3.2 Variances, Covariances and Correlation coefficients

3.2.1 Variances

3.2 Variances, Covariances and Correlation coefficients

3.2.1 Variances

Example

Let ξ and η denote the numbers of times two people, say A and B, hit the target respectively. Suppose

$$\xi: \left(\begin{array}{cccc} 7 & 8 & 9 \\ 0.1 & 0.8 & 0.1 \end{array}\right) \quad \eta: \left(\begin{array}{ccccc} 6 & 7 & 8 & 9 & 10 \\ 0.1 & 0.2 & 0.4 & 0.2 & 0.1 \end{array}\right).$$

Compare which one is better at shooting.

Compare which one is better at shooting.

$$E\xi = E\eta = 8.$$

We need consider the deviation extent to which it takes values, besides its mean for a random variable.

We call $\xi - E\xi$ the deviation of ξ from its mean $E\xi$. It is still a random variable.

The mean of it is also $E[\xi - E\xi] = E\xi - E\xi = 0$.

Definition

If $E(\xi - E\xi)^2$ exists and is a finite constant, then we call it the variance of ξ , and write $Var\xi$ or $D\xi$, i.e.,

$$Var\xi = E(\xi - E\xi)^2.$$

Definition

If $E(\xi - E\xi)^2$ exists and is a finite constant, then we call it the variance of ξ , and write $Var\xi$ or $D\xi$, i.e.,

$$Var\xi = E(\xi - E\xi)^2.$$

But $Var\xi$ and ξ have different dimension. To unify, we sometimes use $\sqrt{Var\xi}$, called the standard deviation of ξ .

$$Var\xi = \int_{-\infty}^{\infty} (x - E\xi)^2 dF_{\xi}(x)$$

$$= \begin{cases} \sum_{i} (x_i - E\xi)^2 P(\xi = x_i) & \text{(discrete),} \\ \int_{-\infty}^{\infty} (x - E\xi)^2 p_{\xi}(x) dx & \text{(continuous).} \end{cases}$$

$$Var\xi = \int_{-\infty}^{\infty} (x - E\xi)^2 dF_{\xi}(x)$$

$$= \begin{cases} \sum_{i} (x_i - E\xi)^2 P(\xi = x_i) & \text{(discrete)}, \\ \int_{-\infty}^{\infty} (x - E\xi)^2 p_{\xi}(x) dx & \text{(continuous)}. \end{cases}$$

Moreover,

$$E(\xi - E\xi)^2 = E[\xi^2 - 2\xi E\xi + (E\xi)^2] = E\xi^2 - (E\xi)^2,$$

i.e.,

$$Var\xi = E\xi^2 - (E\xi)^2.$$

Example (continuity). Find $Var\xi$ and $Var\eta$ of ξ and η . Solution.

Example (continuity). Find $Var\xi$ and $Var\eta$ of ξ and η . Solution.

$$E\xi^2 = \sum_i x_i^2 P(\xi = x_i) = 64.2,$$

SO

$$Var\xi = E\xi^2 - (E\xi)^2 = 0.2.$$

Example (continuity). Find $Var\xi$ and $Var\eta$ of ξ and η . Solution.

$$E\xi^2 = \sum_i x_i^2 P(\xi = x_i) = 64.2,$$

SO

$$Var\xi = E\xi^2 - (E\xi)^2 = 0.2.$$

Similarly, $Var\eta=E\eta^2-(E\eta)^2=65.2-64=1.2>Var\xi$. So η takes its values more dispersedly, which implies A shoots better.

3.2.1 Variances

Find the variance of the Poisson distribution $P(\lambda)$.

$$E\xi^2 = \sum_{k=0}^{\infty} k^2 \frac{\lambda^k}{k!} e^{-\lambda} = \sum_{k=1}^{\infty} k \frac{\lambda^k}{(k-1)!} e^{-\lambda}$$

$$E\xi^{2} = \sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda} = \sum_{k=1}^{\infty} k \frac{\lambda^{k}}{(k-1)!} e^{-\lambda}$$
$$= \sum_{k=1}^{\infty} (k-1) \frac{\lambda^{k}}{(k-1)!} e^{-\lambda} + \sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!} e^{-\lambda}$$

$$E\xi^{2} = \sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda} = \sum_{k=1}^{\infty} k \frac{\lambda^{k}}{(k-1)!} e^{-\lambda}$$

$$= \sum_{k=1}^{\infty} (k-1) \frac{\lambda^{k}}{(k-1)!} e^{-\lambda} + \sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!} e^{-\lambda}$$

$$= \lambda \sum_{j=0}^{\infty} j \frac{\lambda^{j}}{j!} e^{-\lambda} + \lambda \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} e^{-\lambda} = \lambda^{2} + \lambda.$$

$$E\xi^{2} = \sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda} = \sum_{k=1}^{\infty} k \frac{\lambda^{k}}{(k-1)!} e^{-\lambda}$$

$$= \sum_{k=1}^{\infty} (k-1) \frac{\lambda^{k}}{(k-1)!} e^{-\lambda} + \sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!} e^{-\lambda}$$

$$= \lambda \sum_{j=0}^{\infty} j \frac{\lambda^{j}}{j!} e^{-\lambda} + \lambda \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} e^{-\lambda} = \lambda^{2} + \lambda.$$

So,
$$Var\xi = \lambda^2 + \lambda - \lambda^2 = \lambda$$
.

3.2.1 Variances

$$E\xi f(\xi - 1) = \sum_{k=0}^{\infty} k f(k - 1) \frac{\lambda^k}{k!} e^{-\lambda}$$
$$= \lambda \sum_{k=1}^{\infty} f(k - 1) \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} = \lambda E f(\xi).$$

$$E\xi f(\xi - 1) = \sum_{k=0}^{\infty} k f(k - 1) \frac{\lambda^k}{k!} e^{-\lambda}$$
$$= \lambda \sum_{k=1}^{\infty} f(k - 1) \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} = \lambda Ef(\xi).$$

Letting $f(x)\equiv 1$ yields $E\xi=\lambda.$ Letting f(x)=x yields $E[\xi^2-\xi]=\lambda E\xi.$ So

$$Var\xi = E\xi^{2} - (E\xi)^{2} = E\xi + \lambda E\xi - (E\xi)^{2} = \lambda.$$

3.2.1 Variances

Suppose that $\xi \sim U[a, b]$, find $Var\xi$.

Solution.

Suppose that $\xi \sim U[a, b]$, find $Var\xi$.

Solution. It is easy to see

$$E\xi^{2} = \int_{a}^{b} x^{2} \frac{1}{b-a} dx = \frac{1}{3} \frac{b^{3} - a^{3}}{b-a} = \frac{1}{3} (a^{2} + ab + b^{2}).$$

Then

Suppose that $\xi \sim U[a, b]$, find $Var\xi$.

Solution. It is easy to see

$$E\xi^{2} = \int_{a}^{b} x^{2} \frac{1}{b-a} dx = \frac{1}{3} \frac{b^{3} - a^{3}}{b-a} = \frac{1}{3} (a^{2} + ab + b^{2}).$$

Then

$$Var\xi = \frac{1}{3}(a^2 + ab + b^2) - \left[\frac{a+b}{2}\right]^2 = \frac{1}{12}(b-a)^2.$$

3.2.1 Variances

Assume that $\xi \sim N(a, \sigma^2)$, find $Var\xi$.

Solution.

Assume that $\xi \sim N(a, \sigma^2)$, find $Var\xi$.

Solution. Recall $E\xi = a$. We have

$$Var\xi = E(\xi - a)^{2}$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x - a)^{2} e^{-\frac{(x - a)^{2}}{2\sigma^{2}}} dx$$

Assume that $\xi \sim N(a, \sigma^2)$, find $Var\xi$.

Solution. Recall $E\xi = a$. We have

$$Var\xi = E(\xi - a)^{2}$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x - a)^{2} e^{-\frac{(x - a)^{2}}{2\sigma^{2}}} dx$$

$$= \frac{\sigma^{2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z^{2} e^{-\frac{z^{2}}{2}} dz = \frac{\sigma^{2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z d\left[-e^{-\frac{z^{2}}{2}}\right]$$

Assume that $\xi \sim N(a, \sigma^2)$, find $Var\xi$.

Solution. Recall $E\xi = a$. We have

$$Var\xi = E(\xi - a)^{2}$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x - a)^{2} e^{-\frac{(x - a)^{2}}{2\sigma^{2}}} dx$$

$$= \frac{\sigma^{2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z^{2} e^{-\frac{z^{2}}{2}} dz = \frac{\sigma^{2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z d\left[-e^{-\frac{z^{2}}{2}}\right]$$

$$= \frac{\sigma^{2}}{\sqrt{2\pi}} (-ze^{-\frac{z^{2}}{2}}|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} e^{-\frac{z^{2}}{2}} dz) = \sigma^{2}.$$

3.2.1 Variances

Chebyshev's inequality. For any $\varepsilon > 0$,

$$P(|\xi - E\xi| \ge \varepsilon) \le \frac{Var\xi}{\varepsilon^2}.$$

Proof.

Chebyshev's inequality. For any $\varepsilon > 0$,

$$P(|\xi - E\xi| \ge \varepsilon) \le \frac{Var\xi}{\varepsilon^2}.$$

Proof.Let

3.2.1 Variances

$$\eta = \begin{cases} 1, & \text{if } |\xi - E\xi| \ge \varepsilon, \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$\eta \le \frac{|\xi - E\xi|^2}{\epsilon^2}.$$

Chebyshev's inequality. For any $\varepsilon > 0$,

$$P(|\xi - E\xi| \ge \varepsilon) \le \frac{Var\xi}{\varepsilon^2}.$$

Proof.Let

$$\eta = \begin{cases} 1, & \text{if } |\xi - E\xi| \ge \varepsilon, \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$\eta \le \frac{|\xi - E\xi|^2}{\epsilon^2}.$$

So

$$P(|\xi - E\xi| \ge \varepsilon) = E\eta \le E \frac{|\xi - E\xi|^2}{\epsilon^2} = \frac{Var\xi}{\varepsilon^2}.$$

Pafnuty Lvovich Chebyshev (May 1821 – December 1894)

3.2.1 Variances

A refinement: Let $\sigma^2 = Var(\xi)$. For any $\varepsilon > 0$,

$$P(\xi - E\xi \ge \varepsilon) \le \frac{\sigma^2}{\sigma^2 + \varepsilon^2}.$$

A refinement: Let $\sigma^2 = Var(\xi)$. For any $\varepsilon > 0$,

$$P(\xi - E\xi \ge \varepsilon) \le \frac{\sigma^2}{\sigma^2 + \varepsilon^2}.$$

For any a > 0,

$$P(\xi - E\xi \ge \varepsilon) = P(\xi - E\xi + a \ge \varepsilon + a) \le \frac{E(\xi - E\xi + a)^2}{(\epsilon + a)^2}$$
$$= \frac{E(\xi - E\xi)^2 + 2aE(\xi - E\xi) + a^2}{(\epsilon + a)^2} = \frac{\sigma^2 + a^2}{(\epsilon + a)^2}.$$

The results follows by letting $a = \sigma^2/\epsilon$.

3.2.1 Variances

Properties of variances:

Properties of variances:

3.2.1 Variances

•
$$Var\xi = 0$$
 iff $P(\xi = c) = 1$.

•
$$Var\xi = 0$$
 iff $P(\xi = c) = 1$.

Proof. "
$$\Leftarrow$$
": Notice $E\xi = c$. So $P(\xi - E\xi = 0) = 1$. It follows that

$$Var(\xi) = E(\xi - E\xi)^2 = 0 * P(\xi - E\xi = 0) = 0.$$

•
$$Var\xi = 0$$
 iff $P(\xi = c) = 1$.

Proof. " \Leftarrow ": Notice $E\xi = c$. So $P(\xi - E\xi = 0) = 1$. It follows that

$$Var(\xi) = E(\xi - E\xi)^2 = 0 * P(\xi - E\xi = 0) = 0.$$

" \Rightarrow " For any $\epsilon > 0$,

$$P(|\xi - E\xi| \ge \epsilon) \le \frac{Var(\xi)}{\epsilon^2} = 0.$$

•
$$Var\xi = 0$$
 iff $P(\xi = c) = 1$.

Proof. " \Leftarrow ": Notice $E\xi = c$. So $P(\xi - E\xi = 0) = 1$. It follows that

$$Var(\xi) = E(\xi - E\xi)^2 = 0 * P(\xi - E\xi = 0) = 0.$$

" \Rightarrow " For any $\epsilon > 0$,

$$P(|\xi - E\xi| \ge \epsilon) \le \frac{Var(\xi)}{\epsilon^2} = 0.$$

Thus

$$P(\xi = E\xi) = 1 - P(|\xi - E\xi| > 0)$$

•
$$Var\xi = 0$$
 iff $P(\xi = c) = 1$.

Proof. " \Leftarrow ": Notice $E\xi = c$. So $P(\xi - E\xi = 0) = 1$. It follows that

$$Var(\xi) = E(\xi - E\xi)^2 = 0 * P(\xi - E\xi = 0) = 0.$$

" \Rightarrow " For any $\epsilon > 0$,

$$P(|\xi - E\xi| \ge \epsilon) \le \frac{Var(\xi)}{\epsilon^2} = 0.$$

Thus

$$P(\xi = E\xi) = 1 - P(|\xi - E\xi| > 0)$$
$$= 1 - \lim_{n \to \infty} P(|\xi - E\xi| \ge \frac{1}{n}) = 1.$$

$$Var(c\xi + b) = E(c\xi + b - E(c\xi + b))^{2}$$

$$Var(c\xi + b) = E(c\xi + b - E(c\xi + b))^{2}$$
$$= E[c^{2}(\xi - E\xi)^{2}]$$

$$Var(c\xi + b) = E(c\xi + b - E(c\xi + b))^{2}$$
$$= E[c^{2}(\xi - E\xi)^{2}]$$
$$= c^{2}Var\xi.$$

If $c \neq E\xi$, then $Var\xi < E(\xi - c)^2$.

If $c \neq E\xi$, then $Var\xi < E(\xi - c)^2$.

$$E(\xi - c)^{2}$$

$$= E[((\xi - E\xi) + (E\xi - c))^{2}]$$

$$= E[(\xi - E\xi)^{2} + 2(E\xi - c)(\xi - E\xi) + (E\xi - c)^{2}]$$

If $c \neq E\xi$, then $Var\xi < E(\xi - c)^2$.

$$E(\xi - c)^{2}$$

$$= E[((\xi - E\xi) + (E\xi - c))^{2}]$$

$$= E[(\xi - E\xi)^{2} + 2(E\xi - c)(\xi - E\xi) + (E\xi - c)^{2}]$$

$$= Var(\xi) + 2(E\xi - c)E[\xi - E\xi] + (E\xi - c)^{2}$$

$$= Var\xi + (E\xi - c)^{2} \ge Var\xi.$$

$$Var(\sum_{i=1}^{n} \xi_i) = \sum_{i=1}^{n} Var\xi_i + 2 \sum_{1 \le i < j \le n} E(\xi_i - E\xi_i)(\xi_j - E\xi_j).$$

If ξ_1, \dots, ξ_n are pairwise independent, then

$$Var(\sum_{i=1}^{n} \xi_i) = \sum_{i=1}^{n} Var\xi_i.$$

$$Var(\sum_{i=1}^{n} \xi_i) = E(\sum_{i=1}^{n} \xi_i - E\sum_{i=1}^{n} \xi_i)^2$$

$$Var(\sum_{i=1}^{n} \xi_{i}) = E(\sum_{i=1}^{n} \xi_{i} - E\sum_{i=1}^{n} \xi_{i})^{2}$$

$$= E(\sum_{i=1}^{n} (\xi_{i} - E\xi_{i}))^{2}$$

$$Var(\sum_{i=1}^{n} \xi_{i}) = E(\sum_{i=1}^{n} \xi_{i} - E\sum_{i=1}^{n} \xi_{i})^{2}$$

$$= E(\sum_{i=1}^{n} (\xi_{i} - E\xi_{i}))^{2}$$

$$= E[\sum_{i=1}^{n} (\xi_{i} - E\xi_{i})^{2} + 2\sum_{1 \leq i < j \leq n} (\xi_{i} - E\xi_{i})(\xi_{j} - E\xi_{j})]$$

$$= \sum_{i=1}^{n} Var\xi_{i} + 2\sum_{1 \leq i < j \leq n} E(\xi_{i} - E\xi_{i})(\xi_{j} - E\xi_{j}).$$

Summary:

3.2.1 Variances

- $Var\xi = 0$ iff $P(\xi = c) = 1$.
- If $c \neq E\xi$, then $Var\xi < E(\xi c)^2$.

4

$$Var(\sum_{i=1}^{n} \xi_i) = \sum_{i=1}^{n} Var\xi_i + 2 \sum_{1 \le i < j \le n} E(\xi_i - E\xi_i)(\xi_j - E\xi_j).$$

If ξ_1, \dots, ξ_n are pairwise independent, then

$$Var(\sum_{i=1}^{n} \xi_i) = \sum_{i=1}^{n} Var\xi_i.$$

Assume that $\xi \sim B(n, p)$, find $Var\xi$.

Solution.

Assume that $\xi \sim B(n, p)$, find $Var\xi$.

Solution. Write $\xi = \xi_1 + \cdots + \xi_n$, where ξ_1, \cdots, ξ_n i.i.d. $\sim B(1, p)$.

Assume that $\xi \sim B(n, p)$, find $Var\xi$.

Solution. Write $\xi = \xi_1 + \cdots + \xi_n$, where ξ_1, \cdots, ξ_n i.i.d. $\sim B(1, p)$. Then

$$Var\xi = \sum_{i=1}^{n} Var\xi_i = npq.$$

Suppose that ξ_1, \dots, ξ_n are independent identically distributed random variables, and $E\xi_i = a, Var\xi_i = \sigma^2$. Let $\bar{\xi} = \sum_{i=1}^n \xi_i/n$, find $E\bar{\xi}$ and $Var\bar{\xi}$.

Suppose that ξ_1, \dots, ξ_n are independent identically distributed random variables, and $E\xi_i = a, Var\xi_i = \sigma^2$. Let $\bar{\xi} = \sum_{i=1}^n \xi_i/n$, find $E\bar{\xi}$ and $Var\bar{\xi}$.

Solution.

$$E\bar{\xi} = \frac{1}{n} \sum_{i=1}^{n} E\xi_i = a;$$

Suppose that ξ_1, \dots, ξ_n are independent identically distributed random variables, and $E\xi_i = a, Var\xi_i = \sigma^2$. Let $\bar{\xi} = \sum_{i=1}^n \xi_i/n$, find $E\bar{\xi}$ and $Var\bar{\xi}$.

Solution.

$$E\bar{\xi} = \frac{1}{n} \sum_{i=1}^{n} E\xi_i = a;$$

$$Var\bar{\xi} = \frac{1}{n^2} \sum_{i=1}^{n} Var\xi_i = \frac{\sigma^2}{n}.$$

Suppose that the random variable ξ has finite expectation and positive variance. Let

$$\xi^* = \frac{\xi - E\xi}{\sqrt{Var\xi}}.$$

We call ξ^* the standardized random variable of ξ . Find $E\xi^*$ and $Var\xi^*$.

Solution.

$$E\xi^* = \frac{E\xi - E\xi}{\sqrt{Var\xi}} = 0,$$

Solution.

$$E\xi^* = \frac{E\xi - E\xi}{\sqrt{Var\xi}} = 0, \ Var(\xi^*) = \frac{Var(\xi)}{Var(\xi)} = 1.$$

3.2.2 Covariances

For random vectors, say, $(\xi_1, \xi_2, \dots, \xi_n)'$, besides expectation and variance of each coordinate, there is another numerical characteristic, called covariance, which expresses the connection between coordinate random variables.

Definition

Let $F_{ij}(x,y)$ be the joint distribution of ξ_i and ξ_j . If $E|(\xi_i - E\xi_i)(\xi_j - E\xi_j)| < \infty$, we call

$$E(\xi_i - E\xi_i)(\xi_j - E\xi_j)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - E\xi_i)(y - E\xi_j) dF_{ij}(x, y)$$

the covariance of ξ_i and ξ_j , written as $Cov(\xi_i, \xi_j)$.

Definition

Let $F_{ij}(x,y)$ be the joint distribution of ξ_i and ξ_j . If $E|(\xi_i - E\xi_i)(\xi_i - E\xi_i)| < \infty$, we call

$$E(\xi_i - E\xi_i)(\xi_j - E\xi_j)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - E\xi_i)(y - E\xi_j) dF_{ij}(x, y)$$

the covariance of ξ_i and ξ_j , written as $Cov(\xi_i, \xi_j)$.

$$Cov(\xi_i, \xi_j) = E(\xi_i - E\xi_i)(\xi_j - E\xi_j) = E\xi_i\xi_j - E\xi_iE\xi_j.$$

$$Cov(\xi_i, \xi_i) = Var\xi_i.$$

$$Var\left(\sum_{i=1}^{n} \xi_i\right) = \sum_{i=1}^{n} Var\xi_i + 2\sum_{1 \le i < j \le n} Cov(\xi_i, \xi_j).$$

- ② Assume that a, b are constants, then

$$Cov(a\xi, b\eta) = abCov(\xi, \eta);$$

- ② Assume that a, b are constants, then

$$Cov(a\xi, b\eta) = abCov(\xi, \eta);$$

3
$$Cov(\sum_{i=1}^{n} \xi_i, \eta) = \sum_{i=1}^{n} Cov(\xi_i, \eta).$$

Given an n-dimensional random vector $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)'$, one can write its covariance matrix as

$$B = Var(\xi) := E(\xi - E\xi)(\xi - E\xi)'$$

$$= \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix},$$

where $b_{ij} = Cov(\xi_i, \xi_j)$.

From Property 1 it follows that B is a symmetric matrix and for any real numbers $t_i, j = 1, 2, \dots, n$,

$$\sum_{j,k} b_{jk} t_j t_k = \sum_{j,k} t_j t_k E(\xi_j - E\xi_j) (\xi_k - E\xi_k)$$
$$= E(\sum_{j=1}^n t_j (\xi_j - E\xi_j))^2 \ge 0,$$

that is, the covariance matrix B is non-negative definite.

Let

$$\xi = (\xi_1, \xi_2, \cdots, \xi_n)',
C = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ C_{m1} & C_{m2} & \cdots & C_{mn} \end{pmatrix},$$

then $C\xi$ has covariance matrix CBC', where B is covariance matrix of ξ .

$$E\left[C(\boldsymbol{\xi} - E\boldsymbol{\xi})(C(\boldsymbol{\xi} - E\boldsymbol{\xi}))'\right]$$

$$E[C(\boldsymbol{\xi} - E\boldsymbol{\xi})(C(\boldsymbol{\xi} - E\boldsymbol{\xi}))']$$

$$= E[C(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$E[C(\boldsymbol{\xi} - E\boldsymbol{\xi})(C(\boldsymbol{\xi} - E\boldsymbol{\xi}))']$$

$$= E[C(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$= E[C(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$E [C(\boldsymbol{\xi} - E\boldsymbol{\xi})(C(\boldsymbol{\xi} - E\boldsymbol{\xi}))']$$

$$= E [C(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$= E [C(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$= CE [(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$E [C(\boldsymbol{\xi} - E\boldsymbol{\xi})(C(\boldsymbol{\xi} - E\boldsymbol{\xi}))']$$

$$= E [C(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$= E [C(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$= CE [(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$= CE [(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})']C'$$

$$E [C(\boldsymbol{\xi} - E\boldsymbol{\xi})(C(\boldsymbol{\xi} - E\boldsymbol{\xi}))']$$

$$= E [C(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$= E [C(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$= CE [(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$= CE [(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})']C'$$

$$= CBC'.$$

$$E [C(\boldsymbol{\xi} - E\boldsymbol{\xi})(C(\boldsymbol{\xi} - E\boldsymbol{\xi}))']$$

$$= E [C(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$= E [C(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$= CE [(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})'C']$$

$$= CE [(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})']C'$$

$$= CBC'.$$

Hence the (i, j)-th entry in CBC' is just the covariance of the i-th entry and the j-th entry in $C\xi$.

3.2.2 Covariances

• If
$$\pmb{\xi}=(\xi_1,\cdots,\xi_n)'\sim N(\pmb{\mu},\pmb{\Sigma})$$
, then
$$E\pmb{\xi}=\pmb{\mu},\quad Var(\pmb{\xi})=\pmb{\Sigma}.$$

$$lacktriangledown$$
 If $oldsymbol{\xi}=(\xi_1,\cdots,\xi_n)'\sim N(oldsymbol{\mu},oldsymbol{\Sigma})$, then

$$E\boldsymbol{\xi} = \boldsymbol{\mu}, \quad Var(\boldsymbol{\xi}) = \boldsymbol{\Sigma}.$$

Proof. First, consider the special case that $\mu = 0$ and $\Sigma = I_{n \times n}$. In this case, the pdf of ξ is

$$p(\mathbf{y}) = \frac{1}{(2\pi)^{n/2}} \exp\{-\frac{1}{2}\mathbf{y}'\mathbf{y}\} = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\{-\frac{y_i^2}{2}\},$$

• If
$$\boldsymbol{\xi} = (\xi_1, \cdots, \xi_n)' \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
, then

$$E\boldsymbol{\xi} = \boldsymbol{\mu}, \quad Var(\boldsymbol{\xi}) = \boldsymbol{\Sigma}.$$

Proof. First, consider the special case that $\mu = 0$ and $\Sigma = I_{n \times n}$. In this case, the pdf of $\boldsymbol{\xi}$ is

$$p(\mathbf{y}) = \frac{1}{(2\pi)^{n/2}} \exp\{-\frac{1}{2}\mathbf{y}'\mathbf{y}\} = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\{-\frac{y_i^2}{2}\},$$

which means that ξ_1, \cdots, ξ_n are i.i.d. N(0,1) random variables. Hence

$$E\boldsymbol{\xi} = \boldsymbol{0}, \quad Var(\boldsymbol{\xi}) = \boldsymbol{I}_{n \times n}.$$

Now consider the general case. Since Σ is positive definite, there is a non-singular matrix $\boldsymbol{L}=\Sigma^{1/2}$ such that $\Sigma=\boldsymbol{L}\boldsymbol{L}'$. Let $\boldsymbol{\eta}=\boldsymbol{L}^{-1}(\boldsymbol{\xi}-\boldsymbol{\mu})$ and notice $|\boldsymbol{L}|=|\Sigma|^{1/2}$. Then $\boldsymbol{\xi}=\boldsymbol{L}\boldsymbol{\eta}+\boldsymbol{\mu}$, and the density of $\boldsymbol{\eta}$ is

$$p_{\eta}(\boldsymbol{y}) = p(\boldsymbol{x})|\boldsymbol{L}| \qquad (\boldsymbol{x} = \boldsymbol{L}\boldsymbol{y} + \boldsymbol{\mu})$$

Now consider the general case. Since Σ is positive definite, there is a non-singular matrix $\boldsymbol{L}=\Sigma^{1/2}$ such that $\Sigma=\boldsymbol{L}\boldsymbol{L}'$. Let $\boldsymbol{\eta}=\boldsymbol{L}^{-1}(\boldsymbol{\xi}-\boldsymbol{\mu})$ and notice $|\boldsymbol{L}|=|\Sigma|^{1/2}$. Then $\boldsymbol{\xi}=\boldsymbol{L}\boldsymbol{\eta}+\boldsymbol{\mu}$, and the density of $\boldsymbol{\eta}$ is

$$p_{\eta}(\boldsymbol{y}) = p(\boldsymbol{x})|\boldsymbol{L}| \qquad (\boldsymbol{x} = \boldsymbol{L}\boldsymbol{y} + \boldsymbol{\mu})$$

$$= \frac{1}{(2\pi)^{n/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\}|\boldsymbol{L}|$$

$$= \frac{1}{(2\pi)^{n/2}} \exp\{-\frac{1}{2}\boldsymbol{y}'\boldsymbol{y}\},$$

Now consider the general case. Since Σ is positive definite, there is a non-singular matrix $\boldsymbol{L}=\Sigma^{1/2}$ such that $\Sigma=\boldsymbol{L}\boldsymbol{L}'$. Let $\boldsymbol{\eta}=\boldsymbol{L}^{-1}(\boldsymbol{\xi}-\boldsymbol{\mu})$ and notice $|\boldsymbol{L}|=|\Sigma|^{1/2}$. Then $\boldsymbol{\xi}=\boldsymbol{L}\boldsymbol{\eta}+\boldsymbol{\mu}$, and the density of $\boldsymbol{\eta}$ is

$$p_{\eta}(\boldsymbol{y}) = p(\boldsymbol{x})|\boldsymbol{L}| \qquad (\boldsymbol{x} = \boldsymbol{L}\boldsymbol{y} + \boldsymbol{\mu})$$

$$= \frac{1}{(2\pi)^{n/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\}|\boldsymbol{L}|$$

$$= \frac{1}{(2\pi)^{n/2}} \exp\{-\frac{1}{2}\boldsymbol{y}'\boldsymbol{y}\},$$

which means that $\eta \sim N(\mathbf{0}, \mathbf{I}_{n \times n})$. So, $E \eta = \mathbf{0}$ and $Var(\eta) = \mathbf{I}$.

3.2.2 Covariances

$$E\boldsymbol{\xi} = \boldsymbol{L}E\boldsymbol{\eta} + \boldsymbol{\mu} = \boldsymbol{\mu}.$$

$$E\boldsymbol{\xi} = \boldsymbol{L}E\boldsymbol{\eta} + \boldsymbol{\mu} = \boldsymbol{\mu}.$$

$$Var(\boldsymbol{\xi}) = E[(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})']$$
$$= E[\boldsymbol{L}\boldsymbol{\eta}\boldsymbol{\eta}'\boldsymbol{L}']$$

$$E\boldsymbol{\xi} = \boldsymbol{L}E\boldsymbol{\eta} + \boldsymbol{\mu} = \boldsymbol{\mu}.$$

$$Var(\boldsymbol{\xi}) = E[(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})']$$
$$= E[\boldsymbol{L}\boldsymbol{\eta}\boldsymbol{\eta}'\boldsymbol{L}']$$
$$= \boldsymbol{L}E[\boldsymbol{\eta}\boldsymbol{\eta}'\boldsymbol{L}']$$

$$E\boldsymbol{\xi} = \boldsymbol{L}E\boldsymbol{\eta} + \boldsymbol{\mu} = \boldsymbol{\mu}.$$

$$Var(\boldsymbol{\xi}) = E[(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})']$$
$$= E[\boldsymbol{L}\boldsymbol{\eta}\boldsymbol{\eta}'\boldsymbol{L}']$$
$$= \boldsymbol{L}E[\boldsymbol{\eta}\boldsymbol{\eta}'\boldsymbol{L}']$$
$$= \boldsymbol{L}E[\boldsymbol{\eta}\boldsymbol{\eta}']\boldsymbol{L}'$$

$$E\boldsymbol{\xi} = \boldsymbol{L}E\boldsymbol{\eta} + \boldsymbol{\mu} = \boldsymbol{\mu}.$$

$$Var(\boldsymbol{\xi}) = E[(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})']$$

$$= E[\boldsymbol{L}\boldsymbol{\eta}\boldsymbol{\eta}'\boldsymbol{L}']$$

$$= \boldsymbol{L}E[\boldsymbol{\eta}\boldsymbol{\eta}'\boldsymbol{L}']$$

$$= \boldsymbol{L}E[\boldsymbol{\eta}\boldsymbol{\eta}']\boldsymbol{L}'$$

$$= \boldsymbol{L}\boldsymbol{I}\boldsymbol{L}' = \boldsymbol{\Sigma}.$$

3.2.3 Correlation coefficients

3.2.3 Correlation coefficients

3.2.3 Correlation coefficients

Definition

We call

$$r_{\xi\eta} = Cov(\xi^*, \eta^*) = \frac{E(\xi - E\xi)(\eta - E\eta)}{\sqrt{Var\xi Var\eta}}$$

the correlation coefficient of ξ and η , where

$$\xi^* = \frac{\xi - E\xi}{\sqrt{Var\xi}},$$

$$\eta^* = \frac{\eta - E\eta}{\sqrt{Var\eta}}.$$

Theorem

Cauchy-Schwarz's inequality. For any pair of random variables ξ and $0 < E\xi^2, E\eta^2 < \infty$, it holds that

$$|E\xi\eta|^2 \le E\xi^2 E\eta^2.$$

and the equality is valid if and only if there is a constant t_0 such that

$$P(\eta = t_0 \xi) = 1.$$

Proof. Define

3.2.3 Correlation coefficients

$$u(t) = E(t\xi - \eta)^2 = t^2 E \xi^2 - 2t E \xi \eta + E \eta^2.$$

Proof. Define

$$u(t) = E(t\xi - \eta)^{2} = t^{2}E\xi^{2} - 2tE\xi\eta + E\eta^{2}.$$

This can be viewed as a non-negative quadratic in t, so its discriminant is

$$(E\xi\eta)^2 - E\xi^2 E\eta^2 \le 0.$$

Proof. Define

$$u(t) = E(t\xi - \eta)^2 = t^2 E \xi^2 - 2t E \xi \eta + E \eta^2.$$

This can be viewed as a non-negative quadratic in t, so its discriminant is

$$(E\xi\eta)^2 - E\xi^2 E\eta^2 \le 0.$$

The equality is valid iff u(t) has a multi-root $t_0 = E\xi\eta/E\xi^2$. In other words,

$$u(t_0) = E(t_0 \xi - \eta)^2 = 0,$$

which implies $P(t_0\xi - \eta = 0) = 1$.

• Let $r_{\xi\eta}$ be the correlation coefficient, then

$$|r_{\xi\eta}| \leq 1.$$

Also, $r_{\xi\eta}=1$ if and only if

$$P(\frac{\xi - E\xi}{\sqrt{Var\xi}} = \frac{\eta - E\eta}{\sqrt{Var\eta}}) = 1;$$

 $r_{\xi\eta}=-1$ if and only if

$$P(\frac{\xi - E\xi}{\sqrt{Var\xi}} = -\frac{\eta - E\eta}{\sqrt{Var\eta}}) = 1.$$

$$|r_{\xi\eta}| = |E\xi^*\eta^*|$$

$$|r_{\xi\eta}| = |E\xi^*\eta^*| \le \sqrt{E\xi^{*2}E\eta^{*2}}$$
$$= \sqrt{Var\xi^*Var\eta^*} = 1.$$

$$|r_{\xi\eta}| = |E\xi^*\eta^*| \le \sqrt{E\xi^{*2}E\eta^{*2}}$$
$$= \sqrt{Var\xi^*Var\eta^*} = 1.$$

Next let us turn to the second conclusion. By the definition of correlation coefficient, $r_{\xi\eta}=r_{\xi^*\eta^*}=E[\xi^*\eta^*].$

$$|r_{\xi\eta}| = |E\xi^*\eta^*| \le \sqrt{E\xi^{*2}E\eta^{*2}}$$
$$= \sqrt{Var\xi^*Var\eta^*} = 1.$$

Next let us turn to the second conclusion. By the definition of correlation coefficient, $r_{\xi\eta}=r_{\xi^*\eta^*}=E[\xi^*\eta^*]$. By the Cauchy-Schwarz's inequality, $|r_{\xi\eta}|=1$ if and only if there exists t_0 such that $P(\eta^*=t_0\xi^*)=1$.

It follows that

$$r_{\xi\eta} = E[\xi^*\eta^*] = E[t_0(\xi^*)^2] = t_0 Var\xi^* = t_0.$$

It follows that

$$r_{\xi\eta} = E[\xi^*\eta^*] = E[t_0(\xi^*)^2] = t_0 Var\xi^* = t_0.$$

Therefore
$$r_{\xi\eta}=1$$
 iff $P(\xi^*=\eta^*)=1$, while $r_{\xi\eta}=-1$ iff $P(\xi^*=-\eta^*)=1$.

When $r_{\xi\eta}=0$, we say ξ and η are uncorrelated.

When $r_{\xi\eta}=0$, we say ξ and η are uncorrelated.

- The following statements are equivalent
 - $Cov(\xi, \eta) = 0;$
 - \bullet ξ and η are uncorrelated;

Proof?

When $r_{\xi\eta}=0$, we say ξ and η are uncorrelated.

- The following statements are equivalent
 - **o** $Cov(\xi, \eta) = 0;$
 - $oldsymbol{0}$ ξ and η are uncorrelated;

Proof?

• If ξ and η are independent and their variances are finite, then ξ and η are uncorrelated. proof. trivial

3.2 Variances, Covariances and Correlation coefficients
3.2.3 Correlation coefficients

independence $\not=$ uncorrelation

Example

$$\theta \sim [0, 2\pi]$$
. Let $\xi = \cos \theta$, $\eta = \sin \theta$. Since $\xi^2 + \eta^2 = 1$, ξ , η are not indept.. However ξ , η are uncorrelated.

Indeed.

$$E\xi = E\cos\theta = \int_0^{2\pi} \frac{1}{2\pi}\cos\varphi d\varphi = 0,$$

Indeed,

$$E\xi = E\cos\theta = \int_0^{2\pi} \frac{1}{2\pi} \cos\varphi d\varphi = 0,$$

$$E\eta = E\sin\theta = \int_0^{2\pi} \frac{1}{2\pi} \sin\varphi d\varphi = 0,$$

Indeed.

$$E\xi = E\cos\theta = \int_0^{2\pi} \frac{1}{2\pi} \cos\varphi d\varphi = 0,$$

$$E\eta = E\sin\theta = \int_0^{2\pi} \frac{1}{2\pi} \sin\varphi d\varphi = 0,$$

$$E\xi\eta = E\sin\theta\cos\theta = \int_0^{2\pi} \frac{1}{2\pi} \sin\varphi\cos\varphi d\varphi = 0$$

Thus
$$Cov(\xi, \eta) = E\xi\eta - E\xi E\eta = 0.$$

In the case of normal distribution,

independence ⇔ uncorrelation

In the case of normal distribution.

independence ⇔ uncorrelation

Example

Assume that $\xi, \eta \sim N(a, b, \sigma_1^2, \sigma_2^2, r)$, find $Cov(\xi, \eta)$ and $r_{\xi, \eta}$.

3.2 Variances, Covariances and Correlation coefficients
3.2.3 Correlation coefficients

Solution (1).

$$Cov(\xi,\eta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x-a)(y-b)p(x,y)dxdy$$

3.2.3 Correlation coefficients Solution (1).

$$Cov(\xi, \eta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - a)(y - b)p(x, y)dxdy$$

$$= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - r^2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - a)(y - b)$$

$$\cdot \exp(-\frac{1}{2(1 - r^2)} (\frac{x - a}{\sigma_1} - r\frac{y - b}{\sigma_2})^2 - \frac{(y - b)^2}{2\sigma_2^2})dxdy.$$

Let

$$z = \frac{x-a}{\sigma_1} - r\frac{y-b}{\sigma_2}, \quad t = \frac{y-b}{\sigma_2},$$

then

$$\frac{x-a}{\sigma_1} = z + rt, \qquad J = \frac{\partial(x,y)}{\partial(z,t)} = \sigma_1 \sigma_2.$$

Thus we have

$$Cov(\xi, \eta) = \frac{\sigma_1 \sigma_2}{2\pi\sqrt{1 - r^2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (zt + rt^2) e^{-\frac{z^2}{2(1 - r^2)}} e^{-\frac{t^2}{2}} dz dt$$

3.2.3 Correlation coefficients Thus we have

$$Cov(\xi, \eta) = \frac{\sigma_1 \sigma_2}{2\pi \sqrt{1 - r^2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (zt + rt^2) e^{-\frac{z^2}{2(1 - r^2)}} e^{-\frac{t^2}{2}} dz dt$$

$$= \sigma_1 \sigma_2 \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t e^{-\frac{t^2}{2}} dt \frac{1}{\sqrt{2\pi} \sqrt{1 - r^2}} \int_{-\infty}^{\infty} z e^{-\frac{z^2}{2(1 - r^2)}} dz$$

$$+ \frac{r \sigma_1 \sigma_2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t^2 e^{-\frac{t^2}{2}} dt \frac{1}{\sqrt{2\pi} \sqrt{1 - r^2}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2(1 - r^2)}} dz$$

3.2.3 Correlation coefficients Thus we have

$$Cov(\xi, \eta) = \frac{\sigma_1 \sigma_2}{2\pi \sqrt{1 - r^2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (zt + rt^2) e^{-\frac{z^2}{2(1 - r^2)}} e^{-\frac{t^2}{2}} dz dt$$

$$= \sigma_1 \sigma_2 \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t e^{-\frac{t^2}{2}} dt \frac{1}{\sqrt{2\pi} \sqrt{1 - r^2}} \int_{-\infty}^{\infty} z e^{-\frac{z^2}{2(1 - r^2)}} dz$$

$$+ \frac{r \sigma_1 \sigma_2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t^2 e^{-\frac{t^2}{2}} dt \frac{1}{\sqrt{2\pi} \sqrt{1 - r^2}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2(1 - r^2)}} dz$$

$$= r \sigma_1 \sigma_2.$$

Thus we have

$$Cov(\xi, \eta) = \frac{\sigma_1 \sigma_2}{2\pi \sqrt{1 - r^2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (zt + rt^2) e^{-\frac{z^2}{2(1 - r^2)}} e^{-\frac{t^2}{2}} dz dt$$

$$= \sigma_1 \sigma_2 \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t e^{-\frac{t^2}{2}} dt \frac{1}{\sqrt{2\pi} \sqrt{1 - r^2}} \int_{-\infty}^{\infty} z e^{-\frac{z^2}{2(1 - r^2)}} dz$$

$$+ \frac{r \sigma_1 \sigma_2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t^2 e^{-\frac{t^2}{2}} dt \frac{1}{\sqrt{2\pi} \sqrt{1 - r^2}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2(1 - r^2)}} dz$$

$$= r \sigma_1 \sigma_2.$$

Therefore

$$r_{\xi\eta} = \frac{Cov(\xi,\eta)}{\sqrt{Var\xi Var\eta}} = r.$$

Solution (2). Notice

$$Cov(\xi, \eta) = E[(\xi - a)(\eta - b)] = E[E[(\xi - a)(\eta - b)|\xi]].$$

Solution (2). Notice

$$Cov(\xi, \eta) = E[(\xi - a)(\eta - b)] = E[E[(\xi - a)(\eta - b)|\xi]].$$

From

$$\eta|_{\xi=x} \sim N(b + r\frac{\sigma_2}{\sigma_1}(x-a), (1-r^2)\sigma_2^2),$$

it follows that

3.2.3 Correlation coefficients

$$E[(\xi - a)(\eta - b)|\xi = x] = (x - a)E[(\eta - b)|\xi = x]$$
$$= r\frac{\sigma_2}{\sigma_1}(x - a)^2.$$

Hence

$$E[(\xi - a)(\eta - b)|\xi] = r \frac{\sigma_2}{\sigma_1}(\xi - a)^2.$$

So

$$Cov(\xi, \eta) = E\left[r\frac{\sigma_2}{\sigma_1}(\xi - a)^2\right]$$

So

$$Cov(\xi, \eta) = E\left[r\frac{\sigma_2}{\sigma_1}(\xi - a)^2\right]$$

= $r\frac{\sigma_2}{\sigma_1}E(\xi - a)^2$

So

$$Cov(\xi, \eta) = E\left[r\frac{\sigma_2}{\sigma_1}(\xi - a)^2\right]$$

= $r\frac{\sigma_2}{\sigma_1}E(\xi - a)^2 = r\sigma_1\sigma_2$.

So

$$Cov(\xi, \eta) = E\left[r\frac{\sigma_2}{\sigma_1}(\xi - a)^2\right]$$

= $r\frac{\sigma_2}{\sigma_1}E(\xi - a)^2 = r\sigma_1\sigma_2$.

Therefore $r_{\xi\eta}=r$.

Solution (3). $(\xi, \eta)' \sim N(\mu, \Sigma)$ with

$$\boldsymbol{\mu} = (a,b)', \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & r\sigma_1\sigma_2 \\ r\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}.$$

By Property 5,

$$Var\{(\xi,\eta)'\} = \Sigma,$$

i.e., $Var\xi = \sigma_1^2$, $Var\eta = \sigma_2^2$, $Cov(\xi, \eta) = r\sigma_1\sigma_2$. It follows that

$$r_{\xi\eta} = \frac{Cov(\xi,\eta)}{\sqrt{Var\xi Var\eta}} = r.$$

If (ξ, η) follows a normal distribution, then

$$\xi, \eta$$
 are uncorrelated

$$\Leftrightarrow r_{\xi\eta} = 0$$

$$\Leftrightarrow r = 0$$

$$\Leftrightarrow \xi, \eta$$
 are indept.

For a bivariate normal distribution the uncorrelated property is equivalent to the independence. In general, the random variables ξ_1, \dots, ξ_n with joint normal distribution are mutually independent iff they are pairwise uncorrelated.

Proof.

In general, the random variables ξ_1, \dots, ξ_n with joint normal distribution are mutually independent iff they are pairwise uncorrelated.

Proof. Assume
$$\boldsymbol{\xi} = (\xi_1, \cdots, \xi_n)' \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

In general, the random variables ξ_1, \dots, ξ_n with joint normal distribution are mutually independent iff they are pairwise uncorrelated.

Proof. Assume
$$\boldsymbol{\xi}=(\xi_1,\cdots,\xi_n)'\sim N(\boldsymbol{\mu},\boldsymbol{\Sigma})$$
. Then $Var(\boldsymbol{\xi})=\boldsymbol{\Sigma}$, i.e., $Cov(\xi_i,\xi_j)=\sigma_{ij}$. So

3.2 Variances, Covariances and Correlation coefficients
3.2.3 Correlation coefficients

 ξ_1, \cdots, ξ_n are indept.

$$\xi_1, \cdots, \xi_n$$
 are indept.

$$\implies \xi_1, \cdots, \xi_n$$
 pairwise uncorrelated

$$\xi_1, \cdots, \xi_n$$
 are indept.

$$\implies \xi_1, \cdots, \xi_n$$
 pairwise uncorrelated

$$\implies \sigma_{i,j} = Cov(\xi_i, \xi_j) = 0, \ i \neq j$$

$$\xi_1, \cdots, \xi_n$$
 are indept.
 $\Longrightarrow \quad \xi_1, \cdots, \xi_n$ pairwise uncorrelated
 $\Longrightarrow \quad \sigma_{i,j} = Cov(\xi_i, \xi_j) = 0, \ i \neq j$
 $\Longrightarrow \quad \Sigma = diag(\sigma_1^2, \cdots, \sigma_n^2)$
 $\Longrightarrow \quad \Sigma^{-1} = diag(\frac{1}{\sigma_1^2}, \cdots, \frac{1}{\sigma_n^2})$

$$\xi_1,\cdots,\xi_n$$
 are indept. $\Longrightarrow \quad \xi_1,\cdots,\xi_n$ pairwise uncorrelated

$$\implies \sigma_{i,j} = Cov(\xi_i, \xi_j) = 0, \ i \neq j$$

$$\implies \Sigma = diag(\sigma_1^2, \dots, \sigma_n^2)$$

$$\implies \Sigma^{-1} = diag(\frac{1}{\sigma_i^2}, \dots, \frac{1}{\sigma_i^2})$$

$$\Rightarrow p(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2}\sigma_1 \cdots \sigma_n} \exp\left\{-\frac{1}{2} \sum_{i=1}^n \frac{(x_i - \mu_i)^2}{\sigma_i^2}\right\}$$
$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left\{-\frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right\}$$

$$\xi_1, \cdots, \xi_n$$
 are indept.

$$\implies \xi_1, \cdots, \xi_n$$
 pairwise uncorrelated

$$\implies \sigma_{i,j} = Cov(\xi_i, \xi_j) = 0, \ i \neq j$$

$$\Longrightarrow \Sigma = diag(\sigma_1^2, \cdots, \sigma_n^2)$$

$$\Longrightarrow \Sigma^{-1} = diag(\frac{1}{\sigma_1^2}, \cdots, \frac{1}{\sigma_n^2})$$

$$\implies p(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2}\sigma_1 \cdots \sigma_n} \exp\left\{-\frac{1}{2} \sum_{i=1}^n \frac{(x_i - \mu_i)^2}{\sigma_i^2}\right\}$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_i} \exp\{-\frac{(x_i - \mu_i)^2}{2\sigma_i^2}\}\$$

$$\implies \xi_1, \cdots, \xi_n \text{ are indept.}$$

3.2.4 Moments

• Origin moment of order k: $m_k = E\xi^k$. $E\xi = m_1$.

- Origin moment of order k: $m_k = E\xi^k$. $E\xi = m_1$.
- Center moment of order k: $c_k = E(\xi E\xi)^k$. $Var\xi = c_2$.

- Origin moment of order k: $m_k = E\xi^k$. $E\xi = m_1$.
- Center moment of order k: $c_k = E(\xi E\xi)^k$. $Var\xi = c_2$.
- Skewness:

$$\frac{c_3}{c_2^{3/2}} = E\left(\frac{\xi - E\xi}{\sqrt{Var(\xi)}}\right)^3.$$

- Origin moment of order k: $m_k = E\xi^k$. $E\xi = m_1$.
- Center moment of order k: $c_k = E(\xi E\xi)^k$. $Var\xi = c_2$.
- Skewness:

$$\frac{c_3}{c_2^{3/2}} = E\left(\frac{\xi - E\xi}{\sqrt{Var(\xi)}}\right)^3.$$

• kurtosis coefficient:

$$\frac{c_4}{c_2^2} - 3 = E\left(\frac{\xi - E\xi}{\sqrt{Var(\xi)}}\right)^4 - 3.$$

Example

$$\xi \sim N(0, \sigma^2)$$
, then $E\xi = 0$ and

$$m_n = c_n = E\xi^n$$

Example

$$\xi \sim N(0, \sigma^2)$$
, then $E\xi = 0$ and

$$m_n = c_n = E\xi^n = \sigma^n E\left(\frac{\xi}{\sigma}\right)^n = \sigma^n EN(0,1)^n,$$

Example

$$\xi \sim N(0, \sigma^2)$$
, then $E\xi = 0$ and

$$m_n = c_n = E\xi^n = \sigma^n E\left(\frac{\xi}{\sigma}\right)^n = \sigma^n E N(0, 1)^n,$$

$$EN(0, 1)^n = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^n e^{-\frac{x^2}{2}} dx$$

$$\xi \sim N(0, \sigma^2)$$
, then $E\xi = 0$ and

$$m_n = c_n = E\xi^n = \sigma^n E\left(\frac{\xi}{\sigma}\right)^n = \sigma^n E N(0, 1)^n,$$

$$EN(0, 1)^n = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^n e^{-\frac{x^2}{2}} dx = -\sigma^n \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{n-1} de^{-\frac{x^2}{2}}$$

$$\xi \sim N(0, \sigma^2)$$
, then $E\xi = 0$ and

$$m_n = c_n = E\xi^n = \sigma^n E\left(\frac{\xi}{\sigma}\right)^n = \sigma^n E N(0, 1)^n,$$

$$EN(0, 1)^n = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^n e^{-\frac{x^2}{2}} dx = -\sigma^n \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{n-1} de^{-\frac{x^2}{2}}$$

$$= \left[-\frac{1}{\sqrt{2\pi}} x^{n-1} e^{-\frac{x^2}{2}} \right]_{-\infty}^{\infty} + (n-1) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{n-2} e^{-\frac{x^2}{2}} dx \right]$$

$$\xi \sim N(0, \sigma^2)$$
, then $E\xi = 0$ and

$$m_{n} = c_{n} = E\xi^{n} = \sigma^{n} E\left(\frac{\xi}{\sigma}\right)^{n} = \sigma^{n} E N(0, 1)^{n},$$

$$EN(0, 1)^{n} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{n} e^{-\frac{x^{2}}{2}} dx = -\sigma^{n} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{n-1} de^{-\frac{x^{2}}{2}}$$

$$= \left[-\frac{1}{\sqrt{2\pi}} x^{n-1} e^{-\frac{x^{2}}{2}}\right]_{-\infty}^{\infty} + (n-1) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{n-2} e^{-\frac{x^{2}}{2}} dx\right]$$

$$= \begin{cases} 0, & n = 2k+1, \\ 1 \cdot 3 \cdots (n-1), & n = 2k. \end{cases}$$

In particular, $c_3=0$, $m_4=c_4=3\sigma^4$. Hence for an arbitrary σ , the normal distribution has 0 skewness and kurtosis.

We can use the origin moments to express the center moments:

$$c_k = E(\xi - m_1)^k = \sum_{r=0}^k (-1)^r \binom{k}{r} m_1^r m_{k-r}.$$

Conversely, we can also use center moments to express origin moments:

$$m_k = E(\xi - m_1 + m_1)^k = \sum_{r=0}^k {k \choose r} m_1^r c_{k-r}.$$

• Absolute moment of order α : $M_{\alpha} = E|\xi|^{\alpha}$, where α is a real number.

• Absolute moment of order α : $M_{\alpha} = E|\xi|^{\alpha}$, where α is a real number.

$$\xi \sim N(0,1)$$
:

• Absolute moment of order α : $M_{\alpha} = E|\xi|^{\alpha}$, where α is a real number.

$$\xi \sim N(0,1)$$
:

$$E|\xi|^n = \begin{cases} \sqrt{\frac{2}{\pi}} 2^k k!, & n = 2k+1, \\ 1 \cdot 3 \cdot \dots \cdot (n-1), & n = 2k. \end{cases}$$

$$E|\xi|^{\alpha} = E|N(0,1)|^{\alpha}$$

$$E|\xi|^{\alpha} = E|N(0,1)|^{\alpha}$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |x|^{\alpha} e^{-\frac{x^2}{2}} dx$$

$$E|\xi|^{\alpha} = E|N(0,1)|^{\alpha}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |x|^{\alpha} e^{-\frac{x^2}{2}} dx$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} x^{\alpha} e^{-\frac{x^2}{2}} dx$$

$$E|\xi|^{\alpha} = E|N(0,1)|^{\alpha}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |x|^{\alpha} e^{-\frac{x^{2}}{2}} dx$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} x^{\alpha} e^{-\frac{x^{2}}{2}} dx$$

$$y = \frac{x^{2}}{2} \sqrt{\frac{2}{\pi}} 2^{\frac{\alpha-1}{2}} \int_{0}^{\infty} y^{\frac{\alpha+1}{2}-1} e^{-y} dy$$

$$E|\xi|^{\alpha} = E|N(0,1)|^{\alpha}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |x|^{\alpha} e^{-\frac{x^{2}}{2}} dx$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} x^{\alpha} e^{-\frac{x^{2}}{2}} dx$$

$$y = x^{2}/2 \qquad \sqrt{\frac{2}{\pi}} 2^{\frac{\alpha-1}{2}} \int_{0}^{\infty} y^{\frac{\alpha+1}{2}-1} e^{-y} dy$$

$$= \sqrt{\frac{2}{\pi}} 2^{\frac{\alpha-1}{2}} \Gamma\left(\frac{\alpha+1}{2}\right).$$

If $\xi \sim E(\lambda)$, then we have for $k \geq 1$,

$$E\xi^k =$$

3.2.4 Moments

If $\xi \sim E(\lambda)$, then we have for $k \geq 1$,

$$E\xi^k = \int_0^\infty x^k \lambda e^{-\lambda x} dx =$$

If $\xi \sim E(\lambda)$, then we have for $k \geq 1$,

$$E\xi^k = \int_0^\infty x^k \lambda e^{-\lambda x} dx = \frac{k}{\lambda} E\xi^{k-1},$$

If $\xi \sim E(\lambda)$, then we have for $k \geq 1$,

$$E\xi^k = \int_0^\infty x^k \lambda e^{-\lambda x} dx = \frac{k}{\lambda} E\xi^{k-1},$$

from which we further recursively derive

$$E\xi^k = \frac{k!}{\lambda^k}.$$

Moment generating functions

For ξ , people usually define its moment generating function by

$$M_{\xi}(t) = Ee^{t\xi} = \int_{-\infty}^{\infty} e^{tx} dF_{\xi}(x), \quad t \in T$$

for some $T \subseteq \mathbf{R}$ provided that the required expected values exist.

If $\xi \sim N(\mu, \sigma^2)$, then

$$M_{\xi}(t) = Ee^{t\xi} = e^{\mu t + \frac{1}{2}\sigma^2 t^2}, \qquad t \in \mathbf{R}.$$

If $\xi \sim E(\lambda)$, then when $t < \lambda$,

$$M_{\xi}(t) = \frac{\lambda}{\lambda - t};$$

when $t \geq \lambda$, $M_{\xi}(t)$ does not exist.

• If ξ has $mgf M_{\xi}(t)$, then

$$E\xi^n = \frac{d^n}{dt^n} M_{\xi}(t) \Big|_{t=0};$$

• If ξ has $mgf M_{\xi}(t)$, then

$$E\xi^n = \frac{d^n}{dt^n} M_{\xi}(t) \Big|_{t=0};$$

Suppose ξ has $mgf\ M_{\xi}(t)$ and η has $mgf\ M_{\eta}(t)$. If $M_{\xi}(t)=M_{\eta}(t)$ for all t in some neighborhood of 0, then $F_{\xi}=F_{\eta}$;

• If ξ has $mgf M_{\xi}(t)$, then

$$E\xi^n = \frac{d^n}{dt^n} M_{\xi}(t) \Big|_{t=0};$$

- Suppose ξ has $mgf\ M_{\xi}(t)$ and η has $mgf\ M_{\eta}(t)$. If $M_{\xi}(t)=M_{\eta}(t)$ for all t in some neighborhood of 0, then $F_{\xi}=F_{\eta}$;
- If ξ has $mgf\ M_{\xi}(t)$, $t\in T_1$, η has $mgf\ M_{\eta}(t)$, $t\in T_2$, and ξ , η are independent, then

$$M_{\xi+\eta}(t) = M_{\xi}(t)M_{\eta}(t), \ t \in T_1 \cap T_2.$$

Moment generating function is an important tool in the study of random variables and distribution functions, but it does not necessarily exist for all t.