Intro to Communication System EE140 Fall, 2020

Assignment 10

Due time : 10:15, Dec 18, 2020 (Friday)

Student ID : 45875852

Grade : _____

Name: 陈 稼 霖

Problem 1 (5.12, Orthogonal subspace) Score: _____. For any subspace S of an inner product space V, define S^{\perp} as the set of vectors $v \in V$ that are orthogonal to all $w \in S$.

- (a) Show that S^{\perp} is a subspace of V.
- (b) Assuming that S is finite-dimensional, show that any $u \in V$ can be uniquely decomposed into $u = u_{|S} + u_{\perp S}$, where $u_{|S} \in S$ and $u_{\perp S} \in S^{\perp}$.
- (c) Assuming that \mathcal{V} is finite-dimensional, show that \mathcal{V} has an orthonormal basis where some of the basis vectors form a basis for \mathcal{S} and the remaining basis vectors form a basis for \mathcal{S}^{\perp} .

Solution: (a) S^{\perp} satisfies the following two conditions:

- (i) $\mathbf{0} \in \mathcal{S}^{\perp}$, since $\mathbf{0} \in \mathcal{V}$ and $\mathbf{0} \cdot \mathbf{w} = 0 \ \forall \mathbf{w} = \mathcal{S}$;
- (ii) If $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{S}^{\perp}$, i.e. $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{V}$ and $\mathbf{v}_1 \cdot \mathbf{w} = 0$, $\mathbf{v}_2 \cdot \mathbf{w} = 0 \ \forall \mathbf{w} \in \mathcal{S}$, then $\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \in \mathcal{V}$ and $(\alpha \mathbf{v}_1 + \beta \mathbf{v}_2) \cdot \mathbf{w} = \alpha \mathbf{v}_1 \cdot \mathbf{w} + \beta \mathbf{v}_2 \cdot \mathbf{w} = 0 \ \forall \mathbf{w} \in \mathcal{S}$, so $\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \in \mathcal{S}^{\perp}$, where α, β are arbitrary scalars.

Therefore, \mathcal{S}^{\perp} is a subspace of \mathcal{V} .

- (b) According to Projection theorem (Theorem 5.3.1), since S is a subspace of the inner product space V, for any $u \in V$, there is a unique vector $u_{|S} \in S$ such that $(u u_{|S}) \cdot s = 0 \ \forall s \in S$ where $u u_{|S} = u_{\perp S} \in S^{\perp}$. Therefore, any $u \in V$ an be uniquely decomposed into $u = u_{|S} + u_{\perp S}$, where $u_{|S} = S$ and $u_{\perp S} \in S^{\perp}$.
- (c) Since S is a subspace, we can find an orthonormal basis of S, say, $\{s_k|k=1,2,\cdots,n_1\}$. For any $u_{|S} \in S$, we can decompose it uniquely into the linear combination of $\{s_k|k=1,2,\cdots,n_1\}$: $u_{|S} = \sum_{k=1}^{n_1} \alpha_j s_j$. Similarly, since S^{\perp} is a subspace, we can find an orthonormal basis of S^{\perp} , say, $\{t_j|j=1,2,\cdots,n_2\}$. For any $u_{\perp S} \in S$, we can decompose it uniquely into the linear combination of $\{t_j|j=1,2,\cdots,n_2\}$: $u_{\perp S} = \sum_{j=1}^{n_2} \beta_j t_j$. Now we prove that $\{s_k|k=1,2,\cdots,n_1\} \cup \{t_j|j=1,2,\cdots,n_2\}$ is a orthonormal basis of V:
 - (i) $\{s_k|k=1,2,\cdots,n_1\}\cup\{t_j|j=1,2,\cdots,n_2\}$ is a basis of \mathcal{S} , since for any $\boldsymbol{u}\in\mathcal{V}$, we can first decompose it uniquely into $\boldsymbol{u}=\boldsymbol{u}_{|\mathcal{S}}+\boldsymbol{u}_{\perp\mathcal{S}}$, where $\boldsymbol{u}_{|\mathcal{S}}\in\mathcal{S}$ and $\boldsymbol{u}_{\perp\mathcal{S}}\in\mathcal{S}^{\perp}$, and then decompose it uniquely into $\boldsymbol{u}=\sum_{k=1}^{n_1}\alpha_ks_k+\sum_{j=1}^{n_2}\beta_jt_j$;
 - (ii) $\{ \boldsymbol{s}_k | k = 1, 2, \dots, n_1 \} \cup \{ \boldsymbol{t}_j | j = 1, 2, \dots, n_2 \}$ is orthonormal, since $\{ \boldsymbol{s}_k | k = 1, 2, \dots, n_1 \}$ is orthonormal, $\{ \boldsymbol{t}_j | j = 1, 2, \dots, n_2 \}$ is orthonormal, and for any \boldsymbol{s}_k and \boldsymbol{t}_j , the definition of \mathcal{S}^{\perp} requires that $\boldsymbol{s}_k \cdot \boldsymbol{t}_j = 0$.

Therefore, \mathcal{V} has an orthonormal basis where some of the basis vectors form a basis for \mathcal{S} and the remaining basis vectors form a basis for \mathcal{S}^{\perp} .

Problem 2 (5.13, Othonormal expansion) Score: _____. Expand the function $\operatorname{sinc}(3t/2)$ as an orthonormal expansion in the set of functions $\{\operatorname{sinc}(t-n); -\infty < n < \infty\}$.

Solution: sinc (3t/2) has the bandwidth of $\frac{1}{3}$, so it is band-limited in $\frac{1}{2}$. According to Sampling Theorem,

$$\operatorname{sinc}(3t/2) = \sum_{n = -\infty}^{+\infty} \sin(3n/2)\operatorname{sinc}(t - n) \tag{1}$$

- **Problem 3 (6.3) Score:** ______. (a) Assume that the received signal in a 4-PAM system is $V_k = U_k + Z_k$, where U_k is the transmitted 4-PAM signal at time k. Let Z_k be independent of U_k and Gaussian with density $f_Z(z) = \sqrt{1/2\pi} \exp(-z^2/2)$. Assume that the receiver chooses the signal \tilde{U}_k closest to V_k . (It is shown in Chapter 8 that this detection rule minimizes P_e for equiprobable signals.) Find the probability P_e (in terms of Gaussian integrals) that $U_k \neq \tilde{U}_k$.
 - (b) Evaluate the partial derivative of P_e with respect to the third signal point a_3 (i.e. the positive inner signal point) at the point where a_3 is equal to its value d/2 in standard 4-PAM and all other signal points are kept at 4-PAM values. [Hint. This does not require any calculation.]

Solution: (a) Suppose the signal constellation of the 4-PAM system is $\mathcal{A} = \{a_1 = -\frac{3}{2}d, a_2 = -\frac{d}{2}, a_3 = \frac{d}{2}, a_4 = \frac{3}{2}d\}$. If $U_k = a_1$ or $U_k = a_4$, the probability that $U_k \neq \tilde{U}_k$ is

$$P_e = \int_{\frac{d}{2}}^{+\infty} f_Z(z) \, \mathrm{d}z = Q\left(\frac{d}{2}\right),\tag{2}$$

where Q-function

$$Q(x) = \int_{x}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-z^{2}/2} dz$$
 (3)

If $U_k = a_2$ or $U_k = a_3$, the probability that $U_k \neq \tilde{U}_k$ is

$$P_e = \int_{-\infty}^{-\frac{d}{2}} f_Z(z) \, dz + \int_{\frac{d}{2}}^{+\infty} f_Z(z) \, dz = 2 \int_{\frac{d}{2}}^{+\infty} f_Z(z) \, dz = 2Q\left(\frac{d}{2}\right). \tag{4}$$

(b) Suppose the third signal point is moved to $a_3' = \frac{d}{2} + \epsilon$. For $U_k = a_3'$, the probability that $U_k \neq \tilde{U}_k$ becomes

$$P'_{e} = \int_{-\infty}^{-\frac{d+\epsilon}{2}} f_{Z}(z) dz + \int_{\frac{d-\epsilon}{2}}^{+\infty} f_{Z}(z) dz = \int_{\frac{d+\epsilon}{2}}^{+\infty} f_{Z}(z) dz + \int_{\frac{d-\epsilon}{2}}^{+\infty} f_{Z}(z) dz = Q\left(\frac{d+\epsilon}{2}\right) + Q\left(\frac{d-\epsilon}{2}\right), \quad (5)$$

so the partial derivative of P_e with respect to the third signal points a_3 is

$$\frac{\partial P_e}{\partial a_3} = \lim_{\epsilon \to 0} \frac{P'_e - P_e}{\epsilon} = \lim_{\epsilon \to 0} \frac{Q\left(\frac{d+\epsilon}{2}\right) + Q\left(\frac{d-\epsilon}{2}\right) - 2Q\left(\frac{d}{2}\right)}{\epsilon} = 0.$$
 (6)

Problem 4 (6.4, Nyquist) Score: _____. Suppose that the PAM modulated baseband waveform $u(t) = \sum_{k=-\infty}^{\infty} u_k p(t-kT)$ is received. That is, u(t) is known, T is known, and p(t) is known. We want to determine the signals $\{u_k\}$ from u(t). Assume only linear operations can be used. That is, we wish to find some waveform $d_k(t)$ for each integer k such that $\int_{-\infty}^{\infty} u(t) d_k(t) dt = u_k$.

- (a) What properties must be satisfied by $d_k(t)$ such that the above equation is satisfied no matter what values are taken by the other signals, \dots , $u_{k-2}, u_{k-1}, u_{k+1}, u_{k+2}, \dots$? These properties should take the from of constrains on the inner products $\langle p(t-kT), d_j(t) \rangle$. Do not worry about convergence, interchange of limits, etc.
- (b) Suppose you find a function $d_0(t)$ that satisfies these constrains for k = 0. Shown that, for each k, a function $d_k(t)$ satisfying these constrains can be found simply in terms of $d_0(t)$.
- (c) What is the relationship between $d_0(t)$ and a function q(t) that avoids intersymbol interference in the approach taken in Section 6.3 (i.e. a function q(t) such that p(t) * q(t) is ideal Nyquist)?

You have shown that the filter/sample approach in Section 6.3 is no less general than the arbitrary linear operation approach here. Note that, in the absence of noise and with a known constellation, it must be possible to retrieve the signals from the waveform using nonlinear operations even in the presence of intersymbol interference.

Solution: (a) In order that

$$\int_{-\infty}^{+\infty} u(t)d_j(t) dt = \int_{-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} u_k p(t-kT)d_j(t) dt = \sum_{k=-\infty}^{+\infty} u_k \int_{-\infty}^{+\infty} p(t-kT)d_j(t) dt = u_j \quad \forall j,$$
 (7)

 $d_k(t)$ must satisfy that

$$\langle p(t-kT), d_j(t) \rangle = \int_{-\infty}^{+\infty} p(t-kT)d_j(t) dt = \delta_{jk},$$
 (8)

where

$$\delta_{jk} \equiv \begin{cases} 1, & j = k; \\ 0, & j \neq k. \end{cases}$$
 (9)

(b) Other $d_k(t)$ can be expressed in terms of $d_0(t)$ as

$$d_k(t) = d_0(t - kT). (10)$$

Here shows the reason: If $d_0(t)$ satisfies that

$$\langle p(t-kT), d_0(t) \rangle = \int_{-\infty}^{+\infty} p(t-kT)d_0(t) \, \mathrm{d}t = \delta_{0k} \quad \forall k, \tag{11}$$

then for each j,

$$\langle p(t-kT), d_j(t) \rangle = \int_{-\infty}^{+\infty} p(t-kT)d_j(t) dt = \int_{-\infty}^{+\infty} p(t-kT)d_0(t-jT) dt$$
$$= \int_{-\infty}^{+\infty} p(t-(k-j)T)d_0(t) dt = \delta_{jk} \quad \forall k.$$
(12)

(c) The filtered waveform is

$$r(t) = \int_{-\infty}^{+\infty} u(\tau)q(\tau - t) d\tau = \int_{-\infty}^{+\infty} \sum_{k = -\infty}^{+\infty} u_k p(\tau - kT)q(t - \tau) d\tau = \sum_{k = -\infty}^{+\infty} u_k \int_{-\infty}^{+\infty} p(\tau - kT)q(t - \tau) d\tau.$$

In order that sampled signal

$$r(jT) = \sum_{k=-\infty}^{+\infty} u_k \int_{-\infty}^{+\infty} p(\tau - kT)q(jT - \tau) d\tau = u_j,$$
(13)

q(t) must satisfies that

$$\langle p(t-kT), q(jT-t) \rangle = \int p(t-kT)q(jT-t) d\tau = \delta_{jk}.$$
 (14)

Comparing the above equation with equation (8), the relationship between $d_j(t)$ and q(t) is

$$d_j(t) = q(jT - t). (15)$$

For j = 0, we have

$$d_0(t) = q(-t). (16)$$

Problem 5 (6.5, Nyquist) Score: _____. Let v(t) be a continuous \mathcal{L}_2 waveform with v(0) = 1 and define $g(t) = v(t) \operatorname{sinc}(t/T)$.

- (a) Show that g(t) is ideal Nyquist with interval T.
- (b) Find $\hat{g}(f)$ as a function of $\hat{v}(f)$.
- (c) Give a direct demonstration that $\hat{g}(f)$ satisfies the Nyquist criterion.
- (d) If v(t) is baseband-limited to B_b , what is g(t) baseband-limited to?

Solution: (a) Since

$$g(0) = v(0)\operatorname{sinc}(0) = 1, (17)$$

and

$$g(kT) = v(kT)\operatorname{sinc}(k) = 0 \quad \forall k \neq 0, \tag{18}$$

g(t) is ideal Nyquist with interval T.

(b)

$$\hat{g}(t) = \mathcal{F}[v(t)\operatorname{sinc}(t/T)] = \hat{v}(f) * T \operatorname{rect}(Tf) = T \int_{-\infty}^{+\infty} \hat{v}(s) \operatorname{rect}(T(s-f)) \, \mathrm{d}s = T \int_{f-\frac{1}{2T}}^{f+\frac{1}{2T}} \hat{v}(s) \, \mathrm{d}s.$$
 (19)

(c) Since

$$\sum_{k} \hat{g}\left(f + \frac{k}{T}\right) \operatorname{rect}\left(fT\right) = \sum_{k} T \int_{f - \frac{1}{2T} + \frac{k}{T}}^{f + \frac{1}{2T} + \frac{k}{T}} \hat{v}(s) \, \mathrm{d}s \operatorname{rect}\left(fT\right) = T \operatorname{rect}\left(fT\right) \int_{-\infty}^{+\infty} \hat{v}(s) \, \mathrm{d}s$$

$$= T \operatorname{rect}\left(fT\right) v(t = 0) = T \operatorname{rect}\left(fT\right), \tag{20}$$

 $\hat{g}(f)$ satisfies the Nyquist criterion.

(d) If v(t) is baseband-limited to B_b , then g(t) is baseband-limited to $B_b + \frac{1}{2T}$.

Problem 6 (6.6, Nyquist) Score: ______. Consider a PAM baseband system in which the modulator is defined by a signal interval T and a waveform p(t), the channel is defined by a filter h(t), and the receiver is defined by a a filter q(t) which is sampled at T-spaced intervals. The received waveform, after the receiver filter q(t), is then given by $r(t) = \sum_k u_k g(t - kT)$, where g(t) = p(t) * h(t) * q(t).

- (a) What properties must g(t) have so that $r(kT) = u_k$ for all k and for all choices of input $\{u_k\}$? What is the Nyquist criterion for $\hat{g}(f)$?
- (b) Now assume that T = 1/2 and that p(t), h(t), q(t) and all their Fourier transforms are restricted to be real. Assume further that $\hat{p}(f)$ and $\hat{h}(f)$ are specified by Figure 1, i.e. by

$$\hat{p}(f) = \begin{cases} 1 & |f| \le 0.5; \\ 1.5 - t & 0.5 < |f| \le 1.5; \\ 0 & |f| > 1.5; \end{cases} \qquad \hat{h}(f) = \begin{cases} 1 & |f| \le 0.75; \\ 0 & 0.75 < |f| \le 1; \\ 1 & 1 < |f| \le 1.25; \\ 0 & |f| > 1.25. \end{cases}$$

Is it possible to choose a receiver filter transform $\hat{q}(f)$ so that there is no intersymbol interference? If so, give such a $\hat{q}(f)$ and indicate the regions in which your solution is nonunique.

4 / 8

Figure 1:

- (c) Redo part (b) with the modification that now $\hat{h}(f) = 1$ for $|f| \le 0.75$ and $\hat{h}(f) = 0$ for |f| > 0.75.
- (d) Explain the conditions on $\hat{p}(f)\hat{h}(f)$ under which intersymbol interference can be avoided by proper choice of $\hat{q}(f)$. (You may assume, as above, that $\hat{p}(f)$, $\hat{h}(f)$, p(t), and h(t) are all real.)

Solution: (a) In order that

$$r(kT) = \sum_{j} u_j g((k-j)T) = u_k, \tag{21}$$

g(t) must have the property that

$$g(kt) = \begin{cases} 1, & k = 0; \\ 0, & k \neq 0. \end{cases}$$
 (22)

(b) It is possible. Since

$$g(t) = p(t) * h(t) * q(t),$$
 (23)

we have

$$\hat{g}(f) = \hat{p}(f)\hat{h}(f)\hat{q}(f). \tag{24}$$

Now

$$\hat{p}(f)\hat{h}(f) = \begin{cases}
1, & |f| \le \frac{1}{2}; \\
1.5 - |f|, & \frac{1}{2} < |f| \le \frac{3}{4}; \\
0, & \frac{3}{4} < |f| \le 1; \\
1.5 - |f|, & 1 < |f| \le \frac{5}{4}; \\
0, & |f| > \frac{5}{4}.
\end{cases}$$
(25)

To avoid intersymbol interference, g(t) must satisfies Nyquist criterion, i.e., g(t) must be band-edge symmetric

$$\hat{g}(f) + g(2 - f) = T = \frac{1}{2}, \quad 0 \le f \le 1.$$
 (26)

so

$$\hat{g}(f) = \begin{cases}
1, & 0 \le |f| \le \frac{3}{4}; \\
0, & \frac{3}{4} < |f| \le 1; \\
1, & 1 < |f| \le \frac{5}{4}; \\
0, & |f| > \frac{5}{4}.
\end{cases}$$
(27)

To give such a $\hat{g}(f)$, we need $\hat{q}(f)$ satisfies

$$\hat{q}(f) = \begin{cases} \frac{1}{2}, & 0 \le |f| \le \frac{1}{2}; \\ \frac{1}{3-2|f|}, & \frac{1}{2} < |f| \le \frac{3}{4}; \\ \frac{1}{3-2|f|}, & 1 < |f| \le \frac{5}{4}, \end{cases}$$
(28)

where $\hat{q}(f)$ is nonunique in region $\frac{3}{4} < |f| \le 1$ and $|f| > \frac{5}{4}$. One possible q(f) is

$$\hat{q}(f) = \begin{cases} \frac{1}{2}, & 0 \le |f| \le \frac{1}{2}; \\ \frac{1}{3-2|f|}, & \frac{1}{2} < |f| \le \frac{5}{4}; \\ 0, & |f| > \frac{5}{4}. \end{cases}$$
(29)

(c) If

$$\hat{h}(f) = \begin{cases} 1, & |f| \le \frac{3}{4}; \\ 0, & |f| > \frac{3}{4}. \end{cases}$$
 (30)

It is impossible to find $\hat{q}(f)$ so that there is no intersymbol interference. Here is the reason: Now

$$\hat{p}(f)\hat{h}(f) = \begin{cases} 1, & 0 \le |f| \le \frac{1}{2}; \\ 1.5 - |f|, & \frac{1}{2} < |f| \le \frac{3}{4}; \\ 0, & |f| > \frac{3}{4}. \end{cases}$$
(31)

so

$$\hat{g}(f) = 0, \quad \text{for } |f| > \frac{3}{4}.$$
 (32)

Therefore, no matter how $\hat{q}(f)$ be, there is no way for $\hat{g}(f)$ to be band-edge symmetric and thus no way for intersymbol interference.

(d) Condition $\hat{p}(f)\hat{h}(f)$ under which intersymbol interference can be avoid by choice of $\hat{q}(f)$: For any $|f| \leq 1$, if $\hat{p}(f)\hat{h}(f) = 0$, then $\hat{p}(2-f)\hat{h}(2-f) \neq 0$.

Problem 7 (6.16, Passband expansion) Score: ______. Prove Theorem 6.6.1. [Hint. First show that the set of functions $\{\hat{\psi}_{k,1}(f)\}$ and $\{\hat{\psi}_{k,2}(f)\}$ are orthogonal with energy 2 by comparing the integral over negative frequencies with that over positive frequencies.] Indicate explicitly why you need $f_c > B/2$.

Theorem 6.6.1 Let $\{\theta_k(t): k \in \mathbb{Z}\}$ be an orthonormal set limited to the frequency band [-B/2, B/2]. Let f_e be greater than B/2, and for each $k \in \mathbb{Z}$ let

$$\psi_{k,1}(t) = Re \left[2\theta_k(t)e^{2\pi i f_c t} \right],$$

 $\psi_{k,2}(t) = Im \left[-2\theta_k(t)e^{2\pi i f_c t} \right].$

The set $\{\psi_{k,i}; k \in \mathbb{Z}, i \in \{1,2\}\}$ is an orthogonal set of functions, each with energy 2. Furthermore, if $u(f) = \sum_k u_k \theta_k(t)$, then the corresponding passband function $x(t) = 2 \operatorname{Re}\left[u(t)e^{2\pi i f_c t}\right]$ is given by

$$x(t) = \sum_{k} Re[u_k]\psi_{k,1}(t) + Im[u_k]\psi_{k,2}(t).$$

Solution:

$$\psi_{k,1}(t) = \theta_k(t)e^{2\pi i f_c t} + \theta_k^*(t)e^{-2\pi i f_c t},\tag{33}$$

$$\psi_{k,2}(t) = i[\theta_k(t)e^{2\pi i f_c t} - \theta_k^*(t)e^{2\pi i f_c t}], \tag{34}$$

have Fourier transforms

$$\hat{\psi}_{k,1}(f) = \hat{\theta}_k(f - f_c) + \hat{\theta}_k^*(-f - f_c), \tag{35}$$

$$\hat{\psi}_{k,2}(f) = i[\hat{\theta}_k(f - f_c) - \hat{\theta}_k^*(-f - f_c)]. \tag{36}$$

Since $\{\theta_k(t)\}\$ is an orthonormal set, according to Parseval's theorem, we have

$$\langle \theta_k(t), \theta_j(t) \rangle = \int_{-\infty}^{+\infty} \theta_k(t) \theta_k^*(t) dt = \int_{-\infty}^{+\infty} \hat{\theta}_k(f) \hat{\theta}_j^*(f) df = \langle \hat{\theta}_k(f), \hat{\theta}_j(f) \rangle = \delta_{jk}.$$

Now let's look at the inner products of the functions in $\{\psi_{k,i}; k \in \mathbb{Z}, i \in \{1,2\}\}$:

(i)

$$\langle \psi_{k,1}(t), \psi_{j,1}(t) \rangle = \langle \hat{\psi}_{k,1}(f), \hat{\psi}_{j,1}(f) \rangle = \int_{-\infty}^{+\infty} [\hat{\theta}_k(f - f_c) + \hat{\theta}_k^*(-f - f_c)] [\hat{\theta}_j(f - f_c) + \hat{\theta}_j(-f - f_c)]^* \, \mathrm{d}f$$

$$= \int_{-\infty}^{+\infty} \hat{\theta}_k(f - f_c) \hat{\theta}_j^*(f - f_c) \, \mathrm{d}f + \int_{-\infty}^{+\infty} \hat{\theta}_k(f - f_c) \hat{\theta}_j(-f - f_c) \, \mathrm{d}f$$

$$+ \int_{-\infty}^{+\infty} \hat{\theta}_k^*(-f - f_c) \hat{\theta}_j^*(f - f_c) \, \mathrm{d}f + \int_{-\infty}^{+\infty} \hat{\theta}_k^*(-f - f_c) \hat{\theta}_j(-f - f_c) \, \mathrm{d}f.$$
(37)

Since $\{\theta_k(t): k \in \mathbb{Z}\}$ are limited to the frequency band [-B/2, B/2], $\hat{\theta}_k(f-f_c)$ and $\hat{\theta}_j^*(f-f_c)$ are band-limited to $[f_c - B/2, f_c + B/2]$, and $\hat{\theta}_k^*(-f - f_c)$ and $\hat{\theta}_j(-f - f_c)$ are band-limited to $[-f_c - B/2, -f_c + B/2]$. Since f > B/2, the frequency band $[-f_c - B/2, -f_c + B/2]$ and $[f_c - B/2, f_c + B/2]$ do not overlap, so the integral $\int_{-\infty}^{+\infty} \hat{\theta}_k(f - f_c)\hat{\theta}_k(-f - f_c) df$ and $\int_{-\infty}^{+\infty} \hat{\theta}_k^*(-f - f_c)\hat{\theta}_j^*(f - f_c) df$ vanishes. In this way,

$$\langle \psi_{k,1}(t), \psi_{j,1}(t) \rangle = \int_{-\infty}^{+\infty} \hat{\theta}_k(f - f_c) \hat{\theta}_j^*(f - f_c) \, \mathrm{d}f + \int_{-\infty}^{+\infty} \hat{\theta}_k^*(-f - f_c) \hat{\theta}_j(-f - f_c) \, \mathrm{d}f$$

$$= \int_{-\infty}^{+\infty} \hat{\theta}_k(f) \hat{\theta}_j(f) \, \mathrm{d}f + \int_{-\infty}^{+\infty} \hat{\theta}_k^*(f) \hat{\theta}_j(f) \, \mathrm{d}f$$

$$= 2\delta_{jk}. \tag{38}$$

(ii)

$$\langle \psi_{k,2}(t), \psi_{j,2}(t) \rangle = \langle \hat{\psi}_{k,2}(f), \psi_{j,2}(f) \rangle = \int_{-\infty}^{+\infty} [\hat{\theta}_k(f - f_c) - \theta_k^*(-f - f_c)] [\hat{\theta}_j(f - f_c) - \theta_j^*(-f - f_c)]^* \, \mathrm{d}f$$

$$= \int_{-\infty}^{+\infty} \hat{\theta}_k(f - f_c) \hat{\theta}_j^*(f - f_c) \, \mathrm{d}f - \int_{-\infty}^{+\infty} \hat{\theta}_k(f - f_c) \hat{\theta}_j(-f - f_c) \, \mathrm{d}f$$

$$- \int_{-\infty}^{+\infty} \hat{\theta}_k^*(-f - f_c) \hat{\theta}_j^*(f - f_c) \, \mathrm{d}f + \int_{-\infty}^{+\infty} \hat{\theta}_k^*(-f - f_c) \hat{\theta}_j(-f - f_c) \, \mathrm{d}f. \tag{39}$$

where $\int_{-\infty}^{+\infty} \hat{\theta}_k^{(f)}(f-f_c)\hat{\theta}_j^{(f)}(f-f_c) df$ and $\int_{-\infty}^{+\infty} \hat{\theta}_k^*(-f-f_c)\hat{\theta}_j^*(f-f_c) df$ vanishes. In this way,

$$\langle \psi_{k,2}(t), \psi_{j,2}(t) \rangle = \int_{-\infty}^{+\infty} \hat{\theta}_k(f - f_c) \hat{\theta}_j^*(f - f_c) \, \mathrm{d}f + \int_{-\infty}^{+\infty} \hat{\theta}_k^*(-f - f_c) \hat{\theta}_j(-f - f_c) \, \mathrm{d}f$$

$$= \int_{-\infty}^{+\infty} \hat{\theta}_k(f) \hat{\theta}_j(f) \, \mathrm{d}f + \int_{-\infty}^{+\infty} \hat{\theta}_k^*(f) \hat{\theta}_j(f) \, \mathrm{d}f$$

$$= 2\delta_{jk}. \tag{40}$$

(iii)

$$\langle \psi_{k,1}(t), \psi_{j,2}(t) \rangle = \langle \hat{\psi}_{k,1}(f), \hat{\psi}_{j,2}(f) \rangle = -i \int_{-\infty}^{+\infty} [\hat{\theta}_k(f - f_c) + \hat{\theta}_k^*(-f - f_c)] [\hat{\theta}_j(f - f_c) - \hat{\theta}_j^*(-f - f_c)]^* df$$

$$= -i \int_{-\infty}^{+\infty} \hat{\theta}_{k}(f - f_{c}) \hat{\theta}_{k}^{*}(f - f_{c}) df + i \int_{-\infty}^{+\infty} \hat{\theta}_{k}(f - f_{c}) \hat{\theta}_{j}(-f - f_{c}) df$$

$$-i \int_{-\infty}^{+\infty} \hat{\theta}_{k}^{*}(-f - f_{c}) \hat{\theta}_{j}^{*}(f - f_{c}) df + i \int_{-\infty}^{+\infty} \hat{\theta}_{k}^{*}(-f - f_{c}) \hat{\theta}_{j}(-f - f_{c}) df$$

$$= -i \delta_{jk} + 0 - 0 + i \delta_{jk}$$

$$= 0.$$
(41)

In general,

$$\langle \psi_{k,m}(t), \psi_{j,n}(t) \rangle = 2\delta_{jk}\delta_{mn}. \tag{42}$$

Therefore, the set of $\{\psi_{k,i}; k \in \mathbb{Z}, i \in \{1,2\}\}$ is an orthogonal set of functions, each with energy 2.

(As mentioned above, only if $f_c > B/2$, can we eliminate the terms, such as $\int_{-\infty}^{+\infty} \hat{\theta}_k (f - f_c) \hat{\theta}_k (-f - f_c) df$ and $\int_{-\infty}^{+\infty} \hat{\theta}_k^* (-f - f_c) \hat{\theta}_j (f - f_c) df$, and get the above inner products. This is why we need $f_c > B/2$.)

If $u(f) = \sum_{k} u_k \theta_k(t)$, the corresponding passband function x(t) is

$$x(t) = 2 \operatorname{Re} \left[u(t) e^{2\pi i f_c t} \right] = 2 \operatorname{Re} \left[\sum_{k} u_k \theta_k(t) e^{2\pi i f_c t} \right]$$

$$= \sum_{k} \left\{ 2 \operatorname{Re} \left[u_k \right] \operatorname{Re} \left[\theta_k(t) e^{2\pi i f_c t} \right] - 2 \operatorname{Im} \left[u_k \right] \operatorname{Im} \left[\theta_k(t) e^{2\pi i f_c t} \right] \right\}$$

$$= \sum_{k} \operatorname{Re} \left[u_k \right] \psi_{k,1}(t) + \operatorname{Im} \left[u_k \right] \psi_{k,2}(t). \tag{43}$$

8 / 8