Fizika alapfogalmak

2022. június 2.

Tartalomjegyzék

1	Bevezetés	2
	Természet	2
	Természettudományok	2
	Természettudományok célja	2
	Fizika	2
	Megfigyelés	2
	Kísérlet	2
	Modellalkotás	2
	Mérés	2
	Kinematika	2
	Dinamika	2
	Energetika	2
2		3
	Pálya	3
	Út	3
	Elmozdulás	3
	A mechanika feladata	3
	Sebesség	3
	Az EVE mozgás kritériumai	3
	Sebességvektor	3
	Gyorsulás	3
	Az EVEV mozgás kritériumai	3
	Gyorsulásvektor	4
		4
	Hajítás lefelé	4
	Hajítás felfelé	4
	Periodikus mozgás	5
		5
	Periódusidő	5

	Fordulatszám	5
	Szögsebesség	5
	Mozgás	5
3	Anyagi pont dinamikája	6
3		6
	Tehetetlenség törvénye (Newton I.)	
	Inerciarendszer	6
	Galilei-féle relativitási elv	6
	Rugalmas kölcsönhatás	6
	Tömeg	6
	Dinamikai tömegmérés elve	6
	Lendület(vektor)	6
	Zárt (test)rendszer	6
	Lendületmegmaradás törvénye	6
	Erő(vektor)	7
	Támadáspont	7
	Hatásvonal	7
	Newton II. törvénye	7
	Newton III. törvénye	7
	Newton IV. törvénye	7
	Súlyerő	8
	Erőtörvény	8
	Rugóállandó	8
	Tapadási erő	8
	Súrlódási erő	8
	Kényszererő	8
	Geostacionárius műholdak	8
	Geostacionarius munoidak	0
4	Pontrendszerek dinamikája	9
	Pontrendszer	9
	Külső erők	9
	Belső erők	9
	Zárt pontrendszer	9
	Tömegközéppont	9
	Tömegközéppont-tétel	9
	Merev test	9
		9
	Forgatónyomaték	9
	Erőkar	_
	Erőpár	9
	Erőpár forgatónyomatéka	9

5	Tömegpont mozgásának energetikai leírása	10
	Munkavégzés	10
	Energia	10
	Energiatartalom mértéke	10
	Munkatétel	10
	Konzervatív erő (kh.)	10
	Mechanikai energiamegmaradás törvénye	10
	Teljesítmény	10
	Egyszerű gépek	11
	Emelő	11
	Csigák	11
	Kepler I. törvénye	11
	Kepler II. törvénye	11
	Kepler III. törvénye	11
	•	
6	Folyadékok mechanikája	12
	Folyadékok modellje	12
	Pascal törvénye	12
	Nyomás	12
	Hidrosztatikai nyomás	12
	Közlekedő edény	12
	Légnyomás	12
	Arkhimédesz törvénye	12
	Kohéziós erő (kh.)	12
	Adhéziós erő (kh.)	12
	Felületi feszültség (energetikai)	12
	Felületi feszültség (erőtani)	13
	Folytonossági (vagy kontinuitási) egyenlet	13
	Bernoulli-törvény	13
7	Elektrosztatika	14
	Vezetők	14
	Vezetők csoportosítása	14
	Töltés mennyiségi jelentése	14
	1 C töltés	14
	Elektromos térerősség	14
	Elektromos erővonalak minőségi jelentése	14
	Elektromos erővonalak mennyiségi jelentése	14
	Feszültség	14
	Potenciál	15
	Elektromos megosztás	15
	Elektromos megosztás hatásai	15
	Kapacitás	15
	Eredő kapacitás	15

	Párhuzamos kapcsolás törvényszerűségei	15
	Soros kapcsolás törvényszerűségei	15
8	Hőtani folyamatok	16
	Lineáris hőtágulási együttható	16
	Térfogati hőtágulási együttható	16
	Gázok modellje	16
	Izoterm folyamat	16
	Izobár folyamat	16
	Izochor folyamat	16
	Boyle-Mariotte-törvény	17
	Abszolút hőmérsékleti skála	17
	Gay-Lussac I	17
	Gay-Lussac II.	17
	Gáztörvény	17
	Általános gáztörvény	17
	Állapotegyenlet	17
	Belső energia	17
	Hőközlés	17
	Munkavégzés	18
	Hőtan I. főtétele	18
	Izotermikus folyamatok hőtani jellemzése	18
	Izobár folyamatok hőtani jellemzése	18
	Izochor folyamatok termodinamikai jellemzése	18
	Adiabatikus folyamatok termodinamikai jellemzése	18
	Hőkapacitás	18
	Fajhő	19
	Mólhő	19
	Szabadsági fok	19
	Ekvipartíció tétele	19
	Hőtan II. főtétele	19
	Kristályos, szilárd anyagok modellje	20
	Olvadás	20
	Olvadáshő	20
		$\frac{20}{20}$
	Párolgás	20
	Párolgáshő	$\frac{20}{20}$
		20
	Forráshő	20
9	Egyenáram, mágneses mező	22
	Elektromos áram	22
	Áramerősség	22
	Fogyasztó	22
	Ellenállás	22

	Fajlagos ellenállás	22
	Eredő ellenállás	22
	Soros kapcsolás	22
	Párhuzamos kapcsolás	23
	Csomópont	23
	Kirchhoff I. törvénye	23
	Hurok	23
	Kirchhoff II. törvénye	23
10	Magnetosztatika	24
	Mágneses tér	24
	Mágneses indukció	24
	Mágneses indukcióvonalak minőségi jelentése	24
	Mágneses indukcióvonalak mennyiségi jelentése	24
	Forráserősség	24
	Maxwell I. törvénye	24
	Örvényerősség	24
	Maxwell II. törvénye	25
	Maxwell III. törvénye	25
	Maxwell IV. törvénye (Amper-féle gerjesztési törvény)	25
	Lorentz-erő	$\frac{1}{25}$
	Abszolút amper	$\frac{1}{25}$
	Lenz törvénye	$\frac{1}{25}$
	Mozgási indukció	$\frac{1}{25}$
	Effektív áram erőssége	25
11	Harmonikus rezgőmozgás	26
	Amplitúdó	26
	Referencia körmozgás	26
	Harmonikus erő	26
	Csillapodó rezgőmozgás	26
	Szabadrezgés	26
	Kényszerrezgés	26
	Rezonancia	26
	Rezonanciagörbe	26
12	Hullámtan	27
	Azonos fázisú pontok	27
	Haladó hullám	27
	Hullámhossz	27
	Transzverzális hullám	27
	Longitudinális hullám	27
	Hullámfelület	27
	Hullámfront	27

Hullámtér	27
Sugár(irány)	27
Huygens-elv	27
Huygens-Fresnel-elv	27
Snellius-Descartes-törvény	27
Interferencia	27
Erősítés feltétele	27
Gyengítés feltétele	28
Koherencia	28
Állóhullám	28

1 Bevezetés

- 1. Természet: A létező anyagi világ.
- 2. Természettudományok: A természetre vonatkozó ismeretek rendszere.
- 3. Természettudományok célja: A jelenségek törvényszerűségeinek felismerése és alkalmazása, az emberi tevékenység előremozdítása, valamint új jelenségek előrejelzése.
- 4. Fizika: Az anyag általános tulajdonságait, törvényeit vizsgálja.
- Megfigyelés: Tárgyak, jelenségek, folyamatok jellemzőinek spontán nyomonkövetése.
- **6. Kísérlet:** Egy jelenség előzetes terv alapján történő szándékos előidézése, és pontos megfigyelése, egy alkalommal egy dologra összpontosítva.
- 7. Modellalkotás: Egy kép megalkotása, amellyel az anyagok viselkedését megmagyarázzuk úgy, hogy már egy ismert dologhoz hasonlítunk.
- **8. Mérés:** Méréskor azt állapítjuk meg, hogy a mérendő mennyiség hányszorosa az egységül választottnak.
- 9. Kinematika: A kinematika leírja a mozgásokat.
- 10. Dinamika: A dinamika a mozgások okait vizsgálja.
- 11. Energetika: Az energetika a mozgásokkal kapcsolatos energiákkal foglalkozik.

2 Kinematika

- 12. Pálya: Az a vonal, amelyen a test a mozgása közben végighalad.
- 13. Út: A pálya azon részének hossza, amelyen a mozgást vizsgáljuk.
- 14. Elmozdulás: Δr , a helyvektor megváltozása.
- **15. A mechanika feladata:** A mechanika feladata a hely megadása idő függvényében.

16. Sebesség:

- $v = \frac{\Delta s}{\Delta t}$
- $[v] = \frac{m}{s}$
- Számértéke megmutatja az egységnyi idő alatt befutott elmozdulást.

17. Az EVE mozgás kritériumai:

- pálya: egyenes
- v =áll.: egyenletes

18. Sebességvektor:

- $\vec{v} = \frac{\Delta \vec{r}}{\Delta t}$
- $[|\vec{v}|] = \frac{m}{s}$
- Megmutatja az egységnyi idő alatt bekövetkező elmozdulást.
- Iránya: elmozdulás irányú.

19. Gyorsulás:

- $a = \frac{\Delta v}{\Delta t}$
- $[a] = \frac{m}{s^2}$
- Számértéke megmutatja az egységnyi idő alatt bekövetkező sebességváltozást.

20. Az EVEV mozgás kritériumai:

- pálya: egyenes
- a =áll.: egyenletesen változó

21. Gyorsulásvektor:

- $\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$
- $\ [|\vec{a}|] = \frac{m}{s^2}$
- Megmutatja az időegység alatt bekövetkező sebességváltozás vektort.
- Iránya: sebességváltozás irányú.

22. Szabadesés:

- Kritériumai:
 - $-v_0 = 0$
 - -a=g
- Számolás:
 - $-\Delta y = \frac{g}{2}\Delta t^2$
 - $-v = g\Delta t$

23. Hajítás lefelé:

- Kritériumai:
 - $-v_0 \neq 0$
 - -a=g
- Számolás:
 - $-\Delta y = v_0 \Delta t + \frac{g}{2} \Delta t^2$
 - $-v = v_0 + g\Delta t$

24. Hajítás felfelé:

- Kritériumai:
 - $-v_0 \neq 0$
 - -a=-g

- Számolás:

$$-\Delta y = v_0 \Delta t - \frac{g}{2} \Delta t^2$$
$$-v = v_0 - g \Delta t$$

- **25. Periodikus mozgás:** Periodikos mozgásról beszélünk, ha a test ugyanazt a mozgásszakaszt ugyanúgy ismételgeti.
- **26. Anyagi pont:** Anyagi pontról beszélünk, ha a test ún. tiszta haladó mozgást végez, vagy méretei elhanyagolhatóak az elmozduláshoz, illetve a közte és más testek közötti távolsághoz képest.

27. Periódusidő:

- $T = \frac{\Delta t}{N}$
- [T] = s
- Megmutatja egy periódus vagy körülfordulás megtételéhez szükséges időt.

28. Fordulatszám:

-
$$n = \frac{N}{\Delta t}$$

$$- [n] = \frac{1}{s}$$

- Megmutatja egy egységnyi idő alatt bekövetkező körülfordulások számát.

29. Szögsebesség:

- kiszámítás: $\omega = \frac{\Delta \varphi}{\Delta t}$

$$- [\omega] = \frac{(rad)}{s} = \frac{1}{s}$$

- Megmutatja egy egységnyi idő alatt bekövetkező szögelfordulást.
- **30.** Mozgás: Mozgásról beszélünk, ha az anyagi pont helye megváltozik a választott vonatkoztatási rendszerben.

3 Anyagi pont dinamikája

31. Tehetetlenség törvénye (Newton I.):

- a) Minden test megtartja nyugalmi állapotát vagy EVE mozgását mindaddig, míg más testek vagy mezők ennek megváltoztatására nem kényszerítik.
- b) MÁV mindig KH eredményeként jön létre.
- c) KH hiányában a testek EVE mozgást végeznek.
- **32.** Inerciarendszer: Olyan vonatkoztatási rendszer, melyben érvényes Newton I. törvénye.
- **33.** Galilei-féle relativitási elv: A Földhöz vagy bármilyen más IR-hez képest állandó sebességgel haladó vonatkoztatási rendszer is IR.
- **34. Rugalmas kölcsönhatás:** A kölcsönhatás megszünte utána a testek visszanyerik eredeti állapotukat.
- 35. Tömeg: A tehetetlenség mértéke.
 - jele: m
 - [m] = kg
- 36. Dinamikai tömegmérés elve: Egy test tömege akkor N-szeres egy másik test tömegéhez viszonyítva ha vele párkölcsönhatásba hozva a sebességváltozása $\frac{1}{N}$ -szeres.

37. Lendület(vektor):

- $\vec{I} = m\vec{v}$
- mértékegysége: $[I] = kg\frac{m}{s}$
- **38. Zárt (test)rendszer:** Zárt testrendszerről beszélünk, ha a testek környezettel való kölcsönhatásaitól eltekinthetünk.

39. Lendületmegmaradás törvénye:

 LMT_1 : Zárt testrendszerben a testek lendületváltozásainak vektori összege nullvektor.

$$\sum_{i=1}^{n} \Delta I_i = \vec{0}$$

LMT₂: Zárt testrendszerben a testek lendületének vektori összege állandó.

$$\sum_{i=1}^{n} I_i = \text{áll}.$$

40. Erő(vektor):

-
$$\vec{F} = \frac{I}{\Delta t}$$

$$- [F] = \frac{kg\frac{m}{s}}{s} = kg\frac{m}{s^2} = N$$

- Megmutatja, az egységnyi idő alatt bekövetkező lendületváltozást.
- Iránya lendületváltozás irányú.
- 41. Támadáspont: A test azon pontja, ahol az erőhatás éri. (kiterjedt test)
- **42. Hatásvonal:** Az erő támadáspontján átfektetett, az erővel párhuzamos egyenes.
- 43. Newton II. törvénye: Ha egy m tömegű testre \vec{F} erő hat, akkor az a test $\vec{a} = \frac{\vec{F}}{m}$ gyorsulással fog mozogni.

$$\vec{a} = \frac{\vec{F}}{m}$$

44. Newton III. törvénye: (Hatás-ellenhatás törvénye, kölcsönhatás-törvény)

Az egy KH.-ban fellépő erők azonos nagyságúak, ellentétes irányításúak, közös hatásvonalúak és különböző testekre hatnak.

$$\vec{F}_{2 \longrightarrow 1} = -\vec{F}_{1 \longrightarrow 2}$$

45. Newton IV. törvénye: Az egy testre ható erők összegezhetők vektorilag, és helyettesíthetők egy ún. eredő erővel.

$$\sum_{i=1}^{n} \vec{F}_i = \vec{F}_e$$

- **46. Súlyerő:** Az az erő, ammelyel a test húzza a felfüggesztést és/vagy nyomja az alátámasztást.
- **47. Erőtörvény:** Az erőhatást kifejtő környezet és a test jellemzőivel megadott matematikai kifejezés, amellyel az erő nagyságát és irányát adhatjuk meg.

48. Rugóállandó:

$$- D = \frac{F_r}{\Delta l}$$

$$- [D] = \frac{N}{m}$$

- Megmutatja, hogy egységnyi megnyúlás esetén mekkore erőt fejt kia rugó.
- **49. Tapadási erő:** Az egymáshoz képest nyugvó felületek által egymásra kifejtett erő érintőirányú összetevője.
- **50. Súrlódási erő:** Az egymáshoz képest mozgó felületek által egymásra kifejtett erő sebességgel ellentétes irányú összetevője.
- **51. Kényszererő:** Kényszererő esetén, mivel az erőkifejtés elhanyagolható deformációval jár, a pályaalak előre meghatározott.
- **52. Geostacionárius műholdak:** Olyan mesterséges holdak, melyek mindig a Föld ugyanazon pontja felett tartózkodnak.

4 Pontrendszerek dinamikája

- **53. Pontrendszer:** Egymással kölcsönhatásban lévő pontszerű testek rendszere.
- 54. Külső erők: A rendszerhez nem tartozó testek fejtik ki.
- 55. Belső erők: A rendszer tagjai fejtik ki egymásra.
- **56. Zárt pontrendszer:** Zárt pontrendszerről beszélünk, ha a külső erők eredője zérus.
- **57.** Tömegközéppont: Minden pontrendszernek (és kiterjedt testnek) van legalább egy olyan pontja, amely kh. hiányában EVE mozgástvégez, ez a kitüntetett pont a tömegközéppont.
- **58. Tömegközéppont-tétel:** Pontrendszer tömegközéppontja úgy mozog, mintha benne a pontrendszer teljes tömege egyesítve volna, és rá a külső erők eredője hatna.

$$m_{\ddot{o}}a_{xT} = \sum F_{ixk}$$

59. Merev test: Olyan pontrendszer, amelyben a részecskék egymáshoz viszonyított távolsága és helyzete nem változik.

60. Forgatónyomaték:

- Az erőhatást jellezmi forgatóhatás szempontjából.
- M = Fk
- 61. Erőkar: Az erő hatásvonalának forgástengelytől mért távolsága.
- **62.** Erőpár: Az ugyanarra a merev testre ható két erőt, amelyek ellentétes irányúak, párhuzamos hatásvonalúak és egyenlő nagyságúak, erőpárnak nevezzük. Az erőpár nem helyettesíthető egyetlen erővel.
- **63. Erőpár forgatónyomatéka:** Erőpár forgatónyomatéka egyenlő az egyik erő nagyságának és a két erő hatásvonala közötti távolságnak a szorzatával, forgástengelytől függetlenül.

$$M = Fd$$

5 Tömegpont mozgásának energetikai leírása

- **64. Munkavégzés:** Munkavégzésről beszlünk, ha erőhatás következtében elmozdulás jön létre.
 - mértéke: munka
 - jele: W
 - [W] = J
- 65. Energia: Testek, mezők változást okozó képessége.
 - jele: E
 - [E] = J
 - állapotot jellemez
 - skaláris mennyiség
 - viszonylagos mennyiség
 - kh. közben változik
 - megmaradási törvény érvényes rá
 - kvantumos (adagos)
- **66. Energiatartalom mértéke:** Annak a munkavégzésnek a mértéke, amellyel az adott állapot kialakítható egy önkényesen kiválasztott alapállapotból kiindulva.
- **67. Munkatétel:** Pontszerű test mozgási energiájának megváltozása megegyezik a testre ható erők eredőjének munkájával (avagy az erők munkájának összegével).

$$\Delta E_m = W_e$$

- **68.** Konzervatív erő (kh.): Az az erő (kh.), melynek munkája függetlena befutott úttól, csak a kezdő és a végpont helyzete a meghatározó.
- **69. Mechanikai energiamegmaradás törvénye:** Egy testrendszer mechanikai energiája állandó, ha tagjai között csak konzervatív kölcsönhatások jelennek meg.

$$\sum E_{mech} = \text{áll}.$$

70. Teljesítmény:

$$P = \frac{W}{\Delta t}$$

$$- [P] = \frac{J}{s} = W$$

- Megmutatja az egységnyi idő alatt végzett munkát.
- 71. Egyszerű gépek: Olyan eszközök, melyek az általuk kifejtett erő nagyságát, irányát és támadáspontját számunkra kedvező módon befolyásolják.
- **72.** Emelő: Olyan merev rúd, amely velamely pontja, mint tengely körül elfordulhat.
- **73.** Csigák: Olyan korongok, melyek peremén bemélyedés található és valamely pontjuk, mint tengely körül elfordulnak.
- **74. Kepler I. törvénye:** A bolygók ellipszis alakú pályán keringenek, amelyeknek egyik fókuszpontjában a Nap áll.
- **75. Kepler II. törvénye:** A Naptól a bolygóhoz húzott vezérsugár egyenlő időközök alatt egyenlő területeket súrol.
- **76. Kepler III. törvénye:** A bolygók keringési időinek négyzetei úgy aránylanak egymáshoz, mint a bolygópályák fél nagytengelyeinek (pályasugarainak) köbei.

$$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$$

6 Folyadékok mechanikája

- 77. Folyadékok modellje: Nagyszámú, apró, keményfalú golyók halmaza, melyek rendezetlen, gördülő mozgásukkal szorosan, de nem hézagmentesen töltik ki a teret. Közelítéskor taszító, távolításkor és alaphelyzetben rövid hatótávolságú vonzó kh. jelenik meg.
- **78.** Pascal törvénye: A folyadék felszínére kifejtett erő által okozott nyomás a folyadékban minden helyen, minden irányban azonos mértékben jelenik meg.

79. Nyomás:

$$- p = \frac{F}{A_{\perp}}$$

$$- [p] = \frac{N}{m^2} = Pa$$

- Megmutatja az egységnyi erőre merőleges felületen megjelenő erőt.
- **80. Hidrosztatikai nyomás:** A folyadék súlyából származó nyomás.
- 81. Közlekedő edény: Felül nyitott, alul csővel összekötött edények, melyekben a folyadék szabadon áramolhat.
- 82. Légnyomás: A levegő súlyából származó nyomás.
- 83. Arkhimédesz törvénye: A folyadékba merülő testre ható felhajtóerő nagysága megegyezik az általa kiszorított folyadék súlyával.
- **84. Kohéziós erő (kh.):** Valamely anyag azonos részecskéi között működő vonzóerő. (víz-víz hidrogénkötés, Hg-Hg fémkötés)
- **85. Adhéziós erő (kh.):** Egymással érintkező, különböző anyagok részecskéi között működő vonzóerő. (kh.)

86. Felületi feszültség (energetikai):

$$- \alpha = \frac{\Delta E}{\Delta A}$$

$$- [\alpha] = \frac{J}{m^2}$$

- Megmutatja, hogy a hártya felületének egységnyivel való növelése mekkore energiatöbbletet jelent.

87. Felületi feszültség (erőtani):

-
$$\alpha = \frac{F_{fel}}{\Delta l}$$

$$- [\alpha] = \frac{N}{m}$$

- Megmutatja a felületi réteg által a felületet határoló egységnyi hosszúságú vonaldarabra ható erő nagyságát.

88. Folytonossági (vagy kontinuitási) egyenlet:

$$A_1v_1 = A_2v_2$$

89. Bernoulli-törvény:

$$p + \frac{1}{2}\varrho v^2 + \varrho g h = \text{áll}.$$

7 Elektrosztatika

90. Vezetők: Olyan anyagok, melyekben elmozdulásra képes töltéshordozók találhatóak.

91. Vezetők csoportosítása:

- a) Elsőfajú vezetők: elektronok mozognak bennük.
- b) Másodfajú vezetők: ionok mozognak bennük.
- **92.** Töltés mennyiségi jelentése: Az elektromos állapot mennyiségi jellemzésére szolgál.
- 93. 1 C töltés: 1 C az a töltés, amely a vákuumban tőle 1 m távolságra lévő szintén 1 C töltésre $9 \cdot 10^9 N$ erővel hat.

94. Elektromos térerősség:

-
$$\vec{E} = \frac{\vec{F}}{q}$$

$$- [E] = \frac{N}{C}$$

- Megmutatja az egységnyi pozitív töltésre ható erőt.
- Iránya megegyezik a pozitív töltésre ható erő irányával.
- 95. Elektromos erővonalak minőségi jelentése: Az elektromos erővonalak olyan görbék, melyeknek bármely pontjához húzott érintő az ottani \vec{E} tartóegyenese.
- 96. Elektromos erővonalak mennyiségi jelentése: Az erővonalképet úgy kell megrajzolni, hogy ahol a térerősség E nagyságú, akkor ott a vonalakra merőlegesen felvett A_{\perp} felületen $\Psi = EA_{\perp}$ számú erővonal haladjon keresztül.

97. Feszültség:

$$- U_{AB} = \frac{W_{AB}}{q}$$

$$- [U_{AB}] = \frac{J}{C} = V$$

 Megmutatja, mekkora munkát végez az elektromos tér, miközben az egységnyi pozitív töltéshordozó A pontból B pontba jut. 98. Potenciál:

$$- U(P) = \frac{W_{P\infty}}{q}$$

$$- [U] = \frac{J}{C} = V$$

- Megmutatja, mekkora munkát végez az elektromos tér, miközben az egységnyi pozitív töltéshordozó P pontból a végtelenbe jut.
- 99. Elektromos megosztás: Olyan fémes vezetőn lezajló jelenség, melynek során egy külső, úgynevezett megosztó töltés hatására a fém ellentétes oldalain ellentétes töltés jelenik meg. $(\sum Q = 0)$

100. Elektromos megosztás hatásai:

- Az erővonalak a külső felületre merőlegesen helyezkednek el.
- A fém belsejében a térerősség zérus. ($\vec{E}=\vec{0}$)
- A töltések a külső felületen helyezkednek el.
- A fém minden pontja ekvipotenciális.

101. Kapacitás:

$$-C = \frac{\Delta Q}{\Delta U}$$

-
$$[C] = \frac{C}{V} = F$$

- Megmutatja az egységnyi potenciálnöveléshez szükséges töblettöltés mértékét.
- 102. Eredő kapacitás: Annak a kondenzátornak a kapacitása, amelyen ugyanakkora töltés hatására, ugyanakkora feszültség jelenik meg, mint az eredeti kapcsoláson.

20

103. Párhuzamos kapcsolás törvényszerűségei:

- Töltések összegződnek: $Q = Q_1 + Q_2$
- Feszültségek megegyeznek: $U_1 = U_2 = U$
- Eredő kiszámítása: $C_e = \sum_{i=1}^n C_i$

104. Soros kapcsolás törvényszerűségei:

- Töltések megegyeznek: $Q_1 = Q_2 = Q$
- Feszültségek összegződnek: $U=U_1+U_2$
- Eredő kiszámítása: $\frac{1}{C_e} = \sum_{i=1}^n \frac{1}{C_i}$

8 Hőtani folyamatok

105. Lineáris hőtágulási együttható:

-
$$\alpha = \frac{\Delta l}{l_0 \Delta t}$$

$$- [\alpha] = \frac{m}{m^{\circ}C} = \frac{1}{{}^{\circ}C}$$

- Megmutatja az egységnyi hosszúságú rúd hőmérsékletének egységnyivel való változtatása mekkora hosszúságváltozást eredményez.

106. Térfogati hőtágulási együttható:

$$-\beta = \frac{\Delta V}{V_0 \Delta t}$$

$$- [\beta] = \frac{1}{{}^{\circ}C}$$

- Megmutatja az egységnyi térfogatú folyadék hőmérsékletének egységnyivel való változtatása mekkora térfogatváltozást eredményez.

107. Gázok modellje: Nagyszámú, apró, gyors mozgású golyók halmaza, melyek a teret rendezetlen mozgásukkal (röpködésükkel) lazán töltik ki, miközben ütköznek egymással és a tárolóedény falával.

108. Izoterm folyamat:

- N = áll.
- t = áll.

109. Izobár folyamat:

- N = áll.
- p = áll.

110. Izochor folyamat:

- N = áll.
- V = áll.

111. Boyle-Mariotte-törvény: Állandó mennyiségű ideális gáz izotermikus állapotváltozása során a gáz nyomásának és térfogatának szorzata állandó.

$$pV = \text{áll}.$$

112. Abszolút hőmérsékleti skála:

- Alappontja a hőmérséklet elvi alsó határa.
- Az egységek megegyeznek a Celsius-skála egységeivel.
- 113. Gay-Lussac I.: Állandó mennyiségű ideális gáz izobár állapotváltozása során a gáz térfogata és abszolút hőmérséklete egymással egyenesen arányos.

$$\frac{V}{T} = \text{áll}.$$

114. Gay-Lussac II.: Állandó mennyiségű ideális gáz izochor állapotváltozása során a gáz nyomása és abszolút hőmérséklete egymással egyenesen arányos.

$$\frac{p}{T} = \text{áll}.$$

- 115. Gáztörvény: A gáz kettő vagy több állapotát leíró állapotjelzők kapcsolata.
- **116. Általános gáztörvény:** Állandó mennyiségű ideális gáz tetszőleges állapotváltozása során a nyomás és térfogat szorzata egyenesen arányos a gáz abszolút hőmérsékletével.

$$\frac{pV}{T} = \text{áll}.$$

- 117. Állapotegyenlet: A gáz egy adott állapotát leíró paraméterek kapcsolata.
- 118. Belső energia: A halmazt alkotó részecskék energiáinak összege.

$$E_b = \sum \varepsilon_{i \, mozg} + \sum \varepsilon_{i \, kh}$$

119. Hőközlés:

- Rendezetlen úton történő energiaközlés.
- jele: Q

120. Munkavégzés:

- Rendezett úton történő energiaközlés.
- jele: W
- **121. Hőtan I. főtétele:** Egy halmaz belső energiája termikus és/vagy mechanikai kölcsönhatással változtatható meg. Mértéke a közölt hő és/vagy a környezet munkájának összegével egyezik meg.

$$\Delta E_b = Q + W_k$$

122. Izotermikus folyamatok hőtani jellemzése:

- $Q = W_{g\acute{a}}$
- A gázzal közölt hő teljes egészében tágulási munkára fordítódik.

123. Izobár folyamatok hőtani jellemzése:

- $Q = \Delta E + W_t$
- A közölt hő egy része növeli a belső energiát, egy másik része pedig tágulási munkára fordítódik.

124. Izochor folyamatok termodinamikai jellemzése:

- $Q = \Delta E$
- A közölt hő teljes egészében a belső energiát növeli.

125. Adiabatikus folyamatok termodinamikai jellemzése:

- $\Delta E = W_k$
- A környezet munkája teljes egészében növeli a belső energiát.

126. Hőkapacitás:

-
$$C = \frac{Q}{\Delta T}$$

$$- [C] = \frac{J}{K}$$

 Megmutatja az egységnyi hőmérsékletváltozás létrehozásához szükséges hőközlés mértékét.

127. Fajhő:

$$-c = \frac{C}{m} = \frac{\frac{Q}{\Delta T}}{m} = \frac{Q}{m\Delta T}$$

$$- [c] = \frac{J}{kgK}$$

 Megmutatja az egységnyi tömegű halmaz hőmérsékletének egységnyivel való változtatása mekkora hőközlést igényel.

128. Mólhő:

$$-c^* = \frac{C}{n} = \frac{\frac{Q}{\Delta T}}{n} = \frac{Q}{n\Delta T}$$

$$- [c^*] = \frac{J}{mol K}$$

- Megmutatja az egységnyi anyagmennyiségű halmaz hőmérsékletének egységnyivel való változtatása mekkora hőközlést igényel.

129. Szabadsági fok:

- Az energiatárolás független lehetőségeinek száma. (Ahány négyzetes tag szerepel az energia kifejezésében.)
- jele: f

130. Ekvipartíció tétele: T egyensúlyi hőmérsékletű halmazban minden részecske minden szabadsági fokára $\frac{1}{2}kT$ energia jut.

$$\varepsilon_x = \frac{1}{2}kT$$

131. Hőtan II. főtétele: Zárt anyaghalmazban önmagától olyan változások mennek végbe, melyeknek során az egy szabadsági fokra jutó energiák kiegyenlítődnek. (*A halmaz rendetlenebbé válik.*) (*Nő az entrópiája.*)

- 132. Kristályos, szilárd anyagok modellje: Nagyszámú, apró, gyorsmozgású golyók halmaza, melyek a teret szabályos rendben, szorosan töltik ki, miközben helyhez kötött rezgőmozgást végeznek. Közelítéskor erős taszító, távolításkor és alaphelyzetben rövid hatótávolságú, erős vonzó kölcsönhatás jelenik meg.
- 133. Olvadás: Olvadásról beszélünk, ha a kristályos anyag folyamatos energiaközlés hatására egy jól meghatározott állandósult hőmérsékleten (olvadáspont) folyadék halmazállapotúvá válik. Ekkor a közölt hő nem a hőmozgásra, hanem a részecskék közötti kölcsönhatások fellazítására fordítódik.

134. Olvadáshő:

-
$$L_o = \frac{Q}{m}$$

$$- [L_o] = \frac{J}{kg}$$

- Megmutatja az előzőleg olvadáspontjára felmelegített egységnyi tömegű anyag megolvasztásához mennyi hő szükséges.
- 135. Párolgás: Olyan jelenség, melynek során a folyadék felszínén lévő nagyobb energiájú részecskék folyamatos energiaközlés hatására kiszakadnak a folyadékból és szabad állapotúvá válnak, azaz gáz halmazállapot jön létre. Ekkor a közölt hő a részecskék közötti kölcsönhatások megszüntetésére fordítódik.

136. Párolgáshő:

-
$$L_p = \frac{Q}{m}$$

$$- [L_p] = \frac{J}{kg}$$

- Megmutatja az egységnyi tömegű folyadék változatlan hőmérsékleten történő elpárologtatásához mennyi hő szükséges.
- 137. Forrás: A forrás olyan jelenség, melynek során a folyadék belsejében lévő alacsonyabb energiájú részecskék folyamatos energiaközlés hatására egy állandósult hőmérsékleten (forráspont) társaiktól elszakadva szabad állapotúvá válnak, azaz, gáz halmazállapot jön létre. Ekkor a közölt hő a részecskék közötti kölcsönhatások megszüntetésére fordítódik.

138. Forráshő:

$$- L_f = \frac{Q}{m}$$

$$- [L_f] = \frac{J}{kg}$$

- Megmutatja az egységnyi tömegű, előzőleg forráspontjára felmelegített folyadék elforralásához szükséges hőközlés mértékét.

9 Egyenáram, mágneses mező

139. Elektromos áram: Töltéshordozók rendezett mozgása (áramlása).

140. Áramerősség:

$$-I = \frac{Q}{\Delta t}$$

$$- [I] = \frac{C}{s} = A$$

- Megmutatja az egységnyi idő alatt a vezető teljes keresztmetszetén átáramló töltés mennyiségét.
- Iránya a pozitív töltéshordozók mozgásának iránya.

141. Fogyasztó: Az az eszköz vagy berendezés, amelyben elektromos áram hatására céljainknak megfelelő változások jönnek létre.

142. Ellenállás:

$$-R = \frac{U}{I}$$

-
$$[R] = \frac{V}{A} = \Omega$$

- Megmutatja az egységnyi áramerősség kialakításához szükséges feszültséget.

143. Fajlagos ellenállás:

$$- \varrho = \frac{RA}{l}$$

$$- [\varrho] = \frac{\Omega m^2}{m} = \Omega m$$

$$- [\varrho] = \frac{\Omega m m^2}{m} = \Omega m \cdot 10^{-6}$$

- Megmutatja az egységnyi hosszúságú és keresztmetszetű vezető ellenállását.
- **144. Eredő ellenállás:** Olyan helyettesítő ellenállás, amelyre ugyanakkora feszültséget kapcsolva, ugyanakkora áram folyik, mint az eredeti áramkörben.

145. Soros kapcsolás:

a)
$$I_1 = I_2 = I_3$$

Az áramerősség az áramkör minden pontján ugyanakkora.

- b) $U_1 + U_2 = U$ Az egyes áramköri elemekre eső feszültségek összege megegyezik az áramforrás feszültségével.
- c) $R_e = \sum R_i$ Az eredő ellenállás az egyes ellenállások összegeként adható meg.

146. Párhuzamos kapcsolás:

- a) $U_1 = U_2 = U$ Az egyes áramköri elemeken mérhető feszültség megegyezik az áramforrás feszültségével.
- b) $I=I_1+I_2$ A mellékágakban folyó áramerősségek összege megegyezik a főág áramerősségével.
- c) $\frac{1}{R_e} = \sum \frac{1}{R_i}$ Az eredő ellenállás reciproka megegyezik az egyes ellenállások reciprokának összegével.
- 147. Csomópont: Az áramkör azon pontjai, ahol legalább 3 vezető fut össze.
- **148. Kirchhoff I. törvénye:** Egy csomópontban az áramerősségek algebrai összege zérus.

$$\sum_{cs} I_i = 0$$

- 149. Hurok: Ágak önmagukba visszafutó láncolata.
- **150. Kirchhoff II. törvénye:** Egy irányított hurokra az ohmikus feszültségesések és az áramforrások feszültségének előjeles összege zérus.

$$\sum_{h} I_i R_i + \sum_{h} U_{0i} = 0$$

10 Magnetosztatika

- 151. Mágneses tér: Áramvezető által keltett, áramvezetőre ható tér.
- 152. Mágneses indukció:

-
$$B=\frac{M_{max}}{NIA}$$

- $[B]=\frac{Nm}{Am^2}=\frac{N}{Am}=T$
- $[B]=\frac{Nm}{Am^2}=\frac{J}{Am^2}=\frac{VAs}{Am^2}=\frac{Vs}{m^2}=T$

- Megmutatja az egységnyi mágneses nyomatékú magnetométerre ható maximális forgatónyomatékot.
- Iránya az egyensúlyi helyzetben lévő magnetométer pozitív normálisának iránya.
- 153. Mágneses indukcióvonalak minőségi jelentése: Olyan görbék, melyek bármely pontjába húzott érintő az ottani \vec{B} vektor tartóegyenese.
- 154. Mágneses indukcióvonalak mennyiségi jelentése: Az indukcióvonal-képet úgy kell megrajzolni, hogy ahol az indukcióB nagyságú, ott a merőlegesen felvett A_{\perp} felületen $\Phi = BA_{\perp}$ számú indukcióvonal haladjon keresztül.
- 155. Forráserősség: A zárt felületre összegezzük az EA_{\perp} szorzatokat. (zárt felület teljes fluxusa)

$$N_E = \Psi \ddot{o} = \sum_A E A_\perp$$

156. Maxwell I. törvénye: A V térfogat forráserőssége megegyezik a térfogatba zárt töltések algebrai összegének $\frac{1}{\epsilon_0}$ -szorosával.

$$N_E = \frac{1}{\epsilon_0} \sum Q_i$$

157. Örvényerősség: Egy tetszőleges irányított g zárt görbe által határolt felület örvényerőssége az \vec{E} és $\Delta \vec{s}$ vektorok skaláris szorzatának összegével egyezik meg.

$$\ddot{O}_E = \sum_{\sigma} \vec{E} \Delta \vec{s}$$

158. Maxwell II. törvénye: Az elektrosztatikus tér örvénymentes.

$$\ddot{O}_E = 0$$

159. Maxwell III. törvénye: A magnetosztatikus tér forrásmentes.

$$N_B = 0$$

160. Maxwell IV. törvénye (Amper-féle gerjesztési törvény): Egy tetszőleges irányított g zárt görbe által körülhatárolt felület mágneses áramerőssége egyenesen arányos a feületet átdöfő áramok erősségének algebrai összegével.

$$\ddot{O}_B = \mu_0 \sum I_i$$

- 161. Lorentz-erő: Homogén, B indukciójú mágneses mezőben az indukcióvonalakra merőlegesen elhelyezett l hosszúságú I árammal átjárt vezetőre ható erő nagysága $F=B\cdot I\cdot l$
 - Áramvezetőre ható Lorentz-erő: $\vec{F_L} = I[\vec{l} \times \vec{B}]$
 - Mozgó töltéshordozóra ható Lorentz-erő: $\vec{F_L} = q[\vec{v} \times \vec{B}]$
- **162. Abszolút amper:** Akkor 1 A az áram erőssége egy vékony egyenes vezetőben, ha a vákuumban tőle 1 m távolságra elhelyezett ugyanekkore árammal átjárt egyenes vezető 1 m-es darabjára $2 \cdot 10^{-7} N$ erő hat.
- **163.** Lenz törvénye: Az indukált áram iránya mindig olyan, hogy az őt létrehozó hatást csökkenteni igyekszik.
- **164. Mozgási indukció:** Mozgási indukcióról beszélünk, ha (időben) állandó mágneses mezőben a váltakozó felületű vezetőhurokban indukálódik a feszültség.]
- **165. Effektív áram erőssége:** Annak az egyenáramnak az erőssége, amely ugyanabban a vezetőben ugyanannyi idő alatt ugyanannyi hőt termel.

Lektorálta: Monori J. Bence

11 Harmonikus rezgőmozgás

- 166. Amplitúdó: Az egyensúlyi helyzettől mért maximális szélső távolság.
- **167. Referencia körmozgás:** Az egyenletes körmozgást végző tömegpontnak a kör síkjában lévő egyenesre eső vetülete harmonikus rezgőmozgást végez.
- **168.** Harmonikus erő: Harmonikus erőről beszélünk, ha az erő nagysága egyenesen arányos a kitéréssel, és iránya azzal ellentétes.
- **169.** Csillapodó rezgőmozgás: Csillapodó rezgésről beszélünk, ha a rezgő rendszerben disszipatív kölcsönhatások is fellépnek, aminek hatására az amplitúdó csökken.
- 170. Szabadrezgés: Szabadrezgést végez az az adott rezgési energiával rendelkező rendszer, amelyet magára hagyunk és a saját paraméterei (D és m) által meghatározott frekvenciával rezeg.

$$\omega_0 = \sqrt{\frac{D}{m}}$$

- 171. Kényszerrezgés: Kényszerrezgésről beszélünk, ha egy rezgő rendszerre kívülről hat egy periodikusan változó külső erő.
- **172. Rezonancia:** Rezonanciáról beszélünk, ha a gerjesztő rezgés körfrekvenciája megegyezik a gerjesztett rezgés körfrekvenciájával.
- **173. Rezonanciagörbe:** A gerjesztett rezgés amplitúdója akkor maximális, ha rezonancia lép fel.

12 Hullámtan

- 174. Azonos fázisú pontok: $\Delta \varphi = 2k\pi$
- 175. Haladó hullám: Haladó hullámról beszélünk, ha egy rugalmas közegben a rezgés fázisa és vele együtt a rezgési energia terjed.
- 176. Hullámhossz: Az azonos fázisú pontok közötti legrövidebb távolság. Jele: λ
- **177.** Transzverzális hullám: Transzverzális hullámról beszélünk, ha a részecskék rezgésiránya merőleges a hullám terjedési irányára.
- 178. Longitudinális hullám: Longitudinális hullámról beszélünk, ha a részecskék rezgésiránya mergegyezik a hullám terjedési irányával.
- 179. Hullámfelület: Az azonos fázisú pontokat összekötő vonalak.
- **180.** Hullámfront: Az (elől haladó) $\pi/2$ fázisú pontok összessége.
- 181. Hullámtér: A térnek azon része, ahova a hullám már eljutott.
- 182. Sugár(irány): A hullámfelületre merőleges irány.
- 183. Huygens-elv: A hullámfelület minden pontja úgynevezett elemi hullámok kiindulópontja és a későbbi hullámtérbeli hatást ezen elemi hullámok burkolófelülete adja.
- **184. Huygens-Fresnel-elv:** A hullámfelület minden pontja úgynevezett elemi hullámok kiindulópontja és a későbbi hullámtérbeli hatást ezen elemi hullámok interferenciája adja meg.
- 185. Snellius-Descartes-törvény: A beesési szög (α) szinuszának és a törési szög (β) szinuszának aránya a közegekben mért terjedési sebességek arányával egyenlő, ami a két közeg relatív törésmutatója.

$$\frac{\sin\alpha}{\sin\beta} = \frac{c_1}{c_2} = n_{2,1}$$

- **186. Interferencia:** Időben állandósuló hullám szuperpozíció. Feltétele a koherencia.
- 187. Erősítés feltétele:
 - 1 dimenzióban: $A=A_1+A_2$ és $\Delta \varphi=2k\pi$
 - 2 dimenzióban: előzőek és $\Delta r = |r_1 + r_2| = 2k\pi$

188. Gyengítés feltétele:

- 1 dimenzióban: $A=|A_1-A_2|$ $(A_1=A_2$ eseténA=0a kioltás) és $\Delta\varphi=(2k+1)\pi$
- 2 dimenzióban: előzőek és $\Delta r = |r_2 r_1| = (2k+1)\frac{\pi}{2}$
- 189. Koherencia: A találkozó hullámok fáziskülönbsége állandó.
- **190. Állóhullám:** A részecskék rezgés amplitúdója különböző, de időben állandó és a fázis nem terjed.