Ve492: Introduction to Artificial Intelligence

Bayesian Networks: Representation

Paul Weng

UM-SJTU Joint Institute

Slides adapted from http://ai.berkeley.edu, CMU, AIMA, UM

Probabilistic Models

- * Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."George E. P. Box

- * What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)

Bayes' Nets: Big Picture

Bayes' Nets: Big Picture

- * Two problems with using full joint distribution tables as our probabilistic models:
 - * Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - * Hard to learn (estimate) anything empirically about more than a few variables at a time

- * More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Bayes' Net Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - * Similar to CSP constraints
 - Indicate "direct influence" between variables
 - * Formally: encode conditional independence (more later)

* For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Coin Flips

* N independent coin flips

No interactions between variables: absolute independence

Example: Traffic

- * Variables:
 - * R: It rains
 - * T: There is traffic

* Model 1: independence

* Model 2: rain causes traffic

* Why is an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model!
- Variables
 - * T: Traffic
 - * R: It rains
 - * L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

* Variables

* B: Burglary

* A: Alarm goes off

* M: Mary calls

* J: John calls

* E: Earthquake!

Bayes' Net Semantics

Bayes' Net Semantics

- * A set of nodes, one per variable
- * A directed, acyclic graph
- * A conditional distribution for each node
 - * A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- * CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- * Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - * To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

* Example:

P(+cavity, +catch, -toothache)

Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

- * Chain rule (valid for all distributions): $P(x_1, x_2, ... x_n) = \prod_{i=1}^n P(x_i | x_1 ... x_{i-1})$
- * Assume conditional independences: $P(x_i|x_1,...x_{i-1}) = P(x_i|parents(X_i))$
 - \rightarrow Consequence: $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$
- Not every BN can represent every joint distribution
 - * The topology enforces certain conditional independencies

Example: Coin Flips

. .

\mathcal{D}	1	\mathbf{v}		`
Γ	ĺ	Λ	1	
	``		_	_

h	0.5
t	0.5

D	1	\mathbf{v}	_	١
$\boldsymbol{\varGamma}$	Ĺ	Λ	つ)

h	0.5
t	0.5

$$P(h, h, t, h) =$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

Example: Alarm Network

Α	J	P(J A)
+a	+j	0.9
+a	ij	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

Е	P(E)
+e	0.00
-e	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e		0.05
		-a	
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Example: Traffic

Causal direction

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

* Reverse causality?

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Causality?

- * When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - * Often easier to think about
 - Often easier to elicit from experts

BNs need not actually be causal

- * Sometimes no causal net exists over the domain (especially if variables are missing)
- * E.g. consider the variables *Traffic* and *Drips*
- * End up with arrows that reflect correlation, not causation
- * What do the arrows really mean? $P(x_i|x_1,...x_{i-1}) = P(x_i|parents(X_i))$
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
 - Key property: conditional independence
- Next: how to answer queries about that distribution
 - Queries about conditional independence and influence
- After that: how to answer numerical queries (inference)
 - Queries about (conditional) probabilities

