B.Sc (HONS.) IN COMPUTER SCIENCE AND ENGINEERING FIRST YEAR SECOND SEMESTER EXAMINATION, 2019

[According to the New Syllabus]

CSE-510221

(Digital Systems Design)

Time—3 hours

Full marks-80

[N.B. The figures in the right margin indicate full marks. Answer any four questions. Different parts of a questions must be answered sequentially.]

Marks

Marks

Marks

Define digital system. Write down importance of digital system.

Discuss the major parts of a digital computer with required diagram.

Define ASCII and Gray Code. Convert (123.45)₈ = (?)₂ = (?)_{Hex} = (?)_{BCD}.

Write down Demorgan's theorem. Prove Demogan's theorem with 3 variables.

- 2. (a) What a universal gate? Prove the universality of NOR gate.
 - (b) Define K-map. Using K-map simplify the expression $y = \overline{C} (\overline{A} \overline{B} \overline{D} + D) + A\overline{B} C + \overline{D}$, also draw the logic diagram of simplified y.
 - (c) What is don't care condition of K-map? Explain.
 - (d) Consider the following Boolean logic diagram. If you want to get the output value x = 0 and x = 1, then what will be the input values of A. B, C, D:

01753123106.

[Please turn over

	Marks
3. (a) Define flipflop. Draw the logic circuit of an S-R flipflop wi NAND latch and explain its logic operation.	th 7
(b) Design and discuss the MOD-6 counter.	7
(a) Write down the truth table for a full adder. Draw the log circuit and explain its operation.	ic 6
4. (a) Explain the operation of successive approximation ADC wit required diagram.	h 8
(b) What is the largest value of output voltage from an eight be DAC that produces 1.0V for a digital input of 00101000?	it 5
(c) Differentiate between EPROM and DRAM.	4
(d) Mention the advantageous of successive approximation ADC over digital Ramp ADC.	3
What is encoder? Explain the working principle of 8 line to 3 line encoder with logic diagram and truth table.	
Explain. (b) Define MUX and DMUX. Why MUX is called data selector?	6
(c) Draw and explain BCD to 7 segment decoder.	6
6. (a) What are the differences between combinational logic circuit and sequential logic circuit?	t 5
(b) Define memory. Discuss the basic organization of a memory unit of 3 × 4 bits.	
(c) How many 32k × 8 RAM chips are needed to provide a memory capacity of 256k bytes?	5
(d) Describe the functional parts of an ALU.	5
What count care to be some Book as again dispersion If a mismit to the country of the most	1

gat the perpet value v or and s = 1. thus word only or the into a value value value of A 3. (. i)

extuin

B.Sc (HONS.) IN COMPUTER SCIENCE AND ENGINEERING FIRST YEAR SECOND SEMESTER EXAMINATION, 2019

[According to the New Syllabus]

CSE-510223

(Discrete Mathematics)

die ogs Time 3 hours

Full marks 80

[N.B. The figures in the right margin indicate full marks. Answer any four questions.]

1.3	(a) What is proposition? Find the negation of the proposition "Today is Friday" and express this in simple English.	5
2	(b) What is tautology? Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.	5
e No	(c) Express the statement "Every student in this class has studies calculus" as a universal quantification.	5
	(d) What are the truth values of the propositions R (1, 2, 3) and R (0, 0, 1)?	5
~	(d) Define power set. What is the power set of the set $\{0, 1, 2\}$?	4
Z.	(b) Using set builder notation and logical equivalences show that	6
	$\overline{A \cap B} = \overline{A} \cup \overline{B}$.	5
	Define one-to-one and onto functions with examples.	5
ų.	Translate the following statements into logical expressions. "Some students in this class has visited Mexico" and "Every	,
	student in this class has visited either Canada or Mexico using	
2/	(a) Define rules of inference. Write down the basic rules of	4
1	inference.	5
	Using mathematical induction show that,)
	(c) Define the Sum Rule and the Product Rule. How many different	5
	(Art Simplify the sum-of-products expansions using Karnaugh maps.	6
	$n = \sqrt{2} + \sqrt{2} + x \sqrt{2} + x \sqrt{2} + x \sqrt{2}$	
	(ii) $x\overline{v}z + x\overline{v} \overline{z} + xyz + x yz + x yz + x yz$.	_
	A visite a recursive procedure for Ackermann function, use the	5
_	1-Grition of the Ackermann function to find A (1, 5).	_
	(b) Find the matrix representation of the relations Sor where the	5
\$ 7	matrices representing R and S are $M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and	
	matrices representing Raine 5 and Lo 0 0.	
*//	$M_{\rm S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
	$M_{\rm S} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	

[Please turn over

5

5

(c) How can the final exams at a University be scheduled so that no student has two exams at the same time. [For instance, suppose the courses are numbered 1 to 7 and following pairs of cources have common students:

(1, 2), (1, 3), (1, 4), (1, 7), (2, 3), (2, 4), (2, 5), (2, 7), (3, 4), (3, 6), (3, 7), (4, 5), (4, 6), (5, 6), (5, 7) and (6, 7)].

La Contract

(d) If G is a connected planar simple graph with e edges and v vertices, where $v \ge 3$ then $e \le 3v - 6$.

5. (d) Define multigraph and pseudograph with examples.

Construct BST of the following values:

14, 3, 4, 12, 14, 11, 5, 2, 8, 2, 7, 9, 16, 6, 20.

(c) Draw the Hasse diagram representing the partial ordering 5
{(a, b) | a devides b} on {1, 2, 3, 4, 6, 8, 12},

Evaluate the prefix expression:) 18th 14 42 September 17 17 17 234

6. (a) State Euler's theorem and prove it using required diagram.

(b) Describe the universality of NAND & NOR gate.

What is the chromatic number of the Graph-G and H:

Fig: G

Fig: H

(d) Determine the order in which a pre-order traversal visits the vertices of the following ordered rooted tree:

B.Sc (HONS.) IN COMPUTER SCIENCE AND ENGINEERING FIRST YEAR SECOND SEMESTER EXAMINATION, 2019

[According to the New Syllabus]

CSE-510225

(Linear Algebra)

Time—3 hours

Full marks-80

[N.B. The figures in the right margin indicate full marks. Answer any four questions.]

(a) Define linear equation with examples.
(b) Determine the value of λ such that the following system of linear equations in unknowns x, y, z has:
(i) a unique solution (ii) no solution (iii) more than one solutions.
(c) Define norm of a vector. Consider the points, P (3, λ, -2) and

Q(5, 3, 4) in \mathbb{R}^3 . Find the value of λ so that PQ is orthogonal to the vector (4, -3, 2).

(d) Prove that,
$$\begin{vmatrix} -a & -b & c & d \\ b & -a & -d & c \\ c & -d & a & -b \\ d & c & b & a \end{vmatrix} = (a^2 + b^2 + c^2 + d^2)^2.$$

- 2. (g) Define (i) symmetric matrix (ii) square matrix (iii) idempotent amatrix (iv) singular matrix.
 - (b) If A and B are comparable matrices and A^T and B^T are the 1+1+4 transpose matrices of A and B respectively, then prove that =6 (i) $(A^T)^T = A$, (ii) $(A + B)^T = A^T + B^T$, (iii) $(AB)^T = B^T A^T$.
 - (c) Solve the following system of linear equations with the help of . 5 matrix:

$$x + 2y + 3z + 4 = 0$$
$$2x + 4y + 5z + 7 = 0$$
$$3x + 5y + 6z + 10 = 0$$

(d) Show that the matrix
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix}$$
 is idempotent.

[Please turn over

- 3. (a) Define linear transformation. Show that the product of two 2+5=7 linear transformation is a linear transformation.
 - (b) Let S and T be the linear operators of \mathbb{R}^2 into \mathbb{R}^2 defined by S(x, y) = 3x + 2y, -6x + y) T(x, y) = (2x + y, x y). Find formulae defining properties S + T, ST, TS and S^2 .
 - (c) Define (i) System of linear equation
 (ii) Consistent
 - (iii) Homogeneous (iv) Non-homogeneous
- 4. (a) Define minors and co-factors with example.
 - (b) If $\Delta = \begin{vmatrix} x & x^2 & x^3 + 1 \\ y & y^2 & y^3 + 1 \\ z & z^2 & z^3 + 1 \end{vmatrix}$ then prove that, $\Delta = (x y)(x z)(x y)(y z + 1) \quad \text{Also show that if } y \text{ and } z \text{ are}$
 - $\Delta = (x y)(y z)(z x)(xyz + 1)$. Also show that if x, y and z are not equal and $\Delta = 0$, then xyz + 1 = 0.
 - (c) Prove that, $\begin{vmatrix}
 1 & a & a^2 & a^3 \\
 1 & b & b^2 & b^3 \\
 1 & c & c^2 & c^3
 \end{vmatrix} = (d-c)(d-b)(d-a)(c-b)(c-a)(b-a).$
 - (d) Prove that, $\begin{vmatrix} 1+a_1 & a_2 & a_3 & a_4 \\ a_1 & 1+a_2 & a_3 & a_4 \\ a_1 & a_2 & 1+a_3 & a_4 \\ a_1 & a_2 & a_3 & 1+a_4 \end{vmatrix} = 1+a_1+a_2+a_3+a_4.$
- 5. (a) Define image and kernel of a linear transformation.
 - (b) Show that, $T: \mathbb{R}^3 \to \mathbb{R}^2$, where T(x, y, z) = (x + y z, 2x y + 2z) is a linear transformation. Find a basis and dimension for ImT and ker T.
 - (c) Find a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ whose ImT is generated by $\{(1, 2, 0, -4), (2, 0, -1, -3)\}.$
- 6. (a) Define characteristic matrix and characteristic equation.
 - (b) Find the eigen values and eigen vectors of the matrix 8
 - $\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & -1 \\ -1 & 1 & 4 \end{bmatrix}$
 - (c) State Cayley-Hamilton theorem. Using this theorem find the 2+7 inverse of the matrix $A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$.

B.Sc (HONS.) IN COMPUTER SCIENCE AND ENGINEERING FIRST YEAR SECOND SEMESTER EXAMINATION, 2019

[According to the New Syllabus]

CSE-510227

(Statistics and Probability)

Time—3 hours Full marks—80

[N.B. The figures in the right margin indicate full marks. Answer any four questions.]

	questions.j	Marks
		Marks
1/.	(A) Define statistics. Discuss the importance of statistics.	5
	(b) What do you mean by statistical data? Describe the method of	6
	primary data collection.	
	(g) Distinguish between:	4
	(i) Discrete variable and continuous variable.	
	(ii) Qualitative variable and quantitative variable.	
	(d) Describe frequency polygon and cumulative frequency curve or ogive.	5
20	(a) What are the differences between histogram and bar diagram?	4
4.	(b) In a class examination, the marks obtained by 30 students are	10
	given below:	
	44, 32, 36, 56, 50, 34, 31, 46, 86, 76, 42, 46,	•
	40, 56, 66, 42, 33, 80, 79, 81, 49, 40, 60, 63,	
100	64, 76. 56, 57, 70, 82.	
(3)	Construct a frequency distribution table by using suitable	
	class interval.	٠.
	(jf) Construct a stem and leaf diagram for this data.	
	(c) Define the following terms:	6
	(i) Arithmetic Mean	0
	(ji) Median	
	(iji) Mode	
3/	Describe the properties of arithmetic mean.	6
7.	(b) For two non-zero positive numbers, prove that,	5 -
	AM × HM = $(GM)^2$.	5
	(c) Define variance. What are the qualities of good measure of dispersion? Which measure is suitable and why?	6
	(d) The mean salary paid to 200 employees in a shoe factory was	4
	found to be 2500. Later on, it was discovered that the salaries of	
	two employees were wrongly taken as 3,000 and 3,500 instead	•
	of 3,500 and 3,200. Compute the correct mean salary.	n o ho
	[Please turn	over

				Marks
gr. (a	y) What do you mean kurtosis with the hel	by kurtosis? Explain	the different types of	5
a) Describe the absolut		sion.	5
	The first four mome 2, 20, 40 and 50 moments, β_1 and β_2	ents of a distribution respectively. Obtain	about the value 5 are the first four central ewness and kurtosis of	6
(9	the distribution. Determine the stand	lard deviation from	the obtained marks of	4
THE	the CSE students: 16, 12, 14, 15, 18.		Maria de arres es estados es estados e	
5. (a	Describe the differen	nt types of simple cor	relation.	5
	11-7		is an independent of	5
(c,	Find the correlation $\Sigma x = 56$, $\Sigma y = 40$, Σx	coefficient from the figure 2 = 524, $\Sigma y^2 = 256$, Σ	following informations: $axy = 364$ and $n = 8$.	5
(d)	Karl Pearson's coeff	icient of correlation Standard deviation	between two variates of x is 3 and their	5
. (a)	What do you mean b properties of regression	y regression analysion coefficient.	s? State the important	5
(b)	By using the followin	g informations:		5
	$\Sigma x = 156, \Sigma y = 140, \Sigma$	$\Sigma x^2 = 1524, \ \Sigma y^2 = 12$	56, $\Sigma xy = 1364$, $n = 18$.	
	Find the regression co	pefficient of y on x .	4 4 4	6
(c)	Given the following i			10
		Advertising	Sales	
	an today kilo	(Tk. in lac)	(Tk. in crore)	

.u.:::::::::::::::::::::::::::::::::::	Advertising expenditure (Tk. in lac)	Sales (Tk. in crore)
Mean	35	82
Standard deviation	9.03	17.16

correlation co-efficient = 0.61.

(i) Calculate the two regression equations.

learzofustozek, takif byznycznił aszan poczetka a d a respisator fizika kierczne koncertyjnych w seco

- (ii) Estimate the likely sales for an advertising expenditure of Tk. 40 lac.
- (iii) What should be the advertising expenditure for attaining sales target Tk. 90 crore?

২৫৮এক্স

Pease peneros