

РАЗРАБОТКА АЛГОРИТМОВ РЕШЕНИЯ ЗАДАЧИ МАРШРУТИЗАЦИИ ТРАНСПОРТА НА БАЗЕ ПОДВИЖНЫХ ГЕНЕТИЧЕСКИХ АЛГОРИТМОВ

Работу выполнил: студент 4 курса Сидоренко Дмитрий

Научный руководитель: Городилов Алексей Юрьевич

Цели и задачи

Цель: разработка алгоритмов на базе подвижного генетического алгоритма для решения задачи маршрутизации транспорта.

Задачи:

- Провести анализ литературы, связанной с подвижным генетическим алгоритмом и задачей маршрутизации транспорта;
- Предложить новые алгоритмы на базе подвижного генетического алгоритма для решения задачи маршрутизации транспорта, реализовать лучшие алгоритмы, провести настройку алгоритмов и сравнить их.

Актуальность

- Задачи транспортной логистики **повсюду** их нужно эффективно решать;
- Одна из самых популярных задач транспортной логистики: Задача маршрутизации транспорта (Vehicle Routing Problem)

Алгоритмы для решения VRP

- Генетические алгоритмы (ГА)
- Метод ветвей и границ
- Алгоритм сбережений Кларка-Райта
- Муравьиные алгоритмы
- Метод имитации отжига
- Двухфазные алгоритмы (работа Фишера и Джайкумара)

Подвижные генетические алгоритмы (ПГА)

- Модификация ГА
- Плохо изучены
- Публикаций конкретно о применении данного алгоритма для решения задачи маршрутизации транспорта не найдено.

Общая постановка задачи маршрутизации транспорта

- Дано:
 - N целей, в которые нужно доставить груз
 - [Ограничения на дальность одного маршрута, грузоподъемность или способ доставки]
- Требуется:
 - Построить М маршрутов, чтобы каждая цель попала ровно в один маршрут. Один маршрут соответствует одному транспортному средству
- Критерий оптимизации:
 - Минимизация суммарного потраченного топлива (Минимизация пройденного расстояния)
 - Минимизация общего времени доставки всех грузов (Минимизация дальности максимального маршрута)

Задача является NP-трудной.

1 постановка: более простая

- 1 транспортное средство
- Нужно посетить каждую цель
- Критерий оптимальности: минимизация суммарного пройденного расстояния (суммарного потраченного топлива).

2 постановка: с ограничениями

- 1 транспортное средство;
- ограничение на количество посещенных целей без возвращение в депо для транспортного средства;
- временные окна для целей;
- критерий оптимальности: максимизация количества посещенных целей, а при равенстве посещенных целей дополнительным критерием является минимизация пройденного расстояния

Решение задачи

Решение предложенное в рамках данной работы можно разбить

на решение 2 отдельных подзадач:

Решение второй подзадачи для первой постановки

$$F({1,3,4,2}) = (0,1) + (1,3) + (3,4) + (4,2) + (2,0)$$

ПГА с явным кодированием — явное хранение перестановки

Хромосома:

	Гены хромосомы						
		XI	X2	ХЗ	Х4	Х5	
a	1	0.1	0.3	0.15	0.69	0.08	
Значение гена	2	0.3	0.13	0.15	0.11	0.32	
начен	3	0.4	0.18	0.4	0.09	0.18	
3	4	0.15	0.09	0.2	0.07	0.23	
	5	0.05	0.4	0.1	0.04	0.19	

	Гены хромосомы					
		XI	X2	Х3	Х4	X5
8	1	0.1 + 0.01	0.3 - 0.04	0.15 + 0.01	0.69 + 0.01	0.08 + 0.01
Значение гена	2	0.3 + 0.01	0.13 + 0.01	0.15 + <mark>0.01</mark>	D.11 - 0.04	0.32 + 0.01
начен	3	0.4 - 0.04	0.18 + 0.01	0.4 + 0.01	0.09 + 0.01	0.18 + 0.01
m	4	0.15 + 0.01	0.09 + 0.01	0.2 - 0.04	0.07 + 0.01	0.23 + 0.01
	5	0.05 + 0.01	0.4 + 0.01	0.1 + 0.01	0.04 + 0.01	0.19 - 0.04

Особь {3, 1, 4, 2, 5} с низкой относительно других особей приспособленностью

ПГА с явным кодированием: недостатки

- Сложная структура хромосомы => большие затраты памяти и временных ресурсов на пересчет
- Проблема негибкости

	Гены хромосомы					
		XI	X2	Х3	Х4	X5
a	1	0.1 + 0.01	0.3 - 0.04	0.15 + 0.01	0.69 + 0.01	0.08 + 0.01
Значение гена	2	0.3 + 0.01	0.13 + 0.01	0.15 + 0.01	D.11 - 0.04	0.32 + 0.01
начен	3	0.4 - 0.04	0.18 + 0.01	0.4 + 0.01	0.09 + 0.01	0.18 + 0.01
e e	4	0.15 + 0.01	0.09 + 0.01	0.2 - 0.04	0.07 + 0.01	0.23 + 0.01
	5	0.05 + 0.01	0.4 + 0.01	0.1 + 0.01	0.04 + 0.01	0.19 - 0.04

Проблема негибкости

 $\{1, 2, 3, 4, 5\}$

{5, 2, 3, 4, 1}

ПГА с гибкой структурой

- Структура хромосомы сохраняется;
- Теперь в столбце для гена с номером i на позиции j предлагается хранить вероятность P_{ij} , которая соответствует вероятности появления вершины с номером j в перестановке после вершины i. Таким образом, неважно, на какой позиции появилась вершина с номером i, следующая вершина будет получена, опираясь на вероятности в гене с номером i.

	Гены хромосомы						
		X1	X2	Х3	Х4	X5	
a	1	0.1	0.3	0.15	0.69	0.08	
Значение гена	2	0.3	0.13	0.15	0.11	0.32	
начен	3	0.4	0.18	0.4	0.09	0.18	
(m)	4	0.15	0.09	0.2	0.07	0.23	
	5	0.05	0.4	0.1	0.04	0.19	

	Гены хромосомы					
		X1	X2	ХЗ	Х4	X5
es es	1	0.1 + 0.01	0.3 - 0.04	0.15 + 0.01	0.69 + 0.01	0.08 + 0.01
ие ген	2	0.3 + 0.01	0.13 + 0.01	0.15 + 0.01	0.11 - 0.04	0.32 + 0.01
Значение гена	3	0.4 - 0.04	0.18 + 0.01	0.4 + 0.01	0.09 + 0.01	0.18 + 0.01
<u>۳</u>	4	0.15 + 0.01	0.09 + 0.01	0.2 - 0.04	0.07 + 0.01	0.23 + 0.01
	5	0.05 + 0.01	0.4 + 0.01	0.1 + 0.01	0.04 + 0.01	0.19 - 0.04

Результаты 1 этапа тестирования (1)

Индивидуальная приспособленность — обратная величина к длине маршрута. Чем больше индивидуальная приспособленность, тем лучше алгоритм.

Результаты 1 этапа тестирования (2)

Общая приспособленность = среднее значение индивидуальной приспособленности по всем особям.

Вторая постановка задачи

Решение:

Перестановка задает ориентированность в графе по правилу: если вершина і стоит в перестановке раньше, чем вершина j, то тогда можно перейти по ребру (i, j) только в направлении из вершины i в вершину j. Получаем ориентированный ациклический граф

Вторая подзадача может быть решена методом динамического программирования:

dp[vertex][cntVisitedVertex] = минимальное время необходимое для того, чтобы посетить текущее количество целей cntVisitedVertex при этом последней посещенной вершиной является вершина с номером vertex.

Релаксация:

$$\begin{cases} tl_{v} \leq dp[u][i] + dist(u,v) \leq tr_{v} \\ dp[v][i+1] = \min(dp[v][i+1], dp[u][i] + dist(u,v)), i = 1..N \end{cases}$$

Гиперпараметры алгоритма

- параметры, которые позволяют управлять ходом движения алгоритма к оптимальному решению
- Количество итераций;
- Размер популяции;
- Глобальная скорость обучения определяет, насколько конкретная особь будет похожа на всю популяцию;
- Коэффициент разнообразия удерживает значение эффективной вероятности в интервале (0;1). Определяет нижнюю и верхнюю границу данного интервала;
- Индивидуальная скорость обучения задает величину изменения вероятностей хромосом.

Настройка гиперпараметров

- Количество итераций = 2000
- Размер популяции = 30
- Глобальная скорость обучения = 0,1
- Индивидуальная скорость обучения:

$$iLR(cntVertex) = F_1(cntVertex), \ F_1(x) = \frac{0.025 * x + 3.45}{70}$$

• Коэффициент разнообразия:

$$DR(cntVertex) = F_2(cntVertex), F_2(x) = 0.003903 * exp^{(-0.036642*x)}$$

Результаты настройки алгоритмов

Результаты настройки алгоритма

	Длина м	аршрута
Количество целей	Эталон ГА	ПГА
10	208514.03	208514.03
30	439058.44	578660.80
45	520942.24	968628.77
60	637340.95	1266166.77
80	717204.73	2030567.85
100	782287.09	2344149.40

Заключение (1)

Все задачи поставленные в ходе выпускной квалификационной работы были выполнены:

- 1) осуществлен анализ научной литературы, связанной с генетическими алгоритмами и подвижными генетическими алгоритмами. Выделены основные структурные элементы ПГА, а также основные гиперпараметры;
- 2) осуществлен анализ научной литературы, связанной с вариациями и возможными ограничениями для задачи маршрутизации транспорта. Сформулированы две постановки задачи как без ограничений, так и с ограничениями;
- 3) осуществлен анализ научной литературы, связанной с существующими подходами для решения задачи маршрутизации транспорта. За эталонное решения для сравнения качества разработанных алгоритмов взят генетический алгоритм;
- 4) предложены три алгоритма на базе подвижного генетического алгоритма для решения задачи маршрутизации транспорта;

Заключение (2)

- 5. реализовано два алгоритма на базе подвижного генетического алгоритма для решения задачи маршрутизации транспорта на языке C++;
- 6. разработан инструмент для поиска оптимального набора гиперпараметров алгоритма для произвольного количества вершин на языке Python;
- 7. выделены пять гиперпараметров ПГА. Для оптимальных значений двух ключевых из них подобраны линейная и экспоненциальная функции, зависящие от набора входных данных;
- 8. проведено тестирование алгоритмов и выполнено сравнение эффективности работы разработанных подходов. ПГА с гибкой структурой выделен как лучший алгоритм и сравнен с эталонным решением.

Апробация работы была проведена на 7-й научно-практической конференции «Математическое и программное обеспечение информационных и интеллектуальных систем», Пермь, ПГНИУ, 28–29 апреля 2022 г.

Также была напечатана статья по итогам работы: Сидоренко Д. О., Городилов А. Ю. О решении задачи маршрутизации транспорта с помощью подвижного генетического алгоритма. Вестник ПГУ. Математика. Механика. Информатика. 2021. № 4(55).

Спасибо за внимание!

Email: dima.sidorenk@yandex.ru

Github: https://github.com/DimaSidorenko/

Работу выполнил студент 4 курса Сидоренко Дмитрий Научный руководитель: Городилов Алексей Юрьевич

Результаты настройки алгоритма

	Длина м	аршрута
Количество целей	Эталон ГА	ПГА
10	208514.03	208514.03
30	439058.44	578660.80
45	520942.24	968628.77
60	637340.95	1266166.77
80	717204.73	2030567.85
100	782287.09	2344149.40

Формулы пересчета (1)

Расчет значения каждой клетки хромосомы происходит по формуле (5):

$$\begin{cases} \eta_{g} \times PVB_{i} + (1 - \eta_{g}) \times PVC_{i} < \eta_{DR} & EPV_{i} = \eta_{DR} \\ \eta_{g} \times PVB_{i} + (1 - \eta_{g}) \times PVC_{i} > 1 - \eta_{DR} & EPV_{i} = 1 - \eta_{DR} \\ otherwise & EPV_{i} = \eta_{g} \times PVB_{i} + (1 - \eta_{g}) \times PVC_{i} \end{cases} \tag{1}$$

где η_g — глобальная скорость обучения, PVC_i — значения вероятности, записанное в i—ой ячейке хромосомы, PVB_i — значения вероятности, записанное в i—ой ячейке плана поколения, η_{DR} — коэффициент разнообразия, EPV_i — значение эффективной вероятности (скорректированной вероятности).

Формулы пересчета (2)

 $PVC_i = \begin{cases} \max(PVC_i + \eta_{ind}, 1 - \eta_{DR}), & Ind_i = 1 \\ \min(PVC_i - \eta_{ind}, \eta_{DR}), & Ind_i = 0 \end{cases}$ (2)

, где PVC_i — значения вероятности, записанное в <u>і</u>—ой ячейке хромосомы, η_{ind} —индивидуальная скорость обучения, η_{DR} — коэффициент разнообразия, Ind_i — значение соответствующей особи в ячейке с индексом <u>і</u>.

Обоснованность выбора функций

