C. Cartesiana a C. Polar

NOS DAN LA(S) ECUACIÓN(ES).

- 1. Graficar la(s) ecuación(es).
- 2. Usar las formulas.
- 3. Sacar las rangos en $D = \{(r, \theta) | a \le \theta \le b, c \le r \le d\}$
 - a = Donde empieza el gráfico

b = Hasta donde llega

c = Resultado 1 (normalmente "cero")

d = Resultado 2 (el de la formula)

. Cartesianas	C. Polares			

 $P = (r, \theta)$

CC = Coord. Cartesianas CP = Coord. Polares

Para hallar CP	Para hallar CC
$r^2 = x^2 + y^2$	$x = rcos\theta$
$tan\theta = \frac{y}{x}$	$y = rsen\theta$

Iteradas.
$$f:[a,b]\times[c,d]\to\mathbb{R}$$

$$\int_{a}^{b} \left[\int_{c}^{d} f(x, y) dy \right] dx$$

$$\int_{c}^{d} \left[\int_{a}^{b} f(x, y) dx \right] dy$$

C

 $P = (X_0, Y_0)$

Teorema de Fubini: $f:[a,b]\times[c,d]\to\mathbb{R}$ una función continua, entonces

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy$$

$$\iiint_D F(x, y) dA$$

Integración por Regiones Generales.

NOS DAN LOS VALORES EN EL INTERVALO Y F(X, Y).

- 1. Graficar los valores dados.
- 2. Vemos si es Tipo I o II.
- 3. Reemplazamos en la |

Una forma de saberlo sin traficar es viendo nos estaban hablando de una función con respecto a x o y.

•				
	Tipo I	Tipo II		
	$D = \left\{ a \le x \le b g(x) \le y \le f(x) \right\}$	$D = \left\{ c \le y \le d g(y) \le x \le f(y) \right\}$		
	$\int_{a}^{b} \int_{g(x)}^{f(x)} F(x, y) dy dx$	$\int_{c}^{d} \int_{g(y)}^{f(y)} F(x, y) dx dy$		

$$\iiint_D f(x, y) dA$$

$$\iint_{D} f(x,y)dA \qquad \qquad \iint_{D^{*}} f(rCos\Theta, rSen\Theta)rdrd\Theta$$

Integración en CP.

NOS DAN LA INTEGRAL Y LA ECUACIÓN.

- 1. Hacer Integración por Regiones Generales.
- 2. Al ya tener $D = \dots$ reemplazar en las integrales.
- 3. Hacer Integrales Iteradas.

Función en tres variables	
$w = f(x, y, z) = x^2 + y^2 + z^2$	$\iiint_{\mathbf{\Omega}} f(x, y, z) dV$

Orden de Integración.

Región Tipo I	Región Tipo II	Región Tipo III
$f(x,y) \le z \le g(x,y)$	$f(x,z) \le y \le g(x,z)$	$f(y,z) \le x \le g(y,z)$
$\Omega = \left\{ (x, y, z) \mid a \le x \le b, r(x) \le y \le s(x), f(x, y) \le z \le g(x, y) \right\}$	$\Omega = \left\{ (x, y, z) (x, z) \epsilon D, f(x, z) \le y \le g(x, z) \right\}$	$\Omega = \left\{ (x, y, z) (y, z) \epsilon D, f(y, z) \le x \le g(y, z) \right\}$
$\iiint_{\Omega} f(x, y, z) dV \longrightarrow dz \stackrel{dydx}{\longleftrightarrow} dxdy$	$\iiint_{\Omega} f(x, y, z) dV \longrightarrow dy \left\langle \begin{array}{c} dz dx \\ dx dz \end{array} \right.$	$\iiint_{\Omega} f(x, y, z) dV \longrightarrow dx \stackrel{dzdy}{\longleftrightarrow} dydz$
$\int_{a}^{b} \int_{r(x)}^{s(x)} \int_{f(x,y)}^{g(x,y)} f(x,y,z) dz dA$	$\iiint_{D} \left[\int_{f(x,z)}^{g(x,z)} f(x,y,z) dy \right] dA$	$\iint_{D} \left[\int_{f(y,z)}^{g(y,z)} f(x,y,z) dx \right] dA$
g(x,y) $f(x,y)$ D	f(x,z) Q $g(x,z)$	g(y,z) $f(y,z)$

NOS DAN LAS ECUACIONES.

- 1. Ver cuál es la región en el plano que este al otro lado de la ecuación z = ... y = ... x = ...
- 2. Sacar $D = \left\{ a \le x \lor y \lor z \le b, f(x \lor y \lor z) \le x \lor y \lor z \le g(x \lor y \lor z) \right\}$
- 3. Ya tendría la parte de $\iint_D [\dots] dA$
- 4. Graficar en el plano 3D con la siguiente ecuación.
- 5. Sacar $\Omega = \{(x, y, z) | (x \lor y \lor z) \in D, f(x \lor y \lor z, x \lor y \lor z) \le y \le g(x \lor y \lor z, x \lor y \lor z) \}$
- 6. Reemplazar en $\iiint_{\Omega} 1 dV$

 $\operatorname{Si} f(x, y, z) = 1 \operatorname{siendo} \iiint_{\Omega} 1 dV = V(\Omega)$ Estamos calculando el volumen de la integral.

CC1 = Coord. Cartesianas CC2 = Coord. Cilindrica

Integración en Coord. Cilíndricas.

NOS DAN LAS ECUACIONES.

- 1. Notar que (r, θ, z) es como decir en CP $(r, \theta, 0)$
- 2. Reemplazar de CC1 (x, y) a CP (r, θ)

3. Sacar
$$D = \{(r, \theta) | a \le r \le b, c \le \theta \le d\}$$

4. Sacar
$$\Omega = \{(r, \theta, z) \, | \, (r, \theta) \epsilon D, e \leq z \leq f \}$$
 (Es solo agregar z)

5. Reemplazar en
$$\iiint_{E^*} f(rCos\theta, rSen\theta, z)rdV^*$$

NOS DAN LA INTEGRAL.

- 1. Sacar $D = \{(r, \theta) | a \le r \le b, c \le \theta \le d\}$
- 2. Sacar $\Omega = \{(r, \theta, z) \, | \, (r, \theta) \epsilon D, e \leq z \leq f \}$ (Es solo agregar z)
- 3. Reemplazar en $\iiint_{F^*} f(rCos\theta, rSen\theta, z)rdV^*$

Coord. Cartesianas Coord. Cilindrica $\iiint_{E} f(x, y, z) dV \qquad \iiint_{E^*} f(rCos\theta, rSen\theta, z) r dV^*$

 $dzdrd\theta$