Nr. i tytuł ćwiczenia:							
4-1. Adsorpcja kwasu winowego na węglu aktywowanym							
Imię i nazwisko osoby prowadzącej ćwiczenia:							
dr Bożena Parczewska-Plesnar							
Data wy-	Kierunek	Nr. grupy	Zespół	Imiona i nazwiska osób	Ocena	wysta-	
konania		studen-		wykonujących ćwiczenie	wiona	przez	
ćwiczenia		ckiej			prowadz	ącego	
22.05.2019	Biotechnologia	1	Е	Dominika Dmowska Aleksandra Gawinowska Jakub Guzek Grzegorz Jakubiak			
Uwagi pro- wadzącego							

1 Cel ćwiczenia

Zapoznanie studentów z metodą oznaczania adsorpcji z roztworów oraz ze sposobami wyznaczania współczynników adsorpcji k i n w równaniu izotermy Freundlicha w roztworach rozcieńczonych.

2 Wstęp teoretyczny

Adsorpcja jest to zjawisko gromadzenia się substancji na granicy faz w warstwach powierzchniowych. Adsorpcja fizyczna występuje wtedy, gdy adsorbat z adsorbentem wiąże się siłami typu van der Waalsa. W przypadku adsorpcji chemicznej cząsteczki adsorbatu wiążą się z cząsteczkami adsorbentu spolaryzowanym wiązaniem atomowym lub wiązaniem jonowym. [?]

Wartość adsorpcji a określa równanie

$$a = \frac{V(c_o - c_r)}{n} + V_w c_r \tag{1}$$

gdzie: a – adsorpcja fizyczna $\left\lceil mol \cdot kg^{-1} \right\rceil$

V – objętość roztworu $\lceil m^3 \rceil$

 c_o – stężenie początkowe adsorbatu w roztworze $[mol \cdot m^{-3}]$

 c_r – stężenie końcowe adsorbatu (stężenie roztworu w stanie równowag po adsorpcji) $\lceil mol \cdot m^{-3} \rceil$

m – masa adsorbentu [kg]

 V_w – objętość właściwa warstwy powierzchniowej adsorbentu $[m^3 \cdot kg^{-1}]$

Pierwszy składnik sumy w równaniu (??) zwany adsorpcją nadmiarową określa liczbę moli adsorbatu jaka ubyła z roztworu w wyniku adsorpcji przez m gramów (lub kilogramów) adsorbentu, gdy występuje adsorpcja. [?]

Z drugiego składnika sumy można obliczyć liczbę moli adsorbatu znajdującą się w warstwie powierzchniowej adsorbentu niezależnie od tego czy występuje adsorpcja czy nie. [?]

Do opisu adsorpcji z rozcieńczonych roztworów dwuskładnikowych zawierających silnie adsorbującą się substancję (gdy powierzchnie adsorbentu pokrywa nie jedna, lecz kilka warstw cząsteczek zaadsorbowanych) stosuje się empiryczne równanie **izotermy Freundlicha**

$$a = kc_r^n \tag{2}$$

gdzie: a – adsorpcja rzeczywista $[mol \cdot kg^{-1}]$

 c_r – stężenie końcowe adsorbatu w roztworze w stanie równowagi $[mol \cdot m^{-3}]$

k, n — współczynniki zależne od rodzaju adsorbentu i adsorbatu

Wartości współczynników k i n w równaniu Freundlicha można wyznaczyć dwiema metodami: metodą analityczną i metodą graficzną. [?]

3 Wykonanie ćwiczenia

- 1. Przygotowanie roztworów do adsorpcji
 - a) Sporządzenie 5 roztworów kwasu winowego o różnych stężeniach (od ok. $0,04\frac{mol}{dm^3}$ do ok $0,50\frac{mol}{dm^3}$) w 5 kolbach stożkowych o pojemności $250cm^3$ ponumerowanych od 1 do 5
 - b) Odmierzenie do kolejnych kol
b $4,\,8,\,15,\,25$ i $40cm^3$ 2-molowego roztworu kwasu winowego za pomocą bi
urety
 - c) Dodanie do każdej z tych kolb cylindrem $200cm^3$ wody destylowanej i wymieszanie
- 2. Wytrząsanie roztworów kwasu z węglem aktywowanym
 - a) Wypłukanie wodą destylowaną 5 ponumerowanych butelek z korkami o pojemności $250cm^3$
 - b) Odmierzenie do każdej butelki po 1g węgla aktywowanego, przy pomocy wagi technicznej i lejka z szeroką szyjką
 - c) Wlanie $100cm^3$ przygotowanego do adsorpcji roztworu kwasu winowego z kolb stożkowych do kolejnych butelek oznaczonych odpowiadającymi kolbom numerami
 - d) Wstawienie butelek do wytrząsarki na 20min
- 3. Oznaczenia stężenia roztworów kwasu przed adsorpcją (c_o)
 - a) Odpipetowanie do wypłukanych wodą destylowaną kolb stożkowych przeznaczonych do miareczkowania odpowiednich objętości kolejnych roztworów kwasu: z kolby $1-40cm^3$ roztworu, z kolby $2-25cm^3$, z kolby $3-20cm^3$, z kolby $4-10cm^3$, z kolby $5-5cm^3$.
 - b) Dodanie do każdej z kolb do miareczkowania po 2-3 krople fenoloftaleiny
 - c) Miareczkowanie kolejno roztworów
 - d) Zapisanie zużytych w miareczkowaniu objętości NaOH w tabeli??
 - e) Obliczenie stężenia c_o wszystkich roztworów i zapisanie wyników w tabeli \ref{cont}

Rysunek 1: Wzór szkieletowy kwasu winowego

$$c_z V_z = 2c_k V_k \Longrightarrow c_k = \frac{c_z V_z}{2V_k} \tag{3}$$

- 4. Oznaczenia stężenia roztworów kwasu po adsorpcji (c_r)
 - a) Przygotowanie 5 kolb stożkowych bez szlifu o pojemności 250cm³, 5 lejków i 5 sączków karbowanych do odsączenia roztworów po adsorpcji węgla aktywowanego
 - b) Odsączenie roztworów z butelek po wytrząśnięciu i uzyskaniu stanu równowagi do wypłukanych wodą destylowaną kolb stożkowych z numerami zgodnymi z numerami odpowiednich butelek

- c) Pobranie z otrzymanych przesączów do miareczkowania analogicznych objętości roztworów jak przed adsorpcją
- d) Oznaczenie za pomocą miareczkowania mianowanym roztworem NaOH stężeń c_r odsączonych roztworów kwasu po adsorpcji
- e) Zapisanie wyników miareczkowań w tabeli ??
- f) Obliczenie stężeń roztworów c_r
- g) Zapisanie wyników obliczeń w tabeli ??

5. Opracowanie wyników

a) Obliczenie i zapisanie w tabeli ?? uzyskanych dla każdego z roztworów wartości adsorpcji rzeczywistej, zgodnie z równaniem (??), pomijając drugi wyraz sumy w tym równaniu

$$a = \frac{V(c_o - c_r)}{m} \tag{4}$$

gdzie: V – objętość roztworu kwasu użytego do adsorpcji;

 c_o – stężenie kwasu w roztworze przed adsorpcją;

 c_r – stężenie kwasu w roztworze po adsorpcji;

m – mada węgla aktywnego użyta do adsorpcji

b) Wyznaczenie wartości parametrów n i k, poprzez rozwiązanie układu równań (metoda analityczna) i zapisanie ich w tabeli $\ref{eq:continuous}$

$$\begin{cases} \log a_1 = n \log c_{r_1} + \log k \\ \log a_5 = n \log c_{r_5} + \log k \end{cases}$$

$$(5)$$

- c) Sporzadzenie wykresu zależności $\log a = f(\log c_r)$
- d) Wyznaczenie wartości współczynników a i b równania prostej y=ax+b linii trendu, przy użyciu programu MS Office Excel 365
- e) W przypadku adsorpcji fizycznej opisywanej równaniem Freundlicha zależność $a=f(c_r)$ można przedstawić w postaci logarytmicznej

$$\log a = n \log c_r + \log k \tag{6}$$

gdzie: n, k – współczynniki izotermy Freundlicha

Z równości $b = \log k$ oraz współczynnika kierunkowego prostej a = n można wyznaczyć wartości k i n (metoda graficzna)

Tablica 1: Zestawienie wyników oznaczeń i obliczeń¹

Stężenie roztworu NaOH $\left[\frac{mol}{dm^3}\right]$						Badany kwas:		
$c_z = 0,1003$						kwas winowy		
Numer roz- tworu	Objętość roztworu kwasu $V_k \ [cm^3]$	Objętość roztworu NaOH $V_z [cm^3]$		Stężenie roztworu kwasu $\left[\frac{mol}{dm^3}\right]$				
		przed adsorpcją	po adsorpcji	przed adsorpcją c_o	po adsorpcji c_r	$a\left[\frac{mol}{g}\right]$	$\log a$	$\log c_r$
1	40	14,1	10,6	0,0177	0,0133	$4,39 \cdot 10^{-4}$	-3,3577	-1,8765
2	25	16,6	13,3	0,0333	0,0267	$6,62 \cdot 10^{-4}$	-3,1792	-1,5738
3	20	24,4	21,1	0,0612	0,0529	$8,27 \cdot 10^{-4}$	-3,0822	-1,2765
4	10	19,4	16,7	0,0973	0,0838	$1,35\cdot 10^{-3}$	-2,8684	-1,0770
5	5	14,5	13,2	0,1454	0,1324	$1,30\cdot 10^{-3}$	-2,8848	-0,8781

 $^{^1{\}rm Obliczenia}$ wykonano przy pomocy programu MS Office Excel 365

Obliczenia 4

4.1 Obliczenia wykonane reprezentatywnie dla roztworu numer 1.

$$c_o = \frac{c_z V_{zprzed}}{2V_k} = \frac{0,1003 \frac{mol}{dm^3} \cdot 14, 1 \text{cm}^3}{2 \cdot 40 \text{cm}^3} = 0,0177 \frac{mol}{dm^3}$$
(4.1.1)

$$c_r = \frac{c_z V_{zpo}}{2V_k} = \frac{0,1003 \frac{mol}{dm^3} \cdot 10,6 \text{cm}^3}{2 \cdot 40 \text{cm}^3} = 0,0133 \frac{mol}{dm^3}$$
(4.1.2)

$$a = \frac{V(c_o - c_r)}{m} = \frac{0.100 \, \text{dm}^3 \cdot (0.0177 \frac{mol}{\text{dm}^3} - 0.0133 \frac{mol}{\text{dm}^3})}{1g} = 4.39 \cdot 10^{-4} \frac{mol}{g}$$
(4.1.3)

$$\log\left[4,39\cdot10^{-4}\right] = -3,3577\tag{4.1.4}$$

$$\log\left[0,0133\right] = -1,8765\tag{4.1.5}$$

Wyznaczanie parametrów n i k – metoda analityczna 4.2

$$\begin{cases}
-1,8765n + \log k = -3,3577 \\
-0,8781n + \log k = -2,8848
\end{cases}$$
(4.2.1)

$$\begin{cases}
-1,8765n + \log k = -3,3577 \\
-0,8781n + \log k = -2,8848
\end{cases}$$

$$A = \begin{bmatrix} -1,8765 & 1 \\ -0,8781 & 1 \end{bmatrix}; \quad B = \begin{bmatrix} -3,3577 \\ -2,8848 \end{bmatrix}; \quad X = \begin{bmatrix} n \\ \log k \end{bmatrix}$$

$$(4.2.2)$$

$$W = \begin{vmatrix} -1,8765 & 1\\ -0,8781 & 1 \end{vmatrix} = -0,99836 \tag{4.2.3}$$

$$W = \begin{vmatrix} -1,8765 & 1 \\ -0,8781 & 1 \end{vmatrix} = -0,99836$$

$$W_{1} = \begin{vmatrix} -3,3577 & 1 \\ -2,8848 & 1 \end{vmatrix} = -0,47297; W_{2} = \begin{vmatrix} -1,8765 & -3,3577 \\ -0,8781 & -2,8848 \end{vmatrix} = 2,46470$$

$$(4.2.3)$$

$$n = \frac{W_1}{W} = \frac{-0,47297}{-0,99836} = 0,47374; \quad \log k = \frac{W_2}{W} = \frac{2,46470}{-0,99836} = -2,46875 \tag{4.2.5}$$

$$k = 10^{-2,46875} = 0,00340 (4.2.6)$$

$$\begin{cases} n = 0,47374 \\ k = 0,00340 \end{cases} \tag{4.2.7}$$

4.3 Wyznaczanie parametrów n i k – metoda graficzna

Rysunek 2: Wykres zależności $\log a = f(\log c_r)^2$

Na podstawie wykresu:

$$\begin{cases} n = 0,5052 \\ \log k = -2,3993 \end{cases} \implies \begin{cases} n = 0,5052 \\ k = 0,00399 \end{cases}$$
 (4.3.1)

Tablica 2: Wartości współczynników równania izotermy adsorpcji Freundlicha dla kwasu winowego

Współczynniki równania Freundlicha otrzymane metodą					
anali	tyczną	graficzną			
k	n	k	n		
0,00340	0,47374	0,00399	0,5052		

5 Wnioski

Wartości parametrów k i n otrzymane metodą graficzną różnią się od wartości tych parametrów otrzymanych metodą analityczną, co wynika m. in. z faktu, że do obliczenia ich metodą analityczną wykorzystuje się tylko wartości dwóch pomiarów, a przy metodzie graficznej wykorzystuje się wartości pięciu pomiarów.

Literatura

[1] Jerzy Bryłka, Ewa Więckowska-Bryłka, Bożena Parczewska-Plesnar, and Barbara Bortnowska-Bareła. Eksperymentalna chemia fizyczna. Wydawnictwo SGGW, Warszawa, 2017.

²Wykres sporządzono przy użyciu pakietów pgfplots, pgfplotstable, amsmath oraz tikz w IATEX'u na podstawie obliczeń wykonanych w programie MS Office Excel 365