Predicting the Readmission Rate of a Diabetics Patient

Karthick Sharan

Motivation

Hospital readmission is a genuine issue that requires ongoing discussion in order to enhance patient satisfaction and the quality of care while maintaining cost effectiveness. Diabetes is one of the existing chronic diseases across the world. If we know beforehand that a particular diabetic patient has a high chance of readmission we can change the treatment to avoid readmission.

The main aim of this project is to build a machine learning model that can accurately predict patient readmission.

Data

Information about those patients who met the following criteria:

- Inpatient encounter (also a hospital admission)
- Diabetic encounter, includes any kind of diabetes that entered into system as a diagnosis
- Length of patient stay (at least 1 day and at most 14 days)
- Laboratory tests performed during the encounter
- Medications administered during the encounter

Output: Predicting a diabetic patient will be readmitted to a hospital within a month

Data Cleaning & EDA

After we cleanse the datasets, here are the key insights to look up for:

- There are 68,358 observations
- The targeted variable is imbalanced
- Dependent variable, "Readmitted", shows that patients whether could get re-admitted to the hospital within 30 days or not.
- We come up with 3 classifications:
 - Blue color = the patients readmitted to the hospital have NO records found
 - Orange color = the patients readmitted to the hospital past more than 30 days
 - Dark yellow color = the patients readmitted to the hospital within 30 days

Distribution of readmitted patients (Target Variable)

The column 'readmitted' tells us if a patient was hospitalized within 30 days, greater than 30 days or not readmitted.

Numerical and Categorical Columns

After Converting variables to the proper data type according to the data dictionary, our dataset has:

- 68,358 observations
- 11 continuous variables
- 35 categorical variables

Numeric Variables:

	time_in_hospital	num_lab_procedures	num_procedures	num_medications	number_outpatient	number_emergency	number_inpatient	diag_1	diag_2
1	3	59	0	18	0	0	0	276.0	250.01
2	2	11	5	13	2	0	1	648.0	250.00
3	2	44	1	16	0	0	0	8.0	250.43
4	1	51	0	8	0	0	0	197.0	157.00
5	3	31	6	16	0	0	0	414.0	411.00
		1000	Seco	1000	(550)		1000		
101754	9	50	2	33	0	0	0	574.0	574.00
101755	14	73	6	26	0	1	0	592.0	599.00
101756	2	46	6	17	1	1	1	996.0	585.00
101758	5	76	1	22	0	1	0	292.0	8.00
101765	6	13	3	3	0	0	0	530.0	530.00

Categorical Variables:

	race	gender	age	admission_type_id	discharge_disposition_id
1	Caucasian	Female	[10- 20)	1	1
2	AfricanAmerican	Female	[20- 30)	1	1
3	Caucasian	Male	[30- 40)	1	1
4	Caucasian	Male	[40- 50)	1	1
5	Caucasian	Male	[50- 60)	2	1
•••	122		422	223	18221
101754	Caucasian	Female	[70- 80)	1	1
101755	Other	Female	[40- 50)	1	1
101756	Other	Female	[60- 70)	1	1
101758	Caucasian	Female	[80- 90)	1	ĵ
101765	Caucasian	Male	[70- 80)	1	1
68 <mark>358</mark> rc	ws × 35 column	ıs			

Reducing Unique values in Categorical variables

```
high frequency = ['InternalMedicine', 'Family/GeneralPrac
                  'Emergency/Trauma', 'Urology', 'Obstetric
low frequency = ['Surgery-PlasticwithinHeadandNeck', 'Psyc
                 'Neurophysiology', 'Resident', 'Pediatrics-
                 'Pediatrics-Pulmonology', 'Surgery-Pediatr
                 'Endocrinology-Metabolism', 'PhysicianNotFo
                 'Surgery-Maxillofacial', 'Rheumatology', 'A
pediatrics = ['Pediatrics', 'Pediatrics-CriticalCare', 'Ped
               'Pediatrics-Neurology', 'Pediatrics-Pulmono
psychic = ['Psychiatry-Addictive', 'Psychology', 'Psychiatry
neurology = ['Neurology', 'Surgery-Neuro', 'Pediatrics-N
surgery = ['Surgeon', 'Surgery-Cardiovascular', \
          'Surgery-Cardiovascular/Thoracic', 'Surgery-Cole
              'Surgery-Plastic', 'Surgery-PlasticwithinHead
             'Surgery-Vascular', 'SurgicalSpecialty', 'Po
others = ['Endocrinology', 'Gastroenterology', 'Gynecology
           'Oncology', 'Ophthalmology', 'Otolaryngology', 'P
missing = ['?']
```

```
colMedical = []
for val in df['medical specialty'] :
    if val in pediatrics :
        colMedical.append('pediatrics')
    elif val in psychic :
        colMedical.append('psychic')
    elif val in neurology :
        colMedical.append('neurology')
    elif val in surgery :
        colMedical.append('surgery')
    elif val in high frequency :
        colMedical.append('high freq')
    elif val in low frequency :
        colMedical.append('low freq')
    elif val in others :
        colMedical.append('others')
    elif val in missing :
        colMedical.append('missing')
    else:
        colMedical.append('?')
df['medical specialty'] = colMedical
```

Before proceeding with our analysis, for variables having huge number of classes, we've classified them into general categories.

For this one column we reduced the unique values from 73 to just 9.

Handling Missing Values

Columns with more than 40% missing data was dropped (2 columns)

'Race' which is categorical has 2% missing data, for this the missing rows were dropped.

	Column Name	Missing Values	Missing Percentage
0	encounter_id	0	0
1	patient_nbr	0	0
2	race	1948	2
3	gender	0	0
4	age	0	0
5	weight	68665	96
6	admission_type_id	0	0
7	discharge_disposition_id	0	0
8	admission_source_id	0	0
9	time_in_hospital	0	0
10	payer_code	31043	43

Handling Missing Values (Imputation)

For Features 'Diag1', 'Diag2' and 'Diag3' we have non-numeric values such as 'E27', 'V55' etc. in addition to missing values. These values didn't convey any specific meaning so it was treated as missing and imputation was performed.

KNN-Imputation was used to impute the missing values (after Scaling the numeric features and encoding the categorical ones).

```
# Converting diag_1, diag_2 and diag_3 to numeric

df['diag_1'] = df['diag_1'].apply(lambda x: np.nan if (x[0]=='V' or x[0]=='E') else x)

df['diag_1'] = df['diag_1'].astype('float')

df['diag_2'] = df['diag_2'].apply(lambda x: np.nan if (x[0]=='V' or x[0]=='E') else x)

df['diag_2'] = df['diag_2'].astype('float')

df['diag_3'] = df['diag_3'].apply(lambda x: np.nan if (x[0]=='V' or x[0]=='E') else x)

df['diag_3'] = df['diag_3'].astype('float')

df[['diag_1','diag_2','diag_3']].isnull().sum()

diag_1 895

diag_2 1735

diag_3 3469

dtype: int64
```

```
# knn imputation
imputer = KNNImputer(n neighbors=5)
df num imp = pd.DataFrame(imputer.fit t
df num imp.isnull().sum()
time in hospital
num lab procedures
num procedures
num medications
number outpatient
                      0
number emergency
number inpatient
diag 1
diag 2
diag 3
number diagnoses
                      0
dtype: int64
```

EDA for Numerical Variables

Skewness Before Power transformation

Skewness After transformation (yeo-johnson)

Numerical Features Against Target

There doesn't seem to be a significant difference in the IQR of the 3 boxes in the plots.

Time_in_hospital and Num_lab_procedures seem to slightly affect the target which doesn't seem to have much impact.

Treating Multicollinearity and Feature Extraction

26	feature	VIF
0	time_in_hospital	1.399188
1	num_lab_procedures	1.162083
2	num_procedures	1.204304
3	num_medications	1.539338
4	number_outpatient	1.019639
5	number_emergency	1.032789
6	number_inpatient	1.036174
7	diag_1	1.020271
8	diag_2	1.028674
9	diag_3	1.038367
10	number_diagnoses	1.138463

No multicollinearity present since VIF is <2 for all numeric features

EDA Categorical Variables

Remapping sub-categories according to Data dictionary, and exploring the distribution of categorical variables.

Re-Mapping the Target variable into Binary

readmitted	<30	>30	NO
age			
[0-10)	1	12	51
[10-20)	20	98	222
[20-30)	76	241	675
[30-40)	178	656	1671
[40-50)	482	1875	4141
[50-60)	853	3636	7471
[60-70)	1381	4822	9170
[70-80)	1779	5973	9836
[80-90)	1160	3761	6281
[90-100)	160	465	1211

30 days

1	0	readmitted_binary
		age
1	63	[0-10)
20	320	[10-20)
76	916	[20-30)
178	2327	[30-40)
482	6016	[40-50)
853	11107	[50-60)
1381	13992	[60-70)
1779	15809	[70-80)
1160	10042	[80-90)
160	1676	[90-100)

Age group vs Target variable (Readmitted)

1	0	readmitted_binary
		age
1.562500	98.437500	[0-10)
5.882353	94.117647	[10-20)
7.661290	92.338710	[20-30)
7.105788	92.894212	[30-40)
7.417667	92.582333	[40-50)
7.132107	92.867893	[50-60)
8.983282	91.016718	[60-70)
10.114851	89.885149	[70-80)
10.355294	89.644706	[80-90)
8.714597	91.285403	[90-100)

The above plot illustrates the (%) of population within the age group who got readmitted within 30 days, and there seems to be a strong correlation.

Categorical Variables vs Target

- Female has a higher proportion of population, but the count of readmittance of Male seems be equal to that of female
- Similarly Discharge_disposition_id may also impact the re-admittance rate
- For other variables though not evidently visible, there might still be some relation with the target

Proportion of Target in Categorical variables

```
for i in cols:
   print('Varibale:',i,'\n')
   print(pd.crosstab(df cat[i],df cat['readmitted binary
   print("-----
Varibale: gender
readmitted binary 0 1
gender
Female 91.023600 8.976400
Male 91.167716 8.832284
Unknown/Invalid 100.000000 0.0000000
Varibale: admission type id
readmitted binary 0 1
admission type_id
Elective 91.662918 8.337082
Emergency 90.985152 9.014848
New Born 88.888889 11.111111
Trauma Center 100.000000 0.000000
```

```
Varibale: discharge disposition id
readmitted binary
                                       1
discharge disposition id
Discharged to Home 92.540215 7.459785
Other 86.233011 13.766989
Varibale: admission source id
readmitted_binary 0 1
admission source id
Emergency 90.859736 9.140264
Other 91.677882 8.322118
Referral 91.329717 8.670283
Varibale: diabetesMed
readmitted binary 0 1
diabetesMed
No 92.570463 7.429537
Yes 90.617699 9.382301
Varibale: insulin
readmitted binary 0
insulin
        89.460546 10.539454
Down
No 91.794506 8.205454
Steady 90.784182 9.215818
         90.261211 9.738789
Up
```

Data Preprocessing before modelling

Power Transformation(Yeo-Johnson) was used to reduce the skew in numeric data, Scaling was performed using Standard Scalar.

Categorical variables were dummy encoded (with drop_first)

num_medications	number_outpatient	number_emergency	number_inpatient	diag_1	diag_2	diag_3	 insulin_No	insulin_Steady	insulin_Up	metf
0.489262	-0.390600	-0.283670	-0.369736	-1.114593	-1.149007	-1.001435	 0	0	1	
-0.192788	2.575451	-0.283670	2.702722	0.775035	-1.149085	1.112344	 1	0	0	
0.244787	-0.390600	-0.283670	-0.369736	-2.724181	-1.145730	0.114383	 0	0	1	
-1.103596	-0.390600	-0.283670	-0.369736	-1.572916	-1.910545	-1.044846	 0	1	0	
0.244787	-0.390600	-0.283670	-0.369736	-0.354894	-0.017281	-1.044846	 0	1	0	
2000	555	o two	1000		5274	1555	 2552	.550		
1.744963	-0.390600	-0.283670	-0.369736	0.438976	0.844384	-1.044672	 0	1	0	
1.243959	-0.390600	3.525205	-0.369736	0.522150	0.958256	0.741328	 0	0	1	
0.371156	2.544766	3.525205	2.702722	2.212598	0.894925	0.114383	 0	1	0	
0.900432	-0.390600	3.525205	-0.369736	-1.023676	-3.264887	-0.594717	 0	0	1	
-2.216890	-0.390600	-0.283670	-0.369736	0.231118	0.634605	1.796355	 1	0	0	

Fitting Base Model (Naive Bayes)

Gaussian Naive Bayes Performance: Train Acurracy: 0.10881922675026123 Training error is: 0.8911807732497388 Test Acurracy: 0.10678759508484494 Test error is: 0.8932124049151551

		precision	recall	†1-score	support
	0	0.93	0.02	0.04	18703
	1	0.09	0.98	0.16	1805
accur	racy			0.11	20508
macro	avg	0.51	0.50	0.10	20508
weighted	avg	0.85	0.11	0.05	20508

Using Naive Bayes as Baseline model

Applying SMOTE to balance the target class.

Gaussian Naive Bayes Performance: Train Acurracy: 0.5645540579294522 Training error is: 0.43544594207054776 Test Acurracy: 0.559540697518803

Test error is: 0.440459302481197

	precision	recall	f1-score	support
0	0.85	0.15	0.25	18697
1	0.53	0.97	0.69	18664
accuracy			0.56	37361
macro avg	0.69	0.56	0.47	37361
weighted avg	0.69	0.56	0.47	37361

Naive Bayes - Hyperparameter Tuning

AUC = 0.56 Before hyperparameter tuning

ROC AUC = 0.67 after hyperparameter tuning using gridsearchev (cv=5)

The best parameters are: {'var_smoothing': 0.012742749857031341}

Logistic Regression Model

Before Hyperparameter Tuning

Hyperparameter runing

	precision	recall	†1-score	support	
Ø	0.79	0.91	0.85	18697	
1	0.89	0.76	0.82	18664	
accuracy			0.83	37361	
macro avg	0.84	0.83	0.83	37361	
weighted avg	0.84	0.83	0.83	37361	
Confusion Mat	trix for test	data:			

GridsearchCV (cv=5)

accuracy macro avg weighted avg

After Hyperparameter Tuning

support	f1-score	recall	precision	
18697	0.85	0.91	0.79)
18664	0.82	0.76	0.89	
37361	0.84			
37361	0.84	0.84	0.84	
37361	0.84	0.84	0.84	

Logistic Regression (Tuning Hyperparameter/Regularization)

ROC AUC Score after tuning Hyperparameters/Regularization: 0.8359128899655688

The best parameters: {'C': 5, 'penalty': '12', 'solver': 'newton-cg'}

Feature Importance (Logistic Regression)

The below plot depicts the 15 most important features used by the LR model for prediction, and the values of the coefficients for the 92 variables.

SVM (Base vs Tuned Model)

Classification Report: recall f1-score precision support 0.78 0.92 0.85 18697 1 0.91 0.75 0.82 18664 0.84 37361 accuracy 0.83 37361 macro avg 0.85 0.84 weighted avg 0.85 0.84 0.83 37361

Classification Report:

	precision	recall	f1-score	support
0	0.78	0.92	0.85	18697
1	0.91	0.75	0.82	18664
accuracy			0.84	37361
macro avg	0.85	0.84	0.83	37361
weighted avg	0.85	0.84	0.83	37361

Confusion Matrix SVM (Test data):

Confusion Matrix SVM (Test data):

SVM (tuning Hyperparameter/Regularization)

ROC AUC Score before hyperparameter tuning (SVM): 0.8350434728475297

ROC AUC Score of SVM model after tuning Hyperparameters & Regularization: 0.8350702623888927

Receiver operating characteristic (Best SVM - Regularized)

The best parameters: {'C': 1, 'penalty': 'l2'}

SVM - Feature Importance

The below plot depicts the 15 most important features used by the SVM model for prediction, and the values of the coefficients for the 92 variables.

Random Forest Classifier

Classification Report:

		precision	recall	f1-score	support
	0	0.92	0.99	0.95	18697
	1	0.99	0.92	0.95	18664
accur	acy			0.95	37361
macro	avg	0.95	0.95	0.95	37361
weighted	avg	0.95	0.95	0.95	37361

GridsearchCV

Classification Report:

	precision	recall	f1-score	support	
0	0.92	0.99	0.95	18697	
1	0.99	0.92	0.95	18664	
accuracy			0.95	37361	
macro avg	0.95	0.95	0.95	37361	
weighted avg	0.95	0.95	0.95	37361	

ROC AUC Score after hyperparameter tuning (Best RF): 0.952486559751432

Confusion Matrix for test data:

Receiver operating characteristic (Best RF Model)

Random Forest (Overfitting?)

- We can observe from the training data's confusion matrix that the RF model is actually overfitting.
- One possible reason for this might be the minority oversampling which we did earlier for our target variable.

• So to avoid overfitting we'll generalize the RF model by tuning it's max_depth in addition to the earlier tuned hyperparameters.

Random Forest Hyperparameter tuning & Regularization

Classification Report:

	precision	recall	f1-score	support
0	0.89	0.87	0.88	18697
1	0.87	0.89	0.88	18664
accuracy			0.88	37361
macro avg	0.88	0.88	0.88	37361
weighted avg	0.88	0.88	0.88	37361

ROC AUC Score after Regularization (Best RF): 0.8785174537422552

Receiver operating characteristic (Best RF Model - Regularized)

Saturation curve for ROC AUC score (RF Model)

Random Forest Feature Importance

Feature Importance for the 3 models

	Top Features (LR)	Top Features (SVM)	Top Features (RF)
1	age_[20-30)	miglitol_No	time_in_hospital
2	age_[30-40)	miglitol_Steady	number_inpatient
3	age_[90-100)	age_[20-30)	number_diagnoses
4	age_[40-50)	age_[30-40)	diag_3
5	age_[10-20)	age_[90-100)	num_medications
6	age_[50-60)	age_[40-50)	age_[50-60)
7	age_[60-70)	age_[10-20)	age_[40-50)
8	age_[80-90)	age_[50-60)	diag_2
9	medical_specialty_pediatrics	nateglinide_Up	diag_1
10	age_[70-80)	age_[60-70)	gender_Male
11	rosiglitazone_Up	age_[80-90)	num_procedures
12	glyburide-metformin_Steady	age_[70-80)	num_lab_procedures
13	nateglinide_Up	rosiglitazone_Up	age_[60-70)
14	rosiglitazone_Steady	medical_specialty_pediatrics	admission_source_id_Referral
15	nateglinide_Steady	glyburide-metformin_Steady	age_[70-80)

 This table depicts the top 15 important features for Logistic Regression, SVM and Random Forest model respectively.

 We can observe that while the order of important features varies for each model, there are still quite a few features which are consistent across all the models.

Feature Selection

We've used Recursive Feature Elimination to select the to 45 features to reduce modelling time and complexity.

```
1 age [10-20)
1 age [20-30)
1 age [30-40)
1 age [40-50)
1 age [50-60)
1 age [60-70)
1 age [70-80)
1 age [80-90)
1 age [90-100)
1 medical specialty pediatrics
2 rosiglitazone Up
3 rosiglitazone Steady
4 rosiglitazone No
5 pioglitazone Up
6 pioglitazone Steady
7 pioglitazone No
8 miglitol No
9 metformin Up
10 metformin Steady
11 metformin No
12 glimepiride Up
13 glimepiride Steady
14 glimepiride No
15 repaglinide Steady
16 repaglinide No
17 repaglinide Up
18 glipizide Up
19 glipizide Steady
20 glipizide No
21 glyburide Un
```

LR model evaluation after Feature selection

Classification Report:

	precision	recall	f1-score	support	
0	0.76	0.92	0.84	18697	
1	0.90	0.71	0.80	18664	
accuracy			0.82	37361	
macro avg	0.83	0.82	0.82	37361	
weighted avg	0.83	0.82	0.82	37361	

Receiver operating characteristic (LR - top 45 Features)


```
#Getting time difference before and after feature selection
print("Execution time of GridsearchCV (LR model) before Feature selection: ", round(total_time_before,3), "(s)")
print("Execution time of GridsearchCV (LR model) after Feature selection: ", round(total_time_after,3), "(s)")
```

```
Execution time of GridsearchCV (LR model) before Feature selection: 94.839 (s) Execution time of GridsearchCV (LR model) after Feature selection: 66.496 (s)
```

Model Selection

- Out of all the linear models Logistic Regression has the best performance.
- If computational time is a critical factor then we could also go with Naives Bayes, however there's a slight tradedoff with performance.
- Regularized RF outperforms all other models but again that is to be expected since it's an ensemble model.

	Recall	Precision	F1-Score	ROC-AUC	Accuracy	Time(s)
Gaussian Naive Bayes	0.919096	0.613168	0.735592	0.670143	0.669923	0.202185
Logistic Regression	0.761412	0.894561	0.822634	0.835913	0.835979	8.193740
Support Vector Machine	0.745928	0.907562	0.818845	0.835043	0.835122	16.397628
Random Forest	0.887323	0.871769	0.879477	0.878517	0.878510	8.845504

Business Impact and Conclusion

- Hospital readmission is an important contributor to total medical expenditures and is an emerging indicator of quality of care.
- Diabetes, similar to other chronic medical conditions, is associated with increased risk of hospital readmission.
- hospital readmission is a high-priority health care quality measure and target for cost reduction, particularly within 30 days of discharge.
- The burden of diabetes among hospitalized patients is substantial, growing, and costly, and readmissions contribute a significant portion of this burden.
- Reducing readmission rates among patients with diabetes has the potential to greatly reduce health care costs while simultaneously improving care.
- Our aim is to provide some insights into the risk factors for readmission and also to identify the medicines that are the most effective in treating diabetes.

Business Impact and Conclusion

- Although most of the identified risk factors such as being female, being aged ≥65 years, and
 having comorbidities like diabetes are not modifiable, an understanding of their impact on
 disease outcomes is relevant to health professionals and policymakers for developing and
 updating clinical practice guidelines to reduce 30-day unplanned hospital readmission.
- Better management and monitoring of multiple comorbidities associated with diabetes is recommended to delay the progression of complications associated with DM, thus reducing the risk of 30-day unplanned hospital readmission
- Through this project, we created a machine learning model that is able to predict the patients with diabetes with highest risk of being readmitted within 30 days.
- The best linear model was a Logistic Regression with optimized hyperparameters. & Regularized RF is best overall model

