

Goal: Customer Segmentation

Customer Segmentation creates information that supports decision making by matching the right customers with the right services and products. With customer segmentation, actions that can address customers' concerns can be taken with greater precision.

In this analysis, K-means and Agglomerative clustering were utilized using the market campaign dataset.

Libraries Used

- **Pandas**
- Numpy
- Matplotlib
- Seaborn
- Scikit Learn
- Plotly
- Scipy

Importing Libraries

```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         from matplotlib import colors
         from matplotlib.colors import ListedColormap
         import seaborn as sns
         import plotly as py
         import plotly.graph_objs as go
         from sklearn.cluster import KMeans
         from sklearn.cluster import AgglomerativeClustering
         import scipy.cluster.hierarchy as sch
         from sklearn.preprocessing import StandardScaler
         from sklearn.preprocessing import LabelEncoder
         from sklearn.decomposition import PCA
         import plotly.express as px
In [2]:
         import warnings
         import sys
         if not sys.warnoptions:
             import warnings
             warnings.simplefilter("ignore")
         py.offline.init_notebook_mode()
         import plotly.offline as py
         py.init_notebook_mode()
         import plotly.graph objs as go
         import plotly.tools as tls
         import plotly.figure_factory as ff
```

Importing the Dataset

```
In [3]:
         df = pd.read csv('marketing campaign.csv', sep=';')
In [4]:
         pd.set_option('display.max_columns', None)
```

Let's get some info from the data

```
In [5]:
         df.head()
```

Out[5]:		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Recency	Ν
	0	5524	1957	Graduation	Single	58138.0	0	0	2012-09-04	58	
	1	2174	1954	Graduation	Single	46344.0	1	1	2014-03-08	38	
	2	4141	1965	Graduation	Together	71613.0	0	0	2013-08-21	26	
	3	6182	1984	Graduation	Together	26646.0	1	0	2014-02-10	26	
	4	5324	1981	PhD	Married	58293.0	1	0	2014-01-19	94	
	4										•

Out[6]:

df.describe() In [6]:

	ID	Year_Birth	Income	Kidhome	Teenhome	Recency	MntWines	
count	2240.000000	2240.000000	2216.000000	2240.000000	2240.000000	2240.000000	2240.000000	2
mean	5592.159821	1968.805804	52247.251354	0.444196	0.506250	49.109375	303.935714	
std	3246.662198	11.984069	25173.076661	0.538398	0.544538	28.962453	336.597393	
min	0.000000	1893.000000	1730.000000	0.000000	0.000000	0.000000	0.000000	
25%	2828.250000	1959.000000	35303.000000	0.000000	0.000000	24.000000	23.750000	
50%	5458.500000	1970.000000	51381.500000	0.000000	0.000000	49.000000	173.500000	
75%	8427.750000	1977.000000	68522.000000	1.000000	1.000000	74.000000	504.250000	
max	11191.000000	1996.000000	666666.000000	2.000000	2.000000	99.000000	1493.000000	
4								

Data Cleaning

• Inspecting the data types.

In [7]:

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2240 entries, 0 to 2239 Data columns (total 29 columns):

#	Column	Non-Null Count	Dtype
0	ID	2240 non-null	int64
1	Year_Birth	2240 non-null	int64
2	Education	2240 non-null	object
3	Marital_Status	2240 non-null	object
4	Income	2216 non-null	float64
5	Kidhome	2240 non-null	int64
6	Teenhome	2240 non-null	int64
7	Dt_Customer	2240 non-null	object
8	Recency	2240 non-null	int64
9	MntWines	2240 non-null	int64
10	MntFruits	2240 non-null	int64
11	MntMeatProducts	2240 non-null	int64
12	MntFishProducts	2240 non-null	int64
13	MntSweetProducts	2240 non-null	int64
14	MntGoldProds	2240 non-null	int64
15	NumDealsPurchases	2240 non-null	int64
16	NumWebPurchases	2240 non-null	int64
17	NumCatalogPurchases	2240 non-null	int64
18	NumStorePurchases	2240 non-null	int64
19	NumWebVisitsMonth	2240 non-null	int64
20	AcceptedCmp3	2240 non-null	int64
21	AcceptedCmp4	2240 non-null	int64
22	AcceptedCmp5	2240 non-null	int64
23	AcceptedCmp1	2240 non-null	int64
24	AcceptedCmp2	2240 non-null	int64
25	Complain	2240 non-null	int64

```
26 Z_CostContact
                         2240 non-null
                                        int64
27 Z_Revenue
                         2240 non-null
                                         int64
28 Response
                         2240 non-null
                                        int64
dtypes: float64(1), int64(25), object(3)
```

memory usage: 507.6+ KB

Checking for null values

```
In [8]:
         df.isnull().sum()
                                 0
        ID
Out[8]:
        Year Birth
                                 0
                                 0
        Education
        Marital_Status
                                 0
        Income
                                24
        Kidhome
                                 0
        Teenhome
        Dt Customer
                                 0
                                 0
        Recency
        MntWines
                                 0
        MntFruits
        MntMeatProducts
                                 0
        MntFishProducts
                                 0
        MntSweetProducts
                                 0
        MntGoldProds
        NumDealsPurchases
        NumWebPurchases
                                 0
        NumCatalogPurchases
                                 0
        NumStorePurchases
                                 0
        NumWebVisitsMonth
                                 0
        AcceptedCmp3
                                 0
        AcceptedCmp4
                                 0
        AcceptedCmp5
        AcceptedCmp1
                                 0
        AcceptedCmp2
                                 0
        Complain
                                 0
                                 0
        Z_CostContact
        Z Revenue
                                 0
        Response
                                 0
        dtype: int64
```

- There are some missing values at the income column
- Dt_Customer column needs to be processed to its proper format
- There are 3 categorical (non_numerical) columns.
- Let's fill up the missing values first

```
In [11]:
          mean_value=df['Income'].mean()
          df['Income'].fillna(value=mean_value, inplace=True)
```

Let's confirm that there are no more missing values.

```
In [13]:
```

```
df.isnull().sum()
                                 0
Out[13]:
          Year Birth
                                 0
                                 0
         Education
         Marital Status
                                 0
                                 0
          Income
                                 0
         Kidhome
          Teenhome
                                 0
         Dt Customer
                                 0
                                 0
         Recency
                                 0
         MntWines
         MntFruits
                                 0
         MntMeatProducts
                                 0
         MntFishProducts
                                 0
         MntSweetProducts
                                 0
         MntGoldProds
                                 0
                                 0
         NumDealsPurchases
         NumWebPurchases
         NumCatalogPurchases
                                 0
         NumStorePurchases
                                 0
         NumWebVisitsMonth
                                 0
                                 0
         AcceptedCmp3
         AcceptedCmp4
                                 0
         AcceptedCmp5
                                 0
                                 0
         AcceptedCmp1
         AcceptedCmp2
                                 0
         Complain
                                 0
          Z_CostContact
                                 0
                                 0
         Z Revenue
                                 0
          Response
          dtype: int64
```

- Let's create a column that shows how many days customers have been registered with the company.
 - We need to show the oldest customer and newest customer.

```
In [14]:
          df["Dt_Customer"] = pd.to_datetime(df["Dt_Customer"])
          dates = []
          for t in df["Dt Customer"]:
              t = t.date()
              dates.append(t)
          print("Registration date of the newest customer on record is:",max(dates))
          print("Registration date of the oldest customer on record is:",min(dates))
         Registration date of the newest customer on record is: 2014-06-29
```

We look for unique values in columns that are categorical.

Registration date of the oldest customer on record is: 2012-07-30

```
In [16]:
          print("Unique value in Martial Status column: \n ", df["Marital_Status"].value_counts()
          print("Unique value in Education column: \n ", df["Education"].value_counts())
```

Unique value in Martial Status column:

```
Married 864
Together
            580
Single
            480
Divorced
           232
           77
Widow
Alone
Absurd
YOLO
Name: Marital_Status, dtype: int64
Unique value in Education column:
  Graduation 1127
PhD
             486
Master 370
2n Cycle 203
Basic 54
Name: Education, dtype: int64
```

We'll perform label encoding operation by changing the labels of unique values because there are many columns.

• Married: Partner Together : Partner Absurd : Alone • Widow: Alone YOLO: Alone Single : Alone

• Basic : Undergraduate

 2n Cycle: Undergraduate Graduatition: Graduate Master: Graduate • PhD: Graduate

Let's carry out some feature engineering

Let's open a new column called Customer_For and age of Customer.

```
In [17]:
          days = []
          d1 = max(dates)
          for i in dates:
              alpha = d1 - i
              days.append(alpha)
          df["Customer_For"] = days
          df["Customer_For"] = pd.to_numeric(df["Customer_For"], errors="coerce")
In [18]:
          df["Age"] = 2022-df["Year Birth"]
```

• Miscellaneous expenses

```
In [19]:
          df["Spent"] = df["MntWines"]+ df["MntFruits"]+ df["MntMeatProducts"]+ df["MntFishProduc
```

• Determine the client's marital status.

```
In [20]:
          df["Living With"] = df["Marital Status"].replace({"Married":"Partner", "Together":"Part
```

• Total number of children living at home

```
In [21]:
          df["Children"] = df["Kidhome"] + df["Teenhome"]
```

Total size of the family

```
In [22]:
          df["Family_Size"] = df["Living_With"].replace({"Alone": 1, "Partner":2}) + df["Children"]
          df["Family Size"]
```

```
1
Out[22]:
          3
                  3
          2235
          2236
          2237
          2238
          2239
          Name: Family_Size, Length: 2240, dtype: int64
```

Parent status

```
In [23]:
          df["Is Parent"] = np.where(df.Children > 0, 1, 0)
```

• Division of education status

```
In [24]:
          df["Education"] = df["Education"].replace({"Basic":"Undergraduate","2n Cycle":"Undergra
```

• Editing some column names

```
In [25]:
          df = df.rename(columns={"MntWines": "Wines", "MntFruits":"Fruits", "MntMeatProducts":"M
```

- Z_CostContact and Z_Revenue have fixed values.
- We drop them from the dataset because they are unnecessary.

```
In [26]:
          df.Z CostContact.describe()
```

count 2240.0

```
3.0
Out[26]:
         mean
          std
                      0.0
         min
                      3.0
          25%
                      3.0
          50%
                      3.0
          75%
                      3.0
          max
                      3.0
         Name: Z_CostContact, dtype: float64
In [27]:
          df.Z Revenue.describe()
                   2240.0
         count
Out[27]:
                     11.0
          mean
          std
                      0.0
          min
                     11.0
          25%
                     11.0
          50%
                     11.0
          75%
                     11.0
         max
                     11.0
         Name: Z Revenue, dtype: float64
In [28]:
          to_drop = ["Marital_Status", "Dt_Customer", "Z_CostContact", "Z_Revenue", "Year_Birth",
          df = df.drop(to drop, axis=1)

    Converting categorical values to numerical value

In [29]:
          le = LabelEncoder()
          df['Education'] = df[['Education']].apply(le.fit_transform)
          df['Living_With'] = df[['Living_With']].apply(le.fit_transform)
In [30]:
          df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 2240 entries, 0 to 2239
          Data columns (total 30 columns):
           #
               Column
                                    Non-Null Count
                                                     Dtype
           0
               Education
                                    2240 non-null
                                                     int32
           1
                                    2240 non-null
                                                     float64
               Income
           2
               Kidhome
                                     2240 non-null
                                                     int64
           3
               Teenhome
                                    2240 non-null
                                                     int64
           4
                                    2240 non-null
                                                     int64
               Recency
           5
                                    2240 non-null
                                                     int64
               Wines
           6
                                    2240 non-null
               Fruits
                                                     int64
           7
               Meat
                                    2240 non-null
                                                     int64
           8
                                    2240 non-null
               Fish
                                                     int64
           9
                                    2240 non-null
               Sweets
                                                     int64
           10 Gold
                                    2240 non-null
                                                     int64
                                    2240 non-null
           11 NumDealsPurchases
                                                     int64
           12
              NumWebPurchases
                                    2240 non-null
                                                     int64
           13 NumCatalogPurchases 2240 non-null
                                                     int64
                                     2240 non-null
           14 NumStorePurchases
                                                     int64
           15
              NumWebVisitsMonth
                                     2240 non-null
                                                     int64
                                    2240 non-null
           16 AcceptedCmp3
                                                     int64
```

```
17 AcceptedCmp4
                         2240 non-null
                                         int64
18 AcceptedCmp5
                         2240 non-null
                                         int64
19 AcceptedCmp1
                         2240 non-null
                                         int64
20 AcceptedCmp2
                         2240 non-null
                                         int64
21 Complain
                         2240 non-null
                                         int64
22 Response
                         2240 non-null
                                         int64
23 Customer_For
                         2240 non-null
                                         int64
                         2240 non-null
24 Age
                                         int64
25 Spent
                         2240 non-null
                                         int64
26 Living With
                         2240 non-null
                                         int32
27 Children
                         2240 non-null
                                         int64
28 Family_Size
                         2240 non-null
                                         int64
29 Is_Parent
                         2240 non-null
                                         int32
dtypes: float64(1), int32(3), int64(26)
```

memory usage: 498.9 KB

Now we can see what our new dataframe looks like.

1]: d	lf												
1]:		Education	Income	Kidhome	Teenhome	Recency	Wines	Fruits	Meat	Fish	Sweets	Gold	Nu
	0	0	58138.0	0	0	58	635	88	546	172	88	88	
	1	0	46344.0	1	1	38	11	1	6	2	1	6	
	2	0	71613.0	0	0	26	426	49	127	111	21	42	
	3	0	26646.0	1	0	26	11	4	20	10	3	5	
	4	0	58293.0	1	0	94	173	43	118	46	27	15	
	•••												
22	235	0	61223.0	0	1	46	709	43	182	42	118	247	
22	236	0	64014.0	2	1	56	406	0	30	0	0	8	
22	237	0	56981.0	0	0	91	908	48	217	32	12	24	
22	238	0	69245.0	0	1	8	428	30	214	80	30	61	
22	239	0	52869.0	1	1	40	84	3	61	2	1	21	
224	40 r	ows × 30 c	olumns										

PairPlot

Pairplot plots helps us to see the pairwise relationships in a dataset. It creates a grid of Axes such that each variable in the data is shared along the y-axis along a single row and on the x-axis along a single column.

```
In [32]:
          sns.set style("whitegrid")
          plt.figure()
          sns.pairplot(df[["Income", "Recency", "Age", "Spent", "Is_Parent"]], hue='Is_Parent', p
          plt.show()
```


In [33]: df.describe()

mean 0.114732 52247.251354 0.444196 0.506250 49.109375 303.935714 26.302232 std 0.318770 25037.797168 0.538398 0.544538 28.962453 336.597393 39.773434 min 0.000000 1730.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 25% 0.000000 35538.750000 0.000000 0.000000 24.000000 23.750000 1.000000 50% 0.000000 51741.500000 0.000000 0.000000 49.000000 173.500000 8.000000 75% 0.000000 68289.750000 1.000000 1.000000 74.000000 504.250000 33.000000 max 1.000000 666666.000000 2.000000 2.000000 99.000000 1493.000000 199.000000										
mean 0.114732 52247.251354 0.444196 0.506250 49.109375 303.935714 26.302232 std 0.318770 25037.797168 0.538398 0.544538 28.962453 336.597393 39.773434 min 0.000000 1730.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 50% 0.000000 51741.500000 0.000000 0.000000 49.000000 173.500000 8.000000 75% 0.000000 68289.750000 1.000000 1.000000 74.000000 504.250000 33.000000 max 1.000000 666666.000000 2.000000 2.000000 99.000000 1493.000000 199.000000	[33]:		Education	Income	Kidhome	Teenhome	Recency	Wines	Fruits	
std 0.318770 25037.797168 0.538398 0.544538 28.962453 336.597393 39.773434 min 0.000000 1730.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 50% 0.000000 51741.500000 0.000000 1.000000 49.000000 173.500000 8.000000 75% 0.000000 68289.750000 1.000000 1.000000 74.000000 504.250000 33.000000 max 1.000000 666666.000000 2.000000 2.000000 99.000000 1493.000000 199.000000		count	2240.000000	2240.000000	2240.000000	2240.000000	2240.000000	2240.000000	2240.000000	22
min 0.000000 1730.000000 0.000000 0.000000 0.000000 0.000000 0.000000 25% 0.000000 35538.750000 0.000000 0.000000 24.000000 23.750000 1.000000 50% 0.000000 51741.500000 0.000000 0.000000 49.000000 173.500000 8.000000 75% 0.000000 68289.750000 1.000000 74.000000 504.250000 33.000000 max 1.000000 666666.000000 2.000000 2.000000 99.000000 1493.000000 199.000000		mean	0.114732	52247.251354	0.444196	0.506250	49.109375	303.935714	26.302232	1
25% 0.000000 35538.750000 0.000000 0.000000 24.000000 23.750000 1.000000 50% 0.000000 51741.500000 0.000000 0.000000 49.000000 173.500000 8.000000 75% 0.000000 68289.750000 1.000000 74.000000 504.250000 33.000000 max 1.000000 666666.000000 2.000000 99.000000 1493.000000 199.000000		std	0.318770	25037.797168	0.538398	0.544538	28.962453	336.597393	39.773434	ź
50% 0.000000 51741.500000 0.000000 0.000000 49.000000 173.500000 8.000000 75% 0.000000 68289.750000 1.000000 1.000000 74.000000 504.250000 33.000000 max 1.000000 666666.000000 2.000000 2.000000 99.000000 1493.000000 199.000000		min	0.000000	1730.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
75% 0.000000 68289.750000 1.000000 1.000000 74.000000 504.250000 33.000000 max 1.000000 666666.000000 2.000000 99.000000 1493.000000 199.000000		25%	0.000000	35538.750000	0.000000	0.000000	24.000000	23.750000	1.000000	
max 1.000000 666666.000000 2.000000 99.000000 1493.000000 199.000000		50%	0.000000	51741.500000	0.000000	0.000000	49.000000	173.500000	8.000000	
		75%	0.000000	68289.750000	1.000000	1.000000	74.000000	504.250000	33.000000	2
		max	1.000000	666666.000000	2.000000	2.000000	99.000000	1493.000000	199.000000	17
		4								•

Outlier Detection

```
In [34]:
          personal = ["Income", "Recency", "Age", "Spent"]
          for i in personal:
              plt.figure()
              sns.boxplot(x=df[i], palette='crest')
              plt.show()
```


Inter Quantile Range

- We will use the IQR method to detect outlier data.
- First of all, it is necessary to find the distance between the quartiles in the data. (IQR = Q3 Q1)


```
In [36]:
           df['Age'].quantile(0.25)
          45.0
Out[36]:
```

```
df['Age'].quantile(0.75)
In [37]:
         63.0
Out[37]:
```

• Then IQR limits are determined.

```
In [38]:
          Q1 = df['Age'].quantile(0.25)
          Q3 = df['Age'].quantile(0.75)
          IQR = Q3 - Q1
In [39]:
          IQR
          18.0
Out[39]:
In [40]:
           lower_lim = Q1 - 1.5 * IQR
          upper lim = Q3 + 1.5 * IQR
          #The fixed value used during the determination of the limits changes according to the s
In [41]:
          lower lim
          18.0
Out[41]:
In [42]:
          upper lim
          90.0
Out[42]:
```

• We'll extract the outlier data from our dataset.

```
In [43]:
          outliers_low = (df['Age'] < lower_lim)</pre>
          outliers_up = (df['Age'] > upper_lim)
          len(df['Age'] - (len(df['Age'][outliers_low] + len(df['Age'][outliers_up]))))
In [44]:
          df['Age'][(outliers_low | outliers_up)]
In [45]:
          df['Age'][~(outliers_low | outliers_up)]
          2240
Out[45]:
In [48]:
          df = df[~(outliers_low | outliers_up)]
In [50]:
          sns.boxplot(df.Age)
```

```
<AxesSubplot:xlabel='Age'>
Out[50]:
```



```
In [52]:
          sns.distplot(df['Age'], bins = 15, kde = False, color = 'r')
          plt.show()
```


As you can see, there are no more outliers in the data.

```
In [53]:
          sns.boxplot(df.Income, palette='crest')
         <AxesSubplot:xlabel='Income'>
Out[53]:
```



```
In [54]:
          sns.distplot(df['Income'], bins = 15, kde = False)
          plt.show()
```


This isn't how we want it to be.

Let's handle the income column

```
In [58]:
          Q1 = df['Income'].quantile(0.25)
          Q3 = df['Income'].quantile(0.75)
          IQR = Q3 - Q1
          lower_lim = Q1 - 1.5 * IQR
          upper_lim = Q3 + 1.5 * IQR
          outliers_low = (df['Income'] < lower_lim)</pre>
          outliers_up = (df['Income'] > upper_lim)
          len(df['Income'] - (len(df['Income'][outliers_low] + len(df['Income'][outliers_up]))))
          df['Income'][(outliers_low | outliers_up)]
          df['Income'][~(outliers_low | outliers_up)]
          df = df[~(outliers_low | outliers_up)]
```

Now let's check the income column again.

```
sns.boxplot(df.Income, palette='crest')
In [59]:
```

<AxesSubplot:xlabel='Income'> Out[59]:


```
In [60]:
          sns.distplot(df['Income'], bins = 15, kde = False)
          plt.show()
```


Correlation

• It is a statistical method used to determine whether there is a linear relationship between two numerical values, and hence, the direction and severity of this relationship.

```
In [61]:
          corrmat = df.corr()
          plt.figure(figsize = (20,20))
          sns.heatmap(corrmat,annot=True, center=0, cmap='crest')
          <AxesSubplot:>
Out[61]:
```


Data preprocessing

We are removing columns related to deals and promotions from the dataset as they cause semantic confusion.

```
In [62]:
          new_df = df.copy()
          cols_del = ['AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1','AcceptedCmp
          new_df = new_df.drop(cols_del, axis=1)
```

Scaling the data

```
In [63]:
          sc = StandardScaler()
          sc.fit(new_df)
```

0.904492 -1.420399 0.365350 0.091848 0.222156 0.774527

0.904492 -0.314662 -0.656372 -0.587310 -0.475559 -0.651738

scaled_df = pd.DataFrame(sc.transform(new_df), columns = new_df.columns)

In [64]:

scaled_df

Out[64]:		Education	Income	Kidhome	Teenhome	Recency	Wines	Fruits	Meat	Fish
	0	-0.359415	0.316030	-0.825592	-0.931676	0.307314	0.980166	1.550778	1.736151	2.456789
	1	-0.359415	-0.256586	1.031365	0.904492	-0.383771	-0.873191	-0.637618	-0.726371	-0.651738
	2	-0.359415	0.970262	-0.825592	-0.931676	-0.798422	0.359410	0.569773	-0.174584	1.341376
	3	-0.359415	-1.212954	1.031365	-0.931676	-0.798422	-0.873191	-0.562156	-0.662528	-0.505455
	4	-0.359415	0.323556	1.031365	-0.931676	1.551268	-0.392031	0.418849	-0.215626	0.152822
	•••									
	2224	-0.359415	0.465812	-0.825592	0.904492	-0.107337	1.199955	0.418849	0.076229	0.079680
	2225	-0.359415	0.601319	2.888322	0.904492	0.238206	0.300008	-0.662772	-0.616926	-0.688309
	2226	-0.359415	0.259856	-0.825592	-0.931676	1.447605	1.791009	0.544619	0.235837	-0.103175

2229 rows × 23 columns

-0.359415

2227

2228

PRINCIPAL COMPONENT ANALYSIS

1.031365

Dimension Reduction

0.060212

- In some cases, dimension reduction is very important.
 - For example: improving model performance or enabling visualization.

By performing this operation, we'll be able to look at the data from a different point of view as new attributes can be extracted.

```
In [65]:
           pca = PCA(n_components=3)
           pca.fit(scaled df)
           pca df = pd.DataFrame(pca.transform(scaled df), columns=(["First Column", "Second Column")
           pca_df.describe().T
                                                                       25%
                                                                                  50%
                                                                                           75%
Out[65]:
                           count
                                                    std
                                                              min
                                        mean
                                                                                                     max
             First Column 2229.0 2.450560e-17 2.897012 -6.025380 -2.556318 -0.790779 2.435875 7.546411
           Second_Column 2229.0 1.280069e-16 1.722300 -4.384414 -1.320616 -0.180058 1.249482 6.204203
            Third_Column 2229.0 5.254757e-18 1.238816 -3.385394 -0.827137 -0.041759 0.827515 6.429199
In [66]:
           pca df
Out[66]:
                 First_Column Second_Column Third_Column
              0
                     5.013827
                                    -0.201598
                                                   2.301202
              1
                    -2.875021
                                     0.069315
                                                   -1.782332
              2
                     2.618429
                                    -0.740504
                                                   -0.350609
              3
                    -2.687844
                                    -1.457772
                                                   -0.335301
              4
                    -0.612702
                                     0.259817
                                                   0.023343
           2224
                     2.314878
                                     2.363096
                                                   0.675740
           2225
                    -3.040796
                                     4.123276
                                                   -1.292170
           2226
                     2.672355
                                    -1.872488
                                                   0.145840
```

2229 rows × 3 columns

1.562130

-2.691429

2227

2228

Image of data reduced to 3D

1.729290

1.766236

```
In [67]:
          Scene = dict(xaxis = dict(title = 'First Column'),yaxis = dict(title = 'Second Column')
          trace = go.Scatter3d(x=pca_df['First_Column'], y=pca_df['Second_Column'], z=pca_df['Thi
          layout = go.Layout(margin=dict(l=0,r=0),scene = Scene,height = 800,width = 800)
          data = [trace]
          fig = go.Figure(data = data, layout = layout)
          fig.show()
```

-1.784393

-0.216543

Modelling

KMeans

K-Means starts by randomly choosing the center point of k clusters, and the data points outside the center are included in the clusters they are similar to, according to their distance from the mean values of the clusters. Then, the average value of each cluster is calculated and new cluster centers are determined. Again, the distances of the objects from the center are examined continuosly until it's over.

```
plt.rcParams['figure.figsize'] = [8,8]
sns.set_style("whitegrid")
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
inertia list = []
for num_clusters in range(1, 11):
   kmeans_model = KMeans(n_clusters=num_clusters, init="k-means++")
   kmeans_model.fit(pca_df)
   inertia_list.append(kmeans_model.inertia_)
```

Plotting the inertia curve using the elbow method

```
In [69]:
          plt.plot(range(1,11),inertia list)
          plt.scatter(range(1,11),inertia_list)
          plt.scatter(4, inertia_list[4], marker="X", s=100, c="r")
          plt.xlabel("Number of clusters", size=14)
          plt.ylabel("WCSS", size=14)
          plt.title("Elbow Method", size=17)
```

Text(0.5, 1.0, 'Elbow Method') Out[69]:


```
In [70]:
          print('K-Means')
          kMeans = KMeans(n clusters = 4, init = 'k-means++')
          y_pred_kMeans = kMeans.fit_predict(pca_df)
```

```
pca_df["Clusters_KMeans"] = y_pred_kMeans
          df["Clusters_KMeans"]= y_pred_kMeans
          print('Pred:\n', y_pred_kMeans)
          print('\n\ninertia: ', kMeans.inertia_, '\n\nclusters centers:\n', kMeans.cluster_cente
         K-Means
         Pred:
          [0 3 0 ... 0 2 3]
         inertia: 7678.734659289398
         clusters centers:
          [[ 4.23410141 -0.91933676 -0.19733263]
          [-2.06654234 -1.70838114 0.5575856 ]
          [ 0.92546531 1.93282707 0.35625703]
          [-2.53899992 0.79702106 -0.79298866]]
In [72]:
          Scene = dict(xaxis = dict(title = 'First Column'),yaxis = dict(title = 'Second Column')
          trace = go.Scatter3d(x=pca_df['First_Column'], y=pca_df['Second_Column'], z=pca_df['Thi
          layout = go.Layout(margin=dict(l=0,r=0),scene = Scene,height = 800,width = 800)
          data = [trace]
          fig = go.Figure(data = data, layout = layout)
          fig.show()
```


Hierarchical Clustering

Hierarchical clustering typically works by sequentially combining similar clusters.

Let's create a dendogram

```
In [74]:
          %matplotlib inline
          import scipy.cluster.hierarchy as sch
          plt.figure(figsize=(25,12))
          dendrogram=sch.dendrogram(sch.linkage(pca_df,method = 'ward'))
          plt.title('Dendrogram plot')
          plt.show()
```



```
In [75]:
          agg = AgglomerativeClustering(n_clusters=4)
          y_pred_agg = agg.fit_predict(pca_df)
          pca_df["Clusters_agg"] = y_pred_agg
          df["Clusters_agg"]= y_pred_agg
```

```
Scene = dict(xaxis = dict(title = 'First Column'),yaxis = dict(title = 'Second Column')
In [77]:
          trace = go.Scatter3d(x=pca_df['First_Column'], y=pca_df['Second_Column'], z=pca_df['Thi
                               mode='markers',marker=dict(color = pca_df["Clusters_agg"], size= 1
                                  line=dict(color= 'black',width = 10)))
          layout = go.Layout(margin=dict(l=0,r=0),scene = Scene,height = 800,width = 800)
          data = [trace]
          fig = go.Figure(data = data, layout = layout)
          fig.show()
```


Quantities of samples in each cluster.

```
In [83]:
          pl = sns.countplot(x=df["Clusters_agg"], palette= 'tab10')
          pl.set_title("Clusters")
          plt.show()
```


Cluster profile based on income and spent.

```
In [84]:
          pal = ["#b0282f","#9E00FF", "#30832c","#286090"]
          plt.rcParams['figure.figsize'] = [8,8]
          pl = sns.scatterplot(data = df,x=df["Spent"], y=df["Income"],hue=df["Clusters_agg"], pa
          pl.set_title("Cluster profile based on income and spent.")
          plt.legend()
          plt.show()
```


- **Grup 0:** Average income, high spending
- **Grup 1:** Average income, low spending
- Grup 2: Low income, low spending.
- **Grup 3:** High income, high spending

PROFILING

• Qualifications of customers belonging to different clusters.

```
In [85]:
          fig = px.box(df, x=df['Children'], y=df['Spent'], points="all", color="Clusters_agg")
          fig.show()
```


1500

In [86]: fig = px.box(df, x=df['Family_Size'], y=df['Spent'], points="all", color="Clusters_agg" fig.show()


```
fig = px.box(df, x=df['Is_Parent'], y=df['Spent'], points="all", color="Clusters_agg")
```

fig.show()


```
In [88]:
          fig = px.box(df, x=df['Education'], y=df['Spent'], points="all", color="Clusters_agg")
          fig.show()
```



```
In [89]:
          fig = px.box(df, x=df['Living_With'], y=df['Spent'], points="all", color="Clusters_agg"
          fig.show()
```


