Predicting Salt Yield From Pond Parameters

Problem Identification Statement

A Coastal Salt Farm and wants a quick forecasting tool that estimates salt yield (tons) for each production cycle using pond and climate measurements.

They already collect pond area, brine density, evaporation days, average temperature, a numeric climate temperature range (°C), solar irradiance, and whether the pond uses Batch or Continuous crystallization.

Help the Salt Farm to predict their harvests in Salt Yields.

3 - Stages

Stage 1	Domain Selection	Machine Learning
Stage 2	Learning Selection	Supervised Learning
Stage 3	Under Supervised Leanring	Regression

Inputs:

Pond Area (m²)

Brine_Density (g/cm³)

Average Temperature (Celcius)

Evaporation_Days

Crystallization_Method

Solar_Irradiance(Wm²)

Al Prediction

Predict expected salt yield (tons) from pond area, brine density, evaporation days, temperature, solar irradiance, and crystallization method

Call To Action

Salt Yield(Tons)

Pond Area Vs Salt Yield

R2 Score

```
# Evaluation Metrics
from sklearn.metrics import r2_score

r_score=r2_score(y_test,y_pred)

r_score
0.7496563929756983
```

Result

```
Salt_Pan_Yield=loaded_model.predict([[2185.4,1.165,15.1,24.2,7.9,855,1]])
C:\Users\rampr\anaconda3\Lib\site-packages\sklearn\utils\validation.py:2739
ted with feature names
   warnings.warn(
Salt_Pan_Yield
array([[0.80394168]])
```

Submitted By Packyapriya R