Critério	Tema 1: Suporte à Decisão para Crédito Agrícola com Risco Climático	Tema 2: Previsor de Produtividade em Painéis Solares
1. O Que É o Projeto (Linguagem Leiga)	Um "avaliador de risco climático" para empréstimos rurais. Ele não só verifica o histórico de pagamento do fazendeiro, mas prevê se o clima da região dele (seca, excesso de chuva) pode causar uma quebra de safra, garantindo empréstimos mais seguros para o banco e mais justos para o produtor.	Um "metrônomo inteligente" para energia renovável. Ele prevê com antecedência (e alta precisão) quanta energia solar (em kWh) um painel irá gerar, combinando a previsão do tempo com a saúde operacional do painel.
2. Funcionament o (Resumo Técnico)	O sistema tem duas etapas: 1. Um modelo de Classificação recebe dados financeiros e calcula a Probabilidade de Inadimplência (ex: 85%). 2. Essa probabilidade é combinada com o Risco Climático Preditivo em um Sistema Fuzzy. Exemplo de Regra: SE Inadimplência Preditiva é Média E Risco Climático é Extremo, ENTÃO Recomendação é Negar ou Reavaliar com Garantia Extra.	O sistema tem duas etapas: 1. Um modelo de Regressão de Séries Temporais recebe dados climáticos (irradiação) e gera a previsão de kWh para as próximas 24h. 2. Um módulo de Lógica Fuzzy analisa as condições ambientais (ex: a temperatura) e a previsão de kWh para classificar a Eficiência Preditiva do painel (ex: Ótima, Sub-ótima, Crítica).
3. Onde Seria Implementado e Porquê	Onde: Em Bancos, Cooperativas de Crédito e Seguradoras Rurais. Porquê: Os métodos atuais (análise de balanço e garantias) falham ao incorporar o impacto da mudança climática. Nossa	Onde: Em Gestores de Fazendas Solares, Empresas de Geração e Sistemas de Armazenamento de Energia (Smart Grids). Porquê: A precisão na

Critério	Tema 1: Suporte à Decisão para Crédito Agrícola com Risco Climático	Tema 2: Previsor de Produtividade em Painéis Solares
	solução transforma a incerteza climática (dado ecológico) em risco financeiro quantificável (dado de negócio), reduzindo perdas com empréstimos e alinhando-se a diretrizes ESG (Sustentabilidade).	previsão de geração é vital para o planejamento de carga. A IA reduz o risco de curtailment (desperdício de energia) e otimiza o uso de baterias, resultando em milhões de reais em economia operacional e maior eficiência energética.
5. Links Diretos para Datasets (Verídicos e Gratuitos)	1. Dados Financeiros (Inadimplência): Kaggle: Default of Credit Card Clients ou buscar por loan default prediction. 2. Dados Climáticos: NASA POWER Project (Público): Access Data Archive. 3. Dados Agrícolas/Safras: Kaggle/FAO: Buscar por crop yield prediction dataset.	1. Dados de Geração (kWh): Kaggle: Solar Power Generation Data. 2. Dados Climáticos (Irradiação): NASA POWER Project (Público): Access Data Archive. 3. Dados Operacionais (Painel): Kaggle/UCI: Buscar por photovoltaic power forecasting (dados sobre modelo, idade ou inclinação do painel).
6. Algoritmos a Utilizar	Lógica Fuzzy (Central): Para modelar a incerteza do risco climático. Classificação: Para prever o evento binário de inadimplência (Sim/Não). Grid Search: Otimiza o Classificador para máxima acurácia/recall.	Grid Search (Central): Otimiza o modelo de Séries Temporais para a máxima precisão (menor erro). Regressão (Séries Temporais): Para realizar a previsão da quantidade de kWh. Lógica Fuzzy: Para classificar o desempenho (Eficiência) do painel sob condições climáticas

Critério	Tema 1: Suporte à Decisão para Crédito Agrícola com Risco Climático	Tema 2: Previsor de Produtividade em Painéis Solares
		ambíguas (ex: nebulosidade parcial).
7. Parâmetros a Utilizar e Porquê	Parâmetros de Entrada (Classificação): Valor do Empréstimo, Taxa de Juros, Histórico de Inadimplência. Parâmetros de Entrada (Fuzzy): Variáveis Linguísticas como Risco Climático (Alto, Médio, Baixo) e Probabilidade Preditiva (Saída do Classificador). Parâmetro de Saída (Fuzzy): Recomendação de Crédito (Aprovar, Risco, Negar).	Parâmetros de Entrada (Regressão): Irradiação Solar, Temperatura, Horário do Dia, Geração Histórica. Parâmetros de Entrada (Fuzzy): Variáveis Linguísticas como Irradiação Solar (Baixa, Média, Alta) e Temperatura do Painel (Normal, Elevada). Parâmetro de Saída (Fuzzy): Eficiência Preditiva (Ótima, Sub-ótima, Crítica).
8. Nível de Dificuldade de Processos para Implementaçã o	Moderado (Risco em Dados). A modelagem dos algoritmos é padrão, mas o grande desafio e esforço extra está na unificação dos 3 datasets (ligar dados financeiros a dados climáticos por coordenadas geográficas e data).	Fácil a Moderado (Baixo Risco em Dados). Os dados (clima e geração) já vêm em formato de Série Temporal e são mais fáceis de alinhar. O desafio está na modelagem de Séries Temporais (que é mais complexa que uma Regressão Simples).