MTH 101: Calculus I

Nikita Agarwal

Semester II, 2024-25

Lecture 6 January 14, 2025

Comparing cardinality

For given sets X and Y (finite or infinite). We write

- |X| = |Y|, if X and Y have the same cardinality. Otherwise, $|X| \neq |Y|$.
- $|X| \leq |Y|$, if either X is an empty set, or there is a one-one map $f: X \to Y$.
- |X| < |Y|, if $|X| \le |Y|$ and $|X| \ne |Y|$. That is, no one-one map $f: X \to Y$ is onto.

Semester II. 2024-25 MTH 101: Calculus I

Examples

- If X is a finite set, then $|X| < |\mathbb{N}|$.
- If X is an infinite set, then $|\mathbb{N}| \leq |X|$.
- If X is an uncountable set, then $|\mathbb{N}| < |X|$.
- Let $\mathcal{P}(X)$ denotes the power set of X, the collection of all subsets of X, then $|X| < |\mathcal{P}(X)|$.

This implies that there is no largest set.

These will be discussed in the tutorial.

Order Relations

Relations on Sets

- Let X be a nonempty set.
- Let $X \times X = \{(x_1, x_2) : x_1, x_2 \in X\}$ (collection of ordered pairs of elements of X).

Relation on X

A relation R on X is a subset of $X \times X$.

For every pair $(x_1, x_2) \in R$, we say that x_1 is related to x_2 under R, denoted as x_1Rx_2 .

Examples

• Let X be the collection of all human beings on the earth. A human being $x_1 \in X$ is related to $x_2 \in X$ is x_1 is a child of x_2 . Then

$$R = \{(x_1, x_2) : x_1 \text{ is a child of } x_2\},\$$

is the relation described above, which is a subset of $X \times X$.

• Let $X = \mathbb{R}$, the set of real numbers. Suppose x_1 is related to x_2 if $x_1 \leq x_2$. Then

$$R = \{(x_1, x_2) : x_1 \leq x_2\},\$$

is the relation described above, which is a subset of $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$. Note that $(2,1) \notin R$.

Relations on Sets

- Let *X*, *Y* be nonempty sets.
- Let $X \times Y = \{(x, y) : x \in X, y \in Y\}$ (collection of ordered pairs of elements of X and Y).

Relation between X and Y

A relation R between X and Y is a subset of $X \times Y$.

For every pair $(x, y) \in R$, we say that $x \in X$ is related to $y \in Y$ under R, denoted as xRy.

Examples

• Let X be the collection of all students of IISER Bhopal, and $Y = \mathbb{N}$. Let

$$R = \{(x, y) : x \text{ is a BS first year student whose roll number is } y\}.$$

Then R is a relation between X and Y.

• Let $X = \{1, 2, 3\}$ and $Y = \{a, b\}$. Let

$$R = \{(1, a), (1, b), (3, a)\},\$$

is the relation between X and Y, which is a subset of $X \times Y$.

Nikita Agarwal MTH 101: Calculus I Semester II, 2024-25

Functions and Relations

- Let *X*, *Y* be nonempty sets.
- (Function gives a relation) Let $f: X \to Y$ be a function. Then

$$R = \{(x, f(x)) : x \in X\},\$$

is a relation between X and Y.

Note: R is the graph of the function f in $X \times Y$.

• (Relation may not give a function) A relation R between X and Y may not give a function $f: X \to Y$ such that R is of the form

$$R = \{(x, f(x)) : x \in X\},\$$

That is, R is the graph of the function f.

For example, let $X=Y=\mathbb{R}$, $R=\{(x,y)\in\mathbb{R}\times\mathbb{R}: x^2+y^2=1\}$. R is a unit circle in \mathbb{R}^2 , which cannot be a graph of any function, since for each -1< x<1, both $(x,-\sqrt{1-x^2})$ and $(x,\sqrt{1-x^2})$ belong to R, so we cannot define a function f.

Types of relations, Partial order and Total order

Let R be a relation on a nonempty set X. Then R is said to be

- Reflexive: For all $x \in X$, xRx. That is, each $x \in X$ is related to itself.
- Symmetric: for each pair $x, y \in X$, if xRy, then yRx. That is, if x is related to y, then y is related to x.
- Anti-symmetric: for each pair $x, y \in X$, if xRy and yRx, then x = y. That is, if x is related to y and y is related to x, then x and y are the same elements.
- Transitive: for $x, y, z \in X$, if xRy and yRz, then xRz. That is, if x is related to y and y is related to z, then x is related to z.

Partial Order

A relation R on a nonempty set X is said to be a partial order if it is reflexive, anti-symmetric, and transitive.

Notation: In case of a partial order, we generally write $x \le y$ in place of xRy.

The pair (X, \leq) is called a partially ordered set.

Total Order

A partial order R on a nonempty set X is said to be a total order if for each pair $x, y \in X$, either $x \le y$ or $y \le x$. The pair (X, \le) is called a totally ordered set.

Example 1

• (\mathbb{R}, \leq) is a totally ordered set with usual relation \leq .

Reflexive: $x \leq x$, for all $x \in \mathbb{R}$.

Anti-symmetric: For $x, y \in \mathbb{R}$, $x \le y$ and $y \le x$ implies x = y.

Transitive: For $x, y, z \in \mathbb{R}$, $x \le y$ and $y \le z$ implies $x \le z$.

Hence (\mathbb{R}, \leq) is a partially ordered set.

Further, any pair $x,y\in\mathbb{R}$ are related: $x\leq y$ or $y\leq x$. Hence (\mathbb{R},\leq) is a totally ordered set.

Nikita Agarwal MTH 101: Calculus I Semester II, 2024-25

Example 2

Let A be a nonempty set and let X = P(A), collection of all subsets of A.
 Consider (X,⊆).

Reflexive: $B \subseteq B$, for all $B \in X$.

Anti-symmetric: For $B, C \in X$, $B \subseteq C$ and $C \subseteq B$ implies B = C.

Transitive: For $B, C, D \in X$, $B \subseteq C$ and $C \subseteq D$ implies $B \subseteq D$.

Hence (X, \subseteq) is a partially ordered set.

Is it a totally ordered set? NO!

Let $A = \{1, 2\}$. Let $B = \{1\} \in X = \mathcal{P}(A)$ and $C = \{2\} \in \mathcal{P}(A)$ be subsets of A.

Then B and C are not related; neither is contained in the other.

Nikita Agarwal MTH 101: Calculus I Semester II, 2024-25 10 / 15

Chain

Chain

Let (X, \leq) be a partially ordered set.

A nonempty subset Y of X is known as a chain in X if (Y, \leq) is a totally ordered set.

Examples

- Let $A = \{1,2\}$. Let $X = \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, A\}$. (X, \subseteq) is a partially ordered set. $Y = \{\emptyset, \{1\}, A\}$ is a chain in X, but $\{\emptyset, \{1\}, \{2\}\}$ is not a chain in X, since $\{1\}$ and $\{2\}$ are not related.
- Any subset of a totally ordered set is a chain.
- (Example of an uncountable chain) Let A = [0,1] be an interval and $X = \mathcal{P}(A)$. (X,\subseteq) is a partially ordered set. Then the set $Y = \{[0,t]: 0 \le t \le 1\}$ is a chain in X, since if $[0,t_1],[0,t_2] \in Y$ with $t_1 \le t_2$, then $[0,t_1] \subseteq [0,t_2]$.

Bounds and Maximal Elements

Let (X, \leq) be a partially ordered set. Let Y be a nonempty subset of X.

- An element $u \in X$ is called an upper bound of Y if $x \le u$, for all $x \in Y$. Note that there can be many upper bounds.
- An element $\ell \in X$ is called a lower bound of Y if $\ell \le x$, for all $x \in Y$. Note that there can be many lower bounds.
- An element $a \in Y$ is said to be a maximum of Y if $x \le a$, for all $x \in Y$. (all the elements of Y are smaller than $a \in Y$)
- An element $b \in Y$ is said to be a minimum of Y if $b \le x$, for all $x \in Y$. (all the elements of Y are greater than $b \in Y$)
- An element a₀ ∈ Y is said to be a maximal element of Y if x ∈ Y and a₀ ≤ x implies x = a₀.
 (no element of Y is greater than a₀)
- An element $b_0 \in Y$ is said to be a minimal element of Y if $x \in Y$ and $x \le b_0$ implies $x = b_0$. (no element of Y is smaller than b_0)

Nikita Agarwal MTH 101: Calculus I Semester II, 2024-25

Remark

- Let (X, \leq) be a partially ordered set. Let Y be a nonempty subset of X.
- ullet Upper bounds of Y and Lower bounds of Y are elements of X (need not be in Y).
- Maximum of Y and minimum of Y are elements of Y.
- Maximal element of Y and minimal element of Y are elements of Y.

Nikita Agarwal MTH 101: Calculus I Semester II, 2024-25 13 / 15

Example 1

Let $A = \{1, 2, 3\}$ and $X = \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, X\}$, with relation \subseteq .

Consider the following subset of X:

$$Y = {\emptyset, {1}, {2}, {3}, {1, 2}, {1, 3}}.$$

 \emptyset is the only minimum of Y and Y has no maximum.

Y has only one minimal element, which is \emptyset . The maximal elements of Y are $\{1,2\}$ and $\{1,3\}$ since no other element is greater than these two.

Example 2 (will be discussed in the next lecture)

Let $X = \{2^m 3^n : m, n \in \mathbb{N}, 1 \le m + n \le 4\}.$

Consider the relation \leq on X as follows:

 $x, y \in X$, $x \le y$ if and only if y is a multiple of x.

Then (X, \leq) is a partially ordered set, but is not totally ordered since $2^4, 3^4$ are not related.

Then Y neither has a minimum element not a maximum element.

Y has two minimal elements 2^1 and 3^1 , since no element is smaller than these two.

The $\underline{\text{maximal elements}}$ of Y are $2^4, 2^33, 2^23^2, 2^13^3, 3^4$ since no other element is greater than these two.