Inverse Language Modeling towards Robust and Grounded LLMs

Master's Degree in Computer Science

Simone Sestito (1937764)

Academic Year 2024/2025

Table of Contents

1 Gradient-based Adversarial Attacks

► Gradient-based Adversarial Attacks

► Inverse Language Modeling

▶ Results

We want to change the input to minimize the loss

What to optimize?

The optimized perturbation δ may look like:

 $+\alpha$

Input image

Noise

Adversarial image

A classifier can be made robust using **Adversarial Training**:

- Generate \mathbf{x}' samples
- Include them in the training process
- Repeat

A classifier can be made robust using **Adversarial Training**:

- Generate \mathbf{x}' samples
- Include them in the training process
- Repeat

The required perturbation δ will be more and more perceptible by humans

Perceptually-Aligned Gradients

1 Gradient-based Adversarial Attacks

When our classifier has PAGs:

Original image: bird

A "bird" classified as cat

A "bird" classified as dog

Gradients are aligned to the human perception

Ganz et al, "Do Perceptually Aligned Gradients Imply Robustness?", 2023

Table of Contents

2 Inverse Language Modeling

▶ Gradient-based Adversarial Attacks

► Inverse Language Modeling

Results

What about LLMs?

- Input is sequential
- ullet The same sequence can continue in multiple ways o multiple valid classes
- The input space is **discrete** ($|\mathcal{V}|$)

Attacking LLMs with GCG

2 Inverse Language Modeling

Greedy Coordinate Gradient is an algorithm to find a sequence of tokens $\mathbf{x} \star$ such that the LLM will complete with \mathbf{y} that we want — using **gradients** on input tokens

Input	Output y	Loss
x : Stevens recorded and produced the album at multiple $x\star$: Zo Certified Cities (. broadcastquartered Fitness Academy thirteen	locations in the United	5.3642 5.1302
x : After the introduction of the Majors , The $x\star$: REQU Apart British received reformsMilitaryestic Division The	British Army was divided	11.2146 7.1899
x : The founding director , Peggy Loar , left x∗: tested UberERIC definitionCalifornia sustainability RutgersOL Jensen regarding	the University of California	7.2669 6.4402
x : Ruiz notes that writing also has the power x*: Report Global feminism agenda Representatives tell Sacredixties Trying	to change the world	5.9135 4.6041

They are called "Evil Twins"

- Goal: train LLMs to both generate text and understand what they are conditioned on from the output
- Key Ideas:
 - Create a new training procedure that adds more robustness in the loop
 - Reconstruct input from the output, using $\nabla_{\mathbf{x}}\mathcal{L}$

Introducing ILM

2 Inverse Language Modeling

Now

Autoregressive forward

$$p(\mathbf{x}_i|\mathbf{x}_1,\ldots,\mathbf{x}_{i-1})$$

Proposed

Autoregressive backward

$$p(\mathbf{x}_{i-1}|\nabla_{\mathbf{x}_{i-1}}p(\mathbf{x}_i|\mathbf{x}_1,\ldots,\mathbf{x}_{i-1}))$$

ILM Inversion Procedure

2 Inverse Language Modeling

Split it into the original prefix $\mathbf{x}_p = \mathbf{x}_{0:k}$ and the suffix $\mathbf{x}_s = \mathbf{x}_{k:n}$

 $\mathbf{x} =$ The pen is on the table

 $\mathbf{x}_p =$ The pen is

 $\mathbf{x}_s =$ on the table

Gradients Received by the Tokens

2 Inverse Language Modeling

Gradients received on a single token embedding, carry information of the whole sentence

Gradients Received by the Tokens

2 Inverse Language Modeling

A causal model looks ahead, but only its gradients disclose the pasts that might have built that future.

ILM Training Procedure

2 Inverse Language Modeling

X

Given the input sentence $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n-1}$

ILM Training Procedure

2 Inverse Language Modeling

Embed the input sentence tokens into $\mathbf{e}_0, \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{n-1}$

Pass through the Transformer Decoder layer, up to the final hidden state $\mathbf{h}_0, \mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_{n-1}$

ILM Training Procedure

2 Inverse Language Modeling

Using the Classifier Head, predict $\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{n-1}$

Compute the loss $\mathcal{L}_{\mathit{CE}} = \mathit{CE}(\mathbf{x}_{1:n}, \mathbf{y}_{0:n-1})$ comparing the predictions with the ground-truth

ILM Training Procedure

2 Inverse Language Modeling

Backpropagation: compute the gradients $abla_{\mathbf{e}_{0:n-1}}\mathcal{L}$

ILM Training Procedure

2 Inverse Language Modeling

From the gradients, predict the input tokens $\mathbf{x}_{0:n-1}$

Parallelism

2 Inverse Language Modeling

As if it were really cyclic!

Parallelism between the last hidden state and the gradients on the embeddings

More Parallelism: Weight Tying

2 Inverse Language Modeling

2 Inverse Language Modeling

$$\mathcal{L} = \underbrace{\mathcal{L}_{\mathit{CE}}(\mathbf{y}_{\mathsf{true}}, \mathbf{y}_{\mathsf{pred}})}_{\mathsf{Forward: from the input x, encode y}} + \underbrace{\lambda \, \mathcal{L}_{\mathit{CE}}(\mathbf{x}, f(\mathbf{x},
abla \mathbf{x}))}_{\mathsf{Backward: from gradients, decode back x}}$$

2 Inverse Language Modeling

$$\mathcal{L} = \underbrace{\mathcal{L}_{\mathit{CE}}(\mathbf{y}_{\mathsf{true}}, \mathbf{y}_{\mathsf{pred}})}_{\mathsf{Forward: from the input x, encode y}} + \underbrace{\lambda \, \mathcal{L}_{\mathit{CE}}(\mathbf{x}, f(\mathbf{x},
abla \mathbf{x}))}_{\mathsf{Backward: from gradients, decode back x}}$$

• Identity: what we have discussed so far

2 Inverse Language Modeling

$$\mathcal{L} = \underbrace{\mathcal{L}_{\mathit{CE}}(\mathbf{y}_{\mathsf{true}}, \mathbf{y}_{\mathsf{pred}})}_{\mathsf{Forward: from the input x, encode y}} + \underbrace{\lambda \, \mathcal{L}_{\mathit{CE}}(\mathbf{x}, f(\mathbf{x},
abla \mathbf{x}))}_{\mathsf{Backward: from gradients, decode back x}}$$

- Identity: what we have discussed so far
- BERT-like: masking the input tokens on the gradients
 - When computing $\nabla_{\mathbf{e}}$, replace 10% tokens to predict from the gradients with <code>[PAD]</code>
 - ightarrow it should understand what's missing

2 Inverse Language Modeling

$$\mathcal{L} = \underbrace{\mathcal{L}_{\mathit{CE}}(\mathbf{y}_{\mathsf{true}}, \mathbf{y}_{\mathsf{pred}})}_{\mathsf{Forward: from the input x, encode y}} + \underbrace{\lambda \, \mathcal{L}_{\mathit{CE}}(\mathbf{x}, f(\mathbf{x},
abla \mathbf{x}))}_{\mathsf{Backward: from gradients, decode back x}}$$

- Identity: what we have discussed so far
- BERT-like: masking the input tokens on the gradients
 - When computing ∇_e , replace 10% tokens to predict from the gradients with <code>[PAD]</code> \rightarrow it should understand what's missing
- Inv-First: assign the first token to [PAD] and invert it

2 Inverse Language Modeling

$$\mathcal{L} = \underbrace{\mathcal{L}_{\mathit{CE}}(\mathbf{y}_{\mathsf{true}}, \mathbf{y}_{\mathsf{pred}})}_{\mathsf{Forward: from the input x, encode y}} + \underbrace{\lambda \, \mathcal{L}_{\mathit{CE}}(\mathbf{x}, f(\mathbf{x},
abla \mathbf{x}))}_{\mathsf{Backward: from gradients, decode back x}}$$

- Identity: what we have discussed so far
- BERT-like: masking the input tokens on the gradients
 - When computing ∇_e , replace 10% tokens to predict from the gradients with <code>[PAD]</code> \rightarrow it should understand what's missing
- Inv-First: assign the first token to [PAD] and invert it

Classification Stategies:

2 Inverse Language Modeling

$$\mathcal{L} = \underbrace{\mathcal{L}_{\mathit{CE}}(\mathbf{y}_{\mathsf{true}}, \mathbf{y}_{\mathsf{pred}})}_{\mathsf{Forward: from the input x, encode y}} + \underbrace{\lambda \, \mathcal{L}_{\mathit{CE}}(\mathbf{x}, f(\mathbf{x},
abla \mathbf{x}))}_{\mathsf{Backward: from gradients, decode back x}}$$

- Identity: what we have discussed so far
- BERT-like: masking the input tokens on the gradients
 - When computing ∇_e , replace 10% tokens to predict from the gradients with <code>[PAD]</code> \rightarrow it should understand what's missing
- Inv-First: assign the first token to [PAD] and invert it

Classification Stategies:

• Use gradient as value $-f_{\mathbf{W}}(\nabla_{\mathbf{x}_i}\mathcal{L}_\mathit{CE})$

2 Inverse Language Modeling

$$\mathcal{L} = \underbrace{\mathcal{L}_{\mathit{CE}}(\mathbf{y}_{\mathsf{true}}, \mathbf{y}_{\mathsf{pred}})}_{\mathsf{Forward: from the input x, encode y}} + \underbrace{\lambda \, \mathcal{L}_{\mathit{CE}}(\mathbf{x}, f(\mathbf{x},
abla \mathbf{x}))}_{\mathsf{Backward: from gradients, decode back x}}$$

- Identity: what we have discussed so far
- BERT-like: masking the input tokens on the gradients
 - When computing ∇_e , replace 10% tokens to predict from the gradients with <code>[PAD]</code> \rightarrow it should understand what's missing
- Inv-First: assign the first token to [PAD] and invert it

Classification Stategies:

- Use gradient as value $-f_{\mathbf{W}}(\nabla_{\mathbf{x}_i}\mathcal{L}_{\mathit{CE}})$
- Use gradient as **direction** $-f_{\mathbf{W}}(\mathbf{x}_i \nabla_{\mathbf{x}_i} \mathcal{L}_{CE})$

But we don't have billions of dollars

2 Inverse Language Modeling

These results have been obtained on a tiny LLM:

- Only 10M parameters
- A vocabulary of just 2048 tokens
- A simple corpus (TinyStories dataset)

It will be scaled to Llama-1B in the future.

Table of Contents 3 Results

▶ Gradient-based Adversarial Attacks

- Inverse Language Modeling
- ► Results

Inversion Evaluation

3 Results

	Grad.	Token Recall ↑	Token Precision ↑	Token F1-score ↑	Positional Accuracy ↑
Baseline		20.9%	18.8%	19.7%	2.4%
Inv-First	Val.	11.3%	10.1%	10.7%	1.7%
Bert-like		2.9%	2.7%	2.8%	0.3%
Identity		0.7%	0.7%	0.7%	0.1%
Inv-First	Dir.	13.3%	12.0%	12.6%	2.4%
Bert-like		0.1%	0.1%	0.1%	0.1%
Identity		22.5%	20.2%	21.2%	2.5%

Evaluation of the inversion capabilities, on metrics relative to the single tokens

Inversion Evaluation

3 Results

	Grad.	Full Sentence Perplexity ↓	Predicted Prefix Perplexity ↓	Semantic Similarity ↑
Baseline		8.34	112.82	0.28
Inv-First	Val.	10.21	1576.23	0.25
Bert-like		11.54	5501.86	0.17
Identity		13.88	14658.58	0.12
Inv-First	Dir.	9.77	1012.80	0.30
Bert-like		11.05	563.26	0.11
Identity		8.34	106.31	0.30

Metrics relative to the full sentences, computed using a third-party LLM

Example of Inversion 3 Results

x		dad in the garden. He gives her a small shovel and a bag of bulbs.
x ∗ Baseline		to play with his cars, and look at the shake. She feels on her hand.
x ∗ Inv-First	(Val.)	zzle spowerlizza in her plate. She start to fence and leaves.
x ∗ Bert-like	(Val.)	could buildDven measure its neighbign, how he sees nostiff.
x ⋆ Identity	(Val.)	Kugct propide,RallashQilndmawkeycessUuhingask do.
x ∗ Inv-First	(Dir.)	too hurt the car's bricket. It did not want to grow in a cage.
x ⋆ Bert-like	(Dir.)	Tim! Tim,ide, Sue, Sue, Tim!ide, "Tim, "Tim,ice. Tim! Tim!ittenbbed Tim! Tim,ide,auseectle.
x* Identity	(Dir.)	cars, and gets on his hand. But he does not want to play with the towers.
у		Bulbs are like round seeds that grow into flowers. Lily digs holes in the dirt and puts the bulbs inside. She covers them with more []

ILM Robustness Results

3 Results

	Grad.	GCG Success Rate ↓	GCG Average Steps (mean ± stddev)
Baseline		95.9%	277 \pm 148
Inv-First Bert-like Identity	Val.	85.0% 0.8% 88.1%	$320\pm134 \ 249\pm148 \ 274\pm145$
Inv-First Bert-like Identity	Dir.	89.3% 85.5% <u>82.8%</u>	$313\pm134 \ 287\pm143 \ 284\pm141$

Identity looks good, but Bert-like is suspicious

ILM Robustness — Metrics on the Model Itself 3 Results

	Grad.	Original X CE-loss ↓	Attack X' CE-loss	Delta CE-loss ↓	KL Divergence ↑
Baseline		13.28	10.97	2.31	2.19
Inv-First	Val.	11.09	9.72	1.37	2.44
Bert-like		13.26	10.25	3.01	54.19
Identity		12.77	11.21	1.56	2.23
Inv-First	Dir.	11.21	9.81	1.40	2.44
Bert-like		11.49	10.34	1.15	2.23
Identity		12.58	11.12	1.46	2.47

Also, Bert-like seems to map $\mathbf{x} \star$ to very different next token **distributions**

ILM Robustness — Third-Party Model Metrics 3 Results

	Grad.	Original X Perplexity	Attack X' Perplexity ↓	Semantic Similarity ↑
Baseline		44.14	17344.04	0.13
Inv-First Bert-like Identity	Val.	44.81 40.37 43.98	9431.09 11817.21 8322.25	<u>0.16</u> 0.11 0.18
Inv-First Bert-like Identity	Dir.	43.50 44.74 44.71	12344.85 10611.09 10929.21	O.13 O.13 O.15

However, all $\mathbf{x} \star$ are meaningless, due to extremely high 3rd party model perplexity

ILM Robustness — Qualitative Results

3 Results

	Input	Output y	Loss
x :	Lily and Ben were friends who liked to play outside. But they did not like the same things. Lily	liked to make snowmen	13.22
x *:	Lucy. Speez herself angO piecle you."Ily named nexird opened cake".o.ter carrotmy	and snow angel	12.14

An example result attacking with GCG the Identity (grad. value) model.

Almost the same for all model variants.

INSERT SCREENSHOT

arXiv:2412.08127v3 [cs.CL] 31 Mar 2025

Inverse Language Modeling towards Robust and Grounded LLMs

Thank you for listening!
Any questions?