ECE 101: Linear Systems Fundamentals

Spring 2025 - Lecture 1

Paul Siegel

University of California, San Diego

Today's topics

- Introduction to the course
- Signals
- Basic operations on signals

Signals and Systems (2nd Edition): sections 1.1.1 and 1.2.1

Introduction to the course

Introduction to the course: Instructor

- Instructor: Paul Siegel
 - Email: psiegel@ucsd.edu
 - Zoom office hours:
 Wednesdays, 1 pm 2 pm
 and by appointment at other times

Introduction to the course: TAs

- TA: Deepak Sridhar
 - Email: desridha@ucsd.edu
 - Office hours:

Introduction to the course: TAs (cont.)

- TA: Qianyi Wu
 - Email: qiw010@ucsd.edu
 - Office hours:

Introduction to the course: Tutors/Readers

• Tutor/Reader: Kyle Lou

• Email: kylou@ucsd.edu

• Office hours:

Introduction to the course: Tutors/Readers (cont.)

- Tutor/Reader: Alex Simonyan
 - Email: asimonya@ucsd.edu
 - Office hours:

• This course incorporates aspects of the flipped classroom model.

- This course incorporates aspects of the flipped classroom model.
- The lecture content is pre-recorded and will be delivered to you through the course website on Canvas.

- This course incorporates aspects of the flipped classroom model.
- The lecture content is pre-recorded and will be delivered to you through the course website on Canvas.
- The lecture videos are the result of a collaborative work by three UC San Diego Professors (Baghdachi, Siegel, and Touri).

- This course incorporates aspects of the flipped classroom model.
- The lecture content is pre-recorded and will be delivered to you through the course website on Canvas.
- The lecture videos are the result of a collaborative work by three UC San Diego Professors (Baghdachi, Siegel, and Touri).
- You are asked to watch these videos **before** attending each lecture.

- You will have a guided reading quiz for each lecture.
- You need to take the reading quizzes after watching the lecture videos and before attending the lecture.

- You will have a guided reading quiz for each lecture.
- You need to take the reading quizzes after watching the lecture videos and before attending the lecture.
- Lectures will address your questions and provide many problem solving examples.
- You will have opportunities to work on sample problems during the in-class activities.

- You will have a guided reading quiz for each lecture.
- You need to take the reading quizzes after watching the lecture videos and before attending the lecture.
- Lectures will address your questions and provide many problem solving examples.
- You will have opportunities to work on sample problems during the in-class activities.
- In-class "clicker questions" (using iClicker Cloud on your smartphones) will provide real-time feedback on your understanding of the material.

- Your assignments include 5 Problem Sets and 5 MATLAB labs.
- You may use MATLAB Online or MATLAB on your computer to complete the labs.
- Complete the MATLAB Onramp tutorial ASAP.
- We will demonstrate many concepts using in-class MATLAB demos throughout the course.
- MATLAB brings the course material to life!

Introduction to the course: course websites

- In this course, we will use Canvas, Gradescope and Piazza for delivering the course content, submitting/grading the assignments and discussions.
- Be sure you are enrolled at all websites contact me with any problems.

Introduction to the course: textbooks and reference notes

Textbook

Signals and Systems, 2nd Edition by A.V. Oppenheim and A.S. Willsky (with S.H. Nawab) Prentice Hall, 1997.

Lab textbook

Computer Explorations in Signals and Systems (Using MATLAB), 2nd Edition, by J.R. Buck, M.M. Daniel, and A.C. Singer, Prentice Hall, 2002.

• Reference Notes for Signals and Systems (available on Canvas)

Introduction to the course: resources

- Resources (lecture videos, lecture notes, reading quizzes, assignments, etc.) are available on Canvas
- Submit assignments using Gradescope: Entry Code 42JVN7
- Piazza page:

https://piazza.com/ucsd/spring2025/ece101_sp25_a00

Introduction to the course: grade breakdown

- 10% Reading quizzes and clicker questions
- 10% Problem Sets
- 15% MATLAB Assignments
- 30% Midterm exam
- 35% Final exam

Introduction to the course: topics covered in this course

- Discrete-time (DT) and continuous-time (CT) signal properties
- DT and CT system properties
- Linear Time Invariant (LTI) systems and their properties
- Fourier Series and Fourier Transform of DT and CT signals
- Frequency analysis of DT and CT systems
- Amplitude Modulation (AM) for communication systems
- Sampling Theory, DT processing of CT signals
- Laplace transform of CT signals, Feedback control

Today's topics

- Signals
- Basic operations on the signals

Signals

What is a signal?

- A signal is a quantitative description of a physical phenomenon, event or process that often has *time-dependency*.
- Examples:

Dow Jones Industrial Average, 2008-2017

After plunging as the Great Recession set in, the Dow Jones has recovered nicely. This chart shows the closing level on the day closest to January 1 of the year noted.

What is a signal?

- Signals:
 - Continuous-time (CT)
 - Discrete-time (DT)

Continuous-time Signals

- **Continuous-time Signals**: Signals that are functions of real-valued independent variables (time variable *t*).
- We use notation: x(t), y(t), z(t), ...:

Continuous-time Signals

- **Continuous-time Signals**: Signals that are functions of real-valued independent variables (time variable *t*).
- We use notation: x(t), y(t), z(t), ...:
 - reserve time variable t for continuous-time signals' independent variable
 - use parenthesis (·)

Discrete-time Signals

- **Discrete-time Signals**: Signals that are defined only at discrete times (time variable *n*).
- For these signals, the independent variable takes on only a discrete set of values.
- We use notation: x[n], y[n], z[n], ...:

Discrete-time Signals

- **Discrete-time Signals**: Signals that are defined only at discrete times (time variable *n*).
- For these signals, the independent variable takes on only a discrete set of values.
- We use notation: x[n], y[n], z[n], ...:
 - reserve time variable n for discrete-time signals' independent variable
 - use square bracket [·]

Complex signals

Complex Signals - Notation

• A complex CT signal x(t) is formed by the signal pair $\{x_r(t), x_j(t)\}$, where both $x_r(t)$ and $x_j(t)$ are real-valued signals.

Complex Signals - Notation

- A complex CT signal x(t) is formed by the signal pair $\{x_r(t), x_j(t)\}$, where both $x_r(t)$ and $x_i(t)$ are real-valued signals.
- The relationship between these signals is given by:

$$x(t) = x_r(t) + j x_j(t)$$

where
$$j = \sqrt{-1}$$

Complex Signals - Notation

ullet Similarly, a complex DT signal x[n] can be represented as

$$x[n] = x_r[n] + j x_j[n]$$

where both $x_r[n]$ and $x_j[n]$ are real-valued DT signals.

Basic Notations

- $\bullet \ \mathbb{Z}$: the set of integers $\ldots, -2, -1, 0, 1, 2, \ldots$
- ullet $\mathbb R$: the set of real numbers
- ullet $\mathbb{C}:=\{(a+bj)\mid a,b\in\mathbb{R}\}$ the set of complex numbers

Basic Notations

- $\bullet \ \mathbb{Z}$: the set of integers $\ldots, -2, -1, 0, 1, 2, \ldots$
- ullet $\mathbb R$: the set of real numbers
- $\mathbb{C} := \{(a+bj) \mid a,b \in \mathbb{R}\}$ the set of complex numbers
 - x = a + bj is Cartesian coordinate representation
 - $x = re^{j\theta}$, where $r = \sqrt{a^2 + b^2}$ and $\theta = \tan^{-1}(\frac{b}{a})$ is the polar coordinate representation
 - Euler's Formula:

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

Euler's Formula and Coordinate Transformation

• Euler's Formula:

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

Cartesian/polar coordinates:

$$z = x + j y$$

$$re^{j\theta} = r\cos(\theta) + j r\sin(\theta)$$

Basic Operations on Signals

Time Shift

• For any $t_0 \in \mathbb{R}$ and $n_0 \in \mathbb{Z}$, **time shift** is defined as

$$x(t) \longrightarrow x(t-t_0)$$
 CT
 $x[n] \longrightarrow x[n-n_0]$ DT

• For $t_0 > 0$ ($n_0 > 0$), it is called **delay** and for $t_0 < 0$ ($n_0 < 0$) it is called **advance**.

Time Shift: example

• Example: Suppose x(t) is as shown below. Sketch x(t-1).

Time Reversal: example

• Example: Suppose x(t) is as shown below. Sketch x(-t).

Time Scaling: Continuous Time

ullet For CT Signals, time-scaling by a factor a>0 is defined as

$$x(t) \longrightarrow x(at), \quad a > 0.$$

- If a > 1, it is called **Decimation** (squeezing)
- If 0 < a < 1, it is called **Expansion** (enlarging)

• Sketch $x(\frac{t}{2})$ for the below signal.

Time Scaling: Discrete Time

 Decimation: For a DT Signal, and an integer factor M ≥ 1, the decimated signal is defined by:

$$y_D[n] = x[Mn].$$

• An example of decimation for M = 2:

Time Scaling: Discrete Time

 Expansion: For an integer L ≥ 1, the discrete-time expanded signal (by a factor L) is:

$$y_E[n] = \begin{cases} x \left[\frac{n}{L} \right], & n = \text{integer multiple of } L \\ 0, & \text{otherwise.} \end{cases}$$

• An example of expansion for L = 2:

Combination of Operations

- ullet Often we are interested in the transformation x(t) o x(at-b)
- A combination of time shift and time scaling is needed (order matters):
- The recommended method is
 - 1. Define v(t) = x(t-b),
 - 2. Define y(t) = v(at) = x(at b).
- So $x(t) \rightarrow x(at b)$ is equivalent to time delay then scale!

Combination of Operations

- The second method is
 - 1. Define v(t) = x(at),
 - 2. Define y(t) = v(t b/a) = x(at b).
- This method will not always result in a correct answer for the discrete-time signals.

Combination of Operations: example

• Example: Plot the signal x(-t+2) for the signal x(t) as bellow,

Lecture 1 reading quiz

• A discrete-time signal x[n] is shown below. Which option correctly represents x[2n-1]?

Options for Quiz 1

More options for Quiz 1

Clicker question 1

• If f(t) = x(t-1) and g(t) = f(-2t), which option correctly represents g(t)?

A.
$$g(t) = x(-2t + 2)$$

B.
$$g(t) = x(-2t - 2)$$

C.
$$g(t) = x(-2t - 1)$$

D.
$$g(t) = x(-2t + \frac{1}{2})$$

• A discrete-time signal, x[n], is shown below. Sketch and label y[n] = x[2n] + x[-n].

• A discrete-time signal, x[n], is shown below. Sketch and label y[n] = x[2n] + x[-n].

• A continuous-time signal, x(t), is shown below. Sketch and label $x(-\frac{1}{4}t-1)$.

• A continuous-time signal, x(t), is shown below. Sketch and label $x(-\frac{1}{4}t-1)$.

Clicker question 2

• Consider the continuous-time signal, x(t) = t - 1.

If y(t) = x(-3t + 5), the time for which $y(t_0) = 0$ is given by:

- A. $t_0 = 0$
- B. $t_0 = -\frac{4}{3}$
- C. $t_0 = \frac{4}{3}$
- D. $t_0 = \frac{5}{3}$

MATLAB Demo

- Lecture 1 Demo
 - Audio signals: loading, playing, plotting
 - Complex arithmetic
 - Complex signals: defining, plotting in 2D and 3D
- You will be able to download the MATLAB demo and its solution from the Canvas website.