計算量クラス PSPACE

齊藤哲平

October 5, 2024

PSPACE

TM: チューリングマシン

Definition

PSPACE は決定性 TM で多項式領域で決定できる問題のクラス

命題

NP ⊂ PSPACE; さらに coNP ⊂ PSPACE

証明.

NP 完全問題 SAT と coNP 完全問題 TAUT は線形領域で決定可能

命題

PSPACE ⊂ EXPTIME

証明.

領域 $\overline{f(n)}$ で動作する TM の計算状態はたかだか $\overline{f(n)}2^{f(n)}$ 個

- f(n): TM のヘッドの位置
- $\circ 2^{f(n)}$: 各テープ位置について、各アルファベットの可能性

停止する TM は同じ計算状態を取らないので $f(n)2^{f(n)}$ 時間で停止

PSPACE 完全性

Definition

決定問題 A が PSPACE 完全 とは、以下を満たすこと

- $\circ A \in \mathsf{PSPACE}$
- 。 任意の $B \in \mathsf{PSPACE}$ について $B \leqslant A$ ここで \leqslant は多項式時間還元

モチベーション: P ⊊ PSPACE?

比較

- NP 完全性は多項式時間還元で定義 (P ⊆ NP ?)
- 。 NL 完全性は対数領域還元で定義 (L ⊆ NL ?)

Definition

TQBF は量化付き命題論理の恒真性判定問題

Example

- \circ ∀x∃y $(x \lor y) \land (\neg x \lor \neg y)$ は恒真
- <u> 。 ∃x∀y (x ∨ y) ∧ (¬x</u> ∨ ¬y) は恒真でない

命題

以下の問題は PSPACE 完全

- TQBF
- 命題直観主義論理の妥当性問題
- (その他ある種の2人ゲームいろいろ)

Definition

非決定性 TM の領域計算量 f(n) とは、

長さn の入力に対する、いずれかの分岐で使用する領域の最大値

Theorem (Savitch の定理)

O(f(n)) 領域を利用する 非決定性 TM で決定できる問題は $O(f(n)^2)$ 領域を利用する 決定性 TM で決定できる

Corollary

NPSPACE = PSPACE

Theorem (Savitch の定理)

O(f(n)) 領域を利用する 非決定性 TM で決定できる問題は $O(f(n)^2)$ 領域を利用する 決定性 TM で決定できる

証明のアイデア.

愚直にシミュレーションすると $f(n)2^{f(n)}$ 領域を使ってしまうので サブルーチン 「状況 c_1 から c_2 に t ステップで遷移できるか?」を使い 二分探索すると $f(n)\log_2(2^{f(n)}) = f(n)^2$ 領域で抑えられる

 $2^{f(n)}$ は再帰の深さであり、また状況数でもあることに注意

