Audio Filtering

EE23BTECH11009 - AROSHISH PRADHAN*

Symbol	Description
x(n)	Input Audio Signal
y(n)	Output Audio Signal
$H(\omega)$	Transfer Function
h(n)	Impulse Response

TABLE I: Parameter Table

Plot of input audio signal 'music7 cut.wav' as x(n):

Fig. 1: Plot of x(n) vs n

y(n) is obtained through the following difference equation:

$$\sum_{m=0}^{M} a(m)y(n-m) = \sum_{k=0}^{N} b(k)x(n-k)$$
 (1)

Coefficients a and b are calculated in 'audiofilter.py'

Plot of y(n) is as shown in Fig. 2.

$$x(n) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$$
 (2)

$$y(n) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(\omega)$$
 (3)

$$y(n) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(\omega) \tag{3}$$

$$\Longrightarrow H(\omega) = \frac{Y(\omega)}{X(\omega)} \tag{4}$$

Plot of $H(\omega)$ is shown in Fig. 3

Fig. 2: Plot of y(n) vs n

Fig. 3: Plot of $H(\omega)$ vs ω

Impulse Response (h(n)) is calculated by taking the Inverse Fourier Transform of $H(\omega)$. Plot of h(n)vs n is shown in Fig. 4

Fig. 4: Plot of h(n) vs n