

Pontificia Universidad Católica de Valparaíso

Laboratorio de máquinas ICM557

Informe N°6: Comportamiento del compresor de tornillo

Autor:

Ignacio Soto

Profesores:

Cristóbal Galleguillos

Tomás Herrera

${\rm \acute{I}ndice}$

1.	Introducción	2
2.	Objetivos	2
3.	Tabulación de valores medidos	3
4.	Tabulación de valores calculados	3
5.	Descripción 5.1. Describa utilizando un esquema del compresor y su operación	4
6.	Gráficos 6.1. Grafique el caudal corregido en función de la presión de descarga	5
7.	PRP 7.1. ¿Qué significa el punto de rocío?	6 6
8.	Conclusiones	8

1. Introducción

Los compresores de tornillo presentan ciertas ventajas respecto a otros desplazamientos de desplazamiento positivo, ya que utiliza elementos rotativos de menor tamaño, evitando así la vibración y fricción excesiva que provocan los pistones y alcanzando de este modo mayor eficiencia mecánica, potr otro lado la ventaja más importante que tiene el compresor a tornillo es que comprime de forma continua, por su movimiento sin fin. Es por esto que resulta importante su estudio, y a la vez analizar las distintas variables que afectan su funcionamiento.

2. Objetivos

- Analizar el comportamiento del compresor de tornillo como máquina de una instalación industrial.
- Determinar la capacidad a distintas presiones.

3. Tabulación de valores medidos

P.Des	Veloc.	Temp	Amb	Hum Amb	Temp Desc.	Punto Rocío	Temp. EBP	Pre EB		Corri ente	Cauda 1	Pr	es Atm	ı	P.Des Abs
\mathbf{p}_{d}	nx	t _{am}	ıb	H _{amb}	t _{desc}	PRP	t _{EBP}	Δ1	h	I	Q		P _{atm}		Pd
[bar]	[rpm]	[°C]	[K]	%	[°C]	[°C]	[°C]	[mm _{ca}]	[cm _{ca}]	[A]	[%]	$[\mathrm{mm}_{\mathrm{H-g}}]$	[cmca]	[bar]	[bar]abs
5,5	4315	18	291,15	59,4	73	4	20	476	47,6	17	98	759,5	1033		6,512667
6	4350	19	292,15	58,9	73	4	20	484	48,4	16	100	759,5	1033	1,01	7,012667
7	4350	18	291,15	58,6	75	4	21	464	46,4	17	100	759,5	1033	1,01	8,012667
8	4176	18	291,15	58,9	76	4	21,5	406	40,6	17	100	759,5	1033	1,01	9,012667
9	3984	19	292,15	58,9	77	4	21	348	34,8	17	100	759,5	1033	1,01	10,01267

Figura 1: Tabla de valores medidos

4. Tabulación de valores calculados

Pd Efect	Capacidad		Vel teo	Caudales Corregidos					
p_{de}	p _{de} V (qX) Nom		n	qNxRh	qNx (Humedad)			qN	ρ
[bar]	[m3	/hr]	[rpm]	vs Pres y T°	F. Sup	F. Inf	q*(Fs/Fi)	vs Vel	[%]
5,5	71,757	78,8	4315	390,82705	0,98792	0,98847	390,6091	390,609	89,24
6	72,606	78,5667	4350	425,81138	0,98720	0,98847	425,267	425,267	92,41
7	70,727	78,1	4350	472,81993	0,98808	0,98847	472,6341	472,634	90,56
8	66,103	70,05	4176	496,47705	0,98802	0,98847	496,2513	516,928	94,36
9	61,461	66,55	3984	510,50553	0,98720	0,98847	509,8529	556,692	92,35

Figura 2: Tabla de valores calculados

5. Descripción

5.1. Describa utilizando un esquema del compresor y su operación.

El compresor de tornillo posee la entrada del flujo de aire por su parte posterior, en donde posee sensores de temperatura y humedad (higrómetro), luego es conducido a través de distintas barreras hasta llegar al filtro de aspiración del compresor (1) y luego por la válvula de aspiración (2). Posteriormente el aire es comprimido y dirigido al depósito separador de aire/aceite (4), el cual posee un filtro de aceite a la salida (5) para luego pasar por la válvula de presión mínima (5) la cual permite el paso del aire hacia el refrigerador posterior en donde también está presente un separador de agua inicial (8) para luego pasar a un separador de agua con purga (9), finalmente el flujo de aire debe pasar por filtros DD/DP para llegar al estanque de baja presión (11).

Figura 3: Esquema compresor tornillo parte 1

Figura 4: Esquema compresor tornillo parte 2

CIRCUITO DE AIRE	CIRCUITO DE ACEITE	CIRCUITO DE REFRIGERANTE
 Filtro de aspiración de aire 	12. Aceite	17. Compresor de refrigerante
Válvula de aspiración de aire	13. Refrigerador de aceite	18. Condensador
Elemento de compresión	14. Válvula termostática	19. Filtro de refrigerante líquido
 Depósito separador de aire/aceite 	15. Separador de aceite	20. Capilar
5. Válvula de presión mínima	16. Filtro de aceite	21. Evaporador
Refrigerador posterior		22. Válvula de derivación
7. Intercambiador de calor aire/aire		de gas caliente
 Separador de agua (sólo versiones Pack) 		23. Válvula de aspiración de aire
9. Separador de agua con purgador		
10. Filtros DD/PD (opcionales)		
11. Depósito de aire		

Figura 5: Lista de componentes del compresor de tornillo

6. Gráficos

6.1. Grafique el caudal corregido en función de la presión de descarga

• Compare los valores obtenidos con los que señala el fabricante. ¿Los valores están en el rango que le corresponde? ¿Qué comentario surge de lo anterior?

Sí, se encuentran dentro de los valores correspondientes a los indicados por el fabricante, existiendo mínimas diferencias respecto al fabricante lo cual se explica por las condiciones ambientales, de operación, entre otras. Teniendo en cuentas que los valores entregadfos por el fabricante se realizan en condiciones estándar y ambientes controlados

Figura 6: Gráfico de caudal vs presión de descarga

Тіро	Presión o	de trabajo	Сара	cidad FAD* (mín.	Potencia instalada del motor		
	bar(e)	psig	I/s	m³/h	cfm	kW	CV
Versión a 50/60	Hz						
	5,5	80	7,2-21,9	25,9-78,8	15,2-46,4	7,5	10
CA 71/CD:	7	102	7,0-21,7	25,2-78,1	14,8-46,0	7,5	10
GA 7 VSD+	9,5	138	6,8-18,0	24,5-64,8	14,4-38,1	7,5	10
	12,5	181	7,3-14,2	26,3-51,12	15,5-30,1	7,5	10

Figura 7: Valores según fabricante

7. PRP

7.1. ¿Qué significa el punto de rocío?

El aire contiene vapor de agua, pero su presión parcial es inferior a la presión de saturación (punto en el que se condensa), es decir, contiene una cantidad de vapor de agua menor a la máxima para una temperatura determinada y es lo que conocemos como humedad relativa. Luego, la saturación, que da lugar al punto de rocío, se puede producir por un aumento de la humedad relativa a la misma temperatura, o por un descenso de temperatura con la misma humedad relativa.

7.2. Calcule el contenido de humedad del aire que entra y que sale del compresor.

Humedad ambiente									
Hamb	Magua saturada	Magua entrante	Mperdidas	Magua saliente					
%	[gra/kgas]	[gra/kgas]	[gvw/kgas]	[gvw/kgas]					
59,4	12,9	7,66	0,1189	7,14					
58,9	13,8	8,13	0,1036	8,02					
58,6	12,9	7,56	0,0858	7,47					
58,9	13,9	7,6	0,0674	7,53					
58,9	13,87	8,13	0,0511	8,08					

Figura 8: Calculos del contenido de humedad en kg del aire que entra y sale del compresor

8. Conclusiones

Se analizó el comportamiento del compresor de tornillo a diferentes presiones de trabajo, pudiendo evidenciar las variaciones que existen al aplicar factores de corrección relacionados con la humedad del aire y los problemas que causaría la condensación de éste dentro de la máquina. Por otro lado, el compresor se encuentra en buen estado y funciona acorde los valores estipulados por el fabricante.