Deterministic Interleaver Design for Turbo Codes

Bohulu Kwame Ackah, 1631133

Information Transmission Labroratory

February 1, 2018

1. Turbo Codes: Brief Introduction

- AWGN channel capacity approacing code
- Parallel concatenation of 2 convolutional codes via an interleaver
- Good performance depends on interleaver

2. Interleavers

- Divided into 2 groups
 - Random Interleavers
 - Advantage: Good performance for large frame sizes
 - Disadvantage: storage of interleaver tables required.
 - Deterministic Interleavers
 - Advantage: Interleaving done via algorithm
 - Disadvantage: For large frame sizes, interleaver better than random not yet found.
 - Design is very challenging

^[5] Jing Sun, Oscar Y. Takeshita "Interleavers for Turbo Codes Using Permutation Polynomials over Integer Rings", IEEE Trans. Inform. Theory, vol. 51, pp. 101 - 119 Jan. 2005.

3. Purpose of Research

- Main Goal of Research
 - Deterministic interleaver that outperforms random interleaver for large frame sizes
- Current Step
 - Deterministic interleaver that outperforms linear interleaver for large frame sizes
 - · multi-shift interleaver is proposed
- Why Linear Interleaver?
 - Better than random interleaver for short frame sizes.
 - Easy to design

4. Turbo Encoder

- N is interleaver size, M is No. of memory elements
- \mathbf{x} is information bits with length N-M
- $\mathbf{p}^{(1)}$ is upper parity checkbits, $\mathbf{p}^{(2)}$ is lower parity checkbits
 - both have length N

5. Turbo Decoder

- y^s is systematic bits
- $y^{p(1)}$ is upper parity check bits, $y^{p(2)}$ is lower parity check bits
- ullet $L(u_i)$ is Log-Likelihood Ratio, L^e_{12}, L^e_{21} is extrinsic information

6. RSC Encoders

- cycle length (τ) of RSC encoders
 - length of the cycle with input [1,0,0,0,0,...]

Example

- \bullet $\left[\frac{1+D^2}{1+D+D^2}\right]$ (5/7) RSC Encoder
- output : [1,|1,1,0|,|1,1,0|,|1,1,0|...]
- ullet cycle : [1,1,0] , au=3

7. RSC Encoders and $a\tau$ -seperated weight 2 errors

- weight 2 information sequences
 - "1" bit pair seperated by $a\tau-1$ "0" bits
- effective free distance d_{eff}
 - minimum codeword weight due to weight 2 input

Example

$$N = 16$$
, input= $[1, 0, 0, 1,, 0]$

10000...

1110110110110

0001110110110

11110000000000000

8. *t*-seperated weight 2 error in Turbo Codes

• $t = a\tau \mapsto s = b\tau$, low-weight turbo codewords.

9. au-seperated Weight 2 Error - based Parameter Optimization

Linear Interleaver with depth D

$$\Pi_{\mathfrak{L}_N}(i) = Di \mod N, \quad \gcd(N, D) = 1; \tag{1}$$

input - output distance relationship

$$s = Dt \mod N$$
 (2)

- prevent $t = a\tau \mapsto s = b\tau$
 - Solution: min(a + b), D with largest min(a + b)

10. $a\tau$ weight 2 error : Interleaver Search

Linear Interleaver Search Results

D	13	121	17	23	21
а	19	17	15	11	12
b	9	9	1	3	4
d _{eff}	30	30	15	26	15
N _{free}	1	1	2	1	2

BER Approximation

$$P_b \approx \frac{1}{2} \sum_{w_c} D_{w_c} \operatorname{erfc} \left(\sqrt{w_c \frac{R_c E_b}{N_o}} \right) \tag{3}$$

where

$$D_{w_c} \triangleq \sum_{w_x + w_p = w_c} \frac{w_x}{N} A_{w_x, w_p}$$

11. BER Approximation vs Simulation

Bohulu

12. τ -seperated weight 4 errors

Dominate BER performance [2]

- Weight 4 input : $(1+D^{\nu})(1+D^{\tau})$
 - $\tau = Dv \mod N$

^[2] Oscar Y. Takeshita, Member, IEEE, and Daniel J. Costello, "New Deterministic Interleaver Designs for Turbo Codes", IEEE Trans. Inform. Theory, vol. 46,pp. 1988-2006, Nov. 2000

12. au weight 4 errors

Example

- N = 32, $\tau = 3$, D = 5, v = 7
- input : $(1+D^3)(1+D^7)$, output : $(1+D^3)(1+D^{15})$
- codeword weight : 20, multiplicity ≈ N
- same results for different D and N

13. τ weight 4 error : BER Approximation vs Simulation

14. Sequential representation of Linear Interleaver

- Weight 4 error dominates performance
- Algorithm for linear interleaving
 - 1. $p_0 = 0$
 - 2. $p_i = (p_{i-1} + D) \mod N$
- element positions shifted by constant D

15. Multi-Shift Interleaver

- For $N = 2^r$, $r \in \{1, 2, ...\}$ set $\Delta s = 2^q$, $q \in \{2, 3, ..., r 1\}$
- cycle set $\mathbb{D} = \{d_0, d_1, ..., d_{V-1}\}, \ \ V = N/\Delta s$
 - $d_i = d_{i-1} + \Delta s$
- Algorithm for multi-shift interleaver
 - 1. $p_0 = 0$
 - 2. $p_i = p_{i-1} + d_{((i-1) \mod V)} \mod N$, d_0 is an odd integer
 - Shift value of D for each position shift

15. Multi-Shift Interleaver: Example

Example

original vector

$$\mathbf{x} = [0, 1, 2, 3, ..., 31]$$

•
$$N = 32$$
, $\Delta s = 4$, $d_0 = 5$

•
$$\mathbb{D} = \{5, 9, 13, 17, 21, 25, 29, 1\}$$

•

$$\mathbf{p} = [0, 5, 14, 27, 12, 1, 26, 23, 24, 29, 6, 19, 4, 25, 18, 15, 16, 21, 30, 11, 28, 17, 10, 7, 8, 13, 22, 3, 20, 9, 2, 31]$$

• interleaved vector:

$$\mathbf{x}' = [0, 5, 30, 27, 12, 1, 10, 23, 24, 29, 22, 19, 4, 25, 2, 15, 16, 21, 14, 11, 28, 17, 26, 7, 8, 13, 6, 3, 20, 9, 18, 31]$$

16. Optimal Parameter Search for Multi-Shift Interleaver

- procedure for choosing good interleavers
 - choose d_0 from $(\sqrt{N}, N/2)$
 - ullet calculate hamming weight for $\Delta s \in 2^q$
 - best $\Delta s = \text{largest } d_{\textit{eff}}$
 - repeat for d₀ within range
 - best parameter, $(d_0, \Delta s)$ with largest $d_{\it eff}$, least value of Δs and multiplicity

17.MSI Search Results : 5/7 component encoder. N = 256

d_0	17	31	47
d_{eff}	38	38	38
Δs	64	128	64
$N_{free,eff}$	207	208	209

• best parameter $(d_0 = 17, \Delta s = 64)$

17. Simulation Results for Table

17. Results for 5/7 Component Code. N = 1024

17. Results for 7/5 Component Code. N = 1024

17. Results for 5/7 Component Code. N = 16384

18. Conclusion and Future Works

Conclusion

- The multi-shift interleaver proposed.
- Easier design than linear interleaver
- Better performance than linear interleaver for medium and long frame sizes.

Future Research

- Deterministic interleaver that outperform random interleaver
- Good interleaver design using BER bounds approach
- LDPC code application