

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

Plano Aula 22

Markus Stein 23 May 2019

... relembrando aula passada... Estatística Suficiente

Exemplo 1: Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim Poisson(\theta), \ 0 < \theta < \infty$:

- a. Verifique se $T = \sum_{i=1}^{n} X_i$ é uma estatística suficiente para θ .
- b. Encontre uma estatística suficiente para θ .

Exemplo 2: Seja X_1, \ldots, X_n uma amostra aletória de X, em que $X \sim Uniforme(\theta, \theta + 1)$ e $0 < \theta < \infty$. Verifique se $T = \sum_{i=1}^{n} X_i$ é uma estatística suficiente para θ .

- Obs. 1: Toda função 1 a 1 (injetora) de uma estatística suficiente é uma estatística suficiente.
 (Como mostrar?)
- Obs. 2: Suporte da densidade conjunta (Função indicadora): Ler Observação 2.5 das 'Notas de aula', página 50.

Estatísticas Suficientes e Mínimas

"Levam ao menor número possível de subconjuntos do espaço amostral."

• Definição **Estatística suficiente minimal**: (Casella e Berger, definição 6.2.11) Uma estatística suficiente $T(\mathbf{X})$ é chamada de suficiente e minimal se para qualquer outra estatística suficiente $S(\mathbf{X})$, $T(\mathbf{x})$ é uma função de $S(\mathbf{x})$.

Exemplo 3: (Partição mínimal): Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim Bernoulli(\theta), 0 < \theta < 1$, responda:

- a. Para n=3, compare as partições do espaço amostral geradas por $T(\boldsymbol{X})=\sum_{i=1}^n X_i, T_2(\boldsymbol{X})=5\,T+2,$ $T_3(\boldsymbol{X})=T^2, T_4(\boldsymbol{X})=X_1\,X_2+X_3,$ e $T_5(\boldsymbol{X})=\boldsymbol{X}.$ Qual a candidata a estatística minimal? b. como mostrar que $T(\boldsymbol{X})=\sum_{i=1}^n X_i$ é minimal no caso geral?
 - Teorema da Equivalência: (Casella e Berger, teorema 6.2.13) Seja $f_{\theta}(\boldsymbol{x}) = f(\boldsymbol{x}; \theta)$ a f.d.p (ou f.m.p) da amostra aleatória $\boldsymbol{X} = (X_1, \dots, X_n)$. Suponha que exista a função $T(\boldsymbol{x})$ tal que, para todo par de pontos amostrais \boldsymbol{x} e \boldsymbol{y} , a razão $f_{\theta}(\boldsymbol{x})/f_{\theta}(\boldsymbol{y})$ é constante em relação a θ se o somente se $T(\boldsymbol{x}) = T(\boldsymbol{y})$. Então $T(\boldsymbol{X})$ é uma estatística suficiente e minimal para θ . Prova(?)

Exemplo 4: resolva ítem (b) do Exemplo 3 utilizando o Teorema da Equivalência.

Tarefa 1: Ler as Notas de Aula, seção 2.3 (principalmente subseção 2.3.6 para a proxima aula)

Tarefa 2: Fazer a lista de exercícios 5 para entregar.