

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

<p>(51) Internationale Patentklassifikation 5 : C12N 15/13, C12P 21/08 C12Q 1/68, C07K 15/28 G01N 33/53</p>		A1	<p>(11) Internationale Veröffentlichungsnummer: WO 93/01288 (43) Internationales Veröffentlichungsdatum: 21. Januar 1993 (21.01.93)</p>
<p>(21) Internationales Aktenzeichen: PCT/EP92/01524 (22) Internationales Anmeldedatum: 6. Juli 1992 (06.07.92) (30) Prioritätsdaten: P 41 22 599.6 8. Juli 1991 (08.07.91) DE</p>		<p>(74) Anwalt: MÜLLER-BORE & PARTNER; P.O. Box 26 02 47, D-8000 München 26 (DE). (81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, MC, NL, SE).</p>	
<p>(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): DEUTSCHES KREBSFORSCHUNGSZENTRUM STIFTUNG DES ÖFFENTLICHEN RECHTS [DE/DE]; Im Neuenheimer Feld 280, D-6900 Heidelberg (DE). (72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): BREITLING, Frank [DE/DE]; Am Schloßberg 49, D-6900 Heidelberg (DE). LITTELLE, Melvyn [GB/DE]; Fritz-von Briesen-Str. 10, D-6903 Neckargemünd-Dilsberg (DE). DÜBELS, Stefan [DE/DE]; Quinckestr. 24, D-6900 Heidelberg (DE). BRAUNAGEL, Michael [DE/DE]; C 2, 1, D-6800 Mannheim 1 (DE). KLEWINGHAUS, Iris [DE/DE]; Richard-Wagner-Str. 30, D-6800 Mannheim (DE).</p>		<p>Veröffentlicht <i>Mit internationalem Recherchenbericht.</i></p>	
<p>(54) Title: PHAGEMIDE FOR SCREENING ANTIBODIES (54) Bezeichnung: PHAGEMID ZUM SCREENEN VON ANTIKÖRPERN</p>			
<p>(57) Abstract</p> <p>A phagemide has been constructed that expresses an antibody merged to coliphage pIII protein. The phagemide is suitable for selecting specific antibodies from large gene banks with small quantities of antigen. The antibody-pIII gene can be strongly repressed, so that it allows antibody banks to be amplified without the danger of deletion mutants predominating. After induction, large quantities of the merged protein may be expressed.</p>			
<p>(57) Zusammenfassung</p> <p>Ein Phagemid wurde konstruiert, das einen an Coliphagen pIII Protein fusionierten Antikörper exprimiert. Das Phagemid eignet sich zur Selektion von spezifischen Antikörpern aus großen Genbanken unter Verwendung kleiner Mengen Antigen. Das Antikörper-pIII-Gen kann stark抑制iert werden, so dass Antikörper-Banken ohne Gefahr einer Dominanz von Deletionsmutanten amplifiziert werden können. Nach Induktion können große Mengen des fusionierten Proteins exprimiert werden.</p>			

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kupfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	FI	Finnland	MN	Mongolei
AU	Australien	FR	Frankreich	MR	Mauritanien
BB	Barbados	GA	Gabun	MW	Malawi
BE	Belgien	GB	Vereinigtes Königreich	NL	Niederlande
BF	Burkina Faso	CN	Guinea	NO	Norwegen
BG	Bulgarien	CR	Griechenland	PL	Polen
BJ	Benin	HU	Ungarn	RO	Rumänien
BR	Brasilien	IE	Irland	RU	Russische Föderation
CA	Kanada	IT	Italien	SD	Sudan
CF	Zentrale Afrikanische Republik	JP	Japan	SE	Schweden
CG	Kongo	KP	Demokratische Volksrepublik Korea	SN	Senegal
CH	Schweiz	KR	Republik Korea	SU	Soviet Union
CI	Côte d'Ivoire	LI	Liechtenstein	TD	Tschad
CM	Kamerun	LK	Sri Lanka	TG	Togo
CS	Tschechoslowakei	LU	Luxemburg	US	Vereinigte Staaten von Amerika
DE*	Deutschland	MC	Monaco		
DK	Dänemark	MC	Madagaskar		
ES	Spanien	MI	Mali		

1

5

Phagemid zum Screenen von Antikörpern

10 Die vorliegende Erfindung betrifft Phagemide zur Selektion von spezifischen, aus großen Genbanken erhaltenen Antikörpern, die Herstellung dieser Phagemide und ihre Verwendung zur Selektion von spezifischen, aus großen Genbanken erhaltenen Antikörpern unter Verwendung geringer Mengen von Antigen.

Plasmid- und Phagen-Antikörper-Genbanken wurden in E.coli von PCR-amplifizierten Immunglobulin-Familien nach Immunisierung entwickelt. Rekombinante Antikörper gegen Immunogene wurden durch ELISA-Tests der Bakterienüberstände von isolierten Bakterienkolonien (Ward, E.S., Güssow, D., Griffiths, A.D., Jones, P.T. and Winter, G., "Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli", Nature (1989), 341, 544-546) oder durch Screenen von auf Nitrocellulose übertragenen Plaques von Bakterienkolonien auf Reaktivität gegen radioaktiv markierte Immunogene (Huse, W.D., Sastry, L., Iverson, S.A., Kang, A.S., Alting-Mees, M., Burton, D.R., Benkovic, S.J. and Lerner, R.A., "Generation of a large combinatorial library of the immunoglobin repertoire in phage lambda," Science (1989), 246, 1275-1281) selektiert. Zur Selektion jedoch von spezifischen Antikörpern von Genbanken willkürlich kombinierter leichter und schwerer Ketten von nicht-immunisierten Tieren, bei denen kein Übergewicht von Antikörpern für ein bestimmtes

-2-

1

Antigen vorliegt, ist ein Verfahren zum Screenen von Millionen von Antikörper-produzierenden Bakterien notwendig.

5

Ein möglicher Weg, einen großen Bereich von Antikörpern zu screenen, liegt darin, rekombinante Antikörper an die Oberfläche von Bakterien oder Bakteriophagen zu binden, sodaß sie dann rasch durch an eine feste Phase gebundene Antigene selektiert werden können. Hinsichtlich der Schwierigkeiten, Proteine gezielt auf die Zelloberfläche von Bakterien zu bringen, ist die M13-Familie von filamentösen Bakteriophagen wegen ihrer kleinen Größe und ihres relativ einfachen genetischen Aufbaus ein verlockender Kandidat (vgl. Übersichtsartikel von Webster, R.E. and Lopez, J., in "Virus Structure and Assembly", herausgegeben von S. Casjens, veröffentlicht von Jones and Bartlett Inc., Boston/Portala Valley, USA, 1985; Day, L.A., Marzec, C.J., Reisberg, S.A. and Casadevall, A., "DNA packaging in filamentous bacteriophages", Ann. Rev. Biophys. Chem. (1988), 17, 509-539).

20

Das Produkt von Gen III (pIII) ist ein relativ flexibles und zugängliches Molekül, das aus zwei funktionellen Domänen zusammengesetzt ist; einer amino-terminalen Domäne, die an den F-Pili männlicher Bakterien während der Infektion bindet, und einer carboxy-terminalen, innerhalb des Virion verborgenen Domäne, die für die Morphogenese wichtig ist. Peptide können zwischen den zwei Domänen von pIII (Smith, G.P., "Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface", Science (1985), 228, 1315-1317) oder in der Nähe des N-Terminus (Parmley, S.F. and Smith, G.P., "Antibody-selectable filamentous fd phage vectors: affinity purification of target genes", Gene (1988), 73, 305-318) ohne Zerstörung seiner Funktionen in Morphogenese und Infektion inseriert

25

30

35

-3-

1

werden. Nach erheblicher Pionierarbeit über die Verwendung von pIII in fd Phagen zum Führen fremder Peptide, zeigten Parmely and Smith (1988, vorstehend angegeben), daß 5 Peptidepitope, die am amino-terminalen Ende inseriert sind, Phagen an immobilisierte Antikörper binden können. In Folge dieser Arbeit war es möglich, Peptid-Genbanken zu entwickeln, die man auf Bindung an Liganden und Antikörpern screenen kann (Scott, J.K. and Smith, G.P. "Searching for 10 peptide ligands with an epitope library", Science (1990), 249, 386-390; Devlin, J.J., Panganiban, L.C. and Devlin, P.E., "Random peptide libraries: A source of specific protein binding molecules", Science (1990), 249, 404-406; Cwirla, S.E., Peters, E.A., Barrett, R.W. and Dower, W.J., 15 "Peptides on phage, a vast library of peptides for identifying ligands", Proc. Natl. Acad. Sci. USA (1990), 87, 6378-6382).

McCafferty, J., Griffith, A.D., Winter, G. and Chiswell, 20 D.J., "Phage antibodies: filamentous phage displaying antibody variable domains", Nature (1990), 348, 552-554 berichteten über den Zusammenbau eines Antikörper-pIII-Fusionsproteins in einen fd-Phagen mit einem Tet^R-Gen nach Insertion der Antikörper-DNA in das 5'-Ende von Gen III. Der 25 Phage blieb infektiös und konnte durch Affinitäts-Chromatographie angereichert werden. Die Fusionsphagen zeigten sich jedoch hauptsächlich für relativ kleine Inserts als geeignet, wahrscheinlich weil die großen Inserts einen negativen Einfluß auf die Infektivität von pIII haben 30 (Parmlee and Smith, 1988, vorstehend angegeben). Daher besteht ein großes Risiko, daß in Phagen-Genbanken nach ihrer Amplifikation schnell Deletionsmutanten dominieren.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, 35 ein wirksameres Mittel zum Screenen von Antikörper-Genbanken

-4-

1

in Bakterien bereitzustellen.

5

Erfindungsgemäß wird dies durch ein Phagemid nach Anspruch 1 erreicht, das ein funktionelles Antikörper-pIII-Fusionsprotein exprimiert. Vorzugsweise ist der Antikörper ein Einzelketten-Antikörper.

10

15

20

25

DNA, die für ein Antikörper-pIII-Fusionsprotein, vorzugsweise ein Einzelketten-Antikörper-pIII-Fusionsprotein, codiert, wurde in ein Phagemid eingebaut. Ein großer Vorteil des erfindungsgemäßen Phagemid-Systems gegenüber McCafferty et al. (vorstehend angegeben) liegt darin, daß es als Plasmid vermehrt werden kann und nicht unter Selektionsdruck bezüglich der Entfernung von Antikörper-DNA steht, da die Expression des Fusionsproteins stark unterdrückt ist. Dies ist insbesondere während der Amplifikation der Antikörper-Genbanken wichtig, wenn schneller proliferierende Deletionsmutanten rasch dominant werden könnten. Die Phagemid DNA, die weniger als die Hälfte obiger Phagen DNA ausmacht, transformiert auch Bakterien effizienter. Darüberhinaus werden im Gegensatz zu obigem Phagensystem große Mengen der kleineren Phagemid DNA produziert und große Mengen von Antikörperprotein sind nach Induktion verfügbar, wodurch die Analyse stark erleichtert wird.

30

35

Die Expression des Antikörper-pIII-Fusionsproteins, insbesondere des Einzelketten-Antikörper-pIII-Fusionsproteins, unter Verwendung des pSEX-Phagemids und seiner Verpackung in virale Partikel erleichtert die Entwicklung bakterieller Systeme zur Isolierung von Antikörpern hoher Affinität. Millionen Antikörper-produzierende Klone von Antikörper-Genbanken kann man jetzt rasch durch Bindung an immobilisierte Antigene screenen. Ein weiterer Vorteil gegenüber herkömmlichen Verfahren zum Screenen liegt darin, daß nur kleine Mengen Antigen benötigt werden, ein

-5-

1 wichtiger Faktor, wenn der Vorrat eines seltenen Proteins
begrenzt ist. Dieses System ermöglicht auch, zufällig
mutierte Antikörper zu screenen, um ihre Bindungs-
Affinitäten zu erhöhen. Das Verfahren kann mehrfach
5 wiederholt werden, bis die gewünschte Spezifität erreicht
ist. Es ist nun zum ersten Mal möglich, in großem Maßstab
unterschiedliche Tests zum Screenen von verwandten Zellen
und Organismen durchzuführen. Eine subtraktive Selektion,
beispielsweise unter Verwendung von normalen und
10 neoplastischen Zellen, kann zur Identifizierung von
Tumor-assoziierten Antigenen verwendet werden. Das
Phagemid-System erweist sich auch als äußerst hilfreich für
die Untersuchung molekularer Wechselwirkungen,
beispielsweise durch Selektion von Antikörpern, die eine
15 Liganden-Rezeptor-Bindung verhindern.

Ebenso erweist sich das erfundungsgemäße System als nützlich,
andere Proteine oder Peptide an den Oberflächen von
Phagemid-Viruspartikeln zu präsentieren. Hierfür ist die
20 Antikörper-DNA nur durch die DNA des gewünschten Polypeptids
zu ersetzen.

Die folgenden Beispiele erläutern die Erfindung.

25

Beispiel 1

Konstruktion eines Phagemids (pSEX)

DNAs, die für einen Einzelketten-Antikörper (scAb) und pIII
30 codieren, wurden nach Insertion eines spezifischen Satzes
von Restriktionsstellen und einer Protease-sensitiven
Verbindungssequenz in die multiple Klonierungsstelle in pUC
119 kloniert. Die Ab-DNA codierte für die variablen Domänen
der schweren und leichten Kette eines humanisierten Ab gegen
35 Hühnereiweiß-Lysozym, der von dem Anti-Lysozym Ab D1.3
stammte (Amit et al., Science (1986), 233, 747-754;
Verhoeven, M. et al., Science (1988), 239, 1534-1536). Diese
Domänen wurden über eine 18-Aminosäure-Linker-Sequenz

-6-

1 verbunden, die das Epitop des monoklonalen Ab YOLL/34
enthieilt (Breitling, F. and Little, M., "Carboxy-terminal
regions on the surface of tubulin and microtubules: Epitope
locations of YOLL/34, DM1A and DM1B", J. Mol. Biol. (1986),
5 189, 367-370), wodurch der Ab identifiziert werden konnte.
Zur Bereitstellung einer flexibleren Verbindung zu pIII,
wurde das 3'-Ende der DNA für die leichte Kette durch Zusatz
von Nucleotiden, die für die ersten sechs Aminosäuren der
konstanten Domäne in der menschlichen Kappa-Kette codierten,
10 gefolgt von einer BamHI-Restrictionsstelle modifiziert. pIII
DNA wurde von dem Bakteriophagen M13 amplifiziert, indem
Primer entsprechend der 5'- und 3'-Enden des Gens III
verwendet wurden. Die Ab-pIII-DNA wurde dann in einem
Phagemid der pDS-Familie kloniert, das einen mit zwei
15 lac-Operatoren kombinierten Coliphagen-T7-Promotor enthielt
(Bujard, H., Gentz, R., Lancer, M., Stüber, D., Müller,
H.-M., Ibrahim, I., Häuptle, M.-T. and Dobberstein, B.,
"A T5 promoter-based transcription-translation system for
the analysis of proteins in vitro and in vivo", Methods
Enzymol. (1987), 155, 416-433; Lancer, M. and Bujard, H.,
20 "Promoters determine the efficiency of repressor action",
Proc. Natl. Acad. Sci. USA (1988), 85, 8973-8977; Müller,
H.-M., Ph. D. thesis, Univ. Heidelberg, 1989). Schließlich
wurde eine für die Leader-Sequenz des bakteriellen Enzyms
25 Pektatlyase codierende DNA an das 5'-Ende der Ab-DNA
ligiert, wodurch das Phagemid pSEX (Fig. 1a) erhalten wurde.
Die Leader-, Linker- und PCR-Primer-Sequenzen sind in Figur
30 1b gezeigt. Eine alternative Linker-Sequenz (Fig. 1c) mit
dem YOLL/34 Epitop am Ende des Linkers, die eine nützliche
Restriktionsstelle zur Insertion von Ab-Genbanken enthielt,
wurde auch verwendet. Obwohl beide tag-Linker eine
bedeutsame Menge saurer Reste enthielten, zeigten sie sich
ohne Effekt auf die Herstellung von funktionellen scAbs im
Vergleich mit scAbs, deren Linker nur aus den neutralen
35 Aminosäuren Glycin und Serin zusammengesetzt waren.

-7-

1

Beispiel 2

Expression eines Antikörper-pIII-Fusionsproteins

5

Zur Überprüfung, ob der fertige Phagemid-Vektor in der Lage war, das Fusionsprotein in voller Länge zu exprimieren, wurden 100 μ l um IPTG einer sich in log-Phase befindlichen, mit pSEX transformierten E. coli-Kultur zugegeben. Die 10 Kultur zeigte einen deutlichen Rückgang in ihrer Wachstumsrate, verglichen mit der Kontrolle, was auf eine bedeutsame Synthese eines Phagemid-codierten Proteins hinwies. In der Western-Blot-Analyse wurde das Antikörper-pIII-Konstrukt durch drei Antikörper 15 identifiziert; einem monoklonalen Antikörper gegen einen Teil der Linker-Sequenz (EEGEFSEAR) und zwei Anti-Peptid-Kaninchenserien gegen N-terminale Sequenzen der schweren und leichten Ketten (QVQLQQSGGG bzw. DJQMTQSPSS). Es wanderte mit einem offensichtlichen Molekulargewicht von 20 93 kd (Fig. 2). Die große Größe des Fusionsproteins (vorausgesagt: Mr 68.100) ist höchstwahrscheinlich durch die pIII-Komponente (Mr 42.100) bedingt, die mit einem offensichtlichen Molekulargewicht von etwa 55.000 - 25 70.000 kd wandert (Goldsmith, M.E. and Königsberg, W.H., "Adsorption protein of the bacteriophage fd: isolation, molecular properties and location in the virus", Biochemistry (1977), 16, 2868-2694). Partielle Proteolyse des Fusionsprotein wurde durch das Vorliegen einiger schwächerer Banden niedrigeren Molekulargewichts angezeigt, 30 die mit den drei Antikörpern identisch angefärbt wurden.

Eine Zellfraktionierung zeigte, daß das Protein in den Cytoplasma und Membran-Fraktionen vorlag, nicht aber im Periplasma und dem Kulturüberstand (Fig. 2, Spuren 3-6) im Gegensatz zu der Antikörper-Komponente allein ohne pIII, die 35 in das

-8-

1

Periplasma und das Medium sekretiert wurde (Daten nicht
gezeigt). Dies war nicht überraschend, da pIII auf
Phagenpartikeln aus der inneren bakteriellen Membran
zusammengesetzt wird, ein Prozeß, der scheinbar nur von der
C-terminalen Domäne abhängt. Deletionsmutanten von pIII ohne
diese Domäne gelangen in das Periplasma, ohne an die
cytoplasmatische Membran gebunden zu werden (Boeke, J.D. and
Model, P., "A prokaryotic membrane anchor sequence: carboxyl
terminus of bacteriophage f1 gene III protein retained in
the membrane", Proc. Natl. Acad. Sci. USA (1982), 79,
5200-5204), und normale Phagenpartikel werden nicht
zusammengesetzt (Crissman, J.W. and Smith, G.P., "Gene III
protein of filamentous phages: evidence for a
carboxy-terminal domain with a role in morphogenesis",
Virology (1984), 132, 445-455). Die Anker-Sequenz ist
wahrscheinlich eine hydrophobe Strecke von 23 Aminosäuren am
Carboxy-Terminus (Davis, N.G., Boeke, S. and Model, P.,
"Fine structure of a membrane anchor domain", J. Mol. Biol.
(1985), 181, 111-121).

Die Fähigkeit des Fusionsproteins, ein Antigen zu binden,
wurde untersucht, indem die Triton-lösliche Fraktion über
eine an Sepharose gebundene Lysozymäule gegeben wurde.
Western Blots des ungebundenen Materials und der nach
gründlichem Waschen und Eluieren mit 0,05 M Dimethylamin
erhaltenen Fraktionen zeigten, daß das Fusionsprotein in
voller Länge tatsächlich spezifisch auf der Lysozymäule
zurückgehalten wurde (Fig. 2, Spuren 7-12).

30

Beispiel 3

Verpackung des pSEX-Phagemids

35

Zur Bestimmung, ob der Phagemid-Expressionsvektor verpackt
werden konnte, wurden pSEX-enthaltende E.coli mehrfach mit

-9-

1

dem Phagen fd infiziert. IPTG wurde nicht zugegeben, da
gefunden wurde, daß es einen inhibitorischen Effekt auf das
Verpacken eines Phagemids hat. Ähnliches wurde kürzlich von
5 Bass et al., Proteins (1990), 8, 309-314 berichtet, der ein
Phagemid konstruierte, das ein Fusionsprotein aus humanem
Wachstumshormon und der C-terminalen Domäne von pIII
exprimierte. Die Untersuchung der Ab-pIII-Produktion mit und
ohne IPTG nach Zugabe des Phagen fd zeigte, daß der Phage
10 allein in der Lage war, eine Expression zu induzieren (Fig
3). Eine mögliche Erklärung hierfür ist, daß eines der
Phagen-Gen-Produkte die Bindung des lac-Repressors an den
Operator stört. Andererseits könnte die Bindung von
Phagen-Proteinen an die Zwischengenregion die Topologie des
15 Phagemid beeinflussen und die Freisetzung des lac-Repressors
bewirken. Wie auch immer, wir haben gefunden, daß das
Durchwandern der Zwischengenregion 10^3 Nukleotide zu der
anderen Seite des bla-Gens keinen Effekt auf dieses Phänomen
hat (Daten nicht gezeigt).

20

Agarose-Gelelektrophorese der von Viruspartikeln in das
Medium abgegebenen DNA zeigt zusätzlich zu der Einzelstrang-
DNA von fd eine größere Menge kleinerer DNA, die in der
Größe mit einzelsträngigem pSEX vergleichbar war. Ein
weiterer Beweis für eine Phagemid-Verpackung und der
25 Produktion von infektiösen Partikeln wurde durch Infektion
von E.coli mit den abgegebenen Virus-Partikeln erbracht.
 10^{10} ml Amp^R E.coli Kolonien wurden im Vergleich zu
 3×10^9 pfu erhalten.

30

Zur Bestimmung, ob das verpackte Phagemid das
Antikörper-pIII-Fusionsprotein eingebaut hatte, wurden 90
µl Kulturüberstand, der 5×10^8 verpackte, als Amp^R
transduzierende Einheiten bestimmte Phagemide enthielt, mit
35 einem tausend-fachen Überschuß an Wildtyp fd-Phage gemischt,

-10-

1

und über eine Säule immobilisierten Lysozymen gegeben. Nach gründlichem Waschen mit 10-fachem Badvolumen von PBS, 1 M NaCl bzw. 0,5 M NaCl in 0,1 M NaHCO₃ bei pH 8,3 wurden die Phagemid-Partikel mit 0,05 M Diethylamin eluiert. Das Eluat wurde mit 0,5 M NaH₂PO₄ neutralisiert und auf die Anzahl der Phagen und verpackten Phagemide getestet (Tabelle). Eine spezifische Anreicherung von bis zu 121-fach wurde erreicht, was den Einbau von funktionellen Antikörper-pIII-Konstrukten in die Phagemid-Partikel zeigte. Die Bindungseigenschaften der Phagemid-Partikel können weiter erhöht werden, indem eine pIII Deletionsmutante zum Verpacken verwendet wird. Dies garantiert, daß nur jene Phagemide, die für funktionelle Fusionsproteine codieren, verpackt werden und alle fünf pIII-Proteine auf einem Phagemid-Partikel mit Antikörper fusioniert werden.

10

15

Beschreibung der Figuren

20

Figur 1: Konstruktion von pSEX, einem Phagemid zum Screenen von Antikörpern

25

VH und VL sind variable Domänen der schweren bzw. leichten Kette eines Anti-Lysozym-Ab.

(a) Konstruktion

Zur Bereitstellung der notwendigen Restriktionsstellen, wurden die Oligonukleotide

5'GCTGAATTGGATCCATAGGCCCTCTAGAGTCGAC3'

30

5'AATTGTCGACTCTAGAGGCCCTATGGATCCGAATTAGCTGCA3'

5'-phosphoryliert, miteinander hybridisiert und in pUC119 ligiert, der mit PstI und EcoRI geschnitten und dephosphoryliert war. Gegebenenfalls wurden zur

-11-

1

Schaffung einer Protease-sensitiven Sequenz die hybridisierten Oligonucleotide 5'GATCAAAGATATCAGAGGCC3' und 5'CTCTGATATCTTG3' zwischen die BamHI- und ApaI-Stellen des ersten Oligonucleotid-Satzes inseriert. scAB-DNA wurde dann zwischen die PstI- und BamHI-Stellen inseriert, gefolgt von der Ligierung der pIII-DNA über stumpfe Enden nach Spaltung des Phagemids mit ApaI und Behandlung mit T4-DNA-Polymerase zur Entfernung 3'-überhängender Enden.

10

pSEX wurde hergestellt, indem die multiple Klonierungsstelle von pUHE 24-2 mit dem nahe verwandten Phagemid pDS31-1 kombiniert wurde, das eine zusätzliche f1 Zwischengenregion enthielt (Bujard et al., 1987, vorstehend angegeben; Müller, 1989, vorstehend angegeben). die pDS31-1-Sequenz erstreckt

15

sich von XbaI entgegen des Uhrzeigersinns bis zu einer HindIII-Stelle (in Klammern), die nach Ligierung über stumpfe Enden verloren wurde. pUHE24-2 ist im wesentlichen mit pDSG identisch (Bujard et al., 1987), bei dem ein Choli-Phage T7-Promotor mit zwei lac-Operatoren und einer

20

Ribosomen-Bindungsstelle kombiniert ist (PAL/04/03, Lancer and Bujard, 1988, vorstehend angegeben; Lanzer, 1988, vorstehend angegeben). Das erhaltene Phagemid wurde mit HindIII geschnitten und die 5'-überhängenden Enden wurden mit Klenow-Fragment aufgefüllt. Nach einer weiteren Spaltung

25

mit PstI, wurde das PstI-HincII Ab-pIII-DNA-Fragment in das Phagemid inseriert. Schließlich wurde eine synthetische DNA, die für die Leader-Sequenz des Bakterienenzyms Pektatlyase und für die ersten vier Aminosäuren der schweren Kette codiert, zwischen die NcoI und PstI-Restriktionsstellen

30

inseriert. pUHE-Plasmide wurden in E.coli 71-18 mit dem Plasmid pDM1, das den lac-Repressor exprimiert, vermehrt, pUC-Plasmide wurden in DH5 vermehrt und das Antikörper-pIII-Fusionsprotein in JM101 exprimiert.

35

-12-

1

(b) Sequenz der Ribosomenbindungsstelle (RBS), der Leader-Sequenz der Pektatlyase, des tag-Linkers und der PCR-Primer für pIII.

5 Unterstrichene Aminosäuren geben das Epitop für YOL1/34 an. Die folgenden Aminosäuren in der Linker-Sequenz sind eine Fortführung der -Tubulin-Sequenz.

(c) Mögliche tag-Linker-Sequenz.

10 Unterstrichene Aminosäuren geben das Epitop für YOL1/34 an. Die Aminosäuren des vorhergehenden Linkers sind eine Fortführung der Ab-Sequenz in die konstante Domäne.

15

Fig. 2: Induzierbarkeit, zelluläre Lokalisierung und Antigenbindung des Antikörper-pIII-Fusionsproteins, analysiert durch Gelelektrophorese auf 8 % Polyacrylamidgelen und Western Blott.

20

Spuren 1 und 2: Gesamte Zellen nach 1 h Inkubation mit 100 μM IPTG (1) oder ohne IPTG (2).

Spuren 3 - 6: Zellfraktionierung; 3: Kulturüberstand, 4: periplasmatisch angereicherte Fraktion, 5: lösliche cytoplasmatische Fraktionierung, 6: 1 % Tritonextrakt.

25

Spuren 7 - 12: Lysozym-Affinitätschromatographie des 1 % Tritonextraktes von induzierten und nicht-induzierten Zellen, 7: Ausfluß (+IPTG), 8: Ausfluß (-IPTG), 9: letzte Waschung (+IPTG), 10: letzte Waschung (-IPTG), 11: Eluat (+IPTG), 12: Eluat (-IPTG).

30

Spuren 1 - 6 wurden angefärbt unter Verwendung des monokonalen Antikörpers YOL1/34 (Serotec, Oxford, U.K.) und Spuren 7 - 12 unter Verwendung eines Antiserums gegen die N-terminale Sequenz der leichten Kette.

35

-13-

1

Durchführung:

Antiseren gegen die schweren und leichten Ketten wurden durch subkutane Injektion von Kaninchen mit den 5 amino-terminalen Peptiden QVQLQQSGGG(AC) bzw. DIQMTQSPSS(AC) erhalten, die an das Hämocyanin der Schlüsselloch-Napfschnecke gekoppelt waren. Zur Untersuchung der Expression des Fusionsproteins wurden pelletierte Bakterien von IPTG-induzierten Kulturen in 30 mM Tris/HCl, pH 8,0 10 Puffer resuspendiert, der 20 % Sucrose, 1 mM EDTA, 1 mg/ml Hühnerlysozym enthielt, und 10 min auf Eis inkubiert. Nach 1 minütiger Zentrifugation bei 15 000 g wurde der die periplasmatischen Proteine enthaltende Überstand gesammelt und das Pellet in 0,1 M Tris/HCl, pH 8,0 beschallt. Die 15 lösliche cytosolische Fraktion wurde nach 5 minütiger Zentrifugation bei 15 000 g abdekantiert und das resuspendierte Pellet in 1 % Triton X100 inkubiert, wodurch die membrangebundene Fraktion erhalten wurde. Sämtliche Fraktionen wurden auf β -Lactamase-Aktivität gemäß Plückthun, 20 A. und Knowles, J.R.: "The consequences of stepwise deletions from the signal-processing site for β -lactamase", J.Biol. Chem. 262 (1987), 3951-3957 getestet, um die Effizienz des Fraktionierungsschrittes zu erfahren. Die tritonlösliche Fraktion wurde mit PBS 100-fach verdünnt, 25 bevor sie Affinitätssäulen zugegeben wurde. Zur Affinitäts-Chromatographie wurde Hühnerlysozym (Boehringer, Mannheim, FRG) mit Cyanogenbromid-aktivierter Sepharose (Pharmacia) gemäß den Anweisungen des Herstellers gekoppelt. Die Lysozym-Sepharose wurde 20 min bei Raumtemperatur mit 30 den Extrakten inkubiert und in Säulen gegossen, die nachfolgend mit 10 Bad-Volumina von PBS, 1M NaCl bzw. 0,5 M NaCl in 0,1 M NaHCO₃ bei pH 8,3 gewaschen wurden, bevor sie mit 0,05 M Diethylamin eluiert wurden. Sämtliche Fraktionen wurden mit Trichloressigsäure (Endkonzentration 35 20 %) präzipitiert und in SDS Polyacrylamidgelen aufgetrennt (Laemmli, U.K.: "Cleavage of structural proteins

-14-

1

during the assembly of the head of the bacteriophage T4",
Nature (1970), 227, 680-685). Western Blots wurden gemäß
Towbin, H Steahelin, T. and Gordon, I.: "Electrophoretic
transfer of protein from polyacrylamide gels to
nitrocellulose sheets: procedures and some applications",
Proc. Natl. Acad. Sci. USA (1979), 76, 4350-4354,
durchgeführt, indem zweite Antikörper, die an
Meerrettich-Peroxidase gekoppelt waren, mit Diaminobenziden
als Substrat verwendet wurden.

10

Fig. 3: Gelelektrophorese von zirkulärem einzelsträngigen
pSEX

15

Spur 1: fd, Spur 2: Kontroll-Phagemid pUHE31-1 mit fd,
Spur 3: pSEX1 mit fd.

20

DNA von fd Virionen und verpackte Phagemid-Partikel wurden
auf 0,8 % Agarosegele in 1xTBE gemäß Sambrook, J., Fritsch,
E.F. und Maniatis, T. in "Molecular Cloning: A Laboratory
Manual, "2. Auflage, herausgegeben in Cold Spring Harbor
Laboratory (1989) gegeben und mit Ethidiumbromid angefärbt.

25

Durchführung:

30

Zur Herstellung verpackter Phagemide wurden pSEX1
enthaltende E. coli JM101 auf M9 Minimalmedium ausplattiert
und 30 h bei 37°C inkubiert. 2 ml des gleichen Mediums
wurden mit einer der Kolonien angeimpft und bei 37°C unter
kräftiger Belüftung inkubiert, bis eine optische Dichte von
etwa 0,2 bei 600 nm erreicht wurde. 0,5 ml LB-Medium und ein
10-facher Überschuss des Phagen fd wurden dann der Kultur
zugegeben und diese weitere 3 h bei 37°C inkubiert. Nachdem
zweimal vorsichtig bei 15 000 g 5 min lang bei Raumtemperatur

35

-15-

1

zentrifugiert worden war, wurde der Überstand auf eine
Endkonzentration von 4 % Polyethylenglykol (Serva PEG 6000)
und 0,5 M NaCL eingestellt und über Nacht bei 4°C stehen
gelassen. Die Phagemide wurden durch 20 minütige
Zentrifugation bei Raumtemperatur und 15 000 g sedimentiert
und in 200 μ l Tris-EDTA-Puffer, pH 7,5 suspendiert.
Phagemid DNA wurde durch zehnminütiges Schütteln mit einem
Volumen Phenol, gefolgt von einer Behandlung mit
Chloroform-Isopropanol und Präzipitation mit Isopropanol
präpariert (Sambrook, J., Fritsch, E.F. and Maniatis, T., in
"Molecular Cloning: A Laboratory Manual", 2. Auflage,
herausgegeben in Cold Spring Harbor Laboratory (1989)).

10

15

20

25

30

35

TABELLE

Spezifische Anreicherung von verpackten Phagemiden an einer Antigen-Affinitätsäule

Gesamtes Volumen (ml)	Plattiertes Volumen (μl)	Amp Kolonien Zahl	Gesamt Volumen (μl)	Plattiertes Volumen (μl)	Gesamt pfu Zahl	Gesamt pfu	Überschub pfu/Amp	Anreicherungs-faktor
Aufgetragen 10	10^{-3}	51	$5,1 \times 10^8$	10^{-6}	45	$4,5 \times 10^{11}$	882	—
Eluiert 1,1	10^{-1}	26	$2,9 \times 10^5$	10^{-2}	19	$2,1 \times 10^6$	7,3	•121

-16-

1

- 17 -

5

Patentansprüche

1. Phagemid mit einer für ein Fusionsprotein aus einem Antikörper und einem Coliphagen pIII-Protein codierenden DNA, dadurch gekennzeichnet, daß das Fusionsprotein das Coliphagen pIII-Protein in voller Länge umfaßt.
- 10 2. Phagemid nach Anspruch 1, dadurch gekennzeichnet, daß der Antikörper ein Einzelketten-Antikörper ist.
- 15 3. Phagemid nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Fusionsprotein zwischen dem Antikörper und dem Coliphagen pIII-Protein einen Protease-sensitiven Bereich enthält.
- 20 4. Phagemid nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß es die Struktur von Fig. 1 hat.
- 25 5. Verfahren zur Herstellung eines Phagemids nach Anspruch 1, bei dem eine für einen Antikörper codierende DNA mit einer für ein Coliphagen pIII-Protein in voller Länge codierende DNA fusioniert und das erhaltene DNA Molekül in ein übliches Phagemid inseriert werden, wobei hierfür übliche DNA Rekombinationstechniken angewandt werden.
- 30 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß eine für einen Einzelketten-Antikörper codierende DNA verwendet wird.
- 35 7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß zwischen den für den Antikörper und das Coliphagen pIII-Protein codierenden DNA Sequenzen eine Protease-sensitive Sequenz eingefügt wird.

- 18 -

1

8. Verwendung des Phagemids nach einem der Ansprüche 1 - 4 zur Selektion auf spezifische Antikörper aus Antikörper-Genbanken.

5

9. Verwendung des Phagemids nach einem der Ansprüche 1 - 4 zur Präsentation anderer Proteine oder Peptide auf der Oberfläche von Phagemid-Partikeln durch Austausch der den Antikörper codierenden DNA durch jene des gewünschten Proteins bzw. Peptids.

10

15

20

25

30

35

1/3

(b)

RBS → *pelB* leader
 86 MetLysTyrLeuLeuProThrAlaAlaAlaGlyLeu
~~GAATTCACTAAAGAGGAGAAATTAACTCCATGAAATACCTTGCTTACGGCAGCCGCTGGCTTG~~
EcoRI (NcoI)

151 \rightarrow VH 523 \rightarrow tag-linker
 LeuLeuLeuAlaAlaAlaGlnProAlaMetAlaGlnValGlnLeuGln...SerSerGluGluGly
 CTGCTGCTGGCAGCTCACGCCGCGATGGCGCAAGTTCAGCTGAG...TCCTCAGAAGAAAGGT
 PstI

538 → VL 895
GluPheSerGluAlaArgGluAspMetAlaAlaLeuGluLysGlyAspIle...LysArgThr
GAATTCTCAGAAGCTCGTGAAGATAATGGCTGCACITGAGAAAGGTGATATC...AAACGTACG
EcoRI EcoRV

904 → M13 gene III
 ValAlaAlaProGlySerLysAspIleArgAlaGluThrValGluSerCys...
 GTAGCCAGCTCTGGATCCAAGATATCGAGCTGAAACCTGTGAAAGTTGT...
 BamHI EcoRV forward primer

2137
 ...ArgAsnLysGluSer_{stop}
 ...CGTAATAAGGAGTCCTAAATGACCTCTAGAGTCAGCTT
 TTATTCTCAGAAATTACT XbaI (HindIII)
 backward primer

(C) → tag-linker → VL
 SerGlySerAlaSerAlaProLysLeuGluGluGlyGluPheSerGluAlaArgGluAspIle
 TCAGGGAGTGCATCCGCCAAAGCTTGAAAGAAGGTGAATTCTCAGAAGCCCCGCRAGATATC
 HindIII EcoRI BssHII EcorV

Fig.1

2/3

Fig. 2

ERSATZBLATT

3/3

Fig. 3