

Adaptive Software Systems GS/EECS 6432

Marin Litoiu

Department of Electrical Engineering and Computer Science
York University
mlitoiu@yorku.ca

http://www.ceraslabs.com

Autonomic Computing

Autonomic Computing

- An approach to self-managed computing systems with a minimum of human interference.
- The term derives from the body's autonomic nervous system, which controls key functions without conscious awareness or involvement.
- Means
 - Self configuring
 - Self healing
 - Self optimizing
 - Self protecting

Autonomic Computing

- Ability to dynamically configure itself "on the fly" and initialize itself in the context of the overall system; includes the ability to influence relevant changes in other products in the environment.
- •Ability to recover from a failing component by first detecting improper operations (either proactively through predictions or otherwise) and then initiating corrective action without disrupting applications.
- •Ability of systems or components to efficiently maximize resource allocation and utilization to meet end-user needs without human intervention.
- •Ability of a component to detect hostile or intrusive behavior as it occurs and take autonomous actions to make itself less vulnerable.

Content

- The Complexity Problem
- Introduction to Autonomic Computing
- Autonomic Computing
 - Historical Perspective
 - Autonomic Elements
- Examples

The Complexity Problem

Build a system used by millions of people each day administered and managed by a half-time person

— Jim Gray, Microsoft Research

— Jim Gray, Microsoft Research

Categories of Complexity

Algorithms & Data Structures Development & Maintenance

Time

Space

 $O(n \log n)$

Logical

Structural

STATE OF STA

Comprehensibility

Usage

	Novice	Average	Expert
Install			
Configure			
Administer			
Use			

Complex Heterogeneous Environment

Complex Heterogeneous Infrastructure

Complexity of Network Environment

© Marin Litoiu

Eric J. Kang, Postech,

Growing Complexity

- Very large scales
 - Million of entities
- Amorphous structures/behaviors
 - P2P, bus, hierarchical architecture
- Dynamic
 - Entities join, leave, move, change behavior

Heterogeneous

- Capability, connectivity, reliability, guarantees, QoS
- Lack of common/complete knowledge
 - Types, availability, connectivity, protocols, semantics

Complexity...a typical Enterprise system

- Application Server: ~100 configuration parameters
 - Several applications, hundreds of servlets, tens EJBs
- •Web Server: ~20 configuration parameters, servers thousands of web artifacts
- •Messaging: ~50 configuration parameters
- •DBMS, TCP/IP, Operating Systems.....

Business Challenges

Up to 40% of today's outages result from operator errors

25-50% of time is spent on problem determination and resolution

Outages of business-critical systems cost up to \$2.8B per year

New applications get delayed by maintenance of diverse existing systems

Managing complex, heterogeneous environments

Poorly documented legacy applications make it painful to diagnose and resolve complex cross-product problems

The skills needed to do manual crossproduct problem determination are scarce and expensive

4 out of 5 IT dollars spent on operations, maintenance, and minor enhancements

What Is Autonomic Computing? Self-managing systems that ...

Don't make your customers work on their technology; make technology work for them

Increase Responsiveness Adapt to dynamically changing environments

Operational Efficiency

Tune resources and balance workloads to maximize use of IT resources

Self-Configuring

iguring Healing

Self-Optimizing Pr

Self-Protecting

Self-

Busine & Residency
Discover, diagnose, and
act to prevent
disruptions

Secure Information and Resources

Anticipate, detect, identify, and protect against attacks

Evolutionary Path ...

Historical Perspective

- Operating Systems: separate execution environments to self-protect. When a program fails, it does not affect the rest
- TCP/IP protocol
 - It is self-protecting, self-healing, self-optimizing (shortest route, routing tables, error detection and correction mechanisms)
 - Enables self-configuring
- Workload managers (Dynamic Load Balancing) and schedulers self-optimizing
- Garbage collection (self-healing)
- IBM's zSeries:
 - Duplicated CPUs: CPU error detection and recovery
 - Decades of MTBD

SEAMS 2017 (The 12th International Symposium on Software Engineering

for Adaptive and Self-Managing Systems)

Adaptive Software Timeline

The Automation Conundrum

Over the past 50 years, computer systems have had a huge capacity to automate

- Enormous variety of tasks
- Cost per task greatly reduced
- Incalculable benefits
- Unprecedented success

Key challenges

- Further declines in task costs by traditional methods are subjection to the law of diminishing returns
- The complexity of infrastructure management threatens to outweigh the benefits of further automation

A. Spector, VP IBM Services and Software Research, 2003

Grand Challenge

- Today's computing systems are amazingly complex, and require daunting expertise and patience just to get them running and keep them running
- The increasing system administration will become a major barrier to deploying and maintaining large computing systems

Autonomic Computing Vision

Autonomic Computing is really about making systems self-managing ...

—Paul Horn, IBM Research, 2001

Mandatory Reading....

 (all read) J. O. Kephart and D. M. Chess, "The vision of autonomic computing," in *Computer*, vol. 36, no. 1, pp. 41-50, Jan 2003.

doi: 10.1109/MC.2003.1160055

To Explore Further Conferences and Journals

TASS	ACM Transactions on Autonomous and Adaptive Systems (TAAS)
ICAC	IEEE International Conference on Autonomic Computing
SASO	Self-Adaptive and Self-Organizing Systems
SEAMS	Software Engineering for Adaptive and Self-Managing Systems
CASCON	•••

Intro to IBM Development and Operations->DevOps

- DevOps: promotes the idea of strong collaboration among Development and Operations teams
- NoOps means developers can code, deploy, manage and maintain the application
 - automated systems (PaaS like Cloud Foundry, BlueMix) manage app lifecycles; no Operations teams
- Adaptation is one of the main aspects of DevOps/Noops
- Microservices and containers
 - Fine granular access
 - Provisioning done in seconds

Intro to IBM Cloud

Overview of IBM Cloud

- Get an IBM Cloud account, https://onthehub.com/ibm/
- Infrastructure as a Service, Platform as a Service
- Develop and Deploying a hello application (Java+Liberty)
 - With DevOps Toolchain
- Auto-Scaling an applications with DevOps Auto-scaling
 - https://console.bluemix.net/docs/services/Auto-Scaling/index.html#getstarted

Creating and deploying a web application

- Log in
- Open Dashboard
- Click on "Create a Foundry..." icon. This will instantiate a simple hello web application. The web server is IBM Liberty.

Create a Cloud Foundry app

- Go straight to developing with a Liberty for Java runtime, then add some of our 100+ services to build your app even faster.
- After the application is created, you can click on
 - View AppURI

Create a Tool Chain (a DevOps Feedback Loop)

- Follow this tutorial to create a GIT repository, a Web Editor and a Delivery Platform
 - Short Cut: from Dashboard, scroll Down the application page, click on "Enable" button in "Continuous Delivery" tab. Accept the defaults. In the end you get something like this:

Autoscaling...

For Assignment 1 you need

- To create an auto-scaler and attach it to your application
 - Follow this tutorial https://console.bluemix.net/docs/services/Auto-Scaling/index.html#get-started
- To create an workload generator, use Apache JMeter

Conclusions

- Autonomic computing is about self-managed systems
 - Increase resilience and improve QoS
 - Increase the Return On Investment (skills, maintenance)
- Autonomic computing is rather evolutionary than revolutionary
- Adoption depends on
 - Keeping the focus on the user (system administrator)
 - Building trust
 - Quality of automation

Next Week

Assignment 1

- Check Moodle text
- Submit as a file with a link to the video

Feedback loops