In [55]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [193]:

```
df = pd.read_excel(r"C:\Users\mdmoh\Downloads\stock analysis.xlsx",sheet_name = "Sheet2",parse_dates=True, )
df.head()
```

Out[193]:

	Date	AAPL	SAVA	CEI	SPCE	CAN
0	2021-01-01	133.520004	6.840000	0.97	23.959999	261.000000
1	2021-02-01	133.750000	20.500000	1.43	47.169998	246.100006
2	2021-03-01	123.750000	51.049999	1.52	38.930000	254.000000
3	2021-04-01	123.660004	46.040001	1.02	31.290001	278.619995
4	2021-05-01	132.039993	46.889999	0.73	21.719999	292.929993

In [194]:

df.describe()

Out[194]:

	AAPL	SAVA	CEI	SPCE	CAN
count	8.000000	8.000000	8.000000	8.000000	8.000000
mean	131.993752	54.463750	0.933850	33.702500	278.713749
std	8.051985	36.715324	0.376426	9.470574	23.630580
min	123.660004	6.840000	0.490800	21.719999	246.100006
25%	124.747501	39.655001	0.657500	28.527499	259.250000
50%	132.779999	48.969999	0.850000	30.895001	282.099991
75%	134.462502	62.117500	1.122500	40.697500	293.567498
max	147.550003	124.500000	1.520000	47.169998	316.000000

In [195]:

heatmap = df.corr()
heatmap

Out[195]:

	AAPL	SAVA	CEI	SPCE	CAN
AAPL	1.000000	0.579768	-0.510164	0.032444	0.548574
SAVA	0.579768	1.000000	-0.612567	0.106425	0.833329
CEI	-0.510164	-0.612567	1.000000	0.429439	-0.919821
SPCE	0.032444	0.106425	0.429439	1.000000	-0.321892
CAN	0.548574	0.833329	-0.919821	-0.321892	1.000000

In [196]:

sns.heatmap(heatmap, square=True)

Out[196]:

<AxesSubplot:>

In [197]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8 entries, 0 to 7
Data columns (total 6 columns):
    Column Non-Null Count Dtype
#
- - -
 0
     Date
             8 non-null
                             datetime64[ns]
     AAPL
                             float64
 1
             8 non-null
 2
     SAVA
             8 non-null
                             float64
 3
     CEI
             8 non-null
                             float64
     SPCE
             8 non-null
                             float64
 5
    CAN
             8 non-null
                             float64
dtypes: datetime64[ns](1), float64(5)
memory usage: 512.0 bytes
```

In [198]:

```
df['AAPL'].std()
```

Out[198]:

8.051985144317007

In [199]:

```
sns.boxplot(x='AAPL', data=df)
```

Out[199]:

<AxesSubplot:xlabel='AAPL'>

In [200]:

```
sns.lineplot(x='Date',y='AAPL',data=df, marker='o',label='AAPL')
sns.lineplot(x='Date',y='CAN',data=df, marker='o',label='CAN')
sns.lineplot(x='Date',y='CEI',data=df, marker='o',label='CEI')
plt.xticks(rotation='vertical')
plt.legend()
plt.show()
```


In [201]:

```
sns.pairplot(df,corner=True)
```

Out[201]:

<seaborn.axisgrid.PairGrid at 0x2138e540808>

In [202]:

```
sns.distplot(df['AAPL'], bins=7)
sns.distplot(df['SAVA'], bins=7)
```

Out[202]:

<AxesSubplot:xlabel='SAVA'>

In [203]:

```
df['AAPL'].pct_change().plot()
df['CEI'].pct_change().plot()
```

Out[203]:

<AxesSubplot:>

In [204]:

#you have \$1000, you distribute evenly across all 5 stocks, whats your return by the end of the year

In [205]:

```
data1= df[df.columns[-5:]]
data1
```

Out[205]:

	AAPL	SAVA	CEI	SPCE	CAN
0	133.520004	6.840000	0.9700	23.959999	261.000000
1	133.750000	20.500000	1.4300	47.169998	246.100006
2	123.750000	51.049999	1.5200	38.930000	254.000000
3	123.660004	46.040001	1.0200	31.290001	278.619995
4	132.039993	46.889999	0.7300	21.719999	292.929993
5	125.080002	54.290001	0.6500	30.049999	285.579987
6	136.600006	85.599998	0.6600	46.000000	295.480011
7	147.550003	124.500000	0.4908	30.500000	316.000000

In [206]:

```
for x in datal:
    print((data1[x].iloc[-1]- data1[x].iloc[0])/data1[x].iloc[0])
```

- 0.1050778803152223
- 17.20175438596491
- -0.494020618556701
- 0.2729549780031293
- 0.210727969348659

In [234]:

```
data1['AAPL'].pct_change().plot()
data1['CEI'].pct_change().plot()
```

Out[234]:

<AxesSubplot:>

In [222]:

from sklearn.linear_model import LinearRegression

In [232]:

```
X = df['CEI'].iloc[:7].values.reshape(-1, 1)
Y = df['AAPL'].iloc[:7].values.reshape(-1, 1)
linear_regressor = LinearRegression()
linear_regressor.fit(X, Y)
Y_pred = linear_regressor.predict(X)
```

In [230]:

```
plt.scatter(X, Y)
plt.plot(X, Y_pred, color='red')
plt.show()
```


In []: