# Bigger = Better ? Scaling laws

There are many LLM's, with varying choices of

- ullet number of parameters N
- ullet size of training data D
  - number of tokens trained on
  - not distinct tokens in dataset
    - same token encountered in each epoch is counted once per epoch
- ullet amount of compute for training C

Here is a table from the GPT-3 paper (https://arxiv.org/pdf/2005.14165.pdf#page=46)

#### D Total Compute Used to Train Language Models

This appendix contains the calculations that were used to derive the approximate compute used to train the language models in Figure 2.2. As a simplifying assumption, we ignore the attention operation, as it typically uses less than 10% of the total compute for the models we are analyzing.

Calculations can be seen in Table D.1 and are explained within the table caption.

| Model         | Total train<br>compute<br>(PF-days) | Total train<br>compute<br>(flops) | Params (M) | Training tokens (billions) | Flops<br>per param<br>per token | Mult for bwd pass | Fwd-pass<br>flops per<br>active param<br>per token | Frac of<br>params active<br>for each<br>token |
|---------------|-------------------------------------|-----------------------------------|------------|----------------------------|---------------------------------|-------------------|----------------------------------------------------|-----------------------------------------------|
| T5-Small      | 2.08E+00                            | 1.80E+20                          | 60         | 1,000                      | 3                               | 3                 | 1                                                  | 0.5                                           |
| T5-Base       | 7.64E+00                            | 6.60E+20                          | 220        | 1,000                      | 3                               | 3                 | 1                                                  | 0.5                                           |
| T5-Large      | 2.67E+01                            | 2.31E+21                          | 770        | 1,000                      | 3                               | 3                 | 1                                                  | 0.5                                           |
| T5-3B         | 1.04E+02                            | 9.00E+21                          | 3,000      | 1,000                      | 3                               | 3                 | 1                                                  | 0.5                                           |
| T5-11B        | 3.82E+02                            | 3.30E+22                          | 11,000     | 1,000                      | 3                               | 3                 | 1                                                  | 0.5                                           |
| BERT-Base     | 1.89E+00                            | 1.64E+20                          | 109        | 250                        | 6                               | 3                 | 2                                                  | 1.0                                           |
| BERT-Large    | 6.16E+00                            | 5.33E+20                          | 355        | 250                        | 6                               | 3                 | 2                                                  | 1.0                                           |
| RoBERTa-Base  | 1.74E+01                            | 1.50E+21                          | 125        | 2,000                      | 6                               | 3                 | 2                                                  | 1.0                                           |
| RoBERTa-Large | 4.93E+01                            | 4.26E+21                          | 355        | 2,000                      | 6                               | 3                 | 2                                                  | 1.0                                           |
| GPT-3 Small   | 2.60E+00                            | 2.25E+20                          | 125        | 300                        | 6                               | 3                 | 2                                                  | 1.0                                           |
| GPT-3 Medium  | 7.42E+00                            | 6.41E+20                          | 356        | 300                        | 6                               | 3                 | 2                                                  | 1.0                                           |
| GPT-3 Large   | 1.58E+01                            | 1.37E+21                          | 760        | 300                        | 6                               | 3                 | 2                                                  | 1.0                                           |
| GPT-3 XL      | 2.75E+01                            | 2.38E+21                          | 1,320      | 300                        | 6                               | 3                 | 2                                                  | 1.0                                           |
| GPT-3 2.7B    | 5.52E+01                            | 4.77E+21                          | 2,650      | 300                        | 6                               | 3                 | 2                                                  | 1.0                                           |
| GPT-3 6.7B    | 1.39E+02                            | 1.20E+22                          | 6,660      | 300                        | 6                               | 3                 | 2                                                  | 1.0                                           |
| GPT-3 13B     | 2.68E+02                            | 2.31E+22                          | 12,850     | 300                        | 6                               | 3                 | 2                                                  | 1.0                                           |
| GPT-3 175B    | 3.64E+03                            | 3.14E+23                          | 174,600    | 300                        | 6                               | 3                 | 2                                                  | 1.0                                           |

#### We have already seen that some LLM properties

- like in-context learning (zero or few shot)
- "emerge" only when model size passes a threshold

#### This argues for bigger models.



There is also evidence that the emergence of ability to perform some in-context tasks

- is sudden
- rather than gradual as the number of parameters increase.



**Figure 3.10:** Results on all 10 arithmetic tasks in the few-shot settings for models of different sizes. There is a significant jump from the second largest model (GPT-3 13B) to the largest model (GPT-3 175), with the latter being able to reliably accurate 2 digit arithmetic, usually accurate 3 digit arithmetic, and correct answers a significant fraction of the time on 4-5 digit arithmetic, 2 digit multiplication, and compound operations. Results for one-shot and zero-shot are shown in the appendix.

Attribution: GPT-3 paper (https://arxiv.org/pdf/2005.14165.pdf#page=46)

Is bigger N always better?

Consider the costs. Larger  ${\cal N}$ 

- ullet entails more computation: larger C
- ullet probably requires more training data: larger D

If we fix a "budget" for one choice (e.g.,  ${\it C}$ ) we can explore choices for  $N, {\it D}$  that meet this budget.

# Here are two models with the same ${\cal C}$ budget

ullet but vastly different N and D

| model         | Compute (PF-days) | params (M) | training tokens (B) |
|---------------|-------------------|------------|---------------------|
| RoBERTa-Large | 49.3              | 355        | 2000                |
| GPT-3 2.7B    | 55.2              | 2650       | 300                 |

Attribution: GPT-3 paper (https://arxiv.org/pdf/2005.14165.pdf#page=46)

Given these choices: how do we choose?

One way to quantify the decision is by setting a goal

- to maximize "performance"
- ullet where this is usually proxied by "minimizing test loss" L
  - Cross Entropy for the "predict the next" token task of the LLM

#### We can state some basic theories

- ullet Increasing N creates the *potential* for better performance L
- To actualize the potential
  - lacktriangle we need increased C
    - more parameters via increasing the number of stacked
       Transformer Blocks
  - we need increased D

## But this still leaves many unanswered questions

- Can *L* always be reduced?
  - Does performance hit a "ceiling"
  - For a fixed N: perhaps increasing D or C won't help
- ullet What is the relationship between N and D?
  - lacktriangle how much must D by increased when N increases
- For a fixed D: what is the best choice for N?
  - holding performance constant

# Scaling Laws: early research

Fortunately, this <u>paper (https://arxiv.org/pdf/2001.08361.pdf)</u> has

- ullet conducted an empirical study of models with varying N,D,C and resulting L
- fit an empirical function (Scaling Laws) describing the dependency of L on N,D,C.

We briefly summarize the results.

"Performance" (test loss L ) depends on scale.

Scale consists of 3 components

- ullet Compute C
- ullet Dataset size (really: number of training tokens) D
- $\bullet$  Parameters N

We can set a "budget" for any of variables L,N,D,C

• and examine trade-offs for the non-fixed variable

#### The paper shows that

- Increasing your budget for one of the scale factors
- increases performance (decrease loss)
- **provided** the other two factors don't become bottlenecks



**Figure 1** Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute<sup>2</sup> used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

#### But bottlenecks are a worry:

- ullet The potential performance of a model of fixed size N hits a "ceiling"
- ullet That can't be overcome by increasing compute C

The optimal model size grows smoothly with the loss target and compute budget



#### Observation

Consider fixing the loss at L = 8.

- models of all sizes can reach this performance
- but the *smaller* model reaches it with less compute
- if we are compute constrained
  - favor a smaller model

#### Observation

For a fixed Compute  ${\cal C}$ 

- a smaller model (that has reached its asymptotic minimum) has lower loss
- provided that there is enough training data

For a fixed L

• a smaller model reaches the loss with less compute

## We can also set a performance budget L

- ullet and examine the amount of training data D to reach this budget
- $\bullet$  as N varies

Larger models require **fewer samples** to reach the same performance



#### **Observation**

For a fixed D

- bigger models are more data efficient
  - lacktriangledown for a given level of loss L, a larger model achieves L with fewer tokens
- ullet but at a higher  ${\cal C}$

But we can also see that more data  ${\cal D}$  may compensate for fewer parameters

For some levels of loss (e.g., L=8)

- the smallest (purple line) and largest (yellow line) models both achieve the Loss
- ullet but the smallest model needs a much larger D

#### **Key observation**

- smaller models
- can achieve the same performance (e.g., Loss) as larger models
- if they are trained on more data

| Given the <i>same performance</i> , a smaller models may be preferred                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>because their training compute may still be smaller than the larger model</li> <li>their inference compute will be much smaller</li> </ul> |
|                                                                                                                                                     |
|                                                                                                                                                     |



**Figure 4** Left: The early-stopped test loss L(N, D) varies predictably with the dataset size D and model size N according to Equation (1.5). **Right**: After an initial transient period, learning curves for all model sizes N can be fit with Equation (1.6), which is parameterized in terms of  $S_{\min}$ , the number of steps when training at large batch size (details in Section 5.1).

### Key result: how must D scale with N?

The major contribution of the research on Scaling

- fits a model of
  - $\blacksquare$  Loss L as a function of number of parameters N and number of training tokens D
  - lacksquare given a compute budget C

Given this function, one can find optimal N and D for a fixed compute budget C

$$N_{\mathrm{opt}}, D_{\mathrm{opt}} = \operatorname*{argmin}_{N,D ext{ s.t. } C = \mathrm{FLOPS}(N,D)} L(N,D)$$

This is a very interesting result.

- ullet For someone on a fixed compute budget C
- One can find optimal values for model and data size

## Note that

- $\bullet \ \ {\rm because \ of \ fixed \ compute \ budget} \ C$
- ullet L is an  $\emph{early-stopped}$  loss, not necessarily the minimal L

## From this result, we can vary compute resource C

- ullet and solve for the optimal N and D
- ullet and derive the relationship between N and D
- to stay on the compute-optimal frontier

$$\frac{N^{0.74}}{D} = ext{constant}$$

### For example

- increasing N by a factor of 8
- ullet requires D to increase by a factor of  $8^{0.74} pprox 5$

Failure to scale N and D together causes performance to flatten.

The <u>Scaling Laws (https://arxiv.org/pdf/2001.08361.pdf#page=4)</u> show that Loss follows a Power Law as a function of N,C,D.

Here (https://arxiv.org/pdf/2001.08361.pdf#page=20) is a summary of the Scaling Laws.

# **Appendices**

#### A Summary of Power Laws

For easier reference, we provide a summary below of the key trends described throughout the paper.

| Parameters   | Data         | Compute    | Batch Size           | Equation                                                                                                   |
|--------------|--------------|------------|----------------------|------------------------------------------------------------------------------------------------------------|
| N            | $\infty$     | $\infty$   | Fixed                | $L\left(N\right) = \left(N_{\rm c}/N\right)^{\alpha_N}$                                                    |
| $\infty$     | D            | Early Stop | Fixed                | $L(D) = (D_c/D)^{\alpha_D}$                                                                                |
| Optimal      | $\infty$     | C          | Fixed                | $L\left(C\right) = \left(C_{\rm c}/C\right)^{\alpha_C}$ (naive)                                            |
| $N_{ m opt}$ | $D_{ m opt}$ | $C_{\min}$ | $B \ll B_{\rm crit}$ | $L(C_{\min}) = (C_c^{\min}/C_{\min})^{\alpha_C^{\min}}$                                                    |
| N            | D            | Early Stop | Fixed                | $L(N, D) = \left[\left(\frac{N_c}{N}\right)^{\frac{\alpha_N}{\alpha_D}} + \frac{D_c}{D}\right]^{\alpha_D}$ |
| N            | $\infty$     | S steps    | В                    | $L(N, S) = \left(\frac{N_c}{N}\right)^{\alpha_N} + \left(\frac{S_c}{S_{\min}(S, B)}\right)^{\alpha_S}$     |

Table 4

The empirical fitted values for these trends are:

| Power Law                 | Scale (tokenization-dependent)                                               |
|---------------------------|------------------------------------------------------------------------------|
| $\alpha_N = 0.076$        | $N_{ m c} = 8.8 	imes 10^{13} \ { m params} \ ({ m non-embed})$              |
| $\alpha_D = 0.095$        | $D_{\mathrm{c}} = 5.4 \times 10^{13} \ \mathrm{tokens}$                      |
| $\alpha_C = 0.057$        | $C_{\rm c} = 1.6 \times 10^7  { m PF\text{-}days}$                           |
| $\alpha_C^{\min} = 0.050$ | $C_{\mathrm{c}}^{\mathrm{min}} = 3.1 \times 10^{8}  \mathrm{PF\text{-}days}$ |
| $\alpha_B = 0.21$         | $B_* = 2.1 \times 10^8$ tokens                                               |
| $\alpha_S = 0.76$         | $S_{\rm c}=2.1\times 10^3~{ m steps}$                                        |

Table 5

# Scaling laws: newer research

Continuing research (https://arxiv.org/pdf/2203.15556.pdf) in the area of scaling

- ullet confirms the need to scale N and D together
- but with a different scaling relationship

Key result: how must D scale with N?

$$\frac{N}{D} = ext{constant}$$

Contrast this result with the original paper's relationship of the constant ratio as

$$rac{N^{0.74}}{D}={
m constant}$$

A key difference between the two papers is the learning rate schedule.

Recall: a learning rate moderates the rate a which gradient updates affect the model's weights during Gradient Descent

$$\mathbf{W}_{(t+1)} = \mathbf{W}_{(t)} - lpha_t * rac{\partial \mathcal{L}_{(t)}}{\partial \mathbf{W}}$$

where  $\alpha_{(t)}$  is the rate used at epoch t.

In the original paper, the learning rate schedule is fixed (constant across epochs)

$$\alpha_{(t)} = c$$

This is not ideal

- slowing the learning rate
- as the number of epochs increases
- is more common
  - avoids catastrophic forgetting

The newer paper shows that a fixed learning rate over-estimates L(N,D) when  $D<130B\,$ 

• leading to mis-fitting the empirical relationship

This can be avoided via a variable learning rate that decays  $lpha_{(t)}$ 

- to a fixed fraction of the initial rate  $lpha_{(0)}$
- ullet as epoch number t increases

Hence the optimal relationship changes from  $rac{N}{D}={
m constant}$  to  $rac{N^{0.74}}{D}={
m constant}$ 

# The future of large models as seen through Scaling laws

The Scaling laws suggest

- ullet given a fixed compute budget C
- ullet there is an optimal number of parameters N and number of training tokens D

The line in the graph below shows the N and D for each level of C.

**Chinchilla Optimal Training** 



Let's evaluate GPT-3, which pre-existed the scaling laws, in terms of what we now know.

- $N_{\rm GPT} = 175B$
- $D_{
  m GPT} = 0.3T$

According to the Scaling Laws, GPT-3 is *under-trained* in both time and size of training data

$$C^*(N_{\mathrm{GPT}}, D_{\mathrm{GPT}}) = 4.4*10^{24} \, \mathrm{Flops}$$
 $D^*(N_{\mathrm{GPT}}, D_{\mathrm{GPT}}) = 4.2 \, \mathrm{TB} \, \mathrm{tokens}$ 

GPT-3 is under-trained in time by a large factor

$$rac{C^*(N_{
m GPT}, D_{
m GPT})}{C_{
m GPT}} = rac{4.4*10^{24} \ {
m Flops}}{3.1*10^{23} {
m Flops}} > 10$$

GPT-3 is under-trained in number of tokens by a large factor

$$rac{D^*(N_{
m GPT})}{D_{
m GPT}} = rac{4.2TB}{0.3TB} > 10$$

One implication of these results is

- it may not be practical (in terms of compute budget) to <code>optimally</code> train models with  $N>N_{\mathrm{GPT}}$
- A 10 trillion parameter model needs 100 times the compute used for GPT-3

Referring to the chart below, we compare a smaller model (purple line) to a larger one (yellow line)

• for a fixed performance L=8

The Scaling Laws show

- a smaller model (purple line), compared to a larger one (yellow line)
  - lacktriangle may achieve L, but needs a bigger D
  - lacktriangledown even though D is bigger, the smaller N may result in a smaller C

Larger models require **fewer samples** to reach the same performance

Test Loss 10

8

10<sup>9</sup> Params

4

Tokens Processed

The optimal model size grows smoothly with the loss target and compute budget



Given that reality, a likely future world is one of

- ullet smaller N
- trained on *a lot* of data (to the point of non-decreasing loss)
- ullet resulting in *better* performance L than a larger model

## The authors validated this hypothesis by comparing two models

- ullet started with a large model called Gopher with  $N_{
  m Gopher}=280B$
- ullet trained a smaller model called Chinchilla with  $N_{
  m Chinchilla}=70B$
- ullet using the same compute  $C_{
  m Chinchilla}=C_{
  m Gopher}$
- but optimal  $D: D_{\mathrm{Chinchilla}} = 1.4T$

Chinchilla, although only 25% as large as Gopher

• outperforms on many benchmarks

The Scaling Laws are driving the design of new models.

- There are "clones" of GPT-3 with similar (or better) performance and many fewer parameters
  - at a greatly reduced compute budget.
  - <u>LLaMA (https://arxiv.org/pdf/2302.13971v1.pdf)</u>: 13B parameters
    - From Meta. Model weights *are not* freely available
  - BLOOM (https://huggingface.co/docs/transformers/model\_doc/bloom)
    - family of models from the <u>BigScience Workshop</u> (<u>https://bigscience.huggingface.co/</u>); Open-source
- The successor (PaLM 2 (https://ai.google/static/documents/palm2techreport.pdf)) to Google's 540B parameter PaLM model
  - lacktriangled has only 16B parameters (in its largest configuration) but performs at a similar levelmm

Another trend (unrelated to scaling) is to incorporate *non-parametric* knowledge into models

• e.g., the Web as a source of "world" knowledge

With an external knowledge source, a model's parameters

- can be fewer
- encode "procedural" knowledge rather than factual knowledge

Thus, the trend towards models of ever increasing size is probably over.

# Inference budget

We have been focused on the training budget

- cost of a forward pass
- cost of a backward pass
- summed over many training examples

But larger models also require more compute (and greater latency) at inference time

- typical way of increasing model size is stacking more Transformer blocks
- deeper stack
  - greater latency
  - increased compute

Since we train a model once

- but perform inference many times
- perhaps we should focus on the *inference budget* rather than the *training budget*

A detailed examination of inference cost (https://kipp.ly/transformer-inference-arithmetic/#flops-counting) approximates the number of Flops F for once inference at  $F = n_{\rm layers} * 24 * d_{\rm model}^2$ 

Since N is proportional to  $n_{
m layers}$ 

ullet inference cost is proportional to model size N

So a smaller model size N can reduce our inference budget.

#### Recall

• a larger model achieves a given loss level on fewer tokens then a smaller model

But, fixing the loss level

- a smaller model can achieve the same loss
- at the cost of training on more tokens

The smaller model's inference cost is lower

- so trading off more tokens for fewer parameters
- may be inference time optimal

This idea was explored in (<u>LlaMa (https://arxiv.org/pdf/2302.13971.pdf)</u>)

- optimizes inference
- by training smaller models
- on *more data* than required for a larger model to achieve the same loss

#### LIAMA loss vs training tokens



Figure 1: Training loss over train tokens for the 7B, 13B, 33B, and 65 models. LLaMA-33B and LLaMA-65B were trained on 1.4T tokens. The smaller models were trained on 1.0T tokens. All models are trained with a batch size of 4M tokens.

Attribution: https://arxiv.org/pdf/2302.13971.pdf#page=3

From the above graph: consider a Loss Level of 1.7

- ullet the N= 65B model requires D= 600B tokens
- ullet the N= 33B model requires D= 800B tokens

The author suggests that, for the same loss level, we can trade off

- ullet doubling N
- for a decrease of D by 40%

## Thus, when we are **not trying to optimize for training compute**, it make sense

- to train a small model
- ullet on greater than "compute-optimal" D
- because the loss will continue to decrease

#### This leads us to

- small models
- with loss as good as a larger model
- with better **inference** time speed
- at the cost of "excessive" (relative to compute optimal) training compute and data

The result is that the current trend in LLM's is to

- small models
- trained on many tokens
- so as to optimize the inference budget

## Summary

The Scaling laws demonstrate that

- Larger models have the *potential* for smaller loss than smaller models
  - but require more (compared to a smaller model) data and compute to achieve their potential
- For a fixed Loss level, compared to a smaller model
  - larger models achieve the loss with fewer tokens (more data efficient)
  - but with a larger compute requirement (higher training budget)
  - a smaller model can achieve the same Loss
    - using more training tokens
    - and is more cost effective at inference time

Thus, the trend is toward smaller models.



```
In [2]: print("Done")
```

Done