域扩张

- 1. 域扩张: 设 \mathbb{F} 是域,若 \mathbb{F} 是域 \mathbb{E} 的子域,则称 \mathbb{E} 为 \mathbb{F} 的域扩张 (或简称扩张),记为 \mathbb{E}/\mathbb{F} ;
 - (a) 此时, E 为 F 上的向量空间;
 - (b) 次数: $\dim_{\mathbb{F}} \mathbb{E}$ 称为 \mathbb{E} 关于 \mathbb{F} 的次数, 记为 $[\mathbb{E}:\mathbb{F}]$;
 - (c) 有限扩张: $[\mathbb{E}:\mathbb{F}]<\infty$. 反之为无限扩张;
- 2. 代数元: 设 \mathbb{E}/\mathbb{F} 是域的扩张, $\alpha \in \mathbb{E}$, 若存在不全为零的 $a_0, a_1, ..., a_n \in \mathbb{F}$, 使得 $a_0 + a_1\alpha + ... + a_n\alpha^n = 0$, 则称 α 为 \mathbb{F} 上的代数元;
 - (a) 超越元: 不是代数元的, 称其为超越元;
 - (b) 代数数: C/Q 上的代数元;
 - (c) 超越数: C/Q 上的超越元;
- 3. 代数扩张: 设 \mathbb{E}/\mathbb{F} 是域的扩张, 如 \mathbb{E} 中的元均为 \mathbb{F} 上的代数元, 则称 \mathbb{E} 为 \mathbb{F} 的代数扩张;
 - (a) 超越扩张: 不是代数扩张的, 称为超越扩张;
- 4. 最小多项式: 设 \mathbb{E}/\mathbb{F} 是域的扩张, $\alpha \in \mathbb{E}$ 是 \mathbb{F} 上的代数元, 则有环同态 $\varphi : \mathbb{F}[x] \to \mathbb{E}(f(x) \to f(\alpha))$. 存在 $p(x) \in \mathbb{F}[x]$, 使得 $Ker\varphi = (p(x))$. 若 p(x) 首项系数为 1, 则 p(x) 唯一确定, 这样的 p(x) 被称为 α 的极小多项式;
 - (a) $p(\alpha) = 0$;
 - (b) p(x) 是 $\mathbb{F}[x]$ 中的不可约元, 和素元;
- 5. 有限扩张是代数扩张;
- 6. 设 E/F, F/K 是域的扩张, 则:
 - (a) 望远镜公式: $[\mathbb{E} : \mathbb{K}] = [\mathbb{E} : \mathbb{F}][\mathbb{F} : \mathbb{K}];$
 - (b) \mathbb{E}/\mathbb{K} 为有限扩张 ⇔ \mathbb{E}/\mathbb{F} , \mathbb{F}/\mathbb{K} 均是有限扩张;
- 7. 单扩张: 设 \mathbb{E}/\mathbb{F} 是晕的扩张, $\alpha \in \mathbb{E}$, 用 $\mathbb{F}(\alpha)$ 表示 \mathbb{E} 中含 \mathbb{F} 及 α 的最小子域, 称其为单扩张. 有 $\mathbb{F}(\alpha) = \{f(\alpha)/g(\alpha)|f(x),g(x) \in \mathbb{F}[x],g(\alpha) \neq 0\};$

- 8. 设 \mathbb{E}/\mathbb{F} 是域的扩张, $\alpha \in \mathbb{E}$ 是 \mathbb{F} 上的代数元, 则 $\mathbb{F}(\alpha) = \mathbb{F}[\alpha]$, 且 $[\mathbb{F}(\alpha) : \mathbb{F}] = \alpha$ 的极小多项式的次数;
- 9. 有限生成扩张: 设 \mathbb{E}/\mathbb{F} 是域的扩张, 若存在有限个元 $\alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{E}$, 使得 $\mathbb{E} = \mathbb{F}(\alpha_1, \alpha_2, ..., \alpha_n)$, 则称 \mathbb{E} 是 \mathbb{F} 的有限生成扩张;
- 10. 若 $\mathbb{E} = \mathbb{F}(\alpha_1, ..., \alpha_n)$, 且 $\alpha_1, ..., \alpha_n$ 为 \mathbb{F} 上的代数元, 则 \mathbb{E}/\mathbb{F} 是有限扩张;
- 11. 若 \mathbb{E}/\mathbb{F} 是有限扩张, 则 \mathbb{E}/\mathbb{F} 是有限生成扩张;
- 12. 设 \mathbb{F}/\mathbb{K} 是代数扩张, u 是 \mathbb{F} 上的代数元, 则 u 在 \mathbb{K} 上也是代数元;
- 13. 设 \mathbb{E}/\mathbb{F} , \mathbb{F}/\mathbb{K} 是域的扩张, 则 \mathbb{E}/\mathbb{K} 是代数扩张 $\Leftrightarrow \mathbb{E}/\mathbb{F}$, \mathbb{F}/\mathbb{K} 均是代数扩张;
- 14. 代数封闭域: 对域 \mathbb{K} , 若满足 u 是 \mathbb{K} 的某个扩域中的元素, 并且 u 是 \mathbb{K} 上的代数元, 则有 $u \in \mathbb{K}$, 那么称 \mathbb{K} 为代数封闭域;
 - (a) 代数闭包: 设 \mathbb{F}/\mathbb{K} 为域的扩张, 若 \mathbb{F} 为代数封闭域, 且 \mathbb{F}/\mathbb{K} 是代数扩张, 则称 \mathbb{F} 是 \mathbb{K} 的代数闭包;