# **DT300**

# Transmissor de Concentração e Densidade



ABR / 09 **DT300** 





Especificações e informações estão sujeitas a modificações sem prévia consulta. Informações atualizadas dos endereços estão disponíveis em nosso site.

web: www.smar.com/brasil2/faleconosco.asp

# **INTRODUÇÃO**

As medições e controle de densidade vem sendo cada vez mais utilizadas na automação de processos industriais. Com a facilidade que se tem no dias de hoje em intervir nos processos, e a necessidade de criar algo prático, simples e barato, surgiu o Transmissor Inteligente de Concentração/Densidade – **DT300** (Touché).

O DT é um transmissor de densidade que opera pelo pricípio mais simples de obtenção de dados, ou seja, trabalha com uma variável considerada a mais medida e controlada nos processos industriais - a pressão. Através da medição de pressões hidrostáticas em dois pontos diferentes e conhecidos, é possível calcular com precisão, além da densidade, a concentração com o auxílio de um sensor de temperatura.

O DT é ideal para a medição estática e dinâmica de fluidos, conforme será descrito neste Guia. Este Guia de Instalação tem o propósito de ilustrar algumas aplicações com detalhes e especificidades de cada caso.

De acordo com principais segmentos industriais mencionados para a utilização do DT, é possível obter experiências que servirão de base para futuras instalações. É válido lembrar que nem todas as possibilidades de uso do DT são abordadas neste Guia, para que certos processos com particularidades não sejam excluídos de usar o DT.

O conteúdo deste Guia é destinado a auxiliar na instalação e montagem do DT300, e está voltado para pessoas relacionadas a área de Assistência Técnica, Vendas, Engenharia, além dos próprios Usuários finais que estarão diretamente operando, instalando e calibrando o equipamento.

Para detalhes mais específicos, consulte o Manual de Instruções do DT300, ou entre em contato com os responsáveis pelo equipamento através dos seguintes telefones/e-mails:

Evaristo Orellana Alves Email: evaristo@smar.com.br Tel.: (16) 3946-3592 direto

Carlos Alessandro Marcelino Email: cmarcelino@smar.com.br Tel.: (16) 3946-3519 ramal 5523

# ÍNDICE

| SEÇAO 1 – INSTALAÇAO E MONTAGEM                      |      |
|------------------------------------------------------|------|
| EM TANQUES                                           |      |
| MODELO INDUSTRIAL                                    | 1.1  |
| MODELO SANITÁRIO                                     |      |
| EM LINHA                                             |      |
| COM TANQUES AMOSTRADORES                             | 1.5  |
| SEÇÃO 2 - APLICAÇÕES                                 |      |
| AÇÚCAR E ÁLCOOL                                      |      |
| DENSIDADE DO LODO NO DECANTADOR                      | 2.1  |
| DII UICÃO DO LEITE DE CAL                            | 22   |
| DILUIÇÃO DO LEITE DE CALEVAPORAÇÃO                   | 2.3  |
| FERMENTÁÇÃO                                          | 2.5  |
| DESTILARIA                                           |      |
| REFINARIA DE AÇUCAR                                  | 2.7  |
| MINERAÇÃO                                            | 2.8  |
| SAÍDA DO MOINHO                                      |      |
| POLPA DE MINÉRIO                                     |      |
| LOOP DE TESTE DO MINERODUTO                          | 2.9  |
| INSTALAÇÃO EM TANQUE                                 | 2.9  |
| SAÍDA DO ESPESSADOR                                  | 2.10 |
| LEITE DE CAL                                         | 2.10 |
| CONCENTRAÇÃO DE ÁCIDOS                               | 2.11 |
| INDÚSTRIA QUÍMICA                                    | 2.11 |
| DENSIDADE / CONCENTRAÇÃO DE SAIS                     | 2.11 |
| CONCENTRAÇÃO DE SODA                                 | 2.12 |
| DENSIDADE DE ÁÇIDOS                                  |      |
| INDÚSTRIA PETROQUÍMICA                               | 2.13 |
| TANQUE TRATADOR DE ÓLEO                              | 2.13 |
| PRODUTOS DERIVATIVOS DO PETRÓLEO                     | 2.14 |
| DENSIDADE DE ÓLEO CRU                                |      |
| DENSIDADE DE GPL                                     |      |
| INDÚSTRIA DE BEBIDAS                                 | 2.17 |
| MEDINDO GRAU PLATO EM CERVEJARIAS                    | 2.17 |
| MEDIÇÃO DE VOLUME DO TAŅQUE                          | 2.17 |
| MEDINDO GRAU BRIX EM INDÚSTRIAS DE REFRIGERANTES     |      |
| CELULOSE E PAPEL                                     | 2.19 |
| MEDIÇÃO DE CONCENTRAÇÃO DE LICOR NEGRO FRACO E FORTE | 2.19 |
| MEDIÇÃO DE DENSIDADE DO LICOR VERDE                  |      |
| LEITE DE CAL                                         | 2.20 |
| CONCENTRAÇÃO DE SODA CÁUSTICA                        |      |
| INDÚSTRIA ALIMENTÍCIA                                | 2.21 |
| CONCENTRAÇÃO DE MISCELA EM ÓLEOS VEGETAIS            | 2.21 |
| DENSIDADE DE LEITE PRÉ CONDENSADO                    |      |
| CAFÉ SOLÚVEL                                         |      |
| BRIX DO SUCO DE LARANJA APÓS FILTRAGEM               | 2.23 |

# **INSTALAÇÃO E MONTAGEM**

### **Em Tanques**

A instalação do DT em tanques é bastante simples, podendo ser instalado lateralmente no tanque ou no topo. E em casos de tanques com agitador utiliza-se uma bainha de proteção para evitar turbulência nos diafragmas.

O DT opera com outros tipos de montagem, tais como montagem em tanque aberto e montagem com um cilindro de extensão. Lembrando que para o DT funcionar corretamente nestes modos de montagem, o nível do fluido a ser medido tem que ser controlado para que cubra ambos os sensores. Também é possível montagem com a haste voltada para cima, e o DT operando no modo reverso.

### **Modelo Industrial**

As montagens típicas do DT em tanque podem ser com conexão flangeada de 4" ANSI B 16.5 RF # (150,300). Veja as figuras a seguir:



Figura 1.1 - DT's Operando com Tubo de Extensão e em Tanque Aberto (Nível Constante)



Figura 1.2 – DT Instalado em Tanque (Modelo Curvo)



Figura 1.3 - DT's Operando em Tanques (Modo Reverso)

Para os processos onde há agitação severa, pode ser realizada a construção de um standpipe na lateral do tanque. Veja os detalhes nas Figuras abaixo.



Figura 1.4 - DT em um Standpipe

A montagem em um standpipe, é muito usada para medição de nível de interface, como será mostrado em exemplos posteriores. Veja a figura a seguir:



Figura 1.5 - Nível de Interface com um Standpipe e Vaso Comunicante

O nível de interface também pode ser medido diretamente em tanques. Veja a Figura 1.6 a seguir.



Figura 1.6 - Nível de Interface no Tanque

### NOTA

A medição de nível de interface deve respeitar uma variação máxima de 500mm, que é a distância de centro-a-centro dos diafragmas sensores.

### Modelo Sanitário

A instalação do DT sanitário pode ser feita diretamente no tanque. Para instalações sanitárias, a Smar desenvolveu um adaptador de tanque (*tank adapter*), o qual pode ser instalado em tanques novos ou existentes, evitando a necessidade de utilização de solda, e sem a necessidade de polir novamente o tanque.

A seguir, são mostradas Figuras ilustrativas do adaptador do tanque para instalação do DT sanitário:



Figura 1.7 - Montagem do Adaptador de Tanque



Figura 1.8 – Exemplo de Montagem do Adaptador de Tanque (Vista do lado Externo do Tanque)



Figura 1.9 – Exemplo de Montagem do Adaptador de Tanque (Vista do lado Interno do Tanque)

### Em Linha

### **Com Tanques Amostradores**

Para a medição em linha, o DT deve ser instalado de forma que todo, ou parte do fluido do processo circule sobre ele. Para isso, a Smar desenvolveu tanques amostradores, bastando apenas um *by-pass* e uma pequena perda de carga na linha principal, de forma que garanta que a amostra circule pelo DT. Existem vasos para fluidos limpos e vasos para fluidos sujos e/ou com sólidos em suspensão. Veja as Figuras a seguir.

### Tanques de Fluxo Dividido

Esse padrão de instalação deve ser usado quando há grandes variações de pressão e vazão.



Figura 1.10 – Instalação Típica para Fluídos Limpos (para vazões de até 2 m³/H)

Figura 1.11 – Instalação Típica para Fluídos Sujos e/ou com Sólidos (para vazões de até 8 m³/H)

### Tanques de Fluxo Ascendente



Figura 1.12 – Instalação Típica para Fluxo Ascendente (para vazões de até 20 m³/H)



Figura 1.13 – Instalação Típica para Fluxo Ascendente (para vazões de até 80 m³/H)



Figura 1.14 – Instalação Típica para Fluxo Ascendente (para vazões de até 40 m³/H)

Figura 1.15 – Instalação Típica para Fluxo Ascendente (para vazões de até 20 m³/H)

### **Tanques de Vaso Comunicante**



Figura 1.16 – Instalação Típica com Stand Pipe (para nível de interface)

### Esquemas Típicos de Instalações



Figura 1.17 – Instalação em By-pass com uma válvula na linha principal para "forçar" a circulação no By-pass



Figura 1.18 – Instalação em By-pass com o Fluído escoando para o Tanque



Figura 1.19 – Instalação em By-pass com uma Bomba

### NOTA

A linha principal pode fluir em ambos sentidos.



Figura 1.20 – Recirculação do processo em um Tanque



Figura 1.21 – Instalação em By-pass com tubo de Pitot



Figura 1.22 - Instalação com todo o fluído escoando em um vaso de fluxo ascendente

# **APLICAÇÕES**

### Açúcar e Álcool

Esta seção engloba praticamente todas aplicações em açúcar e álcool; desde descrição do processo, à certos "macetes" de instalação que devem ser atentados.

### Densidade do Lodo no Decantador

Nesta aplicação, a medição da densidade do lodo é feita em linha, após a bomba de deslocamento contínuo. Observa-se que na construção do vaso de amostragem, aumenta-se o diâmetro da linha de lodo, diminuindo a velocidade do fluido na passagem pelos sensores, justamente devido à presença de areia, bagacilho e outros sólidos em suspensão. A parte inferior do vertedouro, na saída por fluxo ascendente, deverá garantir sempre que o repetidor superior do DT esteja completamente afogado. Recomenda-se a completa limpeza do equipamento por ocasião de paradas do decantador de maneira imediata, evitando que o lodo resseque sob os sensores.





Figura 2.1 - Instalação de Fluxo Ascendente

### Considerações

- 1 Nesta aplicação, refere-se à medição de densidade, e não brix, pois não se trata de uma solução açucarada na sua totalidade. Desta forma, a unidade de engenharia determinada é a de densidade, por exemplo, Kg/m³.
- **2** Cuidado deve ser tomado quando for comparada a medição do instrumento, com análise laboratorial, pois a densidade varia com a temperatura.
- **3** Usando a experiência dos operadores encontra-se a densidade ideal para o lodo. Adota-se este valor de densidade como *set-point* no controlador.
- 4 O controlador atuará no inversor de freqüência da bomba de lodo para manter a densidade desejada para o lodo.

### Diluição do Leite de Cal

Em muitos casos a diluição de cal que é adicionada ao caldo é controlado por análise de laboratório. O DT pode fazer também este controle *online*.



Figura 2.2 - DT medindo a concentração (°Baumé) do leite de cal

### **NOTA**

Se houver parada no processo, deve-se drenar o tanque de amostragem e circular água para limpeza dos diafragmas.



Figura 2.3 - Processo sem incrustação de cal nos diafragmas do DT

### Evaporação

O DT pode também ser aplicado para medir a eficiência dos evaporadores, já que é diretamente função do Brix de saída, pelo Brix de entrada.

### Medição de Brix do Caldo Pré Evaporado

Para esta aplicação, recomenda-se o uso do "chapéu chinês", para criar o efeito "flash".

O efeito "flash" irá auxiliar no desprendimento de bolhas de ar e a eliminação de espuma antes da entrada do vaso amostrador. Veja a instalação com "chapéu chinês".



Figura 2.4 – Esquema da instalação de caldo pré evaporado

### Medição de Brix do Xarope entre Efeitos e no último Efeito de Evaporação

Nesta aplicação, a retirada da amostra deverá ser no recalque da bomba de xarope, retornando a amostra para a caixa de xarope.

Também neste caso, o uso do "chapéu chinês" permitirá o desprendimento de bolhas de ar e a eliminação de espuma.



Figura 2.5 - Esquema da instalação de brix do xarope

### Medição de Brix do Mel (pobre, rico e final)

A instalação ideal é o vaso amostrador de fluxo ascendente abaixo do tanque diluidor, e por gravidade, a amostra circula retornando para o tanque de mel diluído. Recomenda-se uma linha de água quente para eventuais limpezas.



Figura 2.6 – Instalação para Medição de Brix do Mel

### Fermentação

### Medição de Brix do Mosto Fermentado (Dorna)

Observa-se que o modelo curvo está diretamente instalado na dorna de fermentação, e a altura deve considerar que os sensores estejam sempre submersos.





Figura 2.7 - DT na Dorna de Fermentação

Recomenda-se instalar o DT de tal maneira que o sensor inferior esteja acima do nível máximo de fermento, e instalar uma tomada de amostra próxima ao DT.

### Medição de Brix do Mosto (Diluição)

Para a diluição do mosto (água, mel e caldo), a instalação do DT deverá ser sempre após o conjunto misturador estático. No caso onde há espuma e bolhas de ar, recomenda-se também o "chapéu chinês". Utiliza-se do vaso amostrador de fluxo ascendente com saída por transbordamento. Para evitar eventuais riscos de infecção, recomenda-se instalar uma linha de água quente para quando houver paradas, para limpeza e correta assepsia do equipamento.



Figura 2.8 – Esquema de Instalação de Brix do Mosto

### **Destilaria**

### Medição da Graduação do Álcool Hidratado e Anidro

A instalação poderá ser feita tomando-se uma amostra diretamente na saída da coluna de destilação sem a necessidade do uso de trocador de calor para resfriar a amostra.



Figura 2.9 – Instalação na saída da coluna de destilação

### Medição de Nível de Interface Ciclo-Hexano

A instalação é feita diretamente em tanque, conforme a Figura abaixo.



Figura 2.10 – Esquema de Instalação do Ciclo-hexano

## Refinaria de Açúcar

**Diluição de Açúcar**Toma-se uma amostra bombeada do tanque com o açúcar já diluído e retornando ao mesmo tanque, criando assim uma recirculação.





Figura 2.11 - Tanque de fluxo dividido instalado após a bomba de processo

### Mineração

Algumas das aplicações no segmento de mineração são: saída do moinho, hidrociclone, diluição de polpa, flotação, espessador, retirada de finos, concentração de ácidos, leite da cal, polpa de minério, classificador gravimétrico, etc.

### Saída do Moinho

Nessa aplicação, o minério tem granulometria maior e utiliza-se tanque despressurizado com dreno automático para medir a densidade.

O minério escavado, antes de ser processado, passa pelo moinho e é diluído em água para adição de outros químicos, a fim de ser tratado. A polpa de minério, por ser muito abrasiva, recomenda-se o uso de tanque amostrador de aço carbono, emborrachado internamente para evitar essa abrasão.



Figura 2.12 - Saída do Moinho

### Polpa de Minério

A densidade do minério diluído em água pode ser medida em um by-pass com um tanque emborrachado usando um tanque amostrador pressurizado.

O minério, por sedimentar-se facilmente, costuma-se abrir parcialmente a válvula de dreno do tanque amostrador, para evitar entupimento no fundo do tanque.



Figura 2.13 – Exemplo de Instalação em Mineração

**NOTA** 

É importante manter a válvula de dreno parcialmente aberta.

### **Loop Teste do Mineroduto**



Figura 2.14 – Instalação no Loop de teste do mineroduto

### Instalação em Tanque

É possível instalar o DT no tanque usando um standpipe para a medição. Esse tipo de instalação é usada mesmo quando há um agitador no tanque.





Figura 2.15 – Instalação em Tanque com Standpipe

### Saída do Espessador

Para medir a densidade na saída do espessador utiliza-se um by-pass após a bomba com um tanque emborrachado amostrador de fluxo ascendente.



Figura 2.16 – Saída do Espessador

### Leite de Cal

Para esta aplicação, um tanque amostrador de fluxo ascendente é utilizado.



Figura 2.17 – Leite de Cal

### Concentração de Ácidos

Algumas mineradoras possuem plantas de ácido. O DT é usado para medir a concentração do ácido nessas plantas. Usualmente a instalação é feita em um by-pass da linha principal.



Figura 2.18 – Instalação em Bypass

### Indústria Química

Neste segmento industrial o DT é usado para medir concentração de ácidos, sais, sodas, etc. Quando usando o DT nestas aplicações, é possivel utilizar um polinômio para disponibilizar a unidade desejada. Por exemplo: % de ácido sulfúrico.

### Densidade / Concentração de Sais

O DT é aplicado para controle da concentração da salmoura, antes da eletrólise. O DT é instalado em linha, conforme o esquemático representado pela Figura 2.19 abaixo.



Figura 2.19 - Recirculação da solução com Bomba

### **NOTA**

Para fluidos salinos corrosivos, recomenda-se que o tanque amostrador seja em fibra.

É possível que o DT meça concentração em gramas por litro, embora não possua esta unidade em seu software. Para isto, é feito um levantamento em campo de densidade e temperatura (medidos pelo DT) e concentração medido através de análise laboratorial. Com este levantamento, desenvolve-se um polinômio, o qual é possível implementar no DT via configurador.

### Concentração de Soda

A soda cáustica é obtida por meio de eletrólise da salmoura tratada (solução de cloreto de sódio e água). Quando é utilizado o processo por células de diafragma, obtêm-se a soda cáustica líquida grau comercial; quando é utilizado o processo por células de mercúrio, obtêm-se a soda cáustica líquida grau Rayon. Ambas apresentam-se sob a forma de uma solução aquosa, límpida, contendo cerca de 50 % de hidróxido de sódio (NaOH) em peso. A % NaOH pode ser medida online usando uma instalação como a representada na Figura abaixo.



Figura 2.20 – Recirculação com bomba

### Densidade de Ácidos

Para medição da densidade ou concentração de ácido, usualmente o material da sonda do DT é Hastelloy e o tanque amostrador é em fibra de vidro.



Figura 2.21 - Instalação medindo Ácido Clorídrico

### Indústria Petroquímica

### Tanque Tratador de Óleo

O DT normalmente é instalado em standpipe como mostra a Figura 2.22.



Figura 2.22 - Esquemático da Instalação do DT com Standpipe

Como nesta aplicação há NaCl, utiliza-se a sonda do DT em inox, porém os diafragmas em hastelloy.

Para a configuração do DT, o mesmo é instalado no vaso comunicante e verificado as densidades de ambos compostos. Anota-se os valores de densidade e programa-se a faixa, sendo 0% para o menor valor de densidade, e 100% para o maior valor de densidade. Finalizado este procedimento, configura-se o display para exibir "PV%".

### Exemplo

Para água marinha e óleo: Sobe-se o nível de água marinha no tanque, e mede-se uma densidade de 1,125 g/cm3. Anotado o valor de densidade da água, drena-se o tanque da mesma, de modo que o vaso comunicante fique cheio do óleo, e o valor medido pelo DT é de 0,8 g/cm3. Configure o 4mA = 0,8 g/cm<sup>3</sup> e 20mA = 1,125 g/cm<sup>3</sup>, e o display para exibir PV%.



Figura 2.23 - Medição de nível de Interface (Água salgada/óleo)

### Produtos Derivativos do Petróleo

Em controle de qualidade de combustíveis transportados, usa-se o DT para medição em linha da densidade de gasolina, querosene, lubrificante, óleo diesel, GLP e álcool. A captação do fluído para o vaso amostrador é feito através de um tubo de Pitot, dentro da tubulação principal. Veja o esquemático da instalação na Figura 2.24.

A identificação de derivativos de petróleo (gasolina, querosene, óleo diesel, GLP e álcool), transportados em tubulações, é feito através de densidade.



Figura 2.24 - Captação do fluido de processo através do tubo de Pitot



Figura 2.25 – Medição de densidade para identificação do produto

Outra forma de instalar o DT nesta aplicação, é através de uma bomba para captação do fluído. Esta instalação permite que a vazão na linha seja em ambos os sentidos.



Figura 2.26 – Recirculação com bomba



Figura 2.27 - Recirculação com bomba

### Densidade de Óleo Cru

A densidade do óleo cru é medida em estações de medição fiscal, a fim de se obter a vazão mássica.



Figura 2.28 - Skid de Medição Fiscal

### Densidade de GLP

A medição de densidade de GLP pode ser feita diretamente em tanques. Veja Figura 2.29 a seguir.



Figura 2.29 – Medição de GLP em Tanque

### Indústria de Bebidas

### Medindo Grau Plato em Cervejarias

As aplicações do DT são em cozimento do mosto, e tanque de fermentação. A instalação do DT é feita diretamente no tanque, com o *tank adapter*. A instalação do DT sanitário é realizado conforme descrito anteriormente.



Figura 2.30 – Medição Grau Plato em Tanque de Fermentação

### Medição de Volume do Tanque

O DT também é utilizado na medição da densidade para corrigir o volume no tanque.

### Medindo Grau Brix em Indústrias de Refrigerantes



Figura 2.31 - DT Medindo Brix na produção de Refrigerante

As aplicações para refrigerante são: medindo °Brix da água doce, do xarope e do próprio refrigerante.

O vaso amostrador recebe amostra de uma bomba, que capta o líquido da linha principal, e o retorna em um ponto posterior, na mesma linha.



Figura 2.32 - Esquemático da Instalação



Figura 2.33 - DT medindo °Brix da Água Doce

### Celulose e Papel

# Medição de Concentração de Licor Negro Fraco (antes da evaporação) e Forte (após evaporação)

O transmissor de densidade é instalado em linha com o uso de um vaso amostrador, que pode ser de fluxo ascendente ou de entrada dividida. As Figuras 2.34 e 2.35 mostram exemplos de instalações na medição de concentração de licor negro.







Figura 2.35 - Exemplo 2

Para aplicações em licor negro ou verde, é preciso tomar certos cuidados com encrustação. Para isto, uma tomada de água quente circulando pelo vaso amostrador é imprescindível, e uma limpeza periódica é necessária.



Figura 2.36 – Medição Licor negro (fluxo ascendente)

Alguns usuários preferem trabalhar com o ºBaumé como unidade de medição, enquanto outros preferem usar Porcentagem de Sólidos.

### Medição de Densidade do Licor Verde

Devido ao fato do licor verde ser extremamente incrustante, a instalação neste caso não deve usar tubos de pequenos diâmetros, pois podem entupir facilmente.

A forma de instalação ideal para esta aplicação é usar um vaso amostrador do tipo fluxo ascendente, que por não usar tubos de pequenos diâmetros, não entope e proporciona fácil processo de limpeza para o transmissor de densidade, quando o processo para. Uma tomada de água quente para limpeza periódica também é necessário.

Normalmente o tanque de estocagem de licor verde tem um sistema de recirculação que pode ser usado para instalar o vaso amostrador. As figuras seguintes ilustram este tipo de instalação.





Figura 2.37 – Instalação Licor verde

Figua 2.38 - Detalhe do transbordamento

Outras aplicações são: concentração de soda cáustica, leite de cal e densidade de metanol (que é similar ao processo de destilaria em usinas de açúcar e álcool), etc.

### Leite de Cal



Figura 2.39 - Leite de Cal

### Concentração de Soda Cáustica



Figura 2.40 – Instalação para Medir a Concentração de Soda Cáustica

### Indústria Alimentícia

### Concentração de Miscela em Óleos Vegetais

No processo de extração do óleo de soja forma-se a miscela, que é uma mistura de óleo e hexano. O processo de separação destes dois componentes é denominado de destilação da miscela.

O controle da retirada da miscela é feito através da densidade ou concentração. Para este cálculo, são necessários os dados de densidade e temperatura e um software para o levantamento de um polinômio. Uma vez gerado este polinômio, o próprio DT efetua este cálculo, fornecendo um sinal corespondente à concentração da miscela.

A instalação do DT para miscela, é mostrado na Figura 2.41 a seguir.



Figura 2.41 - Recirculação com bomba

### Densidade de Leite Pré Condensado

Mede-se a densidade do leite após o evaporador. A instalação é feita conforme a Figura 2.42.



Figura 2.42 - Medindo Densidade do leite pré condensado

### Café Solúvel

O DT pode ser empregado no processo de concentração de café solúvel, medindo a eficiência dos evaporadores. A instalação é feita usando um tanque sanitário de fluxo ascendente como mostrado na Figura a seguir.



Figura 2.43 - DT medindo concentração do extrato de café solúvel

### Brix do Suco de Laranja após Filtragem

Instalação direta no tanque.



Figura 2.44 – Instalação para medição do °Brix do suco de laranja