

$rac{14}{3}$ Ejercicios y actividades del capítulo

ALUMNO: Ian Alejandro Jaen Cruz Dr. Eduardo Cornejo-Velázquez

Ejercicios

1. a) Escriba una gramática que genere el conjunto de cadenas {
s; , s;s; , s;s;s; , . . . } .

Figure 1: Arbol

2. Considere la siguiente gramática: rexp \rightarrow rexp "—" rexp

- rexp rexp rexp "*" "(" rexp ")" letra

Figure 2: Arbol

- 3. De las siguientes gramáticas, describa el lenguaje generado por la gramática y genere árboles sintácticos con las respectivas cadenas.
- a) S \rightarrow S S + S S * a con la cadena aa+a*. b) S \rightarrow 0 S 1 0 1 con la cadena 000111. c) S \rightarrow + S S * S S a con la cadena + * aaa

Figure 3: Arbol

Figure 4: Arbol

Figure 5: Arbol

4. ¿Cuál es el lenguaje generado por la siguiente gramática?

$$S \to xSy -\!\!\!- e$$

Cadenas de la forma

$$x^n y^n$$

donde cada cadena contiene el mismo número de x y y, incluyendo la cadena vacía (ε) .

5. Genere el árbol sintáctico para la cadena zazabzbz utilizando la siguiente gramática:

$$S \to zMNz$$

$$M \to aNa$$

$$N \to bNb$$

$$N \to z$$

Figure 6: Arbol

6. Demuestre que la gramática que se presenta a continuación es ambigua, mostrando que la cadena ictictses tiene derivaciones que producen distintos árboles de análisis sintáctico.

 $\begin{array}{l} S \to ictS \\ S \to ictSeS \end{array}$

 $S \to s$

Derivación 1:

 $S \rightarrow ictSeS \rightarrow ictictSeS \rightarrow ictictSeS \rightarrow ictSeS \rightarrow ictictSeS \rightarrow ictictSeS$

Derivación 2:

 $S \rightarrow ictS \rightarrow ictictSeS \rightarrow ictictSeS \rightarrow ictS \rightarrow ictictSeS \rightarrow ictictSeS.$

Los árboles difieren en la asociatividad del e.

7. Considere la siguiente gramática S \rightarrow (L) — a L \rightarrow L , S — S Encuéntrense árboles de análisis sintáctico para las siguientes frases:

```
a) ( a, a )
b) ( a, ( a, a ))
c) ( a, (( a, a ), ( a, a )))
```


Figure 7: Arbol

8. Constrúyase un árbol sintáctico para la frase not (true or false) y la gramática: bexpr \rightarrow bexpr or bterm — bterm bterm \rightarrow bterm and bfactor — bfactor bfactor \rightarrow not bfactor — (bexpr) — true — false

Figure 8: Arbol

9. Diseñe una gramática para el lenguaje del conjunto de todas las cadenas de símbolos 0 y 1 tales que todo 0 va inmediatamente seguido de al menos un 1.

$$S{\to}1S01S$$

10. Elimine la recursividad por la izquierda de la siguiente gramática:

$$S \rightarrow (L) \mid a$$

 $LBL, S \mid S$

$$S \to (L) \mid a$$

$$L \to SL'$$

$$L' \to SL' \mid \varepsilon$$

13. La gramática 3.2, sólo maneja las operaciones de suma y multiplicación, modifique esa gramática para que acepte, también, la resta y la división; Posteriormente, elimine la recursividad por la izquierda de la gramática completa y agregue la opción de que F, también pueda derivar en num, es decir, $F \rightarrow (E) \mid id \mid num$ Para eliminar la recursión por la izquierda, la gramática se transforma en:

$$\begin{split} \mathbf{E} &\to TE' \\ E' &\to +TE' \mid -TE' \mid \varepsilon \\ T &\to FT' \\ T' &\to *FT' \mid /FT' \mid \varepsilon \\ F &\to (E) \mid id \mid num \end{split}$$