CDS6214

Data Science Fundamentals

Lecture 1
Introduction and Overview

big data

data science

Big Data for real-world insights

- Big Data in the Hospitality Industry
 https://www.youtube.com/watch?v=mK1stwMHb7Y
- * How Big Data Could Transform The Health Care Industry https://www.youtube.com/watch?v=_mXrZEIpNMw
- Big Data in Telefónica: Dynamic Insights
 https://www.youtube.com/watch?v=APDjX3cZ7Ps
- How video analytics can improve retail customer experience
 - https://www.youtube.com/watch?v=o0klIGC4Fuw

Big Data

Big Data is data whose scale, distribution, diversity, and/or timeliness require the use of new technical architectures and analytics to enable insights that unlock new sources of business value.

Big Data (2)

Traditional Approach to Data & Analytics

Data

Data Source & Format

- ERP, CRP, Oracle, SAP, MS SQL, etc.
- Tables
- Files

Data Structure

- Structured Data
- ER Model (Entity Relationship)
- MDM Model (Multi Dimensional)

Data Access

- SQL
- Filters & Aggregate Functions
- Business Rules and Formulas, etc.

Analytics

- Reports
- Dashboards
- Data Analysis

Analytics Transformation

New Data Source & Format

New Data Architecture

New Analytics Architecture

New Analytics Techniques

Modern Approach to Data & Analytics = Data Science

Data

Data Source & Format

- ERP, CRP, Oracle, SAP, MS SQL, etc.
- Social (Web, LinkedIn, Twitter, FB)
- Streaming

Data Structure

- Structured Data
- Unstructured & Semi Structured
- Machine Data

Data Access

- Parallel processing
- Distributed Computing
- In-memory Analytics

Analytics

- Predicate Analytics (Liner Regression)
- Data Mining
- Clustering, Segmentation, etc.

Big Data Sources

Data Structures

Structured data:

Data containing a defined data type, format, and structure(e.g. online analytical processing [OLAP] data cubes, traditional RDBMS, CSV files, and even simple spread-sheets).

Semi-structured data:

Textual data files with a discernible pattern that enables parsing (e.g. XML data files that are self-describing and defined by an XML schema).

Quasi-structured data:

Textual data with erratic data formats that can be formatted with effort, tools, and time (for instance, web clickstream data that may contain inconsistencies in data values and formats).

Unstructured data:

Data that has no inherent structure, which may include text documents, PDFs, images, and video.

Data Structures

Structured Semi-Structured *Quasi* Structured

· Structured data:

Data containing a defined data type, format, and structure(e.g. online analytical processing [OLAP] data cubes, traditional RDBMS, CSV files, and even simple spread- sheets).

Semi-structured data:

Textual data files with a discernible pattern that enables parsing (e.g. XML data files that are self-describing and defined by an XML schema).

Quasi-structured data:

Textual data with erratic data formats that can be formatted with effort, tools, and time (for instance, web clickstream data that may contain inconsistencies in data values and formats).

Unstructured data:

Data that has no inherent structure, which may include text documents, PDFs, images, and video.

<samplexml></samplexml>	S.
<colors></colors>	
<color1< td=""><td>>White</td></color1<>	>White
<color2:< td=""><td>>Blue</td></color2:<>	>Blue
<color3:< td=""><td>>Black</td></color3:<>	>Black
<color4< td=""><td>Special="Light">Green</td></color4<>	Special="Light">Green
<color5< td=""><td>>Red</td></color5<>	>Red
<fruits></fruits>	
<fruits< td=""><td>1>Apple</td></fruits<>	1>Apple
<fruits:< td=""><td>2>Pineapple</td></fruits:<>	2>Pineapple
<fruits:< td=""><td>3>Grapes</td></fruits:<>	3>Grapes
<fruits< td=""><td>4>Melon</td></fruits<>	4>Melon
<td>></td>	>


```
Dela Locati. Dela Caroci. Dela Mena. Dela Securi. Dela
```

```
unix time ; IP address
                         ; session ID
                                                           ; page request; referee
1074589200;193.179.144.2 ;1993441e8a0a4d7a4407ed9554b64ed1;/dp/?id=124
                                                                         ; www.google.cz;
1074589201;194.213.35.234;3995b2c0599f1782e2b40582823b1c94;/dp/?id=182
1074589202;194.138.39.56 ;2fd3213f2edaf82b27562d28a2a747aa;/
                                                                         ; www.seznam.cz;
1074589233;193.179.144.2 ;1993441e8a0a4d7a4407ed9554b64ed1;/dp/?id=148
                                                                         ;/dp/?id=124;
                                                                         ;/dp/?id=148;
1074589245;193.179.144.2 ;1993441e8a0a4d7a4407ed9554b64ed1;/sb/
1074589248;194.138.39.56 ;2fd3213f2edaf82b27562d28a2a747aa;/contacts/
                                                                         ; /;
1074589290;193.179.144.2 ;1993441e8a0a4d7a4407ed9554b64ed1;/sb/
                                                                         ;/sb/;
```

Big Data Growth

Key enablers for the growth of "Big Data" are:

- Increase of storage capacities
- Increase of processing power
- Availability of data

Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025(in zettabytes)

Characterization of Big Data

There are 5Vs often used to describe the characteristics of Big Data

BD Characterization: Volume (1)

Volume: the vast amount of data generated each second (Scale of data)

DATA AGE - THE GLOBAL DATASPHERE 2025 TRENDS & DATA-READINESS FROM EDGE TO CORE

175 Zettabytes

The global datasphere will grow from 33 zettabytes in 2018 to 175 zettabytes by 2025. IoT devices are expected to create over 90 zettabytes of data in 2025.

49%

By 2025, 49% of all data worldwide will reside in public cloud environments as cloud becomes the new core.

30%

In 2025 nearly 30% of the world's data will need real-time processing as the role of the edge continues to grow.

78% of large organizations (10,000+ employees) used Big Data

2022-2029

the Big Data market will grow by 13.4%

in 2022

the US had 2,701 data centers, the highest in the world.

IDC & Seagate Data Age 2025 - www.seagate.com/gb/en/our-story/data-age-2025/

BD Characterization: Volume (2)

- 1 Gigabyte (GB) = 1,000,000,000 byte
- 1 Terabyte (TB) = 1,000 Gigabyte (GB)
- 1 Petabyte (PB) = 1,000,000 Gigabyte (GB)
- 1 Exabyte (EB) = 1,000,000,000 Gigabyte (GB)
- * 1 Zettabyte (ZB) = 1,000,000,000,000 (GB)

Number in words	Number in figures	Number in standard form	Number written as a decimal
One thousand	1,000	10 ³	
Ten thousand	10,000	10 ⁴	0.01 million
One hundred thousand	100,000	10 ⁵	O.1 million
One million	1,000,000	10 ⁶	
Ten million	10,000,000	10 ⁷	0.01 billion
One hundred million	100,000,000	108	0.1 billion
One billion	1,000,000,000	10 ⁹	
Ten billion	10,000,000,000	10 ¹⁰	0.01 trillion
One hundred billion	100,000,000,000	1011	0.1 trillion
One trillion	1,000,000,000,000	10 ¹²	
One quadrillion	1,000,000,000,000,000	10 ¹⁵	

BD Characterization: Velocity

Velocity: the speed at which data is generated

463 ZB of data will be created every day by 2025, which will be worth \$229.4

billion.

Data We Create Online in 60 Seconds

BD Characterization: Variety

Variety: the different types of data available (diversity)

3 Important Statistics About How Much Data Is Created Every Day

1

How much data is generated every minute?

Source: Domo

C

41,666,667

messages shared by WhatsApp users

347,222

stories posted by Instagram users

1,388,889

video / voice calls made by people worldwide

GE

150,000

messages shared by Facebook users

104,444

hours of video streamed by Netflix users

147,000

photos shared by Facebook users

2 Estimated Data Consumption from 2021 to 2024

Source: IDC / Statista

3

Data Growth in 2021

Sources: TechJury, Internet Live Stats, Cisco, PurpleSec

Q

2 TRILLION

searches on Google by the end of 2021

⊘ 278,108 PETABYTES

global IP data per month by the end of 2021

1.134 TRILLION MB

volume of data created every day

230,000

new malware versions created every day

3,026,626

emails sent every second, 67% of which are spam

282%

share of video in total global internet traffic at the end of 2021

BD Characterization: Veracity

Veracity: the trustworthiness of data

don't trust the information they use to make decisions

Poor data quality costs the US economy around

\$3.1 TRILLION A YEAR

27% OF RESPONDENTS

in one survey were unsure of how much of their data was inaccurate Veracity

UNCERTAINTY OF DATA

BD Characterization: Veracity

sciforce

Sources of Data Veracity

Statistical biases

Lack of data lineage

Software bugs

Noise

Abnormalities

Information Security

Untrustworthy data sources

Falsification

Uncertainty and ambiguity of data

Duplication of data

Out of date and obsolete data

Human error

Sources of Data Veracity

BD Characterization: Value

Value: the meaningfulness of data, creation of actionable insights,

data monetization etc.

DATA SCIENCE IS NECESSARY				
17-49%	increase in productivity when organizations increase data usability by 10%			
11-42%	return on assets (ROA) when organizations increase data access by 10%			
241%	increase in ROI when organizations use big data to improve competitiveness			
1000%	increase in ROI when deploying analytics across most of the organization, aligning daily operations with senior management's goals, and incorporating big data			
5-6%	performance improvement for organizations making data-driven decisions.			
	TO COMPETE IN THE FUTURE			

Insights from Big Data

Big Data has been leveraged to create actionable insights in various domains:

- Facebook: analyses location information to make it easier to find friends to connect to,identify global migration patterns, to determine where the different football team fanbases live.
- Target: predictively models data to determine which of its customers are pregnant, to focus baby-related marketing to them
- Tesco PLC: collected refrigerator-related data points to monitor it's performance, towards proactive maintenance (servicing of machines) to cut down on energy costs.
- Macy's Inc.: adjusts pricing of it's items in near-real time by monitoring demand and inventory.
- Siemens: leveraged on sensor-data analytics and predictive maintenance to reduce train failures.
- Google Flu Trends: aggregates Google search queries to predict outbreaks of flu.

How to churn out Insights from Big Data?

(MachineLearning, Artificial Intelligence and Data) Landscape

What is Data Science?

Data Science enables us to gain insights from data through the use of technology, statistics and business acumen.

What is Data Science?

Data Science is about drawing useful conclusions from large and diverse data sets through **exploration**, **prediction**, and **inference**.

Identifying patterns in information

(visualizations, descriptive stats)

Using information to make informed decisions (machine learning, optimization)

Quantifying the degree of certainty (statistical tests, models)

(Adhikari & DeNero, Computational and Inferential Thinking)

BI vs. Data Science

Data Science in Academia vs. the Industry

Data Science Process

A revisited slide: What is Data Science?

Data Science enables us to gain insights from data through the use of technology, statistics and business acumen.

Data Scientists

"A data scientist is someone who is better at statistics than any software engineer and better at software engineering than any statistician." - Josh Wills

Data Scientists: Technical Skills

- Math (e.g. linear algebra, calculus and probability)
- Statistics (e.g. hypothesis testing and summary statistics)
- Machine learning tools and techniques (e.g. k-nearest neighbors, random forests, ensemble methods, etc.) for data mining
- Software engineering skills (e.g. distributed computing, algorithms and data structures)
- Data cleaning
- Data mining
- Data visualization
- R or Python
- SQL databases and database querying languages
- Unstructured databases
- Big data platforms like Spark, Hadoop, Hive & Pig

Data Scientists: Business Skills

- Analytical Problem-Solving
- Effective Communication
- Intellectual Curiosity
- Industry Knowledge

Responsibilities of a Data Scientist

- Conduct undirected research and frame open-ended industry questions
- Extract huge volumes of data from multiple internal and external sources
- Thoroughly clean and prune data to discard irrelevant information
- Explore and examine data from a variety of angles to determine hidden weaknesses, trends and/or opportunities
- Devise data-driven solutions to the most pressing challenges
- Employ sophisticated analytics programs, machine learning and statistical methods to prepare data for use in predictive and prescriptive modeling
- Invent new algorithms to solve problems and build new tools to automate work
- Communicate predictions and findings to management and IT departments through effective data visualizations and reports
- Recommend cost-effective changes to existing procedures and strategies

Analyst vs. Engineer vs. Scientist

Data Scientist

also known as Data Managers, statisticians.

A data scientist will be able to take data science projects from end to end. They can help store large amounts of data, create predictive modelling processes and present the findings.

Skills: Mathematics, Programming, Communication

Will use programmes such as: SQL, Python, R

Data Engineers

also known as database administrators and data architects.

They are versatile generalists who use computer science to help process large datasets. They typically focus on coding, cleaning up data sets, and implementing requests that come from data scientists.

Skills: Programming, Mathematics, Big data

Will use programmes such as: Hadoop, NoSQL, and Python

Data Analysts

also known as business Analysts.

They typically help people from across the company understand specific queries with charts.

Skills: Statistics, Communication, Business knowledge

Will use programmes such as: Excel, Tableau, SQL

Programming Tools/Languages for Data Science

Rank	Change	Language	Share	Trend
1		Python	27.91 %	-0.6 %
2		Java	16.58 %	-1.6 %
3		JavaScript	9.67 %	+0.6 %
4		C/C++	6.93 %	-0.5 %
5		C#	6.88 %	-0.5 %
6		PHP	5.19 %	-0.6 %
7		R	4.23 %	-0.2 %
8	^	TypeScript	2.81 %	+0.6 %
9	^	Swift	2.28 %	+0.2 %
10	44	Objective-C	2.26 %	+0.0 %

Skills Data Scientists Need Today

General Skills in Data Scientist Job Listings

DATA SCIENTIST ** MUST-HAVE SKILLS **

MATH & STATISTICS

- Machine Learning
- Statistical Modeling
- Exploratory Analysis
- Clustering
- Regression Analysis

DOMAIN KNOWLEDGE & SOFT SKILLS

- Inclination towards business operations
- Keen on working with data
- Problem solver
- Strategic, proactive, and cooperative
- · Interested in hacking

PROGRAMMING & DATABASE

- Computer Science Fundamentals
- Database Management System
- Data Visualization
- Python
- Big Data

COMMUNICATION & VISUALIZATION

- Storytelling skills
- Convert data-based insights into decisions
- Collaborative with Sr. Management
- Knowledge of tools like Tableau
- Visual art design

Challenges in Data Science

- Validity of Assumptions
- Making ad-hoc explanations of data patterns
- Over-generalizing
- Communication
- Validation of models, data pipeline integrity
- Using statistical tests correctly
- ♦ Prototype ⇒ Production transitions

Textbook/References

- No specific textbook to use, but a few major references:
 - EMC Education Services (Editor). (2015). Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data.
 - NEW! Adhikari, A. & DeNero J. (2019). Computational and Inferential Thinking. Online Book. https://www.inferentialthinking.com/chapters/intro.html
 - O'Neil, C. & Schutt, R. (2013). Doing Data Science Straight Talk from the Frontline. O'Reilly Media.

End of Lecture 1