MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Civil and Environmental Engineering

1.060/1.995 Fluid Mechanics

Tuesday, May 18, 2004 9am - 12 noon

Prof. Ole S. Madsen

NOTE

- 1. There are six problems of equal weight. Be sure to allocate an appropriate amount of time for each.
- 2. Solutions should be expressed in terms of the problem notation and then the numerical results should be obtained.
- 3. Please indicate clearly, using sketches when necessary, the assumptions and definitions you are introducing in carrying out your analyses. Do not hesitate to make reasonable assumptions, but state the reason why you make them.
- 4. Please be as neat as possible and clearly indicate what and where your answer is (only one answer!).
- 5. Unless noted otherwise, the fluid is water: ($\rho = 1{,}000 \, kg \, / \, m^3$, $\upsilon = 10^{-6} \, m^2 / \, s$)
- 6. Cheat sheets #1, 2, and 3 are provided along with the Moody Diagram below.

A gate is built across a trapezoidal channel of cross-section shown in sketch. The gate holds back water that rises to an elevation of h = 3.5m above the 8-m-wide horizontal bottom of the channel.

- a) Determine the total pressure force, P_H, acting on the upstream, vertical face of the gate.
- b) Determine the location of the center of gravity, in particular its elevation, y_{CG}, above the 8-m-wide horizontal bottom, of the trapezoidal face of the gate corresponding to h = 3.5m.
- c) Determine the center of pressure, i.e. the line of action, for the total pressure force obtained in (a). [Note: Center of Pressure is <u>not</u> the same as Center of Gravity, since pressure varies linearly with depth, e.g. CG of a vertical rectangular area of height h is h/2 above bottom, whereas the CP is h/3 above bottom.]

The sketch shows a section of pipe in which a nozzle-sleeve is inserted in the pipe. The pipe has a <u>square cross-section</u> with a sidelength of $a_p = 10$ cm, and the nozzle-sleeve reduces this sidelength to $a_N = a_p/2$. A mercury manometer $(\rho_m = 13.6\rho)$ is connected to the pipe as shown and gives a reading of $h_m = 6.1$ cm.

- a) Determine the discharge, Q, in the pipe. [Default value $Q = 0.011 \text{ m}^3/\text{s}$]
- b) Determine the headloss associated with the nozzle-sleeve inserted in the pipe when wall-friction is neglected.
- c) Determine the force exerted by the flow on the nozzle-sleeve (when wall-friction is neglected).
- d) Assuming the pipe material to have a roughness $\varepsilon = 0.05$ mm, determine the length of pipe required to give a frictional headloss equal to the headloss computed in (b), and comment on why this length justifies the neglect of wall friction in (b) and (c).

The sketch (not to scale) shows a pond that is connected to a lake through a horizontal $\ell=400$ m long straight circular concrete pipe, $\varepsilon=1$ mm. The pipe inlet and outlet are located some distance above bottom, to prevent erosion. The pond receives an inflow of water, $Q_p=0.25$ m³/s, and it is desired to maintain the pond at a level, h_P of 1.0 m above the lake level, h_L , by proper choice of the diameter D of the concrete pipe.

- a) Set up a relationship (in general terms, i.e. using D for diameter, f for friction factor, K_L for minor loss coefficients, etc.) between the velocity V in the pipe and the difference in water levels, h_P h_L .
- b) Determine the pipe diameter D which would give the required flow, Q, from pond to lake for $h_P h_L = 1$ m.
- c) Corresponding to your solution in (b) sketch the Energy and Hydraulic Grade Lines from inlet to exit of the pipe. Although you are asked for a sketch, try to make it to scale in the vertical.
- d) A graduate of Haavad College suggests that a smaller diameter would be required if the pipe was installed with a slope from the pond towards the lake instead of being horizontal. Is s/he correct?

A pump (at elevation $z_p = 0$) delivers a flow rate of $Q = 0.1 \text{ m}^3/\text{s}$ from a reservoir ($z_r = 5 \text{ m}$) to a water tank (the "user") through a 25-cm-diameter cast iron pipe ($\varepsilon = 0.4 \text{ mm}$). The water level in the tank is at $z_u = 100 \text{ m}$ with the pipe outlet 5 m above the free surface. The total length of pipe connecting reservoir and user is 300 m and minor losses may be neglected. The pipe passes over the top of a hill ($z_t = 110 \text{ m}$) at a distance of 70 m from the user.

- a) Determine the velocity in the pipe.
- b) Determine the Darcy-Weisbach friction factor, f.
- c) Determine the power (1 HP = 745 watt) required by the pump motor if the pump's efficiency is assumed to be $\eta = 0.8$.
- d) Determine the pressure in the pipe at its highest elevation. $z_t = 110$ m.
- e) Is the pressure determined in (d) of concern, i.e. is cavitation a potential problem, and what would happen if the pipe developed a leak at its highest point?

Typically rivers are much wider than they are deep. The sketch above shows a typical river crossection, for which the slope of the river banks, i.e. the lateral slope, is denoted by a and as a consequence of h<
b we have that a is small, say a<10°.

- a) By balancing gravitational and frictional forces for a uniform steady flow in a prismatic channel of slope S_o , derive the classical hydraulic formula for the boundary shear stress $\tau_s = \rho g R_h S_o$
- b) Show that the hydraulic radius, R_h, and the mean depth, h_m, are virtually identical for the typical river crossection discussed above.
- c) Assuming R_h = h_m and adopting the Darcy-Weissbach espression for the uniform steady ("normal") flow velocity in a channel of slope S_o, obtain a simple expression for the Froude Number in terms of Darcy-Weisbach's f and the slope S_o corresponding to normal flow.
- d) From the result obtained in (c), obtain a rough estimate of the bottom slope, S_{oc}, for which normal flow in a "typical river" will be critical.

The sketch shows the crossection of a trapezoidal channel with a bottom width, b = 8 m, and sides sloping 1 on 1. The channel roughness is estimated to be of the order $\varepsilon = 2$ cm, and its normal depth, corresponding to uniform steady flow, is $h_n = 3.5$ m. The channel is carrying a discharge of Q = 200 m³/s

- a) What is the value of Manning's "n" for this channel? (Default value is "n" = 0.02 in SI-units)
- b) Estimate the slope of the channel, So.
- c) Is normal flow super or subcritical? (Justify your answer)
- d) Corresponding to normal flow determine the Specific Energy [Head], Es.
- e) Corresponding to normal flow determine the Momentum and Pressure Thrust, MP. [take advantage of the similarity between this problem and Problem No. 1]

1.060/1.995 FLUID MECHANICS

Scheduled Final Examination, 18 th May 2004

SOLUTIONS

Splitting the cross-section into a retangular area (Az) and two identical triangular areas (A, & Az) we have A, = A = 2 h : CG, = CG, = 3 h below per surface

Az = b.h; CG2 = 2 h below free surface

PH = EPGA = 2. (9g 3h) 2h + (pg 2h)6h -

99[3h3+2hb]=1000.9.8[3353+23.52.8]=620kN

The general formula for total hydrostatic pressure for neads: P=ogh-yea) A, or

h-yc = PH = PH = 620 kN h-yc = 99A = 1000 9.8[2.1.3.52+3.5.8] = 1.57m = 4/6 = 1.93m yes is measured from the 8-m-wide to Home upwards. Note: Same result is obtained by applying the definition of Center of Gravity of an area: $Y_{CG} = \sum (Y_{CG} A) / \sum (A) = [2 \cdot \frac{2}{3}h \cdot \frac{1}{2}h^2 + \frac{1}{2}h \cdot hb] / [2 \cdot \frac{1}{2}h^2 + hb] = 1.93m!$

For area R_2 , which is rectangular, we have the standard 2-D formula for the moment $M_2 = P_{H2} \cdot \frac{1}{3}h = \frac{1}{2}pgh^2b \cdot \frac{1}{3}h = 560 \text{ kNm}$ [Note: $G_2 = \frac{1}{2}h$ above bottom, but $G_2 = \frac{1}{3}h$ above bottom, i.e. Center of Grainfy + Center of pressure]

For area R_1 (same as R_3), which is triangular, standard 2-D formula does not apply! We must use fundamentals.

p(y) = pg(h-y); b(y) = y; arm = y $M_{1} = M_{3} = \int p(y) \cdot b(y) \cdot y \, dy = pg \int (hy^{2} - y^{3}) \, dy = gg \int [h \dot{3} y^{3} - \dot{4} y^{4}]^{h} = pg \int [h^{4} = 122.6 \text{ kNm}]$

So, we have by definition of Center of Pressure $\frac{\sum M}{P_{H}} = \frac{560 + 2.122.6}{620} = \frac{805}{620} = 1.3 \text{ m}$

(above bottom, located on & of crossection, and acting horizontally towards the dam).

[Note: For hiangular areas, the Center of Pressure is: yer; "yerz = M, /(pg;h;h²)=122.6/70=1.75m, i.e. CP, is at mid-depth; in above bottom, whereas CGp is (2/3) h above bottom: yep \$\frac{4}{964}\$]

Between upstream and norrle opening, we have a short transition of a converging flow & No headloss. Therefore, with A = pipe area = a LIt's a square pipe!) and $A_N = Q_N^2 = (Q_p/2)^2 = \frac{1}{4}Q_p^2 = \frac{1}{4}A_p$, application of conservation of mass gives Q = Vp Ap = VN AN => V= Q/AN = 4Vp = 4 V/Ap

and Bennoulli

Manometers of the type shown record difference in piezometric head, or

Inhoducing This in expression from Semoulli gives

(pm-p)g hm = 2 p Vp = /15 (9m/p-1)ghm and with pm/p=13.6, and hm = 6km = 0.06/m, we Vp = 1.002 = 1.00 m/s; Q = Ap Vp = 9p Vp = 0.01 m/s Following outflow from the nozzle opening the flow expands. This results in an expansion headloss, given by $\Delta H_{exp} = \frac{(V_N - V_p)^2}{2g} = \frac{(4V_p - V_p)^2}{2g} = \frac{3^2}{2g} = 0.46m$ Neglecting piction, Bernoulli from upstream of norzle-sleeve to far enough downstream to make flow welbehaved gives 19 + Pg + 2 = 19 + Pd + 2d + AHerp + AHf Pr Pa = Pg Stexp. Applying the momentum principle to same control volume, we have (gVp+Pp)Ap = MP = (gVp+Pd)Ap + Fs MP. force from sleeve Fs = (Pp - Pa) Ap = 99 Ap AHerp = 45.1 N This is the force on the northe-sleeve which is in direction of flow.

A) $R_p = q_p^2$; $P_p = welled perimeter = 4q_p$ $R_n = R_p / P_p = q_p / 4 \Rightarrow 4R_n = q_p$ [used for D] $Re = \frac{4R_n V_p}{V} = \frac{q_p V_p}{V} = 10^5$; $\frac{E}{4R_n} = \frac{0.05}{100} = 0.0005$ Now, from Moody: f = 0.0205 (good eyes)

Thus, $\Delta H_f = f \frac{f}{4R_n} \frac{V_p}{2g} = \Delta H_{exp} = 0.46 \text{ m}$ q_p $f = \Delta H_{exp} Z_g Q_p / (f V_p^2) = 43.98 \approx 44 \text{ m}$

44 m of pipe is nequired to give the same headloss as the nozzle causes. This enormous' length, compared to the length of the nozzle-affected flow (maybe of the order 109: 1m) justifies the negligible headloss assumed in (a) and also the neglect of shear stresses (frictional forces) in (c).

Frictional loss =
$$f(\ell/D)V_p^2/(2g)$$

Enhance loss [re-entiant inflow $C_c = 0.5$] = $K_{L,ent}$ $V_p^2/(2g)$
Exit loss to lake = $K_{L,exit}$ $V_p^2/(2g)$
 $K_{L,ent}$ = $(1/C_c - 1)^2 = 1$; $K_{L,exit}$ = $(1 - \frac{g_{pipe}}{R_{L,exit}})^2 = 1$ ($R_{L,exit} = \frac{g_{pipe}}{R_{L,exit}}$) $\frac{1}{R_{L,exit}}$ Therefore:
 $h_p = h_L + (K_{L,exit} + f \frac{\ell}{D}) \frac{V_p^2}{2g} = h_L + (2 + 4co \frac{f}{D}) \frac{V_p^2}{2g}$
 $V_p = \sqrt{2g(h_p - h_L)} / \sqrt{2 + 4co f/D}$ (Din meters)
b) $Q = V_p \Rightarrow V_p = Q/P = \frac{4}{T}Q/D^2 \Rightarrow Into (a) gives$
 $D^2 = \frac{4Q}{T}\sqrt{2 + 4co f/D} / \sqrt{2g(h_p - h_L)}$
or, with $Q = 0.25 \, m^3/s$ and $h_p - h_L = 1m$
 $D = 0.268 \left(2 + 4co f/D\right)^{1/4} \frac{(n+1)}{2} = 0.268 \left(2 + 4co f/D^{(n)}\right)^{1/4}$

We must solve this by iteration, but neither "f" nor "D" is known. So, we start by taking f = 0.02 (our good old stand-by) and iterate to get D starting with $D = \infty$ (equivalent to neglect of fiction) $D = \infty$ (equivalent to neglect of fiction) $D = \infty = 0.32 \text{m} \Rightarrow D = 0.61 \text{m} \Rightarrow D = 0.53 \text{m} \Rightarrow D = 0.55 \text{m}$ So, D = 0.54 m if f = 0.02, but is it? Re= $D \cdot V_f / V = D \cdot \left[Q / \left(\frac{\pi}{4} D^2 \right) \right] / V = 0.54 \cdot 1.09 / 10^{-6} = 5.9 \cdot 10^{5}$ $E/D = 0.001 / 0.54 = 1.9 \cdot 10^{-3}$ Moody Diagram gives: f = 0.0225. With this value, and starting iterations with D = 0.54 m we obtain: $D = 0.54 \text{m} \Rightarrow D = 0.55 \text{m}$ We one done: Change in D from 0.54 to 0.55 m will not produce a change in Re & E/D to change f, so: f = 0.0225 and D = 0.55 m

For D = 0.55m we have $V_p = Q(E^*D^2) = 1.04s^m$ and therefore $V_p^2/2g = 0.055m$. At vena contracta of inflow $V_{vc} = V_p/C_c = 2V_p$ and $V_{vc}/2g = 4V_p^2/2g = 0.22m$. EGL = H(m) above $pipe \mathcal{L}(\mathcal{E}_p = 0)$ $EGL-HGL = V_p^2/2g$ for graphical representation see sketch at start of solution to this problem.

So long as pipe exit is below free surface in Lake, the exit head is $h_L = lake | eccel \Rightarrow actual Zexit$ does not enter problem at all \Rightarrow (regardless The Haaward Student is WRONG gender!)

di

$$V = Q/H = 0.1/(\frac{T}{4}0.25^2) = 2.04 m/s$$

6)
$$\frac{Re}{Re} = VD/V = 2.04 \cdot 0.25/10^{-6} = 5.10^{-5}, \frac{\epsilon}{0.25} = 0.0016$$

$$Moody gives: f = 0.022$$

Head at stant * $Z_r = 5$; Head at end = $(Z_u + 5) + V^2/2g = 105.2m$ $H_p = pump \ head = 105.2 - 5 + Headloss = 100.2 + f(l/0)V^2/2g = 100.2 + 0.022 \cdot (300/0.25) 2.04^2/(2.9.8) = 105.8 m$ Power supplied from pump = $ggQH_p = 103.7 \ kW$ Power to pump = $ggQH_p/\eta = 103.7/0.8 = 129.6 \ kW = 174HP$

d)
$$H_{top} = \frac{V^{2}}{2g} + \frac{P_{t}}{Z_{t}} + \frac{P_{t}}{gg} = (Z_{u} + 5) + \frac{V^{2}}{2g} + f \frac{Z_{u}}{D} + \frac{V^{2}}{2g} = 105 + (1 + 0.022 \frac{70}{0.25})^{\frac{1}{2}g}$$

$$P_{t} = gg \left(105 - 1/0 + 0.022 \frac{70}{0.25} \cdot \frac{2.04^{2}}{2.9.8} \right) = gg \left(-5 + 1/.31 \right) = -3.69 gg$$

$$P_{t} = -36.2 \text{ kPa} \left(\text{Gauge Plessure} \right)$$

Pt/gg = -3.69m => Not close to -10m => Cavitation not a problem

If pipe has leak at Z, air will be sucked in since Pt<0

and flow may be disrupted.

a)

Shear force parallel to bottom = $Z_s R_s$ $A_s = anea$ on which $Z_s acts = PAX \Rightarrow F_{Z_s} = Z_s PAX$ Gravity force parallel to bottom = mass · g_x $mass = g RAX ; g_x = gsing = g S_o [S_s = sing] \Rightarrow$ $F_{g_x} = gg RS_o AX$ $F_{Z_s} = Z_s PAX = F_{g_x} = gg RS_o AX \Rightarrow Z_s = gg[P]S_o = ggR_sS_o$

By the hydraulic radius = A/P $R_h \approx h_m$ if $P \approx b_s$ $h_m = mean depth = <math>R/b_s$ $R_h \approx h_m$ if $P \approx b_s$ line-element along free surface, Sb_s , is nelated to line-element along bottom, SP, by $Sb_s = cos \propto SP$. If $C < 10^\circ$ then $Cos \propto > 0.985$, so $Sb_s \approx SP$ $Sb_s = SSb_s \approx SSP = P \Rightarrow R_h \approx h_m$

 $\begin{aligned}
& \mathcal{I}_{s} = gg R_{h} S_{o} [hom (\omega)], \quad \mathcal{I}_{s} = (f/8)g V^{2} [cheat sheet] \\
& gg R_{h} S_{o} = \frac{f}{8}g V^{2} \Rightarrow \frac{V^{2}}{gR_{h}} \approx \frac{V^{2}}{gh_{m}} = fr^{2} = \frac{8S_{o}}{f}
\end{aligned}$

If $F_{F_n} = 1$ for normal flow, then $F_{F_n} = 1 = 8S_{oc}/f = \frac{S}{s} = f/8$ With typical value for f = 0.02 we have

If $S_o \gtrsim f/8 \sim 2.5 \cdot 10^{-3}$ Slope is $\begin{cases} steep \\ mild \end{cases}$

Channel Gossection is identical to the one discussed in Problem No:1.

Area=A= bh+2zh2 = (b+h)h = 11.5.3.5 = 40.25m2 Wetted Perimeter = P = b+2 \(\int 2h = 8 + 2.83.3.5 = 17.9m\) Hydraulic Radius = R = A/P = 40.25/17.9 = 2.25m Manning's "n" = 0.038 (0.02)" = 0.0198 (SI-units)

 $V_{n} = \frac{Q}{A} = \frac{200}{40.25} = 4.97 \frac{m}{5} = \frac{1}{h} R_{h}^{2/3} 5^{1/2} = \frac{2.25^{2/3}}{0.0198} 5^{1/2}$

 $\frac{S}{S} = \left[4.97.0.0198/(2.25)^{2/3}\right]^2 = 3.28.10^{-3}$

b) Mean depth = $h_{mn} = \frac{A}{b_s} = \frac{A}{b+2h} = \frac{40.25}{8+2.3.5} = 2.68 \text{ m}$

 $\frac{Fr_n}{\sqrt{gh_{mn}}} = \frac{4.97}{9.8 \cdot 2.68} = \frac{0.97 < 1}{10t}$ (but not by 9)

[Note: If h_m is incorrectly taken as h=3.5m=0.85]

The <1 means that normal flow is subcritical

c)

Esn = $h + \frac{V_n^2}{2g} = 3.5 + \frac{4.97^2}{2.9.8} = 3.5 + 1.26 = 4.76m$ d)

From Problem No: 1 we have: $P = P_{+} = 620 \, \text{kN}$ The momentum force is: $M = 9 \, V_h^2 A = 1000.4.97.40.25 =$ 994 KN

MP = M+P = 994 + 620 = 1,614 kN