

مبانی رمزنگاری و امنیت شبکه

سيستمهاي رمز قالبي

Block Ciphers

مهتاب ميرمحسني

نیمسال دوم (بهار) ۹۹-۹۹

سیستم رمز متقارن یا تک کلیدی (Symmetric=One Key)

- کلیدهای رمزگذاری و رمزگشایی یکسان یا به راحتی از روی یکدیگر قابل محاسبه
 - سیستمهای رمز قالبی (Block Ciphers)
 - سیستمهای رمز دنبالهای (Stream Ciphers)
 - فرض: دادهها دنباله باینری {0,1}

سیستمهای رمز دنبالهای (Stream Ciphers)

• هر سمبل از دنباله متن اصلی توسط سمبل متناظر دنباله کلید رمز می شود $P = P_1 P_2 P_3 \dots$

$$K = K_1 K_2 K_3 \dots$$

$$C = E(K, P) = E(K_1, P_1)E(K_2, P_2)... = C_1C_2... \Rightarrow C_i = E(K_i, P_i)$$

- ایدهآل: دنباله متن اصلی نامحدود \longrightarrow دنباله کلید نامحدود
 - الگوریتم ساخت دنباله کلید نامتناهی از کلید اصلی

رمز دنبالهاي

- دنباله کلید
- نامتناوب: رمز ورنام ← امن كامل
 - متناوب: مانند رمز Vigenère

- $K = K_1 K_2 \dots K_d K_1 K_2 \dots K_d \dots$
- (طبق معیار شانون) אולפریتم رمزگذاری ($E(K_i,\cdot)$) ساختار ساده XOR است (طبق معیار شانون) •

رمز دنبالهای

11001100 plaintext

① 01101100 key stream

10100000 ciphertext

$$C_i = K_i \oplus P_i$$
 رمز گذاری

10100000 ciphertext

$$P_i = K_i \oplus C_i$$
 رمزگشایی •

$$K_i = ?$$

سیستمهای رمز قالبی (Block Ciphers)

• در هر بار رمزگذاری روی قالبی به طول b توسط کلید رمزگذاری K انجام میشود

$$P = P_1 P_2 P_3 \dots$$

$$C = E(K, P) = E(K, P_1) E(K, P_2) \dots = C_1 C_2 \dots \Rightarrow C_i = E(K, P_i)$$

• طول قالب معمول: ۶۴، ۱۲۸ یا ۲۵۶ بیت

سیستمهای رمز قالبی (Block Ciphers)

$$\underbrace{\cdots\cdots\cdots}_{b}\underbrace{\cdots\cdots\cdots}_{b}\underbrace{\cdots\cdots\cdots}_{b}\underbrace{\cdots\cdots\cdots}_{b}$$

$$C_{i} = E(K, P_{i})$$

- سیستم رمز قالبی معادل یک سیستم رمز جانشینی ساده (تک الفبایی کلی) است
 - هر بار سمبلی به سمبل دیگر تبدیل میشود

$$2^b = 2^{128} \approx 10^{39}$$

- \bigcirc شکسته نمی شود \longrightarrow تعداد سمبلها
 - پرکاربردتر از رمز دنبالهای
- اکثر رمزهای متقارن بکار رفته در شبکهها رمز قالبی هستند
 - امنیت؟
 - با استفاده از مودهای کاری مشابه رمز دنبالهای

رمز دنبالهای و قالبی

- هر سیستم رمز کلاسیک یک سیستم رمز قالبی است
 - است d است ایک رمز قالبی به طول قالب d است O
 - است m است مرمز قالبی به طول قالب m
 - رمز جابجایی یک رمز قالبی به طول قالب d (جایگشت) است \circ
- هر رمز دنبالهای متناوب یک رمز قالبی با طول قالب یک دوره تناوب است $E(K_1,\cdot)E(K_2,\cdot)...E(K_d,\cdot)\triangleq E(K,\cdot)$
 - هر رمز قالبی یک رمز دنبالهای با دوره تناوب یک است
 - كلاسيك: تعداد الفبا = خطى
 - قالبی: تعداد الفبا = نمایی (2^b)، طول قالب = خطی •
 - دنبالهای: دوره تناوب = نمایی (معادل با طول قالب = نمایی)

سیستمهای رمز قالبی (Block Ciphers)

- مدرن
- یکی از پرکاربردترین الگوریتمهای رمزنگاری
 - خدمات امنیت و احراز اصالت

- DES (Data Encryption Standard)
- AES (Advanced Encryption Standard)

سیستمهای رمز قالبی (Block Ciphers)

 \bullet در هر بار رمزگذاری روی قالبی به طول n توسط کلید رمزگذاری K انجام میشود

- اندازه حروف الفبا نسبت به طول متن اصلی نمایی است \leftarrow اندازه حروف الفبا نسبت به طول متن اصلی 10^{39}
 - عدم ابهام در آشکارسازی
- سیستم رمز قالبی یک سیستم رمز جانشینی ساده (تک الفبایی کلی) است
 - 2^n هر بار سمبلی به سمبل دیگر تبدیل میشود \circ
 - 2^n ! (مز تصادفی) کلید \circ

رمز تصادفی (جانشینی کلی)

- رمز قالبی **ایده آل**
 - n=4

رمز تصادفی (جانشینی کلی)

Plaintext	Ciphertext
0000	1110
0000	
0001	0100
0010	1101
0011	0001
0100	0010
0101	1111
0110	1011
0111	1000
1000	0011
1001	1010
1010	0110
1011	1100
1100	0101
1101	1001
1110	0000
1111	0111

Ciphertext	Plaintext
0000	1110
0001	0011
0010	0100
0011	1000
0100	0001
0101	1100
0110	1010
0111	1111
1000	0111
1001	1101
1010	1001
1011	0110
1100	1011
1101	0010
1110	0000
1111	0101

- رمزگذاری و رمزگشایی
 - طول قالب کوچک
- سیستم جانشینی کلاسیک
- آسیبپذیر در برابر حملات آماری
 - طول قالب بزرگ
 - عملی نیست!
 - بیت $n \times 2^n = i$ اشت کلید $n \times 2^n$
 - n=64 •
- ۰ مناسب برای مقابله با حملات آماری
- عول کلید = $64 \times 2^{64} = 2^{70} \approx 10^{21}$ = طول کلید 0
 - حل: زیرمجموعه ای از 2^n ! نگاشت ممکن

رمز قالبي

- $c_i = p_i + k$ (سزار) سیستم انتقال (سزار)
 - از قالبی بودن ساختار استفاده چندانی نشد
- $c_i = A_{n \times n} p_i$ سیستم ضربی
 - عدم ابهام در آشکارسازی: ماتریس ناویژه
- $c_i = A_{n \times n} p_i + t_{n \times 1}$ (affine) سیستم مستوی

$$||k|| = 2^{n} \times (2^{n} - 1) \times (2^{n} - 2) \times (2^{n} - 2^{2}) \times \dots \times (2^{n} - 2^{n-1})$$

$$> 2^{n(n-1)} \approx 2^{n^{2}}$$

- برخلاف سیستمهای کلاسیک میتوانند مفید واقع شوند
- سیستم خطی ← آسیبپذیری در برابر حمله نوع دوم ← استفاده از عوامل غیرخطی

روش پیشنهادی شانون

- اساس طراحی رمزهای قالبی مدرن
 - مقاله ۱۹۴۹ شانون
- پراکنش (Diffusion): پراکنده کردن مشخصه آماری متن اصلی در متن رمز شده
 - آشفتهسازی (Confusion): رابطه پیچیده میان کلید و متن رمز شده
- هدف: مقابله با تحلیل آماری توسط توزیع یکنواخت متن اصلی (فضای کوچک) روی کل فضای متن رمزشده
 - رمز ترکیبی (Product Cipher): استفاده ترکیبی (تکرار) یک در میان از

 - P-box ←(permutation) جایگشت ○
 - ساختار شبکه جانشینی-جایگشت (substitution- permutation network)

تبديلات مستوى

- 1. تکرار تبدیل مستوی، یک تبدیل مستوی است
- 2. تکرار تبدیلهای مستوی همراه با جایگشت، یک تبدیل مستوی است
 - $\forall x, f(f(x)) = x$ Involution استفاده از تبدیلهای $\forall x, f(x) = f^{-1}(x)$ معکوس آنها خودشان است $\forall x, f(x) = f^{-1}(x)$
- است involution است از m! تبدیل جابجایی متفاوت (طول قالبm=)، تقریبا از نوع m!
 - است involution از l! تبديل جانشيني متفاوت (تعداد الفباl=1)، تقريبا از نوع
 - تکرار تبدیلهای involution، یک تبدیل involution است

ملاحظات کلی در طراحی سیستمهای رمز قالبی (SPN) سیستمهای فایستلی

- 1. از تبدیلهای مخلوط (mixed) استفاده شود
 - حابجایی و جانشینی تواماً
- 2. تکرار در بکارگیری زیرتبدیلها می تواند امنیت را افزایش دهد (حداقل دور)
 - نگاشت متن اصلی روی کل فضا
 - 3. تبدیلهای جابجایی و جانشینی یک در میان به کار رود
 - 4. از عوامل غیرخطی در زیرتبدیلها و یا تولید زیرکلیدها استفاده شود

ملاحظات کلی در طراحی سیستمهای رمز قالبی (SPN) سیستمهای فایستلی

- 5. در صورت امکان، از عوامل تصادفی یا شبه تصادفی در ساختار استفاده شود
 - 6. تبدیل نهایی از نوع involution باشد
 - 7. زیرالگوریتمها تا جای ممکن ساده باشند و در خروجی آنها کلید نقش اساسی داشته باشد
 - 8. انعطاف پذیری طراحی الگوریتم
 - ۰ آزادی عمل به مصرف کننده
 - 9. طول قالب از حداقلی بزرگتر باشد
 - معیار (1970) Meyer: حداقل طول قالب= ۴ حرف (۳۲ بیت)
 - است اسلی نمایی است \rightarrow اندازه حروف الفبا نسبت به طول متن اصلی نمایی است \rightarrow

رمز فایستل (Feistel Cipher) سیستم LUCIFER

- توسط Feistel در ۱۹۷۳
- بر اساس پیشنهاد شانون در ۱۹۴۵
- استفاده از ایدههای شانون، ترکیب، مخلوط و تکرار
 - O حالت خاصی از SPN
 - K بیت متن اصلی و کلید ullet
 - (L_0,R_0) طول قالب زوج و به دو قسمت تقسیم \circ
 - پردازش در n دور \bullet
 - (k_1, k_2, \dots, k_n) کلید \circ
 - زيرالگوريتمها (دورها) يكسان
 - جانشینی و جایگشت

رمز فایستل (Feistel Cipher)

- اعمال جانشینی بر نیمه چپ
- O اعمال تابع دور F به نیمه راست و جمع (XOR) حاصل با نیمه چپ
 - اعمال جایگشت
 - جابجایی دو نیمه داده
 - دور *أ*ام

$$\mu_{i-1} = (m_{i-1}, m_i) \rightarrow \mu_i = (m_i, m_{i-1} + F_{k_i}(m_i)) = (m_i, m_{i+1})$$

$$m_{i+1} = m_{i-1} + F_{k_i} \left(m_i \right)$$

$$m_{i-1} = m_{i+1} + F_{k_i}(m_i)$$

طراحي رمز فايستل

- طول قالب: ۶۴ یا ۱۲۸ بیت
- بزرگتر: امنیت بیشتر (diffusion) + سرعت رمزگذاری و رمزگشایی کمتر
 - طول کلید: ۱۲۸ بیت یا بیشتر (۶۴ بیت دیگر کافی نسیت)
- بزرگتر: امنیت بیشتر (confusion و جستجوی فراگیر) + سرعت رمزگذاری و رمزگشایی کمتر
 - تعداد دورها: معمولا ۱۶ دور
 - الگوریتم تولید زیرکلید: هر چه پیچیده تر، مقابله با حملات رمزشکنی
 - تابع دور F: هر چه پیچیده تر، تحلیل رمز سخت تر
 - سرعت رمزگذاری و رمزگشایی
 - سادگی تحلیل: هر چه سادهتر باشد، بررسی آسیبپذیریها سادهتر
 - یکی از مشکلات DES: پیچیدگی تحلیل

Output (plaintext) $RD_{17} = LE_0 \ LD_{17} = RE_0$ $LD_{16} = RE_0 \quad RD_{16} = LE_0$ Round 16 $LD_{15} = RE_1 RD_{15} = LE_1$ Round 15 $LD_{14} = RE_2 RD_{14} = LE_2$ $LD_2 = RE_{14} \mid RD_2 = LE_{14}$ F $LD_1 = RE_{15}$ $RD_1 = LE_{15}$ Round 1 F < $-K_{16}$ $LD_0 = RE_{16} RD_0 = LE_{16}$ Input (ciphertext)

رمزگشایی رمز فایستل

$$\mu_{i-1} = (m_{i-1}, m_i) \to \mu_i = (m_i, m_{i-1} + F_{k_i}(m_i)) = (m_i, m_{i+1})$$

$$m_{i+1} = m_{i-1} + F_{k_i}(m_i) \to m_{i-1} = m_{i+1} + F_{k_i}(m_i)$$

• همان الگوریتم رمزگذاری ولی ترتیب زیرکلیدها عکس

$$\mu_{i} = (m_{i+1}, m_{i}) \rightarrow \mu_{i-1} = (m_{i}, m_{i+1} + F_{k_{i}}(m_{i})) = (m_{i}, m_{i-1})$$

- تبدیل فایستل از نوع involution است
 - o تکرار تبدیل involution
 - لزومی ندارد F یک به یک باشد

رمز فايستل

$$LE_i = RE_{i-1}$$

$$RE_i = LE_{i-1} \oplus F(RE_{i-1}, K_i)$$

$$RE_{i-1} = LE_i$$

$$LE_{i-1} = RE_i \oplus F(RE_{i-1}, K_i)$$

$$= RE_i \oplus F(LE_i, K_i)$$

مثال رمز فايستل

- دور ۱۱۵م رمزگذاری (معادل دور ۲ رمزگشایی)
 - طول قالب = ۳۲ بیت
 - طول کلید = ۲۴ بیت

Data Encryption Standard (DES)

- بر پایه سیستم lucifer
- طول قالب = ۶۴ بیت، طول کلید = ۱۲۸ بیت
 - نمونه تجاری
- (1977) Walter Tuchman and Carl Meyer

 O
 - × استاندارد FIPS PUB 46 توسط NIST) NBS
- طول قالب = ۶۴ بیت، طول کلید = ۵۶ بیت، تعداد دور = ۱۶
 - کاربرد گسترده
- الگوریتمها معلوم هستند ولی اصول طراحی و مبانی نظری آنها فاش نشد!
 - بحث درباره امنیت
 - طول کلید در برابر حمله جستجوی فراگیر کوچک است
 - مخفی بودن اصول طراحی (به ویژه s-box)
 - ◄ بررسیهای آتی نشان داده که طراحی مناسب است

ساختار DES

- ورودی
- 0 متن اصلی (۴۴ بیت)
 - ۰ کلید ۶۴ بیت
 - × ۵۶ بیت کلید
- 🔻 ۸ بیت پریتی (و یا دلخواه)

INPUT INITIAL PERMUTATION PERMUTED RO LO INPUT R1=L0 + f(RO, K1) L1=RO $R_2 = L_1 \oplus f(R_1, K_2)$ L2=R1 R₁₅=L₁₄+f(R₁₄, K₁₅) L15=R14 PREOUTPUT R16=L15 + f(R15, K16) L16=R15 INVERSE INITIAL PERM OUTPUT

ساختار DES

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$$

جایگشت اولیه (initial permutation)

(a) Initial Permutation (IP)

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

(b) Inverse Initial Permutation (IP⁻¹)

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

تابع دور

- s-box تا ۸ •
- ۶ بیت ورودی و ۴ بیت خروجی (معکوس ناپذیر)
- بخش غيرخطي الگوريتم
- دو بیت اول و آخر ورودی
- انتخاب یکی از ۴ سطر (۰-۳) جدول (الفبای جانشینی)
 - ۴ بیت میانی
 - انتخاب یکی از ۱۶ ستوننا ۱۵)

011001

1001

14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7 8 0 13
0	15	7	4	14	2	13	1	10	6	12	11	(9)	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

الگوريتم توليد زيركليد

(a) Input Key

1	2	3	4	5	6	7	8
1 9 17	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24 32 40
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
25 33 41 49 57	58	59	60	61	62	63	64

(b) Permuted Choice One (PC-1)

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

الگوريتم توليد زيركليد

• شیفت چرخشی به چپ (۱ یا ۲ بیت)

(d) Schedule of Left Shifts

Round Number Bits Rotated	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bits Rotated	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

(c) Permuted Choice Two (PC-2)

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	28 4 2 40 56 32
51	45	33	48	44	49	39	56
14 15 26 41 51 34	53	46	42	50	36	29	32

• حذف ۹، ۱۸، ۲۲، ۲۵، ۳۵، ۲۸، ۴۳، ۵۴

رمزگشایی DES

- ساختار فایستلی (Involution)
- همان الگوریتم رمزگذاری ولی ترتیب زیرکلیدها عکس میشود
 - جایگشت اولیه و نهایی نیز جابجا میشوند

تابع دور

• هر سطر s-box یک تبدیل جانشینی کلی معکوسپذیر

	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7 8 0 13
	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
S_1	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

• بررسی جدول expansion: دو بیت کناری در ورودی s-box از ۴ بیتهای کناری انتخاب میشوند

```
\ldots efgh ijkl mnop \ldots \longrightarrow \ldots defghi hijklm lmnopq \ldots
```

• اعمال جایگشت در خروجی: در دور بعدی روی تعداد بیشتری از بیتها تاثیر میگذارد

اصول طراحی s-boxها

- هیچکدام از s-boxها قالبی خطی یا مستوی نیستند (تنها قسمت غیرخطی)
 - تغییر یک بیت ورودی، حداقل ۲ بیت خروجی را تغییر میدهد
 - و (S(x) و S(x+001100) حداقل در ۲ بیت متفاوتند
 - تغییر دو بیت میانی ورودی، حداقل ۲ بیت خروجی را تغییر میدهد
 - $S(x) \neq S(x \oplus 11e_1e_200)$:و e_2 داریم e_2 داریم اختیاری اختیاری e_3 داریم e_4
 - هر سطر تمامی ۱۶ خروجی ممکن را داشته باشد
 - مقابله با حملات تحلیل رمز تفاضلی و افزایش confusion

اصول طراحی جایگشت (P)

- در دور iام s-box بیت خروجی هر *
- $^{\circ}$ ۲ بیت، بیتهای میانی دور $^{\circ}$ ام را تشکیل میدهند ← با $^{\circ}$ های دیگر مشترک نیستند
- ک بیت، بیتهای کناری دور i+1ام را تشکیل میدهند i+1 های کناری مشترک هستند
 - ۴ بیت خروجی هر s-box در دور iام، بر s-box متفاوت در دور s-iام تاثیر می گذارد و هیچ دوتایی بر s-box یکسانی تاثیر ندارند
- اگر یک بیت خروجی S_i بیت میانی S_k را تحت تاثیر قرار دهد، در دور بعد بیت خروجی S_k نباید بیت میانی S_i را تحت تاثیر قرار دهد
 - میانی S_{i} را تحت تاثیر قرار دهد S_{i} نباید بیت میانی S_{i}

(The Avalanche Effect) اثر بهمنی

• تغییر یک بیت ورودی (یا کلید)، تعداد زیادی از بیتهای خروجی را تغییر

Table 3.6 Avalanche Effect in DES: Change in Pla	aintext
--	---------

Round		δ
	02468aceeca86420	1
1	12468aceeca86420	
1	3cf03c0fbad22845 3cf03c0fbad32845	1
2	bad2284599e9b723 bad3284539a9b7a3	5
3	99e9b7230bae3b9e 39a9b7a3171cb8b3	18
4	0bae3b9e42415649 171cb8b3ccaca55e	34
5	4241564918b3fa41 ccaca55ed16c3653	37
6	18b3fa419616fe23 d16c3653cf402c68	33
7	9616fe2367117cf2 cf402c682b2cefbc	32
8	67117cf2c11bfc09 2b2cefbc99f91153	33

Round		δ
9	c11bfc09887fbc6c 99f911532eed7d94	32
10	887fbc6c600f7e8b 2eed7d94d0f23094	34
11	600f7e8bf596506e d0f23094455da9c4	37
12	f596506e738538b8 455da9c47f6e3cf3	31
13	738538b8c6a62c4e 7f6e3cf34bc1a8d9	29
14	c6a62c4e56b0bd75 4bc1a8d91e07d409	33
15	56b0bd7575e8fd8f 1e07d4091ce2e6dc	31
16	75e8fd8f25896490 1ce2e6dc365e5f59	32
IP ⁻¹	da02ce3a89ecac3b 057cde97d7683f2a	32

(The Avalanche Effect) اثر بهمنی

• تغییر یک بیت ورودی (یا کلید)، تعداد زیادی از بیتهای خروجی را تغییر

Table 3.6 Avalanche Effect in DES: Change in Plaintext

\	^	
J	ىعو	<u>ں</u>

Round	i l	δ	
	02468aceeca86420	1	
	12468aceeca86420		
1	3cf03c0fbad22845	1	
	3cf03c0fbad32845		
2	bad2284599e9b723	5	
	bad3284539a9b7a3		
3	99e9b7230bae3b9e	18	
5	0f1571c947d 1f1571c947d		
7	1115/16/4/4		
	9616fe2367117cf2 cf402c682b2cefbc	32	

Round		δ
9	c11bfc09887fbc6c	32

Table 3.7 Avalanche Effect in DES: Change in Key

Round		δ
	02468aceeca86420 02468aceeca86420	0
1	3cf03c0fbad22845 3cf03c0f9ad628c5	3
2	bad2284599e9b723 9ad628c59939136b	11
3	99e9b7230bae3b9e 9939136b768067b7	25
4	0bae3b9e42415649 768067b75a8807c5	29
5	4241564918b3fa41 5a8807c5488dbe94	26
6	18b3fa419616fe23 488dbe94aba7fe53	26
7	9616fe2367117cf2 aba7fe53177d21e4	27
8	67117cf2c11bfc09 177d21e4548f1de4	32

Round		δ
9	c11bfc09887fbc6c 548f1de471f64dfd	34
10	887fbc6c600f7e8b 71f64dfd4279876c	36
11	600f7e8bf596506e 4279876c399fdc0d	32
12	f596506e738538b8 399fdc0d6d208dbb	28
13	738538b8c6a62c4e 6d208dbbb9bdeeaa	33
14	c6a62c4e56b0bd75 b9bdeeaad2c3a56f	30
15	56b0bd7575e8fd8f d2c3a56f2765c1fb	33
16	75e8fd8f25896490 2765c1fb01263dc4	30
IP ⁻¹	da02ce3a89ecac3b ee92b50606b62b0b	30

حملات DES

- حمله جستجوی فراگیر
- $||K|| = 2^{56} \approx 7.2 \times 10^{16}$

- طول کلید = ۵۶ بیت
- ۱ تراشه: هر رمزنگاری DES در ۱ میکروثانیه ← بیش از ۱۰۰۰ سال
 - ۱ میلیون تراشه، ۱ میکروثانیه ← ۱۰ ساعت
 - هزینه (در ۱۹۷۷): ۲۰ میلیون دلار
 - در کمتر از Υ روز شکسته شد EFF مزار دلار \hookrightarrow توسط ۲۵۰ از \hookrightarrow متر از \hookrightarrow در نکسته شد
 - ۱۹۹۹: با همکاری اینترنتی در ۲۳ ساعت (توسط ۱۰۰۰ کامپیوتر) شکسته شد
 - اطلاعات اولیه در مورد متن اصلی (قابل فهم)
 - روش نرمافزاری درک متن اصلی

حمله جستجوي فراگير

Key Size (bits)	Cipher	Number of Alternative Keys	Time Required at 10 ⁹ Decryptions/s	Time Required at 10 ¹³ Decryptions/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	$2^{55} \text{ ns} = 1.125 \text{ years}$	1 hour
128	AES	$2^{128} \approx 3.4 \times 10^{38}$	$2^{127} \text{ns} = 5.3 \times 10^{21} \text{years}$	$5.3 \times 10^{17} \text{years}$
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	$2^{167} \text{ns} = 5.8 \times 10^{33} \text{years}$	$5.8 imes 10^{29} \mathrm{years}$
192	AES	$2^{192} \approx 6.3 \times 10^{57}$	$2^{191} \text{ns} = 9.8 \times 10^{40} \text{years}$	$9.8 \times 10^{36} \mathrm{years}$
256	AES	$2^{256} \approx 1.2 \times 10^{77}$	$2^{255} \text{ns} = 1.8 \times 10^{60} \text{years}$	$1.8 imes 10^{56}$ years
26 characters (permutation)	Monoalphabetic	$2! = 4 \times 10^{26}$	$2 \times 10^{26} \text{ns} = 6.3 \times 10^9 \text{years}$	$6.3 \times 10^6 \mathrm{years}$

حملات DES

- نگرانی از حملات تحلیل رمز به s-boxها
 - اصول (تئوری) طراحی نامشخص است
 - تا کنون مورد مهمی گزارش نشده!
 - حملات زمانی (Timing Attacks)
 - بیشتر در مورد رمزهای کلید همگانی
 - پیادهسازی را مورد هدف قرار میدهد
- با مشاهده زمان رمز گشایی یک متن رمز شده، اطلاعاتی در مورد کلید و متن اصلی بدست می آید
 - به نظر میرسد، DES در برابر حمله زمانی نسبتا مقاوم است (ولی نیاز به بررسی بیشتر دارد)

حملات تحلیلی DES

- حمله تحلیلی به ساختار داخلی DES
- با توجه به افزایش طول کلید در استانداردهای بعدی (AES و AES) از محبوبیت بیشتری برخوردار شدهاند
 - با یافتن اطلاعاتی در مورد رمزنگاری، برخی از بیتهای زیرکلیدها را مییابند
 - در ادامه با حمله جستجوی فراگیر سایر بیتها مشخص میشوند
 - تحلیل رمز تفاضلی (differential cryptanalysis)
 - تحلیل رمز خطی (linear cryptanalysis)
 - ترکیب حمله تفاضلی و خطی

تحلیل رمز تفاضلی (Differential Cryptanalysis)

- یکی از قوی ترین حملات به سیستمهای قالبی در حال حاضر
 - ۰ حمله آماری به ساختار فایستلی
 - Biham & Shamir 1990-93 Murphy 1990 O
- حمله نوع سوم: حمله متن اصلی منتخب (Chosen Plaintext Attack)
 - نیاز به 2^{47} متن اصلی منتخب دارد \circ
 - طراحان DES از این حمله مطلع بودهاند (از ۱۹۷۴)
 - طراحی s-box و جایگشت
 - حمله تفاضلی به سیستم LUCIFER با ۸ دور نیاز به ۲۵۶ متن اصلی منتخب دارد
 - حمله تفاضلی به سیستم DES با ۸ دور نیاز به 2^{14} متن اصلی منتخب دارد \circ
- تفاضل ورودی با چه احتمالی تبدیل به تفاضل مشخصی در خروجی میشود

$$\Delta m = m \oplus m'$$
 Prob p $E(K, m) \oplus E(K, m')$

تحلیل رمز خطی (Linear Cryptanalysis)

- Matsui 1993 •
- يافتن تقريب خطى براى الگوريتم DES
- نیاز به 2^{43} متن اصلی معلوم (حمله نوع دوم) دارد
 - باز هم عملی نیست!
- جستجو برای معادلات خطی میان متن اصلی، متن رمزشده و کلید
 - احتمال ○

$$A[i, j, ..., k] = A[i] \oplus A[j] \oplus ... \oplus A[k]$$

$$P[\alpha_1, \alpha_2, \dots, \alpha_a] \oplus C[\beta_1, \beta_2, \dots, \beta_b] = K[\gamma_1, \gamma_2, \dots, \gamma_c]$$

اصول طراحي رمزهاي قالبي (فايستلي)

• تعداد دور

- هرچه بیشتر، تحلیل رمز مشکل تر (حتی برای تابع دور ضعیف)
- معیار: حملات تحلیل رمز شناخته شده پیچیدهتر از حمله جستجوی فراگیر باشند
- ملیات و حمله جستجوی فراگیر $2^{55.1}$ عملیات و حمله جستجوی فراگیر DES \circ

• تابع دور (F)

- هسته رمز فایستلی
- هرچه غیرخطی تر، تحلیل رمز مشکل تر (تقریب آن با معادلات خطی مشکل باشد)
 - o اثر بهمنی ((strict avalanche criterion (SAC)) اثر بهمنی
 - (bit independence criterion (BIC)) استقلال بیتهای خروجی (

• الگوريتم توليد زيركليد

○ کمتر بررسی شده

امن کردن DES

- طول کلید \rightarrow آسیبپذیر در مقابل حمله جستجوی فراگیر
 - O طراحي الگوريتم جديد (AES)
 - تكرار الگوريتم (triple DES)

Double DES

$$||K|| = 56 \times 2 = 112 \text{ bits}$$

$$C = E(K_2, E(K_1, P))$$

$$P = D(K_1, D(K_2, C))$$

Double DES (2-DES)

$$E(K_2, E(K_1, P)) = E(K_3, P)$$

- اگر:
- تكرار DES منجر به يك الگوريتم با ۵۶ بيت كليد ميشد و در نتيجه بيفايده بود
 - قالب: ۶۴ بیتی
 - - $2^{56} < 10^{17}$ DES \circ
- دو بار اعمال DES منجر به یکی از نگاشتها (به غیر از DES) میشود
 - 0 در سال ۱۹۹۲ اثبات شد
 - حمله ملاقات در میانه (Meet-in-the-middle)
- ربطی به ساختار DES ندارد و قابل اعمال به تمام رمزهای قالبی تکراری است
 - ۰ دیفی و هلمن ۱۹۷۷

حمله ملاقات در میانه (Meet-in-the-middle)

$$X = E(K_1, P) = D(K_2, C)$$

- در حمله نوع دوم با دانستن (*P,C*)
- را با تمامی $X^{\alpha \beta}$ کلید ممکن (K_1) رمزگذاری و نتایج را (برای X) ذخیره کن P
- را با تمامی 26 کلید ممکن (K_2) رمزگشایی و نتایج را با X ذخیره شده مقایسه کن C
- (P,C) در صورت یافتن تطابق (در X)، مقادیر کلیدهای پیدا شده را با استفاده از زوج جدید امتحان کن
 - پیچیدگی حمله از مرتبه ۲^{۵۶} است.
 - 2^{-16} =false alarm اگر روی دو زوج (P,C) صدق کند: احتمال
 - مقابله: استفاده از ۳ تکرار با ۱۶۸ بیت کلید و امنیت از مرتبه ۲۱۱۲
 - (Tuchman, 1979) کلید طولانی: راه حل استفاده از ۳ تکرار با ۲ کلید است
 - هر دو استاندارد ۲ و ۳ کلید وجود دارد

Triple DES (3-DES) با دو یا سه کلید

$$C = E(K_1, D(K_2, E(K_1, P)))$$

$$P = D(K_1, E(K_2, D(K_1, C)))$$

$$C = E(K_1, D(K_2, E(K_1, P)))$$

$$P = D(K_1, E(K_2, D(K_1, C)))$$

$$P = D(K_1, E(K_2, D(K_1, C)))$$

$$P = D(K_1, E(K_2, D(K_1, C)))$$

$$R_1 = R_2 \qquad R_2 \qquad R_3 \qquad (3-\text{key})$$

$$R_3 = R_4 \qquad R_4 \qquad R_5 \qquad R_4 \qquad (2-\text{key})$$

$$R_4 = R_4 \qquad R_5 \qquad R_6 \qquad R_6 \qquad (3-\text{key})$$

$$R_5 = R_6 \qquad R_6 \qquad (3-\text{key})$$

$$R_7 = R_6 \qquad R_6 \qquad (3-\text{key})$$

$$R_8 = R_6 \qquad R_6 \qquad (3-\text{key})$$

$$R_9 = R_9 \qquad R_9$$

• مزیت استفاده از رمزگشایی (D): پیادهسازی DES با استفاده از 3-DES

$$C = E(K_1, D(K_1, E(K_1, P))) = E(K_1, P)$$

$$P = D(K_1, E(K_1, D(K_1, C))) = D(K_1, C)$$

Triple DES (3-DES) با دو کلید

- استانداردهای مدیریت کلید
- ISO 8732 ₉ ANS X9.17 O
 - حمله جستجوی فراگیر
 - 0 از مرتبه ۲۱۱۲
 - حمله تفاضلی
 - از مرتبه ۱۰^{۵۲}
- حمله نوع سوم (حمله متن اصلی منتخب) + حمله ملاقات در میانه
 - O از مرتبه ۲^{۵۶} ولی نیاز به ۲^{۵۶} متن اصلی منتخب دارد
 - حمله نوع دوم (حمله متن اصلی معلوم): کاهش به 2-DES
 - $2^{120-\log_2 n}$ از مرتبه \circ

Triple DES (3-DES) با سه کلید

- هرچند حملات به 3-DES با دو کلید عملی نیست، استفاده از ۳ کلید امروزه ترجیح دارد
 - طول کلید=۱۶۸ بیت ولی معادل ۱۱۲ بیت امنیت دارد

$$C = E(K_3, D(K_2, E(K_1, P)))$$

- مديريت كليد 57-800 SP
- استفاده در کاربردهای اینترنتی
- استانداردهای امنیت پست الکترونیکی
 - PGP o
 - S/MIME O

Advanced Encryption Standard (AES)

- در سال ۲۰۰۱ توسط National Institute of Standards and در سال ۲۰۰۱ توسط Technology (NIST)
 - در بسیاری از استانداردها جایگزین DES شد
- مسابقهای توسط NIST (با هدف ارتقای امنیت DES) در سال ۱۹۹۷ برگزار شد و فینالیستها (۵ تا از ۱۵ الگوریتم ارسالی):
- 1. Rijndael: 86 positive, 10 negative → Rijmen & Daemen
- 2. Serpent: 59 positive, 7 negative \rightarrow Anderson, Biham, Knudsen
- Twofish: 31 positive, 21 negative → Schneier, Kelsey, Whiting, Wagner, Hall, Ferguson
- 4. RC6: 23 positive, 37 negative \rightarrow RSA
- 5. MARS: 13 positive, 84 negative \rightarrow IBM

ویژگیهای AES

- سادگی (تحلیل)
- انعطاف پذیری (الگوریتم و کلید)
- پیادهسازی (نرمافزاری و سختافزاری)
 - امنیت (مقابله با حملات)

مشخصات AES

- عملیات بایتی در میدان (GF(2⁸)
- $m(x) = x^8 + x^4 + x^3 + x + 1$ چند جمله ای ساده نشدنی
- طول قالب = ۱۲۸ بیت (۱۶ بایت) در استاندارد ۱۲۸ PIPS PUB 197
 - پیشنهاد Rijndael طول قالبهای ۱۹۲،۱۲۸ و ۲۵۶ بیت بود
- طول کلید = ۱۲۸، ۱۲۸ و ۲۵۶ بیت (۱۶، ۲۴ و ۳۲ بایت) \rightarrow (۴، ۶ و ۸ کلمه)
 - AES-256 ₉ AES-192 (AES-128 O
 - تعداد دور = ۱۰، ۱۲ و ۱۴
 - هر دور شامل ۴ گام

ساختار AES

- طول قالب = ۱۲۸ بیت (۱۶ بایت)
 - یک ماتریس ۴ در ۴ از بایتها
 - ماتریس حالت (به صورت ستونی)
 - در هر مرحله عملیات بر روی ماتریس حالت صورت می گیرد
 - کلید
 - کلمهها (۴ بایت) به صورت ستونی
 - از ۱۴ کلید دور (ماتریس ۴ در ۴ از بایتها)

|--|

ساختار AES

• کلید ۱۲۸ بیتی (۱۶ بایت) \leftarrow ۴۴ کلمه (۱۷۶ بایت) \leftarrow ۱۲۸ بایت در هر دور (۴ کلمه) \rightarrow ماتریس \rightarrow ماتریس

in_0	in ₄	in ₈	in ₁₂	s _{0,0}	s _{0,1}	s _{0,2}	s _{0,3}	s _{0,0}	s _{0,1}	s _{0,2}	s _{0,3}	out ₀	out ₄	out ₈	out ₁₂
in_1	in ₅	in ₉	in ₁₃	s _{1,0}	$s_{1,1}$	s _{1,2}	s _{1,3}	 s _{1,0}	$s_{1,1}$	s _{1,2}	s _{1,3}	out ₁	out ₅	out ₉	out ₁₃
in ₂	in ₆	<i>in</i> ₁₀	in ₁₄	s _{2,0}	s _{2,1}	s _{2,2}	s _{2,3}	s _{2,0}	s _{2,1}	s _{2,2}	s _{2,3}	out ₂	out ₆	out ₁₀	out ₁₄
in ₃	in ₇	in ₁₁	in ₁₅	s _{3,0}	s _{3,1}	s _{3,2}	s _{3,3}	s _{3,0}	s _{3,1}	s _{3,2}	s _{3,3}	out ₃	out ₇	out ₁₁	out ₁₅

(a) Input, state array, and output

<i>k</i> ₀	<i>k</i> ₄	<i>k</i> ₈	k ₁₂						
<i>k</i> ₁	k ₅	<i>k</i> ₉	k ₁₃	w_0	w_1	w_2	•••	w_{42}	w_{43}
<i>k</i> ₂	<i>k</i> ₆	k ₁₀	k ₁₄	ω ₀	w	ω2		W42	W43
<i>k</i> ₃	<i>k</i> ₇	k ₁₁	k ₁₅						

(b) Key and expanded key

پارامترهای AES

• تعداد دور = N (۱۰،۱۲،۱۲) + یک دور اولیه

Key Size (words/bytes/bits)	4/16/128	6/24/192	8/32/256
Plaintext Block Size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Number of Rounds	10	12	14
Round Key Size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Expanded Key Size (words/bytes)	44/176	52/208	60/240

دورهای AES

- دور صفر (اولیه)
- AddRoundKey: زير كليد مربوطه اعمال مى شود
 - دور ۱ تا N-1: ۴ گام زیر اعمال میشود
- 1. **جانشینی بایتها** (**SubBytes**): جانشینی هر بایت ماتریس حالت توسط خروجی -s box
 - 2. شیفت سطرها (ShiftRows): شیفت سطری بایتها در ماتریس حالت
 - 3. ترکیب ستونها (MixColumns): ضرب ماتریس حالت در یک ماتریس معین
 - 🗶 ترکیب خطی ستونها
 - 4. **کلید دور** (AddRoundKey): اعمال زیرکلید مربوطه
 - دور ۱۸م: گامهای فوق به جز ترکیب ستونها

رمزگذاری AES

- اعمال كليد = مشابه رمز ورنام
 - ٣ گام ديگر تواماً
- odiffusion ،confusion و غيرخطي بودن
 - فاقد امنیت (کلید ندارند)
 - تركيب با كليد: امنيت بالا
 - معكوسيذير
- استفاده از نگاشت معکوس در هر گام برای رمزگشایی

رمزگشایی AES

- استفاده از کلید با ترتیب عکس
- o برخلاف قبلیها involution نیست

- ۳ گام در دور پایانی
- الگوريتم معكوسپذير

جانشینی بایتها (Substitute Bytes Transformation)

- قسمت مستقیم (رمزگذاری) ← SubBytes ○
- ماتریس حالت (ماتریس 4×4 از بایتها) به یک ماتریس حالت دیگر نگاشت میشود
 - نگاشت توسط یک جدول 16×16 با مقادیر بایتی صورت می گیرد
 - شامل ۲۵۶ مقدار ممکن برای یک بایت (۸ بیت)
 - اصول ریاضی
 - ورودی: هر بایت در ماتریس حالت
 - ۲۰۰۰ بیت چپ: سطر جدول
 - ۲ میت راست: ستون جدول
 - مقدار جدول = خروجی = جایگزین بایت ورودی در ماتریس حالت میشود

										y							
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	В7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9 A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1 A	1B	6E	5A	A 0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
x	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
1	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	Α	E0	32	3A	0 A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A 6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	В9	86	C1	1D	9E
	Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A 1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

S-box {95} •

										y							
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9 A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A 0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
x	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	A	E0	32	3A	0 A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A 6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	В9	86	C1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A 1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

S-box

{95} •

• سطر ۹

• ستون ۵

{2A}

EA	04	65	85
83	45	5D	96
5C	33	98	B0
F0	2D	AD	C5

87	F2	4D	97
EC	6E	4C	90
4A	C3	46	E7
8C	D8	95	A6

معکوس جانشینی بایتها (رمزگشایی)

		y															
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
	0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
	1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	CB
	2	54	7B	94	32	A 6	C2	23	3D	EE	4C	95	0B	42	FA	C3	4E
	3	08	2E	A 1	66	28	D9	24	B2	76	5B	A2	49	6D	8B	D1	25
	4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	B6	92
	5	6C	70	48	50	FD	ED	В9	DA	5E	15	46	57	A7	8D	9D	84
	6	90	D8	AB	00	8C	BC	D3	0A	F7	E4	58	05	B8	В3	45	06
x	7	D0	2C	1E	8F	CA	3F	0F	02	C1	AF	BD	03	01	13	8A	6B
	8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	B4	E6	73
	9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
	A	47	F1	1A	71	1D	29	C5	89	6F	В7	62	0E	AA	18	BE	1B
	В	FC	56	3E	4B	C6	D2	79	20	9A	DB	C0	FE	78	CD	5A	F4
	C	1F	DD	A 8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
	D	60	51	7F	A 9	19	B5	4A	0D	2D	E5	7A	9F	93	C9	9C	EF
	E	A 0	E0	3B	4D	AE	2A	F5	В0	C8	EB	BB	3C	83	53	99	61
	F	17	2B	04	7E	BA	77	D6	26	E1	69	14	63	55	21	0C	7D

اصول رياضي جانشيني بايتها

• ضرب ماتریسی + معکوس + جمع

$$S(a) = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

اصول ریاضی جانشینی بایتها

• معکوس در میدان (GF(2⁸)

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

$$b_i' = b_i \oplus b_{(i+4) \bmod 8} \oplus b_{(i+5) \bmod 8} \oplus b_{(i+5) \bmod 8} \oplus b_{(i+6) \bmod 8} \oplus b_{(i+7) \bmod 8} \oplus c_i$$

$$c = \{63\} = (01100011)$$

• جمع در میدان فوق: XOR

اصول ریاضی جانشینی بایتها: مثال

• ورودى: {95}

$${95}^{-1} = {8A} = 10001010$$

		y															
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9 A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A 0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
x	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	A	E0	32	3A	0 A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A 6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A 1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

S-box

{95} •

• سطر ۹

• ستون ۵

{2A}

معکوس جانشینی بایتها (رمزگشایی)

inverse substitute byte transformation •

$$\{2A\} \rightarrow \{95\}$$

- InvSubBytes O
- معكوس عمل فوق

$$\mathsf{GF}(2^8)$$
 ضرب در ماتریس معکوس $+$ جمع برداری $+$ معکوس گیری در میدان \circ

$$b'_{i} = b_{(i+2) \mod 8} \oplus b_{(i+5) \mod 8} \oplus b_{(i+7) \mod 8} \oplus d_{i}$$
$$d = \{05\} = (00000101)$$

$$\begin{bmatrix} b_0' \\ b_1' \\ b_2' \\ b_3' \\ b_4' \\ b_5' \\ b_6' \\ b_7' \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{B}' = \mathbf{X}\mathbf{B} \oplus \mathbf{C}$$
 رمزگذاری •

$$\mathbf{B}' = \mathbf{X}\mathbf{B} \oplus \mathbf{C}$$
 رمزگذاری $\mathbf{Y}(\mathbf{X}\mathbf{B} \oplus \mathbf{C}) \oplus \mathbf{D} \stackrel{?}{=} \mathbf{B}$ رمزگشایی •

اصول ریاضی جانشینی بایتها

- مقاوم در برابر حملات تحلیل رمز شناخته شده
- همبستگی کم میان بیتهای ورودی و خروجی
 - ساختار غیرخطی
 - $\mathsf{GF}(2^8)$ معکوس در میدان \circ
 - انتخاب مقدار c:
 - S-box نقطه ثابت و ثابت وارون ندارد

$$[S-box(a) = a]$$
 $[S-box(a) = \overline{a}]$

• وارونپذير:

$$IS\text{-}box[S\text{-}box(a)] = a$$

$$S$$
-box $(a) \neq IS$ -box (a)

شیفت سطری (ShiftRows Transformation)

- تبدیل مستقیم (رمزگذاری): شیفت چرخشی سطرها در ماتریس حالت به چپ
 - سطر اول: صفر بایت (بدون تغییر)
 - سطر دوم: یک بایت
 - سطر سوم: دو بایت
 - سطر سوم: سه بایت

شیفت سطری (ShiftRows Transformation)

• تبدیل مستقیم (رمزگذاری): شیفت چرخشی سطرها در ماتریس حالت به چپ

87	F2	4D	97
EC	6E	4C	90
4A	C3	46	E7
8C	D8	95	A6

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

• تبدیل معکوس (رمزگشایی): شیفت چرخشی سطرها در ماتریس حالت به راست

شیفت سطری (ShiftRows Transformation)

- ورودی، خروجی و حالت به صورت ۴ ستون ۴ بایتی هستند
 - ۴ بایت اول متن اصلی در ستون اول قرار می گیرند و ...
 - اعمال کلید دور به صورت ستونی
 - جابجایی سطری بایتها مورد نیاز است
 - شیفت سطری بایتها را از یک ستون به ستون دیگر میبرد
 - ۴ بایت هر ستون در هر ۴ ستون پخش میشوند

ترکیب ستونها (MixColumns Transformation)

- تبدیل مستقیم (رمزگذاری): forward mix column transformation
 - ضرب ماتریس حالت در یک ماتریس معین
 - ترکیب خطی ستونها
 - بر هر ستون به طور جداگانه تاثیر میگذارد
- هر بایت در هر ستون با مقدار جدیدی جانشین می شود که تابعی از همه ۴ بایت آن ستون

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

• ضرب و جمعها در میدان (GF(2⁸)

$$s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$$

 $s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j}$
 $s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$
 $s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$

• روش دیگر بیان ترکیب ستونها: چندجملهای

• برای هرستون:

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

$$\rightarrow$$

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A6	BC

$$s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$$

$$s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j}$$

$$s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$$

$$s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$$

$$(\{02\} \cdot \{87\}) \oplus (\{03\} \cdot \{6E\}) \oplus \{46\} \oplus \{A6\} = \{47\}$$

$$= \{47\}$$

$$\{87\}$$

$$\oplus$$
 ({02} • {6E}) \oplus ({03} • {46}) \oplus {A6} = {37}

$$= \{37\}$$

$$\oplus$$
 ({02} • {46}) \oplus ({03} • {A6}) = {94}

$$({03} \cdot {87}) \oplus {6E}$$

$$\oplus$$
 {46}

$$(\{02\} \cdot \{A6\}) = \{ED\}$$

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

 \rightarrow

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A6	BC

$s'_{0,j}=(2\bullet s_{0,j})\oplus (3\bullet s_{1,j})\oplus s_{2,j}\oplus s_{3,j}$
$s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j}$
$s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$
$s_{3,j}'=(3\bullet s_{0,j})\oplus s_{1,j}\oplus s_{2,j}\oplus (2\bullet s_{3,j})$

$$\{102\} \cdot \{87\}) \oplus (\{03\} \cdot \{6E\}) \oplus \{46\}$$

$$\oplus$$
 {A6}

$$= \{47\}$$

$$\{87\}$$

$$\oplus$$
 ({02} • {6E}) \oplus ({03} • {46}) \oplus {A6}

$$= \{37\}$$

$$\oplus$$
 {6E}

$$\oplus$$
 ({02} • {46}) \oplus ({03} • {A6}) = {94}

$$({03} \cdot {87}) \oplus {6E}$$

$$\oplus$$
 {46}

$$\oplus (\{02\} \cdot \{A6\}) = \{ED\}$$

• ضرب در {02} برابر با شیفت به چپ و XOR با (1011 1001) به شرط ۱ بودن LSB

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

>		

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A6	BC

$$s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$$

$$s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j}$$

$$s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$$

$$s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$$

$$\{102\} \cdot \{87\}) \oplus (\{03\} \cdot \{6E\}) \oplus \{46\}$$

$$\oplus$$
 {A6}

$$= \{47\}$$

$$(02) \cdot (6E) + (03) \cdot (46) + (A6)$$

$$= \{37\}$$

$$\{87\}$$

$$\oplus$$
 {6E}

$$\oplus$$
 ({02} • {46}) \oplus ({03} • {A6}) = {94}

$$({03} \cdot {87}) \oplus {6E}$$

$$\oplus$$
 {46}

$$\oplus$$
 ({02} • {A6}) = {ED}

• ضرب در {02} برابر با شیفت به چپ و XOR با (1011 1011) به شرط ۱ بودن MSB

$$\{02\} \bullet \{87\} = (00001110) \oplus (00011011) = (00010101)$$

$$\{03\} \bullet \{6E\} = \{6E\} \oplus \{02\} \bullet \{6E\}$$
$$= (01101110) \oplus (11011100) = (10110010)$$

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

$$\rightarrow$$

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A6	BC

$$s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$$

$$s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j}$$

$$s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$$

$$s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$$

$$\{102\} \cdot \{87\}) \oplus (\{03\} \cdot \{6E\}) \oplus \{46\}$$

$$\oplus$$
 {A6}

$$= \{47\}$$

$$\{87\}$$

$$\oplus$$
 ({02} • {6E}) \oplus ({03} • {46}) \oplus {A6}

$$= \{37\}$$

$$\{87\}$$

$$\oplus$$
 {6E}

$$\oplus$$
 ({02} • {46}) \oplus ({03} • {A6}) = {94}

$$({03} \cdot {87}) \oplus {6E}$$

$$\oplus$$
 {46}

$$\oplus$$
 ({02} • {A6}) = {ED}

• ضرب در {02} برابر با شیفت به چپ و XOR با (1011 1001) به شرط ۱ بودن LSB

$$\{02\} \bullet \{87\} = (00001110) \oplus (00011011) = (00010101)$$

$${03} \cdot {6E} = {6E} \oplus {02} \cdot {6E}$$
$$= (01101110) \oplus (11011100) = (10110010)$$

$$\{02\} \bullet \{87\} = (0001 \ 0101)$$
$$\{03\} \bullet \{6E\} = (1011 \ 0010)$$
$$\{46\} = (0100 \ 0110)$$
$$\{A6\} = \underline{(1010 \ 0110)}$$
$$0100 \ 0111 = \{47\}$$

تركيب ستونها (بيان چندجملهاي)

• هر ستون ماتریس حالت (* بایت) به عنوان یک چندجملهای از درجه * با ضرایب در میدان $\mathsf{GF}(2^8)$ است

$$\begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix}$$

$$col_j(x) = s_{3,j}x^3 + s_{2,j}x^2 + s_{1,j}x + s_{0,j}$$

ترکیب ستونها (بیان چندجملهای)

• هر ستون ماتریس حالت (* بایت) به عنوان یک چندجملهای از درجه * با ضرایب در میدان $\mathsf{GF}(2^8)$ است

$$\begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix}$$

$$col_j(x) = s_{3,j}x^3 + s_{2,j}x^2 + s_{1,j}x + s_{0,j}$$

• ضرب ماتریسی برابر با ضرب چندجملهای فوق در چندجملهای زیر است:

$$a(x) = \{03\}x^3 + \{01\}x^2 + \{01\}x + \{02\}$$

- x^4+1 در پیمانه •
- $m(x) = x^8 + x^4 + x^3 + x + 1$ با چندجملهای GF(28) با عملیات ضرایب در میدان است
 - جمع همان XOR است ولی برای ضرب باید چندجملههای درجه ۷ محاسبه شوند

ترکیب ستونها (چندجملهای)

$$b(x) = col_{j}(x) = s_{3,j}x^{3} + s_{2,j}x^{2} + s_{1,j}x + s_{0,j} = b_{3}x^{3} + b_{2}x^{2} + b_{1}x + b_{0}$$
 برای یک ستون: • $a(x) = \{03\}x^{3} + \{01\}x^{2} + \{01\}x + \{02\} = a_{3}x^{3} + a_{2}x^{2} + a_{1}x + a_{0}$

$$c(x) = a(x) \times b(x) = c_{6}x^{6} + c_{5}x^{5} + c_{4}x^{4} + c_{3}x^{3} + c_{2}x^{2} + c_{1}x + c_{0}$$

$$m(x) = x^{8} + x^{4} + x^{3} + x + 1$$

$$c_{0} = a_{0} \cdot b_{0}$$

$$c_{1} = (a_{1} \cdot b_{0}) \oplus (a_{0} \cdot b_{1})$$

$$c_{2} = (a_{2} \cdot b_{0}) \oplus (a_{1} \cdot b_{1}) \oplus (a_{0} \cdot b_{2})$$

$$c_{3} = (a_{3} \cdot b_{0}) \oplus (a_{2} \cdot b_{1}) \oplus (a_{1} \cdot b_{2}) \oplus (a_{0} \cdot b_{3})$$

$$c_{3} = (a_{3} \cdot b_{0}) \oplus (a_{2} \cdot b_{1}) \oplus (a_{1} \cdot b_{2}) \oplus (a_{0} \cdot b_{3})$$

ترکیب ستونها (چندجملهای)

$$b(x) = col_j(x) = s_{3,j}x^3 + s_{2,j}x^2 + s_{1,j}x + s_{0,j} = b_3x^3 + b_2x^2 + b_1x + b_0$$
 نبرای یک ستون: • $a(x) = \{03\}x^3 + \{01\}x^2 + \{01\}x + \{02\} = a_3x^3 + a_2x^2 + a_1x + a_0$
 $c(x) = a(x) \times b(x) = c_6x^6 + c_5x^5 + c_4x^4 + c_3x^3 + c_2x^2 + c_1x + c_0$
 $m(x) = x^8 + x^4 + x^3 + x + 1$ یا چندجملهای $GF(2^8)$ یا چندجملهای • $c_0 = a_0 \cdot b_0$ $c_4 = (a_3 \cdot b_1) \oplus (a_2 \cdot b_2) \oplus (a_1 \cdot b_3)$ $c_1 = (a_1 \cdot b_0) \oplus (a_0 \cdot b_1)$ $c_5 = (a_3 \cdot b_2) \oplus (a_2 \cdot b_3)$ $c_6 = a_3 \cdot b_3$ $c_3 = (a_3 \cdot b_0) \oplus (a_2 \cdot b_1) \oplus (a_1 \cdot b_2) \oplus (a_0 \cdot b_3)$

$$d(x) = c(x) \mod (x^4 + 1)$$

$$= [c_6x^6 + c_5x^5 + c_4x^4 + c_3x^3 + c_2x^2 + c_1x + c_0] \mod (x^4 + 1)$$

 $= c_3 x^3 + (c_2 \oplus c_6) x^2 + (c_1 \oplus c_5) x + (c_0 \oplus c_4)$

- ضرایب چندجملهای a(x) (یا ضرایب ماتریس) از یک کد خطی با فاصله بیشینه میان کلمات کد انتخاب شدهاند
 - بایتها در هر ستون با بیشترین فاصله از هم جابجا میشوند
- انتخاب مقادیر {01}، {02} و {03} با توجه به پیادهسازی ساده آنها صورت گرفته است
 - × ضرب در {02} برابر با شیفت به چپ و XOR شرطی با (1011 1001)
 - اعمال شیفت سطری و ترکیب ستونها
 - پس از چند دور، تمامی بیتهای خروجی وابسته به تمامی بیتهای ورودی هستند

• تبدیل معکوس (رمزگشایی): inverse mix column transformation

• ضرب در ماتریس معکوس

$$\begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix} \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• ضرب چندجملهای ستون در چندجملهای زیر

$$b(x) = \{0B\}x^3 + \{0D\}x^2 + \{09\}x + \{0E\}$$

$$a(x) = \{03\}x^3 + \{01\}x^2 + \{01\}x + \{02\}$$

$$b(x) = a^{-1}(x) \mod (x^4 + 1)$$

$$b(x) = \{0B\}x^3 + \{0D\}x^2 + \{09\}x + \{0E\}$$
 (cativally) (oction) (oction) $(x) = \{0B\}x^3 + \{0D\}x^2 + \{09\}x + \{0E\}$

- در بیشتر موارد تنها رمزگذاری مورد نیاز است
- در مودهای CFB و OFB تنها از رمزگذاری استفاده می شود
 - در کدهای احراز اصالت تنها از رمزگذاری استفاده میشود

(AddRoundKey Transformation) اعمال کلید دور

• **XOR** بیتی ماتریس حالت با کلید دور (۱۲۸ بیت) • به صورت ستونی میان ۴ بایت حالت و ۱ کلمه کلید

معکوس نیز مشابه مستقیم است

اعمال کلید دور

- سادهترین حالت اعمال کلید
 - بر هر بیت تاثیر می گذارد
 - امنیت
- پیچیدگی بسط کلید (تولید کلید دور)
 - O گامهای دیگر AES

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A6	BC

EB	59	8B	1B
40	2E	A 1	C3
F2	38	13	42
1E	84	E7	D6

یک دور AES

• ورودی: کلید ۱۲۸ بیتی (۱۶ بایت – ۴ کلمه) \rightarrow خروجی: کلید بسط یافته: ۴۴ کلمه (۱۷۶ بایت) \rightarrow ۱۱ بایت در هر دور (۴ کلمه) \rightarrow ۱۱ دور \rightarrow ماتریس \mathbf{w}

<i>k</i> ₀	<i>k</i> ₄	<i>k</i> ₈	k ₁₂						
<i>k</i> ₁	k ₅	<i>k</i> ₉	k ₁₃	mo	w_1	w_2	•••	w_{42}	w_{43}
k ₂	<i>k</i> ₆	k ₁₀	k ₁₄	\longrightarrow w_0	w	w2		W42	W43
<i>k</i> ₃	<i>k</i> ₇	k ₁₁	k ₁₅						

- ابتدا، کلید در ۴ کلمه اول کلید بسط یافته کپی میشود
- سپس، در هر گام ۴ کلمه دیگر از کلید بسط یافته تولید (پُر) میشود
- هر کلمه جدید w[i-4] به کلمه قبلی w[i-1] و ۴ کلمه قبلتر و w[i-4] بستگی دارد
 - در ۳ تا از این ۴ کلمه، دو مقدار فوق XOR میشوند
 - o در کلمات مضارب ۴ در **۱۷** تابع پیچیدهتری بکار میرود

- If i=4k: $w[i] = \text{SubWord}\left(\text{RotWord}\left(w[i-1]\right)\right) \oplus \text{Rcon}\left[\frac{i}{4}\right] \oplus w[i-4]$
- Otherwise: $w[i] = w[i-1] \oplus w[i-4]$

```
KeyExpansion (byte key[16], word w[44])
    word temp
   for (i = 0; i < 4; i++) w[i] = (kev[4*i], kev[4*i+1],
                                       \text{kev}[4*i+2],
                                       \text{kev}[4*i+31);
    for (i = 4; i < 44; i++)
     temp = w[i - 1];
     if (i \mod 4 = 0) temp = SubWord (RotWord (temp))
                                   \bigoplus Rcon[i/4];
    w[i] = w[i-4] \oplus temp
```

• If i=4k:

$$w[i] = \text{SubWord}\left(\text{RotWord}\left(w[i-1]\right)\right) \oplus \text{Rcon}\left[\frac{i}{4}\right] \oplus w[i-4]$$

• Otherwise: $w[i] = w[i-1] \oplus w[i-4]$

تابع g در بسط کلید AES

SubWord
$$\left(\text{RotWord} \left(w[i-1] \right) \right) \oplus \text{Rcon} \left[\frac{i}{4} \right]$$

• RotWord: شیفت چرخشی یک بایت به چپ

$$[B_0, B_1, B_2, B_3]$$
 \longrightarrow $[B_1, B_2, B_3, B_0]$

• SubWord: جانشینی بایتی بر اساس s-box قبلی

تابع g در بسط کلید AES

SubWord
$$\left(\text{RotWord} \left(w[i-1] \right) \right) \oplus \text{Rcon} \left[\frac{i}{4} \right]$$

• RotWord: شیفت چرخشی یک بایت به چپ

$$[B_0, B_1, B_2, B_3]$$
 \longrightarrow $[B_1, B_2, B_3, B_0]$

- SubWord: جانشینی بایتی بر اساس s-box قبلی
 - Rcon[*j*]: مقدار معین زیر (ثابت دور)

$$\operatorname{Rcon}[j] = (\operatorname{RC}[j], 0, 0, 0)$$

$$RC[1] = 1$$
, $RC[j] = 2 \cdot RC[j-1]$

• عملیات در میدان (GF(2⁸)

j	1	2	3	4	5	6	7	8	9	10
RC[j]	01	02	04	08	10	20	40	80	1B	36

- طراحی: مقابله با حملات شناخته شده
- ثابت دور: از بین بردن تقارن در تولید کلید هر دور
- با دانستن (قسمتی از) کلید یک دور، اطلاعات زیادی در مورد کلید دورهای دیگر بدست نیاید
 - سرعت عملیات
 - پراکنش کلید اصلی در کلیدهای دور
 - ۰ هر بیت کلید اصلی بر تعداد زیادی از بیتهای کلیدهای دور تاثیر گذارد
 - غيرخطي بودن
 - از تفاضل کلیدهای دور نتوان به تفاضل کلید اصلی رسید
 - بیان ساده

اثر بهمنی (Avalanche Effect)

• تغییر یک بیت ورودی (یا کلید)، تعداد زیادی از بیتهای خروجی را تغییر دهد

Table 5.5 Avalanche Effect in AES: Change in Plaintext

Round		Number of Bits that Differ
	0123456789abcdeffedcba9876543210 0023456789abcdeffedcba9876543210	1
0	0e3634aece7225b6f26b174ed92b5588 0f3634aece7225b6f26b174ed92b5588	1
1	657470750fc7ff3fc0e8e8ca4dd02a9c c4a9ad090fc7ff3fc0e8e8ca4dd02a9c	20
2	5c7bb49a6b72349b05a2317ff46d1294 fe2ae569f7ee8bb8c1f5a2bb37ef53d5	58
3	7115262448dc747e5cdac7227da9bd9c ec093dfb7c45343d689017507d485e62	59
4	f867aee8b437a5210c24c1974cffeabc 43efdb697244df808e8d9364ee0ae6f5	61
5	721eb200ba06206dcbd4bce704fa654e 7b28a5d5ed643287e006c099bb375302	68
6	0ad9d85689f9f77bc1c5f71185e5fb14 3bc2d8b6798d8ac4fe36a1d891ac181a	64
7	db18a8ffa16d30d5f88b08d777ba4eaa 9fb8b5452023c70280e5c4bb9e555a4b	67
8	f91b4fbfe934c9bf8f2f85812b084989 20264e1126b219aef7feb3f9b2d6de40	65
9	cca104a13e678500ff59025f3bafaa34 b56a0341b2290ba7dfdfbddcd8578205	61
10	ff0b844a0853bf7c6934ab4364148fb9 612b89398d0600cde116227ce72433f0	58

اثر بهمنی (Avalanche Effect)

تغییر یک بیت ورودی (یا کلید)، تعداد زیادی از بیتهای خروجی را تغییر دهد

10

Table 5.5 Avalanche Effect in AES: Change in Plaintext

Round

0

Round	
	0123456789abcdeffedcba9 0123456789abcdeffedcba9
0	0e3634aece7225b6f26b174 0f3634aece7225b6f26b174

Table 5.6 Avalanche Effect in AES: Change in Key

1	657470750fc7ff3fc0e8e8ca4dd02a9c c4a9ad090fc7ff3fc0e8e8ca4dd02a9c	1				
2	5c7bb49a6b72349b05a2317ff46d1294 fe2ae569f7ee8bb8c1f5a2bb37ef53d5	- 1				
3	7115262448dc747e5cdac7227da9bd9c	3				
	000000000000000000000000000000000000000					
0f1571c947d9e8590cb7add6af7f679						

0123456789abcdeffedcba9876543210 0023456789abcdeffedcba9876543210 0e3634aece7225b6f26b174ed92b5588

0f3634aece7225b6f26b174ed92b5588

0e1571c947d9e8590cb7add6af7f

- 1		
	8	f91b4fbfe934c9bf8f2f85812b084989 20264e1126b219aef7feb3f9b2d6de40
	9	cca104a13e678500ff59025f3bafaa34 b56a0341b2290ba7dfdfbddcd8578205
	10	ff0b844a0853bf7c6934ab4364148fb9 612b89398d0600cde116227ce72433f0

	Round		that Differ
		0123456789abcdeffedcba9876543210 0123456789abcdeffedcba9876543210	0
	0	0e3634aece7225b6f26b174ed92b5588 0f3634aece7225b6f26b174ed92b5588	1
	1	657470750fc7ff3fc0e8e8ca4dd02a9c c5a9ad090ec7ff3fc1e8e8ca4cd02a9c	22
	2	5c7bb49a6b72349b05a2317ff46d1294 90905fa9563356d15f3760f3b8259985	58
	3	7115262448dc747e5cdac7227da9bd9c 18aeb7aa794b3b66629448d575c7cebf	67
		f867aee8b437a5210c24c1974cffeabc f81015f993c978a876ae017cb49e7eec	63
f	6798	721eb200ba06206dcbd4bce704fa654e 5955c91b4e769f3cb4a94768e98d5267	81
f	6798	0ad9d85689f9f77bc1c5f71185e5fb14 dc60a24d137662181e45b8d3726b2920	70
10170		db18a8ffa16d30d5f88b08d777ba4eaa fe8343b8f88bef66cab7e977d005a03c	74
	8	f91b4fbfe934c9bf8f2f85812b084989 da7dad581d1725c5b72fa0f9d9d1366a	67
	9	cca104a13e678500ff59025f3bafaa34 0ccb4c66bbfd912f4b511d72996345e0	59
	10	ff0b844a0853bf7c6934ab4364148fb9	52

fc8923ee501a7d207ab670686839996b

Number of Bits

53

پیادهسازی AES

رمزگشایی نیاز به پیادهسازی
 جداگانه دارد
 همان بسط کلید

• رمزگشایی **معادل** با همان ساختار رمزگذاری • بسط کلید متفاوت

پیادهسازی AES

- قابل پیادهسازی کارآ در پردازندههای ۸ بیتی
 - کارتهای هوشمند
- عملیات بایتی: شیفت + XOR (شرطی) + جدول (۲۵۶ بایت)
- \bigcirc ضرب در $\{02\}$ ممکن است منجر به حمله زمانی گردد \longrightarrow استفاده از جدول
 - قابل پیادهسازی کارآ در پردازندههای ۳۲ بیتی
 - PC O
 - با تعریف عملیات بر روی کلمات ۳۲ بیتی کارآتر است
- طراحان Rijndael بر این باورند که پیادهسازی فشرده و کارآی این الگوریتم موجب انتخاب آن برای AES شده است

الگوريتمهاي معروف رمز قالبي

- (1990) **IDEA** •
- (1994) **Blowfish** •

(1994) **RC5** •

(1997) **CAST-128** •

سبكهاي كاري رمزهاي قالبي

- رمزهای قالبی با اعمال یک کلید بر قالب b بیتی از ورودی، خروجی b بیتی را تولید می کنند
- $oldsymbol{b}$ اگر طول دنباله متن اصلی بیشتر از $oldsymbol{b}$ بیت باشد، میتوان آن را به قالبهای بیتی تقسیم کرد
 - اگر تعداد زیادی از قالبها با یک کلید رمز شوند، امنیت کاهش مییابد
 - سبک (mode) کاری روشی برای افزایش تاثیر (امنیت) یک الگوریتم رمزنگاری و یا سازگار کردن آن با یک کاربرد خاص میباشد

سبكهاي كاري رمزهاي قالبي

- ۵ سبک کاری مهم (تعریف شده توسط NIST در استاندارد SP 800-38A)
 - هر یک از رمزهای قالبی میتوانند در هر یک از سبکهای زیر بکار گرفته شوند
 - کاربردهای متفاوت رمز قالبی را پوشش میدهند
 - 1. سبک کتابچه رمز (electronic codebook mode)
 - 2. سبک زنجیرهای قالبهای رمز (cipher block chaining mode)
 - 3. سبک بازخورد رمز (cipher feedback mode)
 - 4. سبک بازخورد خروجی (output feedback mode)
 - 5. سبک شمارنده (counter mode)

سبكهاي كاري رمزهاي قالبي

Mode	Description	Typical Application
Electronic Codebook (ECB)	Each block of 64 plaintext bits is encoded independently using the same key.	Secure transmission of single values (e.g., an encryption key)
Cipher Block Chaining (CBC)	The input to the encryption algorithm is the XOR of the next 64 bits of plaintext and the preceding 64 bits of ciphertext.	 General-purpose block- oriented transmission Authentication
Cipher Feedback (CFB)	Input is processed s bits at a time. Preceding ciphertext is used as input to the encryption algorithm to produce pseudorandom output, which is XORed with plaintext to produce next unit of ciphertext.	General-purpose stream- oriented transmission Authentication
Output Feedback (OFB)	Similar to CFB, except that the input to the encryption algorithm is the preceding encryption output, and full blocks are used.	Stream-oriented transmission over noisy channel (e.g., satellite communication)
Counter (CTR)	Each block of plaintext is XORed with an encrypted counter. The counter is incremented for each subsequent block.	 General-purpose block- oriented transmission Useful for high-speed requirements

(electronic codebook mode) سبک کتابچه رمز ECB

- سادەترىن سېك
- در هر بار یک قالب متن اصلی رمز میشود
- برای تمامی قالبها از یک کلید استفاده میشود
- کتابچه رمز: برای کلید معین، متن رمز شده برای هر قالب b بیتی متن اصلی یکتا است
 - اگر طول دنباله متن اصلی بیشتر از b بیت باشد، آن را به قالبهای b بیتی تقسیم میکنیم
 - دنبالهزدن (padding) قالب نهایی در صورت نیاز
 - رمزگشایی: هر بار یک قالب با کلید یکسان

(electronic codebook mode) سبک کتابچه رمز

• رمزگذاری

• رمزگشایی

$$C_i = E(K, P_i)$$

$$j = 1, \ldots, N$$

$$j = 1, \ldots, N$$
 $P_j = D(K, C_j)$

$$j = 1, \ldots, N$$

(electronic codebook mode) سبک کتابچه رمز

- مناسب برای متن اصلی کوتاه
 - O کلید AES یا O
- اگر قالب b بیتی در متن اصلی بیش از یک بار تکرار شود، متن رمز شده یکسان است
 - متن اصلی طولانی: ممکن است امن نباشد
 - اگر ساختار متن اصلی مشخص باشد \longrightarrow حمله تحلیلی
 - شروع و پایان با مقادیر مشخص: تعدادی زوج متن اصلی متن رمز شده معلوم
 - و برخی بیتها به طور متناوب (با مضربی از b) تکرار شوند \circ
 - حملات ممكن: تحليل رمز، تغيير يا جابجايي قالبها

(cipher block chaining mode) سبک زنجیرهای قالبهای رمز CBC

- برای غلبه بر مشکلات ECB
- اگر قالب b بیتی در متن اصلی بیش از یک بار تکرار شود، متن رمز شده یکسان نباشد b

- ورودی هر بار الگوریتم، رابطه ثابتی با متن اصلی ندارد
 - initialization vector (IV) o

CBC

- رمزگذاری
- رمزگشایی

$$C_{1}$$

$$C_{2}$$

$$C_{N}$$

$$C_{N}$$

$$C_{N}$$

$$C_{N}$$

$$C_{N}$$

$$C_{N-1}$$

$$C_{N-1}$$

$$C_{N}$$

$$C_{N-1}$$

$$C_{N}$$

$$C_{N-1}$$

$$C_{N}$$

$$C_{N-1}$$

$$C_{N}$$

$$C_{N-1}$$

$$C_{N}$$

$$C_{N-1}$$

$$C_{N}$$

$$C_{N}$$

$$C_{N-1}$$

$$C_{N}$$

$$C_j = \mathrm{E}(K, [C_{j-1} \, \oplus \, P_j])$$

$$D(K, C_j) = D(K, E(K, [C_{j-1} \oplus P_j]))$$

$$D(K, C_j) = C_{j-1} \oplus P_j$$

$$C_{j-1} \oplus D(K, C_j) = C_{j-1} \oplus C_{j-1} \oplus P_j = P_j$$

CBC

CBC

$$C_1 = \mathrm{E}(K, [P_1 \oplus \mathrm{IV}])$$

 $C_j = \mathrm{E}(K, [P_j \oplus C_{j-1}]) \ j = 2, \dots, N$

$$P_1 = D(K, C_1) \oplus IV$$

$$P_j = D(K, C_j) \oplus C_{j-1} \quad j = 2, \dots, N$$

- مقدار IV باید تنها برای فرستنده و گیرنده مشخص باشد
 - برای هر متن اصلی
 - می توان از سبک ECB استفاده کرد
- اگر IV به طور آشکار ارسال شود، ممکن است دشمن بتواند مقدار دیگری را جایگزین آن کند و قالب اول متن آشکار شده متفاوت با متن اصلی شود

$$C_1 = E(K, [IV \oplus P_1])$$

 $P_1 = IV \oplus D(K, C_1)$

$$P_1[i] = IV[i] \oplus D(K, C_1)[i]$$

$$P_1[i]' = \mathrm{IV}[i]' \oplus \mathrm{D}(K, C_1)[i]$$

الزامات CBC

- مقدار IV غيرقابل پيشبيني باشد
 - ۲ روش در Sp800-38a:
- 1. اعمال رمزنگاری به یک تکشمار (nonce) با استفاده از همان کلید الگوریتم اصلی
 - تکشمار برای هر بار اجرای سبک، یکتا است مانند یک شمارنده، شماره پیام و ...
 - 2. استفاده از مولد اعداد (شبه)تصادفی
 - رمزگذاری قابل موازیسازی نیست
 - رمزگشایی قابل موازیسازی است
 - مناسب برای رمزنگاری با طول بالای متن اصلی
 - ۰ محرمانگی و احراز اصالت

(cipher feedback mode) سبک بازخورد رمز CFB

- با استفاده از سه سبک زیر می توان رمز قالبی را به دنبالهای تبدیل کرد:
 - (cipher feedback mode) سبک بازخورد رمز (
 - Output feedback mode) سبک بازخورد خروجی (output feedback mode
 - o سبک شمارنده (counter mode)
 - مشكل دنبالهزدن (padding) برطرف مي شود
 - طول دنباله ورودی و خروجی برابر است
 - کاربردهای بیدرنگ (real time)
 - نیاز به پیادهسازی رمزگشایی نیست

سبک بازخورد رمز (cipher feedback mode)

- متن اصلی به قطعات ۶ بیتی تقسیم میشود
 - مانند سبک CBC
- متن رمز شده تابعی از تمامی بیتهای قبلی در متن اصلی
- در هر مرحله مقدار شیفت رجیستر ۶ بیت شیفت مییابد

رمزگشایی CFB

- استفاده از رمزگذاری قالبی (نه رمزگشایی)
- همان الگوریتم رمزگذاری با تنها تفاوت در جهت ورودیهای XOR

$$C_1 = P_1 \oplus MSB_s[E(K, IV)]$$

$$P_1 = C_1 \oplus MSB_s[E(K, IV)]$$

CFB

CFB
$$\begin{cases} I_{1} = IV & I_{1} = IV \\ I_{j} = LSB_{b-s}(I_{j-1}) \parallel C_{j-1} \ j = 2, \dots, N \\ O_{j} = E(K, I_{j}) & j = 1, \dots, N \\ C_{j} = P_{j} \oplus MSB_{s}(O_{j}) & j = 1, \dots, N \end{cases}$$

$$\begin{cases} I_{1} = IV \\ I_{j} = LSB_{b-s}(I_{j-1}) \parallel C_{j-1} \ j = 2, \dots, N \\ O_{j} = E(K, I_{j}) & j = 1, \dots, N \\ P_{j} = C_{j} \oplus MSB_{s}(O_{j}) & j = 1, \dots, N \end{cases}$$

- CFB مشابه رمز دنبالهای است
- رمز دنبالهای: کلید و متن اصلی XOR میشوند
 - CFB •
- متن اصلی با دنبالهای XOR میشود که وابسته به متن اصلی است
 - انتشار خطا
 - رمزگذاری قابل موازیسازی نیست
 - رمزگشایی قابل موازیسازی است

(output feedback mode) سبک بازخورد خروجی OFB

- به جای متن رمزشده، خروجی واحد رمزگذار بازخورد میشود
- روى كل قالب متن اصلى عمل مىكند (حالت 2 بيتى نيز ممكن است)

$$C_j = P_j \oplus E(K, [C_{j-i} \oplus P_{j-1}])$$

رمزگشایی OFB

$$P_j = C_j \oplus E(K, [C_{j-1} \oplus P_{j-1}])$$

OFB

$$I_{1} = Nonce I_{j} = O_{j-1} \qquad j = 2, ..., N OFB O_{j} = E(K, I_{j}) \qquad j = 1, ..., N C_{j} = P_{j} \oplus O_{j} \qquad j = 1, ..., N - 1 C_{N}^{*} = P_{N}^{*} \oplus MSB_{u}(O_{N})$$

$$I_{1} = Nonce I_{j} = LSB_{b-s}(I_{j-1}) \parallel C_{j-1} \quad j = 2, ..., N O_{j} = E(K, I_{j}) \qquad j = 1, ..., N P_{j} = C_{j} \oplus O_{j} \qquad j = 1, ..., N - 1 P_{N}^{*} = C_{N}^{*} \oplus MSB_{u}(O_{N})$$

- اگر قالب نهایی کمتر از b بیت باشد، بیتهای اضافی قالب آخر در متن رمزشده دور ریخته شده و ارسال نمی گردد
 - ۱۷ برای هر بار اجرای الگوریتم باید یکتا باشد
 - خروجی واحد رمزگذار تنها به کلید و IV وابسته است و نه به متن اصلی
 - مشكل انتشار خطا حل شده است
- عیب OFB: در مقابل حملات تغییر پیام آسیبپذیرتر است (امکان کنترل تغییر در متن اصلی پس از رمزگشایی)
 - اگر تغییر یک بیت در متن رمزشده، بیت متناظر در متن اصلی را تغییر دهد

OFB

- شبیه تر به رمز دنبالهای است
- رمز دنبالهای: کلید و متن اصلی XOR میشوند
 - OFB •
- دنباله کلید بر اساس کلید اصلی و مقدار اولیه تولید می شود (مستقل از متن اصلی)
 - متن اصلی با دنباله کلید XOR میشود
 - تفاوت با رمز دنبالهای
 - OFB بر قالبهای کامل متن اصلی (معمولا ۶۴ یا ۱۲۸ بیت) اعمال میشود
 - اکثر رمزهای دنبالهای به صورت بایتی عمل میکنند

(counter mode) سبک شمارنده CTR

- در دهه ۷۰ پیشنهاد شده ولی اخیرا مورد توجه قرار گرفته است
- ATM (asynchronous transfer mode) network security
- IP sec (IP security)

سبک شمارنده (counter mode) سبک شمارنده (CTR

- یک شمارنده به طول قالب متن اصلی (b بیت)
 - SP 800-38A •
- مقدار شمارنده برای هر قالب متن اصلی باید متمایز باشد
- معمولا، مقدار اولیهای برای شمارنده در نظر می گیرند و در هر قالب ۱ واحد به آن در پیمانه 2^b اضافه می کنند
 - زنجیره ندارد
 - رمز گشایی: همان الگوریتم با تفاوت در ورودی XOR
 - مقدار اولیه شمارنده مورد نیاز است

CTR

CTR $C_j = P_j \oplus E(K, T_j) \quad j = 1, \dots, N-1$ $P_j = C_j \oplus E(K, T_j) \quad j = 1, \dots, N-1$ $P_N^* = C_N^* \oplus MSB_u[E(K, T_N)]$ $P_N^* = C_N^* \oplus MSB_u[E(K, T_N)]$

CTR

- مقدار اولیه شمارنده (T_1) باید تکشمار (nonce) باشد
- برای تمام پیامهایی که با کلید یکسان رمز میشوند، مقدار اولیه شمارنده (T_1) باید متمایز باشد σ
 - در طول یک متن اصلی، مقادیر شمارنده (T_i) باید یکتا باشند \bullet

مزایا:

- پیادهسازی سختافزاری و نرمافزاری کارآ
- ۰ رمزگذاری و رمزگشایی قابل موازی سازی است
- پیشپردازش: اجرای واحد رمزگذاری مستقل از متن اصلی و متن رمز شده است
 - در صورت وجود حافظه کافی
- ullet دسترسی تصادفی: میتوان قالب iام ورودی را به طور تصادفی انتخاب و پردازش کرد
 - امنیت قابل اثبات: CTR حداقل به اندازه سایر سبکها امن است
 - تنها استفاده از واحد رمزگذاری: مفید در رمزهای قالبی مانند AES

XTS-AES

- تایید شده توسط NIST در ۲۰۱۰ و استاندارد NIST
 - IEEE Security in Storage Working Group (P1619)

 Output

 Description:
 - امنیت داده ذخیره شده در حافظه
 - Tweakable Block Cipher O

XTS-AES

- استفاده از سبک ECB با مقدار tweak متفاوت در هر قالب
- متن رمز الحدم الحرار شود، متن اصلی بیش از یک بار تکرار شود، متن رمز الحدم یکسان است شده یکسان است

Format-preserving encryption (FPE)

• فرمت متن رمزشده برابر با فرمت متن اصلی باشد

	Credit Card	Tax ID	Bank Account Number
Plaintext	8123 4512 3456 6780	219-09-9999	800N2982K-22
FPE	8123 4521 7292 6780	078-05-1120	709G9242H-35
AES (hex)	af411326466add24 c86abd8aa525db7a	7b9af4f3f218ab25 07c7376869313afa	9720ec7f793096ff d37141242e1c51bd

- کاربرد: امور مالی و اقتصادی، رمزنگاری شفاف و ...
 - مزیت:
 - ۰ رمزنگاری بخشی از داده
 - استفاده از پروتکلها و نرمافزارهای جاری

