Dynamic Programming Parsing

Dynamic Programming Parsing

- To avoid extensive repeated work, must cache intermediate results, i.e.,completed phrases.
- Dynamic programming algorithms based on both top-down and bottom-up search can achieve O(n³) recognition time where n is the length of the input string.

Dynamic Programming Parsing Methods

- CKY (Cocke-Kasami-Younger)
 algorithm: bottom-up, requires
 normalizing the grammar
- 2. Chart Parsers retain completed phrases in a chart and can combine top-down and bottom-up searches.
- 3. Earley Parser top-down, does not require normalizing grammar, more complex

The CYK Algorithm

CYK Algorithm

- The Cocke-Younger-Kasami algorithm (alternatively called CYK, or CKY) is a parsing algorithm for context-free grammars, named after its inventors, John Cocke, Daniel Younger and Tadao Kasami.
- It employs bottom-up parsing and dynamic programming
- It determines if a sentence is in the language generated by grammar.

The CYK Algorithm

– Problem:

- Given a context-free grammar G and a string w
 - $-\mathbf{G} = (V, \Sigma, P, S)$ where
 - V finite set of variables
 - \succ \sum (the alphabet) finite set of terminal symbols
 - P finite set of rules
 - S start symbol (distinguished element of V)
 - Vand ∑are assumed to be disjoint
 - G is used to generate the string of a language
- Question:
 - Is w in L(G)?

CYK Algorithm Basics

The Structure of the rules in a
 Chomsky Normal Form grammar

–Uses a "dynamic programming" or "table-filling algorithm"

Chomsky Normal Form

- Normal Form is described by a set of conditions that each rule in the grammar must satisfy
- Context-free grammar is in CNF if each rule has one of the following forms:

```
A \rightarrow BC at most 2 symbols on right A \rightarrow a, or side terminal symbol S \rightarrow \epsilon null string
```

where B, C \in V – {S}

Converting to CNF

Original Grammar

```
S \rightarrow NP VP
S \rightarrow Aux NP VP
S \rightarrow VP
NP \rightarrow Pronoun
NP \rightarrow Proper-Noun
NP \rightarrow Det Nominal
Nominal \rightarrow Noun
Nominal → Nominal Noun
Nominal \rightarrow Nominal PP
VP \rightarrow Verb
VP \rightarrow Verb NP
VP \rightarrow VP PP
PP \rightarrow Prep NP
Pronoun \rightarrow I | he | she | me
Noun \rightarrow book | flight | meal | money
Verb \rightarrow book | include | prefer
Proper-Noun → Houston | NWA
Aux \rightarrow is, am
PP \rightarrow on, in, over
```

Converting to CNF

Original Grammar

```
S \rightarrow NP VP
S \rightarrow Aux NP VP
S \rightarrow VP
NP \rightarrow Pronoun
NP \rightarrow Proper-Noun
NP → Det Nominal
Nominal \rightarrow Noun
Nominal → Nominal Noun
Nominal \rightarrow Nominal PP
VP \rightarrow Verb
VP \rightarrow Verb NP
VP \rightarrow VP PP
PP \rightarrow Prep NP
Pronoun \rightarrow I | he | she | me
Noun \rightarrow book | flight | meal | money
Verb \rightarrow book | include | prefer
Proper-Noun → Houston | NWA
Aux \rightarrow is, am
PP \rightarrow on, in, over
```

Chomsky Normal Form

```
S \rightarrow NP VP
S \rightarrow X1 VP
X1 \rightarrow Aux NP
S \rightarrow book \mid include \mid prefer
S \rightarrow Verb NP
S \rightarrow VPPP
NP \rightarrow I \mid he \mid she \mid me
NP \rightarrow Houston \mid NWA
NP \rightarrow Det Nominal
Nominal \rightarrow book \mid flight \mid meal \mid money
Nominal → Nominal Noun
Nominal → Nominal PP
VP \rightarrow book \mid include \mid prefer
VP \rightarrow Verb NP
VP \rightarrow VP PP
PP \rightarrow Prep NP
Noun \rightarrow book | flight | meal | money
Verb \rightarrow book | include | prefer
Aux \rightarrow is, am
```

PP → on, in, over

CYK Algorithm

 Each row corresponds to some length of substrings

0	$\mathbf{w_1}$	1	w_2	2	w_3	3	w_4	4	w_5	5
	X _{0, 1}		X _{0, 2}		X _{0,3}		X _{0, 4}		X _{0, 5}	
			X _{1, 2}		X _{1,3}		X _{1, 4}		X _{1, 5}	
					X _{2,3}		X _{2, 4}		X _{2,5}	
							X _{3, 4}		X _{3,5}	
									X _{4,5}	

Table for string 'w' that has length 5

Example CYK Algorithm

Show that the sentence s ∈ L(G) [where s= "a pilot likes flying planes", using CYK Algorithm with the following G:

Grammar G

 $S \rightarrow NP VP$ $VBZ \rightarrow likes$

VP → VBG NNS VBG → flying

 $VP \rightarrow VBZ VP DT \rightarrow a$

 $VP \rightarrow VBZ NP NN \rightarrow pilot$

 $NP \rightarrow DT NN \qquad JJ \rightarrow flying$

NP → JJ NNS NNS → planes

0	а	₁ pilot	₂ likes	3 flying	4 planes 5
	X _{0, 1}	X _{0, 2}	X _{0, 3}	X _{0,4}	X _{0, 5}
		X _{1, 2}	X _{1, 3}	X _{1,4}	X _{1,5}
			X _{2,3}	X _{2, 4}	X _{2,5}
				X _{3,4}	X _{3,5}
					X _{4,5}

Table for sentence that has length 5

o a	₁ pilot 2	likes	3 flying	4 planes 5
DT		V	V	V
X _{0, 1}	X _{0, 2}	X _{0, 3}	X _{0, 4}	X _{0, 5}
	NN	v		
	X _{1, 2}	X _{1, 3}	X _{1, 4}	X _{1,5}
X_0 , 1 = DT	-> a	VBZ	V	V
X_{1, 2} = NN	I -> pilot	X _{2,3}	X _{2, 4}	X _{2,5}
X _{2.3} = VB			VBG , JJ	
-, °	BG -> flying, JJ ->f	llving	X _{3,4}	X _{3,5}
		ıyılıg		NNS
~4,5 = NI	NS -> planes			X _{4,5}

₀ a	₁ pilot	₂ likes	₃ flying	₄ planes ₅
DT	NP	V	V	V
X _{0, 1}	X _{0, 2}	X _{0, 3}	X _{0, 4}	X _{0, 5}
L	NN		v	v
	X _{1, 2}	X _{1,3}	X _{1,4}	X _{1,5}
$x_{0, 2} = x_{0, 1}$	X _{1, 2}	VBZ		•
= DT N	IN = NP	X _{2,3}	X _{2, 4}	X _{2,5}
$x_{1, 3} = x_{1, 2}$			VBG,JJ	VP, NP
= NN \ NN .	/BZ, JJ = φ		X _{3,4}	X _{3,5}
	T			NNS
				X _{4,5}

_о а	pilot 2	likes	₃ flying	planes 5	
DT	NP		X _{0, 4}	X _{0.5}	
X _{0,1}	X _{0, 1} X _{0, 2}		70, 4	70, 5	
	NN			V	
	X _{1, 2}	X _{1,3}	X _{1, 4}	X _{1, 5}	
$x_{0, 3} = x_{0, 1}$	$X_{1, 3}, X_{0,2} X_{2,3}$	\/D7	 X _{2, 4}	VP1=VBZ VF	
= DT,	NP VBZ	VBZ x _{2, 3}		VP2=VBZ NF	
= φ				X _{2,5}	
$X_{1, 4} = X_{1, 2} X_{1, 2}$	$X_{2, 4}, X_{1, 3} X_{3, 4}$		VBG,JJ	VP, NP	
= NN	-,VBG,JJ		•		
= φ			X _{3, 4}	X _{3,5}	
$X_{2, 5} = X_{2, 3} X_{2, 5}$	$X_{3, 5}$, $X_{2, 4}$ $X_{4, 5}$		NNS		
= VBZ VP, VBZ NP, NNS				X _{4,5}	
= VP1,	VP2			~4, 5	

o a	pilot 2	likes	3 flying 4	planes 5		
DT	NP			v		
X _{0, 1}	X _{0, 2}	X _{0, 3}	X _{0,4}	X _{0, 5}		
	NN					
	X _{1, 2}	X _{1,3}	X _{1,4}	X _{1,5}		
$X_{04} = X_{01}X$	1,4 , X _{0, 2} X _{2,4} ,	VBZ		VP1=VBZ VP VP2=VBZ NP		
- , - ,	DT, NP, VBG ,		VPZ=VDZ INP			
JJ = = φ		X _{2,3}	X _{2, 4}	X _{2,5}		
$x_{1, 5} = x_{1, 2}$	$X_{1,5} = X_{1,2}X_{2,5}, X_{1,3}X_{3,5}, X_{1,4}$ VBG, JJ VP, NP					
·	VP1,NN VP2,-	- VP,		X _{3.5}		
NP,NI	NS= φ		X _{3,4}	^3 , 5		
				NNS		
				X _{4.5}		

0	a 1	pilot 2	likes ³	flying	4 planes 5
	DT	NP			S=NP VP1
					S=NP VP2
	X _{0, 1}	X _{0, 2}	X _{0, 3}	X _{0, 4}	X _{0, 5}
_		NN			
		X _{1, 2}	X _{1,3}	X _{1,4}	X _{1,5}
2	$x_{0, 5} = x_{0, 1} x$	$X_{1,5}, X_{0,2} X_{2,5},$			VP1=VBZ VP
2	$X_{0, 3} X_{3,5}, X$	0,4 X _{4, 5}	VBZ		VP2=VBZ NP
	=DT,NP VP1,NP VP2, VP/NP, NNS		X _{2, 3}	X _{2,4}	X _{2,5}
	$= S_1, S_2$			VBG,JJ	VP, NP
				X _{3, 4}	X _{3,5}
					NNS
					X _{4,5}

Theorem

- The CYK Algorithm correctly computes X_{ij} for all i and j; thus sentence S is in L(G) if and only if S is in X_{0n}.
- The running time of the algorithm is O(n³).

Question

Analyze the following sentence using CYK algorithm. Does the sentence belongs to the L(G)?

Astronomers saw stars with telescope Grammar(G):

 $S \rightarrow NPVP$

 $VP \rightarrow VP PP$

VP →V NP

 $NP \rightarrow NP PP$

 $PP \rightarrow PNP$

NP →stars

NP →telescope

NP → saw

V →saw

 $P \rightarrow with$

NP -> astronomers

Question

- Show the CYK Algorithm with the following example:
 - CNF grammar G
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$
 - w is ababa
 - Question Is ababa in L(G)?
- Basics of CYK Algorithm
 - The Structure of the rules in a Chomsky Normal Form grammar
 - Uses a "dynamic programming" or "table-filling algorithm"
- Complexity O(n³)