集合论期中测试

- 1. 递归定义**贝茨函数 (beth function)** $\exists : \mathbb{O} \to \mathbb{O}$ 为: $\exists (0) = \aleph_0$, $\exists (\alpha + 1) = 2^{\aleph_\alpha}$, 对于极限序数 γ , $\exists (\gamma) = \sup\{2^{\aleph_\xi} \mid \xi < \gamma\}$ 。证明:
 - (1) $|V_{\omega_{\alpha}}| = \beth_{\alpha}$ 。(2) 对任意 α ,存在 $\epsilon > \alpha$, ϵ 是 $\beth : \mathbb{O} \to \mathbb{O}$ 的不动点。

Proof. 1. 施归纳于 α 。

对于 $\alpha=0$, $|V_{\omega_0}=|\bigcup_{n<\omega}V_n|=\aleph_0$ 对于后继序数 $\alpha=\beta+1$, $|V_{\omega_\alpha}|=|\bigcup_{\gamma<\omega_\alpha}V_\gamma|=2^{|\aleph_\beta|}=\beth_\alpha$ 对于极限序数 λ , $|V_{\omega_\lambda}|=|\bigcup_{\xi<\omega_\lambda}V_\xi|=\sup_{\xi<\lambda}2^{\aleph_\xi}=\beth_\lambda$

2. 给定 α , 构造函数如下:

$$\begin{split} & \exists^0(\alpha) = \alpha \,; \, \exists^{n+1}(\alpha) = \exists (\exists^n(\alpha)) \,; \, \exists^\omega(\alpha) = \bigcup_{n < \omega} \exists^n(\alpha) \\ & \text{那么,若 } \alpha \, \, \, \text{是不动点,则所有这些都是不动点。否则,首先我们有} \\ & \exists^\omega(\alpha) \, \text{是极限序数,那么} \, \exists (\exists^\omega(\alpha)) = \bigcup_{\xi < \exists^\omega(\alpha)} \exists (\xi) \, \text{。而若 } \xi < \exists^\omega(\alpha), \\ & \text{则对于某个} \, n < \omega, \, \text{有} \, \xi < \exists^n(\alpha), \, \text{则} \, \exists (\xi) < \exists^{n+1}(\alpha), \, \text{且} \, \exists (\exists^\omega(\alpha)) \leq \bigcup_{n < \omega} \exists^{n+1}(\alpha) = \exists^\omega(\alpha) \, \text{。则} \, \exists^\omega(\alpha) \, \, \text{是一个不动点。} \end{split}$$

2. 对任意序数 $\alpha, \beta, cf(\aleph_{\alpha}^{\aleph_{\beta})} > \aleph_{\beta}$ 。

Proof. 若 $cf(\aleph_{\alpha}^{\aleph_{\beta}}) \leq \aleph_{\beta}$,则

$$(\aleph_{\alpha}^{\aleph_{\beta}})^{cf(\aleph_{\alpha}^{\aleph_{\beta}})} \leq (\aleph_{\alpha}^{\aleph_{\beta}})^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}}$$

与寇尼希定理矛盾。

3. 假设 κ 是不可达基数, 证明: 对任意 $X \in V_{\kappa}$, 任意函数 $f: X \to V_{\kappa}$, $f[X] \in V_{\kappa}$ 。这就是说替换公理在 V_{κ} 中成立。

Proof. 由于 κ 是不可达基数,则 κ 正则,则对于任意 $X \in V_{\kappa}$ 到 V_{κ} 的函数 f , f 有界。

4. 找到函数 $f: \omega \to \omega + \omega$ 和 $g: \omega + \omega \to \omega + \omega + \omega$ 满足:

- (1) $sup(f[\omega]) = \omega + \omega$,
- (2) $sup(g[\omega + \omega]) = \omega + \omega + \omega$,
- (3) 但是如果令 $h = g \circ f$, 却有 $sup(h[\omega]) < \omega + \omega + \omega$ 。

$$Proof. \ \diamondsuit \ f(x) = \omega + x \,, \ g(x) = \begin{cases} \omega + \omega + x & x \in \omega \\ n & x = \omega + n, n \in \omega \end{cases}$$
 那么, $\sup(f[\omega]) = \omega + \omega, \sup(g[\omega + \omega]) = \omega + \omega + \omega$,且. $\sup(h[\omega]) = \omega < \omega + \omega + \omega$

5. 令 β 为任意序数, α 为任意极限序数,证明: 如果 $\alpha+\beta=\beta$,则 $\beta \geq \alpha \cdot \omega$ 。

Proof. 首先, 若 $\alpha = 0$, 显然。

若 $\alpha > 0$, 设 $\beta < \alpha \cdot \omega$, 则存在 $n \in \omega$ 使得 $\beta = \alpha \cdot n$ 。由于 $\alpha + \beta = \beta$,则 有 $\alpha + \alpha \cdot n = \alpha \cdot (n+1) = \alpha \cdot n$,矛盾。

 $6. \diamondsuit X = \{f : \omega \to \omega_1 \mid f$ 是一一函数 $\}, 证明 \mid X \mid = 2^{\omega}.$

Proof. 定义 $[\kappa]^{\lambda} = |\{A \subseteq \kappa \mid |A| = \lambda\}|.$

断言: 若 $\lambda < \kappa$, 则 $[\kappa]^{\lambda} = \kappa^{\lambda}$ 。

对于 $A \in [\kappa]^{\lambda}$,定义 $[f]_{A} = \{f \mid f : \lambda \to \kappa, ran(f) = A\}$,称所有 $[f]_{A}$ 构成的非空集合的族为 \mathcal{F} 。由定义,存在 $[\kappa]^{\lambda}$ 到 \mathcal{F} 的双射令其为 h,令 g 为 \mathcal{F} 上的选择函数,则 $g \circ h$ 为 $[\omega_{1}]^{\omega}$ 到 ω_{1}^{ω} 的单射,即 $[\kappa]^{\lambda} \leq \kappa^{\lambda}$ 。另一方面,由于对任意 $f \in \kappa^{\lambda}$,f 都是 $\lambda \times \kappa$ 的子集并且 $|f| = \lambda$,则 $\kappa^{\lambda} \leq [\lambda \times \kappa]^{\lambda} = [\kappa]^{\lambda}$

这便证明了断言。

那么首先,显然我们有 $|X| \leq \omega_1^{\omega}$,其次,对于 $\kappa = \omega_1, \lambda = \omega$,由定义, $X = \bigcup_{A \in \omega_1} [f]_A$,其中 $|A| = \omega$ 。那么有 $|\mathcal{F}| \leq |X|$,则 $|X| \geq |\mathcal{F}| = [\omega_1]^{\omega} = \omega_1^{\omega}$ 。