SESA2024 Astronautics

Chapter 1

Systems Engineering

Professor Hugh Lewis

Chapter 1 - Systems Engineering - will be one lecture:

- Introduction
- Spacecraft subsystems
- Spacecraft design method and development
- Example
- Summary

Introduction: systems engineering

Example - the car:

- Engine
- Transmission
- Suspension
- Wheels, tyres & brakes
- Steering
- Electrics
- Bodywork

Introduction: INTEGRAL spacecraft

<u>International Gamma Ray Astrophysics Laboratory</u>

- The most sensitive gamma-ray observatory ever launched
- ESA mission in cooperation with Russia and the USA
- Launched October 2002 for a 2-3 year mission. It is still operational*
 - Mass ~4000 kg
 - Payload mass ~2000 kg
 - o 5 m 'high'
 - Highly elliptical orbit with a 3-day period

^{*} Anomaly on 22 September 2021: https://www.cosmos.esa.int/web/integral

Introduction: INTEGRAL spacecraft

	Subsystem	Function	
	Payload (p/l)	To fulfil mission objectives using a variety of sensors or communications hardware	Ch. 4
	Structure	To provide structural support for p/l and subsystems in all predicted environments	
1	Attitude Control Subsystem (ACS)	To achieve mission pointing requirements (p/l, power, thermal, comms, etc)	Ch. 6
	Propulsion	To provide orbital transfer capability, and to control mission orbit	Ch. 7

วิ

Spacecraft subsystems

Subsystem	Function	
Communications	To provide comms link with ground segment, for p/l data, telemetry and command	Ch. 9
Data Handling	To provide storage and processing of p/l, command and health monitoring data, and to facilitate exchange of data between subsystem elements	
Power	To provide a source of electrical power and to support p/l and subsystem operation	Ch. 8
Thermal	To provide a benign thermal environment for p/l and subsystem (reliability)	Ch. 10

Make a note of "bus" term with reference to payload

Early stages: feasibility and preliminary design

- What is systems engineering?
 - "Space systems engineering is the science (and art) of developing an operable space system capable of meeting the mission objectives efficiently, within the imposed constraints (such as mass, cost, schedule, etc.)"
 - art \rightarrow the application of <u>human</u> creative skill and imagination
- The team
 - Subsystem specialists
 - The team leader the <u>systems engineer</u>

Early stages: feasibility and preliminary design

- The systems engineer
 - o 'First-cut' analysis in all areas
 - Appreciation of subsystem interactions
 - People skills → leadership
 - Maximise productivity
 - Foster team work, team spirit
 - Meeting skills
 - Success requires compromise

Early stages: feasibility and preliminary design

Development of engineering requirements

Step 1: define mission objectives

- Performed by customer or user of proposed spacecraft (S/C)
- Example: 'fly-by Pluto and provide imaging and other data to characterise the Pluto/Charon system' objectives are quantitative, detailed specification

Step 2: payload definition

- Performed by a working group of specialists in the field
- o Detailed definition of mission objectives in terms of:
 - Specific observations

This part puts the origional objective in realistic terms according to current and realistic tech

- Types of instruments, sensors, etc.
- o Examples: CCD imaging system, infra-red spectrometer, field detector

Early stages: feasibility and preliminary design

Development of engineering requirements

Step 3: definition of top-level requirements (TLRs)

- The system team has the responsibility to convert steps 1 & 2 into TLRs
- Example: trajectory, fly-by geometry, p/l operation plan, etc.

Step 4: generation of design requirements (DRs)

- o The system team converts the TLRs into specific design requirements for the S/C subsystems Top level requirements -> subsystem requirements, long quantitative list which the subsystem is designed with refrence to Examples: orbit parameters, ΔVs , fields of view, pointing accuracy,
- Examples: orbit parameters, \(\Delta Vs\), fields of view, pointing accuracy, pointing stability, slew rates, data storage, communications link, etc.

In summary: payload operation + mission → design requirements

Design phases

- ECSS European Cooperation for Space Standardization
 - o ECSS-E-ST-10C System Engineering General Requirements

https://ecss.nl/standard/ecss-e-st-10c-rev-1-system-engineering-general-requirements-15-february-2017/

Phase 0	Mission analysis-need identification
Phase A	Feasibility
Phase B	Preliminary definition

Astronautics - Chapter 1: Systems Engineering

Spacecraft design method & development

Systems Engineering

Spacecraft design method & development

Initial study logic -

factors to be

included

Astronautics - Chapter 1: Systems Engineering

Spacecraft design method & development

Astronautics - Chapter 1: Systems Engineering

Spacecraft design method & development

Systems Engineering

Spacecraft design method & development

Design phases

- ECSS European Cooperation for Space Standardization
 - o ECSS-E-ST-10C System Engineering General Requirements

Phase 0	Mission analysis-need identification
Phase A	Feasibility
Phase B	Preliminary definition
Phase C	Detailed definition
Phase D	Qualification and production
Phase E	Operations/utilisation
Phase F	Disposal

System level activities during phases C/D/E can be very expensive

Principle system level trade-offs:

Mission Analysis

Launch vehicle; orbit type; orbit acquisition

Major influence on all subsystem design requirements

Attitude Control System (ACS)

Stability types - 3-axis, pure spin, dual spin

Major influence on all subsystem design requirements

Propulsion

Solid propellant; liquid (monoprop, biprop); electric

Communications

Power versus gain

Principle system level trade-offs:

<u>Power</u>

Solar arrays; radio-isotope thermal generators; batteries, fuel cells

Thermal

Passive versus active

Technology

New versus old

- Conservative: minimise cost; minimise schedule; minimise uncertainty
- Innovative: subsystem specialists

Political, regulatory and commercial influences

Example: Ulysses spacecraft

Example: Ulysses spacecraft

Example 2

Chapter 1 – Systems Engineering

- Introduction
- Spacecraft subsystems
- Spacecraft design method and development
- Example

General knowledge of the satellite subsystems breakdown and their respective function

- What is systems engineering?
- The development of the engineering requirements
- The design phases
- Principle system level trade-offs

Activity

- The systems engineering topic is covered in chapter 20 of Fortescue, Stark & Swinerd:
 - Read this chapter in preparation for the next few lectures & to support your learning of this topic
 - Access to the e-book is available via the Library website:

https://onlinelibrary.wiley.com/doi/book/10.10 02/9781119971009

