1. Devise the update rule for minimizing $f(x) = (mox(0, x) - \frac{1}{2})^2$ using gradient descent. Roughly, when will gradient descent succeed or fail? (based on where you Start and Step 5122) D Praw the plot for $f(x) = (mox(0,x) - \frac{1}{2})$ $= \int \frac{1}{4}, \quad x \leq 0$ $(x - \frac{1}{2})^2, \quad x > 0$ 2 Compute ス 3 $\chi_o \leq 0$ will fail because it always get o gradient. $\mathcal{L}_{n+1} = \chi_n - \eta \cdot \nabla$ X0>0 Xny = Xn - 7. (2x-1) Step size need to be reasonablely small. Otherwise, it will diverge. Let's say $\chi_0 = \frac{1}{4}$ $\chi_1 = \frac{1}{4} - 1 \cdot (-\frac{1}{2}) = \frac{3}{4}$, $\chi_2 = \frac{3}{4} - 1 \cdot (\frac{3}{4} \times 2 - 1) = \frac{1}{4}$ X will be trapped in 4 & 4 n = 0.0

2. Given a data set A, under what circumstances will its projection onto
its principal components equal its projection on
1. Right singular vectors A man
2. Left Singular Vectors. A nam
In PCA, we find the principal components by calculating the
eigendecomposition of ATA or AAT given a data set A.
If A is $m \times n$ ATA \longrightarrow sample povariance matrix. Sample features $n \times n$ Sample povariance matrix.
If A is now AAT
Infly might
If A:s nxm. AAT. $n \times n$ Reft right $A^{T}A = VS(U^{T}U)SV^{T} = VS^{2}V^{T}$ right singular vector
$AA^{T} = u s v^{T} v u^{T} = u s^{2} u^{T} \qquad left \qquad \cdots$
3. Let 5 be a set of documents and let T be set of terms. Suppose
3. Let 5 be a set of documents and let 1 be set of terms. Suppose
that C is a binary term-document incidence matrix. (So entry (i.j. > is 1
if term i appear in document j and o otherwise).
What do the entries of CTC represent? Dimension of C: # term x # docs.
1) Vimension of C: # term x # docs.
V Principal C C C
$C^{T}C(x,j) = ith row of C', john column of C$
= i sh oolum of C · j sh oolum of C .
column k of C means of each term is in doc k.
$= \# \text{ shared terms in doc i } \text{\mathcal{A}_{j}.}$ If $i=1$, $i=1$ terms in $i=1$

4. How did we derive the equations for simple linear regression from class.
Page 19-20 from CS 378H.
Single variable $\beta_1 = \frac{\overline{x} + \overline{x} \overline{y}}{\overline{x}^2 - (\overline{x})^2} = \frac{Cov(x, y)}{Var(x)}$
$\beta_{\circ} = \overline{\gamma} - \beta_{\circ} \overline{x}$
Multiple - Variable Case.
X mxn. g & R. M. Goal: minimize X · W - z -
Normal Equation $w = (x^Tx)^T x^Ty$. $O(n^3 + mn^2)$
Take gradient to 11 x w-y112 with respect to w.
$\nabla = 2(X \cdot W - Y)^{T} \cdot X = D$ $\underline{mxn \cdot nx } \qquad mxn$
$m_{x} \cdot n_{x}$
$\frac{1}{(x \cdot w)^{T} \cdot X} = 2y^{T} \cdot X$
$(x^{T}x)^{-1} X^{T} X W = X^{T}y$
$w = (x^{T}x)^{T} x^{T}y.$
5. Why can you assume without loss of generality that a
mistake - bounded learner only updates its state when it makes
a mistalee ?
Re-ordering the samples
No matter you repolate the state or not when you predict it right.
It always need to make t mistakes to ensure no mistakes in future.
So updating its State when predicting right is redundant.

b. You are given a	data set with	m toints and	an algorithm
that satisfies the weak-			
classifier with accuracy 60%			
Weak-learning algorithm can			
construct a classifier that			
bits and is correct on	every data point	in the data	n set.
(You may assume m is	very large).	Trainning	
What's the size of your	- final classifier?		
T		E 4 m.	→ 0
Adaboust.			
After Titerations of	the algorithm , -2Ty²	the error of	hfinal =
After T iterations of $MAJ(h_1, \dots h_T)$ is at Najorry	most e -	7	7/2
0			
makes the emor of h	final at most		
Since m 26 Venu	large all	L correct me	eans
Since m :s very	(vings)		
W = 1- E & 1	Tz logi	m) Ollo	e(m)
7 = 0.		5 9 5	
	T > Wy ((m
	7	٤	
	= 209 (m	$\frac{1}{2}$ $\gamma^2 =$	1-8=
	ye ,		
	= (ug(m))		

7. Markov's inequality. [weakest] $ \frac{\forall x \ge 0}{\text{non-negative}} = \frac{E(x)}{a} $
$E(x) = P(x < a) + E(x x < a) + P(x > a) \cdot E(x x > a)$ $E(x) > P(x > a) \cdot E(x x > a) > a \cdot P(x > a)$ $ \geq a.$
Che by shev's Inequality: [X random variable with mean u and variance $p(X-u \ge kT) \le \frac{1}{k^2}$ for any $p>0$. $p(X-u \ge kT) = p(X-u ^2 \ge kT^2) \le \frac{E[(X-u)^2]}{k^2T^2} = \frac{T^2}{k^2T^2} = \frac{1}{k^2}$ Apply Markov inequality $\int_{0}^{\infty} Y = (x-u)^2$ with $\alpha = k^2T$
$X = (x-u)^{2} \alpha = k^{2}\alpha^{2}.$ $Morkov: P(x > \alpha) \leq \frac{E[(x-u)^{2}]}{k^{2}\alpha^{2}} = \frac{\sigma^{2}}{k^{2}\sigma^{2}} = \frac{1}{k^{2}\sigma^{2}}$
Chernoff Bounds (Strongest) $Pr(X \ge \alpha) = Pr(e^{t \cdot X} \ge e^{t \cdot \alpha}) \in \frac{E(e^{t \cdot X})}{e^{t \cdot \alpha}}$