IN THE CLAIMS

Please amend the claims as follows:

1. (Currently Amended) A hair dye composition comprising a dissociative direct dye represented by the following formula (1):

wherein, R^1 , R^2 , R^3 and R^4 each independently represents a hydrogen atom or a substituent, and X represents a hydroxyl group or -NHSO₂ R^5 , in which R^5 represents an alkyl, aryl or heterocyclic group, with the proviso that each of the groups may have one or more substituents; and A represents a divalent group capable of forming a methine dye as a whole compound together with the portion other than A

wherein A in the dissociative direct dye (1) is a group represented by any one of the following formulas (Cp-1), (Cp-2) and (Cp-4) through (Cp-11):

Application No. 10/660,536
Reply to Office Action of November 4, 2004

(Cp-1) (Cp-2) (Cp-4) (Cp-4)
$$R_{12}^{17}$$
 R_{18}^{18} R_{12}^{17} R_{18}^{18} R_{14}^{17} R_{14}^{18} R_{14}^{17} R_{14}^{18} R_{14}^{17} R_{14}^{18} R_{14}^{19} R_{14}^{19}

in formulas (Cp-1), (Cp-2) and (Cp-4) through (Cp-11), * is a position bonding to the benzylidene group in formula (1),

in formula (Cp-1), R^{11} represents a cyano group, acyl group, aryl group, heterocyclic group or group $-C(R^{101})=C(R^{102})-R^{103}$, in which R^{101} , R^{102} and R^{103} each independently represents a hydrogen atom or a substituent with the proviso that at least one of R^{102} and R^{103} is an electron attracting group having a Hammett σp value of 0.1 or greater,

in formula (Cp-2), R¹² represents a cyano, acyl, alkoxycarbonyl, carbamoyl, aryl or heterocyclic group, and R¹³ and R¹⁴ each independently represents a hydrogen atom or an alkyl, aryl or heterocyclic group,

in formula (Cp-4), R¹⁷ and R¹⁸ each independently represents a hydrogen atom or an alkyl, aryl or heterocyclic group,

in formula (Cp-5), R²¹ and R²² each independently represents a cyano, carbamoyl, alkoxycarbonyl, alkylsulfonyl or arylsulfonyl group, and R²³ represents a hydrogen atom or an alkyl, aryl or heterocyclic group,

in formula (Cp-6), R²⁴, R²⁵ and R²⁶ each independently represents a hydrogen atom or a substituent,

in formula (Cp-7), R^{30} and R^{31} each independently represents a hydrogen atom or a substituent, and Z^1 represents an atomic group necessary for the formation of a 5- or 6-membered ring together with N-C=N,

in formula (Cp-8), R^{32} represents a hydrogen atom or a substituent, and Z^2 represents an atomic group necessary for the formation of a 5- or 6-membered ring together with N-C=N,

in formula (Cp-9), R^{33} , R^{34} and R^{35} each independently represents a hydrogen atom or a substituent, Z^3 represents a nitrogen atom or $-C(R^{36})=$, R^{36} representing a hydrogen atom or a substituent, with the proviso that when Z^3 represents $-C(R^{36})=$, R^{34} and R^{36} may be coupled to form a 5-membered or 6-membered ring,

in formula (Cp-10), R³⁷ and R³⁸ each independently represents a cyano, carbamoyl, alkoxycarbonyl, alkylsulfonyl or arylsulfonyl group, R³⁹ represents a hydrogen atom or a substituent, u stands for an integer of from 0 to 4, and Z⁴ represents -SO₂- or -SO-, and

in formula (Cp-11), R⁴⁰ and R⁴¹ each independently represents a cyano, carbamoyl, alkylsulfonyl or arylsulfonyl group, R⁴², R⁴³ and R⁴⁴ each independently represents a hydrogen atom or a substituent, and t stands for an integer of from 0 to 4, with the proviso that the above-described groups may have one or more substituents).

2. (Canceled)

- 3. (Original) A hair dye composition of Claim 1, wherein R¹ and R² in the dissociative direct dye (1) are each a hydrogen or halogen atom, or an alkyl, cyano, acylamino, ureido, alkoxycarbonylamino, aryloxycarbonylamino, sulfamoylamino, alkoxycarbonyl, sulfamoyl or carbamoyl group.
- 4. (Original) A hair dye composition of Claim 1, wherein R³ and R⁴ in the dissociative direct dye (1) are each a hydrogen atom, a halogen atom, or an alkyl or acylamino group which may be substituted.
- 5. (Original) A hair dye composition of Claim 1, wherein X in the dissociative direct dye (1) is a hydroxyl group or -NHSO₂ R^5 , in which R^5 is an alkyl group which may be substituted.
- 6. (Currently Amended) A hair dye composition of Claim 2 1, wherein A in the dissociative direct dye (1) is a group (which may have one or more substituents) selected from the groups represented by:

formula (Cp-1) in which R^{11} is a cyano group, acyl group, heterocyclic group or group -C(R^{101})=C(R^{102})- R^{103} ,

formula (Cp-2) in which R^{12} is a cyano group, aryl group or heterocyclic group and R^{13} and R^{14} are each a hydrogen atom, alkyl group or aryl group, with the proviso that at least one of R^{13} and R^{14} represents a hydrogen atom,

formula (Cp-3) in which R¹⁵ is an alkyl, amino, alkylamino, arylamino, heterocyclic amino, alkoxy, acylamino, alkoxycarbonylamino, ureido, alkoxycarbonyl, carbamoyl or evano group, and R¹⁶ is an aryl or heterocyclic group,

formula (Cp-4) in which R¹⁷ and R¹⁸ are each an alkyl or aryl group,

formula (Cp-5) in which R^{21} and R^{22} are each a cyano, carbamoyl or alkoxycarbonyl group, and R^{23} is a hydrogen atom, alkyl group or alkyl group,

formula (Cp-6) in which R²⁴ is a hydrogen atom or an aryl, acylamino, alkylsulfonylamino or arylsulfonylamino group, and R²⁵ and R²⁶ are each a hydrogen atom or an aryl, alkoxycarbonyl, carbamoyl, alkylsulfonyl, arylsulfonyl or cyano group,

formula (Cp-7) in which R^{30} and R^{31} are each a hydrogen atom or an alkyl, aryl, heterocyclic, alkoxycarbonyl, carbamoyl, alkylsulfonyl, arylsulfonyl or cyano group, and Z^1 is a group capable of forming the following ring systems:

wherein, R¹¹¹ represents a hydrogen atom or an alkoxy, amino, alkylamino, arylamino, heterocyclic amino, acylamino, ureido, alkoxycarbonylamino, aryloxycarbonylamino, sulfamoylamino, alkylsulfonylamino, arylsulfonylamino, alkylthio, arylthio or heterocyclic thio group, R¹¹² represents a hydrogen or halogen atom, or an alkyl, acyl, carbamoyl or alkoxycarbonyl group, R¹¹³ and R¹¹⁴ each independently represents a hydrogen atom or an alkyl group, and R¹¹⁶ represents a hydrogen atom or an alkyl group, and R¹¹⁶ represents a hydrogen atom or an alkyl, aryl, alkoxy, aryloxy, amino, alkylamino, arylamino, heterocyclic amino, acylamino, ureido, alkoxycarbonylamino, alkylsulfonylamino, arylsulfonylamino, alkylthio or arylthio group, R¹¹⁷ and R¹¹⁸ each independently represents a

hydrogen atom or an alkyl, aryl or heterocyclic group, and R¹¹⁹ and R¹²⁰ each independently represents a hydrogen atom or an alkyl, aryl, heterocyclic, acyl, alkoxycarbonyl or carbamoyl group or they may be coupled together to form a benzene ring,

formula (Cp-8) in which R^{32} is a hydrogen atom or an alkyl, aryl, heterocyclic, alkoxycarbonyl, carbamoyl, alkylsulfonyl, arylsulfonyl or cyano group, and Z^2 is a group capable of forming the following ring systems:

$$R^{32}$$
 R^{32}
 R

in which, R¹¹¹ to R¹²⁰ have the same meanings as described above,

formula (Cp-9) in which Z^3 is $-C(R^{36})$ =, R^{36} represents a hydrogen atom or an acylamino group, R^{33} and R^{34} are each a hydrogen atom, a halogen atom, an alkyl group or acylamino group, and R^{35} is a hydrogen atom or an alkyl group; or in which Z^3 is $-C(R^{36})$ =, and R^{34} and R^{36} are coupled together to form a benzene ring which may be substituted with a halogen atom or an amino, alkylamino, arylamino, heterocyclic amino, acylamino, ureido, alkoxycarbonylamino, alkylsulfonylamino or arylsulfonylamino group,

formula (Cp-10) in which R³⁷ and R³⁸ are a cyano or alkoxycarbonyl group, R³⁹ is a hydrogen or halogen atom or an alkyl, aryl, alkoxy, aryloxy, amino, alkylamino, arylamino, heterocyclic amino, acylamino, ureido, alkoxycarbonylamino, alkylsulfonylamino,

arylsulfonylamino, alkylthio or arylthio group, u is an integer of from 0 to 2, and Z^4 is -SO₂-, and

formula (Cp-11) in which R^{40} and R^{41} are each a cyano or alkoxycarbonyl group, and R^{42} , R^{43} and R^{44} are each a hydrogen or halogen atom or an alkyl, aryl, alkoxy, aryloxy, amino, acylamino, ureido, alkoxycarbonylamino, alkylsulfonylamino, arylsulfonylamino, alkylthio or arylthio group.

- 7. (Currently Amended) A hair dye composition of Claim 2 1 or 6, wherein A in the dissociative direct dye (1) is a group represented by formula (Cp-1), (Cp-2), (Cp-3), (Cp-4) or (Cp-8).
- 8. (New) A hair dye composition comprising a dissociative direct dye represented by the following formula (1):

wherein, R¹, R², R³ and R⁴ each independently represents a hydrogen atom or a substituent, and X represents a hydroxyl group or -NHSO₂R⁵, in which R⁵ represents an alkyl, aryl or heterocyclic group, with the proviso that each of the groups may have one or more substituents; and A represents a divalent group capable of forming a methine dye as a whole compound together with the portion other than A,

wherein A in the dissociative direct dye (1) is a group represented by the formula (Cp-3):

(Cp-3)

in formula (Cp-3), * is a position bonding to the benzylidene group in formula (1), in formula (Cp-3), R¹⁵ represents a hydrogen atom or an alkyl, aryl, heterocyclic, amino, alkylamino, arylamino, heterocyclic amino, alkoxy, acylamino, alkoxycarbonylamino, ureido, alkoxycarbonyl, carbamoyl or cyano group, and R¹⁶ represents a hydrogen atom or an alkyl or heterocyclic group.

- 9. (New) A hair dye composition of claim 8, wherein R¹ and R² in the dissociative direct dye (1) are each a hydrogen or halogen atom, or an alkyl, cyano, acylamino, ureido, alkoxycarbonylamino, aryloxycarbonylamino, sulfamoylamino, alkylsulfonylamino, arylsulfonylamino, alkoxycarbonyl, sulfamoyl or carbamoyl group.
- 10. (New) A hair dye composition of claim 1, wherein R³ and R⁴ in the dissociative direct dye (1) are each a hydrogen atom, a halogen atom, or an alkyl or acylamino group which may be substituted.
- 11. (New) A hair dye composition of claim 8, wherein X in the dissociative direct dye (1) is a hydroxyl group or -NHSO₂ R^5 , in which R^5 is an alkyl group which may be substituted.

Application No. 10/660,536 Reply to Office Action of November 4, 2004

12. (New) A hair dye composition of Claim 8, wherein A in the dissociative direct dye (1) is a group (which may have one or more substituents) selected from the groups represented by:

formula (Cp-3) in which R¹⁵ is an alkyl, amino, alkylamino, arylamino, heterocyclic amino, alkoxy, acylamino, alkoxycarbonylamino, ureido, alkoxycarbonyl, carbamoyl or cyano group, and R¹⁶ is a heterocyclic group.

13. (New) A hair dye composition of Claim 8, wherein A in the dissociative direct dye (1) is a group represented by formula (Cp-3).