Embedded Systems Design, Spring 2025 Lecture 2

Combinational Logic Design Principles

Review from last time

•

Types of logic circuits

Combinational circuit: output depends on the input, operation described by a truth table.

Sequential circuit: output depends on input and previous inputs, operation described by a state table.

Logic circuits

- Circuit analysis:
 - Start with a logic diagram
 - Formal description of the circuit:
 - Truth table
 - Logic expression
- Circuit synthesis:
 - Start with a formal description
 - Truth table
 - Logic expression
 - Continue with a logic diagram

Switching algebra

- George Boole, 1854 invented boolean algebra
- Claude Shannon, 1938 switching algebra (using relays)
 - Variable X could have two values: 0 or 1
- Positive logic convention (opposite for negative logic convention)
 - \bullet 0 low voltage
 - 1 high voltage
- Axioms:
 - basic definitions assumed to be true
 - Everything else can be derived from them

Axioms

Axiom	Relation	Axiom'	Relation
AI	$X = 0$ if $X \neq I$	Al'	$X = I$ if $X \neq 0$
A2	If $X = 0$, then $X' = I$	A2'	If $X = I$, then $X' = 0$

• X' is the same as $\neg X$, $\sim X$, X

AND (·), **OR** (+)

Axiom	Relation	Axiom'	Relation
A3	0 · 0 = 0	A3'	+ =
A4	· =	A4'	0 + 0 = 0
A5	$0 \cdot I = I \cdot 0 = 0$	A5'	+ 0 = 0 + =

Single variable theorems

Т	Relation	Т	Relation	Name
TI	X + 0 = X	(TI)'	$X \cdot I = X$	Identities
T2	X + I = I	(T2)'	\times · 0 = 0	Null elements
Т3	X + X = X	(T3)'	$\times \cdot \times = \times$	Idempotency
T4	(X')' = X	(T4)'		Involution
Т5	X + X' = I	(T5)'	X · X' = 0	Complements

Multiple variable theorems

Т	Relation	Т	Relation	Name
T6	X + Y = Y + X	(T6)'	$X \cdot Y = Y \cdot X$	Commutativity
T7	(X + Y) + Z = X + (Y + Z)	(T7)'	$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$	Associativity
Т8	$X \cdot Y + X \cdot Z = X \cdot (Y+Z)$	(T8)'	$(X + Y) \cdot (X + Z) = X+Y \cdot Z$	Distributivity
Т9	$X + X \cdot Y = X$	(T9)'	$X \cdot (X + Y) = X$	Covering
TIO	$X \cdot Y + X \cdot Y' = X$	(TI0)'	$(X + Y) \cdot (X + Y') = X$	Combining
TII	$X \cdot Y + X' \cdot Z +$	- Y · Z =	$X \cdot Y + X' \cdot Z$	Consensus
TII'	$(X + Y) \cdot (X'+Z) \cdot$	(Y+Z) =	$(X + Y) \cdot (X' + Z)$	

More theorems

Т	Relation	Т	Relation	Name
TI2	X + X	+ + X =	X	Generalized idemp.
T12'	X ·X	$\cdot \dots \cdot X = X$	X	
TI3	$(X_1 \cdot X_2 \cdot \cdot X_n)$	n)' = X ₁ ' + >	$X_2' + + X_n'$	DeMorgan's
T13'	$(X_1 + X_2 + + X_n)$	$_{n})'=X_{1}'\cdot X_{2}$	∠ ₂ '·· X _n '	theorems
TI4	$[F(X_1, X_2,, X_n, +, \cdot]$	$)]' = F(X_1', X_2')$	$X_{2}',,X_{n}',\cdot,+)$	Generalized DeMorgan's th.
TI5	$F(X_1, X_2,, X_n) = X_1 \cdot F(1$	$, X_{2},, X_{n})$	$+X_1'\cdot F(0,X_2,,X_n)$	Shannon's expansion

DeMorgan's theorems in use:

DeMorgan's theorems in use:

Figure 4-4 Equivalent circuits according to DeMorgan's theorem T13':

(a) OR-NOT; (b) NOT-AND; (c) logic symbol for a NOR gate;
(d) equivalent symbol for a NOR gate.

Example 1:

Figure 4-5 A "type-1" logic gate: (a) electrical function table; (b) logic function table and symbol with positive logic; (c) logic function table and symbol with negative logic.

Example 2

Figure 4-6 A "type-2" logic gate: (a) electrical function table; (b) logic function table and symbol with positive logic; (c) logic function table and symbol with negative logic.

X	Υ	Z
LOW	LOW	LOW
LOW	HIGH	HIGH
HIGH	LOW	HIGH
HIGH	HIGH	HIGH

(b)	x	The same of	-Z = X + Y
	Y	type 2	-Z = X + T

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

(c) X type 2 Z = 2	χ·Υ
--------------------	-----

X	Y	Z
1	1	1
1	0	0
0	1	0
0	0	0

Duality

Figure 4-7 Circuit for a logic function using inverters and type-1 and type-2 gates under a positive-logic convention.

Duality

Representation of Logic Functions

Truth tables

Row	X	Y	Z	F
0	0	0	0	F(0,0,0)
1	0	0	1	F(0,0,1)
2	0	1	0	F(0,1,0)
3	0	1	1	F(0,1,1)
4	1	0	0	F(1,0,0)
5	1	0	1	F(1,0,1)
6	1	1	0	F(1,1,0)
7	1	1	1	F(1,1,1)

Row	X	Y	Z	F
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
₇ 3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

In general: F (X, Y, Z)

Particular logic function

Naming

- *A literal* a variable or its complement; X, X', Y, Y'
- A product term: single literal or logical product:
 - X, W· X· Y', W'· Y'
- *A sum term*: single literal or logical product:
 - X', W+X+Y', W'+ Y'
- Sum of products and product of sums
- *Normal term* a product or sum, where each variable appears only once
 - Ex: W· X· Y', W+X'+Y'
- *N-variable minterm* a product with n literals:
 - Ex: 4-variables minterm: W· X· Y'· Z'
- N-variable maxterm a sum with n literals:
 - Ex: 4-variables maxterm: W+X+Y+Z'

Canonical sum and product

- Canonical sum a sum of the minterms corresponding to the table rows for which the output is 1
 - $F = \sum_{X,Y,Z} (0,3,4,6,7) \text{minterm list}$
 - $\blacksquare F = X'Y'Z' + X'YZ + XY'Z' + XYZ' + XYZ$
 - 0 3 4 6 7
- Canonical product a product of the maxterms corresponding to the table rows for which the output is 0
 - $F = \prod_{X,Y,Z} (1,2,5) \text{maxterm list}$
 - (X+Y+Z')(X+Y'+Z)(X'+Y+Z')
 - **1** 2 5

Row	X	Y	Z	F
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Combinational Circuit Analysis + Synthesis

- Analysis
 - Determine the behavior for different inputs
 - Find the logic equation and compute a truth table
- Synthesis
 - Formal description of its function
 - Suggest different circuit structures
 - Transform into a standard form available
 - Sum of products: used in PLA
 - Truth table -> lookup memory in FPGA

Example – Analyzing this circuit

- Start to build the truth table
- Z will take a series of values: 0, 1, 0, 1, 0, 1, 0, 1
- Y will take a series of values: 0, 0, 1, 1, 0, 0, 1, 1
- X will take a series of values: 0, 0, 0, 0, 1, 1, 1, 1
- EXERCISE: Determine the output for this circuit!

Solution

Secondary approach

- Use algebraic rules
 - Build up a paranthesized logic expression from the structure of the circuit
 - Start at the inputs, go towards outputs
 - Simplifying can be done (or not)
- EXERCISE: Write the output function!

Solution

Simplifying gives:

$$\blacksquare F = X \cdot Z + Y' \cdot Z + X' \cdot Y \cdot Z'$$

EXERCISE: draw the new circuit!

Solution

Another circuit

EXERCISE: Use DeMorgan's theorem to replace some of the blocks!

Solution

Could this circuit be simplified even more?

Yes, remove double negations

Different ways to describe the same circuit

 $G(W, X, Y, Z) = W \cdot X \cdot Y + Y \cdot Z$

Overview of assignment 1

- Hints:
 - A + AB = A
 - A + A'B = A + B
 - (A+B)(A+C) = A + BC
- Other questions?