Prácticas de Entornos Virtuales

Juan Carlos Torres

27 de marzo de 2017

Capítulo 5

Simulación

El objetivo de esta práctica es aprender a utilizar el motor de física de Blender.

5.1. Introducción

El motor de juegos de Blender integra el motor físico Bullet para realizar simulaciones. Bullet permite calcular colisiones e interacciones entre objetos rígidos y elásticos, simulación de telas, fluidos y sistemas de partículas.

Las propiedades físicas de los objetos se ajustan en la ventana de propiedades, dentro de la pestaña física.

En la pestaña *mundo* se ajustan los parámetros globales del motor de física, como el valor de la gravedad y los parámetros internos del sistema de integración (número de pasos de cálculo, velocidad para considerar un objeto parado, etc.

5.2. Tipos de objetos

El motor de física puede tratar a los componentes de la escena de diferente forma. Entre los tipos de objetos se encuentran:

Static: Un objeto estático está inmóvil en el escenario

Rigidbody: Su posición orientación es calculada por el motor de física

Dynamic: El motor de física modifica su posición pero no si orientación

Softbody: El objeto es deformable

El comportamiento se define en el panel de propiedades, en la pestaña de física (figura 1).

Figura 1: Escena simple

Figura 2: Cambiando el comportamiento físico.

Para comprobar el comportamiento de estos tipos crea una escena como la de la figura 1, deja el cubo inferior como rígido y prueba los distintos comportamientos para el cubo superior. Luego crea una esfera en el lugar del cubo superior y declárala como objeto deformable.

En el comportamiento físico del objeto puede ajustarse también el cálculo de colisiones para el objeto seleccionado.

5.3. Restricciones

Las restricciones (constraints) son relacciones mecánicas entre objetos. Se definen en la pestaña constraints. Las restricciones se pueden usar para limitar el movimiento de los objetos, o forzarlos a seguir un camino. En esta práctica vamos a utilizar las restricciones que define uniones mecánicas (rigid body joints). Entre estas tenemos:

Ball: Los dos objetos están unidos por una articulación tipo rotula

Hinge: Los dos objetos están unidos por una bisagra

Generic6DOF: Permite cualquier giro y modificación de la distancia

La figura 2 muestra los tipos de restricciones de uniones mecánicas.

Los límites de movimiento y los ejes de giro, en su caso, se fijan en las propiedades de la restricción. Para definir la restricción se selecciona el objeto padre, y se le asocia la restricción usando el objeto móvil como target.

Prueba a definir los distintos tipos de restricciones en un escenario simple con dos cubos.

5.4. Integración en el modelo

Añade comportamiento físico a tu escena (la que creaste en las prácticas anteriores). Incluye diferentes tipos de objetos y al menos una restricción.

5.5. Documentación a entregar

- Memoria de la práctica.
- Modelos en formato Blender.

5.6. Evaluación

En la práctica se evaluarán los siguientes aspectos:

- Complejidad y corrección.
- Acabado.
- Documentación.

Cada uno de estos aspectos se evaluará con un máximo de 4 puntos, la nota de la práctica se evalúa sobre 10.

Bibliografía

- [1] Joaquín Herrera Goás: Guia de iniciación a Blender. https://joaclintistgud.wordpress.com/2009/11/27/blender-guia-de-iniciacion-para-recien-llegados-adaptada-a-la-version-2-5/
- [2] John M. Blain: "The Complete Guide to Blender Graphics: Computer Modeling and Animation". A K Peters/CRC Press, 2012
- [3] Blender manual. http://wiki.blender.org/index.php/Doc:2.6/Manual/
- [4] D. Felinto, M. Pan: "Game Development with Blender". Cengage Learning 2014.