CHAPTER 5

Transformations and Weighting to Correct Model Inadequacies

Introduction

Chapter 4 presented several techniques for checking the adequacy of the linear regression model. Recall that regression model fitting has several implicit assumptions, including

- The model errors have mean zero and constant variance, and are uncorrelated.
- 2. The model errors have a normal distribution—this assumption is made in order to conduct hypothesis tests and construct confidence intervals—under this assumption, the errors are independent.
- The form of the model, including the specification of the regressors, is correct.

Introduction

- Data Transformation
- Weighted Least Squares

Variance Stabilizing Transformations

- Constant variance assumption
 - Often violated when the variance is functionally related to the mean
 - Transformation on the response may eliminate the problem
 - The strength of the transformation depends on the amount of curvature that is induced
 - If not satisfied, the regression coefficients will have larger standard errors (less precision)

Residual Plots

Nonconstancy of Error Variance

 Changing dispersion as the predictor variable changes in the plot of the residual against the predictor variable

Variance Stabilizing Transformation

Useful Variance-Stabilizing Transformations

Relationship of σ^2 to E(y)	Transformation
$\sigma^2 \propto constant$	y' = y (no transformation)
$\sigma^2 \propto E(y)$	$y' = \sqrt{y}$ (square root; Poisson data)
$\sigma^2 \propto E(y)[1 - E(y)]$	$y' = \sin^{-1}(\sqrt{y})$ (arcsin; binomial proportions
	$0 \le y_i \le 1$
$\sigma^2 \propto [E(y)]^2$	$y' = \ln(y) (\log)$
$\sigma^2 \propto [E(y)]^3$	$y' = y^{-1/2}$ (reciprocal square root)
$\sigma^2 \propto [E(y)]^4$	$y' = y^{-1}$ (reciprocal)

TABLE 5.2 Demand (y) and Energy Usage (x) Data for 53 Residential Customers, August 1979

Customer	x (KWH)	y (KW)	Customer	x (KWH)	y (KW)
1	679	0.79	27	837	4.20
2	292	0.44	28	1748	4.88
3	1012	0.56	29	1381	3.48
4	493	0.79	30	1428	7.58
5	582	2.70	31	1255	2.63
6	1156	3.64	32	1777	4.99
7	997	4.73	33	370	0.59
8	2189	9.50	34	2316	8.19
9	1097	5.34	35	1130	4.79
10	2078	6.85	36	463	0.51
11	1818	5.84	37	770	1.74
12	1700	5.21	38	724	4.10
13	747	3.25	39	808	3.94
14	2030	4.43	40	790	0.96
15	1643	3.16	41	783	3.29
16	414	0.50	42	406	0.44
17	354	0.17	43	1242	3.24
18	1276	1.88	44	658	2.14
19	745	0.77	45	1746	5.71
20	435	1.39	46	468	0.64
21	540	0.56	47	1114	1.90
22	874	1.56	48	413	0.51
23	1543	5.28	49	1787	8.33
24	1029	0.64	50	3560	14.94
25	710	4.00	51	1495	5.11
26	1434	0.31	52	2221	3.85
			53	1526	3.93

R code

- # example 5.1
- rm(list=ls())
- # read data
- Energy=read.csv("data-ex-5-1-(Electric-Utility).csv")
- # visualize data
- plot(Energy\$Usage,Energy\$Demand,pch=20)
- # fit regression
- model1=Im(Energy\$Demand~Energy\$Usage)
- # residual plots based on x
- plot(Energy\$Usage,model1\$residuals)
- # residual plots based on fitted values
- plot(model1\$fitted.values,model1\$residuals)
- # residual plots based using R student
- plot(model1\$fitted.values,rstudent(model1))

Figure 5.1 Scatter diagram of the energy demand (kW) versus energy usage (kWh), Example 5.1.

TABLE 5.3 Analysis of Variance for Regression of y on x for Example 5.1

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P Value
Regression	303.6331	1	302.6331	121.66	< 0.0001
Residual	126.8660	51	2.4876		
Total	429.4991	52			

Figure 5.2 Plot of R-student values t_i versus fitted values \hat{y}_i , Example 5.1.

Figure 5.3 Plot of R-student values t_i versus fitted values y_i^* for the transformed data, Example 5.1.

Transformations to Linearize the Model

- Nonlinearity may be detected via the lack-of-fit test
- If a transformation of a nonlinear function can result in a linear function – we say it is intrinsically or transformably linear
- Example:

$$y = \beta_0 e^{\beta_1 x} \varepsilon$$

$$\ln y = \ln \beta_0 + \beta_1 x + \ln \varepsilon$$

$$y' = \beta'_0 + \beta_1 x + \varepsilon'$$

Transformations

Transformations for Nonlinear Relation Only

Scatter Plot

Transformation of x to try

$$x' = log_{10} x$$
, $x' = \sqrt{x}$

$$x'=x^2$$
. $x'=e^x$

Transformations

Transformations for Nonlinear Relation Only

Transformations to Linearize the Model

TABLE 5.4 Linearizable Functions and Corresponding Linear Form

Figure	Linearizable Function	Transformation	Linear Form
5.4a, b	$y = \beta_0 x^{\beta_1}$	$y' = \log y, x' = \log x$	$y' = \log \beta_0 + \beta_1 x'$
5.4c, d	$y = \beta_0 e^{\beta_1 x}$	$y' = \ln y$,	$y' = \ln \beta_0 + \beta_1 x$
5.4e, f	$y = \beta_0 + \beta_1 \log x$	$x' = \log x$	$y' = \beta_0 + \beta_1 x'$
5.4g, h	$y = \frac{x}{\beta_0 x - \beta_1}$	$y' = \frac{1}{y}, x' = \frac{1}{x}$	$y' = \beta_0 - \beta_1 x'$

Figure 5.4 (a)-(d)
Linearizable
Functions [Daniel
and Wood (1980)]

Figure 5.4 (e)-(h)

Linearizable Functions [Daniel and Wood (1980)]

Transformations to Linearize the Model

TABLE 5.4 Linearizable Functions and Corresponding Linear Form

Figure	Linearizable Function	Transformation	Linear Form
5.4a, b	$y = \beta_0 x^{\beta_1}$	$y' = \log y, x' = \log x$	$y' = \log \beta_0 + \beta_1 x'$
5.4c, d	$y = \beta_0 e^{\beta_1 x}$	$y' = \ln y$,	$y' = \ln \beta_0 + \beta_1 x$
5.4e, f	$y = \beta_0 + \beta_1 \log x$	$x' = \log x$	$y' = \beta_0 + \beta_1 x'$
5.4g, h	$y = \frac{x}{\beta_0 x - \beta_1}$	$y' = \frac{1}{y}, x' = \frac{1}{x}$	$y' = \beta_0 - \beta_1 x'$

Figure 5.5 Plot of DC output y versus wind velocity x for the windmill data.

R code

- # example 5.2
- Wind=read.csv("data-ex-5-2-(Windmill).csv")
- # visualize data
- plot(Wind\$Velocity,Wind\$Output,pch=20)
- model2=Im(Wind\$Output~Wind\$Velocity)
- summary(model2)
- # residual plots based on fitted values
- plot(model2\$fitted.values,model2\$residuals)
- abline(h=0,col="grey",lwd=3)
- # residual plots based on R student
- plot(model2\$fitted.values,rstudent(model2))
- # transform velocity
- Wind\$InvVelo=1/Wind\$Velocity
- model3=Im(Wind\$Output~Wind\$InvVelo)
- summary(model3)
- # residual plots based on fitted values
- plot(model3\$fitted.values,model3\$residuals)
- abline(h=0,col="grey",lwd=3)
- # residual plots based on R student
- plot(model3\$fitted.values,rstudent(model3))

• A straight line fit to the data resulted in:

$$\hat{y} = 0.1309 + 0.2411x$$

• The summary statistics are

$$R^2 = 0.8745$$
,

$$MS_{Res} = 0.0557$$
, and

$$F_0 = 160.26$$
 (with a P-value < 0.0001)

Figure 5.6 Plot of residuals e_i versus fitted values \hat{y}_i for the windmill data.

Figure 5.7 Plot of DC output versus x' = 1/x for the windmill data.

Figure 5.8 Plot of R-student values t_i versus fitted values \hat{y}_i for the transformed model for the windmill data.

Using a reciprocal transformation, the resulting fitted model is:

$$\hat{y} = 2.9789 - 6.9345x'$$

The summary statistics are

$$R^2 = 0.9800$$
,

$$MS_{Res} = 0.0089$$
, and

$$F_0 = 1128.43$$
 (with a P-value < 0.0001)

Transformations to Linearize the Model

Note:

 Least-squares estimator has least-squares properties with respect to the transformed data, not original data.

Analytical Methods for Selecting a Transformation

- Transformations on y: The Box-Cox Method
- Transformations on the Regressor Variables

Transformations on y: The Box-Cox Method

- Suppose that we wish to transform y to correct nonnormality and/or nonconstant variance.
- A useful class of transformations is the **power** transformation, y^{λ} where λ is a parameter to be determined.
- The parameters of the regression model and λ can be estimated simultaneously using the method of maximum likelihood.

Transformations on y: The Box-Cox Method

The appropriate procedure to be used is

$$y^{(\lambda)} = \begin{cases} \frac{y^{\lambda} - 1}{\lambda \dot{y}^{\lambda - 1}}, & \lambda \neq 0\\ \dot{y} \ln y, & \lambda = 0 \end{cases}$$

where $\dot{y} = \ln^{-1}[(1/n\sum_{i=1}^{n} \ln y_i]$ is the **geometric mean** of the observations

• The model to be fit is $y^{(\lambda)} = X \boldsymbol{\beta} + \boldsymbol{\varepsilon}$

Example 5.3 The Electric Utility Data

TABLE 5.7 Values of the Residual Sum of Squares for Various Values of $\,\lambda$, Example 5.3

λ	$SS_{Res}(\lambda)$
- 2	34,101.0381
-1	986.0423
-0.5	291.5834
0	134.0940
0.125	118.1982
0.25	107.2057
0.375	100.2561
0.5	96.9495
0.625	97.2889
0.75	101.6869
1	126.8660
2	1275.5555

R code

- # Box-Cox
- require(MASS)
- boxcox(model1)
- boxcox(model2)
- boxcox(model3)

Transformations on the Regressors

- Sometimes a transformation on one or more regressor variables is useful
- These transformations are often selected empirically

Weighting to Correct Model Inadequacies

- No suitable transformation found
- Use weighted least squares

Weighting to Correct Model Inadequacies

Weighted Least Squares

$$Y_i = \beta_0 + \beta_1 X_1 + \dots + \beta_{p-1} X_{p-1} + \varepsilon_i$$
where: $\beta_0, \beta_1, \dots, \beta_{p-1}$ are parameters
 X_1, \dots, X_{p-1} are known constants
 ε_i are independent $N(0, \sigma_i^2)i = 1, \dots, n$

Error Variances Known

$$w_i = \frac{1}{\sigma_i^2}$$

$$Q_{w} = \sum_{i=1}^{n} w_{i} (Y_{i} - \beta_{0} - \beta_{1} X_{i1} - \dots - \beta_{p-1} X_{i,p-1})^{2}$$

- Error Variances Unknown
 - $_{\circ}$ Estimate σ_{i}^{2}
 - Megaphone residual plot

$$\sigma_i^2 = E(\varepsilon_i^2) - (E(\varepsilon_i))^2$$
$$\sigma_i^2 = E(\varepsilon_i^2)$$

- $arepsilon_i^2$ is an estimator of σ_i^2
- $|\varepsilon_i|$ is an estimator of σ_i

- Error Variances Unknown
 - **○Summary**
 - Fit the regression model by unweighted least squares and analyze the residuals
 - Estimate the variance or standard deviation function by regressing the squared or absolute residuals on the appropriate variables
 - Use the fitted values to obtain the weights
 - Estimate the regression coefficients using these weights
 - Use process above iteratively to stabilize the estimated regression coefficients

Comments

- Nonconstant error variance --- heteroscedasticity
- Constant error variance --- homoscedasticity
- $_{\odot}\mathit{R}^{2}$ may be provided by software packages but does not have a clear-cut meaning for weighted least squares

R code

- # weight Im
- Food=read.csv("table5.9.csv")
- plot(Food\$AdvertisingExpense,Food\$Income)
- # build linear regression without weights
- model_noweight=Im(Food\$Income~Food\$AdvertisingExpense)
- # check the coefficient
- summary(model_noweight)
- # generate residual plot
- plot(Food\$AdvertisingExpense,model noweight\$residuals)
- # regress residual^2 on covariate
- weight_coef=lm(model_noweight\$residuals^2~Food\$AdvertisingExpense)\$coef
- # build linear regression with weights
- model_weight=Im(Food\$Income~Food\$AdvertisingExpense,weights=1/(weight_coef[1]+Food\$AdvertisingExpense*weight_coef[2]))
- # check coefficients
- summary(model weight)
- # generate residual plot with weighted residuals
- plot(Food\$AdvertisingExpense,
- 1/sqrt(weight_coef[1]+Food\$AdvertisingExpense*weight_coef[2]) * model_weight\$residuals)
- abline(h=0,col="grey",lwd=3)