Mel-Wiener Filter for Mel-LPC Based Speech Recognition

IETCE TRANSACTIONS on Information and System VOL.E90-D, No.6 JUNE 2007

Author: Md. Babul ISLAM, student Member, Kazumasa YAMAMOTO, Member, and Hiroshi MATSIMOTO, Fellow

Professor:陳嘉平 Reporter:葉佳璋

Outline

- Introduction
- Overview of Mel-LPC analysis
- Mel-Wiener Filter
- Approximation of Crosscorrelation Function
- System overview
- Experiments

Introduction

- As the front-end of a speech recognition system, spectral analysis with auditory-like frequency resolution has been shown to be more effective for speech recognition.
- In filter-bank based system, MFCC is widely used. On the other hand, as an LPC based method, we previously proposed a simple and efficient time domain technique to estimate an all-pole model on the mel-frequecy scale, which is referred to as Mel-LPC.

Introduction

- Since SS is a frequency domain filtering method, it is not appropriate for time domain front-end, such as in Mel-LPC analysis. On the contrary, Wiener filter is possible to design and/or implement in both frequency and time domain.
- For Mel-LPC based analysis, the traditional formulation of Mel-Wiener filter requires the frequency warped noisy speech signal.
- This paper proposes a novel approach to estimating the Mel-Wiener filter from input speech signal on the linear frequency scale.

Overview of Mel-LPC analysis

• The frequency warped signal $\tilde{x}[n]$ (n=0, ..., ∞) obtained by the bilinear transformation of a finite length windowed signal x[n](n=0,...,N-1) is defined by

$$\widetilde{X}(\widetilde{z}) = \sum_{n=0}^{\infty} \widetilde{x}[n]\widetilde{z}^{-n} = X(z) = \sum_{n=0}^{N-1} x[n]z^{-n}$$
where \widetilde{z}^{-1} is the first-order all-pass filter, $\widetilde{z}^{-1} = \frac{z^{-1} - \alpha}{1 - \alpha \cdot z^{-1}}$

• The phase response of \tilde{z}^{-1} is given by

$$\widetilde{\lambda} = \lambda + 2 \tan^{-1} \left\{ \frac{\alpha \sin \lambda}{1 - \alpha \cos \lambda} \right\}$$

This phase function determines a frequency mapping.

• Letting f(n) represent original sequence, and g(k) represent the transformed sequence, we consider linear transformations between f(n) and g(k) corresponding to expanding f(n) in terms of a set of linearly independent sequence so t $\psi_k(n)$ that

$$f(n) = \sum_{k=-\infty}^{\infty} g(k) \psi_k(n)$$

$$G(e^{j\omega}) = \sum_{k=-\infty}^{\infty} g(k) e^{-j\omega k}$$

$$F(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} f(n) e^{-j\Omega n}$$

$$\omega = \theta(\Omega)$$

$$G(e^{j\theta(\Omega)}) = F(e^{j\Omega})$$

$$\Psi_{k}(e^{j\Omega}) = e^{-jk\theta(\Omega)}$$

Where

$$\Psi_{k}(e^{j\Omega}) = \sum_{k=-\infty}^{\infty} \psi_{k}(n)e^{-j\Omega n}$$

• Therefore, the function $\psi_k(n)$ must have an all-pass characteristic, that is their z transform on the unit circle must have unity magnitude independent of frequency.

$$\Psi_k(z) = \left(\frac{z^{-1} - \alpha}{1 - \alpha \cdot z^{-1}}\right)^k$$

$$f(n) = \sum_{k=-\infty}^{\infty} g(k) \psi_k(n)$$

$$\sum_{k=-\infty}^{\infty} f(n) \cdot e^{-j\Omega n} = \sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} g(k) \psi_k(n) \right) \cdot e^{-j\Omega n}$$

$$F(e^{j\Omega}) = \sum_{k=-\infty}^{\infty} g(k) \sum_{n=-\infty}^{\infty} \psi_k(n) \cdot e^{-j\Omega n}$$

$$F(e^{j\Omega}) = \sum_{k=-\infty}^{\infty} g(k) \Psi_k(e^{j\Omega})$$

$$F(e^{j\Omega}) = \sum_{k=-\infty}^{\infty} g(k)e^{-jk\theta(\Omega)}$$

$$F(e^{j\Omega}) = G(e^{j\theta(\Omega)})$$

Overview of Mel-LPC analysis

• In Mel-LPC analysis, the spectral envelope of $\widetilde{X}(\widetilde{z})\widetilde{W}(\widetilde{z})$ is approximated by the following all-pole model

$$\widetilde{H}_{a}(\widetilde{z}) = \frac{\widetilde{\sigma}_{e}}{1 + \sum_{k=1}^{p} \widetilde{a}_{k} \widetilde{z}^{-k}}$$

where \widetilde{a}_k is the kth mel-prediction coefficient and $\widetilde{\sigma_e}^2$ is the residual energy

• The frequency weighting function $\widetilde{W}(e^{j\widetilde{\lambda}})$ is defined by

$$\widetilde{W}(e^{j\widetilde{\lambda}}) = \frac{\sqrt{1-\alpha^2}}{1+\alpha \tilde{z}^{-1}}$$

which is derived from

$$\frac{d \lambda}{d \widetilde{\lambda}} = \widetilde{W} \left(e^{j\widetilde{\lambda}} \right)$$

Mel-Wiener Filter

- Formulation on the warped Frequency scale:
 - briefly describes the conventional Wiener filtering on a warped frequency domain, which can be implemented by applying the traditional wiener filter to a bilinear transformed signal.
- Formulation on the Linear Frequency scale

• We define a wiener filter $\widetilde{H}(\widetilde{z})$ on the warped frequency scale as

$$\widetilde{H}(\widetilde{z}) = \sum_{n=0}^{p-1} \widetilde{h}[n]\widetilde{z}^{-n} \qquad \qquad \hat{\widetilde{s}}[n] = \sum_{n=0}^{p-1} \widetilde{h}[k]\widetilde{x}[n-k]$$

By applying $\widetilde{H}(\widetilde{z})$ to the bilinear transformed signal $\widetilde{x}[n]$ the estimated clean speech $\widehat{s}[n]$

• Since the error signal $\tilde{e}[n] = \tilde{s}[n] - \hat{\tilde{s}}[n]$ is an infinite sequence, the sum of the square error is evaluated by

$$\xi\{\widetilde{h}\} = \sum_{n=0}^{\infty} \widetilde{e}[n]^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \widetilde{S}(e^{j\widetilde{\lambda}}) - \widetilde{H}(e^{j\widetilde{\lambda}}) \widetilde{X}(e^{j\widetilde{\lambda}}) \right|^{2} d\widetilde{\lambda}$$

 We define the transfer function of a frequency warped Winer filter on z domain by

$$\widetilde{H}_{w}(\widetilde{z}(z)) = \sum_{n=0}^{p-1} \widetilde{h}_{w}[n]\widetilde{z}^{-n}$$

the estimated speech \hat{s} w [n] based on filter $\widetilde{H_w}(\tilde{z}(z))$ is given by

$$\widehat{s_w}[n] = \sum_{k=0}^{p-1} \widetilde{h}_w[k] x_k[n]$$

where $\tilde{x}_k[\tilde{n}]$ is the output signal of k cascaded all pass filter

In the spectral Domain can be rewritten as

$$\widehat{S}_{w}(e^{j\widetilde{\lambda}}) = \widetilde{H}_{w}(e^{j\widetilde{\lambda}})X(e^{j\widetilde{\lambda}})$$

Let $\hat{\hat{S}}_{w}(e^{j\tilde{\lambda}})$ be the spectrum of the bilinear transformed signal of $\hat{s}_{w}[n]$

• Since $\hat{S}_w(e^{j\tilde{\lambda}}) = \tilde{\hat{S}}_w(e^{j\tilde{\lambda}})$ from the definition of the frequency warped signal as

$$\widetilde{X}(\tilde{z}) = \sum_{n=0}^{\infty} \widetilde{x}[n]\tilde{z}^{-n} = X(z) = \sum_{n=0}^{N-1} \widetilde{x}[n]z^{-n}$$

- We have following equation $\widetilde{S}_{w}(e^{j\widetilde{\lambda}}) = \widetilde{H}_{w}(e^{j\widetilde{\lambda}})\widetilde{X}(e^{j\widetilde{\lambda}})$
- This equation shows that $\widetilde{H}_{w}(e^{j\tilde{\lambda}})$ is a linear filter to estimate the spectrum $\widetilde{S}_{w}(e^{j\tilde{\lambda}})$ from the input spectrum $\widetilde{X}_{w}(e^{j\tilde{\lambda}})$ on the warped frequency domain.
- Now the sum of square error is given by

$$\xi\{\widetilde{h}\} = \sum_{n=0}^{\infty} \widetilde{e}[n]^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \widetilde{S}(e^{j\widetilde{\lambda}}) - \widetilde{H}_{w}(e^{j\widetilde{\lambda}}) \widetilde{X}(e^{j\widetilde{\lambda}}) \right| \cdot \left| \widetilde{W}(e^{j\widetilde{\lambda}}) \right|^{2} d\widetilde{\lambda}$$

• The minimization of equation $\xi\{\tilde{h}\}$ with respect to $\{\tilde{h}_w[k]\}$ give the following normal equations

$$\sum_{n=0}^{p-1} \widetilde{\phi}_{xx} (m,k) \widetilde{h}_{w}[k] = \widetilde{\phi}_{xx} (0,m) \qquad (m=0,...p-1)$$
Where $\widetilde{\phi}_{xx} (m,k) = \sum_{n=0}^{\infty} x_{m}[n]x_{k}[n]$
and $\widetilde{\phi}_{sx} (m,k) = \sum_{n=0}^{\infty} s_{m}[n]x_{k}[n]$

In the warped frequency domain can be rewritten as

$$\widetilde{\phi}_{xx}\left(m,k\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \widetilde{X}\left(e^{j\widetilde{\lambda}}\right) \widetilde{W}\left(e^{j\widetilde{\lambda}}\right) \right|^{2} \cdot e^{j(m-k)\widetilde{\lambda}} d\widetilde{\lambda}$$

$$\widetilde{\phi}_{sx}\left(m,k\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \widetilde{S}\left(e^{j\widetilde{\lambda}}\right) \widetilde{X}^{*}\left(e^{j\widetilde{\lambda}}\right) \left| \widetilde{W}\left(e^{j\widetilde{\lambda}}\right) \right|^{2} \cdot e^{j(m-k)\widetilde{\lambda}} d\widetilde{\lambda}$$

- Therefore, $\widetilde{\phi}_{xx}(m,k)$ is the autocorrelation function of signal $\widetilde{x}_w[n]$ whose Fourier transform is equal to the frequency warped and weighted spectrum $\widetilde{X}(e^{j\widetilde{\lambda}})\widetilde{W}(e^{j\widetilde{\lambda}})$
- Similarly, $\widetilde{\phi}_{sx}(m,k)$ is the crosscorrelation function between $\widetilde{x}_{w,m}[n]$ and $\widetilde{s}_{w,k}[n]$ whose whose Fourier transform is $\widetilde{S}(e^{j\widetilde{\lambda}})\widetilde{W}(e^{j\widetilde{\lambda}})$
- We call $\tilde{\phi}_{xx}(m,k)$ and $\tilde{\phi}_{sx}(m,k)$ as the generalized autocorrelation and crosscorrelation function

• It should be noted that each of the $\tilde{\phi}_{xx}(m,k)$ and $\tilde{\phi}_{sx}(m,k)$ is a function of difference (k-m). Thus, both function are calculated from the sum of finite term as

$$\tilde{\phi}_{xx}(m,k) = \tilde{r}_{xx}[k-m] = \sum_{n=0}^{N-1} x_m[n] x_{|k-m|}[n]$$

$$\tilde{\phi}_{sx}(0,k) = \tilde{r}_{sx}[k] = \sum_{n=0}^{N-1} s[n] x_{|k-m|}[n]$$

• In practical situation, since both the speech and noise are unobservable, the exact estimation of crosscorrelation function $\tilde{r}_{sx}[m]$ between clean and noisy speech is not possible, rather the approximated value is estimated.

- For the approximation of $\tilde{r}_{sx}[m]$, input speech frames are classified as non-speech, transition and speech segments depending on the value of likelihood ratio d_{LR} of each frames.
- The generalize crosscorrelation function between the clean and noisy speech is given by

$$\vec{r}_{sx}[m] = \vec{r}_{xx}[m] - \vec{r}_{nn}[m] - \vec{r}_{ns}[m]$$

since $\tilde{r}_{ns}[m]$ is negligible for the noise uncorrelated with the speech signal and $\tilde{r}_{nn}[m]$ is approximated by $\hat{\tilde{r}}_{nn}[m]$

• $\tilde{r}_{sx}[m]$ for the segment with $d_{LR} \ge d_2$ is approximated as

$$\tilde{r}_{sx}[m] \approx \tilde{r}_{xx}[m] - v \cdot \hat{r}_{nn}[m]$$

where v is a scaling factor, given by

$$v = \begin{cases} 1; & \text{if } \tilde{r}_{xx}[0] > \hat{r}_{nn}[0] \\ 0.9\tilde{r}_{xx}[m] / \hat{r}_{nn}[0]; & \text{if } \tilde{r}_{xx}[0] \leq \hat{r}_{nn}[0] \end{cases}$$

The rower part is used as flooring to prevent $\tilde{r}_{sx}[0]$, i.e., the power to be negative.

- The noise segment with the lower value of likelihood ratio d_{LR} is means the noise is dominating and speech is absent.
- Hence a random sequence is introduced as floored signal f[n] instead of s[n] for the noise segment with $d_{LR} < d_2$
- The rms value of floored signal σ_f is set to -30dB from the maximum rms value of the input signal.
- Then the generalized crosscorrelation function $\tilde{r}_{fx}[m]$ between f[n] and x[n] is calculated.

• The crosscorrelation function $\tilde{r}_{sx}[m]$ is compromised with the floored crosscorrelation function $\tilde{r}_{fx}[m]$ as

$$\tilde{r}_{sx}[m] \approx \gamma (\tilde{r}_{xx}[m] - v \cdot \tilde{r}_{nn}[m]) - \tilde{r}_{fx}[m]$$

Where $\gamma = (\sigma_f / \sigma_x)^{(d_{LR} - d_2)/(d_1 - d_2)}$

- d_1 and d_2 are experimentally tunable constants with values d_1 =0.6 and d_2 =0.15 for clean training and d_2 =0.13 for multicondition training.
- The parameter ? prevents the abrupt transition between nonspeech and speech segments, consequently, it will prevent the sharp clipping of the parameters, which might degrades the performance of the systems.

System overview

Voice Activity Detection

- The voice activity detector (VAD) is based on the likelihood ratio measure between autoregressive(AR) of noise and input speech signal.
- From initial 20 frames a noise model is created, i.e., the model is assumed to be Mth order autoregressive with coefficients $\tilde{b}^t = [\tilde{b}_0 \tilde{b}_1 ... \tilde{b}_M]$ where $\tilde{b}_0 = 1$. For each input frame, $\tilde{r}_{xx}[m]$ is calculated to estimate likelihood ratio as follows

$$d_{LR} = R_{\tilde{b}}[0]\tilde{r}_{xx}[0] + 2\sum_{i=1}^{M} R_{\tilde{b}}\tilde{r}_{xx}[i] - 1$$

where $R_{\tilde{b}}[i]$ is the autocorrelation function of AR coefficients.

• d_{LR} is compared with a threshold value η is empirical value of 0.11 for clean training and 0.1 for multicondition training

Noise model Estimate

- In the proposed filtering technique, a lag window is applied to the noise autocorrelation function to smooth the fine spectra of high order autocorrelation coefficients
- When a frame t is detected as noise, the estimated generalized autocorrelation function of noise $\hat{r}_{m}[m,t]$ is updated by accumulating the lag windowed $\hat{r}_{xx}[m,t]$ as follows

$$\hat{r}_{nn}[m,t] = \begin{cases} \hat{\beta r}_{nn}[m,t_p] + (1-\beta)\hat{r}_{xx}[m,t]; & \text{if frame t is silence} \\ \hat{r}_{nn}[m,t_p]; & \text{if frame t is speech} \end{cases}$$

where t_p is the previous noise frame and β is the forgetting factor with value of 0.96.

Experimental Setup

- The proposed system was evaluated on Aurora 2 database, which is a subset of TI digits database contaminated by additive noises and channel effect
- The speech signal was windowed using Hamming window of length 20ms with 10ms frame period.
- The frequency warping factor was set to 0.4.
- As front-end, 14 cepstral coefficients and their delta confidents including 0th terms were used.
- For VAD, the order of AR was set to 10 and the window length was 40 ms with same frame period as in Mel-LPC

 Table 2
 Word accuracy w/o Wiener filter for clean training.

	Set A								
Noise	cln	20 dB	15 dB	10 dB	5 dB	0 dB	−5 dB	Aver.	
Subw.	99.02	95.52	86.98	68.22	43.48	23.00	11.58	63.44	
Babb.	99.09	84.70	62.58	35.19	10.94	-1.54	-1.45	38.38	
Car	98.84	94.66	79.45	51.27	25.59	13.06	9.60	52.81	
Exhi.	99.11	95.87	86.79	66.95	34.93	16.11	9.60	60.13	
Aver.	99.02	92.69	78.95	55.41	28.74	12.66	7.34	53.69	
	Set B								
Noise	cln	20 dB	15 dB	10 dB	5 dB	0 dB	−5 dB	Aver.	
Rest.	99.02	87.90	69.30	43.23	14.28	-5.13	-7.58	41.92	
Stre.	99.09	94.11	84.28	59.58	31.05	12.70	6.14	56.35	
Airp.	98.84	89.35	70.56	45.33	17.57	1.64	-0.51	44.89	
T-St.	99.11	90.16	73.65	46.34	17.68	4.91	5.68	46.55	
Aver.	99.02	90.38	74.45	48.62	20.15	3.53	0.94	47.43	
	Set C (MIRS)								
Noise	cln	20 dB	15 dB	10 dB	5 dB	0 dB	−5 dB	Aver.	
Subw.	98.93	89.41	78.78	62.88	42.49	21.80	11.36	59.08	
Stre.	98.73	92.44	83.98	67.32	44.20	23.55	12.48	62.30	
Aver.	98.83	90.93	81.38	65.10	43.35	22.68	11.92	60.69	

 Table 3
 Word accuracy with proposed filter for clean training.

Set A								
Noise	cln	20 dB	15 dB	10 dB	5 dB	0 dB	−5 dB	Aver.
Subw.	99.17	97.82	96.96	93.18	86.03	64.54	28.46	87.71
Babb.	98.64	97.67	96.28	92.41	82.59	52.15	17.29	84.22
Car	98.90	98.42	97.97	95.74	90.10	69.16	27.50	90.28
Exhi.	99.04	97.66	96.17	92.50	80.22	57.64	29.07	84.84
Aver.	98.94	97.90	96.85	93.46	84.74	60.88	25.58	86.77
				Set B				
Noise	cln	20 dB	15 dB	10 dB	5 dB	0 dB	−5 dB	Aver.
Rest.	99.17	97.88	95.21	90.91	77.62	49.19	15.87	82.17
Stre.	98.64	97.70	96.83	93.74	84.43	59.76	29.69	86.50
Airp.	98.90	98.15	97.17	94.75	86.01	63.47	26.78	87.91
T-St.	99.04	97.99	96.82	93.98	84.33	64.24	28.05	87.48
Aver.	98.94	97.93	96.51	93.35	83.10	59.17	25.10	86.02
Set C (MIRS)								
Noise	cln	20 dB	15 dB	10 dB	5 dB	0 dB	−5 dB	Aver.
Subw.	99.02	97.97	96.62	92.88	83.33	57.63	23.61	85.69
Stre.	98.73	97.07	96.70	93.26	80.74	55.99	26.21	84.76
Aver.	98.88	97.52	96.66	93.07	82.04	56.81	24.91	85.22

Table 4 Recognition accuracy w/o Wiener filter for multi-condition training.

Set A								
Noise	cln	20 dB	15 dB	10 dB	5 dB	0 dB	−5 dB	Aver.
Subw.	98.86	98.25	97.36	95.86	90.67	69.45	30.76	90.32
Babb.	98.76	97.82	96.86	94.38	85.73	59.16	23.67	86.79
Car	98.66	97.97	97.49	95.79	89.56	61.41	20.91	88.45
Exhi.	98.92	97.96	96.91	95.06	89.29	67.63	28.05	89.37
Aver.	98.80	98.00	97.16	95.28	88.82	64.42	25.85	88.74
				Set B				
Noise	cln	20 dB	15 dB	10 dB	5 dB	0 dB	−5 dB	Aver.
Rest.	98.86	97.64	96.50	92.08	82.25	57.51	23.64	85.20
Stre.	98.76	97.58	96.49	94.23	85.82	64.42	27.30	87.71
Airp.	98.66	98.12	97.61	94.72	88.16	67.88	31.26	89.30
T-St.	98.92	97.81	96.24	92.97	84.23	59.89	21.01	86.23
Aver.	98.80	97.79	96.71	93.50	85.12	62.43	25.81	87.11
	Set C (MIRS)							
Noise	cln	20 dB	15 dB	10 dB	5 dB	0 dB	−5 dB	Aver.
Subw.	98.99	97.76	96.38	93.15	83.79	52.01	18.70	84.62
Stre.	98.40	96.46	96.49	93.41	85.22	60.07	27.36	86.33
Aver.	98.70	97.11	96.44	93.28	84.51	56.04	23.03	85.48

Table 5 Recognition accuracy with Wiener filter for multi-condition training.

Set A									
Noise	cln	20 dB	15 dB	10 dB	5 dB	0 dB	−5 dB	Aver.	
Subw.	98.89	98.00	97.30	95.49	91.10	76.11	40.71	91.60	
Babb.	98.55	97.79	97.07	95.86	90.36	68.11	28.08	89.84	
Car	98.63	97.73	97.58	96.60	92.57	76.68	36.24	92.24	
Exhi.	98.77	97.87	97.28	95.06	88.34	73.22	42.27	90.36	
Aver.	98.71	97.85	97.31	95.76	90.60	73.53	36.83	91.01	
	Set B								
Noise	cln	20 dB	15 dB	10 dB	5 dB	0 dB	-5 dB	Aver.	
Rest.	98.89	98.00	97.18	94.87	87.04	65.31	25.58	88.48	
Stre.	98.55	97.97	97.07	95.28	88.97	70.86	38.21	90.03	
Airp.	98.63	98.06	96.96	95.71	90.64	74.02	35.49	91.08	
T-St.	98.77	98.03	97.25	95.53	89.69	72.01	35.98	90.51	
Aver.	98.71	98.02	97.12	95.35	89.09	70.55	33.82	90.03	
	Set C (MIRS)								
Noise	cln	20 dB	15 dB	10 dB	5 dB	0 dB	−5 dB	Aver.	
Subw.	98.65	97.88	97.27	95.21	89.38	69.33	34.60	89.82	
Stre.	98.31	96.89	96.80	94.95	88.24	66.32	34.19	88.64	
Aver.	98.48	97.39	97.04	95.08	88.81	67.83	34.40	89.23	

 Table 6
 Comparative result for proposed system and ETSI AFE.

	Mode	Set A	Set B	Set C	Overall
	Multi	91.01	90.03	89.23	90.26
Proposed	Clean	86.77	86.02	85.22	86.16
	Aver.	88.89	88.03	87.23	88.21
	Multi	92.20	91.54	89.21	91.34
ETSI AFE	Clean	87.18	86.29	83.25	86.04
	Aver.	89.69	88.92	86.23	88.69

 Table 7
 Aurora 2 relative improvement.

Training Mode	Set A	Set B	Set C	Overall
Multi	12.72%	20.30%	18.38%	16.89%
Clean	66.50%	72.67%	61.59%	67.98%
Average	39.61%	46.49%	39.98%	42.43%

Fig. 1. The frequency mapping function in the bilinear transformation.

Autoregressive model

 In statistics and signal processing, an autoregressive (AR) model is a type of random process which is often used to model and predict various types of natural phenomena.

$$x(n) = \sum_{k=1}^{P} a_{k} x(n-k) + \Theta_{0} e(n)$$

Filtering in Autocorrelation Domain

 Filtering is done in the autocorrelation Domain to estimate the generalized autocorrelation function of the filtered speech sw[n] as follows

$$\tilde{r}_{ss}[m] = \sum_{n=0}^{\infty} \hat{s}_{m}[n] \hat{s}_{w,m}[n] = \sum_{n=0}^{\infty} r_{hh}[k] \tilde{r}_{xx}[m-k]$$

where $\tilde{r}_{xx}[m]$ is the generalized autocorrelation function of the noisy speech, and $\tilde{r}_{hh}[m]$ is the autocorrelation function of $\hat{h}_{w}[m]$.

Blind Equalization

- Blind equalization is applied on the cepstral coefficients In order to minimize the channel effects.
- This technique is based on the least mean square algorithm, which minimizes the mean square error computed as a difference between the current and reference cepstrum.

```
w t=M in(1,M ax(0,lnE-4.75))

step=0.008 w t

c_{eq}[i] = c[i] - bias[i], \quad 0 \le i \le 13

bias[i] = bias[i] + step \cdot (c_{eq}[i] - c^{Ref}[i]), \quad 0 \le i \le 13
```

 $bias[i] = bias[i] + step \cdot (c_{eq}[i] - c^{Ref}[i]), \quad 0 \le i \le 13$ Where wt is the weighting parameter, InE indicates the log energy of the current frame, bias[i] is initialized on 0.0(0<=i<=13) and $c^{Ref}[i]$ is the reference cepstrum.

The long –term cepstrum of training clean speech is used as reference cepstrum.

Levinson-Durbin recursion

$$r_{x}(m) - \sum_{k=1}^{p} a_{k} r_{x} \mid m - k \mid = 0 \Rightarrow \begin{cases} r(0) & \dots & r(p-1) \\ \vdots & \ddots & \vdots \\ r(p-1) & \dots & r(0) \end{cases} \begin{pmatrix} a_{1} \\ \vdots \\ a_{p} \end{pmatrix} = \begin{pmatrix} r(0) \\ \vdots \\ r(P) \end{pmatrix}$$

$$\begin{pmatrix} r(0) \\ \vdots \\ r(P) \end{pmatrix} - \begin{pmatrix} r(0) & \dots & r(p-1) \\ \vdots & \ddots & \vdots \\ r(p-1) & \dots & r(0) \end{pmatrix} \begin{pmatrix} a_{1} \\ \vdots \\ a_{p} \end{pmatrix} = \bar{0}$$

$$\xi_{\min}^{m} = r_{x}(0) - \sum_{k=1}^{p} a_{k}^{(m)} r_{x}(k) = [r_{x}(0) \cdots r_{x}(m)] \begin{pmatrix} a_{1} \\ \vdots \\ a_{p} \end{pmatrix}$$

$$\begin{pmatrix} r(0) & \dots & r(p-1) \\ \vdots & \ddots & \vdots \\ r(p-1) & \dots & r(0) \end{pmatrix} \begin{pmatrix} 1 \\ -a_{1} \\ \vdots \\ -a_{r} \end{pmatrix} = \begin{pmatrix} \zeta_{\min}^{m} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$