DUSC: Dimensionality Unbiased Subspace Clustering

GROUP - 4

Introduction: Subspace Clustering

- Clustering aims at grouping data such that objects within groups are similar and objects in different groups are dissimilar.
- Relevant attributes may not be uniform globally across all clusters.
- In noisy data or data with many attributes, clusters are often hidden in subspace of the attributes and do not show up across the full attribute space.
- For these applications, subspace clustering aims at detecting clusters in any subspace.

Problem in Subspace clustering

- Existing Subspace clustering methods don't consider dimensionality bias.
- Dimensionality Bias: As Dimensions increases, the Avg distances between objects increase, cluster radii grows. The correlation between density of an object and dimensionality of subspace is dimensionality Bias.
- As the dimensionality of subspace varies, approaches which do not take this into account
 - fail to separate clusters from noise.
 - fail to separate dense from sparse regions across subspaces of different dimensionality.

Our Approach..

Dimensionality Unbiased Subspace Clustering

Density Measure

W:R->R weighting function, subspace S, density measure is:

$$\varphi^{\mathbf{S}}(o) = \sum_{p \in \mathcal{N}_{\varepsilon}^{\mathbf{S}}(o)} \mathcal{W}\left(\|o - p\|^{\mathbf{S}}\right)$$

A data point o in S is dense, if $\phi S(o) \ge threshold$.

Weighting function should monotonically decrease with increase in distance. Here we are using **Epanechnikov kernel**.

Dimensionality Bias still exists in density measure

- As Dimensions increases
 - Avg. distances between objects increase, cluster radii grows
 - Expected density within the area of influence decreases.

Problems:

- Difficult to fix the common density threshold for both low and high dimensional subspaces.
- Low Threshold : Excess pseudo clusters are formed in low dimensional space.
- High Threshold : Clusters in the high dimensional space cannot be identified.

Solution - Unbiased density measure

Density measure such that its expected density is same in any two subspaces.

$$\forall$$
 S1, S2: E [ϕ S1] = E[ϕ S2]

One of the solutions:

Normalise the density with its expected density $\alpha(S)$.

$$E\left[\frac{1}{E[\varphi^{\mathbf{S}}]}\varphi^{\mathbf{S}}\right] = \frac{1}{E[\varphi^{\mathbf{S}}]}E[\varphi^{\mathbf{S}}] = 1$$

Then its value is 1 (almost comparable) in all the subspaces.

The normalized density measure is thus given by,

$$\frac{1}{\alpha(\mathbf{S})} \varphi^{\mathbf{S}}(o) \text{ with}$$

$$\alpha(\mathbf{S}) = E_{\mathbf{S}} \left[\varphi^{\mathbf{S}}(o) \right] = \frac{2n\varepsilon^{|\mathbf{S}|} c_{|\mathbf{S}|}}{\mathbf{v}^{|\mathbf{S}|}(|\mathbf{S}| + 2)}$$

Problems Handled: DUSC Subspace clustering

Intuitive density threshold : F

- o Instead of absolute thresholds, only factor by which the expected density to be exceeded is used. $\varphi^{S}(o) \ge F \cdot \alpha(S)$
- So, same F value can be used across all subspaces.

Problems Handled: DUSC Subspace clustering

Redundancy:

- Remove redundant clusters that essentially contain the same information repeated in different dimensionalities.
- \circ A cluster is redundant if most of the objects in the cluster in subspace **S** are also in another cluster in a higher dimensional subspace **S**' \supset **S**.
- **Not redundant**: $\neg \exists (C, S)$ subspace cluster with $C' \subseteq C \land S \subset S' \land |C| \ge r \cdot |C'|$
- Parameter r to specifies the degree of redundancy acceptable to the user.

Cluster Definition

- $C \subseteq DB$ in subspace $S \subseteq D$ is a subspace cluster if:
 - Objects in C are S-connected: $\forall o, p \in C : \exists k : \forall i = 1, ..., k 1 : \exists q_i \in C : ||q_i q_{i+1}||^S \le \epsilon \land q_1 = o, q_k = p.$
 - **C** is maximal, \forall o, p \in DB, o, p are S-connected \Rightarrow (o \in C \Leftrightarrow p \in C).
 - o **Minimum cluster size**: |C| ≥ minSize.
 - More dense than expected
 o ∈ C to be a cluster center : φ^S(o) ≥ F · α(S)
 - **Not redundant**: $\neg \exists (C, S)$ subspace cluster with $C \subseteq C \land S \subset S \land |C| \ge r \cdot |C|$

Evaluation of clusters

- Quality
 - Avg. inverse entropy weighted by no. of objects per cluster
- Coverage
 - Percentage of objects in any subspace cluster.

Datasets :: Glass

- Number of Instances: 214
- Number of Attributes: ID + 9 + 1 class attribute
- Total no.of class labels:7 (1-7)
- Class distribution: 1 70, 2 76, 3 17, 4 0, 5 13, 6 9, 7 29

Results:

	DUSC(r = 0)		DUSC(r = 0.1)		SCHISM		SUBCLU	
	Ехр	Paper	Ехр	Paper	Exp	Paper	Ехр	Paper
Attributes	M = 48 Eps = 0.25		M = 40 Eps = 0.25		xi=10 TAU=0.0045 U=0.05		M = 25 Eps = 10^5	
Time Taken	170ms		178ms		150 ms		30ms	
Quality	61	60	49	50	43	44	50	44
Coverage	88	87	94	93	97	99	100	100

Datasets :: Pendigits

- Number of Instances: 11472
- Number of Attributes: ID + 16 input + 1 class attribute
- Total no. of classes: 10(0-9)
- Class Distribution: 0 1143, 1 1143, 2 1144, 3 1055, 4 1144, 5 1055, 6 1056, 7 1142, 8 1055, 9 1055

Results:

	DUSC(r = 0)		DUSC(r = 0.1)		SCHISM		SUBCLU	
	Ехр	Paper	Ехр	Paper	Exp	Paper	Ехр	Paper
Attributes	M = 100 Eps = 0.05		M = 80 Eps = 0.05		xi=10 TAU=0.0045 U=0.05		M = 80 Eps = 0.05	
Quality	80	86	75	81	53	77	43	58
Coverage	70	74	85	92	100	100	100	100

Conclusions

- As redundancy increases,
 - Coverage increases
 - Quality decreases slightly.
- Coverage is not 100%, indicating that DUSC algorithm is differentiating between noise and clusters in the subspaces of varying dimensions.
- Pendigits dataset has noise in it.
 - So , SUBCLU and SCHISM assign even this noise to clusters increasing value of coverage.

THANK YOU