In [2]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df=pd.read_csv(r"C:\Users\prajapath Arjun\Downloads\fiat500_VehicleSelection_Dataset.csv
print(df)
```

	ID	model	engine_	power	age_in_days	km	previous_owners	
0	1	lounge		51	882	25000	1	_
1	2	pop		51	1186	32500	1	
2	3	sport		74	4658	142228	1	
3	4	lounge		51	2739	160000	1	
4	5	рор		73	3074	106880	1	
		• • •					• • •	
1533	1534	sport		51	3712	115280	1	
1534	1535	lounge		74	3835	112000	1	
1535	1536	pop		51	2223	60457	1	
1536	1537	lounge		51	2557	80750	1	
1537	1538	pop		51	1766	54276	1	
		lat	lon	price				
0	44.90	7242 8	3.611560	8900				
1	45.66	6359 12	.241890	8800				
2	45.50	3300 11	.417840	4200				
3	40.63	3171 17	.634609	6000				
4	41.90	3221 12	.495650	5700				
1533	45.06	9679 7	7.704920	5200				
1534	45.84	5692 8	3.666870	4600				
1535	45.48	1541 9	.413480	7500				
1536	45.00	0702 7	.682270	5990				
1537	40.32	3410 17	.568270	7900				

[1538 rows x 9 columns]

In [3]:

df.head()

Out[3]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	Ion	ţ
0	1	lounge	51	882	25000	1	44.907242	8.611560	_;
1	2	pop	51	1186	32500	1	45.666359	12.241890	1
2	3	sport	74	4658	142228	1	45.503300	11.417840	,
3	4	lounge	51	2739	160000	1	40.633171	17.634609	(
4	5	рор	73	3074	106880	1	41.903221	12.495650	;
		_			_				

In [4]:

```
df.tail()
```

Out[4]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	k
1533	1534	sport	51	3712	115280	1	45.069679	7.704
1534	1535	lounge	74	3835	112000	1	45.845692	8.666
1535	1536	рор	51	2223	60457	1	45.481541	9.413
1536	1537	lounge	51	2557	80750	1	45.000702	7.682
1537	1538	рор	51	1766	54276	1	40.323410	17.568;
4								

In [5]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 9 columns):
```

#	Column	Non-Null Count	Dtype		
0	ID	1538 non-null	int64		
1	model	1538 non-null	object		
2	engine_power	1538 non-null	int64		
3	age_in_days	1538 non-null	int64		
4	km	1538 non-null	int64		
5	previous_owners	1538 non-null	int64		
6	lat	1538 non-null	float64		
7	lon	1538 non-null	float64		
8	price	1538 non-null	int64		
dtypes: float64(2), int64(6), object(1)					

dtypes: float64(2), int64(6), object(1)

memory usage: 108.3+ KB

In [6]:

df.shape

Out[6]:

(1538, 9)

In [7]:

```
df.describe()
```

Out[7]:

	ID	engine_power	age_in_days	km	previous_owners	li
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.00000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.54136
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.13351
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.85583
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.80299
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.39409
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.46796
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.79561

In [8]:

df.columns

Out[8]:

In [9]:

#EDA

sns.pairplot(df)

Out[9]:

<seaborn.axisgrid.PairGrid at 0x1ba68f1a090>

In [10]:

```
sns.displot(['Price'])
```

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x1ba02650810>

In [11]:

sns.displot(df['price'])

Out[11]:

<seaborn.axisgrid.FacetGrid at 0x1ba028c3a90>

In [12]:

sns.displot(df['engine_power'])

Out[12]:

<seaborn.axisgrid.FacetGrid at 0x1ba028fe350>

In [13]:

```
fiatdf=df[['ID', 'engine_power', 'age_in_days', 'km', 'previous_owners',
  'lat', 'lon', 'price']]
sns.heatmap(fiatdf.corr())
```

Out[13]:

<Axes: >

In [14]:

```
fiatdf=df[['ID', 'engine_power', 'age_in_days', 'km', 'previous_owners',
    'lat', 'lon']]
sns.heatmap(fiatdf.corr())#without price
```

Out[14]:

<Axes: >

In [15]:

```
X=fiatdf[['ID', 'engine_power', 'age_in_days', 'km', 'previous_owners',
    'lat', 'lon']]
y=df['price']
```

In [16]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=101)
from sklearn.linear_model import LinearRegression
regr=LinearRegression()
regr.fit(X_train,y_train)
print(regr.intercept_)
```

8971.195685070259

In [17]:

```
coeff_df=pd.DataFrame(regr.coef_,X.columns,columns=['coefficient'])
coeff_df
```

Out[17]:

	coefficient
ID	-0.046704
engine_power	11.646408
age_in_days	-0.898018
km	-0.017232
previous_owners	26.400886
lat	32.189709
lon	0.161073

In [18]:

```
predictions=regr.predict(X_test)
plt.scatter(y_test,predictions)
```

Out[18]:

<matplotlib.collections.PathCollection at 0x1ba04c6fd50>

In [19]:

sns.displot((y_test,predictions),bins=50)#without semicolon

Out[19]:

<seaborn.axisgrid.FacetGrid at 0x1ba04bf9350>

In [20]:

```
sns.displot((y_test,predictions),bins=50);#with semicolon
```


In [21]:

```
from sklearn import metrics
print('MAE:',metrics.mean_absolute_error(y_test,predictions))
print('MSE:',metrics.mean_squared_error(y_test,predictions))
print('MAE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 593.0876179521579 MSE: 551442.6799675114 MAE: 742.5918663488791

In [22]:

```
#accuracy
regr=LinearRegression()
regr.fit(X_train,y_train)
regr.fit(X_train,y_train)
print(regr.score(X_test,y_test))
```

0.8597136704313113

In [23]:

from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler

In [24]:

plt.figure(figsize=(10,10))
sns.heatmap(fiatdf.corr(),annot=True)

Out[24]:

<Axes: >

In [25]:

sns.lmplot(x="age_in_days",y="km",data=fiatdf,order=2)

Out[25]:

<seaborn.axisgrid.FacetGrid at 0x1ba07418350>

In [26]:

```
sns.lmplot(x="price",y="km",data=df,order=2)
```

Out[26]:

<seaborn.axisgrid.FacetGrid at 0x1ba0744eed0>

In [27]:

```
df.fillna(method='ffill',inplace=True)
x=np.array(df['age_in_days']).reshape(-1,1)
y=np.array(df['km']).reshape(-1,1)
df.dropna(inplace=True)
```

In [28]:

```
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
regr.fit(X_train,y_train)
regr.fit(X_train,y_train)
```

Out[28]:

```
LinearRegression
LinearRegression()
```

In [29]:

```
y_pred=regr.predict(X_test)
plt.scatter(X_test,y_test,color='y')
plt.plot(X_test,y_pred,color='b')
plt.show()
```


In [31]:

```
#elasticnet
from sklearn.linear_model import ElasticNet
regr=ElasticNet()
regr.fit(x,y)
print(regr.coef_)
print(regr.intercept_)
y_pred_elastic=regr.predict(X_train)
mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
print("Mean Squared Error on test set", mean_squared_error)
```

```
[25.89689696]
[10640.73996329]
Mean Squared Error on test set 2647092420.670548
```

In []: