Övningar till lektion 1

Satslogik, informellt

- 1. Vilka av följande uttryck är påståenden/utsagor? (Ledning: När får man en vettig fråga genom att sätta "Är det sant att" före uttrycket?)
 - (a) Alla reella tal är positiva.
 - (b) Södra Norrlands kustland och inland.

(c)
$$\frac{1}{x+y} < \frac{1}{x-y}$$
.

(d)
$$\frac{1}{x+y} + \frac{1}{x-y}$$
.

(e)
$$(x+1)^2 = x^2 + 2x + 1$$
.

- (f) x > 0.
- (g) Olikheter och absolutbelopp.

(h)
$$\int_0^1 (x^2 + x) dx$$
.

(i) Alla hundar kan flyga.

(j)
$$\int_0^1 (x^2 + x) dx = 5$$
.

- (k) Absolutbeloppet av ett tal är minst lika stort som talet själv.
- (l) Det vete katten.
- 2. Omformulera följande påståenden med hjälp av konnektiven $\land, \lor, \rightarrow, \leftrightarrow$ och \neg så långt det går:
 - (a) Tåget går till Stockholm eller till Gävle.
 - (b) Gustav Vasa var kung och han levde på 1500-talet.
 - (c) Om det regnar så tar jag med paraplyet.
 - (d) Jag tar paraplyet om det regnar.
 - (e) Om det regnar eller är under fem grader varmt så tar jag vinterrocken.
 - (f) Om x < 0 så $x^2 > 0$.
 - (g) Om $x^2 < 9 \text{ så } x < 3 \text{ och } x > -3$.
 - (h) Om månen är en gul ost så 2 + 2 = 5.
 - (i) $x^2 3x + 3 = 0$ är ekvivalent med att x = 3 eller x = 1.
 - (j) $x^2 = 2$ om och endast om $x = \sqrt{2}$ eller $x = -\sqrt{2}$.
 - (k) Om x och y är reella tal så är $x^2 + y^2 = 0$ ekvivalent med att x = 0 och y = 0.
 - (l) Tåget går varken till Stockholm eller till Gävle.
 - (m) Gustav Vasa var en kung och levde inte på 1300-talet.
 - (n) Om det inte regnar så tar jag inte med paraplyet.
 - (o) Om det är under fem grader varmt och inte regnar så tar jag vinterrocken.
 - (p) $x \neq 0$.
 - (q) Om $x^2 > 0$ inte gäller så $x \le 1$ och $x \ge -1$.
 - (r) Om $x \neq 1$ och $x \neq 1$ så $x^2 3x + 3 \neq 0$.

- 3. Bevisa följande sekventer med naturlig deduktion, där A, B, C, \ldots betecknar påståenden:
 - (a) $A \wedge B \vdash (A \vee C) \wedge B$.
 - (b) $(A \wedge B) \vee C \vdash C \vee B$.
 - (c) $\{A, (B \vee C)\} \vdash (A \wedge B) \vee (A \wedge C)$.
 - (d) $\{((A \land B) \lor C), D\} \vdash (D \land B) \lor (C \lor A).$
 - (e) $((A \lor B) \land C) \lor ((A \land B) \lor C) \vdash A \lor C$.
 - (f) $\neg \neg A \land \neg \neg B \vdash A \land (B \lor A)$.
 - (g) $\vdash \neg (A \land \neg A)$.
 - (h) $\{A \to B, \neg B\} \vdash \neg A$.
 - (i) $B \to C \vdash (A \land B) \to C$.
 - (j) $\{\neg C, A \lor C\} \vdash A$.
 - (k) $A \lor B \vdash A \lor \neg \neg B$.
 - (1) $\neg (A \lor B) \vdash \neg A \land \neg B$.
 - (m) $A \to B \vdash \neg A \lor B$.
 - (n) $A \leftrightarrow B \vdash (A \lor \neg B) \land \neg (A \land \neg B)$.