

TEST REPORT

				-
To:	HUANG BO TOYS FACTORY		To:	-
Attn:	Wei Huang Wang		Attn:	-
Address:	25 4 th Road, Dongguahu Industrial Area. Huaize, Lianx, Shantou, Guangdong Province, China	,	Address:	-
Fax:			Fax:	-
E-mail:			E-mail:	-
Folder No.:				
Factory name:				
Location:				
Product:			Control climb car b.: HB-P1001	
			Sample No:	(5217)116-1107
	and Control of the Co		Date of Receipt:	May 04, 2017
			Test date:	June 10, 2017
			Test Requested:	FCC Part 15 - 2015
			Test Method:	ANSI C63.10 - 2013
			FCC ID:	ZY3-HB-P1001-24
The results	given in this report are related to the te	sted sp	ecimen of the des	cribed electrical apparatus.
CONCLUSION:	The submitted sample was found to CO	OMPLY	with requirement	of FCC Part 15 Subpart C.
	Authorized	l Signat	ure:	
Vir			ais	
Reviewed by: Ki			ved by: Law Man kit	
Data: I.u 00 (l 00 0047	

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889

Date: June 22, 2017

www.cps.bureauveritas.com

This report is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. Our report is limited to the test samples identified herein. The results set forth in this report are not necessarily indicative or representative of the statistical quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof. You shall have thirty days from receipt of this report to request additional testing of the samples or to notify us of any errors or omissions relating to our report, provided, however, such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Date: June 22, 2017

Test Result Summary

EMISS	EMISSION TEST											
Test requirement: FCC Part 15 - 2015												
Test Condition	Test Method	Test	Result									
rest Condition	rest Method	Pass	Failed									
Radiated Emission Test,	ANSI C63.10											
9kHz to 24GHz												
Frequency range of Fundamental Emission	ANSI C63.10	\boxtimes										
26dB Bandwidth of Fundamental Emission	ANSI C63.10	\boxtimes										
Duty Cycle Correction During 100msec	ANSI C63.10											

Report Revision & Sample Re-submit History:

www.cps.bureauveritas.com

Location of the test laboratory

Radiated and Conducted emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.10 – 2013. An Open Area Test Site and Full Anechoic Chamber are set up for investigation and located at :

BUREAU VERITAS HONG KONG LIMITED, EMC CENTRE

No. 2106-2107, 21/F., Westin Centre, 26 Hung To Road, Kwun Tong, Kowloon, Hong Kong

List of measuring equipment

Radiated Emission

	Nadiated Emission											
EQUIPMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE	CAL. DUE DATE							
EMI TEST RECEIVER	R&S	ESCI	100379	22-FEB-2017	21-FEB-2018							
SIGNAL ANALYZER 40GHZ	R&S	FSV 40	100977	16-AUG-2016	15-AUG-2017							
BILOG ANTENNA	SCHAFFNER	CBL6112D	25229	27-FEB-2016	26-FEB-2018							
OPEN AREA TEST SITE	BVCPS	N/A	N/A	18-JUN-2016	17-JUN-2017							
ANECHOIC CHAMBER	ALBATROSS	M-CDC	80374004499B	10-MAY-2017	09-MAY-2018							
BICONICAL ANTENNA	R&S	HK116	100179	14-APR-2016	13-APR-2018							
LOG-PERIODIC DIPOLE ARRAY ANTENNA	R&S	HL223	832369/001	07-APR-2016	06-APR-2018							
LOOP ANTENNA	ETS-LINDGREN	6502	00102266	06-NOV-2015	05-NOV-2017							
HORN ANTENNA (1-18GHZ)	SCHWARZBECK	BBHA9120D	9120D-692	05-NOV-2016	04-NOV-2018							
HORN ANTENNA (7.5 – 18GHZ)	SCHWARZBECK	HWRD 750	00015	17-JUNE-2016	16-JUNE-2018							
WIDEBAND HORN ANTENNA	STEATITE	QWH-SL-18-40- K-SG	12688	03-SEP-2015	02-SEP-2017							
COAXIAL CABLE	SUHNER	N/A	N/A	06-JAN-2017	05-JAN-2018							
COAXIAL CABLE	HUBER + SUHNER	RG214	N/A	04-OCT-2016	03-OCT-2017							

Measurement Uncertainty

Micasarcincin	Officer turnity	
MEASUREMENT	FREQUENCY	UNCERTAINTY
	9kHz to 30MHz	4.2dB
	30MHz to 200MHz	4.5dB
Radiated emissions	200MHZ to 1GHz	5.6dB
	1GHz to 18GHz	4.7dB
	18GHz to 40GHz	5.2dB

Remarks:-

N/A: Not Applicable or Not Available

The measurement instrumentation uncertainty would be taking into consideration on each of the test result

Equipment Under Test [EUT] Description of Sample:

2.4G Radio Control climb car Model Name:

HB-P1001 Model Number:

Additional Model Name:

HB-P1002, HB-P1003 Additional Model Number:

Declare the Circuit, PCB layout, Electrical parts and Appearance Additional Model information:

of the products are identical to the basic model except the Color.

Rating: 4.5Vd.c. ("AA" size battery x 3)

Description of EUT Operation:

The Equipment Under Test (EUT) is a **HUANG BO TOYS FACTORY** of Remote Control Transceiver. It is 1 wheel, 1 trigger and 1 switch transceiver and operating at 2404MHz to 2480MHz. The lowest, middle and highest frequencies were tested and the results are shown in the report. The EUT transmit while corresponding remote controller sticks are being pushed or pulled, Modulation by IC, and type is GFSK.

There are total 77 channels and below is the frequency list:

2404	2405	2406	2407	2408	2409	2410	2411	2412	2413
2414	2415	2416	2417	2418	2419	2420	2421	2422	2423
2424	2425	2426	2427	2428	2429	2430	2431	2432	2433
2434	2435	2436	2437	2438	2439	2440	2441	2442	2443
2444	2445	2446	2447	2448	2449	2450	2451	2452	2453
2454	2455	2456	2457	2458	2459	2460	2461	2462	2463
2464	2465	2466	2467	2468	2469	2470	2471	2472	2473
2474	2475	2476	2477	2478	2479	2480			

The transmitter has different control:

- 1. Wheel control left and right
- 2. Trigger- control forward and backward
- 3. Switch On/Off control

Antenna Requirement (Section 15.203)

The EUT is use of a permanently antenna. It is soldered on the PCB. The antenna consists of 2.8cm long wire The antenna is not replaceable or user serviceable. The requirements of S15.203 are met. There are no deviations or exceptions to the specifications.

Photo of Antenna

Test Results

Radiated Emissions (Fundamental)

Test Requirement: FCC Part 15 Section 15.249

Test Method: ANSI C63.10
Test Date(s): 2017-06-10
Temperature: 31.0 °C
Humidity: 72.0 %

Atmospheric Pressure: 99.6 kPa

Mode of Operation: Transmission mode

Tested Voltage: 4.5Vd.c. ("AA" size battery x 3)

Test Procedure:

Radiated emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.10 - 2013.

The equipment under test (EUT) was placed on a non-conductive turntable with dimensions of 1.5m x 1m and 0.8m high above the ground for measurement frequency below 1GHz and 1.5m high above the ground for measurement frequency above 1GHz. 3m from the EUT, a broadband antenna mounting on the mast received the signal strength. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using new battery. The turntable was rotated to maximize the emission level. The antenna was then moving along the mast from 1m up to 4m until no more higher value was found. Both horizontal and vertical polarization of the antenna were placed and investigated.

For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.

Location: The Roof, Westin Centre, 26 Hung To Road, Kwun Tong, Kowloon, Hong Kong

Test Setup: Open Area Test Site

Limits for Field Strength of Fundamental Emissions IFCC 47CFR 15.2491:

Fraguency Bongo of	Field Ctrongth of	Field Ctronath of
Frequency Range of	Field Strength of	Field Strength of
Fundamental	Fundamental Emission	Harmonics Emission
	(Average)	(Average)
[MHz]	[mV/m]	[μV/m]
2400-2483.5	50	500

Measurement Data

Test Result of (Transmission mode, Lowest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2404.00	Н	-4.8	-17.8	90.7	114.0	-23.3	**72.9	94.0	-21.1
2404.00	V	-4.8	-17.8	90.5	114.0	-23.5	**72.7	94.0	-21.3

Test Result of (Transmission mode, Middle frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2440.00	Н	-4.8	-17.8	89.5	114.0	-24.5	**71.7	94.0	-22.3
2440.00	V	-4.8	-17.8	90.9	114.0	-23.1	**73.1	94.0	-20.9

Test Result of (Transmission mode, Highest frequency): PASS

root Roodit of (Transmission mode), riightoot modusiloy), i 7 koo										
Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)	
2480.00	Н	-4.8	-17.8	90.0	114.0	-24.0	**72.2	94.0	-21.8	
2480.00	V	-4.8	-17.8	91.9	114.0	-22.1	**74.1	94.0	-19.9	

[#] For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation.

Note: Field Strength includes Antenna Factor and Cable Loss.

Receiver setting: RBW = 1MHz
VBW = 1MHz

^{**}Duty Cycle Correction = 20Log(0.12752) = -17.8.

Radiated Emissions (Spurious Emission)

Test Requirement: FCC Part 15 Section 15.249

Test Method: ANSI C63.10 Test Date(s): 2017-06-10 Temperature: 31.0 °C Humidity: 72.0 % Atmospheric Pressure: 99.6 kPa

Mode of Operation: Transmission mode

Tested Voltage: 4.5Vd.c. ("AA" size battery x 3)

Measurement Data

Test Result of (Transmission mode, Lowest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2404.00	Н	-4.8	-17.8	63.8	74.0	-10.2	**46.0	54.0	-8.0
4808.00	Н	4.8	-17.8	69.6	74.0	-4.4	**51.8	54.0	-2.2
7212.00	Н	12.4	-17.8	65.2	74.0	-8.8	**47.4	54.0	-6.6
9616.00	Н	13.5	-17.8	57.7	74.0	-16.3	**39.9	54.0	-14.1
12020.00	Η	19.6	-17.8	53.9	74.0	-20.1	**36.1	54.0	-17.9
14424.00	Н	25.8	-17.8	56.6	74.0	-17.4	**38.8	54.0	-15.2
16828.00	Н	21.2	-17.8	56.5	74.0	-17.5	**38.7	54.0	-15.3
19232.00	Н	46.7	-17.8	56.0	74.0	-18.0	**38.2	54.0	-15.8
21636.00	Н	46.9	-17.8	56.3	74.0	-17.7	**38.5	54.0	-15.5
24040.00	Н	48.0	-17.8	54.5	74.0	-19.5	**36.7	54.0	-17.3
26444.00	Н	48.5	-17.8	57.2	74.0	-16.8	**39.4	54.0	-14.6

[#] For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation.

Note: Field Strength includes Antenna Factor and Cable Loss.

RBW = 1MHzReceiver setting:

VBW = 1MHz

^{**}Duty Cycle Correction = 20Log(0.12752) = -17.8.

Measurement Data

Test Result of (Transmission mode, Lowest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2404.00	V	-4.8	-17.8	61.3	74.0	-12.7	**43.5	54.0	-10.5
4808.00	V	4.8	-17.8	71.1	74.0	-2.9	**53.3	54.0	-0.7
7212.00	V	12.4	-17.8	69.2	74.0	-4.8	**51.4	54.0	-2.6
9616.00	V	13.5	-17.8	59.6	74.0	-14.4	**41.8	54.0	-12.2
12020.00	V	19.6	-17.8	52.8	74.0	-21.2	**35.0	54.0	-19.0
14424.00	V	25.8	-17.8	55.6	74.0	-18.4	**37.8	54.0	-16.2
16828.00	V	21.2	-17.8	55.5	74.0	-18.5	**37.7	54.0	-16.3
19232.00	V	46.7	-17.8	54.4	74.0	-19.6	**36.6	54.0	-17.4
21636.00	V	46.9	-17.8	55.2	74.0	-18.8	**37.4	54.0	-16.6
24040.00	٧	48.0	-17.8	54.8	74.0	-19.2	**37.0	54.0	-17.0
26444.00	V	48.5	-17.8	55.2	74.0	-18.8	**37.4	54.0	-16.6

[#] For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation.

Note: Field Strength includes Antenna Factor and Cable Loss.

Receiver setting: RBW = 1MHz
VBW = 1MHz

^{**}Duty Cycle Correction = 20Log(0.12752) = -17.8.

Measurement Data

Test Result of (Transmission mode, Middle frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
4880.00	Н	4.8	-17.8	66.2	74.0	-7.8	**48.4	54.0	-5.6
7320.00	Ι	12.4	-17.8	61.6	74.0	-12.4	**43.8	54.0	-10.2
9760.00	Н	13.8	-17.8	59.7	74.0	-14.3	**41.9	54.0	-12.1
12200.00	Н	19.5	-17.8	53.6	74.0	-20.4	**35.8	54.0	-18.2
14640.00	Н	26.5	-17.8	55.0	74.0	-19.0	**37.2	54.0	-16.8
17080.00	Н	23.1	-17.8	56.5	74.0	-17.5	**38.7	54.0	-15.3
19520.00	Н	46.7	-17.8	56.0	74.0	-18.0	**38.2	54.0	-15.8
21960.00	Н	47.3	-17.8	54.9	74.0	-19.1	**37.1	54.0	-16.9
24400.00	Н	48.2	-17.8	55.5	74.0	-18.5	**37.7	54.0	-16.3
26840.00	Н	48.5	-17.8	55.4	74.0	-18.6	**37.6	54.0	-16.4

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
4880.00	V	4.8	-17.8	70.5	74.0	-3.5	**52.7	54.0	-1.3
7320.00	V	12.4	-17.8	66.7	74.0	-7.3	**48.9	54.0	-5.1
9760.00	V	13.8	-17.8	60.0	74.0	-14.0	**42.2	54.0	-11.8
12200.00	V	19.5	-17.8	53.3	74.0	-20.7	**35.5	54.0	-18.5
14640.00	V	26.5	-17.8	54.9	74.0	-19.1	**37.1	54.0	-16.9
17080.00	V	23.1	-17.8	55.9	74.0	-18.1	**38.1	54.0	-15.9
19520.00	V	46.7	-17.8	56.5	74.0	-17.5	**38.7	54.0	-15.3
21960.00	V	47.3	-17.8	54.9	74.0	-19.1	**37.1	54.0	-16.9
24400.00	V	48.2	-17.8	54.6	74.0	-19.4	**36.8	54.0	-17.2
26840.00	V	48.5	-17.8	55.5	74.0	-18.5	**37.7	54.0	-16.3

[#] For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation.

Note: Field Strength includes Antenna Factor and Cable Loss.

Receiver setting: RBW = 1MHz

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. Our report is limited to the test samples identified herein. The results set forth in this report are not necessarily indicative or representative of the statistical quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof. You shall have thirty days from receipt of this report to request additional testing of the samples or to notify us of any errors or omissions relating to our report, provided, however, such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents

^{**}Duty Cycle Correction = 20Log(0.12752) = -17.8.

Measurement Data

Test Result of (Transmission mode, Highest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2483.50	Н	-4.8	-17.8	60.4	74.0	-13.6	**42.6	54.0	-11.4
4960.00	Н	4.9	-17.8	67.9	74.0	-6.1	**50.1	54.0	-3.9
7440.00	Н	12.6	-17.8	64.2	74.0	-9.8	**46.4	54.0	-7.6
9920.00	Н	13.9	-17.8	60.1	74.0	-13.9	**42.3	54.0	-11.7
12400.00	Н	19.2	-17.8	51.6	74.0	-22.4	**33.8	54.0	-20.2
14880.00	Η	25.9	-17.8	55.3	74.0	-18.7	**37.5	54.0	-16.5
17360.00	Н	24.5	-17.8	56.0	74.0	-18.0	**38.2	54.0	-15.8
19840.00	Η	46.8	-17.8	56.1	74.0	-17.9	**38.3	54.0	-15.7
22320.00	Η	47.3	-17.8	55.1	74.0	-18.9	**37.3	54.0	-16.7
24800.00	Н	48.2	-17.8	55.5	74.0	-18.5	**37.7	54.0	-16.3
27280.00	Н	48.7	-17.8	55.6	74.0	-18.4	**37.8	54.0	-16.2

[#] For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation.

Note: Field Strength includes Antenna Factor and Cable Loss.

Receiver setting: RBW = 1MHz

VBW = 1MHz

^{**}Duty Cycle Correction = 20Log(0.12752) = -17.8.

Measurement Data Test Result of (Transmission mode, Highest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2483.50	V	-4.8	-17.8	61.8	74.0	-12.2	**44.0	54.0	-10.0
4960.00	V	4.9	-17.8	71.4	74.0	-2.6	**53.6	54.0	-0.4
7440.00	V	12.6	-17.8	67.4	74.0	-6.6	**49.6	54.0	-4.4
9920.00	V	13.9	-17.8	57.3	74.0	-16.7	**39.5	54.0	-14.5
12400.00	V	19.2	-17.8	52.5	74.0	-21.5	**34.7	54.0	-19.3
14880.00	V	25.9	-17.8	55.2	74.0	-18.8	**37.4	54.0	-16.6
17360.00	V	24.5	-17.8	55.6	74.0	-18.4	**37.8	54.0	-16.2
19840.00	V	46.8	-17.8	55.4	74.0	-18.6	**37.6	54.0	-16.4
22320.00	V	47.3	-17.8	53.3	74.0	-20.7	**35.5	54.0	-18.5
24800.00	V	48.2	-17.8	54.8	74.0	-19.2	**37.0	54.0	-17.0
27280.00	V	48.7	-17.8	55.0	74.0	-19.0	**37.2	54.0	-16.8

[#] For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation.

**Duty Cycle Correction = 20Log(0.12752) = -17.8.

Note: Field Strength includes Antenna Factor and Cable Loss.

RBW = 1MHz VBW = 1MHz Receiver setting:

Radiated Emissions (9kHz – 2.4GHz)

Test Requirement: FCC Part 15 Section 15.209

Test Method:

ANSI C63.10

Test Date(s):

Temperature:

Humidity:

Atmospheric Pressure:

Mode of Operation:

ANSI C63.10

2017-06-10

31.0 °C

72.0 %

99.6 kPa

On mode

Tested Voltage: 4.5Vd.c. ("AA" size battery x 3)

Limits for Radiated Emissions [FCC 47 CFR 15.209]:

Frequency Range	Quasi-Peak Limits	Measurement Distance
[MHz]	[μV/m]	m
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above960	500	3

Measurement Data

Test Result of (On mode): PASS

Detection mode: Quasi-Peak

Polarity (H/V)	Field Strength	Limit	Margin (dB)		
Emissions detected are more than 20 dB below the limit line(s) in					
9kHz to 30MHz					
	(H/V) detected are n	(H/V) Strength detected are more than 20 d	(H/V) Strength Limit detected are more than 20 dB below the lin		

Note: Field Strength includes Antenna Factor and Cable Loss.

Receiver setting: RBW = 200Hz

VBW = 200Hz

www.cps.bureauveritas.com

Measurement Data

Test Result of (On mode): PASS

Detection mode: Quasi-Peak

Frequency (MHz)	Polarity (H/V)	Field Strength at 3m (dBμV/m)	Limit at 3m (dB _µ V/m)	Margin (dB)
33.86	Н	27.1	40.0	-12.9
72.58	Н	20.2	40.0	-19.8
198.32	Н	21.5	43.5	-22.0
255.76	Н	22.8	46.0	-23.2
307.24	Н	23.7	46.0	-22.3
511.28	Н	28.4	46.0	-17.6

Frequency (MHz)	Polarity (H/V)	Field Strength at 3m (dBµV/m)	Limit at 3m (dB _µ V/m)	Margin (dB)
33.86	V	27.5	40.0	-12.5
72.58	V	20.1	40.0	-19.9
198.32	V	21.4	43.5	-22.1
255.76	V	22.3	46.0	-23.7
307.24	V	23.5	46.0	-22.5
511.28	V	28.0	46.0	-18.0

Note: Field Strength includes Antenna Factor and Cable Loss.

Receiver setting: RBW = 120KHz

VBW = 120KHz

www.cps.bureauveritas.com

Frequency range of Fundamental Emission

Test Requirement: FCC 47 CFR 15.249
Test Method: ANSI C63.10 Clause 6.10

Test Date(s): 2017-06-10
Temperature: 31.0 °C
Humidity: 72.0 %
Atmospheric Pressure: 99.6 kPa

Mode of Operation: Transmission mode

Tested Voltage: 4.5Vd.c. ("AA" size battery x 3)

Test Method:

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

Limits for Frequency range of Fundamental Emission:

Frequency	FCC Limits
[MHz]	[MHz]
2402.726 – 2481.708	2400 – 2483.5

Measurement Data:

Test Result of Frequency Range of Fundamental Emission: PASS

Lowest Frequency - 2404.00MHz

Middle Frequency - 2440.00MHz

Highest Frequency - 2480.00MHz

Measurement Data:

Test Result of 26dB Bandwidth of Fundamental Emission: PASS

Lowest Frequency - 2404.00MHz

Middle Frequency - 2440.00MHz

Highest Frequency - 2480.00MHz

Duty Cycle Correction During 100msec:

Each function key sends a different series of characters, but each packet period (100msec) never exceeds a series of 4 (3.188msec) pulses. Assuming any combination of short or long pulses may be obtained due to encoding the worst case transmit duty cycle would be considered 4*3.188 per 100msec = 12.752% duty cycle.

Remarks:

Duty Cycle Correction = 20Log(0.12752) = -17.8.

The following figures [Figure A] show the characteristics of the pulse train for one of these functions.

Measurement Data:

Photographs of EUT

Front View of the product

Top View of the product

Side View of the product

Battery compartment

Rear View of the product

Bottom View of the product

Side View of the product

Battery Cover

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889

www.cps.bureauveritas.com

This report is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. Our report is limited to the test samples identified herein. The results set forth in this report are not necessarily indicative or representative of the statistical quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof. You shall have thirty days from receipt of this report to request additional testing of the examples of a positive of any agrees or opicious relation to our except of this proper to request additional testing of the samples or to notify us of any errors or omissions relating to our report, provided, however, such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report

Photographs of EUT

Internal View of the product

Inner Circuit Top View

Antenna

Internal View of the product

Inner Circuit Bottom View

Measurement of Radiated Emission Test Set Up

***** End of Report *****