Stuxnet

Sérgio Cordeiro

Segurança Cibernética, Autose, 2015

Referências

- Byres e Howard: Analysis of the Siemens WinCC / PCS7 "Stuxnet" Malware for Industrial Control System Professionals (2010)
- Langner: To Kill a Centrifuge. A Technical Analysis of What Stuxnet's Creators Tried to Achieve (2013)

http://www.langner.com/en/wp-content/uploads/2013/11/To-kill-a-centrifuge.pdf

 Nachenberg: A Forensic Dissection of Stuxnet (2012)

http://www.ttivanguard.com/ttivanguard_cfmfiles/pdf/sanjose12/sanjose12session7117.pdf

Sumário

- O Stuxnet é um programa malicioso extremamente sofisticado projetado para atacar um sistema industrial específico.
- Descoberto em 2010, vem sendo analisado até hoje.
 Posteriormente, descobriu-se uma versão anterior, datada de 2005.
- Provavelmente desenvolvido por um estado nacional.
- Primeiro ataque a um sistema SCADA registrado na história.

Sofisticação

- Explora 4 vulnerabilidades do Windows desconhecidas à época
- Explora características específicas da plataforma Siemens
- Explora características específicas da planta alvo
- Difícil de ser descoberto mesmo depois de executar o ataque
- Alvo: planta de enriquecimento de Urânio de Natanz (Irã)

Ciclo de vida

- inserido em PCs de empresas de engenharia no Irã por meio de drives USB
- conecta-se a um centro de controle remoto
- infecta novas máquinas pela rede Ethernet ou por meio de drives USB
- quando encontra uma estação de engenharia Siemens, infecta arquivos específicos da plataforma
- quando se encontra na planta alvo, infecta os PLCs
- periodicamente, executa a ação de ataque

Efetivamente, consiste em duas partes:

- um verme (worm) que propaga a infecção
- um núcleo, que executa o ataque

O verme

- Explora as vulnerabilidades do sistema para se instalar e se propagar
- Verifica se deve instalar o núcleo
- Comunica-se com o centro de controle remoto para receber atualizações e instruções e registrar suas ações

Além de verme, tem características de vírus e de *rootkit*, além de ser polimórfico.

O núcleo

- Infecta DLL da Siemens que faz interface entre o PC e o PLC
- Infecta arquivos de programa Step 7 quando o programador é executado
- Programa infectado é eventualmente copiado para o PLC pelo programador
- Após a infecção, o ataque é executado periodicamente pelo programa infectado

Destaques

O verme se comporta de forma tradicional; a única característica notável é o fato de explorar muitas vulnerabilidades inéditas à época. O núcleo é a parte que apresenta maiores novidades:

- Infecta o PLC, n\u00e3o apenas o PC
- Explora vulnerabilidades da plataforma Siemens:
 - senha fixa entre o WinCC e o SQLServer
 - blocos podem ser criptografados
- Explora características específicas da planta alvo:
 - Endereços de I/O determinados
 - Processo de controle de velocidade das centrífugas
 - Processo de regulação de pressão nas centrífugas (versão antiga)

O ataque

- Versão antiga:
 - Fecha determinadas válvulas de forma a fazer aumentar a pressão em algumas centrífugas
 - Impede a abertura das válvulas de alívio de pressão
 - Apresenta ao operador dados falsos sobre o processo, para evitar intervenção manual
- Versão mais recente:
 - Aumenta o setpoint do inversor em 40% ou
 - Diminui para uma velocidade muito baixa
 - Depois de alguns minutos, volta ao normal

Em ambas as versões, executa o ataque com pequenas frequência e duração, para evitar ser identificado

O ataque

Resultados

- O objetivo do ataque é danificar o equipamento no médio prazo.
- Não se tem confirmação do sucesso do ataque, mas aparentemente 10% das centrífugas foram danificadas.
- O ataque do Stuxnet n\u00e3o poderia ter sido evitado por meios tradicionais.
- Os danos (e talvez também a infecção) seriam evitados por meio de boas práticas de engenharia.

Defesas tradicionais

- hardening/patching/atualizações de software/firmware
- segregação/segmentação
- monitoramento da rede
- bloqueio de portas USB
- equipe de resposta a incidentes
- anti-virus/descobridor de rootkits
- AAA
- certificados digitais

Boas práticas

Virtualização de desktops (VDI) e de servidores
 na reinicialização sempre se lê uma imagem não corrompida

• Uso de controle de versão centralizado

controle do que foi alterado de uma versão para a outra

 Uso de relés de segurança, válvulas auto-operadas, sistemas redundantes, maior monitoramento

robustez do projeto de automação

 Dimensionamento correto dos equipamentos robustez dos projetos elétrico e mecânico

Uso de software de código aberto

facilita a análise