Chapter 4. A tour of the cell

• Two major categories of cells: prokaryotic cells, eukaryotic cells

- Organelles: membrane-enclosed structures that perform specific functions.
- Membrane structure

流动镶嵌

Fluid mosaic: fluid because the molecules can move freely past one another and mosaic because of the diversity of proteins that float like icebergs in the phospholipid sea.

- Genetic control of the cell: the nucleus (细胞核), ribosomes
- 1) The nucleus: an envelope consisting of two membranes encloses the nucleus. Within the nucleus, DNA and proteins make up chromatin fibers; each very long fiber is a single chromosome. The nucleus also contains the nucleolus, which produces components of ribosomes.

2) Ribosomes: produce proteins in the cytoplasm using messages produced by the DNA.

The endomembrane system: manufacturing and distributing cellular products

. 75			7.00
福昕PDF编辑	60	\$	Consists of membrane-enclosed tubes and sacs
ABUIT.			within the cytoplasm.
		\$	Two type of ER: rough ER, smooth ER
	The Endoplasmic Reticulum(ER)		1) rough ER named because of the ribosomes
	内质网		attached to its surface, makes membrane and
			secretory proteins;
			2) the function of smooth ER: lipid synthesis,
	aconc编辑器		detoxification
	福田川	\$	Consists of a stack of membrane plates.
	The Golgi Apparatus	\$	Receives, refines, stores certain ER products and
	高尔基体		packages them in transport vesicles targeted for
			other organelles or export from the cell.
福的FPDF编辑		\$	A membrane-enclosed sac of digestive enzymes
			found in animal cells, developed from vesicles
			that bud off from the Golgi apparatus.
		♦	Contain digestive enzymes, aid digestion and
	Lysosomes 溶酶体		recycling within the cell.
			Functions:
			1) nourish the cell;
			2) destroy harmful bacteria;
			3) continually renew the cell;
	福昕PDF编辑器		4) sculpting functions in embryonic development
	福州中		Typical disease: Tay-Sachs disease
		♦	Large sacs made of membrane that bud off from
			the ER or Golgi apparatus.
	Vacuoles	♦	Functions:
	液泡		1) Food vacuole;
			2) Contractile vacuoles;
			3) Central vacuoles that store organic nutrients.

				5) Central vacuoles that store organic nutrient		
+ t==	The cytoskeleton: cell shape and movement					
福町PDF编档	Maintaining cell	Maintaining gall chang		♦ Cytoskeleton fibers:		
				1) microtubules;		
		Maintaining cen shape		2) intermediate filaments;		
				3) microfilaments.		
			\$	Aid in movement.		
			\$	They are made primarily of microtubules;		
			\$	Differences:		
	Cilia and flagella	Cilia and flagella		1) Cilia: short, numerous, move the cell via coordinated beating.	纤毛	
				2) Flagella: long, often occur singly, propel a	如工	
			cell with whiplike movement.	鞭毛		

Chapter 5. The Working Cell

Chapter 6. Cellular Respiration: Obtaining Energy from Food

Membrane Function

Proteins embedded in the plasma membrane perform a wide variety of functions, including regulating transport, anchoring to other cells or substances, promoting enzymatic reactions, and recognizing other cells.

- Passive Transport: Diffusion across Membranes (no energy needed)
 - Diffusion is the movement of molecules spreading out evenly into the available space, from a region where the molecules are more concentrated to a region where they are less concentrated
 - Substances that do not cross membranes spontaneously—or otherwise cross very slowly—can be transported via proteins that act as corridors—— facilitated diffusion

examples of facilitated diffusion: Glucose Transporter in small intestine; Ion Channels in neurons and muscle; Aguaporins(水通道蛋白)

- Osmosis (渗透)
 - ♦ The diffusion of water across a selectively permeable membrane is osmosis. The control of water balance is called osmoregulation(渗透压调节)
- Active Transport: The Pumping of Molecules across Membranes
 - Active transport requires that a cell expend energy (ATP) to move molecules across a membra
 - Active transport requires transport proteins

Exocytosis and Endocytosis: Traffic of Large Molecules

Exocytosis is the secretion of large molecules within vesicles. Endocytosis is the import of large substances via vesicles into the cell.

Producers and Consumers

Autotrophs (producers) make organic molecules from inorganic nutrients via photosynthesis. **Heterotrophs** (consumers) must consume organic material and obtain energy via cellular respiration.

- Cellular Respiration: Aerobic (需氧的) Harvest of Food Energy
 - **Cellular Respiration**: aerobic harvesting of chemical energy from organic fuel molecules.
 - An Overview of Cellular Respiration

The overall equation of cellular respiration simplifies a great many chemical steps into one formula:

- The Three Stages of Cellular Respiration
- A six-carbon glucose molecule is split in half to form two molecules of pyruvic acid (丙酮酸).
 The three-carbon molecules than dared in the six of the s
 - 2. The three-carbon molecules then donate high-energy electrons to NAD+, forming NADH.
 - 3. Generate four ATP molecules directly when enzymes transfer phosphate groups from fuel molecules to ADP. Figure 6.5 Glycolysis. In glycolysis, a team of enzymes splits glucose, eventually forming two molecules. eventually forming two molecules of pyruvic acid. After investing 2 ATP at the start, glycolysis generates 4 ATP directly. More energy will be harvested later

from high-energy electrons used to form NADH and from the two molecules of pyruvic acid. OUTPUT NADH Carbon atom NADH Phosphate group High-energy electror

Energy harvest phase

Energy investment phase