Network performance, scalability & reliability The **09_kahn** way

Alkinoos Sarioglou, Elwin Stephan, Maša Nešić, Snow Man

Failure detection

- Send heartbeats only if you're not sending regular traffic
- If you're not receiving any traffic → link is dead

Static path encoding

- Reduces packet processing time in intermediate switches
- Only the source switch does a table lookup and encodes the entire path statically in the packet header

Flowlet-based routing for TCP

 $\Delta t = avg(host_to_host_round_trip_time)$

Fine-grained routing decisions without packet reordering at the destination

- Alternative path per (link, destination) pair
- Enables fast sub-optimal convergence
- Once the controller updates forwarding details, optimal paths are used

Load balancing & traffic engineering

Max flow algorithm based on available bandwidth

 $P\{p_1, p_2, ..., pn\}$ Set of best paths

 $delay(p_n) \leq 1.25 * delay(p_1)$

$$x_i = \frac{1}{delay(pi)^3}$$
 probability_i = $\frac{x_i}{\sum_i x_i}$

Minimizing overall delay by load balancing across several shortest paths

T - current transfer rate

Prevent flow groups from taking monopoly over the link by rate limiting

Weighted fair queuing

- Prevents high-traffic flows from taking monopoly over links
- Allows flow prioritization by defining weights

Buffer acceptance - Random Early Detection

- Control TCP sending rate preventively, before the queue is filled
- Prevents TCP flow synchronization