Функции потерь

Вкратце 1. Maximum likelihood estimation (MLE) and KL Divergence	2
	3
2. Maximum likelihood estimation (MLE) and linear regression	8

Вкратце

В этой статье мы займёмся выбором функций ошибки для задач регрессии и классификации. Сначала мы обоснуем минимизацию среднеквадратичного отклонения как функцию ошибки для линейной регрессии. Мы будем исходить из постановки задачи регрессии как функции с бесконечным количеством исходов, тем самым естественно предполагая, что функция ошибки в этом случая будет непрерывной (и даже кусочно-выпуклой). С другой стороны, задача классификации (in contrast) имеет дискретное количество исходов, и ее функция ошибки не имеет такой же естественной природы, как для регрессии. Мы попытаемся ввести метрику на пространстве распределений, приближающих значения классификации, и покажем, что хотя введённая величина может и не обладать всеми свойствами метрики, но тем не менее, она может служить для определения «расстояния» между распределениями, то есть быть успешно использована в качестве функции ошибки. Рассматриваемая нами величина называется перекрёстной энтропией, и именно она повсеместно используется в коммерческих библиотеках (Tensorflow, PyTorch) при построении моделей классификации.

1. Maximum likelihood estimation (MLE) and KL Divergence

Существует большое число способов ввести метрику на пространстве распределений. Наиболее известными можно читать равномерную метрику (метрику Колмогорова):

$$\rho(F_x, F_y) = \sup\{ |F(x) - F(y)| : x \in R^1 \}$$

или, например, расстояние полной вариации:

$$\sigma(F_x, F_y) = \frac{1}{2} \int |d(F(x) - F(y))|$$

Одни метрики были заимствованы из функционального анализа, другие же, благодаря их особым свойствам, вводились по специальным случаям. К таким случаям можно отнести и пре-метрики, которые удовлетворяют лишь части аксиоматики метрик, но однако, часто используются для задания топологии пространства распределений, и в определенной степени играть роль расстояния на нем.

Такова пре-метрика, которая известна из теории информации: *дивергенция Кульбака-Лейблера (ДКЛ)*. Для дискретных распределений она определяется как:

$$D_{KL}(P | | Q) = \sum_{x \in X} P(x) \log(\frac{P(x)}{Q(x)})$$
 (1)

Для непрерывных:

$$D_{KL}(P \mid Q) = \int_{-\infty}^{-\infty} p(x) \log(\frac{p(x)}{q(x)}) dx$$

Эта дивергенция не является симметричной и не удовлетворяет неравенству треугольника:

$$D_{KL}(P \mid \mid Q) \neq D_{KL}(Q \mid \mid P)$$

Единственный факт, который роднит ДКЛ с метрикой, состоит в том что она не отрицательна и равна нулю только при P = Q почти всюду.

Для того, чтобы объяснить смысл введённой величины отступим на шаг назад и попробуем формализовать интуитивное представлении о том, что количество информации, которое несёт некое событие тем больше, чем это событие реже, т.е. чем меньше вероятность события, тем более оно информативно.

Это представление очень хорошо выражается функцией $I(x) = -\log(x)$, график которой приведён ниже:

По оси x здесь отложена вероятность события, по оси y - его «количество информации».

Можно заметить, что эта функция на отрезке $[0 \le x \le 1]$ прекрасно подходит к приведённому интуитивному выражению:

- 1. Она принимает 0 на значении 1 максимально допустимом значении вероятности, т.е. информация, содержащаяся в событии, которое обязательно произойдёт (с вероятностью 1) нулевая.
- 2. Чем меньше вероятность события, тем больше его собственная информация $\lim_{x\to +0}=\infty$
- 3. $\forall x \in [0 \ge x \ge 1] : I(x) \ge 0$

Рассматриваемая величина была введена К. Шенноном в эпохальной работе [4], и получила название собственной информации события x:

$$I(x) = -\log p(x)$$

Она легко обобщается от одиночного события на всё (дискретное) распределение:

$$H(X) = -\sum_{i=1}^{m} p(x) \times \log p(x)$$

В этом случае она называется энтропией случайной величины.

Рассматривая энтропию как меру хаоса или неопределенности распределения, отметим теперь её особенности для известных распределений.

- 1. В общем случае, неравномерное распределение имеет меньшую энтропию чем равномерное
- 2. Равномерное распределение имеет наибольшую энтропию из всех возможных:

$$H(P) = -\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = -\frac{n}{n} (-\log n) = \log n$$
, где n - число испытаний.

3. Дискретное нормальное распределение имеет энтропию

 $H(P) = \ln(\sigma \sqrt{2\pi e})$ независящую от матожидание распределения. (Вычисляется с помощью дискретного преобразования Абеля или интегрированием по частям для непрерывного случая).

4. Распределение Лапласа (двойное экспоненциальное), которое часто используется в качестве предельного распределения в схемах суммированиях случайного числа случайных величин, имеет энтропию:

$$H(X) = -\int_{-\infty}^{+\infty} \frac{2}{\lambda} e^{-\lambda|x-a|} \log \frac{2}{\lambda} e^{-\lambda|x-a|} dx = \log \frac{2}{\lambda}$$

также не зависящую от матожидания. (Вычисляется теми же способами)

5. Наконец, энтропия биномиального распределения:

$$H(X) = \sum_{m=0}^{n} C_n^m p^m q^{n-m} \log(C_n^m p^m q^{n-m})^{-1} = -\sum_{m=0}^{n} C_n^m p^m q^{n-m} \left[\log C_n^m + m \log p + (n-m) \log q \right] =$$

$$= -\sum_{m=1}^{n} C_n^m p^m q^{n-m} \log C_n^m - n(p \log p + q \log q).$$

Вообще говоря, информационная энтропия глубоко связана с энтропией физической. Природа представляется нам не терпящей порядка, т.е. любые проявления организованной структуры физического пространства могут рассматриваться как проявления временной аномалии. Равномерное распределение свойств с его максимальной энтропией и есть, собственно, суть второго начала термодинамики.

При сопоставлении двух распределений имеет смысл рассматривать перекрестную энтропию, которая определяется как:

$$H(P,Q) = -\sum_{x \in X} p(x_i) \log q(x_i)$$

Не возникает проблем с обобщением введённых величин и на непрерывные распределения. В этом случае рассматриваемая величина называется

дифференциальной энтропией и выводится как первый член асимптотического разложения энтропии [5].

Здесь же нас интересует, прежде всего, дискретный случай, поэтому вернёмся к ДКЛ выпишем его дискретную форму поподробнее:

$$D_{KL}(P \mid Q) = \sum_{x \in X} P(x) \log(\frac{P(x)}{Q(x)}) = -\sum_{x \in X} p(x) \log q(x) + \sum_{x \in X} p(x) \log p(x) = H(P, Q) - H(P)$$

где H(P,Q) - перекрестная энтропия между P и Q, а H(P) - энтропия P.

Таким образом, в качестве важного промежуточного итога, мы имеем:

$$D_{KL}(P | Q) = H(P, Q) - H(P)$$
 (2)

Дивергенция Кульбака-Лейблера применима также и к непрерывным распределениям. Например, найдем $\mathcal{L}K\mathcal{I}$ между двумя нормальными распределениями $p(x) = \mathbb{N}(x \,|\, \mu_1, \sigma_1)$ и $q(x) = \mathbb{N}(x \,|\, \mu_2, \sigma_2)$ (PRML, Bishop ex. 1.30, p.64)

$$\begin{split} D_{KL}(p \mid \mid q) &= -\int p(x) \log q(x) dx + \int p(x) \log p(x) dx = \\ &= \frac{1}{2} \log(2\pi\sigma_2^2) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} (1 + \log 2\pi\sigma_1^2) = \\ &= \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} \end{split}$$

Последнее выражение дает 0 при $\mu_1=\mu_2$ и $\sigma_1=\sigma_2$.

Для дальнейших рассуждений напомним определение функции правдоподобия. Она представляет собой функцию от параметра распределения $f_{\mathbf{x}}(x\,|\,\theta):\Theta\to R$ определенную как:

$$\Theta_{ML} = \prod_{i=1}^{\infty} p(x_i | \theta)$$

Здесь $p(x_i)$ может быть выбрана или как функция вероятности, **или как функция плотности** вероятности.

Её argmax не изменится при логарифмировании, поэтому:

$$\Theta_{ML} = \arg \max_{\Theta} \prod_{i=1}^{m} p_{model}(x_i, \Theta) = \arg \max_{\Theta} \sum_{i=1}^{m} \log p_{model}(x_i, \Theta)$$

Argmax не изменится также при делении на m, поэтому:

$$\Theta_{ML} = arg \max_{\Theta} \mathbb{E} \log p_{model}(x, \Theta)$$
 (3)

Теперь, вспоминая (1), запишем:

$$D_{KL}(P_{data} \,|\, |\, P_{model}) = \mathbb{E}_{data}[\log p_{data}(x) - \log p_{model}(x)]$$

но поскольку левая часть полученного выражения не зависит от P_{model} , то при минимизации дивергенции нам на самом деле остается минимизировать только

$$-\mathbb{E}[\log p_{model}(x)],$$

что совпадает с (3)

Таким образом, **максимизация правдоподобия эквивалентна минимизации дивергенции Кульбака-Лейблера.**

2. Maximum likelihood estimation (MLE) and linear regression

2.1 Linear regression with normal noise

Если рассматривать линейную регрессию как зависимость вида:

$$Y = w^T X + \epsilon$$
 (4)

где ϵ - нормально распределенная случайная величина (шум) с матожиданием μ и дисперсией σ , т.е. $\epsilon \sim N(\mu, \sigma^2)$, то значения Y тоже распределены нормально с плотностью вероятности, соответствующей многомерному нормальному распределению.

Функция правдоподобия такого распределения, в которой используется плотность вероятности, приобретает вид:

$$L(\Theta) = \prod_{i=1}^{m} p(y_i | x_i; w, \sigma) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} \times e^{-\frac{(y_i - w_i x_i)^2}{2\sigma^2}},$$

где Θ - вектор (w, σ) .

После логарифмирования (т.к. $\log(\prod_{i=1}^m a_i b_i) = \sum_{i=1}^m \log a_i b_i$) это дает:

$$\begin{split} & \ln \prod_{i=1}^{m} p(y_{i} | x_{i}; w, \sigma) = \sum_{i=1}^{m} \ln p(y_{i} | x_{i}; w, \sigma) = \sum_{i=1}^{m} \ln \left[\frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2}(\frac{y_{i} - \hat{y}_{i}}{\sigma})^{2}} \right] = \\ & = \sum_{i=1}^{m} \left[\ln(2\pi\sigma^{2})^{-\frac{1}{2}} + \ln e^{-\frac{1}{2}(\frac{y_{i} - \hat{y}_{i}}{\sigma})^{2}} \right] = \sum_{i=1}^{m} \left[-\frac{1}{2} \ln(2\pi) - \log \sigma - \frac{1}{2\sigma^{2}} (y_{i} - \hat{y}_{i})^{2} \right] = \\ & = -\frac{m}{2} \log(2\pi) - m \ln \sigma - \frac{1}{2\sigma^{2}} \sum_{i=1}^{m} (y_{i} - \hat{y}_{i})^{2} \end{split}$$

где \hat{y}_i - результат вычисления модели для элемента x_i , а m - число элементов выборки.

Но поскольку первые два члена правой части последнего выражения не зависят от параметров модели (σ - постоянная), то можно записать:

$$\Theta_{ML} = \arg \max_{\Theta} - \sum_{i=1}^{m} \frac{1}{2} |y_i - \hat{y}_i|^2 = \min \sum_{i=1}^{m} |y_i - \hat{y}|^2$$

Сравнивая это выражение с определением среднеквадратичной ошибки:

$$MSE = \frac{1}{m} \sum_{i=1}^{m} |\hat{y}_i - y_i|^2$$

можно легко заметить, что максимизация правдоподобия относительно искомого вектора Θ является, по сути, минимизацией среднеквадратичной ошибки для тех

же параметров. Что, собственно, и показывает, что именно среднеквадратичное отклонение является оптимальной функцией ошибки линейной регрессии.

2.2 Linear regression with Laplace noise

Если шум в линейной регрессии имеет распределение Лапласа:

$$p(x) = \frac{\alpha}{2} e^{-\alpha|x-\beta|}$$

с нулевым средним ($\beta=0$), то логарифмическая оценка максимального правдоподобия дает:

$$Q_{ML} = \arg\min_{q} \frac{1}{m} \sum_{i=1}^{m} |a(x_i) - y_i|$$

т.е. среднюю абсолютную ошибку.

2.3 Recapitulation

Таким образом, линейная регрессия может быть определена без предположения о нормальном распределении шума. Её параметры могут быть рассчитаны согласно среднеквадратичному отклонению (MSE), однако этот метод будет оптимальным только в случае нормального распределения.

Literature

- 1. Kullback S. (1959). Information theory and statistics. Dover Publications.
- 2. Bishop C. M. (2006). Pattern Recognition and Machine Learning. Springer.
- 3. Goodfellow I,. Bengio Y., Courville A. (2016) Deep Learning. MIT Press.
- 4. Shannon C. E. A mathematical Theory of Communication.
- 5. Колмогоров А. Н. Теория информации и теория алгоритмов.