ISARA 1^{ère} année Mme B.BOTTOLLIER

2ème partie : LES LOIS THEORIQUES

I : Variable aléatoire

Une variable aléatoire est une variable pouvant prendre l'une quelconque des valeurs d'un ensemble fini ou infini. Cette variable peut être discrète ou continue. A chacune des valeurs que peut prendre cette variable est associée :

- une probabilité si cette variable est discrète,
- une densité de probabilité si cette variable est continue.

Selon qu'il s'agit d'une variable discrète ou d'une variable continue, on a les représentations graphiques qui associent les probabilités individuelles (ou les densité de probabilité) à la fonction de répartition correspondante.

E (X): espérance mathématique

$$V(X)$$
: variance
$$V(X) = E(X^2) - E(X)^2$$

$$Y = bX + a$$
 $E(Y) = bE(X) + a$ $V(Y) = b^2V(X)$

$$Z = X + Y$$
 $E(Z) = E(X) + E(Y)$ $V(Z) = V(X) + V(Y)$ si X et Y sont indépendantes.

II : Lois associées à une variable discrète

C'est une loi à 2 paramètres : n et p. C'est la loi d'une variable aléatoire discrète X pouvant prendre les valeurs entières $k = 1, 2, \dots, n$ avec les probabilités individuelles :

$$P(X = k) = C_n^k p^k q^{n-k}$$
 avec $q = 1 - p$ $E(X) = np V(X) = npq$

$$P(X < k) + P(X \ge k) = 1$$

On peut utiliser la récurrence pour déterminer les valeurs de pi.

$$2^{\circ}$$
) loi de Poisson L (X) = P (m) ou P(λ)

C'est une loi à 1 paramètre : m. C'est la loi d'une variable aléatoire discrète X pouvant prendre les valeurs entières $k = 1, 2, \dots, \infty$ avec les probabilités individuelles :

1

$$P(X = k) = e^{-m} (m^k / k!)$$
 $E(X) = V(X) = m = np$

Il s'agit de la limite de la loi Binomiale quand $n \to \infty$, $p \to 0$ et $np \to m$

$$P(X < k) + P(X \ge k) = 1$$

On peut utiliser la récurrence pour déterminer les valeurs de pi.

ISARA 1^{ère} année Mme B.BOTTOLLIER

III : Lois associées à une variable continue

1°) loi Normale L (X) = N(μ , σ_X)

C'est une loi à 2 paramètres : μ et σ_X $\mu = E(X)$ $\sigma_X = \sqrt{V(X)}$

La loi normale, ou loi de Gauss ou de Laplace-Gauss, correspond à la situation suivante : "Si une grandeur X résulte de l'influence d'un grand nombre de facteurs indépendants agissant sous forme additive, de façon telle que chaque cause partielle ait une variance faible par rapport à la variance résultante, les mesures de cette grandeur sont distribuées suivant la loi normale" et la courbe représentative de f(x) est une courbe "en cloche", symétrique par rapport à la moyenne.

La loi normale est la loi d'une variable X continue variant de $-\infty$ à $+\infty$ dont la densité de probabilité f(x) est :

$$f(x) = \frac{1}{\sigma_{x}\sqrt{2\Pi}} e^{\left(\frac{-1}{2}\left(\frac{x-\mu}{\sigma x}\right)^{2}\right)}$$

F(X) est la fonction de répartition, $F(X) = \int_{-\infty}^{x} f(x) dx = P(X < x)$

$$P(X < x) + P(X \ge x) = 1$$

Loi Normale centrée réduite L (T) = N (0, 1) avec T = variable centrée réduite $ti = (xi - \mu) / \sigma x$

$$P(T < t_{\alpha}) = \alpha$$
 $P(T \ge t_{\alpha}) = 1 - \alpha = P(T < t_{1-\alpha})$ $-t_{\alpha} = t_{1-\alpha}$

 2°) loi du Khi-deux ($X^{2}(v)$) (Loi de Pearson)

C'est la loi d'une variable aléatoire continue $X^2(\nu)$, somme des carrés de ν variables normales centrées réduites indépendantes ti.

Dans le cas d'un échantillon de ν observations indépendantes d'une grandeur X qui suit une loi Normale, la quantité Σ ti² suit une loi du X² à ν ddl (degré de liberté).

$$P(X^{2}(v) < X^{2}_{(1-\alpha)}(v)) = 1 - \alpha$$

 3°) loi de Student (S (v))

C'est la loi d'une variable aléatoire continue T définie comme étant le rapport entre une variable normale réduite et $(X^2 / v)^{1/2}$.

C'est, dans le cadre de ce cours, pour un échantillon de n observations indépendantes d'une grandeur X qui suit <u>une loi Normale</u> L $(X) = N(\mu, \sigma_X)$, la loi de la fonction des observations :

$$t(v) = (m - \mu) / (\sigma x / \sqrt{n})$$
 où $v = n - 1$ et $\sigma^2 x = SCE / (n-1)$

C'est une loi symétrique centrée sur 0.

ISARA 1^{ère} année Mme B.BOTTOLLIER

$$P\left(T < t_{\alpha}(v)\right) = \alpha \qquad \qquad P\left(T \ge t_{\alpha}(v)\right) = 1 - \alpha = P\left(T < t_{1-\alpha}(v)\right) \qquad -t_{\alpha}(v) = t_{1-\alpha}(v)$$

 4°) loi de Fisher - Snedecor (F(v_1 ; v_2))

C'est la loi d'une variable aléatoire continue F définie comme étant le rapport de 2 variables X² indépendantes, chacune étant divisée par son ddl.

C'est, dans le cadre de ce cours, pour 2 échantillons indépendants de n_1 et n_2 observations indépendantes provenant de loi Normale de même variance, la loi de la fonction des observations :

$$\begin{split} F(\nu_1 \ ; \ \nu_2) = \sigma^2_1 \ x \ / \ \sigma^2_2 \ x & \text{où } \nu_1 = n_1 - 1 \ \text{et} \ \nu_2 = n_2 - 1 \\ & \text{et} \ \ \sigma^2_1 \ x = SCE_1 \ / \ (n_1 \text{-} 1) \ \text{et} \ \sigma^2_2 \ x = SCE_2 \ / \\ & (n_2 \text{-} 1) \end{split}$$

$$P(F(v_1; v_2) < F_{(1-\alpha)}(v_1; v_2)) = 1 - α$$

IV Les approximations

