Deep reinforcement learning

Qiang Ji

Introduction Machine Learning So far, we have shown deep learning application to: supervised learning (CNN and LSTM) and unsupervised learning (GANs) We now discuss deep learning application to reinforcement learning.

Outlines

- Introduction
- Markov Decision Process (MDP)
- Partial Observed Markov Decision Process (POMDP)
- Deep Reinforcement Learning as MDP
 - Value-Based Deep RL: Q-function method
 - Policy-Based Deep RL :Policy gradient method
- Application of deep reinforcement learning

Reinforcement Learning Learning to control a system so as to

Learning to control a system so as to maximize some numerical value which represents a long-term objective.

- There is no supervisor, only a reward signal
- · Directly interacts with the world
- Agent's actions affect the state of the world
- Feedback is delayed, not instantaneous
- Time really matters -sequential, non i.i.d
 data
- Learning via implicit or weak supervision.
 Most human learning is weak and implicit
- Autonomous learning or lifelong learning

=> MDP framework

Slides from David Silver, Google DeepMind

Markov Decision Process (MDP)

MDP consists of a five tuple process (S, A, P, R, y)

- **S** set of states of the world (observed).
- A set of actions.
- P state transition probability matrix, which specifies the dynamics.

In particular, $\mathbf{P}_{ssr}^a = p(s'|s, a)$ specifies the probability of transitioning to next state s' given current state s and current action a.

- **R** reward, where r(s, a) gives the immediate reward from doing action a at state s.
- y discount factor (<1).

Markov property: $P[s_{t+1}|s_t] = P[s_{t+1}|s_1,...,s_t]$

· next state only depends on current state

Policy $\pi: s \to a$ that maps state s to action a

• deterministic $a=\pi(s)$ or stochastic policy $\pi(s,a)=P[a|s]$.

MDP inference: identify the optimal policy that maximizes the expected current and future rewards

Markov Decision Process (MDP) Solution (Signature of a simple MDP with three states (green circles) and two actions (orange circles), with two rewards (yellow arrows).

Picture from wikipedia

Markov Decision Process (MDP)

- At each step t the agent:
- Receives state st
- ightharpoonup Executes action a_t based on π
- \triangleright Receives scalar reward r_t
- · The environment:
- ightharpoonup Receives action a_t
- \triangleright Emits state s_t based on $p_{ss'}^a$
- \succ Emits scalar reward r_t
- Repeats until the goal is achieved

Slides from David Silver, Google DeepMind

Video demo

• This demo shows that the robot, though impressive in keeping its balance and in performing its task, cannot understand the human's implicit feedback and keep repeating the same tasks.

https://www.youtube.com/watch?v=zkv- LgTeQA

https://www.youtube.com/watch?v=aFuA50H9uek

State-Action Value Function

$$Q^{\pi}(s_t = s, at = a) = E\left[\sum_{k=0}^{T} \gamma^k r_{t+k} | \pi\right]$$

State-action value function is the expected total reward starting from current state s, taking action a, and then following policy π . γ (<1)is a discount factor . T is the end of an episode (reaching the goal). The expectation is taken over policy π and transition probability P.

Optimal state-action value function

 $Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$

Optimal policy

 $\pi^*(s) = \operatorname{argmax}_a Q^*(s, a)$

MDP – Solving

Solving MP involves identifying the optimal policy π . It has two approaches

1. Value Iteration

- 1) Start from an initial Q^* , iteratively update Q^* using Bellman equation until convergence. It can be proven that the final Q^* is optimal.
- 2) Obtain the optimal policy $\boldsymbol{\pi}$ from the final Q^*

Depending on if the transition probability $p(s_{t=1}|s_t,a_t)$ is known or not, it can be performed either through model-based or model-free approach

2. Policy Iteration

- 1) Start from an initial π
- 2) Compute Q^π using Bellman equation
- 3) Update π using updated Q^{π}
- 4) Repeat step 2-3 until convergence

Bellman Equation

State-action value function can be computed recursively:

$$Q^{\pi}(s_t, a_t) = E \left[\sum_{k=0}^{T} \gamma^k r_{t+k} | \pi \right]$$

= $r(s_t, a_t) + \gamma E[Q^{\pi}(s_{t+1}, a_{t+1})]$

The optimal state-action value function can also be computed recursively

$$Q^*(s_t, a_t) = r(s_t, a_t) + \gamma E \left[\max_{a_{t+1} \in A} Q^*(s_{t+1}, a_{t+1}) \right]$$

In fact, it can be proved that the recursive updating can be applied to any initial Q^0 , with sufficient iterations $Q^0 -> Q^1 -> Q^2 -> Q^3$...-> Q^*

Value Iteration-Model based approach

ASSUME $p(s_{t+1}|s_t, a_t)$ known

$$\begin{aligned} & \mathbf{Q}^*(s_t, a_t) = r(s_t, a_t) + \gamma E \left[\max_{a_{t+1} \in A} Q^*(s_{t+1}, a_{t+1}) \right] \\ = & r(s_t, a_t) + \gamma \sum_{s_{t+1}} p(s_{t+1} | s_t, a_t) \max_{a_{t+1} \in A} \{ \mathbf{Q}^*(s_{t+1}, a_{t+1}) \} \end{aligned}$$

Value Iteration-Model-free Approach

We don't know state transition probability $p(s_{t+1} \mid s_t, a_t)$. We can use samples obtained from the agent's interaction with the environment

- 1. If we assume the state transition is deterministic, i.e. s_{t+1} is given $Q^*(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma \max_{a_{t+1} \in A} \{Q^*(s_{t+1}, a_{t+1})\}$
- 2. If we assume the state transition is probabilistic:

$$\begin{split} \mathbb{Q}^*(s_t, a_t) &\leftarrow \mathbb{Q}^*(s_t, a_t) + \alpha \left(r(s_t, a_t) + \underset{a_{t+1} \in A}{\text{max}} \{ \mathbb{Q}^*(s_{t+1}, a_{t+1}) \} - \mathbb{Q}^*(s_t, a_t) \right) \\ &= \mathbb{Q}^*(s_t, a_t) [1 - \alpha] + \alpha \left(r(s_t, a_t) + \underset{a_{t+1} \in A}{\text{max}} \{ \mathbb{Q}^*(s_{t+1}, a_{t+1}) \} \right) \end{split}$$

• Model-free with deterministic transition

At state (room) s_t , take action a to go to s_{t+1} room and MUST arrive at room s_{t+1} , i.e., $p(s_{t+1}|s_t,at)=1$

Model-based

At state (room) s_t , take action a to go to s_{t+1} room, will arrive at room s_{t+1} with transition probability $p(s_{t+1}|s_t,a_t) \neq 1$

Example of Value iteration (Q-learning)

- A house has 5 rooms, the goal is to go out the house.
- If there is a door between two rooms, there exists an edge.
- The reward which directly points to outside is set to 100, others are set to 0.

Model-free approach • Reward matrix and initial Q matrix

• Episode 1: Start from room 1, go to room 5.

Deep Reinforcement Learning

Use deep neural networks to represent:

- 1) Q-function--- Value-Based Deep RL, i.e. deep Q-network
- 2) Policy--- Policy-Based Deep RL ,i.e., deep policy network

Advantage:

- 1) Solve large problems, eg. Go game
- 2) States or actions are in large space or even continues
- 3) Nonlinear function approximator

Value-Based vs Policy-Based

- Value-Based
 - 1) Learn value function (Q function)
 - 2) Implicit policy-derive best policy π from Q
- Policy-Based
 - 1) No value function Q
 - 2) Learn best policy π directly

Value-Based Deep RL

• Represent Q function by a deep Q-network with weights \mathbf{w} , input s (images), and output Q(s,a)

• Define an objective function by mean-squared error in Q-value between two consecutive times with Bellman equation

$$L(\mathbf{w}) = \sum_{t} E\left[\left(r(s_{t}, a_{t}) + \underset{a_{t+1} \in A}{\text{ymax}} \left\{Q\left(s_{t+1}, a_{t+1}, \mathbf{w}\right)\right\} - Q(s_{t}, a_{t}, \mathbf{w})\right)^{2}\right]$$

$$\mathbf{w} *= \arg\min_{\mathbf{w}} L(\mathbf{w})$$

Essentially, the network learns Bellman recursive updating equation

Policy-Based Deep RL: Policy gradient method

• Represent policy by a deep neural network

Approximate policy $a = \pi(s, \mathbf{w})$ input: state s, output action a, \mathbf{w} NN parameters

• Define objective function as total expected reward (i.e., Q value) and learn the policy π that maximizes the expected reward

$$Q = E[r_1 + \gamma^1 r_2 + \gamma^2 r_3 + \cdots]$$

• Intuitions: collect a bunch of trajectories (sequences of actions), and find the π that makes the good trajectories more probable

Advantages and disadvantages of Policy-based RL

Advantages

- 1) Better convergence properties
- 2) Effective in high-dimensional or continuous action spaces
- 3) Can learn stochastic policies

Disadvantages

- 1) Typically converge to a local optimum
- 2) Inefficient

Slides from David Silver, Google DeepMind

Policy Gradient Method

• Let τ represent a whole trajectory:

$$\tau = (s_0, a_0, r_0, s_1, a_1, r_1, ..., s_{T-1}, a_{T-1}, r_{T-1})$$

• Let expected R(τ) represent the reward for τ . Given N trajectories, τ_1 , τ_2 ,..., τ_N , the total expected rewards for N trajectories are

$$R(\mathbf{w}) = \sum_{i=1}^{N} p(\tau_i \mid \mathbf{w}) R(\tau_i)$$

where p($\tau|w$) is the probability for trajectory τ , which can be written as a function of the parameters of the policy function π

• **w** can be derived from
$$\sum_{i=1}^{N} \sum_{t_i=1}^{T_i} \gamma^{r_i} r_{t_i} \sum_{j_t=1}^{T_i} \log \pi(a_{t_i} \mid s_{t_i}, \mathbf{w})$$

$$\mathbf{w}^* = \operatorname{argmax} R(\mathbf{w})$$

• Interpretation: using good trajectories (high R) as supervised examples in classification / regression

Slides from John Schulman, OpenAl

Applications

Atari Game (from pixels to actions)

- · State is few consecutive images
- Q-learning is used for finding optimal policy
- Deep neural network approximates actionvalue function => need to train this network

Input = 4 last frames

Output = Q values for all possible actions

Reward=the score

Goal=learn the strategy to maximize the display scores

