Estimation et Intervalles de confiance Chap. 4 du polycopié

Chargés de cours

V. Léger & F. Leblanc (resp. UE)

Données : $x_1, ..., x_n$

Modèle : n-échantillon $X_1, ..., X_n$ de X de loi dépendant d'un ou deux paramètres.

dans ce cours:

- Modèle Normal $\mathcal{N}(\mu, \sigma^2)$:
 - μ inconnu et σ connu
 - $m{\cdot}$ μ inconnu et σ inconnu
- Modèle de Bernoulli $\mathcal{B}(p)$ avec p inconnu

Rem : Les résultats obtenus dans le modèle normal s'étendront aux autres modèles pour n suffisamment grand grâce au TCL.

Le problème : Proposer un ou plusieurs estimateurs du ou des paramètres inconnus du modèle et en établir les propriétés pour choisir le meilleur.

Estimateur : Un estimateur de θ est une fonction connue de $X_1, ..., X_n$: $T(X_1, ..., X_n) = T_n$ (aussi noté $\hat{\theta}(X_1, ..., X_n)$).

Exemples d'estimateurs

• pour
$$\mu = E(X) : \bar{X}_n, \min(X_i), X_1, (X_1 + X_2)/2 ...$$

• pour
$$\sigma^2 = V(X)$$
: S_n^2 , $S_n'^2$, $X_1^2 - \bar{X}_n^2$...

Lequel choisir?

Qualités attendues d'un estimateur :

- Sans biais : $E(T_n) = \theta$ (retrouve en moyenne θ)
- De variabilité décroissante :

$$V(T_n) \to 0$$
 si $n \to \infty$

- Convergent : sans biais et de variance tendant vers zéro avec n
- **Vocabulaire** : T_n calculé avec les données $x_1, ..., x_2$ produit une valeur appelée estimation de θ
- **Notations** : $\hat{\theta}$ l'estimateur de θ appliqué aux données sera parfois noté $\hat{\theta}_{calc}$ (ou plus généralement une statistique T appliquée aux données sera notée T_{calc})

Dans **tous les modèles** où la variable X est tq $\mu=E(X)<\infty$ et $\sigma^2=V(X)<\infty$ les meilleurs estimateurs de μ et σ^2 sont :

$$\hat{\mu} = \bar{X}_n$$
 et $\hat{\sigma^2} = S_n^2$

Un premier argument pour estimer μ par \bar{X}_n est la loi des grands nombres : $\bar{X}_n \to \mu$ (on peut justifier $S_n'^2$ de manière analogue). De plus ils sont sans biais et de variance qui tend vers 0 avec n, en effet $\forall n$:

$$E(ar{X}_n) = \mu$$
 et $V(ar{X}_n) = rac{\sigma^2}{n}$ $E(S_n'^2) = \sigma^2$ et $V(S_n'^2) = \mathcal{O}\left(rac{1}{n}
ight)$

Intervalles de confiance

Définition : On dira que $[T_1, T_2]$ est un intervalle de niveau de confiance $1 - \alpha$ pour θ si T_1 et T_2 ne dépendent que des X_i et éventuellement d'un paramètre connu et est tel que :

$$P(\theta \in [T_1, T_2]) = 1 - \alpha$$

Pour construire des intervalles de confiance dans le cas gaussien on utilise le résultat suivant :

Lois des estimateurs :

si X de loi $\mathcal{N}(\mu, \sigma^2)$

- \bar{X}_n suit une loi normale $\mathcal{N}(\mu, \sigma^2/n)$
- $nS_n^2/\sigma^2 = (n-1)S_n^{\prime 2}/\sigma^2$ suit une loi \mathcal{X}_{n-1}^2

Intervalle de confiance pour μ :

• si σ^2 connue :

$$IC(\bar{X}_n, \alpha, \sigma^2) = \left[\bar{X}_n - \frac{\sigma}{\sqrt{n}}u_{1-\alpha/2}, \bar{X}_n + \frac{\sigma}{\sqrt{n}}u_{1-\alpha/2}\right]$$

où u_p est le quantile d'ordre p d'une $\mathcal{N}(0,1)$.

• si σ^2 inconnue :

$$IC(\bar{X}_n,\alpha) = \left[\bar{X}_n - \frac{S'_n}{\sqrt{n}}t_{n-1,1-\alpha/2}, \bar{X}_n + \frac{S'_n}{\sqrt{n}}t_{n-1,1-\alpha/2}\right]$$

où $t_{n-1,p}$ est le quantile d'ordre p d'une \mathcal{T}_{n-1} . R: t.test(x,conf.level=0.90) fournit un IC symétrique de niveau de conf. 90%

Intervalle de confiance pour σ^2 avec μ inconnu :

$$IC(S_n^2, \alpha) = \left[\frac{nS_n^2}{z_{n-1, 1-\alpha/2}}, \frac{nS_n^2}{z_{n-1, \alpha/2}}\right]$$

Comme nS_n^2/σ^2 est une variable \mathcal{X}_{n-1}^2 en notant $z_{n-1,p}$ son quantile d'ordre p on a :

$$P(z_{n-1,\alpha/2} < nS_n^2/\sigma^2 < z_{n-1,1-\alpha/2}) = 1 - \alpha$$

d'où

$$P(\sigma^2 \in IC(S^2, \alpha)) = 1 - \alpha$$

Si X de loi $\mathcal{B}(p)$, $\mu = E(X) = p$ et $\sigma^2 = p(1-p)$. \bar{X}_n représente la fréquence d'apparition du 1 dans l'échantillon notée F_n :

$$\bar{X}_n = F_n = \frac{1}{n} \sum_{i=1}^n X_i \text{ et } S_n^2 = \bar{X}_n (1 - \bar{X}_n) = F_n (1 - F_n)$$

car

$$X_i \in \{0,1\} \implies \sum_{i=1}^n X_i^2 = \sum_{i=1}^n X_i$$

Rem : si n est suffisamment grand $S_n'^2 \approx S_n^2$ puisque $(n-1)/n \approx 1$

Modèle de Bernoulli pour p:

$$IC(F_n,\alpha) = \left[F_n - \frac{\sqrt{F_n(1-F_n)}}{\sqrt{n}}u_{1-\alpha/2}, F_n + \frac{\sqrt{F_n(1-F_n)}}{\sqrt{n}}u_{1-\alpha/2}\right]$$

satisfait $P(p \in I(p, \alpha)) \approx 1 - \alpha$ à condition que np > 10 et n(1-p) > 10. IC de niveau asymptotique (ou approx.) $1 - \alpha$.

La preuve s'appuie sur le TCL qui permet de montrer que pour X de loi $\mathcal{B}(p)$: F_n suit approx. une $\mathcal{N}(p,p(1-p)/n)$ et sur le Théorème de Slutsky pour établir ensuite que $\sqrt{n}(F_n-p)/\sqrt{F_n(1-F_n)}$ suit approx. une loi normale centrée réduite (admis).