Advanced Modelling Technique for Water Resource Manage

AMTWRM WORKSHOP | MARCH-2021 | 22 | 23 | 24

"Catchment Parameters Delineation Process"

Dr. Ankit Deshmukh

(Assistant Professor) ankit.deshmukh@sot.pdpu.ac.in CED SoT, PDEU, Gandhinagar

What is a catchment

Catchments are areas of land where runoff collects to a specific zone.

A catchment is a basic hydrological unit in hydrological analysis.

The process of catchment delineation

Source: www.ocw.unesco-ihe.org

QGIS to catchment and stream delineation

QGIS is a free and open-source cross-platform desktop geographic information system application that supports viewing, editing, and analysis of geospatial data.

Why I use QGIS

- 1. QGIS is Free and Open source (FOSS)
- 2. QGIS is cross platform
- 3. The use of open source GIS is growing
- 4. Plenty of QGIS support and Tutorials
- 5. Cartography, data visualization and styling
- 6. It's rapidly growing and evolving.

QGIS resource

- 1. <u>Documentation (qgis.org)</u>
- 2. QGIS Python API documentation
- 3. QGIS Learning Resources
- 4. Geographic Information Systems Stack Exchange

Digital Elevation Models

Digital Terrain Model (DTM): A quantitative model of a part of the Earth's surface in digital form (Burrough & McDonnel, 1998)

Digital Surface Model (DSM): DTM + all natural or human-made features.

Source: https://en.wikipedia.org/wiki/Digital_elevation_model

Source: www.geopranata.co.id

Open access DEM source

Space Shuttle Radar Topography Mission (SRTM)

NASA crated 30-meter digital elevation model back in February 2000 with the Space Shuttle Endeavour launched with the SRTM payload.

Global Digital Elevation Model

ASTER GDEM boasted a global resolution of 90 meters with a resolution of 30 meters in the United States.

JAXA's Global ALOS 3D World

ALOS World 3D is a 30-meter resolution digital surface model (DSM) captured by the Japan Aerospace Exploration Agency's (JAXA).

A 30-meter SRTM elevation data downloader

Step 01: Open link https://dwtkns.com/srtm30m/

Step 02: Choose tile of you choice

Step03: Login with your EARTHDATA account to

download DEM tiles

Register for an Earthdata Login Profile

Download SRTM tiles using a plugin

SRTM-Downloader plugin: Plugin → SRTM-Downloader

* NASA Earthexplorar account required

A 30m DEM: A raster made of 30m x 30m pixel size

Merge or mosaic DEM

Merge:: Raster→ Miscellaneous → Merge

Reproject DEM for computation

Global datasets are usually in EPSG:4326 (Geographic Coordinate System, Lat/Lon)

For correct calculation of DEM derivatives, the DEM should be reprojected to a Coordinate Reference System

Projection: WGS 84 / UTM zone 43N

Proj4: +proj=utm +zone=43 +datum=WGS84 +units=m

Extent : 72.00, 0.00, 78.00, 84.00

Reproject:: Raster → Projections → Warp

Fill sinks/ pits removal

Create a hydrologically correct DEM

Source: http://girps.net/

Processing → Toolbox → SAGA → Terrain analysis → Fill

Subset a DEM Project Edit View Layer Settings Plugins Vector Raster Database Web Mesh Processing Help Raster Calculator... 💜 🙉 💀 🔻 🕝 🖬 📑 🖳 Miscellaneous Clip_Channel Clip Raster by Extent... Catchment Clip Raster by Mask Layer... Test06 Contour... N22E075 833 N22E074 792 Clipped (mask) ❷ Fil_crop_DEM HillShade OpenStreetMap

Calculate flow directions: D8

$$\frac{67 - 52}{30} = 0.50 \qquad \frac{67 - 48}{30\sqrt{2}} = 0.45$$

Slope = Drop/Distance Steepest down slope direction

D8 for each cell

Derive streams: Flow accumulation

Flow Accumulation > 3 Cell Threshold

1	1	1	1	1
1	3	3	3	1
1	1	11	1	2
2	1	1	15	1
1	5	2	20	2

Define outflow point and compute upslope area

Outlet needs to be defined in a delineated river that corresponds with the flow directions that have been calculated

Strahler stream order

Stream order in hydrography deals with the hierarchy of streams from the source downstream [Horton, R. E. (1945)].

Source: https://www.thoughtco.com/

Source: http://bookofmormonresources.blogspot.com/

Strahler stream order

Calibration of Stream Order threshold with Raster Calculator

Threshold : SO ≥ 5

Threshold : SO ≥ 6

Delineate channel networks

Stylize the flow direction map

Delineate the upslope area

Delineation of catchment

Use *field calculator* for field operation

Area = 218325577.17 m^2

Perimeter = 122047.79 m

Stream length = sum(length) = 150977.93 m

Stylize and create a map

