CS 228 : Logic in Computer Science

Krishna, S

Rules for Natural Deduction

The rule of double negation elimination $\neg \neg e$

$$\frac{\neg\neg\varphi}{\varphi}$$

The rule of double negation introduction $\neg \neg i$

$$\frac{\varphi}{\neg\neg\varphi}$$

Rules for Natural Deduction

The implies elimination rule or Modus Ponens MP

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1. $p \rightarrow (q \rightarrow \neg \neg r)$ premise

2.

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

- 1. $p \rightarrow (q \rightarrow \neg \neg r)$ premise
- 2. $p \rightarrow q$ premise
- 3.

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.	p o (q o eg eg r)	premise
2	$n \rightarrow a$	nremise

3. *p* premise

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.	$p ightarrow (q ightarrow \lnot \lnot r)$	premise
2.	$ extcolor{p} ightarrow extcolor{q}$	premise
3.	р	premise
4.	$q ightarrow \lnot \lnot r$	MP 1,3
5		

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.	p o (q o eg eg r)	premise
2.	extstyle p o q	premise
3.	p	premise
4.	$q ightarrow \neg \neg r$	MP 1,3

MP 2,3

5. 6.

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.	p o (q o eg eg r)	premise
2.	${m ho} ightarrow {m q}$	premise
3.	р	premise
4.	$q ightarrow \lnot \lnot r$	MP 1,3
5.	q	MP 2,3
6.	$\neg \neg r$	MP 4,5
7		

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.	p o (q o eg eg r)	premise
2.	${m ho} ightarrow {m q}$	premise
3.	p	premise
4.	$q ightarrow \lnot \lnot r$	MP 1,3
5.	q	MP 2,3
6.	$\neg \neg r$	MP 4,5
7.	r	¬¬ <i>e</i> 6

Rules for Natural Deduction

Another implies elimination rule or Modus Tollens MT

▶ Show that $p \rightarrow \neg q, q \vdash \neg p$

1. $p \rightarrow \neg q$ premise

2.

▶ Show that $p \rightarrow \neg q, q \vdash \neg p$

- 1. $p \rightarrow \neg q$ premise
- 2. *q* premise

3.

▶ Show that $p \rightarrow \neg q, q \vdash \neg p$

1.	p ightarrow eg q	premise
2.	q	premise
3.	$\neg \neg q$	¬¬ <i>i</i> 2
1		

▶ Show that $p \rightarrow \neg q, q \vdash \neg p$

1.	p ightarrow eg q	premise
2.	q	premise
3.	$\neg \neg q$	¬¬ <i>i</i> 2
4.	$\neg p$	MT 1,3

▶ Can we prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$?

- ▶ Can we prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$?
- ▶ So far, no proof rule that can do this.

- ▶ Can we prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$?
- ▶ So far, no proof rule that can do this.
- ▶ Given $p \rightarrow q$, let us assume $\neg q$. Can we then prove $\neg p$?

- ▶ Can we prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$?
- So far, no proof rule that can do this.
- ▶ Given $p \rightarrow q$, let us assume $\neg q$. Can we then prove $\neg p$?
- ► Yes, using MT.

The implies introduction rule $\rightarrow i$

1.	p o q	premise
2.	$\neg a$	assumption

2.
$$\neg q$$
 assumptio
3. $\neg p$ MT 1,2

$$\neg q
ightarrow
eg p
ightarrow i$$
 2-3

- $\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$
 - true

2.

premise

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

- 1. true premise 2. $q \rightarrow r$ assumption
- g ,

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	$q \rightarrow r$	assumption
3.	eg q o eg p	assumption
4.		

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	q o r	assumption
3.	eg q o eg p	assumption
4.	р	assumption
5.		

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	$q \rightarrow r$	assumption
3.	eg q o eg p	assumption
4.	p	assumption
5.	$ \ \ \ \neg \neg p$	¬¬ <i>i</i> 4
6.		

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	q o r	assumption
3.	eg q o eg p	assumption
4.	p	assumption
5.	$ \ \ \ \neg \neg p$	¬¬ <i>i</i> 4
6.	$ \ \ \ \neg \neg q$	MT 3,5
7.		

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	$q \rightarrow r$	assumption
3.	eg q ightarrow eg p	assumption
4.	p	assumption
5.	$ \neg \neg \rho$	¬¬ <i>i</i> 4
6.		MT 3,5
7.	q	¬¬ <i>e</i> 6
8.		

1 truo

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

١.	true	premise
2.	$q \rightarrow r$	assumption
3.	eg q ightarrow eg p	assumption
4.	p	assumption
5.	$ \ \ \neg \neg p$	¬¬ <i>i</i> 4
6.	$ \ \ \ \neg \neg q$	MT 3,5
7.		¬¬ <i>e</i> 6
8.		MP 2.7

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	$q \rightarrow r$	assumption
3.	eg q ightarrow eg p	assumption
4.	p	assumption
5.		¬¬ <i>i</i> 4
6.		MT 3,5
7.	q	¬¬ <i>e</i> 6
8.	r	MP 2,7
9.	$p \rightarrow r$	<i>→ i</i> 4-8

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	q o r	assumption
3.	eg q o eg p	assumption
4.	p	assumption
5.	$ \cdot \cdot \neg \neg p$	¬¬ <i>i</i> 4
6.	$ \cdot \cdot \neg \neg q$	MT 3,5
7.		¬¬ <i>e</i> 6
8.	r	MP 2,7
9.	ho ightarrow r	→ <i>i</i> 4-8
10.	$(\neg q ightarrow \neg p) ightarrow (p ightarrow r)$	→ <i>i</i> 3-9

9/15

11.

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise	
2.	q ightarrow r	assumption]
3.	eg q ightarrow eg p	assumption	
4.	p	assumption	
5.	$\neg \neg p$	¬¬ <i>i</i> 4	
6.		MT 3,5	
7.	q	¬¬ <i>e</i> 6	
8.	r	MP 2,7	
9.	$p \rightarrow r$	→ <i>i</i> 4-8	
10.	$(\neg q ightarrow eg ho) ightarrow (ho ightarrow r)$	→ <i>i</i> 3-9	
11.	$(a \rightarrow r) \rightarrow [(\neg a \rightarrow \neg p) \rightarrow (p \rightarrow r)]$	\rightarrow i 2-10	

► Knowing the proof of $\vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$, can you prove

- ► Knowing the proof of $\vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$, can you prove

- ► Knowing the proof of $\vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$, can you prove

 - $(q \to r), (\neg q \to \neg p) \vdash p \to r$

- ► Knowing the proof of $\vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$, can you prove

 - $(q \to r), (\neg q \to \neg p) \vdash p \to r$
 - $(\neg q \to \neg p) \vdash [(q \to r) \to (p \to r)]$

- ► Knowing the proof of $\vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$, can you prove

 - $(q \to r), (\neg q \to \neg p) \vdash p \to r$
 - $(\neg q \to \neg p) \vdash [(q \to r) \to (p \to r)]$
 - $(q \rightarrow r), (\neg q \rightarrow \neg p), p \vdash r$
- ► Knowing the proof of any of the above 4 sequents, can you prove $\vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$?

Transforming Proofs

► Knowing the proof of $\vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$, can you prove

```
▶ q \rightarrow r \vdash (\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)

▶ (q \rightarrow r), (\neg q \rightarrow \neg p) \vdash p \rightarrow r

▶ (\neg q \rightarrow \neg p) \vdash [(q \rightarrow r) \rightarrow (p \rightarrow r)]

▶ (q \rightarrow r), (\neg q \rightarrow \neg p), p \vdash r
```

- ► Knowing the proof of any of the above 4 sequents, can you prove $\vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$?
- ► Transform any proof $\varphi_1, \dots, \varphi_n \vdash \psi$ to $\vdash \varphi_1 \to (\varphi_2 \to \dots (\varphi_n \to \psi) \dots)$ by adding n lines of the rule $\to i$
- ► See an example : transform proof of $p \to (q \to r) \vdash (p \land q) \to r$ into that of $\vdash p \to (q \to r) \to [(p \land q) \to r]$

1.	p o (q o r)	premise
2.	$p \wedge q$	assumption
3.	p	<i>∧e</i> ₁ 2
4.	q	<i>∧e</i> ₂ 2
5.	q ightarrow r	MP 1,3
6.	r	MP 4,5

7.

 $p \land q \rightarrow r \rightarrow i \ 2-6$

7.

$$\blacktriangleright \vdash [p \to (q \to r)] \to [(p \land q) \to r]$$

1.	true	premise
2.	ho ightarrow (q ightarrow r)	assumption
2		

$$\blacktriangleright \vdash [p \to (q \to r)] \to [(p \land q) \to r]$$

1.	true	premise
2.	p o (q o r)	assumption
3.	$p \wedge q$	assumption
4.		

$$\blacktriangleright \vdash [p \to (q \to r)] \to [(p \land q) \to r]$$

1.	true	premise
2.	p o (q o r)	assumption
3.	$p \wedge q$	assumption
4.	p	∧ <i>e</i> ₁ 3
5.		

$$\blacktriangleright \vdash [p \to (q \to r)] \to [(p \land q) \to r]$$

1.	true	premise
2.	p ightarrow (q ightarrow r)	assumption
3.	$p \wedge q$	assumption
4.	p	∧ <i>e</i> ₁ 3
5.	q	∧ <i>e</i> ₂ 3
6.		

$$\blacktriangleright \vdash [p \to (q \to r)] \to [(p \land q) \to r]$$

1.	true	premise
2.	p o (q o r)	assumption
3.	$p \wedge q$	assumption
4.	p	∧ <i>e</i> ₁ 3
5.		∧ <i>e</i> ₂ 3
6.	$ \mid q \rightarrow r$	MP 2,4
7.		

$$\blacktriangleright \vdash [p \to (q \to r)] \to [(p \land q) \to r]$$

1.	true	premise
2.	p o (q o r)	assumption
3.	$p \wedge q$	assumption
4.	p	∧ <i>e</i> ₁ 3
5.	q	∧ <i>e</i> ₂ 3
6.	$ q \rightarrow r$	MP 2,4
7.	r	MP 5,6
8.		

$$\blacktriangleright \vdash [p \to (q \to r)] \to [(p \land q) \to r]$$

1.	true	premise
2.	ho ightarrow (q ightarrow r)	assumption
3.	$p \wedge q$	assumption
4.	p	∧ <i>e</i> ₁ 3
5.	q	<i>∧e</i> ₂ 3
6.	$ q \rightarrow r$	MP 2,4
7.	r	MP 5,6
8.	$p \wedge q ightarrow r$	→ <i>i</i> 3-7
9.	$[p \rightarrow (q \rightarrow r)] \rightarrow [(p \land q) \rightarrow r]$	\rightarrow i 2-8

More Rules

The or introduction rule $\vee i_1$

$$\frac{\varphi}{\varphi\vee\psi}$$

The or introduction rule $\vee i_2$

$$\frac{\psi}{\varphi\vee\psi}$$

More Rules

The or elimination rule ∨*e*

$$\begin{array}{ccc} \varphi \lor \psi & \varphi \vdash \chi & \psi \vdash \chi \\ \hline \chi & \end{array}$$

$$P q \to r \vdash (p \lor q) \to (p \lor r)$$

- 1. $q \rightarrow r$
- 2

premise

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	$q \rightarrow r$	premise
2.	$p \lor q$	assumpti
3.		

$$P q \to r \vdash (p \lor q) \to (p \lor r)$$

1.	q o r	premise
2.	$p \lor q$	assumption
3.	p	assumption
4.		

$$P q \to r \vdash (p \lor q) \to (p \lor r)$$

۱.	q o r	premise
2.	$p \lor q$	assumption
3.	р	assumption
4.	$p \lor r$	∨ <i>i</i> ₁ 3
5.		

$$P q \to r \vdash (p \lor q) \to (p \lor r)$$

١.	q o r	premise
2.	$p \lor q$	assumption
3.	p	assumption
1.	p∨r	∨ <i>i</i> ₁ 3
5.	q	assumption
3.		

$$P q \to r \vdash (p \lor q) \to (p \lor r)$$

1.	q o r	premise
2.	$p \lor q$	assumption
3.	р	assumption
4.	<i>p</i> ∨ <i>r</i>	∨ <i>i</i> ₁ 3
5.	q	assumption
6.	r	MP 1,5
7.		

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	$q \rightarrow r$	premise
2.	$p \lor q$	assumption
3.	р	assumption
4.	$p \lor r$	∨ <i>i</i> ₁ 3
5.	q	assumption
6.	r	MP 1,5
7.	p∨r	∨ <i>i</i> ₂ 6

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	q o r	premise
2.	$p \lor q$	assumption
3.	р	assumption
4.	$p \lor r$	∨ <i>i</i> ₁ 3
5.	q	assumption
6.	r	MP 1,5
7.	$p \lor r$	∨ <i>i</i> ₂ 6
8.	p∨r	∨ <i>e</i> 2, 3-4, 5-7

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	q o r	premise
2.	$p \lor q$	assumption
3.	p	assumption
4.	$p \lor r$	√ <i>i</i> ₁ 3
5.	q	assumption
6.	r	MP 1,5
7.	$p \lor r$	∨ <i>i</i> ₂ 6
8.	$p \vee r$	∨ <i>e</i> 2, 3-4, 5-7
_ `		

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	$q \rightarrow r$	premise
2.	$p \lor q$	assumption
3.	р	assumption
4.	p∨r	∨ <i>i</i> ₁ 3
5.	q	assumption
6.	r	MP 1,5
7.	p∨r	∨ <i>i</i> ₂ 6
8.	p∨r	∨ <i>e</i> 2, 3-4, 5-7
9.	$(p \lor q) \to (p \lor r)$	\rightarrow i 2-8