Organizacja i architektura komputerów ¹ Wykład 12

Piotr Patronik

29 maja 2015

¹(Prawie) dokładna kopia slajdów dr hab inż. J. Biernata

Bufory pamięci

bufor zawiera kopie aktualnie przetwarzanych danych

organizacja sekwencyjna – kolejka

 bufor rozkazów (instruction queue), bufor zapisów (write buffer)

organizacja blokowo-skojarzeniowa

 pamięć podręczna (cache memory) – zawiera kopie używanych danych

organizacja skojarzeniowo-sekwencyjna

 bufor przywracania kolejności (reorder buffer) (PISO parallel-in serial-out)

Zasada lokalności

W *komputerze z programem zintegrowanym* programy i dane mają tendencję do skupiania w wymiarze przestrzennym i czasowym

- lokalność przestrzenna (spatial locality)
 Jest prawdopodobne użycie informacji z sąsiednich lokacji pamieci
 - kody rozkazów zależność lokacyjna sekwencyjna (licznik rozkazów)
 - struktury danych skupione (zmienne robocze) lub regularne (tablice)
- lokalność czasowa (temporal locality)
 Kod użyty będzie zapewne ponownie użyty w nieodległym czasie
 - kody rozkazów pętle programowe
 - struktury danych
 - zmienne robocze: ciągłe używanie
 - struktury regularne: wielokrotne użycie elementów

WNIOSEK: Utworzyć w pobliżu *procesora* **bufor** zawierający **kopie danych** z pamięci (głównej) aktualnie używanych i korzystać z kopii zamiast z oryginału

Zasady użycia buforów cache

- użycie bufora musi być przeźroczyste dla programu
 - niewidoczne na poziomie ISA (listy rozkazów),
 - realizowane na poziomie HSA (organizacji procesora/komputera)
- !! sposób wykonania rozkazu nie może być zależny od obecności bufora, ale czas wykonania rozkazu w obecności bufora powinien być krótszy
- !! użycie bufora pamięci podręcznej nie otwiera osobnej przestrzeni adresowej
 - → nie są potrzebne specjalne rozkazy dostępu do bufora
- bufor pamięci podręcznej powinien
 - być wykonany w szybszej technologii (statycznej)
 - być umieszczony w bezpośrednim sąsiedztwie procesora
 - → bufor umożliwia wykorzystanie zalet szybkich pamięci statycznych i pojemnych lecz wolnych pamięci dynamicznych.

Skuteczność buforów cache

- Zasada lokalności nie gwarantuje obecności kopii danych w buforze cache
- Skuteczność użycia pamięci podręcznej zależy od organizacji (struktury) bufora
- Ilościowa ocena skuteczności:
 - współczynnik trafień (hit rate) h
 - współczynnik chybień (miss rate) m = 1 h
 - ▶ t_{mp} średnia strata czasu w razie chybienia (*miss penalty*)
- Średni czasu dostępu do pamięci
 - w pamięci jednopoziomowej $t_a = (1 m)t_{ca} + m(t_{ram} + t_{mp})$
 - w pamięci dwupoziomowej (inkluzywnej L1 \subset L2) $t_a = (1-m_1)t_{ca1} + (m_1-m_2)(t_{ca2}+t_{mp1}) + m_2(t_{ram}+t_{mp1}+t_{mp2})$ $(m_1 > m_2$, bo każde trafienie w L1 jest trafieniem w L2, a każde chybienie w L2 jest chybieniem w L1)

Organizacja pamięci podręcznej

Konieczna jest identyfikacja kopii w buforze cache

- ▶ jedynym identyfikatorem danej (także kodu rozkazu) jest adres
- kopiowanie pojedynczych bajtów/słów jest sprzeczne z zasadą lokalności
 - jedna lokacja (linia) w buforze zawiera wiele bajtów/słów
- jednorodna struktura ułatwia identyfikację, upraszcza i przyśpiesza dostęp
 - ustalony rozmiar pojedynczej lokacji (linii) w buforze

Schemat organizacji bufora pamięci podręcznej

Organizacja odwzorowania danych w pamięci podręcznej

- linia jednostka wymiany danych między buforem a pamięcią główną
- rozmiarem lokacji powinno być $s = 2^k$ bajtów/słów (linia wymiany)
 - przestrzeń adresowa procesora = suma rozłącznych linii
 - identyfikatorem lokacji w buforze może być skrócony adres
- ▶ czas wyszukiwania w buforze (zbiór nieuporządkowany) $\lceil \log 2N \rceil$ (N liczba linii) → optymalny rozmiar bufora $N = 2^n$ linii

Odwzorowanie (i(B) – linia w buforze, r(P) – linia w pamięci głównej)

 $BUFOR(linia\ i(B)) \neq BUFOR(linia\ i(B) \neq j(B))$

PAMIĘĆ \rightarrow BUFOR: identyfikator $\|[\text{linia } i(B)] = \text{adres}(\text{linia } r(P))\|[\text{linia } r(P)]$

Jeśli $s=2^k$ bajtów, to adres linii = bity adresu bez k najniższych

Charakterystyki skuteczności

- ▶ większa liczba linii (N) lepsza lokalność czasowa
- ▶ większy rozmiar linii (s) lepsza lokalność przestrzenna
- dla ustalonej pojemności, ze zwiększaniem rozmiaru linii, dominujący staje się wpływ zanikania lokalności czasowej i następuje wzrost strat czasu w razie chybienia (czas wymiany jest proporcjonalny do liczby transferów)

Zależność współczynnika chybień m i średniego czasu dostępu do pamięci t_a od rozmiaru linii s dla ustalonej pojemności $C=s\cdot N$ bufora cache

Pamięć podręczna wielopoziomowa

zasada lokalności ightarrow ma sens buforowanie bufora lub jego rozdzielenie

- → pamięć podręczna wielopoziomowa
 - organizacja hierarchiczna pamięć inkluzywna
 - lokalizacja danej umieszczonej w pamięci $\mathit{L}(i)$ dostępna w $\mathit{L}(i+1)$
 - bufor L(i) poziomu i zawiera kopie niektórych danych z bufora L(i+1) poziomu i+1, niektóre linie w L(i) mogą być zaktualizowane
 - dana aktualna dostępna zawsze na najniższym poziomie
 - organizacja separowana pamięć nieinkluzywna (ATHLON victim cache)
 - ightharpoonup żadna lokalizacja danej w buforze L(i) nie jest dostępna w L(i+1)
 - dostęp do bufora L(i) znacznie krótszy niż do L(i+1)
 - w buforze L(i+1) są dane usunięte z L(i)

problem spójności

- zgodność wszystkich kopii informacji, albo
- znajomość (świadomość) lokalizacji informacji aktualnej

Sterowanie współpracą bufora cache z procesorem i pamięcią

Sterowanie współpracą pamięci podręcznej i pamięci głównej (traf – sygnał trafienia w buforze cache, R – odczyt/zapis (1/0), M – transfer/blokada adresu (1/0))

Współdziałanie pamięci podręcznej z procesorem

Schemat uproszczony

trafienie/chybienie

etap (1) – odczyt z pamięci (... blokowy) (... \rightarrow usunięcie linii \rightarrow wypełnienie) etap (2) – kopiowanie odczytu

Architektura systemu pamięci podręcznej (1)

przesyłanie danych między procesorem a pamięcią podręczną

- przez magistralę systemową sterownik typu look-aside (LA)
- przez separowaną magistralę lokalną sterownik typu look-through (LT)

Architektura pamięci podręcznej typu look-aside

Architektura systemu pamięci podręcznej (2)

Architektura pamięci podręcznej typu look-through sterownik *podglądający* (look-aside)

- wada blokowanie magistrali systemowej podczas transferów
- zaleta prostota konstrukcji

sterownik pośredniczący (look-through)

- wada skomplikowana struktura
- zaleta odciążenie magistrali systemowej (transfery magistralą lokalną)

Pamięć wielopoziomowa

cache

memory

storage

Hierarchia pamięci wielopoziomowej

register

- niektóre przestrzenie adresowe lub ich części nie mogą być buforowane
- procesor adresuje pamięć główną sterownik bufora przechwytuje transfery

cache

 specjalne rozkazy – sposób działania wewnętrznego bufora cache

Parametry bufora cache

bufor poziomu L1

- ▶ rozmiar linii dostosowany do rozmiaru magistrali danych procesora (systemu) i możliwości transferów blokowych
- ▶ rozmiar pamięci wystarczający do pomieszczenia kilku (2^N) stron lub innych jednostek przydziału (bloków) pamięci

bufor poziomu L2

- rozmiar linii identyczny jak w L1
- rozmiar bufora wystarczający do pomieszczenia zbioru roboczego procesu

Typowe parametry

- szerokość magistrali danych 2^k bajtów,
- transfer blokowy nałożenie 2^m transferów całą szerokością magistrali
 - linia powinna zawierać $2^{k+m} = 2^B$ bajtów
- ▶ rozmiar strony 2^P bajtów
 - rozmiar bufora L1 2^N stron = 2^{P+N} bajtów
 - łączna liczba linii w buforze L1 = 2^{P+N-B}
 - ▶ rozmiar bufora L2 2^W 2^N stron

Aktualizacja zawartości bufora cache

Warunkiem utrzymania spójności jest aktualizacja linii, która obejmuje

- unieważnienie linii zawierającej dane przypadkowe lub nieaktualne
- wypełnienie linii (bloku) nową zawartością
- wymiana linii w razie braku wolnego miejsca w buforze
- zapis w obszarze skopiowanej linii
 - zapis skrośny (write through) zgodność wszystkich kopii informacji
 - zapis lokalny (copy-back) znajomość lokalizacji informacji aktualnej

Zapis może być poprzedzony kopiowaniem nieobecnej linii (allocate on write)

Obciążenie magistrali pamięci transferami powinno być minimalne

$$\mbox{memory traffic ratio} = \frac{\mbox{transfery(memory} + \mbox{cache})}{\mbox{transfery(cache)}}$$

Bufory zapisu (write buffer)

Chybienie podczas próby zapisu

- w trybie WT (no allocate-on-write) wymaga transferu do poziomu wyższego
- w trybie CB uprzedzające kopiowanie (allocate-on-write) wymaga blokady zapisu oraz powoduje niezgodność kopii (zapis lokalny) po odblokowaniu
- w trybie CB kopiowanie odłożone (no allocate-on-write) do chybienia w razie odczytu lub kolejnego zapisu nie powoduje strat jeśli zapis jest buforowany

Bufor zapisu: pamięć FIFO (kolejka – *musi być zachowana kolejność zapisów*) → nasycenie bufora (*write buffer saturation*) → blokada kolejnego zapisu

Bufory zapisu i ścieżki przepływu danych w systemie pamięci

Obsługa pamięci podręcznej

- unieważnianie linii (line invalidation)
 - przed pierwszym wypełnieniem
 - wskutek zewnętrznej zmiany oryginału danych w pamięci głównej
 - przełączanie procesów unieważnienie wszystkich linii (line flush)
- wypełnianie linii (line fill) oraz wymiana linii (line exchange)
 - chybienie podczas odczytu (miss on read) lub (w trybie AOW) zapisu
- odczyt danej (read)
 - trafienie podczas odczytu (hit on read)
- zapis danej (write) → rozbieżność kopii z oryginałem
 - trafienie podczas zapisu (hit on write)
 - zapis skrośny (jednoczesny) (write through, WT) modyfikuje kopię w buforze wyższego poziomu
 - zapis lokalny (zwrotny) (write/copy back, WB/CB) w kopii lokalnej, opóźniony zapis do bufora wyższego poziomu podczas usuwania linii
 - unieważnienie linii trafionej i zapis bezpośredni (omijający) do pamięci głównej (write aside) lub bufora poziomu wyższego
 - chybienie podczas zapisu (miss on write) zapis do pamięci głównej lub bufora poziomu wyższego (NAOW) lub wypełnienie i zapis (AOW)

Zarządzanie pamięcią podręczną

Sposoby umieszczania i aktualizacji danych w buforze:

- strategie wypełniania pamięci podręcznej odwzorowanie pamięci głównej w liniach pamięci podręcznej
 - losowe zbiór linii w zbiór lokacji linii (dowolnie)
 - bezpośrednie podzbiór linii w linię lokacji
 - blokowo-skojarzeniowe podzbiór linii w podzbiór lokacji linii
- strategie wymiany kopii w pamięci podręcznej w celu aktualizacji bufora (bezzasadne w odwzorowaniu bezpośrednim!)
 - losowa (random) dowolnie (skuteczna przy odwzorowaniu losowym)
 - kolejkowa (FIFO) kolejność wymiany linii jest zgodna z kolejnością ich wypełniania (usuwana jest linia najdawniej alokowana)
 - LRU (last recently used) wymieniana jest linia najdawniej użyta (skuteczna przy odwzorowaniu blokowo-skojarzeniowym).
- strategie pobierania linii z pamięci głównej
 - pobranie wymuszone (demand fetching) uaktywniane chybieniem
 - pobranie uprzedzające (prefetching) na podstawie prognozy dostępu.

Odwzorowanie linii w buforze pamięci podręcznej

- całkowicie skojarzeniowe (fully associative) każda linia pamięci głównej może być skopiowana w dowolnej lokacji linii pamięci podręcznej
 - wymiana linii konieczna wtedy, gdy wszystkie linie są użyte
 największy współczynnik trafień, brak migotania (thrashing)
- bezpośrednie (direct mapped) rozłącznym podzbiorom linii pamięci głównej przypisano unikatowe lokacje linii pamięci w podręcznej
 - najkrótszy czas kojarzenia rekord indeksujący adresu (cache index)
 - najmniejszy współczynnik trafień
 - chybienia wskutek konfliktu odwzorowania (conflict miss) migotanie
- wielodrożne (set-associative) rozłącznym podzbiorom linii pamięci głównej przypisano rozłączne podzbiory lokacji linii w pamięci podręcznej (bezpośrednie odwzorowanie bloków, pełne skojarzenie w podzbiorze)
 - czas dostępu dłuższy niż dla pamięci z odwzorowaniem bezpośrednim
 - niewielkie migotanie, duży współczynnik trafień
 - konflikt odwzorowania maleje ze wzrostem liczby lokacji w bloku

Odwzorowanie całkowicie skojarzeniowe

Bufor całkowicie asocjacyjny (fully associative)

Odwzorowanie bezpośrednie

z przeplotem

Bufor z odwzorowaniem bezpośrednim (direct mapped)

Odwzorowanie bezpośrednie

bez przeplotu

Odwzorowanie bezpośrednie bez przeplotu – b.częsty konflikt odwzorowania

Odwzorowanie blokowo-skojarzeniowe (wielodrożne)

z przeplotem

Odwzorowanie blokowo-skojarzeniowe (wielodrożne)

Organizacja pamięci podręcznej a charakterystyki skuteczności

Zależność współczynnika chybień od rozmiaru linii (pamięć dwudrożna)

Wpływ organizacji pamięci na częstość konfliktów odwzorowania

Strategie wymiany linii

Aktualizacja bufora podczas przełączania zadań

- bufor "ciepły" (warm cache) część bufora nie jest wymieniana
- bufor "zimny" (cold cache) unieważnianie całego bufora

Algorytmy wymiany

- losowy tylko w buforze całkowicie asocjacyjnym
 - ▶ ryzyko usunięcia potrzebnej linii 2 K (K liczba lokacji w buforze)
- kolejkowy (FIFO)
 - ▶ liczba bitów historii log₂ S (S liczba lokacji w podzbiorze)
 - ▶ ryzyko usunięcia potrzebnej linii p2^{-S}
- wg używalności (LRU)
 - ▶ liczba bitów historii $(S-1)\log_2 S$ $(S-1)\log_2 S$ (S-1) lokacji w podzbiorze)
 - ▶ ryzyko usunięcia potrzebnej linii p2^{-S}

Strategie pobierania linii

- pobranie wymuszone (demand fetching) uaktywniane chybieniem
- pobranie uprzedzające (prefetching) na podstawie prognozy dostępu, nie powinno powodować opóźniania pobrań wymuszonych (rozmiar linii wpływa na szybkość wypełniania)

Antycypacja jednostopniowa (one block lookahead, OBL)

lacktriangle w chwili pobrania linii i-tej z pamięci głównej należy też pobrać linię i+1

Pobranie uprzedzające (antycypowane)

- automatyczne (prefetch always), inicjowane podczas każdej próby dostępu
 - przy okazji zwrotu do linii i jest zawsze pobierana linia i+1
- ▶ implikowane w razie chybienia (prefetch on a miss)
 - wraz z wymuszonym wskutek chybienia pobraniem linii i zawsze jest pobierana linia i+1
- markowane (tagged prefetch)
 - ▶ podczas pierwszego, markowanego (tagged) zwrotu do linii i-tei, wraz z linią i jest pobierana linia i+1

Intensywność pobrań uprzedzających

- automatyczne (prefetch always)
 - obciążenie magistral o 20–80% większe niż w pobraniach wymuszonych
- implikowane w razie chybienia (prefetch on a miss)
 - obciążenie magistral nieznacznie większe niż w pobraniach wymuszonych
- markowane (tagged prefetch)
- obciążenie magistral podobne jak w pobraniach wymuszonych

Współczynnik chybień m w funkcji rozmiaru pamięci podręcznej cs dla strategii pobrań (\square – wymuszone, o – implikowane, · – markowane, automat.)

Zintegrowany model spójności pamięci podręcznej

Stany linii pamięci podręcznej obsługiwanej w trybie WT lub CB (I – nieważny (invalid), E – zgodny (exclusive), M – zmieniony (modified), S – współdzielony (shared))
M – chybienie (miss), H – trafienie (hit), R – podczas odczytu, W – podczas zapisu, ESH – podglądnięcie trafienia zewnętrznego (external snoop hit)

Strategia zapisu jednorazowego (write-once)

(Pentium) niewiele rejestrów \rightarrow dużo zmiennych roboczych w pamięci \rightarrow pierwszy zapis skrośny (WT), kolejne zapisy lokalne (CB)

Stany linii pamięci podręcznej obsługiwanej w trybie WO L1: WT→CB, L2: CB – krótki czas zapisu, częściowa zgodność danych

Pełny model spójności (MESI)

Model spójności wielopoziomowej pamięci podręcznej (protokół MESI)

Obsługa pamięci dwupoziomowej:

L1: WT, L2: WT – długi czas zapisu, całkowita zgodność danych L1: CB, L2: CB – najkrótszy czas zapisu, utrata zgodności danych po zapisie

L1: WT, L2: CB – krótszy czas zapisu, zgodność danych L1-L2 L1: CB, L2: WT – utrata zgodności danych po zapisie, długi czas wymiany

Wymiana linii – aspekty czasowe

Rozszerzony model spójności

(I – nieważny (invalid), E – zgodny (exclusive), M – zmieniony (modified), A – przydzielony (allocated), S – współdzielony (shared))

RH / WH – trafienie podczas odczytu (R) / zapisu (W), RM – chybienie podczas odczytu (read miss), ESH – podgl ą dni ę cie trafienia zewn ę trznego (external snoop hit),

Spójność pamięci w systemie wieloprocesorowym

Spójność

- zgodność wszystkich kopii informacji, albo
- znajomość (świadomość) lokalizacji informacji aktualnej

Protokół uzgadniania

- działania procesora (CPU action)
- działania na magistrali (bus action) podglądanie magistrali (snooping)

Modele spójności systemu wieloprocesorowego ze wspólna pamięcią

- zapisz–unieważnij (write–invalidate)
 - ▶ Synapse– aktualizacja lokalna, inne kopie unieważniane
 - Illinois aktualizacja lokalna, kopia markowana (wyłączna dzielona), podobny protokół jak w modelu MESI
 - ▶ Berkeley aktualizacja lokalna, inne kopie tylko do odczytu
- zapisz–aktualizuj (write–update)
 - Firefly aktualizacja globalna, kopia markowana (wyłączna dzielona)
 - Dragon aktualizacja ograniczona (z wyłączeniem pamięci głównej), kopia markowana (wyłączna – dzielona)

Przyśpieszanie translacji adresu podczas dostępu do pamięci podręcznej

Translacja adresu wirtualnego podczas dostępu do pamięci podręcznej: a) sekwencyjna, b) równoległa. CPU – procesor, MMU – jednostka zarządzania pamięcią, M – pamięć główna, C – pamięć podręczna, VA – adres wirtualny, RA – adres rzeczywisty, VPA – adres strony wirtualnej, RPA – adres strony rzeczywistej, DPA – bezpośredni adres na stronie

Pamięć podręczna dysku (disk cache)

obsługa : copy back (write through wymusza niepotrzebne zapisy) rozmiar: sektor, ścieżka, cylinder itp.

Możliwe usytuowania bufora pamięci podręcznej dysku