Question 1

What is the optimal value of alpha for ridge and lasso regression?

The optimum alpha values are:

Ridge: 5.0Lasso: 0.01

```
ridge_alpha = ridge_model_cv.best_params_.get('alpha')
# ridge_alpha = 10.0
ridge = Ridge(alpha=ridge_alpha)
ridge.fit(X_train, y_train)
```

: Ridge(alpha=5.0)

```
1 lasso_alpha = lasso_model_cv.best_params_.get('alpha')
2 lasso = Lasso(alpha=lasso_alpha)
3 lasso.fit(X_train, y_train)
```

: Lasso(alpha=0.01)

What will be the changes in the model if you choose double the value of alpha for both ridge and lasso?

Ridge: the coefficient changes but not significantly enough to change the order of Features. Higher alpha causes the coefficient to lower for positive value and the opposite for negative. Ridge uses Lamba as penalty.

110	: 5.0	,
	Coefficient	Features
	-0.254	MSSubClass_1-1/2 STORY FINISHED ALL AGES
	-0.692	MSSubClass_1-STORY 1945 & OLDER
	-0.137	${\tt MSSubClass_2\ FAMILY\ CONVERSION\ -\ ALL\ STYLES\ AN}$
	0.022	MSSubClass_2-STORY 1945 & OLDER
	0.417	MSSubClass_2-STORY 1946 & NEWER
	-0.153	MSSubClass_2-STORY PUD - 1946 & NEWER
	-0.036	MSSubClass_DUPLEX - ALL STYLES AND AGES
	-0.295	MSSubClass_PUD - MULTILEVEL - INCL SPLIT LEV/F
	-0.202	MSSubClass_SPLIT FOYER
-(0.008	LandSlope_Sev
	-0.137	BldgType_2fmCon

$$\sum_{i=1}^{M} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} w_j^2$$

Ridge puts constraint on the coefficient (w) in the formula above. Large w will get penalized.

Lasso penalizes the sum of their absolute values. This also known as L1 regularization; where as Ridge is L2. Higher alpha can lead to zero coefficient; hence auto feature selection.

lpł	na = 0.0	1	Alpha = 0.02		
C	oefficient	Features	C	oefficient	Features
)	-0.122	MSSubClass_1-1/2 STORY FINISHED ALL AGES	0	-0.016	MSSubClass_1-1/2 STORY FINISHED ALL AGES
1	-0.646	MSSubClass_1-STORY 1945 & OLDER	1	-0.481	MSSubClass_1-STORY 1945 & OLDER
2	0.438	MSSubClass_2-STORY 1946 & NEWER	2	0.423	MSSubClass_2-STORY 1946 & NEWER
3	0.165	HouseStyle_2Story	3	0.158	HouseStyle_2Story
4	0.427	Exterior1st_CemntBd	4	0.421	Exterior1st_CemntBd
5	0.108	Exterior1st_VinylSd	5	0.107	Exterior1st_VinylSd
6	0.887	Exterior2nd_CmentBd	6	0.465	Exterior2nd_CmentBd
7	0.627	Exterior2nd_VinylSd	7	0.604	Exterior2nd_VinylSd
3	-0.664	GarageType_NA	8	-0.553	GarageType_NA

$$\sum_{i=1}^{M} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |w_j|$$

Note: in the formular above, the absolute on the fight side.

What will be the most important predictor variables after the change is implemented?

Ridge	Lasso
Important variables have rfe_ranking of 1:	Important variables have rfe_ranking of 1:
Exterior1st_BrkComm	MSSubClass_1-STORY 1945 & OLDER MSSubClass_2-STORY 1946 & NEWER
Exterior2nd_CmentBd	Exterior2nd_CmentBd Exterior2nd_VinylSd
Exterior2nd_VinylSd GarageType_NA	GarageType_NA
GarageQual_Po	

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

In this use case, I'd go with Ridge. Out of the bat and without performing hyper parameter turning, Ridge 0.511 R-squared and 0.472 Adj. R-squared. Also, the VIF value for Ridge is a lot smaller. I have not removed any variables and retrain the model. The result is subjected to change.

OLS Regression Results

Dep. Variable:	SalePrice	R-squared:	0.511
Model:	OLS	Adj. R-squared:	0.472
Method:	Least Squares	F-statistic:	13.26
Date:	Wed, 01 Feb 2023	Prob (F-statistic):	4.27e-48
Time:	02:00:36	Log-Likelihood:	-501.28
No. Observations:	467	AIC:	1073.
Df Residuals:	432	BIC:	1218.

On the other hand, Lasso gives 0.480 R-squared and 0.470 Adj. R-squared.

OLS Regression Results					
Dep. Variable:	SalePrice	R-squared:	0.480		
Model:	OLS	Adj. R-squared:	0.470		
Method:	Least Squares	F-statistic:	46.95		
Date:	Wed, 01 Feb 2023	Prob (F-statistic):	1.34e-59		
Time:	02:00:02	Log-Likelihood:	-515.25		
No. Observations:	467	AIC:	1050.		
Df Residuals:	457	BIC:	1092.		

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Comparing the Coeff, VIF and p-value, I would say the five important predictor variables are:

- MSSubClass_2-STORY 1946 & NEWER
- MSSubClass_1-1/2 STORY FINISHED ALL AGES
- HouseStyle_2Story
- Exterior2nd_VinylSd
- Exterior1st_CemntBd

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

To generalize the model, we have to discuss the diagram above. The middle dotted line is the optimal where the model is not so complex and both bias and variance meet at an equilibrium middle section. Highly complex model will have low bias and high variance. The opposite is true where not so complex model will have low variance and high bias. On the left side (high bias and low variance), the model is considered as underfitting. Contrary, low bias high variance is overfitting. That means the model is doing very good with training data, but do poorly with real data.