

Introdução à Banco de Dados

Um pouco mais de Modelagem e Introdução a SQL

Prof. Ulpio Netto.

Modelagem de Dados

- Seguindo com o que vimos sobre modelagem de dados e a importância disso, vamos entender alguns outros modelos semelhantes ao ER (Entidade-Relacional).
- Abordaremos agora, de maneira rápida, o modelo Relacional.
- Muito semelhante ao modelo ER
- Trabalha com o conceito de Chaves Primárias(PK)
- Requer apresentação de cardinalidade.

Modelo Relacional

• Exemplo:

Modelo Relacional

- O modelo relacional permite que tenhamos ainda mais informações de um esquema de Banco de Dados.
- No exemplo anterior, vimos que a tabela Produto possui diversos atributos, sendo eles: CodBarras, Nome, Descrição e Preço Unitário.
- A tabela Categoria possui:CodCateg, Nome e Descrição
- Além das Tabelas, temos um relacionamento, que pode ser entendido como "Pertence" onde produtos se relacionam com categorias.

Cardinalidade

Cardinalidade

- Como Produto é (0,n) Isso significa que um produto pode ter nenhuma ou várias categorias associadas
- Como Categoria é (1,1) que significa que um produto só pode ocorrer uma vez em uma categoria.

Chaves Primárias (PK)

- Chaves primárias são os nossos identificadores únicos de cada item dentro de uma tabela.
- Se eu tenho uma tabela de alunos, provavelmente sua chave primária seria sua **matrícula**;
- Se eu tenho uma tabela com produtos, provavelmente sua chave primária seria seu código de barras;
- Se eu tenho uma tabela com brasileiros, provavelmente sua chave primária seria o seu CPF;

Relacionamentos

- Relacionamento, dentro de um programa seriam uma espécie de tabela, que "Importa" chaves primarias das outras tabelas que ela vai se relacionar.
- Por exemplo, Eu tenho uma tabela de Cliente e uma Tabela de Produto. A tabela de relacionamento é a tabela de compra, que vai armazenar a informação do Cliente comprando o produto.
- Tal tabela irá importar a chave primária do Cliente e do produto.
 Criando assim dentro do banco de dados, uma relação entre elas, podendo ou não associar outras informações, como hora da compra, valor pago e etc...

Vamos começar a aprender SQL

- Abram o Terminal / PowerShell / CMD de vocês e digitem o comando:
- winget install SQLite.SQLite

Para aqueles que usam Linux ou outro sistema, pesquisem como instalar o SQLite no seu S.O.

Após instalar o SQLite

- Vamos criar uma pasta na área de trabalho onde guardaremos os nossos bancos de dados.
- Se quiser fazer isso de maneira mais fácil, dentro do terminal digite: mkdir ~/Desktop/NomeDaPasta
- Depois, vamos criar um arquivo de banco de dados, vamos chamar de Aula1.db, para isso rodaremos o comando: sqlite3 Aula1.db

Primeiros passos SQLite

Vocês devem estar com uma tela parecida com essa:

```
PS C:\Users\ulpio\Desktop\BancoDeDados> sqlite3 Aula1.db
SQLite version 3.42.0 2023-05-16 12:36:15
Enter ".help" for usage hints.
sqlite>
```

 Aqui será onde iremos inserir os primeiros dados, criar os modelos e as relações entre eles. Para isso precisamos começar a entender a sintaxe do SQL

Principais tipos de dados em SQL

Tipo de Dado	Descrição	Exemplo
CHAR	Armazena um único caracter	'A','a' ,'B','3'
VARCHAR(limite)	Armazena uma varieade de caracteres, podendo ir até 65535	II Ilaia Nattal
	caracteres, podendo também ser limitado ao passar o valor limite entre os parenteses	'Ulpio Netto'
ONGTEXT(limite)	Armazena uma String de até 4,294,967,295 de caracteres	'Lorem ipsulum'
BIT	Armazena valores de -128 a 127	-125, 34, 42,120
TINYINT	Parecido com o Bit, permite armazenar inteiros pequenos, de - 128 até 127 ou 0 a 255, caso não apresente sinal	250,-128,127, 210
BIGINT	Armazena valores inteiros de -9223372036854775808 até 9223372036854775807.	-12838761239123, 92183912837
INTEGER	Um inteiro que armazena valores com sinais de: -2147483648 to 2147483647. Inteiros sem sinal de 0 até 4294967295	-238192, 209318, 0991923
DOUBLE	Numeros decimais	3.51235,1235.5123,10.00
DATE	Uma data, no formado 'AAAA-MM-DD', podendo ir de '1000-01- 01' até '9999-12-31'	'2002-01-22'
TIME	Armazena um horario no formato 'hh:mm:ss'	'18:30:25'
DATETIME	Uma data, juntamente de um horário com o formato: 'YYYY- MM-DD hh:mm:ss'	'2024-01-11 19:13:25'
TIMESTAMP	Gera o dado automaticamente quando é criado, armazena todas as informações do tipo dateTime	'2024-01-11 19:13:25'
		U

- Agora que sabemos os tipos principais dos dados, vamos armazenar as informações de uma tabela "aluno". Tais informações serão: CPF, Nome e Idade.
- Quais os melhores tipos para cada informação?
- Como inserir isso no banco de dados?

 Para inserir os dados, primeiro precisamos criar a tabela que irá armazenar a coleção de dados que define um aluno. Para isso a sintaxe de criar um aluno é:

```
PS C:\Users\ulpio\Desktop\BancoDeDados> sqlite3 .\Aula1.db
SQLite version 3.42.0 2023-05-16 12:36:15
Enter ".help" for usage hints.
sqlite> create table aluno
```


- Errado!!
- Estamos dizendo para o programa que queremos criar uma tabela chamada aluno, mas não estamos dizendo quais dados ela deve armazenar
- Para isso temos que inserir junto do comando de criação da tabela, os atributos da mesma. O SQLite só entende o fim de linha com um;, então podemos usar o enter para pular linha e deixar mais organizado.


```
PS C:\Users\ulpio\Desktop\BancoDeDados> sqlite3 Aula1.db
SQLite version 3.42.0 2023-05-16 12:36:15
Enter ".help" for usage hints.
sqlite> create table aluno(
(x1...> cpf varchar,
(x1...> aluno varchar,
(x1...> idade int
(x1...> );
sqlite>
```


Populando uma tabela

- Agora que temos os moldes criados, ou seja, criamos a tabela e definimos os atributos da mesma, podemos começar a inserir dados nessa tabela.
- Usaremos o comando:

```
sqlite> insert into aluno(cpf,aluno,idade) values('12345678900','Ulpio',21);
sqlite> |
```

 Dessa maneira, eu informo que estou inserindo as informações passadas dentro dos parênteses de "Values" para a tabela aluno, especificando a ordem dos dados inseridos.

Visualizando os dados

- Agora queremos ver os dados que nós vimos de maneira mais organizada. Existem muitos modos de visualizar essas informações, usando filtros e mais...
- Porém por agora, queremos ver todos os dados inseridos na tabela aluno
- Para isso, usamos o comando:

sqlite> select * from aluno;
12345678900|Ulpio|21
sqlite>

 Basicamente estou selecionando todas (*) as linhas da tabela aluno.

Exercitando o que vimos

- Crie um novo banco de dados dentro da mesma pasta, agora com o nome de Exercicio1.db
- Crie uma nova tabela de alunos com os seguintes atributos:
 Matricula, Nome, Idade e DataNascimento.
- Popule essa tabela com pelo menos 5 linhas
- Visualize os dados.

E por hoje é só.

- Vimos outro tipo de modelo de dados.
- Instalamos o SQLite, nosso SGBD.
- Aprendemos os principais tipos de dados de SQL.
- Criamos uma tabela
- Populamos uma tabela
- Visualizamos uma tabela.

