NOM:

INTERRO DE COURS – SEMAINE 22

Exercice 1 – Dans chacun des cas suivants, étudier le sens de variation de la suite $(u_n)_{n \in \mathbb{N}}$.

1. $\forall n \in \mathbb{N}$, $u_n = n^2$

Solution : Pour tout $n \in \mathbb{N}$,

$$u_{n+1} - u_n = (n+1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 \ge 0.$$

Donc la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

 $2. \ \forall n \in \mathbb{N}, \quad u_n = \frac{3}{n+1}$

Solution : Tous les termes de la suite sont strictement positifs. De plus, pour tout $n \in \mathbb{N}$,

$$\frac{u_{n+1}}{u_n} = \frac{\frac{3}{n+1+1}}{\frac{3}{n+1}} = \frac{3}{n+2} \times \frac{n+1}{3} = \frac{n+1}{n+2} \leqslant 1.$$

Donc la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

3. $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + (u_n - 4)^2$

Solution : Pour tout $n \in \mathbb{N}$,

$$u_{n+1} - u_n = u_n + (u_n - 4)^2 - u_n = (u_n - 4)^2 \ge 0.$$

Donc la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

4. $u_0 = -1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + \sqrt{1+n}$

Solution : Pour tout $n \in \mathbb{N}$,

$$u_{n+1} - u_n = u_n + \sqrt{1+n} - u_n = \sqrt{1+n} \geqslant 0.$$

Donc la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

Exercice 2 – On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_n = \frac{4n^2 + 1}{n^2 + 1}$.

1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 4.

Solution : Pour tout $n \in \mathbb{N}$,

$$u_n - 4 = \frac{4n^2 + 1}{n^2 + 1} - 4 = \frac{4n^2 + 1}{n^2 + 1} - \frac{4(n^2 + 1)}{n^2 + 1} = \frac{4n^2 + 1 - 4n^2 - 4}{n^2 + 1} = \frac{-3}{n^2 + 1} \leqslant 0.$$

Donc $u_n \geqslant 4$ et $(u_n)_{n \in \mathbb{N}}$ est majorée par 4.

2. En déduire qu'elle est bornée.

Solution : Je remarque que pour tout $n \in \mathbb{N}$, $u_n \ge 0$.

Alors la suite $(u_n)_{n\in\mathbb{N}}$ est minorée par 0.

Finalement la suite $(u_n)_{n\in\mathbb{N}}$ est bien bornée.