Sistemas Digitais

ET46B

Prof. Eduardo Vinicius Kuhn

kuhn@utfpr.edu.br Curso de Engenharia Eletrônica Universidade Tecnológica Federal do Paraná

Capítulo 5 Flip-Flops e dispositivos correlatos

- 5.1 *Latch* com portas NAND
- 5.2 Latch com portas NOR
- 5.5 Sinais de clock
- 5.6 FF SR
- 5.7 FF JK

5.8 FF D

5.9 *Latch* D (transparente)

- 5.10 Entradas assincronas
- 5.11 Temporização em FFs
 - 5.13 Aplicações com FFs
 - 5.17 Armazenamento e transferência

5.19 Divisão de freguência e

contagem

5.18 Transferência serial de dados

youtube.com/@eduardokuhn87

Tecnológica Federal do Paraná

Jniversidade

- Construir e analisar um *latch* com portas NOR ou NAND.
- Descrever o funcionamento de FFs (e.g., SR, JK, T e D).
- Conectar FFs D para formar registradores.
- Destacar diferenças entre carga e/ou transferência serial e paralela de dados.
- Apresentar características de sistemas síncronos e assíncronos.
- Construir circuitos divisores de frequência e contadores com FFs.
- Usar diagramas de transição de estado para descrever o funcionamento de contadores.
- Discuttin aspectosucentrais/solore actemportzação em 87Fs.

- Um toque no botão "chamar" acende a lâmpada; e
- Um toque no botão "cancelar" apaga a lâmpada.

Exemplo: Projete um sistema com a seguinte lógica de operação:

- Um toque no botão "chamar" acende a lâmpada vermelha; e
- Um toque no botão "cancelar" apaga a lâmpada.

O sistema tem memória, visto que a saída não depende somente das entradas atuais, mas também do que aconteceu no passado.

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Na prática, a maioria dos sistemas digitais é constituído de circuitos lógicos combinacionais e de elementos de memória.

- Circuito combinacional: a saída depende apenas de valores atuais das entradas.
- Circuito sequencial: a saída depende do que aconteceu ao longo do tempo di en do que constanem memória hn87

• Aplicando o conceito de realimentação, dá-se origem aos latches (assíncrono) e aos flip-flops (síncrono) (FFs).

Latch com portas NOR

Latch com portas NAND

Latch com portas NOR

- A topologia é similar exceto pelas saídas Q e \overline{Q} estarem em posições trocadas.
- A lógica de operação das entradas S (SET) e R (RESET) é invertida de uma topologia para outra.

- ullet S e R como entradas (repouso em nível BAN
- ullet Q e \overline{Q} como saídas; e
- Q_0 indica o estado prévio/anterior.

S	R	Q_0	Q	\overline{Q}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Caso S e R estejam em repouso (nível BAIXO):

					\$ 0
S	R	Q_0	Q	\overline{Q}	5 0
0	0	0	0	1	(ciul
0	0	1	1	0	1 Inch
0	1	0			R 0
0	1	1			s 0
1	0	0			Q
1	0	1		19	
1	1	0	ζ.	V	
1	1	1	0,		Q
		X			R 0 1

O estado atual Q da saída depende do estado prévio Q_0 . kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Caso R seja pulsada (nível ALTO):

					<u>s</u> 0
S	R	Q_0	Q	\overline{Q}	
0	0	0	0	1	incius
0	0	1	1	0	in I
0	1	0	0	1	R 1 0
0	1	1	0	1	480
1	0	0			S O Q
1	0	1		19	
1	1	0	ς.	V	
1	1	1,	0,		Q
		X	,		R 1 0

Quando $Q_0=1$, pode <u>momentaneamente</u> ocorrer Q=0 e $\overline{Q}=0$; todavia saídas logo se estabilização e \overline{Q}_0 a \overline{Q}_0 e \overline{Q}_0 \overline{Q}_0 \overline{Q}_0

Caso S seja pulsada (nível ALTO):

					<u>5 1</u>
S	R	Q_0	Q	\overline{Q}	
0	0	0	0	1	lincius
0	0	1	1	0	
0	1	0	0	1	R 0
0	1	1	0	1	s 1
1	0	0	1	0	Q Q
1	0	1	1	0	
1	1	0	ς.		
1	1	1	0,		Q
		V			R 0 1

Quando $\overline{Q_0}=1$, pode <u>momentaneamente</u> ocorrer Q=0 e $\overline{Q}=0$; todavia tas seídas logo se estabilização emeQuardos $\overline{Q_0}$ no 0.

Caso S e R sejam pulsadas (nível ALTO):

					S 1 Q *0*
\overline{S}	R	Q_0	Q	\overline{Q}	6 1 /
0	0	0	0	1	q incins
0	0	1	1	0	linie -
0	1	0	0	1	R 1 Q
0	1	1	0	1	s 1
1	0	0	1	0	S 1
1	0	1	1	0	
1	1	0	*	*	
1	1	1	*	*	Q
		V			R 1 *0*

Não é possível determinar exatamente a saída; na prática, o estado resultante da saída dependerá de qual rentrada retidina ou pri/reiro ao destado de repouso.

		5		
١,	\overline{S}	R	Q	
	0	0	Q_0	(mantém)
	0	1	0	(reset)
	1	0	1	(set)
	1	1	*	(inválida)

- S e R estão em repouso em nível BAIXO; e
- \bullet S ou R é pulsada em nível ALTO para alterar Q e $\overline{Q}.$

Exemplo: Determine o comportamento da saída Q frente as entradas SET e RESET aplicadas em um latch com portas NOR.

Exemplo: Determine o comportamento da saída Q frente as entradas SET e RESET aplicadas em um latch com portas NOR.

R:

Quantos bits um *latch* é capaz armazenar?

1 bit (unidade elementar de memória)

Quantos bits um *latch* é capaz armazenar?

- ullet S e R como entradas (repouso em nível ullet
- ullet Q e \overline{Q} como saídas; e
- Q_0 indica o estado prévio/anterior.

S	R	Q_0	Q	\overline{Q}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Caso S e R sejam pulsadas (nível BAIXO):

Não é possível determinar exatamente a saída; na prática, o estado resultante da saída dependerá de qual entrada retornou primeiro ao estado de repouso.

					5 0 Q
S	R	Q_0	Q	\overline{Q}	5
0	0	0	*	*	
0	0	1	*	*	incius
0	1	0	1	0	$\frac{\overline{Q}}{0}$
0	1	1	1	0	s 0
1	0	0			Jardo so
1	0	1		19	
1	1	0	ς.	~	
1	1	1	0,		R 1 0
		X			R 1 0

Quando $Q_0=0$, pode <u>momentaneamente</u> ocorrer Q=1 e $\overline{Q}=1$; todavia tas saídas logo se estabilização e e Q_0 and Q_0 e.

Caso R seja pulsada (nível BAIXO):

						<u>s 1</u>
	S	R	Q_0	Q	\overline{Q}	9
_	0	0	0	*	*	
	0	0	1	*	*	Q IIIICIUS Q
	0	1	0	1	0	$\frac{\bar{Q}}{1}$
	0	1	1	1	0	190
	1	0	0	0	1	S 1 Q
	1	0	1	0	1	
	1	1	0	ς.	V	
	1	1	1,	0,		\bar{Q}
_			Y			R 0 1

Quando $\overline{Q_0}=0$, pode <u>momentaneamente</u> ocorrer Q=1 e $\overline{Q}=1$; \overline{Q} Caso S e R estejam em repouso (nível ALTO):

					<u>5 1</u> Q
\overline{S}	R	Q_0	Q	\overline{Q}	9 1
0	0	0	*	*	
0	0	1	*	*	
0	1	0	1	0	$\frac{\overline{Q}}{1}$
0	1	1	1	0	190
1	0	0	0	1	5 1 Q
1	0	1	0 <	1	0 1
1	1	0	0	1	
1	1	1	01	0	1 0
		V			R 1 0

O estado atual Q da saída depende do estado prévio Q_0 . kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

		5		
1.	\overline{S}	R	Q	
	0	0	*	(inválida)
	0	1	1	(set)
	1	0	0	(reset)
	1	1	Q_0	(mantém)

- ullet S e R estão em repouso em nível ALTO; e
- $\bullet \ S$ ou R é pulsada em nível BAIXO para alterar Q e $\overline{Q}.$

"Setando" o latch:

"Resetando" o latch:

Universidade Tecnológica Federal do Paraná

youtube.com/@eduardokuhn87 kuhn@utfpr.edu.br

Exemplo: Considerando $Q_0 = 0$, determine a forma de onda na saída Q para as formas de onda aplicadas nas entradas do *latch* SR.

O uso de SET e RESET indica ativação em nível BAIXO.

Exemplo: Considerando $Q_0 = 0$, determine a forma de onda na saída Q para as formas de onda aplicadas nas entradas do *latch* SR.

R:

O uso de SET e RESET indica ativação em nível BAIXO.

- a) Qual é o estado de repouso das entradas \overline{S} e \overline{R} ? E, qual é o estado ativo?
- b) Quais serão os estados de Q e \overline{Q} após RESET?
- c) A afirmação "a entrada S nunca pode ser usada para gerar Q=0" é verdadeira ou falsa?
- d) O que poderia ser feito para garantir que um latch SR com portas NAND sempre comece no estado em que Q=1?

Exemplo: Com respeito ao funcionamento do *latch* SR, responda:

- a) Qual é o estado de repouso das entradas \overline{S} e \overline{R} ? E, qual é o estado ativo?
 - R: ALTO; BAIXO.
- b) Quais serão os estados de Q e \overline{Q} após RESET?
 - R: Q = 0 e $\overline{Q} = 1$.
- c) A afirmação "a entrada S nunca pode ser usada para gerar Q=0" é verdadeira ou falsa?
 - R: Verdadeira.
- d) O que poderia ser feito para garantir que um latch SR com portas NAND sempre comece no estado em que Q=1?
 - R: Aplicar um nível BAIXO momentaneamente em \overline{S} .

O que ocorre se as entradas S ou R de um latch exibirem oscilações momentâneas?

O que ocorre se as entradas S ou R de um latch exibirem oscilações momentâneas? As saídas Q e \overline{Q} podem sofrer alterações indesejadas...

7				
))	EN	S	R	Q
	0	*	*	Q_0
	1	0	1	0
	1	1	0	1
	1	1	1	*!*

Representação compacta:

Universidade Tecnológica Federal do Paraná

Exemplo: Considerando que a operação agora envolve a entrada EN, determine a saída Q assumindo $Q_0=1.$

Exemplo: Considerando que a operação agora envolve a entrada EN, determine a saída Q assumindo $Q_0=1$.

E, como resolver o problema da condição inválida (S=R=1) em um latch SR?

Latch D sensível ao nível (ou latch transparente)

O latch D é construído conectando as entradas S e R por uma porta inversora.

\overline{EN}	D	Q
0	*	Q_0
1	0	0
1	1	1
	1	1

Representação compacta:

Universidade Tecnológica Federal do Paraná

\overline{EN}	D	Q
0	*	Q_0
1	D	D

kuhn@utfpr.edu.br

youtube.com/@eduardokuhn87

Latch D sensivel ao nivel (ou latch transparente)

Exemplo: Determine a forma de onda da saída Q para um latch D sensível ao nível para as formas de onda EN e D, com $Q_0=0$.

Universidade Tecnológica Federal do Paraná

Latch D sensível ao nível (ou latch transparente)

Exemplo: Determine a forma de onda da saída Q para um latch D sensível ao nível para as formas de onda EN e D, com $Q_0 = 0$.

R:

Paraná

Universidade Tecnológica Federal do

O termo "latch transparente" está relacionado ao fato de que Q=D quando

EN=1, i.e., a saída reproduz a entrada para EN=1. kuhn@utfpr.edu.br youtube.com/@eduardokuhn87

O que ocorre se D oscilar enquanto EN=1?

O que ocorre se D oscilar enquanto EN=1?
O valor armazenado Q pode ser diferente;
idealmente, o pulso EN deve ser feito tão
estreito quanto possível.

Considerações sobre sinais de *clock*

- Em sistemas assíncronos:
 - as saídas podem mudar de estado a qualquer momento; e
 - por isso, o projeto e a análise de defeitos tornam-se complexas.

- Em sistemas síncronos:
 - um sinal de clock e distribuído por todo o sistema;
 - as saída podem mudar de estado apenas quando ocorrem transições de clock; e
 - dessa forma, o projeto e a análise de defeitos tornam-se mais fáceis já que os eventos são sincronizados.

Tecnológica Federal do

Jniversidade

- Funções do *clock* em um circuito digital:
 - Coordenar as operações/ações do circuito.
 - Permitir sequenciamento de operações.
 - Criar, em conjunto com latches e flip-flops, barreiras de tempo.
- Usualmente, um oscilador é usado para gerar um sinal de clock; de forma simplificada, o oscilador pode ser representado por

• Na prática, osciladores de quartzo são utilizados:

Considerações sobre sinais de clock

Universidade Tecnológica Federal do

As transições podem ocorrer quando o pulso muda

- de 0 para 1 ⇒ transição positiva (borda de subida);
- de 1 para 0 \$\infty\$transição negativa (borda de descida).

O tempo para completar um ciclo é chamado de período T; e, a velocidade de operação do sistema depende da frequência com que ocorrem os ciclos de clock.

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Paraná

Universidade Tecnológica Federal do

Transição positiva

Transição negativa

- Essa abordagem tira proveito do atraso de propagação dos elementos envolvidos...
- Quando $CLK^* = 1$, atualiza-se Q baseado em S e R.

Universidade Tecnológica Federal do Paraná

- A sincronização dos eventos é obtida usando flip-flops "com clock", que mudam de estado apenas em transições do clock.
- O detector de borda produz um pulso estreito e positivo no instante da transição ativa do pulso em CLK.
- O objetivo é criar melhores barreiras temporais, em comparação ao latch sensível ao nível.

- As entradas S e R controlam o estado do FF.
- Têm efeito apenas na borda de subida do clock.
- Quando S=R=1, tem-se uma condição ambígua.
- A saída Q muda apenas nas bordas de subida do CLK.

Universidade Tecnológica Federal do Paraná

- \bullet Observe o pequero circulo na entrada CLK indicando disparo na borda de descida.
- Tanto os FFs disparados por borda de subida quanto os por borda de descida são usados em sistemas digitais.

kuhn@utfpr.edu.br youtube.com/@eduardokuhn87

- Note a diferença, em relação ao FF SR, quando J=K=1.
- Nessa condição, Q muda para o estado oposto.
- Modondeucomutação (toggle mode) eduardokuhn87

Sobre o funcionamento de FFs

Jniversidade Tecnológica Federal do Paraná

Exemplo: Com respeito ao funcionamento de FFs, responda:

a) Quais são os dois tipos de entradas de um FF?

b) Qual é o significado do termo disparado por borda?

c) Em um FF JK, o que ocorre quando J=K=1?

d) Quais condições para J e K fazem Q=1 na transição ativa de CLK?

Sobre o funcionamento de FFs

Tecnológica Federal do Paraná

Jniversidade

Exemplo: Com respeito ao funcionamento de FFs, responda:

- a) Quais são os dois tipos de entradas de um FF? R: Entradas de controle e de *clock*.
- b) Qual é o significado do termo disparado por borda? R: A saída muda quando ocorrer uma transição de clock.
- c) Em um FF JK, o que ocorre quando J=K=1? **R**: A saída Q comuta para o estado oposto, i.e., $Q = \overline{Q_0}$.
- d) Quais condições para J e K fazem Q=1 na transição ativa de CLK?

R:
$$J = 1$$
 e $K = 0$.

- Ao contrário dos FFs SR e JK, o FF D tem apenas uma entrada de controle D (dado).
- Um FF D pode ser construído conectando as entradas de um FF JK através de uma inversora.
- mesmoprocedimento pode ser usado para converter um FF SR em um FF D.

ullet No FF D, Q assumirá o mesmo estado lógico presente em Dquando ocorrer uma borda de subida em CLK.

Jniversidade Tecnológica Federal do

Entradas síncronas versus assíncronas

Entradas síncronas:

- Entradas de controle (e.g., $S \in R$, $J \in K$, T ou D).
- Efeito na saída sincronizado com a entrada CLK.
- Disparo na borda de subida/deseda do sinal de clock.

Entradas assíncronas:

- Entradas que operam independentemente do clock.
- Geralmente, PRESET e CLEAR.
- Sobrepõem as outras entradas e podem fixar o estado de saída do FF.

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Entradas assíncronas têm efeito na saída independente do CLK, i.e.,

		J	K	CLK	PRE	CLR
	1	0	0	↑	1,0	1
	J PRE Q	0	1	↑	1	1
)		1	0	\uparrow	1	1
	—>clk	1	1		1	1
	— κ Q Q	*	*	O *	1	0
		*	*	*	0	1
		(*	*	*	0	0

\overline{J}	K	CLK	PRE	CLR	Q	
0	0	↑	1,0	1	Q_0	(mantém)
0	1	†	1	1	0	(reset)
1	0	1	1	1	1	(set)
1	1	1	1	1	$\overline{Q_0}$	(comuta)
*	*	*	1	0	0	(CLEAR)
*	*	*	0	1	1	(PRESET)
*	*	*	0	0	*	(inválido)

Note que PRE e CLR são ativadas em nível BAIXO.

Paraná

Universidade Tecnológica Federal do

Exemplo: Determine a forma de onda Q levando em conta todas as entradas do FF JK.

Exemplo: Determine a forma de onda Q levando em conta todas as entradas do FF JK.

R:

Jniversidade Tecnológica Federal do Paraná

a) Qual é a diferença entre a operação de uma entrada síncrona e a de uma entrada assíncrona?

b) Um FF D pode responder à entrada D se PRE = 1?

Relacione as condições necessárias para que um FF JK com entradas assíncronas ativas em nível BAIXO comute para o estado oposto.

Universidade Tecnológica Federal do Paraná

a) Qual é a diferença entre a operação de uma entrada síncrona e a de uma entrada assíncrona?

R: Entradas assíncronas operam independentemente do CLK.

- b) Um FF D pode responder à entrada D se PRE = 1? R: Sim, visto que PRE é ativo em nível BAIXO.
- Relacione as condições necessárias para que um FF JK com entradas assíncronas ativas em nível BAIXO comute para o estado oposto.

R: J = K = 1 e PRE = CLR = 1.

A temporização em FFs é importante

sobretudo em situações que as entradas de

controle mudam de estado "quase" ao

mesmo tempo que CLK.

Paraná

Universidade Tecnológica Federal do

- ullet Tempo de $\mathit{setup}\ t_{\mathrm{S}}$: de 5 a 50 ns.
- Tempo de hold $t_{\rm H}$: de 0 a 10 ns.
- Importância: Garantir operação confiável do FF.

Aplicações envolvendo FFs

Tecnológica Federal do

Jniversidade

- Detecção de sequências binárias: Em muitas situações, uma saída é ativada apenas quando as entradas são ativadas em uma determinada sequência (pré-definida).
- Armazenamento de dados: Grupos de FFs formam os denominados registradores usados no armazenamento de dados.
- Transferência de dados: FFs são utilizados na transferência serial/paralela de dados.
- Divisão de frequência e contagem: Muitas aplicações requerem um divisor de frequência (e.g., relógio, μC) ou um contador (e.g., usando FF T)

Armazenamento de dados usando FF D

Tecnológica Federal do

Jniversidade

- As saídas X, Y e Z servem como entradas de FFs D.
- Os valores X, Y e Z são armazenados (simultaneamente)
 em Q₁, Q₂ e Q₃, respectivamente, quando ocorre o pulso de TRANSFERÊNCIA.

Transferência de dados paralela versus serial

- Paralela: A transferência do conteúdo de um registrador para outro é síncrona, i.e., todos os bits são transferidos simultaneamente em um único pulso de clock.
- Serial: O conteúdo de um registrador e transferido para outro, um bit por vez a cada pulso de clock (registrador de deslocamento).

Transferência de dados paralela versus serial

- Transferência paralela requer mais conexões entre o registrador transmissor e o receptor do que a transferência serial.
- Pode ser problemático conforme o número de bits aumenta (linhas); sobretudo, quando os registradores estão distantes.
- Depende da aplicação; geralmente, ambas são usadas. kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Divisão de frequência e contagem

Paraná

Universidade Tecnológica Federal do

Módulo do contador: Se N FFs são interligados, o contador resultante tem 2^N estados possíveis; logo, módulo 2^N .

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Diagrama de transição de estados

Aplicações envolvendo FFs

Jniversidade Tecnológica Federal do Paraná

Exemplo: Com respeito às aplicações, responda:

- a) A afirmação "a transferência paralela é mais rápida do que a serial" é verdadeira ou falsa?
- b) Qual é a maior vantagem da transferência serial?
- c) Um sinal de clock de 20 kHz é aplicado em um FF JK com J=K=1. Qual é a frequência da forma de onda de saída?
- d) Quantos FFs são necessários para construir um contador de 0_{10} a 255_{10} ?

Aplicações envolvendo FFs

Exemplo: Com respeito às aplicações, responda:

a) A afirmação "a transferência paralela é mais rápida do que a serial" é verdadeira ou falsa?

R: Verdadeira.

- b) Qual é a maior vantagem da transferência serial? R: Menor número de linhas entre registradores.
- c) Um sinal de clock de 20 kHz é aplicado em um FF JK com J=K=1. Qual é a frequência da forma de onda de saída? R: 10 kHz
- d) Quantos FFs são necessários para construir um contador de 0_{10} a 255_{10} ?

R: 8 FFs

Universidade Tecnológica Federal do

Sugestão de leitura: Seções 5.22-5.24, as quais tratam de circuitos geradores de clock.

Universidade Tecnológica Federal do

- Latches e FFs têm característica de memória (1 bit), i.e., mantêm o estado até que ocorra ação contrária.
- Os diferentes tipos de *latches* (e.g., SR e D) e FFs (e.g., SR, JK, T e D) exibem características de operação distintas.
- O latch é assíncrono e o FF é síncrono; por sua vez, multivibrador biestável é a terminologia técnica para um FF.
 - Latch: Utiliza entrada de habilitação (EN); logo, sensível ao nível.
 - FF: Utiliza um detector de borda; logo, sensível à borda de subida/descida (transição do clock).

Tecnológica Federal do

Universidade

- Um FF vai para um novo estado em resposta a um pulso de clock e de acordo com as entradas de controle.
- FFs possuem entradas assíncronas que podem "SETAR" ou "LIMPAR" o estado, independentemente do clock.
- Aplicações incluem armazenamento e transferência de dados, deslocamento de dados, contagem e divisão de frequência.
 - Registradores são construídos agrupando/agregando latches ou FFs D

Paraná

Federal do

Tecnológica

Universidade

Jniversidade Tecnológica Federal do Paraná

Exercícios sugeridos:

Considerações finais

5.3, 5.8, 5.9, 5.11-5.16, 5.18, 5.20, 5.21, 5.26, 5.27, 5.30.

de R.J. Tocci, N.S. Widmer, G.L. Moss, Sistemas digitais: princípios e aplicações, 12a ed., São Paulo: Pearson, 2019. → (Capítulo 5)

Para a próxima aula:

R.J. Tocci, N.S. Widmer, G.L. Moss, Sistemas digitais: princípios e aplicações, 12a ed Capítulo São Paulo: Pearson, 2019. → (Capítulo 6)

Até a próxima aula... =)