Contents			5.10 Extended Euclid	
1	Some definition	1	5.11 FFT	
	Data structure 2.1 Mo's algorithm 2.2 Set and map 2.3 BIT 2.4 IT2D	2 6 2 2 2 2 2 2	Theorem 6.1 Fermat's little theorem	14 14 14
3	Graph 3.1 Dinic 3.2 Mincost 3.3 HLD 3.4 Cu khp 3.5 Monotone chain 3.6 MST 3.7 HopcroftKarp 3.8 Hungarian	3 3 7 3 4 4 4 5 5 5 6	Other 7.1 Bignum mul 7.2 Random 7.3 Builtin bit function 7.4 Pythagorean triples 7.5 Sieve 7.6 Catalan 7.7 Prime under 100	14 14 14 15 15 15 15
4	String 4.1 Aho Corasick	7 7 7 8 8 9 9 9 1	Some definition	
5	5.4 Trigonometric	9 # 9 # 10 # 10 # 10 # 10 # 11 # 11 # 11	<pre>sinclude <bits stdc++.h=""> sinclude <random> sinclude <chrono> sinclude <ctime> define N define matrix_size 2 define mod 1000000007LL define eps 1e-8 define base 137 // Or 37 define cross(A, B) (A.x * B.y - A.y * B.x) define dot(A, B) (A.x * B.x + A.y * B.y)</ctime></chrono></random></bits></pre>	

```
#define ccw(A, B, C) (-(A.x * (C.y - B.y) + B.x * (A.y - C.
    y) + C.x * (B.y - A.y))) // positive when ccw
#define CROSS(a, b, c, d) (a * d - b * c)
```

2 Data structure

2.1 Mo's algorithm

$$O(N*\sqrt{N}+Q*\sqrt{N})$$

```
S = sqrt(N);
bool cmp(Query A, Query B) // compare 2 queries
{
  if (A.1 / S != B.1 / S) {
    return A.1 / S < B.1 / S;
  }
  return A.r < B.r;
}</pre>
```

2.2 Set and map

Use set.lower'bound() instead of lower'bound(set.begin(), set.end()) for better performance

The same is true for map

2.3 BIT

```
void update(int x, int val)
{
  for (; x <= n; x += x & ~x) BIT[x] = min(BIT[x], val);
}
int get(int x)
{
  int res = 1e9;
  for (; x > 0; x -= x & ~x) res = min(res, BIT[x]);
  return res;
}
```

2.4 IT2D

```
int Max [4096] [4096]:
struct dir {
  int ll, rr, id;
  dir (int L, int R, int X)
    { ll=L, rr=R, id=X; }
  dir left() const
    { return dir(ll, (ll+rr)/2, id*2); }
  dir right() const
    { return dir((ll+rr)/2+1, rr, id*2+1); }
  inline bool irrelevant(int L, int R) const
    { return 11>R || L>rr || L>R; }
};
void maximize(int &a, int b)
  { a=max(a, b); }
void maximize (const dir &dx, const dir &dy, int x, int y,
   int k, bool only_y) {
  if (dx.irrelevant(x, x) || dy.irrelevant(y, y)) return;
  maximize(Max[dx.id][dy.id], k);
  if (!only_y && dx.ll != dx.rr) {
    maximize(dx.left(), dy, x, y, k, false);
    maximize(dx.right(), dy, x, y, k, false);
  if (dv.ll != dv.rr) {
    maximize(dx, dy.left(), x, y, k, true);
    maximize(dx, dy.right(), x, y, k, true);
 }
}
int max_range(const dir &dx, const dir &dy, int lx, int rx,
    int ly, int ry) {
  if (dx.irrelevant(lx, rx) || dy.irrelevant(ly, ry))
   return 0:
  if (lx<=dx.ll && dx.rr<=rx) {</pre>
    if (ly<=dy.11 && dy.rr<=ry) return Max[dx.id][dy.id];</pre>
    int Max1 = max_range(dx, dy.left(), lx, rx, ly, ry);
    int Max2 = max_range(dx, dy.right(), lx, rx, ly, ry);
    return max(Max1, Max2);
  } else {
    int Max1 = max_range(dx.left(), dy, lx, rx, ly, ry);
    int Max2 = max_range(dx.right(), dy, lx, rx, ly, ry);
    return max(Max1, Max2);
  }
```

3 Graph

3.1 Dinic

}

```
namespace Dinic // really fast, O(n^2 m) or O(sqrt(n)m) if
   bipartite
    vector < int > adj[N];
    long long c[N][N], f[N][N];
    int s = 0, t = 0, d[N], ptr[N];
    bool BFS()
    {
        queue < int > q;
        memset(d, -1, sizeof(d));
        d[s] = 0; q.push(s);
        while (!q.empty())
        {
            int u = q.front(); q.pop();
            for (int v : adj[u])
                if (d[v] == -1 \&\& c[u][v] > f[u][v])
                {
                     d[v] = d[u] + 1:
                     q.push(v);
            }
        return d[t] != -1;
    long long DFS(int x, long long delta)
        if (x == t) return delta;
        for (; ptr[x] < adj[x].size(); ++ptr[x]) // Skip</pre>
   the used edge
        {
            int y = adj[x][ptr[x]];
            if (d[y] == d[x] + 1 && c[x][y] > f[x][y])
            {
                long long push = DFS(y, min(delta, c[x][y]
   - f[x][y]));
                if (push)
                {
                    f[x][y] += push;
```

```
f[y][x] -= push;
                    return push;
                }
            }
        }
        return 0;
    long long maxFlow(int x, int y) // From x to y
        long long flow = 0;
        s = x; t = y;
        while (BFS())
            memset(ptr, 0, sizeof(ptr));
            while (long long tmp = DFS(s, 1e9))
                flow += 1LL * tmp;
        }
        return flow;
    }
};
3.2
     Mincost
int calc(int x, int y) { return (x \ge 0) ? y : 0 - y; }
bool findpath()
 for (int i = 1; i <= n; i++) { trace[i] = 0; d[i] = inf;
  q.push(n); d[n] = 0;
  while (!q.empty())
    int u = q.front();
    q.pop();
    inq[u] = false;
    for (int i = 0; i < adj[u].size(); i++)</pre>
      int v = adj[u][i];
      if (c[u][v] > f[u][v] && d[v] > d[u] + calc(f[u][v],
   cost[u][v])
      {
        trace[v] = u;
        d[v] = d[u] + calc(f[u][v], cost[u][v]);
        if (!inq[v])
```

{

```
inq[v] = true;
          q.push(v);
      }
  return d[t] != inf;
void incflow()
  int v = t, delta = inf;
  while (v != n)
    int u = trace[v];
    if (f[u][v] >= 0)
      delta = min(delta, c[u][v] - f[u][v]);
    else
      delta = min(delta, 0 - f[u][v]);
    v = u;
  }
  v = t;
  while (v != n)
    int u = trace[v];
    f[u][v] += delta;
    f[v][u] -= delta;
    v = u;
}
     HLD
3.3
void DFS(int x,int pa)
 DD[x]=DD[pa]+1; child[x]=1; int Max=0;
  for (int i=0; i<DSK[x].size(); i++)</pre>
    int y=DSK[x][i].fi;
    if (y==pa) continue;
    p[y]=x;
    d[y]=d[x]+DSK[x][i].se;
    DFS(y,x);
    child[x]+=child[y];
    if (child[y]>Max)
```

```
Max=child[v];
      tree[x]=tree[y];
  if (child[x]==1) tree[x]=++nTree;
void init()
  nTree=0;
  DFS(1,1);
  DD[0] = long(1e9);
  for (int i=1; i<=n; i++) if (DD[i]<DD[root[tree[i]]])</pre>
   root[tree[i]]=i;
int LCA(int u,int v)
  while (tree[u]!=tree[v])
    if (DD[root[tree[u]]] < DD[root[tree[v]]]) v = p[root[tree[</pre>
   v]]];
    else u=p[root[tree[u]]];
  if (DD[u]<DD[v]) return u; else return v;</pre>
3.4 Cu khp
   Nút u là khp: if (low[v] := num[u]) arti[u] = arti[u] — p[u] != -1 —
\text{child}[\mathbf{u}] := 2;
Cnh u, v là cu khi low[v] := num[v]
3.5 Monotone chain
void convex_hull (vector<pt> & a) {
 if (a.size() == 1) { // Only 1 point
    return:
  }
  // Sort with respect to x and then y
  sort(a.begin(), a.end(), &cmp);
```

Page

```
a.push_back (down[i]);
}
```

3.6

}

Prim: remember to have visited array

for (size_t i=0; i < up.size(); ++i)</pre>

for (size_t i=down.size()-2; i>0; --i)

pt p1 = a[0], p2 = a.back();

// Add to the upper chain

up.pop_back();

up.push_back (a[i]);

// Add to the lower chain

down[down.size()-1], a[i]))

down.pop_back();
down.push_back (a[i]);

for (size_t i=1; i<a.size(); ++i) {</pre>

if (i==a.size()-1 || cw (p1, a[i], p2)) {

if (i==a.size()-1 || ccw (p1, a[i], p2)) {

while $(up.size() \ge 2 \&\& !cw (up[up.size() -2], up[up.$

while (down.size()>=2 && !ccw (down[down.size()-2],

vector < pt > up, down;

up.push_back (p1);
down.push_back (p1);

size()-1], a[i]))

3.7 HopcroftKarp

// Merge 2 chains

a.push_back (up[i]);

a.clear();

MST

```
namespace HopcroftKarp // O(sqrt(n) * m)
{
    vector < int > adj[N]; int match[N], d[N];
    bool BFS()
    {
        queue < int > q;
}
```

```
memset(d, -1, sizeof(d));
    for (int i = 1; i <= n; ++i) if (!match[i])</pre>
         d[i] = 0;
         q.push(i);
     bool flag = false;
     while (!q.empty())
     {
         int u = q.front(); q.pop();
         for (int v : adj[u])
             if (match[v] == 0)
                 flag = true;
                 continue;
             }
             if (d[match[v]] == -1)
                 d[match[v]] = d[u] + 1;
                 q.push(match[v]);
         }
    }
     return flag;
}
bool DFS(int x)
    for (int y : adj[x])
    {
         if (match[y] == 0 \mid | (d[match[y]] == d[x] + 1)
&& DFS(match[y])))
        {
             match[y] = x;
             match[x] = y;
             return true;
        }
     d[x] = -1;
     return false:
 long long maxMatching() // From x to y
     long long matching = 0;
     while (BFS())
```

3.8 Hungarian

```
struct Hungarian {
 long c[N][N], fx[N], fy[N], d[N];
 int mx[N], my[N], trace[N], arg[N];
 queue < int > q;
  int start, finish, n, m;
  const long inf = 1e18;
  void Init(int _n, int _m) {
    n = _n, m = _m;
    FOR(i, 1, n) {
     mx[i] = my[i] = 0;
     FOR(j, 1, n) c[i][j] = inf;
    }
  void addEdge(int u, int v, long cost) { c[u][v] = min(c[u]
  ][v], cost); }
  inline long getC(int u, int v) { return c[u][v] - fx[u] -
    fy[v]; }
  void initBFS() {
    while (!q.empty()) q.pop();
    q.push(start);
    FOR(i, 0, n) trace[i] = 0;
    FOR(v, 1, n) {
      d[v] = getC(start, v), arg[v] = start;
    finish = 0;
 }
 void findAugPath() {
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      FOR(v, 1, n) if (!trace[v]) {
```

```
long w = getC(u, v):
      if (!w) {
        trace[v] = u;
        if (!my[v]) { finish = v; return; }
        q.push(my[v]);
      if (d[v] > w) \{ d[v] = w; arg[v] = u; \}
 }
}
void subX_addY(){
  long delta = inf;
  FOR(v, 1, n) if (trace[v] == 0 \&\& d[v] < delta) delta =
  d[v]:
  fx[start] += delta;
  FOR(v, 1, n) if (trace[v]) {
   int u = my[v];
    fy[v] -= delta, fx[u] += delta;
  } else d[v] -= delta;
  FOR(v, 1, n) if (!trace[v] && !d[v]) {
    trace[v] = arg[v];
    if (!my[v]) { finish = v; return; }
    q.push(my[v]);
void Enlarge() {
  do {
    int u = trace[finish], nxt = mx[u];
    mx[u] = finish, my[finish] = u, finish = nxt;
 } while (finish);
}
long minCost() {
  FOR(u, 1, n) {
    fx[u] = c[u][1];
    FOR(v, 1, n) fx[u] = min(fx[u], c[u][v]);
  FOR(v, 1, n) {
    fy[v] = c[1][v] - fx[1];
    FOR(u, 1, n) fy[v] = min(fy[v], c[u][v] - fx[u]);
  }
```

```
FOR(u, 1, n) {
      start = u;
      initBFS();
      while (finish == 0) {
       findAugPath();
        if (!finish) subX_addY();
      Enlarge();
    int res = 0;
    FOR(i, 1, n) res += c[i][mx[i]];
    return res;
 }
};
```

String

Aho Corasick

```
struct Node
  int nxt[26], go[26];
  bool leaf;
 long long val, sumVal;
 int p;
 int pch;
  int link;
};
Node t[N];
int sz;
void New(Node &x, int p, int link, int pch)
 x.p = p;
  x.link = link;
  x.pch = pch;
  x.val = 0;
  x.sumVal = -1;
  memset(x.nxt, -1, sizeof(x.nxt));
  memset(x.go, -1, sizeof(x.go));
}
void AddString(const string &s, int val)
```

```
int v = 0;
 for (char c : s)
    int id = c - 'A';
    if (t[v].nxt[id] == -1)
      New(t[sz], v, -1, id);
      t[v].nxt[id] = sz++;
    v = t[v].nxt[id];
 t[v].leaf = true;
 t[v].val = val;
int Go(int u, int c);
int Link(int u)
 if (t[u].link == -1)
   if (u == 0 || t[u].p == 0)
      t[u].link = 0;
    else
      t[u].link = Go(Link(t[u].p), t[u].pch);
 return t[u].link;
int Go(int u, int c)
 if (t[u].go[c] == -1)
    if (t[u].nxt[c] != -1)
      t[u].go[c] = t[u].nxt[c];
      t[u].go[c] = (u == 0 ? 0 : Go(Link(u), c));
 return t[u].go[c];
```

Manacher

void init() {

```
cnt = 0:
  t[0] = '^{"};
  for (int i = 0; i<n; i++) {</pre>
    t[++cnt] = '#'; t[++cnt] = s[i];
  }
  t[++cnt] = '#'; t[++cnt] = '-';
void manacher() {
  int n = cnt - 2;
  int r = 1; int C = 1;
  int ans = 0;
  for (int i = 2; i<n; i++) {
    int i_mirror = C * 2 - i;
    z[i] = (r > i) ? min(z[i_mirror], r - i) : 0;
    while (t[i + z[i] + 1] == t[i - z[i] - 1]) z[i] ++;
    if (i + z[i] > r) {
      C = i;
      r = i + z[i];
  }
}
      Suffix Array
4.3
struct SuffixArray {
  string s;
```

```
int n;
vector < int > SA, RA, tempSA, tempRA, LCP;
int L[N];
void reset(string st) {
  s = st;
  RA.clear();
  s.push_back('$');
  n = s.size();
  RA.resize(n + 1, 0);
  SA = RA, tempSA = tempRA = LCP = RA;
}
void BuildSA() {
  REP(i, n) SA[i] = i, RA[i] = s[i];
  for (int k = 1; k < n; k <<= 1) {
    radix_sort(k);
    radix_sort(0);
```

```
tempRA[SA[O]] = O;
      for (int i = 1, r = 0; i < n; ++i) {
        if (getRA(SA[i - 1]) != getRA(SA[i]) || getRA(SA[i
   -1] + k) != getRA(SA[i] + k)) ++r;
        tempRA[SA[i]] = r;
      REP(i, n) RA[i] = tempRA[i];
      if (RA[SA[n-1]] == n-1) break;
    }
  }
  void BuildLCP() {
    // kasai
    REP(i, n) RA[SA[i]] = i;
    int k = 0;
    REP(i, n) {
     if (RA[i] == n - 1) {
        k = 0; continue;
      }
      int j = SA[RA[i] + 1];
      while (i + k < n \&\& j + k < n \&\& s[i + k] == s[j + k]
   ]) ++k;
      LCP[RA[i]] = k;
      if (k) k--;
    }
  }
private:
  inline int getRA(int i) { return (i < n ? RA[i] : 0); }</pre>
  void radix_sort(int k) {
    memset(L, 0, sizeof L);
    REP(i, n) L[getRA(i + k)]++;
    int p = 0;
    REP(i, N) {
     int x = L[i];
      L[i] = p;
      p += x;
    }
    REP(i, n) {
      int &x = L[getRA(SA[i] + k)];
      tempSA[x++] = SA[i];
    REP(i, n) SA[i] = tempSA[i];
};
```

```
vector < int > Zfunc(int n, vector < int > &a) {
  vector < int > z(n):
  z[0] = n:
  int 1 = 0, r = 0;
  FOR(i, 1, n - 1) {
    z[i] = (i \le r ? min(r - i + 1, z[i - 1]) : 0);
    while (i + z[i] < n && a[z[i]] == a[i + z[i]]) ++z[i];
    if (i + z[i] > r) {
      r = i + z[i] - 1;
      1 = i;
  return z;
     KMP
```

4.5

```
// SUBSTR spoj
string s, t; int pos[N];
void build()
  pos[0] = -1;
  int pre = -1, cur = 0;
  while (cur < t.length())</pre>
    while (pre >= 0 && t[cur] != t[pre])
      pre = pos[pre];
    pos[++cur] = ++pre;
int main()
  cin >> s; cin >> t;
  build():
  int cur = 0;
  for (int i = 0; i < (int)s.length(); ++i)</pre>
    while (cur >= 0 && s[i] != t[cur])
      cur = pos[cur];
```

```
}
  if (cur == (int)t.length())
    cout << i - (int)t.length() + 2 << ' ';</pre>
    cur = pos[cur];
}
return 0;
```

Hash 2D

$$H[i][j] = H[i-1][j] * p + H[i][j-1] * q - H[i-1][j-1] * p * q + s[i][j]$$
 (1)

$$Hash(a,b)(x,y) = H[x][y] - H[a-1][y] * p^{x-a+1} - H[x][b-1]$$

$$* q^{y-b+1} + H[a-1][b-1] * p^{x-a+1} * q^{y-b+1}$$
(2)

Math

Derivatives and integrals

$$\frac{d}{dx} \ln u = \frac{u'}{u} \qquad \frac{d}{dx} \frac{1}{u} = -\frac{u'}{u^2}$$

$$\frac{d}{dx} \sqrt{u} = \frac{u'}{2\sqrt{u}}$$

$$\frac{d}{dx} \sin x = \cos x \qquad \frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx} \cos x = -\sin x \qquad \frac{d}{dx} \arccos x = -\frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx} \tan x = 1 + \tan^2 x \qquad \frac{d}{dx} \arctan x = \frac{1}{1 + x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x \sin ax = \frac{\sin ax - ax \cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2} \operatorname{erf}(x) \qquad \int x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1)$$

5.2

Sum

 $\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$

 $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$

 $1+2+3+\cdots+n=\frac{n(n+1)}{2}$

 $1^4 + 2^4 + 3^4 + \dots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}$

5.3 Series

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{2x^3}{32} - \frac{5x^4}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, (-\infty < x < \infty)$$

Trigonometric

$$\sin(v+w) = \sin v \cos w + \cos v \sin w$$

$$\cos(v+w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$

$$\sin v + \sin w = 2\sin \frac{v+w}{2}\cos \frac{v-w}{2}$$

$$\cos v + \cos w = 2\cos \frac{v+w}{2}\cos \frac{v-w}{2}$$

$$a\cos x + b\sin x = r\cos(x-\phi)$$

$$a\sin x + b\cos x = r\sin(x+\phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

Number Theory 5.5

$$a + b = a \oplus b + 2 \times (a \wedge b)$$
$$(a \div b)\%c = a \times b^{c-2}$$

Gaussian elimination

```
// Gauss-Jordan elimination.
// Returns: number of solution (0, 1 or INF)
     When the system has at least one solution, ans will
   contains
     one possible solution
// Possible improvement when having precision errors:
     - Divide i-th row by a(i, i)
     - Choosing pivoting row with min absolute value (
   sometimes this is better that maximum, as implemented
   here)
// Tested:
// - https://open.kattis.com/problems/equationsolver
// - https://open.kattis.com/problems/equationsolverplus
```

```
int gauss (vector < vector <double > > a, vector <double > &
   ans) {
  int n = (int) a.size();
  int m = (int) a[0].size() - 1;
  vector<int> where (m, -1);
 int sel = row;
   for (int i=row; i<n; ++i)</pre>
     if (abs (a[i][col]) > abs (a[sel][col]))
        sel = i:
    if (abs (a[sel][col]) < EPS)</pre>
      continue:
    for (int i=col; i<=m; ++i)</pre>
      swap (a[sel][i], a[row][i]);
    where [col] = row;
    for (int i=0; i<n; ++i)</pre>
     if (i != row) {
        double c = a[i][col] / a[row][col];
       for (int j=col; j<=m; ++j)</pre>
         a[i][j] -= a[row][j] * c;
     }
    ++row;
 }
  ans.assign (m, 0);
  for (int i=0; i<m; ++i)</pre>
   if (where[i] != -1)
      ans[i] = a[where[i]][m] / a[where[i]][i];
 for (int i=0; i<n; ++i) {</pre>
    double sum = 0;
   for (int j=0; j<m; ++j)
      sum += ans[j] * a[i][j];
   if (abs (sum - a[i][m]) > EPS)
      return 0;
 }
 // If we need any solution (in case INF solutions), we
  should be
 // ok at this point.
 // If need to solve partially (get which values are fixed
   /INF value):
// for (int i=0; i<m; ++i)
   if (where[i] != -1) {
```

```
//
        REP(j,n) if (j != i \&\& fabs(a[where[i]][j]) > EPS)
  {
//
          where [i] = -1;
//
          break;
11
        }
11
 // Then the variables which has where [i] == -1 --> INF
 for (int i=0; i<m; ++i)</pre>
   if (where[i] == -1)
      return INF;
 return 1;
5.7 Geometry
struct line
 double a,b,c;
 line() {}
 line(double A, double B, double C):a(A),b(B),c(C){}
  line(Point A, Point B)
    a=A.y-B.y; b=B.x-A.x; c=-a*A.x-b*A.y;
};
Point intersect(line AB, line CD)
  AB.c = -AB.c; CD.c = -CD.c;
  double D=CROSS(AB.a,AB.b,CD.a,CD.b);
  double Dx=CROSS(AB.c,AB.b,CD.c,CD.b);
  double Dy=CROSS(AB.a,AB.c,CD.a,CD.c);
  if (D==0.0) return Point(1e9,1e9);
  else return Point(Dx/D,Dy/D);
    Miller Rabin
5.8
// n < 4,759,123,141
                            3:2,7,61
// n < 1,122,004,669,633
                            4 : 2, 13, 23, 1662803
// n < 3,474,749,660,383
                                   6 : pirmes <= 13
// n < 2^64
                                   7 :
// 2, 325, 9375, 28178, 450775, 9780504, 1795265022
```

```
// Make sure testing integer is in range [2, n 2] if
// you want to use magic.
long long power(long long x, long long p, long long mod) {
  long long s = 1, m = x;
  while (p) {
   if (p & 1) s = mult(s, m, mod);
    p >>= 1;
    m = mult(m, m, mod);
 }
  return s;
bool witness (long long a, long long n, long long u, int t)
   ₹
  long long x = power(a, u, n);
 for (int i = 0; i < t; i++) {
    long long nx = mult(x, x, n);
   if (nx == 1 && x != 1 && x != n - 1) return 1;
    x = nx;
  return x != 1;
bool miller_rabin(long long n, int s = 100) {
 // iterate s times of witness on n
  // return 1 if prime, 0 otherwise
  if (n < 2) return 0;</pre>
  if (!(n & 1)) return n == 2;
  long long u = n - 1;
  int t = 0;
  // n-1 = u*2^t
  while (!(u & 1)) {
    u >>= 1:
    t++;
 }
  while (s--) {
    long long a = randll() \% (n - 1) + 1;
    if (witness(a, n, u, t)) return 0;
 }
  return 1;
     Chinese Remainer
// Solve linear congruences equation:
// - a[i] * x = b[i] MOD m[i] (mi don't need to be co-prime
```

```
)
```

```
// Tested:
// - https://open.kattis.com/problems/
   generalchineseremainder
bool linearCongruences(const vector<11> &a, const vector<11
   > &b,
    const vector<ll> &m, ll &x, ll &M) {
  ll n = a.size();
  x = 0; M = 1;
  REP(i, n) {
    ll a_{-} = a[i] * M, b_{-} = b[i] - a[i] * x, m_{-} = m[i];
    ll y, t, g = extgcd(a_, m_, y, t);
    if (b_ % g) return false;
    b_ /= g; m_ /= g;
    x += M * (y * b_  % m_);
    M *= m:
  x = (x + M) \% M;
  return true;
5.10 Extended Euclid
// other pairs are of the form:
// x' = x + k(b / gcd)
// y' = y - k(a / gcd)
// where k is an arbitrary integer.
// to minimize, set k to 2 closest integers near -x / (b /
   gcd)
// the algo always produce one of 2 small pairs.
int extgcd(int a, int b, int &x, int &y) {
int g = a; x = 1; y = 0;
 if (b != 0) g = extgcd(b, a \% b, y, x), y -= (a / b) * x;
  return g;
}
      \mathbf{FFT}
5.11
namespace FFT
    struct cd
        double real, img;
```

 $cd(double x = 0, double y = 0) : real(x), img(y) {}$

cd operator+(const cd& src) { return cd(real + src.

real, img + src.img); }

```
cd operator-(const cd& src) { return cd(real - src.
real, img - src.img); }
     cd operator*(const cd& src) { return cd(real * src.
real - img * src.img, real * src.img + src.real * img);
 };
 cd conj(const cd& x) { return cd(x.real, -x.img); }
 const int MaxN = 1 << 15;</pre>
 const double PI = acos(-1);
 cd w[MaxN]; int rev[MaxN];
 void initFFT()
 {
     for (int i = 0; i < MaxN; ++i)</pre>
         w[i] = cd(cos(2 * PI * i / MaxN), sin(2 * PI *
i / MaxN));
 void FFT(vector < cd > & a)
     int n = a.size();
     for (int i = 0; i < n; ++i)
         if (rev[i] < i) swap(a[i], a[rev[i]]);</pre>
     for (int len = 2; len <= n; len <<= 1)</pre>
         for (int i = 0; i < n; i += len)</pre>
             for (int j = 0; j < (len >> 1); ++ j)
                  cd u = a[i + j], v = a[i + j + (len >>
1)] * w[MaxN / len * j];
                  a[i + j] = u + v;
                  a[i + j + (len >> 1)] = u - v;
             }
 }
 void calcRev(int n)
     rev[0] = 0;
     for (int i = 1; i < n; ++i)</pre>
         if (i & 1) rev[i] = rev[i - 1] + (n >> 1);
         else rev[i] = rev[i >> 1] >> 1;
 vector<long long> polymul(const vector<int>& a, const
vector < int > & b)
     int n = a.size() + b.size() - 1;
     if (__builtin_popcount(n) != 1) n = 1 << (32 -</pre>
```

```
__builtin_clz(n));
        vector < cd > pa(a.begin(), a.end()); pa.resize(n);
        vector < cd > pb(b.begin(), b.end()); pb.resize(n);
        calcRev(n); // Doesn't need to call multiple times
        FFT(pa); FFT(pb);
        for (int i = 0; i < n; ++i) pa[i] = conj(pa[i] * pb</pre>
   [i]);
        FFT(pa);
        //output of pa will be conj of the real answer
        vector < long long > res(n);
        for (int i = 0; i < n; ++i) res[i] = llround(pa[i].
   real / n):
        return res;
   }
};
5.12 PollardRho
// does not work when n is prime
long long modit(long long x, long long mod) {
 if (x >= mod) x -= mod;
 //if(x<0) x+=mod:
  return x:
long long mult(long long x, long long y, long long mod) {
 long long s = 0, m = x \% mod;
  while (y) {
    if (y \& 1) s = modit(s + m, mod);
   v >>= 1;
    m = modit(m + m, mod);
 return s;
long long f(long long x, long long mod) {
  return modit(mult(x, x, mod) + 1, mod);
long long pollard_rho(long long n) {
 if (!(n & 1)) return 2;
  while (true) {
    long long y = 2, x = random() % (n - 1) + 1, res = 1;
    for (int sz = 2; res == 1; sz *= 2) {
```

for (int i = 0; i < sz && res <= 1; i++) {

```
x = f(x, n);
    res = __gcd(abs(x - y), n);
}
    y = x;
}
if (res != 0 && res != n) return res;
}
```

6 Theorem

6.1 Fermat's little theorem

If p is a prime number, then for any number $a,\,a^p-a$ is an integer multiple of p

$$a^p \equiv a \pmod{p}$$

If a is not divisible by p

$$a^{p-1} \equiv 1 \pmod{p}$$

6.2 Euler's totient function

The number of coprime $\leq n$

$$\phi(n) = n \prod (1 - \frac{1}{p})$$

With p is the prime divided by n

6.3 Dirichlet

Given n holes and n+1 pigeons to distribute evenly, then at least 1 hole must have 2 pigeons

6.4 Pythagorean triple

$$a = m^2 - n^2$$
, $b = 2mn$, $c = m^2 + n^2$

where m and n are positive integer with m > n, and with m and n are coprime and not both odd.

6.5 Legendre's formula

Factor n!

$$v_p(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor$$

With p is prime

7 Other

7.1 Bignum mul

```
string mul(string a, string b)
{
   int m=a.length(),n=b.length(),sum=0;
   string c="";
   for (int i=m+n-1; i>=0; i--)
   {
      for (int j=0; j<m; j++) if (i-j>0 && i-j<=n) sum+=(a[j]-'0')*(b[i-j-1]-'0');
      c=(char)(sum%10+'0')+c;
      sum/=10;
   }
   while (c.length()>1 && c[0]=='0') c.erase(0,1);
   return c;
}
```

7.2 Random

```
// Random range
int random(int a, int b)
{
   return uniform_int_distribution < int > (a, b) (rng);
}
```

7.3 Builtin bit function

```
__builtin_popcount(x); // number of bit 1 in x
__builtin_popcountll(x); // for long long
__builtin_clz(x); // number of leading 0
__builtin_clzll(x); // for long long
__builtin_ctz(x); // number of trailing 0
__builtin_ctzll(x); // for long long

(x & ~x) : the smallest bit 1 in x
floor(log2(x)) : 31 - __builtin_clz(x | 1);
floor(log2(x)) : 63 - __builtin_clzll(x | 1);
```

7.4 Pythagorean triples

c under 100 there are 16 triples: (3, 4, 5) (5, 12, 13) (8, 15, 17) (7, 24, 25) (20, 21, 29) (12, 35, 37) (9, 40, 41) (28, 45, 53) (11, 60, 61) (16, 63, 65) (33, 56, 65) (48, 55, 73) (13, 84, 85) (36, 77, 85) (39, 80, 89) (65, 72, 97)

 $100 \leq c \leq 300: \ (20, \, 99, \, 101) \ (60, \, 91, \, 109) \ (15, \, 112, \, 113) \ (44, \, 117, \, 125) \ (88, \, 105, \, 137) \ (17, \, 144, \, 145) \ (24, \, 143, \, 145) \ (51, \, 140, \, 149) \ (85, \, 132, \, 157) \ (119, \, 120, \, 169) \ (52, \, 165, \, 173) \ (19, \, 180, \, 181) \ (57, \, 176, \, 185) \ (104, \, 153, \, 185) \ (95, \, 168, \, 193) \ (28, \, 195, \, 197) \ (84, \, 187, \, 205) \ (133, \, 156, \, 205) \ (21, \, 220, \, 221) \ (140, \, 171, \, 221) \ (60, \, 221, \, 229) \ (105, \, 208, \, 233) \ (120, \, 209, \, 241) \ (32, \, 255, \, 257) \ (23, \, 264, \, 265) \ (96, \, 247, \, 265) \ (69, \, 260, \, 269) \ (115, \, 252, \, 277) \ (160, \, 231, \, 281) \ (161, \, 240, \, 289) \ (68, \, 285, \, 293)$

7.5 Sieve

for (int
$$j = i$$
; $j * i = lim$; $++j$) notPrime $[j * i] = true$

7.6 Catalan

$$\frac{(2n)!}{(n+1)! \, n!} = \prod_{k=2}^{n} \frac{n+k}{k}$$

7.7 Prime under 100

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

7.8 Pascal triangle

C(n,k)=number from line 0, column 0

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

7.9 Fibo

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

8 Tips

- Test kĩ tr< khi np. Code nhìn úng cha chc úng âu
- Test conner case
- Có overflow ko?
- c kĩ mô t test
- $\bullet\,$ Gi s nó là s nguyên t i. Gi s nó liên quan ti s nguyên t i.
- Gi s nó là s có dng 2^n i.
- Gi s chn ti a là 2, 3 s gì là có áp án i.
- Có liên quan gì ti Fibonacci hay tam giác pascal?

- Dãy này n iu không em ei? Hay tng ca 2,3 s fibonacci?
- $q \le 2$
- Sort li i, bit âu thy iu hay hn?
- Chia nh ra xem.

- B ht nhng thng ko cn thit ra
- Áp i data struct nào y vô
- Random shuffe AC
- Xoay mng 45

Keep Smilling

Gotta solve them all