

IMM-NYU 338  
MARCH 1965



NEW YORK UNIVERSITY  
COURANT INSTITUTE OF  
MATHEMATICAL SCIENCES

# ON SOME TESTS OF HOMOGENEITY OF VARIANCES

MADAN L. PURI

---

PREPARED UNDER  
CONTRACT NONR-285(38)  
WITH THE OFFICE OF NAVAL RESEARCH  
AND SLOAN FOUNDATION GRANT  
FOR STATISTICS



IMM-NYU 338  
March 1965

NEW YORK UNIVERSITY  
Courant Institute of Mathematical Sciences

ON SOME TESTS OF HOMOGENEITY OF VARIANCES<sup>1</sup>

Madan L. Puri

<sup>1</sup>This work represents results obtained at the Courant Institute of Mathematical Sciences, New York University, under Sloan Foundation Grant for statistics and under U. S. Navy Contract Nonr-285(38). NR No. 042-206/11/18/64. Reproduction in whole or in part is permitted for any purpose of the United States Government.

C. 1

## Summary

In their paper [1], Ansari and Bradley discussed a two-sample rank test for dispersions and suggested the desirability of extending their results to the problem of several samples. In this paper, besides generalizing their results, we provide a few additional non-parametric tests, which include, among others, the multi-sample analogues of the two-sample normal scores test of dispersion and the tests considered by Mood [6], Klotz [4], and Siegel and Tukey [10]. The asymptotic distributions of the proposed test statistics are derived by an application of the author's theorem [7]. The asymptotic efficiencies of these tests relative to one another and the  $\mathcal{F}$  test ([9] pp. 83-87) are computed in the standard fashion along the lines of the author's paper [7].



## 1. Introduction

Let  $X_{ij}$  ( $j=1, \dots, m_i$ ;  $i=1, \dots, c$ ) be independent samples from populations with continuous cumulative distribution function  $F_i(x) = F(\theta_i(x-\nu))$ , where  $\theta_i$  and  $\nu$  are real numbers.  $\theta_i$  is the scale parameter for  $F_i$  and  $\nu$ , the common median for all  $F_i$ , which without loss of generality can be taken to be zero. We are interested in testing the hypothesis  $H_0 : \theta_1 = \dots = \theta_c$  against  $H_1 : \theta_i \neq \theta_j$  for some pair  $(i, j)$ .

Let  $Z_{N,i}^{(j)} = 1$ , if the  $i$ th smallest observation from the combined sample of size  $N = \sum m_i$  is from the  $j$ th sample and otherwise let  $Z_{N,i}^{(j)} = 0$ . Then we propose to consider the following test statistics.

$$A. \quad \mathcal{L}(B) = 48 \sum_{j=1}^c m_j (B_{N,j} - \beta_{N,j})^2$$

where

$$(1.1) \quad m_j B_{N,j} = \sum_{i=1}^N \left[ \frac{1}{2} + \frac{1}{2N} - \left| \frac{1}{2} + \frac{1}{2N} - \frac{i}{N} \right| \right] Z_{N,i}^{(j)}$$

$$B. \quad \mathcal{L}(M) = 180 \sum_{j=1}^c m_j (M_{N,j} - \ell_{N,j})^2$$

where

$$(1.2) \quad m_j M_{N,j} = \sum_{i=1}^N \left( \frac{i}{N} - \frac{N+1}{2N} \right)^2 Z_{N,i}^{(j)}$$



$$C. \quad \mathcal{L}(\Psi) = \sum_{j=1}^c m_j \left[ (\Psi_{N,j} - c_{N,j}) / A_N \right]^2$$

where

$$(1.3) \quad m_j \Psi_{N,j} = \sum_{i=1}^N E_\Psi \left[ V^{(i)} \right]^2 Z_{N,i}^{(j)}$$

and where  $V^{(1)} < \dots < V^{(N)}$  is an ordered sample of size  $N$  from a distribution  $\Psi$  and  $E$  denotes the expectation.  $(\beta_{N,j}, \alpha_{N,j}, c_{N,j}$  and  $A_N$  are normalizing constants to be defined below).

We may note that with  $c = 2$ , the statistics  $\mathcal{L}(B)$ ,  $\mathcal{L}(M)$  and  $\mathcal{L}(\Phi)$  where  $\Phi$  is the standard normal distribution function, reduce respectively to the two-sided Ansari-Bradley-Freund W statistic [1], Mood's M statistic [6] and the normal scores statistic [3], for testing the equality of dispersions of the two populations.

Reference to prior work on the two-sample non-parametric tests for dispersions may also be found in Lehmann [5], Sukhatme ([11], [12]), Barton and David [2], Siegel and Tukey [10], and Klotz [4], among others. Ansari and Bradley [1] have shown that their W test is equivalent to one independently proposed by Barton and David [2]. Klotz [4] has shown that the W test is equivalent to one proposed by Siegel and Tukey [10]. Thus the  $\mathcal{L}(B)$  test, defined above, may also be regarded



as a generalization of the two-sided Ansari-Bradley-Barton-David-Siegel-Tukey test of dispersion. Lehmann's test is not a distribution-free test and so the relative efficiencies of this test are not known. Sukhatme's second test [12] is an improvement over the Ansari-Bradley W test and its generalization to several samples merit investigation; but since this does not appear to be possible with the methods of the present paper, we do not intend to discuss this test here. We shall confine our attention to the statistics proposed in A, B, and C above. (The author is not aware of any multi-sample rank test for dispersions in the literature).

In the passing, we may remark that the statistics proposed above may be put in the general framework of the statistics  $\mathcal{L}$  defined as

$$(1.4) \quad \mathcal{L} = \sum_{j=1}^c m_j \left[ (T_{N,j} - \mu_{N,j}) / A_N \right]^2$$

where  $\mu_{N,j}$  and  $A_N$  are normalizing constants, and

$$(1.5) \quad m_j T_{N,j} = \sum_{i=1}^N E_{N,i} Z_{N,i}^{(j)} .$$

With  $E_{N,i} = \frac{1}{2} + \frac{1}{2N} - |\frac{1}{2} + \frac{1}{2N} - \frac{i}{N}|$ , the statistic  $\mathcal{L}$



reduces to the  $\mathcal{L}(B)$  statistic. With  $E_{N,i} = \left( \frac{i}{N} - \frac{N+1}{2N} \right)^2$  we obtain the  $\mathcal{L}(M)$  statistic and with  $E_{N,i} = E_{N,i} = E_{\Psi}[V^{(i)}]^2$  we obtain the  $\mathcal{L}(\Psi)$  statistic. The tests based on the statistics  $\mathcal{L}(B)$ ,  $\mathcal{L}(M)$  and  $\mathcal{L}(\Psi)$  will be referred as the  $\mathcal{L}$  tests.

The statistics  $\mathcal{L}$ , defined by (1.4) with weights  $E_{N,i}$  different than the ones proposed above, were suggested by the author [7] for testing the equality of location parameters of the  $c$  probability distributions. Here we shall find the limiting distributions of the statistics  $\mathcal{L}$  (defined by A, B, and C) when the distributions  $F_i(x)$  differ only by scale parameters. The formulation of the problem as given in this paper is the same as given in the earlier paper. However, the earlier paper treats the problem somewhat more generally, and the reader is referred to it for additional background and motivation.

## 2. The limiting distributions of $\mathcal{L}$ under local alternatives.

To obtain the large sample distribution of the statistics  $\mathcal{L}$ , we begin by determining the asymptotic distributions of the statistics  $T_{N,j}$  defined by (1.5). This is given by the following theorem, where the sample sizes  $m_i$  are assumed to tend to infinity in such a way that  $m_i = s_i \cdot n$ ,  $n \rightarrow \infty$ ;  $i=1, \dots, c$ .

Theorem 2.1. For  $n = 1, 2, \dots$  let  $X_{ij}$  ( $j=1, \dots, m_i(n)$ ;  
 $i=1, \dots, c$ ) be independently distributed according to  
 $F(\theta_i^{(n)} x)$ . Suppose that the sequence of parameter points



$\theta^{(n)} = (\theta_1^{(n)}, \dots, \theta_c^{(n)})$  satisfy

$$(2.1) \quad \theta_i^{(n)} = 1 + v_i/\sqrt{n} \quad .$$

Let the assumptions of theorem 6.2 of [7] be satisfied.

Then the variables  $(w_1, \dots, w_c)$  given by

$$(2.2) \quad w_j = m_j^{1/2} (T_{N,j} - \mu_{N,j}(\theta^{(n)}))$$

have a joint asymptotic normal distribution with zero means

and covariance matrix whose  $(j, j')$ th term is

$$(2.3) \quad \left( \delta_{jj'} - \frac{\sqrt{s_j s_{j'}}}{\sum s_i} \right) A^2$$

where the  $\delta_{jj'}$  are the kronecker deltas, and, where

$$(2.4) \quad A^2 = \int_0^1 (\Psi^{-1}(x))^4 dx - \left( \int_0^1 (\Psi^{-1}(x))^2 dx \right)^2 \text{ for the } \mathcal{L}(\Psi) \text{ test.}$$

$$= \frac{1}{48} \text{ for the } \mathcal{L}(B) \text{ test.}$$

$$= \frac{1}{180} \text{ for the } \mathcal{L}(M) \text{ test.}$$

Note that, under the assumptions of Theorem 2.1,



we have (cf. [7])

$$(2.5) \quad \mu_{N,j}(\theta^{(n)}) = \int_{-\infty}^{+\infty} \left[ \Psi^{-1}(H(x)) \right]^2 dF_j(x) \text{ for the } \mathcal{L}(\Psi) \text{ test.}$$

$$= \int_{-\infty}^0 H(x) dF_j(x) + \int_0^{\infty} (1-H(x)) dF_j(x)$$

for the  $\mathcal{L}(B)$  test.

$$= \int_{-\infty}^{+\infty} \left( H(x) - \frac{1}{2} \right)^2 dF_j(x) \text{ for the } \mathcal{L}(M) \text{ test.}$$

where

$$(2.6) \quad F_j(x) = F\left(x(1 + v_j/\sqrt{n})\right)$$

and

$$(2.7) \quad H(x) = \sum_{i=1}^c s_i F_i(x) / \sum_{\alpha=1}^c s_{\alpha} .$$

The proof of the theorem follows as did theorem 7.1 in [7] from theorem 6.2 of that paper. Now making the analysis of variance transformation

$$s_0 = \sum_{i'=1}^c e_i^{1/2} w_{i'} / A \quad \text{where} \quad e_i = s_i / \sum_{i=1}^c s_i$$



$$s_i = \sum_{i'=1}^c a_{ii'} w_{i'}/A \quad ; \quad i=1, \dots, c-1$$

where the  $a$ 's are chosen to make the transformation orthogonal and proceeding as in [7], we arrive at the following:

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 are satisfied.

(a) If

$$(2.8) \quad \lim_{n \rightarrow \infty} \sqrt{m_j} (c_{N,j}(\theta^{(n)}) - c_{N,j}(1)) / A$$

exists and is finite, then, for  $n \rightarrow \infty$ , the statistic  $\mathcal{L}(\Psi)$  has a limiting non-central chi-square distribution with  $c-1$  degrees of freedom and non-centrality parameter

$$(2.9) \quad \lambda_\Psi = \sum_{j=1}^c \left[ \lim_{n \rightarrow \infty} \sqrt{m_j} (c_{N,j}(\theta^{(n)}) - c_{N,j}(1)) \right]^2 / A^2 .$$

(b) If

$$(2.10) \quad \lim_{n \rightarrow \infty} \sqrt{m_j} (\beta_{N,j}(\theta^{(n)}) - \beta_{N,j}(1))$$

exists and is finite, then, for  $n \rightarrow \infty$ , the statistic  $\mathcal{L}(B)$  has a limiting non-centrality chi-square distribution with



c-1 degrees of freedom and non-centrality parameter

$$(2.11) \quad \lambda_B = 48 \sum_{j=1}^c \left[ \lim_{n \rightarrow \infty} \sqrt{m_j} (\beta_{N,j}(\theta^{(n)}) - \beta_{N,j}(1)) \right]^2 .$$

(c) If

$$(2.12) \quad \lim_{n \rightarrow \infty} \sqrt{m_j} (\alpha_{N,j}(\theta^{(n)}) - \alpha_{N,j}(1))$$

exists and is finite, then, for  $n \rightarrow \infty$ , the statistic  $\mathcal{L}(M)$  has a limiting non-central chi-square distribution with c-1 degrees of freedom and non-centrality parameter

$$(2.13) \quad \lambda_M = 180 \sum_{j=1}^c \left[ \lim_{n \rightarrow \infty} \sqrt{m_j} (\alpha_{N,j}(\theta^{(n)}) - \alpha_{N,j}(1)) \right]^2 .$$

Corollary. If, in addition to the assumptions of Theorem 2.2, the regularity conditions of lemma 7.2 of [9] are satisfied, then,

$$(2.14) \quad \lambda_\Psi = \sum_{j=1}^c s_j(v_j - \bar{v})^2 \left( \int_{-\infty}^{+\infty} x \frac{d}{dx} \left\{ \Psi^{-1}[F(x)] \right\}^2 dF(x) \right)^2 / A^2$$

$$(2.15) \quad \lambda_B = 48 \sum_{j=1}^c s_j(v_j - \bar{v})^2 \left( \int_{-\infty}^0 x f^2(x) dx - \int_0^\infty x f^2(x) dx \right)^2$$



$$(2.16) \quad \lambda_M = 180 \sum_{j=1}^c s_j (\nu_j - \bar{\nu})^2 \left( \int_{-\infty}^{+\infty} x f(x) [2F(x) - 1] dF(x) \right)^2$$

where f is the density of F and

$$(2.17) \quad \bar{\nu} = \frac{\sum s_i \nu_i}{\sum s_i} .$$

Note: To get  $\lambda_B$ , we need a trivial modification of the part (i) of lemma 7.2 of [9].

Proof. To get (2.14) from (2.9), we note that

$$\begin{aligned} &= \sqrt{n} (c_{N,j}(\theta^{(n)}) - c_{N,j}(1)) \\ &= \sqrt{n} \left( \int J \left[ \sum_{i=1}^c \lambda_i F\left(x(1+\nu_i/\sqrt{n})\right) \right] dF\left(x(1+\nu_j/\sqrt{n})\right) - \int J [F(x)] dF(x) \right) \\ &= \int A_n(x) B_n(x) dF(x) \end{aligned}$$

where

$$A_n(x) = \frac{\int \left[ \sum_{i=1}^c \lambda_i F\left(x(1+\nu_i/\sqrt{n})(1+\nu_j/\sqrt{n})^{-1}\right) \right] dF(x)}{\sum_{i=1}^c \lambda_i F\left(x(1+\nu_i/\sqrt{n})(1+\nu_j/\sqrt{n})^{-1}\right) - F(x)}$$

$$B_n(x) = \sqrt{n} \sum_{i=1}^c \lambda_i \left[ F\left(x(1+\nu_i/\sqrt{n})(1+\nu_j/\sqrt{n})^{-1}\right) - F(x) \right] .$$



Under the assumed regularity conditions

$$\lim_{n \rightarrow \infty} A_n(x) = \frac{d}{du} J(u) \Big|_{u=F(x)}$$

$$\lim_{n \rightarrow \infty} B_n(x) = (\bar{v} - v_j) x f(x)$$

where  $\bar{v}$  is given by (2.17). Since differentiation under the integral is permitted, the proof follows.

The proofs of (2.15) and (2.16) are exactly analogous.

In particular when  $\Psi = \Phi$ , where  $\Phi$  is the standard normal distribution function,

$$(2.18) \quad \lambda_{\Phi} = 2 \sum_{j=1}^c s_j (v_j - \bar{v})^2 \left( \int \frac{x \Phi^{-1}[F(x)] f(x) dF(x)}{\phi[\Phi^{-1}[F(x)]]} \right)^2$$

where  $\phi$  is the density of  $\Phi$ .

### 3. Parametric Case

In the parametric theory, a commonly used test is Bartlett's H test for the homogeneity of variances. This test is shown by Box to be very sensitive to departures from normality assumptions. We give below a very brief description of an approximate test based on the analysis of variance of the logarithms of the sample variances. For details, the reader is referred to Scheffé ([9], pp. 83-87), from where the following



portion is taken with slight modification.

Divide the  $i$ th sample  $X_{i1}, \dots, X_{im_i}$  into  $J_i$  sub-samples. Let  $m_{ij}$  denote the size and  $s_{ij}^2$ , the sample variance of the  $j$ th sub-sample of the  $i$ th sample. Denote  $Y_{ij} = \log s_{ij}^2$  and assume that  $\gamma_2$ , the kurtosis measure has the same value for all populations. Then from Scheffé (cited above), the test for the hypothesis of the equality of variances is based on the statistic

$$(3.1) \quad f = \frac{\frac{1}{c-1} \sum_i v_i^* (\hat{\eta}_i - \hat{\eta})^2}{\frac{1}{v_e} \sum_i \sum_j v_{ij} (Y_{ij} - \hat{\eta}_i)^2}$$

where  $v_{ij} = m_{ij} - 1$ ,  $v_i^* = \sum_{j=1}^{J_i} v_{ij}$ ,  $\hat{\eta}_i = \sum_j v_{ij}^* Y_{ij} / v_i^*$ ,

$\hat{\eta} = \sum_i v_i^* \hat{\eta}_i / v^*$ ,  $v^* = \sum_i v_i^*$  and  $v_e = \sum_i (J_i - 1)$ . The

denominator of  $f$  converges to  $2 + \gamma_2$  in probability as  $n \rightarrow \infty$ . (Note that we are assuming  $m_{ij} \rightarrow \infty$  as  $n \rightarrow \infty$ ). Hence an asymptotically equivalent statistic is

$$(3.2) \quad (c-1)f = \sum_i v_i^* (\hat{\eta}_i - \hat{\eta})^2 / (2 + \gamma_2)$$

which has a limiting non-central chi-square distribution with a non-centrality parameter (after omitting computations)



$$(3.3) \quad \lambda_{\mathcal{F}} = 4 \sum_{i=1}^c s_i (\nu_i - \bar{\nu})^2 / (2 + \gamma_2) \quad .$$

#### 4. Asymptotic Relative Efficiency.

It is well-known ([7]) that in the situations we are considering, the asymptotic efficiency of one statistic relative to another is equal to the ratio of their non-centrality parameters. Hence, we have the efficiencies of the normal scores  $\mathcal{L}(\Phi)$  statistic relative to  $\mathcal{L}(B)$ ,  $\mathcal{L}(M)$  and  $\mathcal{L}(F)$  statistics as follows:

$$(4.1) \quad e_{\mathcal{L}(\Phi), \mathcal{L}(B)} = \lambda_{\Phi} / \lambda_B$$

$$(4.2) \quad e_{\mathcal{L}(\Phi), \mathcal{L}(M)} = \lambda_{\Phi} / \lambda_M$$

$$(4.3) \quad e_{\mathcal{L}(\Phi), \mathcal{F}} = \lambda_{\Phi} / \lambda_{\mathcal{F}} \quad .$$

It may be remarked that the above results agree with the results obtained by Ansari and Bradley [1], and Klotz [4] for the two-sample case, and hence the results of this paper as well as of these authors apply directly to the c-sample problem. We would, in particular, draw the attention of the reader to Section 3 of [4] and Section 7 of [1] where



the efficiency comparisons for different densities of the  $\mathcal{L}(\Phi)$ ,  $\mathcal{L}(M)$ ,  $\mathcal{L}(B)$  and  $J$  tests are made for the two-sample problem and which are shown here to be valid also for the c-sample problem.



## REFERENCES

1. ANSARI, A. R. and BRADLEY, R. A. (1960). Rank-sum tests for dispersions. Ann. Math. Statist. 31 1174-1189.
2. BARTON, D. E. and DAVID, F. N. (1958). A test for birth-order effects. Ann. Eugenics. 22 250-257.
3. CAPON, Jack (1961). Asymptotic efficiency of certain locally most powerful rank tests. Ann. Math. Statist. 88-100 Vol. 32.
4. KLOTZ, J. H. (1962). Non-parametric tests for scale. Ann. Math. Statist. 33 498-508.
5. LEHMANN, E. L. (1951). Consistency and unbiasedness of certain non-parametric tests. Ann. Math. Statist. 22 165-179.
6. MOOD, A. M. (1954). On the asymptotic efficiency of certain non-parametric two-sample tests. Ann. Math. Statist. 25 514-522.
7. PURI, Madan L. (1964). Asymptotic Efficiency of a Class of c-Sample Tests. Ann. Math. Statist. 35 102-121.
8. PURI, Madan L. (1964). Some Distribution-Free k-Sample Rank Tests of Homogeneity Against Ordered Alternatives. Ann. Math. Statist. (abstract) 35.



9. SCHEFFE, Henry S. (1959). The Analysis of Variance.  
John Wiley and Sons, Inc.
10. SIEGEL, SIDNEY and TUKEY, John W. (1960). A non-parametric sum of ranks procedure for related spread in unpaired samples. J. Amer. Stat. Assn. 55 429-455.
11. SUKHATME, B. V. (1957). On certain two-sample non-parametric tests for variances. Ann. Math. Statist. 28 188-194.
12. SUKHATME, B. V. (1958). A two-sample distribution-free test for variances. Biometrika. 45 544-548.



## Security Classification

## DOCUMENT CONTROL DATA - R&amp;D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

|                                                                                                                                                 |                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1 ORIGINATING ACTIVITY (Corporate author)<br>New York University<br>Courant Institute of Mathematical<br>Sciences, 25 Waverly Pl., N.Y. 3, N.Y. | 2a REPORT SECURITY CLASSIFICATION<br>Non-classified |
|                                                                                                                                                 | 2b GROUP                                            |

## 3 REPORT TITLE

On Some Tests of Homogeneity of Variances

## 4 DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report March 1965

## 5 AUTHOR(S) (Last name, first name, initial)

Puri, Madan L.

|                                           |                                                                                        |                      |
|-------------------------------------------|----------------------------------------------------------------------------------------|----------------------|
| 6. REPORT DATE<br>March 1965              | 7a. TOTAL NO. OF PAGES<br>16 pages                                                     | 7b. NO OF REFS<br>12 |
| 8a. CONTRACT OR GRANT NO.<br>Nonr-285(38) | 9a. ORIGINATOR'S REPORT NUMBER(S)<br>IMM-NYU 338                                       |                      |
| b. PROJECT NO.<br>NR 042-206/11/18/64     | 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned<br>this report)<br>NONE |                      |
| c.                                        |                                                                                        |                      |
| d.                                        |                                                                                        |                      |

## 10. AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report  
from DDC.

|                                 |                                                                                                              |
|---------------------------------|--------------------------------------------------------------------------------------------------------------|
| 11. SUPPLEMENTARY NOTES<br>None | 12. SPONSORING MILITARY ACTIVITY<br>U. S. Navy<br>Office of Naval Research<br>207 W. 24th Street, N.Y., N.Y. |
|---------------------------------|--------------------------------------------------------------------------------------------------------------|

## 13 ABSTRACT

For testing the equality of  $c$  continuous probability distributions on the basis of  $c$  independent random samples, various non-parametric tests for dispersions are offered. These tests, include among others, the multi-sample analogues of the two-sample normal-scores test of dispersion and the tests considered by Ansari and Bradley (Ann. Math. Statist. 1960), Klotz (Ann. Math. Statist. 1962), Mood (Ann. Math. Statist. 1954), and Siegel and Tukey (J. Amer. Stat. Assn. (1960)). Under suitable regularity conditions, it is shown that these tests have limiting non-central chi-square distributions with  $c-1$  d.f. The asymptotic relative efficiencies (in the Pitman sense) of these tests relative to one another and the  $F$  test (Scheffe: The Analysis of Variance, pp. 83-87) are obtained and are shown to be the same as for the two-sample problem [cf. Ansari-Bradley and Klotz cited above].



BASIC DISTRIBUTION LIST FOR UNCLASSIFIED TECHNICAL REPORTS

|                                                                                                                                           |           |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Head, Logistics and Mathematical<br>Statistics Branch<br>Office of Naval Research<br>Washington, D.C. 20360                               | 3 copies  |
| Commanding Officer<br>Office of Naval Research Branch Office<br>Navy #100 Fleet Post Office<br>New York, New York                         | 2 copies  |
| Defense Documentation Center<br>Cameron Station<br>Alexandria, Virginia 22314                                                             | 20 copies |
| Defense Logistics Studies<br>Information Exchange<br>Army Logistics Management Center<br>Fort Lee, Virginia<br>Attn: William B. Whichard  | 1 copy    |
| Technical Information Officer<br>Naval Research Laboratory<br>Washington, D.C. 20390                                                      | 6 copies  |
| Commanding Officer<br>Office of Naval Research Branch Office<br>207 West 24th Street<br>New York, New York 10011<br>Attn: J. Laderman     | 1 copy    |
| Commanding Officer<br>Office of Naval Research Branch Office<br>1030 East Green Street<br>Pasadena 1, California<br>Attn: Dr. A.R. Laufer | 1 copy    |
| Bureau of Supplies and Accounts<br>Code OW<br>Department of the Navy<br>Washington 25, D.C.                                               | 1 copy    |
| Institute for Defense Analyses<br>Communications Research Division<br>von Neumann Hall<br>Princeton, New Jersey                           | 1 copy    |
| University of Chicago<br>Statistical Research Center<br>Chicago, Illinois<br>Attn: Prof. Paul Meier                                       | 1 copy    |



Stanford University  
Applied Mathematics & Statistics Lab.  
Stanford, California  
Attn: Prof. Gerald J. Lieberman

Florida State University  
Department of Statistics  
Tallahassee, Florida  
Attn: Prof. I.R., Savage

Florida State University  
Department of Statistics  
Tallahassee, Florida  
Attn: Dr. Ralph A. Bradley

Princeton University  
Department of Mathematics  
Princeton, New Jersey

Columbia University  
Department of Mathematical Statistics  
New York 27, New York  
Attn: Prof. T.W. Anderson

University of California  
Department of Statistics  
Berkeley 4, California  
Attn: Prof. J. Neyman

University of Washington  
Department of Mathematics  
Seattle 5, Washington  
Attn: Prof. Z.W. Birnbaum

Cornell University  
Department of Mathematics  
Ithaca, New York  
Attn: Prof. J. Wolfowitz

Harvard University  
Department of Statistics  
Cambridge, Massachusetts  
Attn: Prof. W.G. Cochran

The Research Triangle Institute  
Statistics Research Division  
505 West Chapel Hill Street  
Durham, North Carolina  
Attn: Dr. Malcolm R. Leadbetter

Columbia University  
Dept. of Industrial Engineering  
New York 27, New York  
Attn: Prof. Cyrus Derman

Columbia University  
Department of Mathematics  
New York 27, New York  
Attn: Prof. H. Robbins

New York University  
Courant Inst. of Mathematical Science  
New York 3, New York  
Attn: Prof. W.M. Hirsch

Cornell University  
Department of Plant Breeding  
Biometrics Unit  
Ithaca, New York  
Attn: Walter T. Federer

University of North Carolina  
Statistics Department  
Chapel Hill, North Carolina  
Attn: Prof. Walter L. Smith

Michigan State University  
Department of Statistics  
East Lansing, Michigan  
Attn: Prof. Herman Rubin

Brown University  
Division of Applied Mathematics  
Providence 12, Rhode Island  
Attn: Prof. M. Rosenblatt

New York University  
Department of Industrial Engineering  
and Operations Research  
Bronx 63, New York  
Attn: Prof. J. H. Kao

University of Wisconsin  
Department of Statistics  
Madison, Wisconsin  
Attn: Prof. G.E.P. Box

Docketdyne - A Division of North  
American Aviation, Inc.  
6633 Canoga Avenue  
Canoga Park, California  
Attn: Dr. Roy Goodman  
Attn: Dr. Robert Zimmerman



Prof. Anders Hald  
Institute of Mathematical Statistics  
University of Copenhagen  
Copenhagen, Denmark

Yale University  
Department of Mathematics  
New Haven, Connecticut  
Attn: Prof. L.J. Savage

Massachusetts Institute of Technology  
Department of Electrical Engineering  
Cambridge, Massachusetts  
Attn: Dr. R.A. Howard

The Johns Hopkins University  
Department of Mathematical Statistics  
34th & Charles Streets  
Attn: Prof. Geoffrey S. Watson

Stanford University  
Department of Statistics  
Stanford, California  
Attn: Prof. E. Parson

Arcon Corporation  
803 Massachusetts Avenue  
Lexington 73, Massachusetts  
Attn: Dr. Arthur Albert

University of California  
Institute of Engineering Research  
Berkeley 4, California  
Attn: Prof. R.E. Barlow

Michigan State Unviersity  
Department of Statistics  
East Lansing, Michigan  
Attn: Prof. J. Gani

Prof. Harold E. Dodge  
Rutgers - The State University  
Statistics Center  
New Brunswick, New Jersey

Yale University  
Department of Statistics  
New Haven, Connecticut  
Attn: Prof. F.J. Anscombe

Purdue University  
Division of Mathematical Sciences  
Lafayette, Indiana  
Attn: Prof. S.S. Gupta

Cornell University  
Department of Industrial Engineering  
Ithaca, New York  
Attn: Prof. Robert Bechhofer

Stanford University  
Department of Statistics  
Stanford, California  
Attn: Prof. C. Stein

Applied Mathematics and Statistics La  
Department of Statittics  
Stanford University  
Stanford, California  
Attn: Prof. H. Solomon

Decision Studies Group  
460 California Avenue  
Palo Alto, California  
Attn: Warren R. Ketler



APR 5 1965

DATE DUE

GAYLORD

PRINTED IN U.S.A.

NYU  
IMM-  
338 Pur 1

## On some tests of homogeneity of variances

NYU  
IMM-  
338 Puri

AUTHOR

# On some tests of homogeneity of variances

DATA <sup>WIR</sup>

DUE BORRADO

*...and a name*

C. 1

N.Y.U. Courant Institute of  
Mathematical Sciences  
251 Mercer St.

New York 12, N. Y.

