Không gian Euclid

Nguyễn Hoàng Thạch nhthach@math.ac.vn

- $lue{1}$ Khoảng cách và góc trong \mathbb{R}^n
 - Khoảng cách trong \mathbb{R}^n
 - ullet Tích vô hướng và góc trong \mathbb{R}^n
 - Bất đẳng thức tam giác và định lý Pythagoras

- Mhông gian Euclid
 - Không gian có tích vô hướng
 - Khoảng cách và góc trong không gian có tích vô hướng
 - Phép chiếu vuông góc

- **1** Khoảng cách và góc trong \mathbb{R}^n
 - Khoảng cách trong \mathbb{R}^n
 - Tích vô hướng và góc trong \mathbb{R}^n
 - Bất đắng thức tam giác và định lý Pythagoras

- Không gian Euclid
 - Không gian có tích vô hướng
 - Khoảng cách và góc trong không gian có tích vô hướng
 - Phép chiếu vuông góc

Độ dài của vector trong \mathbb{R}^n

Trong hình học giải tích, độ dài của các vector trong \mathbb{R}^2 và trong \mathbb{R}^3 được cho bởi định lý Pythagoras:

$$\|(x,y)\| = \sqrt{x^2 + y^2}; \quad \|(x,y,z)\| = x^2 + y^2 + z^2.$$

Định nghĩa

Độ dài hay chuẩn của một vector $\mathbf{v} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ được định nghĩa bởi:

$$||v|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Thí dụ: Độ dài của vector $\mathbf{v} = (0, -2, 1, 4, -2)$ trong \mathbb{R}^5 là

$$\|\mathbf{v}\| = \sqrt{0^2 + (-2)^2 + 1^2 + 4^2 + (-2)^2} = 5$$
.

Nhân xét:

- Mọi vector có độ dài không âm: $\forall \mathbf{v} \in \mathbb{R}^n, \|\mathbf{v}\| \geq 0$.
- Vector $\mathbf{0}$ là vector duy nhất có độ dài 0: $\|\mathbf{v}\| = 0 \iff \mathbf{v} = \mathbf{0}$.

H.-T. Nguyen Không gian Euclid 4/29

Phương của vector

Định nghĩa

Hai vector khác không ${\bf u}$ và ${\bf v}$ trong ${\mathbb R}^n$ là cùng phương nếu tồn tại $c\in {\mathbb R}$ sao cho ${\bf u}=c{\bf v}$. Hơn nữa, nếu c>0 thì ${\bf u}$ và ${\bf v}$ là cùng hướng, nếu c<0 thì ${\bf u}$ và ${\bf v}$ là ngược hướng.

Định lý

Với mọi vector $\mathbf{v} \in \mathbb{R}^n$ và với mọi số $c \in \mathbb{R}$, $\|c\mathbf{v}\| = |c|\|\mathbf{v}\|$.

Định lý

Nếu $\mathbf{v} \in \mathbb{R}^n$ và $\mathbf{v} \neq \mathbf{0}$ thì $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$ là một vector đơn vị và cùng hướng với \mathbf{v} .

Thí dụ: Trong \mathbb{R}^3 , xét $\mathbf{v}=(3,-1,2)$. Ta có $\|\mathbf{v}\|=\sqrt{14}$. Vector đơn vị cùng hướng với \mathbf{v} là $\left(\frac{3}{\sqrt{14}},\frac{-1}{\sqrt{14}},\frac{2}{\sqrt{14}}\right)$.

Khoảng cách giữa hai vector

Định nghĩa

Khoảng cách giữa hai vector \mathbf{u} và \mathbf{v} trong \mathbb{R}^n được định nghĩa bởi:

$$d(\mathbf{u},\mathbf{v})=\|\mathbf{u}-\mathbf{v}\|.$$

Thí dụ: Khoảng cách giữa $\mathbf{u} = (0,2,2)$ và $\mathbf{v} = (2,0,1)$ (trong \mathbb{R}^3) là $d(\mathbf{u},\mathbf{v}) = \|(0,2,2) - (2,0,1)\| = \|(-2,2,1)\| = 3$.

Định lý

Với mọi vector $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$:

- $d(\mathbf{u},\mathbf{v}) = 0 \iff \mathbf{u} = \mathbf{v}.$

- $lue{1}$ Khoảng cách và góc trong \mathbb{R}^n
 - Khoảng cách trong \mathbb{R}^n
 - ullet Tích vô hướng và góc trong \mathbb{R}^n
 - Bất đẳng thức tam giác và định lý Pythagoras

- Mhông gian Euclid
 - Không gian có tích vô hướng
 - Khoảng cách và góc trong không gian có tích vô hướng
 - Phép chiếu vuông góc

7 / 29

Tích vô hướng trong \mathbb{R}^n

Định nghĩa

Tích vô hướng hay tích chấm của hai vector $\mathbf{u} = (x_1, x_2, \dots, x_n)$ và $\mathbf{v} = (y_1, y_2, \dots, y_n)$ được định nghĩa bởi

$$\mathbf{u}\cdot\mathbf{v}=x_1y_1+x_2y_2+\cdots+x_ny_n.$$

Thí dụ: Trong \mathbb{R}^4 , xét $\mathbf{u} = (1, 2, 0, -3)$ và $\mathbf{v} = (3, -2, 4, 2)$. Ta có $\mathbf{u} \cdot \mathbf{v} = -7$.

Định lý

Với mọi $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ và với mọi $c \in \mathbb{R}$:

- $\mathbf{0} \ \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}.$

Tích vô hướng trong \mathbb{R}^n

Thí dụ: Trong \mathbb{R}^2 , xét $\mathbf{u} = (2, -2), \mathbf{v} = (5, 8), \mathbf{w} = (-4, 3).$

- **1** $\mathbf{u} \cdot \mathbf{v} = -6$, $\mathbf{u} \cdot \mathbf{w} = -14$.
- **2** $(\mathbf{u} \cdot \mathbf{v})\mathbf{w} = -6\mathbf{w} = (-24, 18).$
- **3** $\mathbf{u} \cdot (2\mathbf{v}) = 2(\mathbf{u} \cdot \mathbf{v}) = -12.$
- $\|w\| = \sqrt{\mathbf{w} \cdot \mathbf{w}} = 5.$

Góc trong \mathbb{R}^n

Định nghĩa

Góc giữa hai vector khác không $\mathbf u$ và $\mathbf v$ trong $\mathbb R^n$ là góc θ ($0 \le \theta \le \pi$) thỏa mãn

$$\cos heta = rac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \ \|\mathbf{v}\|} \,.$$

Nhận xét:

- Trong \mathbb{R}^2 , công thức trên chính là định lý cosine trong tam giác.
- Để định nghĩa là có nghĩa, ta cần có

$$-1 \leq \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \ \|\mathbf{v}\|} \leq 1.$$

Bất đẳng thức Cauchy – Schwarz

Định lý

Với mọi $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, $|\mathbf{u} \cdot \mathbf{v}| \leq ||\mathbf{u}|| ||\mathbf{v}||$.

Chứng minh:

- Nếu $\mathbf{u} = \mathbf{0}$: hiển nhiên.
- Nếu $\mathbf{u} \neq \mathbf{0}$, xét $f(t) = \|t\mathbf{u} + \mathbf{v}\|^2$ với $t \in \mathbb{R}$.

Ta có $f(t) \geq 0$ với mọi $t \in \mathbb{R}$.

Mặt khác, $f(t) = (t\mathbf{u} + \mathbf{v}) \cdot (t\mathbf{u} + \mathbf{v}) = \|\mathbf{u}\|^2 t^2 + 2(\mathbf{u} \cdot \mathbf{v})t + \|\mathbf{v}\|^2$ là một đa thức bậc 2 theo t, nên $f(t) \geq 0$ nếu và chỉ nếu $\Delta' \leq 0$, tức là $(\mathbf{u} \cdot \mathbf{v})^2 - \|\mathbf{u}\| \|\mathbf{v}\| \leq 0$.

Đẳng thức xảy ra khi:

- ullet ullet
- hoặc tồn tại t sao cho $t\mathbf{u} + \mathbf{v} = \mathbf{0}$, tức là \mathbf{u} và \mathbf{v} cùng phương.

Góc nhọn, góc tù và dấu của tích vô hướng

Từ định nghĩa, $\cos\theta$ và $\mathbf{u}\cdot\mathbf{v}$ luôn cùng dấu với nhau.

Hình: Larson et al., p. 286

Vector vuông góc trong \mathbb{R}^n

Định nghĩa

Hai vector \mathbf{u} và \mathbf{v} trong \mathbb{R}^n được gọi là vuông góc hay trực giao với nhau nếu $\mathbf{u} \cdot \mathbf{v} = 0$.

Chú ý:

- Định nghĩa trên sử dụng tích vô hướng chứ không sử dụng góc.
- Vector 0 vuông góc với mọi vector, mặc dù góc giữa vector 0 và một vector khác không xác định.

Thí dụ:

- ullet Các vector trong cơ sở chính tắc của \mathbb{R}^n đôi một vuông góc với nhau.
- Hai vector $\mathbf{u}=(3,2,-1,4)$ và $\mathbf{v}=(1,-1,1,0)$ trong \mathbb{R}^4 vuông góc với nhau.
- Xét $\mathbf{u}=(2,1)$. Một vector $\mathbf{v}=(x_1,x_2)$ vuông góc với \mathbf{u} nếu và chỉ nếu $2x_1+x_2=0$. Từ đó tập hợp các vector vuông góc với \mathbf{u} là $\{(t,-2t)\mid t\in\mathbb{R}\}.$

- $lue{1}$ Khoảng cách và góc trong \mathbb{R}^n
 - Khoảng cách trong \mathbb{R}^n
 - Tích vô hướng và góc trong \mathbb{R}^n
 - Bất đẳng thức tam giác và định lý Pythagoras
- Mhông gian Euclid
 - Không gian có tích vô hướng
 - Khoảng cách và góc trong không gian có tích vô hướng
 - Phép chiếu vuông góc

Bất đẳng thức tam giác

Định lý

 $Vlpha i \ m o i \ \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

Hình: Larson et al., p. 288

Bất đẳng thức tam giác

Định lý

Với mọi $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

Chứng minh: Bình phương vế trái và sử dụng bất đắng thức Cauchy – Schwarz:

$$\begin{aligned} \|\mathbf{u} + \mathbf{v}\|^2 &= \|\mathbf{u}\|^2 + 2(\mathbf{u} \cdot \mathbf{v}) + \|\mathbf{v}\|^2 \\ &\leq \|\mathbf{u}\|^2 + 2\|\mathbf{u} \cdot \mathbf{v}\| + \|\mathbf{v}\|^2 \\ &\leq \|\mathbf{u}\|^2 + 2\|\mathbf{u}\| \|\mathbf{v}\| + \|\mathbf{v}\|^2 \\ &= (\|\mathbf{u}\| + \|\mathbf{v}\|)^2 \end{aligned}$$

Khai căn hai vế và chú ý rằng cả $\|\mathbf{u}+\mathbf{v}\|$ và $(\|\mathbf{u}\|+\|\mathbf{v}\|)$ đều không âm, ta được $\|\mathbf{u}+\mathbf{v}\|\leq \|\mathbf{u}\|+\|\mathbf{v}\|$.

Điều kiện đẳng thức: $\mathbf{u}\cdot\mathbf{v}=|\mathbf{u}\cdot\mathbf{v}|$ và $|\mathbf{u}\cdot\mathbf{v}|=\|\mathbf{u}\|\;\|\mathbf{v}\|$, tức là \mathbf{u} và \mathbf{v} cùng hướng hoặc (ít nhất) một trong hai vector bằng $\mathbf{0}$.

Định lý Pythagoras

Định lý

Hai vector \mathbf{u} và \mathbf{v} trong \mathbb{R}^n là vuông góc với nhau nếu và chỉ nếu

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$
.

Tích vô hướng và tích ma trận

Vector trong \mathbb{R}^n thường được biểu diễn dưới dạng ma trận cột:

$$\mathbf{u} = (x_1, x_2, \dots, x_n) \longrightarrow \mathbf{u} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Do đó tích vô hướng của hai vector có thể được biểu diễn dưới dạng tích ma trận:

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$$
.

- $lue{1}$ Khoảng cách và góc trong \mathbb{R}^n
 - Khoảng cách trong \mathbb{R}^n
 - ullet Tích vô hướng và góc trong \mathbb{R}^n
 - Bất đẳng thức tam giác và định lý Pythagoras

- 2 Không gian Euclid
 - Không gian có tích vô hướng
 - Khoảng cách và góc trong không gian có tích vô hướng
 - Phép chiếu vuông góc

Tích vô hướng

Định nghĩa

Cho V là một không gian vector. Một tích vô hướng trên V là một hàm hai biến $\langle \; , \; \rangle : V \times V \to \mathbb{R}$ thỏa mãn:

- $lack varphi(\mathbf{u},\mathbf{u})\geq 0$ với mọi $\mathbf{u}\in V$ và $\langle \mathbf{u},\mathbf{u}
 angle =0$ nếu và chỉ nếu $\mathbf{u}=\mathbf{0}$.

Thí dụ:

- \bullet \mathbb{R}^n với tích vô hướng thông thường.
- \mathbb{R}^2 : $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + 2u_2 v_2$ là một tích vô hướng.
- \mathbb{R}^2 : $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 u_2 v_2$ không phải là một tích vô hướng.
- P_n : $\langle a_0 + a_1x + \cdots + a_nx^n, b_0 + b_1x + \cdots + b_nx^n \rangle = a_0b_0 + a_1b_1 + \cdots + a_nb_n$ là một tích vô hướng.

Tính chất của tích vô hướng

Cho không gian vector V với tích vô hướng $\langle \; , \; \rangle$.

Định lý

Với mọi $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ và với mọi $c \in \mathbb{R}$:

- $lue{1}$ Khoảng cách và góc trong \mathbb{R}^n
 - Khoảng cách trong \mathbb{R}^n
 - ullet Tích vô hướng và góc trong \mathbb{R}^n
 - Bất đẳng thức tam giác và định lý Pythagoras
- 2 Không gian Euclid
 - Không gian có tích vô hướng
 - Khoảng cách và góc trong không gian có tích vô hướng
 - Phép chiếu vuông góc

Độ dài và khoảng cách

Định nghĩa

- **1** Độ dài hay chuẩn của vector \mathbf{u} là $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$.
- **Solution** Whole And States and States and States are also sense of the States and States are also sense of the States and States are states as a sense of the States are states are states as a sense of the States are states as a sense of the States are states are states as a sense of the States are states as a sense of the States are states are states as a sense of the States are states are states are states as a sense of the States are states are states as a sense of the States are states are states are states as a sense of the States are states are states are states are states as a sense of the States are states ar

Định lý (Bất đẳng thức Cauchy - Schwarz)

 $V \acute{\sigma} i \ m o i \ \mathbf{u}, \mathbf{v} \in V$, $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \ \|\mathbf{v}\|$.

Góc

Định nghĩa

① Góc giữa hai vector khác không \mathbf{u}, \mathbf{v} là góc θ ($0 \le \theta \le \pi$) sao cho

$$\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}.$$

② Hai vector \mathbf{u}, \mathbf{v} được gọi là vuông góc với nhau nếu $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Chú ý: Vector $\mathbf{0}$ vuông góc với mọi vector, mặc dù góc giữa nó và một vector khác không được định nghĩa.

Bất đẳng thức tam giác và định lý Pythagoras

Định lý (Bất đẳng thức tam giác)

 $V \acute{\sigma} i \ m o i \ vector \ \mathbf{u}, \mathbf{v}, \ \|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|.$

Định lý (Pythagoras)

Hai vector **u**, **v** vuông góc với nhau nếu và chỉ nếu

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$
.

- $lue{1}$ Khoảng cách và góc trong \mathbb{R}^n
 - Khoảng cách trong \mathbb{R}^n
 - ullet Tích vô hướng và góc trong \mathbb{R}^n
 - Bất đẳng thức tam giác và định lý Pythagoras
- Mhông gian Euclid
 - Không gian có tích vô hướng
 - Khoảng cách và góc trong không gian có tích vô hướng
 - Phép chiếu vuông góc

Phân tích

Hình: Larson et al., p. 300

Đinh nghĩa

Hình chiếu vuông góc của một vector \mathbf{u} lên một vector $\mathbf{v} \neq \mathbf{0}$, ký hiệu là $\pi_{\mathbf{v}}(\mathbf{u})$, là một vector thỏa mãn:

- $\pi_{\mathbf{v}}(\mathbf{u})$ cùng phương với \mathbf{v} ;
- $\mathbf{u} \pi_{\mathbf{v}}(\mathbf{u})$ vuông góc với \mathbf{v} .

Phép chiếu vuông góc (lên một vector)

Định lý

Hình chiếu vuông góc của một vector \mathbf{u} lên vector $\mathbf{v} \neq \mathbf{0}$ được xác định duy nhất bởi:

$$\pi_{\mathbf{v}}(\mathbf{u}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{v}\|^2} \ \mathbf{v} \,.$$

Chứng minh: Đặt $\pi_{\mathbf{v}}(\mathbf{u})=\alpha\mathbf{v}$. Thay vào đẳng thức $\langle\mathbf{u}-\pi_{\mathbf{v}}(\mathbf{u}),\mathbf{v}\rangle=0$ ta được

$$\alpha = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{v}\|^2} \,.$$

Đường xiên và đường vuông góc

Định lý (Bất đẳng thức đường xiên và đường vuông góc)

Xét hai vector \mathbf{u}, \mathbf{v} với $\mathbf{v} \neq \mathbf{0}$. Với mọi $c \in \mathbb{R}$:

$$d(\mathbf{u}, \pi_{\mathbf{v}}(\mathbf{u})) \leq d(\mathbf{u}, c\mathbf{v})$$
.

Đẳng thức xảy ra khi $c = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{v}\|^2}$.