

NCSR Demokritos – University of Piraeus

MSc in Artificial Intelligence

Assignment presentation for Machine Learning on Multimedia data course

Vehicle detection and counting from a static point using a camera

Pavlos Patsonis 3 July 2023

Outline

- Problem statement
- YOLO algorithm
- Energy of audio signal
- Implementation
- Results Conclusions
- Future improvements

Problem statement

Basic goal: Detect and Count vehicles in static videos

Methodology: Combine audio and visual information in real-time

Evaluation: Computation of mean absolute error of 10 videos

What is the YOLO algorithm?

- YOLO stands for You Look Only Once
- A pre-trained CNN suitable for object detection
- Break image into cells
- Detect objects with highest probs in each cell
- Combine detected objects from different cells to detect objects in image
- Ideal for real-time detections

Non-max suppression (NMS)

Intersection over union (IoU)

- NMS removes redundant bounding box predictions
- Use of *IoU* measurement to achive filterings

Energy of audio signal Root Mean Square

Implementation

Basic Idea: Use a trigger line on video to determine if a vehicle is passing by.

1. Setting up experiment

- a. Find optimal location
- b. Shoot video data
- c. Split to 10 evaluation videos
- d. Calculate actual counts of each video

2. Gather useful information

- a. Frame resolution drawing decision line
- b. Choosing the vehicle classes from YOLO
- c. Computing audio frame from video FPS
- d. Define Energy Threshold value for audio signal

Implementation

For each of the 10 evaluation videos:

- 1. Locate and track objects considered vehicles by YOLO frame by frame
- 2. Place center point in each bounding box
- 3. Calculate E_{RMS} of respective audio frame
- 4. Combine YOLO and audio information to trigger counter
- 5. Calculate and store absolute error

Calculate mean absolute error (MAE) of all evaluation videos

Example

Results

video index	1	2	3	4	5	6	7	8	9	10
model_counts	6	3	10	7	2	5	8	3	5	4
actual_counts	5	4	10	7	4	6	7	5	5	4

- model_counts > actual_counts
- model_counts = actual_counts
- model_counts < actual_counts</pre>

Comments:

- Not large deviation from actual counts
- Both false positives & negatives
- Counter in a way is "conservative" (false negatives > false positives)

$$MAE = \frac{\sum_{i=1}^{N} |model_counts_i - actual_counts_i|}{N} = 0.8 \text{ vehicles}$$

where, MAE: mean absolute error

N: Number of evaluation videos = 10

Future improvements

- 1. Reduce False Positive & Negative counts
 - Use camera with more FPS
- 2. Experiment Redesign
 - Choose different location
 - Use of directional microphones
- 3. Better utilization of audio information
 - Explore more sophisticated audio features (spectral analysis)
 - Develop model for vehicle detection trained on vehicle audio dataset

Thank you for your patience!