Lecture 1 – Mathematical Preliminaries COSE215: Theory of Computation

Jihyeok Park

2023 Spring

Theorem

The current state is OFF if and only if the button is pushed even times.

• Is it possible to prove it?

Let's learn mathematical background and notation.

Contents

1. Mathematical Notations

Notations in Logics Notations in Set Theory

2. Inductive Proofs

Inductions on Integers Structural Inductions Mutual Inductions

3. Notations in Languages

Symbols Words Languages

Contents

Mathematical Notations Notations in Logics Notations in Set Theory

2. Inductive Proofs Inductions on Integers Structural Inductions Mutual Inductions

Notations in Languages Symbols Words Languages

Notations in Logics

Notation	Description
A, B	arbitrary statements.
P(x)	a predicate that involves a variable x.
$A \wedge B$	the conjunction of <i>A</i> and <i>B</i> .
$A \vee B$	the disjunction of A and B.
$\neg A$	the negation of A.
$A \Rightarrow B$	the implication of A and B
	(i.e., A implies B / if A then B).
$A \Leftrightarrow B$	A if and only if (iff) B
	(i.e., $A \Rightarrow B \land B \Rightarrow A$).
$\forall x \in X. \ P(x)$	the universal quantifier
	(i.e, for all x in X , $P(x)$ holds).
$\exists x \in X. \ P(x)$	the existential quantifier
	(i.e., there exists x in X such that $P(x)$ holds).

Notations in Set Theory

- A set is a collection of elements, e.g.,
 - $\mathbb{N} = \{0, 1, 2, \cdots\}$
 - $\{x \in \mathbb{N} \mid x \text{ is even}\} = \{0, 2, 4, 6, 8, 10, 12, \cdots\}$
 - $\{x \in \mathbb{N} \mid x^2\} = \{0, 1, 4, 9, 16, 25, 36, \cdots\}$
- The empty set is denoted by Ø.
- The **cardinality** of a set X is denoted by |X|.
- A subset X of a set Y is denoted by $X \subseteq Y$.

$$X \subseteq Y \iff \forall x \in X. \ x \in Y$$

• A **proper subset** X of a set Y is denoted by $X \subset Y$.

$$X \subset Y \iff X \subseteq Y \land X \neq Y$$

Notations in Set Theory

• The union of sets

$$X \cup Y = \{x \mid x \in X \lor x \in Y\}$$

$$\bigcup \mathcal{C} = X_1 \cup X_1 \cup \dots \cup X_n = \{x \mid \exists X \in \mathcal{C}. \ x \in X\}$$

where
$$C = \{X_1, X_2, \cdots, X_n\}$$
.

The intersection of sets

$$X \cap Y = \{x \mid x \in X \land x \in Y\}$$

$$\bigcap \mathcal{C} = X_1 \cap X_1 \cap \dots \cap X_n = \{x \mid \forall X \in \mathcal{C}. \ x \in X\}$$

where
$$C = \{X_1, X_2, \cdots, X_n\}$$
.

• The difference of sets

$$X \setminus Y = \{x \mid x \in X \land x \notin Y\}$$

Notations in Set Theory

• The **complement** of a set X is denoted by \overline{X} .

$$\overline{X} = \{ x \mid x \in U \land x \notin X \}$$

where U is the universal set.

• The **power set** of a set X is denoted by 2^X or $\mathcal{P}(X)$.

$$2^X = \mathcal{P}(X) = \{Y \mid Y \subseteq X\}$$

• The Cartesian product of sets X and Y is denoted by $X \times Y$.

$$X \times Y = \{(x, y) \mid x \in X \land y \in Y\}$$

Contents

Mathematical Notations
 Notations in Logics
 Notations in Set Theory

2. Inductive Proofs

Inductions on Integers Structural Inductions Mutual Inductions

Notations in Languages
 Symbols
 Words
 Languages

Inductions on Integers

Definition (Inductions on Integers)

Let P(n) be a predicate on integers, and if

- (Basis Case) P(k) is hold where k is an integer, and
- (Induction Case) for all $n \ge k$, $P(n) \Rightarrow P(n+1)$,

then P(i) is hold for all $i \geq k$.

P(n) is called **induction hypothesis**.

Inductions on Integers

Example

Prove that
$$\forall n \geq 0$$
. $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

Proof)

Inductions on Integers

Example (Exercise)

Prove that
$$\forall n \geq 0$$
. $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.

Proof)

In CS, we often define somethings as inductively-defined sets.

Example (Inductive Definition of Trees)

A tree is defined as follows:

- (Basis Case) A single node N is a tree.
- (Induction Case) If T_1, \dots, T_n are trees, then a graph defined with a new node N and edges from N to T_1, \dots, T_n is a tree as well.

Example (Inductive Definition of Arithmetic Expressions)

An arithmetic expression is defined as follows:

- (Basis Case) A number or a variable is an arithmetic expression.
- (Induction Case) If E and F are arithmetic expressions, then so are E + F, $E \times F$, and (E).

Definition (Structural Inductions)

Let P(x) be a predicate on a **inductively-defined set** X, and if

- (Basis Case) P(x) is hold for all base cases x, and
- (Induction Case) for all $x \in X$,

$$P(x_1) \wedge \cdots \wedge P(x_n) \Rightarrow P(x)$$

where x_1, \dots, x_n are the sub-structures of x.

then P(x) is hold for all $x \in X$.

 $P(x_1), \dots, P(x_n)$ are called induction hypotheses.

Example

Prove that for all tree T, the number of nodes in T is equal to the number of edges in T plus one.

Proof)

Example (Exercise)

Prove that for all arithmetic expression E, the number of left parentheses in E is equal to the number of right parentheses in E.

Proof)

Mutual Inductions

Definition (Mutual Inductions)

Let P(x) and Q(x) are predicates on a **inductively-defined set** X, and if

- (Basis Case) P(x) and Q(x) are hold for all base cases x, and
- (Induction Case) for all $x \in X$,

$$P(x_1) \wedge \cdots \wedge P(x_n) \wedge Q(x_1) \wedge \cdots \wedge Q(x_n) \Rightarrow P(x) \wedge Q(x)$$

where x_1, \dots, x_n are the sub-structures of x.

then P(x) and Q(x) are hold for all $x \in X$.

 $P(x_1), \dots, P(x_n)$ and $Q(x_1), \dots, Q(x_n)$ are called **induction hypotheses**.

Mutual Inductions

Theorem

The current state is OFF if and only if the button is pushed even times.

Proof)

Contents

Mathematical Notations
 Notations in Logics
 Notations in Set Theory

2. Inductive Proofs
Inductions on Integers
Structural Inductions
Mutual Inductions

Notations in Languages
 Symbols
 Words
 Languages

Symbols

We first define a finite and non-empty set of symbols.

- $\Sigma = \{0,1\}$ binary symbols.
- $\Sigma = \{a, b, \dots, z\}$ lowercase letters.
- $\Sigma = \{a \mid a \text{ is an ASCII character}\}$ ASCII characters.

Words

A word $w \in \Sigma^*$ is a sequence of symbols:

- $\Sigma = \{0, 1\} \epsilon, 0, 1, 00, 01, 10010, \cdots$
- $\Sigma = \{a, b, \dots, z\} \epsilon, a, b, abc, hello, cs, students, \dots \}$

Notations:

Notation	Description
ϵ	the empty word.
<i>W</i> ₁ <i>W</i> ₂	the concatenation of w_1 and w_2 .
	$(w_1 \text{ is a prefix of } w_1w_2 \text{ and } w_2 \text{ is a suffix of } w_1w_2)$
w ^R	the reverse of w.
w	the length of w.
Σ^k	the set of all words of length k .
Σ^*	the set of all words (the Kleene star).
	(i.e., $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \dots = \bigcup_{k=0} \Sigma^k$)
Σ^+	the set of all words except ϵ (the Kleene plus).
	(i.e., $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \dots = \bigcup_{k=1} \Sigma^k$)

A language $L \subseteq \Sigma^*$ is a set of words. When $\Sigma = \{0, 1\}$, we can define the following languages:

• $L = \{\epsilon, 0, 1\}$

A language $L \subseteq \Sigma^*$ is a set of words. When $\Sigma = \{0, 1\}$, we can define the following languages:

• $L = \{\epsilon, 0, 1\}$ – the empty word, zero, and one.

A language $L \subseteq \Sigma^*$ is a set of words. When $\Sigma = \{0, 1\}$, we can define the following languages:

• $L = \{\epsilon, 0, 1\}$ – the empty word, zero, and one.

• $L = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \cdots\}$

A language $L \subseteq \Sigma^*$ is a set of words. When $\Sigma = \{0, 1\}$, we can define the following languages:

• $L = \{\epsilon, 0, 1\}$ – the empty word, zero, and one.

• $L = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \dots\}$ – all binary words.

A language $L \subseteq \Sigma^*$ is a set of words. When $\Sigma = \{0, 1\}$, we can define the following languages:

• $L = \{\epsilon, 0, 1\}$ – the empty word, zero, and one.

• $L = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \dots\}$ – all binary words.

• $L = \{0^n 1^n \mid n \ge 0\}$

A language $L \subseteq \Sigma^*$ is a set of words. When $\Sigma = \{0, 1\}$, we can define the following languages:

• $L = \{\epsilon, 0, 1\}$ – the empty word, zero, and one.

• $L = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \dots\}$ – all binary words.

• $L = \{0^n 1^n \mid n \ge 0\}$ – equal number of consecutive zeros and ones.

A language $L \subseteq \Sigma^*$ is a set of words. When $\Sigma = \{0, 1\}$, we can define the following languages:

• $L = \{\epsilon, 0, 1\}$ – the empty word, zero, and one.

• $L = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \dots\}$ – all binary words.

• $L = \{0^n 1^n \mid n \ge 0\}$ – equal number of consecutive zeros and ones.

• $L = \{10, 11, 101, 111, 1011, \cdots\}$

A language $L \subseteq \Sigma^*$ is a set of words. When $\Sigma = \{0, 1\}$, we can define the following languages:

• $L = \{\epsilon, 0, 1\}$ – the empty word, zero, and one.

• $L = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \dots\}$ – all binary words.

• $L = \{0^n 1^n \mid n \ge 0\}$ – equal number of consecutive zeros and ones.

• $\textit{L} = \{10, 11, 101, 111, 1011, \cdots\}$ – prime numbers in a binary format.

• The union, intersection, and difference of languages:

$$L_1 \cup L_2$$
 $L_1 \cap L_2$ $L_1 \setminus L_2$

• The **reverse** of a language:

$$L^R = \{ w^R \mid w \in L \}$$

• The complement of a language:

$$\mathit{L^c} = \Sigma^* \setminus \mathit{L}$$

The concatenation of languages:

$$L_1L_2 = \{w_1w_2 \mid w_1 \in L_1 \land w_2 \in L_2\}$$

• The **power** of a language:

$$L^{0} = \{\epsilon\}$$

$$L^{n} = L^{n-1}L \qquad (n \ge 1)$$

The Kleene star of a language:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{n \ge 0} L^n$$

The Kleene plus of a language:

$$L^+ = L^1 \cup L^2 \cup L^3 \cup \dots = \bigcup_{n>1} L^n$$

Summary

1. Mathematical Notations

Notations in Logics Notations in Set Theory

2. Inductive Proofs

Inductions on Integers Structural Inductions Mutual Inductions

3. Notations in Languages

Symbols Words Languages

Next Lecture

Basic introduction of Scala

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr