Master Mathématiques Appliquées pour l'Ingénierie et l'Innovation (MAII)
Madálization numárique / Analyza numárique matricialla
Modélisation numérique / Analyse numérique matricielle
Pr. Ahmed Toukmati
2023-2024

Département des Mathématiques Faculté des Sciences et Thechniques - Al Hoceïma Université Abd Elmalek Essadi

Table des matières

1	Analyse numérique matricielle			
	1.1	Rappe	el sur les matrices	3
		1.1.1	Notations	3
		1.1.2	Déterminant - Trace d'une matrice	-
		1.1.3	Mineurs et cofacteurs	6
		1.1.4	Matrices particulière	8
	1.2 Valeurs propres - Vecteurs propres			
		1.2.1	Théorème de Cayley-Hamilton	15
		1.2.2	Cas des matrices diagonales par blocs - Triangulaire par blocs	18
	1.3	Diago	nalisation-Trigonalisation d'une matrice	21
		1.3.1	Les matrices semblables	21
		1.3.2	Diagonalisation	23
		1.3.3	Trigonalisation	26

Chapitre 1

Analyse numérique matricielle

1.1 Rappel sur les matrices

1.1.1 Notations

Ce paragraphe a pour but de fixer les notations qui seront utilisées tout au long de ce cours.

- L'espace des matrices à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$, où $\mathbb{K} = \mathbb{C}$) à m lignes et n colonnes sera noté par $M_{nm}(\mathbb{K})$.
- Si $A = (a_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in M_{nm}(\mathbb{K})$; i est l'indice de lignes, et j et l'indice de colonnes.
- Si $a_{ij}=0$ pour tous $i\in\{1,2,\ldots,m\}$ et $j\in\{1,2,\ldots,n\}$, la matrice A=(0) est appelée matrice nulle qu'on la note

$$0 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}.$$

• La matrice

$$I_n = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$$

est appelée la matrice identité.

- La matrice ligne $A = (a_1, a_2, \dots, a_m) \in M_{1m}(\mathbb{K}).$
- La matrice colonne $A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in M_{n1}(\mathbb{K}).$
- Si m = n alors la matrice $A = (a_{ij})_{1 \leq i,j \leq n}$ est dite matrice carrée, est l'ensemble des matrices carrée de taille n, sera noté par $M_n(\mathbb{K})$.
- Une matrice $A=(a_{ij})_{\substack{1\leq i\leq m\\1\leq j\leq n}}$ est triangulaire supérieure si $a_{ij}=0$ pour tout j< i est on a :

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_{mn} \end{pmatrix}.$$

• Une matrice $A = (a_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$ est triangulaire inférieure si $a_{ij} = 0$ pour tout i < j est on a :

$$A = \begin{pmatrix} a_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{mn} \end{pmatrix}.$$

• Une matrice carrée $A=(a_{ij})_{1\leq i,j\leq n}$ est dite diagonal si $a_{ij}=0$ pour tout $i\neq j$ est on note :

$$D = \operatorname{diag}(d_1, d_2, \dots, d_n) = \begin{pmatrix} d_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & d_n \end{pmatrix}.$$

Définition 1.1. Soit $A = (a_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in M_{mn}(\mathbb{K})$. La **transposé** de A est la matrice notée A^T est définie par $A^T = (a_{ji})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$.

Exemple 1.1. 1.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
; $A^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.
2. $B = \begin{pmatrix} 1 & 3 & -1 \\ 0 & 4 & 5 \\ \frac{1}{2} & 3 & \sqrt{2} \end{pmatrix}$; $B^T = \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 3 & 4 & 3 \\ -1 & 5 & \sqrt{2} \end{pmatrix}$.

Remarque 1.1. Si $A \in M_{mn}(\mathbb{K})$, alors $A^T \in M_{nm}(\mathbb{K})$.

Proposition 1.1. Soient $A, B \in M_{mn}(\mathbb{K})$ et $\lambda \in \mathbb{K}$, alors :

- $--(AB)^T = B^T A^T;$
- $-(A+B)^T = A^T + B^T;$
- $(\lambda A)^T = \lambda A^T.$

Définition 1.2. Soit $A = (a_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in M_{mn}(\mathbb{K})$. Le **conjugué** de A, est la matrice $\bar{A} = (\bar{a}_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$.

Exemple 1.2. 1.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
; $\bar{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = A$.
2. $B = \begin{pmatrix} i & 3 \\ 1+i & 1+2i \end{pmatrix}$; $\bar{B} = \begin{pmatrix} -i & 3 \\ 1-i & 1-2i \end{pmatrix}$.

Définition 1.3. Soit $A = (a_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in M_{mn}(\mathbb{K})$. L'adjoint de A, est la matrice $A^* = \bar{A}^* = (\bar{a}_{ji})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$.

Exemple 1.3. 1.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
; $A^* = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = A$.
2. $B = \begin{pmatrix} 1 & i \\ 1+i & 3 \end{pmatrix}$; $B^* = \begin{pmatrix} 1 & -i \\ 1-i & 3 \end{pmatrix}^T = \begin{pmatrix} 1 & 1-i \\ -i & 3 \end{pmatrix}$.

Proposition 1.2. Soient $A, B \in M_{mn}(\mathbb{K})$ et $\lambda \in \mathbb{K}$, alors :

$$-(AB)^* = B^*A^*$$
;

$$- (A+B)^* = A^* + B^*; - (\lambda A)^* = \bar{\lambda} A^*.$$

Définition 1.4. — Une matrice carrée $A \in M_n(\mathbb{K})$ est dite **inversible**, s'il existe une matrice carrée B tel que $AB = BA = I_n$.

- L'ensemble des matrices carrée de $M_{mn}(\mathbb{K})$, sera noté $GL_n(\mathbb{K})$.
- Si A n'est pas inversible, on dit que A est singulière.

Exemple 1.4. 1.
$$A = \begin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix}$$
; $A^{-1} = \frac{-1}{2} \begin{pmatrix} 4 & -2 \ -3 & 1 \end{pmatrix}$.
2. $A = \begin{pmatrix} 1 & 2 & 3 \ 0 & 1 & 4 \ 5 & 6 & 0 \end{pmatrix}$; $A^{-1} = \begin{pmatrix} -24 & 18 & 5 \ 20 & -15 & -4 \ -5 & 4 & 1 \end{pmatrix}$.

Remarque 1.2. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{K})$. On rappel que $\det(A) = ad - bc$. Si $\det(A) \neq 0$, alors A est inversible et

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Par exemple, si $A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$. Alors $A^{-1} = \frac{1}{3} \begin{pmatrix} 3 & 0 \\ -2 & 1 \end{pmatrix}$.

Proposition 1.3. Soient $A, B \in M_n(\mathbb{K})$ deux matrices inversibles. Alors

- $-(AB)^{-1} = B^{-1}A^{-1};$
- $-(A^*)^{-1} = (A^{-1})^*;$
- $-(A^{-1})^{-1}=A$;
- $-(A^T)^{-1} = (A^{-1})^T.$

1.1.2 Déterminant - Trace d'une matrice.

Définition 1.5. Soit A une matrice carrée, le **déterminant** de A, qu'on le note det(A) ou encore |A|, est une forme multilinéaire alternée de colonnes de A.

Exemple 1.5. 1. On considère la matrice carrée suivant :

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 1 & 3 \end{pmatrix}.$$

Alors

$$\det(A) = 1 \times \begin{vmatrix} 5 & 6 \\ 1 & 3 \end{vmatrix} - 4 \times \begin{vmatrix} 2 & 3 \\ 1 & 3 \end{vmatrix} + 0 \times \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix}$$
$$= 15 - 6 - 4(6 - 3) = 15 - 6 - 24 + 12 = -3 \neq 0.$$

Ainsi A est inversible.

2. Soit la matrice carrée suivante :

$$B = \begin{pmatrix} -1 & 0 & 1\\ 3 & 4 & 5\\ 1 & 2 & 3 \end{pmatrix},$$

après calcule on trouve det(B) = 0. D'où B est singulière.

Proposition 1.4. Soient $A, B \in M_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

- 1. det(AB) = det(A) det(B).
- 2. $\det(A^T) = \det(A)$.
- 3. $\det(\lambda A) = \lambda^n \det(A)$.
- 4. det diag $(d_1, d_2, \dots, d_n) = \prod_{i=1}^n d_i$.
- 5. $\det(I_n) = 1$.

Proposition 1.5. Soit $A \in M_n(\mathbb{K})$. A inversible si et seulement si $\det(A) \neq 0$.

Proposition 1.6. Soit $A \in M_n(\mathbb{K})$. Si A est inversible, alors $\det(A^{-1}) = \frac{1}{\det(A)}$.

Définition 1.6. Soit $A = (a_{ij})_{1 \leq i,j \leq n} \in M_n(\mathbb{K})$. Le réel $\operatorname{Tr}(A) = \sum_{i=1}^n a_{ii}$ est appelé la **trace** de A.

Exemple 1.6.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $Tr(A) = 5$.

$$B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 1 & 4 \end{pmatrix}, \text{Tr}(B) = 10.$$

Proposition 1.7. Soient $A, B \in M_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

- 1. $\operatorname{Tr}(A+B) = \operatorname{Tr}(A) + \operatorname{Tr}(B)$;
- 2. $Tr(\alpha A) = \alpha Tr(A)$.
- 3. $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$.

Remarque 1.3. Soient $A, B \in M_n(\mathbb{K})$, en générale $\operatorname{Tr}(AB) \neq \operatorname{Tr}(A)\operatorname{Tr}(B)$.

1.1.3 Mineurs et cofacteurs

Définition 1.7. Soit $A = (a_{ij})$ une matrice carrée de $M_n(\mathbb{K})$.

• Le **mineur** de l'élément a_{ij} est le déterminant de la matrice obtenu après avoir retiré la i^{me} ligne et la j^{me} colonne de A qu'on le note :

$$M_{i,j} = \begin{vmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,j-1} & a_{1,j+1} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,j-1} & a_{2,j+1} & \dots & a_{2,n} \\ \vdots & & \vdots & \vdots & \dots & \vdots \\ a_{i-1,1} & a_{i-1,2} & \dots & a_{i-1,j-1} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ a_{i+1,1} & a_{i+1,2} & \dots & a_{i+1,j-1} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \vdots & & \vdots & \vdots & \dots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,j-1} & a_{n,j+1} & \dots & a_{n,n} \end{vmatrix}$$

• Le cofacteur de l'élément $a_{i,j}$ noté $c_{i,j}$ est égale à :

$$c_{i,j} = (-1)^{i+j} M_{i,j}.$$

• La comatrice de $A = (a_{i,j})$ est définie par $Com(A) = (c_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$.

Exemple 1.7. 1. On considère la matrice suivante $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Alors : $M_{1,1} = |4| = 4$, $M_{1,2} = |3| = 3$, $M_{2,1} = |2| = 2$ et

$$Com(A) = \begin{pmatrix} 4 & -3 \\ -2 & 1 \end{pmatrix}.$$

2. On considère la matrice suivante :

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 1 & 3 \end{pmatrix}.$$

Alors

$$Com(B) = \begin{pmatrix} \begin{vmatrix} 5 & 6 \\ 1 & 3 \end{vmatrix} & -\begin{vmatrix} 4 & 6 \\ 0 & 3 \end{vmatrix} & \begin{vmatrix} 4 & 5 \\ 0 & 1 \end{vmatrix} \\ -\begin{vmatrix} 2 & 3 \\ 1 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 0 & 3 \end{vmatrix} & -\begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} \\ \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} & -\begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} 9 & -12 & -5 \\ -3 & 3 & -1 \\ -3 & 6 & -3 \end{pmatrix}$$

Proposition 1.8. Soit $A \in M_n(\mathbb{K})$. Alors

- $\bullet \det(A) = \sum_{j=1}^{n} a_{i,j} c_{i,j}.$
- $Si \det(A) \neq 0$, $alors A^{-1} = \frac{1}{\det(A)} Com(A)^T$.

Exemple 1.8. On considère la matrice carrée de taille n = 3 suivante :

$$A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \\ -1 & 2 & 0 \end{pmatrix}.$$

Alors:

$$\det(A) = 1 \times \begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix} - 0 \times \begin{vmatrix} 2 & 0 \\ -1 & 0 \end{vmatrix} + 3 \times \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix}$$
$$= (1 \times 0) - (0 \times 0) + 3 \times (4 + 1) = 15.$$

Ainsi

$$Com(A) = \begin{pmatrix} \begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix} & - \begin{vmatrix} 2 & 0 \\ -1 & 0 \end{vmatrix} & \begin{vmatrix} 2 & 1 \\ -1 & 0 \end{vmatrix} \\ - \begin{vmatrix} 0 & 3 \\ 2 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ -1 & 0 \end{vmatrix} & - \begin{vmatrix} 1 & 0 \\ -1 & 2 \end{vmatrix} \\ \begin{vmatrix} 0 & 3 \\ 1 & 0 \end{vmatrix} & - \begin{vmatrix} 1 & 3 \\ 2 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 & 5 \\ 6 & 3 & -2 \\ -3 & 6 & 1 \end{pmatrix}.$$

D'où

$$A^{-1} = \frac{1}{\det(A)} Com(A)^{T}$$
$$= \frac{1}{15} \begin{pmatrix} 0 & 6 & -3\\ 0 & 3 & 6\\ 5 & -2 & 1 \end{pmatrix}.$$

1.1.4 Matrices particulière

Matrice symétriques

Définition 1.8. Soit A une matrice carrée de $M_n(\mathbb{K})$. Alors

- On dit que A est une matrice symétrique si $A = A^T$.
- On dit que A est une matrice anti-symétrique si $A = -A^T$.

Remarque 1.4. Si $A = (a_{i,j})_{1 \leq i,j \leq n} \in M_n(\mathbb{K})$, alors

A est symétrique si et seulement si $a_{i,j} = a_{j,i} \ \forall i,j \in \{1,2,\ldots,n\}.$

Exemple 1.9. • $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; $A^T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, ainsi A est symétrique.

•
$$B = \begin{pmatrix} 1 & -2 & 3 \\ -2 & \sqrt{2} & \frac{1}{2} \\ 3 & \frac{1}{2} & 0 \end{pmatrix}$$
; $B^T = \begin{pmatrix} 1 & -2 & 3 \\ -2 & \sqrt{2} & \frac{1}{2} \\ 3 & \frac{1}{2} & 0 \end{pmatrix}$, ainsi B est symétrique.

Remarque 1.5. Soit $A \in M_n(\mathbb{K})$. La matrice AA^T est symétrique. En effet : $(AA^T) = (A^T)^T A^T = AA^T$, d'où AA^T est symétrique.

Remarque 1.6. Si A et B sont deux matrice symétrique alors AB n'est pas forcément symétrique. En effet, considérant les deux matrices suivantes : $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Clairement A et B sont symétrique tandis que AB n'est pas symétrique puisque $AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Proposition 1.9. Soient A et B deux matrices symétrique dans $M_n(\mathbb{K})$. Alors

AB symétrique si et seulement si AB = BA.

Matrice hermitienne

Définition 1.9. Soit $A \in M_n(\mathbb{K})$. La matrice A est dite **hermitienne** si $A^* = A$.

Exemple 1.10. • On considère la matrice $A = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$. On $a : A^* = \bar{A}^T = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} = A$, d'où A est hermitienne.

• Considérant la matrice suivante : $A = \begin{pmatrix} 5 & 1+i \\ 1-i & 1 \end{pmatrix}$. On a $A^* = \bar{A}^T = \begin{pmatrix} 5 & 1-i \\ 1+i & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1+i \\ 1-i & 1 \end{pmatrix} = A$, d'où A est hermitienne.

Remarque 1.7. Si A et B sont deux matrice hermitienne, alors AB n'est pas forcément une matrice hermitienne.

AB est hermitienne si et seulement si AB = BA.

Ainsi les deux matrices suivantes ne sont pas hermitienne :

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}; B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},$$

puisque

$$AB = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = BA.$$

Matrice orthogonale

Définition 1.10. Soit $A \in M_n(\mathbb{K})$. Alors A est dite **orthogonal** si $AA^T = A^TA = I_n$.

Exemple 1.11. On considère la matrice A suivante :

$$A = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

Clairement:

$$A^{T} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}^{T} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

Ainsi

$$AA^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, d'où $AA^T = A^TA = I_2$ et A orthogonale.

Remarque 1.8. Soit $A \in M_n(\mathbb{K})$.

- 1. A est orthogonal si et seulement si $A^{-1} = A^{T}$.
- 2. Si A est orthogonale, alors $det(A) = \pm 1$. En effet,

$$1 = \det(I_n) = \det(A^T A) = \det(A^T) \det(A) = \det(A)^2.$$

Théorème 1.1 (Caractérisation d'une matrice orthogonale). Une matrice est orthogonale si et seulement si, les colonnes (ou les lignes) de la matrice (vues comme des vecteurs) sont unitaires et deux-à-deux orthogonales.

Exemple 1.12. On considère la matrice suivante :

$$A = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

On pose:

$$X = \begin{pmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix} et Y = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}.$$

On $a \|X\| = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$, $\|Y\| = \sqrt{\frac{3}{4} + \frac{1}{4}} = 1$ et $\langle X, \rangle = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0$. Ainsi A est une matrice orthogonale.

Exemple 1.13. On considère la matrice suivante :

$$A = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\ \frac{-1}{\sqrt{30}} & \frac{-2}{\sqrt{30}} & \frac{5}{\sqrt{30}} \end{pmatrix}.$$

On pose:

$$X = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{-1}{\sqrt{5}} \\ \frac{1}{\sqrt{30}} \end{pmatrix}, \ Y = \begin{pmatrix} \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{5}} \\ \frac{-1}{\sqrt{30}} \end{pmatrix} \ et \ Z = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ 0 \\ \frac{5}{\sqrt{30}} \end{pmatrix}.$$

On a $||X|| = \sqrt{\frac{1}{6} + \frac{4}{5} + \frac{1}{30}} = 1$, $||Y|| = \sqrt{\frac{4}{6} + \frac{1}{5} + \frac{4}{30}} = 1$ et $||Z|| = \sqrt{\frac{1}{6} + \frac{5}{30}} = 1$ $\langle X, \rangle = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0$. Ainsi A est une matrice orthogonale. De même si on considère les vecteurs de lignes au lieu des vecteurs colonnes.

Exemple 1.14. Soit la matrice A de $M_3(\mathbb{R})$ définie par :

$$A = \begin{pmatrix} \frac{1}{9} & \frac{8}{9} & \frac{-4}{9} \\ \frac{4}{9} & \frac{-4}{9} & \frac{-7}{9} \\ \frac{8}{9} & \frac{1}{9} & \frac{4}{9} \end{pmatrix}.$$

Alors A est une matrice orthogonale (Les détails sont laissés au lecteur à titre d'exercice).

Proposition 1.10. Soit $A \in M_n(\mathbb{K})$. Si est une matrice orthogonale, alors $(AX)^T(AX) = X^TX$ pour tout $X \in M_{n,1}(\mathbb{K})$.

Remarque 1.9. Soit $X \in M_{n,1}(\mathbb{K})$. Si on pose : $||X|| = X^T X$ et si A est une matrice orthogonale alors ||AX|| = ||X|| (On dit que A conserve la norme).

Proposition 1.11. Si A et B deux matrices orthogonale, alors AB l'est aussi.

Démonstration. Soient A et B deux matrices orthogonale de $M_n(\mathbb{K})$. Alors

$$AA^T = A^TA = I$$
 et $BB^T = B^TB = I$

Ainsi

$$(AB)(AB)^{T} = ABB^{T}A^{T} = AA^{T} = I \text{ et } (AB)^{T}AB = B^{T}A^{T}AB = B^{T}B = I,$$

d'où AB est orthogonale.

Matrice unitaire

Définition 1.11. Soit $A \in M_n(\mathbb{K})$. Alors A est dite unitaire si $AA^* = A^*A = I$.

Exemple 1.15. 1.
$$A = \begin{pmatrix} 6 & -3 \\ 3 & 6 \end{pmatrix}$$
; $A^* = \bar{A}^T = \begin{pmatrix} 6 & 3 \\ -3 & 6 \end{pmatrix}$. Alors
$$AA^* = \begin{pmatrix} 6 & -3 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 6 & 3 \\ -3 & 6 \end{pmatrix} = \begin{pmatrix} 45 & 0 \\ 0 & 45 \end{pmatrix}$$
 et
$$A^*A = \begin{pmatrix} 6 & 3 \\ -3 & 6 \end{pmatrix} \begin{pmatrix} 6 & -3 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 45 & 0 \\ 0 & 45 \end{pmatrix},$$

d'où A est normale.

Remarque 1.10. Soit $A \in M_n(\mathbb{K})$.

- Si A est unitaire, alors A est normale.
- Si A est hermitienne, alors A est normale.

1.2 Valeurs propres - Vecteurs propres

Définition 1.12. *Soit* $A \in M_n(\mathbb{K})$.

- $\lambda \in \mathbb{C}$ est une valeur propre de A, s'il existe $X \neq 0$ tel que $AX = \lambda X$.
- Le vecteur X est appelé **vecteur propre** de A associé à λ .
- L'ensemble des vecteurs propres de A associé à λ est noté par E_{λ} :

$$E_{\lambda} = \{ X \in \mathbb{K}^n / AX = \lambda X \}.$$

Exemple 1.16. • On considère la matrice et le vecteurs suivantes :

$$A = \begin{pmatrix} 1 & 3 & 3 \\ -2 & 11 & -2 \\ 8 & -7 & 6 \end{pmatrix} et X = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

X est un vecteur propre associé à la valeur propre $\lambda = -2$.

• Cherchons les valeurs propres associé a la valeur propre $\lambda = 7$, c-à-d cherchons $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ tel que : AX = 7X. On a :

$$AX = 7X \iff \begin{pmatrix} 1 & 3 & 3 \\ -2 & 11 & -2 \\ 8 & -7 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 7 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\iff \begin{cases} x + 3y + 3z = 7x \\ -2x + 11y - z = 7y \\ 8x - 7y + 6z = 7z \end{cases}$$

$$\iff \begin{cases} -6x + 3y + 3z = 0 \\ -2x + 4y - 2z = 0 \\ 8x - 7y - z = 0 \end{cases}$$

$$\iff x = y = z.$$

12

Ainsi

$$E_{\lambda} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} / x = y = z \right\}$$
$$= \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle \quad (\dim E_{\lambda} = 1).$$

Exemple 1.17. Soit A la matrice donné par :

$$A = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}.$$

 $On \ a :$

- $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ est un vecteur propre associé à la valeur propre λ_1 .
- $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ est un vecteur propre associé à la valeur propre λ_2 .
- $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ est un vecteur propre associé à la valeur propre λ_3 .

Définition 1.13. Soit $A \in M_n(\mathbb{K})$. L'ensemble des valeurs propres de A est appelé le **spectre** de A qu'on note Sp(A):

$$Sp(A) = \{ \lambda \text{ valeur propre de } A \}.$$

Proposition 1.12. Soit $A \in M_n(\mathbb{K})$, et $\lambda \in \mathbb{K}$. Alors

$$\lambda \ valeur \ propre \ de \ A \iff \det(A - \lambda_n) = 0.$$

Démonstration. Soit $A \in M_n(\mathbb{K})$, et $\lambda \in \mathbb{K}$. Alors :

$$\lambda \in Sp(A) \iff \exists X \in \mathbb{K}^n \setminus \{0\} \text{ tel que } AX = \lambda X$$

$$\iff \exists X \in \mathbb{K}^n \setminus \{0\} \text{ tel que } (A - \lambda I)(X) = 0$$

$$\iff A - \lambda \text{ n'est pas injective}$$

$$\iff A - \lambda I \text{ n'est pas inversible}$$

$$\iff \det(A - \lambda I) = 0.$$

Définition 1.14. Soit $A \in M_n(\mathbb{K})$. Le **polynôme caractéristique** de A que l'on note $P_A(X)$ est donné $par : P_A(X) = \det(A - XI)$.

Exemple 1.18. 1. Soit $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Alors:

$$P_A(X) = \det(A - XI_2)$$

$$= \begin{vmatrix} 1 - X & 2 \\ 3 & 4 - X \end{vmatrix}$$

$$= (1 - X)(4 - X) - 6$$

$$= 4 - X - 4X + X^2 - 6$$

$$= X^2 - 5X - 2.$$

2. Soit A la matrice définie par :

$$B = \begin{pmatrix} 1 & 3 & 3 \\ -2 & 11 & -2 \\ 8 & -7 & 6 \end{pmatrix}.$$

Alors

$$P_B(X) = \det(A - XI_2)$$

$$= \begin{vmatrix} 1 - X & 3 & 3 \\ -2 & 11 - X & -2 \\ 8 & -7 & 6 - X \end{vmatrix}$$

$$= (1 - X) \begin{vmatrix} 11 - X & -2 \\ -7 & 6 - X \end{vmatrix} + 2 \begin{vmatrix} 3 & 3 \\ 11 - X & -2 \end{vmatrix} + 8 \begin{vmatrix} 3 & 3 \\ 11 - X & -2 \end{vmatrix}$$

$$= (1 - X) [(11 - X)(6 - X) - 14] + 2[3(6 - X) + 21] + 8[-6 - 33 + 3X]$$

$$= (1 - X)(X^2 - 17X + 52) + 2(-3X + 39) + 8(3X - 39)$$

$$= -X^3 + 18X^2 - 51X - 182$$

$$= -(X + 2)(X - 7)(X - 13).$$

Proposition 1.13. Soit $A \in M_n(\mathbb{K})$. Alors

$$\lambda \in Sp(A)$$
 si et seulement si $P_A(\lambda) = 0$.

Ainsi $Sp(A) = \{ racines de P_A(X) \}.$

Remarque 1.11. 1. Si
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
. Alors
$$P_A(X) = \begin{vmatrix} a_{11} - X & a_{12} \\ a_{21} & a_{22} - X \end{vmatrix}$$
$$= (a_{11} - X)(a_{22} - X) - a_{21}a_{12}$$
$$= a_{11}a_{22} - a_{11}X - a_{22}X + X^2 - a_{21}a_{12}$$
$$= X^2 - (a_{11} + a_{22})X + a_{11}a_{22} - a_{21}a_{12}$$
$$= X^2 - Tr(A)X + \det(A).$$

2. Si A est une matrice définie par :

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Alors

$$P_A(X) = \det(A - XI_2)$$

$$= \begin{vmatrix} a_{11} - X & a_{12} & a_{13} \\ a_{21} & a_{22} - X & a_{23} \\ a_{31} & a_{32} & a_{33} - X \end{vmatrix}$$

$$= -X^3 + Tr(A)X^2 - (A_{11} + A_{22} + A_{33})X + \det(A)$$

où A_{ii} est le cofacteur associé à a_{ii} (déterminant de la matrice (i,i) où on a enlevé la i^{me} ligne et i^{me} colonne. C'est-à-dire :

$$A_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = a_{22}a_{33} - a_{32}a_{23},$$

et

$$A_{22} = \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} = a_{11}a_{33} - a_{31}a_{13}.$$

$$Si \ A \in M_4(\mathbb{K}). \ P_A(X) = X^4 - Tr(A)X^3 + \dots + \det(A).$$

Si
$$A \in M_5(\mathbb{K})$$
. $P_A(X) = -X^5 - Tr(A)X^4 + \cdots + \det(A)$.

Remarque 1.12. Soit $A \in M_n(\mathbb{K})$. $P_A(X)$ est un polynôme de degré n, à coefficients réels si $\mathbb{K} = \mathbb{R}$, et à coefficients complexes si $\mathbb{K} = \mathbb{C}$. Il est toujours de la forme :

$$P_A(X) = (-1)^n X^n + (-1)^{n-1} Tr(A) X^{n-1} + \dots + \det(A).$$

Exemple 1.19. On considère la matrice suivante :

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & -1 \\ 1 & 3 & 1 \end{pmatrix},$$

alors
$$P_A(X) = -X^3 + 6X^2 - 6X - 1$$
.

Remarque 1.13. Soit $A \in M_n(\mathbb{K})$.

- La somme des valeurs propres de A est égale à Tr(A).
- Le produit de valeurs propres de A est égale à det(A).
- $\det(A) = P_A(0).$

Exemple 1.20. On considère la matrice A suivante :

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \end{pmatrix}.$$

Alors
$$P_A(X) = -X(X-1)(X-3)$$
 et $Sp(A) = \{0, 1, 3\}$.

Proposition 1.14. *Soit* $A \in M_n(\mathbb{K})$ *. Alors*

- A est inversible si et seulement si $0 \notin Sp(A)$.
- Si A est inversible alors $Sp(A^{-1}) = \left\{ \frac{1}{\lambda} / \lambda \in Sp(A) \right\}$.

Démonstration. Soit $A \in M_n(\mathbb{K})$. On a :

$$\begin{split} P_{A^{-1}}(X) &= \det(A^{-1} - XI) \\ &= \det(A^{-1} - A^{-1}AX) \\ &= \det(A^{-1}) \det(I - AX) \\ &= \det(A^{-1}) \det(-(AX - I)) \\ &= \det(A^{-1}) \det\left(-X\left(A - \frac{1}{X}I\right)\right) \\ &= (-1)^n \det(A^{-1}) \det\left(A - \frac{1}{X}I\right), \end{split}$$

d'où $P_{A^{-1}}(X) = \frac{(-X)^n}{\det(A)} P_A\left(\frac{1}{X}\right)$. Ainsi $P_{A^{-1}}(\lambda)$ si et seulement si $P_A\left(\frac{1}{\lambda}\right) = 0$.

Proposition 1.15. Soit $A \in M_n(\mathbb{K})$. Alors A et A^T ont le même polynôme caractérisation, c'est -à-dire $P_A(X) = P_{A^T}(X)$.

Démonstration. Soit $A \in M_n(\mathbb{K})$. On a :

$$P_{A^T}(X) = \det(A^T - XI)$$

$$= \det((A - XI)^T)$$

$$= \det(A - XI)$$

$$= P_A(X).$$

Remarque 1.14. Soit $A, B \in M_n(\mathbb{K})$. Alors

- $-Sp(A+B) \neq Sp(A) + Sp(B).$
- $--Sp(AB) \neq Sp(A)Sp(B).$

1.2.1 Théorème de Cayley-Hamilton

Le polynôme caractéristique P_A de la matrice A, fournit une information supplémentaire sur A, en fait une relation sur certains puissances de A.

Théorème 1.2. Soit $A \in M_n(\mathbb{K})$, de polynôme caractéristique P_A . Alors :

$$P_A(A) = 0.$$

Exemple 1.21. (Applications : Calcul de puissance de A) Soit $A \in M_2(\mathbb{K})$. Alors $P_A(X) = X^2 - Tr(A)X + \det(A)$. Donc $P_A(A) = A^2 - Tr(A)A + \det(A)I_2 = 0$, d'où

$$A^2 = Tr(A)A - \det(A)I_2.$$

Ainsi

$$A^{3} = AA^{2} = A (Tr(A)A - \det(A)I_{2})$$

$$= Tr(A)A^{2} - \det(A)A$$

$$= Tr(A) [Tr(A)A - \det(A)I_{2}] - \det(A)A$$

$$= Tr(A)^{2}A - Tr(A) \det(A)I_{2} - \det(A)A$$

$$= (Tr(A)^{2} - \det(A)) A - Tr(A) \det(A)I_{2}.$$

De la même manière on peut calculer A^4, A^5, \ldots, A^n pour $n \in \mathbb{N}$.

Remarque 1.15. Soient $A \in M_n(\mathbb{K})$ et $p \in \mathbb{N}$. Alors

$$Sp(A^p) = \{\lambda^p / \lambda \in Sp(A)\}.$$

Définition 1.15. On dit d'une matrice $A \in M_n(\mathbb{K})$ est **nilpotent** s'il existe $m \in \mathbb{N}$ tel que $A^m = 0$.

Exercice 1.1. Soit

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 2 & 0 & -1 \end{pmatrix}.$$

- 1. Calculer Tr(A) et det(A).
- 2. Déterminer le polynôme caractéristique de A.
- 3. Calculer A^3 , A^4 et A^5 .
- 4. Déterminer A^{-1} en fonction de A.

Exercice 1.2. Soit

$$A = \begin{pmatrix} 3 & -3 & 2 \\ -1 & 5 & -2 \\ -1 & 3 & 0 \end{pmatrix}.$$

- 1. Donner $P_A(X)$.
- 2. Déterminer Sp(A).
- 3. En déduire det(A).
- 4. Calculer A^{-1} en fonction de A.
- 5. Calculer (A-2I)(A-4I).
- 6. En déduire A^2 en fonction de A.
- 7. Montrer que $\forall n \in \mathbb{N}^*$, on a :

$$A^{n} = 2^{n-1} \begin{pmatrix} 2^{n} + 1 & -3(2^{n} - 1) & 2(2^{n} - 1) \\ -2^{n} + 1 & 3 \times 2^{n} - 1 & -2(2^{n} - 1) \\ -2^{n} + 1 & 3(2^{n} - 1) & 4 - 2^{n+1} \end{pmatrix}.$$

Exemple 1.22. (Application 2 : Calcul de l'inverse d'une matrice). Soit $A \in M_n(\mathbb{K})$ une matrice inversible, c-à-dire $det(A) \neq 0$. On a

$$P_A(X) = (-1)^n X^n + (-1)^{n-1} Tr(A) X^{n-1} + \dots + \det(A).$$

Appliquons le Théorème de Cayley-Hamilton on trouve que :

$$(-1)^n A^n + (-1)^{n-1} Tr(A) A^{n-1} + \dots + \det(A) I_n = 0.$$

Donc

$$(-1)^n A^n + (-1)^{n-1} Tr(A) A^{n-1} + \dots + A = -\det(A) I_n.$$

Ainsi

$$\frac{-1}{\det(A)} \left[(-1)^n A^n + (-1)^{n-1} Tr(A) A^{n-1} + \dots + pI_n \right] A = I_n,$$

d'où

$$A^{-1} = \frac{-1}{\det(A)} \left[(-1)^n A^{n-1} + (-1)^{n-1} Tr(A) A^{n-2} + \dots + pI_n \right].$$

Exemple 1.23. On considère la suivante définie par :

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}.$$

- 1. Montrer que $P_A(X) = -X^3 X^2 + 10X 8 = -(X 2)(X 1)(X + 4)$.
- 2. Déterminer Sp(A).
- 3. Calculer A^{-1} en fonction de A.

On termine ce paragraphe, en posant la question suivante. Est-ce que n'importe quel polynôme peut être un polynôme caractéristique d'une matrice? La réponse est **oui**. En effet : Soit $P(X) = X^n + \alpha_{n-1}X^{n-1} + \cdots + \alpha_1X + \alpha_0$ un polynôme. On pose :

$$A = \begin{pmatrix} 0 & \dots & 0 & -\alpha_0 \\ 1 & \ddots & \vdots & -\alpha_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & -\alpha_{n-1} \end{pmatrix}.$$

Alors : $P_A(X) = (-1)^n P(X)$.

Exemple 1.24. On considère le polynôme suivant : $P(X) = X^2 + 3X + 2$ et soit A une matrice définie par :

$$A = \begin{pmatrix} 0 & -2 \\ 1 & -3 \end{pmatrix}.$$

On aura:

$$P_A(X) = \begin{vmatrix} -X & -2 \\ 1 & -3 - X \end{vmatrix} = -X(-3 - X) + 2 = 3X + X^2 + 2 = P(X).$$

Exemple 1.25. On considère le polynôme suivant : $P(X) = -X^3 - X^2 + 10X - 8$ et soit A une matrice définie par :

$$A = \begin{pmatrix} 0 & 0 & -8 \\ 1 & 0 & 10 \\ 0 & 1 & -1 \end{pmatrix}.$$

Ainsi:
$$P_A(X) = -X^3 - X^2 + 10X - 8 = P(X)$$
.

Différentes méthodes pour déterminer le polynôme caractéristiques d'une matrice.

Remarque 1.16. 1. Soit $A \in M_2(\mathbb{C})$. Alors : $P_A(X) = \det(A - XI_2) = X^2 - Tr(A)X + \det(A)$. Si $Sp(A) = \{\lambda_1, \lambda_2\}$, alors $P_A(X) = (X - \lambda_1)(X - \lambda_2)$.

2. Soit $A \in M_3(\mathbb{C})$, alors:

$$P_A(X) = \det(A - XI_3) = -X^3 + Tr(A)X^2 - (M_{11} + M_{22} + M_{33})X + \det(A).$$

 $Si\ Sp(A) = \{\lambda_1, \lambda_2, \lambda_3\},\ alors$

$$P_A(X) = -(X - \lambda_1)(X - \lambda_2)(X - \lambda_3)$$
 et $M_{11} + M_{22} + M_{33} = \lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3$.

3. Cas des matrices triangulaires supérieurs. Soit A une matrice carré triangulaire supérieur définie par :

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}.$$

Alors:

$$P_A(X) = \begin{vmatrix} a_{11} - X & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} - X & \cdots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} - X \end{vmatrix} = (a_{11} - X)(a_{22} - X)(a_{33} - X)\cdots(a_{nn} - X),$$

 $donc\ Sp(A) = \{ les\ termes\ diagonaux\ de\ A \}.$ Même chose dans le cas d'une matrice diagonale.

1.2.2 Cas des matrices diagonales par blocs - Triangulaire par blocs

Proposition 1.16. Soit M une matrice de $M_{n+p}(\mathbb{K})$ c'est-à-dire $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ avec $A \in M_n(\mathbb{K})$, $B \in M_{n,p}(\mathbb{K})$ et $C \in M_p(\mathbb{K})$. Alors $\det(M) = \det(A) \det(C)$.

Remarque 1.17. Cas général qui intervient dans les calcules de sciences de l'ingénieur. Soit A, B, C et D des matrices carrées de $M_n(\mathbb{K})$ telle que : DC = CD. Soit $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in M_{2n}(\mathbb{K})$. Si D est inversible, alors :

$$\det(M) = \det(AD + BC).$$

Le résultat reste vrai même si D n'est pas inversible.

Exemple 1.26. Considérons la matrice M définie par :

$$M = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ \hline 3 & 1 & 5 & 6 \\ 2 & 4 & 7 & 8 \end{pmatrix}.$$

Alors:

$$\det(M) = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \times \begin{vmatrix} 5 & 6 \\ 7 & 8 \end{vmatrix} = (-2) \times (-2) = 4.$$

Proposition 1.17. Soit A une matrice triangulaire par block telle que :

$$A = \begin{pmatrix} A_1 & & & * \\ & A_2 & & \\ & & \ddots & \\ 0 & & & A_p \end{pmatrix}.$$

Alors:

$$P_A(X) = P_{A_1}(X)P_{A_2}(X)\cdots P_{A_p}(X),$$

et

$$Sp(A) = Sp(A_1) \cup Sp(A_2) \cup \cdots \cup Sp(A_n).$$

Exemple 1.27. On considère la matrice par block suivante :

$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ \hline 3 & 1 & 5 & 6 \\ 2 & 4 & 7 & 8 \end{pmatrix},$$

$$ici\ A_1 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \ et\ A_2 = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$$
. Alors:

$$P_A(X) = P_{A_1}(X)P_{A_2}(X)$$

$$= (X^2 - 5X - 2)(X^2 - 13X - 2)$$

$$= X^4 - 18X^3 + 16X^2 + 36X + 4.$$

Détermination du polynôme caractéristique

Méthode de Le Verrier

Soit A une matrice carrée de $M_n(\mathbb{C})$. Alors on a :

$$P_A(X) = (-1)^n \left(X^n - \sum_{k=1}^n a_k X^{n-k} \right).$$

Les coefficients a_k avec $k \in \{11, ..., n\}$ sont déterminées de la manière suivante : On pose $S_k = Tr(A^k)$ pour k = 1, ..., n. Les coefficients a_k sont donnés par :

- $a_1 = S_1 = Tr(A)$.
- \bullet $2a_2 = S_2 a_1S_1$.
- $3a_3 = S_3 a_1S_2 a_2S_1$.
- $4a_4 = S_4 a_1S_3 a_2S_2 a_3S_1$.
- $na_n = S_n a_1 S_{n-1} a_2 S_{n-2} \dots a_{n-1} S_1$.

Exemple 1.28. • $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ alors $P_A(X) = X^2 - 5X - 2$.

•
$$B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$
, $B^2 = \begin{pmatrix} -1 & -2 & -4 \\ 5 & 6 & 4 \\ 10 & 10 & 9 \end{pmatrix}$ et $B = \begin{pmatrix} -11 & -12 & -13 \\ 19 & 20 & 13 \\ 38 & 38 & 27 \end{pmatrix}$. Ainsi $P_B(X) = -X^3 + 6X^2 - 11X + 6$.

Méthode de Krylov

Soit A une matrice carrée de $M_n(\mathbb{C})$. Alors

$$P_A(X) = (-1)^n \left(X^n - \sum_{k=1}^n a_k X^{n-k} \right).$$

Déterminons les coefficients : a_{11},\ldots,a_{nn} . D'après le Théorème de Cayley-Hamilton on trouve : A^n

$$\sum_{k=1}^{n} A^{n-k}$$
. Choisissons $x_0 \neq 0$ et posons $a = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ et soit B la matrice donnée par :

$$B = (A^{n-1}x_0|A^{n-2}x_0|\cdots|A^{n-1}x_0|x_0).$$

Donc

$$Ba = a_1 A^{n-1} x_0 + a_2 A^{n-2} x_0 + \dots + a_n x_0.$$

Ainsi déterminer les a_k revient à résoudre l'équation : $Ba = A^n x_0$.

Remarque 1.18. Si B est inversible, alors $a = B^{-1}A^nx_0$ (sinon on change x_0).

Exemple 1.29. 1. Soit la matrice A définie par :

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

alors

$$A^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}.$$

Ainsi: $P_A(X) = X^2 - 5X - 2$.

2. Considérons la matrice A définie par :

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix},$$

alors
$$P_A(X) = -X^3 + 6X^2 - 11X + 6$$
.

Méthode de Faddeev

Soit A une matrice carrée de $M_n(\mathbb{C})$. On a :

$$P_A(X) = (-1)^n \left(X^n - \sum_{k=1}^n a_k X^{n-k} \right).$$

On pose:

$$\begin{cases} A_1 = A \\ A_k = (A_{k-A} - a_{k_n} I)A, & k = 2, 3, \dots, n. \end{cases}$$

Les coefficients a_k sont donnés par $a_k = \frac{1}{k} Tr(A_k)$.

Exemple 1.30. !!!!!!

1. Soit la matrice A définie par

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

alors

$$A^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}.$$

Ainsi: $P_A(X) = X^2 - 5X - 2$.

2. Considérons ma matrice A définie par :

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix},$$

alors
$$P_A(X) = -X^3 + 6X^2 - 11X + 6$$
.

1.3 Diagonalisation-Trigonalisation d'une matrice

1.3.1 Les matrices semblables

Remarque 1.19. Dans l'ensemble $M_n(\mathbb{K})$ des matrices carrées à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ où $\mathbb{K} = \mathbb{C}$), les matrices diagonales sont surement les plus simples. Même si $A \in M_n(\mathbb{K})$ n'est pas diagonale, on peut être s'y ramener.

Définition 1.16. Soit A et B deux matrices de $M_n(\mathbb{K})$. On dit que A et B sont **semblable** si il existe une matrice $p \in M_n(\mathbb{K})$ inversible telle que :

$$A = PBP^{-1}.$$

Remarque 1.20. Si A et B sont semblable alors il existe une matrice P inversible telle que : $A = PBP^{-1}$, d'où AP = PB.

Exemple 1.31. Considérons les matrices suivantes :

$$A = \begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \ et \ P = \begin{pmatrix} 1 & 1 & 1 \\ -3 & 0 & 0 \\ -2 & 0 & 1 \end{pmatrix}.$$

On $a: A = PBP^{-1}$.

Proposition 1.18. Soient $A, B \in M_n(\mathbb{K})$ deux matrices semblables. Alors il existe P inversible telle que $A = PBP^{-1}$. De plus :

- 1. $A = PBP^{-1} \iff AP = PB \iff B = P^{-1}AP$.
- 2. det(A) = det(B).
- 3. Tr(A) = Tr(B).
- 4. $A^n = PB^nP^{-1}, \forall n \in \mathbb{N}.$
- 5. $\exp(A) = P \exp(B)P^{-1}$.

Remarque 1.21. Si l'une des propriétés de la proposition précédente est vérifiée, cela ne signifie pas nécessairement que les deux matrices en question sont semblables. En effet, soient A et B deux matrices définie par :

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} et B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

On $a : \det(A) = 1$ et $\det(B) = 1$, mais Tr(A) = 1 et Tr(B) = 3. Donc A et B ne sont pas semblables.

Proposition 1.19. Si A et B sont deux matrices semblable, alors $P_A = P_B$. En particulier, Sp(A) = Sp(B).

Démonstration. Supposons que les deux matrices A et B sont semblable, alors il existe une matrice P inversible telle que $A = PBP^{-1}$, et on a :

$$P_{A}(X) = \det(A - XI)$$

$$= \det(PBP^{-1} - XPP^{-1})$$

$$= \det(P(B - xI)P^{-1})$$

$$= \det(P)\det(B - XI)\det(P^{-1})$$

$$= \det(B - XI)$$

$$= P_{B}(X).$$

Remarque 1.22. $Si\ Sp(A) = Sp(B)$, alors cela n'implique pas que A et B sont semblable. En effet : soient A et B deux matrices définie par :

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \ et \ B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

On $a: P_A(X) = X^2$, $P_B(X) = X^2$ et Sp(A) = Sp(B) mais A et B ne sont pas semblables.

Proposition 1.20. Soient A et B deux matrices de $M_n(\mathbb{K})$ et soit $\lambda \in \mathbb{K}$. Si A et B sont semblables, alors $A + \lambda I$ et $B + \lambda I$ le sont également.

Démonstration. Supposons que A et B sont semblables, alors il existe une matrice P inversible telle que : $A = PBP^{-1}$. On a : $A + \lambda I = PBP^{-1} + \lambda PP^{-1} = P(B + \lambda I)P^{-1}$. Donc $A + \lambda I$ et $B + \lambda I$ sont semblables.

Exemple 1.32. Soient A et B deux matrices données par :

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} et B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

On $a: \det(A) = 1$, $\det(B) = 1$, Tr(A) = 3 et Tr(B) = 3. Prenons $\lambda = -1$, alors:

$$A + \lambda I = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \ et \ B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Ainsi det(A-I) = 0 et det(B-I) = 1, donc ne sont pas semblables, d'où A et B ne sont pas semblables.

1.3.2Diagonalisation

Définition 1.17. Une matrice carrée $A \in M_n(\mathbb{K})$ est diagonalisable si elle est semblable à une matrice diagonale.

Remarque 1.23. Soit $A \in M_n(\mathbb{K})$. Alors : si A est diagonalisable, donc il existe une matrice inversible

$$P \text{ et une matrice } D = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \in M_n(\mathbb{K}) \text{ tel que } :$$

$$A = PDP^{-1} = P \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix} P^{-1}.$$

- $Tr(A) = Tr(D) = \lambda_1 + \cdots + \lambda_n$.
- $\det(A) = \det(D) = \lambda_1 \lambda_2 \cdots \lambda_n$.

•
$$\det(A) = \det(D) = \lambda_1 \lambda_2 \cdots \lambda_n$$
.
• $\forall m \in \mathbb{N}, A^m = PD^m P^{-1} = P \begin{pmatrix} \lambda_1^m & 0 \\ & \ddots & \\ 0 & & \lambda_n^m \end{pmatrix} P^{-1}$.

• Si A est inversible, alors
$$A^{-1} = PD^{-1}P^{-1} = P\begin{pmatrix} \frac{1}{\lambda_1} & 0 \\ & \ddots & \\ 0 & & \frac{1}{\lambda_n} \end{pmatrix} P^{-1}$$
.

• $Sp(A) = Sp(D) = \{\lambda_1, \dots, \lambda_n\}.$

•
$$\exp(A) = P \exp(D)P^{-1} = P \begin{pmatrix} \exp(\lambda_1) & 0 \\ & \ddots & \\ 0 & \exp(\lambda_n) \end{pmatrix} P^{-1}.$$

Exemple 1.33. La matrice $A = \begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix}$ est diagonalisable car :

$$A = P \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} P^{-1} \text{ avec } P = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}.$$

Définition 1.18. Soit $A \in M_n(\mathbb{K})$. On appelle multiplicité de la valeur propre λ de A, qu'on notera m_{λ} , l'ordre de multiplicité de λ comme racine du polynôme caractéristique.

$$P_A(X) = (-1)^n (X - \lambda_1)^{m_{\lambda_1}} (X - \lambda_2)^{m_{\lambda_2}} \cdots (X - \lambda_n)^{m_{\lambda_n}}.$$

Exemple 1.34. On considère la matrice suivante :

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix},$$

alors $P_A(X) = (X+1)^2(2-X)$.

Proposition 1.21. Soit λ une valeur propre d'une matrice $A \in M_n(\mathbb{K})$. Alors :

$$1 \leq \dim E_{\lambda} \leq m_{\lambda}$$
.

Définition 1.19. Un polynôme P est dite **scindé** sur \mathbb{K} , s'il s'écrit sous la forme :

$$P(X) = a(X - \lambda_1)^{m_1}(X - \lambda_2)^{m_2} \cdots (X - \lambda_p)^{m_p},$$

avec $a \in \mathbb{K}$ et $\lambda_i \in \mathbb{K}$ pour tout $i \in \{1, 2, \dots, p\}$.

Remarque 1.24. Si λ est une valeur propre simple, alors dim $E_{\lambda} = 1$.

Exemple 1.35. 1. $P(X) = X^3 - 4X^2 + 5X - 2 = (X - 2)(X - 1)^2$. P est un polynôme sur \mathbb{R} et sur \mathbb{C} .

2. $P(X) = X^2 + 1$ n'est pas scindé sur \mathbb{R} mais il est scindé sur \mathbb{C} , car $P(X) = X^2 + 1 = (X - i)(X + i)$.

Théorème 1.3. Soit $A \in M_n(\mathbb{K})$. Alors :

A est diagonalisable sur K si et seulement si $\begin{cases} P_A \text{ est scind\'e sur } \mathbb{K} \\ \dim E_{\lambda} = m_{\lambda} & \forall \lambda \in Sp(A). \end{cases}$

Corollaire 1.1. Soit $A \in M_n(\mathbb{K})$. Si P_A est scindé et si les racines sont simples, alors A est diagonalisable.

Exemple 1.36. On considère la matrice A suivante : $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$, alors $P_A(X) = (5 - X)(2 - X) - 4 = (X - 1)(X - 6)$ et $Sp(A) = \{1; 6\}$.

Déterminons E_1

On a:

$$E_{1} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : \begin{cases} 5x + 4y = x \\ x + 2y = y \end{cases} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : \begin{cases} 4x = -4y \\ x = -y \end{cases} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : x = -y \right\}$$

$$= \left\{ \begin{pmatrix} x \\ -x \end{pmatrix} : x \in \mathbb{R} \right\}$$

$$= \left\langle \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\rangle.$$

Ainsi dim $E_1 = 1$.

Déterminons E_6

On a:

$$E_{6} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : A \begin{pmatrix} x \\ y \end{pmatrix} = 6 \begin{pmatrix} x \\ y \end{pmatrix} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : \begin{cases} 5x + 4y = 6x \\ x + 2y = 6y \end{cases} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : \begin{cases} 4y = x \\ x = 4y \end{cases} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : x = 4y \right\}$$

$$= \left\{ \begin{pmatrix} 4y \\ y \end{pmatrix} : x \in \mathbb{R} \right\}$$

$$= \left\langle \begin{pmatrix} 4 \\ 1 \end{pmatrix} \right\rangle,$$

d'où dim $E_6 = 1$. Donc

$$A = \begin{pmatrix} 1 & 4 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ -1 & 1 \end{pmatrix}^{-1}.$$

Exemple 1.37. Soit A la matrice donnée par : $A = \begin{pmatrix} 3 & -5 \\ 2 & -3 \end{pmatrix}$, ainsi $P_A(X) = \begin{vmatrix} 3 - X & -5 \\ 2 & -3 - X \end{vmatrix} = (3 - X)(-3 - X) + 10 = X^2 + 1$. Donc $P_A(X)$ n'est pas scindé sur \mathbb{R} , ainsi A n'est pas diagonalisable sur \mathbb{R} , mais il est diagonalisable sur \mathbb{C} .

Exemple 1.38. Soit A la matrice donnée par :

$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

On $a: P_A(X) = -(X-A)(X+2)^2$ et $Sp(A) = \{1, -2\}$.

•
$$E_{-2} = \left\langle \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\rangle$$
, $et \dim E_{-2} = 2$.

•
$$E_1 = \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle$$
.

Exemple 1.39. Considérons la matrice suivante :

$$A = \begin{pmatrix} 3 & 0 & -1 \\ 2 & 4 & 2 \\ -1 & 0 & 3 \end{pmatrix}.$$

Alors $P_A(X) = -(X-4)^2(X-2)$ et

$$E_2 = \left\langle \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\rangle, \quad E_4 = \left\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\rangle.$$

Soient P et D deux matrices données par :

$$P = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

Ainsi:

$$A = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

1.3.3 Trigonalisation

Définition 1.20. Une matrice $A \in M_n(\mathbb{K})$ est dite **trigonalisable** dans $M_n(\mathbb{K})$ si A est semblable à une matrice triangulaire supérieure, c'est-à-dire il existe une matrice inversible P est une matrice triangulaire supérieure T, telle que :

$$A = PTP^{-1}.$$

Théorème 1.4. Une matrice $A \in M_n(\mathbb{K})$ est trigonalisable si et seulement si, son polynôme caractéristique P_A est scindé sur \mathbb{K} .

Proposition 1.22. Tout matrice $A \in M_n(\mathbb{K})$ est trigonalisable sur \mathbb{C} .

Comment trigonaliser une matrice (cas d'une matrice de 3×3

Soit $A \in M_n(\mathbb{K})$; $P_A(X) = \det(A - XI_3)$.

- Si P_A n'est pas scindé sur \mathbb{K} , alors A n'est pas trigonalisable (on s'arrête).
- Si P_A est scindé, on factorise P_A : Il y a 3 cas à distingué: 1^{ere} Cas: Si P_A , admet 3 racines $\lambda_1, \lambda_2, \lambda_3$ simples 2 à 2 disjoints alors: $E_{\lambda_1} = \langle e_1 \rangle$, $E_{\lambda_2} = \langle e_2 \rangle$ et

$$E_{\lambda_3} = \langle e_3 \rangle$$
. Donc $P = (e_1|e_2|e_3)$ et $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$. Ainsi $A = PDP^{-1}$.

 2^{eme} Cas: Si P_A admet une racine simple λ_1 et une racine double λ_2 . On a : dim $E_{\lambda_1} = 1 \Rightarrow E_{\lambda_1} = \langle e_1 \rangle$.

• Si dim $E_{\lambda_2} = 2 \Rightarrow E_{\lambda_2} = \langle e_2, e_3 \rangle$, alors A est diagonalisable.

$$P = (e_1|e_2|e_3)$$
 et $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}$,

ainsi $A = PDP^{-1}$.

• Si dim $E_{\lambda_2} = 1 \Rightarrow A$ n'est pas diagonalisable, mais A est trigonalisable puisque dim $E_{\lambda_2} = 1 \Rightarrow E_{\lambda_2} = \langle e_2 \rangle$. On complète (e_1, e_2) en une base (e_1, e_2, e_3) . Donc

$$P = (e_1, e_2, e_3)$$
 $T = \begin{pmatrix} \lambda_1 & 0 & a \\ 0 & \lambda_2 & b \\ 0 & 0 & \lambda_2 \end{pmatrix}$.

Comment déterminer e_3 ?

Si on pose :
$$e_3 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 donc $A = PTP^{-1} \iff APPT$. Si on prend $a = 0$ et $b = 1$, $Ae_3 = 0$

 $be_2 + \lambda_2 e_3 = e_3 + \lambda_2 e_3$ si et seulement $(A - \lambda_2 I)e_3 = e_2$. Si e_3 solution de $(A - \lambda_2 I)X = e_2$. 2^{eme} Cas : Si P_A admet une seul racine λ_1 avec $m_{\lambda_1} = 3$. C'est-à-dire : $P_A(X) = -(X - \lambda_1)^3$. On a :

$$1 \leq \dim E_{\lambda_1} \leq 3$$
.

3 cas intervienn:

• Si dim $E_{\lambda_1}=3\Rightarrow A$ est diagonalisable et $E_{\lambda_1}=\langle e_1,e_2,e_3\rangle$ donc :

$$P = (e_1|e_2|e_3) \ et \ D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_1 \end{pmatrix} = \lambda_1 I_3.$$

Par suite : $A = PDP^{-1} = P\lambda_1 I_3 P^{-1} = \lambda I_3$.

• Si dim $E_{\lambda_1} = 2 \Rightarrow A$ n'est pas diagonalisable. $E_{\lambda_1} = \langle e_1 \rangle$, on complète (e_1) en une base (e_1, e_2, e_3) . Donc

$$P = (e_1|e_2|e_3)$$
 et $T = \begin{pmatrix} \lambda_1 & a & b \\ 0 & \lambda_1 & c \\ 0 & 0 & \lambda_1 \end{pmatrix}$.

• e_1 donnée.

• e_2 vérifie : $Ae_2 = ae_1 + \lambda_1 e_3$.

• e_3 vérifie : $Ae_3 = be_1 + +ce_2 + \lambda_1 e_3$.

Remarque 1.25. $A = PTP^{-1} \iff AP = PT$.

Exemple 1.40. On considère la matrice suivante :

$$A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}.$$

Alors
$$P_A(X) = -(X - A)^3$$
 et $E_1 = \left\langle \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\rangle$.