

ボルツマンマシン

■エネルギー関数の分布がボルツマン分布を取る ニューラルネットワークをボルツマンマシンと呼ぶ.

十分に更新した時の状態が「分布」になるのなら, 最初から「分布」を学習しては?

例えば「あ」と発話したときの音声波形とか

11/16/2023

4

分布が正しく学習できているか?

▶最尤推定になっているかどうかで判断する

最尤推定:

データ集合 $X = \{x_1, x_2, \cdots, x_N\}$ が与えられたとき, $\{x_1, x_2, \cdots, x_N\}$ が未知の確率分布 $P_g(x)$ に従って 生成されているとする.

 $P_g(x)$ を知る方法は無いので,適当な関数 $P(x|\theta)$ を用意し,尤度関数 $L(\theta) = \prod_{n=1}^N P(x_n|\theta)$ が最大になる θ のとき, $P(x|\theta)$ は $P_g(x)$ に近いと考える.

データ集合 X から θ を推定する!!

11/16/2023

対数尤度

$$P(x|\theta) = \frac{1}{z(\theta)} e^{-\Phi(x,\theta)} \downarrow 0$$

$$\ln P(x_n|\boldsymbol{\theta}) = -\Phi(x_n,\boldsymbol{\theta}) - \ln z(\boldsymbol{\theta})$$

$$\ln L(\boldsymbol{\theta}) = \sum_{n=1}^{N} (-\Phi(\boldsymbol{x}_n, \boldsymbol{\theta}) - \ln z(\boldsymbol{\theta}))$$

left これを最大にする $oldsymbol{ heta}$ のとき $P(x|oldsymbol{ heta})$ と $P_g(x)$ は近い

このような heta を求めることが分布の学習になる ⇒勾配法で求める

多層ニューラルネットとボルツマンマシンの比較

	学習の方針	学習後のネットワーク
多層ニューラルネッ ト	誤差関数 E の 最小化	入力に対して正しい出 力を行う
ボルツマンマシン	対数尤度 ln <i>L</i> (<i>θ</i>) の最大化	十分に更新した時のユニットの値 x_i の分布が正しい

多層ニューラルネットの重みの更新式: $w \leftarrow w - \eta \frac{\partial E}{\partial w}$

ボルツマンマシンの重みの更新式: $w \leftarrow w + \eta \frac{\partial \ln L(\theta)}{\partial w}$

ボルツマンマシンのバイアスの更新式: $b \leftarrow b + \eta \frac{\partial \ln L(\theta)}{\partial h}$

隠れユニットがあるボルツマンマシン

※可視ユニットに隠れユニットを加えることにより、可視ユニット間の関係だけでは表現できない、隠れた関係も考慮した分布を学習できる

※入力は可視ユニットのみに与える

11/16/2023

10

隠れユニットがあるときの尤度関数

$$P(x|\theta) = P(v, h|\theta) = \frac{1}{z(\theta)} e^{-\Phi(v, h, \theta)}$$

$$\Phi(\mathbf{x}, \boldsymbol{\theta}) = \Phi(\mathbf{v}, \mathbf{h}, \boldsymbol{\theta}) = -\sum_{(i,j)} w_{j,i} x_i x_j - \sum_i b_i x_i$$

尤度関数: $L(\boldsymbol{\theta}) = \prod_{n=1}^{N} P(\boldsymbol{v}_n, \boldsymbol{h}|\boldsymbol{\theta})$?

尤度は与えられたデータと θ で定義すべき

尤度関数: $L(\boldsymbol{\theta}) = \prod_{n=1}^{N} P(\boldsymbol{v}_n | \boldsymbol{\theta})$

11/16/2023

隠れユニットがあるときの尤度関数

■ 尤度関数:
$$L(\theta) = \prod_{n=1}^{N} P(v_n | \theta)$$

 $P(x | \theta) = P(v, h | \theta) = \frac{1}{z(\theta)} e^{-\Phi(v, h, \theta)}$

 $P(v_n|\theta)$ をどう定義するか? $\rightarrow h$ を周辺化する

$$P(v_n|\theta) = \sum_{h} P(v_n, h|\theta) = \frac{1}{z(\theta)} \sum_{h} e^{-\Phi(v_n, h, \theta)}$$

対数尤度関数:
$$\ln L(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln P(\boldsymbol{v}_n | \boldsymbol{\theta})$$

 $= \sum_{n=1}^{N} \ln(\sum_{\boldsymbol{h}} P(\boldsymbol{v}_n, \boldsymbol{h} | \boldsymbol{\theta}))$
 $= \sum_{n=1}^{N} \left(\ln(\sum_{\boldsymbol{h}} e^{-\Phi(\boldsymbol{v}_n, \boldsymbol{h}, \boldsymbol{\theta})}) - \ln z(\boldsymbol{\theta})\right)$

RBMの対数尤度関数

• $\ln L(\theta) = \sum_{n=1}^{N} \ln P(v_n|\theta)$ $= \sum_{n=1}^{N} \left[\ln(\sum_h e^{-\Phi(v_n,h,\theta)}) - \ln z(\theta)\right]$ $= \ln(\sum_h e^{-\Phi(v_n,h,\theta)})$ $= \ln(\sum_h e^{\sum_{(i,j)} w_{j,i} v_i^n h_j + \sum_i a_i v_i^n + \sum_j b_j h_j})$ $= \ln(\sum_h e^{\sum_{(i,j)} w_{j,i} v_i^n h_j} e^{\sum_i a_i v_i^n} e^{\sum_j b_j h_j})$ $= \ln(e^{\sum_i a_i v_i^n} \sum_h e^{\sum_{(i,j)} w_{j,i} v_i^n h_j} e^{\sum_j b_j h_j})$ $= \ln(e^{\sum_i a_i v_i^n}) + \ln(\sum_h e^{\sum_{(i,j)} w_{j,i} v_i^n h_j} e^{\sum_j b_j h_j})$ $= \sum_i a_i v_i^n + \ln(\sum_h e^{\sum_j h_j (b_j + \sum_i w_{j,i} v_i^n}))$

