CSC 225

Algorithms and Data Structures: I
Rich Little
rlittle@uvic.ca
ECS 516

Definition of Binary Search Trees

• **Formally**: A *binary search tree* is a proper binary tree in which each internal node v of T stores an item (k,e). Keys stored at nodes in the left subtree of v are less than or equal to k, while keys stored at nodes in the right subtree of v are greater than or equal to k.

k

Convention

- In a binary search tree, keys are stored in internal nodes only
- Every internal node in a binary search tree contains a key/an element with a key
- Every node has exactly two children (one or two of which can be leaves)

inser [174)

Example of a Binary Search Tree

Performance of Binary Search Trees

Let *h* be the height of a binary search tree *T*. The following methods are performed on *T*:

time complexity

• size, isEmpty O(1

• find, insert, remove O(h)

Space complexity: O(n)

Performance

• The height h is O(n) in the worst case

• The height h is $O(\log n)$ in the best case

Balanced Search Trees

- Why balanced search trees?
 - unbalanced search trees are not efficient due to height O(n)
- Examples
 - AVL trees
 - 2-3 trees & red-black trees

2-3 trees

- Not binary
 - In contrast to AVL trees and red black trees
- How to guarantee balance?
 - Nodes can hold more than one key
- 2-node: holds one key, has two children
- 3-node: holds two keys, has three children
- Assumption: all keys different

Definition (2-3 tree)

- A 2-3 search tree is a tree that is
 - either empty
 - or a 2-node, with one key k (and associated value) and two links: a left link to a 2-3 search tree with keys smaller than k, and a right link to a 2-3 search tree with keys larger than k

• or a 3-node, with two keys $k_1 < k_2$ (and associated values) and three links: a left link to a 2-3 search tree with keys smaller than k_1 , a middle link to a 2-3 search tree with keys larger than k_1 and smaller than k_2 , and a right link to a 2-3 search tree with keys larger than k_2

Definition (2-3 tree, continued)

- A link to an empty tree is called a null link or leaf.
- A 2-3 tree is a perfectly balanced 2-3 search tree, which is one where all null links are the same distance from the root (i.e same depth.)

Example of a 2-3 tree

Example of a 2-3 tree

auxiliary nodes: 4-nodes

- On a temporary bases when working with 2-3 trees we will make use of 4-nodes:
- a 4-node, with three keys $k_1 < k_2 < k_3$ (and associated values) and four links
 - a left link to a 2-3 search tree with keys smaller than k_1 ,
 - a left middle link to a 2-3 search tree with keys larger than k_1 and smaller than k_2 ,
 - a right middle link with keys larger than k_2 and smaller than k_3 , and
 - a right link to a 2-3 search tree with keys larger than k_3

Supported methods

- Search a key
- Insert an element/key and associated value
- Delete an element/key and associated value

2-3 trees: search

- Generalization of binary search
- If root node is a 2-node then compare search key
 s against root key k
 - If s = k then return element with key k
 - Else if *s* < *k* then recurse on left subtree
 - Else if s > k then recurse on right subtree

2-3 tree: search (continued)

- If root node is 3-node then compare search key s with 3-node keys k_1 and k_2
 - If $s = k_1$ then return element with key k_1
 - If $s = k_2$ then return element with key k_2
 - If $s < k_1$ then recurse on left subtree
 - If $s > k_2$ then recurse on right subtree
 - Else recurse on middle subtree

2-3 tree: search (continued)

 If root is empty/leaf then search key is not contained in the 2-3 tree

Algorithm search(k, v):

Input: A search key k, and a node v of a 2-3 search tree T.

Output: A node w of tree T, such that either w is an internal node storing key k or w is an external node and thus key k is not in T.

```
if T.isExternal(v) then
    return v
if T.is2node(v) then
   if k = T.key(v) then
             return v
    else if k < T.key(v) then
             return search(k, T.leftChild(v))
    else
             return search(k, T.rightChild(v))
else
   if k = T.key1(v) or k = T.key2(v) then
             return v
    else if k < T.key1(v) then
             return search(k, T.leftChild(v))
    else if k > T.key2(v) then
             return search(k, T.rightChild(v))
    else
             return search(k, T.middleChild(v))
```

2-3 trees: insertion of an element with key *k*

- We only insert if key k is not yet in the tree. The search for key k returns a leaf.
- Case 1. If the leaf is root, then the tree is empty and the leaf (root node) is replaced by a 2-node with key k
- Otherwise, the search terminates in a leaf with parent node v.
- We distinguish two cases
 - **Case 2.** *v* is a 2-node
 - **Case 3.** *v* is a 3-node

Case 1. Inserting key *i* into an empty tree

Case 1. Inserting key *i* into an empty tree

Case 2. v is a 2-node

- Replace v with a 3-node containing both its original key and the new key to be inserted
- Note: The tree remains perfectly balanced and satisfies the search-tree properties

Case 2. Inserting key n

Case 2. Inserting key n

Case 3. v is a 3-node

- We distinguish the following cases
 - Case 3.1 v is the root
 - Case 3.2 v's parent is a 2-node
 - Case 3.3 v's parent is a 3-node
 - These are all cases since the search tree is perfectly balanced.

Case 3.1 ν is the root

- Temporarily replace ν by a 4-node with original keys and inserted new key
- Convert this tree rooted by the 4-node into a 2-3 tree consisting of three 2-nodes as follows:
 - The new root contains key k_2 .
 - The left child of the root contains key k_1
 - The right child of the root contains key k_3
 - The children of the 2-nodes containing k_1 and k_3 are all leaves.

Case 2. Insert key e

Case 2. Insert key r

Case 3.2. The parent of v is a 2-node

- We replace v (temporarily) by a 4-node that contains the original keys of v and the new key to be inserted.
- Then, the middle key, k_2 , is removed from the 4-node and inserted into the parent 2-node y (making it into a 3-node), and splitting the 4-node with its two remaining keys, k_1 and k_2 , into two 2-nodes with parent y.

Case 3.2.Insert key t

Case 3.2.Insert key t

Case 3.3. The parent y of 3-node v is a 3-node

- We replace 3-node v (temporarily) by a 4-node that contains the original keys of v and the new key to be inserted.
- We then move the middle key up and insert it into the parent, creating a temporary 4-node at parent y.
- This 4-node is either the root, has a 2-node as parent or has a 3-node as parent.
- The first case is discussed next: *splitting the root*. In the second case we continue as in Case 3.2. In the last case, we continue to move the middle key up the tree as above (Case 3.3).

Splitting the root

- Split the root into three 2-nodes (this increases the height of the tree by one), leaving the tree perfectly balanced
 - k₂ is the root key
 - k_1 the key of the root's left child; its two children are the two leftmost children of the 4-node
 - *k*₃ the key of the root's right child; its two children are the two rightmost children of the 4-node

Insert key k

