$10_{93} (K10a_{101})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -1.48497 \times 10^{17} u^{34} - 2.74759 \times 10^{17} u^{33} + \dots + 2.14980 \times 10^{17} b + 3.71507 \times 10^{17},$$

$$2.04229 \times 10^{17} u^{34} + 3.73430 \times 10^{17} u^{33} + \dots + 2.14980 \times 10^{17} a - 2.36397 \times 10^{17}, \ u^{35} + 2u^{34} + \dots - 2u - 1$$

$$I_2^u = \langle 3b + u + 2, \ 3a - 2u - 1, \ u^2 + u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 37 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -1.48 \times 10^{17} u^{34} - 2.75 \times 10^{17} u^{33} + \dots + 2.15 \times 10^{17} b + 3.72 \times 10^{17}, \ 2.04 \times 10^{17} u^{34} + 3.73 \times 10^{17} u^{33} + \dots + 2.15 \times 10^{17} a - 2.36 \times 10^{17}, \ u^{35} + 2u^{34} + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.949992u^{34} - 1.73705u^{33} + \dots + 6.42492u + 1.09963 \\ 0.690747u^{34} + 1.27807u^{33} + \dots - 1.42690u - 1.72810 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.300462u^{34} + 0.653361u^{33} + \dots + 0.171322u - 0.984845 \\ 0.369645u^{34} + 0.462967u^{33} + \dots - 2.38683u - 0.219453 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.64074u^{34} - 3.01512u^{33} + \dots + 7.85182u + 2.82773 \\ 0.690747u^{34} + 1.27807u^{33} + \dots - 1.42690u - 1.72810 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.39270u^{34} - 2.59706u^{33} + \dots + 7.17623u + 2.38722 \\ 0.569891u^{34} + 1.15346u^{33} + \dots - 0.0996613u - 1.67732 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.604507u^{34} - 1.03705u^{33} + \dots + 1.81017u + 1.15186 \\ 0.344862u^{34} + 0.434712u^{33} + \dots - 1.72091u - 0.338982 \end{pmatrix}$$

(ii) Obstruction class =-1

(iii) Cusp Shapes =
$$-\frac{43902992914495201}{128987874023997969}u^{34} - \frac{378946062727999073}{214979790039996615}u^{33} + \cdots - \frac{1287205910561212151}{214979790039996615}u + \frac{3437895448731260974}{644939370119989845}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_{1}, c_{8}	$u^{35} + 3u^{34} + \dots + 5u - 9$
c_2, c_5, c_6	$u^{35} - 2u^{34} + \dots - 2u + 1$
<i>c</i> ₃	$u^{35} + 3u^{34} + \dots - 60u + 36$
c_4, c_7	$u^{35} - 2u^{34} + \dots + 2u - 1$
<i>c</i> ₉	$3(3u^{35} + 2u^{34} + \dots + 2024u + 529)$
c_{10}	$3(3u^{35} + 13u^{34} + \dots - 793u + 173)$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{8}	$y^{35} - 31y^{34} + \dots + 439y - 81$
c_2, c_5, c_6	$y^{35} + 36y^{34} + \dots - 8y - 1$
c_3	$y^{35} + 15y^{34} + \dots - 8136y - 1296$
c_4, c_7	$y^{35} - 24y^{34} + \dots - 8y - 1$
<i>c</i> ₉	$9(9y^{35} - 280y^{34} + \dots + 2073680y - 279841)$
c_{10}	$9(9y^{35} + 137y^{34} + \dots + 24387y - 29929)$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.797949 + 0.618523I		
a = 0.441661 - 0.524170I	7.15893 + 9.08856I	5.28395 - 6.85993I
b = 1.31533 + 0.64336I		
u = -0.797949 - 0.618523I		
a = 0.441661 + 0.524170I	7.15893 - 9.08856I	5.28395 + 6.85993I
b = 1.31533 - 0.64336I		
u = 0.319146 + 0.974832I		
a = -0.0301867 + 0.0609842I	0.84892 - 2.27938I	-3.03865 + 4.27236I
b = -0.142675 + 0.589069I		
u = 0.319146 - 0.974832I		
a = -0.0301867 - 0.0609842I	0.84892 + 2.27938I	-3.03865 - 4.27236I
b = -0.142675 - 0.589069I		
u = -0.883803 + 0.527645I		
a = -0.151524 - 0.698091I	6.81152 - 3.53470I	6.64372 + 2.46356I
b = 1.074450 - 0.184550I		
u = -0.883803 - 0.527645I		
a = -0.151524 + 0.698091I	6.81152 + 3.53470I	6.64372 - 2.46356I
b = 1.074450 + 0.184550I		
u = 0.890046 + 0.661300I		
a = -0.138488 - 0.436432I	2.19099 - 3.04973I	6.83792 + 5.73006I
b = -0.961888 + 0.317896I		
u = 0.890046 - 0.661300I		
a = -0.138488 + 0.436432I	2.19099 + 3.04973I	6.83792 - 5.73006I
b = -0.961888 - 0.317896I		
u = -0.485797 + 0.446415I		
a = -1.54295 + 0.61782I	1.92901 + 4.20671I	2.61467 - 7.67969I
b = -0.767630 - 0.733842I		
u = -0.485797 - 0.446415I		
a = -1.54295 - 0.61782I	1.92901 - 4.20671I	2.61467 + 7.67969I
b = -0.767630 + 0.733842I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.177701 + 0.568169I		
a = 0.88046 + 2.71785I	5.61974 - 1.75521I	9.80898 + 3.99717I
b = 0.844702 + 0.231272I		
u = 0.177701 - 0.568169I		
a = 0.88046 - 2.71785I	5.61974 + 1.75521I	9.80898 - 3.99717I
b = 0.844702 - 0.231272I		
u = 0.518141 + 0.274512I		
a = 0.865516 + 0.243501I	-1.063790 - 0.837639I	-5.45708 + 2.88305I
b = 0.321578 - 0.365013I		
u = 0.518141 - 0.274512I		
a = 0.865516 - 0.243501I	-1.063790 + 0.837639I	-5.45708 - 2.88305I
b = 0.321578 + 0.365013I		
u = -0.07117 + 1.42730I		
a = -2.02061 + 1.49459I	7.48516 + 0.26471I	8.26333 + 0.I
b = -1.94022 + 1.12557I		
u = -0.07117 - 1.42730I		
a = -2.02061 - 1.49459I	7.48516 - 0.26471I	8.26333 + 0.I
b = -1.94022 - 1.12557I		
u = 0.13283 + 1.44979I		
a = 1.51691 + 0.10394I	4.57837 - 3.04741I	0
b = 0.950697 - 0.074489I		
u = 0.13283 - 1.44979I		
a = 1.51691 - 0.10394I	4.57837 + 3.04741I	0
b = 0.950697 + 0.074489I		
u = -0.379190 + 0.370732I		
a = 0.133491 + 0.548267I	1.88873 - 1.15770I	2.26234 - 1.26872I
b = -0.738044 + 0.811910I		
u = -0.379190 - 0.370732I		
a = 0.133491 - 0.548267I	1.88873 + 1.15770I	2.26234 + 1.26872I
b = -0.738044 - 0.811910I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.03075 + 1.47995I		
a = -1.46910 - 0.67161I	7.85287 + 1.23959I	0
b = -1.29110 - 1.51306I		
u = -0.03075 - 1.47995I		
a = -1.46910 + 0.67161I	7.85287 - 1.23959I	0
b = -1.29110 + 1.51306I		
u = -0.13948 + 1.49938I		
a = -1.99280 - 0.18614I	8.34974 + 6.42549I	0
b = -1.072190 - 0.508436I		
u = -0.13948 - 1.49938I		
a = -1.99280 + 0.18614I	8.34974 - 6.42549I	0
b = -1.072190 + 0.508436I		
u = 0.04304 + 1.53065I		
a = 1.29303 + 0.78816I	12.61950 - 2.50960I	11.52662 + 0.I
b = 0.854691 - 0.412838I		
u = 0.04304 - 1.53065I		
a = 1.29303 - 0.78816I	12.61950 + 2.50960I	11.52662 + 0.I
b = 0.854691 + 0.412838I		
u = -0.26639 + 1.57422I		
a = 1.85469 - 0.10458I	14.3602 + 13.0165I	0
b = 1.70003 + 0.90521I		
u = -0.26639 - 1.57422I		
a = 1.85469 + 0.10458I	14.3602 - 13.0165I	0
b = 1.70003 - 0.90521I		
u = -0.171298 + 0.343458I		
a = -0.06814 + 1.97682I	1.76589 + 0.63046I	5.20787 + 1.46477I
b = -0.847997 - 0.510070I		
u = -0.171298 - 0.343458I		
a = -0.06814 - 1.97682I	1.76589 - 0.63046I	5.20787 - 1.46477I
b = -0.847997 + 0.510070I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.27157 + 1.59599I		
a = -1.399030 - 0.062212I	9.65156 - 7.25912I	0
b = -1.34067 + 0.82337I		
u = 0.27157 - 1.59599I		
a = -1.399030 + 0.062212I	9.65156 + 7.25912I	0
b = -1.34067 - 0.82337I		
u = -0.31084 + 1.58997I		
a = 0.998238 - 0.474581I	13.76820 + 0.95076I	0
b = 1.142220 + 0.398928I		
u = -0.31084 - 1.58997I		
a = 0.998238 + 0.474581I	13.76820 - 0.95076I	0
b = 1.142220 - 0.398928I		
u = 0.368379		
a = -0.675672	3.85534	-11.8900
b = 2.46408		

II.
$$I_2^u = \langle 3b + u + 2, \ 3a - 2u - 1, \ u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{2}{3}u + \frac{1}{3} \\ -\frac{1}{3}u - \frac{2}{3} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u+2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u+1 \\ -\frac{1}{3}u - \frac{2}{3} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u+1 \\ \frac{2}{3}u - \frac{2}{3} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes $= -\frac{4}{3}u + 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^2$
c_2, c_7	$u^2 - u + 1$
c_3	u^2
c_4, c_5, c_6	$u^2 + u + 1$
c_8	$(u+1)^2$
<i>c</i> ₉	$3(3u^2 - 3u + 1)$
c_{10}	$3(3u^2+1)$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_8	$(y-1)^2$
c_2, c_4, c_5 c_6, c_7	$y^2 + y + 1$
<i>c</i> ₃	y^2
<i>c</i> ₉	$9(9y^2 - 3y + 1)$
c_{10}	$9(3y+1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0.577350I	1.64493 + 2.02988I	5.66667 - 1.15470I
b = -0.500000 - 0.288675I		
u = -0.500000 - 0.866025I		
a = -0.577350I	1.64493 - 2.02988I	5.66667 + 1.15470I
b = -0.500000 + 0.288675I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^2)(u^{35} + 3u^{34} + \dots + 5u - 9)$
c_2	$(u^2 - u + 1)(u^{35} - 2u^{34} + \dots - 2u + 1)$
<i>c</i> ₃	$u^2(u^{35} + 3u^{34} + \dots - 60u + 36)$
c_4	$(u^2 + u + 1)(u^{35} - 2u^{34} + \dots + 2u - 1)$
c_5, c_6	$(u^2 + u + 1)(u^{35} - 2u^{34} + \dots - 2u + 1)$
	$(u^2 - u + 1)(u^{35} - 2u^{34} + \dots + 2u - 1)$
c ₈	$((u+1)^2)(u^{35}+3u^{34}+\cdots+5u-9)$
<i>C</i> 9	$9(3u^2 - 3u + 1)(3u^{35} + 2u^{34} + \dots + 2024u + 529)$
c_{10}	$9(3u^2+1)(3u^{35}+13u^{34}+\cdots-793u+173)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_8	$((y-1)^2)(y^{35} - 31y^{34} + \dots + 439y - 81)$
c_2, c_5, c_6	$(y^2 + y + 1)(y^{35} + 36y^{34} + \dots - 8y - 1)$
c_3	$y^2(y^{35} + 15y^{34} + \dots - 8136y - 1296)$
c_4, c_7	$(y^2 + y + 1)(y^{35} - 24y^{34} + \dots - 8y - 1)$
<i>c</i> 9	$81(9y^2 - 3y + 1)(9y^{35} - 280y^{34} + \dots + 2073680y - 279841)$
c_{10}	$81(3y+1)^2(9y^{35}+137y^{34}+\cdots+24387y-29929)$