

FOUNDATIONAL COURSE

August 21, 2018

Satellite Foundational Course for JPSS (SatFC-J)

Microwave Surface Emissivity

Learning Objectives

- Describe differences in microwave surface emissivity that 1. aid in the characterization of land surfaces, snow and ice cover, and ocean and water surfaces.
- Identify key parameters that affect emissivity. 2.
- Provide single channel and product examples demonstrating 3. strengths and limitations.

Advantage of Microwave Remote Sensing

Non-precipitating clouds are transparent.

Land Products for Input to Models

Sea Surface Products

Why Is Learning About Emissivity Important?

Emissivity characteristics strongly affect the interpretation of microwave imagery.

Operations Research

Summer vs. Winter

Window Viewing Regions

Emissivity

Parameters:

- wavelength
- material characteristics
- polarization
- surface roughness
- viewing angle

Data Source: C. Matzler, "Passive Microwave Signatures of Landscapes in Winter", *Meteorol. Atmos. Phys.* (1994)

Land Surfaces

Factors that influence measurements:

- soil type
- vegetation type and amount of coverage
- moisture content

Typical emissivity:

- bare soil < vegetation
- moist < dry

0.6 - 0.8 emissivity

emissivity > 0.9

FOUNDATIONAL COURSE | 11

Horizontal vs. Vertical Polarization

 Surface emissivity and the resulting measured brightness temperature (T) is strongly dependent on polarization in the microwave

Animation of AMSR-2 H-pol and V-pol Brightness Temperature – 11 Feb 2018

http://rammb.cira.colostate.edu/templates/loop_directory.asp?data_folder=visitview/custom/AMSR2_20180211_Hpol_Vpol_

Imagery Source: NOAA Operational GCOM-W1 AMSR-2 Product Maps (BTs) http://www.ospo.noaa.gov/Products/atmosphere/gpds/maps.html?GPLCT#gpdsMaps

Animation of AMSR-2 Snow and Ice Products – 11 Feb 2018

http://rammb.cira.colostate.edu/templates/loop_directory.asp?data_folder=visitview/custom/AMSR2_20180211_NH_seaice_snow

Imagery Source: NOAA/NESDIS/STAR JPSS Environmental Data Records (GCOM AMSR2 Products) https://www.star.nesdis.noaa.gov/jpss/EDRs/products_gcom.php

Ocean & Water Surfaces

- Typical emissivity: 0.25-0.5 calm < small waves < foam
- Emissivity differences used in sea surface wind estimation (± 2 m/s)
- Sensitive to sea surface temperature (± 0.2 °C)

AMSR-2 10.65 GHz V-pol 29 Oct 2017

AMSR-2 Sea Surface Wind Product 29 Oct 2017

Summary

Microwave emissivity varies considerably by surface type and accounts for the large differences in observed brightness temperature imagery.

In general...

- dry land surfaces and vegetation covered surfaces are the strongest emitters
- snow- and ice-covered surfaces are moderate emitters
- ocean and water surfaces are the weakest emitters

Observations at multiple frequencies and polarizations (vertical, horizontal) helps in the characterization of various surface properties.

- land cover
- soil moisture
- sea surface temperatures
- near-surface ocean wind speed
- snow cover, depth, and water equivalent
- ice concentration and age

Resources

- Microwave Remote Sensing: Land and Ocean Surface Applications, 2nd Ed. https://www.meted.ucar.edu/training_module.php?id=1100
- Microwave Remote Sensing Resources https://www.meted.ucar.edu/training_module.php?id=260
- A First Course in Atmospheric Radiation, 2nd Ed. (Petty 2006)

Questions? Email: Bernie.Connell@colostate.edu

Narrator: Erin Dagg

Editors: Erin Dagg, Bernie Connell Other Contributors: Jorel Torres

