1.2 Exercise 1 – Avogadro's Number and reacting masses

1. Calculate the number of	2. Calculate the mass of	3. Calculate the relative
moles present in each of the	substance present in the	molecular mass of the
following cases:	following cases:	following substances and suggest a possible identity of each substance:
a) 2.3 g of Na	a) 0.05 moles of Cl ₂	a) 0.015 moles, 0.42 g
b) 2.5 g of O ₂	b) 0.125 moles of KBr	b) 0.0125 moles, 0.50 g
c) 240 kg of CO ₂	c) 0.075 moles of Ca(OH) ₂	c) 0.55 moles, 88 g
d) 12.5 g of Al(OH) ₃	d) 250 moles of Fe ₂ O ₃	d) 2.25 moles, 63 g
e) 5.2 g of PbO ₂	e) 0.02 moles of $Al_2(SO_4)_3$	e) 0.00125 moles, 0.312 g

- 4. Calculate the number of particles in the following substances:
- a) 0.025 moles
- b) 2.5 g of CO₂ c) 5.0 g of Pb
- d) 100 g of N₂
- 5. Calculate the mass of the following substances:
- a) 2.5×10^{23} molecules of N_2 b) 1.5×10^{24} molecules of CO_2
- c) 2 x 10²⁰ atoms of Mg

Reacting Masses

- 6. Calculate the mass of H₂O required to react completely with 5.0 g of SiCl₄: $SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl$
- 7. Calculate the mass of phosphorus required to make 200 g of phosphine, PH₃, by the reaction: $P_4(s) + 3NaOH(aq) + 3H_2O(l) \rightarrow 3NaH_2PO_4(aq) + PH_3(g)$
- 8. Lead (IV) oxide reacts with concentrated hydrochloric acid as follows:

$$PbO_2(s) + 4HCl(aq) \rightarrow PbCl_2(s) + Cl_2(g) + 2H_2O(l)$$

What mass of lead chloride would be obtained from 37.2g of PbO₂, and what mass of chlorine gas would be produced?

9. When copper (II) nitrate is heated, it decomposes according to the following equation: $2Cu(NO_3)_2(s) \rightarrow 2CuO(s) + 4NO_2(g) + O_2(g)$.

When 20.0g of copper (II) nitrate is heated, what mass of copper (II) oxide would be produced? What mass of NO₂ would be produced?

10. A blast furnace can produce about 700 tonnes of iron a day. How much iron (III) oxide will be consumed? Assuming coke is pure carbon, how much coke would be needed to produce the necessary carbon monoxide?

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(1) + 3CO_2(g)$$

 $2C(s) + O_2(g) \rightarrow 2CO(g)$

Atom Economy

- 11. Calculate the percentage atom economy of the following processes:
- a) the production of iron in the blast furnace:

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

b) the production of titanium:

$$TiCl_4 + 4Na \rightarrow Ti + 4NaCl$$

c) the production of glass from sand:

$$SiO_2 + 2NaOH \rightarrow Na_2SiO_3 + H_2O$$

12. Calculate the atom economy of each of the following methods of producing iron and decide which is the most efficient process:

a)
$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

b)
$$Fe_2O_3 + 3H_2 \rightarrow 2Fe + 3H_2O$$

c)
$$Fe_2O_3 + 2Al \rightarrow 2Fe + Al_2O_3$$