Uma formalização da interpretação modal do sistema intuicionista

Elian Babireski

2024

Axioma	Sentença	Condição
K	$\Box(\varphi \to \psi) \to \Box \varphi \to \Box \psi$	Distributividade
\mathbf{T}	$\square\varphi\to\varphi$	Reflexividade
В	$\varphi \to \Box \diamondsuit \varphi$	Simetria
D	$\Box \varphi \to \Diamond \varphi$	Serialidade
4	$\Box \varphi \to \Box \Box \varphi$	Transitividade
5	$\Diamond \varphi \rightarrow \Box \Diamond \varphi$	Euclidianidade

Table 1: Sample Table

Definição 1 (Tradução). Uma sentença φ de um sistema $\mathbf{A} = \langle \mathcal{L}_{\mathbf{A}}, \vdash_{\mathbf{A}} \rangle$ pode ser traduzida a uma sentença φ^* em um sistema $\mathbf{B} = \langle \mathcal{L}_{\mathbf{B}}, \vdash_{\mathbf{B}} \rangle$ caso exista uma função \bullet^* : $\mathcal{L}_{\mathbf{A}} \to \mathcal{L}_{\mathbf{B}}$ que garanta que $\Gamma \vdash_{\mathbf{A}} \varphi \Leftrightarrow \Gamma^* \vdash_{\mathbf{B}} \varphi^*$.

A primeira tradução do sistema intuicionista ao sistema modal foi definida por Gödel [2] motivado pela possibilidade de leitura da necessidade como uma modalidade de construtividade. Ou seja, por meio dessa tradução, a sentença $\Box \varphi$ poderia ser lida como φ pode ser provada construtivamente [3]. Gödel demonstrou grande crença acerca da corretude fraca – $\varnothing \vdash_{\mathbf{I}} \varphi \Rightarrow \varnothing \vdash_{\mathbf{M}} \varphi^{\Box}$ – dessa tradução.

Definição 2 (\bullet^{\square}) . Define-se a tradução \bullet^{\square} indutivamente da seguinte maneira:

$$p^{\square} \coloneqq \square p$$

$$\bot^{\square} \coloneqq \square \bot$$

$$(\varphi \land \psi)^{\square} \coloneqq \square(\varphi^{\square} \land \psi^{\square})$$

$$(\varphi \lor \psi)^{\square} \coloneqq \square(\varphi^{\square} \lor \psi^{\square})$$

$$(\varphi \to \psi)^{\square} \coloneqq \square(\varphi^{\square} \to \psi^{\square})$$

$$(\exists x.\varphi)^{\square} \coloneqq \square(\exists x.\varphi^{\square})$$

$$(\forall x.\varphi)^{\square} \coloneqq \square(\forall x.\varphi^{\square})$$

Definição 3 (\bullet°) . Define-se a tradução \bullet° indutivamente da seguinte maneira:

$$p^{\circ} := p$$

$$\perp^{\circ} := \perp$$

$$(\varphi \land \psi)^{\circ} := \varphi^{\circ} \land \psi^{\circ}$$

$$(\varphi \lor \psi)^{\circ} := \Box \varphi^{\circ} \lor \Box \psi^{\circ}$$

$$(\varphi \to \psi)^{\circ} := \Box \varphi^{\circ} \to \psi^{\circ}$$

$$(\exists x. \varphi)^{\circ} := \exists x. \Box \varphi^{\circ}$$

$$(\forall x. \varphi)^{\circ} := \forall x. \varphi^{\circ}$$

Definição 4 (\bullet ^{\square}). Define-se a tradução \bullet ^{\square} indutivamente da seguinte maneira:

$$p^{\square} := \square p$$

$$\bot^{\square} := \bot$$

$$(\varphi \land \psi)^{\square} := \varphi^{\square} \land \psi^{\square}$$

$$(\varphi \lor \psi)^{\square} := \varphi^{\square} \lor \psi^{\square}$$

$$(\varphi \to \psi)^{\square} := \square(\varphi^{\square} \to \psi^{\square})$$

$$(\exists x. \varphi)^{\square} := \exists x. \varphi^{\square}$$

$$(\forall x. \varphi)^{\square} := \square \forall x. \varphi^{\square}$$

Faz-se interessante pontuar que as traduções \bullet° e \bullet^{\square} correspondem, respectivamente, às traduções \bullet^{0} e \bullet^{*} do sistema intuicionista ao sistema linear providas por [1], bastando trocar o modalidade \square pelo expoente ! e os conectivos intuicionistas pelas suas contrapartes lineares.

Bibliography

- [1] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 1987.
- [2] Kurt Gödel. Eine Interpretation des intuitionistischen Aussagenkalküls. Ergebnisse eines Mathematischen Kolloquiums, 1933.
- [3] Anne Sjerp Troelstra and Helmut Schwichtenberg. *Basic proof theory*. Cambridge University Press, 2000.