Also published as:

WO0249794 (A1)

EP1349694 (A1)

EP1349694 (B1)

US7053335 (B2)

🔁 US2004050834 (A1)

Z

METHOD AND DEVICE FOR CLEANING WELDING TORCHES

Publication number: DE10063572 (A1)

Publication date:

2002-07-04

Inventor(s):
Applicant(s):

OHE JUERGEN VON DER [DE]
OHE JUERGEN VON DER [DE]

Classification:

- international:

B23K5/22; B23K7/10; B23K9/32; B24C1/00; B24C3/04; B23K5/00; B23K7/00; B23K9/32; B24C1/00; B24C3/00;

(IPC1-7): B24C1/02

- European:

B23K5/22; B23K7/10; B23K9/32; B24C1/00B; B24C3/04

Application number: DE20001063572 20001220 **Priority number(s):** DE20001063572 20001220

Abstract not available for DE 10063572 (A1)

Abstract of corresponding document: WO 0249794 (A1)

The invention relates to a method and a device for cleaning welding torches, for example in automated welding lines, on welding robots and in made-to-order production, by means of a cold medium, preferably CO2 dry ice. According to the method, a compressed air stream, charged with CO2 dry ice is directed constantly or at intervals by a jet nozzle onto one side of the surface to be cleaned and simultaneously describes a rotational movement.

Data supplied from the esp@cenet database — Worldwide

B 24 C 1/02

f) Int. CI.7:

BUNDESREPUBLIK **DEUTSCHLAND**

PATENT- UND MARKENAMT

® Offenlegungsschrift

_® DE 100 63 572 A 1

Aktenzeichen:

100 63 572.5

Anmeldetag:

20. 12. 2000

(43) Offenlegungstag:

4. 7.2002

(7) Anmelder:

Ohe, Jürgen von der, Dr.-Ing., 06120 Halle, DE

(72) Erfinder:

gleich Anmelder

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Werfahren und Vorrichtung zum Reinigen von Schweißbrennern
- Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Reinigen von Schweißbrennern, beispielsweise in automatisierten Schweißstraßen, an Schweißrobotern und bei der Einzelfertigung, mit Hilfe eines kalten Mediums, vorzugsweise CO₂-Trockeneis, wobei ein mit CO₂-Trockeneis beladener Druckluftstrom mit Hilfe einer Strahldüse gleichmäßig oder intervallartig, einseitig auf die zu reinigende Fläche gelenkt wird und dabei eine Drehbewegung beschreibt.

Beschreibung

[0001] Die Ersindung betrifft ein Verfahren und eine Vorrichtung zum Reinigen von Schweißbrennern in automatisierten Schweißstraßen, an Schweißrobotern und bei der Einzelfertigung.

[0002] Es sind verschiedene Verfahren zum Reinigen von Schweißbrennern bekannt. Alle Verfahren beruhen auf der mechanischen Reinigung. Es werden eine oder mehrere Drahtbürsten, unterschiedliche Fräswerkzeuge oder Form- 10 fräser eingesetzt.

[0003] Nachteilig hierbei ist, daß nur der äußere Bereich und ein Teil des Innenbereiches mit diesen Werkzeugen gereinigt werden kann. Die Rauchgasablagerungen im Inneren des Brenners und die eingeblasenen Trennmittel werden 15 nicht vollständig entfernt.

[0004] Als ein weiterer Nachteil hat sich die kreisförmige Reinigung des Brenners durch die notwendige Drehbewegung der Werkzeuge erwiesen, da sie einer Anpassung der Brennerform an den Naht- oder Punktbereich entgegen stehen. Änderungen in der Form des Brenners erfordern eine Veränderung der Reinigungsvorrichtung.

[0005] Ein weiterer Nachteil besteht darin, daß die anfänglich glatte, meist vernickelte, Oberfläche des Brenners durch die mechanische Bearbeitung abgetragen und aufgerauht wird. Dies führt zu einer schnelleren und stärkeren Verunreinigung des Brenners.

[0006] Der im Patentanspruch 1 bis 5 angegebenen Erfindung liegt das Problem zugrunde, ein Reinigungsverfahren und eine Vorrichtung zum gleichmäßigen Reinigen von 30 Schweißbrennern zu schaffen.

[0007] Dieses Problem wird gemäß Anspruch 1 bis 3 gelöst durch ein Verfahren zum Reinigen von Schweißbrennern, beispielsweise in automatisch arbeitenden Fertigungslinien, mit Hilfe eines kalten Strahlmittelgemisches, vorzugsweise CO₂-Pellets und Druckluft, das gleichmäßig oder in Intervallen auf die zu reinigende Fläche geblasen wird. [0008] Gemäß Anspruch 4 bis 5 besteht die Vorrichtung zur Durchführung des Verfahrens aus einer oder mehreren drehbaren Strahldüse die unter einem bestimmten, veränderlichen Winkel einen definierten Abschnitt des Schweißbrenners reinigen und deren Austrittsöffnung der Geometrie des Schweißbrenners angepaßt werden kann.

[0009] Zum Reinigen von Oberflächen wird der zum Transport des Strahlmittels und zum Erreichen der erforderlichen kinetischen Energie benötigte Luftstrom in gleichen oder unterschiedlichen Verhältnissen, entsprechend der Anzahl der verwendeten Strahldüsen und der geometrischen Abmessungen der zu reinigenden Abschnitte, geteilt. Die Teilung erfolgt je nach Teilungsverhältnis durch Änderung odes Leitungsquerschnittes oder durch Kombination von mehreren regelbaren Ventilen.

[0010] Durch die Drehbewegung der Strahldüse und das außermittige Anblasen des Schweißbrenners wird eine intensive Reinigung der gewünschten Abschnitte erreicht. Bei 55 gleichzeitiger Anpassung der Düsenaustrittsöffnung an den Nahtbereich wird der Reinigungseffekt erhöht.

[0011] Eine Weiterbildung der Erfindung besteht in einem Pulsieren des kalten Strahlmittelgemisches. Das Pulsieren kann bei mehreren Strahldüsen gleichmäßig oder wechsel- 60 seitig erfolgen.

[0012] Der Vorteil der Erfindung besteht darin, daß durch den Einsatz der Kaltstrahltechnik, insbesondere durch die Verwendung eines CO₂-Pellets Luftgemisches, die Reinigung der Brenner unabhängig von ihrer Größe und Form erfolgen kann. Durch die CO₂-Pellets erfolgt das begrenzte Abkühlen und Verspröden und Ablösen der Verunreinigungen, während der Luftstrom die gelösten Verunreinigungen

aus dem Schweißbrenner bzw. vom Schweißbrenner entfernt.

[0013] Ein weiterer Vorteil der Erfindung ist, daß durch den Einsatz der Kaltstrahltechnik kein direkter Kontakt zum Schweißbrenner besteht und damit die Oberfläche des Schweißbrenners nicht beschädigt oder abgetragen wird.
[0014] Ein weiterer Vorteil der Erfindung ist, daß mehrere Schweißbrenner mit unterschiedlichen Formen und Größen in einer Reinigungsstation gereinigt werden können.
[0015] Vorteilhaft ist weiterhin, daß durch die berührungslose Reinigung die Brennerform der entsprechenden

Ausführungsbeispiel

Schweißaufgabe wesentlich besser angepaßt werden kann

und somit das Schweißen in Nuten, Ecken oder in engen Be-

reichen vereinfacht oder ermöglicht wird.

[0016] Die Erfindung soll nachstehend an zwei Beispielen näher erläutert werden.

[0017] Es zeigt

[0018] Fig. 1: Aufbau einer Reinigungsvorrichtung

[0019] Fig. 2: Aufbau einer Reinigungsstation für mehrere Schweißbrenner mit pulsierender Reinigung

Beispiel 1

[0020] Die vom nicht näher dargestellten Kompressor 1 kommende Druckluft wird in der Aufbereitungsstation 2 getrocknet und angewärmt und zur Strahlanlage 3 geführt. Ein Kontaktgeber 4 ist mit dem Arbeitsprogramm der Schweißanlage verbunden. Der Kontaktgeber 4 schaltet ca. 2 Sekunden vor Ablauf des Schweißprogramms den Antnebsmotor 5 der Dosiereinheit 6 ein. Die CO2-Pellets 7 gelangen vom Vorratsbehälter 8 in die Dosierscheibe 9 und durch die Drehung der Dosierscheibe 9 zur Ausblasstation 10. In der Ausblasstation 10 werden die CO2-Pellets 7 der durch die Leitung 11 zugeführten Druckluft beigemischt. Der mit den CO₂-Pellets angereicherte Druckluftstrom 12 wird der Strahldüse 13 zugeführt. Die Strahldüse 13 sitzt auf einem Adapter 14 und wird durch die spezielle konstruktive Gestaltung des Adapters 14 so aus der Senkrechten ausgelenkt, daß sie den Druckluftstrom 12 einseitig auf den Bereich zwischen der Schutzgasdüse 15 und der Elektrode 16 des Schweißbrenners 17 lenkt. Das Rotationsgetriebe 18 wird durch den Motor 19 angetrieben und ermöglicht eine Drehbewegung der Strahldüse 13 über den gesamten Ringbereich 20 zwischen der Schutzgasdüse 15 und der Elektrode 16. Die CO2-Pellets im Druckluftstrom 12 bewirken ein Abkühlen der abgesetzten Verunreinigungen 17 und ein Abplatzen der Verunreinigungen 17 von der Schutzgasdüse 15 durch die auftretende Thermospannung zwischen den Verunreinigungen 17 und der Schutzgasdüse 15.

Beispiel 2

[0021] Die vom Kompressor 1 kommende Drucklust wird in der Aufbereitungsstation 2 getrocknet und angewärmt und durch die Leitung 21 zum Volumenspeicher 22 geführt. Vor dem Volumenspeicher 22 ist das Rückschlagventil 23 angeordnet. Hinter dem Volumenspeicher 22 befindet sich das Ventil 24, das vom Kontaktgeber 4 gesteuert wird. Der Antriebsmotor 5 wird vom Kontaktgeber 4 angesteuert und versetzt die Dosierscheibe 9 der Dosierstation 6 in eine Drehbewegung. Nach einem vorgegebenen Zeituntervall wird das Ventil 24 geöffnet. Die ausströmende Drucklust wird in der Ausblasstation 10 mit den CO₂-Pellets 7 beladen. Der mit CO₂-Pellets angereicherte Druckluststrom 12 wird einem Verteiler 25 zugeführt. In dem Verteiler 25 wird

1

10

der Druckluftstrom 12 entsprechend der Anzahl der eingesetzten Winkel-Strahldüsen 26 geteilt.

[0022] Die Winkel-Strahldüsen 26 sind auf dem Adapter 14 montiert und werden durch das Rotationsgetriebe 18 und den Motor 19 in Drehbewegung versetzt. Der mit CO²-Pel- 5 lets angereicherte Einzel-Druckluftstrom 27 trifft außermittig auf einen Abschnitt des Ringbereiches 20 und auf den Außenbereich 28 der Schutzgasdüse 15. Durch die Drehbewegung des Rotationsgetriebes 18 wird die Winkelstrahldüse 26 über den gesamten Ringbereich 20 geführt.

Bezugszeichen

1 Kompressor 2 Aufbereitungsstation 15 3 Strahlanlage 4 Kontaktgeber 5 Antriebsmotor 6 Dosiereinheit 7 CO₂-Pellets 20 8 Vorratsbehälter 9 Dosierscheibe 10 Ausblasstation 11 Leitung 12 Druckluftstrom 25 13 Strahldüse 14 Adapter 15 Schutzgasdüse 16 Elektrode 17 Schweißbrenner 30 18 Rotationsgetriebe 19 Motor 20 Ringbereich 21 Leitung 22 Volumenspeicher 35 23 Rückschlagventil 24 Ventil 25 Verteiler 26 Winkelstrahldüse 27 Einzel-Druckluftstrom 40 28 Außenbereich

Patentansprüche

1. Verfahren zum Reinigen von Schweißbrennern mit 45 Hilfe eines kalten Strahlmittelgemisches, vorzugsweise CO2-Pellets und Druckluft, gekennzeichnet dadurch, daß der Druckluftstrom mit Hilfe einer oder mehrerer Strahldüsen einseitig gleichmäßig außermittig auf einen bestimmten Bereich des oder der zu reini- 50 genden Brenner gelenkt wird und dabei gleichzeitig eine Drehbewegung um die Mittelachse des Schweißbrenners beschreibt und somit der gesamte zu reinigende Bereich reinigend überstrichen wird.

2. Verfahren nach Anspruch 1, gekennzeichnet da- 55 durch, daß der Druckluftstrom mit unterschiedlicher Intensität intervallartig auf die zu reinigenden Bereiche

3. Verfahren nach Anspruch 1 und 2, gekennzeichnet dadurch, daß der mit CO2-Pellets beladene Druckluft- 60 strom entsprechend der Anzahl der eingesetzten Strahldüsen geteilt wird.

4. Vorrichtung zur Durchführung des Verfahrens zum Reinigen von Schweißbrennern mit Hilfe eines kalten Strahlmittelgemisches, vorzugsweise CO2-Pellets und 65 Druckluft, gekennzeichnet dadurch, daß eine oder mehrere Strahldüsen, deren Austrittsöffnung in Form und Größe des zu reinigenden Bereiches angepaßt ist,

um einen bestimmten, dem Durchmesser des zu reinigenden Bereiches entsprechenden Winkel aus der von Getriebeachse und Schweißbrenner gebildeten Geraden abweicht und mit diesem Winkel eine Kreisbewegung um die genannte Gerade beschreibt und somit den Innenbereich des Schweißbrenners gleichmäßig mit CO₂-Pellets bestrahlt.

5. Vorrichtung zur Durchführung des Verfahrens zum Reinigen von Schweißbrennern mit Hilfe eines kalten Strahlmittelgemisches, vorzugsweise CO2-Pellets und Druckluft, gekennzeichnet dadurch, daß eine oder mehrere abgewinkelte Strahldüsen eine kreisförmige Bewegung Bewegung um die von Getriebeachse und Schweißbrenner gebildeten Geraden beschreiben und der mit CO2-Pellets beladene Druckluftstrahl parallel zu der gebildeten Geraden so auf den oder die Schweißbrenner trifft, daß deren Innen- und/oder Au-Benbereich gleichzeitig gereinigt werden.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.⁷:

Offenlegungstag:

DE 100 63 572 A1 B 24 C 1/02

4. Juli 2002

