1. If n = ab then $a \le \sqrt{n} \lor b \le \sqrt{n}$ with $n, a, b \in \mathbb{Z}^+$

Proof by contraposition:

Step	Rule
$\neg (a \le \sqrt{n} \lor b \le \sqrt{n})$	Assume $\neg q$
$a \le \sqrt{n} \land b \le \sqrt{n}$	DeMorgan's
$a > \sqrt{n} \land b > \sqrt{n}$	Definition of \leq
$ab > \sqrt{n}\sqrt{n}$	Multiply LHSs + RHSs
ab > n	Multiply

Therefore, $ab \neq n$ by definition of >, =. Note this is $\neg p$.

Conclusion: I have shown that, assuming $\neg q$ leads to $\neg p$, hence $p \to q$.

2. If m and n are perfect squares, then mn is a perfect square.

Definition: The integer x is a perfect square if $x = a^2$, with $x, a \in \mathbb{Z}$. Direct proof:

Step	Rule
m is a perfect square. n is a perfect square.	Assume p .
$m=a^2, a\in\mathbb{Z}$	
$n=b^2, b\in \mathbb{Z}$	
$mn = a^2b^2$	Multiply LHSs + RHSs
$mn = (ab)^2$	Math.

Hence mn is a perfect square, by definition, where $mn = c^2$, c = ab, with $c \in \mathbb{Z}$. This is our q proposition. Conclusion: Assuming p leads to q, hence $p \to q$.

3. $\forall x \exists y \exists z (x = y^2 + z^2)$ with $y, z \in \mathbb{Z}$ and $x \in \mathbb{Z}^+$

Proof by counterexample (used to prove a claim is false.)

See x = 3.

 $3 \in \mathbb{Z}^+$ and yet no sum of y^2 and z^2 will yield 3.

Let's look at the smallest perfect squares.

$$0^{2} = 0$$

$$-1^{2} = 1^{2} = 1$$

$$-2^{2} = 2^{2} = 4$$

And these continue in increasing order.

A sum of 3 could allow some pair of 0 or 1. Yet,

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 2$$

Any larger sum overshoots 3.

Conclusion: x = 3 fails, so this claim is false.

4.

Proof by contradiction

Instead of starting from $p \to q$, we'll start from the following:

$$\neg(p \to q)$$

Material implication: $\neg(\neg p \lor q)$

Assume $p \wedge \neg q$. If we find $p \wedge \neg q \wedge q$, there's a contradiction. Likewise for $\neg p \wedge p \wedge \neg q$.