04 - Iteration Control Structures

Ex. No. : 4.1 Date: 21/2/24

Register No.: 231501092 Name: MAHESH KUMAR.J.R

.

Factors of a number

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number).

For example:

Inpu t	Result
20	1 2 4 5 10 20

PROGRAM:

k=int(input())

```
l=[]
for i in range(1,k+1):
    if(k%i==0):
        l.append(i)
```

for j in l:

print(j,end=' ')

	Input	Expected	Got	
~	20	1 2 4 5 10 20	1 2 4 5 10 20	~
~	5	1 5	1 5	~
~	13	1 13	1 13	~

Passed all tests! ✓

Correct

Ex. No. : 4.2 Date: 21/2/24

Register No.: 231501092 Name: MAHESH KUMAR.J.R

.

Non Repeated Digit Count

Write a program to find the count of non-repeated digits in a given number N. The number will be passed to the program as an input of type int.

Assumption: The input number will be a positive integer number \geq 1 and \leq 25000. Some examples are as below.

If the given number is 292, the program should return 1 because there is only 1 non-repeated digit '9' in this number

If the given number is 1015, the program should return 2 because there are 2 non-repeated digits in this number, '0', and '5'.

If the given number is 108, the program should return 3 because there are 3 non-repeated digits in this number, '1', '0', and '8'.

If the given number is 22, the function should return 0 because there are NO non-repeated digits in this number.

For example:

Input	Resul t
292	1
1015	2
108	3
22	0

PROGRAM:

```
n=int(input())
l=[]
k=[]
while n>0:
a=n%10
n=n//10
l.append(a)
```

for i in range(len(l)):
 if l.count(l[i])==1:
 k.append(l[i])
print(len(k))

	Input	Expected	Got	
~	292	1	1	~
~	1015	2	2	~
~	108	3	3	~
~	22	0	0	~

Passed all tests! ✓

Correct

Ex. No. : 4.3 Date: 21/3/24

Register No.: 231501092 Name: MAHESH KUMAR.J.R

.

Prime Checking

Write a program that finds whether the given number N is Prime or not. If the number is prime, the program should return 2 else it must return 1.

Assumption: $2 \le N \le 5000$, where N is the given number.

Example 1: if the given number N is 7, the method must return 2

Example2: if the given number N is 10, the method must return 1

For example:

Input	Result
7	2
10	1

```
a=int(input())
for i in range(2,a):
    if(a%2==0):
        flag=0
    elif(a%i!=0):
        flag=1
    else:
        flag=0
if(flag==1):
    print("2")
```

elif(flag==0):

print("1")

PROGRAM;

	Input	Expected	Got	
~	7	2	2	~
~	10	1	1	~
Passe	ed all te	sts! 🗸		
Correc	t			

Ex. No. : 4.4 Date: 21/3/24

Register No.: 231501092 Name: MAHESH KUMAR.J.R

.

Next Perfect Square

Given a number N, find the next perfect square greater than N.

Input Format:

Integer input from stdin.

Output Format:

Perfect square greater than N.

Example Input:

10

Output:

16

PROGRAM:

```
a=int(input())
c=[]
for i in range(0,a):
    b=i**2
    if(b>a):
        c.append(b)
print(c[0])
```


Ex. No. : 4.5 Date: 21/3/24

Register No.: 231501092 Name: MAHESH KUMAR.J.R

.

Nth Fibonacci

Write a program to return the nth number in the fibonacci series. The value of N will be passed to the program as input.

NOTE: Fibonacci series looks like –

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . and so on.

i.e. Fibonacci series starts with 0 and 1, and continues generating the next number as the sum of the previous two numbers.

- first Fibonacci number is 0,
- second Fibonacci number is 1,
- third Fibonacci number is 1,
- fourth Fibonacci number is 2,
- fifth Fibonacci number is 3,
- sixth Fibonacci number is 5,
- seventh Fibonacci number is 8, and so on.

For example:

Input:

7

Output

8

PROGRAM:

a=[0,1]

for i in range(0,100):

	Input	Expected	Got	
~	1	0	0	~
~	4	2	2	~
~	7	8	8	~
asse	ed all tes	sts! 🗸		
orrect		ubmission: 1.0	0/1.00	

Ex. No. : 4.6 Date: 21/3/24

Register No.: 231501092 Name: MAHESH KUMAR.J.R

.

Disarium Number

A Number is said to be Disarium number when the sum of its digit raised to the power of their respective positions becomes equal to the number itself. Write a program to print number is Disarium or not.

Input Format:

Single Integer Input from stdin.

Output Format:

Yes or No.

Example Input:

175

Output:

Yes

Explanation

 $1^1 + 7^2 + 5^3 = 175$

Example Input:

123

Output:

No

For example:

InputResult

175 Yes

123 No

```
import math
PROGRAM:
n=int(input())
a=len(str(n))
sum=0
x=n
while(x!=0):
  r = x\%10
  sum=int(sum+math.pow(r,a))
  a-=1
  x=x//10
if(sum==n):
  print("Yes")
else:
  print("No")
```


Ex. No. : 4.7 Date: 21/3/24

Register No.: 231501092 Name: MAHESH KUMAR.J.R

.

Sum of Series

Write a program to find the sum of the series $1 + 11 + 111 + 1111 + \dots + n$ terms (n will be given as input from the user and sum will be the output)

Sample Test Cases

Test Case 1

Input

4

Output

1234

Explanation:

as input is 4, have to take 4 terms.

1 + 11 + 111 + 1111

Test Case 2

Input

6

Output

123456

For example:

Input	Result
3	123

```
PROGRAM:

n=int(input())

b=1

sum=0

for i in range(1,n+1):

sum+=b

b=(b*10)+1

print(sum)
```

	Input	Expected	Got	
~	4	1234	1234	~
~	6	123456	123456	~

Passed all tests! 🗸

Correct

Ex. No. : 4.8 Date: 21/3/24

Register No.: 231501092 Name: MAHESH KUMAR.J.R

.

Unique Digit Count

Write a program to find the count of unique digits in a given number N. The number will be passed to the program as an input of type int.

Assumption: The input number will be a positive integer number \geq 1 and \leq 25000.

If the given number is 292, the program should return 2 because there are only 2 unique digits '2' and '9' in this number

If the given number is 1015, the program should return 3 because there are 3 unique digits in this number, '1', '0', and '5'.

For example:

Input	Result
292	2
1015	3

PROGRAM:

a=int(input())

b=[]

while a>0:

c=a%10

a = a / / 10

b.append(c)

b=list(set(b))

print(len(b))

	Input	Expected	Got	
~	292	2	2	~
~	1015	3	3	~
~	123	3	3	~
asse	ed all te	sts! 🗸		
orrect arks f		ubmission: 1.0	0/1.00	

Ex. No. : 4.9 Date: 21/3/24

Register No.: 231501092 Name: MAHESH KUMAR.J.R

.

Product of single digit

Given a positive integer N, check whether it can be represented as a product of single digit numbers.

Input Format:

Single Integer input.

Output Format:

Output displays Yes if condition satisfies else prints No.

Example Input:

14

Output:

Yes

Example Input:

13

Output:

No

else:

PROGRAM:

```
a=int(input())
flag=0
for i in range(10):
    for j in range(10):
        if(i*j==a):
        flag=1
        break
if(flag==1):
    print("Yes")
```

print("No")

Ī		Input	Expected	Got	
	~	14	Yes	Yes	~
	~	13	No	No	~
Р	asse'	ed all te	sts! 🗸		
	orrect arks f		ubmission: 1.0	0/1.00	

Ex. No. : 4.10 Date: 21/3/24

Register No.: 231501092 Name: MAHESH KUMAR.J.R

.

Perfect Square After adding One

Given an integer N, check whether N the given number can be made a perfect square after adding 1 to it.

Input Format:

Single integer input.

Output Format:

Yes or No.

Example Input:

24

Output:

Yes

Example Input:

26

Output:

No

For example:

Input	Resul t
24	Yes

```
PROGRAM:
import math
n=int(input())
a=n+1
sr=int(math.sqrt(a))
if(sr*sr==a):
    print("Yes")
else:
    print("No")
```

