ФИЗИОЛОГИЯ И БИОФИЗИКА ВОЗБУДИМЫХ ТКАНЕЙ

НАТРИЕВЫЕ КАНАЛЫ (Na+) ВОЗБУДИМЫХ МЕМБРАН (продолжение)

Кафедра нейротехнологий Проф. Мухина И.В. Лекция №7

Содержание

- 1. Na_v1.6 быстро инактивирующиеся каналы;
- 2. Na_v1.9 очень медленно инактивирующиеся каналы;
- 3. Лигандзависимые Na-каналы (холинзависимые, глутаматзависимые).

1. Na_v1.6 быстро инактивирующиеся каналы

Филогенез натриевых каналов

Na_v1.6 быстро инактивирующиеся каналы

Название белка	Ген	Профиль экспрессии	Каналопатии
Na _v 1.6	Scn8a (IVIM), Scn8a (Rn)	ІСПИНАПЬНЫЕ ГАНГПИИ	Эпилепсия, когнитивные нарушения с мозжечковой атаксией или без нее, эпилептическая энцефалопатия, ранняя инфантильная энцефалопатия

Номенклатура	Na _v 1.6		
Предыдущие и неофициальные названия	CerIII, NaCh6, PN4, MED, белок периферического нерва тип 4, натриевый канал 6, белок натриевого канала тип 8 субъединица альфа, атаксия 3, mnd2, nur14, seal, dmu		
Активаторы	<u>veratridine</u> batrachotoxin		
Блокаторы	tetrodotoxin (поровый блокатор) IC ₅₀ 1x10 ⁻⁹ M [-130.0 mV], крыса saxitoxin (поровый блокатор)		
Функциональные характеристики	Быстрая инактивация (1 ms пик натриевого тока)		

Функция

ПНС: Дорсальные ганглии, узлы Ранвье сенсорных и моторных аксонов. **ЦНС:** Сомато-дендритное распределение в нейронах мозжечка (клетки Пуркинье в клеточном слое мозжечковых гранул), коры головного мозга и гиппокампа, стволе и спинном мозге, узлы Ранвье в периферических нервах.

Nav1.6 регулирует инициацию и распространение потенциалов действия в нервной системе

Na_v1.6

- 1. определяет постоянный ток (persistent current),
- 2. определяет рецидивирующий ток (resurgent current),
- 3. влияет на повторяющееся возбуждение нейронов,
- 4. локализованы в начальном сегменте аксона и узлах Ранвье с низким порогом возбуждения

Потеря активности Nav1.6 приводит к снижению возбудимости нейронов, в то время как мутации, направленные на усиление функции канала могут повышать возбудимость нейронов.

Mouse *Scn8a (med)* мутанты демонстрируют болезни движения:

- атаксия,
- дистония,
- тремор.

Более десяти мутаций *de novo* были идентифицированы у пациентов с двумя типами расстройств:

- эпилептическая энцефалопатия,
- умственная отсталость

Потеря Nav1.6 снижает возбудимость нейронов у мутантных мышей

	Neuron	Mutant mouse	Neuronal activity	References
1	Cerebellar Purkinje cells	med-tg, med	Reduced repetitive firing, reduced resurgent current (–70%), reduced transient current (–50%)	Raman et al., 1997; Aman and Raman, 2007
2	Cerebellar granule cells	Conditional knockout	Reduced persistent current, reduced firing rate	Osorio et al., 2010
3	Trigeminal-mesencephalic	med	Reduced repetitive firing reduced resurgent current (-40%), reduced persistent current (-75%),	Enomoto et al., 2007
4	Retinal ganglion	med-tg	Reduced repetitive firing	Van Wart and Matthews, 2006
5	Cerebellar nucleus	med	No significant changes	Aman and Raman, 2007
6	DRG large and small diameter	med-tg	Reduced resurgent current (-100%)	Cummins et al., 2005
7	Subthallamic	med	Reduced resurgent current, altered firing	Do and Bean, 2004
8	Prefrontal cortical pyramidal	med-tg	Reduced resurgent current	Maurice et al., 2001
9	Hippocampal CA1	med (Stock No. 003798)	Reduced persistent, reduced resurgent, significant elevation of spike threshold, altered spike initiation, reduced spike gain	Royeck et al., 2008
10	Motor neurons	med-J	Reduced conduction velocity	Kearney et al., 2002
11	Globus pallidus neurons	med-tg	Impaired pacemaking, impaired capacity for fast spiking	Mercer et al., 2007

Роль гена *Scn8a* в регуляции возбудимости нейронов связана с тремя свойствами Nav1.6:

- 1. постоянный и рецидивирующий ток,
- 2. зависимость активации от напряжения,
- 3. субклеточная локализация в начальном сегменте аксона, месте инициации потенциалов действия.

Постоянный ток

- Постоянный (persistent) ток это стационарный (a steady-state) натриевый ток, который сохраняется после ПД и участвует в инициировании потенциала действия при мембранных напряжениях, близких к порогу ПД.
- Постоянный ток важен для генерации повторяющихся импульсов в нейронах, например таких, как мозжечковые клетки Пуркинье.
- Различия в величине постоянного тока в разных типах нейронов позволяют предположить, что это свойство модулируется нейронспецифическими факторами. Мутации, которые еще больше увеличивают постоянный ток Nav1.6, приводят к эпилептогенезу.

Возрождающийся ток (resurgent current)

- Возрождающийся ток (resurgent current) это свойство, зависящее от напряжения и времени, при котором деполяризация после начального потенциала действия вызывает небольшой переходный ток.
- Быстрая форма инактивации позволяет нейронам срабатывать быстро и многократно.
- Считается, что возрождающийся ток (resurgent current) способствует спонтанному запуску и многопиковым потенциалам действия
- Субъединица натриевого канала β4 участвует в генерации возрождающегося тока в мозжечковых нейронах Пуркинье

Nav1.6 в начальном сегменте аксона

- Начальный сегмент аксона это мембранный домен на проксимальном конце аксона, в котором концентрируются натриевые каналы, суммируются электрические сигналы от сомы и дендритов, а порог инициации потенциала действия самый низкий.
- Канальный состав начального сегмента, по-видимому, определяет порог срабатывания для различных типов нейронов. Nav1.6 концентрируется в дистальной половине начального сегмента аксона во многих нейронах, включая мозжечковые гранулярные клетки и мозжечковые клетки Пуркинье.
- При отсутствии Nav1.6 происходит перемещение Nav1.1 и Nav1.2 для занятия дистальных АИС (<u>Van Wart and Matthews</u>, <u>2006</u>; <u>Xiao et al.</u>, <u>2013</u>).

В кортикальных пирамидных нейронах

- В кортикальных пирамидных нейронах потенциалы действия инициируются в дистальной части начального сегмента аксона, где концентрация натриевых каналов наиболее высока, в то время как в проксимальном содержит преимущественно Nav1.2.
- Порог активации в дистальном начальном сегменте аксона составляет -55 мВ, в то время как порог активации в проксимальном, ближайшем к соме, составляет -43 мВ, что согласуется с ролью Nav1.6 в снижении порога инициации потенциала действия.

Обратное распространение

- Потенциалы действия в основном направлены по аксону в сторону от сомы. Обратное распространение в сому происходит иногда и с низкой частотой.
- Стимуляция тока в дистальной части не вызывает обратного распространения, в то время как стимуляцию тока в проксимальной части приводит к обнаружению потенциалов действия в соме.
- Таким образом, локализация Nav1.6 в дистальном отделе связана с более низким порогом инициации потенциала действия и направлением потенциала действия в сторону от сомы.

Белковые взаимодействия Na_v1.6

- N-конец Nav1.6 взаимодействует с легкой цепью ассоциированного с микротрубочками белка MAP1b (Mtap1b), и ко-трансфекция увеличивает плотность тока в трансфицированных клетках за счет увеличения трафика Nav1.6 на клеточную поверхность.
- Фосфорилирование Nav1.6 стресс-активированной MAPкиназой р38 способствует связыванию убиквитинлигаз Е3 и деградации каналов.
- Протеинкиназы РКА и РКС оказывают лишь незначительное влияние на активность каналов.
- Анкирин G связывается с первой внутриклеточной петлей Nav1.6 и другими нейронными натриевыми каналами и необходим для направленной локализации Nav1.6 в узлах Ранвье.

Локации белковых взаимодействий с Nav1.6

Черные кружочки представляют собой сайты связывания, локализованные на специфических остатках Nav1.6: Map1b (77-80), p38 (553), анкирин (1089-1122), кальмодулин (1902-1912) и Nedd4 (551-554 и 1943-1945).

Белые кружочки - сайты связывания, которые не были сопоставлены с определенными остатками.

FGF14 играет ключевую роль в организации субъединиц в начальном сегменте аксона

Субъединицы β1 - β4 представляют собой небольшие одно-трансмембранные белки молекулы клеточной адгезии, которые модулируют ток и поверхностную экспрессию α-субъединицы

- Кальций-чувствительный белок кальмодулин связывает мотив IQ, расположенный в С-конце Nav1.6 (остатки 1902-1912).
- Апо-кальмодулин ускоряет инактивацию, а Ca2+ повышает возбудимость Nav1.6;
- Считается, что убиквитинирование Nav1.6 Nedd4 нацелено на деградацию Nav1.6 и может быть частью реакции нейронального стресса.

Эти взаимодействия имеют отношение к генетике неврологических и психических расстройств, поскольку белки, связывающие Nav1.6, могут рассматриваться как геныкандидаты для тех же самых расстройств, вызванных мутациями Nav1.6.

Кроме того, общие варианты взаимодействующих белков могут выступать в качестве модификаторов тяжести мутаций SCN8A у пациентов.

2. Na_v1.9 очень медленно инактивирующиеся каналы

Na_v1.9 очень медленно инактивирующиеся каналы

Названи е белка	Ген	Профиль экспрессии	Каналопатии
Na _v 1.9	I <i>Scn11a</i> (Mm).	Спинальные ганглии	Боль

Номенклатура	Na _v 1.9		
Предыдущие и неофициальные названия	NaN, SNS2, SCN12A, натриевый канал сенсорного нейрона 2, белок натриевого канала тип 11 субъединица альфа, NaT, NSS2		
Блокаторы	tetrodotoxin (поровый блокатор) IC ₅₀ 3.9х 10 -5 M [-120.0 mV], крыса		
Функциональные характеристики	Очень медленная инактивация (16 ms пик натриевого тока)		

Функция

Ионная селективность ранжируется следующим образом: Na+>K+>>Ca2+для Nav1.9, как и для других натриевых каналов.

Преимущественное распределение в нейронах DRG с-типа, нейронах тройничного нерва и их аксонах.

Электрофизиология патч-клэмпа демонстрирует устойчивый к TTX постоянный натриевый ток с широким перекрытием между активацией и установившейся инактивацией.

Nav1.9 оказывает деполяризующее влияние на потенциал покоя, усиливает и продлевает медленную подпороговую деполяризацию и повышает возбудимость, обеспечивает эпизодический болевой синдром, воспалительную боль.

В ганглиях дорсального корешка (DRG) находятся механорецепторы с низким порогом активации.

• Ток, генерируемый NaV1.9, является "постоянным" и может быть активирован при потенциалах, близких к потенциалу покоящейся мембраны (~-60 мВ);

Активация:

- Порог -70 to -60 mV (rat DRG), -80mV (human) V-a = -47 to -54 mV (rat DRG);
- 2.93 ms at -60 mV, 4.1 ms at -50 mV, 3.5 ms at 20mV, and 2.5 ms at -10 mV.

Инактивация:

- Порог от -44 до -54 mV;
- 843 ms at -60 mV, 460 ms at -50 mV, 43 ms at -20mV, and 16 ms at -10 mV

Взаимодействия Na_v1.9

- Существует несколько молекул, которые увеличивают токи Nav1.9 в нейронах DRG: медиаторы воспаления (PGE2, серотонин, брадикинин, гистамин, PGE3 и норадреналин).
- Медиаторы воспаления увеличивают натриевый ток Nav1.9, действующий через G-белок-зависимый механизм;
- Секретируемые белки, повышающие выживаемость нейронов (BDNF, GDNF): GDNF увеличивал экспрессию функциональных Nav1.9-подобных токов в аксотомированных нейронах дорсального корневого ганглия;
- Коэкспрессия с рецептором TrkB.3. Поверхностная локализация Nav1.9, по-видимому, связана с его ассоциацией с молекулой клеточной адгезии, контактирующей с/F3.

NaV1.9 является важную роль в воспалительных болевых состояниях

- В то время как селективный блокатор NaV1.9 в настоящее время не существует (Мибефрадил, недигидропиридиновый антагонист ICaT, блокирует Nav1.9), нокаутные мыши SCN11A демонстрируют четкий анальгетический фенотип, подтверждая, что NaV1.9 является важным игроком в генерации гипералгезии при воспалительных болевых состояниях.
- Влияние на NaV1.9 может помочь регулировать болевые пороги после воспаления или травмы.
- Функция Nav1.9 в сенсорных путях резко снижается при различных моделях нейропатической боли:
 - после невропатической травмы;
 - в модели невропатической боли тройничных ганглиев;
 - несколько моделей и человеческих случаев корешковой боли.

Типы Na рецепторов

- 1. Потенциалзависимые: "Voltage-gated", "voltage-sensitive", or "voltage-dependent" sodium channel also called "VGSCs" or "Nav channel"
- 2. Лигандзависимые: ligand-gated sodium channels

3. Лигандзависимые Na-каналы (холинзависимые, глутаматзависимые)

Лиганд-зависимые каналы

- Лиганд-зависимые каналы **почти нечувствительны** к изменению мембранного потенциала;
- Лиганд-зависимые каналы генерируют электрический сигнал, сила которого зависит от количества медиатора, поступающего в синаптическую щель и времени, которое он там находится.

Table II Neurotransmitter Families

A 4	
Adrenergic receptors	α 1a, 1b, 1c, 1d, 2a, 2b, 2c, 2d
	β 1, 2, 3
Dopaminergic receptors	D1, D2, D3, D4, D5
GABA receptors	GABA-A, GABA-B1A, B1γ B2,
	GABA-C
Glutaminergic receptors	NMDA, AMPA, kainate,
	MGLUr-1-7
Histamine receptors	H1, 2, 3
Cholinergic receptors	
	Muscarinic: M1-5
	Nicotinic: muscle, neuronal
Opioid receptors	μ, γ, κ
Serotonergic receptors	5HT-1A, 1B, 1D, 1E, 1F, 5HT-2A,
	2B, 2C, 5HT-3, 4, 5, 6, 7

Холинергический синапс

Рецепторы на постсинаптической мембране:

- N-тип (агонист никотин). Ионотропные, ионные каналы для Са2+ и Na+. ВПСП;
- М-тип (агонист мускарин). Подтипы М1-М4. Метаботропные, ионные каналы для Са2+ (ВПСП) и К+ (ТПСП). Вторичные мессенджеры инозитол-3-фосфат и диацилглицерид (М1), циклический АМФ (М2)

28

Ацетилхолиновый никотинзависимый ионотропный рецептор (250 кДальтон)

Рецептор изображен синим, фосфолипидные головки мембраны желтым и прикрепленный цитоплазматический белок розовым. Рецептор приблизительно 12 нм длиной выдвинут приблизительно на 6.5 нм во внеклеточное и на 1.5 нм во внутриклеточное пространство. Узкая пора (длинная стрелка) диаметром ~2 нм сформирована кольцом из пяти а-спиралей.

Участок связывания АХ выглядит как карман (короткая стрелка) в а-субъединице и расположен приблизительно в 5 нм от ворот (*Лаборатория Молекулярной Биологии, Кембриджа*.)

a2, b, гамма, дельта и эпсилон субьединицы

Антагонистом для никотиновых рецепторов является <u>тубокурарин</u>

- •Через открытые ионные каналы могут проходить ионы калия и натрия в соотношении **1:1**.
- •Натриевые и калиевые токи **направлены противоположно**.
- •Соотношение зависит от уровня мембранного потенциала.
- •Время открытия канала 1 мс
- •электропроводимость 50 pS (мышечный) и 15-40 pS (нейрональный),

Ацетилхолинергические пути в головном мозге (схема).

1 — гиппокамп; 2 — базальное ядро; 3 — фронтальная кора; 4 — теменная кора; 5 — затылочная кора.

Схема холинергической синаптической передачи

Глутаматные рецепторы

- Ионотропные
 - AMPA (преимущественно Na⁺/K⁺ проводимость)
 - Каинатные (Na+/K+ и Ca2+ проводимость)
 - NMDA (значительная Ca²⁺ проводимость) потенциал-зависимые
- Метаботропные
 - mGluR группы I, II и III

(N-метил-D-аспартат);

АМРА (2-альфа-амино-3гидрокси-5-метил-4изоксазольпропионовая кислота);

КА (каиновая кислота).

		Подтипы реп	епторов глут	амата		
	Ионотропные			Метаботропные		
Функциональные классы	NMDA	AMPA	KA	Class I	Class II	Class III
гены	NR1	GluR1	GluR5	mGluR1	mGluR2	mGluR4
	NR2A	GluR2	GluR6	mGluR5	mGluR3	mGluR6
	NR2B	GluR3	GluR7			mGluR7
	NR2C	GluR4				mGluR8
	NR2D		KA1			
	NR3		KA2	И ₃ Ф, кальций	цАМФ	
	лиганд-зависимые ионые каналы		Система вторичных посредников			

1. Ионотпропные АМРА рецепторы

альфа-амино-3-гидрокси- 5-метилилсоксазол-4пропионатные

- АМРА-рецепторы обладают меньшим сродством к глутамату, чем NMDA-рецепторы, но они обладают быстрой кинетикой и формируют быстрый компонент возбуждающего постсинаптического потенциала.
- присутствие в AMPA-рецепторе субъединицы GluR2 (GluRB) меняет его свойства: в открытом состоянии он становится непроницаем для ионов кальция.

Вольтамперная характеристика Функции ионотропных рецепторов не ограничиваются только открытием канала. Эти функции связаны со способностью внутриклеточной карбоксильной терминали взаимодействовать с широким кругом внутриклеточных белков, которые волечены в структурно-функциональную организацию постсинаптического аппарата и внутриклеточную передачу сигналов. Например, АМРА-рецепторы активируют тирозин-киназу, которая запускает каскад митоген-активированной протеинкиназы.

Ионотпропные AMPA рецепторы (подтипы и топология)

2. Ионотпропные каинатные рецепторы

Состоят из 5 типов субъединиц GluR5,6,7, KA1, KA2

функциональны гомомеры GluR5 и GluR6

Гетеромеры KA2 с GluR5 или GluR6

Рецепторы быстро десенситизируются (но вероятно не все)

Субклеточное распределение может отличаться от АМРА (возможно, преимущественно внесинаптические рецепторы)

Имеются данные о нейротоксических свойствах глутамата, связанных с активацией каинатных рецепторов, приводящей к изменению проницаемости постсинаптической мембраны для одновалентных ионов К+ и Na+, усилению входящего тока ионов Na+ и кратковременной деполяризации постсинаптической мембраны, что в свою очередь вызывает усиление притока ионов Ca2+ в клетку через агонист-зависимые (NMDA-рецепторов) и потенциал-зависимые каналы (Buchan A M., Li H. 1991, Buchan A.M., Xue D. 1991, Diemer N.H., Jorgensen M.B. 1992, Li H., Buchan A.M. 1993, Schousboe A., Frandsen A. 1994, Sheardown M.J., Suzdak P.D. 1993).

Поток ионов Na+ сопровождается входом в клетки воды и ионов Cl-, что приводит к набуханию апикальных дендритов и лизису нейронов (теория "осмолитического повреждения нейронов").

Вольтамперная характеристика

Ионотропные каинатные рецепторы (подтипы и топология)

3. Ионотропные потенциалзависимые NMDA рецепторы

 $(NR1)_2 (NR2X)_2$

NMDA-рецепторы состоят из четырех субъединиц, по 40-92 кД каждая, (двух NR1 и двух из четырех NR2A, NR2B, NR2C, N2D). Эти субъединицы являются гликопротеидлипидными комплексами.

- NMDA-рецептор представляет из себя <u>целый рецепторно-ионофорный</u> <u>комплекс</u>, включающий в себя:
- 1) сайт специфического связывания медиатора (L-глутаминовой кислоты);
- 2) регуляторный, или коактивирующий сайт специфического связывания <u>глицина</u> (серина);
- 3) аллостерические модуляторные сайты, расположенные на мембране (полиаминовый) и в ионном канале (сайты связывания фенциклидина, двухвалентных катионов и потенциалзависимый Mg2+-связывающий участок).

участки связывания:

- 1- NMDA
- 2 глицин
- 4-Mg
- 5 -мидантан(фенциклидиновый сайт)

Схематичное изображение NMDA-рецептора

Ионотропные потенциалзависимые NMDA рецепторы (продолжение)

NMDA-рецепторы обладают рядом особенностей:

- одновременно хемо- и потенциал-чувствительностью,
- •медленной динамикой запуска и длительностью эффекта,
- способностью к временной суммации и усилению вызванного потенциала.
- •Наибольшие ионные токи при активации агонистами возникают при деполяризации мембраны в узком диапазоне -30 -20 мВ (в этом проявляется потенциалзависимость NMDA-рецепторов). Ионы Mg2+ селективно блокируют активность рецепторов при высокой гиперполяризации или деполяризации.
- •Глицин в концентрации 0,1 мкМ усиливает ответы NMDAрецептора, увеличивая частоту открывания канала. При полном отсутствии глицина рецептор не активируется L-глутаматом . В некоторых областях мозга для работы NMDA-рецептора требуется присутствие **D-серина** в качестве коагониста (например, в переднем мозге).

Вольтамперная характеристика

Схема глутаматергической передачи

