Due Wednesday of Week 7 at the start of class

Complete the following problems and submit them as a pdf to Canvas. 8 points are awarded for thoroughly attempting every problem, and I'll select three problems to grade on correctness for 4 points each. Enough work should be shown that there is no question about the mathematical process used to obtain your answers.

Section 5

In problems 1–4, find the least-squares solution \vec{x}' to the matrix equation $A\vec{x} = \vec{b}$ and the distance between $A\vec{x}'$ and \vec{b} . Also determine if that least-squares solution is unique.

1.
$$\begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 0 & 2 \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}.$$

$$2. \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & 2 \\ 0 & 2 & 2 \end{bmatrix} \vec{x} = \begin{bmatrix} 3 \\ 1 \\ 6 \end{bmatrix}.$$

3.
$$\begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & -1 \\ 3 & 0 & 1 \end{bmatrix} \vec{x} = \begin{bmatrix} 8 \\ 5 \\ 6 \end{bmatrix}.$$

$$4. \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \\ 3 & 1 & 1 \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ 1 \\ -2 \\ -3 \end{bmatrix}.$$

5. Let A be an $m \times n$ unitary matrix (i.e. not necessarily square). What is the least-squares solution to $A\vec{x} = \vec{b}$ in terms of A and \vec{b} ?

Section 6

In problems 6–8, compute $\langle \vec{v}, \vec{w} \rangle$, $||\vec{v}||$, $||\vec{w}||$, and the angle between \vec{v} and \vec{w} for the given inner product V.

6. $\vec{v} = 1 + 2x$ and $\vec{w} = 2x + x^2 - x^3$ for $V = \text{span}\left\{1, x, x^2, x^3\right\}$ with the inner product

$$\langle p, q \rangle = \sum_{n=0}^{3} p(n)q(n).$$

7.
$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ for $V = \mathbb{R}^3$ with the inner product

$$\langle \vec{v}, \vec{w} \rangle = 2v_1w_1 + v_2w_2 + 50v_3w_3.$$

8. $\vec{v}(x) = e^x$ and $\vec{w}(x) = x$ for V = C[0,1] with the inner product

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \, \mathrm{d}x.$$

9. Let V = C[0, 1]. For each of the following possible inner product formulas, give an example showing that it does not define an inner product.

a)
$$\langle f, g \rangle = \int_0^1 |f(x) + g(x)| \, \mathrm{d}x.$$

b)
$$\langle f, g \rangle = \int_0^1 (f(x)g(x))^2 dx$$
.

c)
$$\langle f, g \rangle = \int_0^1 f(g(x)) dx$$
.

d)
$$\langle f, g \rangle = \int_{1/4}^{3/4} f(x)g(x) dx$$
.