Wei Qi Yan

AUT, New Zealand

July 26, 2024

Table of Contents

1 Metric Space

2 Normed Space

- 3 Banach Space
- 4 Hilbert Space

The concept distance or metric is a measure of how elements are close to each other.

Metric

A distance (or metric) on a metric space X is a function:

$$d: \mathbf{X}^2 \to \mathbb{R}^+; (x, y) \mapsto d(x, y) = ||x - y||, x, y, z \in \mathbf{X}.$$

- Triangle inequality: $d(x,y) \le d(x,z) + d(z,y)$
- Symmetry: d(x, y) = d(y, x)
- Equality: $d(x, y) = 0 \Leftrightarrow x = y$

Therefore,

- $d(x,y) \ge |d(x,z) d(z,y)|$
- $x_1, x_2, \dots, x_n \in \mathbf{X}, d(x_1, x_n) \le \sum_{i=1}^{n-1} d(x_i, x_{i+1})$

Convergence

A sequence x_1, \dots, x_n in a metric space **X** converges to a limit x, written as $\lim_{n\to\infty} x_n = x$ if $\forall \varepsilon > 0, \exists N, n \gg N \Rightarrow x_n \in B_{\varepsilon}(x)$.

- In a metric space, a sequence x_1, \dots, x_n can only converge to one limit.
- Any neighborhood of x contains all the sequences from some point onwards.
- The sequence points get arbitrarily close to the limit.
- If $x_n \to x$ and $x_n \in \mathbf{A}$, then $x \in \bar{\mathbf{A}}$ (closed set).
- A sequence which does not converge is said to diverge.

Continuity

A function $f: \mathbf{X} \to \mathbf{Y}$ between metric spaces is continuous if it preserves convergence,

$$x_n \to x \in \mathbf{X} \Rightarrow f(x_n) \to f(x) \in \mathbf{Y}.$$

- Continuous $\Leftrightarrow \forall x \in \mathbf{X}, \forall \varepsilon > 0, \exists \delta > 0, d_{\mathbf{X}}(x, x') < \delta, d_{\mathbf{Y}}(f(x), f(x')) < \varepsilon.$
- Continuous $\Leftrightarrow \forall \mathbf{V} \subseteq \mathbf{Y}$ is open set, $f^{-1}(\mathbf{V}) \subseteq \mathbf{X}$ is open set.
- Continuous $\Leftrightarrow \lim_{x'\to x} f(x') = f(x), \forall x \in \mathbf{X}.$

Completeness

A Cauchy sequence is the one that $d(x_n, x_m) \to 0$ as $n, m \to \infty$, namely,

 $\forall \varepsilon > 0, \exists N, \text{ if } n, m \geq N, \text{ then } d(x_n, x_m) < \varepsilon.$

- Two sequences x_1, \dots, x_n and y_1, \dots, y_n are defined to be asymptotic when $d(x_n, y_n) \to 0$ as $n \to \infty$.
- A sequence x_1, \dots, x_n is Cauchy, if and only if (i.e., iff), every subsequence of x'_1, \dots, x'_m is asymptotic to $x_1, \dots, x_n, m \leq n$.
- For x_1, \dots, x_n being asymptotic to y_1, \dots, y_n , if x_1, \dots, x_n is Cauchy then so is y_1, \dots, y_n ; if x_1, \dots, x_n converges to x, then so does y_1, \dots, y_n . The asymptotic is an equivalence relationship.

Complete Metric Space

A metric space is complete if every Cauchy sequence in it converges.

- The real number space \mathbb{R} is complete.
- Every metric space **X** is complete.
- Let X and Y be complete metric spaces, then, a subset $F \subset X$ is complete $\Leftrightarrow F \subset X$ is closed.
- \bullet **X** \times **Y** is complete.
- A uniformly continuous function maps any Cauchy sequence to a Cauchy sequence.
- A function is uniformly continuous, where $\delta > 0$ is independent on x.
- A function $f: \mathbf{X} \to \mathbf{Y}$ is a Lipschitz map if $\exists c > 0$, $\forall x, x' \in \mathbf{X}$, $d_{\mathbf{Y}}(f(x), f(x')) \leq c \cdot d_{\mathbf{X}}(x, x')$.

Lipschitz Map

A function $f: \mathbf{X} \to \mathbf{Y}$ is a Lipschitz map if $\exists c > 0, \forall x, x' \in \mathbf{X}, d_{\mathbf{Y}}(f(x), f(x')) \leq c \cdot d_{\mathbf{X}}(x, x').$

- Equivalence (or bi-Lipschitz): If f is bijective, then both f and f^{-1} are Lipschitz.
- Contraction: If it is Lipschitz, then constant 0 < c < 1.
- **Isometry**: If f preserves distances $\forall x, x'$, then $d_{\mathbf{Y}}(f(x), f(x')) = d_{\mathbf{X}}(x, x')$.
- The fixed point theorem: Let $X \neq \emptyset$ be a complete metric space, every contraction map $f : X \mapsto X$ has a unique fixed point x = f(x) and the iteration $x_{n+1} := f(x_n)$ converges to it for any x_0 .

Separable Set

A metric space is separable if it contains a countable dense subset, then $\exists \mathbf{A} \subseteq \mathbf{X}$, \mathbf{A} is countable and $\bar{\mathbf{A}} = \mathbf{X}$.

- Any subset of a separable metric space is separable.
- The product of two separable spaces is separable.
- The image of a separable space under a continuous map is separable.

Bounded Set

A set **B** is bounded if the distance between any two points in the set has an upper bound, i.e., $\exists r > 0, \, \forall x,y \in \mathbf{B}, \, d(x,y) \leq r$. The least upper bound is called the diameter of the set

$$diam \mathbf{B} := \sup_{x,y \in \mathbf{B}} d(x,y).$$

Bounded Set

A set **B** is bounded if the distance between any two points in the set has an upper bound. $\exists r > 0, \forall x, y \in \mathbf{B}, d(x, y) \leq r$. The least upper bound is called the diameter of the set

$$diam \mathbf{B} := \sup_{x,y \in \mathbf{B}} d(x,y).$$

- Any subset of a bounded set is bounded.
- The union of a finite number of bounded sets is bounded,
- A subset $\mathbf{B} \subseteq \mathbf{X}$ is totally bounded if it can be covered by a finite number of ε -balls, for small radii ε , $\mathbf{B} \subseteq \bigcup_{n=1}^{N} \mathbf{B}_{\varepsilon}(a_n)$.
- $oldsymbol{\bullet}$ A set **B** is totally bounded means every sequence in **B** has a Cauchy subsequence.
- A uniformly continuous function maps totally bounded sets to totally bounded sets.

Compact Set

A set **K** is compact if given any cover of balls, there is a finite sub-collection of them that still cover the set (a subcover) $K \subseteq \bigcup_i B_{\varepsilon_i}(a_i) \Rightarrow K \subseteq \bigcup_{n=1}^N B_{\varepsilon_{i_n}}(a_{i_n}).$

- A set is compact means any open cover of it has a finite subcover. Compact sets are closed.
- A closed subset of a compact set is compact.
- A finite union of compact sets is compact.
- Continuous functions map compact sets to compact sets.
- Continuous functions preserve compactness.
- Uniformly continuous functions preserve total boundedness.
- Lipschitz continuous functions preserve boundedness.
- A set K is compact means K is complete and totally bounded.

Questions?

Vector Space

Vector Space

- A vector space V over a field \mathbb{F} is a set on which are defined an operation of vector addition $+: V \to V$ satisfying associativity, commutativity, zero, and inverse axioms.
- For every $x, y, z \in \mathbf{V}$, x + (y + z) = (x + y) + z; x + y = y + x; 0 + x = x; x + (-x) = 0.
- An operation of scalar multiplication $\mathbb{F} \times \mathbf{V} \to \mathbf{V}$ satisfies the distributive laws. Namely, for every $\lambda, \mu \in \mathbb{F}$, $(\lambda \mu) x = \lambda(\mu x)$; 1x = x; $\lambda(x + y) = \lambda x + \lambda y$; $(\lambda + \mu) x = \lambda x + \mu x$.
- Every vector space has a basis.

Normed Space

Norm

A norm on a real vector space **X** is a function: $\mathbf{X} \to \mathbb{R}$, $\mathbf{u} \mapsto \|\mathbf{u}\|$, satisfies:

- $\bullet \ \forall \ \mathbf{u} \in \mathbf{X}, \ \|\mathbf{u}\| \ge 0.$
- $\forall \mathbf{u} \in \mathbf{X}, \ \alpha \in \mathbb{R}, \ \|\alpha \mathbf{u}\| = |\alpha| \|\mathbf{u}\|.$
- $\forall \mathbf{u}, \mathbf{v} \in \mathbf{X}, \|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$. (Minkowski's inequality)

Normed Space

A normed space **X** is a vector space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} with a function called the norm $\|\cdot\|: \mathbf{X} \mapsto \mathbb{R}$, for any $x, y \in \mathbf{X}$, $\lambda \in \mathbb{F}$, $\|x + y\| \le \|x\| + \|y\|$, $\|\lambda x\| = \lambda \|x\|$, $\|x\| = 0 \Leftrightarrow x = 0$.

- $\|x y\| \ge \|x\| \|y\|.$
- $||x_1 + x_2 + \dots + x_n|| \le ||x_1|| + ||x_2|| + \dots + ||x_n||$.

Normed Space

Given

$$\|(a_n)\|_{\mathcal{L}^2} = \sqrt{\sum_{n=0}^{\infty} \|a_n\|^2}$$

and

$$\|(b_n)\|_{\mathcal{L}^2} = \sqrt{\sum_{n=0}^{\infty} \|b_n\|^2}$$

Cauchy's Inequality

$$\left|\sum_{n=0}^{\infty} a_n b_n\right| \le \|(a_n)\|_{\mathcal{L}^2} \|(b_n)\|_{\mathcal{L}^2}$$

$$\sqrt{\sum_{n=0}^{\infty} \|a_n + b_n\|^2} \le \|(a_n)\|_{\mathcal{L}^2} + \|(b_n)\|_{\mathcal{L}^2}$$

Normed Space

Norm Properties

- Vector addition, scalar multiplication, and norm are continuous.
- If x_1, \dots, x_n and y_1, \dots, y_n converge, then $x_n + y_n$, λx_n , and $||x_n||$ converge, namely,

$$\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n$$

$$\lim_{n \to \infty} (\lambda x_n) = \lambda \lim_{n \to \infty} x_n$$

$$\lim_{n \to \infty} ||x_n|| = ||\lim_{n \to \infty} x_n||$$

Questions?

Banach Space

A Banach space is a complete normed space. In a Banach space \mathbf{X} , the following statements are equivalent:

$$\sum_{n=0}^{\infty} \mathbf{u}_n \le \infty$$

and

$$\lim_{j \to \infty} \sum_{n=i+1}^{k} \mathbf{u}_n = 0$$

where k > n.

- If the induced metric d(x,y) := ||x-y|| is complete, the normed space is called a Banach space.
- Every normed space can be completed as a Banach space.
- A normed space is separable, iff there is a countable subset.

- If the metric d(x,y) := ||x-y|| is complete, the normed space is called a Banach space.
- A linear mapping between Banach spaces is called compact if it maps bounded sets to totally bounded sets.
- Compact linear maps are continuous (originally called completely continuous).
- If T and S are compact operators, then so are T+S and λT .
- The identity map $I: X \to X$ is not compact when the Banach space is infinite dimensional.
- It is enough to show that T maps the unit ball to a totally bounded set for T to be compact.

- A linear mapping between Banach spaces is called compact if it maps bounded sets to totally bounded sets.
- If T is compact and S continuous linear, then ST and TS are compact.
- If T_n are compact and $T_n \to T$, then T is compact.
- Convergence in norm: $T_n \to T \Leftrightarrow ||T_n T|| \to 0$.
- Strong convergence: $T_n x \to T x, \forall x \in \mathbf{X} \Leftrightarrow ||T_n x T x||_{\mathbf{Y}} \to 0, \forall x \in \mathbf{X}.$
- Weak convergence: $T_n \to T \Leftrightarrow \phi T_n x \to \phi T x, \forall x \in \mathbf{X}, \phi \in \mathbf{Y}.$
- Uniform Bounded Theorem: A Banach space **X** and $T_i \in B(\mathbf{X}, \mathbf{Y}), \forall i, ||T_i|| \leq C, C \geq 0.$
- If $T_n \in B(\mathbf{X}, \mathbf{Y})$, $T_n x \to T(x)$, then T is linear and continuous, $||T|| \le \liminf ||T_n||$.

Hahn-Banach Theorem: Analytic Version

Let **V** be a normed linear space over \mathbb{C} , let **W** be a subspace of **V**, let $g: \mathbf{W} \to \mathbb{C}$ be a continuous linear functional on **W**, then, there exists a continuous linear extension $f: \mathbf{V} \to \mathbb{C}$ and $\|f\|_{\mathbf{V}^*} = \|g\|_{\mathbf{W}^*}$.

Hahn-Banach Theorem: Geometric Version

Let **A** and **B** be two nonempty and disjoint convex subsets of a real normed linear space **V**. If **A** is open, there exists a closed hyperplane which separates **A** and **B**, i.e., there exists $f \in \mathbf{V}^*$ and $\alpha \in \mathbb{R}$ such that $f(x) \leq \alpha \leq f(y), \forall x \in \mathbf{X}, y \in \mathbf{Y}$.

Questions?

Hilbert Spaces

Hilbert space is a Banach space whose norm comes from a scalar (inner or dot) inner product: $\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2$, $\mathbf{v} = (v_1, v_2) \in \mathbb{R}^2$, $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2 = |\mathbf{u}| \cdot |\mathbf{v}| \cos(\angle(\mathbf{u}, \mathbf{v}))$.

Hilbert spaces

A scalar product on the (real) vector space \mathbf{X} is a function: $(\mathbf{u}, \mathbf{v}) \in \mathbf{X} \times \mathbf{X} \to \mathbb{R}, (\mathbf{u}, \mathbf{v}) \mapsto (\mathbf{u} | \mathbf{v}).$

- $\forall \mathbf{u} \in \mathbf{X}, (\mathbf{u}|\mathbf{u}) \geq 0.$
- $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{X}, \ \alpha, \beta \in \mathbb{R}, \ (\alpha \mathbf{u} + \beta \mathbf{v}) | \mathbf{w} = \alpha(\mathbf{u} | \mathbf{w}) + \beta(\mathbf{v} | \mathbf{w}).$ $\|\mathbf{u}\| = \sqrt{(\mathbf{u} | \mathbf{u})}.$

A Hilbert space is an inner product space which is complete as a metric space.

Hilbert Spaces

Inner Product

An inner product on a vector space X is a positive-definite sesquilinear form $\langle \cdot, \cdot \rangle : \mathbf{X} \times \mathbf{X} : \mapsto \mathbb{F}$. For $x, y, z \in \mathbf{X}$, $\lambda \in \mathbb{F}$,

- $< x, y + z > = < x, y > + < x, z >; < x, \lambda y > = \lambda < x, y >; < x, y > = < x, y >; < x, x > \geq 0; < x, x > = 0 \Rightarrow x = 0.$
- Cauchy-Schwarz inequality: $|\langle x, y \rangle| \le ||x|| ||y||$.
- The inner product is continuous: $\lim_{n\to\infty} \langle x_n, y_n \rangle = \langle \lim_{n\to\infty} x_n, \lim_{n\to\infty} y_n \rangle$.
- A norm is induced from an inner product, iff it satisfies, for all vectors x, y, $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$.

A Hilbert space is an inner product space which is complete as a metric space.

Hilbert Spaces

Orthogonal Spaces

The orthogonal spaces of subsets $\mathbf{A} \subseteq \mathbf{X}$, $\mathbf{A}^{\perp} := \{ \forall x \in X, < x, a >= 0, \forall a \in \mathbf{A} \}$, satisfy, $\mathbf{A} \cap \mathbf{A}^{\perp} \subseteq 0$; $\mathbf{A} \subseteq \mathbf{B} \Leftrightarrow \mathbf{B}^{\perp} \subseteq \mathbf{A}^{\perp}$; $\mathbf{A} \subseteq \mathbf{A}^{\perp\perp}$; \mathbf{A}^{\perp} is a closed subspace of \mathbf{X} .

- If **M** is a closed convex subset of a Hilbert space **H**, then any point in **H** has a unique point in **M** which is closest to it (Least Squares Approximation).
- An orthonormal basis of a Hilbert space **H** is a set of orthonormal vectors **E** whose span is dense: $\forall e_i, e_j \in \mathbf{E}, \langle e_i, e_j \rangle = \delta_{ij}$.
- Parseval's identity (Fourier Series): If $x = \sum \alpha_i e_i$, $y = \sum \beta_i e_i$, $\{e_i\}$ is orthonormal, then $x, y \in \mathbf{H}$, $\langle x, y \rangle = \sum \langle x, e_i \rangle \langle e_i, y \rangle$, $\sum |\langle x, e_i \rangle|^2 = ||x||^2$.
- Bessel's Inequality: $x = \sum \alpha_i e_i$, $\sum |\langle x, e_i \rangle|^2 \le ||x||^2$.

Adjoint

The adjoint of an operator $T: \mathbf{X} \to \mathbf{Y}$ between Hilbert spaces, is the operator $T^*: \mathbf{Y} \to \mathbf{X}$ uniquely defined by the relation, i.e., $\forall x \in \mathbf{X}, y \in \mathbf{Y}, \langle Tx, y \rangle = \langle y, Tx \rangle$.

Remarks:

- $(S+T)^* = S^* + T^*, (ST)^* = T^*S^*; TT^* = I; T^{**} = T.$
- $\bullet \ (T^*y)^*x = y^*Tx$

Dual Relationship

Dual operator $T: \mathbf{X} \to \mathbf{Y}, T^{\tau}: \mathbf{Y}^* \to \mathbf{X}^*$ is uniquely defined by the relation, i.e., $\forall x \in \mathbf{X}, \phi \in \mathbf{Y}^*, (T^{\tau}\phi)x = \phi(Tx)$.

Remarks:

• $(S+T)^{\tau} = S^{\tau} + T^{\tau}, (ST)^{\tau} = T^{\tau}S^{\tau}; T^{\tau\tau} = T, (\lambda T)^{\tau} = \lambda T^{\tau}, ||T^{\tau}|| = ||T||^{\tau}.$

References

- S. Kesavan (2009) Functional Analysis, Hindustan Book Agency, India.
- J. Muscat (2014) Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras. Springer.
- M. Willem (2007) Functional Analysis Fundamentals and Applications. Springer.

Questions?

