Лабораторная забота №3.

Проверка статистических гипотез о виде и параметрах распределения случайных величин.

Часть 1.

- 1. Используя данные Росстата, приведенные в файле данных CHISLO_DOCTORS.xlsx, найти значения случайного показателя X : **Число врачей на 10 тысяч человек населения** в указанном в Вашем варианте Федеральном Округе в каждый год периода T:2005, 2010, 2015, 2019, 2010, 2021 гг.
- 2. Визуализировать данные показателя X в каждый год периода T по указанному в Вашем варианте Федеральному Округу с помощью графиков и боксплотов.
- 3. Вычислить описательную статистику: среднее, стандартное отклонение, квартили, минимальное и максимальное значения показателя X в каждый год периода T по указанному в Вашем варианте Федеральному Округу.
- 4. Проверить, можно ли считать, что распределение случайной величины X в указанном Федеральном Округе в каждый год периода T подчинено нормальному закону распределения. Использовать для проверки тест Шапиро-Уилка (уровень значимости α указан в Вашем варианте).

Для дальнейшего исследования использовать только те года, для которых распределение случайного показателя X в Федеральном Округе можно считать нормальным.

5. Выделить те года t_1 - t_m с нормально распределенными значениями рядов данных Xt_1 - Xt_m , где Xt_1 - Xt_m имеют одинаковую дисперсию (уровень значимости взять равным α). Использовать для проверки нулевой гипотезы о равенстве дисперсий тесты Бартлетта и Левена.

Для выполнения п. 6-8 использовать ряды данных Xt1- Xtm из этой группы.

- 6. Проверить, можно ли считать, что среднее значение показателя X по данному Федеральному Округу в каждый год периода t_1 - t_m значимо выше (ниже) общероссийского значения показателя X (уровень значимости взять равным α). Общероссийские значения показателя X найти в файле CHISLO_DOCTORS.xlsx. Использовать для проверки гипотезы о равенстве средних t-тест для одной выборки.
- 7. Проверить, можно ли считать, что различия между средними значениями показателя X по данному Федеральному Округу в какие-то два года из периода t_1 - t_m незначимы, появились случайно (уровень значимости взять равным α). Использовать для проверки гипотезы о равенстве средних t-тест для двух выборок.
- 8. Проверить значимость отличий средних в выбранной группе (уровень значимости взять равным α). Использовать для проверки гипотезы о равенстве средних групп тест Тьюки и односторонний тест ANOVA.

Часть 2.

1. Проверить, можно ли считать, что распределение случайной величины X в указанном Федеральном Округе за весь период T подчинено нормальному закону распределения. Использовать для проверки следующие три критерия:

Хи-квадрат, Шапиро-Уилка и критерий Д'Агостино (уровень значимости α указан в Вашем варианте).

- 2. Смоделировать М выборок объемом п из значений случайной величины X, имеющей нормальное распределение с параметрами, указанными в Вашем варианте. На уровне значимости α проверить для каждой выборки гипотезу о нормальном законе распределения с помощью критериев Шапиро-Уилка и Д'Агостино. По результатам моделирования М выборок вычислить оценку вероятности совершить ошибку первого рода.
- 3. Смоделировать М выборок объемом n из значений случайной величины Y, имеющей указанное в Вашем варианте распределение. На уровне значимости α проверить для каждой выборки гипотезу о нормальном законе распределения с помощью критериев Шапиро-Уилка и Д'Агостино. Вычислить оценку вероятности не допустить ошибку второго рода. Какой из критериев при данной альтернативе является более мощным?

УКАЗАНИЯ.

Полную информацию о статистических критериях от команды разработчиков см.

https://docs.scipy.org/doc/scipy/reference/stats.html

Информацию о t-тестах см.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_lsamp.html#scipy.stats.ttest_lsamp https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind_from_stats.html#scipy.stats.ttest_ind_from_stats

Информацию о тестах для проверки на нормальность см.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html#scipy.stats.normaltest
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html#scipy.stats.shapiro
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html#scipy.stats.chisquare

Информацию о тестах для проверки выборок на равенство дисперсий см.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bartlett.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levene.html#scipy.stats.levene

Информацию о тестах для проверки групп на равенство средних (ожидаемых) значений групп см.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_oneway.html#scipy.stats.f_oneway

Краткая информация по параметрическим гипотезам

Предполагается, что случайная величина X имеет нормальный закон распределения.

Таблица 1. Основные параметрические гипотезы для одной выборки.

H_{0}	Предпо- ложения	Статистика критерия	<i>H</i> ₁	Область принятия H_0
$a = a_0$	σ ² известно	$U = \frac{\overline{x} - a_0}{\sigma} \sqrt{n}$	$a < a_o$	$U < u_{\kappa p}, \ \Phi_0(u_{\kappa p}) = 1/2 - \alpha$ $U > -u_{\kappa p}, \ \Phi_0(u_{\kappa p}) = 1/2 - \alpha$ $ U < u_{\kappa p}, \ \Phi_0(u_{\kappa p}) = (1-\alpha)/2$
	σ² не- известно	$T = \frac{\overline{x} - a_0}{s} \sqrt{n}$	a>a ₀	$T < t_{\kappa p}(\alpha, n-1)$ для односторонней области $T > -t_{\kappa p}(\alpha, n-1)$ для односторонней области
			a≠a _o	$ T < t_{\kappa p}(\alpha, n-1)$ для двусторонней области
$\sigma^2 = \sigma_0^2$	а не- известно	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$	$\sigma^2 > \sigma_0^2$ $\sigma^2 < \sigma_0^2$ $\sigma^2 \neq \sigma_0^2$	$\chi^{2} < \chi^{2}_{\alpha; n-1}$ $\chi^{2} > \chi^{2}_{1-\alpha; n-1}$ $\chi^{2}_{1-\alpha/2; n-1} < \chi^{2} < \chi^{2}_{\alpha/2; n-1}$
$p = p_0$	п порядка несколь- ких десятков или сотен	$U=rac{w-p_0}{\sqrt{p_0(1-p_0)}}\sqrt{n}\;,$ где $w=m/n$	$p > p_0$ $p < p_0$ $p \neq p_0$	$U < u_{\text{kp}}, \ \Phi_0(u_{\text{kp}}) = 1/2 - \alpha$ $U > -u_{\text{kp}}, \ \Phi_0(u_{\text{kp}}) = 1/2 - \alpha$ $ U < u_{\text{kp}}, \ \Phi_0(u_{\text{kp}}) = (1 - \alpha)/2$

Предполагается, что случайные величины X и Y являются независимыми т имеют нормальный закон распределения.

Таблица 2. Основные параметрические гипотезы для двух выборок.

H_{0}	Предпо- ложения	Статистика критерия	H ₁	Область принятия H_{0}
$a_x = a_y$	σ _x ² и σ _y ² известны	$U = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}}$		$U < u_{\kappa p}, \ \Phi_0(u_{\kappa p}) = 1/2 - \alpha$
			$a_x < a_y$	$U > -u_{\text{kp}}, \ \Phi_0(u_{\text{kp}}) = 1/2 - \alpha$
		y n m	$a_x \neq a_y$	$ U < u_{\kappa p}, \ \Phi_0(u_{\kappa p}) = (1 - \alpha)/2$
	σ_x^2 и σ_y^2 не-известны,	$T = \frac{\overline{x} - \overline{y}}{s\sqrt{\frac{1}{n} + \frac{1}{m}}}$, где	$a_x > a_y$	$T < t_{xp}(\alpha, n + m - 2)$ для односторонней области
	но равны	$s\sqrt{n} + \frac{1}{m}$ $s^{2} = \frac{(n-1)s_{x}^{2} + (m-1)s_{y}^{2}}{n+m-2}$	$a_x < a_y$	$T > -t_{sp}(\alpha, n + m - 2)$ для односторонней области
			$a_x \neq a_y$	$ T < t_{xp}(\alpha, n + m - 2)$ для двусторонней области
g,	а _х иа _у не-	$E = \frac{s_x^2}{s_x^2}$ rma $s^2 > s^2$	$\sigma_x^2 > \sigma_y^2$	$F < F_{\kappa p}(\alpha, n-1, m-1)$
$\sigma_{x}^{2} =$	известны	$F = \frac{s_x^2}{s_y^2}$, где $s_x^2 > s_y^2$	$\sigma_x^2 \neq \sigma_y^2$	$F \leq F_{\kappa p}(\alpha/2, n-1, m-1)$
	 n₁ и n₂ порядка несколь- ких десятков или сотен 	$U = \frac{1}{\sqrt{w(1-w)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}},$	$p_1 > p_2$	$U < u_{\text{kp}}, \ \Phi_0(u_{\text{kp}}) = 1/2 - \alpha$
$p_1 = p_2$			$p_1 < p_2$	$U > -u_{\text{kp}}, \ \Phi_0(u_{\text{kp}}) = 1/2 - \alpha$
			$p_1 \neq p_2$	$ U < u_{\kappa p}, \ \Phi_0(u_{\kappa p}) = (1 - \alpha)/2$
		где $w = \frac{m_1 + m_2}{n_1 + n_2}$		

См. также критерии Колмогорова- Смирнова, Хи-квадрат, Шапиро- Уилка, Бартлета, Тьюки, Левена и др..

ВАРИАНТЫ ЗАДАНИЙ

<u>Вариант</u>	Федеральный округ (ФО)	α	M	(a, sigma)	n	Закон распределения случайной величины Ү
<u>25</u>	Центральный ФО	0,025	3000	(1, 2)	55	Хи-квадрат распределение с числом степеней свободы k =19
<u>24</u>	Южный ФО	0,01	4000	(2,3)	65	Распределение Стьюдента с числом степеней свободы k =13
<u>23</u>	Приволжский ФО	0,015	5000	(-1, 2)	60	Релея с модой, равной 16.
<u>22</u>	Уральский ФО	0,02	5500	(-2, 3)	70	F-распределение с числом степеней свободы $k_1=k_2=13$
<u>21</u>	Сибирский ФО	0,03	6000	(3, 2)	75	Хи-квадрат с числом степеней свободы k =15
<u>20</u>	Дальневосточный ФО	0,035	2500	(-3, 2)	80	Распределение Стьюдента с числом степеней свободы k =14
<u>19</u>	Северо- Кавказский ФО	0,01	3000	(1,3)	85	Треугольное на отрезке (1, 4) и модой, равной 2
<u>18</u>	Центральный ФО	0,02	4000	(-1, 3)	90	Релея с модой, равной 7.
<u>17</u>	Южный ФО	0,015	5000	(-3, 4)	95	Логистическое с параметрами масштаба и сдвига 9 и 4 соответственно
<u>16</u>	Приволжский ФО	0,025	5500	(-2, 4)	100	Хи-квадрат распределение с числом степеней свободы k =7
<u>15</u>	Уральский ФО	0,03	2700	(3,4)	55	F-распределение с числом степеней свободы k_1 =16 и k_2 =17
<u>14</u>	Сибирский ФО	0,035	3200	(3, 4)	66	Логистическое с параметрами масштаба и сдвига 5 и 2 соответственно.
<u>13</u>	Дальневосточный ФО	0,01	4400	(0,3)	100	F-распределение с числом степеней свободы k_1 =5 и k_2 =22
<u>12</u>	Северо- Кавказский ФО	0,02	5600	(-1,5, 3)	70	Распределение Стьюдента с

					числом степеней
	0.04.7	7 000	(1.7.0)		свободы k =9
Центральный ФО	0,015	5900	(1,5, 3)	80	Релея с модой, равной 10.
Южный ФО	0,025	3300	(-2, 4)	60	Хи-квадрат распределение с числом степеней свободы k =19
Приволжский ФО	0,03	4600	(0,4)	58	F-распределение с числом степеней свободы k_1 =11 и k_2 =10.
Уральский ФО	0,035	5400	(0,2)	68	Показательное распределение с математическим ожиданием, равным 100.
ФО	0,01	6000	(2,1)	73	Равномерное распределение на отрезке (1,2)
Дальневосточный ФО	0,02	6500	(-2, 1)	45	Распределение Стьюдента с числом степеней свободы k =16
Северо- Кавказский ФО	0,015	2700	(3,1)	56	Релея с модой, равной 12.
Центральный ФО	0,025	3600	(-3, 1)	67	Логистическое с параметрами масштаба и сдвига б и 2 соответственно.
Южный ФО	0,009	4800	(4, 2)	78	Хи-квадрат распределение с числом степеней свободы k =13
Приволжский ФО	0,01	5100	(-4,2)	87	F-распределение с числом степеней свободы k_1 =8 и k_2 =22
Сибирский ФО	0,015	4800	(3,5)	66	Релея с модой, равной 17.
	ФО Приволжский ФО Уральский ФО Сибирский ФО Дальневосточный ФО Северо- Кавказский ФО Центральный ФО Приволжский ФО Приволжский ФО Сибирский	Южный ФО 0,025 Приволжский ФО 0,03 Уральский ФО 0,035 Сибирский ФО 0,01 Северо- Кавказский ФО 0,015 Центральный ФО 0,025 Приволжский ФО 0,009 Приволжский ФО 0,015 Сибирский 0,015	Южный фО 0,025 3300 Приволжский фО 0,03 4600 Уральский фО 0,035 5400 Сибирский фО 0,01 6000 Дальневосточный фО 0,02 6500 Кавказский фО 0,015 2700 Центральный ФО 0,025 3600 Южный фО 0,009 4800 Приволжский фО 0,01 5100 Сибирский 0,015 4800	Южный фО 0,025 3300 (-2, 4) Приволжский фО 0,03 4600 (0, 4) Уральский фО 0,035 5400 (0,2) Сибирский фО 0,01 6000 (2, 1) Дальневосточный фО 0,02 6500 (-2, 1) Северо- Кавказский фО 0,015 2700 (3, 1) Центральный ФО 0,025 3600 (-3, 1) Южный фО 0,009 4800 (4, 2) Приволжский фО 0,01 5100 (-4, 2) Сибирский 0,015 4800 (3, 5)	Южный ФО 0,025 3300 (-2, 4) 60 Приволжский ФО 0,03 4600 (0, 4) 58 Уральский ФО 0,035 5400 (0,2) 68 Сибирский ФО 0,01 6000 (2, 1) 73 Дальневосточный ФО 0,02 6500 (-2, 1) 45 Северо-Кавказский ФО 0,015 2700 (3, 1) 56 Кавказский ФО 0,025 3600 (-3, 1) 67 Иожный ФО 0,009 4800 (4, 2) 78 Приволжский ФО 0,01 5100 (-4, 2) 87 Сибирский 0,015 4800 (3, 5) 66