Inteligência Artificial Algoritmos Genéticos - Vídeo 3

João C. P. da Silva

Dept. Ciência da Computação - UFRJ

January 9, 2021

1/20

Algoritmo

Parâmetros: p_c (prob. de crossover), p_m (prob. de mutação)

- Passo 1
 - *i* = 0
 - Gerar população inicial P₀
- Repetir até condição de término ser atingida
 - Passo 2 : Seleção
 - Passo 3 : Crossover
 - Passo 4 : Mutação
 - i=i+1
 - P_i obtida após os passos acima é a próxima geração a ser examinada.

Algoritmo Genético - Exemplo

Maximizar a função

$$f(x,y) = |x * y * sen(\frac{y\pi}{4})|$$

com x e y pertencentes ao intervalo de números inteiros [0, 15].

- Representação Binária: x e y serão representados em binário e um indivíduo será representado pela concatenação destas duas representações.
- Exemplo: x = 4 e y = 3 são representados por 0100 e 0011. Assim, teremos como indivíduo 01000011.

4 / 20

Passo 1 - Geração da População Inicial P_0

Gerada aleatoriamente.

Table: População Inicial P_0

Indivíduo	Cromossomo	x	у	g(x,y)
1	01000011	4	3	9.5
2	00101001	2	9	13.7
3	10011011	9	11	71.0
4	00001111	0	15	1.0
5	01010101	5	5	18.7
6	11100011	14	3	30.7

Somatório das Avaliações = 144.6

Passo 2 - Seleção

Construção da Roleta para a População.

Indivíduo	x	у	g(x,y)
1	4	3	9.5
2	2	9	13.7
3	9	11	71.0
4	0	15	1.0
5	5	5	18.7
6	14	3	30.7

Passo 2 - Seleção

Construção da População Intermediária (Mating Pool).

Sorteio entre 0 e 144.6

Table: População Intermediária

Número Sorteado	Cromossomo Escolhido
12.8	00101001
65.3	10011011
108.3	10011011
85.3	10011011
1.8	01000011
119.5	11100011

Passo 3 - Crossover

Sorteio do *Crossing site*:

Passo 3 - Crossover

Sorteio do Crossing site: valor entre 1 e tamanho cromossomo - 1

Passo 3 - Crossover

Sorteio do Crossing site: valor entre 1 e tamanho cromossomo - 1

• 00101001 e 10011011

Passo 3 - Crossover

Sorteio do Crossing site: valor entre 1 e tamanho cromossomo - 1

• 00101001 e 10011011 ⇒ 00111011

Passo 3 - Crossover

Sorteio do Crossing site: valor entre 1 e tamanho cromossomo - 1

• 00101001 e 10011011 ⇒ 00111011 e 10001001

Passo 3 - Crossover

Sorteio do Crossing site: valor entre 1 e tamanho cromossomo - 1

- 00101001 e 10011011 ⇒ 00111011 e 10001001
- 10011011 e 10011011 ⇒ 10011011 e 10011011
- 01000011 e 11100011 ⇒ 01000011 e 11100011

- 00111011
- 10001001
- 10011011
- 10011011
- 01000011
- 11100011

Passo 4 - Mutação

Sorteio do ponto de mutação:

Passo 4 - Mutação

Sorteio do ponto de mutação: valor entre 1 e tamanho cromossomo

Passo 4 - Mutação

Sorteio do ponto de mutação: valor entre 1 e tamanho cromossomo

- 00111011
- 10001001
- 10011011
- 10011011
- 01000011
- 11100011

Passo 4 - Mutação

Sorteio do ponto de mutação: valor entre 1 e tamanho cromossomo

- 00111011
- 10001001
- 10011011
- 10011011
- 01000011
- 11100011

Passo 4 - Mutação

Sorteio do ponto de mutação: valor entre 1 e tamanho cromossomo

- 00111011
- 10001001
- 10011011
- 10011011
- 01000011
- 11100011

Passo 4 - Mutação

Sorteio do ponto de mutação: valor entre 1 e tamanho cromossomo

Resultado da Mutação

- 00111011
- 10001001
- 10011011
- 10011010
- 01000011
- 11100011

Geração obtida ao final da primeira execução do loop:

Table: População 1

Indivíduo	Cromossomo	х	у	g(x,y)
1	00111011	3	11	24.4
2	10001001	8	9	51.9
3	10011011	9	11	71.0
4	10011010	9	10	91.0
5	01000011	4	3	9.5
6	11100011	14	3	30.7

Passo 2 - Seleção

Construção da Roleta para a População P_1 .

Indivíduo	X	у	g(x,y) 24.4
1	3	3	24.4
2	8	9	51.9
3	9	11	71.0
4	9	8	91.0
5	4	3	9.5
6	14	3	30.7

Passo 2 - Seleção

Construção da População Intermediária (Mating Pool).

Sorteio entre 0 e 278.5

Table: População Intermediária

Número Sorteado	Cromossomo Escolhido
27.4	10001001
240.5	01000011
81.2	10011011
258.6	11100011
129.7	10011011
137.2	10011011

Passo 3 - Crossover

Sorteio do Crossing site: valor entre 1 e tamanho cromossomo - 1

• 10001001 e 01000011

Passo 3 - Crossover

Sorteio do Crossing site: valor entre 1 e tamanho cromossomo - 1

• 10001001 e $01000011 \Rightarrow 00001001$

Passo 3 - Crossover

Sorteio do Crossing site: valor entre 1 e tamanho cromossomo - 1

• 10001001 e 01000011 \Rightarrow 00001001 e 11000011

Passo 3 - Crossover

Sorteio do Crossing site: valor entre 1 e tamanho cromossomo - 1

- 10001001 e 01000011 ⇒ 00001001 e 11000011
- 10011011 e 11100011 ⇒ 11101011 e 10010011
- 10011011 e 10011011 ⇒ 10011011 e 10011011

Passo 3 - Crossover

Sorteio do Crossing site: valor entre 1 e tamanho cromossomo - 1

- 10001001 e 01000011 ⇒ 00001001 e 11000011
- 10011011 e 11100011 ⇒ 11101011 e 10010011
- 10011011 e 10011011 ⇒ 10011011 e 10011011

- 00001001
- 11000011
- 10010011
- 11101011
- 10011011
- 10011011

Passo 4 - Mutação

Sorteio do ponto de mutação: valor entre 1 e tamanho cromossomo

Resultado do Crossover

- 00001001
- 11000011
- 10010011
- 11101011
- 10011011
- 10011011

Considere que não houve mutação.

Geração obtida ao final da segunda execução do loop:

Table: População 2

Indivíduo	Cromossomo	x	у	g(x,y)
1	00001001	0	9	1.0
2	11000011	12	3	26.5
3	10010011	9	3	20.1
4	11101011	14	11	110.4
5	10011011	9	11	71.0
6	10011011	9	11	71.0

Somatório das Avaliações = 300.0

Observações

• A representação do problema tem influência na eficácia do algoritmo.

Observações

- A representação do problema tem influência na eficácia do algoritmo.
- Crossover tende a estabilizar a população.

Observações

- A representação do problema tem influência na eficácia do algoritmo.
- Crossover tende a estabilizar a população.
- Mutação introduz diversidade.

Observações

- A representação do problema tem influência na eficácia do algoritmo.
- Crossover tende a estabilizar a população.
- Mutação introduz diversidade.
- O que podemos dizer sobre a evolução do melhor indivíduo?
- O que podemos dizer sobre a avaliação média da população?

Indivíduo	População 0	População 1	População 2
1	9.5	24.4	1.0
2	13.7	51.9	26.5
3	71.0	71.0	20.1
4	1.0	91.0	110.4
5	18.7	9.5	71.0
6	30.7	30.7	71.0
somatório	144.6	278.5	300
média	24.1	46.4	50.0

19 / 20

Inteligência Artificial Algoritmos Genéticos - Vídeo 3

João C. P. da Silva

Dept. Ciência da Computação - UFRJ

January 9, 2021