

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 01-180932

(43)Date of publication of application : 18.07.1989

(51)Int.CI. C22C 9/06

(21)Application number : 63-003484

(71)Applicant : KOBE STEEL LTD

(22)Date of filing : 11.01.1988

(72)Inventor : MIYATO MOTOHISA
TSUNO RIICHI

(54) HIGH TENSILE AND HIGH ELECTRIC CONDUCTIVITY COPPER ALLOY FOR PIN, GRID AND ARRAY IC LEAD PIN

(57)Abstract:

PURPOSE: To obtain the title copper alloy having high strength and high electric conductivity even after brazing treatment and to furthermore improve its repeated bendability, noble metal platability, etc., by limiting the contents of Ni, Si, Zn, SnCr and Mg.

CONSTITUTION: The copper alloy contg., by weight, 3.0W3.5% Ni, 0.5W0.9% Si, 0.05W5% Zn, 0.2W2.0% Sn, 0.001W0.1% Cr and 0.001W0.01% Mg and the balance consisting of Cu and inevitable impurities is prep'd. By this constitution, the copper alloy having \geq 200 Vickers hardness and \geq 30% IACS of electric conductivity after a soft brazing treatment at $<450^{\circ}$ C and having excellent heat resistance, stiffness strength, repeated bendability and noble metal platability can be obt'd.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

⑱ 公開特許公報 (A)

平1-180932

⑯ Int.Cl.

C 22 C 9/06

識別記号

庁内整理番号

7619-4K

⑯ 公開 平成1年(1989)7月18日

審査請求 未請求 請求項の数 1 (全5頁)

⑭ 発明の名称 ピン・グリッド・アレイ ICリードピン用高力高導電性銅合金

⑮ 特願 昭63-3484

⑯ 出願 昭63(1988)1月11日

⑰ 発明者 宮藤 元久 山口県下関市長府安養寺2丁目5番8号

⑰ 発明者 津野 理一 山口県下関市長府印内町1番D-204号

⑰ 出願人 株式会社神戸製鋼所 兵庫県神戸市中央区脇浜町1丁目3番18号

⑰ 代理人 弁理士 丸木 良久

明細書

1. 発明の名称

ピン・グリッド・アレイ ICリードピン用高力
高導電性銅合金

2. 特許請求の範囲

Ni 3.0~3.5wt%、Si 0.5~0.9wt%、
Zn 0.05~5wt%、Sn 0.2~2.0wt%、
Cr 0.001~0.1wt%、Mg 0.001~0.01wt%
を含有し、残部Cuおよび不可避不純物からなる
銅合金であり、かつ、450°C未満の炊ろう付け
処理後、ピッカース硬さ200以上、導電率30
% IACS以上、耐熱性、スティフネス強度、繰
り返し曲げ性、貴金属めっき性が優れていること
を特徴とするピン・グリッド・アレイ ICリード
ピン用高力高導電性銅合金。

3. 発明の詳細な説明

【産業上の利用分野】

本発明はピン・グリッド・アレイ ICリードビ
ン用高力高導電性銅合金に関し、さらに詳しくは、
Au-20wt%Sn共晶ろうのような炊ろう材

(400°C未満)によりろう付け接合することができるピン・グリッド・アレイ ICリードピン用高力高導電性銅合金に関する。

【従来技術】

一般に、ピン・グリッド・アレイ ICの基盤はセラミックからなり、方形のセラミック基盤の表面には数個のIC素子が搭載され、基盤の電極とIC素子の電極がボンディングワイヤを介して結線され、抵抗等が付加されて回路が形成される。

また、裏面は表面の各電極に対応した入出力用リードピンから構成されている。そして、これらのリードピンはヘッド加工されたピンの頭部をろう付けすることにより、メタライズされた電極部にろう付けされて接合される。

特に、大型コンピューター等に使用されるピン・グリッド・アレイ ICは、極めて高い信頼性を要求されるため、このリードピンの接合にはAu-20wt%Sn共晶ろう(融点: 280°C)が使用され、水素退元雰囲気中において400~500°Cの温度でろう付けされる。また、リードピンにはNi

またはPd下地めっき後、Auめっきが施されるのが通例である。そして、このリードピンとしては、Fe-Co-Ni合金(ASTM規格F-15合金)が使用されている。

しかし、このF-15合金は優れた耐熱性、高強度を有しているため、リードの変形等の信頼性の面で使用されてきているが、しかし、F-15合金は導電率が3% IACSと小さく、ICリード線としてはジュール熱が発生し易く、かつ、熱伝導率が小さいのでIC内部で発生する熱量の放散性が不充分である。

特に、最近のIC素子の高密度化に伴い、IC素子内部で発生する熱量が増加するようになり、F-15合金は熱量の放散性が悪いということが指摘され、F-15合金に代わる材料が要望されてきている。

このような、要望に対しては銅合金が挙げられるが、一般的に銅合金は400~500°Cの温度におけるろう付け時に軟化し、強度が失われ、硬度Hv200以上を保持することは困難である。

-3-

銅合金であり、かつ、450°C未満のろう付け処理後、ビッカース硬さ200以上、導電率30% IACS以上、耐熱性、スティフネス強度、繰り返し曲げ性、貴金属めっき性が優れていることがある。

本発明に係るビン・グリッド・アレイ ICリードピン用高力高導電性銅合金について、以下詳細に説明する。

先ず、本発明に係るビン・グリッド・アレイ ICリードピン用高力高導電性銅合金の含有成分および含有割合について説明する。

Niは強度向上に寄与する元素であり、含有量が3.0wt%未満ではSiが0.5~0.9wt%含有されても強度向上は期待できず、また、3.5wt%を越えて含有されると効果が逆転し、導電性が低下する。よって、Ni含有量は3.0~3.5wt%とする。

SiはNiと共に強度向上に寄与する元素であり、含有量が0.5wt%未満ではNiが3.0~3.5wt%含有されていても強度向上は期待できず、また、

また、強度および耐熱性が良好な銅合金はF-15合金と同様に導電率が小さいという問題がある。

【発明が解決しようとする課題】

本発明は上記に説明したような従来技術の種々の問題点に鑑み、本発明者が致意研究を行ない、検討を重ねた結果、400~500°Cの温度におけるろう付け後も、ビッカース硬さが200以上、導電率30% IACS以上、かつ、耐熱性、繰り返し曲げ性、貴金属めっきが優れているビン・グリッド・アレイ ICリードピン用高力高導電性銅合金を開発したのである。

【課題を解決するための手段】

本発明に係るビン・グリッド・アレイ ICリードピン用高力高導電性銅合金の特徴とするところは、

Ni 3.0~3.5wt%、Si 0.5~0.9wt%、
Zn 0.05~5wt%、Sn 0.2~2.0wt%、
Cr 0.001~0.1wt%、Mg 0.001~0.01wt%
を含有し、残部Cuおよび不可避不純物からなる。

-4-

0.9wt%を越えて含有されると導電性が低下すると共に熱間押出し加工性が悪化する。よって、Si含有量は0.5~0.9wt%とする。

Znは貴金属めっき、錫めっき、錫合金めっきおよびはんだの耐剥離性を著しく改善する元素であり、含有量が0.05wt%未満ではこの効果は少なく、また、5wt%を越えて含有されるとはんだ付け性が悪くなる。よって、Zn含有量は0.05~5wt%とする。

SnはCu中に固溶して強度、スティフネス強度および繰り返し曲げ性の向上に寄与する元素であり、含有量が0.2wt%未満ではこのような効果は少なく、また、2.0wt%を越えて含有されると導電性および熱間押出し加工性を低下させる。よって、Sn含有量は0.2~2.0wt%とする。

Crは錫塊の粒界が強化され、熱間押出し加工性を向上させる元素であり、含有量が0.001wt%未満ではこの効果は少なく、また、0.1wt%を越えて含有されると錫塊が軟化し、鋳造性を劣化させる。よって、Cr含有量は0.001~0.1wt%とす

る。

Mgは不可逆的に混入していくSを安定したMgとの化合物Mg₂Sとして、母相中に固定し、熱間押出し加工を可能にする元素であり、含有量が0.001wt%未満ではこの効果は少なく、また、0.01wt%を越えて含有されると焼塊中にCu+Mg-Cu₂の共晶(融点:722°C)を生じ、この722°C以上の温度に加熱されると割れを発生し、溶湯が酸化し、鋳造性が劣化する。よって、Mg含有量は0.001~0.01wt%とする。

なお、上記に説明した含有成分以外に、Ag、Al、In、Fe、Mnを1種或いは2種以上を0.2wt%まで、また、B、Be、Ti、Zr、Pを1種或いは2種以上を0.1wt%までの含有は、強度、導電性、繰り返し曲げ性、貴金属めっき性、はんだ付け性、はんだの耐熱剥離性等の特性を問題なく維持することができ、上記含有量までは許容することができる。

[実施例]

本発明に係るビン・グリッド・アレイICリー

ドピン用高力高導電性銅合金の実施例を説明する。

実施例

第1表に示す含有成分および含有割合の鋼合金を、クリプトル炉において大気中で木炭被覆下に溶解し、傾斜式鋳鉄製の円筒モールドに鋳込み、直径70mm、長さ180mmの鋳塊を作製した。

この鋳塊の外周面を25mm面削し、820°Cの温度に加熱し、直径10mmの棒に熱間押出し加工を行なった後、750°Cの温度から水中急冷を行なった。

比較材No.4はSi含有量が0.9wt%を越えて含有されており、熱間押出し加工時、割れを発生したため、後の試料調整から除外した。

また、比較材No.11はCrを、比較材No.12はMgを含有しておらず、熱間押出し加工時に割れを発生したため、その後の試料調整から除外した。

次に、酸化スケールを除去した後、1バス加工率約20%の冷間伸線加工を繰り返し、直径5.2mmの線材とした。

-7-

-8-

次いで、1バス加工率約20%の冷間伸線加工を繰り返し、直径0.50mmの線材を作製し、475°Cの温度でN₂ガス雰囲気中で2時間の焼純を行なった後、冷間伸線加工により、直径0.40mmの線材を作製した。

なお、その他の比較材として、市販品のF-15合金の直径0.40mmの線材を使用した。

このようにして、作製された試料について、以下説明する試験条件により試験を行ない、試料までのピッカース硬さ、導電率、はんだ付け性、はんだの密着性およびAu-20wt%Sn共晶ろう付けする温度条件である425°Cの温度で15分加熱処理した後の、ピッカース硬さ、導電率、スティフネス強度、繰り返し曲げ性およびAuめっきの密着性を調査し、その結果について第2表に示す。

[試験条件]

(1)ピッカース硬さは、マイクロピッカース硬度計、荷重100gfで測定した。

(2)導電率はグブルブリッジを使用し、JIS II 0505に基づいて測定した。算出法は平均断

面積による。

(3)はんだ付け試験およびはんだの耐熱剥離性試験は、φ0.40mm×80mmの試験片を酸洗後、MIL STD-202E Method 208Cに基づいて、弱活性フランクスを使用し、230°Cの温度において、Sn60-Pb40浴中ではんだ付けを行ない、さらに、150°Cの温度において500時間大気中に保持した。後90°曲げを行ないはんだの密着性を拡大鏡により調べた。

(4)スティフネス強度はφ0.40mm×60mmの試験片を用い、曲げ半径40mmで応力を加え、変位角度が10°となる時のモーメントを求めた。

(5)リードの繰り返し曲げ性は、450gの荷重を端部に吊して、往復90°の一方向曲げを行ない、破断するまでの回数を往復1回と数え、試験片数10の平均値として求めた。

(6)Auめっきの密着性は、下地Niめっき2μ、Auめっきを3μを施し、ろう付け温度425

-9-

-161-

-10-

て15分間加熱後、疲れの発生の有無を拡大

鏡により調べた。

第1表

	No	化 学 成 分 (%t%)						
		Cu	Ni	Si	Zn	Sn	Cr	Mg
本発明	1	枝部	3.20	0.70	0.31	0.53	0.005	0.004
	2	~	3.22	0.71	0.29	1.26	0.004	0.004
	3	~	3.21	0.48	0.30	1.25	0.005	0.003
	4	~	3.23	0.95	0.29	0.52	0.003	0.005
	5	~	3.65	0.70	0.30	1.23	0.003	0.004
	6	~	2.82	0.69	0.31	1.26	0.005	0.004
	7	~	3.20	0.69	0	1.26	0.004	0.005
	8	~	3.19	0.69	0.55	1.23	0.002	0.006
	9	~	3.23	0.70	0.32	0.09	0.005	0.003
	10	~	3.21	0.69	0.30	2.32	0.005	0.004
	11	~	3.19	0.70	0.30	1.20	0	0.004
	12	~	3.22	0.71	0.28	1.26	0.004	0

-11-

-12-

第2表

		試験片まま(As drawn材)				425°C×15分加熱後				
		ピッカース硬さ(Hv)	導電率(%IACS)	はんだ付け性	はんだの密着性	ピッカース硬さ(Hv)	導電率(%IACS)	スティフェネス強度(Gr·cm)	繰り返し曲げ性(回)	Auめっき密着性
本発明	1	235	45.3	良好	良好	230	46.1	10.0	8.2	良好
	2	248	34.8	~	~	241	35.8	10.2	8.8	~
	3	210	30.3	~	~	192	31.0	9.3	7.6	~
	5	233	27.0	~	~	228	27.5	9.8	7.8	~
	6	192	32.6	~	~	180	33.9	8.5	6.5	~
	7	~	~	~	剥離	~	~	~	~	一部疲れ発生
	8	248	28.1	70%弱れ	~	240	28.7	10.0	8.0	良好
	9	195	51.2	良好	良好	188	52.6	8.7	6.2	~
	10	253	28.6	~	~	248	29.0	10.0	8.3	~
	比較材	245	3.1	~	~	240	3.1	10.2	9.0	~
	F-15合金									

第2表から明らかなように、本発明に係るビン・グリッド・アレイ I C1リードピン用高力高導電性銅合金(以下、本発明材として説明する。)は、比較材に比してビン・グリッド・アレイ I C1リードピンとして、以下説明するように優れた特性を有していることがわかる。

本発明材No. 1およびNo. 2にたいして、比較材No. 3はSi含有量が0.5wt%未満であり、Ni、Siそれぞれの含有量のバランスが悪く、Auろう付け温度に加熱後、ピッカース硬さが200以下となっている。

比較材No. 4はNi含有量が3.5wt%を越えており、Ni、Siのバランスが悪く、導電率が30% IACS未満である。

比較材No. 6はNi含有量が3.0wt%未満であり、Ni、Siのバランスが悪く、ピッカース硬さの200以上を満足しない。

比較材No. 7はZnを含有しておらず、Auめっきおよびはんだの密着性が悪い。

比較材No. 8はZn含有が5.0wt%を越えてお

り、はんだ付け性が悪く、かつ、導電率も30% IACS未満である。

比較材No. 9はSn含有量が0.2wt%未満であり、導電率は高い値を有しているが、ピッカース硬さが200以下であり、スティフネス強度、振り返し曲げ性は低下している。

比較材No. 10はSn含有量が2.0wt%を越えており、ピッカース硬さ、スティフネス強度、振り返し曲げ性は、本発明材No. 1およびNo. 2と同等の特性を有しているが、導電率が30% IACS未満である。

また、本発明材のNo. 1およびNo. 2はF-15合金と比較しても、ピッカース硬さ、スティフネス強度、振り返し曲げ性、Auめっき性、はんだ付け性およびはんだの密着性は同等であり、導電率は10倍以上の値を示している。

【発明の効果】

以上説明したように、本発明に係るビン・グリッド・アレイ I C1リードピン用高力高導電性銅合金は上記の構成であるから、400~500°Cの

温度においてろう付け処理した後においても、ピッカース硬さは200以上であり、導電率も30% IACS以上で、耐熱性、スティフネス強度、振り返し曲げ性、貴金属めっき性に優れているという効果を有するものである。

特許出願人 株式会社 神戸製鋼所

代理人 弁理士 丸木良久

