

TEST REPORT

Report number : JPD-TR-16004-0 Issue date : May 11, 2016

The device, as described herewith, was tested pursuant to applicable test procedure and complies with the requirements of;

FCC Part15 Subpart C IC RSS-247

The test results are traceable to the international or national standards.

Applicant : To	elepathy Japan Inc.
----------------	---------------------

Equipment under test (EUT) : Telepathy walker

Model number : TPC008

FCC ID : 2AF83TPC008

IC Certification number : 20764-TPC008

Date of test

April 15, 18, 19, 21, 22, 2016

Test place

TÜV SÜD Zacta Ltd. Yonezawa Testing Center

4149-7 Hachimanpara 5-chome

Yonezawa-shi Yamagata 992-1128 Japan

Phone: +81-238-28-2880 Fax: +81-238-28-2888

Test results

: Complied

The results in this report are applicable only to the equipment tested.

This report shall not be re-produced except in full without the written approval of TÜV SÜD Zacta Ltd. This test report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Tested by

Kazunori Saita

Kazunori Saito

Tested by

Friki Waterslan

Taiki Watanabe

Authorized by

Ano Suzuke

Hiroaki Suzuki

Manager of EMC Technical Department

Table of contents

	Page
1. Summary of Test	
1.1 Purpose of test	4
1.2 Standards	
1.3 List of applied test to the EUT	4
1.4 Modification to the EUT by laboratory	4
2. Equipment Under Test	5
2.1 General Description of equipment	5
2.2 EUT information	
2.3 Variation of the family model(s)	
2.4 Operating channels and frequencies	6
2.5 Operating mode	6
2.6 Operating flow	7
3. Configuration of equipment	8
3.1 Equipment(s) used	8
3.2 Cable(s) used	8
3.3 System configuration	8
4. 6dB Bandwidth / 99% Bandwidth	9
4.1 Measurement procedure	9
4.2 Limit	9
4.3 Measurement result	9
4.4 Trace data	10
5. Maximum Peak Output Power	12
5.1 Measurement procedure	
5.2 Limit	12
5.3 Measurement result	12
6. Band Edge Compliance of RF Conducted Emissions	13
6.1 Measurement procedure	
6.2 Limit	13
6.3 Measurement result	13
6.4 Trace data	15
7. Spurious emissions - Conducted	
7.1 Measurement procedure	
7.2 Limit	
7.3 Measurement result	
7.4 Trace data	
8. Spurious Emissions - Radiated	
8.1 Measurement procedure	
8.2 Calculation method	
8.3 Limit	
8.4 Test data	
9. Restricted Band of Operation	
9.1 Measurement procedure	
9.2 Limit	
·	T

Page 3 of 58

9.3 Measurement Result	
9.4 Test data	43
10. Transmitter Power Spectral Density	48
10.1 Measurement procedure	48
10.2 Limit	48
10.3 Measurement result	48
10. 4 Trace data	50
11. AC Power Line Conducted Emissions	52
11.1 Measurement procedure	52
11.2 Calculation method	52
11.3 Limit	53
11.4 Test data	53
12. Antenna requirement	54
13. Uncertainty of measurement	55
14. Laboratory description	56
Appendix A. Test equipment	
Appendix B. Duty Cycle	

1. Summary of Test

1.1 Purpose of test

It is the original test in order to verify conformance to FCC Part 15 Subpart C and IC RSS-247.

1.2 Standards

CFR47 FCC Part 15 Subpart C IC RSS-247

1.2.1 Test Methods

ANSI C63.10-2013, KDB 558074 D01 DTS Meas Guidance v03r05

1.2.2 Deviation from standards

None

1.3 List of applied test to the EUT

FCC Section	IC Section	Test items	Condition	Result
15.247(a)(2)	RSS-247 5.2(1)	6dB Bandwidth	Conducted	PASS
15.247(b)(3)	RSS-247 5.4(4)	Maximum Peak Output Power	Conducted	PASS
15.247(d)	RSS-247 5.5	Band Edge Compliance of RF Conducted Emissions	Conducted	PASS
15.247(d) 15.205 15.209	RSS-247 5.5	Spurious Emissions	Conducted Radiated	PASS
15.247(d) 15.205 15.209	RSS-Gen 8.9	Restricted Bands of Operation	Radiated	PASS
15.247(e)	RSS-247 5.2(2)	Transmitter Power Spectral Density	Conducted	PASS
15.207	RSS-Gen 8.8	AC Power Line Conducted Emissions	Conducted	PASS

1.3.1 Test set up

Table-Top

1.4 Modification to the EUT by laboratory

None

2. Equipment Under Test

2.1 General Description of equipment

EUT is the Wearable device.

2.2 EUT information

Applicant : Telepathy Japan Inc.

Nihonbasi Ningyocho 1-7-10, Tsukakoshi bldg. 8F, Chuo-ku, Tokyo.

103-0013 Japan

Phone: +81-70-5548-2887

Equipment under test : Telepathy walker

Trade name : Telepathy

Model number : TPC008

Serial number : N/A

EUT condition : Pre-Production

Power ratings : Battery: DC 3.7V

Size : (W) 72× (D) 137 × (H) 21 mm / in use

(W) 42× (D) 120 × (H) 21 mm /Portable form

Environment : Indoor and Outdoor use

Thermal limitation : 5°C to 45°C

RF Specification

Protocol : IEEE802.11b, IEEE802.11g

Frequency range : IEEE802.11b /11g: 2412MHz-2462MHz

Number of RF : 11 Channels

Channels

Modulation type : IEEE802.11b: DSSS (DBPSK, DQPSK, CCK)

IEEE802.11g: OFDM (BPSK, QPSK, 16QAM, 64QAM)

Data rate : IEEE802.11b: 1, 2, 5.5, 11Mbps

IEEE802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps

Channel separation : 5MHz

Conducted power : 15.849mW (IEEE802.11b)

98.401mW (IEEE802.11g)

Antenna type : Internal antenna

Antenna gain : 3.0dBi

2.3 Variation of the family model(s)

Not applicable

2.4 Operating channels and frequencies

Channel	Frequency [MHz]
1	2412
2	2417
3	2422
4	2427
5	2432
6	2437
7	2442
8	2447
9	2452
10	2457
11	2462

2.5 Operating mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Tested Channel	Frequency [MHz]
Low	2412
Middle	2437
High	2462

The pre-test has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

Tested Channel	Modulation Type	Data Rate
Low, Middle, High	IEEE802.11b: DSSS	1Mbps
Low, Middle, High	IEEE802.11g: OFDM	6Mbps

The field strength of spurious emissions was measured at each position of all three axis X, Y and Z to compare the level, and the maximum noise.

The worst emission was found in Z axis and the worst case recorded.

Report number: JPD-TR-16004-0 FCC ID: 2AF83TPC008 IC Certification number: 20764-TPC008

2.6 Operating flow

[Tx mode]

- i) Test program setup to the RFTestTool, VER: 4.7.
- ii) Select a Test mode
 - [IEEE802.11b, IEEE802.11g]
 - Operating frequency: Channel Low: 2412MHz, Channel Middle: 2437MHz, Channel High: 2462MHz
- iii) Start test mode

[Rx mode]

- i) Test program setup to the RFTestTool, VER: 4.7.
- ii) Select a Test mode
 - Operating frequency: Channel Low: 2412MHz, Channel Middle: 2437MHz, Channel High: 2462MHz
- iii) Start test mode

3. Configuration of equipment

3.1 Equipment(s) used

No.	Equipment	Company	Model No.	Serial No.	FCC ID / DoC	Comment
1	Wearable device	Telepathy	TPC008	N/A	2AF83TPC008	EUT
2	AC Adapter	Telepathy	PSAA10A-050Q	N/A	N/A	*

^{*:} AC power line Conducted Emission Test.

3.2 Cable(s) used

No.	Cable	Length[m]	Shield	Connector	Comment
а	Micro USB cable(for AC Adapter)	0.9	No	Metal	*

^{*:} AC power line Conducted Emission Test.

3.3 System configuration

Note1: Numbers assigned to equipment or cables on this diagram correspond to the list in "3.1 Equipment(s) used" and "3.2 Cable(s) used". Note2: One ferrite core of DC cable (No.a) is accessory of AC adapter (No.2).

Report number: JPD-TR-16004-0 FCC ID: 2AF83TPC008 IC Certification number: 20764-TPC008

4. 6dB Bandwidth / 99% Bandwidth

4.1 Measurement procedure

[FCC 15.247(a)(2), RSS-247 5.2(1), KDB 558074 D01 v03r05, Section 8.2]

The bandwidth at 6dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) RBW = 100kHz.
- b) VBW \geq 3 x RBW.
- c) Sweep time = auto-couple.
- d) Detector = peak.
- e) Trace mode = max hold.
- Test configuration

4.2 Limit

The minimum permissible 6dB bandwidth is 500kHz.

There is no limit of 99% bandwidth.

4.3 Measurement result

Date : April 18, 2016 Temperature : 23.3 [°C]

Humidity : 36.5 [%]

Test place : Shielded room No.4 Taiki Watanabe

[IEEE802.11b、IEEE802.11g]

Channel	Frequency	6dB bandv	vidth [MHz]	99% bandwidth [MHz]		
		IEEE802.11b	IEEE802.11g	IEEE802.11b	IEEE802.11g	
Low	2412	7.592	15.310	12.345	16.277	
Middle	2437	8.080	15.142	12.305	16.289	
High	2462	8.075	15.146	12.318	16.286	

Test engineer

TÜV SÜD Zacta Ltd. Test Report Rev.FCC/IC-2.0 Report number: JPD-TR-16004-0 FCC ID: 2AF83TPC008 IC Certification number: 20764-TPC008

4.4 Trace data [IEEE802.11b]

Channel Low

Channel Middle

Channel High

[IEEE802.11g]

Channel Low

Channel Middle

Channel High

5. Maximum Peak Output Power

5.1 Measurement procedure

[FCC 15.247(b)(3), RSS-247 5.4(4), KDB 558074 D01 v03r05, Section 9.1.2]

The peak power is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

- Test configuration

5.2 Limit

1W (1000mW) or less

5.3 Measurement result

Date April 18, 2016 Temperature 23.3 [°C]

Humidity 36.5 [%]

Test place : Shielded room No.4 Test engineer

Taiki Watanabe

[IEEE802.11b] **Battery Full**

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Peak Output Power (mW)	Limit (mW)	Result
Low	2412	1.21	10.52	11.73	14.894	≦1000	PASS
Middle	2437	1.43	10.52	11.95	15.668	≦1000	PASS
High	2462	1.48	10.52	12.00	15.849	≦1000	PASS

[IEEE802.11g]

Battery Full

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Peak Output Power (mW)	Limit (mW)	Result
Low	2412	8.10	10.52	18.62	72.778	≦1000	PASS
Middle	2437	9.41	10.52	19.93	98.401	≦1000	PASS
High	2462	8.45	10.52	18.97	78.886	≦1000	PASS

Calculation;

Reading (dBm) + Factor (dB) = Level (dBm)

10logP = Level (dBm) P = 10^(Maximum Peak Output Power / 10) (mW)

Report number: JPD-TR-16004-0 FCC ID: 2AF83TPC008 IC Certification number: 20764-TPC008

6. Band Edge Compliance of RF Conducted Emissions

6.1 Measurement procedure

[FCC 15.247(d), RSS-247 5.5, KDB 558074 D01 v03r05, Section 11.0]

The Band Edge is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = Arbitrary setting. (Setting suitable for measurement.)
- b) RBW = 100 kHz
- c) VBW ≥ 3 x RBW
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- Test configuration

6.2 Limit

In any 100kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

6.3 Measurement result

Date : April 18, 2016 Temperature : 23.3 [°C]

Temperature : 23.3 [°C] Humidity : 36.5 [%]

Test place : Shielded room No.4

Test engineer

Taiki Watanabe

[IEEE802.11b]

Channel	Frequency (MHz)	RF Power Level (dBm)	Band-edge Frequency (MHz)	Band-edge Level (dBm)	Difference Level (dBm)	Limit (dBm)	Result
Low	2412.00	-10.28	2398.00	-56.40	46.12	At least 20dB below from peak of RF	PASS
High	2462.00	-9.57	2489.66	-67.18	57.61	At least 20dB below from peak of RF	PASS

[IEEE802.11g]

LILLLOOP	91						
Channel	Frequency (MHz)	RF Power Level (dBm)	Band-edge Frequency (MHz)	Band-edge Level (dBm)	Difference Level (dBm)	Limit (dBm)	Result
Low	2412.00	-13.29	2395.76	-51.53	38.24	At least 20dB below from peak of RF	PASS
High	2462.00	-12.80	2483.82	-61.10	48.30	At least 20dB below from peak of RF	PASS

6.4 Trace data [IEEE802.11b]

Channel Low

Channel High

[IEEE802.11g]

Channel Low

Channel High

7. Spurious emissions - Conducted -

7.1 Measurement procedure

[FCC 15.247(d), RSS-247 5.5, KDB 558074 D01 v03r05, Section 11.0]

The spurious emissions (Conducted) are measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = wide enough to fully capture the emission being measured.
- b) RBW = 100 kHz.
- c) VBW ≥ RBW.
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- Test configuration

7.2 Limit

In any 100kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

Tested by

7.3 Measurement result

Date : April 18, 2016 Temperature : 23.3 [°C]

Humidity : 36.5 [%]

Test place : Shielded room No.4 Taiki Watanabe

[IEEE802.11b, IEEE802.11q]

Channel	Frequency [MHz]	Limit [dB]	Results Chart	Result
Low	2412	At least 20dB below from peak of RF	See the trace Data	PASS
Middle	2437	At least 20dB below from peak of RF	See the trace Data	PASS
High	2462	At least 20dB below from peak of RF	See the trace Data	PASS

TÜV SÜD Zacta Ltd. Test Report Rev.FCC/IC-2.0 Report number: JPD-TR-16004-0 FCC ID: 2AF83TPC008 IC Certification number: 20764-TPC008

7.4 Trace data

[IEEE802.11b] Channel Low

1GHz-5GHz

5GHz-10GHz

10GHz-15GHz

15GHz-20GHz

Channel Middle

1GHz-5GHz

5GHz-10GHz

10GHz-15GHz

15GHz-20GHz

Channel High 30MHz-1GHz

1GHz-5GHz

5GHz-10GHz

10GHz-15GHz

15GHz-20GHz

[IEEE802.11g] Channel Low

1GHz-5GHz

5GHz-10GHz

10GHz-15GHz

15GHz-20GHz

Channel Middle 30MHz-1GHz

5GHz-10GHz

10GHz-15GHz

15GHz-20GHz

Channel High

1GHz-5GHz

5GHz-10GHz

10GHz-15GHz

15GHz-20GHz

8. Spurious Emissions - Radiated -

8.1 Measurement procedure

[FCC 15.247(d), 15,205, 15.209, RSS-Gen 8.9, KDB 558074 D01 v03r05, Section 12.0]

Test was applied by following conditions.

Test method : ANSI C63.10 Frequency range : 9kHz to 25GHz

Test place : 3m Semi-anechoic chamber

EUT was placed on : Styrofoam table / (W)0.6m × (D)0.6m × (H)0.8m (below 1GHz)

Styrofoam table / (W)0.6m × (D)0.6m ×(H)1.5m (above 1GHz)

Antenna distance : 3m

Test receiver setting Below 1GHz

- Detector : Average (9kHz-90kHz, 110kHz-490kHz), Quasi-peak

- Bandwidth : 200Hz, 120kHz Spectrum analyzer setting : Above 1GHz

- Peak : RBW=1MHz, VBW=3MHz, Span=0Hz, Sweep=auto

- Average : RBW=1MHz, Span=0Hz, Sweep=auto

VBW: Refer to the following table

Display mode=Linear

Average Measurement Setting [VBW]

Mode	Duty Cycle (%)	T _{on} (us)	T _{off} (us)	1/T _{on} (kHz)	Determined VBW Setting
IEEE802.11b	99.64	8420	30	-	10Hz (Duty Cycle □ 98%)
IEEE802.11g	97.21	1395	40	0.717	1kHz (VBW = 1 / Ton)

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, TRILOG antenna and Double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop antenna is 1m above the ground plane.

The EUT is Placed on a turntable, which is 0.8m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

8.2 Calculation method

[9kHz to 150kHz]
Emission level = Reading + (Ant. factor + Cable system loss)
Margin = Limit – Emission level

[150kHz to 25GHz]
Emission level = Reading + (Ant. factor + Cable system loss – Amp. Gain)
Margin = Limit – Emission level

Example:

Limit @ 4804.0MHz : 74.0dBuV/m (Peak Limit)
S.A Reading = 39.9dBuV Cable system loss = 8.3dB

Result = 39.9 + 8.3 = 48.2dBuV/m Margin = 74.0 - 48.2 = 25.8dB

8.3 Limit

Frequency	Field s	trength	Distance
[MHz]	[uV/m]	[dBuV/m]	[m]
0.009-0.490	2400 / F [kHz]	20logE [uV/m]	300
0.490-1.705	24000 / F [kHz]	20logE [uV/m]	30
1.705-30	30	29.5	30
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level [dBuV/m] = 20log Emission [uV/m]
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition modulation.

8.4 Test data

Date April 19, 2016

21.0 [°C] Temperature Humidity 33.8 [%]

Test engineer Test place 3m Semi-anechoic chamber Kazunori Saito

April 21, 22, 2016 Date

Temperature 22.3 [°C]

42.3 [%] Humidity

Test engineer Test place 3m Semi-anechoic chamber Kazunori Saito

8.4.1 Transmission mode

[IEEE802.11b]

Channel Low BELOW 1GHz

Final Result

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle	Remark
			QP		QP	QP	QP			
	[MHz]		$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
1	482.700	Н	32. 5	-6.5	26. 0	46.0	20.0	200.0	342.0	
2	556.900	Н	37. 2	-5.3	31. 9	46.0	14. 1	200.0	343.0	
3	556.900	V	29. 5	-5.3	24. 2	46.0	21.8	100.0	266.0	
4	631.100	V	31.0	-4.2	26.8	46.0	19.2	300.0	273.0	
5	631. 200	Н	34.0	-4.2	29.8	46.0	16. 2	300.0	345.0	
6	705.400	Н	33.4	-3.1	30. 3	46.0	15. 7	100.0	195.0	
7	779.700	Н	34.6	-2.5	32. 1	46.0	13.9	100.0	195.0	
8	853.800	Н	31.8	-0.9	30. 9	46.0	15. 1	100.0	195.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

Channel Low ABOVE 1GHz

No.	Frequency	(P)	Reading	Reading	c.f	Result	Result	Limit	Margin	Margin	Height	Angle	Remark
			PK	CAV		PK	CAV	PK	PK	CAV			
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[°]	
1	4824.000	Н	49.6	36. 7	8.4	58.0	45. 1	74.0	16.0	8.9	106.0	66.0	
2	4824.000	V	50.8	38.0	8.4	59. 2	46. 4	74.0	14.8	7.6	138.0	0.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

Channel Middle BELOW 1GHz

Final Result

No.	Frequency	(P)	Reading	c. f	Result	Limit	Margin	Height	Angle	Remark
			QP		QP	QP	QP			
	[MHz]		$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
1	356.600	H	23.4	-9.7	13.7	46.0	32.3	400.0	202.0	
2	482.600	H	35. 1	-6.5	28.6	46.0	17.4	200.0	17.0	
3	556.900	H	38. 1	-5.3	32.8	46.0	13.2	200.0	16.0	
4	631.200	H	34. 1	-4.2	29.9	46.0	16. 1	300.0	41.0	
5	631.200	V	29.6	-4.2	25. 4	46.0	20.6	150.0	330.0	
6	705. 500	H	32.7	-3.1	29.6	46.0	16.4	100.0	144.0	
7	779.500	H	32.3	-2.5	29.8	46.0	16.2	100.0	17.0	
8	853.800	H	32.4	-0.9	31. 5	46.0	14.5	100.0	17.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

Channel Middle ABOVE 1GHz

F	ina	l Result												
N	0.	Frequency	(P)	Reading	Reading	c. f	Result	Result	Limit	Margin	Margin	Height	Angle	Remark
				PK	CAV		PK	CAV	PK	PK	CAV			
		[MHz]		[dB(μV)]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[°]	
	1	4874.000	H	48. 9	35. 9	8. 7	57. 6	44.6	74.0	16.4	9.4	190.0	128.0	
	2	4874.000	V	50.7	38. 3	8. 7	59. 4	47.0	74.0	14.6	7.0	167.0	151.0	
	3	7311.000	H	48.3	35. 5	4.8	53. 1	40.3	74.0	20.9	13.7	121.0	125.0	
	4	7311, 000	V	48. 4	34. 9	4. 8	53. 2	39. 7	74.0	20. 8	14.3	150.0	316.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

Channel High BELOW 1GHz

Final Result

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle	Remark
	Ever 7		QP	F to / . /	QP	QP	QP	F 7	Γ°]	
	[MHz]		$[dB(\mu V)]$	$\lfloor dB(1/m) \rfloor$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	L]	
1	362.500	H	22.7	-9.5	13. 2	46.0	32.8	300.0	187.0	
2	405.800	H	22. 1	-8.0	14. 1	46.0	31.9	100.0	308.0	
3	482.600	H	34.0	-6.5	27.5	46.0	18.5	200.0	0.0	
4	556.900	H	37.5	-5.3	32. 2	46.0	13.8	200.0	0.0	
5	631.100	Н	35.9	-4.2	31.7	46.0	14.3	300.0	186.0	
6	631.100	V	30.6	-4.2	26.4	46.0	19.6	150.0	325.0	
7	705.600	H	32.7	-3 . 1	29.6	46.0	16.4	100.0	185.0	
8	779. 700	H	33.0	-2.5	30. 5	46.0	15.5	200.0	6.0	
9	854. 100	H	29.8	-0.9	28. 9	46.0	17.1	100.0	185.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

Channel High ABOVE 1GHz

No.	Frequency	(P)	Reading PK	Reading CAV	c. f	Result PK	Result CAV	Limit PK	Margin PK	Margin CAV	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$		[dB(1/m)]		$[dB(\mu V/m)]$		[dB]	[dB]	[cm]	[°]	
1	4924.000	H	49.3	36. 2	8.9	58. 2	45. 1	74.0	15.8	8.9	121.0	192.0	
2	4924.000	V	50.7	39.0	8. 9	59.6	47.9	74.0	14.4	6. 1	158.0	0.0	
3	7386.000	H	51. 1	41.2	4.9	56.0	46. 1	74.0	18.0	7. 9	132.0	265.0	
4	7386, 000	V	49. 1	37. 5	4. 9	54.0	42.4	74.0	20.0	11.6	178.0	265.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[IEEE802.11g]

Channel Low BELOW 1GHz

Final Result

No.	Frequency	(P)	Reading QP	c. f	Result QP	Limit QP	Margin QP	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
1	482.600	V	27.6	-6.5	21. 1	46.0	24. 9	200.0	237.0	
2	482.700	Н	32.6	-6.5	26. 1	46.0	19.9	100.0	0.0	
3	556.800	V	28.3	-5.3	23.0	46.0	23.0	200.0	237.0	
4	556.900	Н	35. 2	-5.3	29. 9	46.0	16. 1	200.0	177.0	
5	631.100	Н	36.0	-4.2	31.8	46.0	14. 2	300.0	0.0	
6	631.300	V	29.6	-4.2	25. 4	46.0	20.6	300.0	293.0	
7	705.400	Н	35.0	-3. 1	31.9	46.0	14. 1	100.0	352.0	
8	705. 500	V	28. 4	-3. 1	25. 3	46.0	20.7	300.0	293.0	
9	779.500	Н	34. 1	-2.5	31.6	46.0	14.4	100.0	353.0	
10	853.900	Н	32.8	-0.9	31.9	46.0	14. 1	100.0	0.0	
11	928. 300	Н	29. 5	0.0	29. 5	46. 0	16. 5	100.0	353.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

Channel Low ABOVE 1GHz

Final Result

No.	Frequency	(P)	Reading	Reading	c. f	Result PK	Result	Limit PK	Margin PK	Margin	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]		$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[°]	
1	4824.000	Н	49. 2	36.6	8.4	57.6	45.0	74.0	16.4	9.0	150.0	0.0	
9	4824 000	V	49 4	36.7	8 4	57.8	45 1	74 0	16 2	8 9	150 0	0.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

Channel Middle BELOW 1GHz

Final Result

No.	Frequency	(P)	Reading	c. f	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		QP $[dB(\mu V)]$	$\lceil dB(1/m) \rceil$	QP [dB(μV/m)]	QP [dB(μV/m)]	QP [dB]	[cm]	[°]	
1	482, 600	V	27.2	-6. 5	20.7		25. 3	200.0	281.0	
1		V		75.0		46.0				
2	482.700	H	32.6	-6.5	26. 1	46.0	19.9	100.0	150.0	
3	556.900	H	35. 7	-5.3	30.4	46.0	15.6	200.0	40.0	
4	631. 100	H	36. 3	-4.2	32. 1	46.0	13.9	300.0	0.0	
5	631.300	V	25. 5	-4.2	21.3	46.0	24.7	300.0	120.0	
6	705.400	V	28.1	-3.1	25.0	46.0	21.0	300.0	253.0	
7	705.500	H	31.8	-3.1	28.7	46.0	17.3	100.0	21.0	
8	779.700	H	32.8	-2.5	30. 3	46.0	15.7	200.0	167.0	
9	853. 300	H	27.0	-0.9	26. 1	46.0	19.9	100.0	21.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

Channel Middle ABOVE 1GHz

Final Result

No.	Frequency	(P)	Reading PK	Reading CAV	c. f	Result PK	Result CAV	Limit PK	Margin PK	Margin CAV	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$	[dB(μV)]	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[°]	
1	4874.000	Н	49.0	36. 6	8. 7	57. 7	45.3	74.0	16.3	8.7	150.0	0.0	
9	4874 000	V	40.2	26.7	Q 7	59.0	45.4	74.0	16.0	9 6	150.0	0.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

Channel High BELOW 1GHz

Final Result

No.	Frequency	(P)	Reading	c. f	Result QP	Limit QP	Margin	Height	Angle	Remark
	[MHz]		$ \begin{array}{c} QP \\ [dB(\muV)] \end{array} $	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	QP [dB]	[cm]	[°]	
1	482.600	Н	35. 6	-6.5	29. 1	46. 0	16.9	200.0	0.0	
2	556.900	Н	38.9	-5.3	33.6	46.0	12.4	200.0	0.0	
3	556.900	V	29.9	-5.3	24.6	46.0	21.4	200.0	314.0	
4	631. 100	Н	38. 2	-4.2	34.0	46.0	12.0	300.0	188.0	
5	631.200	V	28.4	-4.2	24. 2	46.0	21.8	100.0	142.0	
6	705. 200	V	25. 5	-3. 1	22.4	46.0	23.6	150.0	111.0	
7	705.400	Н	35.0	-3. 1	31. 9	46. 0	14. 1	100.0	188.0	
8	779. 200	Н	31.0	-2.6	28. 4	46.0	17.6	100.0	188.0	
9	853.800	Н	33. 2	-0.9	32. 3	46.0	13. 7	100.0	188.0	
10	928.000	Н	29. 2	0.0	29. 2	46.0	16.8	100.0	183.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

Channel High ABOVE 1GHz

Final Result

No.	Frequency	(P)	Reading PK	Reading CAV	c. f	Result PK	Result CAV	Limit PK	Margin PK	Margin CAV	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[°]	
1	4924.000	Н	49. 2	36. 4	8.9	58. 1	45.3	74.0	15.9	8. 7	150.0	0.0	
9	4924 000	V	40.3	36.7	8 Q	58 2	45.6	74.0	15.8	Q /	150 0	0.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

8.4.2 Receive mode

Channel Low BELOW 1GHz

Final Result

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		QP $[dB(\mu V)]$	[dB(1/m)]		$ \begin{array}{c} \text{QP} \\ [\text{dB} (\mu \text{V/m})] \end{array} $	QP [dB]	[cm]	[°]	
1	308.000	H	24. 2	-10.6	13.6	46.0	32.4	100.0	358.0	
2	335.700	H	22.4	-10.2	12. 2	46.0	33.8	100.0	2.0	
3	482.600	H	30.9	-6.5	24.4	46.0	21.6	200.0	158.0	
4	556.800	H	34.5	-5. 3	29. 2	46.0	16.8	200.0	31.0	
5	631.100	H	36. 3	-4.2	32. 1	46.0	13.9	300.0	21.0	
6	631.100	V	29.8	-4.2	25.6	46.0	20.4	100.0	112.0	
7	705.400	H	34.0	-3.1	30.9	46.0	15.1	100.0	358.0	
8	779.400	H	34.5	-2.6	31.9	46.0	14. 1	100.0	358.0	
9	854. 200	H	30.7	-0.9	29.8	46.0	16.2	100.0	358.0	
10	927. 900	H	28. 3	0.0	28. 3	46. 0	17.7	100.0	2.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz and 1GHz to 25GHz at the 3 meters distance.

Channel Middle BELOW 1GHz

Final Result

No.	Frequency	(P)	Reading	c. f	Result	Limit	Margin	Height	Angle	Remark
	From 3		QP	E 1D /1 / \]	QP	QP	QP	гл	го л	
	[MHz]		$[dB(\mu V)]$	$\lfloor dB(1/m) \rfloor$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	L J	
1	437. 200	Н	23. 5	-7.7	15.8	46. 0	30. 2	200.0	346.0	
2	482.600	Н	32. 4	-6.5	25. 9	46.0	20. 1	200.0	346.0	
3	556.800	Н	34. 9	-5. 3	29.6	46.0	16.4	200.0	346.0	
4	631.100	Н	34. 4	-4.2	30. 2	46.0	15.8	300.0	200.0	
5	631.100	V	30.9	-4.2	26. 7	46.0	19.3	300.0	271.0	
6	705.400	Н	33.0	-3. 1	29. 9	46.0	16. 1	100.0	328.0	
7	705.600	V	26.6	-3. 1	23. 5	46. 0	22.5	300.0	271.0	
8	779. 700	Н	33. 3	-2.5	30.8	46.0	15. 2	100.0	329.0	
9	853.600	Н	30.6	-0.9	29. 7	46. 0	16.3	100.0	204.0	
10	928. 100	Н	27.6	0.0	27.6	46. 0	18.4	100.0	329.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz and 1GHz to 25GHz at the 3 meters distance.

Channel High BELOW 1GHz

Final Result

No.	Frequency	(P)	Reading	c. f	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		QP $[dB(\mu V)]$	$\lceil dB(1/m) \rceil$	QP [dB(μV/m)]	QP [dB(μV/m)]	QP [dB]	[cm]	[°]	
		**	The second secon		- Control of the control of the control of	-		100 St. 100 St	٦	
1	380.600	H	22. 1	-8.7	13. 4	46.0	32.6	100.0	55.0	
2	482.700	H	34. 7	-6.5	28. 2	46.0	17.8	200.0	0.0	
3	556.900	H	37.2	-5.3	31.9	46.0	14. 1	200.0	0.0	
4	631.100	H	35.0	-4.2	30.8	46.0	15.2	200.0	0.0	
5	631.100	V	30.2	-4.2	26. 0	46.0	20.0	300.0	250.0	
6	705. 200	Н	32.2	-3.1	29. 1	46.0	16.9	100.0	184.0	
7	705, 200	V	27.0	-3.1	23.9	46.0	22. 1	150.0	275.0	
8	779.700	H	33. 5	-2.5	31.0	46.0	15.0	100.0	184.0	
9	853. 700	H	30. 4	-0.9	29. 5	46.0	16. 5	100.0	184. 0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz and 1GHz to 25GHz at the 3 meters distance.

9. Restricted Band of Operation

9.1 Measurement procedure

[FCC 15.247(d), 15,205, 15.209, RSS-Gen 8.9, KDB 558074 D01 v03r05, Section 12.0]

Test was applied by following conditions.

Test method : ANSI C63.10

Test place : 3m Semi-anechoic chamber

EUT was placed on : Styrofoam table / (W)0.6m × (D)0.6m × (H)1.5m

Antenna distance : 3m

Spectrum analyzer setting

- Peak : RBW=1MHz, VBW=3MHz, Span=Arbitrary setting, Sweep=auto

- Average : RBW=1MHz, Span=0Hz, Sweep=auto

VBW: Refer to the following table

Display mode=Linear

Average Measurement Setting [VBW]

Mode	Duty Cycle (%)	T _{on} (us)	T _{off} (us)	1/T _{on} (kHz)	Determined VBW Setting
IEEE802.11b	99.64	8420	30	-	10Hz (Duty Cycle ≧ 98%)
IEEE802.11g	97.21	1395	40	0.717	1kHz (VBW = 1 / Ton)

Radiated emission measurements are performed at 3m distance with the broadband antenna (Double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission.

The EUT is Placed on a turntable, which is 0.8m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

9.2 Limit

Emission at the boundary of the restricted band provided by 15.205 shall be lower than 15.209 limit.

9.3 Measurement Result

[IEEE802.11b, IEEE802.11g]

Channel	Frequency [MHz]	Results Chart	Result
Low	2412	See the Trace Data	Pass
High	2462	See the Trace Data	Pass

9.4 Test data

Date April 15, 2016 Temperature

22.0 [°C] Humidity Test engineer 37.8 [%]

Test place 3m Semi-anechoic chamber Kazunori Saito

Date April 18, 2016 Temperature 21.0 [°C]

33.8 [%] Humidity Test engineer

Test place 3m Semi-anechoic chamber Kazunori Saito

[IEEE802.11b]

Channel Low Horizontal Peak

Average

Date: 15.APR.2016 16:58:57 Date: 15.APR.2016 16:58:33

Vertical Peak

Average

Date: 15.APR.2016 17:03:31 Date: 15.APR.2016 17:05:16

Channel High Horizontal Peak

Average

Date: 18.APR.2016 21:25:48

Date: 18.APR.2016 21:42:28

Vertical Peak

Average

Date: 18.APR.2016 21:34:27

Date: 18.APR.2016 21:37:18

[IEEE802.11g]

Channel Low Horizontal Peak

Average

Date: 18.APR.2016 22:09:06 Date: 18.APR.2016 22:10:42

Vertical Peak

Average

Date: 18.APR.2016 22:15:39 Date: 18.APR.2016 22:16:51

Channel High Horizontal

Average

Date: 18.APR.2016 22:30:13

Date: 18.APR.2016 22:31:30

Vertical Peak

Average

Date: 18.APR.2016 22:36:08

Date: 18.APR.2016 22:36:55

10. Transmitter Power Spectral Density

10.1 Measurement procedure

[FCC 15.247(e), RSS-247 5.2(2), KDB 558074 D01 v03r03, Section 10.2]

The peak power is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = at least 1.5 times the 6 dB bandwidth.
- b) RBW = 3kHz 100kHz.
- c) VBW \geq 3 x RBW.
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- Test configuration

Test engineer

10.2 Limit

The peak power spectral density shall not be greater than 8dBm in any 3kHz band.

10.3 Measurement result

Date : April 19, 2016

Temperature : 23.8 [°9C] Humidity : 30.2 [%]

Test place : Shielded room No.4 Taiki Watanabe

TÜV SÜD Zacta Ltd. Test Report Rev.FCC/IC-2.0

[IEEE802.11b]

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2412	-25.02	10.52	-14.50	8.00	22.50	PASS
Middle	2437	-22.91	10.52	-12.39	8.00	20.39	PASS
High	2462	-23.76	10.52	-13.24	8.00	21.24	PASS

Calculation;

Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)

[IEEE802.11g]

	[.EEEooz.:	. 91						
	Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Ī	Low	2412	-27.32	10.52	-16.80	8.00	24.80	PASS
Ī	Middle	2437	-27.33	10.52	-16.81	8.00	24.81	PASS
	High	2462	-26.92	10.52	-16.40	8.00	24.40	PASS

Calculation;

Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)

10. 4 Trace data

[IEEE802.11b]

Channel Low

Channel Middle

Channel High

[IEEE802.11g]

Channel Low

Channel Middle

Channel High

11. AC Power Line Conducted Emissions

11.1 Measurement procedure [FCC 15.207, RSS-Gen 8.8]

Test was applied by following conditions.

Test method : ANSI C63.10 Frequency range : 0.15MHz to 30MHz

Test place : 3m Semi-anechoic chamber

EUT was placed on : FRP table / (W)2.0m × (D)1.0m × (H)0.8m Vertical Metal Reference Plane : (W)2.0m × (H)2.0m 0.4m away from EUT

Test receiver setting

- Detector : Quasi-peak, Average

- Bandwidth : 9kHz

EUT and peripherals are connected to $50\Omega/50\mu H$ Line Impedance Stabilization Network (LISN) which are connected to reference ground plane, and are placed 80cm away from EUT. Excess of AC power cable is bundled in center.

LISN for peripheral is terminated in 50Ω .

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Maximum emission configuration is determined by manipulating the EUT, peripherals, interconnecting cables. Then, emission measurements are performed with test receiver in above setting to each current-carrying conductor of the mains port. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits.

- Test configuration

11.2 Calculation method

Emission level = Reading + (LISN. factor + Cable system loss)

Margin = Limit - Emission level

Example:

Limit @ 6.770MHz : 60.0dBµV(Quasi-peak)

: 50.0dBµV(Average)

(Quasi peak) Reading = 41.2dBµV c.f = 10.3dB

Emission level = 41.2 + 10.3 = 51.5dBuV

Margin = 60.0 - 51.5 = 8.5dB

(Average) Reading = $35.0 dB\mu V$ c.f = 10.3 dB

Emission level = 35.0 + 10.3 = 45.3dBµV

Margin = 50.0 - 45.3 = 4.7dB

11.3 Limit

Frequency	Limit					
[MHz]	QP [dBuV]	AV [dBuV]				
0.15-0.5	66-56*	56-46*				
0.5-5	56	46				
5-30	60	50				

^{*:} The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

11.4 Test data

Fina	l Result										
	L1 Phase	- :									
No.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin		Remark
	F	QP	AV		QP	AV	QP	AV	QP	AV	
	[MHz]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	$[dB(\mu V)]$				[dB]	[dB]	
1	0. 15561	29.9	11.6	10.5	40.4	22. 1	65. 7	55. 7	25. 3	33.6	
2	0. 17258	30.5	13.9	10.5	41.0	24.4	64.8	54.8	23.8	30.4	
	0. 18022	28.4	10. 2	10.5	38. 9	20.7	64. 5	54. 5	25.6	33.8	
4 5	0. 19542	28.6	10.8	10.4	39.0	21.2	63.8	53.8	24.8	32.6	
	0.20674	25.8	7.8	10.4	36. 2	18. 2	63. 3	53. 3	27. 1	35. 1	
6	0.51591	24. 3	10. 1	10.4	34. 7	20.5	56.0	46.0	21.3	25. 5	
	L2 Phase	<u>- '</u>									
No.	Frequency	Reading QP	Reading AV	c. f	Result QP	Result AV	Limit QP	Limit AV	Margin QP	Margin AV	Remark
	[MHz]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	$[dB(\mu V)]$			$[dB(\mu V)]$	[dB]	[dB]	
1	0.15362	32.7	16. 3	10.6	43. 3	26. 9	65. 8	55.8	22.5	28. 9	
2	0.16423	28.9	11.4	10.6	39.5	22.0	65. 2	55. 2	25.7	33. 2	
2 3	0.17174	30.8	14.8	10.6	41.4	25.4	64.9	54.9	23.5	29.5	
4	0. 18098	28. 3	10.6	10.6	38. 9	21. 2	64. 4	54. 4	25. 5	33. 2	
4 5											
4	0. 18098	28.3	10.6	10.6	38.9	21. 2	64. 4	54.4	25.5	33. 2	

12. Antenna requirement

According to FCC section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The antenna is a special antenna mounted inside of the EUT. Therefore, the EUT complies with the antenna requirement of FCC section 15.203.

13. Uncertainty of measurement

Expanded uncertainties stated are calculated with a coverage Factor k=2.

Please note that these results are not taken into account when measurement uncertainty considerations contained in ETSI TR 100 028-0011 determining compliance or non-compliance with test result.

Test item	Measurement uncertainty
Conducted emission at mains port	±3.0dB
Radiated emission (9kHz – 30MHz)	±4.4dB
Radiated emission (30MHz – 1000MHz)	±4.5dB
Radiated emission (1000MHz – 26GHz)	±3.9dB

14. Laboratory description

1. Location:

TÜV SÜD Zacta Ltd. Yonezawa Testing Center 4149-7 Hachimanpara 5-chome Yonezawa-shi Yamagata 992-1128 Japan

Phone: +81-238-28-2880 Fax: +81-238-28-2888

2. Facility filing information:

1) NVLAP accreditation: NVLAP Lab. code: 200306-0

2) VLAC accreditation: Lab. code: VLAC-013

Site name	Radiated emission	Conducted emission for mains port	Conducted emission for telecom port	Radiated emission (CMAD)	Expiry Date
3m Semi-anechoic chamber				-	
10m Semi-anechoic chamber No.1	VLAC-013		VLAC-013	Jul. 3, 2017	
10m Semi-anechoic chamber No.2				VLAC-013	Jul. 3, 2017
Shielded room No.1	- VLAC-013		-		

3) FCC filing:

Site name	Registration Number	Expiry Date
Site 3	91065	Oct. 1, 2017
3m Semi-anechoic chamber		
10m Semi-anechoic chamber No.1	540072	Feb. 20, 2017
10m Semi-anechoic chamber No.2	540072	Feb. 20, 2017
Shielded room No.1		

4) Industry Canada Oats site filing:

Site name	Sites on file: Oats 3m/10m	Expiry Date
Site 3	4224A-3	
3m Semi-anechoic chamber	4224A-4	Dec. 3, 2017
10m Semi-anechoic chamber No.1	4224A-5	
10m Semi-anechoic chamber No.2	4224A-6	Jan. 15, 2017

5) VCCI site filing:

Site name	Radiated emission	Conducted emission for mains port	Conducted emission for telecom port	Expiry Date
Site 3	R-138	C-134	T-1222	Nov. 16, 2017
3m Semi-anechoic chamber				
10m Semi-anechoic chamber No.1		A-0166		lul 2 2017
10m Semi-anechoic chamber No.2	Jul. 3, 2017			
Shielded room No.1	- A-0166			

6) TÜV SÜD PS authorization:

Authorized as an EMC test laboratory

7) TÜV Rheinland authorization:

Authorized as an EMC test laboratory

Appendix A. Test equipment

Antenna port conducted test

7 unto inia port con auctou toct					
Equipment	Company	Model No.	Serial No.	Cal. due	Cal. date
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	Jun. 30, 2016	Jun. 11, 2015
Microwave cable	RS	YH_13S5	N/A (S441)	May 31, 2016	May 12, 2015
Attenuator	Weinschel	56-10	J4993	Nov. 30, 2016	Nov. 12, 2015
Power meter	ROHDE&SCHWARZ	NRP2	103269	Jun. 30, 2016	Jun. 25, 2015
Power sensor	ROHDE&SCHWARZ	NRP-Z81	102467	Jun. 30, 2016	Jun. 25, 2015

Radiated emission

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100764	Aug. 31, 2016	Aug. 21, 2015
Preamplifier	ANRITSU	MH648A	M96057	Jun. 30, 2016	Jun. 30, 2015
Loop antenna	ROHDE&SCHWARZ	HFH2-Z2	892246/010	Apr. 30, 2016	Apr. 2, 2015
Attenuator	TDC	TAT-43B-06	N/A (S209)	Apr. 30, 2016	Apr. 16, 2015
Biconical antenna	Schwarzbeck	VHA9103/BBA9106	2155	Jun. 30, 2016	Jun. 4, 2015
Log periodic antenna	Schwarzbeck	UHALP9108A	0560	Jun. 30, 2016	Jun. 4, 2015
Attenuator	TME	CFA-01NPJ-6	N/A (S275)	Jun. 30, 2016	Jun. 23, 2015
Attenuator	TME	CFA-01NPJ-3	N/A (S272)	Jun. 30, 2016	Jun. 23, 2015
Spectrum analyzer	Agilent Technologies	E4440A	US40420937	Jul. 31, 2016	Jul. 16, 2015
Preamplifier	ANRITSU	MH648A	M96057	Jun 30, 2016	Jun. 30, 2015
Double ridged guide antenna	EMCO	3115	5205	Mar. 31, 2017	Mar. 3, 2016
Attenuator	Agilent Technologies	8491B	MY39268633	Feb. 28, 2017	Feb. 23, 2016
Broad-Band Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170189	Jun. 30, 2016	Jun. 16, 2015
Preamplifier	TSJ	MLA-100M18-B02-40	1929118	May 31, 2016	May 1, 2015
Attenuator	AEROFLEX	26A-10	081217-08	May 31, 2016	May 7, 2015
Notch filter	Micro-Tronics	BRM50702	045	Nov. 30, 2016	Nov. 12, 2015
		SUCOFLEX104/9m	MY30037/4	Oct. 31, 2016	Oct. 23, 2015
Microwave cable	SUHNER	SUCOFLEX104/1m	MY24610/4	Oct. 31, 2016	Oct. 23, 2015
MICIOWAVE CADIE	SURINER	SUCOFLEX104/8m	MY30031/4	May 31, 2016	May 29, 2015
		SUCOFLEX104/1.5m	322086/4	May 31, 2016	May 29, 2015
PC	DELL	DIMENSION E521	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/RE-AJ	0611193/V5.4.011	N/A	N/A
Absorber	RIKEN	PFP30	N/A	N/A	N/A
3m Semi-anechoic chamber	TOKIN	N/A	N/A (9002-NSA)	Apr. 30, 2016	Apr. 27, 2015
3m Semi-anechoic chamber	TOKIN	N/A	N/A (9002-SVSWR)	Apr. 30, 2016	Apr. 27, 2015

Conducted emission at mains port

Conducted emission at mains port					
Equipment	Company	Model No.	Serial No.	Cal. due	Cal. date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100764	Aug. 31, 2016	Aug. 21, 2015
Attenuator	HUBER+SUHNER	6810.01.A	N/A (S411)	Feb. 28, 2017	Feb. 23, 2016
Line impedance stabilization network for EUT	Kyoritsu Electrical Works, Ltd.	KNW-407F	8-2003-1	Mar. 31, 2017	Mar. 28, 2016
Coaxial cable	FUJIKURA	5D-2W/4m	N/A (S330)	Feb. 28, 2017	Feb. 23, 2016
Coaxial cable	FUJIKURA	5D-2W/1m	N/A (S193)	Feb. 28, 2017	Feb. 23, 2016
Coaxial cable	SUHNER	RG214/U/10m	N/A (S194)	Feb. 28, 2017	Feb. 23, 2016
PC	DELL	DIMENSION	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/CE-AJ	0611193/V5.6.000	N/A	N/A

^{*:} The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.

Appendix B. Duty Cycle

[Plot & Calculation]

Agilent ## Agi

Duty Cycle = $T_{on}/(T_{on} + T_{off}) = 8420[us]/(8420[us] + 30[us]) = 99.64[%]$

Duty Cycle = $T_{on}/(T_{on} + T_{off}) = 1395[us]/(1395[us] + 40[us]) = 97.21[%]$