MAC0444 - Sistemas Baseados em Conhecimento Lista de Exercícios No. 2

Mateus Agostinho dos Anjos NUSP 9298191

2 de Outubro de 2019

1 -

```
Predicados:
```

```
fezEx(x) = x fez os exercícios

vaiBem(x) = x vai bem na prova

mediaAlta(x) = x fica com media alta

aprovado(x, y) = x é aprovado em y
```

Formalizando as sentenças do enunciado chegamos em:

```
\forall x \; (fezEx(x) \rightarrow vaiBem(x)) \forall y \; (vaiBem(y) \rightarrow mediaAlta(y)) \forall z \; (mediaAlta(z) \rightarrow aprovado(z, mac444)) fezEx(João) vaiBem(Maria)
```

Base de conhecimento (KB):

- 1. $[\neg fezEx(x), vaiBem(x)]$
- 2. $[\neg vaiBem(y), mediaAlta(y)]$
- 3. $[\neg mediaAlta(z), aprovado(z, mac444)]$
- 4. [fezEx(João)]
- 5. [vaiBem(Maria)]
- 6. $[\neg aprovado(João, mac444)]$

Veja que inserimos $[\neg aprovado(João, mac444)]$ na base de conhecimento, pois é a negação do nosso objetivo. Sendo assim, se chegarmos na cláusula vazia a partir desta base de conhecimento estará provado que aprovado(João, mac444) é consequência lógica das sentenças do enunciado.

Utilizando a resolução SLD temos:

$$\neg aprovado(\text{João}, mac444) \qquad \text{(resolve com 3. e z/João)} \\ \downarrow \\ \neg mediaAlta(\text{João}) \qquad \text{(resolve com 2. e y/João)} \\ \downarrow \\ \neg vaiBem(\text{João}) \qquad \text{(resolve com 1. e x/João)} \\ \downarrow \\ \neg fezEx(\text{João}) \qquad \text{(resolve com 4.)} \\ \downarrow \\ [\]$$

Sendo assim provamos que: $KB \cup \{\neg aprovado(\text{João}, mac444)\}$ é insatisfazível, portanto aprovado(João, mac444) é consequência lógica de nossa base de conhecimento.

A **resolução SLD** será semelhante para Maria, portanto temos: Base de conhecimento (KB):

- 1. $[\neg fezEx(x), vaiBem(x)]$
- 2. $[\neg vaiBem(y), mediaAlta(y)]$
- $3. \quad [\neg mediaAlta(z), \ aprovado(z, mac444)]$
- 4. [fezEx(João)]
- 5. [vaiBem(Maria)]
- 6. $[\neg aprovado(Maria, mac444)]$

Utilizando a resolução SLD temos:

$$\neg aprovado(\text{Maria}, mac444)$$
 (resolve com 3. e z/Maria) \downarrow $\neg mediaAlta(\text{Maria})$ (resolve com 2. e y/Maria) \downarrow $\neg vaiBem(\text{Maria})$ (resolve com 5.) \downarrow

2 -

Temos a Base de Conhecimento (KB) reescrita com variáveis renomeadas para evitar confusões na resolução do exercício:

- 1. $[\neg A_1(x), \neg A_2(x), P(x)]$
- 2. $[\neg B_1(y), \neg B_2(y), A_1(y)]$
- 3. $[\neg B_3(z), \neg B_4(z), A_2(z)]$
- 4. $[B_1(a)]$
- 5. $[B_2(a)]$
- 6. $[B_3(a)]$
- 7. $[B_4(a)]$

a) Para mostrar o passo a passo do procedimento de encadeamento para trás (backward chaining) devemos começar identificando as implicações da Base de Conhecimento.

Seguindo a ordem acima temos:

(note que utilizamos \leftarrow nas implicações)

- 1. $\forall x (P(x) \leftarrow A_1(x) \land A_2(x))$
- 2. $\forall y (A_1(y) \leftarrow B_1(y) \land B_2(y))$
- 3. $\forall z (A_2(z) \leftarrow B_3(z) \land B_4(z))$
- 4. $B_1(a)$
- 5. $B_2(a)$
- 6. $B_3(a)$
- 7. $B_4(a)$

A partir destas implicações o passo a passo pode ser mostrado a partir da figura abaixo, sendo que cada passo gera pelo menos uma sub-árvore.

Todas as folhas da árvore estão na base de conhecimento em uma cláusula unitária, portanto são verdadeiras. Sendo assim podemos marcá-las com um \checkmark .

A partir disso podemos concluir que $A_1(a)$ e $A_2(a)$ estão provados e depois que P(a) está provado, portanto mostramos que o encadeamento para trás (backward chaining) produz resposta SIM com objetivo P(a).

b) Utilizando a resolução SLD com a base de conhecimento definida no início da questão, iniciamos com ¬P(a), que é a negação do nosso objetivo, e buscaremos a cláusula vazia. Obtemos o seguinte:

Como chegamos na cláusula vazia a partir de $\neg P(a)$, então está provado que P(a) é consequência desta base de conhecimento.

3 -

a) Após ter carregado o programa a resposta do Prolog para a consulta:

? - result([a, b, c, d, e, f, g], X). será:

$$X = [b, d, f]$$

b)

Considerando que a lista é enumerada a partir da posição 1, o programa recebe uma lista e elimina os elementos das posições ímpares, devolvendo apenas os elementos das posições pares.

Veja o exemplo de consulta que os elementos da lista coincidem com o número de sua posição:

?
$$- result([1, 2, 3, 4, 5, 6], X)$$
.

$$X = [2, 4, 6]$$

Para fazer isso o programa possui um fato, $result(_-, [])$, que cobre os casos em que o primeiro argumento é uma lista vazia ou uma lista com apenas 1 elemento, pois nestes casos não é possível extrair 2 elementos da lista como a primeira regra exige (o corte impede a utilização do fato quando a lista tem 2 ou mais elementos).

Definida a base do programa a partir deste fato, chamadas recursivas serão feitas tentando equiparar, inicialmente, a lista passada como argumento e a primeira regra, veja a execução do exemplo:

Chamada inicial result([1, 2, 3, 4, 5, 6], X)Casa com result([-, E|L], [E|M])

Com valoração $L = 1, E = 2, L = [3, 4, 5, 6], X = [2|M_1]$

Faz chamada recursiva $result(L, M_1)$

Chamada $result([3,4,5,6], M_1)$ Casa com result([-, E|L], [E|M])

Com valoração $_{-}=3, E=4, L=[5,6], M_{1}=[4|M_{2}]$

Faz chamada recursiva $result(L, M_2)$

Chamada $result([5, 6], M_2)$

Casa com result([-, E|L], [E|M])

Com valoração $= 5, E = 6, L = [], M_2 = [6|M_3]$

Faz chamada recursiva $result(L, M_3)$

Chamada $result([], M_3)$ Casa com o fato $result(_, [])$ Com valoração $_=[], M_3=[]$ Após essa execução devemos obter o valor de X, para isso temos que reconstruí-lo a partir de M_3 , M_2 e M_1 , veja:

$$M_3 = [] = []$$

 $M_2 = [6|M_3] = [6]$
 $M_1 = [4|M_2] = [4, 6]$
 $X = [2|M_1] = [2, 4, 6]$

Esta execução única só é possível, pois o corte (!) na primeira linha do programa faz com que não seja possível criar ramificações para obter diferentes respostas casando as chamadas recursivas intermediárias com o fato, uma vez que já foi utilizado a primeira regra de casamento (que possui a instrução de corte).

Sendo assim, o corte impede a alternativa de resposta em que o programa casa a chamada $result([3,4,5,6],M_1)$ com o fato $result(_,[])$ ($_=[3,4,5,6]$ e $M_1=[]$) e obtém a resposta X=[2], por exemplo.

Note que foi utilizado a variável anônima ($_{-}$), pois não queremos saber qual o valor do elemento que foi atribuído a ela durante o processo de obtenção do valor de X, queremos somente que exista um valor possível a ser atribuído.

4 -

- a) avof(Mul, Pess) := mae(Mul, Y), mae(Y, Pess). avof(Mul, Pess) := mae(Mul, Y), pai(Y, Pess).
- b) avom(Hom, Pess) := pai(Hom, Y), mae(Y, Pess). avom(Hom, Pess) := pai(Hom, Y), pai(Y, Pess).
- c) bisavom(Hom, Pess) := pai(Hom, Y), avom(Y, Pess). bisavom(Hom, Pess) := pai(Hom, Y), avof(Y, Pess).

d)
Primos de primeiro grau de P1 são os filhos e filhas dos tios de P1.

Por isso devemos definir quem é pai ou mãe de P1, chamado de X e quem é irmão ou irmã de X, chamado de Y, depois verificamos se Y é pai ou mãe de P2.

```
primo_{-}1(P1, P2) := pai(X, P1), irmaos(X, Y), pai(Y, P2).

primo_{-}1(P1, P2) := pai(X, P1), irmaos(X, Y), mae(Y, P2).

primo_{-}1(P1, P2) := mae(X, P1), irmaos(X, Y), pai(Y, P2).

primo_{-}1(P1, P2) := mae(X, P1), irmaos(X, Y), mae(Y, P2).
```

e)
Se X é primo de n-grau de Y e Z é filho de Y, então X é primo de (n+1)-grau de Z.

Devemos saber, portanto, quem são os descendentes dos primos de primeiro grau. Por isso devemos definir filho/2 e descendente/2.

```
primo(P1, P2) : -irmaos(X, Y), descendente(P1, X), descendente(P2, Y).

filho(X, Y) : -pai(Y, X).

filho(X, Y) : -mae(Y, X).

descendente(X, Y) : -filho(X, Y).

descendente(X, Y) : -filho(X, Z), descendente(Z, Y).
```

- f) $maior_de_idade(Pess) : -idade(Pess, X), X >= 18.$
- g)
 Assumindo que uma pessoa ou é homem ou é mulher, definimos pessoa:

```
pessoa(Pess) : -homem(Pess).

pessoa(Pess) : -mulher(Pess).
```

Utilizando o comando findall, temos a lista de pessoas dada por:

```
pessoas(Lista) : - findall(Pess, pessoa(Pess), Lista).
```

h)
Utilizaremos o operador \+ para fazer uma busca em todas as pessoas definidas com idade/2, pegando X e procurando se existe algum Y > X, caso existir iremos comparar a nova maior idade X com todos os elementos que tem idade definida.

```
mais\_velho(Pess) : -idade(Pess, X), \setminus +(idade(\_, Y), Y > X).
```

Para criar a lista de pessoas de um determinado sexo com as respectivas idades devemos verificar se o Sexo passado é m (homem) ou f (mulher), depois disso utilizamos o comando findall com template "[Pess, X]" para armazenar a pessoa "Pess" e sua idade "X", utilizado como goal de consulta se "Pess" tem idade "X" definida na base de conhecimento e se "Pess" é homem ou mulher dependendo se "Sexo" é "m" ou "f".

Desta forma:

```
lista\_pessoas(Lista, Sexo) : - Sexo = m,

findall([Pess, X], (idade(Pess, X), homem(Pess)), Lista).

lista\_pessoas(Lista, Sexo) : - Sexo = f,

findall([Pess, X], (idade(Pess, X), mulher(Pess)), Lista).
```

j) Primeiro verificaremos se não há algum parentesco entre "X" e "Y" definindo a regra:

```
sem\_parentesco(X,Y) : -homem(X), \ mulher(Y), \ not(pai(X,Y)), \ not(mae(Y,X)), \ not(irmao\_de(X,Y)), \ not(avof(Y,X)), \ not(avom(X,Y)), \ not(bisavom(X,Y)), \ not(primo(X,Y)).
```

Agora criaremos uma regra para evitar que pessoas casadas sejam adequadas:

```
sem\_traicao(X, Y) : -not(casados(X, \_)), not(casados(\_, Y)).
```

Por fim podemos criar a regra "adequado" (note que "Z" é a idade do homem e "W" a idade da mulher):

$$\begin{split} &adequados(Hom,Mul):-homem(Hom),\ mulher(Mul),\\ &sem_parentesco(Hom,Mul),\\ &sem_traicao(Hom,Mul),\ idade(Hom,Z),\ idade(Mul,W),\\ ¬(Z< W-2),\ not(Z> W+10). \end{split}$$