Dynamique du point et mouvements courbes

/3 | 1 | Énoncer les trois lois de Newton. On travaille avec un système ouvert.

a – $\exists \mathcal{R}$ galiléens : $(\forall M \mid \sum \vec{F}_{\text{ext} \to M} = \vec{0})$, M est soit au repos, soit en translation rectiligne uniforme;

$$b - \frac{d\vec{p}_{/\mathcal{R}}(M)}{dt} = \sum \vec{F}_{ext \to M};$$

 $c - \forall (M_1, M_2), \vec{F}_{1 \to 2} = -\vec{F}_{2 \to 1}.$

/7 2 Établir la longueur d'équilibre d'un ressort vertical. Porter une attention particulière à l'établissement du système

1 Système : {masse} M (m) dans $\mathcal{R}_{\text{labo}}$ supposé galiléen.

2 **Schéma** : cf. Figure 15.1.

Modélisation : repère $(O, \overrightarrow{u_z})$, repérage : $\overrightarrow{OM} = -\ell \overrightarrow{u_z}$, $\overrightarrow{v} = -\dot{\ell} \overrightarrow{u_z}$, $\overrightarrow{d} = -\ddot{\ell} \overrightarrow{u_z}$.

BdF : Poids $\overrightarrow{P} = m \overrightarrow{g} = -mg \overrightarrow{u_z}$ Force Hooke $\overrightarrow{F} = k(\ell - \ell_0) \overrightarrow{u_z}$

Poids
$$\overrightarrow{P} = m\overrightarrow{g} = -mg\overrightarrow{u}_z$$

|5| **PFD à l'équilibre** :

$$\vec{0} = \sum \vec{F}_{\text{ext}} \Leftrightarrow 0 = -mg + k(\ell_{\text{eq}} - \ell_0)$$

$$\Leftrightarrow k(\ell_{\rm eq} - \ell_0) = mg \Leftrightarrow \ell_{\rm eq} = \ell_0 + \frac{mg}{k}$$

Fig. C15.1

/8 3 Représenter sur un schéma les coordonnées cylindriques. Détaillez les projections de $\overrightarrow{u_r}$ et $\overrightarrow{u_\theta}$ sur la base cartésienne, donner l'expression de $\overrightarrow{\mathrm{OM}}$ et d $\overrightarrow{\mathrm{OM}}$ sans démonstration, et démontrer les expressions de \overrightarrow{v} et \overrightarrow{a} sans démontrer les expressions de $\frac{d\vec{u_r}}{dt}$ et $\frac{d\vec{u_\theta}}{dt}$.

$$\overrightarrow{u_r} = \cos(\theta)\overrightarrow{u_x} + \sin(\theta)\overrightarrow{u_y} \quad \text{et} \quad \overrightarrow{u_r} = -\sin(\theta)\overrightarrow{u_x} + \cos(\theta)\overrightarrow{u_y}$$

$$\overrightarrow{OM}(t) = r(t)\overrightarrow{u_r} + z(t)\overrightarrow{u_z}$$

$$\overrightarrow{dOM} = dr \overrightarrow{u_r} + r d\theta \overrightarrow{u_\theta} + dz \overrightarrow{u_z}$$

$$\overrightarrow{v}(t) = \frac{d\overrightarrow{OM}}{dt} = \dot{r}\overrightarrow{u_r} + r\dot{\theta}\overrightarrow{u_\theta} + \dot{z}\overrightarrow{u_z}$$

$$\overrightarrow{a}(t) = \frac{d}{dt}(\dot{r}\overrightarrow{u_r} + r\dot{\theta}\overrightarrow{u_\theta} + \dot{z}\overrightarrow{u_z}) \Leftrightarrow \overrightarrow{a}(t) = \ddot{r}\overrightarrow{u_r} + \dot{r}\frac{d\overrightarrow{u_r}}{dt} + \dot{r}\dot{\theta}\overrightarrow{u_\theta} + r\ddot{\theta}\frac{d\overrightarrow{u_\theta}}{dt} + \ddot{r}\dot{\theta}\frac{d\overrightarrow{u_\theta}}{dt} + \ddot{z}\overrightarrow{u_z}$$

$$\Leftrightarrow \overrightarrow{a}(t) = (\ddot{r} - r\dot{\theta}^2) \overrightarrow{u_r} + (2\dot{r}\dot{\theta} + r\ddot{\theta}) \overrightarrow{u_\theta} + \ddot{z}\overrightarrow{u_z}$$

Fig. C15.2 -Cylindriques

/4 | 4 | Effectuez le bilan des forces et appliquer le PFD grâce à la question précédente, que vous simplifierez dans les conditions de l'exercice. Sous quelle condition l'une des 2 équations différentielles obtenues est celle d'un oscillateur harmonique?

Poids
$$\overrightarrow{P} = m\overrightarrow{g} = mg(\cos\theta\overrightarrow{u_r} - \sin\theta\overrightarrow{u_\theta})$$

Tension $\overrightarrow{T} = -T\overrightarrow{u_r}$
Or, $m\overrightarrow{a} = m(-\ell\dot{\theta}^2\overrightarrow{u_r} + \ell\ddot{\theta}\overrightarrow{u_\theta}) = \overrightarrow{P} + \overrightarrow{T}$

$$\Leftrightarrow \begin{cases} mg\cos\theta + m\ell\dot{\theta}^2 = T \\ m\ell\ddot{\theta} + mg\sin\theta = 0 \end{cases}$$
(15.1)

L'équation (15.1) est l'équation d'un oscillateur harmonique pour des petits angles $(\sin(\theta) \underset{\theta \to 0}{\sim} \theta)$.

Fig. C15.3 – Schéma