Examenul național de bacalaureat 2021

Proba E. c) Matematică *M mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Testul 1

Testul 1

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$7 + \sqrt{7} \in (9,10)$ și, cum n este număr natural, obținem $M = \{0, 1, 2, 3\}$	3p
	Mulțimea M are 4 elemente	2p
2.	$\Delta = 36 - 4m \Rightarrow y_V = -\frac{\Delta}{4a} = m - 9$	3p
	$m-9>0 \Leftrightarrow m \in (9,+\infty)$	2p
3.	$x+3=(x-3)^2 \Rightarrow x^2-7x+6=0$	3p
	x = 1, care nu convine; $x = 6$, care convine	2p
4.	O mulțime cu 12 elemente are $C_{12}^0 + C_{12}^1 + C_{12}^2 = 1 + 12 + \frac{12 \cdot 11}{2} =$	3p
	=13+66=79 de submulțimi cu cel mult 2 elemente	2p
5.	Paralela prin A la OB intersectează paralela prin B la OA în punctul $C \Rightarrow OACB$ este paralelogram	2p
	OC și AB au același mijloc, deci $x_O + x_C = x_A + x_B$, $y_O + y_C = y_A + y_B$, de unde obținem $x_C = 3$ și $y_C = 3$	3 p
6.	$\frac{1}{1+\lg x} + \frac{1}{1+\operatorname{ctg} x} = \frac{1}{1+\lg x} + \frac{1}{1+\frac{1}{\lg x}} = \frac{1}{1+\lg x} + \frac{\lg x}{\lg x+1} =$	3р
	$= \frac{1 + \lg x}{1 + \lg x} = 1, \text{ pentru orice } x \in \left(0, \frac{\pi}{2}\right)$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 0 & 2 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 0 & 2 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{vmatrix} = $	2p
	= 0 + 0 + 0 - 0 - 0 - (-4) = 4	3 p
b)	$A(a) \cdot A(b) = \begin{pmatrix} 1 - a - b - ab & 2b + 2ab + 2a & 0 \\ -a - b - ab & 1 + 2a + 2b + 2ab & 0 \\ 0 & 0 & 1 + a + b + ab \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 - (a+b+ab) & 2(a+b+ab) & 0 \\ -(a+b+ab) & 1 + 2(a+b+ab) & 0 \\ 0 & 0 & 1 + (a+b+ab) \end{pmatrix} = A(a+b+ab), \text{ pentru orice numere}$ reale $a \neq b$	2p

Probă scrisă la matematică M mate-info

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea matematică-informatică

c)	Cum $A(a) \cdot A(b) \cdot A(c) = A(a+b+ab) \cdot A(c) = A(a+b+c+ab+ac+bc+abc)$, obţinem $a+b+c+ab+ac+bc+abc=0$	3p
	$1 + a + b + c + ab + ac + bc + abc = 1 \Rightarrow (1+a) + b(1+a) + c(1+a) + bc(1+a) = 1, \text{ de unde obtinem } (1+a)(1+b+c+bc) = 1, \text{ deci } (1+a)(1+b)(1+c) = 1$	2p
2.a)	$3*4 = \sqrt{3^2 + 4^2} =$	3p
	$=\sqrt{25}=5$	2p
b)	$x*\sqrt{5} = \sqrt{x^2 + 5} , x \in M$	2p
	Cum $\sqrt{x^2+5} < x+1 \Rightarrow x^2+5 < x^2+2x+1$, obţinem $x \in (2,+\infty)$	3 p
c)	Pentru $m = 3k$ și $n = 4k$, unde $k \in \mathbb{N}^*$, obținem $m * n = 5k$	2p
	Cum numerele $3k$, $4k$ și $5k$ sunt termeni consecutivi ai unei progresii aritmetice, există o	
	infinitate de perechi de numere naturale nenule (m,n) , de forma $(3k,4k)$, pentru care	3 p
	numerele m , n și $m*n$ sunt termeni consecutivi ai unei progresii aritmetice	

SUBIECTUL al III-lea

(30 de puncte)

	Soute panete		
1.a)	$f'(x) = 1 - \frac{2x - 4}{2\sqrt{x^2 - 4x + 5}} =$	3p	
	$=1-\frac{x-2}{\sqrt{x^2-4x+5}}=\frac{\sqrt{x^2-4x+5}-x+2}{\sqrt{x^2-4x+5}}, \ x \in \mathbb{R}$	2p	
b)	$\sqrt{x^2-4x+5} = \sqrt{(x-2)^2+1} > x-2$, pentru orice număr real x	2p	
	$f'(x) > 0$, pentru orice număr real x , deci f este strict crescătoare pe \mathbb{R}	3 p	
c)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x - \sqrt{x^2 - 4x + 5} \right) = \lim_{x \to +\infty} \frac{\left(x - \sqrt{x^2 - 4x + 5} \right) \left(x + \sqrt{x^2 - 4x + 5} \right)}{x + \sqrt{x^2 - 4x + 5}} =$	2p	
	$= \lim_{x \to +\infty} \frac{4x - 5}{x + \sqrt{x^2 - 4x + 5}} = \lim_{x \to +\infty} \frac{x\left(4 - \frac{5}{x}\right)}{x\left(1 + \sqrt{1 - \frac{4}{x} + \frac{5}{x^2}}\right)} = 2, \text{ deci ecuația asimptotei orizontale}$	3 p	
	spre $+\infty$ la graficul funcției f este $y=2$		
2.a)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} (x^{2} + 1) dx = \left(\frac{x^{3}}{3} + x\right) \Big _{0}^{1} =$	3 p	
	$=\frac{1}{3}+1=\frac{4}{3}$	2p	
b)	$\int_{0}^{1} e^{x} f(x) dx = \int_{0}^{1} e^{x} (x^{2} + 1) dx = e^{x} (x^{2} + 1) \Big _{0}^{1} - \int_{0}^{1} 2x e^{x} dx = 2e - 1 - (2x - 2)e^{x} \Big _{0}^{1} =$	3 p	
	=2e-1-2=2e-3	2p	
c)	$ = 2e - 1 - 2 = 2e - 3 $ $ \int_{-1}^{1} x \ln(f(x)) dx = \int_{-1}^{0} (-x) \ln(x^2 + 1) dx + \int_{0}^{1} x \ln(x^2 + 1) dx = \int_{0}^{1} 2x \ln(x^2 + 1) dx = $	2p	
	$ = \int_{0}^{1} (x^{2} + 1)' \ln(x^{2} + 1) dx = (x^{2} + 1) \ln(x^{2} + 1) \Big _{0}^{1} - \int_{0}^{1} (x^{2} + 1) \frac{2x}{x^{2} + 1} dx = 2 \ln 2 - x^{2} \Big _{0}^{1} = 2 \ln 2 - 1 $	3 p	