Machine Learning Techniques for Text

Module 8: Detecting Hateful and Offensive Language

Dr. Nikos Tsourakis

- Module 0: Python Crash Course
- Module 1: Intro to Machine Learning
- Module 2: Detecting Spam Emails
- Module 3: Classifying Topics of Newsgroup Posts
- Module 4: Extracting Sentiments from Product Reviews
- Module 5: Recommending Music Titles

- Module 6: Teaching Machines to Translate
- Module 7: Summarizing Wikipedia Articles
- Module 8: Detecting Hateful and Offensive Language
- Module 9: Generating Text in Chatbots
- Module 10: Clustering Speech-to-Text Transcriptions

Overview

- The dramatic increase in inflammatory language, urged companies to regulate or even remove extreme posts
- On the other hand, there are raising concerns that attempts to curb inappropriate language could also lead to the restraint of free speech
- The current module aims to identify hateful and offensive language in tweets
 - In this module we will reuse and tune third-party models to minimize the effort of a new deployment
 - Using an open source dataset we will examine the steps to build a state-of-the-art language model and
 use it for classification
 - The presented algorithms have been in the spotlight recently due to their usage in winning prestigious competitions in the field
 - We will also utilize a validation test to adjust the model's parameters and avoid certain pitfalls
 - Finally, we will examine the strategies for dealing with imbalanced data

Module objectives

After completing this module, you should be able to:

- Implementing state-of-the-art language models
- Building more complex neural architectures
- Applying new algorithms for text classification
- Understanding the need for validation sets
- Treating imbalanced datasets

Machine Learning Techniques for Text

Section 1: Introducing social networks

Social networks

- In the late 1960s, the famous psychologist Stanley Milgram decided to investigate the small-world concept, which states that the entire world is connected through short chains of acquaintances
- Performing an ingenious experiment,
 Milgram asked a few hundred people from various locations to get a letter to a stranger in Boston
- The participants were given information about the target recipient and instructed to send the letter to someone they knew that would more likely know that individual

Social networks

- The following person in the chain had to repeat the same task and send the letter to someone even closer
- When Milgram examined the letters that reached the target, he realized they had changed hands about six times on average
- The result demonstrated that, on average, any two individuals in the US are separated by five connections, known by the phrase six degrees of separation

[Is the idea that all living things and everything else in the world is six or fewer steps away from each other so that a chain of "a friend of a friend" statements can be made to connect any two people in a maximum of **six steps**.] Wikipedia

Social networks

[Each person in the world (at least among the 1.59 billion people active on Facebook) is connected to every other person by an average of **three and a half** other people.] Facebook Research - 2016

Hateful and offensive language

- The difference between hate and offensive speech can be subtle, with difficult-to-discern boundaries
- We can define hate speech as language that expresses hatred toward a targeted group or is intended to be derogatory, and is used to humiliate, or insult the group's members
- On the other hand, sexist tweets are generally classified as offensive
- So, let's consider three examples:
 - **Hate speech**: I hate the ghetto trash at the special school across the street from my building. All of them will grow up to be criminals
 - Offensive speech: God, my tweets are so ghetto
 - Neither offensive nor non-offensive speech: So many weird people in the ghetto at this time

Machine Learning Techniques for Text

Section 2: Understanding BERT

Contextualized representations of words

- Imagine you're reading a book, and you encounter the word bank
- It could refer to a financial institution or the side of a river

- Traditional word embeddings might assign the same representation to both meanings, missing the nuance
- A highly perceptive reader does not only understand each word but also grasps the subtle differences based on the entire sentence
- We need models that consider bidirectional context mirrors the way our minds comprehend language in context, providing a more nuanced and accurate understanding of words based on their surroundings

BERT representation

- Bidirectional Encoder Representation from Transformers (BERT) is a state-of-the-art transformer-based technique to generate language representation models
- BERT generates word representations that are sensitive to the context in which the words appear in a sentence
- BERT incorporates a stack of transformer encoders to understand the language better
- Similarly to word embedding, the method does not require humanannotated observation labels
- Therefore, BERT can be utilized in various tasks, such as machine translation, sentiment analysis, text summarization, and so forth

BERT representation

- A typical step when incorporating BERT is to pre-train the model to understand the language and adjust it for specific applications
- This way, the knowledge that is extracted during the pre-training phase, which takes place once, can be transferred to several applications without much effort
- This feature is essentially the basic idea behind *transfer learning*, where we first pre-train a model using a large dataset and then fine-tune it for a specific task using a smaller one

Transfer learning

- Consider, for example, applications for recognizing human faces
- All these applications share a common step extracting the human face's basic characteristics, such as the eyes, nose, and mouth, and their differences rely mainly on the setting
- For example, a video surveillance system aims to identify a human face from a distance, while for an access control system, the person is usually close to the camera
- A robust pre-trained model can be tuned with a smaller contextdependent dataset in both cases
- In NLP we can resort to powerful language models and adapt them the peculiarities of a specific task without starting from scratch

Let's practice!

Tasks

BERT

https://colab.research.google.com/git hub/PacktPublishing/Machine-Learning-Techniques-for-Text/blob/main/chapter-08/socialnetworks-bert.ipynb Machine Learning Techniques for Text

Section 3: Introducing boosting algorithms

Introduction

- The term boosting refers to a family of algorithms that use ensemble learning to build a collectively robust classifier from several weak classifiers
- The difference with other ensemble techniques is that in boosting, we build a series of trees, where every other tree tries to fix the mistakes made by its predecessor
- With the random forest classifier, multiple trees are constructed in parallel using the *bagging* technique
- Another distinctive characteristic of boosting algorithms is their ability to deal with the bias-variance trade-off

AdaBoost

- The algorithm creates a very shallow tree (T1) from the training data during the first iteration
- The decision based on this stump* is depicted with the horizontal line, y=6, so that a person receiving more than \$6K per month is labeled with a happy face
- The F1 model consists only of the specific decision tree

^{*}stump = a decision tree with a single split

AdaBoost

- In the second iteration, a new stump is created (**T2**) that tries to rectify the previous errors
- The incorrectly classified observations now carry more weight than the observations that were correctly classified
- For this reason, the corresponding icons appear larger than the others
- The vertical line, **x=4** (the stump's outcome), corrects two errors

AdaBoost

- Only one error remains unresolved during the third iteration, treated by the
 T3 stump
- Another vertical line, x=12, separates the sad smiley faces from the happy ones
- Finally, the new F3 model is the sum of T1, T2, and T3 that correctly classifies all the data points

Gradient boosting

- Gradient boosting is an extension of boosting, where gradient descent is used to boost weak models
- A primary component of the algorithm is the loss function, such as the mean squared error for regression or the logarithmic loss function for classification
- The only prerequisite is that the function is differentiable to apply gradient descent
- Although many models can be used for weak learners, decision trees are almost always incorporated in practice

XGBoost

- eXtreme Gradient Boosting (XGBoost) is a popular and efficient open source implementation of the gradient boosting tree algorithm
- In recent years, it has been a favored choice in various Kaggle* competitions, helping people win significant prizes
- XGBoost can be used for regression, classification, and ranking problems
- The method builds upon the concepts of supervised machine learning, decision trees, ensemble learning, and gradient boosting already presented in the previous modules

^{*}Kaggle is an online community of data scientists and machine learning enthusiasts

Let's practice!

Tasks

- BERT
- BERT + XGBoost

https://colab.research.google.com/git hub/PacktPublishing/Machine-Learning-Techniques-for-Text/blob/main/chapter-08/socialnetworks-bert-xgboost.ipynb Machine Learning Techniques for Text

Section 4: Creating validation sets

The need for validation set

- During training we need to experiment with multiple configurations of the models to find the optimal one
- Typically, we need to adjust the hyperparameters and the topology of deep learning architecture, training on a set of samples, and testing on another set
- For that reason, machine learning is a highly iterative process
- This strategy engenders a particular risk, however:
 - Evaluating different model configurations with a given test set over multiple rounds leads to a model tuned to work well with the specific set
 - As the number of epochs increases, we implicitly fit the model to the peculiarities of the test set and consequently get a too-optimistic performance in the end

The need for validation set

- We need a way to validate our model performance during training while leaving the test set for the final evaluation
- This role is undertaken by the validation set that helps us tune the model's hyperparameters and configurations accordingly
- As a result, the model learns the patterns from the training samples without overfitting
- On the other hand, the validation set creates a model bias and is unsuitable for evaluating its generalization performance
- The test set keeps unseen samples in the model until the very end, which is why it can offer an honest assessment of the final model

Early stopping

When should we stop the training process?

Machine Learning Techniques for Text

Section 5: Understanding convolutional neural network

Convolutional neural network

- A convolutional neural network (CNN or ConvNet) is a category of neural network
- It can include one or more convolutional layers capable of efficiently processing spatial patterns in data with a grid-like topology
- Therefore, CNNs find extensive utility in image-processing applications that work with two-dimensional image data
- The layers are arranged in such a way as to detect simpler or more complex patterns

Convolutional neural network

- In an image classification task, the first layers can identify simpler features such as lines and arcs
- In contrast, the layers, further along, can detect patterns such as part of a face or an object
- So, a CNN made of a single layer can only learn low-level features, and in typical applications, we stack more than one

Convolutional neural network

- Each convolutional layer of the network includes a set of *kernels*, also known as *filters*, that aim to extract different features from the input
- In First ConvNet we observe six filters to detect the different edges of the image
- Their output is fed to Second ConvNet to identify higher-level features, such as an eye or fingers
- Finally, the last layer can detect more complex patterns based on the output of the second layer

The convolution operation

• *Convolution* is a linear operation, depicted with the * symbol, and involves the multiplication of the set of weights of the filter with the input

Input (RGB) 245 125 122 132 228 124 154 Kernels -1 -1 -1 -1 -1 -1 -1 $[0 \cdot 1 + 0 \cdot 0 + 0 \cdot (-1) + 234 \cdot 1 + 201 \cdot 0 + 155 \cdot (-1) + 231 \cdot 1 + 135 \cdot 0 + 176 \cdot (-1)]$ Convolution -337 -351 -45 -336 -595 -523 -461 -472 -26 -322 -249 -45 + 134 + 66**Activation map** -1024 activation function -1579 bias e.g. ReLU -1043

Each input matrix is convolved with the same filter that detects vertical lines in images

The output is summed and passed through an activation function, including a bias term

The result is an *activation map*, also known as a *feature map*, that defines which information is passed to the next layer

Let's practice!

Tasks

- BERT
- BERT + XGBoost
- BERT + CNN

https://colab.research.google.com/git hub/PacktPublishing/Machine-Learning-Techniques-for-Text/blob/main/chapter-08/socialnetworks-bert-cnn.ipynb

• Violin plots

BERT

- Transfer learning
- Imbalanced datasets
- Validation sets
- Early stopping
- Pooling

- Gradient Boosting
- AdaBoost
- XGBoost
- Convolutional Neural Networks

Machine Learning Techniques for Text

Questions?