Chapter 1: Linear Systems and Matrices Section: Determinants Lecture #6

Lebanese University

Course Plan

Prof Ali WEHBE 2 / 39

Table of contents

- Introduction
- Determination of the determinant
 - Strategy
 - 2 × 2 Matrices
 - 3 × 3 Matrices
 - n × n Matrix
- 3 Determinant and Elementary Operations
- Properties of Determinant
- 6 Determinants and existence of Solution of system of Linear Equations
- 6 Exercises

- Introduction
- Determination of the determinan
 - Strategy
 - 2 × 2 Matrices
 - 3 × 3 Matrices
 - $n \times n$ Matrix
- 3 Determinant and Elementary Operations
- Properties of Determinant
- 5 Determinants and existence of Solution of system of Linear Equation
- Exercises

Prof Ali WEHBE 4 / 39

1) The **determinant** of a matrix is a real number. It is not a matrix.

Prof Ali WEHBE 5 / 39

- 1) The **determinant** of a matrix is a real number. It is not a matrix.
- 2) As a notation, the determinant of a matrix A is denoted by det(A) or |A|.

Prof Ali WEHBE 5 / 39

- 1) The **determinant** of a matrix is a real number. It is not a matrix.
- 2) As a notation, the determinant of a matrix A is denoted by det(A) or |A|.
- 3) The **determinant** can be applied only on **square** matrices.

Prof Ali WEHBE 5 / 39

- 1) The **determinant** of a matrix is a real number. It is not a matrix.
- 2) As a notation, the determinant of a matrix A is denoted by det(A) or |A|.
- 3) The determinant can be applied only on square matrices.
- 4) Why we study the determinant of a matrix?

- 1) The **determinant** of a matrix is a real number. It is not a matrix.
- 2) As a notation, the determinant of a matrix A is denoted by det(A) or |A|.
- 3) The **determinant** can be applied only on **square** matrices.
- 4) Why we study the determinant of a matrix? The determinant give us an idea for the existence of its inverse. Then, we can know if a square system has an unique solution or not.

- Introduction
- 2 Determination of the determinant
 - Strategy
 - 2 × 2 Matrices
 - 3 × 3 Matrices
 - $n \times n$ Matrix
- 3 Determinant and Elementary Operations
- Properties of Determinant
- 5 Determinants and existence of Solution of system of Linear Equations
- Exercises

Prof Ali WEHBE 6 / 39

- Introduction
- 2 Determination of the determinant
 - Strategy
 - 2 × 2 Matrices
 - 3 × 3 Matrices
 - $n \times n$ Matrix
- 3 Determinant and Elementary Operations
- Properties of Determinant
- 5 Determinants and existence of Solution of system of Linear Equations
- 6 Exercises

General Strategy

- 1) We start by the determinant of 2×2 matrices.
- 2) To determine the determinant of an $n \times n$ matrix, we transform the problem to $(n-1) \times (n-1)$ matrix. Then to $(n-2) \times (n-2)$ matrix..., to 2×2 matrix.

- Introduction
- Determination of the determinant
 - Strategy
 - 2 × 2 Matrices
 - 3 × 3 Matrices
 - $n \times n$ Matrix
- **Determinant and Elementary Operations**
- **Properties of Determinant**
- Determinants and existence of Solution of system of Linear Equations
- **Exercises**

Determinant of 2 × 2 Matrices

If
$$\mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix}$$
 is an $\mathbf{2} \times \mathbf{2}$ matrix. Then, its determinant is given by

$$det(A) = |A| = ad - bc.$$

Determinant of 2 × 2 Matrices

If
$$\mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix}$$
 is an $\mathbf{2} \times \mathbf{2}$ matrix. Then, its determinant is given by

$$det(A) = |A| = ad - bc.$$

Remark:

Remember that in the previous lecture, we put an essential condition for the existence of the inverse of a square matrix like A. Indeed, the condition is $ad - bc \neq 0$, then

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Thus, we can see the first relation between determinant of a square matrix and the existence of its inverse.

Determinant of 2 × 2 Matrices

If
$$\mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix}$$
 is an $\mathbf{2} \times \mathbf{2}$ matrix. Then, its determinant is given by

$$det(A) = |A| = ad - bc.$$

Remark:

Remember that in the previous lecture, we put an essential condition for the existence of the inverse of a square matrix like A. Indeed, the condition is $ad - bc \neq 0$, then

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Thus, we can see the first relation between determinant of a square matrix and the existence of its inverse.

a)
$$\mathbf{A} = \begin{bmatrix} \mathbf{2} & \mathbf{4} \\ \mathbf{1} & -\mathbf{3} \end{bmatrix}$$
.

$$ad - bc = -10$$
.

b)
$$B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
.

$$ad - bc = 0.$$

- Introduction
- Determination of the determinant
 - Strategy
 - 2 × 2 Matrices
 - 3 × 3 Matrices
 - $n \times n$ Matrix
- **Determinant and Elementary Operations**
- **Properties of Determinant**
- Determinants and existence of Solution of system of Linear Equations
- **Exercises**

Determinant of 3 × 3 matrices

Strategy

- Choose an arbitrary column or row.
- Assign a sign to each entry in the selected column/row.
- \odot For each entry, multiply the entry with the determinant of the 2×2 matrix obtained by eliminating the row and column containing this entry.

4 Add the values obtained for all the three entries, and this is the determinant.

Example

Find the determinant of the following $\mathbf{3} \times \mathbf{3}$ matrix: $\mathbf{A} = \begin{bmatrix} \mathbf{2} & \mathbf{5} & \mathbf{4} \\ \mathbf{3} & \mathbf{1} & \mathbf{2} \\ \mathbf{5} & \mathbf{4} & \mathbf{6} \end{bmatrix}$

EXAMPLE

Find the determinant of the following
$$3 \times 3$$
 matrix: $A = \begin{bmatrix} 2 & 5 & 4 \\ 3 & -1 & 2 \\ -5^{+} & 4 & 6 \end{bmatrix}$

$$A = \begin{vmatrix} 2^{+} & 5 & 4 \\ 3^{-} & -1 & 2 \\ -5^{+} & 4 & 6 \end{vmatrix}$$

$$= +2 \begin{vmatrix} -1 & 2 \\ 4 & 6 \end{vmatrix} - 3 \begin{vmatrix} 5 & 4 \\ 4 & 6 \end{vmatrix} + (-5) \begin{vmatrix} 5 & 4 \\ -1 & 2 \end{vmatrix}$$

$$= +2 (-6 - 8) - 3(30 - 16) + (-5)(10 - (-4))$$

$$= +2 (-14) - 3(14) + (-5)(14)$$

$$= -28 - 42 - 70 = -130$$

Prof Ali WEHBE 15 / 39

Determination of the determinant

- Introduction
- Determination of the determinant
 - Strategy
 - 2 × 2 Matrices
 - 3 × 3 Matrices
 - $n \times n$ Matrix
- **Determinant and Elementary Operations**
- **Properties of Determinant**
- Determinants and existence of Solution of system of Linear Equations
- **Exercises**

Minors and Cofactors

Definition (Minors and Cofactors)

Let $\mathbf{A} = [\mathbf{a}_{ii}]$ be an $\mathbf{n} \times \mathbf{n}$ matrix.

Let M_{ij} denote the $(n-1) \times (n-1)$ matrix obtained from **A** by deleting the i^{th} row and j^{th} column.

The Minor of a_{ii} is the determinant $|M_{ii}|$ of the matrix M_{ii} .

The Cofactor \hat{A}_{ii} of a_{ii} is defined by:

$$A_{ij}=(-1)^{i+j}|M_{ij}|.$$

Example

Consider the matrix:

$$A = \begin{bmatrix} 2 & 5 & 4 & -2 \\ 0 & 1 & 2 & 1 \\ 5 & -1 & 0 & -2 \\ 3 & 7 & 4 & 3 \end{bmatrix}$$

Determinant of $n \times n$ Matrix

Definition (Expanding through Rows)

The Determinant of an $n \times n$ matrix **A**, denoted by det(A), is a scalar given by

$$\begin{aligned} \det(\mathsf{A}) &= a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13} + \dots + a_{1n} A_{1n} = \sum_{j=1}^n a_{1j} A_{1j} \\ &= a_{21} A_{21} + a_{22} A_{22} + a_{23} A_{23} + \dots + a_{2n} A_{2n} = \sum_{j=1}^n a_{2j} A_{2j} \\ & \cdot \\ & \cdot \\ &= a_{i1} A_{i1} + a_{i2} A_{i2} + a_{i3} A_{i3} + \dots + a_{in} A_{in} = \sum_{j=1}^n a_{ij} A_{ij} \end{aligned}$$

Prof Ali WEHBE

Determinant of $n \times n$ Matrices

Definition (Expanding through Columns)

The Determinant of an $n \times n$ matrix A, denoted by det(A), is a scalar given by

$$\det(A) = a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} \dots + a_{n1}A_{n1} = \sum_{i=1}^{n} a_{i1}A_{i1}$$

$$= a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32} + \dots + a_{n2}A_{n2} = \sum_{i=1}^{n} a_{i2}A_{i2}$$

$$\vdots$$

$$\vdots$$

$$= a_{1j}A_{1j} + a_{2j}A_{2j} + a_{3j}A_{3j} + \dots + A_{nj} = \sum_{i=1}^{n} a_{ij}A_{ij}$$

Remark:

Since the determinant of a matrix depends of the entries of the chosen row or column, then logically we choose the row or the column that contains more zero entries.

Prof Ali WEHBE 20 / 39

Remark:

Since the determinant of a matrix depends of the entries of the chosen row or column, then logically we choose the row or the column that contains more zero entries.

Example

Calculate the determinants of the following matrices:

a)
$$\mathbf{A} = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 1 & 2 \\ 5 & -1 & -4 \end{bmatrix}$$
.

Remark:

Since the determinant of a matrix depends of the entries of the chosen row or column, then logically we choose the row or the column that contains more zero entries.

Example

Calculate the determinants of the following matrices:

a)
$$\mathbf{A} = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 1 & 2 \\ 5 & -1 & -4 \end{bmatrix}$$
.

b)
$$B = \begin{bmatrix} 1 & 2 & 4 \\ -3 & 3 & 5 \\ 7 & 0 & 6 \end{bmatrix}$$
.

Example

b)
$$C = \begin{bmatrix} 0 & 2 & 3 & 0 \\ 0 & 4 & 5 & 0 \\ 0 & 1 & 0 & 3 \\ 2 & 0 & 1 & 3 \end{bmatrix}$$

- Introduction
- Determination of the determinant
 - Strategy
 - 2 × 2 Matrices
 - 3 × 3 Matrices
 - $n \times n$ Matrix
- 3 Determinant and Elementary Operations
- Properties of Determinant
- 5 Determinants and existence of Solution of system of Linear Equations
- 6 Exercises

Prof Ali WEHBE 22 / 39

Let ${\bf \it A}$ and ${\bf \it B}$ be two ${\bf \it n} \times {\bf \it n}$ matrices, then:

Let **A** and **B** be two $n \times n$ matrices, then:

1) If **B** is obtained from **A** by interchanging two rows of then

$$det(B) = -det(A)$$

Prof Ali WEHBE 23 / 39

Let **A** and **B** be two $n \times n$ matrices, then:

1) If **B** is obtained from **A** by interchanging two rows of then

$$det(B) = -det(A)$$

2) If **B** is obtained from **A** by adding a multiple of a row of to another row of then

$$det(B) = det(A)$$

Let **A** and **B** be two $n \times n$ matrices, then:

1) If **B** is obtained from **A** by interchanging two rows of then

$$det(B) = -det(A)$$

2) If **B** is obtained from **A** by adding a multiple of a row of to another row of then

$$det(B) = det(A)$$

3) If **B** is obtained from **A** by multiplying a row of by a nonzero constant c then

$$det(B) = c det(A)$$

Prof Ali WEHBE

Let **A** and **B** be two $n \times n$ matrices, then:

1) If **B** is obtained from **A** by interchanging two rows of then

$$det(B) = -det(A)$$

2) If **B** is obtained from **A** by adding a multiple of a row of to another row of then

$$det(B) = det(A)$$

3) If **B** is obtained from **A** by multiplying a row of by a nonzero constant c then

$$det(B) = c det(A)$$

Prof Ali WEHBE

Example

Find the determinant of

$$A = \begin{bmatrix} 2 & -3 & 10 \\ 1 & 2 & -2 \\ 0 & 1 & -3 \end{bmatrix}$$

Solution: Using row operations:

$$|A| = \begin{vmatrix} 2 & -3 & 10 \\ 1 & 2 & -2 \\ 0 & 1 & -3 \end{vmatrix} = - \begin{vmatrix} 1 & 2 & -2 \\ 2 & -3 & 10 \\ 0 & 1 & -3 \end{vmatrix} = - \begin{vmatrix} 1 & 2 & -2 \\ 0 & -7 & 14 \\ 0 & 1 & -3 \end{vmatrix}$$
$$= -(-7) \begin{vmatrix} 1 & 2 & -2 \\ 0 & 1 & -2 \\ 0 & 1 & -3 \end{vmatrix} = 7 \begin{vmatrix} 1 & 2 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & -1 \end{vmatrix} = 7(1)(1)(-1) = -7$$

Example

Find the determinant of

$$A = \begin{bmatrix} 2 & -3 & 10 \\ 1 & 2 & -2 \\ 0 & 1 & -3 \end{bmatrix}$$

Solution: Using row operations:

$$|A| = \begin{vmatrix} 2 & -3 & 10 \\ 1 & 2 & -2 \\ 0 & 1 & -3 \end{vmatrix} = - \begin{vmatrix} 1 & 2 & -2 \\ 2 & -3 & 10 \\ 0 & 1 & -3 \end{vmatrix} = - \begin{vmatrix} 1 & 2 & -2 \\ 0 & -7 & 14 \\ 0 & 1 & -3 \end{vmatrix}$$
$$= -(-7) \begin{vmatrix} 1 & 2 & -2 \\ 0 & 1 & -2 \\ 0 & 1 & -3 \end{vmatrix} = 7 \begin{vmatrix} 1 & 2 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & -1 \end{vmatrix} = 7(1)(1)(-1) = -7$$

The operations:

$$\begin{array}{c} \textbf{R}_1 \longleftrightarrow \textbf{R}_2 \\ \textbf{R}_2 - 2\textbf{R}_1 \longrightarrow \textbf{R}_2 \\ \frac{-1}{7}\textbf{R}_2 \longrightarrow \textbf{R}_2 \\ \textbf{R}_3 - \textbf{R}_2 \longrightarrow \textbf{R}_3 \end{array}$$

- Introduction
- Determination of the determinan
 - Strategy
 - 2 × 2 Matrices
 - 3 × 3 Matrices
 - $n \times n$ Matrix
- 3 Determinant and Elementary Operations
- Properties of Determinant
- 5 Determinants and existence of Solution of system of Linear Equations
- 6 Exercises

Let ${\bf A}$ and ${\bf B}$ be two ${\bf n} \times {\bf n}$ matrices and let ${\bf c}$ be a nonzero scalar. Then the following statements are true:

Let ${\bf A}$ and ${\bf B}$ be two ${\bf n} \times {\bf n}$ matrices and let ${\bf c}$ be a nonzero scalar. Then the following statements are true:

1) $det(A^T) = det(A)$.

Let ${\bf A}$ and ${\bf B}$ be two ${\bf n} \times {\bf n}$ matrices and let ${\bf c}$ be a nonzero scalar. Then the following statements are true:

- 1) $det(A^T) = det(A)$.
- 2) If **A** is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$.

Let ${\bf A}$ and ${\bf B}$ be two ${\bf n} \times {\bf n}$ matrices and let ${\bf c}$ be a nonzero scalar. Then the following statements are true:

- 1) $det(A^T) = det(A)$.
- 2) If **A** is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$.
- 3) $det(cA) = c^n det(A)$.

Let **A** and **B** be two $n \times n$ matrices and let **c** be a nonzero scalar. Then the following statements are true:

- 1) $det(A^T) = det(A)$.
- 2) If **A** is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$.
- 3) $det(cA) = c^n det(A)$.
- 4) If **A** has a row or column consisting entirely of zeros, then det(A) = 0.

26/39

Let ${\bf A}$ and ${\bf B}$ be two ${\bf n} \times {\bf n}$ matrices and let ${\bf c}$ be a nonzero scalar. Then the following statements are true:

- 1) $det(A^T) = det(A)$.
- 2) If **A** is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$.
- 3) $det(cA) = c^n det(A)$.
- 4) If **A** has a row or column consisting entirely of zeros, then det(A) = 0.
- 5) det(AB) = det(A)det(B).

Let ${\bf A}$ and ${\bf B}$ be two ${\bf n} \times {\bf n}$ matrices and let ${\bf c}$ be a nonzero scalar. Then the following statements are true:

- 1) $det(A^T) = det(A)$.
- 2) If **A** is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$.
- 3) $det(cA) = c^n det(A)$.
- 4) If **A** has a row or column consisting entirely of zeros, then det(A) = 0.
- 5) det(AB) = det(A)det(B).
- 6) If **A** is a triangular matrix, then $det(A) = \prod_{i=1}^{n} a_{ii}$.

Supplementary Exercise 1

solve the following independent parts:

• Find all values of λ for which det(A) = 0, where

$$A = \begin{bmatrix} \lambda - 4 & 3 & 0 \\ 0 & \lambda & 3 \\ 0 & 0 & \lambda - 4 \end{bmatrix}.$$

2 Let $B \in \mathbb{M}_2(\mathbb{R})$. Show that

$$det(B) = \frac{1}{2} \begin{vmatrix} tr(B) & 1 \\ tr(B^2) & tr(B) \end{vmatrix},$$

where tr is the trace function.

1 Since A is a triangular matrix, then

$$det(A) = (\lambda - 4)(\lambda)(\lambda - 4)$$

So
$$det(A) = 0 \leftrightarrow (\lambda - 4)(\lambda)(\lambda - 4) = 0 \leftrightarrow \lambda = 0$$
 or $\lambda = 4$.

2 Let $B \in \mathbb{M}_2(\mathbb{R})$, then

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $B^2 = \begin{bmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{bmatrix}$ and $tr(B) = a + d$

Thus

$$\frac{1}{2} \begin{vmatrix} tr(B) & 1 \\ tr(B^2) & tr(B) \end{vmatrix} = \frac{1}{2} \begin{vmatrix} a+d & 1 \\ a^2+2bc+d^2 & a+d \end{vmatrix}$$

$$= \frac{1}{2} \left((a+d)^2 - \left(a^2 + 2bc + d^2 \right) \right) = \frac{1}{2} \left(2ad - 2bc \right) = ad - bc$$

and this final answer is equal to the determinant of B.

We have:

$$det(C) = \begin{vmatrix} 2 & -2 \\ -3 & 1 \end{vmatrix} = 2 - 6 = -4$$

so

$$(-3)^2|C| == 9(-4) = -36$$

and

$$-3C = \begin{bmatrix} -6 & 6 \\ 9 & -3 \end{bmatrix}$$
 so $|-3C| = \begin{vmatrix} -6 & 6 \\ 9 & -3 \end{vmatrix} = 18 - 54 = -36$

so they are equal.

- 1 Introduction
- Determination of the determinant
 - Strategy
 - 2 × 2 Matrices
 - 3 × 3 Matrices
 - $n \times n$ Matrix
- 3 Determinant and Elementary Operations
- Properties of Determinant
- 5 Determinants and existence of Solution of system of Linear Equations
- 6 Exercises

1- A square matrix **A** is invertible if and only if $det(A) \neq 0$.

- 1- A square matrix A is invertible if and only if $det(A) \neq 0$.
- 2- A system of Linear Equation has a unique solution if and only if the determinant of its coefficient square matrix is not equal to zero.

Prof Ali WEHBE 31 / 39

- 1- A square matrix A is invertible if and only if $det(A) \neq 0$.
- 2- A system of Linear Equation has a unique solution if and only if the determinant of its coefficient square matrix is not equal to zero.

Remark:

If the determinant of the coefficient square matrix is equal to zero, then the system has an **infinite number of solutions** or has **no solution**.

Prof Ali WEHBE 31 / 39

- 1- A square matrix A is invertible if and only if $det(A) \neq 0$.
- 2- A system of Linear Equation has a unique solution if and only if the determinant of its coefficient square matrix is not equal to zero.

Remark:

If the determinant of the coefficient square matrix is equal to zero, then the system has an **infinite number of solutions** or has **no solution**.

Example

Find the values of k for which the following matrix A is invertible

$$A = \begin{bmatrix} 1 & 3 & k \\ 2 & 1 & 3 \\ 4 & 6 & 2 \end{bmatrix}.$$

Prof Ali WEHBE 31 / 39

- Introduction
- Determination of the determinant
 - Strategy
 - 2 × 2 Matrices
 - 3 × 3 Matrices
 - $n \times n$ Matrix
- Operations
 Operations
- Properties of Determinant
- 5 Determinants and existence of Solution of system of Linear Equations
- 6 Exercises

Supplementary Exercise 2

Let
$$A = \begin{bmatrix} -1 & -3 & 1 \\ 3 & 6 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

- 1) Verify that **A** is invertible.
- 2) Find A^{-1} .
- 3) a) Write the system associated to the problem AX 2b = c, where $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $b = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$ and

$$c = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}$$

b) Deduce its solution.

1
$$A = \begin{pmatrix} -1 & -3 & 1 \\ 3 & 6 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
. Then the determinate of A :

$$det(A) = -3.$$

2
$$A = \begin{pmatrix} -1 & -3 & 1 \\ 3 & 6 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
. Let us calculate A^{-1} :

$$(A|I_3) = \begin{pmatrix} -1 & -3 & 1 & 1 & 0 & 0 \\ 3 & 6 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\begin{array}{c} R'_2 = R_2 + 3R_1 \\ R'_3 = R_3 + R_1 \\ \end{array}}$$

$$\begin{pmatrix} -1 & -3 & 1 & 1 & 0 & 0 \\ 0 & -3 & 3 & 3 & 1 & 0 \\ 0 & -3 & 2 & 1 & 0 & 1 \\ \end{array} \xrightarrow{\begin{array}{c} R'_3 = R_3 - R_2 \\ \end{array}}$$

34/39

$$\begin{pmatrix} -1 & -3 & 1 & 1 & 0 & 0 \\ 0 & -3 & 3 & 3 & 1 & 0 \\ 0 & 0 & -1 & -2 & -1 & 1 \end{pmatrix} \xrightarrow{R'_2 = R_2 + 3R_3} \xrightarrow{R'_1 = R_1 + R_3}$$

$$\begin{pmatrix} -1 & -3 & 0 & -1 & -1 & 1 \\ 0 & -3 & 0 & -3 & -2 & 3 \\ 0 & 0 & -1 & -2 & -1 & 1 \end{pmatrix} \xrightarrow{R'_1 = R_1 - R_2}$$

$$\begin{pmatrix} -1 & 0 & 0 & 2 & 1 & -2 \\ 0 & -3 & 0 & -3 & -2 & 3 \\ 0 & 0 & -1 & -2 & -1 & 1 \end{pmatrix} \xrightarrow{R'_1 = -R_1} \xrightarrow{R'_2 = -\frac{R_2}{3}}$$

$$\begin{pmatrix} 1 & 0 & 0 & -2 & -1 & 2 \\ 0 & 1 & 0 & 1 & \frac{2}{3} & -1 \\ 0 & 0 & 1 & 2 & 1 & -1 \end{pmatrix} = \begin{pmatrix} I_3 | A^{-1} \end{pmatrix}.$$

Prof Ali WEHBE 35 / 39

 $\text{ Then } \mathbf{A}^{-1} = \begin{pmatrix} -2 & -1 & 2 \\ 1 & \frac{2}{3} & -1 \\ 2 & 1 & -1 \end{pmatrix}.$

8

$$AX-2b=c \implies AX=c+2b \implies X=A^{-1}(c+2b)$$
.

Then

$$X = \begin{pmatrix} -2 & -1 & 2 \\ 1 & \frac{2}{3} & -1 \\ 2 & 1 & -1 \end{pmatrix} \begin{bmatrix} 2 \\ 4 \\ 5 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \end{bmatrix}$$
$$= \begin{pmatrix} -2 & -1 & 2 \\ 1 & \frac{2}{3} & -1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \\ 9 \end{pmatrix} = \begin{pmatrix} 2 \\ -\frac{1}{3} \\ 7 \end{pmatrix}.$$

Prof Ali WEHBE

36/39

Supplementary Exercise 3

Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c & 0 \end{bmatrix}$, $P = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$ and $D = \begin{bmatrix} -2 & 4 \\ 0 & 3 \end{bmatrix}$.

- 1) Find $(AB)^T$.
- 2) Calculate A^2 and B^2 .
- 3) Find X, if $XP + 4I_2 = 0$.
- 4) Find $det(3D^{-1}) + det(AB)$.

Prof Ali WEHBE 37 / 39

0

$$AB = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 0 \end{pmatrix}$$
$$\implies (AB)^{\top} = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 0 \end{pmatrix}.$$

2

$$A^2 = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2a & 1 & 0 \\ 2b & 0 & 1 \end{pmatrix}, \quad B^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c & 0 \end{pmatrix}.$$

3 We have det(P) = -2, then P is an invertible matrix, so

$$P^{-1} = \frac{1}{-2} \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}.$$

We have $PX + 4I_2 = 0 \implies PX = -4I_2$

$$\implies X = -4P^{-1}I_2 = -4P^{-1} = \begin{pmatrix} 4 & 0 \\ 0 & -2 \end{pmatrix}.$$

- We have
 - $det(3D^{-1}) = 3^2 det(D^{-1}) = 3^2 \cdot \frac{1}{det(D)} = \frac{9}{-6} = -\frac{3}{2}$.
 - det(AB) = 0, since AB a upper triangular matrix, so the determinant is the product of the diagonal entries.

so
$$det(3D^{-1}) + det(AB) = -\frac{3}{2}$$
.

39/39