Lecture Note 5

CSCI 6470 Algorithms (Fall 2024)

Liming Cai

School of Computing UGA

November 5, 2024

Chapter 5. Lower bound and Intractability

Topics to be discussed:

- ▶ Time complexity Lower bound
- Exhaustive search for intractable problems
- ► NP-completeness theory

- · Discussions have been focused on
 - (1) "at most" (upper bound) time usage by algorithms;
 - (2) "sufficient" (upper bound) time to solve a problem, Both are denoted with big-O: $T(n) = O(f(n)) \Leftrightarrow T(n) \leq cf(n)$ e.g.,
 - (1) Mergesort uses $O(n \log_2 n)$ time; so
 - (2) Time $O(n \log_2 n)$ is sufficient to solve **Sorting** problem;
- We are now interested in
 - (1) "at least" (lower bound) time usage by algorithms;
 - (2) "necessary" (lower bound) time to solve a problem,

Lower bounds of algorithms

- Mergesort runs at most $cn \log_2 n$ time on the worst case instances or simply with $O(n \log n)$ time;
- Mergesort runs at least $cn \log n$ time on the worst case instances, for all $n \ge n_0$ for some constants c > 0 and $n_0 \ge 0$ Proof: (Taken-home exercise)

Called time complexity **lower bound** of Mergesort, denoted with $\Omega(n \log_2 n)$

Definition of big-Ω:

$$T(n) = \Omega(f(n)) \Leftrightarrow T(n) \ge cf(n)$$

holds for all $n \ge n_0$ for some c > 0 and $n_0 \ge 0$.

Lower bounds of algorithms

• More big- Ω results: Insertion-Sort and Selection-Sort have complexity $\Omega(n^2)$; Binary Search has time complexity $\Omega(\log_2 n)$; Recursive-Fib has time complexity $\Omega(\sqrt{2}^n)$;

Θ ⇔ O + Ω;
 exact bound = both upper bound and lower bound;
 e.g., Binary Search has time complexity Θ(log₂ n);
 What about Recursive—Fib?

We have so far only discussed time lower bound for for algorithms!

Lower bounds of problems

Def: a **lower bound** for a problem is the least (i.e., necessary) amount of time required to solve the worst cases of the problem.

Why lower bound is interesting:

• Fastest algorithms for **Sorting** have time $O(n \log_2 n)$, e.g., Mergesort;

Question: is there faster algorithm, say of O(n), for **Sorting**?

Can we derive a lower bound of Π from time complexity of A?

- Let Π be a problem and A be an algorithm solving Π in time T(n).
 - (1) If $T(n) = O(n^2)$, is $\Omega(n^2)$ a lower bound for Π ?
 - (2) If $T(n) = \Omega(n^2)$, is $\Omega(n^2)$ a lower bound for Π ?

consider Π is **Sorting**, and A is Insertion Sort

Lower bounds of problems (cont.)

- Conclusion: Algorithms do not help prove lower bounds of problems;
- Instead, need to look into the problem itself;
 - Ideally, the problem can be modeled in a certain way to reveal the necessity of certain amount of time complexity;
- Example 1: Finding max can be solved using n − 1 comparisons on n elements;

(how to achieve this?)

Does **Finding max** require n-1 comparisons in the worst case?

Example 1: Finding max

Observation 1: to produce the max element, elements participate in element-element comparisons;

Observation 2. some comparisons can be directed or indirected, but all elements have to participate in comparisons;

- ⇒ Any algorithm for **Finding max** is *modeled as a graph* on the *n* elements, where
 - (1) comparisons as edges;
 - (2) graph is connected;
 - (3) the least number of comparisons = least number of edges;

Fact: Least number of edges in a connected graph is at least n-1.

Theorem 1: Problem **Finding max** requires n-1 element-element comparisons.

Example 2: Sorting

- Any algorithm for Sorting is modeled as a decision tree; where
 - (1) Nodes are comparison between two elements;
 - (2) Every parent-child edge is an outcome of the comparison represented by the parent;
 - (3) Every path from the root to a leaf is some sorting computation;
 - (4) Every leaf represents a sorting outcome (based on the input);
 - (5) The longest path from root to a leaf is the worst case time;
 - (6) The lower bound question for **Sorting** essentially becomes to know the minimum height of such a tree;

Note: The tree model is an arbitrary tree representing an arbitrary algorithm; we should not assume any specific ordering of comparison nodes in the tree.

Example 2: Sorting

- The height h of a binary tree is related to its number l of leaves as: $h \ge \log_2 l$;
- The algorithm needs to accommodate all possible scenarios of the input with different sort outcomes;
 - (1) The number of scenarios of the input is n! on n elements (of distinct values)
 - (2) The number of outcomes of the algorithm $\geq n!$, accordingly;
- Number of leaves $\geq n!$; and height $\geq \log_2(n!) = \Omega(n \log_2 n)$;

Theorem 2: **Sorting** requires $\Omega(n \log_2 n)$ element-element comparisons.

Two different algorithms for Sorting modeled with decision trees:

Def. If a problem admits algorithms of time $O(n^c)$ for some constant c, it is *tractable*; otherwise, it is *intractable*.

- We have investigated quite a few tractable problems: Sorting, Shortest paths, SCC, Edit Distance, Fractional Knapsack, MST, etc.
- Many other problems are likely intractable: TSP, SAT, Max Independent Set, Knapsack,

Usually for intractable problems, in order to find exact (optimal, accurate) solutions, exhaustive search is resorted to.

But not all exhaustive searches are naïve.

How to do an exhaustive search?

Enumerate all potential solutions then check each solution to identify the optimal/correct one.

- Most problems have solutions that can be easily encoded and enumerated in certain order.
- But non-naïve exhaustive searches are often based on additional insights to the problem.

Def. A Hamiltonian path on graph G = (V, E) is a spanning tree that is a simple path. A Hamiltonian cycle on graph G = (V, E) is a Hamiltonian path with the starting and ending vertices being connected by an edge.

- Traveling Salesman Problem (TSP)
 Input: an edge-weighted graph G(V, E);
 Output: a Hamiltonian cycle on G of the minimum total edge weight.
- Maximum Independent Set (Max Ind Set)
 Input: A graph G = (V, E);
 Output: a subset of I ⊆ V, such that for all u, v ∈ I, (u, v) ∉ E;
 and cardinality |I| is the maximum.

I is called an independent set.

Boolean formula satisfiability (SAT):

INPUT: a boolean formula $\phi(x_1,\ldots,x_n)$ of n variables;

Output: "Yes" if and only if ϕ is satisfiable.

boolean formula: e.g.,

$$f(x_1,x_2,x_3)=(x_1\vee x_2\vee \neg x_3)\wedge (\neg x_1\vee x_3)$$

A boolean formula is satisfiable if there is an assignment of T and F values to its variables such that f is evaluated to T.

e.g.,
$$f(x_1,x_2,x_3) = (x_1 \vee x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_3) \text{ is satisfiable}$$
$$g(x_1,x_2) = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2) \wedge (x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2)$$
is not satisfiable.

- (1) Naïve exhaustive search:
 - encoding of solutions, e.g.,

TSP: a circular path is encoded as a permutation of n vertices;

SAT: an assignment is encoded as an *n*-bits binary string;

Max Ind Set: an independent set can be encoded as ?

Checking

Routinely applying every encoded solution; Checking if the solution is correct/optimal;

In classroom exercise

write a recursive exhaustive algorithm for **SAT**.

Taken-home exercise

write a recursive exhaustive algorithm for Max Ind Set.


```
Algorithm SAT-Solver(f(x, n)) // x = (x1,x2,...,xn)

1. if n=0,
2. return f;
3. else
4. g(x, n-1) = f(x, n, xn=T);
5. h(x, n-1) = f(x, n, xn=F);
6. return SAT-Solver(g(x, n-1)) or SAT-Solver(h(x, n-1))
```

- Are all assignments searched?
- draw a search tree based on the algorithm
 - what does the tree look like?
 - what does each path mean? how many paths?
- time? T(n) = 2T(n-1) + cn, T(0) = c, $\implies T(n) = \Theta(2^n)$

- (2) Non-naïve exhaustive search:
 - Take advantage of some characteristics of the problem;
 - Search through the solution space in a savvy way;
 - Derive a non-trivial time complexity (still exponential though);

A non-naïve exhaustive (recursive) algorithm for **Max Ind Set**:

- Consider any vertex u, there are two options (try both)
 - (a) discard u; then find m.i.s. on reduced graph $G \{u\}$;
 - (b) choose u into I; then continue to include more vertices to I from graph $G \{u\} N(u)$, where N(u) are neighbors of u;
- Time complexity derivation, assume $m = \min_{u} |N(u)|$

$$T(n) = T(n-1) + T(n-1-m)$$

Time complexity derivation, assume $m = \min_{u} |N(u)|$

$$T(n) = \begin{cases} T(n-1) + T(n-1-m) + O(n) & n \ge 1 \\ c & n = 0 \end{cases}$$

• m = 0, i.e., there are some "isolated vertices";

$$T(n) = T(n-1) + T(n-1) = 2T(n-1) \Longrightarrow T(n) = \Theta(2^n)$$

same as the naïve exhaustive search!

• m = 1, after removing all isolated vertices, how?

$$T(n) = T(n-1) + T(n-2) \Longrightarrow T(n) = O(1.62^n)$$

Can we do better? removing all vertices of degree 1, how?,
 if we can, then

$$T(n) = T(n-1) + T(n-3) \Longrightarrow T(n) = O(1.5^n), \text{ why?}$$

2. Intractable problems

```
Function MaxIS-Solver (G, I);  // I initialized to empty;
1. if G is not empty
2.   choose an arbitrary vertex v from G;
3.   let G1 = G - {v} - all neighbors of v;
4.   let G2 = G - {v};
5.   MaxIS-Solver (G1, I1);
6.   MaxIS-Solver (G2, I2);
9.   if |I1|+1 >= |I2|
7.         I = I U I1 U {v};
8.   else
9.         I = I U I2;
```

3. Decision vs optimization problems

- Decision problems: input x, output y = "yes" or "no".
- Optimization problems: input x, with an objective function f and solution space S(x), such that the desired output $y^*inS(x)$ has $\max/\min f(x, y^*)$.
 - e.g., TSP, MST, Shorest paths, 0-1 Knapsack,

3. Decision vs optimization problem

Max Ind Set: Input: graph G = (V, E); Output: $I \subseteq V$, where $\forall u, v \in V$, $(u, v) \notin E$, s.t., |I| is the maximum. Ind Set (decision version) Input: graph G = (V, E) and k; Output: "yes" iff G has an independent set of size k;

What are the relationship between the two problems?

- Max Ind Set is solvable in O(n^d)
 ⇒ Independent Set is solvable in O(n^d)
- Ind Set is solvable in $O(n^c)$ \implies Max Ind Set is solvable in $O(n^{c+1})$?

3. Decision vs optimization problem

Assume algorithm $A_{\rm IS}$ for decision problem Ind Set

Construct Algorithm $B_{\rm MIS}$ (using $A_{\rm IS}$ as a block box to solve Max Ind Set)

- Input: G = (V, E);
- for all $k=1,2,\ldots$, query $A_{\rm IS}(G,k)=$? let k_0 be the largest allowing $A_{\rm IS}(G,k_0)=$ "yes".
- for all vertices v in G, query $A_{\rm IS}(G \setminus \{v\}, k_0) = ?$ if answer = "yes" remove v from V else keep and mark v in G.
- \bullet return V (as a max independent set for G)

Time: $T_{B_{\text{MIS}}} = T_{A_{\text{IS}}} \times O(n)$.

Theorem: Max Ind Set is solvable in polynomial time if and only if Ind Set is.

3. Decision vs optimization problem

What is a "decision version" of **TSP** so that if it can be solved in polynomial time, so can **TSP** be?

[In class exercise]

- Problem formulation
- Proof of the complexity equivalence w.r.t. polynomial-time

Taken-home exercises V(A)

- 1. What is a complexity lower bound for an algorithm? What is a complexity lower bound for a problem? Are they related in anyway?
- 2. Understand the definitions of big- Ω and big- Θ . Prove that Insertion Sort has time complexity $\Theta(n^2)$.
- 3. Can we say **Find Max** uses exactly n-1 element-element comparisons on the worst cases? Explain.
- 4. Can we say **Sorting** has time complexity $\Theta(n \log_2 n)$? Explain.
- 5. Use the decision tree model to prove $\Omega(n\log_2 n)$ lower bound for **Sorting** on the required number of element-element comparisons. Write the proof following the logic given in the class but using your own language.
- 6. Use the decision tree modeling of algorithms to prove that searching for a given key from any input list of n elements requires at least $\log_2 n$ element-element comparisons.

Taken-home exercises V(A) cont.

- 7. Let **Bit-Sorting** be the problem to sort an input of *n* binary bits (yes, each element is a single binary bit 0 or 1). What is the least number of bit-bit comparisons required by **Bit-Sorting**? Explain.
- 8. Write a naïve exhaustive search recursive algorithm for TSP.
- Write a naïve exhaustive search non-recursive algorithm for Max Ind Set.
- 10. Write the non-a naïve exhaustive search algorithm for Max Ind Set that has been discussed in the class. Write it as a recursive algorithm.
- 11. Show that if problem **TSP** can be solved in time $O(n^c)$ for some constant c, so can problem **TSP-D**.
- 12. Show that if problem **TSP-D** can be solved in time $O(n^c)$ for some constant c, then problem **TSP** can be solved in time $O(n^d)$ for some constant d.

Decision problems and languages

- For every optimization problem, we may formulate a decision version that captures the time complexity of the optimization problem; how?
- Language: a language can be defined for every decision problem, which contains exactly those "yes" input instances.

```
e.g.,
```

```
L_{\mathsf{SAT}} = \{\phi : \mathsf{boolean} \ \mathsf{formula} \ \phi \ \mathsf{is} \ \mathsf{satisfiable}\}
L_{\mathsf{IS}} = \{\langle G, k \rangle : \ \mathsf{graph} \ G \ \mathsf{has} \ \mathsf{independent} \ \mathsf{set} \ \mathsf{of} \ \mathsf{size} \ k\}
L_{\mathit{Knapsack}} = \{\langle s, v, n, W, k \rangle : \exists \ \mathsf{a} \ \mathsf{legit} \ \mathsf{packing} \ \mathsf{of} \ \mathsf{value} \ge k\}
```

 Therefore, formal language theory can be adopted to investigate optimization problems.

Goals: to understand time complexity of problems that have resisted tries of polynomial-time algorithms

- Direct investigation on their lower bounds have been difficult;
- Via comparisons between them;
- It suffices to investigate decision problems;

through reduction (i.e., transformation) between decision problems;

concepts of universe Σ*, m:1 mapping, complement set;

Reduction from D_1 to D_2 , denoted with $D_1 \leq D_2$

- If $D_1 \leq D_2$, $T_{D_1}(n) \leq T_{D_2}(n) + T_f(n)$;
- If both T_B(n) and T_F(n) are polynomial-time, so is T_A(n);
 If there is a polynomial-time algorithm for problem D₂ and there is a reduction (transformation) D₁ ≤ D₂ computable in polynomial time, then there is a polynomial algorithm for D1;
- Def. A reduction $D_1 \leq D_2$ is a **polynomial time reduction**, denoted with $D_1 \leq_p D_2$ if the reduction function f for $D_1 \leq D_2$ can be computed in polynomial time.

Example: $L_{SAT} \leq_p L_{IS}$

- need a mapping function $f: \Sigma^* \to \Sigma^*$;
- define, for any input ϕ , $f(\phi) = \langle G_{\phi}, k_{\phi} \rangle$;
- need:

$$\mathsf{SAT}(\phi) = "yes" \Longleftrightarrow \mathsf{IS}(\langle G_\phi, k_\phi \rangle) = "yes"$$

does such a reduction exist?

4. Polynomial-time reduction

$$\phi = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_1 \lor \neg x_4)$$
mapped by f to \downarrow

• ϕ is satisfiable \iff G_{ϕ} has ind. set of size \geq 3.

4. Polynomial-time reduction

- *f* follows the rule:
 - (1) map every clause to a complete graph;
 - (2) connect vertices formed by a variable and its negation;
- more examples:
 - what will the following formula be reduced to?

$$\phi = (x_1 \vee x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_3)$$

- what about

$$\psi(x_1,x_2)=(x_1\vee\neg x_2)\wedge(\neg x_1\vee x_2)\wedge(x_1\vee x_2)\wedge(\neg x_1\vee\neg x_2)?$$