NeuroDataReHack, Janelia Research Campus

CARLA PINKNEY

STOR-i Lancaster University

Estimating Partial Coherence Networks from Neural Spike Trains

I DANDISET 000017 - Distributed coding of choice, action and engagement across the mouse brain

Neuropixels probes were used to record from ~30,000 neurons from 42 brain regions in 10 mice

 We analyse data from a single mouse. Neuropixels probes
 were used to record units from
 13 brain regions

 Firing times of individual neurons were identified using Kilosort and phy. We analyse spontaneous firing activity

Question: How can we estimate interactions between neural spike trains?

IMethods

II Spectral Analysis for Multivariate Point Processes

Neural spike trains can be represented by a multivariate point process

$$\mathbf{N}(t) := \{N_1(t), \dots, N_p(t)\}.$$
 Spike times in unit p

Key Assumption

The multivariate point process is assumed to be second order stationary.

The first order properties of a multivariate point process are characterised by the intensity function

$$oldsymbol{\Lambda}(t) := rac{\mathbb{E}\{d\mathbf{N}(t)\}}{dt}.$$

The second order properties are captured by the covariance density matrix

$$m{\mu}(t,u) = rac{\mathbb{E}\{d\mathbf{N}(u)d'\mathbf{N}(t)\}}{dtdu} - m{\Lambda}(u)m{\Lambda}'(t).$$

The spectral density matrix is defined as the Fourier transform of the covariance density matrix

$$\mathbf{S}(\omega) = rac{1}{2\pi} ig\{ \mathrm{diag}(\mathbf{\Lambda}) + \int_{-\infty}^{\infty} e^{-i au\omega} oldsymbol{\mu}(au) d au ig\}.$$

III Estimating Partial Coherence Networks

Interactions between components of the multivariate process can be captured by the inverse spectral density matrix $\Theta(\omega) := \mathbf{S}^{-1}(\omega)$.

The partial coherence, defined as

$$ho_{ij}(\omega)=rac{|\Theta_{ij}(\omega)|^2}{\Theta_{ii}(\omega)\Theta_{jj}(\omega)},$$

provides a measure of the partial correlation structure between pairs of neural processes in the frequency domain.

$$\hat{\Theta}(\omega) := \mathrm{argmin}_{\Theta(\omega) \in \mathcal{C}} \left\{ -\log \det(\Theta(\omega)) + Tr\{\hat{S}(\omega)\Theta(\omega)\} + \lambda \|\Theta(\omega)\|_1
ight\}.$$

- The regularisation parameter determines the level of sparsity
- Solve the above optimisation problem with the alternating direction method of multipliers (ADMM) algorithm

II Andlysis

IV Spectral Estimation for Multivariate Point Processes

The Tapered Fourier transform of $N_j(t)$ for $t \in (0,T]$ is

$$d_{l,j}(\omega) = \int_0^T h_l(t/T) e^{-i\omega t} dN_j(t),$$

for a set of $l=1,\ldots,m$ taper functions $h_l(z):(0,1]\to\mathbb{R}$. We estimate the spectrum via

$$\hat{S}(\omega) = rac{1}{m} \sum_{l=1}^m ar{\mathbf{d}}_l(\omega) ar{\mathbf{d}}_l^H(\omega),$$

where $\bar{\mathbf{d}}_l(\omega) = (\bar{d}_{l,1}(\omega), \dots, \bar{d}_{l,p}(\omega))$ are the mean corrected coefficients.

IV Preliminary Results I

IV Preliminary Results II

Number of edges	149	65	46
Regularisation Parameter	0.46	0.24	0.24

V Discussions and Future Work

- We have developed a tool to estimate high-dimensional inverse spectral density matrices in the point process framework which can be used to infer neural connectivity in the brain network
- Python package is currently under development and will hopefully be available very soon

References

- Pinkney, C., Euan, C., Gibberd, A. and Shojaie, A., 2024. Regularised Spectral Estimation for High Dimensional Point Processes. arXiv preprint arXiv:2403.12908
- Steinmetz, Nicholas; Zatka-Haas, Peter; Carandini, Matteo; Harris, Kenneth; Wang, Renee (2024)
 Distributed coding of choice, action and engagement across the mouse brain (Version 0.240329.1926)
 [Data set]. DANDI archive. https://doi.org/10.48324/dandi.000017/0.240329.1926

12 July

NeuroDataReHack, Janelia Research Campus

CARLA PINKNEY

STOR-i Lancaster University

Thank you for listening!

4. Synthetic Experiments

We evaluated the **performance** of the RSE on **synthetic data** where the **true spectrum** is known.

Figure 2. Simulation results for estimating the partial coherence matrix.

The **Graphical** estimator is preferable for **sparse estimation** of the inverse spectrum. Both estimators outperform existing methods which break down in **high dimensional** settings.

	Mean Squared Error						F ₁ Score	
p	m	Inverted Periodogram	Ridge	G_1	G_2	G_1	G_2	
12	10	-	2.36 (0.01)	1.86 (0.01)	4.37	0.32	0.81	
	50	1.59	1.58 (0.01)	1.53	4.20	0.31	0.97	
48	10	-	0.70	0.37	1.03	0.13	0.74	
	50	6218.81 (151.89)	0.59	0.31	1.01	0.09	0.98	
96	10	-	0.43	0.19	0.51	0.10	0.71	
	50	_	0.28	0.14	0.50	0.05	0.96	

Table 1. Simulation results over 100 replications for estimating the inverse spectral density matrix. All results are recorded at a particular frequency $\omega = 0.0628$ and are in the form of mean (standard error). Standard errors of $< 10^{-2}$ are omitted for brevity. Hyphenated entries (-) denote that the multi-taper periodogram matrix could not be inverted. G_1 and G_2 refer to the Graphical estimator tuned using the MSE and F_1 score respectively.