1. Apsorpcija, spontana i stimulirana emisija; izgled lasera

- Apsorpcija, spontana i stimulirana emisija su pojave na kojima se bazira rad lasera

SPONTANA EMISIJA

- Spontana emisija je kada atom spontano prijeđe iz stanja E2 (stanje veće energije) u stanje E1 (stanje manje energije) te pri tome emitira foton

$$\upsilon_{21} = \frac{E_2 - E_1}{h}$$

- Frekvencija emitiranja:
- Val se može emitirati u bilo kojem smjeru, te može imati bilo koju polarizaciju

$$P_{spont} = h v_{21} N_2 A_{21}$$

APSORPCIJA

- Atom apsorbira foton iz ulazne zrake i stoga prelazi u više energetsko stanje

$$P_{apsorb} = h v_{21} B_{12} N_1 \rho(v_{21})$$

STIMULIRANA EMISIJA

- Reverzni proces u odnosu na apsorpciju. Atom daje energiju *hv* koja se koherentno zbraja (na istoj frekvenciji, iste polarizacije, istog smjera putovanja, te iste faze kao i stimulacijski val) s upadnim elektromagnetskim valom, te ga pojačava

$$P_{stimul} = h \, v_{21} N_2 B_{21} \rho(v_{21})$$

2. Vrste laserskih dioda (Fabry-Pérot, DFB, DBR, VCSEL), P-I karakteristika, spektralna karakteristika

FABRY-PEROT

- Ima jedan transverzalan mod, više longitudinalnih (primjena u CD/DVD, štampači...), najjeftiniji

DBR (DISTRIBUIRANO BRAGGOVO ZRCALO)

- Distribuirano Braggovo zrcalo selektira longitudinalni mod (jedan transverzalan i jedan longitudinalan mod)
- Zbog komplicirane tehnologije, cijena takve diode je dosta visoka

DFB (DISTRIBUTED FEED-BACK LASER)

- Aktivni sloj je ujedno i jezgra planarnog svjetlovoda (jedan transverzalan i jedan longitudinalan mod)
- Distribuirano zrcalo se često kombinira sa zrcalom na kraju čipa

VCSEL (LASER S VERTIKALNIM REZONATOROM)

- Rezonator je okomit na ravninu čipa
- Jedan longitudinalni mod, jedan ili više transverzalnih modova
- Pojačanje mnogo manje nego u laserima u ravnini čipa jer je duljina aktivnog sloja vrlo mala (~ 25 nm)
- Zrcala moraju biti vrlo visokog koeficijenta refleksije (>99.5%)

- 3. Vrste fotodetektora (PIN i APD fotodetektorske diode), parametri fotodetektora (kvantna djelotvornost, odziv, vrijeme porasta, frekvencijska širina pojasa)
 - Fotodetektor bitan element o kojem ovisi kvaliteta cijelog prijamnog sustava
 - pretvara tok fotona u tok električnih nosioca, tj. električne struje
 - zasniva se na unutarnjem fotoelektričnom efektu (fotoionizacija, lavinski efekt)
 - mora imati veliku osjetljivost, nisku razinu vlastitog šuma, širok frekvencijski pojas, kratko vrijeme odziva i linearnost detekcije u širokom području
 - Fotoionizacija ako svjetlost pri upadu u materijal ima dovoljno visoku frekvenciju tako da je hv ≥ Eg,
 energija fotona stvarat će par elektron-šupljina

PIN FOTODIODA

- Uslijed prisutnog električnog polja u intrinzičnom I-sloju PIN diode, elektroni će se gibati prema N-sloju, a šupljine prema P-sloju (dioda je reverzno polarizirana)

LAVINSKA FOTODIODA

- APD dioda (lavinska fotodioda) je zapravo PIN dioda s povećanim poljem gdje dolazi do ionizacije sudarima
- Elektroni se dodatno ubrzavaju u području s pojačanim električnim poljem i ako dosegnu dovoljno veliku brzinu (dovoljno veliku energiju), u sudaru s kristalnom rešetkom generirat će novi par elektron šupljina

KVANTNA DJELOTVORNOST

- Kvantna djelotvornost (η) definirana je kao vjerojatnost da ulazni foton generira par elektron-šupljina
- Neki fotoni biti će reflektirani na granici zrak-poluvodič, neki će se parovi elektron-šupljina, generirani blizu
 površine poluvodiča, brzo rekombinirati zbog obilja rekombinacijskih centara na površini poluvodiča, ako
 svjetlost nije fokusirana na aktivno područje, neki fotoni bit će izgubljeni

ODZIV

Odziv \Re daje odnos struje koja teče kroz detektor i upadne optičke snage

$$\Re = \frac{\eta e}{h \nu} = \eta \frac{\lambda_0 [\mu \text{m}]}{1.24}$$

- Raste linearno s valnom duljinom budući da uz konstantnu optičku snagu imamo sve više fotona na ulazu.
- Uočiti da η ovisi o valnoj duljini, tako da je područje u kojem linearno ovisi o λ0 ograničeno.

$$I_D = \frac{\eta e}{h \, \nu} \, P = \Re P \qquad \qquad I_D = M \, \frac{\eta e}{h \, \nu} \, P = M \, \Re P$$

Faktor multiplikacije M u principu govori koliko prosječno svaki elektron koji ulazi iz I-sloja u sloj multiplikacije generira novih parova elektron-šupljina

FREKVENCIJSKA ŠIRINA POJASA DETEKTORA

Određuje se preko vremena porasta Tr - vrijeme potrebno da struja promjenu od 10% do 90% vrijednosti uz skokovitu promjenu pobude

Ekvivalentni nadomjesni RC sklop

$$\sigma = (P + P) C$$

 $T_r = \ln 9 \left(\tau_{pr} + \tau_{RC} \right)$

Vremenska konstanta RC sklopa: $\tau_{RC} = (R_L + R_S) \cdot C_P$

$$\Delta f = \left[2\pi \left(\tau_{pr} + \tau_{RC}\right)\right]^{-1}$$

$$\Delta f = \frac{2.197}{2\pi T_r} = \frac{0.35}{T_r}$$

4. Svjetlovodna pojačala, svojstva EDFA-pojačala, saturacija pojačanja, shema EDFA- pojačala

- Optička pojačala su pojačala koja pojačavaju signal u optičkoj domeni, tj. kod optičkih pojačala nema pretvorbe iz optičke u električnu domenu, te nakon pojačanja pretvorbe ponovo u optičku domenu (eliminira se potreba za skupim regeneratorima signala)
- Optička pojačala mogu istovremeno pojačavati više optičkih signala (valnih duljina), a to je posebno važno kod WDM sustava
- Primjena: Pojačalo snage (povećanje snage predajnika), predpojačalo (povećanje osjetljivosti prijemnika), linijska pojačala (kompenzacija gubitaka pri prijenosu), pojačala u LAN-u (kompenzacija gubitaka uslijed grananja signala)
- Optičko pojačalo je 1R regenerator samo pojačava signal, pri tome dodaje šum spontane emisije, drugim riječima, nakon svakog optičkog pojačala pogoršava se odnos signal šum S/N
- Optičko pojačalo je u osnovi laser bez rezonantne šupljine

EDFA (ERBIJEM DOPIRANO SVJETLOVODNO POJAČALO)

- Jezgra svjetlovoda dopirana je Erbijem
- Zbog amorfne prirode stakla od kojeg je načinjen svjetlovod, energetski nivoi se cijepaju u (široke) energetske pojaseve, to odražava činjenicu da pojedini atomi vide različita okruženja jer struktura nije geometrijski pravilna (odnosno nije kristalna struktura)
- Pumpanje moguće na dvije valne duljine 980 nm i 1480 nm
- EDFA pojačava signal na 1530nm-1565nm, a maksimalno pojačanje na otprilike 1531nm

SATURACIJA (ZASIĆENJE) POJAČANJA

- Za velike ulazne snage ne postoji dovoljan broj atoma erbija (čak i da su svi atomi erbija u višem energetskom stanju) pomoću kojih bi se postiglo maksimalno pojačanje, te zbog toga dolazi do zasićenja pojačanja

$$G = 1 + \frac{P^{sat}}{P_{ul}} \ln \frac{G_{\max}}{G}$$

$$G_{\max} - \text{maksimalno pojačanje (bez zasičenja)}$$

$$P^{sat} - \text{interna saturacijska snaga}$$

$$G_{\max} - \text{maksimalno pojačanje (bez zasičenja)}$$

5. Princip rada svjetlovoda, Snellov zakon, kritični kut, numerička apertura, vrste svjetlovoda

- Princip rada svjetlovoda se zasniva na totalnoj refleksiji svjetlosti unutar svjetlovoda

SNELLOV ZAKON

- Refleksije unutar svjetlovoda možemo opisati Snellovim zakonom u 3 karakteristična slučaja

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Upadni kut je prevelik i dio zrake se reflektira van svjetlovoda

Upadni kut je manji od kritičkog kuta i sva svjetlost ostaje unutar svjetlovoda (Totalna refleksija)

Upadni kut je jednak kritičkom kutu i zraka svjetlosti se širi granicom svjetlovoda

NUMERIČKA APERTURA

- Numerička apertura (NA) je mjera količine svjetlosti sakupljene u svjetlovod

VRSTE SVJETLOVODA

Višemodni svjetlovod s stepeničastim profilom indeksa loma

Višemodni svjetlovod s gradijentnim profilom indeksa loma

Jednomodni svjetlovod

6. Ograničenja u svjetlovodu: gušenje i disperzija; ovisnost maksimalne udaljenosti veze o brzini prijenosa, valnoj duljini i vrsti svjetlovoda

GUŠENJE

MEHANIZMI KOJI UTJEČU NA GUŠENJE

- Infracrvena apsorpcija zbog nje su svjetlovodi izrađeni na bazi kvarcnog stakla neupotrebljivi iznad 1.7 μm
 interakcijom foton fonon prenosi se djelić svjetlosne energije u vibraciju molekula kremenog stakla SiO2, pojava je rezonantna i ima vrh kod λ = 8 μm.
- Ultraljubičasta apsorpcija djelić svjetlosne energije se koristi pri interakciji foton elektron za podizanje elektrona iz valentnog u vodljivi pojas na otprilike λ < 0.4 μ m
 - na valnoj duljini λ≈0.14 µm se javlja rezonantni vrh gušenja
- Rayleighovo raspršenje mehanizam raspršenja signala zbog lokalne varijacije indeksa loma (gustoće materijala) u amorfnoj masi (staklu) kojeg ne bi bilo da je staklo kristalna struktura
 - zbog lokalne varijacije indeksa loma dolazi do male djelomične refleksije (raspršenja) signala, ali pritom nema pretvorbe energije
 - frekvencijski je ovisno $(\alpha_{Ray}^{2} 1/\lambda^{4})$
- Tehnološko gušenje vezano je uz tehnološke postupke pri proizvodnji svjetlovoda
 - moguće ih je smanjiti poboljšanjem postupka proizvodnje
 - gušenje od iona OH, gušenje uslijed nesavršenosti valovodne strukture, gušenje od nečistoće materijala
- *Gušenje uslijed savijanja* kod savijanja svjetlovoda može se dogoditi da nisu ispunjeni uvjeti totalne refleksije na vanjskom obodu jezgre, pa dio zrake izlazi iz jezgre te zrači u okolinu
 - uslijed savijanja vlakna naravno može doći i do puknuća samog vlakna

DISPERZIJA

- Pojava proširenja i slabljenja signala

MEĐUMODALNA DISPERZIJA

- Za zrake koje putuju pod različitim kutovima, moraju proći različite udaljenosti, te zbog toga ne dolaze na odredište onako kako su poslane, tu pojavu zovemo *međumodalna disperzija*

$$T' = \frac{n_1 L}{c}$$

$$\frac{\Delta T}{L} = \frac{n_1}{n_2} \cdot \frac{\Delta n}{c}$$

$$B_0 L \le \frac{1}{2} \frac{c}{\Delta n}$$

Aksijalna zraka

Zraka pod kutom φ

Ograničenje zbog međumodalne disperzije

KROMATSKA DISPERZIJA

- Nastaje zbog ovisnosti grupne brzine o valnoj duljini i dijeli se na materijalnu i valovodnu disperziju
- Materijalna disperzija nastaje uslijed činjenice da indeks loma ovisi o valnoj duljini
- Valovodna disperzija nastaje uslijed činjenice da je koeficijent rasprostiranja βz funkcija valne duljine

$$D = \frac{\Delta T}{L \Delta \lambda}$$

$$B_0 L \le \frac{1}{2\Delta \lambda |D|}$$

$$B_0 L \le \frac{1}{4\sigma_{\lambda}|D|}$$

Parametar kromatske disperzije

Ograničenje na brzinu uslijed kromatske disperzije

POLARIZACIJSKA DISPERZIJA

- Razlika u brzini propagacije ortogonalnih modova
- Najmanja od svih vrsta disperzije i zbog toga se često zanemaruje
- Kod sustava s vrlo velikom brzinom prijenosa (10 Gb/s i više) ona postaje jedan od bitnih faktora ograničenja

$$\langle \Delta T \rangle \approx D_{PMD} \sqrt{L}$$

OGRANIČENJA BRZINE I UDALJENOSTI

$$B_0 L \le \frac{1}{2} \frac{c}{\Delta n}$$

$$B_0 L \le \frac{2c}{n_0 \Delta^2}$$

$$B_0 L \le \frac{1}{2\Delta \lambda |D|}$$

$$B_0 L \le \frac{1}{4\sigma_{\lambda}|D|}$$

Višemodni svjetlovod sa stepeničastim indeksom loma Višemodni svjetlovod s gradijentnim indeksom loma

Jednomodni svjetlovod

7. Multipleksiranja signala - TDM i WDM pristup

2 osnovna načina multipleksiranja: - TDM (Time Division Multiplexing)
 - WDM (Wavelength Division Multiplexing)

TDM (Time Division Multiplexing)

- Multipleksiranje u vremenskoj domeni
- Brzina prijenosa i format ulaznih podataka su strogo određeni
- 2 moguća načina multipleksiranja: bit po bit ili znak po znak

WDM (Wavelength Division Multiplexing)

- Multipleksiranje po valnim duljinama
- Brzina prijenosa i format ulaznih podataka mogu biti proizvoljni
- Pojedini signali već mogu biti multipleksirani (TDM, FDM)

- Prirodni put multipleksiranja: 1. TDM način mutipleksiranja do brzine prijenosa \sim 10 Gb/s
 - 2. WDM način multipleksiranja za veće brzine prijenosa

DWDM (Dense Wavelength Division Multiplexing) - Gusti WDM

- Odnosi se na WDM gdje razmak kanala nije veći od nekoliko nm (0,8nm ili 0,4nm)
- Problem kod velikog broja kanala je bliski razmak valnih duljina što predstavlja stroge zahtjeve na opremu
- Mogućnost korištenja pojačala, pogodan za velike udaljenosti

CWDM (Coarse Wavelength Division Multiplexing) - Grubi WDM

- Jeftinija oprema, pogodan za sustave s manjim udaljenostima između repetitora (regionalne mreže)
- 20 nm razmak kanala

8. Projektiranje optičke veze - proračun snage i proračun vremena odziva

PRORAČUN SNAGE

- Radi se kako bi se osigurala potrebna razina snage na ulazu u optički prijemnik
- Najmanja srednja razina optičke snage koja je potrebna da stigne na prijamnik (uz BER manji od maksimalno dozvoljenoga) naziva se osjetljivost prijemnika i označava se Ppr
- Marigina sustava Ms 3dB zbog kratkoročnih (temperatura) i 3dB zbog dugoročnih (starenje) promjena
 ->6dB
- Osjetljivost prijemnika pada s porastom brzine

PRORAČUN VREMENA ODZIVA

- Proračun vremena porasta služi da se provjeri da li je sustav sposoban ostvariti željenu brzinu prijenosa
- Vremena porasta za odašiljač u pravilu je poznato za konkretne komponente

$$T_r^2 = T_{r,od}^2 + T_{r,sv}^2 + T_{r,pr}^2$$
 vrijeme porasta odašiljača vrijeme porasta svjetlovoda vrijeme porasta prijemnika

$$T_r = \frac{2,2}{2\pi\Delta f} = \frac{0,35}{\Delta f}$$
 Vrijeme porasta

$$T_{r,sv} \cong T_{r,\mathrm{mod}} \cong \Delta T \cong \frac{n_1 \Delta}{c} L \qquad \qquad T_{r,sv} \cong T_{r,\mathrm{mod}} \cong \Delta T \cong \frac{n_1 \Delta^2}{4c} L \qquad \qquad T_{r,sv} \cong T_{r,krom} \cong \left| D \right| \Delta \lambda L$$

Višemodni svjetlovod s stepeničastim indeksom loma

Gradijentni svjetlovod

Jednomodni svjetlovod

- U digitalnim sustavima možemo koristiti dva formata: RZ (return to zero) i NRZ (non-return to zero)

$$B_0 \le \frac{0.7}{T_r}$$
 za NRZ $B_0 \le \frac{0.35}{T_r}$ za RZ