1.1 TF-IDF

Definer formelen til vektingsmålet TF-IDF ("Term Frequency – Inverse Document Frequency") og forklar notasjonen du bruker. Diskuter kort hva som er hensikten med å anvende TD-IDF.

Vekten for en term t_i i et dokument d_i er gitt ved:

document frequency: det totale antall dokumenter termen forekommer i.

1.1 TF-IDF

Definer formelen til vektingsmålet TF-IDF ("Term Frequency – Inverse Document Frequency") og forklar notasjonen du bruker. Diskuter kort hva som er hensikten med å anvende TF-IDF.

- Rå frekvens er en dårlig indikator for relevans vekting
- En høy verdi for tf-idf -> høy frekvens i dokumentet, men lav frekvens i samlingen som helhet
- Vanlige ord får lav vekt

1.2 Lengdenormalisering

Når vi jobber med vektorrom-representasjoner av dokumenter benytter vi oss ofte av lengde-normalisering. Forklar hva dette innebærer og hvilken praktisk nytte det kan ha.

- Sørge for at alle vektorer har en euclidisk norm lik 1
- Oppnås ved å dele hvert element (dimensjon) på lengden (normen):

$$x \frac{1}{\|x\|}$$

- Motvirker problemet med at ordfrekvenser og lengden på dokumenter påvirker euklidisk avstand
- Med normaliserte vektorer kan cosine similarity regnes ut med prikkproduktet av vektorene, noe som gjør det svært effektivt.
- Rekkefølgen på hvordan vektorene står i forhold til hverandre blir det samme i cosine similarity og Euclidean distance

$$c^2 = a^2 + b^2$$
$$c = \sqrt{a^2 + b^2}$$

$$||v|| = \sqrt{c^2 + d^2} = \sqrt{\sqrt{a^2 + b^2}^2 + d^2} = \sqrt{a^2 + b^2 + d^2}$$

		р	q	Euclidean distance	Cosine similarity
x		3	1	$\sqrt{(1-3)^2 + (4-2)^2}$ = 2,83	$\frac{3 \times 1 + 2 \times 4}{3,61 \times 4,12} = 0,74$
У		2	4		0,0
Euklidisk norm		$\sqrt{3^2 + 2^2} = 3.61$	$\sqrt{1^2 + 4^2} = 4.12$		
Normalisert	X	3/3.61 = 0.83	1/4.12 = 0.24	$ \sqrt{(0.24 - 0.83)^2 + (0.97 - 0.55)^2} = 0,83 \times 0,24 + 0,55 \\ = 0,72 = 0,74 $	$0.83 \times 0.24 + 0.55 \times 0.97$ = 0.74
	У	2/3.61 = 0.55	4/4.12 = 0.97		

2.1 Evaluering

Flere av evalueringsmålene vi har sett på i kurset har vært definert på basis av fire mer grunnleggende kategorier av hvordan prediksjonene til en klassifikator kan være riktige eller gale, sammenliknet med gullstandarden:

		Actual		
		Positive	Negative	
Predicted	Positive	True Positive	False Positive	
	Negative	False Negative	True Negative	

Precision TP

Vis hvordan de tre målene Accuracy, Recall og Precision kan defineres på bakgrunn av dette.

Recall
$$\frac{TP}{TP + FN}$$

Riktige delt på alle: Accuracy $\frac{TP + TN}{N}$

Lite falske positive: **Precision** $\frac{TP}{TP + FP}$

Lite falske negative: Recall $\frac{TP}{TP + FN}$

1) Perfect Recall; Low precision

2) Low Recall; Perfect Precision

Accuracy
$$\frac{TP + TN}{N}$$

Precision
$$\frac{TP}{TP + FP}$$

Recall
$$\frac{TP}{TP + FN}$$

2.2 Accuracy

Tenk deg at vi jobber med binær klassifikasjon og at vi har mange flere eksempler i den negative klassen enn den positive (la oss anta et forhold på 9:10). Diskuter hvorvidt Accuracy er et egnet eller uegnet evalueringsmål for dette problemet.

Accuracy er ikke egnet hvis det er mange negative – vi kan få nokså høy accuracy ved å klassifisere alt som negativt. Årsaken til dette er at accuracy gir uttelling for bade true negatives og true positives:

$$\frac{TP + TN}{N}$$

2.3 kNN

Beskriv kort klassifikasjonsmetoden kNN. Diskuter kort dens styrker og svakheter

- k Nearest Neighbors er en veiledet metode (supervised learning): lærer fra eksempler som allerede har blitt annotert med riktig klasse.
- kNN klassifiserer etter majoriteten blant de k nærmeste naboene (typisk etter avstand i vektorrommodell)
- Vanlig å vekte etter avstand, slik at nærmere naboer får mer å si

2.3 kNN

Styrker

- Enkel å forstå
- håndterer ikke-lineært separerbare klasser
- Kompleksiteten ved klassifikasjon (testing) er uavhengig av antall klasser

Svakheter

- Vanskelig å avgjøre hva som er optimal k
- minnebruk metoden memorerer alle treningseksemplene. (memorybased learning eller instance-based learning) – ingen egentlig læring
- Relativt høy tidskompleksitet for å finne nærmeste nabo – lineært etter antall treningseksempler og dimensjoner (jfr. memory-based)