

An Institute of National Importance under MoE

Saloh, Una - 177 209

Website: www.iiitu.ac.in

AY 2023-24

School of Electronics

CURRICULUM: HITUGECE22

End Semester Examination

December 27, 2023, 09.00 am - 12.00 noon

Degree	B. Tech.	D :	
Semester		Branch	ECE
Subject Code & Name	FCC302 D	-it-10'	
Time: 180 Minutes		gital Circuits and	Systems
	Auswer	All Questions	Maximum: 100 Marks

SI.	Maximum;	100 Marks
No.	Perform the following conversions:	Marks
1.6	ii) Convert (362.45) ₁₀ into Binary number system. ii) Convert (643.25) ₈ into Decimal number system. iii) Convert the Decimal number obtained in (ii) to Hexadecimal number system. iv) Convert (110011.1011) ₂ into Decimal number system. v) Convert (6DB3) ₁₆ into Octal number system Functions F ₁ (A, B, C, D) and F ₂ (a, a, b)	
1.c/	Functions $F_1(A, B, C, D)$ and $F_2(p, q, r, s)$ are given as follows: Write the function terms of minterms and reduce the function using suitable k-map. Implement reduced function using only 2 input gates. CD AB 00 01 11 10 00 X 11 11 12 01 14 X 15 10 11 11 12 11 11 12 11 11 12 11 12 11 13 14 15 16 Design a combinational circuit for the	ion in at the
	scenario shown in Fig. 1: Circuit has two 3-bit numbers A and B as inputs, the combinational circuit must perform the addition of 2 numbers and the LED corresponding to the result needs to be turned ON. For example, if A is 100, B is 101 then LED 9 must be turned ON. Draw the appropriate block schematic of the combinational circuit. Further give the complete internal circuit of the block at least once. (Circuit with minimum complexity will be much appreciated and attracts more marks.)	5

Let Design a 2-bit magnitude comparator using the multiplexers with n-1 selections line	18, 5
where 'n' represents number of input bits.	
2.a Let us consider a game named, "Rock (R)-Paper (P)-Scissor (S)-Fire (F)", which being played between two players P1 and P2. In this game both the players have choice to choose any word from R-P-S-F which are provided in the form of switch (as per Fig. 2). A player is said to be the winner based on the priorities assigned, per the Table-1, to each word among R-P-S-F. Each player is assigned with an LE which glows when the player wins the round. Suppose P1 has chosen R button and I has chosen S button, then the LED corresponding to P1 will glow and if both the players press same button both the LEDs must turn ON. Design a combinational circum which is connecting the switches of both the players to the respective LEDs. Draw the block diagram containing the inputs and outputs and mention any assumptions clear before proceeding for the design. Table-1: Priority Table	a es as D P2 he nit he
R P S F R - P R R P P - S F S R S - F F R F F - Fig.2: Scenario of the Game 2.b Design the combinational circuit for the truth table, given in Table-2, by taking Fig as reference. In Fig. 3 first pin is Y0 and last pin is Y15 in order i.e., Y0, Y1, Y2	
Y15. (Design restrictions: Do not use basic or derived gates for the design; Pialignment order should not be changed). Table-2: Truth Table Control Output i1 i2 Y O O Y1 O I Y2 I O Y4 I I Y8 Fig. 3: Block Diagram of the Circuit	ins 5
2.c Define a Flip-flop. Explain the reason(s) in detail for occurrence of race-arou	
condition in level-triggered JK Flip-flop and suggest the suitable measures to avoid Hlustrate the race around condition and the measures to avoid it using the waveform	

	1	THE RESIDENCE OF THE PARTY OF T	f selection lines	Universal Shift register		
		S1	S0	Condition		5
		0	0	Shift left		,
		0	1	Shift right		
		1	0	Parallel-In Parallel-Out		
		1	1	Buffer		
3,6	of 1 millisectors of 1 millise	ond. This stop was stops the times ers, BCD to 7-se	vatch needs to ha r on releasing it. gment display co the design. Usag	time of 60 seconds and mi we a button that activates of Assume that clock of 15kF inverters, and negative edge e of any logic gate is per	the timer on Iz, binary to triggered T	5
3.c	2, 3, 6, 4, 0, is not struck	2, 3, 6, 4, 0 and s at any unknown s	so on. To make s state, all the unkn	Flipflop, that would count ture that the arbitrary seque own states must be reset to	ence counter o zero. Draw	5
	the wavelorn	i for six clock pu	uses to represent	the arbitrary sequence cou	nter.	
	Explain the fi diagram, clo unloading a 4	functionality of a ck pulse chart a 4-bit binary numb	4-bit parallel-in and waveform b	and serial-out shift registe y taking an example of	r with block loading and	5
	Explain the f diagram, clo unloading a 4 Explain abou	functionality of a ck pulse chart a 4-bit binary numb	4-bit parallel-in and waveform boer.	and serial-out shift registe	r with block loading and	5
4.a	Explain the f diagram, clo unloading a 4 Explain about diagram, clos Compare Ti	cunctionality of a ck pulse chart a d-bit binary number the ring counter ck pulse chart and CL and CMOS 1	4-bit parallel-in and waveform boer. er and the twisted waveform.	and serial-out shift registery taking an example of dring counter with the hased on the Voltage levels	r with block loading and elp of block	
4.a 4.6	Explain the finding diagram, cloudiagram, cl	ck pulse chart a debit binary number that the ring counter of the ring counter of the ring counter of the ring counter of the ring counter of the	4-bit parallel-in and waveform beer. er and the twisted waveform. logic families bar waveforms when the Unipolar logic families bar the Unipolar logic families waveforms when the Unipolar logic families bar waveforms when the Unipolar logic families bar waveforms when the Unipolar logic families waveforms waveforms when the Unipolar logic families waveforms waveforms waveforms when the Unipolar logic families waveforms waveform	and serial-out shift registery taking an example of dring counter with the hased on the Voltage levels	r with block loading and elp of block s and Noise orking of the	5
4.a 4.6	Explain the fidiagram, clounloading a 4 Explain about diagram, cloudiagram, cloudiagram, cloudiagram. Draw What are the devices when what is a Description for the compare of the compare	ck pulse chart as the ring counter the ring counter the pulse chart and the ring counter the ring ships	4-bit parallel-in and waveform beer. er and the twisted waveform. logic families bar waveforms when the Unipolar logic and low. Draw to lock diagram of lit data into analogic data into analogic data.	and serial-out shift registery taking an example of dring counter with the hased on the Voltage levels between necessary. The family is a series of the neat diagrams wherever the neat diagrams where the neat diagram	r with block loading and elp of block s and Noise orking of the r necessary.	5
4.a 4.b 4.c	Explain the fidiagram, clounloading a 4 Explain about diagram, cloudiagram, cloudiagram, cloudiagram. Draw What are the devices when what is a Description for the compare of the compare	ck pulse chart as the ring counter the ring counter the pulse chart and the ring counter the ring ships	4-bit parallel-in and waveform beer. er and the twisted waveform. logic families bar waveforms when the Unipolar logic and low. Draw toock diagram of the transfer waveforms when the Unipolar logic and low.	and serial-out shift registery taking an example of dring counter with the hased on the Voltage levels between necessary. The family is a series of the neat diagrams wherever the neat diagrams where the neat diagram	r with block loading and elp of block s and Noise orking of the r necessary.	5 5 5
4.a 4.b 4.c	Explain the fidiagram, clounloading a 4 Explain about diagram, cloudiagram, cloudia	che pulse chart as the ring counter the ring counter the pulse chart and the ring counter the diagrams of the input is high a C? Draw the blar converting 3-bit R gate and XOR	4-bit parallel-in and waveform beer. er and the twisted waveform. logic families bar waveforms when the Unipolar logic and low. Draw took diagram of lit data into analogic gate using CMO tions using CMO	and serial-out shift registery taking an example of dring counter with the hased on the Voltage levels between necessary. ic family? Explain the work he neat diagrams wherever R-2R ladder type DAC and grootage value. S Logic.	r with block loading and elp of block s and Noise orking of the r necessary.	5 5
3.d 4.a 4.b 4.c 5.a 5.b	Explain the finding diagram, clounloading a 4 Explain about diagram, cloudiagram,	cunctionality of a ck pulse chart a ck pulse chart a ck pulse chart and ck pulse chart and ck pulse chart and chart	4-bit parallel-in and waveform beer. er and the twisted waveform. logic families bar waveforms when the Unipolar logic and low. Draw to lock diagram of the data into analogic gate using CMO tions using CMO $T_4 = AB + CD$	and serial-out shift registery taking an example of dring counter with the hased on the Voltage levels between necessary. ic family? Explain the work he neat diagrams wherever R-2R ladder type DAC and grootage value. S Logic.	r with block loading and elp of block s and Noise orking of the r necessary.	5 5 5 5

Page 3 of 3

0 × 1

X D.

00

10

An Institute of National Importance under MoE

Saloh, Una - 177 209

Website: www.iiitu.ac.in

AY 2023-24

School of Electronics

CURRICULUM: IIITUGECE22

End Semester Examination

28, Dec.'2023 (9:00 - 12:00 hrs)

Degree	B. Tech.	Branch	ECE			
Semester	III					
Subject Code & Name	ECC303: Ele	ECC303: Electromagnetic Field Theory				
Time: 180 Minutes	Answer	All Questions	Maximum: 100 Marks			

Q. No.	Question	Marks
1.	a. Define wave polarization. Graphically illustrate linear, circular, and elliptical polarization. Discuss the conditions to achieve linear, circular, and elliptical polarization.	(5)
	If a point $P(x, y, z)$ in Cartesian coordinate system is expressed by point $P(r, \theta, \phi)$ in spherical coordinate system, then show that: $r = \sqrt{x^2 + y^2 + z^2}$ $\theta = \tan^{-1}\left(\frac{\sqrt{x^2 + y^2}}{z}\right)$ $\phi = \tan^{-1}\left(\frac{y}{x}\right)$	(5)
	Also, verify the following equations: $x = r \sin(\theta) \cos(\phi)$ $y = r \sin(\theta) \sin(\phi)$ $z = r \cos(\theta)$	
	Define characteristic impedance of a transmission line. Draw L-type equivalent circuit model of two-conductor transmission line. Derive the transmission line equations (voltage and current wave equations).	(5)
+	d Express the point $P(-2,6,3)$ in cylindrical and spherical coordinates.	(5)
2.	Points P and Q are located at (0,2,4) and (-3,1,5). Find out a vector parallel to PQ with magnitude of 10.	(5)
	b. Two point charges $1mC$ and $-2mC$ are located at $(3,2,-1)$ and $(-1,-1,4)$ respectively. Calculate the electric force on $10nC$ charge located at $(0,3,1)$ and the electric field intensity at that point.	(5)

-	./	
-	c. Derive the Poisson's and Laplace's equations. Write down at least one application of Laplace's equation.	(5)
	d Why a perfect conductor is termed as equipotential body?	(5)
3.	Determine the divergence of the following vector field 'A' $A = yza_x + 4xya_y + ya_z$ and evaluate them at a point $P(1, -2, 3)$.	(5)
	b. Given that the electric field intensity $E = (3x^2 + y)a_x + xa_y \text{ kV/m}$ Find the work done in moving a $-2\mu C$ charge from point (0,5,0) to point (2,-	(5)
	Two point charges Q ₁ and Q ₂ having magnitudes 4 nC and 6 nC respectively are placed at (1,1) and (5,7) respectively. Find the equation of the locus on which the electric field intensities due to Q ₁ and Q ₂ are equal.	(5)
(d. An air line has a characteristic impedance of 70Ω and a phase constant of 3 rad/m at 100 MHz . Calculate the inductance per meter and the capacitance per meter of the line.	(5)
4/	a Define Dispersion. Explain the cause of dispersion in lossy dielectric medium?	(5)
(b. Determine the polarization of a plane wave with: $E(z,t) = 4e^{-0.25z}\cos(\omega t - 0.8z)a_x + 3e^{-0.25z}\sin(\omega t - 0.8z)a_y V/m$	(5)
P	C. A lossy dielectric has an intrinsic impedance of 200 \angle 30° Ω at a particular radian frequency ω . If, at that frequency, the plane wave propagating through the dielectric has the magnetic field component $H = 10e^{-\alpha x} \cos\left(\omega t - \frac{1}{2}x\right)a_y \text{ A/m}$	(5)
	Find E and α . d. A lossless transmission line with $Z_o = 50\Omega$ is 30 m long and operates at 2	(5)
	MHz. The line is terminated with a load $Z_L = 60 + j40 \Omega$. If $u = 0.6c$ on the line, where c is the speed of light in vacuum, Determine the following: i. The reflection coefficient	
	ii. The standing wave ratio iii. The input impedance	
5.	a. A distortionless line has $Z_o = 60\Omega$, $\alpha = 20 \text{ mNp/m}$, $u = 0.6c$, where c is the speed of light in vacuum. Find R, L, G, C, and λ at 100 MHz.	(5) my6.
5/1	Write down the generalized Maxwell's equations both in differential and integral form. Discuss the physical significance of each Maxwell equation.	(5)
, SV.		(5)

An Institute of National Importance under MoE Saloh, Una – 177 209

Website: www.iiitu.ac.in

AY 2023-24 School of Electronics CURRICULUM: HITUGECE22 END SEMESTER EXAMINATION 29, December'23

Degree	B. Tech.	Branch	ECE
Semester	III	do	
Subject Code & Name	ECC304: Co	ommunication Sy	ystems
Time: 180 Minutes	Answer	All Questions	Maximum: 100 Marks

Sl. No.	Question	Marks
1.a	index on total power, sideband power, and efficiency for multi-tone AM.	
1.b	An AM signal $s(t)$ is given by the following equation: $s(t) = 4\cos 3200\pi t + 10\cos 4000\pi t + 4\cos 4800\pi t$ Find the value of Bandwidth, Total Power, Sideband Power, Efficiency, and $\frac{P_C}{P_t}$.	5
1.0	Discuss the concept of Quadrature null effect in DSB-SC using the mathematical equations.	5
1.d	A carrier signal of $10\cos(4\pi \times 10^5 t)$ is Amplitude modulated by a message signal of $4\cos(\pi \times 10^4 t)$ with $\mu = 0.5$. Find the value of carrier power, total power, sideband power, bandwidth, and efficiency.	5
2.a	Derive the mathematical expression for single-tone FM in terms of Bessel's Function.	5
2.6	Draw the circuit diagram for the envelope detector and explain the concept of choosing the optimum value of R_LC for envelope detector.	5
2.c	Find the value of maximum frequency and deviation ratio for the signal $s(t)$ given below: $s(t) = 10\cos[\omega_c t + 5\sin 3000t + 10\sin 2000\pi t]$	5
2.d	Write down the difference between Frequency Multiplier and Mixer and justify the answer using the suitable examples.	5
3.2	Explain the Armstrong method for the generation of Frequency Modulation.	5
3,16	Thirty message signals each bandlimited to 20KHz are multiplexed using FDM with Guard band value equal to 2KHz. Find the multiplexed bandwidth scheme for the following type of modulation: (i) AM (ii) SSB	5

30		
	Draw the circuit diagrams used for improving the Fidelity of a receiver and	5
-	We answer with mathematical	,
3,d	For the FM super-heterodyne receiver, find the required value of intermediate frequency to seed a IRR station of	
	frequency to seed the receiver, find the required value of intermediate	5
	frequency to receive IRR=138, when the receiver is tuned to 25MHz station at Q=100.	
4.a	The state of the s	
	A message signal of $4\cos(2\pi \times 10^3 t)$ is transmitted by using 3-bit PCM system Find the	
	Till the value of the following parameters:	
,	or or size, off rate, and bandwidth.	5
	The quantizer and encoder output at the sampled values given as:	
11	[-3.5V, -2.6V, -1.1V, 0.5V, 2.2V, 3.8V]	
4.6	Explain the relationship between inter-symbol interference and handwidth of a	
	raised cosine pulse.	5
4.0	Twenty message signals are multiplexed using TDM and the speed of	
/	commutator is 4000 rotations per second. Find the value of R_b in case of	
	synchronization requires following number of extra bits:	
	(i) 6 extra bits per each frame	5
	(ii) 2 extra bits per each sample	,
	(iii) 20% extra bits per each frame	
	Assume each sample is encoded with 8 bits.	
4.4	Explain the reason of preferring DPCM over PCM with suitable diagrams and	
	mathematical expressions.	5
5.a	The message signal shown in Fig. 1, is transmitted using delta modulation with	
/	pulse rate of 1000 pulses per second. Find the optimum value of step size.	
/	m(t)	
	m(t)	
	125V	
	125V	5
		5
	125V	5
	0 1 2 t	5
5,b	Fig. 1: Message signal for Problem 5.a	5
5.b	Fig. 1: Message signal for Problem 5.a Explain the reason of choosing integer number of cycles of c(t) in one T. for	
5.b	Fig. 1: Message signal for Problem 5.a Explain the reason of choosing integer number of cycles of $c(t)$ in one T_b for ASK. Calculate the transmission bandwidth requirements for ASK using its	5
/	Fig. 1: Message signal for Problem 5.a Explain the reason of choosing integer number of cycles of $c(t)$ in one T_b for ASK. Calculate the transmission bandwidth requirements for ASK using its spectrum.	5
5.b	Fig. 1: Message signal for Problem 5.a Explain the reason of choosing integer number of cycles of $c(t)$ in one T_b for ASK. Calculate the transmission bandwidth requirements for ASK using its spectrum. A message signal of $10 \cos 2\pi \times 10^4 t$ is given to 1024 level PCM system, and	5
/	Fig. 1: Message signal for Problem 5.a Explain the reason of choosing integer number of cycles of $c(t)$ in one T_b for ASK. Calculate the transmission bandwidth requirements for ASK using its spectrum. A message signal of $10 \cos 2\pi \times 10^4 t$ is given to 1024 level PCM system and the resulting binary sequence is transmitted through free space using binary	5
/	Fig. 1: Message signal for Problem 5.a Explain the reason of choosing integer number of cycles of $c(t)$ in one T_b for ASK. Calculate the transmission bandwidth requirements for ASK using its spectrum. A message signal of $10\cos 2\pi \times 10^4 t$ is given to 1024 level PCM system and the resulting binary sequence is transmitted through free space using binary signaling scheme. Find the transmission bandwidth, if the following type of	5
/	Fig. 1: Message signal for Problem 5.a Explain the reason of choosing integer number of cycles of $c(t)$ in one T_b for ASK. Calculate the transmission bandwidth requirements for ASK using its spectrum. A message signal of $10\cos 2\pi \times 10^4 t$ is given to 1024 level PCM system and the resulting binary sequence is transmitted through free space using binary signaling scheme. Find the transmission bandwidth, if the following type of modulation scheme is used:	5
5.c/	Fig. 1: Message signal for Problem 5.a Explain the reason of choosing integer number of cycles of $c(t)$ in one T_b for ASK. Calculate the transmission bandwidth requirements for ASK using its spectrum. A message signal of $10 \cos 2\pi \times 10^4 t$ is given to 1024 level PCM system and the resulting binary sequence is transmitted through free space using binary signaling scheme. Find the transmission bandwidth, if the following type of modulation scheme is used: (i) ASK (ii) FSK.	5
/	Fig. 1: Message signal for Problem 5.a Explain the reason of choosing integer number of cycles of $c(t)$ in one T_b for ASK. Calculate the transmission bandwidth requirements for ASK using its spectrum. A message signal of $10\cos 2\pi \times 10^4 t$ is given to 1024 level PCM system and the resulting binary sequence is transmitted through free space using binary signaling scheme. Find the transmission bandwidth, if the following type of modulation scheme is used:	5

An Institute of National Importance under MoE

Saloh, Una - 177 209

Website: www.iiitu.ac.in

AY 2023-24

School of Electronics

CURRICULUM: IIITUGECE22 END SEMESTER EXAMINATION

26 Dec.' 2023 (9:00 - 12:00 hrs)

Degree	B. Tech.	D 12:00	
	D. Teen.	Branch	ECE
Semester	III		
Subject Code & Name	ECC301: Ele	ectronic Devices a	nd Circuits
Time: 180 Minutes			
	Auswer	All Questions	Maximum: 100 Marks

S.	Question	
No.		Marks
1a	State advantages and disadvantages of PN and Zener diode. Explain the working principle and construction of Zener diode in detail.	5
1.6	explain the input and output characteristics of NPN transistor in CB configuration with transistor hybrid parameter models	5
1.c	Draw the basic construction of a P-channel JFET. Apply the proper biasing between the drain and source and sketch the depletion region for V = 0V	5
1.d	by temperature parameters. Also, show diagrammatically the variation in diode	5
2,a	A transistor operating in CB configuration has I_c =2.98 mA, I_E =3.2 mA, and I_{co} =0.02 mA. What current will flow in the collector circuit of this transistor when connected in CE configuration with I_B =30 uA?	5
•	Determine the dc bias voltage V_{CE} and the current I_C for the voltage divider configuration of Figure 1. $ \begin{array}{c} 10 \text{ k}\Omega \\ V_{CE} \end{array} $ $ \begin{array}{c} 10 \text{ k}\Omega \\ V_{CE} \end{array} $ $ \begin{array}{c} 10 \text{ k}\Omega \\ V_{CE} \end{array} $ Figure 1	5

Fillody Banon

Good Luck