

MATH F111 (Mathematics-I)

Lecture 12-15 (Chapter-13) Vector Valued Functions and Motion in Space

BITS Pilani
Pilani Campus

Dr Trilok Mathur, Assistant Professor, Department of Mathematics

Notice for Remedial Classes

Dear Students,

If any of you wish for remedial classes of any subject you are studying (Including Mathematics-1), then please send an email to *Dr. Ashish Tiwari* latest by *Saturday*, *9th September*, 2017 on:

ashish.tiwari@pilani.bits-pilani.ac.in

Review from Senior Secondary Class

Dot Product of two vectors

Cross product of two vectors

Limit of a real valued function f(x) at the point x = a defined on an interval.

Continuity and Differentiability of a real valued function f(x) at the point x = a defined on an interval.

Vector Valued Function

A function of the form:

$$\vec{r}(t) = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}, t \in I$$

is called vector - valued function or a vector function. Its domain is the subset of real numbers and range is in the set of vectors in three dimension.

Vector Valued Function

• The functions f, g and h are called component functions of \vec{r} , and are real valued functions.

• A space curve (Curve in 3D space) is traced out by points (f(t), g(t), h(t)). It has direction determined by giving increasing values of t in an interval I.

• Instead of (f(t), g(t), h(t)) sometimes $\vec{r}(t) = (x(t), y(t), z(t))$ is as well written

Vector Valued Function

Example: The vector function:

$$\vec{r}(t) = (\cos t)\hat{i} + (\sin t)\hat{j} + t\hat{k}$$

The curve traced by \vec{r} winds around the circular cylinder $x^2 + y^2 = 1$. The curve rises as the k component z = t increases. The curve is called "Helix"

Limit and Continuity of Vector Valued Function

Limit: If
$$\vec{r}(t) = (x(t), y(t), z(t)),$$

then
$$\lim_{t\to a} \vec{r}(t) = \lim_{t\to a} x(t)\hat{i} + \lim_{t\to a} y(t)\hat{j} + \lim_{t\to a} z(t)\hat{k}$$
,

provided all the limits of component functions exist

Continuity: A vector valued function \vec{r} is continuous at a point t = a if and only if

$$\lim_{t \to a} \vec{r}(t) = \vec{r}(a)$$

Thus \vec{r} is continuous at a point t = a if and only if each component function is continuous at t = a.

Differentiation of Vector Valued Function

 \vec{r} is continuous on an open interval I if it is continuous for all points in I.

Derivative : A vector valued function \vec{r} has a derivative (is differentiable) at a point t = a if and only if each component function have derivative at t = a. The derivative is the vector function:

$$\vec{r}'(t) = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} + \frac{dz}{dt}\hat{k}$$

Differentiation of Vector

Valued Function

Let $\vec{r}(t)$ be the position vector of a particle at time t moving along a smooth curve in space. Then

1. Velocity:
$$\vec{v} = \frac{d\vec{r}}{dt}$$
2. Speed: $s = |\vec{v}|$

$$2.\mathsf{Speed}: s = |\vec{v}|$$

3. Acceleration :
$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$$

4. Direction of motion:
$$\frac{v}{|\vec{v}|}$$

Differentiation Rules of Vector Valued Function

Smooth Curve: Curve traced by $\vec{r}(t)$ is smooth if $\frac{d\vec{r}(t)}{dt}$ is continuous and never 0, that is x(t), y(t) and z(t) have continuous first derivatives that are not simultaneously zero.

Let $\vec{u} = \vec{u}(t)$ and $\vec{v} = \vec{v}(t)$ be differentiable vector functions of t, \vec{C} a constant vector and a any real number and f any real valued function defined on a interval.

Differentiation Rules of Vector Valued Function

- 1. $\frac{d}{dt}\vec{C} = 0$ \vec{C} is a constant vector.
- 2. $\frac{d}{dt}(a\vec{u}(t)) = a\frac{d}{dt}(\vec{u}(t))$, a constant scalar.
- 3. $\frac{d}{dt}(f(t)\vec{u}(t)) = f'(t)(\vec{u}(t))$
 - $+ f(t) \frac{d}{dt}(\vec{u}(t)), f(t)$ real valued function.

Differentiation Rules of

Vector Valued Function

4.
$$\frac{d}{dt}(\vec{u}(t).\vec{v}(t))$$

$$= \left(\frac{d}{dt}(\vec{u}(t))\right) \cdot \vec{v}(t) + \vec{u}(t) \cdot \frac{d}{dt}(\vec{v}(t))$$

$$5.\frac{d}{dt}(\vec{u}(t)\times\vec{v}(t))$$

$$= \left(\frac{d}{dt}(\vec{u}(t))\right) \times \vec{v}(t) + \vec{u}(t) \times \frac{d}{dt}(\vec{v}(t))$$

Differentiation Rules of Vector Valued Function

6. Chain Rule:
$$\frac{d\vec{r}}{ds} = \left(\frac{d\vec{r}}{dt}\right) \left(\frac{dt}{ds}\right)$$

where t is a differentiable function of s.

7. If $\vec{r}(t)$ is a differentiable vector function of t of **constant length**, then

$$\vec{r} \cdot \frac{d\vec{r}}{dt} = 0.$$

Differentiation Rules of Vector Valued Function

Proof: $|\vec{r}(t)| = c \text{ (constant)}$

$$\Rightarrow |\vec{r}(t)|^2 = \vec{r}(t) \cdot \vec{r}(t) = c^2$$

$$\Rightarrow \frac{d(\vec{r}(t).\vec{r}(t))}{dt} = 0$$

$$\Rightarrow \vec{r}(t).\frac{d(\vec{r}(t))}{dt} + \frac{d(\vec{r}(t))}{dt}.\vec{r}(t) = 0$$

$$\Rightarrow \vec{r}(t).\frac{d(\vec{r}(t))}{dt} = 0$$

Indefinite Integral

The indefinite integral of \vec{r} with respect to t is the set of all antiderivatives of \vec{r} , written as $\int \vec{r}(t) dt$. If \vec{P} is any antiderivative of \vec{r} , then

$$\int \vec{r}(t)dt$$
. If \vec{R} is any antiderivative of \vec{r} , then:

$$\int \vec{r}(t) dt = \vec{R}(t) + \vec{C}$$

If
$$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$$
, then:

$$\int_{a}^{c} \vec{r}(t)dt = \left(\int_{a}^{c} x(t)dt\right) \hat{i} + \left(\int_{a}^{c} y(t)dt\right) \hat{j} + \left(\int_{a}^{c} z(t)dt\right) \hat{k}$$

Q.8 The position vector of particles moving along the parabola $y = x^2 + 1$ in xy – plane is: $\vec{r}(t) = t\hat{i} + (t^2 + 1)\hat{j}$ Find the particle's velocity and acceleration vectors at the times t = -1, 0, 1 and sketch them as vectors on the curve.

innovate achieve lead

Exercise 13.1

Q.14: Given $\vec{r}(t) = e^{-t}\hat{i} + 2\cos 3t \,\hat{j} + 2\sin 3t \,\hat{k}$

is the position of a particle in space at any time t. Find the particle's speed and direction of motion at t = 0. Write the particle's velocity at that time as the product of its speed and direction.

Q.19 Given that $\vec{r}(t) = (t - \sin t)\hat{i} + (1 - \cos t)\hat{j}$ is the position vector of a particle in space at time t. Find the time or times in the time interval $0 \le t \le 2\pi$ when the velocity and acceleration are orthogonal.

Q.19 Find parametric equation for the line that is tangent to the curve:

$$\vec{r}(t) = (\sin t) \,\hat{i} + (t^2 - \cos t) \,\hat{j} + e^t \,\hat{k}$$
at $t = 0$.

Q.25 A particle moves along the top of the parabola $y^2 = 2x$ from left to right at a constant speed of 5 units per second. Find the velocity of the particle as it moves through the point (2, 2).

Q.4 Evaluate the integral:

$$\int_{0}^{\pi/3} \left[(\sec t \tan t)\hat{i} + (\tan t)\hat{j} + (2\sin t \cos t)\hat{k} \right] dt$$

Q.15 Solve the initial value problem for \vec{r} as a vector function of t:

$$\frac{d^2\vec{r}}{dt^2} = -32\hat{k}, \text{Initial conditions}: \vec{r}(0) = 100\hat{k}$$

$$\left. \frac{d\vec{r}}{dt} \right|_{t=0} = 8\hat{i} + 8\hat{j}$$

Q.18 A particle traveling in a straight line is located at the point (1, -1, 2) and has speed 2 at time t = 0, the particle moves towards the point (3, 0, 3) with constant acceleration 2i + j + k. Find its position vector $\vec{r}(t)$ at time t.

•One of the special features of smooth space curves is that they have a measurable length.

■That enables us to find points along these curves by giving their directed distance *s* along the curve from some base point.

Arc Length of a plane curve: Let y = f(x) be a smooth function on [a, c], then length of the curve y = f(x), is given by

$$L = \int_{a}^{c} ds = \int_{a}^{c} \sqrt{(dx)^{2} + (dy)^{2}}$$
$$= \int_{a}^{c} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

For the smooth curve

$$x = x(t)$$
, $y = y(t)$, $a \le t \le c$

$$L = \int_{a}^{c} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

Arc length along a curve for a vector function:

The length of a smooth curve

$$\vec{r}(t) = x(t) \hat{i} + y(t) \hat{j} + z(t) \hat{k}, \quad a \le t \le c$$

which is traced exactly once as t increases from a to c is:

$$L = \int_{a}^{c} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$

$$= \int_{c}^{c} |\vec{v}(t)| dt$$

Arc Length parameter with base point at $t = t_0$

$$s(t) = \int_{t_0}^{t} /\vec{v}(\tau)/d\tau$$

- 1. If $t > t_0$, then s(t) > 0.
- 2. If $t < t_0$, then s(t) < 0.
- 3. Every value of *s* determines a unique point on the curve

Smooth Curve

$$\frac{ds}{dt} = |\vec{v}(t)|, \quad \frac{ds}{dt} > 0 \text{ for a smooth curve,}$$

as $|\vec{v}|$ is never zero for a smooth curve.

Thus s(t) is a strictly increasing function of t, hence bijection of (a, b) with (s(a), s(b)),

lead

Unit Tangent Vector T

The **unit tangent vector** gets its own notation:

$$\vec{\mathbf{T}}(t) = \frac{\vec{\mathbf{r}}'(t)}{\left|\vec{\mathbf{r}}'(t)\right|} = \frac{\vec{\mathbf{v}}}{\left|\vec{\mathbf{v}}\right|}$$

Unit Tangent Vector T

We have the velocity vector
$$\vec{v} = \frac{d\vec{r}}{dt}$$
 is tangent to

the curve and the vector,
$$\hat{T}(t) = \frac{\vec{v}(t)}{|\vec{v}(t)|}$$
 is therefore

unit tangent vector to the curve.

For smooth curve

$$\hat{T}(t) = \frac{\vec{v}(t)}{|\vec{v}(t)|} = \frac{d\vec{r}(t)/dt}{ds/dt} = \frac{d\vec{r}}{ds}$$

Q.8 Find the following curve's unit tangent vector and length of the indicated portion of the curve

$$\vec{r}(t) = (t\sin t + \cos t)\hat{i} + (t\cos t - \sin t)\hat{j},$$

for $\sqrt{2} \le t \le 2$

Q.10 Find the point on the curve

$$\vec{r}(t) = (12\sin t)\hat{i} - (12\cos t)\hat{j} + 5t\hat{k}$$

at a distance 13π units along the curve from the origin (base point (0,-12,0) corresponding to t=0) in the direction opposite to the direction of increasing arc length.

Q.13 Find the arc length parameter along the curve from the point where t = 0.

$$\vec{r}(t) = (e^t \cos t)\hat{i} + (e^t \sin t)\hat{j} + e^t \hat{k}$$

Also find the length of the portion of the curve for

$$-\ln 4 \le t \le 0$$

Q.15 Find the length of the curve

$$\vec{r}(t) = \left(\sqrt{2}t\right)\hat{i} + \left(\sqrt{2}t\right)\hat{j} + \left(1 - t^2\right)\hat{k}$$

from (0,0,1) to
$$(\sqrt{2},\sqrt{2},0)$$

Q.19 The involute of a circle If a string wound around a fixed circle is unwound while held taut in the plane of the circle, its end P traces an *involute* of the circle. In the accompanying figure, the circle in question is the circle $x^2 + y^2 = 1$ and the tracing point starts at (1, 0). The unwound portion of the string is tangent to the circle at Q, and t is the radian measure of the angle from the positive x-axis to segment OQ. Derive the parametric equations of the point P(x, y)for the involute.

Q.20 The involute of a circle: Find the unit tangent vector to the involute of the circle at the point *P*, discussed in **Q.19**.

The magnitude of rate at which T turns per unit of arc length along the curve is called the curvature.

$$\kappa = \left| \frac{d\hat{T}}{ds} \right| = \left| \frac{d\hat{T}/dt}{ds/dt} \right| = \frac{1}{|\vec{v}(t)|} \left| \frac{d\hat{T}}{dt} \right|$$

Remark:

1. If
$$\left| \frac{d\hat{T}}{ds} \right|$$
 is small, then κ is small and \hat{T} turns slowly

as the particle passes through the point.

2. If
$$\left| \frac{d\hat{T}}{ds} \right|$$
 is large, then κ is large and \hat{T} turns sharply

as the particle passes through the point.

What is curvature of straight line?

- As tangent to straight line in direction of straight line is straight line itself, rate of change of tangent line to straight line is zero with respect to arc length.
- ☐ Hence curvature of straight line is zero.
- ☐ One can as well prove it through parametric representation but intuitive way is simpler.

Through parametric representation we have equation of straight line which passes through a point (x_0, y_0, z_0) and has direction ratio (α, β, γ) is:

$$x = x_0 + \alpha t, y = y_0 + \beta t, z = z_0 + \gamma t$$

and if we just compute curvature through formula we get that as zero.

What is curvature of circle of radius a?

If a particle moves on circle of radius *a* with center at origin in anti-clockwise direction in plane, vector motion of particle is represented as:

$$\vec{r}(t) = (a\cos t)\hat{i} + (a\sin t)\hat{j}, \quad 0 \le t \le 2\pi$$

$$\Rightarrow \vec{v}(t) = (-a\sin t)\hat{i} + (a\cos t)\hat{j} \Rightarrow |\vec{v}(t)| = a$$

Now
$$\hat{T} = \frac{\vec{v}(t)}{|\vec{v}(t)|} = (-\sin t)\hat{i} + (\cos t)\hat{j}$$

$$\Rightarrow \frac{d\hat{T}}{dt} = (-\cos t)\hat{i} + (-\sin t)\hat{j} \Rightarrow \left| \frac{d\hat{T}}{dt} \right| = 1$$

hence curvature
$$\kappa = \frac{1}{|\vec{v}(t)|} \left| \frac{d\hat{T}}{dt} \right| = \frac{1}{a}$$

Circle of Curvature

The circle of curvature or **Osculating circle** at a point P on a plane curve where $\kappa \neq 0$ is the circle in the plane of the curve that:

1. is tangent to the curve

at P

- 2. has the same curvature the curve has at P
- 3. has center that lies towards the concave or inner side of the curve

Radius of Curvature

The **radius of curvature** of the curve at P is the radius of the circle of curvature, i.e. $\rho = 1/\kappa$

The **center of curvature** of the curve at *P* is the center of circle of curvature.

Principle Unit Normal Vector N

- 1. \hat{T} has constant length implies $\frac{d\hat{T}}{ds}$ is orthogonal to \hat{T} (how?)
- 2. Therefore if we divide $\frac{d\hat{T}}{ds}$ by its length κ we obtain
- a unit vector \hat{N} orthogonal to \hat{T} called principal Unit

Normal vector
$$\hat{N} \Rightarrow \hat{N} = \frac{1}{\kappa} \frac{d\hat{T}}{ds} = \frac{d\hat{T}/ds}{\left| d\hat{T}/ds \right|} = \frac{d\hat{T}/dt}{\left| d\hat{T}/dt \right|}$$

Principle Unit Normal Vector N

- The vector $d\hat{T}/ds$ always points in the direction in which \hat{T} is turning.
- If we face in the direction of increasing arc length, then $d\hat{T}/ds$ points:

(i) towards the right if \hat{T} turns clockwise,

Vector N

(ii) towards the left if T turns anticlockwise.

Thus, \hat{N} will point towards the concave side of the curve.

$$\hat{N} \times \frac{d\hat{T}}{ds} = 0$$

Vector N

Problem:
$$\vec{a}(t) = \frac{d^2s}{dt^2}\hat{T}(t) + \left(\frac{ds}{dt}\right)^2 \kappa(t)\hat{N}(t)$$

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = \frac{d\vec{r}}{ds}\frac{ds}{dt} = \left(\frac{d\vec{r}/dt}{ds/dt}\right)\frac{ds}{dt} = \hat{T}\frac{ds}{dt}$$

as
$$|\vec{v}(t)| = \frac{ds}{dt}$$
, $\hat{T} = \frac{\vec{v}}{|\vec{v}|}$

Vector N

$$\Rightarrow \vec{a}(t) = \frac{d}{dt} \left(\hat{T} \frac{ds}{dt} \right) = \hat{T} \frac{d^2s}{dt^2} + \frac{ds}{dt} \frac{d}{dt} \left(\hat{T}(t) \right)$$

But
$$\hat{N}(t) = \frac{1}{\kappa} \frac{d\hat{T}}{ds} = \frac{1}{\kappa} \frac{\frac{d\hat{T}}{dt}}{\frac{ds}{dt}}$$
, hence $\frac{d\hat{T}}{dt} = \kappa |\vec{v}| \hat{N}$

$$\vec{a}(t) = \frac{d^2 s}{dt^2} \hat{\mathbf{T}} + \kappa |\vec{v}|^2 \hat{N}.$$

Vector N

We write
$$\vec{a}(t) = a_T \hat{T} + a_N \hat{N}$$
, where

$$a_T = \frac{d^2 s}{dt^2} = \frac{d}{dt} |\vec{v}|, \quad a_N = \kappa |\vec{v}|^2 \ge 0$$

are called tangential and normal components of acceleration.

Vector N

Problem: Prove $\kappa(t) = |\vec{v} \times \vec{a}|/|\vec{v}|^3$

$$\vec{v}(t) = \frac{ds}{dt}\hat{T}$$
 and $\vec{a}(t) = \frac{d^2s}{dt^2}\hat{T}(t) + \left(\frac{ds}{dt}\right)^2 \kappa(t)\hat{N}(t)$

$$\vec{v} \times \vec{a} = \frac{ds}{dt} \hat{T} \times \left(\frac{d^2s}{dt^2} \hat{T} + \left(\frac{ds}{dt} \right)^2 \kappa(t) \hat{N} \right)$$

$$\Rightarrow \kappa(t) = \frac{\left|\vec{v} \times \vec{a}\right|}{\left|\vec{v}\right|^3}$$

Q.4 Find \hat{T} , \hat{N} , κ for the plane curve

$$\vec{r}(t) = (\cos t + t \sin t)\hat{i} + (\sin t - t \cos t)\hat{j}, \ t > 0$$

Q6. Show that curvature of a smooth curve

$$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$$

defined by a twice differentiable

function
$$x = x(t)$$
, $y = y(t)$ is

$$\kappa = \frac{|\dot{x} \, \ddot{y} - \ddot{x} \, \dot{y}|}{(\dot{x}^2 + \dot{y}^2)^{3/2}}.$$

Solution:
$$\vec{v} = \dot{x}\,\hat{i} + \dot{y}\,\hat{j}$$
,

$$\vec{a} = \ddot{x}\,\hat{i} + \ddot{y}\,\hat{j},$$

$$\vec{v} \times \vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \dot{x} & \dot{y} & 0 \\ \ddot{x} & \ddot{y} & 0 \end{vmatrix}$$

$$= (\dot{x} \ddot{y} - \ddot{x} \dot{y})\hat{k}$$

lead

Exercise 13.4

$$\Rightarrow |\vec{v} \times \vec{a}| = |\dot{x} \, \ddot{y} - \ddot{x} \, \dot{y}|$$

$$|\vec{v}| = \sqrt{\dot{x}^2 + \dot{y}^2}$$

$$\therefore \kappa = \frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^3} = \frac{|\dot{x} \, \ddot{y} - \ddot{x} \, \dot{y}|}{(\dot{x}^2 + \dot{y}^2)^{3/2}}$$

Q.7 For the plane curve y = f(x), show that its curvature at the point (x, f(x)) is:

$$\kappa = \frac{|f''(x)|}{(1 + (f'(x))^2)^{3/2}}$$

Solution:
$$\vec{r}(t) = x(t)\hat{i} + f(x(t))\hat{j}$$
,

$$\Rightarrow \vec{v}(t) = \dot{x}\hat{i} + \dot{x}f'(x)\hat{j},$$

$$\Rightarrow \vec{a}(t) = \ddot{x}\hat{i} + ((\dot{x})^2 f''(x) + \ddot{x}f'(x))$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \dot{v} \times \vec{a} = \begin{vmatrix} \dot{x} & \dot{x}f'(x) & 0 \\ \ddot{x} & ((\dot{x})^2 f''(x) + \ddot{x}f'(x)) & 0 \end{vmatrix}$$

$$= (\dot{x})^3 f''(x)\hat{k}$$

achieve

$$\Rightarrow |\vec{v} \times \vec{a}| = |(\dot{x})^3 f''(x)|$$

$$|\vec{v}| = \sqrt{\dot{x}^2 + \dot{x}^2 (f'(x))^2}$$

$$\therefore \kappa = \frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^3} = \frac{|f''(x)|}{(1 + (f'(x))^2)^{3/2}}$$

Q.17 Show that the parabola has its largest curvature at its vertex.

We have
$$y = ax^2 = f(x)$$
, $a > 0$

$$\Rightarrow f'(x) = 2ax$$
 and $f''(x) = 2a$

$$\therefore \kappa = \frac{|f''(x)|}{(1+(f'(x))^2)^{3/2}} = \frac{|2a|}{(1+4a^2x^2)^{3/2}}$$

$$\Rightarrow \frac{d\kappa}{dx} = \frac{-24|a|a^2x}{\left(1 + 4a^2x^2\right)^{5/2}} = 0 \Rightarrow x = 0$$

$$\frac{d^2\kappa}{dx^2}\bigg|_{x=0} = -24|a|a^2 < 0$$

 $\Rightarrow \kappa$ is maximum at x = 0, i.e. at vertex (0, 0)

$$\kappa_{\text{max}} = 2|a|$$

Prob. Write \vec{a} in the form $\vec{a} = a_T \hat{T} + a_N \hat{N}$ without finding \hat{T} and \hat{N} for $\vec{r}(t) = (2t+3)\hat{i} + (t^2-1)\hat{j}$.

Solution
$$a_T = \frac{d}{dt} |\vec{v}| = \frac{2t}{\sqrt{1+t^2}}$$

$$\vec{a} = 2 \hat{j} \Longrightarrow |\vec{a}| = 2$$

$$\Rightarrow \vec{a}_N = \sqrt{|\vec{a}|^2 - a_T^2} = \frac{2}{\sqrt{1 + t^2}}$$

$$\vec{a} = \frac{2t}{\sqrt{1+t^2}} \hat{T} + \frac{2}{\sqrt{1+t^2}} \hat{N}$$

Binormal Vector

The binormal vector of a curve in space is

$$\hat{B} = \hat{T} \times \hat{N}$$

which is a unit vector orthogonal to both \hat{T} and \hat{N} .

Serret-Frenet Frame

The vectors \hat{T} , \hat{N} , \hat{B} form a right-handed frame naturally (or intrinsically) associated to the curve which moves from point to point. This exists at a point P when the *curvature* at that point is nonzero.

Co-ordinate planes in Serret-Frenet frame:

Osculating plane at P: plane through P spanned by \hat{T} and \hat{N} (normal to vector \hat{B})

Normal plane : spanned by \hat{N} and \hat{B}

Rectifying plane: spanned by \hat{T} and \hat{B} .

Torsion: We define torque as the capability of rotating objects around a fixed axis. Or how much a vehicle's path rotates or twists out of its plane of motion as the vehicle moves along it.

Geometric significance of τ :

$$\hat{B} = \hat{T} \times \hat{N}$$

$$\Rightarrow \frac{d\hat{B}}{ds} = \frac{d\hat{T}}{ds} \times \hat{N} + \hat{T} \times \frac{d\hat{N}}{ds}$$

$$\Rightarrow \frac{dB}{ds} = \hat{T} \times \frac{dN}{ds}$$

$$\Rightarrow \frac{d\hat{B}}{ds}$$
 is orthogonal to \hat{T}

$$\because \frac{d\hat{B}}{ds} \text{ is orthogonal to } \hat{B} \text{ (WHY?)}$$

Hence
$$\frac{d\hat{B}}{ds}$$
 is orthogonal to the plane

of
$$\hat{B}$$
 & $\hat{T} \Rightarrow \frac{d\hat{B}}{ds}$ is parallel to \hat{N}

innovate achieve lead

Torsion

$$\Rightarrow \frac{d\hat{B}}{ds} = -\tau \, \hat{N}$$
, where the

scalar τ is called Torsion along the curve.

(minus sign is a convention which we have to follow)

$$\therefore \frac{d\hat{B}}{ds} \cdot \hat{N} = -\tau \, \hat{N} \cdot \hat{N} = -\tau.$$

A Computational formula for Torsion

$$\tau = \frac{\begin{vmatrix} \dot{x} & \dot{y} & \dot{z} \\ \ddot{x} & \ddot{y} & \ddot{z} \\ \ddot{x} & \ddot{y} & \ddot{z} \end{vmatrix}}{\begin{vmatrix} \vec{v} \times \vec{a} \end{vmatrix}^2}, \quad |\vec{v} \times \vec{a}| \neq 0.$$

Q. Determine \hat{T} , \hat{N} , \hat{B} , κ and τ for the curve given by

$$\vec{r}(t) = (\sin t)\hat{i} + (\sqrt{2}\cos t)\hat{j} + (\sin t)\hat{k}$$

at the point $t = \pi/2$.

Solution: $\vec{v}(t) = \cos t \ \hat{i} - \sqrt{2} \sin t \ \hat{j} + \cos t \ \hat{k}$

$$\left| \vec{v}(t) \right| = \sqrt{2}, \ \hat{T}(t) = \frac{\vec{v}(t)}{\left| \vec{v}(t) \right|}$$

$$\Rightarrow \hat{T}(t) = \frac{\left[\cos t \,\hat{i} - \sqrt{2}\sin t \,\hat{j} + \cos t \,\hat{k}\right]}{\sqrt{2}}$$

$$\hat{T}(\pi/2) = \frac{1}{\sqrt{2}}(-\sqrt{2}\hat{j}) = -\hat{j}$$

$$\frac{d\hat{T}(t)}{dt} = \frac{\left(-\sin t \,\hat{i} - \sqrt{2}\cos t \,\hat{j} - \sin t \,\hat{k}\right)}{\sqrt{2}}$$

$$\left| \frac{d\hat{T}(t)}{dt} \right| = 1 \Rightarrow \kappa = \frac{1}{|\vec{v}(t)|} \left| \frac{d\hat{T}(t)}{dt} \right| = \frac{1}{\sqrt{2}} \text{(Constant)}$$

$$\hat{N}(t) = \frac{1}{\kappa |\vec{v}(t)|} \frac{d\hat{T}(t)}{dt} = \frac{\left(-\sin t \,\hat{i} - \sqrt{2}\cos t \,\hat{j} - \sin t \,\hat{k}\right)}{\sqrt{2}}$$

$$\hat{N}(\pi/2) = \frac{1}{\sqrt{2}}(-\hat{i} - \hat{k})$$

$$\hat{B}(t) = \hat{T}(t) \times \hat{N}(t) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\cos t}{\sqrt{2}} & -\sin t & \frac{\cos t}{\sqrt{2}} \\ -\sin t & -\cos t & \frac{-\sin t}{\sqrt{2}} \end{vmatrix}$$

$$=\frac{1}{\sqrt{2}}(\hat{i}-\hat{k})$$

$$\hat{B}(\pi/2) = \frac{1}{\sqrt{2}}(\hat{i} - \hat{k})$$

$$\tau = -\frac{d\hat{B}}{ds}.\hat{N} = \frac{-1}{|\vec{v}(t)|}\frac{d\hat{B}}{dt}.\hat{N} = 0$$

Since \hat{B} is a constant function.

Hence τ is zero throughout.

What does it mean for torsion to be

zero for all time? Study Q.25

Plane through point (x_0, y_0, z_0)

for which vector $A\hat{i} + B\hat{j} + C\hat{k}$

is normal vector is

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

Parametric equation of line through point (x_0, y_0, z_0) that is parallel to

vector
$$A\hat{i} + B\hat{j} + C\hat{k}$$
 is

$$x = x_0 + tA$$

$$y = y_0 + tB,$$

$$z = z_0 + tC$$
, $-\infty < t < \infty$

Q.7 Find \hat{T} , \hat{N} and \hat{B} at $t = \pi/4$ for

$$\vec{r}(t) = (\cos t)\hat{i} + (\sin t)\hat{j} - \hat{k}$$

Then find equations for osculating, normal and rectifying planes at $t = \pi / 4$

Solution: $\vec{v}(t) = (-\sin t)\hat{i} + (\cos t)\hat{j}$

$$\Rightarrow \hat{T}(t) = \frac{\vec{v}(t)}{|\vec{v}(t)|} = (-\sin t)\hat{i} + (\cos t)\hat{j} \Rightarrow \hat{T}\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}(-\hat{i} + \hat{j})$$

$$\Rightarrow \hat{N}(t) = \frac{\frac{dT}{dt}}{\left|\frac{d\hat{T}}{dt}\right|} = (-\cos t)\hat{i} - (\sin t)\hat{j} \Rightarrow \hat{N}\left(\frac{\pi}{4}\right) = \frac{-1}{\sqrt{2}}(\hat{i} + \hat{j})$$

$$\Rightarrow \hat{B}(t) = \hat{T}(t) \times \hat{N}(t) = \hat{k} \Rightarrow \hat{B}\left(\frac{\pi}{4}\right) = \hat{k};$$

$$\vec{r}\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j} - \hat{k} \Longrightarrow P\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, -1\right)$$

lies on the osculating plane and $\hat{B} = \hat{k}$ is perpendicular to osculating plane.

Therefore equation of osculating plane

$$\Rightarrow 0\left(x - \frac{1}{\sqrt{2}}\right) + 0\left(y - \frac{1}{\sqrt{2}}\right) + \left(z - (-1)\right) = 0$$

$$\Rightarrow z + 1 = 0$$

Equation of Normal plane:

$$\hat{T} = \frac{1}{\sqrt{2}}(-\hat{i} + \hat{j})$$
 is perpendicular to Normal plane.

Therefore equation of Normal plane

$$\Rightarrow \frac{-1}{\sqrt{2}} \left(x - \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(y - \frac{1}{\sqrt{2}} \right) + 0.\left(z - \left(-1 \right) \right) = 0$$

$$\Rightarrow x - y = 0$$

Equation of Rectifying plane:

$$\hat{N} = \frac{-1}{\sqrt{2}}(\hat{i} + \hat{j})$$
 is perpendicular to Rectifying plane.

Therefore equation of Rectifying plane

$$\Rightarrow \frac{-1}{\sqrt{2}} \left(x - \frac{1}{\sqrt{2}} \right) + \frac{-1}{\sqrt{2}} \left(y - \frac{1}{\sqrt{2}} \right) + 0.(z - (-1)) = 0$$

$$\Rightarrow x + y = \sqrt{2}$$

Q. Find the parametric equation of the tangent line & equation of normal plane to the curve given as

$$\vec{r}(t) = (t + \sin t)\hat{i} + (1 - \cos t)\hat{j} + \frac{\sin t}{\sqrt{2}}\hat{k}$$

at
$$t = \pi/2$$

Motion in Polar Coordinates

When a particle moves along a curve in the polar coordinate plane, we express its position, velocity and acceleration in the terms of unit vectors \hat{u}_r and \hat{u}_{θ} .

 \hat{u}_r : A unit vector that points along the position vector (radial direction), *OP* hence

$$\hat{u}_r = \frac{\vec{r}}{|\vec{r}|} = \frac{\vec{r}}{r}$$

Motion in Polar Coordinates

 \hat{u}_{θ} : A unit vector, normal to \hat{u}_{r} (obtained by rotating \hat{u}_{r} anticlockwise $\pi/2$) that points in the direction of increasing θ r: length of \vec{r} which is the positive polar

coordinate r of the point $P(r, \theta)$.

$$\begin{split} \hat{u}_r &= \cos\theta \,\hat{i} + \sin\theta \,\hat{j} \\ \hat{u}_\theta &= \cos(\pi/2 + \theta) \,\hat{i} + \sin(\pi/2 + \theta) \,\hat{j} \\ \hat{u}_\theta &= \sin\theta \,\hat{i} + \cos\theta \,\hat{j} \end{split}$$

Motion in Polar Coordinates

$$\frac{d\hat{u}_r}{d\theta} = -\sin\theta \,\hat{i} + \cos\theta \,\hat{j} = \hat{u}_\theta$$

$$\frac{d\hat{u}_{\theta}}{d\theta} = -\cos\theta \,\hat{i} - \sin\theta \,\hat{j} = -\hat{u}_{r}$$

distinguish between r and \vec{r}

innovate

in Polar Coordinates

Velocity for Motion

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = \frac{d}{dt}(r\hat{u}_r) = \frac{dr}{dt}\hat{u}_r + r\frac{d\hat{u}_r}{dt}$$

$$= \frac{dr}{dt}\hat{u}_r + r\frac{d\hat{u}_r}{d\theta}\frac{d\theta}{dt}$$

$$= \frac{dr}{dt}\hat{u}_r + r\left(\frac{d\theta}{dt}\right)\hat{u}_\theta$$

$$=\dot{r}\hat{u}_{r}+r\dot{\theta}\,\hat{u}_{\theta}$$

Acceleration for Motion

in Polar Coordinates

$$\vec{a}(t) = \frac{d}{dt}\vec{v}(t) = \frac{d}{dt}\frac{d\vec{r}}{dt}$$

$$= \frac{d}{dt}\left(\frac{dr}{dt}\hat{u}_r\right) + \frac{d}{dt}\left[r\left(\frac{d\theta}{dt}\right)\hat{u}_\theta\right]$$

$$\Rightarrow \vec{a}(t) = \frac{d^2r}{dt^2}\hat{u}_r + \frac{dr}{dt}\frac{d\hat{u}_r}{dt}$$

$$+\frac{dr}{dt}\frac{d\theta}{dt}\hat{u}_{\theta}+r\frac{d}{dt}\left(\frac{d\theta}{dt}\right)\hat{u}_{\theta}+r\left(\frac{d\theta}{dt}\right)\left(\frac{d\hat{u}_{\theta}}{dt}\right)$$

Acceleration for Motion

in Polar Coordinates

$$\Rightarrow \vec{a}(t) = \frac{d^2r}{dt^2}\hat{u}_r + \frac{dr}{dt}\hat{u}_\theta \frac{d\theta}{dt}$$

$$+\frac{dr}{dt}\frac{d\theta}{dt}\hat{u}_{\theta} + r\frac{d^{2}\theta}{dt^{2}}\hat{u}_{\theta}$$

$$+r\left(\frac{d\theta}{dt}\right)-\hat{u}_{r}\left(\frac{d\theta}{dt}\right)$$

Acceleration for Motion

in Polar Coordinates

$$\vec{a}(t) = \left[\frac{d^2r}{dt^2} - r \left(\frac{d\theta}{dt} \right)^2 \right] \hat{u}_r$$

$$+ \left(2\frac{dr}{dt}\frac{d\theta}{dt} + r\frac{d^2\theta}{dt^2}\right)\hat{u}_{\theta}$$

$$= (\ddot{r} - r\dot{\theta}^2)\hat{u}_r + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{u}_{\theta}$$

innovate achieve lead

Cylindrical Coordinates

We obtain cylindrical coordinates of space by combining polar coordinates in $r\theta$ – plane with the usual z – axis, in (r, θ, z) .

r and θ are polar co-ordinates of the projection of P onto the $r\theta$ – plane.

z: the directed distance from the $r\theta$ – plane to the point P.

Cylindrical Coordinates

Cylindrical Coordinates

Equations relating Rectangular (x, y, z) and Cylindrical (r, θ, z) coordinates

$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$
 $r^2 = x^2 + y^2$, $\tan \theta = y/x$

Motion in Cylindrical Coordinates

$\hat{u}_r \times \hat{u}_\theta = \hat{k},$

$$\hat{u}_{\theta} \times \hat{k} = \hat{u}_{r},$$

$$\hat{k} \times \hat{u}_r = \hat{u}_\theta,$$

$$\vec{r} = r\hat{u}_r + z\hat{k}$$

 \Rightarrow $(\hat{u}_r, \hat{u}_\theta, \hat{k})$ is right handed orthogonal frame of unit vectors.

Motion in Cylindrical Coordinates

$$\vec{v}(t) = \dot{r}\hat{u}_r + r\dot{\theta}\,\hat{u}_\theta + \dot{z}\hat{k}$$

$$\vec{a}(t) = (\ddot{r} - r\dot{\theta}^2)\hat{u}_r + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{u}_\theta + \ddot{z}\hat{k}$$

Motion in Cylindrical

Coordinates

Q. Express velocity and acceleration in polar coordinate if

$$r = a(1 - \cos \theta), \quad \frac{d\theta}{dt} = 3.$$

THANK YOU FOR YOUR PATIENCE !!!