Kolokwium-1 Zestaw B

Efekty	E 1	E2	E3	E 4	E 5

- 1. Zestaw B dla parzystych numerów z listy grupy.
- 2. Odpowiedzi w formacie: nazwisko-k2-inf.pdf wysyłać na e-mail Mykola.Bratiichuk@polsl.pl.

NAZWISKO	

Wysłać do 27.06.2021

1. Mamy dwa estymatory dla parametru $m = \mathbf{E}\xi$ na podstawie próbki x_1, x_2, x_3

$$m_1 = \frac{2x_1 + x_2 + x_3}{4}, \qquad m_2 = \frac{x_1 - x_2 + 2x_3}{2}.$$

Który z nich jest lepszy?

- 2. Znaleźć ocenę dla parametru λ populacji generalnej ξ o gęstości $f(x)=\frac{\lambda^3 x^2}{2}e^{-\lambda x}, x>0.$
 - a) Metodą podstawienia, jeśli wiadomo, że
 $\mathbf{D}^2 \xi = \frac{3}{\lambda^2}.$
 - b) Metodą największej wiarygodności.

3. Dla cechy ξ z rozkładem N(m,25) mamy próbkę o liczebności n=25. Wyznaczyć przedział ufności dla wartości m ze współczynnikiem ufności 0,99, jeśli wiadomo, że x(n)=16,8.

- 4. W rezultacie pomiarów pewnej cechy ξ otrzymano następujące wyniki: $x_1=8,\; x_2=9,\; x_3=12,\; x_4=11.$
 - a) Znaleźc dystrybu
antę empiryczną dla cechy ξ .
 - b) Policzyć współczynnik zmienności dla tej cechy i znaleźć dla niej typowy obszar zmienności.
 - c) Zakładając, ze wynik ξ posiada rozkład $\xi \in N(m, \sigma^2)$ zweryfikować dla cechy ξ poziomie $\alpha = 0.2$ hipotezę $H_0: m = 12$ przeciw alternatywy $H_1: m \neq 12$.

5. Dla populacji generalnej ξ mamy probkę $-1;\ 4;\ 6;\ 5;\ 0;\ 4;\ 3;\ 5;\ 1;\ 7.$ Znaleźć kwartyle i typowy obszar zmienności dla ξ .