FÍSICA 1 RELATÓRIO PRÁTICA 3 EXPERIMENTO: PLANO INCLINADO

UERJ – UNIVERSIDADE ESTADUAL DO RIO DE JANEIRO

Professor: Daniel Barci.

Data:

Alunos: Alexandre Maia Martins Filho.

Kaylan Rocha Freitas Rosa.

Luiz Vitor Gomes Fortunato.

Sumário

Objetivo:	3
Material:	3
Introdução Teórica:	3
Experimento - Queda Livre Manual:	3
Procedimento Experimental:	3
Medidas:	5
Histograma:	5
Cálculos:	5
Média dos tempos:	5
Incertezas de tempo:	6
Velocidades:	6
Incerteza de Velocidades:	6
Velocidades Experimentais:	7
Acelerações	7
Incertezas de Acelerações:	7
Aceleração Média:	8
Incerteza da Aceleração Média:	8
Aceleração Experimental:	8
Média da aceleração da gravidade:	8
Incerteza da Média da aceleração da gravidade:	9
Aceleração da Gravidade Experimental:	9
Conclusão	a

Objetivo:

Nesse experimento nós usamos um carrinho de metal em um trilho de ar inclinado para determinar a aceleração da gravidade, medindo o tempo de interrupção de um feixe de luz em diversas posições do trilho. O experimento foi realizado para que através do tempo em que o carrinho leva entre a extremidade mais alta e a mais baixa do trilho, obtermos uma amostragem de velocidades para que aplicando as leis de newton possamos mensurar a aceleração pontual da gravidade.

Material:

- Carrinho de metal.
- Um cronômetro eletrônico do tipo barreira.
- Um trilho de ar graduado em mm.
- Uma placa retangular de plástico.
- Cilindros de metal para desnível do trilho.
- Régua, trena ou fita métrica para medidas.
- Caderno e caneta para anotações.

Introdução Teórica:

Um carrinho movendo-se em um trilho e sendo uniformemente acelerado pela gravidade, com velocidade inicial V_0 , terá uma velocidade final V, depois de se deslocar por uma distância S, tem seu movimento descrito como um MRUA (Movimento Retilíneo Uniformemente Acelerado) dada pela equação de Torricelli:

$$V^2 = V_0^2 + 2aS$$

Onde a é a aceleração (constante). Se o corpo partir do repouso ($V_0 = 0$), temos:

$$V^2 = 2aS$$

Assim a aceleração de um corpo em MRUA, partindo do repouso, pode ser calculado como:

$$a = \frac{V^2}{2S}$$

Neste experimento, usamos um trilho de ar inclinado a um ângulo θ com relação à horizontal para produzir uma aceleração constante $a=g \ sen \theta$, paralela ao trilho. Ao medir a aceleração a e o ângulo de inclinação θ , podemos determinar experimentalmente a aceleração local da gravidade g. Com um conjunto de valores para a, podemos estimar a incerteza em a e, por propagação de erros a incerteza de g.

Experimento - Queda Livre Manual:

Procedimento Experimental:

Primeiro nivelamos cuidadosamente o trilho de ar, em seguida colocamos os cilindros para dar a inclinação do trilho, posicionamos o cronômetro do tipo barreira em diversas posições do trilho e medimos o tempo de interrupção do feixe de luz do sensor ao soltamos o carrinho. As posições do sensor foram: 38cm, 48cm, 58cm, 68cm, 78cm, 88cm, 98cm, 108cm, 118cm, 128cm. Realizamos 5 medições para cada posição, totalizando 50 medições.

Sabendo que com o trilho nivelado a distância entre seus pés de apoio são de 1m, e que os cilindros medem 0,024m ou 24cm, formamos um triângulo retângulo de altura 2,4cm e base 100cm, podemos calcular o ângulo de inclinação θ através da tangente:

$$\tan \theta = \frac{catOp}{catAd}$$

E então através do valor x encontrado, determinar o ângulo θ :

$$\arctan x = \theta$$

Agora que sabemos o ângulo de inclinação θ , posicionamos o carrinho no início do trilho, onde o mesmo ocupou de 1,6cm a 14,5cm, sendo a nossa posição inicial $S_0=8,05cm$ pois este é o seu centro de massa calculado da seguinte maneira:

$$S_0 = \frac{S_{carro} - S_{0 \ carro}}{2} + S_{0 \ carro} = \frac{14,5-1,6}{2} + 1,6 = \frac{12,9}{2} + 1,6 = 6,45 + 1,6 = S_0 = 8,05$$
cm

Medimos a placa retangular sobre o carrinho:

$$S_{nlaca} = 9.9cm$$

Agora estamos prontos para iniciar a etapa de medição. Posicionamos o sensor (38cm, 48cm, 58cm, 68cm, 78cm, 88cm, 98cm, 108cm, 118cm e 128cm) e ao soltarmos o carrinho anotamos o tempo dado pelo cronômetro do sensor. Após as medições iremos partir para os cálculos.

Sabendo que a placa levou t segundos interrompendo o sensor, temos que o carrinho percorreu 9,9cm em tempo t, assim podemos determinar a velocidade do mesmo através da equação:

$$V = \frac{S}{t}$$

com a velocidade podemos determinar agora a aceleração, da seguinte forma:

$$a = \frac{V}{t}$$

Agora através das diversas medições podemos determinar as incertezas.

Medidas:

Experimento 3 - Plano Inclinado			
Posição Sensor	Tempo (s)	Posição Sensor	Tempo (s)
38cm	0.2518	88cm	0.1545
	0.2513		0.1541
	0.2441		0.1544
	0.2501		0.1540
	0.2499		0.1540
48cm	0.2169	98cm	0.1461
	0.2181		0.1458
	0.2186		0.1460
	0.2184		0.1459
	0.2183		0.1458
58cm	0.1940	108cm	0.1383
	0.1938		0.1358
	0.1937		0.1383
	0.1938		0.1383
	0.1936		0.1383
68cm	0.1781	118cm	0.1319
	0.1780		0.1322
	0.1781		0.1320
	0.1782		0.1321
	0.1781		0.1322
7 8cm	0.1644	128cm	0.1265
	0.1643		0.1264
	0.1647		0.1262
	0.1650		0.1264
	0.1649		0.1266

Histograma:

Cálculos:

Média dos tempos:

$$< t > = \frac{\sum_{i=1}^{n} t i_{s}}{n}$$

Onde n é a quantidade de medições e x é o índice das medições. Obtivemos:

$$< t_{38} > = 0.24944 \approx 0.250s$$

 $< t_{48} > = 0.21806 \approx 0.218s$
 $< t_{58} > = 0.19378 \approx 0.194s$
 $< t_{68} > = 0.17810 \approx 0.178s$
 $< t_{78} > = 0.16466 \approx 0.165s$
 $< t_{88} > = 0.15420 \approx 0.154s$

$$< t_{98} > = 0.14592 \cong 0.146s$$

 $< t_{108} > = 0.13834 \cong 0.138s$
 $< t_{118} > = 0.13208 \cong 0.132s$
 $< t_{128} > = 0.12642 \cong 0.126s$

Incertezas de tempo:

$$\delta t_{S} = \sqrt{(\delta t_{A})^{2} + (\delta t_{B})^{2}}$$

$$\delta t_{A} = \frac{1}{\sqrt{5}} \sigma$$

$$\delta t_{B} = 0,0001s$$

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (t_{i} - \langle t \rangle^{2})}$$

$$\delta t_{38} = 0.0013s$$

$$\delta t_{48} = 0.0003s$$

$$\delta t_{58} = 0.0001s$$

$$\delta t_{68} = 0.0001s$$

$$\delta t_{78} = 0.0001s$$

$$\delta t_{98} = 0.0001s$$

$$\delta t_{98} = 0.0001s$$

Velocidades:

$$v_s = \frac{L}{\langle t \rangle_s}$$

 $\delta t_{108} = 0.0001s$ $\delta t_{118} = 0.0001s$ $\delta t_{128} = 0.0001s$

Onde Vs são as velocidades em cada medição, L é o comprimento da placa.

$$v_{38} = 39,68 \ cm/s$$

 $v_{48} = 45,40 \ cm/s$
 $v_{58} = 51,08 \ cm/s$
 $v_{68} = 55,58 \ cm/s$
 $v_{78} = 60,12 \ cm/s$
 $v_{88} = 64,20 \ cm/s$
 $v_{98} = 67,84 \ cm/s$
 $v_{108} = 71,56 \ cm/s$
 $v_{118} = 74,95 \ cm/s$
 $v_{128} = 78,31 \ cm/s$

Incerteza de Velocidades:

$$\delta v_{s} = v \sqrt{\left(\frac{\delta L^{2}}{L}\right) + \left(\frac{\delta t^{2}}{\langle t \rangle}\right)}$$

 $\delta v_{38} = 0.2857s$ $\delta v_{48} = 0.2361s$ $\delta v_{58} = 0.2554s$ $\delta v_{68} = 0.2779s$ $\delta v_{78} = 0.3006s$ $\delta v_{88} = 0.3210s$ $\delta v_{98} = 0.3392s$ $\delta v_{108} = 0.3578s$ $\delta v_{118} = 0.3748s$ $\delta v_{128} = 0.3916s$

Velocidades Experimentais:

$$v_{exp} = (v_s \pm \delta v)$$

$$v_{exp38} = (39,68 \pm 0,2857) cm/s$$

 $v_{exp48} = (45,40 \pm 0,2361) cm/s$
 $v_{exp58} = (51,08 \pm 0,2554) cm/s$
 $v_{exp68} = (55,58 \pm 0,2779) cm/s$
 $v_{exp78} = (60,12 \pm 0,3006) cm/s$
 $v_{exp88} = (64,20 \pm 0,3210) cm/s$
 $v_{exp98} = (67,84 \pm 0,3392) cm/s$
 $v_{exp108} = (71,56 \pm 0,3578) cm/s$
 $v_{exp118} = (74,95 \pm 0,3748) cm/s$
 $v_{exp128} = (78,31 \pm 0,3916) cm/s$

Acelerações

Manipulando a equação:

$$v^2 = v_0^2 + 2aS$$
$$a = \frac{v^2}{2S}$$

$$a_{38} = 26,24 \text{ cm/s}^2$$

 $a_{48} = 25,76 \text{ cm/s}^2$
 $a_{58} = 26,09 \text{ cm/s}^2$
 $a_{68} = 25,74 \text{ cm/s}^2$
 $a_{78} = 25,82 \text{ cm/s}^2$
 $a_{88} = 25,76 \text{ cm/s}^2$
 $a_{98} = 25,57 \text{ cm/s}^2$
 $a_{108} = 25,60 \text{ cm/s}^2$
 $a_{118} = 25,53 \text{ cm/s}^2$
 $a_{128} = 25,55 \text{ cm/s}^2$

Incertezas de Acelerações:

$$\delta a_s = a_s \sqrt{\left(\frac{2\delta v}{v_s}\right)^2 + \left(\frac{\delta s}{s}\right)^2}$$

$$\delta a_{38} = 0.01480 \ cm/s^2$$

 $\delta a_{48} = 0.01070 \ cm/s^2$
 $\delta a_{58} = 0.01020 \ cm/s^2$
 $\delta a_{68} = 0.01010 \ cm/s^2$
 $\delta a_{78} = 0.01010 \ cm/s^2$
 $\delta a_{88} = 0.01008 \ cm/s^2$
 $\delta a_{98} = 0.01006 \ cm/s^2$
 $\delta a_{108} = 0.01005 \ cm/s^2$
 $\delta a_{118} = 0.01004 \ cm/s^2$
 $\delta a_{128} = 0.01003 \ cm/s^2$

Aceleração Média:

$$\langle a \rangle = \frac{\sum_{i=1}^{n} a i_{s}}{n}$$

$$< a > = 25,77 \ cm/s^2$$

Incerteza da Aceleração Média:

$$\delta a = \frac{1}{\sqrt{10}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (a_i - \langle a \rangle^2)}$$

$$<\delta a> = 0.0747 \ cm/s^2$$

Aceleração Experimental:

$$a_{exp} = (\langle a \rangle \pm \sigma a)$$

$$a_{exp} = (25,77 \pm 0,0747)cm/s^2$$

Média da aceleração da gravidade:

Manipulando a equação:

$$\langle a \rangle = g.sen\theta$$

$$g = \frac{\langle a \rangle}{sen\theta}$$

$$sen\theta = \frac{h}{D}$$

$$g = 1073,75 \text{ cm/s}^2$$

< $g >= 10,74 \text{ m/s}^2$

Incerteza da Média da aceleração da gravidade:

$$\delta g = \frac{\sigma a}{sen\theta}$$

$$< \delta g >= 3,1125 \text{ cm/s}^2$$

$$< \delta g >= 0,0311 \text{ m/s}^2$$

Aceleração da Gravidade Experimental:

$$g_{exp} (g \pm \sigma g)$$

 $g_{exp} = (1073,75 \pm 3,1125) cm/s^2$
 $g_{exp} = (10,74 \pm 0,0311) m/s^2$

Conclusão:

Ao fim do experimento encontramos uma aceleração de aproximadamente 6,5m/s² em ambos os experimentos, mesmo com medidas totalmente diferentes, obtivemos uma aceleração constante e praticamente a mesma em ambas as etapas do experimento. Assim chegamos à conclusão que nossos dados foram incompatíveis.

Acreditamos que o erro dos dispositivos usado para mensurar e o tempo de reação humana nas medidas analógicas foram os principais fatores, porém não podemos descartar variações causadas pelos arredondamentos nos cálculos.

Apesar de tudo, os dois experimentos tiveram sua precisão e não podemos ignorar que o segundo experimento foi mais preciso que o primeiro pois a variação de seus dados foi significativamente mais consistente e menor.