EXP NO: 5 CHARACTERISTICS OF FILTERS, MICROSTRIP PATCH ANTENNA AND PARALLEL LINE COUPLER

5.1 OBJECTIVE

To Study the characteristics of microstrip filters, microstrip patch antenna and parallel line coupler

5.2 HARDWAREREEQUIRED

C-Band source, 5 dB attenuator, Test jig, Detector, Active filter, coupler, CRO

5.3 INTRODUCTION

Microstrip is a type of electrical transmission line which can be fabricated using printed circuit board technology, and is used to convey microwave-frequency signals. It consists of a conducting strip separated from a ground plane by a dielectric layer known as the substrate. Microstrip line is used to carry Electro-Magnetic Waves (EM waves) or microwave frequency signals. It is used to design and fabricate RF and microwave components such as directional coupler, power divider/combiner, filter, antenna, MMIC etc. Microstrip lines are also used in high-speed digital PCB designs, where signals need to be routed from one part of the assembly to another with minimal distortion, and avoiding high cross-talk and radiation. Microstrip line will have low to high radiation, will support 20 to 120 ohm impedance, supports Q factor of about 250. Difficult to mount chip in shunt mode but easy in series mode. The RF/microwave product made using microstrip line is less expensive and lighter in weight compare to its waveguide counterpart. Usually FR-4 dielectric substrate is used as PCB for microstrip based etching due to its low cost.

Block Diagram

Using Filters

Using Patch

1. Low Pass Filter: It passes all the signals between zero frequency to some limit called the cut-off frequency and attenuates other higher frequencies.

Specification:

The cut off frequency : $5\pm0.2~\mathrm{GHz}$

Insertion loss : 3±0.2 dB

Return Loss : 15±0.5 dB

1. Parallel Coupled Line Coupler: It consists of two close and parallel transmission lines and the coupled power depends on the separation between two lines.

Specifications:

Operating frequency 5+0.2 GHz

Patch Antenna It radiates the microwave signal in the space or receives the microwave signal from the space. Two types of patch antennas are available: one is quarter wave transformer fed and another one is the inset fed.

Specifications: Transformer fed

Operating frequency: 5±0.2 GHz
Return Loss 13±1.0 dB

5.4 PRELAB QUESTION

- 1. Define Active and Passive filter,
- 2. Draw the frequency response curve of Band Pass Filter.
- 3. Calculate the value of capacitor to give cutoff frequency of f_L of 1 KHz with resistor value of 10 K Ω .
- 4. Write any four feeding method for microstrip patch antenna.
- 5. What is anechoic chamber?

5.5 EXPERIMENT

5.5.1 PROCEDURE

- 1. Assemble the kit as shown in the Figure.
- 2. Connect the 9 pin cable between power supply and detector
- 3. Connect power cords to the DC power supply and Active filter.
- 4. Connect 5-db attenuator to the source.
- 5. Connect RF cable between source jig and detector.
- 6. Set the desire frequency of the source using tuning knob of DC power supply.
- 7. Place Microstrip line in the Jig to set the reference voltage level (usually 10V) using gain control knob of the C-band Source(back panel)

- 8. Take out Microstrip line from the jig and place the component to be tested(LPF, Patch antenna and parallel line coupler).
- 9. Note down the voltage level as seen in the CRO.
- 10. Repeat steps 8-11 for other frequencies.
- 11. Use Db conversion Formula to convert the ration in dB.

$$dB = 20 Log(V_{out}/V_{in})$$

12. Plot the graph power VS frequency.

5.5.2 TABULATION

INPUT VOLTAGE $V_T =$

S.No	DC Voltage	Frequency	O/P of source using micro strip line	O/P of source after component is placed (V _{out})	Gain in dB $dB = 20 log$ (V_{out}/V_{in})
1.		4.0			
2.		4.2			
3.		4.4			
4.		4.5			
5.		4.8			
6.		5.0			
7.		5.2			
8.		5.4			
9.		5.5			
10.		5.8			

MODEL GRAPH

1. Low pass filter

2. Microstrip antenna

2. Parallel line coupler

5.6 POST LAB QUESTIONS

- 1. What are the methods of analysis of microstrip patch antenna.
- 2. Write the s-matrix for hybrid ring.
- 3. Draw the symbol of power divider.
- 4. Define coupling factor.
- 5. What is an isotropic radiator?

5.7 RESULT

Thus the characteristics of microstrip filters, microstrip patch antenna and parallel line coupler are studied