³⁵K ε+β⁺ decay (175 ms) 1980Ew02

Parent: 35 K: E=0; J^{π} =3/2+; $T_{1/2}$ =175 ms 2; $Q(\varepsilon)$ =11874.4 9; $\%\varepsilon+\%\beta^+$ decay=100

- 1980Ew02,1979Ca15: A 600-MeV proton beam was produced from the synchrocyclotron at CERN-ISOLDE and bombard a ScC₂ target. The 45 Sc(p,8n3p) spallation reaction products diffused out of the target and reached a tungsten surface ionization source where potassium isotopes were selectively ionized. The beam was extracted from the ion source, separated by the ISOLDE analyzing magnet, and collected by a mylar foil for γ -ray measurements and then a carbon foil for proton measurements. γ rays were detected using a Ge(Li) detector. Time for positron activities were determined using a 700- μ m thick silicon detector. Protons were detected using a $20-\mu$ m- $700-\mu$ m thick Δ E-E telescope of silicon surface barrier detectors with FWHM=50 keV. Measured E γ (<5 MeV), I γ , E $_p$ (>0.9 MeV), I $_p$. Deduced Deduced levels, J, π , decay branching ratios, log ft, parent 35 K T $_{1/2}$, and coeffcients of the isobaric multiplet mass equation for A=36, T=2 quartets. Comparisons with shell-model calculations and the mirror nucleus 35 Cl. Also see abstracts 1979HaZY, 1979HaZT.
- 2018Sa54: A 36-MeV/nucleon 36 Ar primary beam was produced from the K500 cyclotron at Texas A&M University. The secondary 35 K beam was produced via the 1 H(36 Ar, 35 K)2n reaction of 36 Ar bombarding a LN₂-cooled hydrogen gas target, separated by MARS, and implanted into a 45- μ m DSSD sandwiched between a 140- μ m SSSD and a 1-mm Si-pad detector in a pulsed-beam mode. ε + β +-delayed protons were detected by the implantation detector. γ rays were detected by two HPGe detectors. Measured E_p(>300 keV), I_p, E γ , I γ , p γ -coin, $\gamma\gamma$ -coin. Deduced parent 35 K T_{1/2}.
- 2019ChZU: Same beam production as 2018Sa54. 35 K was implanted into the AstroBox2 detector filled with 800-Torr P5 gas. ε + β ⁺-delayed protons were detected by the implantation detector. γ rays were detected by 4 Clover Ge detectors. Measured $E_p(>100 \text{ keV})$, I_p , $E\gamma$, $I\gamma$, $P\gamma$ -coin, $P\gamma$ -coin.
- 1998Sc19: A polarized 35 K beam was produced via the fragmentation of 500-MeV/nucleon 40 Ca impinging on a 9 Be target at GSI, separated using Δ E-tof by FRS, momentum-selected by slits, and implanted into a KBr single crystal placed in the central region of a magnet. Positrons were detected using plastic scintillators. γ rays were detected using a Ge detector. Measured β -decay asymmetry and $\beta\gamma$ -coin. Deduced polarization and g-factor of 35 K ground state from β -NMR and 35 K $T_{1/2}$ from $\beta\gamma$ -decay time spectra.
- 2006Me04: A polarized 35 K beam was produced via the proton-pickup reaction 36 Ar(9 Be, 10 Li) 35 K, separated by NSCL-A1900, and implanted into a KBr crystal. Positrons were detected using plastic scintillators. Deduced the magnetic dipole moment and g-factor of 35 K ground state from β -NMR.
- Theoretical studies involving ³⁵K decay: shell model (1985Br29, 2003Sm02, Surender et al., Annals of Physics 470, 169772 (2024)).

35 Ar Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0	3/2+	
1184.01 25	1/2+	
1750.72 25	$(5/2)^+$	
2637.99 26	$3/2^+,5/2^+$	
	$3/2^+,5/2^+$	
4065.0? <i>4</i>	$1/2^+, 3/2^+, 5/2^+$	
4528.2 <i>4</i>	1/2+,3/2+,5/2+	
4725.9 6	1/2+	
4785.8 11	1/2+	
5572.66 <i>15</i>	3/2+	T=3/2
6348 11	$1/2^+, 3/2^+, 5/2^+$	
7053 11	$1/2^+, 3/2^+, 5/2^+$	
7255 11	$1/2^+, 3/2^+, 5/2^+$	
7283 11	$1/2^+, 3/2^+, 5/2^+$	
7431 <i>11</i>	$1/2^+, 3/2^+, 5/2^+$	
7510? <i>20</i>	$1/2^+, 3/2^+, 5/2^+$	
8395? 20	1/2+,3/2+,5/2+	

 $^{^{35}}$ K-J $^{\pi}$,T $_{1/2}$: From Adopted Levels of 35 K.

³⁵K-T_{1/2}: Weighted average of 175 ms 2 (2018Sa54), 178 ms 8 (1998Sc19), and 190 ms 30 (1980Ew02).

 $^{^{35}}$ K-Q(ε + β ⁺): From 2021Wa16.

³⁵K ε+ β ⁺ decay (175 ms) 1980Ew02 (continued)

³⁵Ar Levels (continued)

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(3479 20)	8395?	0.062 26	4.3×10 ⁻⁴ 18	4.6 +3-2	0.062 26	
(4364 20)	7510?	0.15 6	4.2×10^{-4} 17	4.8 + 3 - 2	0.15 6	
(6301.7 14)	5572.66	36.3 24	0.0265 18	3.31 4	36.3 24	
(7088.6 18)	4785.8	1.0 4	$5 \times 10^{-4} 2$	5.2 2	1.0 4	
(7148.5 15)	4725.9	2.1 4	0.0010 2	4.9 <i>1</i>	2.1 4	
(7346.2 14)	4528.2	0.7 4	$3 \times 10^{-4} 2$	5.4 + 4 - 2	0.7 4	
(7809.4 14)	4065.0?	0.56 33	2.0×10^{-4} 12	5.6 + 4 - 2	0.56 33	
(8891.6 14)	2982.79	26.0 22	0.0060 5	4.27 4	26.0 22	
(9236.4 14)	2637.99	≤0.4		≥6.2	≤0.4	
(10123.7 14)	1750.72	11.9 9	0.00181 14	4.91 <i>4</i>	11.9 9	
(10690.4 14)	1184.01	2.2 7	2.8×10^{-4} 9	5.8 + 2 - 1	2.2 7	
(11874.4 17)	0	19 4	0.0018 4	5.1 <i>1</i>	19 4	$I(\varepsilon + \beta^+)$: from 1980Ew02 assuming mirror log ft with a small asymmetry correction.

[†] Absolute intensity per 100 decays.

γ (35Ar)

Iy normalization: From $\Sigma\%$ Iy(γ to g.s.)=80.6 40, deduced from $100-\Sigma\%$ I_p-%I($\varepsilon+\beta^+$)(g.s.), where $\Sigma\%$ I_p=%($\varepsilon+\beta^+$)=0.37 15 (1980Ew02) and %I($\varepsilon+\beta^+$)(g.s.)=19 4 (1980Ew02), corresponding to log ft=5.07 5, which was deduced from the 35 S (g.s.)-> 35 Cl (g.s.) mirror log ft=5.01 2 with a small asymmetry correction.

1980Ew02 states that they have generated a pandemonium test in the same spirit as in 1977Ha51 and find that less than one percent of the γ -ray intensity from 35 K decay should be missed for that reason.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}^π_f	Comments
886.8 5	0.9 3	2637.99	3/2+,5/2+	1750.72	(5/2)+	$\%I\gamma = 0.46 + 19 - 17$
1044.4 <i>4</i>	1.3 4	5572.66	3/2+	4528.2	1/2+,3/2+,5/2+	$\%I\gamma = 0.66 + 25 - 23$
1184.0 <i>3</i>	14.3 7	1184.01	1/2+	0	3/2+	$\%I_{\gamma} = 7.2 \ 5$
1426.8 <i>4</i>	3.0 5	4065.0?	$1/2^+, 3/2^+, 5/2^+$	2637.99	$3/2^+,5/2^+$	$\%I\gamma = 1.5 + 4 - 3$
1507.4 5	1.9 <i>4</i>	5572.66	3/2+	4065.0?	$1/2^+, 3/2^+, 5/2^+$	$\%I\gamma = 0.96 + 27 - 25$
1750.5 <i>3</i>	28 <i>1</i>	1750.72	$(5/2)^+$	0	3/2+	$%I\gamma = 14.19$
1798.9 <i>5</i>	3.5 6	2982.79	$3/2^+,5/2^+$	1184.01	1/2+	$%I\gamma = 1.8 \ 4$
2589.8 <i>1</i>	52 2	5572.66	3/2+	2982.79	3/2+,5/2+	$%I\gamma = 26.3 \ 18$
2638.0 <i>4</i>	5.5 7	2637.99	$3/2^+,5/2^+$	0	3/2+	$%I\gamma = 2.8 \ 5$
^x 2697.7 6						Unplaced γ ray, accounts for no more than
						1.2% $\varepsilon + \beta^+$ -feeding (1980Ew02).
2934.5 5	3.5 6	5572.66	$3/2^{+}$	2637.99		$%I\gamma = 1.8 \ 4$
2982.68 <i>13</i>	100 4	2982.79	$3/2^+,5/2^+$	0	3/2+	$%I\gamma = 50.5\ 27$
3542.0 <i>6</i>	2.9 6	4725.9	1/2+	1184.01	1/2+	$%I\gamma = 1.5 \ 4$
3821.7 7	3.5 7	5572.66	3/2+	1750.72	$(5/2)^+$	$%I\gamma = 1.85$
4387.2 9	3.5 8	5572.66	3/2+	1184.01	1/2+	$%I\gamma = 1.8 \ 5$
4527.9 7	2.6 7	4528.2	$1/2^+, 3/2^+, 5/2^+$	0	3/2+	$%I\gamma = 1.3 4$
4724.5 11	1.2 5	4725.9	1/2+	0	3/2+	$%I\gamma = 0.61 + 30 - 27$
4785.4 11	1.9 7	4785.8	1/2+	0	3/2+	$%I\gamma = 1.0 \ 4$
5572.3 10	6.1 <i>16</i>	5572.66	$3/2^{+}$	0	3/2+	$%I\gamma = 3.1 + 10 - 9$
						1980Ew02 observed the double escape peak at
						4550 keV of this γ ray.

[†] From a least-squares fit to γ -ray energies in 1980Ew02.

[‡] From the Adopted Levels.

35 K ε + β ⁺ decay (175 ms) 1980Ew02 (continued)

γ ⁽³⁵Ar) (continued)

[†] From 1980Ew02. [‡] For absolute intensity per 100 decays, multiply by 0.505 29. ^x γ ray not placed in level scheme.

35 **K** ε+β+ decay (175 ms) 1980Ew02

Decay Scheme

egend	Intensities: I_{γ} per 100 parent decays		
$\begin{array}{lll} - & I_{\gamma} < & 2\% \times I_{\gamma}^{max} \\ - & I_{\gamma} < & 10\% \times I_{\gamma}^{max} \\ - & I_{\gamma} > & 10\% \times I_{\gamma}^{max} \end{array}$	%arepsilon+%eta	/	5 ms 2
1/2+,3/2+,5/2+	8395_	$ \begin{array}{ccc} \underline{I\beta^{+}} & \underline{I\varepsilon} \\ 0.062 & 0.00043 \end{array} $	Log <i>f</i> 4.6
1/2+,3/2+,5/2+		0.15 0.00042	4.8
3/2+ 1/2+ 1/2+ 1/2+,3/2+,5/2+ 1/2+,3/2+,5/2+	5572.66 5572.66 4785.8 4725.9 4528.2 4065.0	36.3 0.0265 1.0 0.000005 2.1 0.0010 0.7 0.000003 0.56 0.00020	4.9
3/2 ⁺ ,5/2 ⁺ 3/2 ⁺ ,5/2 ⁺	2982.79 2637.99	26.0 0.0060 ≤0.4	4.27 ≥6.2
(5/2) ⁺	1184.01	11.9 0.00181	4.91

 $^{35}_{18}\mathrm{Ar}_{17}$