JEE Advanced Syllabus 2025

Mathematics

Sets, Relations and Functions

- Sets:
 - Representations
 - Types (empty, finite, infinite)
 - Algebra of sets (union, intersection, complement, difference, symmetric difference)
 - De-Morgan's laws and practical problems
- · Cartesian product, ordered pair
- · Relations:
 - Domain and codomain
 - Equivalence relation
- Functions:
 - As a special case of relation, mappings
 - Domain, codomain, range
 - Invertible, even, and odd functions
 - Into, onto, and one-to-one functions
 - Special functions (polynomial, trigonometric, exponential, logarithmic, power, absolute value, greatest integer)
 - o Sum, difference, product, and composition

Algebra

- · Complex numbers:
 - Algebra (addition, multiplication, conjugation)
 - Polar representation
 - Properties of modulus and principal argument
 - Triangle inequality
 - Cube roots of unity, geometric interpretations
- Fundamental theorem of algebra (statement)
- Quadratic equations (real coefficients):
 - Relations between roots and coefficients
 - Formation with given roots
 - Symmetric functions of roots
- Progressions:
 - Arithmetic and geometric progressions
 - Arithmetic and geometric means
 - Sums of finite arithmetic and geometric progressions
 - Infinite geometric series

- Sums of first *n* natural numbers, squares, and cubes
- · Logarithms and properties
- Permutations and combinations
- Binomial theorem (positive integral index) and properties of binomial coefficients

Matrices

- Matrices as rectangular arrays
- Equality, addition, scalar multiplication, and product
- Transpose, elementary row and column transformations
- Determinant (up to order 3)
- Adjoint and inverse (up to order 3)
- · Properties of matrix operations
- Diagonal, symmetric, and skew-symmetric matrices and properties
- Solutions of simultaneous linear equations (2 or 3 variables)

Probability and Statistics

- Probability:
 - Random experiment, sample space
 - Types of events (impossible, simple, compound)
 - Addition and multiplication rules
 - Conditional probability, independence
 - Total probability, Bayes Theorem
 - Computation using permutations and combinations
- · Statistics:
 - Measures of central tendency and dispersion (mean, median, mode, mean deviation, standard deviation, variance)
 - Analysis of frequency distributions (same mean, different variance)
 - Random variable, mean, and variance

Trigonometry

- Trigonometric functions, periodicity, and graphs
- Addition and subtraction formulae
- Multiple and sub-multiple angles
- General solutions of trigonometric equations
- Inverse trigonometric functions (principal value) and properties

Analytical Geometry

- Two Dimensions:
 - o Cartesian coordinates, distance between points, section formulae, shift of origin
 - Straight lines:
 - Various forms of equation
 - Angle between lines
 - Distance of a point from a line
 - Lines through intersection of two lines

- Bisector of angle between two lines
- Concurrency of lines
- Centroid, orthocenter, incenter, circumcenter of a triangle
- Circles:
 - Various forms of equation
 - Equations of tangent, normal, and chord
 - Parametric equations
 - Intersection with line or circle
 - Equation through intersection of two circles/circle and line
- Conics (parabola, ellipse, hyperbola):
 - Standard form equations
 - Foci, directrices, eccentricity
 - Parametric equations
 - Equations of tangent and normal
- Locus problems

• Three Dimensions:

- Distance between points
- Direction cosines and ratios
- Equation of a line in space
- Skew lines, shortest distance between two lines
- Equation of a plane
- o Distance of a point from a plane
- Angle between two lines/planes/line and plane
- Coplanar lines

Differential Calculus

- · Limits and continuity:
 - Limit of a function
 - Continuity of a function
 - Limit and continuity of sum, difference, product, quotient
 - L'Hospital rule
 - Continuity of composite functions
 - Intermediate value property

• Derivatives:

- Derivative of a function
- Sum, difference, product, quotient rules
- Chain rule
- Derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential, logarithmic functions
- Tangents and normals
- Increasing and decreasing functions
- Second order derivatives
- Maxima and minima

- Rolle's and Lagrange's mean value theorems
- Geometric interpretation
- Derivatives of implicit functions
- Geometric interpretation of derivatives

Integral Calculus

- · Indefinite integrals of standard functions
- Definite integrals as limit of sums
- · Properties of definite integrals
- · Fundamental theorem of integral calculus
- Integration by parts, substitution, partial fractions
- Applications of definite integrals (areas)
- Differential equations:
 - Formation of ODEs
 - Homogeneous equations (first order, first degree)
 - Separation of variables
 - Linear first order equations

Vectors

- Addition, scalar multiplication
- Dot and cross products
- Scalar and vector triple products, geometrical interpretations