## 1. Solution

The sample size, *n*, is 30. We determine the indeces and values of Q1, Q2, and Q3.

| Quartile | Formula for <i>i</i>           | i  | X     |
|----------|--------------------------------|----|-------|
| Q1       | $\lceil 0.25 	imes 30  ceil$   | 8  | 53.42 |
| Q2       | $\lceil 0.5 	imes 30  ceil$    | 15 | 54.03 |
| Q3       | $\lceil 0.75 \times 30 \rceil$ | 23 | 54.72 |

We determine the IQR.

$$IQR = Q3 - Q1$$
  
= 54.72 - 53.42  
= 1.3

We determine the outlier boundaries.

lower boundary = Q1 
$$- 1.5 \times IQR$$
  
=  $53.42 - 1.5 \times 1.3$   
=  $51.47$   
upper boundary = Q3 +  $1.5 \times IQR$   
=  $54.72 + 1.5 \times 1.3$   
=  $56.67$ 

We determine the outliers.

outliers = 
$$\{51.28\}$$

We identify the ends of the whiskers: 52.01 and 54.98. We plot the boxplot.



## 2. Solution

The sample size, *n*, is 54. We determine the indeces and values of Q1, Q2, and Q3.

| Quartile | Formula for <i>i</i>           | i  | X     |
|----------|--------------------------------|----|-------|
| Q1       | $\lceil 0.25 \times 54 \rceil$ | 14 | 12.24 |
| Q2       | $\lceil 0.5 \times 54 \rceil$  | 27 | 12.49 |
| Q3       | $\lceil 0.75 \times 54 \rceil$ | 41 | 12.75 |

We determine the IQR.

$$IQR = Q3 - Q1$$
  
= 12.75 - 12.24  
= 0.51

We determine the outlier boundaries.

lower boundary = Q1 
$$- 1.5 \times IQR$$
  
=  $12.24 - 1.5 \times 0.51$   
=  $11.475$   
upper boundary = Q3 +  $1.5 \times IQR$   
=  $12.75 + 1.5 \times 0.51$   
=  $13.515$ 

We determine the outliers.

outliers = 
$$\{11.32\}$$

We identify the ends of the whiskers: 11.83 and 13.26. We plot the boxplot.

