### **Neural Network**

Practical Work
N. Houmani and S. Garcia
10/01/2024

### LINEAR PERCEPTRON

#### Linear\_Perceptron.ipynb

- Generate an artificial dataset :
- Two variables : x1, x2
- 2 classes : y=0, y=1



$$a = \frac{1}{1 + e^{-z}}$$



Log Loss

$$L = -\frac{1}{m} \sum_{i=1}^{m} y_i log(a_i) + (1 - y_i) log(1 - a_i)$$

- > Analyze the performance of the model and the loss function
- Observe the parameters of the model
- Predict the value of different samples
- Observe the decision boundary

## LINEAR PERCEPTRON

#### Linear\_Perceptron\_DogCat.ipynb

- Copy : dataset folder and utility.py in the current folder
- Load the dataset splitted into training and test sets
  - Analyze the architecture of the model
  - Apply the model with learning\_rate=0.1 and n\_iter=200. Observation.
  - Change the value of the "learning\_rate" and "n\_iter"
  - > Analyze the performance and loss function on the training and test sets. Conclusion.
- Note: data should be normalized and flatten

#### Linear\_Perceptron\_Circle.ipynb

- Generate the dataset
  - Apply the model with learning\_rate=0.1 and n\_iter=200.
  - Analyze the performance and the loss function.
  - Observe the decision boundary. Conclusion.

# PERCEPTRON WITH TWO LAYERS

#### **Neural Network\_Circle.ipynb**

- Generate the dataset
  - ➤ Apply the model with n1=2, 4, 8 in the hidden layer.
  - Analyze the performance and the loss function. Conclusion.

#### Neural Network\_DogCat.ipynb

➤ Apply the model with n1= 4, 8, 32 in the hidden layer, and change the number of iterations. *Observation*.