Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Hyperparameter tuning

Tuning process

Hyperparameters

Try random values: Don't use a grid

Coarse to fine

Hyperparameter tuning

Using an appropriate scale to pick hyperparameters

Picking hyperparameters at random

Appropriate scale for hyperparameters

$$d = 0.0001 \dots 1$$

$$\frac{10^{-14} \text{ of } (66)}{10^{-14} \text{ of } (66)} = 0$$

$$\frac{10^{-14} \text{ of } (66)}{10^{-14} \text{ of } (66)} = 0$$

$$\frac{10^{-14} \text{ of } (66)}{10^{-14} \text{ of } (66)} = 0$$

$$\frac{10^{-14} \text{ of } (66)}{10^{-14} \text{ of } (66)} = 0$$

$$\frac{10^{-14} \text{ of } (66)}{10^{-14} \text{ of } (66)} = 0$$

$$\frac{10^{-14} \text{ of } (66)}{10^{-14} \text{ of } (66)} = 0$$

Andrew Ng

Hyperparameters for exponentially weighted averages

deeplearning.ai

Hyperparameters tuning

Hyperparameters tuning in practice: Pandas vs. Caviar

Re-test hyperparameters occasionally

- NLP, Vision, Speech, Ads, logistics,

- Intuitions do get stale. Re-evaluate occasionally.

Babysitting one model

Panda <

Training many models in parallel

Andrew Ng

Batch Normalization

Normalizing activations in a network

Normalizing inputs to speed up learning

Implementing Batch Norm Crisa some intermediate values in NN μ: m ≥ 2⁽ⁱ⁾

Batch Normalization

Fitting Batch Norm into a neural network

Adding Batch Norm to a network

Working with mini-batches

Implementing gradient descent

for t=1 num Mini Bortches Compute Cornal Pap on X 8t3. It eat hidden lay, use BN to report 2 with 2 Tell. Update partes Wes: = Wi-adwind } = Bin adwind Bin adwind } = Bin adwind Bin Works w/ momente, RMSpap, Adam.

Batch Normalization

Why does Batch Norm work?

Learning on shifting input distribution

Why this is a problem with neural networks?

Batch Norm as regularization

- Each mini-batch is scaled by the mean/variance computed on just that mini-batch.
- This adds some noise to the values $z^{[l]}$ within that minibatch. So similar to dropout, it adds some noise to each hidden layer's activations.
- This has a slight regularization effect.

Multi-class classification

Softmax regression

Recognizing cats, dogs, and baby chicks

Softmax layer

Softmax examples

Programming Frameworks

Deep Learning frameworks

Deep learning frameworks

- Caffe/Caffe2
- CNTK
- DL4J
- Keras
- Lasagne
- mxnet
- PaddlePaddle
- TensorFlow
- Theano
- Torch

Choosing deep learning frameworks

- Ease of programming (development and deployment)
- Running speed
- Truly open (open source with good governance)

Programming Frameworks

TensorFlow

Motivating problem

$$J(\omega) = [\omega^2 - 10\omega + 25]$$
 $(\omega - 5)^2$
 $(\omega = 5)$

```
Code example
    import numpy as np
    import tensorflow as tf
    coefficients = np.array([[1], [-20], [25]])
    w = tf.Variable([0],dtype=tf.float32)
    x = tf.placeholder(tf.float32, [3,1])
    cost = x[0][0]*w**2 + x[1][0]*w + x[2][0] # (w-5)**2
    train = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
    init = tf.global_variables_initializer()
                                                with tf.Session() as session:
    session = tf.Session()
                                                  session.run(init)
    session.run(init)
    print(session.run(w))
                                                  print(session.run(w))
    for i in range (1000):
      session.run(train, feed_dict={x:coefficients})
```

print(session.run(w))

Andrew Ng