製造數據科學 Manufacture Data Science 期末專題 書面報告

從聲音訊號到故障預測:利用機器學習實現設備預測性維護 第 G 組

R13725051 陳怡均 R13725057 廖婕妤 B11705056 黃雋亞 B11703063 鄭凱元 B10704026 劉子揚

一、背景與動機

製造設備故障將造成工廠產能下降,而傳統反應性維護之診斷往往依賴人工經驗,可能導致診斷結果不一致或錯誤,降低維修效率與準確性,增加設備故障風險或過度維修。且傳統監控手段不見得能夠辨識所有潛在異常,如設備發出聲音的細微變化,常常是機器已經出現問題後才發現異狀,錯過最佳維護時間而引發嚴重的故障。而預防性維護則難以制定合理的檢修週期,可能導致過度維護,增加不必要的成本。傳統的維修方式也缺乏系統性得收集資料,也無法建立訓練的基準或異常比對,缺乏長期數據也會限制趨勢分析與設備的健康診斷。

因此,運用資料分析技術達到的預測性維護成為工業 4.0 時代的重要目標。實務 上可透過感測器監測設備運行數據,並結合資料分析技術來預測設備潛在故障,進而 在故障發生前進行維修,有效減少停機時間並最佳化資源配置。如此一來亦能系統性 地收集資料,建立模型訓練基準,以追蹤長期趨勢。

本專案運用深度學習 CNN 與傳統機器學習 Random Forest 等方法建立機械設備 所發出音訊之故障偵測模型,並建置能夠接收製造現場資料以實時顯示偵測結果的網 頁應用。

二、資料集與研究方法

本專案使用 MAFAULDA - Machinery Fault Database 資料集,資料集內包含透過機械故障模擬器取得之 1951 筆多變量時間序列資料,共有六種故障類型,部分類型包含數種故障元件。每筆資料皆以 50kHz 取樣五秒,共 250,000 列,並各有 8 個特徵欄位,分別是轉速表訊號、下旋軸承的軸向、徑向、切向的加速計、上旋軸承的軸向、徑向、切向的加速計以及麥克風訊號。

本專案將故障類型的標籤進一步擴展為 10 種,包含正常、水平與垂直的未對 準、不平衡與上、下懸軸的保持架故障、外圈故障和滾珠故障,以辨別設備不同元件 之異常。資料集內各分類之分佈相對平衡,僅正常狀態之數據較少,各分類資料之標 籤及資料筆數如表 1。

表 1:各分類資料之標籤及資料筆數

標籤	資料筆數
正常	49
水平未對準	197
垂直未對準	301
不平衡	333
下懸軸承	
下懸軸承保持架故障	188
下懸軸承外圈故障	184
下懸軸承滾珠故障	186
上懸軸承	
上懸軸承保持架故障	188
上懸軸承外圈故障	188
上懸軸承滾珠故障	137
合計	1951

對於 MAFAULDA 資料集,本專案提出了四種模型訓練方法,包括兩個以深度 學習 CNN 模型為基礎的方法與兩個以傳統機器學習模型 Random Forest 為基礎的方 法,兩兩之間之模型訓練流程亦有所差異。

(一) CNN 方法

在 CNN 方法中,聲音資料處理分爲五個主要步驟,目的是將原始訊號轉換爲適合 CNN 模型訓練的特徵圖,並強化模型在實際應用中的表現穩定性與泛化能力。

1. **音訊切片(Segmentation)**:每段長音訊切割為固定長度的片段(1 秒 = 44100 點),作為模型的基本輸入單位。這樣可以統一資料格式,也有助於捕捉聲音中短期的異常模式。

- 2. **資料增強(Data Augmentation)**: 爲了提升模型的穩健性與泛化能力,增加模型對變異的容忍度,本專案在訓練資料中隨機加入三種變形:
 - a. **白噪音(add_noise)**:在每段聲音訊號上隨機加入高斯分布的微小擾動,模擬現實中的背景干擾情境,並以參數控制噪音強度,避免過度失真,提升模型的抗雜訊能力與泛化性。
 - b. **音量變化(random_gain)**:模擬不同錄音設備或距離所造成的音量變化,加入隨機音量調整,讓模型能在不同聲音強度下仍準確辨識,提升對現實環境的適應能力。
 - c. **時間伸縮(time_warp)**:加入時間伸縮模擬聲音播放速度的自然變化, 讓模型能在機器節奏不同的情況下仍能正確辨識。
- 3. **特徵提取(Feature Extraction)**:將每段 1D 聲音訊號轉換為 2D 特徵圖(log-Mel spectrogram),輸出 shape 為 (128, 256, 1),方便 CNN 進行處理,並保留時間與頻率資訊,有助於模型學習局部結構。
- 4. **動態特徵(Delta Feature)**:加入一階與二階差分(速度與加速度),幫助模型捕捉聲音變化的趨勢與流動性,識別短暫但關鍵的異常聲音。
- 5. **特徵標準化(Z-score Normalization)**:對每個樣本進行 Z-score 標準化,消除不同樣本之間的能量差異,讓模型能專注於聲音的相對特徵,而非絕對音量大小。

根據上述資料前處理的結果,本專案分別以下列兩種模型架構來進行訓練:

1. CNN

- Input 層:輸入形狀爲 (128, 256, 1) ,爲單聲道的聲音影像輸入。
- CNN 層:建立三層卷積模組,分別使用 32、64 和 128 個濾波器,每層會進行 多個 3x3 濾波器的卷積操作,卷積後會搭配
 BatchNormalization 來穩定訓練並加速收斂,再接上 ReLU 非線性激勵函數幫助模型學習非線性關係,最終使用 MaxPooling2D 將空間維度縮小一半,逐步提取局部區域的空間特徵。
- **Reshape:**將卷積後的特徵圖轉換成 2D 的序列格式,以便後續的 Attention 加權操作。

- Attention 機制:模型會從 Reshape 後的序列特徵中,針對每個時間步計算重要性分數,這些分數經過 Softmax 正規化後成為權重,接著將每個時間步的特徵向量乘上對應的權重,最後使用 reduce_sum 整合成一個加權平均的特徵向量,讓模型能專注在關鍵的序列特徵上。
- **Dense 層:**將 Attention 機制整合後的向量轉換成 256 維,搭配 GELU 激勵函數進行非線性轉換,強化特徵表現力。
- **Dropout 層:**為了避免過度擬合,使用 Dropout (0.5) 隨機丟棄 50% 神經元輸出,提升模型的泛化能力。
- 輸出層:最後透過 Dense 層輸出與類別數量相同的節點,搭配 softmax 激勵函數,輸出每個類別對應的預測機率。

模型架構如圖 1。

圖1:CNN 模型架構

2. CNN + BiLSTM

為了讓模型不僅能分析單一時間點的聲音特徵,也能捕捉聲音訊號在時間序列上的前後關聯性,以進一步提升對聲音類別的判斷準確性。因此本專案在前述 CNN 的架構上加入一層 Bidirectional LSTM (BiLSTM) 層,進而從 CNN 擷取的局部圖像特徵中,學習特徵在時間序列上的變化模式,讓模型具備理解聲音在時間上連續性與變化趨勢的能力。

具體來說,本專案在 CNN 卷積層之後,先將卷積後的特徵圖 Reshape 成 2D 的序列格式,接著再串接一層 BiLSTM。此 BiLSTM 層的輸出是 forward 和 backward 各 128 維,共 256 維的特徵向量。同時本專案在模型中設定 return_sequences=True,以保留每個時間步的輸出序列,讓後續能使用 Attention 機制進行加權處理。模型架構如圖 2。

圖 2:CNN + BiLSTM 模型架構

一開始本專案採用資料集中的全部 8 個欄位作爲輸入特徵,包含轉速訊號、加速 度感測器(三軸×2 組)與麥克風資料,目的是希望整合多種感測器資訊,讓模型能 同時學習機器的運轉狀態與異常行爲,進而提升分類的全面性與泛化能力。

然而,實驗結果顯示,在使用所有欄位進行訓練的情況下,模型的分類準確率僅約 60%,進一步分析後發現,可能原因在於不同感測器的數據特性差異較大(如振動訊號與聲音訊號),使得模型難以同時擷取穩定且一致的特徵;再加上多通道資料難以整齊對齊,導致特徵圖結構混亂,進而影響模型的判斷能力與學習焦點。

因此,本專案調整策略,聚焦使用第八欄(卽麥克風聲音訊號)作爲模型輸入,並且搭配 log-Mel 時頻圖轉換與 CNN 架構進行訓練,讓模型能專注學習聲音中的關鍵模式。去除其他感測器帶來的干擾後,模型表現明顯提升,最終實驗結果也顯示分類準確率有顯著改善。

(二) Random Forest 方法

Random Forest 為傳統機器學習方法之模型,該模型能夠捕捉非線性之特徵,並且由於是 tree-based ,對於特徵範圍不敏感,不需要再進行標準化。此外,使用 Random Forest 訓練模型亦提供了良好的解釋性,能夠識別重要特徵作為篩選與重新訓練之依據。本專案提出了兩個透過 Random Forest 的訓練方法。

1. Naive Random Forest:以各欄位統計量作爲特徵

將每一筆資料(每筆資料爲一個含有 8 個原始特徵的 .csv 檔)的八個感測器訊號欄位,每個欄位皆提取平均值、標準差、最大值、最小值及中位數等五個統計量,最終以 40 個特徵作爲模型輸入。

進行特徵工程後,將資料以 8 比 2 切分為訓練集及測試集,分割後再針對 40 個特徵進行標準化,隨後用以訓練模型並測試。

2. 採用統計與頻率特徵,結合資料平衡與特徵篩選

統計特徵部分,此方法提取 8 個感測器訊號之平均值、標準差、最大值、最小值、均方根、偏度、峰度及峰值因數等 8 個統計量,共產生 64 個特徵。此方法亦提取短時距傅立葉轉換之頻率特徵,參考 Matheus A. Marins 等 (2017) 發表之期刊文章,不同的諧波可能可以偵測不同的故障類型,故取轉速表以外的七個感測器訊號於

旋轉頻率 1 倍、 2 倍及 3 倍之頻譜幅値平均 [1],共產生 21 個特徵。加上由轉速表計算之旋轉頻率,共有 86 個特徵。

此方法將資料集以 8 比 2 切分為訓練集及測試集,另也以 5 個 fold 進行交叉驗證。針對訓練集以及用來訓練之 fold,此方法採用過採樣方法 SMOTE 進行資料平衡,以避免模型未能完整學習資料較少之類別(如 normal 僅有 49 筆資料),資料平衡前後之 t-SNE 降維資料分布如圖 3。

圖 3: 資料平衡前後之 t-SNE 降維資料分布

由於一開始提取的特徵數量較多,此方法亦篩選重要特徵,避免特徵數量過多導致的維度詛咒問題。首先以所有特徵訓練模型,並篩選出 Permutation Importance 為正值的 22 個特徵訓練最終模型。各特徵之 Permutation Importance 如圖 4 所示,可觀察出多數特徵對模型貢獻度較低。

圖 4:各特徵之 Permutation Importance

三、結果分析

在一開始的 CNN 結果中,無論有沒有加入 BiLSTM,在多通道輸入的設定下,模型同時接收來自不同感測器的訊號(轉速訊號、加速度計三軸 × 兩組以及麥克風聲音訊號),理論上能整合多源資訊以提升分類效能。然而,實驗結果顯示:準確率皆只有來到 60% 左右(圖 5),根據混淆矩陣(圖 6)可以發現類別如 0、1、2、5、9難以被正確分類,且學習表現不穩,泛化能力有限,代表模型在處理多通道輸入時,可能受到資料間分佈不一致、尺度不同、雜訊干擾等問題影響,使得特徵難以有效融合,導致學習效率不佳。

Classification	Report:				Classificatio	n Report:			
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.4681	0.3667	0.4112	60	0	0.4839	0.2500	0.3297	60
1	0.7727	0.5667	0.6538	60	1	0.5625	0.7500	0.6429	60
2	0.6444	0.4833	0.5524	60	2	0.4630	0.4167	0.4386	60
3	0.5222	0.7121	0.6026	66	3	0.5122	0.6364	0.5676	66
4	0.9474	1.0000	0.9730	54	4	0.9444	0.9444	0.9444	54
5	0.6538	0.5667	0.6071	60	5	0.5111	0.3833	0.4381	60
6	0.7937	0.8333	0.8130	60	6	0.7222	0.8667	0.7879	60
7	0.9206	0.9667	0.9431	60	7	0.9355	0.9667	0.9508	60
8	0.6049	0.8167	0.6950	60	8	0.6250	0.6667	0.6452	60
9	0.5172	0.5000	0.5085	60	9	0.5179	0.4833	0.5000	60
accuracy			0.6783	600	accuracy			0.6333	600
macro avg	0.6845	0.6812	0.6760	600	macro avg	0.6278	0.6364	0.6245	600
weighted avg	0.6803	0.6783	0.6723	600	weighted avg	0.6234	0.6333	0.6207	600

圖 5:採用多通道 CNN 及 CNN + BiLSTM 模型之分類結果報告

圖 6:採用多通道 CNN 及 CNN + BiLSTM 模型的混淆矩陣

在後續實驗中,改採用「僅第八欄的麥克風聲音訊號」作爲輸入,經 log-Mel 頻譜 圖轉換後輸入 CNN 模型,目標是去除其他感測器的干擾,聚焦聲音模式學習。實驗 結果顯示,採用單通道輸入能顯著提升模型分類表現,CNN 模型的準確率提升至 77%(圖 7),進一步再加入一層 BiLSTM 捕捉聲音序列的時間關聯性,準確率更能 提升到 85% 左右。透過混淆矩陣 (圖 8)可以發現除了第 0、1 類別仍較難被準確 分類外,其餘類別幾乎都能有效區分,表示聲音訊號具備足夠的判別度,且排除其他 感測器干擾能讓模型更穩定地學習。

Classificatio	n Report:				Classificatio	n Report:			
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.5714	0.4667	0.5138	60	0	0.5833	0.4667	0.5185	60
1	0.6111	0.5500	0.5789	60	1	0.5469	0.5833	0.5645	60
2	0.7067	0.8833	0.7852	60	2	0.7536	0.8667	0.8062	60
3	0.8971	0.9242	0.9104	66	3	0.9538	0.9394	0.9466	66
4	0.9130	0.7778	0.8400	54	4	1.0000	0.8889	0.9412	54
5	0.8571	0.9000	0.8780	60	5	0.9231	1.0000	0.9600	60
6	0.7879	0.8667	0.8254	60	6	0.9355	0.9667	0.9508	60
7	0.7321	0.6833	0.7069	60	7	0.9062	0.9667	0.9355	60
8	1.0000	0.8833	0.9381	60	8	1.0000	1.0000	1.0000	60
9	0.6714	0.7833	0.7231	60	9	0.9818	0.9000	0.9391	60
accuracy			0.7733	600	accuracy			0.8583	600
macro avg	0.7748	0.7719	0.7700	600	macro avg	0.8584	0.8578	0.8562	600
weighted avg	0.7746	0.7733	0.7707	600	weighted avg	0.8580	0.8583	0.8563	600

圖 7:採用單通道(聚焦第八欄)訓練後的 CNN 及 CNN + BiLSTM 模型分類結果 報告

圖 8:採用單通道(聚焦第八欄)訓練後的 CNN 及 CNN + BiLSTM 模型混淆矩陣

至於 Random Forest 方法,以 Naive Random Forest 模型測試結果簡單平均 Accuracy 高達 0.98(圖 9),進一步利用混淆矩陣可以確認模型預測並沒有盲猜的情形(圖 10)。

圖 9:Naive Random Forest 之分類報告 圖 10:Naive Random Forest 之混淆矩陣

從特徵重要性分析可以發現最重要的特徵為 median_ch8, 即麥克風訊號的中位數 (圖 11) ,顯示麥克風音訊特徵確實有助於機器故障的判斷。圖 12 顯示在不同的測 試集比重下模型的準確性,可以發現在達到一定的訓練資料量後模型表現穩健。

在 Random Forest 採用統計與頻率特徵並結合資料平衡與特徵篩選之方法中,以最終模型預測測試集之 Accuracy、Precision、Recall 及 F1-score 均達 99%,混淆矩陣如圖 13 所示。以 5 個 fold 交叉驗證之平均 Accuracy 爲 91.80%、Precision 爲 92.55%、Recall 爲 91.18%、F1-score 爲 91.08%,成效良好。

圖 12:不同測試集比重下之 Accuracy

圖 11:重要性前十名之特徵

圖 13:Random Forest 採用統計與頻率特徵訓練最終模型之混淆矩陣

爲因應製造現場之使用需求,本專案亦建立能夠接收資料並卽時預測的網頁應用,該應用會監聽 sensor_data 資料夾,並配合感測器資料五秒建立一個檔案的週期,每五秒抓取資料夾中的檔案,在有新的 csv 檔案加入時卽時偵測設備異常種類。預測結果會被儲存至資料庫中,並顯示過去之偵測結果、預測爲該類別的機率等資訊在網頁介面上,最近一個檔案的預測結果則會顯示在畫面上方,並以背景顏色標示正常與否。使用者亦可設定只顯示異常之結果,避免佔多數的正常結果占用版面。網頁應用之介面如圖 14。

Real-Time	e Machine Audio Anon	naly Detection
Monitoring folder: sensor_data Drop sensor data files (CSV format) into the fo	older to detect anomalies.	
Fault detected: underhang_cage		
Past Records Show anomalies only		
Timestamp	Anomaly Type	Confidence
2025-06-06 11:19:27	underhang_cage	0.86
2025-06-06 11:19:27	underhang_cage	0.86
2025-06-06 11:19:21	normal	0.8
2025-06-06 11:19:21	normal	0.8
2025-06-06 11:19:15	imbalance	0.87
2025-06-06 11:19:15	imbalance	0.87
2025-06-06 11:19:09	normal	0.84
2025-06-06 11:19:09	normal	0.84

圖 14:網頁應用介面

四、討論與結論

本專案提出了四種模型訓練方法,包括兩個以深度學習 CNN 模型為基礎的方法 與兩個以傳統機器學習模型 Random Forest 為基礎的方法。其中深度學習之 CNN 模型訓練時間較長、運算資源需求也較高,然其預測成效卻不及傳統機器學習之 Random Forest 模型,故可推論在目前之資料量及任務需求下,可透過較低的時間與 資源需求獲得更好訓練成效的 Random Forest 模型是較佳的選擇。

實驗結果顯示,Random Forest 模型在多種設備異常情境下展現出優異的表現, 準確率高達 98% 以上,顯示其具有穩定且可靠的故障辨識能力。本專案建置之網頁 應用能夠搭配模型,於異常發生前卽時發出預警,通知工程人員及早介入處理,有效 降低產線停擺的風險。此外,該模型可取代傳統定期巡檢所需的人力,降低人力成 本,使工程人員得以將資源集中於高風險設備的維護工作上。更重要的是,透過預測 性維護策略,企業得以主動安排設備維護時程,及早更換零件或調整參數,以降低非 預期停機與產線中斷所造成的損失,同時延長設備壽命並提升整體運作穩定性。

目前所使用的資料集係由機械故障模擬器所產生,雖已具備良好成效,惟為提升模型於真實應用環境中的效能與適用性,未來將規劃收集實際感測器資料以進行模型驗證與最佳化。此外,模型目前僅聚焦於三種關鍵零組件之故障偵測,未來可進一步擴展至更多類型的關鍵元件,提升故障診斷的完整性與精準性。同時,亦可導入自動化的模型效能監控與再訓練機制,確保模型能持續適應新興資料特徵,進而維持長期的準確度與實用性。

五、參考文獻

[1] Matheus A. Marins, Felipe M.L. Ribeiro, Sergio L. Netto, Eduardo A.B. da Silva (2017), Improved similarity-based modeling for the classification of rotating-machine failures, Journal of the Franklin Institute, Volume 355, Issue 4, 2018, Pages 1913-1930.