Corrigé du Td5 Dérivabilité

2023/2024

Exercice1. Dérivabilité sur le domaine de définition
$$1.f_1\left(x\right) = \begin{cases} x^2 \cos\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}, D_{f_1} = \mathbb{R}.$$

Pour $x \neq 0$; $f_1(x) = x^2 \cos \frac{1}{x}$ dérivable sur \mathbb{R}^* car produit et composition de fonctions dérivables sur \mathbb{R}^* .

Pour $\mathbf{x} = \mathbf{0}$; $f_1(0) = 0$,

From $\mathbf{x} = \mathbf{0}$, $f_1(0) = 0$, $\lim_{x \to 0} \frac{f_1(x) - f_1(0)}{x - 0} = \lim_{x \to 0} x \cos \frac{1}{x} = 0 \Rightarrow f_1 \text{ est dérivable en } 0 \text{ et on a } f'(0) = 0.$ Par suit f_1 est dérivable sur \mathbb{R} . $2 \cdot f_2(x) = \begin{cases} x + 1, x \le -1 \\ \cos^2(\frac{\pi x}{2}), x > -1 \end{cases}, D_{f_2} = \mathbb{R}.$ Dérivabilité sur \mathbb{R} :

$$2.f_2(x) = \begin{cases} x+1, x \le -1 \\ \cos^2\left(\frac{\pi x}{2}\right), x > -1 \end{cases}, D_{f_2} = \mathbb{R}.$$

Pour x < -1; $f_2(x) = x + 1$ dérivable sur \mathbb{R} en particulier sur $]-\infty, -1[$ car c'est un polynôme.

Pour x > -1; $f_2(x) = \cos^2(\frac{\pi x}{2})$ dérivable sur \mathbb{R} en particulier sur $]-1, +\infty[$ car produit de fonctions dérivables sur $]-1, +\infty[$.

Pour $\mathbf{x} = -\mathbf{1}$; $f_2(-1) = -1 + 1 = 0$, $\lim_{\substack{x < x \to -1 \\ x \to -1}} \frac{f_2(x) - f_2(-1)}{x+1} = \lim_{\substack{x < x \to -1 \\ x \to -1}} \frac{x+1-0}{x+1} = 1 \Rightarrow f_2 \text{ est dérivable à gauche de } -1 \text{ et }$ on a $f'_{2g}(-1) = 1$.

$$\lim_{\substack{x \to -1 \\ x \to -1}} \frac{f_2(x) - f_2(-1)}{x+1} = \lim_{\substack{x \to -1 \\ x \to -1}} \frac{\cos^2\left(\frac{\pi x}{2}\right) - 0}{x+1} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\cos^2\left(\frac{\pi(t-1)}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{t \to -0 \\ t \to$$

 $\lim_{\substack{x \to -1 \\ x \to -1}} \frac{f_2(x) - f_2(-1)}{x + 1} = \lim_{\substack{x \to -1 \\ x \to -1}} \frac{\cos^2\left(\frac{\pi x}{2}\right) - 0}{x + 1} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\cos^2\left(\frac{\pi (t - 1)}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to -1 \\ t \to -0}} \frac{\sin^2\left(\frac{\pi t}{2}\right)}{t} = \lim_{\substack{x \to$ et on a $f'_{2d}(-1) = 0$.

On a $f_{2g}'(-1) \neq f_{2d}'(-1)$ alors f_2 n'est pas dérivable en -1 par suit n'est pas dérivable sur \mathbb{R} .

$$3.f_3\left(x\right) = \begin{cases} \frac{x^2 \sin\frac{1}{x}}{\sin x}, x \in \left]0, \pi\right[\\ 0, x = 0 \end{cases}, D_{f_3} = \left[0, \pi\right[.$$
 Dérivabilité sur $\left[0, \pi\right[.$

 $\mathbf{Pour} \ \mathbf{x} \in]0,\pi[\ : f_3\left(x\right) = \frac{x^2 \sin\frac{1}{x}}{\sin x} \ \text{dérivable sur} \]0,\pi[\ \text{car produit, composition}$ et quotient de fonctions dérivables sur $]0,\pi[\ .$

Pour $\mathbf{x} = \mathbf{0}, f_3(0) = 0$. $\lim_{x \to 0} \frac{f_3(x) - f_3(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{x} = \lim_{x \to 0} \frac{x \sin \frac{1}{x}}{\sin x} = \lim_{x \to 0} \frac{x}{\sin x} \sin \frac{1}{x} \text{ n'exite pas} \Rightarrow f_3$ n'est pas dérivable en 0 par suit n'est pas dérivable sur $[0, \pi[$. $4. f_4(x) = \begin{cases} x^2 + x, x \le 0 \\ \sin x, 0 < x \le \pi \\ 1 + \cos x, x > \pi \end{cases}$ Dérivabilité sur \mathbb{R} :

$$4.f_4(x) = \begin{cases} x^2 + x, x \le 0 \\ \sin x, 0 < x \le \pi \\ 1 + \cos x, x > \pi \end{cases}, D_{f_4} = \mathbb{R}.$$

Pour x < 0; $f_4(x) = x^2 + x$ dérivable sur \mathbb{R} en particulier sur $]-\infty,0[$ car c'est un polynôme.

Pour 0 $< \mathbf{x} < \boldsymbol{\pi}$; $f_4(x) = \sin x$ dérivable sur \mathbb{R} en particulier sur $]0, \pi[$.

Pour $\mathbf{x} > \pi$; $f_4(x) = 1 + \cos x$ dérivable sur \mathbb{R} en particulier sur $[\pi, +\infty[$.

Pour $\mathbf{x} = \mathbf{0}$; $f_4(0) = 0$, $\lim_{x \to -0} \frac{f_4(x) - f_4(0)}{x} = \lim_{x \to 0} \frac{x^2 + x - 0}{x} = 1 \Rightarrow f_4 \text{ est dérivable à gauche de } 0 \text{ et on a}$

 $\lim_{\substack{x \to 0 \\ x \to 0}} \frac{f_4(x) - f_4(0)}{x} = \lim_{\substack{x \to 0 \\ x \to 0}} \frac{\sin x}{x} = 1 \Rightarrow f_4 \text{ est dérivable à droite de } 0 \text{ et on a}$ $f'_{4d}(0) = 1.$

On a $f'_{4g}(0) = f'_{4d}(0) = 1 \Rightarrow f_4$ est dérivable en 0 et on a $f'_4(0) = f'_{4g}(0) = f'_{4g}(0)$ $f'_{4d}(0) = 1.$

Pour $\mathbf{x} = \boldsymbol{\pi}$; $f_4(\boldsymbol{\pi}) = 0$, $\lim_{\substack{\leftarrow \\ x \to -\boldsymbol{\pi}}} \frac{f_4(x) - f_4(\boldsymbol{\pi})}{x - \boldsymbol{\pi}} = \lim_{\substack{\leftarrow \\ x \to \boldsymbol{\pi}}} \frac{\sin x - 0}{x - \boldsymbol{\pi}} = \lim_{\substack{\leftarrow \\ t \to 0}} \frac{\sin(t + \boldsymbol{\pi})}{x - \boldsymbol{\pi}} = \lim_{\substack{\leftarrow \\ t \to 0}} \frac{-\sin t}{t} = -1 \Rightarrow f_4 \text{ est}$

dérivable à gauche de π et on a $f'_{4a}(\pi) = -1$.

$$\lim_{x \to \pi} \frac{f_4(x) - f_4(\pi)}{x - \pi} = \lim_{x \to \pi} \frac{1 + \cos x}{x - \pi} = \lim_{t \to 0} \frac{1 + \cos(t + \pi)}{t} = \lim_{t \to 0} \frac{1 - \cos t}{t} = \lim_{t \to 0} \frac{\frac{t^2}{2}}{t} = 0 \Rightarrow$$

$$f_4 \text{ est dérivable à droite de } \pi \text{ et on a } f'_{4d}(\pi) = 0.$$

On a $f'_{4g}(\pi) \neq f'_{4d}(\pi) \Rightarrow f_4$ n'est pas dérivable en π .

On a
$$f'_{4g}(\pi) \neq f'_{4d}(\pi) \Rightarrow f_4$$
 n'est pas dérivable.
Ce qui donne que f_4 n'est pas dérivable sur \mathbb{R} .

$$5.f_5(x) = \begin{cases} e^x - 1, x \leq 0 \\ \sin \pi x, 0 < x \leq 1 \\ -\pi \ln x, x > 1 \end{cases}$$

Dérivabilité sur \mathbb{R}

Pour x < 0; $f_5(x) = e^x - 1$ dérivable sur \mathbb{R} en particulier sur $]-\infty, 0[$.

Pour 0 $< \mathbf{x} < \mathbf{1}$; $f_5(x) = \sin \pi x$ dérivable sur \mathbb{R} en particulier sur [0,1].

Pour x > 1; $f_5(x) = \pi \ln x$ dérivable sur $]0, +\infty[$ en particulier sur $]1, +\infty[$.

Pour $\mathbf{x} = \mathbf{0}$; $f_5(0) = 0$,

 $\lim_{\substack{x \to -0}} \frac{f_5(x) - f_5(0)}{x} = \lim_{\substack{x \to 0}} \frac{e^x - 1 - 0}{x} = 1 \Rightarrow f_5 \text{ est dérivable à gauche de } 0 \text{ et on a}$

 $f_{5a}'(0) = 1.$

 $\lim_{\substack{x \to 0 \\ x \to 0}} \frac{f_5(x) - f_5(0)}{x} = \lim_{\substack{x \to 0 \\ x \to 0}} \frac{\sin \pi x}{x} = \lim_{\substack{x \to 0 \\ x \to 0}} \pi \frac{\sin \pi x}{\pi x} = \pi \Rightarrow f_5 \text{ est dérivable à droite de } 0 \text{ et on a } f_{5d}'(0) = \pi.$

On a $f_{5g}'(0) \neq f_{5d}'(0) \Rightarrow f_5$ n'est pas dérivable en 0.

Pour $\mathbf{x} = \mathbf{1}; f_5(1) = 0,$

Four
$$\mathbf{x} = \mathbf{1}$$
, $f_5(1) = 0$,
$$\lim_{x \to -1} \frac{f_5(x) - f_5(1)}{x - 1} = \lim_{x \to 1} \frac{\sin \pi x - 0}{x - 1} = \lim_{t \to 0} \frac{\sin \pi (t + 1)}{t} = \lim_{t \to 0} \frac{-\sin \pi t}{t} = \lim_{t \to 0} \frac{-\sin \pi t}{\pi t} = -\pi$$

$$-\pi \Rightarrow f_5 \text{ est dérivable à gauche de 1 et on a } f'_{5g}(1) = -\pi.$$

$$\lim_{x \to 1} \frac{f_5(x) - f_5(1)}{x - 1} = \lim_{x \to 1} \frac{-\pi \ln x}{x - 1} = \lim_{t \to 0} -\pi \frac{\ln(t + 1)}{t} = -\pi \Rightarrow f_5 \text{ est dérivable à latite de 1 et on a } f'_{5g}(1) = -\pi$$

droite de 1 et on a $f'_{5d}(\pi) = -\pi$.

On a $f'_{5g}(1) = f'_{5d}(1) \Rightarrow f_5$ est dérivable en 1 et on a $f'_5(1) = -\pi$.

Ce qui donne que f_5 n'est pas dérivable sur \mathbb{R} .

Calcule de dérivée:

1.
$$f_1$$
 est dérivable sur \mathbb{R} et $f'_1(x) = \begin{cases} 2x \cos \frac{1}{x} - \sin \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$

2.
$$f_2$$
 est dérivable sur $\mathbb{R} - \{-1\}$ et $f'_2(x) = \begin{cases} 1, x < -1 \\ -2\sin\left(\frac{\pi x}{2}\right)\cos\left(\frac{\pi x}{2}\right), x > -1 \end{cases}$

3.
$$f_3$$
 est dérivable sur $]0,\pi[$ et $f_3'(x) = \frac{\left(2x\sin\frac{1}{x} - \cos\frac{1}{x}\right)\sin x - x^2\cos x\sin\frac{1}{x}}{(\sin x)^2}.$

2.
$$f_2$$
 est dérivable sur $\mathbb{R} - \{-1\}$ et $f'_2(x) = \begin{cases} 1, x < -1 \\ -2\sin\left(\frac{\pi x}{2}\right)\cos\left(\frac{\pi x}{2}\right), x > -1 \end{cases}$.

3. f_3 est dérivable sur $]0, \pi[$ et $f'_3(x) = \frac{\left(2x\sin\frac{1}{x}-\cos\frac{1}{x}\right)\sin x - x^2\cos x\sin\frac{1}{x}}{\left(\sin x\right)^2}$.

4. f_4 est dérivable sur $\mathbb{R} - \{\pi\}$ et $f'_4(x) = \begin{cases} 2x + 1, x \le 0 \\ \cos x, 0 < x < \pi \\ -\sin x, x > \pi \end{cases}$.

5. f_5 est dérivable sur \mathbb{R}^* et $f'_5(x) = \begin{cases} e^x, x < 0 \\ \pi\cos \pi x, 0 < x \le 1 \\ \frac{-\pi}{x}, x > 1 \end{cases}$.

Exercice 2. Dérivée de fonctions composé

5.
$$f_5$$
 est dérivable sur \mathbb{R}^* et $f_5'(x) = \begin{cases} e^x, x < 0 \\ \pi \cos \pi x, 0 < x \le 1 \\ \frac{-\pi}{x}, x > 1 \end{cases}$.

Exercice2. Dérivée de fonctions compo

1)
$$f(x) = \ln\left(x + \sqrt{1 + x^2}\right) \Rightarrow f'(x) = \frac{\left(x + \sqrt{1 + x^2}\right)'}{x + \sqrt{1 + x^2}} = \frac{1 + \frac{x}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} = \frac{\sqrt{1 + x^2} + x}{x\sqrt{1 + x^2} + 1 + x^2}.$$

2)
$$f(x) = tg\left(\frac{1-e^x}{1+e^x}\right) \Rightarrow f'(x) = \frac{\left(\frac{1-e^x}{1+e^x}\right)'}{\cos^2\left(\frac{1-e^x}{1+e^x}\right)} = \frac{\frac{-2e^x}{(1+e^x)^2}}{\cos^2\left(\frac{1-e^x}{1+e^x}\right)} =$$

$$\frac{-2e^x}{(1+e^x)^2\cos^2\left(\frac{1-e^x}{1+e^x}\right)}.$$

3)
$$f(x) = \arcsin\left(\frac{2x}{x^2+1}\right) \Rightarrow f'(x) = \frac{\left(\frac{2x}{x^2+1}\right)'}{\sqrt{1-\left(\frac{2x}{x^2+1}\right)^2}} = \frac{-2(x^2-1)}{(x^2+1)|x^2-1|} =$$

$$\left\{ \begin{array}{l} \frac{-2}{1+x^2}, \text{ si } x \in]-\infty, -1[\,\cup\,]1, +\infty[\\ \frac{2}{1+x^2}, \text{ si } x \in]-1, 1[\end{array} \right.$$

4)
$$f(x) = arctg\left(\frac{1}{x}\right) \Rightarrow f'(x) = \frac{\left(\frac{1}{x}\right)'}{1 + \left(\frac{1}{x}\right)^2} = \frac{-1}{1 + x^2}.$$

5)
$$f(x) = e^{arctgx^2} \Rightarrow f'(x) = \left(arctgx^2\right)' e^{arctgx^2} = \frac{2x}{1+x^4} e^{arctgx^2}$$

$$\frac{2}{1+x^2}, \text{ si } x \in]-1,1[$$
4) $f(x) = arctg\left(\frac{1}{x}\right) \Rightarrow f'(x) = \frac{\left(\frac{1}{x}\right)'}{1+\left(\frac{1}{x}\right)^2} = \frac{-1}{1+x^2}.$
5) $f(x) = e^{arctgx^2} \Rightarrow f'(x) = \left(arctgx^2\right)' e^{arctgx^2} = \frac{2x}{1+x^4} e^{arctgx^2}.$
6) $f(x) = \arg shx\left(\frac{x}{1+x}\right) \Rightarrow f'(x) = \frac{\left(\frac{x}{1+x}\right)'}{\sqrt{1+\left(\frac{x}{1+x}\right)^2}} = \frac{1}{(x+1)^2\sqrt{\frac{2x^2+2x+1}{(x+1)^2}}} = \frac{1}{(x+1)^2\sqrt{\frac{2x^2+2x+1}{(x+$

$$\frac{|x+1|}{(x+1)^2\sqrt{2x^2+2x+1}}$$
.

7.
$$f(x) = \ln(\ln(\ln x)) \Rightarrow f'(x) = \frac{(\ln(\ln x))'}{\ln(\ln x)} = \frac{\frac{(\ln x)'}{\ln x}}{\ln(\ln x)} = \frac{\frac{1}{x}}{\ln x \ln(\ln x)} = \frac{\frac{1}{x}}{\ln x \ln(\ln x)}$$

8.
$$f(x) = (chx)^{shx} = e^{shx\ln(chx)} \Rightarrow f'(x) = (shx\ln(chx))' e^{shx\ln(chx)} = (chx\ln chx + shx\frac{(chx)'}{chx}) e^{shx\ln(chx)} = (chx\ln chx + \frac{(shx)^2}{chx}) e^{shx\ln(chx)}.$$

Exercice3.

I. f définie de [0,1] dans \mathbb{R} , deux fois dérivable sur [0,1], et $f(0)=f(\frac{1}{2})=$ f(1) = 1.

Montrer en utilisant le théorème de Rolle que f'' s'annule au moins une fois sur l'intervalle [0,1].

f deux fois dérivable sur $[0,1] \Rightarrow f''$ existe $[0,1] \Rightarrow f'$ dérivable sur $[0,1] \Rightarrow f'$ continue sur $[0,1] \Rightarrow f$ est dérivable sur $[0,1] \Rightarrow f$ continue sur [0,1].

Appliquons le théorème de Rolle pour la fonction f sur $\left[0,\frac{1}{2}\right]$ et sur $\left[\frac{1}{2},1\right]$.

f continue sur
$$\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$$

f dérivable sur $\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$
 $f(0) = f(\frac{1}{2})$
f continue sur $\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$
f dérivable sur $\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$
 $f(\frac{1}{2}) = f(1)$
 $f(0) = f(\frac{1}{2})$
 $f(0) = f(0)$
 $f($

On a $c_1 < c_2$ car $0 < c_1 < \frac{1}{2} < c_2 < 1$. Appliquons le théorème de Rolle pour la fonction f' sur $[c_1, c_2]$.

$$\begin{cases}
f' \text{ continue sur } [c_1, c_2] \subset [0, 1] \\
f' \text{ dérivable sur }]c_1, c_2[\subset [0, 1]] \\
\text{de } (1) \text{ et } (2), f'(c_1) = f'(c_2) = 0
\end{cases}$$
II. Montrons que $\forall x > 0, \frac{x}{1+x^2} < arctgx < x$.

Posons $f(t) = arctgt$, appliquens le théorème des accroissement finis (T, T) .

Posons f(t) = arctgt, appliquons le théorème des accroissement finis(T.A.F.)sur [0,x].

 $\begin{array}{c} f \text{ continue sur } [0,x] \\ f \text{ dérivable sur }]0,x[\end{array} \right\} \stackrel{T.A.F.}{\Rightarrow} \exists c \in]0,x[/f(x)-f(0)=(x-0)f'(c) \, .$ c'est à dire

$$arctgx - arctg0 = x\frac{1}{1+c^2}$$
$$arctgx = \frac{x}{1+c^2}$$

On a

$$\begin{array}{cccc} 0 & < & c < x \Rightarrow 0 < c^2 < x^2 \Rightarrow 1 < 1 + c^2 < 1 + x^2 \\ \frac{1}{1+x^2} & < & \frac{1}{1+c^2} < 1 \Rightarrow \frac{x}{1+x^2} < \frac{x}{1+c^2} < x, x > 0. \end{array}$$

d'où

$$\frac{x}{1+x^2} < arctgx = \frac{x}{1+c^2} < x.$$

b) $\ln(100) = 4,6052$, Montrons qu'en écrivant: $\ln(101) = 4,6151$ on commet une erreur inférieur à 10^{-4} .

Appliquons le théorème des accroissement finis sur [100, 101] pour la fonction $\ln x$

 $\ln x \text{ continue sur } [100, 101] \\ \ln x \text{ dérivable sur }]100, 101[\ \ \} \quad \stackrel{T.A.F.}{\Rightarrow} \quad \exists c \in]100, 101[\ / \ln 101 - \ln 100 =]100]100, 101[\ / \ln 101 - \ln 100 =]100, 101[\ / \ln 101 - \ln 100 =]100, 101[\ / \ln 101 - \ln 100 =]100, 101[\ / \ln 101 - \ln 100 =]100, 101[\ / \ln 101 - \ln 100 =]100, 101[\ / \ln 101 - \ln 100 =]100, 101[\ / \ln 101 - \ln 100 =]100, 101[\ / \ln 10$ $(101-100)^{\frac{1}{6}}$.

donc

$$\ln 101 - \ln 100 = \frac{1}{c}$$

$$\ln 101 = \ln 100 + \frac{1}{c}$$

l'erreur commise est $E = \ln 101 - 4,6151 = \ln 100 + \frac{1}{c} - 4,6151 = 4,6052 - 4,6151 + \frac{1}{c}$.

Et on a $100 < c < 101 \Rightarrow \frac{1}{101} < \frac{1}{c} < \frac{1}{100}$

Ce qui donne

$$E = 4,6052 - 4,6151 + \frac{1}{c}$$

$$E < 4,6052 - 4,6151 + \frac{1}{100}$$

$$E < -0,0099 + 0,01$$

$$E < 0,0001 = 10^{-4}$$

Exercice4. En utilisant la règle de l'Hopital, calculer les limites: 1. $\lim_{x\to 0} \frac{e^{\cos x} - e}{\cos x - 1} \stackrel{H}{=} \lim_{x\to 0} \frac{-\sin x e^{\cos x}}{-\sin x} = e$ ($e^{\cos x} - e, \cos x - 1$ sont dérivables sur D_f .)

sur
$$D_f$$
.)

2. $\lim_{x\to 0} \frac{tgx - \sin x}{x - \sin x} \stackrel{H}{=} \lim_{x\to 0} \frac{\frac{1}{(\cos x)^2} - \cos x}{1 - \cos x} \stackrel{H}{=} \lim_{x\to 0} \frac{\frac{2\sin x}{(\cos x)^3} + \sin x}{\sin x} = \lim_{x\to 0} \frac{2}{(\cos x)^3} + 1 = 3.$

$$3. \lim_{x \to 1} \frac{\sin\left(\frac{\pi}{2}x\right) - 1}{\left(x - 1\right)^2} \stackrel{H}{=} \lim_{x \to 1} \frac{\frac{\pi}{2}\cos\left(\frac{\pi}{2}x\right)}{2(x - 1)} \stackrel{H}{=} \lim_{x \to 1} \frac{-\left(\frac{\pi}{2}\right)^2\sin\left(\frac{\pi}{2}x\right)}{2} = -\frac{\pi^2}{8}.$$

4.
$$\lim_{x \to 0} \frac{arc \sin x}{x} \stackrel{H}{=} \lim_{x \to 0} \frac{\frac{1}{\sqrt{1-x^2}}}{1} = 1.$$

5.
$$\lim_{x \to 0} \frac{(chx)^2 - 1}{3x} \stackrel{H}{=} \lim_{x \to 0} \frac{2chxshx}{3} = 0.$$

4. $\lim_{x\to 0} \frac{arc\sin x}{x} \stackrel{H}{=} \lim_{x\to 0} \frac{\frac{1}{\sqrt{1-x^2}}}{1} = 1.$ 5. $\lim_{x\to 0} \frac{(chx)^2 - 1}{3x} \stackrel{H}{=} \lim_{x\to 0} \frac{2chxshx}{3} = 0.$ Exercice 5. En utilisant la formule de Taylor-Mac-Laurin d'ordre n, pour la function e^x , on obtient

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \underbrace{\frac{x^{n+1}}{(n+1)!}}_{rest\ de\ Cauchy} e^{\theta x}, 0 < \theta < 1$$

$$\begin{split} \frac{x^{n+1}}{(n+1)!}e^{\theta x} &> 0, \forall x > 0 \Rightarrow 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \frac{x^{n+1}}{(n+1)!}e^c > 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} \\ &\Rightarrow e^x > 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!}, \forall x > 0 \end{split}$$

En utilisant la formule de Taylor-Mac-Laurin d'ordre 2, montrons que $\frac{8}{3} < e < 3$.

On a

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}e^{\theta x}, 0 < \theta < 1.$$

Pour x = 1, on obtient

$$\begin{array}{rcl} e & = & 1+1+\frac{1}{2!}+\frac{1}{3!}e^{\theta}, 0<\theta<1. \\ \\ e & = & \frac{5}{2}+\frac{1}{6}e^{\theta} \end{array}$$

On a
$$0 < \theta < 1 \Rightarrow 1 < e^{\theta} < e \Rightarrow \frac{1}{6} < \frac{e^{\theta}}{6} < \frac{e}{6} \Rightarrow \frac{5}{2} + \frac{1}{6} < \underbrace{\frac{5}{2} + \frac{e^{\theta}}{6}}_{=\frac{6}{6}} < \frac{5}{2} + \frac{e}{6}$$

donc

$$\frac{8}{3} = \frac{16}{6} < e...(1)$$

et

$$e < \frac{5}{2} + \frac{e}{6} \Rightarrow e - \frac{e}{6} < \frac{5}{2} \Rightarrow \frac{5e}{6} < \frac{5}{2} \Rightarrow e < \frac{6}{2} = 3...(2)$$

De (1) et (2)

$$\frac{8}{3} < e < 3.$$

On a

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \frac{x^{n+1}}{(n+1)!} e^{\theta x}, 0 < \theta < 1$$

Pour x = 1, on aura

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{1}{(n+1)!}e^{\theta}, 0 < \theta < 1$$

$$e - \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}\right) = \frac{1}{(n+1)!}e^{\theta}$$

et d'aprés la question précédente on a

$$\frac{1}{(n+1)!} < \frac{1}{(n+1)!}e^{\theta} < \frac{1}{(n+1)!}e < \frac{3}{(n+1)!} \text{ car } e < 3$$

ce qui donne

$$\frac{1}{(n+1)!} < e - \left(1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}\right) < \frac{3}{(n+1)!}.$$

Exercice 6. Soit la fonction $g(x) = e^{2x} - 2$.

1. Convexité de la fonction q.

 $g'(x) = 2e^{2x}, g''(x) = 4e^{2x} > 0 \Rightarrow g \text{ est convexe sur } \mathbb{R}.$

2. Equation de la tangente à la courbe de g au point d'abscisse 0.

(T): y = g'(0)(x-0) + g(0) = 2x - 1.

y = 2x - 1 est l'équation de la tangente à la courbe de g.

3. Déduire que $\forall x \in \mathbb{R}, \frac{1}{2} \left(e^{2x} - 1 \right) \geq x$.

Puisque g est convexe sur $\mathbb R$ alors sa courbe représentative est au dessus de toutes ses tangentes, alors $g(x) \geq y$.

c'est à dire $\forall x \in \mathbb{R}, e^{2x} - 2 \ge 2x - 1 \Rightarrow e^{2x} - 1 \ge 2x \Rightarrow \frac{1}{2} (e^{2x} - 1)$.

Exercice supplementaire:

$$f(x) = \begin{cases} e^x - 1, & x < 0\\ arctg\frac{x}{1+x}, & x \ge 0 \end{cases}$$

1. $D_f = \mathbb{R}$.

2. Continuité sur \mathbb{R} .

Pour $x < 0, f(x) = e^x - 1$ continue sur \mathbb{R} en particulier sur $]-\infty, 0[$.

Pour $x > 0, f(x) = arctg \frac{x}{1+x}$ continue sur $]0, +\infty[$ car quotient et composition de fonctions continues sur $]0, +\infty[$.

Pour x = 0, f(0) = arctg0 = 0.

 $\lim f(x) = \lim e^x - 1 = 0 = f(0) \Rightarrow f$ continue à gauche de 0.

$$x \stackrel{<}{\rightarrow} 0$$
 $x \stackrel{<}{\rightarrow} 0$

 $\lim_{x \to 0} f\left(x\right) = \lim_{x \to 0} \arctan f\left(x\right) = \lim_{x \to 0} \arctan g\left(\frac{x}{1+x}\right) = 0 = f\left(0\right) \Rightarrow f \text{ continue à droite de } 0.$

 $x \to 0$ $x \to 0$ $x \to 0$ d'où f continue en 0, par suit f continue sur \mathbb{R} .

3. Dérivabilité sur \mathbb{R} .

Pour $x < 0, f(x) = e^x - 1$ dérivable sur \mathbb{R} en particulier sur $]-\infty, 0[$.

Pour $x > 0, f(x) = arctg \frac{x}{1+x}$ dérivable sur $]0, +\infty[$ car quotient et composition de fonctions dérivables sur $]0, +\infty[$.

Pour x = 0, f(0) = arctg0 = 0.

 $\lim_{\substack{x < \\ x \to 0}} \frac{f(x) - f(0)}{x - 0} = \lim_{\substack{x < \\ x \to 0}} \frac{e^x - 1}{x} = 1 \Rightarrow f \text{ dérivable à gauche de } 0 \text{ et } f_g'\left(0\right) = 1.$

$$\lim_{\substack{x \to 0 \\ x \to 0}} \frac{f(x) - f(0)}{x - 0} = \lim_{\substack{x \to 0 \\ x \to 0}} \frac{arctg\frac{x}{1+x}}{x} \stackrel{H}{=} \lim_{\substack{x \to 0 \\ x \to 0}} \frac{\frac{\left(\frac{x}{1+x}\right)'}{1 + \left(\frac{x}{1+x}\right)^2}}{1} = \lim_{\substack{x \to 0 \\ x \to 0}} \frac{1}{1 + 2x + 2x^2} = 1 \Rightarrow f \text{ dérivable adorite de } 0 \text{ et } f'_d(0) = 1.$$
On a $f'(0) = f'_d(0) = 1 \Rightarrow f \text{ dérivable en } 0 \text{ et on a } f'(0) = 1$

On a $f'_{q}(0) = f'_{d}(0) = 1 \Rightarrow f$ dérivable en 0 et on a f'(0) = 1par suit f dérivable sur \mathbb{R} .

4. f est dérivable sur \mathbb{R} et on a

$$f'(x) = \begin{cases} e^x, & x < 0\\ \frac{\left(\frac{x}{1+x}\right)'}{1 + \left(\frac{x}{1+x}\right)^2}, & x \ge 0 \end{cases} = \begin{cases} e^x, & x < 0\\ \frac{1}{1 + 2x + 2x^2}, & x \ge 0 \end{cases}.$$

II. Soit la fonction $\ln(x+1)$ définie sur l'intervalle $[0,+\infty[$.

1. Appliquer le théorème des accroissements finies pour cette fonction sur [0, x].

 $\ln(t+1)$ dérivable sur]0,x[

 $\ln(0+1) = (x-0)\frac{1}{c+1}$

donc

$$\ln\left(x+1\right) = \frac{x}{c+1}, \forall x > 0.$$

2. Soit g la fonction définie sur $[0, +\infty[$ par

$$g(x) = \frac{x}{1+x} - \ln(1+x).$$

D'aprés la première question $\ln\left(x+1\right) = \frac{x}{c+1}, 0 < c < x,$ alors $1 < c+1 < x+1 \Rightarrow .\frac{x}{1+x} < \frac{x}{c+1} = \ln\left(x+1\right) \Rightarrow \frac{x}{1+x} - \ln\left(x+1\right) < 0, \forall x > 0.$ Pour $x = 0, g\left(0\right) = 0$ alors $\forall x \geq 0, g\left(x\right) \leq 0.$