AD-756 616

is an industrial production of the contract of

MECHANICAL PROPERITES OF ALUMINUM, COPPER, TIN AND CADMIUM BASE MULTILAYER COMPOSITIONS

V. S. Kopan, et al

Army Foreign Science and Technology Center Charlottesville, Virginia

August 1972

DISTRIBUTED BY:

U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

DEPARTMENT OF THE ARMY U.S. ARMY FOREIGN SCIENCE AND TECHNOLOGY CENTER 220 SEVENTH STREET NE. CHARLOTTESVILLE, VIRGINIA 23901

In Reply Refer to: FSTC HT-23-327-72 DIA Task No. T70-23-01

Date: 30 August 1972

TRANSLATION

ENGLISH TITLE: MECHANICAL PROPERTIES OF ALUMINUM, COPPER, TIN AND

CADMIUM BASE MULTILAYER COMPOSITIONS

FOREIGN TITLE: O MEKHANICHESKIKH SYOYSTVAKH MNOGOSLOYNYKH KOMPOZITSIY

NA OSNOVE ALYUMINIYA, MEDI, OLOVA I KADMIYA

AUTHOR: V. S. Kopan' and LANGUAGE: Russian

A. V. Lysenko

SOURCE: FIZIKA METALLOV I TRANSLATOR: ACSI K-1567

METALLOVEDENIYE

Vol. 29, Issue 3, 1970 REQUESTOR: SMUFA - Frankford

Arsenal

GRAPHICS NOT REPRODUCIBLE

The frenshire was accomplished from a xerox manuscript. The graphics were not reproducible. An attempt to obtain the original graphics yielded regative hours. Thus, this document was published as is, in order to make ITAVALLABLE on a timely basis.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield VA 22131

DDC MAR 13 1973 MAR 13 1973

Approved for public release. Distribution unlimited

TECHALICAL PROPERTIES OF ALUMINUM, COPPER TIN AND CALIBUM BASE HULTILAYER COMPOSITIONS

V. S. Kopan' and A. V. Lysenko

Reasons for improving the mechanical properties of metallic films and fibers in flaky compositions are brought to light in [1, 2]. In [3], the mechanical properties of multilayered compositions, obtained using a method of vacuum evaporation, are investigated. In this work, substantial durabilities in a rupture of flaky samples, obtained using a method of cold weld with a lamination of a pile of foil, are considered. The average thickness of layer h in multilayered compositions varied from 4 mk to 200%. To avoid the effect of scale factors during mechanical testing, the experiments were conducted on samples of equal thickness; therefore, the number of layers in a sample sometimes reached 12,000. In the multilayer compositions, an aluminum layer was alternated with copper (relative thickness of layers— $h_{\rm Cu}/h_{\rm A1}=1.4$), cadmium ($H_{\rm Cd}/h_{\rm A1}=0.3$) or tin ($h_{\rm Sn}/h_{\rm A1}=1$).

The durability of the flaky samples to a rupture grew quickly with an increase of layer thickness to 200 %, reaching 90 kg/mm² for Al-Cu; 27 kg/mm² for Al-Cd and 23 kg/mm² for Al-Sn (see the figure; each point is the average of tests of 15-20 samples). At the addition of flakes, the durability of deformed foils considering the percent composition of multilayered compositions of the value of durability would form only 26, 10 and 7 kg/mm², respectively.

In the table, tension values (kg/m^2) of split diffusion from one layer to another γ , are presented [4] along with the split diffusion tension in the outer layers σ_{ϵ} [4] and tension γ_{ϵ} , which are necessary for dislocation notion in multilayered compositions, formed from layers of equal thickness. Values of σ are calculated according to formulas (1)-(3) of [2, 4]:

$$q_1 = 6.8 (E\gamma/h)^{1/s}$$
; (1)
 $\sigma_0 = 0.35\sigma_1$. (2)
 $\sigma_0 = Gb/h$. (3)

where E. C are moduli of resiliency and shearing; Y is surface energy; & is Syurgers vector.

Dependence of durability to rupture of multilayered compositions from average layer thickness:

1, 4-Al-Cu; 2, 5-Al-Cd; 3, 6-Al-Sn (--- with the addition of durability building layers.

Formula (2) is true in the case when the Pauasson coefficient for the four mentioned netals is 0.3. During calculation, the following values of the parameters were used (for Al. Cd. Sn. Cu respectively): $\mathbb{E}=(7.1; 5; 4.5; 13) \cdot 10^{11} \text{din/cm}^2$; $\mathbb{E}=(2.5; 1.9; 2.3; 4.5) \cdot 10^{11} \text{din/cm}^2$; $\gamma = 840, 630, 540, 1900 \text{ erg/cm}^2$; $b = 3 \cdot 10^{-10} \text{cm}$.

A, Å	. Al			Cu			C4			Sn		
	σ,	σε	σ,	σι	σ,	9 2	σ,	σ,	₹3.	.0,	σ ₂	σ ₃
100 200 500 2500 4 MK	1700 1200 760 340 85	600 420 270 120 30	80 40 16 3 0,2	3300 2300 1500 650 160	1100 810 530 230 56	150 70 29 6 0,4	1200 900 550 250 60	420 320 190 90 21	60 30 12 2 0,1	1000 700 450 200 50	350 250 160 70 20	70 30 13 2.5 0.2

As is apparent from the table, the strengthening of multilayered compositions at the expense of tapering of the layers is significant when $h < 1 \,\mathrm{mk}$, which agrees with the information of the figure.

However, peak values of durability are of less value according to formulas (1)-(3). Experiments for determining the specific electrical resistance of multilayered compositions depending on the thickness of the layers indicated that when $h \leq 500 \text{\AA}$, the layers in the rolling process are ruptured at the scales and in subsequent action are deformed without tapering. It is probably possible to explain this by the fact that two to three fold strengthening is obtained for all multilayer compositions.

leasuring of the specific electrical resistance has shown that the concentration of admixture in layers (for example, in copper—aluminum admixture, and in aluminum—copper) at the expense of some solubility of the layers less than 0.2 at. 2.

In conclusion, we express our gratitude to P. P. Kuz menko for his active help and support in the implementation of the work.

Kiev University
im. T. G. Shevchenko

Presented to the editor 3 June 1969

BIBLIOGRAPHY

1. Kopan', V. S. Urk. fiz. magazine (ghurnal), 1965, 11, 96; 1965, 10, 1147.

2. Kuz'menko, P. P., Kopan', V. S. Sb. Hechanism of metals destruction,

razrusheniya metallov, Kiev, izd. "Mauchnaya mysl", 1966, str. 91).

- 3. Palatnik, L. S., Il'inskiy, A. I. DAN USSR, 1964, 154, 575; FIT, 1966, 8, 2515.
- 4. Fridel', 2h. Sb. Atomic mechanism of destruction (Sb. Atomnyy mekhanizm razrushoniya), H. Hetallurgizdat, 1953, p. 504.

