Sensor Signal Conditioner Circuit with 14 bits A/D Converter

Description

The EM6415 is a high resolution A/D converter in low voltage CMOS technology intended to be used as a programmable link between one to four resistive sensors and a microcontroller.

There is no need of external components for calibration, error curve compensation or offset and gain adjustment, nor external amplifiers and sensor bridge drive circuits.

After exposure to a calibration signal/profile, all conversion parameters and profile coefficients are self calculated and stored in an external EEPROM.

In addition to a programmable dual slope 10/13/14 bit A/D conversion, EM6415 allows individual compensation of not only sensor offset and full scale errors, but also temperature error compensation of the sensor zero point and sensitivity, dynamically during the conversion process. EM6415 also contains a programmable sensor drive current source.

Features

- Full sensor system on chip
- Four sensor channel multiplexer
- Programmable Dual slope A/D converter
- Program selectable 10, 13 or 14 bit resolution
- ADC resolves 1µV/Bit
- Programmable sensor offset, gain and linearity
- High flexibility in zero adjust and full scale adjust
- Sensor error compensation performed by software
- Parallel 4 bit microcontroller interface
- Self calibration of conversion parameters and profile coefficients
- Ultra low noise differential input amplifier with mask programmable gain
- Excellent linearity over full transfer curve
- Programmable current source for sensor supplies.
- Low supply voltage range 2.2V 3.6 V
- Low operation current, 240 µA at 800 kHz, 3V
- Ultra low power consumption (at standby or after conversion down to less than 0.1 μA)
- Small SSOP36-300mils package

Applications

- Portable sensor instruments
- Telemetry
- Resistive sensor interfaces
- Automotive sensors
- Industrial process control
- Consumer instruments

Block Diagram

Fig. 2

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{DD}	-0.3	5.5	V
Voltage at remaining pins	V _{PIN}	V _{SS} -0.3	V _{DD} +0.3	V
Storage temperature	T _{store}	-55	150	°C
Operating temperature	T _{op}	-40	+85	°C
Soldering Temperature*Time	TS _{MAX}		250.10	°C·s

Stresses above these listed maximum ratings may cause permanent damages to the device. Exposure beyond specified operating conditions may affect device reliability or cause malfunction.

Handling Procedures

This device has built-in protection against high static voltages or electric fields; however, anti-static precautions must be taken as for any other CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the voltage range. Unused inputs must always be tied to a defined logic voltage level.

Electrical Characteristics

Operating Conditions (unless othewise specified)

Sensor resistance $R_{SEN} = 300\Omega$ to $10K\Omega$

Power Supply

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Operating Voltage Range	V_{DD}	T = -20°C to 70°C	2.2	3.0	3.6	٧
Current Consumption	I _{DD1}	CE =V _{DD} at standby		0.2	1.0	μΑ
	I _{DD2}	CE =V _{SS} at A/D conversion f _{ADOSC} =800kHz	100	240	300	μΑ

Programmable Internal Oscillator

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Frequency	f _{ADOSC}	D1,D0 = 00	350	500	800	kHz
Frequency Step Size	Δf_{ADOSC}		40	70	120	kHz
Stability Against Supply Voltage Variations	$\Delta f/f \cdot \Delta V_{DD}$	2.2V< V _{DD} <3.0V		15		kHz/V
Stability Against Temperature Variations	Δf/ΔΤ	-20°C <t<70°c< td=""><td></td><td>-300</td><td></td><td>Hz/°C</td></t<70°c<>		-300		Hz/°C

Sensor

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Sensor Drive Current	I _{SDRV}	$R_{RSEN1}{=}1.0k\Omega$, $R_{SEN}{=}4.0k\Omega,$ Program step 0 Mode S	276	300	324	μΑ
		R_{RSEN1} =1.0kΩ , R_{SEN} =4.0kΩ, Program step 15 Mode S	468	510	552	μΑ
Sensor Drive Current per Step	I _{SDRV} /stp	R_{RSEN1} =1.0kΩ , R_{SEN} =4.0kΩ	10	15	20	μA/stp
Sensor Drive Current vs Voltage Deviation	I _{SDRV} /V	R_{RSEN1} =1.0kΩ , R_{SEN} =4.0kΩ 2.2V < VDD < 3.0V	50	200	300	ppm
Sensor Bridge Resistance1	R _{SEN1}	R _{RSEN1} =1.3kΩ , I _{SDRV} =200 μ A	2.7	3.7	4.2	kΩ
Sensor Bridge Resistance2	R _{SEN2}	R _{RSEN2} =510Ω , I _{SDRV} =500μA	1.0	1.5	2.0	kΩ
RSEN1 Resistance	R _{RSEN1}		0.3		2.5	kΩ
RSEN2 Resistance	R _{RSEN2}		0.3		2.5	kΩ

A/D Converter

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input Voltage Range FS	V _{SENS}	CH1,2,3,4H-CH1,2,3,4L To resolve 14 bits ADC	16		200	mV
Resolution	RESADC	f _{ADOSC} =800kHz	14			Bits
Integral Nonlinearity	INLADC	f _{ADOSC} =800kHz		4		LSB
Differential Nonlinearity	DNLADC	f _{ADOSC} =800kHz		3		LSB
Conversion Time	TCONVAD	f _{ADOSC} =500kHz, 14bit		110		ms
Offset Adjust Range	Voffad		-60	±40	+60	mV
FS Fine Ajust Range	V _{FSFAD}	12 bit FS fine adjust	-12.5		+12.5	%FS

DC Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max	Unit
Input Low Voltage	VIL	ÄLE, RD, WR, CE, CLKP, CLKSEL, D0-D3			0.2· V _{DD}	V
Input High Voltage	V _{IH}	ALE, RD, WR, CE, CLKP, CLKSEL, D0-D3	0.8·V _{DD}			V
Input Low Current	I _{IL}	ALE, RD, WR, CE, CLKP, CLKSEL, D0-D3	-20	1		nA
Input High Current	I _{IH}	ALE, RD, WR, CE, CLKP, CLKSEL, D0 - D3		1	20	nA
Output Low Voltage	VoL	I _{OL} = 2mA, D0 –D3		0.1	0.4	V
Output High Voltage	Voн	I _{он} = -1mA, D0 –D3	2.4	2.95		V

Timing Characteristics

Data Write cycle

 V_{DD} = 3.0V, V_{SS} = 0V, T = 25 °C, V_{OH} = 0.8· V_{DD} , V_{OL} = 0.2· V_{DD}

Item	Symbol	Min.	Тур.	Max.	Unit
Address Set-up Time	T _{was}	20	25	-	ns
Address Hold Time	T _{wah}	30	35	ı	ns
Data Set-up Time	T _{wds}	20	25	-	ns
Data Hold Time	T_{wdh}	30	35	1	ns
ALE Pulse Width	T _{wap}	60	65	1	ns
WR Pulse Width	T _{wwp}	60	65	-	ns

Fig. 3

Data Read cycle

 V_{DD} = 3.0V, V_{SS} = 0V, T = 25 °C, V_{OH} = 0.8· V_{DD} , V_{OL} = 0.2· V_{DD}

Item	Symbol	Min.	Тур.	Max.	Unit
Address Set-up Time	T _{ras}	100		-	ns
Address Hold Time	T _{rah}	40	45	-	ns
Data Set-up Time	T _{rds}	20	25	-	ns
Data Hold Time	T_{rdh}	20	25	-	ns
ALE Pulse Width	T _{rap}	60	65	-	ns
RD Pulse Width	T _{rrp}	60	65	-	ns

Timing Waveforms

Fig. 4

Functional Description

EM6415 comprises a four channel analog multiplexer followed by a fixed gain amplifier followed by the integrator of the dual slope converter, a bandgap voltage reference, RC oscillator, power on/off detector.

The sensor is supplied directly by a programmable current source.

In order to minimize noise, the analog and digital circuits internal to EM6415 use separate power supplies. These power buses are brought out to separate pins and should be tied together as close as possible to the device. In addition, the output of the internal bandgap voltage reference is brought to the pin VREF, which could allow the

Programming Procedure

Nibble organization and Bit order:

Bit	3	2	1	0
Order	high	\rightarrow	\rightarrow	low

Latch Address (LAD) and Functions

LAD	Function	Bits D0-D3	WR/RD	Note
0	FS fine adjust	0-3	WR	
1	FS fine adjust	4-7	WR	
2	FS fine adjust	8-11	WR	
3	OS rough adjust	0-3	WR	
4	OS rough adjust	4-7	WR	
5	FS rough adjust	0-3	WR	
6	FS rough adjust	4-7	WR	
7	Bridge current	0-3	WR	
8	ADC status & ADC output AD0, AD1	0-3	RD	(note 1)
9	ADC output AD2-AD5	2-5	RD	(note 2)
10	ADC output AD6-AD9 & T0-T3	6-9	RD	(note 2)
11	ADC output AD10-AD13 & T4-T7	10-13	RD	(note 2)
12	ADC resolution (10, 13, 14)	0-3	WR	(note 3)
13	Perform ADC conversion (T, R, S, P)	0-3	WR	(note 4)
14	Select Sensor-Port (1,2,3,4) & RSEN (1,2)	0-3	WR	(note 5)
15	don't use	-		

connection of an external capacitor to V_{SS} , if the output stability is not enough to resolve $1\mu V/bit$ ADC.

Note 1: ADC Status & AD0, AD1 (LAD=8)

Bit	Function	Note
D0	CC	Conversion complete = 1
D1	COVFL	Conversion overflow = 1
D2	AD0	ADC Bit 0
D3	AD1	ADC Bit 1

Note 2: ADC read out

Latch Address		1	1			1	0			(9			3
Buffer Bit	3	2	1	0	3	2	1	0	3	2	1	0	3	2
ADC Bits														
Sensor AD-14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Sensor AD-13	12	11	10	9	8	7	6	5	4	3	2	1	0	-
Sens/Pow AD10	9	8	7	6	5	4	3	2	1	0	-	-	-	-
Top of B AD10	9	8	7	6	5	4	3	2	1	0	-	-	-	-

Note 3: ADC resolution & frequency select (LAD 12)

Bit	Select	Function		
D1, D0	00	clock 500kHz		
	01	clock 600kHz		
	10	clock 700kHz		
	11	clock 800kHz		
D3, D2	00	10 Bit ADC		
	01	13 Bit ADC		
	10	13 Bit ADC		
	11	14 Bit ADC		

Note 4: ADC conversion select (LAD=13)

Bit	Select	Function	Note
D1, D0	-	don't use	
D3, D2	00	(T) top of sensor bridge with I _{SDRV} /2	(note 6)
	01	(R) A/D ramp height	(note 7)
	10	(S) sensor bridge signal I _{SDRV}	(note 8)
	11	(P) power supply voltage	(note 9)

Note 5: ADC conversion select (LAD=14)

		,
Bit	Select	Function
D0	0	RSENS1
	1	RSENS2
D2, D1	00	Sensor 1 on TS1
	01	Sensor 2 on TS2
	10	Sensor 3 on TS3
	11	Sensor 4 on TS4
D3	-	Don't use

Note 6: Top of sensor bridge, e.g. temperature (ToB – VSSA)

Note 7: Select ramp height if CC=0, ramp height > 1.5V

For lowest ADC jitter, chose ramp height > 1.5V. To do so, run A/D ramp height conversion and read CC (conversion complete, LAD8, Bit0). Lower the clock frequency until CC=0.

Note 8: Sensor bridge signal, e.g. pressure (CH1L – CH1H)

Note 9: Power supply voltage of EM6415 circuit

Integrator

This signal can be seen on pin CINT

Fig. 5 Integrator ramp

ength t2
e, time length of

dV1 is the Offset Rough Adjust dV2 is the Integrator Ramp Length

Offsets and other system mismatch such as the zero drift of operational amplifiers, long term instabilities or supply voltage fluctuations are cancelled during the Autozero phase.

Sensitivity and full-scale range adjustments are done during rampup and rampdown of the dual slope integrator.

Pad Description & Pin Assignment in SSOP36

PIN Nr	Name	I/O	Description		
10	TS1		Top of sensor1 bridge connection pin		
11	CH1H		Sensor1 channel high signal in		
12	CH1L		Sensor1 channel low signal in		
13	TS2		Top of sensor2 bridge connection pin		
14	CH2H		Sensor2 channel high signal in		
15	CH2L		Sensor2 channel low signal in		
16	TS3		Top of sensor3 bridge connection pin		
17	CH3H		Sensor3 channel high signal in		
18	CH3L		Sensor3 channel low signal in		
19	TS4		Top of sensor4 bridge connection pin		
20	CH4H		Sensor4 channel high signal in		
21	CH4L		Sensor4 channel low signal in		
2	D0P	I/O	Microprocessor Port Data 0		
1	D1P	I/O	Microprocessor Port Data 1		
36	D2P	I/O	Microprocessor Port Data 2		
35	D3P	I/O	Microprocessor Port Data 3		
31	RD	I	Read strobe for BUS read (active low)		
32	ALE	I	Address latch enable (active low)		
33	CE	I	Chip enable (active low)		
34	WR	I	Write strobe for BUS write (active low)		
22	CINT		Connection to integrator capacitor		
23	AZN		Connection to auto-zero capacitor		
24	P3WAY		3 way connection for integrator		
25	RINT13_14		Connection of resistor for integrator		
26	RINT10		Connection of resistor for integrator when 10 bit conversion used		
8	RSEN1		Resistor to select sensor bridge1 maximum drive current		
9	RSEN2		Resistor to select sensor bridge2 maximum drive current		
3	CLKP	I	External clock input		
5	CLKSEL	I	Internal/external clock select		
6	VDDD		Positive supply voltage of digital part		
7	VDDA		Positive supply voltage of analog part		
29	VSSA		Negative supply voltage of analog part		
30	VSSD		Negative supply voltage of digital part		
27	VREF	0	Reference voltage		
4, 28	NC		Not connected		

I: Input O: Output

Package Information

SSOP36 - 300 mils

Symbol	Common	Note		
	Min	Nom	Max	
Α	0.097	0.101	0.104	
A1	0.0050	0.009	0.0115	
A2	0.090	0.092	0.094	
В	0.012	0.014	0.017	
С	0.0091	0.010	0.0125	
D	0.602	602 0.607 0.6°		
E	0.292	0.292 0.296		
е		0.0315		
		BSC		
Н	0.400	0.400 0.406 0.410		
h	0.010	0.010 0.013 0.016		
L	_ 0.024 0.032 0.		0.040	
X	0.085	0.093	0.100	
α	0°	5°	8°	

Symbol	Commo	Note		
	Min.	Nom	Max	
Α	2.46	2.56 2.64		
A1	0.127	0.22	0.29	
A2	2.29	2.34	2.39	
В	0.31	0.36	0.43	
С	0.23	0.25	0.32	
D	15.29	5.29 15.42 15.54		
E	7.42	7.52	7.59	
е		0.80		
		BSC		
Н	10.16	10.31	10.41	
h	0.25	0.25 0.33 0.41		
L	0.61	0.81	1.02	
Х	2.16	2.36	2.54	
α	0°	5°	8°	

Ordering Information

The EM6415 has metal mask options for the Gain of the Input Amplifier (between 1 and 150 max) and for the Offset Adjust Range. Contact EM Microelectronic for availability of different options not shown in table below. Please make sure to order the exact Part Number when ordering.

Part Number	Version	Input Amplifier Gain	OS/FS Rough Adjust (note 1)	Offset Adjust Range	Delivery Form
EM6415V1WS11					Sawn wafer, 11 mils thickness
EM6415V1SS36A	V1	5	Separate Registers	-40mV to +40mV	36-pin SSOP, Stick
EM6415V1SS36B			for each sensor		36 pin SSOP, Tape & Reel
EM6415V2WS11					Sawn wafer, 11 mils thickness
EM6415V2SS36A	V2	5	Common Registers	-40mV to +40mV	36-pin SSOP, Stick
EM6415V2SS36B			for the 4 sensors		36 pin SSOP, Tape & Reel
EM6415V3WS11					Sawn wafer, 11 mils thickness
EM6415V3SS36A	V3	150	Separate Registers	-40mV to +40mV	36-pin SSOP, Stick
EM6415V3SS36B			for each sensor		36 pin SSOP, Tape & Reel
EM6415V%WS11					Sawn wafer, 11 mils thickness
EM6415V%SS36A	V%	custom	custom	custom	36-pin SSOP, Stick
EM6415V%SS36B					36 pin SSOP, Tape & Reel

Note 1: LAD 3, 4, 5, 6

For die size information and pad location diagram, please contact EM Microelectronic-Marin SA.

EM Microelectronic-Marin SA cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in an EM Microelectronic-Marin SA product. EM Microelectronic-Marin SA reserves the right to change the circuitry and specifications without notice at any time. You are strongly urged to ensure that the information given has not been superseded by a more up-to-date version.

© EM Microelectronic-Marin SA, 11/02, Rev. B