

Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Física

Física Computacional II - 2024.4

Prof. Dr. Ednilton Santos de Oliveira

Lista de exercícios para a 2ª avaliação

- Um objeto de 1 kg preso a uma mola de constante elástica k = 0,5 N/m sofre uma força de arrasto dada por F_x = -bv_x, sendo o coeficiente de arrasto b = 0,1 kg/s. (a) Utilize o método de Euler modificado para determinar x(t) e v(t) nos primeiros 50 s de movimento, com x(0) = 1 m, v(0) = 0 e Δt = 0,01 s. (b) Acrescente ao arquivo de dados a evolução da energia mecânica do sistema. (c) Escreva um novo código para os casos em que x(0) = 0,5 m e v(0) = 2 m/s.
- 2. Resolva o problema anterior utilizando o método de Runge-Kutta de 4ª ordem.
- 3. Uma bloco preso a uma mola ideal com k = 10 N/m tem m = 0.2 kg de massa. Entre o bloco e o piso o coeficiente de atrito cinético é $\mu_k = 0.1$. Gere, para um arquivo de dados, a posição e a velocidade do bloco nos primeiros 10 s se x(0) = 1 m e v(0) = 0 utilizando (a) o método de Euler modificado e (b) pelo método de Runge-Kutta de 4^a ordem com $\Delta t = 0.01$ s. (c) Adicione o comportamento da força à qual está sujeito o bloco no intervalo de tempo em questão ao arquivo de dados. [Dica: a força de atrito depende do sinal da velocidade. Utilize a função 'copysign' no C++ para expressar isto em $f_v(x,v)$. Desconsidere a ação do atrito estático.]
- 4. (a) Escreva um código para resolver o problema do pêndulo simples pelo método de Runge-Kutta adaptativo com L=1 m, m=1 kg, g=9.8 m/s², $\theta(0)=3$ rad e $\omega(0)=0$. (b) Adicione, ao arquivo de dados, o erro estimado a partir do cálculo da energia mecânica do sistema e (c) como o valor de Δt varia. Considere uma tolerância de $\epsilon=10^{-10}$, $\Delta t_{\rm max}=0.1$ e 20 s. (d) Compare o erro com o mesmo obtido pelo método de Runge-Kutta de $4^{\rm a}$ ordem com $\Delta t=0.01$.
- 5. A força de arrasto do ar, em determinados casos, pode ser expressada por F_a = CρAv²/2, sendo C o coeficiente de arrasto (obtido experimentalmente), ρ a densidade do ar, A a área da seção reta efetiva do objeto. Considere o caso de um objeto que tenha m = 1 kg, CρA/2 = 0,05 kg/m. Escreva um programa que salve os valores (a) da altura e (b) da velocidade de um objeto lançado do solo com v_y(0) = 10 m/s no intervalo de 2 s para um arquivo de dados utilizando o método de Euler modificado com Δt = 0,01. (c) Compare graficamente o resultado numérico, tanto para a posição quanto para a velocidade, com o mesmo movimento desconsiderando a resistência do ar. [Dica: considere a força gravitacional como constante e note que a força de arrasto aponta sempre no sentido oposto à velocidade. Assim como no problema 3, é necessário utilizar a função 'copysign'. Além disso, o gráfico do resultado sem resistência do ar pode ser gerado com a função descrita diretamente no programa de gráficos, como o Gnuplot.]
- 6. Resolva o problema anterior usando (a) o método de Runge-Kutta de 4ª ordem e (b) o método de Runge-Kutta adaptativo com tolerância de $\epsilon = 10^{-10}$.

7. Resolva o problema da difusão térmica em uma haste isolada de L=10 cm com uma difusividade térmica de $D=5\times 10^{-5}$ m²/s, inicialmente em equilíbrio térmico com o ambiente a 25 °C considerando que (a) $T_0=T_N=0$ °C, (b) $T_0=0$ °C e $T_N=100$ °C. Considere que $t_{\rm max}=40$ s, N=30 e $\Delta t=2\times 10^{-2}$ s. (c) Faça com que o programa gere o perfil final de temperatura, ou seja, o conjunto de pontos T_i^M , sendo $M=t_{\rm max}/\Delta t$, para um arquivo de dados e compare graficamente este perfil com o perfil esperado em $t\to\infty$. [Dica: adapte o código feito em aula lembrando que o conjunto de pontos T_i^j é armazenado em uma matriz. Assim, o perfil de temperatura em $t_{\rm max}$ corresponde aos pontos na última coluna da matriz. Note ainda que o perfil de temperatura esperado em $t\to\infty$ tem a forma f(x)=ax+b, conectando as temperaturas nas extremidades da haste.]