Паточенко Евгений НИУ ВШЭ

План занятия

- SVM (метод опорных векторов)
- Многоклассовая классификация
- Метрики качества многоклассовой классификации

Линейно разделимая выборка

Выборка линейно разделима, если существует такой вектор параметров β , что соответствующий классификатор f(x) не допускает ошибок на этой выборке

Линейно разделимая выборка

Для двух линейно разделимых классов возможны различные варианты построения разделяющей гиперплоскости

Критерий «хорошей» гиперплоскости

Гиперплоскость H_1 оптимальнее гиперплоскости H_2 , если расстояние от H_1 до некоторого ближайшего объекта выборки x_1 больше, чем расстояние от H_2 до своего ближайшего объекта x_2

SVM (Support Vector Machine) для разделимого случая

Цель SVM — максимизировать ширину разделяющей полосы, то есть найти наилучшую разделяющую гиперплоскость, которая максимально отдалена от ближайших точек каждого класса (опорных векторов)

Расстояние от точки до гиперплоскости

Расстояние от точки x_0 до гиперплоскости H, заданной своим вектором нормали w и смещением b, определяется по формуле:

$$p(x_0, H) = \frac{|(w, x_0) + b|}{|w|}$$

Расстояние от точки до гиперплоскости

Воспользуемся свойством функции sign:

 $sign(x \cdot y) = sign \ x \cdot sign \ y$, тогда для ответов a(x) классификатора следует, что $a(x) = sign \big((w,x) \big) = sign \big((\widehat{w},x) + b \big)$ $= sign \big((k\widehat{w},x) + kb \big) = sign \big(k \big((\widehat{w},x) + b \big) \big)$ $= sign(k) \cdot sign \big((\widehat{w},x) + b \big) = \{ \text{если } k > 0 \}$ $= sign \big((\widehat{w},x) + b \big)$

Расстояние от точки до гиперплоскости

Воспользуемся свободой выбора коэффициента k и отнормируем веса модели так, чтобы до ближайшего объекта x^* обучающей выборки X было выполнено равенство:

$$min_{x \in X} |(\widehat{w}, x) + b| = 1$$

Тогда по формуле расстояния выходит, что расстояние до ближайшего объекта выборки:

$$p(x^*, H) = \min_{x \in X} \frac{|(\widehat{w}, x) + b|}{|\widehat{w}|} = \frac{1}{\widehat{w}} \min_{x \in X} |(\widehat{w}, x) + b| = \frac{1}{|\widehat{w}|}$$

Расстояние от точки до гиперплоскости

Ширина зазора между положительным и отрицательным классами для линейной разделимой выборки будет удвоенной

величиной: $M = \frac{2}{|\widehat{w}|}$

Ее нам и предстоит максимизировать

Линейно неразделимая выборка

В большинстве случаев мы имеем дело с линейно неразделимыми данными

Объекты могут попадать на другую сторону гиперплоскости или внутрь отступа

Линейно неразделимая выборка

Введем штраф ξ_i такое, что $\xi_i o 0$

$$M_i(w) \ge 1 - \xi_i$$
 $i = 1, 2 \dots l$ $\xi_i \ne 0$

Тогда:

$$\frac{\|w\|^2}{2} + C \sum_{i}^{l} \xi_i \to min_w, \xi$$

$$M_i(w) \ge 1 + \xi_i$$

Линейно неразделимая выборка

Таким образом мы получаем «мягкий» вариант SVM, в котором мы хотим, чтобы:

- ullet алгоритм имел как можно меньшие штрафы ξ_i
- при этом имел как можно более широкий зазор

Линейно неразделимая выборка

Таким образом мы получаем «мягкий» вариант SVM, в котором мы хотим, чтобы:

- ullet алгоритм имел как можно меньшие штрафы ξ_i
- при этом имел как можно более широкий зазор

Такая задача имеет единственное решение

Оптимизация

Оптимизируем функционал ошибки Q:

$$Q(f,x) = \frac{1}{N} \sum_{i=0}^{N} I[M_i < 0] \le \frac{1}{N} \sum_{i=0}^{N} L(x_i, y_i)$$

Оптимизация

Оптимизируем функционал ошибки Q:

$$Q(f,x) = \frac{1}{N} \sum_{i=0}^{N} I[M_i < 0] \le \frac{1}{N} \sum_{i=0}^{N} L(x_i, y_i)$$

С функцией потерь $L(M) = \max(0,1-M) = (1-M)$, с L_2 -регуляризацией:

$$Q(f,x) = \sum_{i=1}^{l} \left[\max(0,1 - y_i(w,x_i)) \right] + \frac{1}{2C} |w|^2 \to \min_{w}$$

Оптимизация

Оптимизируем функционал ошибки Q:

$$Q(f,x) = \frac{1}{N} \sum_{i=0}^{N} I[M_i < 0] \le \frac{1}{N} \sum_{i=0}^{N} L(x_i, y_i)$$

С функцией потерь $L(M) = \max(0,1-M) = (1-M),$ с L_2 -регуляризацией:

$$Q(f,x) = \sum_{i=1}^{l} \left[\max(0,1 - y_i(w,x_i)) \right] + \frac{1}{2C} |w|^2 \to \min_{w}$$

Значение константы С

$$Q(f,x) = \sum_{i=1}^{l} \left[\max(0,1 - y_i(w,x_i)) \right] + \frac{1}{2C} |w|^2 \to \min_{w}$$

Значение константы С

$$Q(f,x) = \sum_{i=1}^{l} \left[\max(0,1 - y_i(w,x_i)) \right] + \frac{1}{2C} |w|^2 \to \min_{w}$$

Значение константы С

$$Q(f,x) = \sum_{i=1}^{l} \left[\max(0,1 - y_i(w,x_i)) \right] + \frac{1}{2C} |w|^2 \to \min_{w}$$

Значение константы С

$$Q(f,x) = \sum_{i=1}^{l} \left[\max(0,1 - y_i(w,x_i)) \right] + \frac{1}{2C} |w|^2 \to \min_{w}$$

Значение константы С

$$Q(f,x) = \sum_{i=1}^{l} \left[\max(0,1 - y_i(w,x_i)) \right] + \frac{1}{2C} |w|^2 \to \min_{w}$$

Типы объектов в SVM

Линейные методы классификации (повтор)

Классификация

Модель машинного обучения, используемая для прогнозирования категориальной (дискретной) целевой переменной на основе одной или нескольких независимых переменных (признаков). Целевая переменная принимает конечное число классов или меток.

Может быть:

- Бинарной (классификация на два класса) $Y = \{0,1\}$
- Многоклассовой (классификация на М непересекающихся классов) $Y = \{1, ..., M\}$
- Многоклассовой (классификация на М классов, которые могут пересекаться) $Y = \{0,1\}^M$

Линейные методы классификации (повтор)

Классификация

Модель машинного обучения, используемая для прогнозирования категориальной (дискретной) целевой переменной на основе одной или нескольких независимых переменных (признаков). Целевая переменная принимает конечное число классов или меток.

Может быть:

- Бинарной (классификация на два класса) $Y = \{0,1\}$
- Многоклассовой (классификация на М непересекающихся классов) $Y = \{1, ..., M\}$
- Многоклассовой (классификация на М классов, которые могут пересекаться) $Y = \{0,1\}^M$

Постановка задачи

Многоклассовой называется тип классификации, в которой объект может относиться к одному из нескольких классов:

$$y_i \in \{1, ..., K\},$$
 где $K > 2$

Подход One-vs-All (One-vs-Rest)

Обучим K бинарных классификаторов $b_1(x)$, ..., $b_k(x)$, каждый из которых решает задачу принадлежности объекта x к классу k_i

Подход One-vs-All (One-vs-Rest)

Обучим K бинарных классификаторов $b_1(x)$, ..., $b_k(x)$, каждый из которых решает задачу принадлежности объекта x к классу k_i

Например, линейные классификаторы будут иметь вид: $b_k(x) = sign(\beta_k \cdot x)$

Подход One-vs-All (One-vs-Rest)

Обучим K бинарных классификаторов $b_1(x)$, ..., $b_k(x)$, каждый из которых решает задачу принадлежности объекта x к классу k_i

Например, линейные классификаторы будут иметь вид: $b_k(x) = sign(\beta_k \cdot x)$

Тогда итоговым предсказанием будет предсказание самого уверенного классификатора: $f(x) = argmax_{k \in \{1, ..., K\}}(\beta_k, x)$

Подход One-vs-All (One-vs-Rest)

Подход One-vs-All (One-vs-Rest)

Какая может быть проблема у такого подхода?

Подход One-vs-All (One-vs-Rest)

Какая может быть проблема у такого подхода?

Классификаторы могут иметь различные масштабы, тогда сравнивать их будет некорректно

Подход All-vs-All (One-vs-One)

Для каждой пары классов i и j обучим бинарный классификатор $f_{ij}(x)$, который будет предсказывать класс i или j

Подход All-vs-All (One-vs-One)

Для каждой пары классов i и j обучим бинарный классификатор $f_{ij}(x)$, который будет предсказывать класс i или j

При K классах получим C^2_K классификаторов. Каждый такой классификатор будем обучать только на объектах классов i и j.

Подход All-vs-All (One-vs-One)

Для каждой пары классов i и j обучим бинарный классификатор $f_{ij}(x)$, который будет предсказывать класс i или j

При K классах получим \mathbf{C}_K^2 классификаторов. Каждый такой классификатор будем обучать только на объектах классов i и j.

Итоговым предсказанием будет класс, который предсказало наибольшее число

классификаторов: $f(x) = argmax_{k \in \{1,...,K\}} \sum_{i=1}^{K} \sum_{i \neq j} I[f_{ij}(x) = k]$

Подход All-vs-All (One-vs-One)

Подход All-vs-All (One-vs-One)

Какая может быть проблема у такого подхода?

Подход All-vs-All (One-vs-One)

Какая может быть проблема у такого подхода?

Нужно обучить ${\rm C}^2_K$ классификаторов, что при больших K может быть затратно

Multiclass vs multilabel-классификация

Multiclass — каждый объект может принадлежать только одному классу

Multilabel — каждый объект может принадлежать нескольким классам (задача с пересекающимися классами)

Еще раз о разнице

Матрица ошибок (confusion matrix)

Пример для трехклассовой классификации

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (🐴)
Pr	Cat (🐷)	4	6	3
Predicted	Fish (��)	1	2	0
ed	Hen (4)	1	2	6

Усреднение

Для подсчета качества работы алгоритма на всех классах применяют различные способы усреднения качеств работы на каждом из классов:

- Макро-усреднение (macro-average)
- Микро-усреднение (micro-average)
- Взвешенное усреднение (weighted-average)

Макро-усреднение

Вычисляется значение выбранной метрики для каждого бинарного классификатора.

Например:

$$\begin{aligned} Macro - accuracy &= \frac{accuracy_1 + \cdots + accuracy_k}{K} \\ Macro - precision &= \frac{precision_1 + \cdots + precision_k}{K} \end{aligned}$$

Макро-усреднение

Посчитаем macro-precision:

		True/Actual		
		Cat (🐯)	Fish (¶)	Hen (🐴)
Predicted	Cat (日)	4	6	3
	Fish (¶)	1	2	0
ed	Hen (🐴)	1	2	6

Макро-усреднение

Посчитаем macro-precision:

		True/Actual		
		Cat (🐯)	Fish (¶)	Hen (🐔)
Pr	Cat (🐯)	4	6	3
Predicted	Fish (��)	1	2	0
ed	Hen (🐴)	1	2	6

$$Precision(cat) = \frac{4}{4+6+3} = \frac{4}{13}$$

$$Precision(fish) = \frac{2}{2+1+0} = \frac{2}{3}$$

$$Precision(hen) = \frac{6}{6+2+1} = \frac{2}{3}$$

Макро-усреднение

Посчитаем macro-precision:

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (🐴)
Predicted	Cat (🐯)	4	6	3
	Fish (��)	1	2	0
ed	Hen (🐴)	1	2	6

$$Precision(cat) = \frac{4}{4+6+3} = \frac{4}{13}$$

$$Precision(fish) = \frac{2}{2+1+0} = \frac{2}{3}$$

$$Precision(hen) = \frac{6}{6+2+1} = \frac{2}{3}$$

$$macro-precision = \frac{Precision(cat) + Precision(fish) + Precision(hen)}{3} \approx 0,55$$

Микро-усреднение

Вычисляются значения TP, TN, FP и FN по всей матрице ошибок сразу, исходя из их определения, после чего вычисляем метрику.

Например:

$$Macro - precision = \frac{\sum_{k=1}^{K} TP_k}{\sum_{k=1}^{K} (TP_k + FP_k)}$$

$$Macro - recall = \frac{\sum_{k=1}^{K} TP_k}{\sum_{k=1}^{K} (TP_k + FN_k)}$$

Микро-усреднение

Посчитаем micro-precision:

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (4)
Pr	Cat (🐷)	4	6	3
Predicted	Fish (��)	1	2	0
ed	Hen (🐴)	1	2	6

Микро-усреднение

Посчитаем micro-precision:

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (4)
Pr	Cat (🐯)	4	6	3
Predicted	Fish (��)	1	2	0
ed	Hen (🐴)	1	2	6

TP — количество верно угаданных объектов положительного класса FP — количество всех неверных предсказаний

Микро-усреднение

Посчитаем micro-precision:

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (4)
Pr	Cat (🐯)	4	6	3
Predicted	Fish (��)	1	2	0
ed	Hen (🐴)	1	2	6

$$micro - precision = \frac{4+2+6}{6+3+1+0+1+2} = \frac{12}{25}$$

TP — количество верно угаданных объектов положительного класса FP — количество всех неверных предсказаний

Взвешенное усреднение

Усредняются посчитанные для каждого класса метрики с весами, пропорциональными количеству объектов класса

Например:

$$Weighted \ precision = \frac{n_1}{N} \cdot precision_1 + \dots + \frac{n_k}{N} \cdot precision_K$$

$$Weighted \ recall = \frac{n_1}{N} \cdot recall_1 + \dots + \frac{n_k}{N} \cdot recall_K$$

Взвешенное усреднение

Посчитаем weighted precision:

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (🐴)
Pr	Cat (🐯)	4	6	3
Predicted	Fish (��)	1	2	0
ed	Hen (﴿)	1	2	6

Взвешенное усреднение

Посчитаем weighted precision:

		True/Actual		
		Cat (🐷)	Fish (��)	Hen (🐔)
Pr	Cat (🐷)	4	6	3
Predicted	Fish (��)	1	2	0
ed	Hen (﴿)	1	2	6

$$weighted \ precision = \frac{6}{25} \cdot precision(cat) + \frac{10}{25} \cdot precision(fish) + \frac{9}{25} \cdot precision(hen) \approx 0.43$$

Спасибо за внимание!

