WARD, Francis (frw19)

Imperial College London

Department of Computing Academic Year **2019-2020**

Page created Thu Feb 20 02:15:22 GMT 2020

499 fbelard 6 t5 frw19 v1

 ${\bf Electronic_submission}$

Wed - 19 Feb 2020 15:52:32

frw19

Exercise Information

Module: 499 Modal Logic for Strategic

Reasoning in AĬ

Exercise: 6 (CW)

Title: Coursework2 FAO: Belardinelli, Francesco (fbelard) **Issued:** Wed - 05 Feb 2020

Wed - 19 Feb 2020

Assessment: Individual Electronic

Due:

Student Declaration - Version 1

• I declare that this final submitted version is my unaided work.

Signed: (electronic signature) Date: 2020-02-19 15:51:52

For Markers only: (circle appropriate grade)

WARD, Francis (frw19) | 01819196 | t5 | 2020-02-19 15:51:52 | A* A B C D E F

Coursework 2: Temporal Logics

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Modal Logic for Strategic Reasoning

Author:

Francis Rhys Ward (CID: 01819196)

Date: February 19, 2020

1

a) $\phi R \psi$

$$(M, \lambda) \models \phi R \psi \text{ iff } \lambda[i, ..., \infty] \models \psi, \forall i \ge 0, \text{ or, } (\exists j \lambda[j, ..., \infty] \models \phi \text{ and } \lambda[i, ..., \infty] \models \psi \forall 0 \le i \le j)$$

$$\tag{1}$$

b)

$$\phi R\psi = \neg(\neg\phi \cup \neg\psi) \tag{2}$$

c)

We wish to show that $(M,\lambda) \models \phi R \psi \iff (M,\lambda) \models \neg (\neg \phi \cup \neg \psi)$. $(M,\lambda) \models \neg (\neg \phi \cup \neg \psi)$ iff $\neg i \geq 0 (\lambda[i,...,\infty] \models \neg \psi \geq 0$ and $\lambda[j,...,\infty] \models \neg \phi \forall 0 \leq j < i)$ equivalently $\neg \exists i \geq 0$ (such that $\lambda[i,...,\infty] \not\models \psi$ and $\lambda[j,...,\infty] \not\models \phi \forall 0 \leq j < i$) This is equivalent to $\forall i \geq 0 \neg (\lambda[i,...,\infty] \not\models \psi \text{ and } \lambda[j,...,\infty] \not\models \phi \forall 0 \leq j < i)$ by De Morgan's law we have $\forall i \geq 0 (\neg \lambda[i,...,\infty] \not\models \psi \text{ or } \neg \lambda[j,...,\infty] \not\models \phi \forall 0 \leq j < i)$ i.e. $\forall i \geq 0 (\lambda[i,...,\infty] \models \psi \text{ or } \exists 0 \leq j < i\lambda[j,...,\infty] \models \phi)$ which is equivalent to $\forall i \geq 0 \lambda[i,...,\infty] \models \psi \text{ or } \exists 0 \leq j \leq i(\lambda[j,...,\infty] \models \phi \text{ and } \lambda[j,...,\infty] \models \psi)$ and this is our definition from a) as required.

d)

We have by definition $\lambda \models G\psi$ iff $\lambda[i,...,\infty] \models \psi \forall i \geq 0$ And $\lambda \models \bot R\psi \iff \forall i \geq 0$ $\lambda[i,...,\infty] \models \psi$ or $\exists 0 \leq j \leq i(\lambda[j,...,\infty] \models \bot and \lambda[j,...,\infty] \models \psi)$ but clearly there is no such j that satisfies $\lambda[j,...,\infty] \models \bot$. So we have: $\lambda \models \bot R\psi \iff \forall i \geq 0 \lambda[i,...,\infty] \models \psi$ as required.

2

i. $(M,q) \models EF\phi$ iff $\exists \lambda[q]$ (a path starting at q) such that $(M,\lambda[q]) \models F\phi$ i.e. $\exists \lambda[q]$ such that $(M,\lambda[q]) \models (\top \cup \phi)$ Well, this is true iff $\exists \lambda[q] =: \lambda$ such that ,

$$(M, \lambda[i]) \models \phi \text{ for some } i \ge 0 \text{ and } (M, \lambda[j]) \models \forall 0 \le j \le i$$
 (3)

Clearly this is equivalent to

$$\exists \lambda[q] \text{ such that } (M, \lambda[i]) \models \phi \text{ for some } i \ge 0$$
 (4)

as required.

ii.

$$(M,q) \models AF\phi \text{ iff } \forall \lambda[q], (M,\lambda) \models F\phi$$
 (5)

Now just follow the same steps as in i. to show that the statement holds. iii.

 $EG\phi$ is equivalent to $\neg AF \neg \phi \equiv \neg A(\top \cup \neg \phi)$. Hence,

$$(M,q) \models EG\phi \tag{6}$$

iff

$$(M,q) \models \neg A(\top \cup \neg \phi) \tag{7}$$

which is true iff

$$\forall \lambda [q], (M, \lambda) \not\models (\top \cup \neg \phi) \tag{8}$$

i.e.

$$\exists \lambda [q], (M, \lambda) \models (\top \cup \neg \phi) \tag{9}$$

This holds iff $\exists \lambda$ starting at q such that

$$\exists i \ge 0$$
, with $(M, \lambda[i]) \models \neg \phi$ and $(M, \lambda[j]) \models \forall 0 \le j \le i$ (10)

Now, this is clearly equivalent to

$$\exists \lambda \forall i \ge 0, (M, \lambda[i]) \models \phi \tag{11}$$

iv.

 $(M,q) \models AG\phi$ iff $(M,q) \models \neg EF \neg \phi$ By definition this holds iff, $\neg (\exists \lambda [q].(M,\lambda) \not\models F\phi)$ i.e. $\forall \lambda [q], (M,\lambda[q]) \models F\phi$ equivalently, $\forall \lambda [q], (M,\lambda) \models (\top \cup \phi)$. Now we can similarly follow the final two steps in iii. to show the result.

3

a)

Our CTL formulas are

$$\Phi ::= p | \neg \Phi | \Phi \wedge \Phi | EX\Phi | AX\Phi | E(\Phi \cup \Phi) | A(\Phi \cup \Phi)$$
 (12)

We trivially have that $p|\neg\Phi|\Phi \wedge \Phi|$ are formulas of CTL* by definition 1.

Do we have $EX\Phi$? We can see that $X\Phi$ is a path formula of CTL* by definition 1 (as Φ is itself a path formula). Hence, $EX\Phi$ is a state formula of CTL* (i.e. a formula). Following the same reasoning we can show that $AX\Phi$, $E(\Phi \cup \Phi)$, and $A(\Phi \cup \Phi)$ are also all state formulas of CTL* (since $\Phi \cup \Phi$ is a path formula). Thus, every formula of CTL is also a formula of CTL*. \Box

b)

Consider, $AFGp \equiv A(\top \cup (\bot \cup p))$. This is indeed a formula of CTL* (take $\bot := p \land \neg p$ and $\top := \neg \bot$). By definition 1, \bot and \top are state formulas of CTL*, so they are also path formulas, so $\bot \cup p$ is a path formula, therefore $\top \cup (\bot \cup p)$ is a path formula. Finally $A(\top \cup (\bot \cup p))$ is a state formula of CTL*.

But, state formulas in CTL are not in general path formulas. In particular, $\bot \cup p$ is a path formula but not a state formula. So $\top \cup (\bot \cup p)$ is not a path formula of CTL and so $A(\top \cup (\bot \cup p))$ is not a (state) formula of CTL. \Box

4

To recover CTL from CTL* we restrict the quantifiers so that each temporal quantifier is preceded directly by a path quantifier. Equivalently we restrict the formulas of CTL* to CTL. Our formula of CTL are:

$$\Phi ::= p|\neg \Phi|\Phi \wedge \Phi|EX\Phi|AX\Phi|E(\Phi \cup \Phi)|A(\Phi \cup \Phi) \tag{13}$$

In particlar, compared to CTL* we are excluding the path formulas

$$\psi = \Phi | \neg \psi | \psi \wedge \psi \tag{14}$$

and keeping only

$$\psi = X\psi|\psi \cup \psi \tag{15}$$

Clearly, satisfaction on the state formulas is completely equivalent in CTL as in CTL* (the definitions are identical). So we need only show that satisfaction of $X\psi$ and $\psi \cup \psi'$ is preserved.

By definition 2

$$(M,\pi) \models X\psi \text{ iff } (M,\pi[1,...,\infty]) \models \psi \text{ iff } (M,\pi[1]) \models \psi$$
 (16)

so we have recovered satisfaction of $X\psi$. Now consider

$$(M,\pi) \models \psi \cup \psi' \text{ iff } (M,\pi[i,...,\infty]) \models \psi' \text{ for some } i \ge 0 \text{ and } (M,\pi[j,...,\infty]) \models \psi \forall 0 \le j \le i$$

$$(17)$$

following definition 2 this is

$$(M,\pi) \models \psi \cup \psi'$$
 iff $(M,\pi[i]) \models \psi'$ for some $i \ge 0$ and $(M,\pi[j]) \models \psi \forall 0 \le j \le i$ (18) and we have recovered satisfaction of until. \square

5

a)

By question 3 CTL is a strict fragment of CTL* i.e. for every formula Φ of CTL, Φ is also a formula of CTL*. Furthermore, by 4, for the formulas in CTL, CTL and CTL* are semantically equivalent, i.e. they have the same truth conditions. So the Φ' we are looking for is just Φ .

b)

Take the example FGp from lecture 5. This is an LTL formula hence also a CTL* formula. But there is no equivalent CTL formula by the Clarke Draghicescu lemma and the example shown in the lecture slides.

6

Proceed by induction on the structure of Φ and ψ . Since (M,t) and (M',t') are bisimilar we have from definition 3 a) that $\forall p \in AP, t \in V(p)$ iff $t' \in V'(p)$. So we have that $(M,t) \models p$ iff $(M',t') \models p$, and hence trivially that $(M,t) \models \neg \Phi$ iff $(M',t') \models \neg \Phi$ and $(M,t) \models \Phi \land \Phi$ iff $(M',t') \models \Phi \land \Phi$.

To show that $(M,t) \models E\psi$ iff $(M',t') \models E\psi$ consider that $(M,t) \models E\psi$ iff $\exists \pi$ starting from t such that $(M,\pi) \models \psi$, well if there is such a π then, by the forth property of bisimulation we can find a corresponding bisimilar state in M' for each state in π such that the relations between states in the path are preserved, hence we can construct a π' from these states and this π' is bisimilar to π . Satisfaction is preserved between these paths since they are state-wise bisimilar and we have shown that bismulations between states preserve truth. We can similarly show that $\models A\psi$ iff $(M',t') \models A\psi$.

Now consider satisfaction on paths, $(M,\pi) \models \Phi$ iff $(M,\pi[0]) \models \Phi$ (from definition 2) and likewise for π' and $\pi'[0]$. But $\pi[0]$ and $\pi'[0]$ are bisimilar by definition 3 so we have $(M,\pi[0]) \models \Phi$ iff $(M',\pi'[0]) \models \Phi$ by above and hence $(M,\pi) \models \Phi$ iff $(M',\pi') \models \Phi$. Then we trivially have the equivalences for satisfaction of $\neg \psi$ and $\psi \land \psi'$.

Is satisfaction of $X\psi$ preserved by bisimulations? Well, since $\pi \approx \pi'$ we also have $\pi[1,...,\infty] \approx \pi'[1,...,\infty]$. $(M,\pi) \models X\psi$ iff $(M,\pi[1,...,\infty]) \models \psi$ iff $(M,\pi[1]) \models \psi$ by definition 2, and by above $(M,\pi[1]) \models \psi$ iff $(M',\pi'[1]) \models \psi$. So $(M,\pi) \models X\psi$ iff $(M',\pi') \models X\psi$.

Now consider the truth of $\psi \cup \psi'$. We can similarly show that this is preserved by bisimulations by reducing the definition to satisfaction on states which we have shown is preserved.

So the truth of CTL* formulas is preserved by bisimulations.

7

We wish to show that if $(M,t) \equiv (M',t')$ in CTL then they $(M,t) \approx (M',t')$. By definition of equivalence we have that for any formula Φ if $(M,t) \models \Phi$ then $(M',t') \models \Phi$, assume they are equivalent and we will show that the 3 properties of bisimulation from question 6 hold. a) is trivial as equivalent worlds satisfy the same atoms. To show b) assume that the forth condition does not hold, i.e. there is some $v \in M$ and $t \to v$ with no $v' \in M'$ such that $t' \to v'$ and $v \approx v'$.

Now let $S' = \{u' \in M' | t' \to u'\}$ this is nonempty as the relation \to is serial and the sets of states in M and M' are finite by assumption.

Now, by our previous assumption $\forall u_i' \in S' \exists$ a formula ψ_i such that $(M, v) \models \psi_i$ but $(M', u_i') \not\models \psi_i$ (as u_i not bisimular to v). But then

 $(M,t) \models EX(\land_i \psi_i)$ but $(M',t') \not\models EX(\land_i \psi_i)$ and we have derived a contradiction and the forth property must hold.

We can similarly prove the back property and hence that if $(M, t) \equiv (M', t')$ then they are bisimilar. \square

8

What facts do we have? 5: CTL* ¿ CTL; 6: Truth of CTL* is preserved by bisimulations; 7: $(M,t) \equiv_{CTL} (M',t') \Rightarrow (M,t) \approx (M',t')$.

We have to show that $(M, t) \equiv_{CTL} (M', t')$ iff $(M, t) \equiv_{CTL*} (M', t')$

First \Rightarrow direction: Assume (M,t) and (M',t') satisfy the same formulas in CTL, i.e. they are equivalent in CTL. Then by 7 they are bisimular. Now, since thye are bisimilar, by 6 we have that they are equivalent in CTL*.

Now, \Leftarrow direction: Assume (M,t) and (M',t') satisfy the same formulas in CTL*, well by 5 CTL is a strict fragment of CTL* and we know that every CTL formula is also a formula of CTL* - so this direction is trivial. \Box

It is perhaps surprising that the satisfaction of formulas in CTL restricts which formulas can be satisfied in CTL*, even though CTL* some formulas cannot be expressed in CTL.