GRADO EN INGENIERIA INFORMATICA

FÍSICA HOJA 6

Conductores.

- **1.** En el centro de una esfera metálica hueca de radio interior R_1 y exterior R_2 , y carga total Q=0 se situa una carga puntual q.
- a) Obtener las distribuciones finales de carga.
- b) Calcular el campo eléctrico en todas las regiones del espacio.
- **2.** Dos esferas conductoras de radios 2 y 5 cm, cargadas respectivamente con 10×10^{-9} C y -15×10^{-9} C, se unen entre sí mediante un hilo conductor. Las esferas están separadas entre sí una distancia mucho mayor que sus radios. Calcular:
- a) la carga y el potencial de cada esfera después de la conexión
- b) la energía total del sistema antes y después de la conexión.

Nota: si las esferas conductoras están lo suficientemente separadas, el potencial de cada una vendrá dado por $V_{esf} = \frac{Q_{esf}}{4\pi\epsilon_0\,R_{esf}}$

- **3.** Dos esferas conductoras de radios R_1 = 5 cm y R_2 = 7 cm previamente cargadas, se ponen en contacto y después se separan una distancia mucho mayor que los radios. Se mide el potencial que ha alcanzado la esfera de radio R_1 , resultando ser de 150 V. Si inicialmente su carga era de 3 nC, ¿qué carga tenía inicialmente la esfera de radio R_2 ?
- **4.** Sea una esfera conductora de radio R_1 cargada con carga Q_1 que se encuentra en el interior de una esfera hueca conductora de radio interno R_2 y radio externo R_3 , cargada con carga Q_2 .
- a) Calcular la expresión general del campo eléctrico en todos los puntos del espacio.
- b) Calcular el campo eléctrico en los puntos (0,15,0) y (0,35,20) (las coordenadas están expresadas en centímetros).
- c) Recalcular el apartado (a) si la esfera exterior se conecta a tierra

DATOS:
$$R_1 = 10$$
 cm; $R_2 = 20$ cm; $R_3 = 30$ cm; $Q_1 = -1$ μ C; $Q_2 = 2$ μ C

- **5.** Se distribuye carga de manera uniforme en el volumen de una esfera de radio R_1 , siendo ρ_0 la densidad de carga. Esta distribución se introduce en el interior de una esfera hueca metálica, de radios interno R_2 y externo R_3 , que está cargada con Q.
- a) Calcular las densidades de carga en las superficies de la esfera conductora.
- b) Calcular la expresión general del campo eléctrico en todas las regiones del espacio.

DATOS: $R_1 = 15$ cm; $R_2 = 20$ cm; $R_3 = 40$ cm; $\rho_0 = -2 \mu C / m^3$; $Q_0 = 40$ nC

GRADO EN INGENIERIA INFORMATICA

FÍSICA HOJA 6

Conductores.

- **6.** Se tiene una esfera hueca conductora, de radios interno y externo b y c respectivamente, cargada con Q. A una gran distancia se tiene una esfera maciza conductora de radio a (a<b) y descargada.
- a) Si se ponen en contacto las dos esferas a través de un cable metálico, calcular el potencial electrostático de cada una de las esferas en el equilibrio electrostático.

Nota: el potencial eléctrico de la esfera hueca viene dado por $V_{eh}=\frac{Q_{eh}}{4\,\pi\,\epsilon_0\,c}$ (siempre que la esfera maciza esté suficientemente alejada)

A continuación se retira el cable metálico que las unía, y se introduce la esfera maciza en el interior de la esfera hueca, tal y como indica la figura.

- b) Calcular las densidades de carga en todas las superficies conductoras
- c) Calcular el campo eléctrico en todos los puntos del espacio.

FÍSICA HOJA 6

Conductores.

SOLUCIONES

1. a)
$$\sigma_{R1} = -\frac{q}{4 \pi R_1^2}$$
 $\sigma_{R2} = \frac{q}{4 \pi R_2^2}$

$$r < R_1$$
 $E(r) = \frac{q}{4\pi\epsilon_0 r^2}$

b)
$$R_1 < r < R_2$$
 $E = 0$
 $r > R_2$ $E(r) = \frac{q}{4\pi\epsilon_0 r^2}$

2.
$$Q_1 = -1.4 \times 10^{-9} \text{ C}$$
 $Q_2 = -3.6 \times 10^{-9} \text{ C}$ $V_1 = V_2 = -642.3 \text{ V}$ $U_i = 4.27 \times 10^{-5} \text{ J}$ $U_f = 1.6 \times 10^{-6} \text{ J}$

$$r < R_1 \qquad E = 0$$

$$A_1 < r < R_2 \qquad \vec{E}(r) = -\frac{9 \times 10^3}{r^2} \vec{u}_r \qquad (N/C)$$

$$R_2 < r < R_3 \qquad E = 0$$

$$r > R_3 \qquad \vec{E}(r) = \frac{9 \times 10^3}{r^2} \vec{u}_r \qquad (N/C)$$

b)
$$\vec{E} = -4 \times 10^5 \text{ N/C}$$
 (0,15,0)
 $\vec{E} = 4.81 \times 10^4 \vec{j} + 2.75 \times 10^4 \vec{k} \text{ N/C}$ (0,35,20)

$$\begin{array}{ll} r < R_1 & E(r) = 0 \\ c) & R_1 < r < R_2 & \bar{E}(r) = -\frac{9 \times 10^3}{r^2} \bar{u}_r & (N/C) \\ Rr > R_2 & E(r) = 0 \end{array}$$

FÍSICA HOJA 6

Conductores.

5. a)
$$\sigma(R_2) = 5.62 \times 10^{-8} \text{ C/m}^2$$
 $\sigma(R_3) = 5.83 \times 10^{-9} \text{ C/m}^2$ b) $\vec{E} = \frac{105.43}{r^2} \vec{u}_r \quad (r > R_3)$ $\vec{E} = 0 \quad (R_2 < r < R_3)$ $\vec{E} = -\frac{254.24}{r^2} \vec{u}_r \quad (R_1 < r < R_2)$ $\vec{E} = -7.53 \times 10^4 r \ \vec{u}_r \quad (r < R_1)$

6. a)
$$V_{eh} = V_{em} = \frac{Q}{4 \pi \, \varepsilon_0 \, (c+a)}$$

b)
$$\sigma(a) = \frac{Q}{4\pi a(c+a)}$$

$$\sigma(b) = -\frac{a Q}{4 \pi b^2 (c+a)}$$

$$\sigma\left(c\right) = \frac{Q}{4\pi\,c^2}$$

c)
$$E(r) = \frac{Q}{4 \pi \epsilon_0 r^2}$$
 $(r > c)$

$$E(r) = 0 \quad (b < r < c)$$

$$E(r) = \frac{a \, Q}{4 \, \pi \, \varepsilon_0 \, (c+a)r^2} \quad (a < r < b)$$

$$E(r) = 0 \quad (r < a)$$