

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute for Operations Research ETH Zurich HG G21-22

Stephan Artmann stephan.artmann@ifor.math.ethz.ch Christoph Glanzer christoph.glanzer@ifor.math.ethz.ch

Mathematical Optimization — Assignment 3

https://moodle-app2.let.ethz.ch/course/view.php?id=3610

Exercises marked with a (*) may require prior knowledge not yet seen in the lecture, but provide statements that are needed later on in the course.

Exercise 1: Fourier-Motzkin elimination and optimization

Consider the following LP:

- a) How can the Fourier-Motzkin elimination be modified in order to maximize a linear function over a polyhedron?
- b) Apply your idea to the given LP. In particular, derive an optimal solution.

Exercise 2: Farkas Lemma for Standard Form Polyhedra

Prove the following version of the Farkas Lemma: The system $Ax = b, x \ge 0$ has a solution if and only if for every y such that $y^TA \ge 0$ it holds that $y^Tb \ge 0$.

Exercise 3: Caratheodory's Theorem for Polytopes

Let $P = \operatorname{conv}\{v_1, \dots v_k\} \subset \mathbb{R}^n$ be a bounded polyhedron (polytope) given as the convex hull of its vertices. Prove that for every point $x \in P$ there exist n+1 vertices $v_{i_1}, \dots, v_{i_{n+1}}$ and nonnegative scalars $\lambda_1, \dots, \lambda_{n+1}$ with $\sum_{i=1}^{n+1} \lambda_i = 1$ such that

$$x = \sum_{j=1}^{n+1} \lambda_j v_{i_j}.$$

Exercise 4: Iterated Polyhedral Projections

Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\} \subseteq \mathbb{R}^n$, for $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, be a polyhedron. Show that

$$\operatorname{proj}_{(x_1,\dots,x_{n-2})}(P) = \operatorname{proj}_{(x_1,\dots,x_{n-2})} \big(\operatorname{proj}_{(x_1,\dots,x_{n-1})}(P)\big).$$

Exercise 5: Projection (*)

Let $Q \subset \mathbb{R}^n$ be a non-empty, compact and convex set and let $y \in \mathbb{R}^n$. Consider the projection on Q defined by

$$\mathcal{PO}(y) := \operatorname{argmin}\{||x - y||_2^2 \ : \ x \in Q\}.$$

Show that for all $z \in Q$

$$||z - \mathcal{PO}(y)||_2 < ||z - y||_2.$$