

N Nemko TEST REPORT

Date:	ESPOO 05.06.2006	Page: <u>1 (27)</u> Appendices
Number: No. 1 / 1	66937R1	Date of handing in: 01.06.2006 Measured by:
		Timo Hietala, Test Engineer
		Reviewed by: Jyrki Leino, Manager

SORT OF EQUIPMENT: **WCDMA Base Station RF module**

Nokia Flexi BTS RF module 1.7GHz/2.1GHz MARKETING NAME:

TYPE: **FRIA**

MANUFACTURER: **Nokia Corporation**

FCC ID: **UAFFRIA-01**

CLIENT: **Nokia Corporation**

P.O.Box 319, FI-90651 OULU, FINLAND ADDRESS:

TELEPHONE: +358 7180 08000

TEST LABORATORY: NET/IMN Oulu

FCC REG. NO. 411251

REFERENCE: FCC Part 27, SUBPART L

SUMMARY:

In regard to the performed tests the equipment under test fulfils the requirements defined in the test specifications, see page 4 for details

The test results are valid for the tested unit only. Without a written permission of Nemko Oy it is allowed to copy this report as a whole, but not partially.

FCC ID: UAFFRIA-01 Type: FRIA Test report No.: 66937R1

Contents

1.	EUT a	and Accessory Information	3
		EUT description	
	1.2	EUT and accessories	3
Sι	ımmar	y of Test Data	4
2.	Gene	ral Equipment Specification	5
3.	RF Po	ower Output	7
4.	99% (Occupied Bandwidth	9
5.	Spurio	ous Emissions at Antenna Terminals	11
6.	Field	Strength of Spurious	16
7.	Frequ	ency stability	19
8.	List of	test equipment	21
9.	Photo	graphs of Test Setup	22
10	.ANNE	X A, TEST DETAILS	24
11	A NINIE	Y R TEST DIACDAMS	26

Test report No.: 66937R1

1. **EUT and Accessory Information**

1.1 **EUT description**

The EUT is a WCDMA Base station RF module 1.7GHz/2.1GHz with 2 power amplifiers.

1.2	EUT and ac	cessories				
	Manufacture	er:	Nokia			
	Model:		FRIA,	s/n: L906200086	67	
	Other Units:			module, FSMB ission module, FT	ΊΑ	
	General:		All mea	asurements are tra	aceable to na	tional standards.
		were conducted with FCC Part 27,			ipment for tl	ne purpose of demonstrating
	\boxtimes	New Submission				Production Unit
		Class II Permissiv	e Chang	e		Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE. **NONE**

Nemko Oy authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Oy accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

This report applies only to the items tested.

3 (27)

Test report No.: 66937R1

Summary of Test Data

NAME OF TEST	SECTION IN CFR 47	SPEC.	RESULT
RF Power Output	27.50 (d), 2.1046	100 W	Complies
99% Occupied Bandwidth	2.1049, (i)	Unspecified	Complies
Spurious Emissions at Antenna Terminals	27.53(g), 2.1051	- 13 dBm	Complies
Field Strength of Spurious Emissions	27.53(g), 2.1053	- 13 dBm E.I.R.P	Complies
Frequency stability	27.54, 2.1055	± 0.05 ppm ¹⁾	Complies

Note 1) Limit is the manufacturer's specification

Measurement uncertainty is expressed to a confidence level of 95%.

Test report No.: 66937R1

2. General Equipment Specification

")
nd

Test report No.: 66937R1

System Description

The BTS performs the radio function of the Base Station System (BSS), and is connected to the Radio Network Controller (RNC) via the Iub interface, and to Mobile Stations (MS) via the Air interface (Antenna). The RNC is further connected to Serving GPRS Support Node (SGSN) or it can be connected to the Mobile Switching Centre (MSC) via IWU (Inter Working Unit).

Setup for testing: The transmitter was set up according to 3GPP TS 25.141 Test Model 1 for all tests except frequency stability. 64 DPCHs at 30 ksps (SF=128) distributed randomly across the code space, at random power levels and random timing offsets, were defined to simulate a realistic operating scenario which may have high PAR (Peak-to-Average Ratio). The transmitter was set up according to 3GPP TS 25.141 Test Model 4 for the frequency stability tests.

System Diagram

Test report No.: 66937R1

3. RF Power Output

NAME OF TEST: RF Power Output PARA.NO.: 27.50 (d) & 2.1046

TESTED BY: Timo Hietala DATE: 01/06/2006

Test Results: Complies.

Measurement Data: Refer to attached plot.

Modulation Type	Frequency	Measured Output	Measured Output
	(MHz)	Power	Power
		(dBm)	(W)
WCDMA	2112.6	45.89	38.82
WCDMA	2132.5	45.84	38.37
WCDMA	2152.4	45.98	39.63

Equipment used: 1, 2, 4, 7, 8, 9.

Measurement

Uncertainty: $\pm 0.7 \text{ dB}.$

Temperature: 23 °C.

Relative

Humidity: 35 %.

Test report No.: 66937R1

Test Data – RF Power Output

Notes:

Nemko Oy									
Data Plo	<u>ot</u>		<u>R</u>	RF POW	<u>/ER OU</u>	<u>TPUT</u>			
Page <u>1</u> of <u>1</u>								plete <u>x</u>	
Job No.:	69937		_		01/062006	-	Prelimin	ary:	
Specification:	PT27		Temper Relative Hu	ature (°C): _	23	-			
Tested By:	Timo Hietala		Relative Hu	midity (%):	35	=			
E.U.T.:	WCDMA TR		0114411151				_		
Configuration:		WER CENTER	CHANNEL				_		
Sample Numb					DDW	D. C. C. L.			
Location:	NET/IMN O	<u>ulu</u>				Refer to plots			
Detector type:	Rms	_			VBW:	Refer to plots	<u>S</u> Distar	nce: N/A	. m
Test Equipr	ment Used								
Antenna:				Directi	onal Coupler:				
Pre-Amp:					Cable #1:		_		
Filter:									
Receiver:	1								
Attenuator #1:							_		
Attenuator #2:					Mixer:				
Additional equi	-	± 0.7 dB					_		
^	- Cricortainty:					20.1.		20.15	
		Marker	1 [T1]		RBW	30 kH:		30 dB	
Ref	Lvl		-31.8	34 dBm	VBW	300 kH:	Z		
	2 dBm	:	2.1363400	00 GHz	SWT	2 s	Unit	dBm	ı
40.2	0.2 dB Off	set				▼ 1 [T1] -3	1.84 dBm	l
									A
30								4000 GHz	
30						CH P	WR 4	5.84 dBm	
		**** ا	homen	~~~~	~~~~~	~~~~@##_#B	M 4.6848	0000 MHz	
20		/					Υ		
20		/							
		\parallel /					\		
10		11/							
10		/					\		1RM
		/					/ II		likin
0									
							\		
		W					\ \		EXT
-10									
		И					N		
		[امر					<u> </u>		
-20		' 					# 4		
	100								
	للمرسمد [
-30	~~~~~							The same of the sa	ř
								1 4 4 4	
-40								+	
-50							<u></u>		
		[] C 0							
F 0 0									
-59.8		. GIZ-		7.00	1-11- /			7 60 1577	J
Cent	er 2.1325	GHZ		768	KHZ/		Span	7.68 MHz	
Date:	1.JUN.	2006 09:	:17:19						

Page Date

Test report No.: 66937R1

4. 99% Occupied Bandwidth

NAME OF TEST: Occupied Bandwidth PARA.NO.: 2.1049, (i)

TESTED BY: Timo Hietala DATE: 01/06/2006

Test Results: Complies.

Test Data: See attached plot(s).

	Frequency	Measured 99%
Modulation Type	(MHz)	Occupied Bandwidth
		(MHz)
WCDMA	2132.5	3.9679

Equipment used: 1, 2, 4, 7, 8, 9.

Measurement

Uncertainty: $\pm 0.7 \text{ dB}$.

Temperature: 23 °C.

Relative

Humidity: 35 %.

Notes:___

FCC ID: UAFFRIA-01 Type: FRIA

Test report No.: 66937R1

Test Data - 99% Occupied Bandwidth

Data Plot			<u>99%</u>	Occup	<u>ied Ba</u> n	dwidth				
Page <u>1</u> of <u>1</u>	•							Comple	ete <u>x</u>	
Job No.:	69937			Date:	01/06/2006	_		Preliminary	/:	
Specification:	PT27		Temp	erature (°C): _	23	_				
Tested By:	Timo Hietala		Relative H	umidity (%):	35	=				
E.U.T.:	WCDMA TRAN	SMITTER								
-	TX FULL POWE	ER CENTER	CHANNEL							
Sample Number:										
Location:	NET/IMN Oulu	_				Refer to plot		Measuremer	nt	
Detector type:	Rms	_			VBW:	Refer to plot	ts	Distance	e: <u>N/A</u>	m
Test Equipme	ent Used									
Antenna:		_		Directi	onal Coupler:					
Pre-Amp:		_								
Filter:		_								
Receiver:	1	_			Cable #3:		_			
Attenuator #1:	7	_			Cable #4:		_			
Attenuator #2:		_			Mixer:					
Additional equipr Measurement Ur		± 0.7 dB								
			1 [m1]			20.1.			20 15	
%		Marker			RBW	30 ki		Att	30 dB	
Ref L	vl		-27	.76 dBm	VBW	300 ki	Iz			
40.2	dBm	2	2.128660	000 GHz	SWT	200 ms	s Un	it.	dBm	ı
30.	2 dB Offs	et				▼ 1	[T1]	-27	.76 dBm	l
										A
2.0								2.12866		1
30			. 1	1.		OPB		3.96793	587 MHz	1
			<u> </u>	mypulm	MANAM		[T1]	20	.77 dBm	1
2.0		Т	<u>a</u> l	V	•	· W	·	2.13052	605 GHz	1
20			,			∇_{T}	[T1]		.35 dBm	1
		J				- 1				
10							\	2.13449	399 GHZ	ı
10										1RM
		}								
0										
										EXT
-10										
		AÍ					١. ا			
-20		<u>W</u>					N			
	HUNT THANK						لم			
	. 1季MVMW	M					M	Maldway and		1
-30 //	May and a company of the	,					- T	1 des Acidi	MMULL	1
WY									· W 4	1
										1
-40										1
										1
										1
-50										
-59.8										
	r 2.1325 (GHz		1 M	Hz/			Span	10 MHz	1
CCIICE				± 14	,			Span		
Date:	1.JUN.20	06 09:	23:26							

Page Date

10 (27) 05.06.2006

Test report No.: 66937R1

5. Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions @ Antenna Terminals PARA.NO.: 27.53(g), 2.1051

TESTED BY: Timo Hietala DATE: 01/06/2006

Test Results: Complies.

Test Data: See attached plots.

Frequency	Spurious Emission
(MHz)	(dBm)
1357.8	-27.8
4265.0	-29.4
6397.5	-34.0

Lower Band Edge

Frequency	Peak Emission
(MHz)	Level (dBm)
2109.433	-17.5

Upper Band Edge

Frequency	Peak Emission
(MHz)	Level (dBm)
2155.106	-15.3

Equipment used: 1, 2, 3, 4, 7, 8, 9, 12, 13, 14

Measurement

Uncertainty: $\pm 0.7 \text{ dB}.$

Temperature: 23 °C.

Relative

Humidity: 35 %.

Test report No.: 66937R1

Test Data – Spurious Emissions

Nemko Oy, Finland

Data Plot		<u>Spuri</u>	ous Emi	ssions a	t Antenn	a Termir	nals_		
Page <u>1</u> of <u>4</u>							C	omplete <u>x</u>	_
Job No.:	69937				01/06/2006	_	Prelin	ninary:	_
Specification:	PT27		Tempo	erature (°C):	23	_			
Tested By:	Timo Hietala			umidity (%):		_			
E.U.T.:	WCDMA TRAN	SMITTER					<u></u>		
Configuration:	TX FULL POW	ER BOTTON	1 CHANNEL						
Sample Number:	. 1								
Location:	NET/IMN Oulu				RBW:	Refer to plots	s Measur	ement	
Detector type:	Peak	_				Refer to plots		stance: N/A	m
Test Equipme	ent Used								
Antenna:				Directi	ional Coupler:				
Pre-Amp:		_							
Filter:					Cable #2		_		
Receiver:	1	_			Cable #3:				
Attenuator #1:	7	_			Cable #4:		_		
Attenuator #2:		_					_		
		_			Mixer:				
Additional equiproperate Measurement Ur		± 0.7 dB							
\triangle		Marker	1 [T1]		RBW	50 kH	z RF Att	15 dB	
Ref L	v1			53 dBm	VBW	50 kH			
34.3			2.109433		SWT	8.5 ms		dBr	n
34.3					5.1.2		01110		7
20	3 dB Offs								A SGL
0									1MA
-10									
_D1 -	13 dBm-		1. 1.	1	ŊĬ				EXT
-30	<u> </u>				'				
-40									
-50									
-60 F2				F	h				
-65.7				· ·					
	r 2.11 GH	z		819.2	kHz/		Span	8.192 MHz	-

Notes: LOWER BANDEDGE, Tx 2112.6 MHz

1.JUN.2006 10:11:33

Date:

Test report No.: 66937R1

Test Data - Spurious Emissions

Nemko Oy, Finland

Marker 1 [T1] RBW 50 kHz RF Att 15 dB

Ref Lvl -15.34 dBm VBW 50 kHz

34.3 dBm 2.15510671 GHz SWT 8.5 ms Unit dBm

Date: 1.JUN.2006 10:19:40

Notes: UPPER BANDEDGE, Tx 2152.4 MHz

Test report No.: 66937R1

Test Data – Spurious Emissions

ta Plot	<u>.</u>	<u>Spuri</u>	<u>ous Emi</u>	ssions at	t Antenn	<u>a Termina</u>	
e <u>3</u> of <u>4</u>				_			Complete x
No.:	69937		_		01/06/2006	-	Preliminary:
cification:	PT27		Temp	erature (°C): _ lumidity (%): _	23	-	
ed By:	Timo Hietala		Relative F	lumidity (%):	35	-	
T.:	WCDMA TRA		CLIANNEL				
iguration:	TX FULL POV	VER MIDDLE	CHANNEL				
ple Number					DDW.	Defende plate	Management
ation:	NET/IMN Oul	<u>u</u>				Refer to plots	Measurement
ector type:	Peak	_			VBW:	Refer to plots	Distance: N/A
t Equipme	ent Used						
enna:		_		Direction	onal Coupler:		
Amp:							
r:					Cable #2:		
eiver:	1						
nuator #1:	13	_			Cable #4:		
nuator #2:					Mixer:		
itional equip							
surement U	ncertainty:	± 0.7 dB	_				
\		Marker	1 [T1]		RBW	1 MHz	RF Att 26 dB
Ref L	vl		-27	.85 dBm	VBW	1 MHz	
36.9	dBm	:	1.357274	155 GHz	SWT	5 s ₂	Unit dBm
20.	9 dB Offs	. L +				▼ .	
20.	J GB OILS	, ,				▼ 1 [T	1] -27.85 dBm
30							1.35727455 GHz
						∇ ₂ [T	1] 45.59 dBm
							2.13697395 GHz
20							2.1300/300 GHZ
10							
0							
_D1 -	13 dBm-						
20							
- 1							
				1		11	
30							
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	want to	manual hall have many
July	mhomphi	apm~~lm	T-MINUM	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		] ``	
10				<u>                                     </u>			
40							
							<b> </b>
- 0							<b> </b>
50							
							<b> </b>
							<b> </b>
60	1						
. 1			1	i I			1

Notes: PA1 Tx 2132.5 MHz



FCC ID: UAFFRIA-01

Type: FRIA Test report No.: 66937R1

## **Test Data – Spurious Emissions**

Nemko Oy, Finland

Data Plot	<u> </u>	<u>Spu</u>	ious Emi	issions a	t Antenn	a Term	inal			
Page <u>4</u> of <u>4</u>									mplete <u>x</u>	_
Job No.:	69937				01/06/2006	-		Prelim	inary:	_
Specification:	PT27			erature (°C):						
Tested By:	Timo Hietala		Relative I	Humidity (%):	35	_				
E.U.T.:	WCDMA TRA	NSMITTER								
Configuration:	TX FULL POV	VER MIDDL	E CHANNEL							
Sample Number	: 1									
Location:	NET/IMN Ou	lu			RBW:	Refer to p	lots	Measure	ement	
Detector type:	Peak	_				Refer to p			ance: N/A	m
Test Equipme	ent Used									
Antenna:				Direct	onal Coupler:					
Pre-Amp:					Cable #1:	-				
Filter:	12				Cable #2:					
Receiver:	1	_			Cable #3:					
Attenuator #1:	14				Cable #4:					
	14	_								
Attenuator #2:		_			Mixer:					
Additional equip		0.7.11								
Measurement U	ncertainty:	± 0.7 dl	<u> </u>							
		Marke	r 1 [T1]		RBW	1 M	IHz	RF Att	0 dB	3
🥙 Ref L	vl		-29	.45 dBm	VBW	1 M	IHz			
-4.9	dBm		4.26252	505 GHz	SWT	2	s	Unit	dв	m
-4.9										_
25.	1 dB Offs	set								
-10										_ A
—D1 -	-13 dBm									1
-20										4
	1									
-30	7									
-30										1
										1м.
-40										-  ····
-50										┨
	ایم. اا	M		1 1			١ ,		. <b>.</b>	EX
بيدا	hummy	ا	Melmongon	1.M mN.	mumul	المكريالين	\~~\ [']	When me work	LML/MuuMu	А
	0 40	144	· Jamen Land		"	•				`
-60										
-70										1
-80										4
0.0										
-90										1
-100		+	+	+	+					-
II .	1	1	1	1	ı		ĺ	1	1	
-104										

Date: 1.JUN.2006 11:34:01

Notes: PA1 Tx 2132.5 MHz



Test report No.: 66937R1

## 6. Field Strength of Spurious

NAME OF TEST: Field Strength of Spurious Emissions PARA.NO.: 27.53(g), 2.1053

TESTED BY: Timo Hietala DATE: 01/06/2006

Test Results: Complies.

**Test Data:** See attached table.

Frequency	Spurious Emission
(MHz)	EIRP (dBm)
4226	-30.0
4265	-23.6
4915	-36.0
8529	-42.4

**Equipment used:** 15, 16, 17, 18, 19, 23, 24, 25, 26

Measurement

Uncertainty: ± 5.2 dB.

Temperature: 23 °C.

Relative

Humidity: 35 %.

NOTE:

The spectrum was searched from 30 MHz to the 10th harmonic of the carrier.



Test report No.: 66937R1

#### **Test Data - Radiated Emissions**

Nemko Oy, Finland

<b>Data Plot</b>		<b>Radiated Emissions S</b>	ubstitutio	n Method			
Page <u>1</u> of <u>1</u>					Complete	х	_
Job No.:	69937	Date:	01/06/2006		Preliminary:		_
Specification:	PT27	Temperature (°C):	23				ļ
Tested By:	Timo Hietala	Relative Humidity (%):	35				ļ
E.U.T.:	WCDMA TRANS	MITTER					ļ
Configuration:	TX FULL POWER	R MIDDLE and BOTTOM CHANNEL					
Sample Number:	1						ļ
Location:	NET/IMN Oulu		RBW:	1 MHz	Measurement		ļ
Detector type:	Ave		VBW:	1 MHz	Distance:	3	_ m
Test Equipme	nt Used						
Antenna:	17 and 18	Direction	onal Coupler:				ļ
Pre-Amp:	24		Cable #1:				
Filter:			Cable #2:				ļ
Receiver:	16		Cable #3:				ļ
Attenuator #1:	-		Cable #4:				ļ
Attenuator #2:			Mixer:				ļ
Additional equipm	nent used:	19,23,25 and 26					
Measurement Un	certainty:	± 5.2 dB					

Frequency (MHz)	Meter Reading (dBm)	Correction Factor (dB)	Gen. Level (dBm)	Substitution Antenna Gain (dBi)	EIRP (dBm)	EIRP	Polarity	Comments
4226	-60.92	16.84	-23.7	10.5	-30.0	0.99	VER	
4265	-53.72	16.84	-17.3	10.5	-23.6	4.33	VER	
4915	-65.82	17.39	-29.6	11.0	-36.0	0.25	VER	
8529	-85.20	19.87	-34.1	11.6	-42.4	0.06	HOR	

PA1 2132.5MHz and PA2 2112.6 MHz Notes:

All other indicated spurious were at least 20 dB below the relevant limit. Searched spectrum to the 10th harmonic of carrier.



Test report No.: 66937R1

#### Test Data - Radiated Emissions 30 MHz -1000 MHz



**Notes:** PA1 2132.5MHz and PA2 2112.6 MHz

. 1)Limit line (84.4 dBuV/m) is converted from substitution limit (–13 dBm) to unit dBuV/m in 3 meter measurement distance.



Test report No.: 66937R1

## 7. Frequency stability

NAME OF TEST: Frequency stability PARA.NO.: 27.54, & 2.1055

TESTED BY: Timo Hietala DATE: 02/06/2006

Test Results: Complies.

**Standard Test Frequency:** 2132.5 MHz.

Standard Test Voltage: 48 V DC.

**Equipment used:** 1, 5, 6, 7, 8, 9.

**EUT:** WCDMA TRANSMITTER.

**Configuration:** TX FULL POWER MIDDLE CHANNEL.

Measurement Data: Frequency stability with voltage variation.

Voltage (V DC)	Temp (°C)	Rated (Hz/ppm)	Deviation (Hz)	Deviation (ppm)
48.0	20	106 / 0.05	18	0.008633
55.2	20	106 / 0.05	30	0.013965
40.8	20	106 / 0.05	22	0.010242

Measurement

Uncertainty:  $\pm 0.001 \text{ ppm } (\pm 2.0 \text{ Hz}).$ 

Relative

Humidity: 35 %.



Test report No.: 66937R1

NAME OF TEST: Frequency stability PARA.NO.: 27.54, & 2.1055

TESTED BY: Timo Hietala DATE: 02/06/2006

Test Results: Complies.

**Standard Test Frequency:** 2132.5 MHz.

**Standard Test Voltage:** 48 V DC.

**Equipment used:** 1, 5, 6, 7, 8, 9.

**EUT:** WCDMA TRANSMITTER.

Configuration: TX FULL POWER MIDDLE CHANNEL.

Measurement Data: Frequency stability with temperature variation.

Voltage (V DC)	Temp (°C)	Rated (Hz/ppm)	Deviation (Hz)	Deviation (ppm)
48.0	50	106 / 0.05	-11	-0.00516
48.0	40	106 / 0.05	19	0.00891
48.0	30	106 / 0.05	48	0.022509
48.0	10	106 / 0.05	56	0.02626
48.0	0	106 / 0.05	65	0.030481
48.0	-10	106 / 0.05	65	0.030481
48.0	-20	106 / 0.05	81	0.037984
48.0	-30	106 / 0.05	92	0.043142

Measurement

Uncertainty:  $\pm 0.001 \text{ ppm } (\pm 2.0 \text{ Hz}).$ 



Test report No.: 66937R1

## 8. List of test equipment

Each active test equipment is calibrated annually.

Nr.	Equipment	Name of equipment	Serial number
1	Signal analyzer	Rohde & Schwarz:FSIQ26	836702/020
2	Network analyzer	Hewlett-Packard:HP8753E	US38431868
3	Network analyzer	Hewlett-Packard:HP8720ES	US39172107
4	Calibration kit	Hewlett-Packard:HP85032B	2919A04843
5	Enviromental chamber	Weiss technick	59226012320010
6	Frequency standard	Datum 8040	23006282
7	Interface Unit	Orbis TX SSU2100A	SSU-0346-999
8	DC power	Sörensen	9950C0085
9	Temperature/humidity meter	VAISALA HMI 31	P3730008
10	Signal analyzer	Rohde & Schwarz:FSIQ26	833370/009
11	Frequency standard	Datum 8040	0041005473
12	High Pass filter	Reactel 9HSX-3/20-S11	0531
13	Attenuator	MCE/Weinschel 67-20-33	BM0633
14	Attenuator	MCE/Weinschel 66-20-34	BM6886
15	Semianechoic chamber	Siemens Matsushita	Product No
		$9m \times 5m \times 6m$	S&M B83317-
		(room 0039)	C6019-T232
16	EMI Test Receiver	R&S ESIB 26	100335
17	LogPer Antenna	R&S HL025	349048/002
			(1-26 GHz)
18	Bilog Antenna	Chase CBL6112B	2694
19	Horn Antenna	Emco 3115	0102A06346
20	Biconical Antenna	R&S HK116	836891/009
21	Dipole VHF	Mess-Elektronik VHA9103	
22	Dipole UHF	Mess-Elektronik UHA9105	
23	Signal Generator	R&S SMR 20	1715
24	Amplifier	Miteq AFSX4	791117
25	Antenna Mast	Deisel HD240	2401323194
26	Mast Controller	Deisel HD100	1001331





FCC ID: UAFFRIA-01 Type: FRIA Test report No.: 66937R1

9. Photographs of Test Setup







FCC ID: UAFFRIA-01

Type: FRIA Test report No.: 66937R1





Test report No.: 66937R1

## 10. ANNEX A, TEST DETAILS

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

Minimum Standard: Para. No. 27.50 (d). Base stations are limited to 1640 watts peak

E.I.R.P. with an antenna height up to 300 meters HAAT. In no case may the peak output power of a base station transmitter

exceed 100 watts.

#### **Method Of Measurement:**

CDMA Per ANSI/J-STD-014 TDMA Per ANSI/J-STD-010

#### Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter or a spectrum analyzer.

## NAME OF TEST: Occupied Bandwidth

Minimum Standard: Para. No. 2.1049. The 99% occupied bandwidth is the width of a

frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to

0.5% of the emitted power.

#### **Method Of Measurement:**

The 99% occupied bandwidth of the carrier emission is measured using a spectrum analyzer with Resolution Bandwidth set to 1% of the necessary bandwidth of the transmitted carrier.

NAME OF TEST: Spurious Emission at Antenna Terminals PARA. NO.: 2.1051

Minimum Standard: Para. No. 27.53(g). On any frequency outside a licensee's

frequency block, the power of any emission shall be attenuated below the transmitter power by at least 43 + 10 log (P) dB.

## **Method Of Measurement:**

Spectrum analyzer settings:

RBW: 1 MHz VBW: 1 MHz

Within 1 MHz of the upper and lower edges of the assigned band of operation the resolution bandwidth is lowered to 1 % of the 26 dB occupied bandwidth of the transmitted carrier.

PARA. NO.: 2.1049



Test report No.: 66937R1

PARA. NO.: 2.1053

PARA. NO.: 2.1055

NAME OF TEST: Field Strength of Spurious Radiation

Minimum Standard: Para. No.227.53(g). On any frequency outside a licensee's

frequency block, the power of any emission shall be attenuated

below the transmitter power by at least 43 + 10 log (P) dB.

#### **Test Method:**

TIA/EIA-603-1992. Section 2.2.12

The antenna substitution method was used to determine the equivalent radiated power at spurious frequencies. The spurious emissions were measured at a distance of 3 meters. The EUT was then replaced with a reference substitution antenna with a known gain referenced to an isotropic. This antenna was fed with a signal at the spurious frequency. The level of the signal was adjusted to repeat the previously measured level. The resulting eirp is the signal level fed to the reference antenna corrected for gain referenced to an isotropic.

NAME OF TEST: Frequency Stability

Minimum Standard: Para. No. 27.54. The frequency stability shall be sufficient to

ensure that the fundamental emission stays within the

authorized frequency block.

#### **Method Of Measurement:**

Frequency Stability With Voltage Variation

The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency error is measure. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

#### Frequency Stability With Temperature Variation

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency error is measured.



Test report No.: 66937R1

## 11. ANNEX B, TEST DIAGRAMS

## RF Power Output PARA. NO.: 2.1046



## Occupied Bandwidth PARA. NO.: 2.1049



## Spurious Emission at Antenna Terminals PARA. NO.: 2.1051





Test report No.: 66937R1

## Field Strength of Spurious Radiation PARA. NO.: 2.1053



## Frequency Stability PARA. NO.: 2.1055

## Frequency Stability With Voltage Variation



## Frequency Stability With Temperature Variation

