NOTAS DE AULA DE ÁLGEBRA

TIAGO MACEDO

Aula 3

Exercício 3.1. Dado um grupo G, mostre que, se $|G| \leq 5$, então G é abeliano.

1.5. Grupo dos quatérnios

Considere o conjunto \mathbb{H} (ou Q_8) formado pelos símbolos $\{1, -1, i, -i, j, -j, k, -k\}$. Defina $m: \mathbb{H} \times \mathbb{H} \to \mathbb{H}$ como sendo a única operação binária tal que (\mathbb{H}, m) é um grupo e que satisfaz:

$$m(1,h) = m(h,1) = h \quad \text{para todo } h \in \mathbb{H},$$

$$m(-1,-1) = 1, \qquad m(i,i) = m(j,j) = m(k,k) = -1,$$

$$m(-1,i) = m(i,-1) = -i, \quad m(-1,j) = m(j,-1) = -j, \quad m(-1,k) = m(k,-1) = -k,$$

$$m(i,j) = -m(j,i) = k, \quad m(j,k) = -m(k,j) = i, \quad m(k,i) = -m(i,k) = j.$$

Observe que \mathbb{H} é um grupo finito, $|\mathbb{H}| = 8$, e que não é abeliano. Observe também que o(1) = 1, o(-1) = 2 e $o(\pm i) = o(\pm j) = o(\pm k) = 4$.

1.2. Grupos diedrais

Para cada n > 2, denote por D_{2n} o conjunto formado por todas as simetrias de um n-ágono regular Δ_n (movimentos rígidos no espaço, ou seja, composições de translações, rotações e reflexões, que preservam Δ_n). Como toda simetria de Δ_n é uma função $f: \Delta_n \to \Delta_n$, defina a operação binária $m: D_{2n} \times D_{2n} \to D_{2n}$ como $m(f,g) = f \circ g$, a composição dessas funções.

Vamos verificar que (D_{2n}, \circ) é um grupo. Primeiro, observe que a composição de duas simetrias de Δ_n é uma simetria de Δ_n . Depois, lembre que a composição de funções é associativa (veja, por exemplo, a verificação da associatividade para o grupo simétrico). Agora observe que a função identidade id_{Δ_n} é uma simetria de Δ_n e satisfaz $\mathrm{id}_{\Delta_n} \circ \sigma = \sigma = \sigma \circ \mathrm{id}_{\Delta_n}$ para todo $\sigma \in D_{2n}$. Finalmente, observe que toda translação, rotação e reflexão é invertível, portanto todo movimento rígido σ que preserva Δ_n admite uma inversa, ou seja, uma função σ^{-1} satisfazendo $\sigma \circ \sigma^{-1} = \mathrm{id}_{\Delta_n} = \sigma^{-1} \circ \sigma$, e que σ^{-1} também preserva Δ_n .

Exemplo 3.2. Considere o grupo D_6 de simetrias de um triângulo equilátero Δ_3 . Para descrever as simetrias de Δ_3 , vamos enumerar seus vértices com inteiros módulo 3:

$$\Delta_3 = \underbrace{\begin{array}{c} \overline{0} \\ \overline{1} \end{array}}_{\overline{1}}$$

Observe que a rotação (no sentido horário) em torno do centro de Δ_3 de um ângulo de $2\pi/3$ (ou 120°), é uma simetria de Δ_3 . De fato, se denotarmos essa rotação por r, teremos:

$$r\left(\Delta_{3}\right) = \sum_{\overline{1}}^{2} \overline{0}$$

Observe ainda que $r^2 = (r \circ r)$ é a rotação de um ângulo de $4\pi/3$ (no sentido horário em torno do centro) de Δ_3 ,

$$r^2\left(\Delta_3\right) = \int_{\overline{0}}^{\overline{1}} \underbrace{1}_{\overline{2}}$$

e que r^3 é a rotação de um ângulo de 2π , ou seja, $r^3=\mathrm{id}_{\Delta_3}$. Com isso, concluímos que o(r)=3.

Observe também que a reflexão de Δ_3 em relação à reta que passa pelo vértice $\overline{0}$ e pelo centro de Δ_3 ,

$$\Delta_3 = \overline{2}$$

é uma outra simetria de Δ_3 . De fato, se denotarmos essa reflexão por s, teremos:

$$s\left(\Delta_{3}\right) = \underbrace{\begin{array}{c} \overline{0} \\ \overline{2} \end{array}} \qquad \qquad s^{2}\left(\Delta_{3}\right) = \underbrace{\begin{array}{c} \overline{0} \\ \overline{2} \end{array}}$$

Como s troca a ordem dos vértices (no sentido horário, de $\overline{0}$ $\overline{1}$ $\overline{2}$ para $\overline{0}$ $\overline{2}$ $\overline{1}$), mas id $_{\Delta_3}$, r e r^2 não invertem, é fácil concluir que $s \notin \{id_{\Delta_3}, r, r^2\}$. Além disso, o(s) = 2.

De fato, a disposição dos vértices é uma forma de identificar as simetrias de Δ_3 , pois toda simetria de Δ_3 pode ser unívocamente identificada com uma permutação do conjunto $\{\overline{0}, \overline{1}, \overline{2}\}$. Por exemplo, r pode ser identificada com a permutação $(\overline{0}\ \overline{2}\ \overline{1})$, r^2 pode ser identificada com a permutação $(\overline{0}\ \overline{1}\ \overline{2})$ e s pode ser identificada com a permutação $(\overline{1}\ \overline{2})$. Verifique que, identificando os elementos de D_6 com permutações em S_3 , podemos concluir que id Δ_3 , r, r^2 , s, sr, sr^2 são elementos distintos. Isso implica que $|D_6| \geq 6$.

Além disso, como toda simetria é um movimento rígido, um elemento $\sigma \in D_6$ é unicamente determinado pela permutação induzida dos vértices de Δ_3 . Consequentemente, $|D_6| \leq |S_3| = 6$. Juntando essas duas desigualdades, concluímos que $|D_6| = 6$ e que as simetrias de Δ_3 são $\{\mathrm{id}_{\Delta_3}, r, r^2, s, sr, sr^2\}$. Em particular, todas as outras possíveis simetrias se identificam com uma dessas. Por exemplo, $rs = sr^2$, $srs = r^2$ e $r^2s = sr$.

Voltando ao caso geral, vamos mostrar que $|D_{2n}|=2n$ e vamos descrever todos as simetrias de Δ_n . Primeiro, enumere os vértices de um n-ágono regular Δ_n no sentindo horário com os inteiros módulo n. Denote por r a simetria que rotaciona Δ_n de um ângulo de $2\pi/n$ no sentido horário e por s a reflexão em relação a reta que passa pelo vértice $\bar{0}$ e pelo centro de Δ_n . Assim como no caso n=3, toda simetria de Δ_n pode ser unívocamente identificada com uma permutação do conjunto \mathbb{Z}_n . (Ou seja, podemos definir uma função $\vartheta \colon D_{2n} \to S_n$.) Em particular, r se identifica com a permutação ($\bar{0}$ n-1 $\bar{0}$ $\bar{0}$

Além disso, como toda simetria é um movimento rígido, todo elemento em D_{2n} é unicamente determinado pela permutação de \mathbb{Z}_n ao qual ele está associado. (Ou seja, a função ϑ é injetora.) Verifique que, para cada $i \in \{1, \ldots, n\}$, r^i pode ser identificada com a permutação $(\overline{0} \ \overline{-i} \ \overline{-2i} \ \cdots \ \overline{i})$. Use esse fato para concluir que o(r) = n e que $\mathrm{id}_{\Delta_n}, r, \ldots, r^{n-1}$ são todas simetrias distintas. Verifique também que o(s) = 2 e que, para cada $i \in \{1, \ldots, n\}$, sr^i pode ser identificada com a permutação $(\overline{0} \ \overline{i} \ \overline{2i} \ \cdots \ \overline{-i})$. Use esses fatos (e o fato de s trocar a ordem

dos vértices de Δ_n e r não trocar) para concluir que id $_{\Delta_n}$, r, ..., r^{n-1} , s, sr, ..., sr^{n-1} são todos elementos distintos de Δ_n . Com isso, concluímos que $|D_{2n}| \geq 2n$.

Agora observe que, como toda simetria é um movimento rígido, se dois vértices são adjacentes, então suas imagens pela simetria devem continuar adjacentes. Em particular, se soubermos as imagens dos vértices $\overline{0}$ e $\overline{1}$ (que devem ser adjacentes), podemos determinar unicamente as imagens de todos os outros vértices. De fato, se $\sigma(\overline{0})=\overline{i}$, então $\sigma(\overline{1})\in\{\overline{i-1},\overline{i+1}\}$. Se $\sigma(\overline{1})=\overline{i+1}$ (resp. $\sigma(\overline{1})=\overline{i-1}$), como $\sigma(\overline{2})$ deve ser adjacente a $\sigma(\overline{1})$ e $\overline{i}=\sigma(\overline{0})$, então $\sigma(\overline{2})=\overline{i+2}$ (resp. $\sigma(\overline{2})=\overline{i-2}$). Usando esse mesmo argumento, verifique que $\sigma(\overline{k})=\overline{i+k}$ (resp. $\sigma(\overline{k})=\overline{i-k}$) para todo $\overline{k}\in\mathbb{Z}_n$. Com isso, concluímos que existem n possibilidades para escolhermos $\sigma(\overline{0})$ e 2 possibilidades para escolhermos $\sigma(\overline{1})$ (os outros seguem como consequência), ou seja, $|D_{2n}|\leq 2n$.

Juntando essas duas desigualdades, concluímos que $|D_{2n}| = 2n$ e que

$$D_{2n} = \{ \mathrm{id}_{\Delta_n}, r, \dots, r^{n-1}, s, sr, \dots, sr^{n-1} \}.$$

Exercício 3.3. Escreva o elemento rsrsrsrs em termos de $id_{\Delta_n}, r, \ldots, r^{n-1}, s, sr, \ldots, sr^{n-1}$.

Geradores e relações

Da discussão acima, nós observamos que todos os elementos de D_{2n} podem ser obtidos como produtos finitos dos elementos r e s. Por isso, dizemos que D_{2n} é gerado por $\{r, s\}$, ou que r, s são geradores de D_{2n} . Mas nem todos os produtos de r com s são distintos. Por exemplo, nós vimos que $r^2 = s^n = \mathrm{id}_{\Delta_n}$. Essas identidades são chamadas de relações. Todo grupo pode ser descrito através de um conjunto de geradores satisfazendo um conjunto de relações. (Esse não é um resultado imediato.) Uma descrição de um grupo G dessa forma,

$$G = \langle \text{geradores} \mid \text{relações} \rangle$$

é chamada de presentação de G.

A presentação de um grupo, em geral, não é única. Mas, dada uma presentação de um grupo G, deve ser possível escrever todos os elementos de G como produtos finitos dos elementos do conjunto de geradores, e deduzir todas as relações entre elementos de G a partir do conjunto de relações.

Exemplo 3.4. Uma presentação de D_{2n} é $\langle r, s \mid r^2 = s^n = e, rs = sr^{-1} \rangle$.

Exemplo 3.5. Uma presentação de $(\mathbb{Z}, +)$ é $\langle 1 | \emptyset \rangle$, ou simplemente $\langle 1 \rangle$.

Exemplo 3.6. Uma presentação de \mathbb{Z}_n é $\langle \overline{1} \mid n\overline{1} = \overline{0} \rangle$.

Exemplo 3.7. Uma presentação de $\mathbb{H} = Q_8$ é $\langle i, j \mid i^4 = 1, i^2 = j^2, iji = j \rangle$.

Exemplo 3.8. Uma presentação de S_n é

$$\langle s_1, \dots, s_{n-1} \mid s_i^2 = e, (s_i s_{i+1})^3 = e, s_i s_j = s_j s_i (j \neq i \pm 1) \rangle.$$