Phys 2120-4 12/7/12

Note Title 12/7/2012

Chap 32 Those dann slts

L = SWD = + ND

A = 91,

d sin $\theta = m\lambda$ bright

d sin $\theta = m\lambda$ $d = m\lambda$ d =

dsind = mid same cond for maxima m not mult of N

Diffraction

Single slit

asin
$$0 = m\lambda$$

$$\frac{daik}{frise}$$

$$\phi = \frac{2\pi}{\pi} asin 0$$

$$\frac{daik}{frise}$$

$$\frac{daik}{frise}$$

$$\frac{daik}{frise}$$

Phase chas?

Extra light 2d

material = 2

Essential of that Maxwell Egn chapter \$ B. dr = MI Correct version JB. 27 = MI + MES JBE 女 5 是 3 人

29.13 A uniform electric field the moriting at I.S (m). Find disp current through

I cm² aver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I cm² a ver perp to fire!

I disp = dt [En J E. 2)] 7 EA 1,

I disp = dt [En J E. 2)] 7 EA 1,

I disp = dt [En J E. 2)] 8 EA 1,

I disp = dt [En J E. 2)] 8 EA 1,

I disp = dt [En J E. 2)] 8 EA 1,

I disp = dt [En J E. 2)] 8 EA 1,

I disp = dt [En J E. 2)] 8 EA 1,

I disp = dt [En J E. 2)] 8 EA 1,

I disp = dt [En J E. 2)] 8 EA 1,

I disp = dt [En J E. 2)] 8 EA 1,

I disp = dt [En J E. 2)] 8 EA 1,

I disp = dt [En J E. 2)] 8 EA 1,

I disp = dt [En J E. 2)] 8 EA 1,

I disp = dt [En J E. 2)] 8 EA 1,

I disp = dt [En J E. 2)] 8 EA 29.14 A parallel-plate capacitor
has sq. plates 10 cm on side and
0.50 cm apart. Voltage is incrity
at 220 %, what's disp. current
in capacitor.

Einside J disp (0,10 = (8.85x10-12) 0,055) $= \mathcal{E}_{0} \left\{ \left[\mathcal{E}_{0} \left(\alpha^{2} \right) \right] \right\} = \mathcal{E}_{0} \left[\alpha^{2} \right] \left\{ \left[\mathcal{E}_{0} \left(\alpha^{2} \right) \right] \right\} = \mathcal{E}_{0} \left[\alpha^{2} \right] \left\{ \left[\mathcal{E}_{0} \left(\alpha^{2} \right) \right] \right\} = \mathcal{E}_{0} \left[\alpha^{2} \right] \left\{ \left[\mathcal{E}_{0} \left(\alpha^{2} \right) \right] \right\} = \mathcal{E}_{0} \left[\alpha^{2} \right] \left\{ \left[\mathcal{E}_{0} \left(\alpha^{2} \right) \right] \right\} = \mathcal{E}_{0} \left[\alpha^{2} \right] \left\{ \left[\mathcal{E}_{0} \left(\alpha^{2} \right) \right] \right\} = \mathcal{E}_{0} \left[\alpha^{2} \right] \left\{ \left[\mathcal{E}_{0} \left(\alpha^{2} \right) \right] \right\} = \mathcal{E}_{0} \left[\alpha^{2} \right] \left\{ \left[\mathcal{E}_{0} \left(\alpha^{2} \right) \right] \right\} = \mathcal{E}_{0} \left[\alpha^{2} \right] \left\{ \left[\mathcal{E}_{0} \left(\alpha^{2} \right) \right] \right\} = \mathcal{E}_{0} \left[\alpha^{2} \right] \left\{ \left[\mathcal{E}_{0} \left(\alpha^{2} \right) \right] \right\} = \mathcal{E}_{0} \left[\alpha^{2} \right] \left[\mathcal{E}_{0} \left(\alpha^{2} \right) \right] = \mathcal{E}_{0} \left[\alpha^{2} \right] \left[\mathcal{E}_{0} \left(\alpha^{2} \right) \right] = \mathcal{E}_{0} \left[\alpha^{2} \right] \left[\mathcal{E}_{0} \left(\alpha^{2} \right) \right] = \mathcal{E}_{0} \left[\mathcal{$ Propalmy X Ey Bz X

EW, H = Epsin (lex-wt) ĵ B(xy) = Bpsin (lex-wt) le Spal V = C = W = 2f

Amplitres

Polarization

5 = 5, 650

5= 25

