

Low Cost, Low Noise, CMOS, **RRO Operational Amplifiers**

AD8691/AD8692/AD8694

Data Sheet

FEATURES

Offset voltage: 400 µV typical

Low offset voltage drift: 6 µV/°C maximum (AD8692/AD8694)

Very low input bias currents: 1 pA maximum

Low noise: 8 nV/√Hz Low distortion: 0.0006% Wide bandwidth: 10 MHz

Unity-gain stable

Single-supply operation: 2.7 V to 6 V **Qualified for automotive applications**

APPLICATIONS

Photodiode amplification Battery-powered instrumentation Medical instruments Multipole filters Sensors Portable audio devices

GENERAL DESCRIPTION

The AD8691, AD8692, and AD8694 are low cost, single, dual, and quad rail-to-rail output, single-supply amplifiers featuring low offset and input voltages, low current noise, and wide signal bandwidth. The combination of low offset, low noise, very low input bias currents, and high speed make these amplifiers useful in a wide variety of applications. Filters, integrators, photodiode amplifiers, and high impedance sensors all benefit from this combination of performance features. Audio and other ac applications benefit from the wide bandwidth and low distortion of these devices.

Applications for these amplifiers include power amplifier (PA) controls, laser diode control loops, portable and loop-powered instrumentation, audio amplification for portable devices, and ASIC input and output amplifiers.

The small SC70 and TSOT package options for the AD8691 allow it to be placed next to sensors, thereby reducing external noise pickup.

The AD8691, AD8692, and AD8694 are specified over the extended industrial temperature range of -40°C to +125°C. The AD8691 single is available in 5-lead SC70 and 5-lead TSOT packages. The AD8692 dual is available in 8-lead MSOP and narrow SOIC surface-mount packages. The AD8694 quad is available in 14-lead TSSOP and narrow 14-lead SOIC packages.

See the Ordering Guide section for automotive grades.

PIN CONFIGURATIONS

OUT A 1 8 V+ -IN A 2 7 OUT B –IN B +IN A TOP VIEW

Figure 3. 8-Lead SOIC and 8-Lead MSOP

Figure 4. 14-Lead SOIC and 14-Lead TSSOP

AD8691/AD8692/AD8694

TABLE OF CONTENTS

Features
Applications1
General Description1
Pin Configurations1
Revision History
Specifications
Electrical Characteristics
REVISION HISTORY
9/13—Rev. E to Rev. F
Changes to Figure 3 and Figure 4
Delete Figure 4 and Figure 5; Renumbered Sequentially 1
Changes to Ordering Guide
8/11—Rev. D to Rev. E
Changes to Figure 20
11/10—Rev. C to Rev. D
Changes to Features Section and General Descriptions
Section1
Updated Outline Dimensions
Changes to Ordering Guide14
Added Automotive Products Section14
5/07—Rev. B to Rev. C
Change to Figure 1
Changes to Large Signal Voltage Gain Values in Table 1
Change to Phase Margin Symbol in Table 1
Change to T _A Value for Table 2
Changes to Large Signal Voltage Gain Values in Table 2
Change to Phase Margin Symbol in Table 2 4
Changes to Table 45
Changes to Outline Dimensions
Changes to Ordering Guide

Absolute Maximum Ratings	
Thermal Characteristics	
ESD Caution	
Typical Performance Characteristics	θ
Outline Dimensions	11
Ordering Guide	14
Automotive Products	14
3/05—Rev. A to Rev. B	
Added AD8694	Universa
1/05—Rev. 0 to Rev. A	
Added AD8691	Universa
Changes to Features	1
Added Figure 1 and Figure 2	1
Changes to Electrical Characteristics	3
Changes to Figure 6 caption	6
Changes to Figure 9	6
Updated Outline Dimensions	11
Changes to Ordering Guide	11

10/04—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

 V_S = 2.7 V, V_{CM} = $V_S/2$, T_A = 25°C, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = -0.3 \text{ V to } +1.6 \text{ V}$		0.4	2.0	mV
		$V_{CM} = -0.1 \text{ V to } +1.6 \text{ V}; -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$			3.0	mV
Input Bias Current	I _B			0.2	1	рА
·		-40 °C < T_A < $+85$ °C			50	рA
		-40°C < T _A < +125°C			260	pA
Input Offset Current	los			0.1	0.5	рA
•		-40°C < T _A < +85°C			20	pA
		-40°C < T _A < +125°C			75	pA
Input Voltage Range		10 0 11/1/125 0	-0.3		+1.6	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.3 \text{ V to } +1.6 \text{ V}$	68	90	11.0	dB
common mode nejection natio	Civilia	$V_{CM} = -0.1 \text{ V to } +1.6 \text{ V}; -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$	60	85		dB
Large Signal Voltage Gain	Avo	VCM = 0.11 V to 11.5 V, 10 C \ 1A \ 1125 C	00	05		GD.
AD8691/AD8692	700	$R_L = 2 k\Omega$, $V_O = 0.5 V$ to 2.2 V	90	250		V/mV
AD8694		$R_L = 2 k\Omega_1$, $V_O = 0.5 V$ to 2.2 V $R_L = 2 k\Omega_2$, $V_O = 0.5 V$ to 2.2 V	60	230		V/mV
Offset Voltage Drift	ΔV _{OS} /ΔΤ	NE - 2 R22, VO - 0.5 V to 2.2 V	00			V/IIIV
AD8691	Δνος/Δ1			2	12	μV/°C
AD8691/AD8694				1.3	6	μV/°C
				1.3	0	μν/ С
INPUT CAPACITANCE				_		_
Common-Mode Input Capacitance	Ссм			5		pF
Differential Input Capacitance	Срм			2.5		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$I_L = 1 \text{ mA}$	2.64	2.66		V
		-40°C < T _A < +125°C	2.6			V
Output Voltage Low	V _{OL}	$I_L = 1 \text{ mA}$		25	40	mV
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$			60	mV
Short-Circuit Current	I _{SC}			±20		mA
Closed-Loop Output Impedance	Z _{оит}	$f = 1 \text{ MHz}, A_V = 1$		12		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 5.5 \text{ V}$	80	95		dB
		-40 °C < T_A < $+125$ °C	75	95		dB
Supply Current/Amplifier	I _{SY}	$V_0 = 0 V$		0.85	0.95	mA
		-40 °C < T_A < $+125$ °C			1.2	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		5		V/µs
Settling Time	ts	To 0.01%		1		μs
Gain Bandwidth Product	GBP			10		MHz
Phase Margin	Ø _m			60		Degree
Total Harmonic Distortion + Noise	THD + N	$G = 1$, $R_L = 600 \Omega$, $f = 1 \text{ kHz}$, $V_O = 250 \text{ mV p-p}$		0.003		%
NOISE PERFORMANCE		, , , , , , , , , , , , , , , , , , , ,				,-
Voltage Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		1.6	3.0	μV p-p
Voltage Noise Density	e _n	f = 1 kHz		8	12	nV/√Hz
voltage Noise Delisity	e _n	f = 10 kHz		6.5	12	nV/√Hz
Current Noise Density		f = 1 kHz		0.05		pA/√Hz
Current Noise Delisity	i _n	1 - 1 KHZ		0.03		hΨ\Λιη

AD8691/AD8692/AD8694

 V_S = 5.0 V, V_{CM} = $V_S/2$, T_A = 25°C, unless otherwise noted.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = -0.3 \text{ V to } +3.9 \text{ V}$		0.4	2.0	mV
		$V_{CM} = -0.1 \text{ V to } +3.9 \text{ V; } -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$			3.0	mV
Input Bias Current	I _B			0.2	1	рА
		-40 °C < T_A < $+85$ °C			50	рА
		-40 °C < T_A < $+125$ °C			260	рА
Input Offset Current	los			0.1	0.5	рА
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			20	рА
		-40 °C < T_A < $+125$ °C			75	pА
Input Voltage Range			-0.3		+3.9	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.3 \text{ V to } +3.9 \text{ V}$	70	95		dB
·		$V_{CM} = -0.1 \text{ V to } +3.9 \text{ V}; -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$	67	95		dB
Large Signal Voltage Gain	A _{VO}	,				
AD8691/AD8692		$V_0 = 0.5 \text{ V to } 4.5 \text{ V}, R_L = 2 \text{ k}\Omega, V_{CM} = 0 \text{ V}$	250	2000		V/mV
AD8694		$V_0 = 0.5 \text{ V to } 4.5 \text{ V}, R_L = 2 \text{ k}\Omega, V_{CM} = 0 \text{ V}$	150			V/mV
Offset Voltage Drift	ΔV _{OS} /ΔΤ					
AD8691	33,			2	12	μV/°C
AD8692/AD8694				1.3	6	μV/°C
INPUT CAPACITANCE				1.5		μν, σ
Common-Mode Input Capacitance	Ссм			5		рF
Differential Input Capacitance	C _{DM}			2.5		pF
OUTPUT CHARACTERISTICS	CDM			2.5		Pi
Output Voltage High	V _{OH}	I _L = 1 mA	4.96	4.98		V
Output voltage riigii	VOH	$I_{\rm L} = 10 \text{mA}$	4.7	4.78		V
		-40°C to +125°C	4.6	7.70		V
Output Voltage Low	V _{OL}	I _I = 1 mA	4.0	20	40	mV
AD8691/AD8692	VOL	$I_{L} = 10 \text{ mA}$		165	210	mV
AD8694		$I_{L} = 10 \text{ mA}$ $I_{L} = 10 \text{ mA}$		185	240	mV
		-40°C to +125°C		103	290	mV
AD8691/AD8692 AD8694		-40°C to +125°C			370	mV
		-40 C t0 +123 C		.00	370	
Short-Circuit Current	I _{SC}	f_1 MU- A _ 1		±80		mA
Closed-Loop Output Impedance	Z _{оит}	f = 1 MHz, A _V = 1		10		Ω
POWER SUPPLY	DCDD	V 27V+-55V	00	0.5		-10
Power Supply Rejection Ratio	PSRR	$V_s = 2.7 \text{ V to } 5.5 \text{ V}$	80	95		dB
C C 1/A 1/C		-40°C < T _A < +125°C	75	95	1.05	dB
Supply Current/Amplifier	I _{SY}	V ₀ = 0 V		0.95	1.05	mA
		-40°C < T _A < +125°C			1.3	mA
DYNAMIC PERFORMANCE	60			_		.,,
Slew Rate	SR	$R_L = 2 k\Omega$		5		V/µs
Settling Time	t _s	To 0.01%		1		μs
Full Power Bandwidth	BW _P	<1% distortion		360		kHz
Gain Bandwidth Product	GBP			10		MHz
Phase Margin	Ø _m			65		Degree
Total Harmonic Distortion + Noise	THD + N	G = 1, $R_L = 600 \Omega$, $f = 1 \text{ kHz}$, $V_O = 1 \text{ V p-p}$		0.0006		%
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		1.6	3.0	μV p-p
Voltage Noise Density	e _n	f = 1 kHz		8	12	nV/√Hz
	en	f = 10 kHz		6.5		nV/√Hz
Current Noise Density	İn	f = 1 kHz		0.05		pA/√Hz

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Parameter	Rating
Supply Voltage	6V
Input Voltage	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
Differential Input Voltage	±6 V
Output Short-Circuit Duration to GND	Observe derating curves
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	-40°C to +125°C
Junction Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

 θ_{JA} is specified for the worst-case conditions, that is, the device soldered in the circuit board for surface-mount packages.

Table 4. Thermal Resistance

Package Type	θја	Ө лс	Unit
8-Lead MSOP (RM-8)	210	45	°C/W
8-Lead SOIC (R-8)	158	43	°C/W
5-Lead TSOT (UJ-5)	207	61	°C/W
5-Lead SC70 (KS-5)	376	126	°C/W
14-Lead TSSOP (RU-14)	180	35	°C/W
14-Lead SOIC (R-14)	120	36	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

 $V_S = +5 \text{ V}$ or $\pm 2.5 \text{ V}$, unless otherwise noted.

Figure 5. Input Offset Voltage Distribution

04991-003

Figure 6. AD8692/AD8694 Input Offset Voltage Drift Distribution

Figure 7. Input Offset Voltage vs. Common-Mode Voltage

Figure 8. Input Bias Current vs. Temperature

Figure 9. Supply Current vs. Supply Voltage

Figure 10. Supply Current vs. Temperature

04991-005

Figure 11. Output Voltage to Supply Rail vs. Load Current

Figure 12. Output Voltage Swing vs. Temperature ($I_L = 1 \text{ mA}$)

Figure 13. Output Voltage Swing vs. Temperature ($I_L = 10 \text{ mA}$)

Figure 14. Open-Loop Gain and Phase vs. Frequency

Figure 15. CMRR vs. Frequency

Figure 16. PSRR vs. Frequency

04991-019

04991-020

Figure 17. Closed-Loop Output Impedance vs. Frequency

Figure 18. Small Signal Overshoot vs. Load Capacitance

VOLTAGE (50mV/DIV)

Figure 19. Small Signal Transient Response

Figure 20. Large Signal Transient Response

Figure 21. Positive Overload Recovery

Figure 22. Negative Overload Recovery

Figure 23. THD + N vs. Frequency

04991-022

Figure 24. 0.1 Hz to 10 Hz Input Voltage Noise

Figure 25. Voltage Noise Density

Figure 26. AD8692/AD8694 Channel Separation

04991-024

 $V_s = +2.7 \text{ V}$ or $\pm 1.35 \text{ V}$, unless otherwise noted.

Figure 27. Input Offset Voltage Distribution

04991-025

Figure 28. Input Offset Voltage vs. Common-Mode Voltage

Figure 29. Output Voltage to Supply Rail vs. Load Current

Figure 30. Output Voltage Swing vs. Temperature ($I_L = 1 \text{ mA}$)

Figure 31. Large Signal Transient Response

OUTLINE DIMENSIONS

Figure 32. 8-Lead Mini Small Outline Package [MSOP] (RM-8)

Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 33. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)

072809-A

Figure 34. 5-Lead Thin Shrink Small Outline Package [SC70] (KS-5) Dimensions shown in millimeters

Figure 35. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters

Figure 36. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AB
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 37. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches)

AD8691/AD8692/AD8694

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Package Option	Branding
AD8691AUJZ-R2	-40°C to +125°C	5-Lead TSOT	UJ-5	ACA
AD8691AUJZ-REEL	−40°C to +125°C	5-Lead TSOT	UJ-5	ACA
AD8691AUJZ-REEL7	-40°C to +125°C	5-Lead TSOT	UJ-5	ACA
AD8691AKSZ-R2	-40°C to +125°C	5-Lead SC70	KS-5	ACA
AD8691AKSZ-REEL	-40°C to +125°C	5-Lead SC70	KS-5	ACA
AD8691AKSZ-REEL7	-40°C to +125°C	5-Lead SC70	KS-5	ACA
AD8691WAUJZ-R7	-40°C to +125°C	5-Lead TSOT	UJ-5	ACA
AD8691WAUJZ-RL	-40°C to +125°C	5-Lead TSOT	UJ-5	ACA
AD8692ARMZ-R7	-40°C to +125°C	8-Lead MSOP	RM-8	APA
AD8692ARMZ-REEL	-40°C to +125°C	8-Lead MSOP	RM-8	APA
AD8692ARZ	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8692ARZ-REEL	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8692ARZ-REEL7	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8692WARMZ-REEL	-40°C to +125°C	8-Lead MSOP	RM-8	APA
AD8694ARUZ	−40°C to +125°C	14-Lead TSSOP	RU-14	
AD8694ARUZ-REEL	-40°C to +125°C	14-Lead TSSOP	RU-14	
AD8694WARUZ	−40°C to +125°C	14-Lead TSSOP	RU-14	
AD8694WARUZ-REEL	−40°C to +125°C	14-Lead TSSOP	RU-14	
AD8694ARZ	-40°C to +125°C	14-Lead SOIC_N	R-14	
AD8694ARZ-REEL	−40°C to +125°C	14-Lead SOIC_N	R-14	
AD8694ARZ-REEL7	−40°C to +125°C	14-Lead SOIC_N	R-14	
AD8694WAC-P3	−40°C to +125°C	Die		
AD8694WAC-P7	−40°C to +125°C	Die		

¹ Z = RoHS Compliant Part.

AUTOMOTIVE PRODUCTS

The AD8691W/AD8692W/AD8694W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

² W = Qualified for Automotive Applications.

Data Sheet

AD8691/AD8692/AD8694

NOTES

۸n	QCQ1	/ADQQ	92/AD	NDAR	
Hυ	OUJI	/ADOL	IJZ/AU	0UJ 4	

NOTES

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

AD8694WARUZ-REEL AD8694ARZ-REEL AD8691AUJZ-REEL AD8691WAUJZ-R7 AD8694WARUZ AD8694ARZ

AD8691AUJZ-R2 AD8692WARMZ-REEL AD8691AKSZ-R2 AD8692ARMZ-R7 AD8691AUJZ-REEL7 AD8692ARZ

AD8691WAUJZ-RL AD8692ARZ-REEL7 AD8692ARMZ-REEL AD8692ARZ-REEL AD8691AKSZ-REEL

AD8694ARUZ AD8691AKSZ-REEL7 AD8694ARUZ-REEL AD8694ARZ-REEL7