

LÓGICA DE PROGRAMAÇÃO

Professor: MSc. Amadeu Anderlin Neto amadeu.neto@ifam.edu.br

ENTRADA: dados de entrada do algoritmo

PROCESSAMENTO: procedimentos utilizados para chegar ao resultado final

SAÍDA: dados já processados

• A programação computacional pode ser resumida em **3 passos básicos**

• Exemplo 1 – exibir a soma de dois números

• Exemplo 2 – exibir a média de dois números

 Exemplo 3 – exibir se o aluno está aprovado ou reprovado

ESTRATÉGIA PARA CONSTRUÇÃO DE

ALGORITMOS

Construção de Algoritmo

- Podemos pensar também em um algoritmo como um "mecanismo" de transformação de entradas em saídas
- Assim, um algoritmo ao ser "executado" receberá algumas entradas, que serão processadas e nos devolverá as saídas

EXEMPLO DE ALGORITMO

- o Calcule a média final dos alunos da 3ª Série. Os alunos realizarão quatro provas: P1, P2, P3 e P4
- Para montar o algoritmo proposto, faremos três perguntas:
- a) Quais são os dados de entrada?
 - R: Os dados de entrada são as notas de P1, P2, P3 e P4
- b) Qual será o processamento a ser utilizado?
 - R: O procedimento será somar todos os dados de entrada e dividi-los por 4 (quatro)
- c) Quais serão os dados de saída?
 - R: O dado de saída será a média final

TESTANDO O ALGORITMO

Informe nota da Prova 1

Informe nota da Prova 2

Informe nota da Prova 3

Informe nota da Prova 4

p1	p2	р3	p4	media (p1+p2+p3+p4)/4
6	7	6	9	(6+7+6+9)/4 = 7
5	5	8	10	(5+5+8+10)/4 = 7

o Descrição Narrativa:

• Consiste em analisar o enunciado do problema e escrever, utilizando uma linguagem natural ou passos a serem seguidos

• Vantagem:

 Não é necessário aprender nenhum conceito novo, pois uma língua natural, já é bem conhecida

• Desvantagem:

• A linguagem natural abre espaços para várias interpretações, o que dificulta a transcrição do algoritmo

- Exemplo da Descrição Narrativa:
 - Um algoritmo para mostrar o resultado da multiplicação de dois números

Passo 1 — Receber dois números que serão multiplicados

Passo 2 – Multiplicar os números

Passo 3 – Mostrar o resultado obtido da multiplicação

• Fluxograma:

• Consiste em analisar o enunciado do problema e escrever, utilizando símbolos gráficos predefinidos

• Vantagem:

• O entendimento de elementos gráficos é mais simples que o entendimento de textos

• Desvantagem:

• É necessário aprender a simbologia dos fluxogramas, além disso o algoritmo não apresenta muitos detalhes

• Fluxograma:

FIGURA	SIGNIFICADO		
	Figura para definir início e fim do algoritmo		
	Figura usada no processamento de cálculo, atribuições e processamento de dados em geral		
	Figura utilizada na representação de entrada de dados		
	Figura utilizada para representação da saída de dados		
	Figura que indica o processo seletivo ou condicional, possibilitando o desvio no caminho do processamento		
	Símbolo geométrico usado como conector		
+	Símbolo que identifica o sentido do fluxo de dados, permitindo a conexão entre as outras figuras existentes		

• Exemplo de fluxograma:

o Pseudocódigo ou Portugol:

 Consiste em analisar o enunciado do problema e escrever, por meio de regras predefinidas os passos a serem seguidos para sua resolução

• Vantagem:

• É permitido a passagem do algoritmo para qualquer linguagem de programação, basta conhecer as palavras reservadas

• Desvantagem:

• É necessário aprender as regras do pseudocódigo

```
inicio
  real: N1, N2, M;
   escreva ("Digite o primeiro número");
   leia (N1);
   escreva ("Digite o segundo número");
   leia (N2);
  M \leftarrow N1 * N2;
   escreva ("O resultado é: ", M);
fim.
```

```
inicio
                                     Declarando variáveis.
  real: N1, N2, M;
   escreva ("Digite o primeiro número");
   leia (N1);
   escreva ("Digite o segundo número");
   leia (N2);
  M \leftarrow N1 * N2;
   escreva ("O resultado é: ", M);
fim.
```

```
inicio
  real: N1, N2, M;
   escreva ("Digite o primeiro número");
   leia (N1);
                                   Entrada de dados.
   escreva ("Digite o segundo número");
   leia (N2);
  M \leftarrow N1 * N2;
   escreva ("O resultado é: ", M);
fim.
```

```
inicio
  real: N1, N2, M;
   escreva ("Digite o primeiro número");
   leia (N1);
   escreva ("Digite o segundo número");
   leia (N2);
                                     Processamento.
  M \leftarrow N1 * N2;
   escreva ("O resultado é: ", M);
fim.
```

```
inicio
  real: N1, N2, M;
   escreva ("Digite o primeiro número");
   leia (N1);
   escreva ("Digite o segundo número");
   leia (N2);
                                             Saída de dados.
  M \leftarrow N1 * N2;
   escreva ("O resultado é: ", M);
                                                               26
fim.
```

```
inicio
   real: N1, N2, M;
   escreva ("Digite o primeiro número");
   leia (N1);
   escreva ("Digite o segundo número");
   leia (N2);
                                             Funcionando
   M \leftarrow N1 * N2;
                                             Computador
   escreva ("O resultado é: ", M);
                                                                 27
fim.
```

• Exemplo de Pseudocódigo ou Portugol:

inicio

<u>Memória</u>

N1	N2	M

→ real: N1, N2, M;

escreva ("Digite o primeiro número");

leia (N1);

escreva ("Digite o segundo número");

leia (N2);

 $M \leftarrow N1 * N2;$

escreva ("O resultado é: ", M);

fim.

• Exemplo de Pseudocódigo ou Portugol:

inicio real: N1, N2, M;

Memoria		
N ₁		\mathbf{M}

→ escreva ("Digite o primeiro número");
leia (N1);
escreva ("Digite o segundo número");
leia (N2);
M ← N1 * N2;
escreva ("O resultado é: ", M);
fim.

• Exemplo de Pseudocódigo ou Portugol:

inicio real: N1, N2, M; escreva ("Digite o primeiro número");

 Memória

 N1
 N2
 M

 12
 12

→ leia (N1); escreva ("Digite o segundo número"); leia (N2);

M ← N1 * N2; escreva ("O resultado é: ", M); fim.

• Exemplo de Pseudocódigo ou Portugol:

inicio

real: N1, N2, M;

escreva ("Digite o primeiro número"); leia (N1);

→ escreva ("Digite o segundo número");

leia (N2);

 $M \leftarrow N1 * N2;$

escreva ("O resultado é: ", M);

fim.

Memória

N1	N2	M
12		

Digite o primeiro número

12

Digite o segundo número

_

• Exemplo de Pseudocódigo ou Portugol:

inicio

real: N1, N2, M;

escreva ("Digite o primeiro número");

leia (N1);

escreva ("Digite o segundo número");

 \rightarrow leia (N2);

 $M \leftarrow N1 * N2;$

escreva ("O resultado é: ", M);

fim.

Memória

N1	N2	M
12	3	

Digite o primeiro número

12

Digite o segundo número

3

o Exemplo de Pseudocódigo ou Portugol:

inicio

real: N1, N2, M;

escreva ("Digite o primeiro número");

leia (N1);

escreva ("Digite o segundo número");

leia (N2);

 \longrightarrow M \leftarrow N1 * N2;

Processamento interno.

escreva ("O resultado é: ", M);

fim.

Memória

N1	N2	M
12	3	36

Digite o primeiro número

12

Digite o segundo número

3

• Exemplo de Pseudocódigo ou Portugol:

inicio

real: N1, N2, M;

escreva ("Digite o primeiro número");

leia (N1);

escreva ("Digite o segundo número");

leia (N2);

 $M \leftarrow N1 * N2;$

→ escreva ("O resultado é: ", M); fim.

Memória

N1	N2	M
12	3	36

Digite o primeiro número

12

Digite o segundo número

3

O resultado é: 36

Conclusão

- o Desenvolver algoritmos não é um ato mecânico!
- o Consegue-se através de estudo e, principalmente, de muito treino!!!

LÓGICA DE PROGRAMAÇÃO

Professor: MSc. Amadeu Anderlin Neto amadeu.neto@ifam.edu.br