A Report on Rev1 Board Communication Firmware Development

Bunheng Ty WIPAC 08-03-2017

Overview

• I'm trying to get the Rev1 board to talk with the DOMHub.

- So far
 - Got the Rev1 board to listen to DOM-DOMHub communication
 - Wrote a Verilog bit decoder module to decode the bits
- Still need to
 - Test and improve the bit decoder module
 - Set up a FIFO to stream the decoded bits to Nios II
 - Write the software to process the messages and generate the proper responses.

Settings on the Rev1 board

- P22: change jumper to power the Rev1 board off the DOMHub
- P7 left open: connect Rev1 board as an Unterminated DOM
- P5 and P6 selected to bypass the differential amplifier (U8)
- COM ADC driven by 20 MHz clock from the FPGA
- Scavenged DOM penetrator cable (short) for the connection:
 - Pink (+) to WT2
 - Gray (-) to WT6
 - Black (GND) to WT8

(Rev1 COMs schematic on last slide)

Diagram of the Setup

• Rev. 1 Board listening to Randgrind-DOMHub communications

SignalTap II

- SignalTap II allows signal extraction from the FPGA on the Rev1 board
- All 14 channels of the COMM ADC, 64K samples each @ 20MHz -> 3.2 ms of COM data

Plot of COM Data Extracted using SignalTap II

- The DOM is a slave—it can only response. The DOMHUB is the master.
- DOMHub's message is so much quieter due to having gone through the filter box.

Data Packet from DOMHub to Randgrind

- 14 data packets from previous slide superimposed on top of each other
- Each bit is 1 us long. A "1" is a 'bisymmetric pulse'. A "0" is a quiet line.

DOMHub – Oden Communications on an Oscilloscope

Note: A different DOM was used

The "Bi-symmetric Pulse"

• Stable signal -> easier time implementing the bit decoder module

The Bit Decoder module

- A fairly simple state machine, ~50 lines of Verilog codes. That was enough to decode both the filtered and unfiltered signals at the same time.
- Will need to rewrite it to be able to recognize structures in the data packets and reliably interface with the Nios II.
- 1. Monitor the COM_ADC[13:0] line, trigger when it goes above threshold for a certain number of clock cycles.
- 2. When triggered, go into decoding mode for 100 us, because expecting to decode 100 bits.
- 3. For each bit, record the value of COM_ADC[13:0], then for several clock cycles later, record again. Subtract the two values. If larger than a certain threshold, the bit is a "1", otherwise a "0".

Bit Decoder Outputs in ModelSim

• Simulation only, the module has not been tested in actual hardware

Structure of the COM Data Packets

- The DOMHub-DOM communications protocol is quite sophisticated. "TCP lite"
- Check this document "<u>DOR API Description</u>" for more information.

The DOMHub to Randgrind Packet

1110001110
"0xE3" in little endian. Start-of-frame byte. Always the same for every packet.
1000000001 100000111 1111111111 110100011
No data. This packet is the "DOR control" type. It says "data read request"
For Error checking, CRC-32
1100110010
"0xE3" in little endian. Start-of-frame byte. Always the same for every packet.

The greyed out bits are the start/stop bits

Structure of the COM Data Packets

- The DOMHub-DOM communications is quite sophisticated. "TCP lite"
- Check this document "<u>DOR API Description</u>" for more information.

The Randgrind to DOMHub Packet (responding to the packet from previous slide)

- Initially I thought these were "Idle" packets. But they are not, as shown here.
- Packet length can vary. The max length is 41040 bits.

To Do Next

Need to set up an Avalon FIFO to pass the bits from the decoder to Nios II.
 (Still haven't figured this out exactly)

 Then I can tell the Nios II to record the exact messages between Randgrind and DOMHub during initial boot up, going into IceBoot, data transfer, or anything else.

Conclusions

- The first step towards Rev1 Board DOMHub communications has been taken. But there's still a lot of work to do.
- The hardest part, I think, will be writing the software for the Nios II to response correctly to all types of behaviors from the DOMHub.

Comments and suggestions, I would appreciate very much.

Thank You!