605.204 - Computer Organization Module 12: Assignment

Nick Hinke

November 20, 2022

Brief Introduction

This assignment involves the implementation of several digital circuits within various Logisim circuits. All of my resulting work can be found at this $GitHub\ link$ and can be cloned and viewed using the following commands:

git clone https://github.com/nhinke/computer-organization-repo.git cd computer-organization-repo/assignments/module12/

1. Change the 4-bit adder circuit to be an 8-bit adder in Logisim (double the size of the values that can be added).

Half Adder:

Figure 1: Screenshot of half adder circuit used within full adder circuit

Full Adder:

Figure 2: Screenshot of full adder circuit used within 8-bit adder/subtractor circuit

Full 8-bit adder/subtractor circuit is shown on the following page...

8-bit Adder/Subtractor:

Figure 3: Screenshot of 8-bit adder/subtractor circuit

2. Implement the 1-bit adder using a decoder circuit. Modify this adder to be a 4-bit adder using the Ripple-Carry Adder as a template.

Full Adder (Decoder):

Figure 4: Screenshot of full adder circuit used within 4-bit adder/subtractor circuit

Full 4-bit adder/subtractor circuit is shown on the following page...

4-bit Adder/Subtractor (Decoder):

Figure 5: Screenshot of 4-bit adder/subtractor circuit

3. Implement a multiplexor which has a data width of 8 bits and 2 select bits (2 select bits means this multiplexor will have 4 input value, each of 8 bits). The 8 bit inputs should contain the values of 8, 16, 32, and 64. Change the input select bits between 00-11 so that the value cycles 8, 16, 32, 64, 8, 16, 32, 64, etc.

4-to-1 8-bit Multiplexor:

Figure 6: Screenshot of 4-to-1 8-bit multiplexor

4. Implement a 16-to-1 8-bit multiplexor using any combination 4-to-1 and 2-to-1 multiplexors. You will get the maximum points if you use the fewest multiplexers.

16-to-1 8-bit Multiplexor:

Figure 7: Screenshot of 16-to-1 8-bit multiplexor