

大学物理实验 绪论

理学院物理实验中心 2018年3月

廖飞

E-mail: liaofei321@126.com

廖老师课程群:549290325

目录

- 一、课程意义、目标及环节
- 二、测量、误差和结果表示
- 三、有效数字
- 四、实验数据处理方法

一、课程意义、目标及环节

- 1.课程意义
- 2.物理实验 VS 其他科学
- 3.培养目标
- 4.实验三环节

课程意义

大学物理实验是——

科学实验的先驱,体现了大多数科学实验的共性, 在实验思想、方法及手段等方面是各学科科学实 验的基础。

具有广泛的应用性

第一门被教育部批准在高校独立开课的实验课程,是大学生进行科学实验基础训练的必修课程,是理工科学生进行基础实验训练的重要实践环节,是从事科学实验的起步。

物理实验 VS 其他科学

1.材料:物性测试、新材料的发现、制备

2.化学:光谱分析、放射性测量、激光分离同位素

3. 生物:各类显微镜(光学显微镜、电子显微镜、X光显微镜、原子力显微镜),DNA操纵、切割、重组以及双螺旋结构的分析

4.医学:诊断—X光、CT、核磁共振、超声波 治疗—放射性、激光、微波、γ刀

5.电子:物理电子学,半导体,量子器件

6.工程/机械/汽车/建筑/力学

结论:物理实验是物理学在其他学科中应用的桥梁

培养目标

- □科学思维能力的培养 □动手能力的训练
- □创新能力 □自学能力
- □世界观/方法论 □探索精神
- □严谨的科学态度/实事求是的科学精神

三层次目标:

层次1:学习物理学知识,加深对物理原理的理解;

层次2:基本实验技能,基本实验方法;

层次3:基本科学思维,科学实验能力。

实验三环节

Interest is the best teacher. Imagination is more important than knowledge. -- A. Einstein

目录

- 一、课程意义、目标及环节
- 二、测量、误差和结果表示
- 三、有效数字
- 四、实验数据处理方法

二、测量、误差和结果表示

- 1.测量与误差
- 2.系统误差&随机误差
- 3.结果表示&不确定度估计

测量与误差

物理实验以测量为基础

- ——有测量就会产生误差
- ——测量结果不可能无限准确

测量的定义:

是将待测物体的某物理量,与相应标准做定量比较。

测量结果组成:测量值+单位+结果可信赖程度

(即不确定度)

分类:

直接测量

间接测量——需按函数关系计算出被测量

所有实验均需符合等精度测量(各次测量在相同条件下完成,人员/方法/仪器)

测量与误差

二、测量、误差和结果表示

- 1.测量与误差
- 2.系统误差&随机误差
- 3.结果表示&不确定度估计

<u>测量值:1005KΩ=</u>

 $1.005M \Omega$

标称值:1MΩ/1%

绝对误差: $\Delta x = x_i - x_0$ $\Delta R = 0.005 M \Omega$

相对误差: $E=|\Delta x/x_0|$ $R_E=0.5\%$

系统误差

定义:

相同条件下多次测量同一物理量 时,误差的大小恒定,符号总偏向一 方或误差按一定规律变化。

产生原因:由于测量仪器、测量方法、

环境影响

已定系统误差——须修正,如零点误差/伏安法中电压表/电流表内阻

未定系统误差——估计出分布范围,如螺纹公差 (与B类不确定度相当)

消除已定系统误差

具体问题具体分析,使用修正法、抵消法、交换法、对称测量 法等消除

内接法: R=U/I- Rg

外接法: R=URv/(RvI- U)

随机误差

定义:对同一量的多次测量中,绝对值或符号变化方式不可 预知的测量误差分量。

产生原因:实验条件和环境因素无规则的起伏变化,引起测量值围绕真值发生涨落的变化。

如: 电表轴承的摩擦力变动 螺旋测微计测力在一定范围内随机变化 操作读数时的视差影响

随机误差的特点

- (1) 小误差出现的概率比大误差出现的概率大
- (2) 无穷多次测量时服从正态分布/次数少时服从t分布
- (3) 具有抵偿性

多次测量求平均值有利消减随机误差。

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

- σ 为标准差
- μ 为真值
- f(x) 为x的分布函数

标准差表示测量值的离散程度

标准差小:表示测得 值很密集,随机误差 分布范围窄,测量的 精密度高;

标准差大:表示测得 值很分散,随机差分 布误范围宽,测量的 精密度低。

任意一次测量值落入区间 $[\mu-\sigma, \mu+\sigma]$ 的概率为

$$P = \int_{\mu - \sigma}^{\mu + \sigma} f(x) dx = 0.683$$

这个概率称为<u>置信概率</u>, 对应区间称置信区间。

$$x = \mu \pm \sigma$$

扩大置信区间:

$$[\mu - 2\sigma, \mu + 2\sigma] P = 0.954$$

$$\left[\mu - 3\sigma, \ \mu + 3\sigma\right] P = 0.997$$

可增大置信度。

物理实验中,t分布置信度一般取作0.95,这时 t分布相应的置信区间可写为:

$$x = \overline{x} \pm t_{0.95} \sigma_{\overline{x}} = \overline{x} \pm \frac{t_{0.95}}{\sqrt{n}} \sigma_{x}$$
 $\overline{x} = (\sum_{i=1}^{n} x_{i})/n$

n	3	4	5	6	7
$\frac{t_{0.95}}{\sqrt{n}}$	2.48	1.59	1.24	1.05	0.926

一般我们取测量次数为六次

单次标准偏差S

有限次测量时,单次测量值的标准差S

★贝塞耳公式:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

$$\overline{x} = \left(\sum_{i=1}^{n} x_i\right) / n$$

S是从有限次测量中计算出来的对总体标准偏差σ的最佳估计值,称为实验标准差。其相应的置信概率接近于68.3%。

随机误差处理

步骤1:多次测量的算术平均值作为被测量的最佳估计值(假定 无系统误差)

$$\overline{x} = (\sum_{i=1}^{n} x_i) / n$$

步骤2:用标准偏差s 表示测得值的分散性

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

s大,测得值分散,随机误差分布范围宽,测量的精密度低;

s小,测得值密集,随机误差分布范围窄,测量的精密度高;

精密度/正确度/准确度

二、测量、误差和结果表示

- 1.测量与误差
- 2.系统误差&随机误差
- 3.结果表示&不确定度估计

不确定度

A类分量 Δ_A — 多次重复测量时用统计方法计算的分量 B类分量 Δ_B — 用非统计方法评定的分量

$$\Delta = \sqrt{\Delta_A^2 + \Delta_B^2}$$

统计方法求出 =Δins

A类不确定度 B类不确定度

当n取6-10次时

$$\Delta_A = \underline{S}$$

Δins: 实验仪器误差限

测量结果表示

1.测量结果表示为:

$$X = \overline{x} \pm \Delta$$
(单位)

表示被测量的真值有较大概率位于 $(\bar{x} - \Delta, \bar{x} + \Delta)$ 之间

不确定度权威文件: Guide to the expression of Uncertainty in measurement(ISO-BIPM-1993) 国内法规: JJF1059-1999测量不确定度评定与表示

直接测量结果表示

$$X = \overline{X} \pm \Delta(\mathbb{P} \oplus \mathbb{C})$$

1.不考虑已定系统误差一般取等精度多次测量的平均值

$$\overline{x} = \left(\sum_{i=1}^{n} x_i\right) / n$$

2.考虑已定系统误差则需要修正:

$$\overline{X}$$
 = 平均值 — 已定系统误差

3.
$$\Delta = \sqrt{\Delta_A^2 + \Delta_B^2}$$

直接测量结果表示

例:用螺旋测微计测量小钢球的直径,共测6次,得6.995mm, 6.998mm, 6.997mm,6.994mm,6.993mm,6.994mm,测量前 螺旋测微计零点读数值(即已定系统误差)为-0.004mm,螺旋测微 计的示值误差限Δins=0.004mm。

解:步骤(1)求测量值平均值 $\bar{d} = \frac{1}{6}\sum_{i=1}^{6}d_i = 6.995mm$

(2) 对已定系统误差进行修正: $d = \overline{d} - (-0.004) = 6.999mm$

(3)用贝塞尔公式求标准偏差:

$$S = \sqrt{\frac{\sum_{i=1}^{6} (d_i - \overline{d})^2}{6 - 1}} = 0.0019mm$$

(4)由于测量次数为6次,所以ΔA=S=0.0019mm。 ΔB=Δins=0.004mm

总不确定度为:
$$\Delta = \sqrt{\Delta_A^2 + \Delta_B^2} \neq 0.0045mm$$

(5)测量结果表示为:

$$D = (6.999 \pm 0.005) mm$$

$$E = \frac{0.0045}{6.999} \times 100\% = 0.006\%$$

间接测量结果表示

间接被测量的函数关系:

$$\varphi = f(x, y, z, q \cdots)$$

间接被测量的最佳估计值:

$$\overline{\varphi} = f(\overline{x}, \overline{y}, \overline{z}, \overline{q} \cdots)$$

间接测量的不确定度:

$$\Delta_{\varphi} = \sqrt{\left(\frac{\partial \varphi}{\partial x}\right)^2 \Delta_x^2 + \left(\frac{\partial \varphi}{\partial y}\right)^2 \Delta_y^2 + \left(\frac{\partial \varphi}{\partial z}\right)^2 \Delta_z^2 + \cdots}$$

$$\frac{\Delta_{\varphi}}{\varphi} = \sqrt{\left(\frac{\partial \ln \varphi}{\partial x}\right)^2 \Delta_x^2 + \left(\frac{\partial \ln \varphi}{\partial y}\right)^2 \Delta_y^2 + \left(\frac{\partial \ln \varphi}{\partial z}\right)^2 \Delta_z^2 + \cdots}$$

例:用流体静力法测固体密度的公式为 $\rho = \frac{m}{m-m} \rho_0$ 测得

$$m = (27.06 \pm 0.02)g$$
 $m_1 = (17.03 \pm 0.02)g$ $\rho_0 = (0.9997 \pm 0.0003)g/cm^3$

求相对不确定度
$$U_r = \frac{\Delta_\rho}{\rho}$$
 及最后结果表达式 $\rho \pm \Delta_\rho$

解: (1) 求该间接测量的不确定度 由
$$\rho = \frac{m}{m-m_1} \rho_0$$

可得:
$$\Delta_{\rho} = \sqrt{\left(\frac{\partial \rho}{\partial m}\right)^{2} \Delta_{m}^{2} + \left(\frac{\partial \rho}{\partial m_{1}}\right)^{2} \Delta_{m_{1}}^{2} + \left(\frac{\partial \rho}{\partial \rho_{0}}\right)^{2} \Delta_{\rho_{0}}^{2} + \cdots}$$

$$\frac{\partial \rho}{\partial m} \Delta_{m} = \frac{-m}{(m - m_{1})^{2}} \rho_{0} \Delta_{m} = -3.4 \times 10^{-3} \, \text{g/cm}^{3}$$

$$\frac{\partial \rho}{\partial m_{1}} \Delta_{m_{1}} = \frac{m}{(m - m_{1})^{2}} \rho_{0} \Delta_{m_{1}} = 5.4 \times 10^{-3} \, \text{g/cm}^{3}$$

$$\frac{\partial \rho}{\partial \rho_{0}} \Delta_{\rho_{0}} = \frac{m}{m - m_{1}} \Delta_{\rho_{0}} = 8.1 \times 10^{-4} \, \text{g/cm}^{3}$$

FIU:
$$\Delta_{\rho} = 6.4 \times 10^{-3} \, g \, / \, cm^3 \approx 7 \times 10^{-3} \, g \, / \, cm^3$$

(2) 求最佳估计值

$$\overline{\rho} = \frac{27.06}{27.06 - 17.03} \times 0.9997 = 2.697 g / cm^2$$

解续:

(3) 测量结果表示为:

$$\rho = \overline{\rho} \pm \Delta_{\rho} = (2.697 \pm 0.007)g / cm^2$$

(4) 相对不确定度:

$$U_r = \frac{\Delta_{\rho}}{\overline{\rho}} = \frac{6.4 \times 10^{-3}}{2.697} = 0.24\%$$

目录

- 一、课程意义、目标及环节
- 二、测量、误差和结果表示
- 三、有效数字
- 四、实验数据处理方法

三、有效数字

- 1.有效数字的确定
- 2.有效数字的运算
- 3.有效数字的取舍法则

有效数字的确定

L = 15.3 mm

组成:可靠数字+可疑数字-->估读得到----存在误差

D = 5.737

科学计数法:

632.8nm = 0.6328um = 6.328×10^{-7} m

有效数字的确定

数显表/标度盘的仪表直接读取示数

基本概念Page13

199.9

1032. 0Ω

有效数字的运算

加减:

乘除:

4.178

+21.3

25.478 = 25.5

与诸数中小数点后位数最少的一个相同

4.178

× 10.1

4178

4178

42**1978**=42.**2**

■准确数不适用有效数字的运算规则

与诸因子中有效数字最少的一 个相同

有效数字的取舍法则(难点易错点)

- 4舍6入5凑偶——测量值
- 只进不舍 ——不确定度

凑偶:

$$\Delta = \sqrt{\Delta_A^2 + \Delta_B^2} = 0.0045 mm$$

$$D = (6.999 \pm 0.005) mm$$

$$\Delta_{\rho} = 6.4 \times 10^{-3} \, g \, / \, cm^3 \approx 7 \times 10^{-3} \, g \, / \, cm^3$$

- 在测量结果表示里的有效数字,不确定度->最佳估计值
- 不确定度一般取1-2位,当不确定度第一位非"0"数字较小时通常取2位

目录

- 一、课程意义、目标及环节
- 二、测量、误差和结果表示
- 三、有效数字
- 四、实验数据处理方法

常用数据处理方法

- 1.列表法
- 2.作图法
- 3.逐差法

每种方法的要点和注意事项见书p15-17

作图法处理实验数据

- 1.选择合适的坐标值
- 取坐标 2.标明坐标轴
- 3.标明实验数据点
- 描点
- 4.用圆滑线连接数据点
- 5.标出图线特征

- 6.标注图名
- 7.分析数据

■ 错误作图实例

修改后

计算机作图举例

使用讲义可在网 络下载

逐差法

表1 钢丝伸长数据记录

m/kg	O	1	2	3	4	5	6	7	8	9
x/mm	xo	X1	x2	х3	X4	x5	x6	x7	x8	x9

求每增加1kg,钢丝的伸长量 Δx

■ 数据特点:自变量与因变量成线性关系,自变量呈等间距变化, 自变量误差远小于因变量误差

$$\Delta X = \frac{\left(x_1 - x_0\right) + \left(x_2 - x_1\right) + \left(x_3 - x_2\right) + \left(x_4 - x_3\right) + \left(x_5 - x_4\right) + \left(x_6 - x_5\right) + \left(x_7 - x_6\right) + \left(x_8 - x_7\right) + \left(x_9 - x_8\right)}{9} = \frac{x_9 - x_1}{9}$$

■ 采用算数平均值,只用到两个数据,计算偏差较大

$$\Delta x = \frac{(x_5 - x_0) + (x_6 - x_1) + (x_7 - x_2) + (x_8 - x_3) + (x_9 - x_4)}{5 \times 5}$$

数据处理软件举例

Excel

可计算直接测量误差,平均值等。可计算逐差法(需要自己设计公式)。

Origin

利用其符号功能可用来计算间接误差,程序包可在网上下载,地址

http://emuch.net/html/201203/4159247.html 可做曲线拟合。

■ Matlab

→ 真正看懂题目1.题目要求做什么2.与哪里理论相关

1.计算公式2.计算方法

过程

3.图表

4.实验结果 5.误差处理 结果

注意: 图表绘制规范

结果表示正确

■ 结论:

- 1.现象结论
- 2.数据处理结果/结论
- 讨论:
 - 1.针对实验结果分析

现象分析 数据分析 误差评估 对特殊数据的分析

- 2.改进措施
- 3.创新想法

■ 思考题:

>3个,做3个

<=3个,全做

不做,扣1-0.5分

■ 原始数据不可更改

严谨学习 科学态度

Physics Experiment

教学规范

- 1.微信群——通知发布,教学资源,误差习题
- 2.选课 ——10周前仅能在校内网选课 10周后预计可在校外网络使用
- 3.账号密码每学期开始会更新重置,一定要及时修改密码
- 4.报告册

收获在于努力的程度!