SHORT NOTES ON GENERAL KUMMER THEORY

CONTENTS

1.	Preliminaries	1
2.	Setting	1
3.	The pairing associated to a subgroup	3
4.	Main Theorem of Kummer Theory	6
5.	Example: degree p extension of \mathbb{F}_p	ç
Ref	References	

1. Preliminaries

Goal: given a field K and a non-zero natural number n, characterize all Galois extensions of K whose Galois group is abelian with exponent $d \mid n$.

Language: by *abelian* extension we mean a Galois extension L/K with abelian Galois group; by *cyclic* extension we mean a Galois extension L/K with cyclic Galois group.

Reference: [Bos18, §4.10].

2. Setting

- (1) Let K be a field and fix a separable closure K_s .
- (2) Let $n \in \mathbb{N}$ be a non-zero natural number.
- (3) Let $G := Gal(K_s/K)$ be the absolute Galois group.
- (4) Let A be an abelian group endowed with the discrete topology and a continuous action of G on A via group automorphisms, which we will denote by $\sigma \cdot a =: \sigma(a)$.
- (5) For each intermediate field $K \subseteq L \subseteq K_s$ we denote

$$A_L := \{ a \in A \mid \sigma(a) = a \text{ for all } \sigma \in \operatorname{Gal}(K_s/L) \}.$$

(6) Let $\wp: A \to A$ be a G-equivariant surjective homomorphism whose kernel, denoted μ_n , is a cyclic subgroup of order n of A_K .

Continuity of the action of *G* on *A* ensures that for all $a \in A$ we have

$$G(A/a) := \{ \sigma \in G \mid \sigma(a) = a \} \hookrightarrow G.$$

Hence G(A/a) is also closed in G and corresponds to an intermediate field $K \subseteq K_s^{G(A/a)} \subseteq K_s$ [Bos18, 4.2/3], let's denote it K(a).

Lemma 1. The intermediate field K(a) is a finite extension of K.

Date: September 25, 2020.

Proof. Let $\{L_i\}_{i\in I}$ be the directed system of all subfields of K_s which are finite field extensions of K. For each $i \in I$, let us denote by

$$f_i \colon G \to \operatorname{Gal}(L_i/K)$$

the restriction morphism. The topology in G is the coarsest one making all the f_i continuous. Since each $Gal(L_i/K)$ is a finite group, endowed with the discrete topology, it follows that the topology on G should be the smallest topology in which all fibres of the morphisms f_i are open. But the fibres of all the f_i already form a basis for some topology on G, so the topology on G can be explicitly described in terms of this basis.

Since G(A/a) is open and $\mathrm{id}_{K_s} \in G(A/a)$, there is some $i \in I$ such that

$$f_i^{-1}(f_i(\mathrm{id}_{K_s})) = \mathrm{Gal}(K_s/L_i) \subseteq G(A/a).$$

From Galois correspondence we deduce now that

$$K \subseteq K(a) \subseteq L_i$$

hence K(a) is also finite over K.

More generally, given a subset $\Delta \subseteq A$ we may consider the subgroup

$$G(A/\Delta) := \{ \sigma \in G \mid \sigma(a) = a \text{ for all } a \in \Delta \} = \bigcap_{a \in \Delta} G(A/a),$$

which is then a closed subgroup but not necessarily an open subgroup. In any case we obtain an intermediate field $K \subseteq K_s^{G(A/\Delta)} \subseteq K_s$, which we will denote by $K(\Delta)$.

If L/K is Galois, then the action of G on A restricts to an action of G on A_L . Indeed, let $\tau \in G$, $\sigma \in \operatorname{Gal}(K_s/L)$ and $a \in A_L$. Since $\operatorname{Gal}(K_s/L) \trianglelefteq G$, there is some $\sigma' \in \operatorname{Gal}(K_s/L)$ such that

$$\sigma \tau(a) = \tau \sigma'(a) = \tau(a),$$

hence $\tau(a) \in A_L$. And by definition $\operatorname{Gal}(K_s/L)$ acts trivially on A_L , so we get an induced action of $G/\operatorname{Gal}(K_s/L)$ on A_L . Using again that L/K is Galois, we may identify this quotient group with $\operatorname{Gal}(L/K)$, obtaining an action of $\operatorname{Gal}(L/K)$ on A_L . We can then talk about the cohomology group $H^1(\operatorname{Gal}(L/K), A_L)$. A function $f \colon \operatorname{Gal}(L/K) \to A_L$ is called a *crossed homomorphism* if for all $\sigma, \tau \in \operatorname{Gal}(L/K)$ we have

$$f(\sigma\tau) = f(\sigma) + \sigma(f(\tau)).$$

A function $f : \operatorname{Gal}(L/K) \to A_L$ is called a *principal crossed homomorphism* if there exists some $a \in A_L$ such that for all $\sigma \in \operatorname{Gal}(L/K)$ we have

$$f(\sigma) = \sigma(a) - a.$$

Principal crossed homomorphisms form a subgroup of the group of crossed homomorphisms, and the quotient group is then our first cohomology group $H^1(Gal(L/K), A_L)$.

We are ready now to state the main assumption on which we will rely:

Axiom 2. For every cyclic extension L/K whose degree divides n we have

$$H^1(Gal(L/K), A_L) = 0.$$

3. The pairing associated to a subgroup

Let $C \subseteq A_K$ be a subgroup and consider $\wp^{-1}(C) \subseteq A$. By G-equivariance of \wp and our assumption that $C \subseteq A_K$, any $\sigma \in G$ restricts to a homomorphism $\sigma \colon \wp^{-1}(C) \to \wp^{-1}(C)$. If $\sigma(a) = 0$ for $a \in \wp^{-1}(C)$, then

$$\wp(\sigma(a)) = \sigma(\wp(a)) = \wp(a) = 0,$$

because $\wp(a) \in C \subseteq A_K$. Therefore $a \in \mu_n \subseteq A_K$, and this implies in turn that $\sigma(a) = a = 0$. So the restriction of σ is an injective homomorphism $\wp^{-1}(C) \to \wp^{-1}(C)$. For $a \in \wp^{-1}(C)$ we have

$$\sigma(a) - a \in \mu_n$$

again by *G*-equivariance of \wp and our assumption that $C \subseteq A_K$. So if $\sigma(a) \in \wp^{-1}(C)$, then

$$\wp(\sigma(a)) = \wp(a) \in C$$

and $a \in \wp^{-1}(C)$ as well, showing that the restriction of σ is also surjective. Hence σ restricts to a bijection $\wp^{-1}(C) \to \wp^{-1}(C)$. We obtain in this manner a group homomorphism

$$G \to \operatorname{Aut}(\wp^{-1}(C)).$$

The kernel of this group homomorphism is $G(A/\wp^{-1}(C))$ by definition. It is therefore a normal subgroup of G, which means in turn that $K(\wp^{-1}(C))/K$ is a Galois extension with Galois group $G_C \cong G/G(A/\wp^{-1}(C))$. In particular, we also obtain an induced action of the Galois group G_C on $\wp^{-1}(C)$.

We define now a pairing

$$G_C \times C \longrightarrow \mu_n$$

 $(\sigma, c) \longmapsto \sigma(a) - a$, for $a \in \wp^{-1}(c)$.

To check that it is well-defined, pick some other $a' \in \wp^{-1}(c)$. This elemnt will differ from the previous a by some $b \in \mu_n$, hence

$$\sigma(a') - a' = \sigma(a) + \sigma(b) - a - b = \sigma(a) - a.$$

All good then. Assume from now on that $\wp(A_K) \subseteq C$. We factor then the previous pairing into the pairing that we are interested in:

$$\langle \cdot, \cdot \rangle \colon G_C \times C/\wp(A_K) \longrightarrow \mu_n$$

 $(\sigma, \bar{c}) \longmapsto \sigma(a) - a, \text{ for } a \in \wp^{-1}(c).$

Proposition 3. *The pairing* $\langle \cdot, \cdot \rangle$ *is non-degenerate.*

Proof. We have to show that the induced morphisms

$$\varphi_1 \colon G_C \to \operatorname{Hom}(C/\wp(A_K), \mu_n)$$
 and $\varphi_2 \colon C/\wp(A_K) \to \operatorname{Hom}(G_C, \mu_n)$

are injective.

Suppose that $\sigma \in G_C$ is such that $\langle \sigma, \bar{c} \rangle = 0$ for all $\bar{c} \in C/\wp(A_K)$. In particular, if $\sigma' \in G$ is a preimage of σ , then $\sigma(a) = a$ for all $a \in \wp^{-1}(C)$. This means precisely that $\sigma' \in G(A/\wp^{-1}(C))$, hence $\sigma = \mathrm{id}_{K(\wp^{-1}(C))}$.

Suppose now that $c \in C$ is such that $\langle \sigma, \bar{c} \rangle = 0$ for all $\sigma \in G_C$. We want to show that $c \in \wp(A_K)$, so let $a \in \wp^{-1}(c)$. For all $\sigma' \in G$ we have $\sigma'(a) = a$, which means that $a \in A_K$ and therefore $\bar{c} = 0$.

Proposition 4. $K(\wp^{-1}(C))/K$ is finite if and only if $(C : \wp(A_K))$ is finite.

Proof. Suppose first that $[K(\wp^{-1}(C)):K]$ is finite. Then its Galois group G_C would be finite as well, so $\text{Hom}(G_C, \mu_n)$ is finite. But φ_2 is injective by Proposition 3, so $C/\wp(A_K)$ must be finite as well.

Conversely, suppose that $C/\wp(A_K)$ is finite. Again, this implies that $\operatorname{Hom}(C/\wp(A_K), \mu_n)$ is finite, so injectivity of φ_1 shows that $[K(\wp^{-1}(C)) : K]$ is finite as well.

Lemma 5. Let $n \in \mathbb{N}$ be a non-zero natural number and let H be a finite abelian group with exponent $d \mid n$. Then there exists an isomorphism $H \cong \text{Hom}(H, \mathbb{Z}/n\mathbb{Z})$.

Proof. By the structure theorem for finitely generated abelian groups it suffices to show the result for $H = \mathbb{Z}/d\mathbb{Z}$. We first reduce the result to the case d = n. There is a unique cyclic subgroup $H_d \subseteq \mathbb{Z}/n\mathbb{Z}$ of order d. Every homomorphism $\mathbb{Z}/d\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ factors then through H_d , so the canonical map

$$\operatorname{Hom}(\mathbb{Z}/d\mathbb{Z}, H_d) \hookrightarrow \operatorname{Hom}(\mathbb{Z}/d\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$$

is an isomorphism. Since $H_d \cong \mathbb{Z}/d\mathbb{Z}$, it suffices to show that there is an isomorphism

$$\mathbb{Z}/d\mathbb{Z} \to \text{Hom}(\mathbb{Z}/d\mathbb{Z}, \mathbb{Z}/d\mathbb{Z}),$$

i.e. it suffices to show the case d = n.

In this case we consider the surjective homomorphism

$$\mathbb{Z} \to \operatorname{Hom}(\mathbb{Z}/d\mathbb{Z}, \mathbb{Z}/d\mathbb{Z})$$

 $1 \mapsto \operatorname{id}.$

Its kernel is $d\mathbb{Z}$, so passing to the quotient yields the desired isomorphism.

Proposition 6. If $K(\wp^{-1}(C))/K$ or $(C : \wp(A_K))$ are finite, then φ_1 and φ_2 from Proposition 3 are isomorphisms and

$$[K(\wp^{-1}(C)):K]=(C:\wp(A_K)).$$

Proof. By Proposition 4, if either of the two is finite, so is the other one. By Lemma 5 we have isomorphisms

$$C/\wp(A_K) \cong \operatorname{Hom}(C/\wp(A_K), \mu_n)$$
 and $G_C \cong \operatorname{Hom}(G_C, \mu_n)$.

We have

$$[K(\wp^{-1}(C)) : K] = |G_C|$$

$$\leq |\operatorname{Hom}(C/\wp(A_K), \mu_n)|$$

$$= |C/\wp(A_K)|$$

$$\leq |\operatorname{Hom}(G_C, \mu_n)|$$

$$= |G_C|$$

$$= [K(\wp^{-1}(C)) : K].$$

Therefore $[K(\wp^{-1}(C)):K]=(C:\wp(A_K))$ and φ_1 and φ_2 are isomorphisms.

Proposition 7. Even if $[K(\wp^{-1}(C)) : K]$ and $(C : \wp(A_K))$ are not finite, φ_1 is still an isomorphism and φ_2 induces an isomorphism

$$C/\wp(A_K) \cong \operatorname{Hom}_{\operatorname{cont}}(G_C, \mu_n)$$

onto the subgroup of continuous homomorphisms.

Proof. Consider the directed system $\{C_i\}_{i\in I}$ of all subgroups C_i of C containing $\wp(A_K)$ and such that $(C_i : \wp(A_K))$ is finite. Since any finite intermediate extension $K \subseteq L \subseteq K(\wp^{-1}(C))$ is contained in some $K(\wp^{-1}(C_i))$, we can write

$$G_C \cong \varprojlim_{i \in I} G_{C_i}.$$

Consider now for each $i \in I$ the commutative diagram

$$G_{C} \xrightarrow{\varphi_{1}} \operatorname{Hom}(C/\wp(A_{K}), \mu_{n})$$

$$\downarrow \qquad \qquad \downarrow$$

$$G_{C_{i}} \xrightarrow{\cong} \operatorname{Hom}(C_{i}/\wp(A_{K}), \mu_{n})$$

in which both vertical arrows are the restrictions. Let $f \in \operatorname{Hom}(C/\wp(A_K), \mu_n)$ and consider for each $i \in I$ its restriction $f|_{C_i/\wp(A_K)}$, which comes from a unique $\sigma_i \in G_{C_i}$. This yields a family of automorphisms $(\sigma_i)_{i \in I}$. We claim that this is a compatible family, giving therefore an element in G_C which maps to f and proving surjectivity of φ_1 . To show this, let $i \leq j$ and consider the diagram

$$G_{C_{j}} \xrightarrow{\varphi_{1,j}} \operatorname{Hom}(C_{j}/\wp(A_{K}), \mu_{n})$$

$$\downarrow \qquad \qquad \downarrow$$

$$G_{C_{i}} \xrightarrow{\varphi_{1,i}} \operatorname{Hom}(C_{i}/\wp(A_{K}), \mu_{n})$$

in which both vertical arrows are the restrictions. We want to check that it commutes. The isomorphism $G/G(A/\wp^{-1}(C_k)) \to G_{C_k}$ is given by restriction of automorphisms for all $k \in I$. So every $\tau \in G_{C_j}$ can be written as $\sigma|_{K(\wp^{-1}(C_j))}$ for some $\sigma \in G$. For $c \in C_i \subseteq C_j$ and $a \in \wp^{-1}(c)$ we have then

$$\varphi_{1,i}(\tau|_{K(\wp^{-1}(C_i))})(\bar{c}) = \sigma(a) - a = \varphi_{1,j}(\tau)|_{C_i/\wp(A_K)}(\bar{c}),$$

showing commutativity of the diagram and thus finishing the proof of bijectivity of φ_1 .

Before discussing the assertion about φ_2 , we claim that every continuous homomorphism $g\colon G_C\to \mu_n$ comes from some homomorphism $g_i\colon G_{C_i}\to \mu_n$ via the restriction $f_i\colon G_C\to G_{C_i}$. Indeed, let $\xi\in\mu_n$ be a generator. Given such g and given some $k\xi\in\mu_n$ in the image of g, say $k\xi=g(\sigma)$, the preimage $g^{-1}(k\xi)$ is open in G_C . Since the fibers of the restrictions form a basis for the topology on G_C , there exists some $i_k\in I$ such that $f_{i_k}^{-1}f_{i_k}(\sigma)\subseteq g^{-1}(g(\sigma))$. Let now $i=\max_k\{i_k\}$ and define

$$g_i \colon G_{C_i} \longrightarrow \mu_n$$

 $\sigma|_{K(\wp^{-1}(C_i))} \longmapsto g(\sigma).$

If $\sigma|_{K(\wp^{-1}(C_i))} = \tau|_{K(\wp^{-1}(C_i))}$ and $g(\sigma) = k\xi$, then we have $i_k \leq i$ and therefore

$$\tau \in f_i^{-1} f_i(\sigma) \subseteq f_{i_k}^{-1} f_{i_k}(\sigma) \subseteq g^{-1} g(\sigma),$$

showing that g_i is well-defined. And by construction $g = g_i \circ f_i$, proving the claim.

Moving on to the assertion about φ_2 , suppose $g \in \text{Hom}(G_C, \mu_n)$ is in the image of φ_2 , say $g = \varphi_2(\bar{c})$. Then it is continuous, because the formula we used to define it involves only the continuous action of G on A and the continuous group operations in A. But we can also check this directly: by homogeneity it suffices to show that

$$g^{-1}(0) = \{ \sigma \in G_C \mid \sigma(a) - a = 0 \text{ for } a \in \wp^{-1}(c) \}$$

is closed in G_C , which is true because its preimage under the quotient map is the closed subgroup $G(A/\wp^{-1}(c))$ of G. Conversely, suppose $g \in \operatorname{Hom}(G_C, \mu_n)$ is a continuous homomorphism. Then by our previous claim we may find some $i \in I$ such that $g = g_i \circ f_i$ for some $g_i \colon G_{C_i} \to \mu_n$, where $f_i \colon G_C \to G_{C_i}$ denotes the restriction. This means that in the commutative square

$$C_i/\wp(A_K) \xrightarrow{\varphi_{2,i}} \operatorname{Hom}(G_{C_i}, \mu_n)$$

$$\downarrow \qquad \qquad \downarrow$$

$$C/\wp(A_K) \xrightarrow{\varphi_2} \operatorname{Hom}(G_C, \mu_n)$$

our g lies in the image of the right vertical arrow. By Proposition 6 the top horizontal arrow is an isomorphism. Hence g also lies in the image of φ_2 .

4. Main Theorem of Kummer Theory

Recall from the previous section that $C \subseteq A_K$ is a subgroup such that $\wp(A_K) \subseteq C$ and $\{C_i\}_{i\in I}$ is the directed system of all subgroups C_i of C containing $\wp(A_K)$ such that $(C_i : \wp(A_K))$ is finite.

Lemma 8. $K(\wp^{-1}(C))/K$ is an abelian extension with exponent d dividing n.

Proof. This follows from injectivity of

$$\operatorname{Gal}(K(\wp^{-1}(C))/K) \to \operatorname{Hom}(C/\wp(A_K), \mu_n),$$

which was shown in Proposition 3.

Lemma 9. Let L/K be a field extension with $L \subseteq K_s$. Then $C := \wp(A_L) \cap A_K$ is a subgroup of A_K with the property that $\wp(A_K) \subseteq C$.

Proof. Since $A_K \subseteq A_L$, it follows that $\wp(A_K) \subseteq \wp(A_L)$. It remains to show that $\wp(A_K) \subseteq A_K$. Let $a \in A_K$ and let $\sigma \in G$. Then using G-equivariance of \wp and the fact that $a \in A_K$ we have

$$\sigma(\wp(a)) = \wp(\sigma(a)) = \wp(a),$$

hence $\wp(a) \in A_K$ as well.

Lemma 10. Let $L := K(\wp^{-1}(C))$ and $L_i := K(\wp^{-1}(C_i))$ for each $i \in I$. Then

$$A_L = \bigcup_{i \in I} A_{L_i}.$$

Proof. We show first the inclusion \supseteq . Let $a \in A_{L_i}$ for some $i \in I$, i.e. for all $\sigma \in G(A/\wp^{-1}(C_i))$ we have $\sigma(a) = a$. Let then $\sigma \in G(A/\wp^{-1}(C))$, which is by definition the set of automorphisms $\tau \in G$ such that $\tau(b) = b$ for all $b \in \wp^{-1}(C)$. Since $a \in \wp^{-1}(C_i) \subseteq \wp^{-1}(C)$, we deduce that $\sigma(a) = a$.

We move on to the inclusion \subseteq . Let $a \in A_L$, i.e. $\sigma(a) = a$ for all $\sigma \in \operatorname{Gal}(K_s/L) = G(A/\wp^{-1}(C))$. Consider the open subgroup $G(A/a) \subseteq G$. The corresponding field $K(a) \subseteq K_s$ is finite over K, as we saw in Lemma 1. And since $\operatorname{Gal}(K_s/L) \subseteq G(A/a)$, we have $K(a) \subseteq L$. Since K(a) is finite over K we may find some index $i \in I$ such that $K(a) \subseteq L_i$, hence

$$a \in A_{K(a)} \subseteq A_{L_i}$$
.

Theorem 11. Viewing abelian extensions of K as subfields of K_s , there is an inclusion-preserving bijection:

 $\{C \leq A_K \text{ s.t. } \wp(A_K) \subseteq C\} \leftrightarrow \{L/K \text{ abelian } w/\text{ exponent dividing } n\}.$

Given $C \leq A_K$ as above, the corresponding field extension is

$$\Phi(C) := K(\wp^{-1}(C));$$

and conversely, given L/K as above, the corresponding subgroup is

$$\Psi(L) := \wp(A_L) \cap A_K$$
.

Proof. The functions Φ and Ψ are well-defined by Lemma 8 and Lemma 9 respectively.

Let us check first that $\Psi \circ \Phi = \text{id}$. Let $C \subseteq A_K$ be a subgroup such that $\wp(A_K) \subseteq C$ and let $L = K(\wp^{-1}(C))$. We denote $\wp(A_L) \cap A_K$ by C', so that the goal is showing that C' = C.

We start with the inclusion $C \subseteq C'$. The subgroup $A_L \subseteq A$ consists of all $a \in A$ which are fixed by the automorphisms in $Gal(K_s/L) = G(A/\wp^{-1}(C))$, which in turn are precisely the automorphisms fixing all the elements in $\wp^{-1}(C)$. Hence $\wp^{-1}(C) \subseteq A_L$ and therefore $C \subseteq \wp(A_L) \cap A_K = C'$.

Moving on to the other inclusion $C' \subseteq C$, the first thing we claim is that $G(A/A_L) = G(A/\wp^{-1}(C))$. Indeed, from $\wp^{-1}(C) \subseteq A_L$ we immediately deduce $G(A/A_L) \subseteq G(A/\wp^{-1}(C))$. And conversely, if $\sigma \in G$ fixes every element in $\wp^{-1}(C)$, then it is an automorphism in $Gal(K_s/L)$ by definition. But every element $b \in A_L$ satisfies $\tau(b) = b$ for all $\tau \in Gal(K_s/L)$, hence σ fixes every element in A_L as well. Hence $G(A/A_L) = G(A/\wp^{-1}(C))$. In particular, $K(A_L) = K(\wp^{-1}(C)) = L$. But we have seen already that $C \subseteq C'$, so $\wp^{-1}(C) \subseteq \wp^{-1}(C')$ and

$$L=K(\wp^{-1}(C))\subseteq K(\wp^{-1}(C'))\subseteq K(A_L)=L.$$

This implies that $K(\wp^{-1}(C)) = K(\wp^{-1}(C'))$. In particular, if we are in the situation of finite index, then we can apply Proposition 6 to conclude that C = C'. Indeed, both field extensions have the same degrees, so both C and C' have the same index over $\wp(A_K)$. Equality follows then from the already proven inclusion $C \subseteq C'$. This finishes the case in which C has finite index over $\wp(A_K)$, and the general case follows from this case thanks to Lemma 10, because

$$C' = \wp(A_L) \cap A_K = \bigcup_{i \in I} \wp(A_{L_i}) \cap A_K = \bigcup_{i \in I} C'_i = \bigcup_{i \in I} C_i = C.$$

It remains to show that $\Phi \circ \Psi = \text{id}$ as well. Let L/K be an abelian extension with exponent d dividing n. Let $C := \wp(A_L) \cap A_K$. Then $\wp^{-1}(C) \subseteq A_L$. Indeed, if $\wp(a) = \wp(b) \in A_K$ with $b \in A_L$ and $\sigma \in \text{Gal}(K_S/L) \subseteq G$, then $\sigma(a) - b \in \mu_n = \text{ker}(\wp)$, because

$$\wp(\sigma(a)) = \sigma(\wp(a)) = \wp(a) = \wp(b).$$

But $b \in A_L$ implies that $\sigma(b) = b$, hence $\sigma(a - b) \in \mu_n \subseteq A_K$. In particular, since $\sigma^{-1} \in G$, we have

$$a - b = \sigma^{-1}(\sigma(a - b)) = \sigma(a - b) = \sigma(a) - b,$$

thus $\sigma(a) = a$ and $a \in A_L$, showing the desired inclusion. Therefore $\wp^{-1}(C)$ is fixed by $\operatorname{Gal}(K_s/L)$, i.e. $G(A/\wp^{-1}(C)) \supseteq \operatorname{Gal}(K_s/L)$. Hence $K(\wp^{-1}(C)) \subseteq L$, and we need to show that this inclusion is an equality.

We want to reduce to the case of finite cyclic field extensions in order to apply Axiom 2. Write L/K as the composite field of all intermediate fields finite over K. Each such intermediate field L'/K will again be an abelian extension, because every subgroup of $\operatorname{Gal}(L/K)$ is normal and the quotient of two abelian groups is abelian. In turn, the structure theorem for finitely generated abelian groups tells us that we can find subgroups $H_j \subseteq \operatorname{Gal}(L'/K)$ such that each $\operatorname{Gal}(L'/K)/H_j$ is cyclic and such that

$$\bigcap H_j = \{0\}.$$

Therefore we can write L/K as the composite of a family $\{L_{\alpha}\}_{\alpha\in\Lambda}$ of finite cyclic extensions. We were trying to show that $L\subseteq K(\wp^{-1}(C))$. If we manage to show that $L_{\alpha}\subseteq K(\wp^{-1}(C_{\alpha}))$ with $C_{\alpha}=\wp(A_{L_{\alpha}})\cap A_{K}$ for each $\alpha\in\Lambda$, then each L_{α} is contained in $K(\wp^{-1}(C))$ as well, because $C_{\alpha}\subseteq C$. So $L\subseteq K(\wp^{-1}(C))$ would follow, and we may therefore assume that L/K is a finite cyclic extension.

Assume then that L/K is a finite cyclic extension. Consider the surjective homomorphism

$$q \colon \operatorname{Gal}(L/K) \longrightarrow G_C$$

$$\sigma \longmapsto \sigma|_{K(\varphi^{-1}(C))}.$$

By Galois correspondence, it suffices to show that q is an isomorphism. To show that it is an isomorphism, it is enough to show that $\operatorname{Gal}(L/K)$ and G_C have the same cardinality. By Lemma 5 it is in turn enough to show that the induced homomorphism

$$q^* \colon \operatorname{Hom}(G_C, \mu_n) \longrightarrow \operatorname{Hom}(\operatorname{Gal}(L/K), \mu_n)$$

$$f \longmapsto f \circ q$$

is an isomorphism. Surjectivity of q implies that q^* is injective, so it remains only to show surjectivity of q^* . Let $g \colon \operatorname{Gal}(L/K) \to \mu_n$ be a homomorphism and let $\sigma, \sigma' \in \operatorname{Gal}(L/K)$. Then

$$g(\sigma \circ \sigma') = g(\sigma) + g(\sigma') = g(\sigma) + \sigma(g(\sigma')),$$

the second equality being due to the fact that $g(\sigma') \in \mu_n \subseteq A_K$ and therefore $\sigma(g(\sigma')) = g(\sigma')$. We are implicitly using here that the action of G on G induces a well-defined action of G of G on G induces a well-defined action of G of G on G induces a well-defined action of G of G of G on G in G on G in G on G in G on G on G in G on G in G on G is in the kernel of the restriction homomorphism, i.e. is in G of G o

1-coboundary, i.e. there exists some $a \in A_L$ such that $g(\sigma) = a - \sigma(a)$ for all $\sigma \in \operatorname{Gal}(L/K)$. Since the image of g is in $\mu_n = \ker(\wp)$, we see that $\wp(a) = \wp(\tilde{\sigma}(a)) = \tilde{\sigma}(\wp(a))$ for all $\tilde{\sigma} \in G$, i.e. $\wp(a) \in A_K$. But since $a \in A_L$, we also have $\wp(a) \in \wp(A_L)$. Thus $\wp(a) \in \wp(A_L) \cap A_K = C$ and $a \in \wp^{-1}(C)$. But then for all $\tau \in G(A/\wp^{-1}(C))$ we have $\tau(a) = a$, so that we may define a homomorphism

$$f: G_C \longrightarrow \mu_n$$

 $\sigma \longmapsto a - \sigma(a).$

This f verifies $g = f \circ q$, showing surjectivity of q^* as we wanted.

5. Example: degree p extension of \mathbb{F}_p

Let us omit checking the necessary hypotheses and go straigth to the application of the theorem for \mathbb{F}_p and exponent p. Fix an algebraic closure $\overline{\mathbb{F}}_p$ and take $A := \overline{\mathbb{F}}_p$ and

$$\wp \colon \overline{\mathbb{F}}_p \longrightarrow \overline{\mathbb{F}}_p$$
$$a \longmapsto a^p - a.$$

We have then $\mu_p = \mathbb{F}_p = A_{\mathbb{F}_p}$ and $\wp(A_{\mathbb{F}_p}) = 0$, so according to Theorem 11, there should be a single degree p extension of \mathbb{F}_p inside $\overline{\mathbb{F}}_p$, corresponding to the subgroup $\mathbb{F}_p \leq \mathbb{F}_p$. From Artin–Schreier theory we know that all such extensions are given by roots of polynomials of the form

$$t^p - t - c \in \mathbb{F}_p[t],$$

so choosing different $c \in \{1, ..., p-1\} \subseteq \mathbb{F}_p$ should yield the same field. Let us check that this is indeed the case.

Let $\alpha \in \overline{\mathbb{F}}_p$ be a root of t^p-t-1 and let $L \subseteq \overline{\mathbb{F}}_p$ be the field extension given by the irreducible polynomial t^p-t-c for some $c \in \{2, \ldots, p-1\} \subseteq \mathbb{F}_p$. We claim that $L \subseteq \mathbb{F}_p[\alpha]$, which implies that both fields are equal because they both have degree p over \mathbb{F}_p . To see this, it suffices to show that t^p-t-c has a root in $\mathbb{F}_p[\alpha]$. By definition, α satisfies $\alpha^p-\alpha=1\in \mathbb{F}_p[\alpha]$. And since $c \in \mathbb{F}_p$, we have $c^p=c\in \mathbb{F}_p[\alpha]$. Therefore, setting $\beta:=c\alpha\in \mathbb{F}_p[\alpha]$, we see that

$$\beta^p - \beta - c = c^p \alpha^p - c\alpha - c = c(\alpha^p - \alpha) - c = 0,$$

so that β is a root of $t^p - t - c$ in $\mathbb{F}_p[\alpha]$ and $L = \mathbb{F}_p[\alpha]$.

REFERENCES

[Bos18] Siegfried Bosch. *Algebra—from the viewpoint of Galois theory*. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser/Springer, Cham, german edition, 2018.

Pedro Núñez

Albert-Ludwigs-Universität Freiburg, Mathematisches Institut

Ernst-Zermelo-Strasse 1, 79104 Freiburg im Breisgau (Germany)

Email address: pedro.nunez@math.uni-freiburg.de

Homepage: https://home.mathematik.uni-freiburg.de/nunez

I would like to thank the DFG-Graduiertenkolleg GK1821 "Cohomological Methods in Geometry" for their support!