http://www.elecfans.com 电子发烧友 http://bbs.elecfans.com 电子技术论坛

nRF24.L01 是一款新型单片射频收发器件,工作于 2.4 GHz~2.5 GHz ISM 频段。内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,并融合了增强型 ShockBurst 技术,其中输出功率和通信频道可通过程序进行配置。nRF24L01 功耗低,在以-6 dBm 的功率发射时,工作电流也只有 9 mA;接收时,工作电流只有 12.3 mA, 多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便。

过程序进行配置。nRF24L01 功耗低,在以-6 dBm 的功率发射时,工作电流也只有 9 mA;接收时,工作电
流只有 12.3 mA, 多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便。
nRF24L01 主要特性如下:
GFSK 调制:
硬件集成 OSI 链路层;
具有自动应答和自动再发射功能;
片内自动生成报头和 CRC 校验码;
数据传输率为 I Mb/s 或 2Mb/s;
SPI 速率为 0 Mb/s~10 Mb/s;
125 个频道:
上世仇,DEOA 无利此居职体打在党
与其他 nRF24 系列射频器件相兼容;
QFN20 引脚 4 mm×4 mm 封装;
QFN2U 7] / # IIIII / 4 IIIII
供电电压为 1.9 V~3.6 V。

2 引脚功能及描述

nRF24L01 的封装及引脚排列如图 1 所示。各引脚功能如下:

图 1 nRF24L01 引脚排列

CE: 使能发射或接收;

CSN, SCK, MOSI, MISO: SPI 引脚端, 微处理器可通过此引脚配置 nRF24L01:

IRQ: 中断标志位;

VDD: 电源输入端;

VSS: 电源地:

XC2, XC1: 晶体振荡器引脚;

VDD_PA: 为功率放大器供电,输出为 1.8 V;

ANT1,ANT2: 天线接口;

IREF:参考电流输入。

3 工作模式

通过配置寄存器可将 nRF241L01 配置为发射、接收、空闲及掉电四种工作模式,如表 1 所示。

PWR_UP | PRIM_RX FIFO 状态 模式 CE 接收 1 1 1 发射 0 8 数据已在发射堆栈里 1 1由日 1 WWW 当 CE 有下降沿跳变 发射 0 1 - 0时,数据已经发射 空闲2 发射堆栈空 1 0 1 空闲1 1 0 此时没有数据发射 掉电 0

表 1 nRF24L01 工作模式

空闲模式 1 主要用于降低电流损耗,在该模式下晶体振荡器仍然是工作的;空闲模式 2 则是在当发射堆栈为空且 CE=1 时发生(用在 PTX 设备);在空闲模式下,配置字仍然保留。

在掉电模式下电流损耗最小,同时 nRF24L01 也不工作,但其所有配置寄存器的值仍然保留。

4 工作原理

发射数据时,首先将 nRF24L01 配置为发射模式:接着把地址 TX_ADDR 和数据 TX_PLD 按照时序由 SPI 口写入 nRF24L01 缓存区,TX_PLD 必须在 CSN 为低时连续写入,而 TX_ADDR 在发射时写入一次即可,然后 CE 置为高电平并保持至少 10 μ s,延迟 130 μ s 后发射数据;若自动应答开启,那么 nRF24L01 在发射数据后立即进入接收模式,接收应答信号。如果收到应答,则认为此次通信成功,TX_DS 置高,同时 TX_PLD 从发送堆栈中清除;若未收到应答,则自动重新发射该数据(自动重发已开启),若重发次数 (ARC_CNT)达到上限,MAX_RT 置高,TX_PLD 不会被清除; MAX_RT 或 TX_DS 置高时,使 IRQ 变低,以便通知 MCU。最后发射成功时,若 CE 为低则 nRF24L01 进入空闲模式 1;若发送堆栈中有数据且 CE 为高,则进入下一次发射;若发送堆栈中无数据且 CE 为高,则进入空闲模式 2。

接收数据时,首先将 nRF24L01 配置为接收模式,接着延迟 130 µ s 进入接收状态等待数据的到来。当接收方检测到有效的地址和 CRC 时,就将数据包存储在接收堆栈中,同时中断标志位 RX_DR 置高,IRQ 变低,以便通知 MCU 去取数据。若此时自动应答开启,接收方则同时进入发射状态回传应答信号。最后接收成功时,若 CE 变低,则 nRF24L01 进入空闲模式 1。

5 配置字

SPI 口为同步串行通信接口,最大传输速率为 10 Mb/s,传输时先传送低位字节,再传送高位字节。但针对单个字节而言,要先送高位再送低位。与 SPI 相关的指令共有 8 个,使用时这些控制指令由 nRF24L01的 MOSI 输入。相应的状态和数据信息是从 MISO 输出给 MCU。

nRF24L0I 所有的配置字都由配置寄存器定义,这些配置寄存器可通过 SPI 口访问。nRF24L01 的配置寄存器共有 25 个,常用的配置寄存器如表 2 所示。

次~ 市//月已且 时 17 照				
地址(H)	寄存器名称	描	述	
00	CONFIG	可用来设置 nRF24L01 的工 作模式		
01	EN_AA Enhanced	用于接收通道的设置,使能 接收通道的自动应答功能		
02	EN_RXADDR	使能接收通道地址		
03	SETUP_AW	设置地址宽度(适合所有通道)		
04	SETUP_RETR	设置自动重发射		
07	STATUS	状态寄存器		
0A ~ 0F	RX_ADDR_P0 ~ P5	设置接收通道的地址		
10	TX_ADDR	设置发射机地址		
11 ~ 16	RX_PW_P0 ~ P5	设置接收通道的数据长度		

表 2 常用配置寄存器

6 应用电路设计

笔者用单片机和 nRF24L01 设计了一个无线数据传输电路,并通过串口将数据传输至计算机。硬件电路设计如图 2 所示。

图 2 中发射和接收电路相同。使用时需在接收端加一个 RS232 接口,使其与计算机串口连接,将接收到的数据传送至计算机。该电路的工作原理: 首先使接收电路上电,接着便处于接收状态等待数据的到来; 然后运行 VB 程序,点击接收按钮;最后发射电路上电,并将单片机 RAM 内预先存放的数据"20H"发射出去,在 1 ms 内接收电路收到数据,同时 VB 界面显示出接收到的数据。该电路实现了 PC 机与单片机系统之间的无线通信。

图 2 无线数据传输电路

系统软件控制流程如图 3 所示。

图 3 软件控制流程

7 结束语

详细介绍了 nRF24L01 的引脚结构、工作模式、收发原理以及配置字,并以 nRF24L01 为核心设计了无线数据传输电路,结合 RS232 接口,实现了计算机与单片机系统之间的无线通信,为以后传输大量数据奠定了基础。另外,还应该考虑到速率和误码等其他因素。