KEYS	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	

KET SHEET											
1.	В	2.	A	3.	В	4.	A	5.	A		
6.	D	7.	В	8.	A	9.	A	10.	A		
11.	В	12.	A	13.	В	14.	В	15.	С		
16.	D	17.	A	18.	D	19.	D	20.	A		
21.	A	22.	В	23.	A	24.	A	25.	С		

HINTS & SOLUTIONS

1. Since $y = e^x$ and $y = \log_e x$ are inverse to each other.

Fig. S-9.61

2. Statement – 2 is correct as y = f(x) is odd and hence statement – 1 is correct.

3. Area =
$$\int_{1}^{3} -(x^2 - 4x + 3) dx - \left(\frac{x^3}{3} - \frac{4x^2}{2} + 3x\right)\Big|_{1}^{3} = \frac{4}{3} sq.units$$

Therefore, statement -1 is time.

Obviously, statement -2 is true, but does not explain statement -1

4. Given curves are $y^2 - 2y + 4x + 5 = 0$ and $x^2 + 2x - y + 2 = 0$ or $(y-1)^2 = -4(x+1)$ and $(x+1)^2 = y-1$.

Shifting origin to (-1, 1), equation of given curves changes to $y^2 = -4x$ and $X^2 = Y$ Hence, statement -1 is true and statement-2 is correct explanation of statement -1.

Sri Chaitanya IIT Academy

5. $y = e^{2x}$ and $2y = \log_e x$ as inverse of each other.

The shaded area is given as k sq.units. Thus, the required are is 2k sq.units

6. R_1 : Points P(x, y) is nearer to (1, 0) than to x = -1

$$\Rightarrow \sqrt{(x-1)^2 + y^2 < |x+1|} \Rightarrow y^2 < 4x$$

Hence, point P lies inside parabola $y^2 = 4x$.

 P_2 : Point P(x, y) is nearer to (0, 0) than to (8, 0)

$$\Rightarrow |x| < |x - 8| \text{ or } x^2 < x^2 - 16x + 64 \text{ or } x < 4$$

Hence, point P is towards left side of line x = 4

The area of common region of R_1 and R_2 is the area bounded by x = 4 and $y^2 = 4x$

There area is twice the area bounded by $x = 4\sqrt{y}$ and y = 4, Now, the area bounded by

$$x = 4\sqrt{y}$$
 and $y = 4$ is

$$A = \int_{0}^{4} \left(4 - \frac{x^{2}}{4} \right) dx = \left[4x - \frac{x^{3}}{12} \right]_{0}^{4} = \left[16 - \frac{64}{12} \right] = \frac{32}{3} \text{ sq.units}$$

Hence, the area bounded by R_1 and R_2 is $\frac{64}{3}$ sq.units

Thus, statement -1 is false but statement -2 is true.

7.
$$2 \ge \max \{|x-y|, |x+y|\}$$

$$\Rightarrow |x-y| \le 2$$
 and $|x+y| \le 2$, which forms a square of diagonal length 4 units.

Hence, the area of the region is $\frac{1}{2} \times 4 \times 4 = 8 \text{ sq.units}$

This is equal to the area of the square of side length $2\sqrt{2}$

$$8. \qquad \because \quad y = e^{x^3}$$

$$\therefore \frac{dy}{dx} = e^{x^3} \cdot 3x^2 > 0$$

 \Rightarrow y is an increasing function and area enclosed by the curve $y = e^{x^3}$ between the lines

$$x = a, x = b$$
 and $x - axis$ is $\int_a^b e^{x^3} dx$

9. For
$$0 < t < 1$$

$$\therefore \sin^2 x < \sin x \Rightarrow \int_0^{\pi} \sin^2 x \, dx < \int_0^{\pi} \sin x \, dx$$

10. It is a clear from the figure for $x \in [2.2, 2.8] \Rightarrow (x-1)(x-2)(x-3) \le 0$

$$\therefore \text{ Required area} = \left| \int_{2.2}^{2.8} f(x) dx \right| = \left| \int_{2.2}^{2.8} (x-1)(x-2)(x-3) dx \right|$$

11. Area =
$$\int_{1}^{3} -(x^2 - 4x + 3) dx = -\left[\frac{x^3}{3} - \frac{4x^2}{2} + 3x\right]_{1}^{3} = \frac{4}{3} sq.units$$

Therefore, Assertion is true

Obviously, Reason is true but does not explain Assertion.

12. Given curves are $y^2 - 2y + 4x + 5 = 0$ and $x^2 + 2x - y + 2 = 0$ or $(y-1)^2 = -4(x+1)$ and $(x+1)^2 = y-1$

Shifting origin to (-1, 1) equation of given curves change to $Y^2 = -4x$ and $X^2 = Y$. Hence, Assertion is true and Reason is correct explanation of Assertion.

It is clear from the above figures the area between the curve $y^2 = -x$ and y = |x| is the same and between $y^2 = -x$ and y = -x.

:. Statement -1 is true but Statement-2 is not a correct explanation of Statement-1

14.

$$\therefore \max \{|x-y|, |x+y|\} \le 2 \Rightarrow |x-y| \le 2 \text{ and } |x+y| \le 2$$

Which forms a square of diagonal length 4 units

 \Rightarrow The area of the bounded region $=\frac{1}{2} \times 4 \times 4 = 8$ sq.units

The is equal to the area of the square of side length $2\sqrt{2}$.

Here both S-1 are true but statement-2 is not correct explanation of S-1

24. **S-1**:

$$\int_{0}^{3} |x^{3} - 4x^{2} + 3x| dx = \int_{0}^{1} (x^{3} - 4x^{2} + 3x) dx - \int_{1}^{3} (x^{3} - 4x^{2} + 3x) dx$$

$$= \left[\frac{x^{4}}{4} - \frac{4x^{3}}{3} + \frac{3x^{2}}{2} \right]_{0}^{1} - \left[\frac{x^{4}}{4} - \frac{4x^{3}}{3} + \frac{3x^{2}}{2} \right]_{1}^{3}$$

$$= \left(\frac{1}{4} - \frac{4}{3} + \frac{3}{2} \right) - \left[\left(\frac{81}{4} - \frac{4}{3} \times 3^{3} + \frac{27}{2} \right) - \left(\frac{1}{4} - \frac{4}{3} + \frac{3}{2} \right) \right]$$

$$= \frac{3 - 16 + 18}{12} - \left[\frac{81}{4} - \frac{108}{3} + \frac{27}{2} \right] + \left(\frac{3 - 16 + 18}{12} \right)$$

$$= \frac{5}{12} - \left(\frac{-27}{12} \right) + \frac{5}{12}$$

$$= \frac{37}{12}$$

S-2: g(x) is not differentiable at 0,1,2

$$0 \le y \le 2\sin 2x, 0 < x < \frac{\pi}{2}$$

For rectangle $2\sin 2\alpha = 2\sin 2\beta \Rightarrow \alpha + \beta = \frac{\pi}{2}$

Perimeter =
$$2(\beta - \alpha) + 4\sin 2\beta = 2\left(\beta - \left(\frac{\pi}{2} - \beta\right)\right) + 4\sin 2\beta$$

= $4\beta - \pi + 4\sin 2\beta$
$$\frac{dp}{d\beta} = 4\cos 2\beta \cdot 2 + 4$$

$$\cos 2\beta = -\frac{1}{2}, \beta = \frac{\pi}{3}$$

$$\frac{d^2p}{d\beta^2} = -16\sin 2\beta < 0 \text{ so } p \text{ is } \max$$

So, area of rectangle = $(\beta - \alpha) 2 \sin 2\beta$

$$= \left(\frac{\pi}{3} - \frac{\pi}{6}\right) 2\sin 2\left(\frac{\pi}{3}\right)$$
$$= \frac{\pi}{6} \times 2 \times \frac{\sqrt{3}}{2} = \frac{\pi}{2\sqrt{3}}$$

S-2: Required area =
$$=2\int_{0}^{\sqrt{3}} (2x^2 + 9 - 5x^2) dx = 12\sqrt{3} sq.units$$