VITMO

Проектирование и исследование предсказателя переходов

Болдов Олег Евгеньевич

Программа магистратуры, для поступления на которую подается заявка **09.04.01 Информатика и вычислительная техника**

Актуальность

Предсказатель переходов - модуль ядра, который значительно увеличивает производительность, так как позволяет делать загрузку из кэша инструкций (медленную операцию) заранее.

Однако нет стандартного способа выбора алгоритма и конфигурации предсказателя. Тратится много времени и ресурсов на разработку нескольких модулей, их тестирование и анализ.

Такой выбор часто упрощается из-за экономии, что приводит к неэффективным предсказателям. Данное исследование нацелено на разработку метода ускорения выбора предсказателя переходов, а также подбора эффективных структур по параметрам конвейера.

Рисунок 2 – Потеря из-за ошибки предсказателя

Цель и задачи

Цель: сформировать метод ускорения выбора предсказателя переходов под конкретные параметры системы.

Задачи:

- 1) Реализовать алгоритмы на языке system verilog
- 2) Получить трассы для тестирования, содержащие адрес jump-инструкции и «правильный» ответ (taken or not taken)
- 3) Реализовать тестовое окружение для запуска трасс и подсчёта статистики
- 4) Проанализировать результаты и сделать выводы в рамках разных моделей процессоров
- 5) Провести экспериментальное подтверждение работы метода

Алгоритмы предсказания

Static всегда делаем одинаковый выбор

bim - bimodal counter Для каждого адреса будем хранить счётчик. Считаем, taken или not taken было больше за последние предсказания

GH Global

PH Path

GSHARE - PC ^ GH ^ PH

ТАGE - TAgged GEometric
Для разных случаев нужны разные
длины историй. Воспользуемся
большим количеством таблиц,
выбирая тех, кто чаще выдает верные
решения

Рисунок 4 – предсказатель TAGE

Точность

Таблица 1 – Точность и память в изучаемых алгоритмах

	static	last	bim	gh	ph	gshare	tage
accuracy	61%	56%	68%	77%	79%	88%	95%
memory	1	1	8 Кб	8 Кб + 4	24 Кб	24 Кб + 4	>100 Кб
acc/mem	61	56	0,008	0,0094	0,0032	0,0036	0,0009

Чем больше требует памяти алгоритм, тем больше он может дать процент успеха, но тем дороже становится его получение

Bim зависимость от памяти

Таблица 2 – Точность и кол-во занятых ячеек в алгоритме «бимодальные счётчики» с разным размером памяти

ячейки	2 ⁴	2 ⁶	2 ⁸	2 ¹⁰	2 ¹²	2 ¹⁴	2 ¹⁶
точность	54.6%	65.6%	71.6%	73.0%	73.2%	73.3%	73.3%
Занятые	8	32	128	440	777	891	916

График 2 – Зависимость используемой памяти от точности

График 3 — Зависимость коллизий от используемой памяти

Расчеты

Штраф за очистку:

$$F = s \times d, \tag{1}$$

где s — ширина конвейера, d — длина конвейера — сколько тактов в среднем выполняется инструкция.

Кол-во инструкций, которые вызовут очистку:

$$J \times (100\% - A), \tag{2}$$

где J- среднее кол-во инструкций ветвления в задачах, A- точность, которую необходимо получить от предсказателя переходов.

Кол-во тактов, которые процессор потеряет из-за очистки:

$$J \times (100\% - A) \times F \tag{3}$$

 \downarrow

$$J \times (100\% - A) \times F + t_0, \le t \tag{4}$$

где t_0 — время, за которое выполняется задача без очистки, t — максимальное время выполнения задачи, которое удовлетворяет запрос к производительности процессора.

Итоговое выражение для определения необходимой точности ПП:

$$A \ge 1 - \frac{(t - t_0)}{J \times d \times s}.$$
 (5)

Анализ алгоритмов и конфигураций

- □ В случаях, где предсказание сделать тяжело, стоит использовать статический предсказатель переходов
- При большой связности инструкций ветвления стоит добавить GH
- □ PH не стоит использовать без gshare
- □ Оптимальным количество бит индексации является 12 бит
- □ В случаях высокой вероятности большого количества коллизий допустимо увеличении количества бит индексации
- □ Не используя gshare, оптимальным количеством бит для длины историй является 4 бита
- В случаях с сильно связанным ветвлением допустимо увеличение длины истории
- □ Если в ходе использования метода была получена оценка, не удовлетворяющая целевую точность, необходимо использовать таблицу точностей, как пропорциональную полученной

Метод ускорения синтеза

Рисунок 5 – Метод выбора структуры

Таблица 3 – Точность и память алгоритмов

Алгоритмы	Точность	Память	
Static	61%	1	
Last decision	56%	1	
Bim	68%	8 Кб	
Gh	77%	8 Кб+4	
Ph	79%	24 Кб	
GShare	88%	24 Кб+4	
Tage	95%	>100 Кб	

Итоги

В ходе исследования:

- 1) Предложен метод ускорения синтеза предсказателя переходов
- 2) Реализованы алгоритмы, тестовое окружение, проведён сбор статистики
- 3) Проведён анализ алгоритмов и конфигураций, выявлены рекомендации по выбору эффективного предсказателя по характеристикам задачи
- 4) Выведена формула определения целевой точности по параметрам конвейера
- 5) Метод экспериментально подтвержден

Метод позволяет ускорить выбор и проектирование структуры предсказателя переходов на основе параметров конвейера и характеристик решаемых задач.

Использование метода позволит экономить ресурсы при проектировании процессоров, что благоприятно сказывается на общей работоспособности при разработке.

Материалы проекта: https://github.com/pupyr/SHware/