Masters theorem

Masters theorem for decreasing function: -

Recurrence relation form: T(n) = a * T(n-1) + f(n), assume that a > 0 and b > 0 and $f(n) = O(N^k)$ and $k \ge 0$

we have three cases:-

- Case1: if a < 1 \rightarrow O(f(n))
- Case2: if a = 1 $\rightarrow O(n * f(n))$
- Case3: if a > 1 $\rightarrow O(n^k a^{\frac{n}{b}})$

Examples: -

1.
$$T(n) = 1$$

$$F(n) = O(1) = O(n^0), k = 0$$

a = 0, b = 1, since a = 0 then order of recurrence realtion = O(f(n))= O(1)

2.
$$T(n) = T(n-1) + n$$

$$f(n) = O(n) = O(n^1), k = 1$$

a = 1, b = 1, since a = 1 then order of the recurrence raltion = O(n * n)

$$3. T(n) = 2T(n-2) + 1$$

$$f(n) = O(1) = O(n^0), k = 0$$

 $a=2, b=2, since \ a>1 \ then \ order \ of \ the \ recurrence \ relation$ $=O\left(n^0*2^{\frac{n}{2}}\right)=O(2^{\frac{n}{2}})$

Masters theorem for dividing function: -

Recurrence relation form: $T(n) = a * T\left(\frac{n}{b}\right) + f(n)$ assume that $a \ge 1$ and b > 1 and $f(n) = O(n^k \log^p n)$

We have three cases: -

- Case1: if $\log_b a > k$ then order of recurrence relation = $O(n^{\log_b a})$
- Case2: if $\log_b a = k$ and p > -1 then order of recurrence relation $= O(n^k \log^{p+1} n)$ p = -1 then order of recurrence relation $= O(n^k \log(\log(n)))$ p < -1 then order of recurrence relation $= O(n^k)$
- Case3: if $\log_b a < k$ and $p \ge 0$ then order of recurrence relation = $O(n^k \log^p n)$ p < 0 then order of recurrence relation = $O(n^k)$

Examples: -

1.
$$T(n) = 2 T\left(\frac{n}{2}\right) + 1$$

 $a = 2, b = 2, \log_b a = 1$
 $f(n) = O(1) = O(n^0 \log^0 n), k = 0, p = 0$
since $\log_b a > k$ then order of recurrence relation = $O(n^{\log_b a}) = O(n^2)$
2. $T(n) = T\left(\frac{n}{2}\right) + 1$
 $a = 1, b = 2, \log_b a = 0$
 $f(n) = O(1) = O(n^0 \log^0 n), k = 0, p = 0$

since
$$\log_b a = k$$
 and $p > -1$ then order of recurrence relation
= $O(n^k \log^{p+1} n) = O(\log n)$

$$3. T(n) = 2 T\left(\frac{n}{2}\right) + \frac{n}{\log n}$$

$$a = 2, b = 2, \log_b a = 1$$

$$f(n) = O(n \log^{-1} n), k = 1, p = -1$$

since $\log_b a = k$ and p = -1 then order of recurrence relation = $O(n \log(\log(n)))$

4.
$$T(n) = 2 T\left(\frac{n}{2}\right) + \frac{n}{\log^2 n}$$

$$a = 2, b = 2, \log_b a = 1$$

$$f(n) = O(n \log^{-2} n), k = 1, p = -2$$

since $\log_b a = k$ and p < -1 then order of recurrence relation = O(n)

$$5. T(n) = T\left(\frac{n}{2}\right) + n^3$$

$$a = 1$$
, $b = 2$, $\log_b a = 0$

$$f(n) = O(n^3 \log^0 n), k = 3, p = 0$$

since $\log_b a < k$ and $p \ge 0$ then order of recurrence relation = $O(n^3)$

6.
$$T(n) = 2T\left(\frac{n}{2}\right) + n^3 \log n$$

$$a = 2$$
, $b = 2$, $\log_b a = 1$

$$f(n) = O(n^3 \log^1 n), k = 3, p = 1$$

since $\log_b a < k$ and $p \ge 1$ then order of recurrence relation $= O(n^3 \log n)$

7.
$$T(n) = 2 T\left(\frac{n}{2}\right) + \frac{n^3}{\log^2 n}$$

$$a = 2, b = 2, \log_b a = 1$$

$$f(n) = O(n^3 \log^{-2} n), k = 3, p = -2$$

since $\log_b a < k$ and p < 0 then order of recurrence relation = $O(n^3)$