Drone
Electronic Speed Controller(ESC)
with XMC™, Gate Driver, OptiMOS™
October 2016

Learning objectives

- To demonstrate the implementation of sensorless FOC as Electronic Speed Controller (ESC) in quadcopter application
- Yey software functions, a step-by-step implementation, and linking up with µC/Probe™ XMC™
- To use of µC/Probe™ to visualise data and fine-tune ESC
- After the learning of this PPT, users will be able to fine-tune FOC example software which is easy scalability for quadcopter ESC applications

Agenda (1/2)

- 1 Overview
- 2 Key features
- 3 Specification
- 4 System block diagram
- 5 Hardware overview
- 6 Software overview
- 7 Highlight MCU features
- 8 Get started

Agenda (2/2)

Resource listing

Electronic Speed Controller Reference Design-Overview

- The purpose of the training slides is to elaborate a low-cost and high-performance quadcopter ESC solution, using
 - XMC™ PINUS Inverter
 - 12V 2300KV 3 phase brushless motor
 - DAVE[™] 4 ESC example project PMSM_FOC_SL_XMC13
- The HOT examples cover the key features and controls of the 3 phase brushless drone motor

Quadcopter System Block

Consists of a flight controller and four ESCs, one for each motor.

Each ESC contains a three phase inverter driven by MCU with a specialized FOC motor control software

Infineon can provide all the critical components for quadcopter ESC Reference Design

Motor control

Functionality

FOC controller (3-phase PWM generation, motor phase current sensing, bus voltage sensing, over-current & over-voltage protection)

IFX components

XMC1302: ARM® Cortex®-M0 32-bit processor @ 32 MHz, up to 200 kB flash,16 kB SRAM,MATH coprocessor, 12-bit ADC with 2 sample & hold stages, motor control PWM timer (CCU8), general purpose timer (CCU4), serial communication (USIC)

DC-DC

Power stage

Functionality

Power inverter

- IFX components
- > BSC0925ND: OptiMos Power-MOSFET Dual Nchannel
- > **IR2301S:** High and Low Side gate driver
- Auxiliary power supply
- > IFX91041V50: 5 V LDO (Coming from Flight Controller)

ESC Reference Design 3D PCB view

Value arguments of ESC Reference Design

	Benefits	Addressed customer needs
Strong arguments	Small code size and fast execution time	Allows ample CPU time for more tasks Small code size < 16 kB, and super-fast code execution < 20 μ s (for optimized code)
	Robust start-up	Direct-sensorless-FOC startup is robust, smooth and energy efficient at various load conditions of ESC
	Less dependencies more robust	Only need one motor parameter to estimate rotor angle and speed for sensorless FOC
	Ultra-low speed sensorless control	Robust / quieter operation with sensorless FOC drive even at ultra- low speed (e.g.: 0.8% of max speed)
	BOM savings	€ 0.49-0.9 reduction of system BOM using XMC [™] on-chip ADC gain. Complete sensorless motor control eliminating Hall sensors / tachometer
Medium arguments	ARM® Cortex®-M0 with MATH coprocessor	Replace costly MCUs (e.g. ARM® Cortex®-M3) from competitors
	Embedded security solutions	Protect customer solution from being copied by competitors
Soft arguments	Product portfolio	Infineon a "one-stop-shop" for motor control applications with complete power semiconductor portfolio
	Knowledge of vendor	Dedicate motor control expert team support with multiple connection of expertise for local support

ESC Reference Design -Key features

Target application

Quadcopter application

Key features

- Sensorless FOC control even at ultra-low speed
- Robust direct-sensorless-FOC startup
- Fast execution FOC with XMC[™] Cortex M0
- XMC[™] on-chip ADC gain to reduce system BOM cost

ESC Reference Design - Specification

Specifications

- DC input voltage: 12Vdc and 5Vdc (Coming from Flight Controller)
- Motor mechanical speed
 - Maximum speed 15,000 rpm
 - Motor Pole Pair: 6
 - KV = 2300
 - Max Continuous current (A) = 5.7A
 - Max Continuous Power (W) = 63.3W
- Speed adjustable via Potentiometer / uC Probe GUI / UART Communication

ESC Reference Design - block diagram

ESC motor control - Hardware overview

Key Infineon components utilized on PINUS Inverter:

No.	Infineon components	Order number
1	XMC [™] microcontroller	XMC1302-Q040X0128
2	Gate Driver IC	IR2301S
3	OptiMOS™ Power MOSFET, 30V, Dual N Channel	BSC0925ND

ESC motor control - 3-phase PINUS inverter schematics

Schematic: ESC motor control - 3-phase inverter

ESC motor control -Software overview (Torque Control Mode)

ESC motor control - Highlight MCU features

MATH coprocessor

- 38x faster sine, cosine and arctangent calculations
- High-resolution Park/Inverse Park Transforms at 24-bit in less than 1 μ s
- 7x faster division compared to other ARM® Cortex®-M0 devices

CCU8 PWM

- Generate PWM patterns for all kind of motors
- Interact with ADC for ADC triggering at sensorless control of motors
- Operate always in a safe state even in an error condition
- Dead time control to minimum hardware effort
- 16-bit resolution for high precision space vector PWM generation

ADC

- On-chip ADC gain (x1, x3, x6, or x12) to eliminate external Op-Amp
- Simultaneously sample of multiple analog channels
- Fast ADC reduces torque ripple due to minimized blind angle in sensorless FOC
- Used to sense motor three phase current as feedback to the system

ESC motor control -Get started - HW connections

Connect BLDC motor U, V and W phases to PINUS Inverter

ESC motor control -Get started – Real HW connections

UART RX P1.4

Connect BLDC motor U, V and W phases to PINUS Inverter

ESC motor control – Test Setup

3S LiPo Battery pack

PINUS ESC

Potentiometer

BLDC 3 Phase Motors

ESC motor control -Get started - DAVE™ 4

- Download the latest DAVE™ 4 installer package from
 - DAVE™ (Version 4) Development Platform for XMC™ Microcontrollers
- Installation requirements
 - PC with Windows 7, Windows 8.1, Windows 10, Windows Vista -32bit & 64bit
 - 2. RAM 4 GB or more
 - Remember to install SEGGER J-Link when installing DAVE™ 4 (if not done so) Dave™ - professional development platform

DAVE™ Free Eclipse based integrated development environment (IDE) including GNU C-compiler, debugger, comprehensive code repository, hardware resource management, and code generation plug-in. Download A complete download package is provided, including IDE, XMC[™] Lib, DAVE[™] APPs, EXAMPLES, and DAVE[™] SDK. DAVE™ Release Note

for XMC™ microcontrollers

ESC motor control -Get started - µC/Probe™ XMC™

- Download the latest μC/Probe™ XMC™ installer package from https://infineoncommunity.com/uC-Probe-XMC-software-download ID712
- Installation requirements
 - 1. PC with Windows Vista, Windows 7, Windows 8, Windows 10 32bit & 64bit
 - 2. RAM 3 GB or more

ESC motor control -Get started - import SW to DAVE™ 4 (1/2)

- Open DAVE™ 4
- Click on File > Import to import sample code
- Select Infineon > DAVE project and click "Next"

ESC motor control -Get started - import SW to DAVE™ 4 (2/2)

- Next click on Select Archive File > Browse
- Select the folder containing the sample code and click "OK"
- Click on "Finish" to import the code into DAVE™ 4

ESC motor control -Get started - build SW in DAVE™ 4

Click "Rebuild Active Project"

"text" in red box indicates the code size, e.g.: about 15.7 kB

```
⊕ ⊕ 團 圖 등
Console 🛭 🔲 Properties 🧗 Problems 🧳 Search
CDT Build Console [PMSM_FOC_SL_XMC13]
'Finished building target: PMSM_FOC_SL_XMC13.elf'
'Invoking: ARM-GCC Create Flash Image'
"C:\DAVEv4\DAVE-4.2.6\eclipse\ARM-GCC-49/bin/arm-none-eabi-objcopy" -O ihex "PMSM FOC SL XMC13.elf" "PMSM FOC SL XMC13.hex"
'Finished building: PMSM_FOC_SL_XMC13.hex'
'Invoking: ARM-GCC Print Size'
"C:\DAVEv4\DAVE-4.2.6\eclipse\ARM-GCC-49/bin/arm-none-eabi-size" --format=berkeley "PMSM FOC SL XMC13.elf"
  text
                                   hex filename
                            dec
                   1752 17780
                                4574 PMSM FOC SL XMC13.elf
'Finished building: PMSM FOC SL XMC13.siz'
'Invoking: ARM-GCC Create Listing'
"C:\DAVEv4\DAVE-4.2.6\eclipse\ARM-GCC-49/bin/arm-none-eabi-objdump" -h -S "PMSM FOC SL XMC13.elf" > "PMSM FOC SL XMC13.lst"
'Finished building: PMSM FOC SL XMC13.1st'
```

ESC motor control -Get started - download SW in DAVE™ 4

Click "Debug Configuration" to download the code

Click "Resume" to start the motor control application SW

ESC motor control - Get started - SW configuration (1/3)

- The FOC example SW enables the user to change certain parameters in order to fine tune motors
- To access the code within DAVE™ 4:
 - Under "C/C++ Projects" section, you will find your project (with Active - Debug on it)
 - Select "Project Title" > PMSM_FOC >
 Configuration >
 pmsm_foc_user_parameter.h
 - Double click to open the file
- Note: Files with "user" in it indicates that there are parameters that can be changed as per hardware and user requirements

ESC motor control - Get started - SW configuration (2/3)

- #1: The motor type can be changed according to the motor being used
- #2: The control scheme can also be modified according to user requirements
- #3: The speed of the motor and its ramping can be modified as per the user's requirements

ESC motor control - Get started - SW configuration (3/3)


```
------ Hardware Inverter Parameters
                                                                                             2. DISABLED (Please configure OP-Garanually) */
#define INTERNAL OP GAIN
                                                    ENABLED
#define USER DEAD TIME US
#define USER CCU8 PWM FREQ HZ
                                                    (30000U)
                                                                          /* CCU8 PWM Switching Frequency in Hz*/
#define USER_BOOTSTRAP_PRECHARGE TIME MS
                                                    (20U)
                                                                          /* Initial Bootstrap precharging time in ms */
                                                                                                                                     #5
  <u>efine USER DE LINK DIVIDER RAT</u>
#define USER VBEMF RATIO
                                                    (float)(0.33f/(0.33f+2.32f))
                                                                                          /* R1/(R2+R1) ratio for BEMF Voltage sensing circuit ratio */
#define USER CURRENT TRIP THRESHOLD A
                                                    (1.2f)
                                                                         /* threshold current for trip detection in Ampere*/
#define USER TRIP THRESHOLD TIME MS
                                                    (100U)
                                                                         /* threshold time for trip detection in ms. */
#define USER MAX RETRY MOTORSTARTUP TRIP
                                                                        /* Max retry of motor startup if trip */
#define USER R SHUNT OHM
                                                    (0.05f)
                                                                          /* Phase shunt resistor in ohm */
#define USER DC SHUNT OHM
                                                    (0.030f)
                                                                           /* DC link shunt current resistor in ohm */
                                                                                                                               #6
#define USER RIN PHASECURRENT KOHM
                                                    (5.1f)
                                                                          /* R IN (of equivalent amplifier) kohm */
#define USER R PHASECURRENT FEEDBACK KOHM
                                                                            /* R FEEDBACK (of equivalent amplifier) kohm */
                                                    (39.0f)
#define USER RIN DCCURRENT KOHM
                                                    (10.0f)
                                                                            /* Rf for dc current sensing */
#define USER_R_DCCURRENT_FEEDBACK_KOHM
                                                                              /* Rin for dc current sensing */
                                                    (75.0f)
#define G OPAMP PER PHASECURRENT
                                                    (USER R PHASECURRENT FEEDBACK KOHM / USER RIN PHASECURRENT KOHM)
#define I MAX A
                                                    ((VAREF V/(USER R SHUNT OHM * OP GAIN FACTOR)) / 2U)
                                                                                                                       /* For IFX XMC LVPB R3, I MAX A = 13.16A */
#if(INTERNAL OP GAIN == ENABLED)
#define OP GAIN FACTOR
                                                                              /* Different HW Board has different OP Gain factor, XMC13 built-in Gain Factor available 1, 3, 6 and 12 only*/
                                                   (6U)
#elif(INTERNAL OP GAIN == DISABLED)
#define OP GAIN FACTOR
                                                    G OPAMP PER PHASECURRENT
#endif
```

- #4: PINUS inverter is designed to make use of XMC1302 internal OP-Amp Gain for phase current ADC sensing
- #6: CCU8 PWM Peripherals configuration
- #5: Macros to configure based on Inverter HW specs

ESC motor control - Get started - pmsm_foc_user_parameters.h

- XMC[™] can use fixed points numbers / integers to represent floating-point quantities of the physical value (e.g.: in SI unit)
- User can defined different level of configurations based on Inverter hardware specs

ESC motor control - Get started - pmsm_foc_user_mcuhwconfig.h

- MCU hardware resource management (VADC, CCU8)
- NVIC interrupts service routine resource management
- Debugging IO (DAC functionality)

ESC motor control -Get started - starting µC/Probe™ XMC™

- PMSM_FOC_SL_XMC13 [Active Debug] Archives ▶ 🔊 Includes Debug Libraries PMSM FOC D Configuration ▶ ControlModules D > FOCLib ▶ Interrupts MCUInit MIDSys Startup c main.c linker_script.ld a output.htm " uCProbe Drone.wspx .wspx file
- Double-click "*.wspx" file in the DAVE™ 4 IDE to start μC/Probe™
- Click "Run" to control the speed of the motor using µC/Probe™

ESC motor control -Get started - start motor using µC/Probe™

The motor can be started by adjusting the slider in the "Set Speed" box

ESC motor control -Get started - fine-tune Kp/Ki using µC/Probe™

- If the motor does not spin in FOC close loop, ↑ the SCALEKPKI of PLL Control and check the motor behavior. If motor start to move slowly, ↑ the SCALEKPKI further, else, ↓ the SCALEKPKI
- Apply similar tactic for the tuning of Speed Control

PI gains:
$$K_p = \frac{P \ setting}{2^{SCALEKPKI}}$$
, $K_i = \frac{I \ setting}{2^{SCALEKPKI}}$

P setting I setting SCALEKPKI ↑ this value by 1 will ↓ 65535 256 Speed Control gain of Speed controller by half 22934 256 **Torque Control** 22934 256 Flux Control ↑ this value by 1 will 6962 PLL Control gain of PLL estimator controller by half

ESC motor control - Get started - pmsm_foc_pi.h

In DAVE™ 4, user needs to input /save the final optimal PI parameters to pmsm_foc_pi.h

ESC motor control - Key features

- 1. Sensorless FOC control even at ultra-low speed
- 2. Robust direct-sensorless-FOC startup
- 3. Fast execution FOC with XMC™ Cortex M0
- 4. XMC[™] on-chip ADC gain to reduce system BOM cost

1. Key feature - sensorless FOC control even at ultra-low speed

ESC - sensorless FOC - Block diagram

Sensorless FOC control at ultra-low speed - Waveforms

Ultra-low speed: 1000 rpm

2000 rpm

CH4 (Pink) - phase current Iu, from current probe - with High Resolution Mode enabled

Motor parameter:

L (per phase): 60 uH R (per phase): 0.1 Ω Pole-pair No.: 6

2. Key feature - robust direct-sensorless-FOC startup

Startup with load Waveforms

From 0 rpm to 10,000 rpm XMC™ sensorless FOC Direct Startup

CH4 (Pink) - phase current Iu, from current probe - with High Resolution Mode enabled

Motor parameter:

L (per phase): 60 uH R (per phase): 0.1 Ω Pole-pair No.: 6

XMC[™] sensorless FOC with load Waveform @ 15000 rpm VDC = 12V, 5A

Channel 4 (pink): Current of fan motor Phase U (measured by current probe, 0.1V/A)

Waveforms: Drone

3. Key feature – Fast Execution FOC with XMC™ Cortex M0

ESC FOC Execution with XMC™ 1302

Sensorless FOC Execution Time and CPU Load (CCU8 PWM 25kHz / 40µs)

	FOC SW Description	Code Executed from RAM		
S/N		Execution Time	Free Time per PWM	CPU Load
1	Latest PMSM_FOC Base Code	29.25 μs	10.75 <i>μ</i> s	75%

The execution time is measured by toggling P1.2 at while loop in main.c

5. Key feature - XMC™ on-chip ADC gain

ESC motor control -Current sensing schematics

Schematic: ESC motor control - current sensing

ESC motor control -XMC[™] on-chip ADC gain for current sensing

- R₁ limits current flow in / out of XMC1302 ADC pin. R₂ offset ADC input
- e.g.: for an application G=6, R_{dc} =0.05 Ω , R_1 =1 $k\Omega$, R_2 =11 $k\Omega$, C_1 =47 pF

$$V_{ADC} \approx \frac{GR_1}{R_1 + R_2} V_{dd} + \frac{R_2}{R_1 + R_2} G \cdot R_{dc} \cdot I_{dc}$$

Resource listing

- ESC motor control
 - Documentation
 - Infineon multicopter solution landing page
 - DAVE[™] project

Support material:

Collaterals and Brochures

- Product Briefs
- Selection Guides
- Application Brochures
- Presentations
- Press Releases, Ads

- www.infineon.com/XMC

Technical Material

- Application Notes
- Technical Articles
- Simulation Models
- Datasheets, MCDS Files
- PCB Design Data

- www.infineon.com/XMC
- Kits and Boards
- DAVE™
- Software and Tool Ecosystem

Videos

- Technical Videos
- Product InformationVideos
- Infineon Media Center
- XMC Mediathek

Contact

- Forums
- Product Support

- Infineon Forums
- <u>Technical Assistance Center (TAC)</u>

Glossary abbreviations (1/2)

AC Alternating Current

ADC Analog-to-Digital Converter

BEMF Back ElectroMotive Force

BOM Bill Of Material

CPU Central Processing Unit

DAC Digital-to-Analog Converter

DAVE™ Digital Application Virtual Engineer

DC Direct Current

FOC Field-Oriented Control

GUI Graphical User Interface

HMI Human-Machine Interface

> HW Hardware

Glossary abbreviations (2/2)

IDE Integrated Development Environment

IGBT Insulated-Gate Bipolar Transistor

MCU MicroController Unit

PLL Phase-Locked Loop

PMSM Permanent Magnet Synchronous Motor

PWM Pulse Width Modulation

RAM Random-Access Memory

SW Software

SWD Serial Wire Debug

UART Universal Asynchronous Receiver / Transmitter

USIC Universal Serial Interface Channel

→ XMC[™] Cross-Market Microcontrollers

Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this training material.

Part of your life. Part of tomorrow.

