# Python&BrainPy(programming basic)

- BrainPy github repository
  - Issues
  - Pull requests

#### **Python Basics**

- Spyder(类似于matlab)\Pycharm\Jupter Notebook\VSCode (通用编译器) Copilot
- Main Contents
  - Variable
    - Values
      - a value is the Fundamantal thing that a program manipulates
      - Values have many types
        - Bool
        - str
    - Keywords
      - Not allowed to use keywords,
    - Operators(对基本数据类型的操作)
      - Operators for integers and Floats
      - Booleans
    - Modules
      - not all functionaluty available comes automatically when starting python
      - import/from...import.../from...import\*
    - Controlled statements
      - If
      - For
      - While
    - Functions
      - are used to abstract components of a programming
      - much like a mathematical function, they take some input and then find the result
  - Datatype
    - list
      - Group variables together
      - Specific order
      - Access item with brankets:
      - can be sliced/multiplied/added
      - are mutable
      - copy a list a=b.copy() 否则对应的是一个对象
    - Tuple
      - immutable
    - Dictionaries
      - a collection of key-value pairs
  - Class

- objects
  - 类, 类的实例, 数据类型都是对象
  - integer types
- Object oriented programming
  - attributes
  - methods
- Initializing an objecet
  - initmethod
- class has methods(similar to function)

## **NumPy Basics**

- Introduction
  - Funfamental package for scientific computing with Python
  - N-dimensional array objects
  - 线性代数,傅里叶变换,随机数
- array(多维数组)
  - mutable
  - array attributes
- Array broadcasting
  - 维度扩增,对行列进行复制,同纬度计算
- Vector operations
  - inner product...
- Matrix operations
  - define some matrices
- Operations along axes
- Slicing arrays
- Reshape
- Matrix operations
- Linear algebra
- Fourier transform
- random sampling
- Scipy
  - a library of algorithms and mathematical tools built to work with NumPy arrays
    - scipy.linalg linear algebra
    - scipy.stats statistics
    - scipy.optimize optimization
    - scipy.sparse sparse matrices
    - scipy.signal signal processing
    - etc.

### **BrainPy Introduction**

- modeling demands
- BrainPy Architecture
  - Infrastructure
  - function
  - JIT Compilation
  - Device

# **Our solution: BrainPy**



#### Main features

- Dense Operators(brainpy.math)
- Dedicated Operators
  - applies brain dynamics sparse connectivity properties with event-driven Computational features
  - Reduce the complexity of brain dynamics simulation by several orders of magnitude
  - (surrogate gradient)
- Numerical Integrators
  - ordinary differential equation:brainpy.odient
  - Stochasitic differential equation:brainpy.sdient
  - Fractionnal differential equation:brainpy.fdient
  - Delayed differential equation
- Modular and composable(brain.DynamicalSystem)
- Object-oriented JIT Compilation
  - bm.JIT
  - bm.grad
  - bm.forloop
  - bm.ifelse

- BrainPy programming Basics
  - Just-in-Time Compilation
    - static Compilation converts the code into a language for a Specific platform(C,C++)

-√-

- An interpreter directly executes the source code(python)
- object must be inherited from brainpy.BrainPyObject
- all time-dependent variables must be defined as bm. Variable
- How to debug turn off JIT compilation(in bp.DSRunner)
- Data operations
  - arrays
    - brainpyarray&jaxarray
  - variables(动态的)
    - In-place updating
      - indexing and Slicing
      - v.value assignment
  - Control flows:
    - If-else
      - bm.where,bm.ifelse
    - for loop
- Conclusions







- 1. Efficient running
- 2. Integrative platform
- 3. Flexibility & Transparence

新模型 • Pre-defined models is not sufficient • New models at every scale

#### 4. Extensibility

New differential equations
New numerical integrators
New methods for dynamics analysis
And more ······

新方向 · Brain-inspired computing

\_