Size and Guesstimation: Olympiad

EGMOTC 2023 - Rohan

November 30, 2023

Problems

Remark. * marked problems are considered harder.

** marked problems are strictly optional and harder than the rest.

Remark. Try to do the first three problems atleast.

Problem 1. Let n, m be integers greater than 1, and let a_1, a_2, \ldots, a_m be positive integers not greater than n^m . Prove that there exist positive integers b_1, b_2, \ldots, b_m not greater than n, such that

$$\gcd(a_1 + b_1, a_2 + b_2, \dots, a_m + b_m) < n,$$

where $gcd(x_1, x_2, ..., x_m)$ denotes the greatest common divisor of $x_1, x_2, ..., x_m$. **Problem 2.** Suppose $q_0, q_1, q_2, ...$ is an infinite sequence of integers satisfying the following two conditions:

- m-n divides q_m-q_n for $m>n\geq 0$,
- there is a polynomial P such that $|q_n| < P(n)$ for all n

Prove that there is a polynomial Q such that $q_n = Q(n)$ for all n.

Problem 3. Does there exist a nonnegative integer a for which the equation

$$\left|\frac{m}{1}\right| + \left|\frac{m}{2}\right| + \left|\frac{m}{3}\right| + \dots + \left|\frac{m}{m}\right| = n^2 + a$$

has more than one million different solutions (m, n) where m and n are positive integers?

Problem 4.* Let $m \geq 2$ be an integer, A a finite set of integers (not necessarily positive) and $B_1, B_2, ..., B_m$ subsets of A. Suppose that, for every k = 1, 2, ..., m, the sum of the elements of B_k is m^k . Prove that A contains at least $\frac{m}{2}$ elements.

Problem 5.** For a positive integer n we denote by s(n) the sum of the digits of n. Let $P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be a polynomial, where $n \ge 2$ and a_i is a positive integer for all $0 \le i \le n-1$. Could it be the case that, for all positive integers k, s(k) and s(P(k)) have the same parity?

Problem 6.** Let p be an odd prime, and put $N = \frac{1}{4}(p^3 - p) - 1$. The numbers $1, 2, \ldots, N$ are painted arbitrarily in two colors, red and blue. For any positive integer $n \leq N$, denote r(n) the fraction of integers $\{1, 2, \ldots, n\}$ that are red. Prove that there exists a positive integer $a \in \{1, 2, \ldots, p-1\}$ such that $r(n) \neq a/p$ for all $n = 1, 2, \ldots, N$.