Correlation Analysis

```
import warnings
warnings.filterwarnings('ignore')
```

Load Data

• 키, 몸무게 데이터

```
import pandas as pd

url = 'https://raw.githubusercontent.com/rusita-ai/pyData/master/PII.csv'

DF = pd.read_csv(url)

DF.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17 entries, 0 to 16
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype			
0	Name	17 non-null	object			
1	Gender	17 non-null	object			
2	Age	17 non-null	int64			
3	Grade	17 non-null	int64			
4	Picture	17 non-null	object			
5	BloodType	17 non-null	object			
6	Height	17 non-null	float64			
7	Weight	17 non-null	float64			
dtypes: float64(2), int64(2), object(4)						
memory usage: 1.2+ KB						

DF.head()

	Name	Gender	Age	Grade	Picture	BloodType	Height	Weight
0	송태섭	남자	21	3	무	В	179.1	63.9
1	최유정	여자	23	1	유	А	177.1	54.9
2	이한나	여자	20	1	무	А	167.9	50.2
3	김소혜	여자	23	3	무	Ο	176.1	53.5
4	서태웅	남자	24	4	무	В	176.1	79.8

→ I. Covariance

▼ 1) 공분산

```
import numpy as np
np.cov(DF.Height, DF.Weight)[0][1]
```

63.83036764705884

▼ 2) Pearson 상관계수

• 공분산을 두 변수의 표준편차의 곱으로 나눈 값

```
np.cov(DF.Height, DF.Weight)[0][1] / \times \\
((np.std(DF.Height, ddof = 1) * \times \\
np.std(DF.Weight, ddof = 1)))
```

0.6848075756314844

→ II. scipy

from scipy import stats

▼ 1) Karl Pearson 상관계수

• 기본적으로 등간척도/비율척도 변수에만 적용가능

```
stats.pearsonr(DF.Height, DF.Weight)[0]
```

0.6848075756314843

▼ 2) spearman 상관계수

- 서열척도 변수가 포함되어도 적용가능
- 등간척도/비율척도 두 변수 간의 관계가 비선형적 일 때 적용

```
stats.spearmanr(DF.Height, DF.Weight)[0]
```

0.6507060771796446

→ 3) kendall tau

- spearman 상관계수와 같은 경우 적용가능
- 표본이 작을 때 spearman 상관계수보다 신뢰할 수 있음

```
stats.kendalltau(DF.Height, DF.Weight)[0]
```

0.5278846884821402

→ III. pandas

▼ 1) Pearson 상관계수

• method('pearson', 'spearman', 'kendall')

```
DF.corr(method = 'pearson')
```

	Age	Grade	Height	Weight
Age	1.000000	0.495118	0.349681	0.452384
Grade	0.495118	1.000000	0.312777	0.574785
Height	0.349681	0.312777	1.000000	0.684808
Weight	0.452384	0.574785	0.684808	1.000000

→ 2) Heat Map

▼ IV. numpy

import numpy as np

▼ 1) Pearson 상관계수

```
np.corrcoef(DF.Height, DF.Weight)[0][1]
```

0.6848075756314843

▼ V. Visualization

#

#

#

The End

#

#

#