Logistic regression

- When response variable is measured/counted, regression can work well.
- But what if response is yes/no, lived/died/ success/failure?
- Model probability of success.
- Probability must be between 0 and 1; need method that ensures this.
- Logistic regression does this; PROC LOGISTIC in SAS.

The rats, part 1

```
Rats given dose of some poison; either live or die:
0 lived
1 died
2 lived
3 lived
4 died
5 died
Basic logistic regression analysis:
options linesize=80;
data rat;
  infile "rat.dat";
  input dose survival $;
proc logistic;
  class survival;
  model survival = dose;
  output out=rat2 pred=pred;
proc print data=rat2;
```

Output

The LOGISTIC Procedure

Model Information

Data Set	WORK.RAT
Response Variable	survival
Number of Response Levels	2
Model	binary logit
Optimization Technique	Fisher's scoring
Number of Observations	Read 6
Number of Observations	Used 6

Response Profile

Total		Ordered
Frequency	survival	Value
3	died	1
3	lived	2

Probability modeled is survival='died'.

Output part 2 (edited)

Convergence criterion (GCONV=1E-8) satisfied.

... snip

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	1.5449	1	0.2139
Score	1.4286	1	0.2320
Wald	1.2037	1	0.2726

Analysis of Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-1.6841	1.7978	0.8774	0.3489
dose	1	0.6736	0.6140	1.2037	0.2726

Interpreting the output

- Like (multiple) regression, get:
 - overall test of model ("global null hypothesis")
 - ◆ tests of significance of individual x's ("analysis of maximum likelihood estimates").
- Here none of them significant (only 6 observations).
- These tests all agree for regression, but don't for logistic regression. Look for consistent picture (Wald often different from others).
- Look at event "modeled", here "died".
- "Slope" for dose is positive, meaning that as dose increases, probability of event modelled (death) increases.
- Output data set contains predicted probabilities (next slide):

Predicted probabilities

Obs	dose	survival	_LEVEL_	pred
1	0	lived	died	0.15656
2	1	died	died	0.26690
3	2	lived	died	0.41658
4	3	lived	died	0.58342
5	4	died	died	0.73310
6	5	died	died	0.84344

"Pred" is predicted probability of event named by _LEVEL_ (death). Goes up as dose increases.

The rats, part 2

- More realistic: more rats at each dose (say 10).
- Listing each rat on one line makes a big data file.
- Use format below: dose, number of deaths, number of trials (rats):

```
0 0 10
1 3 10
2 4 10
3 6 10
4 8 10
5 9 10
```

Alter model line for PROC LOGISTIC to say:

```
model deaths/trials = dose;
```

SAS code for this logistic regression

```
options linesize=80;

data rat;
  infile "rat2.dat";
  input dose deaths trials;

proc logistic;
  model deaths/trials = dose;
  output out=rat2 pred=pred lower=lcl upper=ucl;

proc print data=rat2;
```

This time, have output data set also contain lower and upper limits of a 95% CI for each death probability.

Output part 1 (edited)

Number	of Observations Read	6
Number	of Observations Used	6
Sum of	Frequencies Read	60
Sum of	Frequencies Used	60

Response Profile

Total	Binary	Ordered
Frequency	Outcome	Value
30	Event	1
30	Nonevent	2

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

The 6 lines of data correspond to 60 actual rats.

Output part 2 (edited)

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	25.0562	1	<.0001
Score	21.9657	1	<.0001
Wald	16.1449	1	<.0001

Analysis of Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-2.3619	0.6719	12.3585	0.0004
dose	1	0.9448	0.2351	16.1449	<.0001

- All 4 tests agree: significant effect of dose.
- Effect of larger dose is to increase death probability ("slope" positive).

Predicted probabilities

Just run PROC PRINT on output data set:

0bs	dose	deaths	trials	pred	lcl	ucl
1	0	0	10	0.08612	0.02463	0.26017
2	1	3	10	0.19511	0.08646	0.38304
3	2	4	10	0.38405	0.24041	0.55124
4	3	6	10	0.61595	0.44876	0.75959
5	4	8	10	0.80489	0.61696	0.91354
6	5	9	10	0.91388	0.73983	0.97537

- Predicted death probs increase with dose.
- Last 2 columns are 95% CI for prob of death at each dose (eg. dose 2, from 0.24 to 0.55).
- Intervals still quite wide even with n = 60 rats.
- Each rat doesn't contribute much information (just lived/died) so need n in hundreds to get precise intervals.

Multiple logistic regression

- With more than one *x*, works much like multiple regression.
- Example: study of patients with blood poisoning severe enough to warrant surgery. Relate survival to other potential risk factors.
- Variables, 1=present, 0=absent:
 - ◆ survival (death from sepsis=1), response
 - shock
 - malnutrition
 - alcoholism
 - age (as numerical variable)
 - bowel infarction
- See what relates to death.

Some SAS code

```
data x;
  infile "sepsis.dat";
  input death shock malnut alcohol age bowelinf;
proc logistic;
  model death=shock malnut alcohol age bowelinf;
  test malnut=0, bowelinf=0;
proc logistic;
  model death=shock alcohol age bowelinf;
  output out=z pred=p;
proc print data=z;
Use of PROC LOGISTIC resembles use of PROC REG,
including "test".
```

Output part 1

Number of Observations Used 106

Response Profile

Total		Ordered
Frequency	death	Value
85	0	1
21	1	2

Probability modeled is death=0.

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	52.4060	5	<.0001
Score	43.8921	5	<.0001
Wald	16.2433	5	0.0062

Model as a whole is significant: at least one of the x's helps predict death (actually modelling P(survival)).

Finding significant x's

Analysis of Maximum Likelihood Estimates

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	9.7539	2.5417	14.7267	0.0001
shock	1	-3.6739	1.1648	9.9479	0.0016
malnut	1	-1.2166	0.7282	2.7909	0.0948
alcohol	1	-3.3549	0.9821	11.6691	0.0006
age	1	-0.0922	0.0303	9.2353	0.0024
bowelinf	1	-2.7976	1.1640	5.7767	0.0162

- Only marginal one is malnut.
- Test that both malnut and bowelinf can be removed (suspect not):

■ Indeed, not.

Predictions from model without "malnut"

- So fit model without malnut and obtain predictions.
- A few chosen at random:

0bs	death	shock	malnut	alcohol	age	bowelinf	_LEVEL_	р
4	0	0	0	0	26	0	0	0.99858
1	0	0	0	0	56	0	0	0.97945
2	0	0	0	0	80	0	0	0.84658
11	1	0	0	1	66	1	0	0.06871
32	1	0	0	1	49	0	0	0.78700

- Survival chances pretty good if no risk factors, though decreasing with age.
- Having more than one risk factor reduces survival chances dramatically.
- Usually model does a good job of predicting survival, but occasionally someone dies who was predicted to survive.

Changing the response category

- In first rats example, got prob of death but maybe wanted prob of living.
- Change model line to this:
 model survival(event='lived') = dose;
- Output now includes:

			Standa	ard	Wald	
Parameter	DF	Estimate	Error	Chi-Squa	are Pr > ChiSq	
Intercept	1	1.6841	1.7978	0.87	0.3489	
dose	1	-0.6736	0.6140	1.20	0.2726	
	0bs	dose	survival	_LEVEL_	pred	
	1	0	lived	lived	0.84344	
	2	1	died	lived	0.73310	
	3	2	lived	lived	0.58342	
	4	3	lived	lived	0.41658	
	5	4	died	lived	0.26690	
	6	5	died	lived	0.15656	

Testing fit: seroconversion example

- Seroconversion: body develops specific antibodies to microorganisms in blood (as when person gets certain disease).
- Seropositive: still have antibodies in blood after recovery from the disease.
- Malaria survey: ages plus seropositiveness recorded. Data, with variables: age group number, middle of age group, #individuals, #seropositive:

```
      1
      1.5
      123
      8

      2
      4.0
      132
      6

      3
      7.5
      182
      18

      4
      12.5
      140
      14

      5
      17.5
      138
      20

      6
      25.0
      161
      39

      7
      35.0
      133
      19

      8
      47.0
      92
      25

      9
      60.0
      74
      44
```

Does seropositiveness depend on age?

Calculate observed pct of seropositives for each age group in DATA step:

```
data sero;
  infile "sero.dat";
  input group age n r;
  obspos=r/n;

proc print;
with this result:
```

Obs	group	age	n	r	obspos
1	1	1.5	123	8	0.06504
2	2	4.0	132	6	0.04545
3	3	7.5	182	18	0.09890
4	4	12.5	140	14	0.10000
5	5	17.5	138	20	0.14493
6	6	25.0	161	39	0.24224
7	7	35.0	133	19	0.14286
8	8	47.0	92	25	0.27174
9	9	60.0	74	44	0.59459

Does a logistic regression fit?

- Prob of being seropositive generally increases with age, but age group 6 has too many seropositives and age group 7 too few.
- Fit logistic model anyway, and test for fit.
- Hosmer-Lemeshow test:
 - null: logistic regression is appropriate
 - alternative: it is not.
- Code (note "events/trials" syntax and "lackfit"):

```
proc logistic;
model r/n = age / lackfit;
```

Hosmer-Lemeshow test output

Partition for the Hosmer and Lemeshow Test

	Event		None	vent
Total	Observed	Expected	Observed	Expected
123	8	8.14	115	114.86
132	6	9.69	126	122.31
182	18	15.43	164	166.57
140	14	14.53	126	125.47
138	20	17.46	118	120.54
161	39	27.11	122	133.89
133	19	31.97	114	101.03
92	25	32.30	67	59.70
74	44	36.38	30	37.62
	123 132 182 140 138 161 133 92	Total Observed 123 8 132 6 182 18 140 14 138 20 161 39 133 19 92 25	Total Observed Expected 123 8 8.14 132 6 9.69 182 18 15.43 140 14 14.53 138 20 17.46 161 39 27.11 133 19 31.97 92 25 32.30	Total Observed Expected Observed 123 8 8.14 115 132 6 9.69 126 182 18 15.43 164 140 14 14.53 126 138 20 17.46 118 161 39 27.11 122 133 19 31.97 114 92 25 32.30 67

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square	DF	Pr > 0	ChiSq
21.3185	7	0	.0033

Interpretation

- Actually a chi-squared test based on division of x (age) into groups (here, 9 age groups).
- P-value 0.0033 small, so logistic regression not appropriate.
- Maybe age groups 6 and 7 are wrong way around. Assume this (in practice wouldn't, of course)
- Fit same model again and re-do Hosmer-Lemeshow.

Output from this analysis

The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Standard Wald Estimate Chi-Square Pr > ChiSq Parameter DF Error Intercept 1 -2.8107 0.1565 322.5387 < .0001 0.0476 0.00457 < .0001 108.4657 age Hosmer and Lemeshow Goodness-of-Fit Test Chi-Square DF Pr > ChiSq 8.4427 0.2952

- No problems with logistic model now.
- Probability of being seropositive definitely increases with age.

Predicted probabilities

0bs	age	n	r	pobs	pred	lcl	ucl
1	1.5	123	8	0.06504	0.06069	0.04588	0.07989
2	4.0	132	6	0.04545	0.06783	0.05227	0.08759
3	7.5	182	18	0.09890	0.07914	0.06258	0.09961
4	12.5	140	14	0.10000	0.09830	0.08042	0.11963
5	17.5	138	20	0.14493	0.12147	0.10230	0.14366
6	25.0	133	19	0.14286	0.16494	0.14313	0.18934
7	35.0	161	39	0.24224	0.24115	0.21102	0.27409
8	47.0	92	25	0.27174	0.35991	0.30883	0.41437
9	60.0	74	44	0.59459	0.51061	0.43049	0.59018

Plenty of data, so CIs are mostly short. Note clear upward trend in probabilities.

More than 2 response categories

- With 2 response categories, model the probability of one, and prob of other is one minus that. So doesn't matter which category you model.
- With more than 2 categories, have to think more carefully about the categories: are they
 - ordered: you can put them in a natural order (like low, medium, high)
 - nominal: ordering the categories doesn't make sense (like red, green, blue).
- SAS handles both kinds of response; learn how.

Ordinal response: the miners

- Model probability of being in given category *or lower*.
- Example: coal-miners often suffer disease pneumoconiosis. Likelihood of disease believed to be greater among miners who have worked longer.
- Severity of disease measured on categorical scale: 1 = none, 2 = moderate, 3 = severe.
- Data are frequencies:

Exposure	None	Moderate	Severe
5.8	98	0	0
15.0	51	2	1
21.5	34	6	3
27.5	35	5	8
33.5	32	10	9
39.5	23	7	8
46.0	12	6	10
51.5	4	2	5

Data setup

Set up data file with one frequency on each line, like this: exposure, response category, frequency.

```
    5.8
    98
    51
    2
    3
    34
```

- Don't need to enter zero frequencies.
- Multiple response categories treated as ordered by default.
- Make sure ordering in data is the right one! (I use numbers to keep ordering straight.)

Code

```
data miners;
  infile "miners.dat";
  input exposure severity frequency;

proc logistic;
  class severity;
  freq frequency;
  model severity = exposure;
  output out=miners2 pred=pred;

Proc print data=miners2;
Note:
```

- class statement turns numbers into ordered response
- freq statement ensures frequencies are read as such.

Output part 1

Model Information

Number	of Observations Read	22
Number	of Observations Used	22
Sum of	Frequencies Read	371
Sum of	Frequencies Used	371

Response Profile

Total		Ordered
Frequency	severity	Value
289	1	1
38	2	2
44	3	3

Probabilities modeled are cumulated over the lower Ordered Values.

22 lines in data file; frequencies indicate 371 miners total.

Response profile shows number in each severity category in total.

Output part 2

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	88.2432	1	<.0001
Score	80.7246	1	<.0001
Wald	64.5206	1	<.0001

Analysis of Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept 1	1	3.9559	0.4096	93.2527	<.0001
Intercept 2	1	4.8691	0.4437	120.4349	<.0001
exposure	1	-0.0959	0.0119	64.5206	<.0001

Severity of disease definitely depends on exposure. To see how:

Predicted severity probs (edited)

as they depend on exposure:

0bs	exposure	severity	frequency	_LEVEL_	pred
1	5.8	1	98	1	0.96769
2	5.8	1	98	2	0.98678
3	15.0	1	51	1	0.92535
4	15.0	1	51	2	0.96865
9	21.5	1	34	1	0.86920
10	21.5	1	34	2	0.94306
15	27.5	1	35	1	0.78893
16	27.5	1	35	2	0.90306
21	33.5	1	32	1	0.67766
22	33.5	1	32	2	0.83974
27	39.5	1	23	1	0.54181
28	39.5	1	23	2	0.74666
33	46.0	1	12	1	0.38799
34	46.0	1	12	2	0.61241
39	51.5	1	4	1	0.27225
40	51.5	1	4	2	0.48251

Understanding the predicted probs

- Miner with 5.8 years exposure has prob 0.968 of no disease, and prob 0.987 of moderate disease or lower (and prob 1 of severe disease or lower).
- Subtracting: prob of no disease 0.968, moderate disease 0.987 0.968 = 0.019, severe disease 1 0.987 = 0.013.
- Compare with miner with 51.5 years exposure: prob 0.272 of no disease, prob 0.483 0.272 = 0.211 of moderate disease, prob 1 0.483 = 0.517 of severe disease.
- Summary:

Exposure	P(none)	P(moderate)	P(severe)
5.8	0.968	0.019	0.013
27.5	0.789	0.115	0.097
51.5	0.272	0.211	0.517

Miner with more exposure has higher prob of having worse disease.

Unordered responses

- With unordered (nominal) responses, can use *generalized logit*.
- Example: 735 people, record age and sex (male 0, female 1), which of 3 brands of some product preferred.
- Data in mlogit.dat separated by commas.
- Tell SAS that sex and brand numbers only distinguish categories.
- For predictions, get output data set and inspect.

The code

```
data prefs;
  infile "mlogit.dat" delimiter=",";
  input brand sex age;

proc logistic;
  class brand;
  class sex;
  model brand=sex age / link=glogit;
  output out=mlogit2 pred=pred;

proc print data=mlogit2;
```

Output part 1

Model Information

Response Variable brand

Number of Response Levels 3

Model generalized logit

Number of Observations Used 735

Response Profile

Total		Ordered
Frequency	brand	Value
207	1	1
307	2	2
221	3	3

Logits modeled use brand=3 as the reference category.

Output part 2

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	185.8502	4	<.0001
Score	163.9538	4	<.0001
Wald	129.7966	4	<.0001

Type 3 Analysis of Effects

Effect	DF	Chi-Square	Pr > ChiSq
sex	2	7.6704	0.0216
age	2	123.3880	<.0001

At least one of sex and age makes a difference to the predicted probs; the bottom table says they both do.

Predicted probabilities (a few)

Obs	brand	sex	age	_LEVEL_	pred
4	1	0	26	1	0.89429
5	1	0	26	2	0.09896
6	1	0	26	3	0.00674
10	1	1	27	1	0.77288
11	1	1	27	2	0.20869
12	1	1	27	3	0.01843
2149	3	0	38	1	0.02598
2150	3	0	38	2	0.23855
2151	3	0	38	3	0.73547
2152	2	1	38	1	0.01623
2153	2	1	38	2	0.25162
2154	2	1	38	3	0.73215

Understanding them

- Many combinations of age, sex and brand-preferred.
- Obs 4, 5 and 6 are for males (sex=0) age 26; prob of preferring brand 1 is 0.894, brand 2 is 0.099, brand 3 is 0.007.
- Summarize whole table from previous page:

Sex	Age	P(prefer 1)	P(prefer 2)	P(prefer 3)
Male	26	0.894	0.099	0.007
Female	27	0.773	0.209	0.018
Male	38	0.026	0.239	0.735
Female	38	0.016	0.252	0.732

- Younger people prefer brand 1, older prefer brand 3.
- Females (a little) less likely to prefer brand 1 and more likely to prefer brand 2. (Sex difference *is* significant.)

Alternative data format

Summarize all people of same brand preference, same sex, same age on one line of data file with frequency on end:

```
1 0 24 1
1 0 26 2
1 0 27 4
1 0 28 4
1 0 29 7
1 0 30 3
```

Whole data set in 65 lines not 735!

Code for alternative data format

```
data prefs;
  infile "mlogit2.dat";
  input brand sex age frequency;
proc logistic;
  class brand;
  class sex;
  freq frequency;
  model brand=sex age / link=glogit;
  output out=mlogit2 pred=pred;
Add freq line in analysis. Output same as before.
```