From published tables to rtauargus input: an automated approach

C. Baudry and J. Jamme 03-05-24

Formal description of a table

table_name : indicator ⊗ {grouping_var_1 x grouping_var_2}

Example:

T1: turnover_pizzas \otimes {nuts2 x size}

	BE10	BE21		Total
wf1	10	8		50
wf2	10	12		50
Total	20	20	60	100

List of published tables

- T1: to_pizzas ⊗ {nuts2 x size}
- T2: to_pizzas ⊗ {nuts3 x size}
- T3: to_pizzas \otimes {a10 x nuts2}
- T4: to_pizzas ⊗ {a10 x nuts3}
- T5: to_pizzas ⊗ {a21 x nuts2}
- T6: to_pizzas \otimes {a21 x nuts3}
- T7: to_pizzas \otimes {a88 x nuts2}
- T8: to_pizzas \otimes {a88 x nuts3}
- T9: to batavia \otimes {a10 x size}
- T10: to_batavia \otimes {a10 x diversity}
- T11: to_batavia \otimes {a21 x size}
- T12: to batavia \otimes {a21 x diversity}
- T13: to_batavia \otimes {a88 x size}

- T14: to_batavia \otimes {a88 x diversity}
- T15: to_arugula \otimes {a10 x size}
- T16: to_arugula ⊗ {a10 x diversity}
- T17: to_arugula \otimes {a21 x size}
- T18: to_arugula ⊗ {a21 x diversity}
- T19: to_arugula \otimes {a88 x size}
- T20: to_arugula ⊗ {a88 x diversity}
- T21: to_lettuce \otimes {a10 x size}
- T22: to_lettuce ⊗ {a10 x diversity}
- T23: to_lettuce \otimes {a21 x size}
- T24: to_lettuce ⊗ {a21 x diversity}
- T25: to lettuce \otimes {a88 x size}
- T26: to_lettuce ⊗ {a88 x diversity}

List of published tables

- T1: to_pizzas \otimes {nuts2 x size}
- T2: to_pizzas ⊗ {nuts3 x size}
- T3: to_pizzas \otimes {a10 x nuts2}
- T4: to_pizzas ⊗ {a10 x nuts3}
- T5: to_pizzas ⊗ {a21 x nuts2}
- T6: to pizzas \otimes {a21 x nuts3}
- T7: to_pizzas \otimes {a88 x nuts2}
- T8: to_pizzas ⊗ {a88 x nuts3}
- T9: to batavia \otimes {a10 x size}
- T10: to_batavia \otimes {a10 x diversity}
- T11: to_batavia \otimes {a21 x size}
- T12: to_batavia \otimes {a21 x diversity}
- T13: to_batavia \otimes {a88 x size}

- T14: to_batavia \otimes {a88 x diversity}
- T15: to_arugula \otimes {a10 x size}
- T16: to_arugula ⊗ {a10 x diversity}
- T17: to_arugula \otimes {a21 x size}
- T18: to_arugula ⊗ {a21 x diversity}
- T19: to_arugula \otimes {a88 x size}
- T20: to_arugula ⊗ {a88 x diversity}
- T21: to_lettuce \otimes {a10 x size}
- T22: to_lettuce \otimes {a10 x diversity}
- T23: to_lettuce \otimes {a21 x size}
- T24: to_lettuce \otimes {a21 x diversity}
- T25: to lettuce \otimes {a88 x size}
- T26: to_lettuce ⊗ {a88 x diversity}

List of published tables

```
• T1: to pizzas \otimes { nuts2 x size}
                                                               • T14: to batavia \otimes { a88 x diversity}
                                                               • T15: to_arugula \otimes { a10 x size}
• T2: to_pizzas \otimes { nuts3 x size}
• T3: to pizzas \otimes { a10 x nuts2}
                                                               • T16: to arugula \otimes { a10 x diversity}
• T4: to pizzas \otimes { a10 x nuts3}
                                                               • T17: to arugula \otimes { a21 x size}
• T5: to pizzas \otimes { a21 x nuts2}
                                                               • T18: to arugula \otimes { a21 x diversity}
• T6: to pizzas \otimes { a21 x nuts3}
                                                               • T19: to arugula \otimes { a88 x size}
• T7: to pizzas \otimes { a88 x nuts2}
                                                               • T20: to arugula \otimes { a88 x diversity}
• T8: to pizzas \otimes { a88 x nuts3}
                                                               • T21: to lettuce \otimes { a10 x size}
• T9: to batavia \otimes { a10 x size}
                                                               • T22: to lettuce \otimes { a10 x diversity}
• T10: to batavia \otimes { a10 x diversity}
                                                               • T23: to lettuce \otimes { a21 x size}
                                                               • T24: to_lettuce \otimes { a21 x diversity}
• T11: to batavia \otimes { a21 x size}
• T12: to batavia \otimes { a21 x diversity}
                                                               • T25: to lettuce \otimes { a88 x size}
• T13: to batavia \otimes { a88 x size}
                                                               • T26: to lettuce \otimes { a88 x diversity}
```

List of tables to protect

T1_T3: to_pizzas ⊗ { HRC_NUTS x size}
 T_rest: to_pizzas ⊗ { HRC_NAF x HRC_NUTS}
 T_odd: to_lettuce ⊗ { HRC_NAF x size x HRC_lettuce^h}
 T_even: to_lettuce ⊗ { HRC_NAF x diversity x HRC_lettuce^h }
 With HRC_lettuce^h a holding variable.

Analysis automation steps

1. The user enters the metadata for the tables to be published in the required format.

Then the program:

- 1. Identifies hierarchies and renames variables accordingly
- 2. Breaks down the request into independent sub-requests (clusters)
- 3. Detects overlapping tables
- 4. Creates inclusion graphs
- 5. Groups tables included in each other into a single table
- 6. Creates a summary of the tables needing protection

Metadata file

	А	В	С	D	E	F	G	Н	l l	J	K	L	М
1 ta	ableau	champ.population	hrc_champ.population	champ.date	hrc_champ.date	champ.lieu	hrc_champ.lieu	variable_interet	metrique	hrc_indicateur	croisement	hrc_croisement	totcode
2 J	1	entreprises		2023		france	i	pizzas	ça		nuts2	hrc_nuts	total
3 J	1	entreprises		2023		france	1	pizzas	ça		treff		total
4 J	2	entreprises		2023		france	i	pizzas	ça		nuts3	hrc_nuts	total
5 J	2	entreprises		2023		france	1	pizzas	ça		treff		total
6 J	3	entreprises		2023		france		pizzas	ca		a10	hrc_naf	total
7 J	3	entreprises		2023		france	<u> </u>	pizzas	ca		nuts2	hrc_nuts	total
8 <u>T</u>	4	entreprises		2023		france	!	pizzas	ca		a10	hrc_naf	total
9 J	4	entreprises		2023		france		pizzas	ca		nuts3	hrc_nuts	total

tableau	•
ŢŢ	ı
ŢŢ	ı
T2	ı
T2	ı
Ţ9	ı
<u>T</u> 9	ı

metrique	hrc_indicateur
ça	
ca	
ça	
ça	
ça	hrc_salades
ça	<u>hrc</u> salades
	ça ça ça ça

hrc_croisement
hrc_nuts
hrc nuts
hrc naf

Metadata

```
dfMetadatalettuce <- read ods(file.path(</pre>
 rep metadata, "metadata salades for nested totcode champs.ods"))
str(dfMetadatalettuce)
## tibble [50 × 13] (S3: tbl df/tbl/data.frame)
             : chr [1:50] "T1" "T1" "T2" "T2" ...
   $ tableau
##
   $ champ.population : chr [1:50] "entreprises" "entreprises" "entreprises" "entreprises" ...
   $ hrc champ.population: logi [1:50] NA NA NA NA NA NA ...
   $ champ.date
##
                 : num [1:50] 2023 2023 2023 2023 ...
   $ hrc champ.date : logi [1:50] NA NA NA NA NA NA ...
   $ champ.lieu : chr [1:50] "france" "france" "france" "france" ...
##
   $ hrc champ.lieu : logi [1:50] NA NA NA NA NA NA ...
##
##
   $ variable interet : chr [1:50] "pizzas" "pizzas" "pizzas" "pizzas" ...
                       : chr [1:50] "to" "to" "to" "to" ...
##
   $ metrique
   $ hrc indicateur
                         : chr [1:50] NA NA NA NA ...
##
   $ croisement
##
                        : chr [1:50] "nuts2" "size" "nuts3" "size" ...
   $ hrc croisement : chr [1:50] "hrc nuts" NA "hrc nuts" NA ...
##
   $ totcode
                         : chr [1:50] "total" "total" "total" "total" ...
##
```

Metadata

```
dfMetadatalettuce %>%
  filter(tableau %in% c("T1","T2","T9")) %>%
  select(tableau, variable interet, metrique, hrc indicateur, croisement, hrc croisement)
## # A tibble: 6 × 6
     tableau variable interet metrique hrc indicateur croisement hrc croisement
##
     <chr>
             <chr>
                               <chr>>
                                        <chr>>
                                                        <chr>>
                                                                   <chr>>
##
## 1 T1
             pizzas
                                        <NA>
                                                        nuts2
                                                                   hrc nuts
                               to
             pizzas
                                                        size
## 2 T1
                               to
                                        <NA>
                                                                   <NA>
             pizzas
## 3 T2
                               to
                                        <NA>
                                                        nuts3
                                                                   hrc nuts
## 4 T2
             pizzas
                                        <NA>
                                                        size
                                                                   <NA>
                               to
## 5 T9
             batavia
                                        hrc salades
                                                        a10
                                                                   hrc naf
                               to
## 6 T9
             batavia
                               to
                                        hrc salades
                                                        size
                                                                   <NA>
```

Identify hierarchies

```
dfHrcIdentlettuce <- identify hrc(dfMetadatalettuce)</pre>
dfHrcTdentlettuce %>%
  filter(tableau %in% c("T1","T2","T9")) %>%
  select(tableau,indicateur,hrc indicateur,croisement,hrc croisement)
## # A tibble: 7 × 5
## # Rowwise:
    tableau indicateur hrc indicateur croisement
                                                   hrc croisement
    <chr>
             <chr>
                        <lgl>
                                       <chr>
                                                   <chr>>
##
## 1 T1
            to pizzas
                       NA
                                       HRC NUTS
                                                   hrc nuts
            to pizzas NA
                                       size
## 2 T1
                                                   <NA>
            to pizzas NA
## 3 T2
                                       HRC NUTS
                                                   hrc nuts
## 4 T2
            to pizzas NA
                                       size
                                                   <NA>
            to salades NA
                                       HRC NAF
                                                   hrc naf
## 5 T9
             to salades NA
## 6 T9
                                       size
                                                   <NA>
## 7 T9
             to salades NA
                                       HRC SALADES hrc salades
```

Changes generated by hierarchy identification

- T1: to_pizzas ⊗ {nuts2 x size}
 T2: to_pizzas ⊗ {nuts3 x size}
 T9: to_batavia ⊗ {a10 x size}
 ...
- T1: to_pizzas ⊗ {HRC_NUTS x size}
- T2: to_pizzas ⊗ {HRC_NUTS x size}
- T9: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- •

Split in clusters

Split the list of tables in independant clusters, i.e. linked tables clusters.

Independant tables do not need to be treated together. Call Tau-Argus multiple times independently.

```
ISplitlettuce <- split_in_clusters(dfHrcIdentlettuce)
names(ISplitlettuce)
## [1] "to_pizzas" "to_salades"</pre>
```

Which tables are inside each cluster?

- to_pizzas: T1, T2, T3, T4, T5, T6, T7, T8
- to_lettuce: T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24, T25, T26

Detection of tables included in others

lDescLienlettuce <- create_edges(lSplitlettuce)</pre>

Cluster to_pizzas: Cluster to_lettuce:

NULL ## NULL

Inclusion graphs

graph_links_tab(lDescLienlettuce)

Inclusion graphs

graph_links_tab(lDescLienlettuce)

Group tables based on links

lTabIndep\$ca_pizzas

NULL

lTabIndep\$ca_salades

NULL

Result of table grouping

- to_pizzas: T1, T2, T3, T4, T5, T6, T7, T8
- to_lettuce: T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24, T25, T26

- to_pizzas : T1_T2, T3_T4_T5_T6_T7_T8
- to_lettuce: T10_T12_T14_T16_T18_T20_T22_T24_T26,
 T9_T11_T13_T15_T17_T19_T21_T23_T25

R output creation

tableau

<chr>>

##

##

1TabTreat <- tab to treat(1TabIndep)</pre> ## \$to pizzas ## # A tibble: 2 × 7 ## # Groups: tableau [2] tableau indicateur croisement 1 croisement 2 hrc croisement 1 hrc cro ## champ <chr>> <chr>> <chr>> <chr>> <chr>> <chr>> ## <chr>> entreprises2023france to pizzas HRC NUTS ## 1 T1 T2 size hrc nuts <NA> ## 2 T3 T4 T5 T6 T7 T8 entreprises2023france to pizzas HRC NAF HRC NUTS hrc naf hrc nut ## ## \$to salades ## # A tibble: 2 × 9 ## # Groups: tableau [2]

<chr>>

<chr> <chr>

1 T10 T12 T14 T16 T18 T20 T22... entr... to salades HRC NAF

2 T11 T13 T15 T17 T19 T21 T23... entr... to salades HRC NAF

champ indicateur croisement 1 croisement 2 croisement 3 hrc croisement 1

diversity

size

<chr>>

<chr>>

<chr>>

HRC SALADES hrc naf

HRC SALADES hrc naf

.csv output creation

One .csv file for each cluster:

output_csv(lTabTreat, "resultats/totcode/res_analyse_lettuce")

Summary

From the **26 published tables** defined in the metadata file, the program suggests to **protect 4 rearranged tables**.

For this particular example rtauargus::tab_multi_manager() would be called twice:

- Once for the pizza turnover tables
- Once for the salad turnover tables

Further work

- Keep on testing the program on different lists of tables, especially for the nonnested hierarchies option recently added
- Check the hierarchies provided (nested, non-nested)
- Automatically generate the input tables for rtauargus functions tab_rtauargus() and tab_multi_manager() using the output of this analysis program

Code on gitlab: repo git

Appendix 1: program flowchart

- T1: to_pizzas ⊗ {nuts2 x size}
- T2: to_pizzas ⊗ {nuts3 x size}
- T3: to_pizzas \otimes {a10 x nuts2}
- T4: to_pizzas \otimes {a10 x nuts3}
- T5: to_pizzas \otimes {a21 x nuts2}
- T6: to_pizzas \otimes {a21 x nuts3}
- T7: to pizzas \otimes {a88 x nuts2}
- T8: to_pizzas ⊗ {a88 x nuts3}
- T9: to batavia \otimes {a10 x size}
- T10: to_batavia \otimes {a10 x diversity}
- T11: to_batavia \otimes {a21 x size}
- T12: to_batavia \otimes {a21 x diversity}
- T13: to_batavia \otimes {a88 x size}

- T14: to_batavia \otimes {a88 x diversity}
- T15: to_arugula \otimes {a10 x size}
- T16: to_arugula ⊗ {a10 x diversity}
- T17: to_arugula \otimes {a21 x size}
- T18: to_arugula \otimes {a21 x diversity}
- T19: to_arugula \otimes {a88 x size}
- T20: to_arugula \otimes {a88 x diversity}
- T21: to_lettuce \otimes {a10 x size}
- T22: to_lettuce ⊗ {a10 x diversity}
- T23: to_lettuce ⊗ {a21 x size}
- T24: to_lettuce ⊗ {a21 x diversity}
- · T25: to_lettuce ⊗ {a88 x size}
- T26: to_lettuce ⊗ {a88 x diversity}

- T1: to_pizzas ⊗ {HRC_NUTS x size}
- · T2: to_pizzas ⊗ {HRC_NUTS x size}
- T3: to_pizzas ⊗ {HRC_NAF x HRC_NUTS}
- T4: to_pizzas ⊗ {HRC_NAF x HRC_NUTS}
- T5: to_pizzas ⊗ {HRC_NAF x HRC_NUTS}
- T6: to_pizzas ⊗ {HRC_NAF x HRC_NUTS}
- T7: to_pizzas ⊗ {HRC_NAF x HRC_NUTS}
- T8: to pizzas ⊗ {HRC NAF x HRC NUTS}
- T9: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- · T10: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}
- · T11: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- · T12: to_lettuce \otimes {HRC_NAF x diversity x HRC_lettuce}
- T13: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}

- · T14: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}
- · T15: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- · T16: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}
- T17: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- · T18: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}
- · T19: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- · T20: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}
- T21: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- · T22: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}
- · T23: to_lettuce \otimes {HRC_NAF x size x HRC_lettuce}
- T24: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}
- · T25: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- T26: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}

\$to_pizzas

- T1: to_pizzas ⊗ {HRC_NUTS x size}
- · T2: to_pizzas ⊗ {HRC_NUTS x size}
- T3: to_pizzas ⊗ {HRC_NAF x HRC_NUTS}
- T4: to_pizzas ⊗ {HRC_NAF x HRC_NUTS}
- · T5: to_pizzas ⊗ {HRC_NAF x HRC_NUTS}
- T6: to_pizzas ⊗ {HRC_NAF x HRC_NUTS}
- · T7: to_pizzas ⊗ {HRC_NAF x HRC_NUTS}
- · T8: to_pizzas \otimes {HRC_NAF x HRC_NUTS}

\$to_lettuce

- T9: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- · T10: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}
- T11: to lettuce ⊗ {HRC NAF x size x HRC lettuce}
- T12: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}
- · T13: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- · T14: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}
- T15: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- · T16: to_lettuce \otimes {HRC_NAF x diversity x HRC_lettuce}
- T17: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- · T18: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}
- T19: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- T20: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}
- · T21: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- T22: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}
- · T23: to_lettuce \otimes {HRC_NAF x size x HRC_lettuce}
- · T24: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}
- T25: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- · T26: to_lettuce \otimes {HRC_NAF x diversity x HRC_lettuce}

Extrait des 32 lignes : Extrait des 128 lignes : ## NULL ## NULL

\$to_pizzas

- T1_T2: to_pizzas ⊗ {HRC_NUTS x size}
- T3_T4_T5_T6_T7_T8: to_pizzas \otimes {HRC_NAF x HRC_NUTS}

\$to_lettuce

- · T9_T11_T13_T15_T17_T19_T21_T23_T25: to_lettuce ⊗ {HRC_NAF x size x HRC_lettuce}
- · T10_T12_T14_T16_T18_T20_T22_T24_T26: to_lettuce ⊗ {HRC_NAF x diversity x HRC_lettuce}