Interactive Restaurant Density Mapping using and IPython Documentation

Step 1 - Installing **folium** module. You can do it inside Jupyter Notebook as shown below

```
Defaulting to user installation because normal site-packages is not writeable
Requirement already satisfied: folium in c:\users\deepraj\appdata\roaming\python\python312\site-packages (0.19.5)
Requirement already satisfied: branca>=0.6.0 in c:\users\deepraj\appdata\roaming\python\python312\site-packages (from folium) (0.8.1)
Requirement already satisfied: jinja2>=2.9 in c:\programdata\anaconda3\lib\site-packages (from folium) (3.1.4)
Requirement already satisfied: numpy in c:\programdata\anaconda3\lib\site-packages (from folium) (1.26.4)
Requirement already satisfied: requests in c:\programdata\anaconda3\lib\site-packages (from folium) (2.32.3)
Requirement already satisfied: xyzservices in c:\programdata\anaconda3\lib\site-packages (from folium) (2022.9.0)
Requirement already satisfied: MarkupSafe>=2.0 in c:\programdata\anaconda3\lib\site-packages (from jinja2>=2.9->folium) (2.1.3)
Requirement already satisfied: charset-normalizer<4,>=2 in c:\programdata\anaconda3\lib\site-packages (from requests->folium) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in c:\programdata\anaconda3\lib\site-packages (from requests->folium) (3.7)
Requirement already satisfied: urllib3<3,>=1.21.1 in c:\programdata\anaconda3\lib\site-packages (from requests->folium) (2.2.3)
Requirement already satisfied: certifi>=2017.4.17 in c:\programdata\anaconda3\lib\site-packages (from requests->folium) (2024.12.14)
```

Step 2 - Installing **IPython** module. You can do it inside Jupyter Notebook as shown below

```
!pip install IPython
Defaulting to user installation because normal site-packages is not writeable
Requirement already satisfied: IPython in c:\programdata\anaconda3\lib\site-packages (8.27.0)
Requirement\ already\ satisfied:\ decorator\ in\ c:\programdata\naconda3\lib\site-packages\ (from\ IPython)\ (5.1.1)
Requirement already satisfied: jedi>=0.16 in c:\programdata\anaconda3\lib\site-packages (from IPython) (0.19.1)
Requirement already satisfied: matplotlib-inline in c:\programdata\anaconda3\lib\site-packages (from IPython) (0.1.6)
Requirement already satisfied: prompt-toolkit<3.1.0,>=3.0.41 in c:\programdata\anaconda3\lib\site-packages (from IPython) (3.0.43)
Requirement already satisfied: pygments>=2.4.0 in c:\programdata\anaconda3\lib\site-packages (from IPython) (2.15.1)
Requirement already satisfied: stack-data in c:\programdata\anaconda3\lib\site-packages (from IPython) (0.2.0)
Requirement already satisfied: traitlets>=5.13.0 in c:\programdata\anaconda3\lib\site-packages (from IPython) (5.14.3)
Requirement already satisfied: colorama in c:\programdata\anaconda3\lib\site-packages (from IPython) (0.4.6)
Requirement already satisfied: parso<0.9.0,>=0.8.3 in c:\programdata\anaconda3\lib\site-packages (from jedi>=0.16->IPython) (0.8.3)
Requirement already satisfied: wcwidth in c:\programdata\anaconda3\lib\site-packages (from prompt-toolkit<3.1.0,>=3.0.41->IPython) (0.2.5)
Requirement already satisfied: executing in c:\programdata\anaconda3\lib\site-packages (from stack-data->IPython) (0.8.3)
Requirement already satisfied: asttokens in c:\programdata\anaconda3\lib\site-packages (from stack-data->IPython) (2.0.5)
Requirement already satisfied: pure-eval in c:\programdata\anaconda3\lib\site-packages (from stack-data->IPython) (0.2.2)
Requirement already satisfied: six in c:\programdata\anaconda3\lib\site-packages (from asttokens->stack-data->IPython) (1.16.0)
```

Step3 - Reading the csv data into a dataframe.

```
# Importing the Dataset
df = pd.read_csv("zomato_data_final.csv")
```

Step 3 - Import required library - folium and IPython

```
# Importing Libraries
import pandas as pd
from folium.plugins import MarkerCluster
import folium
from IPython.display import IFrame
```

Step 4 - Restaurant Density Visualization using Folium

1.Objectivec

The main aim is to visualize restaurant locations on a map to understand their density in a city.

2.Map Initialization

We start by creating a map centered on the city (e.g., Bangalore) using its latitude and longitude.

3. Add Marker Clustering

To avoid overlapping markers, we use clustering. This groups nearby restaurants into clusters that can be clicked and zoomed into.

4.Plot Restaurant Data

We loop through the restaurant data and add a marker for each one with a valid latitude and longitude.

5.Show Restaurant Details

Each marker displays a popup with details like:

- City name
- Restaurant rating
- Approximate cost for two people

6.Save the Map

The map is saved as an HTML file so it can be opened and viewed in any browser.

Step 5- Displaying the Map in a Notebook

1.Purpose

To view the saved interactive restaurant density map directly within a Jupyter Notebook.

2.Use IFrame

The IFrame function from IPython.display is used to embed the HTML file (restaurant_density.html) into the notebook.

3.Set Dimensions

The width and height are specified to control how large the map appears in the output cell.

```
from IPython.display import IFrame

# Display the map in the notebook
IFrame('restaurant_density.html', width=1000, height=800)
```

Output

