Suites et series de fonctions

Jérémy Meynier

Exercice 1

Étudier les convergences (simples, uniformes, normales) des suites et séries de fonctions $(f_n)_{n\in\mathbb{N}}$ suivantes :

1.
$$f_n(x) = \frac{nx^2}{1+nx}$$
, $I = [0,1]$

2.
$$f_n(x) = x^2 e^{-nx}, I = \mathbb{R}^+$$

3.
$$f_n(x) = n \ln(1 + \frac{1}{nx}), I =]0, +\infty[$$

Exercice 2

Étudier les convergences (simples, uniformes, normales) des séries de fonctions suivantes

$$1. \sum_{n \ge 1} x^n \ln^2(x)$$

$$2. \sum_{n \ge 1} x^n \ln(x)$$

Exercice 3

Soit
$$f_n(x) = \frac{\sin(nx)}{1 + n^2x^2}$$

- 1. Étudier les convergences de f_n
- 2. Montrer que $\forall a > 0 \sum f_n$ converge normalement sur $[a, +\infty[$
- 3. Montrer que $\sum f_n$ ne converge pas normalement sur $]0,+\infty[$

Exercice 4

Soit
$$f_n(x) = \frac{x}{(1+x^2)^n}$$
. Étudier les convergences de $(f_n)_{n\geq 1}$, puis de $\sum_{n\geq 1} f_n$

1

Exercice 5

Soit $(f_n)_{n\in\mathbb{N}^*}$ définie sur [0,2] par $f_n(x)=n^2x(1-x)^n$.

- 1. Étudier les variations de f_n sur [0,2]
- 2. Calculer $\lim_{n \to +\infty} \int_0^1 f_n(x) dx$

Jérémy Meynier 2

- 3. Étudier les convergences de la suite $(f_n)_{n\in\mathbb{N}^*}$ sur [0,1]
- 4. Montrer que $\forall a \in]0,1[$, la suite $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément sur [a,2-a]

Exercice 6

Soit
$$\phi(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^x}$$

- 1. Montrer que ϕ converge uniformément sur tout segment de $]0,+\infty[$
- 2. Montrer que ϕ est continue sur $]0, +\infty[$
- 3. Montrer que ϕ ne converge pas uniformément sur $]0,+\infty[$

Exercice 7

soit
$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$$

- 1. Donner le domaine de définition de ζ
- 2. Étudier la convergence normale et la converge uniforme de ζ
- 3. Montrer que $\zeta \in C^0(]1, +\infty[)$
- 4. Déterminer un équivalent de ζ en 1⁺
- 5. Déterminer la limite de ζ en $+\infty$