

Protocolo EIGRP

Enhanced Interior Gateway Routing Protocol

EIGRP (protocolo proprietário Cisco)

- Desenvolvido em 1985 para
 - □ ultrapassar o limite de 15 hops do RIP (v1)
- Protocolo do tipo
 - □ Misto: distance vector / linkstate
- Métricas:
 - □ Largura de banda;
 - □ Atraso:
 - □ Grau de confiança;
 - Carga.
- Suporta autenticação e encriptação.
- Split Horizon and Poison Reverse.
- Usa algoritmo DUAL
 - □ Diffusing Update ALgorithm

IGRP to EIGRP

Redes de Computadores

3

EIGRP

- Reliable Transport Protocol (RTP)
 - □ O RTP é utilizado para enviar e receber os pacotes EIGRP
- Pode ser :
 - □ Na Entrega confiável
 - implica a confirmação por parte do destino;
 - □ Na Entrega não confiável,
 - não implica qualquer confirmação.

- Os pacotes podem ser enviados:
 - □ Por unicast;
 - □ Por multicast (224.0.0.10).

Redes de Computadores

EIGRP - Cálculo da métrica

```
Default Composite Formula:
metric = [K1*bandwidth + K3*delay]

Complete Composite Formula:
metric = [K1*bandwidth + (K2*bandwidth)/(256 - load) + K3*delay] * [K5/(reliability + K4)]

(Not used if "K" values are 0)
```

```
Default values:
K1 (bandwidth) = 1
    K2 (load) = 0
    K3 (delay) = 1
    K4 (reliability) = 0
K5 (reliability) = 0

K5 (reliability) = 0

K6 (reliability) = 0

K7 (values can be changed with the metric weights command.

Router(config-router) #metric weights tos k1 k2 k3 k4 k5
```

Redes de Computadores

5

EIGRP Vector Metrics

Vector Metric	Description
bandwidth	The minimum bandwidth (Bw) of the route, in kilobits per second. It can be 0 or any positive integer. The bandwidth for the formula is scaled and inverted by using the following formula: Scaled Bw = (107/minimum bandwidth (Bw) in kilobits per second)
delay	Route delay, in tens of microseconds. Scaled Delay = (Delay/10)
load	The effective load of the route, expressed as a number from 0 to 255 (255 is 100 percent loading).
reliability	The likelihood of successful packet transmission, expressed as a number between 0 and 255, where 255 means 100 percent reliability and 0 means no reliability.

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_eigrp/configuration/15-sy/ire-15-sy-book/ire-wid-met.html

Redes de Computadores

EIGRP - Cálculo da métrica

- Show interfaces
 - permite visualizar as métricas.
- Modificar a largura de banda da interface utiliza-se o comando:
 - □ Ruter(config-if)#bandwidth kilobits (Este comando não altera a velocidade da interface física).
- Verificar a largura de banda:
 - □ show interface

Redes de Computadores

7

Encaminhamento Dinâmico

Redes de Computadores

9

Protocolos RIP

- Protocolo de encaminhamento
 - □ por Vector de Distância
- Métrica
 - □ A contagem de hops
- Nº Max de Hops 15,
 - □ se ultrapassado o pacote é descartado
- As atualizações
 - □ broadcast a cada 30 segundos

Redes de Computadores

Protocolos - OSPF

- Protocolo de encaminhamento
 - □ por Link-State Utiliza LSA
- Protocolo de encaminhamento de padrão aberto
- Usa um algoritmo SPF para calcular o menor custo até um destino
- Quando ocorrem alterações na topologia, há muitas actualizações de encaminhamento

Redes de Computadores

11

Protocolos IGRP

retirado (protocolo proprietário Cisco)

- Protocolo de encaminhamento
 - □ por Vector de Distância
- Métrica composta
 - □ A largura de banda, carga, atraso e confiabilidade
- Actualizações de encaminhamento
 - □ Broadcast a cada 90 segundos

Redes de Computadores

Protocolos — EIGRP (protocolo proprietário Cisco)

- Protocolo de encaminhamento
 - □ Por vetor de distância
 - ☐ Usa balanceamento de carga com custos desiguais
 - □ Usa características combinadas do vetor de distância e LSA
 - ☐ Usa o DUAL para calcular o caminho mais curto
- As atualizações de encaminhamento
 - □ Multicast usando 224.0.0.10
 - □ São disparadas por alterações de topologia

Redes de Computadores

13

Protocolos de encaminhamento - BGP

- Protocolo de encaminhamento exterior
 - □ por vector de distância
- Usado entre ISP's ou entre ISP's e clientes
- Usado para encaminhar o tráfego de Internet entre Sistemas Autónomos

Redes de Computadores

Dinâmico Vs Estático

	Dynamic routing	Static routing
Configuration Complexity	Generally independent of the network size	Increases with network size
Required administrator knowledge	Advanced knowledge required	No extra knowledge required
Topology changes	Automatically adapts to topology changes	Administrator intervention required
Scaling	Suitable for simple and complex topologies	Suitable for simple topologies
Security	Less secure	More secure
Resource usage	Uses CPU, memory, link bandwith	No extra resources needed
Predictability	Route depends on the current topology	Route to destination is always the same

Redes de Computadores

15

Comparação dos Protocolos

Vector Distância	Estado da Ligação
Visão da topologia de rede do ponto de vista dos vizinhos	Visão geral de toda a topologia de rede
Adição de vectores distância de router em router	Calcula os caminhos mais curtos para os outros routers
Actualizações frequentes e periódicas: Convergência lenta	Actualizações accionada por acontecimentos: Convergência rápida
São passadas cópia das tabelas de encaminhamento aos vizinhos	Passa actualizações do estado das ligações aos outros routers
Os routers calculam as melhores rotas distribuidamente (distâncias são propagadas para os destinos)	Cada router constrói um mapa da rede e calcula localmente a melhor rota através deste mapa

Redes de Computadores

The Various Routing Protocols												
Features	RIP v1	RIP v2	IGRP	OSPF	EIGRP							
Classful / Classless	Classful	Classless	Classful	Classless	Classless							
Metric	Нор	Нор	Composite (bw and delay)	Cost 100,000/BW	Composite (bw and delay)							
Periodic Advertisement	30 seconds	30 seconds	90 seconds	none	30 seconds							
Advertising Address	255.255.255.255 (broadcast)	224.0.0.9 (multicast)	255.255.255.255 (broadcast)	224.0.0.5 224.0.0.6 (multicast)	224.0.0.10 (multicast)							
Administrative Cost	120	120	100	110	Internal: 90 External: 170							
Category	Distance Vector	Distance Vector	Distance Vector	Link State	Hybrid							

Redes de Computadores

Operações de comutação

Comutação numa LAN

- □ Permite acesso dedicado
- □ Elimina colisões e aumenta a LB disponível

10 Mbps

10 Mbps

Interface

Redes de Computadores

19

Operação Switch numa LAN

- Redireciona tramas com base nos endereços MAC
- Opera na camada 2 do modelo OSI
- Aprende a existência das estações de trabalho a parir dos endereços de origem.
- Envia para todas as portas
 - □ Broadcast
 - Multicast
 - □ Endereços desconhecidos
- Encaminha quando o destino se encontra noutro interface

Redes de Computadores

Latency Switch Ethernet

- Tempo de Latência
 - ☐ Tempo desde que entra do switch até que sai.

Redes de Computadores

21

Layer 2 Switching UV Layer 3 Switching

- A diferença está no endereço que é utilizado para determinar o interface correto de saída
 - □ Layer 2 switching Endereço MAC
 - □ Layer 3 switching Endereço IP
- Comparação
 Switching Layer 3 e Router Switching
 - □ Diferença está na implementação física, em hardware (ASIC) ou em Software a correr em microprocessadores

Redes de Computadores

Layer 2 Switching

Redes de Computadores

23

Layer 3 Switching

Redes de Computadores

Switching - Simétrico

- Provides switching between like bandwidths (10/10 or 100/100 Mbps)
- Multiple simultaneous conversations increase throughput

Redes de Computadores

25

Switching - Assimétrico

Provides switching between unlike bandwidths (10/100 Mbps)
 Requires the switch to use memory buffering

Redes de Computadores

Buffer de Memória

Port-based memory buffering

- As tramas são guardados em filas que são ligadas a portas de entrada específicas.
- □ É possível que <u>uma só trama bloqueie todas as outras</u> pacotes porque a sua porta de destino está ocupada (mesmo que os outro pacotes pudessem ser entregues).

Shared-memory buffering

- □ Todas as tramas utilizam uma buffer comum de memória.
- □ As tramas na buffer então ligados (mapeados) de forma dinâmica aos portos apropriados de destino.
- □ Ajuda o balanço entre portas 10Mbps e 100Mbps.

Redes de Computadores

27

Two Switching Methods

Cut-through

The frame is forwarded through the switch before the entire frame is received.

Store-and-forward

Complete frame is received before forwarding.

Redes de Computadores

Store-and-forward

- Recebe todo o frame e verifica o CRC
- Se o CRC e o comprimento estão ok, encaminha o frame para o interface de saída.

29

Cut-through

- Encaminha o frame antes de este ser todo recebido
- Pelo menos o endereço de destino tem de ser lido antes do frame ser encaminhado

Redes de Computadores

Frame Transmission Modes

Redes de Computadores

31

Network Switch Using CAM

■ CAM (Content Addressable Memory)

ou Mac Address table

Redes de Computadores

Microsegmentação da Rede

Redes de Computadores

33

Three Methods of Communication

Redes de Computadores

M

Problema:

■ A onde ligam estes equipamentos?

Redes de Computadores

Cisco Discovery Protocol (CDP)

Upper Layer Entry Addresses	TCP/IP	Novell IPX	AppleTalk	Others								
Cisco Proprietary Data-Link Protocol	CDP discovers and shows information about directly connected Cisco devices											
Media Support SNAP	LANS	Frame Relay	АТМ	Others								

- O CDP é independente do meio e do protocolo
- Corre sobre o protocolo SNAP (Subnetwork Access Protocol) em todos os equipamentos Cisco

Redes de Computadores

37

CDP mostra os vizinhos

Single command summarizes protocols and addresses on target (for example, neighboring Cisco router)

Redes de Computadores

CDP - Funcionamento

- Durante o processo de BOOT,
 - cada dispositivo envia um CDP advertisements para um endereço multicast para recolher informação dos seus vizinhos
- Estes Avisos são enviados periodicamente de forma a que a informação recolhida seja atualizada.
- A informação só é trocada entre dispositivos diretamente ligados

Redes de Computadores

39

Informações recebidas

TLVs - Type Length Values

TLV	Definition
Device-ID TLV	Identifies the device name in the form of a character string
Address TLV	Contains a list of network address of both receiving and transmitting devices
Port-ID TLV	Identifies the port on which the CDP packet is sent
Capabilities TLV	Describes the functional capabilities of a device in the form of a device type such as a switch
Version TLV	Contains information about the software release version on which the device is running
Platform TLV	Describes the hardware platform name of the device
IP Network Prefix TLV CDPv2	Contains a list of network prefixes to which the sending device can forward IP packets. This information is in the form of the interface protocol and port number such as Eth 0/1
VTP Management Domain TLV CDPv2	Advertises the configured VTP management domain name string of a network and is used by network operators to verify VTP domain configuration in adjacent network nodes
Native VLAN TLV CDPv2	Indicates the assumed VLAN for untagged packets on each interface and is implemented only for interfaces the support the IEEE 802.1Q protocol
Full or Half Duplex TLV	Indicates the status duplex configuration of a CDP broadcast interface and is used by network administrators to diagnose connectivity problems between adjacent network devices

Redes de Computadores

	Command	Mode	Purpose
	cdp run	Global configuration mode	Enables CDP globally on the router.
Comandos CDP	cdp enable	Interface configuration mode	Enables CDP on an interface.
	clear cdp counters	Privileged EXEC mode	Resets the traffic counters to zero.
	show cdp	User or privileged EXEC mode	Displays the interval between transmissions of CDP advertisements, the number of seconds the CDP advertisement is valid for a given port, and the version of the advertisement.
	<pre>show cdp entry {* device-name [*] [protocol version]}</pre>	User or privileged EXEC mode	Displays information about a specific neighbor. Display can be limited to protocol or version information.
	show cdp interface [type number]	User or privileged EXEC mode	Displays information about interfaces on which CDP is enabled.
	show cdp neighbors [type number] [detail]	Privileged EXEC mode	Displays the type of device that has been discovered, the name of the device, the number and type of the local interface (port), the number of seconds the CDP advertisement is valid for the port, the device type, the device product number, and the port ID. Issuing the detail keyword displays information on the native VLAN ID, the duplex mode, and the VTP domain name
Redes de Computadores			associated with neighbor devices.

41

O Comando show cdp interface

Redes de Computadores

O Comando show cdp neighbors

Redes de Computadores

43

Mapa da Rede

- O comando show cdp neighbors [type number] [detail] pode ser usado para obter as seguintes informações:
 - □ Device ID Address
 - □ Port ID Capabilities
 - □ Version Platform
 - ☐ IP network prefix
 - □ VTP management domain name (CDPv2 only)
 - □ Native VLAN (CDPv2 only)
 - □ Full/Half duplex (CDPv2)

Redes de Computadores

Desabilitar o CDP

```
Rtl#show cdp
Global CDP information
   Sending CDP packets every 60 seconds
   Sending a holdtime value of 180 seconds
   Sending CDPv2 advertisements is enabled
Rtl#configure terminal
Enter configuration commands, one per line. End with
CNTL/Z
Rtl(config)#no cdp run
Rtl(config)#^Z
Rtl#show cdp
%CDP is not enabled
Rtl#configure terminal
Enter configuration commands, one per line. End with
CNTL/Z
Rtl(config)#cdp run
Rtl(config)#^Z
```

Redes de Computadores

45

Comandos para Troubleshooting CDP

Command	Description
clear cdp table	Deletes the CDP table of information about neighbors.
clear cdp counters	Resets the traffic counters to zero.
show cdp traffic	Displays CDP counters, including the number of packets sent and received and checksum errors.
show debugging	Displays information about the types of debugging that are enabled.
debug cdp adjacency	CDP neighbor information
debug cdp events	CDP events
debug cdp ip	CDP IP information
debug cdp packets	CDP packet-related information
cdp timer	Specifies how often the Cisco IOS software sends CDP updates.
cdp holdtime	Specifies the hold time to be sent in the CDP update packet.
show cdp	Displays global CDP information, including timer and hold-time information.

Redes de Computadores

O Comando show cdp traffic

Redes de Computadores

47

ICMP - Internet Control Message ProtocolCamada 3)

- Necessidade do ICMP:
 - □ O IP é um protocolo não "confiável" do tipo

best effort.

- não havendo portanto qualquer garantia que os pacotes são entregues ao destino no caso de occurrerem proble
- caso de ocorrerem problemas na rede
- □ Em caso de falha,
 - o IP não permite a notificação do emissor;
- □ Solução:
 - O ICMP é o componente da pilha TCP/IP que lida com estas limitações do IP, exceto a "confiança", que têm de ser as camadas superiores a fornecer.

Redes de Computadores

49

ICMP - Internet Control Message Protocol

- Quando existem erros que
 - □ O ICMP é utilizado
 - para reportar essa impossibilidade ao emissor
 - □ O ICMP não corrige
 - qualquer problema, apenas reporta a existência do erro
 - Qualquer erro que ocorra
 - é <u>reportado apenas ao emissor</u> dos datagramas e <u>não aos routers</u> por onde estes passaram, pois o TCP/IP não transporta qualquer informação acerca do caminho percorrido
- Quando uma mensagem de ICMP n\u00e3o pode ser entregue,
 - □ não podem ser enviadas mensagens de ICMP a reportar esse erro!

Redes de Computadores

50

3:

- ICMP echo request/echo reply
 - □ Utilizando o comando *ping* para testar a conectividade

```
debian:~# ping www.utad.pt
PING campusweb.utad.pt (193.136.40.13) 56(84) bytes of data.
64 bytes from campusweb.utad.pt (193.136.40.13): icmp_seq=1 ttl=127 time=47
64 bytes from campusweb.utad.pt (193.136.40.13): icmp_seq=2 ttl=127 time=49
64 bytes from campusweb.utad.pt (193.136.40.13): icmp_seq=3 ttl=127 time=40
64 bytes from campusweb.utad.pt (193.136.40.13): icmp_seq=4 ttl=127 time=44
64 bytes from campusweb.utad.pt (193.136.40.13): icmp_seq=5 ttl=127 time=36
64 bytes from campusweb.utad.pt (193.136.40.13): icmp_seq=6 ttl=127 time=35
64 bytes from campusweb.utad.pt (193.136.40.13): icmp_seq=6 ttl=127 time=35
64 bytes from campusweb.utad.pt (193.136.40.13): icmp_seq=7 ttl=127 time=44

--- campusweb.utad.pt ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 6027ms
rtt min/avg/max/mdev = 35.459/42.656/49.856/4.964 ms

Shell

Shell
```

Redes de Computadores

51

ICMP - Internet Control Message Protocol

- ICMP echo request/recho reply
 - □ Utilizando o *traceroute* Linux / *tracert* no windows

Redes de Computadores

- Formato das Mensagens ICMP RFC792
- As mensagens ICMP têm um formato próprio, mas todas começam com os mesmos três campos
 - □ Type: Indica o tipo de mensagem a ser enviada
 - □ Code: Contém informações específicas de cada tipo de mensagem
 - □ **Checksum**: Para verificar a integridade dos dados

Redes de Computadores

53

ICMP - Internet Control Message Protocol

■ Formato das Mensagens ICMP – RFC792

Destination Unreachable

- □ Type: 3
- □ Code:
 - 0 = net unreachable;
 - 1 = host unreachable;
 - 2 = protocol unreachable;
 - 3 = port unreachable;
 - 4 = fragmentation needed and DF set;
 - 5 = source route failed.

U	1	2	3											
0 1 2 3 4 5 6	7 8 9 0 1 2 3	4 5 6 7 8 9 0 1 2 3	4 5 6 7 8 9 0 1											
+-+-+-+-+-	+-+-+-+-+-+-+	-+-+-+-+-+-+-+-	+-+-+-+-+-+-+											
Type	Code	Check	sum											
+-+-+-+-+-	+-													
1	unused													
+-+-+-+-+-	+-+-+-+-+-+-+	-+-+-+-+-+-+-+-	+-+-+-+-+-+-+-+											
Interne	t Header + 64 b	its of Original Data	a Datagram											
+-+-+-+-+-+-	+-+-+-+-+-+-+	-+-+-+-+-+-+-+-+-	+-+-+-+-+-+-+-+											

Redes de Computadores

■ Formato das Mensagens ICMP – RFC792

Time Exceeded

□ **Type: 11**

□ Code:

- 0 = time to live exceeded in transit;
- 1 = fragment reassembly time exceeded

0		1		2	3							
0 1 2	3 4 5 6	7 8 9 0 1 2 3	3 4 5 6	7 8 9 0 1 2 3	4 5 6 7 8 9 0 1							
+-												
1	Type	Code	1	Checks	sum							
+-												
1	unused											
+-												
1	Interne	t Header + 64	bits o	f Original Data	Datagram							
+-												

Redes de Computadores

55

ICMP - Internet Control Message Protocol

■ Formato das Mensagens ICMP – RFC792

Source Quench

Pede à origem para diminuir o fluxo de pacotes enviado

Controlo de fluxo.

Type: 4

Code: 0

Traduções de quench

verbo

extinguir

destruir

apagar

destruir

apagar

temperar

tempera

Redes de Computadores

- Formato das Mensagens ICMP RFC792
 - **Echo & Echo Reply**
 - □ Type:
 - 8 for echo message
 - 0 for echo reply message
 - □ Code: 0

0	1	2	3										
0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5	678901234	5 6 7 8 9 0 1										
+-													
Type	Type Code Checksum												
+-													
1	Identifier	Sequence N	umber										
+-													
Data													
+-+-+-													

Redes de Computadores

57

ICMP - Internet Control Message Protocol

- Formato das Mensagens ICMP RFC792
 - **Timestamp & Timestamp Reply**
 - □ Type:
 - 13 for timestamp message
 - 14 for timestamp reply message
 - □ Code: 0

0	1									2									3												
0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
+-	-+														+	+-+		+-+													
1		7	'yr	е							Co	de	e Checksum																		
+-	-+												+	+-+		+-+															
1					1	[de	ent	ii	Ei€	er			Sequence Number																		
+-	+-+		-+	-+		+-+			+-+			+		+	+	+	+-+			+	+				+	+		+	+-+		+-+
1		(ri	gi	ina	ate	9]	ľir	nes	sta	amp)																			
+-	+-+		+	-+	+-+	+-+	+-+	 -	+-+	+-+	+	+		+- -	+	+	+-+	+	+-+	+	+			 -	+	+	+	+	+-+	+	+-+
1		F	Rec	ei	ĹV€	9]	ľin	nes	sta	amp)																				
+-	+-+		+	-+					+-+		+			+						+	+				+			+	+-+		+-+
I		7	ra	ins	smi	Ĺt	Ti	Lme	est	ar	np																				

Redes de Computadores

- Formato das Mensagens ICMP RFC792
 - □ Information Request & Information Reply Message

- Type:
 - 15 for information request message;
 - 16 for information reply message.
- Code: 0

Usado em maquinas sem disco

- para obter automaticamente sua configuração de rede
- Substituído por DHCP

Redes de Computadores

59

ICMPv6 - Internet Control Message Protocol for IPv6

- Formato das Mensagens ICMPv6 RFC792
 - □ Formato Geral:

Redes de Computadores

ICMPv6 - Internet Control Message Protocol for IPv6

Formato das Mensagens ICMPv6 – RFC792

Destination Unreachable

- □ Type : 1
- □ Code:
 - 0 No route to destination
 - 1 Communication with destination administratively prohibited
 - 2 Beyond scope of source address
 - 3 Address unreachable
 - 4 Port unreachable
 - 5 Source address failed ingress/egress policy
 - 6 Reject route to destination

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type | Code | Checksum

Message Body

Redes de Computadores

61

ICMPv6 - Internet Control Message Protocol for IPv6

■ Formato das Mensagens ICMPv6 - RFC792

□ Packet Too Big

		2 6 7 8 9 0 1 2 3 4		
Type	Code	Checks	ım.	
+-				
MTU				
+-				
1	As much of	invoking packet	1	
+	as possible with	out the ICMPv6 pag	cket +	
1	exceeding the mi	nimum IPv6 MTU [II	Pv6]	

- Type: 2
- Code: 0
- MTU: The Maximum Transmission Unit of the next-hop link.

It is inefficient for routers to spend time doing fragmentation!

In IPv6 the decision was made to not allow routers to fragment datagrams.

This puts the responsibility on each host to ensure that datagrams they send out are small enough to fit over every physical network between itself and any destination.

Redes de Computadores

ICMPv6 - Internet Control Message Protocol for IPv6

- Formato das Mensagens ICMPv6 RFC792
 - □ Time Exceeded

0 0 1 2 3 4 5 6 7 8					
Type	Code	Check			
Unused					
As much of invoking packet					
	-	ut the ICMPv6 p			
exc	eeding the min	imum IPv6 MTU [[IPv6]		

- Type:3
- Code:
 - □ 0 Hop limit exceeded in transit
 - □ 1 Fragment reassembly time exceeded

Redes de Computadores

63

ICMPv6 - Internet Control Message Protocol for IPv6

- Formato das Mensagens ICMPv6 RFC792
 - □ Parameter Problem

0	1 7 8 9 0 1 2 3 4 5 6 7 8	2	3	
	-+-+-+-+-+-+-+-+-+-+-			
Type	Code	Checksum	1	
+-				
Pointer				
+-				
As much of invoking packet				
+	as possible without th	e ICMPv6 packet	+	
1	exceeding the minimum	IPv6 MTU [IPv6]	1	

- Type: 4
- Code:
 - $\hfill \square$ 0 Erroneous header field encountered
 - □ 1 Unrecognized Next Header type encountered
 - □ 2 Unrecognized IPv6 option encountered

Redes de Computadores

ICMPv6 - Internet Control Message Protocol for IPv6

- Formato das Mensagens ICMPv6 RFC792
 - □ Echo Request and Response

0	1	2	3		
0 1 2 3 4 5 6 7 8	3 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5	6 7 8 9 0 1		
+-					
Type	Code	Checksum	1		
+-+-+-+-+-+-+-+-	-+-+-+-+-+-+-+	-+-+-+-+-+-+-+-	-+-+-+-+-+		
Ident:	ifier	Sequence Nu	ımber		
+-					
Data					
+-+-+-					

Type:

128 – Echo Request
129 – Echo Response

■ Code: 0

Redes de Computadores

65

Para saber mais:

- RFC792, Internet Control Message Protocol, https://tools.ietf.org/pdf/rfc792.pdf
- RFC4443, Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification,

https://tools.ietf.org/pdf/rfc4443.pdf

Redes de Computadores

Bibliografia

- Computer Networking with Internet Protocols and Technology, William Stallings
- RFC 7868 Routing Information Protocol
- CAP 10 CCNA: Switching, Routing e Wireless Essentials

Redes de Computadores