3

3.1

Second Order Linear Equations

- 1. Let $y=e^{rt}$, so that $y'=r\,e^{rt}$ and $y''=r^2\,e^{rt}$. Direct substitution into the differential equation yields $(r^2+2r-3)e^{rt}=0$. Canceling the exponential, the characteristic equation is $r^2+2r-3=0$. The roots of the equation are r=-3, 1. Hence the general solution is $y=c_1e^t+c_2e^{-3t}$.
- 2. Let $y=e^{rt}$. Substitution of the assumed solution results in the characteristic equation $r^2+3r+2=0$. The roots of the equation are $r=-2\,,-1$. Hence the general solution is $y=c_1e^{-t}+c_2e^{-2t}$.
- 4. Substitution of the assumed solution $y=e^{rt}$ results in the characteristic equation $2r^2-3r+1=0$. The roots of the equation are r=1/2,1. Hence the general solution is $y=c_1e^{t/2}+c_2e^t$.
- 6. The characteristic equation is $4r^2-9=0$, with roots $r=\pm 3/2$. Therefore the general solution is $y=c_1e^{-3t/2}+c_2e^{3t/2}$.
- 8. The characteristic equation is $r^2-2r-2=0$, with roots $r=1\pm\sqrt{3}$. Hence the general solution is $y=c_1e^{(1-\sqrt{3})t}+c_2e^{(1+\sqrt{3})t}$.
- 9. Substitution of the assumed solution $y=e^{rt}$ results in the characteristic equation $r^2+r-2=0$. The roots of the equation are r=-2,1. Hence the general solution is $y=c_1e^{-2t}+c_2e^t$. Its derivative is $y'=-2c_1e^{-2t}+c_2e^t$. Based on the

first condition, y(0) = 1, we require that $c_1 + c_2 = 1$. In order to satisfy y'(0) = 1, we find that $-2c_1 + c_2 = 1$. Solving for the constants, $c_1 = 0$ and $c_2 = 1$. Hence the specific solution is $y(t) = e^t$.

- 11. Substitution of the assumed solution $y=e^{rt}$ results in the characteristic equation $6r^2-5r+1=0$. The roots of the equation are r=1/3,1/2. Hence the general solution is $y=c_1e^{t/3}+c_2e^{t/2}$. Its derivative is $y'=c_1e^{t/3}/3+c_2e^{t/2}/2$. Based on the first condition, y(0)=1, we require that $c_1+c_2=4$. In order to satisfy the condition y'(0)=1, we find that $c_1/3+c_2/2=0$. Solving for the constants, $c_1=12$ and $c_2=-8$. Hence the specific solution is $y(t)=12e^{t/3}-8e^{t/2}$.
- 12. The characteristic equation is $r^2+3r=0$, with roots r=-3, 0. Therefore the general solution is $y=c_1+c_2e^{-3t}$, with derivative $y'=-3\,c_2e^{-3t}$. In order to satisfy the initial conditions, we find that $c_1+c_2=-2$, and $-3\,c_2=3$. Hence the specific solution is $y(t)=-1-e^{-3t}$.
- 13. The characteristic equation is $r^2 + 5r + 3 = 0$, with roots

$$r_{1,2} = -\frac{5}{2} \pm \frac{\sqrt{13}}{2} \,.$$

The general solution is $y = c_1 e^{(-5-\sqrt{13})t/2} + c_2 e^{(-5+\sqrt{13})t/2}$, with derivative

$$y' = \frac{-5 - \sqrt{13}}{2} c_1 e^{(-5 - \sqrt{13})t/2} + \frac{-5 + \sqrt{13}}{2} c_2 e^{(-5 + \sqrt{13})t/2}.$$

In order to satisfy the initial conditions, we require that

$$c_1 + c_2 = 1$$
 and $\frac{-5 - \sqrt{13}}{2}c_1 + \frac{-5 + \sqrt{13}}{2}c_2 = 0.$

Solving for the coefficients, $c_1 = (1 - 5/\sqrt{13})/2$ and $c_2 = (1 + 5/\sqrt{13})/2$.

14. The characteristic equation is $2r^2 + r - 4 = 0$, with roots

$$r_{1,2} = -\frac{1}{4} \pm \frac{\sqrt{33}}{4} \,.$$

The general solution is $y = c_1 e^{(-1-\sqrt{33})t/4} + c_2 e^{(-1+\sqrt{33})t/4}$, with derivative

$$y' = \frac{-1 - \sqrt{33}}{4} c_1 e^{(-1 - \sqrt{33})t/4} + \frac{-1 + \sqrt{33}}{4} c_2 e^{(-1 + \sqrt{33})t/4}.$$

In order to satisfy the initial conditions, we require that

$$c_1 + c_2 = 0$$
 and $\frac{-1 - \sqrt{33}}{4}c_1 + \frac{-1 + \sqrt{33}}{4}c_2 = 1$.

Solving for the coefficients, $c_1=-2/\sqrt{33}$ and $c_2=2/\sqrt{33}$. The specific solution is

$$y(t) = -2 \left[e^{(-1-\sqrt{33})t/4} - e^{(-1+\sqrt{33})t/4} \right] / \sqrt{33}$$
.

16. The characteristic equation is $4r^2-1=0$, with roots $r=\pm 1/2$. Therefore the general solution is $y=c_1e^{-t/2}+c_2e^{t/2}$. Since the initial conditions are specified at t=-2, is more convenient to write $y=d_1e^{-(t+2)/2}+d_2e^{(t+2)/2}$. The derivative is given by $y'=-\left[d_1e^{-(t+2)/2}\right]/2+\left[d_2e^{(t+2)/2}\right]/2$. In order to satisfy the initial conditions, we find that $d_1+d_2=1$, and $-d_1/2+d_2/2=-1$. Solving for the coefficients, $d_1=3/2$, and $d_2=-1/2$. The specific solution is

$$y(t) = \frac{3}{2}e^{-(t+2)/2} - \frac{1}{2}e^{(t+2)/2} = \frac{3}{2e}e^{-t/2} - \frac{e}{2}e^{t/2}$$
.

18. An algebraic equation with roots -2 and -1/2 is $2r^2+5r+2=0$. This is the characteristic equation for the ODE 2y''+5y'+2y=0.

- 20. The characteristic equation is $2r^2-3r+1=0$, with roots r=1/2, 1. Therefore the general solution is $y=c_1e^{t/2}+c_2e^t$, with derivative $y'=c_1e^{t/2}/2+c_2e^t$. To satisfy the initial conditions, we require that $c_1+c_2=2$ and $c_1/2+c_2=1/2$. Solving for the coefficients, $c_1=3$ and $c_2=-1$. This means that the specific solution is $y(t)=3e^{t/2}-e^t$. To find the stationary point, set $y'=3e^{t/2}/2-e^t=0$. There is a unique solution, with $t_1=\ln(9/4)$. This implies that the maximum value is then $y(t_1)=9/4$. To find the x-intercept, solve the equation $3e^{t/2}-e^t=0$. The solution is readily found to be $t_2=\ln 9\approx 2.1972$.
- 22. The characteristic equation is $4r^2-1=0$, with roots $r=\pm 1/2$. Hence the general solution is $y=c_1e^{-t/2}+c_2e^{t/2}$ and $y'=-c_1e^{-t/2}/2+c_2e^{t/2}/2$. Invoking the initial conditions, we require that $c_1+c_2=2$ and $-c_1+c_2=2\beta$. The specific solution is $y(t)=(1-\beta)e^{-t/2}+(1+\beta)e^{t/2}$. Based on the form of the solution, it is evident that as $t\to\infty$, $y(t)\to0$ as long as $\beta=-1$.
- 23. The characteristic equation is $r^2 (2\alpha 1)r + \alpha(\alpha 1) = 0$. Examining the coefficients, the roots are $r = \alpha$, $\alpha 1$. Hence the general solution of the differential equation is $y(t) = c_1 e^{\alpha t} + c_2 e^{(\alpha 1)t}$. Assuming $\alpha \in \mathbb{R}$, all solutions will tend to zero as long as $\alpha < 0$. On the other hand, all solutions will become unbounded as long as $\alpha 1 > 0$, that is, $\alpha > 1$.
- 25.(a) The characteristic equation is $2r^2 + 3r 2 = 0$, with roots r = 1/2 and r = -2. The initial conditions give us the solution

$$y(t) = (2\beta + 1)e^{-2t}/5 + (4 - 2\beta)e^{t/2}/5.$$

(b) $y(t) = 2e^{t/2}/5 + 3e^{-2t}/5$.

The minimum occurs at $(t_0, y_0) \approx (0.7167, 0.7155)$. (The value of t_0 is $2\ln(6)/5$.)

- (c) This happens when $\beta = 2$. (When the coefficient of the positive exponential power becomes negative.)
- 26.(a) The characteristic roots are r=-3,-2. The solution of the initial value problem is $y(t)=(6+\beta)e^{-2t}-(4+\beta)e^{-3t}$.
- (b) The maximum point has coordinates $t_0 = \ln \left[\frac{3(4+\beta)}{2(6+\beta)} \right], y_0 = \frac{4(6+\beta)^3}{27(4+\beta)^2}$.

(c)
$$y_0 = \frac{4(6+\beta)^3}{27(4+\beta)^2} \ge 4$$
, as long as $\beta \ge 6 + 6\sqrt{3}$.

(d)
$$\lim_{\beta \to \infty} t_0 = \ln(3/2)$$
, $\lim_{\beta \to \infty} y_0 = \infty$.

27.(a) Assuming that y is a constant, the ODE reduces to cy=d. Hence the only equilibrium solution is y=d/c.

(b) Setting y = Y + d/c, substitution into the differential equation results in

$$aY'' + bY' + c(Y + d/c) = d.$$

The equation satisfied by Y is

$$aY'' + bY' + cY = 0.$$

3.2

1.
$$W(e^{2t},e^{-3t/2})=\begin{vmatrix} e^{2t}&e^{-3t/2}\\2e^{2t}&-\frac{3}{2}e^{-3t/2} \end{vmatrix}=-\frac{7}{2}e^{t/2}.$$

3.
$$W(e^{-2t}, t e^{-2t}) = \begin{vmatrix} e^{-2t} & t e^{-2t} \\ -2e^{-2t} & (1-2t)e^{-2t} \end{vmatrix} = e^{-4t}.$$

5.
$$W(e^t \sin t, e^t \cos t) = \begin{vmatrix} e^t \sin t & e^t \cos t \\ e^t (\sin t + \cos t) & e^t (\cos t - \sin t) \end{vmatrix} = -e^{2t}.$$

6.
$$W(\cos^2\theta, 1 + \cos 2\theta) = \begin{vmatrix} \cos^2\theta & 1 + \cos 2\theta \\ -2\sin\theta\cos\theta & -2\sin 2\theta \end{vmatrix} = 0.$$

7. Write the equation as y'' + (3/t)y' = 1. p(t) = 3/t is continuous for all t > 0. Since $t_0 > 0$, the IVP has a unique solution for all t > 0.

9. Write the equation as $y'' + \frac{3}{t-4}y' + \frac{4}{t(t-4)}y = \frac{2}{t(t-4)}$. The coefficients are not continuous at t=0 and t=4. Since $t_0 \in (0,4)$, the largest interval is 0 < t < 4.

10. The coefficient $3 \ln |t|$ is discontinuous at t = 0. Since $t_0 > 0$, the largest interval of existence is $0 < t < \infty$.

11. Write the equation as $y'' + \frac{x}{x-3}y' + \frac{\ln|x|}{x-3}y = 0$. The coefficients are discontinuous at x=0 and x=3. Since $x_0 \in (0,3)$, the largest interval is 0 < x < 3.

13. $y_1''=2$. We see that $t^2(2)-2(t^2)=0$. $y_2''=2\,t^{-3}$, with $t^2(y_2'')-2(y_2)=0$. Let $y_3=c_1t^2+c_2t^{-1}$, then $y_3''=2c_1+2c_2t^{-3}$. It is evident that y_3 is also a solution.

16. No. Substituting $y = \sin(t^2)$ into the differential equation,

$$-4t^2\sin(t^2) + 2\cos(t^2) + 2t\,\cos(t^2)p(t) + \sin(t^2)q(t) = 0.$$

At t = 0, this equation becomes 2 = 0 (if we suppose that p(t) and q(t) are continuous), which is impossible.

- 17. $W(e^{2t}, g(t)) = e^{2t}g'(t) 2e^{2t}g(t) = 3e^{4t}$. Dividing both sides by e^{2t} , we find that g must satisfy the ODE $g' 2g = 3e^{2t}$. Hence $g(t) = 3t e^{2t} + c e^{2t}$.
- 19. W(f,g)=fg'-f'g. Also, $W(u,v)=W(2f-g\,,f+2g)$. Upon evaluation, $W(u\,,v)=5fg'-5f'g=5W(f\,,g)$.
- 20. $W(f,g)=fg'-f'g=t\cos t-\sin t$, and W(u,v)=-4fg'+4f'g. Hence $W(u,v)=-4t\cos t+4\sin t$.
- 21. We compute

$$W(a_1y_1 + a_2y_2, b_1y_1 + b_2y_2) = \begin{vmatrix} a_1y_1 + a_2y_2 & b_1y_1 + b_2y_2 \\ a_1y'_1 + a_2y'_2 & b_1y'_1 + b_2y'_2 \end{vmatrix} =$$

$$= (a_1y_1 + a_2y_2)(b_1y'_1 + b_2y'_2) - (b_1y_1 + b_2y_2)(a_1y'_1 + a_2y'_2) =$$

$$= a_1b_2(y_1y'_2 - y'_1y_2) - a_2b_1(y_1y'_2 - y'_1y_2) = (a_1b_2 - a_2b_1)W(y_1, y_2)$$

This now readily shows that y_3 and y_4 is a fundamental set of solutions if and only if $a_1b_2 - a_2b_1 \neq 0$.

23. The general solution is $y = c_1 e^{-3t} + c_2 e^{-t}$. $W(e^{-3t}, e^{-t}) = 2e^{-4t}$, and hence the exponentials form a fundamental set of solutions. On the other hand, the fundamental solutions must also satisfy the conditions $y_1(1) = 1$, $y_1'(1) = 0$; $y_2(1) = 0$, $y_2'(1) = 1$. For y_1 , the initial conditions require $c_1 + c_2 = e$, $-3c_1 - c_2 = 0$. The coefficients are $c_1 = -e^3/2$, $c_2 = 3e/2$. For the solution y_2 , the initial conditions require $c_1 + c_2 = 0$, $-3c_1 - c_2 = e$. The coefficients are $c_1 = -e^3/2$, $c_2 = e/2$. Hence the fundamental solutions are

$$y_1 = -\frac{1}{2}e^{-3(t-1)} + \frac{3}{2}e^{-(t-1)}$$
 and $y_2 = -\frac{1}{2}e^{-3(t-1)} + \frac{1}{2}e^{-(t-1)}$.

- 24. Yes. $y_1'' = -4 \cos 2t$; $y_2'' = -4 \sin 2t$. $W(\cos 2t, \sin 2t) = 2$.
- 25. Clearly, $y_1 = e^t$ is a solution. $y_2' = (1+t)e^t$, $y_2'' = (2+t)e^t$. Substitution into the ODE results in $(2+t)e^t 2(1+t)e^t + te^t = 0$. Furthermore, $W(e^t, te^t) = e^{2t}$. Hence the solutions form a fundamental set of solutions.
- 27. Clearly, $y_1=x$ is a solution. $y_2'=\cos x$, $y_2''=-\sin x$. Substitution into the ODE results in $(1-x\cot x)(-\sin x)-x(\cos x)+\sin x=0$. We can compute that

 $W(y_1, y_2) = x \cos x - \sin x$, which is nonzero for $0 < x < \pi$. Hence $\{x, \sin x\}$ is a fundamental set of solutions.

- 30. Writing the equation in standard form, we find that $P(t) = \sin t/\cos t$. Hence the Wronskian is $W(t) = c \, e^{-\int \frac{\sin t}{\cos t} dt} = c \, e^{\ln|\cos t|} = c \, \cos t$, in which c is some constant.
- 31. After writing the equation in standard form, we have P(x)=1/x. The Wronskian is $W(x)=c\,e^{-\int \frac{1}{x}dx}=c\,e^{-\ln|x|}=c/x$, in which c is some constant.
- 32. Writing the equation in standard form, we find that $P(x) = -2x/(1-x^2)$. The Wronskian is $W(x) = c e^{-\int \frac{-2x}{1-x^2} dx} = c e^{-\ln|1-x^2|} = c/(1-x^2)$, in which c is some constant.
- 33. Rewrite the equation as p(t)y'' + p'(t)y' + q(t)y = 0. After writing the equation in standard form, we have P(t) = p'(t)/p(t). Hence the Wronskian is

$$W(t) = c e^{-\int \frac{p'(t)}{p(t)} dt} = c e^{-\ln p(t)} = c/p(t)$$
.

- 34. Multiply the equation by t and recognize that we can use the previous problem with $p(t) = t^2$. We identify c = 2 from W(1) = 2 and then W(5) = 2/25.
- 35. The Wronskian associated with the solutions of the differential equation is given by $W(t)=c\,e^{-\int\frac{-2}{t^2}dt}=c\,e^{-2/t}$. Since W(2)=3, it follows that for the hypothesized set of solutions, $c=3\,e$. Hence $W(4)=3\sqrt{e}$.
- 36. For the given differential equation, the Wronskian satisfies the first order differential equation W'+p(t)W=0. Given that W is constant, it is necessary that $p(t)\equiv 0$.
- 37. Direct calculation shows that

$$W(f g, f h) = (fg)(fh)' - (fg)'(fh) =$$

$$= (fg)(f'h + fh') - (f'g + fg')(fh) = f^2 W(g, h).$$

- 39. Since y_1 and y_2 are solutions, they are differentiable. The hypothesis can thus be restated as $y_1'(t_0) = y_2'(t_0) = 0$ at some point t_0 in the interval of definition. This implies that $W(y_1,y_2)(t_0) = 0$. But $W(y_1,y_2)(t_0) = c\,e^{-\int p(t)dt}$, which cannot be equal to zero, unless c=0. Hence $W(y_1,y_2)\equiv 0$, which is ruled out for a fundamental set of solutions.
- 42. P=1, Q=x, R=1. We have P''-Q'+R=0. The equation is exact. Note that (y')'+(xy)'=0. Hence $y'+xy=c_1$. This equation is linear, with integrating factor $\mu=e^{x^2/2}$. Therefore the general solution is

$$y(x) = c_1 e^{-x^2/2} \int_{x_0}^x e^{u^2/2} du + c_2 e^{-x^2/2}.$$

- 43. P=1, $Q=3x^2$, R=x. Note that P''-Q'+R=-5x, and therefore the differential equation is not exact.
- 45. $P=x^2$, Q=x, R=-1. We have P''-Q'+R=0. The equation is exact. Write the equation as $(x^2y')'-(xy)'=0$. After integration, we conclude that $x^2y'-xy=c$. Divide both sides of the ODE by x^2 . The resulting equation is linear, with integrating factor $\mu=1/x$. Hence $(y/x)'=c\,x^{-3}$. The solution is $y(t)=c_1x^{-1}+c_2x$.
- 47. $P=x^2$, Q=x, $R=x^2-\nu^2$. Hence the coefficients are 2P'-Q=3x and $P''-Q'+R=x^2+1-\nu^2$. The adjoint of the original differential equation is given by $x^2\mu''+3x\mu'+(x^2+1-\nu^2)\mu=0$.
- 49. P=1, Q=0, R=-x. Hence the coefficients are given by 2P'-Q=0 and P''-Q'+R=-x. Therefore the adjoint of the original equation is $\mu''-x\mu=0$.

- 2. $e^{2-3i} = e^2 e^{-3i} = e^2 (\cos 3 i \sin 3)$.
- 3. $e^{i\pi} = \cos \pi + i \sin \pi = -1$.
- 4. $e^{2-\frac{\pi}{2}i} = e^2(\cos\frac{\pi}{2} i\sin\frac{\pi}{2}) = -e^2i$.
- 6. $\pi^{-1+2i} = e^{(-1+2i)\ln \pi} = e^{-\ln \pi}e^{2\ln \pi i} = (\cos(2\ln \pi) + i\sin(2\ln \pi))/\pi$.
- 8. The characteristic equation is $r^2 2r + 6 = 0$, with roots $r = 1 \pm i\sqrt{5}$. Hence the general solution is $y = c_1 e^t \cos \sqrt{5} t + c_2 e^t \sin \sqrt{5} t$.
- 9. The characteristic equation is $r^2 + 2r 8 = 0$, with roots r = -4, 2. The roots are real and different, hence the general solution is $y = c_1 e^{-4t} + c_2 e^{2t}$.
- 10. The characteristic equation is $r^2 + 2r + 2 = 0$, with roots $r = -1 \pm i$. Hence the general solution is $y = c_1 e^{-t} \cos t + c_2 e^{-t} \sin t$.
- 12. The characteristic equation is $4r^2 + 9 = 0$, with roots $r = \pm \frac{3}{2}i$. Hence the general solution is $y = c_1 \cos(3t/2) + c_2 \sin(3t/2)$.
- 13. The characteristic equation is $r^2 + 2r + 1.25 = 0$, with roots $r = -1 \pm \frac{1}{2}i$. Hence the general solution is $y = c_1 e^{-t} \cos(t/2) + c_2 e^{-t} \sin(t/2)$.
- 15. The characteristic equation is $r^2+r+1.25=0$, with roots $r=-\frac{1}{2}\pm i$. Hence the general solution is $y=c_1e^{-t/2}\cos t+c_2e^{-t/2}\sin t$.

- 16. The characteristic equation is $r^2+4r+6.25=0$, with roots $r=-2\pm\frac{3}{2}i$. Hence the general solution is $y=c_1e^{-2t}\cos(3t/2)+c_2\,e^{-2t}\sin(3t/2)$.
- 17. The characteristic equation is $r^2+4=0$, with roots $r=\pm 2i$. Hence the general solution is $y=c_1\cos 2t+c_2\sin 2t$. Now $y'=-2c_1\sin 2t+2c_2\cos 2t$. Based on the first condition, y(0)=0, we require that $c_1=0$. In order to satisfy the condition y'(0)=1, we find that $2c_2=1$. The constants are $c_1=0$ and $c_2=1/2$. Hence the specific solution is $y(t)=\frac{1}{2}\sin 2t$.
- 19. The characteristic equation is $r^2-2r+5=0$, with roots $r=1\pm 2i$. Hence the general solution is $y=c_1e^t\cos 2t+c_2\,e^t\sin 2t$. Based on the initial condition $y(\pi/2)=0$, we require that $c_1=0$. It follows that $y=c_2\,e^t\sin 2t$, and so the first derivative is $y'=c_2\,e^t\sin 2t+2c_2\,e^t\cos 2t$. In order to satisfy the condition $y'(\pi/2)=2$, we find that $-2e^{\pi/2}c_2=2$. Hence we have $c_2=-e^{-\pi/2}$. Therefore the specific solution is $y(t)=-e^{t-\pi/2}\sin 2t$.

- 20. The characteristic equation is $r^2+1=0$, with roots $r=\pm i$. Hence the general solution is $y=c_1\cos t+c_2\sin t$. Its derivative is $y'=-c_1\sin t+c_2\cos t$. Based on the first condition, $y(\pi/3)=2$, we require that $c_1+\sqrt{3}\,c_2=4$. In order to satisfy the condition $y'(\pi/3)=-4$, we find that $-\sqrt{3}\,c_1+c_2=-8$. Solving these for the constants, $c_1=1+2\sqrt{3}$ and $c_2=\sqrt{3}-2$. Hence the specific solution is a steady oscillation, given by $y(t)=(1+2\sqrt{3})\cos t+(\sqrt{3}-2)\sin t$.
- 21. From Problem 15, the general solution is $y=c_1e^{-t/2}\cos t+c_2\,e^{-t/2}\sin t$. Invoking the first initial condition, y(0)=3, which implies that $c_1=3$. Substituting, it follows that $y=3e^{-t/2}\cos t+c_2\,e^{-t/2}\sin t$, and so the first derivative is

$$y' = -\frac{3}{2}e^{-t/2}\cos t - 3e^{-t/2}\sin t + c_2 e^{-t/2}\cos t - \frac{c_2}{2}e^{-t/2}\sin t.$$

Invoking the initial condition, y'(0) = 1, we find that $-\frac{3}{2} + c_2 = 1$, and so $c_2 = \frac{5}{2}$.

Hence the specific solution is $y(t) = 3e^{-t/2}\cos t + \frac{5}{2}e^{-t/2}\sin t$.

24.(a) The characteristic equation is $5r^2+2r+7=0$, with roots $r=-\frac{1}{5}\pm i\frac{\sqrt{34}}{5}$. The solution is $u=c_1e^{-t/5}\cos\frac{\sqrt{34}}{5}t+c_2e^{-t/5}\sin\frac{\sqrt{34}}{5}t$. Invoking the given initial conditions, we obtain the equations for the coefficients: $c_1=2$, $-2+\sqrt{34}\,c_2=5$. That is, $c_1=2$, $c_2=7/\sqrt{34}$. Hence the specific solution is

$$u(t) = 2e^{-t/5}\cos\frac{\sqrt{34}}{5}t + \frac{7}{\sqrt{34}}e^{-t/5}\sin\frac{\sqrt{34}}{5}t$$
.

(b) Based on the graph of u(t), T is in the interval 14 < t < 16. A numerical solution on that interval yields $T \approx 14.5115$.

26.(a) The characteristic equation is $r^2+2ar+(a^2+1)=0$, with roots $r=-a\pm i$. Hence the general solution is $y(t)=c_1e^{-at}\cos t+c_2e^{-at}\sin t$. Based on the initial conditions, we find that $c_1=1$ and $c_2=a$. Therefore the specific solution is given by

$$y(t) = e^{-at} \cos t + a e^{-at} \sin t = \sqrt{1 + a^2} e^{-at} \cos (t - \phi),$$

in which $\phi = \arctan(a)$.

(b) For estimation, note that $|y(t)| \leq \sqrt{1+a^2} \, e^{-at}$. Now consider the inequality $\sqrt{1+a^2} \, e^{-at} \leq 1/10$. The inequality holds for $t \geq \frac{1}{a} \ln(10\sqrt{1+a^2})$. Therefore $T \leq \frac{1}{a} \ln(10\sqrt{1+a^2})$. Setting a=1, the numerical value is $T \approx 1.8763$.

(c) Similarly, $T_{1/4} \approx 7.4284$, $T_{1/2} \approx 4.3003$, $T_2 \approx 1.5116$, $T_3 \approx 1.1496$.

(d)

Note that the estimates T_a approach the graph of $\frac{1}{a}\ln(10\sqrt{1+a^2})$ as a gets large.

27. Direct calculation gives the result. On the other hand, it was shown in Problem 3.2.37 that $W(f\,g\,,f\,h)=f^2W(g\,,h)$. Hence

$$W(e^{\lambda t}\cos \mu t, e^{\lambda t}\sin \mu t) = e^{2\lambda t}W(\cos \mu t, \sin \mu t) =$$
$$= e^{2\lambda t}\left[\cos \mu t(\sin \mu t)' - (\cos \mu t)'\sin \mu t\right] = \mu e^{2\lambda t}.$$

28.(a) Clearly, y_1 and y_2 are solutions. Also, $W(\cos t, \sin t) = \cos^2 t + \sin^2 t = 1$.

(b)
$$y' = i e^{it}$$
, $y'' = i^2 e^{it} = -e^{it}$. Evidently, y is a solution and so $y = c_1 y_1 + c_2 y_2$.

(c) Setting t=0, $1=c_1\cos 0+c_2\sin 0$, and $c_1=0$. Differentiating, $i\,e^{it}=c_2\cos t$. Setting t=0, $i=c_2\cos 0$ and hence $c_2=i$. Therefore $e^{it}=\cos t+i\sin t$.

29. Euler's formula is $e^{it}=\cos t+i\sin t$. It follows that $e^{-it}=\cos t-i\sin t$. Adding these equation, $e^{it}+e^{-it}=2\cos t$. Subtracting the two equations results in $e^{it}-e^{-it}=2i\sin t$.

30. Let
$$r_1 = \lambda_1 + i\mu_1$$
, and $r_2 = \lambda_2 + i\mu_2$. Then
$$e^{(r_1 + r_2)t} = e^{(\lambda_1 + \lambda_2)t + i(\mu_1 + \mu_2)t} = e^{(\lambda_1 + \lambda_2)t} \left[\cos(\mu_1 + \mu_2)t + i\sin(\mu_1 + \mu_2)t\right] =$$

$$= e^{(\lambda_1 + \lambda_2)t} \left[(\cos \mu_1 t + i\sin \mu_1 t)(\cos \mu_2 t + i\sin \mu_2 t)\right] =$$

$$= e^{\lambda_1 t} (\cos \mu_1 t + i\sin \mu_1 t) \cdot e^{\lambda_2 t} (\cos \mu_1 t + i\sin \mu_1 t)$$

Hence $e^{(r_1+r_2)t} = e^{r_1t} e^{r_2t}$.

32. If $\phi(t) = u(t) + i v(t)$ is a solution, then

$$(u+iv)'' + p(t)(u+iv)' + q(t)(u+iv) = 0$$
,

and (u'' + iv'') + p(t)(u' + iv') + q(t)(u + iv) = 0. After expanding the equation and separating the real and imaginary parts,

$$u'' + p(t)u' + q(t)u = 0$$

 $v'' + p(t)v' + q(t)v = 0.$

Hence both u(t) and v(t) are solutions.

34. Let $x = \ln t$. We differentiate, using the Chain Rule:

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} = \frac{dy}{dx}\frac{1}{t}$$

and

$$\frac{d^2y}{dt^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right)\frac{1}{t} + \frac{dy}{dx}\left(-\frac{1}{t^2}\right) = \frac{d^2y}{dx^2}\frac{1}{t^2} + \frac{dy}{dx}\left(-\frac{1}{t^2}\right).$$

Using these, we can see that

$$t^2 \frac{d^2 y}{dt^2} + \alpha t \frac{dy}{dt} + \beta y = 0$$

transforms into

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} + \alpha \frac{dy}{dx} + \beta y = \frac{d^2y}{dx^2} + (\alpha - 1)\frac{dy}{dx} + \beta y = 0.$$

35. The equation transforms into y'' + y = 0. The characteristic roots are $r = \pm i$. The solution is

$$y = c_1 \cos(x) + c_2 \sin(x) = c_1 \cos(\ln t) + c_2 \sin(\ln t).$$

36. The equation transforms into y'' + 3y' + 2y = 0. The characteristic roots are r = -1, -2. The solution is

$$y = c_1 e^{-x} + c_2 e^{-2x} = c_1 e^{-\ln t} + c_2 e^{-2\ln t} = \frac{c_1}{t} + \frac{c_2}{t^2}.$$

37. The equation transforms into y'' + 2y' + 1.25y = 0. The characteristic roots are $r = -1 \pm i/2$. The solution is

$$y = c_1 e^{-x} \cos(x/2) + c_2 e^{-x} \sin(x/2) = c_1 \frac{\cos(\frac{1}{2} \ln t)}{t} + c_2 \frac{\sin(\frac{1}{2} \ln t)}{t}.$$

38. The equation transforms into y'' - 5y' - 6y = 0. The characteristic roots are r = -1, 6. The solution is

$$y = c_1 e^{-x} + c_2 e^{6x} = c_1 e^{-\ln t} + c_2 e^{6\ln t} = c_1 \frac{1}{t} + c_2 t^6.$$

39. The equation transforms into y'' - 5y' + 6y = 0. The characteristic roots are r = 2, 3. The solution is

$$y = c_1 e^{2x} + c_2 e^{3x} = c_1 e^{2 \ln t} + c_2 e^{3 \ln t} = c_1 t^2 + c_2 t^3.$$

40. The equation transforms into y'' - 2y' + 5y = 0. The characteristic roots are $r = 1 \pm 2i$. The solution is

$$y = c_1 e^x \cos(2x) + c_2 e^x \sin(2x) = c_1 t \cos(2 \ln t) + c_2 t \sin(2 \ln t).$$

41. The equation transforms into y'' + 2y' - 3y = 0. The characteristic roots are r = 1, -3. The solution is

$$y = c_1 e^x + c_2 e^{-3x} = c_1 e^{\ln t} + c_2 e^{-3\ln t} = c_1 t + \frac{c_2}{t^3}.$$

42. The equation transforms into y'' + 6y' + 10y = 0. The characteristic roots are $r = -3 \pm i$. The solution is

$$y = c_1 e^{-3x} \cos(x) + c_2 e^{-3x} \sin(x) = c_1 \frac{1}{t^3} \cos(\ln t) + c_2 \frac{1}{t^3} \sin(\ln t).$$

43.(a) By the chain rule, $y'(x) = \frac{dy}{dx}x'$. In general, $\frac{dz}{dt} = \frac{dz}{dx}\frac{dx}{dt}$. Setting $z = \frac{dy}{dt}$, we have

$$\frac{d^2y}{dt^2} = \frac{dz}{dx}\frac{dx}{dt} = \frac{d}{dx}\left[\frac{dy}{dx}\frac{dx}{dt}\right]\frac{dx}{dt} = \left[\frac{d^2y}{dx^2}\frac{dx}{dt}\right]\frac{dx}{dt} + \frac{dy}{dx}\frac{d}{dx}\left[\frac{dx}{dt}\right]\frac{dx}{dt}.$$

However,
$$\frac{d}{dx} \left[\frac{dx}{dt} \right] \frac{dx}{dt} = \left[\frac{d^2x}{dt^2} \right] \frac{dt}{dx} \cdot \frac{dx}{dt} = \frac{d^2x}{dt^2}$$
. Hence $\frac{d^2y}{dt^2} = \frac{d^2y}{dx^2} \left[\frac{dx}{dt} \right]^2 + \frac{dy}{dx} \frac{d^2x}{dt^2}$.

(b) Substituting the results in part (a) into the general ODE, y'' + p(t)y' + q(t)y = 0, we find that

$$\frac{d^2y}{dx^2} \left[\frac{dx}{dt} \right]^2 + \frac{dy}{dx} \frac{d^2x}{dt^2} + p(t) \frac{dy}{dx} \frac{dx}{dt} + q(t)y = 0.$$

Collecting the terms.

$$\left[\frac{dx}{dt}\right]^2 \frac{d^2y}{dx^2} + \left[\frac{d^2x}{dt^2} + p(t)\frac{dx}{dt}\right] \frac{dy}{dx} + q(t)y = 0.$$

(c) Assuming $\left[\frac{dx}{dt}\right]^2=k\,q(t)$, and q(t)>0, we find that $\frac{dx}{dt}=\sqrt{k\,q(t)}$, which can be integrated. That is, $x=\xi(t)=\int\sqrt{k\,q(t)}\;dt$.

(d) Let k=1. It follows that $\frac{d^2x}{dt^2}+p(t)\frac{dx}{dt}=\frac{d\xi}{dt}+p(t)\xi(t)=\frac{q'}{2\sqrt{q}}+p\sqrt{q}$. Hence

$$\left[\frac{d^2x}{dt^2} + p(t)\frac{dx}{dt}\right] / \left[\frac{dx}{dt}\right]^2 = \frac{q'(t) + 2p(t)q(t)}{2\left[q(t)\right]^{3/2}}.$$

As long as $dx/dt \neq 0$, the differential equation can be expressed as

$$\frac{d^2y}{dx^2} + \left[\frac{q'(t) + 2p(t)q(t)}{2[q(t)]^{3/2}} \right] \frac{dy}{dx} + y = 0.$$

For the case q(t) < 0, write q(t) = -[-q(t)], and set $\left[\frac{dx}{dt}\right]^2 = -q(t)$.

45. p(t) = 3t and $q(t) = t^2$. We have $x = \int t dt = t^2/2$. Furthermore,

$$\frac{q'(t) + 2p(t)q(t)}{2[q(t)]^{3/2}} = (1 + 3t^2)/t^2.$$

The ratio is not constant, and therefore the equation cannot be transformed.

46. p(t) = t - 1/t and $q(t) = t^2$. We have $x = \int t dt = t^2/2$. Furthermore,

$$\frac{q'(t) + 2p(t)q(t)}{2[q(t)]^{3/2}} = 1.$$

The ratio is constant, and therefore the equation can be transformed. From Problem 43, the transformed equation is

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0.$$

Based on the methods in this section, the characteristic equation is $r^2+r+1=0$, with roots $r=-\frac{1}{2}\pm i\frac{\sqrt{3}}{2}$. The general solution is

$$y(x) = c_1 e^{-x/2} \cos \sqrt{3} x/2 + c_2 e^{-x/2} \sin \sqrt{3} x/2$$

Since $x = t^2/2$, the solution in the original variable t is

$$y(t) = e^{-t^2/4} \left[c_1 \cos(\sqrt{3} t^2/4) + c_2 \sin(\sqrt{3} t^2/4) \right].$$

3.4

- 2. The characteristic equation is $9r^2+6r+1=0$, with the double root r=-1/3. The general solution is $y(t)=c_1e^{-t/3}+c_2t\,e^{-t/3}$.
- 3. The characteristic equation is $4r^2-4r-3=0$, with roots r=-1/2, 3/2. The general solution is $y(t)=c_1e^{-t/2}+c_2e^{3t/2}$.
- 4. The characteristic equation is $4r^2 + 12r + 9 = 0$, with double root r = -3/2. The general solution is $y(t) = (c_1 + c_2 t)e^{-3t/2}$.
- 5. The characteristic equation is $r^2-2r+10=0$, with complex roots $r=1\pm 3i$. The general solution is $y(t)=c_1e^t\cos 3t+c_2e^t\sin 3t$.
- 6. The characteristic equation is $r^2-6r+9=0$, with the double root r=3. The general solution is $y(t)=c_1e^{3t}+c_2t\,e^{3t}$.
- 7. The characteristic equation is $4r^2+17r+4=0$, with roots r=-1/4, -4. The general solution is $y(t)=c_1e^{-t/4}+c_2e^{-4t}$.
- 8. The characteristic equation is $16r^2 + 24r + 9 = 0$, with double root r = -3/4. The general solution is $y(t) = c_1 e^{-3t/4} + c_2 t e^{-3t/4}$.

10. The characteristic equation is $2r^2 + 2r + 1 = 0$. We obtain the complex roots $r = -\frac{1}{2} \pm \frac{1}{2}i$. The general solution is $y(t) = c_1 e^{-t/2} \cos(t/2) + c_2 e^{-t/2} \sin(t/2)$.

11. The characteristic equation is $9r^2-12r+4=0$, with the double root r=2/3. The general solution is $y(t)=c_1e^{2t/3}+c_2t\,e^{2t/3}$. Invoking the first initial condition, it follows that $c_1=2$. Now $y'(t)=(4/3+c_2)e^{2t/3}+2c_2t\,e^{2t/3}/3$. Invoking the second initial condition, $4/3+c_2=-1$, or $c_2=-7/3$. Hence we obtain the solution $y(t)=2e^{2t/3}-\frac{7}{3}te^{2t/3}$. Since the second term dominates for large $t,y(t)\to -\infty$.

13. The characteristic equation is $9r^2+6r+82=0$. We obtain the complex roots $r=-\frac{1}{3}\pm 3i$. The general solution is $y(t)=c_1e^{-t/3}\cos 3t+c_2e^{-t/3}\sin 3t$. Based on the first initial condition, $c_1=-1$. Invoking the second initial condition, we conclude that $1/3+3c_2=2$, or $c_2=\frac{5}{9}$. Hence $y(t)=-e^{-t/3}\cos 3t+\frac{5}{9}e^{-t/3}\sin 3t$.

15.(a) The characteristic equation is $4r^2+12r+9=0$, with double root $r=-\frac{3}{2}$. The general solution is $y(t)=c_1e^{-3t/2}+c_2t\,e^{-3t/2}$. Invoking the first initial condition, it follows that $c_1=1$. Now $y'(t)=(-3/2+c_2)e^{-3t/2}-\frac{3}{2}c_2t\,e^{-3t/2}$. The second initial condition requires that $-3/2+c_2=-4$, or $c_2=-5/2$. Hence the specific solution is $y(t)=e^{-3t/2}-\frac{5}{2}t\,e^{-3t/2}$.

- (b) The solution crosses the x-axis at t = 2/5.
- (c) The solution has a minimum at the point $(16/15, -5e^{-8/5}/3)$.

- (d) Given that y'(0) = b, we have $-3/2 + c_2 = b$, or $c_2 = b + 3/2$. Hence the solution is $y(t) = e^{-3t/2} + (b + \frac{3}{2})t\,e^{-3t/2}$. Since the second term dominates, the long-term solution depends on the sign of the coefficient b + 3/2. The critical value is b = -3/2.
- 16. The characteristic roots are $r_1=r_2=1/2$. Hence the general solution is given by $y(t)=c_1e^{t/2}+c_2t\,e^{t/2}$. Invoking the initial conditions, we require that $c_1=2$, and that $1+c_2=b$. The specific solution is

$$y(t) = 2e^{t/2} + (b-1)t e^{t/2}.$$

Since the second term dominates, the long-term solution depends on the sign of the coefficient b-1. The critical value is b=1.

- 18.(a) The characteristic roots are $r_1=r_2=-2/3$. Therefore the general solution is given by $y(t)=c_1e^{-2t/3}+c_2t\,e^{-2t/3}$. Invoking the initial conditions, we require that $c_1=a$, and that $-2a/3+c_2=-1$. After solving for the coefficients, the specific solution is $y(t)=ae^{-2t/3}+(\frac{2a}{3}-1)t\,e^{-2t/3}$.
- (b) Since the second term dominates, the long-term solution depends on the sign of the coefficient $\frac{2a}{3}-1$. The critical value is a=3/2.
- 20.(a) The characteristic equation is $r^2 + 2ar + a^2 = (r+a)^2 = 0$.
- (b) With p(t) = 2a, Abel's Formula becomes

$$W(y_1, y_2) = c e^{-\int 2a \, dt} = c e^{-2at}$$
.

(c) $y_1(t) = e^{-at}$ is a solution. From part (b),

$$e^{-at} y_2'(t) + a e^{-at} y_2(t) = c e^{-2at}$$

which can be written as

$$\frac{d}{dt} \left[e^{at} y_2(t) \right] = c \,,$$

resulting in

$$e^{at} y_2(t) = ct$$
.

23. Set $y_2(t) = t^2 v(t)$. Substitution into the ODE results in

$$t^{2}(t^{2}v'' + 4tv' + 2v) - 4t(t^{2}v' + 2tv) + 6t^{2}v = 0.$$

After collecting terms, we end up with $t^4v''=0$. Hence $v(t)=c_1+c_2t$, and thus $y_2(t)=c_1t^2+c_2t^3$. Setting $c_1=0$ and $c_2=1$, we obtain $y_2(t)=t^3$.

24. Set $y_2(t) = t v(t)$. Substitution into the ODE results in

$$t^{2}(tv'' + 2v') + 2t(tv' + v) - 2tv = 0.$$

After collecting terms, we end up with $t^3v'' + 4t^2v' = 0$. This equation is linear in the variable w = v'. It follows that $v'(t) = ct^{-4}$, and $v(t) = c_1t^{-3} + c_2$. Thus $y_2(t) = c_1t^{-2} + c_2t$. Setting $c_1 = 1$ and $c_2 = 0$, we obtain $y_2(t) = t^{-2}$.

26. Set $y_2(t) = tv(t)$. Substitution into the ODE results in v'' - v' = 0. This ODE is linear in the variable w = v'. It follows that $v'(t) = c_1 e^t$, and $v(t) = c_1 e^t + c_2$. Thus $y_2(t) = c_1 t e^t + c_2 t$. Setting $c_1 = 1$ and $c_2 = 0$, we obtain $y_2(t) = t e^t$.

28. Set $y_2(x) = e^x v(x)$. Substitution into the ODE results in

$$v'' + \frac{x-2}{x-1}v' = 0.$$

This ODE is linear in the variable w = v'. An integrating factor is

$$\mu = e^{\int \frac{x-2}{x-1} dx} = \frac{e^x}{x-1}$$
.

Rewrite the equation as $\left[\frac{e^x v'}{x-1}\right]' = 0$, from which it follows that $v'(x) = c(x-1)e^{-x}$. Hence $v(x) = c_1 x e^{-x} + c_2$ and $y_2(x) = c_1 x + c_2 e^x$. Setting $c_1 = 1$ and $c_2 = 0$, we obtain $y_2(x) = x$.

29. Set $y_2(x) = y_1(x) v(x)$, in which $y_1(x) = x^{1/4} e^{2\sqrt{x}}$. It can be verified that y_1 is a solution of the ODE, that is, $x^2 y_1'' - (x - 0.1875)y_1 = 0$. Substitution of the given form of y_2 results in the differential equation

$$2x^{9/4}v'' + (4x^{7/4} + x^{5/4})v' = 0.$$

This ODE is linear in the variable w = v'. An integrating factor is

$$\mu = e^{\int \left[2x^{-1/2} + \frac{1}{2x}\right]dx} = \sqrt{x} e^{4\sqrt{x}}.$$

Rewrite the equation as $\left[\sqrt{x}\;e^{4\sqrt{x}}\;v'\right]'=0$, from which it follows that

$$v'(x) = c e^{-4\sqrt{x}}/\sqrt{x} .$$

Integrating, $v(x) = c_1 e^{-4\sqrt{x}} + c_2$ and as a result,

$$y_2(x) = c_1 x^{1/4} e^{-2\sqrt{x}} + c_2 x^{1/4} e^{2\sqrt{x}}$$

Setting $c_1 = 1$ and $c_2 = 0$, we obtain $y_2(x) = x^{1/4}e^{-2\sqrt{x}}$.

32. Direct substitution verifies that $y_1(t) = e^{-\delta x^2/2}$ is a solution of the ODE. Now set $y_2(x) = y_1(x) v(x)$. Substitution of y_2 into the ODE results in

$$v'' - \delta x v' = 0.$$

This ODE is linear in the variable w=v'. An integrating factor is $\mu=e^{-\delta x^2/2}$. Rewrite the equation as $\left[e^{-\delta x^2/2}v'\right]'=0$, from which it follows that

$$v'(x) = c_1 e^{\delta x^2/2}.$$

Integrating, we obtain

$$v(x) = c_1 \int_{x_0}^x e^{\delta u^2/2} du + v(x_0).$$

Hence

$$y_2(x) = c_1 e^{-\delta x^2/2} \int_{x_0}^x e^{\delta u^2/2} du + c_2 e^{-\delta x^2/2}.$$

Setting $c_2 = 0$, we obtain a second independent solution.

34. After writing the ODE in standard form, we have p(t) = 3/t. Based on Abel's identity, $W(y_1, y_2) = c_1 e^{-\int \frac{3}{t} dt} = c_1 t^{-3}$. As shown in Problem 33, two solutions of a second order linear equation satisfy

$$(y_2/y_1)' = W(y_1, y_2)/y_1^2$$
.

In the given problem, $y_1(t) = t^{-1}$. Hence $(t y_2)' = c_1 t^{-1}$. Integrating both sides of the equation, $y_2(t) = c_1 t^{-1} \ln t + c_2 t^{-1}$.

36. After writing the ODE in standard form, we have p(x) = -x/(x-1). Based on Abel's identity, $W(y_1, y_2) = c e^{\int \frac{x}{x-1} dx} = c e^x(x-1)$. Two solutions of a second order linear equation satisfy

$$(y_2/y_1)' = W(y_1, y_2)/y_1^2$$
.

In the given problem, $y_1(x) = e^x$. Hence $(e^{-x}y_2)' = c e^{-x}(x-1)$. Integrating both sides of the equation, $y_2(x) = c_1x + c_2e^x$. Setting $c_1 = 1$ and $c_2 = 0$, we obtain $y_2(x) = x$.

37. Write the ODE in standard form to find p(x)=1/x. Based on Abel's identity, $W(y_1,y_2)=c\,e^{-\int\frac{1}{x}dx}=c\,x^{-1}$. Two solutions of a second order linear ODE satisfy $(y_2/y_1)'=W(y_1,y_2)/y_1^2$. In the given problem, $y_1(x)=x^{-1/2}\sin x$. Hence

$$\left(\frac{\sqrt{x}}{\sin x}y_2\right)' = c\frac{1}{\sin^2 x}.$$

Integrating both sides of the equation, $y_2(x) = c_1 x^{-1/2} \cos x + c_2 x^{-1/2} \sin x$. Setting $c_1 = 1$ and $c_2 = 0$, we obtain $y_2(x) = x^{-1/2} \cos x$.

39.(a) The characteristic equation is $ar^2+c=0$. If $a\,,c>0$, then the roots are $r_{1,2}=\pm\,i\sqrt{c/a}$. The general solution is

$$y(t) = c_1 \cos \sqrt{\frac{c}{a}} t + c_2 \sin \sqrt{\frac{c}{a}} t,$$

which is bounded.

(b) The characteristic equation is $ar^2 + br = 0$. The roots are $r_{1,2} = 0$, -b/a, and hence the general solution is $y(t) = c_1 + c_2 e^{-bt/a}$. Clearly, $y(t) \to c_1$. With the given initial conditions, $c_1 = y_0 + (a/b)y_0'$.

40. Note that $\cos t \sin t = \frac{1}{2} \sin 2t$. Then $1 - k \cos t \sin t = 1 - \frac{k}{2} \sin 2t$. Now if 0 < k < 2, then $\frac{k}{2} \sin 2t < |\sin 2t|$ and $-\frac{k}{2} \sin 2t > -|\sin 2t|$. Hence

$$1 - k \cos t \sin t = 1 - \frac{k}{2} \sin 2t > 1 - |\sin 2t| \ge 0.$$

41. The equation transforms into y'' - 4y' + 4y = 0. We obtain a double root r = 2. The solution is

$$y = c_1 e^{2x} + c_2 x e^{2x} = c_1 e^{2 \ln t} + c_2 \ln t e^{2 \ln t} = c_1 t^2 + c_2 t^2 \ln t.$$

43. The equation transforms into y'' - 7y'/2 + 5y/2 = 0. The characteristic roots are r = 1, 5/2, so the solution is

$$y = c_1 e^x + c_2 e^{5x/2} = c_1 e^{\ln t} + c_2 e^{5\ln t/2} = c_1 t + c_2 t^{5/2}$$
.

44. The equation transforms into y'' + 2y' + y = 0. We get a double root r = -1. The solution is

$$y = c_1 e^{-x} + c_2 x e^{-x} = c_1 e^{-\ln t} + c_2 \ln t e^{-\ln t} = c_1 t^{-1} + c_2 t^{-1} \ln t.$$

45. The equation transforms into y'' - 3y' + 9y/4 = 0. We obtain the double root r = 3/2. The solution is

$$y = c_1 e^{3x/2} + c_2 x e^{3x/2} = c_1 e^{3\ln t/2} + c_2 \ln t e^{3\ln t/2} = c_1 t^{3/2} + c_2 t^{3/2} \ln t.$$

46. The equation transforms into y'' + 4y' + 13y = 0. The characteristic roots are $r = -2 \pm 3i$. The solution is

$$y = c_1 e^{-2x} \cos(3x) + c_2 e^{-2x} \sin(3x) = c_1 t^{-2} \cos(3\ln t) + c_2 t^{-2} \sin(3\ln t).$$

2. The characteristic equation for the homogeneous problem is $r^2 + 2r + 5 = 0$, with complex roots $r = -1 \pm 2i$. Hence $y_c(t) = c_1 e^{-t} \cos 2t + c_2 e^{-t} \sin 2t$. Since the function $g(t) = 3 \sin 2t$ is not proportional to the solutions of the homogeneous equation, set $Y = A \cos 2t + B \sin 2t$. Substitution into the given ODE, and comparing the coefficients, results in the system of equations B - 4A = 3 and A + 4B = 0

3.5

0. Hence $Y = -\frac{12}{17}\cos 2t + \frac{3}{17}\sin 2t$. The general solution is $y(t) = y_c(t) + Y$.

3. The characteristic equation for the homogeneous problem is $r^2-2r-3=0$, with roots r=-1, 3. Hence $y_c(t)=c_1e^{-t}+c_2e^{3t}$. Note that the assignment $Y=Ate^{-t}$ is not sufficient to match the coefficients. Try $Y=Ate^{-t}+Bt^2e^{-t}$. Substitution into the differential equation, and comparing the coefficients, results in the system of equations -4A+2B=0 and -8B=-3. This implies that $Y=\frac{3}{16}te^{-t}+\frac{3}{8}t^2e^{-t}$. The general solution is $y(t)=y_c(t)+Y$.

5. The characteristic equation for the homogeneous problem is $r^2 + 9 = 0$, with complex roots $r = \pm 3i$. Hence $y_c(t) = c_1 \cos 3t + c_2 \sin 3t$. To simplify the analysis, set $g_1(t) = 6$ and $g_2(t) = t^2 e^{3t}$. By inspection, we have $Y_1 = 2/3$. Based on the form of g_2 , set $Y_2 = Ae^{3t} + Bte^{3t} + Ct^2e^{3t}$. Substitution into the differential equation, and comparing the coefficients, results in the system of equations 18A + 6B + 2C = 0, 18B + 12C = 0, and 18C = 1. Hence

$$Y_2 = \frac{1}{162}e^{3t} - \frac{1}{27}te^{3t} + \frac{1}{18}t^2e^{3t}.$$

The general solution is $y(t) = y_c(t) + Y_1 + Y_2$.

- 7. The characteristic equation for the homogeneous problem is $2r^2+3r+1=0$, with roots r=-1,-1/2. Hence $y_c(t)=c_1e^{-t}+c_2e^{-t/2}$. To simplify the analysis, set $g_1(t)=t^2$ and $g_2(t)=3\sin t$. Based on the form of g_1 , set $Y_1=A+Bt+Ct^2$. Substitution into the differential equation, and comparing the coefficients, results in the system of equations A+3B+4C=0, B+6C=0, and C=1. Hence we obtain $Y_1=14-6t+t^2$. On the other hand, set $Y_2=D\cos t+E\sin t$. After substitution into the ODE, we find that D=-9/10 and E=-3/10. The general solution is $y(t)=y_c(t)+Y_1+Y_2$.
- 9. The characteristic equation for the homogeneous problem is $r^2 + \omega_0^2 = 0$, with complex roots $r = \pm \omega_0 i$. Hence $y_c(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t$. Since $\omega \neq \omega_0$, set $Y = A \cos \omega t + B \sin \omega t$. Substitution into the ODE and comparing the coefficients results in the system of equations $(\omega_0^2 \omega^2)A = 1$ and $(\omega_0^2 \omega^2)B = 0$. Hence

$$Y = \frac{1}{\omega_0^2 - \omega^2} \cos \omega t.$$

The general solution is $y(t) = y_c(t) + Y$.

- 10. From Problem 9, $y_c(t)$ is known. Since $\cos \omega_0 t$ is a solution of the homogeneous problem, set $Y=At\cos \omega_0 t+Bt\sin \omega_0 t$. Substitution into the given ODE and comparing the coefficients results in A=0 and $B=\frac{1}{2\omega_0}$. Hence the general solution is $y(t)=c_1\cos \omega_0 t+c_2\sin \omega_0 t+\frac{t}{2\omega_0}\sin \omega_0 t$.
- 12. The characteristic equation for the homogeneous problem is $r^2 r 2 = 0$, with roots r = -1, 2. Hence $y_c(t) = c_1 e^{-t} + c_2 e^{2t}$. Based on the form of the right hand side, that is, $\cosh(2t) = (e^{2t} + e^{-2t})/2$, set $Y = At \ e^{2t} + Be^{-2t}$. Substitution into the given ODE and comparing the coefficients results in A = 1/6 and B = 1/8. Hence the general solution is $y(t) = c_1 e^{-t} + c_2 e^{2t} + t e^{2t}/6 + e^{-2t}/8$.
- 14. The characteristic equation for the homogeneous problem is $r^2+4=0$, with roots $r=\pm 2i$. Hence $y_c(t)=c_1\cos 2t+c_2\sin 2t$. Set $Y_1=A+Bt+Ct^2$. Comparing the coefficients of the respective terms, we find that A=-1/8, B=0, C=1/4. Now set $Y_2=D\,e^t$, and obtain D=3/5. Hence the general solution is

$$y(t) = c_1 \cos 2t + c_2 \sin 2t - 1/8 + t^2/4 + 3e^t/5$$
.

Invoking the initial conditions, we require that $19/40+c_1=0$ and $3/5+2c_2=2$. Hence $c_1=-19/40$ and $c_2=7/10$.

15. The characteristic equation for the homogeneous problem is $r^2 - 2r + 1 = 0$, with a double root r = 1. Hence $y_c(t) = c_1 e^t + c_2 t e^t$. Consider $g_1(t) = t e^t$. Note that g_1 is a solution of the homogeneous problem. Set $Y_1 = At^2 e^t + Bt^3 e^t$ (the first term is not sufficient for a match). Upon substitution, we obtain $Y_1 = t^3 e^t / 6$. By inspection, $Y_2 = 4$. Hence the general solution is $y(t) = c_1 e^t + c_2 t e^t + t^3 e^t / 6 + 4$. Invoking the initial conditions, we require that $c_1 + 4 = 1$ and $c_1 + c_2 = 1$. Hence $c_1 = -3$ and $c_2 = 4$.

- 17. The characteristic equation for the homogeneous problem is $r^2+4=0$, with roots $r=\pm 2i$. Hence $y_c(t)=c_1\cos 2t+c_2\sin 2t$. Since the function $\sin 2t$ is a solution of the homogeneous problem, set $Y=At\cos 2t+Bt\sin 2t$. Upon substitution, we obtain $Y=-\frac{3}{4}t\cos 2t$. Hence the general solution is $y(t)=c_1\cos 2t+c_2\sin 2t-\frac{1}{4}t\cos 2t$. Invoking the initial conditions, we require that $c_1=2$ and $2c_2-\frac{3}{4}=-1$. Hence $c_1=2$ and $c_2=-1/8$.
- 18. The characteristic equation for the homogeneous problem is $r^2+2r+5=0$, with complex roots $r=-1\pm 2i$. Hence $y_c(t)=c_1e^{-t}\cos 2t+c_2e^{-t}\sin 2t$. Based on the form of g(t), set $Y=At\,e^{-t}\cos 2t+Bt\,e^{-t}\sin 2t$. After comparing coefficients, we obtain $Y=t\,e^{-t}\sin 2t$. Hence the general solution is

$$y(t) = c_1 e^{-t} \cos 2t + c_2 e^{-t} \sin 2t + t e^{-t} \sin 2t$$
.

Invoking the initial conditions, we require that $c_1 = 1$ and $-c_1 + 2c_2 = 0$. Hence $c_1 = 1$ and $c_2 = 1/2$.

- 20. The characteristic equation for the homogeneous problem is $r^2+1=0$, with complex roots $r=\pm i$. Hence $y_c(t)=c_1\cos t+c_2\sin t$. Let $g_1(t)=t\sin t$ and $g_2(t)=t$. By inspection, it is easy to see that $Y_2(t)=t$. Based on the form of $g_1(t)$, set $Y_1(t)=At\cos t+Bt\sin t+Ct^2\cos t+Dt^2\sin t$. Substitution into the equation and comparing the coefficients results in A=0, B=1/4, C=-1/4, and D=0. Hence $Y(t)=t+\frac{1}{4}t\sin t-\frac{1}{4}t^2\cos t$.
- 21. The characteristic equation for the homogeneous problem is $r^2 5r + 6 = 0$, with roots r = 2, 3. Hence $y_c(t) = c_1 e^{2t} + c_2 e^{3t}$. Consider $g_1(t) = e^{2t}(3t + 4) \sin t$, and $g_2(t) = e^t \cos 2t$. Based on the form of these functions on the right hand side of the ODE, set $Y_2(t) = e^t (A_1 \cos 2t + A_2 \sin 2t)$ and $Y_1(t) = (B_1 + B_2 t)e^{2t} \sin t + (C_1 + C_2 t)e^{2t} \cos t$. Substitution into the equation and comparing the coefficients results in

$$Y(t) = -\frac{1}{20}(e^t \cos 2t + 3e^t \sin 2t) + \frac{3}{2}te^{2t}(\cos t - \sin t) + e^{2t}(\frac{1}{2}\cos t - 5\sin t).$$

23. We obtain the double characteristic root r=2. Hence $y_c(t)=c_1e^{2t}+c_2te^{2t}$. Consider the functions $g_1(t)=2t^2$, $g_2(t)=4te^{2t}$, and $g_3(t)=t\sin 2t$. The corresponding forms of the respective parts of the particular solution are $Y_1(t)=A_0+A_1t+A_2t^2$, $Y_2(t)=e^{2t}(B_2t^2+B_3t^3)$, and $Y_3(t)=t(C_1\cos 2t+C_2\sin 2t)+(D_1\cos 2t+D_2\sin 2t)$. Substitution into the equation and comparing the coeffi-

cients results in

$$Y(t) = \frac{1}{4}(3+4t+2t^2) + \frac{2}{3}t^3e^{2t} + \frac{1}{8}t\cos 2t + \frac{1}{16}(\cos 2t - \sin 2t).$$

24. The homogeneous solution is $y_c(t) = c_1 \cos 2t + c_2 \sin 2t$. Since $\cos 2t$ and $\sin 2t$ are both solutions of the homogeneous equation, set

$$Y(t) = t(A_0 + A_1t + A_2t^2)\cos 2t + t(B_0 + B_1t + B_2t^2)\sin 2t.$$

Substitution into the equation and comparing the coefficients results in

$$Y(t) = \left(\frac{13}{32}t - \frac{1}{12}t^3\right)\cos 2t + \frac{1}{16}(28t + 13t^2)\sin 2t.$$

25. The homogeneous solution is $y_c(t) = c_1 e^{-t} + c_2 t e^{-2t}$. None of the functions on the right hand side are solutions of the homogeneous equation. In order to include all possible combinations of the derivatives, consider

$$Y(t) = e^{t}(A_0 + A_1t + A_2t^2)\cos 2t + e^{t}(B_0 + B_1t + B_2t^2)\sin 2t + e^{-t}(C_1\cos t + C_2\sin t) + De^{t}.$$

Substitution into the differential equation and comparing the coefficients results in

$$Y(t) = e^{t} (A_0 + A_1 t + A_2 t^2) \cos 2t + e^{t} (B_0 + B_1 t + B_2 t^2) \sin 2t$$

+ $e^{-t} (-\frac{2}{3} \cos t + \frac{2}{3} \sin t) + 2e^{t} / 3$,

in which $A_0 = -4105/35152$, $A_1 = 73/676$, $A_2 = -5/52$, $B_0 = -1233/35152$, $B_1 = 10/169$, $B_2 = 1/52$.

26. The homogeneous solution is $y_c(t) = c_1 e^{-t} \cos 2t + c_2 e^{-t} \sin 2t$. None of the terms on the right hand side are solutions of the homogeneous equation. In order to include the appropriate combinations of derivatives, consider

$$Y(t) = e^{-t}(A_1t + A_2t^2)\cos 2t + e^{-t}(B_1t + B_2t^2)\sin 2t + e^{-2t}(C_0 + C_1t)\cos 2t + e^{-2t}(D_0 + D_1t)\sin 2t.$$

Substitution into the differential equation and comparing the coefficients results in

$$Y(t) = \frac{3}{16}te^{-t}\cos 2t + \frac{3}{8}t^{2}e^{-t}\sin 2t - \frac{1}{25}e^{-2t}(7+10t)\cos 2t + \frac{1}{25}e^{-2t}(1+5t)\sin 2t.$$

28. The homogeneous solution is $y_c(t) = c_1 \cos \lambda t + c_2 \sin \lambda t$. Since the differential operator does not contain a first derivative (and $\lambda \neq m\pi$), we can set

$$Y(t) = \sum_{m=1}^{N} C_m \sin m\pi t.$$

Substitution into the ODE yields

$$-\sum_{m=1}^{N} m^2 \pi^2 C_m \sin m\pi t + \lambda^2 \sum_{m=1}^{N} C_m \sin m\pi t = \sum_{m=1}^{N} a_m \sin m\pi t.$$

Equating coefficients of the individual terms, we obtain

$$C_m = \frac{a_m}{\lambda^2 - m^2 \pi^2}, \ m = 1, 2 \dots N.$$

30. The homogeneous solution is $y_c(t) = c_1 e^{-t} \cos 2t + c_2 e^{-t} \sin 2t$. The input function is independent of the homogeneous solutions, on any interval. Since the right hand side is piecewise constant, it follows by inspection that

$$Y(t) = \begin{cases} 1/5 \,, & 0 \le t \le \pi/2 \\ 0, & t > \pi/2 \end{cases} .$$

For $0 \le t \le \pi/2$, the general solution is $y(t) = c_1 e^{-t} \cos 2t + c_2 e^{-t} \sin 2t + 1/5$. Invoking the initial conditions y(0) = y'(0) = 0, we require that $c_1 = -1/5$, and that $c_2 = -1/10$. Hence

$$y(t) = \frac{1}{5} - \frac{1}{10} (2e^{-t}\cos 2t + e^{-t}\sin 2t)$$

on the interval $0 \le t \le \pi/2$. We now have the values $y(\pi/2) = (1 + e^{-\pi/2})/5$, and $y'(\pi/2) = 0$. For $t > \pi/2$, the general solution is $y(t) = d_1 e^{-t} \cos 2t + d_2 e^{-t} \sin 2t$. It follows that $y(\pi/2) = -e^{-\pi/2}d_1$ and $y'(\pi/2) = e^{-\pi/2}d_1 - 2e^{-\pi/2}d_2$. Since the solution is continuously differentiable, we require that

$$-e^{-\pi/2}d_1 = (1 + e^{-\pi/2})/5$$
$$e^{-\pi/2}d_1 - 2e^{-\pi/2}d_2 = 0.$$

Solving for the coefficients, $d_1 = 2d_2 = -(e^{\pi/2} + 1)/5$.

32. Since a, b, c > 0, the roots of the characteristic equation has negative real parts. That is, $r = \alpha \pm \beta i$, where $\alpha < 0$. Hence the homogeneous solution is

$$y_c(t) = c_1 e^{\alpha t} \cos \beta t + c_2 e^{\alpha t} \sin \beta t$$
.

If g(t) = d, then the general solution is

$$y(t) = d/c + c_1 e^{\alpha t} \cos \beta t + c_2 e^{\alpha t} \sin \beta t.$$

Since $\alpha < 0$, $y(t) \to d/c$ as $t \to \infty$. If c = 0, then that characteristic roots are r = 0 and r = -b/a. The ODE becomes ay'' + by' = d. Integrating both sides, we find that $ay' + by = dt + c_1$. The general solution can be expressed as

$$y(t) = dt/b + c_1 + c_2 e^{-bt/a}$$
.

In this case, the solution grows without bound. If b=0, also, then the differential equation can be written as y''=d/a, which has general solution $y(t)=dt^2/2a+c_1+c_2$. Hence the assertion is true only if the coefficients are positive.

33.(a) Since D is a linear operator,

$$D^{2}y + bDy + cy = D^{2}y - (r_{1} + r_{2})Dy + r_{1}r_{2}y =$$

$$= D^{2}y - r_{2}Dy - r_{1}Dy + r_{1}r_{2}y = D(Dy - r_{2}y) - r_{1}(Dy - r_{2}y) =$$

$$= (D - r_{1})(D - r_{2})y.$$

(b) Let $u = (D - r_2)y$. Then the ODE (i) can be written as $(D - r_1)u = g(t)$, that is, $u' - r_1u = g(t)$. The latter is a linear first order equation in u. Its general solution is

$$u(t) = e^{r_1 t} \int_{t_0}^t e^{-r_1 \tau} g(\tau) d\tau + c_1 e^{r_1 t}.$$

From above, we have $y' - r_2y = u(t)$. This equation is also a first order ODE. Hence the general solution of the original second order equation is

$$y(t) = e^{r_2 t} \int_{t_0}^t e^{-r_2 \tau} u(\tau) d\tau + c_2 e^{r_2 t}.$$

Note that the solution y(t) contains two arbitrary constants.

35. Note that $(2D^2+3D+1)y=(2D+1)(D+1)y$. Let u=(D+1)y, and solve the ODE $2u'+u=t^2+3\sin\,t$. This equation is a linear first order ODE, with solution

$$u(t) = e^{-t/2} \int_{t_0}^t e^{\tau/2} \left[\tau^2/2 + \frac{3}{2} \sin \tau \right] d\tau + c e^{-t/2} =$$
$$= t^2 - 4t + 8 - \frac{6}{5} \cos t + \frac{3}{5} \sin t + c e^{-t/2}.$$

Now consider the ODE y' + y = u(t). The general solution of this first order ODE is

$$y(t) = e^{-t} \int_{t_0}^t e^{\tau} u(\tau) d\tau + c_2 e^{-t},$$

in which u(t) is given above. Substituting for u(t) and performing the integration,

$$y(t) = t^2 - 6t + 14 - \frac{9}{10}\cos t - \frac{3}{10}\sin t + c_1e^{-t/2} + c_2e^{-t}.$$

36. We have $(D^2+2D+1)y=(D+1)(D+1)y$. Let u=(D+1)y, and consider the ODE $u'+u=2e^{-t}$. The general solution is $u(t)=2t\,e^{-t}+c\,e^{-t}$. We therefore have the first order equation $u'+u=2t\,e^{-t}+c_1e^{-t}$. The general solution of the latter differential equation is

$$y(t) = e^{-t} \int_{t_0}^{t} [2\tau + c_1] d\tau + c_2 e^{-t} = e^{-t} (t^2 + c_1 t + c_2).$$

37. We have $(D^2+2D)y=D(D+2)y$. Let u=(D+2)y, and consider the equation $u'=3+4\sin 2t$. Direct integration results in $u(t)=3t-2\cos 2t+c$. The problem is reduced to solving the ODE $y'+2y=3t-2\cos 2t+c$. The general solution of this first order differential equation is

$$y(t) = e^{-2t} \int_{t_0}^t e^{2\tau} \left[3\tau - 2\cos 2\tau + c \right] d\tau + c_2 e^{-2t} =$$
$$= \frac{3}{2}t - \frac{1}{2}(\cos 2t + \sin 2t) + c_1 + c_2 e^{-2t}.$$

1. The solution of the homogeneous equation is $y_c(t) = c_1 e^{2t} + c_2 e^{3t}$. The functions $y_1(t) = e^{2t}$ and $y_2(t) = e^{3t}$ form a fundamental set of solutions. The Wronskian of these functions is $W(y_1, y_2) = e^{5t}$. Using the method of variation of parameters, the particular solution is given by $Y(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$, in which

$$u_1(t) = -\int \frac{e^{3t}(2e^t)}{W(t)}dt = 2e^{-t}$$

$$u_2(t) = \int \frac{e^{2t}(2e^t)}{W(t)} dt = -e^{-2t}$$

Hence the particular solution is $Y(t) = 2e^t - e^t = e^t$.

3. The solution of the homogeneous equation is $y_c(t) = c_1 e^{-t} + c_2 t e^{-t}$. The functions $y_1(t) = e^{-t}$ and $y_2(t) = t e^{-t}$ form a fundamental set of solutions. The Wronskian of these functions is $W(y_1, y_2) = e^{-2t}$. Using the method of variation of parameters, the particular solution is given by $Y(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$, in which

$$u_1(t) = -\int \frac{te^{-t}(3e^{-t})}{W(t)}dt = -3t^2/2$$

$$u_2(t) = \int \frac{e^{-t}(3e^{-t})}{W(t)} dt = 3t$$

Hence the particular solution is $Y(t) = -3t^2e^{-t}/2 + 3t^2e^{-t} = 3t^2e^{-t}/2$.

4. The functions $y_1(t) = e^{t/2}$ and $y_2(t) = te^{t/2}$ form a fundamental set of solutions. The Wronskian of these functions is $W(y_1, y_2) = e^t$. First write the equation in

standard form, so that $g(t) = 4e^{t/2}$. Using the method of variation of parameters, the particular solution is given by $Y(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$, in which

$$u_1(t) = -\int \frac{te^{t/2}(4e^{t/2})}{W(t)}dt = -2t^2$$

$$u_2(t) = \int \frac{e^{t/2}(4e^{t/2})}{W(t)}dt = 4t$$

Hence the particular solution is $Y(t) = -2t^2e^{t/2} + 4t^2e^{t/2} = 2t^2e^{t/2}$.

6. The solution of the homogeneous equation is $y_c(t) = c_1 \cos 3t + c_2 \sin 3t$. The two functions $y_1(t) = \cos 3t$ and $y_2(t) = \sin 3t$ form a fundamental set of solutions, with $W(y_1, y_2) = 3$. The particular solution is given by $Y(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$, in which

$$u_1(t) = -\int \frac{\sin 3t(9 \sec^2 3t)}{W(t)} dt = -\csc 3t$$

$$u_2(t) = \int \frac{\cos 3t(9 \sec^2 3t)}{W(t)} dt = \ln|\sec 3t + \tan 3t|$$

Hence the particular solution is $Y(t) = -1 + (\sin 3t) \ln |\sec 3t + \tan 3t|$. The general solution is given by

$$y(t) = c_1 \cos 3t + c_2 \sin 3t + (\sin 3t) \ln|\sec 3t + \tan 3t| - 1$$
.

7. The functions $y_1(t) = e^{-2t}$ and $y_2(t) = te^{-2t}$ form a fundamental set of solutions. The Wronskian of these functions is $W(y_1, y_2) = e^{-4t}$. The particular solution is given by $Y(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$, in which

$$u_1(t) = -\int \frac{te^{-2t}(t^{-2}e^{-2t})}{W(t)}dt = -\ln t$$

$$u_2(t) = \int \frac{e^{-2t}(t^{-2}e^{-2t})}{W(t)}dt = -1/t$$

Hence the particular solution is $Y(t) = -e^{-2t} \ln t - e^{-2t}$. Since the second term is a solution of the homogeneous equation, the general solution is given by

$$y(t) = c_1 e^{-2t} + c_2 t e^{-2t} - e^{-2t} \ln t.$$

8. The solution of the homogeneous equation is $y_c(t) = c_1 \cos 2t + c_2 \sin 2t$. The two functions $y_1(t) = \cos 2t$ and $y_2(t) = \sin 2t$ form a fundamental set of solutions, with $W(y_1, y_2) = 2$. The particular solution is given by $Y(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$, in which

$$u_1(t) = -\int \frac{\sin 2t(3 \csc 2t)}{W(t)} dt = -3t/2$$

$$u_2(t) = \int \frac{\cos 2t(3 \csc 2t)}{W(t)} dt = \frac{3}{4} \ln|\sin 2t|$$

Hence the particular solution is $Y(t) = -\frac{3}{2}t\cos 2t + \frac{3}{4}(\sin 2t)\ln|\sin 2t|$. The general solution is given by

$$y(t) = c_1 \cos 2t + c_2 \sin 2t - \frac{3}{2}t \cos 2t + \frac{3}{4}(\sin 2t) \ln|\sin 2t|.$$

9. The functions $y_1(t) = \cos(t/2)$ and $y_2(t) = \sin(t/2)$ form a fundamental set of solutions. The Wronskian of these functions is $W(y_1, y_2) = 1/2$. First write the ODE in standard form, so that $g(t) = \sec(t/2)/2$. The particular solution is given by $Y(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$, in which

$$u_1(t) = -\int \frac{\cos(t/2) [\sec(t/2)]}{2W(t)} dt = 2 \ln|\cos(t/2)|$$
$$u_2(t) = \int \frac{\sin(t/2) [\sec(t/2)]}{2W(t)} dt = t$$

The particular solution is $Y(t) = 2\cos(t/2) \ln|\cos(t/2)| + t\sin(t/2)$. The general solution is given by

$$y(t) = c_1 \cos(t/2) + c_2 \sin(t/2) + 2 \cos(t/2) \ln|\cos(t/2)| + t \sin(t/2).$$

10. The solution of the homogeneous equation is $y_c(t) = c_1 e^t + c_2 t e^t$. The functions $y_1(t) = e^t$ and $y_2(t) = t e^t$ form a fundamental set of solutions, with $W(y_1, y_2) = e^{2t}$. The particular solution is given by $Y(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$, in which

$$u_1(t) = -\int \frac{te^t(e^t)}{W(t)(1+t^2)} dt = -\frac{1}{2}\ln(1+t^2)$$
$$u_2(t) = \int \frac{e^t(e^t)}{W(t)(1+t^2)} dt = \arctan t$$

The particular solution is $Y(t)=-\frac{1}{2}e^t\ln(1+t^2)+te^t\arctan(t)$. Hence the general solution is given by $y(t)=c_1e^t+c_2te^t-\frac{1}{2}e^t\ln(1+t^2)+te^t\arctan(t)$.

12. The functions $y_1(t) = \cos 2t$ and $y_2(t) = \sin 2t$ form a fundamental set of solutions, with $W(y_1, y_2) = 2$. The particular solution is given by $Y(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$, in which

$$u_1(t) = -\frac{1}{2} \int_0^t g(s) \sin 2s \, ds$$

$$u_2(t) = \frac{1}{2} \int_0^t g(s) \cos 2s \, ds$$

Hence the particular solution is

$$Y(t) = -\frac{1}{2}\cos 2t \int_{-t}^{t} g(s) \sin 2s \, ds + \frac{1}{2}\sin 2t \int_{-t}^{t} g(s) \cos 2s \, ds.$$

Note that $\sin 2t \cos 2s - \cos 2t \sin 2s = \sin(2t - 2s)$. It follows that

$$Y(t) = \frac{1}{2} \int_{-\infty}^{t} g(s) \sin(2t - 2s) ds.$$

The general solution of the differential equation is given by

$$y(t) = c_1 \cos 2t + c_2 \sin 2t + \frac{1}{2} \int_0^t g(s) \sin(2t - 2s) ds$$
.

13. Note first that p(t)=0, $q(t)=-2/t^2$ and $g(t)=(3t^2-1)/t^2$. The functions $y_1(t)$ and $y_2(t)$ are solutions of the homogeneous equation, verified by substitution. The Wronskian of these two functions is $W(y_1,y_2)=-3$. Using the method of variation of parameters, the particular solution is $Y(t)=u_1(t)\,y_1(t)+u_2(t)\,y_2(t)$, in which

$$u_1(t) = -\int \frac{t^{-1}(3t^2 - 1)}{t^2 W(t)} dt = t^{-2}/6 + \ln t$$

$$u_2(t) = \int \frac{t^2(3t^2 - 1)}{t^2 W(t)} dt = -t^3/3 + t/3$$

Therefore $Y(t) = 1/6 + t^2 \ln t - t^2/3 + 1/3$. Hence the general solution is

$$y(t) = c_1 t^2 + c_2 t^{-1} + t^2 \ln t + 1/2$$
.

15. Observe that $g(t) = t e^{2t}$. The functions $y_1(t)$ and $y_2(t)$ are a fundamental set of solutions. The Wronskian of these two functions is $W(y_1,y_2) = t e^t$. Using the method of variation of parameters, the particular solution is $Y(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$, in which

$$u_1(t) = -\int \frac{e^t(t e^{2t})}{W(t)} dt = -e^{2t}/2$$

$$u_2(t) = \int \frac{(1+t)(te^{2t})}{W(t)} dt = te^t$$

Therefore $Y(t) = -(1+t)e^{2t}/2 + te^{2t} = -e^{2t}/2 + te^{2t}/2$.

16. Observe that $g(t) = 2(1-t)e^{-t}$. Direct substitution of $y_1(t) = e^t$ and $y_2(t) = t$ verifies that they are solutions of the homogeneous equation. The Wronskian of the two solutions is $W(y_1,y_2) = (1-t)e^t$. Using the method of variation of parameters, the particular solution is $Y(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$, in which

$$u_1(t) = -\int \frac{2t(1-t)e^{-t}}{W(t)}dt = te^{-2t} + e^{-2t}/2$$

$$u_2(t) = \int \frac{2(1-t)}{W(t)} dt = -2e^{-t}$$

Therefore $Y(t) = te^{-t} + e^{-t}/2 - 2te^{-t} = -te^{-t} + e^{-t}/2$.

17. Note that $g(x) = \ln x$. The functions $y_1(x) = x^2$ and $y_2(x) = x^2 \ln x$ are solutions of the homogeneous equation, as verified by substitution. The Wronskian of the solutions is $W(y_1,y_2) = x^3$. Using the method of variation of parameters, the particular solution is

$$Y(x) = u_1(x) y_1(x) + u_2(x) y_2(x),$$

in which

$$u_1(x) = -\int \frac{x^2 \ln x(\ln x)}{W(x)} dx = -(\ln x)^3 / 3$$
$$u_2(x) = \int \frac{x^2 (\ln x)}{W(x)} dx = (\ln x)^2 / 2$$

Therefore $Y(x) = -x^2(\ln x)^3/3 + x^2(\ln x)^3/2 = x^2(\ln x)^3/6$.

19. First write the equation in standard form. Note that the forcing function becomes g(x)/(1-x). The functions $y_1(x)=e^x$ and $y_2(x)=x$ are a fundamental set of solutions, as verified by substitution. The Wronskian of the solutions is $W(y_1,y_2)=(1-x)e^x$. Using the method of variation of parameters, the particular solution is

$$Y(x) = u_1(x) y_1(x) + u_2(x) y_2(x),$$

in which

$$u_1(x) = -\int^x \frac{\tau(g(\tau))}{(1-\tau)W(\tau)} d\tau$$
$$u_2(x) = \int^x \frac{e^{\tau}(g(\tau))}{(1-\tau)W(\tau)} d\tau$$

Therefore

$$Y(x) = -e^x \int^x \frac{\tau(g(\tau))}{(1-\tau)W(\tau)} d\tau + x \int^x \frac{e^\tau(g(\tau))}{(1-\tau)W(\tau)} d\tau =$$
$$= \int^x \frac{(xe^\tau - e^x \tau)g(\tau)}{(1-\tau)^2 e^\tau} d\tau.$$

20. First write the equation in standard form. The forcing function becomes $g(x)/x^2$. The functions $y_1(x)=x^{-1/2}\sin x$ and $y_2(x)=x^{-1/2}\cos x$ are a fundamental set of solutions. The Wronskian of the solutions is $W(y_1,y_2)=-1/x$. Using the method of variation of parameters, the particular solution is

$$Y(x) = u_1(x) y_1(x) + u_2(x) y_2(x),$$

in which

$$u_1(x) = \int^x \frac{\cos \tau (g(\tau))}{\tau \sqrt{\tau}} d\tau$$
$$u_2(x) = -\int^x \frac{\sin \tau (g(\tau))}{\tau \sqrt{\tau}} d\tau$$

Therefore

$$Y(x) = \frac{\sin x}{\sqrt{x}} \int_{-\pi}^{x} \frac{\cos \tau (g(\tau))}{\tau \sqrt{\tau}} dt - \frac{\cos x}{\sqrt{x}} \int_{-\pi}^{x} \frac{\sin \tau (g(\tau))}{\tau \sqrt{\tau}} d\tau =$$
$$= \frac{1}{\sqrt{x}} \int_{-\pi}^{x} \frac{\sin(x - \tau) g(\tau)}{\tau \sqrt{\tau}} d\tau.$$

21. Let $y_1(t)$ and $y_2(t)$ be a fundamental set of solutions, and $W(t) = W(y_1, y_2)$ be the corresponding Wronskian. Any solution, u(t), of the homogeneous equation is

a linear combination $u(t) = \alpha_1 y_1(t) + \alpha_2 y_2(t)$. Invoking the initial conditions, we require that

$$y_0 = \alpha_1 y_1(t_0) + \alpha_2 y_2(t_0)$$

$$y'_0 = \alpha_1 y'_1(t_0) + \alpha_2 y'_2(t_0)$$

Note that this system of equations has a unique solution, since $W(t_0) \neq 0$. Now consider the nonhomogeneous problem, L[v] = g(t), with homogeneous initial conditions. Using the method of variation of parameters, the particular solution is given by

$$Y(t) = -y_1(t) \int_{t_0}^t \frac{y_2(s) g(s)}{W(s)} ds + y_2(t) \int_{t_0}^t \frac{y_1(s) g(s)}{W(s)} ds.$$

The general solution of the IVP (iii) is

$$v(t) = \beta_1 y_1(t) + \beta_2 y_2(t) + Y(t) = \beta_1 y_1(t) + \beta_2 y_2(t) + y_1(t)u_1(t) + y_2(t)u_2(t)$$

in which u_1 and u_2 are defined above. Invoking the initial conditions, we require that

$$0 = \beta_1 y_1(t_0) + \beta_2 y_2(t_0) + Y(t_0)$$

$$0 = \beta_1 y_1'(t_0) + \beta_2 y_2'(t_0) + Y'(t_0)$$

Based on the definition of u_1 and u_2 , $Y(t_0)=0$. Furthermore, since $y_1u_1'+y_2u_2'=0$, it follows that $Y'(t_0)=0$. Hence the only solution of the above system of equations is the trivial solution. Therefore v(t)=Y(t). Now consider the function y=u+v. Then $L\left[y\right]=L\left[u+v\right]=L\left[u\right]+L\left[v\right]=g(t)$. That is, y(t) is a solution of the nonhomogeneous problem. Further, $y(t_0)=u(t_0)+v(t_0)=y_0$, and similarly, $y'(t_0)=y_0'$. By the uniqueness theorems, y(t) is the unique solution of the initial value problem.

23. A fundamental set of solutions is $y_1(t) = \cos t$ and $y_2(t) = \sin t$. The Wronskian $W(t) = y_1 y_2' - y_1' y_2 = 1$. By the result in Problem 22,

$$\begin{split} Y(t) &= \int_{t_0}^t \frac{\cos(s) \, \sin(t) - \cos(t) \, \sin(s)}{W(s)} g(s) ds \\ &= \int_{t_0}^t \left[\cos(s) \, \sin(t) - \cos(t) \, \sin(s) \right] g(s) ds \,. \end{split}$$

Finally, we have $\cos(s) \sin(t) - \cos(t) \sin(s) = \sin(t - s)$.

24. A fundamental set of solutions is $y_1(t) = e^{at}$ and $y_2(t) = e^{bt}$. The Wronskian $W(t) = y_1y_2' - y_1'y_2 = (b-a)e^{(a+b)t}$. By the result in Problem 22,

$$Y(t) = \int_{t_0}^{t} \frac{e^{as}e^{bt} - e^{at}e^{bs}}{W(s)} g(s)ds$$
$$= \frac{1}{b-a} \int_{t_0}^{t} \frac{e^{as}e^{bt} - e^{at}e^{bs}}{e^{(a+b)s}} g(s)ds.$$

Hence the particular solution is

$$Y(t) = \frac{1}{b-a} \int_{t_0}^t \left[e^{b(t-s)} - e^{a(t-s)} \right] g(s) ds.$$

26. A fundamental set of solutions is $y_1(t) = e^{at}$ and $y_2(t) = te^{at}$. The Wronskian $W(t) = y_1y_2' - y_1'y_2 = e^{2at}$. By the result in Problem 22,

$$Y(t) = \int_{t_0}^{t} \frac{te^{as+at} - s e^{at+as}}{W(s)} g(s) ds$$
$$= \int_{t_0}^{t} \frac{(t-s)e^{as+at}}{e^{2as}} g(s) ds.$$

Hence the particular solution is

$$Y(t) = \int_{t_0}^{t} (t - s)e^{a(t - s)}g(s)ds.$$

27. The form of the kernel depends on the characteristic roots. If the roots are real and distinct,

$$K(t-s) = \frac{e^{b(t-s)} - e^{a(t-s)}}{b-a}$$
.

If the roots are real and identical,

$$K(t-s) = (t-s)e^{a(t-s)}.$$

If the roots are complex conjugates,

$$K(t-s) = \frac{e^{\lambda(t-s)} \sin \mu(t-s)}{\mu}.$$

28. Let $y(t) = v(t)y_1(t)$, in which $y_1(t)$ is a solution of the homogeneous equation. Substitution into the given ODE results in

$$v''y_1 + 2v'y_1' + vy_1'' + p(t) [v'y_1 + vy_1'] + q(t)vy_1 = q(t).$$

By assumption, $y_1'' + p(t)y_1 + q(t)y_1 = 0$, hence v(t) must be a solution of the ODE

$$v''y_1 + [2y_1' + p(t)y_1]v' = g(t).$$

Setting w = v', we also have $w'y_1 + [2y_1' + p(t)y_1]w = g(t)$.

30. First write the equation as $y'' + 7t^{-1}y + 5t^{-2}y = t^{-1}$. As shown in Problem 28, the function $y(t) = t^{-1}v(t)$ is a solution of the given ODE as long as v is a solution of

$$t^{-1}v'' + \left[-2t^{-2} + 7t^{-2}\right]v' = t^{-1}$$

that is, $v'' + 5t^{-1}v' = 1$. This ODE is linear and first order in v'. The integrating factor is $\mu = t^5$. The solution is $v' = t/6 + c\,t^{-5}$. Direct integration now results in $v(t) = t^2/12 + c_1t^{-4} + c_2$. Hence $y(t) = t/12 + c_1t^{-5} + c_2t^{-1}$.

31. Write the equation as $y'' - t^{-1}(1+t)y + t^{-1}y = te^{2t}$. As shown in Problem 28, the function y(t) = (1+t)v(t) is a solution of the given ODE as long as v is a solution of

$$(1+t)v'' + [2-t^{-1}(1+t)^2]v' = te^{2t},$$

that is, $v'' - \frac{1+t^2}{t(t+1)}v' = \frac{t}{t+1}e^{2t}$. This equation is first order linear in v', with integrating factor $\mu = t^{-1}(1+t)^2e^{-t}$. The solution is $v' = (t^2e^{2t} + c_1te^t)/(1+t)^2$. Integrating, we obtain $v(t) = e^{2t}/2 - e^{2t}/(t+1) + c_1e^t/(t+1) + c_2$. Hence the solution of the original ODE is $y(t) = (t-1)e^{2t}/2 + c_1e^t + c_2(t+1)$.

32. Write the equation as $y'' + t(1-t)^{-1}y - (1-t)^{-1}y = 2(1-t)e^{-t}$. The function $y(t) = e^t v(t)$ is a solution to the given ODE as long as v is a solution of

$$e^{t}v'' + [2e^{t} + t(1-t)^{-1}e^{t}]v' = 2(1-t)e^{-t},$$

that is, $v'' + [(2-t)/(1-t)]v' = 2(1-t)e^{-2t}$. This equation is first order linear in v', with integrating factor $\mu = e^t/(t-1)$. The solution is

$$v' = (t-1)(2e^{-2t} + c_1e^{-t}).$$

Integrating, we obtain $v(t) = (1/2 - t)e^{-2t} - c_1te^{-t} + c_2$. Hence the solution of the original ODE is $y(t) = (1/2 - t)e^{-t} - c_1t + c_2e^t$.

3.7

- 1. $R\cos\delta=3$ and $R\sin\delta=4$, so $R=\sqrt{25}=5$ and $\delta=\arctan(4/3)$. Hence $u=5\,\cos(2t-0.9273).$
- 3. $R\cos\delta=4$ and $R\sin\delta=-2$, so $R=\sqrt{20}=2\sqrt{5}$ and $\delta=-\arctan(1/2)$. So $u=2\sqrt{5}\,\cos(3t+0.4636).$
- 4. $R\cos\delta=-2$ and $R\sin\delta=-3$, so $R=\sqrt{13}$ and $\delta=\pi+\arctan(3/2)$. Hence $u=\sqrt{13}\cos(\pi t-4.1244)$.
- 5. The spring constant is k=2/(1/2)=4 lb/ft. Mass m=2/32=1/16 lb-s²/ft. Since there is no damping, the equation of motion is

$$\frac{1}{16}u'' + 4u = 0,$$

that is, u''+64u=0. The initial conditions are u(0)=1/4 ft, u'(0)=0 ft/s. The general solution is $u(t)=A\cos 8t+B\sin 8t$. Invoking the initial conditions, we have $u(t)=\frac{1}{4}\cos 8t$. R=3 inches, $\delta=0$ rad, $\omega_0=8$ rad/s, and $T=\pi/4$ s.

7. The spring constant is k=3/(1/4)=12 lb/ft . Mass m=3/32 lb-s²/ft . Since there is no damping, the equation of motion is

$$\frac{3}{32}u'' + 12u = 0,$$

that is, u'' + 128u = 0. The initial conditions are u(0) = -1/12 ft, u'(0) = 2 ft/s. The general solution is $u(t) = A \cos 8\sqrt{2}\,t + B \sin 8\sqrt{2}\,t$. Invoking the initial conditions, we have

$$u(t) = -\frac{1}{12} \cos 8\sqrt{2}t + \frac{1}{4\sqrt{2}} \sin 8\sqrt{2}t.$$

 $R=\sqrt{11/288}$ ft , $\delta=\pi-\arctan(3/\sqrt{2})$ rad , $~\omega_0=8\sqrt{2}$ rad/s, and $T=\pi/(4\sqrt{2})$ s.

10. The spring constant is k=16/(1/4)=64 lb/ft . Mass m=1/2 lb-s²/ft . The damping coefficient is $\gamma=2$ lb-s/ft . Hence the equation of motion is

$$\frac{1}{2}u'' + 2u' + 64u = 0,$$

that is, u'' + 4u' + 128u = 0. The initial conditions are u(0) = 0 ft, u'(0) = 1/4 ft/s. The general solution is $u(t) = A \cos 2\sqrt{31} \, t + B \sin 2\sqrt{31} \, t$. Invoking the initial conditions, we have

$$u(t) = \frac{1}{8\sqrt{31}}e^{-2t} \sin 2\sqrt{31}t$$
.

Solving u(t)=0, on the interval $[0.2\,,\,0.4]$, we obtain $t=\pi/2\sqrt{31}=0.2821$ s. Based on the graph, and the solution of u(t)=0.01, we have $|u(t)|\leq 0.01$ for $t\geq \tau=0.2145$.

11. The spring constant is k=3/(.1)=30 N/m. The damping coefficient is given as $\gamma=3/5$ N-s/m. Hence the equation of motion is

$$2u'' + \frac{3}{5}u' + 30u = 0,$$

that is, u''+0.3u'+15u=0. The initial conditions are u(0)=0.05 m and u'(0)=0.01 m/s. The general solution is $u(t)=A\cos\mu t+B\sin\mu t$, in which $\mu=3.87008$ rad/s. Invoking the initial conditions, we have

$$u(t) = e^{-0.15t} (0.05 \cos \mu t + 0.00452 \sin \mu t).$$

Also, $\mu/\omega_0 = 3.87008/\sqrt{15} \approx 0.99925$.

- 13. The frequency of the undamped motion is $\omega_0=1$. The quasi frequency of the damped motion is $\mu=\frac{1}{2}\sqrt{4-\gamma^2}$. Setting $\mu=\frac{2}{3}\omega_0$, we obtain $\gamma=\frac{2}{3}\sqrt{5}$.
- 14. The spring constant is k=mg/L. The equation of motion for an undamped system is $mu''+\frac{mg}{L}u=0$. Hence the natural frequency of the system is $\omega_0=\sqrt{\frac{g}{L}}$. The period is $T=2\pi/\omega_0$.
- 15. The general solution of the system is $u(t) = A \cos \gamma (t t_0) + B \sin \gamma (t t_0)$. Invoking the initial conditions, we have

$$u(t) = u_0 \cos \gamma (t - t_0) + (u_0'/\gamma) \sin \gamma (t - t_0).$$

Clearly, the functions $v = u_0 \cos \gamma (t - t_0)$ and $w = (u_0'/\gamma) \sin \gamma (t - t_0)$ satisfy the given criteria.

- 16. Note that $r \sin(\omega_0 t \theta) = r \sin \omega_0 t \cos \theta r \cos \omega_0 t \sin \theta$. Comparing the given expressions, we have $A = -r \sin \theta$ and $B = r \cos \theta$. That is, $r = R = \sqrt{A^2 + B^2}$, and $\tan \theta = -A/B = -1/\tan \delta$. The latter relation is also $\tan \theta + \cot \delta = 1$.
- 18. The system is critically damped, when $R = 2\sqrt{L/C}$. Here R = 1000 ohms.
- 21.(a) Let $u=Re^{-\gamma t/2m}\cos(\mu t-\delta)$. Then attains a maximum when $\mu t_k-\delta=2k\pi$. Hence $T_d=t_{k+1}-t_k=2\pi/\mu$.

(b)
$$u(t_k)/u(t_{k+1}) = e^{-\gamma t_k/2m}/e^{-\gamma t_{k+1}/2m} = e^{(\gamma t_{k+1} - \gamma t_k)/2m}$$
. Hence
$$u(t_k)/u(t_{k+1}) = e^{\gamma(2\pi/\mu)/2m} = e^{\gamma T_d/2m}.$$

- (c) $\Delta = \ln \left[u(t_k) / u(t_{k+1}) \right] = \gamma (2\pi/\mu) / 2m = \pi \gamma / \mu m$.
- 22. The spring constant is k=16/(1/4)=64 lb/ft. Mass m=1/2 lb-s²/ft. The damping coefficient is $\gamma=2$ lb-s/ft. The quasi frequency is $\mu=2\sqrt{31}$ rad/s. Hence $\Delta=\frac{2\pi}{\sqrt{31}}\approx 1.1285$.
- 25.(a) The solution of the IVP is $u(t) = e^{-t/8} (2 \cos \frac{3}{8} \sqrt{7} t + 0.252 \sin \frac{3}{8} \sqrt{7} t)$.

Using the plot, and numerical analysis, $\tau \approx 41.715$.

(b) For $\gamma = 0.5$, $\tau \approx 20.402$; for $\gamma = 1.0$, $\tau \approx 9.168$; for $\gamma = 1.5$, $\tau \approx 7.184$.

125

(c)

(d) For $\gamma=1.6\,,~\tau\approx7.218\,;$ for $\gamma=1.7\,,~\tau\approx6.767\,;$ for $\gamma=1.8\,,~\tau\approx5.473\,;$ for $\gamma=1.9\,,~\tau\approx6.460\,.~\tau$ steadily decreases to about $\tau_{min}\approx4.873\,,$ corresponding to the critical value $\gamma_0\approx1.73\,.$

(e) We have $u(t) = \frac{4e^{-\gamma t/2}}{\sqrt{4-\gamma^2}}\cos(\mu t - \delta)$, where $\mu = \frac{1}{2}\sqrt{4-\gamma^2}$, $\delta = \tan^{-1}\frac{\gamma}{\sqrt{4-\gamma^2}}$. Hence $|u(t)| \leq \frac{4e^{-\gamma t/2}}{\sqrt{4-\gamma^2}}$.

26.(a) The characteristic equation is $mr^2+\gamma r+k=0$. Since $\gamma^2<4km$, the roots are $r_{1,2}=-\frac{\gamma}{2m}\pm i\frac{\sqrt{4mk-\gamma^2}}{2m}$. The general solution is

$$u(t) = e^{-\gamma t/2m} \left[A \cos \frac{\sqrt{4mk - \gamma^2}}{2m} t + B \sin \frac{\sqrt{4mk - \gamma^2}}{2m} t \right].$$

Invoking the initial conditions, $A = u_0$ and

$$B = \frac{(2mv_0 - \gamma u_0)}{\sqrt{4mk - \gamma^2}} \,.$$

(b) We can write $u(t) = R e^{-\gamma t/2m} \cos(\mu t - \delta)$, in which

$$R = \sqrt{u_0^2 + \frac{(2mv_0 - \gamma u_0)^2}{4mk - \gamma^2}},$$

and

$$\delta = \arctan \left[\frac{(2mv_0 - \gamma u_0)}{u_0 \sqrt{4mk - \gamma^2}} \right].$$

(c) $R = \sqrt{u_0^2 + \frac{(2mv_0 - \gamma u_0)^2}{4mk - \gamma^2}} = 2\sqrt{\frac{m(ku_0^2 + \gamma u_0 v_0 + mv_0^2)}{4mk - \gamma^2}} = \sqrt{\frac{a + b\gamma}{4mk - \gamma^2}}$. It is evident that R increases (monotonically) without bound as $\gamma \to (2\sqrt{mk})^-$.

28.(a) The general solution is $u(t)=A\cos\sqrt{2}\,t+B\sin\sqrt{2}\,t$. Invoking the initial conditions, we have $u(t)=\sqrt{2}\,\sin\sqrt{2}\,t$.

(b)

(c)

The condition u'(0) = 2 implies that u(t) initially increases. Hence the phase point travels clockwise.

29.
$$u(t) = \frac{16}{\sqrt{127}} e^{-t/8} \sin \frac{\sqrt{127}}{8} t$$
.

31. Based on Newton's second law, with the positive direction to the right,

$$\sum F = mu''$$

where

$$\sum F = -ku - \gamma u'.$$

Hence the equation of motion is $mu'' + \gamma u' + ku = 0$. The only difference in this problem is that the equilibrium position is located at the unstretched configuration of the spring.

32.(a) The restoring force exerted by the spring is $F_s = -(ku + \epsilon u^3)$. The opposing viscous force is $F_d = -\gamma u'$. Based on Newton's second law, with the positive direction to the right,

$$F_s + F_d = mu''.$$

Hence the equation of motion is $mu'' + \gamma u' + ku + \epsilon u^3 = 0$.

(b) With the specified parameter values, the equation of motion is u''+u=0. The general solution of this ODE is $u(t)=A\cos t+B\sin t$. Invoking the initial conditions, the specific solution is $u(t)=\sin t$. Clearly, the amplitude is R=1, and the period of the motion is $T=2\pi$.

(c) Given $\epsilon = 0.1$, the equation of motion is $u'' + u + 0.1 u^3 = 0$. A solution of the IVP can be generated numerically:

(d)

(e) The amplitude and period both seem to decrease.

(f)

3.8

2. We have

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
.

Subtracting the two identities, we obtain

$$\sin(\alpha + \beta) - \sin(\alpha - \beta) = 2 \cos \alpha \sin \beta$$
.

Setting $\alpha + \beta = 7t$ and $\alpha - \beta = 6t$, we get that $\alpha = 6.5t$ and $\beta = 0.5t$. This implies that $\sin 7t - \sin 6t = 2 \sin (t/2) \cos (13t/2)$.

3. Consider the trigonometric identity

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
.

Adding the two identities, we obtain $\cos(\alpha-\beta)+\cos(\alpha+\beta)=2\cos\alpha\cos\beta$. Comparing the expressions, set $\alpha+\beta=2\pi t$ and $\alpha-\beta=\pi t$. This means $\alpha=3\pi t/2$ and $\beta=\pi t/2$. Upon substitution, we have $\cos(\pi t)+\cos(2\pi t)=2\cos(3\pi t/2)\cos(\pi t/2)$.

4. Adding the two identities $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$, it follows that $\sin(\alpha - \beta) + \sin(\alpha + \beta) = 2\sin \alpha \cos \beta$. Setting $\alpha + \beta = 4t$ and $\alpha - \beta = 3t$, we have $\alpha = 7t/2$ and $\beta = t/2$. Hence $\sin 3t + \sin 4t = 2\sin(7t/2)\cos(t/2)$.

6. Using MKS units, the spring constant is k = 5(9.8)/0.1 = 490 N/m, and the damping coefficient is $\gamma = 2/0.04 = 50$ N-s/m. The equation of motion is

$$5u'' + 50u' + 490u = 10 \sin(t/2)$$
.

The initial conditions are u(0) = 0 m and u'(0) = 0.03 m/s.

8.(a) The homogeneous solution is $u_c(t) = Ae^{-5t}\cos\sqrt{73}\,t + Be^{-5t}\sin\sqrt{73}\,t$. Based on the method of undetermined coefficients, the particular solution is

$$U(t) = \frac{1}{153281} \left[-160 \cos(t/2) + 3128 \sin(t/2) \right].$$

Hence the general solution of the ODE is $u(t) = u_c(t) + U(t)$. Invoking the initial conditions, we find that

$$A = 160/153281$$
 and $B = 383443\sqrt{73}/1118951300$.

Hence the response is

$$u(t) = \frac{1}{153281} \left[160 e^{-5t} \cos \sqrt{73} t + \frac{383443\sqrt{73}}{7300} e^{-5t} \sin \sqrt{73} t \right] + U(t).$$

(b) $u_c(t)$ is the transient part and U(t) is the steady state part of the response.

(c)

(d) The amplitude of the forced response is given by $R = 2/\Delta$, in which

$$\Delta = \sqrt{25(98 - \omega^2)^2 + 2500 \,\omega^2}$$
.

The maximum amplitude is attained when Δ is a minimum. Hence the amplitude is maximum at $\omega = 4\sqrt{3} \text{ rad/s}$.

9. The spring constant is k = 12 lb/ft and hence the equation of motion is

$$\frac{6}{32}u'' + 12u = 4\cos 7t,$$

that is, $u''+64u=\frac{64}{3}\cos 7t$. The initial conditions are u(0)=0 ft, u'(0)=0 ft/s. The general solution is $u(t)=A\cos 8t+B\sin 8t+\frac{64}{45}\cos 7t$. Invoking the initial conditions, we have $u(t)=-\frac{64}{45}\cos 8t+\frac{64}{45}\cos 7t=\frac{128}{45}\sin(t/2)\sin(15t/2)$.

12. The equation of motion is

$$2u'' + u' + 3u = 3\cos 3t - 2\sin 3t$$
.

Since the system is damped, the steady state response is equal to the particular solution. Using the method of undetermined coefficients, we obtain

$$u_{ss}(t) = \frac{1}{6}(\sin 3t - \cos 3t).$$

Further, we find that $R=\sqrt{2}\,/6$ and $\delta=\arctan(-1)=3\pi/4$. Hence we can write $u_{ss}(t)=\frac{\sqrt{2}}{6}\cos(3t-3\pi/4)$.

13.(c) The amplitude of the steady-state response is given by

$$R = \frac{F_0}{\sqrt{m^2(\omega_0^2 - \omega^2)^2 + \gamma^2 \,\omega^2}} \,.$$

Since F_0 is constant, the amplitude is maximum when the denominator of R is minimum. Let $z=\omega^2$, and consider the function $f(z)=m^2(\omega_0^2-z)^2+\gamma^2z$. Note that f(z) is a quadratic, with minimum at $z=\omega_0^2-\gamma^2/2m^2$. Hence the amplitude R attains a maximum at $\omega_{max}^2=\omega_0^2-\gamma^2/2m^2$. Furthermore, since $\omega_0^2=k/m$, and therefore

$$\omega_{max}^2 = \omega_0^2 \left[1 - \frac{\gamma^2}{2km} \right].$$

Substituting $\omega^2 = \omega_{max}^2$ into the expression for the amplitude,

$$R = \frac{F_0}{\sqrt{\gamma^4/4m^2 + \gamma^2 (\omega_0^2 - \gamma^2/2m^2)}} = \frac{F_0}{\sqrt{\omega_0^2 \gamma^2 - \gamma^4/4m^2}} = \frac{F_0}{\gamma \omega_0 \sqrt{1 - \gamma^2/4mk}}$$

17.(a) Here m=1, $\gamma=0.25$, $\omega_0^2=2$, $F_0=2$. Hence $u_{ss}(t)=\frac{2}{\Delta}\cos(\omega t-\delta)$, where $\Delta=\sqrt{(2-\omega^2)^2+\omega^2/16}=\frac{1}{4}\sqrt{64-63\omega^2+16\,\omega^4}$, and $\tan\delta=\frac{\omega}{4(2-\omega^2)}$.

(b) The amplitude is

$$R = \frac{8}{\sqrt{64 - 63\omega^2 + 16\,\omega^4}} \,.$$

(c)

(d) See Problem 13. The amplitude is maximum when the denominator of R is minimum. That is, when $\omega=\omega_{max}=3\sqrt{14}/8\approx 1.4031$. Hence $R(\omega=\omega_{max})=64/\sqrt{127}$.

18.(a) The homogeneous solution is $u_c(t) = A\cos t + B\sin t$. Based on the method of undetermined coefficients, the particular solution is

$$U(t) = \frac{3}{1 - \omega^2} \cos \omega t.$$

Hence the general solution of the ODE is $u(t) = u_c(t) + U(t)$. Invoking the initial conditions, we find that $A = 3/(\omega^2 - 1)$ and B = 0. Hence the response is

$$u(t) = \frac{3}{1 - \omega^2} \left[\cos \omega t - \cos t \right].$$

(b)

Note that

$$u(t) = \frac{6}{1 - \omega^2} \sin\left[\frac{(1 - \omega)t}{2}\right] \sin\left[\frac{(\omega + 1)t}{2}\right].$$

19.(a) The homogeneous solution is $u_c(t) = A \cos t + B \sin t$. Based on the method of undetermined coefficients, the particular solution is

$$U(t) = \frac{3}{1 - \omega^2} \cos \omega t.$$

Hence the general solution is $u(t)=u_c(t)+U(t)$. Invoking the initial conditions, we find that $A=(\omega^2+2)/(\omega^2-1)$ and B=1. Hence the response is

$$u(t) = \frac{1}{1-\omega^2} \left[\left. 3 \, \cos \, \omega t - (\omega^2 + 2) \cos \, t \, \right] + \sin \, t \, . \label{eq:ut}$$

(b)

Note that

$$u(t) = \frac{6}{1 - \omega^2} \sin \left[\frac{(1 - \omega)t}{2} \right] \sin \left[\frac{(\omega + 1)t}{2} \right] + \cos t + \sin t.$$

20.

21.(a)

(b) Phase plot - u' vs u:

23.(a)

(b) Phase plot - u' vs u:

24.

25.(a)

(c) The amplitude for a similar system with a linear spring is given by

$$R = \frac{5}{\sqrt{25 - 49\omega^2 + 25\omega^4}} \; .$$

