# **Fault Modeling**

- Introduction
- Fault Models
  - Stuck-at fault (1961)
  - Bridging fault (1973)
  - Delay fault (1974)
  - Transistor level fault
- Fault Detection
- Fault Coverage
- Conclusion



#### Classification of Fault Models



# Bridging Faults (BF) [Williams 73][Friedman 74]

Definition:

 Two (or more) distinct logic signals unintended shorted together and create wired logic







**CMP= Chemical Mechanical Polishing Picture source: Mentor graphics** 

- Q: How many two-way BF in a circuit of n signals?
  - Arbitrary choose two signals:  $C_2^n = O(n^2)$ . too many!
  - Need to identify pairs of neighbor signals from layout
    - \* Fault extraction

Number of Bridging Faults is  $O(n^2)$ 

### **Bridging Fault Models**

- Popular models for CMOS
  - Wired-OR (1-dominant)
  - Wired-AND (0-dominant)
  - A-dominant

|     | Wired-OR          | Wired-AND  | a-dominant     |
|-----|-------------------|------------|----------------|
| a b | a+ b+             | a+ b+      | a+ b+          |
| 0 0 | 0 0               | 0 0        | 0 0            |
| 0 1 | <u>1</u> 1        | 0 0        | 0 0            |
| 1 0 | 1 <b>1</b>        | <b>0</b> 0 | 1 <del>1</del> |
| 11  | $1 \ \frac{1}{1}$ | 1 1        | 1 1            |



Wired Logic Is Imaginary, not Real

#### Different Models Need Different Patterns

- Consider (A, B) bridging fault
  - Wired-AND, Wired-OR detected by 011, or 010
  - A-dominant model detected only by 010



| Inputs<br>ABC | Fault-free<br>Output | Wired-<br>OR | Wired-<br>AND | A-<br>dominant |
|---------------|----------------------|--------------|---------------|----------------|
| 000           | 0                    | 0            | 0             | 0              |
| 0 0 1         | 1                    | 1            | 1             | 1              |
| 010           | 1                    | <u>0</u>     | <u>0</u>      | <u>o</u>       |
| 0 1 1         | 1                    | <u>0</u>     | <u>0</u>      | 1              |
| 100           | 0                    | 0            | 0             | 0              |
| 101           | 0                    | 0            | 0             | 0              |
| 110           | 0                    | 0            | 0             | 0              |
| 111           | 0                    | 0            | 0             | 0              |

### Quiz

Q1: Fill in table with (B,C) bridging fault.

Q2: Which test pattern detects wired-OR fault?



| Inputs | Fault-free | Wired- | Wired- | B-       |
|--------|------------|--------|--------|----------|
| ABC    | Output     | OR     | AND    | dominant |
| 000    | 0          | 0      | 0      | 0        |
| 0 0 1  | 1 1        |        |        |          |
| 010    | 1 1        |        |        |          |
| 0 1 1  | 1 1        |        |        |          |
| 100    | 0          |        |        |          |
| 101    | 0          |        |        |          |
| 110    | 0          |        |        |          |
| 111    | 0          |        |        |          |

### **SSF Test Sets Not Good Enough**

- How effective is SSF test sets for bridging faults? [Millman 88]
  - 74LS181 ALU, 100% fault coverage SSF test sets
    - Total 7,981 testable bridging faults

| Test set          | Bry2 | Bry6 | Goel | Hugh | Krish | McC4 | Micz2 |
|-------------------|------|------|------|------|-------|------|-------|
| Test<br>Length    | 14   | 12   | 35   | 135  | 12    | 124  | 17    |
| # of<br>missed BF | 111  | 138  | 15   | 2    | 171   | 13   | 85    |
| missed<br>BF %    | 1.39 | 1.73 | 0.19 | 0.03 | 2.14  | 0.16 | 1.07  |

#### Some BF not Detected by SSF Test Sets

# Feedback Bridging Faults

- Type1: creates memory
  - Detected by test sequence 01→00

| Inputs<br>x y | Fault-free<br>Output | Faulty<br>Output |
|---------------|----------------------|------------------|
| 0 0           | 0                    | unchanged        |
| 0 1           | 1                    | 1                |
| 10            | 1                    | 1                |
| 11            | 1                    | 1                |



- "hard" detected by 10, or 11
- "potentially" detected by 00

| Inputs<br>x y | Fault-free<br>Output | Faulty<br>Output |
|---------------|----------------------|------------------|
| 0 0           | 1                    | oscillation      |
| 0 1           | 0                    | 0                |
| 10            | 0                    | 1                |
| 11            | 0                    | <u> 1</u>        |





#### Quiz

Q1: Fill in table with a Wired-AND feedback BF (x, z)

A:

| Inputs<br>x y | Fault-free<br>Output | Faulty<br>Output |
|---------------|----------------------|------------------|
| 0 0           | 0                    |                  |
| 0 1           | 1                    |                  |
| 1 0           | 1                    |                  |
| 11            | 1                    |                  |



Q2: Find a test to detect this feedback BF

A:

# What are NOT Bridging Fault?

- **1** BF does NOT consider shorts to power and ground
- ② BF does NOT consider defect resistance value
- 3 BF does NOT consider Intra-cell (intra-gate) defects

[Mentor graphics]

BF is gate-level, NOT transistor-level fault model



BF does NOT distinguish between fanout stem and branches

- ⑤ BF is NOT transient fault
  - (4, 5 see next slides)

#### **Fanout Stem and Branches**

- SSF on fanout stem and branches are different (see 3.2)
- BF on fanout stem and branches are the same
- Example: wired-AND model
  - (A,E) = (A,L) = (A,F)
  - Why? FFT



| •     | Fault-free | BF       | BF    | BF    |
|-------|------------|----------|-------|-------|
| ABC   | Output     | (A,E)    | (A,L) | (A,F) |
| 000   | 0          | 0        | 0     | 0     |
| 0 0 1 | 1          | 0        | 0     | 0     |
| 010   | 1          | <u>0</u> | 0     | 0     |
| 011   | 1          | 0        | 0     | 0     |
| 100   | 0          | 0        | 0     | 0     |
| 101   | 0          | 0        | 0     | 0     |
| 110   | 0          | 0        | 0     | 0     |
| 111   | 0          | 0        | 0     | 0     |

**BF on Stem and Branches Are Same** 

#### Permanent Faults vs. Transient Faults

- Permanent faults: faults always present
  - caused by defects
  - e.g. bridging faults caused by particle defects
- Transient faults: faults not always present
  - induced by environmental (EMI) or internal (IR drop...) disturbance
  - e.g. crosstalk faults caused by coupling effect



# **Summary**

- Bridging fault models for CMOS
  - Wired-OR, wired-AND, A-dominant
- Number of bridging faults is O(n²). too many!
  - Needs fault extraction from layout
- SSF test set may not good enough to detect all BF
  - Feedback BF may cause memory or oscillation
- BF model does NOT distinguish fanout stem and branches
- BF is permanent fault; crosstalk fault is transient fault



#### FFT

BF does NOT distinguish fanout stem and branches

$$\bullet \quad (A,E) = (A,L) = (A,F)$$

- FFT: BF is unlike SSF, why?
  - $E SA1 \neq F SA1 \neq L SA1$  (see 3.2)



