The MorphoxX Project

Jean-Baptiste Fiot

March 2009

Goal and motivations

- Goal: tool to deform quickly 3D model
 - Cage-based methods
 - → 3 coordinate systems studied in this project
- Let's do a quick demo!
- Applications:
 - Animated movies
 - Video games

Generalized barycentric coordinates.

$$\{w_i : \mathbb{R}^2 \to \mathbb{R}, i \in [1, n]\}$$
 so that $\sum_{i=1}^n w_i(v)(v_i - v) = 0$

$$w_{i} = \frac{r_{i-1}A_{i} - r_{i}B_{i} + r_{i+1}A_{i-1}}{A_{i-1}A_{i}}$$

Coordinates are normalized in the end

Progressive deformations:

Using nearest pixel instead of interpolation:

- Defined on the interior of the cage
- $\forall i \in [1, n], \forall v \in \mathring{C}, \Delta w_i(v) = 0$
- Creation of a mask
- Initialization on the boundaries
- Propagation in the interior via 4c-averaging

Progressive deformations:

- Require enough iterations
 - Examples with 100, 500, 2000, 5000, and 20000 iterations:

- Sonic 300*450, 29 vertices, 25000 iterations
 - Born after 21 hours of computation on a Dell XPS Gen 2 with proc Intel Pentium M 2.13 GHz... but he is cute, isn't he?

Green Coordinates

 Added terms based on face elements to have coordinates respecting the cage's faces' orientations

•
$$v = \sum_{vertices} \phi_i(v) v_i + \sum_{edges} \psi_i(v) n(t_i)$$

•
$$v' = \sum_{vertices} \phi_i(v)v'_i + \sum_{edges} \psi_i(v)s_in(t'_i)$$
 with $s_i = \frac{||t'_i||}{||t_i||}$

 TRICK: Normalisation of the vertex-based terms (to be origin invariant: previous formulation: affine space
→ vectorial space)

Green Coordinates

Progressive deformations:

Green Coordinates

 Note the flexibility to allow the model to step out of the cage (continuity outside not implemented)

Comparison

Original – MVC – HC – GC:

Comparison

Initial – MVC – HC – GC:

Conclusion

	MVC	HC	GC
Computing time	☆☆☆	***	☆☆
Simplicity			
Flexibility	No	No	Yes
Defined everywhere	Yes	No	Yes
Partial deformations	*	No	食食食

 Source code available at http://code.google.com/p/morphoxx

