Day 10B: Logical Representation

- For a long time, first order predicate calculus was the gold standard for representing knowledge in AI.
- · What is predicate calculus?
 - A language for expressing facts and rules, and a mathematics for manipulating truth values and well-formed expressions
- What is logic used for in Al?
 - Representation of problem states and rules
 - Reasoning
 - Data retreival
 - Expert systems
 - Inferences
- Three brands of inference:
 - Abduction
 - Approximate reasoning and plausible inference
 - If P implies Q, and Q is true, abduce (infer) P is true
 - This is not logically sound, but a good heuristic
 - Induction
 - To reason from specific cases to general rules
 - Very difficult to mechanize, a major problem to be solved with machine learning
 - Ex: If you know that robins fly, sparrows fly, and hawks fly, then infer that all birds fly
 - Deduction (à la Sherlock)
 - Given a set of:

- Assumptions/Facts
- Logical Rules
- Universal Laws of Legic
- Find all new facts which logically follow from our assumptions
- Logical expressions are built out of primitives, according to rules of wellformedness:
 - Constants: symbols which represent specific objects in the real world (ex.
 - Variables: indefinite/nonspecific references to objects and individuals in the real world (ex. x, y)
 - Predicates: functions that denote aspects of objects or relationships between objects (ex. LOVES(JOHN, MARY), RED(BALL), etc.)
 - Connectives: logical operators which compute or constrain truth values:
 - AND: &
 - OR:
 - NOT: ~
 - IMPLIES: ⇒
 - Truth Table: P ⇒ Q:
 - If P is true, Q is true
 - If P is false, nothing is implied
 - If Q is true, nothing is implied (?)
 - If Q is false, P is false
 - Quantifiers: Logical meta-operators which assert across the entire population of objects
 - For all: ∀
 - There exists: ∃
- Other logical constructions:

- Literals: well-formed expressions which state facts about specific individuals (no quantifiers or variables):
 - LOVES(MARY, JOHN) & MARRIED(JOHN)
 - MALE(TERRY) & ~MARRIED(TERRY)
- Formuale: well-formed expressions which assert generalized rules about relationships between objects
- Propositional Logic vs. Predicate Logic
 - Propositional Logic works with constants, while predicate logic works with functions
- How to use formal logic?
 - Decide on objects and predicates
 - Translate facts and rules about the domain to expressions
 - Then mechanically solve it
- Old AI extremist position?
 - All human thought can be reduced to logic
 - All logic can be mechanized
 - Therefore all human thought can be mechanized through logic
 - This is completely wrong, because solving logical equations is NPcomplete, and humans are somehow solving it faster.
 - (Ari's addition) Also, people are sometimes illogical
- Logic is already implicit in programs, but in Al it is made more explicit
- Problems with using logic remain:
 - Setting up rules and predicates is hard and subjective
 - Ambiguity!
 - Mechanics:
 - Combinatorial Explosion
 - · Some rules are infinitely recursive

- Some mechanics of logic:
 - Double negation: ~~P = P
 - DeMorgan's Laws: \(\bigcirc (P & Q) = (\bigcirc P | \bigcirc Q) \), \(\bigcirc (P | Q) = (\bigcirc P & \bigcirc Q) \)
 - Also for quantification: $!\exists x P(x) = \forall x ! P(X), ! \forall x Q(x) = \exists x ! Q(x)$
 - Commutativity: P & Q = Q & P, P | Q = Q | P
 - Distributivity: X & (Y | Z) = (X & Y) | (X & Z), X | (Y & Z) = (X | Y) & (X | Z)
 - Associativity: (A & B) & C = A & (B & C)
 - Modus Ponens (Forward): If P => Q and P = true, then Q = true
 - Modus Tollens (Backward): If P => Q and Q = false, then P = false
 - Syllogism: If P => Q & Q => R then P => R
 - Use existing problem-solving techniques (BFS/DFS, etc.) to search through the problem space of formal logic
- Combinatorial Explosion:
 - Some rules are infinitely recursive (ex. Every person has a parent, including that parent), and it's unclear how much depth you need
 - Lots of operators and lots of rules means there are lots of true facts, which results in too many options
 - Solved by Resolution
- Resolution: The rule to end all rules
 - One way to represent things: Conjunctive Normal Form: a series of ORs AND'd together
 - One inference rule: Disjunctive Syllogism (KNOW THIS NAME FOR THE MIDTERM)
 - Two Disjuncts yield something new, ex: (A | B | C) & (D | ~B | E) = (A | C | D | E)
 (Bs cancel out)
 - Subsumes other laws of inference:
 - Modus Ponens: If P and (~P | Q) then Q

- Modus Tollens: If -Q, and (-P | Q) then -P
- Chaining