§ 4.6 受限被解释变量数据模型——选择性样本

Model with Limited Dependent Variable
——Selective Samples Model

- 一、经济生活中的受限被解释变量问题
- 二、"截断"问题的计量经济学模型
- 三、"归并"问题的计量经济学模型

The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 2000 "for his development of theory and methods for analyzing selective samples"

James J Heckman USA

- "Shadow Prices, Market Wages and Labour Supply", Econometrica 42 (4), 1974, P679-694 发现并提出"选择性样本"问题。
- "Sample Selection Bias as a Specification Error", Econometrica 47(1), 1979, P153-161 证明了偏误的存在并提出了Heckman两步修正法。

一、经济生活中的受限被解释变量问题

1、"截断" (truncation) 问题

- 由于条件限制,样本不能随机抽取,即不能从全部个体,而只能从一部分个体中随机抽取被解释变量的样本观测值,而这部分个体的观测值都大于或者小于某个确定值。"掐头"或者"去尾"。
- 消费函数例题:被解释变量最底200元、最高10000元。原因:抽样。
- 离散选择模型的例题:银行贷款,实际上是选择性样本,通常表现为"截断样本"。原因:问题的局限。

类似的实际 问题很多 能够获得贷款的企业是全部有贷款需求的企业中表现良好的一部分

2、"归并" (censoring) 问题

- 将被解释变量的处于某一范围的样本观测值都用一个相同的值代替。
- 经常出现在"检查"、"调查"活动中,因此也称为 "检查"(censoring)问题。
- 需求函数模型中用实际消费量作为需求量的观测值,如果存在供给限制,就出现"归并"问题。
- 被解释变量观测值存在最高和最低的限制。例如考试成绩,最高100,最低0,出现"归并"问题。

二、"截断"问题的计量经济学模型

1、思路

- 如果一个单方程计量经济学模型,只能从"掐头"或者"去尾"的连续区间随机抽取被解释变量的样本观测值,那么很显然,抽取每一个样本观测值的概率以及抽取一组样本观测值的联合概率,与被解释变量的样本观测值不受限制的情况是不同的。
- 如果能够知道在这种情况下抽取一组样本观测值的联合概率函数,那么就可以通过该函数极大化求得模型的参数估计量。

2、截断分布

$$f(\xi | \xi > a) = \frac{f(\xi)}{P(\xi > a)}$$

α 为随机变量 ξ 分布范围 内的一个常数

$$f(\xi|\xi>c) = \frac{f(\xi)}{P(\xi>c)} = \frac{1/(b-a)}{\frac{b}{b-a}} = \frac{1}{b-c}$$

如果 ξ 服从均匀分布U(a, b), 但是它只能在(c, b)内取得样本观测值,那么取得每一个样本观测值的概率

$$f(\xi|\xi > a) = \frac{f(\xi)}{P(\xi > a)}$$

$$= \frac{(2\pi \sigma^2)^{-1/2} e^{-(\xi - \mu)^2/(2\sigma^2)}}{1 - \Phi(\alpha)}$$

$$= \frac{\frac{1}{\sigma} \phi(\frac{\xi - \mu}{\sigma})}{1 - \Phi(\alpha)}$$

ξ 服从正 态分布

$$P(\xi > a) = 1 - \Phi(\frac{a - \mu}{\sigma}) = 1 - \Phi(\cdot)$$

Φ是标准 正态分布 条件概率 函数

3、截断被解释变量数据模型的最大似然估计

$$y_{i} = \mathbf{B}' \mathbf{X}_{i} + \varepsilon_{i}$$

$$y_{i} | \mathbf{X}_{i} \sim N(\mathbf{B}' \mathbf{X}_{i}, \sigma^{2})$$

$$f(y_{i}) = \frac{\frac{1}{\sigma} \phi((y_{i} - \mathbf{B}' \mathbf{X}_{i}) / \sigma)}{1 - \Phi((a - \mathbf{B}' \mathbf{X}_{i}) / \sigma)}$$

$$\ln L = -\frac{n}{2} (\ln(2\pi) + \ln \sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - B'X_i)^2$$
$$-\sum_{i=1}^{n} \ln \left(1 - \Phi\left(\frac{a - B'X_i}{\sigma}\right)\right)$$

$$\frac{\partial \ln L}{\partial \left(\frac{\mathbf{B}}{\sigma^2}\right)} = \sum_{i=1}^{n} \begin{pmatrix} \frac{y_i - \mathbf{B}' X_i}{\sigma^2} - \frac{\lambda_i}{\sigma} X_i \\ -\frac{1}{2\sigma^2} + \frac{(y_i - \mathbf{B}' X_i)^2}{2\sigma^4} - \frac{\alpha_i \lambda_i}{2\sigma^2} \end{pmatrix} = \sum_{i=1}^{n} \mathbf{g}_i = \mathbf{0}$$

$$\alpha_i = (a - B'X_i)/\sigma$$
 $\lambda_i = \phi(\alpha_i)/(1 - \Phi(\alpha_i))$

- 求解该1阶极值条件,即可以得到模型的参数估计量。
- 由于这是一个复杂的非线性问题,需要采用迭代方法求解,例如牛顿法。

4、例题—城镇居民消费模型 --截断样本数据

cons	incom	cons	incom	cons	incom
11123.84	13882.62	5064.340	6778.03	5759.210	7041.87
7867.530	10312.91	7356.260	9999.54	4948.980	6569.23
5439.770	7239.06	4914.550	6901.42	6023.560	7643.57
5105.380	7005.03	6069.350	8399.91	8045.340	8765.45
5419.140	7012.9	4941.600	6926.12	5666.540	6806.35
6077.920	7240.58	5963.250	7321.98	5298.910	6657.24
5492.100	7005.17	6082.620	7674.2	5400.240	6745.32
5015.190	6678.9	9636.270	12380.43	5330.340	6530.48
11040.34	14867.49	5763.500	7785.04	5540.610	7173.54
6708.580	9262.46	5502.430	7259.25		
9712.890	13179.53	7118.060	8093.67		

将这组样本看成是在≥4500的条件下随机抽取得到

View Procs Objects | Print Name Freeze | Estimate Forecast Stats Resids

Dependent Variable: CONS

Method: ML - Censored Normal (TOBIT)

Date: 11/18/05 Time: 23:15

Sample: 1 31

Included observations: 31

Truncated sample

Left censoring (value) series: 4500

Convergence achieved after 7 iterations <

Covariance matrix computed using second derivatives

	Coefficient	Std. Error	z-Statistic	Prob.	
C INCOM	200.7795 0.750072	281.7348 0.032369	0.712654 23.17269	0.4761 0.0000	
Error Distribution					
SCALE:C(3)	401.1625	54.96058	7.299096	0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Avg. log likelihood	0.948849 0.945195 412.3449 4760793. -228.6718 -7.376511	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		6433.182 1761.376 14.94657 15.08534 14.99181	
Left censored obs Uncensored obs	0 31	Right censo Total obs	red obs	0 31	

将这组样本看成是在≥4000的条件下随机抽取得到

View Procs Objects Print Name Freeze Estimate Forecast Stats Resids

Dependent Variable: CONS

Method: ML - Censored Normal (TOBIT)

Date: 11/19/05 Time: 08:52

Sample: 1 31

Included observations: 31

Truncated sample

Left censoring (value) series: 4000 Convergence achieved after 5 iterations

Covariance matrix computed using second derivatives

参数由 0.750072 变化为

	Coefficient	Std. Error	ratistic	Prob.
C INCOM	237.2539 0.746924	287.6126 0.031111	0.886557 24.00847	0.3753 0.0000
	Error D	istribution		
SCALE:C(3)	391.2665	50.05756	7.816331	0.0000
R-squared Adjusted R-squared S.E. of regression	0.949144 0.945511 411.1556	Mean dependent var S.D. dependent var Akaike info criterion		6433.182 1761.376 14.96703
Sum squared resid Log likelihood Avg. log likelihood	4733371. -228.9890- -7.386742	Schwarz crit Hannan-Quir		15.01227
Left censored obs Uncensored obs	0 31	Right censo Total obs	ored obs	0 31

似然函数值为 什么变小?

似然函数值由一 228.6718减小为

将这组样本看成是在≤11500、≥4500条件下随机抽取得到

View Procs Objects | Print Name Freeze | Estimate Forecast Stats Resids

Dependent Variable: CONS

Method: ML - Censored Normal (TOBIT)

Date: 11/19/05 Time: 09:05

Sample: 1 31

Included observations: 31

Truncated sample

Left censoring (value) series: 4500 Right censoring (value) series: 11500 Convergence achieved after 7 iterations

Covariance matrix computed using second derivatives

参数由 0.750072变化为

	似然函数值为
Prob.	什么增大?

似然函数值由一 228.6718增大为

	Coefficient	Std. Erro	z-Statistic	Prob.
C	99.92608	213.2677	0.318980	0.7497
INCOM	0.763322	0.036832	20.72443	0.0000

Error Distribution

SCALE:C(3)	404.9458	56.52227	7.164359	0.00
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Avg. log likelihood	0.949923 0.946346 407.9931 4660834. -228.1437 -7.359475	Mean depen S.D. depend Akaike ளிர் Schwarz crit Hannan-Qui	var criterion terion	6433.182 1761.376 14.91250 15.05127 14.95773
Left censored obs Uncensored obs	0 31	Right censo Total obs	ored obs	0 31

将这组样本看成是在≥0条件下随机抽取得到

5、为什么截断被解释变量数据模型不能采用普通最小二乘估计

- 对于截断被解释变量数据计量经济学模型,如果仍然把它看作为经典的线性模型,采用**OLS**估计,会产生什么样的结果?
- 因为y_i只能在大于a的范围内取得观测值,那么y_i的条件均值为:

$$E(y_i | y_i > a) = \int_a^\infty y_i \phi(y_i | y_i > a) dy_i$$
$$= B' X_i + \sigma \frac{\phi((a - B' X_i) / \sigma)}{1 - \Phi((a - B' X_i) / \sigma)}$$

$$E(y_{i} | y_{i} > a) = B'X_{i} + \sigma\lambda (\alpha_{i})$$

$$\alpha_{i} = \frac{\alpha - B'X_{i}}{\sigma}$$

$$\frac{\partial E(y_{i} | y_{i} > a)}{\partial X_{i}} = B + \sigma\left(\frac{d\lambda_{i}}{d\alpha_{i}}\right) \frac{\partial \alpha_{i}}{\partial X_{i}}$$

$$= B + \sigma(\lambda_{i}^{2} - \alpha_{i}\lambda_{i})\left(\frac{-B}{\sigma}\right)$$

$$= B(1 - \lambda_{i}^{2} + \alpha_{i}\lambda_{i})$$

$$= B(1 - \delta(\alpha_{i}))$$

$$y_i | y_i > a = E(y_i | y_i > a) + u_i = B' X_i + \sigma \lambda(\alpha_i) + u_i$$

$$Var(u_i) = \sigma^2 (1 - \lambda_i^2 + \lambda_i \alpha_i) = \sigma^2 (1 - \delta_i)$$

- 由于被解释变量数据的截断问题,使得原模型变换为包含一个非线性项模型。
- 如果采用OLS直接估计原模型:
 - 实际上忽略了一个非线性项;
 - 忽略了随机误差项实际上的异方差性。
 - 这就造成参数估计量的偏误,而且如果不了解解释变量的分布,要估计该偏误的严重性也是很困难的。

6、Heckman两步修正法

 Sample Selection Bias as a Specification Error, Econometrica 47(1), 1979, P153-161

$$w_i = x_{1i}\beta_1 + \varepsilon_{1i} \tag{1}$$

$$e_i^* = x_{2i}\beta_2 + \varepsilon_{2i} \tag{2}$$

$$E(\varepsilon_1) = 0$$
, $E(\varepsilon_2) = 0$, ε_1 , ε_2 正相关

$$E(\varepsilon_{1i} \middle| e_i^* \ge 0) = E(\varepsilon_{1i} \middle| \varepsilon_{2i} \ge -x_{2i} \beta_2)$$

$$E(w_i | x_{1i}, e_i^* \ge 0) = x_{1i} \beta_1 + E(\varepsilon_{1i} | \varepsilon_{2i} \ge -x_{2i} \beta_2)$$

$$E(w_i | x_{1i}, e_i^* \ge 0) = x_{1i}\beta_1 + \rho\sigma_1\lambda_i$$

$$w_i = x_{1i}\beta_1 + \rho\sigma_1\lambda_i + \mu_i$$

其中 ρ 为 $\varepsilon_1, \varepsilon_2$ 的相关系数,

 σ_1 为 ε_{1i} 的标准差,

 σ_2 为 ε_{2i} 的标准差。

$$\lambda_{i} = \frac{\phi(x_{2i}\beta_{2}/\sigma_{2})}{\Phi(x_{2i}\beta_{2}/\sigma_{2})}$$

$$w_i = x_{1i}\beta_1 + \rho\sigma_1\lambda_i + \mu_i$$

如何估计该模型?

- 第一步,用probit模型估计(2),利用全部样本,利用估计结果,计算 λ $_{i}$ 。
- 第二步,利用选择性样本,将(ρ $σ_1$)作为一个待估计 参数,估计模型,得到 $β_1$ 的估计。

三、"归并"问题的计量经济学模型

1、思路

• 以一种简单的情况为例,讨论"归并"问题的计量 经济学模型。即假设被解释变量服从正态分布, 其样本观测值以0为界,凡小于0的都归并为0, 大于0的则取实际值。如果y*以表示原始被解释变 量,y以表示归并后的被解释变量,那么则有:

$$y = 0 \qquad \stackrel{\text{diff}}{=} y^* \le 0$$

$$y = y^* \qquad \stackrel{\text{diff}}{=} y^* > 0$$

$$y^* \sim N(\mu, \sigma^2)$$

• 单方程线性"归并"问题的计量经济学模型为:

$$y_i = \mathbf{B}' \boldsymbol{X}_i + \varepsilon_i$$
 $\varepsilon_i \sim N(0, \sigma^2)$

- •如果能够得到y_i的概率密度函数,那么就可以方便 地采用最大似然法估计模型,这就是研究这类问题 的思路。
- •由于该模型是由Tobin于1958年最早提出的,所以也称为Tobin模型。

2、"归并"变量的正态分布

• 由于原始被解释变量y*服从正态分布,有

$$P(y=0) = P(y^* \le 0) = \Phi\left(-\frac{\mu}{\sigma}\right) = 1 - \Phi\left(\frac{\mu}{\sigma}\right)$$

$$P(y) = P(y^*) \qquad \stackrel{\text{def}}{=} y^* > 0$$

3、归并被解释变量数据模型的最大似然估计

$$\ln L = \sum_{y_i > 0} -\frac{1}{2} \left(\ln(2\pi) + \ln \sigma^2 + \frac{(y_i - B'X_i)^2}{\sigma^2} \right) + \sum_{y_i = 0} \ln \left(1 - \Phi \left(\frac{B'X_i}{\sigma} \right) \right)$$

- 该似然函数由两部分组成,一部分对应于没有限制的观测值,是经典回归部分;一部分对应于受到限制的观测值。
- 这是一个非标准的似然函数,它实际上是离散分布与连续分布的混合。
- 如何理解后一部分?_______为什么要求和?

• 如果样本观测值不是以**0**为界,而是以某一个数值 a为界,则有

$$y = a \qquad \stackrel{\text{diff}}{=} y^* \le a \qquad y^* \sim N(\mu, \sigma^2)$$
$$y = y^* \qquad \stackrel{\text{diff}}{=} y^* > a$$

估计原理与方法相同。

4、例题—城镇居民消费模型 ——归并样本数据

11123.84

cons	incom	cons	incom	cons	incom
11000.00	13882.62	5064.340	6778.03	5759.210	7041.87
7867.530	10312.91	7356.260	9999.54	4948.980	6569.23
5439.770	7239.06	4914.550	6901.42	6023.560	7643.57
5105.380	7005.03	6069.350	8399.91	8045.340	8765.45
5419.140	7012.9	4941.600	6926.12	5666.540	6806.35
6077.920	7240.58	5963.250	7321.98	5298.910	6657.24
5492.100	7005.17	6082.620	7674.2	5400.240	6745.32
5015.190	6678.9	9636.270	12380.43	5330.340	6530.48
11000.00	14867.49	5763.500	7785.04	5540.610	7173.54
6708.580	9262.46	5502.430	7259.25		
9712.890	13179.53	7118.060	8093.67		

11040.34

Censored (11000) 估计

Dependent Variable: CONS

Method: ML - Censored Normal (TOBIT)

Date: 11/29/04 Time: 17:25

Sample: 1 31

Left censored obs

Uncensored obs

Included observations: 31

Right censoring (value) series: 11000

Convergence achieved after 8 iterations

Covariance matrix computed using seco

参数估计结果、似然函数值都与OLS估计差异较大。为什么似然函数值大于OLS估计?

View Procs Objects Print Name Freeze Estimate Forecast Stats Resids

Dependent Variable: CONS Method: Least Squares Date: 11/19/05 Time: 09:36

Sample: 131

Included observations: 31

	Coefficient S	included observations.	J1			
C	25.62933	Variable	Coefficient	Std. Error	t-Statistic	Prob.
INCOM	0.775212		202 2025	272 2240	1.000047	0.2004
	Error I	INCOM	283.3025 0.740774	273.2348 0.031782	1.036847 23.30833	0.3084 0.0000
SCALE:C(3)	396.7539					
	0.040000	R-squared	0.949325	Mean depend	dent var	6427.886
R-squared	0.949968	Adjusted R-squared	0.947578	S.D. depend	ent var	1746.959
Adjusted R-squared	0.946394	S.E. of regression	399.9813	Akaike info o	riterion	14.88305
S.E. of regression	404.4725	Sum squared resid	4639566.	Schwarz crit	erion	14.97557
Sum squared resid	4580745.	Log likelihood	-228.6873	F-statistic		543.2782
Log likelihood	-215.7708	Durbin-Watson stat	1.241862	Prob(F-statis	stic)	0.000000
Avg. log likelihood	-6.960348					

Total obs

Right censored obs

0

29

Censored (12000) 估计—与0LS相同

Dependent Variable: CONS

Method: ML - Censored Normal (TOBIT)

Date: 11/30/04 Time: 09:05

Sample:	1	31
---------	---	----

Uncensored obs

Sample: 1 31 Included observations Right censoring (value Convergence achieved Covariance matrix con	Dependent Variable: 0 Method: Least Square Date: 11/19/05 Time: Sample: 1 31	s 09:36	eze Estimate	Forecast St	ats Resids	
·	Coefficient S	Included observations:	31			
C INCOM	283.3025 2 0.740774 0	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	Error I	C INCOM	283.3025 0.740774	273.2348 0.031782	1.036847 23.30833	0.3084 0.0000
SCALE:C(3)	386.8636 4	D a succeed	0.040225	Maan danan	dant	C407 000
R-squared Adjusted R-squared	0.949359 0.945742	R-squared Adjusted R-squared	0.949325 0.947578	Mean depen S.D. depend Akaike info	ent var	6427.886 1746.959
S.E. of regression Sum squared resid	406.9253 4636469.	S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	399.9813 4639566. -228.6873 1.241862	Schwarz crit F-statistic Prob(F-statis	erion	14.88305 14.97557 543.2782 0.000000
Log likelihood Avg. log likelihood	-228.6873 -7.377011			·	-	
Left censored obs	0	Right censored	obs	0		

Total obs

31

31

5、实际模型中的Truncation与Censored

- 时间序列样本,不考虑。
- 截面上的全部个体作为样本,不考虑Truncation。
- 按照抽样理论选取截面上的部分个体作为样本,不 考虑Truncation。
- 按照特定的规则选取截面上的部分个体作为样本, 必须考虑Truncation。
- 截面数据作样本,根据样本观测值的经济背景,决定是否考虑Censored。