SpaceX Falcon 9 Launch Success Prediction

IBM Data Science Professional Certificate – Final Capstone Project

https://github.com/mustafatansel/spacex-capstone-project

Executive Summary

- This project explores the success classification of SpaceX Falcon 9 rocket launches.
 - We collected data using the SpaceX API, performed data wrangling and exploratory data analysis, then built machine learning models to predict launch success.
 - Our goal was to identify key factors influencing successful landings and create a model with high prediction accuracy.

Data Collection & Wrangling

- API Source Used the SpaceX v4 Launches API (/v4/launches/past) to download raw JSON data.
- Normalization Converted the nested JSON into a flat pandas DataFrame with pd.json_normalize.
- Filtering Removed Falcon 1 records, keeping 94 Falcon 9 launches.
- Cleaning Replaced PayloadMass null values with the column mean; kept LandingPad nulls for later one-hot encoding.
- Output Saved the cleaned dataset as dataset_part_1.csv (94 rows × 14 columns).

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude
0	1	2006-03-24	Falcon 1	20.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin1A	167.743129	9.047721
1	2	2007-03-21	Falcon 1	NaN	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin2A	167.743129	9.047721
2	4	2008-09-28	Falcon 1	165.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin2C	167.743129	9.047721
3	5	2009-07-13	Falcon 1	200.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin3C	167.743129	9.047721
4	6	2010-06-04	Falcon 9	NaN	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B0003	-80.577366	28.561857

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude
4	1	2010-06-04	Falcon 9	NaN	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B0003	-80.577366	28.561857
5	2	2012-05-22	Falcon 9	525.0	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B0005	-80.577366	28.561857
6	3	2013-03-01	Falcon 9	677.0	ISS	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B0007	-80.577366	28.561857
7	4	2013-09-29	Falcon 9	500.0	PO	VAFB SLC 4E	False Ocean	1	False	False	False	None	1.0	0	B1003	-120.610829	34.632093
8	5	2013-12-03	Falcon 9	3170.0	GTO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B1004	-80.577366	28.561857
89	86	2020-09-03	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	2	True	True	True	5e9e3032383ecb6bb234e7ca	5.0	12	B1060	-80.603956	28.608058
90	87	2020-10-06	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	3	True	True	True	5e9e3032383ecb6bb234e7ca	5.0	13	B1058	-80.603956	28.608058
91	88	2020-10-18	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	6	True	True	True	5e9e3032383ecb6bb234e7ca	5.0	12	B1051	-80.603956	28.608058
92	89	2020-10-24	Falcon 9	15600.0	VLEO	CCSFS SLC 40	True ASDS	3	True	True	True	5e9e3033383ecbb9e534e7cc	5.0	12	B1060	-80.577366	28.561857
93	90	2020-11-05	Falcon 9	3681.0	MEO	CCSFS SLC 40	True ASDS	1	True	False	True	5e9e3032383ecb6bb234e7ca	5.0	8	B1062	-80.577366	28.561857

90 rows × 17 columns

Exploratory Data Analysis (EDA)

• Display 5 records where launch sites begin with the string 'CCA'

cid	name	type	notnull	dflt_value	pk
0	Date	TEXT	0	None	0
1	Time (UTC)	TEXT	0	None	0
2	Booster_Version	TEXT	0	None	0
3	Launch_Site	TEXT	0	None	0
4	Payload	TEXT	0	None	0
5	PAYLOAD_MASS_KG_	INT	0	None	0
6	Orbit	TEXT	0	None	0
7	Customer	TEXT	0	None	0
8	Mission_Outcome	TEXT	0	None	0
9	Landing_Outcome	TEXT	0	None	0

Exploratory Data Analysis (EDA)

 Display the total payload mass carried by boosters launched by NASA (CRS)

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-22	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10-08	0:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Exploratory Data Analysis (EDA)

• Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

	* sqlite:///my_dat	a1.db
[60]:	Landing_Outcome	count
	Success (drone ship)	5
	Failure (drone ship)	5
	Success (ground pad)	3
	Precluded (drone ship)	1

Interactive Map

Mark the success/failed launches for each site on the map

[18]:		Launch Site	Lat	Long	class
	46	KSC LC-39A	28.573255	-80.646895	1
	47	KSC LC-39A	28.573255	-80.646895	1
	48	KSC LC-39A	28.573255	-80.646895	1
	49	CCAFS SLC-40	28.563197	-80.576820	1
	50	CCAFS SLC-40	28.563197	-80.576820	1
	51	CCAFS SLC-40	28.563197	-80.576820	0
	52	CCAFS SLC-40	28.563197	-80.576820	0
	53	CCAFS SLC-40	28.563197	-80.576820	0
	54	CCAFS SLC-40	28.563197	-80.576820	1
	55	CCAFS SLC-40	28.563197	-80.576820	0

Predictive Analysis

```
FridSearchCV

□ ②

► best_estimator_: LogisticRegression

► LogisticRegression ②
```

```
[64]: from sklearn.tree import DecisionTreeClassifier
       from sklearn.model_selection import GridSearchCV
       parameters = {
           'criterion': ['gini', 'entropy'],
           'splitter': ['best', 'random'],
           'max_depth': [x for x in range(1, 10)],
           'max_features': ['auto', 'sqrt'],
           'min_samples_leaf': [1, 2, 4],
           'min_samples_split': [2, 5, 10]
       tree = DecisionTreeClassifier()
       tree_cv = GridSearchCV(tree, parameters, cv=10)
       tree_cv.fit(X_train, Y_train)
       print("Tuned hyperparameters: (best parameters) ", tree_cv.best_params_)
       print("Accuracy :", tree_cv.best_score_)
       Tuned hyperparameters: (best parameters) {'criterion': 'gini', 'max_depth': 4, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 10, 'splitter': 'random'}
       Accuracy: 0.8910714285714286
```

Conclusion

- In this project, we explored SpaceX Falcon 9 launch records to predict the likelihood of a successful mission.
- We performed data collection, wrangling, and feature engineering to prepare a clean dataset.
- We applied and compared several machine learning models including Logistic Regression, Decision Tree, KNN, and SVM.
- After hyperparameter tuning, the Decision Tree Classifier achieved the highest test accuracy of 89.1%.
- Our analysis demonstrates that machine learning can be a valuable tool to support space mission planning and reliability assessment.