Profa. Beti Kira 2021

Algumas distribuições de probabilidade DISCRETAS

Distribuição	f. discreta de probabilidade	Média	Variância	F.G.Momentos
Bernoulli(p)	$p(x) = p^x q^{1-x} 1_{\{0,1\}}(x)$	p	pq	$q + pe^t$
$p \in [0,1], q = 1 - p$				
Binomial(n, p)	$p(x) = \binom{n}{x} p^x q^{n-x} 1_{\{0,1,\dots,n\}}(x)$	np	npq	$(q+pe^t)^n$
$p \in [0,1], q = 1 - p$				
Hipergeométrica	$p(x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}$	$n\frac{r}{N}$	$n\frac{r}{N}\frac{N-r}{N}\left(\frac{N-n}{N-1}\right)$	
(N, r, n) $r \le N, n \le N$	$x = \max\{0, n - N + r\},$, \min\{r, n\}			
$Poisson(\lambda)$ $\lambda > 0$	$p(x) = \frac{e^{-\lambda} \lambda^x}{x!} 1_{\{0,1,\dots\}}(x)$	λ	λ	$\exp\{\lambda(e^t - 1)\}$
Geométrica(p)	$p(x) = pq^x 1\!\!1_{\{0,1,\dots\}}(x)$	q/p	q/p^2	$\frac{p}{1 - qe^t}, \ t < \ln \frac{1}{q}$
No. de fracassos				
Geométrica(p)	$p(x) = pq^{x-1} 1 \mathbb{I}_{\{1,2\}}(x)$	1/p	q/p^2	$\frac{pe^t}{1 - qe^t}, \ t < \ln \frac{1}{q}$
No. de ensaios				
Bin. Negativa (r, p)	$p(x) = \binom{r+x-1}{x} p^r q^x 1_{\{0,1,\dots\}}(x)$	r.q/p	$r.q/p^2$	$\left(\frac{p}{1 - qe^t}\right)^r, t < \ln \frac{1}{q}$
No. de fracassos				
Bin. Negativa (r, p)	$p(x) = \begin{pmatrix} x - 1 \\ r - 1 \end{pmatrix} p^r q^{x-r} \mathbb{1}_{\{r, r+1, \dots\}}(x)$	r.1/p	$r.q/p^2$	$\left(\frac{pe^t}{1 - qe^t}\right)^r, t < \ln\frac{1}{q}$
No. de ensaios				

Algumas distribuições de probabilidade CONTÍNUAS

Distribuição	f. densidade de probabilidade	Média	Variância	F.G.Momentos
Uniforme $[a, b]$ a < b, reais	$f(x) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
Normal (μ, σ^2) $\mu \in \mathcal{R}, \sigma^2 > 0$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$	μ	σ^2	$\exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$
Exponencial(λ) $\lambda > 0$	$f(x) = \lambda e^{-\lambda x} \mathbb{1}_{(0,\infty)}(x)$	$1/\lambda$	$1/\lambda^2$	$\frac{\lambda}{\lambda - t}, \ t < \lambda$
$Gama(r, \lambda)$ $r, \lambda > 0$, reais	$f(x) = \frac{\lambda^r}{\Gamma(r)} e^{-\lambda x} x^{r-1} \mathbb{1}_{(0,\infty)}(x)$	r/λ	r/λ^2	$\left(\frac{\lambda}{\lambda - t}\right)^r, \ t < \lambda$
Beta (a, b) $a, b > 0$, reais	$f(x) = \frac{1}{\beta(a,b)} x^{a-1} (1-x)^{b-1} \mathbb{1}_{[0,1]}(x)$	$\frac{a}{a+b}$	$\frac{ab}{(a+b+1)(a+b)^2}$	
Quiquadrado $\chi^2(k), k = 1, 2, \dots$	$f(x) = \frac{\left(\frac{1}{2}\right)^{\frac{k}{2}}}{\Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2} - 1} e^{-\left(\frac{1}{2}\right)x} \mathbb{1}_{(0,\infty)}(x)$	k	2k	$\left(\frac{1}{1-2t}\right)^{\frac{k}{2}},t<\frac{1}{2}$
t-Student (k) $k > 0$, real	$f(x) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)} \frac{1}{\sqrt{k\pi} \left(1 + \frac{x^2}{k}\right)^{\frac{k+1}{2}}}$	0 para $k > 1$	$\frac{k}{k-2}$ para $k > 2$	não existe
Cauchy (α, β) $\alpha \in \mathcal{R}, \beta > 0$	$f(x) = \frac{1}{\pi\beta \left\{ 1 + \left(\frac{x-\alpha}{\beta}\right)^2 \right\}}$	não existe α =mediana	não existe	$\exp\{i\alpha t - \beta \mid t \mid\}$ f. característica
Distribuição F (Fisher-Snedecor) $F(m,n)$ $m,n=1,2,\ldots$	$f(x) = \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} \left(\frac{m}{n}\right)^{\frac{m}{2}} \times \frac{x^{(m-2)/2}}{\left(1 + \frac{m}{n}x\right)^{(m+n)/2}} \mathbb{1}_{(0,\infty)}(x)$	$\frac{n}{n-2}$ se $n > 2$	$\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$ se $n > 4$	não existe
Pareto (θ, b)	$f(x) = \frac{\theta \ b^{\theta}}{x^{\theta+1}} \mathbb{1}_{(b,\infty)}(x)$	$\frac{\theta \ b}{\theta - 1}$	$\frac{\theta \ b^2}{(\theta-1)^2(\theta-2)}$	não existe
$b > 0, \theta > 0$		para $\theta > 1$	para $\theta > 2$	