Geant 4

Detector Description: Materials

http://cern.ch/geant4

PART I

Materials

- The System of units & constants
- Definition of elements
- Materials and mixtures
- Some examples ...
- The NIST Data Base

Unit system

- Geant4 has no default unit. To give a number, unit must be "multiplied" to the number.
 - for example :

```
G4double width = 12.5*m;
G4double density = 2.7*g/cm3;
```

- If no unit is specified, the *internal* G4 unit will be used, but this is discouraged!
- Almost all commonly used units are available.
- The user can define new units.
- Refer to CLHEP: SystemOfUnits.h
- Divide a variable by a unit you want to get.

```
G4cout << dE / MeV << " (MeV)" << G4endl;
```

System of Units

- System of units are defined in CLHEP, based on:
 - millimetre (mm), nanosecond (ns), Mega eV (MeV), positron charge (eplus) degree Kelvin (kelvin), the amount of substance (mole), luminous intensity (candela), radian (radian), Steradian (steradian)
- All other units are computed from the basic ones.
- In output, Geant4 can choose the most appropriate unit to use. Just specify the *category* for the data (Length, Time, Energy, etc...):

```
G4cout << G4BestUnit(StepSize, "Length");
```

StepSize will be printed in km, m, mm or ... fermi, depending on its value

Defining new units

- New units can be defined directly as constants, or (suggested way) via G4UnitDefinition.
 - G4UnitDefinition (name, symbol, category, value)
- Example (mass thickness):

 - The new category "MassThickness" will be registered in the kernel in G4UnitsTable
- To print the list of units:
 - From the code

```
G4UnitDefinition::PrintUnitsTable();
```

At run-time, as UI command:

```
Idle> /units/list
```

Definition of Materials

- Different kinds of materials can be defined:
 - isotopes <> G4Isotope
 - elements <> G4Element
 - molecules <> G4Material
 - compounds and mixtures <> G4Material
- Attributes associated:
 - temperature, pressure, state, density

Isotopes, Elements and Materials

- G4Isotope and G4Element describe the properties of the *atoms*:
 - Atomic number, number of nucleons, mass of a mole, shell energies
 - Cross-sections per atoms, etc...
- G4Material describes the *macroscopic* properties of the matter:
 - temperature, pressure, state, density
 - Radiation length, absorption length, etc...

Elements & Isotopes

Isotopes can be assembled into elements

```
G4Isotope (const G4String& name,
G4int z, // atomic number
G4int n, // number of nucleons
G4double a); // mass of mole
```

... building elements as follows:

```
G4Element (const G4String& name,

const G4String& symbol, // element symbol

G4int nIso); // # of isotopes

G4Element::AddIsotope(G4Isotope* iso, // isotope

G4double relAbund); // fraction of atoms

// per volume
```

Material of one element

Single element material

```
G4double density = 1.390*g/cm3;
G4double a = 39.95*g/mole;
G4Material* lAr =
new G4Material("liquidArgon", z=18.,a, density);
```

Prefer low-density material to vacuum

Material: molecule

A Molecule is made of several elements (composition by number of atoms):

```
a = 1.01*g/mole;
G4Element* elH =
    new G4Element("Hydrogen", symbol="H", z=1.,a);
a = 16.00*g/mole;
G4Element* elO =
    new G4Element("Oxygen", symbol="O", z=8.,a);
density = 1.000*g/cm3;
G4Material* H2O =
    new G4Material("Water", density, ncomp=2);
H2O->AddElement(elH, natoms=2);
H2O->AddElement(elO, natoms=1);
```

Material: compound

Compound: composition by fraction of mass

```
a = 14.01*g/mole;
G4Element* elN =
    new G4Element(name="Nitrogen", symbol="N", z= 7.,a);
a = 16.00*g/mole;
G4Element* elO =
    new G4Element(name="Oxygen", symbol="O", z= 8.,a);
density = 1.290*mg/cm3;
G4Material* Air =
    new G4Material(name="Air", density, ncomponents=2);
Air->AddElement(elN, 70.0*perCent);
Air->AddElement(elO, 30.0*perCent);
```

Material: mixture

Composition of compound materials

```
G4Element* elC = ...;  // define "carbon" element
G4Material* SiO2 = ...;  // define "quartz" material
G4Material* H2O = ...;  // define "water" material

density = 0.200*g/cm3;
G4Material* Aerog =
   new G4Material("Aerogel", density, ncomponents=3);
Aerog->AddMaterial(SiO2, fractionmass=62.5*perCent);
Aerog->AddMaterial(H2O , fractionmass=37.4*perCent);
Aerog->AddElement (elC , fractionmass= 0.1*perCent);
```

Example: gas

- It may be necessary to specify temperature and pressure
 - (dE/dx computation affected)

```
G4double density = 27.*mg/cm3;
G4double temperature = 325.*kelvin;
G4double pressure = 50.*atmosphere;

G4Material* CO2 =

new G4Material("CarbonicGas", density, ncomponents=2

kStateGas, temperature, pressure);

CO2->AddElement(C, natoms = 1);

CO2->AddElement(O, natoms = 2);
```

Example: vacuum

- Absolute vacuum does not exist. It is a gas at very low density!
 - Cannot define materials composed of multiple elements through Z or A, or with $\rho = 0$.

```
G4double atomicNumber = 1.;
G4double massOfMole = 1.008*g/mole;
G4double density = 1.e-25*g/cm3;
G4double temperature = 2.73*kelvin;
G4double pressure = 3.e-18*pascal;
G4Material* Vacuum =

new G4Material ("interGalactic", atomicNumber,

massOfMole, density, kStateGas,
temperature, pressure);
```

PART I NIST Material Data-Base in Geant4

- Class structure
- NIST Isotopes, Elements and Materials
- How to use it ...

NIST Manager & Messenger

- NIST database for materials is imported inside Geant4 (http://physics.nist.gov/PhysRefData)
- Additional interfaces defined
- UI commands specific for handling materials
- The best accuracy for the most relevant parameters guaranteed:
 - Density
 - Mean excitation potential
 - Chemical bounds
 - Element composition
 - Isotope composition
 - Various corrections

NIST Element and Isotopes

Z	Α	m	error	(%)	A_{eff}	
14	Si 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	22.03453 23.02552 24.011546 25.004107 25.992330 26.98670476 27.9769265322 28.97649472 29.97377022 30.97536327 31.9741481 32.978001 33.978576 34.984580 35.98669 36.99300 37.99598 39.00230 40.00580 41.01270 42.01610	(22) (21) (21) (11) (3) (17) (20) (3) (5) (7) (23) (17) (15) (40) (11) (13) (29) (43) (54) (64) (75)			sotope compositions an 3000 isotope masses

NIST materials

### Elementary Materials from the NIST Data Base									
Z Name ChFormula density(g/cm^3) I(eV)									
1 G4_H H_2 2 G4_He 3 G4_Li 4 G4_Be 5 G4_B 6 G4_C 7 G4_N N_2 8 G4_O O_2 9 G4_F 10 G4_Ne 11 G4_Na 12 G4_Mg 13 G4_Al 14 G4_Si	8.3748e-05 0.000166322 0.534 1.848 2.37 2 0.0011652 0.00133151 0.00158029 0.000838505 0.971 1.74 2.6989 2.33	41.8 40 63.7 76 81 82 95 115							
 NIST Elementary Materials 									
NIST Compounds									
Nuclear Materials									
 It is possible to build mixtures of NIST and user-defined materials 									

### Compound Materials from the NIST Data Base									
	ChFormula	density(g/cm^3) I(eV)							
13 G4_Adipo 1 6 7 8 11	0.119477 0.63724 0.00797 0.232333 0.0005 2e-05	0.92	63.2						
30 4 G4_Air 6 7 8 18	2e-05 0.000124 0.755268 0.231781 0.012827	0.00120479	85.7						
2 G4_CsI 53 55	0.47692 0.52308	4.51	553.1						

How to use the NIST DB

- No need to predefine elements and materials
- Retrieve materials from NIST manager:

```
G4NistManager* manager = G4NistManager::Instance();
 G4Element* elm = manager->FindOrBuildElement("symb", G4bool iso);
 G4Element* elm = manager->FindOrBuildElement(G4int Z, G4bool iso);
 G4Material* mat = manager->FindOrBuildMaterial("name", G4bool iso);
 G4Material* mat = manager->ConstructNewMaterial("name",
                             const std::vector<G4String>& elements,
                             const std::vector<G4int>& numberAtoms,
                            G4double density, G4bool iso);
 G4double isotopeMass = manager->GetIsotopeMass(G4int Z, G4int N);
Some UI commands ...
                              ← print defined elements
 /material/nist/printElement
 /material/nist/listMaterials ← print defined materials
```

Availability...

- NIST database for isotopes/elements/materials available since Geant4 release 7.1
 - UI messenger with predefined commands
- Driven by needs of EM physics
 - Increase precision of elements/material definition
 - Open door for better interface to EM corrections
 - Any physics model can have specific setup associated with predefined materials
- Natural isotope compositions
- More 3000 isotope masses

Material Scanner

- Tool to measure material thickness in units of geometrical length, radiation length and interaction length
 - Region sensitive: you can measure the thickness of one particular region
- /control/matScan
 - scan Start material scanning
 - theta Define theta range
 - phi Define phi range
 - singleMeasure Measure thickness for one particular direction
 - eyePosition Define the eye position
 - regionSensitive Set region sensitivity
 - region Define region name to be scanned