

Packet Forwarding & QoS Implementation on NCS 500

New Age Access Platforms

Paban Sarma, Technical Marketing Engineer @pabanelb

BRKSPG-2012

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- Find this session in the Cisco Events Mobile App
- Click "Join the Discussion"
- Install Webex Teams or go directly to the team space
- Enter messages/questions in the team space

Session Takeaway

You can simply deliver QoS in your access network with NCS 500 !!

Agenda

- NCS 500 Family & Internal Architecture
- NCS 5xx QoS Overview
 - Ingress
 - Egress
- QoS Behaviors
 - H-QoS
 - Bundle QoS
 - Multicast QoS
 - QoS for DiffServ Tunneling Modes
- Behavioral Difference with ASR 9xx QoS
- Summary

NCS 500 Family & Internal Architecture

The NCS 500 Family

NCS 500 in the Network

NCS 500 Architecture **Network Interfaces Network Interfaces** LPM LPM TM TM Off-chip Off-chip Buffer Buffer On-chip Buffer On-chip Buffer On-chip Buffer On-chip Buffer STAT FEC TM FEC **NPU** Ingress Egress Ingress **Egress** NCS 540 Off-chip **CPU** e-TCAM NCS 560 Off-chip Buffer Forwarding ASIC Forwarding ASIC System **FPGA** Interfaces BACKPLANE

Refreshing The Basics

Why QoS!

- ✓ Access is the starting point
- ✓ Connectivity starts here

Satisfaction

- ✓ Delivery with Guranted SLA
- ✓ Ease of Enhancement

- ✓ Connectivity with guarantee
- ✓ Prioritization
- ✓ Best Effort

- ✓ Service pricing
- ✓ Add on Bandwidth
- ✓ Utilize Available infrastructure

Identify Traffic

Different Traffic Type

- Latency sensitive/Real Time
- Best Effort
- Undesired
- Control Plane
- Classification
 - Information present in headers
 - IP/PCP/DSCP/EXP etc.
- Marking
 - Simplify the Network QoS
 - Ensure E2E QoS

Manage SLA

Policers

- · Cap users at the committed rate: 1R2C
- Give something extra with Best Effort: 2R3C
- · Shape/Queues
 - · Cap Users with shape
 - · Prioritize/schedule different traffic
 - · Weight Between BE traffic

SLA Levels

Differentiated QoS Per Application

- Aggregated QoS Per Service
- Differentiated QoS for Per Service

Aggregated QoS Per Customer

NCS 500 QoS Overview

NCS 500 QoS Behavior

Modular QoS CLI (MQC)

Ingress QoS

Classification

- Match on protocol supported for L3 interface
- Only Single Protocol
- Match-not is not supported for ACLs

PCP : Priority Code Point (802.1p)

DEI : discard eligibility indicator

IPP: IP Precedence

^{*} With MPLS disposition- ingress short pipe mode

Supported Marking Matrix

* With MPLS disposition- ingress short pipe mode

Policing Support

Policer Types

• 1R2C

police rate 10 mbps burst 12 kbytes

• 1R3C

police rate 10 mbps burst 12 kbytes peak-burst 12 kbytes

• 2R3C

police rate 10 mbps burst 12 kbytes peak-rate 20 mbps
peak-burst 12 kbytes

Statistics

- Normal Mode
 - Green and Red
- Enhanced Mode*
 - hw-module profile stats qos-enhanced
 - · Green, Yellow & Red

Hierarchy

- 2 Levels
- Parent:
 - Class Default
 - Child conform-aware/non conform-aware
- Child
 - Multiple class
 - Color blind

MEF BWP Reference

 police rate 10 mbps burst 12 kbytes peak-rate 20 mbps peak-burst 12 kbytes

CIR CBS EIR EBS**

CM=blind CF=1

Egress QoS

Queues and Schedulers

Blue items are done according to policy-maps. Black items are internal operations.

VOQ-Only Architecture

- Packet is received on ingress interface, classified, and stored in internal buffer
- Ingress VOQ scheduler polls Egress scheduler (maintaining a local VOQ DB)
- Egress answers with a credit-message

VOQ-Only Architecture contd.

- Packet is stored in the port queue(HP/LP)
- Finally packet is transmitted through the egress interface

Scheduling Mechanism

Fair Scheduling

Profile 1

Profile 3

BRKSPG-2012

```
policy-map
fair_schedule
  class cos1
  shape average
percent 50
!
  class cos2
  shape average
percent 45
!
  class class-default
!
  end-policy-map
!
```

- Shape average sets Maximum queue BW
- Traffic is fair among all classes
- Class without shape can consume all bandwidth available

Priority Scheduling

policy-map priority class cos1 shape average percent 40 priority level 1 queue-limit 1 bytes class cos2 shape average percent 30 priority level 2 queue-limit 500 us class cos3 shape average percent 30 class class-default end-policy-map

- Up to 8 priority levels in non h-gos mode
- Up to 4 priority levels in h-qos mode
- Minimum queue limit for latency sensitive priority traffic.
- · Fair BW share for non priority classes as shape is configured

Guaranteed Service Rate

- Bandwidth command sets queue minimum BW
- Inversely weighted bandwidth sharing
- Priority cannot be used in Bandwidth

```
policy-map
quaranteed sr
 class cos1
  shape average
percent 40
  priority level 1
  queue-limit 1 bytes
 class cos2
  bandwidth percent 50
  bandwidth percent 10
 end-policy-map
```


Weighted Queues with Bandwidth Remaining (BWR)


```
policy-map bwr sr
 class cos1
  shape average percent 40
  queue-limit 1 bytes
 priority level 1
 class cos2
  bandwidth remaining percent 50
 class cos3
  bandwidth remaining percent 25
 class class-default
 end-policy-map
```

- Bandwidth remaining assigns weight for available bw sharing
- Both BW and BWR in a single policy map is not supported in HQoS mode

Egress Marking

cisco live

Marking Support

Note: Egress Remarking uses "qos-group" as classification criterion

^{*} L3 sub-intf vlan priority fields

^{**} Not for EVPN

^{*** 2} labels only, single BGP Label not supported

Dual Egress Policy Queuing & Marking handled separately

Can we Remark along with managing different queues ???

One Queuing Policy

- Flat or Hierarchical
- Use "traffic-class"
- Statistics

One Marking policy

- o Flat
- Use "qos-group"
- No statistics

Dual Egress Policy: Example

```
class-map match-any cos1
  match cos 1
end-class-map
class-map match-any cos2
  match cos 2
end-class-map
policy-map in-classify
   class cos1
      set qos-group 1
      set traffic-class 3
  class cos2
      set qos-group 2
      set traffic-class 5
class class-default
end-policy-map
```

```
class-map match-any gos1
  match qos-group 1
end-class-map
class-map match-any gos2
   match qos-group 2
end-class-map
policy-map egress-marking
   class gos2
       set cos 2
   class gos1
       set cos 1
      set dei 1
class class-default
       set cos 7
end-policy-map
```

```
class-map match-any tc3
   match traffic-class 3
end-class-map
class-map match-any tc5
    match traffic-class 5
end-class-map
policy-map egress-queuing
   class tc5
     bandwidth percent 30
   class tc3
      bandwidth percent 20
   class class-default
end-policy-map
interface TenGigE0/0/1/0/0
 service-policy output egress-marking
 service-policy output egress-queuing
```

Use Cases

Session Takeaway

You can simply deliver QoS in your access network with NCS 500 !!

Hierarchical QoS

H-QoS Support Overview

- Ingress (Policing only)
 - · 2 levels
 - Parent level:
 - class-default only
 - Child conform-aware Or non conformaware
 - · Child level:
 - · Multiple Classes of Service
 - · Color blind 2r3c

- Egress (Queueing Only)
 - 3 (1+2) levels starting XR 6.6.25
 - 1 level Grand Parent
 - · class default shaper at port
 - · 2 level nested at sub-interface
 - Parent:
 - Class Default only
 - · Child:
 - Multiple Classes of Service (Upto 8)
 - Priority levels
 - "hw-module profile qos hqosenable" config is necessary

H-QoS for Ingress Policing

- 2 levels of hierarchy
- Parent level supports class-default
- Parent policer is conform-aware/non conform-aware
- To achieve expected result: ∑child CIR <= Parent CIR

Profile with ∑child CIR > Parent CIR Parent non-conform aware

Profile with ∑child CIR < Parent CIR

```
policy-map parent-policer
 class class-default
  service-policy child-policer
 police rate 40 mbps
 end-policy-map
policy-map child-policer
 class cos3
  police rate 10 mbps
 class cos4
  police rate 20 mbps
 class class-default
  police rate 10 mbps
 end-policy-map
```

3-level H-QoS for Egress Queueing

- Implemented in an 1+2 Model
- Port shaper at Grand Parent Level (1 level class default only)
- EFP shaper with 2 levels
 - Parent "class default" only
 - Child multiple traffic classes
 - EFP shaper reference BW is same as Port BW
 - Allows to oversubscribe Port/Port Shaper

3- Level H-QoS Behavior

Scenario1: ∑(Child shape rate) < Port Shaper

3-Level H-QoS Behavior

Scenario2: ∑(Child shape rate) > Port Shaper

QoS on Bundles

Bundle QoS

- Ingress Support
 - Policing only
 - Aggregate Behavior per core
- Egress Support
 - Queuing /Scheduling only
 - Distributed Behavior
 - Same policy replicated for all members
- QoS policy is configured under LAG bundle interface
 - The actual configured QOS policy is programmed onto each link bundle member (port)

Bundle QoS: Ingress Policing

NPU Core#	NCS 560-7 IM Slots#	NCS 560-4 IM Slots#
0	0-7	0,2,4
1	8-15	1,3,5

CLI to identify NPU core distribution:

show controllers npu voq-usage interface all
instance all location <>

- Aggregate policer Per Core (absolute rate allowed)
- Members on the same NPU core
 - aggregate behavior

- Consume single Policer entry
- Members across different NPU core
 - No Aggregate Behavior

BRKSPG-2012

Policer consumption is doubled

Bundle QoS: Egress Shaping

- Aggregate Rates not allowed/Recommended
 - Percent/per thousand shape rates allowed
 - Policy replicated into each member
 - Aggregate Behavior achieved of traffic is load balanced evenly

Managing Multicast QoS

Fabric Multicast Queues (FMQ) Multicast Packet Path

Default Behavior No Ingress Policy

Fabric Multicast Queues (FMQ) Managing Priority Multicast

Unicast vs Multicast

- HP Traffic is always preferred
- When in competition for same priority level 80:20 ratio maintained

Diffserv Tunneling Modes

Uniform Mode

- IP Precedence and MPLS EXP is same across the Network.
- When a label is popped, PHB value is copied to new exposed label/DSCP
- Default Behavior on NCS 5xx

Pipe Mode

- DSCP & Precedence Preserved from CF to CF
- At egress PE , EXP-Precedence copy must be disabled using "mpls-ip-ttl-propagate disable"
- EXP=map (EXP) at P nodes
- EXP value is used for queuing decisions at Egress PE

Short Pipe Mode

- class-map match-any in_pipe
 match mpls disposition classmap child_pipe
 end-class-map
 !
 class-map match-any child_pipe
 match precedence 3
 end-class-map
 !

 policy-map ingress-classifier
 class in_pipe
 set traffic-class 5
- **VRF A**

- DSCP/Precedence Preserved from CE to CE
- At egress PE, EXP-Precedence copy must be disabled using "mpls-ip-ttl-propagate disable"
- EXP=map (EXP) at P nodes
- DSCP/Precedence value is used for queuing/scheduling decisions at Egress PE
- DSCP/Precedence match at egress using "match mpls disposition"

QOS behavioral differences between ASR9xx and NCS5xx

Key differences -Summary

ASR 920/RSP2

- Classifications:
 - Allows egress classification based on packet header information
 - Allows match EFP (vlan)
- o Policing:
 - Policing supported with priority at Egress
- o Priority Queuing:
 - 2 levels only (P1&P2)

RSP3

- Classifications:
 - Egress classification based on "qos-group"
 - Allows match EFP (vlan)
- o Policing:
 - Only on ingress
- o Priority Queuing:
 - 2 levels only(P1&P2)

NCS 5xx

- Classifications:
- Egress classification based on "qos-group", "trafficclass", "discard-class"
- o Policing:
- Only on ingress
- o Priority Queuing:
- 7 levels (P1-P7)

Policer Implementation (2r3c)

- In ASR9xx Policer default action can be changed by configuration
 - Default action :
 - Conform: transmit Exceed: drop
- Violate: drop
- In NCS 5xx Policer default action cannot be changed
 - Default action :
 - Conform: transmit (discard-class 0)

```
ASR 9xx
olicy-map 2r3c
description 2R3C policer on
```

```
policy-map 2r3c
  description 2R3C policer on ASR9xx
  class class-default
  police cir 3000000 pir 6000000
     conform-action transmit
     exceed-action transmit
     violate-action drop
!
end
```

Exceed: transmit (discard-class 1) Violate: drop

```
NCS 5xx
```

```
policy-map 2r3c
  description 2R3C policer on ncs5xx
  class class-default
  police rate 3 mbps peak-rate 6 mbps
  !
  !
  end-policy-map
!
```

Implementing conditional marking

- ASR 9xx uses single policy in ingress for Conditional marking
- NCS 5xx uses ingress and egress policy simultaneously to achieve same results
- NCS 5xx uses qos-group and discard-class together to mark traffic based on policing

```
ASR 9xx

policy-map conditional-mark

description mark PCP based on policing results ASR9xx

class class-default

police cir 3000000 pir 6000000

conform-action set-cos-transmit 5

exceed-action set-cos-transmit 4

violate-action drop

!
end
```

```
NCS 5xx

policy-map conditional-mark

description policer marks qos group on ingress-NCS5xx

class class-default

police rate 3 mbps peak-rate 6 mbps
!

set qos-group 5
!
end-policy-map
!
```

```
class-map match-all exceed-gos
match qos-group 5
match discard-class 1
end-class-map
class-map match-all conform-gos
match qos-group 5
match discard-class 0
end-class-map
policy-map conditional-mark
class conform-qos
  set cos 5
 class exceed-gos
  set cos 4
 class class-default
 end-policy-map
```

Managing priority traffic-class

- Objective is to have a low latency priority traffic and restrict it to 25% of the link bw
- Priority traffic is identified by DSCP value EF

```
ASR 920/RSP2
class-map match-all dscp
match dscp ef
policy-map egress priority
class dscp
 priority level 1 percent 25
 queue-limit <value>
policy-map priority-policing
class dscp
 police cir percent 25
 queue-limit <value>
 priority
end
```

```
RSP3
class-map match-any ingress dscp
match dscp ef
end-class-map
policy-map set qg from dscp
class ingress dscp
  set qos-group 5
 class class-default
end-policy-map
class-map match-any egress qg
match qos-group 5
end-class-map
policy-map egress priority
class egress qq
 priority level 1 percent 25
 queue-limit <value>
class class-default
end
```

```
NCS 5xx
class-map match-any ingress dscp
match dscp ef
end-class-map
policy-map set tc from dscp
class ingress dscp
  set traffic-class 5
 class class-default
end-policy-map
class-map match-any egress tc
match traffic-class 5
end-class-map
policy-map egress priority
class egress tc
 shape average percent 25
 priority level 1
 queue-limit <value>
 class class-default
end-policy-map
end
```

Implementing hierarchical QoS

- ASR 9xx implements 3 level HQoS using nested policies
- NCS 5xx implements 3 level HQoS using 1+2 model

ASR920/RSP2

- Grand-Parent policy
 - Class-default only
 - Applied to Port
- Parent Policy
 - match-efp
 - referred in grand-parent policy
- Child Policy
 - Match dscp/cos/qosgroup
 - Referred in parent policy

RSP3

- Grand-Parent policy
 - Class-default only
 - Applied to Port
- Parent Policy
 - match-efp
 - referred in grand-parent policy
- Child Policy
 - Match qos-group
 - Referred in parent policy

NCS 5xx

- Grand-Parent policy
 - Class-default only
 - Applied to Port
- Parent Policy
 - Class-default only
 - Applied to subinterface (EFP)
- Child Policy
 - Match traffic-class
 - Referred in parent policy

Example: Implementing hierarchical QoS: RSP3 (XE)

'qos-group' is set using ingress-policy

```
class-map match-any qqroup1
match qos-group 1
                                                   policy-map 3-hqos
                                                    class class-default
class-map match-any efp2
                                                     shape average 800m
match service instance ethernet 2
                                                      service-policy egress-efp
class-map match-any efp1
match service instance ethernet 1
policy-map egress-child
                                                   interface GigabitEthernet0/1/2
class qqroup1
                                                    no ip address
 priority percent 30
                                                    negotiation auto
                                                    service-policy output 3-hqos
                                                    service instance 1 ethernet
                                                     encapsulation dot1q 1
policy-map egress-efp
                                                     bridge-domain 1
class efp1
 shape average 200m
                                                    service instance 2 ethernet
   service-policy egress-child
                                                     encapsulation dot1q 2
class efp2
                                                     bridge-domain 2
  shape average 300m
   service-policy egress-child
```


Example: Implementing hierarchical QoS: NCS 500 (XR)

'traffic-class' is set using ingress-policy

```
class-map match-any tc1
                                                    shape average 300 mbps
match traffic-class 1
                                                   end-policy-map
policy-map egress-child
class tc1
                                                  policy-map grand-parent
  shape average percent 30
                                                   class class-default
 priority level 1
                                                    shape average 800 mbps
 class class-default
                                                   end-policy-map
end-policy-map
                                                  interface GigabitEthernet0/0/0/2
                                                   service-policy output grand-parent
policy-map egress-efp1
                                                   negotiation auto
class class-default
 service-policy egress-child
                                                  interface GigabitEthernet0/0/0/2.1 12transport
  shape average 200 mbps
                                                   encapsulation dot1q 1
                                                   service-policy output egress-efp1
end-policy-map
                                                  interface GigabitEthernet0/0/0/2.2 12transport
                                                   encapsulation dot1g 2
                                                   service-policy output egress-efp2
policy-map egress-efp2
class class-default
  service-policy egress-child
```

Implementing QoS Short-Pipe: ASR 920/RSP2 (XE)

- Egress policy can match dscp / precedence directly
- Egress queuing is based on dscp / precedence

```
class-map match-any dscp_ef
  match dscp ef

policy-map egress-child
  class dscp_ef
  shape average percent 30
  queue-limit 20000 us
!
  class class-default
!
  end-policy-map
!
```


Implementing QoS Short-Pipe: NCS 500 (XR)

- Ingress policy uses mpls-disposition to match dscp /precedence
- 'traffic-class' is set using ingress-policy
- Egress queuing is based on traffic-class match (tc=map[dscp])

```
class-map match-any child pipe
                                        class-map match-any tc5
match dscp ef
                                         match traffic-class 5
end-class-map
                                         end-class-map
class-map match-any in pipe
                                        policy-map egress-child
                                         class tc5
match mpls disposition class-map
                                          shape average percent 30
child pipe
                                          queue-limit 20ms
 end-class-map
                                         class class-default
policy-map ingress-classifier
                                         end-policy-map
class in pipe
set traffic-class 5
```

Summary

Summary

- QoS Requirements for Access
 - Police/shape/schedule
 - Hierarchy
- How NCS 500 Delivers QoS
 - Police & Remark on ingress
 - Shape/Schedule and remark on egress
 - Multiple levels of hierarchy
- Compared to ASR900
 - QoS delivery is intact
 - Change in configuration/implementation due to ASIC/OS difference

Session Takeaway

You can simply deliver QoS in your access network with NCS 500 !!

Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events
 Mobile App or by logging in to the Content
 Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at <u>ciscolive.com</u>.

Continue your education

illilli CISCO

Thank you

cisco live!

You make possible

Appendix

Guaranteed Service Rate with Weight


```
policy-map gsr bwr
 class cos1
  shape average percent 40
  queue-limit 1 bytes
 priority level 1
 class cos2
 bandwidth remaining percent 50
 bandwidth percent 20
 class cos3
 bandwidth remaining percent 20
 bandwidth percent 10
 class class-default
 end-policy-map
```

- Bandwidth remaining assigns weight for available bw sharing
- Both BW and BWR in a single policy map is not supported in HQoS mode

Note: all traffic profile explained assuming a 1Gbps reference BW

Parent Conform Aware-Ingress Policing

- ∫child CIR <= Parent CIR
- Σchild CIR+ Σchild EIR > Parent CIR


```
policy-map parent-policer
 class class-default
  service-policy child-policer
 police rate 30 mbps
 end-policy-map
policy-map child-policer
 class cos3
 police rate 10 mbps peak-rate 30 mbps
class cos4
 police rate 15 mbps peak-rate 30 mbps
 class class-default
 police rate 5 mbps peak-rate 30 mbps
 end-policy-map
hw-module profile gos conform-aware-policer
```

Managing Priority Multicast

You make possible