RECENT ADVANCES WITH PARALLEL FREEFEM

Pierre Jolivet — CNRS December 9, 2021

FreeFEM days, 13th edition

INTRODUCTION

- 1. Introduction
- 2. New functionalities
- 3. Applications
- 4. DD preconditioning
- 5. Conclusion

INTRODUCTION

BASIC SEQUENTIAL FUNCTIONALITIES

Domain specific language for FE

- mesh structure
- associated finite element spaces
- vector and matrix assemblies
- algebraic operations

INTERFACE TO OTHER LIBRARIES

- installed by PETSc (make petsc-slepc)
 - □ MPICH
 - CMake
 - BLAS
 - □ MUMPS or
 - SuperLU_DIST
 - □ SuperLU
 - SuiteSparse
 - □ hypre
 - □ MFTIS

- □ ParMETIS
- □ SCOTCH
- TetGen
- □ SLEPc
- □ HPDDM
- □ ARPACK
- □ Mmg
- □ ParMmg
- □ Htool

INTERFACE TO OTHER LIBRARIES

0	installed by PEISc (make	petsc-slepc)	
	□ MPICH	□ ParMETIS	
	□ CMake	□ SCOTCH	
	□ BLAS	□ TetGen	
	□ MUMPS or	□ SLEPc	
	SuperLU_DIST	□ HPDDM	
	□ SuperLU	□ ARPACK	
	 SuiteSparse 	□ Mmg	
	□ hypre	□ ParMmg	
	□ METIS	□ Htool	
0	tested on Windows, Linux	, Apple Intel/ARM, A64	FX

INTERFACE TO OTHER LIBRARIES

installed by PETSc (make petsc-slepc) □ MPICH □ ParMETIS □ CMake □ SCOTCH □ BLAS □ TetGen □ MUMPS or □ SI FPc SuperLU DIST □ HPDDM SuperLU □ ARPACK SuiteSparse □ Mmg □ hypre ParMmg □ MFTIS □ Htool o tested on Windows, Linux, Apple Intel/ARM, A64FX...

⇒ seguential or parallel (with FreeFem++-mpi)

GOING PARALLEL

- distributed-memory paradigm (MPI)
- not transparent to users
- o additional lightweight macros

NEW FUNCTIONALITIES

IMPORTANT REMINDER

- examples, see examples/hpddm/README.md
- functionalities, see CHANGELOG.md
- o developments are user-driven: ask what you need

INTERPOLATION

- o FreeFEM kernels are sequential
- o interpolation between different fespaces

INTERPOLATION

- FreeFEM kernels are sequential
- o interpolation between different fespaces

INTERPOLATION

- FreeFEM kernels are sequential
- o interpolation between different fespaces

detect intersecting subdomains

detect intersecting subdomains

- detect intersecting subdomains
- o neighborwise reduction

- detect intersecting subdomains
- o neighborwise reduction
- o interpolation into the output fespace

- detect intersecting subdomains
- o neighborwise reduction
- o interpolation into the output fespace

API FOR PARALLEL INTERPOLATION

- o transfer a single finite element function
- o assemble a parallel Mat, like interpolate
- use with PETSc PCMG (GMG machinery)

API FOR PARALLEL INTERPOLATION

- o transfer a single finite element function
- assemble a parallel Mat, like interpolate
- use with PETSc PCMG (GMG machinery)

- o 0.3M vs. 5M elements
- o 61 **PCMG** iterations on 1,024 processes for Poisson
- 0.9 (nested) vs. 36 sec (non-nested) for building P

- Poisson equation on the Fischera corner
- o algebraic system solved with hypre
- 78 MPI processes of Irène@TGCC

- Poisson equation on the Fischera corner
- o algebraic system solved with hypre
- 78 MPI processes of Irène@TGCC

Iteration	#1
# of tetrahedra	45k
ParMmg (sec)	6.5
hypre (sec)	0.2

- Poisson equation on the Fischera corner
- algebraic system solved with hypre
- o 78 MPI processes of Irène@TGCC

Iteration	#1	#2
# of tetrahedra	45k	47k
ParMmg (sec)	6.5	8.4
hypre (sec)	0.2	0.4

- Poisson equation on the Fischera corner
- o algebraic system solved with hypre
- 78 MPI processes of Irène@TGCC

Iteration	#1	#2	#3
# of tetrahedra	45k	47k	93k
ParMmg (sec)	6.5	8.4	13.4
hypre (sec)	0.2	0.4	1.1

- Poisson equation on the Fischera corner
- o algebraic system solved with hypre
- 78 MPI processes of Irène@TGCC

Iteration	#1	#2	#3	#4
# of tetrahedra	45k	47k	93k	249k
ParMmg (sec)	6.5	8.4	13.4	24.2
hypre (sec)	0.2	0.4	1.1	2.7

- Poisson equation on the Fischera corner
- o algebraic system solved with hypre
- 78 MPI processes of Irène@TGCC

Iteration	#1	#2	#3	#4	#5
# of tetrahedra	45k	47k	93k	249k	715k
ParMmg (sec)	6.5	8.4	13.4	24.2	43.7
hypre (sec)	0.2	0.4	1.1	2.7	7.2

- Poisson equation on the Fischera corner
- algebraic system solved with hypre
- o 78 MPI processes of Irène@TGCC

Iteration	#1	#2	#3	#4	#5	#6
# of tetrahedra	45k	47k	93k	249k	715k	2M
ParMmg (sec)	6.5	8.4	13.4	24.2	43.7	106
hypre (sec)	0.2	0.4	1.1	2.7	7.2	18

- Poisson equation on the Fischera corner
- o algebraic system solved with hypre
- 78 MPI processes of Irène@TGCC

Iteration	#1	#2	#3	#4	#5	#6	#7
# of tetrahedra	45k	47k	93k	249k	715k	2M	5.5M
ParMmg (sec)	6.5	8.4	13.4	24.2	43.7	106	78.7
hypre (sec)	0.2	0.4	1.1	2.7	7.2	18	30

- Poisson equation on the Fischera corner
- o algebraic system solved with hypre
- 78 MPI processes of Irène@TGCC

Iteration	#1	#2	#3	#4	#5	#6	#7	#8
# of tetrahedra	45k	47k	93k	249k	715k	2M	5.5M	12M
ParMmg (sec)	6.5	8.4	13.4	24.2	43.7	106	78.7	231
hypre (sec)	0.2	0.4	1.1	2.7	7.2	18	30	58

- Poisson equation on the Fischera corner
- o algebraic system solved with hypre
- 78 MPI processes of Irène@TGCC

Iteration	#1	#2	#3	#4	#5	#6	#7	#8	#9
# of tetrahedra	45k	47k	93k	249k	715k	2M	5.5M	12M	26M
ParMmg (sec)	6.5	8.4	13.4	24.2	43.7	106	78.7	231	838
hypre (sec)	0.2	0.4	1.1	2.7	7.2	18	30	58	_

Nonstandard eigensolvers

o Nonlinear $T(\lambda)x = 0 \implies \mathsf{NEPSolve}$ o Polynomial $\left(\sum_{i=0}^{N} \lambda^i A_i\right) x = 0, N \geqslant 2 \implies \mathsf{PEPSolve}$ o SVD $Av = \sigma u \implies \mathsf{SVDSolve}$

Array of PETSc matrices

As easy as FreeFEM matrices, e.g., Mat[int] A(N+1)

NONSTANDARD EIGENSOLVERS

o Nonlinear $T(\lambda)x = 0 \implies \mathsf{NEPSolve}$ o Polynomial $\left(\sum_{i=0}^{N} \lambda^i A_i\right) x = 0, N \geqslant 2 \implies \mathsf{PEPSolve}$ o SVD $Av = \sigma u \implies \mathsf{SVDSolve}$

Array of PETSc matrices

As easy as FreeFEM matrices, e.g., Mat[int] A(N+1)

⇒ blasius-stability-1d-SLEPc-complex.edp

EASIER USE OF SHELLS FOR PRECONDITIONERS

Oseen equations:
$$A = \begin{bmatrix} F & B \\ B^T & C \end{bmatrix} \implies Mat A = [[F, B], [B', C]]$$

EASIER USE OF SHELLS FOR PRECONDITIONERS

```
Oseen equations: A = \begin{bmatrix} F & B \\ B^T & C \end{bmatrix} \Longrightarrow Mat A = [[F, B], [B', C]]
Mat Object: 4 MPI processes
 type: nest
 rows=37507, cols=37507
  Matrix object:
   type=nest, rows=2, cols=2
   MatNest structure:
   (0,0): prefix="fieldsplit 0 ", type=mpiaij...
   (0,1): type=mpiaij, rows=33282, cols=4225
   (1,0): type=transpose, rows=4225, cols=33282
   (1,1) : prefix="fieldsplit_1_", type=mpiaij...
```

EASIER USE OF SHELLS FOR PRECONDITIONERS

Oseen equations:
$$A = \begin{bmatrix} F & B \\ B^T & C \end{bmatrix} \Longrightarrow$$
 Mat $A = [[F, B], [B', C]]$
Triangular preconditioner: $\tilde{A} = \begin{bmatrix} \tilde{F} & B \\ 0 & \tilde{S} \end{bmatrix}$ with $\tilde{S}^{-1} \approx -M_p^{-1} F_p L_p^{-1}$

EASIER USE OF SHELLS FOR PRECONDITIONERS

```
Oseen equations: A = \begin{bmatrix} F & B \\ B^T & C \end{bmatrix} \Longrightarrow Mat A = [[F, B], [B', C]]
Triangular preconditioner: \tilde{A} = \begin{bmatrix} \tilde{F} & B \\ 0 & \tilde{S} \end{bmatrix} with \tilde{S}^{-1} \approx -M_p^{-1} F_p L_p^{-1}
func real[int] PCD(real[int]& in) {
      real[int] out(in.n);
      KSPSolve(Lp,in,out); MatMult(Fp,out,in);
      KSPSolve(Mp,in,out); out *= -1.0;
      return out; // = -Mp \ Fp * Lp \ in
set(C, parent = A, precon = PCD,
          sparams = "-fieldsplit_1_pc_type shell");
```

FEM-BEM INTEROPERABILITY

- o distributed FE space associated to a global numbering
- o renumber the global mesh accordingly

FEM-BEM INTEROPERABILITY

- o distributed FE space associated to a global numbering
- o renumber the global mesh accordingly

```
Mat E,V;
ThLocal = ThGlobal;
createMat(ThLocal,E,P0); // elements
createMat(ThLocal,V,P1); // vertices
CoherentGlobalMesh(E,V,ThLocal,ThGlobal);
```

FEM-BEM INTEROPERABILITY

- o distributed FE space associated to a global numbering
- o renumber the global mesh accordingly

```
Mat E,V;
ThLocal = ThGlobal;
createMat(ThLocal,E,P0); // elements
createMat(ThLocal,V,P1); // vertices
CoherentGlobalMesh(E,V,ThLocal,ThGlobal);
```

FEM and/or BEM assemblies in a Mat

```
o A = varfFEM(), int2d(ThLocal)
```

o A = varfBEM(), int2dx2d(ThGlobal)(ThGlobal)

Unstructured circle with inclusion

Canonical FreeFEM vertex numbering

Domain decomposed mesh

Coherent global FEM-BEM vertex numbering

UPCOMING FEATURES/FIXES

- o https://github.com/FreeFem/ FreeFem-sources/pull/210
- o https://community.freefem.org/t/
 dmplex-can-not-read-region-number/1368
- o ask and you shall receive

APPLICATIONS

FEM-BEM COUPLING I

Solve the generalized eigenvalue problem for (u, λ) :

$$\begin{bmatrix} A_k & D_k' - \frac{1}{2}M^{tr} \\ M^{tr} & -S_k \end{bmatrix} u = \lambda \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} u$$

FEM-BEM COUPLING I

Solve the generalized eigenvalue problem for (u, λ) :

$$\begin{bmatrix} A_k & D'_k - \frac{1}{2}M^{tr} \\ M^{tr} & -S_k \end{bmatrix} u = \lambda \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} u$$

FEM-BEM COUPLING I

Solve the generalized eigenvalue problem for (u, λ) :

$$\begin{bmatrix} A_k & D'_k - \frac{1}{2}M^{tr} \\ M^{tr} & -S_k \end{bmatrix} u = \lambda \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} u$$

⇒ no need for shell to define block PC, use field-splitting

FEM-BEM COUPLING II

Figure 1.6: Absolute value of the eigenfunction of the truncated exterior Dirichlet problem associated with the smallest eigenvalue for the large cavity.

[Galkowski et al., 2021]

MIXED-PRECISION FOR GEOPHYSICS

Figure 13: 3D GO_3D_OBS model. Comparison between the wavefields computed with the CBS, FEFD and FDFD methods. The rows show from top to bottom three depth slices at 6 km, 10 km and 16 km depth, and one vertical section at x=10 km. From left to right, the columns show the real part of the CBS wavefield, the FEFD wavefield, the differences between the two, the FDFD wavefield and its differences with the CBS wavefield.

[Tournier et al., 2021]

RADIATIVE TRANSFER I

Semi-discretized RTE

$$\forall m \in [1; N_d], (\vec{s}_m \cdot \nabla + (\kappa + \sigma)) I_m = \sigma \sum_{n=1}^{N_d} \omega_n \varphi_{m,n} \cdot I_n + \kappa B$$

RADIATIVE TRANSFER I

Semi-discretized RTE

$$\forall m \in [1; N_d], (\vec{s}_m \cdot \nabla + (\kappa + \sigma)) I_m = \sigma \sum_{n=1}^{N_d} \omega_n \varphi_{m,n} \cdot I_n + \kappa B$$

$$N_d = 80$$

$$N_d = 320$$

$$\vec{S}_m = \begin{bmatrix} \sin \theta_m \cos \psi_m \\ \sin \theta_m \sin \psi_m \\ \cos \theta_m \end{bmatrix}$$

- $\circ \kappa$ (resp. σ) absorption (resp. scattering) coefficient
- $\circ \varphi$ phase scattering function
- B black body emissivity function

RADIATIVE TRANSFER II

[Kobayashi et al., 2001] benchmark

RADIATIVE TRANSFER II

- o GMVP [Nagaya et al., 2005]
- o Ardra [Brown et al., 1999]

	Problem 3i								
У	Reference	MC	P ₂₁	DOM					
5	5.96 · 10 ⁰	5.94 · 10 ⁰	5.96 · 10 ⁰	5.96 · 10 ⁰					
15	$1.37 \cdot 10^{0}$	$1.37 \cdot 10^{0}$	$1.34 \cdot 10^{0}$	$1.37 \cdot 10^{0}$					
25	$5.01 \cdot 10^{-1}$	$5.01 \cdot 10^{-1}$	$4.95 \cdot 10^{-1}$	$5.00 \cdot 10^{-1}$					
35	$2.52 \cdot 10^{-1}$	$2.53 \cdot 10^{-1}$	$2.49 \cdot 10^{-1}$	$2.50 \cdot 10^{-1}$					
45	$1.50 \cdot 10^{-1}$	$1.50 \cdot 10^{-1}$	$1.56 \cdot 10^{-1}$	$1.48 \cdot 10^{-1}$					
55	$9.92 \cdot 10^{-2}$	$9.92 \cdot 10^{-2}$	$1.20 \cdot 10^{-1}$	$9.84 \cdot 10^{-2}$					
65	$4.23 \cdot 10^{-2}$	$4.23 \cdot 10^{-2}$	$5.10 \cdot 10^{-2}$	$4.20 \cdot 10^{-2}$					
75	$1.15 \cdot 10^{-2}$	$1.15 \cdot 10^{-2}$	$8.91 \cdot 10^{-3}$	$1.14 \cdot 10^{-2}$					
85	$3.25 \cdot 10^{-3}$	$3.25 \cdot 10^{-3}$	$1.95 \cdot 10^{-3}$	$3.33 \cdot 10^{-3}$					
95	$9.48 \cdot 10^{-4}$	$9.49 \cdot 10^{-4}$	$6.82 \cdot 10^{-4}$	$9.69 \cdot 10^{-4}$					

RADIATIVE TRANSFER II

- o GMVP [Nagaya et al., 2005]
- o Ardra [Brown et al., 1999]

	Problem 3ii							
У	MC	P ₂₁	DOM					
5	8.62 · 10 ⁰	8.61 · 10 ⁰	8.63 · 10 ⁰					
15	$2.16 \cdot 10^{0}$	$2.13 \cdot 10^{0}$	$2.16 \cdot 10^{0}$					
25	$8.94 \cdot 10^{-1}$	$8.84 \cdot 10^{-1}$	$8.93 \cdot 10^{-1}$					
35	$4.78 \cdot 10^{-1}$	$4.72 \cdot 10^{-1}$	$4.74 \cdot 10^{-1}$					
45	$2.89 \cdot 10^{-1}$	$2.99 \cdot 10^{-1}$	$2.87 \cdot 10^{-1}$					
55	$1.93 \cdot 10^{-1}$	$2.24 \cdot 10^{-1}$	$1.91 \cdot 10^{-1}$					
65	$1.05 \cdot 10^{-1}$	$1.19 \cdot 10^{-1}$	$1.04 \cdot 10^{-1}$					
75	$3.38 \cdot 10^{-2}$	$3.02 \cdot 10^{-2}$	$3.35 \cdot 10^{-2}$					
85	$1.08 \cdot 10^{-2}$	$8.54 \cdot 10^{-3}$	$1.08 \cdot 10^{-2}$					
95	$3.40 \cdot 10^{-3}$	$2.83 \cdot 10^{-3}$	$3.40 \cdot 10^{-3}$					

RADIATIVE TRANSFER — STRONG SCALING

Nearly transparent medium, spherical inclusions, 13B unknowns (15M tets and $N_d = 5{,}120$), tolerance of 10^{-6}

RADIATIVE TRANSFER — WEAK SCALING

1.7M unknowns/processes ($N_d = 1,280$), 6 reflective surfaces, uniform spatial mesh refinement

Some more (Tomorrow)

- A. Suzuki: "Shape optimization for a heat exchanger in Navier–Stokes flow [...]"
- M. Barzegari: "BioDeg: corrosion/biodegradation simulation software [...]"
- H. Li: "Topology optimization of a thermo-fluid system and an eigenfrequency problem [...]"

DD PRECONDITIONING

ROBUST DOMAIN DECOMPOSITION METHOD

- o based on GenEO [Spillane et al., 2013]
- o assembly of Neumann problems [Jolivet et al., 2021]
- o nonlinear solve using SNES [Brune et al., 2015]

ROBUST DOMAIN DECOMPOSITION METHOD

- o based on GenEO [Spillane et al., 2013]
- o assembly of Neumann problems [Jolivet et al., 2021]
- o nonlinear solve using SNES [Brune et al., 2015]

$$-\nabla \cdot (\kappa \nabla u) - 6.2e^u = 0$$

ALGEBRAIC PRECONDITIONING FOR LEAST SQUARES

Identifier	M ^{−1} balanced	$M_{\rm ASM}^{-1}$	BoomerAMG	GAMG	HSL_MI35
mesh_deform	13	27	‡	35	5
EternityII_E	43	91	‡	63	199
lp_stocfor3	34	136	‡	513	211
deltaX	23	98	‡	784	640
sc205-2r	54	61	‡	195	97
stormg2-125	42	174	‡	†	†
Rucci1	21	484	118	364	†
image_interp	11	409	40	203	†
mk13-b5	19	21	11	‡	11
pds-100	18	202	16	35	110
fome21	20	104	16	20	41
sgpf5y6	224	264	‡	163	110
Hardesty2	30	913	88	404	†
Delor338K	10	11	‡	†	829
watson_2	15	109	‡	64	73
LargeRegFile	41	109	19	‡	12
cont11_l	30	490	53	723	‡

$$\nabla \cdot (Vu) - \nu \nabla \cdot (\kappa \nabla u) = 0 \text{ in } \Omega$$

$$u = 0 \text{ in } \Gamma_0$$

$$u = 1 \text{ in } \Gamma_1$$

(a) Semi-structured mesh

(b) Diffusivity coefficient κ

$$\nabla \cdot (Vu) - \nu \nabla \cdot (\kappa \nabla u) = 0 \text{ in } \Omega$$

$$u = 0 \text{ in } \Gamma_0$$

$$u = 1 \text{ in } \Gamma_1$$

$$\nabla \cdot (Vu) - \nu \nabla \cdot (\kappa \nabla u) = 0 \text{ in } \Omega$$

$$u = 0 \text{ in } \Gamma_0$$

$$u = 1 \text{ in } \Gamma_1$$

Dimension	k	N	n	1	10 ⁻¹	ν 10 ⁻²	10-3	10-4
2	1	1,024	6.3 · 10 ⁶	23 (52,875)	20 (52,872)	19 (52,759)	20 (47,497)	21 (28,235)
3	2	4,096	8.1 · 10 ⁶	18 (1.8 · 105)	14 (1.8 · 105)	11 (1.6 · 10 ⁵)	16 (97,657)	29 (76,853)

$$\nabla \cdot (Vu) - \nu \nabla \cdot (\kappa \nabla u) = 0 \text{ in } \Omega$$

$$u = 0 \text{ in } \Gamma_0$$

$$u = 1 \text{ in } \Gamma_1$$

Dimension	k	N	n	1	10 ⁻¹	ν 10 ⁻²	10-3	10-4
2	1	1,024	6.3 · 10 ⁶	23 (52,875)	20 (52,872)	19 (52,759)	20 (47,497)	21 (28,235)
3	2	4,096	8.1 · 10 ⁶	18 (1.8 · 105)	14 (1.8 · 105)	11 (1.6 · 105)	16 (97,657)	29 (76,853)

New algebraic preconditioning

- o LS: [Al Daas, Jolivet, and Scott, 2021]
- o SPD: [Al Daas and Jolivet, 2021]
- M-matrices: [Al Daas, Jolivet, and Rees, 2022]

CONCLUSION

FINAL WORDS

- multiphysics solvers
 - □ high level of abstraction of FreeFEM
 - □ versatility of PETSc
- composability of solvers
- o http://joliv.et/FreeFem-tutorial

FINAL WORDS

- multiphysics solvers
 - □ high level of abstraction of FreeFEM
 - versatility of PETSc
- composability of solvers
- o http://joliv.et/FreeFem-tutorial

Thank you!

REFERENCES I

Al Daas, Hussam and Pierre Jolivet (2021). "A robust algebraic multilevel domain decomposition preconditioner for general sparse symmetric positive definite matrices". In: SIAM Journal on Scientific Computing, submitted for publication. URL: https://arxiv.org/pdf/2109.05908.pdf.

Al Daas, Hussam, Pierre Jolivet, and Jennifer A. Scott (2021). "A robust algebraic domain decomposition preconditioner for sparse normal equations". In: SIAM Journal on Scientific Computing, submitted for publication. URL: https://github.com/prj-/aldaas2021robust.

Brown, Peter N., Britton Chang, and Ulf R. Hanebutte (1999). *Spherical harmonic solutions to the 3D Kobayashi benchmark suite.* Tech. rep. Lawrence Livermore National Laboratory.

Brune, Peter R., Matthew G. Knepley, Barry F. Smith, and Xuemin Tu (2015). "Composing scalable nonlinear algebraic solvers". In: *SIAM Review* 57.4, pp. 535–565.

REFERENCES II

Galkowski, Jeffrey, Pierre Marchand, and Euan A. Spence (2021). "Eigenvalues of the truncated Helmholtz solution operator under strong trapping". In: arXiv: 2101.02116 [math.AP].

Jolivet, Pierre, Jose E. Roman, and Stefano Zampini (2021). "KSPHPDDM and PCHPDDM: extending PETSc with robust overlapping Schwarz preconditioners and advanced Krylov methods". In: Computers & Mathematics with Applications 84, pp. 277–295. URL: https://github.com/prj-/jolivet2020petsc.

Kobayashi, Keisuke, Naoki Sugimura, and Yasunobu Nagaya (2001). "3D radiation transport benchmark problems and results for simple geometries with void region". In: *Progress in Nuclear Energy* 39.2, pp. 119–144.

Nagaya, Yasunobu, Keisuke Okumura, Takamasa Mori, and Masayuki Nakagawa (2005). MVP/GMVP 2: general purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods. Tech. rep. Japan Atomic Energy Research Institute.

REFERENCES III

Spillane, Nicole, Victorita Dolean, Patrice Hauret, Frédéric Nataf, Clemens Pechstein, and Robert Scheichl (2013). "Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps". In: *Numerische Mathematik* 126.4, pp. 741–770.

Tournier, Pierre-Henri, Pierre Jolivet, Victorita Dolean, Hossein Aghamiry, Stéphane Operto, and Sebastián Riffo (2021). "Large-scale 3D frequency-domain wave simulation with finite-element and finite-difference methods and an optimized additive Schwarz domain-decomposition preconditioner: a tool for FWI of sparse node datasets". In: *Geophysics*, submitted for publication. URL: https://arxiv.org/pdf/2110.15113.pdf.