```
In [ ]: import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
         import matplotlib
         plt.style.use('ggplot')
         from matplotlib.pyplot
In [ ]: df = pd.read_csv(r'C:\Users\FATEEMADEEN\Desktop\movies.csv')
         Load dataset
In [ ]: for col in df.columns:
             pct_missing = np.mean(df[col].isnull())
             print('{} - {}%'.format(col, round(pct_missing*100)))
In [33]: df = df.dropna()
In [35]: for col in df.columns:
             pct_missing = np.mean(df[col].isnull())
             print('{} - {}%'.format(col, round(pct_missing*100)))
        name - 0%
        rating - 0%
        genre - 0%
        year - 0%
        released - 0%
        score - 0%
        votes - 0%
        director - 0%
        writer - 0%
        star - 0%
        country - 0%
        budget - 0%
        gross - 0%
        company - 0%
        runtime - 0%
In [37]: df.dtypes
         df['budget'] = df['budget'].astype('int64')
         df['gross'] = df['gross'].astype('int64')
In [39]: | df = df.sort_values(by=['gross'], inplace=False, ascending=False)
In [43]: df.drop_duplicates()
```

writ	director	votes	score	released	year	genre	rating	name	
Jam Camero	James Cameron	1100000.0	7.8	December 18, 2009 (United States)	2009	Action	PG-13	Avatar	5445
Christoph Mark	Anthony Russo	903000.0	8.4	April 26, 2019 (United States)	2019	Action	PG-13	Avengers: Endgame	7445
Jam Camero	James Cameron	1100000.0	7.8	December 19, 1997 (United States)	1997	Drama	PG-13	Titanic	3045
Lawren Kasda	J.J. Abrams	876000.0	7.8	December 18, 2015 (United States)	2015	Action	PG-13	Star Wars: Episode VII - The Force Awakens	6663
Christoph Mark	Anthony Russo	897000.0	8.4	April 27, 2018 (United States)	2018	Action	PG-13	Avengers: Infinity War	7244
									•••
Tatiana vo Fürstenbe	Francesca Gregorini	3500.0	5.8	January 15, 2015 (Sweden)	2009	Drama	R	Tanner Hall	5640
Wallace Benn	Stephen Cornwell	1900.0	4.5	June 4, 1994 (South Korea)	1993	Action	PG-13	Philadelphia Experiment II	2434
Karo Walto	John Fawcett	43000.0	6.8	May 11, 2001 (Canada)	2000	Drama	Not Rated	Ginger Snaps	3681
Alan Adl	Charles Band	2300.0	3.9	March 12, 1982 (United States)	1982	Horror	R	Parasite	272
Andy Bu	George Huang	5800.0	5.7	October 1, 1997 (Brazil)	1997	Comedy	PG-13	Trojan War	3203
							mns	ws × 15 colu	5421 rc
>									4
								f['budget'] f['gross']	-

```
correlation = y.corr(x)
print('Correlation between Budget and Gross:', correlation)
```

Correlation between Budget and Gross: 0.7402465439219624

```
In [49]: #Regression Plot: Added a regression line to the scatter plot for better analysis:
    sns.regplot(x='budget', y='gross', data=df, scatter_kws={'color': 'red'}, line_kws=
```

Out[49]: <Axes: xlabel='budget', ylabel='gross'>


```
In [59]: numeric_df = df.select_dtypes(include=['number'])
    correlation_matrix = numeric_df.corr()

sns.heatmap(correlation_matrix, annot=True)
    plt.title('Correlation Matrix for Numeric Features')
    plt.xlabel('Movie features')
    plt.ylabel('Movie features')
    plt.show()
```


In []: