# CSC 461: Machine Learning Fall 2024

### Logistic regression

Prof. Marco Alvarez, Computer Science University of Rhode Island

### Binary classification

### • Goal

- learn a decision boundary between two classes

| $\chi_1$ | <br>Χď    | Y  |
|----------|-----------|----|
| 0.5      | <br>0.1   | +1 |
| 0.3      | <br>0.9   | -1 |
| 0.3      | <br>0.875 | -1 |
| 0.45     | <br>0.15  | +1 |
| •••      | <br>•••   |    |



### Linear classifiers





### The sign function

$$sign(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ +1 & \text{if } x > 0 \end{cases}$$

$$h(\mathbf{x}) = sign\left(\mathbf{w}^T \mathbf{x}\right)$$



### Decision boundary

A hyperplane in  $\mathbb{R}^2$  is a line



$$0 = b + w_1 x_1 + w_2 x_2$$

Image credit: https://mc.ai/why-activation-function-is-used-in-neural-network/



### Example

Provide a solution (weight vector)

$$x_0$$
  $x_1$   $x_2$   $y$ 
 $1 0 0 -1$ 
 $1 0 1 -1$ 
 $1 1 0 -1$ 
 $1 1 1 +1$ 

## Logistic regression

### Logistic regression

- ▶ Binary classifier
  - $\mathscr{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(n)}, y^{(n)}) \}$
  - $\mathbf{x}^{(i)} \in \mathbb{R}^d, \quad \mathbf{y}^{(i)} \in \{-1, +1\}$
  - uses a logistic function
  - models probability of output given input
- It is considered a linear classifier
  - with a non-linear activation function

### Logistic function

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$



mapping  $\mathbb{R}$  to [0,1]

continuous and differentiable

### Probabilistic interpretation

$$h(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

Probability of class +1  $P(y = +1 \mid \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x})$ 

Probability of class -1  $P(y = -1 \mid \mathbf{x}) = 1 - P(y = +1 \mid \mathbf{x})$  $P(y = -1 \mid \mathbf{x}) = \sigma(-\mathbf{w}^T \mathbf{x}) \text{ (show)}$ 

$$P(y \mid \mathbf{x}) = \frac{1}{1 + e^{-y\mathbf{w}^T\mathbf{x}}} = \sigma(y\mathbf{w}^T\mathbf{x})$$

# Decision boundary $P(y = +1 \mid \mathbf{x}) = P(y = -1 \mid \mathbf{x}) = 0.5$ $\sigma(\mathbf{w}^T \mathbf{x})$ $\sigma(-\mathbf{w}^T \mathbf{x})$ Logistic regression finds a linear decision boundary with $\mathbf{w}^T \mathbf{x} = 0$



