SATELLITE BROAD CASTING RECEIVER

Publication number: JP2002246925

Publication date:

2002-08-30

Inventor:

NISHINA MOTOHISA

Applicant:

SHARP KK

Classification:

- international: H04N7/20; H04B1/08; H04B15/06; H05K1/14; H04N7/20;

H04B1/08; H04B15/02; H05K1/14; (IPC1-7): H04B1/08;

H04N7/20

- european:

H04B15/06; H05K1/14D

Application number: JP20010044707 20010221 Priority number(s): JP20010044707 20010221 Also published as:

US6950644 (B2) US2002113664 (A DE10206964 (A1)

Report a data error he

Abstract of JP2002246925

PROBLEM TO BE SOLVED: To provide a satellite broadcasting receiver which decreases mutual influences of two local oscillators, so that it is hard to generate a spunous signal. SOLUTION: A substrate 34 is attached to an upper surface of a chassis, and a substrate 36 is attached to a lower surface of the chassis. Sine a thickness d2 of the chassis is to some extent, mutual influences of local oscillators 12, 18 can be decreased, so that a spurious signal is less likely to be generated.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許介 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号 特開2002-246925 ~ (P2002-246925A)

(43)公開日 平成14年8月30日(2002.8.30)

(51) Int.Cl.'		識別記号	ΡI		:	テーマコード(参考)
H04B	1/08		H04B	1/08	Z	5 C 0 6 4
H04N	7/20	630	H04N	7/20	630	5K016

審査請求 未請求 請求項の数7 OL (全 7 頁)

		THE AMERICAN PROPERTY.	
(21)出願番号	特願2001-44707(P2001-44707)	1/	0005049 ヤーブ株式会社
(22)出顧日	平成13年2月21日(2001.2.21)	大	阪府大阪市阿倍野区長池町22番22号
(/ <u></u> /		*	阪府大阪市阿倍野区長池町22番22号 シ ープ株式会社内
		(, _, , , , _, , , , , , , , , , , , , ,	0064746 理士 深見 久郎
		Fターム(参考)	50064 DA01
	•		5K016 AA06 CA01 CB05 CB06 DA02
			EA10 GA02 HA06 HA09
	·		
			•

(54)【発明の名称】 衛星放送受信装置

(57)【要約】

【課題】 2つの局部発振機の相互影響を低減させスプ リアス信号が発生しにくい衛星放送受信装置を提供す る。

【解決手段】 シャーシの上面に基板34を取付けシャ ーシの下面に基板36を取付ける。シャーシの厚さd2 はある程度厚みがあるので。局部発振機12、18の相 互の影響を低減させることができスプリアス信号が発生 しにくくなる。

1

【請求項1】 対向する第 👤 、第2の面を有する金属製

前記第1の面に取付けられ 第1の配線基板と、 前記第1の配線基板上に設して られる第1の局部発振手段

前記第2の面に取付けられ 一第2の配線基板と、 前記第2の配線基板上に設しすられる第2の局部発振手段

前記金属製のシャーシによ 10 とを備え、 前記第2の局部発振手段は、 って前記第1の局部発振手上など分離シールドされる、衛 星放送受信装置。

【請求項2】 前記第2の 局部発振手段は、前記第1の

配線基板から電源電位の供糸合を受け、 前記シャーシには、前記第 1 の面から前記第2の面に貫 通する第1の穴が設けられ、

前記第1の基板には、第2の穴が設けられ、 前記第2の基板には、前記第2の局部発振手段に対して 最も違い前記第2の基板の3辺に沿う周辺領域に第3の穴

前記第1、第2および第3の穴を貫通し、前記第1の配 線基板から前記第2の局部発振回路に電源電位の供給を 行なう接続ピンをさらに備える、請求項1に記載の衛星 放送受信装置。

【請求項3】 前記接続ピンは、 前記第2の穴の径および前記第3の穴の径よりも径が小

前記軸部の一方端に形成され、前記第2の穴の径および 第3の穴の径よりも径が大きい頭部とを含む、請求項2 に記載の衛星放送受信装置。

【請求項4】 前記第1の配線基板上に設けられ前記電

源電位を発生する電源回路と、 前記第1の配線基板上に設けられ、前記電源回路から前 記第1の局部発振手段および前記接続ピンに前記電源電

位を供給する第1の電源線と、 前記接続ピンに近接して前記第1の電源線上に設けら

れ、ノイズ信号を除去する第1のトラップ手段と、 前記第2の配線基板上に設けられ、前記接続ピンから前 記第2の局部発振手段に前記電源電位を供給する第2の

前記接続ピンに近接して前記第2の電源線上に設けら れ、ノイズ信号を除去する第2のトラップ手段とをさられ、ノイズ信号を除去する第2のトラップ手段とをさら に備える、請求項2に記載の衛星放送受信装置。

【請求項5】 前記第1のトラップ手段は、 前記第1の電源線に一端が接続されるL字形の第1の配

線パターンを含み、

前記第2のトラップ手段は、 前記第2の電源線に一端が接続されるL字形の第2の配 線パターンを含む、請求項4に記載の衛星放送受信装 置。

【請求項6】 前記第1の配線基板上に設けられ前記電 源電位を発生する電源回路と、

前記第1の配線基板上に設けられ、前記電源回路から前 記第1の局部発振手段および前記接続ピンに前記電源電 位を供給する第1の電源線と、

前記接続ピンに近接して前記第1の電源線上に設けら れ、1GHz以上の信号の通過を阻止する第1のローパ スフィルタと、

前記第2の配線基板上に設けられ、前記接続ピンから前 記第2の局部発振手段に前記電源電位を供給する第2の 電源線と、

前記接続ピンに近接して前記第2の電源線上に設けら れ、1GHz以上の信号の通過を阻止する第2のローパ スフィルタとをさらに備える、請求項2に記載の衛星放 送受信装置。

【請求項7】 前記第1のローパスフィルタは、

一方端が前記第1の電源線に接続され他方端が前記接続 ピンに接続される第1のインダクタンスと、

前記第1のインダクタンスの前記一方端と接地ノードと 20 の間に接続される第1のコンデンサとを含み、

前記第2のローパスフィルタは、

一方端が前記第2の電源線に接続され他方端が前記接続 ピンに接続される第2のインダクタンスと、

前記第2のインダクタンスの前記一方端と接地ノードと の間に接続される第2のコンデンサとを含む、請求項6 に記載の衛星放送受信装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、衛星放送受信装 置に関し、より特定的には衛星通信で使用する低雑音ダ ウンコンバータ (LNB) において2種類以上の局部発 振回路を同時に動作させる回路を内蔵する衛星放送受信 装置に関する。

[0002]

【従来の技術】衛星放送用のアンテナで電波を受信し、 屋内のBSチューナに信号を導くには、通常同軸ケーブ ルが用いられる。ところが、アンテナで受信した電波 は、直接同軸ケーブルでは屋内に導くことができない。

【0003】周波数の非常に高い衛星放送の電波を導く 40 には、導波管という金属の管を使う必要がある。導波管 を使った場合アンテナから屋内の衛星放送受信機まで信 号を導くのには壁に大きな穴を開けたりする必要があ り、また、減衰も多いので現実的ではない。したがっ て、通常は、アンテナ近辺に設置したLNBを用いて、 同軸ケーブルでも導けるくらいの周波数にまで受信信号 の周波数を落として屋内の衛星放送受信機に信号を伝達 する。屋内の衛星放送受信機には、スクランブルデコー ダが内蔵されており、これによりスクランブルが解除さ れ、表示機に画像が表示される。

【0004】アナログ放送、デジタル放送が混在する中

で、両方の信号を受信するプにめに広帯域のLNBが必要 とされている。衛星からの受信信号を地上で受信される 帯域に変換する際には局部
季表回路が用いられる。しか し、1つの局部発振回路の上出力帯域よりも衛星から受信 信号の帯域が広い。そこで、 通常は発振周波数の異なる 局部発振回路を2個用いて 受信を行なっている。

【0005】たとえば、衛星からの受信信号の帯域1 0. 7~11. 7GHzに対しては、9. 75GHzの 発振周波数の第1の局部発振回路でLNBの出力周波数 950~1950MHzを*力パ*ーしている。また、受信 10 信号の帯域11. 7~12. 75GHzに対しては、1 0. 6 GH z の発振周波数 の第2 の局部発振回路を使用 し、LNBの出力周波数1 100~2150MHzをカ バーしている。

【0006】このLNBの「構造において、従来は、配線 基板を2つ使用し、それぞれ1つの局部発振回路を設け て局部発振回路相互の干渉 を避けていた。

[0007]

【発明が解決しようとする 課題】図10は、従来の衛星 放送受信装置の断面構造を示した図である。

【0008】図10を参照して、厚さd1の板金246 の一方の面には基板234 が取付けられ他方の面に基板 236が取付けられる。 基板234、236にはそれぞ れ局部発振回路212、2 18が搭載されている。基板 234を覆うようにフレーム242が取付けられてい る。一方、基板236はシャーシ232によって覆われ ている。

【0009】従来は、板金246で基板234と236 とを分離していた。板金246は厚みが、たとえば、約 2mm程度であった。しかし、これでは2つの基板の間 の距離は十分離れているとはいえなかった。

【0010】そのため、2つの局部発振回路を同時に動 作させた場合に、強いスプリアス信号が発生し、受信帯 域内に高調波が出現する。この高調波の影響により、衛 星からの正常な信号を屋内の衛星放送受信機などに送る ことができず、テレビ画面などの映像が乱れたりするお それが生ずるという問題があった。

【0011】図11は、図10の基板236上の接続ピ ン262の配置を説明するための図である。

【0012】図11を参照して、従来の衛星放送受信装 40 置では、基板236上の局部発振回路218の近傍に接 続ピン262が設けられていた。接続ピン262によっ て、図10の基板236に搭載される局部発振回路は、 基板234上の電源回路から電源電位の供給を受けてい

【0013】図12は、従来の接続ピン262の形状を 説明するための図である。図12を参照して、棒状の接 続ピン262の中央部分には基板との位置関係を決める ための樹脂で作られた絶縁体264が取付けられてい る。

【0014】図13は、基板234、236を接続ピン 262で接続する付近の断面を示した図である。

【0015】図13を参照して、接続ピンをはんだ付け 等で基板234、236に接続する際に接続ピン262 が基板から抜け落ちないように、樹脂でできた絶縁体2 64がピンに取付けられている。接続ピン262に樹脂 264を取付る際には、ピン上の樹脂の取付位置がばら つく。これにより、基板から突出する接続ピン262の 長さD1がばらつきやすくなってしまう。 また、 このば らつきをカバーするためにピンの長さにもある程度余裕 が必要となり、その結果さらに基板から突出するピンの 長さD1が大きくなってしまう。

【0016】基板から突出するピンの長さD1が大きい と、電波が乗りやすくなり、基板234、236にそれ ぞれ取付けられた2つの局部発振回路の相互の影響によ りスプリアス信号が発生しやすくなってしまうという問 題もあった。

【0017】この発明の目的は、2つの局部発振回路を 同時に動作させた場合に生ずるスプリアス信号のレベル をなるべく低減し、衛星からの正常な信号を妨害を受け ずにダウンコンバートして屋内の衛星放送受信機などに 送ることができる衛星放送受信機を提供することであ

[0018]

【課題を解決するための手段】この発明に従うと、衛星 放送受信装置は、対向する第1、第2の面を有する金属 製のシャーシと、第1の面に取付けられる第1の配線基 板と、第1の配線基板上に設けられる第1の局部発振手 段と、第2の面に取付けられる第2の配線基板と、第2 の配線基板上に設けられる第2の局部発振手段とを備 え、第2の局部発振手段は、金属製のシャーシによって 第1の局部発振手段と分離シールドされる。

【0019】好ましくは、第2の局部発振手段は、第1 の配線基板から電源電位の供給を受け、シャーシには、 第1の面から第2の面に貫通する第1の穴が設けられ、 第1の基板には、第2の穴が設けられ、第2の基板に は、第2の局部発振手段に対して最も遠い第2の基板の 辺に沿う周辺領域に第3の穴が設けられ、第1、第2お よび第3の穴を貫通し、第1の配線基板から第2の局部 発振回路に電源電位の供給を行なう接続ピンをさらに備 える。

【0020】より好ましくは、接続ピンは、第2の穴の 径および第3の穴の径よりも径が小さい軸部と、軸部の 一方端に形成され、第2の穴の径および第3の穴の径よ りも径が大きい頭部とを含む。

【0021】より好ましくは、衛星放送受信装置は、第 1の配線基板上に設けられ電源電位を発生する電源回路 と、第1の配線基板上に設けられ、電源回路から第1の 局部発振手段および接続ピンに電源電位を供給する第1 50 の電源線と、接続ピンに近接して第1の電源線上に設け

られ、ノイズ信号を除去す 一 第1のトラップ手段と、第 接続ピンから第2の局部発 2の配線基板上に設けられ、 振手段に電源電位を供給す 一 第2の電源線と、接続ピン に近接して第2の電源線上1~一設けられ、ノイズ信号を除 去する第2のトラップ手段 🥕 をさらに備える。

【0022】より好ましくして、第1のトラップ手段は、 第1の電源線に一端が接続 ≥れるL字形の第1の配線パ ターンを含み、第2のトラ シプ手段は、第2の電源線に 一端が接続されるL字形の写真2の配線パターンを含む。 【0023】より好ましくして、衛星放送受信装置は、第 10 1の配線基板上に設けられ 電源電位を発生する電源回路 と、第1の配線基板上に設してられ、電源回路から第1の 局部発振手段および接続ピン/に電源電位を供給する第1 の電源線と、接続ピンに近1多して第1の電源線上に設け られ、1GHz以上の信号の通過を阻止する第1のロー パスフィルタと、第2の配糸泉基板上に設けられ、接続ピ ンから第2の局部発振手段で二電源電位を供給する第2の 電源線と、接続ピンに近接 して第2の電源線上に設けら れ、1GHz以上の信号のi通過を阻止する第2のローパ スフィルタとをさらに備える。

【0024】より好ましくしな、第1のローパスフィルタ は、一方端が第1の電源線して接続され他方端が接続ピン に接続される第1のインダクタンスと、第1のインダク タンスの一方端と接地ノー ドとの間に接続される第1の コンデンサとを含み、第2 のローパスフィルタは、一方 端が第2の電源線に接続され他方端が接続ピンに接続さ れる第2のインダクタンス と、第2のインダクタンスの ー方端と接地ノードとの間 に接続される第2のコンデン サとを含む。

[0025]

【発明の実施の形態】以下において、本発明の実施の形 態について図面を参照して詳しく説明する。なお、図中 同一符号は同一または相当部分を示す。

【0026】図1は、本発明の衛星放送受信装置である LNBの構成を示したブロック図である。

【0027】図1を参照して、衛星放送受信装置1は、 電源回路20と、衛星からの信号を受ける入力部ホーン 2と、入力部ホーン2の出力を増幅する低雑音アンプ (LNA:Low Noise Amplifier) 4と、LNA4の出 力に接続されるバンドパスフィルタ (BPF: Band Pas s Filter) 8と、所定の第1の局部発振周波数を出力す る局部発振回路12と、バンドパスフィルタ8の出力と 局部発振回路12の出力とを混合するミクサ (Mixer) 10とを含む。

【0028】衛星放送受信装置1は、さらに、LNA4 の出力に接続されるバンドパスフィルタ14と、第2の 所定の局部発振周波数を出力する局部発振回路18と、 バンドパスフィルタ14の出力と局部発振回路18の出 力とを混合するミクサ16と、ミクサ10,16の出力 の一方を選択するセレクト回路22と、セレクト回路2

2の出力を増幅する I F アンプ24 と、 I F アンプ24 の出力に一方端が接続されるコンデンサ26と、コンデ ンサ26の他方端に接続されるF栓コネクタ28とを含

【0029】LNA4, 局部発振回路12, 18および F栓コネクタ28には電源回路20から電源電位が供給 されている。

【0030】図2は、本発明の衛星放送受信装置の2つ の局部発振回路をそれぞれ搭載する基板を分離する構造 を概略的に示した断面図である。

【0031】図2を参照して、シャーシ32の上面およ び下面にそれぞれ基板34、36が取付けられる。基板 34、36にはそれぞれ局部発振回路12,18が搭載 されている。基板34を覆うようにフレーム42が取付 けられている。基板36を覆うようにフレーム46が取 付けられている。

【0032】ここで、図10に示した従来の構造と異な る点は、剛性を持たせるため比較的厚を厚くする必要が あるシャーシの両側にそれぞれ基板34,36を取付け ている点にある。従来の方式では、基板234と基板2 36とは板金246で分離されていたが板金は厚さが d 1と小さかった。したがって、基板234と236とに それぞれ配置される2つの局部発振回路の距離が近いた め干渉しやすい構造であった。図2に示した構造では、 金属シャーシで十分距離 d 2をおくことができ、局部発 振回路の相互干渉を抑えることができる。

【0033】より具体的には、従来は、図10で説明し たように板金246で基板234と236とを分離して いた。板金246は厚みが約2mm程度であったが、図 2のシャーシ部分の厚みd2をたとえば約7mmにする ことで、スプリアスレベルが低減される効果がある。

【0034】図3は、本発明の衛星放送受信装置である LNBの構造を側面から示した図である。

【0035】図3を参照して、シャーシ32には入力部 ホーン52が取付けられ、上面に基板34が取付けられ る。基板34を覆うようにフレーム42が取付けられて いる。下面には基板36が取付けられている。基板36 を覆うようにフレーム46が取付けられている。シャー シ32には、さらに、屋内の衛星放送受信機に信号を出 力するF栓コネクタ54が取付けられている。

【0036】このように基板34と基板36とをシャー シ32による金属シールドで分離し、基板上の各回路を フレームで覆って区分し、外部に電波が飛び交わないよ うにしている。

【0037】図4は、基板34上に設けられる回路配置 を示した図である。図4を参照して、基板34にはLN A4を配置する領域LNAと、パンドパスフィルタ8を 配置する領域BPF1と、局部発振回路12を配置する 領域LO1と、ミクサ10を配置する領域MIX1と、 セレクト回路22を配置する領域SELECTと、IF

(5)

アンプ24を配置する領域 IF-AMPと、電源回路2 0を配置する領域POWERSUPPLYとが設けられる。

7

【0038】領域POWERSUPPLYには、接続ピン62,64が設けられる。セレクト回路を設ける領域SELECTには接続ピン66が設けられる。接続ピン64はRF信号用に設けられる接続ピンである。接続ピン62は電源線の接続のために設けられる接続ピンである。接続ピン66はIF信号用に設けられる接続ピンである。

【0039】図5は、第2の局部発振回路が搭載される。 基板36の回路配置を示した図である。

【0040】図5を参照して、基板36には、バンドパスフィルタ14を配置する領域BPF2と、局部発振回路18を配置する領域LO2と、ミクサ16を配置する領域MIX2とが設けられる。そして、電源供給を受けるための接続ピン62と、基板34個からRF信号を受けるための接続ピン64と、基板34に対してIF信号を戻すための接続ピン66とが設けられている。

【0041】すなわち、基板34から接続ピン64で基板36に送られた信号は領域BPF2のバンドパスフィルタ14で必要な帯域のみに制限され、領域LO2の局部発振回路18および領域MIX2のミクサ16でIF信号に変換され、このIF信号が接続ピン66を介して基板34上のセレクト回路22に入力される。

【0042】また、局部発振回路18を動作させるための電源は、基板34から接続ピン62を介して基板36に供給されている。

【0043】図6は、基板36における接続ピン62の配置を説明するための図である。図6を参照して、本発明では、従来と比べて接続ピン62を局部発振回路18からより距離をおいて配置することにより、局部発振の電波が接続ピンに飛び乗りにくくすることができる。

【0044】図7は、接続ピン62の形状を示した図である。図7を参照して、接続ピン62は、軸部Bと、軸部Bよりも径の大きい頭部Aとを含む。

【0045】図8は、接続ピンで基板を接続している部分の断面を示した断面図である。図8を参照して、シャーシ32に取付けられた基板34、36は接続ピン62を貫通させるための孔が設けられている。この孔の直径は、接続ピン62の軸部分の径よりも大きく、かつ、頭部分Aの径よりも小さい。なお、シャーシ32に設けられている孔は基板34、36に設けられている孔よりも径が大きい。従来では、ピンを基板34、36に対して固定するためピンの周囲には絶縁体が取付けられていたが、本発明においてはピン62は頭部Aが基板34に引っかかるため位置の固定ができるのでピンの周囲の絶縁体は特に必要がない。

【0046】従来のピンでは基板から抜け落ちないよう に樹脂の絶縁体がピンの周囲に取付けられており、基板 50 から飛び出る長さがばらつきやすく、このばらつきをカ バーするために余裕を設けるため基板から飛び出るピン の長さが長くなっていた。

【0047】これに対し、この実施の形態のように、片側に頭部を設けたピンを使用すれば、ピンが基板から出てくる量を少なくすることができる。また、片方で固定されるため、ばらつきも少なくピンの長さを短くすることができ基板から突出するピンの長さD2を少なくすることができる。

10 【0048】図9は、電源接続用に設けられる接続ピン62に接続される電源線上の回路を説明するための図である。

【0049】図9を参照して、接続ピン62が接続される基板36上に設けられる電源線90には、接続ピン62の付近にローカル周波数およびローカル高調波を落とすためのトラップ84と、余分な電波が通過しないように、1GHz以上の信号の通過を阻止するローパスフィルタを構成するコイル86およびコンデンサ88が設けられる。

【0050】接続ピン62の他方端に接続される基板3 4上に設けられる電源線98に対しても同様に、トラップ92および1GHz以上の信号の通過を阻止するローパスフィルタを構成するコイル94、コンデンサ96が設けられている。

【0051】図9に示した例では、トラップの例として L字型形状のパターンを設けてある。このようなL字型 形状のパターンは、望ましくない信号を除去するトラップの一手法として、長さによってある周波数付近を除去 することができるものである。

【0052】図9に示した構成を接続ピン付近に設けることにより、電源線を介してその他の回路部分に余分な電波が伝わってしまうことを除去および低減することができる。

【0053】以上説明したように、基板間をつなぐ接続ピンにローカル周波数およびローカル高調波が飛び乗ってくることが抑えられ、たとえ接続ピンにこれらの周波数が乗ってきたとしても、その他の回路に電源線を介して伝わっていくことが防止され、スプリアス信号が発生しにくくなる。

【0054】今回開示された実施の形態はすべての点で 例示であって制限的なものではないと考えられるべきで ある。本発明の範囲は上記した説明ではなくて特許請求 の範囲によって示され、特許請求の範囲と均等の意味お よび範囲内でのすべての変更が含まれることが意図され る。

[0055]

【発明の効果】本発明によれば、LNB内の電源線に乗ってくるスプリアス信号が除去、低減され、衛星からの信号を妨害されないでスクランブルデコーダを内蔵した衛星放送受信機等に正常な信号を送ることができる。

【図1】 本発明の衛星放送 受信装置 で あるLNBの構

成を示したブロック図である 【図2】 本発明の衛星放送受信装置の 2つの局部発振 回路をそれぞれ搭載する基本を分離する 構造を概略的に 示した断面図である。

本発明の衛星放う全受信装置の 構造を側面から [図3]

基板34上に設しすられる回路各西2置を示した図 示した図である。 [図4]

第2の局部発振回路が搭載される基板36の である。

【図5】 回路配置を示した図である。 2の配置を説明

基板36における接続ピン6 [図6]

接続ピン62の形状を示した図である。 するための図である。

【図7】

接続ピンで基板 を接続してレン る部分の断面を 【図8】 示した断面図である。

電源接続用に設けられる接続をピン62に接続 される電源線上の回路を記む明するための図である。

*【図10】 従来の衛星放送受信装置の断面構造を示し た図である。

10

【図11】 図10の基板236上の接続ピン262の 配置を説明するための図である。

【図12】 従来の接続ピン262の形状を説明するた めの図である。

【図13】 基板234、236を接続ピン262で接 続する付近の断面を示した図である。

【符号の説明】

10 1 衛星放送受信装置、2 入力部ホーン、8,14 バンドパスフィルタ、20 電源回路、22 セレクト 回路、24 アンプ、26 コンデンサ、10,16 ミクサ、28,54 F栓コネクタ、12,18 局部 発振回路、32シャーシ、42,46 フレーム、52 入力部ホーン、62,64,66接続ピン、34,3 6 基板、84,92 トラップ、86,94 コイ ル、88,96 コンデンサ、90,98 電源線、6 2, 64 ジャンクションピン、A 頭部、B 軸部。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.