

Supervised Learning

DAY2 AGENDA

Linear Regression with One variable

Linear Regression with Multiple Variables

Evaluation Metrics in Regression Models

Cross Validation

Train/Test
splitting of
data
By Anil Kumar APSSDC

TYPE OF DATA IN THE REAL-WORLD

- Structured and unstructured, ordered and unordered, Indexed nd unindexed data
- Numerical, Decimal, strings

Ordered/Structured

Excel, csv, DB, RDBMS, Tabular

unordered/unstructured

PPT, PDFs, Images, Videos, Audio

Semi-structured

XML, JSON, HTML

SUPERVISED LEARNING TYPES

- Regression
- Classification

TYPES OF STATISTICAL DATA

Types of variables

Numbers, dates and strings

Numerical

Made of numbers

Age, Weight, number of children and shoe size.

Discrete

Infinite options

Age, weight and
blood pressure

Finite options

Shoe size and
number of children

Categorical

Made of words

Eye color, gender, blood type and ethnicity

Ordinal

Data has a hierarchy
Pain severity, satisfaction
rating and mood

Nominal

Data has no hierarchy Eye color, dog breed and blood type

Continuous

ML MODEL DEVELOPMENT LIFE CYCLE

I. Define Business
Use Case

3. Select Algorithm

4. Build ML Model

5. Evaluate

FEATURES / ATTRIBUTES

 Features (aka attributes) are used to train an ML system.

They are the properties of the things you are trying to learn about.

FEATURES / ATTRIBUTES

Taking fruit as an example. Features of a fruit might be weight and color. 2 features, would mean there are 2 dimensions. A 2D system may be plotted on a graph if features are represented in a numerical way.

In the plot on the right, the ML system can learn to split the data up with a line to separate apples from oranges. This can now be used to make future classifications when we plot new points the system has not seen (anything above is orange, below is apple)

FEATURES / ATTRIBUTES

- Choosing useful features can have a big impact on the quality of the ML system. Some features may not be useful enough to separate the data points.
- In this example we take bad features of fruits(ripeness and seed count) that do not allow us to learn any distinguishing factors for the fruit.

REGRESSION VS CLASSIFICATION

Linear Regression in Machine Learning

What is Regression?

- Function: a mathematical relationship enabling us to predict what values of one variable (Y) correspond to given values of another variable (X).
- Y: is referred to as the dependent variable, the response variable or the predicted variable.
- X: is referred to as **the independent variable**, the explanatory variable or the **predictor variable**.

Thus Regression analysis is a form of predictive modelling technique which investigates the relationship between a dependent and independent variable.

Example

- Finding relationship between the features and target
- ► Humidity, moisture, light, → Temperature

Regression

- ▶ Linear Regression
 - ► Linear Regression with one variable
 - ► Linear Regression with multiple variable
- ► Non-Linear Regression/Polynomial Regression
 - ▶ Non-Linear Regression with one variable
 - ► Non-Linear Regression with multiple variables
- SGD
- Ridge
- Lasso
- Elastic Net

15

Contd.

A typical Linear Regression model can be represented in the form:

y = b1x + b0 where b1 is slope and b0 is the intercept.

Linear Equations

Linear Regression Model

Relationship Between Variables Is a Linear Function

17

Correlation

- Measures the relative strength of the linear relationship between two variables Unit-less
- ▶ Ranges between –1 and 1
- ▶ The closer to -1, the stronger the negative linear relationship
- ▶ The closer to 1, the stronger the positive linear relationship
- ▶ The closer to 0, the weaker any positive linear relationship

Scatter Plots of Data with Various Correlation Coefficients

Linear Correlation

Linear Correlation

Linear Correlation

No relationship

Dataset 1: No Relationship

The "Best fit" line

Regression equation:

E(Yi) = 28 + 0*vit Di (in 10 nmol/L)

Dataset 2: weak relationship

The "Best fit" line

Note how the line is a little deceptive; it draws your eye, making the relationship appear stronger than it really is!

Regression equation:

E(Yi) = 26 + 0.5*vit Di (in 10 nmol/L)

Dataset 3: weak to moderate relationship

The "Best fit" line

Regression equation:

E(Yi) = 22 + 1.0*vit Di (in 10 nmol/L)

Dataset 4: moderate relationship

The "Best fit" line

Regression equation:

E(Yi) = 20 + 1.5*vit Di (in 10 nmol/L)

Note: all the lines go through the point (63, 28)!

Steps in Regression Analysis

- Examine the scatterplot of the data.
 - I. Does the relationship look linear?
 - II. Are there points in locations they shouldn't be?
 - III. Do we need a transformation?
- Assuming a linear function looks appropriate, estimate the regression parameters.
 - I. How do we do this? (Method of Least Squares)
- If there is a significant linear relationship, estimate the response, Y, for the given values of X, and compute the residuals

Regression Analysis

Thus we have the regression formula as:

$$Y = MX + C + error(e)$$
.

Initially we calculate the value for slope and predict the values of Y for any given X values we have.

Slope(M)=
$$\sum_{i=0}^{len(X)} \frac{(X_i - X_{mean}) * (Y_i - Y_{mean})}{(X_i - X_{mean})^2}$$

Thus we calculate the C value and find out the "Line of Regression".

Regression Analysis

- Next our job is to reduce the distance between the actual value and the
 predicted value or in other words reduce the error between the actual
 and predicted value. Thus the line with least error will be the "Best Fit
 Line".
- In order to check it out we calculate the "Coefficient of Determination".

Mean Squared value
$$(R^2) = \sum_{i=0}^{len(X)} \frac{(Y_{pred} - Y_{mean})^2}{(Y - Y_{mean})^2}$$

 Thus our ultimate aim is to reduce the error i.e. distance between the actual and predicted values.

Evaluation Metrics

1. Mean Absolute Error

Contd...

2. Mean Square Error

$$MSE = \frac{1}{n} \sum \left(y - \hat{y} \right)^{2}$$
The square of the difference between actual and predicted

Contd...

3. Mean Absolute Percentage Error

Contd...

3. Mean Percentage Error

$$MPE = \frac{100\%}{n} \Sigma \left(\frac{y - y}{y} \right)$$

Conclusion

Acroynm	Full Name	Residual Operation?	Robust To Outliers?
MAE	Mean Absolute Error	Absolute Value	Yes
MSE	Mean Squared Error	Square	No
RMSE	Root Mean Squared Error	Square	No
MAPE	Mean Absolute Percentage Error	Absolute Value	Yes
MPE	Mean Percentage Error	N/A	Yes