Theorem 5-10

A line that contains the midpoint of one side of a triangle and is parallel to another side passes through the midpoint of the third side.

Given: M is the midpoint of \overline{AB} ;

 $\overrightarrow{MN} \parallel \overrightarrow{BC}$

Prove: N is the midpoint of \overline{AC} .

Proof:

Let \overrightarrow{AD} be the line through A parallel to \overrightarrow{MN} . Then \overrightarrow{AD} , \overrightarrow{MN} , and \overrightarrow{BC} are three parallel lines that cut off congruent segments on transversal \overrightarrow{AB} . By Theorem 5-9 they also cut off congruent segments on \overrightarrow{AC} . Thus $\overrightarrow{AN} \cong \overrightarrow{NC}$ and N is the midpoint of \overrightarrow{AC} .

The next theorem has two parts, the first of which is closely related to Theorem 5-10.

Theorem 5-11

The segment that joins the midpoints of two sides of a triangle

(1) is parallel to the third side;

(2) is half as long as the third side.

Given: M is the midpoint of \overline{AB} ; N is the midpoint of \overline{AC} .

Prove: (1) $\overline{MN} \parallel \overline{BC}$

 $(2) MN = \frac{1}{2}BC$

Proof of (1):

There is exactly one line through M parallel to \overline{BC} . By Theorem 5-10 that line passes through N, the midpoint of \overline{AC} . Thus $\overline{MN} \parallel \overline{BC}$.

Proof of (2):

Let L be the midpoint of \overline{BC} , and draw \overline{NL} . By part (1), $\overline{MN} \parallel \overline{BC}$ and also $\overline{NL} \parallel \overline{AB}$. Thus quad. MNLB is a parallelogram. Since its opposite sides are congruent, MN = BL. Since L is the midpoint of \overline{BC} , $BL = \frac{1}{2}BC$. Therefore $MN = \frac{1}{2}BC$.

