

Programming Language & Compiler

<u>Scanner</u>

Hwansoo Han

Traditional Two-pass Compiler

High level functions

- Recognize legal program, generate correct code (OS & linker can accept)
- Manage the storage of all variables and code

Two passes

- Use an intermediate representation (IR)
- Front end maps legal source code into IR
- Back end maps IR into target machine code
- Admits multiple front ends & multiple passes
- O(n) or O(n log n)
- typically NP-complete(better code)

Front End

Responsibilities

- Recognize legal (& illegal) programs
- Report errors in a useful way
- Produce IR & preliminary storage map
- Shape the code for the back end
- Much of front end construction <u>can be automated</u>

Front End - Scanner

Scanner

- Maps character stream into words (basic units of syntax)
- Produces tokens a word & its part of speech

```
x = x + y;

becomes <id, x> <EQ, => <id, x> <OP, +> <id, y> <EoE, ;>

<part of speech, word> \cong <token type, lexeme>
```

- Typical tokens include number, identifier, +, -, new, while, if
 Scanner eliminates white space
- Produced by automatic scanner generator

Front End - Parser

Parser

- Recognizes context-free syntax
- Guides context-sensitive ("semantic") analysis
 E.g. type checking
- Builds IR for source program
- Produced by automatic parser generators

Front End - example (1)

Context-free syntax can be put to better use

```
1. goal \rightarrow expr

2. expr \rightarrow expr op term

3. | term

4. term \rightarrow \underline{number}

5. | \underline{id}

6. op \rightarrow +

7. | -
```

```
S = goal

T = { number, id, +, - }

N = { goal, expr, term, op }

P = { 1, 2, 3, 4, 5, 6, 7}
```

- This grammar defines simple expressions with addition & subtraction over "number" and "id"
- This grammar, like many, falls in a class called "context-free grammars", abbreviated CFG

Front End - example (2)

A parse can be represented by a tree (parse tree or syntax tree)

This contains a lot of unneeded information.

- 1. $goal \rightarrow expr$
- 2. $expr \rightarrow expr \ op \ term$

term

<id,y>

- 3. | *term*
- 4. $term \rightarrow number$
- 5. | <u>id</u>
- 6. $op \rightarrow +$
- 7.

Front End - example (3)

Compilers often use an abstract syntax tree (AST)

The AST summarizes grammatical structure, without including detail about the derivation

This is much more concise

ASTs are one kind of *intermediate representation (IR)*

Scanner

Scanner Generator

We want to avoid writing scanners by hand

- The scanner is the first stage in the front end
- Specifications for tokens can be given using regular expressions
- Build tables and code from a DFA

Finite Automata

Deterministic Finite Automaton (DFA)

- State transition is determined by an input symbol
- Number of states is finite

1.
$$Q = \{q_0, q_1, q_2\}$$

- $F = \{q_1\}$
- 4. $\Sigma = \{0, 1\}$
- δ is described as

	0	1
q_0	q_0	q_1
q_1	q_2	q_1
q_2	q_1	q_1

```
// set of states
q_0 is the start state // specification of the start state
                          // set of final states (accepting states)
                          // set of input symbols
```


// transition function

Finite Automata

Non-deterministic Finite Automaton (NFA)

- Multiple choices for the next state on an input symbol
- State transition without consuming input symbol (ε-move)
- NFA has the same expressive power as DFA

Regular Languages & Operations

* Regular Language (over alphabet Σ)

- Regular operations on Languages A and B
 - Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
 - Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$
 - Star: $A^* = \{x_1x_2...x_k \mid k \ge 0 \text{ and each } x_i \in A \}$
 - * operation is also called Kleene star, Kleene operator, or Kleene closure
- Let the alphabet $\Sigma = \{ a, b, ..., z \}$, $A = \{good, bad\}$ and $B = \{cat, dog\}$
 - $A \cup B = \{good, bad, cat, dog\}$
 - A ∘ B = {goodcat, gooddog, badcat, baddog}
 - A* = {ε, good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, badgoodgood, badgoodbad, badbadgood, badbadbad, ...}

Regular Expressions

Regular Expression

- ϵ is a *regular expression* denoting the set $\{\epsilon\}$
 - which is a language containing a single string the empty string
- If $\underline{a} \in \Sigma$, then \underline{a} is a *regular expression* denotation for $\{\underline{a}\}$
- If x and y are regular expressions denoting L(x) and L(y) then
 - x|y is a *regular expression* denoting $L(x) \cup L(y)$
 - xy is a regular expression denoting L(x)L(y)
 - x* is a regular expression denoting L(x)*

Regular Expression – Example

RE for recognizing register names

Register
$$\rightarrow$$
 r $(0|1|2|...|9) (0|1|2|...|9)*$

- Allows registers of arbitrary number
- Requires at least one digit

RE corresponds to a recognizer (or DFA)

Recognizer for Register

Transitions on other inputs go to an error state, se

Non-deterministic Finite Automata (NFA)

Each RE corresponds to a deterministic finite automaton (DFA)

- May be hard to directly construct the right DFA
- NFA for RE such as $(\underline{a} \mid \underline{b})^* \underline{abb}$

NFA is a little different from DFA

- S_0 has a transition on ε
- S₁ has two transitions on <u>a</u>

Token Recognizer

Tokens are recognized by NFA

Automating Scanner Construction

- - Build an NFA for each term
 - Combine them with ε-moves
- ⋄ NFA → DFA (subset construction)
 - Build the simulation
- **DFA** → Minimal DFA
 - Hopcroft's algorithm

The Cycle of Constructions

- ♦ DFA →RE (Not part of the scanner construction)
 - All pairs, all paths problem
 - Take the union of all paths from s_0 to an accepting state

RE →NFA using Thompson's Construction

Key idea

- NFA pattern for each symbol & each operator
- Join them with ϵ moves in precedence order

NFA for <u>a</u>*

Ken Thompson, CACM, 1968

Example of Thompson's Construction

Let's try $\underline{a} (\underline{b} | \underline{c})^*$

1. <u>a</u>, <u>b</u>, & <u>c</u>

2. <u>b</u> | <u>c</u>

3. (<u>b</u> | <u>c</u>)*

Example of Thompson's Construction (con't)

Of course, a human would design something simpler

But, we can automate production of the more complex one ...

NFA →DFA with Subset Construction

Need to build a simulation of the NFA

Two key functions

- Move(s_i , \underline{a}) is set of states reachable from s_i by \underline{a}
- ε -closure(s_i) is set of states reachable from s_i by ε

The algorithm:

- Start state derived from s₀ of the NFA
- Take its ε -closure $S_0 = \varepsilon$ -closure(S_0)
- Take the image of S_0 , Move(S_0 , α) for each $\alpha \in \Sigma$, and take its ϵ -closure
- Iterate until no more states are added

Sounds more complex than it is...

Conversion NFA to DFA

* What about \underline{a} (\underline{b} | \underline{c})*? q_0 \underline{a} q_1 $\underline{\varepsilon}$ q_2 $\underline{\varepsilon}$ q_3 $\underline{\varepsilon}$ q_4 \underline{b} q_5 $\underline{\varepsilon}$ q_8 $\underline{\varepsilon}$ q_9 $\underline{\varepsilon}$ q_9

* First, the subset construction: NFA \rightarrow DFA

		ε-closure(move(s,*))			
	NFA states	<u>a</u>	<u>b</u>	<u>c</u>	
s ₀	q ₀	$q_1, q_2, q_3, q_4, q_6, q_9$	none	none	
S ₁	$q_1, q_2, q_3, q_4, q_6, q_9$	none	$m{q}_{5},m{q}_{8},m{q}_{9},\ m{q}_{3},m{q}_{4},m{q}_{6}$	$q_{7}, q_{8}, q_{9}, q_{3}, q_{4}, q_{6}$	
s ₂	$q_5, q_8, q_9,$ q_3, q_4, q_6	none	\boldsymbol{s}_2	s_3	
S ₃	$q_{7}, q_{8}, q_{9}, q_{9}, q_{3}, q_{4}, q_{6}$	none	\boldsymbol{s}_{2}	$s_{\scriptscriptstyle 3}$	

Final states

DFA Minimization

Then, apply the minimization algorithm

		Split on		
	Current Partition	<u>a</u>	<u>b</u>	<u>c</u>
Po	$\{s_1, s_2, s_3\} \{s_0\}$	none	none	none

final states

Another Example

Remember (<u>a</u> | <u>b</u>)* <u>abb</u>?

Applying the subset construction:

Iter.	State	Contains	ε-closure(move(s _i , <u>a</u>))	ε-closure(move(s _i , <u>b</u>))
0	s_o	q_0, q_1	q_1, q_2	q ₁
1	S ₁	q_1, q_2	q_1, q_2	q_1, q_3
	S ₂	q_1	q_1, q_2	q_1
2	s_3	q ₁ , q ₃	q_1, q_2	q_1, q_4
3	S_4	q_1, q_4	q_1, q_2	q_1

Iteration 3 adds nothing to S_r , so the algorithm halts

contains q₄ (final state)

Another Example (cont'd)

* The DFA for $(\underline{a} \mid \underline{b})^* \underline{abb}$

δ	<u>a</u>	<u>b</u>
S 0	S 1	S 2
S ₁	S 1	S 3
S 2	S 1	S 2
S 3	S 1	S 4
S 4	S 1	S 2

- Not much bigger than the original
- All transitions are deterministic

Another Example (cont'd)

Applying the minimization algorithm to the DFA

	Current Partition	Worklist	5	Split on <u>a</u>	Split on <u>b</u>
Po	{s ₄ } {s ₀ ,s ₁ ,s ₂ ,s ₃ }	{s ₄ } {s ₀ ,s ₁ ,s ₂ ,s ₃ }	{s ₄ }	none	$\{s_0, s_1, s_2\}$ $\{s_3\}$
P_1	$\{s_4\} \{s_3\} \{s_0,s_1,s_2\}$	$\{s_0, s_1, s_2\}$ $\{s_3\}$	{s ₃ }	none	${s_0, s_2}{s_1}$
P ₂	$(s_4) \{s_3\} \{s_1\} \{s_0,s_2\}$	{s ₀ ,s ₂ }{s ₁ }	{s ₁ }	none	none

final state

Building Faster Scanners from the DFA

Table-driven recognizers waste effort

- Read (& classify) the next character
- Find the next state
- Assign to the state variable
- Trip through case logic in $\delta()$ & action()
- Branch back to the top

We can do better

- Encode state & actions in the code
- Do transition tests locally
- Generate ugly, spaghetti-like code
- Takes (many) fewer operations per input character

```
char \leftarrow next\ character;
state \leftarrow s_{0};
call\ action(state, char);
while\ (char \neq \underline{eof})
state \leftarrow \delta(state, char);
call\ action(state, char);
char \leftarrow next\ character;

if T(state) = \underline{final}\ then
report\ acceptance;
else
report\ failure;
```

Building Faster Scanners from the DFA

A direct-coded recognizer for <u>r</u> Digit Digit*

```
goto s_0;

s_0: word \leftarrow \emptyset;

char \leftarrow next \ character;

if (char = 'r')

then \ goto \ s_i;

else \ goto \ s_e;

s_1: word \leftarrow word + char;

char \leftarrow next \ character;

if ('0' \le char \le '9')

then \ goto \ s_e;

else \ goto \ s_e;
```

```
s2: word ← word + char;

char ← next character;

if ('0' ≤ char ≤ '9')

then goto s<sub>2</sub>;

else if (char = eof)

then report success;

else goto s<sub>e</sub>;

s<sub>e</sub>: print error message;

return failure;
```

- Many fewer operations per character
- Almost no memory operations
- Even faster with careful use of fall-through cases

Summary

Building scanner

- All this technology automates scanner construction
- Implementer writes down the regular expressions
- Scanner generator builds NFA, DFA, minimal DFA, and then writes out the (table-driven or direct-coded) code
- This reliably produces fast, robust scanners

For most modern language features, this works

- You should think twice before introducing a feature that defeats a DFA-based scanner
 - insignificant blanks (Fortran: anint = an int = an int)
 - non-reserved keywords (e.g. int if = 1;)