Ejercicio 5

David García Curbelo

Dado tu número n=11781277 de la lista publicada para este ejercicio:

Apartado I. Factoriza n aplicando el método ρ de Polard. ¿Cuántas iteraciones necesitas?

Aplicando el método ρ de Polard, tenemos que para n=11781277 obtenemos el primer factor primo 2591 en 58 iteraciones, como se puede ver en la tabla de la página siguiente. Por ello tenemos que nuestro número n se nos queda factorizado como producto de dos primos $n=2591 \cdot 4547$ (el segundo sabemos que es primo por estar presente en la tabla de primos menores de 5 cifras).

Paso	x	y	mcd
1	2	<i>y</i> 5	1
2	5	677	1
3	26	6219991	1
4	677	5601822	1
5	458330	2597501	1
6	6219991	807607	1
7	11687876	8322365	1
8	5601822	1643871	1
9	584194	5993347	1
10	2597501	7806461	1
11	3701149	5941709	1
12	807607	341798	1
13	5790453	3285327	1
14	8322365	8668694	1
15	8711090	7679181	1
16	1643871	165755	1
17	5015321	7757667	1
18	5993347	9313459	1
19	1847739	356366	1
20	7806461	11451286	1
21	10307054	11732626	1
22	5941709	8156866	1
23	1588435	7512258	1
24	341798	11098752	1
25	2730073	4268072	1
26	3285327	7145982	1
27	3698488	10781441	1
28	8668694	6061976	1
29	4728818	3273655	1
30	7679181	10069807	1
31	5435394	11002644	1
32	165755	686311	1
33	782062	8650796	1
34	7757667	10952160	1
35	7142119	3070436	1
36	9313459	7757789	1
37	6598961	907115	1
38	356366	5241407	1
39	6341174	10800383	1
40	11451286	9833373	1
41	11498048	9739199	1
42	11732626	307635	1
43 44	10664402 8156866	11520196 4229214	1 1
44 45	7397659	3970356	1
45 46	7512258	540908	1
47	6924677	1648763	1
48	11098752	1744952	1
49	8683046	11158052	1
50	4268072	8127891	1
51	4255522	1144281	1
52	7145982	4961988	1
53	8964877	5443366	1
54	10781441	5449568	1
55	7110893	11084302	1
56	6061976	6817211	1
57	6432581	10456312	1
58	3273655	6610863	2591
		•	

Apartado II. Sea p_1 el mayor de sus factores primos y p_2 el siguiente primo. Calcula las partes enteras de $\sqrt{p_1}$ y $\sqrt{p_2}$ con el algoritmo entero. Tenemos que $p_1=4547$ y $p_2=2591$. Por lo tanto, como ambos son impares, para proceder con el

Tenemos que $p_1 = 4547$ y $p_2 = 2591$. Por lo tanto, como ambos son impares, para proceder con el algoritmo consideramos los primeros a como $a_{p_1} = (4547 + 1)/2 = 2274$ y $a_{p_2} = (2591 + 1)/2 = 1296$. Tenemos por tanto las siguentes tablas de iteraciones para ambos números p_1 y p_2 respectivamente:

	Paso	a	$a^2 + n$	cociente		Paso	a	$a^2 + n$	cociente
$\sqrt{4547}$	1	1296	1682207	648	$\sqrt{2591}$	1	2274	5175623	1137
	2	648	422495	325		2	1137	1297316	570
	3	325	108216	166		3	570	329447	288
	4	166	30147	90		4	288	87491	151
	5	90	10691	59		5	151	27348	90
	6	59	6072	51		6	90	12647	70
	7	51	5192	50		7	70	9447	67
	8	50	5091	50		8	67	9036	67

Con lo que hemos obtenido, en la última iteración de cada tabla, las respectivas partes enteras de la raíz cuadrada de ambos primos, siendo para p_1 el valor 50 y para p_2 el 67.

Apartado III. Calcula las FCS de $\sqrt{p_1}$ y $\sqrt{p_2}$ aplicando el algoritmo que usa aritmética entera.

3, 1, 5, 9, 2, 5, 1, 1, 1, 9, 1, 2, 1, 1, 1, 4, 67, 4, 1, 1, 1, 2, 1, 9, 1, 1, 1, 5, 2, 9, 5, 1, 3, 7, 1, 2, 18, 1, 11, 3, 4, 1, 6, 3, 2, 134}} La cual podemos ver que su período tiene una longitud de 58. A continuación se muestran los sucesivos convergentes: $\{67, 1\}$ $\{135, 2\}$ $\{472, 7\}$ $\{2967, 44\}$ $\{3439, 51\}$ $\{16723, 248\}$ {53608, 795} {606411, 8993} {660019, 9788} {12486753, 185177} {25633525, 380142} $\{38120278, 565319\}$ {292475471, 4337375} {915546691, 13577444} $\{1208022162, 17914819\}$ {6955657501, 103151539} {63808939671, 946278670} $\{134573536843, 1995708879\}$ $\{736676623886, 10924823065\}$ $\{871250160729, 12920531944\}$ $\{1607926784615, 23845355009\}$ {2479176945344, 36765886953} $\{23920519292711, 354738337586\}$ $\{26399696238055, 391504224539\}$ {76719911768821, 1137746786664} [103119608006876, 1529251011203] $\{179839519775697, 2666997797867\}$ {282959127782573, 4196248809070} $\{1311676030905989, 19451993034147\}$ [88165253198483836, 1307479782096919] $\{353972688824841333, 5249371121421823\}$ $\{442137942023325169, 6556850903518742\}$ $\{796110630848166502, 11806222024940565\}$ $\{1238248572871491671, 18363072928459307\}$ $\{3272607776591149844, 48532367881859179\}$ $\{4510856349462641515, 66895440810318486\}$ $\{43870314921754923479, 650591335174725553\}$ 48381171271217564994, 717486775985044039} $\{92251486192972488473, 1368078111159769592\}$ $\{140632657464190053467, 2085564887144813631\}$ $\{795414773513922755808, 11795902546883837747\}$ $\{1731462204492035565083, 25677369980912489125\}$ $\{16378574613942242841555, 242892232375096239872\}$ $\{83624335274203249772858, 1240138531856393688485\}$ $\{100002909888145492614413, 1483030764231489928357\}$ $\{383633064938639727616097, 5689230824550863473556\}$

 $\{2785434364458623585927092, 41307646536087534243249\}$

```
\{3169067429397263313543189, 46996877360638397716805\}
\{9123569223253150213013470, 135301401257364329676859\}
\{167393313447953967147785649, 2482422099993196331900267\}
\{176516882671207117360799119, 2617723501250560661577126\}
\{2109079022831232258116575958, 31277380613749363609248653\}
\{6503753951164903891710526993, 96449865342498651489323085\}
\{28124094827490847824958683930, 417076841983743969566540993\}
\{34627848778655751716669210923, 513526707326242621055864078\}
\{235891187499425358124973949468, 3498237085941199695901725461\}
\{742301411276931826091591059327, 11008237965149841708761040461\}
\{1720494010053289010308156068122, 25514713016240883113423806383\}
   1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 19, 1, 49, 1, 19, 2, 1, 1, 1, 2, 3, 1, 1, 6, 1, 2, 2, 2, 2, 14, 7, 1, 3, 5, 9, 1,
100}}} La cual podemos ver que su período tiene una longitud de 48. A continuación se muestran
los sucesivos convergentes:
\{50, 1\}
\{51, 1\}
\{509, 10\}
\{2596, 51\}
{8297, 163}
{10893, 214}
{84548, 1661}
{1194565, 23468}
\{2473678, 48597\}
{6141921, 120662}
{14757520, 289921}
\{35656961, 700504\}
{50414481, 990425}
{338143847, 6643054}
{388558328, 7633479}
{726702175, 14276533}
[2568664853, 50463078]
{5864031881, 115202689}
{8432696734, 165665767}
\{14296728615, 280868456\}
\{22729425349, 446534223\}
{59755579313, 1173936902}
\{1158085432296, 22751335361\}
\{1217841011609, 23925272263\}
\{60832295001137, 1195089676248\}
\{62050136012746, 1219014948511\}
\{1239784879243311, 24356373697957\}
{2541619894499368, 49931762344425}
{3781404773742679, 74288136042382}
{6323024668242047, 124219898386807}
\{10104429441984726, 198508034429189\}
\{26531883552211499, 521235967245185\}
\{89700080098619223, 1762215936164744\}
\{116231963650830722, 2283451903409929\}
\{205932043749449945, 4045667839574673\}
\{1351824226147530392, 26557458940857967\}
\{1557756269896980337, 30603126780432640\}
```

 $\{4467336765941491066, 87763712501723247\}$

```
 \{10492429801779962469, 206130551783879134\} \\ \{25452196369501416004, 500024816069481515\} \\ \{61396822540782794477, 1206180183922842164\} \\ \{885007711940460538682, 17386547390989271811\} \\ \{6256450806124006565251, 122912011920847744841\} \\ \{7141458518064467103933, 140298559311837016652\} \\ \{27680826360317407877050, 543807689856358794797\} \\ \{145545590319651506489183, 2859337008593630990637\} \\ \{1337591139237180966279697, 26277840767199037710530\} \\ \{1483136729556832472768880, 29137177775792668701167\}
```