PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-048459

(43) Date of publication of application: 18.02.2000

(51)Int.CI.

G11B 17/26

(21)Application number: 10-215245

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

30.07.1998

(72)Inventor: NISHIDA HIROTO

MATSUMOTO AKIRA

DOI MAKOTO **NAKADE ISAMU URUSHIBARA KENJI**

KASHIWAKAWA MASAKAZU

(54) DISK CHANGER DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a disk changer device capable of surely performing the disk transferring operation and disk reproducing operation by the simple mechanism as to the disk changer device for selecting and reproducing the plural disks, especially to the disk changer device for performing the overlap reproduction.

SOLUTION: The device is constituted in such a manner that the driving of a pushing out lever 24 for the disk by the turning operation of a turning plate 33, the change of the space between disk control bodies 64 and 65, the legs opening operation for largely opening the space of specified trays 4, the operation of a disk guide mechanism, the turning operation of an optical head chassis 18, the control of locking/unlocking of a suspension of the optical head chassis 18, are executed in prescribed timing.

LEGAL STATUS

[Date of request for examination]

27.08.2001

Date of sending the examiner's decision of rejection

Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3528613

[Date of registration]

05.03.2004

[Number of appeal against examiner's decision

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-48459 (P2000-48459A)

(43)公開日 平成12年2月18日(2000.2.18)

(51) Int.Cl.7

識別記号

FI

テーマコート*(参考) 5 D O 7 2

G11B 17/26

G 1 1 B 17/26

審査請求 未請求 請求項の数13 OL (全 17 頁)

(21)出願番号

特願平10-215245

(22)出顧日

平成10年7月30日(1998.7.30)

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 西田 裕人

石川県金沢市彦三町二丁目1番45号 株式

会社松下通信金沢研究所内

(72)発明者 松本 明

神奈川県横浜市港北区綱島東四丁目3番1

号 松下通信工業株式会社内

(74)代理人 100078204

弁理士 滝本 智之 (外1名)

最終頁に続く

(54) 【発明の名称】 ディスクチェンジャー装置

(57)【要約】

【課題】 本発明は複数枚のディスクを選択して再生するディスクチェンジャー装置、特にオーバーラップ再生を行うディスクチェンジャー装置に関し、簡単な機構によりディスク移送動作、ディスク再生動作を確実に行うととができるディスクチェンジャー装置を提供するものである。

【解決手段】 本発明は、回動板33の回動動作によりディスク押出しレバー24の駆動、ディスク規制体64、65の間隔の変更、所定のトレイ4間を大きく開脚する開脚動作、ディスクガイド機構の動作、光ヘッドシャーシ18の回動、光ヘッドシャーシ18のサスペンションロック、アンロックの制御を所定のタイミングで行うものである。

【特許請求の範囲】

【請求項1】 複数枚のディスクが載置される複数枚のトレイを有するディスク載置手段と、モータを回転駆動源として回動する回動手段と、上記回動手段に駆動されて上記ディスク載置手段から一枚のディスクを取出すディスク取出し手段と、上記回動手段に駆動されて回動するターンテーブル支持手段と、上記回動手段に駆動されて上記ディスク取出し手段から取出されたディスクを挟持して上記ターンテーブル支持手段のターンテーブルにディスクを移送するディスクガイド手段とを具備してなるディスクチェンジャー装置。

1

【請求項2】 回動手段に駆動されて回動する螺旋状の カム手段と、上記カム手段により複数の積層された所定 のトレイ間を開脚させるトレイ開脚手段を具備してなる 請求項1記載のディスクチェンジャー装置。

【請求項3】 トレイ開脚手段により開脚されたトレイ間にターンテーブル支持手段を挿入し、このターンテーブル支持手段のターンテーブルにディスクをクランプしてディスク再生を行うことを特徴とする請求項2記載のディスクチェンジャー装置。

【請求項4】 回動可能に支持された回動基板と、ダンバーを介して上記回動基板に保持された光ビックアップシャーシとでターンテーブル支持手段を構成し、上記ダンバーの機能を不能にし上記光ビックアップシャーシを上記回動基板に機械的に固定するロック手段と、上記回動手段に駆動されて上記ロック手段をロック又はロック解除するロック制御手段とを具備してなる請求項1記載のディスクチェンジャー装置。

【請求項5】 ディスク載置手段に収納されたディスクの中心孔が挿入可能な第1、第2のディスク規制手段を対向配置し、回動手段に駆動されて上記第1のディスク規制手段を上記第2のディスク規制手段に接近・離反させる手段を具備してなる請求項1記載のディスクチェンジャー装置。

【請求項6】 回動手段により回転駆動される回転体の外面外周部の一部に溝を形成し、固定部に軸支されたレバーの一部を上記回転体の外面外周部に接触させ、上記レバーの上下動によりディスク挿入口を開閉するディスク挿入口開閉手段を具備してなる請求項1記載のディスクチェンジャー装置。

【請求項7】 回動手段に駆動されて摺動する摺動手段を設け、この摺動手段の摺動動作に伴って螺旋状のカム手段を回動させるとともに、ディスク載置手段に収納されたディスクの中心孔が挿入可能な第1、第2のディスク規制手段を対向配置し上記摺動手段の摺動動作に伴って上記第1のディスク規制手段を上記第2のディスク規制手段に接近・離反させる手段を具備してなる請求項2記載のディスクチェンジャー装置。

【請求項8】 摺動手段の歯部に噛合する歯車部を有するとともに、外周部に螺旋状の溝が形成された歯車と、

内周面に上記歯車の溝に挿入されるピンが形成された円 筒体とで第1のディスク規制手段を構成してなる請求項 7記載のディスクチェンジャー装置。

【請求項9】 上下動可能に保持された複数枚のトレイと、上記複数枚のトレイを積重ねるバネ手段と、上記バネ手段により一体化されたディスク載置手段を上下動させるエレベータ手段とを具備してなる請求項1記載のディスクチェンジャー装置。

持して上記ターンテーブル支持手段のターンテーブルに 【請求項10】 トレイの外周部に係合する螺旋状の溝 ディスクを移送するディスクガイド手段とを具備してな 10 が形成されたカムギアを回転させてディスク載置手段を るディスクチェンジャー装置。 上下動させるエレベータ手段を構成してなる請求項9記 【請求項2】 同動手段に駆動されて同動する螺旋状の 載のディスクチェンジャー装置。

【請求項11】 複数枚のディスクが載置される複数枚のトレイを有するディスク載置手段と、モータを回転駆動源として回動する回動手段と、上記回動手段に駆動されて上記ディスク載置手段から一枚のディスクを取出すディスク取出し手段と、このディスク取出し手段により押出されたディスクにより押圧されて回動するレバーと、このレバーの回動を検出するディスク検出手段とを20 具備し、上記ディスク検出手段により上記ディスク載置手段のトレイ上のディスクの有無を検出することを特徴とするディスクチェンジャー装置。

【請求項12】 ターンテーブル支持手段に光ピックアップが摺動可能に支持されてなる請求項1記載のディスクチェンジャー装置。

【請求項13】 支持基板に上下摺動自在に支持された 第1、第2のディスク保持手段と、上記支持基板に横方 向に摺動可能に支持され上記第1、第2のディスク保持 手段のビンが挿入される第1、第2のカム溝が形成され たカム板とでディスクガイド手段を構成してなる請求項 1記載のディスクチェンジャー装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、コンパクトディスク (CD) などのディスクを選択的に再生するディスクチェンジャー装置に関するものである。

[000.2]

【従来の技術】図31は従来のディスクチェンジャー装置の要部を示している。図31において、90は箱形の 6 筐体であり、この筐体90の正面板90Aには、ディスク挿入口が形成されている。91は筐体90内のディスク挿入口の近傍に配置されたローラーであり、ディスク挿入口から挿入されたディスク92はモータにより駆動されるローラー91により筐体90内に移送され筐体90内のトレイに載置される。複数個のトレイに載置されたディスクのうちの1枚のディスク92がディスク取出し機構により筐体90の中央に押出されターンテーブル93に固定される。上記ターンテーブル93は軸94により筐体90の底面板に回動可能に支持された回動板950 5の先端部に回動自在に保持されている。上記回動板9

5にはモータが取付けられこのモータの駆動力によりタ ーンテーブル93が回転される。上記回動板95には光 ピックアップ96が設けられており、回転駆動されたデ ィスク92に記録された情報が上記光ピックアップ96 で読み取られる。

3

[0003]

【発明が解決しようとする課題】本発明は、上記従来の オーバーラップ再生のディスクチェンジャー装置に比較 してより小型化が可能で、ディスク交換、ディスク再生 が確実に行えるディスクチェンジャー装置を提供すると 10 とを目的とするものである。

[0004]

【課題を解決するための手段】本発明は、上記従来の問 題点を解決するために、モータを回転駆動源として回動 する回動手段によりディスク取出し手段の動作、ターン テーブル支持手段の回動、ディスクガイド手段によるデ ィスクガイドなどを同期して行うことにより、ディスク の移送動作、ディスク再生動作などが確実になるもので ある。

[0005]

【発明の実施の形態】本発明の請求項1に記載の発明 は、複数枚のディスクが載置される複数枚のトレイを有 するディスク載置手段と、モータを回転駆動源として回 動する回動手段と、上記回動手段に駆動されて上記ディ スク載置手段から一枚のディスクを取出すディスク取出 し手段と、上記回動手段に駆動されて回動するターンテ ーブル支持手段と、上記回動手段に駆動されて上記ディ スク取出し手段から取出されたディスクを挟持して上記 ターンテーブル支持手段のターンテーブルにディスクを 移送するディスクガイド手段とを具備したことを特徴と するものであり、回動手段に同期してディスク取出し手 段、ターンテーブル支持手段の回動動作、ディスクガイ ド手段を動作させるため、各動作のタイミングが一定に なり、ディスク取出し動作、ターンテーブル支持手段の 回動動作、ディスクのガイド動作が確実に行えるもので ある。 本発明の請求項2に記載の発明は、回動手段に 駆動されて回動する螺旋状のカム手段と、上記カム手段 により複数の積層された所定のトレイ間を開脚させるト レイ開脚手段を具備したことを特徴とするものであり、 トレイ開脚手段が簡単になるものである。

【0006】本発明の請求項3に記載の発明は、トレイ 開脚手段により開脚されたトレイ間にターンテーブル支 持手段を挿入し、このターンテーブル支持手段のターン テーブルにディスクをクランプしてディスク再生を行う ことを特徴とするものであり、ターンテーブルを開脚し たトレイ間に挿入してディスク再生を行うため、ディス クチェンジャー装置を小型化できるものである。

【0007】本発明の請求項4に記載の発明は、回動可 能に支持された回動基板と、ダンパーを介して上記回動 基板に保持された光ピックアップシャーシとでターンテ 50 を回転させてディスク載置手段を上下動させるエレベー

ーブル支持手段を構成し、上記ダンパーの機能を不能に し上記光ピックアップシャーシを上記回動基板に機械的 に固定するロック手段と、回動手段に駆動されて上記ロ ック手段をロック又はロック解除するロック制御手段と を具備したことを特徴とするものであり、ロック制御手 段を具備しているため、ディスク再生時にはダンパーに より外部振動による影響を除去でき、またディスク再生 時以外では、ターンテーブルの定置が正確になるもので ある。

【0008】本発明の請求項5に記載の発明は、ディス ク載置手段に収納されたディスクの中心孔が挿入可能な 第1、第2のディスク規制手段を対向配置し、回動手段 に駆動されて上記第1のディスク規制手段を上記第2の ディスク規制手段に接近・離反させる手段を具備したと とを特徴とするものであり、再生されるディスク以外の ディスクの移動が規制されるため、再生動作が確実にな るものである。

【0009】本発明の請求項6に記載の発明は、回動手 段により回転駆動される回転体の外面外周部の一部に溝 20 を形成し、固定部に軸支されたレバーの一部を上記回転 体の外面外周部に接触させ、上記レバーの上下動により ディスク挿入口を開閉するディスク挿入口開閉手段を具 備したことを特徴とするものであり、ディスク挿入口を 開閉する機構が簡単になるものである。

【0010】本発明の請求項7に記載の発明は、回動手 段に駆動されて摺動する摺動手段を設け、この摺動手段 の摺動動作に伴って螺旋状のカム手段を回動させるとと もに、ディスク載置手段に収納されたディスクの中心孔 が挿入可能な第1、第2のディスク規制手段を対向配置 し上記摺動手段の摺動動作に伴って上記第1のディスク 規制手段を上記第2のディスク規制手段に接近・離反さ せる手段を具備したことを特徴とするものであり、回動 手段によりディスク規制手段を動作させることができる ため、ディスク規制手段の駆動機構が簡単になるもので ある。

【0011】本発明の請求項8に記載の発明は、摺動手 段の歯部に噛合する歯車部を有するとともに、外周部に 螺旋状の溝が形成された歯車と、内周面に上記歯車の溝 に挿入されるピンが形成された円筒体とで第1のディス 40 ク規制手段を構成したことを特徴とするものであり、デ ィスク規制手段の構成が簡単になるものである。

【0012】本発明の請求項9に記載の発明は、上下動 可能に保持された複数枚のトレイと、上記複数枚のトレ イを積重ねるバネ手段と、上記バネ手段により一体化さ れたディスク載置手段を上下動させるエレベータ手段と を具備したことを特徴とするものであり、エレベータ手 段の構成が簡単になるものである。

【0013】本発明の請求項10に記載の発明は、トレ イの外周部に係合する螺旋状の溝が形成されたカムギア タ手段を構成したことを特徴とするものであり、トレイを移動させるエレベータ機構が簡単になるものである。
【0014】本発明の請求項I1に記載の発明は、複数枚のディスクが載置される複数枚のトレイを有するディスク載置手段と、モータを回転駆動源として回動する回動手段と、上記回動手段に駆動されて上記ディスク載置手段から一枚のディスクを取出すディスク取出し手段と、このディスク取出し手段により押出されたディスクにより回動するレバーと、このレバーの回動を検出するディスク検出手段とを具備し、上記ディスク検出手段に 10より上記ディスク載置手段のトレイ上のディスクの有無を検出することを特徴とするものであり、トレイ上のディスクの有無を容易に検出できるものである。

【0015】本発明の請求項12に記載の発明は、ターンテーブル支持手段に光ピックアップが摺動可能に支持することを特徴とするものであり、ターンテーブル支持手段を開脚したトレイ間に挿入してディスク再生を行うことができるものである。

【0016】本発明の請求項13に記載の発明は、支持基板に上下摺動自在に支持された第1、第2のディスク保持手段と、上記支持基板に横方向に摺動可能に支持され上記第1、第2のディスク保持手段のピンが挿入される第1、第2のカム溝が形成されたカム板とでディスクガイド手段を構成したことを特徴とするものであり、ディスクを案内するディスクガイド機構が簡単になるものである。以下、本発明の実施の形態について、図1から図30を用いて説明する。以下の実施形態1のディスクチェンジャー装置は、自動車内に設置して使用する車載用のディスクチェンジャー装置の例である。

【0017】(実施の形態1)図1-図5において、1 は箱形の筐体であり、この筐体1の正面板1Aにはディ スク挿入口が形成されている。2は筐体1内の上記ディ スク挿入口の近傍に配置されたディスクローディング用 のローラであり、このローラ2はモータを回転駆動源と するローラ駆動機構(図示せず)によって回動されディ スク3の挿入、排出を行う。4はディスク3を保持する 半円環状のトレイであり、複数枚のトレイ4が筐体1内 の背面板 1 Bと右側面板 1 Cとのコーナ部側に積層配置 されている。上記トレイ4の外側の背面板1Bに面する 端部及び右側面板 1 C に面する端部の上面には突条が形 成されている。上記トレイ4を積層した場合、上記突条 の高さ分の空間が形成され、この空間部分にディスク3 が収納されるものである。上記複数枚のトレイ4の内の 最上面側および最下面側にはそれぞれ金属板5が配置さ れ、上記トレイ4および金属板5には3個所に孔が形成 されている。両端が筐体1の上面板と底面板とに固定さ れた3本のトレイガイド軸がトレイ4、金属板5の孔に 挿入されているため、複数のトレイ4、金属板5は上記 3本のトレイガイド軸に案内されて上下に移動可能であ る。6は筐体1内に回動可能に支持されたレバーであ

り、このレバー6の先端にはローラ7が保持されている。上記レバー6はバネ(図示せず)により時計方向(図1)に付勢されている。筐体1の正面板1Aの中央に形成されたディスク挿入口より挿入されたディスク3はディスクローディング用のローラ2により移送されて背面板1Bに向かって筐体1内に移送されていく。この移送の途中においてレバー6の先端のローラ7がディスク3の外周面に当接するため、ディスク3はトレイ4方向に方向転換されトレイ4に収納される。

【0018】図3-図5は、実施の形態1のトレイのエ レベータ機構を示している。図3-図5において、8は コイルバネであり、このコイルバネ8の下端は最下部に 配置された金属板5に係止され、またコイルバネ8の上 端は最上部に配置された金属板5に係止されている。 と のコイルバネ8の弾性力により上記複数のトレイ4は図 3、図14に示すように上下の金属板5で挟まれるよう に付勢され重ねられる。9は筐体1内に回転可能に支持 された第1のカムギアであり、この第1のカムギア9に は、図7に示すように、トレイ4及び金属板5の外周部 の中央部に形成された突片が挿入される螺旋状のカム溝 20 9 A が形成されている。上記第 1 のカムギア 9 の螺旋状 の山部の一部9 Bの幅は他の山部9 Cの幅より厚く形成 されている。10は山部9Bに一体に形成された突片で ある。同様に第2、第3のカムギア11、12が筐体1 内に回転可能に支持されている。この第2、第3のカム ギア11、12はトレイ4及び金属板5の外周部の端部 に形成された突起が挿入されるカム溝が形成され、また 第2、第3のカムギア11、12の山部の一部の幅は他 の山部の幅より厚く形成されている。上記第2、第3の カムギアは第1のカムギア9とともにはモータ(図6の 30 モータ26)の回転駆動力によって同期して回転する。 また、上記第2、第3のカムギア11、12の近傍に は、この第2、第3のカムギア11、12の山部の幅よ りさらに大きな幅の山部を有する第4、第5のカムギア 13、14が回動可能に支持されている。モータ26を 回転駆動源とする駆動機構によりカムギア9、11、1 2が回転すると、この回転に伴ってトレイ4間が順次開 脚するとともに、モータ30(図18のモータ30)を 回転駆動源とする駆動機構により第4、第5のカムギア 13、14が回転するとトレイ4間が図4、図15に示 すようにさらに大きく開脚するものである。

【0019】図6は、上記第1、第2、第3のカムギア 9、11、12を回転駆動する機構を示している。図6 において、26は筐体1の底板に取付けられたエレベータ用のモータ、9、11、12は筐体1の底板と上面板との間に回転自在に支持された上記第1、第2、第3のカムギア、27はモータ26の回転軸に取付けされたウォーム歯車、G1、G2、G3、G4、G5、G6、G7、G8は筐体1の底板に回転自在に支持された歯車で50 あり、モータ26の回転駆動力は上記歯車G1~G8を

8

脚されるものである。

介して、上記第1、第2、第3のカムギア9、11、1 2に伝えられ、第1、第2、第3のカムギア9、11、 12を回転させる。すなわち、モータ26の回転駆動力 はウォーム歯車27→歯車G4→歯車G5→歯車G6を 介して第1のカムギア9に伝えられてこの第1のカムギ ア9を回転させ、モータ26の回転駆動力はウォーム歯 車27→歯車G3→歯車G2→歯車G1を介して第3の カムギア12に伝えられてこの第3のカムギア12を回 転させ、モータ26の回転駆動力はウォーム歯車27→ 歯車G4→歯車G5→歯車G7→G8を介して第2のカ ムギア11に伝えられてとの第2のカムギア11を回転 させるものである。図8は第2、第3のカムギア11、 12を示している。第2、第3のカムギア11、12の 下端には上記歯車G8、G1に噛合する歯車部11A、 12Aが形成され、また第2、第3のカムギア11、1 2の上部には、螺旋状のカム11B、12Bが一体に形 成されている。図9は円柱状のカムギア11、12を平 面状に展開した図であり、螺旋状のカム11B、12B の面にトレイ4の外周に一体に形成された突起4 Aが当 接する。カムギア11、12が回転すると、図9に示す ように突起4Aがカム11B、12Bにより上方または 下方に駆動されるものである。図10は第4、第5のカ ムギア13、14を示している。図10において、13 A、14Aはカムギア13、14の下部に形成された歯 車部、13B、14Bはカムギア13、14の外周面に 形成された螺旋状のカムであり、このカム13B、14 Bの傾斜面は大きく形成されている。図11は円柱状の カムギア13、14を平面状に展開した図であり、螺旋 状のカム13B、14Bの面にトレイ4の外周に一体に 形成された突起4日が当接する。カムギア13、14が 回転すると、図11に示すように突起4Bが大きく下方 に駆動されるものである。

【0020】図12は第1、第2、第3、第4、第5の カムギア9、11、12、13、14によるトレイ4の エレベータ機構の動作の概略を示している。カムギア 9、11、12が同期して回転すると、複数枚のトレイ 4は図12の(A) → (B) → (C) → (D) → (E) → (F) に示すように一体となって下降していく。この 下降の際に第2、第3のカムギア11、12の山部の幅 広部によってトレイ4間が順次開脚する。所定のディス ク再生が指定される (例えば、下から2番目のディスク の再生が指定される)と、エレベータ機構が動作し図1 2 (A) → (B) と進み、図12 (B) に示す状態でエ レベータ機構の動作が停止する。図12(B)に示す状 態で駆動機構により第4、第5のカムギア13、14が 回動する。第4、第5のカムギア13、14には図10 に示すように傾斜角度が大きい螺旋状のカム13B、1 4 Bが形成されているため、図12 (B) の下から2番 目のトレイ4が下方に駆動され、図13に示すように下

【0021】図16、図17はターンテーブル、光ピッ クアップなどを搭載した光ピックアップユニットを示し ている。図16、図17において、15は筐体1の底面 に軸16により回転可能に支持された基板であり、この 基板15上に3つのゴム製のダンパー17を介して光へ ッドシャーシ18が支持されている。19は光ヘッドシ ャーシ18に送りネジにより矢印A方向に移動される光 ピックアップである。この光ピックアップ19には発光 素子、受光素子などの光学系が組込まれている。20は 光学系を構成する対物レンズであり、この対物レンズ2 0から出たレーザ光がディスク3に照射され、またディ スク3で反射された反射光が対物レンズ20を介して受 光素子に入射される。この受光素子は受光したレーザ光 を電気信号に変換して出力するものであり、この出力信 号からディスク3に記録された情報が再生されるもので ある。21は光ヘッドシャーシ18に回転自在に保持さ れたターンテーブルであり、このターンテーブル21は 光ヘッドシャーシ18の下面に取付けられたモータ22 20 の回転軸に直結されている。23はターンテーブル21 の中央に開閉可能に保持された複数の爪であり、ターン テーブル21にディスク3が載置されていない時は爪2 3は閉じた状態にあり、ターンテーブル21にディスク が載置されると、爪駆動機構により駆動されて爪23は 外方に開きディスク3のターンテーブル21への保持を 行うものである。97は光ヘッドシャーシ18の外周部 を下方に折り曲げてなる折曲片であり、この折曲片97 には溝98が形成されている。99は基板15に摺動自 在に支持された摺動板であり、この摺動板99には逆し 字状のロック片99Aが形成されている。上記摺動板9 9が摺動してロック片99Aが上記折曲片97の溝98 に係合すると、光ヘッドシャーシ18が基板15に機械 的にロックされるため、ダンバー17が不動作状態とな りサスペンションロックになる。逆に摺動板99が摺動 しロック片99Aと折曲片97の溝98との係合が外れ ると、サスペンションロックが解除され、ダンパー17 は動作状態となり、光ヘッドシャーシ18はダンパー1 7を介して基板15に支持されることになる。ディスク 再生時には、ダンパー17を動作状態として基板15に 支持することにより、外部からの振動が光ヘッドシャー シ18に伝わるのを防止するものである。また、ディス クをターンテーブル21に移送してディスクをターンテ ーブル21にクランプする際には、ロック片99Aを折 曲片97の溝98に係合させダンパー17を不動作状態 とする(サスペンションロック状態とする)ととによ り、ディスクをターンテーブル21に確実にクランプさ せるものである。

4 Bが形成されているため、図12 (B) の下から2番 【0022】図1において、24は軸25の先端部に摺目のトレイ4が下方に駆動され、図13に示すように下 助自在に保持されたディスク押出しレバーであり、図1から2番目のトレイと3番目のトレイとの間が大きく開 50 8のモータ30を回転駆動源とする駆動機構によりディ

スク押出しレバー24が時計方向(図1)に回動すると、ディスク押出しレバー24の先端がトレイ4間に入り、トレイ4上のディスク3の外周面を押し、トレイ4より1枚のディスク3を筐体1内の中央方向に押出すものである。トレイ4より押出されたディスク3は図24~図28に示すディスクガイド機構によりターンテーブル21に移送されターンテーブル21に固定されて回転駆動されるものである。

9

【0023】図18、図19、図20は、実施の形態1 における第1のモータ30により駆動される機構を示し 10 ている。図18、図19、図20において、1は筐体で あり、この筐体1の側面板にモータ30が取付けられて いる。モータ30の回転駆動力は歯車減速機構(図2 0) 31に伝達され、歯車32を回転させる。33は筐 体」の底面に摺動可能に支持された円弧状の回動板であ り、この回動板33の外周に形成された歯部33Aは上 記歯車32に囃合している。34は筐体1の底面に軸3 5により回動可能に支持された歯車であり、この歯車3 4は回動板33の歯部33Aに噛合している。34Aは 歯車34の上面に形成されたカム溝である。36は筐体 20 1に取付けられ筐体1の底板と平行な板材(図示せず) に軸37により回動可能に支持されたレバーであり、と のレバー36には上記歯車34のカム溝34Aに挿入さ れるピン36Aが植設されるとともに、レバー36の先 端にはピン36Bが植設されている。上記レバー36の ピン36Bは、後述のディスクガイド機構に係合し、レ バー36の回動に伴ってディスクガイド機構が動作する ものである。38は筐体1の底板に軸39で回動可能に 支持されたレバーであり、このレバー38の先端にはピ ン38Aが植設されている。40は筐体1の底板に軸4 1で回転可能に支持され上記レバー38の上面に配置さ れた歯車であり、この歯車40は上記歯車34に噛合し ている。上記歯車40にはカム穴40Aが形成されてい る。38Bはレバー38に植設されたピンであり、この ピン38日は歯車40のカム穴40Aに挿入されてい る。上記レバー38のピン38Aは図17に示す基板1 5に係合するものであり、レバー38の回動動作により 基板15が駆動され軸16を回転中心として基板15が 回動し、ターンテーブル21が筐体1の中央方向に移動 したり、筐体1の正面板1A方向に移動するものであ る。

【0024】42は筺体1の底板に軸43で回動自在に支持された歯車であり、この歯車42は回動板33の歯部33Aに噛合する。42Aは歯車42に形成されたカム穴、44は筺体1の底板のピン45に摺動可能に支持されたアームであり、このアーム44には上記歯車42のカム穴42Aに係合するピン44Aが植設されている。アーム44はは図17に示す摺動板28に係合し、アーム44の摺動動作に伴い光ヘッドシャーシ18のサスペンションをロックしたりロックを解除したりする。

すなわち、光ヘッドシャーシ18は前記の通り基板15 にダンバー17を介して支持されており、ディスクの再生動作中はサスペンションロック機構のロックを解除し、再生動作以外ではサスペンションロック機構をロック状態にし、光ヘッドシャーシ18を基板15に固定し、ダンバー17が働かないようにするものである。アーム44が筐体1の中央方向に移動すると、サスペンションロック機構がロックされ、アーム44が逆方向に摺動すると、サスペンションロック機構のロックが解除されるものである。

【0025】46は筐体1の底板に軸47で回動可能に支持された歯車であり、この歯車46は回動板33の歯部33Aに噛合するものである。46Aは歯車46の上面に形成されたカム溝である。48は筐体1に取付けられ筐体1の底板と平行な板材(図示せず)に軸49により回動可能に支持されたレバーであり、このレバー48には上記歯車46のカム溝46Aに挿入されるピン48Aが植設されるとともに、レバー48の先端にはピン48Bが植設されている。上記レバー48のピン48Bは、後述のディスクガイド機構が動作するものである

【0026】50は筐体1の底板に軸51で回転自在に 支持された中間歯車であり、この中間歯車50は上記歯 車46に嘲合している。52は筺体1の底板に軸53で 回動自在に支持されたレバーであり、このレバー52に はピン52Aが形成されているとともに、レバー52の 先端にはピン2Bが植設されている。54は軸55で筐 体1の底板に回転可能に支持された歯車であり、この歯 30 車54は上記中間歯車50に噛合している。54Aは上 記レバー52のピン52Aが係合するカム穴である。 【0027】56は筐体1の底板に植設されたピン57 により摺動自在に支持された摺動板であり、この摺動板 56の一端に形成された長穴56Aに上記レバー52の ピン52Bが係合している。56B、56Cは摺動板5 6の端部側の外周に形成された歯部、56Dは摺動板5 6の中間部の内周に形成された歯部である。上記歯部5 6 B、56 Cは前記トレイのエレベータ機構を構成する カムギア11、12に噛合している。58は筐体1の底 40 板に軸59で回動自在に支持されたスイッチ駆動板であ り、このスイッチ駆動板58は回動板33の一端により 駆動され、スイッチ60をオン、オフする。61は筐体 1の底板に摺動自在に支持されたスイッチ駆動板であ り、このスイッチ駆動板61は回動板33の他端により 駆動されてスイッチ62をオン、オフする。

【0028】次に、図18から図20に示す機構の動作 について説明する。図18に示す状態は回動板33が反 時計方向の終端まで回動した状態であり、この状態は筐 体1の正面板1Aのディスク挿入口からディスクを挿入 したり排出したりする状態である。図18に示す状態に おいて、モータ30が回転を始めると、モータ30の回 転駆動力が歯車減速機構31を介して歯車32に伝えら れる。このため、この歯車32に噛合する回動板33が 時計方向に回動する。

【0029】図21は、回動板33が図18に示す状態 から時計方向に回動した際の各部の動作状態を示してい る。図21のT0からT11は、図18に示す状態を角 度0とした場合の回動板33の所定回動角度を示してい る。図21のT0~T2の区間はディスクのローディン グ、アンローディングの区間、T2~T11はディスク 再生動作開始までの区間である。TOでモータ30が回 転を開始すると回動板33が時計方向に回動を始める。 回動板33の回動に伴い、回動板33に嘲合する歯車4 6が回動し、歯車46に噛合する中間歯車50が回動 し、さらに中間歯車50に嘲合する歯車54が回動す る。図21のT0においては、図29に示すようにレバ -80に回転自在に支持されたローラ82は歯車54の 溝54Aに入っている。図21に示すように回動板33 が回転角度T1以上回動すると、ローラ82は歯車54 の溝54Aから出てディスク挿入口を閉じる。

【0030】図21の回転角度T2がスタンバイ位置で あり、このスタンバイ位置T2においてディスク再生が 指示されると、モータ30が回転を始める。モータ30 が回転し始めるとディスク押出しレバー24が駆動さ れ、トレイ4上のディスク3が押され筐体1の中心方向 に押される。モータ30により駆動されて回動板33が 時計方向(図18)に回動され、この回動板33の回動 に伴って回動する歯車54が所定角度回動すると、歯車 54のカム穴54Aに係合するレバー52のピン52A が駆動され、レバー52が回動を始める(図21の角度 T4)。レバー52が回動すると、レバー52の先端の ピン52日に連結された摺動板56が摺動し、この摺動 板56の歯部56B、56Cに噛合するカムギア11、 12が回動する(図21の角度T4)。カムギア11、 12の回動により所定のトレイ4がカムギア11、12 により下方に押圧され、図15に示すようにトレイ4間 が開く。また、摺動板56の摺動動作に伴い、摺動板5 6の歯部56Dに噛合する歯車63が回動し(図21の T4~T6)、この歯車63のカム溝63Aに係合する ディスク規制体64のピン64Aが駆動され、ディスク 規制体64が下降し、ディスク規制体64と65との間 隔が広くなる。

【0031】回動板33の歯部33Aには歯車34が噛合しているため、回動板33の回動に伴い歯車34も回動する。歯車34には歯車40が噛合しているため、回動板33の回動に伴い歯車40が回転する。回動板33の回動が角度T6を越えると歯車40のカム穴40Aに挿入されたレバー38のピン38Aが駆動されてレバー38が回動する。レバー38のピン38Aは光ヘッドシャーシ18を保持する基板15に係止されているため、

軸16により筐体1の底板に回動可能に支持された基板 15は軸16を中心にして反時計方向に回動され、光へ ッドシャーシ18に設けられたターンテーブル21が筐 体1の中央方向に移動される。

12

【0032】回動板33の歯部33Aには歯車34、4 6が 唱合しているため、回動板33の回動に伴い歯車3 4、46も回動する。歯車34、46のカム溝34A、 46Aには、それぞれレバー36のピン36A、レバー 48のピン48Bが係合しており、歯車34、46の回 動に伴いレバー36、48が回動する。レバー36のピ ン36日は、第1のディスクガイド機構のカム板71に 係合し、またレバー48のピン48Bは第2のディスク ガイド機構74のカム板77に係合している。このた め、回動板33の回動に伴い歯車34、46が回動する と、レバー36、48が回動し(図21のT9~T1 1) 第1、第2のディスクガイド機構のカム板71、7 7が駆動されディスク保持片69、70及びディスク保 持片75、76が図27(A)(B)(C)(D)、図 28(A)(B)(C)(D) に示すように上下動し、 20 ディスク保持片69、70、ディスク保持片75、76 によりディスク3を挟持し、ターンテーブル21まで移 送し、ディスク3がターンテーブル21にクランプされ た後に、ディスク保持片69、70間及びディスク保持 片75、76間が大きく開くものである。

【0033】回動板33の歯部33Aには歯車42が噛合しているため、回動板33の回動に伴い歯車42も回動する。歯車42のカム穴42Aに、摺動自在なアーム44のピン44Aが係合しているため、回動板33の回動角度が角度T10を越すと歯車42の回動によりアー30 ム44が駆動され、アーム44は筐体1の正面板1Aに接近する方向に摺動する。アーム44には光ヘッドシャーシロック機構が係合しており、アーム44が正面板1A方向に摺動すると、光ヘッドシャーシロック機構のロックが解除され、光ヘッドシャーシ18がタンパー17を介して基板15に支持されるものである。回動板33が更に時計方向に回動すると、回動板33の先端によりスイッチ駆動板61が駆動されスイッチ62がオンし回動板33の回動が停止するものである。

【0034】図22は、図18、図19において筐体1 40 の底板に回転可能に支持された歯車63を示している。 この歯車63は摺動板56の歯部56に噛合するものである。この歯車63の外周面には溝63Aが形成されている。図23は円筒状のディスク規制体64を示している。このディスク規制体64の内周面にはピン64Aが形成されている。64Bは回転止め用の突片である。図22に示す歯車63が上記ディスク規制体64の中に挿入され、ディスク規制体64の内面のピン64Aが歯車63の溝63Aに挿入される。ディスク規制体64の突片64Bは筐体1の底板の孔に挿入されているため、歯 車63が回転するとディスク規制体64は図23におい 13

て上下に移動する。図23において、65は筐体1の上 面板66に取付されたディスク規制体であり、上記ディ スク規制体64が上下動すると、ディスク規制体64と 65との間隔が変わるものである。ディスク規制体6 4、65の筐体1内における配置個所は、トレイ4に収 納されたディスク3の中心孔3Aが挿入できる個所であ る。図23に示すようにディスク規制体64、65との 間を選択されたディスク3が通過するものであり、選択 されたディスク3をターンテーブル21方向に移送する 際にはディスク規制体64、65間の間隔は狭くなり、 トレイ4に載置された他のディスク3の中心孔3Aがデ ィスク規制体64、65に挿入されるため、他のディス クがターンテーブル方向に飛出すのが防止されるもので ある。選択されたディスクがターンテーブル21に保持 されディスクの再生が行われる際には、ディスク規制体 64、65の間隔が広くなり、ターンテーブル21によ り回転駆動されたディスク3は間隔が広くなったディス ク規制体64、65間で回転するものである。

【0035】図24、図25、図26は図20に67で 示す第1のディスクガイド機構を示している。図24、 図25、図26において、68は筐体1の上面板に固定 された支持基板であり、この支持基板68には、縦方向 の2つの長穴68A、68Bと横方向の1つの長穴68 Cが形成されている。69は上記支持基板68の長穴6 8 A に上下摺動自在に支持されたディスク保持片であ り、このディスク保持片69に植設された2つのピン6 9A、69Bが上記長穴68Aに挿入されている。70 は上記支持基板68の長穴68Bに上下摺動自在に支持 されたディスク保持片であり、このディスク保持片70 に植設された2つのピン70A、70Bが上記長穴68 Bに挿入されている。71は上記支持基板68に横方向 に摺動自在に支持されたカム板であり、このカム板71 にはカム溝71A、71Bが形成されている。上記ディ スク保持片69、70は支持基板68の片方の面に上下 摺動自在に支持されているのに対し、上記カム板71は 支持基板68の他方の面に左右摺動自在に支持されてい るものである。上記ディスク保持片69に植設されたピ ン69Aがカム溝71Aに挿入され、またディスク保持 片70に植設されたピン70日がカム溝71日に挿入さ れている。72はカム板71に植設されたピンであり、 このピン72は支持基板68の長穴68Cに挿入され、 カム板71は長穴68Cに案内されて支持基板68に対 し水平に摺動する。73はカム板71の下部に一体に形 成された折曲片であり、この折曲片73に長溝73Aが 形成されている。折曲片73の長溝73Aには図18、 図19に示す上記レバー36に植設されたピン36Bが 挿入されている。レバー36が回動すると、このレバー 36のピン36Bによりカム板71が支持基板68上を 横方向に摺動する。カム板71が横方向に摺動すると、

A、70 Bが駆動されるため、支持基板68 に上下摺動 自在に支持されたディスク保持片69、70 は上下に摺 動するものである。

[0036]図27の(A), (B), (C), (D)

は上記ディスクガイド機構の側面を示している。レバー 36のピン36Bによりカム板71が駆動され、カム板 71が図24の右方向に摺動していくと、ディスク保持 片69、70が上下に摺動しディスク保持片69、70 間の間隔が図27の(A)→(B)→(C)→(D)と 変化するものである。図27の(A)はトレイ4から押 10 出されたディスク3がディスク保持片69、70間を移 送されるタイミングであり、ディスク保持片69、70 間の間隔はディスク3の厚さよりわずかに広くなってい る。図27(B)はディスク3の水平方向の移送が終わ りディスク3をディスク保持片69、70で挟持してい る状態を示しており、この状態でディスク保持片69、 70はディスク3を挟持したまま下降する。図27 (C)は、ディスク3がターンテーブル21の位置まで 下降しディスク3を爪23によりターンテーブル21に 20 クランプするタイミングであり、このタイミングではデ ィスク保持片69、70間の間隔は少し広くなる。図2 7 (D) はディスククランプが終了しターンテーブル2 1を回転させてディスク再生を行うタイミングであり、 ディスク再生時にはディスク保持片69は上昇しディス ク保持片70は下降するため、ディスク保持片69、7 0間の間隔は最も広くなる。図20において、74は第 2のディスクガイド機構であり、この第2のディスクガ イド機構は図24から図26に示す第1のディスクガイ ド機構と同様の機構により、第1のディスクガイド機構 と同期して図28(A), (B), (C), (D) に示 すようにディスク保持片75、76を上下動させるもの である。図28(A), (B), (C), (D) におい て、77は第1のディスクガイド機構67のカム板71 と同等のカム板であり、このカム板77の折曲片78の 長溝78Aに、図18、図19に示すレバー48のピン 48Bが挿入される。図18において、回動板33が時 計方向に回動すると、この回動板33の歯部33Aに嘲 合する歯車46が回動し、この歯車46のカム溝46A に係合するレバー48のピンAが駆動され、レバー48 40 が軸49を中心にして回動する。このため、レバー48 のピン48Bによりカム板77が駆動され、カム板77 が横方向に摺動し、このカム板77によりディスク保持 片75、76が上下動するものである。

が回転すると、ローラ82はこの溝54Aに入ったり出たりする。ローラ82が溝54Aに入るとレバー80の上端は下方に下がり、ローラ82が溝54Aから出るとレバー80の上端は上方に上がる。レバー80の上端の上下動により、ディスク挿入口が開閉され、ローラ82が溝54Aに入った際にはディスク挿入口が開き、ディスク挿入口からディスクを挿入、排出可能となる。一方、ローラ82が溝54Aから出た場合にはディスク挿入口が閉じ、ディスクの挿入、排出ができなくなる。図21のT0~T2の区間において、回動板33の回動に10伴い歯車54が回動すると、ローラ82が溝54A内から溝54A外に出るためレバー80が上昇しディスク挿入口が開きディスクの挿入が可能になる。ここで、ディスク挿入口にディスクが挿入されると、光センサによっ

てディスク挿入が検出されディスク移送用のモータ (図 示せず) が回転しローラ2が回転駆動されるため、ディ

スク3が筐体1内に移送される。

15

【0038】以上のように、実施の形態1では、モータ 30の回転駆動力により、回動板33が図18に示す状 態から時計方向に回動して図19示す状態になる過程に おいて、ディスク挿入口が閉じられ、第4、第5のカム ギア13、14の回動によりトレイ4間が大きく開脚さ れ、レバー38の回動により光ヘッドユニットが軸16 を中心に回動しターンテーブル21を大きく開脚された トレイ4間に移動させ、レバー36、48の回動により 第1、第2のディスクガイド機構67、74を駆動して ディスク3を挟持したままディスクをターンテーブル2 1まで下降させ、ディスク3がターンテーブル21にク ランプされた後に、ディスク保持片69、70間、ディ スク保持片75、76間を大きく開く。その後、アーム 44の動作により光ヘッドシャーシ18のサスペンショ ンロックが解除され、図19に示すディスク再生状態に なるものである。

【0039】図30は、実施の形態2におけるディスク 検索機構を示している。図30において、83は軸84 により筐体1に回動可能に支持されたディスク押出しレ バーであり、とのディスク押出しレバー83の一端83 Aはディスク3の外周面を駆動するディスク駆動部であ り、ディスク押出しレバー83の他端には突起83Bが 形成されている。図18に示すモータ30の歯車減速機 ると、トレイ4に載置されたディスク3の外周面がディ スク駆動部83Aにより押されディスクがトレイより押 出される。85は軸86により筐体1に回動可能に支持 されたレバー、87は上記レバー85を時計方向に付勢 するバネ、88はレバー85に一体に形成された突起、 89は筐体1の上面板に取付けされたフォトカプラであ り、このフォトカプラ89の発光素子、受光素子は上記 突起88を挟んで対向配置されている。前記の通り、デ ィスク押出しレバー83のディスク駆動部83Aにより

ディスク3が押出されると、押出されたディスク3によ りレバー85が反時計方向(図30)に回動する。レバ -85の回動によりレバー85に一体に形成された突起 88も回動する結果、突起88はフォトカプラ89の発 光素子、受光素子間から移動するため、フォトカプラ8 9はオフからオンに切換わる。このように、ディスク押 出しレバー83によりトレイ上のディスクを押すことに より、レバー85が回動したか否かをフォトカプラ89 で検出することにより、トレイ上のディスクの有無が検 出されるものである。実施の形態1のディスクチェンジ ャー装置の電源をオンした際には、図6に示すエレベー タ機構によりトレイ4を上昇または下降させ、このエレ ベータ機構に同期してディスク押出しレバー83を順次 トレイ4間に挿入し、この際にレバー85が回動するか 否かを検出することにより、各トレイ4上のディスク3 の有無が検出されるものである。

[0040]

【発明の効果】本発明の請求項1に記載の発明によれ は、各動作のタイミングが一定になり、ディスク取出し 動作、ターンテーブル支持手段の回動動作、ディスクの 20 ガイド動作が確実に行えるものである。本発明の請求項 2 に記載の発明によれば、トレイ開脚手段が簡単になる ものである。本発明の請求項3に記載の発明によれば、 ディスクチェンジャー装置を小型化できるものである。 本発明の請求項4に記載の発明によれば、ディスク再生 時にはダンパーにより外部振動による影響を除去でき、 またディスク再生時以外では、ターンテーブルの定置が 正確になるものである。本発明の請求項5 に記載の発明 によれば、再生されるディスク以外のディスクの移動が 30 規制されるため、再生動作が確実になるものである。本 発明の請求項6に記載の発明によれば、ディスク挿入口 を開閉する機構が簡単になるものである。本発明の請求 項7に記載の発明によれば、回動手段によりディスク規 制手段を動作させることができるため、ディスク規制手 段の駆動機構が簡単になるものである。本発明の請求項 8 に記載の発明によれば、ディスク規制手段の構成が簡 単になるものである。本発明の請求項9に記載の発明に よれば、トレイのエレベータ手段の構成が簡単になるも のである。本発明の請求項10に記載の発明によれば、 トレイを移動させるエレベータ機構が簡単になるもので ある。本発明の請求項11に記載の発明によれば、トレ イ上のディスクの有無を容易に検出できるものである。 本発明の請求項12に記載の発明によれば、ターンテー ブル支持手段を開脚したトレイ間に挿入してディスク再 生を行うことができるものである。本発明の請求項13 に記載の発明によれば、ディスクを案内するディスクガ イド機構が簡単になるものである。

【図面の簡単な説明】

【図1】本発明の実施の形態1におけるディスクチェン 50 ジャー装置の上面図

18

- 【図2】同実施の形態1の再生動作時の上面図
- 【図3】同実施の形態1のトレイ機構部の側面図
- 【図4】同実施の形態 I の再生時のトレイ機構部の側面 図
- 【図5】同実施の形態1の再生時のトレイ機構部の側面 図
- 【図6】同実施の形態1のエレベータ機構の上面図
- 【図7】同実施の形態1のカムギアの側面図
- 【図8】同実施の形態1のカムギアの側面図
- 【図9】同実施の形態1のカムギアの動作説明図
- 【図10】同実施の形態1の他のカムギアの側面図
- 【図11】同実施の形態1の他のカムギアの動作説明図
- 【図12】同実施の形態1のエレベータ機構の動作の概略を示す図
- 【図13】同実施の形態1のディスク再生時のエレベータ機構の概略を示す図
- 【図14】同実施の形態1のエレベータ機構の側面図
- 【図15】同実施の形態1のディスク再生時のエレベータ機構の側面図
- 【図16】同実施の形態1の光ヘッドシャーシの上面図 20
- 【図17】同実施の形態1の光ヘッドシャーシの側面図
- 【図18】同実施の形態1の駆動機構の上面図
- 【図19】同実施の形態1の駆動機構の上面図
- 【図20】同実施の形態1の駆動機構の一部の上面図
- 【図21】同実施の形態1の駆動機構の動作タイミング
- を示す図
- 【図22】同実施の形態1の歯車の側面図
- 【図23】同実施の形態1のディスク規制機構の側面図
- 【図24】同実施の形態1のディスクガイド機構の正面 図
- 【図25】同実施の形態1のディスクガイド機構の正面 図
- 【図26】同実施の形態 l のディスクガイド機構の正面 図
- 【図27】同実施の形態1のディスク保持片の側面図 *

*【図28】同実施の形態1の他のディスク保持片の側面 図

【図29】同実施の形態1のディスク挿入口の開閉機構の一部の側面図

【図30】他の実施の形態のディスク有無検出機構の上 面図

【図31】従来のディスクチェンジャー装置の概要を示す上面図

【符号の説明】

10 1 筐体

(10)

- 2 ローラ
- 3 ディスク
- 4 トレイ
- 5 金属板
- 6 レバー
- 7 ローラ
- 8 コイルバネ
- 9 第1のカムギア
- 10 突片
- 20 11 第2のカムギア
 - 12 第3のカムギア
 - 13 第4のカムギア
 - 14 第5のカムギア
 - 15 基板
 - 16 軸
 - 17 ダンパー
 - 18 光ヘッドシャーシ
 - 19 光ピックアップ
 - 20 対物レンズ
- 30 21 ターンテーブル
 - 22 モータ
 - 23 爪
 - 24 ディスク押出しレバー
 - 25 **#**

[図3]

【図7】

【図13】

(A) / (B) / (C) / (D) / (P) /

【図15】

【図16】

【図17】

【図19】

【図18】

【図20】

【図23】

【図24】

【図21】

【図31】

フロントページの続き

(72)発明者 土居 誠

石川県金沢市彦三町二丁目1番45号 株式 会社松下通信金沢研究所内

(72)発明者 中出 勇

石川県金沢市彦三町二丁目1番45号 株式 会社松下通信金沢研究所内

(72)発明者 漆原 賢治

石川県金沢市彦三町二丁目 1 番45号 株式 会社松下通信金沢研究所内

(72)発明者 柏川 昌和

神奈川県横浜市港北区網島東四丁目3番1

号 松下通信工業株式会社内

Fターム(参考) 5D072 AB23 BG02 BG05 BH17 EB14 EB18