[a long digression on inverse limits
and the p-adic numbers]

$$\begin{array}{cccc} \underline{\text{Last time}} & (\mathsf{X},\,\mathsf{x}) & \text{gives} & \pi_1(\mathsf{X},\,\mathsf{x}) \\ & \mathsf{f} & \text{gives} & \mathsf{f}_^* \end{array}$$

if f is a homeo, then f_* is an iso

Ex if
$$f = id X$$
, then $f^* = id \{\pi 1(X, x)\}$

Q is the converse true?

Ex R and
$$\{0\}$$
 are not homeomorphic [why?] but $\pi_1(R, 0) = \pi_1(\{0\}, 0)$

Thm if X is a convex subspace of R^n then for any x and loop y based at x, have $y \sim_p e_x$ thus $\pi_1(X, x) = \{[e_x]\}$

Pf recall the homotopy h(s, t) = (1 - t)*x + t*y(s)

is it a path homotopy?

$$h(0, t) = (1 - t)*x + t*y(0) = (1 - t)*x + t*x = x$$

$$h(1, t) = (1 - t)*x + t*y(1) = (1 - t)*x + t*x = x$$

[further discussion of star convexity]

<u>Moral</u>	convex subspaces of R^n need not
	be homeomorphic
	but they are all simply connected:
	their π 1's are all trivial

but recall:
any nonempty convex X is contractible:

there is x_0 in X s.t. id_X ~ (constant map at x_0)

(Munkres §58)

<u>Df</u> a <u>homotopy equivalence</u> btw X and Y is a pair of cts f : X to Y and g : Y to X

s.t. $g \circ f \sim id_X \text{ and } f \circ g \sim id_Y$

here we say X and Y are <u>homotopy equivalent</u>

<u>Ex</u> $X = R^2 - \{(0, 0)\} \text{ and } Y = S^1$

r: X to Y r(x, y) = (x, y)/|(x, y)|i: Y to X i(x, y) = (x, y)

then $(i \circ r)(x, y) = (x, y)/|(x, y)|$, so $i \circ r \sim id_X$ via h((x, y), t) = ((1 - t)/|(x, y)| + t)*(x, y)while $(r \circ i) = id Y$

so $R^2 - \{(0, 0)\}$ is homotopy equivalent to S^1