Macroeconomics 2 Presentation Part III equations

Gugelmo Cavalheiro Dias Paulo and Mitash Nayanika and Wang Shang

Table of contents

1	A B	ehavioral Model	1
	1.1	Introduction	1
	1.2	Basic Setup and the Household's Problem	2
	1.3	The Firm's problem	5

1 A Behavioral Model

Let's ignore the first two equations, since they are the same as (28) and (29), that will be explained later.

1.1 Introduction

Equation 1

$$\mathbf{x}_{t} = \mathbf{M} \cdot \mathbb{E}_{t} \left[\mathbf{x}_{t+1} - \sigma(\mathbf{i}_{t} - \mathbb{E}_{t} \left[\pi_{t+1} \right] - \mathbf{r}_{t}^{n}) \right]$$

$$(1)$$

Equation 2

$$\pi_{t} = \beta \cdot M^{f} \mathbb{E}_{t} \left[\pi_{t+1} \right] + \kappa \cdot x_{t}$$
(2)

1.2 Basic Setup and the Household's Problem

Equation 3

$$U = \mathbb{E}_{t} \left[\sum_{t=0}^{\infty} \beta^{t} \left(\frac{c_{t}^{1-\gamma} - 1}{1-\gamma} - \frac{N_{t}^{1+\phi}}{1+\phi} \right) \right]$$
 (3)

Equation (3) is just the flow utility of the Household, with:

- β the discount factor
- ct the consumption of the houshold at time t
- N_t the work of the household at time t
- γ determines the concavity of the utility function with respect to the consumption, i.e. the importance of consumption in the utility function
- ϕ determines the concavity of the utility function with respect to work, i.e. the importance of work in the utility function

%There is some computation between (3) and (4) !!!%

Equation 4

$$k_{t+1} = (1 + r_t)(k_t - c_t + y_t)$$
(4)

Equation (4) is the law of motion of the real financial wealth of the household, where:

- k_t is the real financial welath of the household at time t
- \bullet r_t is the real interest rate
- w_t is the real wage
- y_t is the agent's real income, defined as $y_t = w_t \cdot N_t + y_t^f$, with y_t^f the profit income (or the income from firms) at time t

Equation 5

$$\mathbf{X}_{t+1} = \mathbf{G}^{\mathbf{X}} \left(\mathbf{X}_{t}, \epsilon_{t+1} \right) \tag{5}$$

Equation (5) describes the evolution of macroeconomic variables, where:

- X_t is the state vector, including several macroeconomic variables of time t, like ζ_t the aggregate TFP, and the announced actions in monetary and fiscal policy
- \mathbf{G}^{X} the equilibrium transition function, i.e. the function that gives the macroeconomic variables at time t+1 from the macroeconomic variables at the previous period
- ϵ_t is the innovation in the economy at time t, with $\mathbb{E}_t [\epsilon_{t+1}] = 0$, that depends on the equilibrium policies of the agent and of the government

Equation 6

$$k_{t+1} = G^{k}(c_{t}, N_{t}, k_{t}, \mathbf{X}_{t}) := (1 + \bar{r} + \hat{r}(\mathbf{X}_{t}))(k_{t} + \bar{y} + \hat{y}(N_{t}, \mathbf{X}_{t}) - c_{t})$$
(6)

Equation (6) is the application of the consideration of a set of macroeconomic variables on the law of motion of real financial wealth k_t , where :

- \bar{r} is the steady state value of the real interest rate, that does not depend on time
- $\hat{r}(X_t)$ is the value of the deviation from the steady state of the real interest rate, that depends on the state vector X_t at time t
- \bar{y} is the steady state value of the agent's real income, that does not depend on time
- $\hat{y}(N_t, \mathbf{X}_t)$ is the deviation from the steady state of the agent's real income, that depends on the number of hours worked at time t and on the state vector at time t
- ct is the aggregate consumption level at time t of the agent

Equation 7

$$\mathbf{X}_{t+1} = \mathbf{\Gamma} \mathbf{X}_t + \mathbf{epsilon}_{t+1} \tag{7}$$

Equation (7) describes the linear version of the equilibrium transition function, it is the linearization of the law of motion, where:

- Γ is a squared matrix that multiplies the state vector
- \bullet X_t is the state vector at time t
- $\epsilon_{\rm t}$ is the innovation shock

Equation 8 (Assumption 1)

$$\mathbf{X}_{t+1} = \bar{\mathbf{m}} \cdot \mathbf{G}^{\mathbf{X}}(\mathbf{X}_t, \epsilon_{t+1}) \tag{8}$$

Equation (8) describes the Cognitive Discounting of the State Vector, i.e. the perception by behavioral agents of the law of motion of the macroeconomic variables, where:

• $\bar{m} \in [0,1]$ is the cognitive discount factor measuring the attention to the future

Equation 9

$$\mathbf{X}_{t+1} = \bar{\mathbf{m}}(\mathbf{\Gamma}\mathbf{X}_t + \boldsymbol{\epsilon}_{t+1}) \tag{9}$$

Equation (9) is just the linearized version of the perception by behavioral agents of the law of motion of the state vector.

Equation 10

$$\mathbb{E}_{t}^{BR}\left[\mathbf{X}_{t+k}\right] = \bar{\mathbf{m}}^{k}\mathbb{E}_{t}\left[\mathbf{X}_{t+k}\right] \tag{10}$$

Equation (10) defines the expectation of behavioral agents in function of the rational perception of the law of motion of the state vector, where :

- $k \ge 0$ a time period in discrete context
- $\mathbb{E}_{t}^{BR}[\mathbf{X}_{t+k}]$ is the expected value of the state vector at time t+k by behavioral agents (or subjective/behavioral expectation operator)
- \bar{m}^k is the cognitive discounting effect at period t + k
- $\mathbb{E}_{t} [\mathbf{X}_{t+k}]$ is the rational expectation of the state vector at time t+k

Equation 11 (Lemma 1)

$$\mathbb{E}_{t}^{BR}\left[z\left(\mathbf{X}_{t+k}\right)\right] = \bar{m}^{k}\mathbb{E}_{t}\left[z\left(\mathbf{X}_{t+k}\right)\right] \tag{11}$$

Equation (11) defines in the general case the behavioral expectation operator, for any function of the state vector, where :

- $k \ge 0$ a time period in discrete context
- $z(\cdot)$ is a function, such that z(0) = 0

- $\mathbb{E}_{t}^{BR}[z(\mathbf{X}_{t+k})]$ is the expected value of the image of the state vector by the function $z(\cdot)$ at time t+k by behavioral agents
- \bar{m}^k is the cognitive discounting effect at period t + k
- $\mathbb{E}_{t} [z(\mathbf{X}_{t+k})]$ is the rational expectation of the image of the state vector by the function $z(\cdot)$ at time t+k

Equation 12

$$\mathbb{E}_{t}^{BR}\left[\bar{r} + \hat{r}\left(\mathbf{X}_{t+k}\right)\right] = \bar{r} + \bar{m}^{k}\mathbb{E}_{t}\left[\hat{r}(\mathbf{X}_{t+k})\right] \tag{12}$$

Equation (12) is an example of the Lemma 1 applied to the interest rate, where:

- $k \ge 0$ a time period in discrete context
- \bar{r} the steady state level of the real interest rate, that does not depend on time,
- $\hat{r}(\mathbf{X}_{t+k})$ is the equilibrium transition function defining the value of the deviation from the steady state of the real interest rate in function of the state vector at time t+k
- $\bar{r} + \hat{r}(X_t) = r_t(X_t)$ is the value of the real interest rate at time t
- $\mathbb{E}_t^{BR}[\bar{r} + \hat{r}(\mathbf{X}_{t+k})]$ is the expected value of the real interest at time t+k by behavioral agents
- $\mathbb{E}_t \left[\hat{\mathbf{r}}(\mathbf{X}_{t+k}) \right]$ is the rational expectation of value of the deviation of the real itnerest rate from the steady state at time t+k

1.3 The Firm's problem

Equation 13

$$P_{t} = \left(\int_{0}^{1} P_{it}^{1-\varepsilon} di \right)^{\frac{1}{1-\varepsilon}}$$
 (13)

Equation (13) describes the aggregate price level, where:

- Pt is the aggregate price level of the economy at time t
- $i \in [0, 1]$ is the firm index
- ε is the elasticity of substitution between goods

Equation 14

$$v^{0}(q_{i\tau}, \mu_{\tau}, c_{\tau}) := (e^{q_{i\tau}} - (1 - \tau_{f})e^{-\mu_{\tau}}) e^{-\varepsilon q_{i\tau}} c_{\tau}$$
(14)

Equation (14) describes the profit of the firm before the lump sum tax of the government, where:

- v is the real profit of the firm
- $q_{i\tau} = \ln\left(\frac{P_{i\tau}}{P_{\tau}}\right) = p_{i\tau} p_{\tau}$ is the real log price at time τ
- $\tau_{\mathrm{f}} = \frac{1}{\varepsilon}$ it the corrective wage subsidy from the government, funded by the lump sum tax
- $\mu_{\tau} = \zeta_t \ln(\omega_t)$ is the labor wedge, which is zero at efficiency
- ε is the elasticity of substitution between goods
- c_{τ} is the aggregate level of consumption

Equation 15

$$v(\mathbf{q}_{it}, \mathbf{X}_{\tau}) := v^{0}(\mathbf{q}_{it} - \Pi(\mathbf{X}_{\tau}), \mu(\mathbf{X}_{\tau}), \mathbf{c}(\mathbf{X}_{\tau}))$$
(15)

Equation 15 describes the flow profit of the firm in function of the real log price and of the extended macro state vector, where:

- $q_{it} = \ln\left(\frac{P_{it}}{P_t}\right) = p_{it} p_t$ is the real log price
- $\mathbf{X}_{\tau} = (\mathbf{X}_{\tau}^{\mathcal{M}}, \Pi_{\tau})$ is the extended macro state vector, with $\mathbf{X}^{\mathcal{M}_{\tau}}$ the vector of macro variables, including ζ_{τ} and possible announcements about future policy
- $\Pi(\mathbf{X}_{\tau}) := \mathbf{p}_{\tau} \mathbf{p}_{t} = \pi_{t+1} + ... + \pi_{\tau}$ is the inflation between times t and τ
- $q_{it} \Pi(\mathbf{X}_{\tau}) = q_{i\tau}$ is the real price of the firm if they didn't change its price between t and τ
- $\mu(\mathbf{X}_{\tau})$ is the labor wedge in function of the extended state vector at time t
- $c(\mathbf{X}_{\tau})$ is the aggregate consumption level in function of the extended state vector at time t

Equation 16

Equation $(16) \dots$, where:

•

Equation () \dots , where :	EQ	(16)
Equation () \dots , where :	EQ	(17)
Equation () \dots , where :	EQ	(18)
Equation () \dots , where :	EQ	(19)
Equation	EQ	(20)

Equation () \dots , where :

Equation		
	EQ	(21)
Equation () \dots , where :		
•		
Equation		
	EQ	(22)
Equation () \dots , where :		
•		
Equation		
Equation	EQ	(23)
Equation () whom	EQ	(20)
Equation () \dots , where :		
Equation		
	EQ	(24)
Equation () \dots , where :		
•		
Equation		

EQ

Equation () \dots , where :

(25)

Equation	EQ	(26
Equation () \dots , where :		
• Equation		
	EQ	(27
Equation () \dots , where :		
Equation		
Equation () \dots , where :	EQ	(28
•		
Equation	EQ	(29
Equation () \dots , where :		
• Equation		
•	EQ	(30

9

Equation () \dots , where :