Lecture 3 - Perfect Secrecy

- 1. Perfect correctness
 - For any $k \in K$, $m \in M$ and any cipertext c output of $Enc_k(m)$, it holds that $Pr[Dec_k(c) = m] = 1$
- 2. Towards defining perfect security
 - Defining security for an encryption scheme is not trivial
 - 3 sources of randomness:
 - generating message
 - choosing key
 - whatever randomness is being used in the probabilistic encryption
- 3. Attempt 1: Protect the key k!
 - Security means that
 - the adversary should **not** be able to **compute the key k**
 - Wrong: maybe C (ciphertext) isn't secure and if they can get a hold of C, then they can get the message
 - what if $Enc_k(m) := m$
- 4. Attempt 2: Don't learn m!
 - Security means that
 - the adversary should not be able to compute the message m
 - Wrong: difference between knowing m (message) verbatim and inferring part of m (they can still get an idea of what the message was)
 - If the scheme protects part of m, the part that's not protected could leak and ruin m
- 5. Attempt 3: Learn nothing!
 - Security means that
 - the adversary should not be able to learn any information about m
 - Problem with this is that it ignores the adversary's prior knowledge on m
 - Attacker may know something about m, therefore, it's nearly impossible for them to not learn any information about m
- 6. Attempt 4: Learn nothing more!
 - Security means that
 - the adversary should not be able to learn any additional information on m
 - Even if they know something about m, nothing additional from that point on is learned about m through C
 - INCLUDE
 - Nothing in Eve's knowledge of M changed before or after the message was encrypted
- 7. Two equivalent views of perfect secrecy
 - a posteriori = a priori
 - For every D_M , $m \in M$ and $c \in C$, for which Pr[C = c] > 0, it holds that PR[M = m | C = c] = Pr[M = m]
 - C is independent of M
 - For every m, $m' \in M$ and $c \in C$, it holds that $Pr[Enc_k(m) = c] = Pr[Enc_k(m') = c]$
 - * Equally likely that c hides m but also likely that c hides another message m' that is different from m
 - Both are basically the same at capturing the idea of perfect secrecy

Lecture 3.1 - The one-time pad

- 1. A perfect cipher
 - A type of "substitution" cipher that is "absolutely unbreakable"
 - substitution cipher
 - * individually replace plaintext characters with shifted ciphertext characters
 - * independently shift each message character in a random number
 - · to encrypt a plaintext of length n, use n uniformly random keys $k_1, ..., k_n$