

INVESTIGATION OF SCALING LAWS OF THE FIBER/MATRIX INTERFACE CRACK IN POLYMER COMPOSITES THROUGH FINITE ELEMENT-BASED MICROMECHANICAL MODELING

L. Di Stasio^{1,2}, J. Varna¹, Z. Ayadi²

¹ Division of Materials Science, Luleå University of Technology, Luleå, Sweden
² EEIGM & IJL, Université de Lorraine, Nancy, France

10th EEIGM International Conference on Advanced Materials Research Moscow (RU), April 25-26, 2019

Outline

■ Damage Mechanisms in Thin Ply Fiber Reinforced Polymer Laminates

The Fiber-Matrix Interface Problem in Fiber Reinforced Polymer Laminates

Analysis of the Infinite Reference Volume Element (RVE)

■ Conclusions & Outlook

Damage in Thin Ply FRPC The Fiber-Matrix Interface Problem in FRPC Analysis of the Infinite RVE Conclusions
Thin ply effect in transverse cracking Characterization of Fracture in FRPC

Damage in Thin Ply FRPC The Fiber-Matrix Interface Problem in FRPC Analysis of the Infinite RVE Conclusions
Thin ply effect in transverse cracking Characterization of Fracture in FRPC

Damage Onset and Propagation

(a) By Dr. R. Olsson, Swerea, SE.

(b) By Prof. Dr. E. K. Gamstedt, KTH, SE.

For a visual definition of intralaminar transverse cracking.

Thin ply effect in transverse cracking Characterization of Fracture in FRPC

Characterization of the Fracture Process

→ Energy Release Rate

$$G_m = G_m(p_1, \dots, p_i, \dots, p_n)$$
 where $G = \frac{\partial W}{\partial A} - \left(\frac{\partial U}{\partial A} + \frac{\partial E_k}{\partial A}\right)$

→ Stress Intensity Factor

$$K_m = K_m(p_1, \dots, p_i, \dots, p_n)$$
 where $\sigma_m \sim K_m \frac{\alpha}{(x-a)^{\beta}}$ $\alpha, \beta > 0$

→ J-Integral

$$J = J\left(p_{1}, \ldots, p_{i}, \ldots, p_{n}\right) \quad \text{where} \quad J = \lim_{\varepsilon \to 0} \int_{\Gamma_{\varepsilon}} \left(W\left(\Gamma\right) n_{i} - n_{j} \sigma_{jk} \frac{\partial u_{k}\left(\Gamma, X_{i}\right)}{\partial X_{i}}\right) d\Gamma = G$$

→ Crack Opening & Shear Displacement

$$COD = COD(p_1, \dots, p_i, \dots, p_n)$$
 and $CSD = CSD(p_1, \dots, p_i, \dots, p_n)$

 $p_i \in \{\text{geometry}, \text{materials}, \text{boundary conditions}, \text{loading mode}, \text{scale}\}\$ $m \in \{I, II, III, I/III, I/III\}$

Thin ply effect in transverse cracking
Characterization of Fracture in FRPC

Numerical Estimation of Energy Release Rates

→ Virtual Crack Closure Technique (VCCT) → J-Integral

$$G_{I} = \frac{Z_{C} \Delta w_{C}}{2B \Delta a}$$
 $G_{II} = \frac{X_{C} \Delta u_{C}}{2B \Delta a}$

Krueger, 2004

$$J_{i}=\lim_{\varepsilon\rightarrow0}\int_{\Gamma_{\varepsilon}}\left(W\left(\Gamma\right)n_{i}-n_{j}\sigma_{jk}\frac{\partial u_{k}\left(\Gamma,x_{i}\right)}{\partial x_{i}}\right)d\Gamma$$

Multi-Scale Decomposition The Fiber-Matrix Interface Crack Problem

THE FIBER-MATRIX INTERFACE PROBLEM IN FRPC

Damage in Thin Ply FRPC The Fiber-Matrix Interface Problem in FRPC Analysis of the Infinite RVE Conclusions Multi-Scale Decomposition The Fiber-Matrix Interface Crack Problem

Multi-scale Decomposition of Fiber Reinforced Polymer Laminates

Damage in Thin Ply FRPC The Fiber-Matrix Interface Problem in FRPC Analysis of the Infinite RVE Conclusions Multi-Scale Decomposition The Fiber-Matrix Interface Crack Problem

The Fiber-Matrix Interface Crack Problem: Statement

- 2D space
- Linear elastic homogeneous isotropic materials
- Mismatching elastic properties
- Plane state (strain or stress)
- → Dirichlet-type BC
- → Linear Fracture Mechanics
- Contact interaction
- → Applied uniaxial traction
- SIF, ERR, mode ratio, stress and displacement distribution at the interface

Damage in Thin Ply FRPC The Fiber-Matrix Interface Problem in FRPC Analysis of the Infinite RVE Conclusions Multi-Scale Decomposition The Fiber-Matrix Interface Crack Problem

The Fiber-Matrix Interface Crack Problem: Solution

Method		Domain	Natural Variable	Conjugate	Dirichlet
				Variable	ВС
Analytical	(complex)	2D, contin-	Airy stress potential & stress	Displacement	In stress
functions		uous, infi-		& strain	
		nite			
		M. Toya (1975) an Infinite Solid	, A Crack Along the Interface of a Circuit [10].	ular Inclusion Em	bedded in
Boundary	Element	1D,	Stress, by using Green's potentials	Displacement	In stress
Method (BEM)		discrete,	or Betti's influence functions	& strain	
	_	finite			
		F. París et al. (1996), The fiber-matrix interface crack - A numerical analysis using Boundary Elements [11].			
Finite Element Method (FEM)		2D,	Displacement	Stress	In
		discrete,			displacement
		finite			

The Finite Element Model

▲ ANALYSIS OF THE INFINITE RVE

The Finite Element Model

The Finite Element Model

- θ [°] = 0, angular position of debond's center
- → 2∆θ [°], debond's angular size
- δ [°], angle subtended by an element at the fiber/matrix interface
- → VF_f [-], fiber volume fraction
- → 2L [μm], RVE's side length
- \rightarrow $R_F [\mu m]$, fiber radius
- $\rightarrow \frac{L}{R_f} = \frac{1}{2} \sqrt{\frac{\pi}{VF_f}} [-], RVE's aspect ratio$
- → σ_0 [MPa] = $\frac{E_m}{1-\nu_m^2} \varepsilon_{XX}$, reaction stress of undamaged infinite RVE
- $ightarrow G_0\left[rac{J}{m^2}
 ight]=\pi R_f\sigma_R^2rac{1+(3-4nu_m)}{8Gm},$ normalization G following Toya [10] and París [11]
- → Small displacement formulation

Conclusions & Outlook

Conclusions

- \rightarrow There is a limiting value of $\frac{L}{R_L}$ after which models are effectively infinite
- → For models larger than this value, domain size and mesh refinement at the interface has a similar effect on the energy release rate
- → The discrepancy in modes with the use of linear elements might be linked to the deformed shape of crack faces

Outlook

- → Modeling extreme ply geometries, for example a ply with a single layer of fibers bounded by stiffer plies
- → Investigate the effect of clusters of fibers in thin plies
- → Analyzing the effect of complex stress and deformation states, thermal loads, different sets of boundary conditions

- Kawabe K., Tomoda S. and Matsuo T.; *A pneumatic process for spreading reinforcing fiber tow Proc. 42nd Int. SAMPE USA (Anaheim, CA, USA)* 6576, 1997.
- Kawabe K., Tomoda S.; *Method of producing a spread multi-filament bundle and an apparatus used in the same.*Japan: Fukui Prefectural Government; 2003. JP 2003-193895. 2003.
- Kawabe K.; New Spreading Technology for Carbon Fiber Tow and Its Application to Composite Materials Sen'i Gakkaishi **64** (8) 262–267, 2008 [in Japanese].

- Sasayama H. and Tomoda S.; New Carbon Fiber Tow-Spread Technology and Applications to Advanced Composite Materials S.A.M.P.E. journal 45 (2) 6–17, 2009.
- Meijer A.; NTPT makes worlds thinnest prepeg even thinner [Internet] [cited 30 April 2017] North Thin Ply Technology (NTPT) press release 2015. Available from http://www.thinplytechnology.com/mesimages/Press_Release_N 16JUN2015.pdf.
- oXeon TECHNOLOGIES 2014 [Internet] [cited 30 April 2017] Available from http://oxeon.se/technologies/.

- Donald L. Flaggs, Murat H. Kural; Experimental

 Determination of the In Situ Transverse Lamina Strength
 in Graphite/Epoxy Laminates. J. Comp. Mat. 16 2, 1982.
- Krueger R.; Virtual crack closure technique: History, approach, and applications Appl. Mech. Rev. **57** (2) 109–143, 2004.
- Rice J. R.; A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks J. Appl. Mech. **35** 379–386, 1968.

References

- Toya M.; A Crack Along the Interface of a Circular Inclusion Embedded in an Infinite Solid J. Mech. Phys. 22 325–348. 1975.
- París F., Caño J. C., Varna J.; *The fiber-matrix interface crack A numerical analysis using Boundary Elements Int. J. Fract.* **82** 1 11–29, 1996.

