

Kalman Filter

PhilippSchön (5121059) ConstantinThein (5121017)

Mean

$$\mu = rac{1}{N} \sum_{n=1}^{N} V_n = rac{1}{5} (5 + 5 + 10 + 10 + 10) = 8cent$$

- Variance

	Player 1	Player 2	Player 3	Player 4	Player 5	Mean
Team A	1.89m	2.10m	1.75m	1.98m	1.85m	1.914m
Team B	1.94m	1.90m	1.97m	1.89m	1.87m	1.914m

$$x_n - \mu = x_n - 1.914m$$

	Player 1	Player 2	Player 3	Player 4	Player 5
Team A	-0.024m	0.186m	-0.164m	0.066m	-0.064m
Team B	0.026m	-0.014m	0.056m	-0.024m	-0.044m

- Variance

	Player 1	Player 2	Player 3	Player 4	Player 5
Team A	-0.024m	0.186m	-0.164m	0.066m	-0.064m
Team B	0.026m	-0.014m	0.056m	-0.024m	-0.044m

$$(x_n-\mu)^2=(x_n-1.914m)^2$$

	Player 1	Player 2	Player 3	Player 4	Player 5
Team A	0.000576m ²	0.034596m ²	0.026896m ²	0.004356m ²	0.004096m ²
Team B	0.000676m ²	0.000196m ²	0.003136m ²	0.000576m ²	0.001936m ²

Variance

$$\sigma^2 = rac{1}{N} \sum_{n=1}^N \left(x_n - \mu
ight)^2$$

$$\sigma_{\!\scriptscriptstyle A}^2 = rac{1}{N} \sum_{n=1}^N \left(x_{\!\scriptscriptstyle An} - \mu
ight)^2 = rac{1}{5} (0.000576 + 0.034596 + 0.026896 + 0.004356 + 0.004096) = 0.014 m^2$$

$$\sigma_{\!\scriptscriptstyle B}^2 = rac{1}{N} \sum_{n=1}^N \left(x_{\!\scriptscriptstyle B_n} - \mu
ight)^2 = rac{1}{5} (0.000676 + 0.000196 + 0.003136 + 0.000576 + 0.001936) = 0.0013 m^2$$

mean = 0.0var = 20.0

meanMove = 25.0
varMove = 10.0

$$\mu_{new} = \mu_0 + \mu_{move}$$

$$\sigma_{\text{new}}^2 = \sigma_0^2 + \sigma_{\text{move}}^2$$

$$\sigma_{\text{new}}^2 = \frac{1}{\frac{1}{\sigma_{\text{old}}^2} + \frac{1}{\sigma_{\text{Sensor}}^2}}$$

$$\mu_{new} = \frac{\sigma_{Sensor}^2 \cdot \mu_{old} + \sigma_{old}^2 \cdot \mu_{Sensor}}{\sigma_{old}^2 + \sigma_{Sensor}^2}$$

Kalman Flowchart

Prediction

Project the state ahead

$$X_{k+1} = AX_k + BU_k$$

Project the error covariance ahead

$$P_{k+1} = AP_kA^T + Q$$

Correction

Compute the Kalman Gain

$$K_k = P_k H^T (H P_k H^T + R)^{-1}$$

Update the estimate via measurement

$$x_k = x_k + K_k(z_k - Hx_k)$$

Update the error covariance

$$P_k = (I - K_k H) P_k$$

Initialize R, P, Q once

Normal sensor noise

External noise

