А.Н. Барменков, глава III

Длина дуги плоской кривой

Пусть $\varphi(t)$ и $\psi(t)$ непрерывны на $[\alpha; \beta]$. Рассмотрим плоскость Oxy с ДПСК.

Определение: Множество точек M(x;y) плоскости, координаты которых удовлетворяют соотношению $x=\varphi(t); \ y=\psi(t); \ \alpha \leq t \leq \beta$ называют простой плоской кривой Γ , если различные значения параметра $t \in [\alpha;\beta]$ соответствуют различным точкам этого множества (простая кривая — кривая без самопересечений).

Каждую точку M(x;y), координаты которой соответствуют значениям параметра $t \in (\alpha;\beta)$ считают точкой кривой, а точки, отвечающие граничным значениям α и β — граничными точками кривой $(M[\varphi(\alpha);\psi(\alpha)]$ — начальная точка кривой, $M[\varphi(\beta);\psi(\beta)]$ — конечная точка кривой)

Определение: простой замкнутой кривой называют простую кривую, у которой начальная и конечная точки совпадают.

Пусть τ — произвольное разбиение $[\alpha; \beta]$:

$$\tau = \{t_i\}_{i=0}^n \ (\alpha = t_0 < t_1 < \dots < t_n = \beta)$$
 (1)

Введем M_i :

$$M_i = M[\varphi(t_i); \psi(t_i)] \tag{2}$$

Соединив точки отрезками, получим ломаную, вписанную в кривую Г. Длина звена ломаной:

$$l_i = |M_{i-1}M_i| = \sqrt{[\varphi(t_i) - \varphi(t_{i-1})]^2 + [\psi(t_i) - \psi(t_{i-1})]^2}$$
(3)

Тогда длина всей ломаной:

$$l(\tau) = \sum_{i=1}^{n} \sqrt{[\varphi(t_i) - \varphi(t_{i-1})]^2 + [\psi(t_i) - \psi(t_{i-1})]^2}$$
(4)

Определение: если множество $l(\tau)$ вписанных в кривую Γ ломанных, соответствующих всевозможным разбиениям τ отрезка $[\alpha, \beta]$ ограничено, то кривая Γ называется *спрямляемой*, а точная верхняя грань множества $l(\tau)$ называется длиной кривой Γ :

$$l = \sup(l(\tau)) \tag{5}$$

Замечание: из определения длины дуги l следует, что l > 0.

Замечание: существуют и неспрямляемые кривые.

Некоторые свойства спрямляемых кривых

- 1° Если кривая Γ спрямляема, и l ее длина, то эта длина дуги не зависит от параметризации этой кривой.
- 2° Если спрямляемая кривая Γ разбита при помощи конечного числа точек $M_0, M_1, ...M_n$ на конечное число кривых Γ_i , то каждая из этих кривых спрямляема, и сумма длин всех кривых Γ_i равна длине l кривой Γ .
- 3° Пусть кривая Γ задана параметрическими уравнениями (1). Обозначим l(t) длину участка Γ_t кривой Γ , точки которой определяются всеми значениями параметра из сегмента $[\alpha;t]$. Функция l(t) возрастающая и непрерывная. Эту функцию называют переменной дугой на кривой Γ
 - 4° Переменная дуга l может быть выбрана в качестве параметра, называемого натуральным параметром.

Утверждение: если функции $x=\varphi(t), y=\psi(t)$ имеют на $[\alpha,\beta]$ непрерывные производные, то кривая Γ , определяемая вышеописанными соотношениями *спрямляема*.

Доказательство: рассмотрим произвольное разбиение τ отрезка $[\alpha; \beta]$:

$$\tau = \{t_i\}_{i=0}^n, \quad \alpha = t_0 < t_1 < \dots < t_n = \beta$$
 (6)

Длина ломаной $M_0 M_1 ... M_n$, вписанной в γ :

$$l(\tau) = \sum_{i=1}^{n} \sqrt{(\varphi(t_i) - \varphi(t_{i-1}))^2 + (\psi(t_i) - \psi(t_{i-1}))^2}$$
(7)

По теореме Лагранжа о конечных приращениях:

$$\forall [t_{i-1}; t_i] \exists \xi_i, \xi_i * \in [t_{i-1}; t_i] : \quad \varphi(t_i) - \varphi(t_{i-1}) = \varphi'(\xi_i) \Delta t_i, \quad \psi(t_i) - \psi(t_{i-1}) = \psi'(\xi_i *) \Delta t_i$$

$$(8)$$

Поскольку $\varphi'(t), \psi'(t)$ непрерывны на $[\alpha; \beta]$, то они ограничены на $[\alpha; \beta]$, т.е. $\exists M : |\varphi'(t)| \leq M, |\psi'(t)| \leq M$,

$$l(\tau) = \sum_{i=1}^{n} \sqrt{(\varphi'(\xi_i))^2 + (\psi'(\xi_i^*))^2} \Delta t_i \le \sum_{i=1}^{n} \sqrt{(M^2 + M^2)} \Delta t_i = M\sqrt{2} \sum_{i=1}^{n} \Delta t_i = M\sqrt{2}(\beta - \alpha)$$
(9)

Утверждение доказано.

Пространственная кривая

Определение: простой пространственной кривой Γ называется геометрическое место точек M(x;y;z) пространства O_{xyz} , координаты которых (x;y;z) удовлетворяют соотношению $x=\varphi(t);y=\psi(t);z=\chi(t),\ t\in [\alpha;\beta]$, где $\varphi(t),\psi(t),\chi(t)$ — непрерывные функции, и эта кривая без самопересечения. Если $M[\varphi(\alpha),\psi(\alpha),\chi(\alpha)]=M[\varphi(\beta),\psi(\beta),\chi(\beta)]$, то кривая называется замкнутой простой кривой.

Рассмотрим произвольное разбиение $[\alpha, \beta]$

$$\tau = \{ \alpha = t_0 < t_1 < \dots < t_n = \beta \} \tag{10}$$

$$M_i = M[\varphi(t_i), \psi(t_i), \chi(t_i)] \tag{11}$$

— узловые точки Γ , соответствующие данному разбиению.

Тогда Длина ломаной, соответствующей данному разбиению:

$$l(\tau) = \sum_{i=1}^{n} \sqrt{[\varphi(t_i) - \varphi(t_{i-1})]^2 + [\psi(t_i) - \psi(t_{i-1})]^2 + [\chi(t_i) - \chi(t_{i-1})]^2}$$
(12)

Определение: простая кривая Γ называется *спрямляемой*, если длины $l(\tau)$ всех ломаных, вписанных в кривую Γ , соответствующих всевозможных разбиений $\tau = \{t_i\}_{i=0}^n$, вписанных в Γ в сумме — ограниченное множество.

Длина кривой l:

$$l = \sup_{\tau} l(\tau) \tag{13}$$

Аналогично плоскому случаю, достаточным условием спрямления Γ является непрерывная дифференцируемость функций $\varphi(t), \psi(t), \chi(t)$.

Замечание 1: Имеет место неравенство:

$$\sqrt{\left(\int_{a}^{b} f_{1}(t)dt\right)^{2} + \left(\int_{a}^{b} f_{2}(t)dt\right)^{2} + \left(\int_{a}^{b} f_{3}(t)dt\right)^{2}} \le \int_{a}^{b} \sqrt{\left(f_{1}(t)\right)^{2} + \left(f_{2}(t)\right)^{2} + \left(f_{3}(t)\right)^{2}} dt \tag{14}$$

Замечание 2: Неравенство треугольника:

Пусть задан треугольник с вершинами

$$O_{xyz}: O(0,0,0), A(a_1,a_2,a_3), B(b_1,b_2,b_3)$$
 (15)

Тогда:

$$\left|\sqrt{\sum_{i=1}^{3} a_i^2} - \sqrt{\sum_{i=1}^{3} b_i^2}\right| \le \sqrt{\sum_{i=1}^{3} (a_i - b_i)^2}$$
(16)

(Разность длин сторон всегда меньше либо равна третьей стороне)

Теорема: пусть функции $x = \varphi(t), y = \psi(t), z = \chi(t)$ непрерывно дифференцируемы (т.е. имеют непрерывную производную на [a,b]), тогда кривая Γ ($x = \varphi(t), y = \psi(t), z = \chi(t), t \in [a;b]$) спрямляема и ее длина выражается в виде:

$$l = \int_{a}^{b} \sqrt{(\varphi'(t))^{2} + (\psi'(t))^{2} + (\chi'(t))^{2}} dt$$
 (17)

Доказательство:

Докажем, что $\forall \tau = \{t_i\}_{i=0}^n$ — (разбиения [a;b]) — соответствующая ему длина ломаной $l(\tau)$ ограничена числом A, где $A = \int_a^b \sqrt{(\varphi'(t))^2 + (\psi'(t))^2 + (\chi'(t))^2} dt$, т.е. докажем, что $l(\tau) \leq A$.

$$l = \int_{a}^{b} \sqrt{(\varphi'(t))^{2} + (\psi'(t))^{2} + (\chi'(t))^{2}} dt = \sum_{i=1}^{n} \sqrt{(\int_{t_{i-1}}^{t_{i}} \varphi'(t)dt)^{2} + (\int_{t_{i-1}}^{t_{i}} \psi'(t)dt)^{2} + (\int_{t_{i-1}}^{t_{i}} \chi'(t)dt)^{2}}$$
(18)

По замечанию 1:

$$\sum_{i=1}^{n} \sqrt{\left(\int_{t_{i-1}}^{t_i} \varphi'(t)dt\right)^2 + \left(\int_{t_{i-1}}^{t_i} \psi'(t)dt\right)^2 + \left(\int_{t_{i-1}}^{t_i} \chi'(t)dt\right)^2} \le \sum_{i=1}^{i} \int_{t_{i-1}}^{t_i} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2 + (\chi'(t))^2} dt$$
(19)

$$= \int_{t_{i-1}}^{t_i} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2 + (\chi'(t))^2} dt = A$$
 (20)

Докажем, что на самом деле $A = \sup_{\tau} l(\tau)$. Поскольку $\varphi(t)$, $\psi(t)$, $\chi(t)$ — непрерывно дифференцируемы, то $\varphi'(t)$, $\psi'(t)$, $\chi'(t)$ непрерывны на [a;b]. По теореме Кантора они и равномерно непрерывны на [a;b].

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0 : \forall (t', t'' \in [a; b], |t' - t''| < \delta) \Rightarrow \tag{21}$$

$$|\varphi'(t) - \varphi'(t'')| < \frac{\varepsilon}{\sqrt{3}(b-a)} |\psi'(t') - \psi'(t'')| < \frac{\varepsilon}{\sqrt{3}(b-a)} |\chi'(t') - \chi'(t'')| < \frac{\varepsilon}{\sqrt{3}(b-a)} |$$
 (22)

Возьмем любое разбиение $\tau = \{t_i\}_{i=0}^n: \lambda(\tau) < \delta$ (δ из предыдущего соотношения). Очевидно: $A - l(\tau) \geq 0$. Оценим $A - l(\tau)$ сверху.

$$A - l(\tau) = \int_{t_{i-1}}^{t_i} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2 + (\chi'(t))^2} dt = A - \sum_{i=1}^n \sqrt{[\varphi(t_i) - \varphi(t_{i-1})]^2 + [\psi(t_i) - \psi(t_{i-1})]^2 + [\chi(t_i) - \chi(t_{i-1})]^2}$$
(23)

По аддитивности разбиваем интеграл на части:

$$=\sum_{i=1}^{n}\int_{t_{i-1}}^{t_{i}}\left(\sqrt{(\varphi'(t))^{2}+(\psi'(t))^{2}+(\chi'(t))^{2}}-\sqrt{(\frac{\varphi(t_{i})-\varphi(t_{i-1})}{t_{i}-t_{i-1}})^{2}+(\frac{\psi(t_{i})-\psi(t_{i-1})}{t_{i}-t_{i-1}})^{2}+(\frac{\chi(t_{i})-\chi(t_{i-1})}{t_{i}-t_{i-1}})^{2}}\right)dt$$
(24)

Применяем замечание 2:

$$\sum_{i=1}^{n} \int \sqrt{(\varphi'(t) - \frac{\varphi(t_i) - \varphi(t_{i-1})}{t_i - t_{i-1}})^2 + (\psi'(t) - \frac{\psi(t_i) - \psi(t_{i-1})}{t_i - t_{i-1}})^2 + (\chi'(t) - \frac{\chi(t_i) - \chi(t_{i-1})}{t_i - t_{i-1}})^2} dt$$
 (25)

По теореме Лагранжа о конечных приращениях:

$$\varphi'(\xi) = \frac{\varphi(t_i) - \varphi(t_{i-1})}{t_i - t_{i-1}} \tag{26}$$

$$\psi'(\gamma_i) = \frac{\psi(t_i) - \psi(t_{i-1})}{t_i - t_{i-1}} \tag{27}$$

$$\chi'(\omega_i) = \frac{\chi(t_i) - \chi(t_{i-1})}{t_{i-1}} \tag{28}$$

$$= \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} \sqrt{((\varphi'(t) - \varphi'(\xi_i))^2 + (\psi'(t) - \psi'(\gamma_i))^2 + (\chi'(t) - \chi'(\omega_i))^2)} dt$$
 (29)

Поскольку $\lambda(\tau) < \delta$, применима оценка (по предыдущ. соотн.).

$$\leq \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} \sqrt{\left(\frac{\varepsilon}{\sqrt{3}(b-a)}\right)^2 + \left(\frac{\varepsilon}{\sqrt{3}(b-a)}\right)^2 + \left(\frac{\varepsilon}{\sqrt{3}(b-a)}\right)^2} dt = \frac{\varepsilon}{b-a} \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} dt = \varepsilon \tag{30}$$

т.е.

$$\forall \varepsilon > 0 \exists \tau = \tau(\varepsilon) : A - l(\tau) \le \varepsilon \tag{31}$$

Это означает, что $A = \sup_{\tau} l(\tau)$, т.е. длина кривой Γ вычисляется по формуле:

$$l = \int_{a}^{b} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2 + (\chi'(t))^2} dt$$
 (32)

Теорема доказана.

Площадь плоской фигуры

Напомним, что *многоугольником* называется часть плоскости, ограниченная простой замкнутой ломаной линией. Понятие площади многоугольника рассмотрено в курсе элементарной математики.

Определения:

- 1) Плоской фигурой Q назовем часть плоскости, ограниченную простой замкнутой кривой l. Кривую l называют границей фигуры Q (иногда пишут: $L = \partial Q$).
 - 2) Многоугольник 6nucan в фигуру Q, если каждая точка этого многоугольника принадлежит фигуре Q или ее границе.
- 3) Если все точки плоской фигуры и ее границы принадлежат некоторому многоугольнику, то говорят, что указанный многоугольник *описан* вокруг фигуры Q.

Ясно, что площадь любого вписанного в фигуру Q многоугольника *не больше* площади любого описанного вокруг фигуры Q многоугольника.

Пусть $\{s_i\}$ — числовое множество площадей вписанных в плоскую фигуру Q многоугольников, а $\{S_d\}$ — числовое множество площадей, описанных вокруг фигуры Q многоугольников. Очевидно, что множество $\{s_i\}$ ограничено сверху (площадью любого описанного вокруг фигуры Q многоугольника), а множество $\{S_d\}$ ограничено снизу, площадью вписанного многоугольника, или числом 0. Поскольку эти множества ограничены, у них существуют точные грани. Обозначим $p = \sup\{s_i\}$ — точная верхняя грань площадей s_i вписанных в Q многоугольников, f $P = \inf\{S_d\}$ — точная нижняя грань площадей S_d многоугольников, описанных вокруг Q. Число p = nuжняя площадь фигуры Q, а P — верхняя площадь фигуры Q.

По определению очевидно, что $p \leq P$ для любой фигуры Q.

Определение: плоская фигура Q называется $\kappa \epsilon a d p u p y \epsilon m o u,$ если верхняя площадь P совпадает с нижней площадью p, при этом общее число $\underline{P} = P = p$ называется площадью фигуры Q (Такое определение ввел Жордан [1838-1922], французский математик).

Площадь, как и всякая мера Жордана ($P = \mu$) обладает рядом свойств:

 $1^{\circ} \mu(Q) > 0 \forall Q$

 $2^{\circ} \mu(\Box) = 1$, площадь квадрата с единичной стороной равна 1.

 $3^{\circ} \mu(Q)$ — аддитивная функция, т.е. $Q = Q_1 \bigcup Q_2, \ Q_1 \cap Q_2 = \emptyset$

 $4^{\circ} \mu(Q)$ — инвариантно относительно движения Q.

 $5^{\circ}\ \mu(Q)$ — монотонная функция

Эти свойства характерны не только для площадей, но и для объемов. Построение меры Жордана позволяет вычислять значение площади с помощью интегралов Римана.

Критерий квадрируемости фигуры

Теорема: для того, чтобы плоская фигура Q была квадрируемой, необходимо и достаточно, чтобы для любого $\varepsilon > 0$ можно было указать такой описанный вокруг фигуры Q многоугольник и такой вписанный в фигуру Q многоугольник, что разность их площадей $S_d - s_i < \varepsilon$:

$$(Q-$$
 квадр.) $\Leftrightarrow S_d - s_i < \varepsilon \ \forall \varepsilon > 0$ (33)

Доказательство:

- 1) Необходимость. Пусть Q квадрируемая фигура, т.е. $\underline{P}=P=p$, тогда $\forall \varepsilon>0$ существует вписанный в фигуру Q многоугольник площади S_i такой, что для $p=\underline{P}$ можно написать: $\underline{P}-s_i<\frac{\varepsilon}{2}$ (из определения супремума), и для этого же ε можно указать такой описанный многоугольник площадь S_d которого отличается от $P=\underline{P}$ меньше, чем на $\frac{\varepsilon}{2}$, (т.е. $S_d-\underline{P}<\frac{\varepsilon}{2}$, по определению инфинума). Таким образом $S_d-s_i<\varepsilon$. **Необходимость доказана.**
- 2) Достаточность. Пусть выбрано произвольное $\varepsilon > 0$ и $S_d, \ s_i$ площади описанного и вписанного в фигуру Q многоугольников такие, что $S_d s_i < \varepsilon$. Так как $s_i \leq p \leq \underline{P} \leq P \leq S_d, \ 0 \leq S_d s_i < \varepsilon \ \forall \varepsilon > 0$. Отсюда следует, что $P p \leq S_d s_i < \varepsilon$, т.е. $\forall \varepsilon > 0 \Rightarrow p = P$ и Q квадрируема. Достаточность доказана. Теорема доказана.

Определение: говорят, что граница фигуры Q имеет площадь равную 0, если для любого $\varepsilon > 0$ можно указать такой описанный вокруг фигуры Q многоугольник и такой вписанный в фигуру Q многоугольник, что разность их площадей меньше ε .

Это определение позволяет переформулирвать критерий квадрируемости.

Теорема: для того, чтобы плоская фигура Q была квадрируемой, необходимо и достаточно, чтобы ее граница имела площадь равную 0. На самом деле имеет место достаточный признак квадрируемости плоской фигуры., а именно:

Утверждение: если граница l плоской фигуры Q является спрямляемой кривой, то фигура Q квадрируема (без доказательства).

Площадь криволинейной трапеции.

Определение: κ риволинейной трапецией называется фигура, ограниченная графиком заданной на отрезке [a;b] неотрицательной и непрерывной функции f(x), ординатами, проведенными в точках a и b, а также отрезком [a;b] оси Ox.

Предложение: криволинейная трапеция — квадрируемая фигура, площадь \underline{P} которой вычисляется по формуле:

$$\underline{P} = \int_{a}^{b} f(x)dx \tag{34}$$

Доказательство: так как f(x) по условию непрерывна на отрезке [a;b], то f(x) и интегрируема на этом отрезке. Тогда по критерию интегрируемости в допредельной форме:

$$\forall \varepsilon > 0 \ \exists \tau = \{x_k\}_{k=0}^{\infty}$$
 — разбиение $a = x_1 < x_2 < \dots < x_n = b : S - s < \varepsilon,$ (35)

Где $S=S(\tau)$ — врехняя сумма Дарбу, а $s(\tau)$ — нижняя сумма Дарбу. Поэтому как раз $S_d=S$ — площадь описанного многоугольника, а $S_i=s$ — площадь вписанного многоугольника, т.е. $S_d-s_i<\varepsilon$, криволинейная трапеция квадрируема (по критерию квадрируемости).

При $\lambda(\tau) \to 0$ (характеристика разбиения стремится к 0) получаем:

$$s \to S \to \int_a^b f(x)dx; \quad \underline{P} = \int_a^b f(x)dx$$
 (36)

В этом и состоит геометрический смысл определенного интеграла. Предложение доказано.

Замечание 1: пусть криволинейная трапеция имеет более общий вид: $\{f_1(x) \le y \le f_2(x), \ a \le x \le b\}$ и $f_1(x), \ f_2(x)$ — непрерывны на [a;b], тогда очевидно, что ее площадь:

$$S = \int_{a}^{b} f_{2}(x)dx - \int_{a}^{b} f_{1}(x)dx = \int_{a}^{b} (f_{2}(x) - f_{1}(x))dx$$
(37)

Пояснение 1: Если граница трапеции пересекает ось абсцисс, нужно поднять ее вверх:

$$\overline{f_2}(x) = f_2(x) \ \overline{f_1}(x) = f_1(x) + d$$
 (38)

$$S = \int_{a}^{b} (\overline{f_2}(x) + d)dx - \int_{a}^{b} (f_1(x) + d)dx = \int_{a}^{b} (f_2(x) - f_1(x))dx$$
 (39)

Пояснение 2: Если f(x) < 0 на [a; b], то

$$\int_{a}^{b} f(x)dx = -S \tag{40}$$

Площадь криволинейного сектора

Определение: Пусть кривая L задана в полярной системе координат, т.е. $L: r=r(\theta), \ \alpha \leq \theta \leq \beta$ и $r(\theta) \geq 0, \ r(\theta)$ непрерывная функция. Плоскую фигуру, ограниченную кривой L и двумя лучами, составляющими с полярной осью углы α и β называют *криволинейным сектором*.

Предложение: криволинейный сектор — квадрируемая фигура, площадь P которой вычисляется по формуле:

$$\underline{P} = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\theta) d\theta \tag{41}$$

Доказательство: пусть $\tau = \{\theta_k\}_{k=0}^n$ — произвольное разбиение $[\alpha;\beta], \ \alpha = \theta_0 < \theta_1 < ... < \theta_n = \beta.$

$$\forall [\theta_{k-1}; \theta_k] \ r_k = \min_{[\theta_{k-1}; \theta_k]} r(\theta) \ R_k = \max_{[\theta_{k-1}; \theta_k]} r(\theta) \tag{42}$$

Тогда:

$$\overline{S}_d = \frac{1}{2} \sum_{k=1}^n R_k^2 \Delta \theta_k \tag{43}$$

— Площадь веерообразной фигуры, описанной вокруг криволинейного сектора, и:

$$\bar{s}_i = \frac{1}{2} \sum_{k=1}^n r_k^2 \Delta \theta_k \tag{44}$$

— Площадь веерообразной фигуры, вписанной в криволинейный сектор. Эти суммы как раз и есть $S=S(\tau)$ — верхняя сумма Дарбу, и $s=s(\tau)$ — нижняя сумма Дарбу для функции $\frac{1}{2}r^2(\theta)$ на отрезке $[\alpha;\beta]$, т.е. $\overline{S}_d=S,\ \overline{s}_i=s$.

Так как $\frac{1}{2}r^2(\theta)$ непрерывна на $[\alpha;\beta]$, то и интегрируема на этом отрезке. Тогда по критерию интегрируемости в допредельной форме:

$$\forall \varepsilon > 0 \; \exists \tau = \{\theta_k\}_{k=0}^n$$
 — разбиение отрезка, $: S(\tau) - s(\tau) < \frac{\varepsilon}{2}$ (45)

Значит:

$$\overline{S}_d - \overline{s}_i = S(\tau) - s(\tau) < \frac{\varepsilon}{2}$$
(46)

Поскольку существует площадь кругового сектора (из школьного курса математики), то по определению площади для этого $\varepsilon > 0$ существует многоугольник Q_i , вписанный в нижнюю веерообразную фигуру. Его площадь s_i :

$$\overline{s}_i - s_i < \frac{\varepsilon}{4} \tag{47}$$

Аналогично $\exists Q_d$ — многоугольник, описанный вокруг верхней веерообразной фигуры площади S_d :

$$S_d - \overline{S}_d < \frac{\varepsilon}{4} \tag{48}$$

$$S_d - s_i = S_d - \overline{S}_d + \overline{S}_d - \overline{s}_i + \overline{s}_i - s_i < \varepsilon \tag{49}$$

По критерию квадрируемости следует, что криволинейный сектор — квадрируемая фигура.

$$\overline{s}_i \to \frac{1}{2} \int_{\alpha}^{\beta} r^2(\theta) d\theta \quad \overline{S}_d \to \frac{1}{2} \int_{\alpha}^{\beta} r^2(\theta) d\theta$$
 (50)

Поскольку s_i и S_d отличаются как угодно мало от \overline{s}_i и \overline{S}_d соответственно, то:

$$P = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\theta) d\theta \tag{51}$$

Предложение доказано.

Пример:

Вычислить площадь фигуры F, ограниченной графиками функций $y=x^{\alpha}$ и при $\alpha>1$ $x=y^{\alpha}$. Решение:

$$S = 1 - 2 \int_0^1 x^{\alpha} dx = \frac{\alpha - 1}{\alpha + 1}$$
 (52)

Объем тела

Определение: телом назовем часть пространства, ограниченную замкнутой непересекающейся поверхностью.

Определение: многогранник — это часть пространства, ограниченная частями плоскостей.

Пусть есть тело E. Рассмотрим всевозможные многогранники, вписанные в тело E и всевозможные многогранники, описанные вокруг этого тела. Вычисление объема многогранника сводится к вычислению объемов тетраэдров, поэтому понятие объема многогранники считаем известным из школьного курса математики.

Пусть $\{v_i\}$ — числовое множество объемов, вписанных в тело E многогранников, а $\{V_d\}$ — числовое множество объемов описанных вокруг тела E многогранников.

Множество $\{v_i\}$ ограничено сверху любым объемом описанного многогранника, а множество $\{V_d\}$ ограничено снизу любым объемом вписанного многогранника, или даже нулем; значит $\exists \underline{v} = \sup\{v_i\}$ и $\exists \overline{V} = \inf\{V_d\}$. Числа \underline{v} и \overline{V} называются соответственно ниженим и верхним объемами тела E.

Очевидно, $v < \overline{V}$.

Определение: тело E называется $\kappa y \delta u p y e m \omega m$, если верхний объем \overline{V} этого тела совпадает с нижним объемом \underline{v} и при этом $V=\overline{V}=\underline{v}$ называется $\delta v e m \omega m$ если верхний объем \overline{V} этого тела совпадает с нижним объемом \underline{v} и при

Критерий кубируемости фигуры

Теорема: для того, чтобы тело E было кубируемым, необходимо и достаточно, чтобы для любого $\varepsilon > 0$ можно было указать такой описанный около тела E многогранник и такой вписанный в это тело многогранник, разность объемов $V_d - v_i$ которых была бы меньше ε :

$$E$$
— кубируема $\Leftrightarrow \forall \varepsilon > 0$ Эмногогр-ки : $V_d - v_i < \varepsilon$ (53)

Доказательство: аналогично плоскому случаю.

Цилиндр

Определение: uuлиндр — это тело, ограниченное цилиндрической поверхностью и образующими, параллельными некоторой оси и плоскостями, перпендикулярными некоторой оси; эти плоскости в пересечении с цилиндрическими поверхностями образуют плоские фигуры, называемые основаниями цилиндра, а расстояние h между основаниями цилиндра называют uuлиндра.

Показанная выше техника позволяет просто доказать следующие утверждения:

Утверждение 1: если основанием цилиндра E является квадрируемая фигура Q, то цилиндр является кубируемым телом и его объем равен V = Ph, где P- площадь основания, а h- высота цилиндра.

Определение: ступенчатым телом называется объединение конечного числа цилиндров, расположенных так, что верхнее основание каждого предыдущего из этих цилиндров находится в одной плоскости с нижним основанием последующего цилиндра.

Утверждение 2: если для любого $\varepsilon > 0$ можно указать такое описанное вокруг E ступенчатое тело и такое вписанное в E ступенчатое тело, разность $V_d - v - i$ объемов которых меньше ε , то тело кубируемо.

Утверждение 3: пусть функция y = f(x) непрерывна на [a;b], тогда тело E, образованное вращением вокруг оси Ox криволинейной трапеции, ограниченной графиком функции y = f(x), ординатами в точках a и b, кубируема, и его объем вычисляется по формуле:

$$V = \pi \int_{a}^{b} f^{2}(x)dx \tag{54}$$

Доказательство: пусть $\tau = \{x_k\}_{k=0}^n, \ a = x_0 < x_1 < ... < x_n = b$ — произвольное разбиение отрезка [a;b]. Пусть:

$$m_i = \inf_{[x_{i-1};x_i]} f(x); \quad M_i = \sup_{[x_{i-1};x_i]} f(x)$$
 (55)

Построим на каждом частичном отрезке прямоугольники. Получили вписанную в криволинейную трапецию и описанную около нее ступенчатую фигуру, при вращении которой вокруг оси Ox получаем вписанное в E и описанное вокруг него тела, объемы которых равны:

$$v_i = \pi \sum_{i=1}^n m_i^2 \Delta x_i; \quad V_d = \pi \sum_{i=1}^n M_i^2 \Delta x_i$$
 (56)

Очевидно, что $v_i = s(\tau)$ — нижняя, а $V_d = S(\tau)$ — верхняя суммы Дарбу для функции $\pi f^2(x)$ на [a;b] и в силу непрерывности f(x) эта функция и интегрируема на отрезке [a;b]. Тогда по критерию интегрируемости:

$$\exists \tau = \{x_i\}_{i=0}^n$$
 — разбиение $[a;b]: V_d - v_i = S(\tau) - s(\tau) < \varepsilon$ (57)

А это по утверждению 2 влечет кубируемость тела E и очевидно следующее:

$$V = \pi \int_{a}^{b} f^{2}(x)dx \tag{58}$$

Утверждение доказано.

Пример:

 $y = \sin x$, $[0; \pi]$, вычислить объем тела вращения графика вокруг оси Ox. Решение:

$$V = \pi \int_0^p \sin^x dx = \pi \int_0^p i \frac{1 - \cos 2x}{2} dx = \frac{\pi^2}{2}$$
 (59)

Площадь поверхности вращения

Рассмотрим поверхность π , образованную вращением вокруг Ox графика функции $y = f(x), x \in [a;b]$. Пусть $\tau = \{x_i\}_{i=0}^n = \{a = x_0 < x_1 < ... < x_n = b\}$ — разбиение [a;b]. Рассмотрим также $A: (x_i, y_i)$, где y_i — значение функции $f(x_i)$ $y_i = f(x_i)$.

Соединим точки A_i отрезками. Получим ломаную, соответствующую разбиению τ . Вращая график f(x) и ломаную вокруг Ox, получим поверхность π — поверхность вращения графика функции f(x) и поверхность Π — поверхность, полученная вращением ломаной A_0 , A_1 , A_n вокруг Ox. Обозначим через $P(\tau)$ поверхность $\Pi(\tau)$. Пусть l — длина звена $[A_{i-1};A]$ ломаной. Тогда по формулам элементарной математики (усеченного конуса):

$$P(\tau) = 2\pi \sum_{i=1}^{n} \frac{y_{i-1} + y_i}{2} l_i = \pi \sum_{i=1}^{n} (y_{i-1} + y_i) l_i$$
(60)

Определение: число P является пределом площадей $P(\tau),$ если:

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0: \ \forall \tau = \{x_i\}_{i=0}^n: \ x(\tau) < \delta \Rightarrow |P(\tau) - P| < \varepsilon$$
 (61)