Exercise sheet 6

Probability and Statistics, MTH102

- 1. For a random variable X which only takes positive values, show that $aP\{X \geq a\} \leq E[X]$ (*Hint*: why is $E[X] = \sum x_i p(x_i) \geq \sum_{i \text{ so that } x_i \geq a} ap(x_i)$? How do you use that?)
- 2. Note that if $|X E[X]| \ge k$ then $(X E[X])^2 \ge k^2$.
 - (a) Use this observation and the previous exercise to show that $P\{|X-E[X]| \ge k\} \le \frac{\mathrm{Var}(X)}{k^2}$
 - (b) Show that if the variance is 0, then the probability that X is exactly the expectation is 1. (*Hint*: Show that the probability that the |X E[X]| is bigger than any non-zero number (however small!) is 0.)
- 3. Let $X_1, X_2, \ldots X_n$ denote independent and identical distributions. Since they are identical, $E[X_1] = E[X_2] = \cdots = E[X_n]$, and let us denote this common expectation by μ . Similarly, $\operatorname{Var}(X_1) = \operatorname{Var}(X_2) = \cdots = \operatorname{Var}(X_n)$, and we denote the common variance by σ^2 . Use the above to show that $P\{|\frac{X_1+X_2+\cdots+X_n}{n}-\mu| \geq k\} \leq \frac{\sigma^2}{k^2n}$