Lab7

Jae Kim

Clustering

First let's make up some data to cluster so we can get a feel for these methods and how to work with them.

We can use rnorm() function to get random numbers from a normal distribution around a given mean.

hist(rnorm(5000,3))

Histogram of rnorm(5000, 3)

Let's get 30 points with a mean of 3 and another 30 with a mean of -3. Then make a matrix whose plot has two clusters at two opposite corners in the Euclidean space.

```
tmp <- c(rnorm(30,3),rnorm(30,-3))
x <- cbind(tmp,rev(tmp))
plot(x)</pre>
```


K-means clustering

Very popular clustering method, especially for big data set, that we can use with the kmeans() function in base R.

```
km <- kmeans(x,centers=2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
tmp
1 -2.790689 3.065319
2 3.065319 -2.790689
```

Clustering vector:


```
Within cluster sum of squares by cluster:
[1] 56.57847 56.57847
(between_SS / total_SS = 90.1 %)
```

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"

How many points are in each cluster?

km\$size

[1] 30 30

What component of your result object details

- Cluster size?
 - "size"
- Cluster assignment/membership?
 - "cluster"
- Cluster center?
 - "centers"

Plot x colored by the kmean cluster assignment and add cluster centers as blue points

```
mycols <- c(1,5)
# col=km$cluster will split them into two colors
plot(x,col=km$cluster)
points(km$centers,col="blue",pch=15,cex=3)</pre>
```


Let's cluster into 3 groups or same ${\tt x}$ data and make a plot

```
km <- kmeans(x,centers=3)
plot(x,col=km$cluster)</pre>
```


Hierarchical Clustering

We can use the hcluster() function for Hierarchical Clustering. Unlike kmeans(), where we could just pass in our data as input, we need to give hclust() a "distance matrix".

We will use the dist() function to start with.

```
d<-dist(x)
hc<-hclust(d)
hc</pre>
```

Call: hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

```
plot(hc)
```

Cluster Dendrogram

d hclust (*, "complete")

I can now "cut" my tree with the cutree() to yield a cluster membership vector

```
grps <- cutree(hc, h=8)
grps</pre>
```

You can also tell cutree() to cut where it yields "k" groups

```
cutree(hc,k=2)
```

```
plot(x,col=grps)
```


Principal Component Analysis (PCA)

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)
x</pre>
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187
Processed_Veg	360	365	337	334
Fresh_fruit	1102	1137	957	674
Cereals	1472	1582	1462	1494

Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

```
## Complete the following code to find out how many rows and columns are in x? \dim(x)
```

[1] 17 4

Preview the first 6 rows
head(x)

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

I prefer the row.names=1 approach. When you do x <-x[,-1] multiple times, it removes the columns one by one until you are left with none.

Q3: Changing what optional argument in the above **barplot()** function results in the following plot?

Remove beside=T argument.

```
barplot(as.matrix(x), col=rainbow(nrow(x)))
```


Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

If a point lies on the diagonal for a given plot, it means the the values are very similar to one another.

```
pairs(x, col=rainbow(10), pch=16)
```


Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

There are more wiggles in plots for country vs N. Ireland (less aligned diagonal line). The blue point is of higher value in N. Ireland compared to other countries.

Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

```
# Use the prcomp() PCA function
pca <- prcomp( t(x) )
summary(pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4
Standard deviation 324.1502 212.7478 73.87622 4.189e-14
Proportion of Variance 0.6744 0.2905 0.03503 0.000e+00
Cumulative Proportion 0.6744 0.9650 1.00000 1.000e+00
```

```
# Plot PC1 vs PC2
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x))
```


Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

```
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x),col=c("orange","red","blue","darkgreen"))
```

