Computer Science & Information Technology

Discrete Mathematics

DPP:4

Set Theory and Algebra

Q1 The POSET

({2,3,5,30,60,120,180,360}; |) is_____.

- (A) Join semi lattice but not a meet semi lattice
- (B) Not join semi lattice but a meet semi lattice
- (C) A lattice
- (D) Not a semi lattice

Q2 The POSET ({2,3, 4,6,12,18}; |)is

- (A) Join semi lattice but not a meet semi lattice.
- (B) Not join semi lattice but a meet semi lattice.
- (C) A lattice.
- (D) Not a semi lattice.

Q3 Consider the following statements

 S_1 : Every lattice is a totally ordered set.

S₂: Every totally ordered set is a lattice.

- (A) S_1 is true and S_2 is false
- (B) S_1 is false but S_2 is true.
- (C) Both S_1 and S_2 are true.
- (D) Neither S_1 nor S_2 are true.

Q4

Which of the following is/are true for above hasse diagram?

- (A) Above hasse diagram represent c complemented lattice.
- (B) Above hasse diagram represent a distributive lattice

- (C) Elements a, b, c, and d have equal number of complements
- (D) Every element of the above lattice has at most one comeplement.

Q5

Which of the following is/are true for the lattice 'L' with respect to POSET ($\{1, 2, 5, 3, 9, 90\}$, |)

- (A) L has a sub-lattice which is isomorphic to L1.
- (B) L has a sub-lattice which is isomorphic to L2.
- (C) L has no sub-lattice which is isomorphic to either L1 or L2.
- (D) L is not a distributive lattice.
- **Q6** In a Boolean algebra with respect to set A where |A| = n consider the following statements.

S1: Number of vertices in the hasse diagram are 2^n .

S2: Number of edges in the hasse diagram are n . 2^{n-1}

Which of the following is true?

- (A) S1 is true and S2 is false
- (B) S1 is false but S2 is true.
- (C) Both S1 and S2 are true.
- (D) Both S1 and S2 are false.
- **Q7** Let P be the partial order defined on the set {1,2,3,4} as follows

 $P = \{(x,x) \mid x \in \{1, 2, 3, 4\}\} \cup \{(1, 2), (3, 2), (3, 4)\}$

The number of total orders on $\{1, 2, 3, 4\}$ that contains P is_____.

- **Q8** Which of the following is/are always true for any lattice?
 - (A) There exists exactly one minimum and exactly one maximum element.
 - (B)

- There exists at most one minimal and at most one maximal element.
- (C) Least upper bound and greatest lower bound exists for every pair of elements.
- (D) Every element has a unique complement.

Answer Key

(A) Q1

Q2 (D)

Q3 (B)

(A, D) Q4

(A, B, D) Q5

(C) Q6

5~5 Q7

(B, C) Q8

Hints & Solutions

Q1 Text Solution:

Join semi lattice but not a meet semi lattice.

Q2 Text Solution:

Not a semi lattice.

Q3 Text Solution:

 S_1 : Every lattice is a totally ordered set: FALSE S_2 : Every totally ordered set is a lattice: TRUE

Q4 Text Solution:

Above hasse diagram represent a complemented lattice.

Every element of the above lattice has at most one comeplement.

Q5 Text Solution:

L has a sub-lattice which is isomorphic to L1. L has a sub-lattice which is isomorphic to L2. L is not a distributive lattice.

Q6 Text Solution:

S1: Number of vertices in the hasse diagram are 2^n . (TRUE)

S2: Number of edges in the hasse diagram are n . 2^{n-1} (TRUE)

Q7 Text Solution:

The number of total orders on $\{1, 2, 3, 4\}$ that contains P is 5.

Q8 Text Solution:

There exists at most one minimal and at most one maximal element.

Least upper bound and greatest lower bound exists for every pair of elements.

