

Universidade de Aveiro - Departamento de Matemática

Matemática Discreta 2023/2024 - UC 47166 (1º Ano/2º Sem)

Teste T2 (Avaliação Discreta) - 19/06/2024 Duração: 2h

1. Seja $(a_n)_{n\in\mathbb{N}}$ a sucessão definida por

$$\begin{cases} a_n = 6a_{n-1} - 9a_{n-2} + (-3)^n & , n \ge 2, \\ a_0 = 1, a_1 = 3. \end{cases}$$

Resolva a equação de recorrência dada, de modo a obter uma fórmula fechada para $a_n, n \ge 0$.

- 2. Num lançamento de um dado de seis faces pode obter-se de 1 a 6 pontos. Pretende-se determinar o número de possibilidades de, num lançamento simultâneo de quatro dados iguais, se obter um total de n pontos $(n \ge 4)$.
 - (a) Mostre que a função geradora associada à solução do problema é dada por

$$A(x) = \frac{x^4 (1 - x^6)^4}{(1 - x)^4}$$

- (b) A partir da função geradora $\mathcal{A}(x)$ determine o número de possibilidades de se obter um total de n=15 pontos.
- 3. Seja \oplus uma operação de soma e $(S_n)_{n\geq 0}$ a sucessão $S_n=n\oplus (n+3),\ n\geq 0$, satisfazendo as seguintes igualdades:

$$0 \oplus 3 = 3, \ 1 \oplus 4 = 8, \ 2 \oplus 5 = 15, \ 3 \oplus 6 = 24, \ 4 \oplus 7 = 35, \ \dots \ , \ n \oplus (n+3) = n(n+4) + 3, \ \dots$$

Estabeleça uma relação de recorrência que descreva o termo geral da sucessão $(S_n)_{n\geq 0}$ e mostre que a sucessão S_n é solução dessa relação de recorrência, indicando também as respetivas condições iniciais.

4. Considere a seguinte matriz de custos W relativa a um grafo G = (V, E, W) cujo conjunto de vértices é $V = \{u, v, w, x, y, z\}$:

$$W = \begin{bmatrix} u & v & w & x & y & z \\ v & 0 & 5 & 3 & 6 & \infty & 4 \\ 5 & 0 & 1 & 1 & 3 & \infty \\ 3 & 1 & 0 & 4 & \infty & \infty \\ 6 & 1 & 4 & 0 & 1 & \infty \\ y & \infty & 3 & \infty & 1 & 0 & 3 \\ z & 4 & \infty & \infty & \infty & 3 & 0 \end{bmatrix}$$

(a) Desenhe o grafo G e aplique o algoritmo de Dijkstra para determinar o caminho de menor custo entre os vértices u e y, e indique o custo desse caminho.

Nota: Apresente todos os passos (iterações) do algoritmo através de uma tabela adequada.

- (b) Seja H o subgrafo de G induzido pelo subconjunto de vértices $\{u, v, w, x, y\} \subset V$. Verifique que H contém 8 arestas e, aplicando a fórmula recursiva $\tau(H) = \tau(H \alpha) + \tau(H//\alpha)$, onde α é uma aresta de H que não é lacete, determine o número de árvores abrangentes de H, $\tau(H)$.
- (c) Obtenha, justificando, um subgrafo abrangente de G que seja conexo e bipartido, indicando a respetiva bipartição do conjunto dos seus vértices.

Formulário:
$$\sum_{n=0}^{\infty} (\alpha x)^n = \frac{1}{(1-\alpha x)}, \ \alpha \in \mathbb{R}; \qquad \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} (\alpha x)^n = \frac{1}{(1-\alpha x)^k}, \ k \in \mathbb{N}.$$

Cotações:

		2.(b)				
3.0	2.5	2.5	2.0	4.5	3.0	2.5