Name: _____

Student No.:

1. (40 %) Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \cos \frac{\pi}{n}.$$

(b)
$$\sum_{n=1}^{\infty} (\tan^{-1} n)^n$$
.

2. (40 %) Determine positive integers k such that the series is convergent.

(a)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(kn)!}$$
.

(b)
$$\sum_{n=3}^{\infty} \frac{1}{n \ln n [\ln(\ln n)]^k}.$$

3. (20 %) Prove that if $a_n \geq 0$ and $\sum a_n$ converges, then $\sum a_n^2$ also converges.

4. (20 points) Given an alternating series $\sum (-1)^{n-1}b_n$, where $b_n > 0$ that satisfies (i) $b_{n+1} \le b_n$ and (ii) $\lim_{n \to \infty} b_n = 0$. Show that the alternating series is convergent (that is, to prove the Alternating Series Test).