## **COSC 290 Discrete Structures**

Lecture 22: Relations & Composition

Prof. Michael Hay Wednesday, Mar. 28, 2018

Colgate University

## Relations

## Plan for today

- 1. Relations
- 2. Practice with composition
- 3. Representations of relations

### Relations

Let A and B be sets.

A (binary) relation on  $A \times B$  is a subset of  $A \times B$ .

A binary relation on A  $\times$  A is a subset of A  $\times$  A and is simply called a relation on A.

\_

#### **Examples**

- EnrolledAt is a relation on Persons × College: ⟨p, c⟩ ∈ EnrolledAt if person p attends college c.
- FacebookFriends is a relation on FacebookUsers:  $\langle u,v\rangle \in$  FacebookFriends if u has friended v on Facebook.
- $\leq$  is a relation on  $\mathbb{R}$ :  $\langle x,y \rangle \in \leq$  if x is less than or equal to y. (We often write using *infix* notation:  $x \leq y$ .)
- abs is a relation on  $\mathbb{R} \times \mathbb{R}^{\geq 0}$ :  $\langle x, y \rangle \in abs$  if |x| = y.

# Practice with composition

#### Inverse and composition

Let R be a relation on A × B and S be a relation on B × C.

#### Definition (Inverse)

Let R be a relation on  $A \times B$ . The inverse  $R^{-1}$  of R is a relation on  $B \times A$  defined by  $R^{-1} := \{ \langle b, a \rangle \in B \times A : \langle a, b \rangle \in R \}$ 

#### Definition (Composition)

The composition of R and S is a relation on  $A \times C$ , denoted  $S \circ R$ , where  $\langle a,c \rangle \in S \circ R$  iff there exists a  $b \in B$  such that  $\langle a,b \rangle \in R$  and  $\langle b,c \rangle \in S$ .

(write on the board for later use)

#### Examples of composition

Let us define sets Persons, Clubs, Animals,

Let Members be a relation on Persons  $\times$  Clubs such that  $(p,c) \in Members$  means that person p is a member of club c.

Let  ${\it Mascots}$  be a relation on  ${\it Clubs} \times {\it Animals}$  such that  $\langle c,a \rangle \in {\it Mascots}$  means that  ${\it club} \ c$  has animal a for a mascot.

Let Leaders be a relation on  $Clubs \times Persons$  such that  $\langle c,p \rangle \in Leaders$  means that club c is led by person p.

- Consider these compositions:
- Mascots o Members?
  Leaders o Members?
- 3. Members o Leaders?

### Another example of composition

Suppose we have the following relations:

- $taking \subseteq Students \times Classes$
- at ⊂ Classes × Times
- teachina ⊆ Professors × Classes
- doing ⊆ Students × Performances

Let's derive a new relation from the above relations plus the inverse and composition operators. Let  $R \subseteq Students \times Times$  where  $\langle s,t \rangle \in R$  indicates that student s is taking a class at time t.

How do we express R?

 $R = at \circ taking$ 

#### Poll: deriving new relations, 2

Suppose we have the following relations:

- taking ⊆ Students × Classes
- at ⊂ Classes × Times
- teaching  $\subseteq$  Professors  $\times$  Classes
- doing  $\subseteq$  Students  $\times$  Performances

Let's derive a new relation from the above relations plus the inverse and composition operators. Let  $R \subseteq Professors \times Performances$  where  $\langle p, p' \rangle \in R$  means professor p should attend performance p' to see at least one of the orofessor's students perform.

- A) doing ∘ (taking<sup>-1</sup> ∘ teaching)
- B) doing ∘ (teaching ∘ taking<sup>-1</sup>)
- C) (taking<sup>-1</sup> ∘ teaching) ∘ doing
- D) (teaching o taking-1) o doing
- E) None of the above / More than one

#### Poll: deriving new relations, 1

Suppose we have the following relations:

- $taking \subseteq Students \times Classes$
- at  $\subseteq$  Classes  $\times$  Times
- teachina ⊆ Professors × Classes
- doing ⊆ Students × Performances

Let's derive a new relation from the above relations plus the inverse and composition operators. Let  $R \subseteq Students \times Professors$  where  $\langle s, p \rangle \in R$  indicates that student s is taking at least one class with professor p.

- A) taking o teaching
- B) teaching o taking
- C) taking ∘ teaching<sup>-1</sup>
- D) teaching<sup>-1</sup> ∘ taking
- E) None of the above / More than one

# **Poll: Minimum cardinality**

Suppose that sets A, B, C have cardinalities  $n_A$ ,  $n_B$ ,  $n_C$  respectively. Further,  $\min\{n_A, n_B, n_C\} > 0$ . Let R be a relation on  $A \times B$  and S a relation on  $B \times C$ . What is the minimum cardinality of  $S \circ R$ ? (In discussion, justify your answer.)

- A) o
- B) n<sub>B</sub>
- C)  $n_A + n_C$
- D)  $n_A \cdot n_C$
- E) min { n<sub>A</sub>, n<sub>C</sub> }
- F) min { n<sub>A</sub>, n<sub>B</sub>, n<sub>C</sub> }

### Poll: Maximum cardinality

Suppose that sets A, B, C have cardinalities  $n_A$ ,  $n_B$ ,  $n_C$  respectively. Let R be a relation on  $A \times B$  and S a relation on  $B \times C$ . What is the maximum cardinality of  $S \circ R$ ? (In discussion, justify your answer.)

- A) n<sub>B</sub>
- B)  $n_A + n_C$
- C)  $n_A \cdot n_C$
- D) max { n<sub>A</sub>, n<sub>C</sub> }
- E) max  $\{n_A, n_B, n_C\}$

10

# **Graphical representations of relations**

A binary relation on  $A \times B$  can be represented visually in a couple of ways:

- · A table (Fig. 8.2 from book, left side)
- · A mapping (Fig. 8.2 from book, right side)

A binary relation on A can be conveniently represented as a graph.

# Representations of relations

## Graphical representation of relation on A

#### Example

Let  $A := \{a, b, c, d, e\}$ . And consider relation R on A defined as

$$R := \{ \langle a, b \rangle, \langle b, c \rangle, \langle b, a \rangle, \langle c, c \rangle, \langle c, d \rangle \}$$

R can be represented as a graph:





# Exercise

Consider this relation R:



On a piece of paper,

- 1. Draw R<sup>-1</sup>
- 2. Draw *R* ∘ *R*.