Analytický model tříd - 2. část

PV167 Projekt z obj. návrhu IS

B. Bühnová

4. dubna 2011

Analytický model tříd - opakování

Možný postup tvorby:

- 1 Nalezení tříd, základních atributů, operací a spolupracovníků
- 2 Určení dědičnosti mezi třídami
- 3 Zachycení vztahů pomocí asociací
- 4 Pojmenování asociací nebo rolí na nich
- Určení násobností relací
- 6 Zachycení závislostí
- Opplnění dalších atributů a operací, které mají analytický charakter

Pozn.: Dnes se zaměříme na kroky 5-7.

Relace mezi třídami (1)

Relace mezi třídami nám umožňují modelovat vzájemnou spolupráci a závislost tříd.

Základními typy jsou:

- Generalizace (dědičnost)
- Asociace
- Závislosti

Generalizace pomáhají určit hierarchii dědičnosti. Často se používají abstraktní třídy a metody.

Relace mezi třídami (2)

Asociace vyjadřují sémantickou vazbu mezi třídami.

Vlastnosti asociací:

- Název asociace vyjádřen slovesnou frází
- Názvy rolí na jejích koncích
- Násobnosti omezení na počet spolupracujících objektů
- Řiditelnost vyjadřuje, zda jde o jednosměrnou nebo obousměrnou relaci

Pozn.: Pokud se v analytickém modelu vyskytne vazba M:N, nerozkládejte ji, pokud nepotřebujete zachytit atributy této vazby. Pokud atributy potřebujete zachytit, vyjádřete vazbu pomocí asociační třídy nebo samostatné třídy.

Relace mezi třídami (3)

Závislosti jsou slabší formou sémantické vazby mezi klientskou a dodavatelskou třídou, kdy je třeba vyznačit závislost způsobující, že se změna v dodavateli projeví i v klientovi.

Nejčastěji se používá k vyjádření, že objekt klientské třídy používá objekt dodavatelské třídy v některé ze svých metod (v kódu, jako argument, návratovou hodnotu).

