

西北工業大學

自动控制原理课程设计报告

得分:

题 目: 典型系统的串联校正设计

专业名称: 自动化

学生姓名: 赵敏琨

指导教师: 王京锋

班 级: 09011804

时间: 2020年12月

目录

第1章	绪论		1
1.1	控制	系统校正方法概述	1
1.2	课程	设计总体要求	2
	1.2.1	设计目的	2
	1.2.2	设计内容及指标	2
	1.2.3	频域-时域指标转换	2
第2章	设计	方案	3
2.1	未校	正原系统分析	4
2.2	超前	校正设计	7
2.3	滞后.	超前校正设计	9
2.4	串联	PID 校正设计	12
第3章	实验:	验证	15
3.1	电路	图搭建	15
3.2	实验	结果及分析	17
第4章	数字	控制器性能分析	20
4.1	原系	统离散化	20
4.2	仿真	分析临界稳定采样周期	22
4.3	仿真	分析满足指标采样周期	25
第5章	总结		27
参考文	轪		28
附录			28
1.	绘制频	域-时域指标转换图的代码	28
2.	求系统	临界稳定采样周期 T 过程中响应形式判断	28
3.	求系统	恰好满足指标采样周期 T 过程中响应形式判断	31

第1章 绪论

1.1 控制系统校正方法概述

控制系统的校正是指采用适当方式,在系统中在系统中加入一些参数和结构可调整的装置(称为校正装置),用以改变系统结构,进一步提高系统的性能,使系统满足指标要求。常用的性能指标形式可以使时域的指标,如调节时间、超调量、峰值时间等,也可以是频域的指标,如相角裕度、幅值裕度、谐振峰值、带宽等。

常用的校正方式有串联校正,反馈校正和顺馈(复合)校正,相应在系统中的连结方式如下图所示。图中, $G_c(s)$ 为待求的校正装置传递函数。

图 1-1 不同的校正方式

序 校正 实例 作用 说明 묵 方式 比利+ 串联 提前控制,减小超调量 不损失稳态精度 1 微分 校正 测速反 会降低开环增益,增 反馈 增加阻尼,减小超调量 2 加稳态误差 校正 馈 按输入 补偿 主要用于提高稳态精度,减 对提高动态性能也有 复合 3 校正 按干扰 小或消除稳态误差 利 补偿

表 1-1 不同校正方式比较

本选题为"典型系统的串联校正设计",所以需要用到的校正方式为串联校正,即:将校正装置放在前向通道中,使之与系统被控对象等固有部分相串联,如下图所示。

图 1-2 系统串联校正方式

1.2 课程设计总体要求

1.2.1 设计目的

培养和锻炼综合运用自动控制原理理论及相关课程知识的能力。掌握自动控制原理中各种校正装置的作用及用法,根据不同系统性能指标要求进行合理的系统设计,并调试满足系统的指标要求。学会使用 Matlab 语言及 Simulink 动态仿真工具进行系统仿真与调试。掌握搭建模拟电路,熟悉自动控制综合实验平台的使用方法。提高独立思考,动手解决问题的能力。

1.2.2 设计内容及指标

已知某系统的开环传递函数为: $\frac{K}{s(0.1s+1)}$, 用串联校正的频域方法对系统进行校正设计。校正后的系统满足如下动态及静态性能指标: 在单位斜坡信号作用下,系统的稳态误差 $e_s^* \le 0.005$;

- 1. 系统校正后,相位裕度 $\gamma^* > 45^\circ$;
- 2. 系统校正后,截止频率 $\omega_c^* > 50$;
- 3. 采用数字控制器实现。验证采用数字控制器后闭环系统的性能,试通过仿真确定满足以上任务指标的最大采样周期T。

1.2.3 频域-时域指标转换

作高阶系统超调量、调节时间和相位裕度关系图如下: (相关代码见附录)

图 1-3 高阶系统频域-时域指标关系图

由图可知, 当 $\gamma^* > 45$ °且 $\omega_c^* > 50$ 时, $\sigma^*\% < 35\%$ 且 $t_s^* < 0.19s$ 。

第2章 设计方案

串联校正根据所用校正装置的频率特性不同,分为串联超前、串联滞后和串联滞后-超前校正三种方式,另外还有串联 PID 校正相当于串联滞后-超前校正的特例。频域串联校正的实质是利用校正装置改变系统的开环对数频率特性,使之符合三频段理论的要求,从而达到改善系统性能的目的。

根据三频段理论,低、中、高频段的期望波特图形状不同,低频段与稳态误差有关,中频段与动态性能有关,高频段与系统抗高频干扰的能力有关,如下图所示。三频段理论为我们改变系统频率特性,进而改善系统性能提供了原则和方向。

三频段理论

2.1 未校正原系统分析

原系统开环传递函数为:

原系统结构图如下:

图 2-2 原系统结构图

分析步骤:

① 稳定性: 原系统脉冲响应如下, 由图, 原系统稳定;

图 2-3 原系统脉冲响应曲线

- ② 确定稳态误差: $e_{ss}^* = \frac{1}{K} \le 0.005$, $\Re K = 200$;
- ③ 作 $L(\omega)$ 、 $\varphi(\omega)$ 如图所示:

图 2-4 原系统开环波特图

得到原系统截止频率和相角裕度:

$$\omega_{c0} = 44.2 < \omega_c^* = 50$$

$$\gamma_0 = 180^\circ - 90^\circ - \arctan \frac{44.2}{10} = 12.8^\circ < \gamma^* = 45^\circ$$

④ 作原系统响应曲线:

图 2-5 原系统单位阶跃响应曲线

图 2-6 原系统单位斜坡响应曲线

原系统时域指标:

峰值时间: $t_p=0.060s$, 超调量: $\sigma\%{=}62.0\%$, 调节时间: $t_s=0.580$;

稳态误差: $e_{ss} = 0.005$;

⑤ 确定校正形式:

- 用超前: $\varphi_m = \gamma^* \gamma_0 + 5^\circ = 45^\circ 12.7^\circ + 5^\circ = 37.3^\circ < 60^\circ$ (可以)
- 用滞后: 在 $\omega_c^* = 50$ 处

$$\gamma_0(50) = 180^{\circ} - 90^{\circ} - \arctan\frac{50}{10} = 11.3^{\circ} < \gamma^* + 6^{\circ} \quad (\overline{\Lambda})$$

⑥ 确定采用方法:超前校正,或滞后-超前校正,或串联 PID 校正;以下根据频域设计法,对三种校正方法都进行了仿真分析。

2.2 超前校正设计

设计步骤:

① 确定超前校正 $G_c(s)$:

原系统有关参数: 截止频率 ω_{c0} = 44.2 ,相角裕度 γ_0 = 12.7°

$$\varphi_m = \gamma^* - \gamma_0 + 5^\circ = 45^\circ - 12.7^\circ + 5^\circ = 37.3^\circ$$

图 2-7 超前校正设计图

$$\begin{cases} a = \frac{1 + \sin 37.3^{\circ}}{1 - \sin 37.3^{\circ}} = 4.1 \\ 10 \lg a = 6.1 dB \end{cases} \qquad A: \omega_{A} = 63.2$$

$$C: \frac{\omega_{A}}{\omega_{c0}} = \frac{\omega_{c0}}{\omega_{C}} \Rightarrow \omega_{C} = 30.9$$

$$D: \frac{\omega_{D}}{\omega_{A}} = \frac{\omega_{A}}{\omega_{C}} \Rightarrow \omega_{D} = 129.3$$

所以校正装置传递函数是:

$$G_c(s) = \frac{\frac{s}{\omega_c} + 1}{\frac{s}{\omega_D} + 1} = \frac{\frac{s}{30.9} + 1}{\frac{s}{129.3} + 1} = \frac{129.3}{30.9} \frac{s + 30.9}{s + 129.3} = 4.18 \frac{s + 30.9}{s + 129.3}$$

超前校正后系统结构图为:

图 2-8 超前校正后系统结构图

② 作超前校正后 $L(\omega)$ 、 $\varphi(\omega)$ 如图所示:

图 2-9 超前校正后系统开环波特图

校正后频域指标:

截止频率: $\omega_c=63.7>\omega_c^*=50$,相角裕度: $\gamma=46.8^\circ>\gamma^*=45^\circ$;

③ 作超前校正后系统响应曲线:

图 2-10 超前校正后系统单位阶跃响应曲线

图 2-11 超前校正后系统单位斜坡响应曲线

校正后时域指标:

峰值时间: $t_p=0.044s$, 超调量: $\sigma\%=\!26.8\%$, 调节时间: $t_s=0.085$;

稳态误差: $e_{ss} = 0.005 = e_{ss}^* = 0.005$, 满足设计要求。

2.3 滞后-超前校正设计

设计步骤:

① 确定滞后-超前校正 $G_c(s)$:

取 $\omega_c = \omega_c^* = 50$ 进行设计,计算超前部分应提供的超前角

$$\varphi_m = \gamma^* - \gamma_0(\omega_c) + 6^\circ = 45^\circ - 11.3^\circ + 6^\circ = 39.7^\circ$$

$$a = \frac{1 + \sin \varphi_m}{1 - \sin \varphi_m} = 4.54 \Rightarrow \sqrt{a} = \sqrt{4.54} = 2.13$$

$$10 \lg a = 10 \lg 4.54 = 6.57 \text{dB}$$

在 ω_c = 50处设计→A, B

图 2-12 滞后-超前校正设计图

在 B 点左右拉 \sqrt{a} 倍频(或上下定 6.57dB)→C,D

C 点:
$$\omega_{C}=\sqrt{a}\omega_{c}=106.5$$
, D 点: $\omega_{D}=\frac{\omega_{c}}{\sqrt{a}}=23.47$, E 点: $\omega_{E}=0.1\omega_{c}=5$,

$$\text{F} \stackrel{\stackrel{\leftarrow}{\text{\tiny H}}}{:} \frac{\omega_0}{\omega_{c0}} = \frac{\omega_{c0}}{\omega_c} \Rightarrow \omega_0 = 39.07 \; , \quad \frac{\omega_0}{\omega_D} = \frac{\omega_E}{\omega_F} \Rightarrow \omega_F = 3.00$$

所以校正装置传递函数是:

$$G_c(s) = \frac{(\frac{s}{\omega_E} + 1)(\frac{s}{\omega_D} + 1)}{(\frac{s}{\omega_E} + 1)(\frac{s}{\omega_C} + 1)} = \frac{(\frac{s}{5} + 1)(\frac{s}{23.47} + 1)}{(\frac{s}{3} + 1)(\frac{s}{106.5} + 1)} = 2.72 \frac{(s+5)(s+23.47)}{(s+3)(s+106.5)}$$

滞后-超前校正后系统结构图为:

图 2-13 滞后-超前校正后系统结构图

② 作滞后-超前校正后 $L(\omega)$ 、 $\varphi(\omega)$ 如图所示:

图 2-14 滞后-超前校正后系统开环波特图

校正后频域指标:

截止频率: $\omega_c = 50 = \omega_c^* = 50$, 相角裕度: $\gamma = 48.7^\circ > \gamma^* = 45^\circ$;

③ 作滞后-超前校正后系统响应曲线:

图 2-15 滞后-超前校正后系统单位阶跃响应曲线

图 2-16 滞后-超前校正后系统单位斜坡响应曲线

校正后时域指标:

峰值时间: $t_p=0.062s$,超调量: $\sigma\%=24.8\%$,调节时间: $t_s=0.111$;

稳态误差: $e_{ss} = 0.005 = e_{ss}^* = 0.005$, 满足设计要求。

2.4 串联 PID 校正设计

设计步骤:

① 确定串联 PID 校正 $G_c(s)$:

取 $\omega_c = \omega_c^* = 50$ 进行设计,计算超前部分应提供的超前角

$$\varphi_m = \gamma^* - \gamma_0(\omega_c) + 6^\circ = 45^\circ - 11.3^\circ + 6^\circ = 39.7^\circ$$

在 ω_c = 50处设计→A, B

图 2-17 串联 PID 校正设计图

设第二个转折频率为 ω_2 ,则有

$$\angle \left(1 + \frac{s}{\omega_2}\right) = \arctan \frac{50}{\omega_2} = \varphi_m = 39.7^\circ \Rightarrow \omega_2 = \frac{50}{\tan 39.7^\circ} = 60.2$$

$$\frac{\omega_0}{\omega_{c0}} = \frac{\omega_{c0}}{\omega_c} \Rightarrow \omega_0 = 39.07, \frac{\omega_2}{\omega_0} = \frac{1}{\omega_1} \Rightarrow \omega_1 = 0.649$$

所以校正装置传递函数是:

$$G_c(s) = \frac{(\frac{s}{\omega_1} + 1)(\frac{s}{\omega_2} + 1)}{s} = \frac{(\frac{s}{0.649} + 1)(\frac{s}{60.2} + 1)}{s}$$
$$= \frac{0.0256s^2 + 1.557s + 1}{s} = \frac{K_D s^2 + K_P s + K_T}{s}$$

所以 $K_D = 0.0256$, $K_P = 1.557$, $K_I = 1$ 。

串联 PID 校正后系统结构图为:

图 2-18 串联 PID 校正后系统结构图

② 作串联 PID 校正后 $L(\omega)$ 、 $\varphi(\omega)$ 如图所示:

图 2-19 串联 PID 校正后系统开环波特图

校正后频域指标:

截止频率: $\omega_c = 73.4 > \omega_c^* = 50$,相角裕度: $\gamma = 45^\circ = \gamma^* = 45^\circ$;

③ 作串联 PID 校正后系统响应曲线:

图 2-20 串联 PID 校正后系统单位阶跃响应曲线

图 2-21 串联 PID 校正后系统单位斜坡响应曲线

校正后时域指标:

峰值时间: $t_p=0.039s$,超调量: $\sigma\%=30.5\%$,调节时间: $t_s=0.075$;

稳态误差: $e_{ss} = 0.003 < e_{ss}^* = 0.005$, 满足设计要求。

第3章 实验验证

3.1 电路图搭建

由第2章分析可得,超前校正效果最好,故实验验证中采用超前校正的形式 搭建电路图;先将原系统开环传递函数变换,得出未校正原系统的模拟电路图如 下图所示:

$$G(s) = \frac{200}{s(\frac{s}{10} + 1)} = \frac{1}{0.1s} \cdot \frac{20}{0.1s + 1} = \frac{1}{2\mu \times 50k \cdot s} \cdot \frac{100k \div 5k}{1\mu \times 100k \cdot s + 1}$$

$$\frac{R_1}{200k\Omega}$$

$$\frac{R_2}{200k\Omega}$$

$$\frac{R_3}{R_2}$$

$$\frac{R_4}{200k\Omega}$$

$$\frac{R_4}{S00k\Omega}$$

$$\frac{R_4}{S00k\Omega}$$

$$\frac{R_5}{S0k\Omega}$$

$$\frac{R_5}{S0k\Omega}$$

$$\frac{R_7}{A2}$$

$$\frac{R_7}{A2}$$

$$\frac{R_7}{200k\Omega}$$

图 3-1 未校正原系统模拟电路图

输入单位阶跃信号,通过虚拟示波器观测输出阶跃响应曲线,并记录曲线的峰值时间 t_p 、超调量 σ %以及调节时间 t_s ;输入单位斜坡信号,通过虚拟示波器观测输出斜坡响应曲线,并记录曲线的稳态误差 e_s 。

将超前校正装置传递函数变换(参考自控理论课教材 P.193), 计算超前网络相关参数:(超前网络会改变原系统增益,需增益补偿)

图 3-2 超前网络

超前网络传递函数:

$$G_{c0}(s) = \frac{1}{a} \frac{aTs + 1}{Ts + 1}$$

增益补偿后:

$$G_c(s) = \frac{129.3}{30.9} \cdot \frac{s+30.9}{s+129.3} = \frac{\frac{s}{30.9} + 1}{\frac{s}{129.3} + 1} = \frac{aTs + 1}{Ts + 1}$$

$$\therefore aT = \frac{1}{30.9}, T = \frac{1}{129.3} \Rightarrow a = 4.184, T = 0.007734$$

$$\therefore a = \frac{R_1 + R_2}{R_2}, T = \frac{R_1 R_2}{R_1 + R_2} C_3$$

$$\therefore R_1 = 324k\Omega, R_2 = 102k\Omega \approx 100k\Omega, C_3 = 0.1\mu F$$

 $R_3 = 200k \cdot a \approx 837k\Omega$

其中,改变 R_3 的值完成增益补偿,得出超前校正后系统的模拟电路图如下图所示:

图 3-3 超前校正后系统模拟电路图

输入单位阶跃信号,通过虚拟示波器观测输出阶跃响应曲线,并记录曲线的峰值时间 t_p 、超调量 σ %以及调节时间 t_s ;输入单位斜坡信号,通过虚拟示波器观测输出斜坡响应曲线,并记录曲线的稳态误差 e_{ss} 。

实验结果记录在下一页表格中:(为了使电子版和打印版一致,实测响应曲线用 Word 绘制,手绘实测响应曲线请查阅中期检查所交报告)

3.2 实验结果及分析

由于实验仪器可能存在误差,实验结果与仿真结果存在一定的差异;但因为仿真设计时有一定冗余,所以实验结果阶跃响应曲线的超调量 σ %=17%和调节时间 t_s =0.18,仍满足设计指标要求。

表 3-1 实验数据记录表

		衣 3-1 头短数据记求衣				
	输入	实测响应曲线	超 调 量 6 %	峰 值 时 间 t _p	调节时间 t _s	稳 态 误 差 e _{ss}
未校正	单位阶跃	1.63	63%	0.08	0.56	
原系统	单位斜坡					0.05

	输入	实测响应曲线	超 调 量 6 %	峰 值 时间 <i>t_p</i>	调节时间 t _s	稳 态 误 差 e_{ss}
超前校正后系统	单位阶跃	0.10 0.18	17%	0.10	0.18	
	单位斜坡					0.05

第4章 数字控制器性能分析

4.1 原系统离散化

首先,将前文所设计的超前校正控制器进行离散化,采用双线性变换法:

$$G_c(z) = G_c(s)|_{s = \frac{2}{T} \frac{z-1}{z+1}}$$

$$G_c(z) = 4.18 \frac{\frac{2}{T} \frac{z-1}{z+1} + 30.9}{\frac{2}{T} \frac{z-1}{z+1} + 129.3} = 4.18 \frac{2(z-1) + 30.9T(z+1)}{2(z-1) + 129.3T(z+1)}$$

$$= 4.18 \frac{(30.9T+2)z + 30.9T - 2}{(129.3T+2)z + 129.3T - 2} = 4.18 \frac{30.9T+2}{129.3T+2} \frac{z + \frac{30.9T-2}{30.9T+2}}{z + \frac{129.3T-2}{129.3T+2}}$$

所以数字控制系统的结构图如下:

图 4-1 数字控制系统结构图

由理论课所学知识可得,采样时间T越长,系统稳定性和动态性能越不好;将原系统离散化,根据朱利(Jurry)稳定性可以推出使系统稳定的采样时间T值范围,大致步骤如下:

① 求原系统开环脉冲传递函数 G(z):

$$:: G(z) = G_c(z) \cdot G_0(z) \cdot G_m(z)$$

其中, $G_c(z)$, $G_0(z)$, $G_m(z)$ 分别是控制器、零阶保持器、被控对象的脉冲传递函数。

$$\therefore G(z) = 4.18 \frac{2(z-1) + 30.9T(z+1)}{2(z-1) + 129.3T(z+1)} \cdot Z \left[\frac{1 - e^{-Ts}}{s} \cdot \frac{200}{s(0.1s+1)} \right]$$

$$\begin{aligned}
& : Z \left[\frac{1 - e^{-Ts}}{s} \cdot \frac{200}{s(0.1s+1)} \right] = (1 - z^{-1}) Z \left[\frac{2000}{s^2(s+10)} \right] \\
&= \frac{z - 1}{z} \left\{ \operatorname{Res}_{s=0} \left[\frac{2000}{s^2(s+10)} \cdot \frac{z}{z - e^{Ts}} \right] + \operatorname{Res}_{s=-10} \left[\frac{2000}{s^2(s+10)} \cdot \frac{z}{z - e^{Ts}} \right] \right\} \\
&= \frac{z - 1}{z} \left\{ \lim_{s \to 0} \frac{d}{ds} \left[s^2 \cdot \frac{2000}{s^2(s+10)} \cdot \frac{z}{z - e^{Ts}} \right] + \lim_{s \to -10} \left[(s+10) \cdot \frac{2000}{s^2(s+10)} \cdot \frac{z}{z - e^{Ts}} \right] \right\} \\
&= -20 + \frac{200T}{z - 1} + \frac{20(z - 1)}{z - e^{-10T}} \\
&= \frac{-20(z - 1)(z - e^{-10T}) + 200T(z - e^{-10T}) + 20(z - 1)^2}{(z - 1)(z - e^{-10T})}
\end{aligned}$$

$$\therefore G(z) = 4.18 \frac{2(z-1) + 30.9T(z+1)}{2(z-1) + 129.3T(z+1)} \cdot \frac{-20(z-1)(z-e^{-10T}) + 200T(z-e^{-10T}) + 20(z-1)^2}{(z-1)(z-e^{-10T})}$$

② 得到原系统特征多项式D(z);

$$D(z) = 4.18 \left\{ \left[2(z-1) + 30.9T(z+1) \right] \left[-20(z-1)(z-e^{-10T}) + 200T(z-e^{-10T}) + 20(z-1)^2 \right] \right\} + \left[2(z-1) + 129.3T(z+1) \right] \left[(z-1)(z-e^{-10T}) \right]$$

③ 根据朱利稳定性判据得出稳定时 T 值范围;

由上述推导过程可见,步骤复杂容易出错,且化简十分麻烦;借助 SIMULINK 仿真工具,自行设置变量 T 作为采样时间,得到数字控制器参数如下图:

Discrete Zero-Pole

图 4-2 数字控制器参数

4.2 仿真分析临界稳定采样周期

根据经验,使系统稳定的T 值范围在 $0\sim0.1$ 之间,采用二分法确定临界稳定(阶跃响应波形振荡,既不收敛也不发散)时的T 值,思路及响应形式如下:(具体过程中仿真阶跃响应曲线见附录)

图 4-3 求临界稳定采样周期思路

表 4-1 系统不稳定或稳定时阶跃响应形式

图 4-4 临界稳定时阶跃响应曲线

所以临界稳定时的采样周期 $T_c = 0.02515563966 \approx 0.02516$,在 0 < T < 0.02516 范围内系统稳定。

4.3 仿真分析满足指标采样周期

同样采用二分法,求满足任务指标的最大采样周期T的思路及响应形式如下: (具体过程中仿真阶跃响应曲线见附录)

图 4-5 求恰好满足任务指标采样周期思路

采用时域指标作为判断标准, $\sigma^*\% < 35\%$ 和 $t_s^* < 0.19s$ 有一项不满足则重置 T_{max} ,均满足则重置 T_{min} 。

不满足指标时 满足指标时 T=0.003145 T=0.01258 -Step -Transfer Fcn -Step -Transfer Fcn 1.8 1.6 1.2 8.0 0.5 0.4 0.2 -0.2 L Offset=0 Offset=0 超调量 σ % = 65.7% 超调量 σ % = 33.4% 调节时间 $t_s = 0.151$ 调节时间 $t_s = 0.123$

表 4-2 系统不满足指标或满足指标时阶跃响应形式

图 4-6 恰好满足指标时阶跃响应曲线

此时,采样周期 $T = 0.00378382 \approx 0.003784$,阶跃响应的超调量 σ % = 35.0%,调节时间 $t_s = 0.076$;所以T = 0.003784即为满足任务指标的最大采样周期。

同时,由上述分析可知,采样时间 T 增大,系统稳定性和动态性能变差;采样时间 T 减小,系统稳定性和动态性能变好;与理论所学知识结论一致。

第5章 总结

本学期为期两周的自动控制原理课程设计在繁忙与充实中结束了,经过本次课程设计,我收获颇丰。不仅回顾了自动控制原理理论课所学知识,还在实践中学习到了有关 MATLAB、SIMULINK 应用的相关知识,为以后的工程实践打下基础。

在课程设计的过程中,通过自己动手仿真、搭建电路,仿真实验分析比对,我对典型系统的时频域特性、串联校正的三种网络以及离散系统有了更深的认识。以前虽然搞过数模,对 MATLAB 的使用有一定的了解,但是自动控制原理这门课程有关的仿真几乎都在 SIMULINK 里完成,对我而言也算是未知领域。经过课程设计,我熟练掌握了 SIMULINK 的有关使用方法,能够独立进行典型系统的时域、频域分析,会用 Analysis - Control design 选项卡中的 Linear Analysis 和 Control System Designer 进行控制系统分析和设计,另外,在进行离散系统确定满足条件的最大采样周期 T 时,我还学会了自己设置模型工作区参数,进行参数调整的方法。实践出真知,课程设计虽然不简单,但完成课程设计也是对自我的提升。

最后,非常感谢王老师对我的悉心指导,同时也感谢实验室其他老师有问必答的无私奉献,在老师们身上我看到了对科研的严谨态度,我也要感谢和我探讨问题的同学们,一起互帮互助也是珍贵的经历。我也会带着严谨认真的态度,继续进行剩下课程的理论与实践学习。

参考文献

- [1] 卢京潮. 自动控制原理[M]. 清华大学出版社, 2013.
- [2] 杨婷婷, 王京锋, 郑新. 自动控制原理实验指导书[M]. 西北工业大学出版社, 2020.

附录

1. 绘制频域-时域指标转换图的代码

```
%% 高阶系统 超调量、调节时间和相位裕度关系图
clc, clear; close all;
gamma=30:0.01:90;Ts=[];Sigma=[];Gamma1=[];Gamma2=[];
for i=1:length(gamma)
   temp=1/sin(gamma(i)*pi/180)-1;
   sigma=0.16+0.4*temp;
   ts=pi*(2+1.5*temp+2.5*temp^2)*0.5/9-6*0.5/9+0.1;
   if ts<=0.5
       Gamma1=[Gamma1 gamma(i)];
       Ts=[Ts ts];
   end
   if sigma \le 0.5
       Gamma2=[Gamma2 gamma(i)];
       Sigma=[Sigma sigma];
   end
end
plot(Gamma2, Sigma, 'b-', Gamma1, Ts, 'r-');
axis([30 90 0.1 0.55]);grid on;
```

2. 求系统临界稳定采样周期 T 过程中响应形式判断

表 0-1 求临界稳定对应采样周期 T 时,不同 T 对应的阶跃响应曲线

3. 求系统恰好满足指标采样周期 T 过程中响应形式判断

表 0-2 求恰好满足指标对应采样周期 T 时,不同 T 对应的阶跃响应曲线

