9 Compléments sur les suites

I – Propriétés éventuelles d'une suite

1 - Suites monotones

Définition 9.1 – Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On dit que

- $(u_n)_{n\in\mathbb{N}}$ est **croissante** lorsque
- $(u_n)_{n\in\mathbb{N}}$ est **décroissante** lorsque

$$\forall n \in \mathbb{N}, \quad u_n \leqslant u_{n+1},$$

$$\forall n \in \mathbb{N}, \quad u_n \geqslant u_{n+1},$$

- $(u_n)_{n\in\mathbb{N}}$ est strictement croissante lorsque
- $(u_n)_{n\in\mathbb{N}}$ est **strictement décroissante** lorsque

$$\forall n \in \mathbb{N}, \quad u_n < u_{n+1},$$

$$\forall n \in \mathbb{N}, \quad u_n > u_{n+1},$$

La suite $(u_n)_{n\in\mathbb{N}}$ est dite **monotone** (resp. **strictement monotone**) lorsqu'elle est croissante ou décroissante (resp. strictement croissante ou strictement décroissante).

Méthode 9.2 - Montrer qu'une suite est croissante ou décroissante

Pour établir qu'une suite est monotone, on peut :

1. Étudier le signe de la différence $u_{n+1} - u_n$. En effet, on sait que

$$(u_n)_{n\in\mathbb{N}}$$
 est croissante $\iff \forall n\in\mathbb{N}, u_{n+1}-u_n\geqslant 0$,

$$(u_n)_{n\in\mathbb{N}}$$
 est décroissante $\iff \forall n\in\mathbb{N}, u_{n+1}-u_n\leqslant 0.$

2. Comparer le quotient $\frac{u_{n+1}}{u_n}$ et 1 **lorsque tous les termes sont strictement positifs**. En effet, on sait que

$$(u_n)_{n\in\mathbb{N}}$$
 est croissante $\iff \forall n\in\mathbb{N}, \ \frac{u_{n+1}}{u_n}\geqslant 1,$

$$(u_n)_{n\in\mathbb{N}}$$
 est décroissante $\iff \forall n\in\mathbb{N}, \ \frac{u_{n+1}}{u_n}\leqslant 1.$

Exemple 9.3 -

1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et pour tout entier $n\geqslant 0$, $u_{n+1}=u_n^2+u_n+1$ est strictement croissante.

Je calcule la différence entre deux termes consécutifs : $u_{n+1} - u_n = u_n^2 + u_n + 1 - u_n = u_n^2 + 1$. Or $u_n^2 \ge 0$ car c'est un carré donc $u_{n+1} - u_n \ge 1 > 0$ et la suite $(u_n)_{n \in \mathbb{N}}$ est strictement croissante.

2. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout $n\in\mathbb{N}^*$ par $u_n=\frac{2^n}{n+1}$ est strictement croissante.

La suite $(u_n)_{n\in\mathbb{N}^*}$ a tous ses termes strictement positifs et pour tout entier $n\geqslant 1$,

$$\frac{u_{n+1}}{u_n} = \frac{2^{n+1}}{n+2} \times \frac{n+1}{2^n} = \frac{2 \times (n+1)}{n+2} = \frac{2n+2}{n+2} = 1 + \frac{n}{n+2} > 1.$$

Ainsi la suite $(u_n)_{n \in \mathbb{N}^*}$ est strictement croissante.

Méthode 9.4 - Variations des suites usuelles

· Cas des suites arithmétiques.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r. Alors

$$u_{n+1} = u_n + r \iff u_{n+1} - u_n = r.$$

La monotonie de la suite dépend donc du signe de r:

- ightharpoonup Si r > 0, alors $u_{n+1} u_n > 0$ et donc la suite $(u_n)_{n \in \mathbb{N}}$ est strictement croissante.
- ightharpoonup Si r<0, alors $u_{n+1}-u_n<0$ et donc la suite $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante.

Si r > 0, alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

Si r < 0, alors la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante.

· Cas des suites géométriques.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q et de premier terme u_0 . Alors

$$u_n = u_0 \times q^n$$
 et $u_{n+1} - u_n = u_0 \times q^{n+1} - u_0 \times q^n = u_0 \times q^n \times (q-1)$.

La monotonie de la suite dépend des signes de u_0 , de q^n et de (q-1).

- 1. Si q < 0, alors q^n est positif lorsque n est pair et négatif lorsque n est impair, donc la suite n'est pas monotone. On parle de suite alternée.
- 2. Si q > 0, alors la suite est monotone, croissante ou décroissante selon les cas :
 - ightharpoonup Si $u_0 > 0$ et q > 1, la suite est croissante

(les termes grandissent, dans le positif).

ightharpoonup Si $u_0 > 0$ et 0 < q < 1, la suite est décroissante (les termes rapetissent, dans le positif).

▶ Si u_0 < 0 et q > 1, la suite est décroissante

(les termes grandissent, dans le négatif).

► Si $u_0 < 0$ et 0 < q < 1, la suite est croissante

(les termes rapetissent, dans le négatif).

Exemple 9.5 – Déterminer le sens de variation des suites suivantes, définies par la donnée d'un terme initial et d'une relation de récurrence.

- 1. $u_0 = 7$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + 4$. La suite $(u_n)_{n \in \mathbb{N}}$ est une suite arithmétique de raison r = 4 > 0. Donc elle est croissante.
- 2. $v_1 = -3$ et $\forall n \in \mathbb{N}^*$, $v_{n+1} = 5v_n$. La suite $(v_n)_{n \in \mathbb{N}^*}$ est une suite géométrique de raison q = 5 > 0 et de premier terme $v_1 = -3 < 0$. Donc elle est décroissante.

2 - Suite majorée/minorée/bornée

Définition 9.6 – Soient $(u_n)_{n\in\mathbb{N}}$ une suite réelle et m et M deux réels. On dit que

• $(u_n)_{n \in \mathbb{N}}$ est **majorée** par M lorsque

• $(u_n)_{n \in \mathbb{N}}$ est **minorée** par m lorsque

$$\forall n \in \mathbb{N}, \quad u_n \leqslant M.$$

$$\forall n \in \mathbb{N}, \quad u_n \geqslant m.$$

Enfin la suite $(u_n)_{n\in\mathbb{N}}$ est dite **bornée** lorsqu'elle est à la fois majorée **et** minorée.

Méthode 9.7 - Montrer qu'une suite est majorée/minorée/bornée

Pour montrer qu'une suite est majorée, on opère de la même façon que pour une fonction : on étudie le signe de $u_n - M$ pour tout n et on montre que $u_n - M \le 0$.

De la même manière, on étudie le signe de $u_n - m$ pour tout n et on montre que $u_n - m \ge 0$ pour prouver que la suite $(u_n)_{n \in \mathbb{N}}$ est minorée par m.

Exemple 9.8 – Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $u_n=\frac{3n^2}{n^2+1}$ est majorée par 3.

Pour tout $n \in \mathbb{N}$,

$$u_n - 3 = \frac{3n^2}{n^2 + 1} - 3 = \frac{3n^2 - 3(n^2 + 1)}{n^2 + 1} = \frac{-3}{n^2 + 1}.$$

Or -3 < 0 et $n^2 + 1 > 0$ donc $\frac{-3}{n^2 + 1} < 0$. Autrement dit, $u_n - 3 < 0$ *i.e.* $u_n < 3$.

Donc la suite $(u_n)_{n\in\mathbb{N}}$ est bien majorée par 3.

II – Limite d'une suite réelle

1 – Limite finie

Définition 9.9 – Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie sur \mathbb{N} et ℓ un réel.

1. Dire que la suite $(u_n)_{n\in\mathbb{N}}$ admet pour **limite** le réel ℓ signifie que le terme u_n devient arbitrairement proche du réel ℓ pourvu que n soit suffisamment grand. On écrit alors

$$\lim_{n\to+\infty}u_n=\ell.$$

2. Une suite qui admet pour limite un réel ℓ est dite **convergente**.

Graphiquement, la suite $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$ si tout intervalle ouvert contenant ℓ contient aussi tous les termes de la suite $(u_n)_{n\in\mathbb{N}}$ à partir d'un certain rang. La distance entre les termes de la suite et sa limite tend à s'annuler, ce qui se traduit par le résultat suivant.

Proposition 9.10

La suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ si et seulement si $\lim_{n\to+\infty}u_n-\ell=0$.

Exemple 9.11 – Montrer que la suite définie pour tout entier $n \ge 1$ par $u_n = 1 - \frac{1}{n^2}$ tend vers 1 en $+\infty$.

Lorsque n tend vers $+\infty$, alors n^2 tend aussi vers $+\infty$ et donc $\lim_{n\to+\infty}\frac{1}{n^2}=0$. J'en déduis alors que

$$\lim_{n\to +\infty}u_n=\lim_{n\to +\infty}1-\frac{1}{n^2}=1-0=1.$$

2 - Limite infinie

Définition 9.12 -

• On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ admet une limite égale à $+\infty$ quand n tend vers $+\infty$ si le terme u_n prend des valeurs **positives** arbitrairement grandes, pourvu que n soit suffisamment grand. On écrit alors

$$\lim_{n\to+\infty}u_n=+\infty.$$

• On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ admet une limite égale à $-\infty$ quand n tend vers $+\infty$ si le terme u_n prend des valeurs **négatives** arbitrairement grandes, pourvu que n soit suffisamment grand. On écrit alors

$$\lim_{n\to+\infty}u_n=-\infty.$$

• Une suite qui admet une limite infinie est dite divergente.

Graphiquement, la suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ si tout intervalle ouvert de la forme $]a,+\infty[$ contient tous les termes de la suite $(u_n)_{n\in\mathbb{N}}$ à partir d'un certain rang.

Exemple 9.13 – Montrer que la suite définie $\forall n \geqslant 0$ par $u_n = \frac{n^2}{n+1}$ tend vers $+\infty$ en $+\infty$.

Les termes u_n sont des fractions rationnelles de la variable n. J'utilise les résultats que je connais pour les fonctions et ne regarde que les termes de plus haut degré.

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{n^2}{n+1} = \lim_{n \to +\infty} \frac{n^2}{n} = \lim_{n \to +\infty} n = +\infty.$$

Remarque 9.14 -

- Une suite peut ne pas admettre de limite. Par exemple la suite de terme général $(-1)^n$ prend alternativement les valeurs 1 et -1. Elle n'admet donc pas de limite. On parle là aussi de suite **divergente**.
- En revanche, si une suite converge vers un réel ℓ ou diverge vers $\pm \infty$, alors cette limite est **unique**.
- Tous les résultats concernant les opérations sur les limites vus au Chapitre 7 concernant les fonctions restent valables pour les suites.

Proposition 9.15

Le tableau suivant donne la limite de q^n , si celle-ci existe, en fonction des valeurs de q:

	q > 1	q = 1	<i>q</i> ∈] − 1,1[$q \leqslant -1$
$\lim_{n\to+\infty}q^n$	+∞	1	0	Pas de limite

Méthode 9.16 - Limites des suites usuelles

Cas des suites arithmétiques.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r. Alors

$$u_{n+1} = u_n + r$$
 et $u_n = u_0 + n \times r$.

La limite de la suite $(u_n)_{n\in\mathbb{N}}$ dépend donc du signe de r.

- 1. Si r > 0, alors la suite $(u_n)_{n \in \mathbb{N}}$ diverge vers $+\infty$, *i.e.* $\lim_{n \to +\infty} u_n = +\infty$.
- 2. Si r < 0, alors la suite $(u_n)_{n \in \mathbb{N}}$ diverge vers $-\infty$, i.e. $\lim_{n \to +\infty} u_n = -\infty$.
- · Cas des suites géométriques.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q et de premier terme u_0 . Alors

$$u_{n+1} = q \times u_n$$
 et $u_n = u_0 \times q^n$.

L'existence d'une limite pour la suite $(u_n)_{n\in\mathbb{N}}$ dépend donc de la valeur de q.

- 1. Si q < -1, alors la suite est alternée et n'admet pas de limite.
- 2. Si -1 < q < 1, la suite $(u_n)_{n \in \mathbb{N}}$ converge vers 0, i.e. $\lim_{n \to +\infty} u_n = 0$.
- 3. Si q > 1, alors la suite est monotone donc elle admet une limite qui dépend cette fois du signe de u_0 :
 - ightharpoonup Si $u_0 > 0$, la suite $(u_n)_{n \in \mathbb{N}}$ diverge vers $+\infty$, i.e. $\lim_{n \to +\infty} u_n = +\infty$.
 - ightharpoonup Si $u_0 < 0$, la suite $(u_n)_{n \in \mathbb{N}}$ diverge vers $-\infty$, i.e. $\lim_{n \to +\infty} u_n = -\infty$.

Les graphiques de la Méthode 9.4 montrent les différentes limites possibles dans le cas où q > 0.

Exemple 9.17 - Déterminer les limites des suites suivantes, définies par récurrence.

- 1. $u_0 = 7$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + 4$. La suite $(u_n)_{n \in \mathbb{N}}$ est arithmétique de raison r = 4 > 0. Donc $\lim_{n \to +\infty} u_n = +\infty$.
- 2. $v_1 = -3$ et $\forall n \in \mathbb{N}^*$, $v_{n+1} = 5v_n$. La suite $(v_n)_{n \in \mathbb{N}^*}$ est géométrique de raison q = 5 > 1, de premier terme $v_1 = -3 < 0$. Donc $\lim_{n \to +\infty} v_n = -\infty$.

III - Passage à la limite et relation d'ordre

1 - Théorèmes de majoration/minoration

Théorème 9.18

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites. On suppose que $\forall n\in\mathbb{N}, u_n \leq v_n$.

• Si les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent, alors

$$\lim_{n\to+\infty}u_n\leqslant\lim_{n\to+\infty}v_n.$$

• Si la suite $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$, *i.e.* $\lim_{n\to+\infty}u_n=+\infty$, alors la suite $(v_n)_{n\in\mathbb{N}}$ diverge aussi et

$$\lim_{n\to+\infty}v_n=+\infty.$$

• Si la suite $(v_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$, *i.e.* $\lim_{n\to+\infty}v_n=-\infty$, alors la suite $(u_n)_{n\in\mathbb{N}}$ diverge aussi et

$$\lim_{n\to+\infty}u_n=-\infty.$$

Exemple 9.19 – Calculer la limite de la suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $v_n=\left(2+(-1)^n\right)n$.

La difficulté se situe au niveau du $(-1)^n$. Mais je sais que $-1 \le (-1)^n \le 1$, donc que $1 \le 2 + (-1)^n \le 3$. En particulier pour tout $n \in \mathbb{N}$,

$$n \leq (2 + (-1)^n) n = v_n$$
.

Comme $\lim_{n \to +\infty} n = +\infty$, alors je peux en déduire que

$$\lim_{n\to+\infty}\nu_n=+\infty.$$

2 - Théorème d'encadrement

Théorème 9.20 - Théorème des gendarmes

Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ trois suites telles que $\forall n\in\mathbb{N}$, $u_n\leqslant v_n\leqslant w_n$.

Si $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = \ell$, alors la suite $(v_n)_{n \in \mathbb{N}}$ converge et

$$\lim_{n\to+\infty}v_n=\ell.$$

Exemple 9.21 – Calculer la limite de la suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $u_n=\frac{1}{2n^2+(-1)^n}$.

J'utilise de nouveau que $\forall n \in \mathbb{N}, -1 \le (-1)^n \le 1$. Alors $2n^2 - 1 \le 2n^2 + (-1)^n \le 2n^2 + 1$ et donc

Alors
$$2n^2 - 1 \le 2n^2 + (-1)^n \le 2n^2 + 1$$
 et donc $\frac{1}{2n^2 + 1} \le \frac{1}{2n^2 + (-1)^n} \le \frac{1}{2n^2 - 1}$, c'est-à-dire $\frac{1}{2n^2 + 1} \le u_n \le \frac{1}{2n^2 - 1}$.

Enfin comme $\lim_{n\to+\infty} \frac{1}{2n^2+1} = 0$ et $\lim_{n\to+\infty} \frac{1}{2n^2-1} = 0$, grâce au théorème des gendarmes j'en déduis que

(Le graphe n'est pas celui de la suite (u_n) mais est plus visuel.)

3 - Fonctions monotones

Théorème 9.22 - Théorème de la limite monotone

- Si $(u_n)_{n\in\mathbb{N}}$ est une suite croissante et majorée, alors $(u_n)_{n\in\mathbb{N}}$ converge.
- Si $(u_n)_{n\in\mathbb{N}}$ est une suite décroissante et minorée, alors $(u_n)_{n\in\mathbb{N}}$ converge.

Corollaire 9.23

En conséquence du théorème de limite monotone,

- Si $(u_n)_{n\in\mathbb{N}}$ est une suite croissante qui n'est pas majorée, alors $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.
- Si $(u_n)_{n\in\mathbb{N}}$ est une suite décroissante qui n'est pas minorée, alors $(u_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$.

Méthode 9.24 – Étudier la convergence d'une suite de la forme $u_{n+1} = f(u_n)$

Pour étudier la convergence d'une suite définie par une relation du type $u_{n+1} = f(u_n)$:

- 1. On commence par étudier la monotonie de $(u_n)_{n\in\mathbb{N}}$ en utilisant la Méthode 9.2.
- 2. On montre que $(u_n)_{n\in\mathbb{N}}$ est majorée ou minorée en utilisant la Méthode 9.7.
- 3. On applique le Théorème de la limite monotone (Théorème 9.22) :
 - Si $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée, alors elle converge.
 - Si $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée, alors elle converge.
- 4. Enfin, pour déterminer la limite ℓ , on utilise le fait que $\ell = \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} u_{n+1}$ pour obtenir une équation du type $f(\ell) = \ell$ que l'on résout ensuite pour trouver ℓ .

Les différentes étapes de cette étude sont le plus souvent guidées par les questions de l'énoncé.

Exemple 9.25 – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie pour tout entier naturel n par

$$u_0 = \frac{1}{2}$$
 et $u_{n+1} = u_n - u_n^2$.

1. Étudier les variations de la suite $(u_n)_{n\in\mathbb{N}}$.

Je calcule la différence entre deux termes consécutifs. Pour tout entier $n \in \mathbb{N}$,

$$u_{n+1} - u_n = u_n - u_n^2 - u_n = -u_n^2 \le 0,$$

puisque tout carré est positif. Ainsi la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

2. Montrer par récurrence que pour tout entier naturel n, $0 \le u_n \le 1$.

Énoncé : Je note \mathcal{P}_n la propriété : $0 \le u_n \le 1$.

Initialisation: Pour n = 0, $u_0 = \frac{1}{2}$ et $0 \le \frac{1}{2} \le 1$. Ainsi \mathcal{P}_0 est vraie.

Hérédité : Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi.

Par hypothèse de récurrence, je sais que $0 \le u_n \le 1$.

Or $u_{n+1} = u_n - u_n^2 = u_n(1 - u_n)$. Et puisque $0 \le u_n \le 1$, alors $0 \le 1 - u_n \le 1$. Donc par produit,

$$0 = 0 \times 0 \le u_n(1 - u_n) \le 1 \times 1 = 1.$$

Finalement, j'ai montré que $0 \le u_{n+1} \le 1$, c'est-à-dire que \mathcal{P}_{n+1} est vraie et que la propriété est héréditaire.

Conclusion : Comme elle est héréditaire et vraie pour n = 0, alors par principe de récurrence, la propriété \mathcal{P}_n est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad 0 \leqslant u_n \leqslant 1.$$

3. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge.

La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante d'après la question 1. et minorée par 0 d'après la question 2. Donc grâce au théorème de la limite monotone, j'en déduis que la suite $(u_n)_{n\in\mathbb{N}}$ converge.

4. Déterminer sa limite ℓ .

En notant ℓ cette limite, je sais que $\lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} u_{n+1} = \ell$. Puisque $u_{n+1} = u_n - u_n^2$, en faisant tendre n vers l'infini et en passant à la limite, j'obtiens que

$$\ell = \ell - \ell^2 \iff \ell^2 = 0 \iff \ell = 0.$$

Ainsi $\lim_{n\to+\infty} u_n = \ell = 0$.