Algebraic Statistics & Quantifier Elimination

Daniel Suess

What is Algebraic Statistics?

What is Algebraic Statistics?

understand algebraic structure of statistical models

What is Algebraic Statistics?

understand algebraic structure of statistical models

application of techniques from computational algebra, algebraic geometry, ...

Algebraic Structure in Statistics

Semi-algebraic set $S \subset \mathbb{R}^n$

$$S = \left\{ x \in \mathbb{R}^n \colon p_i(x_1, \dots, x_n) = 0, \\ q_j(x_1, \dots, x_n) \leq 0 \right\}$$

for finitely many polynomials p_i , q_i with coefficients in \mathbb{Q}

Algebraic Structure in Statistics

Semi-algebraic set $S \subset \mathbb{R}^n$

$$S = \left\{ x \in \mathbb{R}^n \colon p_i(x_1, \dots, x_n) = 0, \\ q_j(x_1, \dots, x_n) \leq 0 \right\}$$

for finitely many polynomials p_i , q_i with coefficients in \mathbb{Q}

probability simplex

$$\Delta_{n-1} = \left\{ x \in \mathbb{R}^n \colon \sum_i x_i = 1, x_i \ge 0 \right\}$$

- joint prob. of discrete, indep. RVs
- max. likelihood estimates

• ...

Algebraic Structure in Statistics

Semi-algebraic set $S \subset \mathbb{R}^n$

$$S = \left\{ x \in \mathbb{R}^n \colon p_i(x_1, \dots, x_n) = 0, \\ q_j(x_1, \dots, x_n) \leq 0 \right\}$$

for finitely many polynomials p_i , q_i with coefficients in \mathbb{Q}

probability simplex

$$\Delta_{n-1} = \left\{ x \in \mathbb{R}^n \colon \sum_{i} x_i = 1, x_i \ge 0 \right\}$$

- joint prob. of discrete, indep. RVs
- max. likelihood estimates

• ...

$$P(A, B, C) = P(A|C) P(B|C) P(C)$$
 \iff

$$p_{abc} = q_{ac} r_{bc} s_{c}$$

$$P(A, B, C) = P(A|C) P(B|C) P(C)$$

$$\iff$$

$$p_{abc} = q_{ac} r_{bc} s_{c}$$

$$p_{abc} p_{a'b'c} - p_{ab'c} p_{a'bc} = 0$$

Additional constraint for the semialgebraic set of probabilities consistent with DAG.

$$P(A, B, C) = P(A|C) P(B|C) P(C)$$
 \iff

 $p_{abc} = q_{ac} r_{bc} s_{c}$

$$p_{abc} p_{a'b'c} - p_{ab'c} p_{a'bc} = 0$$

Additional constraint for the semialgebraic set of probabilities consistent with DAG.

```
p_{abc} = q_{ac} r_{bc} s_c
\iff for all c, (p_{abc})_{ab} is rank 1
\iff (p_{abc})_{ab} has determinantal rank 1
\iff determinant of all 2 \times 2 minors = 0
\iff \forall a, a', b, b', c : p_{abc} p_{a'b'c} - p_{ab'c} p_{a'bc} = 0
```

Possible Applications

distinguishing Bayesian networks from observational data

Possible Applications

distinguishing Bayesian networks from observational data

Bell inequalities / quantum non locality

Possible Applications

Image: http://www.belfasttelegraph.co.uk/news/northern-ireland/john-stewart-bell-belfast-city-council-to-bend-rules-on-the-naming-of-streets-to-honour-the-scientist-who-corrected-albert-einstein-30586279.html

$$\begin{cases}
(p_{abc}): & \exists (q_{ac})\exists (r_{bc})\exists (s_c) \\
(\bigwedge_c \sum_a q_{ac} = 1) \wedge (\bigwedge_c \sum_b r_{bc} = 1) \wedge (\sum_c s_c = 1) \wedge \\
(\bigwedge_{ac} q_{ac} \ge 0) \wedge (\bigwedge_{bc} r_{bc} \ge 0) \wedge (\bigwedge_c s_c \ge 0) \wedge \\
(\bigwedge_{abc} p_{abc} = q_{ac} \times r_{bc} \times s_c)
\end{cases}$$

$$\begin{cases}
(p_{abc}): & \exists (q_{ac})\exists (r_{bc})\exists (s_c) \\
(\bigwedge_c \sum_a q_{ac} = 1) \wedge (\bigwedge_c \sum_b r_{bc} = 1) \wedge (\sum_c s_c = 1) \wedge \\
(\bigwedge_{ac} q_{ac} \ge 0) \wedge (\bigwedge_{bc} r_{bc} \ge 0) \wedge (\bigwedge_c s_c \ge 0) \wedge \\
(\bigwedge_{abc} p_{abc} = q_{ac} \times r_{bc} \times s_c)
\end{cases}$$

$$P(A, B, C) = P(A|C) P(B|C) P(C)$$

$$p_{abc}$$
 compatible with $A \leftarrow C \rightarrow B$

$$\begin{cases} (p_{abc}) \colon & \exists (q_{ac}) \exists (r_{bc}) \exists (s_c) \\ & (\bigwedge_c \sum_a q_{ac} = 1) \land (\bigwedge_c \sum_b r_{bc} = 1) \land (\sum_c s_c = 1) \land \\ & (\bigwedge_{ac} q_{ac} \ge 0) \land (\bigwedge_{bc} r_{bc} \ge 0) \land (\bigwedge_c s_c \ge 0) \land \\ & (\bigwedge_{abc} p_{abc} = q_{ac} \times r_{bc} \times s_c) \end{cases}$$

$$= \pi \Big(\{ (p_{abc}, q_{ab}, r_{bc}, s_c) \colon \cdots \} \Big)$$

$$\text{with } \pi \colon \mathbb{R}^{n_1 + n_2} \to \mathbb{R}^{n_1}, (p_{abc}, q_{ab}, r_{bc}, s_c) \mapsto (p_{abc}) \end{cases}$$

$$p_{abc}$$
 compatible with $A \leftarrow C \rightarrow B$

$$\begin{cases} (p_{abc}) \colon & \exists (q_{ac}) \exists (r_{bc}) \exists (s_c) \\ & (\bigwedge_c \sum_a q_{ac} = 1) \land (\bigwedge_c \sum_b r_{bc} = 1) \land (\sum_c s_c = 1) \land \\ & (\bigwedge_{ac} q_{ac} \ge 0) \land (\bigwedge_{bc} r_{bc} \ge 0) \land (\bigwedge_c s_c \ge 0) \land \\ & (\bigwedge_{abc} p_{abc} = q_{ac} \times r_{bc} \times s_c) \end{cases}$$

$$= \pi \Big(\left\{ (p_{abc}, q_{ab}, r_{bc}, s_c) \colon \cdots \right\} \Big)$$

$$\text{with } \pi \colon \mathbb{R}^{n_1 + n_2} \to \mathbb{R}^{n_1}, (p_{abc}, q_{ab}, r_{bc}, s_c) \mapsto (p_{abc}) \end{cases}$$

Theorem (Tarski-Seidenberg) The image of a semi-algebraic set under a projection map π is a semi-algebraic set.

$$p_{abc}$$
 compatible with $A \leftarrow C \rightarrow B$

$$\begin{cases} (p_{abc}) \colon &\exists (q_{ac}) \exists (r_{bc}) \exists (s_c) \\ &(\bigwedge_c \sum_a q_{ac} = 1) \land (\bigwedge_c \sum_b r_{bc} = 1) \land (\sum_c s_c = 1) \land \\ &(\bigwedge_{ac} q_{ac} \ge 0) \land (\bigwedge_{bc} r_{bc} \ge 0) \land (\bigwedge_c s_c \ge 0) \land \\ &(\bigwedge_{abc} p_{abc} = q_{ac} \times r_{bc} \times s_c) \end{cases}$$

$$= \pi \Big(\left\{ (p_{abc}, q_{ab}, r_{bc}, s_c) \colon \cdots \right\} \Big)$$

$$\text{with } \pi \colon \mathbb{R}^{n_1 + n_2} \to \mathbb{R}^{n_1}, (p_{abc}, q_{ab}, r_{bc}, s_c) \mapsto (p_{abc}) \end{cases}$$

$$\{(p,q) \in \mathbb{R}^2 : (\exists x \in \mathbb{R}) \, x^2 + px + q = 0\}$$
$$= \{(p,q) \in \mathbb{R}^2 : p^2 \ge 4q\}$$

Quantifier Elimination: Algorithms

Input: formula Ψ

Output: equivalent, quantifier-free formula Ψ'

Quantifier Elimination: Algorithms

Input: formula Ψ

Output: equivalent, quantifier-free formula Ψ'

- real valued variables
- rational constants
- operations (+,-,x)
- binary relations (=,≠,<,≤)
- logical connectives
 (∧,∨,¬,⇒,⇔)
- quantifiers (∀,∃)

Quantifier Elimination: Algorithms

Input: formula Ψ

Output: equivalent, quantifier-free formula Ψ'

- real valued variables
- rational constants
- operations (+,-,x)
- binary relations (=,≠,<,≤)
- logical connectives
 (∧,∨,¬,⇒,⇔)
- quantifiers (∀,∃)

- Tarski's algorithm
- Cylinder Algebraic decomposition

Quantifier Elimination: Hidden Variables

$$\begin{cases}
(p_{abc}): & \exists (q_{ac}) \exists (r_{bc}) \exists (s_c) \\
(\bigwedge_c \sum_a q_{ac} = 1) \land (\bigwedge_c \sum_b r_{bc} = 1) \land (\sum_c s_c = 1) \land \\
(\bigwedge_{ac} q_{ac} \ge 0) \land (\bigwedge_{bc} r_{bc} \ge 0) \land (\bigwedge_c s_c \ge 0) \land \\
(\bigwedge_{abc} p_{abc} = q_{ac} \times r_{bc} \times s_c)
\end{cases}$$

Quantifier Elimination: Hidden Variables

$$\begin{cases}
(p_{abc}): & \exists (q_{ac}) \exists (r_{bc}) \exists (s_c) \\
(\bigwedge_c \sum_a q_{ac} = 1) \land (\bigwedge_c \sum_b r_{bc} = 1) \land (\sum_c s_c = 1) \land \\
(\bigwedge_{ac} q_{ac} \ge 0) \land (\bigwedge_{bc} r_{bc} \ge 0) \land (\bigwedge_c s_c \ge 0) \land \\
(\bigwedge_{abc} p_{abc} = q_{ac} \times r_{bc} \times s_c)
\end{cases}$$

Quantifier Elimination: Hidden Variables

Pab pabe compatible with A

$$\begin{cases}
(p_{abc}): & \exists (q_{ac})\exists (r_{bc})\exists (s_c) \\
(\bigwedge_c \sum_a q_{ac} = 1) \wedge (\bigwedge_c \sum_b r_{bc} = 1) \wedge (\sum_c s_c = 1) \wedge \\
(\bigwedge_{ac} q_{ac} \ge 0) \wedge (\bigwedge_{bc} r_{bc} \ge 0) \wedge (\bigwedge_c s_c \ge 0) \wedge \\
(\bigwedge_{abc} p_{abc} = q_{ac} \times r_{bc} \times s_c)
\end{cases}$$

Quantifier Elimination: Hidden Variables

 p_{abc} compatible with A

Quantifier Elimination: Hidden Variables

 p_{abc} compatible with A

$$\begin{cases} (p_{ab}) \\ (p_{abc}) : & \exists (q_{ac}) \exists (r_{bc}) \exists (s_c) \\ & (\bigwedge_c \sum_a q_{ac} = 1) \land (\bigwedge_c \sum_b r_{bc} = 1) \land (\sum_c s_c = 1) \land \\ & (\bigwedge_{ac} q_{ac} \ge 0) \land (\bigwedge_{bc} r_{bc} \ge 0) \land (\bigwedge_c s_c \ge 0) \land \\ & (\bigwedge_{abc} p_{abc} = q_{ac} \times r_{bc} \times s_c) \end{cases}$$

$$\bigwedge_{ab} p_{ab} = \sum_c q_{ac} \times r_{bc} \times s_c$$

Quantifier Elimination: Hidden Variables

 p_{abc} compatible with A

$$A + B$$

```
\begin{cases} (p_{ab}) \\ (p_{abc}) : & \exists (q_{ac}) \exists (r_{bc}) \exists (s_c) \\ & (\bigwedge_c \sum_a q_{ac} = 1) \land (\bigwedge_c \sum_b r_{bc} = 1) \land (\sum_c s_c = 1) \land \\ & (\bigwedge_{ac} q_{ac} \ge 0) \land (\bigwedge_{bc} r_{bc} \ge 0) \land (\bigwedge_c s_c \ge 0) \land \\ & (\bigwedge_{abc} p_{abc} = q_{ac} \times r_{bc} \times s_c) \end{cases}
\bigwedge_{ab} p_{ab} = \sum_c q_{ac} \times r_{bc} \times s_c
```

- no additional constraints on p_{ab} for $N_A = N_B = N_C = 2$
- $N_A = N_B = 3$ did not finish

Membership Problem

$$(A \perp C) \land (A \perp B \mid C) \Rightarrow (A \perp B)$$
?

Membership Problem
$$(A \perp C) \land (A \perp B \mid C) \Rightarrow (A \perp B)?$$

$$\psi(p) \qquad \qquad \psi'(p)$$

Membership Problem
$$(A \perp C) \land (A \perp B \mid C) \Rightarrow (A \perp B)?$$

$$\psi(p) \qquad \qquad \psi'(p)$$

 $\forall p \colon \psi(p) \implies \psi'(p)$

Membership Problem

$$(A \perp C) \land (A \perp B \mid C) \Rightarrow (A \perp B)?$$

$$\psi(p) \qquad \qquad \psi'(p)$$

 $\forall p \colon \psi(p) \implies \psi'(p)$

Identifiability Problem

Can we uniquely identify the parameter θ in a parametric model from given observation?

Membership Problem

$$(A \perp C) \wedge (A \perp B \mid C) \Rightarrow (A \perp B)?$$

$$\psi(p) \qquad \qquad \psi'(p)$$

 $\forall p \colon \psi(p) \implies \psi'(p)$

Identifiability Problem

Can we uniquely identify the parameter θ in a parametric model from given observation?

$$\forall \theta, \theta' \colon (O(\theta) = O(\theta')) \implies (\theta = \theta')$$

 probabilities compatible with directed Bayesian network constitute semi-algebraic set:

- probabilities compatible with directed Bayesian network constitute semi-algebraic set:
 - no hidden variables → quadratic equations

- probabilities compatible with directed Bayesian network constitute semi-algebraic set:
 - no hidden variables → quadratic equations
 - hidden variables → possibly QE

- probabilities compatible with directed Bayesian network constitute semi-algebraic set:
 - no hidden variables → quadratic equations
 - hidden variables → possibly QE
- CAD: best known algorithm for QE, but too slow beyond toy models

- probabilities compatible with directed Bayesian network constitute semi-algebraic set:
 - no hidden variables → quadratic equations
 - hidden variables → possibly QE
- CAD: best known algorithm for QE, but too slow beyond toy models
- also for continuous RV (exponential families)

- probabilities compatible with directed Bayesian network constitute semi-algebraic set:
 - no hidden variables → quadratic equations
 - hidden variables → possibly QE
- CAD: best known algorithm for QE, but too slow beyond toy models
- also for continuous RV (exponential families)
- https://github.com/dseuss/algstat.git

Theorem (Tarski) Every Tarski sentence (formula without free variables) is equivalent to a quantifier-free formula.

Theorem (Tarski-Seidenberg) Let $f: X \to Y$ be a semi-algebraic map. Then, the image $f(X) \subseteq Y$ is a semi-algebraic set.

ALGORITHM ComputeCAD(F,j)

Input: $F \subset Q[x_1, ..., x_j]$.

Output: (K_j, α_j) where K_j is an F-sign-invariant CAD of R^j and α_j is a set of algebraic sample points, one per cell in K_j .

Recurse: If j > 1, then do $\Phi(F) := \Phi_1(F) \sqcup \Phi_2(F) \sqcup \Phi_2(F)$

 $\Phi(\mathbf{F}) := \Phi_1(\mathbf{F}) \cup \Phi_2(\mathbf{F}) \cup \Phi_3(\mathbf{F})$ $(K_{j-1}, \alpha_{j-1}) := ComputeCAD(\Phi(\mathbf{F}), j-1),$

else find the roots r_1, \ldots, r_m of all polynomials in F and do

$$K_1 := \{[-\infty, r_1), [r_1, r_1], (r_1, r_2), \dots, (r_m, +\infty]\}$$

 $\alpha_1 := \{r_1 - 1, r_1, (r_1 + r_2)/2, \dots, r_m, r_m + 1\}$
Return (K_1, α_1)

Lift: For every cell $C_i \in K_{j-1}$ do

- 1. Compute the product of all polynomials in F that do not vanish at the sample point α_i of C_i and call the resulting polynomial $\pi(\alpha_i, x)$
- 2. Find the roots r_1, \ldots, r_m of $\pi(\alpha_i, x)$
- 3. Set $K_{j,i} := \{\{C_i \times [-\infty, r_1)\}, \{C_i \times [r_1, r_1]\}, \{C_i \times (r_1, r_2)\}, \dots, \{C_i \times (r_m, +\infty]\}\}$ Comment: $K_{j,i}$ are the cylinders over C_i .
- 4. Set $\alpha_{j,i} := \{(\alpha_i, r_1 1), (\alpha_i, r_1), (\alpha_i, (r_1 + r_2)/2), \dots, (\alpha_i, r_m + 1)\}$ Comment: $\alpha_{j,i}$ are the algebraic sample points for the cylinders over C_i .

$$K_j := \bigcup_i K_{j,i} ; \quad \alpha_j := \bigcup_i \alpha_{j,i}$$

Return (K_j, α_j)