Template: Study Material

		<mr.a.d.wandhekar< th=""></mr.a.d.wandhekar<>
ey words Nean deviation, tandard deviation	Learning Objective: Calculate mean and standard deviation of discrete and grouped data related to the given simple engineering problem.	Diagram/ Picture The more spread out a data distribution is, the greater its S.D.
ey Questions Vhat is mean?	Concept Map	00000
Vhat is deviation?	Engineering	0 0
	Finance Mean deviation Standard deviation Economics	• • • • •
	Stock Market	In first case S.D. is greater.

Mean Deviation

Mean Deviation for raw data

i) Mean deviation about mean =
$$\frac{\Sigma |x_i - \overline{x}|}{N} = \frac{\Sigma |d_i|}{N}$$

where $\bar{x} = \text{mean of N observations}$.

1) Calculate the mean deviation about the mean of the following data.

Solution:

Given data is raw data

Mean =
$$\overline{x} = \frac{\sum x_i}{N} = \frac{3+6+5+7+10+12+15+18}{8}$$

= $\frac{76}{8} = 9.5$

Xi	$ \mathbf{d}_{\mathbf{i}} = \mathbf{x}_{\mathbf{i}} - \mathbf{x} $
3	6.5
6	3.5
5	4.5
7	2.5
10	0.5
12	2.5
15	5.5
18	8.5
	$\Sigma \mid d_i \mid = 34$

M.D. =
$$\frac{\Sigma |d_i|}{N} = \frac{34}{8}$$

$$M.D. = 4.25$$

Mean Deviation for Discrete (ungrouped) Frequency Distribution

M.D. about mean =
$$\frac{\sum f_i |x_i - \overline{x}|}{\sum f_i} = \frac{\sum f_i |d_i|}{N}$$

where
$$N = \sum f_i$$
 and $|d_i| = |x_i - \overline{x}|$

1) Calculate the Mean deviation from Mean of the following data.

Xi	10	11	12	13	14
$\mathbf{f_i}$	3	12	18	12	3

Solution: Mean deviation about mean:

Xi	$\mathbf{f_i}$	$f_i x_i$	$ \mathbf{d}_{\mathbf{i}} = \mathbf{x}_{\mathbf{i}} - \overline{\mathbf{x}} $	$f_i \mid d_i \mid$
10	3	30	2	6
11	12	132	1	12
12	18	216	0	0
13	12	156	1	12
14	03	42	2	06
	$N = \sum f_i = 48$	$\Sigma f_i x_i = 576$		$\sum f_i \mid d_i \mid = 36$

Mean =
$$\bar{x} = \frac{\sum f_i x_i}{N} = \frac{576}{48} = 12$$

Key Definitions/ Formulas

For Raw data:

$$\mathbf{M.D.} = \frac{\sum |d_i|}{N}$$

$$\mathbf{S.D.} = \sqrt{\frac{\sum d^2_i}{N}}$$

For ungrouped or grouped data:

$$\mathbf{M.D.} = \frac{\sum f_i | d_i|}{N}$$

S.D.=
$$\sqrt{\frac{\sum f_i d_i^2}{N}}$$

M.D. =
$$\frac{\sum f_i |d_i|}{N} = \frac{36}{48} = 0.75$$

Mean deviation for grouped data:

$$M.D. = \frac{\sum f_i |x_i - \overline{x}|}{\sum f_i} = \frac{\sum f_i \mid d_i \mid}{N}$$

where $x_i = Mid$ - value or centre value

$$\bar{x} = Mean$$

$$N = \sum f_i$$

Solved Examples:

1) Find the mean deviation from mean of the following distribution.

Marks	0-10	10-20	20-30	30-40	40-50
No. of students	5	8	15	16	6

Solution

C.I.	f _i	Xi	$f_i x_i$	$ \mathbf{d}_{\mathbf{i}} = \mathbf{x}_{\mathbf{i}} - \overline{\mathbf{x}} $	f _i d _i
0-10	5	5	25	22	110
10-20	8	15	120	12	96
20-30	15	25	375	2	30
30-40	16	35	560	8	128
40-50	6	45	270	18	108
	$N = \sum f_i = 50$		$\Sigma f_i x_i = 1350$		$\Sigma f_i \mid d_i \mid = 472$

Mean =
$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

= $\frac{1350}{50} = 27$

$$\mbox{Mean Deviation about mean} \quad = \frac{\sum f_i \mid d_i \mid}{N} \label{eq:mean_def}$$

$$=\frac{472}{50}$$

$$= 9.44$$

Standard Deviation (S.D.)

S.D. for raw data:

S.D. =
$$\sigma = \sqrt{\frac{\sum (x_i - \overline{x})^2}{N}} = \sqrt{\frac{\sum d^2_i}{N}}$$

$$\bar{x} = Mean$$

$$d_i = |x_i - \overline{x}|$$

N = Total number of observations

1)Calculate S.D. of the following data:

Solution: Given data is raw data

$$\overline{x} = \frac{\sum x_i}{N} = \frac{25+50+30+70+42+36+48+34+60}{9} = \frac{395}{9}$$

X	=	43.	.888

x _i	$\mathbf{d_i} = \mathbf{x_i} - \mathbf{x}$	d_i^2
25	-18.88	356.45
50	6.12	37.45
30	-13.88	192.65
70	26.12	682.25
42	- 1.88	3.53
36	- 7.88	62.09
48	4.12	16.97
34	- 9.88	97.614
60	16.12	259.85
		$\Sigma d_i^2 = 1708.85$

Standard Deviation =
$$\sqrt{\frac{d_i^2}{N}}$$

= $\sqrt{\frac{1708.85}{9}}$
= $\sqrt{189.872}$
S.D.= 0.538

Standard deviation for ungrouped data:

$$S.D. = \sigma = \sqrt{\frac{\sum f_i d_i^2}{N}}$$
 where
$$N = \sum f_i$$

$$\bar{x} = Mean = \frac{\sum f_i x_i}{N}$$

$$d_i = x_i - x$$

Solved Examples:

1) Find the standard deviation of the following frequency distribution.

x _i	6	7	8	9	10	11	12
f_i	3	6	9	13	8	5	4

Solution :

	e			_2	2 2
x _i	i,	f _i x _i	$\mathbf{d_i} = \mathbf{x_i} - \mathbf{x}$	d _i	$f_i d_1^2$
6	3	18	-3	9	27
7	6	42	-2	4	24
8	9	72	-1	1	9
9	13	117	0	0	0
10	8	80	1	1	8
11	5	55	2	4	20
12	4	48	3	9	36
	$N = \sum_{i} f_{i} = 48$	$\sum_{i} f_i x_i = 432$			$\sum f_i d_i^2 = 124$
	48	432			$\angle I_i u_i - 124$

Mean
$$= \overline{x} = \frac{\sum f_i x_i}{N}$$

$$= \frac{432}{48} = 9$$
S.D.
$$= \sqrt{\frac{\sum f_i d_i^2}{N}}$$

$$= \sqrt{\frac{124}{48}}$$

$$= \sqrt{2.583}$$

$$\frac{\overline{x}}{x} = \frac{1+2+3+4+5}{5}$$

=3

=3	
\mathcal{X}_{i}	$ d_i $
1	2
3	1
3	0
4 5	1
5	2
	$\sum_{i=1}^{n} d_i $

$$\mathbf{M.D.} = \frac{\sum |d_i|}{N}$$
$$= \frac{6}{5}$$
$$= 1.2$$

S.D. for grouped data

S.D. =
$$\sigma = \sqrt{\frac{\sum f_i d_i^2}{N}}$$

where, $N = \sum f_i$
 $d_i = |x_i - \bar{x}|$
 $\bar{x} = Mean = \frac{\sum f_i x_i}{N}$
 $x_i = Mid - Value$

Solved Example:

Calculate Mean and Standard deviation for the following data.

Class	20-29	30-39	40-49	50-59	60-69	70-79
Frequency	10	15	30	20	15	10

Solution : Here class interval are not continuous making them continuous as :

Class	Cont. Class	f _i	x _i	f _i x _i	$\mathbf{d}_{\mathbf{i}} = \mathbf{x}_{\mathbf{i}} - \mathbf{x}^{\top} $	d_i^2	$f_i d_i^2$
20-29	19.5-29.5	10	24.5	245	24.5	600.25	6002.5
30-39	29.5-39.5	15	34.5	517.5	14.5	210.25	3153.75
40-49	39.5-49.5	30	44.5	1335	4.5	20.25	607.5
50-59	49.5-59.5	20	54.5	1090	5.5	30.25	605
60-69	59.5-69.5	15	64.5	967.5	15.5	240.25	3603.75
70-79	69.5-79.5	10	74.5	745	25.5	650.25	6502.5
		$N = \sum f_i =$		$\sum f_i x_i =$			$\sum f_i d_i^2 =$
		100		4900			20475

$$Mean = \bar{x} = \frac{\sum f_i x_i}{N}$$
$$= \frac{4900}{100}$$
$$= 49$$

Standard Deviation = σ

$$= \sqrt{\frac{\sum f_1 d_1^2}{N}}$$

$$= \sqrt{\frac{20475}{100}}$$

$$= 14.309$$

	Application of Concept/ Examples in real life	Link to YouTube/					
	Standard deviation is a widely used measure of variability. S.D. measures the spread of a	OER/ video					
	data distribution. It is used in various fields such as economics, finance, engineering etc.	khanacademy.org					
Key Take away from this UO: Mean deviation							
Standard deviation							
İ							