Aufgabe 1

Gegeben ist die folgende Tabelle mit dem Schlüssel {PersonNr, VereinsNr}:

<u>PersonNr</u>	Name	Jahrgang	<u>VereinsNr</u>	Verein
26120	Fichte	77	5001	FC Bayern
27550	Schopenhauer	76	5001	FC Bayern
27550	Schopenhauer	76	4052	SV Werder
28106	Carnap	89	4052	SV Werder
28106	Carnap	89	5041	HSV
28106	Carnap	89	5053	VFB
28106	Carnap	89	5216	SCF
28106	Carnap	89	5259	KSC
• • •				

Weiterhin gelten die folgenden funktionalen Abhängigkeiten:

- x PersonNr > Name, Jahrgang
- x VereinsNr → Verein

Ist die Tabelle in zweiter Normalform? Falls nein, soll sie in die zweite Normalform überführt werden.

Ausführliche Lösung:

Die Definition der zweiten Normalform lautet:

Eine Tabelle befindet sich in der zweiten Normalform, wenn sie

- x in der ersten Normalform ist und
- x kein Attribut funktional abhängig von einem Teilschlüssel ist.

Da jedes Datenfeld der oben stehenden Tabelle atomar ist, ist die Tabelle in der ersten Normalform.

Um überhaupt prüfen zu können, ob ein Attribut (eine Spalte) funktional abhängig von einem Teilschlüssel ist, müssen wir natürlich zunächst alle **Teilschlüssel** bestimmen.

Da der einzige Schlüssel der Tabelle {PersonNr, VereinsNr} ein zusammengesetzter Schlüssel aus mehreren Attributen ist, sind die einzelnen Attribute PersonNr und VereinsNr für sich genommen die jeweiligen Teilschlüssel der Tabelle.

In der Tabelle gilt zu dem die funktionalen Abhängigkeit:

Offensichtlich sind also die Attribute Name und Jahrgang vom Teilschlüssel PersonNr funktional abhängig. Somit ist die Tabelle nicht in der zweiten Normalform, da die zweite Bedingung verletzt ist!

Aber auch die folgende, offensichtliche funktionale Abhängigkeit

verletzt die zweite Normalform, da **Verein** vom **Teilschlüssel VereinsNr** funktional abhängig ist. Jetzt geht es also darum, die Tabellen aufzuspalten. Dazu helfen genau die funktionale Abhängigkeiten, die die zweite Normalform verletzt hatten:

Die Spaltung geschieht zunächst dadurch, dass **pro funktionale Abhängigkeit, die die zweite Normalform verletzt, eine separate Tabelle entsteht**, die genau aus den Attributen (Spalten) dieser funktionalen Abhängigkeit besteht.

Dieser Vorgang führt also zu den folgenden Tabellen:

Tabelle Person:

Per	sonNr	Name	Jahrgang
2	6120	Fichte	77
2	7550	Schopenhauer	76
2	8106	Carnap	89
		• • •	• • •

Tabelle Verein:

<u>VereinsNr</u>	Verein
5001	FC Bayern
4052	SV Werder
5041	HSV
5053	VFB
5216	SCF
5259	KSC
• • •	• • •

Aus diesen Tabellen geht aber leider **nicht** mehr hervor, welche Person Mitglied in welchem Verein ist. Um diese Beziehung herzustellen, besitzen wir die folgenden zwei Optionen:

- 1. Wir nehmen den Primärschlüssel der Tabelle **Person** als Fremdschlüssel in die Tabelle **Verein** hinzu oder
- 2. wir nehmen den Primärschlüssel der Tabelle **Verein** als Fremdschlüssel in die Tabelle **Person** auf.

Wir entscheiden uns zunächst <u>willkürlich</u> für die erste Variante. Es entstehen anschließend die folgenden Tabellen:

Tabelle **Person**:

PersonNr	Name	Jahrgang
26120	Fichte	77
27550	Schopenhauer	76
28106	Carnap	89

Tabelle **Verein**:

<u>PersonNr</u>	<u>VereinsNr</u>	Verein
26120	5001	FC Bayern
27550	5001	FC Bayern
27550	4052	SV Werder
28106	4052	SV Werder
28106	5041	HSV
28106	5053	VFB
28106	5216	SCF
28106	5259	KSC
•••		

Die Beziehung ist nun hergestellt und die Tabellen sind aufgespalten, **aber sind die neu entstandenen Tabellen auch in der zweiten Normalform?** Die Tabelle Person ist nun zweifelsohne in der zweiten Normalform, weil ihr Schlüssel nur aus einem einzigen Attribut besteht und somit kein Teilschlüssel mehr existiert. Betrachten wir aber die Tabelle Verein, so stellen wir fest, dass die funktionale Abhängigkeit VereinsNr → Verein weiterhin existiert. Da aber VereinsNr nur ein Teilschlüssel dieser Tabelle ist, verletzt die Tabelle Verein weiterhin die zweite Normalform! Wir spalten die Tabelle Verein analog zu oben an Hand der die 2NF-verletzenden funktionalen Abhängigkeit VereinsNr → Verein wie folgt auf:

Tabelle Person:

PersonNr	Name	Jahrgang
26120	Fichte	77
27550	Schopenhauer	76
28106	Carnap	89
	• • •	• • •

Tabelle Mitglied:

PersonNr	<u>VereinsNr</u>
26120	5001
27550	5001
27550	4052
28106	4052
28106	5041
28106	5053
• •	• •

Tabelle Verein:

<u>VereinsNr</u>	Verein
5001	FC Bayern
4052	SV Werder
5041	HSV
5053	VFB
5216	SCF
5259	KSC
• • •	<u></u>

Aufgabe 2

Überprüfen Sie, ob die folgende Tabelle in 2NF ist und überführen Sie diese in 2NF, falls nötig. Identifizieren Sie vorher sinnvolle funktionale Abhängigkeiten.

KID	Kunde	Str	Hnr	PLZ	Ort	PID	Produkte	Datum
1	Winkler	Hauptstr	23	77625	Offenburg	P1	Website	01.03.07
2	Mayer	Gartenstr	15	77933	Lahr	P2	VisitenK	10.05.07
2	Mayer	Gartenstr	15	77933	Lahr	Р3	Briefe	10.05.08
2	Mayer	Gartenstr	15	77933	Lahr	P4	Logos	10.05.07
3	Schulz	Holzweg	3	77960	Seelbach	P 5	Flyer	20.06.07
4	Schmitt	Hauptstr	5	77933	Lahr	P1	Website	01.09.07
4	Schmitt	Hauptstr	5	77933	Lahr	P 5	Flyer	01.09.07
1	Winkler	Hauptstr	23	77625	Offenburg	P2	VisitenK	01.10.07
3	Schulz	Holzweg	3	77960	Seelbach	Р3	Briefe	01.10.07

Lösung:

Die oben stehende Tabelle enthält Informationen über Kunden und ihre erworbenen Produkte. Der Schlüssel der Tabelle ist {KID, PID}, weil diese Kombination von Attributen die Zeilen der Tabelle eindeutig identifiziert.

Das Attribut KID identifiziert eindeutig einen Kunden. Außerdem identifiziert PID eindeutig einen Produkt. Es gelten somit die folgende funktionale Abhängigkeit

Weil aber KID und PID nur Teilschlüssel sind, verletzen sie zweite Normalform. Wir zerlegen die Tabelle zunächst nur anhand KID → Kunde, Str, Hnr, PLZ, Ort wie folgt:

Kunden (KID, Kunde, Str, PLZ, Ort)

Es bleiben dann nur die folgenden Spalten in der ursprünglichen Tabelle - nennen wir es **Resttabelle** - übrig:

Resttabelle (Datum, PID, Produkte)

Um die Beziehung zwischen Produkte und Kunden herzustellen könnten wir theoretisch die Spalte KID aus der Tabelle Kunden in die Resttabelle – nennen wir es doch lieber Bestellung - als Fremdschlüssel aufnehmen:

Bestellung(KID, Datum, PID, Produkte)

Aber besteht der Primärschlüssel der Tabelle Bestellung wirklich nur aus dem Attribut **PID**? Um diese Frage am sichersten zu beantworten füllen wor doch die Tabelle mit einigen Datensätzen:

Tabelle Bestellung:

KID	PID	Produkte	Datum
1	P1	Website	01.03.07
2	P2	VisitenK	10.05.07
2	Р3	Briefe	10.05.08
2	P4	Logos	10.05.07
3	P5	Flyer	20.06.07
4	P1	Website	01.09.07
4	P5	Flyer	01.09.07
1	P2	VisitenK	01.10.07
3	Р3	Briefe	01.10.07

Offensichtlich kommt der P1 und auch andere PID-Werte mehrfach vor. Es ist also klar, dass die Spalte PID allein kein Primärschlüssel sein darf.

Wenn man einen strengen Blick auf diese Tabelle wirft :-) dann erkennt man, dass sie natürlich dieselbe ist wie die ursprüngliche Tabelle aus dieser Aufgabe, nur eben dass einige Infos zum Kunden wie Strasse oder PLZ nicht mehr aufgelistet sind. Ein Kunde ist hier aber weiterhin repräsentiert, nämlich durch seine Kundennummer \mathtt{KID} . Da in der ursprünglichen Tabelle $\{\mathtt{KID},\mathtt{PID}\}$ den (Primär-) Schlüssel bildeten müssen sie es also hier genauso tun!

D.h. Die Tabelle Bestellung hat also das folgende Format:

Bestellung(KID, Datum, PID, Produkte)

Die Spalte KID ist dehalb kursiv markiert, weil sie zusätzlich ein Fremdschlüssel ist...

Sind wir jetzt fertig? Fast...

Gilt in der Tabelle Bestellung nicht immer noch PID → Produkte?

Na klar gilt die und die verletzt wieder die zweite Normalform (warum?). Die Aufteilung ergibt dann letztendlich drei Tabellen. Kursive Spalten sind zusätzlich Fremdschlüssel.

Kunden (KID, Kunde, Str, PLZ, Ort)
Produkte (PID, Produkte)
Bestellung (KID, PID, Datum)

Der Primärschlüssel der Tabelle Bestellung setzt sich dann in dem Fall aus den zwei Fremdschlüsseln KID und PID zusammen.

Aufgabe 3

Überprüfen Sie, ob die folgende Tabelle in 2NF ist und überführen Sie diese in 2NF, falls nötig. Identifizieren Sie vorher sinnvolle funktionale Abhängigkeiten.

<u>ISBN</u>	Titel	Verlag	Ort	<u>Anr</u>	Autor
3-8266-0126-2	Datenbanktheorie	Thomsen	Bonn	1	Vossen
3-343-00892-3	Taschenbuch Inft.	FBV L.	Leipzig	2	Werner
3-540-62477-5	Einführung WirtInfor.	Springer	Berlin	3	Stahlknecht
3-540-62477-5	Einführung WirtInfor.	Springer	Berlin	2	Werner
3-612-28098-8	VBA-Progr. in Excel 97	Econ	Düsseldorf	5	Cuber
3-8252-0802-8	Wirtschaftsinformatik	UTB	Stuttgart	6	Hansen
3-8274-0042-2	Software Technik	Spektrum	Heidelberg	7	Balzert
3-441-31055-1	BWL mit Rewe	BV Eins	Troisdorf	8	Blank
3-441-31055-1	BWL mit Rewe	BV eins	Troisdorf	9	Hagel
3-441-31055-1	BWL mit Rewe	BV Eins	Troisdorf	1	Vossen
3-441-31055-1	BWL mit Rewe	BV Eins	Troisdorf	3	Stahlknecht
3-441-31055-1	BWL mit Rewe	BV Eins	Troisdorf	12	Meyer
3-8237-3517-9	Wirtschaftrechnen	BV Eins	Troisdorf	13	Dax

Lösung:

Die Tabelle speichert Informationen über Bücher und ihre Autoren. Die ISBN-Nummer identifiziert eindeutig ein Buch und die Autor-Nummer (Anr) einen Autor. Es gelten somit die folgenden funktionalen Abhängigkeiten:

```
ISBN,Anr > Titel,Autor,Verlag,Ort,
ISBN > Titel,Verlag,Ort,
Anr > Autor,
Verlag > Ort.
```

Weil ein Buch von mehreren Autoren verfasst werden kann und ein Autor mehrere Bücher verfassen kann, identifiziert nur die Kombination von ISBN-Nummer und Autor-Nummer einen Datensatz eindeutig. Somit verletzen aber die funktionalen Abhängigkeiten

ISBN → Titel, Verlag, Ort und Anr → Autor die zweite Normalform, weil ISBN und auch Anr jeweils nur Teilschlüssel sind. Wir zerlegen die Tabelle demnach wie folgt:

```
Bücher (ISBN, Titel, Verlag, Ort)
```

Autoren (Anr, Autor)

AutorenUndIhreBücher (Anr, ISBN)

Begründen Sie, warum die Zusatzrelation AutorenUndIhreBuecher hier notwendig ist!