法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

关注 小象学院

Machine Learning

Part 4: Classical Machine Learning Models

Zengchang Qin (Ph.D.)

Decision Tree Learning

Play-Tennis Problem

The Play-Tennis data from T. Mitchell's book [3], we can find a tree to represent "Yes" and "No" by leaves.

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

[3] T. Mitchell (1997), Machine Learning, McGraw Hill.

Impurity

The Play-Tennis data from T. Mitchell's book [3], we can find a tree to represent "Yes" and "No" by leaves.

Greedy approach:

Nodes with homogeneous class distribution are preferred

Need a measure of node impurity

Multi-dimensional Attributes (Features)

Shannon's solution follows from the fundamental properties of information.

1.I(p) is anti-monotonic in p – increases and decreases in the probability of an event produce decreases and increases in information, respectively $2.I(p) \ge 0$ – information is a non-

 $2.I(p) \ge 0$ – information is a nonnegative quantity

3.I(1) = 0 – events that always occur do not communicate information

4.I(p1, p2) = I(p1) + I(p2) – information due to independent events is additive

Information Gain

$$Gain(S, Wind) = Entropy(S) - \sum_{v \in \{Weak, Strong\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

PlayTennis: training examples

Tayremus. transmig examples											
Day	Outlook	Temperature	Humidity	Wind	PlayTennis						
D1	Sunny	Hot	High	Weak	No						
D2	Sunny	Hot	High	Strong	No						
D3	Overcast	Hot	High	Weak	Yes						
D4	Rain	Mild	High	Weak	Yes						
D5	Rain	Cool	Normal	Weak	Yes						
D6	Rain	Cool	Normal	Strong	No						
D7	Overcast	Cool	Normal	Strong	Yes						
D8	Sunny	Mild	High	Weak	No						
D9	Sunny	Cool	Normal	Weak	Yes						
D10	Rain	Mild	Normal	Weak	Yes						
D11	Sunny	Mild	Normal	Strong	Yes						
D12	Overcast	Mild	High	Strong	Yes						
D13	Overcast	Hot	Normal	Weak	Yes						
D14	Rain	Mild	High	Strong	No						

$$= Entropy(S) - (8/14)Entropy(S_{Weak}) - (6/14)Entropy(S_{Strong})$$
$$= 0.940 - (8/14)0.811 - (6/14)1.00$$
$$= 0.048$$

$$Values(Wind) = Weak, Strong$$

 $S = [9+, 5-]$
 $S_{Weak} \leftarrow [6+, 2-]$
 $S_{Strong} \leftarrow [3+, 3-]$

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Sub-Trees

Partition

General Way of Building Trees

- ☐ Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- ☐ Issues
 - Determine how to split the records
 - ☐ How to specify the attribute test condition?
 - ☐ How to determine the best split?
 - Determine when to stop splitting

Attribute Types

Training Data

Model: Decision Tree

Sub-Trees

- ☐ Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous

- ☐ Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting

☐ Multi-way split: Use as many partitions as distinct values.

☐ Binary split: Divides values into two subsets.

Need to find optimal partitioning.

Discretization

- ☐ Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - ☐ Static discretize once at the beginning
 - ☐ Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - **Binary Decision:** (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - an be more compute intensive

Gini Index

☐ Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Gini=	
C2	6
C1	0

C1	1
C2	5
Gini=	0.278

C1	2
C2	4
Gini=	0.444

C1	3
C2	3
Gini=	0.500

Detailed Calculation

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

$$Gini = 1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Gini Split – Looks Familiar?

- ☐ Used in CART, SLIQ, SPRINT.
- ☐ When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, $n_i = \text{number of records at child i},$

n = number of records at node p.

Gini Split

- ☐ For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat		No		No N		N	No Yes		s Yes		s	Ye	Yes N		0	No		No		No					
•	Taxable Income																									
Sorted Values		60			70 7		85		,	90		95		100		120		125		220						
Split Positions	plit Positions —		5	6	5	7	72		80		87 92		2	97		110		122		17	172		230			
1		<=	<= > <= >		>	\=	^	\=	>	<=	>	<=	>	<=	^	\=	>	<=	>	<=	>	<=	>			
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0			
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0			
	Gini	0.4	0.420 0.400 0.3		0.3	0.375 0.343		0.343		0.343).343		117	0.4	100	<u>0.3</u>	<u>800</u>	0.3	43	0.3	75	0.4	00	0.4	20

Misclassification Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Measure of Impurity for 2-Class Problems

Training and Test Errors

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象学院

