Knowledge Distillation for Building Lightweight Deep Learning Models in Visual Classification Tasks

ECE 1512: DIGITAL IMAGE PROCESSING AND APPLICATIONS

SEMESTER: WINTER 2022 PROJECT "B" TUTORIAL

PRESENTER: AHMAD SAJEDI

Outline

- A. Tutorial on Knowledge Distillation (KD)
 - Motivation
 - Approaches for Knowledge Distillation Framework
- B. Project "B" Description
 - Project Goal
 - Datasets and Models
 - Evaluation Metrics
- C. Your Questions!

Outline

- A. Tutorial on Knowledge Distillation (KD)
 - Motivation
 - Approaches for knowledge distillation framework
- B. Project "B" Description
 - Project Goal
 - Datasets and Models
 - Evaluation Metrics
- C. Your Questions!

Motivation

Motivation

Model Compression:

- Goal: make a lightweight model that is fast, memory-efficient, and energy-efficient
- Especially useful for edge device such as mobile device.

Several flavor:

- Whether training a lightweight model or compressing a trained model
- Different techniques:
 - 1. Sparse Regularization
 - 2. Quantization
 - 3. Weight Sharing
 - 4. Pruning
 - 5. Knowledge Distillation

What is Knowledge Distillation?

A more abstract view of the knowledge, that frees it from any instantiation, is that it is a learned mapping from input vectors to output vectors.

What is Knowledge Distillation?

Knowledge distillation is a process of distilling or transferring the knowledge from a (set of) large, cumbersome model(s) to a lighter, easier-to-deploy single model, without significant loss in performance.

Knowledge Distillation vs. Transfer Learning

Knowledge Distillation (Transfer)

- For model compression
- To improve performance of student over teacher

Transfer Learning

- When data is not sufficient.
- When label for a problem is not presented.
- E.g., pretrained-model on ImageNet

Model Compression Using Knowledge Distillation

- Ensemble is an easy way to improve performance of a Neural Network.
- However, it requires large computing resources.

Model Compression Using Knowledge Distillation

 By educating the student model to mimic output of the teacher model, the student model can achieve comparable performance.

Model Compression Using Knowledge Distillation

Recent Approaches: Transfer Class Probability

Distilling the knowledge in a Neural Network

Hinton et al. In NIPS, 2014

Recent Approaches: Transfer Hidden Activation

FitNets: Hints for Thin Deep Nets

Romero et al. In ICLR, 2015

Distillation Objective: $\sum_{x_i \in \mathcal{X}} \|\beta f_T(x_i) - f_S(x_i)\|_2^2$

Recent Approaches: Transfer Attention

 Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer

Zagoruyko & Komodakis. In ICLR, 2017

Recent Approaches: Transfer Subclass Knowledge

Subclass Distillation

Muller et al. In arXiv, 2020.

Recent Approaches: Student Over Teacher

- Born-Again Neural Networks (Furlanello et al. In ICML, 2018.)
- Label Refinery: Improving ImageNet Classification through Label Progression (Bagherinezhad et al. In arXiv, 2018.)

Student architecture is identical to teacher

Surprisingly, the student is significantly better than the teacher.

Outline

- A. Tutorial on Knowledge Distillation (KD)
 - Motivation
 - Approaches for knowledge distillation framework
- B. Project "B" Description
 - Project Goal
 - Datasets and Models
 - Evaluation Metrics
- C. Your Questions!

Project Goal

- Inspect the ability of knowledge distillation methods in model compression for CNNs in two different scenarios.
- Specifications:
 - o Datasets:
 - MNIST: Generic digit pattern classification
 - MHIST: Histopathological tissue classification
 - o Models:
 - MNIST dataset: Teacher = CNN with 2 conv. layers, Student = Fully connected.
 - MHIST dataset: Teacher = ResNet50V2, Student = MobileNetV2
 - Evaluation metrics:
 - Test Accuracy%
 - o F1-Score, AUC%
 - FLOPs

Dataset: MNIST

- Multi-class digit classification dataset
- The MNIST dataset is divided into 10 classes, each of which represents a digit between 0-9.
- The digits have been size-normalized and centered in a fixed-size image.
- 60000 train data +10000 test data.

http://yann.lecun.com/exdb/mnist/

Dataset: Minimalistic HIStopathology (MHIST)

- Binary-class texture analysis in colorectal cancer histology.
- o classes:
 - o (a) Hyperplastic Polyp (benign),
 - (b) Sessile Serrated Adenoma (precancerous).
- 2175 train data + 977 test data.
- Not equally-balanced dataset:
 - 2162 images per class HP
 - 990 images per class SSA

Binary classification task

Hyperplastic Polyp (HP)
Benign

Sessile Serrated Adenoma (SSA)

Precancerous

Dataset summary

Dataset size N = 3,152

Image size 224 x 224 pixels

Disk space 354 MB

Ground-truth labels | Majority vote of seven pathologists

https://arxiv.org/abs/2101.12355

Models for MNIST dataset

Teacher Model:

Student Model:

Models for MHIST dataset

Teacher Model: Pre-trained ResNet50V2

- Student Model: Pre-trained MobileNetV2
 - MobileNetV2 is a convolutional neural network architecture that seeks to perform well on mobile devices.

Note: In this task, you should use transfer learning for training the models.

Evaluation Metrics

Model Performance:

- MNIST Dataset: Test Accuracy
- MHIST Dataset: F1-Score, AUC (Evaluation metrics should be suitable for imbalanced dataset)

Model Complexity:

- Floating point operations (FLOPs): is the number of floating point operations, it means the amount of calculation, it can be used to measure the algorithm/ Model complexity.
- A floating point operation is any mathematical operation (such as +, -, *, /) or assignment that involves floating-point numbers.

Outline

- A. Tutorial on visual explainable AI (XAI)
 - Motivation
 - Primer on explainability in Artificial Intelligence (AI)
 - Approaches for visual explanation generation
- B. Project "A" Description
 - Project Goal
 - Datasets and Models
 - Evaluation Metrics
- C. Your Questions!

THANK YOU Questions?