

SEQUENCE LISTING

<110> Hu, Yi
 Nepomnichy, Boris
 Wang, Xiaoming
 Donoho, Gregory
 Scoville, John
 Walke, D. Wade

<120> Novel Human Kinase Proteins and Polynucleotides Encoding the Same

<130> LEX-0167-USA

<150> US 60/199,499
 <151> 2000-04-25

<150> US 60/201,227
 <151> 2000-05-01

<160> 12

<170> FastSEQ for Windows Version 4.0

<210> 1
 <211> 1545
 <212> DNA
 <213> homo sapiens

<400> 1						
atggctgata	gtggcttaga	taaaaaatcc	acaaaatgcc	ccgactgttc	atctgcttct	60
cagaaaagatg	tactttgtgt	atgttccagc	aaaacaaggg	ttcctccagt	tttgggtggtg	120
gaaatgtcac	agacatcaag	cattggtagt	gcagaatctt	taatttcact	ggagagaaaa	180
aaagaaaaaa	atatacaacag	agatataacc	tccaggaaag	atttgcctc	aagaacctca	240
aatgttagaga	gaaaagcattc	tcagcaacaa	tgggtcgaaa	gcaactttac	agaaggaaaa	300
gttcctcaca	taaggattga	aatggagct	gctattgagg	aaatctatac	ctttggaaaga	360
atattgggaa	aagggagctt	tggaaatagtc	attgaagcga	cagacaaagga	aacagaaaacg	420
aagtgggcaa	ttaaaaaaagt	gaacacaagaa	aaggctggaa	gctctgtgt	gaagttaactt	480
gaacgagagg	tgaacattct	gaaaagtgt	aaacatgaac	acatcataca	tctggaaacaa	540
gtatggaaa	cgc当地agaa	aatgtaccc	gtatggagc	tttgtgagga	tggagaactc	600
aaagaaaattc	tggatggaa	agggcatttc	tcagagaatg	agacaagggt	gatcattcaa	660
agtctcgcat	cagctatagc	atatcttcac	aataatgata	ttgtacatag	agatctgaaa	720
ctggaaaata	taatggttaa	aagcagtctt	attgtatgata	acaatgaaat	aaacttaaac	780
ataaaaggtga	ctgattttgg	cttagcggtg	aagaagcaaa	gtaggagtga	agccatgctg	840
caggccacat	gtgggactcc	tatctatatg	gccctgaag	ttatcagtgc	ccacgactat	900
agccagcagt	gtgacatttg	gagcataggc	gtcgtaatgt	acatgttatt	acgtggagaa	960
ccaccctttt	tggcaagctc	agaagagaag	ctttttgagt	taataagaaaa	aggagaacta	1020
cattttgaaa	atgcagtctg	gaattccata	agtactgtg	ctaaaagtgt	tttggaaacaa	1080
cttatgaaag	tagatctgc	tcacagaatc	acagctaagg	aactactaga	taaccagtgg	1140
ttaacaggca	ataaaacttcc	tccggtgaga	ccaaccaatg	tattagagat	gatgaaggaa	1200
tggaaaaata	acccagaaag	tgttgagggaa	aacacaaacag	aagagaagaa	taagccgtcc	1260
actgaagaaa	agttgaaaag	ttaccaaccc	tggggaaatg	tccctgatgc	caattacact	1320
tcagatgaag	aggaggaaaa	acagtctact	gcttatgaaa	agcaatttcc	tgcaaccagt	1380
aaggacaact	ttgatatgt	cagttcaagt	ttcacatcta	gcaaactcct	tccagctgaa	1440
atcaagggag	aaatggagaa	aaccctgtg	actccaagcc	aaggaacagc	aaccaagtac	1500
cctgctaaat	ccggcgcct	gtccagaacc	aaaaagaaac	tctaa		1545

<210> 2
 <211> 514
 <212> PRT
 <213> homo sapiens

<400> 2

Met Ala Asp Ser Gly Leu Asp Lys Lys Ser Thr Lys Cys Pro Asp Cys
 1 5 10 15
 Ser Ser Ala Ser Gln Lys Asp Val Leu Cys Val Cys Ser Ser Lys Thr
 20 25 30
 Arg Val Pro Pro Val Leu Val Val Glu Met Ser Gln Thr Ser Ser Ile
 35 40 45
 Gly Ser Ala Glu Ser Leu Ile Ser Leu Glu Arg Lys Lys Glu Lys Asn
 50 55 60
 Ile Asn Arg Asp Ile Thr Ser Arg Lys Asp Leu Pro Ser Arg Thr Ser
 65 70 75 80
 Asn Val Glu Arg Lys Ala Ser Gln Gln Trp Gly Arg Gly Asn Phe
 85 90 95
 Thr Glu Gly Lys Val Pro His Ile Arg Ile Glu Asn Gly Ala Ala Ile
 100 105 110
 Glu Glu Ile Tyr Thr Phe Gly Arg Ile Leu Gly Lys Gly Ser Phe Gly
 115 120 125
 Ile Val Ile Glu Ala Thr Asp Lys Glu Thr Glu Thr Lys Trp Ala Ile
 130 135 140
 Lys Lys Val Asn Lys Glu Lys Ala Gly Ser Ser Ala Val Lys Leu Leu
 145 150 155 160
 Glu Arg Glu Val Asn Ile Leu Lys Ser Val Lys His Glu His Ile Ile
 165 170 175
 His Leu Glu Gln Val Phe Glu Thr Pro Lys Lys Met Tyr Leu Val Met
 180 185 190
 Glu Leu Cys Glu Asp Gly Glu Leu Lys Glu Ile Leu Asp Arg Lys Gly
 195 200 205
 His Phe Ser Glu Asn Glu Thr Arg Trp Ile Ile Gln Ser Leu Ala Ser
 210 215 220
 Ala Ile Ala Tyr Leu His Asn Asn Asp Ile Val His Arg Asp Leu Lys
 225 230 235 240
 Leu Glu Asn Ile Met Val Lys Ser Ser Leu Ile Asp Asp Asn Asn Glu
 245 250 255
 Ile Asn Leu Asn Ile Lys Val Thr Asp Phe Gly Leu Ala Val Lys Lys
 260 265 270
 Gln Ser Arg Ser Glu Ala Met Leu Gln Ala Thr Cys Gly Thr Pro Ile
 275 280 285
 Tyr Met Ala Pro Glu Val Ile Ser Ala His Asp Tyr Ser Gln Gln Cys
 290 295 300
 Asp Ile Trp Ser Ile Gly Val Val Met Tyr Met Leu Leu Arg Gly Glu
 305 310 315 320
 Pro Pro Phe Leu Ala Ser Ser Glu Glu Lys Leu Phe Glu Leu Ile Arg
 325 330 335
 Lys Gly Glu Leu His Phe Glu Asn Ala Val Trp Asn Ser Ile Ser Asp
 340 345 350
 Cys Ala Lys Ser Val Leu Lys Gln Leu Met Lys Val Asp Pro Ala His
 355 360 365
 Arg Ile Thr Ala Lys Glu Leu Leu Asp Asn Gln Trp Leu Thr Gly Asn
 370 375 380
 Lys Leu Ser Ser Val Arg Pro Thr Asn Val Leu Glu Met Met Lys Glu
 385 390 395 400
 Trp Lys Asn Asn Pro Glu Ser Val Glu Glu Asn Thr Thr Glu Glu Lys
 405 410 415
 Asn Lys Pro Ser Thr Glu Glu Lys Leu Lys Ser Tyr Gln Pro Trp Gly
 420 425 430
 Asn Val Pro Asp Ala Asn Tyr Thr Ser Asp Glu Glu Glu Lys Gln
 435 440 445
 Ser Thr Ala Tyr Glu Lys Gln Phe Pro Ala Thr Ser Lys Asp Asn Phe
 450 455 460
 Asp Met Cys Ser Ser Ser Phe Thr Ser Ser Lys Leu Leu Pro Ala Glu
 465 470 475 480
 Ile Lys Gly Glu Met Glu Lys Lys Thr Pro Val Thr Pro Ser Gln Gly Thr
 485 490 495
 Ala Thr Lys Tyr Pro Ala Lys Ser Gly Ala Leu Ser Arg Thr Lys Lys

	500	505	510	
Lys Leu				
<210> 3				
<211> 2001				
<212> DNA				
<213> homo sapiens				
<400> 3				
gataaacgtt acataactag aaagtggcag agctgtcacg ttgtaatatg tttcttagtgc				60
atccttaacc tgaggacttc accagttcg aattacagtt ttccacatca actaccttat				120
cctttttgtt ctgggtttct tcctcaaaaca gtgaaacat ttttaagtt gctttgttg				180
cagagttaaa caaatggctg atagtggctt agataaaaaaa tccacaaaat gcccccactg				240
ttcatctgtc tctcagaaag atgtactttg tttatgttcc agcaaaacaa gggttcctcc				300
agttttgggt gtggaaatgt cacagacatc aagcattgggt agtgcagaat ctttaatttc				360
actggagaga aaaaaagaaa aaaatataaa cagagatata acctccagga aagatttgcc				420
ctcaagaacc tcaaatgttag agagaaaagc atctcagcaa caatgggtc gggcaactt				480
tacagaagga aaagttcctc acataaggat tgagaatgga gctgctattt agggaaatcta				540
tacctttgga agaatattgg gaaaaggag ctttggataa gtcattgttgc cgacagacaa				600
gaaaaacagaa acgaagtggg caattaaaaa agtgaacaaa gaaaaggctg gaagctctgc				660
tgtgaagtta cttgaacgag aggtgaacat tctgaaaaatgt gtaaaacatg aacacatcat				720
acatctggaa caagtatttg aaacgccccaa gaaaatgtac ttctgtatgg agctttgtga				780
gtatggagaa ctcaaaagaa ttctggatag gaaaggccat ttctcagaga atgagacaag				840
gtggatcatt caaagtctcg catcagctt agcatatctt cacaataatg attttgtaca				900
tagagatctg aaactggaaa atataatgtt taaaagcagt ctttattgtatg ataacaatga				960
aataaactta aacataaagg tgactgattt tggcttagcg gtgaagaagc aaagttaggag				1020
tgaagccatg ctgcaggcca catgtggac tccttatctt atggccctcg aagttatcag				1080
tgcccacgac tatagccagc agtgtgacat ttggagcata ggcgtcgtaa ttttacatgtt				1140
attacgtgga gaaccaccct ttttggcaag ctcagaagag aagcttttgg agttaataag				1200
aaaaggagaa ctacattttgc aaaatgcagt ctggattcc ataagtact gtgtaaaag				1260
tgtttgaaa caacctatga aagtagatcc tgctcacaga atcacagcta aggaactact				1320
agataaccag tggtaacag gcaataaaact ttcttcgggt agaccaacca atgtattttaga				1380
gatgtgaag gaatggaaaa ataaccacca aagtgtttag gaaaacacaaa cagaagagaa				1440
gaataagccg tccactgaag aaaagttgaa aagttacca ccctggggaa atgtccctga				1500
tgccaattac acttcagatg aagaggagga aaaacagtct actgcttatg aaaagcaatt				1560
tcctgcAACC agtaaggaca actttgatgtt gtcagttca agtttccatctgcaact				1620
ccttccaggt gaaatcaagg gaaaaatggg gaaaaccctt gtgactccaa gccaaggaaac				1680
agcaaccaag taccctgcta aatccggcgc cctgtccaga accaaaaaga aactctaagg				1740
ttccctccag tggatggacatg tacaatggaa aagctgtct tggatgtact ttgtatgggg				1800
ggtaggggaa gaagaagaca gcccattgtt gagttgttag ctttttagct ccacagagcc				1860
ccgcatgtt tttgaccatg cttaaaatgtt aagctgttca tctccaaagc agcataagct				1920
gcacatggca taaaaggaca gcccattgtt ggcttggcag tggctgtcag tggaaatcaa				1980
ctcaagatgt acacgaaggat t				2001

<210> 4				
<211> 678				
<212> DNA				
<213> homo sapiens				
<400> 4				
atgggagcca acacttcaag aaaaccacca gtgtttgtatg aaaatgaaga tttcaacttt				60
gaccacttttggaaattttgcg agccatttggg aaaggcagtt ttggaaagggt ctgcattgtt				120
cagaagaatgtt ataccaagaa gatgtacgca atgaagtaca tttataaaca aaagtgcgtg				180
gagcgcaatgtt aagtggaaaa ttgtttcaag gaactccaga tttatgcaggg tctggagcac				240
cctttcctgg ttaatttgcg gtatttccttcaatgttcaatgttcaatgttcaatgttcaatgtt				300
gaccttcctgc tgggtggaga cctgcgttat caccatgcac agaacgttca cttcaaggaa				360
gaaacagtgtt agctttcat ctgtgagctt gtcatggccc tggactacat gcagaaccag				420
cgccatcatcc acaggatataatgttcaatgttcaatgttcaatgttcaatgttcaatgttcaatgtt				480
cacatcacat atttcaacat tgctgcgtatg ctgccttgggg agacacat taccaccatgtt				540
gctggcacca agcatttacat ggcacatgttcaatgttcaatgttcaatgttcaatgttcaatgtt				600

tccttgctg ttgactggtg gtccctggga gtgacggcat atgaactgct gagaggccgg 660
gtggccaga aacagtag 678

<210> 5
<211> 225
<212> PRT
<213> homo sapiens

<400> 5
Met Gly Ala Asn Thr Ser Arg Lys Pro Pro Val Phe Asp Glu Asn Glu
1 5 10 15
Asp Val Asn Phe Asp His Phe Glu Ile Leu Arg Ala Ile Gly Lys Gly
20 25 30
Ser Phe Gly Lys Val Cys Ile Val Gln Lys Asn Asp Thr Lys Lys Met
35 40 45
Tyr Ala Met Lys Tyr Met Asn Lys Gln Lys Cys Val Glu Arg Asn Glu
50 55 60
Val Arg Asn Val Phe Lys Glu Leu Gln Ile Met Gln Gly Leu Glu His
65 70 75 80
Pro Phe Leu Val Asn Leu Trp Tyr Ser Phe Gln Asp Glu Glu Asp Met
85 90 95
Phe Met Val Val Asp Leu Leu Gly Gly Asp Leu Arg Tyr His Leu
100 105 110
Gln Gln Asn Val His Phe Lys Glu Glu Thr Val Lys Leu Phe Ile Cys
115 120 125
Glu Leu Val Met Ala Leu Asp Tyr Leu Gln Asn Gln Arg Ile Ile His
130 135 140
Arg Asp Met Lys Pro Asp Asn Ile Leu Leu Asp Glu His Gly His Val
145 150 155 160
His Ile Thr Asp Phe Asn Ile Ala Ala Met Leu Pro Arg Glu Thr Gln
165 170 175
Ile Thr Thr Met Ala Gly Thr Lys Pro Tyr Met Ala Pro Glu Met Phe
180 185 190
Ser Ser Arg Lys Gly Ala Gly Tyr Ser Phe Ala Val Asp Trp Trp Ser
195 200 205
Leu Gly Val Thr Ala Tyr Glu Leu Leu Arg Gly Arg Val Ala Gln Lys
210 215 220
Gln
225

<210> 6
<211> 711
<212> DNA
<213> homo sapiens

<400> 6
atgggagcca acacttcaag aaaaccacca gtgtttgatg aaaatgaaga tgtcaacttt 60
gaccactttg aaattttgcg agccattggg aaaggcagtt ttgggaaggt ctgcattgt 120
cagaagaatg ataccaagaa gatgtacgca atgaagtaca tgaataaaaca aaagtgcgtg 180
gagcgcaatg aagtgagaaa tgtcttcaag gaactccaga tcatgcaggg tctggagcac 240
ccttccttg ttaatttgcg gtattccttc caagatgagg aagacatgtt catggtggtg 300
gacctcctgc tgggtggaga cctgcgttat cacctgcaac agaacgtcca cttcaaggaa 360
gaaacagtga agctcttcat ctgtgagctg gtcatggccc tggactacct gcagaaccag 420
cgcatcattc acaggatataa gaaaggctgac aatattttac ttgacgaaca tgggcacgtg 480
cacatcacag attcaacat tgctgcgtat ctgcccagg agacacatg taccaccatg 540
gctggcacca agccttacat ggcacctgag atgttcagct cagaaaaagg agcaggctat 600
tccttgctg ttgactggtg gtccctggga gtgacggcat atgaactgct gagaggccgg 660
actgtatctt cattttctt ttggttatatt ttccagcaag ttctatatttta g 711

<210> 7
<211> 236
<212> PRT
<213> homo sapiens

<400> 7

Met Gly Ala Asn Thr Ser Arg Lys Pro Pro Val Phe Asp Glu Asn Glu
1 5 10 15
Asp Val Asn Phe Asp His Phe Glu Ile Leu Arg Ala Ile Gly Lys Gly
20 25 30
Ser Phe Gly Lys Val Cys Ile Val Gln Lys Asn Asp Thr Lys Lys Met
35 40 45
Tyr Ala Met Lys Tyr Met Asn Lys Gln Lys Cys Val Glu Arg Asn Glu
50 55 60
Val Arg Asn Val Phe Lys Glu Leu Gln Ile Met Gln Gly Leu Glu His
65 70 75 80
Pro Phe Leu Val Asn Leu Trp Tyr Ser Phe Gln Asp Glu Glu Asp Met
85 90 95
Phe Met Val Val Asp Leu Leu Gly Gly Asp Leu Arg Tyr His Leu
100 105 110
Gln Gln Asn Val His Phe Lys Glu Glu Thr Val Lys Leu Phe Ile Cys
115 120 125
Glu Leu Val Met Ala Leu Asp Tyr Leu Gln Asn Gln Arg Ile Ile His
130 135 140
Arg Asp Met Lys Pro Asp Asn Ile Leu Leu Asp Glu His Gly His Val
145 150 155 160
His Ile Thr Asp Phe Asn Ile Ala Ala Met Leu Pro Arg Glu Thr Gln
165 170 175
Ile Thr Thr Met Ala Gly Thr Lys Pro Tyr Met Ala Pro Glu Met Phe
180 185 190
Ser Ser Arg Lys Gly Ala Gly Tyr Ser Phe Ala Val Asp Trp Trp Ser
195 200 205
Leu Gly Val Thr Ala Tyr Glu Leu Leu Arg Gly Arg Thr Val Val Ala
210 215 220
Phe Pro Leu Trp Leu Phe Phe Gln Gln Val Leu Phe
225 230 235

<210> 8

<211> 1224

<212> DNA

<213> homo sapiens

<400> 8

atgggagcca acacttcaag aaaaccacca gtgtttgatg aaaatgaaga tgtaacttt 60
gaccactttg aaattttcg agccattggg aaaggcagtt ttgggaaggt ctgcattgt 120
cagaagaatg ataccaagaa gatgtacgca atgaagtaca tgaataaaaca aaagtgcgtg 180
gagcgcattg aagtggaaaa tgccttc 240
ccttcctgg ttaatttgcgtt gtaattccttc caagatgagg aagacatgtt catggtggtg 300
gacctcctgc tgggtggaga cctgcgttat cacctgcaac agaacgtcca cttcaaggaa 360
gaaacagtga agctctcat ctgtgagctg gtcatggccc tggactacct gcagaaccag 420
cgccatcattt acagggatat gaaggctgac aatattttac ttgacgaaca tggcacgtg 480
cacatcacat atttcaacat tgctgcgtt ctgcccgagg agacacagat taccaccatg 540
gctggccacca agccttacat ggcacctgag atgttcagct ccagaaaagg agcaggctat 600
tcctttgtgt ttgactgggt gtccttggga gtgacggcat atgaactgtt gagaggccgg 660
agaccgtatc atattcgctc cagtacttcc agcaaggaaa ttgtacacac gtttgagacg 720
actgttgtaa cttacccttgc tgcctggca cagggaaatgg tgcacttct taaaaagcta 780
ctcgaaaccta atccagacca acgattttct cagttatctg atgtccagaa cttccgtat 840
atgaatgtata taaaactggta tgcgtttt cagaagaggc tcattccagg tttcattcct 900
aataaaggca ggctgaattt tgatcttacc tttgaacttgg aggaaatgtt tttggagtc 960
aaacctctac ataagaaaaaa aaagcgtctg gcaaaaggaggaaatgca 1020
gattttctc agacatgtct tcttcaagag caccttgcgtt ctgtccagaa ggagttcata 1080
atttcaaca gagaaaaaatg aaacaggggac tttaacaaaa gacaaccaa tcttagccttg 1140
gaacaaacca aagaccacaa agtgacaaat ggacaaatgg acacaggact cagtgagact 1200
tttcagacct cgaaagtttca ataa 1224

<210> 9

<211> 407

<212> PRT

<213> homo sapiens

<400> 9

Met Gly Ala Asn Thr Ser Arg Lys Pro Pro Val Phe Asp Glu Asn Glu
1 5 10 15
Asp Val Asn Phe Asp His Phe Glu Ile Leu Arg Ala Ile Gly Lys Gly
20 25 30
Ser Phe Gly Lys Val Cys Ile Val Gln Lys Asn Asp Thr Lys Lys Met
35 40 45
Tyr Ala Met Lys Tyr Met Asn Lys Gln Lys Cys Val Glu Arg Asn Glu
50 55 60
Val Arg Asn Val Phe Lys Glu Leu Gln Ile Met Gln Gly Leu Glu His
65 70 75 80
Pro Phe Leu Val Asn Leu Trp Tyr Ser Phe Gln Asp Glu Glu Asp Met
85 90 95
Phe Met Val Val Asp Leu Leu Gly Gly Asp Leu Arg Tyr His Leu
100 105 110
Gln Gln Asn Val His Phe Lys Glu Glu Thr Val Lys Leu Phe Ile Cys
115 120 125
Glu Leu Val Met Ala Leu Asp Tyr Leu Gln Asn Gln Arg Ile Ile His
130 135 140
Arg Asp Met Lys Pro Asp Asn Ile Leu Leu Asp Glu His Gly His Val
145 150 155 160
His Ile Thr Asp Phe Asn Ile Ala Ala Met Leu Pro Arg Glu Thr Gln
165 170 175
Ile Thr Thr Met Ala Gly Thr Lys Pro Tyr Met Ala Pro Glu Met Phe
180 185 190
Ser Ser Arg Lys Gly Ala Gly Tyr Ser Phe Ala Val Asp Trp Trp Ser
195 200 205
Leu Gly Val Thr Ala Tyr Glu Leu Leu Arg Gly Arg Arg Pro Tyr His
210 215 220
Ile Arg Ser Ser Thr Ser Ser Lys Glu Ile Val His Thr Phe Glu Thr
225 230 235 240
Thr Val Val Thr Tyr Pro Ser Ala Trp Ser Gln Glu Met Val Ser Leu
245 250 255
Leu Lys Lys Leu Leu Glu Pro Asn Pro Asp Gln Arg Phe Ser Gln Leu
260 265 270
Ser Asp Val Gln Asn Phe Pro Tyr Met Asn Asp Ile Asn Trp Asp Ala
275 280 285
Val Phe Gln Lys Arg Leu Ile Pro Gly Phe Ile Pro Asn Lys Gly Arg
290 295 300
Leu Asn Cys Asp Pro Thr Phe Glu Leu Glu Glu Met Ile Leu Glu Ser
305 310 315 320
Lys Pro Leu His Lys Lys Lys Arg Leu Ala Lys Lys Glu Lys Asp
325 330 335
Met Arg Lys Cys Asp Ser Ser Gln Thr Cys Leu Leu Gln Glu His Leu
340 345 350
Asp Ser Val Gln Lys Glu Phe Ile Ile Phe Asn Arg Glu Lys Val Asn
355 360 365
Arg Asp Phe Asn Lys Arg Gln Pro Asn Leu Ala Leu Glu Gln Thr Lys
370 375 380
Asp Pro Gln Val Thr Asn Gly Gln Met Asp Thr Gly Leu Ser Glu Thr
385 390 395 400
Phe Gln Thr Ser Lys Val Ser
405

<210> 10

<211> 1191

<212> DNA

<213> homo sapiens

<400> 10

atgggagcca acacttcaag aaaaccacca gtgtttgatg aaaatgaaga tgtcaacttt

60

gaccacttg	aaattttgcg	agccattggg	aaaggcagtt	ttgggaaggt	ctgcattgt	120
cagaagaatg	ataccaagaa	gatgtacgca	atgaagtaca	tgaataaaaca	aaagtgcgt	180
gagcgcaatg	aagttagaaa	tgtcttcaag	gaactccaga	tcatgcaggg	tctggagcac	240
ccttcctgg	ttaatttgt	gtattccccc	caagatgagg	aagacatgtt	catgggtgt	300
gacccctcgtc	tgggtggaga	cctgcgttat	cacctgcaac	agaacgtcca	cttcaaggaa	360
gaaacagtg	agcttccat	ctgtgagctg	gtcatggccc	tggactacct	gcagaaccag	420
cgcacatcc	acaggat	gaagcctgac	aatattttac	ttgacgaaca	tggcacgt	480
cacatcacag	atttcaacat	tgctgcgt	ctgcccaggg	agacacagat	taccacatg	540
gctggcacca	agccttacat	ggcacctgag	atgttcgt	ccagaaaaagg	agcaggctat	600
tcctttgt	ttgactgg	gtccctggg	gtgacggcat	atgaactgct	gagaggccgg	660
agaccgtatc	atattcg	cgtacttcc	agcaaggaaa	ttgtacacac	gttgagacg	720
actgttgtaa	cttacccttc	tgccctgg	cagaaatgg	tgtcacttct	taaaaagcta	780
ctcgaaccta	atccagacca	acgattttct	cagttatct	atgtccagaa	cttcccgtat	840
atgaatgata	taaactgg	tgca	tttttt	cagaagaggc	tcattccagg	900
aataaaaggca	ggctgaattt	tgatcctacc	tttgaactt	aggaaatgat	tttggagtcc	960
aaacacttac	ataagaaaaaa	aaagcgtct	gcaaagaagg	agaaggat	gaggaaatgc	1020
gattcttctc	agacatgtct	tcttcaagag	cacccgt	ctgtccagaa	ggagttcata	1080
attttcaaca	gagaaaaagt	aaacaggac	tttaca	gacaacaaa	tctagcctt	1140
gaacaaacca	aagacccaca	aggtgaggat	ggtcagaata	acaactt	gt	1191

<210> 11

<211> 396

<212> PRT

<213> homo sapiens

<400> 11

Met	Gly	Ala	Asn	Thr	Ser	Arg	Lys	Pro	Pro	Val	Phe	Asp	Glu	Asn	Glu	
1								10						15		
Asp	Val	Asn	Phe	Asp	His	Phe	Glu	Ile	Leu	Arg	Ala	Ile	Gly	Lys	Gly	
	20							25						30		
Ser	Phe	Gly	Lys	Val	Cys	Ile	Val	Gln	Lys	Asn	Asp	Thr	Lys	Lys	Met	
	35							40						45		
Tyr	Ala	Met	Lys	Tyr	Met	Asn	Lys	Gln	Lys	Cys	Val	Glu	Arg	Asn	Glu	
	50							55						60		
Val	Arg	Asn	Val	Phe	Lys	Glu	Leu	Gln	Ile	Met	Gln	Gly	Leu	Glu	His	
	65							70						75		80
Pro	Phe	Leu	Val	Asn	Leu	Trp	Tyr	Ser	Phe	Gln	Asp	Glu	Glu	Asp	Met	
								85						90		95
Phe	Met	Val	Val	Asp	Leu	Leu	Gly	Gly	Asp	Leu	Arg	Tyr	His	Leu		
	100							105						110		
Gln	Gln	Asn	Val	His	Phe	Lys	Glu	Glu	Thr	Val	Lys	Leu	Phe	Ile	Cys	
	115							120						125		
Glu	Leu	Val	Met	Ala	Leu	Asp	Tyr	Leu	Gln	Asn	Gln	Arg	Ile	Ile	His	
	130							135						140		
Arg	Asp	Met	Lys	Pro	Asp	Asn	Ile	Leu	Leu	Asp	Glu	His	Gly	His	Val	
	145							150						155		160
His	Ile	Thr	Asp	Phe	Asn	Ile	Ala	Ala	Met	Leu	Pro	Arg	Glu	Thr	Gln	
								165						170		175
Ile	Thr	Thr	Met	Ala	Gly	Thr	Lys	Pro	Tyr	Met	Ala	Pro	Glu	Met	Phe	
								180						185		190
Ser	Ser	Arg	Lys	Gly	Ala	Gly	Tyr	Ser	Phe	Ala	Val	Asp	Trp	Trp	Ser	
	195							200						205		
Leu	Gly	Val	Thr	Ala	Tyr	Glu	Leu	Leu	Arg	Gly	Arg	Arg	Pro	Tyr	His	
	210							215						220		
Ile	Arg	Ser	Ser	Thr	Ser	Ser	Lys	Glu	Ile	Val	His	Thr	Phe	Glu	Thr	
	225							230						235		240
Thr	Val	Val	Thr	Tyr	Pro	Ser	Ala	Trp	Ser	Gln	Glu	Met	Val	Ser	Leu	
								245						250		255
Leu	Lys	Lys	Leu	Leu	Glu	Pro	Asn	Pro	Asp	Gln	Arg	Phe	Ser	Gln	Leu	
								260						265		270
Ser	Asp	Val	Gln	Asn	Phe	Pro	Tyr	Met	Asn	Asp	Ile	Asn	Trp	Asp	Ala	
								275						280		285
Val	Phe	Gln	Lys	Arg	Leu	Ile	Pro	Gly	Phe	Ile	Pro	Asn	Lys	Gly	Arg	

290	295	300
Leu Asn Cys Asp Pro Thr Phe Glu Leu Glu Glu Met Ile Leu Glu Ser		
305	310	315
Lys Pro Leu His Lys Lys Lys Arg Leu Ala Lys Lys Glu Lys Asp		
325	330	335
Met Arg Lys Cys Asp Ser Ser Gln Thr Cys Leu Leu Gln Glu His Leu		
340	345	350
Asp Ser Val Gln Lys Glu Phe Ile Ile Phe Asn Arg Glu Lys Val Asn		
355	360	365
Arg Asp Phe Asn Lys Arg Gln Pro Asn Leu Ala Leu Glu Gln Thr Lys		
370	375	380
Asp Pro Gln Gly Glu Asp Gly Gln Asn Asn Asn Leu		
385	390	395

<210> 12

<211> 1675

<212> DNA

<213> homo sapiens

<400> 12

gagcgctaag	cggagacgcc	cgctggcaag	cagatcctgc	ctccttcctt	ggccaaggag	60
ccggccccccc	ggggtagctg	tgcgctggc	ggcgctcgga	ccctttggca	gccgcagggt	120
cctcccccagc	ccagccccagc	tcagtccagc	gcagcccgagc	ccagcccgagc	ccggcgctcg	180
cagcctccgc	cgctccggg	cagatagggt	cctttcttg	ctccttgctc	ttggagttct	240
tctcttagtc	cctgtccctt	ggatgaaagc	atcgctccga	gcctcatggg	aggaatgaag	300
gaagaatcga	gactagatat	ccaaactaagg	cttcgggaca	tgttttgagc	gaagatgggt	360
gtttctgccc	ggatagtata	aatcgaggat	ccaggctctgg	gcagattcaa	ccatgggagc	420
caacacttca	agaaaaccac	cagtgttga	tgaaaatgaa	gatgtcaact	ttgaccactt	480
tgaaaatttg	cgagccattt	ggaaaggcag	tttgggaag	gtctgcattt	tacagaagaa	540
tgataccaaag	aagatgtacg	caatgaagta	catgaataaa	caaaagtgcg	tggagcgc当地	600
tgaagtgaga	aatgtcttca	aggaacttca	gatcatgcag	ggtctggagc	accctttcct	660
ggttaatttg	tggtattcct	tccaagatga	ggaagacatg	ttcatggtgg	tggacccct	720
gctgggtgga	gacctgcgtt	atcaccttca	acagaacgtc	cacttcaagg	aagaaacagt	780
gaagctcttc	atctgtgagc	tggcatatgc	cctggactac	ctgcagaacc	agcgcatcat	840
tcacagggat	atgaagcctg	acaatatttt	acttgacgaa	catgggcacg	tgcacatcac	900
agatttcaac	attgctgcga	tgctgcccag	ggagacacag	attaccacca	tggctggcac	960
caaggcatttac	atggcaccttgc	agatgtttcag	ctccagaaaa	ggagcaggct	attccctttgc	1020
tgttactgg	tggcccttgg	gagtgcggc	atataactg	ctgagggcc	ggagaccgta	1080
tcatattcgc	tccagttactt	ccagcaagga	aattgttacac	acgtttgaga	cgactgttgt	1140
aacttaccat	tctgccttgg	cacagggaaat	ggttgcattt	cttaaaaaagc	tactcgaacc	1200
taatccagac	caacgatttt	ctcagttatc	tgatgtccag	aacttccctt	atataatgaa	1260
tataaactgg	gatgcgtttt	ttcagaagag	gctcatttca	ggtttcatc	ctaataaaagg	1320
caggctgaat	tgtgatccta	cctttgaact	tgagggaaatg	attttggagt	ccaaacctct	1380
acataagaaa	aaaaagcgtc	tggcaaagaa	ggagaaggat	atgagggaaat	gcgattcttcc	1440
tcagacatgt	cttcttcaag	agcaccttga	ctctgtccag	aaggagttca	taattttcaa	1500
cagagaaaaaa	gtaaacacagg	actttaacaa	aagacaacca	aatctgcct	tggacacaaac	1560
caaagaccca	caagtgacaa	atggacaaat	ggacacagga	ctcagtgaga	cttttcagac	1620
ctcgaaagtt	tcataaaagt	gtcagaatgc	cccaggctac	ttggataaaag	ataag	1675