

Technische Universität Chemnitz Fakultät für Elektrotechnik und Informationstechnik Professur Regelungstechnik und Systemdynamik 1)

Deutsches Biomasseforschungszentrum gemeinnützige GmbH ²⁾ FH Münster³⁾

FH Münster³⁾

Technische Universität Berlin⁴⁾

FH Münster

University of Applied Sciences

Demand-oriented Optimal Feeding of Agricultural Anaerobic Digestion Plant under Uncertain Substrate Characterization Julius Frontzek 1)
Simon Hellmann 2)
Stefan Streif 1)

Sören Weinrich ³⁾
Terrance Wilms ⁴⁾
Steffi Knorn ⁴⁾

Motivation

Problem

- more than 9000 biogas plants in Germany (as of 2017)
- typically subsidized through Renewable Energy Act (German: "EEG")
 - **→** guaranteed feed-in tariffs for electricity
- biogas plant operation for electricity generation significantly less profitable after EEG funding period ends

Motivation for biogas plants to stay

biogas production not directly dependent on environmental conditions

→ controllable, reliable renewable energy

Profitability increase approaches

- increase revenue:
 - demand-oriented electricity production
 - → higher feed-in tariffs
- reduce costs:
 - substrates
 - infrastructure

Solution idea

Approach

produce biogas on demand by controlling AD process through feeding of not measured waste substrates

→ allowing for smaller gas storage

Model

AD plant

- CSTR based on simplified ADM1 model (ADM1-R3frac) with multiple inputs
- inputs: Feed volume flows of respective substrate
- 18 states
 - soluble and particulate components in liquid phase
 - gaseous components in gas phase
 - differentiation between fast and slowly digestible carbohydrates

Gas storage

- mixture of ideal gases at isobaric conditions
- modeled using volume balance
- comprises CH₄, CO₂, H₂O gases
- 2 states for CH₄ and CO₂ volumes respectively
- H₂O volume computed dependently

$$\dot{V}_{\text{CH}_4,\text{tank}} = \dot{V}_{\text{CH}_4,\text{in}} - \dot{V}_{\text{CH}_4,\text{out}}$$
 $\dot{V}_{\text{CO}_2,\text{tank}} = \dot{V}_{\text{CO}_2,\text{in}} - \dot{V}_{\text{CO}_2,\text{out}}$

From AD model Defined by CHP power demand

Substrate composition

Problem

- AD model requires inlet concentrations ξ_i of macronutrients
- can be computed from other properties
 - Example: $\xi_{ch} = \overline{FQ}_{ch} \cdot \overline{X}_{ch} \cdot DM \cdot \rho_{FM}$

with	ξ_{ch}	inlet concentration of carbohydrates
	\overline{FQ}_{ch}	fermentable fraction of carbohydrates
	\overline{X}_{ch}	raw concentration of carbohydrates
	DM	dry matter fraction
	$ ho_{FM}$	density of fresh matter

fermentable fraction of macronutrients cannot be measured directly

Approach

- proteins and lipids assumed to be fully fermentable
- carbohydrate fermentability adjusted to meet total fermentation quotient of substrate
- data taken from literature and not yet published ring trials
- uncertainties of ξ_i linearly propagated

computed probability densities of inlet concentrations

→ Substrate macronutrient composition uncertainty quantified

Model Predictive Control

- optimization based control scheme
- desired system behavior (e.g. setpoint tracking) described in cost function
- prerequisite: Model description for system

Algorithm idea

- 1. computation of optimal input trajectory across control horizon ${ extstyle extsty$
- 2. application of first computed input
- 3. measure system states

Pros

- Easy implementation of process constraints
- Multi-variable control
- Incorporation of economic incentives in cost function

Multi-stage NMPC

Problem

- true substrate composition unknown → parametric uncertainty
- robust control strategy required to guarantee constraint satisfaction

Assumption

uncertain parameters only have discrete realization values

Multi-stage NMPC - Methodology [Lucia 2013]

- combine all discrete uncertainty realizations
- each combination of realizations represents scenario
- optimize control action over entire tree → weighted summation of scenario specific cost functions

→ control scheme tailored to problems with parametric uncertainties

Simulation scenarios

General

- preceding steady state initialization (300 days)
- 30 day optimal feeding
- 4 input substrates: 3 silages, 1 manure

Noise/errors

- uniform random noise in gas storage filling states
- random uniform feeding errors of $\pm 5\%$

Disturbance

- forced feeding of cattle manure
- 2.5 times larger composition uncertainty

Substrate composition

variation of $\pm 1.5\sigma$ w.r.t. nominal value

→ parametric plant-model mismatch

Parameter	Value
CHP electrical capacity	50 kW
Digester liquid volume	163 m ³
Gas storage volume	296 m ³
Average week day CHP operation	13.8 h/d
Average weekend CHP operation	9 h/d
Time step	0.5 h

Scenarios

- methanation scenario
 - → set-point tracking of methane volume outflow
- demand-oriented scenario
 - → fulfillment of typical CHP schedule

→ application of controllers in two different simulation scenarios

Optimization setup

Scenario specific cost function (demand-oriented scenario)

$$\min_{\underline{u}_{0:N_{c}-1},\underline{x}_{0:N_{c}}} J_{l}(\underline{x}_{k},\underline{u}_{k}) = \sum_{k=0}^{N_{c}-1} \left(c_{1} \cdot \left(\text{Deviation from filling level setpoint} \right)^{2} \right.$$

$$\left. + c_{2} \cdot \left(\text{Deviation from filling level setpoint} \right)^{4} \right)$$

$$+ \sum_{k=0}^{N_{c}-1} \sum_{i=1}^{M} \frac{cost_{i}}{cost_{max}} \cdot u_{i,k}$$

$$\text{subject to} \quad \underline{x}_{k+1} = \mathbf{F}(\underline{x}_{k},\underline{u}_{k})$$

$$\underline{y}_{k} = \mathbf{H}(\underline{x}_{k})$$

$$u_{i,k} \in [0,1] \quad \forall \quad i \in \{1,...,4\}, k \in \{0,...,N_{c}\}$$
Hard and soft constraints for gas fill

Cost function with respect to filling level (demand-oriented scenario)

Cost function components

- deviation of filling level from setpoint at 43%
 - below 50% → production increase easier than decrease
 - filling level comprised of three normalized gases
- substrate usage weighted by respective substrate cost

Constraints

- hard and soft constraints of filling level representing physical limits
- individual hard constraints for CO₂ and CH₄ to prevent negative individual volumes

→ cost function for demand-oriented scenario incorporates filling level and substrate costs

Results - Methanation Scenario

Findings

- generally very good reference tracking
- setpoint changes addressed by large feeding inputs
 but: accompanied by significant pH drops
- silages fed to increase biogas production
 - larger macronutrient density as compared to manure → quickly digestible
- manure fed to brake biogas production
 - due to low density of macronutrients and in absence of buffer solution
- pH drops due to large disturbance feeding could not be compensated

Results - Demand oriented scenario

Time [d]

Findings

- constraints were not violated
- shorter CHP operating times (e.g. on weekends) could only be handled for a certain time
- gas storage size larger than in comparable study with simpler model [Mauky 2016] but smaller than in other studies
- process stability maintained see pH plot
- significant changes in biogas production realized dependent on CHP demand schedule

Summary and Outlook

Summary

- explored a potentially more profitable pathway for biogas plant operation: demand-oriented feed control with substrates of uncertain composition
- developed multi-stage and nominal NMPC controllers
- tested on two different simulation scenarios
- developed a software framework
 - extensible with observers, etc.
 - real-time application computationally feasible

Limitations

- simulations only
- full state information assumed
- power demand assumed to be known

Outlook

- comparison between multi-stage NMPC and nominal NMPC for demand-oriented scenario
- observer implementation for non-measurable state variables
- economic assessment of proposed control scheme
- hierarchical control design with top level optimizing for optimal filling level

References

[Lucia 2013] Lucia, S.; Finkler, T.; Engell, S. 2013. Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty. Journal of Process Control 23: 1306-1319.

[Mauky 2016] Mauky, E.; Weinrich, S.; Nägele, H.-J.; Jacobi, H.F.; Liebetrau, J.; Nelles, M. 2016. Model Predictive Control for Demand-Driven Biogas Production in Full Scale. Chemical Engineering & Engineering & Samp; Technology 39: 652–664.

[Weinrich 2021] Weinrich, S.; Nelles, M. 2021. Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1) — Model development and stoichiometric analysis. Bioresource Technology 333: 125124.