Wang tiles and undecidability problems

Matteo Cavallaro

Scuola Superiore di Catania, Scuola Superiore di Udine

Simposio Matematico RIMSE 2022, 1-2 Ottobre 2022

Wang tiles

Decision problem

$$\mathcal{P} \colon A \to \{0,1\}$$

Examples:

- "is *x* prime?"
- "is a propositional/first order/... formula ϕ satisfiable?"

Decidability

 ${\mathcal P}$ is decidable if exists a Turing machine/algorithm ${\mathcal M}$ such that

$$\mathcal{M}(a) = \mathcal{P}(a)$$
 for all $a \in A$

Decision problems on Wang tiles

Given a set of Wang tiles, does exists...

- a tiling of the plane?
- a periodic tiling of the plane?
- an aperiodic tiling of the plane?

A minimal aperiodic tiling set

How to prove decidability?

By constructing an algorithm that solves the problem! e.g.:

```
procedure Sieve of Eratosthenes(n) for i \leftarrow 2, 3, \dots, \lfloor \sqrt{n} \rfloor do
   if n \mod i = 0 then
   return 1
```

How to prove undecidability?

Usually one of two ways:

- by contradiction (reductio ad absurdum)
- by a reduction from another undecidable problem

Reductions

Given

$$A: A \rightarrow \{0,1\}$$

 $B: B \rightarrow \{0,1\}$

a reduction from A to B is a function

$$f: A \rightarrow B$$

such that

$$\mathcal{B}(f(a)) = \mathcal{A}(a)$$
 for all $a \in A$

f must be

- total: dom f = A
- ullet computable: exists a Turing machine/algorithm that computes f

Why reductions?

$$f:A o B$$
 $\mathcal{B}(f(a))=\mathcal{A}(a)$ f computable

 ${\mathcal B}$ decidable $\implies {\mathcal A}$ decidable

 ${\mathcal A}$ undecidable $\Longrightarrow {\mathcal B}$ undecidable

Reductions from and to problems on Wang tiles

$$A \leq W \leq B$$

Which \mathcal{A} and \mathcal{B} ?

- proof of their undecidability: reduction the from halting problem
- useful to prove the undecidability of many problems; the first of these results is the undecidability of ∀∃∀ fragment of first order logic (Wang)

formulae of $\forall \exists \forall$ fragment:

$$(\forall \ldots \forall)(\exists \ldots \exists)(\forall \ldots \forall)\phi, \qquad \phi \text{ propositional formula}$$

Reductions from and to problems on Wang tiles

$$A \leq W \leq B$$

Which \mathcal{A} and \mathcal{B} ?

- proof of their undecidability: reduction the from halting problem
- useful to prove the undecidability of many problems; the first of these results is the undecidability of ∀∃∀ fragment of first order logic (Wang)

formulae of $\forall \exists \forall$ fragment:

$$(\forall \ldots \forall)(\exists \ldots \exists)(\forall \ldots \forall)\phi, \qquad \phi \text{ propositional formula}$$

Undecidability of brick codes I

bricks:

$$k_1 = \boxed{a}$$

$$k_2 = \begin{array}{|c|c|c|c|c|} \hline a & b \\ \hline b & b & a \\ \hline \end{array}$$

$$k_3 = \begin{bmatrix} a \\ b \\ a \end{bmatrix}$$

• a brick tilable with k_1 and k_2 :

а		Ь	а
b	b	а	

 a set of bricks X is a code if every brick has at most one tiling with the elements of X

Undecidability of brick codes II

Undecidability provable by reduction from finite Wang tiling problem:

- a tile can have some edges (but not all) labelled with a blank colour
- does exists a finite tiling with blank border?

Undecidability of brick codes III

• for each colour a:

all the blank shapes with one or more edge mid-points removed, e.g.:

Undecidability of brick codes IV

Thanks for your attention!