M2177.0043 Introduction to Deep Learning

Lecture 8: Neural Networks¹

Hyun Oh Song¹

¹Dept. of Computer Science and Engineering, Seoul National University

April 9, 2020

¹ Many slides and figures adapted Justin Johnson

Last time

- ► Model fitting
- ► Computational Graphs
- ► Neural Networks

Outline

Convolutional neural network

Pooling layer

Activation

Weight initialization

Fully connected layer

▶ $32 \times 32 \times 3$ image \rightarrow stretch to 3072×1

Fully connected layer

▶ $32 \times 32 \times 3$ image \rightarrow stretch to 3072×1

▶ $32 \times 32 \times 3$ image \rightarrow preserve spatial structure of input

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Convolution layer hyperparameters

- ▶ Number of filters. Depth of the output volume = number of activation maps.
- ▶ Stride. When the stride is 1 then we move the filters one pixel at a time. When the stride is 2 then the filters jump 2 pixels at a time as we slide them around. This will produce smaller output volumes spatially.
- ➤ Zero-padding. The nice feature of zero padding is that it will allow us to control the spatial size of the output volumes

	Input '	Volum	e (+pa	d 1) (7	x7x3)	Filter W0 (3x3x3)	Filter W1 (3x3x3)	Output Volume (3x3x2)
	x[:,					w0[:,:,0]	w1[:,:,0]	0[:,:,0]
	0 0	0	0 (0	0	-1 0 1	-1 0 0	2 0 2
	0 2	1	0 2	0 9	0	-1 -1 1	-1 1 -1	10 4 -4
	0 0	2	0 () 1	0	0 1 1	1 1 -1	6 2 -4
	0 0	0	0 2	2 2	0	w0[:,:,1]	w1[:,:,1]	0[:,:,1]
	0 1	1	0 2	2 2	0	-1 1 1	-1 1 0	-1 -2 0
	0 2	2	1 :	1	0	101	0 1 1	2 -2 11
	0 0	0	0 0	20	0	-1 -1 -1	0 0 0	9 1 1
		-11				w0[:,:,2]	W1[:,:,2]	
	x[:,		0 0	0 (0	0 10	1 1 0	
	0 1	1) 0		0 1 1	1 -1	
	0 1	λ.				1 0 1	0 0 -1	
	0 1	-2	2	1-0	0			
	0 0	1	2 2	2 2	0	Bias-b0 (1x1x1)	Bias b1 (1x1x1)	
	0 2	1	2 2	2 1	9	150[:,:,0]	b1[:,:,0]	
	0 2	2	0	1	0	1	0	
	0 0	0	0 0	0	0			
	ж,	. 21	_					
	0 0		0 0	0	0			
	0 0		2		6			
	0 0		0	2	0			
	/	_			-			
	0 2	0	1 (2	0			
	0 2	2	2 2	2 1	0			
	0 1	0	0 2	2 2	0			
Convolutional r	0-10	a D .	A+16)(O)(P)	0			
Convolutional	icui	ar I	CLV	VOIN				

Example 1: Output activation size

Input volume: **32x32x3**

10 5x5 filters with stride 1, pad 2

Output volume size: ?

Example 1: Output activation size

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Example 2: Number of parameters

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Example 2: Number of parameters

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias)

=> 76*10 = **760**

Outline

Convolutional neural network

Pooling layer

Activation

Weight initialization

Pooling layer 12

Pooling layer

- ▶ makes the representations smaller and more manageable
- operates over each activation map independently

Pooling layer 224 13

Max pooling, average pooling, etc.

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

Pooling layer 14

Outline

Convolutional neural network

Pooling layer

Activation

Weight initialization

Activation 15

Activation functions²

$$g_{\text{logistic}} = 1/(1 + e^{-z})$$

$$g_{tanh} = (e^z - e^{-z})/(e^z + e^{-z})$$

Some Common Activation Functions

Outline

Convolutional neural network

Pooling layer

Activation

Weight initialization

Weight initialization 17

10 Layer MLP w/ tanh: small weights

 \blacktriangleright W = 0.01 * np.random.randn(n_in, n_out)

► Activations get collapsed to zero. Why?

10 Layer MLP w/ tanh: small weights

- ► Activations get saturated at 0 and gradient doesn't flow. Why?
- ► Forward: Keep multiplying near zero matrices.
- Backward: Keep multiplying near zero matrices as well. Upstream gradient collapsing to zero as well.
- Activations collapse to all zeros.
- ► So the if the problem is because *W* is initialized with **small** weights, what if we initialize with big weights instead?

Weight initialization 19

10 Layer MLP w/ tanh: large weights

- ▶ W = 1.0 * np.random.randn(n_in, n_out)
- Activations get saturated at -1 or 1 and gradient doesn't flow. Why?

10 Layer MLP w/ tanh: large weights

- ightharpoonup Activations get saturated at -1 or 1 and gradient doesn't flow.
- ▶ Forward: Now, **tanh** saturates large activations to -1 or +1
- ▶ Backward: tanh has near zero gradient at -1 or +1 and the weights do not update

Weight initialization 21

Xavier initialization

- Assume MLP network, weights and activations have zero mean, weights drawn i.i.d.
- $f(\cdot)$ is the non-linearity, centered & linear & has unit gradient around zero, *i.e.* tanh layer.

Xavier initialization - forward variance

$$z_k^{i+1} = f(s_k^{i+1}) = f(\sum_{j=1}^{n_i} W_{kj}^i z_j^i) \approx \sum_{j=1}^{n_i} W_{kj}^i z_j^i$$

Note the property of variance and by independence $(X \perp\!\!\!\perp Y)$, $Var(XY) = E[Y]^2 Var(X) + E[X]^2 Var(Y) + Var(X) Var(Y)$. Thus,

$$Var(z^{i+1}) \approx Var\left(\sum_{j=1}^{n_i} W_{kj}^i z_j^i\right)$$

$$\implies Var(z^{i+1}) = n_i Var(W^i) Var(z^i)$$

To achieve $Var(z^i) = Var(z^{i+1})$, set $Var(W^i) = \frac{1}{n_i}$

Xavier initialization - backward variance

$$\begin{split} \frac{\partial \ell}{\partial z^i_j} &= \sum_{k=1}^{n_{i+1}} \underbrace{\frac{\partial \ell}{\partial z^{i+1}_k}}_{k=1} \underbrace{\frac{\partial z^{i+1}_k}{\partial z^{i}_k}}_{\frac{\partial z^{i+1}_k}{\partial z^{i+1}_k}} \\ &= \sum_{k=1}^{n_{i+1}} \frac{\partial \ell}{\partial z^{i+1}_k} \underbrace{\frac{\partial z^{i+1}_k}{\partial s^{i+1}_k}}_{\approx 1} \underbrace{\frac{\partial s^{i+1}_k}{\partial z^{i}_j}}_{\frac{\partial z^{i+1}_k}{\partial z^{i+1}_k}} \\ &= \sum_{k=1}^{n_{i+1}} \frac{\partial \ell}{\partial z^{i+1}_k} W^i_{kj} \end{split}$$

$$\implies Var(\frac{\partial \ell}{\partial z^i}) = n_{i+1} Var(\frac{\partial \ell}{\partial z^{i+1}}) Var(W^i)$$

To achieve
$$Var(\frac{\partial \ell}{\partial z^i}) = Var(\frac{\partial \ell}{\partial z^{i+1}})$$
, set $Var(W^i) = \frac{1}{n_{i+1}}$

Xavier initialization

- unless $n_i=n_{i+1}$, we have to compromise between these two conditions, and a reasonable choice is the harmonic mean, $Var(W^i)=\frac{2}{n_i+n_{i+1}}$
- \blacktriangleright Note, some implementations (Caffe) just use $Var(W^i) = \frac{1}{n_i}$
- ▶ if we sample from N(0,1), multiply the samples by $\sqrt{\frac{2}{n_i+n_{i+1}}}$.
- ▶ if we sample from Uni(-a,a), take $a=\sqrt{\frac{6}{n_i+n_{i+1}}}$. Why?
- Read Glorot & Bengio 2010 for more details.

10 Layer MLP w/ tanh

► W = np.random.randn(n_in, n_out) / np.sqrt(n_in)

Weight initialization 26

He initialization

- ▶ The assumptions do not hold for $f(\cdot)$ is ReLU activation.
- ▶ Roughly, ReLU zeroes out half the inputs.
- ▶ Set $Var(W^i) = \frac{2}{n_i}$.
- ▶ Read He et al. 2015 for more details.
- ▶ How to best initialize deep networks is an active research area.