100分鐘看懂dB、dBm、dBw的區別

計算機網絡工程師 昨天

以下文章來源於中興文檔,作者中興文檔

中興文檔

通俗易懂且高顏值的通訊技術文檔!

來自公眾號:中興文檔

dB應該是無線通信中最基本、最習以為常的一個概念了。我們常說"傳播損耗是xx dB"、"發射功率是xx dBm"、"天線增益是xx dBi"……

有時,這些長得很像的dBx們可能被弄混,甚至造成計算失誤。它們究竟有什麼區別呢?

這事不得不先從**dB**說起。

而說到dB,最常見的就是**3 dB**啦!

3 dB在功率圖或誤碼率圖中經常出現。其實,沒什麼神秘的,下降3 dB就是指功率下降一半,3 dB點指的就是半功率點。

+3 dB表示增大為兩倍, -3 dB表示下降為1/2。這是怎麼來的呢?

其實很簡單,讓我們一起看下dB的計算公式:

$$d\mathcal{B} = 10 \lg \left(\frac{\mathcal{P}_{i}}{\mathcal{P}_{o}}\right)$$

dB表示功率P 1相對於參考功率P 0的大小關係。如果P 1是P 0的2倍,那麼:

$$10 \lg \left(\frac{\mathcal{P}_{1}}{\mathcal{P}_{0}}\right) = 10 \lg 2 = 3 dB$$

如果P 1是P 0的一半, 那麼:

關於對數的基本概念及運算性質,大家可以自行回顧下高一數學。。。

4.3.1 对数的概念

上述问题实际上就是从 $2=1.11^x$, $3=1.11^x$, $4=1.11^x$, …中分别求出 x, 即已知底数和幂的值, 求指数. 这是本节要学习的对数.

一般地,如果 $a^x = N(a > 0$,且 $a \neq 1$),那么数 x 叫做以 a 为底 N 的对数 (logarithm),记作

$$x = \log_a N$$
,

其中 a 叫做对数的底数, N 叫做真数.

例如,由于 $2=1.11^x$,所以 x 就是以 1.11 为底 2 的对数,记作 $x=\log_{1.11}2$; 再如,由于 $4^2=16$,所以以 4 为底 16 的对数是 2,记作 $\log_4 16=2$.

根据对数的定义,可以得到对数与指数间的关系:

当
$$a>0$$
, $a\neq 1$ 时, $a^x=N\Leftrightarrow x=\log_a N$.

由指数与对数的这个关系,可以得到关于对数的如下结论:

负数和 0 没有对数:

$$\log_a 1 = 0$$
, $\log_a a = 1$,

请你利用对数与指数间的关系证明这两个结论.

"log" 是拉丁文 logarithm (对数) 的缩写,

通过查询互联网,进 一步了解无理数 e、常用 对数和自然对数. 現在出道題來檢驗下你的理解程度:

【問】功率增大為10倍,用?dB表示

點擊下方空白區域查看答案

這裡請大家記住一個口訣。記住了這個口訣, 你基本就可以橫著走路了。

加3乘2 加10乘10

> 减3除2 减10除10

+3 dB, 表示功率增加為2倍; +10 dB, 表示功率增加為10倍。

-3 dB, 表示功率減小為1/2; -10 dB, 表示功率減小為1/10。

可見dB是個相對值,它的使命就是把一個很大或者很小的數,用一個簡短的形式表達出來。

功率变化	dB表示
增大到100000000倍 8个0	10 lg 108 = 80 dB
减小到0.0000001倍	10 lg 10 -8 = -80 dB

這可以極大的方便我們計算和描述。尤其是繪製表格的時候,大家可以自行腦補下,沒換算成dB前,這麼多的0,坐標軸得拉到外太空了吧。。。

理解了dB, 你只能橫著走, 理解了dB家族的其它成員, 你就可以躺贏了。

我們還是從最常用的dBm、dBw來說。

dBm、dBw就是把dB公式中的參考功率P 0分別換成1 mW、1 W:

1 mW、1 W都是確定的值,因此dBm、dBw都可以表示功率的絕對值。

直接上個功率換算表供大家參考。

watt	dBm	dBw
0.1 pW	-100 dBm	-130 dBW

1 pW	-90 dBm	-120 dBW
10 pW	-80 dBm	-110 dBW
100 pW	-70 dBm	-100 dBW
1 nW	-60 dBm	-90 dBW
10 nW	-50 dBm	-80 dBW
100 nW	-40 dBm	-70 dBW
1 μW	-30 dBm	-60 dBW
10 μW	-20 dBm	-50 dBW
100 μW	-10 dBm	-40 dBW
794 μW	-1 dBm	-31 dBW
1.000 mW	0 dBm	-30 dBW
1.259 mW	1 dBm	-29 dBW
10 mW	10 dBm	-20 dBW
100 mW	20 dBm	-10 dBW
1 W	30 dBm	0 dBW
10 W	40 dBm	10 dBW
100 W	50 dBm	20 dBW
1 kW	60 dBm	30 dBW
10 kW	70 dBm	40 dBW
100 kW	80 dBm	50 dBW
1 MW	90 dBm	60 dBW
10 MW	100 dBm	70 dBW

這裡,我們要記住:

1 W = 30 dBm

簡化口訣是"30是基準,等於1 W整"。

記住了這條,再結合前面的"加3乘2,加10乘10;減3除2,減10除10",你就可以進行很多口算了。

趕緊出道題來檢驗下。

【問】44 dBm=? W

點擊下方空白區域查看答案

你算對了嗎?

這裡我們需要注意,等式右側除了30 dBm,其餘的拆分項都要用dB表示。也就是說,用一個dBx減另一個dBx時,得到的結果用dB表示。

[例] 如果A的功率為46 dBm, B的功率為40 dBm, 可以說A比B大6 dB。

[例] 如果A天線為12 dBd, B天線為14 dBd, 可以說A比B小2 dB。

例如,46 dB表示P1為P0的4萬倍,46 dBm則表示P1的值為40 W。符號中僅僅差了一個m,代表的含義可完全不同。

dB家族中常見的還有dBi、dBd、dBc。它們的計算方法與dB的計算方法完全一樣,表示的還是功率的相對值。

不同的是,它們的參考基準不同,即分母上的參考功率P o所代表的含義不同。

dBx	参考基准
10° (0 - 2) - 7 - 4 - 2 - 1	全方向性天线
dBi (Decibe-Isotropic)	(isotropic antenna)
dBd (Decibe-Dipole)	偶极子天线
	(dipole antenna)
dBc (Decibe-Carrier)	载波(carrier)

一般認為,表示同一個增益,用dBi表示出來比用dBd表示出來要大2.15。這個差值是兩種天線的不同方向性導致的,這裡咱們就不展開說了。

0 00000

此外,dB家族不僅可以表示功率的增益和損耗,還可以表示電壓、電流、音頻等,大家要具體場景具體應用。

需要注意的是,對於功率的增益,我們用10lg (Po/Pi),對於電壓和電流的增益,要用20lg (Vo/Vi)、20lg (lo/li)。

功率增益:
$$A(P)(dB) = 10 \lg (\frac{P_o}{P_i})$$
电压增益: $A(V)(dB) = 20 \lg (\frac{V_o}{V_i})$
电流增益: $A(I)(dB) = 20 \lg (\frac{I_o}{I_i})$

多的這個2倍是怎麼來的呢?

這個2來源於電功率轉換公式的平方上。對數里面的n次方,計算後對應的就是n倍啦。

關於功率和電壓、電流的轉換關係,大家可以自行溫習下初中物理。。。

用电器的电功率

天河一号巨型计算机	4.04×10 ⁶ W	液晶电视机	约 100 W
家用空调	约 1 000 W	排风扇	约 20 W
吸尘器	约 800 W	手电筒	约 0.5 W
电吹风机	约 500 W	计算器	约 0.5 mW

台式计算机	约 200 W	电子表	约 0.01 mW

作为表示电流做功快慢的物理量,电功率等于电功与时间之比。如果电功用W表示,完成这些电功所用的时间用t表示,电功率用P表示,则

$$P = \frac{W}{t}$$

将上节电功W=Ult代入上式得

$$P = UI$$

92 物理 九年级

最後,小編整理了一些主要的dB家庭成員,供大家參考。

相對值:

符號	全稱	參考基準
dB	decibel	-
dBc	decibel carrier	載波功率

dBd	decibe dipole	偶極子功率密度
dBi	decibel isotropic	全向天線功率密度
dBFS	decibel full scale	滿刻度的量值
dBrn	decibel reference noise	基準噪聲

絕對值:

符號	全稱	參考基準
dBm	decibel milliwatt	1mW
dBW	decibel watt	1W
dBµV	decibel microvolt	1µVRMS
dBmV	decibel millivolt	1mVRMS
dBV	decibel volt	1VRMS
dBu	decibel unloaded	0.775VRMS
dΒμΑ	decibel microampere	1μΑ
dBmA	decibel milliampere	1mA
dBohm	decibel ohms	1Ω
dBHz	decibel hertz	1Hz
dBSPL	decibel sound pressure level	20µPa

最最後, 我們再來出兩道題檢驗下大家的成果。

- 1. 30 dBm的功率是()
- A. 1 W
- B. 10 W
- C. 1 mW
- D. 10 mW

點擊下方空白區域查看答案

- 2. 假定小區輸出總功率為46 dBm, 在2天線時, 單天線功率是()
- A. 46 dBm
- B. 43 dBm
- C. 23 dBm
- D. 40 dBm

點擊下方空白區域查看答案

好了,以上就是今天文章的全部内容。告訴小編,你堅持到100分鐘了沒?

推薦↓↓↓

運維

分享網絡管理、網絡運維、運維規劃、運維開發、Python運維、Linux運維等知識,推廣圍繞DevOps理念的自動化運維、精益運維… 1篇原創內容

公眾號

喜歡此內容的人還喜歡

這是我見過對DNS最通俗易懂的解釋了

計算機網絡工程師

射頻學習文章資料匯總 (學習必備, 持續更新)

射頻學堂

光纖收發器哪個發射,那個接收?什麼是單纖/雙纖收發器?

智能化安防弱電知識學習

