Behavioral Detection of Stealthy Intruders

Vern Paxson

University of California, Santa Barbara
University of California, Berkeley
Georgia Institute of Technology

Overview of Recent UCB Efforts

- Empirical grounding of asset discovery & system roles/use/abuse in massive datasets
 - □ Drawn from operational environments, primarily Lawrence Berkeley National Laboratory (LBL)
 - 4K users, 12K hosts
- Scalable database technologies for archiving & querying against system event streams in real time
- Behavioral-based detection of stealthy intruders

Finding Very Damaging Needles in Very Large Haystacks

- Motivation: some of the greatest threats to mission success arise from infiltrators unknown to have gained access to critical systems
- Particularly grievously damaging are long-term infiltrations that enable adversaries to develop a deep understand of mission components
- Such incidents might occur < 1/year ...</p>
 - ... but cause more damage than all other intrusions combined

- Given event's very low frequency, adversary can expend extensive resources achieving initial compromise and maintaining a stealthy profile upon success
- Thus: behooves us to not focus on particular types of compromising attacks ...
 - ... but rather seek behavioral indicators that such an infiltration has occurred
 - Behavioral = look for signs of the presence of such an infiltrator
 - Can defend against very wide range of possible infiltration techniques including unknown ones ("zero days")

Extracting Signals from Enormous Background Noise

- We can view this as a (highly nontraditional) signal processing problem:
 - □ Signal = behavioral indication of stealthy infiltrator
 - □ Domain = (incomplete) sensing extracted from site @ key locations
 - □ Noise = the huge amount of sensing that's <u>not</u> a stealthy intruder
- Key difference from traditional signal processing:
 - □ Data includes rich, highly <u>discontinuous</u> semantic structure
 - Both explicitly, and implicitly due to rules shaping activity (e.g., network protocols)
- We can leverage this semantic structure for much more powerful filtering than w/ generic approaches ...
- if we can determine the correct structural properties to exploit

Seeking Data At Scale along with Ground Truth

- Crucial, underappreciated reality: conclusions derived from observing these semantic structures in simple environments (e.g., researcher's lab) do NOT "scale up" - they lack robustness
 - Reality of system use "in the wild" is much more complex & surprising than one expects
- In addition, we fundamentally require a degree of ground truth: the ability to determine the "right" answer for our haystack inferences
- LBL data provides the former due to scale ...
- ... and the latter due to our decades-long ties with its security & network operations staff

Behaviors Associated With Stealthy Infiltrators

- Behavior #1: reconnaissance
 - Observation from analysis of past incidents: often upon subverting a system, attacker will investigate other systems reachable from it
 - □ Thus, associated *contact graph* should demonstrate "fan-out" or "depth" (contact = success *or failure* to log into a further host)
 - Approach: analyze site's interactive SSH traffic to infer multisystem access (not yet working)
- Behavior #2: covert tunneling
 - To access systems stealthily (and exfiltrate information unobserved), attackers can tunnel forbidden traffic inside another, benign/permitted protocol
 - □ Particularly attractive: DNS due to ubiquity
 - Approach: analyze DNS requests made by local systems that exhibits high entropy - many useful bytes transferred (working)

Inferring Reconnaissance

- Initial data for analysis:
 - Logins made to LBL SSH servers from Jan 2009 April 2011
 - Instrumented via syslog
 - □ Not comprehensive, but extensive (2K+ hosts, 3K+ accounts)
 - Data includes timestamp, originating host, server host, username, success
 - But <u>not</u> duration
 - 93.7 million records; most reflect internal logins
- Challenge #1: data is replete with automated activity
 - □ Not of interest for interactive reconnaissance
- Approach: sampling reveals that automation predominantly reflects periodic traffic ...
 - ... however NOT stationary
 - □ Insight: common periodicities align with per-minute/hour granularity

Time of SSH Login for An LBL Client

QuickTime™ and a decompressor are needed to see this picture.

χ²-based Testing for Automation

- Take series of activity timestamps, consider them mod 60 seconds or mod 60 minutes
- Place these in 6-60 bins (depending on amount of data available)
- Use χ^2 to assess consistency with uniformity
- Failure ⇒ automation candidate
- Now for remainder, compute size (depth/breadth) of potential contact graph
 - □ Quite problematic: lack of login durations, so how to tell if login from A to B overlaps with one from B to C?

Focusing on Externally Initiated Traffic

- Key insight: most stealthy intruders begin their access with an externally initiated login ...
- ... and for those we do have connection durations
 - □ Due to monitoring by Bro system of site's border
- Provides sound upper bound on contact graph size
- 10-month assessment: 44 users had external logins w/ contact size > 2
 - ☐ Most were system administrators
- Asked operator to compare (w/o telling us!) against ground-truth database of known infiltrations
 - □ No matches :-(
- Now working on analyzing randomly selected incident

Covert Channels for Communication & Exfiltration

- DNS lookups an integral part of Internet operation
- E.g., www.cs.ucsb.edu \Rightarrow 128.111.41.37
- What could be more benign?
- One of the few services ubiquitously allowed through firewalls
 - Though often restricted to site's designated local resolvers

Exploiting this for arbitrary communication:

Finding Room in DNS for Tunneling

Even if query was for an A record (address), by returning a CNAME alias

16 bits	16 bits	
Identification	Flags	
# Questions	# Answer RRs	
# Authority RRs	# Additional RRs	

Questions (variable # of resource records)

Answers (variable # of resource records)

Authority (variable # of resource records)

Additional information (variable # of resource records)

4-bit Header Length	8-bit Type of Service (TOS)	16-bit Total Length (Bytes)		
16-bit Ider	ntification	3-bit Flags	13-bit Fragment Offset	
8-bit Time to Live (TTL)	8-bit Protocol	16-bit Header Checksum		20-byte IP header
32-bit Source IP Address				
32-bit Destination IP Address				
Payload				

One way to an IP packet inside a DNS packet:

version-4.hdrlen=5.TOS=0.len=81.<...etc...>.cs.ucsb.edu

Server can fully recover original IP packet, yet it's also a fully conformant DNS query

How to Detect Such Tunneling?

- "Look for the funny name structure"
 - No good, attacker has enormous degrees of freedom
- "Look for weirdly large lookups"
 - Here is where we encounter ~emergent behavior. Huge traces have benign large lookups
 - □ E.g. 2.fnsroebjfvat-2seq-2sPuAao29aYJ1uoUqupzHgp 2uuqzSIRNRLzdDQVW6xNlb.ST9VNNN8lOEeFNNNO. fnsroebjfvat-pnpur.tbbtyr.pbz.u.00.s.sophosxl.net
 - This is actually antivirus software checking whether an executable is on a known blacklist

Searching for DNS Tunnels in the Wild

- Data: 60 billion lookups from LBL (5.5 years)
 - ☐ Also developed scheme for working on border traffic
- Idea: Look for High-Entropy Domains
- E.g., "does cs.ucsb.edu" have a lot of different names looked up in it?
- Procedure:
 - ☐ Filter unique lookups per client
 - □ Identify and remove DNS search paths
 - Search path of foo.com generates zillions of XYZ.foo.com lookups
 - □ For every distinct domain, assess entropy of all lookups with it using gzip algorithm

An Alternative Tunneling Approach: Repeated Lookups

- E.g., lookup one.cs.ucsb.edu to convey a 1 bit, zero.cs.ucsb.edu to convey a 0 bit
 - □ Obviously can use a larger codebook for efficiency
- Since we only consider unique lookups,
 cs.ucsb.edu would have entropy of ~7 bytes
- Insight: to detect, don't use unique lookups, let gzip algorithm do the work!
 - □ It already knows how to efficiently compress repeated instances of same symbol
- (Can do better still by ignoring repeats within TTL of last response)

DNS Tunneling Detection Efficacy

- Threshold: inspect domains w/ entropy > 10KB
- Whitelist required
 - □ About 30 entries for LBL
 - □ E.g., bl.barracuda.com, dnsbl.manitu.net, nerd.dk
 - (ironically, most are themselves blacklists)
- With this in place, it works!
 - □ Found two such tunnels at LBL going back to May 2006
 - □ (Both represent intended use by staff)

Summary of Accomplishments

- Very large-scale data regularization / calibration
 - □ > 100 billion records of NetFlow / DHCP / LDAP / DNS / SSH / Email
- Developed behavioral detector for SSH-based reconnaissance
 - □ Including identification of automated SSH usage
- Developed behavioral detector for DNS-based tunneling
 - Successfully found previously unobserved tunnels
- VAST Visibility Across Space & Time
 - □ Unified streaming database for tracking disparate forms of site activity
 - □ Limited progress last year due to student's very serious family situation
- Towards Situational Awareness of Large-Scale Botnet Probing Events, IEEE Transactions on Information Forensics & Security, 6(1), March 2011
 - Work mainly done prior to review year

Plans for Subsequent Reviewing Periods

- Develop effective SSH-based behavioral detector by judiciously analyzing known LBL incidents
 - Extending then to per-user SSH usage models
- Refine DNS tunneling behavioral detector
 - Incorporate request timing
 - □ Develop models of asset interactions as inferred via DNS looups
- Mediate access to immense data store for refinement of asset inference algorithms
- Develop VAST streaming database to operational state
 - Deploy live in order to gather sensing data in real-time ...
 - □ ... and to support retrospective analysis / algorithm development

Broader Issues

Collaboration plan

- Work with UCSB assessing asset/mission discovery protocols against LBL operational data
- Incorporate this analysis into VAST's real-time streaming

Technology transition status

- Will port our successful detection algorithms (DNS tunneling now; SSH infiltrators hopefully soon) to the Bro network monitoring system (www.bro-ids.org)
 - Open-source NIDS/NIPS I developed
 - Runs at a dozen large sites: LBL, UCB, NCSA, OSU, GenDyn, ...
 - Has major NSF infrastructure support grant

Personnel supported:

- Dr. Robin Sommer, staff scientist
- Matthias Vallentin & Mobin Javed, UCB Ph.D. students