Desenho e Análise de Algoritmos 2020/2	2021 – Janeiro de 2021
Exame Modelo	Duração: 2h
Número mecanográfico:	
Nome completo:	
Grupo 1 - Análise Assintótica (10%)	
1.1. Para os pares de funções seguintes, escreva na caixa em branco Note que se as funções em causa tiverem uma relação Θ , não deverá e	escrever \mathcal{O} ou Ω .
$n^4 = $ (4^n) $2^n = $ (2^{n+2}) $42 = $ 24 $\log(\log n^2)$	$0 = igcap (\log n^2) \qquad \sqrt{n} = igcap (\log_4 n)$
1.2. Previsão de Tempo de Execução. Imagine que tem um programa que demora 1 segundo para um da quanto tempo estima que o programa demore para cada uma das segu (pode indicar número aproximado ou uma expressão com variáveis)	· · · · · · · · · · · · · · · · ·
Se tiver complexidade linear , deverá demorar cerca de	segundos.
Se tiver complexidade linearítmica , deverá demorar cerca de	segundos.
Se tiver complexidade quadrática , deverá demorar cerca de	segundos.
Se tiver complexidade cúbica , deverá demorar cerca de	segundos.
1.3. Dividir para Conquistar. Considere a seguinte função recursiva cujo objectivo é somar todos os el	$oxedsymbol{oxedsymbol{oxedsymbol{eta}}}$ lementos de um array $v[]$ com n números inteiros:
somaArray(v): Se $tamanho(v) = 1$ então $retorna$	
$m1 \leftarrow \text{somaArray(metade esquerda de } v)$	
$m2 \leftarrow {\sf somaArray(metade\ direita\ de\ }v)}$	
retorna	
a) Complete as duas caixas de texto em branco a seguir às instruçõe para a tarefa de descobrir a soma de todos os elementos do array.	s retorna de modo a tornar o algoritmo correcto
b) Escreva uma recorrência $T(n)$ que descreva o tempo de execução o	da função recursiva somaArray(v) . Pode assumir
que a divisão do array em duas metades demora tempo constante.	
c) Indique a complexidade temporal da sua função soma $\mathtt{Array}(v)$:	
Grupo 2 - Ordenação (10%)	
2.1. Explique as ideias chave do algoritmo Counting Sort e indique	a sua complexidade temporal.
	1 1

Exame Modelo

2.2. Pesquisa Binária. Tem um array volo ordenado de forma decrescente e que pretende descobrir se um el x existe no array. Escreva o código necessário para fazer uma pesquisa binária, devolvendo a posição do números de construir de constr	nero no
array, ou -1 caso não o encontre. Pode usar pseudo-código, C, C++ ou Java. As posições do array começam en	n zero.
2.3. Método da Bisseção. Complete os espaços em branco.	
O método da bisseção usa uma ideia semelhante à pesquisa binária para encontrar	. Se
o intervalo inicial for $[a,b]$ $(f(a) e f(b) de sinais opostos)$, vai considerar os intervalos $\boxed{}$,
continuando para o primeiro destes intervalos quando	
ou para o segundo caso contrário. Ao fim de n iterações, o intervalo válido que o algoritmo considera ficou redu um tamanho inicial de $b-a$ para um tamanho de	zido de
am tamamo iniciai de o di para din tamamo de	

(pode usar o resto desta página para a continuação de respostas dos grupos 1 e 2 que necessitem de mais espaço)

Num. Mec.									Nome:
Grupo 3	- A	lgor	$_{ m itm}$	os G	eedy	(10%	T)		
uma qua moeda ($egin{array}{l} { m e \ que \ n} \\ { m que \ n} \\ { m a \ } S = \end{array}$	tem o (con ão f a {1,2,	lispo n essa az pa 5,20	níveis as mes assar (nas m la qu	oedas antia	Un poss	ı alg ível.	ita" de moedas de um conjunto de quantias S e que pretende fazer oritmo greedy possível é em cada passo escolher a maior moedas do euro). O algoritmo greedy iria usar quantas moedas
b) O a	lgorit	mo gi	reedy	∟ nem s				njunt	tima, ou seja, uma que minimize o número de moedas necessárias. o de moedas S e uma quantia k onde o algoritmo falhe: Nº Moedas Greedy: Nº Moedas Ótimo:
tempo s_i a) Par	e o pr e teri a cada	obler minar uma	na de ndo n i das	e plane no tem seguin	ament $\circ f_i.$ es \mathbf{est}	o de i Pretei ratég	nterv ide d ias g	alos, escob reed	os) onde tem um conjunto de <i>n</i> atividades, cada uma começando no prir o maior subconjunto de atividades sem sobreposições . y erradas, indique um contra-exemplo (um caso onde a solução entando as atividades no tempo, usando letras para as identificar.
[Inícic Alocar				scente	le s_i				[Intervalo mais pequeno] Alocar por ordem crescente de $f_i - s_i$
b) Ind	Tem;		estrat	égia g	o Um mell	como e seguin conju cor sei que dê	nto (v	onju válido	
posição a	âmid e a pin penas	e de râmic s se p	Núr le de ode i	neros . númei ir para	os da uma o	figura las du	Que	eremo siçõe	os ir do topo até à base sendo que de uma sadjacentes imediatamente abaixo. topo e a base? Justifique a sua resposta. 2 4 8 1 7 4 2 1 8 2 4 8 1
Para r Indiqu a respo	esolve e uma osta e	r este ı defi: qual	e pro nição o nú	blemas recurs mero c	pode iva, c	usar j mo p	prog reenc	r ama heria	entes entre topo e base passando apenas por números pares . ação dinâmica e uma matriz auxiliar. a matriz para este exemplo, onde ficaria briu.
Matri	zaux	amar	mp	ollol	Defin	ção r∈	cursi	va da	solução: $m(x,y) =$
					Onde	fica a	respo	sta fi	nal na matriz m ?
					Nº ca	minho	s pas	sand	o só por números pares:

Exame Modelo	Desenho e Análise de Algoritmos	(CC2001)
--------------	---------------------------------	----------

Grupo 5 - Árvores Binárias de Pesquisa Equilibradas (10%)

	mpiexidades tempe		serção ou remoção.		
		a desvantagem	das árvores AVL e	m relação às árvores	Red-Black.
. Indique um a	a vantagem e um				
. Indique um a	a vantagem e um				
. Indique um a	a vantagem e um				
. Indique um a	a vantagem e um	and the production of the prod			
. Indique um a	a vantagem e um				

 $(pode\ usar\ o\ resto\ desta\ p\'agina\ para\ a\ continua\~ç\~ao\ de\ respostas\ dos\ grupos\ 3,\ 4\ e\ 5\ que\ necessitem\ de\ mais\ espa\~ço)$

um. Mec.											Nome	e: 											
rupo 6							,	,	_														
6.1. Expl	ique	o que	e é o •	diân	netro	o de	um	n grafo	e dese	enhe un	ı graf	o coi	m di	âme	tro	3 or	nde t	$\frac{\text{odos}}{}$	os n	iós	têm	grau	>1
6.2. Rep	resei	ntaçã	ăo de	Gr	afos																		
Complete uma lista											LIST	4 ou	\mathbf{M}	ATR	lΖ	par	a in	dicar	se a	re	spos	ta de	ve s
		О	cupa	men	os m	emóı	ria																
		é	melh	or p	ara v	erific	caç	$\tilde{a}o$ se ϵ	xiste l	ligação	$_{ m entre}$	um	par (de n	ós								
		é	melh	or p	ara r	emov	ver	uma ứ	ınica ε	aresta													
		é	melh	or p	ara a	paga	ar t	odas a	s ares	tas liga	das a	um	dado	nó									
rupo 7	- Pe	esqu	isas	em	ı Pr	ofu	nd	lidad	еее	m La	rgur	a (1	5%)										
7.1. Con		_									O	,	,										
a) Con					ura s	eguir	$_{ m nte}$. Imag	ine qu	e com e	eça u	ma j	pesc	quisa	a n	o vė	értic	e (G) e q	que	os n	.ós vi:	zinh
são sem				os p	or o	rdei	m	alfabé	tica.	Indique	e a or	\mathbf{der}	ı em	qu€	os	nós	seri	am v	isita	dos	s se i	fosse	usac
uma pe	squis (B)–	a em —(C		ക				Prof	undida	ade.		7											
	٥		/					1 101	unara	aue.													
Ē—	E	<u> </u>	5	\oplus					Larg	jura:													
7.2. Ord	enaç	ão T	'opol	ógic	a. In	ıdiqu	ıe d	luas po	ossívei	s orden	ações	tope	ológio	cas p	oara	108	grafo	segu	${ m int}{ m e}$:				
(A)← (B)	—	<u>O</u> -	- (Duas (Ordena	ações to	pológ	jicas:											
		/-		,				1)															
E ← T E	> —	<u>@</u>	Œ	Ð				2)															
7.3. Con	ıpon	ente	s Foi	rtem	$_{ m iente}$	e Co	ne	xos. I	ndique	e os cor	npone	$_{ m ntes}$	fort	eme	$_{ m nte}$	con	exos	(CF	Cs) d	do ;	grafo	segt	$_{ m iinte}$
A	••	.	→ (i	Ð				Nº CF	Cs:														
() (E) ← (F	<u>,</u>	() (G)	/ (H)				Nós de	cada	CFC:													
		Ū								L													
7.4. Cód Escreva (_		_							s(G, v)	para	fazei	r um	a ne	esau	iisa	em r	rofu	ndida	$\mathrm{ad}\epsilon$	e a - p	artir	do 1
v de um g																					1		

7.5. Código de Pesquisa em Largura Escreva (em código ou pseudo-código) uma função $bfs(G,v,u)$ para fazer uma pesquisa em largura a partir do nó v de
um grafo não pesado G . A função deve devolver a distância de v a u .

Desenho e Análise de Algoritmos (CC2001)

Exame Modelo

(pode usar o resto desta página para a continuação de respostas dos grupos 6 e 7 que necessitem de mais espaço)

Grupo 8 - Distâncias Mínimas (10%)

8.1. Algoritmo de Dijkstra. Considere o grafo da figura seguinte.

a) Aplique manualmente o algoritmo de Dijkstra supondo que começa a partir do nó (A). A primeira linha da tabela indica com que valores deve iniciar a estimativa de distância de cada nó ao nó inicial.

	Nó	Nó		Estimativa de distância ao nó A							
Iteração	Escolhido	Predecessor		(depois de relaxadas as arestas do nó escolhido)							
		(pai)	A	В	С	D	Е	F			
Inicialização			0	∞	∞	∞	∞	∞			
1 ^a	A										
2ª											
$3^{\underline{a}}$											
4^{a}											
$5^{\underline{a}}$											

${\bf b})$ Qual é a distância mínima que o algoritmo de Dijk	stra calculou de A para B?
Qual é o caminho que dá origem a essa distância?	

|--|

8.2. Algoritmo de Bellman-Ford.

Considere o seguinte pseudo-código incompleto para usar o algoritmo de **Bellman-Ford** no grafo G a partir do nó s.

Bellman-Ford(G, s):

Para todos os nós v de G fazer: $v.dist \leftarrow \infty$

 $s.dist \leftarrow 0$

Para $i \leftarrow 1$ até fazer:

Para todas as arestas (u, v) de G fazer:

a) Complete og egpagg om hvenge de sime som sédige og proude sédige					

a) Complete os espaços em branco de cima com código ou pseudo-código.

	Justifique o valor				o ciclo de i),	, explicando	porque não	pode ser	um número
m	enor, e porque é q	lue um númer	o maior seria e	scusado.)					

Grupo 9 - Árvores de Suporte de Custo Mínimo (MST) (5%)

c) O algoritmo de Prim adiciona um nó de cada vez para formar uma MST. Supondo que começava no nó (A), indique qual a sucessão de nós que vai sendo adicionada pelo algoritmo até formar uma MST no grafo da figura.

1° nó adicionado: através da aresta	4^{0} nó adicionado: através da aresta
$2^{ m o}$ nó adicionado: $igsquare$ através da aresta	$5^{\rm o}$ nó adicionado: através da aresta
3º nó adicionado: através da aresta	0.7.0

d) Qual é o custo da árvore mínima de suporte no grafo dado?		
--	--	--

Grupo 10 - Fluxo Máximo (10%)

10.1. Método de Ford-Fulkerson.

a) Imagine que quer descobrir o fluxo máximo entre A e D no grafo do lado. Aplique o método de Ford-Fulkerson por 2 iterações, indicando em cada passo o que fez. No grafo residual deve desenhar as arestas e os respectivos pesos depois de aplicado o caminho de aumento que indicou.

1ª Iteração	$2^{ extbf{a}}$ Iteração					
Caminho de aumento:	Caminho de aumento:					
Valor do fluxo aplicado no caminho indicado:	Valor do fluxo aplicado no caminho indicado:					
Grafo residual: B C	Grafo residual: B C					
A D E F	E F					
 b) No final das 2 iterações, qual o valor do fluxo total entre A c) O fluxo que indicou é o fluxo máximo? Justifique. 	e D ?					

(pode usar o resto desta página para a continuação de respostas dos grupos 8, 9 e 10 que necessitem de mais espaço)

Num.	Mec.										Nome:
	l. Esb	oce 1	uma	prov	a da	cor	reção	o da	escol	lha g) reedy que indicou na pergunta 3.2.b rrigida separadamente).
\mathbf{nen}		nó ((ao i	nvés	de si	mple	smer				de caminhos entre u e v num grafo G que não repitam rarestas). Seria possível usar um algoritmo de fluxo máximo?
	mque	, 11101		0 001	по рі	- Court					

(pode usar o resto desta página para a continuação de respostas do grupo 11 que necessitem de mais espaço)

(pode usar esta página para a continuação de respostas do grupo 11 que necessitem de mais espaço)