Problem Set #2

Inner Product Space Zeshun Zong

Exercise 1

RHS =
$$\frac{1}{4}(\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2) = \frac{1}{4}(\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle - \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle)$$

= $\frac{1}{4}(\langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle - \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{y} \rangle)$
= $\frac{1}{4}(4\langle \mathbf{x}, \mathbf{y} \rangle) = \langle \mathbf{x}, \mathbf{y} \rangle = \text{LHS}$

RHS =
$$\frac{1}{2} (\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle)$$

= $\frac{1}{2} (\langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle)$
= $\frac{1}{2} (2 \langle \mathbf{x}, \mathbf{x} \rangle + 2 \langle \mathbf{y}, \mathbf{y} \rangle) = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$
= $\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 = \text{LHS}$

Exercise 2

RHS =
$$\frac{1}{4}$$
[$\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle - \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle + i \langle \mathbf{x} - i\mathbf{y}, \mathbf{x} - i\mathbf{y} \rangle - i \langle \mathbf{x} + i\mathbf{y}, \mathbf{x} + i\mathbf{y} \rangle$]
= $\frac{1}{4}$ [$\langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle - \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle$
- $\langle \mathbf{y}, \mathbf{y} \rangle + i \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle - i \langle \mathbf{y}, \mathbf{y} \rangle - i \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle$
- $\langle \mathbf{y}, \mathbf{x} \rangle + i \langle \mathbf{y}, \mathbf{y} \rangle$]
= $\frac{1}{4}$ (4 $\langle \mathbf{x}, \mathbf{y} \rangle$) = $\langle \mathbf{x}, \mathbf{y} \rangle$ = LHS

Exercise 3

We need the following computation:

We need the following computed
$$\langle x, x^5 \rangle = \int_0^1 x^6 dx = \frac{1}{7}$$

$$\sqrt{\langle x, x \rangle} = \sqrt{\int_0^1 x^2 dx} = \sqrt{\frac{1}{3}}$$

$$\sqrt{\langle x^5, x^5 \rangle} = \sqrt{\int_0^1 x^1 0 dx} = \sqrt{\frac{1}{11}}$$

$$\langle x^2, x^4 \rangle = \int_0^1 x^6 dx = \frac{1}{7}$$

$$\sqrt{\langle x^2, x^2 \rangle} = \sqrt{\int_0^1 x^4 dx} = \sqrt{\frac{1}{5}}$$

$$\sqrt{\langle x^4, x^4 \rangle} = \sqrt{\int_0^1 x^8 dx} = \sqrt{\frac{1}{9}}$$
We now have the following:

1.

$$\theta_1 = \arccos(\frac{\langle x, x^5 \rangle}{\|x\| \|x^5\|}) = \arccos(\frac{\frac{1}{7}}{\sqrt{\frac{1}{3}}\sqrt{\frac{1}{11}}}) = \arccos(\frac{\sqrt{33}}{7})$$

2.

$$\theta_2 = \arccos(\frac{\langle x^2, x^4 \rangle}{\|x^2\| \|x^4\|}) = \arccos(\frac{\frac{1}{7}}{\sqrt{\frac{1}{5}}\sqrt{\frac{1}{9}}}) = \arccos(\frac{\sqrt{45}}{7})$$

Exercise 8

1. Observe that $\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \sin(t) dt = 0$, $\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \cos(2t) dt = 0$, $\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \sin(2t) dt = 0$, $\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \cos(2t) dt = 0$, $\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \sin(2t) dt = 0$, and $\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(2t) \sin(2t) dt = 0$.

Moreover, we have $\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \cos(t) dt = 1$, $\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \sin(t) dt = 1$, $\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(2t) \cos(2t) dt = 1$, and $\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(2t) \sin(2t) dt = 1$.

Hence S is an orthonormal set.

2.

$$||t|| = \sqrt{\frac{1}{\pi} \int_{-\pi}^{\pi} t^2 dt} = \sqrt{\frac{2}{3}\pi^2} = \frac{\sqrt{6\pi}}{3}.$$

- 3. Observe that $\langle \cos(t), \cos(3t) \rangle = 0$, $\langle \sin(t), \cos(3t) \rangle = 0$, $\langle \cos(2t), \cos(3t) \rangle = 0$, $\langle \sin(2t), \cos(3t) \rangle = 0$. Hence we have $\operatorname{proj}_X(\cos(3t)) = 0$.
- 4. Note that $\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t)t dt = 0$, $\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t)t dt = 2$, $\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(2t)t dt$, $\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(2t)t dt = -1$. Hence, $\operatorname{proj}_X(t) = 2\sin(t) \sin(2t)$.

Exercise 9

Exercise 10

Proof. Suppose $Q = [\mathbf{q_1}, \mathbf{q_2}, ..., \mathbf{q_n}]$ and $\mathbf{x} = [x_1, x_2, ..., x_n]^T, \mathbf{y} = [y_1, y_2, ..., y_n]^T$. Then

$$\langle Q\mathbf{x}, Q\mathbf{y} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{x_i} y_j \langle \mathbf{q_i}, \mathbf{q_j} \rangle.$$

By definition, this equals $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{x_i} y_j$ only when $\langle \mathbf{q_i}, \mathbf{q_j} \rangle = 0$ if $i \neq j$ and $\langle \mathbf{q_i}, \mathbf{q_j} \rangle = 0$ if i = j. This indicates that $Q^H Q = I$ and $QQ^H = I$. For the other direction, observe that $Q^H Q = I$ and $QQ^H = I$ imply $\langle \mathbf{q_i}, \mathbf{q_j} \rangle = 0$ if $i \neq j$ and $\langle \mathbf{q_i}, \mathbf{q_i} \rangle = 0$ if i = j. The result then follows immediately.

$$||Q\mathbf{x}|| = \sqrt{\langle x_1\mathbf{q_1} + x_2\mathbf{q_2} + \dots + x_n\mathbf{q_n}, x_1\mathbf{q_1} + x_2\mathbf{q_2} + \dots + x_n\mathbf{q_n} \rangle}$$

$$= \sqrt{\sum_{i,j} \overline{x_i}x_j \langle \mathbf{q_i}, \mathbf{q_j} \rangle}$$

$$= \sqrt{\sum_i \overline{x_i}x_i \times 1} = ||\mathbf{x}||$$

To show that Q^{-1} is an orthonormal matrix, observe that $QQ^{H}=I$ and $QQ^{-1}=I$. This implies that $Q^{-1}=Q^{H}$. Then it is trivially true that $Q^{-1}^{H}Q^{-1}=I$ and $Q^{-1}Q^{-1}^{H}=I$.

The columns of Q are orthonormal have been shown in part 1.

Since Q is an orthonormal matrix, we know $Q^{-1} = Q^H$. Hence, $\det(Q) \det(Q^H) = \det(QQ^H) = \det(I) = 1$. Since $\det(Q) = \det(Q^H)$, it follows that $|\det(Q)| = 1$. The converse is not true.

Observe that $(Q_1Q_2)(Q_1Q_2)^H = Q_1Q_2Q_2^HQ_1^H = Q_1IQ_1^H = Q_1Q_1^H = I$. Also, $(Q_1Q_2)^H(Q_1Q_2) = Q_2^HQ_1^HQ_1Q_2 = Q_2^HIQ_2 = I$. Hence Q_1Q_2 is also an orthonormal matrix.

Exercise 11

Suppose there are only r independent vectors. Then we would first get r orthonormal vectors and then get n-r zero vectors.

Sorry I don't have time to TeX out the rest of the problems.

3.16
1) (at
$$D = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
Here $QD = \begin{bmatrix} 9 & 9 & -1 & 9 & 9 \end{bmatrix} \begin{bmatrix} -1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

$$= \begin{bmatrix} -9 & 9 & -1 & 9 & 9 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

is still an orthonormal matrix and D-1R is still an upper-triangular matrix.

Observe that

QD· D-'R = Q(DD-')R = QR = A Hence A = (QD)(D-'R) is another form of QR decomposition, so it is not unique.

- 2) We need the following (emmarta:
 - O 24 O1 and O2 one orthonormal matrices, then so does $O_1^T O_2$.

$$proof: (Q_1^TQ_2)(Q_1^TQ_2)^T = (Q_1^TQ_2)(Q_2^TQ_2)$$

$$= Q_1^T(Q_1Q_2^T)Q_1 = Q_1^TQ_1 = 1$$

$$(Q_1^TQ_2)^T(Q_1^TQ_2) = Q_2^TQ_1Q_1^TQ_2 = 1$$

$$(Q_1^TQ_2)^T(Q_1^TQ_2) = Q_2^TQ_1Q_1^TQ_2 = 1$$

② 27 U is an invertible upper-triangular matrix, than so does U^{-1} .

proof easily follows from induction

(3) if U1 and U2 are upper-triangular matrix, then so does U1U2. (nxn matrix)

Proof: (et $U_1 = [Oij]$ $U_2 = [bij]$ Since both one upper triangular, of follows that Oij = 0 if C > j, b < j = 0 if C > j.

Let $C = [C_{ij}] = U_i U_2$, then $C_{ij} = \sum_{h=1}^{n} O_i(h) bh_j$.

Fix some (7)

Note that in the first term, all Gick =0 in the second term, all bki =0

Hence Cij =0 Wen i >j.

=> C 1s upper triangular.

Ø

Now, by contradiction, assume that $A = Q_1R, \text{ and } A = Q_2R_2, \text{ where both } R, \text{ and } R_2 \text{ have positive oliagonal elaments.}$

Then O, R, = O2R2 => O, TQ2 = R, R2-1

(et M = 0, TQ2 = R, R2-1

By Centre 2 & 3 M is upper triangular with pusitive diagonals.

It follows that M must be the identity mouthin 1.

 $\therefore R_1 R_2^{-1} = 1 \Rightarrow R_1 = R_2$

and Herefore Q,= Q2,

Home the decomposition is unique.

lan

3.17. Since R is an (nxn) upper-triangular metrix, R is invertible, so does RH.

(enand), $\forall A \in M_{(prise)}$, $A \vdash A$ is onvertible.

Now, from $A \vdash A \Rightarrow = A \vdash b$ and lemma b,

we know $x = (A \vdash A) \vdash A \vdash b$.

Since A= GR,

 $A^{H}A\vec{x} = A^{H}b$ $(\hat{G}\hat{R})^{H}(\hat{G}\hat{R})\vec{x} = (\hat{G}\hat{R})^{H}b$

=> RH GHG R 7 = RH GH b

=> Â+&x = Â+&+b => Âx = Q+6

Hence the two systems are equivalent.

W

This implies 11x-y11 7 / 11x11-11y11

Observe that since Ifiti 7,0

In the order product space
$$L^2$$
, the owner product is coloficed as $< 1.87 = (6.70)^2 dt$

is defined as
$$\langle f, g \rangle = \int_a^b \left(\overline{f} g \right)^2 dt$$
.

Hence

Proof that this is an equivalence telephonship:

- 1) Obviously 11.11a is topologically equivalent to 11.11a, by those ring m= M= 1
- So if it likes the supplies of it is allowed by the $\frac{W}{T}$ likes the supplies $\frac{W}{T}$ likes $\frac{W}{T}$ li
- The multiple surply some of the multiple surplies of the surpl
- (1) $\|\vec{x}\|_{1} \leq \|\vec{x}\|_{1} \leq \|\vec{x}\|_{1}$ $Since \|\vec{x}\|_{1}^{2} = \sum_{i=1}^{n} \gamma_{i}^{2}$ $\|\vec{x}\|_{1}^{2} = \sum_{i=1}^{n} |\gamma_{i}|^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} |\gamma_{i}||\gamma_{j}|$ $= \sum_{i=1}^{n} |\gamma_{i}|^{2} + \sum_{i\neq j} |\gamma_{i}||\gamma_{j}|$ $\geq \sum_{i=1}^{n} |\gamma_{i}|^{2} = \|\vec{x}\|_{1}^{2}$

Hance 11711, 7 11711

Now take the owner product on f^n to be $\langle \vec{\pi}, \vec{y} \rangle = \sum_{i=1}^{n} \vec{\pi}_i y_i$

(et $\vec{u} = [sgn(x_i), sgn(x_i), -- sgn(x_i)]^T$ where $sgn(x_i) = \pi i / |x_i|$ when $x_i \neq 0$ and sgn(0) = 1.

Observe that $\|\vec{x}\|_1 = \sum_{c=1}^n |x_c| = \sum_{c=1}^n |x_c \cdot sgn(x_c)|$ $= \sum_{c=1}^n sgn(x_c) |x_c|$ $= |\langle \vec{u}, \vec{x} \rangle|$

By Couchy - Schwarz,

[< \vec{u}, \forall > | \in || \forall || \

Suppose The is the largest term in magnitute.

1.e. || Till = max |xi| = |xb|

Then, $\|x\|_{2}^{2} = \sum_{i=1}^{n} |x_{i}|^{2} = |x_{i}|^{2} + |x_{i}|^{2} + \dots + |x_{k}|^{2} + \dots + |x_{$

Honce 11x11, 7 11x11 5.

Movemen,

$$= n \chi_{h^{2}}$$

$$= \chi_{1}^{2} + \chi_{2}^{2} + \dots + \chi_{h^{2}}^{2} + \dots + \chi_{h^{2}}^{2}$$

$$= n \chi_{h^{2}}$$

=> ||x||; < n ||x||; => ||x||, <]n ||x||.

Hence, IlxIIn & IlxII, & In IlXIIn

3.28.

₩₩ ₹ ₹ 11 × 11 × 11 × 11 × 11 × 12 3 26(i)

Take sup on both sides and we get IIAII, > In IIAII.

∀x≠0 In 11x112 > 11x11, by 32616)

Take sup on both sides and we get july Alls > 11 Alls

Here In | | A | | & | A | | & [Tr | | A | |]

(ii) $\frac{1}{Jm} \|A\|_{\infty} \leq \|A\|_{2} \leq Jm \|A\|\|_{\infty}$ $\forall \vec{x} \neq \vec{o}, \quad \frac{\|Ax\|_{1}}{\|x\|_{1}} \approx \frac{\|Ax\|_{\infty}}{\|n\|x\|_{\infty}} \quad \forall \mathbf{g} \; \mathbf{3}.26(n)$

Take sup on both sides,

=> IIAII TI IIAII C

Take sup on both sides and we have

11.2112 < In 11.211.

Hence In II Alla & II All, & In II Alla

3.29. We first show that $||Q||_2 = ||Where Q||_3$ orthonormal matrix.

Observe that $\forall \vec{x} \neq \vec{0}$.

 $|| \nabla \nabla^{\mathsf{T}} (\mathbf{x} | \mathbf{y})|^{2} = \langle \nabla \mathbf{x}, \nabla \mathbf{x} \rangle = \langle \nabla \mathbf{x} | \nabla \mathbf{y} \rangle$ $= \langle \nabla^{\mathsf{T}} \nabla \mathbf{y} \rangle = \langle \nabla \mathbf{x}, \nabla \mathbf{y} \rangle = \langle \nabla \mathbf{x},$

Hence, Ax = 110x112 =1

 \Rightarrow $||Q||_2 = \sup_{x \neq 0} \frac{||Q_x||_2}{||x||_2} = 1$

By def. 11 All = sup 11 Ax111

=) ||AxII, & || AII, || XII, . , YX

Take sup on both sides, we have

 $\|R_x\|_2 = \sup_{\|A\|_2 \to \infty} \frac{\|A_x\|_2}{\|A\|_2} \le \|X\|_2$

I don't know what's next.

30. To show that 11-11s matrix norm, it suffices to show nonregativity, homogeneity and triangular inequality $0 \ A$, $1 \ A \ = 11$

properties in the second of the most specific

· Distribution of Francis (

with a grate, it is A

211 A11 6 = 11-2 A2 11 = 211 A21 1 = 211 A61

લાકાર્લો કેમની મહાલ ફુલ હતું કહે. હસ

Hence 11-11s is a matrix norm.

3.37 We first find a set of orthonormal bosons for V.
Let
$$p_i = 1$$
 $Q_i = \frac{p_i}{11p_i n_i} = \frac{1}{\int_0^1 1 dx} = 1$

(c)
$$p_1 = x_1 - p_1 p_2 x_1 = x_2 - \frac{1}{2}$$

 $p_2 = \frac{p_1}{p_1 p_2} = \int_{12}^{12} (x_2 - \frac{1}{2})$

(24
$$p_3 = \sqrt{-p_{10}} \chi^3 - p_{10} j_{\overline{p_2}(x_0, \frac{1}{2})} \chi^2 = \chi^2 - \chi + \frac{1}{6}$$

 $q_3 = \frac{p_3}{p_3} = \int_{180}^{180} (\chi^3 - \chi + \frac{1}{4})$

Then.
$$\vec{q} = \sum_{i=1}^{3} \angle (\vec{q}_i) \vec{q}_i$$

$$= \angle (1) \cdot 1 + \angle (\sqrt{12}(x - \frac{1}{2})) \sqrt{180}(x^2 - x + \frac{1}{6})$$

$$+ \angle (\sqrt{180}(x^2 - x + \frac{1}{6})) \sqrt{180}(x^2 - x + \frac{1}{6})$$

$$= 0 + 12(x-\frac{1}{2}) + 180(x^2-x+\frac{1}{6})$$

$$= 180x^2 - 168x + 24$$

It can be renfied that $\forall \vec{p} \in V$, $L[p] = \langle 9 \cdot p \rangle$.

3.38

$$D = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array} \right]$$

$$\mathcal{D}_{\mathbf{x}} = \mathcal{D}_{\mathbf{x}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

3.39

1) By definition,

$$<(S+T)^*(w), v >_V = < w, (S+T)^*(v) >_W$$

= $< w, S(v) >_W + < w, T(v) >_W$
= $< S^*(w), v >_V + < T^*(w), v >_V$
= $< S^*(w) + T^*(w), v >_V$

$$\langle (\partial T)^*(w), V \rangle = \langle W, (\omega T)^*(V) \rangle$$

$$= \langle A \langle W, T(v) \rangle$$

$$= \langle A \langle T^*(w), V \rangle$$

$$= \langle T^*(w), V \rangle$$

$$= \langle T^*(w), V \rangle$$
Hence $(\partial T)^* = T^*$

2)
$$\langle (S^*)^*(w), v \rangle_{V} = \langle W, S^*(v) \rangle_{W}$$

$$= \langle S^*(v), W \rangle_{W}$$

$$= \langle V, S(w) \rangle_{V}$$

$$= \langle S(w), V \rangle_{V}$$

Hence $(S^*)^* = S$

(et $\vec{w}, \vec{v} \in V$

3) $\langle (S^*)^*(w), V \rangle_{V} = \langle W, S^*(v) \rangle_{V}$

$$= \langle W, S^*(w), T(v) \rangle_{V}$$

$$= \langle V, [(w), T(v) \rangle_{V}$$

Hence $(S^*)^* = T^* = T^*(T^*)$

4) By 3)

$$(TT^{-1})^{*} = (T^{-1})^{*}(T^{*}) = 1$$

 $\Rightarrow (T^{-1})^{*} = (T^{*})^{-1}$

340

) By definition, be B. B. & Ma(IF)

< A*B2, B17F = < B2, AB17F.

Since < AHBa, B, >F = tr[(AHBa)HB1]

= t [B, H AB,] = t [B, H (AB,)]

= < B2, AB17 F

me have < A*B1, B1 > F = < A+B1, B1 > F,

 $\forall B_1, B_2$

=) A* = AH

0

2) By 1), we know A* = AH

Hences (A)A, A, A, 7 F

 $= tr ((A_2A_1^*)^H A_2)$

= b- ((A,*)+A,+A;)

= t- ((A,H)H A,H A,)

= tr (A, A, HA,)

= tr (A3H A3A1)

= < A2, A3A17F

711

3.44.

If $\mathbf{F} = 0$, then $\mathbf{F} \in R(A)$ and $\mathbf{F} = \vec{0}$ is a solution to $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$.

Now if $\mathbf{F} \neq 0$ Since $\mathbf{F}^{m} = R(A) \oplus N(A^{H})$,

Either $\mathbf{F} \in R(A)$ or $\mathbf{F} \in N(A^{H})$ If $\mathbf{F} \in R(A)$, $\mathbf{F} \neq 0$ solution,

If $\mathbf{F} \in N(A^{H})$, (et $\mathbf{F} = \vec{\mathbf{F}}$,

since $\mathbf{F} \neq \vec{\mathbf{0}}$, $c\vec{\mathbf{y}}$, $\vec{\mathbf{F}} > = c\vec{\mathbf{F}}$, $c\vec{\mathbf{F}} > 7$.

345.

We need the following Lemmarta,

1) tr(AB) = tr(BA) , A,B & Mn(IR)

2) $b(A) = b(A^T)$, $A \in Mn(IR)$

3) to (A+B) = to (A+to (B), A, B & Mn(IR)

We first show that Shewn(IR) C Symn(IR)

Ack B & Skewn(IR), VA & Symn(IR),

 $\langle B,A \rangle = tr(B^TA) = tr(-BA) = -tr(BA)$ on the other hand,

 $\langle B,A \rangle = tr(B^TA) = tr((B^TA)^T) = tr(A^TB)$ = tr(AB) = tr(BA)

Hence, tr(BA) = - tr(BA)=0

=> < B. A > = U, VA & Symn (IR)

=> Skewn (IR) ⊂ Symn (IR) 1

Next we show Symn(IR) C Skewn(IR)

Pick any AG Symn (IR)

observe that $(A+A^T)^T = A+A^T \Rightarrow A+A^T \in Sym_n(IR)$ Hence, $\langle A^T+A, A \rangle = 0$.

re. tr((AT+A)TA) = tr((A+AT)A) = tr(A2+ATA)=0

Then , t (A2) + tr (ATA) = 0

=> (A.A) = - (AT,A)

=) AT = -A

Hence DESperm(IR) and Symm(IR) - C Shewn(IR)

Finally we conclude that

Symn (IR) + = Shewn (IR)

3.46

(i) TEN(AHA)

Ax ER(A) is trivial since A maps or to Ax, so Ax is m R(A).

Since & EN(AMA),

AHAX =0 => AH (Ax)=0

Ax & N(AH)

 $(A) \mathcal{N} = (A^H A) \mathcal{N}$

O N(A"A) C N(A)

pick it & N(AHA), then AHA x=0.

4 = 0, Her x= of & N(A)

if \$ +0, we want to show Ax >0

By contradiction, assume $\Delta x \neq 0$.

Thon AH (Ax)=0 implies that Ax & N(AH)

Since $Ax \in R(A)$ and $Ax \neq 0$, this contradicts the

fact that $R(A)^{\perp} = \mathcal{N}(A^{H})$.

Hence Ax=0 and $x\in N(A)$.

Therefore N(AHA) CN(A)

(AHA) C N(AHA)

prik of EN(A). Hen Ax =0.

It follows that AHAX = AH(Ax) = AH & = O

Hence ZEN(AHA) and N(A)CN(AHA)

We conclude that $N(A^{H}A) = N(A)$

(iii) Observe that both A and $A^{H}A$ are linear transformations from $R^{m} \mapsto R^{m}$.

By tank-nullify Thm, dim(V) = tank(L) + dim(N(L))Where $L: V \mapsto W$.

Since $N(A^{H}A) = N(A)$ by ((i), we have $dim(N(A^{H}A)) = dim(N(A))$.

$$tank(A^{H}A) = olim(IR^{n}) - olim(N(A^{H}A))$$

$$= olim(IR^{n}) - olim(N(A))$$

$$= tank(A).$$

if A has linearly indep. columns, then tank(A) = n.

Since ATA 13 an (n×n) martix, it is non-singular.

(1)
$$P^2 = [A(A^{H}A)^{-1}A^{H}][A(A^{H}A)^{-1}A^{H}]$$

= $A(A^{H}A)^{-1}(A^{H}A)(A^{H}A)^{-1}A^{H}$
= $A(A^{H}A)^{-1}A^{H}$
= $A(A^{H}A)^{-1}A^{H}$

(ii) Lemma.
$$(A^{-1})^{H} = (A^{T})^{-1}$$

proof of lemma.

$$(A^{-1})^{H} A^{H} = (AA^{-1})^{H} = I^{H} = I$$

 $A^{T} (A^{-1})^{H} = (A^{T} A)^{H} = I^{H} = I$

$$P^{H} = [A(A^{H}A)^{-1}A^{H}]^{H}$$

$$= A [(A^{H}A)^{-1}]^{H} A^{H}$$

$$= A (A^{H}A)^{-1} A^{H} = P.$$

(iii) Since we know that trank will not increase M mostrix multiplication, we know that $tank(P) \leq tank(A) = n$.

Now,
$$\forall y \in R(A) \exists x, s.t. \delta x = y$$

Observe that $Py = A(A^{H}A)^{-1}A^{H}y$

$$= A(A^{H}A)^{-1}(A^{H}A) \times = A \times = y$$

So
$$n = \operatorname{rank}(A) \leq \operatorname{rank}(P)$$

348
(1)
$$P(\lambda A + \beta B) = \frac{\lambda A + \beta B + (\lambda A + \beta B)^T}{2}$$

$$= \lambda A + \beta B + \lambda A^T + \beta B^T$$

$$= \frac{\lambda A + \beta B + \lambda A^{T} + \beta B^{T}}{2} = \frac{\lambda}{2} (A + A^{T}) + \frac{\beta}{2} (B + \beta^{T})$$

$$= AP(A) + \beta P(B)$$

(2)
$$\forall A$$
, $P(P(A)) = \frac{P(A) + P(A)^T}{2}$

$$= \frac{1}{2} \left[\frac{A + A^T}{2} + \left(\frac{A + A^T}{2} \right)^T \right]$$

$$= \frac{1}{2} \left[\frac{A + A^T}{2} + \frac{A + A^T}{2} \right] = \frac{A + A^T}{2} = P(A)$$

$$\Rightarrow$$
 $p^2 = p$.

V

Now,
$$\langle A, P(B) \rangle = \langle A, \frac{B+B^T}{2} \rangle$$

$$= \frac{1}{2} \langle A, B \rangle + \frac{1}{2} \langle A, B^{7} \rangle$$

$$= \frac{1}{2} tr(A^{7}B) + \frac{1}{2} tr(A^{7}B^{7})$$

$$= \frac{1}{2} tr(A^{7}B) + \frac{1}{2} tr(BA)^{7}$$

$$= \frac{1}{2} tr(A^{7}B) + \frac{1}{2} tr(BA)$$

$$= \frac{1}{2} tr(A^{7}B) + \frac{1}{2} tr(AB)$$

Hence, Lpton Lawrence Long (Blowners of Long)

(四)

(4) Suppose
$$A \in N(P)$$

How $P(A) = A + A^{T} = 0$

$$P(B) = \frac{B + B^T}{2} = 0$$

We conclude that

17

(5) Suppose
$$B \in R(P)$$
, Hen
$$B = \frac{A + A^{T}}{2} \text{ for some } A.$$

Observe that
$$B^T = \frac{1}{2} (A + A^T)^T = \frac{1}{2} (A^T + A) = B$$

Hence
$$B \in Symn(IR)$$
 and $R(P) \subset Symn(IR)$

Conversly , if
$$B \in Sym_n(R)$$
 , then $B^T = B$.

$$P(A) = \frac{A + A^T}{2} = \frac{B + B^T}{2} = \frac{B + B}{2} = B$$

(6)
$$\|A - P(A)\|_F$$

$$= \|A - \frac{A + A^T}{2}\|_F$$

$$= \|\frac{A - A^T}{2}\|_F$$

$$= \frac{1}{2}\|A - A^T\|_F$$

$$= \frac{1}{2}\|A - A^T\|_F$$

$$= \frac{1}{2}\int b(A^TA - A^TA^T - AA + AA^T)$$

$$= \frac{1}{2}\int b(A^TA) - b(A^TA)$$

$$= \int b(A^TA) - b(A^TA)$$

$$= \int b(A^TA) - b(A^TA)$$

normal eq, ATAR = ATB