Exercise sheet 3

Set theory and Logic, MTH303

- 1. Show that $\{\forall x(\phi \to \psi), \forall x\phi\} \vDash \forall x\psi$
- 2. Prove that $\phi \not\models \forall x \phi$ if x is free in ϕ but $\phi \not\models \forall x \phi$ if x is not free in ϕ
- 3. Show that $\alpha \vDash \forall x \alpha$ as long as x is not free in α .
- 4. Define a new quantifier $\exists !$, so that $\exists ! \alpha$ which is satisfied by s in a structure \mathcal{U} iff there exists exactly one $k \in \mathcal{U}$ such tht $\vDash_{\mathcal{U}} \alpha[s(x|k)]$. Show that there $\exists ! x\alpha$ is always logically equivalent to a formula that involves the letters provided by a usual first order alphabet.
- 5. Consider a first order language with just a one binary predicate symbol and no function symbol. Up to isomorphism, how many structures does it have with just two elements?
- 6. Let P denote a predicate symbol. Use the axioms to show that $\vdash Px \rightarrow \exists Py$. What is this theorem telling you?
- 7. Show that if $\vdash \alpha \to \beta$ then $\vdash \forall x\alpha \to \forall x\beta$.