SOLUTIONS TO SAMPLE EXAM 1

Math 413/513 - FALL 2010

• Problem 1

Let V be the subspace of R^4 generated by the vectors $v_1 = (1, 1, 0, 0), v_2 = (0, 1, 1, 0), v_3 = (0, 0, 1, 1)$ and W generated by the vectors $w_1 = (1, 0, 1, 0), w_2 = (0, 2, 1, 1), w_3 = (1, 2, 1, 2)$ in \mathbb{R}^4 .

(a) Determine the dimensions of V and W.

Solution. dim(V) = 3 since $V = \text{span}\{v_1, v_2, v_3\}$ and the vectors v_1, v_2, v_3 are lin. independent. Indeed, $a_1v_1 + a_2v_2 + a_3v_3 = 0 \Rightarrow a_1(1, 1, 0, 0) + a_2(0, 1, 1, 0) + a_3(0, 0, 1, 1) = (0, 0, 0, 0) \Rightarrow (a_1, a_1 + a_2, a_2 + a_3, a_3) = (0, 0, 0, 0) \Rightarrow a_1 = 0, a_2 = 0, a_3 = 0.$

Same argument for W: $\dim(W) = 3$ since w_1, w_2, w_3 are lin. ind. (a similar argument is needed!)

(b) Find a basis for the sum V + W.

Solution. Since $\{v_1, v_2, v_3\}$ is lin. ind. and $w_1 \notin \text{span}\{v_1, v_2, v_3\}$ (This needs proof!) then, by Theorem 1.7, $\{v_1, v_2, v_3, w_1\}$ is lin. ind. in \mathbb{R}^4 . Hence $\text{span}\{v_1, v_2, v_3, w_1\} = \mathbb{R}^4$. Now $\{v_1, v_2, v_3, w_1\} \subset V + W$ means that $V + W = \mathbb{R}^4$. We conclude that $\{v_1, v_2, v_3, w_1\}$ is a basis for V + W.

(c) Find a basis for the intersection $V \cap W$. Verify that $\dim(V + W) + \dim(V \cap W) = \dim(V) + \dim(W)$.

Solution. For a vector v to belong to $V \cap W$, it is necessary and sufficient to have v as a linear combination of both bases $\{v_1, v_2, v_3\}$ (for V) and $\{w_1, w_2, w_3\}$ for W:

$$v = a_1v_1 + a_2v_2 + a_3v_3 = b_1w_1 + b_2w_2 + b_3w_3$$
, for $a_i, b_i \in \mathbb{R}, i = 1, 2, 3$.

Hence a's and b's are solutions to the underdetermined linear system

$$a_1 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + a_3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = b_1 \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + b_2 \begin{pmatrix} 0 \\ 2 \\ 1 \\ 1 \end{pmatrix} + b_3 \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$$

Performing reduced row echelon form on the matrix $\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 2 & 2 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 2 \end{pmatrix}$ yields: $\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & -1 & -1 \end{pmatrix}$

hence the system above is equivalent to

$$a_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + a_3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = b_1 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} + b_2 \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \end{pmatrix} + b_3 \begin{pmatrix} 2 \\ 0 \\ 2 \\ -1 \end{pmatrix},$$

or $a_1 = b_2 + 2b_3$, $a_2 = b_2$, $a_3 = b_2 + 2b_3$, $0 = b_1 - b_2 - b_3$. As a consequence, we can choose arbitrarily $b_2 = s$ and $b_3 = t$, then $a_1 = s + 2t$, $a_2 = s$, $a_3 = s + 2t$, $b_1 = s + t$.

Then every $v \in V \cap W$ can be expressed as $v = (s+2t)v_1 + sv_2 + (s+2t)v_3 = (s+t)w_1 + sw_2 + tw_3$. or $v = s(v_1 + v_2 + v_3) + t(2v_1 + 2v_3) = s(w_1 + w_2) + t(w_1 + w_3)$. It means that a basis for $V \cap W$ consists of the two vectors $v_1 + v_2 + v_3 = w_1 + w_2 = (1, 2, 2, 1)$ and $2v_1 + 2v_3 = w_1 + w_3 = (2, 2, 2, 2)$.

One verifies that $\dim(V + W) + \dim(V \cap W) = 4 + 2 = 6 = 3 + 3 = \dim(V) + \dim(W)$. Q.E.D.

1

• Problem 2

Given a vector space V, show that when two finite dimensional subspaces W_1 and W_2 satisfy

$$\dim(W_1 + W_2) = \dim(W_1 \cap W_2) + 1$$

then either $W_1 \subset W_2$ or $W_2 \subset W_1$ and $|\dim(W_1) - \dim(W_2)| = 1$.

Solution. Denote $n = \dim(W_1 + W_2)$. We distinguish two cases:

Case 1. If
$$W_1 \subseteq W_2$$
 then obviously $W_1 \cap W_2 = W_1$ and $W_1 + W_2 = W_2$, $\dim(W_1) = n - 1$ and $\dim(W_2) = n$.

Case 2. If $W_1 \nsubseteq W_2$, then there exists $w \in W_1 \setminus W_2$. Let $\{v_1, v_2, \dots v_{n-1}\}$ be a basis for $W_1 \cap W_2$. We claim that $\{v_1, v_2, \dots v_{n-1}, w\}$ is then a basis in $W_1 + W_2$. Indeed, by Theorem 1.7, $\{v_1, v_2, \dots v_{n-1}, w\}$ is lin. independent and it contains exactly n elements, therefore it generates (is a basis for) $W_1 + W_2$. This means $W_1 = W_1 + W_2$, dim $(W_1) = n$ and dim $(W_2) = n - 1$. Q.E.D.

• Problem 3

Consider a linear transformation $T: V \to V$ over a finite dimensional vector space V with $\dim(V) = n$. Let $v \in V$ be a given vector such that $T^n(v) = 0$, but $T^{n-1}(v) \neq 0$.

(a) Prove that the set $\beta = \{v, T(v), T^2(v), \dots T^{n-1}(v)\}$ forms a basis for V.

Solution. Since the set contains exactly $n = \dim(V)$ elements, to show it is a basis for V it is sufficient to show that it is a linear independent set in V. Assume

$$a_0v + a_1T(v) + a_2T^2(v) + \dots + a_{n-1}T^{n-1}(v) = 0.$$

Applying T^{n-1} to both sides and using linearity and the fact that $T^n(v) = 0$, we obtain $a_0 T^{n-1}(v) = 0$, and since $T^{n-1}(v) \neq 0$, we conclude $a_0 = 0$. Hence

$$a_1T(v) + a_2T^2(v) + \dots + a_{n-1}T^{n-1}(v) = 0.$$

We continue by applying T^{n-2} to both sides, to obtain $a_1T^{n-1}(v)=0$, hence $a_1=0$, etc. After n iterations of this procedure, we obtain $a_0=a_1=a_2=\ldots=a_{n-1}=0$. Q.E.D.

(b) Find a basis for the null-space N(T) and the range R(T) of T and verify the dimension theorem.

Solution. Since $T^n(v) = 0$ it means $T^{n-1}(v) \in N(T)$. Also, it is clear that $\{T(v), T^2(v), \dots, T^{n-1}(v)\} \subset R(T)$. Based on these observations, we claim that

$$N(T) = \operatorname{span}\{T^{n-1}(v)\}\ \text{and}\ R(T) = \operatorname{span}\{T(v), T^{2}(v), \dots, T^{n-1}(v)\}$$

Indeed, by the inclusions above it means that $\dim(N(T) \ge 1)$ and $\dim(R(T)) \ge n-1$. But the dimension theorem guarantees that $\dim(N(T)) + \dim(R(T)) = n$, hence $\dim(N(T)) = 1$ and $\dim(R(T)) = n-1$. Thus the claim is proved.

(c) Calculate $[T]_{\beta}$.

Solution. It is easy to construct the matrix representation of T in the basis β , since $T(v) = 0 \cdot v + 1 \cdot T(v) + \dots + 0 \cdot T^{n-1}(v)$ etc. We obtain:

$$[T]_{\beta} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

• Problem 4

Let V be a finite dimensional vector space.

(a) Show that for any given subspace W_1 of V, there exists a subspace W_2 of V such that $W_1 \oplus W_2 = V$

Solution. Since V is finite dimensional ,say $\dim(V) = n$, so is W_1 . Denote $\dim(W_1) = k$. Let $\beta_1 = \{v_1, v_2, \dots, v_k\}$. be a basis for W_1 . Then we can complete β_1 to a basis $\beta = \{v_1, v_2, \dots, v_k, v_{k+1}, \dots, v_n\}$ for V. We claim that $W_2 = \text{span}\{v_{k+1}, \dots, v_n\}$ is a subspace in V satisfying $W_1 \oplus W_2 = V$. Indeed, one easily verifies that $W_1 + W_2 = V$ and $W_1 \cap W_2 = \{0\}$, using the properties of the basis β .

(b) Let $T: V \to V$ be the projection on W_1 along W_2 , where W_1 and W_2 are as in part (a). Show that $T^2 = T$.

Solution. Let $v \in V = W_1 \oplus W_2$, with the unique representation $v = v_1 + v_2$, with $v_1 \in W_1, v_2 \in W_2$. Then $T^2(v) = T(T(v)) = T(v_1) = v_1$, the last equality since $v_1 = v_1 + 0$ is the unique representation of $v_1 \in W_1$ as a sum of elements in W_1 and W_2 . Hence $T^2(v) = T(v)$. Since v was arbitrary in V, it follows that $T^2 = T$.

(c) Conversely, show that any linear transformation $T: V \to V$ satisfying $T^2 = T$ is a projection on R(T) along N(T).

Solution.

Consider T a linear transformation satisfying $T^2 = T$. Denote $W_1 = R(T)$ and $W_2 = N(T)$. We claim that $N(T) \oplus R(T) = V$ and T is the projection onto W_1 along W_2 .

Indeed, for $v \in V$, write v = T(v) + v - T(v). We have $T(v) \in R(T)$ and $v - T(v) \in N(T)$, since $T(v - T(v)) = T(v) - T^2(v) = T(v) - T(v) = 0$. Hence $V = W_1 + W_2$. To show $W_1 \cap W_2 = \{0\}$, let $v \in W_1 \cap W_2$. It implies that v = T(w) for some $W \in V$ and T(v) = 0. Then $0 = T(v) = T^2(w) = T(w) = v$, hence v = 0.

Using the unique representation of any v in $W_1 \oplus W_2$ as v = T(v) + (v - T(v)), it is clear that T(v) = T(v) implies that T acts on the direct sum as the projection on W_1 along W_2 .

• Problem 5

Given a 2×2 matrix $P = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, define the map $T : \mathcal{M}_{2 \times 2}(\mathbb{R}) \to \mathcal{M}_{2 \times 2}(\mathbb{R})$ given by left multiplication by P:

$$T(A) = PA$$
, for $A \in \mathcal{M}_{2\times 2}(\mathbb{R})$.

(a) Show that T is linear.

Solution. We easily verify $T(A_1 + A_2) = P(A_1 + A_2) = PA_1 + PA_2 = T(A_1) + T(A_2)$ and T(cA) = PcA = cPA = cT(A) for $c \in \mathbb{R}$, by using the properties of matrix addition and multiplication.

(b) Determine the matrix representation of T in the standard ordered basis for $\mathcal{M}_{2\times 2}(\mathbb{R})$

$$\{\begin{pmatrix}1&0\\0&0\end{pmatrix},\quad\begin{pmatrix}0&1\\0&0\end{pmatrix},\quad\begin{pmatrix}0&0\\1&0\end{pmatrix},\quad\begin{pmatrix}0&0\\0&1\end{pmatrix}\}.$$

Solution. We compute $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix}$ etc and therefore obtain

$$[T] = \begin{pmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d \end{pmatrix}.$$

• Problem 6

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined as the reflection about the plane x + y + 2z = 0.

(a) Explain in a few words why T is a linear transformation.

Solution. Addition of vectors obeys the parallelogram rule, hence whether it is performed first between two vectors v, w and then reflected about the plane, or performed directly on the mirror of v and w yields the

same result. Same with scalar multiplication.

(b) Find an expression for T(a,b,c), for any $(a,b,c) \in \mathbb{R}^3$.

[Hint: Find a convenient basis β' in which $[T]_{\beta'}$ is easy to be computed, then use the change of bases formula to compute $[T]_{\beta}$, where β is the standard ordered basis in \mathbb{R}^3 .]

Solution. We pick a convenient basis (with 3 vectors) in \mathbb{R}^3 so that two vectors belong to the plane x+y+2z=0, say $v_1=(2,0,-1)$ and $v_2=(0,2,-1)$ and a third vector is perpendicular to the plane, say $v_3=(1,1,2)$. Then $T(v_1)=v_1, T(v_2)=v_2$, and $T(v_3)=-v_3$. Therefore, in the ordered basis $\beta'=\{v_1,v_2,v_3\}$, T is represented by the matrix:

$$[T]_{\beta'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Denoting my β the standard ordered basis in \mathbb{R}^3 , we know the change of bases matrix from β to β' is

$$Q = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ -1 & -1 & 2 \end{pmatrix}.$$
 We compute $Q^{-1} = \frac{1}{12} \begin{pmatrix} 5 & -1 & -2 \\ -1 & 5 & -2 \\ 2 & 2 & 4 \end{pmatrix}$ use the relation $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$ to obtain

$$[T]_{\beta} = Q[T]_{\beta'}Q^{-1} = \frac{1}{3} \begin{pmatrix} 2 & -1 & -2 \\ -1 & 2 & -2 \\ -2 & -2 & -1 \end{pmatrix}.$$

We conclude that $T(a, b, c) = \frac{1}{3}(2a - b - 2c, -a + 2b - 2c, -2a - 2b - c)$ is the expression for this transformation (in the standard coordinate system).

• Problem 7*

(a) Given a vector space V, show that the union of an increasing sequence of subspaces of V is a subspace of V.

Solution. Let $W_1 \subseteq W_2 \subseteq W_3 \subseteq \ldots \subseteq W_k \subseteq W_{k+1} \subseteq \ldots$ be an increasing sequence of subspaces of V. Denote $W = \bigcup_{k \geq 1} W_k$. We show W is a subspace by showing that it is closed under addition and scalar multiplication. Indeed, let c be a scalar, $u, v \in W$, then there exists $k \geq 1$ such that $u, v \in W_k$. But since W_k is subspace, $u + cv \in W_k$ as well, hence $u + cv \in W$.

(b) Let V be the vector space of infinite sequences of real numbers that converge to 0 and T be the left shift operator on V (see exercise 21, page 76). Show that W, the subset of sequences that have only finitely many nonzero terms, satisfies

$$W = \bigcup_{k>1} N(T^k)$$

and deduce that W is a subspace of V, which is also invariant under T. Determine a basis for W.

Solution. By the definition of T, $N(T) = \text{set of all sequences that have all terms zero (except possibly the first term):$

$$N(T) = {\mathbf{a} = (a_1, 0, 0, \ldots) | a_1 \in \mathbb{R}}.$$

Similarly,

$$N(T^2) = {\mathbf{a} = (a_1, a_2, 0, \ldots) | a_1, a_2 \in \mathbb{R}}.$$

and more generally

$$N(T^k) = {\mathbf{a} = (a_j) | a_j \in \mathbb{R}, a_j = 0 \text{ whenever } j > k}.$$

Clearly $N(T) \subset N(T^2) \subset \dots$ (This is true in fact for ANY linear transformation $T: V \to V$), and, moreover W, being the set of all sequences that have only finitely many nonzero terms, equals their union. By part (a), W is a subspace of V.

W is invariant under T since the action of T does not increase the number of nonzero terms in a sequence (on the contrary, it may decrease the number of nonzero terms.) More precisely,

$$T(N(T^k)) = N(T^{k-1}), \text{ for all } k, \quad \Rightarrow T(W) = T(\bigcup_{k \geq 1} N(T^k)) = \bigcup_{k \geq 1} N(T^{k-1}) = W.$$

A basis for W consists of the infinite set $\{e_1, e_2, \ldots\}$, where e_k is the sequence that has zero everywhere except the k^{th} term, which is equal to 1: e.g. $e_1 = (1, 0, 0, \ldots), e_2 = (0, 1, 0, \ldots)$. (Show this is basis for W!)