Part VI

Graph Algorithms (II)

Graph Algorithms

- Elementary Graph Algorithms (图算法基础)
 - Representations of Graphs
 - BFS, DFS
 - Sort Topologically
- Single-Source Shortest Paths (最短路径问题)
 - Finding shortest paths from a given source vertex to all other vertices.
 - Relaxation (松弛)
- All-Pairs Shortest Paths (任意两点的最短路径问题)
 - Computing shortest paths between every pair of vertices.
- Maximum Flow (最大流)

25 All-Pairs Shortest Paths

- How to find shortest paths between all pairs of vertices in a graph.
- This problem might arise in making a table of distances between all pairs of cities for a road atlas. 制作道路地图集, 求出所有城市间的距离
- We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths algorithm |*V*| times.

运行单源最短路径 n 次

25 All-Pairs Shortest Paths

- Most of the algorithms in this chapter use an adjacency-matrix representation.
- The input is an $n \times n$ matrix W representing the edge weights of an n-vertex directed graph G = (V, E), where

$$w_{ij} = \begin{cases} 0 & \text{if } i = j, \\ \text{the weight of directed edge } (i, j) & \text{if } i \neq j \text{ and } (i, j) \in E, \\ \infty & \text{if } i \neq j \text{ and } (i, j) \notin E. \end{cases}$$
 (25.1)

• shortest-path weights: The output is an $n \times n$ matrix $D = (d_{ij})$.

 $d_{ij} = \delta(i,j)$ at termination. (在后文, $\delta(i,j)$ 有时既指最短路径, 也指最短路径距离, 请根据上下文进行区分。)

25 All-Pairs Shortest Paths

• We need to compute not only the shortest-path weights D, but also a *predecessor matrix*: $\Pi = (\pi_{ij})$, where π_{ij} is NIL if either i = j or there is no path from i to j, and otherwise π_{ij} is the predecessor of j on some shortest path from i.

不仅求最短路径矩阵 D,通常也求前驱矩阵 Π ,其元素 π_{ij} 表示从 i 到 j 的最短路径中 j 的前驱节点

• The subgraph induced by the ith row of the Π matrix should be a shortest-paths tree with root i, For example, choose line 2.

前驱矩阵 Π 的第 i 行,称为 Π 的一个诱导子图,表示以 i 为根节点的最短路径树

$$\begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} D$$

A dynamic-programming algorithm based on matrix multiplication. 基于矩阵相乘求最短路径问题的DP算法

The structure of a shortest path

Vertices i and j are distinct, then we decompose shortest path p into

$$\delta(i,j)$$
 is $\underbrace{i \overset{p'}{\leadsto} k \to j}$ then p' is a shortest path i to k , and so

$$\delta(i,j) = \delta(i,k) + w_{kj}.$$

最短路径 $\delta(i,j)$ 上, j 的前驱节点为 k, $p = \delta(i,j) = p' + w_{ki} = d(i,k) + w_{ki}$, 则 p' = d(i, k) 一定是 $p' = d(i, k) = \delta(i, k)$.

p 是最短路径 \longrightarrow 子路径 p '也是最短路径

A recursive solution to the all-pairs shortest-paths problem

 $l_{ii}^{(m)}$: the minimum weight of any path from i and j that contains at most m edges.

$$l_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j. \end{cases}$$
$$l_{ij}^{(m)} = \min_{1 \le k \le n} \{ l_{ik}^{(m-1)} + w_{kj} \}.$$

 $l_{ij}^{(m)}$:从i到j,包括最多m条边的最短路径 p的长度(权值),其中 $p = p' + w_{ki}$. 的最短路径,即 p' 的长度为 $l_{ik}^{(m-1)}$.

The graph(V = n) contains no negative-weight cycles (无负环路), then

$$\delta(i,j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = \cdots$$

n 个顶点的图(无环路),任意两个顶点的最短路径的 边不会超过 n-1 条边

Computing the shortest-path weights bottom up

Inputs: $W = (w_{ij})$ compute a series of matrices $L^{(i)}$, i = 1, ..., n-1. $L^{(m)} = (l_{kj}^{(m)})$. The final matrix $L^{(n-1)}$ contains the actual shortest-path weights.

$$L^{(1)} = W$$
.

 $l_{ij}^{(m)}$:从 i 到 j,包括最多 m 条边的最短路径 p 的长度(权值),其中 $p = p' + w_{kj}$. 则必有 p' 是从 i 到 k 包括最多 m-1 条边的最短路径,即 p' 的长度为 $l_{ik}^{(m-1)}$.

这个算法是一次迭代,即,从i到j,已知包括最多m-1条边时的最短路径问题,求包括最多m条边时的最短路径问题。

Computing the shortest-path weights bottom up

```
EXTEND-SHORTEST-PATHS (L, W)

1  n = L.rows

2  let L' = (l'_{ij}) be a new n \times n matrix

3  for i = 1 to n

4  for j = 1 to n

5  l'_{ij} = \infty

6  for k = 1 to n

7  l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj})

8  return L'
```

SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

```
1 n = W.rows

2 L^{(1)} = W

3 for m = 2 to n - 1

4 let L^{(m)} be a new n \times n matrix

5 L^{(m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m-1)}, W)

6 return L^{(n-1)}
```

$$\delta(i,j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = \cdots$$

Running time?

 $\Theta(n^4)$

最开始,输入 W 就是 i 到 j 只有 1 条边时的最短路径问题,进行 n-2 次迭代,求出 i 到 j 之间最多有 n-1 条边时的最短路径问题(即,目标问题)。

Improving the running time from matrix multiplication.

$$l_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j. \end{cases}$$

$$l_{ij}^{(m)} = \min_{1 \le k \le n} \left\{ l_{ik}^{(m-1)} + w_{kj} \right\} .$$

$$\delta(i,j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = \cdots$$

 $l_{ij}^{(m)}$:从i到j,包括最多m条边的最短路径p的长度(权值),其中 $p=p'+w_{kj}$.

则必有,p² 是从 i 到 k,包括最多 m-1 条边的最短路径,即 p² 的长度为 l_{ik} (m-1).

EXTEND-SHORTEST-PATHS (L, W)

```
1 n = L.rows

2 let L' = (l'_{ij}) be a new n \times n matrix

3 for i = 1 to n

4 for j = 1 to n

5 l'_{ij} = \infty

6 for k = 1 to n

7 l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj})

8 return L'
```


product $C = A \cdot B$ of two $n \times n$ matrices A and B

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} .$$

Observe that if we make the substitutions

$$l^{(m-1)} \rightarrow a,$$

$$w \rightarrow b,$$

$$l^{(m)} \rightarrow c,$$

$$\min \rightarrow +,$$

$$+ \rightarrow \cdot$$

SQUARE-MATRIX-MULTIPLY (A, B)

```
1 n = A.rows

2 let C be a new n \times n matrix

3 for i = 1 to n

4 for j = 1 to n

5 c_{ij} = 0

6 for k = 1 to n

7 c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}

8 return C
```

Improving the running time from matrix multiplication.

```
L^{(1)} = L^{(0)} \cdot W = W ,
                                                                L^{(2)} = L^{(1)} \cdot W = W^2,

L^{(3)} = L^{(2)} \cdot W = W^3,
 L^{(n-1)} = L^{(n-2)} \cdot W = W^{n-1}
                                                                                    L^{(2^{\lceil \lg(n-1) \rceil})} = W^{2^{\lceil \lg(n-1) \rceil}} = W^{2^{\lceil \lg(n-1) \rceil - 1}} \cdot W^{2^{\lceil \lg(n-1) \rceil - 1}}.
                                                                                          FASTER-ALL-PAIRS-SHORTEST-PATHS (W)
SLOW-ALL-PAIRS-SHORTEST-PATHS (W)
                                                                                           1 \quad n = W.rows
1 \quad n = W.rows
                                                                                          2 L^{(1)} = W
2 L^{(1)} = W
                                                                                          3 m = 1
3 for m = 2 to n - 1
                                                                                          4 while m < n - 1
   let L^{(m)} be a new n \times n matrix
                                                                                          5 let L^{(2m)} be a new n \times n matrix
5 L^{(m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m-1)}, W)
                                                                                          6 L^{(2m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m)}, L^{(m)})
  return L^{(n-1)}
                                                                                                m = 2m
                                                                                          8 return L^{(m)}
                            \Theta(n^4)
                                                                                                \Theta(n^3 \lg n)
```

• A dynamic-programming algorithm based on matrix multiplication, $\Theta(V^4)$.

• "Repeated squaring," $\Theta(V^3 \lg V)$.

The structure of a shortest path

• The Floyd-Warshall algorithm considers the intermediate vertices of a shortest path, where an *intermediate* vertex of a simple path $p = \langle v_1, v_2, ..., v_l \rangle$ is any vertex of p other than v_1 or v_l , that is, any vertex in the set $\{v_2, v_3, ..., v_{l-1}\}$. 简单路径 p 的端点是 v_1 和 v_l , 其他点是 p的"之间"顶点

Floyd-warshall 来源于floyd,其原理基于warshall提出的基于布尔矩阵的传递闭包。

[PDF] Algorithm 97: shortest path

RW Floyd - Communications of the ACM, 1962 - dl.acm.org

¢ onlment This procedure will perform different order arithmetic operations with b and c, putting the result in a. The order of the operation is given by op. For op= 1 addition is performed. ...

☆ 保存 奶 引用 被引用次数: 6015 相关文章 所有 3 个版本

A theorem on boolean matrices

S Warshall - Journal of the ACM (JACM), 1962 - dl.acm.org

... Given two boolean matrices A arid B, we define the boolean product AAB as that matrix whose (i, j)th entry is vk(a~/, A bki). We define tile boolean sum AVB as that matrix whose (i, j)th ...

☆ 保存 99 引用 被引用次数: 2563 相关文章 所有7个版本

The structure of a shortest path

- The Floyd-Warshall algorithm considers the intermediate vertices of a shortest path, where an *intermediate* vertex of a simple path $p = \langle v_1, v_2, ..., v_l \rangle$ is any vertex of p other than v_1 or v_l , that is, any vertex in the set $\{v_2, v_3, ..., v_{l-1}\}$. 简单路径 p 的端点是 v_1 和 v_l , p 的"之间"顶点是 $\{v_2, v_3, ..., v_{l-1}\}$ 之间的任意顶点
- Consider a subset $\{1, 2, ..., k\}$ of vertices for some k. For any pair of vertices $i, j \in V$, consider all paths from i to j whose intermediate vertices are all drawn from $\{1, 2, ..., k\}$, and let p be a minimum-weight path from among them. (Path p is simple.)

考虑 i to j 的所有路径,其"之间"顶点from $\{1,2,\ldots,k\}$,p 是这所有路径中最短的一条

all intermediate vertices in $\{1, 2, \dots, k-1\}$ all intermediate vertices in $\{1, 2, \dots, k-1\}$

p: all intermediate vertices in $\{1, 2, \dots, k\}$

The structure of a shortest path

For any pair of vertices (i, j), all paths from i to j whose intermediate vertices are all drawn from $\{1, 2, ..., k\}$, and let p be a minimum path.

- If k is not an intermediate vertex of path p, then all intermediate vertices of p are in the set $\{1, 2, ..., k-1\}$. Thus, a st-path- $\delta(I, j)$ with all intermediate vertices in the set $\{1, 2, ..., k-1\}$ is also a st-path- $\delta(i, j)$ with all intermediate vertices in the set $\{1, 2, ..., k\}$.
- If k is ..., then we decompose p into $i \stackrel{p_1}{\sim} k \stackrel{p_2}{\sim} j$. p_1 is a st-path- $\delta(i, k)$ with all intermediate vertices in the set $\{1, 2, \ldots, k-1\}$. Similarly, for p_2, \ldots

p 是从 i 到 j 的最短路径 st-path- $\delta(i,j)$, "之间" 顶点 from $\{1,2,\ldots,k\}$:

- 如果 k 不是路径 p 上的顶点,则 st-path- $\delta(i,j)$ 的之间顶点来自于 $\{1,2,\ldots,k-1\}$,即,之间顶点 from $\{1,2,\ldots,k\}$ 的 st-path- $\delta(i,j)$ 就是之间顶点 from $\{1,2,\ldots,k-1\}$ 的 st-path- $\delta(i,j)$;
- 如果 k 是路径 p 上的顶点,则 st-path- $\delta(i,j)$ 由两部分构成 $i \stackrel{P_1}{\sim} k \stackrel{P_2}{\sim} j$, 其中 p_1 是之间顶点来自于 $\{1,2,\ldots,k$ - $1\}$ 的 st-path- $\delta(i,k)$, p_2 同理。

all intermediate vertices in $\{1, 2, ..., k-1\}$ all intermediate vertices in $\{1, 2, ..., k-1\}$ p: all intermediate vertices in $\{1, 2, ..., k\}$

A recursive solution to the all-pairs shortest-paths problem

Let $d_{ij}^{(k)}$ be the weight of a *st-path-* $\delta(i, j)$ for which all intermediate vertices are in the set $\{1, 2, ..., k\}$. When k = 0, a path-p(i, j) has no intermediate vertices at all. Such a path has at most one edge. We define recursively

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

all intermediate vertices in $\{1, 2, \dots, k-1\}$ all intermediate vertices in $\{1, 2, \dots, k-1\}$

p: all intermediate vertices in $\{1, 2, \dots, k\}$

Because for any path, all intermediate vertices are in the set $\{1, 2, ..., n\}$, the matrix $D^{(n)} = (d_{ij}^{(n)})$ gives the final answer: $d_{ij}^{(n)} = \delta(i, j)$ for all $i, j \in V$.

p 是从 i 到 j 的最短路径 st-path- $\delta(i,j)$, p 的 "之间" 顶点 from $\{1,2,\ldots,k\}$, 其长度 (权值) 为 $d_{ij}^{(k)}$:

- 如果 k 不是路径 p 上的顶点,则 st-path- $\delta(i,j)$ 的之间顶点来自于 $\{1,2,\ldots,k$ - $1\}$,即,之间顶点 from $\{1,2,\ldots,k\}$ 的 st-path- $\delta(i,j)$ 就是之间顶点 from $\{1,2,\ldots,k$ - $1\}$ 的 st-path- $\delta(i,j)$;
- 如果 k 是路径 p 上的顶点,则 st-path- $\delta(i,j)$ 由两部分构成 $i \stackrel{P_1}{\sim} k \stackrel{P_2}{\sim} j$,其中 p_1 是之间顶点来自于 $\{1,2,\ldots,k$ - $1\}$ 的 st-path- $\delta(i,k)$, p_2 同理。

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

Direct recursion algorithm? complexity?

Computing the shortest-path weights bottom up

We can use the following bottom-up procedure to compute the values $d_{ij}^{(k)}$ in order of increasing values of k.

按 k 增加(自底向上)的方式进行计算

```
FLOYD-WARSHALL(W)

1  n = W.rows

2  D^{(0)} = W

3  \mathbf{for} \ k = 1 \ \mathbf{to} \ n

4  \det D^{(k)} = (d_{ij}^{(k)}) \text{ be a new } n \times n \text{ matrix}

5  \mathbf{for} \ i = 1 \ \mathbf{to} \ n

6  \mathbf{for} \ j = 1 \ \mathbf{to} \ n

7  d_{ij}^{(k)} = \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right)

8  \mathbf{return} \ D^{(n)}
```

running time?

 $\Theta(n^3)$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

Constructing a shortest path (构造最短路径)

We compute a sequence of matrices $\Pi^{(0)}$, $\Pi^{(1)}$, ..., $\Pi^{(n)}$, where $\Pi = \Pi^{(n)}$ and we define $\pi_{ij}^{(k)}$ as the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in the set $\{1, 2, ..., k\}$.

$\pi_{ii}^{(k)}$ 表示从 i 到 j 的最短路径(之间顶点 from $\{1, 2, ..., k\}$)中 j 的前驱节点

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$$

all intermediate vertices in $\{1, 2, \dots, k-1\}$ all intermediate vertices in $\{1, 2, \dots, k-1\}$

p: all intermediate vertices in $\{1, 2, \dots, k\}$

对最短路径 $i \rightarrow j$,

- $\pi(1)$ k 不在最短路径上,最短路径的之间顶点是 $\{1, 2, ..., k-1\}$,因此 $\pi_{ii}^{(k)} = \pi_{ii}^{(k-1)}$
- (2) k 在最短路径上, $i \rightarrow j$ 中 j 的前驱 π_{ij} 显然就是的 $k \rightarrow j$ 中 j 的前驱 π_{kj}

$$d_{42}^{(1)} = \min(d_{42}^{(0)}, d_{41}^{(0)} + d_{12}^{(0)})$$

= $\min(\infty, 2 + 3) = 5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$$

$$d_{12}^{(5)} = \min(d_{12}^{(4)}, d_{15}^{(4)} + d_{52}^{(4)})$$

= \min(3, -4 + 5) = 1

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ \hline 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & 5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & \boxed{3} & -1 & 4 & \boxed{-4} \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & 5 & 0 & -2 \\ 8 & \boxed{5} & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty \end{cases}$$

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$$

用前驱矩阵计算 最短路径

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 \\ \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & \boxed{3} \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ \boxed{4} & 3 & \text{NIL} & 2 & \boxed{1} \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

The Floyd-Warshall vs matrix multiplication

Floyd-Warshall $\Theta(n^3)$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \text{,} \\ \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \text{.} \end{cases}$$

$$- \frac{1}{k}$$

FLOYD-WARSHALL(W) 1 n = W.rows2 $D^{(0)} = W$ 3 **for** k = 1 **to** n4 let $D^{(k)} = (d_{ij}^{(k)})$ be a new $n \times n$ matrix 5 **for** i = 1 **to** n6 **for** j = 1 **to** n7 $d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$ 8 **return** $D^{(n)}$

Floyd-Warshall is fast. Why?

matrix multiplication $\Theta(n^4)$

$$l_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j. \end{cases}$$

$$l_{ij}^{(m)} = \min_{1 \leq k \leq n} \left\{ l_{ik}^{(m-1)} + w_{kj} \right\}.$$
上标 m 和下标 k , 两个 n 遍历

EXTEND-SHORTEST-PATHS (L, W)

```
1 n = L.rows

2 let L' = (l'_{ij}) be a new n \times n matrix

3 for i = 1 to n

4 for j = 1 to n

5 l'_{ij} = \infty

6 for k = 1 to n

7 l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj})

8 return L'
```

SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

```
1 n = W.rows

2 L^{(1)} = W

3 for m = 2 to n - 1

4 let L^{(m)} be a new n \times n matrix

5 L^{(m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m-1)}, W)

6 return L^{(n-1)}
```

Transitive closure of a directed graph*

25.3 Johnson's algorithm for sparse graphs*

Summary of Graph Algorithms

- Queue, Priority Queue
- Enumeration (BFS, ...)
- Recursion (DFS, ...)
- Dynamic Programming (All-Pairs Shortest Paths)
- Greedy Strategy (Single-Source Shortest Paths)
- Relaxation
- Aggregate analysis

• ...