

Model Free Target Tracking

TRDP Part II

Supervisors: Juan Carlos San Miguel(Proponent), Aurélie Bugeau, Miklós Koller

GROUP 7
Eduardo Daniel Bravo Solis
Frances Ryan

Previous work - TRDP semester 1

- 1. Understanding of the basic principles of CNNs
- 2. Detailed review of two tracking algorithms using CNNs
 - 1. Hierarchical convolutional features for visual tracking(HCF)
 - 2. Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
- 3. Code was adapted for integration to the VOT2018 evaluation framework

Task	Feb	March	April	May
Basics of CNNs	6			
Review Papers of Two Trackers		O	O	
Setup and Review Code of Trackers			O	
Setup and evaluation with VOT benchmark				
Write-up				

Problem to solve

• VOT benchmark requires particular **software**, long **configurations** and certain **hardware** to work properly.

VOT2018 benchmark

The VOT2018 benchmark introduced a long-term subchallenge VOT-LT2018. Results were presented at VOT workshop at ECCV2018.

 Other options are not intuitive and does not offer user-friendly features.

http://www.votchallenge.net/

How good is my video tracking algorithm?

Run results through an evaluator that contains the ground truth.

Interface

evaluation

interface

trackers

main.py

sequences

- User add to the corresponding folder the trackers and sequences to add in the analysis
- Select the analysis configuration
- Run

Datasets

- Evaluator was first tested tracker results available from the VOT 2018 challenge
- Evaluator now works with data from OTB 2013 and older VOT datasets and tracker results also
- Functionality was added to allow automated download of tracker results from OTB or VOT results and sequences from 2013-2019

Evaluation IoU: 0.4034 IoU: 0.7330 loU: 0.9264 Metrics Intersection ✓ Accuracy Union Run Robustness Precision(Center Location Error) **Excellent Poor** Good Low Frames for tracker: SiamFC challenge: Motion Change ← Average overlap across sequences and challenges percent_overlap_'Camera Motion ← Overlap values Overlap from each frame used used to search for to show fraction frames where of frames which tracker performed poorly are greater than threshold 7/14

Evaluation

1.0

When selected with accuracy, robustness converted to 'reliability' for AR plot

Robustness

0.2

$\frac{Failure\ Count}{Total\ Number\ of\ Frames\ Assessed}$

Expressed as a rate of failures per challenge/sequence >
If failures of some sequence exceed 1, fragmentation plot created showing location of failures \$\square\$

Evaluation

Sequence

Output of Results

HTML & LaTex files

Challenge	Tracker	Accuracy	Robustness
Overall			
	CFTR	0.5033	0.9256
	DAT	0.432	0.8055
	DeepCSRDCF	0.4868	0.9192
Camera Motion			
	CFTR	0.528	0.9408
	DAT	0.4502	0.8908
	DeepCSRDCF	0.5076	0.9428
Illumination Changes			
	CFTR	0.4477	1.0
	DAT	0.3576	0.9599
	DeepCSRDCF	0.4722	0.9797
Motion Change			
	CFTR	0.4964	0.9776
	DAT	0.4226	0.9503
	DeepCSRDCF	0.4808	0.9739
Occlusion			
	CFTR	0.433	0.958
	DAT	0.3193	0.9158
	DeepCSRDCF	0.3873	0.9718
Size change			
	CFTR	0.4708	0.9819
	DAT	0.4377	0.9403
	DeepCSRDCF	0.4443	0.9774

- HTML output allows immediate visualization of plots and results in tables
- LaTeX output not completed but creates table with metrics and displays AR plots

1 Tables

Challenge	Tracker Accuracy		Robustness	Precision(Cente Location Error)
Overall				
	AIF	0.6071	0.9635	8.5504
	CCMS	0.6056	0.9635	8.7184
	GSDT	0.6001	0.9283	4.7212
	LGT	0.5705	0.9635	10.405
Camera Motion				
11001011	AIF	0.607	0.9669	9.0687
	CCMS	0.5904	0.9669	10.0251
	GSDT	0.6246	0.9507	4.3044
	LGT	0.5832	0.9507	11.2208
Illumination Changes				
	AIF	0.741	1.0	4.8288
	CCMS	0.6439	1.0	8.4999
	GSDT	0.4348	1.0	12.4448
	LGT	0.5895	1.0	8.7035
Motion				
Change				
Occlusion				
	AIF	0.227	1.0	25.4322
	CCMS	0.5421	0.9741	5.4535
	GSDT	0.4647	0.9741	4.4867
	LGT	0.5151	0.9741	10.0831
Size change				

2 AR-Plots

Figure 1: Accuracy-Robustness

Example of Using Interface

Code available on GitHub

https://github.com/edbs08/Tracking Evaluator

Comparison to Existing Available Evaluators/Benchmarks

	Ours	Existing
~	Implementation in Python with minimal requirements	Often implemented in Matlab which requires license
✓	Flexibility of use with different datasets e.g VOT, OTB, custom, once you have groundtruth annotations and output results .txt file	Often tailored to work only with data generated on the specific benchmark e.g for OTB results tracker data must be stored in .mat files before comparison
~	Intuitive with user interface	Often require some manipulation of the code to set up analysis
✓	Low performing frame search allowing more detailed information on where tracker is scoring low & LaTeX Report	Often only provides an overall result without a clear indication of how the tracker is failing
×	Doesn't allow the running of the tracker according to specific protocol	Benchmarks usually allow running of tracker in a certain routine to ensure fair comparisons e.g reset for VOT
×	Not rigorously tested, possible unforeseen cases causing errors	Have been used by many researchers and experts who have added suggestions and fixes

Conclusion & Future Work Achievements and Skills gained:

- Design of tracker evaluator in Python which can act as an accessible and useful tool for researchers
- Gained knowledge on important metrics for tracker evaluation
- Gained familiarity with data formatting and visualization in Python
- Use of PyQT for creating user interface
- Project organization and communication

Limitations and Further Improvements:

- Independent verification process of the code, where requirements are listed and tested in detail
- Add functionality for user to change thresholds with the UI
- Improve the appearance of the output results
- Increase customizability of the visualization and output
- Add possibilities for calculation of additional metrics

Additional Slides for Possible Questions

Low Frames for tracker: SiamFC challenge: Motion Change

godfather_227

rabbit_18

Fig. 2: Schematic of Software Architecture used for application

		Week															
Task	SubTask	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Devilorend	Check previous work and define new goals																
Review and	Review state of the art																
redefine goals	Define functionalities	_															
	Assess types of metrics																
Prototyping	Evaluate of Python interfaces libraries				_												
	Draft and prototyping					_											
SW	Developtment of metrics calculation																
development	Interface coding and test																
development	LaTeX and html visuals								_								
Test and	Debugging and error handling																
verification	Publish software													_			
D	Write final report																
Documentation	Prepare Slides																

Measure	Definition	Formula	Additional Notes
Region Over- lap(Accuracy)	Overlap with the ground- truth (intersection over union)	$\phi = \frac{1}{N} \sum \frac{R_g \cap R_t}{R_g \cup R_t} \tag{1}$	Accuracy usually averaged across dataset, VOT take special approach to avoid bias where they don't assess accuracy for frames where tracker has failed
Failure Rate(Robustness)	How many times tracker fails. The rate of failure of the tracker.	$F_{\tau} = \mathcal{F}_{\tau} , \mathcal{F}_{\tau} = \{f_i\}(2)$	Can choose some minimum overlap threshold instead of zero overlap also. Various approaches have been taken to use this measure in a more informative way - See following metrics Reliability and Fragmentation
Fragmentation	Related to failure rate - an informational measure of the distribution of failures in a sequence.	$\frac{1}{\log F_{\tau}} \sum_{F} t \frac{-\Delta f_{i}}{N} \log \frac{\Delta f_{i}}{N} $ (3) $\Delta f_{i} = \begin{cases} f_{i+1} - f_{i}, & \text{when } f_{i} < \max(F_{\tau}) \\ f_{1} + N - f_{i}, & \text{when } f_{i} = \max(F_{\tau}) \end{cases}$	Maximum value of 1 reached when failures uni- formly distributed through sequence and decreases as inter-failure intervals are more uneven
Reliability	Related to failure rate - allows easier visualization by providing an upper bound to the robustness- defines an exponential failure distribution	$R_{s} = \exp\left(-S\frac{F_{\tau}}{N}\right) \tag{4}$	May be interpreted as the probability that the tracker will successfully track up to S frames since last failure. Used by VOT with S = 30
Precision(Center Lo- cation Error)	Average Euclidean Distance between the center location of tracked targets and ground-truth.	$\delta = \ X_G - X_T\ \tag{5}$	Usually expressed as precision plot – percentage of frames with estimate location within some chosen threshold distance from ground-truth center. Other times summarized as average or RMSE. Used in OTB.

- Various use cases tested on Windows for:
 - VOT 2018
 - VOT 2013
 - OTB
- Linux:
 - VOT 2015