Clifford 代数を用いた 高次 Hopf fibration $S^3 \hookrightarrow S^7 \to S^4$ の構成

adhara_mathphys

2024年5月26日

目次

1	はじめに	2
2	四元数体とその上の行列代数	2
2.1	四元数体 🏻	2
2.2	四元数体上 Π の行列代数 $\Pi(n)$	3
3	Clifford 代数	4
3.1	Clifford 代数 $Cl_{p,q}$	4
3.2	今回の主役である Clifford 代数 $Cl_{4,0}$	4
4	コンパクトシンプレクティック Lie 群	5
4.1	コンパクトシンプレクティック Lie 群 $Sp(n)$	5
4.2	$Sp(n)$ と $\mathbb{H}(n)$ の関係	5
4.3	$Cl_{4,0}$ から構成される $\mathfrak{sp}(2), Sp(2)$	6
5	$Sp(2)$ を用いた S^7 の構築	6
6	$Sp(2)$ の S^4 への作用	7
7	高次 Hopf fibration $S^3 \hookrightarrow S^7 \to S^4$	8
7.1	Ψ が全射であること	9
7.2	ファイブレーション $S^3 \hookrightarrow S^7 \to S^4$ の構成	10
会老 立	abter and the state of the st	10

1 はじめに

Hopf fibration [1, 2] は以下のように球面間において定義される写像 h である:

$$h: S^3 \to S^2: (a, b, c, d) \mapsto (a^2 + b^2 - c^2 - d^2, 2(ad + bc), 2(bd - ac)).$$
 (1)

この写像を用いることにより、 S^3 は底空間を S^2 ,ファイバーを S^1 とするファイバー東と見ることができる:

$$S^1 \hookrightarrow S^3 \xrightarrow{h} S^2. \tag{2}$$

Hopf fibration は、数学や物理でしばしば現れる.物理への応用としては例えば、水素原子のSchrödinger 方程式を四次元等方調和振動子のSchrödinger 方程式に変換する Kustaanheimo-Stiefel 変換 [3], Bloch 球 [4] を用いた二準位系の量子状態の理解、といったもので用いられる.

異なる次元の球面間においても Hopf fibration と同様の写像が存在するが、以下のものに限られることが知られている [1]:

$$S^0 \hookrightarrow S^1 \to S^1, \tag{3}$$

$$S^1 \hookrightarrow S^3 \to S^2,\tag{4}$$

$$S^3 \hookrightarrow S^7 \to S^4, \tag{5}$$

$$S^7 \hookrightarrow S^{15} \to S^8. \tag{6}$$

本ノートで話題とするのは Hopf fibration の高次元版の一つである,

$$S^3 \hookrightarrow S^7 \to S^4 \tag{7}$$

についてである。この高次元版 Hopf fibration の物理的な応用例としては,5 次元水素原子の問題を8 次元等方調和振動子の問題に結びつける手法やそれらの拡張モデルに関する手法 [5], 2 つの二準位系におけるエンタングルメントの理解 [6], などがある。

なお、今回のノートの話題とは直接は関係ないが、Hopf fibration とは異なる S^4 上 S^3 ファイバー束として、最初に発見された *1 エキゾチック球面がある [7].

本ノートでは高次元 Hopf fibration $S^3 \hookrightarrow S^7 \to S^4$ を Clifford 代数 $Cl_{4,0}$ を用いて構成する. そのための道具立てとして,四元数体やその上の行列代数,Clifford 代数,コンパクトシンプレクティック Lie 群,といったものについて簡単に説明する.

2 四元数体とその上の行列代数

2.1 四元数体 Ⅲ

四元数体

$$\mathbb{H} := \{ a_0 + a_1 i + a_2 j + a_3 k | a_0, a_1, a_2, a_3 \in \mathbb{R} \}$$
(8)

^{*1} Milnor が発見したとのことである.

は 1,i,j,k を基底とする, $\mathbb R$ 上代数である.ただし,1 は単位元であり,任意の $a\in\mathbb H$ に対して,1a=a1=a を満たし,また, $i,j,k\in\mathbb H$ は四元数体の虚数単位であり,

$$i^2 = j^2 = k^2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j$$

のような積の関係式を満たす.四元数体 Ⅲ は ℝ 上代数としては 4 次元である.

任意の四元数 $aa_0 + a_1i + a_2j + a_3k$ に対して, 共役元

$$a^* := a_0 - a_1 i - a_2 j - a_3 k \tag{9}$$

やノルム

$$|a| := \sqrt{aa^*} = \sqrt{a_0^2 + a_1^2 + a_2^2 + a_3^2} \tag{10}$$

が定義される.

四元数体は非可換体であり、 $a \neq 0$ を満たす a に対してその逆数 a^{-1} が一意に存在し、

$$aa^{-1} = a^{-1}a = 1 (11)$$

を満たす. 逆数は共役とノルムを用いて

$$a^{-1} = a^*/|a|^2 (12)$$

と書くことができる.

2.2 四元数体上 🖽 の行列代数 $\mathbb{H}(n)$

四元数体の元を成分とする $n\times n$ 行列がなす行列代数を $\mathbb{H}(n)$ と呼ぶ、四元数体上行列代数 $\mathbb{H}(n)$ は \mathbb{R} 上代数としては $4n^2$ 次元である *2 .

 $\mathbb{H}(n)$ では双対演算†というものが存在し、任意の $M \in \mathbb{H}(n)$ に対して、

$$(M^{\dagger})_{ij} = (M_{ij})^*, \quad \forall 1 \le i, j \le n$$
 (13)

となるように定義される. この双対演算†を用いて(反)自己双対行列と言うものが定義される. すなわち,

$$M - M^{\dagger} = 0 \tag{14}$$

を満たす $M \in \mathbb{H}(n)$ は自己双対行列,

$$M + M^{\dagger} = 0 \tag{15}$$

を満たす $M \in \mathbb{H}(n)$ は反自己双対行列と呼ばれる*3.

^{*2} \mathbb{R} 上代数同型として, $\mathbb{H} \simeq \mathbb{H}(1)$ である.

 $^{*^3}$ 自己双対行列は $\mathbb{R}(n)$ における実(反)対称行列や $\mathbb{C}(n)$ における(反)エルミート行列に対応する.

3 Clifford 代数

3.1 Clifford 代数 $Cl_{p,q}$

内積空間 $\mathbb{R}^{p,q}$ とは,

$$\langle e_i, e_j \rangle_{p,q} = g_{ij} = \begin{cases} 0 & i \neq j \\ 1 & 1 \leq i = j \leq p \\ -1 & p+1 \leq i = j \leq p+q \end{cases}$$
 (16)

のように基底間の内積が定義されているベクトル空間である.

内積空間 $\mathbb{R}^{p,q}$ に付随して,実 Clifford 代数 $Cl_{p,q}$ というものが以下のように定義される [8]: ベクトル空間としての基底が

$$e_{i_1}e_{i_2}\cdots e_{i_k}, 1 \le i_1 < \cdots < i_k \le n, k = 1\cdots n$$
 (17)

. および

$$e_0 := 1 \tag{18}$$

であり,

$$e_i e_j + e_j e_i = -2\langle e_i, e_j \rangle_{p,q} \tag{19}$$

を満たす結合的な積を持つ, \mathbb{R} 上結合的代数を内積空間 $\mathbb{R}^{p,q}$ に付随する実 Clifford 代数 $Cl_{p,q}$ と呼ぶ、後の議論では実 Clifford 代数のことは Clifford 代数と呼び,特に「実」をつけない.

Clifford 代数 $Cl_{p,q}$ の基底にはグレードという概念があり、17 における k を基底のグレードと呼ぶ、 $\mathbb R$ 上代数としては、 2^{p+q} 次元である.

四元数体 $\mathbb H$ は Clifford 代数 $Cl_{2,0}$ と $\mathbb R$ 上代数同型である:

$$\mathbb{H} \simeq Cl_{2,0}.\tag{20}$$

3.2 今回の主役である Clifford 代数 $Cl_{4,0}$

四元数体上行列代数 田(2) 上の元を

$$e_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ e_1 = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}, \ e_2 = \begin{pmatrix} 0 & -j \\ -j & 0 \end{pmatrix}, \ e_3 = \begin{pmatrix} 0 & -k \\ -k & 0 \end{pmatrix}, \ e_4 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 (21)

とすると、 e_0 は $\mathbb{H}(2)$ 上の単位元であり、

$$e_i e_j + e_j e_i = -2\delta_{i,j}, \quad (1 \le i, j \le 4)$$
 (22)

が成立する. さらに,

$$e_{2}e_{3} = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}, \ e_{3}e_{1} = \begin{pmatrix} j & 0 \\ 0 & j \end{pmatrix}, \ e_{1}e_{2} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix},$$

$$e_{4}e_{1} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \ e_{4}e_{2} = \begin{pmatrix} j & 0 \\ 0 & -j \end{pmatrix}, \ e_{4}e_{3} = \begin{pmatrix} k & 0 \\ 0 & -k \end{pmatrix},$$

$$e_{4}e_{2}e_{3} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ e_{4}e_{3}e_{1} = \begin{pmatrix} 0 & -j \\ j & 0 \end{pmatrix}, \ e_{4}e_{1}e_{2} = \begin{pmatrix} 0 & -k \\ k & 0 \end{pmatrix}, \ e_{1}e_{2}e_{3} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

$$e_{1}e_{2}e_{3}e_{4} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$(23)$$

より、 e_0 と $e_{i_1}e_{i_2}\cdots e_{i_k}$ 、 $1 \leq i_1 < \cdots < i_k \leq n, k = 1, 2, 3, 4$ の形の元が、 $\mathbb{H}(2)$ のベクトル空間としての基底となっていることがわかる。したがって、 \mathbb{R} 上代数同型が成立する:

$$Cl_{4,0} \simeq \mathbb{H}(2).$$
 (24)

ここで、 $Cl_{4.0} \simeq \mathbb{H}(2)$ は \mathbb{R} 上代数としては、16 次元である.

4 コンパクトシンプレクティック Lie 群

4.1 コンパクトシンプレクティック Lie 群 Sp(n)

次数 n の四元数ユニタリ行列とは $M\in\mathbb{H}(n)$ であって, $M^\dagger M=1$ を満たす行列である.これらの集合体

$$U(n, \mathbb{H}) := \{ M \in \mathbb{H}(n) | M^{\dagger} M = 1 \}$$

$$(25)$$

は行列の積に関して群をなし、四元数ユニタリ群、あるいはコンパクトシンプレクティック Lie 群、あるいはユニタリシンプレクティック Lie 群と呼ばれる [9]. なぜシンプレクティックという言葉が出てくるのかについては、シンプレクティック行列がなす実 Lie 群 $Sp(n,\mathbb{R})$ の Lie 代数の実コンパクト形式 Lie 代数から構成される実コンパクト化 Lie 群 Sp(n) が $U(n,\mathbb{H})$ と Lie 群として同型になるからである:

$$Sp(n) \simeq U(n, \mathbb{H}).$$
 (26)

以下では、Sp(n) の表記の方を使用する.

4.2 Sp(n) と $\mathbb{H}(n)$ の関係

反自己双対行列 A, B に対して,

$$[A, B]^{\dagger} = (AB)^{\dagger} - (BA)^{\dagger} = B^{\dagger}A^{\dagger} - A^{\dagger}B^{\dagger} = [B^{\dagger}, A^{\dagger}] = -[A, B]$$
 (27)

より [A,B] は反自己双対行列となる. したがって, $\mathbb{H}(n)$ の反自己双対成分 $\{M\in\mathbb{H}(n)|M^\dagger+M=0\}$ は Lie 代数を成す.

実はここでは示さないが、この Lie 代数の指数写像によって Lie 群 Sp(n) を得られる:

$$Sp(n) = \{\exp(M) | M \in \mathbb{H}(n), M^{\dagger} + M = 0\}.$$
 (28)

すなわち, $\mathbb{H}(n)$ の反自己双対成分が成す Lie 代数は $\mathfrak{sp}(n)$ と同型である.

4.3 $Cl_{4,0}$ から構成される $\mathfrak{sp}(2), Sp(2)$

前節の議論により、 $Cl_{4,0}\simeq \mathbb{H}(2)$ の反自己双対成分は Lie 代数 $\mathfrak{sp}(2)$ を構成することがわかる. すなわち、 $Cl_{4,0}\simeq \mathbb{H}(2)$ の基底の中で反自己双対となる、グレード 1 の基底

$$e_1 = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}, \ e_2 = \begin{pmatrix} 0 & -j \\ -j & 0 \end{pmatrix}, \ e_3 = \begin{pmatrix} 0 & -k \\ -k & 0 \end{pmatrix}, \ e_4 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 (29)

, グレード2の基底

$$e_2 e_3 = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}, \ e_3 e_1 = \begin{pmatrix} j & 0 \\ 0 & j \end{pmatrix}, \ e_1 e_2 = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}, \tag{30}$$

$$e_4 e_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \ e_4 e_2 = \begin{pmatrix} j & 0 \\ 0 & -j \end{pmatrix}, \ e_4 e_3 = \begin{pmatrix} k & 0 \\ 0 & -k \end{pmatrix}$$
 (31)

は Lie 代数の基底をなし、この Lie 代数は $\mathfrak{sp}(2)$ と同型である.

Sp(2) を用いた S^7 の構築

 $a,b \in \mathbb{H}$ に対して

$$u(a,b) := \begin{cases} 1 & |a||b| \neq 0\\ aba^{-1}b^{-1} & |a||b| = 0 \end{cases}$$
(32)

を定義すると, Sp(2) の要素は, $h,a,b\in\mathbb{H}, |h|=|a|^2+|b|^2=1$ を用いて,

$$\begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & -u(a,b)b \\ b^* & a^* \end{pmatrix} \tag{33}$$

で一意に表される. ここで,

$$H := \left\{ \begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \middle| |h| = 1, h \in \mathbb{H} \right\}$$
 (34)

は群をなし、群としては $Sp(1) \simeq SU(2)$ と同型である。また、Sp(2) を $H \simeq Sp(1)$ で割った商空間

$$Sp(2)/Sp(1) \left\{ \begin{pmatrix} a & -u(a,b)b \\ b^* & a^* \end{pmatrix} \middle| |a|^2 + |b|^2 = 1, a, b \in \mathbb{H} \right\}$$
 (35)

は多様体としては S^7 と微分同相である. すなわち, 微分同相として,

$$Sp(2)/Sp(1) \simeq S^7 \tag{36}$$

となる.

6 Sp(2) の S^4 への作用

 $Cl_{4,0} \simeq \mathbb{H}(2)$ の中で trace が 0 となる自己双対な基底はグレード 3 の基底

$$e_4 e_2 e_3 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ e_4 e_3 e_1 = \begin{pmatrix} 0 & -j \\ j & 0 \end{pmatrix}, \ e_4 e_1 e_2 = \begin{pmatrix} 0 & -k \\ k & 0 \end{pmatrix}, \ e_1 e_2 e_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
(37)

とグレード4の基底

$$e_1 e_2 e_3 e_4 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \tag{38}$$

である.

すなわち、 $Cl_{4,0}\simeq\mathbb{H}(2)$ の中で trace が 0 となる自己双対成分の部分空間

$$Z := \{ M \in \mathbb{H}(2) | \text{Tr}(M) = 0 \}$$

の基底として

$$f_1 := -e_4 e_2 e_3 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \ f_2 := -e_4 e_3 e_1 = \begin{pmatrix} 0 & j \\ -j & 0 \end{pmatrix}, \ f_3 := e_4 e_1 e_2 = \begin{pmatrix} 0 & k \\ -k & 0 \end{pmatrix}$$
(39)

$$f_4 := e_1 e_2 e_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, f_5 := -e_1 e_2 e_3 e_4 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (40)

をとることができる.

ここで, $g, x \in \mathbb{H}(2)$ に対して,

$$\phi_q(x) := g^{\dagger} x g \tag{41}$$

で定義すると,

$$Tr(\phi_g(x)) = Tr(x) \tag{42}$$

であり ϕ_g は trace を保存する.また, $x^\dagger=x$ のとき, $(\phi_g(x))^\dagger=(g^\dagger x g)^\dagger=g^\dagger x^\dagger g=g^\dagger x g=\phi_g(x)$ となり,自己双対性は ϕ_g で保存される.したがって,任意の $g\in\mathbb{H}(2)$ に対して ϕ_g は $Z\to Z$ の線形 写像となる.

さらに, $x = \sum_{i=1}^{5} x_i f_i \in Z$ に対して,ノルムを

$$|x| := \sqrt{\sum_{i=1}^{5} x_i^2} \tag{43}$$

のように定義すると,

$$x^{2} = \sum_{i,j=1}^{5} x_{i} x_{j} f_{i} f_{j} = \sum_{i=1}^{5} x_{i}^{2} e_{0} = |x|^{2} e_{0}$$

$$(44)$$

となる. ただし, $e_0=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ としている. 従って,任意の $g\in\mathbb{H}(2), x=\sum_{i=1}^5x_if_i\in Z$ に対して,

$$|\phi_g(x)|^2 e_0 = (\phi_g(x))^2 = g^{\dagger} x g g^{\dagger} x g = g^{\dagger} x^2 g = |x|^2 e_0 \tag{45}$$

となり、 ϕ_g がノルムを保存することがわかる.すなわち、 ϕ_g は五次元空間 $Z\simeq \mathbb{R}^5$ の回転作用素とみなすことができる.

 ϕ_g はノルムを保存することから, $S^4\simeq\{x\in Z||x|=1\}$ 上の作用素と見なすことができる.因みに、 $g,h\in\mathbb{H}(2),x\in Z$ に対して,

$$\phi_g(\phi_h(x)) = \phi_{hg}(x)$$

となることから、 ϕ_g は群の作用として右作用と見做される。さらに後で示されるように、

$$\{\phi_g(f_5)|g\in Z\} = \{x\in Z||x|=1\} \simeq S^4$$
(46)

であることから、この群の作用は推移的である.

7 高次 Hopf fibration $S^3 \hookrightarrow S^7 \to S^4$

次の写像

$$\Psi: \left\{ \begin{pmatrix} a & -u(a,b)b \\ b^* & a^* \end{pmatrix} \in Sp(2) \middle| a, b \in \mathbb{H}, |a|^2 + |b|^2 = 1 \right\} (\simeq S^7) \to \{x \in Z | |x| = 1\} (\simeq S^4) : g \mapsto \phi_g(f_5)$$

$$\tag{47}$$

を考える.

すると、
$$a,b\in\mathbb{H}, |a|^2+|b|^2=1, g=\begin{pmatrix} a & -u(a,b)b \\ b^* & a^* \end{pmatrix}$$
 に対して、

$$\phi_g(f_5) = \begin{pmatrix} a^* & b \\ [-u(a,b)b]^* & a \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & -u(a,b)b \\ b^* & a^* \end{pmatrix}
= \begin{pmatrix} -(|a|^2 - |b|^2) & 2ba^* \\ 2ab^* & |a|^2 - |b|^2 \end{pmatrix}
= 2\sum_{i=1}^{3} \left[(\vec{a} \times \vec{b})_i + a_0b_i - b_0a_i \right] f_i + 2(a_0b_0 + \vec{a} \cdot \vec{b}) f_4 + (|a|^2 - |b|^2) f_5$$
(48)

となる. ただし,

$$a=a_0+a_1i+a_2j+a_3k, b=b_0+b_1i+b_2j+b_3k, \vec{a}=\begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}^T, \vec{b}=\begin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix}^T$$
である.

7.1 Ψ が全射であること

まず, $a_0 = b_0 = 0$ を課す.

$$\phi_g(f_5) = 2\sum_{i=1}^{3} \left[(\vec{a} \times \vec{b})_i \right] f_i + 2\vec{a} \cdot \vec{b} f_4 + (|\vec{a}|^2 - |\vec{b}|^2) f_5$$
(49)

となる.

 $|\vec{a}|^2+|\vec{b}|^2=1$ であることから, $0\leq \theta_0\leq \pi$ として, $|\vec{a}|=\cos(\theta/02), |\vec{b}|=\sin(\theta_0/2)$ とおくことができ.

$$|\vec{a}|^2 - |\vec{b}|^2 = \cos\theta_0 \tag{50}$$

 $\theta_0 = 0$ すなわち $\vec{b} = 0$ のとき,

$$\phi_a(f_5) = f_5$$

 $\theta_0 = \pi$ すなわち $\vec{a} = 0$ のとき,

$$\phi_g(f_5) = -f_5$$

 $0<\theta_0<\pi\;\text{tabb}\;|\vec{a}||\vec{b}|\neq 0\;\text{obs},\;0\leq\theta_1\leq\pi\;\text{blt}\;\frac{\vec{a}\cdot\vec{b}}{|\vec{a}||\vec{b}|}=\cos\theta_1\;\text{blt}$

$$2\vec{a} \cdot \vec{b} = \sin \theta_0 \cos \theta_1 \tag{51}$$

 $\verb"cose" is $\theta_1 = 0$ os $\theta_1, $$

$$\phi_g(f_5) = \sin \theta_0 f_4 + \cos \theta_0 f_5$$

さらに $\theta_1 = \pi$ のとき,

$$\phi_g(f_5) = -\sin\theta_0 f_4 + \cos\theta_0 f_5$$

 $0 < \theta_1 < \pi$ すなわち $\vec{a} \times \vec{b} \neq 0$ のとき,

$$2\vec{a} \times \vec{b} = \sin \theta_0 \sin \theta_1 \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$$
(52)

であり、 $0 \leq \theta_2 \leq \pi, 0 \leq \theta_3 \leq 2\pi$ として $\left[\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}\right]_3 = \cos\theta_2, \left[\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}\right]_2 = \sin\theta_2\cos\theta_1, \left[\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}\right]_1 = \sin\theta_2\sin\theta_1$ とおくことができ、

$$\phi_g(f_5) = \sin \theta_0 \sin \theta_1 \sin \theta_2 \sin \theta_1 f_1 + \sin \theta_0 \sin \theta_1 \sin \theta_2 \cos \theta_1 f_2 + \sin \theta_0 \sin \theta_1 \cos \theta_2 f_3 + \sin \theta_0 \cos \theta_1 f_4 + \cos \theta_0 f_5$$
(53)

となる.これは S^4 の球極座標表示に他ならない.逆に, $0 \le \theta_0 \le \pi, 0 \le \theta_1 \le \pi, 0 \le \theta_2 \le \pi, 0 \le \theta_3 \le 2\pi$ として, $\left[\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}\right]_3 = \cos\theta_2, \left[\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}\right]_2 = \sin\theta_2\cos\theta_1, \left[\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}\right]_1 = \sin\theta_2\sin\theta_1 \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \cos\theta_1$ | $|\vec{a}| = \cos(\theta/02), |\vec{b}| = \sin(\theta_0/2)$ を満たす \vec{a}, \vec{b} を構成できる.(ただし 0/0 が出る式が生じた場合その式は条件式から除外される)

以上より、 $Im\Psi = S^4$ が示され、 Ψ は全射である.

7.2 ファイブレーション $S^3 \hookrightarrow S^7 o S^4$ の構成

また、 $g = \begin{pmatrix} a^* & b \\ [-u(a,b)b]^* & a \end{pmatrix}$, $g' = \begin{pmatrix} a'^* & b' \\ [-u(a',b')b']^* & a' \end{pmatrix}$ であるときに、 $\phi_g(f_5) = \phi_{g'}(f_5)$ となる必要十分条件を求める.

必要条件は, $|a|^2-|b|^2=|a'|^2-|b'|^2, ba^*=b'a'^*$ であり, $|a|\neq 0$ のときは, $|a|=|a'|,|b|=|b'|=\sqrt{1-|a|^2},b'=ba^*a'/|a|^2$ が必要十分条件, $|a|\neq 1$ のときは, $|a|=|a'|,|b|=|b'|=\sqrt{1-|a|^2},a'=ab^*b'/|b|^2$ が必要十分条件であることからわかる.

このことから, $|a| \neq 0$ のときは, $\phi_g(f_5) = \phi_{g'}(f_5)$ となるような a' の選び方は |a'| = |a| となる四元数の自由度があり($\{a' \in \mathbb{H} | |a'| = |a|\} = \sim S^3$),b' は a,b,a' から自動的に決定される. $|a| \neq 1$ のときは, $\phi_g(f_5) = \phi_{g'}(f_5)$ となるような b' の選び方は |b'| = |b| となる四元数の自由度があり($\{b' \in \mathbb{H} | |b'| = |b|\} = \sim S^3$),a' は a,b,b' から自動的に決定される.すなわち, $\{x \in Z | |x| = 1\} (\sim S^4)$ の各点の逆像(ファイバー)は, S^3 と同相である.

したがって、 Ψ の逆像を通じて、 S^7 は底空間を S^4 、ファイバーを S^3 とするファイバー東とみなすことができ、ファイブレーション $S^3 \hookrightarrow S^7 \to S^4$ が構成された.

参考文献

- [1] "Hopf fibration", Wikipedia.
- [2] D. W. Lyons, "An Elementary Introduction to the Hopf Fibration", Mathematics Magazine, **76** (2003), 87–98.
- [3] P. Kustaanheimo, Schinzel, and E. Stiefel, "Perturbation theory of Kepler motion based on spinor regularization.", J.Reine angew. Math. 218 (1965), 204.
- [4] "Bloch sphere", Wikipedia
- [5] I. Marquette, "Generalized five-dimensional Kepler system, Yang-Coulomb monopole, and Hurwitz transformation.", J. Math. Phys., **53** (2012), 022103.
- [6] R. Mosseri, and R. Dandoloff, "Geometry of entangled states, Bloch spheres and Hopf fibrations." J. Phys. A: Math. Gen., **34** (2001), 10243.
- [7] "Exotic sphere", Wikipedia.
- [8] 本間 泰史,『スピン幾何入門その1クリフォード代数とスピン群』
- [9] "Symplectic group", Wikipedia.