

MOS INTEGRATED CIRCUIT μ PD75104, 75106, 75108

4-BIT SINGLE-CHIP MICROCOMPUTER

DESCRIPTION

 μ PD75108 is a 4-bit single-chip microcomputer integrating timer/event counters, serial interface, and vector interrupt function, in addition to a CPU, ROM, RAM, and I/O ports, on a single chip. Operating at high speeds, the microcomputer allows data to be manipulated in units of 1, 4, or 8 bits. In addition, various bit manipulation instructions are provided to reinforce I/O manipulation capability. Equipped with I/Os for interfacing with peripheral circuits operating on a different supply voltage, outputs that can directly drive LEDs, and analog inputs, μ PD75108 is suitable for controlling such systems as VTRs, acoustic products, button telephones, radio communications equipment, and printers. A pin-compatible EPROM model is also available for evaluation of system development and small-scale production of application systems.

Detailed functions are described in the following user's manual. Be sure to read it for designing. μPD751XX Series User's Manual: IEM-922

FEATURES

- · Internal memory
 - Program memory (ROM)
 - : 8068×8 bits (μ PD75108)
 - : 6016×8 bits (μ PD75106)
 - : 4096×8 bits (μ PD75104)
 - Data memory (RAM)
 - : 512 × 4 bits (μ PD75108)
 - : 320 \times 4 bits (μ PD75106, 75104)
- New architecture "75X series" rivaling 8-bit microcomputers
- · 43 systematically organized instructions
 - A wealth of bit manipulation instructions
 - · 8-bit data transfer, compare, operation, increment, and decrement instructions
 - 1-byte relative branch instructions
- GETI instruction executing 2-/3-byte instruction with one byte
- High speed. Minimum instruction execution time: 0.95 μs (at 4.19 MHz), 5 V
- Power-saving, instruction time change function: 0.95 μs/1.91 μs/15.3 μs (at 4.19 MHz)
- I/O port pins as many as 58
- Three channels of 8-bit timers
- 8-bit serial interface
- Multiplexed vector interrupt function
- Model with PROM is available: μPD75P108B (One-time PROM, EPROM)

Unless there are differences among μ PD75104, 75106, and 75108 functions, μ PD75108 is treated as the representative model throughout this manual.

The information in this document is subject to change without notice.

The mark ★ shows major revised points.

ORDERING INFORMATION

Part Number		Package	Quality Grade	
	μPD75104CW-xxx	64-pin plastic shrink DIP (750 mil)	Standard	
	μ PD75104GF-xxx-3BE	64-pin plastic QFP (14 $ imes$ 20 mm)	Standard	
	μ PD75106CW-xxx	64-pin plastic shrink DIP (750 mil)	Standard	
	μ PD75106GF-xxx-3BE	64-pin plastic QFP (14 $ imes$ 20 mm)	Standard	
	μ PD75108CW-xxx	64-pin plastic shrink DIP (750 mil)	Standard	
	μ PD75108GF-xxx-3BE	64-pin plastic QFP (14 $ imes$ 20 mm)	Standard	

Remarks: xxx is ROM code number.

Please refer to "Quality Grade on NEC Semiconductor Devices" (Document Number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

FUNCTIONAL OUTLINE

ltem		Specifications	
Number of Basic Instructions		43	
Minimum Instruction Execution Time		Changeable in three steps: 0.95 μ s, 1.91 μ s, and 15.3 μ s at 4.19 MHz	
	ROM	$8064 \times 8 \text{ bits } (\mu \text{PD75108}), 6016 \times 8 \text{ bits } (\mu \text{PD75106}), 4096 \times 8 \text{ bits } (\mu \text{PD75104})$	
Internal Memory	RAM	512 \times 4 bits (μ PD75108), 320 \times 4 bits (μ PD75106, 75104)	
General-Purpose Regis	ter	4 bits \times 8 \times 4 banks (memory mapped)	
Accumulator		Three accumulators selectable according to the bit length of manipulated data: • 1-bit accumulator (CY), 4-bit accumulator (A), and 8-bit accumulator (XA)	
I/O Port		 58 port pins CMOS input pins: 10 CMOS I/O pins (can directly drive LEDs): 32 Medium voltage N-ch open-drain I/O pins: 12 (can directly drive LEDs. Pull-up resistor can be connected to each bit) Comparator input pins (4-bit accuracy): 4 	
Timer/Counter		 8-bit timer/event counter × 2 8-bit basic interval timer (can be used as watchdog timer) 	
Serial Interface		 8 bits LSB first/MSB first mode selectable Two transfer modes (transfer/reception and reception only modes) 	
Vector Interrupt		External: 3, Internal: 4	
Test Input		External: 2	
Standby		STOP and HALT modes	
Instruction Set		 Various bit manipulation instructions (set, reset, test, Boolean operation) 8-bit data transfer, compare, operation, increment, and decrement 1-byte relative branch instructions GETI instruction constituting 2 or 3-byte instruction with 1 byte 	
Others		Power-ON reset circuit (mask option) Bit manipulation memory (bit sequential buffer: 16 bits)	
Package		 64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (14 × 20 mm) 	

CONTENTS

1.	. PIN CONFIGURATION (TOP VIEW)								
2.	BLO	CK DIAGRAM	8						
3.	PIN	FUNCTIONS	9						
	3.1	PORT PINS	9						
	3.2	PINS OTHER THAN PORTS	10						
	3.3	PIN INPUT/OUTPUT CIRCUITS	11						
	3.4	RECOMMENDED PROCESSING OF UNUSED PINS	12						
	3.5	NOTES ON USING THE P00/INT4, AND RESET PINS	13						
4.	MEN	MORY CONFIGURATION	14						
5.	PER	IPHERAL HARDWARE FUNCTIONS	20						
	5.1	PORTS	20						
	5.2	CLOCK GENERATOR CIRCUIT	21						
	5.3	CLOCK OUTPUT CIRCUIT	22						
	5.4	BASIC INTERVAL TIMER	23						
	5.5	TIMER/EVENT COUNTER	23						
	5.6	SERIAL INTERFACE	25						
	5.7	PROGRAMMABLE THRESHOLD PORT (ANALOG INPUT PORT)	27						
	5.8	BIT SEQUENTIAL BUFFER 16 BITS	28						
	5.9	POWER-ON FLAG (MASK OPTION)	28						
6.	INTE	ERRUPT FUNCTIONS	28						
7.	STANDBY FUNCTIONS								
8.	8. RESET FUNCTION 3								
^	INICT	FRUCTION CET	24						

10.	APPL	ICATION EXAMPLES	43
	10.1	VTR SYSTEM CONTROLLER	43
		VTR CAMERA	
	10.3	COMPACT DISC PLAYER	44
	10.4	AUTOMOBILE APPLICATIONS (TRIP COMPUTER)	44
	10.5	PUSHBUTTON TELEPHONE	45
	10.6	DISPLAY PAGER	45
	10.7		
	10.8	PRINTER CONTROLLER	46
11.	MAS	K OPTION SELECTION	47
12.	ELEC	TRICAL SPECIFICATIONS	48
13.	CHAI	RACTERISTIC DATA	57
14.	PAC	(AGE DRAWINGS	62
15.	RECO	DMMENDED SOLDERING CONDITIONS	65
APF	PENDI	X A. FUNCTIONAL DIFFERENCES AMONG PRODUCTS IN μ PD751XX SERIES	66
		·	
APF	PENDI	X B. DEVELOPMENT TOOLS	67
APF	PENDI	X C. RELATED DOCUMENTS	68

1. PIN CONFIGURATION (Top View)

• 64-Pin Plastic Shrink DIP (750 mil)

• 64-Pin Plastic QFP (14 × 20 mm)

Pin names

SCK P00-P03 : Port 0 : Serial Clock Input/Output P10-P13 : Port 1 SO : Serial Output P20-P23 : Port 2 SI : Serial Input P30-P33 : Port 3 PTO0, PTO1 : Timer Output P40-P43 : Port 4 PCL : Clock Output : Port 5 PTH00-PTH03 : Comparator Input P50-P53 P60-P63 : Port 6 INT0, INT1, INT4: External Vector Interrupt Input P70-P73 : Port 7 INT2, INT3 : External Test Input P80-P83 : Port 8 TIO, TI1 : Timer Input P90-P93 : Port 9 X1, X2 : Clock Oscillation Pin RESET P120-P123: Port 12 : Reset Input P130-P133: Port 13 : No Connection NC P140-P143: Port 14

Ņ

BLOCK DIAGRAM

*: 13 bits: μPD75106, 75108 12 bits: μPD75104

3. PIN FUNCTIONS

3.1 PORT PINS

Pin Name	I/O	Shared with:	Function	8-Bit I/O	At Reset	I/O Circuit TYPE*1		
P00	Input	INT4				В		
P01	I/O	SCK	(DODT 0)		Input	F		
P02	I/O	so	4-bit input port (PORT 0)			Е		
P03	Input	SI				В		
P10		INT0		Х				
P11		INT1	A his import or ant (DODT 1)			D		
P12	Input	INT2	4-bit input port (PORT 1)		Input	В		
P13		INT3						
P20*3		PTO0						
P21*3	1/0	PTO1	4 h is 1/O (DODT 2)		la a ut	_		
P22*3	I/O	PCL	4-bit I/O port (PORT 2)		Input	E		
P23*3		_	X					
D20 D22*3	110		4-bit programmable I/O port (PORT 3)		Input	E		
P30-P33* ³	I/O	_	Can be specified for input or output bitwise.					
P40-P43*3	I/O	_	4-bit I/O port (PORT 4)		Input	Е		
P50-P53*3	I/O	_	4-bit I/O port (PORT 5)	0	Input	E		
P60-P63*3	D*3 I/O	I/O	P63*3 I/O		4-bit programmable I/O port (PORT 6)		Input	Е
P60-P63"°	1/0	/0 _	Can be specified for input or output bitwise.	Ο	Input	<u> </u>		
P70-P73*3	I/O		4-bit I/O port (PORT 7)		Input	E		
P80-P83*3	I/O	_	4-bit I/O port (PORT 8)		Input	Е		
P90-P93*3	I/O	_	4-bit I/O port (PORT 9)	0	Input	E		
			4-bit N-ch open-drain I/O port (PORT 12)					
P120-P123* ³	1/0		Built-in pull-up resistors can be specified in bit		l	D.4		
P120-P123^3	I/O	_	units by mask option.		Input*2	M		
			Open-drain withstanding voltage: 12 V	_				
			4-bit N-ch open-drain I/O port (PORT 13)	0				
D400 D400*2	1/0		Built-in pull-up resistors can be specified in bit					
P130-P133*3	I/O	_	units by mask option.		Input*2	М		
			Open-drain withstanding voltage: 12 V					
			4-bit N-ch open-drain I/O port (PORT 14)					
		Built	Built-in pull-up resistors can be specified in bit					
P140-P143* ³	I/O	I/O	_	units by mask option.	-	Input*2	M	
			Open-drain withstanding voltage: 12 V					

^{*1:} Circles indicate Schmitt trigger input pins.

^{2:} With drain open: high impedance
With pull-up resistor connected: high level

^{3:} Can directly drive LEDs.

3.2 PINS OTHER THAN PORTS

Pin Name	I/O	Shared with:	Function	At Reset	I/O Circuit TYPE*1				
PTH00-PTH03	Input	_	4-bit variable threshold voltage analog input port	_	N				
TI0			External event pulse inputs for timer/event counter.						
TI1	Input	_	Also serves as edge-detected vector interrupt input.	_	В				
111			1-bit input also possible.						
PTO0	1/0	P20	Outrot for the outro	1	-				
PTO1	I/O	P21	Outputs for timer/event counter	Input	E				
SCK	I/O	P01	Serial clock I/O	Input	F				
so	I/O	P02	Serial data output	Input	Е				
SI	Input	P03	Serial data input	Input	В				
INITA	la a cat		1	la a cot	la a cat	Doo	Edge-detected vectored interrupt input (both rising and		- D
INT4	Input	P00	falling edges detected)	Input	В				
INT0	P10		Edge-detected vectored interrupt inputs (valid	l	D				
INT1	Input	P11	edge selectable)	Input	В				
INT2		P12	Edge detected testable innuts (vising adaptated)	lanut	D				
INT3	Input	P13	Edge-detected testable inputs (rising edge detected)	Input	В				
PCL	I/O	P22	Clock output	Input	E				
			Crystal/ceramic system clock oscillator connections.						
X1, X2 —		_	Input external clock to X1, and signal in reverse phase	_	_				
	with X1 to X2.								
RESET	Input	_	System reset input (low level active type)		В				
NC*2	_	_	No Connection		_				
V _{DD}	_	_	Positive power supply	_	_				
Vss	_	_	GND	_	_				

^{*1:} Circles indicate Schmitt trigger input pins.

^{2:} Connect the NC pin directly to the VDD pin when μ PD75P108B and a printed circuit board are shared.

3.3 PIN INPUT/OUTPUT CIRCUITS

The following shows a simplified input/output circuit diagram for each pin of the μ PD75108.

3.4 RECOMMENDED PROCESSING OF UNUSED PINS

Pin	Recommended connections
PTH00-PTH03 TI0 TI1	Connect to Vss or VDD
P00	Connect to Vss
P01-P03	Connect to Vss or VDD
P10-P13	Connect to Vss
P20-P23 P30-P33 P40-P43 P50-P53 P60-P63 P70-P73 P80-P83 P90-P93 P120-P123 P130-P133 P140-P143	Input: Connect to Vss or VDD Output: Open
RESET*1	Connect to VDD
NC*2	Open

- *1: Connect this pin to the VDD pin only when a power-ON reset circuit is provided as a mask option.
- 2: Connect the NC pin to the $V_{\rm DD}$ pin when $\mu \rm PD75P108$ and a printed circuit board are shared.

3.5 NOTES ON USING THE P00/INT4, AND RESET PINS

In addition to the functions described in Sections 3.1 and 3.2, an exclusive function for setting the test mode, in which the internal fuctions of the μ PD75108 are tested (solely used for IC tests), is provided to the P00/INT4 and RESET pins.

If a voltage exceeding V_{DD} is applied to either of these pins, the μ PD75108 is put into test mode. Therefore, even when the μ PD75108 is in normal operation, if noise exceeding the V_{DD} is input into any of these pins, the μ PD75108 will enter the test mode, and this will cause problems for normal operation.

As an example, if the wiring to the P00/INT4 pin or the RESET pin is long, stray noise may be picked up and the above montioned problem may occur.

Therefore, all wiring to these pins must be made short enough to not pick up stray noise. If noise cannot be avoided, suppress the noise using a capacitor or diode as shown in the figure below.

 Connect a diode across P00/INT4 and RESET, and VDD.

 Connect a capacitor across P00/INT4 and RESET, and V_{DD}.

4. MEMORY CONFIGURATION

- Program memory (ROM) ... 8064 \times 8 bits (0000H-1F7FH) : μ PD75108 ... 6016 \times 8 bits (0000H-177FH) : μ PD75106 ... 4096 \times 8 bits (0000H-0FFFH) : μ PD75104
 - 0000H, 0001H : Vector table to which address from which program is started is written after reset
 0002H-000BH: Vector table to which address from which program is started is written after interrupt
 - 0020H-007FH: Table area referenced by GETI instruction
- Data memory (RAM)
 - Data area512 \times 4 bits (000H-1FFH): μ PD75108 $320 \times$ 4 bits (000H-13FH): μ PD75106, 75104
 - Peripheral hardware area 128×4 bits (F80H-FFFH)

(a) μ PD75108

Fig. 4-1 Program Memory Map (1/3)

Remarks: In addition to the above addresses, program can be branched to addresses specified by the PC with the contents of its lower 8 bits changed by BR PCDE or BR PCXA instruction.

(b) $\mu PD75106$

Fig. 4-1 Program Memory Map (2/3)

Remarks: In addition to the above addresses, program can be branched to addresses specified by the PC with the contents of its lower 8 bits changed by BR PCDE or BR PCXA instruction.

(c) μ PD75106

Fig. 4-1 Program Memory Map (3/3)

Remarks: In addition to the above addresses, program can be branched to addresses specified by the PC with the contents of its lower 8 bits changed by BR PCDE or BR PCXA instruction.

Fig. 4-2 Data Memory Map(1/2)

Memory bank Data memory 000H General-purpose register area (32×4) 01FH Stack area Bank 0 General-purpose Static RAM 256×4 (320×4) 0FFH 100H 64 × 4 Bank 1 13FH Not provided F80H 128×4 Bank 15 Peripheral hardware area FFFH

(b) μ PD75106, 75104

Fig. 4-2 Data Memory Map(2/2)

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 PORTS

I/O ports are classified into the following 3 kinds:

CMOS input (PORT0, 1) : 8
 CMOS input/output (PORT2, 3, 4, 5, 6, 7, 8, 9): 32
 N-ch open-drain input/output (PORT12, 13, 14) : 12
 Total : 52

Table 5-1 Port Function

Port (Symbol)	Function	Operation and Features	Remarks
PORT0 PORT1	4-bit input	Can always be read or tested regardless of operation mode of shared pin	Shared with SI, SO, SCK, and INT0 to 4 pins
PORT3 PORT6		Can be set in input or output mode bitwise	_
PORT2			
PORT4	4-bit I/O*		
PORT5		Can be set in input or output mode in units of 4 bits.	Port 2 pins are shared with
PORT7		Ports 4 and 5, 6 and 7, 8 and 9 can be used in pairs to input or output 8-bit data	PTO0, PTO1, and PCL pins
PORT8			
PORT9			
PORT12	4-bit I/O*	Can be set in input or output mode in units of 4 bits.	Each bit can be connected to
PORT13	(N-ch open- drain. 12V)	Ports 12 and 13 can be used in pairs to input or output 8-bit data	pull-up resistor by mask option
PORT14		·	

^{*:} Can directly drive LED.

5.2 CLOCK GENERATOR CIRCUIT

The clock generator circuit generates clocks to control CPU operation modes by supplying clocks to the CPU and peripheral hardware. In addition, this circuit can change the instruction execution time.

• 0.95 μ s/1.91 μ s/15.3 μ s (operating at 4.19 MHz)

*: Execution of the instruction

Remarks 1: fxx= Crystal/ceramic oscillator

- 2: fx = External clock frequency
- 3: PCC: Processor clock control register
- 4: One clock cycle (t_{CY}) of Φ is one machine cycle of an instruction. For t_{CY} , refer to AC characteristics in 12. ELECTRICAL SPECIFICATIONS.

Fig. 5-1 Clock Generator Block Diagram

21

5.3 CLOCK OUTPUT CIRCUIT

The clock output circuit outputs clock pulse from the P22/PCL pin. This clock output circuit is used to output clock pulses to the remote control output, peripheral LSIs, etc.

Clock output (PCL) : Φ, 524, 262 kHz (operating at 4.19 MHz)

Fig. 5-2 Clock Output Circuit Configuration

5.4 BASIC INTERVAL TIMER

The basic interval timer has these functions:

- · Interval timer operation which generates a reference time interrupt
- · Watchdog timer application which detects a program runaway
- · Selects the wait time for releasing the standby mode and counts the wait time
- · Reads out the count value

Remarks: *: Instruction execution

Fig. 5-3 Basic Interval Timer Configuration

5.5 TIMER/EVENT COUNTER

 μ PD75108 contains two channels of timer/event counters.

These two channels are almost identical in terms of configuration and function except the count pulse (CP) that can be selected and the function to supply clocks to the serial interface.

The functions of the timer/event counter include:

- · Programmable interval timer operation
- Output of square wave at an arbitrary frequency to PTOn pin
- · Event counter operation
- · Input of TIn pin signal as external interrupt input signal
- Dividing TIn pin input by N to output to PTOn pin (frequency divider operation)
- Supply of serial shift clock to serial interface circuit (channel 0 only)
- · Reading counting status

Remarks: * indicates the instruction execution.

Fig. 5-4 Timer/Event Counter Block Diagram (n = 0, 1)

5.6 SERIAL INTERFACE

The μ PD75108 is equipped with clock 8-bit serial interface that operates in the following two modes:

- Operation stop mode
- Three-line serial I/O mode

Fig. 5-5 Serial Interface Block Diagram

5.7 PROGRAMMABLE THRESHOLD PORT (ANALOG INPUT PORT)

 μ PD75108 is equipped with a 4-bit analog input port (consisting of PTH00 to PTH03 pins) whose threshold voltage is programmable.

This programmable threshold port is configured as shown in Figure 5-6.

The threshold voltage (VREF) can be changed in 16 steps (VDD \times 0.5/16 – VDD \times 15.5/16), and analog signals can be directly input.

When VREF is set to VDD × 7.5/16, the programmable threshold port can also be used as a digital signal input port.

Fig. 5-6 Programmable Threshold Port Configuration

5.8 BIT SEQUENTIAL BUFFER 16 BITS

The bit sequential buffer is a data memory specifically provided for bit manipulation. With this buffer, addresses and bit specifications can be sequentially up-dated in bit manipulation operation. Therefore, this buffer is very useful for processing long data in bit units.

Remarks: For the pmem.@L addressing, the specification bit is shifted according to the L register.

Fig. 5-7 Bit Sequential Buffer Format

5.9 POWER-ON FLAG (MASK OPTION)

The power-ON flag (PONF) is set to only when the power-ON reset circuit operates and power-ON reset signal has been generated (see Fig. 8-1).

The PONF flag is mapped at bit 0 of memory space address FD1H, and can be manipulated by a bit manipulation instruction. However, it cannot be set by the SET1 instruction.

6. INTERRUPT FUNCTIONS

The μ PD75108 has 7 different interrupt sources and can perform multiplexed interrupt processing with priority assigned.

In addition to that, the μ PD75108 is also provided with two types of edge detection testable inputs.

The interrupt control circuit of the μ PD75108 has these functions:

- Hardware controlled vector interrupt function which can control whether or not to accept an interrupt by
 using the interrupt enable flag (IExxx) and interrupt master enable flag (IME).
- The interrupt start address can be arbitrarily set.
- Multiplexed interrupt function that can specify priority by the interrupt priority selector register (IPS).
- Interrupt request flag (IRQxxx) test function (an interrupt generation can be confirmed by means of software).
- Standby mode release (Interrupts to be released can be selected by the interrupt enable flag).

Fig. 6-1 Interrupt Control Block Diagram

7. STANDBY FUNCTIONS

The μ PD75108 has two different standby modes (STOP mode and HALT mode) to reduce the power consumption of the microcomputer chip while waiting for program execution.

Table 7-1 Each Status in Standby Mode

		STOP Mode	HALT Mode
Setting In:	struction	STOP instruction	HALT instruction
	Clock Generator circuit	Clock oscillation stops	Only CPU clock Φ is stopped
	Basic Interval Timer	Stops	Operates (sets IRQBT at reference time intervals)
Operation Status	Serial Interface	Operates only when input of external SCK or output of TO0 is selected as serial clock (where external TI0 is input to timer/event counter 0)	Operates when serial clock other than $\boldsymbol{\Phi}$ is specified
	Timer/Event Counter	Operates only when TIn pin input signal is specified as count clock	Operates
	Clock output circuit	Stops	Operates when clock other than CPU clock Φ is used
	СРИ	Stops	Stops
Release Signal		Interrupt request signal enabled by interrupt enable flag, or RESET input	

8. RESET FUNCTION

The reset (RES) signal generator circuit is configured as shown in Figure 8-1.

^{*:} PONF cannot be set to 1 by SET1 instruction.

Fig. 8-1 Reset Signal Generator Circuit

The Power-ON reset generator circuit generates an internal reset signal when the supply voltage rises. This pulse can be used in three ways by specifying a mask option through SWA and SWB shown in Fig. 8-1. (Refer to 11. MASK OPTION SELECTION.)

The reset operations performed by the Power-On reset circuit and the RESET input signal are illustrated in Figs. 8-2 and 8-3, respectively.

^{*:} The wait time does not include the time required after the RES signal has been generated until the oscillation starts.

Fig. 8-2 Reset by Power-ON Reset Circuit

*: The wait time does not include the time required after the RES signal has been generated until the oscillation starts.

Fig. 8-3 Reset by RESET Signal

The status of each internal hardware device after the reset operation has been performed is shown in Table 8-1.

Table 8-1 Hardware Device Status After Reset

		Hardware	RESET input during standby mode	Power-ON Reset or RESET Input during Operation
Program Counter (PC)			Lower 4 bits of program memory address 000H are set to PC ₁₂₋₈ ,*1 and contents of address 001H are set to PC ₇₋₀ .	Lower 4 bits of program memory address 000H are set to PC ₁₂₋₈ ,*1 and contents of address 001H are set to PC ₇₋₀ .
	Carry Flag (C	CY)	Retained	Undefined
	Skip Flags (S	SK0-SK2)	0	0
PSW	Interrupt Sta	itus Flags (IST0, 1)	0	0
	Bank Enable	Flags (MBE, RBE)	Bit 6 of program memory address 000H is set in RBE, and bit 7 is set in MBE.	Bit 6 of program memory address 000H is set in RBE, and bit 7 is set in MBE.
Stack Point	ter (SP)		Undefined	Undefined
Data Memo	ory (RAM)		Retained*2	Undefined
General-Pu	ırpose Registe	rs (X,A,H,L,D,E,B,C)	Retained	Undefined
Bank Selec	tor Registers	(MBS, RBS)	0, 0	0, 0
Basic interv	val timer	Counter (BT)	Undefined	Undefined
		Mode Register (BTM)	0	0
		Counter (Tn)	0	0
Timer/Ever	nt Counter	Modulo Register (TMODn)	FFH	FFH
(n = 0, 1)		Mode Register (TMn)	0	0
		TOEn, TOFn	0, 0	0, 0
Serial Inter	orfoo	Shift Register (SIO)	Retained	Undefined
ocmai mitor	lacc	Mode Register (SIOM)	0	0
Clock Gene	erator Circuit,	Processor Clock Control Register (PCC)	0	0
Clock Outp	out Circuit	Clock Output Mode Register (CLOM)	0	0
		Interrupt Request Rlags (IRQxxx)	Reset (0)	Reset (0)
		Interrupt Enable Flags (IExxx)	0	0
Interrupt		Priority Selector Register (IPS)	0	0
		INT0, 1 Mode Registers (IM0, IM1)	0, 0	0, 0
		Output Buffer	OFF	OFF
Digital Port	<u>,</u>	Output Latch	Cleared (0)	Cleared (0)
2.g.tai i 0ii	-	I/O Mode Registers (PMGA, PMGB, PMGC)	0	0
		PTH00-PTH03 Input Latches	Undefined	Undefined
Analog Por	rt	Mode Register (PTHM)	0	0
Power-ON	Flag (PONF)		Retained	1 or undefined*2
Bit Sequential Buffer (BSB0-BSB3)		0	0	

^{*1:} PC_{11-8} for $\mu PD75104$

RESET input during operation: undefined

Note: Data at data memory addresses 0F8H to 0FDH become undefined when the $\overline{\text{RESET}}$ signal has been input.

^{2:} Power-ON reset: 1

9. INSTRUCTION SET

(1) Operand representation and description

Describe one or more operands in the operand field of each instruction according to the operand representation and description methods of the instruction (for details, refer to RA75X Assembler Package User's Manual - Language (EEU-730)). With some instructions, only one operand should be selected from several operands. The uppercase characters, +, and – are keywords and must be described as is.

Describe an appropriate numeric value or label as immediate data.

The symbols in the register and flag symbols can be described as labels in the places of mem, fmem, pmem, and bit (for details, refer to μ PD751XX Series User's Manual (IEM-922)). However, fmem and pmem restricts the label that can be described.

Representation	Description		
reg reg1	X, A, B, C, D, E, H, L X, B, C, D, E, H, L		
rp rp1 rp2 rp' rp'1	XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA', BC', DE', HL' BC, DE, HL, XA', BC', DE', HL'		
rpa rpa1	HL, HL+, HL–, DE, DL DE, DL		
n4 n8	4-bit immediate data or label 8-bit immediate data or label		
mem bit	8-bit immediate data or label* 2-bit immediate data or label		
fmem pmem	FB0H to FBFH,FF0H to FFFH immediate data or label FC0H to FFFH immediate data or label		
	μPD75104 0000H to 0FFFH immediate data or label		
addr	μ PD75106 0000H to 177FH immediate data or label		
	μ PD75108 0000H to 1F7FH immediate data or label		
caddr	12-bit immediate data or label		
faddr	11-bit immediate data or label		
taddr	20H to 7FH immediate data (where bit0 = 0) or label		
PORTn IExxx RBn MBn	PORTO - PORT9, PORT12 - PORT14 IEBT, IESIO, IET0, IET1, IE0 - IE4 RB0 - RB3 MB0, MB1, MB15		

^{*:} Only even address can be described as mem for 8-bit data processing.

NEC

(2) Legend of operation field

A : A register; 4-bit accumulator
B : B register; 4-bit accumulator
C : C register; 4-bit accumulator
D : D register; 4-bit accumulator
E : E register; 4-bit accumulator
H : H register; 4-bit accumulator
L : L register; 4-bit accumulator
X : X register; 4-bit accumulator

XA : Register pair (XA); 8-bit accumulator
 BC : Register pair (BC); 8-bit accumulator
 DE : Register pair (DE); 8-bit accumulator
 HL : Register pair (HL); 8-bit accumulator

XA' : Expansion register pair (XA')
BC' : Expansion register pair (BC')
DE' : Expansion register pair (DE')
HL' : Expansion register pair (HL')

PC : Program counter SP : Stack pointer

CY: Carry flag; or bit accumulator

PSW: Program status word

MBE: Memory bank enable flag

RBE: Register bank enable flag

PORTn: Port n (n = 0 - 9, 12 - 14)

IME: Interrupt mask enable flag

IPS : Interrupt priority selection register

IExxx : Interrupt enable flag

RBS : Register bank selection register
MBS : Memory bank selection register
PCC : Processor clock control register
: Delimiter of address and bit
(xx) : Contents addressed by xx

xxH : Hexadecimal data

(3) Symbols in addressing area field

*1	MB = MBE · (MBS = 0, 1)		1		
*2	MB = 0				
*3	M	B = 0 (00H-7FH) B = 15 (80H-FFH) B = MBS (MBS = 0, 1, 15)	Data memory addressing		
*4	MB = 15, fm	em =FB0H-FBFH, FF0H-FFFH			
*5	MB = 15, pn	nem = FC0H-FFFH	,		
*6	μPD75104	addr = 0000H-0FFFH	<u>†</u>		
	μPD75106	addr = 0000H-177FH			
	μPD75108	addr = 0000H-1F7FH			
*7		rent PC) – 15 to (Current PC) – 1 rent PC) + 2 to (Current PC) + 16	 Program memory		
*8	μPD75104	caddr = 0000H-0FFFH (PC ₁₁ = 0)	addressing		
	μPD75106	caddr = $0000H-0FFFH$ (PC ₁₂ = 0) or $1000H-177FH$ (PC ₁₂ = 1)			
	μPD75108	caddr = 0000H-0FFFH (PC ₁₂ = 0) or 1000H-1F7FH (PC ₁₂ = 1)			
*9	faddr = 000H	1-7FFH			
*10	taddr = 020l	1-07FH			

Remarks • MB indicates memory bank that can be accessed.

- In *2, MB = 0 regardless of MBE and MBS.
- In *4 and *5, MB = 15 regardless of MBE and MBS.
- *6 to *10 indicate areas that can be addressed.

(4) Machine cycle field

In this field, S indicates the number of machine cycles required when an instruction having a skip function skips. The value of S varies as follows:

• When no instruction is skipped S=0• When 1-byte or 2-byte instruction is skipped S=1• When 3-byte instruction (BR! adder or CALL! adder) is skipped S=2

Note: The GETI instruction is skipped in one machine cycle.

One machine cycle equals to one cycle of the CPU clock Φ , (= tcx), and can be changed in three steps depending on the setting of the processor clock control register (PCC).

Instruc- tions	Mne- monics	Operand	Bytes	Ma- chine Cyc- les	Operation	Addressing Area	Skip Conditions
Transfer	MOV	A, #n4	1	1	A ← n4		String effect A
		reg1, #n4	2	2	reg1 ← n4		
		XA, #n8	2	2	XA ← n8		String effect A
		HL, #n8	2	2	HL ← n8		String effect B
		rp2, #n8	2	2	rp2 ← n8		
		A, @HL	1	1	A ← (HL)	*1	
		A, @HL+	1	2+S	$A \leftarrow (HL)$, then $L \leftarrow L+1$	*1	L = 0
		A, @HL-	1	2+S	$A \leftarrow (HL)$, then $L \leftarrow L-1$	*1	L = FH
		A, @rpa1	1	1	A ← (rpa1)	*2	
		XA, @HL	2	2	XA ← (HL)	*1	
		@HL, A	1	1	(HL) ← A	*1	
		@HL, XA	2	2	(HL) ← XA	*1	
		A,mem	2	2	A ← (mem)	*3	
		XA, mem	2	2	XA ← (mem)	*3	
		mem, A	2	2	(mem) ← A	*3	
		mem, XA	2	2	(mem) ← XA	*3	
		A, reg	2	2	A ← reg		
		XA, rp'	2	2	XA ← rp'		
		reg1, A	2	2	reg1 ← A		
		rp'1, XA	2	2	rp'1 ← XA		
	XCH	A, @HL	1	1	$A \leftrightarrow (HL)$	*1	
		A, @HL+	1	2+S	$A \leftrightarrow (HL)$, then $L \leftarrow L+1$	*1	L = 0
		A, @HL-	1	2+S	$A \leftrightarrow (HL)$, then $L \leftarrow L-1$	*1	L = FH
		A, @rpa1	1	1	A ↔ (rpa1)	*2	
		XA, @HL	2	2	XA ↔ (HL)	*1	
		A, mem	2	2	$A \leftrightarrow (mem)$	*3	
		XA, mem	2	2	$XA \leftrightarrow (mem)$	*3	
		A, reg1	1	1	A ↔ reg1		
		XA, rp'	2	2	XA ↔ rp'		
Table	MOVT	XA, @PCDE	1	3	• μPD75104		
Refer-					XA ← (PC ₁₁₋₈ +DE) _{ROM}		
ence					• μPD75106, 75108		
					XA ← (PC ₁₂₋₈ +DE)ROM		
		XA, @PCXA	1	3	• μPD75104		
					XA ← (PC ₁₁₋₈ +XA) _{ROM}	_	
					 μPD75106, 75108 XA ← (PC₁₂₋₈+XA)_{ROM} 		
					AA ← (PC12-8+XA)ROM		

Instruc- tions	Mne- monics	Operand	Bytes	Ma- chine Cyc- les	Operation	Addressing Area	Skip Conditions
Bit	MOV1	CY,fmem.bit	2	2	$CY \leftarrow (fmem.bit)$	*4	
transfer		CY,pmem.@L	2	2	$CY \leftarrow (pmem_{7-2} + L_{3-2}.bit(L_{1-0}))$	*5	
		CY,@H+mem. bit	2	2	CY ← (H+mem₃-o.bit)	*1	
		fmem.bit,CY	2	2	(fmem.bit) ← CY	*4	
		pmem.@L,CY	2	2	(pmem ₇₋₂ +L ₃₋₂ .bit(L ₁₋₀)) ← CY	*5	
		@H+mem.bit, CY	2	2	(H+mem₃-o.bit) ← CY	*1	
Arith-	ADDS	A, #n4	1	1+S	A ← A+n4		carry
metic		XA, #n8	2	2+S	XA ← XA+n8		carry
opera-		A, @HL	1	1+S	$A \leftarrow A+(HL)$	*1	carry
tion		XA, rp'	2	2+S	$XA \leftarrow XA + rp'$		carry
		rp'1, XA	2	2+S	rp′1 ← rp′1+XA		carry
	ADDC	A, @HL	1	1	$A, CY \leftarrow A+(HL)+CY$	*1	
		XA, rp'	2	2	XA, CY ← XA+rp'+CY		
		rp'1, XA	2	2	rp′1,CY ← rp′1+XA+CY		
	SUBS	A, @HL	1	1+S	$A \leftarrow A$ -(HL).	*1	borrow
		XA, rp'	2	2+S	XA ← XA-rp′		borrow
SUB		rp'1, XA	2	2+S	rp′1 ← rp′1-XA		borrow
	SUBC	A, @HL	1	1	A, CY ← A-(HL)-CY	*1	
		XA, rp'	2	2	XA, CY ← XA-rp'-CY		
		rp'1, XA	2	2	rp′1,CY ← rp′1-XA-CY		
	AND	A, #n4	2	2	A ← A ∧ n4		
		A, @HL	1	1	$A \leftarrow A \land (HL)$	*1	
		XA, rp'	2	2	$XA \leftarrow XA \wedge rp'$		
		rp'1, XA	2	2	rp′1 ← rp′1 ∧ XA		
	OR	A, #n4	2	2	$A \leftarrow A \lor n4$		
		A, @HL	1	1	$A \leftarrow A \lor (HL)$	*1	
		XA, rp'	2	2	$XA \leftarrow XA \lor rp'$		
		rp'1, XA	2	2	rp′1 ← rp′1 ∨ XA		
	XOR	A, #n4	2	2	A ← A ∀ n4		
		A, @HL	1	1	$A \leftarrow A \forall (HL)$	*1	
		XA, rp'	2	2	XA ← XA ∀ rp′		
		rp'1, XA	2	2	rp′1 ← rp′1 ∀ XA		
ccumulator	RORC	Α	1	1	$CY \leftarrow A_0, \ A_3 \leftarrow CY, \ A_{n\text{-}1} \leftarrow A_n$		
/lanipulation	NOT	Α	2	2	$A \leftarrow \overline{A}$		
Incre-	INCS	reg	1	1+S	reg ← reg+1		reg = 0
ment/		rp1	1	1+S	rp1 ← rp1+1		rp1 = 00H
decre-		@HL	2	2+S	(HL) ← (HL)+1	*1	(HL) = 0
ment		mem	2	2+S	(mem) ← (mem)+1	*3	(mem) = 0
	DECS	reg	1	1+S	reg ← reg-1		reg = FH
		rp'	2	2+S	rp' ← rp'-1		rp' = FFH

I	Mne- monics	Operand	Bytes	Ma- chine Cyc- les	Operation	Addressing Area	Skip Conditions
Com-	SKE	reg, #n4	2	2+S	Skip if reg = n4		reg = n4
pare		@HL, #n4	2	2+S	Skip if (HL) = n4	*1	(HL) = n4
		A, @HL	1	1+S	Skip if A = (HL)	*1	A = (HL)
		XA, @HL	2	2+S	Skip if XA = (HL)	*1	XA = (HL)
		A, reg	2	2+S	Skip if A = reg		A = reg
	•	XA, rp'	2	2+S	Skip if XA = rp'		XA = rp'
Carry	SET1	CY	1	1	CY ← 1		
flag	CLR1	CY	1	1	CY ← 0		
Manipu-	SKT	CY	1	1+S	Skip if CY = 1		CY = 1
lation	NOT1	CY	1	1	$CY \leftarrow \overline{CY}$		
Memory/	SET1	mem.bit	2	2	(mem.bit) ← 1	*3	
Bit		fmem.bit	2	2	(fmem.bit) ← 1	*4	
Manipu-		pmem.@L	2	2	(pmem ₇₋₂ + L ₃₋₂ .bit(L ₁₋₀)) ← 1	*5	
lation		@H+mem.bit	2	2	(H + mem₃-o.bit) ← 1	*1	
	CLR1	mem.bit	2	2	(mem.bit) ← 0	*3	
		fmem.bit	2	2	(fmem.bit) ← 0	*4	
		pmem.@L	2	2	(pmem ₇₋₂ + L ₃₋₂ .bit(L ₁₋₀)) ← 0	*5	
	-	@H+mem.bit	2	2	(H+mem₃-o.bit) ← 0	*1	
	SKT	mem.bit	2	2+S	Skip if (mem.bit) = 1	*3	(mem.bit) = 1
		fmem.bit	2	2+S	Skip if (fmem.bit) = 1	*4	(fmem.bit) = 1
		pmem.@L	2	2+S	Skip if (pmem7-2+L3-2.bit (L1-0)) = 1	*5	(pmem.@L) = 1
		@H+mem.bit	2	2+S	Skip if (H + mem ₃₋₀ .bit) = 1	*1	(@H+mem.bit) =
	SKF	mem.bit	2	2+S	Skip if (mem.bit) = 0	*3	(mem.bit) = 0
		fmem.bit	2	2+S	Skip if (fmem.bit) = 0	*4	(fmem.bit) = 0
		pmem.@L	2	2+S	Skip if (pmem ₇₋₂ +L ₃₋₂ .bit (L ₁₋₀)) = 0	*5	(pmem.@L) = 0
	-	@H+mem.bit	2	2+S	Skip if (H + mem ₃₋₀ .bit) = 0	*1	(@H+mem.bit) = (
	SKTCLR	fmem.bit	2	2+S	Skip if (fmem.bit) = 1 and clear	*4	(fmem.bit) = 1
		pmem.@L	2	2+S	Skip if (pmem ₇₋₂ +L ₃₋₂ .bit (L ₁₋₀)) = 1 and clear	*5	(pmem.@L) = 1
		@H+mem.bit	2	2+S	Skip if (H+mem3-0.bit) = 1 and clear	*1	(@H+mem.bit) = '
	AND1	CY,fmem.bit	2	2	CY ← CY ∧ (fmem.bit)	*4	
		CY,pmem.@L	2	2	$CY \leftarrow CY \land (pmem_{7-2}+L_{3-2}.bit(L_{1-0}))$	*5	
		CY,@H+mem.bit	2	2	CY ← CY ∧ (H+mem₃-o.bit)	*1	
ļ	OR1	CY,fmem.bit	2	2	$CY \leftarrow CY \lor (fmem.bit)$	*4	
	-	CY,pmem.@L	2	2	CY ← CY ∨ (pmem7-2+L3-2.bit (L1-0))	*5	
		CY,@H+mem.bit	2	2	CY ← CY ∨ (H+mem ₃₋₀ .bit)	*1	
ļ	XOR1	CY,fmem.bit	2	2	CY ← CY ♥ (fmem.bit)	*4	
		CY,pmem.@L	2	2	CY ← CY → (pmem7-2+L3-2.bit (L1-0))	*5	
	-	CY,@H+mem.bit	2	2	CY ← CY ♥ (H+mem₃-o.bit)	*1	

Instruc- tions	Mne- monics	Operand	Bytes	Ma- chine Cyc- les	Operation	Addressing Area	Skip Conditions
Branch	BR	addr	_	_	 μPD75104 PC₁₁₋₀ ← addr (The most suitable instruction is selectable from among BRCB! caddr, and BR \$ addr depending on the assembler.) μPD75106, 75108 PC₁₂₋₀ ← addr (The most suitable instruction is selectable from among BR! addr, BRCB! caddr, and BR \$ addr depending on the assembler. 	*6	
		! addr	3	3	• μPD75106, 75108 PC ₁₂₋₀ ← addr	*6	
		\$ addr	1	2	 μPD75104 PC₁₁₋₀ ← addr μPD75106, 75108 PC₁₂₋₀ ← addr 	*7	
	BRCB	! caddr	2	2	 μPD75104 PC₁₁₋₀ ← caddr₁₁₋₀ μPD75106, 75108 PC₁₂₋₀ ← PC₁₂ + caddr₁₁₋₀ 	*8	
	BR	PCDE	2	3	 μPD75104 PC₁₁₋₀ ← PC₁₁₋₈ + DE μPD75106, 75108 PC₁₂₋₀ ← PC₁₂₋₈ + DE 		
		PCXA	2	3	 μPD75104 PC11-0 ← PC11-8 + XA μPD75106, 75108 PC12-0 ← PC12-8 + XA 		
Subroutine/ Stack Control	CALL	! addr	3	3	• μ PD75104 (SP-4)(SP-1)(SP-2) \leftarrow PC ₁₁₋₀ (SP-3) \leftarrow MBE, RBE, 0, 0 PC ₁₁₋₀ \leftarrow addr, SP \leftarrow SP-4 • μ PD75106, 75108 (SP-4)(SP-1)(SP-2) \leftarrow PC ₁₁₋₀ (SP-3) \leftarrow MBE, RBE, 0, PC ₁₂ PC ₁₂₋₀ \leftarrow addr, SP \leftarrow SP-4	*6	

Instruc- tions	Mne- monics	Operand	Bytes	Ma- chine Cyc- les	Operation	Addressing Area	Skip Conditions
Subroutine/ Stack Control (Cont'd)	CALLF	! faddr	2	2	• μ PD75104 (SP-4)(SP-1)(SP-2) \leftarrow PC ₁₁₋₀ (SP-3) \leftarrow MBE, RBE, 0, 0 PC ₁₁₋₀ \leftarrow 0, faddr, SP \leftarrow SP-4 • μ PD75106, 75108 (SP-4)(SP-1)(SP-2) \leftarrow PC ₁₁₋₀ (SP-3) \leftarrow MBE, RBE, 0, PC ₁₂ PC ₁₂₋₀ \leftarrow 00, faddr, SP \leftarrow SP-4	*9	
	RET		1	3	• μ PD75104 MBE, RBE, x, x \leftarrow (SP+1) PC ₁₁₋₀ \leftarrow (SP)(SP+3)(SP+2) SP \leftarrow SP+4 • μ PD75106, 75108 MBE, RBE, x, PC ₁₂ \leftarrow (SP+1) PC ₁₁₋₀ \leftarrow (SP)(SP+3)(SP+2) SP \leftarrow SP+4		
	RETS		1	3+S	• μ PD75104 MBE, RBE, x, x \leftarrow (SP+1) PC ₁₁₋₀ \leftarrow (SP)(SP+3)(SP+2) SP \leftarrow SP+4, then skip unconditionally • μ PD75106, 75108 MBE, RBE, x, PC ₁₂ \leftarrow (SP+1) PC ₁₁₋₀ \leftarrow (SP)(SP+3)(SP+2) SP \leftarrow SP+4, then skip unconditionally		Unconditioned
	RETI		1	3	• μ PD75104 MBE, RBE, x, x \leftarrow (SP+1) PC ₁₁₋₀ \leftarrow (SP)(SP+3)(SP+2) PSW \leftarrow (SP+4)(SP+5), SP \leftarrow SP+6 • μ PD75106, 75108 MBE, RBE, x, PC ₁₂ \leftarrow (SP+1) PC ₁₁₋₀ \leftarrow (SP)(SP+3)(SP+2) PSW \leftarrow (SP+4)(SP+5), SP \leftarrow SP+6		
	PUSH	rp	1	1	$(SP-1)(SP-2) \leftarrow rp, SP \leftarrow SP-2$		
		BS	2	2	$(SP-1) \leftarrow MBS, (SP-2) \leftarrow RBS,$ $SP \leftarrow SP-2$		
	POP	rp	1	1	$rp \leftarrow (SP+1)(SP), SP \leftarrow SP+2$		
		BS	2	2	$\begin{aligned} MBS &\leftarrow (SP+1),RBS &\leftarrow (SP),\\ SP &\leftarrow SP+2 \end{aligned}$		

Instruc- tions	Mne- monics	Operand	Bytes	Ma- chine Cyc- les	Operation	Addressing Area	Skip Conditions
Inter-	EI		2	2	IME (IPS.3) ← 1		
rupt		IExxx	2	2	IExxx ← 1		
Control	DI		2	2	IME (IPS.3) ← 0		
		IExxx	2	2	IExxx ← 0		
I/O	IN*	A, PORTn	2	2	A ← PORTn (n = 0-9, 12-14)		
		XA, PORTn	2	2	XA ← PORT _{n+1} ,PORT _n (n = 4, 6, 8, 12)		
	OUT*	PORTn, A	2	2	PORT _n ← A (n = 2-9, 12-14)		
		PORTn, XA	2	2	PORTn+1, PORTn \leftarrow XA(n = 4, 6, 8, 12)		
CPU	HALT		2	2	Set HALT Mode (PCC.2 ← 1)		
Control	STOP		2	2	Set STOP Mode (PCC.3 ← 1)		
	NOP		1	1	No Operation		
Special	SEL	RBn	2	2	RBS ← n (n = 0-3)		
		MBn	2	2	MBS ← n (n = 0, 1, 15)		
	GETI	taddr	1	3	 μPD75104 Where TBR instruction, PC₁₁₋₀ ← (taddr)₃₋₀₊(taddr+1) Where TCALL instruction, (SP-4)(SP-1)(SP-2) ← PC₁₁₋₀ (SP-3) ← MBE, RBE, 0, 0 PC₁₁₋₀ ← (taddr)₃₋₀₊(taddr+1) SP ← SP-4 Except for TBR and TCALL instructions, Instruction execution of (taddr)(taddr+1) 	*10	Depends on referenced instruction
					• μ PD75106, 75108 • Where TBR instruction, PC ₁₂₋₀ \leftarrow (taddr) ₄₋₀₊ (taddr+1) • Where TCALL instruction, (SP-4)(SP-1)(SP-2) \leftarrow PC ₁₁₋₀ (SP-3) \leftarrow MBE, RBE, 0, PC ₁₂ PC ₁₂₋₀ \leftarrow (taddr) ₄₋₀₊ (taddr+1) SP \leftarrow SP-4		
					Except for TBR and TCALL instructions, Instruction execution of (taddr)(taddr+1)		Depends on referenced instruction

^{*:} When executing the IN/OUT instruction, MBE = 0, or MBE = 1, and MBS = 15.

★ Remarks: TBR and TCALL instructions are assembler instructions for GETI instruction table definition.

10. APPLICATION EXAMPLES

10.1 VTR SYSTEM CONTROLLER

10.2 VTR CAMERA

10.3 COMPACT DISC PLAYER

10.4 AUTOMOBILE APPLICATIONS (TRIP COMPUTER)

10.5 PUSHBUTTON TELEPHONE

10.6 DISPLAY PAGER

10.7 PLAIN PAPER COPIER (PPC)

10.8 PRINTER CONTROLLER

11. MASK OPTION SELECTION

 μ PD75108 has the following mask options. Options to be built in can be selected.

(1) Pin

Pin	Mask Option
P120 - P123	
P130 - P133	Pull-down resistor can be built in bitwise.
P140 - P143	

(2) Power-ON reset generation circuit, power-ON flag (PONF)
One from the following three ways can be selected.

1	Selection Fig. 8-1.)	Power-On Reset Generation Circuit	Power-On Flag (PONF)	Internal Reset Signal (RES)
SWA	SWB			
ON	ON	Provided	Provided	Generates automatically
ON	OFF	Provided	Provided	Not generates autoamtically
OFF	OFF	Not provided	Not provided	_

12. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS $(T_a = 25^{\circ}C)$

Parameter	Symbol	Conditions		Ratings	Unit
Supply Voltage	V _{DD}			-0.3 to +7.0	V
	Vıı	Other than ports 12, 13, 14	-0.3 to V _{DD} +0.3	V	
Input Voltage	V ₁₂ *1	Ports 12 to 14	w/pull-up resistor	-0.3 to V _{DD} +0.3	V
			Open drain	-0.3 to +13	V
Output Voltage	Vo			-0.3 to V _{DD} +0.3	V
High-Level Output	Іон	1 pin	-15	mA	
Current		All pins	-30	mA	
Low-Level Output	loL*2	1 pin	Peak	30	mA
Current			rms	15	mA
		Total of ports 0, 2 to 4, 12 to 14	l Peak	100	mA
			rms	60	mA
		Total of ports 5 to 9	Peak	100	mA
			rms	60	mA
Operating Temperature	Topt			-40 to +85	°C
Storage Temperature	T _{stg}			-65 to +150	°C

^{*1:} The power supply impedance (pull-up resistance) must be 50 k Ω or higher when a voltage higher than 10 V is applied to ports 12, 13, and 14.

^{2:} rms = Peak value $x \sqrt{Duty}$

OSCILLATOR CIRCUIT CHARACTERISTICS

 $(T_a = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = 2.7 \text{ to } 6.0 \text{ V})$

Oscillator	Recommended Constants	Item	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic		Oscillation frequency(fxx)*1	V _{DD} = Oscillation voltage range	2.0		5.0 ^{*3}	MHz
	C1	Oscillation stabilization time*2	After VDD come to MIN. of oscillation voltage range			4	ms
Crystal	1 1	Oscillation frequency (fxx)*1		2.0	4.19	5.0*3	MHz
	X1 X2	Oscillation stabiliza-	V _{DD} = 4.5 to 6.0 V			10	ms
	C1 C2	tion time* ²				30	ms
External Clock	1 1	X1 input frequency (fx)*1		2.0		5.0* ³	MHz
	X1 X2	X1 input high-, low-level widths (txH, txL)		100		250	ns

- *1: The oscillation frequency and X1 input frequency are indicated only to express the characteristics of the oscillator circuit. For instruction execution time, refer to AC Characteristics.
- 2: Time required for oscillation to stabilize after V_{DD} has come to MIN. of oscillation volrage range or the STOP mode has been released.
- 3: When the oscillation frequency is 4.19 MHz < fx \leq 5.0 MHz, do not select PCC = 0011 as the instruction execution time: otherwise, one machine cycle is set to less than 0.95 μ s, falling short of the rated minimum value of 0.95 μ s.

Note: When using the oscillation circuit of the system clock, wire the portion enclosed in dotted line in the figures as follows to avoid adverse influences on the wiring capacity:

- · Keep the wiring length as short as possible.
- Do not cross the wiring over the other signal lines. Also, do not route the wiring in the vicinity of lines through which a high alternating current flows.
- Always keep the ground point of the capacitor of the osccillator circuit at the same potential as Vss. Do not connect the ground pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

*

RECOMMENDED OSCILLATOR CIRCUITS CONSTANTS

RECOMMENDED CERAMIC OSCILLATORS

Manufacturer	Product Name	Exte Capacita	rnal nce (pF)	Oscillation Voltage Range (V)		
		C1	C2	MIN.	MAX.	
	CSA 2.00MG	30	30	2.7	6.0	
Murata Mfg.	CSA 4.19MG	30	30	3.0	6.0	
Co., Ltd.	CSA 4.19MGU	30	30	2.7	6.0	
	CST 4.19T	Provided	Provided	3.0	6.0	
	KBR-2.0MS	100	100	3.0	6.0	
Kyoto Ceramic	KBR-4.0MS	33	33	3.0	6.0	
Co., Ltd.	KBR-4.19MS	33	33	3.0	6.0	
	KBR-4.9152M	33	33	3.0	6.0	

RECOMMENDED CRYSTAL OSCILLATOR

Manufacturer	Product Name	Exte Capacita		Oscillation Voltage Range (V)	
		C1	C2	MIN.	MAX.
Kinseki	HC-49/U	22	22	2.7	6.0

DC CHARACTERISTICS ($T_a = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$)

ltem	Symbol		Condition	ns	MIN.	TYP.	MAX.	Unit
	V _{IH1}	Other than belo	ow		0.7V _{DD}		V _{DD}	٧
High-Level	V _{IH2}	Ports 0, 1, TI0,	1, RESET		0.8 V _{DD}		V _{DD}	V
Input Voltage	VIH3	Ports 12 to 14		0.7 V _{DD}		V _{DD}	V	
			Open dı	rain	0.7 V _{DD}		12	V
	V _{IH4}	X1, X2	X1, X2				V _{DD}	V
	VIL1	Other than belo	ow		0		0.3 V _{DD}	V
Low-Level Input Voltage	V _{IL2}	Ports 0, 1, TI0,	1, RESET		0		0.2 V _{DD}	V
	VIL3	X1, X2			0		0.4	V
V _{DD} = 4.5 to 6.0 V,I _{OH} = -1 mA		mA	V _{DD} -1.0			V		
High-Level Output Voltage	Vон		Іон = -100 μΑ		V _{DD} -0.5			V
		V _{DD} =	Ports 0,	2 to 9, loL = 15 mA		0.35	2.0	V
Low-Level Output Voltage		4.5 to 6.0 V	Ports 12	to 14, lo _L = 10 mA		0.35	2.0	V
	Vol -	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V, } I_{OL} = 1.6 \text{ mA}$				0.4	V	
		I_{OL} = 400 μA					0.5	V
High-Level Input Leakage	Ішн1	Vin = Vdd	Other than below				3	μΑ
Current	I _{LIH2}		X1,X2				20	μΑ
	Ішнз	VIN = 12 V	Ports 12	to 14 (open drain)			20	μΑ
Low-Level	ILIL1	Vin = 0 V	Other th	nan X1, X2			-3	μΑ
Input Leakage Current	ILIL2	VIIV = 3 V	X1, X2				-20	μΑ
High-Level	ILOH1	Vout = Vdd	Other th	nan below			3	μΑ
Output Leakage Current	ILOH2	Vout = 12 V	Ports 12	to 14 (open drain)			20	μΑ
Low-Level Output Leakage Current	Ісос	Vout = 0 V					-3	μΑ
Internal Pull-Up Resistor*	RL	Ports 12 to 14	V _{DD} = 5	V±10%	15	40	70	kΩ
internal run-op nesistor	I IL	10105 12 00 14			10		80	kΩ
	I _{DD1}	4.19MHz	$V_{DD} = 5$	V±10%*²		3	9	mA
		crystal	V _{DD} = 3	V±10%*3		0.55	1.5	mA
Supply Current*1	I _{DD2}	oscillator	HALT	V _{DD} = 5 V±10%		600	1800	μΑ
	.552	C1 = C2 = 22pF	mode	V _{DD} = 3±10%		200	600	μΑ
	IDD3	STOP mode, V	DD = 3 V±1	0%		0.1	10	μΑ

^{*1:} The current flowing into the internal pull-up resistor, power-ON reset circuit (mask option), and comparator circuit is not included.

- 2: When the high-speed mode is set by setting the processor clock control register (PCC) to 0011.
- 3: When the low-speed mode is set by setting the PCC to 0000.

CAPACITANCE $(T_a = 25^{\circ}C, V_{DD} = 0 V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input Capacitance	Cin	f = 1 MHz			15	рF
Output Capacitance	Соит	Pins other than thosemeasured are at 0 V			15	рF
Input/Output Capacitance	Сю				15	pF

COMPARATOR CHARACTERISTICS ($T_a = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Comparison Accuracy	VACOMP				±100	mV
Threshold Voltage	Vтн		0		V _{DD}	V
PTH Input voltage	VIPTH		0		V _{DD}	V
Comparator circuit current dissipation		PTHM7 is set to "1"		1		mA

POWER-ON RESET CIRCUIT CHARACTERISTICS (MASK OPTION) (Ta = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power-On Reset						
High-Level	V _{DDH}		4.5		6.0	V
Operating Voltage						
Power-On Reset						
Low-Level	V _{DDL}		0		0.2	V
Operating Voltage						
Supply Voltage	tr		10		*1	μs
Rise Time						
Supply Voltage	toff		1			s
Off Time						
Power-On Reset Circuit	IDDPR	VDD = 5 V±10%		10	100	μΑ
Current Dissipation*2		V _{DD} = 2.5 V		2	20	μΑ

*1: $2^{17}/fxx$ (31.3 ms at fxx = 4.19 MHz)

2: Current flowing when power-ON reset circuit or power-ON Flag is incorporeated.

Note: Apply power gradually and smoothly.

AC CHARACTERISTICS ($T_a = -40$ to +85°C, $V_{DD} = 2.7$ to 6.0 V)

Parameter	Symbol	Conditions	;	MIN.	TYP.	MAX.	Unit
CPU Clock Cycle Time* (Minimum Instruction	tcy	V _{DD} = 4.5 to 6.0 V		0.95		32	μs
Execution Time = 1 Machine Cycle)	1 01			3.8		32	μs
TIO, TI1 Input Frequency	f⊤ı	V _{DD} = 4.5 to 6.0 V		0		1	MHz
Tio, iti iliput Frequency	""			0		275	kHz
TI0, TI1 Input High-/	tтıн,	V _{DD} = 4.5 to 6.0 V		0.48			μs
Low-Level Width	t⊤ı∟			1.8			μs
		V _{DD} = 4.5 to 6.0 V	Input	0.8			μs
SCK Cycle Time	tĸcy		Output	0.95			μs
JOCK Cycle Time	trey		Input	3.2			μs
			Output	3.8			μs
		$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$	Input	0.4			μs
SCK High-/Low-Level	t кн,		Output	tkcy/2-50			ns
Width	tκL		Input	1.6			μs
			Output	tксу/2-150			ns
SI Setup Time (vs. SCK↑)	t sık			100			ns
SI Hold Time (vs. SCK↑)	t ksı			400			ns
SCK ↓→ SO Output	4	V _{DD} = 4.5 to 6.0 V				300	ns
delay Time	tkso					1000	ns
INT0 to 4	tinth,						
High-/Low-Level Width	tintl			5			μs
RESET Low-Level Width	trsl			5			μs

*: The cycle time of the CPU clock (Φ) is determined by the input frequency of the ceramic or crystal oscillator circuit and the set value of the processor clock control register. The tcy vs. VDD characteristics are as shown on the right.

AC TIMING MEASURING POINTS (excluding Ports 0, 1, TI0, TI1, X1, X2, and $\overline{\text{RESET}}$)

CLOCK TIMING

TI TIMING

SERIAL TRANSFER TIMING

INTERRUPT INPUT TIMING

RESET INPUT TIMING

twait-

Wait Time*2

RESET

LOW-VOLTAGE DATA RETENTION CHARACTERISTICS OF DATA MEMORY IN STOP MODE ($T_a = -40$ to $+85^{\circ}C$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data Retention Supply Voltage	VDDDR		2.0		6.0	V
Data Retention Supply Current*1	Idddr	VDDDR = 2.0 V		0.1	10	μА
Release Signal Set Time	t srel		0			μs
Oscillation Stabilization	twait	Released by RESET		2 ¹⁷ /fx		ms

*1: The current flowing through internal pull-up resistor, power-ON reset circuit (mask option), and comparator circuit is not included

Released by interrupt request

- 2: The oscillation stabilization wait time is the time during which the CPU is stopped to prevent unstable operation when oscillation is started.
- 3: Depends on the setting of the basic interval timer mode register (BTM) as follows:

ВТМ3	BTM2	BTM1	BTM0	Wait time (): fxx = 4.19 MHz
_	0	0	0	2 ²⁰ /fxx (approx. 250 ms)
_	0	1	1	2 ¹⁷ /fxx (approx. 31.3 ms)
_	1	0	1	2 ¹⁵ /fxx (approx. 7.82 ms)
_	1	1	1	2 ¹³ /fxx (approx. 1.95 ms)

DATA RETENTION TIMING (releasing STOP mode by RESET) Internal reset operation HALT mode Operation mode VDD STOP instruction execution

DATA RETENTION TIMING (standby release signal: releasing STOP mode by interrupt)

13. CHARACTERISTIC DATA

IDD vs. fx Characteristics (external clock)

fti vs. VDD Characteristics

Volvs. Iol (Ports 0 and 2 to 9) Characteristics

Vol vs. Iol (Ports 12 to 14) Characteristics

Remarks: Unless otherwise specified, all the characteristic data shown are reference values.

14. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	0.25 ^{+0.10} _{-0.05}	0.010+0.004
N	0.17	0.007
R	0~15°	0~15°

P64C-70-750A,C-1

64 PIN PLASTIC QFP (14×20)

detail of lead end

NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES		
Α	23.6±0.4	0.929±0.016		
В	20.0±0.2	$0.795^{+0.008}_{-0.009}$		
С	14.0±0.2	0.551+0.009		
D	17.6±0.4	0.693±0.016		
F	1.0	0.039		
G	1.0	0.039		
Н	0.40±0.10	$0.016^{+0.004}_{-0.005}$		
ı	0.20	0.008		
J	1.0 (T.P.)	0.039 (T.P)		
K	1.8±0.2	$0.071^{+0.008}_{-0.009}$		
L	0.8±0.2	0.031+0.009		
М	0.15 ^{+0.10} _{-0.05}	0.006+0.004		
N	0.10	0.004		
Р	2.7	0.106		
Q	0.1±0.1	0.004±0.004		
R	5°±5°	5°±5°		
S	3.0 MAX.	0.119 MAX.		

P64GF-100-3B8,3BE,3BR-2

ES 64-Pin Ceramic QFP (Reference) (unit in mm)

Note 1. The metal cap is connected to pin 26, at the Vss (GND) level.

- 2. The leads are molded diagonally at the bottom.
- The lead lengths are not specified, as the lead cutting process is not controlled.

15. RECOMMENDED SOLDERING CONDITIONS

It is recommended that μ PD75104, 75106, and 75108 be soldered under the following conditions.

For details on the recommended soldering conditions, refer to Information Document "Semiconductor Devices Mounting Manual" (IEI-616).

For other soldering methods and conditions, please consult NEC.

Table 15-1 Soldering Conditions of Surface Mount Type

 μ PD75108GF - xxx - 3BE: 64-pin plastic QFP (14 x 20 mm)

Soldering Method	Soldering Conditions	Symbol for Recommended Condition
Infrared Reflow	Package peak temperature: 230°C, time: 30 seconds max. (210°C min.), number of times: 1	IR30-00-1
VPS	Package peak temperature: 215°C, time: 40 seconds max. (200°C min.), number of times: 1	VP15-00-1
Wave Soldering	Soldering bath temperature: 260°C max., time: 10 seconds max., number of times: 1, pre-heating temperature: 120°C max. (package surface temperature)	WS60-00-1
Pin Partial Heating	Pin temperature: 300°C max., time: 3 seconds max. (per side)	_

Caution: Do not use two or more soldering methods in combination (except the pin partial heating method).

Table 15-2 Soldering Conditions of Through-Hole Type

 μ PD75108CW - xxx : 64-pin plastic shrink DIP (750 mil)

Soldering Method	Soldering Conditions
Wave Soldering (Only for lead part)	Soldering bath temperature: 260°C max., Time: 10 seconds max.
Pin Partial Heating	Pin temperature: 260°C max., Time: 10 seconds max.

Caution: The wave soldering must be performed at the lead part only. Note that the solder must not be directly contacted to the package body.

APPENDIX A. FUNCTIONAL DIFFERENCES AMONG PRODUCTS IN #PD751XX SERIES

lt	em	μPD75104	μPD75106	μPD75108	μPD75112	μPD75116	μPD75104A	μPD75108A	μPD75108F	μPD75112F	μPD75116F	μPD75P108B	μPD75P116
ROM Co	nfiguration					Masl	ROM					PF	ОМ
ROM (B	its)	000H-FFFH 4096 × 8	0000H-177FH 6016 × 8	0000H-1F7FH 8064 × 8	0000H-2F7FH 12160 × 8	0000H-3F7FH 16256 × 8	000H-FFFH 4096 × 8	0000H-1F7FH 8064 × 8	0000H-1F7FH 8064 × 8	0000H-2F7FH 12160 × 8	0000H-3F7FH 16256 × 8	0000H-1F7FH 8064 × 8	0000H-3F7FH 16256 × 8
RAM (Bits) (Bank 0: 256 × 4) (Bank 1: 64 × 4) (Bank 1: 256 × 4) (Bank 1: 256 × 4) (Bank 1: 256 × 4) (Bank 1: 256 × 4) (Bank 1: 256 × 4) (Bank 1: 256 × 4) (Bank 1: 256 × 4) (Bank 1: 256 × 4) (Bank 1: 256 × 4) (Bank 1: 256 × 4)					-								
Instructi	ion Set	High-end (On	ıly <i>µ</i> PD75104 an	nd 75104A are n	ot provided wit	th BR!addr insti	ruction.)				High end		
	Total						Ę	58					
I/O Lines	I/O	CMOS I/O: 32 +12 V open-drain output: 12 (pull-up resistor as mask option) LED direct drive: 44					• CMOS I/O: 3: (pull-up resis option: 24) • +12 V open-o (pull-up resis option) LED direct dr	tor as mask drain output: 12 tor as mask	1	-drain output: ' istor as mask o		• CMOS I/O: • +12 V open 12 LED direct o	-drain output:
	Input	CMOS input: 10 Cmos input: 10 Cmos input: 10 Cmos input: 10 (pull-up resistor as mask option: 4) Comparator input: 44 Comparator input: 44											
Power-C Reset Ci Power-C	ircuit			Provi	ded (mask opti	on)					None		
Operatir Voltage					2.7 to 6.0 V					.0 V (Ta = -40 to		2.7 to 6.0 V	5 V ± 10%
Minimu Instructi Execution	ion	0.95 μs (at 5 V)					0.95 µs (at 4.5 V to 5.0 V)			0.95 µs (at 5 V) 3 µs			
Time	···				3μs (at 3 V)					1.91 µs (at 3 V)	(at 3 V)	(41.5.4)
Pin Con	nections			Dep	oends on packa	ge			Depends on VPP pin.	package. Only	μPD75P108, an	d 75P116 are pr	ovided with
Package			c shrink DIP (75 c QFP (14 × 20 r		• 64-pin plasti (750 mil) • 64-pin plasti mm)	c shrink DIP	• 64-pin plastic QFP (14 × 14 mm)	• 64-pin plastic QFP (14 × 14 mm) • 64-pin plastic QFP (14 × 14 mm)	• 64-pin plasti	c QFP (14 × 20 r	mm)	· 64-pin plastic shrink DIP (750 mil) · 64-pin ceramic shrink DIP (w/window) · 64-pin plastic QFP (14 × 20 mm)	• 64-pin plastic shrink DIP (750 mil) • 64-pin plastic QFP (14 × 20 mm)

APPENDIX B. DEVELOPMENT TOOLS

The following development support tools are readily available to support development of systems using μ PD75108:

Hardware	IE-75000-R* ¹ IE-75001-R		In-circuit emulator for 75X series
	IE-75000-R-EM* ² EP-75108CW-R		Emulation board for IE-75000-R and IE-75001-R
			Emulation prove for μPD75108CW
	EP-7510	8GF-R EV-9200G-64	Emulation prove for μ PD75108GF. It is provided with a 64-pin conversion socket, EV-9200G-64
	PG-1500		PROM programmer
	PA-75P108CW		PROM programmer adapter for μ PD75P108BCW and 75P108BDW. It is connected to PG-1500.
	PA-75P116GF		Programmer adapter for μ PD75P108BGF. It is connected to PG-1500.
Software	IE Control Program		Host machine
	PG-1500 Controller		PC-9800 series (MS-DOS [™] Ver.3.30 to Ver.5.00A*3)
	RA75X Relocatable Assembler		IBM PC/AT [™] (PC DOS [™] Ver.3.1)

^{*1:} Maintenance product

Remarks: For development tools from other companies, refer to 75X Series Selection Guide (IF-151).

^{2:} Not provided with IE-75001-R.

^{3:} Ver.5.00/5.00A has a task swap function, but this function cannot be used with this function.

APPENDIX C. RELATED DOCUMENTS

GENERAL NOTES ON CMOS DEVICES

1 STATIC ELECTRICITY (ALL MOS DEVICES)

Exercise care so that MOS devices are not adversely influenced by static electricity while being handled.

The insulation of the gates of the MOS device may be destroyed by a strong static charge. Therefore, when transporting or storing the MOS device, use a conductive tray, magazine case, or conductive buffer materials, or the metal case NEC uses for packaging and shipment, and use grounding when assembling the MOS device system. Do not leave the MOS device on a plastic plate and do not touch the pins of the device.

Handle boards on which MOS devices are mounted similarly.

(2) PROCESSING OF UNUSED PINS (CMOS DEVICES ONLY)

Fix the input level of CMOS devices.

Unlike bipolar or NMOS devices, if a CMOS device is operated with nothing connected to its input pin, intermediate level input may be generated due to noise, and an inrush current may flow through the device, causing the device to malfunction. Therefore, fix the input level of the device by using a pull-down or pull-up resistor. If there is a possibility that an unused pin serves as an output pin (whose timing is not specified), each pin should be connected to V_{DD} or GND through a resistor.

Refer to "Processing of Unused Pins" in the documents of each devices.

3 STATUS BEFORE INITIALIZATION (ALL MOS DEVICES)

The initial status of MOS devices is undefined upon power application.

Since the characteristics of an MOS device are determined by the quantity of injection at the molecular level, the initial status of the device is not controlled during the production process. The output status of pins, I/O setting, and register contents upon power application are not guaranteed. However, the items defined for reset operation and mode setting are subject to guarantee after the respective operations have been executed.

When using a device with a reset function, be sure to reset the device after power application.

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for uses in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for the applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment,

Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,

Anticrime system, etc.

M4 92.6

MS-DOS is a trademark of Microsoft Corporation.
PC DOS and PC/AT are trademarks of IBM Corporation.