

编译原理

第七章 语义分析和中间代码生成

授 课 教 师 : 余仲星

手 机 : 15866821709 (微信同号)

邮 : zhongxing.yu@sdu.edu.cn

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - ▶ 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - ▶ 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ➤ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

□ 静态语义检查通常包括:

- 类型检查:如果操作符作用于不相容的操作数,编译程序必须报告出错信息。
- ➤ 控制流检查:控制流语句必须使控制转移到合法的地方,如c语言中,break如果不包含在while、for或switch等语句中,则报错。
- 一致性检查:很多场合要求对象只能被定义一次。
- 相关名字检查:有时同一名字必须出现两次或多次,需要检测出现的名字是否相同。
- 名字的作用域分析:确定作用域范围。

- 虽然源程序可以直接翻译为目标语言代码,但许多编译程序却采用了独立于机器的、复杂性介于源语言和机器语言之间的中间语言,这样做的好处是:
 - 便于进行与机器无关的代码优化工作;
 - 使编译程序改变目标机更容易;
 - 使编译程序的结构在逻辑上更为简单明确。

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - > 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - > 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - > 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

7.1 中间语言

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - ▶ 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - > 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ➤ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

7.1.1 后缀式

- □ 后缀式表示法是波兰逻辑学家卢卡西维奇 (Lukasiewicz) 发明的一种表达式的表示方法,因此又称逆波兰表示法。
- 这种表示法是: 把运算量写在前面, 把算符写在后面。
 - \triangleright a + b写成ab +, a * b写成ab *
- **□** 用E或 E_i 表示中缀形式,< E >表示E的后缀形式,一个表达式E的后缀形式定义如下
 - ① 如果a是一个变量或常量, $\langle a \rangle = a$;
 - ② 如果 θ 是单目运算符, $<\theta E>=< E>\theta$;
 - ③ 如果 θ 是双目运算符, $\langle E_1\theta E_2 \rangle = \langle E_1 \rangle \langle E_2 \rangle \theta$;
 - (4) < (E) > = < E > •
- 口 若 θ 是一个k目运算符,它对运算量 $e_1, e_2, ..., e_k$ 的作用结果表示成: $e_1e_2...e_k\theta$

7.1.1 后缀式

- □ 与中缀及前缀表示相比:
 - > 运算符个数不变;
 - > 运算量的次序和个数不变。
- □ 后缀式优点:
 - 无括号,形式简洁;
 - > 运算符的顺序与运算次序完全相同。
- 把表达式翻译成后缀式的语义规则:

$$\triangleright$$
 $E \rightarrow E_1 \theta E_1$

$$E.code = E_1.code \mid\mid E_2.code \mid\mid \theta$$

$$\triangleright$$
 $E \rightarrow (E_1)$

$$E.code = E_1.code$$

$$\triangleright$$
 $E \rightarrow id$

$$E.code = id$$

Convert the infix expression into its equivalent postfix expression

Algorithm to convert an Infix notation into postfix notation

- Step 1: Add ')" to the end of the infix expression
- Step 2: Push "(" on to the stack
- Step 3: Repeat until each character in the infix notation is scanned IF a "(" is encountered, push it on the stack IF an operand (whether a digit or an alphabet) is encountered, add it to the postfix expression.

IF a ")" is encountered, then;

- a. Repeatedly pop from stack and add it to the postfix expression until a "(" is encountered.
 - b. Discard the "(". That is, remove the "(" from stack and do not add it to the postfix expression

IF an operator X is encountered, then;

- a Repeatedly pop from stack and add each operator (popped from the stack) to the postfix expression which has the same precedence or a higher precedence than X
 - b. Push the operator X to the stack
- Step 4: Repeatedly pop from the stack and add it to the postfix expression until the stack is empty
- Step 5: EXIT

7.1.1 后缀式

【例7.1】

$$< a * b + c * d >$$

= $< a * b > < c * d > +$
= $ab * cd * +$

【例7.2】

$$<(a + b) * (c * d + e) >$$
 $= <(a + b) > < (c * d + e) > *$
 $= < a + b > < c * d + e > *$
 $= ab + < c * d > < e > + *$
 $= ab + cd * e + *$

【例7.3】

$$<(a+b)^{(c+d)e} >$$

= $<(a+b) ><(c*d)^e >$
= $<(c*d) >^^= $ab+cd*e^^$$

优先级搞错的错误做法:

$$<(a+b)^{(c*d)^{e}}$$

= $<(a+b)^{(c*d)}$ > $< e > ^{(a+b)}$
= $<(a+b)$ > $<(c*d)$ > e
= $ab + cd * ^{e}$

7.1.1 后缀式

【例7.4】

$$\langle a \leq b + c \wedge a \rangle d \vee a + b \neq e \rangle$$

$$= \langle a \leq b + c \wedge a \rangle d \rangle \langle a + b \neq e \rangle \vee$$

$$= \langle a \leq b + c \rangle \langle a \rangle d \rangle \wedge \langle a + b \rangle \langle e \rangle \neq \vee$$

$$= \langle a \leq b + c \rangle \langle a \rangle \wedge \langle a + b \rangle \langle e \rangle \neq \vee$$

$$= \langle a \rangle \langle b + c \rangle \langle a d \rangle \wedge \langle a + e \rangle \langle e \rangle \wedge \langle a + e \rangle \vee$$

$$= \langle a \rangle \langle b + c \rangle \langle a d \rangle \wedge \langle a + e \rangle \langle a d \rangle \wedge \langle a + e \rangle \vee$$

$$= \langle a \rangle \langle b + c \rangle \langle a d \rangle \wedge \langle a + e \rangle \langle a d \rangle \wedge \langle a + e \rangle \vee \vee$$

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - ▶ 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - ▶ 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ▶ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

7.1.2 图表示法

- □ 抽象语法树:已在前一章介绍。
- □ DAG图, 即无循环有向图 (Directed Acyclic Graph)。
 - ▶ 可以识别公共子表达式,在代码优化部分介绍。

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - ▶ 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - > 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ➤ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

- □ 三地址代码: 由以下一般形式的语句构成的序列x = y op z。
 - ▶ x, y, z为名字、常数或编译产生的临时变量;
 - ▶ op代表运算符号。
- $\Box x + y * z$ 可以翻译成如下语句序列:

$$T_1 = y * z$$

$$T_2 = x + T_1$$

其中 T_1 和 T_2 为编译时产生的临时变量。

□ 三地址语句的种类

- x = y op z,其中op为二元算术算符或逻辑算符。
- x = op y,其中op为一元算符,如一元减uminus、逻辑非not、移位算符及类型 转换算法。
- x = y的赋值语句,将y的值赋给x。
- ④ goto L, 无条件转移语句。
- *if x relop y goto L*或*if a goto L*的条件转移语句,其中relop为关系运算符如< $,=,>,\leq,\geq$ 等, a为布尔变量或常量。若if条件为真,则执行标号为L的语句,否则执行下一条语句。

□ 三地址语句的种类

⑥ 过程调用语句 $param\ x$ 和 $call\ p,n$,以及返回语句 $return\ y$ 。源程序中的过程调用语句 $p(x_1,x_2,...,x_n)$ 通常产生如下的三地址代码:

```
param x_1
param x_2
.....
param x_n
call p, n
```

- ② x = y[i]及x[i] = y的索引赋值。
- 8 x = &y, x = *y, *x = y的地址和指针赋值。

- □ 四元式: 带有四个域的记录结构(op, arg1, arg2, result), 相当于result = arg1 op arg2
 - ▶ op为一个代表运算符的内部码;
 - arg1, arg2为两个运算数;
 - ▶ result结果域。

```
【例7.5】 a = b * -c + b * -c的四元式 (uminus, c, -, T_1) (*, b, T_1, T_2) (uminus, c, -, T_3) (*, b, T_3, T_4) (+, T_2, T_4, T_5) (=, T_5, -, a)
```

- □ 三元式:为避免把临时变量填入到符号表,可以通过计算这个临时变量的 语句位置来引用这个临时变量,这样只需要三个域(op, arg1, arg2)
 - ▶ op为一个代表运算符的内部码;
 - \rightarrow arg1, arg2为运算数或三元式标号。

【例7.6】
$$a = b * -c + b * -c$$
的三元式

- (0) (uminus, c, -)
- (1)(*,b,(0))
- (2) (uminus, c, -)
- (3)(*,b,(2))
- (4)(+,(1),(3))
- (5) (assign, a, (4))

- □ 间接三元式:为了便于代码优化处理,有时不直接使用三元式表,而是另设一张指示器(称为间接码表),它将按运算的先后顺序列出有关三元式在三元式表中的位置。
 - 代码优化过程中需要调整运算顺序时,只需重新安排间接码表。

【例7.7】如下语句的间接三元式

$$x = (a+b) * c$$
$$y = d^{(a+b)}$$

间接代码	三元式表
(1)	(1) (+, a, b)
(2)	(2) (*, (1), c)
(3)	(3) (=, x, (2))
(1)	(4) (^, d, (1))
(4)	(5) (=, y, (4))
(5)	

21

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - ▶ 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - ▶ 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ▶ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

7.2.1 过程中的说明语句

□ 过程中是说明语句需要处理的问题:

- ① 过程中的说明语句形式: $id_1, id_2, ..., id_n$: type
- ② 每个变量需要记录名字、类型、字宽信息,分别用属性name、type、width记录
- ③ 当新出现一个名字时,需要记录进符号表,用offset记录该名字在符号表中的地址偏移量,在识别前置初值为0。
- ④ 过程enter(name, type, offset)用来把名字name填入到符号表,并给出该名字的类型type及在过程数据区中的相对地址offset。
- ⑤ 假定整数类型域宽为4,实型域宽为8。

7.2.1 过程中的说明语句

□ 过程中的说明语句翻译模式:

```
P \rightarrow \{offset = 0\}D
D \rightarrow D; D
D \rightarrow id: T
                              {enter(id.name, T. type, of f set);
                                offset = offset + T.width
T \rightarrow integer
                              \{T. type = integer; T. width = 4\}
T \rightarrow real
                              \{T. type = real; T. width = 8\}
T \rightarrow array[num] \ of \ T_1 \ \{T.type = array(num.val, T_1.type);
                                T.width = num.val \times T_1.width
                              \{T. type = pointer(T_1. type); T. width = 4\}
T \rightarrow {}^{\wedge}T_1
```

7.2.1 过程中的说明语句

□ 过程中的说明语句翻译模式:

 $D \rightarrow D; D$

 $D \rightarrow D: T$

 $D \rightarrow id$

【例6.20】

 $D \rightarrow L: T$

 $T \rightarrow integer \mid char$

 $L \rightarrow L$, $id \mid id$

【修改】

 $D \rightarrow id L$

 $L \rightarrow$, $id L \mid : T$

 $T \rightarrow integer \mid char$

□ 过程中的说明语句翻译模式:

```
P \rightarrow \{offset = 0\}D
                             {enter(id.name, L.type, of fset);
D \rightarrow id L
                              offset = offset + L.width
                             \{enter(id.name, L_1.type, offset);
L \rightarrow id L_1
                              offset = offset + L_1.width;
                              L.type = L_1.type; L.width = L_1.width
                             \{L. type = T. type; L. width = T. width\}
L \rightarrow : T
                             \{T. type = integer; T. width = 4\}
T \rightarrow integer
T \rightarrow real
                             \{T.type = real; T.width = 8\}
T \rightarrow array[num] \ of \ T_1 \ \{T.type = array(num.val, T_1.type);
                              T.width = num.val \times T_1.width
T \rightarrow {}^{\wedge}T_1
                             \{T. type = pointer(T_1. type); T. width = 4\}
```

□ 过程中的说明语句翻译模式:

 $P \rightarrow MD$ $\{offset = 0\}$ $M \to \varepsilon$ $D \rightarrow id L$ {enter(id.name, L.type, of fset); offset = offset + L.width $L \rightarrow id L_1$ $\{enter(id.name, L_1.type, of fset)\}$ $offset = offset + L_1.width;$ $L.type = L_1.type; L.width = L_1.width$ $L \rightarrow : T$ $\{L. type = T. type; L. width = T. width\}$ $T \rightarrow integer$ $\{T. type = integer; T. width = 4\}$ $T \rightarrow real$ $\{T.type = real; T.width = 8\}$ $T \rightarrow array[num] \ of \ T_1 \ \{T.type = array(num.val, T_1.type);$ $T.width = num.val \times T_1.width$ $\{T. type = pointer(T_1. type); T. width = 4\}$ $T \rightarrow {}^{\wedge}T_1$

27

过程中的说明语句

口 【例7.8】

- $\mathcal{D} P \to MD$
- $(2) M \rightarrow \varepsilon$
- $\mathfrak{Z} D \to id L$
- $\mathscr{A} L \rightarrow$, $id L_1$
- (5) $L \rightarrow : T$
- 𝔞 T → integer
- $\mathcal{D} T \rightarrow real$
- $\mathscr{B} \ T \to array[num] \ of \ T_1$
- $\mathscr{G} T \rightarrow {}^{\wedge}T_1$

步骤	文法符号栈	输入串	动作
1	#	p,q,r:real#	初始化
2	# <i>M</i>	,q,r:real#	归约r ₂
3	#Mp	,q,r:real#	移进
4	# <i>Mp</i> ,	q,r:real#	移进
5	#Mp,q	,r:real#	移进
6	#Mp, q,	r:real#	移进
7	#Mp,q,r	:real#	移进
8	#Mp,q,r:	real#	移进
9	#Mp,q,r:real	#	移进
10	#Mp,q,r:T	#	归约 r_7
11	#Mp,q,rL	#	归约 r_5
12	#Mp,qL	#	归约 r_4
13	#MpL	#	归约r ₄
14	#MD	#	归约r ₃
15	# <i>P</i>	#	归约r ₁
16	# <i>P</i>	#	成功

□ 过程中的说明语句翻译模式:

```
P \rightarrow MD
                            \{offset = 0\}
M \to \varepsilon
                            \{enter(val[top-1].name, val[top].type, of fset)\}
D \rightarrow id L
                              offset = offset + val[top].width
L \rightarrow id L_1
                            \{enter(val[top-1], name, val[top], type, of fset)\}
                              offset = offset + val[top].width;
                              val[ntop] = val[top]
L \rightarrow : T
                            \{val[ntop] = val[top]\}
                            \{val[ntop], type = integer; val[ntop], width = 4\}
T \rightarrow integer
T \rightarrow real
                            \{val[ntop], type = real; val[ntop], width = 8\}
T \rightarrow array[num] \ of \ T_1 \ \{val[ntop]. \ type = array(num. \ val, \ val[top]. \ type);
                              val[ntop].width = num.val \times val[top].width
T \rightarrow {}^{\wedge}T_1
                 \{val[ntop]. type = pointer(val[top]. type); val[ntop]. width = 24\}
```

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - ▶ 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - > 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ➤ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

```
program Sort (input , output)
2
        var a: array[0..10] of integer;
3
            x: integer;
4
        procedure ReadArray
(5)
             var i: integer;
6
             begin ... a... end {ReadArray}
7
        procedure Exchange (i, j: integer)
8
             begin x=a[i]; a[i] = a[j]; a[j] = x; end {Exchange}
9
        procedure QuickSort (m, n: integer)
10
             var k, v: integer;
11)
             function Partition (y, z: integer): integer
(12)
                  var i, j: integer;
13
                  begin ...a...v... Exchange(i, j);... end {Partition}
(14)
             begin ... end {QuickSort}
15)
         begin ... end {Sort}
```

嵌套过程的符号表

保留作用域的信息

□ 语义规则中的操作:

- ▶ mktable(previous): 创建一张新符号表,并返回指向新表的指针;参数
 previous指向先前创建的一张符号表。
- ▶ enter(table, name, type, of fset): 在指针table指向的符号表中,为名字name建立一个新项,并把类型type、相对地址of fset填入到该项中。
- ➤ addwidth(table, width): 在指针table指向的符号表表头中,记录下该表中所有 名字占用的总宽度。
- ▶ enterproc(table, name, newtable): 在指针table指向的符号表中,为名字为name的过程建立一个新项;参数newtable指向过程name的符号表。
- ➤ tblptr是一个栈,用于存放指向嵌套外层过程的符号表指针。
- ▶ offset是一个栈,用于存放变量的相对地址,当过程结束时, offset里记录的 是过程占用的所有字节数。

□ 保留作用域信息:

```
\{addwith(top(tblptr), top(offset));
P \rightarrow MD
                            pop(tblptr); pop(offset); }
                          \{t = mktable(null); push(t, tblptr); push(0, offset); \}
M \to \varepsilon
                          {t = top(tblptr); addwidth(t, top(offset));}
D \rightarrow proc id ND; S
                            pop(tblptr); pop(offset);
                            enterproc(top(tblptr), top(offset)); }
D \rightarrow id L
                          {enter(top(tblptr), id. name, L. type, top(offset));
                            top(offset) = top(offset) + L.width
                          \{enter(top(tblptr), id. name, L_1. type, top(offset))\}
L \rightarrow id L_1
                            top(offset) = top(offset) + L_1.width;
                            L.type = L_1.type, L.width = L_1.width
                \{t = mktable(top(tblptr)); push(t, tblptr); push(0, offset); \}
N \to \varepsilon
```

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - ▶ 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - ▶ 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ➤ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - ▶ 7.7.4 多态函数

7.3.1 简单算术表达式及赋值语句

 \square 简单算术表达式及赋值语句的开始符号为S,来自如下部分的相应 V_N :

```
P \rightarrow MD
M \rightarrow \varepsilon
D \rightarrow id \ L \mid proc \ id \ ND; S
L \rightarrow id \ L_1
N \rightarrow \varepsilon
```

7.3.1 简单算术表达式及赋值语句

□ 简单算术表达式及赋值语句的操作:

- ▶ tblptr: 是一个栈,栈顶为当前过程的符号表,所以可以取到符号信息。
- ➤ lookup(name): 从top(tblptr)符号表寻找名字,找到即返回,找不到则转到外围(上层)符号表继续查找,直到找到或者所有外围过程都找不到为止。
- ➤ gen(op, arg1, arg2, result): 生成三地址代码。
- ▶ newtemp: 是一个方法, 生成一个临时变量。
- ▶ place: 是一个属性, 存放文法符号的值 (变量) 的名字。

□ 简单算术表达式及赋值语句:

```
S \rightarrow id = E
                            {p = lookup(id.name)};
                              if p \neq null then gen(=, E.place, -, p); else error; }
E \rightarrow E_1 + E_2
                            \{E.place = newtemp; gen(+, E_1.place, E_2.place, E.place)\}
E \rightarrow E_1 * E_2
                            \{E.place = newtemp; gen(*, E_1.place, E_2.place, E.place)\}
                            \{E.place = newtemp; gen(@, E_1.place, -, E.place)\}
E \rightarrow -E_1
E \rightarrow (E_1)
                            \{E.place = E_1.place\}
E \rightarrow id
                            {p = lookup(id.name)};
                              if p \neq null then E. place = p; else error; }
```

过程中的说明语句

 $S \rightarrow id = E \quad \{p = lookup(id.name);$ $if \ p \neq null \ then \ gen(=, E.place, -, p); \ else \ error; \}$

E.place)

步骤	文法符号栈	输入串	动作
1	#	x = (a+b) * -c#	初始
2	#x = (a	+ <i>b</i>) * - <i>c</i> #	移进
3	#x = (E	+ <i>b</i>) * - <i>c</i> #	归约
4	#x = (E + b)) * - <i>c</i> #	移进
5	#x = (E + E) * - <i>c</i> #	归约
6	#x = (E) * - <i>c</i> #	归约
7	#x = (E)	* -c#	移进
8	#x = E	* -c#	归约
9	#x = E * -c	#	移进
10	#x = E * -E	#	归约
11	#x = E * E	#	归约
12	#x = E	#	归约
13	# <i>S</i>	#	归约
14	# <i>S</i>	#	成功

三地址码

(+, a, b, T1)

(@, c, -, T2)

(*, T1, T2, T3)

(=, T3, -, x)

E.place = T2

E.place = T3

栈属性 (给人看的)

第七章 语义分析和中间代码生成

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - ▶ 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - > 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ▶ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

- □ 数组连续存储,一维数组A[i]地址为: $base + (i low) \times w$
 - ▶ w: 数组中每个元素的宽度;
 - ▶ low:数组下标下界;
 - $\rightarrow base$: 分配给数组的相对地址,即base为A的第一个元素A[low]的相对地址。
- **旦** 整理为: $i \times w + (base low \times w)$

 - $\triangleright A[i]$ 的相对地址计算变为: $i \times w + C$ 。

□ 行存储的二维数组*A*[*i*₁, *i*₂]地址:

- $\triangleright base + [(i_1 low_1) \times n_2 + i_2 low_2] \times w$
- $\triangleright = (i_1 \times n_2 + i_2) \times w + [base (low_1 \times n_2 + low_2) \times w]$

	第low ₂ 列				第i ₂ 列		共n2列
第low₁行	$A[l_1, l_2]$	$A[l_1, l_2 + 1]$	$A[l_1, l_2 + 2]$		$A[l_1,i_2]$		$A[l_1, l_2 + n_2]$
	$A[l_1+1,l_2]$	$A[l_1+1, l_2+1]$	$A[l_1+1, l_2+2]$		$A[l_1+1,i_2]$		$A[l_1 + 1, l_2 + n_2]$
				•••		•	
第i₁行	$A[i_1, l_2]$	$A[i_1, l_2 + 1]$	$A[i_1, l_2 + 2]$		$A[i_1,i_2]$		$A[i_1, l_2 + n_2]$
				•••		•	
共n₁行	$A[l_1+n_1,l_2]$	$A[l_1 + n_1, l_2 + 1]$	$A[l_1 + n_1, l_2 + 2]$		$A[l_1+n_1,i_2]$		$A[l_1 + n_1, l_2 + n_2]$

□ 行存储的二维数组*A*[*i*₁, *i*₂]地址:

- $\triangleright base + [(i_1 low_1) \times n_2 + i_2 low_2] \times w$
- $\triangleright = (i_1 \times n_2 + i_2) \times w + [base (low_1 \times n_2 + low_2) \times w]$

□ 行存储的多维数组 $A[i_1,i_2,...,i_k]$ 地址:

- \blacktriangleright 基准地址: $C = base ((...((low_1 \times n_2 + low_2) \times n_3)...) \times n_k + low_k) \times w$
- > 动态地址: $(((...(i_1 \times n_2 + i_2) \times n_3)...) \times n_k + i_k) \times w$

□ 生成数组的文法:

```
L \rightarrow id [Elist] \mid id

Elist \rightarrow Elist, E \mid E
```

旦 要想知道数组的全部信息,需要有一个产生式把id (提供符号表地址)和 最左下标E (提供下标值)联系起来,因此修改文法如下:

 $L \rightarrow Elist] \mid id$ $Elist \rightarrow Elist, E \mid id[E]$

□ 最终文法:

$$\mathfrak{D} S \to L = E$$

$$(2)$$
 $E \rightarrow E + E$

$$\mathfrak{G}$$
 $E \to E * E$

$$\cancel{4} E \rightarrow -E$$

$$\mathfrak{G}$$
 $E \to (E)$

 $\bigcirc L \rightarrow Elist$

(8) $L \rightarrow id$

9 Elist → Elist, E

 \mathscr{D} $Elist \rightarrow id[E]$

// E也可以是数组,如果是变量,也需要通过L过渡

// L是数组

// L是普通变量

□ Elist的属性:

- ② array, 记录指向符号表中相应数组名字表项的指针。
- ② ndim, 记录Elist中下标表达式的个数, 即维数。
- ③ place,表示临时变量,用来临时存放由Elist中的下标表达式计算出来的值。

□ *L*的属性:

- ▶ place, 指向符号表中相应此名字表项的指针。
- ▶ offset, 简单名字为null, 数组则为地址偏移量。

□ 函数:

- ightharpoonup limit(array, j), 返回 n_j , 即由array所指示的数组,其第j维的长度。
- □ 多维数组 $A[i_1,i_2,...,i_k]$ 的前m维下标:
 - ▶ 动态下标: $(...((i_1 \times n_2 + i_2) \times n_3)...) \times n_m + i_m$
 - \triangleright 递归计算: $e_1 = i_1, e_2 = e_1 \times n_2 + i_2, ..., e_m = e_{m-1} \times n_m + i_m$

```
(1) S \rightarrow L = E
    { if L. of fset = null // L} 是简单变量
       gen(=, E.place, -, L.place);
    else
                              // L是数组
       gen(=, E.place, -, L.place[L.offset]); 
(2) E \to E_1 + E_2
    \{E.place = newtemp;
    gen(+, E_1. place, E_2. place, E. place); \}
(3) E \rightarrow E_1 * E_2
    {E.place = newtemp;}
    gen(*, E_1. place, E_2. place, E. place); \}
```

```
(4) E \rightarrow -E_1
   \{E.place = newtemp;
    gen(@, E_1. place, -, E. place); 
(5) E \rightarrow (E_1)
   \{E.place = E_1.place;\}
(6) E \rightarrow L
   { if L. of fset = null // L} 是简单变量
       E.place = L.place;
                            // L是数组,转到E后会丢失数组信息,因此此处赋值
   else {
       E.place = newtemp;
       gen(=, L. place[L. offset], -, E. place); \}
```

 $(7) L \rightarrow Elist$ $\{L.place = newtemp;$ gen(+, Elist. array, C, L. place); // C的计算参考前述公式, 在符号表中 L.offset = newtemp;gen(*,w,Elist.place,L.offset);} // w在符号表中 (8) $L \rightarrow id$ $\{L.palce = id.place;$ L.offset = null;

```
(9) Elist \rightarrow Elist_1, E
   \{ t = newtemp;
    m = Elist.ndim + 1; // 用一次维度+1
    gen(*, Elist_1, place, limit(Elist_1, array, m), t);
    gen(+,t,E.place,t); // 递归计算e_k = e_{k-1} \times n_k + i_k
    Elist.array = Elist_1.array;
    Elist.palce = t;
    Elist.ndim = m; }
(10) Elist \rightarrow id[E]
   {Elist.palce = E.place;}
    Elist.ndim = 1;
    Elist.array = id.place;
```

□ 【例7.10】赋值语句A[10,20]: integer; x = A[y,z];

三地址码

(*, y, 20, T1)

步骤	文法符号栈	输入串	动作
1	#	x = A[y, z] #	初始
2	# <i>x</i>	= A[y, z] #	移进
3	#L	= A[y, z] #	归约
4	#L = A[y	, z]#	移进
5	#L = A[L	, z]#	归约
6	#L = A[E]	, z]#	归约
7	#L = Elist	, z]#	归约
8	#L = Elist, z]#	移进
9	#L = Elist, L]#	归约
10	#L = Elist, E]#	归约
11	#L = Elist]#	归约
12	#L = Elist	#	移进
13	#L = L	#	归约
14	#L = E	#	归约
15	# <i>S</i>	#	归约
16	# <i>S</i>	#	成功

```
(+,T1,z,T1)
(+,A,24,T2)
(*,4,T1,T3)
(=,T2[T3],-,T4)
(=,T4,-,x)
(1) S \rightarrow L = E
{ if L. of fset = null gen(=,E.place,-,L.place);
```

$$E.place = z$$
 $E.place = T4$
 $L.place = x, offset = null$

栈属性 (给人看的)

gen(=, E.place, -, L.place[L.offset]);

else

第七章 语义分析和中间代码生成

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - ▶ 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - > 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ▶ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

7.3.3 类型转换

- □ 当两个不同类型的量运算时,需要二选一:
 - > 拒绝运算
 - ▶ 自动进行类型转换

【例7.11】 x = y + i * j,其中i,j为整型, y为实型,对应四元式为:

- ② (*,i,j,T1)
- ② (int2real, T1, null, T2)
- $\mathfrak{G}(+, y, T2, T3)$
- (=, T3, null, x)

```
E \rightarrow E_1 \theta E_2
```

```
\{E.place = newtemp;
if E_1. type == integer \&\& E_2. type == integer {
   gen(\theta^{i}, E_{1}. place, E_{2}. place, E. place); E. type = integer; \}
else if E_1. type == real \&\& E_2. type == real \{
    gen(\theta^r, E_1, place, E_2, place, E, place); E, type = real; \}
else if E_1. type == integer \&\& E_2. type == real \{
   u = newtemp; gen(int2real, E_1, place, -, u);
    gen(\theta^r, u, E_2, place, E, place); E, type = real; 
else if E_1. type == real \&\& E_2. type == integer {
    u = newtemp; gen(int2real, E_2, place, -, u);
    gen(\theta^r, E_1, place, u, E, place); E, type = real; 
else E.type = type\_error; }
```

第七章 语义分析和中间代码生成

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - > 7.3.3 类型转换

□ 7.4 布尔表达式的翻译

- ▶ 7.4.1 数值表示法
- ▶ 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ▶ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

7.4 布尔表达式的翻译

□ 布尔表达式的作用

- ▶ 作为控制语句的条件式;
- 作为逻辑运算,获得逻辑值。

□ 算符优先级的说明:

- ▶ 优先级由高到低: ¬,∧,∨;
- ^,\rangle 服从左结合规则, ¬服从右结合规则;
- \triangleright 关系表达式形如 $E_1\theta E_2$, 其中关系符 θ 包括<, \leq , =, \neq , >, \geq , E_i 为算术表达式;
- 各关系符优先级相同, 高于布尔算符, 低于算术算符;
- \triangleright 关系符不得结合, $\mu a < b < c$ 为非法。

7.4 布尔表达式的翻译

- □ 计算方法1:如同算术表达式,一步不差的从表达式各部分值计算整个表达式的值
 - $ightharpoonup 1 \lor (\neg 0 \land 0) = 1 \lor (1 \land 0) = 1 \lor 0 = 1$
- □ 计算方法2: 优化算法
 - \triangleright A \vee B: if A then true else B
 - \triangleright A \land B: if A then B else false
 - $\rightarrow \neg A$: if A then false else true

第七章 语义分析和中间代码生成

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - ▶ 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - ▶ 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ▶ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

7.4.1 数值表示法

【例7.12】布尔表达式生成四元式: $a \lor b \land \neg c$

- $(\land,b,T1,T2)$
- \mathfrak{G} (V, a, T2, T3)

【例7.13】关系式a < b可以看作: if a < b then 1 else 0

100. (j <, a, b, 103)

101.
$$(=, 0, -, T1)$$

102.
$$(j, -, -, 104)$$

103.
$$(=, 1, -, T1)$$

104. ...

 \square *nextstat*: 为将要生成尚未生成的四元式地址索引,每生成一条自动加1 $(\mathcal{D} E \to E_1 \vee E_2)$ {E. place = newtemp; gen(\vee , E_1 . place, E_2 . place, E. place); } (2) $E \rightarrow E_1 \land E_2 \qquad \{E.place = newtemp; gen(\land, E_1.place, E_2.place, E.place); \}$ (3) $E \rightarrow \neg E_1$ $\{E.place = newtemp; gen(\neg, E_1.place, \neg, E.place); \}$ (4) $E \rightarrow (E_1)$ $\{E.place = E_1.place;\}$ (5) $E \rightarrow id$ {E.place = id.place;} (6) E → id_1 θ id_2 {E. place = newtemp; $gen(i\theta, id_1, place, id_2, place, next + 3);$ gen(=, 0, -, E. place);gen(i, -, -, nextstat + 2);

gen(=, 1, -, E. place);

【例7.14】布尔表达式: $a < b \lor c \le d \land e > f$

```
E \rightarrow id_1 \theta id_2 {E.place = newtemp;

E \rightarrow E_1 \lor E_2 {E.place = newtemp;

gen(\lor, E_1.place, E_2.place, E.place);}
```

步骤	文法符号栈	输入串	动作
1	#	$a < b \lor c \le d \land e > f \#$	初始
2	#a < b	$\forall \ c \le d \land e > f \#$	移进
3	# <i>E</i>	$\forall \ c \le d \land e > f \#$	归约
4	$\#E \lor c \le d$	∧ <i>e</i> > <i>f</i> #	移进
5	$\#E \vee E$	$\wedge e > f \#$	归约
6	$#E \lor E \land e > f$	#	移进
7	$\#E \vee E \wedge E$	#	归约
8	$\#E \vee E$	#	归约
9	# <i>E</i>	#	归约
10	# <i>E</i>	#	成功

三地址码

	100: $(j <, a, b, 103)$
	101: (=, 0, -, T1)
	102: (<i>j</i> , –, –, 104)
	103: (=, 1, -, T1)
	104: $(j \le, c, d, 107)$
	105: (=, 0, -, T2)
	106: (<i>j</i> , –, –, 108)
	107: (=, 1, -, T2)
	108: $(j >, e, f, 111)$
	109: (=, 0, -, T3)
	110: (<i>j</i> , –, –, 112)
	111: (=, 1, -, T2)
E.place = T3	112: (\(\Lambda\), T2, T3, T4)
E.place = T4	113: (V, T1, T4, T5)
E.place = T5	
L	

栈属性

第七章 语义分析和中间代码生成

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - > 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - > 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ▶ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

口 条件语句 $if\ E\ then\ S_1\ else\ S_2$ 中的布尔表达式E,仅用于控制对 S_1 和 S_2 的选择,不需要同一个临时变量保留其值,因此可以为布尔式E设置两个出口:

▶ 真出口:指向S₁的第一个四元式;

 \triangleright 假出口:指向 S_2 的第一个四元式。

【例7.15】 if $a > c \lor b < d$ then S_1 else S_2

这两个语句都跳转到 L_2 ,但 L_2 需要分析到 S_1 才能确定,其它类似。

if
$$a > c$$
 goto L_2

 $goto L_1$

$$L_1$$
: if $b < d$ goto L_2

 $goto L_3$

$$L_2$$
: (关于 S_1 的代码序列)

 $goto L_{next}$

 L_3 : (关于 S_2 的代码序列)

 L_{next} :

100.
$$(j > a, c, 104)$$

101.
$$(j, -, -, 102)$$

102.
$$(j <, b, d, 104)$$

103.
$$(j, -, -, 116)$$

115.
$$(j, -, -, 120)$$

120. ...

□ 思路:

- ▶ 生成四元式时,暂不确定跳转标号,而是把指向同一目标的四元式组成一个链表,确定目标后再回填;
- ightharpoonup 为非终结符号E赋予两个综合属性E. truelist和E. falselist,分别记录真、假出口链;
- ▶ 需要回填的四元式,借助第四区块构造真、假出口链。

□ 用到四元式:

- \triangleright (jnz, a, -, p): if a goto p
- \triangleright $(j\theta, x, y, p)$: if $x \theta y$ goto p
- \triangleright (j,-,-,p): goto p

□ 需要用到的变量或函数:

- nxq: 即Next Quadruplet,指向下一条将要产生,但尚未产生的四元式地址(标号),初值为1,执行一次gen增1。
- ➤ mklist(i): 创建一个链表,这个链表仅含标号为i的四元式,并返回链表指针。
- ightharpoonup merge(p1,p2): 把以p1和p2为链首的两条链合并,返回新的链首。当遇到 $E_1 \land E_2$ 时,它们的falselist链表需要合并;当遇到 $E_1 \lor E_2$ 时,它们的turelist链表需要合并。
- \blacktriangleright backpatch(p,t): 回填,把p所链接的每个四元式的第四区段都填t。当遇到 $E_1 \land E_2$ 时, E_2 确定了 E_1 的truelist链表需要回填的地址;当遇到 $E_1 \lor E_2$ 时, E_2 确定了 E_1 的falselist链表需要回填的地址。

Merge操作


```
Quad * Merge(void * p1, void * p2)
{
  if (p1 == null) return p2;
   if (p2 == null) return p1;
  // 找p2链的链尾
   Quad * p = p2;
   while (p的第四区段内容 \neq null)
       p = p的第四区段内容;
  p的第四区段内容 = p1;
  return p2;
```

backpatch操作


```
void backpatch(Quad * p, Quad * t)
{
   Quad * q;
   while (p \neq null)
      q = p的第四区段内容;
      p的第四区段内容 = t;
      p = q;
```

```
(1) E \rightarrow E_1 \lor ME_2 \ \{backpatch(E_1, falselist, M, quad)\}
                      E. truelist = merge(E_1. truelist, E_2. truelist);
                      E. falselist = E_2. falselist;
(2) E \rightarrow E_1 \land ME_2 {backpatch(E_1. truelist, M. quad);
                      E. falselist = merge(E_1. falselist, E_2. falselist);
                      E.truelist = E_2.truelist;
(3) M \to \varepsilon {M. quad = nxq;} // 在E_2之前把它记下来,E_2之后使用。
(4) E \rightarrow \neg E_1 { E.truelist = E_1.falselist;
                      E. falselist = E_2. truelist;
(5) E \rightarrow (E_1) {E.truelist = E_1.truelist;
                      E. falselist = E_2. falselist;
```

```
(6) E \rightarrow id_1 \theta id_2 {E. truelist = mklist(nxq);

E. falselist = mklist(nxq + 1);

gen(j\theta, id_1. place, id_2. place, 0);

gen(j, -, -, 0);}

(7) E \rightarrow id {E. truelist = mklist(nxq);

E. falselist = mklist(nxq + 1);

gen(jnz, id. place, -, 0);

gen(j, -, -, 0);}
```

下面通过构造LR(0)分析表确定文法的归约顺序。

$(0) E' \to E$ $(4) E \to \neg E$	(1) $E \rightarrow E \lor ME$ (5) $E \rightarrow (E)$	(2) <i>E</i> → (6) <i>E</i> →	$(3) M \to \varepsilon$ $(7) E \to id$	
$I_{0}: E' \rightarrow \cdot E$ $E \rightarrow \cdot E \vee ME$ $E \rightarrow \cdot E \wedge ME$ $E \rightarrow \cdot \neg E$ $E \rightarrow \cdot (E)$ $E \rightarrow \cdot id \theta id$ $E \rightarrow \cdot id$ $I_{7} = Go(I_{2}, E):$ $E \rightarrow E \cdot \vee ME$ $E \rightarrow E \cdot \wedge ME$ $I_{11} = Go(I_{6}, M):$ $E \rightarrow E \wedge M \cdot E$ $E \rightarrow \cdot E \vee ME$ $E \rightarrow \cdot E \wedge E \wedge E$ $E \rightarrow \cdot E \wedge E \wedge E$ $E \rightarrow \cdot E \wedge E$ $E \rightarrow E$	$I_{1} = Go(I_{0}, E):$ $E' \rightarrow E \cdot$ $E \rightarrow E \cdot \lor ME$ $E \rightarrow E \cdot \land ME$ $I_{4} = Go(I_{0}, id):$ $E \rightarrow id \cdot \theta id$ $E \rightarrow id \cdot$ $I_{2} = Go(I_{2}, \neg):$ $I_{3} = Go(I_{2}, (id):$ $I_{4} = Go(I_{2}, id):$ $I_{5} = Go(I_{7}, \lor):$ $I_{12} = Go(I_{8}, \lor):$ $E \rightarrow (E) \cdot$ $I_{5} = Go(I_{8}, \lor):$ $I_{6} = Go(I_{8}, \lor):$ $I_{13} = Go(I_{9}, id):$ $I_{13} = Go(I_{9}, id):$ $I_{14} = Go(I_{9}, id):$ $I_{15} = Go(I_{9}, id):$	$I_{2} = Go(I_{0}, \neg):$ $E \rightarrow \neg \cdot E$ $E \rightarrow \cdot E \lor ME$ $E \rightarrow \cdot E \land ME$ $E \rightarrow \cdot GE$ $E \rightarrow GE$	$I_{3} = Go(I_{0}, (): E \rightarrow (\cdot E))$ $E \rightarrow (\cdot E)$ $E \rightarrow \cdot E \lor ME$ $E \rightarrow \cdot E \land ME$ $E \rightarrow \cdot GE$ $E \rightarrow GE$ $E \rightarrow GE$ GE GE GE GE GE GE GE	$I_{5} = Go(I_{1}, \vee):$ $E \rightarrow E \vee ME$ $M \rightarrow \cdots$ $I_{6} = Go(I_{1}, \wedge):$ $E \rightarrow E \wedge ME$ $M \rightarrow \cdots$ $I_{9} = Go(I_{4}, \theta):$ $E \rightarrow id \theta \cdot id$ $I_{10} = Go(I_{5}, M):$ $E \rightarrow E \vee M \cdot E$ $E \rightarrow \cdots \times E \wedge ME$ $E \rightarrow$
				$I_6 = Go(I_{15}, \wedge)$:

 $(0)~E'\to E$

 $(1) E \to E \vee ME$

(2) $E \rightarrow E \wedge ME$

(3) $M \rightarrow \varepsilon$

 $\textbf{(4)}\ E \rightarrow \neg E$

 $(5) E \rightarrow (E)$

(6) $E \rightarrow id \theta id$

(7) $E \rightarrow id$

	Action							Go	oto	
状态	\neg	Λ	V	θ	id	()	#	Е	М
0					S_4				1	
1								acc		
2	S_2				S_4	S_3			7	
3										
4	r_7	r_7	r_7	r_4	r_7	r_7	r_7	r_7		
5										
6										11
7	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4		
8		S_6	S_5				S_{12}			
9					S ₁₃					
10										
11										
12	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5		
13	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6		
14										
15										

$I_0: E' \to \cdot E$	$I_1 = Go(I_0, E):$
$E \rightarrow \cdot E \vee ME$	$E' \rightarrow E$.
$E \rightarrow \cdot E \wedge ME$	$E \rightarrow E \cdot \vee ME$
$E \rightarrow \cdot \neg E$	$E \to E \cdot \wedge ME$
$E \rightarrow \cdot (E)$	$I_4 = Go(I_0, id):$
$E \rightarrow id \theta id$	$E \rightarrow id \cdot \theta id$
$E \rightarrow id$	$E \rightarrow id \cdot$
$I_7 = Go(I_2, E):$	$I_2 = Go(I_2, \neg)$:
$E ightarrow \neg E \cdot$	$I_3 = Go(I_2, ():$
$E \to E \cdot \vee ME$	$I_4 = Go(I_2, id):$
$E \to E \cdot \wedge ME$	
$I_{11} = Go(I_6, M):$	$I_5 = Go(I_7, \vee)$:
$E \to E \wedge M \cdot E$	$I_6 = Go(I_7, \wedge)$:
$E \rightarrow \cdot E \vee ME$	$I_{12} = Go(I_8,))$:
$E \rightarrow \cdot E \wedge ME$	$E \to (E)$.
$E \rightarrow \neg E$	$I_5 = Go(I_8, \vee):$
$E \rightarrow \cdot (E)$	$I_6 = Go(I_8, \wedge)$:
$E \rightarrow id \theta id$	$I_{13} = Go(I_9, id):$
$E \rightarrow id$	$E \rightarrow id \ \theta \ id \ \cdot$

1	'n	E'	\rightarrow	ì
(U) L	\rightarrow	1

 $(1) E \to E \vee ME$

(2) $E \rightarrow E \wedge ME$

(3) $M \rightarrow \varepsilon$

$$\textbf{(4)}\ E \rightarrow \neg E$$

 $(5) E \to (E)$

(6) $E \rightarrow id \theta id$

(7) $E \rightarrow id$

		Action												
状态	Γ	Λ	V	θ	id	()	#	Е	М				
0	S_2				S_4	S_3			1					
1								асс	7					
2	S_2				S_4	S_3								
3	S_2				S_4	S_3			8					
4	r_7	r_7	r_7	r_4	r_7	r_7	r_7	r_7						
5														
6										11				
7	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4						
8		S_6	S_5				S_{12}							
9					S_{13}									
10	S_2				S_4	S_3			14					
11	S_2				S_4	S_3			15					
12	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5						
13	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6						
14	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1						
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2						

$I_2 = Go(I_0, \neg):$	$I_3 = Go(I_0, ():$						
$E \rightarrow \neg \cdot E$	$E \to (\cdot E)$						
$E \rightarrow \cdot E \vee ME$	$E \rightarrow \cdot E \vee ME$						
$E \rightarrow \cdot E \wedge ME$	$E \rightarrow \cdot E \wedge ME$						
$E \rightarrow \cdot \neg E$	$E \rightarrow \neg E$						
$E \rightarrow \cdot (E)$	$E \rightarrow (E)$						
$E \rightarrow id \theta id$	$E \rightarrow id \theta id$						
$E \rightarrow id$	$E \rightarrow id$						
$I_8 = Go(I_3, E):$	$I_2 = Go(I_3, \neg)$:						
$E \to (E \cdot)$	$I_3 = Go(I_3, ():$						
$E \rightarrow E \cdot \vee ME$							
$E \to E \cdot \wedge ME$	$I_4 = Go(I_3, id):$						
$I_{14} = Go(I_{10}, E)$:	$I_{15} = Go(I_{11}, E)$:						
$E \rightarrow E \vee ME$.	$E \to E \land ME \cdot$						
$E \to E \cdot \vee ME$	$E \rightarrow E \cdot \vee ME$						
$E \to E \cdot \wedge ME$	$E \to E \cdot \wedge ME$						
$I_2 = Go(I_{10}, \neg):$	$I_2 = Go(I_{11}, \neg):$						
$I_3 = Go(I_{10}, ():$	$I_3 = Go(I_{11}, ():$						
$I_4 = Go(I_{10}, id):$	$I_4 = Go(I_{11}, id):$						

 $(0) E' \to E$

(1) $E \rightarrow E \vee ME$

(2) $E \rightarrow E \wedge ME$

(3) $M \to \varepsilon$

(4) $E \rightarrow \neg E$

 $(5) E \to (E)$

(6) $E \rightarrow id \theta id$

(7) $E \rightarrow id$

		Action												
状态	\neg	Λ	V	θ	id	()	#	Е	M				
0	S_2				S_4	S_3			1					
1		S_6	S_5					acc	7					
2	S_2				S_4	S_3								
3	S_2				S_4	S_3			8					
4	r_7	r_7	r_7	S_9	r_7	r_7	r_7	r_7						
5	r_3	r_3	r_3	r_3	r_3	r_3	r_3	r_3		10				
6	r_3	r_3	r_3	r_3	r_3	r_3	r_3	r_3		11				
7	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4						
8		S_6	S_5				S_{12}							
9					S_{13}									
10	S_2				S_4	S_3			14					
11	S_2				S_4	S_3			15					
12	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5						
13	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6						
14	r_1	S_6	r_1	r_1	r_1	r_1	r_1	r_1						
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2						

 $I_5 = Go(I_1, \vee)$: $E \to E \vee ME$ $M \to \vee$

 $I_6 = Go(I_1, \wedge)$: $E \to E \wedge ME$ $M \to \Phi$

 $I_9 = Go(I_4, \theta)$: $E \to id \theta \cdot id$

 $I_{10} = Go(I_5, M)$: $E \rightarrow E \lor M \cdot E$

 $E \rightarrow \cdot E \vee ME$

 $E \rightarrow \cdot E \wedge ME$

 $E \longrightarrow \neg E$

 $E \rightarrow (E)$

 $E \rightarrow id \theta id$

 $E \rightarrow id$

 $I_5 = Go(I_{14}, \vee):$

 $I_6 = Go(I_{14}, \wedge)$:

 $I_5 = Go(I_{15}, V)$:

 $I_6 = Go(I_{15}, \Lambda)$:

((0)	E'	\rightarrow	
- 1	U,	l Li	$\overline{}$	ı

 $(1) E \to E \vee ME$

(2) $E \rightarrow E \wedge ME$

(3) $M \to \varepsilon$

 $\textbf{(4)}\ E \rightarrow \neg E$

 $(5) E \to (E)$

(6) $E \rightarrow id \ \theta \ id$

(7) $E \rightarrow id$

				Goto						
状态	Γ	Λ	V	θ	id	()	#	Е	М
0	S_2				S_4	S_3			1	
1		S_6	S_5					асс	7	
2	S_2				S_4	S_3				
3	S_2				S_4	S_3			8	
4	r_7	r_7	r_7	S_9	r_7	r_7	r_7	r_7		
5	r_3	r_3	r_3	r_3	r_3	r_3	r_3	r_3		10
6	r_3	r_3	r_3	r_3	r_3	r_3	r_3	r_3		11
7	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4		
8		S_6	S_5				S_{12}			
9					S_{13}					
10	S_2				S_4	S_3			14	
11	S_2				S_4	S_3			15	
12	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5		
13	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6		
14	r_1	S_6	r_1	r_1	r_1	r_1	r_1	r_1		
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		

步骤	状态/符号栈	输入串
1	0 #	$a < b \lor c \le d \land e \#$
2	04 #α	$< b \lor c \le d \land e \#$
3	049 # <i>α</i> <	$b \lor c \le d \land e \#$
4	049 <u>13</u> # <i>a</i> < <i>b</i>	$\forall c \leq d \land e \#$
5	01 # <i>E</i>	$\forall c \leq d \land e \#$
6	015 # <i>E</i> V	$c \leq d \wedge e \#$
7	015 <u>10</u> # <i>E</i> ∨ <i>M</i>	$c \leq d \wedge e \#$
8	015 <u>10</u> 4 #E∨Mc	$\leq d \wedge e \#$
9	$015\underline{10}49 \\ \#E \lor Mc \le$	<i>d</i> ∧ <i>e</i> #
10	$015\underline{10}49\underline{13}$ $\#E \lor Mc \le d$	∧ <i>e</i> #
11	015 <u>10</u> <u>14</u> # <i>E</i> ∨ <i>ME</i>	∧ e#

 $(0)~E'\to E$

 $(1) E \to E \vee ME$

(2) $E \rightarrow E \wedge ME$

(3) $M \rightarrow \varepsilon$

 $\textbf{(4)}\ E \rightarrow \neg E$

 $(5) E \to (E)$

(6) $E \rightarrow id \theta id$

(7) $E \rightarrow id$

				Goto						
状态	Γ	Λ	V	θ	id	()	#	Е	М
0	S_2				S_4	S_3			1	
1		S_6	S_5					асс	7	
2	S_2				S_4	S_3				
3	S_2				S_4	S_3			8	
4	r_7	r_7	r_7	S_9	r_7	r_7	r_7	r_7		
5	r_3	r_3	r_3	r_3	r_3	r_3	r_3	r_3		10
6	r_3	r_3	r_3	r_3	r_3	r_3	r_3	r_3		11
7	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4		
8		S_6	S_5				S_{12}			
9					S_{13}					
10	S_2				S_4	S_3			14	
11	S_2				S_4	S_3			15	
12	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5		
13	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6		
14	r_1	S_6	r_1	r_1	r_1	r_1	r_1	r_1		
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		

步骤	状态/符号栈	输入串
11	015 <u>10</u> <u>14</u> #E ∨ ME	∧ e#
12	015 <u>10</u> <u>14</u> 6 #E ∨ ME ∧	e#
13	015 <u>10</u> <u>14</u> 6 <u>11</u> # <i>E</i> ∨ <i>ME</i> ∧ <i>M</i>	e#
14	015 <u>10</u> <u>14</u> 6 <u>11</u> 4 #E ∨ ME ∧ Me	#
1 17 1	015 <u>10</u> <u>14</u> 6 <u>11</u> <u>15</u> # <i>E</i> ∨ <i>ME</i> ∧ <i>ME</i>	#
16	015 <u>10</u> <u>14</u> # <i>E</i> ∨ <i>ME</i>	#
17	01 #E	#
18	01成功 # <i>E</i>	#

【例7.15】布尔表达式: $a < b \lor c \le d \land e$,假设nxq = 100

 $E \rightarrow id \quad \{E.truelist = mklist(nxa):$

 $E \rightarrow E_1 \lor ME_2$ {backpatch(E_1 . falselist, M. quad);

 $E.truelist = merge(E_1.truelist, E_2.truelist);$

 $E.falselist = E_2.falselist;$

	,	-2- f	
步骤	文法符号栈	输入串	动作
1	#	$a < b \lor c \le d \land e \#$	初始
2	#a < b	$\forall c \leq d \land e \#$	移进
3	# <i>E</i>	$\forall c \leq d \land e \#$	归约
4	# <i>E</i> ∨	$c \leq d \wedge e \#$	移进
5	$\#E \vee M$	$c \leq d \wedge e \#$	归约
6	$\#E \lor Mc \le d$	∧ <i>e</i> #	移进
7	$\#E \vee ME$	∧ <i>e</i> #	归约
8	$\#E \vee ME \wedge$	e#	移进
9	$\#E \vee ME \wedge M$	e#	归约
10	$\#E \lor ME \land Me$	#	移进
11	$\#E \vee ME \wedge ME$	#	归约
12	$\#E \vee ME$	#	归约
13	# <i>E</i>	#	归约
14	# <i>E</i>	#	成功

三地址码

100: (j <, a, b, 0)

101: (j, -, -, 102)

102: $(j \le, c, d, 104)$

103: (j, -, -, 0)

104: (jnz, e, -, 100)

105: (j, -, -, 103)

两个未填充四元式链,需要等 到确定布尔式为真做什么、为 假做什么时才能回填。

E.truelist = 104, E.falselist = 105

M.quad = 104

E.truelist = 104, E.falselist = 105

M.quad = 102

E.truelist = 104, E.falselist = 105

第七章 语义分析和中间代码生成

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - ▶ 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - ▶ 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ▶ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

7.5.1 控制流语句

□ 控制流语句:

 \triangleright $S \rightarrow if E then S_1 \mid if E then S_1 else S_2 \mid while E do S_1$

7.5.1 控制流语句

□ 控制流语句的完整文法:

- $② S \rightarrow if E then S$
- (2) | if E then S else S
- (3) | while E do S
- (4) | begin L end
- **⑤** | A // 赋值语句,对应7.3节的S
- *⑥ L → L; S* // 语句表
- ⑦ | *S* // 语句

■ 新的属性S.nextlist和L.nextlist:

ightharpoonup 表示紧接语句S(L)之后要执行的语句。

翻译模式

```
(1) S \rightarrow if E then M_1S_1N else M_2S_2
                     \{backpatch(E.truelist, M_1.quad);
                     backpatch(E.falselist, M_2.quad);
                     S.nextlist = merge(S_1.nextlist, N.nextlist, S_2.nextlist); 
                   \{M. quad = nxq;\} // 在S之前把它记下来, S之后使用。
(2) M \rightarrow \varepsilon
(3) N \rightarrow \varepsilon
                   \{N.nextlist = mklist(nxq)\}
                     gen(j,-,-,0); \} // 跳到S_2之后, 也就是整个语句之后
(4) S \rightarrow if E then MS_1
                     {backpatch(E.truelist, M.quad);
                     S.nextlist = merge(E.falselist, S_1.nextlist);
```

翻译模式

```
(5) S \rightarrow while M_1E do M_2S_1
                     \{backpatch(S_1.nextlist, M_1.quad);
                     backpatch(E.truelist, M_2.quad);
                     S.nextlist = E.falselist;
                     gen(j, -, -, M_1, quad); \}
(6) S \rightarrow begin \ L \ end \{S.nextlist = L.nextlist; \}
(7) S \rightarrow A \{S. nextlist = mklist(); \} // 初始化为空表
(8) L \rightarrow L_1; MS {backpatch(L_1.nextlist, M. quad); // L_1的结束是S的开始
                     L.nextlist = S.nextlist; }
(9) L \rightarrow S
                   \{L.nextlist = S.nextlist;\}
```

	→ <i>iEtMSNeMS</i> (2) <i>l</i> → <i>A</i> (8) <i>L</i> →	$M \to \varepsilon$ (3) $N \to \varepsilon$ L; MS (9) $L \to S$	$(4) S \rightarrow iEtMS \qquad (5)$	$S) S \rightarrow wMEdMS$			
$I_0: S' \to S$ $S \to iEtMSNeMS$	$I_5 = Go(I_0, A)$ $S \to A \cdot$	$I_{11} = Go(I_7, E)$ $S \to wME \cdot dMS$	$I_{16} = Go(I_{13}, M)$ $L \to L; M \cdot S$	$I_{20} = Go(I_{17}, N)$ $S \to iEtMSN \cdot eMS$			
$S \rightarrow iEtMS$ $S \rightarrow wMEdMS$ $S \rightarrow \{L\}$	$I_{6} = Go(I_{2}, E)$ $S \rightarrow iE \cdot tMSNeMS$ $S \rightarrow iE \cdot tMS$	$I_{12} = Go(I_8, \})$ $S \to \{L\} \cdot$ $I_{13} = Go(I_8, ;)$	$S \rightarrow iEtMSNeMS$ $S \rightarrow iEtMS$ $S \rightarrow wMEdMS$	$I_{21} = Go(I_{20}, e)$ $S \to iEtMSNe \cdot MS$ $M \to \cdot$			
$S \to A$ $I_1 = Go(I_0, S)$ $S' \to S$	$I_7 = Go(I_3, M)$ $S \to wM \cdot EdMS$	$L \to L; MS$ $M \to \cdot$	$S \to \{L\}$ $S \to A$ $I_2 = Go(I_{14}, i)$	$I_{22} = Go(I_{21}, M)$ $S \rightarrow iEtMSNeM \cdot S$ $S \rightarrow iEtMSNeMS$			
$I_{2} = Go(I_{0}, i)$ $S \rightarrow i \cdot EtMSNeMS$ $S \rightarrow i \cdot EtMS$	$I_{8} = Go(I_{4}, L)$ $S \to \{L \cdot\}$ $L \to L \cdot; MS$	$I_{14} = Go(I_{10}, M)$ $S \to iEtM \cdot SNeMS$ $S \to iEtM \cdot S$	$I_3 = Go(I_{14}, w)$ $I_4 = Go(I_{14}, \{\})$	S →· iEtMS S →· wMEdMS			
$S \rightarrow i \cdot EtMS$ $I_{3} = Go(I_{0}, w)$ $S \rightarrow w \cdot MEdMS$	$I_9 = Go(I_4, S)$ $L \to S \cdot$	S →· iEtMSNeMS S →· iEtMS S →· wMEdMS	$I_5 = Go(I_{14}, A)$ $I_{18} = Go(I_{15}, S)$	$S \to \{L\}$ $S \to A$ $I_{23} = Go(I_{22}, S)$			
$M \rightarrow \cdot$	$I_2 = Go(I_4, i)$ $I_3 = Go(I_4, w)$	$S \to \{L\}$ $S \to A$	$S \to wMEdMS \cdot$ $I_{19} = Go(I_{16}, S)$	$S \rightarrow iEtMSNeMS \cdot$			
$I_4 = Go(I_0, \{)$ $S \to \{\cdot L\}$ $L \to L; MS$	$I_4 = Go(I_4, \{)$	$I_{15} = Go(I_{11}, d)$ $S \to wMEdM \cdot S$	$L \rightarrow L; MS \cdot$ $I_2 = Go(I_{16}, i)$	$I_{2} = Go(I_{22}, i)$ $I_{3} = Go(I_{22}, w)$			
$L \rightarrow S$ $S \rightarrow iEtMSNeMS$	$I_{5} = Go(I_{4}, A)$ $I_{10} = Go(I_{6}, t)$ $S \rightarrow iEt \cdot MSNeMS$	$M \to I_{17} = Go(I_{14}, S)$	$I_3 = Go(I_{16}, w)$	$I_{4} = Go(I_{22}, \{)$ $I_{5} = Go(I_{22}, A)$			
$S \rightarrow iEtMS$ $S \rightarrow wMEdMS$ $S \rightarrow \{L\}$	$S \rightarrow iEt \cdot MSNeMS$ $S \rightarrow iEt \cdot MS$ $M \rightarrow \cdot$	$S \rightarrow iEtMS \cdot NeMS$ $S \rightarrow iEtMS \cdot$ $N \rightarrow \cdot$	$I_4 = Go(I_{16}, \{)$ $I_5 = Go(I_{16}, A)$				
$S \rightarrow A$		Iv →•		83			

(0)	$S' \rightarrow$	• S	(1)	$S \rightarrow i$	iEtM	SNe	MS	(2)	$M \rightarrow$	ε	(3) <i>l</i>	V →	ε (4) <i>S</i>	$\rightarrow iE$	'tMS	S (5) $S \rightarrow wMEdMS$
(6)	$S \rightarrow$	{ <i>L</i> }	(7)	$S \rightarrow$	\cdot A		(8)	$L \rightarrow$	L; M	1S	(9) L	a o S	3				
状态	i	t	е	W	d	{	}	;	Е	Α	#	S	М	N	L		$I_0: S' \to S$
0	S_2			S_3		S_4						1					$S \rightarrow iEtMSNeMS$
1											acc						$S \rightarrow iEtMS$
2																	$S \rightarrow wMEdMS$
3	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2						$S \rightarrow \{L\}$
4																	$S \rightarrow A$
5																	$I = C_0(I S)$
6																	$I_1 = Go(I_0, S)$ $S' \to S \cdot$
7																	
8																	$I_2 = Go(I_0, i)$
9																	$S \rightarrow i \cdot EtMSNeMS$
10																	$S \rightarrow i \cdot EtMS$
11																	$I_3 = Go(I_0, w)$
12																	$S \rightarrow w \cdot MEdMS$
13																	$M \rightarrow \cdot$
14																	$I_4 = Go(I_0, \{)$
15																	$S \to \{\cdot L\}$
16																	$L \rightarrow L; MS$
17																	$L \rightarrow S$
18																	$S \rightarrow iEtMSNeMS$
19																	$S \rightarrow iEtMS$
20																	$S \rightarrow wMEdMS$
21																	$S \rightarrow \{L\}$
22																	$S \rightarrow A$
23																	

(0)	S' -	S	(1) .	$S \rightarrow i$	iEtM	ISNe.	MS	(2)	М -	€	(3) <i>I</i>	$V \rightarrow$	ε ((4) <i>S</i>	$\rightarrow ii$	$EtMS \qquad (5) S \rightarrow wMEdMS$
(6)	$S \rightarrow$	{ <i>L</i> }	(7)	$S \rightarrow$	• A		(8)	$L \rightarrow$	L; N	1S	(9) L	z o S	5			
状态	i	t	е	W	d	{	}	i,	Е	Α	#	S	М	N	L	$I_5 = Go(I_0, A)$
0	S_2			S_3		S_4				S_5		1				$S \rightarrow A$.
1											acc					
2									S_6							$I_6 = Go(I_2, E)$
3	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		7			$S \rightarrow iE \cdot tMSNeMS$
4	S_2			S_3		S_4				S_5		9			8	$S \rightarrow iE \cdot tMS$
5	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7					$I_7 = Go(I_3, M)$
6		S_{10}														$S \rightarrow wM \cdot EdMS$
7																$I_8 = Go(I_4, L)$
8																$S \to \{L \cdot\}$
9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9					$L \rightarrow L \cdot; MS$
10	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2					$I_9 = Go(I_4, S)$
11																$L \to S \cdot$
12																
13																$I_2 = Go(I_4, i)$
14																$I_3 = Go(I_4, w)$
15 16																$I_4 = Go(I_4, \{)$
17																$I_5 = Go(I_4, A)$
18																
19																$I_{10} = Go(I_6, t)$
20																$S \rightarrow iEt \cdot MSNeMS$
21																$S \rightarrow iEt \cdot MS$
22																$M \rightarrow \cdot$
23																85

(0)	S' -	> S	(1) .	$S \rightarrow 0$	iEtM	SNe	MS	(2)	М	ε	(3) <i>I</i>	$V \rightarrow$	ε (4) <i>S</i>	$\rightarrow iE$	EtM.	S (5) $S \rightarrow wMEdMS$
(6)	$S \rightarrow$	{ <i>L</i> }	(7)	$S \rightarrow$	• A		(8)	$L \rightarrow$	L; M	1S	(9) L	$a \to S$	3				
状态	i	t	е	W	d	{	}	;	Е	Α	#	S	М	N	L		$I_{11} = Go(I_7, E)$
0	S_2			S_3		S_4				S_5		1					$S \rightarrow wME \cdot dMS$
1											acc						
2									S_6								$I_{12} = Go(I_8, \})$
3	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		7				$S \to \{L\}$.
4	S_2			S_3		S_4				S_5		9			8		$I_{13} = Go(I_8,;)$
5	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7						$L \rightarrow L$; MS
6		S_{10}															$M \rightarrow \cdot$
7									S_{11}								$I_{14} = Go(I_{10}, M)$
8							S_{12}	S_{13}									$S \rightarrow iEtM \cdot SNeMS$
9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9						$S \rightarrow iEtM \cdot S$
10	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		14				$S \rightarrow iEtMSNeMS$
11					S_{15}												$S \rightarrow iEtMS$
12	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6						$S \rightarrow wMEdMS$
13	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2						$S \rightarrow \{L\}$
14												17					$S \rightarrow A$
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2						$I_{15} = Go(I_{11}, d)$
16																	$S \rightarrow wMEdM \cdot S$
17	r_4	r_4	r_3	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4						$M \rightarrow \cdot$
18																	
19																	$I_{17} = Go(I_{14}, S)$
20																	$S \rightarrow iEtMS \cdot NeMS$ $S \rightarrow iEtMS \cdot$
21																	$N \rightarrow \iota E \iota M S \cdot$
22																	IV ————————————————————————————————————
23																	

(0)	$S' \rightarrow$	S	(1)	$S \rightarrow i$	iEtM	SNe	MS	(2)	$M \rightarrow$	ε	(3) <i>I</i>	$V \rightarrow$	ε (4) <i>S</i>	$\rightarrow iEt$	MS (5) $S \rightarrow wMEdMS$
(6)	$S \rightarrow$	{ <i>L</i> }	(7)	$S \rightarrow$	\cdot A		(8)	$L \rightarrow$	L; M	1S	(9) L	a o S	5			
状态	i	t	е	W	d	{	}	;	Е	Α	#	S	М	N	L	
0	S_2			S_3		S_4	_			S_5		1				$I_{16} = Go(I_{13}, M)$
1											acc					$L \rightarrow L; M \cdot S$
2									S_6							$S \rightarrow iEtMSNeMS$
3	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		7			$S \rightarrow iEtMS$
4	S_2			S_3		S_4				S_5		9			8	$S \rightarrow wMEdMS$
5	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7					$S \rightarrow \{L\}$
6		S_{10}														$S \rightarrow A$
7									S_{11}							$I_2 = Go(I_{14}, i)$
8							S_{12}	S_{13}								$I_3 = Go(I_{14}, w)$
9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9					
10	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		14			$I_4 = Go(I_{14}, \{)$
11					S_{15}											$I_5 = Go(I_{14}, A)$
12	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6					$I_{18} = Go(I_{15}, S)$
13	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		16			$S \rightarrow wMEdMS$.
14	S_2			S_3		S_4				S_5		17				
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	18				$I_{19} = Go(I_{16}, S)$
16	S_2			S_3		S_4				S_5		19				$L \rightarrow L; MS \cdot$
17	r_4	r_4	r_3	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4					$I_2 = Go(I_{16}, i)$
18	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5					$I_3 = Go(I_{16}, w)$
19	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8					
20																$I_4 = Go(I_{16}, \{)$
21																$I_5 = Go(I_{16}, A)$
22																87
23																

(0)	<i>S</i> ′ →	S	(1) 3	$S \rightarrow i$	iEtM	SNe	MS	(2)	М	<i>€</i>	(3) <i>I</i>	$V \rightarrow$	ε ((4) <i>S</i>	→ iE	EtMS
(6)	$S \rightarrow$	{ <i>L</i> }	(7)	$S \rightarrow$	\cdot A		(8)	$L \rightarrow$	L; M	1S	(9) I	$L \to S$	3			
状态	i	t	е	W	d	{	}	;	Е	Α	#	S	М	N	L	
0	S_2			S_3		S_4				S_5		1				
1											acc					
2									S_6							
3	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		7			
4	S_2			S_3		S_4				S_5		9			8	
5	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7					
6		S_{10}														
7									S_{11}							
8							S_{12}	S_{13}								
9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9					
10	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		14			
11					S_{15}											
12	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6					
13	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		16			
14	S_2			S_3		S_4				S_5		17				
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	18				
16	S_2			S_3		S_4				S_5		19				
17	r_4	r_4	r_3	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4			20		
18	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5					
19	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8					
20			S_{21}													
21	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		22			
22	S_2			S_3		S_4				S_5		23				
23	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1					

 $I_{20} = Go(I_{17}, N)$ $S \rightarrow iEtMSN \cdot eMS$ $I_{21} = Go(I_{20}, e)$ $S \rightarrow iEtMSNe \cdot MS$ $M \rightarrow \cdot$ $I_{22} = Go(I_{21}, M)$ $S \rightarrow iEtMSNeM \cdot S$ $S \rightarrow iEtMSNeMS$ $S \rightarrow iEtMS$ $S \rightarrow wMEdMS$ $S \rightarrow \{L\}$ $S \rightarrow A$ $I_{23} = Go(I_{22}, S)$ $S \rightarrow iEtMSNeMS \cdot$ $I_2 = Go(I_{22}, i)$ $I_3 = Go(I_{22}, w)$ $I_4 = Go(I_{22}, \{)$ $I_5 = Go(I_{22}, A)$

(5) $S \rightarrow wMEdMS$

(0)	$S' \rightarrow$	S	(1) 5	$S \rightarrow i$	EtM	SNe	MS	(2)	$M \rightarrow$	ε .	(3) <i>l</i>	$V \rightarrow$	ε ((4) <i>S</i>	$\rightarrow iE$	$EtMS$ (5) $S \rightarrow$	<i>wMEdMS</i>
(6)	$S \rightarrow$	$\{L\}$	(7)	$S \rightarrow$	A		(8)	$L \rightarrow$	L; M	1S	(9) L	z o S	5				
状态	i	t	е	W	d	{	}	.,	Е	Α	#	S	М	N	L	状态/符号栈	输入串
0	S_2			S_3		S_4				S_5		1				0	; F4 (4 A) - A !!
1											acc					#	<i>iEt</i> {A; A}eA#
2									S_6							02	$Et\{A;A\}eA\#$
3	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		7			#i	Lι(A, A)eAπ
4	S_2			S_3		S_4				S_5		9			8	026	$t\{A;A\}eA\#$
5	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7					# <i>iE</i>	0(-2,-1,011)
6		S_{10}														026 <u>10</u>	$\{A;A\}eA\#$
7									S_{11}							# <i>iEt</i>	
8							S_{12}	S_{13}								026 <u>10 14</u> #iEtM	${A;A}eA$ #
9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9					026 <u>10</u> <u>14</u> 4	
10	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		14			#iEtM{	A; A}eA#
11					S_{15}											026 <u>10</u> <u>14</u> 45	
12	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6					#iEtM{A	; A}eA#
13	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		16			026 <u>10</u> 1449	. 42 - 44
14	S_2			S_3		S_4				S_5		17				#iEtM{S	; A}eA#
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	18				026 <u>10</u> <u>14</u> 48	; A}eA#
16	S_2			S_3		S_4				S_5		19				#iEtM{L	, Азен
17	r_4	r_4	r_3	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4			20		026 <u>10 14</u> 48 <u>13</u>	A}eA#
18	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5					$\#iEtM\{L;$	
19	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8					026 <u>10</u> <u>14</u> 48 <u>13</u>	$\frac{16}{A}$ $A \in A \#$
20			S_{21}													# <i>iEtM</i> { <i>L</i> ; <i>M</i>	
21	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		22			026 <u>10</u> <u>14</u> 48 <u>13</u>	$\frac{16}{9}$ $eA#$
22	S_2			S_3		S_4				S_5		23				$\#iEtM\{L;MA$	89
23	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1						

(0)	$S' \rightarrow$	S	(1)	$S \rightarrow i$	iEtM	SNe	MS	(2)	$M \rightarrow$	<i>€</i>	(3) <i>I</i>	$V \rightarrow$	ε (4) <i>S</i>	$\rightarrow il$	$EtMS \qquad \textbf{(5) } S \to wMEa$	lMS
(6)	$S \rightarrow$	{ <i>L</i> }	(7)	$S \rightarrow$	\cdot A		(8)	$L \rightarrow$	L; M	1S	(9) I	a o S	3				
状态	i	t	е	W	d	{	}	;	Е	Α	#	S	М	N	L	状态/符号栈 输	 入串
0	S_2			S_3		S_4				S_5		1				026 <u>10</u> 1448 <u>13</u> 165	2 411
1											acc					$\#iEtM\{L; MA$	} <i>eA</i> #
2									S_6							026 <u>10 14</u> 48 <u>13 16 19</u>	}eA#
3	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		7			#iEtM{L; MS	}eA#
4	S_2			S_3		S_4				S_5		9			8	026 <u>10</u> <u>14</u> 48	}eA#
5	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7					#iEtM{L	
6		S_{10}														026 <u>10 14</u> 48 <u>12</u>	eA#
7									S_{11}							# <i>iEtM</i> { <i>L</i> }	
8							S_{12}	S_{13}								026 <u>10</u> <u>14</u> <u>17</u>	eA#
9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9					# <i>iEtMS</i>	
10	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		14			026 <u>10 14 17 20</u>	eA#
11					S_{15}											# <i>iEtMSN</i>	
12	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6					026 <u>10 14 17 20 21</u> #iEtMSNe	A#
13	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		16			026 <u>10</u> <u>14</u> <u>17</u> <u>20</u> <u>21</u> <u>22</u>	
14	S_2			S_3		S_4				S_5		17				#iEtMSNeM	A#
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	18				026 <u>10 14 17 20 21 22</u>	5
16	S_2			S_3		S_4				S_5		19				#iEtMSNeMA	A#
17	r_4	r_4	r_3	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4			20		02610 14 17 20 21 22	23 ,,
18	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5					#iEtMSNeMS	23 #
19	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8					01	#
20			S_{21}													# <i>S</i>	#
21	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		22			01成功	#
22	$\overline{S_2}$			S_3	_	S_4				S_5		23				# <i>S</i>	
23	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1]	o .

【例7.16】续例【7.15】 if $a < b \lor c \le d \land e \text{ then } x = y + z \text{ else } x = 0$

$S \rightarrow$	$f \rightarrow if \ E \ then \ M_1S_1N \ else \ M_2S_2$											
{ba	$backpatch(E.truelist, M_1.quad);$											
	$backpatch(E.falselist, M_2.quad);$											
S.n	extlist = merg	$ge(S_1.nextlist$	t,N.nextl	$ist, S_2. nextlist); $								
3	#iEtM	x = y + y + y + y + y + y + y + y + y + y	z e x = 0#									
4	#iEtMx = y		z e x = 0#									
5	#iEtMx = E	+	z e x = 0#									
6	#iEtMx = E + i	Z	e x = 0#									
7	#iEtMx = E + 1	E	e x = 0#	 现在剩下最后- 个链S. nextlist								
8	#iEtMx = E		e x = 0#	此处我们手工作								
9	#iEtMA		e x = 0#	用 nxq 填充。								
10	#iEtMS		e x = 0#	715 7755								
11	#iEtMSN		e x = 0#									
12	#iEtMSNe		x = 0#	S.nextlist = nu								
13	#iEtMSNeM		x = 0#	M.quad = 109								
14	#iEtMSNeMx =	= 0	#	N.nextlist = 10								
15	#iEtMSNeMx =	= <i>E</i>	#									
16	#iEtMSNeMA		#	S.nextlist = nu								
17	#iEtMSNeMS		#	M.quad = 106								
18	# <i>S</i>		#	S.nextlist = 10								

100: (j <, a, b, 106)

0 , , ,
101: (<i>j</i> , –, –, 102)
102: $(j \le, c, d, 104)$
103: (<i>j</i> , –, –, 109)
104: (<i>jnz</i> , <i>e</i> , –, 106)
105: (<i>j</i> , –, –, 109)
106: (+, <i>y</i> , <i>z</i> , <i>T</i> 1)
107: $(=, T1, -, x)$
108: (<i>j</i> , –, –, 110)
109: $(=, 0, -, x)$

S.nextlist = null
M.quad = 109
N.nextlist = 108
S.nextlist = null
M.quad = 106
S.nextlist = 108

现在剩下最后一

个链S.nextlist,

此处我们手工使

【例7.17】 while a < b do if c < d then x = y + z,假设nxq = 100

$S \rightarrow$	while M_1E do M_2S_1											
{ba	$ckpatch(S_1.ne)$	$xtlist, M_1. qu$	ad);									
	backpatch(E	$'$. $truelist$, M_2	.quad);									
S. no	extlist = E.fa	_										
gen	$gen(j, -, -, M_1. quad); $											
Т	#	wa < bdic <	atx = y + z#									
2	#w	a < bdic <	dtx = y + z#									
3	#wM	a < bdic <	dtx = y + z#									
4	#wMa < b	dic <	dtx = y + z#									
5	#wME	dic <	dtx = y + z#									
6	#wMEd	ic <	dtx = y + z#									
7	#wMEdM	ic <	dtx = y + z#									
8	#wMEdMic < d	d	tx = y + z#									
9	#wMEdMiE		tx = y + z#									
10	#wMEdMiEt		x = y + z #									
11	#wMEdMiEtM		x = y + z #									
12	#wMEdMiEtM:	x = y + z	#									
13	#wMEdMiEtM	A	#									
14	#wMEdMiEtM.	S	#									
15	#wMEdMS		#									
16	# <i>S</i>		#									

101: (j, -, -, 107) 102: (j <, c, d, 104) 103: (j, -, -, 100) 104: (+, y, z, T1) 105: (=, T1, -, x)

三地址码

106: (j, -, -, 100)

100: (j <, a, b, 102)

此处用nxq手工填充S.nextlist

103: (j, -, -, 106)

S.nextlist = null M.quad = 104 S.nextlist = 103 M.quad = 102 E.truelist = 100, E.falselist = 101 S.nextlist = 101

第七章 语义分析和中间代码生成

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - ▶ 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - > 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ➤ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

7.5.2 标号与goto语句

□ 标号语句形式: *L*: *S*;

 $(\mathcal{D} \mid S \rightarrow label \mid S \mid goto i)$

(2) label \rightarrow i:

名字	类型	 定义否	地址
L_1	标号	是	p
L_2	标号	否	nxq

□ 若标号已存在

▶ 生成四元式: (j, -, -, p)

□ 若标号不存在

- 符号表中增加标号,定义否为"否",地址为nxq;
- ▶ 生成四元式: (j, -, -, -);
- 当遇到定义标号语句时,回填。

```
(1) S \rightarrow label S {}
(2) label \rightarrow i: \{p = lookup(i.name);
                    if p = null then addlabel(i.name, label, true, nxq);
                    else if p.type \neq label || p.isdefined = true then Error;
                    else {
                    modifylabel(p, isdefined = true);
                    backpatch(p.address);} }
(3)S \rightarrow goto i
               \{p = lookup(i.name);
                    if p = null then \{addlabel(i.name, label, false, nxq);
                                       gen(i, -, -, -);
                    else if p. type \neq label then Error;
                    else if p. isdefined = true then gen(j, -, -, p. address);
                    else \{gen(j, -, -, p. address);
                    modifylabel(p, address = nxq - 1); \}
```

第七章 语义分析和中间代码生成

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - ▶ 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - > 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - > 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - ▶ 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

```
□ Case语句形式:
   switch E
       case c_1: S_1;
       case c_2: S_2;
       case c_{n-1}: S_{n-1};
       default: S_n;
```

```
□ 文法:
   // Case内部不含default部分
   I → AS; // S是各类语句
   A \rightarrow case c: | I case c: // c是常数
   // 加上switch和default
   W \rightarrow switch E\{ID\}
   D \rightarrow default S; \mid \varepsilon
   // 考虑多个语句
   S \rightarrow S; S
```

□ Case语句形式: switch E case c_1 : S_1 ; case c_2 : S_2 ; case c_{n-1} : S_{n-1} ; default: S_n ;

□ 生成四元式:

goto test

 L_1 : S_1 ; goto next

•••••

 L_{n-1} : S_{n-1} ; goto next

 L_n : S_n ; goto next

 $test: if T = c_1 goto L_1$

•••••

 $if T = c_{n-1} goto L_{n-1}$

 $goto L_n$

next:

□ 遇到switch

- ➤ 产生标号test;
- ➤ 产生标号next;
- 产 产生临时变量T,存放E 值;
- ➤ 生成goto test。

\square 遇到 c_i

- ▶ 产生标号Li, 填入符号表
- ➤ 记下标号和符号表位置 , 生成test时使用;
- ▶ S之后要有个四元式 goto next。

□ 文法:

```
// Case内部不含default部分 I \to AS; A \to case\ c: |I\ case\ c: // 加上switch和default W \to switch\ E\{ID\} D \to default\ S; |\varepsilon // 考虑多个语句 S \to S; S
```

□ 文法存在问题:

- ▶ 考虑到标号名字冲突问题,可以考虑为每个Case语句创建一个符号表,这个动作在遇到switch时发生,至少不能晚于{。
- ▶ 遇到}生成test标号里面的语句时,需要知道临时变量的名字,如果把 switch E提出来,需要考虑如何传递的问题。

□ 新的文法:

```
// Case内部不含default部分
I \rightarrow AS;
A \rightarrow case \ c: | I \ case \ c:
// 加上switch和default
W \to T\{ID\}
T \rightarrow switch E
D \rightarrow default\ MS; \mid \varepsilon
M \to \varepsilon
// 考虑多个语句
S \rightarrow S; S
```

翻译模式

```
{ mktable(top(tblptr)); Init(Que);// 创建一张新的符号表和队列
T \rightarrow switch E
                   t = newtemp; gen(=, E.place, -, t); T.place = t;
                   addlabel(test, case, false, nxq); gen(j, -, -, -);
                   addlabel(next, case, false, null); }
A \rightarrow case\ c: \{Que.add(c,nxq);\}
A \rightarrow I case c:
             D \rightarrow default: MS; \{ D.quad = M.quad; \}
                   p = lookup(next); a = p. address
                   modifylabel(p, address = nxq);
                   gen(j, -, -, a); // 待回填链 }
                 \{D.quad = null;\}
                  \{ M. quad = nxq; \}
                                                                              101
```

翻译模式

```
I 	o AS; { p = lookup(next); a = p. address; modifylabel(p, address = nxq); gen(j, -, -, a); // 待回填链 } W 	o T\{ID\} { p = lookup(test); backpatch(p. address, nxq); while (! Que. IsEmpty) { (c,a) = Que. de(); gen(j =, T. place, c, a); } if (D. quad \neq null) gen(j, -, -, D. quad); p = lookup(next); backpatch(p. address, nxq)}
```

【例7.18】 switch $x \{ case \ 0 : x = x + 1 ; case \ 1 : x = y ; default : x = 0 ; \}$,假设

```
I \rightarrow AS; { p = lookup(next); a = p. address; = t; modifylabel(p, address = nxq); -); gen(j, -, -, a); }
```

步骤	文法符号栈		输入串
1	#	$sx\{c0: x = x +$	1; $c1: x = y; d: x = 0; $ }#
2	#sx	$\{c0: x = x +$	1; $c1: x = y; d: x = 0; $ }#
3	#sE	$\{c0: x = x +$	1; $c1: x = y; d: x = 0; $ }#
4	#T	$\{c0: x = x +$	1; $c1: x = y; d: x = 0; $ }#
5	$#T{c0:$	x = x +	1; $c1: x = y; d: x = 0; $ }#
6	$\#T\{A$	x = x +	1; $c1: x = y; d: x = 0; $ }#
7	$\#T\{Ax=x$	+	1; $c1: x = y; d: x = 0; $ }#
8	$\#T\{Ax=E$	+	1; $c1: x = y; d: x = 0; $ }#
9	$\#T\{Ax = E + 1$; c1: x = y; d: x = 0;
10	$\#T\{Ax = E + E$		$; c1: x = y; d: x = 0; $ }#
11	$\#T\{Ax=E$; c1: x = y; d: x = 0;
12	$\#T\{AS$		$; c1: x = y; d: x = 0; $ }#
13	$\#T\{AS;$		$c1: x = y; d: x = 0; $ }#
14	$\#T\{I$		$c1: x = y; d: x = 0; $ }#
15	# <i>T</i> { <i>Ic</i> 1:		$x = y; d: x = 0; $ }#

三地址码

100: $(=, x, -, T1)$
101: (<i>j</i> , –, –, –)
102: (+, <i>x</i> , 1, <i>T</i> 2)
103: $(=, T2, -, x)$
104: (<i>j</i> , –, –, –)

名字	类型	定义	地址	
test	case	F	101	
next	case	F	104	

0 102

E.place = 1
E.place = T2
T.place = T1

【例7.18】 $switch\ x\ \{case\ 0: x = x + 1; case\ 1: x = y; default: x = 0; \}$,假设

				1				
$W \to T\{$	$\{p\}$	= lookup	(test);					
backpatch(p.address,nxq);				三地址码				
while (! Que. IsEmpty)			100:	$\overline{(=,x,-,1)}$	<i>T</i> 1)	109: $(j = T1,0,102)$		
			101: (<i>j</i> , –, –, 109)			110: $(j = T1, 1, 105)$		
$\{(c,a) = Que.de(); gen(j = T.place, c, a); \}$			102: $(+, x, 1, T2)$			111: (<i>j</i> , –, –, 107)		
$if (D.quad \neq null) gen(j, -, -, D.quad);$ $p = lookup(next);$			103: $(=, T2, -, x)$			<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	
-	$backpatch(p.address, nxq)\}$			104: $(j, -, -, 112)$				
рискри	cn(p. uuur ess	$\frac{11XY}{1}$						
19 $\#T\{A\}$	S ; a	$l: x = 0; \}\#$			(=, y, -, z)			
20 #T{A				106: (<i>j</i> , –, –, 112)				
21 # <i>T</i> { <i>I</i>		$l: x = 0; \}\#$			(=,0,-,:			
22 # <i>T</i> {.	d:	$x = 0; $ }#		108:	(j, −, −, 1	12)		
23 # <i>T</i> {.	d: M	$x = 0; $ }#						
24 # <i>T</i> {.	$4 \mid \#T\{Id: Mx = 0$					T		г
25 # <i>T</i> {.	d: Mx = E	;}#			名字	类型	定义	地址
26 # <i>T</i> {.	26 # <i>T</i> { <i>Id</i> : <i>MS</i>				test	case	F	101
27 # <i>T</i> {.	d: MS;	; }# }#	E.place = 0		next	case	F	108
28 # <i>T</i> {.	D	}#	D.quad = 1	07		Case	<u> </u>	100
29 # <i>T</i> {.	D }	#	T_{\cdot} $nlace = T_{\cdot}$	'1	0 1			

30

#W

104

第七章 语义分析和中间代码生成

- □ 7.1 中间语言
 - ▶ 7.1.1 后缀式
 - ▶ 7.1.2 图表示法
 - ▶ 7.1.3 三地址代码
- □ 7.2 说明语句
 - ▶ 7.2.1 过程中的说明语句
 - ▶ 7.2.2 保留作用域的信息
- □ 7.3 赋值语句的翻译
 - ▶ 7.3.1 简单算术表达式及赋值语句
 - ▶ 7.3.2 数组元素的引用
 - ▶ 7.3.3 类型转换

- □ 7.4 布尔表达式的翻译
 - ▶ 7.4.1 数值表示法
 - ▶ 7.4.2 作为条件控制的布尔式翻译
- □ 7.5 控制语句的翻译
 - ▶ 7.5.1 控制流语句
 - ▶ 7.5.2 标号与goto语句
 - ➤ 7.5.3 Case语句的翻译
- □ 7.6 过程调用的处理
- □ 7.7 类型检查
 - ▶ 7.7.1 类型系统
 - > 7.7.2 类型检查器的规格说明
 - ▶ 7.7.3 函数和运算符的重载
 - > 7.7.4 多态函数

7.6 过程调用的处理

\square Call S(A+B, Z):

```
[+, A, B, Z]
[param, -, -, T1]
[param, -, -, Z]
[call, -, -, S]
```

```
S \rightarrow call \ id \ (Elist)
 \{ for each \ p \ in \ Que \ gen(param, -, -, p); 
 gen(call, -, -, id. place); \}
 Elist \rightarrow Elist, E
 \{ Que. add(E. place); \}
 Elist \rightarrow E
 \{ Que. add(E. place); \}
```

第七章作业

【作业7-1】7.4.2节中,关系式 $i^{(1)} < i^{(2)}$ 被翻译成相继的两个四元式:

$$(j <, i^{(1)}, i^{(2)}, -)$$
 // 真出口

这种翻译常常浪费一个四元式。如果我们翻译成如下四元式:

$$(j \ge, i^{(1)}, i^{(2)}, -)$$
 // 假出口跳转,真出口自动滑到下一个四元式

那么,在 $i^{(1)} < i^{(2)}$ 的情况下就不发生跳转(自动滑下来)。但若这个关系后有一个或运算,则另一个无条件转移指令是不可省的,例如 $if\ A < B \lor C < D\ then\ x = y$

100:
$$(j \ge A, B, 102)$$

102:
$$(j \ge, C, D, 104)$$

103:
$$(=, y, -, x)$$

请按上述要求改写翻译布尔表达式的语义动作。