

ЗАДАЧИ МОИ ПОСЫЛКИ ПОЛОЖЕНИЕ ЗАПУСК

А. Логическое выражение

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Постройте искусственную нейронную сеть, вычисляющую логическую функцию f, заданную таблицей истинности.

Входные данные

Первая строка содержит целое число M ($1 \le M \le 10$) — число аргументов f. Следующие 2^{M} строк содержат значения f в таблице истинности (0 — ложь, 1 истина). Строки в таблице истинности последовательно отсортированы по аргументам функции от первого к последнему. Например:

M=1	M=2	M=3
f(0)	f(0, 0)	f(0, 0, 0)
f(1)	f(1,0)	f(1,0,0)
	f(0,1)	f(0,1,0)
	f(1,1)	f(1,1,0)
		f(0,0,1)
		f(1,0,1)
		f(0,1,1)
		f(1,1,1)

Выходные данные

В первой строке выведите целое положительное число D ($1 \le D \le 2$) — число слоёв (преобразований) в вашей сети.

На следующей строке выведите D целых положительных чисел n_i ($1 \leq n_i \leq 512$ и $n_D=1)$ — число искусственных нейронов на i-м слое. Предполагается, что $n_0=M$.

Далее выведите описание D слоёв. i-й слой описывается n_i строками, описанием соответствующих искусственных нейронов на i-м слое. Каждый искусственный нейрон описывается строкой, состоящей из n_{i-1} вещественных чисел с плавающей точкой w_i и одного вещественного числа b — описание линейной зависимости текущего нейрона от выходов предыдущего i-го слоя. Линейная зависимость задается по формуле: $Y = \sum w_i \cdot x_i + b$. Предполагается, что после каждого вычисления линейной зависимости к её результату применяется функция ступенчатой активации

 $a(Y) = egin{cases} 1 & Y > 0 \ 0 & Y < 0 \end{cases}$. Обратите внимание, что в нуле данная функция не определена,

и если в ходе вычисления вашей сети будет вызвана активация от нуля, вы получите ошибку.

Примеры

входные данные	Скопировать
2	
0	
1	
0	
1	
выходные данные	Скопировать
2	
2 1	
1.0 -1.0 -0.5	

ITMO ML

Участник

→ О группе

Веб-сайт группы

→ Соревнования группы

• Machine Learning 2023

Machine Learning 2023

Закончено

Участник

ightarrow Пересчёт ограничений по времени

Это соревнование использует политику пересчёта ограничений по времени по языкам программирования. Система автоматически увеличивает ограничения по времени для некоторых языков в соответствии с множителями. Независимо от множителя языка, ограничение по времени не может превысить 30 секунд. Прочтите детали по ссылке.

→ Языки

Следующие языки могут быть использованы как дополнительные для решения задач соревнования

- Python 3 + libs
- Python 3 ZIP + libs

→ Последние посылки		
Посылка	Время	Вердикт
97675442	16.03.2023	Полное решение:

1.0 1.0 -1.5 1 1 -0.5

197672047 Скопировать Скопировать

16.03.2023

20:04

→ Набранные баллы		
	Баллы	
A	1000	
В	1000	
С	1000	
D	1000	
E	1000	
F	940	
G	1000	
Н	1000	
I	980	
J	1000	
Всего	9920	

Частичное

решение: 671

баллов

входные данные 0 1 1 0 выходные данные 2 2 1 1.0 -1.0 -0.5 -1.0 1.0 -0.5 1 1 -0.5 Примечание

Во втором примере в результате получается следующая сеть:

Codeforces (c) Copyright 2010-2023 Михаил Мирзаянов Соревнования по программированию 2.0 Время на сервере: 20.08.2023 17:19:05 (І1). Десктопная версия, переключиться на мобильную. Privacy Policy

ЗАДАЧИ ОТОСЛАТЬ МОИ ПОСЫЛКИ ПОЛОЖЕНИЕ ЗАПУСК

В. Матричная функция

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Вычислите матричную функцию и её производную по заданному графу вычислений.

Входные данные

В первой строке содержится три целых положительных числа N,M,K ($2 \leq M+K \leq N \leq 50$) — число вершин в графе вычислений, число входных параметров (вершин) и число выходных параметров (вершин). Далее следует N строк — описание вершин графа вычислений. i-я из этих строк содержит описание i-й вершины:

- ${\sf var}\ r\ c\ (1 \le r, c \le 25)$ входной параметр функции, матрица состоящая из r строк и c столбцов.
- $tnh\ x\ (1 \le x < i)$ матрица из значений гиперболического тангенса вычисленного от соответствующих компонент матрицы, полученной из x-й вершины графа вычислений.
- rlu α^{-1} x ($1 \leq \alpha^{-1} \leq 100$, $1 \leq x < i$) матрица из значений функции параметрического линейного выпрямителя с параметром α , вычисленной от соответствующих компонент матрицы полученной из x-й вершины графа вычислений. α^{-1} целое число. Производная в нуле равна единице.
- **mul** a b ($1 \le a, b < i$) произведение матриц, полученных из a-й b-й вершины графа вычислений соответственно.
- sum $len\ u_1\ u_2\ ...\ u_{len}\ (1\leq len\leq 10,\ \forall_{1\leq j\leq len}: 1\leq u_j< i)$ сумма матриц, полученных из вершин u_1,u_2,\ldots,u_{len} графа вычислений.
- had $len\ u_1\ u_2\ ...\ u_{len}\ (1\leq len\leq 10,\ \forall_{1\leq j\leq len}: 1\leq u_j< i)$ произведение Адамара (покомпонентное) матриц, полученных из вершин u_1,u_2,\ldots,u_{len} графа вычислений.

Гарантируется, что первые M вершин и только они имеют тип ${\bf var}$. Последние K вершин считаются выходными. Никакие вершины не зависят от последних K вершин. Гарантируется, что размеры матриц аргументов для каждой вершины согласованны.

Далее следует описание M матриц — входных параметров соответствующих вершин графа вычислений в порядке возрастания их индексов.

Затем следует описание K матриц — производных функции по соответствующим выходным вершинам в порядке возрастания их индексов.

Каждая строка каждой матрицы расположена на отдельной строке. Матрицы состоят из целых чисел по модулю не превышающих 10.

Выходные данные

Выведите K матриц — значение параметров соответствующих выходных вершин графа вычисления в порядке возрастания их индексов. Затем выведите M матриц — производных функции по соответствующим входным вершинам в порядке возрастания их индексов. Допустимая абсолютная и относительная погрешность 10^{-4} .

Пример

входные данные	Скопировать
6 3 1	
var 1 3	
var 3 2	
var 1 2	

ITMO ML

Участник

→ О группе

Веб-сайт группы

→ Соревнования группы

• Machine Learning 2023

Machine Learning 2023

Закончено

Участник

→ Пересчёт ограничений по времени

Это соревнование использует политику пересчёта ограничений по времени по языкам программирования. Система автоматически увеличивает ограничения по времени для некоторых языков в соответствии с множителями. Независимо от множителя языка, ограничение по времени не может превысить 30 секунд. Прочтите детали по ссылке.

→ Языки

Следующие языки могут быть использованы как дополнительные для решения задач соревнования

- Python 3 + libs
- Python 3 ZIP + libs

→ Последние посылки		
Посылка	Время	Вердикт
205327748	10.05.2023 15:45	Полное решение: 1000 баллов

mul 1 2	
sum 2 4 3	
rlu 10 5	
-2 3 5	
4 2	
-2 0	
2 1	
4 -2	
-1 1	
выходные данные	Скопировать
	Скопировать
0.0 -0.1	Скопировать
0.0 -0.1 -3.8 2.0 -1.9	Скопировать
-3.8 2.0 -1.9	Скопировать
0.0 -0.1 -3.8 2.0 -1.9 2.0 -0.2	Скопировать

Примечание

В примере вычисляется функция

$${
m ReLU}_{lpha=0.1}\left(egin{pmatrix}4&2\-2&0\2&1\end{pmatrix}+egin{pmatrix}4&-2\end{pmatrix}
ight)$$
 , а $(-1&1)$ производная по её выходу.

204496733	04.05.2023 22:33	Частичное решение: 386 баллов
204496488	04.05.2023 22:29	Частичное решение: 386 баллов
204488133	04.05.2023 20:54	Частичное решение: 834 баллов
204485650	04.05.2023 20:27	Ошибка компиляции
203056357	22.04.2023 17:41	Частичное решение: 664 баллов
199750680	29.03.2023 22:51	Частичное решение: 165 баллов
199750536	29.03.2023 22:49	Ошибка исполнения на тесте 1

→ Набранные баллы		
	Баллы	
A	1000	
В	1000	
С	1000	
D	1000	
E	1000	
F	940	
G	1000	
Н	1000	
I	980	
J	1000	
Всего	9920	

Codeforces (c) Copyright 2010-2023 Михаил Мирзаянов Соревнования по программированию 2.0 Время на сервере: 20.08.2023 17:19:06 (I1). Десктопная версия, переключиться на мобильную. Privacy Policy

ЗАДАЧИ МОИ ПОСЫЛКИ ПОЛОЖЕНИЕ ЗАПУСК

С. Свёрточная сеть

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Посчитайте значение выхода свёрточной сети и пересчитайте её производную.

Входные данные

В первой строке содержится описание входа свёрточной сети, трёхмерной матрицы. Высота этой матрицы совпадает с её шириной. Первое число N_0 ($1 < N_0 < 40$) высота и ширина входной трёхмерной матрицы, второе число D_0 ($1 \leq D_0 \leq 10$) — её глубина. Следующие $D_0 imes N_0 imes N_0$ чисел — описание трёхмерной матрицы, значения её ячеек выписанных в порядке: глубина, высота, ширина.

Следующая строка содержит одно число L ($1 \le L \le 10$) — число слоёв (преобразований) в сети.

Следующие L строк содержат описания соответствующих преобразований:

- ${\sf relu} \; \alpha^{-1} \; (1 < \alpha^{-1} \le 100)$ функции параметрического линейного выпрямителя с параметром α .
- $pool\ S\ (1 < S < 5)$ операция субдискретизации (подвыборки) по высоте и ширине размера S imes S с шагом S. В качестве свёртки используется операция максимума. Производная для максимума вычисляется как: $rac{\partial \max}{\partial x_i}(x)=1$ если $x_i = \max(x)$, иначе 0.
- bias B_1, B_2, \dots, B_D $(|B_i| \leq 10)$ операция сдвига, прибавляющая к каждой ячейке матрицы на глубине i значение $B_i,\,D$ — глубина матрицы до и после
- cnvm $H~K~S~P~A_{1,1,1,1},A_{1,1,1,2},\ldots,A_{H,D,K,K}$ $(1\leq H\leq 10,1\leq K\leq 5,1)$ $1 \leq S \leq K$, $0 \leq P < K$, $|A_i| \leq 10$) — свёртка с ядром A размера H imes D imes K imes K с шагом S с зеркальным заполнением рамки размера P, где D — глубина матрицы до преобразования. H — глубина матрицы после преобразования. Значения ячеек A выписаны в порядке: глубина полученной матрицы, глубина исходной матрицы, высота ядра, ширина ядра.
- ullet cnve $H\ K\ S\ P\ A_{1,1,1,1},A_{1,1,1,2},\ldots,A_{H,D,K,K}$ свёртка с расширением границы. Аналогична предыдущей.
- ullet спис $H \ K \ S \ P \ A_{1,1,1,1}, A_{1,1,1,2}, \dots, A_{H,D,K,K}$ свёртка с заполнением с циклическим сдвигом. Аналогична предыдущей.

Гарантируется, что размеры всех многомерных матриц согласованы с соответствующими гиперпараметрами преобразований.

В последней строке записана производная по выходу сети.

Все числа во входных данных целые.

Выходные данные

Выведите значение выходной трёхмерной матрицы.

Далее выведите производную по входу сети.

Затем для каждого слоя сдвига и свёртки в возрастающем порядке номера слоя выведите производную по его параметрам.

Выходные матрицы могут содержать числа с плавающей точкой. Допустимая абсолютная и относительная погрешность 10^{-4} .

ITMO ML

Участник

→ О группе

Веб-сайт группы

→ Соревнования группы

• Machine Learning 2023

Machine Learning 2023

Закончено

Участник

ightarrow Пересчёт ограничений по времени

Это соревнование использует политику пересчёта ограничений по времени по языкам программирования. Система автоматически увеличивает ограничения по времени для некоторых языков в соответствии с множителями. Независимо от множителя языка, ограничение по времени не может превысить 30 секунд. Прочтите детали по ссылке.

→ Языки

Следующие языки могут быть использованы как дополнительные для решения задач соревнования

- Python 3 + libs
- Python 3 ZIP + libs

\rightarrow	Последние	посылки

Посылка	Время	Вердикт
205344483	10.05.2023 18:17	Полное решение

входные данные	Скопировать
4 1 4 3 2 1 3 2 1 0 2 1 0 1 1 0 1 2	
4	
cnvm 1 3 3 1 0 -1 0 -1 0 -1 0 -1 0	
bias 4	
relu 8	
pool 2	
1	
выходные данные	Скопировать
0.0	
0.0	

Примечание

Пример заполнения угла рамки для свёрточного слоя:

cnvm	18	17	16	15	16	17	18	19	cnve	0	0	0	0	1	2	3	4	cnvc	12	13	14	10	11	12	13
	13	12	11	10	11	12	13	14		0	0	0	0	1	2	3	4		17	18	19	15	16	17	18
	8	7	6	5	6	7	8	9		0	0	0	0	1	2	3	4		22	23	24	20	21	22	23
	3	2	1	0	1	2	3	4		0	0	0	0	1	2	3	4		2	3	4	0	1	2	3
	8	7	6	5	6	7	8	9		5	5	5	5	6	7	8	9		7	8	9	5	6	7	8
	13	12	11	10	11	12	13	14		10	10	10	10	11	12	13	14		12	13	14	10	11	12	13
	18	17	16	15	16	17	18	19		15	15	15	15	16	17	18	19		17	18	19	15	16	17	18
	23	22	21	20	21	22	23	24		20	20	20	20	21	22	23	24		22	23	24	20	21	22	23

199751919 29.03.2023 Частичное решение: 969 баллов

→ Ha	→ Набранные баллы					
	Баллы					
Α	1000					
В	1000					
С	1000					
D	1000					
E	1000					
F	940					
G	1000					
Н	1000					
I	980					
J	1000					
Всего	9920					

Codeforces (c) Copyright 2010-2023 Михаил Мирзаянов Соревнования по программированию 2.0 Время на сервере: 20.08.2023 17:19:08 (I1). Десктопная версия, переключиться на мобильную. Privacy Policy

ЗАДАЧИ МОИ ПОСЫЛКИ ПОЛОЖЕНИЕ ЗАПУСК

D. LSTM сеть

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Дана сеть LSTM для обработки последовательностей.

Каждый блок этой сети вычисляет результат по формулам:

$$f_t = \sigma(W_f x_t + U_f h_{t-1} + b_f), \, i_t = \sigma(W_i x_t + U_i h_{t-1} + b_i), \, o_t = \sigma(W_o x_t + U_o h_{t-1} + b_o), \, c_t = f_t \circ c_{t-1} + i_t \circ tanh(W_c x_t + U_c h_{t-1} + b_c)$$
 и $h_t = o_t \circ c_t$, где x_t — вход t -го блока, h_t и c_t — векторы краткосрочной и долгосрочной памяти, o_t — выход t -го блока, а \circ — произведение Адамара.

Входные данные

В первой строке находится число N ($1 \le N \le 20$) — размер векторов LSTM.

Далее перечислены соответствующие матрицы и вектора W_f , U_f , B_f , W_i , U_i , B_i , W_o , U_o, B_o, W_c, U_c, B_c

Затем следует число M ($1 \le M \le 20$) — число элементов последовательности, обрабатываемой LSTM сетью.

Далее следуют два вектора h_0 и c_0 , а также M векторов x_t .

Затем следует вектора производных сети по выходным векторам h_M и c_M , а также Mвекторов производных по выходам o_t в обратном порядке o_M, o_{M-1}, \dots, o_1 .

Все вектора записаны N числами, разделёнными пробелами, на отдельной строке, а матрицы N векторами размера N. Все элементы векторов и матриц целые числа по модулю не превосходящие 10.

Выходные данные

Сперва выведите M векторов выходов сети o_t .

Далее выведите два последних вектора памяти h_M и c_M .

Затем выведите M векторов производных сети по входам x_t в обратном порядке.

Далее выведите два вектора производных сети по h_0 и c_0 .

После выведите производные по соответствующим матрицам и векторам параметров LSTM: $W_f, U_f, B_f, W_i, U_i, B_i, W_o, U_o, B_o, W_c, U_c, B_c$.

Выходные вектора и матрицы могут содержать числа с плавающей точкой. Допустимая абсолютная и относительная погрешность 10^{-6} .

Пример

входные данные	Скопировать
1	
-3	
2	
1	
1	
-2	
-2	
-3	
-1	
-2	
1	
-2	

ITMO ML

Участник

→ О группе

Веб-сайт группы

→ Соревнования группы

• Machine Learning 2023

Machine Learning 2023

Закончено

Участник

→ Пересчёт ограничений по времени

Это соревнование использует политику пересчёта ограничений по времени по языкам программирования. Система автоматически увеличивает ограничения по времени для некоторых языков в соответствии с множителями. Независимо от множителя языка, ограничение по времени не может превысить 30 секунд. Прочтите детали по ссылке.

→ Языки

Следующие языки могут быть использованы как дополнительные для решения задач соревнования

- Python 3 + libs
- Python 3 ZIP + libs

→ Последние посылки								
Посылка	Время	Вердикт						
203183595	23.04.2023 21:22	Полное решение: 1000 баллов						

-1	
1	
1	
-3	
2	
1	
-1	
1	
выходные данные	Скопировать
1.233945759863131E-4	
-2.875857041962763E-5	
-0.23306186831759548	
-0.37692699674663843	
0.21113860108361812	
-0.047420021082055105	
0.27102651105684017	
0.13551325552842008	
0.13551325552842008	
0.159905268234481	
0.0799526341172405	
0.0799526341172405	
1.8924865599381104E-4	
9.462432799690552E-5	
9.462432799690552E-5	
-0.10011198258925587	
-0.050055991294627934	
-0.050055991294627934	

→ Наб	→ Набранные баллы					
	Баллы					
A	1000					
В	1000					
С	C 1000					
D	D 1000					
E	1000					
F	F 940					
G	G 1000					
Н	1000					
I	980					
J	1000					
Всего	9920					

Codeforces (c) Copyright 2010-2023 Михаил Мирзаянов Соревнования по программированию 2.0 Время на сервере: 20.08.2023 17:19:09 (l1). Десктопная версия, переключиться на мобильную. Privacy Policy

ЗАДАЧИ ОТОСЛАТЬ МОИ ПОСЫЛКИ ПОЛОЖЕНИЕ ЗАПУСК

Е. Коэффициент ранговой корреляции Спирмена

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод

вывод: стандартный вывод

Посчитайте ранговую корреляцию Спирмена двух численных признаков.

Входные данные

Первая строка содержит целое положительное число N ($1 \le N \le 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих Nстрок содержит описание одного объекта: два целых числа x_1 и x_2 ($-10^9 \le x_1, x_2 \le 10^9$) — значения первого и второго признака описываемого объекта. Гарантируется, что все значения каждого признака различны.

Выходные данные

Выведите одно вещественное число с плавающей точкой — коэффициент ранговой корреляции Спирмена двух признаков у заданных объектов. Допустимая абсолютная и относительная погрешность 10^{-6} .

Пример

входные данные	Скопировать
5	
1 16	
2 25	
3 1	
4 4	
5 9	
выходные данные	Скопировать
-0.500000000	

ITMO ML

Участник

→ О группе

Веб-сайт группы

→ Соревнования группы

• Machine Learning 2023

Machine Learning 2023

Закончено

Участник

→ Пересчёт ограничений по времени

Это соревнование использует политику пересчёта ограничений по времени по языкам программирования. Система автоматически увеличивает ограничения по времени для некоторых языков в соответствии с множителями. Независимо от множителя языка, ограничение по времени не может превысить 30 секунд. Прочтите детали по ссылке.

→ Языки

Следующие языки могут быть использованы как дополнительные для решения задач соревнования

- Python 3 + libs
- Python 3 ZIP + libs

→ Последние посылки								
Посылка	Время	Вердикт						
197629367	16.03.2023 14:36	Полное решение: 1000 баллов						

→ Ha	→ Набранные баллы					
	Баллы					
A	1000					
В	1000					
С	C 1000					
D	D 1000					
E	1000					
F	F 940					
G	G 1000					
н	1000					
I	980					
J	1000					
Всего	9920					

Codeforces (c) Copyright 2010-2023 Михаил Мирзаянов Соревнования по программированию 2.0 Время на сервере: 20.08.2023 17:19:09 (I1). Десктопная версия, переключиться на мобильную. Privacy Policy

ЗАДАЧИ МОИ ПОСЫЛКИ ПОЛОЖЕНИЕ ЗАПУСК

F. Расстояния

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Посчитайте зависимость категориального признака Y от числового X по внутриклассовому и межклассовому расстоянию:

- Внутриклассовое расстояние $=\sum_{i,j:y_i=y_j}|x_i-x_j|$
- Межклассовое расстояние $=\sum_{i,j:v_i
 eq v_i} |x_i x_j|$

Входные данные

Первая строка содержит одно целое положительное число K ($1 \le K \le 10^5$) максимальное число различных значений Y второго признака.

Следующая строка содержит одно целое положительное число N ($1 < N < 10^5$) число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих Nстрок содержит описание одного объекта: два целых числа x и y ($|x| \leq 10^7$, $1 \le y \le K$) — значения первого и второго признака описываемого объекта.

Выходные данные

В первой строке выведите одно целое число — внутриклассовое расстояние.

Во второй строке выведите одно целое число — межклассовое расстояние.

Пример

входные данные	Скопировать
2	
4	
1 1	
2 2	
3 2	
4 1	
выходные данные	Скопировать
8	
12	

ITMO ML

Участник

Веб-сайт группы

→ Соревнования группы

• Machine Learning 2023

Machine Learning 2023

Закончено

Участник

ightarrow Пересчёт ограничений по времени

Это соревнование использует политику пересчёта ограничений по времени по языкам программирования. Система автоматически увеличивает ограничения по времени для некоторых языков в соответствии с множителями. Независимо от множителя языка, ограничение по времени не может превысить 30 секунд. Прочтите детали по ссылке.

→ Языки

Следующие языки могут быть использованы как дополнительные для решения задач соревнования

- Python 3 + libs
- Python 3 ZIP + libs

ightarrow Последние посылки							
Посылка	Время	Вердикт					
197655767	16.03.2023 17:55	Частичное решение: 940					

		баллов
197650096	16.03.2023 17:10	Частичное решение: 60 баллов

→ Набранные баллы		
	Баллы	
Α	1000	
В	1000	
С	1000	
D	1000	
E	1000	
F	940	
G	1000	
Н	1000	
I	980	
J	1000	
Всего	9920	

Codeforces (c) Copyright 2010-2023 Михаил Мирзаянов Соревнования по программированию 2.0 Время на сервере: 20.08.2023 17:19:10 (l1). Десктопная версия, переключиться на мобильную. Privacy Policy

ЗАДАЧИ МОИ ПОСЫЛКИ ПОЛОЖЕНИЕ ЗАПУСК

G. Категориальная корреляция

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Вычислите коэффициент корреляции Пирсона между категориальным и числовым признаком. Так как первый признак категориальный сперва требуется применить one-hot преобразование к нему, а затем вычислить среднее взвешенное значение корреляций между новыми признаками и b.

Входные данные

Первая строка содержит два натуральных числа N и K, разделённых пробелами: N ($1 \le N \le 10^5$) — число объектов, K ($1 \le K \le 10^5$) — число значений категории первого признака. Вторая строка содержит N натуральных чисел, разделённых пробелами: i-е из них a_i ($1 \le a_i \le K$) — значение первого признака i-го объекта. Третья строка содержит N целых чисел, разделённых пробелами: i-е из них b_i ($|b_i| < 10^9$) — значение второго признака i-го объекта.

Выходные данные

Выведите одно вещественное число с плавающей точкой — коэффициент корреляции Пирсона между a и b. Абсолютная или относительная погрешность ответа не должна превышать 10^{-9}

Пример

входные данные	Скопировать
6 3	
1 2 2 3 3 3	
1 2 3 4 5 6	
выходные данные	Скопировать
0.19203297584037293	

Примечание

В примере значение корреляции между первым новым признаком (1,0,0,0,0,0) и bравно -0.654653671, а его вес равен единице, так как соответствующие значение встретилось только один раз. Значение корреляции между вторым новым признаком (0,1,1,0,0,0) и b равно -0.414039336, а его вес равен двум. Значение корреляции между третьим новым признаком (0,0,0,1,1,1) и b равно 0.878310066, а его вес равен трём.

ITMO ML

Участник

→ О группе

Веб-сайт группы

→ Соревнования группы

• Machine Learning 2023

Machine Learning 2023

Закончено

Участник

ightarrow Пересчёт ограничений по времени

Это соревнование использует политику пересчёта ограничений по времени по языкам программирования. Система автоматически увеличивает ограничения по времени для некоторых языков в соответствии с множителями. Независимо от множителя языка, ограничение по времени не может превысить 30 секунд. Прочтите детали по ссылке.

→ Языки

Следующие языки могут быть использованы как дополнительные для решения задач соревнования

- Python 3 + libs
- Python 3 ZIP + libs

→ Последние посылки		
Посылка	Время	Вердикт
204219224	02.05.2023 13:43	Полное решение: 1000 баллов

204174743	01.05.2023 23:16	Частичное решение: 807 баллов
204174614	01.05.2023 23:14	Частичное решение: 807 баллов
204174535	01.05.2023 23:13	Частичное решение: 807 баллов
<u>198678016</u>	23.03.2023 01:19	Частичное решение: 775 баллов
198677978	23.03.2023 01:18	Частичное решение: 775 баллов
198677379	23.03.2023 01:06	Частичное решение: 775 баллов
198677349	23.03.2023 01:06	Неправильный ответ на тесте 1
198676992	23.03.2023 00:59	Частичное решение: 775 баллов
198676760	23.03.2023 00:54	Частичное решение: 715 баллов

→ Ha	→ Набранные баллы	
	Баллы	
A	1000	
В	1000	
С	1000	
D	1000	
E	1000	
F	940	
G	1000	
Н	1000	
I	980	
J	1000	
Всего	9920	

Codeforces (c) Copyright 2010-2023 Михаил Мирзаянов Соревнования по программированию 2.0 Время на сервере: 20.08.2023 17:19:11 (I1). Десктопная версия, переключиться на мобильную. Privacy Policy

ЗАДАЧИ МОИ ПОСЫЛКИ ПОЛОЖЕНИЕ ЗАПУСК

Н. Условная дисперсия

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Вычислите критерий связи двух признаков категориального X и числового Y на основе математического ожидания условной дисперсии D(Y|X). Вероятности для Xоцениваются обыкновенным частотным методом.

Входные данные

Первая строка содержит одно целое положительное число K ($1 \le K \le 10^5$) максимальное число различных значений признака X.

Следующая строка содержит целое положительное число N ($1 \le N \le 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих Nстрок содержит описание одного объекта: два целых положительных числа x и y ($1 \leq x \leq K$, $|y| \leq 10^9$) — значения признаков X и Y.

Выходные данные

Выведите одно вещественное число с плавающей точкой — математическое ожидание условной дисперсии. Допустимая абсолютная и относительная погрешность 10^{-6} .

Пример

входные данные	Скопировать
2	
4	
1 1	
2 2	
2 3	
1 4	
выходные данные	Скопировать
1.25	

ITMO ML

Участник

→ О группе

Веб-сайт группы

→ Соревнования группы

• Machine Learning 2023

Machine Learning 2023

Закончено

Участник

→ Пересчёт ограничений по времени

Это соревнование использует политику пересчёта ограничений по времени по языкам программирования. Система автоматически увеличивает ограничения по времени для некоторых языков в соответствии с множителями. Независимо от множителя языка, ограничение по времени не может превысить 30 секунд. Прочтите детали по ссылке.

→ Языки

Следующие языки могут быть использованы как дополнительные для решения задач соревнования

- Python 3 + libs
- Python 3 ZIP + libs

→ Последние посылки		
Посылка	Время	Вердикт
197645059	16.03.2023 16:33	Полное решение: 1000 баллов

→ Ha	абранные баллы
	Баллы
A	1000
В	1000
С	1000
D	1000
E	1000
F	940
G	1000
Н	1000
I	980
J	1000
Всего	9920

Codeforces (c) Copyright 2010-2023 Михаил Мирзаянов Соревнования по программированию 2.0 Время на сервере: 20.08.2023 17:19:13 (l1). Десктопная версия, переключиться на мобильную. Privacy Policy

ЗАДАЧИ ОТОСЛАТЬ МОИ ПОСЫЛКИ ПОЛОЖЕНИЕ ЗАПУСК

I. Хи-квадрат

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Посчитайте зависимость двух категориальных признаков согласно критерию хи-квадрат (критерий согласия Пирсона).

Входные данные

Первая строка содержит два целых положительных числа K_1 и K_2 ($1 \le K_1, K_2 \le 10^5$) — максимальное число различных значений первого и второго признака.

Следующая строка содержит целое положительное число N ($1 \le N \le 10^5$) — число

Следующие N строк содержат описания соответствующих объектов. Каждая из этих Nстрок содержит описание одного объекта: два целых положительных числа x_1 и x_2 ($1 \leq x_1 \leq K_1$, $1 \leq x_2 \leq K_2$) — значения первого и второго признака описываемого объекта.

Выходные данные

Выведите одно вещественное число с плавающей точкой — критерий хи-квадрат зависимости двух признаков у заданных объектов. Допустимая абсолютная и относительная погрешность 10^{-6} .

Пример

входные данные	Скопировать
2 3	
5	
1 2	
2 1	
1 1	
2 2	
1 3	
выходные данные	Скопировать
0.833333333	

Примечание

2 3 В примере реальное число наблюдений выглядит как 1 1, а ожидаемое 1 1 2

2 3 число наблюдений 1 1.2 1.20.6 -0.8 $0.8 \quad 0.4$

ITMO ML

Участник

→ О группе

Веб-сайт группы

→ Соревнования группы

• Machine Learning 2023

Machine Learning 2023

Закончено

Участник

ightarrow Пересчёт ограничений по времени

Это соревнование использует политику пересчёта ограничений по времени по языкам программирования. Система автоматически увеличивает ограничения по времени для некоторых языков в соответствии с множителями. Независимо от множителя языка, ограничение по времени не может превысить 30 секунд. Прочтите детали по ссылке.

→ Языки

Следующие языки могут быть использованы как дополнительные для решения задач соревнования

- Python 3 + libs
- Python 3 ZIP + libs

→ Последние посылки		
Посылка	Время	Вердикт
197633846	16.03.2023 15:11	Частичное решение: 980

		баллов
197633758	16.03.2023 15:11	Неправильный ответ на тесте 1

→ Набран	ные баллы
	Баллы
Α	1000
В	1000
С	1000
D	1000
Е	1000
F	940
G	1000
н	1000
I	980
J	1000
Всего	9920

Codeforces (c) Copyright 2010-2023 Михаил Мирзаянов Соревнования по программированию 2.0 Время на сервере: 20.08.2023 17:19:14 (l1). Десктопная версия, переключиться на мобильную. Privacy Policy

ЗАДАЧИ МОИ ПОСЫЛКИ ПОЛОЖЕНИЕ ЗАПУСК

Условная энтропия

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Вычислите критерий связи двух категориальных признаков X и Y на основе математического ожидания условной энтропии H(Y|X). Вероятности оцениваются обыкновенным частотным методом. При расчётах используйте натуральный логарифм $\ln(x)$ либо логарифм идентичный натуральному $\log_e(x)$.

Входные данные

Первая строка содержит два целых положительных числа K_x и K_y ($1 \leq K_x, K_y \leq 10^5$) — максимальное число различных значений признаков X и Y.

Следующая строка содержит целое положительное число N ($1 \leq N \leq 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих Nстрок содержит описание одного объекта: два целых положительных числа x и y ($1 \leq x \leq K_x$, $1 \leq y \leq K_y$) — значения признаков X и Y.

Выходные данные

Выведите одно вещественное число с плавающей точкой — математическое ожидание условной энтропии. Допустимая абсолютная и относительная погрешность $10^{-6}\,$.

іример	
входные данные	Скопировать
2 3	
5	
1 2	
2 1	
1 1	
2 2	
1 3	
выходные данные	Скопировать
0.9364262454248438	

ITMO ML

Участник

→ О группе

Веб-сайт группы

→ Соревнования группы

• Machine Learning 2023

Machine Learning 2023

Закончено

Участник

ightarrow Пересчёт ограничений по времени

Это соревнование использует политику пересчёта ограничений по времени по языкам программирования. Система автоматически увеличивает ограничения по времени для некоторых языков в соответствии с множителями. Независимо от множителя языка, ограничение по времени не может превысить 30 секунд. Прочтите детали по ссылке.

→ Языки

Следующие языки могут быть использованы как дополнительные для решения задач соревнования

- Python 3 + libs
- Python 3 ZIP + libs

→ Последние посылки		
Посылка	Время	Вердикт
197647399	16.03.2023 16:50	Полное решение: 1000 баллов

→ Набранные баллы	
	Баллы
A	1000
В	1000
С	1000
D	1000
E	1000
F	940
G	1000
н	1000
I	980
J	1000
Всего	9920

Codeforces (c) Copyright 2010-2023 Михаил Мирзаянов Соревнования по программированию 2.0 Время на сервере: 20.08.2023 17:19:15 (l1). Десктопная версия, переключиться на мобильную. Privacy Policy

