Announcements

Reminder: ps2 due tonight at midnight (Boston)

Assignment Project Exam Help

- Self-Grading form for ps1 out tomorrow 9/25 https://powcoder.com
 (1 week to turn in)
- Self-Grading form for ps2 out Monday 9/28 (1 week to turn in)

Add WeChat powcoder Agglomerative Clustering

Agglomerative Clustering Example

(bottom-up clustering)

Image source: https://en.wikipedia.org/wiki/Hierarchical clustering

When do we stop combining?

 Select based on prior knowledge or task performance (e.g. you know there are two Assignment Project Exam Help categories of data)

https://powcoder.com

Add WeChat powcoder

Choose cost threshold to stop combining

Add WeChat powcoder Continuous Latent Variables

Today

• Applications of clustering: vector quantization, data compression signment Project Exam Help

https://powcoder.com

• Continuous latent variables: principal component analysis

Add WeChat powcoder Applications of Clustering

Application of Clustering: Vector Quantization

- Compress an image using clustering
- roject, Exam(Help) pixel value
 - is an input vector $x^{(i)}$ coder. $\cos x$ 255 x 255 possible

WeChat powcoder

- Cluster into K clusters (using k-means)
- Replace each vector by its cluster's index $c^{(i)}$ (K possible values)
- For display, show the mean μ_{c^i}

Vector quantization: color values

Slide credit: Josef Sivic

Vector quantization: color values

Vector quantization: general case

Vector quantization: general case

Slide credit: Josef Sivic

K-Means for Image Compression

Figure 9.3 Two examples of the application of the K-means clustering algorithm to image segmentation showing the initial images together with their K-means segmentations obtained using various values of K. This also illustrates of the use of vector quantization for data compression, in which smaller values of K give higher compression at the expense of poorer image quality.

Add WeChat powcoder Continuous Latent Variables

Data Compression

Data Compression: hidden dimension

Data Compression

Reduce data from 3D to 2D

Data Visualization

						Mean	
		Per capita			Poverty	household	
	GDP	GDP	Human		Index	income	
_	(trillions of S		t Propect		lelibini as	(thousands of	
Country	US\$)	intl. \$)	ment Index	expectancy	percentage)	US\$)	
Canada	1.577	39.17 https://	powcod	er.80.7 er.com	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	Add W	eethat p	ow&ode1	36.8	0.735	•••
Russia	1.48	19.84	0.755	65.5	39.9	0.72	•••
Singapore	0.223	56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	•••
•••	•••	•••		•••	•••		

[resources from en.wikipedia.org]

Data Visualization

Country	z_1	z_2	
Canada Assig	nmen l Project	Exan ¹ ·Help	
China	1.7 https://powcod	er.com	
India	1.6	0.2	
Russia	Add W ₁ eChat p	owcoder	
Singapore	0.5	1.7	
USA	2	1.5	
•••	•••	•••	

Data Visualization

Add WeChat powcoder Principal Component Analysis

How to choose lower-dim subspace?

Minimize "error"

Choose subspace with minimal "information loss"

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)}$) onto which to project the data, so as to minimize the projection error.

Choose subspace with minimal "information loss"

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)}$) onto which to project the data, so as to minimize the projection error.

Reduce from n-dimension to K-dimension: Find K vectors $u^{(1)}, u^{(2)}, \dots, u^{(K)}$ onto which to project the data so as to minimize the projection error.

Principal Components Analysis

Find orthonormal basis vectors

$$U = [u^{(1)} \quad \dots \quad u^{(K)}], \text{ where } K \ll n$$
 $z = U^T x, \quad z_k = u^{(k)} x$

$$z = U^T x$$
, $z_k = u^{(k)}^T x$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Principal Components Analysis

Find orthonormal basis vectors

$$\mathbf{U} = [u^{(1)} \quad \dots \quad u^{(K)}], \text{ where } \mathbf{K} \ll \mathbf{n}$$
 $z = U^T x, \quad z_k = u^{(k)} \quad x$

$$z = U^T x$$
, $z_k = u^{(k)}^T x$

Assignment Project Exam Help Reconstructed data point

https://powcoder.com
$$\tilde{x} = \sum_{k=1}^{\infty} z_k u^{(k)}$$
Add WeChat powcoder

Cost function: reconstruction error

$$J = \frac{1}{m} \sum_{i=1}^{m} \|\tilde{x}^{i} - x^{i}\|^{2}$$

Want:

PCA Solution

 The solution turns out to be the first K eigenvectors of the data covariance matrix (see Bishop 12.1 for details)

Assignment Project Exam Help

• Closed-form, use Singular Value Decomposition (SVD) on covariance matrix

Add WeChat powcoder

- Other PCA formulations
 - can derive via maximizing variance of projected data
 - probabilistic formulation of PCA possible, or the similar factor analysis, see Bishop 8.1.4

PCA Algorithm

Normalize features (ensure every feature has zero mean) and optionally scale feature

Compute "covariance matrix" Σ :

$$\mathbf{Sigma} = \frac{1}{m} \underbrace{\mathbf{Assigning}}_{i=1}^{m} \mathbf{Project Exam Help} \\ \mathbf{https://powcoder.com} \\ \mathbf{Compute its "eigenvectors":} \\ \mathbf{[U,S,V]} = \mathbf{svd} \underbrace{\mathbf{Add WeChat powcoder}}_{u}^{\mathbf{voder}} \underbrace{\mathbf{u}^{(n)}}_{u} = \mathbf{voder}_{u}^{\mathbf{voder}} \\ \mathbf{voder}_{u}^{\mathbf{voder}} \\ \cdots \\ \mathbf{u}^{(n)} \\ \mathbf{voder}_{u}^{\mathbf{voder}} \\$$

Keep first K eigenvectors and project to get new features z

```
Ureduce = U(:,1:K);
z = Ureduce'*x;
```

PCA Algorithm

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_{j} = \frac{1}{m} \sum_{i=1}^{m} \text{signment Project Exam Help}$$
https://powcoder.com

Replace each $x_j^{(i)}$ with $x_j - \mu_i$. If different features on different scales (e.g., $x_1 =$ size of house, $x_2 =$ number of bedrooms), scale features to have comparable range of values.

PCA is not linear regression

There is no "output" in PCA, all dimensions are equal

Choosing k (number of principal components)

Average squared projection error:

Total variation in the data:

Assignment Project Exam Help Typically, choose & to be smallest value so that

$$\frac{\frac{1}{m}\sum_{i=1}^{m}\|x^{(i)}-x_{approx}^{(i)}\|^{2}}{\frac{1}{m}\sum_{i=1}^{\mathbf{Mdd}}\|x^{(i)}\|^{2}} \tag{1\%}$$

"99% of variance is retained"

Choosing k (number of principal components)

[U,S,V] = svd(Sigma)

Pick smallest value of k for which

Assignment Project Exam Help $\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \geq \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \geq \frac{\sum_{i=1}^{m} S_{ii}}{\sum_{i=1}^{m} S$

(99% of variance refer in the powcoder

Good use of PCA

- Compression
 - Reduce memory/disk needed to Btore data
 - Speed up lagring algarithm

Add WeChat powcoder

- Visualization

Bad use of PCA: To prevent overfitting

Use $z^{(i)}$ instead of $x^{(i)}$ to reduce the number of features to k < n.

Thus, fewer fatigram tests Pikety to war filelp

https://powcoder.com

This might work a how is a poor of the proof way to address overfitting. Use regularization instead.

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2$$

When does PCA fail?

- (a) Tracking a person on a ferris wheel (black dots). All dynamics can be described by the phase of the wheel θ , a non-linear combination of the naïve basis.
- (b) Non-Gaussian distributed data and nonorthogonal axes cause PCA to fail. The axes with the largest variance do not correspond to the appropriate answer.

Next Class

Neural Networks I: Feed-forward Nets:

artificial neuron, MLP sigmoid units; Assignment Project Exam Help neuroscience inspiration; output vs hidden layers; linear vs front power der com ks; feed-forward neural And two Class poweoder

Reading: Bishop 5.1-5.3