Question 1

Assume M1 is operating in saturation and that $g_{m1} >> g_{ds1}$.

IB is an ideal current source

The body effect may be ignored in the analysis.

- (i) Draw the small signal model for the circuit shown in Figure 1. Ignore all capacitances.
- (ii) Derive an expression for the impedance at the output node.
- (iii) What is the low-frequency small signal voltage gain (vout/vin)?
- (iv) The circuit shown in Figure 1 is required to drive a resistive load of $1k\Omega$. What is the requirement on g_{m1} if the small-signal attenuation of the stage is not to be greater than 6dB?

Question 2

Figure 2 shows a cascode gain stage. I_1 and I_2 are ideal current sources. For the questions below ignore the body effect.

- (i) Draw the small signal model for the circuit shown in Figure 2. Ignore all capacitances.
- (ii) The voltage gain of this stage can be approximated by $v_{out}/v_{in}=g_{m1}r_{out}$ where r_{out} is the impedance at the output node. Derive an expression for v_{out}/v_{in} in terms of the small signal transistor parameters. Reduce the expression to its simplest form assuming $g_{m1}=g_{m2}=g_{m3}=g_{m}$, $g_{ds1}=g_{ds2}=g_{ds3}=g_{ds}$, $g_{m}>>g_{ds}$
- (iii) The circuit is to be biased for optimal low-voltage operation. If $V_{BIAS1}=1.25\text{V}, \ V_T=1\text{V}, \ I_1=100\mu\text{A}$ $(\text{W/L})_{\text{M1}}=(\text{W/L})_{\text{M2}}=(\text{W/L})_{\text{M3}}=16\mu\text{m}/1\mu\text{m}$ calculate the minimum value of the voltage at the output node (i.e. at the drain of M2) for both M1 and M2 to be in saturation and the value of I₂ necessary to achieve this.

Neglect λ for this calculation.

(iv) For low power I_2 is changed to $40\mu A$. What value of $(W/L)_{M3}$ is required to preserve the bias conditions of M1 and M2.

Question 3

Assume M1 and M2 are operating in saturation and ignore the body effect. Assume that $g_{m1} >> g_{ds1}$

- (i) Draw the small signal model for the circuit shown in Figure 2.
 Ignore all capacitances.
 What is the low-frequency small signal voltage gain (v_{out}/v_{in})?
- (ii) What is the input-referred thermal noise voltage in terms of R_L, the small signal parameters of M1 and M2, Boltzmann's constant k and temperature T?
- (iii) If a capacitor C_L is connected between the output node and ground what is the total integrated thermal noise at the output node?

You may assume the following:

For the area underneath the curves to be the same then $f_n = (\pi/2)^* f_p$

(iv) Using the result of (iii) calculate the signal-to noise ratio at the output if the input signal v_{in} is a 20mV_{rms} sine wave with a frequency much lower than the frequency of the pole at the output node.

For this calculation take $V_{GS1}\text{=}1\text{V},\,|V_T|=0.75\text{V}$, $R_L\text{=}5\text{k}\Omega,\,C_L\text{=}1\text{pF}.$

The drain current of M1 is 100μA.

Boltzmann's constant k=1.38X10⁻²³J/oK, temperature T=300oK.