Theorem 39.23. (Taylor-Young) Given two normed affine spaces E and F, for any open subset $A \subseteq E$, for any function $f: A \to F$, for any $a \in A$, if $D^k f$ exists in A for all k, $1 \le k \le m-1$, and if $D^m f(a)$ exists, then we have:

$$f(a+h) = f(a) + \frac{1}{1!} D^1 f(a)(h) + \dots + \frac{1}{m!} D^m f(a)(h^m) + ||h||^m \epsilon(h),$$

for any h such that $a + h \in A$, and where $\lim_{h\to 0, h\neq 0} \epsilon(h) = 0$.

The above version of Taylor's formula has applications to the study of relative maxima (or minima) of real-valued functions. It is also used to study the local properties of curves and surfaces.

The next version of Taylor's formula can be viewed as a generalization of Proposition 39.12. It is sometimes called the *Taylor formula with Lagrange remainder* or *generalized mean value theorem*.

Theorem 39.24. (Generalized mean value theorem) Let E and F be two normed affine spaces, let A be an open subset of E, and let $f: A \to F$ be a function on A. Given any $a \in A$ and any $h \neq 0$ in \overrightarrow{E} , if the closed segment [a, a + h] is contained in A, $D^k f$ exists in A for all k, $1 \leq k \leq m$, $D^{m+1} f(x)$ exists at every point x of the open segment [a, a + h], and

$$\max_{x \in (a,a+h)} \| \mathbf{D}^{m+1} f(x) \| \le M,$$

for some $M \geq 0$, then

$$\left\| f(a+h) - f(a) - \left(\frac{1}{1!} D^1 f(a)(h) + \dots + \frac{1}{m!} D^m f(a)(h^m) \right) \right\| \le M \frac{\|h\|^{m+1}}{(m+1)!}.$$

As a corollary, if $L: \overrightarrow{E^{m+1}} \to \overrightarrow{F}$ is a continuous (m+1)-linear map, then

$$\left\| f(a+h) - f(a) - \left(\frac{1}{1!} D^1 f(a)(h) + \dots + \frac{1}{m!} D^m f(a)(h^m) + \frac{L(h^{m+1})}{(m+1)!} \right) \right\| \le M \frac{\|h\|^{m+1}}{(m+1)!},$$

where $M = \max_{x \in (a,a+h)} \|D^{m+1}f(x) - L\|.$

The above theorem is sometimes stated under the slightly stronger assumption that f is a C^m -function on A. If $f: A \to \mathbb{R}$ is a real-valued function, Theorem 39.24 can be refined a little bit. This version is often called the *formula of Taylor–MacLaurin*.

Theorem 39.25. (Taylor–MacLaurin) Let E be a normed affine space, let A be an open subset of E, and let $f: A \to \mathbb{R}$ be a real-valued function on A. Given any $a \in A$ and any $h \neq 0$ in E, if the closed segment [a, a + h] is contained in A, if $D^k f$ exists in A for all k, $1 \leq k \leq m$, and $D^{m+1} f(x)$ exists at every point x of the open segment [a, a + h], then there is some $\theta \in \mathbb{R}$, with $0 < \theta < 1$, such that

$$f(a+h) = f(a) + \frac{1}{1!} D^1 f(a)(h) + \dots + \frac{1}{m!} D^m f(a)(h^m) + \frac{1}{(m+1)!} D^{m+1} f(a+\theta h)(h^{m+1}).$$