Contents

1.	Combinatorial methods	2
	Fourier-analytic techniques	
3.	Probabilistic tools	18
4.	Further topics	18

1. Combinatorial methods

Definition 1.1 Let G be an abelian group and $A, B \subseteq G$. The **sumset** of A and B is

$$A + B := \{a + b : a \in A, b \in B\}.$$

The difference set of A and B is

$$A - B := \{a - b : a \in A, b \in B\}.$$

Proposition 1.2 $\max\{|A|, |B|\} \le |A + B| \le |A| \cdot |B|$.

$$Proof.$$
 Trivial.

Example 1.3 Let $A = [n] = \{1, ..., n\}$. Then $A + A = \{2, ..., 2n\}$ so |A + A| = 2|A| - 1.

Lemma 1.4 Let $A \subseteq \mathbb{Z}$ be finite. Then $|A + A| \ge 2|A| - 1$ with equality iff A is an arithmetic progression.

Proof (*Hints*). Consider two sequences in A + A which are strictly increasing and of the same length.

Proof.

- Let $A = \{a_1, ..., a_n\}$ with $a_i < a_{i+1}$. Then $a_1 + a_1 < a_1 + a_2 < \cdots < a_1 + a_n < a_2 + a_n < \cdots < a_n + a_n$.
- Note this is not the only choice of increasing sequence that works, in particular, so does $a_1+a_1 < a_1+a_2 < a_2+a_2 < a_2+a_3 < a_2+a_4 < \cdots < a_2+a_n < a_3+a_n < \cdots < a_n+a_n$.
- So when equality holds, all these sequences must be the same. In particular, $a_2+a_i=a_1+a_{i+1}$ for all i.

Lemma 1.5 If $A, B \subseteq \mathbb{Z}$, then $|A + B| \ge |A| + |B| - 1$ with equality iff A and B are arithmetic progressions with the same common difference.

Proof (Hints). Similar to above, consider 4 sequences in A + B which are strictly increasing and of the same length.

Example 1.6 Let $A, B \subseteq \mathbb{Z}/p$ for p prime. If $|A| + |B| \ge p + 1$, then $A + B = \mathbb{Z}/p$.

Proof (Hints). Consider
$$A \cap (g - B)$$
 for $g \in \mathbb{Z}/p$.

Proof.

- $g \in A + B$ iff $A \cap (g B) \neq \emptyset$ where $(g B = \{g\} B)$.
- Let $g \in \mathbb{Z}/p$, then use inclusion-exclusion on $|A \cap (g-B)|$ to conclude result.

Theorem 1.7 (Cauchy-Davenport) Let p be prime, $A, B \subseteq \mathbb{Z}/p$ be non-empty. Then

$$|A+B|\geq \min\{p,|A|+|B|-1\}.$$

Proof (Hints).

- Assume $|A| + |B| , and WLOG that <math>1 \le |A| \le |B|$ and $0 \in A$ (by translation).
- Induct on |A|.
- Let $a \in A$, find B' such that $0 \in B'$, $a \notin B'$ and |B'| = |B| (use fact that p is prime).
- Apply induction with $A \cap B'$ and $A \cup B'$, while reasoning that $(A \cap B') + (A \cup B') \subseteq A + B'$.

Proof.

- Assume $|A| + |B| , and WLOG that <math>1 \le |A| \le |B|$ and $0 \in A$ (by translation).
- Use induction on |A|. |A| = 1 is trivial.
- Let $|A| \geq 2$ and let $0 \neq a \in A$. Then since p is prime, $\{a, 2a, ..., pa\} = \mathbb{Z}/p$.
- There exists $m \ge 0$ such that $ma \in B$ but $(m+1)a \notin B$ (why?). Let B' = B ma, so $0 \in B'$, $a \notin B'$ and |B'| = |B|.
- $1 \le |A \cap B'| < |A|$ (why?) so the inductive hypothesis applies to $A \cap B'$ and $A \cup B'$.
- Since $(A \cap B') + (A \cup B') \subseteq A + B'$ (why?), we have $|A + B| = |A + B'| \ge |(A \cap B') + (A \cup B')| \ge |A \cap B'| + |A \cup B'| 1 = |A| + |B| 1$.

Example 1.8 Cauchy-Davenport does not hold general abelian groups (e.g. \mathbb{Z}/n for n composite): for example, let $A = B = \{0, 2, 4\} \subseteq \mathbb{Z}/6$, then $A + B = \{0, 2, 4\}$ so $|A + B| = 3 < \min\{6, |A| + |B| - 1\}$.

Example 1.9 Fix a small prime p and let $V \subseteq \mathbb{F}_p^n$ be a subspace. Then V + V = V, so |V + V| = |V|. In fact, if $A \subseteq \mathbb{F}_p^n$ satisfies |A + A| = |A|, then A is an affine subspace (a coset of a subspace).

Proof. If $0 \in A$, then $A \subseteq A + A$, so A = A + A. General result follows by considering translation of A.

Example 1.10 Let $A \subseteq \mathbb{F}_p^n$ satisfy $|A+A| \leq \frac{3}{2} |A|$. Then there exists a subspace $V \subseteq \mathbb{F}_p^n$ such that $|V| \leq \frac{3}{2} |A|$ and A is contained in a coset of V.

Proof. Exercise (sheet 1). \Box

Definition 1.11 Let $A, B \subseteq G$ be finite subsets of an abelian group G. The Ruzsa distance between A and B is

$$d(A,B)\coloneqq\log\frac{|A-B|}{\sqrt{|A|\cdot|B|}}.$$

Lemma 1.12 (Ruzsa Triangle Inequality) Let $A, B, C \subseteq G$ be finite. Then

$$d(A,C) \le d(A,B) + d(B,C).$$

Proof (*Hints*). Consider a certain map from $B \times (A - C)$ to $(A - B) \times (B - C)$. \square *Proof*.

- Note that $|B| |A-C| \le |A-B| |B-C|$. Indeed, writing each $d \in A-C$ as $d = a_d c_d$ with $a_d \in A, c_d \in C$, the map $\varphi : B \times (A-C) \to (A-B) \times (B-C), \varphi(b,d) = (a_d b, b c_d)$ is injective (why?).
- Triangle inequality now follows from definition of Ruzsa distance.

Definition 1.13 The doubling constant of finite $A \subseteq G$ is $\sigma(A) := |A + A|/|A|$.

Definition 1.14 The difference constant of finite $A \subseteq G$ is $\delta(A) := |A - A|/|A|$.

Remark 1.15 The Ruzsa triangle inequality shows that

$$\log \delta(A) = d(A, A) \le d(A, -A) + d(-A, A) = 2\log \sigma(A).$$

So
$$\delta(A) \le \sigma(A)^2$$
, i.e. $|A - A| \le |A + A|^2/|A|$.

Notation 1.16 Let $A \subseteq G$, $\ell, m \in \mathbb{N}_0$. Then

$$\ell A + mA \coloneqq \underbrace{A + \dots + A - A - \dots - A}_{\ell \text{ times}} \underbrace{m \text{ times}}$$

This is referred to as the iterated sum and difference set.

Theorem 1.17 (Plunnecke's Inequality) Let $A, B \subseteq G$ be finite and $|A + B| \le K|A|$ for some $K \ge 1$. Then $\forall \ell, m \in \mathbb{N}_0$,

$$|\ell B - mB| \le K^{\ell + m} |A|.$$

Proof (Hints).

- Let $A' \subseteq A$ minimise |A' + B|/|A'| with value K'.
- Show that for every finite $C \subseteq G$, $|A' + B + C| \le K'|A + C|$ by induction on |C| (note two sets need to be written as disjoint unions here).
- Show that $\forall m \in \mathbb{N}_0, |A' + mB| \leq (K')^m |A'|$ by induction.
- Use Ruzsa triangle inequality to conclude result.

Proof.

- Choose $\emptyset \neq A' \subseteq A$ which minimises |A' + B|/|A'|. Let the minimum value by K'.
- Then |A' + B| = K'|A'|, $K' \le K$ and $\forall A'' \subseteq A$, $|A'' + B| \ge K'|A''|$.
- Claim: for every finite $C \subseteq G$, $|A' + B + C| \le K'|A' + C|$:
 - Use induction on |C|. |C| = 1 is true by definition of K'.
 - Let claim be true for C, consider $C' = C \cup \{x\}$ for $x \notin C$.
 - $A' + B + C' = (A' + B + C) \cup ((A' + B + x) (D + B + x))$, where $D = \{a \in A' : a + B + x \subseteq A' + B + C\}$.
 - By definition of K', $|D+B| \ge K'|D|$. Hence,

$$\begin{split} |A'+B+C| &\leq |A'+B+C| + |A'+B+x| - |D+B+x| \\ &\leq K'|A'+C| + K'|A'| - K'|D| \\ &= K'(|A'+C| + |A'| - |D|). \end{split}$$

- Applying this argument a second time, write $A' + C' = (A' + C) \cup ((A' + x) (E + x))$, where $E = \{a \in A' : a + x \in A' + C\} \subseteq D$.
- Finally,

$$|A' + C'| = |A' + C| + |A' + x| - |E + x|$$

$$\ge |A' + C| + |A'| - |D|.$$

- We first show that $\forall m \in \mathbb{N}_0, |A' + mB| \leq (K')^m |A'|$ by induction:
 - m = 0 is trivial, m = 1 is true by assumption.
 - Suppose $m-1 \ge 1$ is true. By the claim with C = (m-1)B, we have

$$|A'+mB| = |A'+B+(m-1)B| \le K'|A'+(m-1)B| \le (K')^m|A'|.$$

• As in the proof of Ruzsa's triangle inequality, $\forall \ell, m \in \mathbb{N}_0$,

$$|A'| |\ell B - mB| \le |A' + \ell B| |A' + mB| \le (K')^{\ell} |A'| (K')^m |A'| = (K')^{\ell+m} |A'|^2.$$

Theorem 1.18 (Freiman-Ruzsa) Let $A \subseteq \mathbb{F}_p^n$ and $|A + A| \leq K|A|$. Then A is contained in a subspace $H \subseteq \mathbb{F}_p^n$ with $|H| \leq K^2 p^{K^4} |A|$.

Proof (Hints).

- Let $X \subseteq 2A A$ be of maximal size such that all x + A, $x \in X$, are disjoint.
- Use Plunnecke's inequality to obtain an upper bound on |X||A|.
- Show that $\forall \ell \geq 2$, $\ell A A \subseteq (\ell 1)X + A A$ by induction.
- Let H be subgroup generated by A. By writing H as an infinite union, show that $H \subseteq Y + A A$, where Y is subgroup generated by X.
- Find an upper bound for |Y|, conclude using Plunnecke inequality.

Proof.

- Choose maximal $X \subseteq 2A A$ such that the translates x + A with $x \in X$ are disjoint.
- Such an X cannot be too large: $\forall x \in X, x + A \subseteq 3A A$, so by Plunnecke's inequality, since $|3A A| \leq K^4 |A|$,

$$|X||A| = \left|\bigcup_{x \in X} (x+A)\right| \le |3A-A| \le K^4|A|.$$

Hence $|X| \leq K^4$.

• We next show that $2A - A \subseteq X + A - A$. Indeed, if, $y \in 2A - A$ and $y \notin X$, then by maximality of X, then $(y + A) \cap (x + A) \neq \emptyset$ for some $x \in X$. If $y \in X$, then $y \in X + A - A$.

- It follows from above, by induction, that $\forall \ell \geq 2$, $\ell A A \subseteq (\ell 1)X + A A$: $\ell A A = A + (\ell 1)A A \subseteq (\ell 2)X + 2A A \subseteq (\ell 2)X + X + A A = (\ell 1)X + A A$.
- Now, let $H \subseteq \mathbb{F}_p^n$ be the subgroup generated by A:

$$H = \bigcup_{\ell \geq 1} (\ell A - A) \subseteq Y + A - A$$

where $Y \subseteq \mathbb{F}_p^n$ is the subgroup generated by X.

• Every element of Y can be written as a sum of |X| elements of X with coefficients in $\{0,...,p-1\}$. Hence, $|Y| \leq p^{|X|} \leq p^{K^4}$.

• Hence $|H| \leq |Y||A - A| \leq p^{K^4}K^2|A|$ by Plunnecke/Ruzsa triangle inequality.

Example 1.19 Let $A = V \cup R$, where $V \subseteq \mathbb{F}_p^n$ is a subspace with $\dim(V) = d = n/K$ satisfying $K \ll d \ll n - K$, and R consists of K - 1 linearly independent vectors not in V. Then $|A| = |V \cup R| = |V| + |R| = p^{n/K} + K - 1 \approx p^{n/K} = |V|$.

Now $|A+A|=|(V\cup R)+(V\cup R)|=|V\cup (V+R)\cup 2R|\approx K|V|\approx K|A|$ (since $V\cup (V+R)$ gives K cosets of V). But any subspace $H\subseteq \mathbb{F}_p^n$ containing A must have size at least $p^{n/K+(K-1)}\approx |V|p^K$. Hence, the exponential dependence on K in Freiman-Ruzsa is necessary.

Theorem 1.20 (Polynomial Freiman-Ruzsa Theorem) Let $A \subseteq \mathbb{F}_p^n$ be such that $|A+A| \leq K|A|$. Then there exists a subspace $H \subseteq \mathbb{F}_p^n$ of size at most $C_1(K)|A|$ such that for some $x \in \mathbb{F}_p^n$,

$$|A \cap (x+H)| \ge \frac{|A|}{C_2(K)},$$

where $C_1(K)$ and $C_2(K)$ are polynomial in K.

Proof. Very difficult (took Green, Gowers and Tao to prove it).

Definition 1.21 Given $A, B \subseteq G$ for an abelian group G, the **additive energy** between A and B is

$$E(A,B) := |\{(a,a',b,b') \in A \times A \times B \times B : a+b=a'+b'\}|.$$

Additive quadruples (a, a', b, b') are those such that a + b = a' + b'. Write E(A) for E(A, A).

Example 1.22 Let $V \subseteq \mathbb{F}_p^n$ be a subspace. Then $E(V) = |V|^3$. On the other hand, if $A \subseteq \mathbb{Z}/p$ is chosen at random from \mathbb{Z}/p (where each $a \in \mathbb{Z}/p$ is included with probability $\alpha > 0$), with high probability, $E(A) = \alpha^4 p^3 = \alpha |A|^3$.

Definition 1.23 For $A, B \subseteq G$, the **representation function** is $r_{A+B}(x) := |\{(a,b) \in A \times B : a+b=x\}| = |A \cap (x-B)|.$

Lemma 1.24 Let $\emptyset \neq A, B \subseteq G$ for an abelian group G. Then

$$E(A,B) \ge \frac{|A|^2|B|^2}{|A \pm B|}.$$

 $Proof\ (Hints).$

• Show that using Cauchy-Schwarz that

$$E(A, B) = \sum_{x \in G} r_{A+B}(x)^2 \ge \frac{\left(\sum_{x \in G} r_{A+B}(x)\right)^2}{|A+B|}.$$

• By using indicator functions, show that $\sum_{x \in G} r_{A+B}(x) = |A||B|$.

Proof. Observe that

$$\begin{split} E(A,B) &= \left| \left\{ (a,a',b,b') \in A^2 \times B^2 : a+b=a'+b' \right\} \right| \\ &= \left| \bigcup_{x \in G} \left\{ (a,a',b,b') \in A^2 \times B^2 : a+b=x \text{ and } a'+b'=x \right\} \right| \\ &= \bigcup_{x \in G} \left| \left\{ (a,a',b,b') \in A^2 \times B^2 : a+b=x \text{ and } a'+b'=x \right\} \right| \\ &= \sum_{x \in G} r_{A+B}(x)^2 \\ &= \sum_{x \in A+B} r_{A+B}(x)^2 \\ &\geq \frac{\left(\sum_{x \in A+B} r_{A+B}(x) \right)^2}{|A+B|} \quad \text{by Cauchy-Schwarz} \end{split}$$

But now

$$\begin{split} \sum_{x \in G} r_{A+B}(x) &= \sum_{x \in G} |A \cap (x-B)| = \sum_{x \in G} \sum_{y \in G} \mathbb{1}_A(y) \mathbb{1}_{x-B}(y) \\ &= \sum_{x \in G} \sum_{y \in G} \mathbb{1}_A(y) \mathbb{1}_B(x-y) = |A||B|. \end{split}$$

Note that the same argument works for |A - B|.

Corollary 1.25 If $|A + A| \le K|A|$, then $E(A) \ge \frac{|A|^4}{|A + A|} \ge \frac{|A|^3}{K}$. So if A has small doubling constant, then it has large additive energy.

 $Proof\ (Hints)$. Trivial.

Proof. Trivial.

Example 1.26 The converse of the above lemma does not hold: e.g. let G be a (class of) abelian group(s). Then there exist constants $\theta, \eta > 0$ such that for all n large enough, there exists $A \subseteq G$ with $|A| \ge n$ satisfying $E(A) \ge \eta |A|^3$, and $|A + A| \ge \theta |A|^2$.

Definition 1.27 Given $A \subseteq G$ and $\gamma > 0$, let $P_{\gamma} := \{x \in G : |A \cap (x+A)| \ge \gamma |A|\}$ be the set of γ -popular differences of A.

Lemma 1.28 Let $A \subseteq G$ be finite such that $E(A) = \eta |A|^3$ for some $\eta > 0$. Then $\forall c>0$, there is a subset $X\subseteq A$ with $|X|\geq \frac{\eta}{3}|A|$ such that for all (16c)-proportion of pairs $(a,b) \in X^2$, $a-b \in P_{cn}$.

Proof.

- We use a technique called "dependent random choice".
- Let $U = \{x \in G : |A \cap (x+A)| \le \frac{1}{2}\eta |A| \}.$
- Then $\sum_{x \in U} |A \cap (x+A)|^2 \le \frac{1}{2} \eta |A| \sum_{x \in G} |A \cap (x+A)| = \frac{1}{2} \eta |A|^3 = \frac{1}{2} E(A)$. For $0 \le i \le \lceil \log_2 \eta^{-1} \rceil$, let $Q_i = \{x \in G : |A|/2^{i+1} < |A \cap (x+A)| \le |A|/2^i\}$ and set $\delta_i = \eta^{-1} 2^{-2i}$.
- Then

$$\begin{split} \sum_{i=0}^{\lceil \log_2 \eta^{-1} \rceil} \delta_i |Q_i| &= \sum_i \frac{|Q_i|}{\eta 2^{2i}} \\ &= \frac{1}{\eta |A|^2} \sum_i \frac{|A|^2}{2^{2i}} |Q_i| \\ &= \frac{1}{\eta |A|^2} \sum_i \frac{|A|^2}{2^{2i}} \sum_{x \notin U} \mathbbm{1}_{\{|A|/2^{i+1} < |A \cap (x+A)| \le |A|/2^i\}} \\ &\geq \frac{1}{\eta |A|^2} \sum_{x \notin U} |A \cap (x+A)|^2 \\ &\geq \frac{1}{\eta |A|^2} \cdot \frac{1}{2} E(A) = \frac{1}{2} |A|. \end{split}$$

• Let $S = \{(a, b) \in A^2 : a - b \notin P_{cn}\}$. Now

$$\begin{split} \sum_i \sum_{(a,b) \in S} |(A-a) \cap (A-b) \cap Q_i| &\leq \sum_{(a,b) \in S} |(A-a) \cap (A-b)| \\ &= \sum_{(a,b) \in S} |A \cap (a-b+A)| \\ &\leq \sum_{(a,b) \in S} c \eta |A| \quad \text{by definition of } S \\ &= |S| c \eta |A| \\ &\leq c \eta |A|^3 = 2c \eta |A|^2 \cdot \frac{1}{2} |A| \\ &\leq 2c \eta |A|^2 \sum_i \delta_i |Q_i| \quad \text{by above inequality.} \end{split}$$

• Hence $\exists i_0$ such that

$$\sum_{(a,b) \in S} \left| (A-a) \cap (A-b) \cap Q_{i_0} \right| \leq 2c\eta |A|^2 \delta_{i_0} \left| Q_{i_0} \right|$$

• Let $Q=Q_{i_0},\,\delta=\delta_{i_0},\,\lambda=2^{-i_0},$ so that

$$\sum_{(a,b)\in S} |(A-a)\cap (A-b)\cap Q| \le 2c\eta |A|^2 \delta |Q|$$

• Given $x \in G$, let $X(x) = A \cap (x + A)$. Then

$$\mathbb{E}_{x \in Q}|X(x)| = \frac{1}{|Q|} \sum_{x \in Q} |A \cap (x+A)| \geq \frac{1}{2} \lambda |A|.$$

• Define $T(x) = \{(a, b) \in X(x)^2 : a - b \in P^{c\eta}\}$. Then

$$\begin{split} \mathbb{E}_{x \in Q} |T(x)| &= \mathbb{E}_{x \in Q} \big| \big\{ (a,b) \in (A \cap (x+A))^2 : a - b \notin P_{c\eta} \big\} \big| \\ &= \frac{1}{|Q|} \sum_{x \in Q} \big| \big\{ (a,b) \in S : x \in (A-a) \cap (A-b) \big\} \big| \\ &= \frac{1}{|Q|} \sum_{(a,b) \in S} \big| (A-a) \cap (A-b) \cap Q \big| \\ &\leq \frac{1}{|Q|} 2c\eta |A|^2 \delta |Q| = 2c\eta \delta |A|^2 = 2c\lambda^2 |A|^2. \end{split}$$

• Therefore,

$$\begin{split} \mathbb{E}_{x \in Q} \big(|X(x)|^2 - (16c)^{-1} |T(x)| \big) &\geq \left(\mathbb{E}_{x \in Q} |X(x)| \right)^2 - (16c)^{-1} \mathbb{E}_{x \in Q} |T(x)| \text{ by C-S} \\ &\geq \left(\frac{\lambda}{2} \right)^2 |A|^2 - (16c)^{-1} 2c\lambda^2 |A|^2 \\ &= \left(\frac{\lambda^2}{4} - \frac{\lambda^2}{8} \right) |A|^2 = \frac{\lambda^2}{8} |A|^2. \end{split}$$

• So $\exists x \in Q$ such that $|X(x)|^2 \ge \frac{\lambda^2}{8} |A|^2$, so $|X| \ge \frac{\lambda}{\sqrt{8}} |A| \ge \frac{\eta}{3} |A|$ and $|T(x)| \le 16c|X|^2$.

Theorem 1.29 (Balog-Szemerédi-Gowers, Schoen) Let $A \subseteq G$ be finite such that $E(A) \ge \eta |A|^3$ for some $\eta > 0$. Then there exists $A' \subseteq A$ with $|A'| \ge c_1(\eta)|A|$ such that $|A' + A'| \le |A|/c_2(\eta)$, where $c_1(\eta)$ and $c_2(\eta)$ are both polynomial in η .

Proof.

- The idea is to find $A' \subseteq A$ such that $\forall a, b \in A'$, a b has many representations as $(a_1 a_2) + (a_3 a_4)$ with each $a_i \in A$.
- Apply the above lemma with $c=2^{-7}$ to obtain $X\subseteq A$ with $|X|\geq \frac{\eta}{3}|A|$ such that for all but $\frac{1}{8}$ of pairs $(a,b)\in X^2, \ a-b\in P_{\eta/2^7}.$ In particular, the bipartite graph $G=(X\sqcup X,\{(x,y)\in X\times X: x-y\in P_{\eta/2^7}\})$ has at least $\frac{7}{8}|X|^2$ edges.
- Let $A' = \left\{ x \in X : \deg_G(x) \ge \frac{3}{4}|X| \right\}$. Clearly $|A'| \ge |X|/8$.
- For any $a,b\in A'$, there are at least |X|/2 elements $y\in X$ such that $(a,y),(b,y)\in E(G)$ (so $a-y,b-y\in P_{n/2^7}$). Hence a-b=(a-y)-(b-y) has at least

$$\underbrace{\frac{\eta}{6}|A|}_{\text{choices for }y} \cdot \frac{\eta}{2^7}|A| \frac{\eta}{2^7}|A| \ge \frac{\eta^3}{2^{17}}|A|^3$$

representations of the form $a_1-a_2-(a_3-a_4)$ with each $a_i\in A$.

• It follows that $\frac{\eta^3}{2^{17}}|A|^3|A'-A'|\leq |A|^4$, hence $|A'-A'|\leq 2^{17}\eta^{-3}|A|\leq 2^{22}\eta^{-4}|A'|$, and so $|A' + A'| \le 2^{44} \eta^{-8} |A'|$.

2. Fourier-analytic techniques

In this chapter, assume that G is a *finite* abelian group.

Definition 2.1 The group \hat{G} of characters of G is the group of homomorphisms γ : $G \to \mathbb{C}^{\times}$. In fact, \widehat{G} is isomorphic to G.

Notation 2.2 Norm and inner product notation:

• Write

$$\begin{split} \|f\|_q &= \|f\|_{L^q(G)} = (\mathbb{E}_{x \in G} |f(x)|^q)^{1/q}, \\ \|\hat{f}\|_q &= \|\hat{f}\|_{\ell^q\left(\widehat{G}\right)} = (\sum_{\gamma \in \widehat{G}} \left|\hat{f}(\gamma)\right|^q)^{1/q}, \\ \langle f, g \rangle_{L^2(G)} &= \mathbb{E}_{x \in G} f(x) \overline{g(x)}, \\ \langle f, g \rangle_{\ell^2\left(\widehat{G}\right)} &= \sum_{\gamma \in \widehat{G}} \hat{f}(\gamma) \overline{\hat{g}(\gamma)} \end{split}$$

• If Fourier support of function is restricted to $\Lambda \subseteq \hat{G}$, write $\|\hat{f}\|_{\ell^q(\Lambda)} = \left(\sum_{\gamma \in \Lambda} \left|\hat{f}(\gamma)\right|^q\right)^{1/q}$.

Notation 2.3 Asymptotic notation:

• Write f(n) = O(g(n)) if

$$\exists C > 0 : \forall n \in \mathbb{N}, \quad |f(n)| < C|g(n)|.$$

• Write f(n) = o(g(n)) if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N, |f(n)| \leq \varepsilon |g(n)|,$$

i.e. $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$.

- Write $f(n) = \Omega(g(n))$ if g(n) = O(f(n)).
- If the implied constant depends on a fixed parameter, this may be indicated by a subscript, e.g. $\exp(pn^2) = O_p(\exp(n^2))$.

Theorem 2.4 (Hölder's Inequality) Let $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q}$, and $f \in L^p(G), g \in$ $L^q(G)$. Then

$$||fg||_1 \le ||f||_p ||g||_q.$$

Theorem 2.5 (Cauchy-Schwarz Inequality) For $f, g \in L^2(G)$, we have

$$\langle f,g\rangle_{L^2(G)}\leq \|f\|_2\|g\|_2.$$

Note this is a special case of Hölder's inequality with p = q = 2.

Theorem 2.6 (Young's Convolution Inequality) Let $p, q, r \in [1, \infty]$, $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, $f \in L^p(G)$, $g \in L^q(G)$. Then

$$||f * g||_r \le ||f||_p ||g||_q$$

Notation 2.7 e(y) denotes the function $e^{2\pi iy}$.

Example 2.8

- Let $G = \mathbb{F}_p^n$, then for any $\gamma \in \hat{G}$, we have a corresponding character $\gamma(x) = e((\gamma \cdot x)/p)$.
- If $G = \mathbb{Z}/N$, then any $\gamma \in \hat{G}$ has a corresponding character $\gamma(x) = e(\gamma x/N)$.

Notation 2.9 Given a non-empty $B \subseteq G$ and $g: B \to \mathbb{C}$, write $\mathbb{E}_{x \in B} g(x)$ for $\frac{1}{|B|} \sum_{x \in B} g(x)$. If B = G, we may simply write \mathbb{E} instead of $\mathbb{E}_{x \in B}$.

Lemma 2.10 For all $\gamma \in \hat{G}$,

$$\mathbb{E}_{x \in G} \gamma(x) = \begin{cases} 1 & \text{if } \gamma = 1 \\ 0 & \text{otherwise}. \end{cases}$$

and for all $x \in G$,

$$\sum_{\gamma \in \widehat{G}} \gamma(x) = \begin{cases} |G| & \text{if } x = 0\\ 0 & \text{otherwise} \end{cases}.$$

Proof (Hints).

- For $1 \neq \gamma \in \hat{G}$, consider $y \in G$ with $\gamma(y) \neq 1$.
- For $0 \neq x \in G$, by considering $G/\langle x \rangle$, show by contradiction that there is $\gamma \in \hat{G}$ with $\gamma(x) \neq 1$.

Proof. The first case for both equations is trivial. Let $1 \neq \gamma \in \hat{G}$. Then $\exists y \in G$ with $\gamma(y) \neq 1$. So

$$\begin{split} \gamma(y) \mathbb{E}_{z \in G} \gamma(z) &= \mathbb{E}_{z \in G} \gamma(y+z) \\ &= \mathbb{E}_{z' \in G} \gamma(z'). \end{split}$$

Hence $\mathbb{E}_{z \in G} \gamma(z) = 0$.

For second equation, given $0 \neq x \in G$, there exists $\gamma \in \hat{G}$ such that $\gamma(x) \neq 1$, since otherwise \hat{G} would act trivially on $\langle x \rangle$, hence would also be the dual group for $G/\langle x \rangle$, a contradiction.

Definition 2.11 Given $f: G \to \mathbb{C}$, define the **Fourier transform** of f to be

$$\begin{split} \hat{f} : \hat{G} &\to \mathbb{C}, \\ \gamma &\mapsto \mathbb{E}_{x \in G} f(x) \overline{\gamma(x)}. \end{split}$$

Proposition 2.12 (Fourier Inversion Formula) Let $f: G \to \mathbb{C}$. Then for all $x \in G$,

$$f(x) = \sum_{\gamma \in \widehat{G}} \widehat{f}(\gamma) \gamma(x).$$

Proof (Hints). Straightforward.

Proof. We have

$$\begin{split} \sum_{\gamma \in \widehat{G}} \widehat{f}(\gamma) \gamma(x) &= \sum_{\gamma \in \widehat{G}} \mathbb{E}_{y \in G} f(y) \overline{\gamma(y)} \gamma(x) \\ &= \mathbb{E}_{y \in G} f(y) \sum_{\gamma \in \widehat{G}} \gamma(x-y) \\ &= f(x) \end{split}$$

by the above lemma.

Definition 2.13 For $A \subseteq G$, the **indicator** (or **characteristic**) function of A is

$$\begin{split} \mathbb{1}_A: G &\to \{0,1\}, \\ x &\mapsto \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \not\in A \end{cases}. \end{split}$$

Definition 2.14 $\hat{\mathbb{1}}_A(1) = \mathbb{E}_{x \in G} \mathbb{1}_A(x) \cdot 1 = |A|/|G|$ is the **density** of A in G. This is often denoted by α .

Definition 2.15 Given $\emptyset \neq A \subseteq G$, the characteristic measure $\mu_A : G \to [0, |G|]$ is defined by

$$\mu_A(x) \coloneqq \alpha^{-1} \mathbb{1}_A(x).$$

Note that $\mathbb{E}_{x \in G} \mu_A(x) = 1 = \hat{\mu}_A(1)$.

Definition 2.16 The balanced function $f_A: G \to [-1,1]$ of A is given by

$$f_A(x) = \mathbb{1}_A(x) - \alpha.$$

Note that $\mathbb{E}_{x \in G} f_A(x) = 0 = \hat{f}_A(1)$.

Example 2.17 Let $V \leq \mathbb{F}_p^n$ be a subspace. Then for $t \in \widehat{\mathbb{F}}_p^n$,

$$\begin{split} \widehat{\mathbb{1}}_V(t) &= \mathbb{E}_{x \in \mathbb{F}_p^n} \mathbb{1}_V(x) e(-x.t/p) \\ &= \frac{|V|}{p^n} \mathbb{1}_{V^\perp}(t). \end{split}$$

where $V^{\perp}=\{t\in \hat{\mathbb{F}}_p^n: x.t=0 \quad \forall x\in V\}$ is the **annihilator** of V. Hence, $\hat{\mathbb{1}}_V=\mu_{V^{\perp}}$.

Example 2.18 Let $R \subseteq G$ be such that each $x \in G$ lies in R independently with probability $\frac{1}{2}$. Then with high probability,

$$\sup_{\gamma \neq 1} \Bigl| \widehat{\mathbb{1}}_R(\gamma) \Bigr| = O\Biggl(\sqrt{\frac{\log |G|}{|G|}} \Biggr).$$

This follows from Chernoff's inequality.

Theorem 2.19 (Chernoff's Inequality) Given complex-valued independent random variables $X_1, ..., X_n$ with mean 0, for all $\theta > 0$, we have

$$\Pr\left[\left|\sum_{i=1}^n X_i\right| \geq \theta \sqrt{\sum_{i=1}^n \left\|X_i\right\|_{L^\infty(\Pr)}^2}\right] \leq 4 \exp(-\theta^2/4).$$

Example 2.20 Let $Q = \{x \in \mathbb{F}_p^n : x.x = 0\}$ with p > 2. Then $|Q|/p^n = \frac{1}{p} + O(p^{-n/2})$ and $\sup_{t \neq 0} \left| \hat{\mathbb{1}}_Q(t) \right| = O(p^{-n/2})$.

Lemma 2.21 (Plancherel's Identity) For all $f, g: G \to \mathbb{C}$,

$$\langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle.$$

Proof. Exercise. \Box

Corollary 2.22 (Parseval's Identity) For all $f, g: G \to \mathbb{C}$,

$$\|f\|_{L^2(G)}^2 = \left\|\widehat{f}\right\|_{L^2\left(\widehat{G}\right)}^2.$$

Proof (Hints). Trivial from Plancherel.

Proof. By Plancherel.

Definition 2.23 Let $\rho > 0$ and $f: G \to \mathbb{C}$. The ρ -large Fourier spectrum of f is

$$\operatorname{Spec}_{\rho}(f) \coloneqq \left\{ \gamma \in \hat{G} : \left| \hat{f}(\gamma) \right| \ge \rho \|f\|_1 \right\}.$$

Example 2.24 Let $A \subseteq G$, then $||f||_1 = \alpha = |A|/|G|$, so

$$\operatorname{Spec}_{\rho}(\mathbb{1}_A) = \left\{ t \in \widehat{\mathbb{F}}_p^n : \left| \widehat{\mathbb{1}}_V(t) \right| \geq \rho \alpha \right\}.$$

In particular, if $V \leq \mathbb{F}_p^n$ is a subspace, then by Example 2.17, $\operatorname{Spec}_{\rho}(\mathbb{1}_V) = V^{\perp}$ for all $\rho \in (0,1]$.

Lemma 2.25 For all $\rho > 0$,

$$\left| \operatorname{Spec}_{\rho}(f) \right| \le \rho^{-2} \frac{\|f\|_{2}^{2}}{\|f\|_{1}^{2}}$$

In particular, if $f=\mathbbm{1}_A$ for $A\subseteq G$, then $\|f\|_1=\alpha=|A|/|G|=\|f\|_2^2$. So $\left|\operatorname{Spec}_{\rho}(\mathbbm{1}_A)\right|\leq \rho^{-2}\alpha^{-1}$.

Proof (Hints). Use Parseval's identity.

Proof. By Parseval's identity,

$$\begin{split} \|f\|_2^2 &= \left\| \hat{f} \right\|_2^2 = \sum_{\gamma \in \widehat{G}} \left| \hat{f}(\gamma) \right|^2 \\ &\geq \sum_{\gamma \in \operatorname{Spec}_{\rho}(f)} \left| \hat{f}(\gamma) \right|^2 \\ &\geq \left| \operatorname{Spec}_{\rho}(f) \right| (\rho \|f\|_1)^2. \end{split}$$

Definition 2.26 The **convolution** of $f, g : \mathbb{G} \to \mathbb{C}$ is

$$\begin{split} f*g: G \to \mathbb{C}, \\ x \mapsto \mathbb{E}_{y \in G} f(y) g(x-y). \end{split}$$

Example 2.27 Given $A, B \subseteq G$,

$$\begin{split} (\mathbb{1}_A * \mathbb{1}_B)(x) &= \mathbb{E}_{y \in G} \mathbb{1}_A(y) \mathbb{1}_B(x-y) \\ &= \mathbb{E}_{y \in G} \mathbb{1}_A(y) \mathbb{1}_{x-B}(y) \\ &= \mathbb{E}_{y \in G} \mathbb{1}_{A \cap (x-B)}(y) \\ &= \frac{|A \cap (x-B)|}{|G|} = \frac{1}{|G|} r_{A+B}(x). \end{split}$$

In particular, $\operatorname{supp}(\mathbb{1}_A*\mathbb{1}_B)=A+B.$

Lemma 2.28 Given $f, g: G \to \mathbb{C}$,

$$\forall \gamma \in \widehat{G}, \quad (\widehat{f * g})(\gamma) = \widehat{f}(\gamma)\widehat{g}(\gamma).$$

Proof (Hints). Straightforward.

Proof. We have

$$\begin{split} \widehat{(f*g)}(\gamma) &= \mathbb{E}_{x \in G}(f*g)(x)\overline{\gamma(x)} \\ &= \mathbb{E}_{x \in G}\mathbb{E}_{y \in G}f(y)g(x-y)\overline{\gamma(x)} \\ &= \mathbb{E}_{u \in G}\mathbb{E}_{y \in G}f(y)g(u)\overline{\gamma(u+y)} \quad (u=x-y) \\ &= \mathbb{E}_{u \in G}\mathbb{E}_{y \in G}f(y)g(u)\overline{\gamma(u)\gamma(y)} \\ &= \widehat{f}(\gamma)\widehat{g}(\gamma). \end{split}$$

Example 2.29 $\mathbb{E}_{x+y=z+w}f(x)f(y)\overline{f(z)f(w)} = \|\widehat{f}\|_{\ell^4(\widehat{G})}^4$. In particular, $\|\widehat{\mathbb{1}}_A\|_{\ell^4(\widehat{G})}^4 = E(A)/|G|^3$ for any $A \subseteq G$.

Theorem 2.30 (Bogolyubov's Lemma) Let $A \subseteq \mathbb{F}_p^n$ be of density α . Then there exists a subspace $V \leq \mathbb{F}_p^n$ with $\operatorname{codim}(V) \leq 2\alpha^{-2}$, such that $V \subseteq A + A - A - A$. *Proof (Hints)*.

- Let $g = \mathbbm{1}_A * \mathbbm{1}_A * \mathbbm{1}_{-A} * \mathbbm{1}_{-A}$, reason reason that if g(x) > 0 for all $x \in V$, then $V \subset 2A - 2A$.
- Let $S = \operatorname{Spec}_{\rho}(\mathbb{1}_A)$, with ρ for now unspecified. Show that $g(x) = \alpha^4 + \sum_{t \in S \setminus \{0\}} \left| \hat{\mathbb{1}}_A(t) \right|^4 e(x.t/p) + \sum_{t \notin S} \left| \hat{\mathbb{1}}_A(t) \right|^4 e(x.t/p)$.
- Find an appropriate subspace V from S, bound g(x) from below in terms of ρ , and use this to determine a suitable value for ρ .

Proof. Observe 2A - 2A = supp(g) where $g = \mathbb{1}_A * \mathbb{1}_A * \mathbb{1}_{-A} * \mathbb{1}_{-A}$, so we want to find $V \leq \mathbb{F}_p^n$ such that g(x) > 0 for all $x \in V$. Let $S = \operatorname{Spec}_{\rho}(\mathbb{1}_A)$ with ρ a constant to be specified later, and let $V=\langle S \rangle^{\perp}$. By Lemma 2.25, $\operatorname{codim}(V)=\dim \langle S \rangle \leq |S| \leq |S|$ $\rho^{-2}\alpha^{-1}$. Fix $x \in V$. Now

$$\begin{split} g(x) &= \sum_{t \in \hat{\mathbb{F}}_p^n} \hat{g}(t) e(x.t/p) \\ &= \sum_{t \in \hat{\mathbb{F}}_p^n} \left| \hat{\mathbb{1}}_A(t) \right|^4 e(x.t/p) \quad \text{by } \underline{\text{Lemma}} \ 2.28 \\ &= \alpha^4 + \sum_{t \neq 0} \left| \hat{\mathbb{1}}_A(t) \right|^4 e(x.t/p) \\ &= \alpha^4 + \sum_{t \in S \backslash \{0\}} \left| \hat{\mathbb{1}}_A(t) \right|^4 e(x.t/p) + \sum_{t \notin S} \left| \hat{\mathbb{1}}_A(t) \right|^4 e(x.t/p) \end{split}$$

Each term in the first sum is non-negative, since $\forall t \in S, x.t = 0$. The absolute value of the second sum is bounded above, by the triangle inequality, by

$$\sum_{t \notin S} \left| \hat{\mathbb{1}}_A(t) \right|^4 \le \sup_{t \notin S} \left| \hat{\mathbb{1}}_A(t) \right|^2 \sum_{t \notin S} \left| \hat{\mathbb{1}}_A(t) \right|^2$$

$$\le \sup_{t \notin S} \left| \hat{\mathbb{1}}_A(t) \right|^2 \sum_{t \in \hat{\mathbb{F}}_p^n} \left| \hat{\mathbb{1}}_A(t) \right|^2$$

$$\le (\rho \alpha)^2 \|\mathbb{1}_A\|_2^2 = \rho^2 \alpha^3$$

by Example 2.24 and Parseval's identity. Note the second sum must be real since all other terms in the equation are. So we have $g(x) \ge \alpha^4 - \rho^2 \alpha^3$. Thus, it is sufficient that $\rho^2 \alpha^3 \leq \frac{\alpha^4}{2}$, so set $\rho = \sqrt{a/2}$. Hence g(x) > 0 (in fact, $g(x) \geq \frac{\alpha^4}{2}$) for all $x \in V$, and $\operatorname{codim}(V) \leq 2\alpha^{-2}$.

Example 2.31 The set $A = \left\{ x \in \mathbb{F}_2^n : |x| \ge \frac{n}{2} + \frac{\sqrt{n}}{2} \right\}$ (where |x| is number of 1s in x) has density $\geq \frac{1}{8}$ but there is no coset C of any subspace of codimension \sqrt{n} such that $C \subseteq A + A$. Hence, the 2A - 2A part of Bogolyubov's lemma is necessary: 2A is not sufficient.

Lemma 2.32 Let $A \subseteq \mathbb{F}_p^n$ have density α with $\sup_{t \neq 0} |\hat{\mathbb{1}}_A(t)| \geq \rho \alpha$ for some $\rho > 0$. Then there exists a subspace $V \leq \mathbb{F}_p^n$ with $\operatorname{codim}(V) = 1$ and $x \in \mathbb{F}_p^n$ such that

$$|A \cap (x+V)| \ge \alpha \left(1 + \frac{\rho}{2}\right)|V|.$$

 $Proof\ (Hints).$

- Let $V=\langle t \rangle^{\perp}$ for some suitable t (can determine later). Define $a_j=\frac{|A\cap (v_j+V)|}{|v_j+V|}-\alpha$ for each $j\in[p]$, where $x.v_j=j$. Show that $\hat{\mathbb{1}}_A(t)=\mathbb{E}_{j\in[p]}a_je(-j/p)$.
- Show that $\mathbb{E}_{i \in [p]} a_i + |a_i| \ge \rho \alpha$.

Proof. Let $t \neq 0$ be such that $|\hat{\mathbb{1}}_A(t)| \geq \rho \alpha$ and let $V = \langle t \rangle^{\perp}$. Write $v_i + V = \{x \in A_i \mid x \in A$ $\mathbb{F}_p^n: x.t = j$ for $j \in [p]$ for the p distinct cosets of V. Then

$$\begin{split} \widehat{\mathbb{1}}_A(t) &= \widehat{f}_A(t) = \mathbb{E}_{x \in \mathbb{F}_p^n} (\mathbb{1}_A(x) - \alpha) e(-x.t/p) \\ &= \mathbb{E}_{j \in [p]} \mathbb{E}_{x \in v_j + V} (\mathbb{1}_A(x) - \alpha) e(-j/p) \\ &= \mathbb{E}_{j \in [p]} \left(\frac{\left| A \cap \left(v_j + V \right) \right|}{\left| v_j + V \right|} - \alpha \right) e(-j/p) \\ &=: \mathbb{E}_{j \in [p]} a_j e(-j/p). \end{split}$$

By the triangle inequality, $\mathbb{E}_{j\in[p]}\big|a_j\big|\geq \rho\alpha$. Note that $\mathbb{E}_{j\in[p]}a_j=0$. So $\mathbb{E}_{j\in[p]}a_j+\big|a_j\big|\geq 0$ $\rho\alpha$, so $\exists j \in [p]$ such that $a_j + \left|a_j\right| \ge \rho\alpha$, hence $a_j \ge \rho\alpha/2$. So take $x = v_j$.

Notation 2.33 Given $f, g, h : G \to \mathbb{C}$, write

$$T_3(f,g,h) = \mathbb{E}_{x,d \in G} f(x) g(x+d) h(x+2d).$$

Notation 2.34 Given $A \subseteq G$, write $2 \cdot A = \{2a : a \in A\}$. Note this is not the same as 2A = A + A.

Lemma 2.35 Let $p \geq 3$ and $A \subseteq \mathbb{F}_p^n$ be of density $\alpha > 0$, such that $\sup_{t \neq 0} \left| \hat{\mathbb{1}}_A(t) \right| \leq \varepsilon$. Then the number of 3-APs in A differs from $\alpha^3(p^n)^2$ by at most $\varepsilon(p^n)^2$.

Proof. The number of 3-APs in A is $(p^n)^2$ multiplied by

$$\begin{split} T_3(\mathbb{1}_A,\mathbb{1}_A,\mathbb{1}_A) &= \mathbb{E}_{x,d}\mathbb{1}_A(x)\mathbb{1}_A(x+d)\mathbb{1}_A(x+2d) \\ &= \mathbb{E}_{x,y}\mathbb{1}_A(x)\mathbb{1}_A(y)\mathbb{1}_A(2y-x) \\ &= \mathbb{E}_y\mathbb{1}_A(y)\mathbb{E}_x\mathbb{1}_A(x)\mathbb{1}_A(2y-x) \\ &= \mathbb{E}_y\mathbb{1}_A(y)(\mathbb{1}_A*\mathbb{1}_A)(2y) \\ &= \langle \mathbb{1}_{2\cdot A},\mathbb{1}_A*\mathbb{1}_A \rangle. \end{split}$$

By Plancherel's identity and Lemma 2.28, this is equal to

$$\begin{split} \langle \hat{\mathbb{1}}_{2 \cdot A}, \hat{\mathbb{1}}_{A}^{2} \rangle &= \sum_{t \in \mathbb{F}_{p}^{n}} \hat{\mathbb{1}}_{2 \cdot A}(t) \overline{\hat{\mathbb{1}}_{A}(t)}^{2} \\ &= \alpha^{3} + \sum_{t \neq 0} \hat{\mathbb{1}}_{2 \cdot A}(t) \overline{\hat{\mathbb{1}}_{A}(t)}^{2} \end{split}$$

But

$$\begin{split} \left| \sum_{t \neq 0} \hat{\mathbbm{1}}_{2 \cdot A}(t) \overline{\hat{\mathbbm{1}}_A(t)}^2 \right| &\leq \sup_{t \neq 0} \left| \hat{\mathbbm{1}}_A(t) \right| \sum_{t \neq 0} \left| \hat{\mathbbm{1}}_{2 \cdot A}(t) \right| \left| \hat{\mathbbm{1}}_A(t) \right| \\ &\leq \sup_{t \neq 0} \left| \hat{\mathbbm{1}}_A(t) \right| \left(\sum_{t} \left| \hat{\mathbbm{1}}_{2 \cdot A}(t) \right|^2 \sum_{t} \left| \hat{\mathbbm{1}}_A(t) \right|^2 \right)^{1/2} \quad \text{by Cauchy-Schwarz} \\ &\leq \varepsilon \left\| \hat{\mathbbm{1}}_{2 \cdot A} \right\|_2 \left\| \hat{\mathbbm{1}}_A \right\|_2 \\ &= \varepsilon \cdot \alpha \qquad \qquad \text{by Parseval.} \end{split}$$

Theorem 2.36 (Meshulam) Let $A \subseteq \mathbb{F}_p^n$ be a set containing no non-trivial 3-APs. Then $|A| = O(p^n/\log p^n)$, i.e. $\alpha = O(1/n)$.

Proof. By assumption, $T_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) = |A|/((p^n)^2) = \alpha/p^n$. By the proof of the above lemma,

$$\left|T_3(\mathbb{1}_A,\mathbb{1}_A,\mathbb{1}_A) - \alpha^3\right| \leq \sup_{t \neq 0} \left|\widehat{\mathbb{1}}_A(t)\right| \cdot \alpha.$$

So provided that $p^n \geq 2\alpha^{-2}$, we have $T_3(\mathbbm{1}_A, \mathbbm{1}_A, \mathbbm{1}_A) \leq \alpha^3/2$. So we have

$$\sup_{t \neq 0} \left| \widehat{\mathbb{1}}_A(t) \right| \ge \frac{\alpha^2}{2}$$

So by (find lemma) with $\rho = \frac{\alpha}{2}$, there exists a subspace $V = \mathbb{F}_p^n$ of codimension 1 and $x \in \mathbb{F}_p^n$ such that $|A \cap (x+V)| \ge (\alpha + \alpha^2/4)|V|$.

We iterate this observation: let $A_0=A,\ V_0=\mathbb{F}_p^n,\ \alpha_0=|A_0|/|V_0|.$ At this i-th step, we are given a set $A_{i-1}\subseteq V_{i-1}$ of density α_{i-1} with no non-trivial 3-APs. Provided that $p^{\dim(V_{i-1})}\geq 2\alpha_{i-1}^{-2}$, there exists a subspace $V_i\leq V_{i-1}$ of codimension 1 and $x_i\in V_{i-1}$ such that

$$|(A - x_i) \cap V_i| = |A \cap (x_i + V_i)| \ge (\alpha_{i-1} + \alpha_{i-1}^2/4)|V_i|$$

So set $A_i=(A-x_i)\cap V_i$. A_i has density $\alpha_i\geq \alpha_{i-1}+\alpha_{i-1}^2/4$, and contains no non-trivial 3-APs (since the translate $A-x_i$ contains no non-trivial 3-APs). Through this iteration, the density increases:

- from α to 2α in at most $\alpha/(\alpha^2/4) = 4\alpha^{-1}$ steps,
- from 2α to 4α in at most $(2\alpha)/((2\alpha)^2/4) = 2\alpha^{-1}$ steps.
- and so on, ...

So the density reaches 1 in at most $4\alpha^{-1}\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right)=8\alpha^{-1}$ steps. The iteration must end with $\dim(V_i)\geq n-8\alpha^{-1}$, at which point we must have had $p^{\dim(V_i)}<2\alpha_{i-1}^{-2}\leq 2\alpha^{-2}$, or else we could have iterated again.

But we may assume that $\alpha \geq \sqrt{2}p^{-n/4}$ (since otherwise we would be done), so $\alpha^{-2} < \frac{1}{2}p^{n/2}$, whence $p^{n-8\alpha^{-1}} \leq p^{n/2}$, i.e. $\frac{n}{2} \leq 8\alpha^{-1}$.

Remark 2.37 The current largest known subset of \mathbb{F}_3^n containing no non-trivial 3-APs has size 2.2202^n .

Theorem 2.38 (Roth) Let $A \subseteq [N]$ be a set containing no non-trivial 3-APs. Then $|A| = O(N/\log\log N)$.

3. Probabilistic tools

4. Further topics