From Zero to YOLO: Car Detection Without Pre-Trained Models

Master's Degree in Artificial Intelligence and Robotics

Palumbo Simone 1938214 Spena Francesco 1911090

https://github.com/CogSP/Yolov8-Car-Detection

Outline

- Introduction
- Proposed Method
- Dataset and Metrics
- Experimental Results
- Conclusions and References

Object Detection: Localize and Classify Objects in Images

- Combines object classification and localization
- Outputs: bounding boxes, class labels, and confidence scores
- Critical for applications like autonomous vehicles, surveillance, and medical imaging

YOLO (You Only Look Once): Real-Time Object Detection

Single-pass neural network for object detection

- Processes images in real-time with high accuracy
- Efficiently balances speed and accuracy

Input encoding

- After resizing the image, divide into grid cells
- Given the center of the object, calculate the cell in which the center lies. This cell is the one responsible for calculating the bbox.
- **3.** Transform the (x_c, y_c, w, h) in $(\Delta_x, \Delta_y, \Delta_w, \Delta_h)$
- **4.** Add confidence and car class probabilities of 1
- 5. Put all **zeros** in all the other cells, in which we do not have objects

Coordinate Transformations

 (x_a, y_a) : the coordinate of left-top point

YOLOv8 Architecture

YOLOv8 Variants

Model Variant	depth_mul tiple	width_mult iple	max_chan nels
n	0.33	0.25	1024
S	0.33	0.50	1024
m	0.67	0.75	768
I	1	1	512
хI	1	1.25	512

- → YOLOv8 family includes variants that balance accuracy, speed and size
 - depth_multiple: scales the number of bottleneck in c2f
 - width_multiple: scales the number of channels in the convolutional layers
 - max_channels: upper limit of allowed channel to prevent the model from becoming too wide. Can also prevent overfitting.
- We chose the large (I) model: high accuracy but slow inference

YOLOv8 Building Blocks

- Convolutional Block
- Bottleneck
- C2f Block
- SPPF Block
- Detect Block

Convolutional Block

Conv

Features extraction

Normalized data (Local efficiency)

Smooth gradients (No vanish)

Bottleneck

Bottleneck

Residual block for gradient efficiency

$$r(x) = f(x) + x \implies \nabla r(x) = \nabla f(x) + I$$

C2f Block

C2f Block

Enhance feature extraction

Half of the input goes through the n (depth_multiple)
Bottleneck, while the other half is passed to the Concat

Spatial Pyramid Pooling Fast (SPPF) Block

Divides images in **grid** and **pools** features from each cell, handling object of different sizes and capturing **multi-scale** information

SPP-**Fast** uses a single **fixed-size** kernel instead of multiple levels (SPP): **tradeoff** between accuracy and efficiency.

SPPF

Detect Block

Detect

Responsible for the object detection

Two tracks for bbox and class prediction → We merged them in a **single branch**

YOLOv8 is **anchor-free**: faster post-processing after inference

The Overall Architecture

Backbone

- Deep part of the model
- Different levels of features extraction

Neck

- Upsampling process
- Merge features from different layers
- No resolution changing

Head

- Final output:
 - class label
 - bounding boxes
 - **confidence**
- Multiple Detect
 block to improve
 multi-scale
 detection

Loss Function

YOLOv1 Loss with a small change: we added a **cls** square differences for **no-object** cell

< 1 so more importance on grid cells that contain object than cells which don't

Total Loss =
$$\sum_{x,y} (L_{obj} + \lambda_{no-obj} L_{no-obj})$$

$$L_{obj} = \lambda_{coord} L_{obj-box} + L_{obj-conf} + L_{obj-class}$$

> 1 so more importance on box parameters than cls and confidence

Loss Function (2)

With:

$$L_{obj-box} = (\mathring{\Delta x} - \Delta x)^2 + (\mathring{\Delta y} - \Delta y)^2 + (\sqrt{\mathring{\Delta w}} - \sqrt{\Delta w})^2 + (\sqrt{\mathring{\Delta h}} - \sqrt{\Delta h})^2$$

$$L_{obj-conf} = (\hat{C} - C)^2$$

$$L_{obj-cls} = (\hat{p} - p)^2$$

Having C = 1 and p = 1. Same holds for **no-obj** loss, but using C = 0 and p = 0

Dataset and Metrics

Dataset

We used the Kaggle Car Object detection dataset, which includes

- images of cars in all views
- CSV files containing the ground truth label in the format: $(id, x_{max}, y_{max}, x_{min}, y_{min})$

Evaluation Metrics

Intersection over Union (IoU):

used to evaluate the alignment between ground-truth and predicted boxes

$$IoU = \frac{IntersectionArea}{UnionArea}$$

Results

The generated images are provided along with their corresponding **IoU values**.

References

- R. Varghese, M. Sambath. YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness, 2024, International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS)
- J. Redmon, S. Divvala, R. Girshick, A. Farhadi. You Only Look Once: Unified, Real-Time Object Detection, 2016
- J. Terven, D. Esparza, J. Gonzales. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS, 2024
- D. Reis, J. Hong, J. Kupec, A. Daoudi. *Real-Time Flying Object Detection with YOLOv8*
- Kaggle Car Object Detection Dataset

