Associação entre Variáveis Quantitativas

Como visto nas aulas de probabilidade, quando dispomos de informações de duas ou mais variáveis, um dos principais objetivos é descrever a associação entre elas.

Para variáveis quantitativas, uma forma inicial de explorar essa associação é utilizando um diagrama de dispersão. Cada par ordenado (x,y) observado é representado por um ponto em um gráfico cartesiano.

Abaixo podemos ver alguns exemplos das possíveis formas que um diagrama de dispersão pode apresentar:

Figura 1: Diagrama de dispersão: (a) indica correlação positiva, (b) correlação negativa e (c) ausência de correlação linear.

A linha exibida nos gráficos é a linha que melhor descreve o comportamento linear entre as variáveis. Veremos algumas medidas que indicam o grau das relações lineares entre as variáveis

quantitativas. Sejam duas variáveis X e Y, as medidas de covariância e o coeficiente de correlação medem a linearidade da relação entre as variáveis consideradas.

Covariância: Dados n pares de valores $(x_1, y_2), \ldots, (x_n, y_n)$, chamaremos de covariância entre X e Y a medida:

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n}.$$

Essa medida de covariância pode assumir valores no intervalo $(-\infty, \infty)$, e por isso é de difícil interpretação pois depende muito da escala das variáveis consideradas. Uma padronização na medida de covariância permite limitar o intervalo de valores possíveis, simplificando a interpretação dos resultados.

Coeficiente de Correlação:

$$corr(X,Y) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{\sqrt{V(x)}} \right) \left(\frac{y_i - \bar{y}}{\sqrt{V(y)}} \right) = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}}{\sqrt{(\sum_{i=1}^{n} x_i^2 - n\bar{x}^2)(\sum_{i=1}^{n} y_i^2 - n\bar{y}^2)}},$$

ou

$$\operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{V}(X)}\sqrt{\operatorname{V}(Y)}}.$$

Uma propriedade importante é que $-1 \le \operatorname{corr}(X,Y) \le 1$, sendo que corr=0 quando não há correlação linear entre as variáveis X e Y. Quanto mais próximo de -1 ou de 1 mais forte é a dependência linear entre as variáveis. Se a relação entre as variáveis for linear na forma Y = a + bX, então $\operatorname{corr} = 1$ e no caso Y = a - bX, temos $\operatorname{corr} = -1$.

Se X e Y forem independentes cov(X,Y) = corr(X,Y) = 0, entretanto cov(X,Y) = corr(X,Y) = 0 não implicam independência, mas apenas falta de linearidade na relação entre as variáveis.

Exemplo

Consideremos os dados de pesquisa feita com 10 famílias, em que foram avaliados a renda bruta mensal (expressa em número de salários mínimos), e a porcentagem da renda bruta anual gasta com assistência médica.

Familia	X	Y
A	12	7,2
В	16	7,4
\mathbf{C}	18	7,0
D	20	6,5
\mathbf{E}	28	6,6
${ m F}$	30	6,7
G	40	6,0
Η	48	5,6
I	50	6,0
J	54	5,5

Para calcular a covariância e correlação precisamos calcular $\bar{x}=31,6,\ \bar{y}=6,45,\ V(x)=214,24$ e V(y)=0,3885 e assim temos:

$$Cov(x,y) = \frac{(12-31,6)(7,2-6,45) + (16-31,6)(7,4-6,45) + \dots + (54-31,6)(5,5-6,45)}{n}$$
 $Cov(x,y) = -8,58$

$$Corr(x,y) = \frac{Cov(x,y)}{\sqrt{V(x)V(y)}} = \frac{-8,58}{\sqrt{214,240,3885}} = -0,9404625$$
 (1)

O gráfico de dispersão das variáveis observadas tem a seguinte forma:

