MATH 211

Online Asynchronous Survey in Calculus and Analytical Geometry

Dr. Ahmed Kaffel

Department of Mathematical Sciences University of Wisconsin Milwaukee

Spring 2023

Recall the definition of limits:

Suppose f(x) is defined close to a (but not necessarily a itself). We write

$$\lim_{x\to a} f(x) = L$$

spoken: "the limit of f(x), as x approaches a, is L"

if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a but not equal to a.

The intuitive definition of limits is for some purposes too vague:

- ▶ What means 'make f(x) arbitrarily close to L'?
- What means 'taking x sufficiently close to a'?

$$f(x) = \begin{cases} 2x - 1 & \text{for } x \neq 3\\ 6 & \text{for } x = 3 \end{cases}$$

Intuitively, when *x* is close to 3 but $x \neq 3$ then f(x) is close to 5.

How close to 3 does x need to be for f(x) to differ from 5 less than 0.1?

- ▶ the distance of x to 3 is |x-3|
- ▶ the distance of f(x) to 5 is |f(x) 5|

To answer the question we need to find $\delta > 0$ such that

$$|f(x) - 5| < 0.1$$
 whenever $0 < |x - 3| < \delta$

For $x \neq 3$ we have

$$|f(x) - 5| = |(2x - 1) - 5| = |2x - 6| = 2|x - 3| < 0.1$$

Thus
$$|f(x) - 5| < 0.1$$
 whenever $0 < |x - 3| < 0.05$; i.e. $\delta = 0.05$.

$$f(x) = \begin{cases} 2x - 1 & \text{for } x \neq 3\\ 6 & \text{for } x = 3 \end{cases}$$

We have derived

$$|f(x) - 5| < 0.1$$
 whenever $0 < |x - 3| < 0.05$

In words this means:

If x is within a distance of 0.05 from 3 (and $x \neq 3$) then f(x) is within a distance of 0.1 from 5.

$$f(x) = \begin{cases} 2x - 1 & \text{for } x \neq 3 \\ 6 & \text{for } x = 3 \end{cases}$$

Similarly, we find

$$|f(x)-5| < 0.1$$
 whenever $0 < |x-3| < 0.05$
 $|f(x)-5| < 0.01$ whenever $0 < |x-3| < 0.005$
 $|f(x)-5| < 0.001$ whenever $0 < |x-3| < 0.0005$

The distances 0.1, 0.01, ... are called **error tolerance**.

$$f(x) = \begin{cases} 2x - 1 & \text{for } x \neq 3 \\ 6 & \text{for } x = 3 \end{cases}$$

Similarly, we find

$$|f(x)-5| < 0.1$$
 whenever $0 < |x-3| < \delta(0.1)$
 $|f(x)-5| < 0.01$ whenever $0 < |x-3| < 0.005$
 $|f(x)-5| < 0.001$ whenever $0 < |x-3| < 0.0005$

The distances $0.1, 0.01, \dots$ are called **error tolerance**.

We have: $\delta(0.1) = 0.05$

$$f(x) = \begin{cases} 2x - 1 & \text{for } x \neq 3 \\ 6 & \text{for } x = 3 \end{cases}$$

Similarly, we find

$$|f(x)-5| < 0.1$$
 whenever $0 < |x-3| < \delta(0.1)$
 $|f(x)-5| < 0.01$ whenever $0 < |x-3| < \delta(0.01)$
 $|f(x)-5| < 0.001$ whenever $0 < |x-3| < 0.0005$

The distances $0.1, 0.01, \dots$ are called **error tolerance**.

We have: $\delta(0.1) = 0.05$, $\delta(0.01) = 0.005$

$$f(x) = \begin{cases} 2x - 1 & \text{for } x \neq 3 \\ 6 & \text{for } x = 3 \end{cases}$$

Similarly, we find

$$|f(x) - 5| < 0.1$$
 whenever $0 < |x - 3| < \delta(0.1)$
 $|f(x) - 5| < 0.01$ whenever $0 < |x - 3| < \delta(0.01)$
 $|f(x) - 5| < 0.001$ whenever $0 < |x - 3| < \delta(0.001)$

The distances 0.1, 0.01, ... are called **error tolerance**.

We have:
$$\delta(0.1) = 0.05$$
, $\delta(0.01) = 0.005$, $\delta(0.001) = 0.0005$

Thus $\delta(\epsilon)$ is a function of the error tolerance $\epsilon!$

We need to define
$$\delta(\epsilon)$$
 for arbitrary error tolerance $\epsilon>0$:
$$|f(x)-5|<\epsilon\quad\text{whenever}\quad 0<|x-3|<\delta(\epsilon)$$

We want $|f(x) - 5| = 2|x - 3| < \epsilon$. We define $\delta(\epsilon) = \epsilon/2$.

$$f(x) = \begin{cases} 2x - 1 & \text{for } x \neq 3 \\ 6 & \text{for } x = 3 \end{cases}$$

We define $\delta(\epsilon) = \epsilon/2$. Then the following holds

$$\text{if} \quad 0 < |x-3| < \delta(\varepsilon) \quad \text{ then } \quad |f(x)-5| < \varepsilon$$

In words this means:

If x is within a distance of $\epsilon/2$ from 3 (and $x \neq 3$) then f(x) is within a distance of ϵ from 5.

We can make ϵ arbitrarily small (but greater 0), and thereby make f(x) arbitrarily close 5.

This motivates the precise definition of limits...

Let *f* be a function that is defined on some open interval that contains *a*, except possibly on *a* itself.

$$\lim_{x\to a} f(x) = L$$

if there exists a function $\delta:(0,\infty)\to(0,\infty)$ s.t. for every $\varepsilon>0$:

if
$$0 < |a-x| < \delta(\epsilon)$$
 then $|f(x) - L| < \epsilon$

In words: No matter what $\epsilon > 0$ we choose, if the distance of x to a is smaller than $\delta(\epsilon)$ (and $x \neq a$) then the distance of f(x) to L is smaller than ϵ .

We can make f arbitrarily close to L by taking ϵ arbitrarily small.

Then x is sufficiently close to a if the distance is $< \delta(\epsilon)$.

Let f be a function that is defined on some open interval that contains a, except possibly on a itself.

$$\lim_{x\to a} f(x) = L$$
 if there exists a function $\delta:(0,\infty)\to(0,\infty)$ s.t. for every $\epsilon>0$: if $0<|a-x|<\delta(\epsilon)$ then $|f(x)-L|<\epsilon$

The definition is **equivalent to the one in the book**:

$$\lim_{x\to a}f(x)=L$$
 if for every $\epsilon>0$ there exists a number $\delta>0$ such that
$$\text{if}\quad 0<|a-x|<\delta\quad\text{then}\quad|f(x)-L|<\epsilon$$

$$\lim_{x\to a} f(x) = L$$

if for every $\epsilon > 0$ there exists a number $\delta > 0$ such that

if
$$0 < |a - x| < \delta$$
 then $|f(x) - L| < \epsilon$

Geometric interpretation:

For any small interval $(L - \epsilon, L + \epsilon)$ around L, we can find an interval $(a - \delta, a + \delta)$ around a such that f maps all points in $(a - \delta, a + \delta)$ into $(L - \epsilon, L + \epsilon)$.

$$\lim_{x\to a} f(x) = L$$

if for every $\epsilon > 0$ there exists a number $\delta > 0$ such that

if
$$0 < |a-x| < \delta$$
 then $|f(x) - L| < \epsilon$

Alternative geometric interpretation:

For every interval I_L around L, find interval I_a around a such that

if we restrict the domain of f to I_a , then the curve lies in I_L .

Proof that

$$\lim_{x\to 3}(4x-5)=7$$

Let $\epsilon > 0$ be arbitrary (the error tolerance).

We need to find δ such that

if
$$0 < |x-3| < \delta$$
 then $|(4x-5)-7| < \epsilon$

We have

$$|(4x-5)-7| < \epsilon \iff |4x-12| < \epsilon$$

$$\iff -\epsilon < 4x-12 < \epsilon$$

$$\iff -\frac{\epsilon}{4} < x-3 < \frac{\epsilon}{4}$$

$$\iff |x-3| < \frac{\epsilon}{4}$$

Thus $\delta = \frac{\varepsilon}{4}.$ If $0 < |x-3| < \frac{\varepsilon}{4}$ then $|(4x-5)-7| < \varepsilon.$

If the next exam will be insanely hard, then many students will fail.

The words if and then are hugely important!

In exams many students write:

$$0<|x-3|<\frac{\epsilon}{4}$$
$$|(4x-5)-7|<\epsilon$$

which is wrong.

Correct is:

If
$$0 < |x-3| < \frac{\epsilon}{4}$$

then $|(4x-5)-7| < \epsilon$

Find $\delta > 0$ such that if $0 < |x - 1| < \delta$ then $|(x^2 - 5x + 6) - 2| < 0.2$

Note that δ is a bound on the distance of x from 1.

Lets say
$$x = 1 + \delta$$
. Then

$$(x^{2} - 5x + 6) - 2 = (1 + \delta)^{2} - 5(1 + \delta) + 4$$
$$= (1 + 2\delta + \delta^{2}) - (5 + 5\delta) + 4$$
$$= \delta^{2} - 3\delta$$

Thus

$$|(x^2 - 5x + 6) - 2| < 0.2$$
 \iff $|\delta^2 - 3\delta| < 0.2$

Assume that $|\delta| < 1$ (we can make it as small as we want), then:

$$|\delta^2 - 3\delta| \ \leq \ |\delta^2| + |3\delta| \ \leq \ |\delta| + |3\delta| \ \leq \ 4|\delta|$$

Thus: if $4|\delta| < 0.2$ then $|(x^2 - 5x + 6) - 2| < 0.2$.

Hence $\delta = 0.04$ is a possible choice.

Let
$$\lim_{x\to a} f(x) = L_f$$
 and $\lim_{x\to a} g(x) = L_g$. Prove the sum law:
$$\lim_{x\to a} [f(x) + g(x)] = L_f + L_g$$

Let $\epsilon > 0$ be arbitrary, we need to find δ such that

$$\text{if} \quad 0 < |x-a| < \delta \quad \text{then} \quad |(f(x)+g(x))-(L_f+L_g)| < \epsilon$$

Note that $(f(x) + g(x)) - (L_f + L_g) = (f(x) - L_f) + (g(x) - L_g)$.

We know that there exists δ_f such that:

if
$$0 < |x - a| < \delta_f$$
 then $|f(x) - L_f| < \epsilon/2$

and there exists δ_a such that:

if
$$0<|x-a|<\delta_g$$
 then $|g(x)-L_g|<\epsilon/2$

We take
$$\delta = \min(\delta_f, \delta_g)$$
. If $0 < |x - a| < \delta$ then

$$|f(x) - L_f| < \epsilon/2$$
 and $|g(x) - L_g| < \epsilon/2$

and hence $|(f(x) - L_f) + (g(x) - L_g)| < \epsilon$.

Precise Definition of One-Sided Limits

Left-limit

$$\lim_{x\to a^-} f(x) = L$$

if for every $\varepsilon > 0$ there is a number $\delta > 0$ such that

$$\text{if} \quad a - \delta < x < a \quad \text{then} \quad |f(x) - L| < \varepsilon$$

Right-limit

$$\lim_{x\to a^+} f(x) = L$$

if for every $\varepsilon>0$ there is a number $\delta>0$ such that

if
$$a < x < a + \delta$$
 then $|f(x) - L| < \epsilon$

Precise Definition of One-Sided Limits - Example

Right-limit

$$\lim_{x\to a^+} f(x) = L$$

if for every $\epsilon > 0$ there is a number $\delta > 0$ such that if $a < x < a + \delta$ then $|f(x) - L| < \epsilon$

Proof that
$$\lim_{x\to 0^+} \sqrt{x} = 0$$
.

Let $\varepsilon > 0$. We look for $\delta > 0$ such that

if
$$0 < x < 0 + \delta$$
 then $|\sqrt{x} - 0| < \epsilon$

We have (since 0 < x)

$$|\sqrt{x} - 0| = |\sqrt{x}| = \sqrt{x} < \epsilon \implies x < \epsilon^2$$

Thus $\delta = \epsilon^2$. If $0 < x < 0 + \epsilon^2$ then $|\sqrt{x} - 0| < \epsilon$.

Precise Definition of Infinite Limits

Infinite Limit

$$\lim_{x\to a} f(x) = \infty$$

if for every positive number M there is $\delta > 0$ such that

if
$$0 < |a - x| < \delta$$
 then $f(x) > M$

Negative Infinite Limit

$$\lim_{x\to a} f(x) = -\infty$$

if for every negative number M there is $\delta > 0$ such that

if
$$0 < |a - x| < \delta$$
 then $f(x) < M$

Precise Definition of Infinite Limits - Example

Infinite Limit

$$\lim_{x\to a} f(x) = \infty$$

if for every positive number \emph{M} there is $\delta > 0$ such that

if
$$0 < |a - x| < \delta$$
 then $f(x) > M$

Proof that $\lim_{x\to 0} \frac{1}{x^2} = \infty$.

Let ${\it M}$ be a positive number. We look for δ such that

if
$$0 < |0 - x| < \delta$$
 then $\frac{1}{x^2} > M$

We have:

$$\frac{1}{x^2} > M \iff 1 > M \cdot x^2 \iff \frac{1}{M} > x^2 \iff \sqrt{\frac{1}{M}} > |x|$$
Thus $\delta = \sqrt{1/M}$. If $0 < |0 - x| < \sqrt{1/M}$ then $\frac{1}{x^2} > M$.