

Bancos de Dados

Profa. Patrícia R. Oliveira EACH - USP

Normalização e Dependências Funcionais em BD's Relacionais — Parte 1

slides parcialmente baseados em material de aula dos Profs. José E. Ferreira e José F. Rodrigues Junior

Qualidade do projeto lógico

- Primeiramente, pode-se considerar um guia informal para projetos de BD's Relacionais.
 - semântica dos atributos;
 - ■redução de informação redundante em tuplas e anomalias de atualização;
 - ■redução de valores nulos em tuplas;
 - ■impedimento para geração de tuplas ilegítimas.

Guia informal

- Importante:
 - Projetar um BD Relacional com qualidade significa:

Agrupar atributos para formar "bons" esquemas de relações.

Guia informal

- O que é um "bom" esquema?
 - ■No nível lógico:
 - é fácil de entender;
 - ■ajuda a formular consultas corretas.
 - ■No nível físico:
 - tuplas são armazenadas eficientemente;
 - tuplas são acessadas com eficiência.

Guia informal – semântica dos atributos

- ■<u>Diretriz 1</u>: Cada tupla de uma relação deve representar uma entidade ou instância de relacionamento.
 - atributos de entidades distintas não devem estar na mesma relação.
 - apenas chaves estrangeiras devem ser usadas para referenciar outras entidades.
 - atributos de diferentes entidades e relacionamentos devem ser mantidos tão separadamente quanto possível.

Guia informal – semântica dos atributos

Dicas:

- projete um esquema que possa ser facilmente explicado.
- a semântica dos atributos deve ser de fácil interpretação.

Exemplo

O que é mais claro? O esquema abaixo,

EMPREGADO

ENOME	SSN	DATANASC	ENDERECO	DNUMERO
LIVOIVIL	0014	DAIANAGO	LINDLINEOU	DIVONILITIO

PROJETO

PNOME	PNUMERO	PLOCALIZACAO	DNUM	
THOME	THOMETIO	LOOKLIZAGAO	DIVOIVI	

TRABALHA_EM

SSN	PNUMERO	HORAS

ou o esquema a seguir?

EMP_PROJ

SSN	PNUMERO	HORAS	ENOME	PNOME	PLOCALIZACAO
-----	---------	-------	-------	-------	--------------

7

Exemplo

Qual esquema precisa de maior espaço de armazenamento? O esquema abaixo,

EMPREGADO

	ENOME	SSN	DATANASC	ENDERECO	DNUMERO
1		00.1	D		Ditomination

DEPARTAMENTO

DNOME <u>DNUMERO</u> DGERSS	SN
-----------------------------	----

ou o esquema a seguir?

EMP_DEPT

ENOME SSN DATANASC ENDERECO	DNUMERO DNOME	DGERSSN
-----------------------------	---------------	---------

8

EMPREGADO

ENOME	SNN	DATANASC	ENDERECO	DNUMERO
Smith,John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4
Narayan, Remesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg,James E.	888665555	1937-11-10	450 Stone, Houston, TX	1

DEPARTAMENTO

DNOME	DNUMERO	DGERSSN
Pesquisa	5	333445555
Administraçã	ăo 4	987654321
Diretoria	1	888665555

EMP DEPT

D					,	,
ENOME	SSN	DATANASC	ENDERECO	DNUMERO	DNOME	DGERSSN
Smith,John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Pesquisa	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Pesquisa	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administracao	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administracao	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Pesquisa	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Pesquisa	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administracao	987654321
Borg,James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Sede Administrativa	888665555

- Informações redundantes desperdiçam espaço de armazenamento.
- A mistura de atributos de várias entidades pode gerar problemas conhecidos como anomalias de atualização
 - ■anomalias de inserção
 - ■anomalias de eliminação
 - ■anomalias de modificação.

■Anomalia de inserção (1):

- para inserir dados de um empregado, temos que inserir dados para o departamento em que ele trabalha ou *nulls*.
- se o empregado trabalhar no departamento 5, devemos informar os valores dos atributos desse departamento de forma correta e consistente com as outras tuplas.

EMP DEPT ENOME DNUMERO SSN DATANASC DNOME **DGERSSN ENDERECO** Smith.John B. 123456789 1965-01-09 731 Fondren, Houston, TX Pesquisa 333445555 5 Wong, Franklin T. 1955-12-08 638 Voss, Houston, TX 5 Pesquisa 333445555 333445555 Zelaya, Alicia J. 1968-07-19 3321 Castle, Spring, TX Administração 999887777 987654321 Wallace, Jennifer S. 987654321 1941-06-20 291 Berry, Bellaire, TX Administração 987654321 Narayan, Ramesh K. 666884444 1962-09-15 975 FireOak, Humble, TX Pesquisa 333445555 English, Joyce A. 453453453 1972-07-31 5631 Rice. Houston, TX Pesquisa 333445555 Jabbar, Ahmad V. 980 Dallas, Houston, TX Administração 987987987 1969-03-29 987654321

450 Stone, Houston, TX

■ Anomalia de inserção (2):

888665555

Borg, James E.

1937-11-10

- não é possível inserir um novo departamento que ainda não tenha empregado.
 - Por que?

redundância

Sede Administrativa 888665555

EMP_DEPT

ENOME	SSN	DATANASC	ENDERECO	DNUMERO	DNOME	DGERSSN
Smith,John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Pesquisa	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Pesquisa	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administracao	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administracao	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Pesquisa	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Pesquisa	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administracao	987654321
Borg,James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Sede Administrativa	888665555

- Suponha que quiséssemos mudar o gerente de um determinado departamento.
 - •Qual seria a principal dificuldade encontrada?

EMP_DEPT

ENOME	SSN	DATANASC	ENDERECO	DNUMERO	DNOME	DGERSSN
Smith,John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Pesquisa	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Pesquisa	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administracao	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administracao	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Pesquisa	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Pesquisa	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administracao	987654321
Borg,James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Sede Administrativa	888665555

Anomalia de modificação: a mudança de um gerente de departamento implica na atualização das tuplas de todos os empregados que trabalham nesse departamento.

■Anomalia de remoção:

- quando uma tupla de empregado é removida, pode ser que ela represente o último empregado que trabalha nesse departamento.
 - O que acontece nesse caso?
 - E se um departamento tiver que ser extinto?

Guia informal – informação redundante e anomalias de atualização

- <u>Diretriz 2</u>: projete um esquema que não sofra de anomalias de inserção, remoção e de modificação.
- Se existir alguma, então assegure-se de que as aplicações levem tais anomalias em consideração.

- <u>Diretriz 3</u>: relações devem ser projetadas de forma que suas tuplas tenham a menor quantidade possível de valores nulos.
- Normalmente, os atributos que possuem valores nulos podem ser colocados em uma relação separada (com uma chave primária).

17

Exemplo

EMPREGADO

ENOME SSN DATANASC ENDERECO DNUMERO

- Se só 10% dos empregados tiverem escritórios particulares:
 - há pouca justificativa para incluir um atributo NUM_ESCRITORIO na relação EMPREGADO.
 - pode-se criar uma relação EMP_ESCRITORIO(ESSN, NUM_ESCRITORIO), contendo apenas tuplas de empregado que têm escritório.

18

Guia informal – tuplas ilegítimas

- Projetos incorretos podem gerar resultados inválidos em operações de junção.
- <u>Diretriz 4</u>: evite relações que contenham relacionamentos entre atributos que não sejam combinações *chave* estrangeira – chave primária.
 - junções sobre esses atributos podem produzir tuplas ilegítimas.

SSN	PNUMERO	HORAS	ENOME	PNOME	PLOCALIZACAO
	6				

O que acontecesse se o esquema abaixo for usado ao invés desse acima?

EMP_LOCS

ENOME	PLOCALIZACAO
Smith, John B.	Bellaire
Smith, John B.	Sugarland
Narayan, Ramesh K.	Houston
English, Joyce A.	Bellaire
English, Joyce A.	Sugarland
Wong, Franklin T.	Sugarland
Wong, Franklin T.	Houston
Wong, Franklin T.	Stafford

EMP_PROJ1

SSN	PNUMERO	HORAS	PNOME	PLOCALIZACAO
123456789 123456789 666884444 453453453 453453453 333445555 333445555 333445555	1 2 3 1 2 2 2 3 10 20	32.5 7.5 40.0 20.0 20.0 10.0 10.0 10.0	Produto X Produto Y Produto Z Produto X Produto Y Produto Y Produto Z Automação Reorganização	Bellaire Sugarland Houston Bellaire Sugarland Sugarland Houston Stafford Houston

■Podem ocorrer tuplas ilegítimas (*) em uma operação de junção natural!

	NSS	<u>PNÚMERO</u>	HORAS	PNOME	<u>PLOCALIZAÇÃO</u>	ENAME
	123456789	1	32.5	ProdutoX	Bellaire	John Smith
*	123456789	1	32.5	ProdutoX	Bellaire	Joyce English
	123456789	2	7.5	ProdutoY	Sugarland	John Smith
*	123456789	2	7.5	ProdutoY	Sugarland	Joyce English
*	123456789	2	7.5	ProdutoY	Sugarland	Franklin Wong
	666884444	3	40.0	ProdutoZ	Houston	Ramesh Narayan
*	666884444	3	40.0	ProdutoZ	Houston	Franklin Wong
*	453453453	1	20.0	ProdutoX	Bellaire	John Smith
	453453453	1	20.0	ProdutoX	Bellaire	Joyce English
*	453453453	2	20.0	ProdutoY	Sugarland	John Smith
	453453453	2	20.0	ProdutoY	Sugarland	Joyce English
*	453453453	2	20.0	ProdutoY	Sugarland	Franklin Wong
*	333445555	2	10.0	ProdutoY	Sugarland	John Smith
*	333445555	2	10.0	ProdutoY	Sugarland	Joyce English
	333445555	2	10.0	ProdutoY	Sugarland	Franklin Wong
*	333445555	3	10.0	ProdutoZ	Houston	Ramesh Narayan
	333445555	3	10.0	ProdutoZ	Houston	Franklin Wong
	333445555	10	10.0	Automação	Stafford	Franklin Wong
*	333445555	20	10.0	Reorganização	Houston	Ramesh Narayan
	333445555	20	10.0	Reorganização	Houston	Franklin Wong

- Dependências Funcionais (DF's) são usadas para medir formalmente a qualidade do projeto lógico.
- As DF's e chaves são usadas para definir formas normais de relações.
- As DF's são restrições que são derivadas do significado e do inter-relacionamento dos dados de atributos.

Um conjunto de atributos X determina funcionalmente um conjunto de atributos Y se o valor de X determinar um único valor Y.

Exemplos:

- o número do Seguro Social (SSN) determina o nome do empregado.
- o número do projeto determina o nome do projeto e a sua localização.

- ■X <u>determina funcionalmente</u> Y é representado por: X → Y.
- ■X → Y diz que se duas tuplas tiverem o mesmo valor para X, elas devem ter o mesmo valor para Y, ou seja:

Se $X \rightarrow Y$, então, para quaisquer tuplas t_1 e t_2 de r(R): se $t_1[X] = t_2[X]$, então, $t_1[Y] = t_2[Y]$.

Exemplos

- ■1) O número do Seguro Social determina o nome do empregado:
 - ■SSN → ENOME
- 2) O número do projeto determina o seu nome e a sua localização:
 - ■PNUMERO → {PNOME, PLOCALIZACAO}
- ■3) O SSN de um empregado e o número do projeto determinam as horas em que o empregado trabalha no projeto:
 - ■{SSN, PNUMERO} → HORAS

Importante:

- $X \rightarrow Y$ especifica uma <u>restrição</u> sobre todas as instâncias de r(R).
- As DF's são derivadas das restrições do mundo real
 - podem ser <u>verificadas</u> nas instâncias do BD, mas nunca definidas a partir delas.

ENSINA

PROFESSOR	CURSO	TEXTO	
Smith	Estruturas de dados	Bartram	
Smith	Administração de dados	Al-Nour	
Hall	Compiladores	Hoffman	
Brown	Estruturas de dados	Augenthaler	

- ■Pode-se pensar que TEXTO → CURSO
 - ■isso tem sentido semântico?
- Com certeza PROFESSOR não determina funcionalmente CURSO!

- Controle de consistência:
 - É necessário conhecer todas as dependências funcionais.
 - informação semântica fornecida pelo projetista.
 - DF's podem ser inferidas a partir de outras.
 - regras de inferência.

Regras de inferência para DF's

- Regras de inferência de Armstrong:
- ■RI1. (Reflexiva) Se $X \supseteq Y$, então, $X \to Y$
 - ■Um conjunto de atributos sempre determina seus subconjuntos (ou determina a si próprio se X = Y).
- ■RI2. (Aumentativa) Se $X \rightarrow Y$, então, $XZ \rightarrow YZ$.
 - Adicionar um conjunto de atributos a ambos os lados de uma dependência resulta em uma outra dependência válida.
 - ■Notação: XZ significa {X, Z}

Regras de inferência para DF's

- ■RI3. (Transitiva) Se $X \rightarrow Y$ e $Y \rightarrow Z$, então, $X \rightarrow Z$.
- Outras regras de inferência úteis:
 - ■(Decomposição) Se $X \to YZ$, então, $X \to Y$ e $X \to Z$.
 - \blacksquare (Aditiva) Se X → Y e X → Z, então, X → YZ.
- Obs: As duas regras acima podem ser deduzidas a partir de RI1, RI2 e RI3.

Regras de inferência para DF's

- O projetista do esquema define as DF´s que são mais óbvias.
- Entretanto, existem outras DF´s que podem ser deduzidas.
- Exemplo:

```
F = \{SSN \rightarrow \{ENOME, DATANASC, ENDERECO, DNUMERO\}, \\ DNUMERO \rightarrow \{DNOME, DGERSSN\}\}
```

É possível inferir, por exemplo, que:

```
SSN \rightarrow SSN

SSN \rightarrow \{DNOME, DGERSSN\}

DNUMERO \rightarrow DNOME
```


Normalização de relações

- Normalização: processo de decompor relações "ruins", dividindo os seus atributos em relações menores.
- Forma normal: indica o nível de qualidade de uma relação.

- Na prática, a normalização é realizada para obter projetos de alta qualidade e atender às propriedades desejáveis.
- Os projetistas de BD's não precisam normalizar todas as relações na maior forma normal possível.
- Desnormalização: processo de armazenar junções de relações de forma normal superior como uma nova relação que terá uma forma normal inferior (Ex: slide 8).

33

Revisão

■Uma <u>superchave</u> de uma relação esquema R = {A1, A2,, An} é um conjunto de atributos S, subconjunto de R, com a propriedade de que:

t1[S] ≠ t2[S] para qualquer extensão r(R).

■Uma superchave K é uma <u>chave</u> se K é uma superchave mínima.

- Se uma relação esquema tiver mais de uma chave, cada chave será chamada de <u>chave-candidata</u>.
 - Uma das chaves-candidatas é arbitrariamente escolhida para ser a <u>chave-primária</u> e as outras são chamadas de chaves-secundárias.

- Um <u>atributo primário</u> (ou primo) é membro da chave primária da relação.
- ■Um <u>atributo não primário</u> é um atributo que não é primário – isto é, não é membro da chave primária da relação.

36

Primeira forma normal

- Proíbe atributos compostos, atributos multivalorados e relações aninhadas.
 - ou seja, permite apenas atributos que sejam atômicos.
- Considerada como sendo parte da definição de relação.

Normalização na 1FN

DEPARTAMENTO

DNOME	DNUMERO	DGERSSN	DLOCALIZACOES
A		A	A

(b) DEPARTAMENTO

DNOME	DNUMERO	DGERSSN	DLOCALIZACOES
Pesquisa	5	333445555	{Bellaire, Sugarland, Houston}
Administração	4	987654321	{Stafford}
Diretoria	1	888665555	{Houston}

(c) DEPARTAMENTO

DNOME	DNUMERO	DGERSSN	DLOCALIZACAO
Pesquisa	5	333445555	Bellaire
Pesquisa	5	333445555	Sugarland
Pesquisa	5	333445555	Houston
Administração	4	987654321	Stafford
Diretoria	1	888665555	Houston

(a) EMP_PROJ

2002	0-10-00	PROJS		
SSN	ENOME	PNUMERO	HORAS	

(b) EMP_PROJ

SSN	ENOME	PNUMERO	HORAS
123456789	Smith, John B.	1	32.5
		2	7.5
666884444	Narayan, Ramesh	K. 3	40.0
453453453	English, Joyce A.	1	20.0
.150.0000 110000000000110		2	20.0
333445555	Wong, Franklin T.	2	10.0
		3	10.0
		10	10.0
		20	10.0
999887777	Zelaya, Alicia J.	30	30.0
- 10-0-2014-201-2014-2014-2014-2014-2014-2		10	10.0
987987987	Jabbar, Ahmad V.	10	35.0
		30	5.0
987654321	Wallace, Jennifer	S. 30	20.0
		20	15.0
888665555	Borg,James E.	20	null

No caso de relações aninhadas (atributos multivalorados compostos).

(c) EMP_PROJ1

OF STREET, STR
ENOME

EMP_PROJ2

SSN	PNUMERO	HORAS
	11101112110	

Dependência funcional total

- Dependência funcional total uma DF, Y → Z, tal que a remoção de qualquer atributo de Y invalida a DF.
- Exemplos:
 - ■{ SSN, PNUMERO } → HORAS é uma DF total, uma vez que SSN não determina HORAS e nem PNUMERO determina HORAS.
 - ■{ SSN, PNUMERO } \rightarrow ENOME não é uma DF total (é uma DF parcial) pois SSN \rightarrow ENOME.

EMP_PROJ

SSN PNUM	ERO HORAS	ENOME	PNOME	PLOCALIZACAO
----------	-----------	-------	-------	--------------

- Um esquema de relação R está na 2FN se todo atributo não primário A em R tem dependência funcional total da chave primária de R.
- R pode ser decomposto em relações que estejam na 2FN por meio do processo de normalização.

- Exemplo:
 - Turma = (<u>CodDisc</u>, <u>Numero</u>, Sala, No.Horas)

Suponha que cada disciplina tem sua quantidade de horas bem definida como ocorre no mundo real.

Assim, o modelo não deve permitir que duas disciplinas sejam armazenadas com número de horas diferentes.

- Exemplo:
 - Turma = (<u>CodDisc</u>, <u>Numero</u>, Sala, No.Horas)

CodDisc	<u>Numero</u>	Sala	No.Horas
Matemática	1	24	60
Computação	1	13	30
Computação	2	25	30
Matemática	2	31	50

- Exemplo:
 - Turma = (<u>CodDisc</u>, <u>Numero</u>, Sala, No.Horas)

	CodDisc	<u>Numero</u>	Sala	No.Horas
	Matemática	1	24	60
	Computação	1	13	30
	Computação	2	25	30
Dependêr funcion	ncia aMatemática	2	31	50

parcial à chave

- Exemplo:
 - Turma = (<u>CodDisc</u>, <u>Numero</u>, Sala, No.Horas)

CodDisc	<u>Numero</u>	Sala	No.Horas
Matemática	1	24	60
Computação	1	13	30
Computação	2	25	30

Se Cod Msemátic Computação → No. Horas 10 30

Se CodDisc = Matemática → No. Horas = 60 ou 50?

• Exemplo:

Turma = (<u>CodDisc</u>, <u>Numero</u>, Sala, No.Horas

CodDisc	<u>Numero</u>	Sala	No.Horas		
Matemática	1	24	60		
Computação	1	13	30		
Computação	2	25	30		
Matemática	Redundância e 50				
Anomalia de inserção					

Como normalizar esta relação?
 Turma = (CodDisc, Numero, Sala, No.Horas)

Nova relação:
parte da chave que define a dependência (chave da nova relação)
+
atributos dependentes desta parte da chave

2) Atributos parcialmente dependentes da chave saem da relação

• Relação normalizada – sem DFs parciais à chave primária:

CodDisc	<u>Numero</u>	Sala
Matemática	1	24
Computação	1	13
Computação	2	25
Matemática	2	31

CodDisc	No.Horas
Matemática	60
Computação	30
è	

A própria estrutura do esquema:

- -garante a não redundância
- -garante a consistência (apenas uma versão dos dados)

Normalização na 2FN

Dependência funcional transitiva

- Dependência funcional transitiva uma DF, X → Z, que pode ser derivada a partir de duas DFs X →Y e Y→Z.
- Exemplos:
 - ■SSN → DGERSSN é uma DF transitiva pois SSN → DNUMERO e DNUMERO → DGERSSN
 - ■SSN \rightarrow ENOME não é transitiva pois não existe um conjunto de atributos X em que SSN \rightarrow X e X \rightarrow ENOME

50

- Um esquema de relação R está na 3FN se estiver na 2FN e nenhum atributo não-primário, A, for transitivamente dependente da chave-primária.
- R pode ser decomposto em relações que estejam na 3FN via o processo de normalização.
- ■NOTA: Em X \rightarrow Y e Y \rightarrow Z, sendo X a chave-primária, pode ser considerado um problema se, e somente se, Y não for uma chave-candidata.
 - Quando Y é uma chave-candidata, não existe problema com a dependência transitiva.

• Exemplo:

Campeoes(Competicaold, Ano, Vencedor, DataNascVenc)

Como:

(Competicaold, Ano)→Vencedor e Vencedor→DataNascVenc

Então, por transitividade:

(Competicaold, Ano) → DataNascVenc

• Exemplo:

Campeoes(Competicaold, Ano, Vencedor, DataNascVenc)

CompeticaoId	Ano	Vencedor	DataNascVenc
C21	2001	Miguel	04/04/1975
C34	2002	César	09/12/1980
C21	2003	Miguel	04/04/1975
C57	2004	Fabiano	06/02/1978

• Exemplo:

Campeoes(Competicaold, Ano, Vencedor, DataNascVenc)

CompeticaoId	<u>Ano</u>	Vencedor	DataNascVenc
C21	2001	Miguel	04/04/1975
C34	2002	César	09/12/1980
C21	2003	Miguel	04/04/1975
C57	2004	Fabiano	06/02/1978

Atributo não-primário DataNascVenc depende transitivamente da chave {CompeticaoId, Ano}

. Exemplo:

Campeoes(Competicaold, Ano, Vencedor, DataNascVenc)

CompeticaoId	<u>Ano</u>	Vencedor	DataNascVenc
C21	2001	Miguel	04/04/1975
C34	2002	César	09/12/1980
C21	2003	Miguel	04/04/1975
C57	2004	Fabiano	06/02/1978

Redundância

Se Vencedor = Miguel → DataNascVenc = 04/04/1975

Campeoes(Competicaold, Ano, Vencedor, DataNascVenc)

CompeticaoId	<u>Ano</u>	Vencedor	DataNascVenc
C21	2001	Miguel	14/04/1975←
C34	2002	César	09/12/1980
C21	2003	Miguel	04/04/1975
C57	2004	Fabiano	06/02/1978

O vencedor da competição C21 de 2001 forneceu data de nascimento errada – precisamos atualizar os dados

UPDATE Campeoes

SET DataNascVenc='14/04/1975'

WHERE Competicaold = C21 AND ANO=2001

Campeoes(Competicaold, Ano, Vencedor, DataNascVenc)

004			
C21	2001	Miguel	14/04/1975
C34	2002	César	09/12/1980
C21	2003	Miguel	04/04/1975
C57	2004	Fabiano	06/02/1978

Anomalia de atualização

Como normalizar essa relação?
Campeoes(Competicaold, Ano, Vençedor, DataNascVenc)

1) Nova relação:

 atributos dependentes transitivamente
 +
 atributos dos quais eles dependem diretamente
 (chave da nova relação)

2) Atributos dependentes transitivamente saem da relação

- Como normalizar essa relação?
 Campeoes(Competicaold, Ano, Vençedor, DataNascVenc)
 - 1) Neva relação:

atributos dependentes transitivamente,

+

atributos dos quais eles dependem diretamente

(chave da nova relação)

2) Atributos dependentes transitivamente saem da relação

•Relação normalizada sem depedências funcionais transitivas a qualquer chave.

Competicao	<u>Ano</u>	Vencedor
C21	2001	Miguel
C34	2002	César
C21	2003	Miguel
C57	2004	Fabiano

14/04/1975
09/12/1980
06/02/1978

A própria estrutura do esquema:

- garante a não redundância
- garante a consistência de atualização

Exercício

Considere a seguinte relação e suas dependências funcionais. Indique se as formas normais 1NF, 2NF e 3F são atendidas. Se necessário, normalize a relação para atender a cada uma destas formas.

Livro = {ISBN, autor, instituicaoAutor, titulo, editora, tipo, preço}

ISBN \rightarrow autor, titulo, editora, tipo autor \rightarrow instituiçãoAutor tipo \rightarrow preço autor, titulo \rightarrow ISBN, editora

Normalização na 3FN

Definição geral de formas normais

- As definições anteriores consideravam somente a chave primária.
- As próximas definições levarão em consideração as várias chaves candidatas.
- Será considerado como <u>primário</u>, um atributo que faça parte de <u>qualquer chave candidata</u>.

Definição geral de formas normais

- ■Redefinição da 2FN:
 - Uma relação R está na 2FN se cada atributo não primário A de R não for parcialmente dependente de nenhuma chave candidata de R.

- LOTES descreve os lotes de terra à venda em vários municípios de um estado.
- Duas chaves candidatas:
 - NUM_ID_PROPRIEDADE
 - MUNICIPIO_NOME, NUM_LOTE}

- ■DF1 e DF2: dependências funcionais dos atributos não primários em relação às chaves candidatas.
- ■DF3: MUNICIPIO_NOME → IMPOSTO
 - ■a taxa de imposto é fixa para um dado município.
- ■DF4: AREA → PRECO
 - o preço de um lote é determinado por sua área, independente do município a quem pertença.

- DF3: viola a definição geral da 2FN!!
 - ■IMPOSTO parcialmente dependente da chave candidata {MUNICIPIO_NOME, NUM_LOTE}.
- ■Solução: decompor LOTES em duas relações:
 - ■LOTES1: resulta da remoção de IMPOSTO da relação LOTES.
 - ■LOTES2: resulta de uma nova relação com os atributos IMPOSTO e MUNICIPIO_NOME (chave primária de LOTES2).

67

■Nota: DF4 não viola a definição geral da 2FN!!

Definição geral de formas normais

- ■Redefinição da 3FN:
 - ■Uma relação esquema R está na 3FN se, sempre que houver uma DF X→A, então uma das duas condições são válidas:
 - X é uma superchave de R, ou
 - A é um atributo primário de R.
- ■NOTA: A Forma normal de Boyce-Codd não admite a segunda condição.

- LOTES2 está na 3FN.
- ■DF4 em LOTES1 viola a 3FN:
 - ■AREA não é uma superchave e PRECO não é atributo primário.

- <u>Solução</u>: decompor LOTES1 em duas relações:
 - ■LOTES1A: resulta da remoção de PRECO da relação LOTES1.
 - ■LOTES1B: resulta de uma nova relação com os atributos PRECO e AREA (chave primária de LOTES1A).

71

Forma normal de Boyce-Codd (BCNF)

- Um esquema de relação R está na BCNF se, sempre que houver uma DF X→A em R, então X é uma superchave de R.
- Cada FN engloba a FN anterior:
 - ■Toda relação em 2FN está na 1FN.
 - ■Toda relação em 3FN está na 2FN.
 - ■Toda relação em BCNF está na 3FN.
- Existem relações que estão na 3FN mas não em BCNF.

- LOTES1A está na 3FN, mas não está na BCNF.
 - ■por causa da DF5: AREA → MUNICIPIO_NOME.
- <u>Solução</u>: decompor LOTES1A em duas relações:
 - ■LOTES1AX: resulta da remoção de MUNICIPIO_NOME da relação LOTES1A.
 - ■LOTES1AY: resulta de uma nova relação com os atributos MUNICIPIO_NOME e AREA (chave primária de LOTES1AY).

73

- ■{ALUNO, CURSO}: chave candidata
- A dependência INSTRUTOR → CURSO viola a BCNF.
- ■Normalização para BCNF:
 - decompor os dois esquemas de relação em:
 - ■{INSTRUTOR, CURSO} e {ALUNO, INSTRUTOR}