Homework 2

Problem 1

Prove that if A and B are sets, then

$$(A \oplus B) \oplus B = A$$

I will prove this using a **proof by cases**.

Say that A is an empty set (ϕ) and B is a non-empty set.

$$A \oplus B = B$$

$$B \oplus B = \emptyset$$

 $\emptyset = A$, so the equation works for this combination.

Say that A is a non-empty set and B is an empty set (\emptyset) .

$$A \oplus B = A$$

$$A \oplus B = A$$

A = A, so the equation works for this combination.

Say that both A and B are non-empty sets, with $A = \{1, 2, 3, 4\}$ and $B = \{5, 6\}$.

$$\{1,2,3,4\} \oplus \{5,6\} = \{1,2,3,4,5,6\}$$

$$\{1, 2, 3, 4, 5, 6\} \oplus \{5, 6\} = \{1, 2, 3, 4\}$$

 $\{1,2,3,4\} = A$, so the equation works for this combination.

Say that both A and B are empty sets.

$$\emptyset \oplus \emptyset = \emptyset$$

$$\varnothing \oplus \varnothing = \varnothing$$

 $\emptyset = A$, so the equation works for this combinations.

Since the equation works for all combinations, this statement is true. \blacksquare

Suppose A and B are subsets of C. Prove that $A \subseteq B$ if and only if $(C - A) \cup B = C$.

We will break this up into two proofs.

The first proof can be written as

If
$$(C - A) \cup B = C$$
, then $A \subseteq B$.

Since you first subtract the elements in A from C and then add the elements in B to get the same original set, it follows that A and B are made up of the same elements. Therefore, $A \subseteq B$.

The second proof can be written as

If
$$A \subseteq B$$
, then $(C - A) \cup B = C$

If $A \subseteq B$, you can substitute one set for the other.

$$(C - B) \cup B = C$$
$$C = C$$

Therefore, the statement is true.

Prove or disprove each of the following statements.

```
For every set A, we have A \in P(A).
For every set A, we have A \subseteq P(A).
```

The definition of a power set is a combination of all the subsets of a set. This includes the original elements in the set. Therefore, $A \in P(A)$.

However, the second statement is not true. Say we have a set $A = \{1, 2, 3\}$. The power set is $\{\{\}, 1, 2, 3, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$. This is not the same elements as A. The statement is false.

Suppose A is a subset of B. Prove that $P(A) \subseteq P(B)$.

Suppose an element $X \in P(A)$. Then, $X \subseteq A$ (since by definition, P(A) is all the subsets of A), and thus $X \subseteq B$. Therefore, $X \in P(B)$ and $P(A) \subseteq P(B)$.

Suppose A,B,C are sets such that A is **nonempty**. Prove that $B\subseteq C$ if and only if $A\times B\subseteq A\times C$.

Let an element $a \in A$. If $x \in B$, then $(a, x) \in A \times B$. Then $(a, x) \in A \times C$, so $x \in C$. Thus, $B \subseteq C$.