Manual for Package: mesh Revision 1:3M

Karl Kästner

October 29, 2019

Contents

1	@Stru	$\operatorname{cturedMesh}$	1
	1.1	StructuredMesh	1
	1.2	apply_boundary_condition	1
	1.3	bc_from_shp	1
	1.4	bc_index	1
	1.5	bc_isinvalid	2
	1.6	block	2
	1.7	boundary_chain	2
	1.8	boundary_direction	2
	1.9	boundary_indices	2
	1.10	cat	2
	1.11	centreline	2
	1.12	child	2
	1.13	copy	3
	1.14	corner_indices	3
	1.15	cut_from_domain	3
	1.16	$\operatorname{export_delft3d_bnd}$	3
	1.17	$\operatorname{export_delft3d_dep}$	3
	1.18	$\operatorname{export_delft3d_grd}$	3
	1.19	$\operatorname{export_delft3d_ini}$	3
	1.20	export_shp	3
	1.21	extend_straight_reach	4
	1.22	extract_elements	4
	1.23	flip_dimension	4
	1.24	from_1d_mesh	4
	1.25	generate_bifurcation	4
	1.26	generate_disk	5
	1.27	generate_from_centreline	5
	1.28	generate_rectangle	5

	1.29	generate_structured_grid	5
	1.30	grid_block	5
	1.31	improve	5
	1.32	interp_elem2point	5
	1.33	mesh_polygon	5
	1.34	orthogonality	6
	1.35	orthogonalize	6
	1.36	plot	6
	1.37	plot_boundary	6
	1.38	plot_coupling	6
	1.39	plot_orthogonality	6
	1.40		6
	1.41	$read_delft3d_dep \ldots \ldots \ldots \ldots \ldots \ldots$	6
	1.42	read_delft3d_grd	7
	1.43	$smooth_cubic \dots \dots$	7
	1.44	$smooth_curvilinear$	7
	1.45	smooth_laplacian	7
	1.46	smooth_simple	7
	1.47	smooth_sn	7
	1.48	snap	8
	1.49	statistic	8
	1.50	$to_unstructured_mesh \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	8
	1.51		8
	1.52		8
2			8
	2.1		8
	2.2		8
	2.3		9
	2.4	8	9
	2.5	8	9
	2.6	8	9
	2.7	assign_3d	9
	2.8		9
	2.9	v .	9
	2.10	U	9
	2.11	v e	0
	2.12		0
	2.13		.0
	2.14		0
	2.15	1	0
	2.16	$connect_1d_2d \ldots \ldots$	0
	2.17	$convert_2d_to_1d \ldots \ldots$.0
	2.18	copy	1

2.19	crop	11
2.20	cross_section	11
2.21	cut	11
2.22	delete_element	11
2.23		11
2.24		11
2.25		11
2.26	derivative_matrix_3d	12
2.27		12
2.28		12
2.29		12
2.30		12
2.31		12
2.32		12
2.33		13
2.34	8	13
2.35		$\frac{13}{13}$
2.36		$\frac{13}{13}$
2.37		$\frac{13}{13}$
2.38	1	$\frac{13}{13}$
2.39		13
2.40	•	13
2.41		$\frac{1}{4}$
2.42		14
2.43	1 1	14
2.44	1 1	14
2.45		14
2.46	_	14
2.47		15
2.48	1	15
2.49	1 0	15
2.50		15
2.51		15
2.52		15
2.52		16
2.54		$\frac{16}{16}$
2.55		16
2.56		16
2.57		17
2.58	_	$\frac{17}{17}$
2.59		17
2.60		17
2.61	-	17
2.62		17 17
4.114		

2.63	get_facing_and_shared_vertices	18
2.64	grid2tri	18
2.65	import_delft3d_net	18
2.66	import_msh	18
2.67	import_triangle	18
2.68	improve_iterative_relocate_insert	18
2.69	improve_iterative_relocate_uniform	18
2.70	improve_relocate_global1	19
2.71	improve_relocate_global2	19
2.72	improve_relocate_global_3	19
2.73	improve_relocate_local	19
2.74	improve_relocate_local_old	19
2.75	improve_topology	19
2.76	insert_mid_points	19
2.77	insert_steiner_points	20
2.78	integrate_1d	20
2.79	integrate_discharge	20
2.80	interp_1d	20
2.81	interp_2d	20
2.82	interp_fourier	20
2.83	interp_tikhonov_1d	20
2.84	interp_tikhonov_2d	20
2.85	interp_tikhonov_3d	21
2.86	interpolate_from_boundary	21
2.87	interpolate_point	21
2.88	interpolation_error_1d	21
2.89	interpolation_error_2d	21
2.90	interpolation_error_3d	21
2.91	interpolation_matrix_1d	21
2.92	interpolation_matrix_2d	21
2.93	interpolation_matrix_3d	22
2.94	isacute	22
2.95	isobtuse	22
2.96	iterate_smooth2	22
2.97	limit_by_distance	22
2.98	make_elements_ccw	22
2.99	merge_duplicate_points	22
2.100	merge_facing_blunt_triangles	22
2.101	$\operatorname{mesh} 1 \dots \dots \dots \dots \dots \dots$	23
2.102	mesh_1d	23
2.103	mesh_2d	23
2.104	mesh_junctions	23
2.105	n_vertices_1d	23
2.106	nearest_boundary	23

2.107	nedge_{-}	23
2.108	nonobtuse_refinement	23
2.109		24
2.110	objective_T	24
2.111		24
2.112		24
2.113	orthogonality_quadrilaterals	24
2.114	path	24
2.115		24
2.116		24
2.117	plot3	25
2.118		25
2.119		25
2.120		25
2.121	quad2tri	25
2.122		25
2.123		25
2.124		25
2.125	refine_edge_halving	26
2.126		26
2.127		26
2.128		26
2.129	•	26
2.130		26
2.131		26
2.132		26
2.133	renumber_point_indices	27
2.134		27
2.135		27
2.136		27
2.137	ruppert	27
2.138		27
2.139		27
2.140		28
2.141	smooth2	28
2.142	smooth_1d	28
2.143		28
2.144		28
2.145		28
2.146		28
2.147		29
2.148		29
2.149	_	29
2.150		29

	2.151	split_unsmooth_edges	29
	2.152	statistics	29
	2.153	streamwise_derivative_matrix	29
	2.154	thalweg	29
	2.155	to_single	30
	2.156	uncross_elements	30
	2.157	uncross_quadrilaterals	30
	2.158	vertex_distance	30
	2.159		30
	2.160		30
	2.161	vertex_to_vertex	30
	2.162		31
	2.163		31
	2.164		31
3	$\operatorname{grid}/\mathbb{Q}$	Grid1	31
	3.1	Grid1	31
	3.2	binop	31
	3.3	build_index	31
	3.4	fit	32
	3.5	predict	32
4			32
	4.1		32
	4.2	1	32
	4.3		32
	4.4	1	32
	4.5	predict	32
_	• 1/6		
5	0 ,		33
	$5.1 \\ 5.2$		33
	0.2	build_index	33
6	mesh1	d :	33
•	6.1		33
	6.2	1	33
	6.3	1	33
	6.4		33
	6.5		აა 33
	6.6		აა 33
	0.0	mogorep	JJ
7	optimi	ization	34
-	7.1		34
	7.2	1	3/1

	7.3	objective0_angle2_barycentric
	7.4	objective0_angle2_barycentric9
	7.5	objective0_angle_2_cartesian
	7.6	objective0_angle_inf_cartesian
	7.7	objective0_barycentric9
	7.8	objective0_pythagoras1_barycentric9
	7.9	objective0_pythagoras1_cartesian
	7.10	objective0_pythagoras2_barycentric9
	7.11	objective0_pythagoras2_cartesian
	7.12	objective_3_angle
	7.13	objective_A_bnd
	7.14	objective_P_angle
	7.15	objective_P_angle_scaled
	7.16	objective_P_angle_scaled_area
	7.17	objective_P_midpoint
	7.18	objective_angle
	7.19	objective_angle2_barycentric
	7.20	objective_angle_p 36
	7.21	objective_angle_scaled_area
	7.22	objective_angle_scaled_circumference
	7.23	objective_cosa
	7.24	objective_cosa_p
	7.25	objective_cosa_scaled_side_length
	7.26	objective_distance_edge_centre
	7.27	objective_distance_edge_centre_perpendicular
	7.28	objective_distance_orthocentre_excentre
	7.29	objective_incentre_excentre
	7.30	objective_length_min_max
	7.31	objective_length_var
	7.32	objective_thales
	7.33	objective_thales_difference
	7.34	test_objective_cosa_p
8	mesh	37
	8.1	preload_msh
9	sparse	mesh/@SparseMesh1 37
	9.1	SparseMesh1
	9.2	assign
	9.3	assignS
	9.4	init
	9.5	interp
	9.6	interpS
	9.7	rmse_interp

10	sparse	$\mathrm{mesh/@SparseMesh2}$	38
	10.1	SparseMesh2	38
	10.2	assign	39
	10.3	assignS	39
	10.4	init	39
	10.5	$\mathrm{interp}\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	39
	10.6	$interpS \ \dots $	39
	10.7	$rmse_interp\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	40
11	sparse	mesh	40
	11.1	SparseMesh	40
12	test		40
	12.1	$test_derivative_matrices_curvilinear . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	40
13	mesh		40
	13.1	$trimesh_fast \dots \dots \dots \dots \dots \dots \dots \dots \dots $	40

1 @StructuredMesh

1.1 StructuredMesh

structured mesh processing compatible with Delft3D also provides set-up of discretisation matrices

1.2 apply_boundary_condition

apply boundary condition and the four sides of the domain ${\tt TODO:}$ allow for interior boundaries

1.3 bc_from_shp

read boundary condition from shape file

1.4 bc_index

TODO this is deprecated generate indices for boundary edges

1.5 bc_isinvalid

check boundary conditions for stacked domains

1.6 block

stack multiple meshes to complex domain

1.7 boundary_chain

return chain of boundary points

1.8 boundary_direction

return direction of boundary segment

1.9 boundary_indices

```
indices of boundary segments
id : index of boundary point
jd : index of
```

1.10 cat

1.11 centreline

domain (channel) centreline along chosen dimension

1.12 child

hierarchical mesh generation (for bifurcations)

1.13 copy

1.14 corner_indices

indices of domain corners

1.15 cut_from_domain

cut subdomain

$1.16 \quad export_delft3d_bnd$

export the boundary in delft3d compatible format

$1.17 \quad export_delft3d_dep$

export bathymetry data in Delft3D dep-format

$1.18 \quad export_delft3d_grd$

export mesh in deltares delft3D grd file format

$1.19 \quad export_delft3d_ini$

export delft3D compatible initial condition file

$1.20 \quad export_shp$

export mesh elements as shape file

1.21 extend_straight_reach

1.22 extract_elements

element indices from grid

1.23 flip_dimension

flip left and right or top and down

$1.24 \quad from_1d_mesh$

convert a 1D mesh to 2D mesh consisting of quadrilaterals

1.25 generate_bifurcation

```
creates a mesh for bifurcation with bluff, which is required for
   delft3d grids
TODO do not fix indices
TODO determine p individually
bank : bankline shapefile
nn : number of points across branches
ds: spacing along s
p : fraction of right side branch
level : generate hierarchical mesh,
        grid points in each branch will be 2^n+1,
        and sub meshes until level 1 will be generated
for lower levels the connecting volumes remain narrow,
as the two volumes left and right of the division line are not
   scaled
-> post smoothing required
nn: n=6; for idx=1:5; n(end+1) = 2*(n(end)-3)+3, end
ns: n=18; for idx=1:5; n(end+1) = 2*(n(end)-2)+2, end (should be
   improved to 2*(n-1)+1
```

1.26 generate_disk

generate semicircular domain

1.27 generate_from_centreline

generate a mesh from a given centreline ${\tt TODO}$: avoid crossing of inner bed points in sharp bends

1.28 generate_rectangle

discretize a rectangular domain

1.29 generate_structured_grid

generate a structured mesh consisting of several sub-meshes

1.30 grid_block

mesh a subdomain

1.31 improve

improve (smooth) the mesh

1.32 interp_elem2point

interpolate values sampled at element centres to element corners TODO allow also interpolation to \boldsymbol{u} and \boldsymbol{v} points

1.33 mesh_polygon

mesh a 1D channel, where boundaries are given as polygon
TODO, this should better use voronoi-tesselation (see centreline
 class)

1.34 orthogonality

orthogonality of elements

1.35 orthogonalize

orthogonalize mesh set ${\bf x}$ of point coordinates to 1/2

1.36 plot

plot the mesh

1.37 plot_boundary

plot the mesh boundary

1.38 plot_coupling

plot connected vertices, see vertex_connection_matrix.m

1.39 plot_orthogonality

plot mesh with edges colored by orthogonality condition

1.40 quiver

quiver plot of velocity

$1.41 \quad read_delft3d_dep$

depth in dat file is defined at volume centres (water leve point) first row, first column and last column are buffer but nast colum is not (only when outflow?)

1.42 read_delft3d_grd

read mesh in delft3D grd format

1.43 smooth_cubic

cubically smooth the mesh coordinates

1.44 smooth_curvilinear

```
smooth the mesh
relax = (10+relax)/11;
relax = min(0.5,relax);
```

1.45 smooth_laplacian

```
smooth the mesh coordinates
```

```
better than before, but causes dn in inner bends to be narrower
        than in outer bends
(straightens the lines)
better smooth p: i.e. fractional distance from left to right,
this is complicated at the bif
better: two neighbour smooth: smooth dn and ds with left/right, top
        bottom only
```

1.46 smooth_simple

smooth the mesh coordinates

1.47 smooth_sn

smooth the mesh coordinates

1.48 snap

snap two meshes that connect at their domain boundaries

1.49 statistic

compute mesh statistics

1.50 to_unstructured_mesh

convert to unstructured mesh

1.51 transpose_dimension

transpose dimensions

1.52 vertex_connection_matrix

connectivity of neighbouring vertices TODO same for elements

2 @UnstructuredMesh

2.1 UnstructuredMesh

class containing some meshing functionality complementary to Mesh_2d, Mesh_3d, Tree_2d and Tree_3d

2.2 add_element

add an element with vertex indices, vertices already exist

2.3 add_vertex

add a vertex

2.4 angle

interior angles of each element

2.5 assign_1d

assign coordinatex (x0,y0) to containing element

$2.6 \quad assign_2d$

assign coordinatex (x0,y0) to containing element

2.7 assign_3d

assign coordinatex (P0,y0) to containing element

$2.8 \quad bnd_{-}1d$

left and right end points for 1D meshes

2.9 boundary_1d

convert 1D mesh to 2D mesh

2.10 boundary_chain2

get chained indices of boundary segments, used for setting up higher order polynomials along the boundary

2.11 boundary_length_and_direction

edge length and direction of boundary segments TODO, this should be just edge length and direction

2.12 cat

concatenate two meshes

2.13 chain_1d

chain 1D elements (segments)

2.14 check_dublicate_elements

check if elements are duplicate elements
TODO, this does not check if elements cover each other, for example
hierarchical meshes or ABC+BCD and ABD+ACD
TODO check overlap by computation of area

2.15 compute_elem2elem

set up element2element neighbourhood relation

2.16 connect_1d_2d

auto merge 1d and 2d mesh
this silently requires that 1d segments consist at least of 3
elements
TODO only implemented for triangles

2.17 convert_2d_to_1d

2.18 copy

copy constructor

2.19 crop

crop domain

2.20 cross_section

get cross-sections for 1D elements

2.21 cut

crop mesh to polygonal region

2.22 delete_element

delete an element

2.23 derivative_matrix_1d

first order first derivative discretisation matrix on the 1d mesh

2.24 derivative_matrix_2d

first order first derivative discretisation matrix on the mesh

2.25 derivative_matrix_2d_2

second order derivative matrix on a triangulation

2.26 derivative_matrix_3d

first order first derivative discretisation matrix on the mesh

2.27 distance

distance along edges from a point set to all other points

open : id of start point(s)

 $\ensuremath{\mbox{countflag}}$: if set use number of hops as distance not the euclidean

distance

2.28 dual_mesh

dual mesh formed by the centre of cicumference the dual mesh consists not only of triangles TODO rename in generate dual mesh

2.29 edge_length

euclidean edge length

2.30 edge_midpoint

edge mid-points

2.31 edges_from_elements

edges and boundaries from elements

2.32 eigs

eigenvalues of the lapalcian on the mesh

2.33 elem2edge_

pointer of element to edge

2.34 elem2elem_matrix

matrix with neighbourhood relations for each element

2.35 element_area

area of elements 1d elements have zero area and are not processed

2.36 element_centroid

centroids of lements

2.37 element_midpoint

barymetric centre of elements

2.38 elements_from_edges

2D elements from edges

2.39 eval2pval

element (centroid) value to vertex value TODO, use dual mesh or triangulation

${\bf 2.40 \quad export_delft3d_net}$

export into DFLOWFM delft3d net.nc file

$2.41 export_msh$

export mesh in GMSH msh format

$2.42 export_pos$

export triangles and vertex values to gmsh pos-file format (x,y,z, val) intended for re-meshing with values representing local mesh size

$2.43 \quad export_shp$

export edges to GIS shapefile each element as separate polygon with one z-value

2.44 facing_element

get triangle ndx that is opposit, e.g. "facing" the vertex vdx of triangle $\ensuremath{\text{tdx}}$

2.45 filter_neighbour

apply a function on the values on connected vertices

2.46 find_encroached_edges

find encroached edges in a triangulation,
i.e. edges for which on of the two facing point false into their
 enclosing
circle

2.47 flip

```
flip edges between two triangles
    flip
    for each side
        if (connection between opposit points shorter than
            between edges, swap edge)
        this-> flip
        that-> flip
    end
```

2.48 flip_global

```
recursively flip edges, i.e ABC+BCD -> ABD+ADC, when new edge (diagonal) is shorter
```

2.49 flip_quality

flip edges, when mesh quality constraint improves

2.50 gaussmat_2d

matrix for gauss integration on a triangulation

2.51 generate_chews_first

triangulate domain with chew's first algorithm

2.52 generate_from_centreline_1d

generate a mesh from centreline

2.53 generate_from_centreline_2d

```
generate mesh from centreline
TODO allow number of segments to change
sets up a simple quadrilateral mesh in S-N coordinates
centreline (must be sorted in streamwise direction)
input variables:
cS : S (streamwise) coordinates of centreline
cL : N (spanwise) coordinate of left bank
cR : N (spanwise) coordinate of right bank
input variables controlling ouptut resolution:
S : S coordinate of slices in S-direction (diff(S) is element
      must be sorted in s-direction
n : n number of points per cross section
      (n-1) is number of elements per cross section
output variables:
mesh.{X,Y,S,N} : point coordinates
mesh.T
             : point indices of elements (corners of the
   quadrilaterals)
-> make it orthogonal to banks by using a spline along n
```

2.54 generate_frontal

2.55 generate_ghost_elements

```
generate ghost elements, i.e. elements at the domain boundary,
    these
elements can overlap

when the project flag set, ghost points are porjected to the
    boundary,
the project flag is set for dual mesh generation
the project flag is unset for application of the boundary condition
```

2.56 generate_gmsh

generate a mesh from a polygon using gmsh

inshp : file name of shape file of preloaded shape file

containing a polygon

obase : base of output file name

resolution : struct containing default mesh resolution settings $resfile_C$: file names of shape files, defining local resolution in

polygonal regions

opt : options, see below

this is a Static function

2.57 generate_hierarchical

generate a hierachical mesh by recursively splitting elements containing boundary points

2.58 generate_triangle

generate a mesh from a polygon using the programme "Triangle"

2.59 generate_uniform_1d

generate a uniformly spaced 1D mesh

2.60 generate_uniform_quadrilateral

generate a uniform 2D mesh

2.61 generate_uniform_tetra

uniformly tesselate a rhombic domain in 3D into tetrahedra

2.62 generate_uniform_triangulation

uniformly tesselate a rectangular (2d) domain into triangles

2.63 get_facing_and_shared_vertices

for a pairwise list (array) of triangles, determine there common and facing edges

2.64 grid2tri

topologically split a uniform mesh on a rectangular domain into triangles

$2.65 \quad import_delft3d_net$

```
import mesh from Delft3d file ( {filanme}_net.nc )
```

$2.66 \quad import_msh$

import mesh from {filename}.msh files as generated by GSMH

2.67 import_triangle

import a mesh generated with triangle (ele and node)

2.68 improve_iterative_relocate_insert

iteratively improve the mesh by inserting vertices and smoothing fprintf('Iteration %d, %d elements, %d vertices, %d obtuse elements (%g%%)\n', iter, obj.nelem, obj.np , nobtuse, nobtuse./obj.nelem);

${\bf 2.69} \quad improve_iterative_relocate_uniform$

$2.70 \quad improve_relocate_global1$

iteratively improve angles to remove obtuse triangles

2.71 improve_relocate_global2

improve mesh globally

2.72 improve_relocate_global_3

improve mesh quality globally

2.73 improve_relocate_local

iteratively improve angles to remove obtuse triangles

${\bf 2.74 \quad improve_relocate_local_old}$

iteratively improve angles to remove obtuse triangles

2.75 improve_topology

improve mesh topology

2.76 insert_mid_points

insert mid points into the mesh the new mesh is of much lower quality, but if all edges are flipped , this leads to the $\operatorname{sqrt}(2)$ refinement

2.77 insert_steiner_points

refine mesh by inserting steiner points (centre of circumference) for elements specified by tdx

2.78 integrate_1d

integrate a quantity val across the mesh

2.79 integrate_discharge

integrate discharge

$2.80 \quad interp_1d$

interpolate on a 1D mesh

2.81 interp_2d

interpolate on a 2D mesh

2.82 interp_fourier

interpolate values on the mesh using fourier methods

2.83 interp_tikhonov_1d

interpolation with Tikhonov regularisation

2.84 interp_tikhonov_2d

interpolation wiht Tikhonov regularisation in 2D

2.85 interp_tikhonov_3d

2.86 interpolate_from_boundary

interpolate interior values from the boundary

2.87 interpolate_point

interpolate from samples to mesh points by IDW method

2.88 interpolation_error_1d

estimate interpolation error in 1D

2.89 interpolation_error_2d

interpolate error in 2D

2.90 interpolation_error_3d

estimate interpolation error in $\ensuremath{\mathtt{3D}}$

2.91 interpolation_matrix_1d

linear interpolation matrix from mesh points to arbitrary coordinates ${\tt PO}$

2.92 interpolation_matrix_2d

linear interpolation matrix from mesh points to arbitrary coordinates ${\tt P0,y0}$

${\bf 2.93 \quad interpolation_matrix_3d}$

interpolation matrix for interpolation in 3D

2.94 isacute

determine acute triangles

2.95 isobtuse

determine obtuse triangles

2.96 iterate_smooth2

iteratively improve the mesh by smoothing

2.97 limit_by_distance

max edge length
minimum distance
TODO, this will always be zero

2.98 make_elements_ccw

make all 2D elements clock wise (such that their area is positive)

2.99 merge_duplicate_points

merge duplicate points

${\bf 2.100 \quad merge_facing_blunt_triangles}$

merge blunt triangles that face each other

$2.101 \quad \text{mesh} 1$

mesh in 1D

$2.102 \quad mesh_{-}1d$

extract the 1d mesh

$2.103 \quad \text{mesh_2d}$

extract the 1d mesh

2.104 mesh_junctions

 $\begin{array}{c} \text{mesh junctions of a channel network} \\ & \text{hold on} \end{array}$

2.105 n_vertices_1d

2.106 nearest_boundary

determine nearest boundary segment for each input coordindate

$2.107 \quad nedge_{-}$

2.108 nonobtuse_refinement

nonobtuse refinement according to Korotov not feasible for most obtuse triangles

2.109 objective_A

one objective function value per angle

2.110 objective_T

wrapper for mesh optimisation objective functions univariate in triangles

2.111 objective_angle

objective function for iterative angle improvement

2.112 optimum_angle

optimum angle for each vertex = 360^\deg / number of connected
 edges

${\bf 2.113} \quad orthogonality_quadrilaterals$

orthogonality condition for quadrilaterals

2.114 path

path along edges

2.115 plot

plot the mesh (and a discretised function) as a surface and net

2.116 plot1d

plot 1D mesh

2.117 plot3

plot mesh and values

2.118 plotcs

plot cross section

2.119 project_to_boundary

project a point to the boundary

2.120 pval2eval

vertex to element value

2.121 quad2tri

quadrilaterals to triangles

2.122 raster_boundary

$2.123 \quad recover_edges$

recover (boundary) edges

2.124 refine

refine by splitting marked triangles

2.125 refine_edge_halving

mesh refinement by longest edge bisection

2.126 remove_empty_triangles

remove degenerated triangles with zero area

2.127 remove_isolated_vertices

remove points that are not part of the mesh (gmsh leaves sometimes spurious points in the msh file)

2.128 remove_points

remove points and associated elements

2.129 remove_quartered_triangles

point has connectivity 4 and is not on the boundary

2.130 remove_small_islands

delft3D requires islands to have at least 7 edges this functions splits edges surrounding small islands

2.131 remove_triply_connected_boundary_vertices

remove boundary vertices that are connected only to three vertices

2.132 remove_trisected_triangles

remove trisected trianges point has connectivity 3 and is not on the boundary

2.133 renumber_point_indices

renumber vertex indices

2.134 resolve_8_vertices

improve mesh by removing one edge from vertices with 8-edges
(an interior vertex in a regular triangulation has 6 neighbours,
and unstructured meshes with local refinement are possible with
5 and 7 neighbours, 4,3, or 8 and more connected vertices are not
necessary

2.135 restore_acuteness

restore acuteness
Laplacian smoothing may at some places decrease the mesh quality, this locally restores acute elements

2.136 retriangulate

retriangulate the mesh

2.137 ruppert

refine the mesh using ruppert's algorithm

2.138 scale_to_boundary

scale hierarchical mesh to match boundary coordinates experimental $% \left(1\right) =\left(1\right) +\left(1\right)$

2.139 scatterplot

scatterplot of data on mesh

2.140 segment

segment the mesh into parts according to laplacian eigenvalues

2.141 smooth2

Laplacian smoothing of vertex coordinates, replace every point by the average coordinate of its neibghbours

$2.142 \quad smooth_1d$

smoothes values in each reach does not smooth the values at the connection points

$2.143 \quad smooth_val$

smooth values on the mesh

2.144 smoothness

2.145 split3

split those triangles that contain a boundary point in three pieces , for hierarchical mesh generation

2.146 split_edge

split an edge

2.147 split_edge_perpendicular

split edge perpendicularly

2.148 split_elem_1d

split a 1d element

2.149 split_encroached_edges

recursively split encroached edges

$2.150 ext{ split_obtuse}$

split obtuse elements

2.151 split_unsmooth_edges

split unsmooth edges

2.152 statistics

compute mesh statistics

2.153 streamwise_derivative_matrix

streamwise derivative matrix

2.154 thalweg

thalweg (deepest point along channel)

2.155 to single

TODO, also with indices

2.156 uncross_elements

make sure, that 4 point elements span an area, and do not form a
 cross
a call to this function should be succeeded by make_ccw
this operator is idempotent

2.157 uncross_quadrilaterals

make sure, that 4 point elements span an area, and do not form a
 cross
a call to this function should be succeeded by make_ccw
this operator is idempotent

2.158 vertex_distance

connectivity of directly connected vertices

$2.159 \quad \text{vertex_to_edge}$

connectivity matrix between vertices and adjacent edges

2.160 vertex_to_element

connectivity matrix between vertices and elements

2.161 vertex_to_vertex

connectivity matrix between vertices

2.162 weighed_laplacian_smoothing

weighed Laplacian smoothing

2.163 xy2xys

for boundary points: convert XY coordinate into a 1Dparametric
 coordinate,
applied in mesh optimization, where movement of boundary points is
constrained on the boundary

2.164 xys2xy

convert parametric 1D coordinate of boundary point back to cartesian ${\tt XYc}$ oordinate

3 grid/@Grid1

3.1 Grid1

lump spatiotemporal data into a 1-dimensional grid

3.2 binop

operate function fun on data val within the context of a grid cell (for fitting grid cell values from sampled values)

3.3 build_index

compute the grid-cell index for samples sampled at points X1

 $\begin{array}{lll} {\tt name} & {\tt :} & {\tt name} & {\tt of} & {\tt the} & {\tt index} & {\tt field} \\ {\tt X1} & {\tt :} & {\tt coordinate} & {\tt of} & {\tt source} & {\tt points} \\ \end{array}$

R : cut off radius (if not supplied ident to mesh width)

3.4 fit

lump (fit) sampled values into the corresponding grid cell

3.5 predict

interpolate from lumped data to specified location

4 grid/@Grid2

4.1 Grid2

lump spatiotemporal data into a 2-dimensional grid

4.2 binop

operate function fun on data val within the context of a grid cell (for fitting grid cell values from sampled values)

4.3 build_index

compute the grid-cell index for samples sampled at points $\ensuremath{\mathtt{X1}}$

X1 : coordinate along first dimension
X2 : coordinate along second dimension

4.4 plot

4.5 predict

interpolate from lumped data to specified location

$5 \quad \mathrm{grid}/\mathrm{@Grid3}$

5.1 Grid3

lump spatiotemporal data into a 3-dimensional grid

5.2 build_index

```
compute the grid-cell index for samples sampled at points X1
X1 : coordinate along first dimension
X2 : coordinate along second dimension
X3 : coordinate along third dimension
```

- 6 mesh1d
- 6.1 dxspace
- 6.2 dxspace2
- 6.3 dzmesh
- $6.4 \quad \text{mesh} 1$
- $6.5 \quad \text{mesh1d}$
- 6.6 nlogstep

optimization 7 $7.1 improve_smooth_insert$ 7.2 objective0_angle1_barycentric 7.3 objective0_angle2_barycentric 7.4 objective0_angle2_barycentric9 7.5 objective0_angle_2_cartesian 7.6 objective0_angle_inf_cartesian 7.7 objective0_barycentric9

7.8 objective0_pythagoras1_barycentric9

7.9 objective 0-pythagoras 1-cartesian

 $objective0_pythagoras2_cartesian$ 7.117.12 objective_3_angle 7.13 objective_A_bnd 7.14 objective_P_angle $objective_P_angle_scaled$ 7.15 $objective_P_angle_scaled_area$ 7.16 $objective_P_midpoint$ 7.177.18 objective_angle

 $objective_angle2_barycentric$

7.19

 $7.10 \quad objective 0_pythagor as 2_barycentric 9$

7.20	$objective_angle_p$
7.21	objective_angle_scaled_area
7.22	$objective_angle_scaled_circumference$
7.23	objective_cosa
7.24	$objective_cosa_p$
7.25	$objective_cosa_scaled_side_length$
7.26	$objective_distance_edge_centre$
7.27	$objective_distance_edge_centre_perpendicular$
7.28	$objective_distance_orthocentre_excentre$
7.29	objective incentre excentre

- 7.30 objective_length_min_max
- 7.31 objective_length_var
- 7.32 objective_thales
- 7.33 objective_thales_difference
- 7.34 test_objective_cosa_p

8 mesh

mesh generation, manipulation, analysis, refinement and optimization

8.1 preload_msh

- 9 sparsemesh/@SparseMesh1
- 9.1 SparseMesh1

```
lump time series of sampled spatial data in one dimension ( \operatorname{projected})
```

9.2 assign

assign (lump) data "v0" sampled at sample times/location to field " ${\tt field}$ "

9.3 assignS

lump sequentially sampled data "v0" and assign to field "field"

9.4 init

initialize, segment sampling locations/times into blocks the
 sampled
data is lumped to

9.5 interp

interpolate data stored in field "field" to coordinates Xi ingnore invalid data TODO, check if convex

9.6 interpS

interpolate data stored in field "field" to coordinates Xi, do not ignore invalid data

9.7 rmse_interp

```
interpolation part of the error :  e ~~1/2*d^2v/dx^2 * dx^2 + higher order terms \\ ~~1/2*d^2 v  the other part of the error is the sampling error (gaussian noise) the mesh is optimal, when e_nois ~~e_interp
```

10 sparsemesh/@SparseMesh2

10.1 SparseMesh2

lump time series of sampled spatial data (track recordings) along
 two dimensions,

e.g 1 projected spatial dimension and one for time time

TODO : better blocks (all neighbours within mahalanobis distance)

TODO: do not use simple mean, but allow for least squares

regression

TODO : precompute the least squares weights for accummarray

10.2 assign

assign (lump) data "v0" sampled at sample times/location to field "field"

10.3 assignS

lump sequentially sampled data "v0" and assign to field "field"

10.4 init

initialize, segment sampling locations/times into blocks the
 sampled
data is lumped to

10.5 interp

interpolate data stored in field "field" to coordinates Xi ingnore data outside of the domain (convex interpolation)

10.6 interpS

interpolate data stored in field "field" to coordinates \mbox{Xi} , extrapolate beyond domain

10.7 rmse_interp

```
interpolation part of the error :
e ~ 1/2*d^2v/dx^2 * dx^2 + higher order terms
  ~ 1/2*d^2 v
the other part of the error is the sampling error (gaussian noise)
the mesh is optimal, when e_nois ~ e_interp
TODO this is e ~ f', not f''
```

11 sparsemesh

```
lumping and interpolation of spatio-temporal data into a "mesh" that
   is spaced
optimally for the local density of sample points
```

allows for processing of large data sets with lower memory consumption and run time

intended for ADCP data processing

Overcomes the limitation of gridding, where some grid cells can have an insufficient number of samples

11.1 SparseMesh

SparseMesh superclass

12 test

12.1 test_derivative_matrices_curvilinear

13 mesh

mesh generation, manipulation, analysis, refinement and optimization

13.1 trimesh_fast