SUBJECT REDUCTION FOR PURE TYPE SYSTEMS

ZHAOSHEN ZHAI

Throughout, fix a countably infinite set V, whose element we call *variables*. For each of the following type systems, there will be a notion of 'types' and 'terms'. Once they are defined, we can speak of the following:

Definition. A context is a finite set $\Gamma := \{x_1 : \tau_1, \dots, x_n : \tau_n\}$ of pairs $(x_i : \tau_i)$, where each $x_i \in V$ and each τ_i is a 'type'. If $(x : \tau) \in \Gamma$, we write $\Gamma(x) = \tau$, and we let

$$\operatorname{dom}\Gamma\coloneqq\left\{x\in V:(x:\tau)\text{ for some }\tau\right\}\quad\text{ and }\quad\operatorname{im}\Gamma\coloneqq\left\{\tau\text{ type}:(x:\tau)\in\Gamma\text{ for some }x\right\}.$$

A judgement is a triple $\Gamma \vdash M : \tau$ consisting of a context Γ , a term M, and a type τ .

1. The Simply-typed λ -calculus

Definition 1.1. A simple type is a propositional formula in the language \rightarrow .

Definition 1.2. A λ -term is a string defined by the grammar $M := x \mid M M \mid (\lambda x M)$. We denote by Λ the set of λ -terms. The set of free variables of a λ -term M is defined inductively by

$$FV(x) \coloneqq \{x\}, \quad FV(\lambda x M) \coloneqq FV(M) \setminus \{x\}, \quad FV(MN) \coloneqq FV(M) \cup FV(N).$$

Definition 1.3. We say that a judgement $\Gamma \vdash M : \tau$ is *derivable in* λ_{\rightarrow} if there is a finite tree of judgements rooted at $\Gamma \vdash M : \tau$ whose leaves are instances of VAR and such that each parent is obtained from its children using either ABS or APP.

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma, x : \tau \vdash x : \tau} \text{ Var } \quad \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x \, M) : \sigma \to \tau} \text{ Abs } \quad \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash (M \, N) : \tau} \text{ App }$$

If $\Gamma \vdash M : \tau$ is derivable, we say that M has type τ in Γ .

Lemma 1.4 (Generation Lemma for λ_{\rightarrow}). Suppose that $\Gamma \vdash M : \tau.4$

- (1) If M = x, then $\Gamma(x) = \tau$.
- (2) If M = PQ, then $\Gamma \vdash P : \sigma \to \tau$ and $\Gamma \vdash Q : \sigma$ for some type σ .
- (3) If $M = \lambda x N$ and $x \notin \text{dom } \Gamma$, then $\tau = \tau_1 \to \tau_2$ and $\Gamma, x : \tau_1 \vdash N : \tau_2$.

Proof.

Lemma 1.5 (Change of Context). If $\Gamma \vdash M : \sigma$ and $\Gamma(x) = \Gamma'(x)$ for all $x \in FV(M)$, then $\Gamma' \vdash M : \sigma$.

Lemma 1.6 (Substitution Lemma for $\lambda \rightarrow$). If $\Gamma, x : \tau \vdash M : \sigma$ and $\Gamma \vdash N : \tau$, then $\Gamma \vdash M[N/x] : \sigma$.

Definition 1.7. A relation \succ on Λ is *compatible* if for any $M, N \in \Lambda$ with $M \succ N$, we have $MP \succ NP$ and $PM \succ PN$ for each $P \in \Lambda$, and $\lambda x M \succ \lambda x N$ for each $x \in V$.

The least compatible relation \to_{β} on Λ such that $(\lambda x M)N \to_{\beta} M[N/x]$ is called β -reduction.

Notation 1.8.

Theorem 1.9 (Subject Reduction for λ_{\rightarrow}). If $\Gamma \vdash M : \sigma$ and $M \twoheadrightarrow_{\beta} N$, then $\Gamma \vdash N : \sigma$.

Proof.

Date: April 2, 2025.

2. The polymorphic λ -calculus: System ${\bf F}$

Definition 2.1.

Lemma 2.2.

Theorem 2.3 (Subject Reduction for F).

3. Dependent Types: $\lambda \mathbf{P}$

Definition 3.1.

Lemma 3.2.

Theorem 3.3 (Subject Reduction for λP).

4. The λ -cube and beyond: Pure Type Systems

Definition 4.1.

Lemma 4.2.

Theorem 4.3 (Subject Reduction for Pure Type Systems).