Subject Name: <u>INTRODUCTION TO NANO SCIENCE AND TECHNOLOGY</u>

(Pre-midsem Common + Post-midsem different modules)

Subject Number: (To be filled up **later** for a new course, include for an Existing Course)

Credits (proposed): 4-0-0

Pre-Midsem

Chapter	Topics	No. of
		Lectures
I	Introduction to Nanostructures and Nanomaterials	
	• Dimensionality (3, 2, 1, 0)	2
	Physics & Chemistry of Surfaces and Nanoparticles	2
	Top Down and Bottom Up Approaches	2
	Nucleation and Growth	3
II	Electron Transport in Reduced Dimensions	
	• Density of States in 3-, 2-, 1-, and 0-D	2
	Quantization of Electron Transport in Quantum Wells and Dots	2
	Tunneling in Nanostructures	1
III	Characterization Techniques	
	Microscopic Techniques (TEM, SEM, etc.)	3
	Spectroscopic Techniques (XPS, UV-VIS, etc.)	3
Total:		20

Suggested Text Books:

- Nanophysics and Nanotechnology; Edward L. Wolf; © 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
- Nanomaterials and Nanochemistry; C. Br'echignac P. Houdy M. Lahmani (Eds.) © Springer-Verlag Berlin Heidelberg 2007
- Nanoscience: Nanobiotechnology and Nanobiology; P. Boisseau• P. Houdy• M. Lahmani (Eds.); © Springer-Verlag Berlin Heidelberg 2010
- Mesoscopic Physics and Electronics; T. Ando et al (Eds.); © Springer 1998

Proposed teachers:

- 1. S.K. Ray
- 2. S.K. Srivastava

Module I: Physical, Electrical and Materials Sciences

Chapter	Topics	No. of Lectures
I	Fabrication of Nanostructures	
	Nanolithography (Optical, e-beam, FIB)	2
	Soft Lithography	1
	Growth by Bottom-up Approach	3
II	Magnetism in Nanomaterials	
	Superparamagnetism	1
	Magnetic Order in Nanoparticles	2
	Spintronics	1
III	Optical Properties and Energy Conversion	
	Surface Plasmon Resonance	1
	Surface Enhanced Optical Properties and their Applications in Lasers	2
	and Photodetectors	
	Up- and Down Energy Conversion	2
IV	Electrical Nanodevices	
	Resonant Tunnel Diodes	1
	Nanophotovoltaics	2
	Single Electron Transistors and Nanosensors	2
Total:		20

Pre-requisite (if any):To be decided. **Limit on the No. of Students (if any):**None

Suggested Text Books:

- Nanophysics and Nanotechnology; Edward L. Wolf; © 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
- Nanomaterials and Nanochemistry; C. Br'echignac P. Houdy M. Lahmani (Eds.) © Springer-Verlag Berlin Heidelberg 2007
- Nanoscience: Nanobiotechnology and Nanobiology; P. Boisseau• P. Houdy• M. Lahmani (Eds.); © Springer-Verlag Berlin Heidelberg 2010
- Mesoscopic Physics and Electronics; T. Ando et al (Eds.); © Springer 1998

Proposed teachers:

- 1. S.K. Ray
- 2. T.K. Bhattacharya
- 3. T.K. Nath

Module II: Chemistry and Biology

Chapter	Topics	No. of Lectures
I	Periodic Table with special emphasis to nanomaterial synthesis	1
II	Photocatalysis and catalysis by nanomaterials with hetero-junction under high pressure and ambient conditions	1
III	Size and shape selective catalysis	1
IV	Composite material synthesis and applications	1
V	Metal organic frame (MOF) work for nanomaterial synthesis	2
VI	Selectivity, sensitivity, precision, accuracy in sensing applications	2
VII	Spectroscopic (UV-Visible, IR, Raman and Luminescence) application	2
VIII	Environmental remediation by using nanomaterials	2
IX	Different types of inorganic materials used for the synthesis of hybrid nano-bio assemblies	1
X	Interaction between biomolecules and nanoparticle surfaces	1
XI	Nanobiosensors	1
XII	Nanosized drug delivery systems	2
XIII	Applications of nano in biotechnology, medical diagnostics and therapeutics	2
XIV	Ethical concerns and regulatory issues of nano-biotechnology and nano-medicine	1
Total:		20

Pre-requisite (if any):

Limit on the No. of Students (if any):

None

Suggested Text Books:

- 1. Optical properties of metal clusters, Volume 25, Uwe Kreibig, Michael Vollmer
- 2. Metal Nanoparticles: Synthesis, Characterization, and Applications, Daniel L. Fedlheim and Colby A. Foss

Teachers are:

- 1. T. Pal (Chemistry)
- 2. C R Raj (Chemistry)
- 3. Anjali Pal (Civil Eng.)
- 4. Koel Choudhury (SMST)

Module III: Metallurgy and Mechanical Engineering

Chapter	Topics	No. of Lectures
I	Processing of Nanostructured Materials: Technological Aspects	6
	 Chemical synthesis of particulates and films 	
	 Processing by inert gas condensation methods 	
	 Electrodeposited coatings 	
	Thermal sprayed coatings	
	 Processing of metallic, ceramic and composite materials by solid state 	
	processing routes	
	Consolidation of particulates	
II	Properties of Nanostructured MaterialsSuperparamagnetism	6
	 Diffusion in nanocrystalline materials 	
	 Gas reactive applications 	
	 Mechanical behaviour 	
	Thermal properties	
	Electrical properties	
	Magnetic properties	
	Optical properties	
	Acoustic Properties	
III	Structural Characterization of Nanostructured Materials	4
	Brief introduction to XRD	
	 Brief introduction to SEM, TEM and EDS 	
	Brief introduction to AFM	
	 Brief introduction to Auger, XPS and SIMS 	
IV	Design Environments and Product Forms	4
	 Several Case Studies 	
Total:		20

Pre-requisite (if any):

Limit on the No. of Students (if any):

None

Suggested Text Books:

- Carl C. Koch, ed., Nanostructured Materials, 2nd Edition, William Andrew, 2007.
- M. F. Ashby, P. J. Ferreira, and D. L. Schodek, Nanomaterials, Nanotechnologies and Design, Elsevier, 2009.

Module IV: Micro and Nano Scale Transport and Patterning

Chapter	Topics	No. of Lectures
I	Introduction to Nano Scale Flow and Transport, Thin Films, Hydrophobicity, Surface and Interfacial tensions, Laplace pressure etc.	2
II	Molecular level understanding of surface tension, dispersion	1
III	Young Laplace Equation for an axi-symmetric surface	1
IV	Van der Waal's interaction between two surfaces, multilayer systems, concept of effective Hamaker Constant	3
V	Concept of surface energy driven and External field mediated flows and other types of transport processes	2
VI	Stokes flow, Thin Film equation, Linear stability Analysis, Spontaneous instability in a thin film	3
VII	Basics of Digital micro-fluides, Electro Wetting, Eletrophoresis, Electrokinetics, Concepts of Electric Double layer, stern layer, zeta potential etc.	3
VIII	Concept of Soft Lithography	2
IX	Basic Concepts of Atomic Force Microscopy	3
Total:		20

Pre-requisite (if any):

Limit on the No. of Students (if any):

None

Suggested Text Books:

- 5. Mechanics over micro and Nano Scales, Springer, Editor: SumanChakraborty, ISBN: 978-1-4419-9600-8
- 6. Soft Matter Physics, Oxforf, by Masao Doi, ISBN: 978-0-19-965295-2