Columbia University

MATH G6071 Spring 2015 Numerical Methods in Finance Tat Sang Fung Topic: PDE (outline)

The purpose of this document is to provide a brief class note for the topic concerning PDE and its application in quantitative finance.

TABLE OF CONTENTS

Table of Contents	1
Introduction	
Outline	
Review of the Black-Scholes PDE	1
Reducing to the heat equation	2
Observations about the change of variables	2
Boundary condition for European options	2
Solving PDE with finite difference method	3
The set up and notations	3
Explicit Method	
Boundary condition	5
Stability of the method	6
Implicit method	6
Boundary condition	7
Stability of the method	8
Crank-Nicolson method	8
boundary condition	9
Stability of the method	9
Error investigation	.10
heta method	.10
Implementation note	.11
References	.11

INTRODUCTION

OUTLINE

PDE has its historical importance in the subject, and it provides an angle to understand derivative pricing without Stochastic Calculus. Main reference: [Seydel]

REVIEW OF THE BLACK-SCHOLES PDE

A reference to arrive at the Black Scholes PDE is [Hull] page 291 section 13.6.

The standard point is the stochastic differential equation that defines the dynamics of the stock:

$$\frac{dS}{S} = (r - \delta)dt + \sigma dW$$
 Then one can derive the Black Scholes PDE:

$$\frac{\partial V}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} + (r - \delta) S \frac{\partial V}{\partial S} - rV = 0$$
 Note that this PDE holds if we assume that the option will not be early exercised locally. Note also that this PDE is of Euler type.

REDUCING TO THE HEAT EQUATION

Here is the heat equation that we are interested in: $\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial x^2}$ for t > 0, $-\infty < x < \infty$ with initial data

 $u(x,0) = u_0(x)$ and $u \to 0$ as $x \to \pm \infty$. The solution of this PDE would depend on boundary conditions. In the class we will detail the transformation required to turn the BS PDE into the heat equation:

$$S = Ke^{x}, \ t = T - \frac{2\tau}{\sigma^{2}}, \ q = \frac{2r}{\sigma^{2}}, \ q_{\delta} = \frac{2(r - \delta)}{\sigma^{2}}, \ y(x, \tau) = \frac{1}{Ke^{\left[\frac{-1}{2}[q_{\delta} - 1]x - \left[\frac{1}{4}[q_{\delta} - 1]^{2} + q\right]\tau\right]}}v(x, \tau), \text{ we}$$

get to the simplified PDE $\frac{\partial y}{\partial \tau} = \frac{\partial^2 y}{\partial x^2}$.

This PDE can have solutions of different form, for example, you can verify that both

$$u(x,t) = \frac{1}{2\sqrt{\pi t}} e^{\frac{-x^2}{4t}}$$
 and $u(x,t) = \sin(nx) e^{-n^2t}$ satisfy the PDE $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$.

Hence it is important to figure out the boundary conditions.

OBSERVATIONS ABOUT THE CHANGE OF VARIABLES

- Time τ is reversed and, of finite domain and dimensionless
- The space variable $x = \ln\left(\frac{S}{K}\right)$ also because dimensionless

BOUNDARY CONDITION FOR EUROPEAN OPTIONS

We will discuss in class the transformed boundary conditions for European calls and puts

	$x \to -\infty$	$x \to \infty$	$\tau = 0$
y(x,0)	S = 0	$S \to \infty$	t = T
Call Value	0	$e^{\frac{x}{2}[q_{\delta}+1]+\frac{\tau}{4}[q_{\delta}+1]^2}$	$\max\left(e^{\left\{\frac{x}{2}[q_{\delta}+1]\right\}}-e^{\left\{\frac{x}{2}[q_{\delta}-1]\right\}},0\right)$
Put Value	$e^{rac{x}{2}[q_{\delta}-1]+rac{ au}{4}[q_{\delta}-1]^2}$	0	$\max\left(e^{\left\{\frac{x}{2}[q_{\delta}-1]\right\}}-e^{\left\{\frac{x}{2}[q_{\delta}+1]\right\}},0\right)$

The boundary situation:

• A question to ponder: do we really need the boundary $x \to -\infty$ and $x \to \infty$ if we are interested in only today's value of the option?

SOLVING PDE WITH FINITE DIFFERENCE METHOD

THE SET UP AND NOTATIONS

We will consider a rectangular grid defined by a partition on the x-axis with a equal spacing Δx and a partition on the τ -axis with a equal spacing $\Delta \tau$. So for each index γ , we have $\tau_{\gamma+1}=\tau_{\gamma}+\Delta \tau$ and $x_{i+1}=x_i+\Delta x$.

We will find only with a finite grid, so we have

- $x_0 = a$ corresponding to a choice of minimum stock price $S_{\min} = Ke^a$
- $x_m = b$ corresponding to a choice of minimum stock price $S_{\text{max}} = Ke^b$
- $\tau_0 = 0$
- $\bullet \quad \tau_{\gamma_{\text{max}}} = \frac{\sigma^2 T}{2}$

The intersection of the x grid line and τ grid line is called a node. Note that the equal spacing on the x dimension does not translate into an equal spacing in the stock prices (the S dimension). It is denser for small values of S and sparse for large values of S.

We want to solve for the function $y(x,\tau)$. Sine we have used a finite grid we can only solve for the function values on the grid. Let the true value be $y_{i\gamma} = y(x_i, \tau_{\gamma})$. We will calculate a set of approximation $w_{i\gamma}$ for $y_{i\gamma}$

EXPLICIT METHOD

From the practical Greek section we have

$$\frac{\partial y_{i\gamma}}{\partial \tau} = \frac{y_{i,\gamma+1} - y_{i\gamma}}{\Delta \tau} + O(\Delta \tau)$$

And

$$\frac{\partial^2 y_{i\gamma}}{\partial x^2} = \frac{y_{i+1,\gamma} - 2y_{i\gamma} + y_{i-1,\gamma}}{\Delta x^2} + O(\Delta x^2)$$

Put it into the heat equation $\frac{\partial y}{\partial \tau} = \frac{\partial^2 y}{\partial x^2}$, we get (with our approximations ready for iterations)

$$\frac{w_{i,\gamma+1} - w_{i\gamma}}{\Delta \tau} = \frac{w_{i+1,\gamma} - 2w_{i\gamma} + w_{i-1,\gamma}}{\Delta x^2}$$

And we note that this method the order of accuracy on the x direction is $O(\Delta x^2)$ and on the τ direction is $O(\Delta \tau)$. Just like the practical Greek calculations, we will see that they are ways to improve it using similar techniques.

Let
$$\lambda = \frac{\Delta \tau}{\Delta x^2}$$
, we get

$$W_{i,\gamma+1} = \lambda W_{i+1,\gamma} + (1-2\lambda)W_{i\gamma} + \lambda W_{i-1,\gamma}$$
 for $i = 1, 2, ..., m-1$

This is call the "explicit" method because to perform one iteration on the τ direction, each value can be explicitly calculated.

Picture

It is also known as the forward difference method.

In vector notation, let $\vec{w}^{(\gamma)} = (w_{1\gamma}, \dots, w_{m-1,\gamma})^T$

Let
$$A = \begin{pmatrix} 1-2\lambda & \lambda & & & \\ \lambda & 1-2\lambda & \ddots & & \\ & \ddots & \ddots & \lambda & \\ & & \lambda & 1-2\lambda \end{pmatrix}$$
 an $(m-1)$ by $(m-1)$ matrix

Then we have $\vec{w}^{(\gamma+1)} = A\vec{w}^{(\gamma)}$.

BOUNDARY CONDITION

The boundary conditions are given by the first vector $\vec{w}^{(0)} = (w_{10}, \dots, w_{m-1,0})^T = (y_{10}, \dots, y_{m-1,0})^T$. The assumption about is that are $w_{0\tau}$ and $w_{m\tau}$ are zeros. This is okay if $2m \ge \gamma_{\max}$ and we only want only the currently option value.

The boundary condition table needed is therefore

	$\tau = 0$
y(x,0)	t = T
Call Value	$\max\left(e^{\left\{\frac{x}{2}[q_{\delta}+1]\right\}}-e^{\left\{\frac{x}{2}[q_{\delta}-1]\right\}},0\right)$
Put Value	$\max\left(e^{\left\{\frac{x}{2}[q_{\delta}-1]\right\}}-e^{\left\{\frac{x}{2}[q_{\delta}+1]\right\}},0\right)$

To obtain the entire surface, each $w_{0\tau}$ and $w_{m\tau}$ will need to be considered.

We want to take include the boundary conditions $w_{0\gamma}=r_1(a,\tau)$ and $w_{m\gamma}=r_2(b,\tau)$ for all τ .

Adapting to the boundary conditions for this method:

$$\vec{w}^{(\gamma+1)} = A\vec{w}^{(\gamma)} + \vec{d}^{(\gamma)}$$

With
$$\vec{d}^{(\gamma)} = \lambda \begin{pmatrix} r_1(a, \tau_{\gamma}) \\ 0 \\ \vdots \\ 0 \\ r_2(b, \tau_{\gamma}) \end{pmatrix}$$

Note that the above equations concerns (m-1)-vectors

Where

$r \rightarrow -\infty$	$r \rightarrow \infty$	- 0
$x \to -\infty$	$\chi \to \infty$	$\tau = 0$

y(x,0)	S = 0	$S \to \infty$	t = T
Call Value	$r_1(x,\tau)=0$	$r_2(x,\tau) = e^{\frac{x}{2}[q_{\delta}+1]+\frac{\tau}{4}[q_{\delta}+1]^2}$	$\max\left(e^{\left\{\frac{x}{2}[q_{\delta}+1]\right\}}-e^{\left\{\frac{x}{2}[q_{\delta}-1]\right\}},0\right)$
Put Value	$r_1(x,\tau) = e^{\frac{x}{2}[q_{\delta}-1] + \frac{\tau}{4}[q_{\delta}-1]^2}$	$r_2(x,\tau) = 0$	$\max\left(e^{\left\{\frac{x}{2}[q_{\delta}-1]\right\}}-e^{\left\{\frac{x}{2}[q_{\delta}+1]\right\}},0\right)$

STABILITY OF THE METHOD

We want the errors to die down instead of being amplified. Mathematically, we want $\lim_{\gamma \to \infty} A^{\gamma} \vec{e}^{(0)} = \vec{0}$ for any vector $\vec{e}^{(0)}$. This means that we want $\lim_{\gamma \to \infty} A^{\gamma}$ to be a zero matrix.

In the class we will arrive at the stability condition for explicit method:

$$\frac{\Delta \tau}{\Delta x^2} \le \frac{1}{2}$$

The consequence: Grid resolution cannot be chosen independent of each other.

Note also that the stability condition implies that there is a probabilistic interpretation. We will discuss this in class.

IMPLICIT METHOD

From the practical Greek section we have

$$\frac{\partial y_{i\gamma}}{\partial \tau} = \frac{y_{i,\gamma} - y_{i\gamma - 1}}{\Delta \tau} + O(\Delta \tau)$$

And

$$\frac{\partial^2 y_{i\gamma}}{\partial x^2} = \frac{y_{i+1,\gamma} - 2y_{i\gamma} + y_{i-1,\gamma}}{\Delta x^2} + O(\Delta x^2)$$

Put it into the heat equation $\frac{\partial y}{\partial \tau} = \frac{\partial^2 y}{\partial x^2}$, we get (with our approximations ready for iterations)

$$\frac{w_{i,\gamma} - w_{i,\gamma-1}}{\Delta \tau} = \frac{w_{i+1,\gamma} - 2w_{i\gamma} + w_{i-1,\gamma}}{\Delta x^2}$$

And we note that this method the order of accuracy on the x direction is $O(\Delta x^2)$ and on the τ direction is $O(\Delta \tau)$. This does not therefore represent an improvement on this front.

Like before we let
$$\lambda = \frac{\Delta \tau}{\Delta x^2}$$
, we get

$$-\lambda w_{i+1,\gamma} + (2\lambda + 1)w_{i\gamma} - \lambda w_{i-1,\gamma} = w_{i,\gamma-1} \text{ for } i = 1,2,\dots,m-1$$

Professor Fung Page 6 4/6/2015

This is call the "implicit" method because to perform one iteration on the τ direction, the value can be no longer be explicitly calculated. They are implicitly given only by an equation.

Picture

In vector notation, let $\vec{w}^{(\gamma)} = (w_{1\gamma}, \dots, w_{m-1,\gamma})^T$

Let
$$A = \begin{pmatrix} 2\lambda + 1 & -\lambda & & & \\ -\lambda & 2\lambda + 1 & \ddots & & \\ & \ddots & \ddots & -\lambda & \\ & & -\lambda & 2\lambda + 1 \end{pmatrix}$$
 an $(m-1)$ by $(m-1)$ matrix

Then we have $A\vec{w}^{(\gamma)} = \vec{w}^{(\gamma-1)}$. In a form in line with the explicit method, this time we have $\vec{w}^{(\gamma)} = A^{-1}\vec{w}^{(\gamma-1)}$

BOUNDARY CONDITION

The boundary conditions are given by the first vector $\vec{w}^{(0)} = (w_{10}, \dots, w_{m-1,0})^T = (y_{10}, \dots, y_{m-1,0})^T$.

We want to take include the boundary conditions $w_{0\gamma}=r_1(a,\tau)$ and $w_{m\gamma}=r_2(b,\tau)$ for all τ .

Adapting to the boundary conditions for this method:

$$A\vec{w}^{(\gamma+1)} = \vec{w}^{(\gamma)} + \vec{d}^{(\gamma)}$$

With
$$\vec{d}^{(\gamma)} = \lambda \begin{pmatrix} r_1(a, \tau_{\gamma+1}) \\ 0 \\ \vdots \\ 0 \\ r_2(b, \tau_{\gamma+1}) \end{pmatrix}$$

Where

$x \to -\infty$	$x \to \infty$	$\tau = 0$

y(x,0)	S = 0	$S \to \infty$	t = T
Call Value	$r_1(x,\tau)=0$	$r_2(x,\tau) = e^{\frac{x}{2}[q_{\delta}+1]+\frac{\tau}{4}[q_{\delta}+1]^2}$	$\max\left(e^{\left\{\frac{x}{2}[q_{\delta}+1]\right\}}-e^{\left\{\frac{x}{2}[q_{\delta}-1]\right\}},0\right)$
Put Value	$r_1(x,\tau) = e^{\frac{x}{2}[q_{\delta}-1]+\frac{\tau}{4}[q_{\delta}-1]^2}$	$r_2(x,\tau)=0$	$\max\left(e^{\left\{\frac{x}{2}[q_{\delta}-1]\right\}}-e^{\left\{\frac{x}{2}[q_{\delta}+1]\right\}},0\right)$

STABILITY OF THE METHOD

We will discuss in class: The implicit method is unconditionally stable regardless of the choice of λ .

CRANK-NICOLSON METHOD

Crank Nicolson is the average of explicit and implicit.

So, putting here (Explicit Method)

$$\frac{w_{i,\gamma+1} - w_{i\gamma}}{\Delta \tau} = \frac{w_{i+1,\gamma} - 2w_{i\gamma} + w_{i-1,\gamma}}{\Delta x^2}$$

And (Implicit method)

$$\frac{w_{i,\gamma} - w_{i,\gamma-1}}{\Delta \tau} = \frac{w_{i+1,\gamma} - 2w_{i\gamma} + w_{i-1,\gamma}}{\Delta x^2}$$

And we just average this two, we will break the matrix format. So shift the time index up on the implicit method:

$$\frac{w_{i,\gamma+1} - w_{i,\gamma}}{\Delta \tau} = \frac{w_{i+1,\gamma+1} - 2w_{i\gamma+1} + w_{i-1,\gamma+1}}{\Delta x^2}$$

And now we average to get:

$$\frac{w_{i,\gamma+1} - w_{i\gamma}}{\Delta \tau} = \frac{1}{2} \left(\frac{w_{i+1,\gamma} - 2w_{i\gamma} + w_{i-1,\gamma}}{\Delta x^2} + \frac{w_{i+1,\gamma+1} - 2w_{i\gamma+1} + w_{i-1,\gamma+1}}{\Delta x^2} \right)$$

Rewriting we get

$$w_{i,\gamma+1} - w_{i\gamma} = \frac{\lambda}{2} \left(w_{i+1,\gamma} - 2w_{i\gamma} + w_{i-1,\gamma} + w_{i+1,\gamma+1} - 2w_{i\gamma+1} + w_{i-1,\gamma+1} \right)$$

Rearranging as an iterative form

$$-\frac{\lambda}{2}w_{i-1,\gamma+1} + (1+\lambda)w_{i,\gamma+1} - \frac{\lambda}{2}w_{i+1,\gamma+1} = \frac{\lambda}{2}w_{i-1,\gamma} + (1-\lambda)w_{i\gamma} + \frac{\lambda}{2}w_{i+1,\gamma}$$

Now if we write

$$A = \begin{pmatrix} 1+\lambda & \frac{-\lambda}{2} & & & \\ \frac{-\lambda}{2} & 1+\lambda & \ddots & & \\ & \ddots & \ddots & \frac{-\lambda}{2} \\ & & \frac{-\lambda}{2} & 1+\lambda \end{pmatrix} \text{ and } B = \begin{pmatrix} 1-\lambda & \frac{\lambda}{2} & & & \\ \frac{\lambda}{2} & 1-\lambda & \ddots & & \\ & \ddots & \ddots & \frac{\lambda}{2} \\ & & \frac{\lambda}{2} & 1-\lambda \end{pmatrix}$$

It becomes

$$A\vec{w}^{(\gamma+1)} = B\vec{w}^{(\gamma)}$$

In homework we have shown that Show that for A its eigenvalues all lie in $[1,1+2\lambda]$ hence it is non-singular. So we can write

$$\vec{w}^{(\gamma+1)} = A^{-1}B\vec{w}^{(\gamma)}$$

BOUNDARY CONDITION

We want to take include the boundary conditions $w_{0\gamma}=r_1(a,\tau)$ and $w_{m\gamma}=r_2(b,\tau)$ for all τ .

Adapting to the boundary conditions for this method:

$$A\vec{w}^{(\gamma+1)} = B\vec{w}^{(\gamma)} + \vec{d}^{(\gamma)}$$

With
$$\vec{d}^{(\gamma)} = \frac{\lambda}{2} \begin{pmatrix} r_1(a, \tau_{\gamma+1}) + r_1(a, \tau_{\gamma}) \\ 0 \\ \vdots \\ r_2(b, \tau_{\gamma+1}) + r_2(b, \tau_{\gamma}) \end{pmatrix}$$

Where

	$x \to -\infty$	$x \to \infty$	$\tau = 0$
y(x,0)	S = 0	$S \to \infty$	t = T
Call Value	$r_1(x,\tau)=0$	$r_2(x,\tau) = e^{\frac{x}{2}[q_{\delta}+1]+\frac{\tau}{4}[q_{\delta}+1]^2}$	$\max\left(e^{\left\{\frac{x}{2}[q_{\delta}+1]\right\}}-e^{\left\{\frac{x}{2}[q_{\delta}-1]\right\}},0\right)$
Put Value	$r_1(x,\tau) = e^{\frac{x}{2}[q_{\delta}-1] + \frac{\tau}{4}[q_{\delta}-1]^2}$	$r_2(x,\tau) = 0$	$\max\left(e^{\left\{\frac{x}{2}[q_{\delta}-1]\right\}}-e^{\left\{\frac{x}{2}[q_{\delta}+1]\right\}},0\right)$

STABILITY OF THE METHOD

We discuss in class: The Crank-Nicolson method is unconditionally stable regardless of the choice of λ .

ERROR INVESTIGATION

We will discuss in class that this method the order of accuracy on the x direction is $O(\Delta x^2)$ and on the τ direction is $O(\Delta \tau^2)$.

θ METHOD

Crank Nicolson is the θ weighted average of explicit and implicit.

Special case	Corresponding method
heta is zero	Explicit
heta is a half	Crank-Nicolson
heta is one	Implicit

And the iteration formula is

(Explicit Method)

$$\frac{w_{i,\gamma+1} - w_{i\gamma}}{\Delta \tau} = \frac{w_{i+1,\gamma} - 2w_{i\gamma} + w_{i-1,\gamma}}{\Delta x^2}$$

(Implicit method)

$$\frac{w_{i,\gamma} - w_{i,\gamma-1}}{\Delta \tau} = \frac{w_{i+1,\gamma} - 2w_{i\gamma} + w_{i-1,\gamma}}{\Delta x^2}$$

And now we average to get:

$$\frac{w_{i,\gamma+1} - w_{i\gamma}}{\Delta \tau} = \left(1 - \theta\right) \left(\frac{w_{i+1,\gamma} - 2w_{i\gamma} + w_{i-1,\gamma}}{\Delta x^2}\right) + \theta \left(\frac{w_{i+1,\gamma+1} - 2w_{i\gamma+1} + w_{i-1,\gamma+1}}{\Delta x^2}\right)$$

Rewriting we get

$$w_{i,\gamma+1} - w_{i\gamma} = \lambda \left((1-\theta) w_{i+1,\gamma} - 2(1-\theta) w_{i\gamma} + (1-\theta) w_{i-1,\gamma} + \theta w_{i+1,\gamma+1} - 2\theta w_{i\gamma+1} + \theta w_{i-1,\gamma+1} \right)$$

Rearranging as an iterative form

$$-\lambda \theta w_{i-1,\gamma+1} + (1+2\lambda \theta)w_{i,\gamma+1} - \lambda \theta w_{i+1,\gamma+1} = \lambda (1-\theta)w_{i-1,\gamma} + (1-2\lambda (1-\theta))w_{i\gamma} + \lambda (1-\theta)w_{i+1,\gamma}$$

Notions:
$$A = \begin{pmatrix} (1+2\lambda\theta) & -\lambda\theta \\ -\lambda\theta & (1+2\lambda\theta) & \ddots \\ & \ddots & \ddots & -\lambda\theta \\ & & -\lambda\theta & (1+2\lambda\theta) \end{pmatrix}$$
 and

Notions:
$$A = \begin{pmatrix} (1+2\lambda\theta) & -\lambda\theta & & & \\ -\lambda\theta & (1+2\lambda\theta) & \ddots & & \\ & \ddots & \ddots & -\lambda\theta & \\ & & -\lambda\theta & (1+2\lambda\theta) \end{pmatrix}$$
 and
$$B = \begin{pmatrix} (1-2\lambda(1-\theta)) & \lambda(1-\theta) & & \\ \lambda(1-\theta) & (1-2\lambda(1-\theta)) & \ddots & \\ & \ddots & \ddots & \lambda(1-\theta) \\ & & \lambda(1-\theta) & (1-2\lambda(1-\theta)) \end{pmatrix}$$

It becomes

$$A\vec{w}^{(\gamma+1)} = B\vec{w}^{(\gamma)}$$

Professor Fung Page 10 4/6/2015 And things proceed like before.

IMPLEMENTATION NOTE

When we have $A\vec{w}^{(\gamma+1)} = B\vec{w}^{(\gamma)} + \vec{d}^{(\gamma)}$, sometimes it would be convenient to do it with transposes. Note that $(M^{-1})^T = (M^T)^{-1}$, we can write $(\vec{w}^{(\gamma+1)})^T = [(\vec{w}^{(\gamma)})^T B + (\vec{d}^{(\gamma)})^T]A^{-1}$

REFERENCES

[StBu] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer,

[Hull] John Hull, Options, Futures and other derivatives, Prentice Hall,

 $\textbf{[Seydel]} \ \textbf{R\"{u}diger} \ \textbf{U}. \ \textbf{Seydel} \ \textbf{,} Tools \ for \ Computational \ Finance}, \ \textbf{Springer},$