EDHEC 2019 VOIE S

Exercice 1.

Partie 1 : étude d'un exemple

On note Id l'endomorphisme identité de \mathbb{R}^3 et on considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 3 & -2 \\ -1 & 1 & 0 \end{pmatrix}$$

- (1) (a) Déterminer un polynôme annulateur de A qui soit de degré 2.
 - (b) En déduire les deux valeurs propres possibles λ_1 et λ_2 de A (avec $\lambda_1 < \lambda_2$).
 - (c) En Scilab, la commande r=rank(M) renvoie dans la variable r le rang de la matrice M. On a saisi:

```
 \begin{array}{l} A = [1\,,0\,,0\,;-2\,,3\,,-2\,;-1\,,1\,,0] \\ r1 = & \mathbf{rank}(A - \mathbf{eye}\,(3\,,3\,)) \\ r2 = & \mathbf{rank}(A - 2 * \mathbf{eye}\,(3\,,3\,)) \\ \mathbf{disp}\,(\,r1\,\,,\,\,'\,r1 = \,\,'\,) \\ \mathbf{disp}\,(\,r2\,\,,\,\,'\,r2 = \,\,'\,) \end{array}
```

Scilab a renvoyé:

Que peut-on conjecturer quant aux valeurs propres de f et à la dimension des sous-espaces propres associés?

- (d) Donner une base de chacun des noyaux $Ker(f \lambda_1 Id)$ et $Ker(f \lambda_2 Id)$.
- (2) (a) Justifier qu'il existe une base (u_1, v_1, v_2) de \mathbb{R}^3 , où (u_1, v_1) est une base de $\operatorname{Ker}(f \lambda_1 Id)$ et (v_2) une base de $\operatorname{Ker}(f \lambda_2 Id)$. On choisira ces vecteurs de façon que leurs composantes soient des entiers naturels les plus petits possible, la dernière composante de u_1 et la première de v_1 étant nulles.
 - (b) On note x = (a, b, c) un vecteur quelconque de \mathbb{R}^3 . Déterminer, en fonction de a, b et c les coordonnées de x dans la base (u_1, v_1, v_2) .

Partie 2 : généralisation

Soit n et p deux entiers naturels tels que $n \geq p \geq 2$, soit E un \mathbb{R} -espace vectoriel de dimension n, et f un endomorphisme diagonalisable de E ayant p valeurs propres, $\lambda_1, \lambda_2, \ldots, \lambda_p$, deux à deux distinctes.

On se propose de déterminer la décomposition de chaque vecteur x de E sur la somme directe $\bigoplus_{k=1}^p \operatorname{Ker}(f-\lambda_k Id), \text{ où } Id \text{ désigne l'endomorphisme identité de } E.$

- (3) Soit \mathcal{B} une base de E dans laquelle la matrice de f est une matrice diagonale D.
 - (a) En notant I_n la matrice identité de $\mathcal{M}_n(\mathbb{R})$, montrer que :

$$(D - \lambda_1 I_n)(D - \lambda_2 I_n) \dots (D - \lambda_p I_n) = 0_{\mathcal{M}_3(\mathbb{R})}$$

(b) En déduire un polynôme annulateur de f.

Pour chaque k de [1, p], on définit le polynôme $L_k = \prod_{\substack{j=1\\j\neq k}}^p \frac{X - \lambda_j}{\lambda_k - \lambda_j}$

- (4) (a) En distinguant les cas i = k et $i \neq k$, calculer $L_k(\lambda_i)$.
 - (b) Montrer que (L_1, L_2, \dots, L_p) est une base de $\mathbb{R}_{p-1}[X]$.
 - (c) Établir alors que :

$$\forall P \in \mathbb{R}_{p-1}[X], \ P = \sum_{k=1}^{p} P(\lambda_k) L_k$$

- (d) En déduire que $\sum_{i=1}^{P} L_i = 1$.
- (5) (a) Montrer que, pour tout x de E, $L_k(f)(x)$ appartient à $Ker(f \lambda_k Id)$, où $L_k(f)(x)$ désigne l'image du vecteur x de E par l'endomorphisme $L_k(f)$.
 - (b) En déduire la décomposition cherchée.
- (6) Vérifier que cette dernière décomposition redonne celle obtenue pour l'endomorphisme f de la partie 1, si l'on choisit n = 3, $E = \mathbb{R}^3$ et p = 2.

Exercice 2.

Partie 1 : question préliminaire et présentation de deux variables aléatoires X et T

- (1) On rappelle que la fonction arc tangente, notée Arctan, est la bijection réciproque de la restriction de la fonction tangente à l'intervalle $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ et qu'elle est de classe \mathcal{C}^1 sur \mathbb{R} .
 - (a) Rappeler l'expression, pour tout réel x, de $\operatorname{Arctan}'(x)$.
 - (b) Donner la valeur de de Arctan(1) puis montrer que, pour tout réel x strictement positif, on a :

$$\operatorname{Arctan}(x) + \operatorname{Arctan}\left(\frac{1}{x}\right) = \frac{\pi}{2}.$$

(c) Justifier l'équivalent suivant :

$$Arctan(x) \sim x$$

- (2) (a) Vérifier que la fonction f qui à tout réel x associe $f(x) = \frac{1}{\pi(x^2 + 1)}$ peut-être considérée comme une densité d'une certaine variable aléatoire X à valeurs dans \mathbb{R} .
 - (b) Déterminer la fonction de répartition F de X.
- (3) (a) Vérifier que la fonction g qui à tout réel x associe $g(x) = \begin{cases} \frac{1}{x^2} e^{-1/x} & \text{si } x > 0 \\ 0 & \text{si } x \leq 0 \end{cases}$ peut être considérée comme une densité d'une certaine variable aléatoire T à valeurs dans \mathbb{R}_+^* .
 - (b) Déterminer la fonction de répartition G de T.

Partie 2 : étude d'une suite de variables aléatoires associée à X.

On considère une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires, définies sur un espace probabilisé (Ω, \mathcal{A}, P) , mutuellement indépendantes, et suivant toutes la même loi que X.

Pour tout entier naturel n non nul, on pose $M_n = \max(X_1, \dots, X_n)$ et on admet que M_n est une variable aléatoire, définie elle aussi sur l'espace probabilisé (Ω, \mathcal{A}, P) .

- (1) (a) Déterminer la fonction de répartition F_{M_n} de M_n .
 - (b) On pose, pour tout entier n de \mathbb{N}^* , $Y_n = \frac{\pi}{n} M_n$. Justifier que la fonction de répartition de Y_n , notée G_n , est donnée par :

$$\forall x \in \mathbb{R}, \ G_n(x) = \left(\frac{1}{\pi} \operatorname{Arctan}\left(\frac{nx}{\pi}\right) + \frac{1}{2}\right)^n$$

- (2) (a) Déterminer, pour tout x négatif ou nul, la valeur de $\lim_{n\to+\infty} G_n(x)$.
 - (b) Montrer que, pour tout x strictement positif, on a :

$$G_n(x) = \left(1 - \frac{1}{\pi} \operatorname{Arctan}\left(\frac{\pi}{nx}\right)\right)^n$$

- (c) En déduire pour tout x strictement positif, la valeur de $\lim_{n\to+\infty} G_n(x)$.
- (d) Déduire des questions précédentes que la suite de variables aléatoires $(Y_n)_{n\in\mathbb{N}^*}$ converge en loi vers T.

Exercice 3.

Dans tout l'exercice, n désigne un entier naturel non nul.

On se place dans un espace euclidien E de dimension n et on note $\mathcal{B} = (e_1, e_2, \ldots, e_n)$ une base orthonormale de E.

Le produit scalaire des vecteurs x et y de E est noté $\langle x, y \rangle$ et la norme de x est notée ||x||.

Partie 1 : définition de l'adjoint u^* d'un endomorphisme u de E.

Dans toute cette partie, u désigné un endomorphisme de E.

On se propose de montrer qu'il existe un unique endomorphisme de E, noté u^* , qui à tout vecteur y de E associe le vecteur $u^*(y)$ vérifiant :

$$\forall x \in E, \ \langle u(x), y \rangle = \langle x, u^{\star}(y) \rangle$$

(1) (a) Montrer que si u^* existe, alors on a, pour tout y de E:

$$u^{\star}(y) = \sum_{i=1}^{n} \langle u(e_i), y \rangle e_i$$

- (b) En déduire que si u^* existe, alors u^* est unique.
- (2) (a) Vérifier que l'application u^* définie par l'égalité établie à la question (1)(a) est effectivement un endomorphisme de E.
 - (b) Conclure que cette application est solution du problème posé, c'est-à-dire que c'est l'unique endomorphisme de E, appelé adjoint de u, vérifiant :

$$\forall (x,y) \in E^2, \ \langle u(x), y \rangle = \langle x, u^*(y) \rangle$$

Partie 2 : étude des endomorphismes normaux.

On dit que u est un endomorphisme normale quand on a l'égalité :

$$u \circ u^* = u^* \circ u$$

(3) Soit f un endomorphisme symétrique de E. Donner son adjoint et vérifier que f est normal.

Dans la suite, u désigne un endomorphisme normal.

- (4) (a) Montrer que : $\forall x \in E, ||u(x)|| = ||u^*(x)||$.
 - (b) En déduire que $Ker(u) = Ker(u^*)$.
- (5) Montrer que si F est un sous-espace vectoriel de E stable par u, alors F^{\perp} est stable par u^{\star} .
- (6) On suppose que u possède une valeur propre λ et on note E_{λ} le sous espace propre associé.
 - (a) Montrer que E_{λ} est stable par u^{\star} .
 - (b) Établir que $(u^*)^* = u$ puis en déduire que E_{λ}^{\perp} est stable par u.

Problème

Partie 1

Dans cette partie, n désigne un entier naturel non nul. On considère une variable aléatoire X prenant ses valeurs dans [1, n] et on appelle fonction génératrice de X, la fonction G définie par :

$$\forall t \in \mathbb{R}, \ G(t) = \sum_{k=1}^{n} P(X=k)t^{k}$$

- (1) Calculer G(1).
- (2) Exprimer l'espérance de X à l'aide de la fonction G.
- (3) Établir la relation : $V(X) = G''(1) + G'(1) (G'(1))^2$.

Partie 2

On pose, pour tout
$$n$$
 de \mathbb{N}^* : $u_n = \sum_{k=1}^n \frac{1}{k}$ et $h_n = \sum_{k=1}^n \frac{1}{k^2}$.

- (4) (a) Justifier que, pour tout entier naturel k non nul, on a : $\frac{1}{k+1} \le \ln(k+1) \ln k \le \frac{1}{k}$.
 - (b) Montrer alors que : $\forall n \in \mathbb{N}^* \setminus \{1\}, \ln n + \frac{1}{n} \le u_n \le \ln n + 1.$
 - (c) En déduire un équivalent très simple de u_n lorsque n est au voisinage de $+\infty$.
- (5) Montrer que la suite $(h_n)_{n\in\mathbb{N}^*}$ est convergente.

Partie 3

Dans cette partie, n désigne toujours un entier naturel non nul.

(6) On admet que, si a et b sont des entiers tels que a < b, la commande grand(1,1,'uin',a,b) permet à Scilab de simuler une variable aléatoire suivant la loi uniforme discrète sur [a, b]. Compléter le script suivant pour que les lignes (5), (6), (7) et (8) permettent d'échanger les contenus des variables A(j) et A(p).

```
n=input('entrez une valeur pour n :')
(2)
      A=1:n
(3)
      p=n
(4)
      for k=1:n
          j = grand(1, 1, 'uin', 1, p)
(5)
(6)
(7)
          A(i) = --
          A(p) = --
(8)
(9)
          p=p-1
(10)
      end
(11)
      \mathbf{disp}(\mathbf{A})
```

(7) On suppose dorénavant qu'après exécution du script précédent correctement complété, le vecteur A est rempli de façon aléatoire par les entiers de $[\![1,n]\!]$ de telle sorte que les n! permutations soient équiprobables.

On considère alors les commandes Scilab suivantes (exécutées à la suite du script précédent):

```
 \begin{array}{c} m\!\!=\!\!A(1) \\ c\!\!=\!\!1 \\ \textbf{for } k\!\!=\!\!2\!:\!n \\ & \textbf{if } A(k)\!\!>\!\!m \textbf{ then } m\!\!=\!\!\!A(k) \\ & c\!\!=\!\!k \\ & \textbf{end} \\ \textbf{end} \\ \textbf{disp}\,(\,c\,) \end{array}
```

(a) Expliquer pourquoi, à la fin de la boucle for, la variable m contient la valeur n.

- (b) Quel est le contenu de la variable c affiché à la fin de ces commandes?
- (c) On rappelle qu'en Scilab, l'instruction find(test) permet de trouver à quelle(s) place(s) se trouvent les éléments d'une matrice satisfaisant au test proposé.

 Compléter le script Scilab ci-dessous afin qu'il renvoie et affiche le contenu de la variable c étudiée plus haut :

$$\begin{vmatrix} \mathrm{c} = \mathbf{find}(---) \\ \mathbf{disp}(\mathrm{c}) \end{vmatrix}$$

On admet que les contenus des variables A(1), A(2), ..., A(n) sont des variables aléatoires notées A_1, A_2, \ldots, A_n et que le nombre d'affectations concernant la variable informatique c effectuées au cours du script présenté au début de la question (7), y compris la première, est aussi une variable aléatoire, notée X_n .

On suppose que ces variables aléatoires sont toutes définies sur le même espace probabilisé (Ω, \mathcal{A}, P) . On note G_n ma fonction génératrice de X_n , E_n son espérance et V_n sa variance.

- (8) Donner la loi de X_1 .
- (9) (a) Montrer que $X_n(\Omega) = [1, n]$.
 - (b) Déterminer $P(X_n = 1)$ et $P(X_n = n)$. En déduire les lois de X_2 et X_3 .
 - (c) En considérant le système complet d'événements $((A_n = n), (A_n < n))$, montrer que :

$$\forall n \ge 2, \ \forall j \in [2, n], \ P(X_n = j) = \frac{1}{n} P(X_{n-1} = j - 1) + \frac{n-1}{n} P(X_{n-1} = j)$$

- (d) Donner la loi de X_4 .
- (10) (a) Vérifier que la formule obtenue à la question (9)(c) reste valable pour j=1.
 - (b) Établir la relation:

$$\forall n \ge 2, \ \forall t \in \mathbb{R}, \ G_n(t) = \frac{t+n-1}{n} G_{n-1}(t)$$
 (*)

(c) En déduire que :

$$\forall n \in \mathbb{N}^*, \ \forall t \in \mathbb{R}, \ G_n(t) = \frac{1}{n!} \prod_{i=0}^{n-1} (t+j)$$

(11) En dérivant la relation (\star) , trouver une relation entre E_n et E_{n-1} puis montrer que

$$\forall n \in \mathbb{N}^{\star}, E_n = u_n$$

- (12) Recherche d'un équivalent de V_n .
 - (a) En dérivant une deuxième fois la relation (\star) , montrer que :

$$\forall n \ge 2, \ V_n - V_{n-1} = \frac{1}{n} - \frac{1}{n^2}$$

- (b) En déduire, pour tout entier naturel n non nul, V_n en fonction de u_n et h_n .
- (c) Montrer que $V_n \sim \lim_{+\infty} \ln n$.