1.
$$L = \{\omega \in \{a, b, c\}^* | |\omega|_c = 1\}$$

2. $L = \{ \omega \in \{a, b\}^* | |\omega|_a \le 2, |\omega|_b \ge 2 \}$

3.
$$L = \{\omega \in \{a, b\}^* | |\omega|_a \neq |\omega|_b\}$$

Докажем при помощи леммы о разрастании, что язык не является регулярным

Возьмём $\bar{L}=\{\omega\in\{a,b\}^*|\ |\omega|_a=|\omega|_b\},$ если \bar{L} не является регулярным, то и L не является регулярным \Rightarrow невозможно построить автомат, который распознаёт данный язык

Док-во:

$$\omega = a^n b^n$$

$$\omega = 2n \ge n$$

$$xy = a^i a^j, i + j \le n$$

$$\omega = a^i a^j a^{n-i-j} b^n$$

$$\omega = a^i a^{jk} a^{n-i-j} b^n \notin \bar{L}, k > 1 \blacktriangleright$$

4. $L = \{\omega \in \{a,b\}^* | |\omega\omega = \omega\omega\omega\}$ Данный язык состоит только из пустого слова

1.
$$L_1 = \{ \omega \in \{a, b\}^* | |\omega|_a \ge 2 \land |\omega|_b \ge 2 \}$$

$$A_1 = \{ \omega \in \{a, b\}^* | |\omega|_a \ge 2 \}$$

- $\bullet \sum_{1} = \{a, b\}$
- $Q_1 = \{q_1, q_2, q_3\}$
- $\bullet \ S_1 = q_1$
- $\bullet \ T_1 = q_3$

$$A_2 = \{ \omega \in \{a, b\}^* | |\omega|_b \ge 2 \}$$

$$\bullet \sum_2 = \{a, b\}$$

•
$$Q_2 = \{q_4, q_5, q_6\}$$

$$\bullet S_2 = q_4$$

$$\bullet \ T_4 = q_6$$

$$\Rightarrow L_1 = A_1 \times A_2$$
, где

•
$$\sum = \{a, b\}$$

•
$$Q = \{ \langle q_1 q_4 \rangle \langle q_1 q_5 \rangle \langle q_1 q_6 \rangle \langle q_2 q_4 \rangle \langle q_2 q_5 \rangle \langle q_2 q_6 \rangle \langle q_3 q_4 \rangle \langle q_3 q_5 \rangle \langle q_3 q_6 \rangle \}$$

•
$$S = < q_1 q_4 >$$

$$T = \{ \langle q_3 q_6 \rangle \}$$

Состояние	Переход по а	Переход по в
$ < q_1 q_4 > $	$ < q_2 q_4 >$	$< q_1 q_5 >$
$ < q_1 q_5 >$	$ < q_2 q_5 >$	$< q_1 q_6 >$
$ < q_1 q_6 >$	$ < q_2 q_6 >$	$< q_1 q_6 >$
$ < q_2 q_4 > $	$ < q_3 q_4 >$	$< q_2 q_5 >$
$ < q_2 q_5 >$	$ < q_3 q_5 >$	$< q_2 q_6 >$
$ < q_2 q_6 >$	$ < q_3 q_6 >$	$< q_2 q_6 >$
$ < q_3 q_4 > $	$ < q_3 q_4 >$	$< q_3 q_5 >$
$ < q_3 q_5 > $	$ < q_3 q_5 > $	$< q_3 q_6 >$
$ < q_3 q_6 > $	$< q_3 q_6 >$	$< q_3 q_6 >$

Таблица переходов

2.
$$L_2 = \{\omega \in \{a, b\}^* | |\omega| \ge 3 \land |\omega|$$
 нечётное $\}$

$$A_1 = \{ \omega \in \{a, b\}^* | |\omega| \ge 3 \}$$

- $\bullet \sum_{1} = \{a, b\}$
- $\bullet \ Q_1 = \{q_1, q_2, q_3, q_4\}$
- $\bullet \ S_1 = q_1$
- $\bullet \ T_1 = q_4$

$$A_2 = \{\omega \in \{a,b\}^* | |\omega|$$
 нечётное $\}$

•
$$\sum_2 = \{a, b\}$$

•
$$Q_2 = \{q_5, q_6\}$$

$$\bullet S_2 = q_5$$

$$\bullet T_2 = q_6$$

$$\Rightarrow L_2 = A_1 \times A_2$$
, где

•
$$\sum = \{a, b\}$$

•
$$Q = \{ \langle q_{15} \rangle \langle q_{16} \rangle \langle q_{25} \rangle \langle q_{26} \rangle$$

 $\langle q_{35} \rangle \langle q_{36} \rangle \langle q_{45} \rangle \langle q_{46} \rangle \}$

•
$$S = < q_{15} >$$

•
$$T = \{ < q_{46} > \}$$

Состояние	Переход по а	Переход по b
$ < q_{15} > $	$ < q_{26} >$	$ < q_{26} >$
$ < q_{16} > $	$ < q_{25} >$	$ < q_{25} >$
$ < q_{25} > $	$ < q_{36} >$	$ < q_{36} >$
$ < q_{26} > $	$ < q_{35} > $	$ < q_{35} > $
$ < q_{35} > $	$ < q_{46} >$	$ < q_{46} >$
$ < q_{36} > $	$ < q_{45} >$	$ < q_{45} >$
$ < q_{45} > $	$ < q_{46} > $	$ < q_{46} > $
$ < q_{46} > $	$ < q_{45} >$	$ < q_{45} >$

Таблица переходов

Уберём лишние вершины, т.к. в них мы попасть никак не сможем

3. $L_3=\{\omega\in\{a,b\}^*|\ |\omega|_a$ чётно $\wedge|\omega|_b$ кратно трём $\}$

$$A_1 = \{\omega \in \{a, b\}^* | |\omega|_a$$
 чётно $\}$

$$\bullet \sum_{1} = \{a, b\}$$

$$\bullet \ Q_1 = \{q_1, q_2\}$$

$$\bullet \ S_1 = q_1$$

$$\bullet \ T_1 = q_1$$

 $A_2 = \{\omega \in \{a,b\}^* | \ |\omega|_b$ кратно трём $\}$

•
$$\sum_2 = \{a, b\}$$

$$Q_2 = \{q_3, q_4, q_5\}$$

$$\bullet S_2 = q_3$$

$$\bullet \ T_2 = q_3$$

$$\Rightarrow L_3 = A_1 \times A_2$$
, где

$$\bullet \sum = \{a, b\}$$

•
$$Q = \{ \langle q_{13} \rangle \langle q_{14} \rangle \langle q_{15} \rangle \langle q_{23} \rangle$$

 $\langle q_{24} \rangle \langle q_{25} \rangle \}$

•
$$S = < q_{13} >$$

•
$$T = \{ < q_{13} > \}$$

Состояние	Переход по а	Переход по в
$ < q_{13} > $	$< q_{23} >$	$ < q_{14} >$
$ < q_{14} > $	$< q_{24} >$	$< q_{15} >$
$ < q_{15} >$	$< q_{25} >$	$< q_{13} >$
$ < q_{23} > $	$< q_{13} >$	$< q_{24} >$
$ < q_{24} > $	$< q_{14} >$	$< q_{25} >$
$ < q_{25} >$	$< q_{15} >$	$< q_{23} >$

Таблица переходов

4.
$$L_4 = \bar{L}_3$$

$$L_{3} = \{\sum, Q_{3}, S_{3}, T_{3}, \delta_{3}\}$$

$$\bar{L}_{3} = \{\sum, Q_{3}, S_{3}, Q_{3} \setminus T_{3}, \delta_{3}\}$$

$$\Rightarrow T_{4} = Q_{3} \setminus T_{3} = \{\langle q_{14} \rangle \langle q_{15} \rangle \}$$

$$\langle q_{23} \rangle \langle q_{24} \rangle \langle q_{25} \rangle \}$$

5.
$$L_5 = L_2 \setminus L_3$$

$$L_2 \backslash L_3 = L_2 \cap \bar{L_3} = L_2 \cap L_4$$

- $\bullet \sum_2 = \{a, b\}$
- $Q_2 = \{ \langle q_{15} \rangle \langle q_{26} \rangle \langle q_{35} \rangle \langle q_{46} \rangle$ $\langle q_{45} \rangle \}$
- $S_2 = \langle q_{15} \rangle$
- $T_2 = \{ < q_{46} > \}$
- $\bullet \sum_4 = \{a, b\}$
- $Q_4 = \{ \langle q_{13} \rangle \langle q_{14} \rangle \langle q_{15} \rangle \langle q_{23} \rangle$ $\langle q_{24} \rangle \langle q_{25} \rangle \}$

•
$$S_4 = < q_{13} >$$

•
$$T_4 = \{ \langle q_{14} \rangle \langle q_{15} \rangle$$

 $\langle q_{23} \rangle \langle q_{24} \rangle \langle q_{25} \rangle \}$

$$\Rightarrow L_5 = A_2 \times A_3$$
, где

•
$$\sum = \{a, b\}$$

•
$$Q = \{ < q_{15}q_{13} > < q_{15}q_{14} > < q_{15}q_{15} > < q_{15}q_{23} > < q_{15}q_{24} > < q_{15}q_{25} > < q_{26}q_{13} > < q_{26}q_{14} > < q_{26}q_{15} > < q_{26}q_{23} > < q_{26}q_{24} > < q_{26}q_{25} > < q_{35}q_{13} > < q_{35}q_{14} > < q_{35}q_{15} > < q_{35}q_{23} > < q_{35}q_{24} > < q_{35}q_{25} > < q_{45}q_{13} > < q_{45}q_{14} > < q_{45}q_{15} > < q_{45}q_{23} > < q_{46}q_{13} > < q_{46}q_{14} > < q_{46}q_{15} > < q_{46}q_{23} > < q_{46}q_{24} > < q_{46}q_{25} > \}$$

- $S = \langle q_{15}q_{13} \rangle$
- $T = \{ \langle q_{46}q_{14} \rangle \langle q_{46}q_{15} \rangle \langle q_{46}q_{23} \rangle$ $\langle q_{46}q_{24} \rangle \langle q_{46}q_{25} \rangle \}$

Состояние	Переход по а	Переход по b
$< q_{15}q_{13} >$	$< q_{26}q_{23} >$	$< q_{26}q_{14} >$
$ < q_{15}q_{14} > $	$< q_{26}q_{24} >$	$< q_{26}q_{15} >$
$ < q_{15}q_{15} > $	$< q_{26}q_{25} >$	$< q_{26}q_{13} >$
$ < q_{15}q_{23} > $	$< q_{26}q_{13} >$	$< q_{26}q_{24} >$
$ < q_{15}q_{24} > $	$< q_{26}q_{14} >$	$< q_{26}q_{25} >$
$ < q_{15}q_{25} > $	$< q_{26}q_{15} >$	$< q_{26}q_{23} >$
$< q_{26}q_{13} >$	$< q_{35}q_{23} >$	$< q_{35}q_{14} >$
$ < q_{26}q_{14} > $	$< q_{35}q_{24} >$	$< q_{35}q_{15} >$
$ < q_{26}q_{15} > $	$< q_{35}q_{25} >$	$< q_{35}q_{13} >$
$ < q_{26}q_{23} > $	$< q_{35}q_{13} >$	$< q_{35}q_{24} >$
$ < q_{26}q_{24} > $	$< q_{35}q_{14} >$	$< q_{35}q_{25} >$
$ < q_{26}q_{25} > $	$< q_{35}q_{15} >$	$< q_{35}q_{23} >$
$< q_{35}q_{13} >$	$< q_{46}q_{23} >$	$< q_{46}q_{14} >$
$ < q_{35}q_{14} > $	$< q_{46}q_{24} >$	$< q_{46}q_{15} >$
$< q_{35}q_{15} >$	$< q_{46}q_{25} >$	$< q_{46}q_{13} >$
$ < q_{35}q_{23} > $	$< q_{46}q_{13} >$	$< q_{46}q_{24} >$
$ < q_{35}q_{24} > $	$< q_{46}q_{14} >$	$< q_{46}q_{25} >$
$ < q_{35}q_{25} > $	$< q_{46}q_{15} >$	$< q_{46}q_{23} >$
$< q_{45}q_{13} >$	$< q_{46}q_{23} >$	$< q_{46}q_{14} >$

$ < q_{45}q_{14} > $	$ < q_{46}q_{24} > $	$< q_{46}q_{15} >$
$ < q_{45}q_{15} >$	$< q_{46}q_{25} >$	$< q_{46}q_{13} >$
$< q_{45}q_{23} >$	$ < q_{46}q_{13} > $	$< q_{46}q_{24} >$
$ < q_{45}q_{24}>$	$ < q_{46}q_{14} > $	$< q_{46}q_{25} >$
$ < q_{45}q_{25} > $	$< q_{46}q_{15} >$	$< q_{46}q_{23} >$
$ < q_{46}q_{13} > $	$ < q_{45}q_{23} > $	$< q_{45}q_{14} >$
$ < q_{46}q_{14} > $	$< q_{45}q_{24} >$	$< q_{45}q_{15} >$
$ < q_{46}q_{15} > $	$ < q_{45}q_{25} >$	$< q_{45}q_{13} >$
$ < q_{46}q_{23} > $	$< q_{45}q_{13} >$	$< q_{45}q_{24} >$
$ < q_{46}q_{24} > $	$ < q_{45}q_{14} > $	$< q_{45}q_{25} >$
$ < q_{46}q_{25} > $	$< q_{45}q_{15} >$	$< q_{45}q_{23} >$

Таблица переходов

Уберём лишние вершины, т.к. в них мы попасть никак не сможем

$$\Rightarrow Q = \{ \langle q_{15}q_{13} \rangle \langle q_{26}q_{23} \rangle \langle q_{26}q_{14} \rangle \\ \langle q_{35}q_{13} \rangle \langle q_{35}q_{24} \rangle \langle q_{46}q_{14} \rangle \langle q_{45}q_{15} \rangle \\ \langle q_{45}q_{24} \rangle \langle q_{35}q_{15} \rangle \langle q_{46}q_{25} \rangle \langle q_{45}q_{23} \rangle \\ \langle q_{46}q_{24} \rangle \langle q_{46}q_{13} \rangle \langle q_{45}q_{14} \rangle \langle q_{46}q_{15} \rangle \\ \langle q_{45}q_{13} \rangle \langle q_{46}q_{23} \rangle \langle q_{45}q_{25} \rangle \}$$

1. $(ab + aba)^*a$ Построим НКА

Построим ДКА

Состояние	Переход по а	Переход по b
q_1	$q_5q_6q_{12}$	Ø
$q_5q_6q_{12}$	Ø	q_7q_8
q_7q_8	$q_5q_6q_{12}q_9$	Ø
$q_5q_6q_{12}q_9$	q_5q_{612}	q_7q_8

2. $a(a(ab)^*b)^*(ab)^*$ Построим НКА

Построим ДКА

Состояние	Переход по а	Переход по в
q_1	q_2	Ø
q_2	q_3q_7	Ø
q_3q_7	q_4	q_2
q_4	Ø	q_3q_7

3. $(a + (a + b)(a + b)b)^*$ Построим НКА

Построим ДКА

Состояние	Переход по а	Переход по b
q_1	q_5q_6	q_6
q_5q_6	$q_5q_6q_7$	q_6q_7
$q_5q_6q_7$	q_5q_{67}	$q_5q_6q_7$
q_6q_7	q_7	q_7q_8
q_6	q_7	$ q_7 $
q_7	Ø	$ q_1 $
q_7q_8	q_5q_6	q_5q_6

4. $(b+c)((ab)^*c+(ba)^*)^*$ Построим НКА

Построим ДКА

Состояние	Переход по а	Переход по в	Переход по с
q_1	Ø	$ q_2 $	q_2
q_2	q_5	q_6	Ø
q_5	Ø	q_7	Ø
q_6	$ q_2 $	Ø	Ø
q_7	q_5	Ø	q_2

5. $(a+b)^+(aa+bb+abab+baba)(a+b)^+$ Построим НКА

Построим ДКА, т.к. при построении его через таблицу, она получатся слишком большой, поэтому проще и быстрее построить вручную

1. $L = \{(aab)^n b (aba)^m | n \ge 0, m \ge 0\}$ Данный язык является регулярным, построим к нему автомат

2. $L = \{uaav \mid u \in \{a,b\}^*, v \in \{a,b\}^*, |u|_b \ge |v|_a\}$

$$\omega = b^n a a^n, |w| \ge n$$

$$\omega = xyz$$

$$x = b^i \ y = b^j \ i + j \le n \ j > 0$$

$$z = b^{n-i-j} a a a^n$$

$$|xy| \le n \ |y| > 0$$

$$xy^0z = b^ib^{n-i-j}aa^n = b^{n-j}aaa^n \notin L$$
 \Rightarrow не регулярный язык

3.
$$L = \{a^m \omega \mid \omega \in \{a, b\}^*, 1 \le |\omega|_b \le m\}$$

$$\omega=a^nb^n, |w|\geq n$$
 $\omega=xyz$ $x=a^i\;y=a^j\;i+j\leq n\;j>0$ $z=a^{n-i-j}b^n$ $|xy|\leq n\;|y|>0$ $xy^0z=a^ia^{n-i-j}b^n=a^{n-j}b^n\notin L$ \Rightarrow не регулярный язык

4. $L = \{a^k b^m a^n \mid k = n \lor m > 0 \}$ Данный язык является регулярным, построим к нему автомат

5. $L = \{ucv \mid u \in \{a,b\}^*, v \in \{a,b\}^*, u \neq v^R\}$ Докажем от обратного, возьмём язык \bar{L} , в котором $u = v^R$, если \bar{L} не является регулярным, то и L не является регулярным

$$\omega = (ab)^{n}c(ba)^{n} = a_{1}a_{2}...a_{4n+1}, |w| \ge n$$

$$\omega = xyz$$

$$x = a_{1}a_{2}...a_{i} \ y = a_{i+1}a_{i+2}...a_{i+j} \ i+j \le n$$

$$z = a_{i+j+1}ai + j + 2...a_{2n}c(ba)^{n}$$

$$|xy| \le n \ |y| > 0$$

$$xy^{k}z = a_{1}...a_{i}(a_{i+1}...a_{i+j})^{k}a_{i+j+1}...$$

$$..a_{2n}c(ba)^{n} \notin \bar{L} \ \forall k > 1$$

 \Rightarrow и язык L не является регулярным