MA 2-24

- 1. Pomocí metody Lagrangeových multiplikátorů nalezněte bod ležící v rovině x+y+z=3, který je nejblíže k bodu A=(2,3,1) a spočtěte jejich vzdálenost.
- 2. Přepište následující integrál

$$\int_0^1 \int_{-1}^y f \, dx \, dy$$

nejprve v opačném pořadí integrace a pak v polárních souřadnicích se středem v počátku v pořadí $d\varrho\,d\varphi$.

- 3. Uvažujme polovinu hmotné koule K s poloměrem a, středem v počátku a s hustotou rovnou jedné. Jaká je vzdálenost těžiště poloviny koule od jejího středu?
- 4. U mocninné řady $\sum_{n=0}^{\infty} (-1+5^{-n})x^n$ určete poloměr konvergence a její součet. Jaké hodnoty dostaneme v bodech x=0 a x=2? (Návod: je vhodné si napsat řadu jako součet dvou řad.)
- 5. (a) Definujte pojem okolí bodu $\mathbf{x} \in \mathbb{R}^n$ a pomocí něj pojmy izolovaný bod, hromadný bod a hraniční bod množiny $M \subset \mathbb{R}^n$. Ukažte příklad, pokud existuje, hraničního bodu, který není hromadný.
 - (b) Dokažte větu, že posloupnost uzavřených intervalů $\langle a_n, b_n \rangle$, které jsou do sebe vnořené, tj. $\langle a_{n+1}, b_{n+1} \rangle \subset \langle a_n, b_n \rangle$ mají neprázdný průnik: $\bigcap_{n=1}^{\infty} \langle a_n, b_n \rangle \neq \emptyset$.

Řešení.

- 1. Lagrangeova funkce je $L=(x-2)^2+(y-3)^2+(z-1)^2+\lambda(x+y+z-3)$. Jediný stacionární (a tedy nejbližší) bod je (1,2,0) a vzdálenost $\sqrt{3}$.
- 2. Opačné pořadí je $\int_{-1}^0 \int_0^1 f \ dy \, dx + \int_0^1 \int_x^1 f \ dy, dx$ v polárních souřadnicích

$$\int_{\pi/4}^{3\pi/4} \int_0^{1/\sin\varphi} f\varrho \, d\varrho d\varphi + \int_{3\pi/4}^{\pi} \int_0^{-1/\cos\varphi} f\varrho \, d\varrho d\varphi.$$

3. Kouli si orientujeme tak, že půjde o horní polovinu, tj. $z \ge 0$. Pak x-ová a y-nová souřadnice těžiště je nulová. Pro z-ovou souřadnici platí (ve sférických souřadnicích)

$$t_z = \frac{\iiint z}{\iiint 1} = \frac{1}{\frac{2}{3}\pi a^3} \int_0^{\pi/2} \int_0^a \int_0^{2\pi} \varrho^3 \cos\theta \sin\theta \, d\varphi \, d\varrho \, d\theta = \frac{3}{8}a.$$

- 4. Řadu napíšeme jako součet $-\sum_{n=0}^{\infty} x^n + \sum_{n=0}^{\infty} \left(\frac{x}{5}\right)^n$. První má poloměr konvergence R=1 a druhá R=5. Původní řada tak konverguje na průniku $(-1,1)\cap(-5,5)=(-1,1)$. Obě části řady jsou geometrické řady, první s kvocientem x a druhá s kvocientem x/5. Celkový součet je $\frac{-1}{1-x} + \frac{5}{5-x}$. Hodnota řady v bodě x=0 je 0 a v bodě x=2 řada diverguje.
- 5. (a) Okolí bodu $\mathbf{x} \in \mathbb{R}^n$ je množina $U_{\delta}(\mathbf{x}) = \{\mathbf{y} \in \mathbb{R}^n \mid ||\mathbf{y} \mathbf{x}|| < \delta\}$. Bod $\mathbf{x} \in M$ je izolovaný bod množiny M, pokud existuje okolí $U(\mathbf{x})$, že $M \cap U(\mathbf{x}) = \{\mathbf{x}\}$. Bod $\mathbf{x} \in \mathbb{R}^n$ je hromadný bod množiny M, pokud v každém okolí $U(\mathbf{x})$ leží nekonečně mnoho bodů z M. Bod $\mathbf{x} \in \mathbb{R}^n$ je hraniční bod množiny M, pokud pro každé okolí $U(\mathbf{x})$ platí, že $M \cap U(\mathbf{x}) \neq \emptyset$ a $(\mathbb{R}^n \setminus M) \cap U(\mathbf{x}) \neq \emptyset$. Každý izolovaný bod množiny M je hraniční, ale není hromadným bodem množiny M.
 - (b) Položíme $a = \sup\{a_n \mid n \in \mathbb{N}\}$ a $b = \inf\{b_n \mid n \in \mathbb{N}\}$. Pak pro všechny indexy n platí $a \leq b_n$ a $a_n \leq b$. Odtud plyne, že a i b leží ve všech intervalech $\langle a_n, b_n \rangle$ a splňují $a \leq b$. Proto interval $\langle a, b \rangle \subset \bigcap_{n=1}^{\infty} \langle a_n, b_n \rangle$, a tedy průnik je neprázdný.