Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	5
1.2 Описание выходных данных	5
2 МЕТОД РЕШЕНИЯ	7
З ОПИСАНИЕ АЛГОРИТМОВ	8
3.1 Алгоритм метода Р класса treangle	8
3.2 Алгоритм метода S класса treangle	8
3.3 Алгоритм метода параметризированный конструктор класса treangle	9
3.4 Алгоритм функции main	9
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	10
5 КОД ПРОГРАММЫ	11
5.1 Файл main.cpp	11
5.2 Файл treangle.cpp	11
5.3 Файл treangle.h	12
6 ТЕСТИРОВАНИЕ	13
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	14

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект «треугольник», который содержит длины сторон треугольника.

Значения длин сторон натуральные числа.

Объект вычисляет периметр и площадь треугольника.

Функционал:

- параметризированный конструктор с параметрами длин сторон;
- метод вычисления и возврата значения периметра;
- метод вычисления и возврата значения площади.

Написать программу:

- 1. Вводит стороны треугольника.
- 2. Создает объект «треугольник»,
- 3. Выводит периметр.
- 4. Выводит площадь.

1.1 Описание входных данных

Три целых числа, соответствующие длинам сторон треугольника, разделенные пробелом.

Подразумевается, что для заданных данных треугольник существует.

1.2 Описание выходных данных

Первая строка:

P = «периметр»

Вторая строка:

S = «площадь»

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект obj класса treangle предназначен для вычисление периметра и площади треугольника;
- cin объект стандартного потока ввода;
- cout объект стандартного оптока вывода.

Класс treangle:

- свойства/поля:
 - о поле 1 сторона треугольника:
 - наименование а;
 - тип int;
 - модификатор доступа private;
 - о поле 2 сторона треугольника:
 - наименование b;
 - тип int;
 - модификатор доступа private;
 - о поле 3 сторона треугольника:
 - наименование c;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод Р возвращает значение периметра треугольника;
 - о метод S возвращает значение площади треугольника;
 - метод параметризированный конструктор параметризированный конструктор с параметрами длин сторон.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм метода Р класса treangle

Функционал: возвращает значение периметра треугольника.

Параметры: none.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 1.

Таблица 1 – Алгоритм метода Р класса treangle

N₂	Предикат	Действия	N₂
			перехода
1		возвращение значение периметра треугольника	Ø

3.2 Алгоритм метода S класса treangle

Функционал: возвращает значение площади треугольника.

Параметры: none.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода S класса treangle

No	Предикат	Действия	N₂
			перехода
1		возвращение значение площади треугольника	Ø

3.3 Алгоритм метода параметризированный конструктор класса treangle

Функционал: параметризированный конструктор с параметрами длин сторон.

Параметры: int a, int b, int c.

Возвращаемое значение: none.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода параметризированный конструктор класса treangle

N₂	Предикат	Действия	No
			перехода
1		передает закрытому свойству а значение параметра а	2
2		передает закрытому свойству b значение параметра b	3
3		передает закрытому свойству с значение параметра с	Ø

3.4 Алгоритм функции main

Функционал: запуск программы.

Параметры: нет.

Возвращаемое значение: int - код ошибки.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции таіп

N₂	Предикат	Действия	
			перехода
1		объявление переменных a, b, c типа int	2
2		ввод значений переменных a, b, c c клавиатуры	3
3		создание объекта obj класса treangle с параметрами a, b, c	4
4		вывод на экран "P = (возвращаемое значение P у объекта obj)"	5
5		вывод на экран "S = (возвращаемое значение S у объекта obj)"	6
6		возврат значения 0	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-1.

Рисунок 1 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "treangle.h"

using namespace std;

int main()
{
   int a, b, c;
   cin>>a>>b>>c;
   treangle obj(a, b, c);
   cout<<"P = "<<obj.P()<<endl;
   cout<<"S = "<<obj.S()<<endl;
   return(0);
}</pre>
```

5.2 Файл treangle.cpp

Листинг 2 – treangle.cpp

```
#include "treangle.h"
#include <iostream>
#include <math.h>

using namespace std;

treangle::treangle(int a, int b, int c)
{
    this->a=a;
    this->b=b;
    this->c=c;
}
int treangle::P()
```

```
{
    return a+b+c;
}
double treangle::S()
{
    double p = (a+b+c)/2.0;
    return sqrt(p*(p-a)*(p-b)*(p-c));
}
```

5.3 Файл treangle.h

Листинг 3 – treangle.h

```
#ifndef __TREANGLE__H
#define __TREANGLE__H

class treangle
{
    private:
        int a;
        int b;
        int c;
    public:
        treangle(int a, int b, int c);
        int P();
        double S();
};
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 5.

Таблица 5 – Результат тестирования программы

Входные данные	Ожидаемые выходные	Фактические выходные
	данные	данные
1 1 1	P = 3 S = 0.433013	P = 3 S = 0.433013

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).