

CCIE Security Version 5 Advanced Technologies Class

Fragmentation Attacks

What is IP fragmentation?

What is the fragmentation attack?

What IOS tools can be used to mitigate it?

MTU vs. Datagram Size Overview

▶Minimum MTU

- For IPv4 it's 68 bytes
- For IPv6 it's 1280 bytes
- Minimum MTU should not be confused with minimum datagram size that any host must be able to accept
 - For IPv4 it's 576 bytes
 - For IPv6 it's 1280 bytes

MTU Overview

Default MTU over Ethernet

- 1500 bytes for IPv4
- 1500 bytes for IPv6, as defined in RFC 2464

MTU Overview

- Due to additional encapsulations along the path (MPLS, GRE, IPsec)
 - End-to-end MTU becomes smaller
- ►How do we prevent packets from being dropped in the transit path
 - Layer 3 packet fragmentation and reassembly
 - MTU adjustment on the end-hosts

Packet Fragmentation

- Packet fragmentation is in general not desired
 - Packet reassembly is computationally expensive and inefficient
 - Major security concerns

⊳In IPv4

• Both hosts and routers can perform layer 3 fragmentation

⊳In IPv6

Only hosts can perform layer 3 fragmentation

MTU Adjustment

- ⊳In both IPv4 and IPv6, the MTU can be changed
 - Statically
 - Dynamically
- Dynamic MTU adjustment in IPv4
 - Named Path MTU Discovery, defined din RFC 1191
- Dynamic MTU adjustment in IPv6
 - Named Path MTU Discovery, defined din RFC 1981
 - Hosts can self-adjust MTU based on RA messages

Path MTU Discovery

⊳For IPv4

- End-hosts set the 'Don't Fragment Bit' in the packet
- Transit layer 3 devices drop the packet and send back an 'ICMP Packet Too Big' leaking its MTU
- End-hosts adjust the MTU accordingly

Path MTU Discovery

⊳For IPv6

- 'Don't Fragment Bit' is built-in, though it doesn't exist
- Transit layer 3 devices drop the packet and send back an 'ICMP Packet Too Big' leaking its MTU
- End-hosts adjust the MTU accordingly

Path MTU Discovery

- Due to ICMP being in general filtered, Path MTU Discovery may not work
 - In IPv4, routers will fragment and traffic will work
 - In IPv6, routers cannot fragment and traffic will be dropped
- An alternate method for PMTUD has been proposed in RFC 4821
 - Not really implemented

Fragmentation Attacks

- ▶Based on TCP, UDP, ICMP fragments:
 - https://en.wikipedia.org/wiki/IP_fragmentation_attack
 - https://en.wikipedia.org/wiki/Denial-of-service_attack
- DDoS fragmentation attack examples
 - Teardrop
 - Nuke
 - Rose

Fragmentation Attack Mitigation

- Methods defined in RFC 1858
- ▶IOS Mitigation Tools
 - ACL Filtering
 - Rate-limit (CAR Committed Access Rate)
 - Policing (successor of CAR)
 - Unconditional packet discard via MQC (ACL/NBAR)
 - Virtual Fragmentation Reassembly
 - Zone-Based Policy Firewall

Knowledge is Power!

