Procesadores de Lenguajes

Tema 1 Introducción

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 1

Tema 1 – Introducción

Sesión 1: Conceptos básicos de compilación e interpretación

Curso 2007/2008 Antonio Pareja Lora PP.LL. – Tema 1

Sesión 1: Compiladores e Intérpretes

- Código máquina y lenguajes de alto nivel
- Compiladores v.s. intérpretes
- Esquema y tareas de un compilador:
 - Análisis léxico
 - Análisis sintáctico
 - Análisis semántico
 - Generación de código intermedio
 - Generación de código objeto
 - Optimización de código
- El proceso programación-compilación-ejecución (PCE)
- Tipos de errores en el proceso PCE

Código máquina y lenguajes de alto nivel (1)

- Hoy por hoy, salvo en prototipos de investigación, los ordenadores sólo procesan el alfabeto eléctrico de los 5 (V) y de los 0 (V), es decir, de un voltaje que denota el valor "1" o "0", respectivamente, reconociendo sólo el lenguaje generado por estos dos dígitos (el código máquina).
- Con ese alfabeto pueden resolverse todos los problemas computables (mediante lo que se llama una **máquina de** *Turinq*)
 - Inconveniente: hay que encontrar una definición de las entradas, el proceso y las salidas del algoritmo que soluciona cada problema en términos del alfabeto binario.
 - ¿Cómo soslayar este inconveniente?

 Curso 2007/2008
 Antonio Pareja Lora
 PP.LL. – Tema 1 – 3
 Curso 2007/2008
 Antonio Pareja Lora
 PP.LL. – Tema 1 – 4

Código máquina y lenguajes de alto nivel (2)

- Lo más práctico es:
 - Resolver los problemas con otro alfabeto, menos restrictivo, y un lenguaje más genérico que el código máquina (el lenguaje de alto nivel), pero con reglas más estrictas, que permitan hacer programas más fácilmente
 - Encontrar la forma de traducir el lenguaje de alto nivel a código máquina de forma automática
- Los programas que traducen un lenguaje de alto nivel a código máquina son los compiladores y los intérpretes
- Ventaja añadida:
 - El programa codificado en lenguaje de alto nivel puede compilarse o interpretarse, a priori, en cualquier máquina
 - El problema de traducir el lenguaje de alto nivel al código máquina queda resuelto "para siempre" (para ese lenguaje de alto nivel y para esa máquina)

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 1 - 5

Compiladores intérpretes (1)

V.S.

■ Definiciones:

- Compilador:
 - Es un programa que (secuencialmente):
 - comprueba que un programa escrito en un lenguaje de alto nivel es gramaticalmente correcto
 - traduce dicho programa a código máquina
- Intérprete:
 - Es un programa que, a un mismo tiempo:
 - comprueba que un programa escrito en un lenguaje de alto nivel es gramaticalmente correcto
 - traduce dicho programa a código máquina
 - ejecuta el programa traducido a código objeto

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 1 - 6

Compiladores v.s. intérpretes (2)

- Comparando ambos tipos de traductores:
 - El compilador:
 - Reduce el tiempo de depuración del programa (no hace dos tareas a la vez, sino sólo una, con lo que tarda la mitad de tiempo)
 - Almacena el código objeto, de forma que no hay que volver a compilar para volver a ejecutar
 - El intérprete:
 - Permite la ejecución de programas aún no completados
 - No suele requerir una definición del tipo de los datos, sino que se infieren automáticamente, con lo que se ahorra cierto tiempo en la programación
 - Permiten toda una serie de operaciones complejas, ya predefinidas, que en lenguajes compilados tardan mucho en programarse (equiparación de patrones, por ejemplo)

Esquema genérico de un compilador

Curso 2007/2008 Antonio Pareia Lora

PP.LL. - Tema 1 - 7

Descripción de las tareas de un compilador

- Análisis léxico:
 - Identificación de palabras y símbolos del lenguaje.
 - Comprobación de las reglas léxicas.
- Análisis sintáctico:
 - Comprobación de las reglas sintácticas.
- Análisis semántico:
 - Comprobación de las reglas semánticas (variables no declaradas, comprobación de tipos, etc.).
 - Interpretación de las órdenes.
- Generación de código:
 - Intermedio: Traduce las instrucciones del lenguaje de alto nivel a un lenguaje próximo al lenguaje máquina, pero aún independiente de la máquina en la que se va a ejecutar el programa
 - Objeto: Traduce las instrucciones del código intermedio al lenguaje máquina. Se pierde la independencia de la máquina
- Optimización de código: Análisis del código para mejorarlo (en velocidad, en espacio de memoria)

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 1 - 9

Tareas de un compilador: ejemplo (1)

■ CÓDIGO FUENTE:

- Secuencia de caracteres ASCII.
- Análisis LÉXICO:
 - id: identificador.
 - ent: constante entera.
 - op: operador.
 - punto_coma.

CÓDIGO FUENTE:

[lim, largo, alto : REAL;] lim := largo * alto -1;

Lista de TOKENS:

- id(lim)
- op(asignación)
- id(largo)
- op(*)
- id(alto)
- op(-)
- ent(1)
- punto_coma

Curso 2007/2008 Antonio Pareja Lora PP.LL. – Tema 1 – 10

Tareas de un compilador: ejemplo (2)

An. SINTÁCTICO:

- $S \rightarrow E$;
- $-E \rightarrow F \text{ op } F$
- $F \rightarrow id \mid ent \mid real \mid E$

■ An. SEMÁNTICO:

- Comprobación de tipos.
- Conversión implícita.

♦ An. SINTÁCTICO.

♦ An. SEMÁNTICO.

Tareas de un compilador: ejemplo (3)

■ G. C. INTERMEDIO:

 Instrucciones de una máquina abstracta.

■ OPTIMIZACIÓN C. I.:

- Minimización de accesos a memoria.
- Evaluación de expresiones constantes.

■ G. C. INTERMEDIO:

- t1 := id2 * id3
- t2 := ent_a_real(1)
- t3 := t1 t2
- id1 := t3

■ OPTIMIZACIÓN C. I.:

- t1 := id2 * id3
- id1 := t1 1.0

Curso 2007/2008 Antonio Pareja Lora PP.LL. – Tema 1 – 11 Curso 2007/2008 Antonio Pareja Lora PP.LL. – Tema 1 – 12

Tareas de un compilador: ejemplo (4)

■ G. C. FINAL:

 Secuencia de instrucciones en código ejecutable o ensamblador IEEE Std. 694, por ejemplo (más portable).

OPTIMIZACIÓN C. F.:

- Minimización de accesos a memoria.
- Optimización del uso de registros.

■ G. C. FINAL:

- LD .R1, /id2
- LD .R2, /id3
- MUL .R1, .R2
- ST .R1, /t1
- SUB .R1, 1.0
- ST .R1. /id1

■ OPTIMIZACIÓN C. F.:

- LD .R1, /id2
- LD .R2, /id3
- MUL .R1, .R2
- SUB .R1, 1.0
- ST .R1, /id1

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 1 - 13

El proceso programacióncompilación-ejecución (PCE)

Curso 2007/2008 Antonio Pareia Lora PP.LL. – Tema 1 – 14

Tipos de errores en el proceso PCE

Errores de compilación:

 Los producidos en la fase de compilación o interpretación de un programa, es decir, cuando no se cumplen las reglas léxicas, sintácticas o semánticas.

■ Errores de ejecución:

 Los producidos durante la ejecución del programa. Estos mensajes de error no son producidos por el compilador, sino por una porción de código que el compilador añade al programa.

■ Errores lógicos:

 Cuando el programa no da ningún error, pero los resultados no son los esperados. Puede ser porque el algoritmo estaba mal diseñado o porque el algoritmo ha sido incorrectamente implementado.

Tema 1 - Introducción

Un ejemplo: Pascal

 Curso 2007/2008
 Antonio Pareja Lora
 PP.LL. - Tema 1 - 15
 Curso 2007/2008
 Antonio Pareja Lora
 PP.LL. - Tema 1

Ejemplo: Introducción informal a Pascal

- Reglas gramaticales
 - En los lenguajes naturales y en los lenguajes formales
 - Notación
 - BNF
 - Diagramas sintácticos
- Pascal: Alfabeto y símbolos léxicos
 - Semántica de los símbolos léxicos
 - Sintaxis de los símbolos léxicos invariables: comentarios, operadores, signos de puntuación y palabras reservadas
- Pascal: Sintaxis global
 - Programas en Pascal: estructura básica y vista global
 - Elementos de un programa en Pascal: bloques y declaraciones
 - Esquema de un programa en Pascal

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 1 - 17

Reglas gramaticales – en el lenguaje humano

- Todo lenguaje humano tiene sus propias reglas:
 - ortográficas ("Antes de una p nunca va una n")
 - morfológicas ("No se dice hacido, sino hecho")
 - sintácticas ("La oración se compone de sujeto y predicado")
 - semánticas ("En general, el verbo ser detalla una característica permanente del sujeto, mientras estar detalla una característica transitoria")

Curso 2007/2008 Antonio Pareja Lora PP.LL. – Tema 1 – 18

Reglas gramaticales – en los lenguajes formales

- Asimismo, todo lenguaje formal consta de unas definiciones, denominadas reglas sintácticas o producciones, que especifican qué construcciones son válidas y cuáles no en el lenguaje.
- Las reglas sintácticas pueden contener dos tipos de elementos:
 - Elementos Terminales (∈ Léxico)
 - Elementos No Terminales, que son construcciones intermedias de la gramática

Notación de reglas: BNF

- Notación BNF (Backus-Naur Form)
 - Es una de las primeras notaciones que se empezaron a utilizar para especificar las reglas gramaticales de los lenguajes de programación
 - Esquema general de una regla:
 - <elemento no terminal> ::= Definición1 | Definición2 | ...
 - Los elementos terminales, que pertenecen al léxico, se escriben tal cual
 - Los elementos no terminales se escriben entre los símbolos '<' y '>'
 - El símbolo '|' indica diferentes alternativas de definición

 Curso 2007/2008
 Antonio Pareja Lora
 PP.LL. – Tema 1 – 19
 Curso 2007/2008
 Antonio Pareja Lora
 PP.LL. – Tema 1 – 20

Notación de reglas en **BNF: Ejemplo 1**

- "La oración (O) se compone de sujeto (Suj) y de predicado (Pred)" <0> ::= <Sui> <Pred>
- "El suieto puede ser un sintagma nominal (SNom), un nombre propio (NP), un pronombre (Pron) o, incluso, no aparecer (λ) , dándose por sobreentendido"
 - Eiemplos:
 - El vecino de arriba vino tarde | Juan vino tarde | Él vino tarde | Vino tarde

 - \blacksquare <Suj> ::= <SNom> | <NP> | <Pron> | λ
- "Un sintagma nominal está compuesto o bien por un determinante (Det), un nombre común (NC) y un sintagma adjetivo (SAdj), o bien por un determinante, un nombre común y un sintagma preposicional (SPrep), o bien por un artículo (Art), un adjetivo (Adj) y un nombre común"
 - Fiemplos:
 - Ese hombre viejo | Ese hombre de edad avanzada | El viejo hombre
- "Los artículos, en español, son: el, la, lo, los, las, un, uno, una, unos y unas" <Art> ::= el | la | lo | los | las | un | uno | una | unos | unas

Curso 2007/2008 Antonio Pareia Lora PP.LL. - Tema 1 - 21

Notación de reglas: Diagramas sintácticos

■ Una alternativa más visual para la descripción de la gramática de un lenguaje:

Elemento NO TFRMINAL

Notación de reglas en **BNF**: Ejemplo 2

- Ejemplo: Descripción sintáctica. en notación BNF, de una expresión matemática del tipo: 4*(3+1)
 - <expresión> ::= <número> | (<expresión>) | <expresión><operador><expresión>
 - < operador > ::= + | | * | /
 - <número> ::= <dígito> | <número> <dígito>
 - -<dígito>::=0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Curso 2007/2008 Antonio Pareia Lora PP.LL. - Tema 1 - 22

Diagramas sintácticos: **Ejemplo 1**

"La oración (O) se compone de sujeto (Suj) y de predicado (Pred)" Oración -➤ Sujeto Predicado "Los artículos determinados, en español, son: "El sujeto puede ser un sintagma nominal (SNom), un nombre propio (NP), un el, la, lo, los, las, un, uno, una, unos y unas" pronombre (Pron) o, incluso, no aparecer (λ) , dándose por sobreentendido" Artículo el Determinado Sujeto la Sintagma Nominal lo Nombre Propio los Pronombre las Antonio Pareja Lora

PP.LL. - Tema 1 - 24

Curso 2007/2008

Curso 2007/2008 Antonio Pareia Lora PP.LL. - Tema 1 - 23

Diagramas sintácticos: Ejemplo 2

■ **Ejemplo:** Descripción sintáctica, mediante diagramas sintácticos, de una expresión matemática del tipo: 4*(3+1)

© Fernando Barber y Ricardo Ferrís, Universidad de Valencia

Curso 2007/2008 Antonio Pareia Lora PP.LL. – Tema 1 – 25

Pascal: alfabeto y léxico

- Alfabeto
 - Los caracteres del alfabeto inglés (no están permitidos los caracteres acentuados, ni la 'ñ' fuera de los comentarios, por ejemplo), los dígitos decimales, los operadores matemáticos, lógicos y de comparación, así como los signos de puntuación.
- Léxico
 - Conjunto de símbolos que se pueden usar en un lenguaje. Aparte de los operadores y los signos de puntuación, pertenecen al léxico:
 - Los comentarios
 - Las palabras clave o reservadas
 - Las constantes
 - Los identificadores
 - Las instrucciones

Pascal: alfabeto y léxico

- El alfabeto de Pascal
- El léxico de Pascal
 - Semántica de los símbolos léxicos
 - Sintaxis de los símbolos léxicos invariables:
 - Comentarios
 - Operadores
 - Signos de puntuación
 - Palabras clave (o reservadas)

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 1 - 26

Pascal: elementos léxicos – semántica (1)

- Conjunto de símbolos invariables de Pascal:
 - Comentarios:
 - Texto que acompaña a una sección del programa, documentándolo y clarificando el código (aunque son también útiles a la hora de buscar errores de compilación que se resisten).
 - Operadores:
 - Símbolos que representarán operaciones entre variables y constantes.
 - Signos de puntuación:
 - Como en el lenguaje natural, son símbolos que delimitan otros símbolos y las sentencias del programa (la coma, el punto, el punto y coma, los dos puntos, los paréntesis, etc.)
 - Palabras clave o reservadas:
 - Son símbolos indivisibles, con una semántica predefinida en el lenguaje, y que no pueden usarse para ningún otro propósito que aquél para el que se han definido en el lenguaje (excepto en comentarios)

 Curso 2007/2008
 Antonio Pareja Lora
 PP.LL. - Tema 1 - 27
 Curso 2007/2008
 Antonio Pareja Lora
 PP.LL. - Tema 1 - 28

Pascal: elementos léxicos – semántica (2)

- Conjunto de símbolos de Pascal construidos por el usuario:
 - Identificadores:
 - Nombres simbólicos que se darán a ciertos elementos de programación (por ejemplo: nombres de constantes, de tipos, de variables, de programas, etc.).
 - Deben ser convenientemente declarados, para ser reconocidos por el compilador.
 - Constantes:
 - Datos que no cambiarán su valor a lo largo del programa.
 - Instrucciones:
 - Símbolos compuestos que representarán estructuras de procesamiento y de definición de elementos de programación.

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 1 - 29

Pascal: elementos léxicos invariables – sintaxis (1.b)

■ Palabras clave (o reservadas) [Grogono, 1996]

AND	ARRAY	BEGIN		CASE		CONST
DIV	DO	DOWNTO		ELSE		END
FILE	FOR	FUNCTION		GOTO		IF
IN	LABEL	MOD		NIL		NOT
OF	OR	PACKED		PROCEDURE		PROGRAM
RECORD	REPEAT	SET	SHL	SHR	THEN	ТО
TYPE	UNTIL	VAR		WHILE		WITH

Pascal: elementos léxicos invariables – sintaxis (1.a)

```
Comentarios:
```

```
- <comentario> ::= (* <cualquier cosa> *) |
{ <cualquier cosa> }
```

Operadores:

```
- <operadores:
- <op
```

(* independientemente de mayúsculas/minúsculas *)

■ Signos de puntuación:

```
- <puntuación> ::= . | , | ; | : | ^ | ' | " | ( | ) | [ | ] | { | }
```

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 1 - 30

Bibliografía

- Brassard, G., Bratley, P. (1997) Fundamentos de Algoritmia. Madrid:Prentice Hall.
- Grogono, P. (1996) Programación en Pascal. Wilmington, Delaware (EE.UU.):Addison-Wesley Iberoamericana.
- Joyanes Aguilar, L. (2006) Programación en Pascal (4ª edición). McGraw-Hill/Interamericana de España, S.A.
- Leestma, S., Nyhoff, L. (1999) Programación en Pascal (4ª edición). Madrid:Prentice Hall.
- Valls Ferrán, J.M., Camacho Fernández, D. (2004)
 Programación estructurada y algoritmos en Pascal.
 Madrid:PEARSON-Prentice Hall.

 Curso 2007/2008
 Antonio Pareja Lora
 PP.LL. – Tema 1 – 31
 Curso 2007/2008
 Antonio Pareja Lora
 PP.LL. – Tema 1 – 32