

Proof of Authority Consensus Algorithms

Wrocław Blockchain Meetup #18 April 1st, 2019

Hernando Castano

Core Developer @ Parity Technologies Ltd.

hernando@parity.io | 🚺 @hcastano

Outline

- Proof of * Algorithms
- Proof of Authority
 - O Why PoA?
 - PoA in Ethereum
- Authority Round (AuRa)
- Clique

Icon made by Freepik from www.flaticon.com

Consensus Algorithms

Intro to Consensus Algorithms

- A method of ensuring everybody agrees on the current state of the blockchain
- Want to create a single source of truth
 - Ensure everyone knows I have X amount of Eth
- Challenges include:
 - Bad actors
 - Network latency
- Lots of different algorithms exist for establishing consensus

Proof of Work

Icon made by <u>Darius Dan</u> from <u>www.flaticon.com</u>

Proof of Steak

Icon made by Freepik from www.flaticon.com

Proof of Stake*

Icon made by Freepik from www.flaticon.com

Proof of Authority

Proof of Authority

- Trusted set of nodes acting as validators
- Want to produce blocks at a reliable, fixed interval
- Don't have adversarial conditions on network
- Potentially higher performance

PoA in Ethereum

- Ropsten is a PoW testnet
- No incentive to mine meant low hash rate
 - Lead to spam attacks on Ropsten back in early 2017
- Two different PoA networks were spun up in the aftermath of the Ropsten attacks

Icon made by <u>Darius Dan</u> from <u>www.flaticon.com</u>

Kovan

Authority Round

Rinkeby

Clique

Authority Round

Authority Round (Aura)

- Round robin based algorithm
- Time is divided into discrete steps
- Every validator has an assigned slot to propose a block
- Configurable through a smart contract

Icon made by mynamepong from www.flaticon.com

Authority Round: Idea

- Time is divided into discrete steps, where:
 - Step = Unix Time / Length of Step
 - Step 1 = 5 / 5
 - Step 20 = 100 / 5
- Each step has an assigned validator, chosen through:
 - o Index = s mod n
 - Validators [s % n]
 - Validators [1 % 5] = Validators [1]

Finality in Aura

- Aura provides the concept of finality
- Bitcoin and Ethereum only have probabilistic finality
 - "Might not be reverted, but let's wait a few blocks just in case..."
- A block is finalized when more than half of the validators have built on top of it

Icon made by Freepik from www.flaticon.com

Validator Set

- The set of validators can be defined in two ways:
 - 1. Chain Specification (chain.json)
 - 2. Smart Contract
- Epoch = Period of time with same validators

```
"validators" : {
    "multi": {
        "0": { "list": ["0xc6d9d2cd449a754c494264e1809c50e34d64562\] },
        "10": { "list": ["0xd6d9d2cd449a754c494264e1809c50e34d64562\] },
        "20": { "contract": "0xc6d9d2cd449a754c494264e1809c50e34d64562\] }
}
```


Clique

Background

- PoA consensus algorithm
- Defined in EIP-225 by Péter Szilágyi of Geth
- Also developed after Ropsten attacks
- Goal is to standardize PoA for Eth clients
- Used in Rinkeby and Goerli testnets

Icon made by <u>prettycons</u> from <u>www.flaticon.com</u>

Block Proposals

- Block proposals are a little less strict than they are with Aura
 - Have concept of INTURN and NOTURN validators
- After signing a block validators are not allowed to sign the next floor(SIGNER_COUNT / 2) + 1 blocks

Figure 2: Selection of authorities allowed to propose blocks in Clique.

http://ceur-ws.org/Vol-2058/paper-06.pdf

Choosing the Longer Chain

- Blocks have a higher difficulty depending on when they were made
 - DIFF_INTURN = 2
 - o DIFF_NOTURN = 1
- Gives preference to chain built with INTURN validators

Icon made by Freepik from www.flaticon.com

Validator Set Changes

- Authorities vote for validator set changes
- For non-epoch transition blocks (from the spec)
 - Signers may cast one vote per own block to propose a change to the authorization list.
 - Only the latest proposal per target beneficiary is kept from a single signer.
 - Votes are tallied live as the chain progresses (concurrent proposals allowed).
 - Proposals reaching majority consensus SIGNER_LIMIT come into effect immediately.
 - Invalid proposals are not to be penalized for client implementation simplicity.

Epochs

- Smart contracts require state access
 - Need way to verify authorities without access to state
- An epoch block is a stateless transition
 - Contain no votes
 - Contain list of current authorities
 - All non-settled votes are discarded
- Can be used as a checkpoint for clients syncing the network
- Default is every 30,000 blocks

Pop Quiz!

```
signers: []string{"A", "B", "C"},
blocks: []block{
    {signer: "A", voted: "C", auth: false},
    {signer: "B", voted: "C", auth: false},
},
```



```
signers: []string{"A", "B", "C"},
blocks: []block{
  {signer: "A", voted: "C", auth: false},
  {signer: "B", voted: "C", auth: false},
},
results: []string{"A", "B"},
```



```
signers: []string{"A"},
blocks: []block{
    {signer: "A", voted: "B", auth: true},
    {signer: "B"},
    {signer: "A", voted: "C", auth: true},
},
```



```
signers: []string{"A"},
blocks: []block{
  {signer: "A", voted: "B", auth: true},
  {signer: "B"},
  {signer: "A", voted: "C", auth: true},
results: []string{"A", "B"},
```

```
signers: []string{"A", "B", "C", "D"},
blocks: []block{
    {signer: "A", voted: "C", auth: false},
    {signer: "B", voted: "C", auth: false},
},
```



```
signers: []string{"A", "B", "C", "D"},
blocks: []block{
  {signer: "A", voted: "C", auth: false},
  {signer: "B", voted: "C", auth: false},
},
results: []string{"A", "B", "C", "D"},
```



```
epoch: 3,
signers: []string{"A", "B"},
blocks: []block{
  {signer: "A", voted: "C", auth: true},
  {signer: "B"},
  {signer: "A", checkpoint: []string{"A", "B"}},
  {signer: "B", voted: "C", auth: true},
},
```



```
epoch: 3,
signers: []string{"A", "B"},
blocks: []block{
  {signer: "A", voted: "C", auth: true},
  {signer: "B"},
  {signer: "A", checkpoint: []string{"A", "B"}},
  {signer: "B", voted: "C", auth: true},
},
results: []string{"A", "B"},
```

Questions?

