Úkolem semestrální práce je vytvoření programu v prostředí Matlab[®] a dokumentu popisující tento program. Program bude řešit úlohu optimalizace heuristickým algoritmem pro "náhodné" prohledávání stavového prostoru specifikovaných účelových funkcí omezeného definovaným intervalem parametrů. Součástí projektu je jeho prezentace zkoušejícímu ve zkušebním období.

Cíle:

- vytvoření dokumentu popisující algoritmus programu a popisující funkci programu (návod na obsluhu programu)
- grafické uživatelské rozhraní pro zadání vstupů a zobrazení výstupů
- program bude odevzdán jako .m skript/y (.m funkce) "bohatě" česky okomentováno
- pomocí dané metody nalézt minimum účelové funkce v definovaném stavovém prostoru, vhodně nastavit parametry metody
- pro nalezené minimum definovat oblast "blízkého okolí" a pro toto okolí vypočítat "matematické" minimum.
- · porovnat oba výsledky a vyhodnotit přesnost heuristického algoritmu

Vstupy:

- · volba účelové funkce
- definice omezení pro x1 a x2 stavového prostoru
- hodnoty první iterace (vektor prvních iterací) pro >1 znamená více běhů algoritmu
- velikost okolí (první iterace je středem)
- tvar okolí (kruh, čtverec)
- počet potenciálních řešení v def. okolí
 - o čtverec: uniformní rozdělení
 - o kruh: normální rozdělení

$$f_1(x) = \sum_{i=1}^d x_i^2$$

$$f_3(x) = 418.9829d - \sum_{i=1}^d x_i sin(\sqrt{|x_i|})$$

Výstupy:

- grafická reprezentace řešení (UI) (viz obrázek)
- textový soubor s výsledky (zahrnuje všechny hodnoty f i x1 a x2)
- zobrazení řešení (součást UI) (pouze výsledky)
- · výstup výsledků do textového souboru
- · volitelně animace zobrazení postupu algoritmu

$$f_2(x) = 10d + \sum_{i=1}^d [x_i^2 - 10cos(2\pi x_i)]$$

$$\begin{array}{c} f_4(x) = \\ 20sin(\pi\frac{x_1}{2})cos(\pi\frac{x_2}{2}-0,5) + (x_1-1)^2 + (x_2-1)^2 + 50 \end{array}$$

Poznámky k realizaci:

- Ošetřit body vygenerované mimo stavový prostor tak, aby nedošlo ke snížení počtu možných řešení jedné iterace.
- Definovat ukončení vyhledávacího algoritmu a zamezit jeho zacyklení.
- Vzhledem k záměrům zadání zvolte dimenzi $d=\mathbf{2}$

Příklad grafické reprezentace výstupu:

Vektor	x1	x2	f(x1,x2)	iterace
1	15.0000	-60.0000	907.6347	1
1	11.3856	-50.7983	878.5564	2
1	7.9813	-41.8405	843.1880	3
1	5.1776	-32.4520	816.0602	4
1	4.4845	-26.6243	810.1325	5
1	4.7131	-26.2852	810.0173	6
1	5.3146	-26.5654	810.0067	7
1	5.1409	-25.8773	809.9395	8
2	-60.0000	30.0000	919.2610	1
2	-52.1976	35.9246	890.4222	2
2	-46.7326	43.7297	848.3530	3
2	-40.6916	50.0696	806.1928	4
2	-34.7931	57.2374	770.0386	5
2	-28.8223	63.9452	751.8341	6
2	-26.1276	65.0347	750.2917	7
3	-4.0000	4.0000	837.9658	1
3	-12.5377	4.7219	829.2006	2
3	-22.2861	4.3722	811.8866	3
3	-26.1421	5.6120	809.9756	4
3	-26.0938	5.1773	809.9450	5
3	-25.8909	5.2326	809.9376	6
4	30.0000	10.0000	859.8175	1
4	38.6576	8.0411	838.0807	2
4	47.6408	6.0768	806.5174	3
4	54.3776	6.5975	786.1526	4
4	62.9923	6.4129	771.5196	5
4	65.9092	5.0478	770.4102	6
5	40.0000	40.0000	834.6571	1
5	46.9030	46.3814	789.5024	2
5	51.3975	55.0588	748.1968	3
5	59.5115	59.6586	719.8787	4
5	65.8366	64.7526	710.7905	5
5	65.2109	65.4198	710.7130	6
5	65.4113	65.7284	710.7026	7
6	-65.0000	-65.0000	965.1563	1
6	-56.8128	-60.2633	951.9696	2
6	-50.0052	-53.1241	918.2835	3
6	-41.3519	-48.7916	875.5409	4
6	-36.3925	-41.2141	834.5559	5
6	-27.9507	-36.1577	804.8551	6
6	-25.6692	-28.0678	790.4966	7
6	-25.6469	-26.1355	789.8170	8
6	-25.9128	-26.0108	789.8026	9

Příklad řešení algoritmu