The Birthday Problem

Fernando Hoces de la Guardia 9/7/2018

Description of the Birthday Problem

bla bla bla

Descriptives

There are 23 people in this room.

Deriving the probability analyticaly

Analytical solution

But actually when we compute the math. We get an surprising result:

$$1 - \bar{p}(n) = 1 \times \left(1 - \frac{1}{365}\right) \times \left(1 - \frac{2}{365}\right) \times \dots \times \left(1 - \frac{n-1}{365}\right)$$

$$= \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^{n}}$$

$$= \frac{365!}{365^{n}(365 - n)!} = \frac{n! \cdot \binom{365}{n}}{365^{n}}$$

$$p(n = 23) = 0.507$$
(1)

Now we derive the result by simulations

Simulations

- 1 Simulate 10,000 rooms with n = 23 random birthdays, and store the results in matrix where each row represents a room.
- 2 For each room (row) compute the number of unique birthdays.
- 3 Compute the average number of times a room has 23 unique birthdays, across $10,\!000$ simulations, and report the complement.

```
all.different = (lapply(unique.birthdays, length) == n.pers) # Compute average time all have differen
result = 1 - mean(all.different)
return(result)
}
n.pers.param = n.pers
n.sims.param = 1e4
birthday.prob(n.pers.param,n.sims.param)
```

[1] 0.5185

The simulated probablity is 0.5045