DCML-CPS - Module 7

Unsupervised ML

Tommaso Zoppi
University of Florence - Florence (Italy)
tommaso.zoppi@unifi.it

Course Map

1. Basics of Metrology

2. Monitoring

Monitoring

Testing

3. Fault Injection

4. Robustness Testing

5. Data Analysis

6. Supervised ML

7. Unsupervised ML

8. Meta-Learning

Anomaly Detection

9. Error/Intrusion Detection

Unsupervised ML

Unsupervised Algorithms

- Unsupervised Algorithms
 - They learn a normal behaviour
 - Without assuming any knowledge of anomalous events

No labels needed for training!

Supervised vs Unsupervised

- ▶ Detection capabilities of unsupervised are equal when detecting both known (that appear in the training set) and unknown events
- ► Instead, supervised algorithms are very good in detecting known issues, but have essentially no means to detect unknowns

	Known Issue	Unknown Issue
Supervised	Very Good!	Very Bad
Unsupervised	Average Good	

Unsupervised Families

- ► Families of Unsupervised Algorithms
 - Clustering
 - Density-Based
 - Angle-Based
 - Classification
 - Statistical
 - Neural Network

Unsupervised Families

- ► Families of Unsupervised Algorithms
 - Clustering
 - Density-Based
 - Angle-Based
 - Classification
 - Statistical
 - Neural Network

Clustering

Clustering algorithms

- analyse the data flow, to
- derive clusters which identify groups of similar data points
- Data points that are far (do not "belong") from all the clusters are labeled as anomalies

Clustering: At a Glance

- ► On the left there is the dataset, red dots are anomalies
- ► On the right a graphical view of clustering
 - Crosses mean False negatives, ticks mean true positives

RESILIENT COMPUTING LAB

Clustering: K-Means

How important is the number of clusters?

G-Means: Automatic tuning of K in K-Means
Hamerly, Greg, and Charles Elkan. "Learning the k in k-means." Advances in neural information processing systems. 2004.

Clustering: K-Means

Clustering: K-Means

Example: Training K-Means

- ► Example of convergence of K-Means (11 iterations)
 - From https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

Density-Based

► Density-based algorithms label data points as anomalies if they are far from most of the other

–Why are they different from clustering algorithms?

RESILIENT COMPUTING LAB

Density-Based

▶ Density-based algorithms label data points as anomalies if they are far from most of the other

–Why are they different from clustering algorithms?

Density: Sparse Data Observers

- Chooses some data points in training set as observers.
 - If a data point is far from observers, it is an anomaly

Vázquez, F. I., Zseby, T., & Zimek, A. (2018, November). Outlier detection based on low density models. 20 8 IEEE international conference on data mining workshops (ICDMW) (pp. 970-979). IEEE.

Density-Neighbour-Based

- ► These algorithms are based on the idea of neighbourhood
 - Which is naturally used in Supervised ML
 - However, there are algorithms which are based on the concept of neighbourhood to estimate density
 - Those go unsupervised (i.e., they do not need labeled training data)

Density-Neighbour-Based: ODIN (I)

- Uses the kNN Graph
- ► A bi-directional graph where
 - nodes are data points, and
 - An edge exists from node A to node B if
 - B is one of the k-NN of A, or
 - A is one of the k-NN of B

RESILIENT COMPUTING LAB

Hautamaki, V., Karkkainen, I., & Franti, P. (2004, August). Outlier detection using k-nearest neighbour graph. In *Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.* (Vol. 3, pp. 430-433). IEEE.

Density-Neighbour-Based: ODIN (II)

- ODIN score is calculated as node indegree number
 - The higher the amount of connected nodes (indegree), the more a data point is normal (close to many others)

Hautamaki, V., Karkkainen, I., & Franti, P. (2004, August). Outlier detection using k-nearest neighbour graph. In *Proceedings of the* 17th International Conference on Pattern Recognition, 2004. ICPR 2004. (Vol. 3, pp. 430-433). IEEE.

ODIN: At a Glance

- ► ODIN with k=1
 - We connect each point with its closest neighbour

➤ ODIN with k=1

- We connect each point with its closest neighbour
- Then we calculate the indegree number
- The lower, the more anomalous a point is

► ODIN with k=1

- We connect each point with its closest neighbour
- Then we calculate the indegree number
- The lower, the more anomalous a point is

- ► ODIN with k=2
 - We connect each point with its two closer neighbours
 - Think about it...

- ► ODIN with k=2
 - We connect each point with its two closer neighbours
 - Same result as with k=1!

Angle-Based

- Angle-Based algorithms identify anomalies as data points that have low variance of angles
 - Angles with respect to all the possible couples of data points

RESILIENT COMPUTING LAB

Angle-Based: ABOD

- ► ABOD calculates the angles of all the couples in the training set, considering the new point as vertex
 - Variance of angles is the Angle-Based Outlier Factor (ABOF)

Kriegel, H. P., Schubert, M., & Zimek, A. (2008, August). Angle-based outlier detection in high-dimensional data. In *Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 444-452).

ABOD: At a Glance

Statistical

- ► They use statistical techniques to
 - extract "expected" probability distributions
 - check if data points are compliant with such distribution

Statistical Algorithm: HBOS

- ► Example: using histograms
 - For each indicator, we derive expected frequencies of values through histograms
 - Short columns = low frequencies
 - If indicators values of a data point the data point is anomalous

$$\mathit{HBOS}(p) = \sum_{i=0}^{d} log(\frac{1}{hist_i(p)})$$

Goldstein, Markus, and Andreas Dengel. "Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm." *KI-2012: Poster and Demo Track* (2012): 59-63.

HBOS: At a Glance

Neural Nets (At a Glance)

- ➤ A neural network maps the human brain as a circuit of neurons, or in a modern sense, an artificial neural network, composed of artificial neurons or nodes.
 - The connections between named are made ed as weights.
 - A positive weight reflects an excitatory connection, while negative values mean inhibitory connections.
- All inputs are medified by a weight and summed to deliver the final result.
- ► Mostly Supplyised, but there are Unsupervised variants

Neural Nets: Self-Organizing Maps

- (From Wiki): Training of a Self-Organizing Map (SOM).
 - The blue blob is the distribution of the training data, and the small white disc is the current training datum drawn from that distribution.
 - At first (left) the SOM nodes are arbitrarily positioned in the data space.
 - The node (highlighted in yellow) which is nearest to the training datum is selected. It is moved towards the training datum, as (to a lesser extent) are its neighbors on the grid.
 - After many iterations the grid tends to approximate the data distribution (right).

SOM: At a Glance

Beware!

► The usage of deep learners for classifying tabular data was recently targeted by this study

Shwartz-Ziv, R., & Armon, A. (2022). Tabular data: Deep learning is not all you need. Information Fusion, 81, 84-90

- ▶ In which authors show that for processing tabular data, which usually does not have that many features, neural networks may not be the preferred choice
 - As it happens with unstructured data

