Hinweise für die Tutorien NACH der 4. Vorlesung (11.11.09)

1 Formale Sprachen

- aus der Vorlesung:
 - formale Sprache: $L \subseteq A^*$
 - Produkt: $L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$
 - Potenzen: $L^0 = \{\varepsilon\}$ und $L^{i+1} = L^i \cdot L$
 - Konkatenationsabschluss:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$
 und $L^* = \bigcup_{i=0}^{\infty} L^i$

- Beispiele machen:
 - formale Sprache L_I der legalen Zahlen vom Typ **int**:
 - * Versuch: $A = \{0, ..., 9\}$
 - $L_I = A^+$. (nicht A^*) * Was fehlt? Z. B. das Minuszeichen;
 - besser: $\{\varepsilon, -\}A^+$
 - * Was ist mit Präfix 0x? ich weiß es nicht
 - formale Sprache L_V der legalen Variablennamen in Java:
 - * Versuch: $A = \{ _, a, \ldots, z, A, \ldots, Z \}, B = A \cup \{ 0, \ldots, 9 \}$ $L_V = A \cdot B^*.$
 - * es fehlen die Umlaute, ...
 - * Was ist noch falsch? z.B. Schlüsselwörter (**if**, ...) sind als Variablennamen verboten. also eher sowas wie $L_V = (A \cdot B^*) \setminus \{\text{if}, \text{class}, ...\}$ da könnte man jetzt alle endlich vielen Schlüsselwörter aufzählen

aber wenn nur endlich viele Wörter verboten sind, geht es im Prinzip ohne Mengendifferenz

- formale Sprache L aller Wörter über $A = \{a, b\}$, in denen nirgends das Teilwort ab vorkommt.
 - * Das kann man auch positiv formulieren: In den erlaubten Wörtern müssen, wenn überhaupt, erst alle b kommen und danach, wenn überhaupt alle a
 - * also $L = \{b\}^* \{a\}^*$
- Bitte darauf achten, dass nicht Wörter und Sprachen durcheinander geworfen werden:
 - * abb ist etwas anderes als {abb}.
 - * Und {abb}* gibt es, aber abb* gibt es nicht (bis jetzt).
- $-L_1 = \{ a^n \mid n \in \mathbb{N}_0 \} \text{ und } L_2 = \{ b^n \mid n \in \mathbb{N}_0 \}$

Achtung: $L_1L_2 = \{a^kb^m \mid k \in \mathbb{N}_0 \land m \in \mathbb{N}_0\}$ die Exponenten können verschieden sein!

- allgemeines zu Mengen:
 - generell: wissen die Studenten, was Mengendifferenz ist?
 - Darauf hinweisen: $\{1, 2, 3\} \cup \{2, 3, 4\} = \{1, 2, 3, 4\}$

kein Element kann "mehrfach vorkommen".

Wer so was wie $\{1, 2, 3, 2, 3, 4\}$ schreibt, steht im dringenden Verdacht, etwas noch nicht verstanden zu haben.

- Man beweise: $L^* \cdot L = L^+$
 - Wie beweist man, dass zwei Mengen gleich sind?
 - Zum Beispiel, indem man zeigt, dass \subseteq und \supseteq gelten.
 - Also:
 - * ⊂:

Wenn $w \in L^* \cdot L$, dann w = w'w'' mit $w' \in L^*$ und $w'' \in L$.

Also existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$.

Also $w = w'w'' \in L^i \cdot L = L^{i+1}$.

Da $i + 1 \in \mathbb{N}_+$, ist $L^{i+1} \subseteq L^+$, also $w \in L^+$.

* \supseteq : Wenn $w \in L^+$, dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$ ist i = j + 1 für ein $j \in \mathbb{N}_0$, also ist für ein $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$. also w = w'w'' mit $w' \in L^j$ und $w'' \in L$. Wegen $L^j \subseteq L^*$ ist $w = w'w'' \in L^* \cdot L$.

2 Kontextfreie Grammatiken

• aus der Vorlesung: für alle Alphabete A und alle $x \in A$ Funktionen $N_x : A^* \to \mathbb{N}_0$, die wie folgt festgelegt sind:

$$N_x(\varepsilon) = 0$$

$$\forall y \in A : \forall w \in A^* : N_x(yw) = \begin{cases} 1 + N_x(w) & \text{falls } y = x \\ N_x(w) & \text{falls } y \neq x \end{cases}$$

 $N_x(w)$ gibt an, wie oft x in w vorkommt. Fragen, ob das klar ist.

- $\bullet\,$ aus der Vorlesung: G=(N,T,S,P)mit
 - $-N\cap T=\emptyset$
 - $-S \in N$ und
 - $-P\subseteq N\times V^*,\,P$ endlich, wobei $V=N\cup T$ sei.
 - Produktionen schreiben wir meist in der Form $X \to w$
 - mehrere mit gleicher linker Seite zusammengefasst: $X \to w_1 \mid w_2 \mid \cdots \mid w_k$
- Man arbeite mit $G = (\{X\}, \{a, b\}, X, \{X \to \varepsilon \mid aX \mid bX\})$
 - Was kann man alles ableiten? ε , a, b, aa, ...
 - aha: alle Wörter überhaupt: $L(G) = \{a, b\}^*$
- Gibt es auch eine Grammatik G mit $L(G) = \emptyset$?
 - suchen lassen ...
 - $z. B. (\{X\}, \{a, b\}, X, \{X \to X\}).$
 - wir haben sogar leere Produktionenmenge zugelassen: $(\{X\}, \{a, b\}, X, \{\})$ tuts auch.
 - allerdings: leere Alphabete haben wir verboten, also $(\{X\}, \{\}, X, P)$ geht nicht.
- Man arbeite mit $G = (\{X\}, \{(,)\}, X, \{X \to XX \mid (X) \mid \varepsilon\})$
 - man mache Beispielableitungen
 - * erste einfache wie $X \Rightarrow (X) \Rightarrow ((X)) \Rightarrow (((X))) \Rightarrow ((((X)))) \Rightarrow ((((X))))$ oder
 - * $X \Rightarrow XX \Rightarrow XXX \Rightarrow XXXX \Rightarrow XXXXX$ und dann irgendwie weiter
 - Welche Wörter w sind ableitbar?
 - * anschaulich: ableitbar sind genau die "wohlgeformten Klammerausdrücke"
 - * jedenfalls gleich viele (und): $N_{\ell}(w) = N_{\ell}(w)$
 - * Das ist aber nur notwendig aber nicht hinreichend für Ableitbarkeit (man diskutiere diese Adjektive), denn) (ist z. B. nicht ableitbar.
 - * zusätzliche Eigenschaften? erst mal raten/ nachdenken/ rumprobieren lassen
 - * aha: für jedes Präfix (es heißt das Präfix) v eines $w \in L(G)$ gilt: $N_{\zeta}(v) \geq N_{\zeta}(v)$ Das kann man sich gerade noch klar machen; aber der Beweis, dass man damit eine notwendige und hinreichende Bedingung für Ableitbarkeit hat, also eine Charakterisierung der Klammerausdrücke, ist wohl zu schwierig; ich sehe jedenfalls auf Anhieb keine vernünftige Erklärung.
- Man arbeite mit $G = (\{X\}, \{(,)\}, X, \{X \to (X)X \mid \varepsilon\}).$
 - siehe da: auch damit sind genau die wohlgeformten Klammerausdrücke ableitbar

- Man mache sich klar, warum ...
- Und dann auch Grammatiken konstruieren *lassen*, z.B. für die folgenden formalen Sprachen über dem Alphabet $T = \{a, b\}$.
 - die Menge aller Wörter über T, in denen irgendwo das Teilwort baa vorkommt, z. B. so: $(\{X,Y\},T,X,P)$ mit $P=\{X\to Y$ baa $Y,Y\to aY|bY|\varepsilon\}$
 - die Menge aller Wörter $w \in T^*$ mit der Eigenschaft, dass für alle Präfixe v von w gilt: $|N_a(v) N_b(v)| \le 1$.
 - * Man überlege sich erst mal, welche Struktur Wörter der Länge 2, 4, ... haben: wenn ich das richtig sehe: {ab, ba}*
 - * Also leistet die Grammatik ($\{X,Y\},T,X,P$) mit $P=\{X\to \mathtt{ab}X|\mathtt{ba}X|\mathtt{a}|\mathtt{b}|\varepsilon\}$ das Gewünschte.
- Achtung: bitte nicht aus Versehen mit Grammatiken bzw. formalen Sprachen vom Aufgabenblatt 5 rumspielen

3 Reflexiv-transitive Hülle

• Standard-Definitionen aus der Vorlesung

```
 \begin{array}{l} -\text{ für }R\subseteq M_1\times M_2 \text{ und }S\subseteq M_2\times M_3;\\ S\circ R=\{(x,z)\in M_1\times M_3\mid \exists y\in M_2:(x,y)\in R\wedge (y,z)\in S\}\\ -\text{ Id}_M=\{(x,x)\mid x\in M\}\\ -R^0=\text{ Id}_M \text{ und }\forall i\in \mathbb{N}_0:R^{i+1}=R\circ R^i\\ -R^*=\bigcup_{i=0}^\infty R^i \end{array}
```

- z.B. in der Vorlesung offen gelassen:
 - Es sei R eine beliebige Relation und S eine Relation, die reflexiv und transitiv ist. Wenn $R \subseteq S$, dann ist sogar $R^* \subseteq S$.
 - Man beweise das, indem man durch vollständige Induktion zeigt: Für alle $i \in \mathbb{N}_0$: Wenn $R \subseteq S$, dann $R^i \subseteq S$.
 - Wenn man eine Relation hin malt: Elemente $x, y \in M$ als Punkte und einen Pfeil von x nach y, falls xRy (Infixnotation wird in der Vorlesung eingeführt): Wie sieht das Bild aus, wenn die Relation reflexiv ist? Schlingen. Wie, wenn sie transitiv ist? (schwieriger zu beschreiben; nur Beispiele ansehen; Wenn man man einen Zyklus dabei hat: jeder mit jedem verbunden)