

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary Level

CANDIDATE NAME											
CENTRE NUMBER						CANDIDA NUMBER					
MATHEMATICS										97	09/22
Paper 2 Pure M	athemat	tics 2 (P 2	2)				0	ctobe	r/Nov	embe	r 2019
								1	hour	15 m	inutes
Candidates ansv	ver on th	ne Quest	ion Pa	per.							
Additional Mater	ials:	List of F	ormul	ae (MF9)							

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

This document consists of 12 printed pages.

Cambridge Assessment International Education

[Turn over

	2
1	The polynomial $f(x)$ is defined by
	$f(x) = x^4 - 3x^3 + 5x^2 - 6x + 11.$
	Find the quotient and remainder when $f(x)$ is divided by $(x^2 + 2)$. [3]

	Solve the equation $ 4x + 5 = x - 7 $.	[3
(ii)	Hence, using logarithms, solve the equation $ 2^{y+2} + 5 = 2^y - 7 $, giving the answ	
	3 significant figures.	er correct t [2
	3 significant figures.	/er correct t [2
	3 significant figures.	er correct t
	3 significant figures.	/er correct t
	3 significant figures.	/er correct t
	3 significant figures.	/er correct t
	3 significant figures.	/er correct t
	3 significant figures.	/er correct t
	3 significant figures.	/er correct t

3

The variables x and y satisfy the equation $y = kx^a$, where k and a are constants. The graph of $\ln y$ against $\ln x$ is a straight line passing through the points (0.22, 3.96) and (1.32, 2.43), as shown in the
diagram. Find the values of k and a correct to 3 significant figures. [5]

4 The sequence x_1, x_2, x_3, \dots defined by

$$x_1 = 1, \quad x_{n+1} = \frac{x_n}{\ln(2x_n)}$$

converges to the value α .

(i)	Use the iterative formula to find the value of α correct to 4 significant figures. each iteration to 6 significant figures.	Give the result of [3]
(ii)	State an equation satisfied by α and hence determine the exact value of α .	[2]
(ii)	State an equation satisfied by α and hence determine the exact value of α .	
(ii)		
(ii)		
(ii)		

]	Find the exact coordinates of the stationary point of the curve with equation $y = e^{-\frac{1}{2}x}(2x+5)$. [5]
•	
•	
•	
•	

6	(a)	Show that $\int_{2}^{18} \frac{3}{2x} dx = \ln 27.$	[4]
			•••••
			••••••
			•••••
			•••••
	(b)	Find the exact value of $\int_0^{\frac{1}{6}\pi} 4 \sin^2(\frac{3}{2}x) dx$. Show all necessary working.	[5]
			,
			••••••
			•••••
			· • • • • • • • • • • • • • • • • • • •
			•••••

	7	The	parametric	equations	of a	a curve	are
--	---	-----	------------	-----------	------	---------	-----

$$x = 3\sin 2\theta, \quad y = 1 + 2\tan 2\theta,$$

for $0 \le \theta < \frac{1}{4}\pi$.

Find the exa	ct gradient of	the curve a	it the poin	it for whic	$ch \theta = \frac{1}{6}\pi.$			
							•••••	
				•••••	•••••			
				•••••	•••••			
		•••••				•••••	•••••	
				•••••	•••••			• • • • • • • • • • • • • • • • • • • •
				•••••	•••••			• • • • • • • • • • • • • • • • • • • •
		•••••						
•••••				•••••	•••••			• • • • • • • • • • • • • • • • • • • •
				••••••	•••••			
•••••								
		••••						
•••••	•••••			••••••	••••••	•••••		•••••

(ii)	Find the value of θ at the point where the gradient of the curve is 2, giving the value correct to 3 significant figures. [4]

	Express $0.5 \cos \theta - 1.2 \sin \theta$ in the form $R \cos(\theta + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 9$ value of α correct to 2 decimal places.	U°, giving i
		•••••
		•••••
		•••••
		•••••
		•••••
(ii)	Hence solve the equation $0.5\cos\theta - 1.2\sin\theta = 0.8$ for $0^{\circ} < \theta < 360^{\circ}$.	
(ii)	Hence solve the equation $0.5\cos\theta - 1.2\sin\theta = 0.8$ for $0^{\circ} < \theta < 360^{\circ}$.	
(ii)	Hence solve the equation $0.5\cos\theta - 1.2\sin\theta = 0.8$ for $0^{\circ} < \theta < 360^{\circ}$.	
(ii)	Hence solve the equation $0.5\cos\theta - 1.2\sin\theta = 0.8$ for $0^{\circ} < \theta < 360^{\circ}$.	
(ii)		

(iii)	Determine the greatest and least possible values of $(3 - \cos \theta + 2.4 \sin \theta)^2$ as θ varies. [3]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.