Convergence of the optimal polynomial solution to the optimal

Bachir El Khadir

October 23, 2016

Contents

1 Notation 1
2 Behavior of the solution 1
3 Approximation of the solution by a continuous function 2
4 Approximation of the solution by a polynomial solution 3
5 Finding the best polynomial solution 3
6 From LP to SDP

1 Notation

maximize
$$\langle c(t), x(t) \rangle$$

subject to $A(t)x(t) = b(t)$
 $x(t) > 0$ (P_t)

 $\mathcal{P}_t = \{x \in \mathbb{R}^n, \ A(t)x \leq b\}$ the feasible region of (P_t) .

Hypothesis 1.1 The optimal value of P_t is finite for all $t \in [0,1]$.

Let x(t) be an optimal solution to (P_t) .

2 Behavior of the solution

Theorem 2.1 There exist N > 0, and $0 = t_1 < ... < t_N = 1$ such that, for every $t \in (t_i, t_{i+1})$, there exist $B \in {[n] \choose r}$

- $A_B(t)$ is invertible
- $x(t) = A_B(t)^{-1}b(t)$

Lemma 2.2 For all $B \in {[n] \choose r}$ $A_B(t)$ is either never invertible or always invertible except for finitely many $t \in [0,1]$.

Lemma 2.3 For all $B \in {[n] \choose r}$, if $A_B(t)$ is invertible for some t, then the point

$$v_B(t) = A_B(t)^{-1}b(t)$$

changes feasibility finitely many times. When $v_B(t)$ is feasible, it is a vertex of the feasible region of P_t

Let $\mathcal{B} = \{B, \exists t \ A_B(t) \text{ is invertible}\}.$

Lemma 2.4 We can always choose x(t) to be of the form 2.3. Call B(t) := B the optimal basis.

To summarize, there is a (finite) partition of [0,1] into intervals I_i such that in the interior of any I_i :

- For all $B \in \mathcal{B}$, $A_B(t)$ is invertible and $v_B(t)$ is either feasible or not. Let $\mathcal{F}_i = \{B \in \mathcal{B}, v_B(t) \text{ is feasible on } \mathring{I}\}.$
- $x(t) = A_B(t)^{-1}b(t)$

Lemma 2.5 We can choose B(t) so that it changes finitely many times inside each I_i .

Proof 2.6 B(t) change only if there exist $B, B' \in \mathcal{F}_i$ such that $\langle c(t), A_B^{-1}(t)b(t) \rangle = \langle c(t), A_{B'}^{-1}(t)b(t) \rangle$. $t \to \langle c(t), (A_B^{-1}(t) - A_{B'}^{-1}(t))b(t) \rangle$ is a rational fraction. If it is no identically zero, then it hits zero finitely many times.

Remark 2.7 Replace linear objective by convex objective.

3 Approximation of the solution by a continuous function

Hypothesis 3.1 P_t admits one feasible continuous solution f_0 . e.g there exist a continuous function $f_0: [0,1] \to \mathbb{R}^n$ such that $A(t)f_0(t) \le b(t)$, $\forall t \in [0,1]$

Theorem 3.2 For every $\varepsilon > 0$, there exist a continuous function $f:[0,1] \to \mathbb{R}^n$ such that:

- f(t) is feasible of all t, e.g $A(t)f(t) \leq b(t)$, $\forall t \in [0,1]$
- $\int_0^1 \langle c(t), x(t) \rangle \int_0^1 \langle c(t), f(t) \rangle \le \varepsilon$.

Proof 3.3 Theorem 2.1 proves the existence of a partition $[0,1] = \bigcup_{i=1}^{n} [t_i, t_{i+1})$ such that x(t) is a continuous (in fact, a rational function).

Define $I_i^{\alpha} = (t_i + \alpha, t_i - \alpha)$ for some $\alpha > 0$ that we are going to fix later on. Let f^{α} be the function that:

- is equal to x(t) on every I_i^{α} .
- is equal to f_0 on all the t_i .
- interpolates linearly between x(t) and $f_0(t)$ on $[t_i \alpha, t_i + \alpha]$

As $\alpha \to 0$, $f^{\alpha}(t) \to x(t)$ almost surely. Given that $|f^{\alpha}(t)| \le |x(t)| + |f_0(t)|$, the Dominated convergence theorem gives $f^{\alpha}(t) \to_{L_1} x(t)$

4 Approximation of the solution by a polynomial solution

Hypothesis 4.1 P_t admits one strictly feasible continuous solution f_0 . e.g there exist $\beta > 0$ and a continuous function $f_0: [0,1] \to \mathbb{R}^n$ feasible for the following program

$$\begin{array}{ll} \text{maximize} & \int_0^1 \langle c(t), x(t) \rangle \mathrm{d}t \\ \text{subject to} & A(t) x(t) \leq b(t) - \beta \quad \forall t \in [0, 1] \end{array}$$

Idea 4.2 We start with a continuous solution f that is near optimal to $P(\beta)$, we approximate it uniformally by a polynomial p(t), if p(t) is close enough to f, then p is feasible to P and near optimal.

Lemma 4.3 As $\beta \to 0$, the optimal value to $P(\beta)$ convergence to the optimal value of P.

5 Finding the best polynomial solution

If we add the constraint that x(t) is a polynomial of degree d in P, then the objective function $\int_0^1 \langle c(t), x(t) \rangle$ is a linear function in the coefficients of x(t), and the constraint $A(t)x(t) \leq b(t)$ is equivalent to the polynomial b(t) - A(t)x(t) being sum of square.

6 From LP to SDP

$$\begin{array}{ll} \text{maximize} & \int_0^1 \langle c(t), x(t) \rangle \mathrm{d}t \\ \text{subject to} & Q_0 + \sum x_i(t) Q_i(t) \succeq 0 \quad \forall t \in [0, 1] \\ & x(t) \geq 0 \end{array} \tag{SDP}$$

$$\begin{array}{ll} \text{maximize} & \int_0^1 \langle c(t), x(t) \rangle \mathrm{d}t \\ \text{subject to} & Q_0 + \sum x_i(t) Q_i(t) = \sum_{j=1}^l \alpha_j(t) B_j \quad \forall t \in [0,1] \\ & \begin{pmatrix} x(t) \\ \alpha(t) \end{pmatrix} \geq 0 \end{array}$$

Theorem 6.1 $LP_l \rightarrow_l SDP$.