Chapitre 3 Equations différentielles Partie 1

Damerdji Bouharis A. Université des Sciences et de la Technologie Mohamed Boudiaf Faculté des Mathématiques et Informatique.

CHAPITRE

Equations différentielles

Introduction

Dans ce chapitre, on présente les méthodes de calcul classiques, concernant la résolution des équations différentielles programmées pour ce semestre à savoir les équations différentielles de premier ordre, d'abord linéaires puis celles de Bernoulli et de Riccati ensuite celles du second ordre avec coefficients constants. Il y aura les outils de base avec plus de pratique que de théorie pour permettre à l'étudiant d'assimiler ces notions dont il aura certainement besoin quelque soit son orientation scientifique.

1.1 Définitions et notations

Définition 1.1.1 On appelle équation différentielle toute équation dans laquelle figurent l'inconnue qui est une fonction y de classe C^n d'une variable x et ses fonctions dérivées de différents ordres $y', y'', ..., y^{(n)}$,

$$F(y, y', y'', ..., y^{(n)}) = 0$$

sachant que la dérivée y' de y par rapport à x est telle que $y' = \frac{dy}{dx}$.

Définition 1.1.2 On appelle ordre d'une équation différentielle, l'ordre $n \in \mathbb{N}^*$ de la dérivée la plus élevée figurant dans l'équation différentielle.

Définition 1.1.3 On appelle solution ou intégrale d'une équation différentielle d'ordre n sur un certain intervalle ouvert I de \mathbb{R} , toute fonction y définie sur cet intervalle,

$$y: I \to \mathbb{R}$$

 $x \mapsto y(x)$

telle que y est n-fois dérivable en tout point de I et vérifie cette équation différentielle.

Définition 1.1.4 Une équation différentielle d'ordre n est dite linéaire s'il n'y a pas d'exposant ni pour la fonction inconnue y ni pour ses dérivées successives $y', y'', ..., y^{(n)}$, elle est de la forme

$$a_0(x) y^{(n)} + a_1(x) y^{(n-1)} + ... + a_n(x) y = f(x),$$
 (1.1)

où f et a_i sont des fonctions continues pour i = 0, ..., n et $a_0 \neq 0$.

Définition 1.1.5 Si y est fonction d'une seule variable, l'équation est appelée équation différentielle ordinaire (EDO).

Exemples 1.1.6.

- 1. $y' \ln x + x^2 y + \cos x = 0$ équation différentielle linéaire d'ordre 1, car elle est de la forme (1.1).
- 2. $8y'' + y' 3y = xe^x \sin x$ équation différentielle linéaire d'ordre 2, car elle est de la forme (1.1).
- 3. $y'' + (y')^2 = -1$ équation différentielle d'ordre 2, non linéaire car sa première dérivée est à la puissance 2.
- 4. $y^{(4)} + 5yy'' + y = 3$ équation différentielle d'ordre 4, non linéaire.

1.2 Equations différentielles d'ordre 1

1.2.1 Equations différentielles linéaires d'ordre 1 à variables séparables

Définition 1.2.1 On appelle équation différentielle linéaire d'ordre 1 à variables séparables, toute équation de la forme

$$y' = f(x) h(y) \tag{1.2}$$

où f et h sont des fonctions de classe C^1 sur intervalle I de \mathbb{R} .

Résolution

On peut ramener cette équation à une équation différentielle linéaire d'ordre 1 dite à variables séparées de la forme

$$f(x) dx = g(y) dy$$

où $g(y) = \frac{1}{h(y)}$, $\forall y \in I$, tel que $h(y) \neq 0$, puis on intègre les deux cotés chacun par rapport à sa variable.

Exemple 1.2.2 Résoudre (intégrer) les équations différentielles suivantes

- 1. $y' x^2y = x^2$
- 2. $y'(x^2 3) 2xy = 0$.
- 3. $y'(x^2+1) = \sqrt{1-y^2}$.

Solution

1.

$$y' - x^2y = x^2 \Leftrightarrow \frac{dy}{dx} = (1+y)x^2$$

en séparant les variables et en supposant que $y \neq -1$, on a

$$\frac{dy}{1+y} = x^2 dx,$$

Damerdji Bouharis A.

d'où en intégrant le côté gauche par rapport à y et le côté droit par rapport à x, on obtient

$$\ln|1+y| = \frac{1}{3}x^3 + c, c \in \mathbb{R}$$
$$\Rightarrow |1+y| = e^{\frac{1}{3}x^3 + c}$$
$$\Rightarrow y = e^{\frac{1}{3}x^3 + c} - 1,$$

alors en posant $k = \pm e^c$ on a

$$y(x) = ke^{\frac{1}{3}x^3} - 1, \ k \in \mathbb{R}.$$

2.

$$y'\left(x^2 - 3\right) - 2xy = 0 \Leftrightarrow \frac{dy}{dx}\left(x^2 - 3\right) = 2xy$$

en supposant que $x \neq -\sqrt{3}$ et $x \neq \sqrt{3}$, on a

$$\frac{dy}{y} = \frac{2x}{x^2 - 3} dx,$$

d'où

$$\ln|y| = \ln|x^2 - 3| + c, c \in \mathbb{R},$$

alors en posant $k = \pm e^c$ on a

$$y(x) = k(x^2 - 3), k \in \mathbb{R}.$$

3.

$$y'(x^2+1) = \sqrt{1-y^2} \Leftrightarrow \frac{dy}{dx}(x^2+1) = \sqrt{1-y^2}$$

en supposant que $y \neq -1$ et $y \neq 1$, on a

$$\frac{dy}{\sqrt{1-y^2}} = \frac{dx}{x^2+1}$$

d'où

$$\arcsin y = \arctan x + k, k \in \mathbb{R},$$

par suite

$$y(x) = \sin(\arctan x + k), k \in \mathbb{R}.$$

Remarque Pour déterminer la constante k il suffit de donner une condition initiale, $y_0 = y(x_0)$.

Analyse 2

1.2.2 Equations différentielles linéaires d'ordre 1 homogènes

Définition 1.2.3 On appelle équation différentielle linéaire d'ordre 1 homogène ou sans second membre, toute équation différentielle de la forme

$$y'(x) + a(x)y(x) = 0$$
 (1.3)

où a est une fonction continue sur un intervalle I de \mathbb{R} .

La résolution de l'équation (1.3), consiste à séparer les variables tel que

$$\frac{dy}{dx} + a(x)y = 0 \Leftrightarrow \frac{dy}{y} = -a(x) dx,$$

d'où en intégrant

$$\ln|y| = -\int a(x) dx + c, c \in \mathbb{R}$$

par suite la solution de (1.3) est dite solution homogène et elle est donnée par

$$y_{\text{hom}}(x) = ke^{-\int a(x)dx}$$
, où $k = e^c$.

Définition 1.2.4 Pour une équation homogène, la solution triviale y = 0 est une solution.

Remarque : La solution ici n'est pas unique, mais si on a de plus une solution particulière y_p pour la condition initiale $x_0 \in I$, telle que $y_p = y(x_0)$, alors on pourra calculer la constante k et dans ce cas, l'équation (1.3) possèdera une solution unique.

Exemple 1.2.5 Résoudre l'équation différentielle homogène $3y' + e^x y = 0$.

$$3y' + e^x y = 0 \Leftrightarrow 3\frac{dy}{dx} = -e^x y \Leftrightarrow \frac{dy}{y} = -\frac{1}{3}e^x dx,$$

d'où en intégrant les deux membres

$$\ln|y| = -\frac{1}{3} \int e^x dx + c, c \in \mathbb{R}$$

par suite

$$\ln|y| = -\frac{1}{3}e^x + c,$$

donc la solution homogène est donnée par

$$y_{\text{hom}}(x) = ke^{-\frac{1}{3}e^x}, \ où \ k = \pm e^c$$

telle que y = 0 est une solution triviale.

1.2.3 Equations différentielles linéaires d'ordre 1 avec second membre

Définition 1.2.6 On appelle équation différentielle linéaire d'ordre 1 avec second membre ou non homogène, toute équation différentielle de la forme

$$a(x) y'(x) + b(x) y(x) = f(x)$$
 (1.4)

où a, b et f sont des fonctions données, continues sur un intervalle I de \mathbb{R} , avec a non identiquement nulle sur I.

Damerdji Bouharis A. USTO MB

Méthode de résolution

Etape 1 Tout d'abord on résoud l'équation homogène Eq. Hom associée à l'équation (1.4),

Eq. Hom:
$$a(x) y'(x) + b(x) y(x) = 0,$$
 (1.5)

qui est une équation à variables séparables

$$a(x)y' + b(x)y = 0 \Leftrightarrow \frac{y'}{y} = -\frac{a(x)}{b(x)} \Leftrightarrow \frac{dy}{y} = -\frac{a(x)}{b(x)}dx,$$

d'où en intégrant on a

$$\ln|y| = -\int \frac{a(x)}{b(x)} dx + c, c \in \mathbb{R}$$

par suite la solution homogène de (1.4) est donnée par

$$\begin{aligned} |y_{\text{hom}}\left(x\right)| &= e^{-\int \frac{a(x)}{b(x)} dx + c} \\ \Leftrightarrow y_{\text{hom}}\left(x\right) &= k e^{-\int \frac{a(x)}{b(x)} dx}, \text{ où } k = \pm e^{c} \in \mathbb{R}. \end{aligned}$$

Etape 2 Pour avoir la solution générale de l'équation différentielle (1.4), on distingue deux cas :

Cas 1 Si on connaît une solution particulière y_p de l'équation (1.4), alors on donne la solution générale de (1.4) par la formule

$$y_{qle} = y_{\text{hom}} + y_p \tag{1.6}$$

Cas 2 Si on ne connaît pas de solution particulière de l'équation (1.4), alors on procède par la méthode de la variation de la constante, c'est à dire remplacer la solution homogène y_{Hom} dans l'équation (1.4) en considérant la constante k comme une fonction de la variable x.

Preuve de la formule (1.6):

Soit y_p une solution particulière de l'équation (1.4), et y_{gle} une solution générale de l'équation (1.4), alors $y_{gle} - y_p$ est une solution de l'équation homogène (1.5), en effet,

 y_p vérifie (1.4) alors

$$a(x) y_p'(x) + b(x) y_p(x) = f(x)$$

et y_{qle} vérifie aussi (1.4) alors

$$a(x) y'_{gle}(x) + b(x) y_{gle}(x) = f(x),$$

et en calculant la différence on a

$$a(x)(y_{ale}(x) - y_{p}(x))' + b(x)(y_{ale}(x) - y_{p}(x)) = 0$$

Analyse 2 Damerdji Bouharis A.

d'où $y_{gle}-y_p$ vérifie l'équation homogène (1.5), ainsi

$$y_{gle} - y_p = y_{\text{hom}} \Leftrightarrow y_{gle} = y_{\text{hom}} + y_p.$$

Exemple 1.2.7 Résoudre l'équation différentielle suivante

$$y'\cos x + y\sin x = 1. (1.7)$$

Solution

<u>Equation homogène</u>: On commence par écrire l'équation homogène de l'équation (1.7) sous la forme

$$Eq. Hom: y'\cos x + y\sin x = 0. (1.8)$$

C'est une équation à variables séparables

$$(1.8) \Leftrightarrow \frac{y'}{y} = -\frac{\sin x}{\cos x} \Leftrightarrow \frac{1}{y} dy = -\frac{\sin x}{\cos x} dx,$$

d'où en intégrant on a

$$\ln|y| = -\int \frac{\sin x}{\cos x} dx + c, c \in \mathbb{R} \Rightarrow \ln|y| = \ln|\cos x| + c \Rightarrow y = k\cos x, \ où \ k = \pm e^c.$$

Par conséquent, la solution homogène de (1.7) est donnée par

$$y_{\text{hom}}(x) = k \cos x, \ où \ k \in \mathbb{R}.$$
 (1.9)

On remarque ensuite que cette équation différentielle admet comme solution particulière évidente la fonction $y_p = \sin x$, en effet $y' = \cos x$ d'où y_p vérifie l'équation (1.7), donc on peut utiliser le cas 1 et on a

$$y_{gle}(x) = k \cos x + \sin x, \ k \in \mathbb{R}.$$

Remarque Si on ne remarque pas que l'équation (1.7) admet une solution particulière on peut toujours utiliser la méthode de la variation de la constante k dans la solution homogène $y_{Hom}(x) = k \cos x$. En effet,

$$y_{\text{hom}}(x) = k(x)\cos x \Rightarrow y'(x) = k'\cos x - k\sin x$$

alors en remplaçant dans (1.7), on obtient

$$k'\cos^2 x = 1 \Leftrightarrow dk = \frac{dx}{\cos^2 x}$$

et en intégrant on a

$$k(x) = \tan x + c, \ c \in \mathbb{R}.$$

Puis on remplace dans (1.9) et on récupère la solution générale directement

$$y_{gle}(x) = (\tan x + c)\cos x$$
$$d'où y_{gle}(x) = \sin x + c\cos x, \ c \in \mathbb{R}.$$

Damerdji Bouharis A. USTO MB

Exemple 1.2.8 Résoudre l'équation différentielle

$$y' + y = e^{-x}, (1.10)$$

avec la solution particulière y(0) = 1.

Solution

Eq. Hom :
$$y' + y = 0 \Leftrightarrow \frac{dy}{dx} = -y \Leftrightarrow \frac{dy}{y} = -dx$$

alors en intégrant des deux cotés on obtient

$$ln |y| = -x + c_1, c_1 \in \mathbb{R}$$

d'où en posant $k = \pm e^{c_1}$

$$y_{\text{hom}}(x) = ke^{-x}, où k \in \mathbb{R}.$$

La variation de la constante

On fait varier la constante k, on a alors

$$y'(x) = k'e^{-x} - ke^{-x}$$

puis on remplace dans (1.10) pour obtenir

$$k' = 1 \Leftrightarrow dk = dx$$

d'où en intégrant on a

$$k(x) = x + c, c \in \mathbb{R}$$

par conséquent

$$y_{qle}(x) = (x+c)e^{-x}, c \in \mathbb{R}$$
 (1.11)

comme y(0) = 1 alors on remplace dans (1.11) pour avoir c = 1 donc

$$y(x) = (x+1)e^{-x}$$
.

Exemple 1.2.9 Résoudre l'équation différentielle suivante

$$(1+x^2)y' - \frac{y}{\arctan x} = \arctan x \tag{1.12}$$

Eq. Hom:
$$(1+x^2) y' - \frac{y}{\arctan x} = 0$$
,

$$(1+x^2)y' - \frac{y}{\arctan x} = 0 \Leftrightarrow \frac{dy}{y} = \frac{dx}{(1+x^2)\arctan x}.$$

En intègrant des deux côtés, on obtient

$$ln |y| = \int \frac{1}{(1+x^2)\arctan x} dx + c_1, c_1 \in \mathbb{R}$$

$$CV: t = \arctan x \Rightarrow dt = \frac{dx}{1 + x^2}$$

Analyse 2 Damerdji Bouharis A.

d'où

$$ln |y| = \int \frac{dt}{t} + c_1 = ln |t| + c_1, c_1 \in \mathbb{R},$$

alors

$$ln |y| = ln |\arctan x| + c_1, c_1 \in \mathbb{R},$$

 $donc\ en\ posant\ k=\pm e^{c_1}$

$$y_{\text{hom}}(x) = k \arctan x, o \hat{u} \ k \in \mathbb{R}.$$
 (1.13)

La variation de la constante

On fait varier la constante k , on a alors

$$y'(x) = k' \arctan x + \frac{k}{1+x^2},$$

puis on remplace dans (1.12) pour obtenir

$$(1+x^2)$$
 $\left[k'\arctan x + \frac{k}{1+x^2}\right] - k = \arctan x.$

d'où

$$k'(1+x^2) = 1 \Leftrightarrow k' = \frac{1}{1+x^2} \Leftrightarrow dk = \frac{dx}{1+x^2}$$

Par intégration, on obtient

$$k(x) = \arctan x + c, \ c \in \mathbb{R},$$

puis on remplace dans (1.13)

$$y_{\text{hom}}(x) = (\arctan x + c) \arctan x$$

et enfin on a la solution générale

$$y_{gle}(x) = \arctan^2 x + c \arctan x, \ c \in \mathbb{R}.$$

Damerdji Bouharis A.