Week 2 - Set Theory Discussion Board Exercises

- (1) Let $S = \{s, e, t, t, h, e, o, r, y, i, s, f, u, n\}$. Find |S|, which is the number of elements in S and called the *cardinality* of S.
- (2) Find the union and intersection of the sets $\{1, 3, 5, 7, 9\}$ and $\{2, 3, 5, 7\}$.
- (3) Suppose set S has 37 elements, set T has 21 elements, and the union $S \cup T$ has 49 elements. How many elements does the intersection $S \cap T$ have?
- (4) At Johnsonville high school, 51 students take Algebra I, 36 take Spanish I and 13 take both. How many are taking Algebra I or Spanish I?
- (5) For each integer n let $T_n = \{n, n^3\}$. How many elements are in each of T_{-2} , T_{-1} , T_1 and T_3 ?
- (6) How would the answers change to exercise above if it was n^2 in place of n^3 ?
- (7) Suppose we know that for sets S, T we have that $S \times T = \emptyset$. What can be said about the sets S, T?
- (8) List all elements of the power set of $\{1, 2, 3, 4\}$.
- (9) List all elements of the direct product $\{1, 2, 3\} \times \{a, b\}$.
- (10) Consider the set $S = \{1, 4, 9, 16, ...\}$. Describe this set. How many elements does S have?
- (11) Consider the set $P = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47\}$. Describe this set. How many elements does P have?
- (12) Consider the set $T = \{(x, y) \in \mathbb{R} \times \mathbb{R} : 1 < x^2 + y^2 \le 4\}$. Draw this set. How many elements does T have?
- (13) Consider the set $G = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} | 1 < a^2 + b^2 < 9\}$. Draw this set. How many elements does G have?
- (14) Consider the set $N = \{x \in \mathbb{R} : x^2 = -1\}$. Describe this set. How many elements does N have?
- (15) Consider the set $F = \{A \in \mathcal{P}(\{1,2,3,4,5,6\}) : |A| = 5\}$. Describe this set. How many elements does F have?
- (16) Consider the set $R = \{z \in \mathbb{R} | a^2 \in \{0, 1, 2, 3, 4\}\}$. Describe this set. How many elements does R have?
- (17) Let W be the set consisting of all the letters in the word WORRYWORT. How many elements does W have?

- (18) Let Z be the set of two-digit odd positive integers. How many elements does Z have?
- (19) For any two finite sets S and T justify that the average of |S| and |T| does not exceed $|S \cup T|$.
- (20) Given a family of sets $\{S_i|i\in I\}$ indexed over a set I, is the condition that $S_i\cap S_i\neq\emptyset$ implies i=j

equivalent to the condition that

$$S_i \cap S_i \neq \emptyset$$
 implies $S_i = S_i$?

Explain. Hint: Consider $S_k = \{n \in \mathbb{Z} | 0 \le 2n \le k\}$ for k = 1, 2, 3.

- (21) Let S be a non-empty set. Under what conditions on a subset $T \subseteq S$ does $\{T, S \setminus T\}$ form a partition of S? Explain.
- (22) Does the family of intervals $\{[n, n+1)|n \in \mathbb{Z}\}$ form a partition of \mathbb{R} ? Explain.
- (23) Does the family of intervals $\{(-n,n)|n\in\mathbb{N}\}$ form a partition of \mathbb{R} ? Explain.
- (24) Let Λ be the set of the 50 states in the USA. Let $\mathcal{F} = \{A, B, C, ..., Z\}$ where A is the set of states in Λ that begin with the letter A, B is the set of states in Λ that begin with the letter B, and so on. Does \mathcal{F} form a partition of Λ ? Explain.
- (25) Let $\mathcal{F} = \{[1/n, 3 1/n] | n \in \mathbb{N}\}$. Determine $\bigcap \mathcal{F}$ and $\bigcup \mathcal{F}$.
- (26) Suppose $\{B_i|i\in I\}$ is a partition of the real number interval $[0,\infty)$. For each $i\in I$, let $S_i=\{x\in\mathbb{R}|x^2\in B_i\}$. Let $S=\{S_i|i\in I\}$. Is S a partition of \mathbb{R} ?
- (27) For each room rented, a beach hotel records a three-symbol code consisting of a 1, 2, 3, 4+ to specify the number of occupants, an S or N to specify smoking or non-smoking and an S or O to specify street view or ocean view. Let X be the set of all possible codes. Find |X|.
- (28) One can identify an ordered pair (a, b) with the set $\{\{a\}, \{a, b\}\}$. Find the cardinality of the ordered pairs (1, 2) and (1, 1) identified as sets in this manner. Explain your reasoning.
- (29) Let A, B, C be sets. Justify the following so-called distributive property: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- (30) Let A, B be sets. Justify $A \cap (A \cup B) = A$.
- (31) Let A, B, C be sets. Use DeMorgan's Laws for sets and the distributive property above to justify that $(A \setminus B) \setminus (B \setminus C) = A \setminus C$. Hint: Start with the equality $S \setminus T = S \cap \overline{T}$.

- (32) Find sets of integers S_1 , S_2 , S_3 ,... such that for every positive integer i, $S_i \supset S_{i+1}$ and $\bigcap_{i=1}^{\infty} S_i \neq \emptyset$.
- (33) Let A, B be sets. Find an expression for $(A \times B) \cap (B \times A)$ of the form $C \times C$ for some set C.
- (34) Determine if the proposition "Every set is an element of its power set" is true or false, and explain your answer.
- (35) Determine if the proposition "Every set is an element of the direct product of the set with itself" is true or false, and explain your answer.
- (36) Determine if the proposition "Every set is a subset of its power set" is true or false, and explain your answer.
- (37) Determine if the proposition "There exists a set that is a subset of its power set" is true or false, and explain.
- (38) Give an example of a set S such that there exists a set T such that $T \in S$ and $T \subseteq S$.
- (39) Give an example of a set S such that there exists a set T such that $T \in S$, but $T \not\subseteq S$.
- (40) The symmetric difference of two sets S and T is all the elements in the union but not in the intersection, denoted $S\Delta T$. Compute $\{5, 10, 15, 20, 25, 30\}\Delta\{3, 6, 9, 12, 15, 18, 21, 24, 27, 30\}$.
- (41) Explain why $\{(0,1), (1,1), (2,2), (3,6), (4,10), (4,24), (5,6)\}$ is NOT a function from the domain $\{0,1,2,3,4,5\}$ to any codomain containing at least the numbers 1, 2, 6, 10 and 24.
- (42) Let $f: \mathbb{R} \to \mathbb{R}$ be given by f(x) = the largest integer less than or equal to x. This function is called the "floor" function. Find f(1.9), f(2) and f(-3.1). Determine the range.
- (43) Let $f: \mathbb{Q} \to \mathbb{Q}$ be given by f(n) = (n/3) 1. Demonstrate that this is a bijection and find a rule for the inverse function.
- (44) List all functions from $\{1, 2, 3\}$ to $\{1, 2\}$. You may do this by either explicitly writing down all the pairs of each function OR by using arrow diagrams. How many are 1-1? How many are onto?
- (45) List all functions f from $\{1,2,3\}$ to $\{1,2,3\}$ that satisfy $(f \circ f)(x) = x$ for all $x \in \{1,2,3\}$. You may do this by either explicitly writing down all the pairs of each function OR by using arrow diagrams. Hint: There are 4 such functions!

- (46) Suppose $f: \mathbb{Z} \to \mathbb{Z}$ is an onto function. Explain why the function $g = f \circ f$ must also be onto.
- (47) Let $f_n : \mathbb{R} \to \mathbb{R}$ be given by $f_n(x) = x^n$ where n is a positive integer. For what n is f a bijection?
- (48) Let $f: \mathcal{P}(\{1,2,3\}) \to \mathbb{Z}$ be given by f(A) = |A|. Show that f is not 1-1.
- (49) Construct a function $f: \mathbb{Z} \to \mathbb{Z}$ that is 1-1 but not onto.
- (50) Construct a function $f: \mathbb{Z} \to \mathbb{Z}$ that is onto but not 1-1.
- (51) Consider the family of sets $\mathcal{Z} = \{Z_k | k \in \mathbb{N}\}$ where $Z_k = \{1, 2, ..., k\}$. Determine $\bigcap \mathcal{Z}$ (the intersection of all sets in the family) and $\bigcup \mathcal{Z}$ (the union of all the sets in the family).
- (52) Let P(x) be a proposition function over a domain D. P is said to be "satisfiable" if there exists an x such that P(x) is true. Consider the propositional function $x^2 < x$. Is it satisfiable over the domain of positive real numbers? What about over the domain of positive integers? Explain.

The rest of the exercises deal with the following family of sets:

$$\mathcal{D} = \{D_k | k \in \{0, 1, 2, ..., 10\}\}\$$
 where $D_k = \{n \in \mathbb{N} \setminus \{1\} | k \text{ is a multiple of } n\}.$

- (53) Determine D_0 , D_1 , D_2 , D_4 , D_5 and D_{10} .
- (54) Consider the proposition "For every $j, k \in \{0, 1, 2, ..., 10\}$ if $j \neq k$ then $D_j \neq D_k$." Is it true or false? Explain
- (55) Find $|\mathfrak{D}|$.