Natural Language Processing

The Viterbi algorithm

Marco Kuhlmann

Department of Computer and Information Science

Sequence labelling with global search

- Given an input sequence x, we want to find a candidate output sequence y with maximal score.
- For each input sequence, there are exponentially many different output sequences, each one with its own score.
 - combinatorial explosion
- However, for a factorised scoring function, the highest-scoring sequence can be found in polynomial time.

Factorised scoring function

High-level description

- The Viterbi algorithm takes a factorised scoring function and an input sequence, and returns a highest-scoring label sequence.
- Its central data structure is a matrix with a row for each possible label and a column for each position in the input.

```
including [BOS], [EOS]
```

Example unigram label scores (score₁)

	a	can	man	see	the
ADJ	-14.04	-14.04	-14.04	-14.04	-14.04
AUX	-9.42	-3.08	-14.04	-14.04	-14.04
DET	-1.52	-14.31	-14.31	-14.31	-0.70
NOUN	-9.07	-9.54	-6.93	-15.06	-15.06
PROPN	-14.08	-14.08	-14.08	-14.08	-14.08
VERB	-14.65	-14.65	–14.65	-4.81	-14.65

Example bigram label scores (score₂)

	ADJ	AUX	DET	NOUN	PROPN	VERB	[EOS]
[BOS]	-3.25	-3.68	-2.30	-2.78	-2.17	-2.81	-9.99
ADJ	-2.96	-5.72	-5.32	-0.61	-3.60	-4.70	-5.52
AUX	-2.22	-2.54	-2.49	-4.41	-5.07	-1.05	-8.73
DET	-1.51	-6.33	-4.59	-0.53	-2.41	-3.97	-9.99
NOUN	-4.49	-2.69	-4.93	-2.09	-4.79	-2.85	-4.12
PROPN	-4.80	-2.82	-5.39	-2.57	-1.35	-2.79	-3.01
VERB	-3.15	-5.12	-1.71	-2.56	-3.75	-4.14	-6.36

	the ₁	man ₂	can ₃	see ₄	a ₅	can ₆
[BOS]						
ADJ						
AUX						
DET						
NOUN						
PROPN						
VERB						
[EOS]						

		the ₁	man ₂	can ₃	see ₄	a ₅	can ₆
[BOS]	-0.00						
ADJ		-17.29	–18.55	-28.99	-32.49	-39.28	-40.87
AUX		-17.72	-23.37	-16.23	-32.81	-36.63	-34.72
DET		-3.00	-21.90	-29.70	-33.03	-25.31	-44.21
NOUN		–17.85	-10.46	-22.09	-35.70	-33.72	-35.38
PROPN		-16.25	-19.49	-29.34	-35.38	-39.91	-41.80
VERB		–17.47	-21.62	-27.97	-22.09	-40.88	-43.93

[EOS]

-39.50

The central invariant

• We ensure that the value in row *t*, column *i* is the maximal score that can be obtained when tagging the first *i* words in the sentence in such a way that word number *i* is tagged as *t*.

column = maximal scores, sub-categorised by last tag

• If the algorithm can establish and maintain this invariant, then we can read off the maximal score for the complete sentence from the last column (end-of-sentence).

 $score_2([Bos], ADJ) + score_1(ADJ, the) = -3.25 + -14.04 = -17.29$

 $score_2([Bos], ADJ) + score_1(ADJ, the) = -3.25 + -14.04 = -17.29$

 $score_2([Bos], DET) + score_1(DET, the) = -2.30 + -0.70 = -3.00$

		the ₁	man ₂	can ₃	see ₄	a ₅	can ₆
[BOS]	0.00						
ADJ		–17.29	–18.55	-28.99	-32.49		
AUX		-17.72	-23.37	-16.23	-32.81		
DET		-3.00	-21.90	-29.70	-33.03		
NOUN		–17.85	-10.46	-22.09	-35.70		
PROPN		–16.25	-19.49	-29.34	-35.38		
VERB		–17.47	-21.62	-27.97	-22.09		
[EOS]							

 $-16.23 + score_2(AUX, VERB) + score_1(VERB, see) = -16.23 + -1.05 + -4.81 = -22.09$

		the ₁	man ₂	can ₃	see ₄	a ₅	can ₆
[BOS]	0.00						
ADJ		-17.29	–18.55	-28.99	-32.49		
AUX		–17.72	-23.37	-16.23	-32.81		
DET		-3.00	-21.90	-29.70	-33.03		
NOUN		–17.85	-10.46	-22.09	-35.70		
PROPN		-16.25	-19.49	-29.34	-35.38		
VERB		–17.47	-21.62	-27.97	-22.09		
[EOS]							

 $-22.09 + score_2(NOUN, VERB) + score_1(VERB, see) = -22.09 + -2.85 + -4.81 = -29.75$

		the ₁	man ₂	can₃	see ₄	a ₅	can ₆
[BOS]	0.00						
ADJ		-17.29	–18.55	-28.99	-32.49	-39.28	-40.87
AUX		-17.72	-23.37	-16.23	-32.81	-36.63	-34.72
DET		-3.00	-21.90	-29.70	-33.03	-25.31	-44.21
NOUN		–17.85	-10.46	-22.09	-35.70	-33.72	-35.38
PROPN		-16.25	-19.49	-29.34	-35.38	-39.91	-41.80
VERB		–17.47	-21.62	-27.97	-22.09	-40.88	-43.93
[EOS]							

-43.45

 $-34.72 + score_2(Aux, [Bos]) = -34.72 + -8.73 = -43.45$

		the ₁	man ₂	can₃	see ₄	a ₅	can ₆
[BOS]	0.00						
ADJ		-17.29	–18.55	-28.99	-32.49	-39.28	-40.87
AUX		-17.72	-23.37	-16.23	-32.81	-36.63	-34.72
DET		-3.00	-21.90	-29.70	-33.03	-25.31	-44.21
NOUN		–17.85	-10.46	-22.09	-35.70	-33.72	-35.38
PROPN		-16.25	-19.49	-29.34	-35.38	-39.91	-41.80
VERB		–17.47	-21.62	-27.97	-22.09	-40.88	-43.93
[EOS]							

-39.50

 $-35.38 + score_2(NOUN, <eos>) = -35.38 + -4.12 = -39.50$

Follow the backpointers to read off the tags.

Computational complexity

- Let *m*, *n* denote the number of tags and the length of the input sentence, respectively.
- The memory required by the Viterbi algorithm is in O(mn); this corresponds to the size of the matrix.
- The runtime required by the Viterbi algorithm is in $O(m^2n)$: We need to fill O(mn) cells, and each cell requires us to look at O(m) cells in the previous column.

Final comments

- We have presented the Viterbi algorithm as an algorithm for decoding. However, it can also be used for training.
 - Essentially, we only need to replace "sum" by "multiply" and "max" by "sum".
- The Viterbi algorithm is a special case of the max-sum algorithm (or max-product algorithm) for graphical models.