МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №9

по дисциплине «Вычислительная математика»

Тема: Самостоятельная разработка программы на одном из языков программирования

Студент гр. 8383	Ларин А.
Преподаватель	Сучков А.И

Санкт-Петербург 2019

Цель работы.

Исследование различных методов интерполяции для неравноотствоящих узлов с последующей реализацией на одном из языков программирования.

Основные теоретические положения.

Пусть величина y является функцией аргумента x. Это означает, что любому значению x из области определения поставлено в соответствие значение y. Однако на практике часто неизвестна связь между x и y, т.е. невозможно записать эту связь в виде некоторой зависимости y = f(x). В других случаях при известной зависимости y = f(x) ее использование в практических задачах затруднительно (например, она содержит сложные, трудно вычисляемые выражения). Наиболее распространенным и важным для практического использования случаем, когда вид связи между параметрами х и у неизвестен, является задание этой связи в виде некоторой таблицы $\{x_i, y_i\}$, в которой дискретному множеству значений аргумента $\{x_i\}$ поставлено в соответствие множество значений функции $\{y_i\}$ ($i = \overline{0,n}$). Эти значения – либо результаты расчетов, либо экспериментальные данные. На практике могут понадобиться значения величины y и в других точках, отличных от узлов x. Таким образом, приходим к необходимости использования имеющихся табличных данных для приближенного вычисления искомого параметра у при любом значении (из некоторой области) определяющего параметра x, поскольку точная связь y =f(x) неизвестна. Этой цели служит задача о приближении (аппроксимации) функций: данную функцию f(x) требуется аппроксимировать (приближенно заменить) некоторой функцией $\varphi(x)$ так, чтобы отклонение (в некотором смысле) $\varphi(x)$ от f(x) в заданной области было наименьшим. Функция при этом называется аппроксимирующей. Для практики важен случай аппроксимации функции многочленом

$$\varphi(x) = \sum_{j=0}^{m} a_j x_j.$$

Этот случай, т.е. приближение многочленами, является одной из задач классического численного анализа.

Рассмотрим аппроксимацию этого рода и методы ее реализации в вычислительных процедурах на ЭВМ. Коэффициенты a_i в процедурах подбираются так, чтобы достичь наименьшего отклонения многочлена от данной функции. Если приближение строится на заданном дискретном множестве точек $\{x_i\}$, то аппроксимация называется точечной. Одним из основных типов точечной аппроксимации является интерполирование, которое заключается в следующем: для данной функции строится многочлен $\varphi(x)$, принимающий в заданных точках x_i те же значения y_i , что и функция f(x), т.е. $\varphi(x_i) = y_i$, i = $\overline{0,n}$. При данной постановке задачи предполагается, что среди значений x_i нет одинаковых: $x_i \neq x_k$ при $i \neq k$. Точки называются узлами интерполяции, а $\varphi(x)$ многочлен интерполяционным многочленом. Близость интерполяционного многочлена к заданной функции состоит, таким образом, в том, что их значения совпадают на заданной системе точек (узлов). Максимальная степень интерполяционного многочлена m = n. В этом случае говорят о глобальной интерполяции, так как один многочлен $\varphi(x) = \sum_{j=0}^{n} a_j x_j$ используется для интерполяции функции f(x) на всем рассматриваемом интервале изменения аргумента x. Коэффициенты a_i многочлена $\varphi(x)$ находят из системы уравнений $\varphi(x_i) = y_i$. Можно показать, что при $xi \neq xk$ $(i \neq k)$ эта система имеет единственное решение.

Возможны два случая задания функции у=f(x):

- точки x_i располагаются на оси абсцисс неравномерно на различных расстояниях одна от другой случай неравноотстоящих узлов;
- точки x_i располагаются на оси абсцисс равномерно с фиксированным шагом случай равноотстоящих узлов.

В каждом из указанных случаев для интерполирования функций применяются различные интерполяционные формулы.

Интерполяционные формулы для неравноотстоящих узлов.

Пусть известны значения некоторой функции в n+1 различных точках $x_0, x_1, ..., x_n$, которые обозначим следующим образом: $f_i = f(x_i), i = \overline{0,n}$. Указанные значения могут быть получены путем экспериментальных измерений или найдены с помощью достаточно сложных вычислений. В задаче интерполяции функции f(x), как было сказано ранее, решается проблема приближенного восстановления значения функции в произвольной точке x. Для этого строится алгебраический многочлен $L_n(x)$ степени n, который в точках x_i принимает заданные значения, т.е.

$$L_n(x_i) = f_i, i = \overline{0, n}.$$

Следует заметить, что если точка x расположена вне минимального отрезка, содержащего все узлы интерполяции x_i ($i=\overline{0,n}$), то замену функции f(x) на $L_n(x)$ также называют экстраполяцией. В общем случае доказано, что существует единственный интерполяционный многочлен n-й степени, удовлетворяющий условиям выше:

$$L_n(x) = \sum_{i=0}^n f_i \ell_i(x),$$

где

$$\ell_i(x) = \prod_{\substack{k=0\\k\neq i}}^n \frac{x - x_k}{xi - xk}.$$

Данный интерполяционный многочлен, называется интерполяционным многочленом Лагранжа, а функции $\ell_i(x)$ — лагранжевыми коэффициентами или базисными полиномами. Для оценки погрешности интерполяции (в частности, и экстраполяции) в текущей точке $x \in [a,b]$ ([a,b] — отрезок, содержащий все узлы интерполяции x_i и точку x) можно использовать соотношение

$$|f(x) - L_n(x)| \le \frac{M_{n+1}}{(n+1)!} \left| \prod_{i=0}^n (x - x_i) \right|,$$

где $M_{n+1} = \max_{\eta \in [a,b]} \left| f^{(n+1)}(\eta) \right|$ — наибольшее абсолютное значение (n+1)- ой производной интерполируемой функции в некоторой точке $\eta \in [a,b]$.

Оценить максимальную погрешность интерполяции на всем отрезке [a,b] можно с помощью соотношения

$$\max_{x \in [a,b]} |f(x) - L_n(x)| \le \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} \left| \prod_{i=0}^{n} (x - x_i) \right|$$

Использование оценок погрешностей предполагает ограниченность (n+1)-ой производной интерполируемой функции на отрезке [a,b], т.е. $M_{n+1} < \infty$. На практике вместо общей формы записи часто используются другие формы записи интерполяционного многочлена, более удобные для применения в конкретных ситуациях.

Интерполяционный многочлен Ньютона для неравноотстоящих узлов интерполяции имеет вид:

$$N_n(x) = f_0 + (x - x_0)f(x_0; x_1) + \dots + \left(\prod_{i=0}^{n-1} (x - x_i)\right) f(x_0; x_1; \dots; x_n),$$

где $f(x_0; x_1; ...; x_k)$ – разделённая разность k-го порядка.

Вычисление разделённых разностей производится по соотношениям:

$$f(x_0; x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0},$$

••• ••• ••• ••• ••• ••• ••• ••• ••• •••

$$f(x_0; x_1; \dots; x_n) = f(x_1; x_2; \dots; x_n) - \frac{f(x_0; x_1; \dots; x_{n-1})}{x_n - x_0}.$$

При использовании интерполяционного многочлена Ньютона изменение степени n требует только добавить или отбросить соответствующее число стандартных слагаемых, что удобно на практике. В то же время, непосредственное использование интерполяционного многочлена Лагранжа требует строить его заново при изменении n. В том случае, если требуется найти лишь численное значение интерполяционного многочлена $L_n(x)$, а не его представление, может быть использована итерационно-интерполяционная схема Эйткена.

Пусть $Y_{ijk...}$ – интерполяционный многочлен, определяемый парами (x_i, f_i) , $(x_j, f_j), (x_k, f_k), ...$ так, что $Y_{012} ... n = L_n(x)$. Интерполяционные многочлены возрастающих степеней получают последовательно следующим образом:

$$Y_{01} = \frac{1}{x_1 - x_0} det \begin{pmatrix} x - x_0 & f_0 \\ x - x_1 & f_1 \end{pmatrix}$$

$$Y_{12} = \frac{1}{x_2 - x_1} det \begin{pmatrix} x - x_1 & f_1 \\ x - x_2 & f_2 \end{pmatrix}$$

$$\vdots$$

$$Y_{012} = \frac{1}{x_2 - x_0} det \begin{pmatrix} x - x_0 & Y_{01} \\ x - x_2 & Y_{12} \end{pmatrix}$$

$$Y_{0123} = \frac{1}{x_3 - x_0} det \begin{pmatrix} x - x_0 & Y_{012} \\ x - x_3 & Y_{123} \end{pmatrix}$$

Этот процесс можно закончить, когда у значений двух интерполяционных многочленов последовательных степеней совпадает требуемое количество знаков.

Постановка задачи.

В ходе работы студенты должны самостоятельно разработать программу на одном из языков программирования, обеспечивающую решение одного из вариантов, полученного от преподавателя. Используя интерполяционную схему Эйткена и/или интерполяционную формулу Ньютона, необходимо вычислить значение в точке х функции, заданной таблицей. Порядок выполнения работы следующий:

- 1. Составить подпрограмму-функцию для вычисления значения в заданной точке по формуле Ньютона INEWTON и/или схеме Эйткина AITKEN.
- 2. Составить головную программу, содержащую обращение к соответствующим подпрограммам и осуществляющую печать результатов (в том числе и промежуточных вычислений) как на экран, так и в файл. Входные данные также считываются из файла.

3. Провести вычисления по программе. Построить график полученной функции (множество точек, соединённых последовательно), отметить искомую точку.

Выполнение работы.

Интерполируем значения неизвестной функции f(x) по набору значний представленных в таб. 1.

Таблица 1 – Данный набор точек неизвестной функции f(x)

Номер і	Значение x_i	Значение y_i
0	0.2376	-3.7117
1	0.7368	-0.7525
2	1.1448	0.2297
3	1.9872	0.0128
4	2.5392	-0.3824
5	2.7648	-0.3175
6	3.0616	0.1348
7	3.2088	0.5575
8	3.2784	0.8109
9	3.6904	3.1398
10	3.9368	5.3285

Требуется интерполировать значение функции в точке $x^* = 2.2248$

Визуализируем данные значения на графике. График представлен на рис. 1.

Была написана программа для интерполяции функции многочленом Ньютона для неравноотстоящих узлов. Она принимает на вход следующие значения: **n** – количество известных точек, х – интерполируемая точка, хх, уу – список известных точек, их абсциссы и ординаты соответственно. Программа выводит слагаемые многочлена и интерполированное значение функции в точке в стандартный поток вывода. Код программы представлен в приложении А.

Аппроксимированная при помощи данной программы функция представлена на графике на рис. 2. Слагаемые многочлены и значение функции в точке $x^* = 2.2248$ представлен в таб. 2. Значение функции в точке $x^* = 2.2248$ рассчитано: $f_N(x^*) = -0.21331084$

Таблица 2 – Значения слагаемых многочлена Ньютона

S_1	1.178E+01
S_2	-1.147E+01
s_3	3.193E+00
S_4	2.282E-05
s_5	1.844E-05
s_6	2.365E-05
S_7	3.343E-05
S ₈	3.498E-05
S ₉	1.565E-05
S ₁₀	-9.280E-06

Рисунок 1 – Исходный набор точек функции

Рисунок 2 – Аппроксимированные по методу Ньютона значения на промежутке

Была написана программа для интерполяции функции по схеме Эйткена. Она принимает на вход следующие значения: х – интерполируемая точка, хх, уу – список известных точек, их абсциссы и ординаты соответственно, а, b –границы промежутка на данной итерации . Программа выводит интерполированное значение функции в точке в стандартный поток вывода. Код программы представлен в приложении А.

Аппроксимированная при помощи данной программы функция представлена на графике на рис. 3. Значение функции в точке $x^* = 2.2248$ рассчитано: $f_A(x^*) = -0.21331721$

Разница между найденными значениями $f_N(x^*) - f_A(x^*) = 0,00000637065148667$ т.е. совпали 5 знаков.

Рисунок 3 – Аппроксимированные по методу Эйткена значения на промежутке

Выводы.

Проанализировав результаты аппроксимации графиков по формуле Ньютона можно прийти к выводу, что данный метод удобен в использовании так как дает аппроксимационный многочлен, по которому в дальнейшем можно строить функцию на промежутке, а также позволяем добавлять или уменьшать количество слагаемых при получении новой информации о точках графика.

Метод Эйткена менее удобен в использовании так как при изменении набора точек либо потребности посчитать значение в новой точке требует проводить расчеты заново. Однако по получившимся интерполированным значениям функции в данной точке видим, что при расчете обеими методами для данной получаем значения совпадающие до 5-ти знаков после запятой, то есть дают достаточно хороший результат.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
import matplotlib.pyplot as plt
     import math
     x0 = 2.2248
     def divdif(a,b,xx,yy):
         if(b-a==1):
             return (yy[b]-yy[a])/(xx[b]-xx[a])
         return (divdif(a+1,b,xx,yy)-divdif(a,b-1,xx,yy))/(xx[b]-
xx[a]
     def inewton (n, x, xx, yy):
         s=yy[0] #f
         for i in range(1,n+1):
             mul=1
             for j in range(i):
                 mul*=(x-xx[j])
             mul*=divdif(0,i,xx,yy)
             print("s "+str(i)+"=\t"+str(mul))
             s+=mul
         return s
     def aitken(x, xx, yy, a, b):
         f1 = yy[a] if b - a == 1 else aitken(x, xx, yy, a, b - 1)
         f2 = yy[b] if b - a == 1 else aitken(x, xx, yy, a+1, b)
         return (1/(xx[b]-xx[a])) * ((x-xx[a])*f2 - (x-xx[b])*f1)
     def linSpace(a,b,s):
         X = []
         #x.append(a)
         e=1/s
         e^{0}=0
         while e0 <= 1:
             x=round(a+(b-a)*e0,int(abs(math.log10(e))))
             \# x=a+(b-a)*e0
             x.append(x)
             e0 += e
         return x
```

```
n = input()
for i in range(n):
    x[i]=input()
for i in range(n):
    y[i]=input()
xy = [[x[j],y[j]] \text{ for } j \text{ in } i]
xy.sort(key=lambda x:x[0])
x=[j[0] \text{ for } j \text{ in } xy]
y=[j[1] \text{ for } j \text{ in } xy]
xx=linSpace(x[0],x[len(x)-1],100)
#yy = [inewton(n,i,x,y) for i in xx]
plt.plot(x,y)
#plt.plot(xx,yy)
print("f(x^*)=\t"+str(inewton(n, x0, x, y)))
yy = [aitken(i,x,y,0,n) for i in xx]
print(aitken(x0, x, y, 0, n-2))
#plt.rcParams['lines.linewidth'] = 2 # Синтакс 2
plt.plot(xx,yy)
plt.xlabel('x')
plt.ylabel('y')
plt.legend(['initial','aitken'])
plt.show()
```