第八章 DMA

8.1 概述

S3c2440A 支持位于系统总线和外设总线之间的 4 个通道的控制器。每个 DMA 控制器通道 无限制地执行系统总线上的设备或外设总线上的设备之间数据搬移。换句话说,就是每个通道都操作一下四种情况:

联系信箱: admin@embeddedlinux.org.cn

Forum: http://www.embeddedlinux.org.cn/

- (1) 源和目的设备都在系统总线上
- (2) 源设备在系统总线上,目的设备在外设总线上
- (3) 源设备在外设总线上,目的设备在系统总线上
- (4) 源设备和目的设备都在外设总线上

DMA 的主要有点就是其传输数据不需要 CPU 的干涉。DMA 操作可由软件或来自内设或外部请求引脚来初始化。

8.1.1 DMA 请求源

如果通过 DCON 寄存器 H/W DMA 的请求模式被选择,每个 DMA 控制器通道可以从四个 DMA 源中选择一个 DMA 请求源(如果 S/W 请求模式被选中, DMA 请求源就完全没有任何意义)。如表 8-1 所示对于每个通道的 4 个 DMA 源:

	Source0	Source1	Source2	Source3	Source4	Source5	Source6
Ch-0	nXDREQ0	UART0	SDI	Timer	USB device EP1	I2SSDO	PCMIN
Ch-1	nXDREQ1	UART1	I2SSDI	SPI0	USB device EP2	PCMOUT	SDI
Ch-2	I2SSDO	I2SSDI	SDI	Timer	USB device EP3	PCMIN	MICIN
Ch-3	UART2	SDI	SPI1	Timer	USB device EP4	MICIN	PCMOUT

这里 nXDREQ0 和 nXDREQ1 表示两个外部源(外部设备),I2SSDO 和 I2SSDI 分别表示 IIS 传输和接收。

8.1.2 DMA 操作

DMA 使用三态 FSM (有限状态机)进行操作,其由一下三个步骤来描述:

状态 1: 作为初始状态,DMA 等待DMA 请求。一旦请求到达,其进入状态 2。在此状态,DMA ACK 和 INT REO 都为 0。

状态 2: 在此状态,DMA ACK 变成 1 且计数器(CURR_TC)从 DCONN[19:0]装载。注意 DMA ACK 直到后面被清除一直保持 1。

状态 3: 在此状态,进行DMA原子操作的子状态机被初始化。此子状态机从源地址读取数据并写入目的地址。此操作应该考虑数据大小和传输大小((single or burst)。在全服务模式Whole service mode中,此操作一直被重复直到计数器(CURR_TC)变成 1;而在单服务模式Single service mode中,此操作仅被执行一次。主有限机对计数器(CURR_TC)减少计数。此外,当计数器(CURR_TC)变成 0 且外部中断设置DCON[29]寄存器被置 1,主状态机发出中断请求信号(INT REQ)。另外,遇到以下情况,其清除DMA ACK。

- (1) 在全服务模式下计数器(CURR_TC)变成 0
- (2) 在单个服务模式下计数器原子操作完成

注意:在单个服务模式下,主状态机的三个状态执行然后停止,再等待其他的 DMA REQ。如果 DMA REQ 到来,将重复这样的三个状态。因此,每个原子传输过程中 DMA ACK 总是先有效再无效。相反,在全服务模式中,主状态机一直在状态 3 等待,直到计数器 (CURR_TC)变成 0。所以 DMA ACK 在这个传输过程中有效,然后当计数器 (CURR_TC)为 0 时无效。

但是不管服务模式如何,一旦计数器(CURR TC)变成0,中断请求信号INT REQ发出。

8.1.3 外部 DMA 请求/应答协议

有三种类型的外部 DMA 请求/应答协议(单服务请求,单服务握手和全服务握手模式)。每种模式都定义了像 DMA 请求和应答信号和这些协议如何相关。

8.1.4 基本 DMA 时序

DMA 服务意味着在 DMA 操作中执行一对读写周期,其形成了一个 DMA 操作。如图 8-1 所示 s3c2440A 的 DMA 操作的基本时序。

- 在所有模式中, XnXDREQ 和 XnXDACK 的建立时间和延迟时间是一致的。
- 如果 XnXDREQ 满足其建立时间,其将被同步两个时钟周期且 XnXDACK 被引发。
- 在 XnXDACK 被引发后, DMA 请求总线, 如果其得到总线控制权, 他将执行操作。当 DMA 操作完成后, XnXDACK 被设无效。

Figure 8-1. Basic DMA Timing Diagram

8.1.5 请求/握手模式对比

请求和握手模式与 XnXDREQ 和 XnXDACK 之间的协议有关。如图 8-2 所示两种模式的不同。

在一个传输的末尾(Single/Burst transfer),DMA 检测两次同步的 XnXDREQ 的状态。 请求模式

-如果 XnXDREQ 保持有效,下个传输马上开始,否则它会一直等到 XnXDREQ 有效。

握手模式

-如果 XnXDREQ 无效, DMA 在两个周期内将 XnXDACK 设无效。否则他会一直等 XnXDREO 无效。

警告:只有在 XnXDACK 无效(高电平)以后, XnXDREQ 才能为有效(低电平)。

Figure 8-2. Demand/Handshake Mode Comparison

8.1.6 传输大小

- -两种不同的传输大小: unit 和 burst4
- -在传输大块数据时 DMA 掌握总线。这样其他的总线主设备就不能得到总线控制权。

Burst4 的传输大小

在 Burst4 传输中有 4 个连续的读写操作被分别执行。

注意: Unit 传输大小: 一个读和一个写被执行。

Figure 8-3. Burst 4 Transfer Size

8.1.7 举例

Unit 传输大小请求模式下的单服务

对于每个unit传输(单服务模式下)XnXDREQ都需要为有效。当XnXDREQ为有效时(请求模式)操作将继续,一对读写操作(单传输大小)被执行。

Figure 8-4. Single service in Demand Mode with Unit Transfer Size

Unit 传输大小握手模式下的单服务

Figure 8-5. Single service in Handshake Mode with Unit Transfer Size

Unit 传输大小握手模式下的全服务

Figure 8-6. Whole service in Handshake Mode with Unit Transfer Size

8.2 DMA 特殊寄存器

每个 DMA 通道都有 9 个控制寄存器(4 个通道 DMA 控制器共计 36 个寄存器)。6 个寄存器用来控制 DMA 传输,其他三个监视 DMA 控制器的状态。这些寄存器的详细情况如下:

- (1) DMA 初始源寄存器(DISRC)
- (2) DMA初始源控制寄存器(DISRCC)
- (3) DMA初始目的寄存器(DIDST)
- (4) DMA初始目的控制寄存器(DIDSTC)
- (5) DMA控制寄存器(DCON)
- (6) DMA状态寄存器(DSTAT)
- (7) DMA当前源寄存器(DCSRC)
- (8) DMA当前目的寄存器(DCDST)
- (9) DMA屏蔽触发寄存器(DMASKTRIG)

8.2.1DMA 初始源寄存器

DMA INITIAL SOURCE REGISTER (DISRC)

			,	
寄存器	地址	读写	描述	复位值
DISRC0	0x4B000000	R/W	DMA0 初始源寄存器	0x00000000
DISRC1	0x4B000040	R/W	DMA1 初始源寄存器	0x00000000
DISRC2	0x4B000080	R/W	DMA2 初始源寄存器	0x00000000
DISRC3	0x4B0000C0	R/W	DMA3 初始源寄存器	0x00000000

DISRCn	位	描述	初始值
S_ADDR	[30:0]	用于传输的源数据基址(开始地址)。如果 CURR_SRC为0且DMA ACK为1,该位值将被装载 到CURR_SRC。	0x00000000

8.2.2DMA 初始源控制寄存器

DMA INITIAL SOURCE CONTROL REGISTER (DISRCC)

寄存器	地址	读写	描述	复位值
DISRCC0	0x4B000004	R/W	DMA0 初始源控制寄存器	0x00000000
DISRCC1	0x4B000044	R/W	DMA1 初始源控制寄存器	0x00000000
DISRCC2	0x4B000084	R/W	DMA2 初始源控制寄存器	0x00000000
DISRCC3	0x4B0000C4	R/W	DMA3 初始源控制寄存器	0x00000000

联系信箱: admin@embeddedlinux.org.cn

Forum: http://www.embeddedlinux.org.cn/

DISRCCn	位	描述	初始值
LOC	[1]	位 1 被用于选择本地源。	0
		0: 源在系统总线(AHB)上。	
		1: 源在外设总线(APB)上。	
INC	[0]	位0被用于选择地址增加。	0
		0: 增加 1: 固定	
		如果为0,每次传输以后,地址增加相应的数据大	
		小	
		如果为 1,每次传输以后,地址保持不变。(burst	
		模式下,地址在burst传输中增加,但是在传输后被	
		初始值覆盖)	

8.2.3 DMA 初始目的寄存器

DMA INITIAL DESTINATION REGISTER (DIDST)

寄存器	地址	读写	描述	复位值
DIDST0	0x4B000008	R/W	DMA0 初始目的控制寄存器	0x00000000
DIDST1	0x4B000048	R/W	DMA1 初始目的控制寄存器	0x00000000
DIDST2	0x4B000088	R/W	DMA2 初始目的控制寄存器	0x0000000
DIDST3	0x4B0000C8	R/W	DMA3 初始目的控制寄存器	0x00000000

DIDSTn	位	描述	初始值
D_ADDR	[30:0]	用于传输的目的数据基址(开始地址).如果	0x00000000
		CURR_SRC为0且DMA ACK为1,该位值将被装载	
		到CURR_SRC。	

8.2.4 DMA 初始目的控制寄存器

DMA INITIAL DESTINATION CONTROL REGISTER (DIDSTC)

寄存器	地址	读写	描述	复位值
DIDSTC0	0x4B00000C	R/W	DMA0 初始目的控制寄存器	0x00000000
DIDSTC1	0x4B00004C	R/W	DMA1 初始目的控制寄存器	0x00000000
DIDSTC2	0x4B00008C	R/W	DMA2 初始目的控制寄存器	0x00000000
DIDSTC3	0x4B0000CC	R/W	DMA3 初始目的控制寄存器	0x00000000

DISRCCn	位	描述	初始值
CHK_INT	[2]	当自动重载被设置,选择中断出现时间。	0
		0: 当TC为 0, 中断出现	
		1: 自动重载被执行后,中断出现	
LOC	[1]	位 1 被用于选择本地目的。	0
		0: 源在系统总线(AHB)上。	
		1: 源在外设总线(APB)上。	
INC	[0]	位0被用于选择地址增加。	0
		0: 增加 1: 固定	
		如果为0,每次传输以后,地址增加相应的数据大	
		小	
		如果为 1,每次传输以后,地址保持不变。	
		(burst模式下,地址在burst传输中增加,但是在传	
		输后被初始值覆盖)	

8.2.5 DMA 控制寄存器

DMA CONTROL REGISTER (DCON)

		•	,	
寄存器	地址	读写	描述	复位值
DCON0	0x4B000010	R/W	DMA0 控制寄存器	0x00000000
DCON1	0x4B000050	R/W	DMA1 控制寄存器	0x00000000
DCON2	0x4B000090	R/W	DMA2 控制寄存器	0x00000000
DCON3	0x4B0000D0	R/W	DMA3 控制寄存器	0x00000000

DISRCCn	位	描述	初始值
DMD_HS	[31]	在请求模式和握手模式中选 1。	0
		0: 选择请求模式	
		1: 选择握手模式	
		在两种模式下,DMA控制器开始传输且对于一个DREQ有	
		效,使得DACK有效。两种模式的差异其是否等待DACK无	
		效。在握手模式下,DMA控制器在开始一个新传输前等待无效	
		DREQ。如果DREQ无效,其使得DACK无效并等待另外有效	
		的DREQ。相对比,在请求模式下,DMA控制器不会等到	
		DREQ无效,其仅将DACK置无效且如果DREQ有效则开始另	
		外一个传输。我们推荐对于外部DMA请求源使用握手模式以避	
		免不经意的开始新的传输。	
SYNC	[30]	选择 DREQ/DACK 同步。	0
		0: DREQ and DACK与PCLK (APB时钟)同步。	
		1: DREQ and DACK 与HCLK (AHB时钟)同步。	
		因此对于连接在AHB总线上的设备,该位应该置 1;	
		对于连接在APB总线上的设备,该位应该置 0	
		对于连接在外部系统上的设备,该位的设置应该取决于其外部	
		系统同步于AHB系统还是APB系统。	
INT	[29]	对于CURR_TC中断设置使能或无效	0
		0: CURR_TC中断无效.用户必须查看状态寄存器中的传输计数	

		器(例如轮询)。						
		1: 当所有的传输结束,中断请求生成(CURR_TC变为0)。						
TSZ	[28]	选择原子传输的传输大小(例如在释放总线之前,一旦DMA拥						
		有总线控制权,传输被执行)。						
		0: 执行单元传输						
CED/MODE	[07]	1: 执行四数据长度的突发传输	0					
SERVMODE	[27]	在单服务模式和全服务模式中选择服务模式 0:单服务模式被选定,在此模式下每个原子传输(单数据或4	0					
		数据长度的突发传输)后DMA停止且等待其他的DMA请求。						
		1: 全服务模式被选定,在此模式下,DMA请求引起原子传输						
		一直重复,直到传输计数器为 0。此模式下不需要附加的请						
		求。						
		注意:在全模式下,在每个原子传输后DMA释放总线,又试图						
HWSRCSEL	[26:24]	重新得到总线以避免其他总线主设备得到总线控制。 各DMA通道请求源选择:	00					
TIWOROGEE	[20.24]	TOMA 通過何不嫁処押: DCON0: 000:nXDREQ0 001:UART0						
		010:SDI 011:Timer 100:USB device EP1						
		DCON1: 000:nXDREQ1 001:UART1						
		010:I2SSDI 011:SPI 100:USB device EP2						
		DCON2: 000:12SSDO 001:12SSDI						
		010:SDI 011:Timer 100:USB device EP3						
		DCON3: 000:UART2 001:SDI						
		010:SPI 011:Timer 100:USB device EP4						
		DCON0: 101:12SSDO 110:PCMIN						
		DCON1: 101:PCMOUT 110:SDI						
		DCON2: 101:PCMIN 110:MICIN						
		DCON3: 101:MICIN 110:PCMOUT						
		这些位控制一个四选一的多路器来为每个DMA选择请求源。如						
		果硬件请求模式通过DCONn[23]被选定,这些位才有意义。						
SWHW SEL	[23]	在软件(软件请求模式)和硬件(硬件请求模式)间选择DMA	0					
000100_022	[20]	源						
		0: 选择软件请求模式且DMA通过DMASKTRIG 控制寄存器的						
		SW_TRIG位被触发。						
		1: 由位[26:24]选定的DMA源触发DMA操作						
RELOAD	[22]	设定重装载开关选项	0					
		0: 当传输计数器的当前值为0, 自动重载被执行(例如所有请						
		求的传输都被执行)。						
		1: 当传输计数器的当前值为 0, DMA通道(DMA REQ) 被关						
		闭。DMA通道开关位 (DMASKTRIGn[1]) 被清零(DREQ off)						
		以防止不经意的开始一个新的DMA操作。						
DSZ	[21:20]	传输数据大小单位	00					
		00 = Byte 01 = Half word						
		10 = Word 11 = reserved						
TC	[19:0]	初始化传输计数器	00000					
		注意: 传输的实际字节数由以下公式计算: DSZ x TSZ x TC。						
		DSZ, TSZ (1 或 4)和TC分别代表数据大小DCONn[21:20]、						

Forum: http://www.embeddedlinux.org.cn/

#输出小DCONn[28]和初始供输出物界 初当CURR TC为 0

联系信箱: admin@embeddedlinux.org.cn

传输大小DCONn[28]和初始传输计数器。仅当CURR_TC为 0	
且 DMA ACK为 1,该值将被重载入CURR_TC。	

8.2.6 DMA 状态寄存器

DMA STATUS REGISTER (DSTAT)

寄存器	地址	读写	描述	复位值
DSTAT0	0x4B000014	R/W	DMA0 状态寄存器	0x00000000
DSTAT1	0x4B000054	R/W	DMA1 状态寄存器	0x00000000
DSTAT2	0x4B000094	R/W	DMA2 状态寄存器	0x0000000
DSTAT3	0x4B0000D4	R/W	DMA3 状态寄存器	0x00000000

DSTATn	位	描述	初始值
STAT	[21:20]	DMA控制器的状态	00b
		00: 指出DMA控制器准备好接收其他DMA请求	
		01: 指出DMA控制器忙于传输	
CURR_TC	[19:0]	传输个数的当前值	00000b
		注: 传输计数值被DCONn[19:0]初始化,在每一次	
		原子传输结束后该值减一。	

8.2.7 DMA 当前源寄存器

DMA CURRENT SOURCE REGISTER (DCSRC)

			,	
寄存器	地址	读写	描述	复位值
DCSRC0	0x4B000018	R/W	DMA0 当前源寄存器	0x0000000
DCSRC1	0x4B000058	R/W	DMA1 当前源寄存器	0x0000000
DCSRC2	0x4B000098	R/W	DMA2 当前源寄存器	0x0000000
DCSRC3	0x4B0000D8	R/W	DMA3 当前源寄存器	0x00000000

DCSRCn	位	描述	初始值
CURR_SRC	[30:0]	DMAn当前源地址	0x00000000

8.2.8 DMA 当前目的寄存器

CURRENT DESTINATION REGISTER (DCDST)

寄存器	地址	读写	描述	复位值
DCDST0	0x4B00001C	R/W	DMA0 当前目的寄存器	0x00000000
DCDST1	0x4B00005C	R/W	DMA1 当前目的寄存器	0x00000000
DCDST2	0x4B00009C	R/W	DMA2 当前目的寄存器	0x00000000
DCDST3	0x4B0000DC	R/W	DMA3 当前目的寄存器	0x00000000

DCDSTn	位	描述	初始值
CURR_DST	[30:0]	DMAn当前目的地址	0x00000000

FORUM: http://www.embeddedlinux.org.cn/

联系信箱: admin@embeddedlinux.org.cn

8.2.9 DMA 屏蔽触发寄存器

DMA MASK TRIGGER REGISTER (DMASKTRIG)

寄存器	地址	读写	描述	复位值
DMASKTRIG0	0x4B000020	R/W	DMA0 屏蔽触发寄存器	0x00000000
DMASKTRIG1	0x4B000060	R/W	DMA1 屏蔽触发寄存器	0x00000000
DMASKTRIG2	0x4B0000A0	R/W	DMA2 屏蔽触发寄存器	0x0000000
DMASKTRIG3	0x4B0000E0	R/W	DMA3 屏蔽触发寄存器	0x00000000

DMASKTRIGn	位	描述	初始值
STOP	[2]	停止DMA 操作. 1: 在当前原子操作结束后立即停止DMA操作。如果没有当前原子操作,DMA会立即停止。 CURR_TC, CURR_SRC, and CURR_DST 将为 0。 注: 由于可能的当前原子传输,停止操作可能会花	0
ON OFF		费 几 个 周 期 。 一 旦 DMA 通 道 开 关 位 (DMAKSTRIG[1])被设关闭,才能检测出其操作结束(例如,真实停止时间)。此位又名"真正停止"	
ON_OFF	[1]	DMA通道开关位 0: DMA 通道被关闭 (对此通道的DMA请求被忽略) 1: DMA 通道被开启,DMA请求被处理 如果我们设置DCONn[22]位到"非自动装载"且/或停止位DMASKTRIGn设为停止,此位将自动关闭。 注意当DCONn[22]位为"非自动装载",CURR_TC 为零则此位清零。如果停止位是 1,一旦当前原子传输完成,此位立即清零。 注: 此位在DMA操作期间不应该被手工修改(例如通过使用DCON[22]或停止位来修改此位)	0
SW_TRIG	[0]	在软件模式下触发DMA通道。 1: 请求对于该控制器的DMA操作. 注意: 在软件请求模式被选定(DCONn[23])且通道ON_OFF位被置 1(通道开启)后,此触发器有效。 当DMA操作开始后,该位自动清零。	0