Mining Closed Sequential Patterns in Large Datasets

Presenter: Ildar Nurgaliev

Lab: Dainfos

Main idea

Instead of mining the complete set of frequent subsequences we mine frequent *closed subsequences*

Benefits

- can mine really long sequences
- produce significantly less number of discovered frequent sequences

Sequence

- items: $I = \{i_1, i_2, ..., i_m\}$
- itemset (t_i) : $t_i \subseteq I$
- sequence (ordered list): $s = \langle t_1, t_2, ..., t_m \rangle$
- size |s|: number of itemsets in s
- length I(s): $I(s) = \sum_{i=1}^{n} |t_i|$

lpha sub-sequence of eta OR eta super-sequence of lpha (contains)

- $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_m \rangle$
- $\beta = \langle \beta_1, \beta_2, ..., \beta_m \rangle$
- $\alpha \sqsubseteq \beta$ (if $\alpha \neq \beta$, written as $\alpha \sqsubseteq \beta$)
- iff $\exists i_1, i_2, ..., i_m$, such that $1 \leq i_1 < i_2 < ... < i_m \leq n$ and $\alpha_1 \subseteq \beta_i, \alpha_2 \subseteq \beta_{i_2}, ..., \alpha_m \subseteq \beta_{i_m}$
- β absorbs α : if β contains α and their *support* are the same

Support

- $D = \{s_1, s_2, ..., s_n\}$: sequence database
- each s associated with id (id of s_i is i)
- |D|: number of s in D
- $support(\alpha)$: number of s in D which contain α $support(\alpha) = |\{s|s \in D \text{ and } \alpha \sqsubseteq s\}|$
- min_sup: minimum support threshold

Frequent sequential pattern (FS) and closed FS (CS)

- FS: includes all s of support(s) ≤ min_sup
- $CS = \{ \alpha | \alpha \in FS \text{ and } \nexists \beta \in FS \text{ such that } \alpha \sqsubseteq \beta \text{ and support}(\alpha) = \text{support}(\beta) \}$
- closed sequence mining: find CS above min_sup
- database containment relation $D \sqsubseteq D'$: if \exists an injective function $f: D \to D'$, s.t. $\forall s \in D, s \sqsubseteq f(s)$

Item extension

- Given: $s = \langle t_1, ..., t_m \rangle$ and item α
- $s \diamond \alpha$: concatenation (I-Step or S-Step)
- $s \diamond_i \alpha = \langle t_1, ..., t_m \cup \{\alpha\} \rangle$ if $\forall k \in r_m, k < \alpha$ Example: $\langle (\alpha e) \rangle$ is I-Step extension of $\langle (\alpha) \rangle$
- $s \diamond_s \alpha = \langle t_1, ..., t_m, \{\alpha\} \rangle$ Example: $\langle (\alpha)(c) \rangle$ is S-Step extension of $\langle (\alpha) \rangle$

Sequence extension

- Given: $s = \langle t_1, ..., t_m \rangle$ and $p = \langle t'_1, ..., t'_n \rangle$
- s ⋄ p: concatenation (itemset-extension or sequence-extension)
- $s \diamond_i p = \langle t_1, ..., t_m \cup t'_1, ..., t'_n \rangle$ if $\forall k \in t_m, j \in t'_1, k < j$
- $s \diamond_s p = \langle t_1, ..., t_m, t'_1, ..., t'_n \rangle$
- $s' = p \diamond s$: p prefix and s suffix of s'Example: $\langle (e)(\alpha) \rangle$ is prefix of $\langle (e)(abf)(bde) \rangle$ and $\langle (bf)(bde) \rangle$ is its suffix

s-projected database (physical projection and pseudo projection)

• $D_s = \{p | s' \in D, s' = r \diamond p \text{ s.t. r is minimum prefix containing s } (s \sqsubseteq r \text{ and } \#r', s \sqsubseteq r' \sqsubseteq r)\}$ p can be empty

Seq ID.	Sequence
0	$\langle (af)(d)(e)(a)\rangle$
1	$\langle (e)(a)(b) \rangle$
2	$\langle (e)(abf)(bde)\rangle$

Example

•
$$D_{\langle (\alpha f) \rangle} = \{ \langle (d)(e)(\alpha) \rangle, \langle (bde) \rangle \}$$

•
$$D_{\langle (e)(\alpha)\rangle} = \{\$, \langle (b)\rangle, \langle (bf)(bde)\rangle\}$$

Set Lexicographic Order

- Let $t = \{i_1, i_2, ..., i_k\}, t' = \{j_1, j_2, ..., j_l\}$, where $i_1 \leq ... \leq i_k$ and $j_1 \leq ... \leq j_l$
- t < t' iff either of the following is true:
 - 1. $0 \le h \le min\{k, l\}$, we have $i_r = j_r$ for r < h, and $i_h < j_h$
 - 2. k < I, and $i_1 = j_1, i_2 = j_2, ..., i_k = j_k$

Example:
$$(a, f) < (b, f), (a, b) < (a, b, c)$$
 and $(a, b, c) < (b, c)$

Sequence Lexicographic Order

```
i if s' = s \diamond p, then s < s'
ii if s = \alpha \diamond_i p and s' = \alpha \diamond_s p', no matter what is order relation between p and p' is, s < s'
iii if s = \alpha \diamond_i p and s' = \alpha \diamond_i p', p < p' indicated s < s'
iv s = \alpha \diamond_s p and s' = \alpha \diamond_s p', p < p' indicates s < s'
Example: \langle (a,b) \rangle < \langle (a,b)(a) \rangle; \langle (a,b) \rangle < \langle (a)(a) \rangle
```

Lexicographic Sequence Tree construction

- 1. each node in the tree corresponds to a sequence, and the root is a *null* sequence;
- 2. if a parent node corresponds to a sequence s, its child is either an itemset-extension of s, or a sequence-extension of s;
- 3. the left sibling is less than the right sibling in sequence lexicographic order.

Lexicographic Sequence Tree and Prefix Search Tree

(a) lexicographic sequence tree

(b) prefix search tree

Example

Lexicographic Sequence Tree with min_sup = 2

Seq ID.	Sequence
0	$\langle (af)(d)(e)(a)\rangle$
1	$\langle (e)(a)(b) \rangle$
2	$\langle (e)(abf)(bde)\rangle$

Search Space Pruning and Prefix Sequence Lattice Preamble

CloSpan divides mining process into 2 stages.

- 1. candidate set generation;
- 2. helps eliminate non-closed sequences.

Search Space Pruning and Prefix Sequence Lattice is for 1st stage.

Search Space Pruning and Prefix Sequence Lattice LEMMA 1 (Common Prefix)

LEMMA 1. Given a subsequence s, and its projected database D_s , if $\exists \alpha$, α is a common prefix for all the sequences with the same extension type (either itemset or sequence - extension) in D_s , then $\forall \beta$, if $s \diamond \beta$ is closed, α must be a prefix of β . That means $\forall \beta \sqsubseteq \alpha$, we need not search $s \diamond \beta$ and its descendants except the branch of $s \diamond \alpha$.

Example: $D_s = \{\langle (d)(e)(af) \rangle, \langle (d)(e)(fg) \rangle \}$, all the sequences in D_s share a common prefix $\alpha = \langle (d)(e) \rangle$, so any sequence with prefix s but not $s \diamond \langle (d)(e) \rangle$ must not be closed. So we can "jump" to the branch $s \diamond \alpha$.

Search Space Pruning and Prefix Sequence Lattice LEMMA 2 (Partial Order)

LEMMA 2. Given a sequence s, and its projected database D_s , if among all the sequences in D_s , and item α does always occur before an item β (either in the same itemset for all sequences in D_s or in a different itemset, but not both), then $D_{s\diamond\alpha\diamond\beta}=D_{s\diamond\beta}$. Therefore, $\forall\gamma,s\diamond\beta\diamond\gamma$ is not closed. We need not search any sequence in the branch of $s\diamond\beta$.

Search Space Pruning and Prefix Sequence Lattice

Theorem 1 (Equivalence of Projected Databases)

• $\mathcal{I}(D) = \sum_{i=1}^{n} I(s_i)$: total number items in D

Theorem 1: Given 2 sequences, $s, s', s \sqsubseteq s'$, then

$$D_s = D_{s'} \Leftrightarrow \mathcal{I}(D_s) = \mathcal{I}(D_{s'})$$

Example: Consider D-sample on 15 slide.

- $D_{\langle (af) \rangle} = D_{\langle (f) \rangle} = \{ \langle (d)(e) \rangle, \langle (de) \rangle \}$, and
- $\mathcal{I}(D_{\langle (af)\rangle}) = \mathcal{I}(D_{\langle (f)\rangle}) = 4.$

Based on Theorem 1, the following search space pruning can be achieved.

Search Space Pruning and Prefix Sequence Lattice Proof of Theorem 1

- $D_s = D_{s'} \rightarrow \mathcal{I}(D_s) = \mathcal{I}(D_{s'})$ (obvious);
- Since $s \sqsubseteq s'$, then $D_{s'} \sqsubseteq D_s$ and $\mathcal{I}(D_{s'}) \leq \mathcal{I}(D_s)$;
- The equality between $\mathcal{I}(D_{s'})$ and $\mathcal{I}(D_s)$ holds only if $\forall \gamma \in D_{s'}, \ \gamma \in D_s$, and vice versa. Therefore, $D_s = D_{s'}$.

Search Space Pruning and Prefix Sequence Lattice

Theorem 3 (Early Termination by Equivalence)

LEMMA 3. Given 2 sequences, $s \sqsubseteq s'$ and also $\mathcal{I}(D_s) = \mathcal{I}(D_{s'})$, then $\forall \gamma, support(s \diamond \gamma) = support(s' \diamond \gamma)$. **Example**: Consider D-sample on 15 slide.