- 1.(30 points) Consider two fields, $K = \mathbb{Q}(\sqrt{2} + \sqrt{6}), E = \mathbb{Q}(\sqrt{2} + i).$
- (1) Calculate $\dim_{\mathbb{Q}} K$, $\dim_{\mathbb{Q}} E$, $\dim_{\mathbb{Q}} (K \cap E)$.
- (2) Calculate $\dim_{\mathbb{Q}}(KE)$ where KE is the smallest field containing K, E.
- (3) Determine Aut K, Aut E. Prove or disprove Aut $K \simeq$ Aut E. Prove or disprove $K \simeq E$.
 - 2.(50 points) Consider Laurent polynomial ring over \mathbb{C} ,

$$\mathbb{C}[x,x^{-1}]=\{\sum_{i\in I}a_ix^i|a_i\in\mathbb{C}, I \text{ is a finite sub set of } \mathbb{Z}.\}$$

- (1)Prove or disprove: $\mathbb{C}[x, x^{-1}]$ is a PID.
- (2)List all prime ideals of $\mathbb{C}[x, x^{-1}]$.
- (3)As a $\mathbb{C}[x]$ module, prove or disprove: $\mathbb{C}[x,x^{-1}]$ is finitely generated. $\mathbb{C}[x,x^{-1}]$ is indecomposable.
 - (4)Prove or disprove: $\mathbb{Z}[x, x^{-1}]$ is a PID.
- (5) Prove or disprove: $\mathbb{Z}[x,x^{-1}]/(x^2+3,5)$ is finite ring. $\mathbb{Z}[x,x^{-1}]/(x^2+3,5)$ is finite field.

3.(15 points)
$$a \in \mathbb{Z}$$
, $G = < \begin{bmatrix} -1 & 0 \\ a & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} > \text{ is a subgroup of } GL_n(\mathbb{R}).$

- (1) Find all possible a such that G is Abelian.
- (2) Find all possible a such that G is Finite.
- (3) For finite G, determine $G \cap SL_2(\mathbb{R})$.
- 4.(5 points)Given a matrix ring homomorphsim $\phi: M_n(\mathbb{R}) \to M_m(\mathbb{R})$ such that $\phi(\lambda E_n) = \lambda E_m$ for all $\lambda \in \mathbb{R}$. Prove n|m.