WHAT IS CLAIMED IS:

1	1. A trenched field effect transistor comprising:					
2	a semiconductor substrate;					
3	a trench extending a predetermined depth into said semiconductor substrate;					
4	a pair of doped source junctions, positioned on opposite sides of the trench;					
5	a doped heavy body positioned adjacent each source junction on the opposite					
6	side of the source junction from the trench, the deepest portion of said heavy body extending					
7	less deeply into said semiconductor substrate than said predetermined depth of said trench,					
8	and					
9	a doped well surrounding the heavy body beneath the heavy body.					
1	2. The trenched field effect transistor of claim 1 wherein said doped well					
2	has a substantially flat bottom.					
1	3. The trenched field effect transistor of claim 1 wherein the depth of the					
2	heavy body region relative to the depths of the well and the trench is selected so that the peak					
3	electric field when voltage is applied to the transistor will be spaced from the trench.					
1	4. The trenched field effect transistor of claim 1 wherein said doped well					
2	has a depth less than the predetermined depth of said trench.					
L	has a depth less than the predetermined depth of said trenen.					
1	5. The trenched field effect transistor of claim 1 wherein said trench has					
2	rounded top and bottom corners.					
1	6. The trenched field effect transistor of claim 1 wherein there is an					
2	abrupt junction at the interface between the heavy body and the well, to cause the peak					
3	electric field when voltage is applied to the transistor to occur in the area of the interface.					
	olective metal when vertage to approve to the translation to document and the metal of this invertage.					
1	7. The trenched field effect transistor of claim 6 wherein said abrupt					
2	junction has a sheet resistance profile substantially as shown in Fig. 5.					
1	8. An array of transistor cells comprising:					
2	a semiconductor substrate;					
3	a plurality of gate-forming trenches arranged substantially parallel to each					
4	other and extending in a first direction, the space between adjacent trenches defining a					

5	contact area, each trench extending a predetermined depth into said substrate, the				
6	predetermined depth being substantially the same for all of said gate-forming trenches;				
7	surrounding each trench, a pair of doped source junctions, positioned on				
8	opposite sides of the trench and extending along the length of the trench;				
9	positioned between each pair of gate-forming trenches, a doped heavy body				
10	positioned adjacent each source junction, the deepest portion of each said heavy body				
11	extending less deeply into said semiconductor substrate than said predetermined depth of said				
12	trenches;				
13	a doped well surrounding each heavy body beneath the heavy body; and				
14	p+ and n+ contacts disposed at the surface of the semiconductor substrate and				
15	arranged in alternation along the length of the contact area.				
1	9. The array of transistor cells of claim 8, wherein each said doped well				
2	has a substantially flat bottom.				
2	nas a substantiany nat bottom.				
1	10. The array of transistor cells of claim 8 wherein the depth of each heavy				
2	body region relative to the depths of the wells and the gate-forming trenches is selected so				
3	that the peak electric field when voltage is applied to the transistor will occur approximately				
4	halfway between adjacent gate-forming trenches.				
1	11. The array of transistor cells of claim 8 wherein each said doped well				
2	has a depth less than the predetermined depth of said gate-forming trenches.				
2	has a depth less than the predetermined depth of said gate-forming trenenes.				
1	12. The array of transistor cells of claim 8 wherein each said gate-forming				
2	trench has rounded top and bottom corners.				
1	The amount of the maintain calls of alaims 8 who main them is an abount				
1	13. The array of transistor cells of claim 8 wherein there is an abrupt				
2	junction at each interface between the heavy body and the well, to cause the peak electric				
3	field when voltage is applied to the transistor to occur in the area of the interface.				
1	14. The array of transistor cells of claim 8 further comprising a field				
2	termination structure surrounding the periphery of the array				

13

structure comprises a well having a depth greater than that of the gate-forming trenches.

1

2

15.

The array of transistor cells of claim 14 wherein said field termination

1	16. The array of transistor cells of claim 14 wherein said field termination				
2	structure comprises a termination trench extending continuously around the periphery of the				
3	array.				
1	17. The array of transistor cells of claim 16 wherein said field termination				
2	structure comprises a plurality of concentrically arranged termination trenches.				
1	18. A semiconductor die comprising:				
2	a plurality of DMOS transistor cells arranged in an array on a semiconductor				
3	substrate, each DMOS transistor cell including a gate-forming trench, each of said gate-				
4	forming trenches having a predetermined depth, the depth of all of the gate-forming trenches				
5	being substantially the same; and				
6	surrounding the periphery of the array, a field termination structure that				
7	extends into the semiconductor substrate to a depth that is deeper than said predetermined				
8	depth of said gate-forming trenches.				
1	19. The semiconductor die of claim 18 wherein said field termination				
2	structure comprises a doped well.				
1	20. The semiconductor die of claim 18 wherein said field termination				
2	structure comprises a termination trench.				
1	21. The semiconductor die of claim 20 wherein said field termination				
2	structure comprises a plurality of concentrically arranged termination trenches.				
_	structure comprises a planarity of concentrically arranged termination troncines.				
1	22. The semiconductor die of claim 18 wherein each of said DMOS				
2	transistor cells further comprises a doped heavy body and said doped heavy body extends into				
3	said semiconductor substrate to a depth that is less than the predetermined depth of said gate-				
4	forming trenches.				
1	23. A method of making a heavy body structure for a trenched DMOS				
2	transistor comprising:				
3	providing a semiconductor substrate;				
4	implanting into a region of the substrate a first dopant at a first energy and				
5	dosage; and				

6 subsequently implanting into said region a second dopant at a second energy 7 and dosage, said second energy and dosage being relatively less than said first energy and 8 dosage. 1 24. The method of claim 23 wherein said first and second dopants both 2 comprise boron. 1 25. The method of claim 23 wherein said first energy is from about 150 to 2 200 keV. 1 26. The method of claim 25 wherein said first dosage is from about 1E15 2 to 5E15. 1 27. The method of claim 23 wherein said second energy is from about 20 2 to 40 keV. 1 28. The method of claim 27 wherein said second dosage is from about 2 1El4 to 1E15. 1 29. A method of making a source for a trenched DMOS transistor 2 comprising: 3 providing a semiconductor substrate; 4 implanting into a region of the substrate a first dopant at a first energy and 5 dosage; and 6 subsequently implanting into said region a second dopant at a second energy 7 and dosage, said second energy and dosage being relatively less than said first energy and 8 dosage. 1 30. The method of claim 29 wherein said first dopant comprises arsenic 2 and said second dopant comprises phosphorus. 1 31. The method of claim 29 wherein said first energy is from about 80 to 2 120 keV. 1 32. The method of claim 29 wherein said first dosage is from about 5E15 2 to 1E16.

1	3	3.	The method of claim 29 wherein said second energy is from about 40		
2	to 70 keV.				
1		34.	The method of claim 33 wherein said second dosage is from about		
2	1E15 to 5E15.				
1	3	35.	The method of claim 29 wherein the resulting depth of said source is		
2	from about 0.4 t	to 0.8 µ	ım in the finished DMOS transistor.		
		·			
1	3	36.	A method of manufacturing a trenched field effect transistor		
2	comprising:				
3		orming	g a field termination junction around the perimeter of a semiconductor		
4	substrate;				
5		3	g an epitaxial layer on the semiconductor substrate; patterning and		
6	etching a plurali	ity of t	renches into the epitaxial layer; depositing polysilicon to fill the		
7	trenches;				
8			the polysilicon with a dopant of a first type;		
9	p	atterni	ing the substrate and implanting a dopant of a second, opposite type to		
10	form a plurality of wells interposed between adjacent trenches;				
11	p	atterni	ing the substrate and implanting a dopant of the second type to form a		
12	plurality of second dopant type contact areas and a plurality of heavy bodies positioned above				
13	the wells, each l	heavy 1	body having an abrupt junction with the corresponding well;		
14	ŗ	atterni	ing the substrate and implanting a dopant of the first type to provide		
15	source regions a	and firs	st dopant type contact areas; and		
16	а	pplyin	g a dielectric to the surface of the semiconductor substrate and		
17	patterning the d	ielectri	ic to expose electrical contact areas.		
1	2	37.	The method of manufacturing a trenched field effect transistor of claim		
1			-		
2	•	trencn	es are patterned to extend in one direction and be substantially parallel		
3	to each other.				
1	3	38.	The method of manufacturing a trenched field effect transistor of claim		
2	36, wherein the	patter	ning and implanting steps further comprise arranging the first dopant		
3	type contact areas and second dopant type contact areas in alternation and extend linearly				
4	between adjacent trenches.				

- 1 39. The method of manufacturing a trenched field effect transistor of claim 2 36, wherein the implanting step for forming the heavy bodies comprises implanting a first 3 dopant at a first energy and dosage and a second dopant at a second energy and dosage, the 4 second energy and dosage being relatively less than the first energy and dosage.
 - 40. The method of manufacturing a trenched field effect transistor of claim 36, wherein the implanting step for forming the source regions comprises implanting a first dopant at a first energy and dosage and a second dopant at a second energy and dosage, the second energy and dosage being relatively less than the first energy and dosage.

1

2

3

4

1

- The method of manufacturing a trenched field effect transistor of claim 1 41. 2 36, wherein the heavy bodies are formed prior to forming the source regions.
- 42. The method of manufacturing a trenched field effect transistor of claim 1 2 36 wherein the source regions are formed prior to the heavy bodies.
- 43. The method of manufacturing a trenched field effect transistor of claim 2 36 wherein said field termination is formed by forming a trench ring.
- 1 44. The method of manufacturing a trenched field effect transistor of claim 2 36 wherein said field termination is formed by forming a deep well doped with a dopant of 3 the second dopant type.
- The method of manufacturing a trenched field effect transistor of claim 1 45. 2 36 wherein said dielectric is applied before the steps of forming the heavy bodies and second 3 dopant type contacts, and the dielectric provides a mask for the patterning of the heavy bodies 4 and second dopant type contacts.