2021

Time: 3 hours

Full Marks: 50

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Answer from all the Sections as directed.

Section - A

(Objective Type Questions)

1. [A] Fill in the blanks: 1×5 = 5

(a) According to Prof. R. A. Fisher, there q___ criteria of a good estimate.

- (c) For testing Ho: $\mu = \mu_0$, the suitable teststatistic is $H_0: L_1 = L_1$
- (d) For v = 1 the student's t distribution becomes ____
- (e) There are _3___ basic designs.
- [B] Four options are given for each, select the suitable one: $1 \times 5 = 5$
 - (i) The arithmetic mean of the simple random sample is estimate of the population mean.

(I) Unbiased

WS-14/4

(2)

Contd.

- (II) Maximum likelihood
- (III) Both (i) and (ii)
- (IV) None of these
- (ii) For large n $\sqrt{2x^2}$ is normally distributed with :
 - (I) Mean √2n; variance 0

(II) Mean √2n; variance 1

- (III) Mean √2n-1; variance 0
- (IV) None of these
- (iii) The suitable test statistic for testing

 Ho: $\sigma^2 = \sigma_0^2$ is:

$$-(1)\frac{nS^2}{\sigma_0^2}$$

(II)
$$\frac{\sum (x_i - \overline{x})^2}{\sigma_0^2}$$

- (III) Both (I) and (II) (IV) None of these
- (iv) The probability of committing type I error is:
 - (1) a
 - (II) B
 - (III) 1-a
 - (IV) 1-B
- (v) For C. R. D., the experimental units must be:
 - (I) Homogeneous
 - (II) Heterogeneous
 - (III) Both (I) and (II)
 - (IV) None of these

Section - B

(Short-answer Type Questions)

Answer any four questions :

3×4 = 12

- (i) What are the criteria of a good estimate.
 Explain any one.
- (ii) Obtain the maximum likelihood estimate of the parameter of the Poisson distribution.
- (iii) Describe χ^2 as a test of indipendence.
- (iv) Obtain m. g. f. of χ^2 .
- (v) Why do prefer R. B. D. over C. R. D.
- (vi) Define Latin square design.

Section - C

3. Answer any four questions of the following:

$$7 \times 4 = 28$$

- (i) What is maximum likelihood estimate? Obtain m. l. e. of the Parameters of normal distribution.
- (ii) Define student's t. Show that for this distribution

with v degrees of freedom

$$\mu_{2r} = \frac{1.3.5.....(2r-1)}{\left(v-2\right)\left(v-4\right).....\left(v-2r\right)} \; . \; u'.$$

(iii) Define simple hypothesis, composite hypothesis, null hypothesis and alternative hypothesis, two kinds of error. (iv) Name the test-statistic for testing

(a) Ho :
$$\mu = \mu_0$$
 (b) Ho : $\mu_1 = \mu_2$

Also describe the procedures for testing.

(v) What is analysis of variance technique? Give the assumptions involves in it.

$$\begin{split} \sum_{i=1}^{k} \sum_{j=1}^{r_{i}} & (y_{ij} - \overline{y})^{2} = \sum_{i=1}^{k} \sum_{j=1}^{r_{i}} & (y_{ij} - \overline{y_{i}})^{2} \\ & + \sum_{i=1}^{k} r_{i} (\overline{y_{i}} - \overline{y})^{2} \end{split}$$

(vi) Give the analysis of Latin square design.

__-