第六章(插值法)习题

1、设 x_j 为互异节点 $(j = 0, 1, \dots, n)$,求证

$$\bullet \sum_{j=0}^{n} x_j^k l_j(x) \equiv x^k, \ k = 0, 1, \cdots, n;$$

•
$$\sum_{j=0}^{n} (x_j - x)^k l_j(x) \equiv 0, \ k = 1, \dots, n.$$

其中 $l_j(x) = \frac{w_{n+1}(x)}{(x-x_j)w'_{n+1}(x_j)}$ 为 Lagrange 插值基函数, $w_{n+1}(x) = \prod_{j=0}^n (x-x_j)$ 。

2、设
$$f(x) = \frac{1}{a-x}$$
, 证明:

•
$$f[x_0, x_1, \dots, x_n] = \prod_{j=0}^n \left(\frac{1}{a - x_j}\right)$$
; (提示: 用归纳法)

•
$$\frac{1}{a-x} = \frac{1}{a-x_0} + \frac{x-x_0}{(a-x_0)(a-x_1)} + \dots + \frac{(x-x_0)\cdots(x-x_{n-1})}{(a-x_0)\cdots(a-x_n)} + \frac{(x-x_0)\cdots(x-x_n)}{(a-x_0)\cdots(a-x_n)(a-x)}$$
 (提示: 用Newton型插值公式).

3、设
$$f(x) = x^7 + x^4 + 3x + 1$$
, 求 $f[2^0, 2^1, \dots, 2^7]$ 及 $f[2^0, 2^1, \dots, 2^8]$.

4、求一个不高于 4 次的多项式
$$p(x)$$
, 满足 $p(0) = p'(0) = 0$, $p(1) = p'(1) = 1$, $p(2) = 1$.

5、设 $f(x) = \frac{1}{1+x^2}$,在 $-5 \le x \le 5$ 上取 n = 10,按等距节点求分段线性插值函数 $I_h(x)$,计算各节点间中点处的 $I_h(x)$ 与 f(x) 的值,并估计误差。

6、给出 $f(x) = \ln x$ 的数值表如下

\overline{x}	0.4	0.5	0.6	0.7	0.8
$\ln x$	-0.916291	-0.693147	-0.510826	-0.356675	-0.223144

分别用线性插值、二次插值及三次样条计算 ln 0.54 的近似值。