TU Hamburg-Harburg – Institut für Zuverlässiges Rechnen Prof. Dr. S.M. Rump und Mitarbeiter, Wintersemester 2016/2017

Prozedurale Programmierung, Übungsblatt 06 letzter Abgabetermin 08. Dezember 2016

Rastergrafiken

Nach dem Sie ein Vektorgrafikformat (SVG) kennengelernt haben, sollen für den folgenden Teil der Übung Rastergrafiken anhand des Windows Bitmap $(BMP)^1$ genutzt werden. Laden Sie sich die Datei libbmp.h (\rightarrow StudIP) herunter und machen Sie sich mit dem gegebenen Quellcode und mit den Grundlagen der Dateiein- und -ausgabe (FILE*, fopen, fclose)^{2 3} vertraut.

1. Zufallsbild

a) Laden Sie sich die Datei aufg13.c (→ StudIP) herunter. Fragen Sie in der main-Funktion den Programmbenutzer mittels scanf⁴ nach der gewünschten Bildbreite bmp_width und Bildhöhe bmp_height. Erzeugen Sie anschließend mithilfe von malloc ausreichend Speicher für den Zeiger data und geben Sie selbigen am Ende des Programms wieder frei.

(1 Punkt)

b) Implementieren Sie die unvollständige Funktion bmp_set_pixel in der libbMP.h gemäß der Spezifikation. Nutzen Sie die Funktion bmp_create aus der gleichen Bibliothek und schreiben Sie die Bilddaten aus dem dynamischen Array data in ein BMP-Bild zufall.bmp.

(2 Punkte)

2. Kein Zufallsbild

Nehmen Sie Aufgabe 1 als Vorlage und entfernen überflüssige Codezeilen. Erweitern Sie die Implementation der libbMP.h um folgende Funktionen:

Abbildung 1: Von links nach rechts: bmp_rect, bmp_line, bmp_ellipse und bmp_triangle. Schwarz ist die Linienfarbe, grau die Füllfarbe und rot (braucht nicht implementiert zu werden!) die geometrische Figur als Orientierung.

¹https://de.wikipedia.org/wiki/Windows_Bitmap

²http://openbook.rheinwerk-verlag.de/c_von_a_bis_z/016_c_ein_ausgabe_funktionen_005.htm

³Wurde auch schon in der libSVG.h verwendet.

⁴http://openbook.rheinwerk-verlag.de/c_von_a_bis_z/004_c_ein_ausgabe_001.htm

a) Implementieren Sie bmp_rect (s. Abbildung 1). Erzeugen Sie einen weißen Bildhintergrund der Größe 1024 × 1024 Punkte mit einem roten Rand.

(2 Punkte)

b) Implementieren Sie bmp_line mithilfe des Bresenham-Algorithmus⁵. Zeichnen Sie eine rote Linie von P1 = (512, 512) nach P2 = (700, 278).

(2 Punkte)

c) Implementieren Sie die Funktion bmp_ellipse (s. Bresenham-Algorithmus) und zeichnen Sie eine grüne Ellipse mit schwarzem Rand, dem Mittelpunkt P=(512,512), der horizontalen Halbachse a=300 und der vertikalen Halbachse b=300.

(2 Punkte)

d) Implementieren Sie bmp_triangle. Diese Aufgabe ist schwer! Sollten Sie Probleme haben, zeichnen Sie nur die Kanten des Dreiecks mit bmp_line ohne Füllung. Zeichnen Sie ein blaues Dreieck mit schwarzem Rand mit den drei Eckpunkten P1 = (212, 512), P2 = (812, 512) und P1 = (700, 278).

(1 Punkt)

Welcher mathematische Zusammenhang wird dargestellt?

⁵https://de.wikipedia.org/wiki/Bresenham-Algorithmus