Name (printed): X SOCOT	10WSX	_
Program:		
All 6 questions are equally weighter	d, there is no partial credit	. Circle the correct answer for
	each question.	ELI (IMPUCTIVE)
An electrical system is rated at 5 kVA, 120V (rms) with a 0.7 lagging power factor.		
Determine the following:		3 =171.1三*
1. The impedance of the system in	n rectangular coordinates	5 A VA = (120 V)(I)
a. (1.73 - j2.30) Ω		I = 41.67 ARMS
b. (2.30 + j1.73) Ω c. (1.73 - j2.30) Ω		$\Theta = \cos'(0.7)$
d. $(2.02 + j2.06) \Omega$		= 45.57°
	V = 120 VRM ; 4 I = 41.67 ARM ;	Xo.
	I= 41.67 April	X-45,57°
灵	$=\frac{1}{2}=[2.02.$	+j2.06)~

- 2. The average power delivered to this system
 - (a.) 3500 W
 - b. 5000 W
 - c. 4000 W
 - d. 2250 W

to this system
$$P_{AVE} = I_{RMS} \cdot R$$

$$= (41.67 A_{RMS})^{2} \cdot (2.02)$$

$$= 3,500W$$

- 3. Is this system more inductive, capacitive or completely resistive?
 - a. inductive
 - b. capacitive
 - c. resistive only
 - d. not enough information to tell

Note: $E = 50 \text{ mVRMS} < 0^{\circ}$

For the circuit shown above, answer the following questions:

4. Find the total impedance of the circuit at resonance: Z, = R=2~ (AT fs)

a.
$$30 \Omega < 86^{\circ}$$

b.
$$28 \Omega < 86^{\circ}$$

$$(c.)$$
 (2 + j0) Ω

d.
$$(2 + j30) \Omega$$

5. What is the quality factor of the circuit?

a.
$$Qs = 0.067$$

b.
$$Qs = 0$$

c.
$$Qs = 25$$

$$Q = \frac{\chi_c}{R} = \frac{30n}{2n} = \sqrt{15}$$

6. Find the power dissipated by the circuit at resonance:

$$P_0 = P_R = \underbrace{E}_{2} e \operatorname{Resonouch}$$

$$= \underbrace{(50mV)^2}_{2}$$

$$= \underbrace{(1,25mW)}_{2}$$