БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра высшей математики

Г. П. РАЗМЫСЛОВИЧ

ГЕОМЕТРИЯ И АЛГЕБРА

Учебные материалы для студентов факультета прикладной математики и информатики

В пяти частях

Часть 3

ЛИНЕЙНЫЕ И БИЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ ВЕКТОРНЫХ ПРОСТРАНСТВ

МИНСК 2014

Рекомендовано советом факультета прикладной математики и информатики 29 октября 2013 г., протокол \mathbb{N}_{2} 2

Рецензент кандидат физико-математических наук, доцент В. И. Чесалин

Размыслович, Г. П.

Р17 Геометрия и алгебра : учебные материалы для студентов фак. прикладной математики и информатики. В 5 ч. Ч. З. Линейные и билинейные отображения векторных пространств /Г. П. Размыслович. — Минск : БГУ, 2014. — 71 с.

Излагаются основные понятия отображений, линейных отображений и линейных преобразований векторных пространств, билинейные и квадратичные формы.

Предназначены для студентов факультета прикладной математики и информатики, механико-математического факультета, а также может представлять интерес и для студентов технических вузов, где преподается курс высшей математики.

УДК [514+512] (075.8) ББК 22.14+22.15я73-1

- © Размыслович Г. П., 2014
- © БГУ, 2014

Предисловие

Данное учебное издание является третьей частью цикла учебных пособий по курсу "Геометрия и алгебра", читаемого для студентов ФПМИ БГУ и соответствует всем типовым программам этого курса для высших учебных заведений по специальностям: 1-31 03 03 "Прикладная математика"; 1-31 03 04 "Информатика"; 1-31 03 05 "Актуарная математика"; 1-31 03 06-01 "Экономическая кибернетика; 1-98 01 01-01 "Компьютерная безопасность" (утвержденны Министерством образования Республики Беларусь от 24.09.2008 г.), а также учебной программе Учреждения образования "Белорусский государственный университет" по учебной дисциплине "Геометрия и алгебра" для указанных выше специальностей (утвержденная 17.10.2013 г.).

Основу излагаемого материала составляют учебные пособия "Геометрия и алгебра" и "Сборник задач по геометрии и алгебре" (авторы: Размыслович Г.П., Феденя М.М., Ширяев В.М.).

Это пособие состоит из семи глав, содержащих теоретический материал, примеры решения задач и цикл задач для самостоятельного решения с ответами.

Отметим, что в данном издании используются следующие обозначения: \blacklozenge — начало доказательства утверждения, \blacksquare — конец доказательства, \Rightarrow — необходимость или знак импликации ("следует"), \Leftarrow — достаточность, \Leftrightarrow — необходимость и достаточность, равносильность, \exists — квантор существования ("существует"), \forall — квантор общности ("для любого"), \in — принадлежность, \subset — включение множеств, \times — декартово произведение множеств.

1. ОТОБРАЖЕНИЯ

Пусть X и Y — два произвольных непустых множества.

Определение 1.1. Соответствие, сопоставляющее каждому элементу из множества X единственный элемент из множества Y, называется omoбpaжeнием множества <math>X в множество Y.

Обозначим отображение множества X в множество Y буквой f и, чтобы подчеркнуть, что f — это отображение X в Y, будем записывать

$$f: X \longrightarrow Y$$
 или $X \stackrel{f}{\longrightarrow} Y$.

Отображение f называют также ϕy нкцией, заданной на множестве X со значениями во множестве Y. Термин функция чаще всего употребляют для отображений числовых множеств в числовые множества.

Определение 1.2. Элемент $y \in Y$, соответствующий элементу $x \in X$ при отображении f, называется образом элемента x и обозначается f(x), а элемент x в этом случае называется прообразом элемента y.

В связи с этим для обозначения отображения употребляют также записи

$$x \longmapsto f(x)$$
 или $y = f(x)$.

Возможно также употребление записи, при которой в явном виде указывается соответствие между элементами множеств X и Y:

$$f: X \longrightarrow Y$$

 $x \longmapsto f(x).$

Определение 1.3. Два отображения $f: X \to Y$ и $\varphi: X \to Y$ называются равными, если результаты их действия одинаковы, т.е. для любого элемента $x \in X$ выполняется равенство $f(x) = \varphi(x)$.

Равенство отображений f и φ обозначается $f = \varphi$.

Пусть $f: X \longrightarrow Y$, а y — некоторый фиксированный элемент из Y.

Определение 1.4. Множество (возможно, пустое) $\{x \in X \mid y = f(x)\}$ всех элементов из X, для которых y является образом при отображении f, называется *полным прообразом элемента* y при отображении f и обозначается $f^{-1}(y)$.

Множество X называют множеством отправления или множством определения отображения f и обычно обозначают D(f) или Dom f; подмножество Y^* множества Y называют множеством прибытия или множеством значений отпображения f, если $Y^* = \{y \in Y \mid y = f(x), \ x \in X\},$ множество значений отображения f обычно обозначают E(f).

Определение 1.5. Прообразом подмножества $Y' \subset Y$ называется множество всех $x \in X$, для которых $f(x) \in Y'$.

Прообраз подмножества Y' обозначается $f^{-1}(Y')$, т.е. $f^{-1}(Y')=\{x\in X\mid f(x)\in Y'\}.$

Определение 1.6. Образом подмножества $X' \subset X$ называется множество всех значений отображения f на всех элементах множества X'.

Образ подмножества X' обозначается f(X'), т.е. $f(X') = \{f(x) \mid x \in X'\}$.

Определение 1.7. *Композицией* двух отображений $f: X \longrightarrow Y$, $g: Y \longrightarrow Z$ называют отображение $h: X \longrightarrow Z$, определяемое соотношением $h(x) = g(f(x)), \ \forall x \in X$.

Композиция отображений обычно обозначается $g \circ f$. Очевидно, что композиция (как операция над отображениями) ассоциативна, т.е. $h \circ (g \circ f) = (h \circ g) \circ f$, поэтому при записи композиции нескольких подряд идущих отображений можно опускать скобки. В тех случаях, когда вместо термина отображение используют термин функция, композицию функций называют также сложной функцией.

Определение 1.8. Отображение $f: X \longrightarrow Y$ называется *инъек- тивным* (*инъекцией*, *вложением*, *отображением* s), если оно переводит разные элементы в разные, т.е. если $x_1 \neq x_2$, то $f(x_1) \neq f(x_2)$.

Определение 1.9. Отображение $f: X \longrightarrow Y$ называется *сюръек- тивным* (*сюръекцией*, *наложением*, *отображением на*), если множество его значений совпадает со множеством Y, т.е. если f(X) = Y.

Определение 1.10. Отображение $f: X \longrightarrow Y$ называется биективным (биекцией, взаимно однозначным), если оно одновременно и инъективно, и сюръективно.

Замечание 1.1. Если f — биекция, то существует *обратное* отображение f^{-1} , для которого $f^{-1}(y) = x \Longleftrightarrow f(x) = y$. Заметим, что для биективного отображения f равенства $f^{-1}(f(x)) = x$ и $f(f^{-1}(y)) = y$ выполнены для любых $x \in X$ и $y \in Y$.

Примеры отображений

Пример 1.1. Рассмотрим четыре отображения:

1)
$$f_1: R \longrightarrow \mathbb{R}$$
, 2) $f_2: [-\pi/2, \pi/2] \longrightarrow R$, $x \longmapsto f_1(x) = \sin x$; $x \longmapsto f_2(x) = \sin x$;

3)
$$f_3: R \longrightarrow [-1,1],$$
 4) $f_4: [-\pi/2, \pi/2] \longrightarrow [-1,1],$ $x \longmapsto f_3(x) = \sin x;$ $x \longmapsto f_4(x) = \sin x.$

Отображение f_1 не является ни инъективным, ни сюръективным, f_2 — иньективно, но не сюръективно, f_3 — сюръективно, но не инъективно, а отображение f_4 — биективно. Только для последнего отображения существует обратное отображение

$$f_4^{-1}: [-1,1] \longrightarrow [-\pi/2,\pi/2],$$

 $x \longmapsto f_4^{-1}(x) = \arcsin x$

Пример 1.2. Отображение $f: R \times R \to \Pi$, которое каждой упорядоченной паре действительных чисел ставится в соответствие точка на плоскости. Это отображение является биективным отображением.

2. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ ВЕКТОРНЫХ ПРОСТРАНСТВ

2.1. Определение. Примеры

Пусть P — некоторое поле и V, V' — два векторных (линейных) пространства над полем P.

Определение 2.1. Отображение $f:V\to V'$ называется *линейным*, если для любых двух векторов $\pmb{x}_1,\pmb{x}_2\in V$ и любого скаляра $\lambda\in P$ справедливы равенства:

1)
$$f(\mathbf{x}_1 + \mathbf{x}_2) = f(\mathbf{x}_1) + f(\mathbf{x}_2);$$

$$2) f(\lambda \mathbf{x}_1) = \lambda f(\mathbf{x}_1).$$

Система условий 1), 2) равносильна, очевидно, условию, что

$$f(\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2) = \lambda_1 f(\mathbf{x}_1) + \lambda_2 f(\mathbf{x}_2),$$

для любых векторов $\boldsymbol{x}_1, \boldsymbol{x}_2$ пространства V и любых скаляров $\lambda_1, \lambda_2 \in P$.

Примеры линейных отображений

Пример 2.1. Тождественное отображение $e: V \to V$ пространства V в себя, определяемое формулой $e(\mathbf{x}) = \mathbf{x}, \forall \mathbf{x} \in V$.

Пример 2.2. Нулевое отображение $0:V\to\{{\bf 0}\}$, определяемое формулой $0({\bf x})={\bf 0}$. **Пример 2.3.** В пространстве V_3 свободных векторов фиксируем какой-либо базис. Тогда любому вектору ${\bf x}\in V_3$ можно поставить в соответствие координатный столбец $\left[\begin{array}{c}x_1\end{array}\right]$

 $X=\left[egin{array}{c} x_1\\ x_2\\ x_3 \end{array}
ight],~X\in R_{3,1}.~$ И, следовательно, формулой $f({m x})=X$ определяется линейное отображение $f:V_2\to R_{2,1}$

Пример 2.4. Формулой $f({\pmb x})=x_1+ix_2, {\pmb x}\in V_3, {\pmb x}\to X=\left[egin{array}{c} x_1\\x_2\\x_3 \end{array}\right]\in R_{3,1},$ опре-

деляется линейное отображение пространства V_3 в пространство комплексных чисел над полем R.

2.2. Свойства линейных отображений

 1° . Если $f:V\to V',\, \varphi:V'\to V''$ — линейные отображения, то и отображение $\varphi\circ f:V\to V'',$ определяемое формулой

$$(\varphi \circ f)(\mathbf{x}) = \varphi(f(\mathbf{x})), \ \forall \mathbf{x} \in V,$$

является линейным.

 $igoplus \Pi$ усть $m{a}, m{b} \in V$, $\alpha, \beta \in P$. Тогда $(\phi \circ f)(\alpha m{a} + \beta m{b}) = \phi(f(\alpha m{a} + \beta m{b})) = \phi(\alpha f(m{a}) + \beta f(m{b})) = \alpha \phi(f(m{a})) + \beta \phi(f(m{b})) = \alpha(\phi \circ f)(m{a}) + \beta(\phi \circ f)(m{b})$. \blacksquare 2°. Пусть $V = V_n$ и V' — два векторных пространства над полем P и

система векторов

$$(\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n) \tag{2.1}$$

- базис пространства V, а

$$(\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n) \tag{2.2}$$

— произвольная система векторов пространства V'. Тогда существует единственное линейное отображение $f:V\to V'$, такое что

$$f(\boldsymbol{e}_i) = \boldsymbol{a}_i, \ i = \overline{1, n}. \tag{2.3}$$

lacktriangle Пусть $oldsymbol{x}$ — произвольный вектор пространства V_n . Тогда

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \ldots + x_n \mathbf{e}_n, \tag{2.4}$$

где x_i , $i = \overline{1, n}$, — координаты вектора \boldsymbol{x} в базисе (2.1). Определим отображение f формулой

$$f(\mathbf{x}) = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \ldots + x_n \mathbf{a}_n. \tag{2.5}$$

Нетрудно видеть, что $f(\boldsymbol{e}_i) = \boldsymbol{a}_i$. Покажем, что f — линейное отображение. Для этого, наряду с вектором \boldsymbol{x} рассмотрим вектор $\boldsymbol{y} \in V$ и λ, μ — некоторые скаляры из поля P. Разложим вектор \boldsymbol{y} по базису (2.1), получим

$$\mathbf{y} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + \ldots + y_n \mathbf{e}_n. \tag{2.6}$$

Тогда вектор $\lambda \pmb{x} + \mu \pmb{y}$ имеет координаты $\lambda x_i + \mu y_i, \; i = \overline{1,n},$ и, значит,

$$f(\lambda \boldsymbol{x} + \mu \boldsymbol{y}) = \sum_{i=1}^{n} (\lambda x_i + \mu y_i) \boldsymbol{a}_i = \lambda \sum_{i=1}^{n} x_i \boldsymbol{a}_i + \mu \sum_{i=1}^{n} y_i \boldsymbol{a}_i = \lambda f(\boldsymbol{x}) + \mu f(\boldsymbol{y}).$$

Таким образом, f — линейное отображение.

Докажем единственность отображения f, определяемого формулой (2.5).

От противного. Пусть существует еще одно линейное отображение $\varphi:V\to V'$ — такое, что $\varphi(\pmb{e}_i)=\pmb{a}_i,\,i=\overline{1,n}.$ Учитывая, что вектор \pmb{x} имеет в базисе (2.1) координаты $x_1,x_2,\ldots,x_n,$ имеем

$$\varphi(\mathbf{x}) = \varphi(\sum_{i=1}^n x_i \mathbf{e}_i) = \sum_{i=1}^n x_i \varphi(\mathbf{e}_i) = \sum_{i=1}^n x_i \mathbf{a}_i = f(\mathbf{x}), \ \forall \mathbf{x} \in V.$$

Поскольку это равенство выполняется для любого вектора $x \in V$, то, на основании определения равенства отображений, следует, что $\varphi = f$.

 3° . Если $f:V\to V'$ — линейное отображение, а ${\bf 0}_V,\,{\bf 0}_{V'}$ — нулевые векторы пространств V и V' соответственно, то

$$f(\mathbf{0}_V) = \mathbf{0}_{V'}.$$

 $igle f(m{0}_V) = f(0 \cdot m{a}) = 0 \cdot f(m{a}) = m{0}_{V'}, \, orall m{a} \in V. \ m{\square}$ 4°. Если f: V o V' - линейное отображение и $m{a} \in V$, то

$$f(-\boldsymbol{a}) = -f(\boldsymbol{a}).$$

♦ $f(-a) + f(a) = f(-1)a) + f(a) = f((-1)a + a) = f(\mathbf{0}_V) = \mathbf{0}_{V'}$. Отсюда следует, что вектор f(-a) является противоположным вектору f(a), а, следовательно, f(-a) = -f(a), ■

 5° . Пусть $f:V \to V'$ — линейное отображение. Если

$$(\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_k) \tag{2.7}$$

— линейно зависимая система векторов пространства V, то линейно зависима и система векторов

$$(f(\boldsymbol{a}_1), f(\boldsymbol{a}_2), \dots, f(\boldsymbol{a}_k)) \tag{2.8}$$

пространства V'. При этом сохраняются все линейные соотношения между векторами. Более точно, если

$$\boldsymbol{b} = \alpha_1 \boldsymbol{a}_1 + \alpha_2 \boldsymbol{a}_2 + \ldots + \alpha_k \boldsymbol{a}_k, \tag{2.9}$$

для некоторых скаляров $\alpha_i \in P, i = \overline{1, k}$, то

$$f(b) = \alpha_1 f(a_1) + \alpha_2 f(a_2) + \ldots + \alpha_k f(a_k).$$
 (2.10)

lacktriangle Поскольку система векторов (a_1, a_2, \dots, a_k) линейно зависима, то существуют скаляры $\beta_i \in P, i = \overline{1, k}$, не все одновременно равные нулю, и такие, что выполняется равенство

$$\beta_1 \boldsymbol{a}_1 + \beta_2 \boldsymbol{a}_2 + \ldots + \beta_k \boldsymbol{a}_k = \boldsymbol{0}_V.$$

Отсюда

$$f(\beta_1 \mathbf{a}_1 + \beta_2 \mathbf{a}_2 + \ldots + \beta_k \mathbf{a}_k) = f(\mathbf{0}_V) \Leftrightarrow$$

$$\beta_1 f(\mathbf{a}_1) + \beta_2 f(\mathbf{a}_2) + \ldots + \beta_k f(\mathbf{a}_k) = \mathbf{0}_{V'}.$$

Следовательно, система векторов (2.8) линейно зависима.

Доказательство того, что из равенства (2.9) следует (2.10), производится аналогичным образом.

Замечание 2.1. Отметим, что если система векторов (2.7) линейно независима, то отсюда еще не следует, что и система (2.8) линейно независима.

- 6° . Если $f:V\to V'$ линейное отображение и Q подпространство пространства V, то f(Q) подпространство пространства V' и $\dim f(Q) \leq \dim Q$. В частности, f(V) подпространство пространства V' и $\dim f(V) \leq \dim V$.
- Пусть c, d произвольные векторы из множества f(Q), и α, β произвольные скаляры из поля P. Так как $c, d \in f(a)$, то найдутся векторы $a, b \in Q$ такие, что f(a) = c, f(b) = d. Но тогда $f(\alpha a + \beta b) = \alpha f(a) + \beta f(b) = \alpha c + \beta d$. Так как $\alpha a + \beta b \in Q$, то $f(\alpha a + \beta b) = \alpha c + \beta d \in f(Q)$, откуда на основании критерия подпространства следует, что f(Q) подпространство пространства V'.

Пусть $(\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_k)$ — базис подпространства Q, тогда $Q = L(\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_k)$, а, следовательно, $f(Q) = L(f(\boldsymbol{e}_1), f(\boldsymbol{e}_2), \dots, f(\boldsymbol{e}_k))$. Если система $(f(\boldsymbol{e}_1), f(\boldsymbol{e}_2), \dots, f(\boldsymbol{e}_k))$ линейно независима, то $\dim f(Q) = k = \dim Q$, в противном случае $\dim f(Q) \leq \dim Q$.

3. ИЗОМОРФИЗМ ВЕКТОРНЫХ ПРОСТРАНСТВ

Рассмотрим два векторных пространства V и V' над полем P.

Определение 3.1. Биективное линейное отображение пространства V в пространство V' называется изоморфным отображением пространства V в пространство V'.

Если такое изоморфное отображение существует, то говорят, что пространство V изоморфно пространству V', и пишут $V \cong V'$.

Свойства изоморфизма.

- $1^{\circ}. V \cong V$:
- 2° . Если $V\cong V'$, то $V'\cong V$;
- 3° . Если $V\cong V'$ и $V'\cong V''$, то $V\cong V''$.

Из указанных свойств следует, что множество всех линейных пространств над одним и тем же полем P разбивается на классы изоморфных между собой пространств.

4°. При изоморфизме линейно независимая система векторов переходит в линейно независимую систему векторов.

♦ Пусть

$$(\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_k) \tag{3.1}$$

— линейно независимая система векторов в пространстве V, а f — изоморфное отображение пространства V в пространство V'.

Покажем, что система векторов $(f(\boldsymbol{a}_1),\dots,f(\boldsymbol{a}_k))$ линейно независима в пространстве V'.

От противного. Пусть $(f(\boldsymbol{a}_1),\dots,f(\boldsymbol{a}_k))$ — линейно зависимая система векторов в пространстве V'. Тогда существуют $\alpha_i\in P,\,i=\overline{1,k},$ $\sum\limits_{i=1}^k|\alpha_i|^2>0$ и такие, что $\sum\limits_{i=1}^k\alpha_if(\boldsymbol{a}_i)=\mathbf{0}_{V'}$. Так как отображение f линей-

но, то из равенства $\sum\limits_{i=1}^k lpha_i f(\pmb{a}_i) = \pmb{0}_{V'}$ следует, что выполняется и равенство

$$f\left(\sum_{i=1}^{k} \alpha_i \boldsymbol{a}_i\right) = \mathbf{0}_{V'}. \tag{3.2}$$

Учитывая, что f — биективное отображение, то для него существует обратное биективное отображение f^{-1} пространства V' в пространство V.

Применим f^{-1} к равенству (3.2). Имеем

$$f^{-1}(f(\sum_{i=1}^k \alpha_i \boldsymbol{a}_i)) = f^{-1}(\boldsymbol{0}_{V'}) \Leftrightarrow e(\sum_{i=1}^k \alpha_i \boldsymbol{a}_i) = \boldsymbol{0}_V \Leftrightarrow \sum_{i=1}^k \alpha_i \boldsymbol{a}_i = \boldsymbol{0}_V, (3.3)$$

причем $\sum_{i=1}^k |\alpha_i|^2 > 0$. Из (3.3) следует, что система (3.1) линейно зависима. Противоречие.

Следовательно, система векторов $(f(\boldsymbol{a}_1), \dots, f(\boldsymbol{a}_k))$ линейно независима в пространстве V'.

Следствие 3.1. При изоморфизме базис переходит в базис.

Следствие 3.2. Размерности изоморфных пространств равны.

Теорема 3.1. (критерий изоморфизма векторных пространств). Два векторных пространства над одним и тем же полем P изоморфны тогда и только тогда, когда равны их размерности.

♦ Необходимость. Очевидным образом следует из следствия 3.2.

Достаточность. Пусть размерности пространств V и V' равны, т.е. $\dim V = \dim V' = n$ и система векторов

$$(\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n) \tag{3.4}$$

— базис пространства V, а система векторов

$$(\boldsymbol{e}_1', \boldsymbol{e}_2', \dots, \boldsymbol{e}_n') \tag{3.5}$$

— базис пространства V'.

Рассмотрим некоторый вектор $\mathbf{x} \in V$. Разложим его по базису (3.4)

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \ldots + x_n \mathbf{e}_n,$$

где $x_i \in P, i = \overline{1, n}$.

Тогда на основании свойств линейных отображений векторных пространств, существует единственное линейное отображение $f:V\to V',$ определяемое формулой

$$f(\mathbf{x}) = x_1 \mathbf{e}_1' + \ldots + x_n \mathbf{e}_n' \tag{3.6}$$

и такое, что $f(oldsymbol{e}_i) = oldsymbol{e}_i', i = \overline{1,n}.$

Покажем, что отображение f, определяемое формулой (3.6), является изоморфным отображением. Докажем первоначально, что f — инъекция. Наряду с вектором $\mathbf{x} \in V$ рассмотрим вектор $\mathbf{y} \in V$ ($\mathbf{y} \neq \mathbf{x}$) и разложим его по базису (3.4):

$$\mathbf{y} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + \ldots + y_n \mathbf{e}_n, \ y_i \in P, \ i = \overline{1, n}.$$

Так как $\mathbf{y} \neq \mathbf{x}$, то их координаты различны. А тогда из (3.6) следует, что $f(\mathbf{x}) \neq f(\mathbf{y})$.

Докажем, что f — сюръекция. Действительно, рассмотрим некоторый вектор $\mathbf{y}' \in V'$. Разложим \mathbf{y}' по базису (3.5) имеем $\mathbf{y} = y_1' \mathbf{e}_1 + \ldots + y_n' \mathbf{e}_n$

$$y' = y_1'e_1' + y_2'e_2' + \ldots + y_n'e_n',$$

где $y_i' \in P, i = \overline{1,n}$. Но тогда ясно, что вектор $y_1' = \boldsymbol{e}_1 + y_2' \boldsymbol{e}_2 + \ldots + y_n' \boldsymbol{e}_n \in V$ причем $f(y_1' \boldsymbol{e}_1 + \ldots + y_n' \boldsymbol{e}_n) = \boldsymbol{y}'$.

Следствие 3.3. При фиксированном поле P и размерности n существует единственное n-мерное, с точностью до изоморфизма, векторное пространство над полем P. А именно, любое n-мерное векторное пространство над полем R изоморфно арифметическому пространству $R_{n,1}$ — столбцов длины n над полем R или арифметическому пространству $R_{1,n}$ — строк длины n над полем R. А всякое n-мерное векторное пространство над полем C изоморфно арифметическому пространству $C_{n,1}$ либо $C_{1,n}$ над полем C.

4. ЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ ВЕКТОРНЫХ ПРОСТРАНСТВ

4.1. Определение и примеры

Пусть P — некоторое поле и V — векторное пространство над полем P.

Определение 4.1. Линейное отображение f пространства V в себя, т.е. $f:V\to V$, называется линейным преобразованием (линейным оператором, эндоморфизмом) пространства V.

Примеры линейных преобразований.

Пример 4.1. Нулевое линейное отображение $0:V\to V$, определяемое для каждого вектора ${\pmb a}$ пространства V формулой $0({\pmb a})={\pmb 0}.$

Пример 4.2. Пусть λ — некоторый скаляр из поля P. Определим образ каждого вектора ${\pmb x}$ пространства V формулой $f({\pmb x}) = \lambda {\pmb x}$. Тогда f — линейное преобразование пространства V, которое называется $onepamopom\ nodoбия$.

Отметим, что линейность отображения f следует из соотношений

$$f(\alpha a + \beta b) = \lambda \alpha a + \lambda \beta b = \alpha f(a) + \beta f(b), \forall a, b \in V, \alpha, \beta \in P.$$

Пример 4.3. В пространстве V_3 геометрических векторов над полем R поворот всех векторов на угол α вокруг одной из осей, проектирование параллельно одной из осей являются линейными преобразованиями пространства V_3 .

Пример 4.4. В пространстве P[x] (пространство всех многочленов от переменной x над полем P) отображение $f:P[x]\to P[x]$, определяемое формулой $f(\varphi(x))=\varphi'(x), \varphi(x)\in P[x]$, является линейным преобразованием.

Пример 4.5. Рассмотрим $P_{n,n}$ — пространство квадратных матриц порядка n над полем P.

Отображение $f: P_{n,n} \to P_{n,n}$ определяемое формулой $f(A) = A^T$, является линейным преобразованием этого векторного пространства.

4.2. Матрица линейного преобразования

Пусть f — линейное преобразование пространства V_n , а

$$\mathbf{E} = (\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n) \tag{4.1}$$

— базис этого пространства. Найдем образы базисных векторов системы (4.1) при отображении f, т.е.

$$f(\mathbf{E}) = (f(\mathbf{e}_1), f(\mathbf{e}_2), \dots, f(\mathbf{e}_n)),$$
 (4.2)

и разложим их по базису (4.1). Имеем

$$\begin{cases}
f(\mathbf{e}_{1}) = a_{11}\mathbf{e}_{1} + a_{21}\mathbf{e}_{2} + \dots + a_{n1}\mathbf{e}_{n}, \\
f(\mathbf{e}_{2}) = a_{12}\mathbf{e}_{1} + a_{22}\mathbf{e}_{2} + \dots + a_{n2}\mathbf{e}_{n}, \\
\dots \\
f(\mathbf{e}_{n}) = a_{1n}\mathbf{e}_{1} + a_{2n}\mathbf{e}_{2} + \dots + a_{nn}\mathbf{e}_{n}, \ a_{ij} \in P, \ i, j = \overline{1, n}.
\end{cases} (4.3)$$

Составим матрицу

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}, \tag{4.4}$$

столбцами которой служат координатные столбцы векторов системы (4.2) в базисе (4.1).

Определение 4.2. Матрица, составленная из координатных столбцов образов базисных векторов при линейном преобразовании f пространства V_n , записанных в том же базисе пространства, называется матрицей линейного преобразования f в рассматриваемом базисе пространства V_n .

Таким образом, каждому линейному преобразованию пространства V_n в заданном базисе соответствует некоторая квадратная матрица порядка n. Справедливо и обратное: всякой матрице порядка n над полем P при фиксированном базисе пространства V_n можно поставить в соответствие некоторое линейное преобразование этого пространства.

Пусть \mathbf{x} — произвольный вектор пространства $V_n, x_1, x_2, \dots, x_n$ — координаты этого вектора в базисе (4.1), т.е. имеет место разложение

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \ldots + x_n \mathbf{e}_n, \ x_i \in P, \ i = \overline{1, n}, \tag{4.5}$$

а координаты y_1, y_2, \dots, y_n вектора $\boldsymbol{y} = f(\boldsymbol{x})$ в том же базисе (4.1). Тогда, с одной стороны, имеем

$$y = f(x) = y_1 e_1 + y_2 e_2 + \ldots + y_n e_n.$$
 (4.6)

С другой стороны,

$$y = f(x) = f(x_{1}e_{1} + x_{2}e_{2} + \dots + x_{n}e_{n}) = x_{1}f(e_{1}) + +x_{2}f(e_{2}) + \dots + x_{n}f(e_{n}) = x_{1}(a_{11}e_{1} + a_{21}e_{2} + \dots + a_{n1}e_{n}) + +x_{2}(a_{12}e_{1} + \dots + a_{n2}e_{n}) + \dots + x_{n}(a_{1n}e_{1} + \dots + a_{nn}e_{n}) = = (a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n})e_{1} + +(a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n})e_{2} + + \dots + (a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n})e_{n}.$$

$$(4.7)$$

Сравнивая (4.6) и (4.7), получаем

$$\begin{cases}
y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n, \\
y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n, \\
\dots \\
y_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n.
\end{cases} (4.8)$$

Соотношения (4.8) выражают зависимость между координатами образа и прообраза одного и того же вектора при линейном преобразовании f.

Отметим, что систему соотношений (4.8) можно записать в матричном виде

столбцы соответственно векторов x и y, в базисе (4.1), а A — матрица линейного преобразования f записанная в том же базисе (4.1).

Примеры матриц линейных преобразований

Пример 4.6. Нулевое линейное преобразование $0:V_n\to V_n$, определяемое формулой $0(\boldsymbol{x})=\boldsymbol{0}$. Пусть $(\boldsymbol{e}_1,\boldsymbol{e}_2,\ldots,\boldsymbol{e}_n)$ — некоторый базис V_n . Тогда $0(\boldsymbol{e}_i)=\boldsymbol{0},\ \forall i=\overline{1,n}$. По свойствам векторных пространств $\boldsymbol{0}=0\cdot\boldsymbol{e}_1+0\cdot\boldsymbol{e}_2+\ldots+0\cdot\boldsymbol{e}_n$. Следовательно, столбцами матрицы A нулевого линейного преобразования являются нулевые коорди-

натные столбцы
$$\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 . Отсюда следует, что $A = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{bmatrix}$, т.е. матрица

нулевого линейного преобразования пространства V_n в любом базисе этого пространства является нулевой матрицей.

Пример 4.7. Тождественное преобразование $e:V_n\to V_n$, определяемое формулой $e(\pmb{x})=\pmb{x}$. Нетрудно видеть, что $A=E_n$ — единичная матрица порядка n.

Пример 4.8. Линейное преобразование пространства V_n , определяемое формулой $f(\mathbf{x}) = \lambda \mathbf{x}$ называется оператором подобия. Матрица этого оператора имеет вид

$$A = \begin{bmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda \end{bmatrix} = \lambda E_n.$$

4.3. Действия над линейными преобразованиями

Рассмотрим векторное пространство V_n над полем P. Обозначим множество всех линейных преобразований этого пространства символом $\operatorname{Hom}(V_n,V_n)$.

Пусть $f, \varphi \in \text{Hom}(V_n, V_n)$.

Определение 4.3. Два линейных преобразования f и ϕ называются равными и это обозначается $f = \phi$, если $f(\mathbf{x}) = \phi(\mathbf{x})$ для любого $\mathbf{x} \in V_n$.

Пусть далее преобразование f имеет в базисе (4.1) матрицу $A==(a_{ij},\ i,j=\overline{1,n}),$ а преобразование ϕ имеет матрицу $B=(b_{ij},\ i,j=\overline{1,n}).$

Теорема 4.1. Для того чтобы два линейных преобразования были равны, необходимо и достаточно, чтобы в заданном базисе были равны их матрицы.

lacktriangle Необходимость. Пусть $f=\varphi$. Тогда на основании равенства преобразований выполняется равенство $f(\mathbf{x})=\varphi(\mathbf{x})$ для любого $\mathbf{x}\in V_n$. В частности, $f(\mathbf{e}_i)=\varphi(\mathbf{e}_i)$, т.е. $\sum\limits_{j=1}^n a_j\mathbf{e}_j=\sum\limits_{j=1}^n b_j\mathbf{e}_j$, для любого $i,1\leq i\leq n$.

Отсюда следует, что $\sum_{j=1}^{n} (a_{ji} - b_{ji}) \boldsymbol{e}_{j} = \mathbf{0}$. Так как система векторов (4.1)

— базис, то $a_{ij}=b_{ij}$ для любых $i,j=\overline{1,n},$ т.е. A=B.

Достаточность. Следует из соотношения (4.7), которое записывается для $f(\mathbf{x})$ и $\phi(\mathbf{x})$ для любого $\mathbf{x} \in V_n$, и равенства матриц A и B.

Определение 4.4. Суммой двух линейных преобразований f и $\varphi \in \text{Hom}(V_n, V_n)$ называется отображение $\psi : V_n \to V_n$, определяемое формулой $\psi(\mathbf{x}) = f(\mathbf{x}) + \varphi(\mathbf{x})$ для любого $\mathbf{x} \in V_n$.

Сумма линейных преобразований f и ϕ обозначается $f + \phi$.

Теорема 4.2. Сумма двух линейных преобразований f и ϕ есть линейное преобразование. Матрица суммы линейных преобразований в некотором базисе пространств V_n равна сумме матриц этих слагаемых, записанных в том же базисе.

lacktriangle Докажем, что $f+\varphi\in \mathrm{Hom}(V_n,V_n)$. Пусть $m{a},m{b}\in V_n,$ $lpha,eta\in P$. Тогда

$$(f+\varphi)(\alpha \boldsymbol{a}+\beta \boldsymbol{b}) = f(\alpha \boldsymbol{a}+\beta \boldsymbol{b}) + \varphi(\alpha \boldsymbol{a}+\beta \boldsymbol{b}) = \alpha f(\boldsymbol{a}) + \beta f(\boldsymbol{b}) + \alpha \varphi(\boldsymbol{a}) + \beta \varphi(\boldsymbol{b}) =$$
$$= \alpha(\varphi + f)(\boldsymbol{a}) + \beta(\varphi + f)(\boldsymbol{b}).$$

Докажем вторую часть теоремы. Действительно, имеем

$$(f+\varphi)(\mathbf{e}_i) = f(\mathbf{e}_i) + \varphi(\mathbf{e}_i) = \sum_{j=1}^n a_{ji} \mathbf{e}_j + \sum_{j=1}^n b_{ji} \mathbf{e}_j = \sum_{j=1}^n (a_{ji} + b_{ji}) \mathbf{e}_j = \sum_{j=1}^n c_{ji} \mathbf{e}_j,$$

где $c_{ij}=a_{ij}+b_{ij}$ и $c_{ij},\ i,j=\overline{1,n},$ — элементы матрицы C=A+B.

Определение 4.5. Произведением линейного преобразования f на скаляр $\lambda \in P$ называется отображение $\psi: V_n \to V_n$, определяемое формулой

$$\psi(\mathbf{x}) = \lambda \cdot f(\mathbf{x}), \ \forall \mathbf{x} \in V_n.$$

Это произведение обозначается λf .

Теорема 4.3. . Произведение линейного преобразования f на скаляр $\lambda \in P$ есть линейное преобразование. Матрицей этого преобразования является матрица λA , где A — матрица преобразования f в некотором базисе пространства V_n .

↓ Доказательство этой теоремы аналогично доказательству теоремы4.2. ■

Определение 4.6. Произведением линейного преобразования f на линейное преобразование ϕ называется отображение $\phi: V_n \to V_n$,

определяемое формулой

$$\psi(\mathbf{x}) = f[\varphi(\mathbf{x})], \ \forall \mathbf{x} \in V_n.$$

Произведение преобразования f, на преобразование ϕ обозначается $f\phi$ или $f\circ\phi$.

Теорема 4.4. Произведение двух линейных преобразований является линейным преобразованием. Матрица произведения линейных преобразований в некотором базисе равна произведению матриц сомножителей записанных в том же базисе.

◆ Доказательство этой теоремы аналогично доказательству теоремы4.2. ■

Теорема 4.5. Множество всех линейных преобразований векторного пространства V над полем P образует n^2 -мерное векторное пространство над полем P изоморфное пространству $P_{n,n}$ — квадратных матриц порядка n.

4.4. Связь между матрицами линейного преобразования, записанных в разных базисах пространства

Пусть f — линейное преобразование пространства V_n , а A и B — его матрицы соответственно в базисах

$$\mathbf{E} = (\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n), \tag{4.10}$$

$$E' = (e'_1, e'_2, \dots, e'_n).$$
 (4.11)

Как связаны между собой матрицы A и B, учитывая, что связь между базисами (4.10) и (4.11) предполагается заданной, т.е. задана матрица S — матрица перехода от базиса (4.10) к базису (4.11)?

Пусть вектор \boldsymbol{x} линейного пространства V_n имеет координатный столбец $X \in P_{n,1}$, в базисе (4.10) и координатный столбец $X' \in P_{n,1}$ в базисе (4.11). Пусть далее вектор $\boldsymbol{y} = f(\boldsymbol{x})$, который является образом вектора \boldsymbol{x} при отображении f, имеет координатный столбец $Y \in P_{n,1}$ в базисе (4.10), а в базисе (4.11) — $Y' \in P_{n,1}$. Тогда, исходя из соотношения (4.9), имеем равенства

$$Y = AX, (4.12)$$

$$Y' = BX'. (4.13)$$

Далее, учитывая, что S — матрица перехода от базиса (4.10) к базису (4.11), имеем

$$X = SX', (4.14)$$

$$Y = SY'. (4.15)$$

Умножив равенство (4.14) слева на матрицу A, имеемAX = ASX', и, учитывая (4.12) и (4.15), имеем SY' = ASX'.

$$Y' = (S^{-1}AS)X'.$$

Сравнивая последнее равенство с (4.13), имеем

$$B = S^{-1}AS. (4.16)$$

Таким образом, если A и B — матрицы преобразования f в базисах (4.10) и (4.11) — соответственно и S — матрица перехода от базиса (4.10) к базису (4.11), то матрицы A и B связаны соотношением (4.16).

Верно и обратное. Пусть A — матрица линейного преобразования f в базисе (4.10), S — произвольная невырожденная матрица и матрица B такова, что $B = S^{-1}AS$, тогда если (4.11) — такой базис пространства V_n , что S — матрица перехода от (4.10) к (4.11), то матрица B — матрица преобразования f в базисе (4.11).

Таким образом верна

Теорема 4.6. Две квадратные матрицы A и B n-го порядка являются матрицами некоторого линейного преобразования f пространства V_n тогда и только тогда, когда существует невырожденная матрица S n-го порядка такая, что выполняется равенство $B = S^{-1}AS$.

Следствие 4.1. Если линейное преобразование имеет в некотором базисе пространства невырожденную матрицу, то и в любом другом базисе этого пространства матрица этого преобразования является невырожденной.

4.5. Подобные матрицы

Определение 4.7. Говорят, что квадратная матрица $B \in P_{n,n}$ подобна матрице $A \in P_{n,n}$, если существует невырожденная матрица $S \in P_{n,n}$ такая, что

$$B = S^{-1}AS.$$

Матрица S в этом случае называется $mpanc \phi opмирующей матриций, т.е. матрицей, переводящей (транс формирующей) матрицу <math>A$ в матрицу B.

Замечание 4.1. Исходя из теоремы 4.6 две матрицы A и B являются матрицами одного и того же линейного преобразования тогда и только тогда, когда они подобны.

Замечание 4.2. Существуют специальные методы построения трансформирующей матрицы S, переводящей матрицу A в матрицу B. Одним из самых простых является метод неопределенных коэффициентов. Суть этого метода состоит в решении матричного уравнения SB = AS при условии, что элементы матрицы $S = (s_{ij}, i, j = \overline{1, n})$ определяются после перемножения слева и справа соответствующих матриц и сравнения их друг с другом. В результате получаем систему n^2 линейных однородных уравнений относительно переменных s_{ij} , $i, j = \overline{1, n}$. Отметим, что матрица S определяется неоднозначным образом [2].

Некоторые свойства подобия матриц

 1° . Матрица A всегда подобна A.

$$A = E_n^{-1} A E_n. \blacksquare$$

 2° . Если B подобна A, то и A подобна B.

$$\Leftrightarrow A = SBS^{-1}$$
. Положим $S^{-1} = T$. Тогда $A = T^{-1}BT$. \blacksquare

 3° . Если A подобна B, B подобна C, то A подобна C.

 $=(TS)^{-1}C(TS)\Leftrightarrow A=Q^{-1}CQ$, где Q=TS.

 4° . Единичная матрица E подобна лишь самой себе.

$$lacktriangledown$$
 $S^{-1}E_nS=E_n$ для любой невырожденной матрицы $S\in P_{n,n}.$

 5° . Скалярная матрица λE подобна лишь самой себе.

$$lacktriangledown$$
 $S^{-1}(\lambda E_n)S=\lambda S^{-1}E_nS=\lambda (S^{-1}S)=\lambda E_n$ для любой невырожденной матрицы $S\in P_{n,n}.lacktriangledown$

 6° . Определители подобных матриц равны.

♦ Пусть матрица A подобна матрице B, т.е. найдется невырожденная матрица $S \in P_{n,n}$, такая что $A = S^{-1}BS$. Отсюда следует, что $\det A = \det(S^{-1}BS) \Leftrightarrow \det A = \det S^{-1}$. $\det B \cdot \det S$. Учитывая, что $\det S^{-1} = \frac{1}{\det S}$, имеем $\det A = \det B$. ■

7°. Характеристические многочлены подобных матриц равны.

$$igopha$$
 Пусть $B = S^{-1}AS$. Тогда $\det(B - \lambda E_n) = \det(S^{-1}AS - \lambda E_n) = \det(S^{-1}AS - S^{-1}\lambda E_nS) = \det(S^{-1}(A - \lambda E_n)S) = \det(S^{-1}) \cdot \det(A - \lambda E_n) \cdot \det S = \frac{1}{\det S} \cdot \det(A - \lambda E_n) \cdot \det S = \det(A - \lambda E_n)$.

4.6. Ранг и дефект линейного преобразования

Рассмотрим векторное пространство V_n и $f:V_n\to V_n$ — линейное преобразование этого пространства.

Множество $f(V_n)$ является подпространством пространства V_n (см. свойство 6° линейных отображений).

Определение 4.8. Размерность подпространства $f(V_n)$ называется рангом линейного преобразования и обозначается rank f.

Теорема 4.7. Ранг линейного преобразования f пространства V_n равен рангу его матрицы, записанной в некотором базисе этого пространства.

♦ Если система $(\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n)$ — базис пространства V_n , то $V_n = L(\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n)$. Отсюда следует, что $f(V_n) = L(f(\boldsymbol{e}_1), f(\boldsymbol{e}_2), \dots, f(\boldsymbol{e}_n)) \Rightarrow$ $f(V_n) = \text{rank}(f(\boldsymbol{e}_1), f(\boldsymbol{e}_2), \dots, f(\boldsymbol{e}_n)) = \text{rank}(f(\boldsymbol{e}_n), f(\boldsymbol{e}_n)) = \text{rank}(f($

Следствие 4.2. Ранги подобных матриц равны.

♦ Доказательство следует из того, что эти матрицы являются матрицами одного и того же линейного преобразования, записанными в разных базисах пространства, и ранг каждой их них равен рангу этого преобразования. ■

Следствие 4.3. $f(V_n) = V_n \Leftrightarrow \operatorname{rank} f = n \Leftrightarrow \det A \neq 0.$

Определение 4.9. Если ранг преобразования f равен n, то линейный преобразование называется *невырожденным*или *неособенным*, если ранг преобразования f меньше n, то оно называется вырожденным или особенным.

Определение 4.10. Множество всех векторов $x \in V_n$ таких, что f(x) = 0, называется ядром линейного преобразования f.

Ядро линейного преобразования f обозначается $\operatorname{Ker} f$ или $f^{-1}(\mathbf{0})$.

Теорема 4.8. Kerf — подпространство пространства V_n .

lacktriangle Пусть $m{a}, m{b} \in \operatorname{Ker} f, \ \alpha, \beta \in P$. Покажем, что $\alpha m{a} + \beta m{b} \in \operatorname{Ker} f$. Действительно, имеем $f(\alpha m{a} + \beta m{b}) = \alpha f(m{a}) + \beta f(m{b}) = m{0}$. На основании определения подпространства векторного пространства множество $\operatorname{Ker} f$ является подпространством пространства V_n .

Определение 4.11. Размерность ядра линейного преобразования f называется $\partial e \phi e \kappa mon$ преобразования f и обозначается $\det f$.

Теорема 4.9. Сумма ранга и дефекта линейного преобразования f

векторного пространства V_n равна размерности этого пространства, т.е.

$$\operatorname{rank} f + \operatorname{def} f = \dim V_n.$$

♦ Пусть система векторов

$$(\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n) \tag{4.17}$$

— базис пространства V_n и матрица A является матрицей преобразования f в базисе (4.17). Обозначим через $X \in P_{n,1}$ координатный столбец вектора \boldsymbol{x} (4.17), а в базисе (4.17) Y — координатный столбец вектора $\boldsymbol{y} = f(\boldsymbol{x})$. Тогда

$$Y = AX. (4.18)$$

Так как $\operatorname{Ker} f = \{ \boldsymbol{x} | \boldsymbol{x} \in \tilde{V}_n, f(\boldsymbol{x}) = \boldsymbol{0} \}$, то согласно (4.18) координатный столбец X любого вектора \boldsymbol{x} ядра преобразования f удовлетворяет матричному уравнению

$$AX = O. (4.19)$$

Уравнение (4.19) — однородное матричное уравнение. Подпространство решений этого уравнения (4.19) имеет размерность n — $\operatorname{rank} A$. Но, размерность этого подпространства равна $\dim \operatorname{Ker} f$. Отсюда следует, что n — $\operatorname{rank} A = \operatorname{def} f \Leftrightarrow \operatorname{rank} f + \operatorname{def} f = \dim V_n$.

Следствие **4.4.** Ker $f = \{0\} \Leftrightarrow \operatorname{rank} f = n$.

4.7. Собственные векторы и собственные значения линейного преобразования

Определение 4.12. Ненулевой вектор $u \in V_n$ называется *собственным вектором* линейного преобразования f, если существует скаляр λ из поля P такой, что выполняется равенство

$$f(\boldsymbol{u}) = \lambda \boldsymbol{u}.$$

Число λ называется собственным значением (собственным числом) преобразования f. Собственный вектор u и собственное значение λ называются соответствующими друг другу.

Множество всех собственных значений с учетом их кратности называется *спектром* этого преобразования f и обозначается Spec f.

Примеры

Пример 4.9. Все ненулевые векторы из ядра Ker f — собственные векторы линейного преобразования f, соответствующие нулевому собственному значению.

Пример 4.10. При тождественном преобразовании все ненулевые векторы пространства — собственные с собственным значением, равным единице.

Пример 4.11. Если f — оператор подобия, определяемый формулой $f(\pmb{x}) = \lambda \pmb{x},$ $\lambda \in$

 $\in P$, то все ненулевые векторы пространства V_n — собственные векторы с собственным значением λ .

Свойства собственных векторов

- 1° . Каждому собственному вектору линейного преобразования соответствует единственное собственное значение.
- ♦ Пусть λ_1 и λ_2 собственные значения, соответствующие собственному вектору \boldsymbol{u} преобразования f. Тогда $f(\boldsymbol{u}) = \lambda_1 \boldsymbol{u}_1, \ f(\boldsymbol{u}) = \lambda_2 \boldsymbol{u} \Rightarrow \lambda_1 \boldsymbol{u} = \lambda_2 \boldsymbol{u}$, или $(\lambda_1 \lambda_2) \boldsymbol{u} = \boldsymbol{0}$. Так как \boldsymbol{u} ненулевой вектор, то $\lambda_1 = \lambda_2$. ■

Замечание 4.3. Отметим, что утверждение, обратное свойству 4.12, является неверным. Каждому собственному значению преобразования f соответствует бесконечное множество собственных векторов.

- 2° . Если \boldsymbol{u} собственный вектор линейного преобразования f с собственным значением λ и α любой отличный от нуля элемент поля P, то $\alpha \boldsymbol{u}$ также собственный вектор преобразования f с собственным значением λ .
- lacktriangle Так как $f(\pmb{u})=\lambda \pmb{u}$, то отсюда следует, что $f(\alpha \pmb{u})=\alpha f(\pmb{u})=\alpha \lambda \pmb{u}=$ $=\lambda(\alpha \pmb{u}).lacktriangle$
- 3° . Если $\boldsymbol{u}_1, \boldsymbol{u}_2$ собственные векторы линейного преобразования f с одним и тем же собственным значением λ , то $\boldsymbol{u}_1 + \boldsymbol{u}_2$ либо нулевой вектор, либо также собственный вектор этого преобразования с собственным значением λ .

$$igoplus f(m{u}_1) = \lambda m{u}_1, f(m{u}_2) = \lambda m{u}_2.$$
 Пусть $m{u}_1 + m{u}_2
eq m{0}$. Тогда $f(m{u}_1 + m{u}_2) = f(m{u}_1) + f(m{u}_2) = \lambda (m{u}_1 + m{u}_2).$

Следствие 4.5. Если u_1, u_2, \ldots, u_k — собственные векторы линейного преобразования f с одним и тем же собственным значением λ , то любая нетривиальная линейная комбинация этих векторов является собственным вектором этого преобразования с собственным значением λ .

4°. Собственные векторы линейного преобразования, соответствующие разным собственным значениям, линейно независимы.

lack Пусть линейный преобразование f имеет собственные значения $\lambda_1, \lambda_2, \ldots, \lambda_k$, причем $\lambda_i \neq \lambda_j$, если $i \neq j$. Обозначим через \boldsymbol{u}_i собственный вектор, соответствующий собственному значению λ_i . Покажем, что система векторов $(\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_k)$ линейно независима.

Воспользуемся методом математической индукции. Если k=1, то утверждение очевидно (система, состоящая из одного ненулевого вектора, всегда линейно независима). Пусть утверждение верно для системы, состоящей из k-1 векторов. Докажем, что оно верно для системы, состоящей из k векторов.

От противного. Предположим, что система векторов $(\pmb{u}_1,\pmb{u}_2,\dots,\pmb{u}_k)$ линейно зависима. Отсюда следует, что существуют скаляры $\alpha_i\in P,$ $i=\overline{1,k},\sum\limits_{i=1}^k|\alpha_i|>0,$ такие, что

$$\sum_{i=1}^{k} \alpha_i \boldsymbol{u}_i = \mathbf{0}. \tag{4.20}$$

Применим к равенству (4.20) преобразование f. Имеем

$$f\left(\sum_{i=1}^k \alpha_i \boldsymbol{u}_i\right) = f(\boldsymbol{0}) \Rightarrow \sum_{i=1}^k \alpha_i f(\boldsymbol{u}_i) = \boldsymbol{0}.$$

Поскольку \boldsymbol{u}_i — собственный вектор преобразования f с соответствующим собственным значением λ_i , то выполняется равенство $f(\boldsymbol{u}_i) = \lambda_i \boldsymbol{u}_i$. Но тогда

$$\sum_{i=1}^{k} \alpha_i \lambda_i \boldsymbol{u}_i = \mathbf{0}. \tag{4.21}$$

Умножим равенство (4.20) на λ_k , (считаем, что $\lambda_k \neq 0$) и вычтем его из (4.21). Получим

$$\sum_{i=1}^{k-1} \alpha_i (\lambda_i - \lambda_k) \boldsymbol{u}_i = \boldsymbol{0}. \tag{4.22}$$

По предположению векторы $u_1, u_2, \ldots, u_{k-1}$ линейно независимы, но тогда из (4.22) следует, что $\alpha_i(\lambda_i - \lambda_k) = 0$, для любого $i = \overline{1, k-1}$. Так как по условию все λ_i различны, то $\lambda_i - \lambda_k \neq 0$, а следовательно, $\alpha_i = 0, \ i = \overline{1, k-1}$. Из (4.20) следует также, что $\alpha_k = 0$ (u_k — ненулевой вектор). Противоречие.

Следствие 4.6. Если линейное преобразование f линейного пространства V_n имеет n различных собственных значений, то в пространстве V_n существует базис, состоящий из собственных векторов преобразования f.

Определение 4.13. Линейное преобразование пространства V_n называется *оператором простой структуры* (преобразованием простой структуры), если в пространстве V_n существует базис из собственных векторов этого преобразования.

Теорема 4.10. Линейное преобразование f пространства V_n является оператором простой структуры тогда и только тогда, когда в некотором базисе этого пространства матрица преобразования f является диагональной.

lacktriangle Необходимость. Пусть f — преобразование простой структуры пространства V_n . Тогда в пространстве V_n существует базис

$$(\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n) \tag{4.23}$$

из собственных векторов этого преобразования с соответствующими собственными значениями $\lambda_1, \lambda_2, \ldots, \lambda_n$. Найдем матрицу преобразования f в базисе (4.23). Для этого, исходя из определения матрицы линейного преобразования, разложим образы векторов базиса (4.23) при отображении f по базису (4.23). Имеем

$$f(\mathbf{u}_1) = \lambda_1 \mathbf{u}_1,$$

$$f(\mathbf{u}_2) = \lambda_2 \mathbf{u}_2,$$

$$\dots \dots \dots$$

$$f(\mathbf{u}_n) = \lambda_n \mathbf{u}_n.$$

Но тогда матрица преобразования f имеет вид

$$A = \left[\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{array} \right],$$

т.е. является диагональной.

Достаточность. Исходя из определений матрицы линейного преобразования собственного вектора и собственного значения ясно, что если в каком-либо базисе пространства V_n линейное преобразование f

имеет диагональную матрицу, то базисные векторы являются собственными векторами с соответствующими собственными значениями, расположенными на главной диагонали этой матрицы. ■

4.8. Характеристическая матрица. Характеристический многочлен

Как найти собственные векторы и собственные значения линейного преобразования (если они существуют)?

Пусть

$$(\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n) \tag{4.24}$$

— базис пространства V_n , а f — линейное преобразование в V_n , которое имеет в базисе (4.24) матрицу A. Обозначим через U координатный столбец собственного вектора \boldsymbol{u} преобразования f в базисе (4.24). Тогда из равенства $f(\boldsymbol{u}) = \lambda \boldsymbol{u}$ следует, что

$$AU = \lambda U, \tag{4.25}$$

ИЛИ

$$(A - \lambda E_n)U = 0, (4.26)$$

где E_n — единичная матрица.

Таким образом, координатный столбец U собственного вектора \boldsymbol{u} и соответствующее ему собственное значение λ удовлетворяют матричному уравнению (4.25) или (4.26). Известно, что матричное уравнение (4.26) имеет ненулевое решение тогда и только тогда, когда

$$\det(A - \lambda E_n) = 0, (4.27)$$

r.e.

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$
 (4.28)

Определение 4.14. Матрица $(A-\lambda E_n)$ называется x арактеристической матрицей линейного преобразования f (матрицы A).

Определение 4.15. Многочлен $\varphi(\lambda) = \det(A - \lambda E_n)$ называется xa-рактеристическим многочленом преобразования f (характеристическим многочленом матрицы A).

Замечание 4.4. Иногда характеристическим многочленом называют многочлен $\varphi(\lambda) = \det(\lambda E_n - A)$.

Определение 4.16. Уравнение $\det(A - \lambda E_n) = 0$ называется *харак- теристическим уравнением* преобразования f (характеристическим уравнением матрицы A).

Корни характеристического уравнения над полем C (полем комплексных чисел) называются xapaкmepucmuческими числами преобразования f (матрицы A).

Замечание 4.5. Ясно, что любое собственное значение линейного преобразования f является характеристическим числом. Обратное утверждение, вообще говоря, неверно, т.е. не всякое характеристическое число является собственным значением. А именно: характеристическое число является собственным значением преобразования f пространства V_n , если оно принадлежит тому полю P (например,полю R или полю C), над каким из них рассматривается векторное пространство (вещественное или комплексное пространство), в котором действует преобразование f.

Свойства характеристического многочлена

- 1°. Характеристический многочлен полураспавшейся матрицы равен произведению характеристических многочленов ее диагональных клеток.
- \spadesuit Пусть матрица $A=\left[\begin{array}{c|c}A_1&O\\\hline B&A_2\end{array}\right]$ полураспавшаяся матрица. Рассмотрим характеристическую матрицу $A-\lambda E_n$:

$$A - \lambda E_n = \left[\begin{array}{c|c} A_1 - \lambda E' & O \\ \hline B & A_2 - \lambda E'' \end{array} \right],$$

где E', E'' — единичные матрицы соответствующих размерностей. По теореме Лапласа имеем $\varphi(\lambda) = \det(A - \lambda E_n) = \det(A_1 - \lambda E') \det(A_2 - \lambda E'')$.

 2° . Характеристические многочлены подобных матриц равны.

$$igoplus \Pi$$
усть $B = S^{-1}AS$. Тогда $\det(B - \lambda E_n) = \det(S^{-1}AS - \lambda E_n) = \det(S^{-1}AS - S^{-1}\lambda E_nS) = \det(S^{-1}(A - \lambda E_n)S) = \det(S^{-1}) \cdot \det(A - \lambda E_n) \cdot \det S = \frac{1}{\det S} \cdot \det(A - \lambda E_n) \cdot \det S = \det(A - \lambda E_n).$

Следствие 4.7. Характеристический многочлен линейного преобразования не зависит от выбора базиса векторного пространства.

Исследуем характеристический многочлен

$$\varphi(\lambda) = \det(A - \lambda E_n) = (-1)^n \lambda^n + \alpha_1 \lambda^{n-1} + \ldots + \alpha_{n-1} \lambda + \alpha_n.$$

Нетрудно видеть, что $\alpha_1 = (-1)^{n-1}(a_{11} + a_{22} + \ldots + a_{nn}) = (-1)^{n-1} \operatorname{tr} A$, где $\operatorname{tr} A - \operatorname{c}$ лед матрицы A, а

$$\alpha_n = \varphi(0) = \det A. \tag{4.29}$$

Из равенства (4.29) следует следующее утверждение.

Теорема 4.11. Линейное преобразование является невырожденным тогда и только тогда, когда его характеристический многочлен не имеет нулевых корней.

ightharpoonup rank $A = n \Leftrightarrow \det A \neq 0 \Leftrightarrow \varphi(0) \neq 0$.

4.9. Подпространство собственных векторов

Теорема 4.12. Множество всех собственных векторов линейного преобразования f пространства V_n , отвечающих собственному значению λ_0 , вместе с нулевым вектором этого пространства образует линейное подпространство пространства V_n . Размерность этого подпространства равна n-r, где r — ранг матрицы $A-\lambda_0 E_n$.

♦ Доказательство следует из того, что ненулевые координатные столбцы собственных векторов, отвечающих собственному значению λ_0 , и координатный столбец нулевого вектора являются решениями однородного матричного уравнения $(A - \lambda_0 E)U = 0$.

Подпространство собственных векторов, соответствующих собственному значению λ_0 , обозначается L_{λ_0} .

Теорема 4.13. Пусть λ_0 есть k-кратное собственное значение преобразования f. Тогда соответствующее ему подпространство L_{λ_0} собственных векторов имеет размерность не больше k, т.е. $\dim L_{\lambda_0} \leq k$.

lack Так как λ_0 является k-кратным собственным значением, то характеристический многочлен $\phi(\lambda)$ линейного преобразования f можно представить в виде

$$\varphi(\lambda) = (\lambda - \lambda_0)^k \psi(\lambda), \tag{4.30}$$

где $\psi(\lambda_0) \neq 0$.

Пусть данному собственному значению λ_0 соответствует $l(1 \le l \le n)$ линейно независимых собственных векторов $(\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_l)$. Выберем новый базис пространства V_n . Дополним систему векторов $(\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_l)$ до базиса пространства V_n , т.е. $(\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_l, \boldsymbol{e}_{l+1}, \boldsymbol{e}_{l+2}, \dots, \boldsymbol{e}_n)$. Найдем

образы базисных векторов при линейном отображении f и разложим их по рассматриваемому базису. Имеем

$$\begin{cases} f(\boldsymbol{u}_1) = \lambda_0 \boldsymbol{u}_1, \\ f(\boldsymbol{u}_2) = \lambda_0 \boldsymbol{u}_2, \\ \dots \\ f(\boldsymbol{u}_l) = \lambda_0 \boldsymbol{u}_l, \\ f(\boldsymbol{e}_{l+1}) = \sum_{j=1}^{l} a_{j,l+1} \boldsymbol{u}_j + \sum_{i=l+1}^{n} a_{i,l+1} \boldsymbol{e}_i, \\ \dots \\ f(\boldsymbol{e}_n) = \sum_{j=1}^{l} a_{jn} \boldsymbol{u}_j + \sum_{i=l+1}^{n} a_{in} \boldsymbol{e}_i. \end{cases}$$

На основании свойства 4.16 для характеристических многочленов имеем

$$\varphi(\lambda) = \begin{vmatrix} \lambda_0 - \lambda & 0 & \dots & 0 \\ 0 & \lambda_0 - \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_0 - \lambda \end{vmatrix} C$$

$$O \qquad D(\lambda)$$

Вычислим определитель по теореме Лапласа:

$$\varphi(\lambda) = (\lambda_0 - \lambda)^l |D(\lambda)| = (\lambda_0 - \lambda)^l q(\lambda), \ g(\lambda) \in P[\lambda]. \tag{4.31}$$

Сравнивая (4.30) и (4.31), имеем $l \le k$.

Теорема 4.14. Линейное преобразование f n-мерного пространства V над полем P, является преобразованием простой структуры тогда и только тогда, когда каждое характеристическое число матрицы этого преобразования является собственным значением и любому его собственному значению λ_i кратности k_i соответствует подпространство собственных векторов L_{λ_i} размерности k_i , т.е. $k_i = \dim L_{\lambda_i} = n - - \operatorname{rank}(A - \lambda_i E_n)$.

Алгоритм нахождения собственных векторов и собственных значений линейного преобразования f в векторном пространстве

1) Рассматриваем какой-либо базис пространства V_n и находим матрицу линейного преобразования f в этом базисе.

- 2) Составляем характеристическое уравнение $\det(A \lambda E_n) = 0$ и вычисляем над полем C его корни $\lambda_1, \lambda_2, \dots, \lambda_n$, т.е. характеристические числа.
- 3) Из всех корней $\lambda_1, \ldots, \lambda_n$ выбираем лишь те, которые принадлежат основному множеству, т. е. полю P, над которым рассматривается векторное пространство. Если это комплексное пространство, то все $\lambda_1, \ldots, \lambda_n$ суть собственные значения преобразования f. Если же пространство V_n является вещественным, то только вещественные корни будут собственными значениями преобразования f.
- 4) В системе (4.26) полагаем λ равным одному из собственных значений и находим ее ненулевые решения.
- 5) Найденные ненулевые решения уравнения являются координатными столбцами собственных векторов, соответствующих рассматриваемому собственному значению.

4.10. Присоединенные векторы и жорданов базис

Пусть f — линейное преобразование векторного пространства V_n над полем P, а \boldsymbol{u} — собственный вектор этого преобразования, соответствующий собственному значению λ_0 .

Система векторов $(\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k)$ называется *присоединенной к* собственному вектору \boldsymbol{u} , если выполняются следующие равенства:

Вектор v_1 называется первым присоединенным вектором к собственному вектору u, вектор v_2 — вторым присоединенным вектором к вектору u и т.д. Системы вида $(u), (u, v_1), (u, v_1, v_2), \ldots, (u, v_1, \ldots, v_k)$ называются жордановыми цепочками преобразования f с началом в собственном векторе u.

Теорема 4.15. Любая жордановая цепочка линейного преобразования f векторного пространства V_n линейно независима в этом пространстве.

$$(\boldsymbol{u}, \boldsymbol{v}_1, \dots, \boldsymbol{v}_k) \tag{4.32}$$

— жорданова цепочка преобразования f с началом в собственном векторе u, которое соответствует собственному значению λ_0 . Докажем, что система (4.32) линейно независима.

От противного. Предположим, что система (4.32) линейно зависима, т.е. найдутся скаляры $\alpha_i \in P, i=\overline{0,k}, \sum\limits_{i=0}^k |\alpha_i|>0$ и такие, что

$$\alpha_0 \boldsymbol{u} + \sum_{i=1}^k \alpha_i \boldsymbol{v}_i = \boldsymbol{0}. \tag{4.33}$$

Применяя к равенству (4.33) последовательно преобразования $(f - e\lambda_0), (f - e\lambda_0)^2, \dots, (f - e\lambda_0)^k$, получим систему равенств

$$\begin{cases}
\alpha_1 \boldsymbol{u} + \sum_{i=2}^k \alpha_i \boldsymbol{v}_{i-1} = \boldsymbol{0}, \\
\alpha_2 \boldsymbol{u} + \sum_{i=3}^k \alpha_i \boldsymbol{v}_{i-2} = \boldsymbol{0}, \\
\dots \\
\alpha_k \boldsymbol{u} = \boldsymbol{0}.
\end{cases} (4.34)$$

Рассмотрим систему (4.34). Учитывая, что $\mathbf{u}_k \neq \mathbf{0}$, из последнего равенства следует, что $\alpha_k = 0$, затем из предпоследнего равенства получаем, что $\alpha_{k-1} = 0$ и т.д. Из первого равенства имеем $\alpha_1 = 0$. Но тогда из (4.33) следует $\alpha_1 = 0$. Противоречие.

Теорема 4.16. Система векторов, состоящая из жордановых цепочек линейного преобразования, линейно независима тогда и только тогда, когда входящие в нее собственные векторы этого линейного оператора образуют линейно независимую систему.

Доказательство теоремы следует из свойств собственных векторов и теоремы 4.15.

Пусть $\lambda_1, \lambda_2, \dots, \lambda_m$ — различные собственные значения преобразования f векторного пространства V_n над полем C с кратностями $k_1, k_2, \dots, k_m \left(\sum_{j=1}^m k_j = n\right)$ соответственно. Согласно теореме 4.13 $\dim L_{\lambda_j} \leq k_j$ для каждого $j,\ 1 \leq j \leq m$. Если $\dim L_{\lambda_j} = k_j$ для всех $j,\ 1 \leq j \leq m$, то в пространстве V_n существует базис, состоящий

из собственных векторов преобразования f, т.е. есть преобразование f является оператором простой структуры. Если же для некоторого $\lambda_{j_0},\ 1\leq j_0\leq m,\ \dim L_{\lambda_{j_0}}< k_{j_0},\ о \ в \ пространстве <math>V_n$ не существует базиса, состоящего только из собственных векторов преобразования f.

В этом случае для каждого такого λ_{j_0} , $1 \leq j_0 \leq m$, следует рассмотреть подпространство $\operatorname{Ker}(f-\lambda_{j_0}eV)^{k_{j_0}}$, в котором можно выбрать базис, состоящий из жордановых цепочек преобразования f с началом в собственных векторах из подпространства $L_{\lambda_{j_0}}$, причем общее количество собственных и присоединенных векторов равно k_{j_0} . Построив для каждого собственного значения указанные системы векторов, можно из этих систем составить систему векторов длины n. Эта система будет линейно независимой и будет являться базисом пространства V_n . Такой базис, т.е. базис составленный из жордановых цепочек преобразования f, называется жордановым базисом пространства V для преобразования f.

Теорема 4.17. Для любого преобразования n-мерного векторного пространства V над полем C существует в этом пространстве жорданов базис.

4.11. Инвариантные подпространства

Пусть f — линейное преобразование векторного пространства V_n над полем P, а Q — подпространство пространства V_n .

Определение 4.17. Подпространство Q пространства V_n называется инвариантным относительно линейного преобразования f, если $f(Q) \subseteq Q$, т.е. $f(x) \in Q$, $\forall x \in Q$.

Примеры

- 1. Нулевое подпространство и все пространство V_n является инвариантными подпространствами относительно любого линейного преобразования f пространства V_n .
- 2. Любое подпространство пространства V_n является инвариантным относительно оператора подобия.
- 3. Рассмотрим пространство V_3 геометрических векторов над полем R. И в этом пространстве рассмотрим линейное преобразование, которое заключается в повороте всех векторов пространства вокруг оси Oz. Тогда следующие подпространства пространства V_3 является инвариантными относительно этого линейного преобразования:

- 1) $\{\mathbf{O}_{V_3}\};$
- 2) V_3 ;
- 2) множество всех векторов, коллинеарных вектору k;
- 3) все векторы, принадлежащие плоскости Oxy или параллельных ей.
- 4. Рассмотрим векторное пространство P[x] всех многочленов от переменной x над полем P и в качестве линейного преобразования этого пространства возьмем оператор дифференцирования. Тогда подпространство $P_n[x]$ являются инвариантным относительно этого преобразования.

Теорема 4.18. Для любого линейного преобразования f векторного пространства V_n ядро и образ этого преобразования является инвариантными относительно f подпространствами.

- ♦ Пусть $\mathbf{x} \in \operatorname{Ker} f \Rightarrow f(\mathbf{x}) = \mathbf{0}_{V_n} \in \operatorname{Ker} f$. Следовательно, $\operatorname{Ker} f$ инвариантное подпростроанство относительно f преобразования. Пусть теперь произвольный $\mathbf{x} \in V_n$. Ясно, что $f(f(\mathbf{x})) \in \operatorname{Im} f = f(V_n)$, а это значит, что $f(V_n)$ инвариантно относительно f подпространство. \blacksquare
- **Теорема 4.19.** Сумма и пересечение конечного числа инвариантных относительно f подпространств пространства V_n являются инвариантными относительно f подпространствами.
- lacktriangle Пусть (M_1, M_2, \dots, M_k) конечная система инвариантных относительно f подпространств пространства V_n .

Обозначим через $M = \sum_{i=1}^k M_i$. Исходя из определения суммы любой

вектор $\pmb{m} \in M$ представим в виде $\pmb{m} = \sum\limits_{i=1}^k \pmb{m}_i$, причем $\pmb{m}_i \in M_i, \ i = \overline{1,k}$.

Отсюда, $f(\pmb{m}) = f(\sum_{i=1}^k \pmb{m}_i) = \sum_{i=1}^k f(\pmb{m}_i) = \sum_{i=1}^k \pmb{m}_i' \in M$, так как вектор $\pmb{m}' = f(\pmb{m}_i) \in M_i$ ибо M_i — инвариантное относительно f подпространство.

Пусть $M^* = \bigcap_{i=1}^k M_i$ и вектор $\pmb{m} \in M^*$. Тогда вектор $f(\pmb{m}) \in M^*$ для любого $i, \ 1 \le i \le k,$ и $f(\pmb{m}_i) \in M_i,$ так как M_i — инвариантное относительно преобразования f подпространство. Следовательно, $f(\pmb{m}_i) \in M^*,$ а это значит, что M^* — также инвариантное относительно f подпространство \blacksquare

Теорема 4.20. Если Q — инвариантно относительно линейного преобразования f подпространство пространства V_n , то Q является инвариантным относительно преобразования $\mu(f)$, где $\mu(f)$ — многочлен от преобразования f с коэффициентами из поля P, т.е. относительно многочлена

$$\mu(f) = d_m f^m + d_{m-1} f^{m-1} + \ldots + d_1 f + d_0 e, \ d_i \in P, \ i = \overline{0, m}.$$

♦ Так как Q является инвариантным относительно преобразования f подпространством, то для любого вектора $\mathbf{x} \in Q$ имеем $f(\mathbf{x}) \in Q$. Но тогда и $f^2(\mathbf{x}) = f(f(\mathbf{x})) \in Q$, а, следовательно, $f^2(\mathbf{x}) \in Q$ / Но, тогда $f^i(\mathbf{x}) \in Q$, для любого $i = \overline{0,m} \Rightarrow \mu(f)(\mathbf{x}) = d_m f^m(\mathbf{x}) + \ldots + d_1 f(\mathbf{x}) + d_0 \mathbf{x} \in Q$ Итак, Q инвариантное относительно линейного преобразования $\mu(f)$ подпространство. ■

Если подпространство Q является инвариантным относительно преобразования $f \in \text{Hom}(V_n, V_n)$, то можно определить некоторое преобразование $\psi: Q \to Q$, такое что для любого вектора $\mathbf{x} \in Q$, верно равенство $f(\mathbf{x}) = \psi(\mathbf{x})$. Это преобразование ψ называется сужением (ограничением) линейного преобразования f на подпространство Q и обозначается $f|_Q$, т.е. $f|_Q = \psi$.

Выясним, как сказывается на матрице линейное преобразование f наличие в пространстве V_n нетривиальных, т.е. отличных от $\{\mathbf{0}_V\}$, V_n инвариантных относительно преобразования f подпространств.

Пусть система векторов

$$(\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_k) \tag{4.35}$$

базис подпространства Q инвариантного относительно преобразования f. Дополним систему (4.35) до базиса пространства V_n :

$$(\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_k, \boldsymbol{e}_{k+1}, \dots, \boldsymbol{e}_n). \tag{4.36}$$

Найдем матрицу преобразования f в базисе (4.36). Имеем

$$\begin{cases} f(\boldsymbol{e}_{1}) = \alpha_{11}\boldsymbol{e}_{1} + \ldots + \alpha_{k,1}\boldsymbol{e}_{k} + 0\boldsymbol{e}_{k+1} + \ldots + 0\boldsymbol{e}_{n}, \\ f(\boldsymbol{e}_{k}) = \alpha_{1,k}\boldsymbol{e}_{1} + \ldots + \alpha_{k,k}\boldsymbol{e}_{k} + 0\boldsymbol{e}_{k+1} + \ldots + 0\boldsymbol{e}_{n} \\ f(\boldsymbol{e}_{k+1}) = \alpha_{1,k+1}\boldsymbol{e}_{1} + \ldots + \alpha_{k,k+1}\boldsymbol{e}_{k} + \alpha_{k+1,k+1}\boldsymbol{e}_{k+1} + \ldots + \alpha_{n,k+1}\boldsymbol{e}_{n} \\ \vdots \\ f(\boldsymbol{e}_{n}) = \alpha_{1n}\boldsymbol{e}_{1} + \ldots + \alpha_{kn}\boldsymbol{e}_{k} + \alpha_{k+1,n}\boldsymbol{e}_{k+1} + \ldots + \alpha_{n,n}\boldsymbol{e}_{n} \end{cases}$$

Отсюда следует, что матрица A преобразования f в базисе 4.36 имеет вид

$$A = \begin{bmatrix} \alpha_{11} & \dots & \alpha_{1k} & \alpha_{1,k+1} & \dots & \alpha_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ \alpha_{k1} & \dots & \alpha_{kk} & \alpha_{k,k+1} & \dots & \alpha_{kn} \\ \hline 0 & \dots & 0 & \alpha_{k+1,k+1} & \dots & \alpha_{k+1,n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \alpha_{n,k+1} & \dots & \alpha_{nn} \end{bmatrix}$$

ИЛИ

$$A = \begin{bmatrix} B_{k,k} & C_{k,n-k} \\ O_{n-k,k} & D_{n-k,n-k} \end{bmatrix}$$
 (4.37)

Матрица (4.37) называется полураспавшейся или верхней блочнотреугольной матрицей. Итак, если в пространстве V_n есть инвариантное относительно преобразования f подпространство, то в подходящем базисе пространства V_n матрица преобразования f является верхней блочно-треугольной матрицей.

Верно и обратное. Если в некотором базисе, например базисе (4.36), пространство V_n матрицы преобразования f является блочно-треугольной матрицей вида (4.37), то подпространство $Q = L(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_k)$ будет инвариантным относительно f подпространством.

Таким образом верна теорема.

Теорема 4.21. Для того, чтобы векторное пространство V_n над полем P обладало нетривиальным инвариантным относительно f подпространством необходимо и достаточно чтобы в подходящем базисе пространства V_n матрица преобразования f была верхней блочнотреугольной.

Пусть V_n является прямой суммой двух инвариантных относительно преобразования f подпространств Q_1 и Q_2 т.е. $V_n=Q_1\oplus Q_2,\, f(Q_1)\subseteq Q_1,\, f(Q_2)\subseteq Q_2.$

Пусть базис (4.36) пространства V_n является таковым, что подсистема (4.35) является базисом Q_1 , а подсистема ($\boldsymbol{e}_{k+1}\ldots\boldsymbol{e}_n$) базис подпространства Q_2 . Нетрудно видеть, что матрица преобразования f в этом базисе будет иметь вид

$$A_f = \left[\begin{array}{c|c} B_{k,k} & O_{k,n-k} \\ \hline O_{n-k,k} & D_{n-k,k} \end{array} \right] \tag{4.38}$$

Матрица вида (4.38) называется распавшейся или блочнодиагональной. **Теорема 4.22.** Векторное пространство V_n над P является прямой суммой двух инвариантных относительно линейного преобразования f подпространств тогда и только тогда, когда в подходящем базисе этого пространства матрица преобразования f является блочнодиагональной.

Эту теорему можно распространить на сумму одномерных инвариантных относительно преобразования f подпространств.

Теорема 4.23. Пространство V_n над полем P является прямой суммой одномерных инвариантных относительно линейного преобразования f подпространств тогда и только тогда, когда в подходящем базисе пространства V_n матрица линейного преобразования f является диагональной.

5. БИЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ И БИЛИНЕЙНЫЕ ФОРМЫ

Пусть V_n — векторное пространство над полем P.

Определение 5.1. Отображение $f: V_n \times V_n \to P$, удовлетворяющее условиям:

- 1) $f(\alpha_1 \boldsymbol{x}_1 + \alpha_2 \boldsymbol{x}_2, \boldsymbol{y}) = \alpha_1 f(\boldsymbol{x}_1, \boldsymbol{y}) + \alpha_2 f(\boldsymbol{x}_2, \boldsymbol{y})$, для любых $\alpha_1, \alpha_2 \in P$ и $\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{y} \in V_n$;
- $2)\,f(\pmb x,eta_1\pmb y_1+eta_2\pmb y_2)=eta_1f(\pmb x,\pmb y_1)+eta_2f(\pmb x,\pmb y_2),$ для любых $eta_1,eta_2\in P$ и $\pmb x,\pmb y_1,\pmb y_2\in V_n.$

называется билинейной функцией (билинейным отображением) в пространстве V_n .

Замечание 5.1. Условия 1 и 2 означают, что функция f является линейным преобразованием пространства V_n по каждому векторному аргументу.

Пусть в пространстве V_n задан базис, например, базис (4.1), Рассмотрим два вектора $\mathbf{x}, \mathbf{y} \in V_n$ и разложим их по базису (4.1):

$$\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{e}_i, \ \mathbf{y} = \sum_{j=1}^{n} y_j \mathbf{e}_j, \ x_i, y_j \in P, \ i, j = \overline{1, n}.$$

Найдем образ векторов ${\pmb x}, {\pmb y}$ при отображении f. Имеем

$$f(\mathbf{x}, \mathbf{y}) = f(\sum_{i=1}^{n} x_i \mathbf{e}_i, \sum_{j=1}^{n} y_j \mathbf{e}_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j f(\mathbf{e}_i, \mathbf{e}_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i y_j,$$

т.е.

$$f(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i y_j,$$
 (5.1)

где $a_{ij}=f(\boldsymbol{e}_i,\boldsymbol{e}_j),\ i,j=\overline{1,n}.$

Выражение, стоящее справа в равенстве (5.1), называется билинейной формой в пространстве V_n ..

Таким образом, образ любой упорядоченной пары $(\boldsymbol{x}, \boldsymbol{y})$ векторов пространства V_n при билинейном отображении f представляет собой в некотором базисе билинейную форму. Верно и обратное. Поэтому при фиксированном базисе пространства V_n каждая билинейная функция f этого пространства отождествляется с соответствующей билинейной формой.

Положим, что
$$A=(a_{ij},i,j=\overline{1,n}),$$
 $X=\begin{bmatrix}x_1\\\ldots\\x_n\end{bmatrix},$ $Y=\begin{bmatrix}y_1\\\ldots\\y_n\end{bmatrix}.$

Тогда равенство приобретает вид

$$f(\mathbf{x}, \mathbf{y}) = X^T A Y \tag{5.2}$$

Матрица $A \in P_{nn}$ называется матрицей билинейной формы f или матрицей билинейной функции f пространства V_n в рассматриваемом базисе этого пространства.

Определение 5.2. Билинейная форма f пространства V_n над полем P называется симметрической, если для любых ${\pmb x}, {\pmb y} \in V_n$ верно равенство

$$f(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}, \mathbf{x}) \tag{5.3}$$

Теорема 5.1. Для того, чтобы билинейная форма f пространства V_n была симметрической, необходимо и достаточно, чтобы матрица этой формы была симметрической.

• Необходимость. Пусть f — симметрическая билинейная форма. Тогда для любых векторов \mathbf{x} , \mathbf{y} пространства V_n выполняется равенство (5.3), но тогда верно и равенство $f(\mathbf{e}_i, \mathbf{e}_j) = f(\mathbf{e}_j, \mathbf{e}_i) \Leftrightarrow a_{ij} = a_{ji} \Leftrightarrow A = A^T$, т.е. A — симметрическая.

Достаточность. Пусть $A=A^T\Leftrightarrow a_{ij}=a_{ji}$, для любых $i,j=\overline{1,n}\Leftrightarrow f(\boldsymbol{e}_i,\boldsymbol{e}_j)=f(\boldsymbol{e}_j,\boldsymbol{e}_i)$. Тогда для любых векторов $\boldsymbol{x},\boldsymbol{y}\in V_n$ имеем $f(\boldsymbol{x},\boldsymbol{y})=\sum_{i=1}^n\sum_{j=1}^na_{ij}x_iy_j=\sum_{i=1}^n\sum_{j=1}^nf(\boldsymbol{e}_i,\boldsymbol{e}_j)x_iy_j=\sum_{j=1}^n\sum_{i=1}^nf(\boldsymbol{e}_j,\boldsymbol{e}_i)y_jx_i=f(\boldsymbol{y},\boldsymbol{x}).$

Следовательно, f является симметрической билинейной формой. \blacksquare

Определение 5.3. Билинейная форма f пространства V_n над полем P называется кососимметрической, если для любых векторов $\mathbf{x}, \mathbf{y} \in V_n$ верно равенство $f(\mathbf{x}, \mathbf{y}) = -f(\mathbf{y}, \mathbf{x})$.

Теорема 5.2. Для того, чтобы билинейная форма f пространства V_n была кососимметрической, необходимо и достаточно чтобы матрица этой формы была кососимметрической.

Теорема 5.3. Всякая билинейная форма f пространства V_n над полем P представляется в виде симметрической и кососимметрической форм пространства V_n .

lacktriangle Доказательство следует из того, что любая квадратная матрица порядка n над полем P представляется в виде сумм симметрической и кососимметрической матриц и теорем 5.1 и 5.2.

Пусть f — билинейная функция пространства V_n над полем P в базисе (4.1) представима в виде

$$f(\mathbf{x}, \mathbf{y}) = X^T A Y,$$

а в базисе

$$E' = (e'_1, e'_2, \dots, e'_n) -$$
 (5.4)

в виде билинейной формы

$$f(\mathbf{x}, \mathbf{y}) = (X')^T B Y'. \tag{5.5}$$

Как связаны между собой матрицы A и B, т.е. матрицы одной и той же билинейной функции f, записанных в разных базисах пространства?

Пусть S — матрица перехода от базиса (4.1) к базису (5.4). Тогда X = SX', Y = SY', а, следовательно $X^TAY = f(\textbf{\textit{x}},\textbf{\textit{y}}) = (X')^TBY' \Leftrightarrow X^TAY = (X')^TBY' \Leftrightarrow (SX')^TA(SY') = (X')^TBY' \Leftrightarrow (X')^T(S^TAS)Y' = (X')^TBY'.$ Откуда следует, что

$$B = S^T A S. (5.6)$$

Так как ранг произведения матриц не превосходит ранга каждого из сомножителей, то из равенства (5.6) следует, что $\operatorname{rank} B \leq \operatorname{rank} A$. Учитывая, что $A = (S^T)^{-1}BS^{-1}$ получаем, что и $\operatorname{rank} A \leq \operatorname{rank} B$.

Следовательно, rank A = rank B.

Определение 5.4. Рангом билинейной формы называется *ранг* матрицы этой билинейной формы.

Определение 5.5. *Рангом билинейной функции* пространства V_n называется ранг некоторой из ее матриц.

Ранг билинейной функции f, как и ранг билинейной формы f, отождествляемой с этой билинейной функцией, обозначается через rank f.

6. КВАДРАТИЧНЫЕ ФОРМЫ

6.1. Основные определения и понятия

Пусть P — некоторое числовое поле и

$$f(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i y_j,$$

симметрическая билинейная форма над полем P. Положим ${m y}={m x}$. Имеем

$$f(\mathbf{x}, \mathbf{x}) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_i x_j,$$
 (6.1)

где $a_{ij} \in P$, причем $a_{ij} = a_{ji}, \ \forall i, j = \overline{1, n}$.

Определение 6.1. Симметрическая билинейная форма вида (6.1) называется $\kappa вадратичной формой над полем <math>P$.

Учитывая, что (6.1) есть многочлен второй степени от переменных x_1, x_2, \ldots, x_n квадратичная форма (6.1) обозначается через $f(x_1, x_2, \ldots, x_n)$, т.е.

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j, \ a_{ij} \in P, \ i, j = \overline{1, n}$$
 (6.2)

или в матричном виде

$$f(x_1, \dots, x_n) = X^T A X, \tag{6.3}$$

где $A=(a_{ij},\ i,j=\overline{1,n}),$ $A=A^T$ — симметрическая $n\times n$ — матрица, а $X=\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}$ — столбец переменных.

Элементы a_{ij} называются коэффициентами квадратичной формы f.

Замечание 6.1. Если в указанном выше определении квадратичной формы поле P есть поле $\mathbb C$ комплексных чисел, то такая квадратичная форма называется *комплексной квадратичной формой*, если же P=R — то действительной квадратичной формой.

Определение 6.2. Матрица A, составленная из коэффициентов квадратичной формы f, называется матрицей квадратичной формы f.

Определение 6.3. Ранг матрицы квадратичной формы f называется рангом квадратичной формы f и обозначается rank f.

Определение 6.4. Говорят, что квадратичная форма f имеет $\kappa a \mu o - \mu u \nu e c \kappa u u$ вид, если она содержит только квадраты переменных, т.е. имеет вид $f(x_1, \ldots, x_n) = \sum_{i=1}^n a_{ii} x_i^2$ или в матричном виде

$$f(x_1, \dots, x_n) = X^T \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} X.$$

6.2. Эквивалентность квадратичных форм

Наряду с квадратичной формой (6.2) рассмотрим квадратичную форму

$$g(y_1, \dots, y_n) = \sum_{i=1}^n \sum_{j=1}^n b_{ij} y_i y_j, \ b_{ij} \in P, \ b_{ij} = b_{ji}, \ i, j = \overline{1, n},$$
 (6.4)

или в матричном виде

$$g(y_1,\ldots,y_n)=Y^TBY.$$

Пусть $S = (s_{ij}, i, j = \overline{1,n})$ — невырожденная матрица над полем P.. Система выражений вида

$$\begin{cases} x_1 = s_{11}y_1 + \ldots + s_{1n}y_n, \\ \ldots \\ x_n = s_{n1}y_1 + \ldots + s_{nn}y_n, \end{cases}$$
 (6.5)

или в матричной форме

$$X = SY, (6.6)$$

где
$$X=\left[egin{array}{c} x_1\\ x_2\\ \vdots\\ x_n \end{array}\right],Y=\left[egin{array}{c} y_1\\ y_2\\ \vdots\\ y_n \end{array}\right]$$
, называется невырожденным линейным

преобразованием переменных с матрицей S.

Если в квадратичную форму (6.2) вместо переменных x_1, \ldots, x_n подставить их выражение через переменные y_1, y_2, \ldots, y_n , связанные соотношением (6.5), и мы перейдем от (6.2) к (6.4), то говорят, что квадратичная форма f невырожденным линейным преобразованием (6.5) переводится в квадратичную форму g.

Нетрудно видеть, что если существует невырожденное линейное преобразование переменных, переводящее квадратичную форму f в квадратичную форму g, то существует и невырожденное линейное преобразование переменных, переводящее квадратичную форму g в квадратичную форму f.

Определение 6.5. Две квадратичные формы f и g называются эквивалентными и это обстоятельство обозначается $f \sim g$, если существует невырожденное линейное преобразование переменных, переводящее одну квадратичную форму в другую.

Исходя из вышеизложенного ясно, что:

- 1) $f \sim f$;
- 2) если $f \sim g$, то $g \sim f$;
- 3) если $f \sim g$ и $g \sim \varphi$, то $f \sim \varphi$.

Более того, если $f \sim g$, то тогда $f(x_1, x_2, \dots, x_n) = X^T A X = [$ используем преобразование $X = SY] = (SY)^T A(SY) = Y^T (S^T A S) Y = Y^T B Y = g(y_1, y_2, \dots, y_n).$

A это значит, что матрицы двух эквивалентных форм связаны соотношением $B=S^TAS$, из которого следует, что ранги эквивалентных форм равны, т.е.rank $f={\rm rank}\, g$.

Теорема 6.1. Всякая квадратичная форма над полем P эквивалентна некоторой квадратичной форме в каноническом виде. Число квадратов в последней равно рангу исходной квадратичной формы.

 ♦ Используем метод математической индукции по числу переменных в квадратичной форме.

Квадратичная форма от одной переменной эквивалентна самой себе:

$$f(x_1) = a_{11}x_1^2 \sim a_{11}x_1^2.$$

Пусть утверждение верно для всех квадратичных форм, число переменных которых не больше (n-1). Докажем, что оно верно для всех квадратичных форм от n переменных.

Для квадратичной формы (6.2) возможны следующие два случая:

1) среди коэффициентов a_{ii} при квадратичных переменных есть хотя бы один, отличный от нуля. Без ограничений общности предположим, что это a_{11} (в противном случае переменные можно перенумеровать). Перепишем форму (6.2) в виде

$$f(x_1, x_2, \dots, x_n) = (a_{11}x_1^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + \dots + 2a_{1n}x_1x_n) + f_1(x_2, \dots, x_n),$$

$$(6.7)$$

где $f_1(x_2 \dots x_n)$ — квадратичная форма от (n-1)-й или меньшего числа переменных.

Выражение, стоящее в круглых скобках (6.7), преобразуем так, чтобы выделить полный квадрат по переменной x_1 . Имеем

$$a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n =$$

$$= a_{11}(x_1^2 + 2x_1\frac{1}{a_{11}}(a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n) +$$

$$+ \frac{1}{a_{11}^2}(a_{12}x_2 + \dots + a_{1n}x_n)^2 - \frac{1}{a_{11}^2}(a_{12}x_2 + \dots + a_{1n}x_n)^2) =$$

$$= \frac{1}{a_{11}}(a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n)^2 -$$

$$- \frac{1}{a_{11}}(a_{12}x_2 + \dots + a_{1n}x_n)^2.$$
(6.8)

Тогда выражение (6.7) равносильно

$$f(x_1, x_2, \dots, x_n) = \frac{1}{a_{11}} (a_{11}x_1 + \dots + a_{1n}x_n)^2 + f_2(x_2 \dots x_n), \quad (6.9)$$

где
$$f_2(x_2 \dots x_n) = f_1(x_2 \dots x_n) - \frac{1}{a_{11}}(a_{12}x_2 + \dots + a_{1n}x_n)^2.$$

Ясно, что $f_2(x_2...x_n)$, в свою очередь, является квадратичной формой от (n-1)-й или меньшего числа переменных. Следовательно, по индукционному предположению она эквивалентна некоторой квадратичной форме в каноническом виде, т.е. найдется невырожденное ли-

нейное преобразование переменных вида

$$\begin{cases} y_{2} = b_{22}x_{2} + \dots + b_{2n}x_{n}, \\ y_{3} = b_{32}x_{2} + \dots + b_{3n}x_{n}, \\ \dots \\ y_{n} = b_{n2}x_{2} + \dots + b_{nn}x_{n}, \\ b_{ij} \in P, \ i, j = \overline{2, n}, \end{cases}$$

$$(6.10)$$

которое переводит квадратичную форму $f_2(x_2 \dots x_n)$ к каноническому виду

$$\alpha_2 y_2^2 + \ldots + \alpha_n y_n^2, \ \alpha_i \in P, \ i = \overline{2, n}. \tag{6.11}$$

Но тогда рассмотрим линейное преобразование переменных вида

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n, \\ y_2 = b_{22}x_2 + \dots + b_{2n}x_n, \\ \dots \\ y_n = b_{n2}x_2 + \dots + b_{nn}x_n. \end{cases}$$
(6.12)

Это преобразование, с использованием равенства (6.9), приводит квадратичную форму $f(x_1, x_2, \dots, x_n)$ к каноническому виду

$$\frac{1}{a_{11}}y_1^2 + \alpha_2 y_2^2 + \ldots + \alpha_n y_n^2. \tag{6.13}$$

Итак, квадратичная форма f эквивалентна квадратичной форме в каноническом виде (6.13).

Заметим, что преобразование (6.12) является невырожденным, ибо его матрица

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & b_{n2} & \dots & b_{nn} \end{bmatrix}$$

является невырожденной;

2) все коэффициенты $a_{ii}(1 \leq i \leq n)$ при квадратичных переменных квадратичной формы (6.2) равны нулю. Но тогда существует коэффициент $a_{ij} \neq 0, i \neq j, 1 \leq i, j \leq n$. Рассмотрим следующее невырожденное линейное преобразование переменных:

$$\begin{cases} x_i = y_i + y_j, \\ x_j = y_i - y_j, \\ x_k = y_k, \ k = \overline{1, n}, \ k \neq i, \ k \neq j. \end{cases}$$
 (6.14)

Применим это линейное преобразование к квадратичной форме (6.2). Тогда квадратичная форма f эквивалентна квадратичной форме вида

$$\ldots + 2a_{ij}(y_i^2 - y_j^2) + \ldots$$

Последняя квадратичная форма уже содержит квадраты переменных, а следовательно, пришли к первому случаю. Итак, первая часть теоремы доказана.

Вторая часть теоремы следует из того, что ранги эквивалентных форм равны и, что ранг квадратичной формы в каноническом виде равен числу ненулевых коэффициентов при квадратах переменных. ■

Определение 6.6. Нахождение по данной квадратичной форме эквивалентной ей квадратичной формы в каноническом виде называется приведением квадратичной формы к каноническому виду.

Замечание 6.2. Для всякой квадратичной формы существует бесконечное множество эквивалентных ей квадратичных форм в каноническом виде. Однако все они имеют одно и то же число отличных от нуля коэффициентов при квадратах переменных, равное рангу исходной квадратичной формы.

6.3. Нормальный вид комплексных квадратичных форм

Пусть

$$f(\mathbf{x}, \mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j, \ a_{ij} \in C, \ i, j = \overline{1, n}.$$
 (6.15)

- квадратичная форма над полем комплексных чисел, а

$$b_1 y_1^2 + b_2 y_2^2 + \ldots + b_r y_r^2, \ b_i \in C, \ i = \overline{1, r}, \ r = \text{rank} f$$
 (6.16)

- квадратичная форма в каноническом виде эквивалентная (6.15).

К квадратичной форме (6.16) применим следующее невырожденное линейное комплексное преобразование переменных вида

$$\begin{cases}
z_1 = \sqrt{b_1}y_1, \\
z_2 = \sqrt{b_2}y_2, \\
\dots \\
z_r = \sqrt{b_r}y_r, \\
z_{r+1} = y_{r+1}, \\
\dots \\
z_n = y_n.
\end{cases} (6.17)$$

Тогда квадратичная форма (6.16) эквивалентна квадратичной форме

$$z_1^2 + z_1^2 + \ldots + z_r^2$$
.

Квадратичная форма в виде $z_1^2+z_2^2+\ldots+z_r^2$ называется нормальным видом квадратичной формы над полем комплексных чисел. Так как любая квадратичная форма может быть приведена к каноническому виду, то справедлива следующая теорема

Теорема 6.2. Всякая комплексная квадратичная форма при помощи невырожденного комплексного линейного преобразования переменных может быть приведена к нормальному виду. Число квадратов в нормальном виде равно рангу исходной квадратичной формы.

Следствие 6.1. Для всякой комплексной симметрической матрицы A существует невырожденная комплексная матрица S такая, что

$$S^{T}AS = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & & & & & & \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ \vdots & & & & & & \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix},$$

причем, число единиц на главной диагонали в последней равно рангу матрицы A.

Теорема 6.3. (критерий эквивалентности комплексных квадратичных форм над полем). Две комплексные квадратичные формы от одного и того же числа переменных эквивалентны тогда и только тогда, когда равны их ранги.

lacktriangle Необходимость. Рассмотрим над полем C две квадратичные формы $f(\boldsymbol{x}, \boldsymbol{x}) = X^T A X, g(\boldsymbol{y}, \boldsymbol{y}) = Y^T B Y, A, B \in C_{n,n}, A = A^T, B = B^T.$

Пусть $f \sim g$, тогда существует невырожденное линейное преобразование X = SY ($S \in C_{n,n}$, $\det S \neq 0$,), которое переводит квадратичную форму f в квадратичную форму g. Матрицы этих квадратичных форм связаны соотношением $B = S^T A S$, а это значит, что $\operatorname{rank} B = \operatorname{rank} A$. Откуда следует, что $\operatorname{rank} g = \operatorname{rank} f$.

Достаточность. Пусть ${\rm rank} f={\rm rank} g=r\leq n.$ Тогда на основании следствия 6.1 существуют матрицы $S_1,S_2\in C_{n,n},\,\det S_1\neq 0,$

$$\det S_2 \neq 0$$
 такие, что $S_1^T A S_1 = egin{bmatrix} E_r & O \ \hline O & O_{n-r,n-r} \end{bmatrix} = S_2^T B S_2$. Откуда сле-

дует, что $S_1^TAS_1=S_2^TBS_2\Leftrightarrow B=(S_2^T)^{-1}S_1^TAS_1S_2^{-1}\Leftrightarrow B=S^TAS$, где $S=S_1S_2^{-1}$. Применив невырожденное комплексное преобразование X=SY квадратичная форма f переводится в g, т.е. $f\sim g$.

6.4. Нормальный вид действительных квадратичных форм

Пусть

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$
 (6.18)

- действительная квадратичная форма, а

$$b_1 y_1^2 + b_2 y_2^2 + \ldots + b_l y_l^2 + b_{l+1} y_{l+1}^2 + \ldots + b_r y_r^2,$$
 (6.19)

— ее канонический вид, где $r = \operatorname{rank} f$.

Определение 6.7. Канонический вид действительной квадратичной формы, каждый ненулевой коэффициент которого равен 1 или –1, называется *нормальным видом действительной квадратичной формы*.

Теорема 6.4. . Всякая действительная квадратичная форма при помощи действительного невырожденного линейного преобразования переменных может быть приведена к нормальному виду. Число квадратов в нормальном виде равно рангу исходной квадратичной формы.

lackРассмотрим каноническую квадратичную форму (6.19) и, без ограничения общности, предположим, что коэффициенты $b_1>0,\ldots,b_l>0$, а коэффициенты $b_{l+1}<0,\ldots,b_r<0$. Применим к этой квадратичной форме действительное невырожденное линейное преобразование переменных вида

Тогда форма (6.19) эквивалентна квадратичной форме вида

$$z_1^2 + \ldots + z_l^2 - z_{l+1}^2 - \ldots - z_r^2. \blacksquare$$
 (6.21)

Теорема 6.5. (закон инерции действительных квадратичных форм). Число положительных и число отрицательных квадратов в нормальном виде действительной квадратичной формы определяются однозначным образом и не зависят от действительного невырожденного линейного преобразования переменных, переводящего исходную квадратичную форму к нормальному виду.

• Рассмотрим квадратичную форму $f(x_1, x_2, \ldots, x_n) = X^T A X$, которая при помощи невырожденного действительного линейного преобразования $Y = S_1 X \Leftrightarrow y_i = \alpha_{i1} x_1 + \alpha_{i2} x_2 + \ldots + \alpha_{in} x_n, \ \alpha_{ij} \in R, \ i,j = \overline{1,n},$ приводится к нормальному виду

$$y_1^2 + y_2^2 + \ldots + y_s^2 - y_{s+1}^2 - \ldots - y_r^2,$$
 (6.22)

а при помощи $Z=S_2X$ — невырожденного линейного преобразования $z_i=\beta_{i1}x_1+\beta_{i2}x_2+\ldots+\beta_{in}x_n,\ \beta_{ij}\in R,\ i,j=\overline{1,n},$ — приводится к нормальному виду

$$z_1^2 + z_2^2 + \ldots + z_t^2 - z_{t+1}^2 - \ldots - z_r^2.$$
 (6.23)

Требуется доказать, что s = t.

Пусть s < t, тогда рассмотрим следующую однородную систему ли-

нейных уравнений:

Система (6.24) состоит из n-t+s < n линейных уравнений. Значит, она имеет ненулевые решения. Пусть $(\gamma_1, \gamma_2, \ldots, \gamma_n), \ \gamma_i \in R$ — одно из таких ненулевых решений. Найдем значение исходной квадратичной формы на этом ненулевом решении.

С одной стороны, из (6.22), с учетом того, что $(\gamma_1,\ldots,\gamma_n)$ является решением системы (6.24) имеем

$$f(\gamma_{1}, \gamma_{2}, \dots, \gamma_{n}) = \left(\sum_{i=1}^{n} \alpha_{1i} \gamma_{i}\right)^{2} + \left(\sum_{i=1}^{n} \alpha_{2i} \gamma_{i}\right)^{2} + \dots + \left(\sum_{i=1}^{n} \alpha_{si} \gamma_{i}\right)^{2} - \left(\sum_{i=1}^{n} \alpha_{s+1,i} \gamma_{i}\right)^{2} - \dots - \left(\sum_{i=1}^{n} \alpha_{ri} \gamma_{i}\right)^{2} = \dots - \left(\sum_{i=1}^{n} \alpha_{s+1,i} \gamma_{i}\right)^{2} - \dots - \left(\sum_{i=1}^{n} \alpha_{ri} \gamma_{i}\right)^{2} \leq 0.$$

$$(6.25)$$

С другой стороны, из (6.23) и (6.24) получаем

$$f(\gamma_{1}, \gamma_{2}, \dots, \gamma_{n}) = \left(\sum_{i=1}^{n} \beta_{1i} \gamma_{i}\right)^{2} + \left(\sum_{i=1}^{n} \beta_{2i} \gamma_{i}\right)^{2} + \dots + \left(\sum_{i=1}^{n} \beta_{ti} \gamma_{i}\right)^{2} - \left(\sum_{i=1}^{n} \beta_{t+1,i} \gamma_{i}\right)^{2} - \dots - \left(\sum_{i=1}^{n} \beta_{ri} \gamma_{i}\right)^{2} = \dots + \left(\sum_{i=1}^{n} \beta_{1i} \gamma_{i}\right)^{2} + \dots + \left(\sum_{i=1}^{n} \beta_{ti} \gamma_{i}\right)^{2} \ge 0.$$
(6.26)

Итак, из неравенств(6.25) и (6.26) имеем, что $f(\gamma_1,\dots,\gamma_n)=0$. Но то-

гда из соотношения (6.26) и системы (6.24) следует, что
$$S_2 \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \dots \\ \gamma_n \end{bmatrix} = 0,$$

причем
$$\begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \cdots \\ \gamma_n \end{bmatrix} \neq 0$$
. Учитывая, что $\det S_2 \neq 0$, получаем противоречие.

Значит, $s \not< t$. Аналогично доказывается, что $s \not> t$.

Определение 6.8. Число положительных квадратов в нормальном виде действительной квадратичной формы называется *положительным индексом инерции*, а число отрицательных квадратов — *отрицательным индексом инерции*. Разность между положительным и отрицательным индексами инерции квадратичной формы называется *сигнатурой*.

Следствие 6.2. Для любой действительной симметрической матрицы A существует невырожденная действительная матрица S такая, что

$$S^TAS = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \dots & \dots \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & -1 & \dots & 0 & 0 & \dots & 0 \\ \dots & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots & -1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \dots & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix},$$

причем число 1, -1 на главной диагонали равно рангу матрицы A и не зависит от матрицы S.

Нетрудно видеть, что ранг и сигнатура действительной квадратичной формы однозначным образом определяют ее положительный и отрицательный индексы инерции. Верна следующая теорема.

Теорема 6.6. (критерий эквивалентности действительной квадратичной формы). Две действительные квадратичные формы от n переменных эквивалентны тогда и только тогда, когда равны их ранги и сигнатуры.

♦ Доказательство аналогично доказательству теоремы 6.3.■

6.5. Знакоопределенные квадратичные формы

Рассмотрим действительную квадратичную форму f в виде (6.2). Ясно, что $f(0,0,\ldots,0)=0$.

Определение 6.9. Совокупность значений переменных x_1, \ldots, x_n называется *нулевой*, если $x_1 = x_2 = \ldots = x_n = 0$.

Определение 6.10. Совокупность значений переменных x_1, \dots, x_n называется *ненулевой*, если среди этих значений есть хотя бы одно, отличное от нуля, т.е. $\sum_{i=1}^n x_i^2 > 0$.

Определение 6.11. Действительная квадратичная форма f называется положительно определенной, если на любой ненулевой совокупности значений переменных $x_1^*, x_2^*, \ldots, x_n^*$ значение квадратичной формы больше нуля, т.е. $f(x_1^*, \ldots, x_n^*) > 0$, если $\sum_{i=1}^n (x_i^*)^2 > 0$.

Определение 6.12. Действительная квадратичная форма f называется *отрицательно определенной*, если на любой ненулевой совокупности значений переменных $x_1^*, x_2^*, \ldots, x_n^*$ значение квадратичной формы меньше нуля, т.е. $f(x_1^*, \ldots, x_n^*) < 0$, если $\sum_{i=1}^n (x_i^*)^2 > 0$.

Определение 6.13. Положительно и отрицательно определенные квадратичные формы называется *знакоопределенным квадратичными формами*.

Теорема 6.7. Если некоторая действительная квадратичная форма является положительно определенной, то и любая ей эквивалентная квадратичная форма является положительно определенной.

• Рассмотрим две действительные квадратичные формы $f(x_1,\ldots,x_n)=X^TAX,\,g(y_1,\ldots,y_n)=Y^TBY,\,A,B\in\mathbb{R}_{n,n},\,A=A^T,\,B=B^T.$ Пусть $f\sim g$, причем f положительно определена. Так как $f\sim g$, то существует невырожденное линейное преобразование

$$\begin{cases}
s_{11}x_1 + s_{12}x_2 + \dots + s_{1n}x_n = y_1, \\
s_{21}x_1 + s_{22}x_2 + \dots + s_{2n}x_n = y_2, \\
\dots \\
s_{n1}x_1 + s_{n2}x_2 + \dots + s_{nn}x_n = y_n,
\end{cases} (6.27)$$

которое переводит квадратичную форму g в квадратичную форму f и наоборот.

От противного. Пусть квадратичная форма g не является положительно определенной. Это значит, что найдется ненулевая совокупность значений переменных $y_1^*, y_2^*, \ldots, y_n^*$ таких, что $g(y_1^*, \ldots, y_n^*) \leq 0$. Но тогда, положив в соотношениях (6.27) $y_1 = y_1^*, y_2 = y_2^*, \ldots, y_n = y_n^*$, получим невырожденную неоднородную линейную систему уравнений, которая имеет единственное ненулевое решение x_1^*, \ldots, x_n^* . Так как $g \sim f$, то $g(y_1^*, y_2^*, \ldots, y_n^*) = f(x_1^*, x_2^*, \ldots, x_n^*)$, а это значит, что $f(x_1^*, \ldots, x_n^*) \leq 0$

на ненулевой совокупности переменных x_1^*, \dots, x_n^* . Противоречие. \blacksquare

Теорема 6.8. Если некоторая действительная квадратичная форма отрицательно определена, то и любая эквивалентная ей квадратичная форма отрицательно определена.

♦ Доказательство аналогично доказательству теоремы 6.7. ■

Теорема 6.9. Нормальный вид положительно определенной квадратичной формы от n переменных содержит в точности n положительных квадратов, т.е. имеет вид

$$y_1^2 + y_2^2 + \ldots + y_n^2. (6.28)$$

lacktriangle Пусть положительно определенная квадратичная форма f от n переменных эквивалентна квадратичной форме в нормальном виде

$$\varepsilon_1 y_1^2 + \varepsilon_2 y_2^2 + \ldots + \varepsilon_n y_n^2. \tag{6.29}$$

Покажем, что $\varepsilon_i = 1, \ i = \overline{1,n}.$

От противного. Пусть существует индекс i^* , $1 \le i^* \le n$, такой, что либо $\varepsilon_{i^*} = 0$, либо $\varepsilon_{i^*} = -1$. Тогда рассмотрим следующую совокупность переменных: $y_1 = 0, \ldots, y_2 = 0, \ldots, y_{i^*} = -1, \ldots, y_n = 0$. Нетрудно видеть, что значение квадратичной формы (6.29) на этом наборе переменных меньше либо равно 0. Но тогда (6.29) не является положительно определенной. Однако (6.29) эквивалентна f, причем f положительно определенная. Противоречие с теоремой 6.7.

Теорема 6.10. Нормальный вид отрицательно определенной квадратичной формы от n переменных содержит в точности n отрицательных квадратов, т.е. имеет вид

$$-y_1^2 - y_2^2 - \dots - y_n^2. (6.30)$$

Необходимые признаки положительно определенных квадратичных форм

- 1°. Если квадратичная форма $f(x_1,\ldots,x_n)=\sum\limits_{i=1}^n\sum\limits_{j=1}^na_{ij}x_ix_j$ является положительно определенной, то $a_{ii}>0$ для любого $i=\overline{1,n}$.
- ♦ Так как квадратичная форма $f(x_1, ..., x_n)$ является положительно определенной, то на любой ненулевой совокупности переменных $x_1, ..., x_n$ она принимает положительные значения. В частности, $f(1,0,...,0) = a_{11} > 0$, $f(0,1,...,0) = a_{22} > 0$,..., $f(0,...,1) = a_{nn} > 0$. ■

Замечание 6.3. Утверждение, обратное 1° , вообще говоря, неверно.

Например, в квадратичной форме $f(x_1, x_2) = x_1^2 - 10x_1x_2 + x_2^2$, $a_{11} = a_{22} = 1$. Однако эта квадратичная форма не является положительно определенной, ибо на ненулевом наборе $x_1 = x_2 = 1$ имеем f(1,1) = -8 < 0.

- 2° . Определитель матрицы положительно определенной квадратичной формы больше нуля.
- $f(x_1, ..., x_n) = X^T A X$ положительно определенная квадратичная форма. Тогда существует X = S Y невырожденное действительное преобразование переменных, переводящее эту квадратичную форму к нормальному виду, т.е. $f \sim g$, причем $g(y_1, ..., y_n) = Y^T B Y$ и $B = E_n$ единичная матрица порядка n. Так как $B = S^T A S$, имеем $\det B = \det S^T \cdot \det A \cdot \det S \Leftrightarrow 1 = (\det S)^2 \cdot \det A$. Следовательно, $\det A > 0$. ■
- 3° . Ранг положительно определенных квадратичных форм от n переменных равен n.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}.$$

Определение 6.14. Следующие миноры квадратной матрицы A называются *главными угловыми минорами*:

$$\Delta_1 = |a_{11}|; \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}; \Delta_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}; \dots, \Delta_n = \det A.$$

Замечание 6.4. Все миноры матрицы A, симметричные относительно главной диагонали, называются главными минорами матрицы A. Так, например, если n=3, имеем следующие главные миноры матрицы A:

$$\Delta_{11} = |a_{11}|; \ \Delta_{12} = |a_{22}|; \ \Delta_{13} = |a_{33}|;$$

$$\Delta_{21} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}; \ \Delta_{22} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}; \ \Delta_{23} = \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}; \ \Delta_{31} = \det A.$$

Теорема 6.11. (Якоби). Если все главные угловые миноры матрицы квадратичной формы отличны от нуля, то такая квадратичная форма

эквивалентна квадратичной форме в каноническом виде:

$$\frac{\Delta_1}{\Delta_0} y_1^2 + \frac{\Delta_2}{\Delta_1} y_2^2 + \ldots + \frac{\Delta_n}{\Delta_{n-1}} y_n^2, \text{ где } \Delta_0 = 1.$$
 (6.31)

Теорема 6.12. (критерий Сильвестра для положительно определенных квадратичных форм). Для того чтобы действительная квадратичная форма была положительно определена, необходимо и достаточно, чтобы все главные угловые миноры матрицы этой квадратичной формы были положительны.

igoplus Heoбxодимость. Пусть квадратичная форма $f(x_1,\ldots,x_n)=\sum_{i=1}^n\sum_{j=1}^na_{ij}x_ix_j,\,a_{ij}\in\mathbb{R},$ или в матричном виде $f(x_1,\ldots,x_n)=X^TAX,$ положительно определена. Но тогда положительно определена и любая квадратичная форма вида $f_k(x_1,\ldots,x_k)=\sum_{i=1}^k\sum_{j=1}^ka_{ij}x_ix_j,\,a_{ij}\in\mathbb{R},$ $1\leq k\leq n,$ которая является "сужением"исходной квадратичной формы от n переменных x_1,\ldots,x_n к квадратичной форме от k переменных x_1,\ldots,x_k . Исходя из признака положительной определенности квадратичной формы определитель матрицы квадратичной формы $f_k(x_1,\ldots,x_k)$ положителен, т.е.

$$\Delta_k = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ a_{31} & a_{32} & \dots & a_{3k} \\ \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & \dots & a_{kk} \end{vmatrix} > 0, \ 1 \le k \le n.$$

Итак, все главные угловые миноры матрицы A исходной квадратичной формы $f(x_1,\ldots,x_n)=\sum\limits_{i=1}^n\sum\limits_{j=1}^na_{ij}x_ix_j$ положительны.

Достаточность. Пусть все главные угловые миноры матрицы A квадратичной формы положительны, т.е. $\Delta_k>0$ для любого $k=\overline{1,n}$. Тогда на основании теоремы Якоби квадратичная форма f эквивалентна квадратичной форме в каноническом виде

$$\frac{\Delta_1}{\Delta_0} y_1^2 + \frac{\Delta_2}{\Delta_1} y_2^2 + \ldots + \frac{\Delta_n}{\Delta_{n-1}} y_n^2.$$
 (6.32)

Квадратичная форма (6.32) положительно определена, но тогда на основании теоремы 6.7 положительно определена и исходная квадратичная форма f.

Необходимые признаки отрицательно определенных квадратичных форм

Нетрудно видеть, что если квадратичная форма $f(x_1, \ldots, x_n)$ является положительно определенной, то квадратичная форма $-f(x_1, \ldots, x_n)$ является отрицательно определенной. Поэтому верны следующие признаки отрицательно определенных квадратичных форм:

- 1° . если квадратичная форма отрицательно определена, то все коэффициенты при квадратичных переменных в этой квадратичной форме отрицательны;
- 2° . если квадратичная форма от n переменных отрицательно определена, то определитель матрицы этой квадратичной формы положителен, если n четное, и отрицателен, если n нечетное;
- 3° . если квадратичная форма от n переменных является отрицательно определенной, то ее ранг равен n.

Теорема 6.13. (критерий Сильвестра для отрицательно определенных квадратичных форм). Для того чтобы вещественная квадратичная форма была отрицательно определена, необходимо и достаточно, чтобы все главные угловые миноры матрицы этой квадратичной формы четного порядка были положительны, а нечетного — отрицательны.

6.6. Приведение действительной квадратичной формы к каноническому виду при помощи ортогональных преобразований

Рассмотрим действительную квадратичную форму

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j, \ a_{ij} \in \mathbb{R}, \ a_{ij} = a_{ji}, \ \forall i, j = \overline{1, n}$$
(6.33)

или в матричном виде

$$f(x_1, x_2, ..., x_n) = X^T A X, A \in \mathbb{R}_{n,n}, A = A^T.$$

Как известно, эта квадратичная форма эквивалентна квадратичной форме в каноническом виде

$$g(y_1, ..., y_n) = \sum_{i=1}^n b_{ii} y_i^2, \ b_{ii} \in \mathbb{R}, \ \forall i = \overline{1, n},$$

или в матричном виде

$$g(y_1, \dots, y_n) = Y^T B Y = Y^T \begin{bmatrix} b_{11} & 0 & \dots & 0 \\ 0 & b_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & b_{nn} \end{bmatrix} Y.$$

Это значит, что найдется невырожденное линейное преобразование переменных X=HY, переводящее квадратичную форму f в квадратичную форму g. Но тогда матрицы A и B связаны соотношением

$$B = H^T A H,$$

причем матрица B — диагональная.

С другой стороны, матрицу A квадратичной формы можно рассматривать как матрицу некоторого симметрического преобразования f евклидова пространства V_n в некотором ортонормированном базисе

$$(\boldsymbol{i}_1, \boldsymbol{i}_2, \dots, \boldsymbol{i}_n) \tag{6.34}$$

этого пространства.

Как известно [6], в этом случае для оператора f существует ортонормированный базис

$$(\mathbf{i}_1', \mathbf{i}_2', \dots, \mathbf{i}_n') \tag{6.35}$$

из собственных векторов оператора f.

А это значит, что если S- матрица перехода от базиса (6.34) к базису (6.35), то:

- 1) матрица $S^{-1}AS$ матрица оператора f в новом ортонормированном базисе (6.35);
- 2) матрица $S^{-1}AS$ является диагональной, причем на главной диагонали стоят собственные значения оператора f;
- 3) учитывая, что базисы (6.34), (6.35) ортонормированы, то верно равенство $S^{-1} = S^T$, т.е. матрица S ортогональна.

Отсюда следует, что в качестве невырожденного линейного преобразования, переводящего квадратичную форму (6.33) к каноническому виду, можно рассматривать преобразование X=SY, где S - ортогональная матрица, т.е. матрица некоторого ортогонального преобразования евклидова пространства V_n . Итак, верна следующая теорема.

Теорема 6.14. Любая вещественная квадратичная форма f с помощью ортогонального преобразования переменных может быть приведена к каноническому виду, причем коэффициенты при квадратах переменных в каноническом виде суть собственные значения матрицы квадратичной формы f.

Алгоритм приведения квадратичной формы от n переменных каноническому виду с помощью ортогональных преобразований

- 1. Выписываем матрицу A квадратичной формы.
- 2. Решаем характеристическое уравнение, т.е. находим собственные значения матрицы A. Это будут коэффициенты при квадратах переменных в каноническом виде.
- 3. Находим n линейно независимых собственных векторов (базис евклидова пространства V_n , состоящий из собственных векторов некоторого симметрического оператора f, имеющего в некотором ортонормированном базисе этого пространства своей матрицей матрицу A).
 - 4. Строим ортонормированный базис.
 - 5. Составляем матрицу искомого ортогонального преобразования.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Показать, что преобразование f пространства V_3 , действующее по правилу $f(\mathbf{x}) = [\mathbf{a}, [\mathbf{x}, \mathbf{b}]], \ \forall \mathbf{x} \in V_3$, где $\mathbf{a} = 2\mathbf{i} + 4\mathbf{j} - \mathbf{k}, \ \mathbf{b} = \mathbf{i} - \mathbf{j} + \mathbf{k}$, является линейным, и найти его матрицу в базисе $(\mathbf{i}, \mathbf{j}, \mathbf{k})$.

Решение. Используя свойства векторного произведения, получаем $f(\boldsymbol{x}+\boldsymbol{y})=$ $=[\boldsymbol{a},[\boldsymbol{x}+\boldsymbol{y},\boldsymbol{b}]]=[\boldsymbol{a},[\boldsymbol{x},\boldsymbol{b}]+[\boldsymbol{y},\boldsymbol{b}]]=[\boldsymbol{a},[\boldsymbol{x},\boldsymbol{b}]]+[\boldsymbol{a},[\boldsymbol{y},\boldsymbol{b}]]=f(\boldsymbol{x})+f(\boldsymbol{y})$ для любых $\boldsymbol{x},\boldsymbol{y}$ из V_3 , а также $f(\alpha \boldsymbol{x})=[\boldsymbol{a},[\alpha \boldsymbol{x},\boldsymbol{b}]]=[\boldsymbol{a},\alpha[\boldsymbol{x},\boldsymbol{b}]]=\alpha[\boldsymbol{a},[\boldsymbol{x},\boldsymbol{b}]]=\alpha f(\boldsymbol{x})$ для любого $\alpha\in R$ и $\boldsymbol{x}\in V_3$. Итак, преобразование f линейно. Для нахождения матрицы A необходимо вычислить векторы $f(\boldsymbol{i}),f(\boldsymbol{j}),f(\boldsymbol{k})$. Сначала найдем координаты вектора $f(\boldsymbol{i})=[\boldsymbol{a},[\boldsymbol{i},\boldsymbol{b}]]$. Поскольку

$$[oldsymbol{i},oldsymbol{b}] = \left| egin{array}{ccc} oldsymbol{i} & oldsymbol{j} & oldsymbol{k} \ 1 & 0 & 0 \ 1 & -1 & 1 \end{array}
ight| = -oldsymbol{j} - oldsymbol{k},$$

постольку

$$f(i) = [a, -j - k] = \begin{vmatrix} i & j & k \\ 2 & 4 & -1 \\ 0 & -1 & -1 \end{vmatrix} = -5i + 2j - 2k.$$

Аналогично, $f(\mathbf{j}) = -4\mathbf{i} + \mathbf{j} - 4\mathbf{k}$, $f(\mathbf{k}) = \mathbf{i} - \mathbf{j} - 2\mathbf{k}$. Поэтому имеем

$$A = \left[\begin{array}{rrr} -5 & -4 & 1 \\ 2 & 1 & -1 \\ -2 & -4 & -2 \end{array} \right].$$

Пример 2. Пусть линейный оператор f пространства многочленов степени не больше 2 имеет в базисе $G = (1, x, x^2)$ матрицу

$$A_f = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right],$$

а оператор g в базисе $H = (1, x - 1, (x - 1)^2)$ — матрицу

$$B_g = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right].$$

Найти матрицы линейных операторов $f\circ g, f+g, 5f$ в базисе H.

Решение. Обозначим искомые матрицы через $B_{f \circ g}, B_{f+g}, B_{5f}$. Сначала найдем матрицу B_f оператора f в базисе H, а затем воспользуемся тем, что согласно теоремам 4.2, 4.3, 4.4 матрицы $B_{f \circ g} = B_f B_g, B_{f+g} = B_f + B_g, B_{5f} = 5B_f$. Для нахождения матрицы B_f ищем матрицу перехода S от базиса G к базису H, для чего выражаем векторы базиса H через векторы базиса $G: 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2, x - 1 = -1 \cdot 1 + 1 \cdot x + 0 \cdot x^2, (x-1)^2 = 1 \cdot 1 - 2 \cdot x + 1 \cdot x^2$. Располагая полученные координаты в столбцы, образуем матрицу S:

$$S = \left[\begin{array}{rrr} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{array} \right].$$

Так как $B_f = S^{-1}A_fS$ (см. формулу (4.16)), то матрицу B_f можно найти, решив матричное уравнение $SB_f = A_fS$. В силу того, что

$$A_f S = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 0 \end{bmatrix},$$

составляем расширенную матрицу для вышеуказанного уравнения и решаем его методом Гаусса:

$$[S|A_fS] = \begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 1 \\ 0 & 1 & -2 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}.$$

Следовательно,

$$B_f = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 2 & 1 & -1 \\ 1 & 0 & 0 \end{array} \right].$$

Наконец, вычисляем искомые матрицы

$$B_{f \circ g} = B_f B_g = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix},$$

$$B_{f+g} = B_f + B_g = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix},$$

$$B_{5f} = 5B_f = \begin{bmatrix} 5 & 5 & 0 \\ 10 & 5 & -5 \\ 5 & 0 & 0 \end{bmatrix}.$$

Пример 3. Пусть f — линейное преобразование пространства V_3 (пространства свободных геометрических векторов) — имеет в ортонормированном базисе G = (i, j, k) своей матрицей матрицу

$$A = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{array} \right].$$

Найти матрицу B этого преобразования в базисе $H=(\pmb{i}+2\pmb{j}+\pmb{k},\ 2\pmb{i}+\pmb{j}-\pmb{k},\ \pmb{i}-\pmb{j}+3\pmb{k}).$

 $\mbox{\bf Решение.}$ Для нахождения матрицы B первоначально найдем матрицу S перехода от базиса G к базису H :

$$S = \left[\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 1 & -1 \\ 1 & -1 & 3 \end{array} \right].$$

Учитывая, что $B = S^{-1}AS$, перепишем это соотношение в виде

$$SB = AS$$
.

В результате имеем матричное уравнение относительно неизвестной матрицы B. Вычисляем матрицу AS и решаем затем это матричное уравнение, привлекая метод Гаусса:

$$AS = \begin{bmatrix} 3 & 3 & 0 \\ 3 & 0 & 2 \\ 0 & -3 & 2 \end{bmatrix},$$

$$\begin{bmatrix} 1 & 2 & 1 & 3 & 3 & 0 \\ 2 & 1 & -1 & 3 & 0 & 2 \\ 1 & -1 & 3 & 0 & -3 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & 3 & 3 & 0 \\ 0 & -3 & -3 & -3 & -6 & 2 \\ 0 & -3 & 2 & -3 & -6 & 2 \\ 0 & 0 & 5 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 3 & 0 & 0 & 3 & -3 & 4 \\ 0 & -3 & 0 & -3 & -6 & 2 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}.$$

Следовательно,

$$B = \frac{1}{3} \left[\begin{array}{ccc} 3 & -3 & 4 \\ 3 & 6 & -2 \\ 0 & 0 & 0 \end{array} \right].$$

Пример 4. Найти собственные векторы линейного преобразования f векторного пространства $R_{3,1}$, заданного в некотором базисе этого пространства матрицей

$$A = \left[\begin{array}{rrr} 1 & -4 & -8 \\ -4 & 7 & -4 \\ -8 & -4 & 1 \end{array} \right].$$

Решение. Характеристическое уравнение данного преобразования имеет вид

$$-\lambda^3 + 9\lambda^2 + 81\lambda - 729 = 0.$$

Вычисляем характеристические числа и их кратности: $\lambda_1=9,\,k_1=2;\,\lambda_2=-9,\,k_2=1.$ Так как характеристические числа являются действительными, то они являются собственными значениями этого оператора.

Чтобы найти координатные столбцы базиса подпространства L_{λ_1} — подпространства собственных векторов, отвечающих собственному значению λ_1 , полагаем в уравнении $(A-\lambda E_3)U=0$ λ равным 9. Имеем

$$\begin{bmatrix} -8 & -4 & -8 \\ -4 & -2 & -4 \\ -8 & -4 & -8 \end{bmatrix} U = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Решая это матричное уравнение, находим столбцы $U_1 = [1, -2, 0]^T$, $U_2 = [0, -2, 1]^T$, которые являются координатными столбцами базиса подпространства L_{λ_1} . Но тогда

$$L_{\lambda_1}=L(U_1,U_2)$$
. Другими словами говоря, любой вектор а $U_1+eta U_2=\left[egin{array}{c}lpha\\-2lpha-2eta\end{array}
ight],$

где α и β — произвольные действительные числа и такие, что $\alpha^2 + \beta^2 > 0$, является собственным вектором преобразования f, отвечающим собственному значению $\lambda_1 = 9$.

Аналогично находим координатный столбец $U_3=[2,\ 1,\ 2]^T$ базиса подпространства L_{λ_2} . А это значит, что множество всех собственных векторов, отвечающих соб-

ственному значению $\lambda_2=-9,$ имеет вид $U_3=\begin{bmatrix}2\gamma\\\gamma\\2\gamma\end{bmatrix},$ $\gamma\in R,$ $\gamma\neq 0.$

Пример 5. Доказать, что преобразование $f(x_1, x_2, x_3) = (x_1 + x_2, 2x_2, 2x_1 + x_2 + x_3)$ пространства $R_{1,3}$ линейно, и найти его матрицу в каноническом базисе ((1,0,0),(0,1,0),(0,0,1)) этого пространства.

Решение. Исходное преобразование запишем в виде f(X) = XB, где $X = (x_1, x_2, x_3)$ и

$$B = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{array} \right].$$

Отсюда, используя дистрибутивность умножения матриц относительно сложения, для любых двух матриц-строк $X,Y\in R_{1,3}$ имеем f(X+Y)=(X+Y)B=XB+YB==f(X)+f(Y). Аналогично для любого $\alpha\in R$ и $X\in R_{1,3}$ получаем $f(\alpha X)=(\alpha X)B==\alpha(XB)=\alpha f(X)$. Далее, так как f(1,0,0)=(1,0,2), f(0,1,0)=(1,2,1), f(0,0,1)==(0,0,1), то матрица A оператора f в каноническом базисе ((1,0,0),(0,1,0),(0,0,1)) пространства $R_{1,3}$ имеет вид

$$A = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 2 & 1 & 1 \end{array} \right] = B^T.$$

Пример 6. Найти матрицу и ранг следующей квадратичной формы

$$f(x_1, x_2, x_3) = 3x_1^2 + 4x_2^2 - 4x_3^2 + 6x_1x_2 - 4x_1x_3 - 2x_2x_3.$$

Решение. Исходя из определения квадратичной формы, матрица этой формы имеет вид

$$A = \left[\begin{array}{rrr} 3 & 3 & -2 \\ 3 & 4 & -1 \\ -2 & -1 & -4 \end{array} \right].$$

Так как ранг матрицы A равен 3, то и ранг исходной квадратичной формы равен 3.

Пример 7. Привести квадратичную форму $f(x_1, x_2, x_3) = 2x_1^2 + 7x_2^2 + 4x_3^2 - 8x_1x_2 + 4x_1x_3 - 6x_2x_3$ к каноническому виду и найти соответствующее невырожденное линейное преобразование переменных.

Решение. Так как среди коэффициентов $a_{ii}, 1 \le i \le 3$, есть отличные от нуля, например, $a_{11}=2\ne 0$, то выделим полный квадрат по переменной x_1 :

$$f(x_1, x_2, x_3) = (2x_1^2 - 8x_1x_2 + 4x_1x_3) + 7x_2^2 + 4x_3^2 - 6x_2x_3 = 2(x_1^2 - 2x_1(2x_2 - x_3) + (2x_2 - x_3)^2) - 2(2x_2 - x_3)^2 + 7x_2^2 + 4x_3^2 - 6x_2x_3 = 2(x_1 - 2x_2 + x_3)^2 + (-x_2^2 + 2x_2x_3 + 2x_3^2).$$

Далее в квадратичной форме $-x_2^2 + 2x_2x_3 + 2x_3^2$ выделим полный квадрат по переменной x_2 . В результате имеем

$$f(x_1, x_2, x_3) = 2(x_1 - 2x_2 + x_3)^2 - (x_2 - x_3)^2 + 3x_3^2.$$

Применим преобразование переменных

$$\begin{cases} y_1 = x_1 - 2x_2 + x_3, \\ y_2 = x_2 - x_3, \\ y_3 = x_3, \end{cases} \Leftrightarrow \begin{cases} x_1 = y_1 + 2y_2 + y_3, \\ x_2 = y_2 + y_3, \\ x_3 = y_3, \end{cases}$$

которое является невырожденным и переводит исходную квадратичную форму к каноническому виду $2y_1^2 - y_2^2 + 3y_3^2$.

Пример 8. Привести к каноническому виду квадратичную форму $f(x_1, x_2, x_3) =$ $=x_1x_2-2x_2x_3.$

Решение. Так как все коэффициенты a_{ii} , $1 \le i \le 3$, при квадратах переменных равны нулю, то первоначально применим невырожденное линейное преобразование вида

$$\begin{cases} x_1 = y_1 + y_2, \\ x_2 = y_1 - y_2, \\ x_3 = y_3. \end{cases}$$

В результате имеем, что квадратичная форма f эквивалентна квадратичной форме $g(y_1,y_2,y_3)=y_1^2-y_2^2-2y_1y_3+2y_2y_3.$ Так как в этой квадратичной форме коэффициент при y_1^2 отличен от нуля, то выде-

лим в ней полный квадрат по переменной y_1 , а затем по переменной y_2 :

$$g(y_1, y_2, y_3) = (y_1 - y_3)^2 - (y_2 - y_3)^2.$$

Применив преобразование

$$\begin{cases} z_1 = y_1 - y_3, \\ z_2 = y_2 - y_3, \\ z_3 = y_3, \end{cases}$$

получим канонический вид исходной квадратичной формы $z_1^2-z_2^2.$

Найти нормальный вид следующей квадратичной формы $f(x_1, x_2, x_3) = x_1^2 + 3x_2^2 + 2x_3^2 + 6x_1x_2 - 4x_1x_3 - 18x_2x_3.$

Решение. Приведем первоначально исходную квадратичную форму к каноническому виду. Для этого выделим полный квадрат по переменной x_1 , затем по переменной x_2 и т.д. Применив невырожденное линейное преобразование вида

$$\begin{cases} y_1 = x_1 + 3x_2 - 2x_3, \\ y_2 = x_2 + \frac{1}{2}x_3, & \text{приходим к каноническому виду } y_1^2 - 6y_2^2 - \frac{1}{2}y_3^2. \\ y_3 = x_3, \end{cases}$$

В свою очередь, применяя к последней квадратичной форме невырожденное ли-

нейное преобразование вида $\begin{cases} z_1 = y_1, \\ z_2 = \sqrt{6}y_2, \\ z_3 = \frac{1}{\sqrt{2}}y_3, \end{cases}$ приходим к нормальному виду исходной

квадратичной формы: $z_1^2 - z_2^2 - z_3^2$

Пример 10. Выяснить, являются ли эквивалентными следующие квадратичные формы

$$f_1(x_1, x_2, x_3) = 2x_1^2 + 3x_2^2 + x_3^2 - 4x_1x_2 + 2x_1x_3 - 2x_2x_3,$$

$$f_2(x_1, x_2, x_3) = 3x_1 - 2x_2^2 - 5x_3^2 - 4x_2x_3.$$

 $J_2(x_1, x_2, x_3) = 5x_1 - 2x_2 - 5x_3 - 4x_2x_3$. **Решение.** Приведем обе квадратичные формы к нормальному виду (см. пример 9). Имеем $f_1 \sim z_1^2 + z_2^2 + z_3^2$, $f_2 \sim u_1^2 - u_2^2 - u_3^2$. Так как нормальный вид первой квадратичной формы содержит три положительных квадрата, то ранг этой квадратичной формы равен 3 и сигнатура также равна 3. В то же время, нормальный вид второй квадратичной формы содержит один положительный и два отрицательных квадрата, а это значит, что ранг этой квадратичной формы также равен 3, но сигнатура равна -1. На основании критерия эквивалентности действительных квадратичных форм заключаем, что квадратичная форма f_1 не является эквивалентной квадратичной форме f_2 .

Пример 11. При каких значениях λ квадратичная форма $f(x_1,x_2,x_3)=4x_1^2+x_2^2+$ $+\lambda x_3^2 + 2x_1x_2 + 4x_1x_3 - 6x_2x_3$ является положительно определенной?

Решение. Выпишем матрицу квадратичной формы $f:A=\begin{bmatrix} 4 & 1 & 2 \\ 1 & 1 & -3 \\ 2 & -3 & \lambda \end{bmatrix}$. В

соответствии с критерием Сильвестра потребуем, чтобы все главные угловые миноры этой матрицы были положительны:

$$\Delta_1 = 4 > 0; \Delta_2 = \begin{vmatrix} 4 & 1 \\ 1 & 1 \end{vmatrix} = 3 > 0; \Delta_3 = \begin{vmatrix} 4 & 1 & 2 \\ 1 & 1 & -3 \\ 2 & -3 & \lambda \end{vmatrix} = 3\lambda - 52 > 0.$$

Следовательно, форма f положительно определена лишь при $\lambda >$

Пример 12. Найти ортогональное преобразование, приводящее к каноническому виду квадратичную форму

$$f(x_1, x_2, x_3) = 5x_1^2 + 2x_2^2 + 5x_3^2 - 4x_1x_2 - 2x_1x_3 - 4x_2x_3.$$

Решение. В соответствии с алгоритмом приведения квадратичной формы от n переменных каноническому виду с помощью ортогональных преобразований, выписываем матрицу исходной квадратичной формы

$$A = \left(\begin{array}{ccc} 5 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 5 \end{array}\right)$$

и решаем характеристическое уравнение $\det(A - \lambda E_3) = 0 \Leftrightarrow$

$$\Leftrightarrow \begin{vmatrix} 5-\lambda & -2 & -1 \\ -2 & 2-\lambda & -2 \\ -1 & -2 & 5-\lambda \end{vmatrix} = 0 \Leftrightarrow -\lambda^3 + 12\lambda^2 - 36\lambda = 0.$$
 Корни этого уравнения $\lambda_1 = 6$, $\lambda_2 = 0$ имеют соответственно кратности $k_1 = 2$,

 $k_2 = 1$. Они являются собственными значениями матрицы A и являются коэффициентами при квадратах переменных в каноническом виде исходной квадратичной формы f, r.e. $f \sim 6y_1^2 + 6y_2^2$.

Найдем собственные векторы, соответствующие собственным значениям. Координаты (u_1, u_2, u_3) собственных векторов, отвечающих собственному значению $\lambda_1 = 6$ кратности $k_1 = 2$, определим из системы уравнений вида (4.26), заменяя в ней λ на

 λ_1 . В результате имеем систему, состоящую из одного уравнения $u_1+2u_2+u_3=0$. Находим координатные столбцы $U_1=\begin{bmatrix} -2\\1\\0 \end{bmatrix}$, $U_2=\begin{bmatrix} -1\\0\\1 \end{bmatrix}$ базисных собственных векторов подпространства L_{λ_1} — подпространства собственных векторов, отвечающих

собственному значению λ_1 . Отметим, что $L_{\lambda_1} = L(U_1, U_2)$ и dim $L_{\lambda_1} = 2$.

Координаты (u_1,u_1,u_3) собственных векторов, отвечающих собственному значению $\lambda_2 = 0$ кратности $k_2 = 1$, определяются из системы уравнений

$$\begin{cases} 5u_1 - 2u_2 - u_3 = 0, \\ -2u_1 + 2u_2 - 2u_3 = 0. \end{cases}$$

Отсюда имеем $U_3=\left[egin{array}{c}1\\2\\1\end{array}\right]$ — координатный столбец базисного собственного вектора

подпространства L_{λ_2} , а это значит, что $L_{\lambda_2}=L(U_3)$ и $\dim L_{\lambda_2}=1.$

Итак, (U_1,U_2,U_3) — базис из собственных векторов. Строим ортонормированный базис из собственных векторов. Для этого в каждом из подпространств L_{λ_1} и L_{λ_2} строим свой собственный ортонормированный базис из собственных векторов.

Рассмотрим подпространство L_{λ_1} . Используя процесс ортогонализации, по систе-

ме векторов U_1, U_2 находим первоначально ортогональный базис: $V_1 = U_1 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$,

 $V_2=U_2-rac{2}{5}V_1=\left[egin{array}{c} -rac{1}{5} \ -rac{2}{5} \ 1 \end{array}
ight]$. Пронормировав векторы V_1 и V_2 , получим

$$V_1' = \begin{bmatrix} -\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \\ 0 \end{bmatrix}, \quad V_2' = \begin{bmatrix} -\frac{1}{\sqrt{30}} \\ -\frac{2}{\sqrt{30}} \\ \frac{5}{\sqrt{30}} \end{bmatrix}.$$

В подпространстве L_{λ_2} производим лишь нормировку вектора U_3 :

$$V_3' = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}.$$

Из координатных столбцов V_1',V_2',V_3' составляем теперь матрицу S искомого ортонормированного преобразования, переводящего данную квадратичную форму к каноническому виду $6y_1^2+6y_2^2$:

$$S = \begin{bmatrix} -\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{30}} & \frac{2}{\sqrt{6}} \\ 0 & \frac{5}{\sqrt{30}} & \frac{1}{\sqrt{6}} \end{bmatrix}.$$

Само искомое преобразование имеет вид

$$\begin{cases} x_1 = -\frac{2}{\sqrt{5}}y_1 - \frac{1}{\sqrt{30}}y_2 + \frac{1}{\sqrt{6}}y_3, \\ x_2 = \frac{1}{\sqrt{5}}y_1 - \frac{2}{\sqrt{30}}y_2 + \frac{2}{\sqrt{6}}y_3, \\ x_3 = \frac{5}{\sqrt{30}}y_2 + \frac{1}{\sqrt{6}}y_3. \end{cases}$$

Пример 13. Пусть линейный оператор в некотором базисе трехмерного векторного пространства V над полем C задан матрицей

$$A_{\varphi} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 2 & 2 & -3 \end{bmatrix}.$$

Построить в этом пространстве жорданов базис для оператора φ .

Решение. Находим собственные значения и координатные столбцы базисов пространств собственных векторов данного оператора. Так, $\lambda_1 = -1$ является трехкратным собственным значением, которому соответствуют два координатных столбца вектора базиса подпространства L_{λ_1} :

$$X_1 = [-1, 1, 0]^T, X_2 = [1, 1, 2]^T.$$

Поскольку $\dim L_{\lambda_1}=2<3$, то в подпространстве L_{λ_1} существует базис, для одного из векторов которого можно построить присоединенный вектор. Таким вектором является собственный вектор соответствующий координатному столбцу X_2 . Координатный столбец Y присоединенного вектора определяется из матричного уравнения

$$(A_{\varphi} - \lambda_1 E_3)Y = X_2,$$

ИЛИ

$$\begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 2 & 2 & -2 \end{bmatrix} Y = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix},$$

Отсюда $Y = [0, 2, 1]^T$. Итак, жорданов базис состоит из векторов, которые в исходном базисе имеют координатные столбцы X_1, X_2, Y .

ЗАДАЧИ

- 1. Выяснить, являются ли следующие отображения φ пространства V_3 (пространства геометрических векторов) в соответствующее векторное пространство линейным, если вектор \boldsymbol{x} означает произвольный вектор пространства V_3 с координатами x_1, x_2, x_3 в базисе $(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$ правой прямоугольной декартовой системы координат и φ определяется как:
 - 1. $\varphi: V_3 \to R, \ \varphi(x) = \mathbf{x}\mathbf{a}, \ \mathbf{a} \in V_3;$
 - 2. $\phi: V_3 \to V_3, \ \phi(\mathbf{x}) = x_2 \mathbf{i} + (x_1 + 2x_2) \mathbf{j} 3x_3 \mathbf{k};$
 - 3. $\varphi: V_3 \to V_3, \ \varphi(x) = x_3^2 \mathbf{i} + (x_1 + x_2) \mathbf{j}.$
- **2.** Показать, что интегральный оператор Фредгольма, который заданную функцию $x(t) \in C([a,b])$ отображает в функцию $y(t) = \int\limits_a^b K(t,s)x(s)ds$, где K(t,s) фиксированная непрерывная на $[a,b] \times [a,b]$ функция двух переменных (ядро оператора Фредгольма), является линейным преобразованием пространства непрерывных функций C([a,b]) на отрезке $[a,b],\ a,b\in R,\ a< b.$
- **3.** Доказать, что ортогональное проектирование пространства V_3 на координатную плоскость Oxy есть линейное преобразование, и найти его матрицу в базисе (i,j,k) данной декартовой прямоугольной системы координат.
- **4.** Показать, что дифференцирование является линейным преобразованием пространства многочленов степени $\leq n$ над полем R и найти его матрицы в базисах:
 - $1.\ (1,x,x^2,\dots,x^n);$ $2.\ \left(1,x-a,rac{(x-a)^2}{2!},\dots,rac{(x-a)^n}{n!}
 ight)$, где a действительной число.
- **5.** Найти матрицу линейного преобразования $\varphi: R_{1,3} \mapsto R_{1,3}$, переводящего систему векторов $(\boldsymbol{g}_1, \boldsymbol{g}_2, \boldsymbol{g}_3)$ в систему $(\boldsymbol{h}_1, \boldsymbol{h}_2, \boldsymbol{h}_3)$, в том же базисе, в котором даны координаты всех векторов:
- 1. $\mathbf{g}_1 = (1, 2, 3), \mathbf{g}_2 = (0, 2, 3), \mathbf{g}_3 = (0, 1, 2), \mathbf{h}_1 = (0, 9, 10), \mathbf{h}_2 = (-1, 12, 8), \mathbf{h}_3 = (0, 8, 5);$ 2. $\mathbf{g}_1 = (2, 0, 1), \mathbf{g}_2 = (0, -1, 2), \mathbf{g}_3 = (2, 1, 3), \mathbf{h}_1 = (3, -1, 2), \mathbf{h}_2 = (1, -3, 1)$
- 2. $\mathbf{g}_1 = (2, 0, 1), \mathbf{g}_2 = (0, -1, 2), \mathbf{g}_3 = (2, 1, 3), \mathbf{h}_1 = (3, -1, 2), \mathbf{h}_2 = (1, -3, 1), \mathbf{h}_3 = (6, -2, 1).$
- **6.** Найти матрицу преобразования f в V_3 , для которого $\ker f = V_2(\pi)$, $\operatorname{Im} f = V_1(\Delta)$, где π плоскость с уравнением x-2y+z=0, а Δ прямая с уравнением $\frac{x}{1}=\frac{y}{-2}=\frac{z}{2}$.
- 7. Найти матрицу линейного преобразования f пространства $R_{1,3}$, если $\ker f = L(\boldsymbol{a}_1)$, $\operatorname{Im} f = L(\boldsymbol{b}_1, \boldsymbol{b}_2)$, где $\boldsymbol{a}_1 = (13, 2, 7); \, \boldsymbol{b}_1 = (1, 5, -5); \, \boldsymbol{b}_2 = (-4, -7, -6).$
- **8.** Найти матрицу оператора дифференцирования линейного пространства функций вида $\alpha e^{at}\cos bt + \beta e^{at}\sin bt$, где $\alpha,\beta,a,b \in R$ (a и b фиксированы) в базисе ($e^{at}\cos bt,e^{at}\sin bt$).
 - **9.** Найти базис ядро линейного преобразования f пространства $R_{3,1},$ если это пре-

образование задано матрицей A:

$$1.A = \begin{bmatrix} 2 & 1 & -4 \\ 3 & 5 & -7 \\ 4 & -5 & -6 \end{bmatrix}; \ 2.A = \begin{bmatrix} 3 & 2 & 1 \\ 5 & 4 & 3 \\ 4 & 3 & 2 \end{bmatrix}; \ 3.A = \begin{bmatrix} -2 & 5 & -3 \\ 4 & -10 & 6 \\ 2 & -5 & 3 \end{bmatrix}.$$

10. Дана матрица A линейного преобразования f векторного пространства U_n в

базисе
$$(\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n)$$
. Найти матрицу этого преобразования в базисе $(\boldsymbol{e}_1', \boldsymbol{e}_2', \dots, \boldsymbol{e}_n')$:
$$1.\ A = \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix}, \ \boldsymbol{e}_1' = -\boldsymbol{e}_1 + \boldsymbol{e}_2, \ \boldsymbol{e}_2' = \boldsymbol{e}_1 - 2\boldsymbol{e}_2;$$

$$2.\ A = \begin{bmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{bmatrix}, \ \boldsymbol{e}_1' = \boldsymbol{e}_1 + \boldsymbol{e}_2 - \boldsymbol{e}_3, \ \boldsymbol{e}_2' = \boldsymbol{e}_1 + \boldsymbol{e}_3, \ \boldsymbol{e}_3' = \boldsymbol{e}_1 + \boldsymbol{e}_2;$$

$$3.\ A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix}, \ U_3 = R_2[t], \ \boldsymbol{e}_1 = 1, \boldsymbol{e}_2 = t, \ \boldsymbol{e}_3 = t^2, \ \boldsymbol{e}_1' = t^2 - t + 1,$$

$$\boldsymbol{e}_2' = 2t^2 - 1, \ \boldsymbol{e}_3' = t.$$

11. Показать, что отображение $X\mapsto AXB$ пространства матриц $R_{2,2}$ в пространство матриц $R_{2,3}$ является линейным, и найти его матрицу в канонических базисах, если

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 4 & 0 \end{bmatrix}.$$

12. Линейное преобразование ϕ в базисе $({\pmb a}_1, {\pmb a}_2)$, где ${\pmb a}_1 = (1,1), {\pmb a}_2 = (1,2),$ имеет матрицу $\begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$, а преобразование ψ в базисе $({\pmb b}_1, {\pmb b}_2)$, где ${\pmb b}_1 = (2, -1)$, ${\pmb b}_2 = (-1, 1)$, — матрицу $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$. Найти матрицу преобразования $\varphi \circ \psi$ в базисе

 $(\boldsymbol{b}_1, \boldsymbol{b}_2).$

13. Найти собственные значения и собственные векторы линейного преобразования, заданного в каноническом базисе пространства $R_{3,1}$ матрицей A:

1.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$
; 2. $A = \begin{bmatrix} 3 & -6 & 9 \\ -3 & 6 & -9 \\ 1 & -2 & 3 \end{bmatrix}$; 3. $A = \begin{bmatrix} 4 & -5 & 7 \\ 1 & -4 & 9 \\ -4 & 0 & 5 \end{bmatrix}$.

14. Существует ли базис, в котором линейное преобразование с матрицей

$$A = \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array} \right]$$

векторного пространства $R_{4,1}$ имеет диагональную матрицу? Если да, то найти этот базис и эту матрицу.

15. Выписать матрицу билинейной формы:

1.
$$\Phi(X,Y) = 2x_1y_1 + 3x_1y_2 + 5x_1y_3 - 4x_2y_2 + x_2y_3 + 5x_3y_1 + 3x_2y_1 + x_3y_2;$$

$$2. \Phi(X,Y) = 5x_1y_2 + 7x_1y_3 - 2x_2y_2 + x_2y_3 + 5x_2y_1 + 7x_3y_1 + x_3y_2 + 5x_3y_3.$$

16. Найти билинейную форму, если известна ее матрица:

$$1. A_{\Phi} = \begin{bmatrix} 2 & -1 & 4 \\ -1 & 0 & 5 \\ 4 & 5 & -1 \end{bmatrix}; 2. A_{\Phi} = \begin{bmatrix} -1 & 0 & 3 \\ 0 & 2 & 7 \\ 3 & 7 & 0 \end{bmatrix}.$$

- 17. Составить квадратичную форму, ассоциированную с данной билинейной формой:
 - 1. $\Phi(X,Y) = 2x_1y_1 3x_1y_2 + 4x_1y_3 3x_2y_1 + x_2y_3 + 4x_3y_1 + x_3y_2 2x_3y_3$;

2.
$$\Phi(X,Y) = x_1y_1 + 3x_1y_2 - 2x_1y_3 + 3x_2y_1 + 5x_2y_2 - 3x_2y_3 - 2x_3y_1 - 3x_3y_2$$
.

- 18. Найти билинейную форму, с которой ассоциирована данная квадратичная форма:
 - $1.f(x_1, x_2, x_3) = 2x_1^2 3x_3^2 2x_1x_2 + 2x_1x_3 6x_2x_3;$ $2. f(x_1, x_2, x_3) = 7x_1^2 + 5x_1x_2 2x_2^2 6x_1x_3 + 8x_2x_3.$

2.
$$f(x_1, x_2, x_3) = 7x_1^2 + 5x_1x_2 - 2x_2^2 - 6x_1x_3 + 8x_2x_3$$

- 19. Привести следующие квадратичные формы к каноническому виду посредством невырожденного линейного преобразования переменных:
 - 1. $x_1^2 + 4x_2^2 + 8x_3^2 4x_1x_2 + 6x_1x_3 12x_2x_3$; 2. $3x_1^2 2x_2^2 5x_3^2 4x_2x_3$;

 - $3. x_1x_2 + x_1x_3 + x_2x_3;$
 - $4. \ 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 4x_1x_3 10x_2x_3;$ $5. \ 3x_1^2 + 2x_3^2 4x_1x_2 + 6x_1x_3;$ $6. \ x_1^2 + x_1x_2 + x_2x_3.$
- 20. Найти нормальный вид и невырожденное линейное преобразование, приводящее к этому виду, для следующих квадратичных форм:
 - $1. 4x_1^2 + x_2^2 + x_3^2 4x_1x_2 + 4x_1x_3 3x_2x_3;$

 - 2. $x_1x_2 + x_2x_3$; 3. $3x_2^2 + 3x_3^2 + 4x_1x_2 + 4x_1x_3 2x_2x_3$.
- **21.** Для данных квадратичных форм f и g найти невырожденное линейное преобразование, переводящее форму f в форму g:
- 1. $f = 2x_1^2 + 3x_2^2 + 12x_3^2 4x_1x_2 8x_1x_3 + 12x_2x_3$, $g = 2y_1^2 + 9y_2^2 + 3y_3^2 + 8y_1y_2 4y_1y_3 10y_2y_3$; $2. f = 3x_1^2 + x_2^2 + 6x_1x_2$,

$$g = 3y_1^2 + y_2^2 + \frac{1}{4}y_3^2 + 6y_1y_2 + 3y_1y_3 + 5y_2y_3;$$

- 22. Найти все значения параметра \(\), при которых положительно определены следующие квадратичные формы:

 - 1. $x_1^2 + 4x_2^2 + \lambda x_3^2 + 2x_1x_3$; 2. $3x_1^2 2x_2^2 + \lambda x_3^2 + 4x_1x_2 6x_1x_3 + 2x_2x_3$; 3. $2x_1^2 + x_2^2 + 3x_3^2 + 2\lambda x_1x_2 + 2x_1x_3$.
- 23. Привести к каноническому виду ортогональным преобразованием квадратичные формы:

 - 1. $2x_1^2 + x_2^2 4x_1x_2 4x_2x_3$; 2. $x_1^2 + 2x_2^2 + 3x_3^2 4x_1x_2 4x_2x_3$; 3. $3x_1^2 + 4x_2^2 + 5x_3^2 + 4x_1x_2 4x_2x_3$;

ОТВЕТЫ

$$\mathbf{3.} \ A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$\textbf{4.1}) \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & n \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}; 2) \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix} .$$

$$\textbf{5.1}) \begin{bmatrix} 1 & -2 & 1 \\ -3 & 0 & 4 \\ 2 & 1 & 2 \end{bmatrix}; 2) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} .$$

5. 1)
$$\begin{bmatrix} 1 & -2 & 1 \\ -3 & 0 & 4 \\ 2 & 1 & 2 \end{bmatrix} ; 2) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} .$$

6.
$$\begin{bmatrix} 2 & 1 & 2 \\ 1 & -2 & 1 \\ -2 & 4 & -2 \\ 2 & -4 & 2 \end{bmatrix}$$
7.
$$\begin{bmatrix} 2 & 1 & -4 \\ 3 & 5 & -7 \\ 4 & -5 & -6 \end{bmatrix}$$

7.
$$\begin{vmatrix} 2 & 1 & -4 \\ 3 & 5 & -7 \\ 4 & -5 & -6 \end{vmatrix}$$

8.
$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

$$egin{align*} \mathbf{9.} \ 1) \ \mathsf{Базиc} \ \mathsf{ядрa:} \ igg(egin{bmatrix} 13 \ 2 \ 7 \end{bmatrix} igg), \ \mathsf{базиc} \ \mathsf{образa:} \ igg(egin{bmatrix} 2 \ 3 \ 4 \end{bmatrix}, egin{bmatrix} 1 \ 5 \ -5 \end{bmatrix} igg); \end{aligned}$$

$$2)$$
 базис ядра: $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ базис образа: $\begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$);

$$3$$
) базис ядра: $\begin{pmatrix} 5\\2\\0\\5 \end{pmatrix}$, базис образа: $\begin{pmatrix} -1\\2\\1 \end{pmatrix}$).

10. 1)
$$\begin{bmatrix} -3 & 9 \\ -2 & 5 \end{bmatrix}$$
; 2) $\begin{bmatrix} -1 & -1 & 0 \\ 0 & -4 & -1 \\ 0 & 9 & 2 \end{bmatrix}$; 3) $\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 1 \\ 4 & 0 & 0 \end{bmatrix}$.

11.
$$\begin{bmatrix} 1 & 3 & 2 & 6 \\ 0 & 4 & 0 & 8 \\ 1 & 0 & 2 & 0 \\ 3 & 9 & 4 & 12 \\ 0 & 12 & 0 & 16 \\ 3 & 0 & 4 & 0 \end{bmatrix}.$$

12.
$$\begin{bmatrix} -4 & -4 \\ -7 & -7 \end{bmatrix}$$
.

$$13.\ 1)\ \lambda_1=3,\ \lambda_2=-2,$$
 столбец $egin{bmatrix}1\\1\end{bmatrix}$ — базис подпространства $L_{\lambda_1};$ столбец $egin{bmatrix}-2\\3\end{bmatrix}$ — базис подпространства $L_{\lambda_2};$

$$2)\,\lambda_1=0,\;k_1=2,\;\lambda_2=12,\;k_2=1,\;\mathrm{столбцы}\;\left(\begin{bmatrix}2\\1\\0\end{bmatrix},\begin{bmatrix}-3\\1\end{bmatrix}\right)-\mathsf{базис}\;L_{\lambda_1};\;\mathrm{столбец}\begin{bmatrix}3\\-3\\1\end{bmatrix}$$
 — базис $L_{\lambda_2};$

$$(3)$$
 $\lambda_1=1,\ k_1=1,$ столбец $egin{bmatrix}1\\2\\1\end{bmatrix}$ — базис $L_{\lambda_1}.$

14. Да, система
$$\begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}, \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix} \end{pmatrix}$$
 — базис, а матрица имеет вид

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

15. 1)
$$\begin{bmatrix} 2 & \overline{3} & 5 \\ 3 & -4 & 1 \\ 5 & 1 & 0 \end{bmatrix} ; 2) \begin{bmatrix} 0 & 5 & 7 \\ 5 & -2 & 1 \\ 7 & 1 & 5 \end{bmatrix} .$$

16. 1)
$$2x_1y_1 - x_1y_2 + 4x_1y_3 - x_2y_1 + 5x_2y_3 + 4x_3y_1 + 5x_3y_2 - x_3y_3$$
;

$$2) - x_1y_1 + 3x_1y_3 + 2x_2y_2 + 7x_2y_3 + 3x_3y_1 + 7x_3y_2.$$

17. 1)
$$2x_1^2 - 6x_1x_2 + 8x_1x_3 + 2x_2x_3 - 2x_3^2$$
;

2)
$$x_1^2 + 6x_1x_2 - 4x_1x_3 + 5x_2^2 - 6x_2x_3$$
.

18. 1)
$$2x_1y_1 - x_1y_2 + x_1y_3 - x_2y_1 - 3x_3y_3 - 3x_2y_3 + x_3y_1 - 3x_3y_2$$
;

2)
$$x_1^2 + 6x_1x_2 - 4x_1x_3 + 5x_2^2 - 6x_2x_3$$
.
18. 1) $2x_1y_1 - x_1y_2 + x_1y_3 - x_2y_1 - 3x_3y_3 - 3x_2y_3 + x_3y_1 - 3x_3y_2$;
2) $7x_1y_1 + \frac{5}{2}x_1y_2 - 3x_1y_3 + \frac{5}{2}x_2y_1 - 2x_2y_2 + 4x_2y_3 - 3x_3y_1 + 4x_3y_2$.
19. 1) $y_1^2 - y_2^2$, $x_1 = y_1 + 2y_3 - 3y_2$, $x_2 = y_3$, $x_3 = y_2$;
2) $3y_1^2 - 2y_2^2 - 3y_3^2$, $x_1 = y_1$, $x_2 = y_2 - y_3$, $x_3 = y_3$;
3) $y_1^2 - y_2^2 - y_3^2$, $x_1 = y_1 - y_2 - y_3$, $x_2 = y_1 + y_2 - y_3$, $x_3 = y_3$;
4) $2y_1^2 + 3y_2^2$, $x_1 = y_1 - y_2$, $x_2 = y_2 + y_3$, $x_3 = y_3$;
5) $3y_1^2 - \frac{4}{3}y_2^2 + 2y_3^2$, $x_1 = \frac{2}{3}y_2 + y_1$, $x_2 = y_2 + \frac{3}{2}y_3$, $x_3 = y_3$;
6) $y_1^2 - y_2^2 + y_3^2$, $x_1 = y_1 - y_2$, $x_2 = y_2 + y_3$, $x_3 = y_3$;

19. 1)
$$y_1^2 - y_2^2$$
, $x_1 = y_1 + 2y_3 - 3y_2$, $x_2 = y_3$, $x_3 = y_2$

$$(2) 3y_1^2 - 2y_2^2 - 3y_3^2, x_1 = y_1, x_2 = y_2 - y_3, x_3 = y_3^2$$

3)
$$y_1^2 - y_2^2 - y_3^2$$
, $x_1 = y_1 - y_2 - y_3$, $x_2 = y_1 + y_2 - y_3$, $x_3 = y_3$;

4)
$$2y_1^2 + 3y_2^2$$
, $x_1 = y_1 - y_2$, $x_2 = y_2 + y_3$, $x_3 = y_3$;

5)
$$3y_1^2 - \frac{4}{3}y_2^2 + 2y_3^2$$
, $x_1 = \frac{2}{3}y_2 + y_1$, $x_2 = y_2 + \frac{3}{2}y_3$, $x_3 = y_3$

6)
$$y_1^2 - y_2^3 + y_3^2$$
, $x_1 = y_1 - y_2 - y_3$, $x_2 = 2y_2 + 2y_3$, $x_3 = y_3$.

6)
$$y_1^2 - y_2^3 + y_3^2$$
, $x_1 = y_1 - y_2 - y_3$, $x_2 = 2y_2 + 2y_3$, $x_3 = y_3$.
20. 1) $y_1^2 + y_2^2 - y_3^2$, $x_1 = \frac{1}{2}y_1 + \frac{1}{\sqrt{5}}y_3$, $x_2 = \frac{1}{\sqrt{5}}y_2 + \frac{1}{\sqrt{5}}y_3$, $x_3 = -\frac{1}{\sqrt{5}}y_2 + \frac{1}{\sqrt{5}}y_3$;

2)
$$y_1^2 - y_2^2$$
, $x_1 = y_1 - y_2 - y_3$, $x_2 = y_1 + y_2$, $x_3 = y_3$;

2)
$$y_1^2 - y_2^2$$
, $x_1 = y_1 - y_2 - y_3$, $x_2 = y_1 + y_2$, $x_3 = y_3$;
3) $y_1^2 - y_2^2 - y_3^2$, $x_1 = \frac{1}{2}y_3$, $x_2 = \frac{3}{2\sqrt{6}}y_2 - \frac{1}{2}y_3$, $x_3 = \frac{1}{\sqrt{6}}y_1 + \frac{1}{2\sqrt{6}}y_2 - \frac{1}{2}y_3$.

21. 1)
$$x_1 = y_1 + 3y_2 - 2y_3$$
, $x_2 = y_2 - 3y_3$, $x_3 = y_3$; 2) $x_1 = y_1 + y_3$, $x_2 = y_2 - \frac{1}{2}y_3$, $x_3 = y_3$.

22. 1)
$$\lambda > 1; 2)$$
 требуемых значений λ не существует; 3) $|\lambda| < \sqrt{\frac{5}{3}}$.

23. 1)
$$4x_1'^2 + x_2'^2 - 2x_3'^2$$
, $x_1' = \frac{2}{3}x_1 - \frac{2}{3}x_2 + \frac{1}{3}x_3$, $x_2' = \frac{2}{3}x_1 + \frac{1}{3}x_2 - \frac{2}{3}x_3$,

$$x_3' = \frac{1}{3}x_1 + \frac{2}{3}x_2 + \frac{2}{3}x_3;$$

2)
$$2x_1'^2 - x_2'^2 + 5x_3'^2$$
, $x_1' = \frac{2}{3}x_1 - \frac{1}{3}x_2 - \frac{2}{3}x_3$, $x_2' = \frac{2}{3}x_1 + \frac{2}{3}x_2 + \frac{1}{3}x_3$, $x_3' = \frac{1}{3}x_1 - \frac{2}{3}x_2 + \frac{2}{3}x_3$.

$$3)7x_{1}^{\prime 2}+4x_{2}^{\prime 2}+x_{3}^{\prime 2},\ x_{1}^{\prime }=\frac{1}{3}x_{1}+\frac{2}{3}x_{2}-\frac{2}{3}x_{3},\ x_{2}^{\prime }=\frac{2}{3}x_{1}+\frac{1}{3}x_{2}+\frac{2}{3}x_{3},\ x_{3}^{\prime }=-\frac{2}{3}x_{1}+\frac{2}{3}x_{2}+\frac{1}{3}x_{3}.$$

ЛИТЕРАТУРА

- 1. *Гантмахер*, Ф. Р. Теория матриц / Ф. Р. Гантмахер М.: Наука, 1967. 575 с.
- 2. Деменчук, А. К. Матричный анализ в примерах и задачах / А. К. Деменчук, Б. Б. Комраков, Г. П. Размыслович, В. М. Ширяев. Минск: БГУ, 2008. 158с.
- 3. *Ильин*, *B. А.* Линейная алгебра / В. А. Ильин, Э. Г. Позняк. М.: Наука 1981., 294 с
- 4. *Милованов, М. В.* Линейная алгебра и аналитическая геометрия. I / М. В. Милованов, Р. И. Тышкевич, А. С. Феденко. Минск: Выш. шк., 1976. 544 с.
- 5. *Милованов, М. В.* Линейная алгебра и аналитическая геометрия. II / М. В. Милованов, Р. И. Тышкевич, А. С. Феденко. Минск: Выш. шк. 1984. 302 с.
- 6. *Размыслович, Г. П.* Геометрия и алгебра / Г. П. Размыслович, М. М. Феденя, В. М. Ширяев. Минск: "Университетское", 1987. 350 с.
- 7. Размыслович, Г. П. Сборник задач по геометрии и алгебре. / Г. П. Размыслович, М. М. Феденя, В. М. Ширяев. Минск: "Университетское", 1999. 384 с
- 8. Размыслович, Γ . Π . Геометрия и алгебра: в 5 ч. Ч.1: Матрицы и определители. Системы линейных уравнений / Г. П. Размыслович. Минск: БГУ, 2010. 73 с.
- 9. Размыслович, Г.П. Геометрия и алгебра: в 5 ч. Ч.2: Векторные пространства / Г. П. Размыслович. Минск: БГУ, 2013. 56 с.
- 10. *Проскуряков, И. В.* Сборник задач по линейной алгебре /И. В. Проскуряков. М.: Наука, 1978. 384 с.

СОДЕРЖАНИЕ

Предисловие	3
1. Отображения	
2. Линейные отображения векторных пространств	6
2.1. Определение. Примеры	6
2.2. Свойства линейных отображений	
3. Изоморфизм векторных пространств	. 10
4. Линейные преобразования векторных пространств	. 12
4.1. Определение и примеры	.12
4.2. Матрица линейного преобразования	.13
4.3. Действия над линейными преобразованиями	
4.4. Связь между матрицами линейного преобразования,	
записанных в разных базисах пространства	. 17
4.5. Подобные матрицы	. 18
4.6. Ранг и дефект линейного преобразования	. 20
4.7. Собственные векторы и собственные значения	
линейного преобразования	. 21
4.8. Характеристическая матрица. Характеристический многочлен	. 25
4.9. Подпространство собственных векторов	.27
4.10. Присоединенные векторы и жорданов базис	. 29
4.11. Инвариантные подпространства	.31
5. Билинейные отображения и билинейные формы	.35
6. Квадратичные формы	.38
6.1. Основные определения и понятия	. 38
6.2. Эквивалентность квадратичных форм	. 39
6.3. Нормальный вид комплексных квадратичных форм	. 43
6.4. Нормальный вид действительных квадратичных форм	.45
6.5. Знакоопределенные квадратичные формы	. 48
6.6. Приведение действительной квадратичной формы к канониче	
скому виду при помощи ортогональных преобразований	.53
Примеры решения задач	. 56
Задачи	. 64
Ответы	. 67
Литература	. 70

Учебное издание

Размыслович Георгий Прокофьевич

ГЕОМЕТРИЯ И АЛГЕБРА

Учебные материалы для студентов факультета прикладной математики и информатики

В пяти частях

Часть 3

ЛИНЕЙНЫЕ И БИЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ ВЕКТОРНЫХ ПРОСТРАНСТВ

В авторской редакции

Ответственный за выпуск Г. П. Размыслович

Подписано в печать 26.05.2014. Формат $60\times84/16$. Бумага офсетная. Усл. печ. л. 4,18. Уч.-изд. л. 3,2. Тираж 50 экз. 3аказ

Белорусский государственный университет. Свидетельство государственной регистрации издателя, изготовителя, распространителя печатных изданий №1/270 от 03.04.2014 Пр. Независимости, 4. 220030, Минск.

Отпечатано с оригинал-макета заказчика на копировально-множительной технике факультета прикладной математики и информатики Белорусского государственного университета. Пр. Независимости, 4. 220030, Минск.