

Osciladores sintonizados: Condición de Barkhausen

Dependencias:

angel@uc.cl

Electrónica en cápsulas

Osciladores

 Un oscilador es un circuito electrónico capaz de producir una señal oscilatoria. En general los osciladores emplean realimentación positiva. Existen varios tipos:

Osciladores Sintonizados No sintonizados De capacitores conmutados LC RC De cristal De relajación anillo

- Especificaciones típicas:
 - Frecuencia y rango de frecuencia de sintonización
 - Amplitud / rango de amplitud
 - Estabilidad / ruido de fase y jitter
 - Estabilidad de amplitud
 - THD

Más en detalle...

- Oscilador sintonizado:
 - Amplificador con red selectora de frecuencia que produce oscilación mediante realimentación positiva
 - Red selectora de frecuencia puede incluir un cristal
- Oscilador de relajación:
 - VCO: Voltage controlled Oscillator
 - XR2207: VCO
 - XR2206: Generador de funciones basado en VCO
 - Timer 555
 - Comparador con realimentación positiva
- Oscilador de anillo
 - cadena de amplificadores inversores

Principio básico de un oscilador sintonizado

$$A_f(s) = \frac{A(s)}{1 - A(s)\beta(s)} = \frac{A(s)}{1 - L(s)}$$

$$L(j\omega_0) = A(j\omega_0)\beta(j\omega_0) = 1\angle 0^{\circ}$$

$$L(j\omega_0)=1 \times \leftarrow \times L(j\omega_0)>1$$

Ìω

$$L(j\omega_0)=1 \star L(j\omega_0)>1$$

Osciladores sintonizados: Control de amplitud y desplazamiento de fase

Dependencias:

> 6.01 Osciladores sintonizados: Condición de Barkhausen

angel@uc.cl

Electrónica en cápsulas

Recordemos: osciladores sintonizados tienen sus polos **JUSTO** sobre el eje j ω

$$L(j\omega_0)=1 \times \leftarrow \times L(j\omega_0)>1$$

x_s Amplificador A

Red β selectora de frecuencia

$$L(j\omega_0)=1 \times L(j\omega_0)>1$$

$$L(j\omega_0) = A(j\omega_0)\beta(j\omega_0) = 1\angle 0^{\circ}$$

¿Cómo logramos esto?

→ X₀

Control no lineal de la amplitud

INTEGRATED CIRCUITS
UNIVERSIDAD CATÓLICA

Control no lineal de

Amplitud: Necesario para lograr $L(j\omega_0)>1$ al principio de la operación, y $L(j\omega_0)=1$ en régimen permanente. Puede aparecer como una consecuencia de la saturación del amplificador en los rieles.

Desplazamiento de fase mediante $\beta(j\omega)$

 De acuerdo a la condición de oscilación de Barkhausen, la red selectora de frecuencia produce un desplazamiento de fase de 180º a la frecuencia de oscilación

- El desplazamiento de 180º puede ser producido por componentes activos y pasivos
 - Desplazamiento con componentes activos no es buena idea, porque dependen de la temperatura, de tolerancias de fabricación y del dispositivo en uso
 - Es mejor utilizar componentes pasivos (R, L, C, cristales)
- Un polo RL o RC contribuye 90°, por lo que se requieren al menos 2 polos
 - Es más fácil sintonizarlo si tiene 3 o más

Recordar de Bode: desplazamiento de fase en función del número de polos reales

UNIVERSIDAD CATÓLICA

 $\phi(\omega_{\text{norm}}) = -N \arctan \omega_{\text{norm}}^N$

Osciladores sintonizados: Algunas arquitecturas

Dependencias:

- > 6.01 Osciladores sintonizados: Condición de Barkhausen
- ➤ 6.02 Osciladores sintonizados: Control de amplitud y desplazamiento de fase

angel@uc.cl

Electrónica en cápsulas

Algunos osciladores armónicos

- Puente de Wien
- Oscilador de desplazamiento de fase
- Osciladores con redes LC y cristal: para operación a frecuencias más altas
 - Oscilador Colpitts
 - Oscilador Hartley
 - Oscilador de cristal

Puente de Wien

Oscilador muy sencillo en implementación y funcionamiento

Oscilador de desplazamiento de fase

El circuito oscila a una frecuencia tal que el desplazamiento de fase es de 180º. Pueden ser de adelanto o **retraso**.

Oscilador de cuadratura

Oscilador Colpitts

Este oscilador permite alcanzar frecuencias muy elevadas, y requiere la sintonización de un circuito tanque para su operación (polarización omitida)

Oscilador Hartley (el dual del Colpitts)

INTEGRATED CIRCUITS UNIVERSIDAD CATÓLICA

6.04

Cristales Piezoeléctricos

Dependencias:

> 6.01 Osciladores sintonizados: Condición de Barkhausen

angel@uc.cl

Electrónica en cápsulas

Piezoelectricidad

 Propiedad de los materiales de polarizarse y producir un voltaje en respuesta a un esfuerzo mecánico

- Y también funciona al revés: un voltaje externo produce una deformación mecánica
- Los cristales piezoeléctricos son transductores, es decir convierten energía mecánica a eléctrica y viceversa
- Son empleados como parlantes y como micrófonos
- Al ser "golpeado", un cristal piezoeléctrico puede vibrar como una campana, pero con frecuencia mucho más alta
 - Las vibraciones se traducen en señales eléctricas...

Cristales de cuarzo

 Son cortados con gran precisión para que sus modos de oscilación presenten resonancia a la frecuencia especificada

- Los cristales mantienen características de resonancia muy estables, y un elevado factor Q (cientos de miles)
- Un cristal no tiene en su interior elementos circuitales pasivos, pero se comporta como si los tuviera

¿Qué es el cuarzo?

Reactancia de un cristal de cuarzo

$$\omega_s = \frac{1}{\sqrt{LC_s}}$$

Frecuencia de resonancia paralelo:

$$\omega_p = \frac{1}{\sqrt{L(C_s \parallel C_p)}} > \omega_s$$

Frecuencia de oscilación:

$$\omega_0 pprox \frac{1}{\sqrt{LC_s}} = \omega_s$$

Oscilador de cristal

En general, un oscilador de cristal puede tomar la misma configuración que un Colpitts o similar, reemplazando el inductor por el cristal. En la figura, se muestra un oscilador en configuración Colpitts o Pierce, similar al circuito empleado en un microcontrolador.

6.0555

Temporizador 555

Dependencias:

angel@uc.cl

Electrónica en cápsulas

El famoso 555

- Inventado en 1970 por Hans Camenzind
- Introducido en 1971 por Signetics (ahora Philips)
- Temporizador integrado muy estable, con rango de período desde varios segundos hasta su frecuencia máxima de oscilación, 200 KHz
- Muchísimos circuitos están basados en el famoso 555

555 como monoestable

© Angel Abusleme 2018

6.0555 Temporizador 555

3

555 como aestable

INTEGRATED CIRCUITS
UNIVERSIDAD CATÓLICA

Duty Cycle =
$$\frac{R_A + R_B}{R_A + 2R_B}$$

Otros circuitos con el 555

- LED cube
- LED driver
- Sirena
- Dado
- Detector de metales
- Metrónomo
- Repelente de zancudos
- Controlador de servos
- Etc.

http://www.555-timer-circuits.com/

Oscilador de anillo

Dependencias:

angel@uc.cl

Electrónica en cápsulas

¿Qué son estos circuitos?

Oscilador de anillo (ring oscillator)

- Muy usado en circuitos integrados
 - Ej: para probar un proceso de fabricación CMOS, es como el "hello world" de un nuevo proceso
- Requiere un número impar de etapas inversoras
 - pueden ser inversores lógicos o amplificadores inversores
 - Pueden incluir redes RC explícitas a la salida de cada inversor
 - Si el número de inversores es par, tenemos un latch...
 - El período de oscilación es la suma de retardos de las etapas
 - El retardo puede ser ajustado mediante V_{DD}
 - Es posible implementar un VCO usando un oscilador de anillo
 - Consumen bastante potencia

Ejemplo de layout de un oscilador de anillo

6.06

Oscilador de anillo

Gracias por su atención

angel@uc.cl

Electrónica en cápsulas

© Angel Abusleme 2018

6.06 Oscilador de anillo

5