KJG

Równania różniczkowe zwyczajne

Opracowanie zagadnień na egzamin

Wersja z 19 grudnia 2018

${ m Spis}$ $'$	EŚCI	2

Spis treści	
1. Twierdzenia .	

1.	Twierdzenia	·
2.	Zagadnienia	
	2.1. Istnienie i jednoznaczność rozwiązań, rozwiązania wysycone	:
3.	Przykłady	:

1. Twierdzenia 3

1. Twierdzenia

2. Zagadnienia

2.1. Istnienie i jednoznaczność rozwiązań, rozwiązania wysycone

Twierdzenie 2.1.1 (Peano). Niech y' = f(y, t), gdzie $y(t_0) = y_0$ oraz

$$f : H = \overline{B}(y_0, b) \times [t_0 - a, t_0 + a] \longrightarrow \mathbb{R}^m.$$

Załóżmy, że funkcja f jest ciągła i oznaczmy

$$M = \sup \{ ||f(y,t)|| : (y,t) \in H \}.$$

Wówczas dla $\alpha = \min(a, b/M)$ istnieje rozwiązanie y(t) określone na przedziale $[t_0 - \alpha, t_0 + \alpha]$, spełniające warunek początkowy $y(t_0) = y_0$.

Twierdzenie 2.1.2 (Picard-Lindelöf). Niech y' = f(y,t), gdzie $y(t_0) = y_0$ oraz

$$f \colon H = \overline{B}(y_0, b) \times [t_0 - a, t_0 + a] \longrightarrow \mathbb{R}^m.$$

Załóżmy, że funkcja f jest ciągła oraz lipszycowska ze względu na y, to znaczy

$$\exists L \ \forall (y_1, t), (y_2, t) \in H \quad \|f(y_1, t) - f(y_2, t)\| \le L \cdot \|y_1 - y_2\|.$$

Oznaczmy ponadto

$$M = \sup \{ \| f(y,t) \| : (y,t) \in H \}.$$

Wówczas dla dowolnego $\alpha < \min(a,b/M,1/L)$ istnieje dokładnie jedno rozwiązanie zagadnienia Cauchy'ego z warunkiem początkowym $y(t_0) = y_0$ określone na przedziale $[t_0 - \alpha, t_0 + \alpha]$.

Dowód. Jako ćwiczenie.

3. Przykłady