DM vacances février

Exercice 1. Revoir les régles de calculs sur exp et ln 1 et leurs graphes et leurs limites...

Correction 1. A vous de travailler!

Exercice 2. Calculer les limites suivantes

1.
$$\lim_{x\to 1} \frac{x-1}{\cos(\frac{\pi x}{2})}$$

$$2. \lim_{x \to 0} \frac{x \ln(x)}{e^x - 1}$$

3.
$$\lim_{x \to +\infty} \frac{\ln(x^2)}{\ln(x+1)}$$

4.
$$\lim_{x\to+\infty} \frac{\ln(x)e^{x^2}}{x^x}$$

Correction 2.

1. (FI $\frac{0}{0}$ - pas nécessaire sur une copie) On fait un changement de variable : y=x-1.

$$\frac{x-1}{\cos(\frac{\pi x}{2})} = \frac{y}{\cos(\frac{\pi y}{2} + \frac{\pi}{2})} = -\frac{y}{\sin(\frac{\pi y}{2})}$$

Or $\sin(u) \sim u$ et $\lim_{y\to 0} \frac{\pi y}{2} = 0$ donc, $\sin(\frac{\pi y}{2}) \sim \frac{\pi y}{2}$. Ainsi

$$\lim_{x \to 1} \frac{x - 1}{\cos(\frac{\pi x}{2})} = \lim_{y \to 0} -\frac{y}{\sin(\frac{\pi y}{2})} = -\frac{2}{\pi}.$$

2. (FI $\frac{0}{0}$ - pas nécessaire sur une copie) D'après le cours $e^x - 1 \sim x$ donc $\frac{x \ln(x)}{e^x - 1} \sim \ln(x)$ Ainsi :

$$\lim_{x \to 0} \frac{x \ln(x)}{e^x - 1} = -\infty.$$

3. (FI $\frac{+\infty}{+\infty}$ - pas nécessaire sur une copie) $\ln(x^2) = 2\ln(x)$ et $\ln(x+1) = \ln(x) + \ln\left(1 + \frac{1}{x}\right) \sim \ln(x)$. Donc

$$\lim_{x \to +\infty} \frac{\ln(x^2)}{\ln(x+1)} = 2$$

4. (FI $\frac{\pm \infty}{+\infty}$ - pas nécessaire sur une copie) La puissance est une fonction de la variable x, on passe donc à la forme exponentielle : $x^x = \exp(x \ln(x))$.

$$\frac{\ln(x)e^{x^2}}{x^x} = \frac{\ln(x)\exp(x^2)}{\exp(x\ln(x))}$$
$$= \ln(x)\exp(x^2 - x\ln(x))$$
$$= \ln(x)\exp(x(x - \ln(x)))$$

Or $x - \ln(x) \to_{+\infty} + \infty$ par croissance comparée. Donc $\exp(x(x - \ln(x))) \to_{+\infty} + \infty$ et finalement

$$\lim_{x \to +\infty} \frac{\ln(x)e^{x^2}}{x^x} = +\infty.$$

Exercice 3. Donner des équivalents simples de

- 1. Quand $x \to 1$ de $\frac{\ln(x)}{\sqrt{x^2-1}}$
- 2. Quand $x \to 0$ de $\frac{x \ln(x)}{e^x 1}$
- 1. $(\exp(a+b) = \exp(a) \exp(b), \ln(ab) = \ln(a) + \ln(b)...)$

3. Quand
$$n \to +\infty$$
 de $\sum_{k=0}^{2n} (k^2 + k)$

Correction 3.

1. On fait un changement de variable y = x - 1, on obtient

$$\frac{\ln(x)}{\sqrt{x^2 - 1}} = \frac{\ln(y + 1)}{\sqrt{y^2 + 2y}}$$

Or $\ln(y+1) \sim y$ et $\sqrt{y^2+2y} = \sqrt{y(y+2)} \sim \sqrt{2}\sqrt{y}$ Donc

$$\frac{\ln(y+1)}{\sqrt{y^2+2y}} \sim \frac{y}{\sqrt{2}\sqrt{y}} \sim \frac{\sqrt{y}}{\sqrt{2}}.$$

On revient à la variable x:

$$\frac{\ln(x)}{\sqrt{x^2 - 1}} \sim \frac{\sqrt{x - 1}}{\sqrt{2}}$$

2. On a déjà vu cette expression à l'exercice précédent : on obtient

$$\frac{x\ln(x)}{e^x - 1} \sim \ln(x).$$

3.

$$\sum_{k=0}^{2n} k^2 + k = \sum_{k=0}^{2n} k^2 + \sum_{k=0}^{2n} k$$

$$= \frac{2n(2n+1)(2(2n)+1)}{6} + \frac{2n(2n+1)}{2}$$

$$= \frac{16n^3 + R(n)}{6} + \frac{4n^2 + 2n}{2}$$

où R est un polynôme (que je n'ai pas envie de calculer) de degré inférieur strictement à 3. Or en $+\infty$ une fonction polynomiale est équivalent à son terme de plus haut degré, on a donc :

$$\frac{16n^3 + R(n)}{6} + \frac{4n^2 + 2n}{2} \underset{+\infty}{\sim} \frac{16n^3}{6}$$

D'où

$$\sum_{k=0}^{2n} k^2 + k \sim \frac{8n^3}{3}$$

Exercice 4. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$\begin{cases} u_0 = 2 \\ u_{n+1} = 1 + \frac{1}{u_n} \end{cases}$$

- 1. Calculer u_1 .
- 2. Etudiez la fonction $f: x \mapsto 1 + \frac{1}{x}$. (Domaine de définition, limites et variations)
- 3. Résoudre f(x) = x. On note α l'unique solution dans \mathbb{R}_+^* .
- 4. Montrer que $u_1 < \alpha < 2$.
- 5. On note $I = [1, \alpha]$ et $J = [\alpha, 2]$. Montrer que $f(I) \subset J$ et $f(J) \subset I$.
- 6. On considère les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par

$$a_n = u_{2n}$$
 $b_n = u_{2n+1}$.

Enfin on note A la fonction définie pour tout x par $A(x) = f \circ f(x)$. Montrer que $a_{n+1} = A(a_n)$. On peut montrer de manière similaire que $b_{n+1} = A(b_n)$, on ne demande pas de le prouver.

- 7. Soit F une fonction réelle. Soient \mathcal{E} et \mathcal{F} deux sous-ensembles de \mathbb{R} . Montrer que si $\mathcal{E} \subset \mathcal{F}$ alors $F(\mathcal{E}) \subset F(\mathcal{F})$. En déduire que I est stable par A. De même, on pourrait montrer que J est stable par A, on ne demande pas de le prouver.
- 8. Montrer que pour tout $x \in D_f$, $A(x) x = \frac{-x^2 + x + 1}{x + 1}$
- 9. Résoudre $A(x) \ge x$ sur $]0, +\infty[$.
- 10. En déduire que $(a_n)_{n\in\mathbb{N}}$ est décroissante et $(b_n)_{n\in\mathbb{N}}$ est croissante.
- 11. Montrer que $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ convergent, calculer leur limite.
- 12. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge et calculer sa limite.
- 13. (a) Ecrire une fonction Python u qui prend en paramètre un entier n et qui renvoie la valeur de u_n
 - (b) Ecrire une fonction Python limiteu qui prend en paramètre un reel $\epsilon > 0$ et qui renvoie la valeur de du premier rang $n_0 \ge 0$ tel que $|u_{n_0} \ell| \le \epsilon$

Correction 4.

- 1. $u_1 = \frac{3}{2}$
- 2. L'ensemble de définition est \mathbb{R}^* . f est dérivable sur son ensemble de définition et

$$f'(x) = \frac{-1}{x^2}$$

On obtient le tableau de variation suivant

x	$-\infty$	0	$+\infty$
f(x)	1	+∞	1

- 3. $\frac{1}{x} + 1 = x \iff x^2 1 x = 0$ Dont les solutions sont $\{\frac{1 \pm \sqrt{5}}{2}\}$. L'unique solution dans \mathbb{R}^+ est $\alpha = \frac{1 + \sqrt{5}}{2}$
- 4. $\frac{1+\sqrt{5}}{2} \le 2 \iff \sqrt{5} \le 3 \iff 5 \le 9$ qui est vrai. $u_1 \le \frac{1+\sqrt{5}}{2} \iff 2 \le \sqrt{5} \iff 4 \le 5$ qui est vrai.
- 5. $f(\alpha) = \alpha$, $f(2) = \frac{3}{2}$. comme f est décroissante sur J on a bien pour tout $x \in J$ $f(2) \le f(x) \le f(\alpha)$. Donc

$$\frac{3}{2} \le f(x) \le \alpha.$$

Comme $1 \leq \frac{3}{2}$ on a bient $f(J) \subset I$.

Un argument similaire montre que pour tout $x \in I$ on a :

$$\alpha = f(\alpha) < f(x) < f(1) = 2$$

et ainsi $f(I) \subset J$.

6. $\forall n \in \mathbb{N}$:

$$A(a_n) = f \circ f(a_n) = f \circ f(u_{2n}) = f(u_{2n+1}) = u_{2n+2} = a_{n+1}$$

7. On suppose donc que $\mathcal{E} \subset \mathcal{F}$. Soit $y \in F(\mathcal{E})$ c'est à dire qu'il existe $x \in \mathcal{E}$ tel que f(x) = y Comme $\mathcal{E} \subset \mathcal{F}$, on a $x \in \mathcal{F}$, donc $y = f(x) \in \mathcal{F}$. Ainsi en tuilisant la question 5 on obtient :

$$f \circ f(I) \subset f(J) \subset I$$

- 8. $A(x) = f(f(x)) = f(1 + \frac{1}{x}) = 1 + \frac{1}{1 + \frac{1}{x}} = \frac{2x+1}{x+1}$ Donc $A(x) x = \frac{2x+1}{x+1} x = \frac{2x+1-x^2-x}{x+1} = \frac{-x^2+x+1}{x+1}$
- 9. $A(x) x \ge 0 \iff \frac{-x^2 + x + 1}{x + 1}$ dont les solutions sur \mathbb{R}_+^* sont $S =]0, \alpha[$.

10. $a_0 = u_0 \in J$, comme J est stable par A on déduit par récurrence que $\forall n \in \mathbb{N}, \ a_n \in J$. De même comme $u_1 = v_1 \in I$, et I est stable par A on déduit que $\forall n \in \mathbb{N}, \ b_n \in I$. Pour tout $n \in \mathbb{N}$ on a

$$a_{n+1} - a_n = A(a_n) - a_n$$

Comme $A(x) - x \le 0$ sur J et $a_n \in J$, on a bien $a_{n+1} - a_n \le 0$ donc $(a_n)_{n \in \mathbb{N}}$ est décroissante. De même, pour tout $n \in \mathbb{N}$ on a

$$b_{n+1} - b_n = A(b_n) - b_n$$

Comme $A(x) - x \ge 0$ sur I et $b_n \in I$, on a bien $b_{n+1} - b_n \ge 0$ donc $(b_n)_{n \in \mathbb{N}}$ est croissante.

- 11. Les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont monotones et bornées. Elles sont donc convergentes d'après le théorème de la limite monotone. Notons ℓ_a la limite de $(a_n)_{n\in\mathbb{N}}$ et ℓ_b la limite de $(b_n)_{n\in\mathbb{N}}$ (Nous n'avons pas montré que ces suites étaient adjacentes, nous ne pouvons pas directement dire que les limites sont identiques) Par unicité de la limite $\lim_{n\to infty} a_{n+1} = \ell_a$. Comme A est continue sur \mathbb{R}_+ on a $\lim_{n\to\infty} A(a_n) = A(\ell_a)$. Ainsi ℓ_a vérifie $A(\ell_a) = \ell_a$. on a vu à la quetsion 9 que cette avait pour unique solution $\ell_a = \alpha = \frac{1+\sqrt{5}}{2}$. Le même argument montre que $\ell_b = \alpha$.
- 12. Les deux suites extraites u_{2n} et u_{2n+1} convergent et ont même limite. La suite $(u_n)_{n\in\mathbb{N}}$ est donc aussi convergent et a pour limite α .

```
131 from math import *
  2 def u(n):
     x=0
      for i in range(n):
        x = 1 + 1/x
       return(x)
   def limiteu (epsilon):
     n=0
      l = (1 + sqrt(5))/2
 10
      while abs(u(n)-1)>epsilon:
 11
        n=n+1
 12
      return(n)
 13
 14
   def limiteu2 (epsilon): #autre solution
 15
 16
      l = (1 + sqrt(5))/2
 17
      u=2
 18
      while abs(u-1)>epsilon:
 19
        n=n+1
 20
        u=u+1/u
 21
      return(n)
 22
 23
 24
   def limiteab (epsilon):
 25
 26
      while abs(u(2*n)-u(2*n+1))>epsilon:
 27
        n=n+1
 28
      return(n)
 29
```