Exercise 1.9.3.

Let \mathbb{T} denote the set of sequences $(\phi_i)_{i=0}^{\infty}$ where $\phi_i \in S^1$ and $\phi_i = 2\phi_{i+1}$ mod 1 for all i. Let $\alpha : \mathbb{T} \to \mathbb{T}$ be defined by

$$(\phi_0, \phi_1, \dots) \mapsto (2\phi_1, \phi_1, \phi_2, \dots). \tag{1}$$

Show that \mathbb{T} is a topological group. (2)

Show that α is an automorphism (3)

Proof + reasoning:

Let's first formulate basic lemmas to use throughout the exercise. (4)

Lemma 1. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \ a, b \in \mathbb{N} : x \equiv_a y \Rightarrow bx \equiv_a by.$

Proof.
$$\exists p \in \mathbb{Z} : x = y + pa$$
, so $bx = by + bpa$, so $bx \equiv_a by$.

Lemma 2. $\forall x \in \mathbb{R}, a, b \in \mathbb{N}, a(x \mod b) \equiv_b ax.$

Proof. Clearly,
$$x \mod b \equiv_b x$$
. By lemma 1, $a(x \mod b) \equiv_b ax$.

Lemma 3. $\forall x, y \in \mathbb{R}, \ \forall k \in \mathbb{N}, \ (x \mod k) + (y \mod k) \equiv_k x + y.$

Proof.
$$x + y = (x \mod k) + (y \mod k) + pk + qk = (x \mod k) + (y \mod k) + (p + q)k$$
. So, $x + y \equiv_k (x \mod k) + (y \mod k)$.

Given
$$\psi$$
 and ϕ in \mathbb{T} , define $(\psi + \phi)_i = (\psi_i + \phi_i) \mod 1$. (5)

Let ψ and ϕ be elements of \mathbb{T} . It suffices to show $\psi_i + \phi_i \equiv_1 2(\psi + \phi)_{i+1}$. (6) By (1), lemma 3 and lemma 2,

$$\psi_{i} + \phi_{i} = (2\psi_{i+1} \mod 1) + (2\phi_{i+1} \mod 1)
\equiv_{1} 2\psi_{i+1} + 2\phi_{i+1}
= 2(\psi_{i+1} + \phi_{i+1})
\equiv_{1} 2((\psi + \phi)_{i+1} \mod 1)
\equiv_{1} 2(\psi + \phi)_{i+1}$$
(7)

From (7) and (6), \mathbb{T} is closed under addition. (8)

For
$$\phi \in \mathbb{T}$$
, define $(-\phi)_i := -\phi_i$. (9)

Clearly, this is the inverse of
$$\phi$$
. (10)

Now, let's check continuity. (11)

Suppose that $\phi^n \to \phi$ and $\psi^n \to \psi$ in $(S^1)^{\mathbb{N}_0}$. Let $n \ge 0$. By assumption, $\exists K_n \text{ s.t. } \forall j \le n, \ \phi^i_j = \phi_j, \ \psi^i_j = \psi_j, \text{ hence } (\phi^i - \psi^i)_j = \phi_j - \psi_j.$ (12)

By (12),
$$\forall \varepsilon > 0, \exists k \text{ s.t. } d(\phi^i - \psi^i, \phi - \psi) \le \varepsilon \ \forall i \ge k, \text{ so } \lim_{n \to \infty} d(\phi^n - \psi^n, \phi - \psi) = 0, \text{ hence } (\phi, \psi) \mapsto \phi - \psi \text{ is continuous.}$$
 (13)

Now, we check α is a group automorphism. Is it possible to take a shortcut? I think that if α preserves the product and identity and is bijective, then it follows that α preserves inverses and that α^{-1} is a group homomorphism.

(14)

Let $\phi, \psi \in \mathbb{T}$. Show $\alpha(\phi) + \alpha(\psi) = \alpha(\phi + \psi)$. By lemma 3 and lemma 2,

$$(\alpha(\phi) + \alpha(\psi))_i = ((2\phi_i) \bmod 1 + (2\psi_i) \bmod 1) \bmod 1$$

$$\equiv_1 2(\phi_i + \psi_i)$$

$$\equiv_1 2((\phi + \psi)_i \bmod 1)$$

$$= \alpha(\phi + \psi)_i.$$
(15)

(17)

Clearly, α preserves the identity. (16)

Now, let's show α is bijective.

Suppose $\alpha(\phi) = \alpha(\psi)$. Then $\phi_{i-1} = \alpha(\phi)_i = \alpha(\psi)_i = \psi_{i-1} \ \forall i \ge 1$, so $\phi = \psi$, hence α is injective. (18)

Let
$$\phi \in \mathbb{T}$$
. Let $(\phi')_i := \phi_{i+1} \ \forall i \ge 1$. (19)

$$\alpha(\phi') = \phi$$
, so α is surjective. (20)

By (18) and (20), α is bijective. By (15), (16), and (18), α is a group automorphism. (21)

Now we need to show α is a homeomorphism. Note that α is a map between product topologies. This should simplify our proofs. (22)

For product topologies the 1-d cylinders form a subbasis. So, to show that α is continuous it suffices to show that $\forall i \in \mathbb{N}, \pi_i \circ \alpha$ is continuous. (23)

Let
$$i \in \mathbb{N}$$
. Note $\pi_i \circ \alpha : (\phi_0, \phi_1, \dots) \mapsto \begin{cases} \phi_{i-1} & \text{if } i \ge 1\\ 2\phi_0 & \text{if } i = 0 \end{cases}$ (24)

The map $r: S^1 \to S^1: s \mapsto 2s \mod 1$ is clearly continuous. (25) By (25), if $A \in \mathcal{T}(S^1)$, then

$$(\pi_i \circ \alpha)^{-1}(A) = \begin{cases} (S^1)^{i-1} \times A \times S^1 \times \cdots & \text{if } i \ge 1\\ r^{-1}(A) \times S^1 \times \cdots & \text{if } i = 0 \end{cases}$$
 (26)

By (26) and (25), $\pi_i \circ \alpha$ is continuous, so by (23), α is continuous. (27)

Note $\pi_i \circ \alpha^{-1} : (\phi_0, \phi_1, \dots) \mapsto \phi_{i+1}$. This is clearly continuous, so by (23), α^{-1} is continuous, so by (27) and (21), α is a homeomorphism. (28)