Chapitre_

L'organisation de la matière

Test de connaissances THÉORIE /100

- Définissez les termes suivants dans vos mots.
 - a) Un atome

Un atome est la plus petite chose que l'humain connaisse.

b) Un élément

Un élément est tout ce que les scientifiques on découvert et qui se trouve dans le tableau périodique. Telle que O qui est l'Oxygènes.

c) Une molécule

Une molécule est la fusion entre deux ou plusieurs élément qui se trouve dans le tableau périodique telle que NaCl qui est la fusion entre le Na qui est du sodium et le Cl qui est du chlore.

Nom:	Groupe:	Date:	Test de conr	naissances
			UM	421

Nommez trois caractéristiques des atomes selon le modèle atomique de Dalton.

Selon Dalton l'atome est la plus petite particule de matières elle est également invisible a l'oeil nu et est aussi indivisible.

- Indiquez si chacun des énoncés suivants se rapporte aux atomes, aux éléments ou aux molécules.
 - a) Nous sommes les constituants de base de la matière.

les atomes

b) Nous sommes classés dans le tableau périodique.

éléments

c) On a imaginé notre existence il y a plus de 2000 ans.

atomes

d) Nous sommes des substances constituées d'atomes identiques. molécules

e) Nous résultons de l'union de plusieurs atomes.

molécules

/5

- Dans chacun des groupes d'énoncés suivants, encerclez celui qui est vrai.
 - a) 1) Démocrite a prouvé l'existence des atomes il y a plus de 2000 ans.
 - 2) On considère que l'atome est le plus petit constituant de la matière.
 - 3) Les gaz ne sont pas constitués d'atomes.
 - 4) Un atome d'hydrogène a une masse de 1 g.

om :		Groupe:	Date:	Test de connaissances
b)	1) L'eau est l'élément le plus abon	idant sur Terre .		
	2) Il existe un nombre illimité d'él	éments différent	S.	
	3) Les éléments ont des propriétés	s identiques.		
	4) La molécule de dioxygène (O ₂)	est un élément.		
c)	1) Il est possible de décomposer u	une molécule en	ses différents éléments.	
	2) Une molécule est toujours com	posée d'élément	s différents.	
	3) Les molécules sont classées da	ns le tableau pér	iodique des éléments.	
	4) Une molécule possède les mên	nes propriétés qu	e les éléments qui la co	nstituent . /9
d' a)	ur chacune des formules chimique une molécule. Si plus d'une répons C ₂ H ₆ : <u>Molécule</u> Mg: <u>éléments</u>	e est possible, in	diquez-les toutes . d) MgCl ₂ : molé	
	Cl ₂ :_élément		5, 53.	
0)	C12.			/10
E)	pliquez pourquoi les symboles chim	niques sont les m	êmes dans toutes les lar	ngues .
qu ils ind pe	s symboles chimiques sont le i parlaient le latin qui on déco ont décider de crée un tablea dividuellement et puisqu'il ne rmet de nos jours que si un s isse ils pourront très bien se	ouvert en prem au périodique parlait que le l cientifique Ca	nier l'existence de di pour classer chaque latin il les on écrit er	fférent élément et e élément n latin ce qui nous

En vous aidant du tableau périodique des éléments présenté dans l'annexe 1 (à la page 423), répondez aux questions suivantes.

7 Complétez le tableau suivant .

Symbole chimique	Nom de l'élément	Nombre atomique	Masse atomique
Li	Lithium	3	7
S	soufre	16	32
K	potassium	19	39
Zn	Zinc	30	65
Ag	Argent	47	108

/10

8 Classez les éléments suivants par ordre croissant de masse atomique.

Ti 204

N 14

Fe 56

F 19

Indiquez si les éléments figurant dans le tableau suivant se trouvent à l'état solide, liquide ou gazeux à température ambiante.

État			
£14	Solide	l iauide	Gazeux
Hydrogène			х
Brome		х	
Aluminium	х		
Arsenic	х		
Chlore			х

/5

10 a) Combien doit-on réunir d'atomes d'hydrogène pour obtenir la même masse qu'un atome de cobalt?

59

b) Combien doit-on réunir d'atomes de bore pour obtenir la même masse que 33 atomes d'hydrogène?

3

c) Combien doit-on réunir d'atomes de magnésium pour obtenir la même masse que deux atomes de titane?

/6

Pour chacune des molécules suivantes, donnez les noms des éléments qui la composent ainsi que le nombre d'atomes de chaque élément présent dans la molécule.

a) H₂O₂: 2 Hydrogène + 2 Oxygène d) KBr: 1 Potassium + 1 Brome

b) H₂: 2 Hydrogène

_____e) C₈H₁₈ 8 Carbone + 18 Hydro<u>gène</u> ____c) HNO3: <u>1 Hydrogène + 1 Nob</u>élium

	Groupe :	Date:	
			UM 423
Quelle molécule obtiendra-t-on si la molécule ainsi formée.	i on combine les atome	es suivant	s? Donnez la formule chimique de
a) Un atome de carbone et quatre	e atomes d'hydrogène.	СН4	Note : On acceptera que
b) Trois atomes d'oxygène.		03	l'élève inverse l'ordre des atomes dans sa réponse
c) Deux atomes d'iode.			Exemple: H_4C au lieu de CH_4 .
o) beak atomes a loae.		<u> 12</u>	<u> </u>
d) Un atome de calcium et deux a	atomes de chlore.	CaCl	2
e) Deux atomes d'azote.		N2	/1
À partir de la masse atomique des	différents atomes, cal	culez la m	asse des molécules suivantes.
a) NaBr: 103 uma	d)	C ₈ H ₁₈ : _	114uma
	,		114uma 98 uma
b) O ₂ : 32uma	e)		
b) O ₂ : <u>32uma</u>	e)		98 uma
b) O ₂ : 32uma	e)		98 uma
b) O ₂ : 32uma c) NH ₃ : 17uma La molécule que l'on trouve princ	e)	H ₂ SO ₄ : _	98 uma /1 octane (C_8H_{18}). Comment explique
b) O ₂ : 32uma c) NH ₃ : 17uma La molécule que l'on trouve princ que l'essence soit une substance	e) cipalement dans l'esse liquide, alors que les é	H ₂ SO ₄ : _	98 uma /1 octane (C_8H_{18}). Comment explique
	e) cipalement dans l'esse liquide, alors que les é	H ₂ SO ₄ : _	98 uma /1 octane (C_8H_{18}). Comment explique
b) O ₂ : 32uma c) NH ₃ : 17uma La molécule que l'on trouve princ que l'essence soit une substance le cas du carbone et gazeux dans l	e) ipalement dans l'esse liquide, alors que les é e cas de l'hydrogène?	H ₂ SO ₄ : <u>-</u> nce est l'o léments	98 uma //10 octane (C_8H_{18}). Comment explique qui la composent sont solides dans
b) O ₂ : 32uma c) NH ₃ : 17uma La molécule que l'on trouve princ que l'essence soit une substance	e) ipalement dans l'esse liquide, alors que les é e cas de l'hydrogène?	H ₂ SO ₄ : <u>-</u> nce est l'o léments	98 uma //10 octane (C_8H_{18}). Comment explique qui la composent sont solides dans

UM	Test de
annexe 1	connaissances

Rubidium 85 55 Cs Césium 133 87 Fr Francium	Strontium 88 56 Ba Baryum 137 88 Ra Radium	Yttrium 89 57–71 89–103	Zirconium 91 72 Hf Hafnium 178	Niobium 93 73 Ta Tantale 181	Molybdène 96 74 W Tungstène 184	75 Re Rhénium 186	Ruthénium 101 76 OS Osmium 190	Rhodium 103 77 Ir Iridium 192	Palladium 106 78 Pt Platine 195	Argent 108 79 Au Or 197	Cadmium 112 80 Hg Mercure 201	Indium 115 81 TI Thallium 204	Étain 119 82 Pb Plomb 207	Antimoine 122 83 Bi Bismuth 209	Tellure 128 84 Po Polonium 209	lode 127 85 At Astate 210	Xénon 131 86 Rn Radon 222
223	226																
		57	58	59	60		62	63	64	65	66	67	68	69	70	71	
		Lanthane 139 89 AC Actinium 227	Cerium 140 90 Th Thorium 232	Praséodyme 141 91 Pa Protactinium 231	144 92 U		Samarium 150	Europium 152	Gadolinium 157	Terbium 159	Dysprosium 163	Holmium 165	Erbium 167	Thulium 169	Ytterbium 173	Lutécium 175	