Departamento de Ciência de Computadores

Desenho e Análise de Algoritmos (CC211)

FCUP 2012/13

Exame (29.01.2013)

duração: 3h + 30 minutos

UMA RESOLUÇÃO

Cotação: (1.5+3+1), (2+1), (1+3+0.5+1), (1.5+1), (1+1+1.5), (1+2)

- 1. Seja $\mathcal{G} = (\mathcal{V}, \mathcal{A}, p, \{s, t\})$ uma rede, em que s e t são os nós origem e destino, $s \neq t$, e $p : \mathcal{A} \to \mathbb{Z}^+$ define os valores nos arcos. Para cada percurso γ_{uv} em \mathcal{G} , com origem u e fim v, designe-se por $\mathcal{P}(\gamma_{uv})$ o valor $m\acute{a}ximo$ nos arcos que o constituem, i.e., $\mathcal{P}(\gamma_{uv}) = \max\{p(x,y) \mid (x,y) \text{ é arco de } \gamma_{uv}\}$. Dizemos que γ_{uv} é $\acute{o}timo$ sse $\mathcal{P}(\gamma_{uv})$ for $m\acute{i}nimo$ quando considerados todos os percursos alternativos de u para v. Pretendemos encontrar um percurso $\acute{o}timo$ γ_{st}^{\star} de s para t.
- a) Averigue a veracidade de cada uma das afirmações seguintes sobre γ_{st}^{\star} , justificando a resposta:
 - 1. Se γ_{st}^{\star} contiver ciclos, existe um percurso ϕ_{st} sem ciclos tal que $\mathcal{P}(\gamma_{st}^{\star}) = \mathcal{P}(\phi_{st})$, ou seja, se existe um percurso ótimo de s para t então existe um caminho ótimo de s para t.

Resposta:

A afirmação é verdadeira. Se γ_{st}^* contiver ciclos, então existe v tal que γ_{vv}^* é um ciclo contido em γ_{st}^* . Assim, γ_{st}^* pode-se decompor como $\gamma_{sv}^*\gamma_{vv}^*\gamma_{vt}^*$ e, por definição de \mathcal{P} , tem-se $\mathcal{P}(\gamma_{st}^*) = \max\{\mathcal{P}(\gamma_{sv}^*), \mathcal{P}(\gamma_{vv}^*), \mathcal{P}(\gamma_{vt}^*)\}$ (aqui, $\gamma_{vt}^* = \epsilon$ se v = t, e $\gamma_{sv}^* = \epsilon$ se s = v, e $\mathcal{P}(\epsilon) = 0$). Se retirarmos o ciclo γ_{vv}^* , obtemos o percurso $\gamma_{st}^* = \gamma_{sv}^*\gamma_{vt}^*$ de s para t, com $\mathcal{P}(\gamma_{st}^*) \leq \mathcal{P}(\gamma_{st}^*)$. Por outro lado, como γ_{st}^* é ótimo, $\mathcal{P}(\gamma_{st}^*) \geq \mathcal{P}(\gamma_{st}^*)$. Logo, $\mathcal{P}(\gamma_{st}^*) = \mathcal{P}(\gamma_{st}^*)$, o percurso γ_{st}^* é ótimo e tem menos arcos do que γ_{st}^* . Se γ_{st}^* ainda contiver ciclos, podemos aplicar o mesmo procedimento a γ_{st}^* para continuar a reduzir o número de arcos do percurso ótimo. Mas, como um percurso tem um número de arcos finito e $s \neq t$, este procedimento terá de terminar, resultando um percurso com pelo menos um arco e sem ciclos, ou seja um caminho.

2. Se γ_{st}^{\star} for um caminho com dois ou mais arcos e que passa num vértice v (fixo), então existem caminhos ótimos γ_{sv} e γ_{vt} tais que o percurso $\gamma_{sv}\gamma_{vt}$ de s para t é ótimo (i.e., $\mathcal{P}(\gamma_{st}^{\star}) = \mathcal{P}(\gamma_{sv}\gamma_{vt})$).

Resposta:

A afirmação é verdadeira. Se o caminho γ_{st}^{\star} passa em v, podemos decompor γ_{st}^{\star} como $\gamma_{sv}^{\star}\gamma_{vt}^{\star}$, sendo γ_{sv}^{\star} e γ_{vt}^{\star} caminhos. Substituimos γ_{sv}^{\star} e γ_{vt}^{\star} por caminhos ótimos γ_{sv} e γ_{vt} , se não o forem, e $\gamma_{sv}\gamma_{vt}$ será um percuso tal que $\mathcal{P}(\gamma_{st}^{\star}) \geq \mathcal{P}(\gamma_{sv}\gamma_{vt})$, porque $\mathcal{P}(\gamma_{st}^{\star}) = \max\{\mathcal{P}(\gamma_{sv}^{\star}), \mathcal{P}(\gamma_{vt}^{\star})\} \geq \max\{\mathcal{P}(\gamma_{sv}), \mathcal{P}(\gamma_{vt})\} = \mathcal{P}(\gamma_{sv}\gamma_{vt})$. Mas, como γ_{st}^{\star} é ótimo, então $\mathcal{P}(\gamma_{st}^{\star}) \leq \mathcal{P}(\gamma_{sv}\gamma_{vt})$, e consequentemente, $\mathcal{P}(\gamma_{st}^{\star}) = \mathcal{P}(\gamma_{sv}\gamma_{vt})$.

3. Se γ_{st}^{\star} for um caminho com dois ou mais arcos que passa num vértice v (fixo), pelo menos um dos dois subcaminhos γ_{sv}^{\star} e γ_{vt}^{\star} que constituem γ_{st}^{\star} é ótimo, mas o outro pode ser ótimo ou não.

Resposta:

A afirmação é verdadeira. Se o caminho γ_{sv}^{\star} passa em v, podemos decompor γ_{st}^{\star} como $\gamma_{sv}^{\star}\gamma_{vt}^{\star}$, sendo γ_{sv}^{\star} e γ_{vt}^{\star} caminhos. Se estes subcaminhos fossem ambos não ótimos então, se os substituissemos por caminhos ótimos γ_{sv} e γ_{vt} , obteriamos um percurso $\gamma_{sv}\gamma_{vt}$ de s para t, tal que $\mathcal{P}(\gamma_{st}^{\star}) > \mathcal{P}(\gamma_{sv}\gamma_{vt})$, porque $\mathcal{P}(\gamma_{st}^{\star}) = \max\{\mathcal{P}(\gamma_{sv}^{\star}), \mathcal{P}(\gamma_{vt}^{\star})\} > \max\{\mathcal{P}(\gamma_{sv}), \mathcal{P}(\gamma_{vt})\} = \mathcal{P}(\gamma_{sv}\gamma_{vt})$. Assim, γ_{st}^{\star} não seria ótimo, contrariando o pressuposto de que era. Portanto, pelo menos um dos sub-caminhos γ_{sv}^{\star} e γ_{vt}^{\star} tem de ser ótimo se γ_{sv}^{\star} for ótimo.

É verdade que um dos dois sub-caminhos pode não ser ótimo. Por exemplo, na rede seguinte, CBOQ é um caminho ótimo de C para Q (porque $\mathcal{P}(CBOQ) = \mathcal{P}(COQ) = 13$), contém CBO como sub-caminho, e CBO não é um caminho ótimo de C para Q (porque $\mathcal{P}(CBO) = 8 > \mathcal{P}(CO) = 1$).

b) Escreva um algoritmo para determinar um caminho ótimo γ_{st}^{\star} de s para t, baseado numa adaptação do algoritmo de Dijkstra. Enuncie uma propriedade que justifique a correção desse algoritmo, relacionando-a com 1a).

```
Resposta:
 Dijkstra_Adaptado(s, G)
      Para cada v \in V fazer
           d[v] \leftarrow \infty;
                                                                                ESCREVECAMINHO(v, pai)
           pai[v] \leftarrow NIL;
                                                                                      Se pai[v] \neq NIL então
      d[s] \leftarrow 0;
                                                                                          ESCREVECAMINHO(pai[v], pai);
      Q \leftarrow \text{MK\_PQ\_HEAPMIN}(cap, V);
                                                                                      \operatorname{escrever}(v);
      \operatorname{Enquanto}(\operatorname{PQ-Not-Empty}(Q)) fazer
           v \leftarrow \text{EXTRACTMIN}(Q);
           Se (v = t \text{ ou } d[v] = \infty) então sai do ciclo;
           Para cada w \in Adjs[v] fazer
              Se d[w] > \max(d[v], p(v, w)) então
                  d[w] \leftarrow \max(d[v], p(v, w));
                  DECREASEKEY(Q, w, d[w]);
                  pai[w] \leftarrow v;
      Se d[t] < \infty então ESCREVECAMINHO(t, pai);
      senão escrever ("Não existe caminho");
```

Este algoritmo explora a existência de um caminho ótimo formado por subcaminhos ótimos se existir um percurso ótimo (duas primeiras afirmações $\mathbf{1a}$). Se $\delta(s,v)$ for o valor ótimo de \mathcal{P} para os caminhos ótimos de s para v, então, em cada passo, d[v] é um majorante de $\delta(s,v)$ e corresponde ao valor ótimo se o caminho só puder ter como vértices intermédios os que já sairam da fila. Quando v é extraído da fila, $d[v] = \delta(s,v)$ e o nó que antecede v no caminho ótimo encontrado é pai[v], e, para os restantes vértices y ainda na fila, $d[y] \geq \delta(s,y) \geq \delta(s,v)$.

c) Aplique o algoritmo que apresentou para obter um caminho ótimo γ_{CM}^* de C para M na rede desenhada abaixo. Acrescente informação à rede que permita verificar os passos principais (valores intermédios) e indique a ordem pela qual os nós foram explorados.

Resposta:

Na rede, em cada nó v, o par (d[v], Pai[v]) mais abaixo é o valor final e os restantes são os valores que foram sendo substituídos. A sequência de saída dos nós da fila foi: C, O, A, Q, G, I, E, M (uma possibilidade, que seria, de facto, a ordem de saída da heap se, na comparação dos nós, fosse tido em conta o valor de d e, em caso de empate, a ordem alfabética das suas designações).

O caminho ótimo encontrado é CAQGIEM e $\mathcal{P}(CAQGIEM) = 5$.

- **2.** Seja $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ um grafo dirigido. Pretende-se determinar, para cada vértice $v \in \mathcal{V}$, o conjunto dos vértices $w \in \mathcal{V}$ tais que v é acessível de w e w é acessível de v em \mathcal{G} .
- a) Apresente (em pseudocódigo) um algoritmo para resolver o problema com complexidade temporal $O(|\mathcal{V}| + |\mathcal{A}|)$, sendo \mathcal{G} representado por listas de adjacências. Explique sucintamente a correção do algoritmo e apresente a complexidade dos passos principais e as estruturas de dados usadas.

Resposta:

O conjunto pretendido para cada $v \in \mathcal{V}$ é a componente fortemente conexa a que v pertence. O algoritmo de Kosaraju, dado nas aulas, pode assim ser usado para resolver o problema com a complexidade pretendida.

```
DFS(G)
                                                                        S \leftarrow \text{MKEMPTYSTACK}(|G.V|);
ComprortementeConexas(\mathcal{G})
                                                                        Para cada v \in G.V fazer cor[v] \leftarrow \texttt{branco};
    \mid S \leftarrow \mathrm{DFS}(\mathcal{G});
     \mathcal{G}^T \leftarrow \text{GrafoTransposto}(\mathcal{G});
                                                                        Para cada v \in G.V fazer
                                                                            Se cor[v] = branco então DFS_V(v, G, S);
     Para v \in \mathcal{G}.V fazer cor[v] \leftarrow branco;
     Enquanto (NOTEMPTYSTACK(S)) fazer
                                                                        retornar S;
          v \leftarrow \text{POP}(S);
          Se cor[v] = branco então
                                                                   DFS_-V(v, G, S)
             escrever("Nova componente");
                                                                        cor[v] \leftarrow \texttt{preto};
              DFS_V_TRANSP(v, \mathcal{G}^T);
                                                                        Para cada w \in G.Adjs[v] fazer
                                                                            Se cor[w] = branco então DFS_V(w, G, S);
                                                                        PUSH(S, v);
DFS_V_TRANSP(v, G)
     cor[v] \leftarrow \texttt{preto};
    Para cada w \in G.Adjs[v] fazer
                                                                   GRAFOTRANSPOSTO(G)
         Se cor[w] = branco então
                                                                        Gt \leftarrow \text{CriaNovoGrafo}(|G.V|);
            DFS_V_TRANSP(w, G);
                                                                        Para cada v \in G.V fazer
    escrever(v);
                                                                            Para cada w \in G.Adjs[v] fazer
                                                                                Gt.Adjs[w] \leftarrow Gt.Adjs[w] \cup \{v\};
                                                                        retornar Gt;
```

Supõe-se que cor[.] é uma variável global e que S é passada por referência. Na chamada DFS_V_TRANSP (v, \mathcal{G}^T) são escritos os nós que formam a componente fortemente conexa de v (que é também a componente dos nós que a constituem). A correção do algoritmo resulta de o grafo definido pelas componentes fortemente conexas ser um DAG e de os grafos \mathcal{G} e \mathcal{G}^T terem as mesmas componentes conexas.

Cada um dos três passos 1, 2 e 4 tem complexidade $O(|\mathcal{V}| + |\mathcal{A}|)$ e o passo 3 tem complexidade $O(|\mathcal{V}|)$.

b) Por aplicação do algoritmo, determine esses conjuntos para o grafo dado em 1c), ignorando os valores nos arcos. Para estabelecer a relação com o algoritmo, na resposta deve indicar o contéudo das estruturas de dados em passos cruciais do mesmo.

Resposta:		
A: N, Q	A: C	
B: O	B: C	
C: A, B, O	C: N	
D: M	D: K	
E: I, M	E: M, I	
F: L, P	F: P, M	
G: I, N	G: Q, N	
H: J, O	H: O, J	
I: E, J	I: J, G, E	
J: H, I, K	J: I, H	
K: D	K: J	
L: P	L: N, F	
M: E, F	M: E, D	
N: C, G, L	N: G, A	
O: H, Q	O: H, C, B	
P: F	P: L, F	
Q: G	Q: O, A	

Deve resolver apenas uma das duas questões 3b) e 6. Se não resolver 3b), deverá ter em conta a informação que contém.

3. Suponha que v é um vetor de n inteiros e que os elementos de v são indexados de 1 a n. Considere a função Func(v, n) apresentada abaixo, ao centro, em pseudocódigo.

Linha	Algoritmo	Tempo
	$\mathbf{Func}(v,n)$:	
1	$k \leftarrow 1;$	a_1
2	Enquanto $(k < n)$ fazer	a_2
3	$r \leftarrow k;$	a_3
4	$j \leftarrow k+1;$	a_4
5	Enquanto $(j \leq n)$ fazer	a_2
6	Se $v[j] \le v[r]$ então	a_5
7	$r \leftarrow j;$	a_3
8	$j \leftarrow j+1;$	a_4
10	Se $r \neq k$ então	a_6
11	$aux \leftarrow v[k];$	a_7
12	$v[k] \leftarrow v[r];$	a_8
13	$v[r] \leftarrow aux;$	a_9
14	$k \leftarrow k+1;$	a_4

a) Justifique sucintamente, mas com rigor, que Func(v,n) ordena o vetor v por ordem crescente. Comece por descrever, com rigor, o estado das variáveis r, j e v na iteração k, imediatamente antes da execução da instrução que está na linha 10.

Resposta:

A função implementa ordenação por seleção (selection sort) do mínimo. Na iteração k, na linha 10, j=n+1, a variável r guarda o índice da posição da última ocorrência do mínimo de $v[k],\ldots,v[n]$, e, se k>1, o vetor v está ordenado por ordem crescente até à posição k-1 (inclusivé) e $v[i] \geq v[k-1]$ para todo i, com $k \leq i \leq n$.

Nas linhas 10-13, o elemento v[r] é trocado com v[k] se $r \neq k$, pelo que, este invariante é preservado no ciclo externo para o próximo valor de k. Assim, quando o ciclo termina, o vetor está ordenado, pois, na última iteração, também o último elemento ficou na posição correta.

- b) (alternativa a 6.) À direita, em cada linha, a_i é uma constante positiva e representa o tempo de execução da instrução que está nessa linha, com excepção das linhas 2, 5, 6 e 10, em que esse tempo engloba a execução do teste da condição e a transferência de controlo. Seja $t_v(n)$ o tempo de execução do algoritmo para a instância (v, n).
 - 1. Deduza a expressão de $t_v(n)$ quando: (i) todos os elementos de v são iguais, e (ii) todos são distintos e v está ordenado por ordem crescente.

Resposta:						
Linha	ha Algoritmo		Tempo (i)	Tempo (ii)		
	$\mathbf{Func}(v,n)$:					
1	$k \leftarrow 1;$	a_1	a_1	$\mid a_1 \mid$		
2	Enquanto $(k < n)$ fazer	a_2	a_2n	a_2n		
3	$r \leftarrow k;$	a_3	$a_3(n-1)$	$a_3(n-1)$		
4	$j \leftarrow k+1;$	a_4	$a_4(n-1)$	$a_4(n-1)$		
5	Enquanto $(j \leq n)$ fazer	a_2	$\sum_{k=1}^{n-1} a_2(n-k+1)$	$\sum_{k=1}^{n-1} a_2(n-k+1)$		
6	Se $v[j] \leq v[r]$ então	a_5	$\sum_{k=1}^{n-1} a_2(n-k+1)$ $\sum_{k=1}^{n-1} a_5(n-k)$ $\sum_{k=1}^{n-1} a_3(n-k)$ $\sum_{k=1}^{n-1} a_4(n-k)$	$\sum_{k=1}^{n-1} a_2(n-k+1)$ $\sum_{k=1}^{n-1} a_5(n-k)$		
7	$r \leftarrow j;$	a_3	$\sum_{k=1}^{n-1} a_3(n-k)$	0		
8	$j \leftarrow j + 1;$	a_4	$\sum_{k=1}^{n-1} a_4(n-k)$	$\sum_{k=1}^{n-1} a_4(n-k)$		
10	Se $r \neq k$ então	a_6	$a_6(n-1)$	$a_6(n-1)$		
11	$aux \leftarrow v[k];$	a_7	$a_7(n-1)$	0		
12	$v[k] \leftarrow v[r];$	a_8	$a_8(n-1)$	0		
13	$v[r] \leftarrow aux;$	a_9	$a_9(n-1)$	0		
14	$k \leftarrow k+1;$	a_4	$a_4(n-1)$	$a_4(n-1)$		

Resposta (cont.):

No caso (i), pior caso, $t_v(n) = a_1 + a_2 + (2a_2 + a_3 + 2a_4 + a_6 + a_7 + a_8 + a_9)(n-1) + (a_2 + a_5 + a_3 + a_4) \sum_{k=1}^{n-1} (n-k)$, ou seja,

$$t_v(n) = a_1 + a_2 + (2a_2 + a_3 + 2a_4 + a_6 + a_7 + a_8 + a_9)(n-1) + (a_2 + a_5 + a_3 + a_4) \frac{(n-1)n}{2}.$$

No caso (ii), melhor caso, $t_v(n) = a_1 + a_2 + (2a_2 + a_3 + 2a_4 + a_6)(n-1) + (a_2 + a_5 + a_4) \sum_{k=1}^{n-1} (n-k)$, ou seja,

$$t_v(n) = a_1 + a_2 + (2a_2 + a_3 + 2a_4 + a_6)(n-1) + (a_2 + a_5 + a_4)\frac{(n-1)n}{2}.$$

2. Apresente a definição formal de " $t_v(n) \in \Theta(n^2)$ " e, seguindo essa definição e a resposta à questão anterior, prove que, qualquer que seja (v, n), se tem $t_v(n) \in \Theta(n^2)$.

Resposta:

Diz-se que $t_v(n) \in \Theta(n^2)$ sse existirem constantes c_1 , c_2 e n_0 positivas tais que $c_1 n^2 \le t_v(n) \le c_2 n^2$, para todo $n > n_0$.

Os casos (i) e (ii) determinam a complexidade temporal do algoritmo no pior caso e no melhor caso. Assim, de (i) concluímos que, qualquer que seja a instância (v, n), se tem

$$t_{v}(n) \leq a_{1} + a_{2} + (2a_{2} + a_{3} + 2a_{4} + a_{6} + a_{7} + a_{8} + a_{9})(n - 1) + (a_{2} + a_{5} + a_{3} + a_{4})\frac{(n - 1)n}{2}$$

$$\leq a_{1} + a_{2} + (2a_{2} + a_{3} + 2a_{4} + a_{6} + a_{7} + a_{8} + a_{9})n + (a_{2} + a_{5} + a_{3} + a_{4})n^{2}$$

$$\leq (a_{1} + a_{2})n^{2} + (2a_{2} + a_{3} + 2a_{4} + a_{6} + a_{7} + a_{8} + a_{9})n^{2} + (a_{2} + a_{5} + a_{3} + a_{4})n^{2}$$

$$= (a_{1} + 4a_{2} + 2a_{3} + 3a_{4} + a_{5} + a_{6} + a_{7} + a_{8} + a_{9})n^{2}$$

pois $1 \le n \le n^2$, para todo $n \ge 1$. Tomamos assim $c_2 = a_1 + 4a_2 + 2a_3 + 3a_4 + a_5 + a_6 + a_7 + a_8 + a_9$. Por outro lado, de (ii) concluímos que

$$t_v(n) \geq a_1 + a_2 + (2a_2 + a_3 + 2a_4 + a_6)(n-1) + (a_2 + a_5 + a_4) \frac{(n-1)n}{2}$$

$$\geq (a_2 + a_5 + a_4) \frac{(n-1)n}{2} = \beta(n-1)n \geq c_1 n^2$$

para $\beta = (a_2 + a_5 + a_4)/2$, se $n \ge 1/(1 - c_1/\beta)$ e $c_1/\beta < 1$. Se definirmos $c_1 = \beta/2 = (a_2 + a_5 + a_4)/4$, então $t_v(n) \ge c_1 n^2$ para $n \ge 1/(1 - 1/2) = 2$, e podemos tomar $n_0 = 2$.

c) Sendo a complexidade do algoritmo dada pelo máximo de $t_v(n)$ para (v, n) qualquer, diga para que valores de $p \in \mathbb{N}$, a complexidade se pode caracterizar como $\Theta(n^p)$, $\Omega(n^p)$ ou $O(n^p)$. Explique.

Resposta:

Como $t_v(n) \in \Theta(n^2)$ qualquer que seja a instância (v, n), então, pela definição de $\Theta(n^p)$, $\Omega(n^p)$ e $O(n^p)$, podemos concluir que $T(n) = \max\{t_v(n) \mid v \text{ vetor de } n \text{ elementos}\} \in \Omega(n^p)$ para $p \in \{0, 1, 2\}$, e $T(n) \in O(n^p)$ para $p \in \mathbb{N} \setminus \{0, 1\}$, e $T(n) \in \Theta(n^p)$ apenas para p = 2.

d) Designe por Func_Nova(v, n) a função que se obtém quando se substitui, na linha 6, a condição $v[j] \le v[r]$ por v[j] < v[r]. O que contém r na iteração k na linha 10? Conclua que Func_Nova(v, n) também ordena v por ordem crescente e diga, justificando, que relação existe entre a complexidade temporal assintótica de Func_Nova(v, n) e de Func(v, n).

Resposta:

O valor de r é o índice da primeira ocorrência do mínimo de $v[k], \ldots, v[n]$, para o estado de v nessa iteração. Assim, a função também implementa ordenação por seleção do mínimo. Se o vetor v não tiver valores repetidos, a sequência de valores de r é igual nos dois casos.

As funções são equivalentes do ponto de vista da complexidade assintótica, sendo $T(n) \in \Theta(n^2)$ em ambas. Se o vetor estiver ordenado (caso (ii)) então as expressões de $t_v(n)$ seriam idênticas para os dois algoritmos. Por outro lado, o pior caso de Func_Nova(v,n) não obrigaria a realizar mais operações do que as que Func(v,n) realiza no caso (i).

- **4.** Considere o problema de formar uma certa quantia Q usando moedas de valores $v[1], v[2], \ldots, v[m]$, sendo $v[1] > v[2] > \ldots > v[m]$, tendo disponíveis c[i] moedas de valor v[i] em caixa, sendo $c[i] \in \mathbb{Z}_0^+$, para $1 \leq i \leq m$, só podendo usar essas moedas.
- a) Escreva uma recorrência que defina o número de alternativas para a formação da quantia Q nessas condições (só distinguindo quantas moedas de cada tipo são usadas). Explique de que modo se pode usar programação dinâmica com memoização para calcular esse número, dados Q, v, c e m.

Resposta:

Seja num(x, j) o número de alternativas para formação da quantia x quando se podem utilizar apenas as moedas de valores $v[j], \ldots, v[m]$ disponíveis. Então, o valor pretendido é num(Q, 1) e

```
\begin{array}{lll} num(x,j) & = & 1, \text{ se } x=0, \text{ para todo } j, \text{ com } 1 \leq j \leq m \\ num(x,m) & = & 1, \text{ se } x \neq 0, \, x/v[m] \leq c[m] \text{ e } x \text{ \'e m\'ultiplo de } v[m] \\ num(x,m) & = & 0, \text{ se } x \text{ \~n\~ao\'e m\'ultiplo de } v[m] \text{ ou } x/v[m] > c[m] \\ num(x,j) & = & \sum_{0 \leq k \leq \min\{c[j], \lfloor \frac{x}{v[j]} \rfloor\}} num(x-kv[j],j+1), \text{ se } 1 \leq j < m \text{ e } x \neq 0. \end{array}
```

Na chamada recursiva, tabelaria os valores num(x, j) para $x \neq 0$ que fosse calculando, e só calcularia um novo valor se ainda não estivesse na tabela.

b) Imagine que se pretende formar a quantia Q com o número **mínimo** de moedas possível e que se usa sempre a moeda mais alta que se puder (aplicando-se a mesma abordagem à quantia restante). Explique em que sentido tal estratégia é greedy e indique se é correta. Justifique.

Resposta:

A estratégia é greedy porque a opção tomada é apenas localmente ótima pois, "cega pela avidez", antes de tomar a decisão não verifica se é ou não possível formar a quantia restante com as moedas disponíveis.

Assim, como no problema "Não lhes dês troco", é óbvio que esta estratégia ávida não é correta. Suponhamos que m=6 e que as moedas eram de 2 euros, 1 euro, e de 50, 20, 10 e 5 cêntimos, mas, que só se tinha em caixa moedas de 50 e de 20 cêntimos, tendo pelo menos uma de 50 cêntimos e três de 20 cêntimos. Então, se se aplicasse a estratégia indicada, não se conseguiria perfazer 60 cêntimos, embora seja claro que se podia perfazer 60 cêntimos se se usasse três moedas 20 cêntimos (e outra estratégia).

5. Suponha que a rede representada em **1b**) é uma rede de fluxo, com s = C e t = M, e que p(x, y) indica a capacidade do arco (x, y), para cada $(x, y) \in \mathcal{A}$.

- a) Indique um fluxo f de C para M tal que f(G, I) = 2, f(H, J) = 5, f(C, B) = 6 e f(J, I) = 2.
- b) Determine a capacidade residual associada a f para cada par $(x,y) \in \mathcal{V} \times \mathcal{V}$, com $x \neq y$. Apresente os cálculos que efetuar, omitindo os casos em que f(x,y) = 0.
- c) Partindo de f, aplique o algoritmo de Edmonds-Karp para obter um fluxo máximo f^* . Descreva sucintamente os passos efetuados pelo algoritmo.
- **6.** (alternativa a 3b) Seja $G_A = (V, A)$ um grafo dirigido acíclico e $G_E = (V, E)$ o grafo não dirigido que

resulta de G_A por substituição de cada arco $(u, v) \in A$ por um ramo não dirigido $\{u, v\}$. Seja Γ um conjunto finito de caminhos em G_A , sendo cada caminho $\gamma \in \Gamma$ dado pela sequência de vértices que o define. Pretende-se verificar se é possível reconstruir G_A a partir de G_E e de Γ . Seja $G_{\Gamma} = (V, A_{\Gamma})$ o grafo dirigido formado por V e pelos arcos que constituem os caminhos de Γ .

- a) Sabemos que nada se pode concluir sobre a orientação de um ramo $\{u, v\}$ de E no grafo G_A se nem v for acessível de u em G_{Γ} nem u for acessível de v em G_{Γ} . Justifique agora que:
 - 1. O grafo G_{Γ} é acíclico (i.e., um DAG).
 - 2. Qualquer que seja o ramo $\{u, v\} \in E$, se v é acessível de u em G_{Γ} então $(u, v) \in A$ (se for u acessível de v então $(v, u) \in A$).
- b) Assuma que os vértices estão numerados de 1 a |V|, que |V| é conhecido, que Γ é lido da entrada padrão e que G_E se encontra dado por uma matriz de adjacências simétrica M tal que M[i,j] = M[j,i] = 1 se $\{i,j\} \in E$, e M[i,j] = M[j,i] = 0 se $\{i,j\} \notin E$.

Baseando-se em 6a), escreva um algoritmo para resolver o problema da reconstrução de G_A em tempo $O(|\Gamma||V|+|V|^3)$. O algoritmo deve produzir informação sobre a parte de G_A que se consegue reconstruir e sobre os ramos sobrantes, se existirem. Use matrizes de adjacências para representar os grafos G_T e G_A . Comece por apresentar as ideias principais do algoritmo que delineou e por justificar a sua correção e complexidade.

(FIM)