Politechnika Białostocka	Data: 09.06.2015r
Wydział Informatyki	
Przedmiot: Modelowanie i analiza systemów	Prowadzący:
informatycznych	dr inż. Walenty Oniszczuk
Sprawozdanie nr: 12	
Temat : metoda HMVA	Ocena:
Autor: Łukasz Świderski	
Studia: stacjonarne, II stopnia, semestr 1	

1. Treść zadania

Dla liczby zgłoszeń N=25 i następującej konfiguracji zrealizować przy pomocy programu WinAmok i przy użyciu zamkniętego systemu (metodą HMVA) model układu.

Prawdopodobieństwa przejść z CPU:

Urz. Wyjścia	CPU	Dysk 1	Dysk 2	Dysk 3
0.05	0.11	0.20	0.28	0.36

2. Część teoretyczna

AMOK –jest pakietem programowym, umożliwiającym praktyczne stosowanie modeli teorii masowej obsługi, a w szczególności modelowania systemów komputerowych. Został on stworzony do opisu i oceny efektywności takich systemów, lecz może znaleźć zastosowanie wszędzie tam, gdzie stosuje się teorie masowej obsługi i model w postaci sieci stanowisk obsługi, między którymi krążą klienci ustawieni w razie potrzeby w kolejki, może odnosić się do wieku sytuacji i obiektów.

3. Rozwiązanie

```
SOUR hmva
*DECLARATION*
/STATION/ NAME = cpu
/STATION/ NAME = dysk1
/STATION/ NAME = dysk2
/STATION/ NAME = dysk3
/STATION/ NAME = terminale
/STATION/ NAME = in
/STATION/ NAME = out
/CLASS/NAME = K[25]
*END*
*DESCRIPTION*
/STATION/ NAME = cpu
SCHEDULE = PS
SERVICE = ERL[4,14]
TRANSIT = [0.05]out, [0.11]cpu, [0.2]dysk1, [0.28]dysk2, [0.36]dysk3;
/STATION/ NAME = dysk1
SCHEDULE = FIFO
SERVICE = EXP[70]
TRANSIT = cpu;
/STATION/ NAME = dysk2
SCHEDULE = FIFO
SERVICE = EXP[48]
TRANSIT = cpu;
/STATION/ NAME = dysk3
SCHEDULE = FIFO
SERVICE = EXP[30]
TRANSIT = cpu;
/STATION/ NAME = terminale
SCHEDULE = IS
SERVICE = ERL[4,1500]
TRANSIT = in;
/STATION/NAME = in
SCHEDULE = FIFO
SERVICE = ERL[3,280]
TRANSIT = cpu;
/STATION/ NAME = out
SCHEDULE = FIFO
SERVICE = ERL[5,230]
TRANSIT = terminale;
*END*
```


