

Tidsserieanalys - Föreläsning 10 (ARCH, GARCH och VAR)

Frank Miller, Department of Computer and Information Science, Linköping University

frank.miller@liu.se

December 9, 2024

Exempel 10.1

• Y_t växelkurs SEK per EUR, 2017-01-01 till 2017-12-08

Modellering av aktie- eller valutakurs

- \bullet Vi har en aktie- eller valutakurs Y_t upp till tid t-1 och önskar förutsäga Y_t
- Om marknadsaktörerna hade information om att kursen kommer att stiga markant från tidpunkt t-1 till t, skulle de redan har köpt aktien/valutan och därmed påverkat kursen
- Därför: rimligt att anta att väntevärdet för kursen vid tidpunkt t är detsamma som vid tidpunkt t-1, eller att det ökar med ett konstant belopp: (*) $E[Y_t] = Y_{t-1} + \mu$
- (*) följer om vi antar modellen: $Y_t = \mu + Y_{t-1} + \varepsilon_t$ med oberoende ε_t , $E[\varepsilon_t] = 0$
- Med $Z_t=Y_t-Y_{t-1}$ betyder det $Z_t=\mu+\epsilon_t$, dvs. Z_t är ARMA(0,0), Y_t är ARIMA(0,1,0)
- $Y_t = \mu + Y_{t-1} + \varepsilon_t$ kallas för "slumpvandring (med drift)"

Modellering av variabilitet

- Även om vi inte kan lära oss något om framtida medelvärden från data, vill vi lära oss något om variabiliteten (volatiliteten) för att bedöma risker
- Att kunna förutsäga osäkerhet är viktigt i finansiella sammanhang
- Variabiliteten brukar inte vara konstant utan visar ofta upp kluster med större variation och kluster med mindre variation
- Tanken med volatilitetskluster i verkligheten leder till idén att variansen för kommande observation beror på storleken av förändringen en tidpunkt innan
- ARCH, GARCH modeller för variansmodellering läggs till en ARIMA modell för medelvärden (här idag antar vi ARIMA(0,1,0) för medelvärdet, men man kan ha ett annat modell för andra tidsserier)

Exempel 10.1

- Y_t växelkurs SEK per EUR, 2017-01-01 till 2017-12-08
- Dagliga förändringar $Z_t = Y_t Y_{t-1}$
- $(Z_t)^2$ och glidande medel över 15 $(Z_t)^2$ värden ("Glidande Varians")

ARCH(1)-modell

 För Y_t antar vi att feltermens varians h_t (betingat för vad som har hänt innan) är

$$h_t = \omega + \alpha_1 \varepsilon_{t-1}^2,$$

där ω>0 och α₁≥0; processen kallas då ARCH(1) (ARCH="Autoregressive Conditional Heteroscedasticity")

• Vi betraktar här slumpvandringsprocessen (ev. med drift)

$$Y_t = \mu + Y_{t-1} + \varepsilon_t,$$

med oberoende ε_t som har $E[\varepsilon_t]=0$ och $Var(\varepsilon_t)=\mathbf{h_t}$

ARCH(1)-modell

• Exempel 10.1 (forts.): ARCH(1)-modellering av växelkursen; resultat från R (paket rugarch)

	Estimate	Std. Error	t value	Pr(> t)
mu	0.0019	0.00167	1.16	0.247
omega	0.0006	0.00007	9.05	<0.0001
alpha1	0.1600	0.07137	2.24	0.024

$$Y_t = \mu + Y_{t-1} + \varepsilon_t$$
; $Var(\varepsilon_t) = h_t = \omega + \alpha_1 \varepsilon_{t-1}^2$

• Tolkning?

ARCH(1)-modell

- Exempel 10.2: För en ARCH(1)-tidsserie Y_t utan drift $(Y_t = Y_{t-1} + \varepsilon_t)$; $Var(\varepsilon_t) = h_t = \omega + \alpha_1 \varepsilon_{t-1}^2$ antar vi $\omega = 0,0006$, $\alpha_1 = 0,16$ och normalfördelade ε_t
- Vi har följande observationer: $y_1=9,71$, $y_2=9,70$, $y_3=9,90$

• Beräkna standardavvikelserna $\sqrt{h_3}$, $\sqrt{h_4}$ för tidpunkterna t=3 och 4. Vad

- Om feltermens varians h_t för Y_t får beror på q stycken tidigare ε_t , $h_t = \omega + \alpha_1 \varepsilon_{t-1}^2 + ... + \alpha_q \varepsilon_{t-q}^2$,
 - kallas modellen ARCH(q)
- Om feltermens varians h_t för Y_t är $h_t = \omega + \alpha_1 \varepsilon_{t-1}^2 + ... + \alpha_q \varepsilon_{t-q}^2 + \beta_1 h_{t-1} + ... + \beta_p h_{t-p},$ kallas modellen GARCH(p,q) ("Generalized ARCH")
- Notera: GARCH(o,q) = ARCH(q)

ARCH(q)- och GARCH(p,q)-modellval

- Modellval kan göras genom att jämföra informationskriterier som AIC eller BIC; alternativt med att jämföra kvalitet av prognoserna genom att dela in data i tränings, validerings och test data
- För att skatta parametrar i ARCH(q)- eller GARCH(p,q) med större p eller q behövs vanligtvis större datamängder som innehåller flera volatilietskluster
- Vi tittar nu på daglig data över en 10-års period
- Exempel 10.3: Växelkursen SEK per EUR från 2008-2017. Medelvärdet följer en slumpvandring (ARIMA(0,1,0)). Vi vill använda en lämplig GARCH(p,q)-variansmodell.

- Exempel 10.3:
- Kursförloppet Y_t
 2008-2017 visas i figuren
- Slumpvandring för medelvärdet:

$$Y_t = \mu + Y_{t-1} + \varepsilon_t$$

- Exempel 10.3:
- Kvadrerade kursförändringar (Y_t-Y_{t-1})² 2008-2017 visas i figuren
- För att få ett bättre intryck över volatilitetskluster beräknar vi glidande medelvärden, MA(15), av dessa

- Exempel 10.3:
- MA15 av kvadrerade kursförändringar visas i figuren
- Man ser en lång kluster av mycket stor volatilitet slutet av 2008 till mitten av 2009, och flera andra volatilitetskluster

• Exempel 10.3: Efter analys av olika GARCH(p,q)-modeller väljer vi GARCH(1,1)-modellen vilken gav bäst BIC; analysen:

	Estimate	Std. Error	t value	Pr(> t)
mu	0.00052	0.00070	0.74	0.4587
omega	0.00002	0.00001	3.69	0.0002
alpha1	0.06594	0.00963	6.85	<0.0001
beta1	0.92139	0.01133	81.30	<0.0001

- Feltermens varians: $h_t = 0,00002+0,06594\epsilon_{t-1}^2+0,92139h_{t-1}$
- Med den skattade modellen kan vi predicera variansen för morgondagen

T.ex. om variansen för idag hade beräknats till h_t =0,001 (baserad på tidigare data med hjälp av denna GARCH(1,1)-modell) och

- a) Ingen kursförändring från igår till idag $(Y_t=Y_{t-1})$,
- b) Kursändring 0,1 från igår till idag ($|Y_t-Y_{t-1}|=0,1$) så blir variansen för imorgon
- a) $h_{t+1} = 0.000023 + 0.0659 \cdot 0 + 0.921 \cdot 0.001 = 0.000944$
- b) $h_{t+1} = 0.000023 + 0.0659 \cdot 0.1^2 + 0.921 \cdot 0.001 = 0.001603$

R kod för analyserna innan

```
library(rugarch)
setwd("C:/Users/...") # write here where you have saved the data-files on your computer, if necessary
eursek2017 <- read.csv("SEKEUR 2017.csv", header = TRUE, sep = ";", dec=",")</pre>
eursek200817 <- read.csv("SEKEUR20082017.csv", header = TRUE, sep = ";", dec=",")</pre>
# ARCH(1) example
spec <- ugarchspec(variance.model = list(model="sGARCH", garchOrder = c(1, 0)), mean.model = list(armaOrder = c(0, 0),
                     include.mean = TRUE))
                                                                     Noterà att GARCH-modellens parametrar
fit a1 <- ugarchfit(spec = spec, data = eursek2017[-1, 3])</pre>
fit a1
                                                                     ska vara i ordningen q, p
# GARCH(p, q) models, p=0, 1, 2, q=1, 2, 3; jämför Bayes Information Criterion; p=q=1 ger bäst resultat
for (p in 0:2) {
 for (q in 1:2) {
    spec <- ugarchspec(variance.model = list(model="sGARCH", garchOrder = c(q, p)), mean.model = list(armaOrder = c(0, 0),
                       include.mean = TRUE))
    fit <- ugarchfit(spec = spec, data = eursek200817[-1, 3])</pre>
   print(fit)
         <- ugarchspec(variance.model = list(model="sGARCH", garchOrder = c(1, 1)), mean.model = list(armaOrder = c(0, 0),</pre>
spec
                       include.mean = TRUE))
fit alb1 <- ugarchfit(spec = spec, data = eursek200817[-1, 3])
fit alb1
```


- Med modellerna som vi betraktade hittills försöker man predicera framtiden av en serie med seriens egna historia
- Till exempel:
 - Framtidens växelkurs baserad på samma växelkursens historia
 - Framtidens BNP baserad på BNP-data bara
 - Sysselsättning i kommande kvartal baserad på sysselsättningen några år tillbaka
- Verkligheten är inte endimensionell: i många fall påverkar flera variabler en tidsserie
- Exempel: Framtidens BNP i Sverige skulle kunna bero på nutidens BNP, sysselsättningen och växelkursen

- Vi har två tidsserier
 - $Y_{1,t} = a_1 Y_{1,t-1} + \varepsilon_{1,t}$
 - $Y_{2,t} = a_2 Y_{2,t-1} + \varepsilon_{2,t}$

som "påverkar varandra"

- En VAR ("Vector Autoregressive") modell där serierna antas påverka varandra kan formuleras som ett system där man tillåter samspel mellan variablerna:
 - $Y_{1,t} = a_{11}Y_{1,t-1} + a_{12}Y_{2,t-1} + u_{1,t}$
 - $Y_{2,t} = a_{21}Y_{1,t-1} + a_{22}Y_{2,t-1} + u_{2,t}$
- Antaganden: $E[u_{1,t}]=E[u_{2,t}]=0$ för alla t, $E[u_{1,s}\cdot u_{2,t}]=0$ för alla s och t $(u_1$ och u_2 är okorrelerade)
- Se 12.3 Vector autoregressions | Forecasting: Principles and Practice (3rd ed)

- Bra om vi undersöker dem individuella tidsserierna $(Y_{1,t}, Y_{2,t}, ...)$ först och transformerar dem för att närma sig stationaritet (ska serien logaritmeras, säsongrensas, differentieras?)
- Analysera sedan dem transformerade tidsserierna med VAR
- Resultatet från VAR modellen kan undersökas om det finns signifikanta samband, men kausalitetsfrågan är här särskild knepig

- Ränteläget i ekonomier påverkar växelkurserna och växelkurserna kan påverkar ränteläget
- Exempel 10.4: Vi söker en modell samtidigt för räntor från 10-åriga statsobligationer från Sverige och Europa och för växelkursen SEK per EUR. Vi har daglig data för alla tre tidsserier. Hur kan en meningsfull modell ser ut?

	Stats- obligationer	Internationella statsobligationer 10-års löptid	Valutor mot svenska kronor
Datum	SE GVB 10Y	EU 10Y	1 EUR
2017-11-27	0,711	0,341	9,8991
2017-11-28	0,695	0,34	9,9002
2017-11-29	0,739	0,389	9,9009
2017-11-30	0,732	0,367	9,9109
2017-12-01	0,718	0,31	9,984
2017-12-04	0,695	0,341	9,9504
2017-12-05	0,686	0,318	9,9942
2017-12-06	0,663	0,302	9,9329
2017-12-07	0,682	0,297	9,9488
2017-12-08	0,671	0,31	9,9831

Datakälla: Riksbanken

- Exempel 10.4: Vad borde teoretisk hända med de två andra "variabler" om
 - Sveriges riksbank påverkar marknaden så att räntan för statsobligationer från Sverige ökar?

• Den Europeiska centralbanken påverkar marknaden så att räntan för statsobligationer från Europa ökar?

• Växelkursen SEK per EUR ökar (dvs. kronan blir svagare mot euron)?

• Tidsserier för räntor av 10-åriga statsobligationer från Sverige och Europa och deras dagliga förändringar.

Förändringarna visar inte upp ett tydligt mönster och kan vara stationära (vi kan verifiera det med en test):

- Exempel 10.4: VAR modellens skattningarna och hypotestest
- Två samband verkar vara viktiga:
 - Om den europeiska räntan ökar med 1%-enhet förväntas svenska räntan öka med 0,22%-enheter
 - Om den svenska räntan ökar med 1%-enhet förväntas växelkursen går ned med 22 öre (0,22 kr), dvs. kronan blir starkare mot euron

		Estimate	Pr(> z)
D.swobl	D.swobl	-0.0021	0.980
	D.euobl	0.2201	0.007
	D.eursek	0.0222	0.765
	const	0.0002	0.933
D.euobl	D.swobl	0.0844	0.297
	D.euobl	0.0373	0.648
	D.eursek	0.0105	0.887
	const	0.0001	0.955
D.eursek	D.swobl	-0.2197	0.002
	D.euobl	0.1054	0.143
	D.eursek	-0.0144	0.826
	const	0.0020	0.250

