|       | WO3 LOGIT (PROBIT)                                                                                                                                            |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Probet !!  y: e {0,13}  y: e {-1,1}                                                                                                                           |
| hide  | utility of alternative [1] [smiles] whility of alternative [0] is O. (smiles)                                                                                 |
|       | $y_{i} = \begin{cases} 1 & \text{if } y_{i} < 0 \\ 0 & \text{if } y_{i} < 0 \end{cases}$                                                                      |
|       | $y_i^* = \beta_i + \beta_2 \cdot \chi_i + \psi_i$                                                                                                             |
|       | s not grade grade X = X = X = X = X = X = X = X = X = X                                                                                                       |
|       | $u = \begin{bmatrix} u_1 \\ \vdots \\ u_m \end{bmatrix}$                                                                                                      |
|       | PROBIT: (u: X)~ N(0:1) indep.  LOGIT: (u: X)~ logistic distribution flus                                                                                      |
|       | PROBIT: $\int_{\mathbb{R}^n} u^2 = \int_{\mathbb{R}^n} \cdot \exp\left(-\frac{u^2}{z}\right) \int_{\mathbb{R}^n} u^2$                                         |
| (0 g) | Str distr $N(0;\frac{3}{3}) = (u) = \frac{\exp(u)}{1 + \exp(u)} \cdot \frac{1}{1 + \exp(u)}$ Stribar $N(0;\frac{3}{3}) = (u) = 0$ Vor $(u) = \frac{\pi^2}{3}$ |
|       | 1 5/ L ( ML) - 3                                                                                                                                              |

properties.

[1] LOGIT model discriminative (not generative) you need ann to predict your
you can't generale ann
LOGIT has no assumptions about
the distribution of regressors. 2 Sometimes LOGIT estimation fails. Lesp-lly with many prevolitors? nursage: ~, oor 1 probability" -> no problems with OCS

\hat{y}:=\hat{3}.+\hat{3}\cdot x\_i y: |x: | 1 2 3 -> let's try logit offan the coss function for the 606IT model coss = -log like lihood max log likelihood  $\ln P(y_{i}=0|X) \cdot P(y_{2}=1|X) \cdot P(y_{3}=1|X) =$  $= \ln P(y_1 = 0 | X) + \ln P(y_2 = 1 | X) + \ln P(y_3 = 1 | X)$  $P(y_i = 1/X) = P(y_i^* > 0/X) = P(\beta_i + \beta_2 \cdot x_i + \alpha_i > 0/X)$  $= p(u_i > -\beta_1 - \beta_2 \propto |X|)$ 



Solutions:

\* reduce the number of predictors.

\* introduce penalty in the likelihood

Tunction. logi! in stats models. houst LOGIT with more likelihed wisk of no solu.n. logit in sklearn penalized LOGIT no tisk of no sol-n. no (I, no hypoth. ksl. by the way: In likelihood = \( \sum\_{\text{in}} \)  $\lim_{\lambda \to \infty} \left( \frac{1 - F(\beta_1 + \beta_2 \cdot x_i)}{1 + \beta_2 \cdot x_i} \right) f = 0$   $\lim_{\lambda \to \infty} \left( \frac{1 - F(\beta_1 + \beta_2 \cdot x_i)}{1 + \beta_2 \cdot x_i} \right) f = 0$  $F(u) = \frac{\exp(u)}{1.1 \exp(u)}$ E y: In F(3,+32·2i) + (1-yi) In (1-F/3,+327.) \* A small funny fact !!  $\hat{z}$  y:  $= \hat{z} \hat{p}(y;=1|X)$ Obulik = Zyi. fi +  $= \underbrace{\sum_{i=1}^{n} y_{i} \cdot (1-f_{i}) + (1-y_{i}) \cdot (-f_{i})}_{f_{i}} = \underbrace{\sum_{i=1}^{n} y_{i} \cdot (1-f_{i}) + (1-y_{i}) \cdot (-f_{i})}_{f_{i}} = \underbrace{\sum_{i=1}^{n} y_{i} \cdot (1-f_{i}) + (1-y_{i}) \cdot (-f_{i})}_{f_{i}} = \underbrace{\sum_{i=1}^{n} y_{i} \cdot (1-f_{i})}_{f_{i}} + \underbrace{\sum_{i=1}^{n} y_{i} \cdot (1-f_{i})}_{f_{i$  $F = \frac{exp(u)}{1 + exp(u)^2} = \frac{1 + exp(u)^2}{1 + exp(u)^2}$  $\frac{1}{1-F} = \frac{exp(u)}{1+exp(u)} = F$ 

$$\underbrace{\sum_{y: (1-f_i)} + (1-y_i) \cdot H}_{\text{Fi}} = 0.$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{i=1}^{g} f_i + \sum_{y: f_i} = 0.$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{i=1}^{g} f_i + \sum_{y: f_i} = 0.$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{i=1}^{g} f_i + \sum_{y: f_i} = 0.$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{i=1}^{g} f_i + \sum_{y: f_i} = 0.$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{i=1}^{g} f_i + \sum_{y: f_i} = 0.$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{i=1}^{g} f_i + \sum_{y: f_i} = 0.$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{y: f_i} + \sum_{y: f_i} = 0.$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{y: f_i} + \sum_{y: f_i} = 0.$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{y: f_i} + \sum_{y: f_i} = 0.$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{y: f_i} + \sum_{y: f_i} = 0.$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{y: f_i} + \sum_{y: f_i} = 0.
}$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{y: f_i} + \sum_{y: f_i} = 0.
}$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{y: f_i} + \sum_{y: f_i} = 0.
}$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{y: f_i} + \sum_{y: f_i} + \sum_{y: f_i} = 0.
}$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{y: f_i} + \sum_{y: f_i} + \sum_{y: f_i} = 0.
}$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{y: f_i} + \sum_{y: f_i} + \sum_{y: f_i} = 0.
}$$

$$\underbrace{\sum_{y: -\sum_{i=1}^{g} f_i}_{\text{Fi}} - \sum_{y: f_i} + \sum_{y: f_i}$$

\* how to generalize to many aftern-s!
multimonnial logit