CSCI 5541: Natural Language Processing

Lecture 7: Language Models: RNN, LSTM, and Seq2Seq

Announcement (0213)

- ☐ Minor HW2 Revisions --> See slack announcement
- ☐ HW3 is released. The due date is due Tue, Feb 25.
- Project
 - o Brainstorming is due next Tuesday, Feb 18
 - o Groups have been assigned in slack
 - o There are a couple of students not yet in groups. If you have a fully formed group and are willing to take on someone else, let me know.

Ngram LM

Uni-gram

$$\prod_{i=1}^{n} P(w_i) \times P(STOP)$$

Bi-gram

$$\prod_{i=1}^{n} P(|w_i||w_{i-1})$$

$$\times P(STOP | w_n)$$

$$\frac{c(w_i)}{N}$$

$$\frac{c(w_{i-1},w_i)}{c(w_{i-1})}$$

Sparsity in Ngram LM

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Figure 4.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Zero counts are in gray.

$$\frac{c(w_{i-1}, w_i)}{c(w_{i-1})} = \frac{c(w_{i-1}, w_i) + \alpha}{c(w_{i-1}) + V\alpha}$$

$$P(w_i \mid w_{i-2}, w_{i-1}) = \lambda_1 P(w_i \mid w_{i-2}, w_{i-1}) + \lambda_2 P(w_i \mid w_{i-1}) + \lambda_3 P(w_i)$$

$$\lambda p + (1 - \lambda)q + \lambda_3 P(w_i)$$

Ngram LM vs Neural LM

To avoid the data sparsity problem from the ngram LM

Neural LM

$$x = [v(w_1); ... v(w_k)]$$

Concatenation (k x V)

$$w_1$$
 = tried

$$w_2$$
 = to

 w_3 = prepare

 w_4 = midterms

Simple feed-forward multilayer perceptron (e.g., one hidden layer)

1 0 0

0 0 1

 $V(w_1)$

 $V(w_2)$

 $V(w_3)$

 $V(W_4)$

One-hot encoding

Distributed representation

Multi-class (Vocab) classification

Bengio et al. 2003, A Neural Probabilistic Language Model

Neural LM

One-hot encoding (|x| = V)

$$W_1 \in \mathbb{R}^{kV \times H}$$
 $W_2 \in \mathbb{R}^{H \times V}$
 $b_1 \in \mathbb{R}^H$ $b_2 \in \mathbb{R}^V$

Output space: |y| = V

$$X = [v(w_1); \ldots; v(w_k)]$$

$$\hat{y} = \operatorname{softmax}(hW_2 + b_2)$$

Neural LM

Represent high-dimensional words (and contexts) as low-dimensional vectors

One-hot encoding (|x| = V)

Conditioning context (X [k x V])

tried to prepare midterm but I was too tired of...

Next word to predict (Y)

Context window size: k=4

Conditioning context (X [k x V])

tried to prepare midterm but was too tired of...

Next word to predict (Y)

Context window size: k=4

Conditioning context (X [k x V])

tried to prepare midterm but I was too tired of...

Next word to predict (Y)

Context window size: k=4

Neural LM against Ngram LM

Pros

- No sparsity problem
- Don't need to store all observed n-gram counts

Cons

- Fixed context window is too small (larger window, larger W)
 - Windows can never be large enough
- □ Different words are multiplied by completely different weights (W); no symmetry in how the inputs are processed.

Outline

- ☐ Linearization: A general heuristic for model improvement
- ☐ Recurrent Neural Network (RNN)
- ☐ Long Short-term Memory (LSTM)
- ☐ Implementation of RNN and LSTM using PyTorch
- Sequence-to-Sequence modeling
- ☐ Teaser: Transformer-based LMs
- ☐ Why language models are useful?

Outline

- ☐ Linearization: A general heuristic for model improvement
- ☐ Recurrent Neural Network (RNN)
- ☐ Long Short-term Memory (LSTM)
- ☐ Implementation of RNN and LSTM using PyTorch
- Sequence-to-Sequence modeling
- ☐ Teaser: Transformer-based LMs
- ☐ Why language models are useful?

How do we make a better model?

More Params are Better

Increasing depth is more efficient than width Model 1: X

...but very deep models are harder to train

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

Why is this so challenging?

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

Backprop Revisited

Analogy #1: A Game of Telephone

Analogy #2: A funnel of information

Linearization Solves This

- We need a better way to reduce the number of operations performed between our weights and our loss function (Residual connections)
- We need a better way to ensure we are not bottlenecking any representations into some channel which is too small to contain all the information we need (Attention mechanism → later)

Outline

- ☐ Linearization: A general heuristic for model improvement
- Recurrent Neural Network (RNN)
- ☐ Long Short-term Memory (LSTM)
- ☐ Implementation of RNN and LSTM using PyTorch
- Sequence-to-Sequence modeling
- ☐ Teaser: Transformer-based LMs
- ☐ Why language models are useful?

Recurrent Neural Network (RNN)

RNN allow arbitarily-sized conditioning contexts; condition on the entire sequence history.

Neural-LM:

$$P(w) = P(w_i|w_{i-k}..w_{i-1}) = softmax (W \cdot h)$$

RNN:

$$P(w) = P(w_i|context)$$

= $softmax(W \cdot h_i)$

☐ Each time set has two inputs:

- $\square X_i$ (the observation at time step i):
 - One-hot vector, feature vector, or distributed
 representation of input token at i step

☐ Each time set has two inputs:

- $\square X_i$ (the observation at time step i):
 - One-hot vector, feature vector, or distributed
 representation of input token at i step
- \square S_{i-1} (the output of the previous state):
 - Base case: $S_0 = 0$ vector

☐ Each time set has two outputs:

$$\square S_i = R(X_i, S_{i-1})$$

 $S_i = R(X_i, S_{i-1})$ o R computes the output state as a function of the *current input* and *previous state*

$$\Box y_i = O(S_i)$$

 O computes the output as a function of the current output state

RNN Training

RNN Training

Parameters are shared! Derivatives are accumulated.

What can RNNs do?

- ☐ Represent a sentence
 - o Read whole sentence, make a prediction
- Represent a context within a sentence
 - Read context up until that point

Representing Sentences

- Sentence classification
- Conditioned generation

Representing Context within Sentence

- Tagging
- Language modeling

e.g., Language Modeling

Language modeling is like a tagging task, where each tag is the next word!

e.g., POS Tagging with Bi-RNNs

Outline

- ☐ Linearization: A general heuristic for model improvement
- ☐ Recurrent Neural Network (RNN)
- Long Short-term Memory (LSTM)
- ☐ Implementation of RNN and LSTM using PyTorch
- Sequence-to-Sequence modeling
- ☐ Teaser: Transformer-based LMs
- ☐ Why language models are useful?

Vanishing Gradient

☐ Gradients decrease as they get pushed back

☐ Why? "Squashed" by non-linearities or small weights in matrices

A Solution: Long Short-term Memory (LSTM)

(Hochreiter and Schmidhuber 1997)

☐ Make **additive connections** between time steps

Addition does not modify the gradient, no vanishing

☐ Gates to control the information flow

RNN Structure

RNN vs LSTM Structure

RNN vs LSTM Structure

LSTM Structure

Neural Network Pointwise Vector Concatenate Copy

Transfer

Copy

- ☐ Forget gate: what value do we try to add/forget to the memory cell?
- Input gate: how much of the update do we allow to go through?
- **Output gate**: how much of the cell do we reflect in the next state?

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

LSTM variant: Gated Recurrent Unit (GRU)

(Cho et al., 2014)

- Combines the forget and input gates into a single "update gate."
- Merges the cell state and hidden state
- ☐ And, other small changes

$$egin{aligned} z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ h_t &= \hline{(1-z_t)} \circ h_{t-1} + \overline{z_t} \circ \sigma_h(W_h x_t + U_h(r_t \circ h_{t-1}) + b_h) \end{aligned}$$
 Additive or Non-linear

Most Important Takeaway

- ☐ The Cell State is an information highway
- ☐ Gradient can flow over this without nearly as many issues of vanishing/exploding gradients that we saw in RNNs
- We are doing a better job at reducing the 'distance' between our loss function and each individual parameter

A Solution: Long Short-term Memory (LSTM)

(Hochreiter and Schmidhuber 1997)

☐ Make **additive connections** between time steps

Addition does not modify the gradient, no vanishing

☐ Gates to control the information flow

Outline

- ☐ Linearization: A general heuristic for model improvement
- ☐ Recurrent Neural Network (RNN)
- ☐ Long Short-term Memory (LSTM)
- ☐ Implementation of RNN and LSTM using PyTorch
- Sequence-to-Sequence modeling
- ☐ Teaser: Transformer-based LMs
- ☐ Why language models are useful?

O PyTorch

class RNN(nn.Module):

```
def __init__(self, input_size: int, hidden_size: int, output_size: int) -> None:
  super().__init__()
  self.i2h = nn.Linear(input_size, hidden_size, bias=False)
  self.h2h = nn.Linear(hidden_size, hidden_size)
  self.h2o = nn.Linear(hidden_size, output_size)
def forward(self, x, hidden state):
  x = self.i2h(x)
                                                     s_i = R(x_i, s_{i-1})

y_i = O(s_i)
 hidden_state = semilaminade.._-
hidden_state = torch.tanh(x + hidden_state)
  hidden state = self.h2h(hidden state)
  out = self.h2o(hidden_state)
  return out, hidden state
```


class RNN(nn.Module):

O PyTorch

def __init__(self, input_size, output_size, hidden_dim, n_layers):
 super(RNN, self).__init__()

. . .

self.rnn = **nn.RNN**(input_size, hidden_dim, n_layers, batch_first=**True**)

self.fc = nn.Linear(hidden_dim, output_size)

def forward(self, x, hidden):

r_out = r_out.view(-1, self.hidden_dim)

return **self.fc(r_out)**, **hidden**

$$s_i = R(x_i, s_{i-1})$$

x (batch_size, seq_length, input_size) # hidden (n_layers, batch_size, hidden_dim) # r_out (batch_size, time_step, hidden_size)

class LSTM (nn.Module):


```
def __init__(self, num_classes, input_size, hidden_size, num_layers,
seq_length):
    super(LSTM1, self).__init__()
    ...
    self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers, batch_first=True)
    self.fc = nn.Linear(hidden_size, num_classes)
    self.relu = nn.ReLU()
```


def forward(self,x):

h_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)) output, (hn, cn) = **self.lstm**(x, (h_0, c_0)) hn = hn.view(-1, self.hidden_size) $f_t = \sigma_g(V_t)$

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

Outline

- ☐ Linearization: A general heuristic for model improvement
- ☐ Recurrent Neural Network (RNN)
- ☐ Long Short-term Memory (LSTM)
- ☐ Implementation of RNN and LSTM using PyTorch
- Sequence-to-Sequence modeling
- ☐ Teaser: Transformer-based LMs
- ☐ Why language models are useful?

Connecting RNN to RNN for sequence-to-sequence (seq2seq) modeling

RNN (decoder) for language modeling

Randomly initialized hidden state h_t at time step t = 0this hate movie <S> RNN **RNN RNN** RNN **RNN** predict predict predict predict predict this </s> hate movie

RNN (decoder) for language modeling

What if we encode some specific context, instead of random state?

RNN (encoder) - RNN (decoder) for machine translation

"나는 이 영화가 싫어요" "Odio esta película" hate this movie <S> RNN RNN RNN RNN predict predict predict predict predict hate this movie

RNN (encoder) - RNN (decoder) for dialogue generation

"나는 이 영화가 싫어요" "Odio esta película"

"what do you think about *Avengers: Endgame*?

RNN (encoder) - RNN (decoder) for question answering

"나는 이 영화가 싫어요" "Odio esta película"

"what do you think about Avengers: Endgame?

When is the film made?

This film is made in 1997

Sequence-to-sequence modeling using RNN (encoder) - RNN (decoder)

Encoder: encoding input sequence

Sequence-to-sequence modeling using RNN (encoder) - RNN (decoder)

Problem: forgetting input context as input gets longer

"나는 이 영화가 싫어요"

Solution (teaser): Seq2seq with attention

"나는 이 영화가 싫어요"

State-of-the-art Language Models

Teaser: Transformer-based LMs

□ SOTA LMs: GPT-2, Radford et al. 2018; GPT-3, Brown et al. 2020

Trigram	LSTM
109	58.3

GPT-2	GPT-3
35.8	20.5

Figure 1: The Transformer - model architecture.

Jürgen Schmidhuber Pronounce: You_again Shmidhoobuh Technical Report IDSIA-23-23, IDSIA Al Blog Twitter: @SchmidhuberAl 14 December 2023

How 3 Turing Awardees Republished Key Methods and Ideas Whose Creators They Failed to Credit

This write-up is meant to correct an inaccurate history of Artificial Intelligence (AI) propagated by recent uninformed news articles, posts in social media, and a large language model. Most of its statements are taken from a less streamlined report^[T22] that has been reviewed on relevant AI mailing lists, profiting from feedback by many experts and well-known AI pioneers. **The piece is aimed at people who are not aware of the numerous AI priority disputes, but are willing to check the facts.**

Teaser: Two Objectives for Language Model Pretraining

GPT GPT2 GPT3

Auto-regressive LM (GPT3)

$$\log p(\mathbf{x}) = \sum_{t=1}^{T} \log p(x_t | \mathbf{x}_{< t})$$

Next-token prediction

Denoising autoencoding (BERT)

$$\log p(\bar{\mathbf{x}}|\hat{\mathbf{x}}) = \sum_{t=1}^{T} \operatorname{mask}_{t} \log p(x_{t}|\hat{\mathbf{x}})$$

Reconstruct masked tokens

Why better language models are useful?

Language models can directly encode knowledge present in the training corpus.

The director of 2001: A Space Odyssey is _____

Language models can directly encode knowledge present in the training corpus.

Query	Answer	Generation
Francesco Bartolomeo Conti was born in	Florence	Rome [-1.8], Florence [-1.8], Naples

Language models can directly encode knowledge present in the training corpus.

Query	Answer	Generation
Francesco Bartolomeo Conti was born in	Florence	Rome [-1.8], Florence [-1.8], Naples
Adolphe Adam died in	Paris	Paris [-0.5], London [-3.5], Vienna
English bulldog is a subclass of	dog	dogs [-0.3], breeds [-2.2], dog
The official language of Mauritius is	English	English [-0.6], French [-0.9], Arabic
Patrick Oboya plays in position.	midfielder	centre [-2.0], center [-2.2], midfielder
Hamburg Airport is named after	Hamburg	Hess [-7.0], Hermann [-7.1], Schmidt

Language models can be a foundation for various tasks across different modalities

Language models are stochastic parrots

Bender et al. (2021), "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?"