

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 276 100 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 24.08.94 (5) Int. Cl. 5: B29C 55/18, B29C 55/08,
B29C 55/14

(21) Application number: 88300333.7

(22) Date of filing: 15.01.88

Consolidated with 88900835.5/0342193
(European application No./publication No.) by
decision dated 06.03.91.

(54) Process and apparatus for compressive transverse stretching of polymeric sheet material.

(30) Priority: 16.01.87 GB 8701047
16.04.87 GB 8709260

(43) Date of publication of application:
27.07.88 Bulletin 88/30

(45) Publication of the grant of the patent:
24.08.94 Bulletin 94/34

(64) Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

(56) References cited:

EP-A- 0 090 380	CH-A- 595 498
DE-A- 2 641 533	DE-A- 3 244 375
FR-A- 1 447 986	FR-A- 2 376 738
GB-A- 1 526 722	GB-A- 1 526 724
JP-B-48 029 386	US-A- 2 793 676
US-A- 4 179 253	US-A- 4 368 565

(73) Proprietor: Rasmussen, Ole-Bendt
Forchwaldstrasse 23
CH-6318 Walchwil/Zug (CH)

(72) Inventor: Rasmussen, Ole-Bendt
Forchwaldstrasse 23
CH-6318 Walchwil/Zug (CH)

(74) Representative: Lawrence, Peter Robin
Broughton et al
GILL JENNINGS & EVERY,
Broadgate House,
7 Eldon Street
London EC2M 7LH (GB)

EP 0 276 100 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

This invention relates to process and apparatus for stretching polymeric sheet material by passage between intermeshing grooved rollers and thereby effecting both transverse stretching and compression of the material.

It has been known for forty years to achieve transverse tentering by passage of the film between grooved rollers wherein each groove extends substantially helically or circularly around each roller and consists of a base, a peak at each side, and side walls that extend between the base and the peaks. The intermeshing of the peaks, as the rollers come together in the nip, causes the material to be stretched transversely into pleats that extend substantially in the machine direction. Depending upon whether the grooves are circular or helical, the pleats will extend diagonally or substantially exactly along the machine direction.

In all these methods the film is relatively freely suspended between the peaks even at the point of greatest intermeshing. If the peak is narrow relative to the film thickness the effect of the peak is to cause stretching mainly on the peak, but if the peak is relatively broad then stretching occurs irregularly between the peaks. Accordingly the process is normally repeated several times but still yields a profiled product and the profile is then non-uniform.

In some processes the side walls of the grooves are outwardly inclined. For instance in JP-B-4829386 such an apparatus is shown in which the peak height is 10mm, and the separation of adjacent peaks appears also to be about 10mm. In each groove the film is squeezed between the base and the peak (having a radius of curvature of 4mm) of the corresponding groove but the film apparently is not under compression at other positions within the groove. Thus it is not squeezed between the side walls. The main purpose of this step seems to be uniaxial orientation, since biaxial orientation is achieved in the overall process (and in the process of JP-B-4619831) by passing the sheet material subsequently through intermeshing grooved rollers in which the grooves extend axially. Transverse stretching by intermeshing grooved rollers in which the side walls are outwardly inclined is also described in Schwartz U.S. 4,116,892.

All the stretching in the Japanese publication and in Schwartz is caused by the peaks and the outwardly extending side walls play substantially no part in the process. A design that has generally been found more satisfactory has vertical side walls, thereby leaving a greater amount of space for free movement of the film between intermeshing peaks. Such apparatus is described in GB 1,526,722, 1,526,723 and, especially, 1,526,724.

Unfortunately in such apparatus the peak separation cannot be too small, e.g., less than about 2mm, as otherwise there is substantial risk of mechanical damage to the peaks. Also only relatively thin polymeric sheet materials (e.g., below 200 or 300g/m²) can be handled when the peaks are close, e.g., about 2mm or a little more.

It would be desirable to reduce the risk of damage to the peaks and to be able to obtain a more uniform profile and/or to be able to stretch heavier material. It would also be desirable to be able to achieve more uniform effect on the sheet material in a single pass than has been obtainable previously. These objectives would be desirable not only for transverse stretching of single sheet material but also for fibrillation of appropriate sheet materials and for bonding laminates.

In FR-A-2376738 and GB-A-1593012 a process and apparatus are described for producing oriented plastic strapping with high tensile strength and resistance to longitudinal splitting, for use in packaging applications. The band fed to the apparatus and the product have a width of less than 1 cm. A single band is squeezed between a pair of grooved rollers which have intermeshing grooves with outwardly inclined side walls with a peak to peak distance of 2.54 mm and a distance from peak to base of 2.54 mm to corrugate the material. The material which is fed between the rollers is an extruded essentially unoriented band. After passage between grooved rollers the corrugated band is longitudinally stretched whilst a width controller controls the simultaneous necking down of the band.

In the invention, continuous polymeric sheet material is stretched by a process comprising transverse tentering of the material by passage between intermeshing grooved rollers in which each groove extends substantially helically or circularly around each roller and consists of a base, a peak at each side and outwardly inclined side walls that extend between the base and the peaks, and the sheet material is thereby stretched transversely into pleats that extend substantially in the machine direction, and the separation between adjacent peaks is less than about 3mm and the process is characterised in that the width of the sheet material and the total roller length are both at least 50cm, the sheet material comprises a sandwich of melt oriented sheet materials each with a main direction of orientation and having their main directions of orientation transverse to each other and the side walls of intermeshing grooves have portions that are substantially parallel to each other and the sheet material is compressed between substantially every paid

of the said substantially parallel side wall portions by forcing the rollers together with a pressure that is substantially uniform along the length of the rollers and that is at least 17kg/cm axial length of the roller, thereby effecting the stretching by combined tentering and compression.

Apparatus according to the invention comprises the defined intermeshing grooved rollers wherein the separation between adjacent peaks is less than about 3mm and the side walls of intermeshing grooves have portions that are substantially parallel to each other which is characterised in that one of the rollers comprises a long roller more than 50cm long and the other is provided by a plurality of short rollers each being less than 50cm long that are biased to the long roller with substantially equal pressure, per centimetre axial length, and that are axially located so that together they intermesh with the long roller over substantially its entire length and in that the length of the long roller is at least 50cm and the apparatus includes means for forcing the rollers together with a pressure that is substantially uniform along the length of the rollers and that is at least 17kg/cm axial length of the roller and thereby squeezing the sheet material between substantially every pair of substantially parallel side wall portions with substantially equal, pressure and stretching the sheet material into pleats by combined tentering and compression.

By the invention it is possible to obtain a surprising improvement in homogeneity in the stretching pattern and increased strength properties (especially tear propagation strength and puncture strength and impact strength). Thick films, typically of a thickness that could not be satisfactorily processed by the earlier processes, can be processed in the invention to give a product in which any profiling is regular and therefore acceptable while thinner films can be processed to give a substantially uniform, non-profiled film.

If the film is being fibrillated during the process (e.g., by puncturing it prior to the process or by reliance upon foaming or the presence of grains in the film) a finer and more uniform fibrillation pattern is achieved. When two sheet materials are to be bonded during the stretching, improved bonding is often achieved. The risk of damage to the peaks is lessened.

The transverse stretching of the invention can be described as a transverse calendering process and involves both transverse stretching and calendering, whereas the prior processes only involved the stretching. The stretching occurs as the film enters the nip between the rollers and often also while it is in the nip. The compression occurs at the point where the two rollers are under pressure. It is essential that the peak separation (measured along the axial length of the roller) is low, below 3mm, as the advantages of the invention are not obtained at greater peak separations than this. In practice the separation is normally about 2mm or below since best results are obtained at values below 2mm and results deteriorate as the separation increases. For instance 2.5mm is often a suitable maximum for most processes and materials. At these low peak separations the length of each side wall is inevitably also low (generally less than about 2mm) and this is important. Cold flow of sheet material under compression between substantially parallel surfaces can only occur over a very short distance. If the side walls were very much longer than about 2mm a much less uniform film structure would be obtained. The peak separation, and the length of each side wall, is generally in the range 1 to 2mm.

Preferably each peak has a substantially cylindrical partial cross-section with a radius typically of 0.1 to 0.5mm, often 0.2 to 0.4mm. Preferably the peak radius is of the same order as the film thickness. For instance good results are obtained when the peak radius is about 0.2mm and the film is about 200 μm thick, but satisfactory results can then still be obtained at thicknesses of, e.g., 500 μm .

The peak and base generally merge into a part of the side wall that is substantially flat in cross section and that typically extends over 25 to 75% of the distance between the peak and base. The portion that is parallel with the portion of an intermeshing groove is generally this flat portion. Generally it is desirable for the film to be under compression over as much of the side wall as possible but satisfactory results can be obtained even if the portion extends only a minor portion of the height of the side wall. The side walls generally extend at an angle of about 45° to about 70° relative to the axis, so that the angle defined by the walls at the peak is about 40 to 90°, preferably 50 to 60°.

Preferably the base of each groove is shaped so that the film is not under compression between a peak and the associated base, e.g., so as to leave a small reservoir between the film that is being stretched over the peak and the base, as shown in Figure 2 of the accompanying drawings.

The grooves may be truly or substantially circular or helical. The angle of the groove to the true circle (and thus the machine direction) is generally not more than about 20°, and is preferably below 15°, since if the angle is too large it can be difficult to ensure satisfactory intermeshing. Thus the groove is preferably at an angle of more than 70° to the axis. The intermeshing grooves of the rollers must match exactly in order that they intermesh without fouling. The rollers should be of steel or other rigid material, preferably hardened steel.

The degree of transverse stretching for any particular polymeric sheet material depends in part upon the degree and angle of melt orientation, the pressure between the rollers, the thickness of the sheet, and

- the speed at which the sheet material passes through the rollers. The rollers are forced together with a pressure of at least 17kg per centimetre axial length. This can give useful transverse stretching, e.g., at least 10%, at relatively low speeds of travel, e.g., 5 or 10 metres/minute. However preferably the rollers are forced together with pressures of above 50kg/cm and normally above 100kg/cm, e.g., 200 to 300 or even up to 500kg/cm axial length, or even higher, since this can give good transverse stretching at high rates of travel, e.g., 40 metres/minute or double this or more. Preferably the amount of transverse stretching in a single pass between the intermeshing rollers is at least 15%, e.g., up to 50% or more. The amount of stretch is the difference between the straight line width of the material before the transverse stretching and the length of a median line through the pleated material.
- 10 It is necessary that the spacing between substantially every pair of side walls should be substantially equal along the entire length of the rollers in order that the film is subjected to substantially equal pressure at each position along the rollers. Preferably the spacing between each pair is within ± 5 microns, or at the most 10 to perhaps 15 microns. Unfortunately it is difficult to ensure this degree of accuracy over more than, e.g., 50cm roller length and if uniform separation is not achieved then there is a risk of breaking the peaks, in addition to producing film of inferior quality. Even if a long roller were to be machined sufficiently accurately, small and accidental temperature differences between the rollers or along the length of the rollers will cause differential thermal expansion of the rollers. Also it is difficult, due to deflections, to apply pressure uniformly over very long rollers. Also folds or dirt in the polymeric material may concentrate the forces over a small area and break the peaks.
- 15 20 Of the intermeshing grooved rollers, one of the rollers comprises a long roller and the other roller is provided by a plurality of short rollers that are preferably substantially independently biased to the long roller with equal pressure, per centimetre axial length, and that are axially located so that, together, they intermesh with the long roller over its entire length. If desired there can be more than one long roller arranged axially to make up the entire width of the sheet material, but generally there is a single long roller 25 of the desired sheet material width and a plurality of short rollers. By this means it is possible to achieve the results of the invention even though the width of the film, and therefore the long roller, can be more than 2 metres, e.g., 5 metres or more.

Generally there are three or more short rollers, each generally being below 50cm long, and each is responsible for stretching part only of the film, the short rollers being arranged so that all the film is stretched, and optionally with small overlaps of the stretched portions. It is often preferred to make the short rollers as short as possible the provision of necessary bearings and supports will conveniently permit, for instance typically 4 to 15cm long, since this facilitates conducting the process on wide film and under high pressure. Sometimes it is preferable for a short roller to be the length of, for instance, only 1 or 2 substantially circular grooves. Each short roller is individually biased towards the long roller with the desired force, for instance by action of a spring or, preferably, by hydraulic or pneumatic means. Direct contact of the intermeshing rollers in the absence of the film should be avoided and if the machinery is used for different film widths, or if the position of the side edges varies, it is easy to take short rollers at one or both sides of the film in and out of contact, e.g., by turning on and off the hydraulic or pneumatic pressure.

The short rollers are preferably arranged in mutually staggered rows at different peripheral positions on the longitudinal roller, the staggering being such that the short rollers together cover substantially the entire length of the long roller, optionally with small overlaps. Preferably the short rollers are located in two mutually staggered rows at substantially diametrically opposite positions on the long roller. By arranging the short rollers in this manner, deflections of the long roller are minimised. Near the ends of each short roller, corresponding to an area of overlap between rollers, the short roller may be slightly tapered so as to fade the stretching effect.

In order to facilitate the machining, the long roller may itself be formed from a plurality of roller segments that are firmly connected to one another in the axial direction. Preferably each of the roller segments substantially matches each of the short rollers. At the connections, each segment will end either in a part groove or, preferably, in a part peak. In order to avoid the need for extreme accuracy when fitting the segments together and to reinforce the ends of the segments, each pair of connected part-grooves or part-peaks can be made, for example, 0.1 to 0.5mm wider than the overall width of, respectively, the grooves or peaks. The resulting small irregularities in optical and other properties will be acceptable for most uses of the sheet material.

If the grooves are helical, it will be necessary to drive both intermeshing rollers (e.g., the long roller and all the short rollers) but if the grooves are circular it may be sufficient to drive only one of the intermeshing rollers. The short rollers can then be idler rollers. In order to reduce the axial length of each short roller it is preferred that the bearing or bearings for each roller is inside the roller and the short rollers rotate around a fixed shaft carried on a forked or other suitable support. When it is necessary to drive the short rollers the

rollers can be flexibly coupled together and it may then be necessary for the bearings to be axially outside the rollers. For instance drive can be transmitted along the flexible axis of a series of flexibly coupled short rollers by couplings, between each adjacent pair of rollers, that comprise a pair of plates that have fingers or other interengaging members and that are pressed together but can individually move a small radial and axial distance.

In an alternative system the short rollers are arranged on a common, long, roller core using a flexible coupling between each short roller and the core. The coupling comprises springs or rubber or other suitable flexible means by which the short rollers can be rotated with the core and by which roller pressure exerted on the core towards the long roller is transmitted through the short rollers. Preferably the flexible coupling also comprises guides which only permit axial and radial, but not tangential, movement of the short roller relative to the core. For instance cylindrical grooved sections of steel may be fitted around a rubber coated core. This apparatus minimises marking of the sheet in the boundaries between the different stretching zones of adjacent rollers but suffers from the disadvantage that it can be difficult to achieve high and even pressures.

It is desirable that at least one of the intermeshing rollers should be supported sufficiently slidably along its axis to allow self adjustment of the intermeshing teeth of the rollers. For instance when there are long and short rollers the long roller may be mounted rigidly and the short rollers may be mounted so as to allow self adjustment by axial movement along the axis.

The pleated sheet material obtained by the described process may be subjected to various post-treatments. Preferably the material, substantially immediately and therefore without prior elimination of the pleats, is stretched longitudinally at a stretch ratio that is sufficient substantially to eliminate the pleats. This can lead to very uniform stretching and it is often advantageous to conduct the stretching at low temperatures, near or preferably below room temperature. This method will normally reduce the splitability of the sheet material.

The initial transverse stretching, generally followed by longitudinal stretching, creates microscopic initiation or stretching zones and these impart satisfactory properties such that further treatment is not essential. Preferably however the resultant longitudinally stretched material is subsequently stretched transversely. Thus the defined process of the invention may be repeated, preferably at a temperature about 50 °C or below, so as to give a biaxially oriented sheet with minimum variations in thickness. Alternatively it may be satisfactory to stretch the sheet transversely in such a subsequent (to the step of the present invention) step by conventional intermeshing grooved rollers, i.e., rollers in which each groove extends substantially helically or circularly around each roller and is defined by a pair of peaks and side walls and the sheet material is stretched around each peak substantially without being squeezed between adjacent side walls. Because the microscopic stretching zones act as initiators for subsequent stretching, satisfactory results can be obtained with relatively coarse grooved rollers, for instance with a peak separation of up to about 40 or 50mm, even when the stretching temperature is below 50 °C.

Preferably the width of the sheet material (i.e., the transverse linear separation of the side edges) after the initial transverse stretching process of the invention is about 100% to 130%, preferably about 100%, to 110% of the initial width, and after the longitudinal stretching it is preferably about 70 to about 100%, most preferably about 100% of the initial width, and after any further lateral stretching using intermeshing grooved rollers it is preferably about 110% to 200%, preferably about 120% to 180%, of the width after the longitudinal stretching. Thus preferably the transverse width remains substantially unchanged after the first transverse and longitudinal stretching processes but may increase in the final transverse stretching.

The sheet material may have an initial gauge that is normally below 1mm and generally below 600µm, preferably below 500µm, or (indicated in weight) is preferably below 600g/m², most preferably below 500g/m². Its gauge is generally above about 200g/m² and above about 200 or 300µm, although it can be thinner, e.g., down to about 100µm. The polymeric material preferably comprises polyalkylene polymer, preferably an ethylene or propylene homopolymer or copolymer, in particular it may be isoand syndio-tactic polypropylene, high density polyethylene (HDPE) (often high molecular weight), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and mixtures and coextrudates.

The sheet material may comprise a plurality of layers and these may be bonded or unbonded before the process. In one preferred process the sheet material comprises an unbonded laminate of two bondable sheet materials and the laminate is bonded by the process. In particular the transverse stretching of the invention followed by the described longitudinal stretching can lead to higher bonding forces than the known grooved roller lamination procedures. Preferably at least one of the two sheet materials that are to be bonded is a co-extruded laminate having a bonding surface layer facing the other sheet material of the pair. Optimum physical and other strength properties are generally obtained when all stretching steps are conducted at a temperature substantially below the temperature at which the contacting surfaces of the

laminate would bond together by simple contact.

- The sheet material that is used in the process of the invention comprises a sandwich of melt oriented sheet materials each with a main direction of orientation and having their main directions of orientation transverse to each other. The materials may be uniaxially oriented sheet materials having their directions of orientation transverse to each other. Thus the process can result in biaxial stretching of cross-sandwiched film. This film may be produced by melt orienting a tubular film and cutting it helically at an angle to the direction of orientation so as to produce an obliquely oriented sheet and cross laminating it with a similarly produced oriented sheet material. The biaxial stretching can then be combined with bonding of the layers, as described above. Preferably the resultant sheet material is a cross laminated film as described in GB 1,526,722. The invention permits the treatment of polymer compositions that are stiffer than have been usable previously to produce a final sheet having a more uniform thickness than has been obtainable previously.

It is generally desirable for a polymeric sheet material to have at least one surface which is as smooth as possible. It is possible to obtain a surprising smoothness on one side if the stretched sheet material that is obtained in the process comprises a laminate of two or more separable sheet materials and the separable sheet materials are peeled apart after the process. The facing layers of the separable sheet materials can then be of very high surface quality and smoothness. For instance the surface can then have increased gloss, an increased coefficient of friction, improved print quality performance when printed, and improved heat and supersonic sealability. It exhibits substantially complete lack of micro topography when examined by a scan electron microscope. To facilitate separation, at least one sheet material of each separable pair is preferably a co-extruded laminate having a release surface layer facing the other sheet material of the pair. The release surface layer can be of any material that will promote peeling. It may be selected to further impart to the peeled sheet material the desired surface properties, e.g., frictional or easy heat sealing properties. For instance heat sealable sacks can be made with a smooth inner surface exposed by the peeling (giving good sealing) and a corrugated outer surface (giving stacking stability since dust will collect in the furrows of the corrugations). Alternatively a glossy outer surface can be provided for printability.

At the same time as selecting materials such that two or more sheet materials can be peeled apart after the process of the invention, it is also possible to select materials such that two or more other layers become bonded to one another, in the manner described above. Thus a number of separate plies (some in the form of a co-extruded film) may be subjected to the process of the invention to cause bonding of sets of two, three or more layers into laminates while permitting peelability of adjacent laminates. For instance each peelable laminate may be provided by bonding together, during the transverse and longitudinal stretching, two co-extruded films each comprising a surface layer, at least one strength layer and a surface bonding layer, with the surface bonding layers facing each other and peelability may be provided by selecting appropriately the surface layer on the innermost face of the laminate or by providing a separate release layer between the two sets of co-extruded layers.

When, as often happens in such processes, the thickness of sheet material being passed between the intermeshing rollers is rather high, the pleats may be rather deep and it can then be advantageous to subject the pleated sheet material to a heat treatment while allowing shrinkage in at least its transverse direction. The sheet material may be heated before or after the peeling process. If relatively thin zones are formed by over-stretching during passage between the intermeshing rollers, they have a pronounced tendency to contract when heated to a suitable temperature, thus causing transverse shrinkage, and so variations in thickness of the transversely stretched material can be reduced or almost eliminated by the heating. Preferably the heating results in at least 7% shrinkage, and often at least 12% shrinkage, in the transverse direction. Generally the shrinkage is below 30%. The heating may be conducted in an oven but preferably is effected by contacting the material with a heated roller, which may thus have a stabilizing effect on the transverse shrinkage. Preferably the heating is conducted while the sheet material is still longitudinally pleated, so as to permit an even shrinkage while the sheet material still contacts the heated roller. Reference should be made to U.S. 4,629,525 for additional information on suitable heat treatments and cross laminates that can advantageously be subjected to the treatment.

A particularly preferred main layer for use in a laminated sheet produced in the invention is formed of a blend of high molecular weight high density polyethylene with significantly lower molecular weight low density polyethylene, the latter preferably being selected from copolymers and/or branched polyethylenes which have the same or higher elongation at break (tested at room temperature under slow stretching) as the high molecular weight polyethylene and which are capable of distinctly segregating, while forming a distinct microphase, from the high molecular weight polyethylene on cooling of a molten homogeneous blend of the components. The blending ratio of the polyethylenes is preferably 25:75 to 75:25. The inclusion of polypropylene having significantly lower molecular weight than high molecular weight polyethylene can

also be advantageous, in amounts of from 0 to 70%, based on the combined weight of polypropylene and both polyethylenes.

Throughout this specification the high molecular weight high density polyethylene (HMHDPE) preferably has a melt flow index of about 0.2 or lower by ASTM D1238 condition E and the low density polyethylene (LDPE) is preferably linear low density polyethylene (LLDPE).

A further object of the embodiment of the invention, in which the stretched sheet material comprises a laminate of two or more separable sheet materials and the separable sheet materials are peeled apart after the process, is to provide an improved sheet material with one side mainly consisting of a relatively hard and the other of a relatively soft polymer material. The side mainly consisting of the hard material can highly improve wear and puncture properties.

The presence of a layer of hard polymer material will always tend to give deeper profiling, when the sheet material is stretched between grooved rollers, but it was found in the experiments leading to the present invention, that hard material in the core of a sheet under grooved-roller stretching gave much less profiling than similar material at one or both surfaces.

Accordingly, it can be very advantageous to arrange the layer of hard polymer in or near the middle of the sheet during the stretching, and bring it to or near to the surface by the peeling process described above.

As examples, the relatively soft material on one side can be a polyethylene composition, preferably a combination of HMHDPE and LLDPE as described above, and the relatively hard material on the other side can be plain or almost plain HMHDPE, or alternatively can be mainly polypropylene.

The invention is illustrated in the accompanying drawings in which:

Figure 1 shows, on an approximately 20X enlarged scale, the intermeshing surfaces of a grooved roller system as described in GB 1,526,724;

Figure 2 shows, on a similar scale, the intermeshing surfaces of a grooved roller system in accordance with the invention;

Figure 3 is an end diagrammatic view of an apparatus according to the invention that includes both intermeshing rollers according to the invention and longitudinally stretching rollers;

Figure 4 is a side view of the top part only of the apparatus of Figure 3;

Figure 5 is a plan view of the intermeshing rollers of Figure 3, the couplings and all other parts being omitted, and

Figures 6 to 8 are drawings prepared from micrographs of cross sections of various sheet materials, Figure 8 being comparative.

Conventional intermeshing rollers A and B for the transverse stretching of a film 4 are shown in Figure 1 and have circular or helical grooves formed of a base 3a, 3b, side walls 2a, 2b and peaks 1a, 1b. The peaks are about 500 μ m wide and have a separation of about 2mm. The film is stretched at 4° around each peak if the peak has a small radius (having an order of magnitude generally similar to the film thickness) and is in a relatively relaxed state, and is less stretched at 4" between the peaks. If the peak has a radius much larger than the film thickness, stretching occurs primarily between the peaks.

The rollers used in the invention have grooves as shown in Figure 2. Each groove comprises a base 6a or 6b, outwardly inclined side walls 5a or 5b and a peak 7a or 7b. The side walls 5a and 5b of opposing rollers are parallel over a portion of their length. Each base 6a and 6b is preferably of a size such that the film is not under compression between the peak and the base, even though it is under compression between the side walls 5a and 5b. For instance each base may be shaped so as to provide a small space 8 between the film and the base. The peaks 7a are preferably separated by less than about 2mm.

The apparatus of Figures 3 to 5 comprises a long grooved roller 9 and mutually staggered rows of short grooved rollers 10 and 11 on opposite sides of the roller 9. Each of the rollers has a groove profile as shown in Figure 2. The rollers 10 and 11 are supported by, respectively, arms 12 and 13 which are pivoted at the frame 14 and are actuated by hydraulic or pneumatic means 15 so that the rollers 10 and 11 can be pressed against the roller 9 with any chosen force. In practice the roller 9 is driven (by means not shown) and the rollers 10 and 11 can then be driven by the roller 9 through the sheet 4. However if desired the rollers 10 and 11 can be driven together through flexible couplings 16.

The apparatus may include a longitudinal stretching unit consisting, in Figure 3, of four smooth rollers 17, 18, 19 and 20 driven at a speed so as to give the desired degree of stretching, and it may also include at least one further pair of intermeshing grooved rollers 21 and 22. These may be of either design shown in Figure 1 or Figure 2, depending upon the desired purpose. If a conventional design, similar to Figure 1, is chosen, the peak separation can be sufficiently great (e.g., 40mm) and the peak width so high that stretch ratios up to about 1.8:1 or more can be obtained in one stretching step without any practical risk of damaging the roller surface. With so coarse a roller surface pattern, useless results would have been

obtained in prior processes. Good results are obtained in the invention because of the micro-stretch zones formed in the first stage. The peaks are, however, preferably tapered at the tips, with a semi-cylindrical peak radius of about 0.1 to 0.4mm.

The grooved rollers 9, 10 and 11 (and 21 and 22 if present) must be made of hard material, generally

- 5 hardened steel. Typically the rollers all have diameters in the range 50 to 250mm, generally 75 to 200mm. For instance the long roller may have a diameter of about 150mm and the short rollers may have a diameter of about 100 to 150mm.

Slight axial movement of the rollers 10 and 11 is permitted to improve accurate intermeshing. The spacing between the surfaces 5a and 5b should be within $\pm 5\mu\text{m}$ along the length of roller 9. In a typical 10 apparatus each roller 10 is around 12cm long, and the peaks are 1.4mm apart, the radius of each peak is 0.2mm and the angle defined by the side walls at the peak is 55° . The sheet 4 may enter the apparatus preheated, e.g., to 35 to 50°C and the long roller 9 may be preheated to about the same temperature. Rollers 17 to 20 will normally also be heated, but preferably to a lower temperature.

The sheet emerging from the nip between rollers 9 and 11 will have a longitudinally pleated structure as

- 15 shown in Figure 6 (which shows a 4-ply cross laminate 240 μm thick in the portions which have been under compression).

The cross laminate shown in Figure 7 is a 2-ply laminate made in Example 1; each ply was about 20 90g/m² and 300mm wide before stretching and had been given a structure similar to Figure 6 by passage between rolls 9, 10 and 11 having a surface configuration as in Figure 2, and had then been stretched longitudinally substantially to eliminate the pleated configuration, and had then been stretched by four 20 passages between grooved rollers as shown in Figure 1, having a peak separation of 1.8mm, followed by a final longitudinal stretch.

The film of Figure 8 was formed, as in Example 2, from the same sheet material and was subjected to the same process steps as the film of Figure 7 except that grooved rollers of the type shown in Figure 1

- 25 and having a peak separation of 1.8mm were used in place of the grooved rollers of Figure 2. The film in both cases (Figures 7 and 8) was allowed to spread freely between each of the conventional grooved roller stretching steps, while retaining a wavy shape. Spreading was not allowed between the final conventional 30 grooved roller step and the final longitudinal stretching. The total stretch ratios are about 1.4:1 in each direction and the final gauge is 90g/m². It is clearly apparent that the film made by the invention, Figure 7, is of much more uniform thickness than the film made using conventional grooved rollers, Figure 8.

Example 1

Two co-extruded films were passed between the nips between rollers 10 and 9, and 10 and 11, in

- 35 Figure 3 and which have a peak separation of 1.4mm, a tip radius of 0.2mm and a diameter about 100mm. Each short roller is 120mm long. The grooved rollers 20, 21 have a peak separation of 1.8mm and a tip radius of 0.25mm. Each film consisted of three layers, a heat sealing surface layer constituting 15% of the thickness and formed of LLDPE, a laminating layer constituting 10% of the thickness on the opposite surface formed of 80% LLDPE and 20% EPDM, and a central layer, constituting 75% of the film, formed of 40 50% HMHDPE and 50% LLDPE. The films were arranged with the laminating layers in contact. The films were made by extrusion at about 240°C as a tubular film with a blow ratio of 1:1 followed spiral cutting at 45° to form perpendicular cross lamination. Each film was about 90g/m² (approximately 100 μm thick). The two films were passed between the grooved rollers 9 and 10/11 with a hydraulic pressure of 1.46 ton on each 120mm grooved roller (approximately 120kg per axial centimetre). The speed at the entrance to the 45 apparatus was 10m/min and the ambient temperature and the temperature of each roller was about 35°C. The film was hereby transversely stretched and resulted in a pleated configuration generally as shown in Figure 6. Without any transverse tenting to eliminate the pleats, it was then longitudinally stretched, then transversely stretched in four steps as described above for Figure 7, and finally again stretched longitudinally. Hereby it acquired the configuration shown in Figure 7. Its falling ball (1kg alumina) impact strength 50 for a 90g/m² film was 150cm but in the comparison of Figure 8 an 87g/m² prior art film had a value of 90cm.

Example 2

- 55 The process of Example 1 was repeated except that it was stopped after the initial transverse stretching and the stretch ratio after the treatment around roller 9 was recorded at different hydraulic pressures on each 12cm roller. In all these ratios, the measured value is the ratio of the length of the median line through the pleated film to the straight line width of the film as measured before the stretching. The stretch ratio was

20%, or 1.2, even when the force on the roller was as low as 17kg/cm. The following values were recorded.

5

Force (tons)	0.209	0.418	0.627	0.835	1.04	1.25
Stretch	20%	30%	40%	45%	50%	60%

Example 3

10 The example relates to the manufacture of a high-strength cross-laminate in a commercial process using a technique in which the sheet is stretched and laminated while in double thickness and is separated at the end of the process. Each layer is a coextruded film and contains

(1) one surface layer which acts as release layer in the manufacturing process, and which at the same time improves the heat-sealing properties (in the following referred to as release/seal layer) and

15 (2) another surface layer which promotes the bonding (blocking) of the plies of the laminate to each other.

A tubular film is extruded comprising a main layer in the middle, in which layer the strength essentially resides, and the above mentioned release and lamination layers.

The three layers form 75%, 15% and 10%, respectively, of the total film. The gauge of the extruded film is 70g/m².

The main layer consists of a very intimately blended composition of 50% high molecular weight high density polyethylene (HMHDPE) of the trade name "Hostalen 9255", and 50% linear low density polyethylene (LLDPE) of melt flow index 1.0 of trade name "Dowlex 2045".

The release/seal layer consists of 100% of the same LLDPE.

25 The lamination layer consists of an intimate blend of 70% of the same LLDPE + 30% EPDM of trade name "Nordel 1500".

The extrusion temperature is 240 °C, the diameter of the annular extrusion orifice is 385mm and the blow ratio 1:1.2. Each of the tubular films is cut helically under an angle of 45° and four such films, each having a width of about 100cm, are laminated and stretched with the surface layers facing one another in the following sequence:

- (1) lamination layer to lamination layer,
- (2) release/seal layer to release/seal layer,
- (3) lamination layer to lamination layer.

Initially, the assembly of the four films, which still are not bonded together, is preheated on a pair of rollers to about 40 °C and fed into the apparatus shown in Figure 3 and Example 1.

The long roller 9 is formed of 20 segments of hardened steel each 120mm long and the two rows of short rollers, each comprising 10 rollers, are also formed of hardened steel and each matches a segment.

Each segment terminates at each end in a half-groove which is about 0.2mm wider than the half width of the other grooves, so as to allow for inaccuracies in assembling the rollers. The segments are firmly

40 screwed together axially on a common core. The segments and the short rollers have a diameter of 150mm. The roller pressure is established hydraulically at 1.46 tons per short roller. The film speed entering the rollers is about 25m/min. The grooved roller 9 is heated to 40 °C.

The subsequent longitudinal stretching is with rollers at 30 °C and gives a stretch ratio about 1.3:1 measured in the relaxed state. Two pairs of conventional grooved rollers like 21 and 22 give a total

45 transverse stretch ratio of about 1.4:1 at 30 °C. These rollers have a peak separation of 4mm and a semi-circular peak radius of 1mm. After passage through the first set (but not after the second set) the pleated film is spread by means of banana rollers. While being stretched between the grooved rollers, the film is

under a low longitudinal tension, permitting the films to shrink longitudinally between the grooved rollers to a final longitudinal stretch ratio of about 1.25:1. They are then further longitudinally stretched at 30 °C using conventional longitudinal stretching rollers until the pleats disappear.

50 After the longitudinal stretching, the laminate is introduced in practically tensionless state (tension regulated by means of dancing rollers) into a free-shrink heat treatment unit in which they are first transversely stretched at 30 °C between a set of conventional grooved rollers as described above, and then immediately, still in a regularly pleated configuration transferred to an 80 °C hot steel roller and from this to

two other 80 °C hot rollers. By the shrinkage, the pleats disappear but they have served to secure even shrinkage. From the hot rollers the laminate is transferred still in an almost tensionless state to a water-cooled roller. Finally, it passes through a set of nip rollers and is peeled into two half parts, each of which

55 are strongly laminated. Prior to this peeling, all four films were bonded together almost at every spot of the

interphases. The peeling is effected under a low draw tension by means of two sets of nip rollers. Finally, the two 2-ply laminates are wound up on bobbins. Intermeshing of grooved rollers and longitudinal stretch ratios are adjusted to give final stretch ratios 1.4:1 in both directions.

The gauge of the final 2-ply cross-laminate is about 70g/m².

5 In order to investigate how safely the 4-ply laminate will delaminate into two half-parts also in case of production irregularities, holes of different irregular shape are cut in the film between the last transverse stretching station and the longitudinal stretching unit. However, even though the material around the holes are irregularly deformed by the stretching, the 4-ply laminate is still cleanly separated into two by the peeling process.

10 The surfaces of the final 2-ply laminates which were in intimate contact during the stretching operation and which subsequently were separated from one another are in the following called A surfaces, whereas the remaining surfaces of the final laminates are called B surfaces.

15 A visual examination of these surfaces shows that the A surfaces are much more glossy when light beams are directed against said surfaces. The static co-efficient of friction between two A surfaces which are in mutual contact is about 2.5 times as high as the static co-efficient of friction between two B surfaces. (See table below).

This is indicative for surface evenness which in turn determines sealing properties.

20 Examinations of the laminates of the invention under an electronic scanning microscope show that the A surfaces have significantly fewer microscopic irregularities than the B surfaces. It is believed that this is due to the fact that the material located adjacent to microscopic surface cavities tends to be overstretched because of the notch effect of said cavities, whereas microscopically small projections tend to be understretched or non-stretched. These differences are significantly reduced when the surface of one film is in so intimate contact with the surface of another film during stretching as achieved by transverse stretching between grooved rollers under roller pressure in the invention.

25 Coefficients of static friction:

	A to A	B to B
Machine direction	1.2	0.42
Transverse direction	1.2	0.40

30 Static peel strength in optimised heat-seals, seam in transverse direction:

A to A: 5.5kg/inch (2.2kg/cm)

B to B: 4.8kg/inch (1.9kg/cm)

35 It should be observed that the A and B surfaces consist of the identical type of LLDPE.

Claims

- 40 1. A process in which continuous polymeric sheet material (4) is stretched by a process comprising transverse tentering by passage between intermeshing grooved rollers (9 and 10, 11) in which each groove extends substantially helically or circularly around each roller and consists of a base (6), a peak (7) at each side and outwardly inclined side walls (5) that extend between the base and the peaks and the sheet material is thereby stretched transversely into pleats that extend substantially in the machine direction and in which the separation between adjacent peaks is less than about 3mm, characterised in that the width of the sheet material and the total roller length are both at least 50cm, the sheet material comprises a sandwich of melt oriented sheet materials each with a main direction of orientation and having their main directions of orientation transverse to each other, the side walls of intermeshing grooves have portions which are substantially parallel to each other, and the sheet material is compressed between substantially every pair of the said substantially parallel side wall portions by forcing the rollers together with a pressure that is substantially uniform along the length of the rollers and that is at least 17kg/cm axial length of the roller, thereby effecting the stretching into pleats by combined tentering and compression.
- 45 2. A process according to claim 1 in which the separation between adjacent peaks is about 2mm or less.
- 50 3. A process according to claim 2 in which the distance between the base and the peak of substantially every groove is about 2mm or less.

4. A process according to any preceding claim in which one of the rollers is supported sufficiently slidably along its axis to allow self-adjustment of the intermeshing grooves.
5. A process according to any preceding claim in which one of the rollers comprises a long roller and the other is provided by a plurality of short rollers that are biased to the longitudinal roller with substantially equal pressure, per centimetre axial length, and that are axially located so that together they intermesh with the long roller over substantially the entire width of the sheet material.
6. A process according to claim 5 in which the short rollers are substantially independently biased to the long roller and are arranged in mutually staggered rows at different peripheral positions on the long roller.
10
7. A process according to claim 5 in which the short rollers are located in two mutually staggered rows at substantially diametrically opposite positions on the long roller.
15
8. A process according to any of claims 5 to 7 in which the short rollers are mounted on a shaft and the bearings for the short rollers are within the short rollers.
9. A process according to claim 5 in which the short rollers are arranged on a common roller core with a flexible coupling between the core and each roller for rotating the rollers with the core and for biasing the rollers to the long roller.
20
10. A process according to any of claims 5 to 9 in which each short roller carries only one or two substantially circular grooves.
25
11. A process according to any preceding claim in which the stretched material is subjected to a further treatment step in which the material is longitudinally and/or transversely stretched.
12. A process according to claim 11 in which the sheet material produced by the process is substantially free of pleats.
30
13. A process according to any preceding claim in which the pleated sheet material is substantially immediately stretched longitudinally at a stretch ratio sufficient substantially to eliminate the pleats.
14. A process according to claim 13 in which the width of the sheet material after the longitudinal stretching is about 70% to about 100% of the initial width of the sheet material.
35
15. A process according to claim 13 in which the longitudinally stretched sheet material is then transversely stretched by passage between intermeshing grooved rollers in which each groove extends substantially helically or circularly around each roller and is defined by a pair of peaks and side walls and the sheet material is thereby stretched transversely substantially without being squeezed between adjacent side walls.
40
16. A process according to claim 13 in which the longitudinally stretched sheet material is then transversely stretched by repeating the transverse stretching process of any of claims 1 to 7.
45
17. A process according to any preceding claim in which the sheet material comprises an unbonded laminate of two bondable sheet materials and the laminate is bonded by the process.
18. A process according to claim 17 in which at least one of the two sheet materials is a co-extruded laminate having a bonding surface layer facing the other sheet material of the pair.
50
19. A process according to claim 17 or 18 in which all the stretching steps are carried out at a temperature below the temperature at which the surfaces of the sheets bond together by simple contact.
20. A process according to any of claims 1 to 16 in which the stretched sheet material comprises a laminate of two or more separable sheet materials and the separable sheet materials are peeled apart after the process.
55

21. A process according to claim 20 in which one sheet material of each separable pair is a co-extruded laminate having a release surface layer facing the other sheet material of the pair.
22. A process according to any preceding claim in which the sheet material comprises a main layer formed of a blend of high molecular weight high density polyethylene with lower molecular weight low density polyethylene.
23. Apparatus suitable for transverse stretching of continuous polymeric sheet material having a width of at least 50cm and comprising intermeshing grooved rollers (9 and 10, 11) in which each groove extends substantially helically or circularly around each roller and consists of a base (6), a peak (7) at each side and outwardly inclined side walls (5) that extend between the base and the peaks and in which the separation between adjacent peaks is less than about 3mm, characterised in that one of the rollers comprises a long roller and the other is provided by a plurality of short rollers each being less than 50cm long that are biased to the long roller with substantially equal pressure, per centimetre axial length, and that are axially located so that together they intermesh with the long roller over substantially its entire length and that the total length of the short rollers is at least 50cm, the side walls of intermeshing grooves have portions which are substantially parallel to each other and there are means for forcing the rollers together with a pressure that is substantially uniform along the length of the rollers and that is at least 17kg/cm axial length of the roller and thereby squeezing the sheet material between substantially every pair of substantially parallel side wall portions with substantially equal, pressure and stretching the sheet material into pleats by combined tentering and compression.
24. Apparatus according to claim 23 in which the separation between adjacent peaks is about 2mm or less.
25. Apparatus according to claim 23 or 24 in which the short rollers are substantially independently biased to the long roller and are arranged in mutually staggered rows at different peripheral positions on the longitudinal roller.
26. Apparatus according to any of claims 23 to 25 in which the short rollers are located in two mutually staggered rows at substantially diametrically opposite positions on the longitudinal roller.
27. Apparatus according to any of claims 23 to 26 in which the short rollers are arranged on a common roller core with a flexible coupling between the core and each roller for rotating the rollers with the core and for biasing the rollers to the long roller.
28. Apparatus according to any of claims 23 to 27 in which a series of rollers are positioned to receive sheet material from the intermeshing rollers and to longitudinally stretch the sheet material.
29. Apparatus according to claim 28 in which a pair of intermeshing grooved rollers are positioned to receive sheet material from the series of rollers and in which each groove on an intermeshing grooved roller extends substantially helically or circularly around that roller.
30. Apparatus according to any of claims 23 to 27 comprising means to bring together several plies into a sandwich-like unbonded sheet material prior to the stretching, and means for separating stretched sheets into two or more sheets by peeling apart.

Patentansprüche

1. Verfahren, mit dem endloses polymerisches Blatt- oder Bogenmaterial (4) verstreckt wird, umfassend Querverspannen durch Durchlass zwischen zwei ineinandergeriebene gerillte Walzen (9 und 10,11), bei denen sich jede Rille im wesentlichen spiral- oder kreisförmig um jede Walze erstreckt und aus einem Fuss (6), einer Spitze (7) und an jeder Seite aus nach aussen geneigt gerichtete Seitenwandungen (5) besteht, die sich zwischen den Füssen und Spitzen erstrecken und wodurch das Blattmaterial quergerichtet in Falten verstreckt wird, die sich im wesentlichen in Maschinenrichtung erstrecken und bei denen die Beabstandung zweier nebeneinanderliegender Spitzen weniger als ungefähr 3 mm beträgt, dadurch gekennzeichnet, dass die Breite des Blattmaterials und die Walzengesamtlänge beide mindestens 50 cm betragen, das Blattmaterial einen Sandwichaufbau aus Schichten Schmelze orientierten Blattmaterialien, jede mit einer Hauptorientierungsrichtung, mit ihren Hauptorientierungsrich-

tungen zueinander querverlaufend, umfasst, die Seitenwandungen der ineinandergreifenden Rillen Abschnitte aufweisen, die im wesentlichen zueinander parallel sind und das Blattmaterial im wesentlichen zwischen jedem Paar im wesentlichen paralleler Seitenwandungsabschnitte einer Kompressionskraft unterworfen wird durch Zusammendrücken der Walzen mit einem Druck, der im wesentlichen gleichförmig entlang der Längen der Walzen ist und wenigstens 17 kg/cm axialer Länge der Walzen beträgt, dadurch eine Verstreckung in Falten auslösend durch ein Zusammenwirken von Verspannung und Verdichtung.

2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass die Beabstandung zwischen zwei benachbarter Spitzen ungefähr 2 mm oder weniger beträgt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Abstand zwischen Fuss und Spitze jeder Rille ungefähr 2 mm oder weniger beträgt.
4. Verfahren nach einem der vorangehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine der Walzen entlang ihrer Achse ausreichend verschiebbar zur Selbstadjustierung der ineinandergreifenden Rillen ausgebildet ist.
5. Verfahren nach einem der vorangehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Walzensatz aus einer langen Walze und einer Mehrzahl kurzer Walzen gebildet ist, wobei die kurzen Walzen gegen die lange Walze mit im wesentlich gleichförmigem Druck pro Zentimeter axialer Länge vorgespannt gehalten und axial so angeordnet sind, dass sie mit im wesentlichen über die gesamte Breite eines Bogens mit der langen Walze zusammenwirken.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die kurzen Walzen jede für sich unabhängig zur langen Walze vorgespannt gehalten und in gegeneinander versetzten Reihen an verschiedenen Umfangslagen entlang der langen Walze angeordnet sind.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die kurzen Walzen in zwei gegeneinander versetzten Reihen in im wesentlichen diametral gegenüberliegenden Lagen entlang der langen Walze angeordnet sind.
8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die kurzen Walzen auf einer Welle (Kern) angeordnet und die Drehlager innerhalb der Walzen vorgesehen sind.
9. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die kurzen Walzen auf einem gemeinsamen Walzenkern mit flexiblen Kupplungen zwischen jeder der Walzen und Walzenkern zur Drehung der Walzen mit dem Kern und Druckanlage der Walzen an die lange Walze gelagert sind.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass jede kurze Walze nur eine oder zwei im wesentlichen kreisförmige Rillen aufweist.
11. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das verstreckte Material einem weiteren Verfahrensschritt unterworfen wird, bei dem das Material längs- und/oder querverstreckt wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das nach dem Verfahren hergestellte Material im wesentlichen frei von Faltungen ist.
13. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das gefaltete Material im wesentlichen unmittelbar bei einem Verstreckverhältnis ausreichend zur Elimination der Faltungen längsverstreckt wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Breite des Bogenmaterials nach der Längsverstreckung ungefähr 70% bis 100% der ursprünglichen Breite des Bogenmaterials beträgt.
15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das längsverstreckte Bogenmaterial folgend mittels Durchlasses durch ineinandergreifende gerillte Walzen querverstreckt wird, bei

denen sich jede Rille im wesentlichen spiral- oder kreisförmig um jede Walze erstreckt und bestimmt ist durch ein Paar von Spitzen und Seitenwandungen und wodurch das Blattmaterial querverstreckt wird ohne Druckbelastungen zwischen zwei gegenüberliegenden Seitenwandungen.

- 5 16. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das längsverstreckte Blattmaterial dann durch Wiederholung der Querverstreckungsverfahren nach einem der Ansprüche 1 bis 7 querverstreckt wird.
- 10 17. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Blattmaterial ein nicht verbundenes Material aus zwei verbindbaren Laminatschichtungen umfasst, die durch das Verfahren verbunden werden.
- 15 18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass mindestens eines der zwei Blattmaterialien ein koextrudiertes Laminat mit einer Verbindungsoberfläche ist, die dem anderen Blattmaterial der zwei gegenüberliegt.
- 20 19. Verfahren nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass alle Verstreckungen bei niedrigeren Temperaturen als denen vorgenommen werden, bei denen sich die Bogen bei einfacherem Andrücken miteinander verbinden.
- 25 20. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das verstreckte Blattmaterial ein oder mehrere trennbare Blattmaterialien umfasst, und dass die trennbaren Blattmaterialien nach Ablauf des Verfahrens voneinander abgeschält werden.
- 30 21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass ein Blattmaterial jeden trennbaren Paars ein koextrudiertes Laminat ist mit Trennoberflächenschicht, die dem anderen Blattmaterial des Paars gegenüberliegt.
- 35 22. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Blattmaterial eine Hauptschichtung umfasst, die gebildet ist aus einer Mischung aus Polyethylen hoher Dichte mit hohem Molekulargewicht und einem Polyethylen niedriger Dichte mit niedrigerem Molekulargewicht.
- 40 23. Vorrichtung zur Querverstreckung von endlosem polymerischen Blattmaterial einer Mindestbreite von 50 cm, umfassend ineinanderreibende gerillte Walzen (9 und 10, 11), bei denen sich jede Rille im wesentlichen spiral- oder kreistörmig um jede Walze erstreckt und aus einem Fuss (6), einer Spitze (7) und auf jeder Seite aus einer nach aussen geneigt gerichteten Seitenwandung (5) besteht, die sich zwischen Fuss und Spitzen erstrecken, und bei denen die Beabstandung zwischen zwei aufeinanderfolgende Spitzen weniger als ungefähr drei Millimeter beträgt, dadurch gekennzeichnet, dass ein Walzensatz eine lange Walze und eine andere aus kurzen Walzen gebildete Walze umfasst, die kurzen Walzen jeweils weniger als 50 cm lang und die gegen die lange Walze mit im wesentlichen gleichförmigen Druck je Zentimeter axialer Länge vorgespannt angelegt sind, und die axial so angeordnet sind, dass sie mit der langen Walze über deren gesamte Länge zusammenwirken, und dass die Gesamtlänge aller kurzen Walzen wenigstens 50 cm beträgt, die Seitenwandungen der ineinanderreibenden Rillen Abschnitte aufweisen, die zueinander im wesentlichen parallel sind und Mittel vorgesehen sind zum Aneinanderdrücken der Walzen mit einem Druck, der entlang der Walzen im wesentlichen gleichförmig ist und wenigstens 17 kg/cm axialer Länge der Walzen beträgt, um dadurch das Blattmaterial zwischen im wesentlichen jedem Paar der im wesentlichen parallelen Seitenwandungsabschnitten mit im wesentlichen gleichförmigen Druck einer Pressung auszusetzen, und um das Bahnmaterial in Faltungen durch kombinierte Verspannung und Verdichtung zu verstrecken.
- 50 24. Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, dass die Beabstandung zwischen zwei benachbarter Spitzen ungefähr 2 mm beträgt.
- 55 25. Vorrichtung nach Anspruch 23 oder 24, dadurch gekennzeichnet, dass die kurzen Walzen im wesentlichen jede für sich unabhängig zur langen Walze vorgespannt gehalten und in gegeneinander versetzten Reihen an verschiedenen Umfangslagen entlang der langen Walze angeordnet sind.

26. Vorrichtung nach einem der Ansprüche 23 bis 25, dadurch gekennzeichnet, dass die kurzen Walzen in zwei gegeneinander versetzten Reihen in im wesentlichen diametral gegenüberliegenden Lagen entlang der langen Walze angeordnet sind.
- 5 27. Vorrichtung nach einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, dass die kurzen Walzen auf einem gemeinsamen Walzenkern mit flexiblen Kupplungen zwischen jeder der Walzen und Walzenkern zur Drehung der Walzen mit dem Kern und Druckanlage der Walzen an die lange Walze gelagert sind.
- 10 28. Vorrichtung nach einem der Ansprüche 23 bis 27, dadurch gekennzeichnet, dass eine Serie von Walzen zur Abnahme des Bandmaterials aus den ineinandergreifenden Walzen und zur Längsstreckung des Bandmaterials vorgesehen sind.
- 15 29. Vorrichtung nach Anspruch 28, dadurch gekennzeichnet, dass ein Paar ineinandergreifender gerillter Walzen, bei denen sich jede Rille im wesentlichen spiral oder kreisförmig um eine Walze erstreckt, zur Aufnahme von Bahnmaterial aus einer Serie von Walzen vorgesehen sind.
- 20 30. Vorrichtung nach einem der Ansprüche 23 bis 27, dadurch gekennzeichnet, dass Mittel zur Zusammenfügung mehrerer Schichtungen zu einem sandwichähnlichen vor Verzug unverbundenen Bandmaterial und Mittel zur Aufteilung des verstreckten Bandes in zwei oder mehrere Bänder durch Abschälen vorgesehen sind.

Revendications

1. Procédé dans lequel un matériau polymère continu en feuille (4) est étiré suivant un procédé comprenant un tensionnage transversal par passage entre des rouleaux rainurés s'engrénant (9 et 10, 25 11) dans lesquels chaque rainure s'étend sensiblement en hélice ou circulairement autour de chaque rouleau et consiste en une base (6), un sommet (7) sur chaque côté et des parois latérales inclinées vers l'extérieur (5) qui s'étendent entre la base et les sommets et le matériau en feuille est ainsi étiré transversalement en des plis qui s'étendent sensiblement dans le sens machine et dans lequel la séparation entre des sommets adjacents est inférieure à environ 3 mm, caractérisé en ce que la largeur du matériau en feuille et la longueur totale de rouleau sont toutes deux au moins égales à 50 cm, le matériau en feuille comprenant un sandwich de matériaux en feuilles en fusion orientées chacune suivant une direction principale d'orientation et ayant leurs directions principales d'orientation transversales les unes par rapport aux autres, les parois latérales des rainures s'engrénant ont des parties qui sont sensiblement parallèles les unes par rapport aux autres, et le matériau en feuille étant comprimé entre sensiblement chaque paire desdites parties de parois latérales sensiblement parallèles en comprimant les rouleaux les une contre les autres avec une pression qui est sensiblement uniforme le long de la longueur des rouleaux et qui est au moins de 17 kilos par centimètre de longueur axiale du rouleau, ce qui réalise l'étrage en plis par tensionnage et compression combinés.
2. Procédé selon la revendication 1, dans lequel la séparation entre les sommets adjacents est environ de 40 2 mm ou moins.
3. Procédé selon la revendication 2, dans lequel la distance entre la base et le sommet de sensiblement 45 chaque rainure est environ de 2mm ou moins.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'un des rouleaux est supporté de manière suffisamment coulissante le long de son axe pour permettre un auto-ajustage des rainures s'engrénant.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'un des rouleaux 50 comprend un long rouleau et l'autre est pourvu d'une pluralité de rouleaux courts qui sont sollicités vers le rouleau long avec une pression sensiblement égale, par centimètre de longueur axiale, et qui sont disposés axialement de sorte qu'ils engrènent ensemble avec le rouleau long sur sensiblement toute la largeur du matériau en feuille.
6. Procédé selon la revendication 5, dans lequel les rouleaux courts sont sensiblement sollicités indépendamment vers le rouleau long et sont agencés suivant des rangées mutuellement en quinconce en des

positions périphériques différents sur le rouleau long.

7. Procédé selon la revendication 5, dans lequel les rouleaux courts sont disposés suivant deux rangées mutuellement échelonnées en des positions sensiblement diamétrallement opposées sur le long rouleau.
8. Procédé selon l'une quelconque des revendications 5 à 7, dans lequel les rouleaux courts sont montés sur un arbre et les paliers pour les rouleaux courts sont dans les rouleaux courts.
9. Procédé selon la revendication 5, dans lequel les rouleaux courts sont agencés sur un noyau commun de rouleau avec une liaison flexible entre le noyau et chaque rouleau pour entraîner en rotation les rouleaux avec le noyau et pour solliciter les rouleaux vers le long rouleau.
10. Procédé selon l'une quelconque des revendications 5 à 9, dans lequel chaque rouleau court porte seulement une ou deux rainures sensiblement circulaires.
11. Procédé selon l'une quelconque des revendications précédentes, dans lequel le matériau étiré est soumis à une étape ultérieure de traitement dans laquelle le matériau est étiré longitudinalement et/ou transversalement.
12. Procédé selon la revendication 11, dans lequel le matériau en feuille produit par le procédé est sensiblement sans plis.
13. Procédé selon l'une quelconque des revendications précédentes, dans lequel le matériau en feuille plissée est sensiblement immédiatement étiré longitudinalement suivant un taux d'éirement suffisant sensiblement pour éliminer les plis.
14. Procédé selon la revendication 13, dans lequel la largeur du matériau en feuille après l'étirage longitudinal est environ de 70% à environ 100% de la largeur initiale du matériau en feuille.
15. Procédé selon la revendication 13, dans lequel le matériau en feuille longitudinalement étirée est ensuite transversalement étiré par passage entre les rouleaux rainurés s'engrignant, dans lesquels chaque rainure s'étend sensiblement en hélice ou circulairement autour de chaque rouleau et est définie par une paire de sommets et de parois latérales et le matériau en feuille est ainsi étiré transversalement sensiblement sans être pressé entre des parois latérales adjacentes.
16. Procédé selon la revendication 13, dans lequel le matériau en feuille étirée longitudinalement est ensuite étiré transversalement en répétant le procédé d'étirage transversal selon l'une quelconque des revendications 1 à 7.
17. Procédé selon l'une quelconque des revendications précédentes, dans lequel le matériau en feuille comprend un produit laminé non adhéré de deux matériaux en feuilles adhérables et le produit laminé est adhéré par le procédé.
18. Procédé selon la revendication 17, dans lequel au moins l'un des deux matériaux en feuilles est un laminé produit par coextrusion et ayant une couche à surface adhésive faisant face à l'autre matériau en feuille de la paire.
19. Procédé selon la revendication 17 ou 18, dans lequel toutes les étapes d'étirage sont mises en oeuvre à une température inférieure à la température à laquelle les surfaces des feuilles adhèrent ensemble par simple contact.
20. Procédé selon l'une quelconque des revendications 1 à 16, dans lequel le matériau en feuille étirée comprend un produit laminé de deux ou plus matériaux en feuilles séparables et les matériaux en feuilles séparables sont séparés par pelage après le procédé.
21. Procédé selon la revendication 20, dans lequel un matériau en feuille de chaque paire séparable est un laminé produit par coextrusion et ayant une couche à surface antiadhésive faisant face à l'autre matériau en feuille de la paire.

22. Procédé selon l'une quelconque des revendications précédentes, dans lequel le matériau en feuille comprend une couche principale formée d'un mélange de polyéthylène haute densité à poids moléculaire élevé avec du polyéthylène basse densité à plus faible poids moléculaire.
- 5 23. Appareil adapté pour l'étirage transversal de matériau polymère continu en feuille ayant une largeur d'au moins 50 cm et comprenant des rouleaux rainurés s'enrégiant (9 et 10, 11) dans lesquels chaque rainure s'étend sensiblement en hélice ou circulairement autour de chaque rouleau et consiste en une base (6), un sommet (7) sur chaque côté et des parois latérales inclinées vers l'extérieur (5) qui s'étendent entre la base et les sommets et dans laquelle la séparation entre les sommets adjacents est inférieure à environ 3 mm, caractérisé en ce que l'un des rouleaux comprend un long rouleau et l'autre est pourvu d'une pluralité de rouleaux courts, chacun ayant une longueur inférieure à 50 cm, qui sont sollicités vers le long rouleau avec une pression sensiblement égale, par centimètre de longueur axiale, et qui sont axialement disposés de sorte qu'ils engrènent ensemble avec le long rouleau sur sensiblement toute sa longueur et que la longueur totale des rouleaux courts est au moins de 50 cm, les parois latérales des rainures s'enrégiant ayant des parties qui sont sensiblement parallèles les unes par rapport aux autres et des moyens sont prévus pour presser les rouleaux ensemble avec une pression qui est sensiblement uniforme le long de la longueur des rouleaux et qui est au moins égale à 17 kilos par centimètre de longueur axiale du rouleau et pour ainsi presser le matériau en feuille entre sensiblement chaque paire de parties de parois latérales sensiblement parallèles avec une pression sensiblement égale et pour étirer le matériau en feuille en des plis par tensionnage et compression combinées.
- 10 15 20
24. Appareil selon la revendication 23, dans lequel la séparation entre les sommets adjacents est d'environ de 2 mm ou moins.
- 25
25. Appareil selon la revendication 23 ou 24, dans lequel les rouleaux courts sont sensiblement sollicités indépendamment vers le rouleau long et sont agencés suivant des rangées mutuellement en quinconce en des positions périphériques différentes sur le rouleau long.
- 30 35
26. Appareil selon l'une quelconque des revendications 23 à 25, dans lequel les rouleaux courts sont disposés suivant des rangées mutuellement échelonnées en des positions sensiblement diamétralement opposées sur le rouleau long.
27. Appareil selon l'une quelconque des revendications 23 à 26, dans lequel les rouleaux courts sont agencés sur un noyau commun de rouleau avec une liaison flexible entre le noyau et chaque rouleau pour entraîner en rotation les rouleaux avec le noyau et pour solliciter les rouleaux vers le rouleau long.
- 35 40
28. Appareil selon l'une quelconque des revendications 23 à 27, dans lequel une succession de rouleaux sont positionnés pour recevoir le matériau en feuille à partir des rouleaux s'enrégiant et pour étirer longitudinalement le matériau en feuille.
- 45
29. Appareil selon la revendication 28, dans lequel une paire de rouleau rainurés s'enrégiant sont positionnés pour recevoir le matériau en feuille à partir de la succession de rouleaux et dans lequel chaque rainure sur un rouleau rainuré engrénant s'étend sensiblement en hélice ou circulairement autour de ce rouleau.
- 30
30. Appareil selon l'une quelconque des revendications 23 à 27, comprenant des moyens pour réunir ensemble plusieurs plis en un matériau en feuille non liée en forme de sandwich avant l'étirage, et des moyens pour séparer le feuilles étirées en deux feuilles ou plus en les séparant par pelage.
- 50

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

