Electoral Crime Under Democracy: Evidence from Brazil

Andre Assumpcao*

June 1^{st} , 2019

Abstract

 TBU

Keywords: electoral politics; judicial politics; comparative politics; illegal behavior and the enforcement of law; political economy.

JEL classification: D72; K42; P48.

^{*}Ph.D. Candidate, Department of Public Policy, The University of North Carolina at Chapel Hill. Contact details: aassumpcao@unc.edu.

Table 1: Descriptive Statistics

	N	Mean	St. Dev.	Min	Max
Age	9,470	46.34	11.02	17	86
Male	9,470	.793	.405	0	1
Political Experience	9,470	.091	.287	0	1
Campaign Expenditures (in R\$)	9,470	52,555	210,742	0	4,949,250
Convicted at Trial	9,470	.641	.480	0	1
Convicted on Appeal	9,470	.537	.499	0	1
Probability of Election	9,442	.191	.393	0	1
Vote Distance to Election Cutoff (in p.p.)	9,442	-4.09	9.55	-92.82	12.83
Total Vote Share (in p.p.)	9,442	10.13	17.98	0.00	100.00

Table 2: Electoral Crime Rulings

	App	Appeals		
Trial	Affirmed	Reversed	Reversed	
Not Convicted	3380	22	0.6	
Convicted	5059	1009	16.6	

Table 3: First-Stage Regressions

	Outcome: Convicted at Trial		
	(1)	(2)	(3)
Convicted on Appeal	.766***	.753***	.738***
	(.006)	(.007)	(.009)
Individual Controls	-	Yes	Yes
Fixed-Effects	-		Yes
Observations	9,470	9,470	9,470
Adjusted- \mathbb{R}^2	.633	.649	.861
F-stat	16,364.9***	1,094.0***	21.7***

Note: First-Stage regressions here report the correlation between being convicted at trial and being convicted on appeal for all candidates who have had their candidacy challenged under charges of electoral irregularities. I present results including and excluding individual politician characteristics; municipal, electoral, and party fixed-effects; and use robust standard errors. *p<0.1; ***p<0.05; ****p<0.01

Figure 1: Instrument Point Estimates and CIs

Table 4: Hausman Test of Instrument Strength

Outcome	Hausman Statistic	p-value
1. Probability of Election	109.28	.000
2. Total Vote Share	205.57	.000
3. Vote Distance to Election Cutoff:	1.88	.170
3.1. City Councilor	65.44	.000
3.2. Mayor	93.43	.000

Table 5: The Effect of Electoral Crime on the Probability of Election

	Outcome: Probability of Election						
_	OLS	OLS	OLS	IV	IV	IV	
	(1)	(2)	(3)	(4)	(5)	(6)	
Convicted at Trial	208***	151***	163***	272***	213***	231***	
	(.009)	(.009)	(.014)	(.011)	(.010)	(.016)	
Individual Controls	-	Yes	Yes	-	Yes	Yes	
Fixed-Effects		-	Yes	-	-	Yes	
Observations	9,442	9,442	9,442	9,442	9,442	9,442	
Adjusted- \mathbb{R}^2	.065	.149	.303	.059	.143	.300	
F-stat	653.58***	104.02***	2.46***	707.35***	108.9***	2.47***	

Note: The regressions here estimate the effect of being convicted at trial on the probability of election for all candidates who have had their candidacy challenged under charges of electoral irregularities. Columns 1 and 4 display models not including individual candidate characteristics; columns 2 and 5 include age, gender, marital status, education level, political experience, and the amount spent in their campaign; columns 3 and 6 also include municipal, electoral, and party fixed-effects. I report robust standard errors for all specifications in this table. *p<0.1; **p<0.05; ***p<0.01

Table 6: The Effect of Electoral Crime on the Total Vote Share

		Outcome: Total Vote Share (in p.p.)						
	OLS	OLS	OLS	IV	IV	IV		
	(1)	(2)	(3)	(4)	(5)	(6)		
Convicted on Appeal	-12.945^{***} (.418)	-8.316*** (.337)	-9.943*** (.529)	-16.804*** (.478)	-11.765*** (.399)	-13.254** [*] (.624)		
Individual Controls Fixed-Effects	-	Yes	Yes Yes	-	Yes	Yes Yes		
Observations Adjusted- \mathbb{R}^2 F-stat	9,442 .119 1,278.91***	9,442 .379 361.57***	9,442 .606 6.15***	9,442 .109 1,360.8***	9,442 .371 368.19***	9,442 .602 6.14***		

Note: The regressions here estimate the effect of being convicted at trial on the total vote share for all candidates who have had their candidacy challenged under charges of electoral irregularities. Columns 1 and 4 display models not including individual candidate characteristics; columns 2 and 5 include age, gender, marital status, education level, political experience, and the amount spent in their campaign; columns 3 and 6 also include municipal, electoral, and party fixed-effects. I report robust standard errors for all specifications in this table. *p<0.1; **p<0.05; ***p<0.01

Table 7: The Effect of Electoral Crimes on the Vote Distance to Election Cutoff

	Outcome:	Outcome: Vote Distance to Election Cutoff (in p.p.)				
	OLS	IV	OLS	IV		
	(1)	(2)	(3)	(4)		
Convicted at Trial	575***	849***	-5.172***	-7.381***		
	(.064)	(.075)	(1.905)	(2.184)		
Individual Controls	Yes	Yes	Yes	Yes		
Fixed-Effects	Yes	Yes	Yes	Yes		
Sample	City Council	City Council	Mayor	Mayor		
Observations	7,100	7,100	2,342	2,342		
Adjusted- R^2	.431	.428	.384	.382		
F-stat	3.54***	1.86***	3.55***	1.85***		

Note: The regressions here estimate the effect of being convicted at trial on the distance to the election cutoff for candidates who have had their candidacy challenged under charges of electoral irregularities. All models include individual candidate characteristics and municipal, electoral, and party fixed-effects. Since election rules differ by office type, I split the sample into city council candidates (columns 1 and 2) and mayor candidates (columns 3 and 4). I report robust standard errors for all specifications in this table. $^*p<0.1;$ $^{**}p<0.05;$ $^{***}p<0.01$

Table 8: Coefficient Stability Test For Various R_{max}^2

	Individual	Covariate	Models	Individual Covariate and Fixed-Effects Models		
Outcomes:	$R_{ur}^2 + (R_{ur}^2 - R_r^2)$	$2 \cdot R_{ur}^2$	R^2 for $\beta = 0$	$R_{ur}^2 + (R_{ur}^2 - R_r^2)$	$2 \cdot R_{ur}^2$	R^2 for $\beta = 0$
Probability of Election	2.63 (.24)	1.50 (.30)	(.37)	3.55 (.96)	3.10 (1.00)	(2.10)
Vote Share	1.80 (.64)	1.23 (.76)	(.85)	7.26 (1.00)	7.26 (1.00)	(2.73)
Vote Distance to Cutoff (City Councilor)	6.72 (.22)	5.05 (.25)	- (.75)	63.08 (1.00)	63.08 (1.00)	- (25.78)
Vote Distance to Cutoff (Mayor)	$\frac{2.44}{(.27)}$	1.23 (.35)	(.39)	4.66 (1.00)	4.66 (1.00)	(1.61)

Table 9: Heterogeneous Sentencing across Trial and Appeals

	(1)	(2)	(3)	(4)	(5)	(6)
	β_{trial}	β_{appeals}	$\beta_{\rm difference}$	s.e.	$t ext{-stat}$	p-value
Elected to Office	223	267	.044	.085	.510	.610
Age	001	.000	001	.003	424	.671
Male	.029	.022	.007	.039	.176	.861
Political Experience	089	013	076	.079	964	.335
Campaign Expenditures (ln)	029	028	001	.029	034	.973
Marital Status:						
Divorced	006	.026	032	.038	839	.402
Legally Divorced	.066	.028	.039	.048	.795	.427
Single	008	.043	051	.040	-1.276	.202
Widowed	.029	011	.040	.064	.626	.532
Educational Levels:						
Completed ES/MS	160	234	.074	.090	.819	.413
Incomplete ES/MS	116	259	.143	.134	1.066	.286
Can Read and Write	066	286	.220	.174	1.268	.205
Completed HS	191	259	.068	.085	.799	.424
Incomplete HS	108	264	.156	.132	1.180	.238
Completed College	218	300	.083	.099	.833	.405
Incomplete College	177	270	.093	.125	.742	.458

Note: In this table, I report the coefficients of two regressions using the same covariates on the probability of receiving an unfavorable ruling at trial (column 1) and on appeals (column 2). I then recover the distributions of the differences in betas and test H0: $\beta_{\rm difference} = 0$ for all covariates in the regressions (columns 3-6). Robust standard errors are clustered at the municipal-election pair level (equivalent to the judge-level error shared by all candidates in one municipality during one election period); party-fixed effects are included in both regressions but are not reported here.

Table 10: The Effect of Electoral Crimes on Voter Engagement

	Party	-Level	Election-Level		
	Voter Turnout	Outcome: Invalid Votes (percent)	Outcome: Voter Turnout (percent)	Invalid Votes	
	(1)	(2)	(3)	(4)	
Share of Candidacies	.003	.222***	001 $(.009)$.134*	
Invalid at Trial	(.007)	(.076)		(.070)	
Individual Controls	-	-	-	-	
Fixed-Effects	Yes	Yes	Yes	Yes	
Observations Adjusted- \mathbb{R}^2 F -stat	5,322	5,322	3,757	3,757	
	.997	.973	.995	.946	
	214.3***	354.1***	81.8***	124.5***	

Note: The regressions here estimate the effect of the share of candidates convicted at trial overall the total office vacancies on voter turnout and the number of invalid votes (both logged). I aggregate observations up to the party and election level and control for municipality and election year fixed-effects. I report robust standard errors, clustered by elections and municipalities, for all specifications in this table. *p<0.1; **p<0.05; ***p<0.01

Figure 2: Instrument Correlation with Covariates

Coefficients: lacktriangledown Trial lacktriangledown Appeals

Table 11: Campaign Expenditure Across Ruling Group

	Spendin	Campaign g in Ruling o (in R\$)		
Stage	Favorable	Unfavorable	$t ext{-stat}$	p-value
Trial	84,766	34,497	9.45	.000
	[3,402]	[6,068]		
Appeals	73,275	34,658	8.62	.000
	[4,389]	[5,081]		
Unfavorable Ruling	Affirmed	Reversed	$t ext{-stat}$	p-value
Trial	34,346	34,527	-0.05	.961
	[5,059]	[1,009]		

Note: This table reports t-tests across different subsamples of candidates. The number of observations in each group is reported inside the squared brackets.

Table 12: Voter Sophistication and Benefit of Rule-Breaking

	β_1 : Substantial Violation				
β_2 : Convicted at Trial × Substantial Violation	$\beta_2 = 0$	$\beta_1=0$ 1. Violation carries no electoral benefit. 2. Voters impose same penalty for different electoral violations.	$eta_1 > 0$ 1. Violation helps candidate get elected. 2. Voters impose same penalty for different electoral violations.		
	$\beta_2 < 0$	 Violation carries no electoral benefit. Voters impose harsher electoral penalties for substantial violations. 	 Violation helps candidate get elected. Voters impose harsher electoral penalties for substantial violations. 		

Table 13: Heterogeneous Effect of Electoral Ruling

	Full Sample		City Councilor	Mayor
	Outcome: Probability of Election	Outcome: Vote Share (in p.p.)	Outcome: Vote Distance to Cutoff (in p.p.)	Outcome: Vote Distance to Cutoff (in p.p.)
	(1)	(2)	(3)	(4)
Convicted at Trial	176*** (.020)	-7.369*** (.719)	713*** (.084)	-6.653^{***} (2.101)
Substantial Violation	.047** (.024)	4.939*** (.723)	.089 (.103)	$ \begin{array}{c} .169 \\ (1.524) \end{array} $
$ \begin{array}{c} {\rm Convicted\ at\ Trial} \\ \times {\rm\ Substantial\ Violation} \end{array} $	014 (.028)	-4.952^{***} $(.915)$.015 (.111)	1.644 (2.562)
Individual Controls Fixed-Effects	Yes Yes	Yes Yes	Yes Yes	Yes Yes
Observations Adjusted- \mathbb{R}^2 F-stat	4,717 .375 2.54***	4,717 .697 6.84***	3,465 .499 3.70***	1,252 .380 1.73***

Note: The regressions here include the severity of the accusation brought against candidates running for municipal office. I recover the accusations from court documents and identify ruling type using linear support-vector machine classification (details in appendix REF). In columns 1-4, I report the coefficients on ruling outcome (row 1), type (row 2), and their interaction (row 3). All regressions include municipal, electoral, and party fixed-effects. Robust standard errors are displayed inside parentheses. *p<0.1; **p<0.05; ***p<0.01

0.8 - 0.7 - 0.6 - 0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 IV Coefficient Point Estimate

Figure 3: Simulation of IV Point Estimates