#### CHAPITRE 02

Nombre

### Table des matières

| Ι            | Trigonométrie                   | 2  |
|--------------|---------------------------------|----|
| II           | Nombres complexes de module 1   | 5  |
| III          | Géométrie des nombres complexes | 7  |
| IV           | Exponentielle complexe          | 12 |
| $\mathbf{v}$ | Fonctions de R dans C           | 14 |

Première partie

Trigonométrie

#### Definition

On définit, pour

$$\begin{split} \theta &\in \bigcup_{k \in \mathbb{Z}} \left] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[ \\ &\iff \theta \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + 2\pi k \mid k \in \mathbb{Z} \right\} \end{split}$$

la tangente de  $\theta$  par

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$



#### Definition

Pour 
$$\theta \in \bigcup_{k \in \mathbb{Z}} ]-k\pi, (k+1)\pi[$$
, on définit la contangente de  $\theta$  par

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

#### Proposition

Soient 
$$(a, b) \in \mathbb{R}^2$$
.

1. 
$$\cos(-a) = \cos(a)$$

$$2. \cos(a + 2\pi) = \cos(a)$$

$$3. \cos(a+\pi) = -\cos(a)$$

4. 
$$\cos(\pi - a) = -\cos(a)$$

$$5. \sin(-a) = -\sin(a)$$

$$6. \sin(a+2\pi) = \sin(a)$$

7. 
$$\sin(a + \pi) = -\sin(a)$$

8. 
$$\sin(\pi - a) = \sin(a)$$

9. 
$$cos(a+b) = cos(a) cos(b) - sin(a) sin(b)$$

10. 
$$\sin(a+b) = \cos(a)\sin(b) + \sin(a)\cos(b)$$

11. 
$$\cos\left(\frac{\pi}{2} - a\right) = \sin(a)$$

12. 
$$\sin\left(\frac{\pi}{2} - a\right) = \cos(a)$$

Soient 
$$a$$
 et  $b$  deux réels tels que  $a \not\equiv \frac{\pi}{2} \ [\pi]$  et  $b \not\equiv \frac{\pi}{2} \ [\pi]$ .

1. 
$$tan(a + \pi) = tan(a)$$

$$2. \tan(-a) = -\tan(a)$$

3. Si 
$$a + b \not\equiv \frac{\pi}{2} [\pi]$$
, alors,  $\tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a) \tan(b)}$ 

Soit 
$$a \in \mathbb{R}$$
.

Soit 
$$a \in \mathbb{R}$$
.  
1. Si  $a \not\equiv \frac{\pi}{2}$   $[\pi]$ , alors,  $1 + \tan^2(a) = \frac{1}{\cos^2(a)}$ 

$$\overline{\cos^{2}(a)}$$
2. Si  $a \neq \pi$   $[2\pi]$ 

$$- \cos(a) = \frac{1 - \tan^{2}\left(\frac{a}{2}\right)}{1 + \tan\left(\frac{a}{2}\right)}$$

$$- \sin(a) = \frac{2\tan\left(\frac{a}{2}\right)}{1 + \tan^{2}\left(\frac{a}{2}\right)}$$

$$- Si  $a \neq \frac{\pi}{2}$   $[\pi]$ ,  $\tan(a) = \frac{2\tan\left(\frac{a}{2}\right)}{1 + \tan^{2}\left(\frac{a}{2}\right)}$$$

### Deuxième partie

## Nombres complexes de module 1

#### Proposition

Soient  $(a, b) \in \mathbb{R}^2$ .

$$(\cos(a) + i\sin(a)) \times (\cos(b) + i\sin(b)) = \cos(a+b) + i\sin(a+b)$$

#### Definition

Pour 
$$a \in \mathbb{R}$$
, on pose  $e^{ia} = \cos(a) + i\sin(a)$   
Ainsi,  $\forall (a,b) \in \mathbb{R}^2, e^{ia} \times e^{ib} = e^{i(a+b)}$ 

#### Proposition

Soient a,b,c trois nombres complexes avec  $a\neq 0$  et  $z_1,z_2$  les racines de  $P:z\mapsto az^2+bz+c$ 

Alors, 
$$z_1 \times z_2 = \frac{c}{a}$$
 et  $z_1 + z_2 = -\frac{b}{a}$ 

#### Proposition

Soient  $(a, b, c) \in \mathbb{C}^3$  et  $z_1, z_2, z_3$  les solutions de

$$z^3 + az^2 + bz + c = 0$$

Alors,

$$\begin{cases} z_1 z_2 z_3 = -c \\ z_1 z_2 + z_2 z_3 + z_1 z_3 = b \\ z_1 + z_2 + z_3 = -a \end{cases}$$

#### Proposition

Soient  $a_1, a_2, \ldots, a_n$  des nombres complexes et  $z_1, z_2, \ldots, z_n$  les solutions de

$$z^n + a_{n-1}z^{n-1} + \dots + a_0 = 1$$

Alors,

$$\forall k \in [1, n], \sum_{1 \leqslant i_1 \leqslant i_2 \leqslant \dots \leqslant i_k \leqslant n} z_{i_1} \times z_{i_2} \times \dots \times z_{i_k} = (-1)^k a_{n-k}$$

$$\sum_{k=1}^{n} z_k = -a_{n-1}$$

$$\prod_{k=1}^{n} z_k = (-1)^k a_0$$

## Troisième partie

## Géométrie des nombres complexes

Dans ce paragraphe,  ${\mathscr P}$  dérisgne un plan euclidien muni d'un repère orthonormé  $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$ 

#### Definition

Soit  $M \in \mathcal{P}$ . On note (x, y) les coordonnées du point M par rapport au repère  $(O, \vec{\imath}, \vec{\jmath})$ 

 $\underline{\text{L'affixe}}$  de M est le nombre

$$z_M = x + iy \in \mathbb{C}$$

Soit  $\overrightarrow{w} \in \overrightarrow{\mathscr{P}}$  (le plan des vecteurs) et (a,b) les coordonées de  $\vec{w}$ . <u>L'affixe</u> de  $\overrightarrow{w}$  est

$$z_{\overrightarrow{w}} = a + ib \in \mathbb{C}$$



#### Proposition

Soit  $(A, B) \in \mathscr{P}^2$  et  $(\overrightarrow{w_1}, \overrightarrow{w_2}) \in \overrightarrow{\mathscr{P}}^2$ 

1. 
$$z_{\overrightarrow{AB}} = z_B - z_A$$

1. 
$$z_{\overrightarrow{AB}} = z_B - z_A$$
  
2.  $z_{\overrightarrow{w_1} + \overrightarrow{w_2}} = z_{\overrightarrow{w_1}} + z_{\overrightarrow{w_2}}$ 

#### Proposition

Soit 
$$(\overrightarrow{w_1}, \overrightarrow{w_2}) \in \overrightarrow{\mathscr{P}}^2$$
 avec  $\overrightarrow{w_1} \neq \overrightarrow{0}$  et  $\overrightarrow{w_2} \neq \overrightarrow{0}$ 
Alors,  $\left| \frac{z_{\overrightarrow{w_1}}}{z_{\overrightarrow{w_2}}} \right| = \frac{\|\overrightarrow{w_1}\|}{\|\overrightarrow{w_2}\|}$  et  $\arg \left( \frac{z_{\overrightarrow{w_1}}}{z_{\overrightarrow{w_2}}} \right) = \underbrace{(\overrightarrow{w_1}, \overrightarrow{w_2})}_{\text{l'angle entre } \overrightarrow{w_1} \text{ et } \overrightarrow{w_2}}$ 

#### Corollaire

Avec les hypothèses et notations précédentes,

1. 
$$\overrightarrow{w_1}$$
 et  $\overrightarrow{w_2}$  sont collinéaires  $\iff \frac{z_{\overrightarrow{w_1}}}{z_{\overrightarrow{w_2}}} \in \mathbb{R}$ 

2. 
$$\overrightarrow{w_1}$$
 et  $\overrightarrow{w_2}$  sont orthogonaux  $\iff \frac{z_{\overrightarrow{w_1}}}{z_{\overrightarrow{w_2}}} \in i\mathbb{R}$ 

#### Definition

Soit  $\overrightarrow{w} \in \overrightarrow{\mathscr{P}}$ . La <u>translation</u> de vecteur  $\overrightarrow{w}$  est l'application

$$t_{\overrightarrow{w}}:\mathscr{P}\longrightarrow\mathscr{P}$$
 
$$M\longmapsto M'$$

où M' vérifie  $\overrightarrow{MM'} = \overrightarrow{w}$ 



#### Proposition

Soit 
$$\overrightarrow{w} \in \overrightarrow{\mathscr{P}}$$
 et  $(M, M') \in \mathscr{P}^2$ 

$$M' = t_{\overrightarrow{w}}(M) \iff z_{M'} = z_M + z_{\overrightarrow{w}}$$

#### Proposition

Soient  $\overrightarrow{w_1}, \overrightarrow{w_2} \in \overrightarrow{\mathscr{P}}$ .

$$t_{\overrightarrow{w_2}} \circ t_{\overrightarrow{w_1}} = t_{\overrightarrow{w_1} + \overrightarrow{w_2}}$$

#### Definition

Soit  $\Omega \in \mathscr{P}$  et  $\theta \in \mathbb{R}$ .

La <u>rotation</u> de centre  $\Omega$  et d'angle  $\theta$  est l'application

$$\rho_{\Omega,\theta}:\mathscr{P}\longrightarrow\mathscr{P}$$
 
$$M\longmapsto M'$$

où  $M^\prime$  vérifie

$$\begin{cases} \|\overrightarrow{\Omega M}\| = \|\overrightarrow{\Omega M'}| \\ (\overrightarrow{\Omega M}, \overrightarrow{\Omega M'}) = \theta \end{cases}$$



#### Proposition

Soit  $\Omega \in \mathscr{P}$  d'affixe  $\omega, \theta \in \mathbb{R}$  et  $(M, M') \in \mathscr{P}^2$ 

(\*): 
$$M' = \rho_{\Omega,\theta}(M) \iff z_{M'} = \omega + e^{i\theta}(z_M - \omega)$$

Remarque Cas particulier

Si  $\Omega = O$  alors

$$(*) \iff z_{M'} = e^{i\theta} z_M$$

#### Corollaire

Soit  $\Omega \in \mathscr{P}$  d'affixe  $\omega$  et  $\theta \in \mathbb{R}$ .

$$\rho_{\Omega,\theta} = t_{\overrightarrow{O\Omega}} \circ \rho_{O,\theta} \circ t_{\overrightarrow{\OmegaO}}$$
$$= t_{\overrightarrow{O\Omega}} \circ \rho_{O,\theta} \circ (t_{\overrightarrow{O\Omega}})^{-1}$$

#### Proposition

Soient  $(\Omega_1, \Omega_2) \in \mathscr{P}^2$  et  $(\theta_1, \theta_2) \in \mathbb{R}^2$ 

$$\rho_{\Omega_1,\theta_1} \circ \rho_{\Omega_1,\theta_2} = \rho_{\Omega_1,\theta_1+\theta_2} = \rho_{\Omega_1,\theta_2} \circ \rho_{\Omega_1,\theta_1}$$

$$\begin{aligned} & \text{Si } \begin{cases} \Omega_1 \neq \Omega_2 \\ \theta_1 + \theta_2 \not\equiv 0 \ [2\pi] \end{cases} & \text{alors } \rho_{\Omega_1,\theta_1} \circ \rho_{\Omega_2,\theta_2} \text{ est une rotation d'angle } \theta_1 + \theta_2 \\ & \text{Si } \begin{cases} \Omega_1 \neq \Omega_2 \\ \theta_1 + \theta_2 \equiv 0 \ [2\pi] \end{cases} & \text{alors } \rho_{\Omega_1,\theta_1} \circ \rho_{\Omega_2,\theta_2} \text{ est une translation} \end{aligned}$$

#### Proposition

Soit  $\Omega \in \mathscr{P}$  d'affixe  $\omega$ ,  $\overrightarrow{w} \in \overrightarrow{\mathscr{P}}$  d'affixe u. Soit  $\theta \in \mathbb{R}$  avec  $\theta \not\equiv 0$  [ $2\pi$ ].

- $\begin{array}{ll} & t_{\overrightarrow{w}} \circ \rho_{\Omega,\theta} \text{ est une rotation d'angle } \theta \\ & \rho_{\Omega,\theta} \circ t_{\overrightarrow{w}} \text{ est aussi une rotation d'angle } \theta \end{array}$

#### Definition

Soit  $\Omega \in \mathscr{P}$  et  $\lambda \in \mathbb{R}$ .

L'<u>homothétie</u> de centre  $\Omega$  et de rapport  $\lambda$  est l'application

$$h_{\Omega,\lambda}:\mathscr{P}\longrightarrow\mathscr{P}$$
$$M\longmapsto M'$$

où 
$$M'$$
 vérifie  $\overrightarrow{\Omega M'} = \lambda \overrightarrow{\Omega M}$ 



#### Proposition

Soit  $\Omega \in \mathscr{P}$  d'affixe  $\omega$ ,  $\lambda \in \mathbb{R}$ . Soient  $M \in \mathscr{P}$  d'affixe z et  $M' \in \mathscr{P}$  d'affixe z'.

$$M' = h_{\Omega,\lambda}(M) \iff z' = \omega + \lambda(z - \omega)$$

Soient 
$$(\Omega_1, \Omega_2) \in \mathscr{P}^2$$
 et  $(\lambda_1, \lambda_2) \in \mathscr{P}^2$ 

1. Si
$$\Omega_1=\Omega_2$$
 alors,  $h_{\Omega_1,\lambda_1}\circ h_{\Omega_2,\lambda_2}=h_{\Omega_1,\lambda_1\lambda_2}$ 

- 2. Si  $\Omega_1 \neq \Omega_2$  et  $\lambda_1\lambda_2 \neq 1$ , alors,  $h_{\Omega_1,\lambda_1}\circ h_{\Omega_2,\lambda_2}$  est une homotéthie de rapport  $\lambda_1 \lambda_2$
- 3. Si  $\Omega_1 \neq \Omega_2$  et  $\lambda_1 \lambda_2 = 1$ , alors,  $h_{\Omega_1, \lambda_1} \circ h_{\Omega_2, \lambda_2}$  est une translation.

#### Proposition

Soit 
$$\Omega \in \mathscr{P}$$
,  $\lambda \in \mathbb{R} \setminus \{1\}$ ,  $\overrightarrow{w} \in \overrightarrow{\mathscr{P}}$ .  
Alors,  $t_{\overrightarrow{w}} \circ h_{\Omega,\lambda}$  et  $h_{\Omega,\lambda} \circ t_{\overrightarrow{w}}$  sont homothéties de rapport  $\lambda$ .

Remarque

 $Cas\ particulier$ Soit  $M \in \mathscr{P}$  d'affixe  $z, \lambda \in \mathbb{R}$  et  $M' = h_{O,\lambda}(M)$  d'affixe z'On a  $z' = \lambda z$ 

Definition

Soient  $\Omega \in \mathscr{P}$ ,  $(\theta, \lambda) \in \mathbb{R}^2$ . La similitude (directe) de centre  $\Omega$ , d'angle  $\theta$  et de rapport  $\lambda$  est

$$S_{\Omega,\theta,\lambda} = h_{\Omega,\lambda} \circ \rho_{\Omega,\theta}$$



Proposition

Avec les notations précédentes,

$$S_{\Omega,\theta,\lambda} = \rho_{\Omega,\theta} \circ h_{\Omega,\lambda}$$

Proposition

L'expression complexe de  $S_{\Omega,\theta,\lambda}$  est

$$z' = \omega + \lambda e^{i\theta} (z - \omega)$$

# Quatrième partie Exponentielle complexe

IV

Definition

Pour  $z \in \mathbb{C}$ , on pose

$$\exp(z) = e^{\Re \mathfrak{e}(z)} \times (\cos(\mathfrak{Im}(z)) + i \sin(\mathfrak{Im}(z))$$

Ainsi, si z = a + ib avec  $(a, b) \in \mathbb{R}^2$ ,

$$\exp(z) = \exp(a+ib) = e^a \times (\cos(b) + i(\sin(b))) = e^a e^{ib}$$

Proposition

Soient  $z_1, z_2 \in \mathbb{C}$ .

$$\exp(z_1 + z_2) = \exp(z_1) \times \exp(z_2)$$

Remarque

Notation

On écrit  $e^z$  à la place de  $\exp(z)$  pour  $z \in \mathbb{C}$ .

Proposition

$$\forall z \in \mathbb{C}, \begin{cases} |e^z| = e^{\Re \mathfrak{e}(z)} \\ \arg(e^z) \equiv \Im \mathfrak{m}(z) \ [2\pi] \end{cases} \qquad \mathbf{y} = \Im \mathfrak{m}(z) - \mathbf{m}(z)$$

 $y = \Im \mathfrak{m}(z)$ 

 $x = \mathfrak{Re}(z)$ 

Remarque

$$\begin{split} \exp: \mathbb{C} &\to \mathbb{C} \text{ n'est pas bijective :} \\ &- \begin{cases} \exp(0) = \exp(2i\pi) = 1 \\ 0 \neq 2i\pi \end{cases} \end{split}$$

— 0 n'a pas d'antécédant

Il n'y a donc pas de logarithme complexe.

# Cinquième partie Fonctions de $\mathbb R$ dans $\mathbb C$

#### Definition

Soit f définie sur  $D \subset \mathbb{R}$  à valeurs dans  $\mathbb{C}$   $(\forall x \in D, f(x) \in \mathbb{C})$ On pose:

$$\mathfrak{Re}(f): D \longrightarrow \mathbb{R}$$
  
 $x \longmapsto \mathfrak{Re}(f(x))$ 

et

$$\mathfrak{Im}(f): D \longrightarrow \mathbb{R}$$
  
 $x \longmapsto \mathfrak{Im}(f(x))$ 

#### Definition

Soit  $f:D\to\mathbb{C}$ . On dit que

- $\begin{array}{l} \stackrel{\bullet}{-} f \text{ est } \underline{\text{continue}} \text{ si } \mathfrak{Re}(f) \text{ et } \mathfrak{Im}(f) \text{ sont continues} \\ \stackrel{\bullet}{-} f \text{ est } \underline{\text{dérivable}} \text{ si } \mathfrak{Re}(f) \text{ et } \mathfrak{Im}(f) \text{ sont dérivables.} \end{array}$ Dans ce cas, la dérivée de f est

$$f': D \longrightarrow \mathbb{C}$$
$$x \longmapsto \mathfrak{Re}(f)'(x) + i\mathfrak{Im}(f)'(x)$$

#### Remarque

On peut représenter f de la façon suivante.



$$f:[0,2\pi[\,\longrightarrow \mathbb{C}$$
 
$$t\longmapsto e^{(1+i)t}$$

#### Proposition

Soient u et v deux fonctions dérivables sur  $D \subset \mathbb{R}$  à valeurs dans  $\mathbb{C}$ 

- 1. u + v dérivable et (u + v)' = u' + v'
- 2. uv dérivable et (uv)' = u'v + v'u
- 3. Si  $v \neq 0$ ,  $\frac{u}{v}$  dérivable et  $\left(\frac{u}{v}\right) = \frac{u'v v'u}{v^2}$

#### Proposition

Soit  $v:D\to\mathbb{R}$  et  $u:\mathbb{R}\to\mathbb{C}$  deux fonctions dérivables (avec  $D\subset\mathbb{R}$ ). Alors,  $u \circ v$  est dérivable et

$$(u \circ v)' = (u' \circ v) \times v'$$

$$\forall x \in D, f'(x) = u'(x)e^{u(x)}$$