Московский физико-технический институт (госудраственный университет)

Лабораторная работа по квантовой физике

Изучение рассеяния медленных электронов на атомах (эффект Рамзауэра) [1.3]

Талашкевич Даниил Александрович Группа Б01-009

Содержание

1	Аннотация	1
	1.1 Теория	1
	1.2 Описание установки	2
2	Ход работы	4
	2.1 Данные	4
	2.2 Обработка данных	
3	Вывод	9
4	Литература	9

1 Аннотация

Цель работы: исследовать энергетическую зависимость вероятности рассеяния электронов атомами инертного газа, определить энергию электронов при которых наблюдается «просветление» инертного газа и оценить размер его внешней электронной оболочки.

Оборудование: тиратрон $T\Gamma 3-01/1.3B$, эскпериментальная блок-схема, осциллограф, вольтметры, амперметры.

1.1 Теория

Рассеяние электрона на атоме можно приближённого рассматривать как рассеяние частицы энергии E на потенциальной яме длины ℓ и глубины U_0 . Уравнение Шрёдингера имеет вид

$$\Psi'' + k^2 \Psi = 0.$$

где вне ямы

$$k^2 = k_1^2 = \frac{2mE}{\hbar^2},$$

а внутри

$$k^2 = k_2^2 = \frac{2m(E + U_0)}{\hbar^2}.$$

Коэффициент прохождения в таком случае равен

$$D = \frac{16k_1^2k_2^2}{16k_1^2k_2^2 + 4(k_1^2 - k_2^2)^2\sin^2(k_2\ell)}.$$

Заметим, что коэффициент прохождения имеет ряд максимумов и минимумов. Он максимальнем при

$$\sqrt{\frac{2m(E+U_0)}{\hbar^2}}\ell = n\pi, \ n=1,2,3,\dots$$
 (1)

Качественно эффект Рамзауэра можно объяснить, рассмотрев интерференцию прошедшей и дважды отразившейся от оболочки волн де Бройля. Длины волн вне и внутри атома:

$$\lambda = \frac{h}{\sqrt{2mE}}, \ \lambda_1 = \frac{h}{\sqrt{2m(E+U_0)}}.$$

Соответственно условия на первые интерфереционные максимум и минимум

$$2\ell = \frac{h}{\sqrt{2m(E_1 + U_0)}}, \ 2\ell = \frac{3}{2} \frac{h}{\sqrt{2m(E_2 + U_0)}},$$
 (2)

где E_1, E_2 - энергии, соответствующие максимуму и минимуму прохождения электронов соответственно.

Исключая из этих соотношений глубину ямы, получим

$$\ell = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}}. (3)$$

Глубина ямы при этом равна

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1. \tag{4}$$

1.2 Описание установки

Рис. 1: (a) Схема тиратрона (слева) и его конструкция (справа): 1,2,3 – сетки, 4 – внешний металлический цилиндр, 5 – катод, 6 – анод, 7 – накаливаемая спираль. (b) Схема включения тиратрона.

Для изучения эффекта испульзуется тиратрон ТГЗ-01/1.3Б, заполненный инертным газом (Рис. 1а). Электроны эмитируются катодом, ускоряются напряжением V и рассеиваются на атомах газа. Сетки соединены между собой и имеют один потенциал, примерно равный потенциалу анода. Рассеянные электроны отклоняются и уходят на сетку, а оставшиеся достигают анода, создавая ток $I_{\rm a}$. Таким образом, поток электронов на расстоянии x от ускоряющей сетки уменьшается с ростом

х. ВАХ анода должна быть

$$I_{\mathbf{a}} = I_0 \exp\left(-Cw(V)\right),\tag{5}$$

где $I_0=eN_0$ – ток катода, $I_{\rm a}=eN_a$ – ток анода, $C=Ln_{\rm a}\Delta_{\rm a}(L$ – расстояние между катодом и анодом, $\Delta_{\rm a}$ – площадь поперечного сечения атома, $n_{\rm a}$ – концентрация газа в лампе), w(V) – вероятность рассеяния на атоме. Формулу (5) можно переписать в виде

$$w(V) = -\frac{1}{C} \ln \frac{I_{\mathbf{a}}(V)}{I_0}.$$
 (5a)

Рис. 2: Схема установки.

Схема экспериментальной установки, изображанная на Рис. 1b, в нашей работе конструктивно осуществлена следующим образом (Рис. 2): лампатиратрон расположена непосредственно на корпусе блока источников питания (БИП), напряжение к электродам лампы подаётся от источников питания, находящихся в корпусе прибора. Регулировка напряжения и выбор режима работы установки производится при помощи ручек управления, выведенных на лицевую панель БИП.

2 Ход работы

2.1 Данные

	$U_{ m {\scriptscriptstyle HAKAJIA}}=2.61\;{ m B}$									
U, B	2.639	3.162	3.566	4.111	4.502	5.299	4.737	6.325	6.802	7.095
$I_{\mathrm{a}}, \mathrm{A}$	0.0295	0.18	0.216	0.227	0.228	0.212	0.229	0.187	0.172	0.162
U, B	8.232	9.488	10.625	11.006	11.588	11.528	12.197	12.193	7.503	
$I_{\rm a},{ m mA}$	0.126	0.103	0.099	0.1012	0.106	0.105	0.110	0.110	0.147	

	$U_{ m { m Hakaja}}=2.97\;{ m B}$										
U, B	2.979	3.261	3.514	3.858	4.045	4.435	5.028	5.252	5.424	6.032	6.248
$I_{\mathrm{a}},\mathrm{A}$	0.383	0.474	0.537	0.600	0.629	0.675	0.709	0.715	0.717	0.712	0.707
U, B	6.557	6.730	7.047	7.472	7.856	8.712	9.515	10.394	10.701	11.28	10.713
$I_{\rm a},{ m mA}$	0.693	0.683	0.659	0.621	0.586	0.518	0.468	0.459	0.465	0.484	0.469

Таблица 1: Результаты измерений в статическом режиме

$V_{\text{накала}}, \ \mathrm{B}$	V_{min}, B	$V_{\rm max},~B$	$V_{\text{пробоя}}, \mathbf{B}$	расст. до мин, В
2,97	8,2	3,2	16,4	10,0
2,61	7,0	3,0	17,2	5,8

Таблица 2: Результаты измерений в динамическом режиме

2.2 Обработка данных

1. Используя формулы 2 рассчитаем размер электронной оболочки атома инертного газа ($V_{min}=8.2B,\ V_{max}=3.2B,\ V_0=1,28B$):

$$2\ell = \frac{h}{\sqrt{2m(E_1 + U_0)}} = 580 \pm 55 \text{ fm}, \ 2\ell = \frac{3}{2} \frac{h}{\sqrt{2m(E_2 + U_0)}} = 598 \pm 58 \text{ fm},$$

Теперь рассчитаем по формуле 3:

$$\ell = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}} = 388 \pm 35$$
пм.

2. Оценим глубину потенциальной ямы по формуле 4:

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1 = 1.28 \pm 0.29$$
 B.

3. По результатам измерений напряжения пробоя оценим потенциал ионизации инертного газа:

Получили что тиратрон наполнен аргоном.

4. Построем графики $I_{\rm a}=f\left(V_{\rm c}\right)$ (для статического режима):

Рис. 3: $V_{\text{накала}} = 2.61 \text{ B}$

Рис. 4: $V_{\text{накала}} = 2.98 \text{ B}$

5. Оценим, используя ф-лу:

$$k_2 l = \sqrt{\frac{2m(E_n + U_0)}{\hbar^2}} l = n\pi, \quad n = 1, 2, 3,$$

определим, при каких напряжениях должны появляться максимумы в коэффициенте прохождения электронов для n=2,3. Сравним полученные величины с наблюдаемыми особенностями на BAX тиратрона.

6. На основе формулы 5a найдем зависимость вероятности рассеяния элект ронов (с точно стью до константы) от энергии и построим соответствующие графики:

Рис. 5: $V_{\text{накала}} = 2.61 \text{ B}$

Рис. 6: $V_{\text{накала}} = 2.98 \; \mathrm{B}$

Из линейного участка графика по МНК найдем k – коэф. наклона, где $k=\frac{1}{C}$:

$$k_1 = 0.105 \pm 0.012; \ k_2 = 0.090 \pm 0.007$$

$$C_1 = 9.52 \pm 1,088; \ C_2 = 11.11 \pm 0.864; \ \Delta C = \frac{1}{k^2} \cdot \Delta k$$

7. ВАХ тиратрона в динамическом режиме:

Рис. 7: $V_{\text{накала}} = 2.61 \text{ B}$

Рис. 8: $V_{\text{накала}} = 2.97 \; \mathrm{B}$

8. Погрешности оценим по формулам:

$$\sigma_{l_1} = l_1 \frac{\sigma_{E_1}}{E_1}, \ \sigma_{l_2} = l_2 \frac{\sigma_{E_2}}{E_2}, \ \sigma_{l_3} = l_3 \frac{\sigma_{E_1} + \sigma_{E_2}}{E_2 - E_1}.$$

Погрешность определения константы C в 5a находилась из МНК.

3 Вывод

В ходе лабораторной работы мы наблюдали ВАХ тиратрона в динамическом режиме (рис. 3, 8) при различных напряжениях накала, причем по напряжению пробоя определили, что используемый в эксперименте инертный газ состоит из атомов ксенона. Действительно, энергия ионизации ксенона – 16,4 эв, а $E_{\rm пробоя}=(16,2\pm0,5)$ эВ.

Вольт-амперная характеристика тиратрона в статическом режиме (рис. 3, 4) имеет вид, который находится в согласии с квантовой теорией. Электрон, обладая волновыми свойствами, способен «интерферировать сам с собой» при рассеянии на атоме, тем самым усиливая или ослабевая анодный ток. Энергии электрона (напряжения на катоде) при которых наблюдаются максимумы или минимумы в статическом режиме примерно совпадают со значениями, полученными при измерениях в динамическом режиме.

Проанализируем вид зависимости w=w(U), представленной на рис. (5, 6), при напряжении накала V=2,62 В с точностью до константы C. На графике в диапазоне от 1В до 12В отчетливо видны максимум и минимум, что подтверждает справдливость эффекта Рамзауэра — эффективное сечение реакции сильно зависит от энергии электрона. Однако видно, что при достаточно малых энергиях электрона погрешность вероятности сильно возрастает, что неудивительно, ведь из формулы (5a) видно, что $w \to +\infty$ при $U \to 0$ (этот предел не зависит от нормировачной константы C), что противоречит физической реальности. Можно сделать вывод, что формула (5a) имеет границы применимости: энергия электрона $E \ge 1$ эВ. При меньших энергиях электрон может испытывать другие квантовые эффекты: рассеяние медленных частиц, резонансное рассеяние при малых энергиях.

4 Литература

- 1. Лабораторный практикум по общей физике. Квантовая физика.
- 2. MHK http://mathhelpplanet.com/static.php?p=onlayn-mnk-i-regressionniy-analiz