MAT224 Notes

Tianyu Du

January 2018

T	· · ·	
1	$\mathbf{n}\mathbf{r}\mathbf{o}$	

Created: January. 9 2018

Last modified: February 15, 2018

Partial revision (Lec.1 - Lec.8): February 1, 2018

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Contents

1	Lec	ture1 Jan.9 2018	3
_		Vector spaces	
		Examples of vector spaces	
		Some properties of vector spaces	
2	Lec	ture2 Jan.10 2018	Ē
	2.1	Some properties of vector spaces-Cont'd	
	2.2		
	2.3	Examples of subspaces	7
		Recall from MAT223	
3	Lec	ture3 Jan.16 2018	8
	3.1	Linear Combination	8
	3.2	Combination of subspaces	Ć
4	Lec	ture4 Jan.17 2018	L2
	4.1	Cont'd	12
		Linear Independence	

5	Lect	ture5 Jan.23 2018	14		
	5.1	Linear independence, recall definitions	14		
		5.1.1 Alternative definitions of linear independency	14		
	5.2	Basis	14		
	5.3	Dimensions	17		
		5.3.1 Consequences of fundamental theorem	18		
		5.3.2 Use dimension to prove facts about linearly (in)dependent sets and subspaces	t 18		
6	Lect	ture6 Jan.24 2018	19		
	6.1	Basis and Dimension	19		
7	Lect	ture7 Jan.30. 2018	22		
	7.1	Linear Transformations	22		
	7.2	Properties of linear transformations	23		
	7.3	Definitions	25		
8	Lecture8 Jan.31 2018				
	8.1	Linear Transformations	26		
	8.2	Applications of dimension theorem	28		
9	Lect	ture9 Feb.6 2018	29		
	9.1	Applications of dimension theorem	29		
	9.2	Isomorphisms	31		
	9.3	Coordinates	33		
10	Lect	ture10 Feb.7 2018	34		
	10.1	Matrix of linear transformation	34		
11	lect	ure11 Feb. 13 2018	36		
	11.1	Algebra of Transformation	36		
		Matrix of composition	37		
		Inverse transformations	38		
	11.4	Change of basis	39		
12	Lect	ture12 Feb. 14 2018	40		

1 Lecture 1 Jan. 9 2018

1.1 Vector spaces

Definition A $\underline{\text{real}}$ ¹ **vector space** is a set V together with two vector operations vector addition and scalar multiplication such that

- 1. **AC** Additive Closure: $\forall \vec{x}, \vec{y} \in V, \vec{x} + \vec{y} \in V$
- 2. C Commutative: $\forall \vec{v}, \vec{y} \in V, \vec{x} + \vec{y} = \vec{y} + \vec{x}$
- 3. **AA** Additive Associative: $\forall \vec{x}, \vec{y}, \vec{z} \in V, (\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- 4. **Z** Zero Vector: $\exists \vec{0} \in Vs.t. \forall \vec{x} \in V, \vec{x} + \vec{0} = \vec{x}$
- 5. **AI** Additive Inverse: $\forall \vec{x} \in V, \exists -\vec{x} \in V s.t.\vec{x} + (-\vec{x}) = \vec{0}$
- 6. **SC** Scalar Closure: $\forall \vec{x}, c \in \mathbb{R}, c\vec{x} \in V$
- 7. **DVA** Distributive Vector Additions: $\forall \vec{x}, \vec{y} \in V, c \in \mathbb{R}, c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
- 8. **DSA** Distributive Scalar Additions: $\forall \vec{x} \in V, c, d \in \mathbb{R}, (c+d)\vec{x} = c\vec{x} + d\vec{x}$
- 9. **SMA** Scalar Multiplication Associative: $\forall \vec{x} \in V, c, d \in \mathbb{R}, (cd)\vec{x} = c(d\vec{x})$
- 10. **O** One: $\forall \vec{x} \in V, 1\vec{x} = \vec{x}$

Note For V to be a vector space, need to know or be given operations of vector additions multiplication and check all 10 properties hold.

1.2 Examples of vector spaces

Example 1 \mathbb{R}^n w.r.t.² usual component-wise addition and scalar multiplication.

Example 2 $\mathbb{M}_{m \times n}(\mathbb{R})$ set of all $m \times n$ matrices with real entry. w.r.t. usual entry-wise addition and scalar multiplication.

¹A vector space is real if scalar which defines scalar multiplication is real.

²w.r.t. is the abbreviation of "with respect to".

Example 3 $\mathbb{P}_n(\mathbb{R})$ set of polynomials with real coefficients, of degree less or equal to n, w.r.t. usual degree-wise polynomial addition and scalar multiplication.

Note If define $\mathbb{P}_n^{\star}(\mathbb{R})$ as set of all polynomials of degree <u>exactly equal</u> to n w.r.t. normal degree-wise multiplication and addition.

Then it is **NOT** a vector space.

Explanation: $(1+x^n), (1-x^n) \in \mathbb{P}_n^{\star}(\mathbb{R})$ but $(1+x^n) + (1-x^n) = 2 \notin \mathbb{P}_n^{\star}(\mathbb{R})$

Example 4 Something unusual, define V as

$$V = \{(x_1, x_2) | x_1, x_2 \in \mathbb{R}\}\$$

with vector addition

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1 + 1, x_2 + y_2 + 1)$$

and scalar multiplication

$$c(x_1, x_2) = (cx_1 + c - 1, cx_2 + c - 1)$$

This is a vector space.

1.3 Some properties of vector spaces

Suppose V is a vector space, then it has the following properties.

Property 1 The zero vector is unique. *proof.*

Assume $\vec{0}, \vec{0^*}$ are two zero vectors in V

WTS:
$$\vec{0} = \vec{0}$$

Since $\vec{0}$ is the zero vector, by $\vec{Z} \vec{0} + \vec{0} = \vec{0}$

Similarly,
$$\vec{0} + \vec{0} = \vec{0}$$

Also, $\vec{0} + \vec{0}^* = \vec{0}^* + \vec{0}$ by commutative vector addition.

So,
$$\vec{0} = \vec{0}$$

Property 2 $\forall \vec{x} \in V$, the additive inverse $-\vec{x}$ is unique. *proof.*

Exercise. (By Cancellation Law)

Property 3 $\forall \vec{x} \in V, 0\vec{x} = \vec{0}.$ proof.

By property of number 0:
$$0\vec{x} = (0+0)\vec{x}$$

By DSA: $0\vec{x} = 0\vec{x} + 0\vec{x}$
By AI, $\exists (-0\vec{x})s.t.$
 $0\vec{x} + (-0\vec{x}) = 0\vec{x} + 0\vec{x} + (-0\vec{x})$
By AA
 $\implies 0\vec{x} = \vec{0}$

Property 4
$$\forall c \in \mathbb{R}, c\vec{0} = \vec{0}$$
 proof.
$$c\vec{0} = c(\vec{0} + \vec{0}) = c\vec{0} + c\vec{0}$$

2 Lecture 2Jan. 10 2018

2.1 Some properties of vector spaces-Cont'd

Property 5 For a vector space V, $\forall \vec{x} \in V$, $(-1)\vec{x} = (-\vec{x})$. (we could use this property to find the <u>additive inverse</u> with scalar multiplication with (-1))³. proof.

$$(-\vec{x})=(-\vec{x})+\vec{0}$$
 By property of zero vector
$$=(-\vec{x})+0\vec{x}$$
 By property3
$$=(-\vec{x})+(1+(-1))\vec{x}$$
 By property of zero as real number
$$=(-\vec{x})+1\vec{x}+(-1)\vec{x}$$

$$=\vec{0}+(-1)\vec{x}$$

$$=(-1)\vec{x}$$

 $^{^{3}}$ The scalar multiplication here is the one defined in vector space V.

Property 6 For a vector space V, let $\vec{x} \in V$ and $c \in \mathbb{R}$, then,

$$c\vec{x} = \vec{0} \implies c = 0 \lor \vec{x} = \vec{0}$$

proof.

if
$$c = 0 \implies True$$

else $c^{-1}c\vec{x} = c^{-1} = \vec{0}$
 $\implies (c^{-1}c)\vec{x} = \vec{0}$
 $\implies 1\vec{x} = \vec{0}$
 $\implies \vec{x} = \vec{0}$
 $\implies True$

2.2 Subspaces

Loosely A subspace is a space contained within a vector space.

Definition Let V be a vector space and $W \subseteq V$, W is a **subspace** of V if W is itself a vector space w.r.t. operations of vector addition and scalar multiplication from V.

Theorem Let V be a vector space, and $W \subseteq V$, W has the <u>same</u>⁴ operations of vector addition and scalar multiplication as in V. Then, W is a subspace of V iff:

- 1. W is non-empty. $W \neq \emptyset$.
- 2. W is closed under addition. $\forall \vec{x}, \vec{y} \in W, \ \vec{x} + \vec{y} \in W$.
- 3. W us closed under scalar multiplication. $\forall \vec{x} \in W, c \in \mathbb{R}, c\vec{x} \in W$.

Proof.

⁴Other properties of vector spaces related to vector addition and scalar multiplication are immediately inherited from the parent vector space.

Forward:

If W is a subspace

$$\implies \vec{0} \in W$$

$$\implies W \neq \emptyset$$

Also, additive and scalar multiplication closures \implies (ii), (iii)

Backward:

Let $W \neq \emptyset \land (ii) \land (iii)$

WTS. 10 axioms in definition of vector space hold

 $(ii) \implies \text{Additive Closure}$

 $(iii) \implies \text{Scalar Multiplication Clousure}$

Because $W \subseteq V$, and V is a vector space, so properties hold $\forall \vec{w} \in W$.

Additive inverse: by property 5 and scalar multiplication closure,

$$\forall \vec{x} \in W, -\vec{x} = (-1)\vec{x} \in W.$$

Also, existence of additive identity: $(-\vec{x}) + \vec{x} = \vec{0} \in W$.

2.3 Examples of subspaces

Example 1 Let $V = \mathbb{M}_{n \times n}(\mathbb{R})$, V is a subspace.

Example 2 Define W as

$$W = \{A \in \mathbb{M}_{n \times n}(\mathbb{R}) | A \text{ is } \underline{\text{not}} \text{ symmetric} \}$$

Explanation: Let
$$A_1 = \begin{bmatrix} 0 & -2 \\ -1 & 0 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$ $A_1, A_2 \in W$ but

$$A_1 + A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \notin W.$$

Since there's no additive identity in set W, so W failed to be a vector space, therefore W is not a subspace.

Example 3 Let $V = \mathbb{P}_2(\mathbb{R})$, is W defined as following,

$$W = \{ p(x) \in V | p(1) = 0 \}$$

```
a subspace of V?

proof.

WTS: (i)

Let z(x) = 0 or z(x) = x^2 - 1, \forall x \in \mathbb{R}

\Rightarrow W \neq \emptyset

WTS: (ii)

Let p_1, p_2 \in W, which means p_1(1) = p_2(1) = 0

(p_1 + p_2)(1) = p_1(1) + p_2(1) = 0 + 0 = 0

\Rightarrow p_1 + p_2 \in W

\Rightarrow W is closed under addition.

WTS: (iii) Let p \in W and c \in \mathbb{R}

\Rightarrow p(1) = 0

Since (c * p)(x) = c * p(x), we have (c * p)(1) = c * p(1) = c * 0 = 0

\Rightarrow cp \in W.

So W is a subspace of V.
```

2.4 Recall from MAT223

Let $A \in \mathbb{M}_{m \times n}(\mathbb{R})$, then Nul(A) is a subspace of \mathbb{R}^n and Col(A) is a subspace of \mathbb{R}^m .

3 Lecture 3Jan. 16 2018

3.1 Linear Combination

Definition Let V be a vector space, $\vec{v_1}, \ldots, \vec{v_n} \in V$, $a_1, \ldots, a_n \in \mathbb{R}$ the expression

$$c_1\vec{v_1} + \cdots + c_n\vec{v_n}$$

is called a linear combination of $\vec{v_1}, \ldots, \vec{v_n}$.

Theorem Let V be a vector space, W is a subspace of V, $\forall \vec{w_1}, \dots \vec{w_k} \in W, c_1, \dots, c_k \in \mathbb{R}$, we have

$$c_1\vec{w_1} + \cdots + c_k\vec{w_k} \in W$$

Subspaces are <u>closed under linear combinations</u>, since subspaces are closed under scalar multiplication and vector addition.

Theorem Let V be a vector space, let $\vec{v_1}, \ldots, \vec{v_k} \in V$ then the set of all linear combination of $\vec{v_1}, \ldots, \vec{v_k}$

$$W = \{ \sum_{i=1}^{k} c_i \vec{v_i} | c_i \in \mathbb{R} \forall i \}$$

is a subspace of V. *proof.*

Consider
$$\vec{0} \in W$$

So, $W \neq \emptyset$

Let $c \in \mathbb{R}$, Let $\vec{x} \in W \land \vec{y} \in W$

By definition of span, we have,

$$\vec{x} = \sum_{i=1}^{k} a_i \vec{v_i}, \quad \vec{y} = \sum_{i=1}^{k} b_i \vec{v_i}$$

Consider, $\vec{x} + c\vec{y}$

$$\vec{x} + c\vec{y} = \sum_{i=1}^{k} a_i \vec{v_i} + c \sum_{i=1}^{k} b_i \vec{v_i} = \sum_{i=1}^{k} (a_i + cb_i) \vec{v_i} \in W$$

Definition Let V be a vector space, $\vec{v_1}, \ldots, \vec{v_k} \in V$, **span** of the set of vectors $\{\vec{v_i}\}_{i=1}^k$ is defined as the collection of all possible linear combinations of $\{\vec{v_i}\}_{i=1}^k$. By pervious theorem, span is a subspace.

3.2 Combination of subspaces

Definition Let W_1, W_2 be two sets, then the **union** of W_1, W_2 is defined as:

$$W_1 \cup W_2 = \{ \vec{w} \mid \vec{w} \in W_1 \lor \vec{w} \in W_2 \}$$

the **intersection** of W_1, W_2 is defined as:

$$W_1 \cap W_2 = \{ \vec{w} \mid \vec{w} \in W_1 \land \vec{w} \in W_2 \}$$

Now consider W_1, W_2 to be two subspaces of vector space V, then we have,

1. $W_1 \cup W_2$ is **not** a subspace.

2. $W_1 \cap W_2$ is a subspace.

proof.

Falsify the statement by providing counter-example:

$$W_{1} = \{(x_{1}, x_{2}) \mid x_{1} \in \mathbb{R}, x_{2} = 0\}$$

$$W_{2} = \{(x_{1}, x_{2}) \mid x_{2} \in \mathbb{R}, x_{1} = 0\}$$

$$\binom{0}{1} \in W_{1} \cup W_{2} \quad \binom{1}{0} \in W_{1} \cup W_{2}$$

$$\text{But}, \quad \binom{0}{1} + \binom{1}{0} = \binom{1}{1} \notin W_{1} \cup W_{2}$$

proof.

Because
$$W_1$$
 and W_2 are both subspaces, so $\vec{0} \in W_1 \cap W_2 \implies W_1 \cap W_2 \neq \emptyset$
Let $\vec{x}, \vec{y} \in W_1 \cap W_2, c \in \mathbb{R}$
Consider, $\vec{x} + c\vec{y}$
Sine W_1, W_2 are subspaces,
 $\vec{x} + c\vec{y} \in W_1 \wedge \vec{x} + c\vec{y} \in W_2$
 $\implies \vec{x} + c\vec{y} \in W_1 \cap W_2$
So, $W_1 \cap W_2$ is a subspace.

Definition Let W_1, W_2 be subspaces of vector space V, define the **sum** of two subspaces as:

$$W_1 + W_2 = \{\vec{x} + \vec{y} \mid \vec{x} \in W_1 \land \vec{y} \in W_2\}$$

Note Let $\vec{x} = \vec{0} \in W_1$, $\forall \vec{y} \in W_2$, $\vec{y} \in W_1 + W_2$ so that, $W_2 \subseteq W_1 + W_2$. Similarly, let $\vec{y} = 0 \in W_2$, $\forall \vec{x} \in W_1$, $\vec{x} \in W_1 + W_2$. so that, $W_1 \subseteq W_1 + W_2$. So we have $\forall \vec{v} \in W_1 \cap W_2$, $\vec{v} \in W_1 + W_2$. So that,

$$W_1 \cap W_2 \subseteq W_1 + W_2$$

Note $W_1 + W_2$ is a subspace of V. proof.

Let
$$\vec{x_1}, \vec{x_2} \in W_1, \vec{y_1}, \vec{y_2} \in W_2$$

By properties of subspaces,
 $\forall c \in \mathbb{R}, \vec{x_1} + c\vec{x_1} \in W_1 \land \vec{y_2} + c\vec{y_2} \in W_2$
Consider, $\vec{x_1} + \vec{y_1} \in W_1 + W_2, \vec{x_2} + \vec{y_2} \in W_1 + W_2$
 $(\vec{x_1} + \vec{y_1}) + c(\vec{x_2} + \vec{y_2})$
 $= (\vec{x_1} + c\vec{x_2}) + (\vec{y_1} + c\vec{y_2}) \in W_1 + W_2$

Definition(Unique Representation) Let W_1, W_2 be subspaces of vector space V, say V is **direct sum** of W_1 and W_2 , written as $V = W_1 \bigoplus W_2$, if every $\vec{x} \in V$ can be written <u>uniquely</u> as $\vec{x} = \vec{w_1} + \vec{w_2}$ where $\vec{w_1} \in W_1$ and $\vec{w_2} \in W_2$.

Equivalently Let W_1 and W_2 be subspaces of V, $V = W_1 \bigoplus W_2 \iff V = W_1 + W_2 \wedge W_1 \cap W_2 = \{\vec{0}\}.$

4 Lecture 4 Jan. 17 2018

4.1 Cont'd

Cont'd Proof of Theorem proof.

(Forward direction) Suppose
$$V = W_1 \bigoplus W_2$$

WTS. $V = W_1 + W_2 \wedge W_1 \cap W_2 = \{\vec{0}\}$

Let $V = W_1 \bigoplus W_2$
 $\Rightarrow \forall \vec{x} \in V$, can be written uniquely as $\vec{x} = \vec{w_1} + \vec{w_2}, \ \vec{w_1} \in W_1, \ \vec{w_2} \in W_2$
 $\Rightarrow V = W_1 + W_2$ by definition of sum .

Let $\vec{x} \in W_1 \cap W_2$

Decomposition, let $\vec{z} \in W_1, \vec{0} \in W_2$
 $\vec{z} = \vec{z} + \vec{0}, \ \vec{z} \in W_1, \vec{0} \in W_2$
 $\vec{z} = \vec{0} + \vec{z}, \ \vec{0} \in W_1, \vec{z} \in W_2$

Since decomposition is unique, $\vec{z} = \vec{0}$

So, $W_1 \cap W_2 = \{\vec{0}\}$

(Backward direction) Suppose $V = W_1 + W_2 \wedge W_1 \cap W_2 = \{\vec{0}\}$

WTS. $V = W_1 \bigoplus W_2$

Assume $\vec{x} = \vec{w_1} + \vec{w_2}, \ \vec{w_1} \in W_1, \vec{w_2} \in W_2$
 $\vec{x} = \vec{w_1}' + \vec{w_2}', \ \vec{w_1}' \in W_1, \vec{w_2}' \in W_2$
 $\Rightarrow \vec{w_1} + \vec{w_2} = \vec{w_1}' + \vec{w_2}'$
 $\Rightarrow \vec{w_1} - \vec{w_1}' = \vec{w_2}' - \vec{w_2}$

Where, by definition of subspace, $\vec{w_1} - \vec{w_1}' \in W_1 \wedge \vec{w_2}' - \vec{w_2} \in W_2$

So, $\vec{w_1} - \vec{w_1}' = \vec{w_2}' - \vec{w_2} \in W_1 \cap W_2$

Since $W_1 \cap W_2 = \{\vec{0}\}$
 $\Rightarrow \vec{w_1} = \vec{w_1}' \wedge \vec{w_2} = \vec{w_2}'$

So the decomposition is unique.

4.2 Linear Independence

Theorem (Redundancy theorem) Let V be a vector space, $\{\vec{x_1}, \dots \vec{x_n}\}$, let $\vec{x} \in \{\vec{x_1}, \dots \vec{x_n}\}$, then

$$span\{\vec{x_1}, \dots \vec{x_n}, \vec{x}\} = span\{\vec{x_1}, \dots \vec{x_n}\}$$

we say \vec{x} is the **redundant** vector that contributes nothing to the span. proof.

$$\det \vec{x} \in span\{\vec{x}, \dots, \vec{x_n}\}$$

$$\vec{x} = \sum_{i=1}^{n} c_i \vec{x_i} \text{ for } c_i \in \mathbb{R} \ \forall i$$
So,
$$span\{\vec{x_1}, \dots, \vec{x_n}, \vec{x}\} = \{\sum_{i=1}^{n} a_i \vec{x_i} + z \vec{x} \mid a_i, z \in \mathbb{R} \forall i\}$$

$$= \{\sum_{i=1}^{n} a_i \vec{x_i} + z \sum_{i=1}^{n} c_i \vec{x_i} \mid a_i, c_i \in \mathbb{R} \forall i\}$$

$$= \{\sum_{i=1}^{n} (a_i + z c_i) \vec{x_i} \mid a_i, c_i \in \mathbb{R} \forall i\}$$

$$\text{Let } d_i = a_i + z c_i \in \mathbb{R}$$

$$= \{\sum_{i=1}^{n} d_i \vec{x_i} \mid d_i \in \mathbb{R} \forall i\}$$

$$= span\{\vec{x_1}, \dots, \vec{x_n}\}$$

Definition Let V be a vector space, let $\{\vec{x_1}, \dots, \vec{x_n}\} \in V$, we say $\{v_i\}_{i=1}^n$ is **linearly independent** if the only set of scalars $\{c_1, \dots, c_n\}$ that satisfies,

$$\sum_{i=1}^{n} c_i \vec{x_i} = 0$$

is $\{0, \dots, 0\}$.

Definition In contrast, we say a set of vector, with size n, is **linearly** dependent if

$$\exists \vec{c} \neq \vec{0} \in \mathbb{R}^n, \ s.t. \ \sum_{i=1}^n c_i \vec{v_i} = 0$$

Theorem Let V be a vector space, $\{\vec{v_i}\}_{i=1}^n \in V$ is linearly dependent if and only if,

$$\exists \vec{x} \in \{\vec{v_i}\}_{i=1}^n \ s.t. \ \vec{x_j} \in span\{\{\vec{v_i}\}_{i=1}^n \setminus \{\vec{x}\}\}\$$

Theorem Let V be a vector space, $\{\vec{v_i}\}_{i=1}^n \in V$ is linearly independent if and only if,

$$\forall \vec{x} \in \{\vec{v_i}\}_{i=1}^n, \ \vec{x_i} \notin span\{\{\vec{v_i}\}_{i=1}^n \setminus \{\vec{x}\}\}\$$

5 Lecture Jan. 23 2018

5.1 Linear independence, recall definitions

Acknowledgement: special thanks to Frank Zhao.

Definition Let $\{\vec{x_1}, \dots \vec{x_k}\}$ is **linearly independent** if only scalars $c_1 \dots c_k$ s.t.

$$\sum_{i=1}^{k} c_1 \vec{x_k} = 0(\star)$$

are
$$c_1 = \dots = c_k = 0$$

linearly dependent means at least one $c_i \neq 0$, (\star) still holds.

5.1.1 Alternative definitions of linear independency

Definition(Alternative.1) $\{\vec{x_1} \dots \vec{x_k}\}$ is linearly independent iff none of them can be written as a linear combination of the remaining k-1 vectors.⁵

Definition(Alternative.2) $\{\vec{x_1} \dots \vec{x_k}\}$ is **linearly dependent** iff at least one of them can be written as a linear combination of the remaining k-1 vectors. ⁶

5.2 Basis

Definition Let V be a vector space, a non-empty⁷ set S of vectors from V is a **basis** for V if

1.
$$V = span\{S\}$$

⁵See theorem from the pervious lecture.

 $^{^6\}mathrm{See}$ theorem from the pervious lecture.

⁷Specially, for an empty set, we define $span\{\emptyset\} = \{\vec{0}\}$

2. S is linearly independent.

Theorem (characterization of basis) A non-empty subset $S = \{\vec{x_i}\}_{i=1}^n$ of vector space V is basis for V iff every $\vec{x} \in V$ can be written <u>uniquely</u> as linear combination for vectors in S.

proof.

Forwards

Suppose S is a basis for V

So every $\vec{x} \in V$ can be written as a linear combination of vectors in S

To prove the uniqueness, assume two expressions of $\vec{x} \in V$

$$\vec{x} = \begin{cases} c_1 \vec{x_1} + \dots + c_k \vec{x_k} \\ b_1 \vec{x_1} + \dots + d_k \vec{x_k} \end{cases}$$

Consider

$$c_1\vec{x_1} + \dots + c_k\vec{x_k} - (b_1\vec{x_1} + \dots + d_k\vec{x_k}) = \vec{0}$$

$$\iff \sum_{i=1}^{k} (c_i - b_i) \vec{x_1} = \vec{0}$$

Since vectors in basis S are linear independent,

$$c_i = b_i \forall i \in \mathbb{Z} \cap [1, k]$$

So the representation is unique.

Backwards

Suppose every $\vec{x} \in V$ can be written uniquely as linear combination of vectors in S.

WTS: $V = span\{S\} \land S$ is linearly independent

By the assumption, spanning set is shown.

All we need to show is linear independence.

Consider,

$$\sum_{i=1}^{n} c_i \vec{x}_i = \vec{0}$$

Also, we know

$$\sum_{i=1}^{n} 0\vec{x_i} = \vec{0}$$

By the uniqueness of representation

We have identical expression
$$\sum_{i=1}^{n} c_i \vec{x}_i = \sum_{i=1}^{n} 0 \vec{x}_i$$

$$\therefore c_i = 0 \ \forall i \in \mathbb{Z} \cap [1, n]$$

Example

$$V = \{(x_1, x_2) \mid x_1, x_2 \in \mathbb{R}\}$$
$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1 + 1, x_2 + y_2 + 1)$$
$$c(x_1, x_2) = (cx_1 + c - 1, cx_2 + c - 1)$$

Show that $\{(1,0),(6,3)\}$ is a basis of V.

By theorem, $\{(1,0),(6,3)\}$ is basis if every $(a,b) \in V$ can be written uniquely as linear combination of $\{(1,0),(6,3)\}$.

 \exists unique scalars $c_1, c_2 \in \mathbb{R}$ s.t. $c_1(1,0) + c_2(6,3) = (a,b)$

proof.

By definition of scalar multiplication and vector addition in this space,

Consider
$$(a, b) = c_1(1, 0) + c_2(6, 3) = (2c_1 - 1, c_1 - 1) + (7c_2 - 1, 4c_2 - 1)$$

= $(2c_1 + 7c_2 - 1, c_1 + 4c_2 - 1)$

Consider the coefficients of variables

$$\begin{cases} 2c_1 + 7c_2 - 1 = a \\ c_1 + 4c_2 - 1 = b \end{cases}$$

WTS, the above system of linear equations has unique solution for all a, b

The system has a unique solution $\forall a, b \in \mathbb{R}$

Since the coefficient matrix has rank 2

$$rank(\begin{pmatrix} 2 & 7 \\ 1 & 4 \end{pmatrix}) = 2$$

Since obviously the columns are linearly independent.

5.3 Dimensions

Definition For a vector space V, the **dimension** of V is the minimum number of vectors required to span V.

Fundamental Theorem if V vector space is spanned by m vectors, then any set of more than m vectors from V must be <u>linearly dependent</u>.

Fundamental Theorem (Alternative) If V is vector space spanned by m vectors, then any <u>linearly independent</u> set in V must contain less or equal to m vectors.

5.3.1 Consequences of fundamental theorem

Theorem if $S = \{\vec{v}_i\}_{i=1}^k$ and $T = \{\vec{w}_i\}_{i=1}^l$ are two bases of vector space V then l = k. Bases have the same size.

proof.

Since S spans V and T is linearly independent

$$\therefore l \leq k$$

(flip) Since T spans V and S is linearly independent

Definition So we can define the **dimension** of V, as dim(V) as the number vectors in <u>any</u> basis for V. For special case $V = \{\vec{0}\}$, dim(V) = 0.

Example

- $dim(\mathbb{R}^n) = n$
- $dim(\mathbb{P}_n(\mathbb{R})) = n+1$
- $dim(\mathbb{M}_{m \times n}(\mathbb{R})) = m \times n$

5.3.2 Use dimension to prove facts about linearly (in)dependent sets and subspaces

Theorem If V is a vector space, dim(V) = n, $S = \{\vec{x_k}\}_{i=1}^k$ is subset of V, if k > n then S is <u>linearly dependent</u>.

Note $k \leq n \Rightarrow S$ is linear dependent.

Theorem If W is subspace of vector space V, then

- 1. $dim(W) \leq dim(V)$
- 2. $dim(W) = dim(V) \iff W = V$

proof.

(1) Suppose
$$dim(V) = n, dim(W) = k$$

WTS, $k \le n$

Any basis for W is a linearly independent set of k vectors from V.

Since V is spanned by n vectors, since dim(V) = n

By fundamental theorem, $k \leq n$

$$\iff dim(W) \le dim(V)$$

(2) By contradiction, assume dim(V) = dim(W) = n but $V \neq W$ Then $\exists \vec{x} \in V \land \vec{x} \notin W$

Take S as a basis of W, then $\vec{x} \notin span\{S\}$

Then $S \cup \vec{x}$ is linearly independent

 $\implies S \cup \{\vec{x}\}\$ is linearly independent in V containing n+1 vectors

This contradicts the assumption by fundamental theorem since dim(V) = n so it could not contain more than n linearly independent vectors

6 Lecture 6 Jan. 24 2018

6.1 Basis and Dimension

Theorem Let V be a vector space, S is a spanning set of V, and I is a linearly independent subset of V, s.t. $I \subseteq S$, then \exists basis B for V s.t. $I \subseteq B \subseteq S$.

Explaining

- 1. Any spanning set for V cab be **reduced** to basis for V by removing the linearly dependent(redundant) vector in the spanning set, using <u>redundancy theorem</u> to get a linearly independent spanning set.
- 2. Linear independent set can be **enlarged** to a basis for V.

proof.

omitted.

19

Corollary Let V be a vector space and dim(V) = n, any set of n linearly independent vectors from V is a basis for V.

proof. If n linearly independent vectors did not span V, then could be enlarged to a basis of V by pervious theorem, but then have a basis containing more than n vectors from V, which is impossible by the fundamental theorem since we given the dim(V) = n, proven by contradiction.

Example Let $V = P_2(\mathbb{R})$, $p_1(x) = 2 - 5x$, $p_2(x) = 2 - 5x + 4x^2$, find $p_3 \in P_2(\mathbb{R})$ s.t. $\{p_1(x), p_2(x), p_3(x)\}$ is basis for $P_2(\mathbb{R})$

Note Since $dim(P_2(\mathbb{R})) = 3$ so any 3 linearly independent vectors from $P_2(\mathbb{R})$ will be a basis for $P_2(\mathbb{R})$.

Solutions e.g. constant function $p_3(x) = 1$, since $1 \notin span\{p_1(x), p_2(x)\}$, so $\{p_1(x), p_2(x), p_3(x)\}$ is a basis of $P_2(\mathbb{R})$. e.g. $p_3(x) = x$, since $x \notin span\{p_1(x), p_2(x)\}$

Theorem Let U and W be subspaces of vector space V, then we have

$$dim(U+W) = dim(U) + dim(W) - dim(U \cap W)$$

proof.

Let
$$\{\vec{v_i}\}_1^k$$
 be basis for $U \cap W$
 $\implies dim(U \cap W) = k$

Since $\{\vec{v_i}\}_1^k$ is basis for $U \cap W$ then it's a linearly independent subset of U So it could be enlarged to basis for $U, \{\vec{v_1}, \dots, \vec{v_k}, \vec{y_1}, \dots, \vec{y_r}\}$

So
$$dim(U) = k + r$$

We also could enlarge a basis for W $\{\vec{v_1}, \dots, \vec{v_k}, \vec{z_1}, \dots, \vec{z_s}\}$

$$\implies dim(V) = k + s$$

WTS. $\{\vec{v_1}, \ldots, \vec{v_k}, \ldots, \vec{y_1}, \ldots, \vec{y_r}, \vec{z_1}, \ldots, \vec{z_s}\}$ is a basis for U + W

(If we could show this)
$$dim(U+W) = k+r+s = (k+r)+(k+s)-k$$

= $dim(U)+dim(W)-dim(U\cap W)$

Obviously, the above set spans U + W

WTS. $\{\vec{v_1}, \dots, \vec{v_k}, \dots, \vec{y_1}, \dots, \vec{y_r}, \vec{z_1}, \dots, \vec{z_s}\}$ is linearly independent

Consider $a_1 \vec{v_1} + \dots + a_k \vec{v_k} + b_1 \vec{y_1} + \dots + b_r \vec{y_r} + c_1 \vec{z_1} + \dots + c_s \vec{z_s} = \vec{0} (\star)$

From
$$(\star) \implies \sum (c_i \vec{z_i}) = -\sum (a_i \vec{v_i}) - \sum b_i \vec{y_i}$$

 $\implies \sum (c_i \vec{z_i}) \in U \land \sum (c_i \vec{z_i}) \in W$
 $\iff \sum (c_i \vec{z_i}) \in U \cap W$

Since $\{\vec{v_i}\}$ is a basis for $U \cap W$

$$\Longrightarrow \sum (c_i \vec{z_i}) = \sum (d_i \vec{v_i})$$

$$\iff \sum (c_i \vec{z_i}) - \sum (d_i \vec{v_i}) = \vec{0} \in W$$

 $\implies c_i = d_i = 0 \text{ since } \{\vec{z_i}, \vec{v_i}\} \text{ is a basis}$ Rewrite (\star)

$$\sum (a_i \vec{v_i}) + \sum b_i \vec{y_i} = 0 \in U$$

 $\implies a_i = b_i = 0 \text{ since } \{\vec{v_i}, \vec{y_i}\} \text{ is a basis for } U$

Corollary For direct sum, since the intersection is $\{\vec{0}\}$

$$dim(U \bigoplus W) = dim(U) + dim(W)$$

Example Let U,W are subspaces of \mathbb{R}^3 such shat dim(U)=dim(W)=2, why is $U\cap W\neq \{\vec{0}\}$

Solutions Geometrically, U and W are planes through origin then the intersection would be a line through $\operatorname{origin}(U \neq W)$ or a plane through $\operatorname{origin}(U = W)$, so shown.

Question V is a vector space, dim(V) = n, $U \neq W$ are subspaces of V but dim(U) = dim(V) = (n-1), proof:

- 1. V = U + W
- 2. $dim(U \cap W) = (n-z)$

7 Lecture 7 Jan. 30, 2018

7.1 Linear Transformations

Definition Let V,W be vector spaces, a function $T:V\to W$ is a **linear transformation**⁸ if

1.
$$T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y}) \ \forall \vec{x}, \vec{y} \in V^9$$

2.
$$T(c\vec{x}) = cT(\vec{x}) \ \forall \vec{x} \in V, \ c \in \mathbb{R}^{10}$$

Linear transformation preserves <u>vector additions and saclar multiplications</u> on vector spaces.

Theorem(Alternative definition) Transformation $T: V \to W$ is linear if and only if

$$T(c\vec{x} + d\vec{y}) = cT(\vec{x}) + dT(\vec{y}), \ \forall \vec{x}, \vec{y} \in V, c, d \in \mathbb{R}$$

Linear transformations preserves <u>linear combinations</u>.

Example (form 223) Rotation through angle θ about the origin in \mathbb{R}^2 .

⁸In some textbooks, this is annotated as **linear mapping**.

 $^{^{9}}$ Notice that the vector additions on the left and right sides of the equation are defined in different vector spaces, in V and W respectively.

 $^{^{10}}$ Notice that the scalar multiplication on the left and right sides of the equation are defined in different vector spaces, in V and W respectively.

Example (from 223) <u>Matrix transformation</u>, let $A \in M_{m \times n}(\mathbb{R})$, transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ defined as

$$T(\vec{x}) = A\vec{x}$$

is linear.

Example Derivative $T: P_n(\mathbb{R}) \to P_{n-1}(\mathbb{R})$ defined by

$$T(\vec{p}(x)) = \vec{p}'(x)$$

Example Matrix transpose $T: M_{m \times n}(\mathbb{R}) \to M_{n \times m}(\mathbb{R})$ defined by

$$T(A) = A^T$$

7.2 Properties of linear transformations

Property(i) Linear transformation $T: V \to W$ are <u>uniquely</u> defined by their values on <u>any</u> basis for V.

proof.

Let
$$\{\vec{v_1}, \dots, \vec{v_k}\}$$
 be any basis for V

Every vector $\vec{x} \in V$ can be uniquely written as some linear combination of the $\{\vec{v}_i\}_{i=1}^k$

$$\vec{x} = \sum_{i=1}^{k} c_i \vec{v_i}, \ c_i \in \mathbb{R}, \text{ and } c_i \text{ are uniquely determined } \forall \vec{x} \in V$$

$$\implies T(\vec{x}) = T(\sum_{i=1}^{k} c_i \vec{v_i})$$

 $= \sum_{i=1}^{k} c_i T(\vec{v_i}) \text{ since the transformation } T \text{ is linear.}$

Since c_i s are uniquely determined by $\{\vec{v_i}\}_{i=1}^k$

so the value of $T(\vec{x})$ is uniquely determined by its value on basis vectors $\{\vec{v_i}\}_{i=1}^k$.

Property(ii) Let $T: V \to W$ be a linear transformation, let A be a subspace of vector space V, then the **image** T(A) defined as

$$T(A) = \{ T(\vec{x}) \mid \vec{x} \in A \}$$

called the image of A under linear transformation T is a subspace of W. Linear transformation maps subspaces of V to subspaces of W.

proof.

Since A is a subspace so it's non-empty, therefore $\exists T(\vec{x}), \ \vec{x} \in A$

So
$$T(A) \neq \emptyset$$

Let
$$\vec{w_1}, \vec{w_2} \in T(A)$$

$$\implies \vec{w_1} = T(\vec{x_1}), \vec{w_2} = T(\vec{x_2}), \vec{x_1}, \vec{x_2} \in A$$

$$\implies \vec{w_1} + \vec{w_2} = T(\vec{x_1}) + T(\vec{x_2}) = T(\vec{x_1} + \vec{x_2})$$
 since T is linear.

Since $\vec{x_1} + \vec{x_2} \in A$ by the definition of subspaces.

$$\implies \vec{w_1} + \vec{w_2} \in T(A)$$

So T(A) is closed under vector addition.

Let
$$\vec{w} \in T(A)$$

$$\implies \vec{w} = T(\vec{x}), \vec{x} \in A$$

Let
$$c \in \mathbb{R}$$

Consider
$$c\vec{w} = cT(\vec{x}) = T(c\vec{x})$$

Since
$$c\vec{x} \in A$$

So
$$c\vec{w} \in T(A)$$

So T(A) is closed under scalar multiplication.

Property(derived from the definition) For all linear transformation $T: V \to W$, we have ¹¹

$$T(\vec{0}) = \vec{0}$$

Property(iii) Let transformation $T: V \to W$ be linear, let B be a subspace of W, then its **pre-image** defined as

$$T^{-1}(B) = \{ \vec{x} \in V \mid T(x) \in B \}$$

is a subspace of V. ¹²

¹¹In the equation, clearly, the zero vector on the left side of the equation is in space V and the zero vector on the right side is in space W.

 $^{^{12}}$ The pre-image and inverse share the same notation, but in this case, transformation T is not necessarily invertible.

proof.

Let
$$\vec{w_1}, \vec{w_2} \in T^{-1}(B)$$

$$\implies T(\vec{w_1}), T(\vec{w_2}) \in B$$

$$\implies aT(\vec{w_1}) + b(\vec{w_2}) \in B, \ \forall a, b \in \mathbb{R} \text{ since } B \text{ is a subspace.}$$

$$\implies T(a\vec{w_1} + b\vec{w_2}) \in B$$

$$\implies a\vec{w_1} + b\vec{w_2} \in T^{-1}(B)$$

So $T^{-1}(B)$ is closed under both vector addition and scalar multiplication, So $T^{-1}(B)$ is a subspace.

7.3 Definitions

Let $T: V \to W$ to be a linear transformation,

Definition the **Image** of transformation T is defined as

$$Im(T) = T(V) = \{T(\vec{x}) \mid \vec{x} \in V\}$$

Definition the **Rank** of transformation T is defined as

$$Rank(T) = dim(Im(T))$$

Definition the **Kernel** of transformation T is defined as

$$Ker(T) = T^{-1}(\{\vec{0}\}) = \{\vec{x} \in V \mid T(\vec{x}) = \vec{0}\}\$$

Definition the **Nullity** of transformation T is defined as

$$Nullity(T) = dim(ker(T))$$

Example $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ is <u>linear</u> defined by

$$T(\vec{p}(x)) = \vec{p}(2x+1) - 8\vec{p}(x)$$

find Ker(T).

Theorem Let $T: V \to W$ be a linear transformation, let $\{\vec{v_1}, \dots, \vec{v_k}\}$ be the spanning set of V^{13} , then $\{T(\vec{v_1}), \dots, T(\vec{v_k})\}$ spans Im(T)

proof.

Let
$$\vec{w} \in Im(T)$$

Since
$$V = span\{\vec{v_1}, \dots, \vec{v_k}\}$$

For any $\vec{x} \in V$ can be written as

$$\vec{x} = \sum_{i=1}^{k} c_i \vec{v_i}, \ c_i \in \mathbb{R}$$

$$\implies \vec{w} = T(\vec{x}) = T(\sum_{i=1}^{k} c_i \vec{v_i})$$

$$= \sum_{i=1}^{k} c_i T(\vec{v_i})$$

as a linear combination of $\{T(\vec{v_1}), \ldots, T(\vec{v_k})\}$

So
$$Im(T) = span\{T(\vec{v_1}), \dots, T(\vec{v_k})\}$$

8 Lecture 8 Jan. 31 2018

8.1 Linear Transformations

Example $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$

$$T(p(x)) = p(2x+1) - 8p(x)$$

Find the image of T.

We know $B = \{1, x, x^2, x^3\}$ is the standard basis for $P_3(\mathbb{R})$, consider the set P(B)

$$P(B) = \{-7, 1 - 6x, 1 + 4x - 4x^2, 1 + 6x + 12x^2\}$$

spans Im(T). Notice the first three vectors in the set is linearly independent, the last vector is clearly dependent to the pervious three.¹⁴. So by the redundancy theorem we could remove the last vector. There we have

$$Im(T) = span\{-7, 1 - 6x, 1 + 4x - 4x^2\}$$

¹³The set is only the spanning set of V, it's not necessarily to be a basis of V.

¹⁴Notice that the first three vectors is a basis of $P_2(\mathbb{R})$.

as basis.

In this example, the dimension of Ker(T) is 1 and the dimension of Im(T) is 3, and dimension of $P_3(\mathbb{R})$ is 4. We have, $dim(P_3(\mathbb{R})) = Nullity(T) + Rank(T)$

Theorem(Dimension Theorem) Let $T: V \to W$ be a linear transformation,

$$dim(V) = Nullity(T) + Rank(T)$$

Proof.

Say
$$dim(V) = n$$

Let $\{\vec{v_1}, \dots, \vec{v_k}\}$ be a basis for Ker(T)

Since Ker(T) is a subspace of V, the set $\{\vec{v_i}\}_1^k$ is a subset of V,

It can be extended to a basis $\{\vec{v_i}\}_1^k \cup \{\vec{v_i}\}_{k+1}^n$ for V.

Claim:
$$\{T(\vec{v_{k+1}}), \dots, T(\vec{v_n})\}\$$
 is basis for $Im(T)$

If the claim is true, this prove the theorem since

$$dim(Ker(T)) + dim(Im(T)) = k + n - k = n = dim(V)$$

$$T(\vec{v_i}) = \vec{0}, \ \forall i \in \mathbb{Z}_1^k$$

and by the definition of kernel of linear transformation,

$$\therefore \{T(\vec{v_i})\}_{k+1}^n \text{ spans } Im(T)$$

Show if
$$\sum_{i=k+1}^{n} c_i T(\vec{v_i}) = \vec{0} \implies c_i = 0$$

$$\implies T(\sum_{i=k+1}^{n} c_i \vec{v_i}) = \vec{0}$$

$$\implies \sum_{i=k+1}^n c_i \vec{v_i} \in Ker(T)$$

$$\implies \sum_{i=k+1}^{n} c_i \vec{v_i} = \sum_{i=1}^{k} c_i \vec{v_i}$$

$$\implies c_1 \vec{v_1} + \dots + c_k \vec{v_k} - c_{k+1} \vec{v_{k+1}} - \dots - c_n \vec{v_n} = \vec{0}$$

Since $\{\vec{v_i}\}_i^n$ is a basis for V.

$$\implies c_i = 0 \ \forall i$$

8.2 Applications of dimension theorem

Definition A linear transformation $T: V \to W$ is called **injective**(one-to-one) if and only if

$$T(\vec{v_1}) = T(\vec{v_2}) \implies \vec{v_1} = \vec{v_2}$$

Definition A linear transformation $T: V \to W$ is called **surjective**(onto) if and only if

$$Im(T) = W$$

Every vector in W has a pre-image in V.

Definition A linear transformation $T: V \to W$ is called **bijective** if it's both injective and surjective.

Theorem Let transformation $T: V \to W$ is linear, T is injective if and only if dim(Ker(T)) = 0.

Proof.

Exercise

Theorem T is surjective if and only if dim(Im(T)) = dim(W).

Example $T: P_2(\mathbb{R}) \to \mathbb{R}^2$ defined by

$$T(p(x)) = \begin{pmatrix} p(1) \\ p(2) \end{pmatrix}$$

is T injective? surjective?

Not injective but surjective.

Solution

$$Ker(T) = span\{(x-1)(x-2)\}$$

So T has nullity of 1 and since $dim(P_2(\mathbb{R})) = 3$, by the <u>dimension theorem</u> we have Rank(T) = 2 and since Im(T) is a subspace of \mathbb{R}^2 which has dimension of 2, we could conclude that $Im(T) = \mathbb{R}^2$.

9 Lecture 9 Feb. 6 2018

9.1 Applications of dimension theorem

Recall Dimension Theorem $T: V \to W$ is linear transformation,

$$dim(V) = dim(Ker(T)) + dim(Im(T))$$

Recall T is **injective** if and only if dim(Ker(T)) = 0.

Recall T is surjective if and only if dim(Im(T)) = dim(W).

Example $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ defined by

$$T(p(x)) = (p(1), p(2), p(3))$$

Take $p(x) = a + bx + cx^2 \in P_2(\mathbb{R}), p(x) \in Ker(T) \text{ iff } T(p(x)) \in \vec{0}.$ Let $p(x) \in Ker(T),$

Obviously the only solution for the system

$$\begin{cases} a+b+c = 0 \\ a+2b+4c = 0 \\ a+3b+9c = 0 \end{cases}$$

is a = b = c = 0, So dim(Ker(T)) = 0. Therefore, T is **injective**. By $dimension\ theorem$,

$$dim(V) = 3 = 0 + dim(Im(T)) \implies dim(Im(T)) = 3 = dim(\mathbb{R}^3)$$

therefore T is surjective. Therefore, T is called **bijective**.

Question $T: P_n(\mathbb{R}) \to P_n(\mathbb{R})$

$$T(p(x)) = xp'(x)$$

Solution Not injective because any constant function in $P_n(\mathbb{R})$ is mapped onto $\vec{0} \in P_n(\mathbb{R})$. Also not surjective by the dimension theorem.

Theorem Let $T: V \to W$ be an <u>injective</u> linear transformation, if $\{\vec{v_i}\}_{i=1}^k$ is linearly independent in V, then the set $\{T(\vec{v_i})\}_{i=1}^k$ is linearly independent in W.

 $\label{linear linear linear$

Proof.

If $\sum c_i T(\vec{v_i}) = \vec{0}$, then we have $T(\sum c_i \vec{v_i}) = \vec{0}$, which means $\sum c_i v_i \in Ker(T)$. By definition of injective transformation, $\sum c_i v_i = \vec{0}$. Since $\{\vec{v_i}\}_{i=1}^k$ is linearly independent, so $c_i = 0$, $\forall i$.

Theorem $T: V \to W$ is a linearly transformation, $\{\vec{v_i}\}_{i=1}^n$ is a basis for V then, if $\{T(\vec{v_i})\}_{i=1}^n$ is linear independent, then T is <u>injective</u>. A criteria for T to be injective based on image of a basis.

Proof.

Let
$$\{\vec{v_i}\}_{i=1}^n$$
 be a basis of V
Consider $T(\vec{x}) = \vec{0}$
Since $\{\vec{v_i}\}_{i=1}^n$ is a basis
Let $x = \sum c_i \vec{v_i}$
 $T(\vec{x}) = \vec{0} \iff T(\sum c_i \vec{v_i}) = \vec{0}$
 $\implies \sum c_i T(\vec{v_i}) = \vec{0} \implies c_i = 0$
 $\therefore \vec{x} = \sum 0 \vec{v_i} = \vec{0}$
Therefore $Ker(T) = \{\vec{0}\}$
Therefore $dim(Ker(T)) = 0$
 \implies injective

Theorem Let $T: V \to W$ be a linear transformation,

- 1. If dim(V) > dim(W), then T cannot be injective.
- 2. If dim(V) < dim(W), then T cannot be surjective.

For a linear transformation between spaces with different dimension, it could not be bijective.

Proof.

$$dim(V) = dim(Ker(T)) + dim(Im(T))$$

$$\therefore dim(Im(T)) \leq dim(W)$$

$$\therefore dim(V) \leq dim(Ker(T) + dim(W))$$

$$\implies dim(Ker(T)) \geq dim(V) - dim(W)$$

$$\implies dim(Ker(T)) > 0$$
So T could not be injective
$$dim(V) = dim(Ker(T)) + dim(Im(T))$$

$$\therefore dim(Ker(T)) \geq 0$$

$$\therefore dim(V) \geq dim(Im(T))$$

$$\implies dim(Im(T)) < dim(W)$$
So T could not be surjective

Theorem Half is good enough Let $T: V \to W$ is linear, and dim(V) = dim(W). T is injective if and only if surjective.

Proof.

By dimension theorem
$$dim(V) = dim(Ker(T)) + dim(Im(T)) = dim(W)$$
 If injective
$$dim(Ker(T)) = 0$$

$$\implies dim(Im(T)) = dim(W)$$
 So surjective
$$\text{If surjective } dim(Im(T)) = dim(W) = dim(V)$$

$$\implies dim(Ker(T)) = 0$$
 So injective

9.2 Isomorphisms

Recall If $T: V \to W$ is both injective and surjective, say T is bijective.

Definition If $T:V\to W$ is bijective, we call T an **isomorphism**. If there exists an isomorphism $T:V\to W$ say V and W are **isomorphic** vector spaces.

Theorem V, W are isomorphic iff dim(V) = dim(W).

Proof.

$$\rightarrow V, W \text{ isomorphic } \implies dim(V) = dim(W)$$

Isomorphic means there exists a bijective transformation T

By dimension theorem dim(V) = dim(Ker(T)) + dim(Im(T))

$$= 0 + dim(W)$$

$$\leftarrow dim(V) = dim(W) \implies V, W \text{ isomorphic}$$

Equivalently, find a bijective transformation

Let
$$\{\vec{v_i}\}_{i=1}^n$$
 be basis for V

Let
$$\{\vec{w_i}\}_{i=1}^n$$
 be basis for W

Claim $T: V \to W$ is linear and s.t.

 $T(\vec{v_i}) = \vec{w_i}$ is an isomorphism.

If
$$\vec{x} \in Ker(T) \subseteq V$$

$$x = \sum c_i \vec{v_i}$$

$$\vec{0} = T(\vec{x})$$

$$= \sum c_i T(\vec{v_i})$$

$$= \sum (c_i \vec{w_i})$$

 $\implies c_i = 0$ since $\vec{w_i}$ are basis.

$$\implies \vec{x} = \vec{0}$$

$$\implies dim(Ker(T)) = 0$$

 \implies injective \iff surjective

Note if $T: V \to W$ is an isomorphism, then T maps a basis for V to a basis for W.

Example $T: P_2(\mathbb{R}) \to \mathbb{R}^3$,

$$T(p(x)) = (p(1), p(2), p(3))$$

is an isomorphism. And $P_2(\mathbb{R})$ and \mathbb{R}^3 are isomorphic.

Example $T: P_2(\mathbb{R}) \to \mathbb{R}^3$,

$$T(1) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ T(x) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ T(x^2) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

is an isomorphism.

Example $M_{2\times 2}(\mathbb{R}), P_3(\mathbb{R})$ and \mathbb{R}^4 are isomorphic.

Theorem Any n-dim vector space V is isomorphic to \mathbb{R}^n . What is an isomorphism $T: V \to \mathbb{R}^n$

Procedure:

Let $\{\vec{v_i}\}_{i=1}^n$ be any basis for V We know that $\forall \vec{x} \in V$, By property of basis,

$$\vec{x} = \sum c_i \vec{v_i}$$

$$c_1$$

Then
$$T(\vec{x}) = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$$
 is an isomorphism.

9.3 Coordinates

Definition Let V be a vector space, $\alpha = \{\vec{v_1}, \dots, \vec{v_n}\}$ be nay basis for V, $\forall \vec{x} \in V$ can be written uniquely as

$$\vec{x} = c_1 \vec{v_1} + \dots + c_n \vec{v_n}$$

then $c1, \ldots, c_n$ is called the **coordinates** for \vec{x} relative to α , with notation

$$[\vec{x}]_{\alpha} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \iff \vec{x} = \sum c_i \vec{v_i}$$

Claim $[\vec{x} + c\vec{y}]_{\alpha} = [\vec{x}]_{\alpha} + c[\vec{y}]_{\alpha} \quad \forall \vec{x}, \vec{y} \in V, \ c \in \mathbb{R}.$

Note if α, α' are any two bases for V then generally $[\vec{x}]_{\alpha} \neq [\vec{x}]_{\alpha'}$ (except $\vec{0}$).

10 Lecture 10 Feb. 7 2018

10.1 Matrix of linear transformation

Recall Let V be a vector space, let α be any basis for V.

$$\forall \vec{x} \in V, x = \sum c_i \vec{v_i}$$

$$[\vec{x}]_{\alpha} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

So transformation $\vec{x} \to [\vec{x}]_{\alpha}$ is an isomorphism that $V \to \mathbb{R}^n$.

Say W is a vector space and let $\beta = \{\vec{w_i}\}_1^m$ be any basis of W, say $T: V \to W$ is linear.

$$T(\vec{x}) = \sum c_i T(\vec{v_i})$$

So that

$$[T(\vec{x})]_{\beta} = [\sum c_i T(\vec{v_i})]_{\beta} = \sum c_i [T(\vec{v_i})]_{\beta}$$

$$= \begin{bmatrix} [T(\vec{v_1})]_{\beta} & \dots & [T(\vec{v_n})]_{\beta} \end{bmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

 $[[T(\vec{v_1})]_{\beta} \dots [T(\vec{v_n})]_{\beta}]$ is called the <u>the matrix of T w.r.t.</u> α, β . Denoted as $[T]_{\alpha}^{\beta}$

$$[T(\vec{x})]_{\beta} = [T]_{\alpha}^{\beta} [\vec{x}]_{\alpha}$$

Example $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$

$$T(p(x)) = xp(x)$$

$$\alpha = \{1 - x, 1 - x^2, x\}, \ \beta = \{1, 1 + x, 1 + x + x^2, 1 - x^3\}$$

Find $[T]^{\beta}_{\alpha}$.

$$T(1-x) = x(1-x) = x - x^{2}$$

$$x - x^{2} = (-1)(1) + 2(1+x) + (-1)(1+x+x^{2}) + 0(1-x^{3})$$

$$[T(1-x)]_{\beta} = (-1,2,-1,0)$$

$$T(1-x^{2}) = x - x^{3}$$

$$[T(1-x^{2})]_{\beta} = (-2,1,0,1)$$

$$[T(x)] = x^{2}$$

$$[T(x)]_{\beta} = (0,-1,1,0)$$

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} -1 & -2 & 0\\ 2 & 1 & -1\\ -1 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix}$$

Picture V, W are vectors spaces, $\alpha = \{\vec{v_1}, \dots, vecv_n\}$ is a basis for V and $\beta = \{\vec{w_1}, \dots, vecw_m\}$ is a basis for W.

$$V \longrightarrow^{T} W$$

$$\downarrow^{[\]_{\alpha}} \qquad \downarrow^{[\]_{\beta}}$$

$$\mathbb{R}^{n} \rightarrowtail^{[T]_{\alpha}^{\beta}} \mathbb{R}^{m}$$

Note

1.
$$\vec{x} \in Ker(T) \iff T(\vec{x}) = \vec{0} \iff [T(x)]_{\beta} = [\vec{0}]_{\beta} \in \mathbb{R}^m \iff [T]_{\alpha}^{\beta}[\vec{x}]_{\alpha} = 0 \iff [\vec{x}]_{\alpha} \in Ker([T]_{\alpha}^{\beta})$$

2.
$$\vec{w} \in Im(T) \iff [\vec{w}]_{\beta} \in Col([T]_{\alpha}^{\beta})$$

Theorem(Rank nullity for transformation matrix)

$$\dim(Ker([T]_{\alpha}^{\beta}))+\dim(Col([T]_{\alpha}^{\beta}))=n$$

Example $T: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$

$$T(a+bx+c^{2}) = \begin{bmatrix} c & -c \\ a-c & a+c \end{bmatrix}$$

And given bases $\alpha = \{x^2 - x, x - 1, x^2 + 1\}$ and $\beta = \{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}\}$

Answer

$$\begin{split} [T]_{\alpha}^{\beta} &= \begin{bmatrix} 1 & 0 & 1 \\ -1 & 0 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \\ Nul([T]_{\alpha}^{\beta}) &= span \{ \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \} \\ Nul(T) &= span \{ 2x \} \\ Col([T]_{\alpha}^{\beta}) &= span \{ \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \end{pmatrix} \} \\ Col(T) &= span \{ \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & -1 \end{bmatrix} \} \end{split}$$

11 lecture11 Feb. 13 2018

11.1 Algebra of Transformation

Recall Let $T: V \to W$ be a linear transformation, where $\alpha = \{\vec{v_1}, \dots, \vec{v_n}\}$ and $\beta = \{\vec{w_1}, \dots, \vec{w_m}\}$ are bases for V, W respectively.

$$\vec{x} \in Ker(T) \iff [\vec{x}]_{\alpha} \in Ker([T]_{\alpha}^{\beta})$$

 $\vec{x} \in Im(T) \iff [\vec{x}]_{\beta} \in Col([T]_{\alpha}^{\beta})$

Definition $T_1, T_2: V \to W$ are linear transformations, define

$$(T_1 + T_2)(\vec{x}) = T_1(\vec{x}) + T_2(\vec{x}) \forall \vec{x} \in V$$
$$(cT_1)(\vec{x}) = c(T_1(\vec{x})) \forall \vec{x} \in V, \ c \in \mathbb{R}$$

And, let α and β be bases for V, W respectively, then,

$$[T_1]^{\beta}_{\alpha} + [T_2]^{\beta}_{\alpha} = [T_1 + T_2]^{\beta}_{\alpha}$$

 $c[T_1]^{\beta}_{\alpha} = [cT_1]^{\beta}_{\alpha}$

Definition $T: V \to W$ and $S: W \to U$ are linear transformations, then the **composition** $ST: V \to U$ is defined as

$$(ST)(\vec{x}) = S(T(\vec{x})) \quad \forall \vec{x} \in V$$

Note If S, T are linear then the composition ST is also linear. Check

Let
$$a, b \in \mathbb{R}, \ \vec{x}, \vec{y} \in V$$

$$ST(a\vec{x} + b\vec{y})$$

$$= S(T(a\vec{x} + b\vec{y}))$$

$$= S(aT(\vec{x}) + bT(\vec{y}))$$

$$= a(ST(\vec{x})) + b(ST(\vec{y}))$$

Example

omitted

11.2 Matrix of composition

Consider $T:V\to W$ and $S:W\to U$ as linear transformations, let α , β , γ be bases of V, W, U respectively. We know how to compute $[T]^{\beta}_{\alpha}$ and $[S]^{\gamma}_{\beta}$. Now want to find $[ST]^{\gamma}_{\alpha}$.

$$\begin{aligned} \forall \vec{x} \in V, [ST]_{\alpha}^{\gamma}[\vec{x}]_{\alpha} \\ &= [(ST)(\vec{x})]_{\gamma} \\ &= [S(T(\vec{x}))]_{\gamma} \\ &= [S]_{\beta}^{\gamma}[T(\vec{x})]_{\beta} \\ &= [S]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}[\vec{x}]_{\alpha} \end{aligned}$$
This holds true for all $\vec{x} \in V$

$$\therefore [ST]_{\alpha}^{\gamma} = [S]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}$$

Conclusion the matrix of $ST = \text{matrix of } S \times \text{matrix of } T$.

11.3 Inverse transformations

Definition $T: V \to W$ is $isomorphism^{15}$ if and only if there exists function $S: W \to V$ such that

$$(ST)(\vec{v}) = \vec{v} \ \forall \vec{v} \in V \land (TS)(\vec{w}) = \vec{w} \ \forall \vec{w} \in W$$

And S is called the **inverse** of T, written as T^{-1} .

 $proof. \to T$ is an isomorphism means every vector in W has an unique preimage in V the function $S: W \to V$ maps every vector in W to its unique pre-image in V, so S is the inverse of T.

 $proof. \leftarrow \text{Assume } S: W \to V \text{ is the inverse of } T: V \to W \text{ then } T(S(\vec{y})) = \vec{y} \ \forall \vec{y} \in V, \text{ this means } T \text{ is surjective since every } \vec{y} \in W \text{ has pre-image under } T, \text{ that's } S(\vec{y}) \in V. \text{ Now suppose } T(\vec{x_1}) = T(\vec{x_2}), \text{ apply transformation } S \text{ on both sides of the equation, } S(T(\vec{x_1})) = S(T(\vec{x_2})) \text{ we have } \vec{x_1} = \vec{x_2}.$ This implies the transformation is injective. Therefore, transformation T is bijective, that's isomorphism.

Note $T^{-1}(\vec{y})$ is the <u>unique</u> vector \vec{x} , s.t. $T(\vec{x}) = \vec{y}$. That's

$$T(\vec{x}) = \vec{y} \iff T^{-1}(\vec{y}) = \vec{x}$$

¹⁵Recall that isomorphism is equivalent to bijective.

Theorem If $T: V \to W$ is an isomorphism then the inverse of T, T^{-1} , then $T-1: W \to V$ is linear. ¹⁶

Proof.

WTS
$$T^{-1}(a\vec{w_1} + b\vec{w_2}) = aT^{-1}(\vec{w_1}) + bT^{-1}(\vec{w_2}) \forall a, b \in \mathbb{R}, \forall \vec{w_1}, \vec{w_2} \in W$$

$$T^{-1}(\vec{w_1}) \text{ is the unique } \vec{x_1} \text{ s.t. } T(\vec{x_1}) = \vec{w_1}$$

$$T^{-1}(\vec{w_2}) \text{ is the unique } \vec{x_2} \text{ s.t. } T(\vec{x_2}) = \vec{w_2}$$

$$T^{-1}(a\vec{w_1} + b\vec{w_2}) \text{ is the unique } \vec{x} \text{ s.t. } T(\vec{x}) = a\vec{w_1} + b\vec{w_2}$$

$$\therefore T(\vec{x}) = a\vec{w_1} + b\vec{w_2}$$

$$= aT(\vec{x_1}) + bT(\vec{x_2})$$

$$= T(a\vec{x_1} + b\vec{x_2})$$

$$\therefore \vec{x} = a\vec{x_1} + b\vec{x_2}$$
Also $T(\vec{x}) = a\vec{w_1} + b\vec{w_2}$

$$\therefore \vec{x} = T^{-1}(a\vec{w_1} + b\vec{w_2}) = a\vec{x_1} + b\vec{x_2}$$

$$= aT^{-1}(\vec{w_1}) + bT^{-1}(\vec{w_2})$$

Theorem $T: V \to W$ is isomorphism, then let α and β are bases of V and W representing then $[T]^{\beta}_{\alpha}$ is invertible, and

$$([T]_{\alpha}^{\beta})^{-1} = [T^{-1}]_{\alpha}^{\beta}$$

Proof. omitted

11.4 Change of basis

What's the effect of a change of basis on coordinate of a vector and matrix of transformation.

Theorem Let α and α' be two bases of V, then

$$[I]^{\alpha'}_{\alpha}[\vec{x}]_{\alpha} = [\vec{x}]_{\alpha'}$$

 $^{^{16}\}mathrm{Note}$: the conclusion could be changed into isomorphism.

Proof.

Let
$$\vec{x} \in V$$

$$I(\vec{x}) = \vec{x}$$

$$[I(\vec{x})]_{\alpha'} = [\vec{x}]_{\alpha'}$$

$$[I]_{\alpha}^{\alpha'}[\vec{x}]_{\alpha} = [\vec{x}]_{\alpha'}$$

 $[I]_{\alpha}^{\alpha'}$ is called the change of basis matrix from α to α' .

Computation Let $\alpha = \{\vec{a_1}, \dots, \vec{a_n}\}$, then

$$[I]_{\alpha}^{\alpha'} = [[\vec{a_1}]_{\alpha'} \mid \dots \mid [\vec{a_n}]_{\alpha'}]$$

12 Lecture 12 Feb. 14 2018

Recall Let α and β be bases for V and $I: \to V$ is the identity transformation, then

$$[I]^{\beta}_{\alpha}[\vec{x}]_{\alpha} = [\vec{x}]_{\beta}$$

Also,

$$[I]^{\alpha}_{\beta}[\vec{x}]_{\beta} = [\vec{x}]_{\alpha}$$

Example Let $\alpha = \{x^2, 1+x, x+x^2\}$ and β be bases for $P_2(\mathbb{R})$ and

$$[I]_{\alpha}^{\beta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix} \text{ and } [\vec{p(x)}]_{\beta} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Solution omitted

Theorem Suppose $[T]_V^W$ is linear, α and α' are any two bases for V and β and β' are any two bases of W, then,

$$[T]_{\alpha'}^{\beta'} = [I]_{\beta}^{\beta'} [T]_{\alpha}^{\beta} [I]_{\alpha'}^{\alpha}$$

Proof.

Recall
$$T = ITI$$

Consider let $\vec{x} \in V$

$$[I]^{\beta'}_{\beta}[T]^{\beta}_{\alpha}[I]^{\alpha}_{\alpha'}[\vec{x}]_{\alpha'}$$

$$= [I]^{\beta'}_{\beta}[T]^{\beta}_{\alpha}[\vec{x}]_{\alpha}$$

$$= [I]^{\beta'}_{\beta}[T(\vec{x})]_{\beta}$$

$$= [T(\vec{x})]_{\beta'}$$

$$= [T]^{\alpha'}_{\beta'}[\vec{x}]_{\alpha'}$$

$$\implies [T]^{\alpha'}_{\beta'} = [I]^{\beta'}_{\beta}[T]^{\beta}_{\alpha}[I]^{\alpha}_{\alpha'}$$

Also,

$$[T]^{\beta}_{\alpha} = [I]^{\beta}_{\beta'}[T]^{\beta'}_{\alpha'}[I]^{\alpha'}_{\alpha}$$

Special Case Consider when V = W, $\alpha = \beta$ and $\alpha' = \beta'$. we have

$$[T]_{\alpha'}^{\alpha'} = [I]_{\alpha}^{\alpha'} [T]_{\alpha}^{\alpha} [I]_{\alpha'}^{\alpha}$$

where

$$([I]^{\alpha'}_{\alpha})^{-1} = [I]^{\alpha}_{\alpha'}$$

the equation becomes

$$[T]_{\alpha'}^{\alpha'} = ([I]_{\alpha}^{\alpha'})^{-1} [T]_{\alpha}^{\alpha} [I]_{\alpha'}^{\alpha}$$

and can be written in the form of

$$B = P^{-1}AP$$

Definition Two matrices A and B are **similar** if there exists an <u>invertible</u> matrix P s.t.

$$B = P^{-1}AP$$

A and B representing the same transformation relative to different bases and P is the change of basis matrix if and only if A and B are similar.

Example Omitted