Recitation 1

Alex Dong

CDS, NYU

Fall 2020

Announcements

Welcome!

- ▶ My Office hours: TBA (once I figure my schedule out)
- ► Rotating cohorts if you are not scheduled to be in person, please join the online zoom call (w/ Carles or Irina)
- ▶ Recitations are for practice problems
- ▶ You will have time in recitation to solve the problems.
- ▶ Recitations will be released so you can look over/solve problems in advance.

Why is Linear Algebra important?

Linear Algebra...

- ▶ Appears in ALL applied math, including data science
- ▶ Is solvable. If you can write it down, you can solve it! (not true for other math, e.g Diff Eq, Integrals)
- ▶ Is fundamental to understanding tools in machine learning Relevant applications we will cover in the class:
 - ► Linear Regression
 - ▶ Principal Component Analysis
 - ► Gradient Descent

First year MSDS students are *highly encouraged* to take this class.

Concept Review: Vector Spaces

Definition (Vector space)

V is a vector space over field F when

- 1. Closure under Addition: $x + y \in V$
- 2. Sum is commutative (x + y = y + x) and associative x + (y + z) = (x + y) + z
- 3. Additive Identity (in V): $0 \in V$ (x + 0 = x)
- 4. Additive Inverse: $(\forall x, \exists -x \text{ s.t } x + (-x) = 0)$
- 5. Closure under Scalar Multiplication: $\alpha x \in V$
- 6. Multiplicative Identity (in F): $\alpha x \in V$
- 7. Compatibility in Multiplication: $\alpha(\beta x) = (\alpha \beta)x$
- 8. Distributivity: $(\alpha + \beta)x = \alpha x + \beta \cdot \vec{y}$ and $\alpha(x + y) = \alpha x + \alpha \cdot y$.

Notice that "vectors" are not explicitly defined.

Optional: prove (after class) that \mathbb{R}^3 with standard definitions for addition and scalar multiplication is vector space over field \mathbb{R} .

Concept Review: Vector Spaces

- ▶ In this class,
 - \blacktriangleright Our field is always \mathbb{R} . (\mathbb{C} is also a field.)
 - ► Standard definitions for vector addition, and scalar multiplication.
 - \blacktriangleright But, V is (usually) \mathbb{R}^n , or (sometimes) $\mathbb{R}^{n\times n}$.
- ▶ Everything in linear algebra is in a vector space!
- ▶ (!) A recurring concept in data science is to "vectorize" problems
 - ▶ If you can transform/reframe your problem in linear algebra, you can (attempt) to solve it!

Concept Review: Subspaces

Definition (Subspace)

A subset S of a vector space V is a subspace if it is closed under addition and scalar multiplication.

- 1. Closure under Addition: $x + y \in S$
- 2. Closure under Scalar Multiplication: $\alpha x \in S$
- ► A subspace is also a vector space!
- ► Everything in linear algebra is in a vector space.
- ▶ Anything *interesting* in linear algebra is in a subspace.
- ▶ Subspaces are a recurring concept throughout this entire course.

Questions 1: Subspaces, Span

Recall that $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}$ can be thought of as the *xy*-plane. Consider the two vectors v = (1,1) and w = (-1,2). Describe the following sets geometrically. Which are subspaces of \mathbb{R}^2 ?

- 1. $\operatorname{Span}(v)$
- 2. $\operatorname{Span}(v, w)$
- 3. $\operatorname{Span}(v) \cup \operatorname{Span}(w)$, that is, the vectors in $\operatorname{Span}(v)$ or $\operatorname{Span}(w)$
- 4. $\operatorname{Span}(v) \cap \operatorname{Span}(w)$, that is, the vectors in both $\operatorname{Span}(v)$ and $\operatorname{Span}(w)$
- 5. $\{(1-t)v + tw : t \in [0,1]\}$
- 6. $\{(1-t)v + tw : t \in \mathbb{R}\}$
- 7. $\{\alpha v + \beta w : \alpha, \beta \ge 0\}$
- 8. Span(v, w, u) where u = (0, 5).
- 9. $\{(a,b) \in \mathbb{R}^2 : a^2 + b^2 \le 25\}$
- 10. $\{(a, a) \in \mathbb{R}^2 : a \in \mathbb{R}\}$
- 11. $\{(a, a^2) \in \mathbb{R}^2 : a \in \mathbb{R}\}$
- 12. $\{(a, 1) \in \mathbb{R}^2 : a \in \mathbb{R}\}$

Solutions 1: Subspaces, Span

Recall that $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}$ can be thought of as the *xy*-plane. Consider the two vectors v = (1,1) and w = (-1,2). Describe the following sets geometrically. Which are subspaces of \mathbb{R}^2 ?

1.	$\operatorname{Span}(v)$	True
2.	$\operatorname{Span}(v,w)$	True
3.	$\operatorname{Span}(v) \cup \operatorname{Span}(w),$	False
4.	$\operatorname{Span}(v) \cap \operatorname{Span}(w),$	True
5.	$\{(1-t)v + tw : t \in [0,1]\}$	False
6.	$\{(1-t)v + tw : t \in \mathbb{R}\}$	False
7.	$\{\alpha v + \beta w : \alpha, \beta \ge 0\}$	False
8.	$\operatorname{Span}(v, w, u)$ where $u = (0, 5)$.	True
9.	$\{(a,b) \in \mathbb{R}^2 : a^2 + b^2 \le 25\}$	False
10.	$\{(a,a) \in \mathbb{R}^2 : a \in \mathbb{R}\}$	True
11.	$\{(a, a^2) \in \mathbb{R}^2 : a \in \mathbb{R}\}$	False
12.	$\{(a,1) \in \mathbb{R}^2 : a \in \mathbb{R}\}$	False

- 1. Let v_1, v_2, v_3, v_4 (all distinct) $\in \mathbb{R}^3$. Let $C_1 = \{v_1, v_2\}; C_2 = \{v_3, v_4\}$. If C_1 and C_2 are both linearly independent, what are the possible values for $dim(Span\{v_1, v_2, v_3, v_4\})$? (No formal proof necessary)
- 2. Let $v_1, ..., v_n \in \mathbb{R}^n$ be a basis of \mathbb{R}^n . Prove that for $x \in \mathbb{R}^n$, there exists unique $\alpha_1, ..., \alpha_n$ such that $x = \sum_{i=1}^n \alpha_i v_i$.
- 3. Let $v_1, ..., v_m \in \mathbb{R}^n$ be linearly dependent. Prove that for $x \in Span(v_1, ..., v_m)$, there exist infinitely many $\alpha_1, ..., \alpha_m \in \mathbb{R}$ such that $x = \sum_{i=1}^m \alpha_i v_i$.
- 4. True or False: If $B = \{v_1, \dots, v_n\}$ is a basis for \mathbb{R}^n , and W is a subspace of \mathbb{R}^n , then some subset of B is a basis for W.

1. Let v_1, v_2, v_3, v_4 (all distinct) $\in \mathbb{R}^3$. Let $C_1 = \{v_1, v_2\}; C_2 = \{v_3, v_4\}$. If C_1 and C_2 are both linearly independent, what are the possible values for $dim(Span\{v_1, v_2, v_3, v_4\})$? (No formal proof necessary.)

Solution

Either $C_1 \subset Span(C_2)$ and the dimension is 2, or the dimension is 3.

2. Let $v_1, ..., v_n \in \mathbb{R}^n$ be a basis of \mathbb{R}^n . Prove that for $x \in \mathbb{R}^n$, there exists unique $\alpha_1, ..., \alpha_n$ such that $x = \sum_{i=1}^n \alpha_i v_i$.

Solution

By definition of basis, $v_1, ..., v_n$ is a linearly independent set, and spans \mathbb{R}^n . Since $x \in \mathbb{R}^n$,

$$\exists \alpha_1, ..., \alpha_n \text{ s.t } x = \sum_{i=1}^n \alpha_i v_i.$$

Let
$$\beta_1, ..., \beta_n$$
 s.t $x = \sum_{i=1}^n \beta_i v_i$. Then,

$$x - x = 0 = \sum_{i=1}^{n} (\alpha_i - \beta_i) v_i$$

Then by definition of linear independence,

$$\alpha_i - \beta_i = 0 \qquad \forall i \in 1, ..., n$$

So
$$\alpha_i = \beta_i, \forall i \in 1, ..., n$$

3. Let $v_1, ..., v_m \in \mathbb{R}^n$ be linearly dependent. Prove that for $x \in Span(v_1, ..., v_m)$, there exist infinitely many $\alpha_1, ..., \alpha_m \in \mathbb{R}$ such that $x = \sum_{i=1}^m \alpha_i v_i$.

Solution

```
By assumption, x \in Span(v_1, \dots, v_m). So \exists \beta_1, \dots, \beta_m \text{ s.t } x = \sum_{i=1}^m \beta_i v_i Since v_1, \dots, v_m are linearly dependent, there are \gamma_1, \dots, \gamma_m \in \mathbb{R} such that \sum_{i=1}^m \gamma_i v_i = 0 where not all \gamma_i = 0. Now, let r \in \mathbb{R}. Then,  x = x + 0 = \sum_{i=1}^m \beta_i v_i + r \sum_{i=1}^m \gamma_i v_i = \sum_{i=1}^m (\beta_i + r \gamma_i) v_i This gives infinitely many distinct \alpha where \alpha_i = \beta_i + r \gamma_i for r \in \mathbb{R}.
```

4. True or False: If $B = \{v_1, \dots, v_n\}$ is a basis for \mathbb{R}^n , and W is a subspace of \mathbb{R}^n , then some subset of B is a basis for W.

Solution

False. Consider $B = \{(1,0), (0,1)\}$ and W = Span((1,1)).

Questions 3: Bases, Dimension

Let V be the set of functions

$$V := \{ p : \mathbb{R} \to \mathbb{R} \mid p(x) = \sum_{k=0}^{n} a_k x^k, \text{ where } a_0, \dots, a_n \in \mathbb{R} \}$$

- 1. What kind of function does this set contain?
- 2. Define an addition operation $+: V \times V \to V$, and a scalar multiplication operation $\cdot: \mathbb{R} \times V \to V$, such that the triple $(V, +, \cdot)$ is a vector space.
- 3. Find a basis for this vector space.
- 4. What is the dimension of this vector space?

Solutions 3: Bases, Dimension

- 1. What kind of function does this set contain?
- 2. Define an addition operation $+: V \times V \to V$, and a scalar multiplication operation $\cdot: \mathbb{R} \times V \to V$, such that the triple $(V, +, \cdot)$ is a vector space.
- 3. Find a basis for this vector space.
- 4. What is the dimension of this vector space?

Solution

- 1. Polynomials evaluated at x
- 2. Standard definitions for function addition and scalar multiplication
- 3. $1, x, x^2, ..., x^n$
- 4. n+1