

Lecture outline . . .

- Advanced Workflows
- Artificial Neural Networks (ANN)
- Convolutional Neural Networks (CNN)
- Long Short-Term Memory Networks (LSTM)

Introduction

Data Analytics

Inferential Methods

Predictive Methods

Advanced Methods

Conclusions

Other Resources:

 Statistical Learning, Dimensional Reduction and Decision Tree

Goals of This Lecture

- Build awareness.
- Show opportunities in subsurface modeling with machine learning.

Lecture outline . . .

Advanced Workflows

Introduction

Data Analytics

Inferential Methods

Predictive Methods

Advanced Methods

Conclusions

Machine Learning for Subsurface Modeling

- A set of powerful machine learning methods to support subsurface modeling with initial workflows.
- We are actively working in this area.
- Concepts are represented in a simplified manner.
- We have workflows available.

Methods Covered:

- Artificial Neural Networks (ANN)
- Convolutional Neural Networks (CNN)
- Deep Convolutional Generative Adversarial Networks (DCGANs)

Lecture outline . . .

- Advanced Workflows
- Artificial Neural Networks (ANN)

Introduction

Data Analytics

Inferential Methods

Predictive Methods

Advanced Methods

Conclusions

- Mimic the human brain for pattern recognition
- A set of interconnected nodes, organized into layers
- Nodes fire when their input exceeds a threshold, activation function
- Each data-to-node or node-to-node path has weights
- Weights and activation functions are trained to improve accuracy

- As the number of nodes increases along with the number of node layers and interconnections, more complicated predictions are possible.
- Complicated activation functions and signals are also possible.
- These are very parameter rich, complicated models with low model bias but high model variance.
- Require more training data.
- Deep learning simply means more than one hidden layer!

Fully connected neural net diagram from https://www.dspguide.com/ch26/2.htm

- Demonstrate neural nets with MPS training images and simulated models
- Train a neural net to determine the TI that resulted in the current simulated model

- Generate TIs with 9 different setting (4 channels, 4 lobate shapes, and 1 circular sand body)
- Realize 1,000 models each from different Tis
- Label their realization with the related Ti
- Construct Neural Networks (ANN)
 - Input: reservoir (facies) model
 - output: probability to be realized from each TI (different geo. set)

- Modified National Institute of Standards and Technology database
- 60,000 training and 10,000 testing images of digits with labels

Optical digit recognition is an artificial neural net

MNIST image from https://upload.wikimedia.org/wikipedia/commons/2/27/MnistExamples.png

- Modified National Institute of Standards and Technology database
- 60,000 training and 10,000 testing images of digits with labels

Training

4

Correct Classification

Incorrect Classification

Realizations

- Structure of the artificial neural network.
- Note, the image is 'flattened' to a list of pixel values.

- The training and testing accuracy vs. number of training cycles, Epoch
- Levels off at about 78% accuracy

Correct Identification

Incorrect Identification

Lecture outline . . .

 Convolutional Neural Networks (CNN) Introduction

Data Analytics

Inferential Methods

Predictive Methods

Advanced Methods

Conclusions

- A type of deep neural net used for image data, 2D information
- Hierarchical approach segmenting image into smaller simpler patterns
- Inspired by visual cortex of animals
- Convolution step identifies features with trained filters
- Subsampling extracts features to a lower dimensional summary

- Could we improve the previous result by moving to convolutional neural nets.
- Here's the design of a CNN to determine the probability of training image 1-9.

- The training and testing accuracy vs. number of training cycles, Epoch
- Achieved close to 100% accuracy

Correct Identification

Incorrect Identification

- Can we build reservoir models with convolutional neural nets?
 - We built a Deep Convolutional Generative Adversarial Network (DCGAN)
 - Generative model works to fool the discriminative model with fake models.

DCGAN workflow by Radford et al., 2015.

Can explore the space of uncertainty along a continuous manifold.

A latent reservoir manifold based on a single paramter

Filling In Missing Spatial Information

- Semantic inpainting algorithm (Yeh et al., 2015).
- Using conceptual and perceptual information

Examples of semantic image inpainting with DCGAN (Yeh et al., 2016)

Conditioning to Well Data?

- Remove model around data
- Use conceptual (model around mask) and perceptual (model elsewhere to fill in missing model consistent with data

Lecture outline . . .

Long Short-Term
Memory Networks

Introduction

Data Analytics

Inferential Methods

Predictive Methods

Advanced Methods

Conclusions

Long Short-Term Memory Networks

Neural networks often don't perform well with time series data as they do not hold memory.

 The Long Short-Term Memory (LSTM) Networks approach combine previous long and short term experience.

Workflow developed by Azor Nwachukwu, PhD student at The University of Texas at Austin, image from Géron, 2017.

Long Short-Term Memory Networks

Prediction of producer flow rates based on complicated interactions of injectors.

Train with 2500 days and predict future 100 days.

Injection Rates Over Train and Test Intervals

Production Over Train and Modeled Over Test

Workflow developed by Azor Nwachukwu, PhD student at The University of Texas at Austin.

Advanced Machine Learning Applications

Topic	Application to Subsurface Modeling
Support Vector Machines	Powerful method for developing segmentation decision rules.
	Use to maximize differentiation in space, given labeled training data.
Artificial Neural Nets	Flexible prediction models.
	Use to formulate complicated decision rules, but loses spatial context, and very parameter rich.
Convolutional Neural Nets	Flexible prediction models accounting for 2D hierarchical arrangements and features.
	Use to explore, test and build models.
Long Short-Term Memory Networks	Flexible prediction models accounting for 1D arrangements and features while accounting for memory.
	Use to explore, test and build models predicting time series.

Lecture outline . . .

- Advanced Workflows
- Artificial Neural Networks (ANN)
- Convolutional Neural Networks (CNN)
- Long Short-Term Memory Networks (LSTM)

Introduction

Data Analytics

Inferential Methods

Predictive Methods

Advanced Methods

Conclusions