

ENGINEERING MATHEMATICS - I Ordinary Differential Equations

Dr. Karthiyayini

Department of Science and Humanities

Unit 3: Ordinary Differential Equations

Session: 2

Sub Topic: Introduction

Dr. Karthiyayini

Department of Science & Humanities

Contents

- Classification of Differential Equations
- Order & Degree
- Methods of solving First order Differential Equations
- Recapitulation of Linear Differential Equations

Methodology

Formulation of differential equation (using the given physical situation)

Solve the differential equation using suitable methods

Physical interpretation of the solution

Classification of Differential Equations

Differential Equations

Ordinary Differential Equations

Partial Differential Equations

Definitions:

- Ordinary Differential Equation: A differential equation in which all the differential coefficients or differentials have reference to a <u>single independent variable</u> is called an ordinary differential equation.
- Partial Differential Equation: A differential equation in which there are <u>two or more independent variables</u> and the partial differential coefficients are with respect to any one or more of them is called a partial differential equations.

Recall!!

- Order: The order of a differential equation is the <u>order of</u> the <u>highest derivative</u> in it.
- Degree: The degree of a differential equation is the exponent of the highest derivative. (when the derivatives are cleared off radicals and fractions).

Type, Order, Degree & Linearity

SI No.	Differential Equation	Ordinary/ Partial	Order	Degree	Linear/ Non Linear
1	$\frac{dy}{dx} = y$	Ordinary	1	1	Linear
2	$\frac{d^2y}{dx^2} + 4y = 0$	Ordinary	2	1	Linear
3	$x\left(\frac{dy}{dx}\right)^2 - y\frac{dy}{dx} + x = 0$	Ordinary	1	2	Non Linear
4	$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2} = c\frac{d^2y}{dx^2}$	Ordinary	2	2	Non Linear
5	$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2u$	Partial	1	1	Linear

Ordinary Differential Equations

Ordinary Differential Equations

Recapitulation of Linear Differential Equations

Standard form of a linear differential Equation and its solution

$$\frac{dy}{dx} + Py = Q$$

where *P* and *Q* are functions of *x* only is called a <u>linear</u> equation in *y*.

Integrating Factor =
$$e^{\int Pdx}$$

Solution:
$$y(IF) = \int Q.(IF)dx + c$$

Recapitulation of Linear Differential Equations

Standard form of a linear differential Equation and its solution

❖ Any differential equation of the form

$$\frac{dx}{dy} + Px = Q$$

where *P* and *Q* are functions of *y* only is called a <u>linear equation in *x*</u>.

Integrating Factor =
$$e^{\int Pdy}$$

Solution:
$$x(IF) = \int Q \cdot (IF) dy + c$$

Example 1

Consider,
$$\frac{dy}{dx} + ycotx = cosx$$

This is a linear differential equation of the form,

$$\frac{dy}{dx} + Py = Q \text{ (Linear in y)}$$

where P = cotx and Q = cosx

Integrating Factor = IF =
$$e^{\int Pdx} = e^{\int \cot x dx} = \sin x$$
.

General Solution:
$$y(IF) = \int Q \cdot (IF) dx + c$$

 $\Rightarrow y \sin x = \int \cos x \sin x \, dx + c$
 $\Rightarrow y = \frac{1}{2} \sin x + c \csc x$ is the required solution.

Example 2

Consider,
$$(x + y + 1)\frac{dy}{dx} = 1$$

The given equation may be rewritten as , $\frac{dx}{dy} - x = y + 1$

This is a linear differential equation of the form,

$$\frac{dx}{dy} + Px = Q \text{ (Linear in x)}$$

where
$$P = -1$$
, $Q = y + 1$

Integrating factor:
$$IF = e^{\int Pdy} = e^{\int -1 dy} = e^{-y}$$

Example 2

General Solution : $x(IF) = \int Q.(IF)dy + c$

$$\Rightarrow x e^{-y} = \int (y+1)e^{-y}dy + c$$

$$\Rightarrow x e^{-y} = -(y+1)e^{-y} - e^{-y} + c$$

Simplifying further, $(x + y + 2) = ce^y$ is the required solution.

THANK YOU

Dr. Karthiyayini

Department of Science & Humanities

Karthiyayini.roy@pes.edu

+91 80 6618 6651