Metodo: Questa schedule prende in considerazione un sistema multi tasking co

		•				
Processo						
P1						
P2						
P3						
P4						
Tempo in s	0	1	2	3	4	5

Metodo: la soluzione proposta consente un'ottimizzazione ancora maggiore nell'

Processo						
P1						
P2						
P4						
P3						
Tempo in s	0	1	2	3	4	5

n una pianificazione con prelazione (preemptive multitasking), in cui i processi vengono eseguiti in base

			\I I		<i>Ο</i> / <i>'</i>	1	<u> </u>	,
6	7	8	9	10	11	12	13	14

uso della CPU, immaginando di assegnare una priorità alta a P1 e P2, una priorità media a P4 e una prior

6	7	8	9	10	11	12	13	14

al loro ordine di arrivo, con una logica first come, first served.

ità bassa P3.

