Лекция 5 Этапы разработки встраиваемых систем

План курса «Встраиваемые микропроцессорные системы»:

Лекция 1: Введение. Язык программирования С

Лекция 2: Язык программирования С. Стандартная библиотека языка С

Лекция 3: Применение языка С для встраиваемых систем

Лекция 4: Микроконтроллер

Лекция 5: Этапы разработки встраиваемых систем

Лекция 6: Разработка и отладка программ для встраиваемых систем

Лекция 7: Архитектура программ для встраиваемых систем

Лекция 8: Периферийные модули: USB, Ethernet

- **1. Разработка Т3.** На этапе разработки Т3 определяются основные требования к устройству.
- **2. Разработка алгоритмов и эскизного проекта.** Этот этап можно назвать системным проектированием. На нем отрабатываются ключевые алгоритмы, идеи, концепции. Часто применяются такие программы как MATLAB/Simulink, Octave, Jupyter/Python, LTSpice.
- **3. Выбор элементной базы, сравнение и оценка решений.** На данном этапе достаточно выбрать ключевые элементы устройства (процессор, память и т.д.).

- **4. Разработка электрической схемы.** Разработка схемы электрической принципиальной. При разработке должны быть учтены дополнительные входы и выходы на непредвиденные нужды и изначально должна быть продумана стратегия отладки.
- **5. Разработка печатной платы.** Разработка конструкции печатной платы производится в специальных программах Altium Designer, Cadence Allegro и подобных программах. Правила трассировки плат зависят от назначения: силовые (Power), аналоговые, высокочастотные аналоговые (RF), высокоскоростные (High Speed). На печатной плате должны быть предусмотрены контрольные точки для отладки и тестирования.
- 6. Разработка программы. Разработка прикладной программы устройства.
- **7. Отладка программы на симуляторе или отладочной плате.** Отладка программы может производиться параллельно с разработкой схемы и разработкой печатной платы устройства.

- **8. Производство опытного образца.** При производстве опытного образца могут быть выявлены ошибки конструкции печатной платы.
- 9. Отладка программы и схемы без объекта управления. Неотлаженная программа может разрушить объект управления (например, некорректно включить транзисторы в преобразователе), поэтому программа должна быть отлажена с помощью средств измерения (мультиметр и осциллограф) или на специальном стенде. Может применяться методика HIL (Hardware-in-the-Loop), когда объект управления программно симулируется и подключается к микропроцессорной системе с помощью средств сопряжения (дискретные входы и выходы, АЦП, ЦАП).
- **10. Отладка совместно с объектом управления.** На данном этапе возможна нестыковка периферийных модулей с датчиками, алгоритм управления может содержать ошибки.
- **11. Испытание опытного образца.** Отлаженное устройство испытывается согласно программе и методике испытаний.

Другие способы деления на этапы

ГОСТ 2.103-2013 ЕСКД. Стадии разработки

- Разработка технического предложения
- Разработка эскизного проекта
- Разработка технического проекта
- Разработка КД опытного образца
- Разработка КД на изделие серийного производства

Technology Readiness Levels (TRL) Уровень готовности технологии

- TRL 1. Сформулирована фундаментальная концепция технологии и обоснование ее полезности
- TRL 2. Определены целевые области применения технологии и ее критические элементы
- TRL 3. Получен макетный образец и продемонстрированы его ключевые характеристики
- TRL 4. Получен лабораторный образец, подготовлен лабораторный стенд, проведены испытания базовых функций связи с другими элементами системы
- TRL 5. Изготовлен экспериментальный образец в реальном масштабе по полупромышленной технологии и испытан, проведена эмуляция основных внешних условий
- TRL 6. Изготовлен полнофункциональный образец на пилотной производственной линии, подтверждены рабочие характеристики в условиях, приближенных к реальности
- TRL 7. Прототип системы продемонстрирован в составе системы в реальных условиях эксплуатации
- TRL 8. Окончательное подтверждение работоспособности образца. Разработка. функционирующей реальной системы завершена
- TRL 9. Изделие удовлетворяет всем требованиям: инженерным, производственным, эксплуатационным, по качеству и надежности

Цифровые системы управления и обработки сигналов

Наименование	Стоимость разработки	Стоимость устройства	Обновление и исправление	Размер	Bec	Энергопотребл ение	Производитель ность
Цифровые схемы	низкая	средняя	сложное	большой	большой	высокое	высокая
ASIC (Интегральная схема конкретного применения)	очень высокая	очень низкая	очень сложное	очень малый	очень маленький	низкое	очень высокая
FPGA, PLD (ПЛИС)	низкая	средняя	легкое	малый	маленький	среднее	высокая
DSA (Специализированная архитектура) или Hardware Accelerator (Аппаратный ускоритель)	высокая	высокая	среднее	малый	маленький	низкое	очень высокая
Процессор + память + периферия	низкая или средняя	средняя	легкое	средний и малый	средний и малый	среднее	средняя
MCU (Микроконтроллер)	низкая или средняя	низкая или средняя	легкое	малый	маленький	низкое или среднее	низкая или средняя
IPC (Промышленный компьютер)	низкая	высокая	легкое	средний	средний и малый	среднее	средняя

Аппаратное решение и программа, работающая на аппаратном решении.

Классификация микропроцессорных систем для управления по назначению

1. Проблемно-ориентированные программируемые контроллеры:

- Контроллер дизель генератора, программируемый термостат и т.д.
- Контроллер станка с ЧПУ и т.д.

2. Универсальные средства автоматизации:

- Персональный компьютер со специальными блоками ввода/вывода (PC Personal Computer).
- Промышленные компьютеры (IPC Industrial PC): CompactPCI, PXI, PC/104.
- Программируемые логические контроллеры ПЛК (PLC Programmable Logic Controller): Siemens, Eaton, Овен.
- Одноплатные компьютеры (SBC Single Board Computer):
 - Для обучения: Raspberry Pi, Beagle Bone.
 - Промышленные: Advantech, Axiomtek.

3. Встраиваемые микропроцессорные системы:

- Системы на модуле (SOM System on Module) и компьютеры в модуле (COM Computer on Module): модули передачи данных, микропроцессорные модули.
- Специально разработанная микропроцессорная система.

Проблемно-ориентированные контроллеры

Программируются только параметры (уставки) управления и тип алгоритма управления. Нет возможности свободного изменения программы.

Примеры:

• Программируемый термостат

• Контроллер станка с ЧПУ

• Контроллер ГТЭА

Универсальные средства автоматизации

• Персональный компьютер (PC) со специальными блоками ввода/вывода (PCI, PCIe).

- Промышленные компьютеры (IPC):
 - Могут иметь исполнение предназначенное для эксплуатации в неблагоприятных условиях (пыль, химически агрессивные среды и т.д.).
 - Как правило выполняются на основе модульной конструкции. В качестве модулей применяются: центральный процессор, блоки памяти, блоки ввода/вывода. Модули объединяются внутри корпуса через внутреннюю магистраль (CompactPCI, PXI, PC/104). Пример: 8 релейных выходов, 8 аналоговых входов +/- 10 В, 8 цифровых входов с гальванической развязкой.
 - Основаны на операционной системе общего назначения (Linux, Windows) или операционной системе реального времени.

Универсальные средства автоматизации

- Промышленные логические контроллеры (ПЛК, PLC):
 - Прикладная программа разрабатывается на специальном языке (например, LD Ladder Diagram, FBD Function Block Diagram и подобные).

- Работают по циклу: чтение входов вычисление запись выходов.
- Длительность цикла, как правило, равна 1 мс.
- Одноплатные компьютеры (SBC)
 - Для обучения (Raspberry Pi, BeagleBone)
 - Множество обучающих материалов.
 - Предназначены только для домашнего использования и обучения.

- Операционная система Linux.
- Промышленные одноплатные компьютеры
 - Требуют разработки модулей сопряжения.
 - Операционная система Linux или другие ОСВР.
 - Могут иметь расширенный температурный диапазон и защиты от электромагнитных помех.

Встраиваемые микропроцессорные системы

- Системы на модуле (SOM System on Module) и компьютеры на модуле (COM Computer on Module):
 - Чаще всего модули передачи данных и микропроцессорные модули.
 - Модули выполнены в виде печатной платы с размещенными компонентами.
 - Требуется разработка системы питания, системы ввода/вывода и корпуса.

- Специально разработанная микропроцессорная система:
 - Требует полного цикла разработки устройства (от ТЗ до производства).
 - Разработка целесообразна при отсутствии решений на рынке или большой серийности.

Способы интеграции микропроцессорных систем

 SOM (System on Module)/ COM (Computer on Module).

Печатная плата с компонентами.

SIP (System in Package)

Печатная плата с компонентами внутри корпуса. SIP выглядит как микросхема.

Chiplet

Несколько кристаллов по разным технологиям, размещенные на кремниевом интерпозере. Выглядит как одна микросхема.

MCU (Microcontroller Unit)

Однокристальный (монолитный) микроконтроллер. Все в одном кремниевом кристалле и по одной технологии. Предназначен для управления. Имеет в составе ЦП, ОЗУ, ПЗУ и периферийные модули.

SoC (System on Chip)

Система на кристалле (монолитном). Имеет в составе ЦП, графический процессор, аудио процессор и периферийные модули. ОЗУ и ПЗУ внешние.

MEMs Oscillato

4KB EEPRON

18mm x 18mm Standard IC Package

Dual Arm® Cortex®-A7 Arm® Cortex®-M4

Специальное применение

• DSP (Digital Signal Processing)

Цифровая обработка сигналов — цифровые фильтры и быстрое преобразование Фурье. Применятся для обработки аудио, видео и радио сигналов. Для цифровой обработки сигналов применяют DSP (Digital Signal Processor) и DSC (Digital Signal Controller). Отличаются DSP от процессоров общего назначения наличием блока умножения с накоплением (MAC) и сдвига (Barrel Shift) за один такт.

ANN (Artificial Neural Network)

Множество задач машинного обучения (ML) и искусственный интеллект (AI) основано на искусственных нейронных сетях. Для вычисления и обучения сетей используется специализированные архитектуры (DSA) например TPU (Tensor Processing Unit). Они позволяют быстро выполнять умножение матриц и применять функции активации.

CGI (Computer Generated Imagery)

Графический процессор (GPU) — это особый тип процессора, предназначенный для рендеринга текстур. В 3D играх применяется множество операций линейной алгебры. Современные GPU могут применятся для массовых параллельных вычислений.

Выбор элементной базы: выбор микроконтроллера

Нет строгого алгоритма выбора микроконтроллера.

Выбор зависит от многих факторов:

- 1. Периферийные модули и интерфейсы.
- 2. Размер памяти программы и памяти данных.
- 3. Энергопотребление.
- 4. Производительность и максимальная частота.
- Корпус.
- 6. Условия эксплуатации (напряжение, температура, электромагнитная обстановка).
- 7. Цена и доступность.
- 8. Срок производства.
- 9. Безопасность программного обеспечения.
- 10. Средства разработки.
- 11. Доступность указаний по применению (application notes), примеров (reference designs), поддержки, отладочных плат (demonstration and evaluation boards).
- 12. Не технические факторы.

Заключение

- 1. Перед разработкой специализированной микропроцессорной системы необходимо определить наличие готовых решений и оценить целесообразность разработки.
- 2. Наличие отладочных плат или симуляторов позволяет распараллелить работу инженеров-электронщиков и инженеров-программистов. Программисты могут начать работу еще не имея самого устройства или объекта управления.
- 3. Основным компонентом современных электронных устройств является микроконтроллер, поэтому его выбор является критически важной задачей для успешности всего проекта.

