

Theoretical Deep Learning #2: generalization ability

Eugene Golikov MIPT, fall 2019

Neural Networks and Deep Learning Lab., MIPT

Notation and goal

- Data distribution: \mathcal{D} ;
- Dataset: $S_n = \{(x_i, y_i)\}_{i=1}^n \sim \mathcal{D}^n$, where all $y_i \in \{-1, 1\}$, all $x_i \in X$;
- Model: $f: X \to \mathbb{R}$;
- Loss function I(y, f(x));
- Risk: $R(f) = \mathbb{E}_{(x,y) \sim \mathcal{D}} I(y, f(x));$
- Empirical risk: $\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n I(y_i, f(x_i));$
- Result of learning on dataset S_n : $\hat{f}_n = \mathcal{A}(S_n) \in \mathcal{F}$.

Our goal is to bound the risk difference:

$$R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \leq \text{bound}(N(\hat{f}_n), n, \delta)$$
 w.p. $\geq 1 - \delta$ over S_n .

1

Bounds for deterministic A:

• Finite \mathcal{F} :

$$R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \leq \sqrt{\frac{1}{2n} \left(\log \frac{1}{\delta} + \log |\mathcal{F}|\right)} \quad \text{w.p. } \geq 1 - \delta \text{ over } S_n.$$

• At most countable \mathcal{F} (McAllester, 1998)¹:

$$R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \leq \sqrt{\frac{1}{2n} \left(\log \frac{1}{\delta} + \log \frac{1}{P(\hat{f}_n)}\right)} \quad \text{w.p. } \geq 1 - \delta \text{ over } S_n,$$

where P is a distribution over \mathcal{F} (**prior**).

¹Preliminary theorem 2 in http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.1745&rep=rep1&type=pdf

Consider stochastic learning algorithm: $\hat{f}_n = \mathcal{A}(S_n) \sim Q|S_n$.

Define $R(Q) := \mathbb{E}_{f \sim Q} R(f), \quad \hat{R}_n(Q) := \mathbb{E}_{f \sim Q} \hat{R}_n(f).$

Corresponding bound:

$$R(Q|S_n) - \hat{R}_n(Q|S_n) \leq \operatorname{bound}(N(Q|S_n), n, \delta)$$
 w.p. $\geq 1 - \delta$ over S_n .

PAC-bayesian bound (McAllester, 1999)²:

$$R(Q|S_n) - \hat{R}_n(Q|S_n) \leq \sqrt{rac{1}{2n-1} \left(\log rac{4n}{\delta} + \mathit{KL}(Q|S_n \parallel P)
ight)} \quad ext{w.p.} \geq 1 - \delta$$

for any distribution P on \mathcal{F} .

Define: $\Delta_n(f) := |R(f) - \hat{R}_n(f)|.$

Lemma (McAllester, 1999)³:

$$\mathbb{E}_{f \sim P} e^{(2n-1)\Delta_n(f)^2} \leq \frac{4n}{\delta}$$
 w.p. $\geq 1 - \delta$ over S_n

for any distribution P on \mathcal{F} .

Lemma (Donsker & Varadhan):

Let P and Q be distributions on X. Then:

$$KL(P \parallel Q) = \sup_{h: X \to \mathbb{R}} \left(\mathbb{E}_{x \sim P} h(x) - \log \mathbb{E}_{x \sim Q} e^{h(x)} \right).$$

³Lemma 17 in http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1. 21.1908&rep=rep1&type=pdf

Lemma (Langford & Seeger, 2001)⁴:
$$\mathbb{E}_{f \sim P} e^{(n-1)KL(\hat{R}_n(f) \parallel R(f))} \leq \frac{2n}{\delta} \quad \text{w.p.} \geq 1 - \delta \text{ over } S_n$$

for any distribution P on \mathcal{F} .

Theorem (Langford & Seeger, 2001)⁵:

$$\mathit{KL}(\hat{R}_n(Q|S_n) \parallel R(Q|S_n)) \leq \frac{1}{n-1} \left(\log \frac{2n}{\delta} + \mathit{KL}(Q|S_n \parallel P)\right) \quad \text{w.p. } \geq 1-\delta$$

for any distribution P on \mathcal{F} .

⁴Lemma 2 in http:

^{//}hunch.net/~jl/projects/prediction_bounds/averaging/averaging_tech.pdf ⁵Theorem 3 there.

Let $X_{1:n}$ be i.i.d., $X_i \sim \mathcal{B}(p) \ \forall i$.

Hoeffding's inequality:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^n X_i \geq p + \epsilon\right) \leq e^{-2n\epsilon^2}; \qquad \mathbb{P}\left(\frac{1}{n}\sum_{i=1}^n X_i \leq p - \epsilon\right) \leq e^{-2n\epsilon^2}.$$

Chernoff-Hoeffding's inequality:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} \geq p + \epsilon\right) \leq e^{-nKL(p+\epsilon \parallel p)};$$

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} \leq p - \epsilon\right) \leq e^{-nKL(p-\epsilon \parallel p)}.$$

PAC-bayesian bound (McAllester, 1999):

$$R(Q|S_n) - \hat{R}_n(Q|S_n) \leq \sqrt{rac{1}{2n-1} \left(\log rac{4n}{\delta} + \mathit{KL}(Q|S_n \parallel P)
ight)} \quad \text{w.p. } \geq 1-\delta$$

for any distribution P on \mathcal{F} .

- **Pros:** Depends on learned predictor \hat{f}_n .
- Cons: Vacuous if $P(A) = 0 \Rightarrow Q(A) = 0$. For example, if $P(\{\hat{f}_n\}) = 0$ for $Q|S_n = \delta_{\hat{f}_n}$ we have $KL(Q|S_n \parallel P) = +\infty$.

7

Let \mathcal{F} be a set of neural nets of a given architecture.

Denote $f_{\mathbf{w}} \in \mathcal{F}$ a neural net with weights $\mathbf{w} \in \mathcal{W}$.

Consider deterministic learning algorithm $\hat{\mathbf{w}}_n = \mathcal{A}(S_n)$. Then $\hat{f}_n = f_{\hat{\mathbf{w}}_n}$.

PAC-bayesian bound:

Take any distribution P on \mathcal{W} . Then, $\forall \delta \in (0,1)$ w.p. $\geq 1-\delta$ over dataset S_n for any distribution $Q|S_n$ on \mathcal{W}

$$R(Q|S_n) - \hat{R}_n(Q|S_n) \leq \sqrt{\frac{1}{2n-1}} \left(\log \frac{4n}{\delta} + KL(Q|S_n \parallel P) \right).$$

If we take $Q|S_n = \delta_{\hat{\mathbf{w}}_n}$ and $P: \forall \mathbf{w} \ P(\{\mathbf{w}\}) = 0$, we get $\mathit{KL}(Q|S_n \parallel P) = \infty$.

8

If we take
$$Q|S_n = \delta_{\hat{\mathbf{w}}_n}$$
 and $P: \forall \mathbf{w} \ P(\{\mathbf{w}\}) = 0$, we get $KL(Q|S_n \parallel P) = \infty$.

Ways to deal with it:

• Stochastization (Dziugaite & Roy, 2017)⁶:

With prob. $\geq 1 - \delta$ over S_n for any $Q|S_n$:

$$R(Q|S_n) \leq \hat{R}_n(Q|S_n) + \text{bound}(KL(Q|S_n || P), n, \delta).$$

Minimize RHS over Q inside some class Q:

$$\mathrm{RHS} := \hat{R}_n(Q|S_n) + \mathrm{bound}(\mathit{KL}(Q|S_n \parallel P), n, \delta) \to \min_{Q \in \mathcal{Q}}.$$

⁶https://arxiv.org/abs/1703.11008

Replace risk R with its differentiable convex surrogate \mathcal{L} :

$$\mathrm{RHS} \leq \mathrm{RHS}' := \hat{\mathcal{L}}_n\big(Q|S_n\big) + \mathrm{bound}\big(\mathcal{KL}\big(Q|S_n \parallel P\big), n, \delta\big) \to \min_{Q \in \mathcal{Q}}.$$

Instantiating Q and P:

Take $Q = {\tilde{\mathcal{N}}(\mathbf{w}, \text{diag} \exp \mathbf{u}), \ \mathbf{w}, \mathbf{u} \in \mathcal{W}}$ and $P = \mathcal{N}(\mathbf{w}_*, \exp u_*I)$.

Then,

$$\hat{\mathcal{L}}_n(Q) = \mathbb{E}_{\xi \sim \mathcal{N}(0,I)} \hat{\mathcal{L}}_n(\mathbf{w} + \xi \odot \exp \mathbf{u});$$

$$KL(Q \parallel P) = \frac{1}{2} \left(\frac{1}{\exp u_*} \left(\| \exp \mathbf{u} \|_1 + \| \mathbf{w} - \mathbf{w}_* \|_2^2 \right) + \dim \mathcal{W} \left(u_* - 1 \right) - 1 \cdot \mathbf{u} \right).$$

Hence we can optimize RHS' over w and u via GD.

Start optimization from $\mathbf{w}^{(0)} = \hat{\mathbf{w}}_n$, $\mathbf{u}^{(0)} \ll -1$.

$$\mathit{KL}(Q \parallel P) = \frac{1}{2} \left(\frac{1}{\exp u_*} \left(\| \exp \mathbf{u} \|_1 + \| \mathbf{w} - \mathbf{w}_* \|_2^2 \right) + \dim \mathcal{W} \left(u_* - 1 \right) - 1 \cdot \mathbf{u} \right).$$

Choosing w_{*}:

Let $\mathcal{A}(\cdot)$ be GD starting from \mathbf{w}_{init} .

Take $\mathbf{w}_* = \mathbf{w}_{init}$. Then, bound depends on $\|\mathbf{w} - \mathbf{w}_{init}\|_2$.

Choosing u_* :

Define $u_{*,j}=\log c-j/b$, where c,b>0, $j\in\mathbb{N}$. Take $\delta_j=\frac{6\delta}{\pi^2j^2}$. Then, w.p. $\geq 1-\delta$ over S_n for any $j\in\mathbb{N}$ and Q:

$$R(Q) \leq \hat{\mathcal{L}}_n(Q) + \sqrt{\frac{KL(Q \parallel \mathcal{N}(\mathbf{w}_*, u_{*,j}I)) + \log(4n) - \log \delta_j}{2n - 1}}.$$

Equivalently, w.p. $\geq 1 - \delta$ over S_n for any u_* from a set, and any Q:

$$R(Q) \leq \hat{\mathcal{L}}_n(Q) + \sqrt{\frac{KL(Q \| \mathcal{N}(\mathbf{w}_*, u_*I)) + \log \frac{2\pi^2 b^2 n}{3\delta} + \log(\log c - u_*)^2}{2n - 1}}$$

We can optimize RHS' over u_* .

If we take $Q|S_n = \delta_{\hat{\mathbf{w}}_n}$ and $P: \forall \mathbf{w} \ P(\{\mathbf{w}\}) = 0$, we get $KL(Q|S_n \parallel P) = \infty$.

Ways to deal with it:

Compression & coding (Zhou et al., 2019)⁷:
 Let |w|_c — number of bits required to encode w with coding c.
 Coding-based prior:

$$P_c(\mathbf{w}) = \frac{1}{Z} m(|\mathbf{w}|_c) 2^{-|\mathbf{w}|_c},$$

where $m(\cdot)$ — some probability measure on \mathbb{Z} . Then,

$$KL(\delta_{\hat{\mathbf{w}}_n} \parallel P_c) \leq |\hat{\mathbf{w}}_n|_c \log 2 - \log(m(|\hat{\mathbf{w}}_n|_c)).$$

Need to make $|\hat{\mathbf{w}}_n|_c$ small.

⁷https://openreview.net/forum?id=BJgqqsAct7

Compressing $\hat{\mathbf{w}}_n$:

$$(S, Q, C) := \text{Compress}(\mathbf{w}),$$

where

- $S = \{s_1, \dots, s_k\} \subset \{1, \dots, \dim \mathcal{W}\}$ location of non-zero weights,
- $C = \{c_1, \ldots, c_r\} \subset \mathbb{R}$ a codebook,
- $Q = \{q_1, \dots, q_k\}$, $q_i \in \{1, \dots, r\}$ quantized values.

Then, compressed weights $\tilde{\mathbf{w}}$ will be:

$$\tilde{\mathbf{w}}_i = c_{q_j}$$
 if $i = s_j$ else 0.

Hence

$$|\operatorname{Compress}(\hat{\mathbf{w}}_n)|_c = |S|_c + |Q|_c + |C|_c \le k(\log \dim \mathcal{W} + \log r) + 32r.$$

Good generalization bound if:

1. Solutions found by ${\mathcal A}$ are well-compressible, i.e.

$$|\text{Compress}(\hat{\mathbf{w}}_n)|_c$$
 is small;

2. Compression doesn't lead to performance degradation, i.e.

$$R(\tilde{\hat{\mathbf{w}}}_n) \approx R(\hat{\mathbf{w}}_n).$$

Let
$$R_{\gamma}(f) = \mathbb{E}_{x,y \sim \mathcal{D}}[yf(x) < \gamma] - \gamma$$
-margin risk.

PAC-bayesian bound:

Take any distribution P on \mathcal{W} . Then, $\forall \delta \in (0,1)$ w.p. $\geq 1-\delta$ over dataset S_n for any $\mathbf{w} \in \mathcal{W}$ and any RV \mathbf{u} on \mathcal{W}

$$\mathbb{E}_{\mathbf{u}}R_0(f_{\mathbf{w}+\mathbf{u}}) \leq \mathbb{E}_{\mathbf{u}}\hat{R}_{n,0}(f_{\mathbf{w}+\mathbf{u}}) + \sqrt{\frac{KL(\mathbf{w}+\mathbf{u} \parallel P) + \log \frac{4n}{\delta}}{2n-1}}.$$

Let $R_{\gamma}(f) = \mathbb{E}_{x,y \sim \mathcal{D}}[yf(x) < \gamma]$ — γ -margin risk.

Lemma 1 (Neyshabur et al., 2018)8:

Take any distribution P on \mathcal{W} . Then, $\forall \delta \in (0,1), \gamma > 0$ w.p. $\geq 1 - \delta$ over dataset S_n for any $\mathbf{w} \in \mathcal{W}$ and any RV \mathbf{u} on \mathcal{W} s.t.

$$\mathbb{P}_{u}\left(\max_{x}|f_{\mathbf{w}+\mathbf{u}}(x)-f_{\mathbf{w}}(x)|<\gamma/2\right)\geq 1/2$$

the following holds:

$$R_0(f_{\mathbf{w}}) \leq \hat{R}_{n,\gamma}(f_{\mathbf{w}}) + \sqrt{\frac{2KL(\mathbf{w} + \mathbf{u} \parallel P) + \log \frac{16n}{\delta}}{2n - 1}}.$$

⁸https://openreview.net/forum?id=Skz_WfbCZ

Let
$$\mathbf{w} = \{W_l\}_{l=1}^L$$
, and

$$f_{\mathbf{w}}(x) = W_L \sigma(W_{L-1} \dots \sigma(W_1 x)),$$

where $\sigma(z) = [z]_+$. Define $\mathcal{X}_B := \{x : ||x||_2 < B\}$.

Lemma 2 (Neyshabur et al., 2018):

 $\forall B > 0, x \in \mathcal{X}_B, \mathbf{w} \in \mathcal{W}$, for any perturbation $\mathbf{u} = \{U_l\}_{l=1}^L$ s.t. $\|U_l\|_2 \leq \frac{1}{l} \|W_l\|_2$ the following holds:

$$|f_{\mathbf{w}+\mathbf{u}}(x) - f_{\mathbf{w}}(x)| \le eB\left(\prod_{l=1}^{L} ||W_l||_2\right) \sum_{l=1}^{L} \frac{||U_l||_2}{||W_l||_2}.$$

Let $W_l \in \mathbb{R}^{d_l \times d_{l-1}}$. Define $d := \max_l d_l$ — maximal width.

Theorem (Neyshabur et al., 2018):

Assume $X_n \in \mathcal{X}_B$ a.s. for some B > 0. Then $\forall \delta \in (0,1), \gamma > 0$ w.p.

 $\geq 1-\delta$ over dataset \mathcal{S}_n for any $\mathbf{w} \in \mathcal{W}$

$$\begin{split} R_0(f_{\mathbf{w}}) & \leq \hat{R}_{n,\gamma}(f_{\mathbf{w}}) + \\ & + O\left(\sqrt{\frac{B^2L^2d\log(Ld)\prod_{l=1}^L\|W_l\|_2^2\sum_{l=1}^L\frac{\|W_l\|_F^2}{\|W_l\|_2^2} + \gamma^2\log\frac{Ln}{\delta}}{\gamma^2n}}\right). \end{split}$$

Let $\mathcal{F}, \mathcal{G} \in \mathbb{R}^{\mathcal{X}}$ be sets of predictors on \mathcal{X} .

Definitions:

- Let $\hat{f}_n = \mathcal{A}(S_n) \in \mathcal{F}$ predictor learned on dataset S_n .
- Let $X \subset \mathcal{X}$. f is (γ, X) -compressible via \mathcal{G} if $\exists g \in \mathcal{G}$:

$$|f(x) - g(x)| \le \gamma \quad \forall x \in X.$$

We say "f is (γ, X) -compressible with g".

• For $g \in \mathcal{G}$ let $|g|_c$ be code length of g wrt coding c.

Lemma 1:

Let p(z) be pdf on \mathbb{N} . Let \hat{f}_n be (γ, X_n) -compressible with $\hat{g}_n \in \mathcal{G}$ w.p. $\geq 1 - \zeta$ over S_n . Then $\forall \delta \in (0,1)$ w.p. $\geq 1 - \zeta - \delta$ over S_n

$$R_0(\hat{g}_n) \leq \hat{R}_{n,\gamma}(\hat{f}_n) + \sqrt{\frac{|\hat{g}_n|_c \log 2 - \log p(|\hat{g}_n|_c) - \log \delta}{2n}}.$$

Corollary:

Let p(z) be pdf on \mathbb{N} . Assume $X_n \in \mathcal{X}_B$ a.s. for some B > 0. Let \hat{f}_n be (γ, \mathcal{X}_B) -compressible with $\hat{g}_n \in \mathcal{G}$ a.s. over S_n . Then $\forall \delta \in (0,1)$ w.p. $\geq 1 - \delta$ over S_n

$$R_0(\hat{f}_n) \leq \hat{R}_{n,2\gamma}(\hat{f}_n) + \sqrt{\frac{|\hat{g}_n|_c \log 2 - \log p(|\hat{g}_n|_c) - \log \delta}{2n}}.$$

Instantiating the bound:

Let
$$\mathcal{F} = \{f_{\mathbf{w}}, \mathbf{w} \in \mathbb{R}^m\}.$$

- 1. Discretize weights of \mathcal{F} :
 - Consider only weights with $\|\mathbf{w}\|_{\infty} \leq w_{max}$.
 - Let $\mathcal{G} = \{f_{\mathbf{w}}, \ \mathbf{w} \in A_K^m\}$, where $A_K = \{w_{max}k/K, \ k = -K, \dots, K\}$.
 - **Proposition 1:** For sufficiently large K \hat{f}_n with $\|\hat{\mathbf{w}}_n\|_{\infty} \leq w_{max}$ is (γ, \mathcal{X}_B) -compressible via \mathcal{G} a.s. over S_n .

Compute code length:

$$|\hat{g}_n|_c = m \log_2(2K+1).$$

 $|\hat{g}_n|_c \ge m \Rightarrow$ the bound is vacuous.

Instantiating the bound:

Let $\mathbf{w} = \text{vec}(\{W_l\}_{l=1}^L) \in \mathbb{R}^m$, where $W_l \in \mathbb{R}^{d_l \times d_{l-1}}$, and

$$f_{\mathbf{w}}(x) = W_L \sigma(W_{L-1} \dots \sigma(W_1 x)),$$

where $\sigma(z) = [z]_+$. Define $d = \max_l d_l$.

1. Reparameterize weights of \mathcal{F} :

- Substitute W_l with U_lV_l for $U_l \in \mathbb{R}^{d_l \times r_l}$, $V_l \in \mathbb{R}^{r_l \times d_{l-1}}$, $r_l = \operatorname{rk} W_l$.
- Define $\mathcal{F}' = \bigcup_{r_{1:l}=1}^{d} \{ f_{\mathbf{u} \times \mathbf{v}}, \ \mathbf{u} = \text{vec}(\{U_l\}_{l=1}^{L}), \mathbf{v} = \text{vec}(\{V_l\}_{l=1}^{L}) \}.$

2. Discretize weights of \mathcal{F}' :

- Let $\mathcal{G} = \{f_{\mathbf{u} \times \mathbf{v}}, \ \mathbf{u} \in A_K^{m_u}, \mathbf{v} \in A_K^{m_v}\}.$
- **Proposition 1':** For sufficiently large K $\hat{f}_n = f_{\hat{\mathbf{u}}_n \times \hat{\mathbf{v}}_n}$ with $\|\hat{\mathbf{w}}_n\|_{\infty} \leq O(w_{max})$ is (γ, \mathcal{X}_B) -compressible via \mathcal{G} a.s. over S_n .

$$|\hat{g}_n|_c \le L \log_2 d + 2d \sum_{l=1}^L \hat{r}_{n,l} \log_2(2K+1).$$

Non-vacuous if $\hat{r}_{n,l} \ll d$.

Instantiating the bound (Arora et al., 2018)⁹:

- 1. Compress weights of \mathcal{F} :
 - Define W_l^{α} as W_l with sing. values $<\alpha ||W_l||_2$ substituted with zero.
 - **Proposition 2:** For sufficiently small α $\hat{f}_n = f_{\hat{\mathbf{w}}_n}$ is (γ, \mathcal{X}_B) -compressible with $\hat{f}_n^{\alpha} = f_{\hat{\mathbf{w}}_n^{\alpha}}$ a.s. over S_n .
 - Denote $\hat{r}_{n,l}^{\alpha} = \operatorname{rk} \hat{W}_{n,l}^{\alpha}$.
- 2. Reparameterize weights of \mathcal{F} :
 - $\bullet \ \, \mathsf{Define} \,\, \mathcal{F}' = \cup_{r_{1:l}=1}^d \{f_{\mathbf{u} \times \mathbf{v}}, \,\, \mathbf{u} = \mathrm{vec}(\{\mathit{U}_l\}_{l=1}^L), \mathbf{v} = \mathrm{vec}(\{\mathit{V}_l\}_{l=1}^L)\}.$
- 3. **Discretize weights of** \mathcal{F}' **.** Compute code length:

$$|\hat{g}_n|_c \le L \log_2 d + 2d \sum_{l=1}^L \hat{r}_{n,l}^{\alpha} \log_2(2K+1).$$

⁹http://proceedings.mlr.press/v80/arora18b.html

Compress weights of \mathcal{F} :

- Define W_I^{α} as W_I with sing. values $<\alpha ||W_I||_2$ substituted with zero.
- Lemma 2 (Arora et al., 2018)¹⁰:

$$\|W_I^{\alpha} - W_I\|_2 \le \alpha \|W_I\|_2, \quad \text{rk } W_I^{\alpha} \le \frac{\|W_I\|_F^2}{\alpha^2 \|W_I\|_2^2}.$$

• Proposition 2: For $\alpha = \gamma (eBL \prod_{l=1}^{L} \|\hat{W}_{n,l}\|_2)^{-1} \hat{f}_n = f_{\hat{\mathbf{w}}_n}$ is (γ, \mathcal{X}_B) -compressible with $\hat{f}_n^{\alpha} = f_{\hat{\mathbf{w}}_n^{\alpha}}$ a.s. over S_n .

$$\hat{r}_{n,l}^{\alpha} = \operatorname{rk} \hat{W}_{n,l}^{\alpha} \leq e^{2} B^{2} L^{2} \gamma^{-2} \left(\prod_{l=1}^{L} \|\hat{W}_{n,l}\|_{2}^{2} \right) \frac{\|W_{l}\|_{F}^{2}}{\|W_{l}\|_{2}^{2}}.$$

 $^{^{10}}$ Lemma 1 in http://proceedings.mlr.press/v80/arora18b.html

Discretize weights of \mathcal{F} :

- Consider only weights with $\|\mathbf{u}\|_{\infty} \leq w_{max}$ and $\|\mathbf{v}\|_{\infty} \leq w_{max}$.
- Let $\mathcal{G} = \{ f_{\mathbf{u} \times \mathbf{v}}, \ \mathbf{u} \in A_K^{m_u}, \mathbf{v} \in A_K^{m_v} \}.$
- **Proposition 1':** For sufficiently large K $\hat{f}_n = f_{\hat{\mathbf{u}}_n \times \hat{\mathbf{v}}_n}$ with $\|\hat{\mathbf{w}}_n\|_{\infty} \leq O(w_{max})$ is (γ, \mathcal{X}_B) -compressible via \mathcal{G} a.s. over \mathcal{S}_n .

Compute code length:

$$\begin{split} |\hat{g}_{n}|_{c} &\leq L \log_{2} d + 2d \sum_{l=1}^{L} \hat{r}_{n,l} \log_{2}(2K+1) = \\ &= L \log_{2} d + 2de^{2}B^{2}L^{2}\gamma^{-2} \log_{2}(2K+1) \left(\prod_{l=1}^{L} \|\hat{W}_{n,l}\|_{2}^{2} \right) \sum_{l=1}^{L} \frac{\|W_{l}\|_{F}^{2}}{\|W_{l}\|_{2}^{2}} = \\ &= O\left(dB^{2}L^{2}\gamma^{-2} \log_{2}(2K+1) \left(\prod_{l=1}^{L} \|\hat{W}_{n,l}\|_{2}^{2} \right) \sum_{l=1}^{L} \frac{\|W_{l}\|_{F}^{2}}{\|W_{l}\|_{2}^{2}} \right). \end{split}$$