Lista 11

Para todas as listas de exercício, você deve criar arquivos .m com os códigos implementados e, se necessário, um arquivo em pdf com os resultados gerados (pode ser a impressão dos resultados calculados ou figuras). Todos arquivos devem ser nomeados como RA000000_LXX_YY.m, em que

- 000000 é o número do seu RA
- XX é o número da lista.
- YY é o número do exercício.

Obtenha soluções aproximadas para cada um dos problemas de valor inicial e compare sua solução com a resposta analítica.

1)
$$y' = \frac{2 - 2ty}{t^2 + 1}$$
, $0 \le t \le 1$, $y(0) = 1$

2)
$$y' = \frac{y^2}{1+t}$$
, $1 \le t \le 2$, $y(1) = -\frac{1}{\ln 2}$

3)
$$y' = \frac{y^2 + y}{t}$$
, $1 \le t \le 3$, $y(1) = -2$

4)
$$y' = -ty + 4\frac{t}{y}$$
, $0 \le t \le 1$, $y(0) = 1$

Explique como você obteve as soluções analíticas. Suas funções devem retornar dois vetores t e y, para cada um dos exercícios.

```
[t1,y1] = RA000000_L11_01;

[t2,y2] = RA000000_L11_02;

[t3,y3] = RA000000_L11_03;

[t4,y4] = RA000000_L11_04;
```

```
function [t,y] = RA000000_L11_01()
    % seu código aqui
end

function [t,y] = RA000000_L11_02()
    % seu código aqui
end

function [t,y] = RA000000_L11_03()
    % seu código aqui
end
```

```
function [t,y] = RA000000_L11_04()
    % seu código aqui
end
```