OTHER OPERATIONS **ON VECTORS**

Dot and Cross Product; Scalar and **Vector Projection**

Dot product

Consider vectors

$$A = \langle a_1, a_2 \rangle$$
 $B = \langle b_1, b_2 \rangle$

DOT PRODUCT

$$A \cdot B = a_1 b_1 + a_2 b_2$$
scalar

Dot product

Consider vectors

$$A = \langle a_1, a_2, a_3 \rangle$$
$$B = \langle b_1, b_2, b_3 \rangle$$

DOT PRODUCT

$$A \cdot B = a_1b_1 + a_2b_2 + a_3b_3$$
scalar

Example 1.

Evaluate the following:

Solutions:

1.
$$\langle 2, -3 \rangle \cdot \langle -2, 4 \rangle$$

= $2 \cdot (-2) + (-3) \cdot 4$
= $-4 + (-12) = -16$

Solutions

2.
$$\langle 1,2,-3 \rangle \cdot \langle 3,2,4 \rangle$$

=1·3+2·2+(-3)·4
=3+4+(-12)
=-5

Angle between vectors

Given nonzero vectors A and B.

$$A \cdot B = ||A|||B||\cos\theta_{AB}$$

where $\, heta_{AB}$ is the smallest nonnegative angle in radian measure between the vectors

Angle between vectors

$$A \cdot B = ||A|| ||B|| \cos \theta_{AB}$$

$$\Rightarrow \cos \theta_{AB} = \frac{A \cdot B}{||A|| ||B||}$$

$$\Rightarrow \theta_{AB} = Arc \cos \left(\frac{A \cdot B}{||A|| ||B||} \right)$$
since $0 \le \theta_{AB} \le \pi$

Angle between vectors

If A and B are in the same direction, $\theta_{AB} = \mathbf{0}$.

If A and B are in opposite directions, $\theta_{AB}=\pi$.

Example 2.

Determine the angles between the following pairs of vectors.

1.
$$\langle$$
 4, $-$ 5 \rangle and \langle 5, $-$ 12 \rangle

2.
$$\langle$$
 2,-1,2 \rangle and \langle 3,-3,0 \rangle

Solutions:

1.
$$\langle$$
 4,-5 \rangle and \langle 5,-12 \rangle
Let $A=\langle$ 4,-5 \rangle
 $B=\langle$ 5,-12 \rangle

 $A \cdot B = 80$

$$||A|| = \sqrt{41} \quad ||B|| = 13$$

Solutions (continued)

Solutions:

2.
$$\langle$$
 2,-1,2 \rangle and \langle 3,-3,0 \rangle
Let $A = \langle$ 2,-1,2 \rangle
 $B = \langle$ 3,-3,0 \rangle
 $A \cdot B = 9$
 $||A|| = 3$ $||B|| = 3\sqrt{2}$

$$\theta_{AB} = Arc \cos \left(\frac{A \cdot B}{\|A\| \|B\|} \right)$$

$$\Rightarrow \theta_{AB} = Arc \cos \left(\frac{9}{3 \cdot 3\sqrt{2}} \right)$$

$$\Rightarrow \theta_{AB} = Arc \cos \left(\frac{1}{\sqrt{2}} \right)$$

$$\Rightarrow \theta_{AB} = Arc \cos \left(\frac{\sqrt{2}}{2} \right) = \frac{\pi}{4}$$

Dot product and orthogonality

Two non-zero vectors are orthogonal (or perpendicular with each other) if and only if their dot product is 0 (zero).

Illustration

Show that the line segements joining points P (-4,-1), Q(-2,-3) and R(4,3) form a right triangle

Solution

$$\overrightarrow{QP} = \langle -2.2 \rangle \qquad \overrightarrow{QR} = \langle 6.6 \rangle$$

$$\overrightarrow{QP} \bullet \overrightarrow{QP} = -12 + 12 = 0$$

Illustration R(4,3) \overrightarrow{QR}

Solution

Since
$$\overrightarrow{QR} \cdot \overrightarrow{QP} = \mathbf{0}$$
,
 \overrightarrow{QR} and \overrightarrow{QP} are orthogonal.

Hence, sides QR and QP are perpendicular.

Thus, ΔPQR is a right triangle.

Supplement

If A, B and C are vectors, and c is a scalar,

i.
$$A \cdot B = B \cdot A$$
 (commutativity)

ii.
$$A \cdot (B+C) = A \cdot B + A \cdot C$$
 (distributivity)

iii.
$$c(A \cdot B) = (cA) \cdot B$$

iv.
$$O \cdot A = \mathbf{0}$$
, $O = \langle \mathbf{0}, \mathbf{0} \rangle$
v. $A \cdot A = \|A\|^2$

$$\mathbf{v.} \quad A \cdot A = \|A\|^2$$

Cross product

Consider vectors

$$A = \langle a_1, a_2, a_3 \rangle$$
 $B = \langle b_1, b_2, b_3 \rangle$

CROSS PRODUCT

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
vector

Cross product

$$A \times B = \begin{vmatrix} +i & -j & +k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

By cofactor expansion

$$\begin{vmatrix}
a_2 & a_3 \\
b_2 & b_3
\end{vmatrix} i - \begin{vmatrix}
a_1 & a_3 \\
b_1 & b_3
\end{vmatrix} j + \begin{vmatrix}
a_1 & a_2 \\
b_1 & b_2
\end{vmatrix} k$$

REVIEW

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb$$

Example

1. If
$$A = \langle 2, -1, 2 \rangle$$
 and $B = \langle 3, -3, 0 \rangle$, evaluate $A \times B$.

Solution:

$$A \times B = \begin{vmatrix} i & j & k \\ 2 & -1 & 2 \\ 3 & -3 & 0 \end{vmatrix}$$

Solution (continued)

$$A \times B = \begin{vmatrix} -1 & 2 & 2 & 2 \\ -3 & 0 & -3 & 0 \end{vmatrix}$$

$$= \begin{vmatrix} -1 & 2 & | & i & | & 2 & 2 & | &$$

Solution (continued)

$$\begin{array}{l}
A \times B = \begin{vmatrix} -1 & 2 \\ -3 & 0 \end{vmatrix} i - \begin{vmatrix} 2 & 2 \\ 3 & 0 \end{vmatrix} j \\
+ \begin{vmatrix} 2 & -1 \\ 3 & -3 \end{vmatrix} k \\
= [0 - (-6)]i \\
- (0 - 6)j \\
+ [(-6) - (-3)]k \\
= 6i + 6j - 3k = \langle 6, 6, -3 \rangle
\end{array}$$

Geometrically

If A and B are nonzero vectors, $A \times B$ is a vector orthogonal to both A and B.

Verification

$$A = \langle 2, -1, 2 \rangle$$
 $B = \langle 3, -3, 0 \rangle$
 $A \times B = \langle 6, 6, -3 \rangle$

$$A \cdot (A \times B) = 2 \cdot 6 + (-1) \cdot 6 + 2 \cdot (-3)$$

= 12 - 6 - 6 = 0

Hence, A and $A \times B$ are orthogonal.

$$B \cdot (A \times B) = 3 \cdot 6 + (-3) \cdot 6 + 0 \cdot (-3)$$

= 18 - 18 + 0 = 0

Hence, B and $A \times B$ are orthogonal.

Example 3

2. If
$$M = \langle -2,0,4 \rangle$$
 and $N = \langle 0,2,1 \rangle$, evaluate $M \times N$.

Solution:

$$M \times N = \begin{vmatrix} i & j & k \\ -2 & 0 & 4 \\ 0 & 2 & 1 \end{vmatrix}$$

Solution (continued)

$$\frac{|+i - j + k|}{M \times N} = \begin{vmatrix} -2 & 0 & 4 \\ 0 & 2 & 1 \end{vmatrix} \\
= \begin{vmatrix} 0 & 4 \\ 2 & 1 \end{vmatrix} i - \begin{vmatrix} -2 & 4 \\ 0 & 1 \end{vmatrix} j + \begin{vmatrix} -2 & 0 \\ 0 & 2 \end{vmatrix} k \\
= -8i + 2j - 4k = \langle -8, 2, -4 \rangle$$

Exercise

Consider the points P(2,3,0) Q(0,5,-1) R(1,0,3)

Determine a vector orthogonal to both \overrightarrow{PQ} and \overrightarrow{QR} .

Supplement

i. If A is a vectors in the threedimensional space,

$$A \times A = O$$
 $O \times A = O \times A = O$

ii.
$$i \times i = O$$
 $j \times j = O$ $k \times k = O$

$$i \times j = k$$
 $j \times i = -k$

$$j \times k = i$$
 $k \times j = -i$

$$k \times i = j$$
 $i \times k = -j$

Supplement

iii.
$$A \times B = -(B \times A)$$

iv. If A, B and C are vectors identifying nonparallel sides of some parallelepiped, then $|(A \times B) \cdot C|$ is the volume of the parallelepiped.

If \overrightarrow{A} and \overrightarrow{B} are non-zero vectors and α is the angle between them, the scalar projection of \overrightarrow{B} onto \overrightarrow{A} is defined to be $|\overrightarrow{B}| \cos \alpha$.

The scalar projection of a vector \overrightarrow{B} onto the vector \overrightarrow{A} is $\frac{\overrightarrow{A}.\overrightarrow{B}}{\|\overrightarrow{A}\|}.$

$$\cos \alpha = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{\|\overrightarrow{A}\| \|\overrightarrow{B}\|} \rightarrow \|\overrightarrow{B}\| \cos \alpha = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{\|\overrightarrow{A}\|}.$$

Let $\vec{A} = \langle 3,4 \rangle$ and $\vec{B} = \langle 1,2 \rangle$. Find the scalar projection of a. \vec{B} onto \vec{A} b. \vec{A} onto \vec{B} solution:

a.
$$\frac{\vec{A} \cdot \vec{B}}{\|\vec{A}\|} = \frac{\langle 3, 4 \rangle \cdot \langle 1, 2 \rangle}{\sqrt{3^2 + 4^2}} = \frac{3 \cdot 1 + 4 \cdot 2}{\sqrt{25}} = \frac{11}{5}.$$
b.
$$\frac{\vec{A} \cdot \vec{B}}{\|\vec{B}\|} = \frac{\langle 3, 4 \rangle \cdot \langle 1, 2 \rangle}{\sqrt{1^2 + 2^2}} = \frac{3 \cdot 1 + 4 \cdot 2}{\sqrt{5}} = \frac{11}{\sqrt{5}} = \frac{11\sqrt{5}}{5}.$$

Remark:

Dot products are used to compute for vector projections!

The vector projection of a vector \vec{B} onto a non-zero vector \vec{A} is

$$\frac{\overrightarrow{A} \cdot \overrightarrow{B}}{\left\|\overrightarrow{A}\right\|^{2}} \left(\overrightarrow{A}\right) .$$

$$u_{\overrightarrow{A}} = \frac{1}{\left\|\overrightarrow{A}\right\|} \cdot \overrightarrow{A}$$

$$\overrightarrow{S} = \left(\frac{\overrightarrow{A} \cdot \overrightarrow{B}}{\left\|\overrightarrow{A}\right\|}\right) u_{\overrightarrow{A}}$$

$$\begin{split} & \left\| \overrightarrow{S} \right\| = \left\| \overrightarrow{B} \right\| \cos \alpha \qquad \overrightarrow{S} = \left\| \overrightarrow{B} \right\| \cos \alpha \cdot \overrightarrow{U}_A \\ & \text{Since} \left\| \overrightarrow{B} \right\| \cos \alpha = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{\left\| \overrightarrow{A} \right\|} \quad \text{and} \quad \overrightarrow{U}_A = \frac{1}{\left\| \overrightarrow{A} \right\|} \cdot \overrightarrow{A} \\ & \overrightarrow{S} = \left(\frac{\overrightarrow{A} \cdot \overrightarrow{B}}{\left\| \overrightarrow{A} \right\|} \right) \left(\frac{1}{\left\| \overrightarrow{A} \right\|} \left(\overrightarrow{A} \right) \right) \quad = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{\left\| \overrightarrow{A} \right\|^2} \left(\overrightarrow{A} \right) \end{split}$$

Example. Let $\vec{A} = \langle 3,4 \rangle$ and $\vec{B} = \langle 1,2 \rangle$. Find the vector projection of \vec{B} onto \vec{A} . Draw the position representations of \vec{A} and \vec{B} and the vector projection of \vec{B} onto \vec{A} .

solution:

Solution:

$$\vec{A} \cdot \vec{B} = \langle 3,4 \rangle \cdot \langle 1,2 \rangle$$

$$= 3 + 8 = 11$$

$$\|\vec{A}\| = \sqrt{3^2 + 4^2}$$

$$= \sqrt{25} = 5$$

$$\vec{A} \cdot \vec{B} \cdot (\vec{A}) = \frac{11}{5^2} \langle 3,4 \rangle$$

$$= \left\langle \frac{33}{25}, \frac{44}{25} \right\rangle_{45}$$

END