Travaux dirigés d' Apprentissage Par renforcement

Université Paris-Saclay

Joon Kwon

mardi 28 novembre 2023

EXERCICE 1 (*Labyrinthe*). — Soit $n \ge 1$. On considère un labyrinthe carré de $n \times n$ cases. Chaque case est désignée par un couple $(i, j) \in \{1, ..., n\}^2$ où i correspond à la ligne et j à la colonne. Les cases de départ et d'arrivée sont respectivement (1, 1) et (n, n). Certaines cases sont murées et ne peuvent pas être accédées : on note \mathcal{W} l'ensemble des cases murées. Le but du problème est de déterminer le chemin le plus court du départ à l'arrivée.

1) Modéliser le problème par un MDP.

2) Pour l'exemple donné en figure, et avec un taux d'escompte $\gamma=1/2$, donner sans preuve une politique optimale π_* et les valeurs de la fonction état-valeur associée v_{π_*} .

EXERCICE 2 (Différence de performance). — Soit $(\mathcal{S}, \mathcal{A}, \mathcal{R}, p)$ un MDP fini et $0 < \gamma < 1$ le taux d'escompte. Soit π, π' deux politiques stationnaires. Pour $s \in \mathcal{S}$, on définit $d_{s,\pi} \in \mathbb{R}^{\mathcal{S}}$ comme suit :

$$d_{s,\pi}(s') = (1-\gamma) \sum_{t=0}^{+\infty} \gamma^t \mathbb{P}_{s,\pi} \left[\mathbf{S}_t = s' \right], \quad s' \in \mathscr{S}.$$

- 1) Montrer que $d_{s,\pi} \in \Delta(\mathcal{S})$.
- 2) Soit une variable aléatoire S $\sim d_{s,\pi}$ et on définit $lpha_\pi \in \mathbb{R}^{\mathscr{S} imes \mathscr{A}}$ par

$$\alpha_{\pi}(s',a) = q_{\pi}(s',a) - v_{\pi}(s'), \quad (s',a) \in \mathcal{S} \times \mathcal{A}.$$

Montrer que presque-sûrement :

$$v_{\pi}(s) - v_{\pi'}(s) = \frac{1}{1-\gamma} \mathbb{E}_{\mathrm{A} \sim \pi(\mathrm{S})} \left[\alpha_{\pi'}(\mathrm{S}, \mathrm{A}) \right].$$

