M2

ymonbru

April 2, 2024

Presheaves and sheaves

Let X be a locally compact Hausdorf space.

1.1 Sheaves

Definition 1.1. A presheave on X is a contravariant functor from the category of open sets of X to abélian groups.

Definition 1.2. If \mathcal{F} is a presheaf on X and $p \in X$ then the stalk of \mathcal{F} at p is the abelian group $\mathcal{F}_p := \varinjlim_{p \in U} \mathcal{F}(U)$.

Definition 1.3. If \mathcal{F} is a presheaf on X, it is said to be a sheaf if for any $U \subset X$ open and any covering family of U $(U_a)_{a \in A}$ one has the exact sequence:

$$0 \to \mathcal{F}(U) \to \prod_{a \in A} \mathcal{F}(U_a) \to \prod_{a,b \in A} F(U_a \cap U_b) \tag{1.1}$$

1.2 \mathcal{K} -sheaves

Definition 1.4. A K-presheave on X is a contravariant functor from the category of compact sets of X to abélian groups.

Definition 1.5. If \mathcal{F} is a \mathcal{K} -presheaf on X and $p \in X$ then the stalk of \mathcal{F} at p is the abelian group $\mathcal{F}_p := \varinjlim_{p \in K \ compact} \mathcal{F}(K) = \mathcal{F}(\{p\}).$

Definition 1.6. If \mathcal{F} is a \mathcal{K} -presheaf on X, it is said to be a \mathcal{K} -sheaf if the following conditions are satisfied:

$$\mathcal{F}(\emptyset) = 0 \tag{1.2}$$

• For K_1 and K_2 two comapets of X the following sequence is exact:

$$0 \to \mathcal{F}(K_1 \cup K_2) \to \mathcal{F}(K_1) \bigoplus \mathcal{F}(K_2) \to \mathcal{F}(K_1 \cap K_2) \tag{1.3}$$

• Pour tout compact K de X, le morphisme naturel suivant est un isomorphisme

$$\lim_{K \subset U \text{ open } \underset{relatively \text{ compact}}{\varprojlim} \mathcal{F}(\overline{U}) \to \mathcal{F}(K)$$
 (1.4)

Remark 1.7. (1.4) is well defined because if K is a compact subset of X, then for $x \in K$ let U_x be an open neighborhood relatively compact (wich exists by local compactness), the family $(u_x)_{x\in K}$ covers K then one can extract a finite cover of it: $U_1, ... U_n$ and then $\bigcup_{i=1}^n U_i$ is an open neighborhood, and a finite union of relatively compact, then it's relatively compact. $(\overline{\bigcup_{i=1}^n \overline{U_i}})$

1.3 Technical lemmas

Lemma 1.8. If $K_1, ... K_n$ are comapets of X then $\{U_1 \cap ... \cap U_n\}_{U_i \supset K_i \text{ open in } X}$ is a cofinal system of neighborhoods of $K_1 \cap ... K_n$.

Proof. Let U_i be a relatively comapct open neighborhood of K_i and $U = \bigcup_{i=1}^n U_i$. Then \overline{U} is compact

If
$$n=2$$
, let V be a neighborhood of $K_1\cap K_2$
If the result is true for $n-1$,

Lemma 1.9. If \mathcal{C} and \mathcal{D} are two categories, $F:\mathcal{C}\to\mathcal{D}$ and $G:\mathcal{D}\to\mathcal{C}$ two functors such that (F,G) is an adjoint pair. Then for (F,G) to be an equivalence of category, it's enough to have that thes canonical naturals transformations $id_{\mathcal{D}}\Rightarrow F\circ G$ and $G\circ F\Rightarrow id_{\mathcal{D}}$ are isomorphisms.

Lemma 1.10. If $(K_a)_{a \in A}$ is a filtered directed system of comapets substes of X, and \mathcal{F} a \mathcal{K} -presheaf satisfying (1.4), then

$$\varinjlim_{a\in A}\mathcal{F}(K_a)\to\mathcal{F}(\bigcap_{a\in A}K_a)$$

 $is\ an\ isomorphism.$

1.4 Equivalence of category

Definition 1.11.

• If \mathcal{F} is a presheaf then let $\alpha^*\mathcal{F}$ ne the \mathcal{K} -presheaf:

$$K \mapsto \varinjlim_{K \subset U \ open} \mathcal{F}(U)$$

• If \mathcal{G} is a \mathcal{K} -presheaf then let $\alpha_*\mathcal{G}$ ne the presheaf:

$$U \mapsto \varprojlim_{U \supset K} \underbrace{\mathcal{F}(K)}_{compact}$$

Proposition 1.12. The pair (α^*, α_*) is an adjoint pair.	
Proof. TODO	
Lemma 1.13.	
$ullet$ $lpha^*$ send sheaves to ${\mathcal K}$ -sheaves	
$ullet$ $lpha^*$ send $\mathcal K$ -sheaves to sheaves	
• The reistrictions obtained still form an adjoint pair.	
The previous adjoint pair give rise to an adjoint pair between shaeves and $\mathcal{K}\text{-sheaves}$	
Proof. TODO	
Lemma 1.14. The previous adjoint pair give rise to an equivalence of category between share and K -sheaves	ves
Proof.	
	ш

Homotopy sheaves

Pushforward, exceptional pushforward, and pullback

Čech cohomology

Purehomotopy $\mathcal{K}\text{-sheaves}$

Poincaré–Lefschetz duality

Homotopy colimits

Homotopy colimits of pure homotopy $\mathcal{K}\text{-sheaves}$

Steenrod homology