

eXtended eXternal Benchmarking eXtension (XXBX)

Matthew R. Carter Raghurama R. Velegala John Pham Jens-Peter Kaps
Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22030, USA

Abstract

Text

Motivation

IOT

Benchmarking Tools

► SUPERCOP

► XBX

Missing Features

► ROM Usage

► RAM Usage

Power Consumption

Metrics

Throughput

▶ Item

RAM Usage

▶ Item

ROM Usage

▶ Item

Power Consumption

▶ Item

XXBX

xXtended eXternal Benchmarking eXtention, is extends the XBX

► List of differences to XBX

Main Components of XXBX

- ► XXBX Software XBS
- ▶ item
- ► XXBX Harness XBH
 - ▶ item
- XXBX Power Shim XBPitem
- ► XXBX Device Under Test XBD
- ▶ item

Supported XBDs

Board	Manuf.	CPU	ISA		Bus
MSP-EXP430F5529	TI	MSP430F	MSP430X	16	-bit
MSP-EXP430FR5994	TI	MSP430FR	MSP430X	16	-bit
MSP-EXP432P401R	TI	ARM Cortex M4F	ARMv7E-M	32	-bit
EK-TM4C123GXL	TI	ARM Cortex M4F	ARMv7E-M	32	-bit
EK-TM4C129EXL	TI	ARM Cortex M4F	ARMv7E-M	32	-bit
NUCLEO-F091RC	STM	ARM Cortex M0	ARMv6-M	32	-bit
NUCLEO-F103RB	STM	ARM Cortex M3	ARMv7-M	32	-bit

- ► FOBOS Acquisition Hardware contains
- ▶ VHDL for the **Control Board** to interface with DUT,
- ► VHDL-wrapper for the **DUT board** to instantiate a user provided algorithm, and
- ► Connector description.
- ► FOBOS Acquisition Software is written in Python and
 - ► Controls FOBOS Acquisition Hardware,
 - Controls measurement equipment, andStores measurements and setup information.
 - FOBOS Hardware
- ▶ FOBOS Control can be Digilent Nexys2 or Nexys3, soon Nexys4.

Acquisition Control

- ► Control Board sends Key and Plaintext to the DUT.
- ► After DUT receives all data, the Control Board generates the trigger.
- ► The trigger indicates that the cryptographic algorithm has started and initiates capture of data by the oscilloscope.

Power Measurement

- ► Fits between XBH and XBD
- ► Contains I²C pull-ups
- Space for power regulator
- ► Supports XBDs with 1.2 V–5 V
- Eagle files in git

Analysis Workflow

- 1. Statistics Module
- Statistics can identify outliers in traces and samples across traces.
- 2. Post-Processing Module
- ► The main goal of these modules is to reduce the amount of data that has to be analyzed by the SCA Module.
- 3. SCA Module
- ► User can test his/her own power model using a library of state-of-the art side channel distinguishers.
- ► FOBOS supports CPA using Spearman, Pearson, ANOVA & MIA.

Signal Alignment used by FOBOS Analysis to

ition

► User can select any part of the align the power traces. trace for further analysis.

▶ Reduces computation time.

WINDOW_START_POINT = 100 SAMPLE_WINDOW = 1000

CAESAR Results

Doord	SASEBO				SAKURA		
Board		G	GII	В	X	G	
Control	Virtex-2	Virtex-2	Spartan-3A	Strativ 2	Spartan 6	Spartan 6	
FPGA	Pro	Pro	Spartan-3A	Juanx-2	Spartan-0	Spartan-0	
DUT	Virtex-2	Virtex-2	Virtex-5	Stratix-2	Kintex-7	Spartan-6	
FPGA	Pro	Pro					
Techn.	130 nm	130 nm	65 nm	90 nm	28 nm	45 nm	
PC Data Comms.	RS232	RS232, FT245RL (USB)	FT2232D (USB)	RS232, FT245RL (USB)	USB	USB	
Status	Discontinued	Discon- tinued	Discon- tinued				

Throughput of CAESAR Candidates

Caption