Lemme très important

Soit $x \in \mathbb{R}$ vérifiant $\forall \varepsilon > 0, x \le \varepsilon$. Alors on a $x \le 0$.

Preuve:

Par l'absurde : Supposons x > 0. Posons alors $\varepsilon = \frac{x}{2} > 0$.

Alors $x \le \frac{x}{2}$... Absurde

Objectifs

- > Donner une définition rigoureuse des limites.
- Applications des limites.

Sommaire

- 1. Notion de point adhérent
- 2. Limite en un point
- 3. Limite en l'infini
- 4. Opérations sur les fonctions et limites
- 5 Limites et inégalités

Exemples

- ♦ 1 est adhérent à [0;1[;
- \diamond 1 est adhérent à [0;1]; tout réel strictement supérieur à 1 n'est pas adhérent à [0;1]
- \diamond 0 est adhérent à \mathbb{R}^*
- \diamond Tout point de $\mathbb R$ est adhérent à $\mathbb Q.$

$\begin{array}{c} \mathsf{HLMA101} \text{ - Partie C} : \mathsf{Analyse} \text{ (fonctions} \\ \mathsf{r\acute{e}elles)} \end{array}$

Chapitre 9 Limites

Simon Modeste

Faculté des Sciences - Université de Montpellier

2020-2021

- 1. Notion de point adhérent
- 2. Limite en un point
- 2.1 Limite finie
- 2.2 Limite infinie
- 3. Limite en l'infini
- 3.1 Limite finie
- 3.2 Limite infinie en l'infini
- 4. Opérations sur les fonctions et limites
- 4.1 Somme de fonctions
- 4.2 Produit de deux fonctions
- 4.3 Inverse
- 4.4 Composée
- 5. Limites et inégalités
- 5.1 Encadrements
- 5.2 Limites de fonctions monotones

Motivation

Soit $A \subset \mathbb{R}$ et $f: A \longrightarrow \mathbb{R}$.

Où étudier les limites de f? en $a \in A$? en "bordure" de A?

Définition

Soit I un sous ensemble non vide de \mathbb{R} , et soit $a \in \mathbb{R}$. On dira que a est <u>adhérent</u> à I lorsque tout intervalle ouvert centré en a rencontre I:

 $\forall \varepsilon > 0,]a - \varepsilon, a + \varepsilon [\cap I \neq \emptyset]$

ou plus simplement : $\forall \varepsilon > 0$, $\exists x \in I$, $|x - a| < \varepsilon$

Remarques

- \diamond Si $a \in I$, a est adhérent à I.
- ♦ Si I est un intervalle dont les bornes sont a et b, alors a et b sont adhérents à I

Propriété :

Soit I un sous ensemble non vide et borné de \mathbb{R} . Alors $\sup(I)$ et $\inf(I)$ sont adhérents à I.

Note : Revoir la caractérisation de la borne sup (resp. inf).

Exemple:

On note a_n le décimal 0,99...9 avec n décimales après la virgule. Alors 1 est adhérent à $\{a_n, n \in \mathbb{N}^*\}$.

Sommaire

- 1. Notion de point adhérent
- 2. Limite en un point
- 2.1 Limite finie
- 2.2 Limite infinie
- 3. Limite en l'infini
- 4 Opérations sur les fonctions et limites
- 5. Limites et inégalités

Schéma

Contre-exemples... et exemples.

Théorème:

Si f a pour limite ℓ en x_0 , alors ℓ est unique. Dans ce cas, on notera $\lim_{t\to\infty} f(x) = \ell$ et on dit que f converge vers ℓ en x_0 .

Preuve

Limite finie d'une fonction en un point

Définition:

Soit $f:I\longrightarrow \mathbb{R}$ une fonction, x_0 un réel adhérent à I, et $\ell\in \mathbb{R}$. On dit que f admet ℓ pour limite en x_0 lorsque : pour tout intervalle ouvert J centré en ℓ , il existe un intervalle ouvert J_0 contenant x_0 tel que :

$$\forall x \in I \cap J_0, \ f(x) \in J$$

Ceci s'écrit :

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \ \left(|x - x_0| < \eta \ \Rightarrow \ |f(x) - \ell| < \varepsilon \right)$$

Négation

f n'a pas pour limite ℓ en x_0

1

$$\exists \varepsilon > 0, \ \forall \eta > 0, \ \exists x \in I, \ (|x - x_0| < \eta \ \text{et} \ |f(x) - \ell| \ge \varepsilon)$$

Illustrations.

Théorème :

Si f a pour limite ℓ en x_0 et $x_0 \in I$, alors $f(x_0) = \ell$.

Preuve

Remarque : Cela ne veut pas dire que si f est définie en x_0 , sa limite en x_0 existe.

Que dire de la limite éventuelle en 0 de la fonction définie sur \mathbb{R}^* par :

$$f(x) = \begin{cases} -x & \text{si } x < 0 \\ x & \text{si } x > 0 \end{cases} ?$$

$$\lim_{x\to 0} f(x) = 0.$$

Et maintenant, que dire de la limite éventuelle en 0 de la fonction définie sur \mathbb{R} par :

$$f(x) = \begin{cases} -x & \text{si } x < 0 \\ x & \text{si } x > 0 \end{cases} ?$$

$$1 & \text{si } x = 0$$

- \diamond D'après ce qui précède, la limite ne peut pas être 0 (car f(0)=1)
- ♦ La limite ne peut pas valoir 1, car $\forall \eta > 0, \ \exists x \in \mathbb{R} \ \mathrm{tq} \ |x| < \eta \ \mathrm{et} \ |f(x) 1| \ge \frac{1}{2}$
- ♦ On parlera de limite $\frac{\text{épointée}}{\underset{x \neq 0}{\text{kim}}} : \lim_{\substack{x \to 0 \\ x \neq 0}} f(x) = 0$

 $\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I \setminus \{x_0\}, \ \left(|x - x_0| < \eta \ \Rightarrow \ |f(x) - \ell| < \varepsilon\right)$

D'autres notions de limite

- Limite "classique" : $\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in]x_0 \eta, x_0 + \eta[\cap I, \quad |f(x) \ell| < \varepsilon$
- Limite "épointée" : $\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in \left(\left] x_0 \eta, x_0 + \eta \right[\cap I \right) \setminus \left\{ x_0 \right\}, \ |f(x) \ell| < \varepsilon$
- Limite "à gauche" : $\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in \]x_0 \eta, x_0] \cap I, \quad |f(x) \ell| < \varepsilon$
- Limite "à droite" : $\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in [x_0, x_0 + \eta[\cap I, \ | f(x) \ell | < \varepsilon$
- Limite "épointée à gauche" : $\forall \varepsilon > 0, \exists \eta > 0, \forall x \in]x_0 \eta, x_0[\cap I, |f(x) \ell| < \varepsilon$
- Limite "épointée à droite" : $\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in \] x_0, x_0 + \eta [\cap I, \ | f(x) \ell | < \varepsilon$

Existence!

Pour parler d'une limite, il faut qu'elle existe!

On ne peut pas écrire $\lim_{x \to x_0} f(x) = \dots$ tant qu'on a pas montré que la limite existe!

Limite infinie d'une fonction en un point

Définition :

Soit $f:I\longrightarrow \mathbb{R}$ une fonction, x_0 un réel adhérent à I. On dit que f <u>tend vers $+\infty$ </u> lorsque : pour tout intervalle de la forme $J_A=]\bar{A},+\infty[$, il existe un intervalle J_0 centré en x_0 tel que :

$$\forall x \in I \cap J_0, \ f(x) \in J_A$$

Ceci s'écrit :

$$\forall A > 0, \ \exists \eta > 0, \ \forall x \in I, \ \left(|x - x_0| < \eta \ \Rightarrow \ f(x) > A \right)$$

On dit que f diverge ou tend vers $+\infty$: $\lim_{x \to x_0} f(x) = +\infty$

Exercice

- (a) Écrire la définition de « la limite de f lorsque x tend vers x_0 à gauche est ℓ »
- (b) Écrire la définition de « la limite de f lorsque x tend vers x_0 à droite est ℓ »
- (c) Écrire la définition de « la limite épointée de f lorsque x tend vers x_0 à gauche est ℓ »
- (d) Écrire la définition de « la limite épointée de f lorsque x tend vers x_0 à droite est ℓ »

Unicité

Il y a aussi unicité pour ces limites.

Preuve : en exercice.

Notations

On utilise les notations :

 $\lim_{\substack{x \to 0 \\ x \le 0}} f(x) ; \quad \lim_{\substack{x \to 0 \\ x \ge 0}} f(x) ; \quad \lim_{\substack{x \to 0 \\ x > 0}} f(x) ; \text{ etc.}$

Divergence

Diverger... c'est ne pas converger

Si une fonction n'admet pas de limite en x_0 , on dit qu'elle diverge :

$$\forall \ell \in \mathbb{R}, \exists \varepsilon > 0, \forall \eta > 0, \exists x \in I, \left(|x - x_0| < \eta \text{ et } |f(x) - \ell| \ge \varepsilon \right)$$

ou de façon équivalente

$$\forall \ell \in \mathbb{R}, \exists \varepsilon > 0, \forall \eta > 0, \exists x \in I \cap]x_0 - \eta; x_0 + \eta[, |f(x) - \ell| \ge \varepsilon$$

À suivre : un cas particulier de divergence.

Définition

De façon similaire, on dit que f diverge (ou tend) vers $-\infty$ quand x tend vers x_0 , lorsque :

$$\forall A > 0, \exists \eta > 0, \forall x \in I, (|x - x_0| < \eta \Rightarrow f(x) < -A)$$

On écrit
$$\lim_{x \to x_0} f(x) = -\infty$$

Montrer que si f diverge vers $+\infty$ (ou $-\infty$), alors f diverge.

Définition:

Si $\lim_{x \to \infty} f(x) = +\infty$, on dit que la courbe d'équation y = f(x)admet la droite d'équation $x = x_0$ pour asymptote verticale.

Exemples

- 1. $\lim_{x \to 0} \frac{1}{x^2} = +\infty$. 2. $\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty$. et $\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty$.
- 3. $\lim_{x \to 1} \frac{x+2}{\sqrt{x-1}} = +\infty$

 $\begin{aligned} &\forall x \in]1; +\infty[, & \frac{x+2}{\sqrt{x-1}} \geqslant \frac{3}{\sqrt{x-1}} \geqslant \frac{1}{\sqrt{x-1}} \\ &\forall A > 0, & \forall x > 1, & \left(\frac{1}{\sqrt{x-1}} > A \Leftrightarrow |x-1| < \frac{1}{A^2}\right) \end{aligned}$

Conclusion : Soit A > 0. On pose $\eta = \frac{1}{A^2}$. Alors,

$$\forall x > 1, \ |x-1| < \eta \Longrightarrow \frac{x+2}{\sqrt{x-1}} \ge \frac{1}{\sqrt{x-1}} > A.$$

Sommaire

- 3. Limite en l'infini
- 3.1 Limite finie
- 3.2 Limite infinie en l'infini

Condition pour étudier une limite en $+\infty$

Soit f une fonction de A dans \mathbb{R} .

Pour pouvoir étudier ce qu'il se passe en $+\infty$ (resp. $-\infty$) pour f, il faut que l'on puisse s'approcher de $+\infty$ (resp. $-\infty$) dans

En fait, il faut que $\forall C > 0$, $\exists x \in A$, x > C. (resp. $\forall c < 0, \exists x \in A, x < c$)

C'est le cas en particulier pour un intervalle de la forme $[a, +\infty[(resp.] -\infty, b]).$

On va énoncer les définitions et propriétés dans ce cadre.

Limite finie d'une fonction en l'infini

Définition:

Soit $f: I = [a; +\infty[\longrightarrow \mathbb{R} \text{ une fonction, et } \ell \in \mathbb{R} \text{ . On dit que } f$ admet ℓ pour limite en $+\infty$ lorsque : pour tout intervalle ouvert J centré en ℓ , il existe un intervalle du type α ; $+\infty$ [tel

$$\forall x \in]\alpha; +\infty[\cap I, f(x) \in J$$

Ceci s'écrit :

$$\forall \varepsilon > 0, \ \exists \alpha > 0, \ \forall x \in I, \ \left(x > \alpha \ \Rightarrow \ |f(x) - \ell| < \varepsilon \right)$$

Exemple

1. On considère $f: \mathbb{R}^* \to \mathbb{R}$ la fonction définie par $f(x) = \frac{1}{x^2}$

$$\lim_{x\to+\infty}f(x)=0.$$

2. On considère $f:\mathbb{R}\to\mathbb{R}$ la fonction définie par $f(x)=\frac{x^2}{x^2+1}.$ Alors,

$$\lim_{x \to +\infty} f(x) = 1.$$

Limite finie en $-\infty$

À écrire en exercice : $f:]-\infty, b] \to \mathbb{R}$ a pour limite ℓ en $-\infty$.

Il y a unicité de la limite en $\pm \infty$ (en exercice).

On peut écrire $\lim_{x \to +\infty} f(x) = \dots$

Limite infinie d'une fonction en l'infini

Définition :

Soit $f: I = [a; +\infty[\longrightarrow \mathbb{R} \text{ une fonction. On dit que } f \text{ } \underbrace{\text{admet}}_{+\infty \text{ pour limite en } +\infty} \text{ lorsque : pour tout intervalle } \underbrace{\text{du type}}_{]A; +\infty[, \text{ il existe un intervalle du type }]\alpha; +\infty[\text{ tel que : } \underbrace{\text{du type}}_{]a; +\infty[, \text{ intervalle du type }]\alpha; +\infty[, \text{ tel que : } \underbrace{\text{du type}}_{]a; +\infty[, \text{ tel que : }]\alpha; +\infty[$

$$\forall x \in I \cap]\alpha; +\infty[, f(x) \in]A; +\infty[$$

Ceci s'écrit :

$$\forall A > 0, \ \exists \alpha > 0, \ \forall x \in I, \ \left(x > \alpha \implies f(x) > A \right)$$

Autres limites infinies en l'infini

Exercice : écrire les définitions de :

 $\Leftrightarrow f: I = [a; +\infty[\longrightarrow \mathbb{R} \text{ admet } -\infty \text{ pour limite en } +\infty]$

 $\diamond \ f \ : \ I =] - \infty, b] \longrightarrow \mathbb{R} \ \text{admet} \ + \infty \ \text{pour limite en} \ - \infty$

 $\Leftrightarrow f: I =]-\infty, b] \longrightarrow \mathbb{R}$ admet $-\infty$ pour limite en $-\infty$

et trouver un exemple de fonction pour chaque cas.

Somme

Définition

Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux fonctions. On notera h = f + g la fonction définie pour tout $x \in I$ par h(x) = f(x) + g(x).

Dans la suite, f et g sont deux fonctions définies sur un intervalle I, x_0 désigne un réel adhérent à I ou l'infini (et dans ce cas, I est du type $[A;+\infty[$ ou $]-\infty;A])$

Limite d'une somme en $a \in \mathbb{R} \cup \{-\infty, +\infty\}$

Théorème

Si $\lim_{x\to a} f(x) = \ell$ et $\lim_{x\to a} g(x) = -\infty$. Alors f+g diverge en a: $\lim_{x\to a} (f+g)(x) = -\infty$.

Théorème

Si $\lim_{x\to a} f(x) = -\infty$ et $\lim_{x\to a} g(x) = -\infty$. Alors f+g diverge en $a: \lim_{x\to a} (f+g)(x) = -\infty$.

Exemples

- 1. $\lim_{x \to +\infty} \sqrt{x} = +\infty$
- 2. $x\cos(x)$ n'a pas de limite en $+\infty$ (mais prend des valeurs aussi grandes que l'on veut)

Sommaire

- 1. Notion de point adhérent
- 2. Limite en un point
- 3. Limite en l'infini
- 4. Opérations sur les fonctions et limites
- 4.1 Somme de fonctions
- 4.2 Produit de deux fonctions
- 4.3 Inverse
- 4.4 Composée
- 5. Limites et inégalité

Limite d'une somme en $a \in \mathbb{R} \cup \{-\infty, +\infty\}$

Théorème

Si $\lim_{x\to a} f(x) = \ell$ et $\lim_{x\to a} g(x) = \ell'$. Alors f+g a une limite en a: $\lim_{x\to a} (f+g)(x) = \ell + \ell'$.

Théorème

Si $\lim_{x\to a} f(x) = \ell$ et $\lim_{x\to a} g(x) = +\infty$. Alors f+g diverge en a: $\lim_{x\to a} (f+g)(x) = +\infty$.

Théorème

Si $\lim_{x\to a} f(x) = +\infty$ et $\lim_{x\to a} g(x) = +\infty$. Alors f+g diverge en a: $\lim_{x\to a} (f+g)(x) = +\infty$.

Plan de preuve : somme de deux limites finies en $x_0 \in \mathbb{R}$

- \diamond On suppose que $\lim_{x_0} f = \ell$ et $\lim_{x_0} g = \ell'$.
- $\forall x \in I, \ |(f+g)(x) (\ell + \ell')| \le |f(x) \ell| + |g(x) \ell'|;$
- \diamond On pose $\eta = \min(\eta_1, \eta_2)$;

$$\forall x \in I, |x - x_0| < \eta \implies |(f + g)(x) - (\ell + \ell')| < \varepsilon.$$

1.
$$\lim_{x \to 1} x + \frac{x+2}{\sqrt{x-1}} = +\infty$$

2. $\lim_{x \to +\infty} x - x^2 = ??$ Les théorèmes précédents ne permettent pas de conclure (c'est une forme indéterminée).

Définition

Soient $f:I\to\mathbb{R}$ et $\lambda\in\mathbb{R}$. On note $g=\lambda f$ la fonction définie pour tout $x\in I$ par $g(x)=\lambda\times f(x)$. On note h=|f| la fonction définie pour tout $x\in I$ par h(x)=|f(x)|.

Multiplication par un réel et valeur absolue

Théorème

- 1. Soit f une fonction qui admet $\ell\in\mathbb{R}$ pour limite en $a\in\mathbb{R}\cup\{-\infty,+\infty\}$. Alors :
 - \diamond Pour tout $\lambda \in \mathbb{R}$, λf admet une limite en $a : \lambda \ell$.
 - \diamond | f | admet une limite en x_0 : | ℓ |.
- 2. Soit f une fonction telle que $\lim_{x \to \infty} f(x) = +\infty$. Alors :
 - $\Rightarrow \lambda f$ diverge vers $+\infty$ si $\lambda > 0$ et vers $-\infty$ si $\lambda < 0$.
 - \diamond |f| diverge vers $+\infty$
- 3. Soit f une fonction telle que $\lim_{x \to 2} f(x) = -\infty$. Alors :
 - $\Rightarrow \lambda f$ diverge vers $-\infty$ si $\lambda > 0$ et vers $+\infty$ si $\lambda < 0$.
 - \diamond |f| diverge vers $+\infty$

Produit

Définition

Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux fonctions. On notera h = fg la fonction définie pour tout $x \in I$ par $h(x) = f(x) \times g(x)$.

Théorème

Soit $a \in \mathbb{R} \cup \{-\infty, +\infty\}$.

- 1. Si $\lim_{x\to a} f(x) = \ell$ et $\lim_{x\to a} g(x) = \ell'$. Alors fg converge en a et $\lim_{x\to a} (fg)(x) = \ell \ell'$.
- 2. Si $\lim_{x \to a} f(x) = \ell > 0$ avec $\ell \neq 0$ et $\lim_{x \to a} g(x) = +\infty$. Alors fg diverge en g et $\lim_{x \to a} (fg)(x) = +\infty$.
- 3. Si $\lim_{x \to a} f(x) = \ell < 0$ avec $\ell \neq 0$ et $\lim_{x \to a} g(x) = +\infty$. Alors fg diverge en a et $\lim_{x \to a} (fg)(x) = -\infty$.
- 4. Si $\lim_{x \to a} f(x) = +\infty$ et $\lim_{x \to a} g(x) = +\infty$. Alors $\lim_{x \to a} (fg)(x) =$
- 5. Si $\lim_{\substack{x \to a \\ +\infty}} f(x) = -\infty$ et $\lim_{\substack{x \to a \\ +\infty}} g(x) = -\infty$. Alors $\lim_{\substack{x \to a \\ +\infty}} (fg)(x) =$
- 6. Si $\lim_{x \to a} f(x) = -\infty$ et $\lim_{x \to a} g(x) = +\infty$. Alors $\lim_{x \to a} (fg)(x) = -\infty$

Plan de la preuve

Montrons par exemple le cas 1

- $\forall x \in I, \ f(x)g(x) \ell \ell' = \\ (f(x) \ell)(g(x) \ell') + \ell(g(x) \ell') + \ell'(f(x) \ell)$
- $$\begin{split} & \diamond \; \operatorname{Soit} \; \varepsilon > 0. \\ & \exists \eta_1 > 0, \; \forall x \in I, \; |x x_0| < \eta_1 \Rightarrow \; |f(x) \ell| < \frac{\varepsilon}{3(1 + |\ell'|)}. \\ & \exists \eta_2 > 0, \; \forall x \in I, \; |x x_0| < \eta_2 \Rightarrow |g(x) \ell'| < \frac{\varepsilon}{3(1 + |\ell|)}. \\ & \exists \eta_3 > 0, \; \forall x \in I, \; |x x_0| < \eta_3 \Rightarrow |f(x) \ell| < \sqrt{\frac{\varepsilon}{3}}. \\ & \exists \eta_4 > 0, \; \forall x \in I, \; |x x_0| < \eta_4 \Rightarrow |g(x) \ell'| < \sqrt{\frac{\varepsilon}{3}}. \end{split}$$

 \diamond Pour $\eta = min(\eta_1, \eta_2, \eta_3, \eta_4)$, on a :

 $\forall x \in I, |x - x_0| < \eta \Rightarrow |fg(x) - \ell \ell'| < \varepsilon$

Théorème

Soit $a \in \mathbb{R} \cup \{-\infty, +\infty\}$.

- 1. Si $\lim_{x \to a} f(x) = \ell$ avec $\ell \neq 0$,
- alors $\frac{1}{f}$ converge en a et $\lim_{x \to a} \frac{1}{f}(x) = \frac{1}{\ell}$.
- 2. Si $\lim_{x \to a} f(x) = +\infty$ ou $-\infty$, alors $\frac{1}{f}$ converge en a et $\lim_{x \to a} \frac{1}{f}(x) = 0$

Exemples

1.
$$\lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{1}{x} = 0$$
2.
$$\lim_{x \to +\infty} x e^{-x} = 0$$

Limite d'une composée

Rappel

Soit $f:I \to \mathbb{R}$ et $g:J \to \mathbb{R}$ telles que $\mathrm{Im}(g) \subset I$. Alors $f \circ g$ est la fonction définie pour tout $x \in J$ par $f \circ g(x) = f(g(x))$.

Théorème

Soit $f:I \to \mathbb{R}$ et $g:J \to \mathbb{R}$ telles que $\mathrm{Im}(g) \subset I$. Si $\lim_{x \to x_0} g(x) = \ell$ et $\lim_{x \to \ell} f(x) = \ell'$, alors $f \circ g$ converge en x_0 et $\lim_{x \to x_0} f \circ g(x) = \ell'$.

Remarque

Ce théorème reste valable en remplaçant ℓ ou ℓ' par $+\infty$ ou $-\infty$.

Plan de la preuve

Montrons par exemple le cas $x_0 \in \mathbb{R}$, et $\ell, \ell' \in \mathbb{R}$. Soit $\varepsilon > 0$.

- $\Leftrightarrow \text{ II existe } \eta_1 > 0 \text{ tel que}$ $\forall x \in I, \ |x \ell| < \eta_1 \Rightarrow \ |f(x) \ell'| < \varepsilon;$
- ♦ Et pour ce $\eta_1 > 0$, il existe $\eta > 0$ tel que $\forall x \in J$, $|x x_0| < \eta \Rightarrow |g(x) \ell| < \eta_1$;

Conclusion:

 $\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in J, \ |x - x_0| < \eta \Rightarrow |f\big(g\big(x\big)\big) - \ell'| < \varepsilon$

Sommaire

- 1. Notion de point adhérent
- 2. Limite en un point
- 3. Limite en l'infin
- 4. Opérations sur les fonctions et limites
- 5. Limites et inégalités
- 5.1 Encadrements
- 5.2 Limites de fonctions monotones

Remarques

- ♦ Le théorème reste vrai en remplaçant x_0 par $+\infty$, resp. $-\infty$ (et l'intervalle centré en x_0 devient un intervalle de la forme $[A; +\infty[$, resp. $]-\infty,A]$).
- Le théorème est faux en remplaçant les inégalités strictes par des larges.
- ♦ Si f a une limite finie en x_0 , alors f est bornée $\underline{au\ voisinage}$ de x_0 .

Attention!

Cet énoncé n'est valable en toute généralité **que** pour la limite "classique"!

Dans les autres cas, il faut regarder "à la main".

Contre-exemple.

Exemple

Nous admettons que $\lim_{x \to \infty} e^x = +\infty$.

On a alors

$$\lim_{x \to +\infty} \ln \left(\frac{e^{-2x} + 1}{(e^{-x} + 1)^2} \right) = 0$$

car :

$$\Rightarrow \lim_{x \to +\infty} e^{-x} = 0$$

$$\Rightarrow \lim_{y \to 0} \frac{y^2 + 1}{(y+1)^2} = 1$$

$$\Leftrightarrow \lim_{z \to 1} \ln(z) = 0$$

Limites et inégalités strictes

Théorème:

Soit f une fonction définie sur I, et x_0 un nombre adhérent à I. m et M sont des réels.

- \Leftrightarrow Si $\lim_{x \to x_0} f(x) < M$, alors il existe un intervalle ouvert centré en x_0 sur lequel f(x) < M
- ♦ Si $\lim_{x \to x_0} f(x) > m$, alors il existe un intervalle ouvert centré en x_0 sur lequel f(x) > m

Exemple:

Soit f une fonction telle que $\lim_{x\to 0} f(x) = \ell < 0$. Alors

$$\exists \alpha > 0, \ \forall x \in]-\alpha; \alpha[, f(x) < 0$$

Limites et inégalités larges

Théorème :

On suppose que f et g possèdent des limites finies en x_0 . Si pour tout $x \in I$, on a $f(x) \leq g(x)$, alors

$$\lim_{x \to \infty} f(x) \le \lim_{x \to \infty} g(x)$$

Remarques:

- ♦ Ce théorème est faux avec des inégalités strictes
- Ce résultat est souvent utilisé avec l'une des fonctions qui est constante

Existence de limites

Théorème d'encadrement / Minoration / Majoration

Soient $f: I \to \mathbb{R}, \ m: I \to \mathbb{R}, \ M: I \to \mathbb{R}$ trois fonctions, x_0 adhérent à I, et $\ell \in \mathbb{R}$.

- 1. Si $\lim_{x \to \infty} m(x) = \lim_{x \to \infty} M(x) = \ell$ et si $m(x) \le f(x) \le M(x)$ autour de x_0 , alors $\lim_{t \to \infty} f$ existe et vaut ℓ
- 2. Si $\lim_{x \to \infty} m(x) = +\infty$ et si $f(x) \ge m(x)$ autour de x_0 , alors $\lim_{x \to x_0} f(x) \text{ existe et vaut } +\infty$
- 3. Si $\lim_{x \to x_0} M(x) = -\infty$ et si $f(x) \le M(x)$ autour de x_0 , alors $\lim_{x \to \infty} f(x)$ existe et vaut $-\infty$

Théorème

Soit $f: I \to \mathbb{R}$ une fonction **croissante** et $a \in \mathbb{R} \cup \{+\infty\}$ adhérent à I "à gauche".

- \diamond ou bien f admet une limite épointée à gauche en a
- \diamond ou bien f tend vers $+\infty$ en a.

Corollaire

Soit $f: I \to \mathbb{R}$ une fonction **croissante** et $a \in \mathbb{R} \cup \{+\infty\}$ adhérent à I "à gauche".

Si f est **majorée**, alors elle admet une limite épointée à gauche en a.

Preuve.

Exemple

1.
$$\lim_{x \to +\infty} \frac{\sin(x)}{x} = 0$$

2.
$$\lim_{x \to +\infty} \frac{E(x)}{x} = 1$$

1.
$$\lim_{x \to +\infty} \frac{\sin(x)}{x} = 0$$
2.
$$\lim_{x \to +\infty} \frac{E(x)}{x} = 1$$
3.
$$\lim_{x \to +\infty} 2x - E(x) = +\infty \text{ et } \lim_{x \to -\infty} 2x - E(x) = -\infty$$