Calculus I

nvdp

Contents

_____ Page 2___

1	.1 Inleiding	2
1	.2 Rekenregels	3
1	.3 Mathematische definitie van limieten	5
	1.3.1 Eenzijdige limieten	5
1	.4 Uitbreiding op oneindig	6
1	.5 Continuïteit	8
Chapter 2	Afgeleiden	Page 10
_	2.1 Inleiding	10
	2.2 De afgeleide functie	10
	2.3 Kettingregel	12
_	2.3.1 Inverse functie	12
6	2.4 Parametervergelijkingen	13
6	2.5 Toepassingen van afgeleiden	14
6	2.6 Regel van L'Hôpital	15
6	2.7 Schetsen van de grafiek	16
	2.7.1 Eerste afgeleide	16
	2.7.2 Tweede afgeleide	17
Chapter 3	Integralen	Page 18
	3.1 Inleiding	18
é	3.2 Oppervlaktebenadering	19
é	3.3 Bepaalde integralen	19
é	3.4 Fundamentele stelling van de calculus	21
5	3.5 Oppervlakte tussen krommes	22
Chapter 4	Formularium en methodes	Page 23
4	.1 Limieten	23
4	.2 Afgeleiden	24
4	.3 Integralen	26
	4.3.1 Partiële integratie	$\begin{array}{c} 26 \\ 27 \end{array}$
	4.3.2 Substitutie	21

Chapter 1

Limieten _

Chapter 1

Limieten

1.1 Inleiding

Stel dat f gedefinieerd is op een open interval rond x_0 , we zeggen dan dat de limiet van f in x_0 gelijk is aan L indien f naar L nadert als x voldoende dicht tot x_0 nadert. Notatie:

$$\lim_{x \to x_0} f(x) = L$$

Definition 1.1.1: Limiet van de identiteitsfunctie

Voor de identiteitsfunctie bestaat de limiet in elk punt van zijn domein, en is gelijk aan de functiewaarde in dat punt

$$\lim_{x \to x_0} x = x_0$$

Corollary 1.1.1 Limiet van de constant functie

De limiet van de constante functie is gewoon de constante zelf, aangezien f(x) = k voor alle x in het domein van f

Note:-

Limieten van functies

- De limiet is niet altijd gelijk aan de functiewaarde
- De functie is niet noodzakelijk gedefinieerd in x_0
- Voor sommige functies bestaat de limiet in een bepaald punt niet

1.2 Rekenregels

Theorem 1.2.1 Limit laws

If L, M, c and k are real numbers and

$$\lim_{x \to c} f(x) = L \text{ and } \lim_{x \to c} g(x) = M \text{ then}$$

Sum rule The limit of a sum is the sum of the limits

$$\lim_{x \to c} [f(x) + g(x)] = L + M$$

Difference rule The limit of a difference is the difference of the limits

$$\lim_{x \to c} [f(x) - g(x)] = L - M$$

Product rule The limit of a product is the product of the limits

$$\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot M$$

Constant multiple rule The limit of a constant times a function is the constant times the limit of

the function

$$\lim_{x \to c} k \cdot f(x) = k \cdot L$$

Quotient rule The limit of a quotient is the quotient of the limits, provided the limit of

the denominator is not zero

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M} \text{ (provided M} \neq 0)$$

Power rule If r and s are integers, and $s \neq 0$, then the limit of a rational power of a

function, is that power of the limit of the function

$$\lim_{x \to c} [f(x)]^{r/s} = L^{r/s}$$

provided that L^n is a real number. If s is even, we assume that L > 0.

Theorem 1.2.2 Limits of polynomials can be found by substitution

If $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, then

$$\lim_{x \to c} P_n(x) = P(c) = a_n a^n + a_{n-1} c^{n-1} + \dots + a_0$$

Theorem 1.2.3 Limits of rational functions can be found by substitution, if the limit of the denominator is not zero

If P(x) and Q(x) are polynomials and $Q(c) \neq 0$, then

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}$$

Note:-

Indien f een algebraïsche combinatie van veeltermen (polynomen) en/of trigoniometrische functies is, dan is de limiet van gelijk aan de functiewaarde, indien deze bestaat.

Theorem 1.2.4 Sandwich theorema

Stel $g(x) \le f(x) \le h(x)$ voor alle waarden van x in een open interval rond c, behalve mogelijk in c zelf. Veronderstel tevens dat:

$$\lim_{x \to c} g(x) = L = \lim_{x \to c} h(x)$$

Dan geldt:

$$\lim_{x \to c} f(x) = L$$

Corollary 1.2.1

Indien $\lim_{x\to c} |f(x)| = 0$, dan $\lim_{x\to c} f(x) = 0$, want

$$-|f(x)| \le f(x) \le |f(x)|$$

Theorem 1.2.5

If $f(x) \le g(x)$ for all x in an open interval containing c, except possibly at x = c itself, and the limits of f and g both exist as x approaches c, then

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x)$$

Note: if f(x) < g(x), then $\lim_{x \to c} f(x) \le \lim_{x \to c} g(x)$, example:

$$f(x) = \sin(x) \text{ and } g(x) = x$$

$$\Longrightarrow f < g \text{ for all } x \text{ except } x = 0$$

$$\Longrightarrow \lim_{x \to 0} f \le \lim_{x \to 0} g$$

1.3 Mathematische definitie van limieten

Definition 1.3.1: Limiet

Indien f(x) een functie is die gedefinieerd is op een open interval rond x_0 , behalve mogelijk in x_0 zelf, dan zeggen we dat de limiet van f(x) in x_0 gelijk is aan L, indien voor elk getal $\epsilon > 0$ er een corresponderend getal $\delta > 0$ bestaat zodat:

$$\forall \epsilon > 0, \exists \delta > 0 : 0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon$$

Opmerking: $0 < |x - x_0|$ want x is niet noodzakelijk gedefinieerd in x_0 .

Notatie:

$$\lim_{x \to x_0} f(x) = L$$

1.3.1 Eenzijdige limieten

Aan de randpunten van haar definitiegebied, heeft een functie een linker- of rechterlimiet, maar niet beiden.

Definition 1.3.2: Rechterlimiet

We zeggen dat f(x) een rechterlimiet heeft L in x_0 als:

$$\forall \epsilon > 0, \exists \delta > 0 \text{ zodat voor alle x met } x_0 < x < x_0 + \delta \implies |f(x) - L| < \epsilon$$

Notatie:

$$\lim_{x \to x_0^+} f(x) = L$$

Definition 1.3.3: Linkerlimiet

We zeggen dat f(x) een linkerlimiet L heeft in x_0 als:

$$\forall \epsilon > 0, \exists \delta > 0 \text{ zodat voor alle x met } x_0 - \delta < x < x_0 \implies |f(x) - L| < \epsilon$$

Notatie:

$$\lim_{x \to x_0^-} f(x) = L$$

Claim 1.3.1

Limiet bestaat als en slechts als linker- en rechterlimiet bestaan EN gelijk zijn.

$$\lim_{x \to x_0} f(x) = L \iff \lim_{x \to x_0^-} f(x) = L \text{ EN } \lim_{x \to x_0^+} f(x) = L$$

1.4 Uitbreiding op oneindig

Definition 1.4.1: Limiet in $+\infty$

We zeggen dat f(x) een limiet L heeft als x naar oneindig nadert $+\infty$ als:

$$\forall \epsilon > 0, \exists M > 0 \text{ als } M < x \implies |f(x) - L| < \epsilon$$

In een omgeving van $+\infty$ zijn alle punten groter dan een bepaalde waarde M.

Notatie:

$$\lim_{x \to +\infty} f(x) = L$$

Definition 1.4.2: Limiet in $-\infty$

We zeggen dat f(x) een limiet L heeft als x naar oneindig nadert $-\infty$ als:

$$\forall \epsilon > 0, \exists M > 0 \text{ als } x < -M \implies |f(x) - L| < \epsilon$$

In een omgeving van $-\infty$ zijn alle punten kleiner dan een bepaalde waarde -M.

Notatie:

$$\lim_{x \to -\infty} f(x) = L$$

Theorem 1.4.1 Limit laws as $x \to \pm \infty$

If L, M, and k are real numbers

$$\lim_{x \to +\infty} f(x) = L$$
 and $\lim_{x \to +\infty} g(x) = M$ then

Sum rule $\lim_{x \to \pm \infty} [f(x) + g(x)] = L + M$

Difference rule $\lim_{x\to\pm\infty} [f(x)-g(x)] = L-M$

Product rule $\lim_{x\to\pm\infty} [f(x)\cdot g(x)] = L\cdot M$

Constant multiple rule $\lim_{x\to\pm\infty} k \cdot f(x) = k \cdot L$

Quotient rule $\lim_{x\to\pm\infty}\frac{f(x)}{g(x)}=\frac{L}{M}\ ({\rm provided}\ {\rm M}\neq0)$

Power rule If r and s are integers, and $s \neq 0$, then the limit of a rational power of a

function, is that power of the limit of the function

 $\lim_{x \to +\infty} [f(x)]^{r/s} = L^{r/s}$

provided that L^n is a real number. If s is even, we assume that L > 0.

Theorem 1.4.2 Horizontale asymptoot

De rechte y = b is een horizontale asymptoot van de grafiek van y = f(x) indien:

$$\lim_{x \to +\infty} f(x) = b \text{ of } \lim_{x \to -\infty} f(x) = b$$

Definition 1.4.3: One indige limiteen

We zeggen dat f(x) naar $+\infty$ nadert wanneer x naar x_0 nadert als:

$$\forall B>0, \exists \delta>0 \text{ als } 0<|x-x_0| \implies B< f(x)$$

We zeggen dat f(x) naar $-\infty$ nadert wanneer x naar x_0 nadert als:

$$\forall B > 0, \exists \delta > 0 \text{ als } 0 < |x - x_0| \implies f(x) < -B$$

Notatie:

$$\lim_{x \to x_0} f(x) = \pm \infty$$

Note:-

Oneigenlijke limieten

Als de linker- en rechterlimiet respectievelijk naar $+\infty$ en $-\infty$ naderen, dan bestaat de limiet eigenlijk niet. We spreken dan van **oneigenlijke limieten**.

Theorem 1.4.3 Verticale asymptoot

De lijn x = a is een verticale asymptoot van de grafiek van y = f(x) indien:

$$\lim_{x \to a^+} f(x) = \pm \infty \text{ of } \lim_{x \to a^-} f(x) = \pm \infty$$

Definition 1.4.4

Twee grafieken die identiek zijn voor grote waarden voor x, hebben asymptotisch hetzelfde gedrag. Dit gebeurt wanneer:

$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = 1$$

1.5 Continuïteit

Definition 1.5.1: Continuïteit in een punt

Inwendig punt

Een functie f(x) is continu in een inwendig punt c van haar domein als als

$$\lim_{x \to c} f(x) = f(c)$$

Eindpunt

Een functie f(x) is continu in een linkereindpunt a, of in een rechtereindpunt b van haar domein als respectievelijk:

$$\lim_{x\to a^+}f(x)=f(a) \text{ of } \lim_{x\to b^-}f(x)=f(b)$$

We zeggen dat f rechtscontinu is in a en linkscontinu in b.

Note:-

Continuïteitstest

Een functie f(x) is continu in c als en slechts als aan de volgende voorwaarden is voldaan:

- 1. f(c) bestaat (dus c is een inwendig punt van het domein van f)
- 2. De limiet van f in c bestaat
- 3. $\lim_{x\to c} f(x) = f(c)$

Indien c een randpunt is, of indien we spreken van rechts- of linkscontinuïteit, dan moeten we in bovenstaande voorwaarden de passende éénzijdige limieten gebruiken.

Note:-

Continue functies

- Een functie is continu in een interval \leftrightarrow f is continue in elk punt van het interval
- Een continue functie is continu in elk punt van haar domein.
- Een continue functie hoeft niet continu te zijn in elk interval.

y = 1/x is niet continu in [-1, 1], maar wel continue over haar domein $(-\infty, 0) \cup (0, \infty)$.

Theorem 1.5.1 Properties of continuous functions

If functions f and g are continuous at x = c, then the following functions are also continuous at x = c:

Sums f + g

Differences f-g

Products $f \cdot g$

Constant multiples $k \cdot f$ for any number k

Quotients f/g, provided $g(c) \neq 0$

Powers $f^{r/s}$, provided it is defined on an open interval containing c, where r and s

are integers

Note:-

• Veeltermfuncties en rationale functies zijn continu

• f(x) = |x| is continu

Theorem 1.5.2 Samengestelde functies

Als f continu is in c, en g continu in f(c), dan is de samengestelde functie $g \circ f$ continu in c.

$$g \circ f = g[f(x)]$$

Theorem 1.5.3 Continue uitbreiding van een functie

Indien f(c) niet bestaat, maar $\lim_{x\to c} f(x)$, dan kunnen we een nieuwe functie F definiëren met:

$$F(x) = \begin{cases} f(x) & \text{als } x \neq c \\ L & \text{als } x = c \end{cases}$$

F is continu in c. We noemen F de continue uitbreiding is van f in c.

Theorem 1.5.4 Tussenwaardestelling

Een functie y = f(x) die **continu** is op een interval [a,b] neemt op dit interval alle waarden aan tussen f(a) en f(b).

Chapter 2

Afgeleiden

2.1 Inleiding

Definition 2.1.1: Helling en raaklijn

De helling van de grafiek van y=f(x) in het punt $P(x_0,f(x_0))$ is het getal m met

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (indien de limiet bestaat)

De raaklijn aan de grafiek van de grafiek in het punt P is de rechte door P met helling m:

$$y - f(x_0) = m(x - x_0)$$

2.2 De afgeleide functie

Definition 2.2.1: Afgeleide van een functie

De afgeleide f'(x) naar x van een functie f(x) in het punt x is gedefinieerd als

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (indien de limiet bestaat)

Alternatieve formule voor de afgeleide:

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$$

Note:-

- Het domein van f' de verzameling punten in het domein van f waarvoor de limiet gedefinieerd is. Indien de domeinen van f' en f gelijk zijn, dan zeggen we dat f afleidbaar is op zijn domein.
- We zeggen dat f afleidbaar is op een **open interval** als f' bestaat voor elk punt van dit interval.
- f is afleidbaar op een **gesloten interval** als f afleidbaar is op het open interval en als f' continu is op de eindpunten van het interval.

Theorem 2.2.1 Differentieerbare functies zijn continu

f afleidbaar in $c \implies f$ continu in c

Definition 2.2.2: Hogere orde afgeleiden

De tweede afgeleide van f is de afgeleide van f', en wordt genoteerd als f''

$$f''(x) = [f'(x)]' = \frac{dy'}{dx} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$$

Intuïtief geeft de tweede afgeleiden de snelheid van verandering van de richtingscoëfficiënt van de raaklijn.

Analoog: n-de orde afgeleide

$$y^{(n)} = \frac{dy^{(n-1)}}{dx} = \frac{d^n y}{dx^n}$$

Theorem 2.2.2 Regels voor differentiatie

The constant function If f has the constant value f(x) = c

$$\frac{df}{dx} = \frac{d}{dx}(c) = 0$$

Power rule If n is a negative integer, only if $x \neq 0$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

Constant multiple rule If f is a differentiable function of x, and c is a constant

$$\frac{d}{dx}(c \cdot f) = c \frac{df}{dx}$$

Sum rule If f and g are differentiable functions of x, then their sum is differentiable

at every point where f and g are both differentiable. At such points

$$\frac{d}{dx}(f+g) = \frac{df}{dx} + \frac{dg}{dx}$$

Product rule If f and g are differentiable at x, then so is their product $f \cdot g$, and

$$\frac{d}{dx}(f \cdot v) = f\frac{dg}{dx} + g\frac{df}{dx}$$

Quotient rule If f and g are differentiable at x, and if $g(x) \neq 0$, then the quotient is differentiable at x

$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{g\frac{df}{dx} - f\frac{dg}{dx}}{g^2}$$

2.3 Kettingregel

Theorem 2.3.1 Kettingregel

Als g(x) differentieerbaar is in x en f(u) differentieerbaar is in g(x), dan is de samengestelde functie

$$y(x) = (f \circ g)(x) = f(g(x))$$

differentieerbaar in x:

$$y'(x) = (f \circ g)'(x) = f'(g(x))g'(x)$$

Notatie van Leibniz:

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

2.3.1 Inverse functie

Definition 2.3.1: Inverse functie

De inverse functie f^{-1} van een functie f wordt gedefineerd door

$$f^{-1}(a) = b \iff f(b) = a$$

Met andere woorden, als volgende vergelijking geldt:

$$f^{-1}[f(x)] = x$$

Theorem 2.3.2 Afgeleide van de inverse functie

Als f differentieerbaar is in x en $f'(x) \neq 0$, dan kunnen we d.m.v. de kettingregel de afgeleide in punt x van de inverse functie f^{-1} bepalen

$$f^{-1}[f(x)] = x \Leftrightarrow (f^{-1}[f(x)])' = 1$$

$$\Leftrightarrow (f^{-1})'[f(x)] \cdot f'(x) = 1$$

$$\Leftrightarrow (f^{-1})'[f(x)] = \frac{1}{f'(x)}$$

$$\Leftrightarrow (f^{-1})'(x) = \frac{1}{f'[f^{-1}(x)]}$$

De afgleide van f^{-1} wordt gegeven door volgende vergelijking

$$(f^{-1})'(x) = \frac{1}{f'[f^{-1}(x)]}$$

2.4 Parametervergelijkingen

Definition 2.4.1: Parametervergelijking

De parametervergelijking van een tweedimensionale kromme, is een stelsel van vergelijkingen waarbij x en y uitgedrukt worden in functie van een parameter t

$$\begin{cases} x = f(t) \\ y = g(t) \end{cases}$$

De verzanmeling punten (x, y) = (f(t), g(t)) vormen de kromme.

Voor $a \le t \le b$, geldt dat de kromme doorloopt van (f(a), g(a)) tot (f(b), g(b)).

Met een parametervergelijking kunnen we een kromme beschrijven die niet uitgedrukt kan worden als een functie.

Definition 2.4.2: Afgeleide van de parametervergelijking

If all three derivatives exist and $dx/dt \neq 0$,

$$y' = \frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

Second derivative:

$$\frac{d^2y}{dx^2} = \frac{d}{dx}(y') = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{dy'/dt}{dx/dt}$$

2.5 Toepassingen van afgeleiden

Definition 2.5.1: Absoluut minimum en maximum

Zij f een functie met domein D.

f heeft een absoluut maximum in punt $c \in D$ indien voor alle $x \in D$ geldt dat

$$f(x) \leq f(c)$$

fheeft een absoluut minimum in punt $c~(\in D)$ indien voor alle $x\in D$ geldt dat

$$f(x) \geqslant f(c)$$

Theorem 2.5.1 Extrema

Elke **continue** functie f op een **gesloten interval** [a,b] bereikt op dit interval een absoluut minimum m en een absoluut maximum M.

Definition 2.5.2: Lokaal minimum en maximum

Zij f een functie met domein D.

f heeft een lokaal maximum in een **inwendig** punt $c \in D$ indien er een voor alle x in een **open interval** rond c geldt dat

$$f(x) \leq f(c)$$

f heeft een lokaal minimum in een **inwendig** punt $c \in D$ indien er een voor alle x in een **open interval** rond c geldt dat

$$f(x) \ge f(c)$$

Als c een eindpunt is, gebruiken we halfopen intervallen.

Theorem 2.5.2 Eerste afgeleide voor lokale extrema

Indien f een lokaal maximum of minimum heeft in een inwendig punt c van haar domein, en indien f differentieerbaar is in c, dan

$$f'(c) = 0$$

Definition 2.5.3: Kritisch punt

Een inwendig punt c in het domein van f is een kritisch punt van f als f'(c) = 0 of als f'(c) niet bestaat.

Niet elk kritisch punt is een lokaal extremum.

Note:- 🛉

Hoe vind je het absoluut maximum en minimum van een functie f op een gesloten interval [a, b]?

- 1. Bereken f in all kritische punten, en beide eindpunten
- 2. Het grootste getal is het absoluut maximum, het kleinste getal is het absoluut minimum

Theorem 2.5.3 Theorema van Rolle

Indien f(x) continu is op [a,b] en differentieerbaar op [a,b[, en

$$f(a) = f(b)$$

dan bestaat er een c in]a,b[waarvoor

$$f'(c) = 0$$

Theorem 2.5.4 Middelwaardestelling

Indien f(x) continu is op [a,b] en differentieerbaar op [a,b], dan bestaat er minstens een c in [a,b] waarvoor

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Corollary 2.5.1

Functies waarvan de afgeleide op een open interval a, b gelijk is aan 0, zijn constant op dit interval.

Corollary 2.5.2

Functies met dezelfde afgeleide op een open interval]a, b[, zijn op een constante na gelijk op dit interval.

2.6 Regel van L'Hôpital

Definition 2.6.1: Regel van L'Hôpital, eerste vorm

Stel dat f(a) = g(a) = 0, en dat f'(a) en g'(a) bestaan, met $g'(a) \neq 0'$, dan

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$$

Definition 2.6.2: Regel van L'Hôpital, sterke vorm

Stel dat f(a) = g(a) = 0, en dat f en g differentieerbaar zijn op een open interval I rond a, met $g'(x) \neq 0$ op I als $x \neq a$, dan

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

indien de limiet in het rechterlid bestaat.

2.7 Schetsen van de grafiek

2.7.1 Eerste afgeleide

Definition 2.7.1: Stijgen en dalen

Let f be a function defined on an interval I, and let x_1 and x_2 be any two points in I.

- If $f(x_1) < f(x_2)$ whenever $x_1 < x_2$, then f is said to be increasing on I.
- If $f(x_1) > f(x_2)$ whenever $x_1 < x_2$, then f is said to be **decreasing** on I.

A function that is either always increasing or decreasing is said to be **monotonic**.

Corollary 2.7.1 Stijgen en dalen m.b.v. eerste afgeleide

Zij f continu op [a,b] en differentieerbaar op [a,b]

- Als f'(x) > 0 in elk punt van]a, b[, dan is f stijgend op]a, b[
- Als f'(x) < 0 in elk punt van]a, b[, dan is f dalend op]a, b[

Corollary 2.7.2 Lokale extrema m.b.v. eerste afgeleide

Zij c een kritisch punt van een continue functie f, en f differentieerbaar in elk punt van een interval rond c, behalve eventueel in c zelf, dan geldt in c

- Als f' van positief naar negatief gaat, dan heeft f een lokaal maximum in c
- \bullet Als f' van negatief naar positief gaat, dan heeft feen lokaal minimum in c
- \bullet Als f' niet van teken verandert, dan heeft f geen lokaal extremum in c

2.7.2 Tweede afgeleide

Definition 2.7.2: Concaaf en convex

De grafiek van een afleidbare functie y = f(x) is

- concaaf boven (of convex) op een open interval I als f' stijgt op I
- concaaf onder (of gewoon concaaf) op een open interval I als f' daalt op I

Corollary 2.7.3 Concaviteit m.b.v. tweede afgeleide

Zij f tweemaal differentieerbaar op een interval I

- Als f'' > 0 in elk punt van I, dan is f concaaf boven (convex) op I
- Als f'' < 0 in elk punt van I, dan is f concaaf onder op I

Definition 2.7.3: Buigpunt

Een buigpunt is een punt, waar de functie een raaklijn heeft en van concaviteit verandert.

Corollary 2.7.4 Lokale extrema m.b.v. tweede afgeleide

Zij f'' continu op een open interval rond x = c

- Als f'(c) = 0 en f''(c) < 0, dan heeft f een lokaal maximum in c
- Als f'(c) = 0 en f''(c) > 0, dan heeft f een lokaal minimum in c
- Als f'(c) = 0 en f''(c) = 0, dan weten we niets

Chapter 3

Integralen

3.1 Inleiding

Definition 3.1.1: Primitieve functie

De functie F(x) is een **primitieve functie** voor alle x van het domein van f als

$$F'(x) = f(x)$$

Er zijn uiteraard meerdere primitieve functies voor eenzelfde functie f, die allen op een constante na verschillen.

Definition 3.1.2: Onbepaalde integraal

De verzameling primitieve functies van een functie f noemen we de **onbepaalde integraal** van f (voor x)

$$\int f(x)dx$$

3.2 Oppervlaktebenadering

Stel een functie f is continu op een interval [a, b]. We willen de oppervlakte bepalen van het gebied dat begrensd wordt door de grafiek van f, de x-as en de verticale lijnen x = a en x = b.

Definition 3.2.1: Partitie

Een partitie van het interval [a, b] is een eindige verzameling punten

$$P = \{a, x_1, \dots, x_{n-1}, b\} \text{ met } a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

Definition 3.2.2: Norm

De norm van een partitie P is de lengte van het grootste deelinterval van P

$$||P|| (= \max_{1 \le k \le n} (x_k - x_{k-1}))$$

Het eerste deelinterval (partitie) is $[x_0, x_1]$, het tweede $[x_1, x_2]$, het k-de $[x_{k-1}, x_k]$ (1 < k < n).

De breedte van de eerste partitie noteren we als $\Delta x_1 = x_1 - x_0$, de breedte van het k-de partitie als $\Delta x_k = x_k - x_{k-1}$. Als alle subintervallen dezelfde breedte hebben, dan is de breedte gelijk aan $\Delta x = \frac{b-a}{n}$.

In elk subinterval kiezen we **een willekeurig punt**, c_k . Vervolgens construeren we voor elk interval een rechthoek, met breedte Δx_k en hoogte $f(c_k)$.

De oppervlakte van de rechthoek is gelijk aan $f(c_k) \cdot \Delta x_k$. Wanneer we de oppervlaktes van alle rechthoeken optellen, verkrijgen we de **Riemann som**.

Er zijn verschillende sommen, naargelang de partities en de keuze van de punten c_k in die partities.

Definition 3.2.3: Riemann som

De Riemann som S_P voor de functie f op het interval [a,b]

$$S_P = \sum_{k=1}^n f(c_k) \Delta x_k$$

3.3 Bepaalde integralen

Definition 3.3.1: Bepaalde integraal

Zij f een functie gedefinieerd op een interval [a,b], P een willekeurige partitie van [a,b], en c_k willekeurige punten in de deelintervallen $[x_{k-1},x_k]$. Als

$$\lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \Delta x_k = I$$

bestaat, zeggen we dat f integreerbaar is op [a,b]. De limiet is onafhankelijk van de keuze van de gekozen punten c_k in de partitie.

We zeggen dat de Riemann som convergeert naar de **bepaalde integraal**, en dat f integreerbaar is over [a, b].

Theorem 3.3.1

Als f continu is op [a, b], dan is f integreerbaar op [a, b].

Een functie f moet al "serieus" discontinue zijn om niet integreerbaar te zijn.

Definition 3.3.2: Rekenregels voor bepaalde integralen

Wanneer f en g integreerbaar geldt

Order of integration
$$\int_a^b f(x)dx = -\int_b^a f(x)dx$$

Zero width interval
$$\int_{a}^{a} f(x)dx = 0$$

Constant multiple
$$\int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx$$

Sum and difference
$$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

Max-min inequality
$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$
, where m and M are the minimum and maximum values of f on $[a,b]$

Domination If
$$f(x) \le g(x)$$
 for all x in $[a,b]$, then $\int_a^b f(x) dx \le \int_a^b g(x) dx$

Definition 3.3.3: Oppervlakte onder de grafiek

Als f(x) positief, en integreerbaar is op [a,b], dan is de oppervlakte A onder de grafiek van f op [a,b]

$$A = \int_{a}^{b} f(x)dx$$

Definition 3.3.4: Gemiddelde waarde van een functie

Als f integreerbaar is op [a, b], dan is de gemiddelde waarde van f op [a, b]

$$f_{gem} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

3.4 Fundamentele stelling van de calculus

Theorem 3.4.1 Middelwaardestelling voor bepaalde integralen

Als f continu is op [a, b], dan bestaat er een punt c in dit interval zodat

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Theorem 3.4.2 Fundamentele stelling van de calculus (1)

Als f continu is op [a, b], dan is de functie F(x) gedefinieerd als

$$F(x) = \int_{a}^{x} f(t)dt$$

continue, en heeft ze een afgeleide in elk punt van a, b:

$$\frac{dF}{dx} = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

Theorem 3.4.3 Fundamentele stelling van de calculus (2)

Als f continu is op [a,b], en F een primitieve functie voor f op [a,b], dan is

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = [F(x)]_{a}^{b} = F(x)\Big|_{a}^{b}$$

3.5 Oppervlakte tussen krommes

Definition 3.5.1: Oppervlakte tussen krommes

Indien f en g continu zijn met $f(x) \ge g(x)$ op [a,b], dan is de oppervlakte A tussen de krommes van f en g op [a,b]

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

Note:-

Oppervlakte berekenen tussen curve van f en x-as over [a,b]:

- 1. Bepaal de nulpunten van f op [a, b]
- 2. Verdeel het interval bij de nulpunten
- 3. Integreer f op elk deelinterval
- 4. Sommeer de absolute waardes van de deelintegralen

Theorem 3.5.1

Let f be continuous on the symmetric interval [-a, a].

- f is even $\implies \int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$
- f is odd $\Longrightarrow \int_{-a}^{a} f(x) dx = 0$

Note:-

Integration with respect to y

If a region's bounding curves are described by functions of y (x = f(y) and x = g(y)), then the area of the region is the approximating rectangles are horizontal instead of vertical and the basic formula has y in place of x

$$A = \int_{c}^{d} [g(y) - f(y)] dy$$

In this equation, f always denotes the right-hand curve and g the left-hand curve, so $f(y) \ge g(y)$ for all g in [c,d], and f(g) - g(g) is nonnegative.

Chapter 4

Formularium en methodes

4.1 Limieten

Definition 4.1.1: Asymptoten bij rationale functies

- Graad van teller = graad van noeme ⇒ horizontale asymptoot
- Graad van teller = graad van noemer + 1 ⇒ schuine asymptoot
- Graad van teller < graad van noemer $\implies y = 0$ is een horizontale asymptoot
- Noemer bevat nulpunten die niet in de teller voorkomen ⇒ verticale asymptoot

4.2 Afgeleiden

Parametervoorstelling en afgeleiden

Circle	$x^2 + y^2 = a^2$	Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
	$x = a \cos t$		$x = a \cos t$
	$y = a \sin t$		$y = a \sin t$
	$0 \leqslant t \leqslant 2\pi$		$0 \leqslant t \leqslant 2\pi$
Function	y = f(x)	Derivatives	
	$\begin{cases} x = t \\ y = f(t) \end{cases}$	$y' = \frac{dy}{dx} = \frac{dy/dt}{dx/dt}$	$y'' = \frac{d'y/dt}{dx/dt}$

Definition 4.2.1: Impliciet afleiden

Impliciete functies, zoals $x^2 + y^2 = 1$, kunnen we differentieren door de y-component als functie van x te behandelen, en de kettingregel toe te passen.

Example 4.2.1 (Impliciet afleiden)

$$\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(1)$$

$$\iff \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = 0$$

$$\iff 2x + 2y\frac{dy}{dx} = 0$$

$$\iff \frac{dy}{dx} = -\frac{x}{y}$$

Afgeleiden

f(x)	f'(x)	f(x)	<i>f</i> ′(<i>x</i>)
c	0	$\sin x$	$\cos x$
x	1	$\cos x$	$-\sin x$
x^a	$a \cdot x^{a-1}$	$\tan x$	$\sec^2 x$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$\cot x$	$-\csc^2 x$
e^x	e^x	Bgsin x	$\frac{1}{\sqrt{1-x^2}}$
a^x	$a^x \cdot \ln a$	Bgcos x	$-\frac{1}{\sqrt{1-x^2}}$
$\ln x$	$\frac{1}{x}$	Bgtan x	$\frac{1}{1+x^2}$
$\log_a x$	$\frac{1}{x \cdot \ln a}$	Bgcot x	$-\frac{1}{1+x^2}$
1			

4.3 Integralen

Integralen

$$\int x^{a} dx = \frac{x^{a+1}}{a+1} + C \quad (a \neq -1)$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C \quad (a \neq -1)$$

$$\int e^{x} dx = e^{x} + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \csc^{2} x dx = \tan x + C$$

$$\int \frac{1}{1+x^{2}} dx = Bgtan \quad x + C$$

$$\int \frac{1}{\sqrt{1-x^{2}}} dx = Bgsin \quad x + C$$

4.3.1 Partiële integratie

Definition 4.3.1: Partiële integratie (integration by parts)

$$\int_a^b f(x) \cdot g'(x) dx = [f(x)g(x)]_a^b - \int_a^b f'(x)g(x) dx$$

Deze formule is afgeleid uit de productregel:

$$\int_{a}^{b} (f(x) \cdot g(x))' dx = \int_{a}^{b} f'(x)g(x)dx + \int_{a}^{b} f(x)g'(x)dx$$

$$\iff f(x)g(x)\Big|_{a}^{b} = \int_{a}^{b} f'(x)g(x)dx + \int_{a}^{b} f(x)g'(x)dx$$

Example 4.3.1 (Partiële integratie)

$$\int_0^{\pi/2} x \cos(x) dx$$

$$f(x) = x \implies f'(x) = 1$$

$$g'(x) = \cos(x) \implies g(x) = \sin(x)$$

$$\implies \int_0^{\pi/2} x \cos(x) dx = x \sin(x) \Big|_0^{\pi/2} - \int_0^{\pi/2} \sin(x) dx$$

4.3.2 Substitutie

Definition 4.3.2: Integratie door substitutie

Inverse van de kettingregel

$$\int_{a}^{b} f(g(x)) \cdot g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

Example 4.3.2 (Integratie door substitutie)

$$\int_0^{\pi/2} x \cos(x^2) dx$$

$$g(x) = x^2 = u \Leftrightarrow 2x = \frac{du}{dx} \Leftrightarrow x dx = \frac{du}{2}$$

$$\implies \int_0^{\pi/2} x \cos(x^2) dx = \frac{1}{2} \int_{g(0)}^{g(\pi/2)} \cos(u) du = \frac{1}{2} \int_0^{\pi^2/4} \cos(u) du$$