STAT 8010 R Session 6: Simple Linear Regression

Whitney Huang

6/20/2023

Contents

Session Objectives	2
Example: Maximum Heart Rate vs. Age	2
Load the dataset	2
Examine the data before fitting models	3
Plot the data before fitting models	3
Simple linear regression	4
Let R do all the work $\ \ldots \ \ldots$	6
Residual Analysis	6
Understanding Sampling Distributions and Confident Intervals via simulation	9
Generate data in R	9
Plot the first few simulated datasets	9
Estimate the β_0 , β_1 , and σ^2 for each simulated dataset	10
Assess the estimation perfromance	10
Sampling distribution	12
CI's for all the simulated datasets	12
Confidence Intervals for Maximum Heart Rate Example	13
Load the data	13
Fitting a simple linear regression	14
eta_1	14
$Y_h X_h=40$	14
Check	15
Hypothesis Tests for β_1	15
ANOVA	16
Fitting a simple linear regression	16
ANOVA Table	17

Session Objectives

- To gain experience with R, a programming language and free software environment for statistical computing and graphics.
- To perform simple linear regression using R

Example: Maximum Heart Rate vs. Age

The maximum heart rate (HR_{max}) of a person is often said to be related to age (Age) by the equation:

$$HR_{max} = 220 - Age$$

Let's use a dataset to assess this statement.

Load the dataset

There are several ways to load a dataset into R:

• Importing Data over the Internet

```
dat <- read.csv('http://whitneyhuang83.github.io/STAT8010/Data/maxHeartRate.csv', header = T)</pre>
```

• Read the dataset from you computer

```
dat <- read.csv('maxHeartRate.csv', header = T)</pre>
```

• If the dataset is not too big, you can type the data into R

Let's take a look at the data

dat

```
##
      age maxHeartRate
## 1
       18
                     202
## 2
       23
                     186
## 3
        25
                     187
## 4
        35
                     180
## 5
        65
                     156
## 6
        54
                     169
## 7
                     174
        34
## 8
        56
                     172
## 9
        72
                     153
## 10
       19
                     199
## 11
       23
                     193
## 12
       42
                     174
## 13
       18
                     198
## 14
       39
                     183
## 15
       37
                     178
```

Examine the data before fitting models

summary(dat) ## maxHeartRateage :153.0 ## :18.00 Min. Min. ## 1st Qu.:23.00 1st Qu.:173.0 Median :35.00 Median :180.0 ## :180.3 ## Mean :37.33 Mean ## 3rd Qu.:48.00 3rd Qu.:190.0 :72.00 :202.0 ## Max. Max. var(dat\$age); var(dat\$maxHeartRate) ## [1] 305.8095 ## [1] 214.0667 cov(dat\$age, dat\$maxHeartRate)

[1] -243.9524

cor(dat\$age, dat\$maxHeartRate)

[1] -0.9534656

Plot the data before fitting models

This is what the scatterplot would look like by default. Put predictor (age) to the first argument and response (maxHeartRate) to the second argument.

plot(dat\$age, dat\$maxHeartRate)

Let's make the plot look nicer (type ?plot to learn more).

Question: Describe the direction, strength, and the form of the relationship.

Simple linear regression

Let's do the calculations to figure out the regression coefficients as well as the standard deviation of the random error.

• Slope:
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

```
X <- dat$age; Y <- dat$maxHeartRate
Y_diff <- Y - mean(Y)
X_diff <- X - mean(X)
beta_1 <- sum(Y_diff * X_diff) / sum((X_diff)^2)
beta_1</pre>
```

[1] -0.7977266

• Intercept: $\hat{\beta}_0 = \bar{y} - \bar{x}\hat{\beta}_1$

```
beta_0 <- mean(Y) - mean(X) * beta_1
beta_0</pre>
```

[1] 210.0485

• Fitted values: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

```
Y_hat <- beta_0 + beta_1 * X
Y_hat</pre>
```

- ## [1] 195.6894 191.7007 190.1053 182.1280 158.1962 166.9712 182.9258 165.3758 ## [9] 152.6121 194.8917 191.7007 176.5439 195.6894 178.9371 180.5326
 - $\hat{\sigma}$: $\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i \hat{y}_i)^2}{n-2}$

```
sigma2 <- sum((Y - Y_hat)^2) / (length(Y) - 2)
sqrt(sigma2)</pre>
```

[1] 4.577799

Add the fitted regression line to the scatterplot

Let R do all the work

```
fit <- lm(maxHeartRate ~ age, data = dat)</pre>
summary(fit)
##
## Call:
## lm(formula = maxHeartRate ~ age, data = dat)
## Residuals:
##
      Min
               1Q Median
                                      Max
## -8.9258 -2.5383 0.3879 3.1867 6.6242
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 210.04846 2.86694 73.27 < 2e-16 ***
                           0.06996 -11.40 3.85e-08 ***
## age
               -0.79773
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 4.578 on 13 degrees of freedom
## Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021
## F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08
  • Regression coefficients
fit$coefficients
## (Intercept)
## 210.0484584 -0.7977266
```

```
• Fitted values
```

fit\$fitted.values

```
## 1 2 3 4 5 6 7 8
## 195.6894 191.7007 190.1053 182.1280 158.1962 166.9712 182.9258 165.3758
## 9 10 11 12 13 14 15
## 152.6121 194.8917 191.7007 176.5439 195.6894 178.9371 180.5326
```

• $\hat{\sigma}$

summary(fit)\$sigma

[1] 4.577799

Residual Analysis

```
par(las = 1, mar = c(4.1, 4.1, 1.1, 1.1))
plot(age, fit$residuals, pch = 16, ylab = "Residuals", ylim = c(-11, 11))
abline(h = 0, col = "red", lty = 2)
```



```
res <- fit$residuals
# histogram
hist(res, las = 1)
rug(res)</pre>
```



```
# QQ plot
qqnorm(res, pch = 16, las = 1)
qqline(res)
```


Understanding Sampling Distributions and Confident Intervals via simulation

Fitted values

Simulate the "data" $\{x_i, y_i\}_{i=1}^n$ where $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, $\varepsilon \sim N(0, \sigma^2)$. Repeat this process N times. Here we set $\beta_0 = 3$, $\beta_1 = 1.5$, $\sigma^2 = 1$, n = 30, N = 100.

Generate data in R

```
set.seed(12)
n = 30; beta0 = 3; beta1 = 1.5; N = 100; sigma2 = 1
x <- 3 + 5 * runif(n)
set.seed(123)
y <- replicate(N, beta0 + beta1 * x + rnorm(n, mean = 0, sd = sqrt(sigma2)))
dim(y)</pre>
```

[1] 30 100

Plot the first few simulated datasets

```
par(mfrow = c(2, 1), mar = c(3.5, 3.5, 0.8, 0.6))
for (i in 1:2){
  plot(x, y[, i], pch = 16, las = 1, ylab = "y")
  abline(3, 1.5, col = "blue", lwd = 1.5)
}
```


Estimate the β_0 , β_1 , and σ^2 for each simulated dataset

```
beta0_hat <- beta1_hat <- sigma2_hat <- se_beta1 <- numeric(N)
for (i in 1:100){
  fit <- lm(lm(y[, i] ~ x))
  beta0_hat[i] <- summary(fit)[["coefficients"]][, 1][1]
  beta1_hat[i] <- summary(fit)[["coefficients"]][, 1][2]
  se_beta1[i] <- summary(fit)[["coefficients"]][, 2][2]
  sigma2_hat[i] <- summary(fit)[["sigma"]]^2
}</pre>
```

Assess the estimation perfromance

```
boxplot(beta0_hat, las = 1, main = expression(hat(beta[0])))
abline(h = beta0, col = "blue", lwd = 1.5)
```



```
boxplot(beta1_hat, las = 1, main = expression(hat(beta[1])))
abline(h = beta1, col = "blue", lwd = 1.5)
```


boxplot(sigma2_hat, las = 1, main = expression(paste("Boxplot of ", hat(sigma)^2)))
abline(h = sigma2, col = "blue", lwd = 1.5)

Sampling distribution

CI's for all the simulated datasets

Confidence Intervals for Maximum Heart Rate Example

Load the data

```
dat <- read.csv('http://whitneyhuang83.github.io/STAT8010/Data/maxHeartRate.csv', header = T)</pre>
head(dat)
     Age MaxHeartRate
## 1 18
                  202
                  186
## 2 23
## 3 25
                  187
## 4
     35
                  180
## 5
      65
                  156
                  169
## 6 54
attach(dat)
```

Fitting a simple linear regression

```
fit <- lm(MaxHeartRate ~ Age)</pre>
summary(fit)
##
## Call:
## lm(formula = MaxHeartRate ~ Age)
##
## Residuals:
##
       Min
                1Q Median
                                 ЗQ
                                        Max
## -8.9258 -2.5383 0.3879 3.1867 6.6242
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 210.04846 2.86694 73.27 < 2e-16 ***
                             0.06996 -11.40 3.85e-08 ***
## Age
                -0.79773
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 4.578 on 13 degrees of freedom
## Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021
## F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08
\beta_1
beta1_hat <- summary(fit)[["coefficients"]][, 1][2]</pre>
se_beta1 <- summary(fit)[["coefficients"]][, 2][2]</pre>
alpha = 0.05
CI_beta1 \leftarrow c(beta1_hat - qt(1 - alpha / 2, 13) * se_beta1,
              beta1_hat + qt(1 - alpha / 2, 13) * se_beta1)
CI_beta1
##
          Age
                     Age
## -0.9488720 -0.6465811
confint(fit)
##
                    2.5 %
                                97.5 %
## (Intercept) 203.854813 216.2421034
                -0.948872 -0.6465811
## Age
Y_h|X_h = 40
Age_new = data.frame(Age = 40)
hat_Y <- fit$coefficients[1] + fit$coefficients[2] * 40</pre>
hat_Y
```

```
## (Intercept)
##
      178.1394
predict(fit, Age_new, interval = "confidence", level = 0.9)
##
           fit
                     lwr
                              upr
## 1 178.1394 176.0203 180.2585
predict(fit, Age_new, interval = "predict", level = 0.9)
##
           fit
                  lwr
## 1 178.1394 169.76 186.5188
Check
sd <- sqrt((sum(fit$residuals^2) / 13))</pre>
ME \leftarrow qt(1 - 0.1 / 2, 13) * sd * sqrt(1 + 1 / 15 + (40 - mean(age))^(2) / sum((age - mean(age))^2))
c(hat_Y - ME, hat_Y + ME)
## (Intercept) (Intercept)
      169.7600
                   186.5188
Hypothesis Tests for \beta_1
H_0: \beta_1 = -1 \text{ vs. } H_a: \beta_1 \neq -1 \text{ with } \alpha = 0.05
beta1_null <- -1
t_star <- (beta1_hat - beta1_null) / se_beta1</pre>
p_value <- 2 * pt(t_star, 13, lower.tail = F)</pre>
p_value
           Age
## 0.01262031
par(las = 1)
x_{grid} \leftarrow seq(-3.75, 3.75, 0.01)
y_grid <- dt(x_grid, 13)</pre>
plot(x_grid, y_grid, type = "l", xlab = "Test statistic", ylab = "Density", xlim = c(-3.75, 3.75))
polygon(c(x_grid[x_grid < -t_star], rev(x_grid[x_grid < -t_star])),</pre>
        c(y_grid[x_grid < -t_star], rep(0, length(y_grid[x_grid < -t_star]))), col = "skyblue")</pre>
polygon(c(x_grid[x_grid > t_star], rev(x_grid[x_grid > t_star])),
        c(y_grid[x_grid > t_star], rep(0, length(y_grid[x_grid > t_star]))), col = "skyblue")
abline(v = t_star, lty = 2)
abline(v = -t_star, lty = 2)
abline(h = 0)
```


ANOVA

[1] 0.9090967

Fitting a simple linear regression

```
fit <- lm(MaxHeartRate ~ Age)</pre>
summary(fit)
##
## Call:
## lm(formula = MaxHeartRate ~ Age)
##
## Residuals:
##
       Min
                1Q Median
                                ЗQ
                                        Max
## -8.9258 -2.5383 0.3879 3.1867 6.6242
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 210.04846
                            2.86694
                                     73.27 < 2e-16 ***
## Age
                -0.79773
                            0.06996 -11.40 3.85e-08 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.578 on 13 degrees of freedom
## Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021
                 130 on 1 and 13 DF, p-value: 3.848e-08
## F-statistic:
R.sq <- summary(fit)[["r.squared"]]</pre>
r <- cor(dat$Age, dat$MaxHeartRate)</pre>
r^2; R.sq
## [1] 0.9090967
```

ANOVA Table

anova(fit)