Traditional Computing Theory

QueenField

Paco Reina Campo

Traditional Computing Theory.

Contents

1	Med	chanics	5
	1.1	Newtonian Mechanics	5
		1.1.1 First Newton Law	5
		1.1.2 Second Newton Law	5
		1.1.3 Third Newton Law	6
	1.2	Lagrangian Mechanics	6
	1.3	Hamiltonian Mechanics	6
2	T. fo	ormation '	7
4	2.1		1 7
	$\frac{2.1}{2.2}$		۱ 7
	2.2	· ·	۱ 7
		,	
			8
		,	8
	2.2		8
	2.3	· · · · · · · · · · · · · · · · · · ·	8
			8
	2.4	0	8
	2.4		8
	2.5	Pushdown Automaton	9
3	Neu	ıral Network	1
	3.1	Feedforward Neural Network	
	3.2	Long Short Term Memory Neural Network	1
	3.3	Transformer Neural Network	2
4	Tur	ing Machine	4
-	4.1	Neural Turing Machine	
	1.1	4.1.1 Feedforward Neural Turing Machine	
		4.1.2 LSTM Neural Turing Machine	
		4.1.3 Transformer Neural Turing Machine	
	4.2	Differentiable Neural Computer	
	1.2	4.2.1 Feedforward Differentiable Neural Computer	
		4.2.2 LSTM Differentiable Neural Computer	
		4.2.3 Transformer Differentiable Neural Computer	
		1.2.0 Transformer Differentiable retain Computer	_
5		mputer Architecture 22	
	5.1	von Neumann Architecture	2
		5.1.1 RISC-V	
		5.1.2 MSP430	2
	5.2	Harvard Architecture	
		5.2.1 RISC-V	
		5.2.2 OpenRISC	2
6	۸ ۵۰	vanced Computer Architecture 24	1
U	6.1	Processing Unit	
	0.1	6.1.1 SISD	_
		6.1.2 SIMD	
		6.1.2 SIMD	

	6.1.4 MIMD	4
6.2	System on Chip	4
	6.2.1 Bus on Chip	5
	6.2.2 Network on Chip	5
6.3	Multi-Processor System on Chip	5

List of Tables

2.1	Finite State Machine Definitions	Ć
2.2	Pushdown Automaton Definitions	Ĉ
4.1	Turing Machine Definitions	14

List of Figures

2.1 Automata Theory	
---------------------	--

Mechanics

1.1 Newtonian Mechanics
1.1.1 First Newton Law
··· ····· ··· ····
$ec{F} = ec{0} ightarrow rac{dec{p}}{dt} = ec{0}$
$u\iota$
1.1.2 Second Newton Law
ec p = m ec v
$ec{F}=rac{dec{p}}{dt}$

1.1.3 Third Newton Law
$ec{p}=ec{p}_1+ec{p}_2$
$p-p_1+p_2$
$rac{dec{p}}{dt}=rac{dec{p}_1}{dt}+rac{dec{p}_2}{dt}$
dt = dt - dt
1.2 Lagrangian Mechanics
Lagrangian Weenames
$\frac{d}{dt} \left(\frac{\partial L(q_i(t), \dot{q}_i(t), t)}{\partial \dot{q}_i} \right) - \frac{\partial L(q_i(t), \dot{q}_i(t), t)}{\partial q_i} = 0$
$dt \ igcap \partial \dot{q}_i \ igcap \partial q_i \ igcap$
1.3 Hamiltonian Mechanics
$H\left(\mathbf{q},\mathbf{p},t\right)=\sum_{i}\dot{q}_{i}p_{i}-L(q_{j},\dot{q}_{j},t)$
$\frac{1}{i}$

...

Information

2.2.2	AND/NAND Gate
2.2.3	OR/NOR Gate
2.2.4	XOR/XNOR Gate
2.3	Combinational Logic
2.3.1	Arithmetic Circuits
	
2.3.2	Logic Circuits
2.4	Finite State Machine
	$T = \{Q, \Sigma, \delta, q_0, F\}$
	
	$Q\subseteq H$

		$\delta: Q imes \Sigma \otimes Q o Q$
		0 · Q ∧ ∠ ⊗ Q → Q
		Table 2.1: Finite State Machine Definitions
		Table 2.1. Time State Machine Definitions
	Element	Definitions
	Q	Finite Non-Empty Set of States
	$rac{\Sigma}{\delta}$	Input Alphabet. A Finite Non-Empty Set of Symbols State Transition Function
	$q_0 \in Q$	Initial State of Set of States
	F	Set of Final States. A (Possibly Empty) Subset of Set of States
2.5 Push	$\operatorname{down} A$	Automaton
		$T = \{Q, \Sigma, \Gamma, \delta, q_0, \gamma_0, F\}$
		$I = \{\varphi, \Sigma, \Gamma, \theta, q_0, \gamma_0, \Gamma\}$
		$Q\subseteq H$
		$\delta: \Sigma \times Q \otimes \Gamma \to \Sigma \times Q \otimes \Gamma \times \{L,R\}$

Table 2.2: Pushdown Automaton Definitions

Element	Definitions
\overline{Q}	Finite Non-Empty Set of States
\sum	Input Alphabet. A Finite Non-Empty Set of Symbols

Element	Definitions
Γ	Stack Alphabet. A Finite Non-Empty Set of Symbols
δ	State Transition Function
$q_0 \in Q$	Initial State of Set of States
$\gamma_0 \in \Gamma$	Initial Symbol of Stack Alphabet
$\overset{\circ}{F}$	Set of Final States. A (Possibly Empty) Subset of Set of States

...

Neural Network

3.1 Feedforward Neural Network
$h_t = \sigma_g(W_h \cdot x_t + U_h \cdot h_{t-1} + b_h)$
$y_t = \sigma_q(W_y \cdot h_t + b_y)$
$h_t = \sigma_g(W_h \star x_t + U_h \star h_{t-1} + b_h)$
$y_t = \sigma_g(W_y \star h_t + b_y)$
3.2 Long Short Term Memory Neural Network
2.2 Long Short Term Wemery Treater Treatment
$a_t = \sigma_q(W_a \cdot x_t + U_a \cdot h_{t-1} + b_a)$
$f_t = \sigma_g(W_f \cdot x_t + U_f \cdot h_{t-1} + b_f)$
$i_t = \sigma_q(W_i \cdot x_t + U_i \cdot h_{t-1} + b_i)$
$o_t = \sigma_g(W_o \cdot x_t + U_o \cdot h_{t-1} + b_o)$

$c_t = f_t \circ c_{t-1} + i_t \circ a_t$
$h_t = o_t \circ \sigma_q(c_t)$
$a_t = \sigma_g(W_a \star x_t + U_a \star h_{t-1} + b_a)$
$f_t = \sigma_g(W_f \star x_t + U_f \star h_{t-1} + b_f)$
$i_t = \sigma_q(W_i \star x_t + U_i \star h_{t-1} + b_i)$
$o_t = \sigma_q(W_o \star x_t + U_o \star h_{t-1} + b_o)$
$c_t = f_t \circ c_{t-1} + i_t \circ a_t$
$h_t = o_t \circ \sigma_g(c_t)$
3.3 Transformer Neural Network
QK^{T}
$\operatorname{attention}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\mathrm{T}}}{\sqrt{d_k}}\right)V$
• Query vector
$q_i = x_i W_Q$
$q_i = x_i W_Q$ \cdots
$q_i = x_i W_Q$

• Value Vector
$v_i=x_iW_V$

...

 $k_i = x_i W_K$

Turing Machine

Table 4.1: Turing Machine Definitions

Element	Definitions
\overline{Q}	Finite Non-Empty Set of States
\sum	Input Alphabet. A Finite Non-Empty Set of Symbols
Γ	Stack Alphabet. A Finite Non-Empty Set of Symbols
δ	State Transition Function
$q_0 \in Q$	Initial State of Set of States
$\gamma_0 \in \Gamma$	Initial Symbol of Stack Alphabet
F	Set of Final States. A (Possibly Empty) Subset of Set of States

4.1 Neural Turing Machine
• Definitions
$v(x, y) = \mathbf{u} \cdot \mathbf{v}$
$\mathcal{D}(\mathbf{u}, \mathbf{v}) = rac{\mathbf{u} \cdot \mathbf{v}}{\ \mathbf{u}\ \cdot \ \mathbf{v}\ }$
• Reading
$\sum_{i=0}^{M-1} w_t(i) = 1$
$\sum_{i=0}^{\infty} \omega_i(0)$
$0 \leq w_t(i) \leq 1$
$\mathbf{r}_t \longleftarrow \sum_{i=0}^{M-1} w_t(i) \mathbf{M}_t(i)$
• Writing
$\mathbf{\tilde{M}}_t(i) \longleftarrow \mathbf{M}_{t-1}(i) \left[1 - w_t(i) \mathbf{e}_t \right]$

$\mathbf{M}_t(i) \longleftarrow \tilde{\mathbf{M}}_t(i) + w_t(i) \mathbf{a}_t$
• Addressing
$w_t^c(i) \longleftarrow \frac{\exp\left(\beta_t \mathcal{D}[\mathbf{k}_t, \mathbf{M}_t(i)]\right)}{\sum_{j=0}^{N-1} \exp\left(\beta_t \mathcal{D}[\mathbf{k}_t, \mathbf{M}_t(j)]\right)}$
$\mathbf{w}_t^g \longleftarrow g_t \mathbf{w}_t^c + (1-g_t) \mathbf{w}_{t-1}$
$\tilde{w}_t(i) \longleftarrow \sum_{j=0}^{N-1} w_t^g(j) s_t(i-j)$
$w_t(i) \longleftarrow \frac{\tilde{w}_t(i)^{\gamma_t}}{\sum_{j=0}^{N-1} \tilde{w}_t(j)^{\gamma_t}}$
• Interfaces
$\xi_t = W_{\xi}[h_t^1; \cdots; h_t^L] = [\mathbf{k}_t^w; \hat{\beta_t^w}; \mathbf{\hat{e}}_t; \mathbf{v}_t; \hat{g}_t^a; \hat{g}_t^w]$

$\rho_t = W_{\rho}[h_t^1; \cdots; h_t^L] = [\mathbf{k}_t^{r,1}; \cdots; \mathbf{k}_t^{r,R}; \hat{\beta}_t^{r,1}; \cdots; \hat{\beta}_t^{r,R}; \hat{f}_t^1; \cdots; \hat{f}_t^R; \hat{\pi}_t^1; \cdots; \hat{\pi}_t^R]$
• Output Vector
$\mathbf{y}_t = W_y \mathbf{h}_t + W_r^i \mathbf{r}_t^i$
4.1.1 Feedforward Neural Turing Machine
4.1.2 LSTM Neural Turing Machine
4.1.3 Transformer Neural Turing Machine
4.2 Differentiable Neural Computer
• Definitions
• Deminions

$$\mathcal{D}(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|}$$

$\mathbf{b}_t^i = L_t^\top \mathbf{w}_{t-1}^{r,i}$
$oldsymbol{arphi}_t = oldsymbol{arphi}_t oldsymbol{w}_{t-1}$
p
${\boldsymbol \psi}_t = \prod_{i=1}^R \left(1 - f_t^i \mathbf{w}_{t-1}^{r,i} ight)$
${\psi}_t - \prod_{i=1} \left(1 {}^{\prime} J_t \mathbf{w}_{t-1} ight)$
v-1
 Interfaces
$\xi_t = W_{\xi}[h^1_t; \cdots; h^L_t] = [\mathbf{k}^w_t; \hat{\beta}^{\widehat{w}}_t; \mathbf{\hat{e}}_t; \mathbf{v}_t; \hat{g}^a_t; \hat{g}^w_t]$
r_{1} r_{1} r_{2} r_{3} r_{4} r_{5} r_{5} r_{5} r_{5} r_{5} r_{5} r_{6} r_{5} r_{6} r_{6}
$\rho_t = W_{\rho}[h_t^1; \cdots; h_t^L] = [\mathbf{k}_t^{r,1}; \cdots; \mathbf{k}_t^{r,R}; \hat{\beta}_t^{r,1}; \cdots; \hat{\beta}_t^{r,R}; \hat{f}_t^1; \cdots; \hat{f}_t^R; \hat{\pi}_t^1; \cdots; \hat{\pi}_t^R]$
• Output Vector
·
$\mathbf{y}_t = W_y \mathbf{h}_t + W_r^i \mathbf{r}_t^i$
4.2.1 Feedforward Differentiable Neural Computer
1.1.1 2 55 data mara Directional of tour at Companion
01 0100 11 0111

4.2.2 LSTM Differentiable Neural Computer
4.2.3 Transformer Differentiable Neural Computer

Computer Architecture

E 1 was Naumann Anabitaatuma
5.1 von Neumann Architecture
m mm 11 mil
5.1.1 RISC-V
5.1.2 MSP430
5.2 Harvard Architecture
5.2 Harvard Architecture
5.2.1 RISC-V
5.2.2 OpenRISC

Advanced Computer Architecture

	
6.1	Processing Unit
611	SISD
619	SIMD
 	·
C 1 0	MICD
	MISD
6.1.4	MIMD
	······
6.2	System on Chip

6.2.1 Bus on Chip
6.2.2 Network on Chip
6.3 Multi-Processor System on Chip