UNIVERSITÉ DE SHERBROOKE

Faculté de génie Département de génie électrique et de génie informatique

Rapport d'APP

Physique des portes logiques ${\rm GIF470}$

Présenté à Keven Deslandes

Présenté par Benjamin Chausse – CHAB1704 Shawn Couture – COUS1912

Table des matières

1	1 Plan de vérification					
3	Shématiques diverses 2.1 UAL 2.2 Additionneur 2.3 Opérateur ET Conception du Multiplexeur 2 vers 1	3 3 4 5				
•	3.1 Dimmensionnement relatif PUN, PDN	6				
4	Le tampon de sortie	7				
5	Prises de mesures					
A	A Annexes					
\mathbf{T}	able des figures					
	2-1 Unité d'arithmétique logique (UAL) 2-2 Additionneur 1 Bit 2-3 Additionneur 3 Bits 2-4 ET 3 Bits 4-1 Tampon de sortie A-1 Multiplexeur de 2 entrées de 1 Bits A-2 Multiplexeur de 2 entrées de 3 Bits	3 4 4 5 7 9				
\mathbf{L}	iste des tableaux					
	1-1 Plan de vérification	2 6 8				

1 Plan de vérification

Tableau 1-1 – Plan de vérification

Obj	Objectif Ciblé Test des nouvelles opérations					
#	Test	Action	Résultat Attendu	✓		
1	Temps de transition Non-Ou	Éxecuter nor_test.asc et our- vir les logs	Le temps de transition transition_up et transition_down sont en bas de 130ps			
2	Temps de transition Non-Ou	Éxecuter nor_test.asc et our- vir les logs	Le temps de transition transition_up et transition_down sont en bas de 130ps			
3	Temps de transition Non-Et	Éxecuter nand_test.asc et ourvir ses logs	Le temps de transition transition_up et transition_down sont en bas de 130ps			
4	Temps de transition Non-Ou	Éxecuter nor_test.asc et our- vir ses logs	Le temps de transition transition_up et transition_down sont en bas de 130ps			
5	Temps de transition Non-Et	Éxecuter nand_test.asc et ourvir ses logs	Le temps de transition transition_up et transition_down sont en bas de 130ps			
6	Temps de transition Ou exclusif	Éxecuter xor_test.asc et our- vir ses logs	Le temps de transition transition_up et transition_down sont en bas de 130ps			
7	TVm du Non-Et	Éxecuter nand_transfer.asc et ourvir ses logs	Le Vm est proche de $VDD/2$ (0.9)			
8	Vm du Ou exclusif	Éxecuter xor_transfer.asc et ourvir ses logs	Le Vm est proche de VDD/2 (0.9)			
9	Temps de propagation	Éxecuter pad_buffer_test.asc et ourvir ses logs	Le temps de propagation est plus ra- pide que l'autre alternative d'inver- seurs.			
10	Largeur de transistors	Vérifier les largeurs des transistors	Tout les transistors on une longueur de 180n et une largeur égal ou en haut de 180n			
11	Sortie du ET 3 bits	Executer and3b_test.asc et analyzer le graphique généré	Les sorties respectent la table de vérité d'une porte ET.			
12	Temps de transition du ET 3 bits	Executer and3b_test_transfer.asc et ouvrir les logs	Le temps de transition entre les entrées et les sorties sont d'au plus 200ps			
13	Sortie de l'additionneur 3 bits	Executer add3b_test.asc et analyzer le graphique généré	Les sorties respectent la table de vérité d'un additionneur 3 bits.			
14	Temps de transition du ET 3 bits	Executer add3b_test_transfer.asc et ouvrir les logs	Le temps de transition entre les entrées et les sorties sont d'au plus 200ps			

2 Shématiques diverses

2.1 UAL

Retournes seulement cout en ADDER

FIGURE 2-1 – Unité d'arithmétique logique (UAL)

2.2 Additionneur

Pour simplifier la schématique et éviter la redondance, une composante ADDER_1B a été créée pour ensuite être utilisée dans l'additionneur 3 Bits.

FIGURE 2-2 - Additionneur 1 Bit

Figure 2-3 – Additionneur 3 Bits

2.3 Opérateur ET

FIGURE 2-4 – ET 3 Bits

VSS

3 Conception du Multiplexeur 2 vers 1

Afin de simplifier la résolution de sa table de vérité 3-1, les fils suivant chaque porte logique on été ajoutés commes étapes intermédiaires. Ces fils peuvent être vu dans la figure A-1.

3.1 Dimmensionnement relatif PUN, PDN

Le dimmensionnement relatif pour PUN et PDN dépend de si les transistors sont en série ou en parallèle à l'intérieur même des portes logiques. Uniquement l'inverseur et des portes non et sont utilisé dans le multiplexeur. Hors, dans l'inverseurs le PUN et le PDN on les mêmes dimmensionnement relatif, tandis que dans les portes non et, le PDN des NMOS ont un facteur multiplicatif de 2 pour que leurs temps de transitions soit similaire au PUN à cause que sont PDN consiste en 2 NMOS en série.

3.2 Dimensionnement absolue des transistors

Le dimmensionnement absolue des largeurs de w_p sur w_n à été trouvé avec l'inverseur. Il s'agissait de trouver des valeurs de marge de bruit (NMH et NML) pour plusieurs valeurs de mp différentes. Éventuellement, la valeur d'environ 2.5 donnait que le NMH et le NML était identique et le Vm était de VDD/2. Ce ratio relatif à été utilisé pour tout les transistors en plus du dimmensionnement relatif. Les MOSFET PMOS sont donc de base 2.5 fois plus parge que les MOSFET NMOS.

Le tampon de sortie

FIGURE 4-1 – Tampon de sortie

$$x^{n} = \frac{C_{L}}{C}$$

$$x^{n} = \frac{1.5 \times 10^{-12}}{1 \times 10^{-15}}$$
(4.1)

$$x^n = \frac{1.5 \times 10^{-12}}{1 \times 10^{-15}} \tag{4.2}$$

$$x^n = 1500 (4.3)$$

On sait que x = e, donc :

$$n = \ln(1500) \approx 7.31\tag{4.4}$$

On veut un nombre paire pour évité d'inverser le signal. C'est donc soit 8 ou 6. Moins d'inverseur implique un plus petit délai de propagation. Mais plus d'inverseur = plus de facilité. Cependant, on veut minimiser le délai de propagation. Il reste donc à calculer la valeur du facteur x pour les deux valeurs de n et de calculer le plus petit délai de propagation. Donc, pour n=6:

$$x^6 = 1500 (4.5)$$

$$x = 1500^{\frac{1}{6}} \approx 3.38 \tag{4.6}$$

(4.7)

Pour n = 8:

$$x^8 = 1500 (4.8)$$

$$x = 1500^{\frac{1}{8}} \approx 2.49 \tag{4.9}$$

(4.10)

Après un essai dans LTspice et des mesures avec des curseurs et des directives, 6 inverseurs donne un délai de propagation moindre que 8 inverseurs. On obtient 365 ps au lieu de 406 ps .

5 Prises de mesures

Tableau 5-1 – Temps de transition des composantes en montée

Composante	Temps de montée 10%-90% (ps)
AND (&)	83
ADD(+)	100
ALU	95

Les mesures de temps de propagations ont été mesurer à 50% des signaux au lieu du 90% à 10% pris pour les temps de transitions.

Tableau 5-2 – Délais de propagation des composantes

Composante	Signal	Bas vers Haut (ps)	Haut vers Bas (ps)
AND (&)	$a_1 \rightarrow o_1$	89	101
ADD(+)	$a_1 \rightarrow o_1$	243	237
ADD(+)	$c_{in} \rightarrow o_1$	555	536

A Annexes

FIGURE A-1 – Multiplexeur de 2 entrées de 1 Bits

FIGURE A-2 – Multiplexeur de 2 entrées de 3 Bits