[Maximum mark: 7]

Let $f(x) = \ln(x+5) + \ln 2$, for x > -5.

(a) Find
$$f^{-1}(x)$$
.

[4 marks]

Let $g(x) = e^x$.

(b) Find $(g \circ f)(x)$, giving your answer in the form ax + b, where $a, b \in \mathbb{Z}$.

[3 marks]

2.

Let
$$f(x) = 3(x+1)^2 - 12$$
.

(a) Show that
$$f(x) = 3x^2 + 6x - 9$$
.

[2 marks]

(d) Let $g(x) = x^2$. The graph of f may be obtained from the graph of g by the two transformations:

a stretch of scale factor t in the y-direction

followed by

a translation of $\binom{p}{q}$.

Find
$$\binom{p}{q}$$
 and the value of t.

[3 marks]

[Maximum mark: 6]

Part of the graph of a function f is shown in the diagram below.

(a) On the same diagram sketch the graph of y = -f(x).

[2 marks]

- (b) Let g(x) = f(x+3).
 - (i) Find g(-3).
 - (ii) Describe **fully** the transformation that maps the graph of f to the graph of g.

[4 marks]

[Maximum mark: 7]

Let f be the function given by $f(x) = e^{0.5x}$, $0 \le x \le 3.5$. The diagram shows the graph of f.

(a) On the same diagram, sketch the graph of f^{-1} .

[3 marks]

(b) Write down the range of f^{-1} .

[1 mark]

(c) Find $f^{-1}(x)$.

[3 marks]

5.

[Maximum mark: 6]

Let $f(x) = x^2$ and $g(x) = 2(x-1)^2$.

(a) The graph of g can be obtained from the graph of f using two transformations. Give a full geometric description of each of the two transformations.

[2 marks]

(b) The graph of g is translated by the vector $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ to give the graph of h.

The point (-1, 1) on the graph of f is translated to the point P on the graph of h. Find the coordinates of P.

[4 marks]

-

[Maximum mark: 7]

Let $f(x) = e^{x+3}$.

- (a) (i) Show that $f^{-1}(x) = \ln x 3$.
 - (ii) Write down the domain of f^{-1} .

[3 marks]

(b) Solve the equation $f^{-1}(x) = \ln\left(\frac{1}{x}\right)$.

[4 marks]

7.

[Maximum mark: 8]

Let $f(x) = 2x^3 + 3$ and $g(x) = e^{3x} - 2$.

- (a) (i) Find g(0).
 - (ii) Find $(f \circ g)(0)$.

[5 marks]

(b) Find $f^{-1}(x)$.

[3 marks]

8.

[Maximum mark: 6]

Let f(x) = 2x-1 and $g(x) = 3x^2 + 2$.

(a) Find $f^{-1}(x)$.

[3 marks]

(b) Find $(f \circ g)(1)$.

[3 marks]

9.

[Maximum mark: 7]

Find the value of

(a) $\log_2 40 - \log_2 5$;

[3 marks]

(b) $8^{\log_2 5}$.

[4 marks]

[Maximum mark: 7]

Let $\log_3 p = 6$ and $\log_3 q = 7$.

(a) Find
$$\log_3 p^2$$
.

[2 marks]

(b) Find
$$\log_3\left(\frac{p}{q}\right)$$
.

[2 marks]

(c) Find
$$\log_3(9p)$$
.

[3 marks]

11. [Maximum mark: 6]

The diagram below shows the graph of a function f, for $-1 \le x \le 2$.

- (a) Write down the value of
 - (i) f(2);

(ii)
$$f^{-1}(-1)$$
.

[3 marks]

(b) Sketch the graph of f^{-1} on the grid below.

[3 marks]

12.

[Maximum mark: 14]

Let f(x) = 3x - 2 and $g(x) = \frac{5}{3x}$, for $x \ne 0$.

(a) Find
$$f^{-1}(x)$$
. [2]

(b) Show that
$$(g \circ f^{-1})(x) = \frac{5}{x+2}$$
. [2]

Let $h(x) = \frac{5}{x+2}$, for $x \ge 0$. The graph of h has a horizontal asymptote at y = 0.

- (c) (i) Find the y-intercept of the graph of h.
 - (ii) Hence, sketch the graph of h. [5]
- (d) For the graph of h^{-1} ,
 - (i) write down the x-intercept;
 - (ii) write down the equation of the vertical asymptote. [2]
- (e) Given that $h^{-1}(a) = 3$, find the value of a. [3]