1 - THE LANGUAGE OF MATHEMATICS - SOLUTIONS

1.1

(i) Proposition: There exists a real number x such that $x^2 \neq x$ This is a proposition as there is a specified mathematical structure (the set of real numbers) and there are no free variables(as x is bound by the existential quantifier). Negation: For all real numbers x, $x^2 = x$

(ii) $x^2 < x$ This is a predicate as there is no specified mathematical structure and a free variable is present, namely x.

(iii) Proposition: The integer $2^{10} - 1$ is a prime number This is a proposition as there is a specified mathematical structure(set of integers) and there are no free variables (as the variable has been assigned the value $2^{10} - 1$). Negation: The integer $2^{10} - 1$ is non-prime, i.e a composite number

(iv) Proposition: All natural numbers divisible by 2 are divisible by 4.

This is a proposition as there is a specified mathematical structure (set of natural numbers) and there are no free variables (due to the universal quantifier).

Negation: There exists a natural number such that it is divisible by 2 but not divisible by 4.

(v) If then x, x^2 and ≥ 0 This is not a proposition, nor does it seem to be legible enough to be considered a predicate

1.2

(i)
$$(p \lor q) \lor (\neg p);$$

p	q	$p\vee q$	$\neg p$	$ (p \lor q) \lor (\neg p) $
T	T	T	F	T
$\mid T$	F	T	F	T
F	T	T	T	T
F	F	F	T	T

(ii)
$$(p \land \neg p)$$
;

$$\begin{array}{c|c|c} p & \neg p & (p \land \neg p) \\ \hline T & F & F \\ F & T & F \\ \end{array}$$

(iii)
$$\neg[(p \land q) \lor (\neg p \land \neg q)];$$

p	q	$\neg p$	$\neg q$	$(p \wedge q)$	$(\neg p \wedge \neg q)$	$(p \land q) \lor (\neg p \land \neg q)$	$\neg [(p \land q) \lor (\neg p \land \neg q)] \mid$
T	T	F	F	T	F	T	F
T	F	F	T	F	F	F	T
F	T	T	F	F	F	F	T
F	F	T	T	F	T	T	F

(iv)
$$\neg[(p \lor q) \land (\neg p \lor \neg q)];$$

p	q	$\neg p$	$\neg q$	$(p \lor q)$	$(\neg p \vee \neg q)$	$(p \vee q) \wedge (\neg p \vee \neg q)$	$ \neg[(p\lor q)\land (\neg p\lor \neg q)] $
T	T	F	F	T	F	F	T
T	F	F	T	T	T	T	F
F	T	T	F	T	T	T	F
F	F	T	T	F	T	F	T

(v) $p \Rightarrow (p \lor q);$

	p	q	$(p\vee q)$	$p \Rightarrow (p \lor q)$
ĺ	T	T	T	T
	T	F	T	T
İ	F	T	T	T
	F	F	F	T

From this, we can deduce that (i) and (v) are logically equivalent as they have the same truth values for each variation of statement variables.

(vi) $\neg p \Leftrightarrow (p \Rightarrow \neg q);$

p	q	$\neg p$	$\neg q$	$(p \Rightarrow \neg q)$	$\neg p \Leftrightarrow (p \Rightarrow \neg q)$
T	T	F	F	F	T
T	F	F	T	T	F
F	T	T	F	T	T
F	F	T	T	T	T

1.4

(i)

$$\forall a \in A, \exists b \in B, (p(a) \land q(b))$$

$$\neg [\forall a \in A, \exists b \in B, (p(a) \land q(b))]$$

$$\exists a \in A, \forall b \in B, \neg (p(a) \land q(b))$$

$$\Rightarrow \exists a \in A, \forall b \in B, (\neg p(a) \lor \neg q(b))$$

(iii)

$$\exists a \in A, \forall b \in B, p(a) \Rightarrow q(b)$$

$$\exists a \in A, \forall b \in B, \neg p(a) \lor q(b)$$

$$\neg [\exists a \in A, \forall b \in B, \neg p(a) \lor q(b)]$$

$$\forall a \in A, \exists b \in B, \neg (\neg p(a) \lor q(b))$$

$$\forall a \in A, \exists b \in B, p(a) \land \neg q(b)$$

 \Rightarrow