α 粒子的能谱和射程的测量——预习

张轩, 复旦大学核科学与技术系

一、实验目的

- 1. 了解并掌握半导体 α 谱仪的工作原理及其特性;
- 2. 掌握应用半导体 α 谱仪测量 α 粒子能谱的方法;
- 3. 了解 α 粒子通过物质时的能量损失及其规律;
- 4. 掌握一种测量 α 粒子射程的方法。

二、实验原理

2.1 半导体α谱仪

半导体

2.2 α射线和物质的相互作用

三、实验装置

表1 实验设备清单

	型号	数量
		一个
金硅面垒探测器及真空腔室		一套
机械泵		一台
电荷灵敏放大器	FH1047A	一个
放大器	BH1218	一个
一体化多道分析器	BH1324	一台
PC 机		一台
单道脉冲幅度分析器	FH1007B	一个
定标器	BH1220N	一台
插件箱	FH0001	一个
低电压电源	BH1231B	一个
双踪示波器	TDS1001B-SC	一台

四、实验内容概要和预习思考题

4.1 实验内容

- 1. 调整半导体 α 谱仪参数,测最不同偏压下的 α 粒子能谱,并确定探测器的工作偏压
- 2. 利用 239 Pu α 源测定半导体 α 谱仪的能量分辨率:
- 3. 通过改变气压的方法测量 α 粒子在空气中的射程。

4.2 预习思考题

预习思考题 1. 前放和主放输出脉冲的波形是怎样的? 主放的极零相消的影响是怎样的?

答. 前放的输出波形是负极性的指数衰减脉冲,持续时间为百纳秒量级;主放的输出波形是正极性的准高斯脉冲。主放的极零不好会使得的是信号存在正负极性的的下冲,导致信号堆积产生畸变。

预习思考题 2. 单道的作用是什么? 该如何选择其工作方式和设置单道的阈值?

答. 单道的作用是将主放大器的准高斯脉冲转化为逻辑脉冲

预习思考题 3. 能量分辨率的定义是怎样的? 如何给出 α 能谱的能量分辨率?

答. 能量分辨率通过谱线的半高全宽 FWHM 定义。确定了 FWHM,就确定了能量分辨率。

预习思考题 4. 237 Pu 的 α 能谱是什么样子的? 应该有几个峰? 每个峰是否对称? 为什么? **答.** 根据 Live Chart of Nuclides 的数据 1 可知, α 衰变模式如下

表 2 α 衰变模式,相对强度以自身半衰期为参考值, 237 Pu 的半衰期为 45.64 天

序号	衰变能 (keV)	相对强度%(10-3)
0	5089	0.0210
1	5147	0.2310
2	5253	0.0294
3	5297	0.5124
4	5330	1.8774
5	5352	0.7308
6	5496	0.0315
7	5559	0.1176
8	5610	0.2688
9	5651	0.2772
	•	

¹https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

即,如果不考虑仪器的分辨能力,实际上可以观测到10个峰。

预习思考题 5. 改变真空室内气压时,放大器输出脉冲幅度为什么随气压的增加而减小? **答.** 真空室内气压越大, α 粒子的能量损失越大,所以到达探测器时携带的能量越低,从而脉冲幅度越小。

预习思考题 6. 计数随气压如何变化? 该如何改变气压, 等间距还是有疏有密?

答• 真空室内气压越大, α 粒子的能量损失越大, 从而射程越低, 导致计数率也会降低。