CLAIMS:

1. A 38-residue CRFR1 ligand peptide which binds to CRFR1 with an affinity substantially greater than it binds to CRFR2, which peptide has the following formula, or a nontoxic salt thereof:

Y₁-Pro-Pro-R₆-Ser-R₈-Asp-R₁₀-R₁₁-D-Phe-R₁₃-R₁₄-R₁₅-Arg-R₁₇-R₁₈-R₁₉-R₂₀-R₂₁-R₂₂-R₂₃-R₂₄-R₂₅-R₂₆-R₂₇-R₂₈-R₂₉-Gln-Glu-R₃₂-R₃₃-R₃₄-Arg-R₃₆-R₃₇-R₃₈-R₃₉-R₄₀-R₄₁-NH₂ wherein Y₁ is an acyl group having not more than 15 carbon atoms or is radioiodinated tyrosine; R₆ is Ile, Met or Nle; R₈ is Leu or Ile; R₁₀ is Leu or CML; R₁₁ is Thr or Ser; R₁₃ is His, Tyr or Glu; R₁₄ is CML or Leu; R₁₅ is CML or Leu; R₁₇ is Glu, CML, Asn or Lys; R₁₈ is Val, CML, Nle or Met; R₁₉ is CML, Leu or Ile; R₂₀ is Glu, D-Glu or His; R₂₁ is Nle, Leu, CML or Met; R₂₂ is Ala, D-Ala, Aib, Thr, Asp or Glu; R₂₃ is Arg or Lys; R₂₄ is Ala, Gln, Ile, Asn, CML or Aib; R₂₅ is Asp or Glu; R₂₆ is Gln, Asn or Lys; R₂₇ is CML, Glu, Gln or Leu; R₂₈ is Ala, Lys, Arg or Aib; R₂₉ is Gln, Aib or Glu; R₃₂ is Aib or an L- or D-isomer of a natural α-amino acid other than Cys; R₃₃ is Aib or an L- or D-isomer of Ser, Asn, Leu, Ala, CML or Ile; R₃₄ is Lys or Orn; R₃₆ is Lys, Orn, Arg, Har, CML or Leu; R₃₇ is CML, Leu, Nle or Tyr; R₃₈ is Nle, Met, CML or Leu; R₃₉ is Glu, Aib or Asp; R₄₀ is Ile, Aib, CML, Thr, Glu, Ala, Val, Leu, Nle, Phe, Nva, Gly or Gln; and R₄₁ is Ala, Aib, Ile, CML, Gly, Val, Leu, Nle, Phe, Nva or Gln; provided that a cyclizing bond may exist between Glu in position 31 and R₃₄ and provided further that D-2Nal or D-Leu may be substituted for D-Phe.

- 2. A peptide according to claim 1 having the formula: (cyclo 31-34)Y₁-Pro-Pro-R₆-Ser-R₈-Asp-Leu-R₁₁-D-Phe-His-R₁₄-Leu-Arg-Glu-R₁₈-Leu-R₂₀-Nle-R₂₂-R₂₃-Ala-R₂₅-Gln-Leu-Ala-R₂₉-Gln-Glu-R₃₂-R₃₃-R₃₄-Arg-R₃₆-R₃₇-Nle-R₃₉-R₄₀-R₄₁-NH₂ wherein Y₁ is an acyl group having not more than 7 carbon atoms; R₂₀ is Glu or D-Glu; R₂₂ is Ala or Thr; R₂₉ is Gln or Glu; R₃₂ is His, Aib, Ala, Gly, Leu, Gln or Glu; R₃₆ is Lys or Leu; R₃₇ is Leu or CML; R₃₉ is Glu or Asp; R₄₀ is Ile, CML or Glu; and R₄₁ is Ile, Aib or Ala; with the remaining variables being as defined in claim 2.
- 3. A peptide according to claim 1 having the formula: (cyclo 31-34)Ac-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-D-Phe-His-Leu-Leu-Arg-Glu-Val-Leu-Glu-Nle-Ala-Arg-Ala-Glu-Gln-Leu-Ala-Gln-Glu-His-Ser-Lys-Arg-Lys-Leu-Nle-Glu-Ile-NH₂, or

(cyclo 31-34)Ac-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-D-Phe-His-Leu-Leu-Arg-Glu-Val-Leu-Glu-Nle-Ala-Arg-Ala-Glu-Gln-CML-Ala-Gln-Gln-Glu-His-Ser-Lys-Arg-Lys-Leu-Nle-Glu-Ile-CML-NH₂; or (cyclo 31-34)Ac-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-D-Phe-His-Leu-Leu-Arg-Glu-Val-Leu-Glu-Nle-Ala-Arg-Ala-Glu-Gln-CML-Ala-Gln-Gln-Glu-His-Aib-Lys-Arg-Lys-Leu-Nle-Glu-Ile-CML-NH₂.

- 4. A peptide according to claim 1 having the formula:

 (cyclo 31-34)Ac-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-D-Phe-His-Leu-Leu-Arg-Glu-Val-Leu-Glu-Nle-Ala-Arg-Ala-Glu-Gln-Leu-Ala-Gln-Glu-His-Ser-Lys-Arg-Lys-Leu-Nle-Glu-Ile-Ile-NH2, or

 (cyclo 31-34)Ac-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-D-Phe-His-Leu-Leu-Arg-Glu-Val-Leu-Glu-Nle-Ala-Arg-Ala-Glu-Gln-CML-Ala-Gln-Glu-His-Ser-Lys-Arg-Lys-Leu-Nle-Glu-Ile-CML-NH2; or

 (cyclo 31-34)Ac-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-D-Phe-His-Leu-Leu-Arg-Glu-Val-Leu-Glu-Nle-Ala-Arg-Ala-Glu-Gln-CML-Ala-Gln-Glu-His-Aib-Lys-Arg-Lys-Leu-Glu-Nle-Ala-Arg-Ala-Glu-Gln-CML-Ala-Gln-Glu-His-Aib-Lys-Arg-Lys-Leu-Nle-Glu-Ile-CML-NH2.
- 5. A CRF according to claim 1 having the formula: $Y_1\text{-Pro-Pro-R}_6\text{-Ser-R}_8\text{-Asp-Leu-R}_{11}\text{-D-Phe-His-R}_{14}\text{-Leu-Arg-Glu-R}_{18}\text{-Leu-R}_{20}\text{-Nle-R}_{22}\text{-}\\ R_{23}\text{-Ala-R}_{25}\text{-Gln-Leu-Ala-R}_{29}\text{-Gln-Glu-R}_{32}\text{-R}_{33}\text{-R}_{34}\text{-Arg-R}_{36}\text{-R}_{37}\text{-Nle-R}_{39}\text{-R}_{40}\text{-R}_{41}\text{-NH}_2 \text{ wherein}} Y_1 \text{ is an acyl group having not more than 7 carbon atoms; } R_{20} \text{ is Glu or D-Glu; } R_{22} \text{ is Ala or Thr; } R_{23} \text{ is Arg or Lys; } R_{29} \text{ is Gln or Glu; } R_{32} \text{ is His, D-His, Aib or Ala; } R_{36} \text{ is Lys or Leu; } R_{37} \text{ is Leu or CML; } R_{39} \text{ is Glu or Asp; } R_{40} \text{ is Ile, CML or Glu; and } R_{41} \text{ is Ile, Aib or Ala; wherein} \text{ the remaining variables are as defined in claim 2 and wherein the side chains of Glu}^{31} \text{ and } R_{34} \text{ may be covalently connected.}$
- 6. A peptide according to claim 1 wherein R_{18} is Val, R_{22} is Ala, R_{23} is Arg, R_{24} is Ala, R_{25} is Glu, R_{28} is Ala, R_{39} is Glu, and R_{41} is Ile.
- 7. A peptide according to claim 1 having the following formula, or a nontoxic salt thereof:

 (cyclo 31-34)Y₁-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-D-Phe-His-Leu-Leu-Arg-Glu-Val-Leu-Glu-Nle-R₂₂-R₂₃-Ala-Glu-Gln-R₂₇-Ala-Gln-Gln-Glu-R₃₂-R₃₃-Lys-Arg-Lys-Leu-

Nle-Glu- R_{40} -Ile-NH₂ wherein R_{22} is Ala or Thr; R_{27} is Leu or CML; R_{32} is His or Aib; R_{33} is Ser or Aib; and R_{40} is Ile or CML.

- 8. A peptide according to claim 1 having the formula: (cyclo 31-34)Ac-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-D-Phe-His-Leu-Leu-Arg-Glu-Val-Leu-Glu-Nle-Ala-Arg-Ala-Glu-Gln-Leu-Ala-Gln-Glu-His-Ser-Lys-Arg-Lys-Leu-Nle-Glu-Ile-Ile-NH₂, or (cyclo 31-34)Ac-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-D-Phe-His-Leu-Leu-Arg-Glu-Val-Leu-Glu-Nle-Ala-Arg-Ala-Glu-Gln-CML-Ala-Gln-Glu-His-Ser-Lys-Arg-Lys-Leu-Nle-Glu-Ile-CML-NH₂; or (cyclo 31-34)Ac-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-D-Phe-His-Leu-Leu-Arg-Glu-Val-Leu-Glu-Nle-Ala-Arg-Ala-Glu-Gln-CML-Ala-Gln-Glu-His-Aib-Lys-Arg-Lys-Leu-Nle-Glu-Ile-CML-NH₂.
- 9. A peptide according to claim 1 which is useful as a tracer that selectively bonds to CRFR1 wherein Y is radioiodinated D-Tyr or L-Tyr.
- 10. A 38-residue CRFR1 ligand peptide which binds to CRFR1 with an affinity substantially greater than it binds to CRFR2, which peptide has the formula Y₁-Pro-Pro-A-D-Xaa-B-Glu-Xaa_a-Xaa_c-C-NH₂ wherein Y₁ is an acyl group having not more than 15 carbon atoms or is radioiodinated tyrosine; A is a sequence of 6 amino acid residues that is found between Pro in the 5-position and Phe in the 12-position of r/hCRF or the corresponding sequence of another peptide of the CRF family; D-Xaa is D-Phe, D-2Nal or D-Leu; B is a sequence of 18 amino acid residues that is found between Phe in the 12-position and Ala in position-31 of r/hCRF or the corresponding sequence of another peptide of the CRF family; Xaa_a is any L- or D-natural α-amino acid other than Cys or is Aib; Xaa_b is Aib or an L- or D-isomer of Ser, Asn, Leu, Ala, CML or Ile; Xaa_c is either Lys or Orn, the side chain of which may be linked in an amide cyclizing bond to that of Glu; and C is a sequence of the last 7 amino acid residues of the C-terminal portion of any peptide of the CRF family; provided that Nle or Leu may be substituted for Met in A, B and/or in C.