- 魯分 一、填空题(本大题共 10 小题,每题 4 分,共 40 分)
- 2. 由方程 $x^3 + y^3 yz = 1$ 所确定的函数 z = z(x, y) 在 (1,1,1) 点的全微分
- 3. 函数 $z = \ln(x^2 + y)$ 在点 (-1,1) 的梯度 $\operatorname{grad} z = \underline{\hspace{1cm}}$
- (若收敛, 需指出是绝对收敛还是条件收敛)
- 5. 函数 $f(x) = \frac{1}{4-x^2}$ 的麦克劳林级数为______.
- 6. 曲面 $2xy e^z + z = 3$ 的在点(2,1,0) 处的切平面方程为_____
- 7. 设 曲 面 $\Sigma : z = \sqrt{x^2 + y^2}$ (0 $\leq z \leq 1$) , 则 曲 面 积 分 $\iint \sqrt{x^2 + y^2 + z^2} \, \mathrm{dS} = \underline{\qquad}.$
- 8.设曲线 L 是平面上任意一条闭曲线,若 $\iint y dx ax dy \equiv 0$,则常数 a =_____.
- 9.设 f(x) 是以 2π 为周期的函数,且 $f(x) = \begin{cases} -1, & -\pi < x \le 0; \\ 2x 1, & 0 < x \le \pi; \end{cases}$ S(x) 是 f(x)

的傅立叶级数的和函数,则 $S(5\pi)=$ _____

- 计算题(本大题共5小题,每题10分,共50分)
- 11. 求函数 $f(x,y) = 2xy + x^2 + 2y^2 1$ 的极值.
- 12. 计算曲线积分 $I = \int (y 2x\cos y) dx + (x^2 + e^y) \sin y dy$, 其中 L 为 资料由公正号 [工大瞄] 收集整理并免费分享

沿着 $x^2 + y^2 = 4$ 上从点 A(2,0) 到点 B(-2,0) 的上半圆弧.

13. 计算曲面积分

$$I = \iint_{\Sigma} (y^2 + \cos z) \, dy dz - (x^2 + e^z) \, dz dx + z^3 \, dx dy,$$

其中 Σ 是锥面 $z = \sqrt{x^2 + y^2}$ 介于平面z = 0与z = 2之间部分的下侧.

- 14. 求微分方程 $y'' 5y' + 6y = xe^{2x}$ 的通解.
- 15. 求: (1) 幂级数 $\sum_{n=1}^{\infty} \frac{n}{n+1} x^n$ 的收敛域及和函数;
 - (2) 常数项级数 $\sum_{n=1}^{\infty} \frac{n}{(n+1)\cdot 2^n}$ 的和.
- 三、 证明题(本大题共2小题,每题5分,共10分)
- 16. 设 $u(x,y) = f(x+2y) + \int_0^{x-2y} g(t) dt$, 其中f和g二阶可导,

试证明:
$$4\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}.$$

17. 已知函数 y = y(x) 满足等式 y' = x + y, 且 y(0) = 1,

试讨论级数
$$\sum_{n=1}^{\infty} \left[y \left(\frac{1}{n} \right) - 1 - \frac{1}{n} \right]$$
 的收敛性.