### Classification Evaluation

Albert Bifet (@abifet)



Paris, 27 September 2016 albert.bifet@telecom-paristech.fr

#### **Evaluation**

- 1. Error estimation: Hold-out or Cross-Validation
- 2. Evaluation performance measures: *Accuracy or \kappa-statistic*
- 3. Statistical significance validation: MacNemar or Nemenyi test

#### **Evaluation Framework**

#### **Error Estimation**

### Data available for testing

- Holdout an independent test set
- Apply the current decision model to the test set
- The loss estimated in the holdout is an unbiased estimator

#### Holdout Evaluation

#### 1. Error Estimation

### Not enough data available for testing

- Divide dataset in 10 folds
- Repeat 10 times: use one fold for testing and the rest for training

k-fold Cross-validation

|                | Predicted | Predicted |       |
|----------------|-----------|-----------|-------|
|                | Class+    | Class-    | Total |
| Correct Class+ | 75        | 8         | 83    |
| Correct Class- | 7         | 10        | 17    |
| Total          | 82        | 18        | 100   |

Table: Simple confusion matrix example

|                | Predicted | Predicted |       |
|----------------|-----------|-----------|-------|
|                | Class+    | Class-    | Total |
| Correct Class+ | tp        | fn        | tp+fn |
| Correct Class- | fp        | tn        | fp+tn |
| Total          | tp+fp     | fn+tn     | N     |

Table: Simple confusion matrix example

▶ Precision = 
$$\frac{tp}{tp+fp}$$

► Recall = 
$$\frac{tp}{tp+fn}$$

$$F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

|                | Predicted | Predicted |       |
|----------------|-----------|-----------|-------|
|                | Class+    | Class-    | Total |
| Correct Class+ | 75        | 8         | 83    |
| Correct Class- | 7         | 10        | 17    |
| Total          | 82        | 18        | 100   |

Table: Simple confusion matrix example

► Accuracy = 
$$\frac{75}{100} + \frac{10}{100} = \frac{75}{83} \frac{83}{100} + \frac{10}{17} \frac{17}{100} = 85\%$$

• Arithmetic mean = 
$$(\frac{75}{83} + \frac{10}{17})/2 = 74.59\%$$

• Geometric mean = 
$$\sqrt{\frac{75}{83}} \frac{10}{17} = 72.90\%$$

### 2. Performance Measures with Unbalanced Classes

|                | Predicted | Predicted |       |
|----------------|-----------|-----------|-------|
|                | Class+    | Class-    | Total |
| Correct Class+ | 75        | 8         | 83    |
| Correct Class- | 7         | 10        | 17    |
| Total          | 82        | 18        | 100   |

Table: Simple confusion matrix example

|                | Predicted | Predicted |       |
|----------------|-----------|-----------|-------|
|                | Class+    | Class-    | Total |
| Correct Class+ | 68.06     | 14.94     | 83    |
| Correct Class- | 13.94     | 3.06      | 17    |
| Total          | 82        | 18        | 100   |

Table: Confusion matrix for chance predictor

### 2. Performance Measures with Unbalanced Classes

### Kappa Statistic

- p<sub>0</sub>: classifier's prequential accuracy
- ▶ p<sub>c</sub>: probability that a chance classifier makes a correct prediction.
- κ statistic

$$\kappa = \frac{p_0 - p_c}{1 - p_c}$$

- $\kappa = 1$  if the classifier is always correct
- $\kappa = 0$  if the predictions coincide with the correct ones as often as those of the chance classifier

### Matthews correlation coefficient (MCC)

$$\frac{\textit{tp} \times \textit{tn} - \textit{fp} \times \textit{fn}}{\sqrt{(\textit{tp} + \textit{fp})(\textit{tp} + \textit{fn})(\textit{tn} + \textit{fp})(\textit{tn} + \textit{fn})}}$$

|                | Predicted | Predicted |       |
|----------------|-----------|-----------|-------|
|                | Class+    | Class-    | Total |
| Correct Class+ | tp        | fn        | tp+fn |
| Correct Class- | fp        | tn        | fp+tn |
| Total          | tp+fp     | fn+tn     | N     |

Table: Simple confusion matrix example

#### AUC Area under the curve

A ROC space is defined by FPR and TPR (recall)

► FPR = 
$$\frac{fp}{fp+tp}$$

► TPR = 
$$\frac{tp}{tp+fn}$$

# 3. Statistical significance validation (2 Classifiers)

|                     | Classifier A<br>Class+ | Classifier A<br>Class- | Total   |
|---------------------|------------------------|------------------------|---------|
| Classifier B Class+ | С                      | а                      | c+a     |
| Classifier B Class- | b                      | d                      | b+d     |
| Total               | c+b                    | a+d                    | a+b+c+d |

$$M = |a-b-1|^2/(a+b)$$

The test follows the  $\chi^2$  distribution. At 0.99 confidence it rejects the null hypothesis (the performances are equal) if M > 6.635.

#### McNemar test

# 3. Statistical significance validation (> 2 Classifiers)

Two classifiers are performing differently if the corresponding average ranks differ by at least the critical difference

$$CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6N}}$$

- $\triangleright$  k is the number of learners, N is the number of datasets,
- ritical values  $q_{\alpha}$  are based on the Studentized range statistic divided by  $\sqrt{2}$ .

## Nemenyi test

# 3. Statistical significance validation (> 2 Classifiers)

Two classifiers are performing differently if the corresponding average ranks differ by at least the critical difference

$$CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6N}}$$

- ▶ *k* is the number of learners, *N* is the number of datasets,
- critical values  $q_{\alpha}$  are based on the Studentized range statistic divided by  $\sqrt{2}$ .

| # classifiers            | 2     | 3     | 4     | 5     | 6     | 7     |
|--------------------------|-------|-------|-------|-------|-------|-------|
| <b>q</b> <sub>0.05</sub> | 1.960 | 2.343 | 2.569 | 2.728 | 2.850 | 2.949 |
| <b>9</b> 0.10            | 1.645 | 2.052 | 2.291 | 2.459 | 2.589 | 2.693 |

Table: Critical values for the Nemenyi test