1 Let \star be defined on \mathbb{Z} by letting $a \star b = ab$. Verify whether (\mathbb{Z}, \star) is a group by checking whether it satisfy the 3 group axioms.

Solution:

Observe that in our description, the operation \star is already defined on \mathbb{Z} , hence we only need to show the 3 group axioms.

- Suppose $c \in \mathbb{Z}$. Thus we have $(a \star b) \star c = (a \cdot b) \cdot c = abc$; as well as $a \star (b \star c) = a \cdot (b \cdot c) = abc$. Hence \star is associative.
- Now, consider $e \in \mathbb{Z}$ where e = 1. Hence for any integer we have: $a \star e = ae = a$, as well as $e \star a = ea = a$. Hence, there exists an identity element for the operation \star .
- Finally, let $a^{-1}, b^{-1} \in \mathbb{Z}$. By definition of an inverse we have, $a^{-1} \star a = a^{-1}a = e$, as well as $b^{-1} \star b = b^{-1}b = e$. Since for any $a, b \in \mathbb{Z}$, $a \star b = ab = ba = b \star a$, this operation is also commutative. And hence, the right hand inverse of a, b should also follow.

Since the binary operation \star satisfies all three group axioms, therefore \mathbb{Z}, \star is a group. \square

- **2** Let \star be defined on $2\mathbb{Z} = \{2n \mid n \in \mathbb{Z}\}$ by letting $a \star b = a + b$. Verify whether $(2\mathbb{Z}, \star)$ is a group as in the item above.
- **3** Let G be a group and suppose that $(ab)^2 = a^2b^2$ for all a and for all b in G. Prove that G is an abelian group.

Proof. Since G is defined as a group we have: $a^2b^2 = aabb$. Multiplying the left by a^{-1} and the right by b^{-1} we get: $a^{-1}aabb = aabbb^{-1} \Rightarrow ab^2 = a^2b$

- **4** Let $\{H_i\}_{i\in I}$ be an arbitrary collection of subgroups of a group G for some index set I, show that $\bigcap_{i\in I} H_i$ is a subgroup of G. Is $\bigcup_{i\in I} H_i$ a subgroup of G? Justify your claims.
- **5** Let G be an abelian group. Show that the elements of finite order in G form a subgroup. This subgroup is called the torsion subgroup of G.
- **6** Let S be any subset of group G.
- (a) Show that $H_s = \{x \in G | xs = sx \text{ for all } s \in S\}$ is a subgroup of G.
- (b) Show that H_G is an abelian group, where H_G is called the center of G.

Problem Set 2

7 List all of the elements in each of the following subgroups and draw the lattice diagram* as needed.

- (a) The subgroup of \mathbb{Z}_{24} generated by 15
- (b) All subgroups \mathbb{Z}_{48} draw lattice here
- (c) The subgroup generated by 5 in $U(18) = (\mathbb{Z}_{18})^{\times}$