

Hybrid Networks Improving Deep Learning Networks via Integrating two views of Images

Sunny Verma^{1,2}, Chen Wang², Liming Zhu², and Wei Liu¹

- 1: Advanced Analytics Institute, University of Technology, Sydney, Australia
- 2: Architecture and Analytics Platforms, CSIRO, Data61

Deep Models have advanced image recognition field substantially

• Let's peep under the hood Computationally expensive Inception-v3 ResNet-152 VGG-16 VGG-19 **ENet** 65M----95M----125M---155M BN-AlexNet 55 AlexNet Operations [G-Ops] 55 AlexNet Net NIN ENet Net 18 G. 16 19 34 50 101 152 N. VA BN-Alex BN-NIENET NET 18 G. 16 19 ResNet-Net-Net-Ition-VA ResNet Net Net Inception VA

Deep Models have advanced image recognition field substantially

• Let's peep under the hood

Deep Models have advanced image recognition field substantially

• Let's peep under the hood Computationally expensive **Black Box** Х Inception-v3 ResNet-152 VGG-16 VGG-19 Inexplicable -95M----125M---155M Approx. **Explainer** Data Expensive 55

Deep Models have advanced image recognition field substantially

• Let's peep under the hood This work Computationally expensive **Black Box** Х Inception-v3 ResNet-152 VGG-16 VGG-19 Inexplicable -95M----125M---155M Approx. **Explainer** Data Expensive 55

Deep Models have advanced image recognition field substantially

• Let's peep under the hood This work Computationally expensive Requires significantly less **Black Box** Х computational resources. Inception-v3 ResNet-152 VGG-16 VGG-19 Inexplicable BN-NIN Approx. T(X) **Explainer** Data Expensive 55

Deep Models have advanced image recognition field substantially

• Let's peep under the hood This work Computationally expensive Requires significantly less **Black Box** Х computational resources. Inception-v3 ResNet-152 VGG-16 VGG-19 Can work with available Inexplicable amount of data. BN-NIN Approx. T(X) Χ **Explainer** Data Expensive 55

Deep Models have advanced image recognition field substantially

• Let's peep under the hood This work Computationally expensive Requires significantly less **Black Box** Х computational resources. Inception-v3 ResNet-152 VGG-16 VGG-19 Can work with available Inexplicable amount of data. BN-NIN Fairly Interpretable Approx. Χ Explaine Data Expensive to BB 55

Importance

Importance

Environment Independent

Importance

- Advantages
 - 1. Light Weight Deep Network.
 - 2. Acceptable performance with less data.
 - 3. Unsupervised feature extractor
 - Less sensitive to data perturbation

- Advantages
 - 1. Light Weight Deep Network.
 - 2. Acceptable performance with less data.
 - 3. Unsupervised feature extractor
 - Less sensitive to data perturbation
- Drawbacks
 - 1. Vectorizes each patch
 - Destroys spatial information

PCANet

Advantages

- 1. Light Weight Deep Network.
- 2. Acceptable performance with less data.
- 3. Unsupervised feature extractor
 - Less sensitive to data perturbation

Drawbacks

- 1. Vectorizes each patch
 - Destroys spatial information
- 2. Patch matrix becomes tall/wide.
 - Requires more computational resources
 - Better algorithms

Tensor Network, Preliminaries

 $x \in \mathbb{R}, x \in \mathbb{R}^4, X \in \mathbb{R}^{4 \times 5}, \mathfrak{X} \in \mathbb{R}^{4 \times 5 \times 3}$

Tensor Network, Preliminaries

 $x \in \mathbb{R}$, $x \in \mathbb{R}^4$, $X \in \mathbb{R}^{4 \times 5}$, $\mathfrak{X} \in \mathbb{R}^{4 \times 5 \times 3}$

HOSVD

Tucker Decomposition

 $\min_{\hat{\mathfrak{X}}} ||\mathfrak{X} - \hat{\mathfrak{X}}||$

≈ **X**

- Learns from minutiae view of the data.
- Preserves spatial structure in the data

 $\min_{\hat{\mathfrak{X}}} ||\mathfrak{X} - \hat{\mathfrak{X}}||$

≈ **X**

Preserves spatial structure in the data

 $\min_{\hat{\mathfrak{X}}} ||\mathfrak{X} - \hat{\mathfrak{X}}||$

≈ **X**

Preserves spatial structure in the data

- Computationally less expensive than PCA.
- Captures variations in each mode independently.

Hybrid Networks

Hybrid Networks

Hybrid Networks

Output from the first layer in Hybrid Networks

Output from the first layer in Hybrid Networks

PCANet

TensorNet

Results

PCANet

CIFAR 10

Results

CIFAR 10

TensorNet

MNIST bg-img-rot

Contributions

- Contributions and findings
 - Both the amalgamated view and minutiae view of the data are individually insufficient.
 - To preserve the spatial information in the data TDNet is introduced.
 - HDNet is proposed to learn from both the views of the data.

Contributions, Conclusions

- Contributions and findings
 - Both the amalgamated view and minutiae view of the data are individually insufficient.
 - To preserve the spatial information in the data TDNet is introduced.
 - HDNet is proposed to learn from both the views of the data.
- Advantages and Limitations
 - Light Weight deep architecture which is unsupervised, fast, and less insensitive to noisy labels
 - Extremely challenging datasets might require more layers and non-linearities.

Contributions, Conclusions, and Future Works

- Contributions and findings
 - Both the amalgamated view and minutiae view of the data are individually insufficient.
 - To preserve the spatial information in the data TDNet is introduced.
 - HDNet is proposed to learn from both the views of the data.
- Advantages and Limitations
 - Light Weight deep architecture which is unsupervised, fast, and less insensitive to noisy labels
 - Extremely challenging datasets might require more layers and non-linearities.
- Future Works
 - Introduce fusion layer to combine the two networks.
 - Introduction mechanisms to handle rotations in the images.

THANK YOU

Sunny Verma

