Embedded Systems(Embedded Real-Time Systems)

Teaching staff:

Luís Almeida (lda@fe.up.pt)

Mário Sousa (msousa@fe.up.pt)

Background info

Embedded System

- Computing system
- Immersed in a system/device that has a specific purpose
- Connected to that system/device through specific input/output
- Typically unfit to carry out other functionality
- Typically subject to **diverse constraints**:
 - dimension, cost, reliability, safety security, **real-time**...

Scope of this course

Main topic:

- Embedded systems programming
 - Software infrastructures and programming techniques for embedded systems (with focus on real-time systems)

Objectives of this course

Programming

techniques

Provide education and training in:

- Identifying and characterizing the constraints imposed on an embedded system with focus on the temporal constraints
- Deciding the most suitable approach to track the environment system state
- Defining and managing concurrent activities and analyze their behavior with (real-time) scheduling theory
- Choosing, using and building embedded (real-time) operating systems

 nesigning systems that work in real-time

e Operational environment

Application

SW

infrastructures

Working in real-time... Isn't it enough to use a fast processor?

Working in real-time... Isn't it enough to use a fast processor?

- If the program has a trivial control structure, e.g., a single loop, probably yes!
- If the program includes multiple concurrent threads of execution, processing speed isn't enough. Some of the threads can interfere with others causing delays that might jeopardize real-time operation!

If not just a fast processor... then what is necessary?

If not just a fast processor... then what is necessary?

- Proper scheduling! i.e., correct execution order that may allow each concurrent thread (task) to finish and generate its outputs in time to keep up with the pace of the environment.
- There are specific scheduling techniques that allow us to bound and determine a
 priori the maximum delay that a task can suffer

Concurrent threads... Then it only applies to multitasking OS?

Concurrent threads... Then it only applies to multitasking OS?

Yes, without concurrent tasks scheduling does not make sense

Concurrent threads... Then it only applies to multitasking OS?

- Yes, without concurrent tasks scheduling does not make sense
- No, even with single loop programs there may be hidden concurrent threads, e.g., asynchronous interrupt service routines!

Attention!

And why are such delays so important?

What are we talking about?

- The avionics in an airplane? A steer-by-wire system in a car? The trajectory control in a rocket?
 - → delays imply actuating late → potential instability and loss of control catastrophy
- An MPEG player? A cellphone? A multimedia games console?
 - → delays imply missing frames/calls → degradation of quality of service

Annoying...

Bibliography

Preferential

- G. Buttazzo. *Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications* (2nd ed.). Springer. (scheduling, real-time multitasking kernels)
- H. Kopetz. *Design Principles for Distributed Embedded Applications (2nd ed.)* Springer. (temporal constraints, temporal control, dependability)

Complementary

- Jane W.S. Liu. *Real-Time Systems*. Prentice Hall.
- Welling, A. and A. Burns. *Real-Time Systems and Their Programming Languages (3rd ed.).* Int. Computer Science Series, Addison-Wesley
- Peter Gliwa, **Embedded software timing**. Springer, ISBN: 978-3-030-64144-3

Bibliography

Some new options

- Rômulo Silva de Oliveira, *Fundamentos dos Sistemas de Tempo Real* (in Portuguese), ed. autor
 - Significant online support (videos, slides and extra material)
- Peter Marwedel, **Embedded Systems Design** (4th ed.), Springer
 - Open access (plus videos and slides)

Videos of our course (Vincere project)

Check this play list on Youtube:

https://www.youtube.com/playlist?list=PLoh7N_wV-nFTygPDkaCvtH2439O1kNpYL (in Portuguese and just the real-time systems part)

• Or search for "Sistemas de tempo-real LEA FEUP"

Course organization

Lectures – presenting and discussing concepts and techniques

- Concentrated in the first half of the semester
- Keep an eye on the recommend bibliography
- Slides and videos (in portuguese) available on the course wedpage
- Seminars with presentations of selected topics by groups of students → **for assessment**

Laboratory – applying those techniques in concrete use cases

- Concentrated in the second half of the semester
- Diverse platforms: RaspberryPI (ARM11), ICnova (AVR32), microcontrollers (ATmega, PIC, ESP...)
- Set of guided experiments to provide contact with embedded platforms
- One project per group (groups of 3 students)

Assessment

• **Final grade** will be determined by:

Regular / First period:

- Lectures: **50%** (40% written exam, 10% seminars)
- Laboratory: **50%** (25% demo/discussion, 25% project report)

Supplementary / Second period:

• written exam, replaces the normal period exam grade if better

Obs: Minimum grade of 7/20 is required for the exam, exam + seminars and project

Examples of projects

Sist. Preemptivo

Tarefa 1

Magnetic levitation device

Drum machine

T3

Examples of projects

- Check out **Youtube** for videos of previous projects
 - See this **play list**:
 - https://www.youtube.com/playlist?list=PLoh7N_wV-nFRKwCWfpXOsEg0cb8u-Zi-L
 - Or search for these keywords
 - SEMB / SETR FEUP
 - SEMB FEUP
 - SETR FEUP
 - Embedded Systems FEUP
 - Sistemas Embarcados FEUP