Trabalho de Linguagens de Programação

Descrição

A intenção do trabalho é proporcionar ao estudante um contato inicial com o paradigma funcional, em especial a linguagem Haskell. O trabalho consiste na implementação de um dos jogos descritos abaixo. A seguir as especificações:

- Deve ser feito em dupla;
- O tema do trabalho será sorteado em sala, os alunos faltantes deverão indicar a dupla até 06/10, o sorteio do tema será feito ao final da próxima aula;
- Os trabalhos serão apresentados em sala, individualmente, nos dias 18/11 e 20/11;
- A entrega do trabalho deve ser feita pelo moodle até as **23:55 de 17/11.** Não serão aceitas entregas posteriores;

Campo Minado

https://pt.wikipedia.org/wiki/Campo minado

Descrição

O programa deve implementar um tabuleiro de 20x20 com 40 minas posicionadas aleatoriamente. Ao iniciar o programa deve imprimir o tabuleiro e as coordenadas. O programa deve então receber como entrada uma coordenada e reimprimir o tabuleiro processado de acordo com as regras do jogo. Por fim o programa deve indicar se o jogador perdeu (acertou uma mina) ou ganhou (restam apenas minas no tabuleiro). **Seguir o exemplo para impressão do tabuleiro.**

Entrada: nenhuma, o jogador deve escolher as coordenadas durante a execução do programa

Saída: "Parabéns você ganhou!" ou "Você perdeu."

Exemplo:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
 ###################
####################
# # # # # # # # # # # # # # # # # # # #
 # # # # # # # # # # # # # # # # # # # #
 # # # # # # # # # # # # # # # # # # # #
 # # # # # # # # # # # # # # # # # #
 #####################
 ###################
 ######################
 ###################
 Escolha uma coordenada (x,y):
```

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
            # # # # # # # # # #
            # # # # # # # #
       1 1 1
2 | # # # # # 1 # 2 1 1 1 # # # # # # #
| # # # # # #
             # # # # # #
6 | # # # # # #
             # # # # # # #
 8 | # # # # # # # # # # # #
9 | # # # # # # # # # # # # # # # # #
1 | # # # # # # # # # # # # # # # #
2 | # # # # # # # # # # # # # # # #
3 | # # # # # # # # # # # # # # # # #
4 | # # # # # # # # # # # # # # # # #
Escolha uma coordenada (x,y):
```

Sudoku Solver

https://pt.wikipedia.org/wiki/Sudoku

Descrição

O programa deve receber uma matriz de 9x9 de entrada, com o estado inicial de um tabuleiro de sudoku, preencher os espaços em branco de acordo com a regra do sudoku e imprimir na tela a matriz com todos os espaços preenchidos.

Entrada: matriz de 9x9 representando cada item do tabuleiro, itens em branco são vazios **Saída:** tabuleiro completo com os números da mesma linha separados por espaço

Exemplo:

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	თ	4	8
1	9	8	თ	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Entrada:

[[5,3,,,7,,,,],[6,,,1,9,5,,,],[9,8,,,,6,],[8,,,6,,,,3],[4,,8,,3,,,1],[7,,,,2,,,6],[6,,,,2,8,],[,,,4,1,9,,,5], [,,,8,,,7,9]]

Saída:

 $5\,3\,4\,6\,7\,8\,9\,1\,2$

672195348

198342567

859761423

426853791

713924856

 $9\,6\,1\,5\,3\,7\,2\,8\,4$

287419635

345286179

Reversi IA

http://www.othellobrasil.com.br/regras.php

Descrição:

Reversi é um jogo de dois jogadores (veja as regras no link) em um tabuleiro de 8x8, o programa deve implementar uma inteligencia artificial para jogar contra um jogador. Utilize "X" para o computador e "O" para o jogador.

A cada rodada o programa deve:

- 1. Pedir ao jogador as coordenadas de onde colocar a peça
- 2. Reemprimir o tabuleiro com a peça posicionada e, quando necessário, as peças viradas.
- 3. Pedir que o jogador aperte enter
- 4. Imprimir o tabuleiro após a jogada do computador, indicado as coordenadas escolhidas;

Dicas: implemente primeiramente o jogo para dois jogadores e apenas depois implemente a inteligencia artificial. Para testar implemente com um tabuleiro pequeno.

Exemplos:

Binary Puzzle Solver

http://www.binarypuzzle.com/rules.php

Descrição:

Este jogo é parecido com sudoku, mas as células podem ter apenas 0 e 1, veja as regras no link acima. Implemente um programa que recebe como entrada a situação inicial do tabuleiro, e retorne como saída o tabuleiro totalmente preenchido. Utilize tabuleiros de 8x8.

Dica: utilize as dicas (tips) do site para diminuir a quantidade de tentativas

Entrada:

Uma matriz indicando cada posição do tabuleiro e seu valor

Saída:

O tabuleiro completamente preenchido

Exemplo:

Enempior								
C)							
			1		1		0	
		0						
1	L							
				1				
0)				1			
C)			0				
				0		0		

1	0	1	0	1	0	1	0
0	1	0	1	0	1	1	0
1	0	0	1	1	0	0	1
0	1	1	0	0	1	1	0
0	1	0	1	1	0	0	1
1	0	1	0	1	1	0	0
1	0	0	1	0	0	1	1
0	1	1	0	0	1	0	1

Entrada: [[,0,,,,,],[,,1,1,0],[,0,,,,,],[,1,,,,],[,0,,,,],[,,1,1,0],[,0,,,,,],[,1,,,,]]

Saída:

10101010

 $0\,1\,0\,1\,0\,1\,1\,0$

 $1\ 0\ 0\ 1\ 1\ 0\ 0\ 1$

 $0\;1\;1\;0\;0\;1\;1\;0$

 $0\;1\;0\;1\;1\;0\;0\;1$

10101100

 $1\ 0\ 0\ 1\ 0\ 0\ 1\ 1$

 $0\,1\,1\,0\,0\,1\,0\,1$