PS5841

Data Science in Finance & Insurance

PCA&PCR

Yubo Wang

Spring 2022

Unsupervised Learning

- No responses to supervise learning
 - Difficult to access the quality of unsupervised learning
- Feature visualization
- Data pre-processing
- Discover unknown subgroups in data

PCA

- Low(er)-dimensional representation of feature space capturing variation as much as possible
 - Loading vectors: orthogonal unit vectors in feature space with the most variations
 - Score vectors: projections along loading vectors
- Q-dimensional hyperplane that is closest (in terms of Euclidean distance) to the observations.
- At most min(n-1,p) principal components.

Example: PC in 2D Data

- Centered "rotation"
- PC_1 minimizes SS distance from data to projection onto $PC_1 \iff$
- PC_1 maximizes SS distance from projection onto PC_1 to the center

Example: PC in 3D Data

Standardizing Data

- De-mean (zero mean) to make variance calculation more tractable
- Unit variance unless measured in the same units

PC notation

$$\mathbf{Z}_{n \times q} = \mathbf{X} \mathbf{\Phi}_{n \times pp \times q}
(\mathbf{Z}_{1}, \dots, \mathbf{Z}_{q}) = \mathbf{X}(\mathbf{\Phi}_{1}, \dots, \mathbf{\Phi}_{q})
\begin{bmatrix} z_{11} & \cdots & z_{1q} \\ \vdots & \ddots & \vdots \\ z_{n1} & \cdots & z_{nq} \end{bmatrix} = \begin{bmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{bmatrix} \begin{bmatrix} \phi_{11} & \cdots & \phi_{1q} \\ \vdots & \ddots & \vdots \\ \phi_{p1} & \cdots & \phi_{pq} \end{bmatrix}
\mathbf{Z}_{k} = \sum_{j=1}^{p} \phi_{jk} \mathbf{X}_{j} = \phi_{1k} \mathbf{X}_{1} + \cdots + \phi_{pk} \mathbf{X}_{p}
z_{ik} = \sum_{j=1}^{p} \phi_{jk} x_{ij} = \phi_{1k} x_{i1} + \cdots + \phi_{pk} x_{ip}$$

PC_1

- Perform PCA on standardized data (zero mean, plus unit variance unless measured in the same units)
- Φ_1 maximizes

$$\frac{1}{n} \sum_{i=1}^{n} z_{i1}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j1} x_{ij} \right)^{2}$$

subject to $\sum_{j=1}^{p} \phi_{j1}^2 = 1$ where

$$z_{ik} = \sum_{j=1}^{p} \phi_{jk} x_{ij} = \phi_{1k} x_{i1} + \dots + \phi_{pk} x_{ip}$$

PC_k

- Perform PCA on standardized data (zero mean, plus unit variance unless measured in the same units)
- Φ_k maximizes

$$\frac{1}{n} \sum_{i=1}^{n} z_{ik}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{jk} x_{ij} \right)^{2}$$

subject to

$$\sum_{j=1}^p \phi_{jk}^2 = 1$$

 $oldsymbol{\Phi}_2$ orthogonal to $oldsymbol{\Phi}_1$, ..., $oldsymbol{\Phi}_{k-1}$

PVE

• Proportion of variance (total variation) explained by PC_k

$$\frac{\frac{1}{n}\sum_{i=1}^{n} z_{ik}^{2}}{\sum_{j=1}^{p} Var(X_{j})}$$

$$= \frac{1}{n}\sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{jk} x_{ij}\right)^{2}}{\sum_{j=1}^{p} \sum_{i=1}^{n} x_{ij}^{2} S}$$

Representing Data

 Standardized data (zero mean, plus unit variance unless measured in the same units) can be represented via score and loading vectors

$$x_{ij} pprox \sum_{m=1}^{M} z_{im} \phi_{jm}$$
 , $M < q \leq p$

• When $M = \min(n - 1, p)$

$$x_{ij} = \sum_{m=1}^{M} z_{im} \phi_{jm}$$

Uniqueness

- Loading vectors are unique up to a sign flip
 - sign flip does not alter the coordinate system
- Score vectors are unique up to a sign flip
 - Variance of Z and –Z are the same
- Flipping signs on loading and score vectors simultaneously has no effect on

$$x_{ij} pprox \sum_{m=1}^{M} z_{im} \phi_{jm}$$
 , $M < q \leq p$

But the right sign may improve interpretability

Principal Components Regression

- Dimension Reduction
 - A small number of PCs may be able to explain most of the variability in data, as well as the relationship with the response (no guarantee)
 - Assumption: the directions in which the predictors show the most variation are the direction that are associated with the response
 - Not a variable selection method
 - Each PC is a linear combination of all original predictors

PCR Recipe

- Standardize all predictors
- Construct the first M principal components
 - Can determine M by cross validation
- Apply LS fit using M principal components
- Recover β_i to make predictions

Dimension Reduction

- From p predictors to M < p predictors
 - Standardizing the predictors necessary to have predictors on the same scale

$$y_{i} = \theta_{0} + \sum_{m=1}^{M} \theta_{m} z_{im} + \varepsilon_{i}$$

$$= \theta_{0} + \sum_{m=1}^{M} \theta_{m} \sum_{j=1}^{p} x_{ij} \phi_{jm} + \varepsilon_{i}$$

$$= \theta_{0} + \sum_{m=1}^{M} \sum_{j=1}^{p} x_{ij} \phi_{jm} \theta_{m} + \varepsilon_{i}$$

$$= \beta_{0} + \sum_{j=1}^{p} x_{ij} \beta_{j} + \varepsilon_{i}$$
OLUM

$$\beta_j = \sum_{M=1}^M \phi_{jm} \theta_m$$
$$\beta_0 = \theta_0$$

That was

