Model Evaluation Summary

1. Train-Test Split Results

Best Model: Train-Test Split (No Outlier)

- **Model**: Gradient Boosting (No Outlier)
- $-**Performance**: RMSE = 10.68, MAE = 2.06, R^2 = 0.96$
- **Explanation**:
- This model has the lowest RMSE and highest R², indicating that it explains 96% of the variance and has minimal prediction error.

Best Model: Train-Test Split (With Outlier)

- **Model**: Random Forest (With Outlier)
- **Performance**: RMSE = 16.70, MAE = 3.67, R² = 0.91
- **Explanation**:
- Even with outliers, this model maintains a high R² of 0.91, meaning it explains 91% of the variance. The RMSE value indicates some error, likely due to the outliers, but it performs best compared to other models with outliers.

2. Cross-Validation Results

Best Model: Cross-Validation (No Outlier)

- **Model**: Gradient Boosting (No Outlier)
- **Performance**: Mean RMSE = 10.26, Mean MAE = 1.88, Mean R² = 0.96
- **Explanation**:
- This model shows consistent performance across folds with the lowest mean RMSE and the highest mean R², suggesting it is the most reliable and accurate model.

Best Model: Cross-Validation (With Outlier)

- **Model**: XGBoost (With Outlier)
- **Performance**: Mean RMSE = 33.01, Mean MAE = 2.76, Mean R² = 0.76
- **Explanation**:
- Despite the presence of outliers, this model achieves the highest R² (0.76) and the lowest RMSE among models tested with outliers.

3. Results Without the Feature `agent_avg_revenue`

Train-Test Split Results Without 'agent_avg_revenue'

Best Model: Train-Test Split (No Outlier) Without `agent_avg_revenue`

- **Model**: Gradient Boosting (No Outlier)
- $-**Performance**: RMSE = 12.54, MAE = 3.09, R^2 = 0.94$
- **Explanation**:
- Even without the feature, this model still explains 94% of the variance, showing robustness. However, the RMSE is higher than when the feature is included.

Best Model: Train-Test Split (With Outlier) Without `agent_avg_revenue`

- **Model**: Gradient Boosting (With Outlier)
- **Performance**: RMSE = 43.47, MAE = 4.06, R² = 0.40
- **Explanation**:
- With outliers and the removal of the feature, the model's R² drops to 0.40, showing that `agent avg revenue` is an important feature for improving model performance.

Cross-Validation Results Without 'agent avg revenue'

Best Model: Cross-Validation (No Outlier) Without 'agent avg revenue'

- **Model**: Gradient Boosting (No Outlier)
- **Performance**: Mean RMSE = 14.12, Mean MAE = 3.03, Mean $R^2 = 0.91$

- **Explanation**:
- This model has the best performance among models without `agent_avg_revenue` in cross-validation, although its metrics indicate some loss of predictive power compared to when the feature is included.

Best Model: Cross-Validation (With Outlier) Without `agent_avg_revenue`

- **Model**: XGBoost (With Outlier)
- **Performance**: Mean RMSE = 39.00, Mean MAE = 4.91, Mean $R^2 = 0.67$
- **Explanation**:
- Even with outliers and without the feature, this model performs best in cross-validation. However, the performance metrics clearly show the importance of retaining the feature.

Conclusion

- **Gradient Boosting (No Outlier)** consistently shows the best performance across scenarios, indicating its robustness and reliability.
- The removal of the feature `agent_avg_revenue` significantly impacts performance, highlighting its importance in predictive accuracy.