USN:											
------	--	--	--	--	--	--	--	--	--	--	--

B.N.M. Institute of Technology

An Autonomous Institution under VTU

Department of Information Science & Engineering Continuous Internal Assessment - I

Sem: IV Sub: Design and Analysis of Algorithms

Sub code: 22ISE144

Date: 29/05/2024 Time: 11:15-12:30PM Max Marks: 30

Note: Answer FOUR full questions selecting one full question from each part.

		Marks	COs	POs/PSOs	Bloom's Cognitive Levels		
	PART A						
1	List and Identify the fundamental properties of algorithmic problem solving.	7	CO1	PO1, PSO1	Analyze		
	(OR)						
2	Categorize the Big-Oh and Big-Theta Asymptotic Notations.	7	CO1	PO1, PSO1	Analyze		
	PART B						
3	Construct a Bubble sort algorithm to sort a list of elements using Brute force technique and build the time complexity for Selection sort.	8	CO2	PO1, PO3, PSO1 Apply			
(OR)							
4	Build a Binary search algorithm to search a given key element using Divide and Conquer technique and outline the time complexity using substitution method.	8	CO2	PO1, PO3, PSO1	Apply		
	PART C						
5	Develop a Quick Sort Algorithm. Solve for the below given list of elements using quick sort. 6 10 4 3 9 2 1 5	7	CO2	PO1, PO3, PSO1	Apply		
	(OR)						
6	Apply the DFS-based algorithm to solve the topological sorting problem for the following digraphs (b) (a) (C2) (C3) (C5)	7	CO2	PO1, PO3, PSO1	Apply		

USN:											
------	--	--	--	--	--	--	--	--	--	--	--

PART D

7	Solve the following knapsack problem using greedy method. $M = 40$, $n = 4$, $\{w1, w2, w3, w4\} = \{20, 25, 10, 15\}$ represents weights of 4 objects, $\{p1, p2, p3, p4\}$ = $\{30, 40, 35, 10\}$ represents profits of 4 objects.	8	СОЗ	PO1, PO2, PO3, PO4, PSO1	Apply		
	(OR)						
8	Solve the following knapsack problem using greedy method. $M = 50$, $n = 4$, $\{w1, w2, w3, w4\} = \{25, 18, 12, 15\}$ represents weights of 4 objects, $\{p1, p2, p3, p4\} = \{40, 30, 55, 20\}$ represents profits of 4 objects.	8	CO3	PO1, PO2, PO3, PO4, PSO1	Apply		

CO1: Apply and Analyze the asymptotic runtime complexity of algorithms by using mathematical relations that helps to identify them in specific instances.

CO2: Apply and solve problems using brute force, divide and conquer techniques.

CO3: Apply various problem-solving methodologies such as greedy, decrease and conquer to solve a given problem

BNMIT/T/23-06 Page 2 of 2 **REV: 3**