

IPD 调节说明文档

V3.0.0

瑞声科技控股有限公司

	录	
1,	简介	4
2,	I2C 设计	4
	2.1 I2C的 gpio 配置	4
	2.2 I2C 配置	4
3,	相关寄存器	4
	3.1 运动控制寄存器	4
	3.2 位置查询寄存器	5
	3.3 hall 标定寄存器	5
	3.4 瞳距调节寄存器	6
	3.5 I2C 固件升级寄存器 1	6
	3.6 I2C 固件升级寄存器 2	6
	3.7 I2C 固件升级校验寄存器 1	7
	3.8 I2C 固件升级校验寄存器 2	7
	3.9 I2C 升级停止寄存器	7
4,	ipd 电机运动实现	8
	4.1 电机运动速度	8
	4.2 上报 ipd 位置	8
5,	I2C 固件升级	8
	5.1 流程	8
	1) 上电 10 秒内	8
	2) 上电后	8

修改历史

版本号	修改内容	修改人	日期
1.0.0	初稿	黄欣然	2023/10/09
2.0.0	第二版	黄欣然	2024/1/15
3.0.0	第三版	黄欣然	2024/1/26

1、简介

IPD SDK,是为第三方应用开发者提供的调用程序,能极大的方便开发者应用ARGLASS 瞳距调节相关功能。

2、I2C 设计

IPD SDK 是 I2C 从机的程序。采用中断的方式接收数据。

2.1 I2C 的 gpio 配置

gpio 的电压域为 1.8 v。

2.2 I2C 配置

I2C 速度支持标速模式 (100 KHz), 支持 7 位的地址模式。 I2C 从机 7 位地址 0x72。

3、相关寄存器

3.1运动控制寄存器

地址偏移: 0x01

复位值: 0x0000

位/位域	名称	描述
15:5	保留	必须保持复位值;
4	STOP	此位置0时, 电机停止运动;
3	INC_STEP	此位置 1 时,左镜头向左运动 1.6mm,同时右镜头向右运动 1.6mm;此位置 0 时,左镜头向左运动 0.1mm,同时右镜头向右运动 0.1mm;
2	DEC_STEP	此位置1时,左镜头向右运动1.6mm,同时右镜头向左运动1.6mm;此位置0时,左镜头向右运动0.1mm,同时右镜头向左运动0.1mm;
	Copyright © 2023 AAC Technologies. Confidential. All Rights Reserved.	

说明:注意0和1位、2和3位、stop和其他位不能同时置1。

3.2 位置查询寄存器

地址偏移: 0x02

复位值: 0x00

说明: I2C 主机接收的数据是 ipd 位置。

例如: 55 表示当前瞳距 5.5mm, 225 表示瞳距 22.5mm。

3.3 hall 标定寄存器

地址偏移: 0x07

复位值: 0x00

0 flag

此位置 1 时,表示 hall 重新标定整个行程的极限位;

说明:在发现行程偏差、换磁铁、电机模组初始位置变化时,为确保行程精确,必须重新标定。

3.4 瞳距调节寄存器

地址偏移: 0x08

复位值: 0x00

有效数据范围: 55-225

说明: I2C 主机写该寄存器的值应该是期望瞳距的值。

例如: 发送 55 表示移动到瞳距 5.5mm, 发送 225 表示移动到瞳距 22.5mm。

3.5 I2C 固件升级寄存器 1

地址偏移: OxAA

复位值: 0x00

位/位域	名称	描述	
7:1	保留	必须保持复位值;	
0	flag	此位置1时,表示需要升级;	

3.6 I2C 固件升级寄存器 2

Copyright © 2023 AAC Technologies. Confidential. All Rights Reserved.

地址偏移: 0x55

复位值: 0x00

位/位域	名称	描述
7:1	保留	必须保持复位值;
0	flag	此位置1时,表示从机可以开始接收主机发送的 升级数据;

3.7 I2C 固件升级校验寄存器 1

地址偏移: 0xDD

复位值: 0x00

说明:用于主机发送数据的校验值

3.8 I2C 固件升级校验寄存器 2

地址偏移: OxEE

复位值: 0x00

说明: 主机读取该寄存器的值,读出 0xee,代表数据校验正确;读出 0x01,代

表校验错误。

3.9 I2C 升级停止寄存器

地址偏移: 0x66

复位值: 0x00

说明:次寄存器仅用于刚上电(10s内),主机向该寄存器发送 0x01,则不进入升级模式;

4、ipd 电机运动实现

控制 ipd 电机,系统启动后,主机通过 I2C 控制寄存器以开始运动,运动过程中如触发极限位则停止运动。

4.1 电机运动速度

单向距离为 8.5mm, 电机速度设置为 10.625 mm/s。

4.2 上报 ipd 位置

从位置查询寄存器读取位置值 pos。

pos=55 表示瞳距 55mm;

pos=225 表示瞳距 225mm;

5、I2C 固件升级

5.1 流程

进入升级模式方法:

1) 上电 10 秒内

1. 主机向 I2C 固件升级寄存器 2(0x55)发送 0x01 提示从机开始接收 I2C 数据,然后主机睡眠 10ms;

2) 上电后

- 1. 主机向 I2C 固件升级寄存器 1(0xAA)发送 0x01 升级命令,然后主机睡眠 0. 5s;
- 2. 主机向 I2C 固件升级寄存器 2(0x55)发送 0x01 提示从机开始接收 I2C 数据,然后主机睡眠 10ms;

Copyright © 2023 AAC Technologies. Confidential. All Rights Reserved.

进入升级模式后:

- 1. 主机发送接下来一次发送的字节个数(一次发 1024 个字节,字节个数分两个 $uint_8$ 发送[比如 1024 个发送 0x04, 0x00],不足 1024 的放在最后一次发送,如果最后一次也是 1024,发完最后一次后,再发送[0x00, 0x00]),然后主机 睡眠 10ms;
- 2. 向 0xdd 寄存器发校验应得的值, 然后主机睡眠 10ms;
- 3. 主机发送数据, 然后主机睡眠 10ms;
- 4. 读 0xee 寄存器,如果读出 0xee,代表校验正确,如果读出 0x01,代表校验错误,重新从第 3 步开始发送这包数据即可;
- 5. 重复1、2、3、4步骤,分多次发送完成升级;

注意: 各步骤需要主机睡眠延时, 给从机响应时间。

5.2 示例

上电后升级流程

1. 发送 0xAA 0x01

ipd_i2c_write(ipd, ipd->i2c->addr, IPD_I2C_TYPE_BYTE, IPD_I2C_TYPE_BYTE,
IPD_UPDATA_FLAG_REG, arg);

usleep (500000);

2. 发送 0x55 0x01

ipd_i2c_write(ipd, ipd->i2c->addr, IPD_I2C_TYPE_BYTE, IPD_I2C_TYPE_BYTE,
IPD_UPDATA_SEND_REG, arg);

usleep(10000);

3.0x0400 表示发送 1024 个字节

ipd_i2c_write(ipd, ipd->i2c->addr, IPD_I2C_TYPE_BYTE, IPD_I2C_TYPE_BYTE,
0x04, 0x00);

usleep(10000);

4. 向 0xDD 寄存器发校验应得的值, 然后主机睡眠 10ms;

ipd_i2c_write(ipd, ipd->i2c->addr, IPD_I2C_TYPE_BYTE, IPD_I2C_TYPE_BYTE,
0xDD, 0x32);

5.1024 字节数据存储在一个 buffer 发送

ipd_i2c_write_data(ipd, ipd->i2c->addr, buffer);

usleep(10000);

6. 读 0xEE 寄存器

i2cget -f -y 2 0x72 0xEE b