Práctica 11

Pablo Gutiérrez Aguirre pgutierrez2018@udec.cl

20 de junio 2022

Tabla de contenidos

- 1 Ejercicio 1
- 2 Ejercicio 2a
- 3 Ejercicio 3a

Ejercicio 1

Un molino agrícola localizado en La Unión produce alimento para ganado. El alimento para ganado contiene tres ingredientes principales: maíz, cal y harina de pescado. Cada ingrediente contiene tres nutrientes: proteínas, calcio y vitaminas. La siguiente tabla muestra los nutrientes por kilogramo de ingrediente:

	Ingrediente							
Nutriente	Maíz	Cal	H. de Pescado					
Proteínas	25	15	25					
Calcio	15	30	20					
Vitaminas	5	12	8					

La cantidad de proteínas, calcio y vitaminas contenidas por cada kilo de alimento para ganado deben estar en los siguientes intervalos, respectivamente: [18,22], $[20,\infty)$, y [6,12]. Si el precio de venta por kilogramo de maíz, cal y harina de pescado son, respectivamente, \$200, \$80, y \$500, encontrar la combinación más barata.

Variables:

- x_m: Kilogramos de maíz a producir
- x_c: Kilogramos de cal a producir
- x_h: Kilogramos de harina de pescado a producir

$$max \quad 200x_m + 80x_c + 500x_h$$
 (1)

$$s.a: \quad \frac{25}{45}x_m + \frac{15}{57}x_c + \frac{25}{53}x_h \ge 18 \tag{2}$$

$$\frac{25}{45}x_m + \frac{15}{57}x_c + \frac{25}{53}x_h \le 22\tag{3}$$

$$\frac{15}{45}x_m + \frac{30}{57}x_c + \frac{20}{53}x_h \ge 20\tag{4}$$

$$\frac{5}{45}x_m + \frac{12}{57}x_c + \frac{8}{53}x_h \ge 6 \tag{5}$$

$$\frac{5}{45}x_m + \frac{12}{57}x_c + \frac{8}{53}x_h \le 12\tag{6}$$

$$x_m \ge 0, x_c \ge 0, x_h \ge 0 \tag{7}$$

Agregando las variables de holguras para poder tener el modelo en la forma estándar tenemos:

$$max \quad 200x_m + 80x_c + 500x_h \tag{1}$$

s.a:
$$\frac{25}{45}x_m + \frac{15}{57}x_c + \frac{25}{53}x_h - E_1 + A_1 = 18$$
 (2)

$$\frac{25}{45}x_m + \frac{15}{57}x_c + \frac{25}{53}x_h + H_2 = 22 \tag{3}$$

$$\frac{15}{45}x_m + \frac{30}{57}x_c + \frac{20}{53}x_h - E_2 + A_2 = 20 \tag{4}$$

$$\frac{5}{45}x_m + \frac{12}{57}x_c + \frac{8}{53}x_h - E_3 + A_3 = 6 \tag{5}$$

$$\frac{5}{45}x_m + \frac{12}{57}x_c + \frac{8}{53}x_h + H_2 = 12 \tag{6}$$

$$x_m \ge 0, x_c \ge 0, x_h \ge 0 \tag{7}$$

$$E_1, E_2, E_3, H_1, H_2, A_1, A_2, A_3 \ge 0$$
 (8)

Resuelva por el método de las dos fases

min
$$4x_1 + x_2$$

s.a: $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 3$
 $x_1, x_2 \ge 0$

Este método se usa cuando al pasar el problema a la forma estándar no se tiene una solución básica inicial.

Primera fase: Pasar el problema a la forma estándar agregando variables artificiales y minimizar la suma de estas variables artificiales.

min
$$Z = 4x_1 + x_2$$

s.a: $3x_1 + x_2 + A_1 = 3$
 $4x_1 + 3x_2 - E_1 + A_2 = 6 \rightarrow$
 $x_1 + 2x_2 + h_1 = 3$
 $x_1, x_2 \ge 0$

min
$$Z - A_1 - A_2 = 0$$

s.a: $3x_1 + x_2 + A_1 = 3$
 $4x_1 + 3x_2 - E_1 + A_2 = 6$
 $x_1 + 2x_2 + h_1 = 3$
 $x_1, x_2 > 0$

El modelo anterior lo pasamos a la tabla y nos queda lo siguiente:

							RHS
						-1	
$\overline{A_1}$	3	1	0	0	1	0	3
A_2	4	3	0	-1	0	1	6
H_1	1	2	1	0	0	0 1 0	3

Lo que necesitamos es que los valores correspondientes a A_1 y A_2 en la columna Z sean 0, de esta forma tendremos la solución básica inicial, para esto las operaciones que haremos serán:

•
$$Z = Z + A_1$$

•
$$Z = Z + A_2$$

Realizando las operaciones anteriores se obtiene:

VB	<i>x</i> ₁	<i>x</i> ₂	H_1	E_1	A_1	A_2	RHS
			0				9
$\overline{A_1}$	3	1	0	0	1	0	3
A_2	4	3	0	-1	0	1	6
A_1 A_2 H_1	1	2	1	0	0	0	3

Ahora, esta solución no es factible ya que las variables A_2 y A_2 no son parte del problema, no así H_1 y E_1 . Lo que sigue es ver cual es la variable de entrada y cual es la de la salida de la misma manera que con simplex.

Haciendo el análisis anterior se obtiene lo siguiente

VB	<i>x</i> ₁	<i>X</i> ₂	H_1	E_1	A_1	A_2	RHS	cociente
Z	7	4	0	-1	0	0	9	
A_1	3	1	0	0	1	0	3	=3/3=1
A_2	4	3	0	-1	0	1	6	=6/4=1.5
H_1	1	2	1	0	0	0	3	= 3/1 = 3

Donde la variable de entrada es x_1 y la de salida es A_1 , con esto tenemos que el valor pivote es 3, actualizamos la tabla siguientes los siguientes pasos:

- $A_1 = A_1/3$
- $Z = Z 7A_1$
- $A_2 = A_2 4A_1$
- $H_1 = H_1 A_1$

Aplicando las transformaciones anteriores se obtiene:

VB	<i>x</i> ₁	<i>X</i> ₂	H_1	E_1	A_1	A_2	RHS
					-7/3		
<i>x</i> ₁	1	1/3	0	0	1/3 -4/3	0	1
A_2	0	5/3	0	-1	-4/3	1	2
H_1	0	5/3	1	0	-1/3	0	2

Ahora, vemos cual es la variable de salida y cual es la de entrada:

VB	<i>x</i> ₁	<i>X</i> 2	H_1	E_1	A_1	A_2	RHS	cociente
Z	0	5/3	0		-7/3		2	
<i>x</i> ₁	1	1/3	0	0	1/3	0	1	1/(1/3) = 3
A_2	0	5/3	0	-1	-4/3		2	2/(5/3) = 6/5
H_1	0	5/3	1	0	-1/3	0	2	2/(5/3) = 6/5

Ahora, repetimos los pasos con el valor pivote de $\frac{5}{3}$ y haciendo las siguientes operaciones:

•
$$A_2 = \frac{A_2}{5/3}$$

•
$$Z = Z - \frac{5}{3}A_1$$

•
$$x_1 = x_1 - \frac{1}{3}A_1$$

•
$$H_2 = H_2 - \frac{5}{3}A_1$$

VB	x_1	<i>x</i> ₂	H_1	E_1	A_1	A_2	RHS
Z	0	0	0	0	-1	-1	0
<i>x</i> ₁	1	0	0	1/5	3/5	-1/5	3/5
x_2	0	1	0	-3/5	-4/5	3/5	6/5
H_1	0	0	1	1	1	-1/5 3/5 -1	0

Como en la base ya no quedan variables artificiales, tenemos una solución básica factible y podemos pasar a la fase 2, nuestra solución básica factible es $x_1=3/5$, $x_2=6/5$, $H_{1}=0$, $H_{2}=0$

Podemos pasar a la fase 2 ya que la función objetivo no se puede minimizar más y por que la solución básica no contiene variables artificiales.

Fase 2: Utilizar la función objetivo del problema original con los valores obtenidos en la fase 1, la tabla queda de la siguiente manera:

VB	<i>x</i> ₁	<i>x</i> ₂	H_1	E_1	RHS
-Z	4	1	0	0	0
<i>X</i> ₁	1	0	0	1/5 -3/5	3/5 6/5
<i>X</i> ₂	0	1	0	-3/5	6/5
H_1	0	0	1	1	0

Ahora tenemos que lograr que los coeficientes de Z para x_1 y x_2 sean 0

Los cambios que tenemos que hacer son $Z = Z - 4x_1$ y $Z = Z - x_2$, donde nos queda:

VB	<i>x</i> ₁	<i>X</i> 2	H_1	E_1	RHS
-Z	0	0	0	1/5	-18/5
<i>x</i> ₁	1	0	0	1/5 -3/5	3/5 6/5
<i>X</i> ₂	0	1	0	-3/5	6/5
H_1	0	0	1	1	0

Ahora tenemos una dirección de mejora, la variable de entrada es E_1 , falta ver la variable de salida

VB	<i>x</i> ₁	<i>X</i> 2	H_1	E_1	RHS	cociente
-Z	0	0	0	1/5	-18/5	
$\overline{x_1}$	1	0	0	,	3/5	=(3/5)/(1/5)=3
<i>x</i> ₂	0	1	0	-3/5	6/5	=(6/5)/(-3/5)=-2
H_1	0	0	1	1	0	= 0/1 = 0

Aplicando las operaciones por filas correspondientes:

- $x_2 = x_2 \frac{-3}{5}H_1$
- $x_1 = x_1 \frac{1}{5}H_1$
- $Z = Z \frac{1}{5}H_1$

Donde finalmente nos queda:

VB	<i>x</i> ₁	<i>x</i> ₂	H_1	E_1	RHS
-Z	0	0	-1/5	0	-18/5
<i>X</i> ₁	1	0	-1/5 3/5	0	3/5 6/5
<i>X</i> ₂	0	1	3/5	0	6/5
E_1	0	0	1	1	1

Donde tenemos que la solución óptima es $x_1 = 3/5$ y $x_2 = 6/5$.

Resuelva por el método de la M-grande

min
$$-2x_1 + 2x_2 + x_3 + x_4$$

s.a: $x_1 + 2x_2 + x_3 + x_4 \le 2$
 $x_1 - x_2 + x_3 + 2x_4 \ge 3$
 $2x_1 - x_2 + x_3 \le 2$
 $x_1, x_2, x_3, x_4 \ge 0$