WebAssembly

A Web com performance de aplicações nativas

Alex Braha Stoll

Apresentação

Objetivos

Agenda

- Por que a linguagem JavaScript é "lenta"?
- O que é WebAssembly e porque é muito mais rápido do que JavaScript
- Exemplos de uso de WebAssembly
- Demo (processamento de imagens): C (WebAssembly) vs JavaScript

Por que JS é lento?*

*Na verdade, não é tão lento assim

binary-trees

-					
source	secs	mem	gz	cpu	cpu load
Node js	23.79	365,624	431	39.77	47% 30% 46% 47%
Ruby	52.41	434,004	1107	176.92	88% 85% 77% 89%

binary-tree	es				
source	secs	mem	gz	cpu	cpu load
Node js	23.79	365,624	431	39.77	47% 30% 46% 47%
C++ a++	3.67	118,620	809	11.91	75% 78% 99% 76%

O que é WebAssembly?

Compiler toolchain

front-end: clang optimizer: LLVM back-end: LLVM WASM backend or Emscripten using asm2wasm

Exemplos de uso de WebAssembly

Demo

Perguntas?