

Modeling Delay in Axon Circuit

Pavel Bělík, Augsburg College Misha Shvartsman, University of St. Thomas

TCPS # 4: Undergraduate Research Activities in Mathematical and Computational Biology

Math Fest August 7, 2015

- I. CAM and CSUMS Programs and Participants
- **II.** Hodgkin-Huxley Equations
- III. Delay
- IV. Numerical Experiments

2. Computational Science Training for Undergraduates in the Mathematical Sciences (CSUMS)

National Science Foundation (Grant DMS-0802959)
University of St. Thomas, Augsburg College, Macalester College

Students:

Sean Ewen, Ann Motl, Dee Buford-Prioleau, Natasha Wright

Faculty Mentors:

Misha Shvartsman Pavel Bělík Dwight Nelson

Neurons

Neurons do most of the work related to transmission of signals inside the brain.

Charlie Rose Brain Series

Gerald D. Fischbach, Simons Foundation

Action Potential

$$\frac{1}{2\pi a r_i} \frac{\partial^2 V_m}{\partial x^2} = C_m \frac{\partial V_m}{\partial t} + \sum_k (V_m - E_k) G_k(x, t, V_m) - J_{ei}(x, t)$$

intracellular

extracellular

Conduction Delay

Passive without PDE delay G = 0 (Red) vs G < 0

Passive without PDE delay STDP (Red) vs No STDP

Passive without PDE delay Polychronization (Red) vs No STDP

Propagating without PDE delay Polychronization (Red) vs No STDP

Propagating with PDE delay STDP (Red) vs No STDP

Propagating with PDE delay Polychronization (Red) vs No STDP

Passive Cable PDE delay (Red) No PDE Delay

Propagating Potential PDE delay (Red) vs No PDE Delay

