Math 524 Homework 1

Theo Koss

Feburary 2024

1. Let $0.a_1a_2a_3\cdots$ be an infinite, but not periodic, decimal expansion. Consider the sets

$$A = \{ x \in \mathbb{Q} \mid x \leq 0.a_1 a_2 \cdots a_k \text{ for some } k \geq 1 \}$$

$$B = \{ x \in \mathbb{Q} \mid x \geq 0.a_1 a_2 \cdots a_k \text{ for all } k \geq 1 \}.$$

Show that (A, B) is a gap in (\mathbb{Q}, \leq) .

Proof. We must show the following:

- (a) A and B are nonempty, disjoint, and $A \cup B = \mathbb{Q}$.
- (b) If $a \in A$ and $b \in B$, then a < b.
- (c) A has no greatest element, and B has no least element.
- (a) A and B are both nonempty because for example $0 \in A$ and $1 \in B$. Suppose $a \in A$, then we have that

$$a \leqslant 0.a_1a_2\dots a_k \implies a \not> 0.a_1a_2\dots a_k$$

Note: $a \neq 0.a_1a_2...a_k$ for <u>ALL</u> k, therefore $a \notin B$. So $A \cap B = \emptyset$. Finally, any $q \in \mathbb{Q}$ is either greater than x, less than x, or equal to x for some k. Therefore $A \cup B = \mathbb{Q}$

(b) Let $a \in A$ and $b \in B$. Then from above, we have shown $a \notin B$, negating the condition for set B we get $\exists k \geq 1$ such that $a < 0.a_1a_2...a_k$, thus a < b.

(c) Suppose $a = 0.a_1a_2...a_k \in A$ is a greatest element for some $k \ge 1$, then consider $a' = 0.a_1a_2...a_ka_{k+1} > a$, therefore A has no greatest element. (Also note every finite decimal is $\in \mathbb{Q}$.) Similar argument holds for B, assume b is a least element, then write it as $b = \frac{x}{y}$, but then we have $b' = \frac{x}{y+1} < b$.

QED

2. Let F be the set of all rational numbers that have a decimal expansion with only a finite number of nonzero digits. Show that F is dense in \mathbb{Q} .

Proof. Fix $a,b \in \mathbb{Q}$ with a < b. By definition we have $a = \frac{x}{y}$ for $x,y \in \mathbb{Z}$ and $y \neq 0$ and $b = \frac{w}{z}$. Then consider $b-a = \frac{p}{q}$ for integers p,q (by closure), then we have $b-a = \frac{p}{q} \geqslant \frac{1}{q} > \frac{1}{10^n}$ for some $n \in \mathbb{N}$. So there is some n such that $\frac{1}{10^n} < b - a$. Then, let $X = \{\frac{k}{10^n} | k \in \mathbb{Z}, n \in \mathbb{N}\}$. Elements of X are finite decimal expansions, and there is a largest $c \in X$ such that $c \leqslant a$. Then, simply add $c + \frac{1}{10^n}$ (Choose the n you need). Then $a < c + \frac{1}{10^n} < b$.

3. Let D (the dyadic rationals) be the set of all numbers $m/2^n$ where m is an integer and n is a natural number. Show that D is dense in \mathbb{Q} . [Hint: Consider base 2 expansions.]

Proof. Let x and y be two rationals with x < y. Then expand them in base 2, such that x =Some string of 1's and 0's, and y also is some string of 1's and 0's. Then the dyadic rationals $D = \{\frac{m}{2^n} \mid m \in \mathbb{Z}, n \in \mathbb{N}\}$ look like numbers in base 2 with terminating decimals. Specifically, numbers in D with m = 1 look like $.00 \dots 1$.

$$\frac{1}{2_2} = .1 \ \frac{1}{4_2} = .01 \ \frac{1}{8_2} = .001$$

Then, write x and y down and find the first digit at which they differ. Say k, then $\frac{1}{2^k}$ can fit inside, so then find the largest dyadic rational z smaller than x. (This just means cut off the decimal at some point). Then

$$x < z + \frac{1}{2^k} < y$$

QED

4. In the construction of the real numbers in terms of the rational numbers, we defined the sum of two real numbers by the rule $a+b=\inf\{r+s\mid r,s\in\mathbb{Q}\text{ and }x\leqslant r,y\leqslant s\}$. Prove that addition of real numbers is commutative and associative and satisfies the law a+0=a for all real numbers a.

Proof. (a) Associative:

$$(a+b)+c=\inf\{r+s\mid r,s\in\mathbb{Q},\,(a+b)\leqslant r,\,c\leqslant s\}$$

$$=\inf\{r+s\mid r,s\in\mathbb{Q},\,c\leqslant s,\inf\{l+k\mid l,k\in\mathbb{Q}\dots\}\leqslant r\}$$

$$=\inf\{(l+k)+s\mid l,k,s\in\mathbb{Q},\,c\leqslant s,\,x\leqslant l,\,y\leqslant k\}$$

$$(x\text{ and }y\text{ came from second addition})$$

$$=\inf\{l+(k+s)\mid l,k,s\in\mathbb{Q}\mid\dots\}$$

$$(\text{By definition of rationals})$$

$$=\inf\{l+j\mid l,j\in\mathbb{Q},\,a\leqslant l,(b+c)\leqslant j\}$$

$$=a+(b+c)$$

(b) Commutative:

$$a + b = \inf\{r + s \mid r, s \in \mathbb{Q} \ a \leqslant r, \ b \leqslant s\}$$
$$= \inf\{s + r \mid r, s \in \mathbb{Q} \ b \leqslant s, \ a \leqslant r\}$$
$$= b + a$$

(c) 0 + a = a:

$$0 + a = \inf\{r + s \mid r, s \in \mathbb{Q}, \ a \leqslant r, \ b \leqslant s\}$$
$$= []$$

QED

5. Consider the periodic base 3 expansion $(0.010101\cdots)_3$. Use geometric series to express this number as a ratio of two integers.

$$0.010101..._3 = 0 \cdot 3 + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{9} + 0 \cdot \frac{1}{27} + 1 \cdot \frac{1}{81} + \dots$$
$$= \sum_{n=0}^{\infty} \frac{1}{9}^n = \frac{a}{1-r} = \frac{1}{1-\frac{1}{9}} = \frac{9}{8}$$

- 6. In this problem, you will show that the p-series $\sum_{n=1}^{\infty} 1/n^p$ is convergent whenever p > 1. [Note that we have not yet studied integration, so the Integral Test may not be used at this point in the course.]
 - (a) Show, by induction, that if $(x_n)_{n=1}^{\infty}$ is a sequence of positive numbers, then the partial sums $s_n = x_1 + \cdots + x_n$ are a monotone increasing sequence. Conclude that if the partial sums are bounded above, then the sum $\sum_{n=1}^{\infty} x_n$ converges.
 - (b) Assume p > 1. Observe that

$$\frac{1}{1} + \left(\frac{1}{2^p} + \frac{1}{3^p}\right) + \left(\frac{1}{4^p} + \frac{1}{5^p} + \frac{1}{6^p} + \frac{1}{7^p}\right) + \left(\frac{1}{8^p} + \dots + \frac{1}{15^p}\right) + \dots$$

$$\leq 1\left(\frac{1}{1^p}\right) + 2\left(\frac{1}{2^p}\right) + 4\left(\frac{1}{4^p}\right) + 8\left(\frac{1}{8^p}\right) + \dots$$

Show that the right-hand side of this inequality converges, and hence the partial sums of the left hand-side are bounded above. Then conclude that $\sum_{n=1}^{\infty} 1/n^p$ is convergent.

(a) Base case: n = 2:

$$s_2 > s_1$$
 Since $x_2 > 0$

is indeed a monotone increasing sequence.

Inductive step: Assume $s_k > s_{k-1}$. Then we must show $s_{k+1} > s_k.s_{k+1} = s_k + x_{k+1}$. We have $x_{k+1} > 0$ by assumption, so $s_{k+1} > s_k$.

Then, by the monotone increasing+ bounded above theorem, if all the s_n 's are bounded above, $\sum_{n=1}^{\infty}$ converges.

(b) RHS =

$$1\left(\frac{1}{1^p}\right) + 2\left(\frac{1}{2^p}\right) + 4\left(\frac{1}{4^p}\right) + 8\left(\frac{1}{8^p}\right) + \cdots$$

RHS converges by telescoping. Therefore the partial sums are bounded above, so

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 Converges for $p > 1$