Лабораторная работа № 2 «Метод стрельбы решения граничной задачи для ОДУ»

Срок сдачи: 21.10.2022

Найти численное решение линейной граничной задачи методом стрельбы с шагом h=0.01. Для численного решения задач Коши использовать метод, указанный в варианте задания. Сравнить найденное численное решение с точным решением u(x), т.е. найти $\|u(x)-y(x)\|_{\omega_h}$. В одной системе координат построить график функции u(x) и график полученного численного решения. Оценить погрешность полученного приближенного решения с помощью правила Рунге.

Варианты заданий

Номер варианта	Граничная задача	Точное решение	Метод
1	u'' + (x+1)u' - 2u = 4(2x-1), 2u(0.5) - u'(0.5) = 3, u(1.5) = 0.5	$u(x) = 2(x-1)^2$	Явный метод средних прямоугольников
2	u'' + xu' - 2u = -6, u(0) - 5u'(0) = 4, u(1) + u'(1) = 7	$u(x) = x^2 + 4$	Явный метод трапеций
3	$u'' + \frac{3}{2(3x+1)}u' - \sqrt{3x+1}u = 2(3x+1),$ u(0) - u'(0) = 1, u(1) + 2u'(1) = -7	$u(x) = -2\sqrt{3x+1}$	Метод Рунге-Кутта 3 порядка точности
4	$u'' + \frac{4x}{x^2 + 1}u' - \frac{1}{x^2 + 1}u = -\frac{3}{(x^2 + 1)^2},$ 3u(0) - 2u'(0) = 3, 2u(1) = 1	$u(x) = \frac{1}{x^2 + 1}$	Метод Рунге-Кутта 4 порядка точности
5	$u'' - xu' - xu = -e^{-x},$ 3u(0) - 2u'(0) = 3, u(1) + 2u'(1) = 0	$u(x) = (x+1)e^{-x}$	Явный метод средних прямоугольников
6	$u'' + \frac{2}{x}u' = \frac{3}{x^2},$ u'(0.5) = 6, u(1) + u'(1) = 3	$u(x) = 3\ln x$	Явный метод трапеций
7	$u'' + \frac{3x}{x^2 + 1}u' - \frac{2}{x^2 + 1}u = -\frac{4x^2 + 8}{(x^2 + 1)^3},$ 5u(0.5) = 8, 3u(1) + 2u'(1) = 1	$u(x) = \frac{2}{x^2 + 1}$	Метод Рунге-Кутта 3 порядка точности
8	$u'' - \frac{3}{x}u' = \frac{4}{x^2},$ u'(0.5) = -2, 3u(1) + 2u'(1) = 1	$u(x) = 1 - \ln x$	Метод Рунге-Кутта 4 порядка точности
9	u'' + (x-1)u' - 2u = 6 + 2x, $u(0.5) = -\frac{7}{4}, u(1) + u'(1) = -5$	$u(x) = x^2 - 4x$	Явный метод средних прямоугольников
10	$u'' - 3(x+1)^{2}u' - \frac{2}{(x+1)^{2}}u = 3,$ u(0) = 1, u(1) + 6u'(1) = -1	$u(x) = \frac{1}{x+1}$	Явный метод трапеций

11	$u'' + xu' - 3u = 4 + 6x - 2x^{2},$ 4u'(0.5) = 11, u(1) + u'(1) = 10	$u(x) = x^3 + 2x^2$	Метод Рунге-Кутта 3 порядка точности
12	$u'' - xu' - xu = -4e^{-x},$ $u'(0) = 2, u(1) + u'(1) = 2e^{-1}$	$u(x) = 2xe^{-x}$	Метод Рунге-Кутта 4 порядка точности
13	$u'' + \frac{2}{x+1}u' - 3(x+1)^2 u = 3(x+1),$ u(0.5) - 3u'(0.5) = -2, u(1) + 2u'(1) = 0	$u(x) = -\frac{1}{x+1}$	Явный метод средних прямоугольников

По результатам лабораторной работы оформляется отчет. Он должен содержать:

- постановку задачи с учетом предложенного варианта;
- краткие теоретические сведения: привести все задачи Коши необходимые для решения граничной задачи методом стрельбы (количество решаемых задач Коши должно быть минимальным); привести метод, применяемый для численного решения задач Коши;
- результаты решения поставленной задачи;
- выволы:
- листинг программы с комментариями.

Отчет необходимо отправить на <u>yvolotovskaya@gmail.com</u>. **Тема письма**: «ЛР2 3к 1гр Фамилия».