24-Hour Clock

My clock consists of 10,6,3 mod up counters and 7 segment display (decoder)

 H_{0-2} H_{0-9} M_{0-5} M_{0-9} S_{0-5} S_{0-9}

As we can see each 2nd digit in seconds and minutes and hours can be counted by 10mod counter

1st digit of minutes and hours by mod 6 counter and hour by mod 3 counter

Designing mod 10 counter

State Diagram:

State Table:

Designing T-flip flops osing state table

,	Pre	sent s	state	Ne	ext sto	ite.					
Qs	Q2	Q,	Q.	Q3	Q2	9,	Q _o	Ta	Tz	Tı	То
D	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	o	0	1	1
0	0	1	0	0	0	1	1	0	0	0	1
			1	0	DI	0	0	0	1	1	1
0	0			0	,	0	1	0	0	0	1
D	ON	0	0		:		D	O	0	1	1
0	1	0	1	0	1	1.					
0	1	,	0	0	1	1	1	0	0	0	'
0	1	1	1	1	0	0	0	1	1	1	1
	٥	0	0	1	0	0	1	0	0	0	- 1
1	0			_	0	0	0.	1	0	0	1
1	0	0	1	0	O		Γ.				

Solving for T₃,T₂,T₁,T₀ Using K-maps:

00	0	0		1
			×	0
ווים	1	1	×	0
"	1	1	X	*
10	0.	0	*	×

B.03	00	01	ıı	10
00	0	0	X	0
10	0	0	v.	0.
וו		1	+	×
10.	0	0	*	*

On solving We get

$$T_0 = 1$$
 $T_1 = Q_0 \overline{Q}_3$ $T_2 = Q_1 Q_0$ $T_3 = Q_0 Q_1 Q_2 + Q_0 Q_3$

Designing mod 10 Counter & making use of pattern recognition

Now we make mod 10 counter using the above equations also we check is the current state is 4 (in hours part ,it makes mod 3 counter to reset so that hours don't exceed 23)

If current state is 9 then make the counter connected to it to count and reset the counter in hours part if the mod 3 counter is in state 2

Designing mod 6 counter

State Diagram:

State Table:

state table

-		, ,			,				•	4	
P	ØT	P	Q2	Qı	90	Ja	K2	٦,	K,	30	Ko,
0	0	0	0	0	1	0	Х	0	×	١	×
6	0	1	٥	ı	D	0	×	1	×	×	1
0	ı	0	٥	1)	0	×	×	a	1	×
0	ı	1	10	0	0	ı	x	×	1	×	1
ı	0	0	1	0	1	×	Q	D	×	1	X
,	0	1	0	0	0,	×	1	0	*	X	١,

Solving for J₃,J₂,J₁,J₀, K₃,K₂,K₁,K₀ Using K-maps:

Thus we get

$$J_0 = K_0 = 1$$

$$J_1 = \overline{Q}_2 Q_0, K_1 = Q_0$$

$$J_2 = Q_1 Q_2, K_2 = Q_0$$

Designing mod 6 Counter & making use of pattern recognition

Now we make mod 6 counter using the above equations also we check is the current state is 5 (so that 1st bit of hours and minute part counts when the current bit is 5)

Designing mod 3 counter

State Diagram:

State Table:

9	90	Qı	Q ₀	Tı	To
0	0	0	1	0	1
0	1	1	0	١	Ø1
1	D	0)	١	0
1	t	×	×	×	×

Solving for T₁,T₀ Using K-maps:

T1= Q00 Q1

$$T_0 = \overline{Q}_0$$
 $T_1 = Q_0 \oplus Q_1$

Designing mod 3 Counter & making use of pattern recognition

Now we make mod 6 counter using the above equations also we check is the current state is 2 and if 2nd bit of hr part is 3 then we reset both so they become 00 from 23

This makes out 24 Hr clock Complete.

Now we need to represent them using a 7-segment display

Truth Table of the combinational circuit of 7 segment Display:

A	В	С	D	a	Ь	C	d	e	f	3	h
0	0	0	0	1	1	1	1	1	1	0	0
0	0	0	1	0	1	ı	0	0	0	0	0
0	0	1	0	1	1	0	1	١	0	0	0
0	0	1	1	ı	1	1	1	0	0	1	0
0	1	0	0	0	1	1	0	O	1	1	0
0	١	0	1	1	0	1	1	0	1	1	0
0	1	1	0	,	0	1	1	1	١	1	0
0	١, ١	1	1	1	1	1	0	0	0.	0.	0
1	0	0	0	1	1	t	1	ι	1	1	0
1	0	0	1	t	1	1.	to	0	1	1	0,

Solving It Using K-maps:

This completes our project and lets look into our implementation

Implementation:

Design of the core logic:

Making use of this lets make a Our clock with neat Design without many wires:

(A screenshot while clock is working)

Thank You
CS21B040 PAVAN