Math-45-Krauel-F20

Assignment Math45-Module-12-Exercises due 10/29/2020 at 11:59pm PDT

Following the method performed in the videos, to solve the differential equation 7y'' + 7y' + 4y = 0 we would first plug in which of the following functions?

• A. $y = e^{mx}$

• B. $y = x^m$

• C. $y = 7x^2 + 7x + 4$

• D. $y = \cos(mx)$

• E. $y = \sin(mx)$

Solution:

SOLUTION:

The correct answer is A.

Correct Answers:

• A

Following the method performed in the videos to solve 6y'' + 2y' + 7y = 0, we seek find the *m* satisfying which of the following expressions?

- A. $6m^2 + 2m + 7 = 0$
- B. $5m^2 + 6m + 7 = 0$
- C. m = 6
- D. (m-6)(m-2)=0

Solution:

SOLUTION:

The correct answer is A. *Correct Answers:*

A

- **3.** (1 point) Mark all of the possibilities that can arise when solving a quadratic equation as in the method of solving order 2 homogeneous linear differential equations.
 - A. One repeated real root.
 - B. No roots.
 - C. Two complex roots.
 - D. One complex root.
 - E. One real root and one complex root.
 - F. Two distinct real roots.
 - G. None of the above

Solution:

SOLUTION:

The correct answer is ACF.

Correct Answers:

• ACF

Consider the differential equation y'' + 10y' + 34y = 0. Note that the methods described in the videos give rise to the two values $m_1 = 5 + i3$ and $m_2 = 5 - i3$. Which of the following is the general solution to the differential equation?

- A. $y = c_1 e^{5x} \cos(3x) + c_2 e^{5x} \sin(3x)$
- B. $y = c_1 e^{5x} + c_2 e^{3x}$
- C. $y = c_1 e^{(5+i3)x} + c_2 x e^{(5+i3)x}$
- D. $y = ce^{5x} (\cos(3x) + \sin(3x))$

Solution:

SOLUTION:

The correct answer is A.

Correct Answers:

A

5. (1 point) Find the general solution to 5y'' + 5y' - 10y = 0. Enter your answer as $y = \dots$. In your answer, use c_1 and c_2 to denote arbitrary constants and x the independent variable. Enter c_1 as c_1 and c_2 as c_2 .

_ help (equations)

Correct Answers:

- $y = c1*e^x+c2*e^(-2*x)$
- **6.** (1 point) The general solution to the second-order differential equation 9y'' + 24y' + 16y = 0 is in the form $y(x) = c_1e^{rx} + c_2xe^{rx}$. Find the value of r.

Answer: r =

Correct Answers:

−4/3

- 7. (1 point) Mark all of the differential equations below that are homogeneous linear differential equations with constant coefficients.
 - A. 6y'' + 9y' + 9y = 0
 - B. $7y'' + 4y' + 9y = 4x^2$
 - C. 2y'' + 4y = 0
 - D. 7y'' + 9y' + 4y = 0
 - E. 9y'' + 6y' = 0

- F. 4y'' + 4y' + 9y = 0
- G. $6y'' + 9y' + 9y = e^{4x}$
- H. None of the above

Solution:

SOLUTION:

The correct answer is ACDEF.

Correct Answers:

• ACDEF

Which of the followins is the solution to the differential equation $y^{(4)} - 24y''' + 206y'' - 744y' + 945y = 0$? (You may use something like WolframAlpha to find the roots of the polynomial!)

• A.
$$y = c_1 e^{3x} \left(\cos(5x) + c_2 e^{3x} \sin(5x) + c_3 e^{7x} + c_4 e^{9x}\right)$$

• B.
$$y = c_1 e^{3x} + c_2 e^{5x} + c_3 e^{7x} + c_4 e^{9x}$$

• C.
$$y = c_1 e^{3x} + c_2 e^{5x} + c_3 x^2 e^{7x} + c_4 x^3 e^{7x}$$

• D.
$$y = c_1 e^{3x} + c_2 x e^{3x} + c_3 x^2 e^{3x} + c_4 x^3 e^{3x}$$

Solution:

SOLUTION:

The correct answer is B.

Correct Answers:

• B

Generated by © WeBWorK, http://webwork.maa.org, Mathematical Association of America