Cone Theorem

阿巴阿巴阿巴阿巴!

Cone Theorem

1 Preliminary

Theorem 1 (Iitaka fibration, semiample case, ref. [Laz04, Theorem 2.1.27]). Let X be a projective variety and \mathcal{L} an semiample line bundle on X. Then there exists a fibration $\varphi: X \to Y$ of projective varieties such that for any $m \gg 0$ with \mathcal{L}^m base point free, we have that the morphism $\varphi_{\mathcal{L}^m}$ induced by \mathcal{L}^m is isomorphic to φ . Such a fibration is called the *Iitaka fibration* associated to \mathcal{L} .

Theorem 2 (Rigidity Lemma, ref. [Deb01, Lemma 1.15]). Let $\pi_i: X \to Y_i$ be proper morphisms of varieties over a field k for i = 1, 2. Suppose that π_1 is a fibration and π_2 contracts $\pi_1^{-1}(y_0)$. Then there exists a rational map $\varphi: Y_1 \dashrightarrow Y_2$ such that $\pi_2 \circ \varphi = \pi_1$ and φ is well-defined near $Y_1 \setminus \{y_0\}$.

Theorem 3. Let $A, B \subset \mathbb{R}^n$ be disjoint convex sets. Then there exists a linear functional $f : \mathbb{R}^n \to \mathbb{R}$ such that $f|_A \leq c$ and $f|_B \geq c$ for some $c \in \mathbb{R}$.

2 Non-vanishing Theorem

Theorem 4 (Non-vanishing Theorem). Let (X, B) be a projective klt pair and D a Cartier divisor on X. Suppose that D is nef and $aD - K_{(X,B)}$ is nef and big for some a > 0. Then for $m \gg 0$, we have

$$H^0(X, mD) \neq 0.$$

3 Base Point Free Theorem

Theorem 5 (Base Point Free Theorem). Let (X, B) be a projective klt pair and D a Cartier divisor on X. Suppose that D is nef and $aD - K_{(X,B)}$ is nef and big for some a > 0. Then for $m \gg 0$, mD is base point free.

Remark 6. In general, we say that a Cartier divisor D is *semiample* if there exists a positive integer m such that mD is base point free. The statement in Base Point Free Theorem (Theorem 5) is strictly stronger than the semiample condition. For example, let \mathcal{L} be a torsion line bundle, then \mathcal{L} is semiample but there exists no positive integer M such that $m\mathcal{L}$ is base point free for all m > M.

Date: July 20, 2025, Author: Tianle Yang, My Website

4 Rationality Theorem

Theorem 7 (Rationality Theorem). Let (X, B) be a projective klt pair, $a = a(X) \in \mathbb{Z}$ with $aK_{(X,B)}$ Cartier and H an ample divisor on X. Let

$$t := \inf\{s \ge 0 : K_{(X,B)} + sH \text{ is nef}\}\$$

be the nef threshold of (X, B) with respect to H. Then $t = u/v \in \mathbb{Q}$ and

$$0 \le u \le a(X) \cdot (\dim X + 1).$$

5 Cone Theorem and Contraction Theorem

Theorem 8 (Cone Theorem). Let (X, B) be a projective klt pair. Then there exist countably many rational curves $C_i \subset X$ with

$$0 < -K_{(X,B)} \cdot C_i \le 2 \dim X$$

such that

(a) we have a decomposition of cones

$$\operatorname{Psef}_1(X) = \operatorname{Psef}_1(X)_{K_{(X,B)} \ge 0} + \sum \mathbb{R}_{\ge 0}[C_i];$$

(b) and for any $\varepsilon > 0$ and an ample divisor H on X, we have

$$\operatorname{Psef}_1(X) = \operatorname{Psef}_1(X)_{K_{(X,B)} + \varepsilon H \ge 0} + \sum_{\text{finite}} \mathbb{R}_{\ge 0}[C_i].$$

Proof. Let $F_D := \operatorname{Psef}_1(X) \cap D^{\perp}$ for a nef divisor D on X. If dim $F_D = 1$, we also write $R_D := F_D$. Let $H_1, \dots, H_{\rho-1}$ be ample divisors on X such that they together with $K_{(X,B)}$ form a basis of $N^1(X)_{\mathbb{R}}$. Let $S^{\rho-1} := S(N_1(X)_{\mathbb{R}})$ be the unit sphere in $N_1(X)_{\mathbb{R}}$.

Step 1. Let $\Phi: N_1(X)_{K_{(X,B)}<0} \to \mathbb{R}^{\rho-1}$ be the map defined by

$$[C] \mapsto \left(\frac{H_1 \cdot C}{K_{(X,B)} \cdot C}, \dots, \frac{H_{\rho-1} \cdot C}{K_{(X,B)} \cdot C}\right).$$

We show that the image of R_D under Φ lying a \mathbb{Z} -lattice in $\mathbb{R}^{\rho-1}$.

Yang: To be completed.

Step 2. We show that every $K_{(X,B)}$ -negative extremal ray of $\operatorname{Psef}_1(X)$ is of the form R_D for some nef divisor D on X.

Yang: To be completed.

Step 3. We show that any $K_{(X,B)}$ -negative extremal ray R_D contains the class of a rational curve C with $0 < -K_{(X,B)} \cdot C \le 2 \dim X$.

Yang: To be completed.

Cone Theorem

Step 4. Proof of the theorem.

Given an ample divisor H on X, note that εH has positive minimum δ on $\operatorname{Psef}_1(X) \cap S^{\rho-1}$. Note that the set $\{\alpha \in \operatorname{Psef}_1(X) \cap S^{\rho-1} : K_{(X,B)} \cdot H \leq \delta/2\}$ is compact. By Steps 1 and 2, there are only finitely many extremal rays on $\operatorname{Psef}_1(X)_{K_{(X,B)}+\varepsilon H \leq 0}$. By Step 3, we get (b).

For (a), note that any closed cone is equal to the closure of the cone generated by its extremal ray. We only need to show that the cone

$$\mathcal{C} := \operatorname{Psef}_1(X)_{K_{(X,B)} \ge 0} + \sum \mathbb{R}_{\ge 0}[C_i]$$

is closed. Choose a Cauchy sequence $\{\alpha_n\} \subset \mathcal{C}$ such that $\alpha_n \to \alpha \in N_1(X)_{\mathbb{R}}$. Note that $\mathrm{Psef}_1(X)$ is closed, hence $\alpha \in \mathrm{Psef}_1(X)$. We only need to consider the case $\alpha \cdot K_{(X,B)} < 0$. We can choose an ample divisor and $\varepsilon > 0$ such that $\alpha \cdot (K_{(X,B)} + \varepsilon H) < 0$. Then $\alpha_n \cdot (K_{(X,B)} + \varepsilon H) < 0$ for all n large enough. Note that $\mathcal{C} \cap \{K_{(X,B)} + \varepsilon H \leq 0\}$ is a polyhedral cone by Step 1 and hence is closed. Then $\alpha \in \mathcal{C}$ and the conclusion follows.

Theorem 9 (Contraction Theorem). Let (X, B) be a projective klt pair and $F \subset \operatorname{Psef}_1(X)$ a $K_{(X,B)}$ negative extremal face of $\operatorname{Psef}_1(X)$. Then there exists a fibration $\varphi_F : X \to Y$ of projective varieties such that

- (a) an irreducible curve $C \subset X$ is contracted by φ_F if and only if $[C] \in F$;
- (b) up to linearly equivalence, any Cartier divisor G with $F \subset G^{\perp} = \{\alpha \in N_1(X) : \alpha \cdot G = 0\}$ comes from a Cartier divisor on Y, i.e., there exists a Cartier divisor G_Y on Y such that $G \sim \varphi_F^* G_Y$.

Proof. We follow the following steps to prove the theorem.

Step 1. We show that there exists a nef divisor D on X such that $F = D^{\perp} \cap \operatorname{Psef}_1(X)$. In other words, F is defined on $N_1(X)_{\mathbb{Q}}$.

We can choose an ample divisor H and n > 0 such that $K_{(X,B)} + (1/n)H$ is negative on F since $F \cap S^{\rho-1}$ is compact and $K_{(X,B)}$ is strictly negative on it, where $S^{\rho-1}$ is the unit sphere in $N_1(X)_{\mathbb{R}}$. Then by Cone Theorem (Theorem 8), F is an extremal face of a rational polyhedral cone, namely $\operatorname{Psef}_1(X)_{K_{(X,B)}+(1/n)H\leq 0}$. It follows that $F^{\perp}\subset N^1(X)_{\mathbb{R}}$ is defined on \mathbb{Q} . Since F is extremal and $K_{(X,B)}+(1/n)H$ -negative, the set $\{L\in F^{\perp}: L|_{\operatorname{Psef}_1(X)\setminus F}>0\}$ has non-empty interior in F^{\perp} by Theorems 3 and 8. Then there exists a Cartier divisor D such that $D\in F^{\perp}$ and $D|_{\operatorname{Psef}_1(X)\setminus F}>0$. It follows that D is nef and $F=D^{\perp}\cap\operatorname{Psef}_1(X)$.

Step 2. Let $\varphi: X \to Y$ be the Iitaka fibration associated to D by Theorem 1. We show that φ is the desired fibration.

Note that $\operatorname{Psef}_1(X)_{K_{(X,B)}\geq 0}\cap S^{\rho-1}$ is compact and D is strictly positive on it. Then there exist $a\geq 0$ such that $aD-K_{(X,B)}$ is strictly positive on $\operatorname{Psef}_1(X)_{K_{(X,B)}\geq 0}\cap S^{\rho-1}$. And $K_{(X,B)}$ is strictly negative on $F\setminus\{0\}$ since F is $K_{(X,B)}$ -negative. Then by Base Point Free Theorem (Theorem 5), we know that mD is base point free for all $m\gg 0$. Hence we can apply Theorem 1 to get a fibration $\varphi_D:X\to Y$.

First we show that D comes from Y. Note that mD and (m+1)D induces the same fibration φ_D for $m \gg 0$. Then there exists $D_{Y,m}$ and $D_{Y,m+1}$ such that $\varphi_D^*D_{Y,m} \sim mD$ and $\varphi_D^*D_{Y,m+1} \sim (m+1)D$. Then set $D_Y = D_{Y,m+1} - D_{Y,m}$, we have $\varphi_D^*D_Y \sim D$.

Note that $D_Y \equiv (1/m)D_{Y,m}$ and $D_{Y,m}$ is ample. Hence D_Y is ample. Then for any curve $C \subset X$, we have

$$D \cdot C = \varphi^* D_Y \cdot C = D_Y \cdot (\varphi_D)_* C.$$

It follows that C is contracted by φ_D if and only if $D \cdot C = 0$, which is equivalent to $[C] \in F$.

Let G be arbitrary Cartier divisor on X such that $F \subset G^{\perp}$. Since D is strictly positive on $\operatorname{Psef}_1(X) \setminus F$, for $m \gg 0$, let $D' \coloneqq mD + G$, we have $D'^{\perp} \cap \operatorname{Psef}_1(X) = F$. Then by the same argument as above, we get an other fibration $\varphi_{D'}: X \to Y'$ such that a curve C is contracted by $\varphi_{D'}$ if and only if $[C] \in F$. Then by Rigidity Lemma (Theorem 2), we see that $\varphi_D = \varphi_{D'}$ up to an isomorphism on Y. In particular, $D' \sim \varphi_D^* D'_Y$ for some Cartier divisor D'_Y on Y. Then G = D' - mD also comes from Y.

Remark 10. The Step 1 is amazing. If F is not $K_{(X,B)}$ -negative, then it may not be rational. For example, let $X = E \times E$ for a general elliptic curve E. By [Laz04, Lemma 1.5.4], we know that $\operatorname{Psef}_1(X)$ is a circular cone. The we see there indeed exist some irrational extremal faces of $\operatorname{Psef}_1(X)$.

Definition 11. Let (X, B) be a projective klt pair and R a $K_{(X,B)}$ -negative extremal ray of $\operatorname{Psef}_1(X)$ with contraction $\varphi_R: X \to Y$. There are three types of contractions:

- (a) Divisorial contraction: if dim $X = \dim Y$ and the exceptional locus of φ_R is of codimension one;
- (b) Small contraction: if dim $X = \dim Y$ and the exceptional locus of φ_R is of codimension at least two;
- (c) Mori fiber space: if $\dim X > \dim Y$.

Proposition 12. Let (X, B) be a \mathbb{Q} -factorial projective klt pair and R a $K_{(X,B)}$ -negative extremal ray of $\mathrm{Psef}_1(X)$. Suppose that the contraction $\varphi_R: X \to Y$ associated to R is either divisorial or a Mori fiber space. Then Y is \mathbb{Q} -factorial.

Proof. Yang: To be completed.

References

- [Deb01] Olivier Debarre. *Higher-dimensional algebraic geometry*. Universitext. Springer-Verlag, New York, 2001, pp. xiv+233. ISBN: 0-387-95227-6. DOI: 10.1007/978-1-4757-5406-3. URL: https://doi.org/10.1007/978-1-4757-5406-3.
- [Laz04] Robert Lazarsfeld. *Positivity in algebraic geometry. I.* Vol. 48. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in

5

Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Classical setting: line bundles and linear series. Springer-Verlag, Berlin, 2004, pp. xviii+387. ISBN: 3-540-22533-1. DOI: 10.1007/978-3-642-18808-4. URL: https://doi.org/10.1007/978-3-642-18808-4.