Lecture 4.5 : 게임이론 / Generalized Vector Space Fastcampus Math Camp

신승우

Sunday 17th June, 2018

Dice Throwing Game

두 명의 플레이어 R,C가 주사위를 각자 던져서, 두 눈의 차이만큼 점수를 얻는 게임이 있다고 하자. 이 때, R이 주사위를 던져서 나온 수를 각 row에, C가 던져서 나온 수를 각 column에 대응시킨 후 교차점을 R이 얻는 점수로 하는 표를 그리면 위와 같다. 이 때, 위 표를 게임을 나타내는 행렬로 Payoff Matrix라 한다. 만약 C가 얻는 점수와 R이 얻는 점수의 합이 일정하다면, 이러한 게임을 제로섬 게임이라고 한다.

Expected Value

이 때, 플레이어 R이 선택할 수 있는 옵션과 그 각각에 대한 확률을 row vector, C는 column vector으로 나타내자. 그러면 다음과 같이 쓸 수 있다.

$$\vec{p} = \begin{bmatrix} p_1 & p_2 & \dots & p_n \end{bmatrix} \tag{1}$$

$$\vec{q} = \begin{bmatrix} q_1 \\ q_2 \\ \dots \\ q_n \end{bmatrix} \tag{2}$$

이 때, Payoff Matrix를 A라고 할 때, R이 얻는 점수의 기댓값은 $E(\vec{p}, \vec{q}) = \vec{p}A\vec{q}$ 라고 볼 수 있다.

Expected Value: Fair Dice

pAq

$$= \begin{pmatrix} 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \end{pmatrix} \begin{pmatrix} 0 & -1 & -2 & -3 & -4 & -5 \\ 1 & 0 & -1 & -2 & -3 & -4 \\ 2 & 1 & 0 & -1 & -2 & -3 \\ 3 & 2 & 1 & 0 & -1 & -2 \\ 4 & 3 & 2 & 1 & 0 & -1 \\ 5 & 4 & 3 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1/6 \\ 1/6 \\ 1/6 \\ 1/6 \\ 1/6 \end{pmatrix}$$

$$= \begin{pmatrix} 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \end{pmatrix} \begin{pmatrix} -15/6 \\ -9/6 \\ -3/6 \\ 3/6 \\ 9/6 \end{pmatrix}$$

$$= 0$$

Expeced Value: Unfair Dice

만약 R이 던지는 주사위가 조작되어 있어서, 확률이 균등하게 $\frac{1}{6}$ 이 아니라 (1/101/101/51/51/51/5)라고 해 보자. 그러면 기대값은 아래와 같이

p*A*q

$$=\begin{pmatrix} 1/10 & 1/10 & 1/5 & 1/5 & 1/5 & 1/5 \end{pmatrix} \begin{pmatrix} 0 & -1 & -2 & -3 & -4 & -5 \\ 1 & 0 & -1 & -2 & -3 & -4 \\ 2 & 1 & 0 & -1 & -2 & -3 \\ 3 & 2 & 1 & 0 & -1 & -2 \\ 4 & 3 & 2 & 1 & 0 & -1 \\ 5 & 4 & 3 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1/6 \\ 1/6 \\ 1/6 \\ 1/6 \\ 1/6 \\ 1/6 \end{pmatrix}$$

$$= \frac{1}{10} \cdot \frac{1}{6} \begin{pmatrix} 1 & 1 & 2 & 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} -15 \\ -9 \\ -3 \\ 3 \\ 9 \\ 15 \end{pmatrix} = \frac{24}{60} = \frac{2}{5}$$

바뀐다.

Strategy Profile

여기서, 위에서 나온 벡터 \vec{p} , \vec{q} 를 Strategy Profile이라고 한다.

- strategy profile의 원소의 합은 1이다.
- strategy profile이 1과 0으로만 이루어져 있다면, pure strategy라고 한다. 그렇지 않으면 mixed strategy라고 한다.

Finding Equilibrium: min-max

위에서 언급된 게임에서, 모든 가능한 strategy profile들 \vec{p} , \vec{q} 에 대해서 다음이 성립하는 $\vec{p*}$, $\vec{q*}$ 가 항상 존재한다.

$$E(\vec{p*}, \vec{q}) \le E(\vec{p*}, \vec{q*}) \le E(\vec{p}, \vec{q*}) \tag{3}$$

이 때, $E(\vec{p*}, \vec{q*})$ 를 게임의 값(value)라고 하며, 양자는 그러한 $\vec{p*}, \vec{q*}$ 를 선택하게 된다. 이를 내쉬 균형이라 한다.

예시를 들어서 살펴보자. 우선, p와 q가 pure strategy인 경우 두 가지를 먼저 살펴보자.

Dice Game Revisited

만약 위 주사위 게임에서, R과 C가 각자 원하는 대로 주사위를 조작해서 게임이 임한다고 가정하자. 그렇다면 둘 모두 6만 나오는 주사위를 가지고 게임할 것이다. 이를 앞에서 언급한 슬라이드를 이용하여 생각해 보자.

		GO Minutes CSI Yes, Deat				
	My Name is Earl	60	20	30	55	
NBC	Dateline	50	75	45	60	
	Law & Order	70	45	35	30	

위와 같은 경우, 각 숫자는 R, 즉 여기서는 NBC의 시청율이라고 하자. 이 때, NBC와 CBS가 선택할 방영 프로그램은 무엇일지 생각해 보자.

먼저, NBC의 경우 NBC가 얻을 최소값을 최대화하고 싶어한다고 생각하자. (min-max) 이 때, 선택할 수 있는 전략은 Dateline을 방영하는 것이다.

CBS의 경우 NBC가 얻을 최댓값을 최소화하고 싶어한다고 생각하자. (max-min) 이 때, 선택할 수 있는 전략은 CSI를 방영하는 것이다. 이와 같이 고르면 '안전한' 선택을 하는 것으로 보인다. 이것이 정말 최적일까?

		60	Minutes Minutes	3S inot S	Tes Dear
NBC	My Name is Earl	60	20	30	55
	Dateline	50	75	45	60
	Law & Order	70	45	35	30

이 경우, 양자는 암묵적으로 (Dateline, CSI)에 합의하게 되며, 그렇게 방영할 경우 양자의 이득이 극대화된다고 판단할 것이다. 즉, 양자 중 다른 한 사람이 전략을 변화시키지 않으면, 다른 사람도 전략을 변화시키지 않을 것이다. 이런 경우를 stable한 내쉬 균형이라고 한다. 반대로, 그 점에서 한 사람이 조금 전략을 변형시킬 때 양자의 전략이 극단적으로 변한다면 이러한 내쉬 균형을 unstable한 내쉬 균형이라고 한다. 위와 같은 식으로 고를 때, 최적이 됨을 증명하자. 즉,

$$E(\vec{p*}, \vec{q}) \le E(\vec{p*}, \vec{q*}) \le E(\vec{p}, \vec{q*}) \tag{4}$$

임을 증명하자.

가정에 따라서 $\vec{p*}$, $\vec{q*}$ 은 각각 pure strategy로, $\vec{e_r}$, $\vec{e_s}$ 로 볼 수 있다. 그러면, 위와 같이 $\vec{e_r}$, $\vec{e_s}$ 를 고르는 것은 곧 $\forall ja_{rj} \leq a_{rs}$, $\forall ia_{is} \geq a_{rs}$ 를 고르는 것이다.

$$E(\vec{e_r}, \vec{q}) = \vec{e_r} A \vec{q} \le a_{rs} = E(\vec{e_r}, \vec{e_s})$$
(5)

또, 비슷하게

$$E(\vec{e_r}, \vec{q}) = \vec{e_r} A \vec{q} \le a_{rs} = E(\vec{e_r}, \vec{e_s})$$
(6)

이다. 따라서 최적해가 된다.

Finding Equilibrium: general case

2 player, 2 options : 2-vector \vec{p} , \vec{q} 와 2 by 2 행렬 A에 대해서, $E(p,q) = pa_{11}q + pa_{12}(1-q) + (1-p)a_{21}q + (1-p)a_{22}(1-q)$

이 때 극점은 각각

$$0 = rac{\partial E}{\partial p} = a_{11}q + a_{12}(1-q) - a_{21}q - a_{22}(1-q)$$

$$0 = \frac{\partial E}{\partial a} = pa_{11} - pa_{12} + (1-p)a_{21} - (1-p)a_{22}$$

으로 구할 수 있다.

Chicken Game

2차선에서 각자 반대 방향으로 달리는 차가 있다. 이 때, 이들 간 payoff matrix는 둘이 같은 도로를 고를 경우 0, 다른 도로를 고를 경우 1이다. 이 때, 가능한 내쉬균형을 모두 구해보자.

Wardrop Model

Generalized Arithematic Operations

이때까지 벡터, 행렬 등의 선형대수학적 객체들의 더하기와 상수배의 operation에 대해서 다루었다. 이제 이 연산을 확장해 보자. 즉, 이제부터는 더하기, 곱하기 등은 굳이 사칙연산일 필요가 없다. 예컨대, 함수끼리의 곱셈을 다음과 같이 정의할 수도 있다.

$\int f \bullet g dx$

더하기 역시 정의하기 나름이다. 이제부터 이러한 일반화된 사칙연산을 고려하기 위한 체계를 세워보겠다.

항등원과 역원

어떤 집합 S에서의 이항연산 f에 대해서,

- 집합 S의 모든 원소 s에 대해서 f(s,i) = f(i,s) = s 이면 i를 그 연산의 항등원이라고 한다.
- 집합 S의 어떤 원소 s에 대해서 f(s, t) = f(t, s) = i 이면 t를 s의 역원이라고 한다.

Generalized Vector Space

어떤 집합 F 위에서 정의된 벡터공간 V는 어떤 집합 V와 F의 원소 a,b 와 V의 원소 \vec{v} , \vec{u} 에 대해서 다음이 성립하는 벡터연산 더하기와 스칼라곱, 그리고 덧셈의 역원으로 정의된다. 이 때, F를 이 벡터공간의 스칼라라고 한다.

- 벡터덧셈의 교환법칙 / 결합법칙
- 벡터덧셈의 항등원 / 역원
- 스칼라의 곱셈에서의 항등원 1에 대해서, $1\vec{v} = \vec{v}$
- $\bullet (ab)\vec{v} = a(b\vec{v})$
- $a(\vec{v} + \vec{u}) = a\vec{v} + a\vec{u}$
- $\bullet (a+b)\vec{v} = a\vec{v} + b\vec{v}$

여기서, 스칼라곱과 벡터-스칼라곱이나 스칼라끼리의 합과 벡터-벡터간의 합은 다른 operation이다.

Examples of an Abstract Vector Space

- Polynomials with degree $\leq n$
- Matrices
- Linear Transformations
- Functions from a specific domain (will be revisited after few weeks)
- Random Variables (will be revisited after few weeks)

예시 : \mathbb{R}^2 에서 \mathbb{R}^2 로의 선형변화

 \mathbb{R}^2 에서 \mathbb{R}^2 로의 선형변환은 2 by 2 행렬로 나타내어질 수 있다. 따라서, 행렬의 덧셈과 실수배를 이용하여 선형변환의 벡터공간을 정의할 수 있다. 이제부터 이 공간의 기저와 좌표, 그리고 2차원 좌표계에서 선형변환 벡터들이 어떠한 의미를 가지는지를 알아볼 것이다.

예시 : \mathbb{R}^2 에서 \mathbb{R}^2 로의 선형변환

먼저, 다음의 행렬들을 생각해 보자.

$$\vec{e_1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \vec{e_2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \vec{e_3} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \vec{e_3} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

이 행렬들은 명백하게 2 by 2 행렬이므로, \mathbb{R}^2 에서 \mathbb{R}^2 로의 선형변환이다.

이들 벡터는 선형독립일까? 또, 위 4개의 벡터는 기저가 될까?

Linear Independence of an Abstract Vector Space

위 4개의 벡터가 선형독립이기 위해서는 c_ie_i 을 만족하는 c_i 가 0뿐이여야한다. 위 경우,

$$c_i \vec{e_i} = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$$
 이므로 선형독립임을 알 수 있다.

또한, 임의의 2 by 2 행렬을 G를 적절히 조정하여 만들 수 있으므로, 기저임을 알 수 있다.

예시 : \mathbb{R}^2 에서 \mathbb{R}^2 로의 선형변환

위와 같이 선형변환의 기저를 찾은 것은 어떤 의미가 있을까? 이는 이제부터 우리가 \mathbb{R}^2 의 한 점에서 \mathbb{R}^2 의 한 점으로 대응시키는 선형변환을 언제나 4개의 선형변환을 조합하여 하는 것으로 이해할 수 있다는 점이다.