

Electrocardiograma: Fibrilación auricular

Equipo 11:

Diego Alejandra Taquiri Diaz Ana Belen Mantilla Mantilla Erick Alexander Valdivia Esteba Armando Antonio Flórez Troncos

Definición de la arritmia

Fibrilación auricular

Definición

Ritmo cardíaco irregular y anormal que causa latidos muy rápidos

Síntomas

Incluyen palpitaciones, dolor en el pecho, mareos, fatiga, aturdimiento, menor capacidad para hacer ejercicio, falta de aire y debilidad

Causas

Defectos congénitos,
enfermedades cardíacas,
presión arterial alta,
enfermedades
pulmonares, trastornos de
la tiroides y factores de
estilo de vida, como el
consumo excesivo de
alcohol y tabaco.

Contexto nacional y mundial

La fibrilación auricular es la arritmia más prevalente en el mundo

Posee una prevalencia mundial estimada del 2% a 4% en adultos y se

incrementa hasta el 10% en pacientes mayores de 80 años.

En el Perú

Enfermedad vascular más frecuente en varones: 21.6% vs 7% en mujeres

FA persistente y permanente: 54.3% de los casos

Electrocardiograma (ECG) fue la herramienta diagnóstica en el 85.5% de los casos registrados

Planteamiento de Problema

Problemáticas

Porque a menudo es asintomática y episódica, y requiere monitoreo continuo

Limitaciones de los métodos de monitoreo actuales

Tradicionalmente, se monitorea con el dispositivo Holter pero tienen limitaciones de accesibilidad y comodidad para el paciente

Desafíos en la calidad de la señal de ECG en ambientes remotos

A pesar de la conveniencia del monitoreo ambulatorio, la calidad de la señal ECG puede resultar en datos ruidosos

Propuesta de Solución

Flujo de trabajo

Adulto mayor

Monitoreo continuo con smartwatch

Señal ECG de 1 canal Procesado de la señal Alerta temprana de fibrilación auricular

Fuente: Biorender

Procesamiento de señal

Señal en dominio de frecuencia permite identificar variabilidad en ritmo cardiaco.

ECG en dominio de tiempo y dominio de frecuencia. Fuente. Traykov et al

Dataset

Materiales

Published: Feb. 1, 2017. Version: 1.0.0

ProSim 4 Vital Signs Simulator

Tiny Machine Learning Kit

ISB página del curso, 2024

Referencias

Ayudas visuales

- PPT template obtenido de: https://slidesgo.com/theme/cardiovascular-diseases-arrhythmia#position-2&related-1&rs-detail-related
- BioRender, Imágenes varias. 2024. [Online].

Referencias bibliográficas

- Mayo Clinic. "Fibrilación auricular Síntomas y causas Mayo Clinic". Top-ranked Hospital in the Nation Mayo Clinic. Accedido el 3 de abril de 2024. [En línea]. Disponible:
 https://www.mayoclinic.org/es/diseases-conditions/atrial-fibrillation/symptoms-causes/syc-20350624#:~:text=La%20fibrilación%20auricul ar%20es%20un.coágulos%20sanguíneos%20en%20el%20corazón
- J. E. Valdiviezo. "Factores asociados al éxito agudo de cardioversión eléctrica o farmacológica en pacientes con fibrilación auricular de reciente diagnóstico. Hospital Nacional Arzobispo Loayza 2023 2024". Universidad Nacional Mayor de San Marcos. Accedido el 2 de abril de 2024. [En línea]. Disponible:

https://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/20604/Valdiviezo_cj.pdf?sequence=1&isAllowed=y

- J. Gallegos. "Registro Peruano de Fibrilación Auricular (REPERFA). Reporte preliminar." Hospital Militar Central. Accedido el 2 de abril de 2024. [En línea]. Disponible: https://sopecard.org/wp-content/uploads/2021/08/Registro-Peruano-de-Fibrilacion-Auricular.pdf
- A. Mubarik y A. M. Iqbal, "Holter Monitor", StatPearls, 2022.
- A. N. Sharma y A. Baranchuk, "Ambulatory external electrocardiography monitoring: Holter, extended Holter, mobile cardiac telemetry monitoring", Card. Electrophysiol. Clin., vol. 13, núm. 3, pp. 427–438, 2021.
- S. S. Lobodzinski, "ECG patch monitors for assessment of cardiac rhythm abnormalities", Prog. Cardiovasc. Dis., vol. 56, núm. 2, pp. 224–229, 2013.
- N. Rafie, A. H. Kashou, y P. A. Noseworthy, "ECG interpretation: Clinical relevance, challenges, and advances", Hearts (Basel), vol. 2, núm. 4, pp. 505–513, 2021.
- V. B. Traykov, R. Pap, y L. Saghy, «Frequency Domain Mapping of Atrial Fibrillation Methodology, Experimental Data and Clinical Implications», CCR, vol. 8, n.o 3, pp. 231–238, sep. 2012, doi: 10.2174/157340312803217229.
- Clifford GD, Liu C, Moody B, Li-wei HL, Silva I, Li Q, Johnson AE, Mark RG. AF classification from a short single lead ECG recording: The PhysioNet/computing in cardiology challenge 2017. In 2017 Computing in Cardiology (CinC) 2017 Sep 24 (pp.)-4. IEEE. https://doi.org/10.22489/CinC.2017.065-469
- "Recursos para ISB Curso," in *ISB Curso: Materiales, Equipos de Trabajo, y Unidades del Curso*, [Online]. Available: