Meta-Evaluation of Translation Evaluation Methods: a systematic up-to-date overview

Lifeng Han & Serge Gladkoff

The University of Manchester & ADAPT Centre, DCU Logrus Global

Accepted Tutorial to LREC2022 Main https://lrec2022.lrec-conf.org/Lifeng.han@{manchester.ac.uk, adaptcentre.ie} & serge.gladkoff@logrusglobal.com

Figure 1: Meta-eval of MTE: apply to NLP tasks

Figure 2: Human Quality Assessment Methods

Abstract

Starting from 1950s, Machine Translation (MT) was challenged from different scientific solutions which included rule-based methods, example-based and statistical models (SMT), to hybrid models, and very recent years the neural models (NMT). While NMT has achieved a huge quality improvement in comparison to conventional methodologies, by taking advantages of huge amount of parallel corpora available from internet and the

Figure 3: Automatic Quality Assessment Methods

recently developed super computational power support with an acceptable cost, it struggles to achieve real human parity in many domains and most language pairs, if not all of them. Alongside the long road of MT research and development, quality evaluation metrics played very important roles in MT advancement and evolution. In this tutorial, we overview the traditional human judgement criteria, automatic evaluation metrics, unsupervised quality estimation models, as well as the meta-evaluation of the evaluation methods. Among these, we will also cover the very recent work in the MT evaluation (MTE) fields taking advantages of large size of pre-trained language models for automatic metric customisation towards exactly deployed language pairs and domains. In addition, we also introduce the statistical confidence estimation regarding sample size needed for human evaluation in real practice simulation. Full tutorial material is available to download at https://github.com/poethan/ LREC22_MetaEval_Tutorial.

Keywords: Machine Translation Evaluation, Evaluation Metrics, Human Evaluations, Quality Estimation, Metaevaluation, Confidence Intervals, Pretrained Language Models, Multi-word Expressions, Correlations.

Structure of the Tutorial

In this tutorial, we firstly briefly introduce the MT development history, rooted from language and machines scientific research field among others at the birth of artificial intelligence (AI) at 1950s, its research paradigms from rule-based to statistical and neural evolution, and during this long road, how MT evaluation (MTE) has played its crucial role in advancing the MT technology development. This includes conceptual knowledge of earliest manual judgements as golden standard, and lately developed automatic metrics which have been used to evaluate MT algorithms with a low cost and high efficiency, as well as being deployed to optimize the MT model parameters towards better performance. Then it comes to the introduction of unsupervised quality estimation models that do not rely on human offered reference translations to evaluate the MT output quality, which matches the practical situations when reference translations are often not available. Subsequently, we present the concept of meta-eval, the evaluation of evaluation methods (ref Fig. 1).

After these brief overview of the overall topic, we come to the detailed and structured categorization of each of these subjects: a) human judgements, b) automatic metrics, c) quality estimation, and d) meta-evaluation.

Human Assessment Methods (HAMs), as in Fig. 2, are classified into two different branches involving traditional and advanced categories, which the first includes intelligibility and fidelity, fluency, adequacy, comprehension, and further development, and the second includes task oriented, extended criteria, utilizing post-editing, segment ranking, crowd source intelligence, and some recent work revisiting traditional criteria. The surveyed research work on HAMs dating back to MT stating point and up to current state-of-the-art.

The automatic evaluation metrics (AEMs) started their development from the late 1990s when statistical MT (SMT) was getting popular

and making progress regarding translation output quality. SMT systems were quite often updated using newly developed algorithms and model features and these need very efficient automatic evaluation with a low cost and repeatable performance, which the conventional human input based methods can not afford. The AEMs witnessed the methodological changing from simple n-gram based word matching, to deeper linguistic features integration, to nowadays deep learning (DL) based neural network models including the usage of pretrained language models, Fig. 3. We classify the first two methodologies into traditional and the DL models into advanced one, of which the ngram matching category covers editing-distance, precision, recall, and word order features, while the linguistic features category includes both syntax and semantics. The syntactic features contain Part-of-Speech (POS), Phrase and sentence structures information, and the semantic features include even broader areas such as named entities, idiomatic multi-word expressions (MWEs), synonyms, textual entailment, paraphrase, semantic role labelling, and language models, etc. This part of tutorial covers most of the metrics developed since 1990s to date (ref. Appendix).

Following the development of automatic metrics, we introduce the quality estimation (QE) research and the evaluation methods defined for QE, which started from 2012 to date, as an affiliated shared task with the annual workshop on SMT (WMT). The QE models try to extract the knowledge from source and target sentences via feature engineering instead of using reference translations. The evaluation methods for QE include DeltaAvg, MAE, and RMSE, etc. that we will explain at length for word/token level and sentence level translation output estimation. The word and token level QE includes functions of "keep, delete, or replacement", and the sentence level QE is expected to rank several candidate MT outputs according to their quality, translated from the same source by different models and systems.

Looking back to the overall structure of this tutorial, as in Fig. 1, after the three evaluation paradigms, from human evaluation to metrics and QEs, we present the meta-evaluation of evaluation methods. This includes the statistical significance testing, confidence intervals for sample size simulation, inter and intra-agreement level from human judgment, correlation coefficient between au-

tomatic metric and human judgment at both system and segment-level, and metrics comparison methods. Meta-evaluation places an important role in validating the previous mentioned evaluation methodologies and models.

Finally, we summarize the current issues in MT evaluation, with a discussion and perspectives including: 1) the high-cost in human professional evaluation and the credibility of automatic metrics, 2) the inaccuracies caused by crowd-sourced human evaluation setting from dominant WMT workshops, 3) human-in-the-loop half automatic metrics possibility, 4) recent trend on metrics as quality estimation models, 5) QE in practical application such as for language service providers (LSPs), 6) this meta-eval framework application to general NLP evaluation tasks (Fig. 1).

Lecture List: Motivations

- (M)TE as key factor of MT
- HumanEval issues
- AutoEval issues
- MTEval influence in NLP
- Earlier survey and overviews
- Our own survey and research papers
- Our goals of this tutorial

Lecture List: HumanEval

- Backgrounds on Eval origins
- Intelligibility and Fidelity
- Fluency, Adequacy, Comprehension
- Further development of these
- · Task oriented eval
- · Post-editing based eval
- segment ranking from WMT
- Crowd source intelligence and DA
- Human parity false claims
- Multi-word Expressions in HumanEval
- MQM vs TAUS DQF (MQM2.0)
- Our Human-centric HOPE and demo
- Document level eval

Lecture List: AutoEval

- n-gram surface matching
- Word-order
- · Precision and Recall
- Levenshtein Distance
- Linguistic Features
- Syntactic features
- POS, phrase, sentence
- · Semantic features
- NE, MWEs, synonym, textual entailment, paraphrase, semantic role, LM
- Deep Learning based
- Model distillation towards DL/Human
- Our work on AutoEval metric using n-gram, syntax, semantics (LEPOR, nLEPOR, hLE-POR, HPPR)
- Our work on Model Distillation (cushLE-POR)
- Quality Estimation (our work using CRFs, SVM, NB)

Lecture List: Meta-Eval

- HumanEval agreement
- Correlating AutoEval to HumanEval
- Pearson, Spearman, Kendall Tau
- Meta-eval example from Google AI
- Meta-eval example: eval flaws
- Meta-eval example: eval setting
- Confidence Intervals and Sample Size (our Monte Carlo Simulation)

Lecture List: Ending

- · Discussion and Summary
- Future research directions
- Conclusion
- References, Platforms, Tools

Acknowledgments

The authors thank anonymous reviewers for valuable comments and suggestions on how to improve the tutorial. Lifeng Han thanks the support from Prof Goran Nenadic and The University of Manchester. The ADAPT Centre for Digital Content Technology is funded under the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Development Fund.

References

- Loïc Barrault, Magdalena Biesialska, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Yvette Graham, Roman Grundkiewicz, Barry Haddow, Matthias Huck, Eric Joanis, Tom Kocmi, Philipp Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof Monz, Makoto Morishita, Masaaki Nagata, Toshiaki Nakazawa, Santanu Pal, Matt Post, and Marcos Zampieri. 2020. Findings of the 2020 conference on machine translation (WMT20). In *Proceedings of the Fifth Conference on Machine Translation*, pages 1–55, Online. Association for Computational Linguistics.
- Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz, Mathias Müller, Santanu Pal, Matt Post, and Marcos Zampieri. 2019. Findings of the 2019 conference on machine translation (WMT19). In *Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)*, pages 1–61, Florence, Italy. Association for Computational Linguistics.
- Ondřej Bojar, Yvette Graham, and Amir Kamran. 2017. Results of the wmt17 metrics shared task. In *Proceedings of the Second Conference on Machine Translation*, pages 489–513. Association for Computational Linguistics.
- Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Francisco Guzmán, Mark Fishel, Nikolaos Aletras, Vishrav Chaudhary, and Lucia Specia. 2020. Unsupervised quality estimation for neural machine translation. *Transactions of the Association for Computational Linguistics*, 8:539–555.
- Markus Freitag, George Foster, David Grangier, Viresh Ratnakar, Qijun Tan, and Wolfgang Macherey. 2021. Experts, Errors, and Context: A Large-Scale Study of Human Evaluation for Machine Translation. *arXiv e-prints*, page arXiv:2104.14478.
- Serge Gladkoff and Lifeng Han. 2021. Hope: A task-oriented and human-centric evaluation framework using professional post-editing towards more effective mt evaluation. arXiv preprint arXiv:2112.13833.

- Serge Gladkoff, Irina Sorokina, Lifeng Han, and Alexandra Alekseeva. 2021. Measuring uncertainty in translation quality evaluation (tqe). *arXiv* preprint arXiv:2111.07699.
- Yvette Graham, Timothy Baldwin, and Nitika Mathur. 2015. Accurate evaluation of segment-level machine translation metrics. In NAACL HLT 2015, The 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 June 5, 2015, pages 1183–1191.
- Yvette Graham, Timothy Baldwin, Alistair Moffat, and Justin Zobel. 2016. Can machine translation systems be evaluated by the crowd alone. *Natural Language Engineering*, FirstView:1–28.
- Lifeng Han. 2014. *LEPOR: An Augmented Machine Translation Evaluation Metric*. University of Macau, Macao.
- Lifeng Han. 2016. Machine Translation Evaluation Resources and Methods: A Survey. *arXiv e-prints*, page arXiv:1605.04515.
- Lifeng Han. 2018. Machine Translation Evaluation Resources and Methods: A Survey. *IPRC-2018: First Ireland Postgraduate Research Conference*.
- Lifeng Han. 2022a. *An Investigation into Multi-Word Expressions in Machine Translation*. PhD thesis, Dublin City University.
- Lifeng Han. 2022b. An overview on machine translation evaluation. *arXiv preprint arXiv:2202.11027* (*in Chinese*).
- Lifeng Han, Gareth Jones, and Alan Smeaton. 2020. AlphaMWE: Construction of multilingual parallel corpora with MWE annotations. In *Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons*, pages 44–57, online. Association for Computational Linguistics.
- Lifeng Han, Alan Smeaton, and Gareth Jones. 2021a. Translation quality assessment: A brief survey on manual and automatic methods. In *Proceedings for the First Workshop on Modelling Translation: Translatology in the Digital Age*, pages 15–33, online. Association for Computational Linguistics.
- Lifeng Han, Irina Sorokina, Gleb Erofeev, and Serge Gladkoff. 2021b. Cushlepor: Customised hlepor metric using labse distilled knowledge model to improve agreement with human judgements. In *Proceedings of WMT-2021 (in press)*.
- Lifeng Han, Derek F. Wong, Lidia S. Chao, Liangye He, Yi Lu, Junwen Xing, and Xiaodong Zeng. 2013a. Language-independent model for machine translation evaluation with reinforced factors. In *Machine Translation Summit XIV*, pages 215–222. International Association for Machine Translation.

- Lifeng Han, Derek Fai Wong, and Lidia Sam Chao. 2012. A robust evaluation metric for machine translation with augmented factors. In *Proceedings of COLING*.
- Lifeng Han, Derek Fai Wong, Lidia Sam Chao, Liangeye He, Shuo Li, and Ling Zhu. 2013b. Phrase tagset mapping for french and english treebanks and its application in machine translation evaluation. In International Conference of the German Society for Computational Linguistics and Language Technology, LNAI Vol. 8105, pages 119–131.
- Maurice G. Kendall. 1938. A new measure of rank correlation. *Biometrika*, 30:81–93.
- Maurice G. Kendall and Jean Dickinson Gibbons. 1990. *Rank Correlation Methods*. Oxford University Press, New York.
- Philipp Koehn and Kevin Knight. 2009. Statistical machine translation. US Patent 7,624,005.
- Samuel Läubli, Sheila Castilho, Graham Neubig, Rico Sennrich, Qinlan Shen, and Antonio Toral. 2020. A set of recommendations for assessing human–machine parity in language translation. *Journal of Artificial Intelligence Research*, 67.
- Benjamin Marie, Atsushi Fujita, and Raphael Rubino. 2021. Scientific credibility of machine translation research: A meta-evaluation of 769 papers. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pages 7297–7306, Online. Association for Computational Linguistics.
- Karl Pearson. 1900. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. *Philosophical Magazine*, 50(5):157–175.
- Matthew Snover, Bonnie J. Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. 2006. A study of translation edit rate with targeted human annotation. In *Proceeding of AMTA*.
- Lucia Specia, Kashif Shah, Jose G.C. de Souza, and Trevor Cohn. 2013. QuEst a translation quality estimation framework. In *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations*, pages 79–84, Sofia, Bulgaria. Association for Computational Linguistics.
- Weiyue Wang, Jan-Thorsten Peter, Hendrik Rosendahl, and Hermann Ney. 2016. Character: Translation edit rate on character level. In *WMT 2016*, pages 505–510.
- Vilém Zouhar, Aleš Tamchyna, Martin Popel, and Ondřej Bojar. 2021. Neural machine translation quality and post-editing performance.

Selected References

Selected references for Human Assessment Methods (HAMs), Automatic Evaluation Methods (AEMs), Quality Estimation Models (QEs), Metaeval, and overview are listed below.

- HAMs (Freitag et al., 2021; Graham et al., 2016; Läubli et al., 2020; Zouhar et al., 2021; Han et al., 2020; Gladkoff and Han, 2021)
- AEMs (Snover et al., 2006; Wang et al., 2016; Han et al., 2012, 2013a, 2021b; Bojar et al., 2017; Han et al., 2013b)
- QEs (Barrault et al., 2019; Specia et al., 2013; Fomicheva et al., 2020)
- Meta-eval (Kendall, 1938; Kendall and Gibbons, 1990; Barrault et al., 2020; Pearson, 1900; Graham et al., 2015; Koehn and Knight, 2009; Marie et al., 2021; Gladkoff et al., 2021)
- Overview (Han et al., 2021a; Han, 2022a, 2014, 2016, 2018) and (Han, 2022b) in Chinese