Quality Requirements

1. Security (Most Important)

Security is the foundation of the B.R.A.D system, given its handling of sensitive data like user-submitted URLs, forensic metadata, and potentially malicious content. Unauthorized access or breaches could lead to severe consequences such as data leaks, false reports, or misuse of the system for cyber-attacks. Therefore, security controls, encrypted storage, secure APIs, role-based access control, and container isolation must be thoroughly enforced to protect both user and system integrity.

Stimulus	Stimulus	Response	Response	Environment	Artifact
Source			Measure		
Malicious actors/ Attackers.	Attempt to compromise data or infrastructure.	System should block unauthorized access and encrypt sensitive information.	100% of sensitive data encrypted at rest and in transit. All RBAC (Role Based Access Control) and MFA (Multi- Factor Authentication)	Production environment.	BRAD Backend/ API System
			enforced.		

2. Compliance

Compliance ensures that the system operates within the legal and ethical boundaries defined by regulations like GDPR and POPIA. This is especially important for a tool that collects and processes potentially identifiable or legally sensitive data. Compliance includes implementing consent mechanisms, depersonalizing data when possible, logging access to personal data, and providing the right to be forgotten.

Stimulus	Stimulus	Response	Response	Environment	Artifact
Source			Measure		
Legal/	Data privacy	System should	GDPR and POPIA	Production	Data
Regulatory	and	ensure legal	checklists	environment.	Processing
Bodies.	regulatory	compliance in	passed; audit		Components.
	audits.	data handling	logs maintained;		
		and provide	user data		
		user data	deletion		
		control	supported.		
		mechanisms.			

3. Reliability

The reliability of B.R.A.D ensures that forensic investigations can be conducted consistently and accurately. The system should gracefully handle failed URL submissions, avoid crashes during analysis, and recover from bot failures without corrupting data. High reliability builds trust in the system's outputs and enables analysts to depend on its results for critical decision-making.

Stimulus	Stimulus	Response	Response	Environment	Artifact
Source			Measure		
System Users.	Submission	System	99.9% uptime,	Production	Bot
	of various	should	bot recovers	environment.	Engine
	domains,	maintain	from crashes		and
	including	stable	within 60		Report
	malformed	operation	seconds.		System.
	or malicious	and report			
	ones.	errors clearly.			

4. Scalability

Scalability is essential to support the analysis of many domain reports simultaneously. B.R.A.D must be able to grow with demand, especially during cyber incident spikes. It should process multiple domain submissions concurrently without bottlenecking the system or slowing down analysis pipelines. By ensuring scalability, the system can maintain optimal performance under high loads, enabling faster processing and quicker turnaround times for forensic results.

Stimulus	Stimulus	Response	Response	Environment	Artifact
Source			Measure		
Multiple	Submission of	System	Supports 500+	Production	Domain
Users.	multiple links at	should	concurrent	environment.	Analysis
	the same time.	scale	domain		Pipeline.
		horizontally	submissions		
		to handle	with average		
		multiple	analysis <		
		concurrent	10s/domain.		
		analyses.			

5. Maintainability

B.R.A.D's architecture must allow for frequent updates such as patching vulnerabilities, integrating new threat intelligence feeds or adapting AI models. The system must be designed with modularity and clear interfaces between components (e.g., scrapers, AI, storage) so developers can make targeted changes without affecting the whole system.

Stimulus	Stimulus	Response	Response	Environment	Artifact
Source			Measure		
Development Team.	Requirement to update scraping logic or AI model.	System should allow modular, low-risk updates with	Docker-based components, automated deployment pipeline, <5 min rollout	Development environment.	Bot Container & AI Modules.
		minimal downtime.			