Correction du devoir surveillé 6.

Exercice 1

- 1°) Soit p une projection vectorielle de E, c'est bien un endomorphisme de E et $p^2 = p$. Donc $p^3 = p^2 \circ p = p \circ p = p^2 = p$. Donc $p \in D$.
 - Soit s une symétrie vectorielle de E, c'est bien un endomorphisme de E et $s^2 = \mathrm{id}_E$. $\mathrm{Donc}\ s^3 = s^2 \circ s = \mathrm{id}_E \circ s = s$. $\mathrm{Donc}\ s \in D$.
- **2°**) On a $\mathrm{id}_E \in \mathcal{L}(E)$ et $\mathrm{id}_E \circ \mathrm{id}_E \circ \mathrm{id}_E = \mathrm{id}_E$, donc $\mathrm{id}_E \in \mathcal{D}$. Par contre $2\mathrm{id}_E$ n'est pas dans \mathcal{D} car $2\mathrm{id}_E \circ 2\mathrm{id}_E \circ 2\mathrm{id}_E = 8\mathrm{id}_E \neq \mathrm{id}_E$. Ainsi \mathcal{D} n'est pas stable par la loi \cdot ; ce n'est donc pas un sous-espace vectoriel de $\mathcal{L}(E)$
- 3°) Si f est une symétrie vectorielle, alors $f \in \mathcal{D}$ d'après la question 1, et $f \in GL(E)$ puisque f est bijective de réciproque f^{-1} .
 - Réciproquement, supposons $f \in \mathcal{D} \cap GL(E)$. Alors on a $f^3 = f$, ce qui donne en composant par f^{-1} à gauche :

$$f^2 = f^{-1} \circ f = \mathrm{id}_E.$$

f est donc une involution et un endomorphisme, donc une symétrie vectorielle.

- On a donc bien montré : $f \in \mathcal{D} \cap GL(E) \iff f$ est une symétrie vectorielle
- **4°)** a) Comme Im $f \cap \operatorname{Ker} f$ est un sous-espace vectoriel de E, on a $\{0_E\} \subset \operatorname{Im} f \cap \operatorname{Ker} f$.
 - Soit $y \in \text{Im } f \cap \text{Ker } f$. Alors : $\exists x \in E, y = f(x), \text{ et } f(y) = 0_E$. On a donc :

$$f^{3}(x) = f(f(f(x)))$$

$$= f(f(y))$$

$$= f(0_{E}) = 0_{E} \text{ car } f \text{ est linéaire.}$$

Or $f \in \mathcal{D}$ donc $f^3(x) = f(x)$. Ainsi $y = 0_E$. D'où $\{0_E\} \subset \operatorname{Im} f \cap \operatorname{Ker} f$.

- Finalement, $\operatorname{Im} f \cap \operatorname{Ker} f = \{0_E\}$
- **b)** $(f^2)^2 = f^4 = f \circ f^3 = f \circ f$ puisque $f \in \mathcal{D}$. Ainsi $(f^2)^2 = f^2$.

De plus, f^2 est un endomorphisme de E donc $\boxed{f^2$ est un projecteur de E

- c) Soit $x \in \text{Ker } g$. Alors $g(x) = 0_E$. $g^2(x) = g(g(x)) = g(0_E) = 0_E$, c'est-à-dire que $x \in \text{Ker } g^2$. Ainsi $\text{Ker } g \subset \text{Ker } g^2$.
 - Soit $x \in \text{Ker } g^2$. Alors $g^2(x) = 0_E$. $g^3(x) = g\left(g^2(x)\right) = g(0_E) = 0_E$, c'est-à-dire que $x \in \text{Ker } g^3$. Ainsi $\text{Ker } g^2 \subset \text{Ker } g^3$.
 - Finalement, $\ker g \subset \ker g^2 \subset \ker g^3$
 - Soit $y \in \text{Im}(\overline{g^2})$. Alors y s'écrit $y = g^2(x)$ où $x \in E$. Donc, y = g(g(x)) donc y est de la forme g(x') où $x' \in E$. Ainsi, $y \in \text{Im}(g)$.

 On a donc $\text{Im}(g^2) \subset \text{Im}(g)$.
 - Soit $y \in \text{Im}(g^3)$. Alors y s'écrit $y = g^3(x)$ où $x \in E$. Donc, $y = g^2(g(x))$ donc $y \in \text{Im}(g^2)$. On a donc $\text{Im}(g^3) \subset \text{Im}(g^2)$.
 - Finalement, $\operatorname{Im} g^3 \subset \operatorname{Im} g^2 \subset \operatorname{Im} g$
- d) On a donc $\operatorname{Ker} f \subset \operatorname{Ker} f^2 \subset \operatorname{Ker} f^3$; mais $f^3 = f$ donc $\operatorname{Ker} f \subset \operatorname{Ker} f^2 \subset \operatorname{Ker} f$. Donc $\operatorname{Ker} f = \operatorname{Ker} f^2$. De même, les inclusions pour les images obtenues à la question précédente s'écrivent avec f, sachant que $f^3 = f : \operatorname{Im}(f) \subset \operatorname{Im}(f^2) \subset \operatorname{Im}(f)$. De même, on en déduit que $\operatorname{Im}(f^2) = \operatorname{Im}(f)$.

- e) Comme f^2 est un projecteur de E, Ker f^2 et Im f^2 sont supplémentaires dans E; donc, d'après la question précédente, Ker f et Im f sont supplémentaires dans E.
- **5**°) **a)** Soit $((x, y, z), (x', y', z')) \in (\mathbb{R}^3)^2$ et $\lambda \in \mathbb{R}$.

$$\begin{split} h\left(\lambda.(x,y,z) + (x',y',z')\right) &= h\left((\lambda x + x',\lambda y + y',\lambda z + z')\right) \\ &= \left(2(\lambda x + x') - 2(\lambda z + z'), -(\lambda y + y'), (\lambda x + x') - (\lambda z + z')\right) \\ &= \left(\lambda(2x - 2z) + 2x' - 2z', \lambda(-y) - y', \lambda(x - z) + x' - z'\right) \\ &= \lambda.\left(2x - 2z, -y, x - z\right) + \left(2x' - 2z', -y', x' - z'\right) \\ &= \lambda.h(x,y,z) + h(x',y',z'). \end{split}$$

Donc h est linéaire. Comme c'est une application de \mathbb{R}^3 dans lui-même, $h \in \mathcal{L}(\mathbb{R}^3)$

b) Pour tout $(x, y, z) \in \mathbb{R}^3$,

$$\begin{split} h^2(x,y,z) &= h\left(h(x,y,z)\right) = (2(2x-2z)-2(x-z),y,(2x-2z)-(x-z)) \\ &= (2x-2z,y,x-z) \\ h^3(x,y,z) &= h\left(h^2(x,y,z)\right) = (2(2x-2z)-2(x-z),-y,(2x-2z)-(x-z)) \\ &= (2x-2z,-y,x-z) \\ &= h(x,y,z) \end{split}$$

Donc $h^3 = h$. De plus, $h \in \mathcal{L}(E)$. D'où $h \in \mathcal{D}$.

c) • Soit $(x, y, z) \in \mathbb{R}^3$.

$$(x,y,z) \in \operatorname{Ker} h \iff h(x,y,z) = (0,0,0) \iff \begin{cases} 2x - 2z = 0 \\ -y = 0 \\ x - z = 0 \end{cases} \iff \begin{cases} x = z \\ y = 0 \end{cases}$$

Donc Ker $h = \{(z, 0, z) / z \in \mathbb{R}\} = \text{Vect}((1, 0, 1)).$

La famille ((1,0,1)) est donc génératrice de Ker h, et comme elle est constituée d'un seul vecteur non nul, elle est libre. Donc ((1,0,1)) est une base de Ker h.

• En notant (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 :

$$Im(h) = Vect(h(e_1), h(e_2), h(e_3))$$

$$= Vect((2, 0, 1), (0, -1, 0), (-2, 0, -1))$$

$$= Vect((2, 0, 1), (0, -1, 0)) \text{ car le 3ème vecteur est colinéaire au premier}$$

La famille ((2,0,1),(0,-1,0)) est donc génératrice de $\operatorname{Im} h$, et comme elle est constituée de deux vecteurs non colinéaires, elle est libre. Donc ((2,0,1),(0,-1,0)) est une base de $\operatorname{Im} h$.

d) D'après la question 4.e, puisque h est un élément de \mathcal{D} , on peut dire que

Ker h et Im h sont supplémentaires dans $E = \mathbb{R}^3$

De plus, d'après la question 4.d et 4.b, $\operatorname{Ker} h = \operatorname{Ker} h^2$, $\operatorname{Im} h = \operatorname{Im} h^2$, et h^2 est une projection; c'est donc p, la projection sur $\operatorname{Im} h$ parallèlement à $\operatorname{Ker} h$.

D'après un calcul précédent, pour tout $(x, y, z) \in \mathbb{R}^3$,

$$p(x, y, z) = (2x - 2z, y, x - z)$$

Exercice 2

 $\mathbf{1}^{\circ}$) Soient $(P,Q) \in \mathbb{R}[X]^2$ et $\lambda \in \mathbb{R}$.

$$\varphi(\lambda P + Q) = \frac{1}{2}((\lambda P + Q)(X + 1) + (\lambda P + Q)(X))$$
$$= \frac{1}{2}(\lambda P(X + 1) + Q(X + 1) + \lambda P(X) + Q(X))$$
$$= \lambda \varphi(P) + \varphi(Q)$$

Ainsi, φ est linéaire. De plus, φ va de $\mathbb{R}[X]$ dans $\mathbb{R}[X]$. Donc, φ est un endomorphisme de $\mathbb{R}[X]$.

2°) Pour $k \in \mathbb{N}$, on a $\varphi(X^0) = \varphi(1) = 1$. Pour $k \in \mathbb{N}^*$:

$$\varphi(X^k) = \frac{1}{2}((X+1)^k + X^k)$$

$$= \frac{1}{2}\left(\sum_{i=0}^k \binom{k}{i}X^i + X^k\right) \quad \text{par la formule du binôme de Newton}$$

$$= \frac{1}{2}\left(X^k + \sum_{i=0}^{k-1} \binom{k}{i}X^i + X^k\right)$$

$$= X^k + R \quad \text{avec } R = \frac{1}{2}\sum_{i=0}^{k-1} \binom{k}{i}X^i \text{ de degré } \leq k-1$$

Ainsi, pour tout $k \in \mathbb{N}$, $\deg (\varphi(X^k)) = k$ et le coefficient dominant de $\varphi(X^k)$ est 1.

 $\mathbf{3}^{\circ}$) φ_n est linéaire car φ l'est.

Soit alors $P \in \mathbb{R}_n[X]$. P s'écrit : $P = \sum_{k=0}^n a_k X^k$ avec $(a_0, \dots, a_n) \in \mathbb{R}^{n+1}$.

 $\varphi_n(P) = \varphi(P) = \sum_{k=0}^n a_k \varphi(X^k)$ par linéarité de φ . Comme tous les $\varphi(X^k)$ ont pour degré k, on en déduit que $\varphi(P) \in \mathbb{R}_n[X]$.

Ainsi, φ_n est un endomorphisme de $\mathbb{R}_n[X]$.

- **4°) a)** La famille $(\varphi_n(1), \ldots, \varphi_n(X^n))$ est une famille de polynômes non nuls de $\mathbb{R}_n[X]$ échelonnée en degrés donc est libre dans $\mathbb{R}_n[X]$. De plus, elle a n+1 éléments et $n+1=\dim \mathbb{R}_n[X]$ donc c'est une base de $\mathbb{R}_n[X]$.
 - b) φ_n est un endomorphisme de l'espace de dimension finie $\mathbb{R}_n[X]$ et transforme une base de $\mathbb{R}_n[X]$ en une base de $\mathbb{R}_n[X]$. Donc φ_n est un automorphisme de $\mathbb{R}_n[X]$.
- 5°) \star Soit $P \in \operatorname{Ker} \varphi$. Alors il existe $n \in \mathbb{N}$ tel que $P \in \mathbb{R}_n[X]$. Ainsi, $P \in \operatorname{Ker} \varphi_n$. Or φ_n est injective puisque bijective. Ainsi, P = 0.

 On a montré $\operatorname{Ker} \varphi \subset \{0\}$. Comme l'autre inclusion est toujours vraie, on a donc $\operatorname{Ker} \varphi = \{0\}$. Ainsi, φ est injective.
 - ★ Soit $Q \in \mathbb{R}[X]$. Il existe $n \in \mathbb{N}$ tel que $Q \in \mathbb{R}_n[X]$. Comme φ_n est surjective, il existe $P \in \mathbb{R}_n[X]$ tel que $Q = \varphi_n(P)$. On a donc : $Q = \varphi(P)$. Donc, φ est surjective.

On en déduit que φ est un automorphisme de $\mathbb{R}[X]$.

6°) Pour tout $P \in \mathbb{R}_n[X]$,

$$P(X+1) + P(X) = \frac{2X^n}{n!} \iff \varphi_n(P) = \frac{X^n}{n!}$$

Comme $\frac{X^n}{n!} \in \mathbb{R}_n[X]$ et comme φ_n est bijective de $\mathbb{R}_n[X]$ dans $\mathbb{R}_n[X]$, $\frac{X^n}{n!}$ possède un unique antécédent E_n dans $\mathbb{R}_n[X]$, autrement dit le polynôme E_n existe et est unique.

- Dans le cas n=0, on a $E_0 \in \mathbb{R}_0[X]$. S'il n'était pas de degré 0, on aurait $E_0=0$ mais alors $\varphi_0(E_0)=0=\frac{X^0}{0!}=1$, absurde.
- Dans le cas $n \stackrel{\text{U:}}{\geq} 1$, si E_n n'était pas de degré n, on aurait $E_n \in \mathbb{R}_{n-1}[X]$ et donc on aurait $\frac{X^n}{n!} = \varphi(E_n) = \varphi_{n-1}(E_n) \in \mathbb{R}_{n-1}[X]$: absurde.

Ainsi, dans tous les cas, $deg(E_n) = n$

7°) a)
$$E_n(X) + E_n(X+1) = \frac{2X^n}{n!}$$
 donc, en remplaçant X par 0 , $E_n(0) + E_n(1) = \frac{2.0^n}{n!}$ i.e. $E_n(0) + E_n(1) = 0$ puisque $n \ge 1$.

b)
$$E_n(X) + E_n(X+1) = \frac{2X^n}{n!}$$
. En dérivant cette égalité entre polynômes, on obtient : $E'_n(X) + E'_n(X+1) = \frac{2X^{n-1}}{(n-1)!}$.

Comme $E_n \in \mathbb{R}_n[X]$, on a $E_n' \in \mathbb{R}_{n-1}[X]$. Par unicité de E_{n-1} , il vient : $E_n' = E_{n-1}$

8°)
$$\star \varphi(1) = 1 = \frac{X^0}{0!}$$
, et $1 \in \mathbb{R}_0[X]$, donc par unicité de E_0 , il vient $E_0 = 1$.

*
$$E_1$$
 vérifie : $E_1' = E_0 = 1$. Donc, E_1 s'écrit : $E_1 = X + \alpha$ où $\alpha \in \mathbb{R}$. De plus, $E_1(0) + E_1(1) = 0$ donc $1 + 2\alpha = 0$ donc $\alpha = -\frac{1}{2}$. Ainsi, $E_1 = X - \frac{1}{2}$

★
$$E_2$$
 vérifie $E_2' = E_1 = X - \frac{1}{2}$. Ainsi, E_2 s'écrit : $E_2 = \frac{X^2}{2} - \frac{X}{2} + \beta$ où $\beta \in \mathbb{R}$. De plus, $E_2(0) + E_2(1) = 0$ donc $2\beta = 0$ ie $\beta = 0$. Ainsi, $E_2 = \frac{X(X-1)}{2}$.

Exercice 3

$$\mathbf{1}^{\circ}$$
) (c_0, c_1, \dots, c_n) est une famille génératrice de F , donc $\dim(F) \leq n+1$

2°) Soient
$$(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$$
 tels que $\sum_{k=0}^n \lambda_k p_k = 0$.

On a donc, pour tout
$$x \in \mathbb{R}$$
, $\sum_{k=0}^{n} \lambda_k (\cos(x))^k = 0$.

Posons $P(X) = \sum_{k=0}^{n} \lambda_k X^k$: on a donc que pour tout $x \in \mathbb{R}$, $\cos(x)$ est racine de P. Autrement dit, tous les réels de [-1,1] sont racines de P. Ainsi P a une infinité de racines, c'est le polynôme nul. Ses coefficients sont donc tous nuls : $\lambda_0 = \cdots = \lambda_n = 0$. Ainsi $[a famille (p_0, p_1, \ldots, p_n)]$ est libre.

Or cette famille est génératrice de G, c'est donc une base de G, donc $\dim(G) = n + 1$.

 3°) a) Soit $x \in \mathbb{R}$.

$$\begin{split} \cos^N(x) &= \left(\frac{e^{ix} + e^{-ix}}{2}\right)^N = \frac{1}{2^N} \sum_{k=0}^N \binom{N}{k} \left(e^{ix}\right)^k \left(e^{-ix}\right)^{N-k} \text{ par la formule du binôme} \\ &= \frac{1}{2^N} \sum_{k=0}^N \binom{N}{k} e^{ikx} e^{i(k-N)x} \\ &\cos^N(x) = \frac{1}{2^N} \sum_{k=0}^N \binom{N}{k} e^{i(2k-N)x} \end{split}$$

b) Soit $x \in \mathbb{R}$. On a donc

$$\cos^{N}(x) = \operatorname{Re}\left(\cos^{N}(x)\right) = \operatorname{Re}\left(\frac{1}{2^{N}} \sum_{k=0}^{N} \binom{N}{k} e^{i(2k-N)x}\right)$$
$$= \frac{1}{2^{N}} \sum_{k=0}^{N} \binom{N}{k} \operatorname{Re}\left(e^{i(2k-N)x}\right)$$
$$\cos^{N}(x) = \frac{1}{2^{N}} \sum_{k=0}^{N} \binom{N}{k} \cos\left((2k-N)x\right)$$

Ceci pour tout $x \in \mathbb{R}$, donc $p_N = \sum_{k=0}^N \frac{1}{2^N} \binom{N}{k} c_{2k-N}$, avec $c_k : x \mapsto \cos(kx)$ pour $k \le 0$.

Pour $k \in \{0, ..., N\}$, $0 \le 2k \le 2N$ donc $-N \le 2k - N \le N$. Mais, comme cos est paire, pour tout entier $p, c_p = c_{-p}$, donc on a écrit p_N comme combinaison linéaire de $c_0, ..., c_N$. Autrement dit, $p_N \in F$.

- c) Ainsi, pour tout $N \in \{0, ..., n\}$, $p_N \in F$; comme F est un sous-espace vectoriel de E, on a $\text{Vect}(p_0, ..., p_n) \subset F$ i.e. $G \subset F$.
- 4°) On a donc $\dim(G) \leq \dim(F)$. Ainsi $n+1 = \dim(G) \leq \dim(F) \leq n+1$ d'après les questions 1 et 2. Les inégalités qui apparaissent sont donc des égalités, en particulier $\dim(G) = \dim(F)$. Puisqu'on a $G \subset F$ d'après la question 3, on en tire que $G \subseteq F$.
- 5°) On a donc $F \subset G$; en particulier, $c_n \in G = \text{Vect}(p_0, \dots, p_n)$, c'est-à-dire qu'il existe des réels $\lambda_0, \dots, \lambda_n$ tels que $c_n = \sum_{k=0}^n \lambda_k p_k$.

Ainsi
$$\forall x \in \mathbb{R}$$
, $\cos(nx) = \sum_{k=0}^{n} \lambda_k \cos^k(x) = T_n(\cos(x))$ en posant $T_n(X) = \sum_{k=0}^{n} \lambda_k X^k$.

Le polynôme T_n obtenu est bien dans $\mathbb{R}_n[X]$.

Exercice 4

1°) a)
$$\forall x \in \mathbb{R}, \ f'(x) = \frac{1}{1+x^2}, \ f''(x) = -\frac{2x}{(1+x^2)^2}$$

$$f^{(3)}(x) = -2\frac{(1+x^2)^2 - 4 \times 2x(1+x^2)}{(1+x^2)^4} = -2\frac{1+x^2 - 4x^2}{(1+x^2)^3}$$
Donc $f^{(3)}(x) = \frac{6x^2 - 2}{(1+x^2)^3}$.

- **b)** Soit, pour tout $n \in \mathbb{N}^*$, la propriété $H_n : \exists P_n \in \mathbb{R}[X], \forall x \in \mathbb{R}, f^{(n)}(x) = \frac{P_n(x)}{(1+x^2)^n}$
 - ★ Pour n = 1: pour tout $x \in \mathbb{R}$, $f'(x) = \frac{1}{1+x^2}$. Donc, en posant comme polynôme $P_1(X) = 1$, H_1 est vraie.
 - ★ Soit $n \in \mathbb{N}^*$. On suppose H_n vraie. Alors, pour tout $x \in \mathbb{R}$, $f^{(n)}(x) = \frac{P_n(x)}{(1+x^2)^n}$.

$$\forall x \in \mathbb{R}, \ f^{(n+1)}(x) = (f^{(n)})'(x)$$

$$= \frac{P'_n(x)(1+x^2)^n - 2nxP_n(x)(1+x^2)^{n-1}}{(1+x^2)^{2n}}$$

$$= \frac{P'_n(x)(1+x^2) - 2nxP_n(x)}{(1+x^2)^{n+1}}$$

On pose : $P_{n+1}(X) = (1 + X^2)P'_n(X) - 2nXP_n(X)$. Alors $P_{n+1} \in \mathbb{R}[X]$ et, pour tout $x \in \mathbb{R}$, on a bien : $f^{(n+1)}(x) = \frac{P_{n+1}(x)}{(1+x^2)^{n+1}}$. Ainsi, H_{n+1} est vraie.

★ On a montré par récurrence que :

$$\forall n \in \mathbb{N}^*, \exists P_n \in \mathbb{R}[X], \forall x \in \mathbb{R}, f^{(n)}(x) = \frac{P_n(x)}{(1+x^2)^n}$$

c) Soit $n \in \mathbb{N}^*$. Soit un polynôme Q_n vérifiant : $\forall x \in \mathbb{R}, f^{(n)}(x) = \frac{P_n(x)}{(1+x^2)^n} = \frac{Q_n(x)}{(1+x^2)^n}$

Alors, pour tout $x \in \mathbb{R}$, $P_n(x) = Q_n(x)$. Ainsi, le polynôme $P_n - Q_n$ admet une infinité de racines donc c'est le polynôme nul. Ainsi, les polynômes P_n et Q_n sont égaux.

D'où l'unicité de P_n

d) $P_1(X) = 1$.

En utilisant la relation de récurrence de la question 1b, on a :

$$P_2(X) = -2XP_1(X) = -2X$$

$$P_3(X) = (1+X^2)(-2) - 4X(-2X) = 6X^2 - 2$$

Ce résultat est bien cohérent avec ce qu'on a trouvé à la question 1a.

e) Soit, pour tout $n \ge 2$, la propriété

$$H_n: \exists Q_n \in \mathbb{R}_{n-2}[X], P_n = (-1)^{n-1} n! X^{n-1} + Q_n.$$

- ★ $P_2(X) = -2X$; comme $(-1)^{2-1}2! = -2$, en posant $Q_2 = 0$, on a bien $Q_2 \in R_{2-2}[X]$ et $P_2 = (-1)^{2-1}2!X^{2-1} + Q_2$. Ainsi, H_2 est vraie.
- ★ On suppose H_n vraie pour un $n \ge 2$ fixé.

Soit alors $Q_n \in \mathbb{R}[X]$ tel que $P_n = (-1)^{n-1} n! X^{n-1} + Q_n$.

On a alors, puisque $n \geq 2$, $P_n' = (-1)^{n-1} n! (n-1) X^{n-2} + Q_n'$, et $\deg(Q_n') \leq \deg(Q_n) - 1 \leq n-3$.

$$P_{n+1} = (1+X^2)P'_n(X) - 2nXP_n(X)$$

$$= (1+X^2)\left((-1)^{n-1}n!(n-1)X^{n-2} + Q'_n\right) - 2nX\left((-1)^{n-1}n!X^{n-1} + Q_n\right)$$

$$= \left((-1)^{n-1}n!(n-1) - 2n(-1)^{n-1}n!\right)X^n + (1+X^2)Q'_n - 2nXQ_n$$

$$= (-1)^{n-1}n!\left(\underbrace{n-1-2n}_{-(n+1)}\right)X^n + (1+X^2)Q'_n - 2nXQ_n$$

$$= (-1)^n(n+1)!X^n + Q_{n+1} \quad \text{en posant } Q_{n+1} = (1+X^2)Q'_n - 2nXQ_n$$

On a bien $Q_{n+1} \in \mathbb{R}_{n-1}[X]$ car $\deg((1+X^2)Q'_n) = 2 + \deg(Q'_n) \le 2 + n - 3 = n - 1$, et $\deg(-2nXQ_n) = 1 + \deg(Q_n) \le n - 1$. Ainsi, H_{n+1} est vraie.

★ On a montré par récurrence que :

pour tout $n \ge 2$, P_n est de degré n-1 et de coefficient dominant $(-1)^{n-1} n!$

- f) Soit $n \in \mathbb{N}$. On pose $H_n : \forall x \in \mathbb{R}, f^{(n)}(x) = (-1)^{n+1} f^{(n)}(x)$.
 - $\star f^{(0)} = f = \text{Arctan est impaire donc},$

pour tout $x \in \mathbb{R}$, $f^{(0)}(-x) = f(-x) = -f(x) = (-1)^{0+1} f^{(0)}(x)$.

Donc, H_0 est vraie.

 \star Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie. Montrons que H_{n+1} est vraie.

Par H_n , pour tout $x \in \mathbb{R}$, $f^{(n)}(-x) = (-1)^{n+1} f^{(n)}(x)$.

En dérivant (puisque f est de classe C^{∞}):

 $\forall x \in \mathbb{R}, \ -f^{(n+1)}(-x) = (-1)^{n+1}f^{(n+1)}(x) \text{ i.e. } f^{(n+1)}(-x) = (-1)^{n+2}f^{(n+1)}(x).$

Donc, H_{n+1} est vraie.

- \bigstar On a montré par récurrence que : $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f^{(n)}(x) = (-1)^{n+1} f^{(n)}(x)$
- g) Soit $n \in \mathbb{N}^*$.

On suppose que n est pair. On déduit de la question précédente que :

 $\forall x \in \mathbb{R}, f^{(n)}(-x) = (-1)^{n+1} f^{(n)}(x) \text{ i.e. } f^{(n)}(-x) = -f^{(n)}(x) \text{ car } n+1 \text{ est impair.}$

Ainsi, la fonction $f^{(n)}$ est impaire.

On en déduit que $f^{(n)}(0) = 0$ (car $f^{(n)}(-0) = -f^{(n)}(0)$ donc $f^{(n)}(0) = -f^{(n)}(0)$).

Or $f^{(n)}(0) = P_n(0)$ par 1b. Donc, $P_n(0) = 0$

2°) a) On pose, pour
$$n \in \mathbb{N}^*$$
, $H_n : P_n = \frac{i(-1)^{n-1}(n-1)!}{2}((X-i)^n - (X+i)^n)$.

$$\star \frac{i(-1)^0 0!}{2} ((X-i)^1 - (X+i)^1) = \frac{i}{2} (-2i) = 1 = P_1 \text{ donc } H_1 \text{ est vraie.}$$

 \star Supposons que H_n est vraie pour un rang n fixé ≥ 1 .

$$P_{n+1} = (1+X^{2})P'_{n}(X) - 2nXP_{n}(X)$$

$$= (\underbrace{1+X^{2}}_{(X+i)(X-i)})\frac{i(-1)^{n-1}(n-1)!}{2} \left(n(X-i)^{n-1} - n(X+i)^{n-1}\right)$$

$$- 2nX\frac{i(-1)^{n-1}(n-1)!}{2} \left((X-i)^{n} - (X+i)^{n}\right)$$

$$= \frac{i(-1)^{n-1}(n-1)!}{2} \left[n(X-i)^{n}(X+i) - n(X+i)^{n}(X-i) - 2nX(X-i)^{n} + 2nX(X+i)^{n}\right]$$

$$= \frac{i(-1)^{n-1}(n-1)!}{2} \left[n(X-i)^{n}(\underbrace{X+i-2X}_{-(X-i)}) - n(X+i)^{n}(\underbrace{X-i-2X}_{-(X+i)})\right]$$

$$= \frac{i(-1)^{n}n!}{2} \left((X-i)^{n+1} - (X+i)^{n+1}\right)$$

Ainsi, H_{n+1} est vraie.

 \star On a montré par récurrence que, pour tout $n \geq 1$,

$$P_n = \frac{i(-1)^{n-1}(n-1)!}{2}((X-i)^n - (X+i)^n)$$

b) On suppose que n est impair.

$$P_n = \frac{i(-1)^{n-1}(n-1)!}{2}((X-i)^n - (X+i)^n) = i\frac{(n-1)!}{2}((X-i)^n - (X+i)^n) \text{ car } n-1 \text{ est pair.}$$

$$\text{Donc, } P_n(0) = \frac{i(n-1)!}{2}((-i)^n - i^n) = \frac{i(n-1)!}{2}((-1)^n i^n - i^n)$$

$$P_n(0) = \frac{i(n-1)!}{2}(-2i^n) \text{ car } n \text{ est impair.}$$

$$\text{Ainsi, } P_n(0) = -(n-1)!i \times i^n.$$

 $n \text{ s'écrit } n = 2k+1 \text{ où } k \in \mathbb{N}. \text{ Donc, } i^n = i^{2k+1} = i^{2k} \times i = (i^2)^k \times i = (-1)^k i.$

Donc, $P_n(0) = -(n-1)!(-1)^k i^2 = (-1)^k (n-1)!$.

Or
$$k = \frac{n-1}{2}$$
 donc $P_n(0) = (-1)^{\frac{n-1}{2}}(n-1)!$

c) Soit $z \in \mathbb{C} \setminus \{-i\}$.

$$\left(\frac{z-i}{z+i}\right)^n = 1 \iff \exists k \in \{0, \dots, n-1\}, \ \frac{z-i}{z+i} = e^{i\frac{2k\pi}{n}}$$
$$\iff \exists k \in \{0, \dots, n-1\}, \ z-i = (z+i)e^{i\frac{2k\pi}{n}}$$
$$\iff \exists k \in \{0, \dots, n-1\}, \ z\left(1-e^{i\frac{2k\pi}{n}}\right) = i\left(1+e^{i\frac{2k\pi}{n}}\right)$$

Pour $0 \le k \le n-1, \, e^{i\frac{2k\pi}{n}} = 1 \iff k = 0, \, \text{et pour } k = 0, \, \text{l'équation devient } 0 = 2i : \text{exclu. Ainsi} :$

$$\left(\frac{z-i}{z+i}\right)^n = 1 \iff \exists k \in \{1,\dots,n-1\}, \ z = \frac{ie^{i\frac{k\pi}{n}} \left(e^{-i\frac{k\pi}{n}} + e^{i\frac{k\pi}{n}}\right)}{e^{i\frac{k\pi}{n}} \left(e^{-i\frac{k\pi}{n}} - e^{i\frac{k\pi}{n}}\right)}.$$

Or pour
$$k \in \{1, \dots, n-1\}$$
,
$$\frac{ie^{i\frac{k\pi}{n}} \left(e^{-i\frac{k\pi}{n}} + e^{i\frac{k\pi}{n}}\right)}{e^{i\frac{k\pi}{n}} \left(e^{-i\frac{k\pi}{n}} - e^{i\frac{k\pi}{n}}\right)} = \frac{ie^{i\frac{k\pi}{n}} 2\cos\left(\frac{k\pi}{n}\right)}{e^{i\frac{k\pi}{n}}(-2i)\sin\left(\frac{k\pi}{n}\right)} = -\frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)}.$$

Les valeurs trouvées sont des réels donc en particulier sont distinctes de -i.

Ainsi, les solutions de l'équation sont
$$\left\{-\frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)}/k \in \{1,\dots,n-1\}\right\}.$$

d) Soit $z \in \mathbb{C}$. par 3a, $P_n(-i) = \frac{i(-1)^{n-1}(n-1)!}{2}(-2i)^n \neq 0$. Donc on peut supposer $z \neq -i$.

$$P_n(z) = 0 \iff (z - i)^n = (z + i)^n$$

 $\iff \left(\frac{z - i}{z + i}\right)^n = 1 \text{ car } z \neq -i$

On en déduit par la question précédente que les racines de P_n sont exactement les nombres

$$x_k = -\frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)} \quad \text{pour } k \in \{1, \dots, n-1\}. \text{ Ce sont bien des } \underline{\text{r\'eels}}.$$

Justifions que les x_k sont distincts 2 à 2. Soit $f: x \mapsto -\frac{\cos x}{\sin x}$ définie sur l'intervalle $]0, \pi[$. Cette fonction est dérivable sur cet intervalle et,

pour tout
$$x \in]0, \pi[, f'(x)] = \frac{\sin^2 x + \cos^2 x}{\sin^2 x} = \frac{1}{\sin^2 x} > 0.$$
 f est strictement croissante sur $]0, \pi[$ donc est injective.

Les angles $\frac{k\pi}{n}$ pour $1 \le k \le n-1$ sont distincts 2 à 2 et sont éléments de $]0,\pi[$ donc les nombres $f\left(\frac{k\pi}{n}\right)$ sont distincts 2 à 2 pour $1 \le k \le n-1$.

Ainsi, $| \text{les } x_k \text{ sont distincts } 2 \text{ à } 2$

e) P_n est de degré n-1 et a pour coefficient dominant $(-1)^{n-1}n!$. De plus, P_n admet n-1 racines distinctes réelles $x_1, \ldots x_{n-1}$ avec $x_k = -\frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)}$ donc P_n est scindé sur \mathbb{R} , ses racines sont toutes de multiplicité 1 et on a :

$$P_n = (-1)^{n-1} n! \prod_{k=1}^{n-1} (X - x_k) = (-1)^{n-1} n! \prod_{k=1}^n \left(X + \frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)} \right)$$

3°) Soit $n \ge 2$. $P_n(0) = (-1)^{n-1} n! \prod_{k=1}^{n-1} \frac{\cos(\frac{k\pi}{n})}{\sin(\frac{k\pi}{n})}$.

Donc,
$$\prod_{k=1}^{n-1} \frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)} = \frac{P_n(0)}{(-1)^{n-1}n!} = \frac{(-1)^{n-1}P_n(0)}{n!}.$$

Si n est pair alors $P_n(0) = 0$. Donc, $\prod_{k=1}^{n-1} \frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)} = 0$.

Si *n* est impair, on a vu dans 2b que : $P_n(0) = (-1)^{\frac{n-1}{2}}(n-1)!$.

En utilisant le fait que $(-1)^{\frac{n-1}{2}} = (-1)^{-\frac{n-1}{2}}$, on obtient :

$$\prod_{k=1}^{n-1} \frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)} = \frac{(-1)^{n-1-\frac{n-1}{2}}(n-1)!}{n!} = \frac{(-1)^{\frac{n-1}{2}}}{n}.$$

Finalement, $\prod_{k=1}^{n-1} \frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)} = \begin{cases} 0 & \text{si } n \text{ est pair} \\ \frac{(-1)^{\frac{n-1}{2}}}{n} & \text{si } n \text{ est impair} \end{cases}$