第二节

函数性态的研究

- 6.1 函数的单调性
- 6.2 函数的极值
- 6.3 函数的最大(小)值
- 6.4 函数图像的凹凸性与拐点

函数单调性的判定法

- 定理 6.1 设 $f:I \to R$ 在I上连续,在I内可导,则下述命题成立:
- $f' \ge 0$ $f' \le 0$;
- (2) 若在I内 f' > 0 (f' < 0),

则 ƒ在1上严格单调增(减).

证: (1) 充分性 任取 $x_1, x_2 \in I$ $(x_1 < x_2)$

由拉格朗日中值定理得

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) \ge 0 \le 0 \le 0 \le (x_1, x_2),$$

因此, f 在I上单调增(减).

(2) 必要性 设 f 在I上单调增(减).

对I内的任何 x ,取 Δx ,使 $x + \Delta x$ 仍在I 内则有

$$\frac{f(x+\Delta x)-f(x)}{\Delta x} \ge 0 (\le 0)$$

从而

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \ge 0 (\le 0)$$

例1. 确定函数 $f(x) = 2x^3 - 9x^2 + 12x - 3$ 的单调区间.

**$$\mathbf{\tilde{R}}$$
:** $f'(x) = 6x^2 - 18x + 12 = 6(x-1)(x-2)$

令
$$f'(x) = 0$$
, 得 $x = 1$, $x = 2$

\mathcal{X}	$(-\infty,1)$	1	(1, 2)	2	$(2,+\infty)$
f'(x)	+	0	_	0	+
f(x)		2		1	

故 f(x) 的 单调增区间为 $(-\infty,1)$, $(2,+\infty)$; f(x) 的 单调减区间为(1,2).

说明:

1) 单调区间的分界点除驻点外,也可是导数不存在的点.

例如,
$$y = \sqrt[3]{x^2}, x \in (-\infty, +\infty)$$

$$y' = \frac{2}{3\sqrt[3]{x}}$$

$$y'|_{x=0} = \infty$$

2) 如果函数在某驻点两边导数同号,则不改变函数的单调性.

例如,
$$y = x^3, x \in (-\infty, +\infty)$$

 $y' = 3x^2$
 $y'|_{x=0} = 0$

例2. 证明 $0 < x \le \frac{\pi}{2}$ 时, 成立不等式 $\frac{\sin x}{x} \ge \frac{2}{\pi}$.

$$\mathbf{iE:} \ \diamondsuit f(x) = \frac{\sin x}{x} - \frac{2}{\pi},$$

则f(x)在 $(0,\frac{\pi}{2}]$ 上连续,在 $(0,\frac{\pi}{2})$ 上可导,且

$$f'(x) = \frac{x \cdot \cos x - \sin x}{x^2} = \frac{\cos x}{x^2} (x - \tan x) < 0$$

因此 f(x) 在 $(0,\frac{\pi}{2})$ 内单调递减,

又
$$f(x)$$
在 $\frac{\pi}{2}$ 处左连续,因此 $f(x) \ge f(\frac{\pi}{2}) = 0$

从而
$$\frac{\sin x}{x} \ge \frac{2}{\pi}, \quad x \in (0, \frac{\pi}{2}]$$

tan x

例3. 证明: 当
$$0 < x < 1$$
 时, $e^{2x} < \frac{1+x}{1-x}$

由于在 (0,1) 内,f''(x) < 0,故 f' 在 (0,1) 上严格单调减,从而在 (0,1) 内 f'(x) < f'(0) = 0 由此又知 f 在 (0,1) 内严格单调减,得 f(x) < f(0) = 0,或 $(1-x)e^{2x} < 1+x$ 因此原不等式成立.

6.2 函数的极值及其求法

定义: 设函数 f(x)在(a,b)内有定义, $x_0 \in (a,b)$,

若存在 x_0 的一个邻域,在其中当 $x \neq x_0$ 时,

(1) $f(x) < f(x_0)$, 则称 x_0 为 f(x) 的极大值点,

称 $f(x_0)$ 为函数的极大值;

极大值点与极小值点统称为极值点.

例如,函数 $f(x) = 2x^3 - 9x^2 + 12x - 3$

$$x = 1$$
 为极大值点, $f(1) = 2$ 是极大值

$$x=2$$
为极小值点, $f(2)=1$ 是极小值

- 注意: 1) 函数的极值是函数的局部性质.
 - 2) 对常见函数,极值可能出现在导数为0或不存在的点.

 x_1, x_4 为极大值点 x_2, x_5 为极小值点 x_3 不是极值点

使 f'(x) = 0 的点称为 f 的驻点.

由费马定理(定理4.1)知,

可导函数的极值点必定是它的驻点.

但是,反过来不一定成立.

例如, x=0 是 $f(x)=x^3$ 的驻点但不是

f 的极值点.

定理 6.2 (极值第一判别法)

设函数 f 在 x_0 的某邻域内可导,并且 $f'(x_0) = 0$

- (1) 若 $x < x_0$ 时, $f'(x) \ge 0$; $x > x_0$ 时, $f'(x) \le 0$, 则 f 在 x_0 处取极大值;
- (2) 若 $x < x_0$ 时, $f'(x) \le 0$; $x > x_0$ 时, $f'(x) \ge 0$, 则 f 在 x_0 处取极小值;
- (3) 若 f'(x) 在 x_0 的左右两侧符号不变,则 f 在 x_0 处不取极值.

注:不可导点也可能是函数的极值点. 例如,函数f(x) = |x| 在点 x=0处不可导,

但函数在该点取得极小值.

由定理6.2,我们得到确定函数极值的第一种方法,步骤如下:

- (1) 求出函数f 在所讨论区间内的所有驻点与不可导点;
- (2) 考察导函数 *f* '在各驻点与不可导点左右两侧符号的变化,判定它们是否为 *f* 的极值点,是极大值点还是极小值点;
 - (3)求出 f 的极值.

例4. 求函数 $f(x) = (x-1)x^{\frac{2}{3}}$ 的极值.

解: 1) 求导数
$$f'(x) = x^{\frac{2}{3}} + (x-1) \cdot \frac{2}{3} x^{-\frac{1}{3}} = \frac{5}{3} \cdot \frac{x-\frac{2}{5}}{\sqrt[3]{x}}$$

2) 求极值可疑点

令
$$f'(x) = 0$$
, 得 $x_1 = \frac{2}{5}$; 令 $f'(x) = \infty$, 得 $x_2 = 0$

3) 列表判别

\mathcal{X}	$(-\infty,0)$	0	$(0,\frac{2}{5})$	$\frac{2}{5}$	$\left(\frac{2}{5},+\infty\right)$
f'(x)	+	∞	_	0	+
f(x)		0		-0.33	

$$\therefore x = 0 是极大值点,$$
$$x = \frac{2}{5} 是极小值点,$$

其极大值为
$$f(0)=0$$

其极小值为 $f(\frac{2}{5}) = -0.33$

定理6.3 (极值第二判别法) 设函数 f(x) 在点 x_0 处具有

二阶导数,且 $f'(x_0) = 0, f''(x_0) \neq 0$

(1) 若 $f''(x_0) < 0$, 则 f(x) 在点 x_0 取极大值;

(2) 若 $f''(x_0) > 0$, 则 f(x) 在点 x_0 取极小值. \\dot\dot\dot\

证: (1) 由于f在 x_0 处二阶可导,故由带peano余项

的二阶Taylor公式得

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + o((x - x_0)^2)$$
$$= f(x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o((x - x_0)^2)$$

从而有

$$f(x) - f(x_0) = \frac{1}{2}f''(x_0)(x - x_0)^2 + o((x - x_0)^2)$$

由于右端第二项是第一项的高阶无穷小,因此,在

 x_0 的充分小的邻域内, $f(x)-f(x_0)$ 的符号取决于

第一项.所以,若 $f''(x_0) < 0$,则 $f(x) - f(x_0) < 0$,

即 $f(x) < f(x_0)$, f 在 x_0 取极大值.

(2) 类似可证.

定理6.3 (极值第二判别法) 设函数 f(x) 在点 x_0 处具有

二阶导数,且 $f'(x_0) = 0, f''(x_0) \neq 0$

(1) 若 $f''(x_0) < 0$, 则 f(x) 在点 x_0 取 极大值;

另证: (1) $f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f'(x)}{x - x_0}$

由 $f''(x_0) < 0$ 知,存在 $\delta > 0$,当 $0 < |x - x_0| < \delta$ 时, $\frac{f'(x)}{s} < 0$

故当 $x_0 - \delta < x < x_0$ 时, f'(x) > 0;

由第一判别法知 f(x) 在 x_0 取极大值.

(2) 类似可证.

例5. 求函数 $f(x) = (x^2 - 1)^3 + 1$ 的极值.

解: 1) 求导数

$$f'(x) = 6x(x^2 - 1)^2$$
, $f''(x) = 6(x^2 - 1)(5x^2 - 1)$

2) 求驻点

令
$$f'(x) = 0$$
,得驻点 $x_1 = -1$, $x_2 = 0$, $x_3 = 1$

3) 判别

因
$$f''(0) = 6 > 0$$
,故 $f(0) = 0$ 为极小值;

又
$$f''(-1) = f''(1) = 0$$
, 故需用第一判别法判别.

由于f'(x)在 $x = \pm 1$ 左右邻域内不变号,

 $\therefore f(x)$ 在 $x = \pm 1$ 没有极值.

定理6.4(判别法的推广)若函数 f(x) 在 x_0 点有直到 n 阶导

数,且
$$f'(x_0) = f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0, f^{(n)}(x_0) \neq 0,$$

则: 1) 当n为偶数时, x_0 为极值点, 且

2) 当n为奇数时, x_0 不是极值点.

证: 利用f(x)在 x_0 点的泰勒公式,可得

$$f(x) - f(x_0) = \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^n)$$

当x充分接近 x_0 时,上式左端正负号由右端第一项确定,故结论正确.

例如,例5中
$$f(x) = (x^2 - 1)^3 + 1$$

$$f'''(x) = 24x(5x^2 - 3), \quad f'''(\pm 1) \neq 0$$
 所以 $x = \pm 1$ 不是极值点.

说明: 极值的判别法(定理1~定理3)都是充分的.

当这些充分条件不满足时,不等于极值不存在.

例如:

$$f(x) = \begin{cases} 2 - x^2 (2 + \sin \frac{1}{x}), & x \neq 0 \\ 2, & x = 0 \end{cases}$$

f(0) = 2 为极大值,但不满足定理1~定理3的条件.

6.3 函数的最大值与最小值

若函数 f(x) 在闭区间[a,b]上连续,则其最值只能在极值点或端点处达到.

求函数最值的方法:

- (1) 求f(x)在(a,b)内的极值可疑点 x_1, x_2, \dots, x_m
- (2) 最大值

$$M = \max\{f(x_1), f(x_2), \dots, f(x_m), f(a), f(b)\}$$
 最小值

$$m = \min\{f(x_1), f(x_2), \dots, f(x_m), f(a), f(b)\}$$

特别:

- 当f(x) 在[a,b] 上单调时, 最值必在端点处达到.
- 对应用问题,有时可根据实际意义判别求出的可疑点
 是否为最大值点或最小值点.

例6. 求函数 $f(x) = |2x^3 - 9x^2 + 12x|$ 在闭区间[$-\frac{1}{4}, \frac{5}{2}$]

上的最大值和最小值.

解: 显然 $f(x) \in C[-\frac{1}{4}, \frac{5}{2}]$,且

$$f(x) = \begin{cases} -(2x^3 - 9x^2 + 12x), & -\frac{1}{4} \le x \le 0 \\ 2x^3 - 9x^2 + 12x, & 0 < x \le \frac{5}{2} \end{cases} \xrightarrow{\frac{-1}{4}} 0 \quad 1 \quad 2 \xrightarrow{\frac{5}{2}} x$$

$$f'(x) = \begin{cases} -6x^2 + 18x - 12 = -6(x-1)(x-2), & -\frac{1}{4} \le x < 0 \\ 6x^2 - 18x + 12 = 6(x-1)(x-2), & 0 < x \le \frac{5}{2} \end{cases}$$

f(x)在[$-\frac{1}{4}$, $\frac{5}{2}$]内有极值可疑点 $x_1 = 0, x_2 = 1, x_3 = 2$

$$f(\frac{-1}{4}) = 3\frac{19}{32}$$
, $f(0) = 0$, $f(1) = 5$, $f(2) = 4$, $f(\frac{5}{2}) = 5$

故函数在 x=0 取最小值 0; 在 x=1 及 $\frac{5}{2}$ 取最大值 5.

例6. 求函数 $f(x) = 2x^3 - 9x^2 + 12x$ 在闭区间[$-\frac{1}{4}, \frac{5}{2}$] 上的最大值和最小值.

说明:

$$\Leftrightarrow \varphi(x) = f^2(x)$$

由于 $\varphi(x)$ 与 f(x) 最值点相同,因此也可通过 $\varphi(x)$

求最值点.(自己练习)

例7. 铁路上AB段的距离为100 km,工厂C距A处20

Km, $AC \perp AB$, 要在 AB 线上选定一点 D 向工厂修一条

公路,已知铁路与公路每公里货运价之比为3:5,为使货物从B运到工厂C的运费最省,问D点应如何取?

解: 设
$$AD = x$$
 (km),则 $CD = \sqrt{20^2 + x^2}$,总运费

$$y = 5k\sqrt{20^2 + x^2} + 3k(100 - x)$$
 (0 ≤ x ≤ 100)
(k 为某常数)

$$y' = k\left(\frac{5x}{\sqrt{400 + x^2}} - 3\right), \qquad y'' = 5k\frac{400}{\left(400 + x^2\right)^{3/2}}$$

令y'=0,得x=15,又 $y''|_{x=15}>0$,所以x=15为唯一的极小值点,从而为最小值点,故AD=15 km 时运费最省.

6.4 函数图像的凹凸性与拐点

定义6.1 (凸函数) 设 $f: I \rightarrow \mathbb{R}$, 若 $\forall x_1, x_2 \in I$,

$$\forall \lambda \in [0,1],$$

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$$

$$(\ge)$$

则称f为I上的凸(凹)函数.

若
$$\forall$$
λ ∈ $(0,1), x_1 \neq x_2$

$$f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda)f(x_2)$$

则称f为I上的严格凸(凹)函数.

定理6.5 设函数 f在区间 I上一阶可导,若 f'在 I上严格单调增(单调增),则 f 在 I 是严格凸(凸)的.

证: 仅证 f 在 I 上是严格凸的结论,关于 f 是凸的证明完全类似.

设 f'在 I 上严格单调增,则 $\forall x_1, x_2 \in I, (x_1 < x_2)$ $\forall \lambda \in [0,1]$ 令 $x_0 = \lambda x_1 + (1-\lambda)x_2$,则 $x_1 < x_0 < x_2$.

在 $[x_1, x_0]$ 与 $[x_0, x_2]$ 上分别用Lagrange定理, 存在 $\xi \in (x_1, x_0)$ 与 $\eta \in (x_0, x_2)$ 使

$$f(x_2) = f(x_0) + f'(\eta)(x_2 - x_0) > f(x_0) + f'(x_0)(x_2 - x_0)$$

$$f(x_1) = f(x_0) + f'(\xi)(x_1 - x_0) > f(x_0) + f'(x_0)(x_1 - x_0)$$

从而有
$$\lambda f(x_1) + (1 - \lambda)f(x_2) >$$

$$f(x_0) + f'(x_0)[\lambda(x_1 - x_0) + (1 - \lambda)(x_2 - x_0)]$$

由于

$$\lambda(x_1 - x_0) + (1 - \lambda)(x_2 - x_0) = \lambda x_1 + (1 - \lambda)x_2 - x_0 = 0, \quad \text{ix}$$

$$\lambda f(x_1) + (1 - \lambda) f(x_2) > f(x_0) = f(\lambda x_1 + (1 - \lambda) x_2)$$

因此,f是I上的严格凸函数.

推论6.1 设函数 f 在区间 I 上二阶可导,若 $\forall x \in I, f''(x) > 0 (\geq 0), 则 <math>f$ 在 I 是 严格凸(凸)的.

定义6.2 连续曲线 y = f(x)上凹弧与凸弧的分界点称为该曲线的拐点.

例8. 判断曲线 $y = x^4$ 的凹凸性.

解:
$$y' = 4x^3$$
, $y'' = 12x^2$
当 $x \neq 0$ 时, $y'' > 0$; $x = 0$ 时, $y'' = 0$,
故曲线 $y = x^4$ 在 $(-\infty, +\infty)$ 上是凸的.

说明:

- 1) 若在某点二阶导数为 0, 在其两侧二阶导数不变号, 则曲线的凹凸性不变.
- 2) 根据拐点的定义及上述定理,可得拐点的判别法如下: 若曲线 y = f(x)在点 x_0 连续, $f''(x_0) = 0$ 或不存在, 且 f''(x) 在 x_0 两侧异号,则点(x_0 , $f(x_0)$) 是曲线 y = f(x)的一个拐点.

例9. 求曲线 $y = \sqrt[3]{x}$ 的拐点.

解:
$$y' = \frac{1}{3}x^{-\frac{2}{3}}$$
, $y'' = -\frac{2}{9}x^{-\frac{5}{3}}$

X	$(-\infty,0)$	0	$(0,+\infty)$
y"	+	不存在	_
y	凸	0	凹

因此点(0,0)为曲线 $y=\sqrt[3]{x}$ 的拐点.

例10. 求曲线 $y = 3x^4 - 4x^3 + 1$ 的凹凸区间及拐点.

解: 1) 求 y"

$$y' = 12x^3 - 12x^2$$
, $y'' = 36x^2 - 2$

2) 求拐点可疑点坐标 (0,1) $\Rightarrow y'' = 0$ 得 $x_1 = 0$, $x_2 = \frac{2}{3}$, 对应 3) 列表判别

\mathcal{X}	$(-\infty,0)$	0	$(0,\frac{2}{3})$	$\frac{2}{3}$	$\left \left(\frac{2}{3},+\infty\right)\right $
y"	+	0	_	0	+
y	<u> </u>	1	凹	$\frac{11}{27}$	凸

故该曲线在 $(-\infty,0)$ 及 $(\frac{2}{3},+\infty)$ 上是凸的,在 $(0,\frac{2}{3})$ 上 是凹的,点(0,1)及 $(\frac{2}{3},\frac{11}{27})$ 均为拐点.

利用函数的凸性也可以证明一些不等式.

例11. 设 x_1 与 x_2 为任意两个实数,且 $x_1 \neq x_2$,

证明不等式
$$e^{\frac{x_1+x_2}{2}} < \frac{e^{x_1}+e^{x_2}}{2}$$

证: 若f为区间I上的严格凸函数,则不等式

$$f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda)f(x_2)$$

成立.取 $\lambda = \frac{1}{2}$, 该式变为 $f(\frac{x_1 + x_2}{2}) < \frac{f(x_1) + f(x_2)}{2}$

因此,只要证明 $f(x) = e^x$ 是 $(-\infty, +\infty)$ 上的严格凸函数,由上式立即得所证不等式.

内容小结

1. 可导函数单调性判别

$$f'(x) > 0, x \in I \Longrightarrow f(x)$$
在 I 上严格单调递增 $f'(x) < 0, x \in I \Longrightarrow f(x)$ 在 I 上严格单调递减

2. 连续函数的最值

最值点应在极值点和边界点上找;

应用题可根据问题的实际意义判别.

- 3. 连续函数的极值
- (1) 极值可疑点:使导数为0或不存在的点
- (2) 第一充分条件

$$f'(x)$$
 过 x_0 由正变负 $\Longrightarrow f(x_0)$ 为极大值 $f'(x)$ 过 x_0 由负变正 $\Longrightarrow f(x_0)$ 为极小值

(3) 第二充分条件

(4) 判别法的推广 定理3

2.曲线凹凸与拐点的判别

拐点 — 连续曲线上有切线的凹凸分界点

思考与练习

1. 设在[0,1]上f''(x) > 0,则f'(0),f'(1),f(1) - f(0)的大小顺序是(**B**)

(A)
$$f'(1) > f'(0) > f(1) - f(0)$$

(B)
$$f'(1) > f(1) - f(0) > f'(0)$$

(C)
$$f(1) - f(0) > f'(1) > f'(0)$$

(D)
$$f'(0) > f(1) - f(0) > f'(1)$$

提示: 利用 $f''(x) > 0 \Rightarrow f'(x)$ 单调增加,及

$$f(1) - f(0) = f'(\xi) \ (0 < \xi < 1)$$

2. 曲线 $y = 1 - e^{-x^2}$ 的凸区间是 $(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$

凹区间是
$$(-\infty, \frac{-1}{\sqrt{2}})$$
 及 $(\frac{1}{\sqrt{2}}, +\infty)$

拐点为 $(\pm \frac{1}{\sqrt{2}}, 1 - e^{\frac{-1}{2}})$.

提示: $y'' = 2e^{-x^2}(1-2x^2)$

