$
 +1 = 1

$$= 14303_8$$

+	1	0	1	1	0	0	1	1
=					1	1	0	1

$$\rightarrow$$
 1 + 1 = 0 carry 1

$$\rightarrow$$
 1 + 0 + 1 = 0 carry 1

$$\rightarrow$$
 0 + 1 + 1 = 0 carry 1

$$\rightarrow$$
 0 + 1 + 1 = 0 carry 1

$$\rightarrow$$
 1 + 1 = 0 carry 1

$$\rightarrow$$
 1 + 1 = 0 carry 1

$$\rightarrow$$
 0 + 1 = 1

$$\rightarrow$$
 1 = 1

3)
$$7A66_{16} + 45C5_{16}$$

$$\rightarrow$$
 6 + 5 = B

$$\rightarrow$$
 6 + C = 2 carry 1

$$\rightarrow$$
 A + 5 + 1 = 0 carry 1

$$\rightarrow$$
 7 + 4 + 1 = C

$$\rightarrow$$
 2 - 3 = 12 - 3 = 4 borrow 1

$$\rightarrow$$
 (2 - 1) - 3 = 11 - 3 = 3 borrow 1

$$\rightarrow$$
 (0 - 1) - 4 = 4 - 4 = 0 borrow 1

$$\rightarrow$$
 (3 - 1) - 2 = 0

Question 3:

$$\rightarrow$$
 124 / 2 = 62 R 0

$$\rightarrow$$
 62 / 2 = 31 R 0

$$\rightarrow$$
 31 / 2 = 15 R 1

$$\rightarrow$$
 15 / 2 = 7 R 1

$$\rightarrow$$
 7 / 2 = 3 R 1

$$\rightarrow$$
 3 / 2 = 1 R 1

$$\rightarrow$$
 1 / 2 = 0 R 1

= 01111100_{8-bits two's complement}

A2)
$$-124_{10} =$$

	0	1	1	1	1	1	0	0
+	?	?	?	?	?	?	?	?
1	0	0	0	0	0	0	0	0

Starting from right to left

$$\rightarrow$$
 0 + ? = 0 \rightarrow ? = 0

$$\rightarrow 0 + ? = 0 \rightarrow ? = 0$$

$$\rightarrow$$
 1 + ? = 0 \rightarrow ? = 1 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

$$\rightarrow$$
 0 + ? + 1 = 0 \rightarrow ? = 1 carry 1

= 10000100_{8-bits two's complement}

A3) 109₁₀

$$\rightarrow$$
 109 / 2 = 54 R 1

$$\rightarrow$$
 54 / 2 = 27 R 0

$$\rightarrow$$
 27 / 2 = 13 R 1

$$\rightarrow$$
 13 / 2 = 6 R 1

$$\rightarrow$$
 6 / 2 = 3 R 0

$$\rightarrow$$
 3 / 2 = 1 R 1

$$\rightarrow$$
 1 / 2 = 0 R 1

$= \ 01101101_{8\text{-bits two's complement}}$

A4)
$$-79_{10}$$

First convert into positive 8-bits two's complement

$$\rightarrow$$
 79 / 2 = 39 R 1

$$\rightarrow$$
 39 / 2 = 19 R 1

$$\rightarrow$$
 19 / 2 = 9 R 1

$$\rightarrow$$
 9 / 2 = 4 R 1

$$\rightarrow$$
 4 / 2 = 2 R 0

$$\rightarrow$$
 2 / 2 = 1 R 0

$$\rightarrow$$
 1 / 2 = 0 R 1

= 01001111_{8-bits two's complement}

Find the inverse of the positive

	0	1	0	0	1	1	1	1
+	?	?	?	?	?	?	?	?
1	0	0	0	0	0	0	0	0

$$\rightarrow$$
 1 + ? = 0 \rightarrow ? = 1 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

$$\rightarrow$$
 0 + ? + 1 = 0 \rightarrow ? = 1 carry 1

$$\rightarrow$$
 0 + ? + 1 = 0 \rightarrow ? = 1 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

$$\rightarrow$$
 0 + ? + 1 = 0 \rightarrow ? = 1 carry 1

= 10110001_{8-bits two's complement}

B1) $000111110_{8-\text{bit two's complement}}$

Leftmost bit = $0 \rightarrow positive$

	0	0	0	1	1	1	1	0
=	128	64	32	16	8	4	2	1

$$= 16 + 8 + 4 + 2 = 30_{10}$$

B2) $11100110_{8-bit two's complement}$

Leftmost bit = $1 \rightarrow \text{negative} \rightarrow \text{find the inverse}$

	1	1	1	0	0	1	1	0
+	?	5	5	5	5	5	5	?
1	0	0	0	0	0	0	0	0

$$\rightarrow 0 + ? = 0 \rightarrow ? = 0$$

$$\rightarrow$$
 1 + ? = 0 \rightarrow ? = 1 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

$$\rightarrow$$
 0 + ? + 1 = 0 \rightarrow ? = 1 carry 1

$$\rightarrow$$
 0 + ? + 1 = 0 \rightarrow ? = 1 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

= 00011010_{8-bit two's complement}

$$= 16 + 8 + 2 = 26_{10}$$

$$\rightarrow$$
 11100110_{8-bit two's complement} = **-26₁₀**

B3) $00101101_{8-\text{bit two's complement}}$

Leftmost bit = $0 \rightarrow positive$

$$= 32 + 8 + 4 + 1 = 45_{10}$$

B4) $10011110_{8-\text{bit two's complement}}$

Leftmost bit = $1 \rightarrow \text{negative} \rightarrow \text{find inverse}$

	1	0	0	1	1	1	1	0
+	5	5	5	5	5	5	5	?
1	0	0	0	0	0	0	0	0

$$\rightarrow 0 + ? = 0 \rightarrow ? = 0$$

$$\rightarrow$$
 1 + ? = 0 \rightarrow ? = 1 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

$$\rightarrow$$
 0 + ? + 1 = 0 \rightarrow ? = 1 carry 1

$$\rightarrow$$
 0 + ? + 1 = 0 \rightarrow ? = 1 carry 1

$$\rightarrow$$
 1 + ? + 1 = 0 \rightarrow ? = 0 carry 1

= 01100010_{8-bit two's complement}

	0	1	1	0	0	0	1	0
=	128	64	32	16	8	4	2	1

$$= 64 + 32 + 2 = 98_{10}$$

$$\rightarrow$$
 10011110_{8-bit two's complement} = -98_{10}

Question 4:

1b)

Р	Q	¬(p V q)
Т	Т	F
Т	F	F
F	Т	F
F	F	Т

1c)

R	Р	Q	r V (p ∧ ¬q)
Т	Т	Т	Т
Т	Т	F	Т
Т	F	Т	Т
Т	F	F	Т
F	Т	Т	F
F	Т	F	Т
F	F	Т	F
F	F	F	F

2b)

р	q	$(p \rightarrow q) \rightarrow (q \rightarrow p)$
Т	Т	Т
Т	F	Т
F	Т	F
F	F	Т

2d)

р	q	(p ↔ q) ⊕ (p ↔ ¬q)
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	Т

Question 5:

Question 6:

- 1b) If Joe is eligible for the honors program, then he has maintained a B average.
- 1c) If Rajiv can go on the roller coaster, then he is at least 4 feet tall.
- 1d) If Rajiv is at least 4 feet tall, then he can go on the roller coaster.
- 2c) False. The conclusion is false
- 2d) False. The conclusion is false
- **2e)** Unknown. If r is true then the expression is true and vice versa
- **2f)** Unknown. If r is true then the expression is true and vice versa

Question 7:

$$\neg j \rightarrow (l \ v \ \neg r)$$

 $(r \ ^ \neg l) \rightarrow j$

j	1	r	¬j -> (1 v ¬r)	(r ^ ¬1) → j
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	Т	F
F	Т	F	Т	Т
F	F	Т	Т	Т
F	F	F	F	Т

Not logically equivalent

1c)

j	1	j -> ¬l	¬j -> 1
Т	Т	F	Т
Т	F	Т	Т
F	Т	Т	F
F	F	Т	F

Not logically equivalent

1d)

$$(r \ v \ \neg l) \rightarrow j$$

 $j \rightarrow (r \ ^ \neg l)$

j	1	r	(r v ¬l) → j	j -> (r ^ ¬1)
Т	Т	Т	Т	F
Т	Т	F	Т	F
Т	F	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	Т
F	Т	F	Т	Т
F	F	Т	F	Т
F	F	F	Т	F

Not logically equivalent

Question 8:

1c)
$$(p \rightarrow q) ^ (p \rightarrow r) \equiv p \rightarrow (q ^ r)$$

$$\rightarrow$$
 ($\neg p \ v \ q$) ^ ($\neg p \ v \ r$) | Conditional Identity

$$\rightarrow \neg p$$
 v (q ^ r) | Distributive Laws

$$\rightarrow$$
 p \rightarrow **(q ^ r)** | Conditional Identity

1f)
$$\neg (p \ v \ (\neg p \ ^ q)) \equiv \neg p \ ^ \neg q$$

$$\rightarrow \neg p ^ \neg (\neg p ^ q) \mid De Morgan's Laws$$

$$\rightarrow \neg p ^ \neg \neg p v \neg q \mid De Morgan's Laws$$

$$\rightarrow \neg p$$
 ^ p v $\neg q$ | Double Negation Law

$$\rightarrow$$
 (¬p ^ p) v (¬p ^ ¬q) | Distributive Laws

$$\rightarrow$$
 F v (\neg p ^ \neg q) | Complement Laws

$$\rightarrow \neg p ^ \neg q \mid \text{Identity Laws}$$

1i)
$$(p ^ q) \rightarrow r \equiv (p ^ ¬r) \rightarrow ¬q$$

$$\rightarrow \neg (p ^ q) v r | Conditional Identity$$

$$\rightarrow$$
 ($\neg p$ v r) v $\neg q$ | Associative Laws

$$\rightarrow \neg (\neg p \ v \ r) \rightarrow \neg q \mid Conditional Identity$$

$$\rightarrow$$
 ($\neg\neg p ^ \neg r$) $\rightarrow \neg q$ | De Morgan's Laws

$$\rightarrow$$
 (p ^ ¬r) \rightarrow q | Double Negation Law

2c)
$$\neg r \ v \ (\neg r \rightarrow p)$$

$$\rightarrow \neg r \ v \ r \ v \ p \mid$$
 Double Negation Law

$$\rightarrow$$
 T v p | Complement Laws

2d) $\neg (p \rightarrow q) \rightarrow \neg q$

 $\rightarrow \neg (\neg p \ v \ q) \rightarrow \neg q \mid Conditional Identity$

 $\rightarrow \neg \neg p ^ \neg q \rightarrow \neg q \mid De Morgan's Laws$

 \rightarrow (p ^ \neg q) \rightarrow \neg q | Double Negation Law

 $\rightarrow \neg (p ^ \neg q) v \neg q \mid Conditional Identity$

 $\rightarrow \neg p \ v \ \neg \neg q \ v \ \neg q \ | \ De \ Morgan's \ Laws$

 $\rightarrow \neg p \ v \ q \ v \ \neg q \ |$ Double Negation Law

 $\rightarrow \neg p \ v \ T \mid Complement Laws$

 \rightarrow **T** | Domination laws

Question 9:

1c)
$$\exists x (x = x^2)$$

1d)
$$\forall x (x \leq x^2)$$

2b)
$$\forall x (\neg S(x) ^ M(x))$$

2c)
$$\forall x (S(x) \rightarrow \neg W(x))$$

2d)
$$\exists x (S(x) ^ W(x))$$

Question 10:

1c) True,
$$R(c) = F$$
 and $F \rightarrow F = T$

2b) True,
$$x = 2$$

2d) True

2e) False, no y exists where
$$Q(1, y)$$
, $Q(2, y)$, and $Q(3, y) = T$

2g) False

2i) True

Question 11:

1c)
$$\exists x \exists y (x + y = xy)$$

1d)
$$\forall x \ \forall y (x, y > 0 \rightarrow x/y > 0 ^ y/x > 0)$$

1e)
$$\forall x (0 < x < 1 \rightarrow 1/x > 1)$$

1f)
$$\forall x \ \forall y (x < y)$$

1g)
$$\forall x (x \neq 0 \rightarrow x * 1/x = 1)$$

2c)
$$\exists x (N(x) ^D(x))$$

2d)
$$\forall y (P(Sam, y) ^ D(y))$$

2e)
$$\exists x \ \forall y (P(x, y) \ ^(N(x))$$

2f)
$$\exists x (D(x) ^ \forall y (y \neq x \rightarrow \neg D(y))$$

3c)
$$\forall x \exists y (y \neq Math 101 \rightarrow T(x, y))$$

3d)
$$\exists x \forall y (y \neq Math 101 \rightarrow T(x, y))$$

3e)
$$\forall x \exists y \exists z (x \neq Sam ^ y \neq z \rightarrow T(x, y) ^ T(x, z))$$

3f)
$$\exists x \exists y \forall z (x \neq y \neq z \rightarrow T(Sam, x) ^ T(Sam, y) ^ ¬T(Sam, z))$$

Question 12:

receive the placebo

```
1b) \forall x (D(x) \ v \ P(x)) \ v \ (D(x) \ ^ P(x))
\rightarrow Negation: \neg \forall x (D(x) \lor P(x)) \lor (D(x) \land P(x))
\rightarrow De Morgan's: \exists x \neg [(D(x) \lor P(x)) \lor (D(x) \land P(x))]
\rightarrow De Morgan's: \exists x \neg (D(x) \lor P(x)) \land \neg (D(x) \land P(x))
\rightarrow De Morgan's: \exists x \neg D(x) ^ \neg P(x) ^ \neg D(x) v \neg P(x)
→ English: There is a patient who did not get the placebo or not
given the medication, or both.
1c) \exists x (D(x) ^ M(x))
\rightarrow Negation: \neg \exists x (D(x) ^ M(x))
→ De Morgan's: \forall x \neg D(x) v \neg M(x)
\rightarrow English: Every patient either was not given the medication or
did not get migraines
1d) \forall x (P(x) \rightarrow M(x))
\rightarrow Negation: \neg \forall x (P(x) \rightarrow M(x))
\rightarrow De Morgan's: \exists x \neg (P(x) \rightarrow M(x))
\rightarrow Conditional: \exists x \neg (\neg P(x) \lor M(x))
\rightarrow De Morgan's: \exists x \neg \neg P(x) \land \neg M(x)
\rightarrow Double Negation: \exists x P(x) ^ \neg M(x)
\rightarrow English: There is a patient who received the placebo but did
not get migraines
1e) \exists x (M(x) ^ P(x))
\rightarrow Negation: \neg \exists x (M(x) ^ P(x))
→ De Morgan's: \forall x \neg M(x) v \neg P(x)
→ English: Every patient either did not get migraines or did not
```

2c) $\forall x \exists y (P(x,y) \land \neg Q(x, y))$

2d)
$$\forall x \exists y \neg (P(x, y) \rightarrow P(y, x) \land P(y, x) \rightarrow P(x, y))$$

 $\rightarrow \forall x \exists y \neg (P(x, y) \rightarrow P(y, x)) \lor \neg (P(y, x) \rightarrow P(x, y))$
 $\rightarrow \forall x \exists y [P(x, y) \lor \neg P(y, x)] \lor [P(y, x) \lor \neg P(x, y)]$

2e)
$$\forall x \ \forall y \ \neg P(x,y) \ ^ \exists x \ \exists y \ \neg Q(x, y)$$