Amazon SageMaker로 ML 모델 구축, 훈련, 배포

기계학습 모델을 구축, 학습 및 배포

1. Amazon SageMaker 콘솔 열기

콘솔 홈

검색창: Amazon SageMaker

2. Amazon SageMaker 노트북 인스턴스 생성

대시보드에서 노트북 인스턴스 선택

노트북 인스턴스

수명 주기 구성

Git 리포지토리

2. Amazon SageMaker 노트북 인스턴스 생성

노트북 인스턴스 생성

노트북 인스턴스 유형: ml.t2.medium

노트북 인스턴스 설정	
노트북 인스턴스 이름	
MyFirstSageMakerInstance	
최대 63자의 영숫자입니다. 하이픈(-)을 포함할 수 있지만 공백은 포함할 수 없습	 니다. AWS 리전의 계정 내에서 고유해야 합니다.
노트북 인스턴스 유형	
ml.t2.medium	▼
탄력적인 추론 자세히 알아보기 🖸	
없음	▼
③ Amazon SageMaker 노트북 인스턴스는 Amazon Linux AMI(AL1)에 대한 표준 지원을 종료합니다. 자세히 알아보기 ☑	
플랫폼 식별자 자세히 알아보기 🖸	
notebook-al1-v1	▼
▶ 추가 구성	

2. Amazon SageMaker 노트북 인스턴스 생성

노트북 인스턴스가 데이터에 액세스하고 안전하게 Amazon S3에 데이터를 업로드하도록 허용하려면 IAM 역할을 지정해야한다.

IAM 역할 > 새 역할 생성 > 모든 S3 버

노트북 인스턴스 생성

>> Pending에서 InService로 바뀜

☑ 지정하는 S3 버킷 - 선택 사항

- 모든 S3 버킷 노트북 인스턴스에 액세스할 수 있는 사용자에게 계정의 모든 버킷 및 해당 콘텐츠에 액세스할 수 있도록 허용합니다.
- 특정 S3 버킷

थी: bucket-name-1, buck

쉼표로 구분. ARN, "*" 및 "/"는 지원되지 않습니다.

- 없음
- ❷ 이름에 "sagemaker"가 있는 모든 S3 버킷
- ❷ 이름에 "sagemaker"가 있는 모든 S3 객체
- ❷ 태그 "sagemaker" 및 값 "true"가 있는 모든 S3 객체
- ❷ SageMaker 액세스를 허용하는 버킷 정책이 있는 S3 버킷

InService 전환 후, 인스턴스 선택하여

작업 > Jupyter 열기

작업

<u>Jupyter 열기</u> | JupyterLal

Upload Notebook:

New ▼

R

Sparkmagic (PySpark)

Sparkmagic (Spark)

Sparkmagic (SparkR)

conda_amazonei_mxnet_p27 conda_amazonei_mxnet_p36

conda_amazonei_pytorch_latest_p36 conda_amazonei_tensorflow2_p27

conda_amazonei_tensorflow2_p36

conda_amazonei_tensorflow_p27 conda_amazonei_tensorflow_p36

conda_chainer_p36

conda chainer p27

conda_mxnet_latest_p37

conda_mxnet_p36

conda mxnet p27

conda_python2

conda_python3

3. 데이터 준비

데이터 저장할 S3 버킷 생성

```
In [3]: bucket_name = 'first-s3-bucket-kevin'
    s3 = boto3.resource('s3')
try:
    if my_region == 'us-east-1':
        s3.create_bucket(Bucket=bucket_name)
    else:
        s3.create_bucket(Bucket=bucket_name, CreateBucketConfiguration={ 'LocationConstraint': my_region })
    print('S3 bucket created successfully')
except Exception as e:
    print('S3 error: ',e)
```

S3 bucket created successfully

3. 데이터 준비

데이터를 Amazon SageMaker 인스턴스에 다운로드 & dataframe에 load

```
In [4]:
    try:
        urllib.request.urlretrieve ("https://dl.awsstatic.com/tmt/build-train-deploy-machine-learning-model-sagemaker/bank_cl
        print('Success: downloaded bank_clean.csv.')
    except Exception as e:
        print('Data load error: ',e)

    try:
        model_data = pd.read_csv('./bank_clean.csv',index_col=0)
        print('Success: Data loaded into dataframe.')
    except Exception as e:
        print('Data load error: ',e)
```

Success: downloaded bank_clean.csv. Success: Data loaded into dataframe.

3. 데이터 준비

데이터 shuffle & split (7:3)

```
In [5]: train_data, test_data = np.split(model_data.sample(frac=1, random_state=1729), [int(0.7 * len(model_data))])
    print(train_data.shape, test_data.shape)
    (28831, 61) (12357, 61)
```

4. 데이터에서 모델 훈련

앞서 정의한 모델 사용하기 위해 훈련 데이터 형식 수정 & S3 버킷에서 데이터 로드

AttributeError Fix

```
In [9]: pd.concat([train_data['y_yes'], train_data.drop(['y_no', 'y_yes'], axis=1)], axis=1).to_csv('train.csv', index=False, it boto3.Session().resource('s3').Bucket(bucket_name).Object(os.path.join(prefix, 'train/train.csv')).upload_file('train.csv')
s3_input_train = sagemaker.TrainingInput(s3_data='s3://{}/{}/train'.format(bucket_name, prefix), content_type='csv')
```

4. 데이터에서 모델 훈련

Amazon SageMaker 세션 설정 & 모델 인스턴스 생성 & 모델 하이퍼파라미터 정의

Reamed Estimator Parameters

```
In [12]: sess = sagemaker.Session()
    xgb = sagemaker.estimator.Estimator(containers[my_region],role, instance_count=1, instance_type='ml.m4.xlarge',output_
    xgb.set_hyperparameters(max_depth=5,eta=0.2,gamma=4,min_child_weight=6,subsample=0.8,silent=0,objective='binary:logist.
```

4. 데이터에서 모델 훈련

ml.m4.xlarge 인스턴스에서 모델 훈련

```
In [15]: xgb.fit({'train': s3 input train})
         2022-01-25 01:52:39 Starting - Starting the training job...
         2022-01-25 01:53:05 Starting - Launching requested ML instancesProfilerReport-1643075559: InProgress
         2022-01-25 01:54:08 Starting - Preparing the instances for training......
         2022-01-25 01:56:06 Downloading - Downloading input data...
         2022-01-25 01:56:26 Training - Downloading the training image...
         2022-01-25 01:57:06 Training - Training image download completed. Training in progress. Arguments: train
         [2022-01-25:01:57:02:INFO] Running standalone xgboost training.
         [2022-01-25:01:57:02:INFO] Path /opt/ml/input/data/validation does not exist!
         [2022-01-25:01:57:02:INFO] File size need to be processed in the node: 3.38mb. Available memory size in the node: 834
         6.91mb
         [2022-01-25:01:57:02:INFO] Determined delimiter of CSV input is ','
         [01:57:02] S3DistributionType set as FullyReplicated
         [01:57:02] 28831x59 matrix with 1701029 entries loaded from /opt/ml/input/data/train?format=csv&label column=0&delimi
         ter=,
         [01:57:02] src/tree/updater prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 14 pruned nodes, max depth=5
         [0]#011train-error:0.100482
         [01:57:02] src/tree/updater prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 14 pruned nodes, max depth=5
         [1]#011train-error:0.099858
```

5. 모델 배포

모델을 배포하고 액세스할 수 있는 엔드포인트를 서버에 생성

```
In [16]: xgb_predictor = xgb.deploy(initial_instance_count=1,instance_type='ml.m4.xlarge')
```

5. 모델 배포

테스트 데이터 이용해서 모델 예측 수행

AttributeError: can't set attribute

The csv_serializer has been renamed

```
In [18]: xgb_predictor.__dict__.keys()
Out[18]: dict_keys(['endpoint_name', 'sagemaker_session', 'serializer', 'deserializer', '_endpoint_config_name', '_model_name s', '_context'])
In [21]: from sagemaker.serializers import CSVSerializer
In [22]: test_data_array = test_data.drop(['y_no', 'y_yes'], axis=1).values #load the data into an array # xgb_predictor.content_type = 'text/csv' # set the data type for an inference xgb_predictor.serializer = CSVSerializer() # set the serializer type predictions = xgb_predictor.predict(test_data_array).decode('utf-8') # predict! predictions_array = np.fromstring(predictions[1:], sep=',') # and turn the prediction into an array print(predictions_array.shape)
```

6. 모델 성능 평가

Confusion Matrix 테이블에서 실제값 vs 예측값 비교

```
In [24]: cm = pd.crosstab(index=test_data['y_yes'], columns=np.round(predictions_array), rownames=['Observed'], colnames=['Preditn = cm.iloc[0,0]; fn = cm.iloc[1,0]; tp = cm.iloc[1,1]; fp = cm.iloc[0,1]; p = (tp+tn)/(tp+tn+fp+fn)*100
    print("\n{0:<20}{1:<4.1f}%\n".format("Overall Classification Rate: ", p))
    print("{0:<15}{1:<15}{2:>8}".format("Predicted", "No Purchase", "Purchase"))
    print("Observed")
    print("{0:<15}{1:<2.0f}% ({2:<}){3:>6.0f}% ({4:<})".format("No Purchase", tn/(tn+fn)*100,tn, fp/(tp+fp)*100, fp))
    print("{0:<16}{1:<1.0f}% ({2:<}){3:>7.0f}% ({4:<}) \n".format("Purchase", fn/(tn+fn)*100,fn, tp/(tp+fp)*100, tp))</pre>
```

Overall Classification Rate: 89.5%

```
Predicted No Purchase Purchase
Observed
No Purchase 90% (10769) 37% (167)
Purchase 10% (1133) 63% (288)
```

7. 리소스 종료

S3 버킷에서 Amazon SageMaker 엔드포인트와 객체를 삭제

The endpoint attribute has been renamed

```
In [26]: sagemaker.Session().delete_endpoint(xgb_predictor.endpoint_name)
bucket_to_delete = boto3.resource('s3').Bucket(bucket_name)
bucket to delete.objects.all().delete()
```