Problemes: Aritmètica IV. Existència i unicitat dels cossos finits.

- **IV.1.** Demostreu que si en un cos finit es dona que $\underbrace{1+\cdots+1}_m=0$, aleshores m ha de ser un múltiple de la característica.
- **IV.2.** Demostreu que si K, F són dos cossos tals que existeix $f:K\to F$ un morfisme d'anells, aleshores K, F tenen la mateixa característica.
- **IV.3.** (a) Demostreu que si K, F són cossos finits i K és subcòs de F, aleshores $|F| = |K|^m$ per algun enter positiu m.
 - (b) Demostreu que \mathbb{F}_{p^i} és subcòs de \mathbb{F}_{p^j} si i només si i divideix j.
- **IV.4.** Demostreu que si un cos finit F té p^m elements, aleshores la característica de F és p.
- **IV.5.** Demostreu que en un cos finit de p^m elements, tot element té una única arrel p-èssima.
- **IV.6.** Feu un gràfic del reticle de subcossos de $\mathbb{F}_{p^{16}}$, $\mathbb{F}_{p^{20}}$ i $\mathbb{F}_{p^{60}}$.
- IV.7. (a) Un cos de 16 elements, quina característica té? pot tenir un subcòs amb 8 elements? i un subcòs amb 4 elements?
 - (b) Proveu que un cos amb 125 elements té un únic subcòs diferent d'ell mateix.
- **IV.8.** Si K és un cos de característica 0, aleshores $\mathbb{Q} \hookrightarrow K$, i per tant és clar que K ha de ser infinit. Podeu donar un exemple d'un cos amb característica p primer i que sigui infinit?
- **IV.9.** Suposem que \mathbb{F}_q és el cos de cardinal q.
 - (a) Si β és un element primitiu de \mathbb{F}_q , quin és l'ordre de β^i ?
 - (b) Si $d \mid q-1$, quants elements d'ordre d hi ha a \mathbb{F}_q ? Feu una comprovaciuó amb sage.
- **IV.10.** Demostreu que en un cos K amb p^n elements hi ha exactament $\phi(p^n-1)$ elements primitius, on ϕ és la funció d'Euler.
- **IV.11.** Trobeu tots els elements primitius del cos $F=\mathbb{Z}_3[x]/(x^2+1)$ i expresseu-los com a potència de $\beta=\alpha+1.$
- **IV.12.** Demostreu que al cos $\mathbb{Z}_2[x]/(x^4+x^3+x^2+x+1)$ l'element $\alpha=[x]$ no és primitiu i que, en canvi, $\alpha+1$ sí que ho és.
- **IV.13.** Construïu una successió $\alpha_1,\alpha_2,\ldots,\alpha_k$ d'elements de \mathbb{F}_q^* tal que

$$\operatorname{ord}(\alpha_1) < \operatorname{ord}(\alpha_2) < \cdots < \operatorname{ord}(\alpha_k) = q - 1$$

- **IV.14.** Considerem el cos $K = \mathbb{Z}_2[x]/(x^4 + x + 1)$ i l'element $\alpha = [x]$.
 - (a) Construïu una taula d'equivalències.
 - (b) Useu el fet que α és un element primitiu de K i la taula d'equivalències per respondre les qüestions següents:
 - i. Trobeu les arrels quadrades de $\alpha + 1$ i de α^3 a K.

- ii. Trobeu les arrels cúbiques de $\alpha^3 + \alpha^2$ i de $\alpha^2 + 1$ a K.
- iii. Trobeu les arrels cinquenes de $\alpha^2 + \alpha + 1$ a K.
- **IV.15.** Sigui K un cos finit amb q elements i m un natural.
 - (a) Demostreu que tot element $a \in K$ té com a màxim m arrels m-èssimes a K.
 - (b) Demostreu que si m és coprimer amb q-1, aleshores els elements de K tenen una única arrel m-èssima a K.
 - (c) Demostreu que si m no és coprimer amb q-1, aleshores hi ha elements de K que no tenen arrel m-èssima.
 - (d) Demostreu que si m no és coprimer amb q-1 i un element de K té arrel m-èssima, aleshores té exactament $\operatorname{mcd}(m,q-1)$ arrels m-èssimes a K.

(Indicació: expresseu els elements de K com a potències d'un element primitiu.)

- **IV.16.** Demostreu que si p és primer, aleshores $x^2 \equiv -1 \mod p$ té solució si i només si p = 2 o si $p \equiv 1 \mod 4$.
- **IV.17.** Demostreu que, si $p \equiv 1 \mod 4$, llavors $(\frac{p-1}{2})!^2 \equiv -1 \mod p$.
- **IV.18.** (a) Sigui $k \ge 1$. Proveu que a \mathbb{Z}_p , o bé k, o bé -k, o bé -1 és un quadrat.
 - (b) Proveu que per a tot primer p el polinomi $x^4+1\in\mathbb{Z}_p[x]$ no és irreductible. (Indicació: Proveu que sempre té un factor de grau 2.)
- **IV.19.** Per quins primers p és $\mathbb{Z}_p[x]/(x^2+1)$ un cos? I $\mathbb{Z}_p[x]/(x^4+1)$?
- **IV.20.** Sigui $K=\mathbb{Z}_2[x]/(x^3+x+1)$ i $\alpha=[x]$. Calculeu el polinomi mínim de $\alpha+1$, és a dir, trobeu un polinomi irreductible mònic $f(x)\in\mathbb{Z}_2[x]$ tal que $f(\alpha+1)=0$.
- **IV.21.** (a) Construïu la taula d'equivalències del cos $\mathbb{Z}_2[x]/(x^4+x+1)$.
 - (b) Useu la taula anterior per calcular el polinomi irreductible sobre $\mathbb{Z}_2[x]$ de cada element del cos.
- **IV.22.** Considerem el cos $F = \mathbb{Z}_2[x]/(x^4 + x + 1)$ i diem $\alpha = [x]$. Trobeu el polinomi irreductible sobre \mathbb{Z}_2 dels elements $\alpha + 1$, $\alpha^3 + 1$, $\alpha^2 + \alpha$ de F.
- **IV.23.** Considerem el cos $K = \mathbb{Z}_2[x]/(x^4+x+1)$, com en un exercici anterior.
 - (a) Comproveu que tots els elements de K anul·len el polinomi $x^{16} x$.
 - (b) A partir de la taula d'equivalències, trobeu totes les arrels del polinomi $x^4 x$ a K i proveu que formen un subcòs de K amb 4 elements.
 - (c) Doneu un isomorfisme explícit del subcòs de quatre elements de l'apartat anterior al $\cos \mathbb{Z}_2[x](x^2+x+1)$
- **IV.24.** (a) Trobeu un element de $\mathbb{Z}_2[x](x^4+x+1)$ que sigui arrel del polinomi x^4+x^3+1 .
 - (b) Doneu un isomorfisme explícit de $\mathbb{Z}_2[x]/(x^4+x^3+1)$ a $\mathbb{Z}_2[x]/(x^4+x+1)$.
- **IV.25.** Descomponeu sobre \mathbb{Z}_2 el polinomi $x^{16} x$.
- **IV.26.** Demostreu que per a tot primer p el polinomi $(x^{p^2}-x)(x^{p^3}-x)$ és un divisor de $(x^{p^6}-x)(x^p-x)$ a $\mathbb{Z}_p[x]$. Demostreu que el quocient

$$\frac{(x^{p^6} - x)(x^p - x)}{(x^{p^2} - x)(x^{p^3} - x)}$$

és un polinomi sobre \mathbb{Z}_p que descompon en producte de polinomis irreductibles de grau 6.

- **IV.27.** Demostreu que si $f(x) \in \mathbb{Z}_p[x]$ és irreductible a $\mathbb{Z}_p[x]$, aleshores f(x) ha de dividir $x^{p^{\operatorname{grau}(f)}} x$.
- **IV.28.** Demostreu que si n>1 i p és un primer senar, aleshores el polinomi $x^{p^n}+x$ no té cap factor irreductible de grau n.