midterm1WIP

Exercise 10. (a) Consider model (3) for $p = 2, X_i = (1, x_i)^{\mathsf{T}}, \theta^* = (\theta_1^*, \theta_2^*)^{\mathsf{T}}$ (similarly to section 1.5). Write explicit expressions for the confidence sets for $\theta^*, \theta_1^*, \theta_2^*$.

To set up explicit expression for the case above, for parameter estimates we have:

$$XX^{\mathsf{T}} = \left[\begin{array}{ccc} 1 & \dots & 1 \\ x_1 & \dots & x_n \end{array} \right] \left[\begin{array}{ccc} 1 & x_1 \\ \dots & \dots \\ 1 & x_n \end{array} \right] = \left[\begin{array}{ccc} n & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 \end{array} \right]$$

and $det(XX^{\intercal}) = n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2 = n \sum_{i=1}^{n} (x_i - \bar{x})^2$, and

$$(XX^{\mathsf{T}})^{-1} = \frac{n}{\det(XX^{\mathsf{T}})} \begin{bmatrix} \sum_{i=1}^{n} x_i^2 & -\bar{x} \\ -\bar{x} & 1 \end{bmatrix}$$

So we have

$$\hat{\theta} = (XX^{\mathsf{T}})^{-1}XY = \frac{n}{\det(XX^{\mathsf{T}})} \begin{bmatrix} \sum_{i=1}^{n} x_i^2 & -\bar{x} \\ -\bar{x} & 1 \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i y_i \end{bmatrix} = (\hat{\theta}_1, \hat{\theta}_2)^{\mathsf{T}} = \dots$$

$$\dots = \frac{1}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \begin{bmatrix} \bar{y} \sum_{i} x_i^2 - \bar{x} \sum_{i} x_i y_i \\ \sum_{i} x_i y_i - n \bar{y} \bar{x} \end{bmatrix} = (\hat{\theta}_1, \hat{\theta}_2)^{\mathsf{T}} = \hat{\theta}$$

To find a confidence region for θ^* , using a mixture of matrix and summation notation, we use the property:

$$\frac{||(XX^{\mathsf{T}})^{1/2}(\hat{\theta} - \theta^*)||^2}{\sum_{i=1}^n (y_i - \hat{\theta_1} - \hat{\theta_2}x_i)^2} \frac{n-2}{2} \sim F(2, n-2)$$

and denote $\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i - \hat{\theta_1} - \hat{\theta_2} x_i)^2}{n-2}$. Where F denotes the F distribution with $df_1 = 2$, and $df_2 = n - 2$.

We can create a confidence interval for θ^* , such that, qF_{α} denotes the α^{th} quantile for F(2, n-2).

$$P(\frac{||(XX^\intercal)^{1/2}(\hat{\theta}-\theta^*)||^2}{p\hat{\sigma}^2} < qF_{1-\alpha}) = 1 - \alpha = P((\hat{\theta}-\theta^*)^\intercal \left[\begin{array}{cc} n & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 \end{array} \right] (\hat{\theta}-\theta^*) < p\hat{\sigma}^2 qF_{1-\alpha})$$

(b) Find a confidence interval for the expected response $E[Y_i]$ in the model in part (a).

Section 1.1

Exercise 3. Consider the linear regression model from exercise 1. Suppose, that the target of estimation is $h^{\dagger}\theta$ for some determinate non-zero vector $h \in R^p$. Find expression for the LSE of $h^{\dagger}\theta$. Is this estimate optimal in sense of Gauss-Markov theorem, i.e. does it have the smallest variance among all linear unbiased estimators?

—Start with this —By Gauss Markov, we know that a BLUE estimator has $Var(\theta_{OLS}) = \sigma^2(XX^{\intercal})^{-1}$). However in the case of heterscedastic noise, we have $Var(\theta) = (XX^{\intercal})^{-1}XDX^{\intercal}(XX^{\intercal})^{-1}$, which must be greater than $\sigma^2(XX^{\intercal})^{-1}$). An so, in this case, our estimator is not BLUE. Study the same issue for the target $\eta = H^{\intercal}\theta$, where $H \in \mathbb{R}^{q \times p}$ is some non-zero matrix with $q \leq p$.

Section 1.3

Exercise 6. Let L1, L2 be some subspaces in \mathbb{R}^n , and L2 \subseteq L1 \subseteq \mathbb{R}^n . Let PL1, PL2 denote orthogonal projections on these subspaces. Prove the following properties:

- $(a)\ PL2-PL1\ is\ an\ orthogonal\ projection,$
- (b) $|PL2| \le |PL1| \ \forall x \in \mathbb{R}^n$,
- (c) $PL2 \cdot PL1 = PL2$

Section 2.1

Exercise 7. (a) Using the notation from section 2.1, consider $X \sim N(\mu, I_n)$ for some $\mu \in \mathbb{R}^n$. Find E(Q(X)) and Var(Q(X))

For $Q(X) = \sum_{i} \sum_{j} a_{ij} X_i X_j = X^{\mathsf{T}} A X_i X_j \sim N(\mu, I_n)$, we have, using the property of trace operator:

$$E(Q(X)) = tr(E(Q(X)) = E(tr(Q(X)) = E(tr(X^\intercal A X)) = E(tr(A X X^\intercal)) = tr(A E(X X^\intercal))$$

Since $E(XX^{\intercal}) = I_n + \mu \mu^{\intercal}$, we have,

$$tr(AE(XX^{\mathsf{T}})) = tr(A(I_n + \mu\mu^{\mathsf{T}})) = trA + tr(A\mu\mu^{\mathsf{T}}) = trA + \mu^{\mathsf{T}}A\mu$$

Var(Q(X)) =

(b) Generalize the results from part (a) to the case $X \sim N(\mu, \Sigma)$ for some positive-definite covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. For $X \sim N(\mu, \Sigma)$ we have,

$$E(Q(X)) = tr(AE(XX^{\mathsf{T}})) = tr(A(\Sigma + \mu\mu^{\mathsf{T}})) = tr(A\Sigma) + tr(A\mu\mu^{\mathsf{T}}) = tr(A\Sigma) + \mu^{\mathsf{T}}A\mu$$

Var(Q(X)) =

Section 2.2

Exercise 9. In the Gaussian linear regression model 3, consider the target of estimation $\eta = H^{\dagger}\theta^*$, where $H \in R^{q \times p}$ is some non-zero matrix with $q \leq p$. Find an analogue of the quadratic form S2 (from (4)) for the new target η^* , and prove for the new quadratic form statements similar to (e) from Theorem 2.1, and Corollary 2.1.2.

Exercise 11. Find an elliptical confidence set for the expected response E[Y] in model (3).

Exercise 12. Construct simultaneous confidence intervals (e.g., as in Corollary 2.2.1) for the expected responses $E[Y_1], ..., E[Y_n]$ in model (3).