Определение местоположения по сигналам акселерометра*

Зайнулина Э. Т., Киселёва Е. А., Фатеев Д. А., Протасов В.П., Божедомов Н., Толканев А. А., Ночевкин В., Рябов А.

Аннотация: Данная статья посвящена использованию методов машинного обучения в задаче определения местоположения по показаниям носимых человеком сенсоров. Задача является актуальной и имеет такое применение, как, например, автоматическое включение/выключение энергозатратных сервисов при различном положении мобильного устройства. Поставленная задача решается по сигналам датчика телефона – акселерометра. Основная цель работы – это способ выбора и предобработки признаков, позволяющий уменьшить влияние шума на результат классификации и анализировать активность в независимости от пространственной ориентации мобильного устройства. Результаты, полученные в ходе вычислительного эксперимента, подтверждают применимость предложенного подхода. Для уменьшения зашумленности данных был использован фильтр Гаусса. Новизна исследования заключается в постановке задачи в терминах Projection to Latent Spaces.

Ключевые слова: Pedestrian dead reckoning, (Indoor) inertial positioning, Simultaneous Localization and Mapping, PLS, обработка сигналов; сенсоры; акселерометр; анализ данных: машинное обучение, инерицальные методы, позиционные методы.

1 Введение

В настоящее время системы по определению местоположения человека стали неотъемлемой частью повседневной жизни. Информация о точном местоположении человека используется для обеспечения безопасности, для "мобильного здоровья", для эффективной организации рабочих процессов, для мониторинга толпы и др. Огромную роль в определении местоположения человека играет GNSS (глобальная навигационная система). Однако в помещении навигационные спутниковые сигналы не всегда доступны, из-за чего качество данных, предоставляемых GNSS, сильно уменьшается. Тем не менее большую часть времени человек проводит в помещениях, в связи с чем должны быть разработаны надежные, точные методы, позволяющие определять местоположение человека в помещении.

Современные смартфоны обладают большим числом сенсоров и высокой вычислительной способностью. Так как в настоящее время почти каждый человек ими обладает, то методы определения местоположения человека с использованием смартфонов получили наибольшее внимание со стороны исследователей. Среди этих методов - методы, основанные на беспроводных сигналах (WiFi, Bluetooth, UWB) [12] [7], датчиках обзора (лазерный сканер, монокулярная и бинокулярная камера) [1], инерционных датчиках (акселерометр, гироскоп, магнитометр) [9] [4] [13] [6]. Многие из предложенных методов локализации человека представляют собой комбинацию выше перечисленных для увеличения точности позиционирования [3] [2] [8]. Методы, основанные на беспроводных сигналах и датчиках обзора, помимо наличия смартфона требуют также введения дополнительного оборудования либо наличия дополнительных знаний, например карты помещения или базы данных силы сигнала (RSSI) WiFi точки в зависимости от координаты (WiFi fingerprint). Однако не всегда возможно предоставить карту помещения, например, в силу конфиденциальности; вспомогательное оборудование, в свою очередь, требует технического обслуживания

^{*} Научный руководитель: Стрижов В. В. Консультант: Мотренко А.

и больших затрат. Что касается WiFi позиционирования, то при наличии существующей базы данных WiFi fingerprint при некотором изменении среды, позиционирование будет неточным, поэтому база данных нуждается в постоянном обновлении [11].

Чтобы избежать данных проблем, предлагается метод, основанный на инерционных датчиках. В качестве базового алгоритма рассматривается pedestrian dead reckoning (PDR) [5]. По сравнению с методами, основанными на беспроводных сигналах и датчиках обзора, PDR рассчитывает относительно точное местоположение человека быстрее и потребляя меньше вычислительной мощности. Для фильтрации шума в данных используется фильтр Калмана [14]. Особенность данной работы состоит в том, чтобы восстанавливать траекторию не от точки к точке, а всю целиком. Для работы с полученным многомерным пространством предлагается использовать метод PLS [10].

2 Постановка задачи

При решении задачи используются данные, полученные с помощью инерционных датчиков. Эти данные представляются в виде многомерных временных рядов $s(t) \in \mathbb{R}^N$. Каждому временному ряду ставится в соответсвие вектор признаков. Эти вектора образуют матрицу признаков $X \in \mathbb{R}^{N \times T}$. По данной матрице предсказывается матрица траекторий пешехода вида $Y \in \mathbb{R}^{N \times T}$, а строками данной матрицы являются временные ряды y(t), демонстрирующие изменение положения по широте и долготе в течение времени. Модель имеет вид:

$$f: X \to Y$$

Используемые в задаче данные, были собраны с разных расположений датчиков: рюкзак, нога, рука, туловище. Поэтому задача разбивается на две: определение класса расположения датчика (P) и предсказание самой траектории перемещения на основе решения
первой задачи:

$$f_1: X \to P = \{0, 1, 2, 3\}$$

 $f_2: X, P \to Y$

Для решения задач используемся метод опорных векторов(SVM) для случая линейной неразделимости классов, который минимизирует следующий функционал S(w|f,X,Y); введём штраф за суммарную ошибку:

$$\min_{w,w_0} S(w, w_0) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^{\infty} \xi_i$$

где C - параметр настройки метода, ξ_i - набор дополнительных переменных характеризующих величину ошибки на объектах x_i , вектор w - перпендикуляр к разделяющей гиперплоскости.

При условиях:

$$y_i(w^T x_i + w_0) \geqslant 1 - \xi_i$$
$$\xi_i \geqslant 0 \ \forall i$$

Для оценки качества модели используется критерий суммы квадратов отклонений предсказанных координат от истинных, а также корреляция между предсказанной и истинной траекториями пешехода.

Формально постановку задачи следует записать следующим образом:

$$w^* = \arg\min_{w} S(w|f, X, Y).$$

3 Базовый алгоритм

В ходе получения матрицы признаков X в данных подавляются шумы высокой частоты с помощью применения Гауссового сглаживания с разными параметрами для 6-ти каналов гиростабилизатора(IMU channels) и 2-ух скоростных каналов. Преобразуем сглаженные угловое и линейные ускорения в вектор признаков.

В качестве базового алгоритма используется каскадная регрессия состоящая из модели вида:

- подаются данные на вход SVM классификатора, который уже их разделяет на 4 класса: нога, сумка, рука, тело;
- далее полученные данные идут вход на 2 SVR-регрессора для каждого класса, которые обучаются на тренировочных данных, которые в итоге выдают скорости передвижения человека для каждого временного блока. Именно 2 SVR-регрессора для предсказания двумерной скорости в IMU-стабилизированной системе координат, игнорируя вертикальную составляющую.

Но полученные вектора скоростей содержат ошибки, которые связаны с неточностями инерционных датчиков: системой ротации. Поэтому делается предположение о низкочастотных смещениях в линейном ускорении. Этот подход не имеет явных физических обоснований, но позволяет обойти явное моделирование шумов / смещений и сводит задачу к задаче минимизации:

$$\min_{\{x_I^1, x^{5}1_I, \dots\}} V_{bias} = \min_{\{x_I^1, x^{5}1_I, \dots\}} \sum_{f \in F_2} ||v_C^F - v_R^f|| + \lambda \sum_{f \in F_1} ||x_I^f||^2,$$

$$v_C^f = R_{SW}^f \sum_{f'=1}^f R_{WI}^{f'} (a_I^{f'} + x_I^{f'}),$$

где f - единица блока выборки, F - блок выборки, v_C^F - скорректированное значение скорости, v_R^f - предсказанное значение скорости, I - система координат устройства, W - глобальная система координат, S - IMU-стабилизированная система координат, R_{AB} - матрица перехода из системы координат B в систему координат A.

Для каждого класса создается SVR-регрессор, предсказывающий угловые скорости пешехода в каждом временном блоке.

На контрольной выборке для SVM-классификатора и каждого SVR-регрессора подбираются оптимальные значения гиперпараметров.

По полученным значениям скоростей восстанавливается траектория пешехода.

После получения из данных матрицы признаков X

Формально алгоритм описывается следующим образом:

Вход: $X, Y_{class}, Y, X_{test}$

- 1: initialize classifier options
- 2: classifier = SVMClassifier (classifier options);
- 3: $classifier.fit(X, Y_{class})$
- 4: для cls in classes:
- 5: initialize regressor_cls_optons
- 6: $regressor \ cls = SVRRegressor(regressor \ cls \ optons)$
- 7: $regressor\ cls.fit(X[X[ind] \in cls], Y)[Y[ind] \in cls])$
- 8: $Y_{test-class} = classifier.predict(X_{test})$

```
9: для cls in classes:
10: Velocity\_cls = regressor\_cls.predict(X_{test}[Velocity\_class[ind] == cls]
11: x_I^1, x^51_I, \dots = \underset{\{x_I^1, x^51_I, \dots\}}{\arg\min} V_{bias\_cls}
12: Velocity\_cls = R_{SW}^f \sum_{f'=1}^f R_{WI}^{f'}(a_I^{f'} + x_I^{f'})
13: Trajectory\_cls recovery depending on Velocity\_cls
14: return Full trajectory
```

4 Базовый эксперимент

Цель эксперимента: найти параметры модели для более точного предсказания исходной траектории.

В ходе эксперимента используются данные в статье, исследуемой алгоритм RIDI [14]. Данные были собраны с помощью инерционных датчиков смартфона с разным расположением: в руке, на ноге, в сумке и на поясе. Выборки содержат траектории с временным блоком в 100 минут и частотой сигнала 200 Гц.

В качестве объекта рассматривается положение в определенный момент времени i. Признаками объекта являются угловые скорости и линейные ускорения в стабилизированной системе координат датчиков в моменты времени i-window $size, \ldots, i$, где window size - размер окна (равен 200). Целевыми переменными являются метки классов, характеризующие то, в каком положении находился смартфон при получении определенных данных, а также скорости в данный момент времени i, которые вычисляются через координаты пешехода и прошедшее время. По полученным данным после уточнения скоростей с помощью оптимизации функции V_{bias} строится предсказанная траектория пешехода. В ходе эксперимента исследовалась зависимость качества моделей на контрольной выборке в зависимости от параметров SVM-регрессоров. Во всех моделях в качестве ядер были выбраны радиальные базисные функции, подбирались такие параметры как коэффициент штрафа C и ядерный коэффициент γ . Качество измерялось с помощью кросс-валидации. Из результатов эксперимента следует, что для каждого расположения смартфона и каждого канала данных должны быть выбраны свои параметры модели. Это подтверждает разумность классификации типа расположения смартфона перед непосредственным предсказанием траектории.

Графики зависимости качества предсказания модели от параметров:

- 1. Выборка 1 состоит из 30742 объектов (8728 объектов класса рука, 6106 объектов класса нога, 7758 объектов класса тело, 8150 объектов класса сумка).
- 2. Выборка 2 состоит из 42731 объектов (13204 объектов класса рука, 8083 объектов класса нога, 11105 объектов класса тело, 10339 объектов класса сумка).
- 3. Выборка 3 состоит из 35892 объектов (9458 объектов класса рука, 7304 объектов класса нога, 13306 объектов класса тело, 5824 объектов класса сумка).

Рис. 1 Рука, канал 0

Рис. 2 Рука, канал 1

Рис. 3 Нога, канал 0

Рис. 4 Нога, канал 1

Рис. 5 Сумка, канал 0

Рис. 6 Сумка, канал 1

Рис. 7 Тело, канал 0

Рис. 8 Тело, канал 1

Для всех классов и выборок оптимальные значения параметра γ близки к 0.001, 0.01, поэтому при дальнейшем обучении моделей на большом количестве данных при заранее не заданных параметрах SVM-регрессоров, при поиске по сетке для параметра γ будут использоваться только эти значения. Тогда для построенных моделей оптимальными параметрами будут следующие:

	Рука	Нога	Сумка	Тело
С	10	1	1	1
γ	0.01	0.001	0.01	0.001

По полученным значениям ошибок на кросс-валидации были выбраны оптимальные модели. С помощью этих моделей были построены траектории для каждого класса расположения смартфона (в качестве тестовой выборки была использована выборка Zhicheng). При этом траектории были построены для случаев, когда дополнительная корректировка

весов с помощью оптимизации V_{bias} не производилась (сиреневая линия) и когда производилась (синяя линяя). Истинная траектория обозначена красным цветом.

Рис. 10 Траектории

5 Выводы

Путем изначального определения расположения смартфона у человека (классы в данной задаче), были подобраны более подходящие параметры для моделей, которые увеличили точность построенных траекторий.

В ходе данной работы были повторены результа статьи для алгоритма RIDI [14]. При работе с данными и для их улучшения был использован фильтр Гаусса.

В дальнейшем планируется применить полученную модель для дополнительно собранных данных, а также улучшить методы обработки данных для уменьшения шума (применение фильтра Калмана) и посмотреть другие способы оптимизации модели.

6 Приложения

Таблица 1 Зависимости MSE (m^2/s^2) от параметров моделей для выборки 1

0.008260.004480.007540.006890.015680.010510.007510.01131 $\gamma = 0.1$ $\gamma = 0.01$ 0.002120.008730.01011 0.007030.006420.007020.014960.00469= 0.0010.010290.00714 0.002120.008630.004570.006510.0151 0.00731> = 0.00010.007160.004560.010320.002130.006520.007340.015120.00862> 0.010250.004480.011420.008090.006830.007590.00751 $\gamma = 0.1$ 0.0152 $\gamma = 0.01$ 0.002060.00473 0.009050.00944 0.006220.006040.014790.00671= 0.0010.009480.006760.002050.006260.006130.014920.004640.00898> = 0.00010.002050.009490.006760.006260.008980.006140.014940.00463Perpeccop Pука, 0 Тело, 0 Сумка, Сумка, Тело, $\overline{\mathrm{P}}\mathrm{yka},$ Hora, Нога,

Таблица 2 Зависимости МSE (m^2/s^2) от параметров моделей для выборки 2

			1		Ι			l	
C=10	$\gamma = 0.1$	0.01234 0.01521	0.01406	0.00448	0.00537 0.00629	0.02282	0.02541	0.00789	0.01306 0.01488
	$\gamma = 0.01 \gamma = 0.1$	0.01234	0.01065	0.00212	0.00537	0.02155	0.0234	0.0055	0.01306
	$\gamma = 0.001$	0.01232	0.01051	0.00212	0.0055	0.02176	0.02342	0.00544	0.0131
	$\gamma = 0.001 \mid \gamma = 0.01 \mid \gamma = 0.1 \mid \gamma = 0.0001 \mid \gamma = 0.001 \mid$	0.01232	0.01051	0.00213	0.0055	0.02176	0.02342	0.00544	0.0131
C=1	$\gamma = 0.1$	0.01255 0.01519	0.01406	0.00448	0.00631	0.02657	0.02552	0.00546 0.00789	0.01489
	$\gamma = 0.01$	0.01255	0.01029	0.00206 0.00448	0.00504 0.00631	0.02676 0.02657	0.02451 0.02552	0.00546	0.01295 0.01489
		0.0125	0.01013	0.00205	0.00511	0.02699	0.0246	0.0054	0.01289
	$\gamma = 0.0001$	0.0125	0.01013	0.00205	0.00511	0.02699	0.0246	0.0054	0.01289
Perpeccop		Сумка, 0	Сумка, 1	Тело, 0	Тело, 1	Рука, 0	Pyka, 1	Hora, 0	Hora, 1

Таблица 3 Зависимости МSE (m^2/s^2) от параметров моделей для выборки 3

	H	33	<u>ა</u>	20	ر وز	32	2	6(6(
	$\gamma = 0.1$	0.00753	0.00435	0.0065	0.00629	0.02282	0.01072	0.00609	0.00899
0	$\gamma = 0.01$	0.00583	0.00241	0.00391	0.00537	0.02155	0.00975	0.00405	0.00669
C=10	$\gamma = 0.001$	0.00591	0.00247	0.00384	0.0055	0.02176	0.00989	0.00403	0.00665
	$\gamma = 0.001 \mid \gamma = 0.01 \mid \gamma = 0.1 \mid \gamma = 0.0001 \mid \gamma = 0.001 \mid \gamma = 0.001 \mid \gamma = 0.01 \mid \gamma = 0$	0.00592	0.00247	0.00384	0.0055	0.02176	0.00991	0.00403	0.00666
	$\gamma = 0.1$	0.00748	0.0041	0.0065	0.00504 0.00631	0.02676 0.02657	0.01016 0.01158	0.00614	0.009
	$\gamma = 0.01$	0.00573	0.00239	0.00389	0.00504	0.02676	0.01016	0.00401	0.00659
C=1	$\gamma = 0.001$	0.00579	0.00241	0.00379	0.00511	0.02699	0.01024	0.00395	0.0065
	$\gamma = 0.0001$	0.00579	0.00242	0.00379	0.00511	0.02699	0.01025	0.00394	0.00649
Ропроссов	Perpeccop		Сумка, 1	Тело, 0	Тело, 1	Рука, 0	Pyka, 1	Hora, 0	Hora, 1

Литература

- [1] Erich Bruns and Oliver Bimber. Adaptive training of video sets for image recognition on mobile phones. *Personal and Ubiquitous Computing*, 13(2):165–178, 2009.
- [2] L. Chen, E. H. Wu, M. Jin, and G. Chen. Intelligent fusion of wi-fi and inertial sensor-based positioning systems for indoor pedestrian navigation. *IEEE Sensors Journal*, 14(11):4034–4042, Nov 2014.
- [3] Frédéric Evennou and François Marx. Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. EURASIP J. Adv. Sig. Proc, 2006, 2006.
- [4] Michael Hardegger, Daniel Roggen, and Gerhard Tröster. 3d actionslam: wearable person tracking in multi-floor environments. *Personal and Ubiquitous Computing*, 19(1):123–141, 2015.
- [5] R. Hostettler and S. Särkkä. Imu and magnetometer modeling for smartphone-based pdr. In 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 1–8, Oct 2016.
- [6] W. Kang and Y. Han. Smartpdr: Smartphone-based pedestrian dead reckoning for indoor localization. *IEEE Sensors Journal*, 15(5):2906–2916, May 2015.
- [7] Soo-Cheol Kim, Young-Sik Jeong, and Sang Oh Park. Rfid-based indoor location tracking to ensure the safety of the elderly in smart home environments. *Personal and Ubiquitous Computing*, 17(8):1699–1707, 2013.
- [8] M. Kok, J. D. Hol, and T. B. Schön. Indoor positioning using ultrawideband and inertial measurements. *IEEE Transactions on Vehicular Technology*, 64(4):1293–1303, April 2015.
- [9] Kwanghyo Park, Hyojeong Shin, and Hojung Cha. Smartphone-based pedestrian tracking in indoor corridor environments. *Personal and Ubiquitous Computing*, 17(2):359–370, 2013.
- [10] Roman Rosipal and Nicole Krämer. Overview and recent advances in partial least squares. In Craig Saunders, Marko Grobelnik, Steve Gunn, and John Shawe-Taylor, editors, Subspace, Latent Structure and Feature Selection, pages 34–51, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
- [11] Joaquin Torres-Sospedra and Adriano J. C. Moreira. Analysis of sources of large positioning errors in deterministic fingerprinting. *Sensors*, 17(12):2736, 2017.
- [12] Rodrigo Vera, Sergio F. Ochoa, and Roberto G. Aldunate. Edips: an easy to deploy indoor positioning system to support loosely coupled mobile work. *Personal and Ubiquitous Computing*, 15(4):365–376, 2011.
- [13] Boyuan Wang, Xuelin Liu, Baoguo Yu, Ruicai Jia, and Xingli Gan. Pedestrian dead reckoning based on motion mode recognition using a smartphone. *Sensors*, 18(6):1811, 2018.
- [14] Hang Yan, Qi Shan, and Yasutaka Furukawa. Ridi: Robust imu double integration. CoRR, abs/1712.09004, 2017.