Devoir de Mathématiques n°7

KÉVIN POLISANO MP*

Vendredi 27 novembre 2009

Partie I - Etude de la convergence de la suite (u_n)

A.1 On montre tout d'abord que pour $n \ge 1, u_n > 0$:

<u>Initialisation</u>: $u_1 > 0$ et $u_2 = u_1 + a_0 u_0 > 0$ car $u_0 \ge 0$ et $a_0 \ge 0$.

 $\underline{\text{H\'er\'edit\'e}}: \text{Supposons } u_{n-1}, u_n > 0, \text{ alors clairement } u_{n+1} = u_n + a_{n-1}u_{n-1} > 0 \text{ car } a_{n-1} \geqslant 0.$

Ainsi $u_{n+1} - u_n = a_{n-1}u_{n-1} \ge 0$ donc $(u_n)_{n \ge 1}$ est croissante.

A.2 On utilise le développement en série entière de l'exponentielle :

$$u_n \exp(a_{n-1}) = u_n \sum_{k=0}^{+\infty} \frac{a_{n-1}^k}{k!} \ge u_n (1 + a_{n-1}) = u_n + a_{n-1} u_n \ge u_n + a_{n-1} u_{n-1} = u_{n+1}$$

par croissante de la suite $(u_n)_{n\geqslant 1}$.

A.3 (u_n) est croissante strictement positive donc converge vers $\ell > 0$, et:

$$a_{n-1} \sim \frac{u_{n+1} - u_n}{\ell}$$

Et puisque (u_n) converge, la série $\sum u_{n+2} - u_{n+1}$ converge donc la série $\sum a_n$ également.

B.1 Montrons par récurrence double que $\forall n \in \mathbb{N}, |u_n| \leq v_n$:

<u>Initialisation</u>: $|u_0| \leq v_0$ et $|u_1| \leq v_1$ par définition.

<u>Hérédité</u>: Supposons $|u_{n-1}| \le v_{n-1}$ et $|u_n| \le v_n$, par l'inégalité triangulaire:

$$|u_{n+1}| = |u_n + a_{n-1}u_{n-1}| \le |u_n| + |a_{n-1}||u_{n-1}| \le v_n + |a_{n-1}|v_{n-1}| = v_{n+1}$$

ce qui achève la récurrence.

B.2 On a l'inégalité :

$$0 \le |u_{n+1} - u_n| = |a_{n-1}| |u_{n-1}| \le |a_{n-1}| |v_{n-1}| = |v_{n+1}| - |v_n|$$

On applique les résultats du paragraphe A. aux suites (v_n) et $(|a_n|)$:

Par hypothèse $\sum |a_n|$ converge donc d'après **A.2** la suite (v_n) converge aussi.

Par conséquent la série positive $\sum v_{n+1} - v_n$ converge et par encadrement $\sum u_{n+1} - u_n$ est AC.

C. Simplement $u_{k+1} - u_k = a_{k-1}u_{k-1} \sim La_{k-1}$. Nous allons utiliser le théorème suivant :

Si deux suites positives sont équivalentes alors les restes de leur série sont équivalents.

Le reste de la série $\sum a_{k-1}$ est :

$$R_n = \sum_{k=n}^{+\infty} a_{k-1} = \sum_{k=1}^{+\infty} a_{k-1} - \sum_{k=1}^{n-1} a_{k-1} = \frac{1}{1-a} - \frac{1-a^n}{1-a} = \frac{a^n}{1-a}$$

puisque (a_n) est une suite géométrique de raison 0 < a < 1. D'où :

$$L - u_n \sim \frac{La^n}{1-a}$$

D.1 On calcule l'intégrale : $\int_{k}^{k+1} \frac{dt}{t^2} = \left[-\frac{1}{t} \right]_{k}^{k+1} = \frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)} = a_{k-1}$ ainsi :

$$u_{k+1} - u_k = a_{k-1}u_{k-1} \sim La_{k-1} = L \int_k^{k+1} \frac{dt}{t^2}$$

De même en utilisant le théorème précédent on obtient :

$$L - u_n \sim L \int_n^\infty \frac{dt}{t^2} = \frac{L}{n}$$

D.2 $a_{n-1}u_{n-1} = u_{n+1} - u_n = \left(L - \frac{L}{n+1} + \varepsilon_{n+1}\right) - \left(L - \frac{L}{n} + \varepsilon_n\right) = \left(\varepsilon_{n+1} - \varepsilon_n\right) + \frac{L}{n(n+1)}$ soit :

$$\varepsilon_{n+1} - \varepsilon_n = a_{n-1}(u_{n-1} - L) \sim -\frac{1}{n(n+1)} \times \frac{L}{n-1} = -\frac{L}{(n-1)n(n+1)}$$

La suite (ε_n) tend a fortiori vers 0 donc d'après le théorème :

$$0 - \varepsilon_n \sim -\sum_{k=n}^{+\infty} \frac{L}{(k-1)k(k+1)}$$

On décompose facilement la fraction rationnelle en éléments simples :

$$\varepsilon_n \sim L \sum_{k=n}^{+\infty} \left(\frac{1}{2(k-1)} - \frac{1}{k} + \frac{1}{2(k+1)} \right)$$

On obtient une somme télescopique, et il nous reste :

$$\sum_{k=n}^{+\infty} \left(\frac{1}{2(k-1)} - \frac{1}{k} + \frac{1}{2(k+1)} \right) = \frac{L}{2} \left(\frac{1}{n-1} - \frac{1}{n} \right) = \frac{L}{2n(n-1)}$$

Ainsi:

$$\varepsilon_n \sim \frac{L}{2n^2}$$

Et on en déduit le développement asymptotique de u_n à l'ordre 2 :

$$u_n = L - \frac{L}{n} + \frac{L}{2n^2} + o\left(\frac{1}{n^2}\right)$$

Partie II - Etude des suites (u_n) de limite nulle

A. Soit $\lambda \in \mathbb{R}$ et $(u_0, u_1), (v_0, v_1) \in \mathbb{R}^2$ les valeurs initiales associées à u_n et v_n vérifiant (\mathcal{R}) .

Et soit $(w_0, w_1) = \lambda(u_0, u_1) + (v_0, v_1)$ associé à la suite w_n vérifiant (\mathcal{R}) .

Vérifions par récurrence que $w_n = \lambda u_n + v_n$:

<u>Initialisation</u>: vraie par définition des valeurs initiales de w_n .

<u>Hérédité</u> : Supposons $w_{n-1} = \lambda u_{n-1} + v_{n-1}$ et $w_n = \lambda u_n + v_n$, alors :

$$w_{n+1} = w_n + a_{n-1}w_{n-1} = (\lambda u_n + v_n) + a_{n-1}(\lambda u_{n-1} + v_{n-1}) = \lambda (u_n + a_{n-1}u_{n-1}) + (v_n + a_{n-1}v_{n-1}p) = \lambda u_{n+1} + v_{n+1} +$$

Par passage à la limite on a donc :

$$L(\lambda(u_0, u_1) + (v_0, v_1)) = \lambda L(u_0, u_1) + L(v_0, v_1)$$

ce qui montre que l'application $(u_0, u_1) \mapsto L(u_0, u_1)$ est linéaire.

B.1 Supposons qu'il existe $m \in \mathbb{N}$ tel que $u_m = 0$. Déjà on remarque qu'on a *a fortiori* $u_{m-1} \neq 0$ sinon de proche en proche on aboutirait à $u_0 = u_1 = 0$ ce qui est exclu.

En outre $u_{m+1}=a_{m-1}u_{m-1}\neq 0$ et $u_{m+2}=u_{m+1}\neq 0$ sont de même signe que u_{m-1} .

Donc les termes de rang supérieur à m+1 sont strictements positifs et de même signe.

A partir de ce rang la suite est strictement positive et croissante (resp. négative et décroissante).

Et par conséquent la limite de (u_n) ne peut être nulle.

B.2 L'application L est une forme linéaire, donc son noyau est un hyperplan de \mathbb{R}^2 d'où

$$\dim(N) = 1$$

- **C.1** Montrons que $(u_0, u_1) \in N \Leftrightarrow (u_n)$ alternée :
- \Rightarrow Par contraposée, si (u_n) n'est pas alternée elle a 2 termes successifs de même signe.

Et on vient de voir que cela empêche à la limite d'être nulle.

- \leftarrow On a $u_{n+1}u_n < 0$ soit en passant à la limite $L(u_0, u_1)^2 \le 0 \Rightarrow L(u_0, u_1) = 0$.
- $C.2 \dim(N) = 1 \operatorname{donc} \operatorname{engendr\'{e}} \operatorname{par} \operatorname{un} \operatorname{couple} (v_0, v_1), \operatorname{ainsi} :$

$$(u_0, u_1) \in N \Rightarrow (u_0, u_1) = k(v_0, v_1) \Rightarrow r_{u_0, u_1} = -\frac{u_0}{u_1} = -\frac{kv_0}{kv_1} = -\frac{v_0}{v_1} = r_{v_0, v_1}$$

Donc le rapport r_0 ne dépend pas du choix de $(u_0, u_1) \in N$.

D.1 La première égalité provient directement de la relation de récurrence :

$$r_n = -\frac{u_{n+1}}{u_n} = -\frac{u_n + a_{n-1}u_{n-1}}{u_n} = -1 - \frac{a_{n-1}}{\frac{u_n}{u_{n-1}}} = -1 + \frac{a_{n-1}}{r_{n-1}}$$

Puisque (u_n) alternée, $u_{n+1}u_n < 0$ donc $r_n = -\frac{u_{n+1}}{u_n} > 0$ pour tout $n \in \mathbb{N}$ et :

$$r_n = \frac{a_{n-1} - r_{n-1}}{r_{n-1}} > 0 \Rightarrow r_{n-1} < a_{n-1}$$

d'où l'inégalité $0 < r_n < a_n$.

D.2 On passe à la limite dans cette dernière égalité, d'après le théorème des gendarmes :

$$\lim_{n \to +\infty} r_n = 0$$

car $\lim_{n\to+\infty} a_n = 0$ (condition nécessaire pour que la série $\sum a_n$ converge).

D.2 Le même encadrement montre que la série $\sum r_n$ converge absolument.

Et comme $|r_n| = \frac{|u_{n+1}|}{|u_n|} \longrightarrow 0$ d'après la règle de d'Alembert $\sum u_n$ est absolument convergente.

Partie III - Application à la résolution d'une équation différentielle

A. Cherchons des solutions sous la forme $y(x) = \sum_{n=0}^{\infty} u_n x^n$ où u_n est à déterminer.

On dérive 2 fois la série entière et on injecte dans l'équation différentielle :

$$(x-1)\sum_{n=2}^{\infty}n(n-1)u_nx^{n-2} + 2\sum_{n=1}^{\infty}nu_nx^{n-1} + \sum_{n=0}^{\infty}u_nx^n = 0$$

On effectue des changements d'indices de sorte que l'on puisse factoriser par x^n :

$$\sum_{n=1}^{\infty} n(n+1)u_{n+1}x^n - \sum_{n=0}^{\infty} (n+1)(n+2)u_{n+2}x^n + 2\sum_{n=0}^{\infty} (n+1)u_{n+1}x^n + \sum_{n=0}^{\infty} u_nx^n = 0$$

soit:

$$\sum_{n=1}^{\infty} [(n+2)(n+1)u_{n+1} - (n+1)(n+2)u_{n+2} + u_n]x^n - 2u_2 + 2u_1 + u_0 = 0$$

Par unicité du développement en série entière, on a par identification à la fonction nulle :

$$u_{n+2} = u_{n+1} + \frac{1}{(n+2)(n+1)}u_n$$

Donc (u_n) vérifie (\mathcal{R}) avec la suite (a_n) définie à la question **I.D**.

- **B.** On choisit $(u_0, u_1) \in N$, ainsi d'après II.D.2 $r_n \to 0$ donc d'après d'Alembert $R_{cv} = \infty$.
- C. On utilise le développement limité à l'ordre de (u_n) déterminé en I.D.2 :

$$u_n = L - \frac{L}{n} + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \Rightarrow u_n x^n = Lx^n - L\frac{x^n}{n} + \frac{x^n}{2n^2} + o\left(\frac{x^n}{n^2}\right)$$

On somme ensuite de 0 à ∞ :

$$f(x) = \sum_{n=0}^{\infty} u_n x^n = L \sum_{n=0}^{\infty} x^n - L \sum_{n=0}^{\infty} \frac{x^n}{n} + \sum_{n=0}^{\infty} \left[\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \right] x^n$$

Notons $g(x) = \sum_{n=0}^{\infty} \left[\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \right] x^n$. On a alors puisque |x| < 1:

$$f(x) = \frac{L}{1-x} + L \ln(1-x) + g(x)$$

Et le terme général de g(x) est équivalent à $\frac{1}{2n^2}$ donc g(x) est NC sur [-1,1].

Ainsi g est continue en 1 donc y admet une limite finie à gauche.

PARTIE IV - ETUDE DU NOYAU N DE L'APPLICATION L

A. f_n est strictement décroissante et C^{∞} . Par composée g_n est strictement monotone et C^{∞} .

 $\underline{\mathrm{NB}}$: si n est pair (resp. impair) g_n est strictement décroissante (resp. strictement croissante).

Montrons par récurrence que pour tout $x \ge 0$: $|g'_n(x)| \le a_0 a_1 \cdots a_n$.

Initialisation:
$$g_0(x) = f_0(x) = \frac{a_0}{1+x}, |g'_0(x)| = \frac{a_0}{(1+x)^2} \le a_0.$$

<u>Hérédité</u>: Supposons la propriété vraie au rang n, alors au rang n+1:

$$g_{n+1} = g_n \circ f_{n+1} \Rightarrow g'_{n+1} = f'_{n+1} \times g'_n(f_{n+1}) \Rightarrow |g'_{n+1}(x)| = \frac{a_{n+1}}{(x+1)^2} |g'_n(f_{n+1}(x))| \leqslant a_0 a_1 \cdots a_n a_{n+1}$$

$$g_n(x) = g_{n-1}(f_n(x)) = g_{n-1}(\frac{a_n}{1+x}), p_n = g_n(0) = g_{n-1}(a_n), d'où$$
:

$$|p_n - p_{n-1}| = |g_{n-1}(a_n) - g_{n-1}(0)| \le (a_n - 0)|g'_{n-1}(x)|$$

d'après l'inégalité des accroissements finis, et en utilisant la majoration précédente :

$$|p_n - p_{n-1}| \leqslant a_0 a_1 \cdots a_{n-1} a_n$$

B. D'après II.**D.1**
$$r_n = -1 + \frac{a_{n-1}}{r_{n-1}} \Leftrightarrow r_{n-1} = \frac{a_{n-1}}{1+r_n} \Leftrightarrow r_{n-1} = f_{n-1}(r_n)$$
.

Et $0 < r_n < a_n$ d'où par stricte décroissance de f_{n-1} :

$$f_{n-1}(a_n) < r_{n-1} < f_{n-1}(0) \Leftrightarrow (f_{n-1} \circ f_n)(0) < r_{n-1} < f_{n-1}(0)$$

Réitérons le procédé en appliquant f_{n-2} à l'inégalité précédente, il vient :

$$(f_{n-2} \circ f_{n-1})(0) < r_{n-2} < (f_{n-2} \circ f_{n-1} \circ f_n)(0)$$

De proche en proche r_0 est bien compris entre p_{n-1} et p_n , précisons l'ordre :

On remarque qu'à gauche le nombre de composée est toujours pair, et à droite impair.

Si n=2k (resp. n=2k+1) il y a un nombre impair (resp. pair) de composées dans g_n d'où :

$$p_{2k+1} < r_0 < p_{2k}$$

Montrons que la suite (p_{2n}) est strictement décroissante :

$$g_{2n+2} = g_{2n} \circ (f_{2n+1} \circ f_{2n+2})$$
 et $m = (f_{2n+1} \circ f_{2n+2})(0) = \frac{a_{2n+1}}{1 + a_{2n+2}} > 0$ car $\forall n \in \mathbb{N}, a_n > 0$.

Et g_{2n} est strictement décroissante donc $m>0 \Rightarrow g_{2n}(m) < g_{2n}(0)$ d'où :

$$p_{2n+2} = g_{2n+2}(0) = g_{2n}(m) < g_{2n}(0) = p_{2n}$$

On montre de même que la suite (p_{2n+1}) est strictement croissante.

Par ailleurs vu que $|p_{2n+1}-p_{2n}| \le a_0a_1\cdots a_{2n+1}$ et que $a_n \longrightarrow 0$ $(\sum a_n \text{ converge})$:

$$p_{2n+1} - p_{2n} \longrightarrow 0$$

On en conclut que les suites (p_{2n}) et (p_{2n+1}) sont adjacentes donc tendent vers ℓ .

Et en passant à la limite dans $p_{2n+1} < r_0 < p_{2n}$ on trouve $\ell = r_0$.

Par suite (p_n) tend aussi vers r_0 .

- C. Sachant que $r_0 \in [p_{n-1}, p_n]$, il suffit de calculer les p_n jusqu'à avoir $|p_n p_{n-1}| < \varepsilon$.
- **D.** Avec une boucle Maple je trouve $r_0 \simeq 0.43313$ à 10^{-5} près.