

Geometría Analítica

1 Cónicas: La hipérbola

DEFINICIÓN La **hipérbola** es el lugar geométrico de todos aquellos puntos del plano tal que la diferencia de sus distancias a dos puntos fijos del plano es constante y menor que la distancia entre dichos puntos. Los puntos fijos F_1 y F_2 se llaman **focos** de la hipérbola.

P está en la hipérbola $\iff |d(P, F_1) - d(P, F_2)| = 2a$.

TEOREMA 1 La gráfica de la ecuación $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ donde $c^2 = a^2 + b^2$ es una hipérbola con las siguientes propiedades:

Vértices	Eje transverso	Asíntotas	Focos
$(\pm a, 0)$	Horizontal, longitud $2a$	$y = \pm bx/a$	$(\pm c,0)$

SEMANA 11 Pág. 1 - 4

TEOREMA 2 La gráfica de la ecuación $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ donde $c^2 = a^2 + b^2$ es una hipérbola con las siguientes propiedades:

Vértices	Eje transverso	Asíntotas	Focos
$(0,\pm a)$	Vertical, longitud $2a$	$y = \pm ax/b$	$(0,\pm c)$

Las asíntotas mencionadas son rectas a las que la hipérbola se aproxima para valores grandes de x y de y. Para hallar las asíntotas en el primer caso, despejamos y para obtener

$$y = \pm \frac{b}{a}\sqrt{x^2 - a^2} = \pm \frac{b}{a}x\sqrt{1 - \frac{a^2}{x^2}}$$
.

Cuando x se hace grande, a^2/x^2 se acerca a cero. En otras palabras, cuando $x\to\infty$ tenemos $a^2/x^2\to 0$. En consecuencia, para x grande, el valor de y puede aproximarse cuando $y=\pm bx/a$.

Elementos de la hipérbola

- La recta que pasa por los focos se llama eje focal.
- 2 El centro de la hipérbola es el punto medio del segmento $\overline{F_1F_2}$.
- $oldsymbol{3}$ Las intersecciones del eje focal con la hipérbola, V_1 y V_2 , se llaman **vértices**.

Las asíntotas son una ayuda esencial para gráficar una hipérbola; nos ayudan a determinar su forma. Una manera útil de hallar las asíntotas, para una hipérbola con eje transverso horizontal, es primero localizar los puntos $(a,0),\ (-a,0),\ (0,b)$ y (0,-b). Entonces trace segmentos horizontales y verticales que pasen por estos puntos para construir un rectángulo. A este rectángulo se le da el nombre de caja central de la hipérbola. Las pendientes de las diagonales de la caja central son $\pm b/a$ de modo que, al prolongarlas, obtenemos las asíntotas $y=\pm bx/a$. Finalmente, determinamos los vértices y usamos las asíntotas como guía para trazar la hipérbola.

SEMANA 11 Pág. 2 - 4

EJEMPLO 1 Una hipérbola tiene la ecuación

$$9x^2 - 16y^2 = 144$$

Trace la gráfica de la hipérbola encontrando los vértices, focos y asíntotas.

EJEMPLO 2 Demostrar que el producto de las distancias de un punto de una hipérbola a cada una de sus asíntotas es constante.

DEFINICIÓN Cuando las asíntotas de una hipérbola son perpendiculares entre sí, la hipérbola se llama equilátera.

TEOREMA 3

■ La hipérbola con centro en (h, k), cuya semidistancia focal es c y cuyo eje transversal es horizontal y de longitud 2a es la gráfica de la ecuación

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \quad \text{donde } b^2 = c^2 - a^2 \, .$$

La hipérbola con centro en (h, k), cuya semidistancia focal es c y cuyo eje transverso es vertical y de longitud 2a es la gráfica de la ecuación

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1 \quad \text{donde } b^2 = c^2 - a^2 \, .$$

TEOREMA 4 La ecuación general de una hipérbola es

$$Ax^2 + Cy^2 + Dx + Ey + F = 0 \quad \text{con } AC < 0$$

que es una hipérbola o dos rectas que se cortan.

EJEMPLO 3 . Encontrar la ecuación cuya gráfica sea una hipérbola con vértices en $(\pm 2,0)$ y focos en $(\pm 4,0)$.

EJEMPLO 4 . Determine la gráfica de $5x^2 - 4y^2 - 20x - 24y - 36 = 0$.

2 Guía de Ejercicios

1. Dada un punto M de la hipérbola

$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$

SEMANA 11 Pág. 3 - 4

se traza una recta tangente a la circunferencia $x^2+y^2=4$ que pasa por M y es tangente a la circunferencia en el punto T. Se traza una recta paralela a la asíntota con pendiente positiva de la hipérbola que pasa por M y que corta al eje X en el punto P. (Ver figura)

Calcular d(M, P) - d(M, T).

- 2. Demostrar que la diferencia entre las distancias del punto $\left(6,\frac{3\sqrt{5}}{2}\right)$ de la hipérbola $9x^2-16y^2=144$, a los focos, es igual a la longitud de su eje transverso.
- 3. Dada la ecuación de la hipérbola $8x^2-4y^2-24x-4y-15=0$, encuentre las coordenadas de los vértices, de los focos y la ecuación de las asíntotas.
- 4. Encontrar la ecuación de la hipérbola, cuyas asíntotas tienen ecuación x-2y+1=0 y x+2y-3=0 y la distancia entre los vértices es 2.
- 5. Una hipérbola tiene un foco en el punto (3,2) y las ecuaciones de sus asíntotas son y=2x-10 y y=-2x+2. Determine la ecuación de la hipérbola.
- 6. Dado

$$\begin{cases} x = \sqrt{2t + 1} \\ y = \sqrt{8t} \end{cases}$$

, $t\geqslant 0$, determine la ecuación del lugar geométrico de los puntos P(x,y) y trace el gráfico correspondiente.

SEMANA 11 Pág. 4 - 4