16. Metriken, Normen und Skalarprodukte

Definition: Metriken abstrahieren Abstände. Sei X eine beliebige Menge. Eine Abbildung d: $X \times X \to \mathbb{R}$ heißt eine **Metrik** oder ein **Abstand** auf X, falls gilt:

(a) d ist **smmetrisch**, d.h. für alle $x, y \in X$ gilt:

$$d(x, y) = d(y, x)$$

(b) d ist **positivdefintit**, d.h. für alle $x, y \in X$ gilt:

$$d(x,y) \ge 0$$
 und $(d(x,y) = 0) \implies (x = y)$

(c) Für alle $x, y, z \in X$ gilt die **Dreicksungleichung**:

$$d(x,y) + d(y,z) \ge d(x,z)$$

Beispiel: (1) Die diskrete Metrik d_0 auf X:

$$d_0(x,y) = \begin{cases} 1 & , (x \neq y) \\ 0 & , (x = y) \end{cases}$$

(2) $X = \mathbb{C}$ oder \mathbb{R} oder \mathbb{Q} mit Betrag $|\cdot|$ hat die Metrik:

$$d(x,y) = |x - y|$$

Auf Vektorräumen über $K=\mathbb{R}$ entstehen natürliche Metriken aus sogenannten Normen

Im Folgenden schreibe \mathbb{K} für \mathbb{R} oder \mathbb{C} .

Definition: Sei V ein \mathbb{K} -VRm. Eine Abbildung:

$$\|\cdot\|:V\to\mathbb{R},x\mapsto\|x\|$$

heißt eine **Norm**, falls für $x, y \in V, \alpha \in \mathbb{K}$ gilt:

(a) Die Abbildung ist **positivdefinit**, d.h.:

$$||x|| \ge 0 \land (||x|| = 0 \iff x = 0)$$

(b) Die Abbildung ist **homogen**, d.h.:

$$\|\alpha x\| = |\alpha| \cdot \|x\|$$

(c) Es gilt die **Dreiecksungleichung**:

$$||x + y|| \le ||x|| + ||y||$$

Ist dies erfüllt, so ist $(V, \|\cdot\|)$ ein **normierter Raum**.

Beispiel: (1) Der Raum $V = \mathbb{K}$ mit $x = (x_1, \dots, x_n)$ und den Normen:

(a)
$$||x||_2 := \sqrt{\sum_{i=1}^n |x_i|^2}$$

(b)
$$||x||_{\max} := \max_{i=1,\dots,n} |x_i|$$

(c)
$$||x||_1 := \sum_{i=1}^n |x_i|$$

(2) Der Raum der beschränkten Abbildungen $V = \mathrm{Abb}(M, \mathbb{K})$ mit einer beliebigen Menge M und der Norm:

$$||f||_{\infty} := \sup_{m \in M} |f(m)|$$

(3) Der Raum V=C[a,b] der stetigen Abbildungen nach $\mathbb K$ mit der Norm:

$$||f_1|| := \int_a^b |f(t)| \, \mathrm{d}t$$

Bemerkung: (1) Jeder normierte Raum $(V, \|\cdot\|)$ besitzt die Metrik:

$$d(x, y) := ||x - y||$$

(2) In der Linearen Algebra tauchen hauptsächlich Normen auf, die mit **Skalarprodukten** definiert werden.

Definition: Sei V ein \mathbb{K} -VRm. Für $\alpha \in \mathbb{K}$ sei $\overline{\alpha}$ die komplexe Konjugierte.

(a) Eine Abbildung $s: V \times V \to \mathbb{K}$ heißt **Sesquilinearform** ("sesqui" bedeutet $1\frac{1}{2}$), falls

$$s(\alpha x + y, z) = \alpha \cdot s(x, z) + s(y, z)$$

gilt, also $s(\cdot, z)$ linear ist und außerdem noch gilt:

$$s(x, \alpha y + z) = \overline{\alpha} \cdot s(x, y) + s(x, z)$$

(b) Ist s schiefsymmetrisch, d.h. es gilt:

$$s(y,x) = \overline{s(x,y)}$$

so heißt es hermitesche Form $(\mathbb{K} = \mathbb{C})$ bzw. symmetrische Bilinearform $(\mathbb{K} = \mathbb{R})$.

(c) Eine schiefsymmetrische Sesquilinearform heißt **Skalarprodukt** auf V, falls s positivdefinit ist.

Bemerkung: Ist dim $V = n < \infty$ mit einer Basis $B = \{b_1, \dots, b_n\}$, so ist eine Sesquilinearform s bestimmt durch die Werte $s(b_i, b_j) \in \mathbb{K}$, also durch die **Darstellungsmatrix**

$$D_{BB}(s) := (s(b_i, b_j)) \in \mathbb{K}^{n \times n}$$

Jede beliebige Matrix $D = (d_{ij}) \in \mathbb{K}^{n \times n}$ definiert ein $s := s^D_B$ mit:

$$s(\sum_{i=1}^{n} \alpha_i b_i, \sum_{j=1}^{n} \beta_j b_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \overline{\beta_j} \cdot d_{ij}$$

Definition: D heißt **hermitesch** (bzw. **positivdefinit**), wenn das zugehörige s diese Eigenschaft hat.

Also gilt etwa:

$$A = (a_{ij})$$
 hermitesch
 $\iff \forall i, j = 1, \dots, n : a_{ij} = \overline{a_{ji}}$
 $\iff A = \overline{A}^T$

Beispiel: Das Standardskalarprodukt auf $V = \mathbb{K}^n$

$$D = I \implies s\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}, \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}) = \sum_{i=1}^n \alpha_i \overline{\beta_i}$$

ist hermitesch und positivdefinit.

Satz 11 (Cauchy-Schwarzsche Ungleichung):

Ist V VRm mit Skalarprodukt $\langle \cdot, \cdot \rangle$, so gilt für alle $x, y \in V$:

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \cdot \langle y, y \rangle$$

Beweis: Es gilt für alle $\alpha, \beta \in \mathbb{R}$:

$$0 \le \langle \alpha x + \beta y, \alpha x + \beta y \rangle$$

= $\alpha \langle x, \alpha x + \beta y \rangle + \beta \langle y, \alpha x + \beta y \rangle$
= $\alpha^2 \langle x, x \rangle + \alpha \beta (\langle x, y \rangle + \langle y, x \rangle) + \beta^2 \langle y, y \rangle$

Sei nun:

$$F := \langle x, x \rangle$$
 $2G := \langle x, y \rangle + \langle y, x \rangle$ $H := \langle y, y \rangle$

Annahme: $G^2 > FH$

Dann hat $P(X) := FX^2 + 2GX + H \in \mathbb{R}[X]$ zwei verschiedene Nullstellen und es existiert ein $\xi \in \mathbb{R} : P(\xi) < 0$. Dies stellt einen Widerspruch zu obiger Überlegung da (mit $\alpha = \xi$ und $\beta = 1$). Also gilt:

$$G^2 < FH$$

Fall 1: $\langle x, y \rangle \in \mathbb{R}$

Dann gilt $G=\langle x,y\rangle=\langle y,x\rangle$ und mit $G^2\leq FH$ folgt die Cauchy-Schwarzsche Ungleichung.

Fall 2: $\langle x, y \rangle \notin \mathbb{R}$

Ersetze y durch ζy mit $\zeta \in \mathbb{C}^{\times}$, $|\zeta| = 1$. Wähle $\zeta := \frac{\langle x, y \rangle}{|\langle x, y \rangle|}$. Dann gilt:

$$\langle x, \zeta y \rangle = \overline{\zeta} \langle x, y \rangle$$

$$= \frac{\langle \overline{x, y} \rangle}{|\langle x, y \rangle|} \cdot \langle x, y \rangle$$

$$= \frac{|\langle x, y \rangle|^2}{|\langle x, y \rangle|}$$

$$= |\langle x, y \rangle| \in \mathbb{R}$$

Nach Fall 1 folgt daraus:

$$\begin{aligned} |\langle x, y \rangle|^2 &= |\langle x, \zeta y \rangle|^2 \\ &\leq \langle x, x \rangle \cdot \langle \zeta y, \zeta y \rangle \\ &= \langle x, x \rangle \cdot \zeta \overline{\zeta} \cdot \langle y, y \rangle \\ &= \langle x, x \rangle \cdot \langle y, y \rangle \end{aligned}$$

Bemerkung: Im Spezialfall $V = \mathbb{K}^n$ mit dem Standardskalarprodukt $\langle \cdot, \cdot \rangle$ gilt nach der Cauchy-Schwarzschen Ungleichung:

$$|\sum_{i=1}^{n} \xi_i \cdot \overline{\eta_i}|^2 \le (\sum_{i=1}^{n} |\xi_i|^2)(\sum_{j=1}^{n} |\eta_j|^2)$$

Satz 12:

Jeder VR
m ${\cal V}$ mit einem Skalarprodukt ist normiert durch die Norm:

$$||x|| := \sqrt{\langle x, x \rangle}$$

Beweis: (1) Es ist klar, das $||x|| \in \mathbb{R}$ und $||x|| \ge 0$ ist. Außerdem gilt:

$$||x|| = 0 \implies \langle x, x \rangle = 0$$

 $\implies x = 0$

(2) Es gilt:

$$\langle x, y \rangle + \langle y, x \rangle \le 2\|x\| \cdot \|y\|$$

$$\iff \langle x, x \rangle \langle x, y \rangle + \langle y, x \rangle \langle y, y \rangle \le \langle x, x \rangle 2\|x\| \cdot \|y\| + \langle y, y \rangle$$

$$\iff \langle x + y, x + y \rangle \le (\|x\| + \|y\|)^2$$

$$\iff \|x + y\| \le \|x\| + \|y\|$$

(3) Es gilt:
$$\|\alpha x\|^2 = \langle \alpha x, \alpha x \rangle = \alpha \overline{\alpha} \langle x, x \rangle = |\alpha|^2 \cdot \|x\|^2$$

Bemerkung: (1) Mit Hilfe der Norm lautet die Cauchy-Schwarzsche Ungleichung:

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

(2) Damit eine Norm von einem Skalarprodukt stammt, ist offenbar notwendig, dass sie die **Parallelogrammgleichung** erfüllt:

$$\forall x, y \in V : ||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

Denn falls die Norm $\|\cdot\|$ von einem Skalarprodukt $\langle\cdot,\cdot\rangle$ kommt, gilt:

$$||x + y||^{2} + ||x - y||^{2} = \langle x + y, x + y \rangle + \langle x - y, x - y \rangle$$

$$= ||x||^{2} + \langle x, y \rangle + \langle y, x \rangle + ||y||^{2} + ||x||^{2} - \langle x, y \rangle - \langle y, x \rangle + ||y||^{2}$$

$$= 2(||x||^{2} + ||y||^{2})$$

Tatsächlich kommt eine Norm genau dann von einem Skalarprodukt, wenn sie die Parallelogrammgleichung erfüllt. Dies wird jedoch ohne Beweis angegeben.