

2009 年全国大学生电子设计竞赛试题

参赛注意事项

- (1) 2009 年 9 月 2 日 8:00 竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题; 高职高专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。
- (2) 参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。
- (3) 参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份的有效证件(如学生证)随时备查。
- (4) 每队严格限制 3人,开赛后不得中途更换队员。
- (5)参赛队必须在学校指定的竞赛场地内进行独立设计和制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。
- (6) 2009年9月5日20:00竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。

电能收集充电器 (E题)

【本科组】

一、任务

设计并制作一个电能收集充电器,充电器及测试原理示意图如图 1。该充电器的核心为直流电源变换器,它从一直流电源中吸收电能,以尽可能大的电流充入一个可充电池。直流电源的输出功率有限,其电动势 Es 在一定范围内缓慢变化,当 Es 为不同值时,直流电源变换器的电路结构,参数可以不同。监测和控制电路由直流电源变换器供电。由于 Es 的变化极慢,监测和控制电路应该采用间歇工作方式,以降低其能耗。可充电池的电动势 Ec=3.6V,内阻 Rc=0.1 Ω 。

图1 测试原理示意图 (E_s和E_c用稳压电源提供, R_d用于防止电流倒灌)

二、要求

1、基本要求

(1) 在 Rs=100Ω, Es=10V~20V 时, 充电电流 Ic 大于 (Es-Ec) / (Rs+Rc)。

- (2) 在 $Rs=100\Omega$ 时,能向电池充电的 Es 尽可能低。
- (3) Es 从 0逐渐升高时,能自动启动充电功能的 Es 尽可能低。
- (4) Es 降低到不能向电池充电,最低至0时,尽量降低电池放电电流。
- (5) 监测和控制电路工作间歇设定范围为 0.1 s~5s。

2、发挥部分

- (1) 在 $Rs=1\Omega$, $Es=1.2V\sim3.6V$ 时,以尽可能大的电流向电池充电。
- (2) 能向电池充电的 Es 尽可能低。当 Es \geqslant 1.1V 时,取 Rs=1 Ω ; 当 Es \ll 1.1V 时,取 Rs=0.1 Ω 。
- (3) 电池完全放电,Es 从 0 逐渐升高时,能自动启动充电功能(充电输出端开路电压 >3.6V,短路电流>0)的 Es 尽可能低。当 Es \geqslant 1.1V 时,取 Rs=1.1V 时,取 Rs=0.1 Ω 。
- (4) 降低成本。
- (5) 其他。

三、评分标准

设计报告	项 目	主要内容	满分
	系统方案	电源变换及控制方法实现方案	5
	理论分析与计算	提高效率方法的分析及计算	7
	电路与程序设计	电路设计与参数计算 启动电路设计与参数计算 设定电路的设计	10
	测试结果	测试数据完整性 测试结果分析	3
	设计报告结构及规范性	摘要,设计报告正文的结构 图表的规范性	5
	总分		30
基本要求	实际制作完成情况		50
	完成第(1)项		30
	完成第(2)项		5
发挥	完成第(3)项		5
部分	完成第(4)项		5
	其他		5
	总分		50

四、说明

- **1.** 测试最低可充电 Es 的方法:逐渐降低 Es,直到充电电流 Ic 略大于 0。当 Es 高于 3.6V 时,Rs 为 100Ω ; Es 低于 3.6V 时,更换 Rs 为 1Ω ; Es 降低到 1.1V 以下时,更换 Rs 为 0.1Ω 。然后继续降低 Es,直到满足要求。
- **2.** 测试自动启动充电功能的方法: 从 0 开始逐渐升高 Es,Rs 为 0.1 Ω ; 当 Es 升高到高于 1.1V 时,更换 Rs 为 1 Ω 。然后继续升高 Es,直到满足要求。