FUNCTIONS

One he de tenir une funció?
· · · · · · · · · · · · · · · · · · ·
· Conjut A. ("ongen") # Dornan # Pierodo que rong de mo tout sols to day. · Conjut B ("desta") 8 en de mémoros.
. Une "regle / procedimit/formule" que paer que benol x et ens done un une y e
Notacie: Jence Codomi (vesti) Notacie: A gio levot initize do y A initize MALAMENT
Obs: NO pot haver x sense valer de venettat (Valor de A)
Donat y & B, una antimatge de y & x & A t.q. f(x) = y.
Obs: y pot tindre 0,1,0>1 invatiges # Les constants tenen infinifes.
CX:
S. S. IR DIR. NO en funció for ma existex.] . S. IR- sog - DIR sol. 1.
XI De x [No enta bour de].)
· P. R> R
F: R → R Set six ≠0 Sel. 2 X (26) six=0 Pol see quelievel.
LK:
J. # N., J(x) = 1x). e. junio
J. Z. D. N., S(x) = 1x1. E. Juno J. J. p.g. desti de ferent Se Z DZ, S(x) = 1x1. E. Juno J. H. Absolutonul tot be de ser ig. et
Ouarter innetger té 3? 2 (per f. 2/2) Caranter innotger té 0? 1 (f. 2/2)
Quarter imatign té -3? Per f. no té seulit (Pg det : IV)
Pin Ja ti 2
Ex: $g(x) = \frac{3x-5}{4}$ er fund si considerem $g(x) = \frac{3x-5}{4}$ er $g(x) = \frac{3y-5y}{4} \in g(x)$ $g(x) = \frac{3x-5}{4}$ er fund si considerem $g(x) = \frac{3y-5y}{4} \in g(x)$ $g(x) = \frac{3x-5}{4}$ er $g(x) = \frac{3y-5y}{4} \in g(x)$ $g(x) = \frac{3x-5}{4}$ er $g(x) = \frac{3y-5y}{4} \in g(x)$ $g(x) = \frac{3x-5}{4}$ er $g(x) = \frac{3y-5y}{4} \in g(x)$ $g(x) = \frac{3x-5}{4}$ er $g(x) = \frac{3y-5y}{4} \in g(x)$ $g(x) = \frac{3y-5y}{4} \in$
R → R → No VZ + R.
Ex: Obs: No té pq si sivils de [] - [] Signi posible.
$A = S_{CO} = S \times I \times CC $
* $A = \{a, b, c\}$ $A = \{a, b,$
t x.c donied y E.B;

```
- Domini Origen ignel
 \int_{\mathbb{R}^{n}} | (x) = | x | 
 • \int_{\mathcal{L}} : \mathbb{N} \to \mathbb{Z} \int_{\mathcal{L}} (x) = x
                                                                                                                     - Danum Derto i gual.
                                                                                                                        f(x) = f(x) \quad \text{pg.} |x| = x.
                                                                                                                         - Dom OG ignal
  · [: \1,2] -DZ. J(x), = x2.
                                                                                                                         Down END ignal

- \int_{1}^{1} (1) = 1^{2} = 1 | \int_{1}^{1} (2) = 2^{2} = 4.

\int_{1}^{1} (2) = 3 - 2 = 1 | \int_{2}^{1} (2) = 6 - 2 = 4
  . o f2: f1,23. → Z . f(x), =3x-2 )
  Si intentem angliar Don. je no.
    x^2 = 3x - 2 = 0 x^2 - 3x + 2 = 0
 I qualitat entre femons
                                                                                                                             I Si en um Dom of 1015 els electro teren notes ing.
                                                                                                                  Dom, Regb. iguds. J=g AD V x EA. f(x) = g(x) 31/21.
 Dues Juios Son igral Steven Dom, Co
 Propietats que poden timbre.
Impective: \forall x, x' \in A \ (x \neq x' \rightarrow f(x) \neq f(x'))
                                                                                                                                                                                         # Dom: Tots et volors possibles
Rong Valors que es prener
 Exhaustiva: Rang (f) = Codom (f) Yy \( B \) \( \frac{1}{2} \) \( \
                                                                                                                                                                                    Dom = 31,2,3,4 f. i. Ray = 31,2,41.
                                                                                                                                                                                    No hole cap x ty 1 = 3.
  Bijective: Si et Injective i Exhaustive (al'hora)
                                     \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 3 & 1 & 1 & 1 \end{pmatrix}
   Obs: Jungestive + My & B. to com a mult I antimetge.
                Jexhanstine & Dy & B. te com a minim 1 antimatge
                 J. byentine to My &B. te amice antimatge.
   Funia Inversa
   J: A→B bijective, llavois f'és funo injective i vo def f' B→A.
(f'(y) = x + D f(x) = y ) - B-DA

YyeB: P | f'(y) és l'úmic x & A + q f(x) = y
                                                                                                                                                                                               X & J. (A) = D S(x) & A.
```

```
En molts llibres /aguils guen temm J. A B usem J. (y) per referir-mes
           al conjut antiematge de y això és . Ix e A I fix = y {
           La inverse de l'invera et le fine originet (f.) (x) = f(x)
           Demo: (La inverse de l'invera esf.)

Jexi = y on x & A i (y & B & tomb es pot div. que Jexi & B) & Def. de Juvo. J. A + B
                                                                                          · Tenin y ∈ B arbi
. Aphiquen inva t.g f-(y) ∈ A
E(f(f(x))) = x \in A (Prop

f(f(y)) = y \in B (Juno).

f(x) = y \in B (Prop

f(x) = y 
                                                                                          · Apliquer fice a l'invera +.9 f(f-(y)) € B.
          Composició de Junions
                                                                                        · Per le prop[2] y & B.
                                                                                        C definim la composició de J. i ej que an
          Donada, J. A-P.B. i. g. B-A
                                                                                         g. f: A → C
          J. composado de g. + g.
                                                                                             x \mapsto g(g_{\alpha i}) = (g \cdot f)(x)
          A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D \Rightarrow h \cdot (g \cdot f) = (h \cdot g) \cdot f
          J: A-B, Clavors IB . J = J. IA = f
                                                                                                                                           g. f injective => f injective.
                                                                                                                                          gof exhautive = g exhautive.
          Si. Ji g. Fo Exhautive D g of to Exhautive

De Dijective

De Bijective
                                                                                                                                         go of bijective => of injective i of exhautine
        IA: A + A. IA(x) = X VX EA J: A-08. IBIJO = J. ...

Identifut:

Identifut:

RAJEGO on for 1 and of
         Si J A + B by cetive, Clavers J. J = IA i J. J = IB
          Si f: A + B i. g. B-PA Satisfan g.f= In i f.g= Io
          La Clavors les dues son bijectives i cade une en l'invers de l'altre : g=f-i f=g-
         Pot ser que goj = In però que of me signi l'inversa de f.
         Obs: f(x) = f(x) pg. f(x) està ben definida
         \frac{\text{Demo}:}{\int(x)} \int A - \alpha B \quad (\int_{-1}^{-1} \alpha f = I_{A})
\int(x) = \int(x) dx \quad \int_{-1}^{-1} (f(x)) = \int_{-1}^{-1} \alpha f(x) = X
                                                                                                                                                                                       Per def d'identifat.
```

FM-4-T-2

Airo. demesti Terum gof et bijective > finjective (1) Temm Jag et bijective = D. g. injective. . J. exhaustive Per consequencia Per prop (1)+(2) temm gere. I bijective i g bijective. I i g tenen inverses definder. Temm. que $g \circ f = I_A$ $\Leftrightarrow g \circ f(x) = x = g(f(x)) \Leftrightarrow g^{-1}(x) = f(x)$. $\forall x \in A$. Llovars. x = g(f(x)). fem. $g^{-1}(x) = g(f(x))$. $\Rightarrow g^{-1}(x) = g(f(x)) \Rightarrow g^{-1}(x) \Rightarrow g^{-1}$

1. Estudie injectivitet, exhaustivitet i bijectivitet de Jos= IXI Z - Z : j.

JOS= IXI= 17 × SI X 20 11

N - 0 Z INI - 0 Z I IN -0 # : j3 J. Ben def. INO, SCD= 1=SEAS INO, negatives no terre ading N → N: J4 12: Ben def. No, 11 St, ja que are ester en N i antients de 34 es 34 (d'yeulque -34). 3: Ben def. 1 Si, Tots valors de IN trub estan en #1 NO, peq. 14: Ben def. 1 Si, pg 1x1=x pertats volens 1 Si. (a) $\int : N \to 7$ $\int f(x) = \frac{-x}{2}$ so x par Deno. que $\int e^{-x} by e^{-x} dx$.

Le fino este ben definide. Don't series $\frac{x+1}{2}$ inc i series $\int -x Ben obf$. $\int (3) = \frac{3+1}{2} = 2 \neq \sqrt{2}$ & que és injective pq. quelsonel valor de N à pot regutar en Z. S(2) = = == = 172V No er exhaustive pg. quen x is parell (possition pg en del Dom N) el vantat en In montine negation i agent no te antii Si que es exhaustira pq. si nombre en mystin, sig. que x parell portio. & worker ponition, sig. que x senon ponition. Donat que à matine i exalustive, le suro en bijentine ". (3). A,B,C, counts t.q A,B = C f: Pcc) - PcAx P(B) aixi: Sco = (xnA, xnB) a) Deux que està ben def. GAT - Umintat del Dom: per a un conjut X & Sec) diem que (XnA; XnB). com (x,y) Com que AiBson subconjuts de C, en tots els corror l'élent « ex pot entar o riv en le interence omb A. Passa el mateix amb B. Li KEX i K & A obtandion & i agust està contemplet en S(A) & S(B). Està sen defint.

b) Dono injective & AUB = C.

Injective = PAUB = E I

Donot que és injective, a te artimatoz, sing que noter de X està en Scer.

Com defent an "a)" tols che volors timen innela donot que A, B, C.

Le mé de lots che assor de C prevoce que est que forest per KALIED

ten curseg de det de Scroynt forment me combinario de combinario de combinario.

For covering de def de Recognif forment je combinato de comberge) for que C= AUB

(9). Det. si fuions de # en # son inj, bi, exte.
α) $M \rightarrow M-1$
- Injective: Si, pg. codo valor de n ti m sel volor m-1.
- Exchustine: St, Pg. don't que It i injut segue la houre un volor per m-1.
- Thout are so con be clay. Si a bi full. Al price to
b) m + m²-1 - Janjentine: Si, 14 Ht aixi. Be de sobres com aixi. Be de sobres com aixi. Be de sobres com
- Fanjertire: Si, 14 ett - Exalitatio: No 19 no a pat regular mi 1 mi2. Per cep valor de m. se fi.
Per demo mo injectivitat
- Bijeilre: NO Fer Contre ouple.
c) M-PM3 -Injective: St, Pg "
- takerstre: No pg no li le cop volor de # pre reputor 1.
- Brigestile: NO
d) M -> E(M/2) # E-part eville to Journal
-Impetive: No, per 2:3 term instige 1.
- Exalustive: & , per remotat à injever a M i capeta infiret.
-Bjedle: No.
(5). Sabern que J: N - N inj. Considerem g. IN wing as grand grand
Deno que ges injective i mo exhoustive. Donot que N ei infirt, seque hi bone en valor proxim (vinc) per l'operation. Donot que N ei infirt, seque hi bone en valor proxim (vinc) per l'operation.
Donal que M et infint, segue to to le cop xell que g(x) = 4 o g(x) = 2 2 f(x) +3. El que posse en que ne hi le cop xell que g(x) = 4 o g(x) = 2
A LLX TTO PI WILL PESSE DI GOL
(pu exemple) llevas me le conscleur extent me.
Def injective $f(\omega) = f(b)$ $\Rightarrow a = b$ $g(x_1) = g(x_2) \Rightarrow x_1 = x_2$ $\mathcal{L}(x_1) + 3 = \mathcal{L}(x_2) + 3$
(ccccha (cc) - (b)
J(a) = f(b) (x) igustice dlare
20/3=2b+3 for 2a=2b=0 a=b & fence /yet la so
No sehre for gan el vois fre
are sp.

O. Sabern que # + 2 exhaustina. Consideren g: # + H def gex = f(x+1) -3. Deno que q és exhaustiro. $g(x) = \int (x+1) -3$ + De Exhaustino: KhEB fa eA: Sca) = b. y = S(x+1) -3 y+3 = f(x+1) 4- Això er exhaustin. Signi y = 7 arhitrary escollin f(x+1)=y+3. Llavors g(x) = f(x+1)-3=y+3-3=y. Això implico que g(x) trut exhaustive. (1). f: (-0,3) - 1R f(x) = ln(6-2x). Deno ben def. Son hijectives i colo inversa. Congranció de definició. f(3) = buto) = Està ben objevede per le multipliaire vetorare run portiu si x negative i, bi(0) me I però mai ho pooliem tindere per no afet el 3. Injective: $\forall x, y: f(x) = f(y) \rightarrow x = g$ Exhautiva: Y b & B Ja & A: f(a) = b 4= hol6-2x) - = = 6-2x - = = 6-2x - = = 2x - = = = +3=x 5, 18a € (-00, 3) [S, 182 arbi] Agolem m x 1.q. x = = 1 = 8 +3 (CS,) = (CS2) [Syposon] fy= h(6-2.(=1e3+3) = m(6-2s1) = h(6-2s2) [Reg 6 ob]] 6-2s, = 6-2s2 I Propole in don't que]
2s, =-2s2 [agute trub injetive] = ln(6+e9-6) = ln(e9) = [4] -25, =-252 Deno funci exhaustivo. [S1 = S2] Demo (es injectivo. Inversa: Donat que fine està hen del di bijective (Povet que les > Injective / té inces. $x = \frac{-1}{2}e^{y} + 3 \rightarrow y = \frac{-1}{2}e^{x} + 3$ i agusta $e^{-1}(x) = \frac{-1}{2}e^{x} + 3$ (8). Signi X= }1,2,3,4,..., 99,100 { i {: X->X de} f(x) }2(x-51)+1 514 x 4100 Deno. ben def. Bijective i Inversa. Definición fuiro : Ben def pertots valors. Pa es eq. primer gran s(0)=2.0+1=1 0 Injective: Vx, y ∈ X: fex=fey) - x=y Exhautive: Vb ∈ B Fa ∈ A: fea = b Agalem x arts tg. x = 2 f(x) = 2.(2) = y & SIISZEX 93154 EX Agglern x only to x = 4+101 (x)-2(4+50-51)+1 ((s,) = fesz) f(s3) = f(s4) $2s_1 = 2s_2$ $2(s_3 - 51) + 1 = 2(s_4 - 51) + 1$ $\int \frac{x}{2} 1 \le x \le 50$ $\int (x) = y - 1 + 1 = y \$ $|S_1 = S_2|$ $2S_3 - 102 + 1 = 2S_4 - 102 + 1$ 253 = 254 516 Sq.546100 14 S1182 450 M x+50 2 516x6100 FM-4-8-2 (13) $\int : [\frac{3}{3}, \infty) \sim [0, \infty)$ definede $\int (x) = \sqrt{\frac{3x-5}{4}}$ Aquerta finice en bejentire dernet que en estrictant creexect en l'intervel [3, 00) (# En el cos extrem $\sqrt{\frac{33}{4}} - 57 = \sqrt{\frac{9}{9}} = 0$ i a partir d'aqui segue augusta volor. La prime deriverde in > 0. Obs: Sixe (-0, 5) aluhores 3x-5 40 & x25 + 3x-520 = 3x-520 Per aultre bande si $x \in \left[\frac{5}{3}, \infty\right)$ aleshores $x \ge \frac{5}{3}$ no $3x \ge 5 \rightarrow 3x - 5 \ge 0 \Rightarrow \frac{3x - 5}{4} \ge 0$ Llovar V'està den def. (i unice) i et un mondre possitiu.

Injection tet: $f(x) = f(y) \rightarrow x = y$ den error as fem les parts possitiu i x² sign. $\int(x) = \int(y) - D \sqrt{\frac{3x-5}{4}} = \sqrt{\frac{3y-5}{4}} - D \frac{3x-5}{4} = \frac{3y-5}{4} - 0 \frac{3x-5}{3x-5} = \frac{3y-5}{4} - 0 \frac{3x-5}{4} - 0 \frac{3x-5}{4} - 0 \frac{3x-5}{4} = \frac{3y-5}{4} - 0 \frac{3x-5}{4} -$ -D 3x = 7y -D x = 9 Podem vem que les injective. 18 Volem venu que & exhaustino signi y E[0, as) volem trobas x & [3, as) Obs: Veien que ci y > 0 llavors 4y2+5 5 9 420-14320 --> 4y2+525 -> 492+5 2 5. hlever in un bon cardidat (99 el Don es [3,00) $\int (X) = \int \left(\frac{4y^2 + 5}{3}\right) = \sqrt{\frac{3 \cdot \left(\frac{4y^2 + 5}{3}\right) - 5}{4}} = \sqrt{\frac{4y^2 + 5 - 5}{4}} = \sqrt{\frac{4y^2 + 5}{4}} = \sqrt{\frac{4y^$ Le invere de $\int_{-\infty}^{\infty} [0, as) \rightarrow [\frac{3}{3}, as)$ $\int_{-\infty}^{\infty} (z) = \frac{4z^2+5}{3}$ $\frac{2}{3} + \frac{4z^2+5}{3} = |y| = 9$ Denot que $y \ge 0$ Però mo ja fatta Pg. y serpre serè gorntin. 18. J: R-318-01R-308 definide $f(x) = \frac{1}{x-1}$. Deno ben definider, bijectiver, calc inversa. Validania del Dom! Pop funio no estigni definide el denominador havrie de ser 'o'. X-1=0-0 X=1. Donet que in le def. de le juvo je treien el '1' del Dom, agent ertare ben defint. Validació Codern: El resultat de la divisió supre seis un manhe real i, l'inic prob. ?

el tindien quen resultant en D. Asia moment padrio succió si rumandon = 0 però aixè et inpossible. El Codomini età ben definit. Injective: Ya, be PR-319: f(a)= f(b) -0 a = 6 Aga fern um a i b EB-319 ambitrois t.g. f(a) = f(b). Per def de fuvai en pot reescoin com = 1 = 1 . Volem venu si a = b.

Això ho poden simplifar

Pg. b-170. $\frac{1}{a-1} = \frac{1}{b-1} - 0 \frac{1}{a-1} \cdot (b-1) = \frac{1}{b-1} \cdot (b-1) - 0 \frac{b-1}{a-1} = 1 \cdot (a-1) - 0 \cdot b-1 = a-1 - 0 \cdot b=a$ Poolen venu que juvo es injective s. Exhaustive: Yye R-709-3 xe R-348: fex-y Agasem un x E 12-319 t.g x = 1+y. $J(x) = \int \left(\frac{1+g}{g}\right) = \frac{1}{1+g} = \frac{1}{1+g} = \frac{1}{g} = \frac{1}{$ Donach le feure viste à Injective à Exhaustines fors és bijectine. (I bendefinide) Time inversa

Per troban le fivoi invesa podem agefor el volor de x que hun fit servir per deno que finde exhaustine i convier x per gitig $\int_{-\infty}^{\infty} |x|^{-1+x}$.

. TH-4- E-3

```
Q. Sabern que J: N→N extrantira. Deno g xx=f(x+1)-3 g:N-DN g extrantitre.
     g(x) = \int (x+1)-3 Com que \int exhautive, don't y-3 \in \mathbb{Z} sebem que y-3 = \int (x+1) = \int (x+1) = y+3, en a dir \exists x' : \int (x-1)+1 = y-3,
                                                            en a dir fx': f((x'-1)+1)-3= y
  \#x+l=x'
\# x^1 = x - 1
: y -3 = f(x')
                                                                     Hom vist que Vy E Z, Ix': g(x-1) = y.
      Si anomenen x = x'-1 hern demothet que Vy E # 3 x E # + g g (x) = y.
        Això nel dir que g(x) é exhantine.
(23). \int : \mathbb{R} - p \, \mathbb{R} \, def \, \int (x) = x + 1 \, \int (color g \cdot g) \, def \, g(x) = x^2 \, \int (color g \cdot g) \, def \, g(x) = x^2 \, \int (color g \cdot g) \, def \, g(x) = x^2 \, \int (color g \cdot g) \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g \cdot f| \, def \, g(x) = g(x+1) = |(x+1)^2 = g(x+1) = |(x
    Q. J: 7 → N def f(x) = x mad 5 } (alc g.f. Espot f.g?
g: IN → R def g(x) = bn(x+1)
                                                                                                                                                                       No is pot pq. el codomini de g és IR
              9(f(x)) = 9(x mod 5) = ln(x mod 5+1)
                                                                                                                                                                      i el domini de f er 72.
                                  (m(1) & x = 0 mod 5 (m(0+1) = m(1) = 0)

(m(2) x x = 1 mod 5 (m(1+1) = m(2))
                                                                                                                                                                                 # Donet que treballer amb g(x) = x mod 5
                                                                                                                                                                             & pot volde els valors 02x ≤ 4.
           g. ta)= | m(3) si x = 2 med 5 (m(2+1) = ln(3))
ln(4) si x = 3 mod 5 (ln(3+1) = ln(4))
                                  (m (5) si x= 4 med 5 (m (4+1) = (n (5))
    I. Composició funion exhautives es exhautivo.

J: A-DB, g: B-DC, gof: A-DC, Volen veve.

Exhautive. Yy & C, velen troban m x & A t. q gof(x) = y.

exhautive. anhautive.
   (30). Demostra prop.
          Sabon g exhautive = JzEB: g(z)=y
                                                                                                                                                     { 9 o f(xo) = 9(f(xo) = y , per tant, x = Xo
       Sabon Jerhantine => 3xEA: 1(x)= 7
                                                                                                                                                                                   \begin{pmatrix} x \\ x \\ x_0 \end{pmatrix} = \begin{pmatrix} x \\ x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \\ y \end{pmatrix}
```

JII. Composició de fui on bijectives, es bijective.

* Volent veu que
complex injective pg. en I je hen
deno que fuveu

deno que fuveu

tot Prevuen S., Sz artitionis deferents de A i volem veue que g. P(S.) 7 g. P(S2) gef(s,)=g(fis,) (com que x=x' -> f(x) + f(x') g. f(sz) = g(f(sz)) / terim que g. f(s,) + g. f(sz) -> Woron ej. finjertire. Airò i 6 prop I devertre propritat III 3. J. A - A satisfe Jof = J Demo que son equivalents. a) + b) = f= IA + [hijectiona] J=IA → J byentre Donot que le Ident tout és bijentires i entern d'ent que son ignels son b)-oc) = | hijertine -o ferhaustine I bijective & fingertie i Jexhautire & Jexhautire. D. c) -> d) = | exhautine -> f injective | the the free free y Supossem no injetive fins arriban contradicará No igedine greg 3 sise on si # sz i f(si) = f(si) Com que Jechantine: Fytq. f(y)=s, { i y \neq y. Fy't.q f(y')=s2 { i y \neq y. i à ma CONTRADICCIÓ $S_{i} = \int (y) = \int (f(y)) = \int (s_{i}) = \int (f(y)) = \int (y') = S_{i}$ Pg hem dit que s, 752. d) -> a) = finjective -> f=IA Volem demir que fin =x Seben que - finjectile. Si finjective implicaque, si y le antimotée é une a Agafem on XEA i cornelesem fex EA llovon torner a aplicar of pg schon que fof-f f (for) = for i satismaque l'UNIC que more a for vox. lloron pre continuar couplint le injection tat fix) = x. x of fine las

35. Signi J: N-DN def per f(x) } x sixpar Demo que fof=f.
Housem de fer le composerie pels des casses.
X parell: 3K: X=2K on K & H.
fix) = In f(2x) = 2x & Sabern per del de fix) en enviort.
ded = S(f(x)) =] K = S(2K) = [2K]
$x \in \mathbb{R}$ $x = 2t + 1$ on $t \in \mathbb{R}$. $y \in \mathbb{R}$
J(x) = 3 t: J(2+1) = 2++1+1 = 2++2 = 2(y) * Això i. el que sabem que
Ana godern veure que si x senas, j'intorne parell, aire que parem of
de (x) = x. t.g. 74. (24) = 24.
Virem que totes dun vegade retore un nombre par
Voien que totes dun vegade retore m nombre par Quede deno que sof= so la si si explicació correcta.
T = U (J = U)
33. Signi f: A - B g: B - D A satisfert gof = IA
C) Donen in exemple que $f \circ g \neq I_B$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$
a) Demo que si fech = p fog = I3
Volem deno que f(g(o)) = b.
Partim d'un be Bachitrari.
Donet que fech, sabam que Vb Fa: f(a) = ba
Per le hipòteri g(fca) = In podem aplicar g() a l'expreso antera t.q.
g(f(a)) = g(b) => g(f(a)) = a Pq Sabern que f(a) = b é complex. l'aprime arteror Llarors & es pot reescrire con g(b) = a Airò es d'que buscèven
Llavors des pot reescine con g(b) = a d'inò ès d'que surcèven
Are apliquem fales due bonder f(g(b))=fcas => f(g(b))=b D
Denostrat que si gof= IA n fech = fog= I3