

Time Serie Analysis: ARCH- & GARCH-Prozesse

Janis Landwehr, Björn Mohr, Mirco Pyrtek, Nicolas Räsch

Inhalt

- 1. Motivation
- 2. Grundlagen
 - 1. ARCH-Prozesse
 - 2. GARCH-Prozesse
- 3. Versuchsreihe: Datensimulation
 - 1. Prozessablauf
 - 2. Anmerkungen
 - 3. Ergebnisse
- 4. Versuchsreihe: Dax 30
- 5. Resümee

Motivation

- Homoskedastische Prozesse (AR, MA, ARMA...) bilden viele realweltliche Prozesse nicht hinreichend ab
- Problem: Viele Prozesse besitzen sich im Zeitverlauf ändernde Varianzen (Volatilitäten)
- Einzelne Perioden besitzen oftmals ähnliche Varianz → Volitilitätsclustering
- Es werden Modelle benötigt, die diesen Sachenverhalt abdecken können:
 - → Heteroskedastische Modelle

Motivation

Tagesstromverbrauch

Motivation

DAX-Verlauf vom 28.07.2017 bis 28.07.2018

Grundlagen – ARCH-Modelle

- Eingeführt 1982 von Robert Engle
- ARCH steht für "autoregressive conditional heteroscedasticity"
- Wird genutzt, wenn Volatilität finanzmathematischer Zeitreihen nicht konstant
- Zeitpunkte der Volatilitätsänderung regelmäßig
- Bedingter Erwartungswert nicht von Interesse, da als 0 voraus gesetzt
- Bedingte Varianz kann als lineare Funktion vorangegangener Werte modelliert werden:

$$\sigma_t^2 = \alpha_0 + \alpha_1 x_{t-1}^2 + \alpha_2 x_{t-2}^2 + \dots + \alpha_q x_{t-q}^2$$

Grundlagen – GARCH-Modelle

- Eingeführt 1986 von Tim Bollerslev
- GARCH steht für "generalized autoregressive conditional heteroscedasticity"
- Zeitpunkte von Volatilitätsänderungen unregelmäßig
- Wichtigster Fall in der Praxis: GARCH(1,1)

$$\sigma_t^2 = \alpha_0 + \alpha_1 x_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

Versuchsreihe: Datensimulation – Prozessablauf

Versuchsreihe: Datensimulation – Anmerkungen

- Restriktionen der simulierten Daten
 - $\alpha_1 + ... + \alpha_q(+\beta_1) < 1 \rightarrow \text{Prozess finit}$
 - Finites 4. Moment (Kurtosis) :
 - Bei ARCH(q): $\alpha_1^2 + \dots + \alpha_q^2 < \frac{1}{3}$
 - Bei GARCH(1,1): $3 * \alpha_1^2 + 2 * \alpha_1 \beta_1 + \beta_1^2 < 1$
- Model Fitting
 - Fit von ARCH(1), ..., ARCH(q) mit q = 8 und GARCH(1,1)
- Model Selection (Kriterien)
 - AIC (Akaike-Information-Criterion)
 - AIC = -2 * LogLikelihood + 2 * k, mit k = Ordnung des Prozesses
 - $AIC_c = -2 * LogLikelihood + 2 * k * \frac{N}{N-k-1}$, mit N = Sample size
 - Benutztes Kriterium: Kleinster BIC Wert (asymptotisch konsistent) → Best fit
 - PACF
 - Betrachtung der PACF des quadrierten Prozesses
 - X² bildet einen AR-Prozess, wenn
 - X ein ARCH-Prozess ist
 - Existenz 4. Moment

Versuchsreihe: Datensimulation – Anmerkungen

ARCH(1)

- Daten im Zeitreihenkontext mit n = 100 000
- $\alpha_0 = 1$, $\alpha_1 = 0.5$
- $X_t = \sigma_t * \varepsilon_t$
- $\sigma_t^2 = 1 + 0.5 * X_{t-1}$
- ε_t gaussian white noise

ARCH(3)

- Daten im Zeitreihenkontext mit n = 100 000
- $\alpha_0 = 1$, $\alpha_1 = 0.4$, $\alpha_2 = 0.2$, $\alpha_3 = 0.1$
- $X_t = \sigma_t * \varepsilon_t$
- $\sigma_t^2 = 1 + 0.4 * X_{t-1} + 0.2 * X_{t-2} + 0.1 * X_{t-3}$
- ε_t gaussian white noise

GARCH(1,1)

- Daten im Zeitreihenkontext mit n = 100 000
- $\alpha_0 = 1$, $\alpha_1 = 0.1$, $\beta_1 = 0.8$
- $X_t = \sigma_t * \varepsilon_t$
- $\sigma_t^2 = 1 + 0.1 * X_{t-1} + 0.8 *$ σ_{t-1}^2
- ε_t gaussian white noise

Versuchsreihe: Datensimulation – Ergebnisse ARCH(1)-Daten

Informationskriterien

Prozess	Ordnung	LogLik	AIC	AICc	BIC
ARCH(1)	1	-166817	333637,8	333635,8	333645,3
ARCH(2)	2	-170019	340043,2	340041,2	340060,2
ARCH(3)	3	-170219	340446,3	340444,3	340472,9
ARCH(4)	4	-169989	339987,3	339985,3	340023,4
ARCH(5)	5	-169548	339108,9	339106,9	339154,4
ARCH(6)	6	-169201	338416,1	338414,1	338471,2
ARCH(7)	7	-168879	337774,1	337772,1	337838,7
ARCH(8)	8	-168714	337445,1	337443,1	337519,2
GARCH(1,1)	2	-170548	341101,3	341099,3	341118,4

Best fit: ARCH(1)-Modell mit $\alpha_0 = 1.0086$, $\alpha_1 = 0.5008$ p-Wert Box-Pierce-Test der Residuen: **0.3972**

Versuchsreihe: Datensimulation – Ergebnisse ARCH(3)-Daten

Informationskriterien

Prozess	Ordnung	LogLik	AIC	AICc	BIC
ARCH(1)	1	-189857	379717,1	379715,1	379724,6
ARCH(2)	2	-186800	373605,2	373603,2	373622,2
ARCH(3)	3	-186108	372224,9	372222,9	372251,5
ARCH(4)	4	-191739	383488,2	383486,2	383524,3
ARCH(5)	5	-191135	382282,1	382280,1	382327,6
ARCH(6)	6	-190624	381261,8	381259,8	381316,8
ARCH(7)	7	-190073	380162,9	380160,9	380227,5
ARCH(8)	8	-189610	379238,5	379236,5	379312,7
GARCH(1,1)	2	-194141	388287,3	388285,3	388304,3

Best fit: ARCH(3)-Modell mit $\alpha_0=1.011,\ \alpha_1=0.3974,\ \alpha_2=0.1989,\ \alpha_3=0.1040$ p-Wert Box-Pierce-Test der Residuen: **0.401**

Versuchsreihe: Datensimulation – Ergebnisse GARCH(1,1)-Daten

Informationskriterien

Prozess	Ordnung	LogLik	AIC	AICc	BIC
ARCH(1)	1	-256748	513500,7	513498,7	513508,2
ARCH(2)	2	-256264	512534,1	512532,1	512551,1
ARCH(3)	3	-255910	511827,4	511825,4	511853,9
ARCH(4)	4	-255740	511490,8	511488,8	511526,9
ARCH(5)	5	-255594	511200,6	511198,6	511246,2
ARCH(6)	6	-255509	511031,5	511029,5	511086,6
ARCH(7)	7	-255438	510891,4	510889,4	510956
ARCH(8)	8	-255398	510814,8	510812,8	510888,9
GARCH(1,1)	2	-255366	510737,5	510735,5	510754,5

Best fit: GARCH(1,1) mit $\alpha_0 = 1.00223$, $\alpha_1 = 0.09778$, $\beta_1 = 0.80298$ p-Wert Box-Pierce-Test der Residuen: **0.3953**

Versuchsreihe: Dax 30

Daily Dax 30 Closing Prices

Min	1st Qu.	Median	Mean	3rd Qu.	Max.
8753	10274	11089	11193	12084	13479

Versuchsreihe: Dax 30

Daily Dax 30 Log Returns

Min	1st Qu.	Median	Mean	3rd Qu.	Max.
-0.0485185	-0.0062240	-0.0007726	-0.0003687	0.0053583	0.0706727

Versuchsreihe: Dax 30 – Autokorrelation der Residuen

Bestes AIC auf Log-Returns: ARIMA(0,0,0)

Liegen ARCH-Effekte vor?

Bestes Modell hinsichtlich AIC : GARCH(1,1)

Series with 2 Conditional SD Superimposed

Versuchsreihe: Dax 30 – Normalverteilung der Residuen

- ARCH-Effekte in den quadrierten Residuen
- Normalverteilung der standardisierten Residuen des GARCH-Models
- Keine Autokorrelation der quadrierten standardisierten Residuen des GARCH-Modells

Versuchsreihe: Dax 30 – Autokorrelation der Residuen

- ARCH-Effekte in den quadrierten Residuen
- Normalverteilung der standardisierten Residuen des GARCH-Models
- Keine Autokorrelation der quadrierten standardisierten Residuen des GARCH-Modells

Versuchsreihe: Dax 30 – Vorhersagefähigkeit

	Series	Sigma
T+1	-0.0008865	0.01662
T+2	-0.0008865	0.01658
T+3	-0.0008865	0.01655
T+4	-0.0008865	0.01652
T+5	-0.0008865	0.01648
T+6	-0.0008865	0.01645
T+7	-0.0008865	0.01642
T+8	-0.0008865	0.01638
T+9	-0.0008865	0.01635
T+1(0 -0 0008865	0.01632

Resümee

- ARCH & GARCH-Prozesse wichtig bei der Modellierung von Prozessen mit Volatilitätsschwankungen
- ARCH-Prozesse identifizierbar anhand der PACF der quadrierten Daten (AR-Modell)
- Identifizierung von GARCH-Prozessen schwierig (Verwechselbarkeit mit ARCH-Prozessen hohen Grades)
- BIC als Kriterium für Modell-Selektion für große N zur Auswahl des korrekten Modells sinnvoll (asymptotisch konsistent)
- GARCH-Modellierung zur Vorhersage von Volatilitätsschwankungen bei Zeitreihen im Finanzbereich

Literatur

• Mazzoni, Thomas:

Zeitreihenanalyse 2010

- Zucchini, W., Nenadic, O., Schlegel, A.:
 Zeitreihenanalyse Nichtlineare Zeitreihenmodelle
 2009
- Wuertz, D. et. al.: Package "fGarch" 2017

Vielen Dank für Ihre Aufmerksamkeit.

Fragen?