Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

 $Fall,\ 2021$

Review: Inner products on real linear space

An inner product on V is a function $\langle , \rangle : V \times V \to \mathbb{R}$ such that

- $\langle v, v \rangle = 0$ if and only if v = 0.

Review

• Suppose that V is an inner product space. For $v \in V$, we define the norm of v, denoted ||v||, by $||v|| = \sqrt{\langle v, v \rangle}$.

• Two vectors $u, v \in V$ are said to be orthogonal if $\langle u, v \rangle = 0$.

Review: Orthogonal Subspaces

Definition

Two subspaces W_1 and W_2 of the same space V are orthogonal, denoted by $W_1 \perp W_2$, if and only if each vector $w_1 \in W_1$ is orthogonal to each vector $w_2 \in W_2$:

$$\langle w_1, w_2 \rangle = 0.$$

for all w_1 and w_2 in W_1 and W_2 , respectively.

Review: Orthogonal complement of a subspace

Definition

Given a subspace W in linear space V, the space of all vectors orthogonal to W is called the orthogonal complement of V. It is denoted by W^{\perp} .

- We emphasize that W_1 and W_2 can be orthogonal without being complements.
- $W_1 = \operatorname{span}((1,0,0))$ and $W_2 = \operatorname{span}((0,1,0))$.

Fundamental theorem of orthogonality

Review: Fundamental theorem of orthogonality

Let $A \in M_{mn}(\mathbb{R})$.

- **①** The row space is orthogonal to the nullspace (in \mathbb{R}^n).
- ② The column space is orthogonal to the left nullspace (in \mathbb{R}^m).

Review: Fundamental theorem of orthogonality

Let $A \in M_{mn}(\mathbb{R})$.

- **①** The nullspace is the orthogonal complement of the row space in \mathbb{R}^n .
- ② The left nullspace is the orthogonal complement of the column space in \mathbb{R}^m .

- From the row space to the column space, A is actually invertible. Every vector in the column space comes from exactly one vector in the row space.

Matrix Representation of Inner Products

- Let $B = \{v_1, \dots, v_n\}$ be a basis for linear space V.
- Suppose that a bilinear function $\langle \, , \, \rangle : V \times V \to \mathbb{R}$ is an inner product for \mathbb{R}^n .
- We want to investigate a matrix representation of this inner product.

Matrix Representation of Inner Products

- Let $B = \{v_1, \ldots, v_n\}$ be a basis for linear space V.
- Suppose that a bilinear function $\langle \, , \, \rangle : V \times V \to \mathbb{R}$ is an inner product for \mathbb{R}^n .
- We want to investigate a matrix representation of this inner product.
- Orthonormal basis!
- Vectors q_1, \ldots, q_n are orthonormal if

$$q_i^T q_j = \begin{cases} 0 & \text{whenever} & i \neq j \\ \\ 1 & \text{whenever} & i = j \end{cases}$$
 (for orthogonality)

Change of basis matrix for inner product space

Suppose that $B = \{v_1, \dots, v_n\}$ and $B' = \{v'_1, \dots, v'_n\}$ are two bases for an inner product V. Then for each $v \in V$, we have

$$[v]_B = P[v]_{B'}$$

such that

$$v_j' = \sum_{i=1}^n P_{ij} v_r.$$

and P is the change basis matrix.

What is the relationship between the matrix of the inner product relative to the basis B and the basis B'?

The Gram-Schmidt Process

- ullet Suppose that a,b are independent vectors, but they are not orthogonal.
- Let $V = \text{span}(\{a, b\})$.
- So, $\{a, b\}$ is a basis for V.
- How can we find a way to make an orthogonal basis?

The Gram-Schmidt Process

- ullet Suppose a,b,c are independent but are not orthogonal vectors.
- Let $V = \text{span}(\{a, b, c\})$.
- So, $\{a, b, c\}$ is a basis for V.
- We want to find a way to make an orthogonal basis:

•

$$q_{1} = \frac{1}{\|a\|} a$$

$$q_{2} = \frac{1}{\|b - \langle b, q_{1} \rangle q_{1}\|} (b - \langle b, q_{1} \rangle q_{1})$$

$$q_{3} = \frac{1}{\|c - \langle c, q_{1} \rangle q_{1} - \langle c, q_{2} \rangle q_{2}\|} (c - \langle c, q_{1} \rangle q_{1} - \langle c, q_{2} \rangle q_{2})$$

Example

$$\bullet \ a = \begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix} \quad b = \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix} \quad c = \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix}$$

• The Gram-Schmidt Process: $q_1 = \frac{1}{\sqrt{2}}a$

$$b - \left\langle b, q_1 \right\rangle q_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \quad q_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$c - \left\langle c, q_1 \right\rangle q_1 - \left\langle c, q_2 \right\rangle q_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} - \sqrt{2} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} - \sqrt{2} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

The Gram-Schmidt process

- The Gram-Schmidt process
 - \bullet starts with independent vectors v_1, \ldots, v_n
 - 2 ends with orthonormal vectors q_1, \ldots, q_n .
- At step 1: $q_1 = \frac{1}{\|v_1\|} v_1$.
- At step j $(2 \le j \le n)$:
 - ① it subtracts from a_j its components in the directions q_1, \ldots, q_{j-1} that are already settled:

$$Q_j = v_j - \langle v_j, q_1 \rangle q_1 - \dots - \langle v_j, q_{j-1} \rangle q_{j-1}.$$

- **3** $\operatorname{span}(\{v_1, \dots, v_j\}) = \operatorname{span}(\{q_1, \dots, q_j\}).$

Thank You!