Esercizio

Sia
$$L = \{P, f, c\}$$
, dove

- P è simbolo relazionale binario
- f è simbolo funzionale binario
- c è simbolo di costante

Determinare se

$$(\mathbb{R}, \leq, \cdot, \sqrt{2}) \models (\forall x (f(y, x) = y \land \exists z (P(y, z) \land P(z, f(c, c)))))[y/0]$$

Svolgimento

Sia
$$\mathcal{R} = (\mathbb{R}, \leq, \cdot, \sqrt{2})$$
.

$$\mathcal{R} \models (\forall x (f(y,x) = y \land \exists z (P(y,z) \land P(z,f(c,c)))))[y/0]$$

sse

Per ogni
$$a \in \mathbb{R}, \mathcal{R} \models (f(y, x) = y \land \exists z (P(y, z) \land P(z, f(c, c))))[y/0, x/a]$$

sse

Per ogni
$$a \in \mathbb{R}$$
,
$$\begin{cases} \mathcal{R} \models (f(y,x) = y)[y/0,x/a] \\ e \\ \mathcal{R} \models (\exists z (P(y,z) \land P(z,f(c,c))))[y/0,x/a] \end{cases}$$

sse

Per ogni
$$a \in \mathbb{R}$$
,
$$\begin{cases} 0 \cdot a = 0 \\ e \\ \text{per qualche } b \in \mathbb{R}, \\ \mathcal{R} \models (P(y, z) \land P(z, f(c, c)))[y/0, x/a, z/b] \end{cases}$$

Svolgimento (cont.)

sse

Per ogni
$$a \in \mathbb{R}$$
,
$$\begin{cases} 0 \cdot a = 0 \\ e \\ \text{per qualche } b \in \mathbb{R}, \\ \mathcal{R} \models (P(y,z))[y/0,x/a,z/b] \\ e \mathcal{R} \models (P(z,f(c,c)))[y/0,x/a,z/b] \end{cases}$$

sse

Per ogni
$$a \in \mathbb{R}, \left\{ egin{array}{ll} 0 \cdot a = 0 \\ \mathrm{e} \\ \mathrm{per \ qual \ che} \ b \in \mathbb{R}, 0 \leq b \ \mathrm{e} \ b \leq \sqrt{2} \cdot \sqrt{2} \end{array} \right.$$

cioè

Per ogni
$$a \in \mathbb{R}, \left\{egin{array}{l} 0 \cdot a = 0 \\ \mathrm{e} \\ \mathrm{per} \ \mathrm{qualche} \ b \in \mathbb{R}, 0 \leq b \leq 2 \end{array}
ight.$$

Svolgimento (cont.)

Quest'ultima condizione è vera: dato $a \in \mathbb{R}$, si ha

$$0 \cdot a = 0$$
 e $0 \le 0 \le 2$

Quindi

$$\mathcal{R} \models (\forall x (f(y,x) = y \land \exists z (P(y,z) \land P(z,f(c,c)))))[y/0]$$

Osservazione

Nella pratica, per capire se $\mathcal{A} \models \varphi[x_1/a_1,\ldots,x_n/a_n]$, si può cercare di capire che cosa la formula $\varphi(x_1,\ldots,x_n)$ afferma delle variabili x_1,\ldots,x_n nella struttura \mathcal{A} , per poi vedere se è vera con l'assegnazione $x_1/a_1,\ldots,x_n/a_n$.

Sia $L = \{R, f\}$ un linguaggio del prim'ordine, dove

- R è simbolo relazionale binario
- f è simbolo funzionale binario

Si considerino:

la
$$L$$
-formula $\varphi: \exists z \ f(z,z) = x \land \exists w (R(x,w) \land R(w,y))$
la L -struttura $\mathcal{A} = (\mathbb{N},<,+)$

Nella struttura \mathcal{A} la formula $\varphi(x,y)$ asserisce che:

Esiste un numero
$$z$$
 tale che $z + z = x$
ed esiste un numero w tale che $x < w < y$

cioè

$$x$$
 è pari $,x < y, \ {\rm e}\ x,y$ non sono numeri consecutivi

Quindi, per esempio

•
$$\mathcal{A} \models \varphi[x/2, y/6]$$

•
$$\mathcal{A} \not\models \varphi[x/4, y/4]$$

•
$$\mathcal{A} \not\models \varphi[x/3, y/6]$$

. . .

Esercizio

Siano L, φ come nell'esempio precedente. Sia

$$\mathcal{B} = (\mathbb{R}, <, +)$$

Determinare tutte le coppie (a, b) tali che

$$\mathcal{B} \models \varphi[x/a, y/b]$$

Svolgimento

Nella struttura \mathcal{B} la formula $\varphi(x,y)$ asserisce che:

Esiste un numero *reale* z tale che z + z = x ed esiste un numero *reale* w tale che x < w < y

cioè

x è il doppio di qualche numero reale, x < y, e c'è qualche numero reale tra x e y

Ogni numero *reale* è un doppio (della sua metà); inoltre, se x < y, c'è sempre un numero tra x e y (per esempio, $\frac{x+y}{2}$).

Quindi $\mathcal{B} \models \varphi[x/a, y/b]$ se e solo se

a < b

Valore di verità di un enunciato

- Il valore di verità di una formula φ in una struttura $\mathcal A$ dipende da un'assegnazione, ma solo dai valori che questa assegnazione dà alle variabili libere di φ .
- Quindi, se φ è un *enunciato*, il suo valore di verità in \mathcal{A} *non dipende da alcuna assegnazione* (cioè è sempre lo stesso, qualunque assegnazione si consideri).

Pertanto, se φ è un enunciato, si scrive

$$\mathcal{A} \models \varphi$$

per denotare che φ è vero in \mathcal{A} .

Si dice allora anche che $\mathcal A$ soddisfa φ , o che φ è soddisfatto da $\mathcal A$.

La relazione \models , che è una relazione tra strutture ed enunciati, si chiama relazione di soddisfacibilità.

Sia $L = \{P, f, c\}$ un linguaggio del prim'ordine, dove

- P è simbolo relazionale binario
- f è simbolo funzionale binario
- c è simbolo di costante

Si considerino:

l'enunciato
$$\sigma$$
: $\forall x \forall y (P(c,y) \land f(x,x) = y \rightarrow P(x,y))$ la struttura $\mathcal{A} = (\mathbb{N} < +, 8)$

Nella struttura A, l'enunciato σ asserisce che

per ogni
$$x, y \in \mathbb{N}$$
 (se 8 < y e $x + x = y$, allora $x < y$)

cioè che

ogni numero naturale pari maggiore di 8 è maggiore della sua metà

Ciò è vero, perché se n=2k>8, allora in particolare k>0 e quindi n=2k>k. Quindi

$$\mathcal{A} \models \sigma$$

Nota: Per verificare che $\mathcal{A} \models \sigma$ non si è fatto ricorso ad alcuna assegnazione.

Esercizio

Siano L,σ come nell'esempio precedente. Stabilire se σ è vero in ciascuna delle seguenti L-strutture:

- $(\mathbb{Z}, <, +, -1)$
- $(\mathbb{Q}, \leq, \cdot, 0)$
- $(\mathbb{R}, \geq, \cdot, 0)$
- $(\mathbb{Z}, \geq, +, 2)$

Insiemi di verità

Date una formula φ (con delle variabili libere) e una struttura \mathcal{A} ha senso chiedersi quali siano le assegnazioni che rendono vera φ in \mathcal{A} .

Definizione

Siano:

- L un linguaggio del prim'ordine
- φ una *L*-formula, con $FV(\varphi) = \{x_1, \dots, x_n\}$
- A una L-struttura

L'insieme di verità di φ in $\mathcal A$ (o insieme definito da φ in $\mathcal A$) è l'insieme

$$\varphi(\mathcal{A}) = \{(a_1, \ldots, a_n) \in |\mathcal{A}|^n \mid \mathcal{A} \models \varphi[x_1/a_1, \ldots, x_n/a_n]\}$$

Cioè: $\varphi(\mathcal{A})$ è l'insieme delle n-uple (a_1,\ldots,a_n) di elementi del dominio di \mathcal{A} che rendono vera φ in \mathcal{A} quando sono assegnati come valori delle variabili libere di φ .

Nota. Se φ ha n variabili libere, allora $\varphi(A)$ è un sottoinsieme di $|A|^n$, cioè è una relazione n-aria su |A|.

Come visto in precedenza, se

- $L = \{R, f\}$, con
 - R simbolo relazionale binario
 - f simbolo funzionale binario

•
$$\varphi(x,y)$$
: $\exists z \ f(z,z) = x \land \exists w (R(x,w) \land R(w,y))$

•
$$\mathcal{B} = (\mathbb{R}, <, +)$$

allora

$$\varphi(\mathcal{B}) = \{(a,b) \in \mathbb{R}^2 \mid a < b\}$$

Siano

- $L = \{f, a\}$, con
 - f simbolo funzionale binario
 - a simbolo di costante

•
$$\varphi$$
 : $\exists x \ f(x,y) = a$, per cui $FV(\varphi) = \{y\}$

Si consideri la L-struttura

$$\mathcal{A} = (\mathbb{Z}, +, 0)$$

Pertanto,

$$\varphi(\mathcal{A}) = \{ k \in \mathbb{Z} \mid \mathcal{A} \models (\exists x \ f(x, y) = a)[y/k] \} \subseteq \mathbb{Z}$$

ovvero $\varphi(\mathcal{A})$ è l'insieme di tutti i $k \in \mathbb{Z}$ tali che esiste $x \in \mathbb{Z}$ per cui x + k = 0.

Poichè questo è vero per ogni intero k (basta considerare x=-k) segue che

$$\varphi(\mathcal{A}) = \mathbb{Z}$$

Invece, se $\mathcal{B} = (\mathbb{N}, +, 0)$, si ha $\varphi(\mathcal{B}) = \{0\}$.

Siano

•
$$L = \{f, g\}$$
, con f, g simboli funzionali binari

•
$$\varphi$$
: $f(x,x) = g(x,x)$

Si ha $FV(\varphi) = \{x\}$; quindi, data una L-struttura A,

$$\varphi(\mathcal{A}) \subseteq |\mathcal{A}|$$

Sia $\mathcal{A}=(\mathbb{R},+,\cdot)$. Allora

$$r \in \varphi(A) \Leftrightarrow A \models (f(x,x) = g(x,x))[x/r] \Leftrightarrow \Leftrightarrow r + r = r \cdot r \Leftrightarrow \Leftrightarrow 2r = r^2$$

Risolvendo (in \mathbb{R}) questa equazione, si ottiene $\varphi(A) = \{0, 2\}$.

Sia $L = \{f\}$, con f simbolo funzionale binario. Sia

$$\varphi$$
: $\exists z \ f(x,z) = y$

Si ha $FV(\varphi) = \{x, y\}$; data una L-struttura A,

$$\varphi(\mathcal{A}) \subseteq |\mathcal{A}|^2$$

cioè $\varphi(A)$ è una relazione binaria su |A|.

Esempio (cont.)

Sia
$$\mathcal{A} = (\mathbb{N}, +)$$
. Allora

$$(n,m) \in \varphi(\mathcal{A}) \Leftrightarrow \mathcal{A} \models (\exists z \ f(x,z) = y)[x/n,y/m] \Leftrightarrow \Leftrightarrow \text{per qualche } k \in \mathbb{N} \text{ si ha } n+k=m \Leftrightarrow \Leftrightarrow n \leq m$$

Perciò $\varphi(\mathcal{A}) = \{(n, m) \in \mathbb{N}^2 \mid n \leq m\}$, ovvero $\varphi(\mathcal{A})$ è la relazione \leq su \mathbb{N} .

Sia
$$\mathcal{B} = (\mathbb{N}, \cdot)$$
. Allora

$$(n, m) \in \varphi(\mathcal{B}) \Leftrightarrow \mathcal{B} \models (\exists z \ f(x, z) = y)[x/n, y/m] \Leftrightarrow \Leftrightarrow \text{per qualche } k \in \mathbb{N} \text{ si ha } n \cdot k = m \Leftrightarrow \Leftrightarrow n \text{ è un divisore di } m$$

Perciò $\varphi(\mathcal{B}) = \{(n, m) \in \mathbb{N}^2 \mid n \text{ è un divisore di } m\}$, cioè $\varphi(\mathcal{B})$ è la relazione di divisibilità su \mathbb{N} .

Siano

- $L = \{P, f, c\}$, con
 - P simbolo relazionale binario
 - f simbolo funzionale binario
 - c simbolo di costante

•
$$\varphi : P(f(x,x),c)$$
, quindi $FV(\varphi) = \{x\}$

Se $\mathcal{A}=(\mathbb{Z},<,+,0)$, allora $k\in\varphi(\mathcal{A})$ se e solo se k+k<0, cioè se e solo se k<0:

$$\varphi(\mathcal{A}) = \{ k \in \mathbb{Z} \mid k < 0 \}$$

è l'insieme degli interi negativi.

Se invece $\mathcal{B}=(\mathbb{Z},<,\cdot,0)$, allora $\varphi(\mathcal{B})=\emptyset$: infatti non c'è alcun $k\in\mathbb{Z}$ tale che $k^2<0$.

Siano

- $L = \{P, f\}$, con
 - P simbolo relazionale binario
 - f simbolo funzionale binario

•
$$\varphi: P(y,z) \land \exists x \ f(y,x) \neq y \land \exists x \ f(x,x) = z$$
, quindi $FV(\varphi) = \{y,z\}$.

L'insieme di verità di φ in $\mathcal{A}=(\mathbb{N},<,\cdot)$ è l'insieme delle coppie $(n,m)\in\mathbb{N}^2$ tali che

- n < m</p>
- c'è qualche $k \in \mathbb{N}$ tale che $nk \neq n$, cioè $n \neq 0$
- m è un quadrato perfetto

cioè:

$$\varphi(\mathcal{A}) = \{(n, m) \in \mathbb{N}^2 \mid n \neq 0, m \text{ è un quadrato perfetto}, n < m\}$$

