City University

Faculty of Science & Engineering Department of Computer Science and Engineering Program: B.Sc. in CSE

Midterm Examination Semester: Summer 2018
Course Code: CSE 307 Course Title: Discrete Mathematics
Total Marks: 30 Duration: 1 hour 30 Minutes

Answer any 3(three) questions			=30
1	a) b) c) d)	Define proposition with example. Define Conjunction and Disjunction with TRUTH Tables. Define Exclusive OR, Conditional and Bi-Conditional with TRUTH Tables. What is compound propositions? Construct the truth table of this compound proposition: $(p \lor \neg q) \rightarrow (p \land q)$.	1 2 3 2
	e)	Find the bitwise OR, bitwise AND of the following pairs of bit strings: 1111 0000, 1010 1010	2
2	a)	Construct a combinatorial circuit of $(p \land \neg r) \lor (\neg q \lor r)$ from input bits p, q, r.	1
	b) c)	Using truth table verify both of the De Morgan laws. Show that $p \leftrightarrow q$ and $(p \rightarrow q) \land (q \rightarrow p)$ are logically equivalent.	2 2
	d)	What is Tautology? Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.	3
	e)	Show that $(p \land q) \land \neg (p \lor q)$ is a contradiction.	2
3	a)	Define universal and existential quantifier with notation.	2
	b)	Show that $\neg \forall x (P(x) \rightarrow Q(x)) \equiv \exists x (P(x) \land \neg Q(x))$.	2
	c)	Let $A=\{1,2,3\}B=\{a,b,c,d\}$. Find the cartesian product $(B\times A)$ of B and A.	2
	d)	Let A= $\{x \mid x \text{ is odd positive integer less than } 10 X A \}$. What is the cardinality	2
	e)	of A. Define power set. What is the power set of $S = \{a,b,c\}$?	2
4	a)	Let $A=\{1,3,5\}$, $B=\{1,2,3\}$. Find the union and intersection of A and B. Show them	2
	b)	using Venn Diagram. Let A={1,3,5,7,9}, B={2,4,6,8,10}. Show that A and B are disjoint.	1
	c)	Define one to one and onto functions using diagram.	2
	d)	Determine whether the function f from $\{a,b,c,d\}$ to $\{1,2,3,4,5\}$ with $f(a) = 4$, $f(b) = 5$, $f(c) = 1$, and $f(d) = 3$ is one-to-one or not?	2
	e)		3
	<i>c,</i>	Let $A = \begin{bmatrix} 12 & 20 \\ 5 & 2 \\ 10 & 15 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 5 \\ 15 & 8 \\ 3 & 6 \end{bmatrix}$ what is the size of B? Find A+B, A-B.	•