Cálculo I

Derivadas de ordem Superior

Dada uma função f(x) e sua derivada f'(x). Se calcularmos a derivada de f'(x) e ela existir, podemos chamar de f''(x) ou derivada de segunda ordem. De modo análogo podemos repetir o processo pela terceira ou quarta vez e teremos as derivadas de terceira e quarta ordem.

E assim sucessivamente a derivada de ordem n, será representada por $f^{(n)}(x)$ para evitar o acúmulo de linhas.

Exemplo: Considere a função $f(x) = 4x^3 - 2x^2 + 6x - 4$ então:

$$f'(x) = 12x^2 - 4x + 6$$

$$f''(x) = 24x - 4$$

$$f'''(x) = 24$$

$$f^{(4)}(x)=0$$

1 . Obtenha a derivada terceira das funções:

a)
$$f(x) = 6x^3 - 4x^2 - 10$$

b)
$$f(x) = e^x$$

c)
$$f(x) = e^{-x}$$

d)
$$f(x) = \sin x$$

e)
$$f(x) = \ln x$$

f)
$$f(x) = \sin x + \cos x$$

g)
$$f(x) = e^x + e^{-x}$$

Definição: Se existe um ponto c no domínio de f(x) tal que f'(c)=0 esse ponto pode ser de máximo ou de mínimo.

A dúvida é, se f'(c)=0 como saber se esse é um ponto de máximo, de mínimo ou nenhum dos dois?

A segunda derivada indica se o ponto em questão é de máximo ou de mínimo

- Sendo c um ponto de máximo, f"(c)< 0
- Sendo c um ponto de mínimo, f"(c)> 0

Exemplo: Considere a função $f(x)=x^2 - 4x$

$$logo f'(x)=2x-4$$

 $2x-4=0 \rightarrow x=2$ então se x=2 é um candidato a ponto de máximo ou mínimo

 $f''(x)=2 \rightarrow logo 2 é ponto de mínimo$

Suponha que c0 é um ponto de máximo e c1 é um ponto de mínimo

Sendo c0 um ponto de máximo, nas vizinhanças de c0 a função é côncava pra baixo, logo f"(c)<0

De forma análoga, c1 um ponto de mínimo, nas vizinhanças de c1 a função é côncava pra cima, logo f"(c)>0.

Obs. Se o domínio for o intervalo [a,b], os pontos extremos do domínio, a e b, devem ser analisados a parte. O raciocínio vale para pontos internos do domínio.

Exemplo: Encontre, se houver, os pontos de máximo e mínimo da função:

$$f(x) = \frac{x^3}{3} - \frac{5x^2}{2} + 4x + 3$$

$$f'(x) = x^2 - 5x + 4$$
 fazendo $f'(x) = 0$

calculando a equação as raízes são x=1 ou x=4

$$f''(x)=2x-5$$
 $f''(1)=-3 < 0$ $x= 1$ é ponto de máximo $f''(x)=2x-5$ $f''(4)=3 > 0$ $x= 4$ é ponto de mínimo

1 Obtenha os pontos de máximo ou de mínimo (quando existirem) das funções abaixo:

a)
$$f(x) = x^2 - 4x + 5$$

d)
$$f(x) = -\frac{x^3}{3} + 4x + 6$$

b)
$$f(x) = 6x - x^2$$

e)
$$f(x) = x + \frac{1}{x}$$

c)
$$f(x) = \frac{x^3}{3} - \frac{7}{2}x^2 + 6x + 5$$

2. Dada a função receita $R(x) = -2x^2 + 10x$, obtenha o valor de x que a maximiza.

a)
$$f(x)=x^2 - 4x + 5$$

 $f'(x)= 2x-4 f'(x)=0 2x-4=0 x=2$

$$f''(x)=2$$
 $f''(x)>0$
Ponto de mínimo =2

b)
$$f(x)=6x-x^2$$

 $f'(x)=6-2x$ $f'(x)=0 \rightarrow 6-2x=0$ $x=3$
 $f''(x)=-2$ $f''(x)<0$
Ponto de máximo =3

c)
$$f(x)=x^3/3 -7x^2/2 +6x +5$$

 $f'(x)=x^2 -7x +6$
 $f'(x)=0 \rightarrow raizes 1 e 6$
 $f''(x)=2x-7 para x=1 f''(x)=2.1-7=-5 f''(x)<0$
 $para x=6 f''(x)=2.6-7=5 f''(x)>0$
Ponto de máximo =1 Ponto de mínimo =6

```
d) f(x)=-x^3/3 + 4x + 6

f'(x)=-x^2+4

f'(x)=-x^2+4 = 0 \ x^2=4 \rightarrow raizes - 2 e 2

f''(x)=-2x \ para \ x=-2 \ f''(x)=4 \ f''(x)>0

para \ x=2 \ f''(x)=-4 \ f''(x)<0

Ponto de máximo = 2 Ponto de mínimo = -2
```

e)
$$f(x)=x + 1/x$$

 $f'(x)=1-1/x^2$
 $f'(x)= 1-1/x^2 = 0$ $1/x^2=1 \rightarrow x^2=1$ raízes -1 e 1
 $f''(x)=2/x^3$ para $x=-1$ $f''(x)=-2$ $f''(x)<0$
para $x=1$ $f''(x)=2$ $f''(x)>0$
Ponto de máximo =-1 Ponto de mínimo =1