Systèmes dynamiques DM 3

Pour le 16/12/2021

On se propose ici de démontrer le théorème suivant.

Théorème. Soit $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$ une fonction. Alors

(i) Si $\sum_n f(q)$ diverge et si (qf(q)) est décroissante, alors pour presque tout $x \in [0,1]$, il existe une infinité de couples d'entiers $(p,q) \in \mathbb{N}^2_{>1}$ tels que

$$\left| x - \frac{p}{q} \right| < \frac{f(q)}{q}. \tag{1}$$

(ii) Si $\sum_n f(q)$ converge, alors pour presque tout $x \in [0, 1]$, le nombre de couples (p, q) vérifiant (1) est fini.

Échauffement

- 1. (a) Pour tout $q \in \mathbb{N}_{\geq 1}$, on note $A_q \subset [0,1]$ l'ensemble des $x \in [0,1]$ tels que (1) est vraie pour un $p \in \mathbb{N}$. Montrer que $\ell(A_q) \leq 2f(q)$, où ℓ est la mesure de Lebesgue.
 - (b) Montrer le second point du **Théorème**.

Développement en fractions continues

Dans tout ce qui suit, I désigne l'intervalle [0,1]. Pour tout $x \in \mathbf{R}$ on notera [x] sa partie entière et $\{x\}$ sa partie fractionnaire, i.e.

$$x = [x] + \{x\}, \quad [x] \in \mathbf{N}, \quad \{x\} \in [0, 1).$$

On définit deux applications $a: I \to \mathbf{N}_{\geq 1} \cup \{\infty\}$ et $T: I \to I$ par $a(0) = \infty, T(0) = 0$ et

$$a(x) = [1/x], \quad T(x) = \{1/x\}, \quad x \neq 0.$$

Pour tout $x \in I$ et $n \in \mathbb{N}_{\geq 1}$, on notera

$$a_n(x) = a(T^{n-1}(x)).$$

Enfin pour toute séquence $(a_1, \ldots, a_m) \in (\mathbf{N}_{\geq 1} \cup \{\infty\})^m$ et $t \in [0, 1)$ on notera

$$[a_1, \dots, a_m; t] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_m + t}}},$$

et $[a_1, \ldots, a_m] = [a_1, \ldots, a_m; 0].$

2. Montrer que pour tout $m \ge 1$ et tout $x \in I$ on a

$$x = [a_1(x), \dots, a_m(x); T^m(x)].$$

3. Montrer que $x \in I$ est rationnel si et seulement si il existe $n \ge 1$ tel que $T^n(x) = 0$.

Soit $x \in I \setminus \mathbf{Q}$. On définit les suites d'entiers $(p_n(x))_{n \geq -1}$, $(q_n(x))_{n \geq -1}$, par $p_{-1}(x) = q_0(x) = 1$, $p_0(x) = q_{-1}(x) = 0$ et

$$p_n(x) = a_n(x)p_{n-1}(x) + p_{n-2}(x), \quad q_n(x) = a_n(x)q_{n-1}(x) + q_{n-2}(x), \quad n \ge 1.$$

Si $x \in \mathbf{Q}$, on définit de même les nombres $p_n(x)$ et $q_n(x)$ pour tout n tel que $n < n(x) = \min\{m \ge 1, T^m(x) = 0\}.$

Dans la suite on fixe $x \in I$ et $1 \le n < n(x)$.

- **4.** (a) Montrer que $p_{n-1}(x)q_n(x) p_n(x)q_{n-1}(x) = (-1)^n$.
 - (b) Montrer que

$$[a_1(x):\ldots,a_n(x);t] = \frac{p_n(x) + tp_{n-1}(x)}{q_n(x) + tq_{n-1}(x)}, \quad t \in [0,1).$$

(c) En déduire que

$$\frac{1}{q_n(x)(q_n(x) + q_{n+1}(x))} \le \left| x - \frac{p_n(x)}{q_n(x)} \right| \le \frac{1}{q_n(x)q_{n+1}(x)}.$$

5. Montrer que

$$\left|\log \frac{x}{p_n(x)/q_n(x)}\right| \le \frac{1}{2^{n-2}}.$$

La mesure de Gauss

On note μ la mesure de Gauss, c'est-à-dire la mesure sur I de densité

$$d\mu(x) = \frac{1}{\log 2} \frac{d\ell(x)}{1+x},$$

où ℓ est la mesure de Lebesgue sur I.

 $\mathbf{6.}$ Montrer que T préserve la mesure de Gauss.

Pour $a_1, \ldots a_m \in \mathbf{N}_{\geq_1}$, on notera

$$I_{a_1,\dots,a_m} = \{x \in I, \ a_j(x) = a_j, \ j = 1,\dots,m\}.$$

7. (a) Montrer que $I_{a_1,\dots a_m}$ est l'image de [0,1) par l'application ψ_{a_1,\dots,a_m} définie par

$$\psi_{a_1,\dots,a_m}(t) = [a_1,\dots,a_m;t], \quad t \in [0,1).$$

- (b) Montrer que $\psi_{a_1,\dots,a_m}(t) = \frac{p_m + tp_{m-1}}{q_m + tq_{m-1}}$, où (p_k) et (q_k) sont définies par récurrence en terme des a_k comme dans la partie précédente.
- (c) Montrer que $\ell(I_{a_1,...,a_m}) = \frac{1}{q_n(q_n + q_{n-1})}$.
- (d) Montrer que la classe $\{I_{a_1,\ldots,a_m},\ m\in \mathbb{N}_{\geq 1},\ a_1,\ldots,a_m\in \mathbb{N}_{\geq 1}\}\cup\{I\}$ engendre la tribu des boréliens sur I.
- **8.** Montrer que pour tout intervalle $J=[x,y)\subset I$ et tous $a_1,\ldots,a_m\in \mathbf{N}_{\geq 1},$ on a

$$\frac{1}{2}\ell(J) \le \frac{\ell(T^{-m}(J) \cap I_{a_1,\dots,a_m})}{\ell(I_{a_1,\dots,a_m})} \le 2\ell(J).$$

9. Montrer que μ est ergodique pour T.

Applications aux approximations diophantiennes

10. Montrer que pour tout $x \in I \setminus \mathbf{Q}$ et tout $n \ge 1$

$$\frac{1}{q_n(x)} = \prod_{k=1}^n [a_k(x), \dots, a_n(x)].$$

11. En déduire que pour tout $x \in I \setminus \mathbf{Q}$, on a

$$\frac{1}{n}\log\frac{1}{q_n(x)} = \frac{1}{n}\sum_{k=1}^n \log T^{k-1}(x) + O\left(\frac{1}{n}\right), \quad n \to +\infty.$$

12. En déduire que, pour presque tout x de I,

$$\lim_{n \to \infty} \frac{1}{n} \log \left| x - \frac{p_n(x)}{q_n(x)} \right| = -\frac{\pi^2}{6 \log 2}.$$

Pour toute suite $\mathbf{a}=(a_n)_{n\geq 1}$ de réels strictement positifs, on note

$$A(\mathbf{a}) = \left\{ x \in I, \ \#\{n \in \mathbf{N}_{\geq 1}, \ a_n(x) > a_n\} < +\infty \right\}.$$

3

- **13.** (a) Montrer que si $\sum 1/a_n$ converge alors $\mu(A(\mathbf{a})) = 1$.
 - (b) Montrer que si $\sum 1/a_n$ diverge alors $\mu(A(\mathbf{a})) = 0$.

Dans la suite, on se donne $f: \mathbf{N} \to \mathbf{R}_{\geq 0}$ une fonction.

- 14. On suppose dans cette question que $\sum f(q)$ diverge et que (qf(q)) est décroissante, et on note $\varphi(n)=4^nf(4^n)$ pour tout $n\geq 1$.
 - (a) Montrer que pour presque tout $x \in I$, on a

$$\varphi(n) \le q_n(x) f(q_n(x)),$$

sauf pour un nombre fini de valeurs de $n \in \mathbf{N}_{\geq 1}$.

(b) Montrer le point (i) du **Théorème.**