LXSDF T2A

LX Serial Data Format Type 2A

Doc. ID. LXD10 V1

Release Date. 2017-04-01.

Abstract - 다채널 실시간 스트림데이터, 비스트림 데이터 전송 가능한 범용 시리얼 통신 규격, 모든 시리얼 통신매체 UART (RS-232), 와이파이, 블루투스, 이터넷 등 에서 적용가능.

목차

LXSDF T2A 개요	3
T2A 패킷 필요성	
T2A 패킷	5
동기바이트(SYNC BYTES) : T2A PACKET 핵심개념	5
T2A 패킷요소 정의	6
스트림 모드와 비스트림모드 차이점	7
스트림 패킷	7
PPD (Packet Property Data)	
PC (Packet Count) CRD (Command Response Data)	
PUD 0, PUD 1, PUD 2 (Packet Unit Data)	
PCDT (Packet Cyclic Data Type)	8
LXSDF T2A 시스템 지정 PCD 데이터	
ComPath	
비스트림 패킷	
PPD (Packet Property Data)PBS (Packet Byte Size)	
IID (Information Identification Data)	
프로그래밍 가이드	11
REVISION HISTORY	12

LXSDF T2A 개요

다채널 실시간 스트림데이터, 비스트림 데이터 전송 가능한 범용 시리얼 통신 규격, 모든 시리얼 통신매체 UART (RS-232), 와이파이, 블루투스, 이터넷 등 에서 적용가능.

T2A Packets for Stream & Non-Stream Communications

LX Serial Data Format Type 2A

T2A 패킷 필요성.

시리얼 통신매체 UART 예 설명.

본 글에서의 시리얼 통신매체 UART 라 함은 임베디드 분야에서는 UART (Universal Asynchronous Receiver & Transmitter), PC 나 스마트 폰 등에서는 COM 포트, 시리얼포트, RS232 등으로 불린다. UART 와 같은 시리얼 통신매체 의 기본 통신 규격은 1 바이트 단위로 반복 전송되는 형식이며 바이트들 사이의 데이터 속성 구분 정보는 UART 기본 규격에서는 정의되어있지 않다.

시리얼 통신매체 기반 통신 기능 구현 시 기본 시리얼 통신규격대로 1 바이트 단위로만 반복 전송하는 경우는 극히 드물다. 예로 12 비트 AD 변환 샘플링 데이터를 전송해야 하는 경우에는 4 비트, 8 비트로 분리해서 시리얼 통신 2 개 바이트에 분리하여 전송해야하며, 수신한 측에서는 이를 다시 12 비트 의 AD 변환값으로 통합해야한다. 전송해야할 데이터 종류가 다양한 경우에는 패킷개념 요구.

즉, 여러 개의 바이트를 1개의 패킷으로 핸들링 할 수 있는 규격이 요구되며, 미리 정의된 패킷 규격에 따라 송신하고, 수신한 측에서는 패킷 규격에 따라 수신한 데이터를 분리해서 활용하게된다. 패킷형식의 규격은 사용하는 용도에 따라 다양한 규격이 있을 수 있으며, LXSDF T2A 에서는 고속의 실시간 다채널 실시간 스트림 데이터를 전송 가능함과 동시에 장치의 상태정보, 간헐적 계산값, 기타 비스트림 형식의 데이터열 모두를 핸들링 가능한 범용 시리얼 통신 데이터 포맷.

LXSDF T₂A 는 극단적으로 단순한 구조, 데이터 전송률 손실 최소화 설계되어 초소형 사물 인터넷 기기부터 대형 시스템 까지 적용하기 쉬운 최적의 통신 규격이다.

T2A 패킷

동기바이트(Sync Bytes): T2A packet 핵심개념

장치에서 송신한 데이터를 수신하는 호스트측에서는 패킷의 첫시작점을 파악할 수 있는 수단이 필요하다. LXSDF T2A 패킷에서는 동기바이트로 각 패킷 전송 초기 2 개 바이트를 사용하며, 첫 1 바이트에는 255, 연속해서 다음 바이트에는 254 의 값이 기록되어있다. 즉 패킷 전체 바이트열 중에서 연속해서 255 와 254 가 등장하는 지점은 동기바이트가 유일하도록 설계되어 있다.

장치에서 데이터 전송시 항상 이 규격에 맞게 데이터를 호스트로 전송한다. 수신측에서는 전송되어 오는 각각의 단위 바이트들을 상시 모니터링 하여 동기 바이트를 검출하는 것으로 1 패킷의 시작점을 찾을 수 있다. 시작점을 찾게 되면 LXSDF T2A 패킷 규칙에 의거하여 필요한 데이터들을 프로그램에서 추출할 수 있게 된다.

아래 그림에서 1 패킷의 가장 첫부분에 주황색으로 표시된 부분에는 항상 패킷의 첫지점을 나타내는 동기바이트가 2 바이트 할당 되어 있고, 그 이후에 일련의 바이트 단위의 데이터들이 연속 전송된다.

T2A 패킷요소 정의.

아래 표에 T2A 패킷 요소들 정의 되어있으며, 각각의 인덱스가 1 바이트를 점하며 시리얼 전송시 인덱스 0, 1, 2, 1... 순서로 전송하게 된다. 각 패킷 인덱스 별로 탑재가능한 값이 컬럼 Value 에 정의되어있다.

Index	Value	Packet Element Name for Stream Mode	Packet Element Name for Non=Stream Mode
0	255	SyncByte0 (Synchronization Byte 0)	
1	254	SyncByte1 (Synchronization Byte 1)	
2	0~254	PPD (Packet Property Data). 0~15 : Stream Mode, 16~254 : Non-Stream Mode.	
3	0~254	PUD0 (Packet Unit Data 0)	PBS (Packet Byte Size)
4	0~255	PC (Packet Count)	IID (Information ID)
5	0~253	PUD 1 (Packet Unit Data 1) .	
6	0~255	PCD (Packet Cyclic Data) .	
7	0~253	CRD (Command Response Data). bit 6	
		PUD2 (Packet Unit Data 2). bit 5,4,3	
		PCDT (Packet Cyclic Data Type). bit 2,1,0	
8	0~253	PSD1 (Packet Stream Data High Byte) .	
9	0~255	PSD0 (Packet Stream Data Low Byte) .	
10	0~253	PSD1 (Packet Stream Data High Byte) .	
11	0~255	PSD0 (Packet Stream Data Low Byte) .	
N-1	0~253	PSD1 (Packet Stream Data High Byte) .	
N	0~255	PSD0 (Packet Stream Data Low Byte)	

Color	Description
	스트림, 비스트림 모드에서 공통적인 패킷 요소들.
	다채널 스트림 데이터 탑재영역. 최대 채널 수 임의 확장 가능. 대표적인 멀티 채널 스트림 데이터 소스 :
	다채널 ADC 변환 값들.

스트림 모드와 비스트림모드 차이점.

Packet Index	Stream Mode	Non-Stream Mode
2	PPD : available value 0 ~ 15	PPD : available value 16 ~ 254
3	PUD0 : general data allocated. PBS : Packet Byte Size allocated.	
4	PC: +1 for each packet. IID: Information ID allocated.	
6	PCD : PCD data is allocated each PC. general data allocated.	
7	PCDT : means PCD type. general data allocated.	
8 and over	PSD: real time stream data allocated. general data allocated.	

패킷 바이트 크기.

- 스트림 모드인 경우: 선정의된 고정 크기 (예. 16, 32, ...)를 가지며 응용에 따라 다른 값을 가질 수 있다.
- 비스트림 모드인 경우: 매번의 패킷 마다 패킷 사이즈는 다를 수 있으며, 패킷인덱스 3(PBS)에 패킷 사이즈가 기록되어있다.

스트림 패킷.

PPD (Packet Property Data)

PPD 값이 $o \sim 15$ 사이 값인 경우 스트림 모드, 즉 패킷 인덱스 8 번 이후 PSD 에 스트림 데이터가 배치되어 전송중임을 의미.

PC (Packet Count)

매번의 패킷 전송시 +1 증가되어 최대값 이후 다시 o 부터 시작.

패킷의 PCD 값은 PC 값에 따라 다른 값을 의미. 즉, PC 1 일때 PCD 값 (PCD[1] 로 표기.)와 PC 2 일때 PCD 값은 다른 의미의 데이터 할당가능.

PCD Type (PCDT) 값에 따라 PC 의 최대값은 다를 수 있다. PCDT 값이 o 인 경우의 PC 최대값은 31.

CRD (Command Response Data)

통신 상대방의 Command 수신시 1 비트 점하는 CRD 값을 반전 하여 전송. 통신 상대방이 자신이 보낸 커맨드 수신여부 확인시 사용.

PUD 0, PUD 1, PUD 2 (Packet Unit Data)

LXSDF T2A 를 도입한 제품에 따라 제품특화된 데이터들이 배치되며, 1 패킷 단위로 전송가능하므로 고속전송이 요구되는 데이터 배치에 적합.

PCDT (Packet Cyclic Data Type)

PCDT 값에 따라 패킷카운트 PC 최대값이 달라지며, 또한 PCDT 값에 따라 패킷순환데이터로 전달되는데이터가 달라진다.

장치 전원온 초기상태는 PCDT 값은 항상 o 이며, 상황에 따라 PCD 모드 값이 1,2,3 등의 다른 값으로 변경되어도, 해당모드의 데이터 전송이 1 회 완료 되면 다시 자동으로 PCDT 값은 o 으로 변경된다. 데이터 전송의 1 회 완료란 PC = o 에서 시작하여 PC 의 최대값이 될 때까지이다.

PCDT	PC (Packet Count) Maximum	Data
0	31	LXSDF T2A 전용 시스템 정의 데이터.
1	Depends on each products	
2	Depends on each products	
3	Depends on each products	
4	Depends on each products	
5	Depends on each products	
6	Depends on each products	
7	Depends on each products	

LXSDF T2A 시스템 지정 PCD 데이터.

PCD Type o 의 PC o 에서 29 까지는 제품 특화된 데이터를 전송할 수 있는 구간이며, PC 20 에서 PC 31 까지는 시스템 지정 데이터 영역이다. 아래 표에 시스템 지정 데이터 의미 정리.

PCD[PC]	Item	Description
PCD[31]	Com port search	고정 109. 본 패킷이 LXSDF T2A 임을 의미.
	information	
PCD[30]	LXDeviceID	기기 식별 아이디. 가능 값 : 1 ~ 255.
PCD[29]	ComFirmInfo1	펌웨어 아이디 와 버전 (기기내장 프로세서 1)
PCD[28]	Number of channel	패킷의 스트림 영역에 전송되는 채널 수
PCD[27]	Number of samples	패킷의 스트림 영역에 전송되는 샘플링 수
PCD[26]	ComPath	패킷이 전달된 통신매체 식별용.
PCD[25]	ComFirmInfo2	펌웨어 아이디 와 버전 (기기내장 프로세서 2)
PCD[24]	ComFirmInfo3	펌웨어 아이디 와 버전 (기기내장 프로세서 3)
PCD[23]	-	reserved
PCD[22]	-	reserved
PCD[21]	-	reserved
PCD[20]	-	reserved

ComPath

데이터가 어떤 통신경로로 전송되었는지 표식용으로 사용된다. 이는 1개의 기기에서 동일 패킷을 동시에 2개 이상의 통신경로로 LXSDF T2A 형식의 데이터 전송 가능하며, 이를 수신한 호스트 측에서 통신경로를 확인하고자 할 때 ComPath 의 값 참조한다.

Compath Value	Communication Path	
0	UART	
1	JSB CDC	
2	Bluetooth SPP(Serial Peripheral Profile)	
3	Bluetooth Low Energy SPS	

비스트림 패킷

PPD (Packet Property Data)

PPD 값이 16~254 범위의 값인 경우,현재 패킷은 비스트림임을 의미.

선정의된 PPD 값들.: 32, 34, 48, 64, 128 은 아래 같은 방식으로만 사용 가능.

- 32: 데이터 송신. 상대방에게 결과 요청하지 않는 데이터 송신.
- 34: 데이터 송신. 상대방에게 결과 요청하는 데이터 송신.
- 48: PPD 34 수신한 기기에서는 PPD 48 로 결과 응답 송신.
- 64: 데이터 요청.
- 128: PPD 64 수신한 기기에서는 PPD 128 로 응답 데이터 송신.

PBS (Packet Byte Size)

현재 송신한 패킷의 바이트 단위의 패킷 사이즈 기록. 패킷 바이트 사이즈는 최대 패킷인덱스 -1의 값을 갖는다.

IID (Information Identification Data)

패킷에 탑재된 정보 식별용 고유번호.

프로그래밍 가이드

LXSDF T2A 규격도입된 기기와 통신하기 위한 호스트 측의 프로그램 전체 구조를 아래 그림에 보이고 있다. 가장 먼저 com 포트 오픈 부터 시작 한다.

- 1.COM Read Bytes: com 포트에서 순차적으로 수신된 바이트열들 읽기.
- 2.LXSDF T2A Packet Extraction : 패킷의 시작점을 의미하는 SyncByte (255, 254 순으로 데이터 배치되어 있음) 검출하여 패킷단위 분리.
- 3.LXSDF T2A Take elements : packet 요소들을 분리. 본 과정에서 확보된 각 패킷 요소들은 제품별로 그 의미가 다를 수 있다.
- 4.Get device providing data: 제품별 데이터 배치 정보 문서 참조하여 기기에서 제공하는 정보 확보.

Revision History

Release Date	Doc. ID	Description of Change
2017-04-01	LXD10 V1	Simplifying the document.
2015-08-25	LXD10 Vo	First release