

4-bit Single Chip Microcontroller

Preliminary

Overview

LC573104A and LC573102A are CMOS 4-bit microcontrollers featuring low-voltage operation and low power dissipation.

Both LC573104A and LC573102A incorporate a 4-bit parallel processing ALU, 4K bytes/2K bytes ROM, a 64×4-bit RAM, a 16-bit timer, and an infrared remote control transmission carrier output circuit.

Applications

- Remote controller.
- Control of small measuring instruments.

Features

- ROM : 4096×8 bits (LC573104A) 2048×8 bits (LC573102A)
- RAM : 64×4 bits
- Cycle time

			ă"
Cycle	System clock	Oscillation	Supply
time	generator	frequency	voltage
17.6µs	Ceramic oscillation circuit	455kHz	2.3 to 6.0V

• Current Drain

a. At normal operation

		. # #	163 (146) A
Current	System clock	Oscillation	Supply
drain	generator	frequency	voltage
150µA typ	CR oscillation	455kHz	3.0V
400μA typ	CR oscillation	. 4 55kHz	5.0V

b. HALT mode

Current	System clock	Oscillation	Supply
drain	generator	frequency	yoltage
80µA typ	CR oscillation	455kHz	3.0V
300μA typ	CR oscillation	455kHz	5.0N si

c. HOLD mode

Leakage current	Condition Oscillat	A 25 - 1 1 2
0.1µA typ	When CR oscillation 455kH is at STOP mode 455kH	l ≱ 5.0V

Package Dimensions

unit:mm

3112A-MFP24S

Pin Assignment

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges,or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

• Port

· Input port (S port, M port): 2-port (8 pins) [Key scan input port]

· Input/Ouput port : 3-port (10 pins)

P0 port, P1 port 2-port (8 pins) [Key scan output port]
P2 port 1-port (2 pins) [Key scan expansion port]
[LED direct drivable port]

- Infrared remote control carrier generation circuit.
 - · Software-controllable remote control carrier output ON/OFF.
 - · Software-controllable carrier frequency and duty ratio.
 - <38kHz-1/3 duty, 38kHz-1/2 duty, 57kHz-1/2 duty>

(When fixed carrier signal is output, it is specified by mask option)

- · 1kHz to 200kHz infrared remote control transmission carrier frequency.
- (When carrier output is selected by timer at mask option, and when 455kHz CR oscillator is used
- · Infrared carrier output-dedicated terminal built-in (CA terminal).
- · 108ms HALT-mode cancel signal output.
- Timer
 - · 16-bit software-controllable Timer

Timer input clock: Ceramic (CR) oscillation frequency (455kHz),

- · 108ms HALT release request signal generation timer (Free running timer).
- · Watchdog timer (changed over between USED/UNUSED by mask option)
- Sub-routine stack level
 - · 2 levels
- Oscillation circuit
 - · Ceramic (CR) oscillation circuit: 455kHz (for System clock generation), Feedback resistor built-in.
- Standby function
 - · HALT mode

HALT mode used to reduce current drain.

HALT mode suspends program execution.

Following shows how to release the HALT mode.

- (A) System reset
- (B) HALT mode release request signal,
- · HOLD mode

HOLD mode stops ceramic resonator (CR). The HOLD mold can be released in two ways.

- (A) System reset
- (B) Apply H level input to S port pin or M port pin. (However, it is necessary to set S port or M port HOLD mode release permission flag beforehand.)
- From of shipment
 - · MFP-24S (1.0mm pitch) and chip.

NOTE: When dipping in solder to mount the MFP package on board, contact SANYO for instructions.

The Application Development System for the LC573100 Series.

- (1) Manual
 - (A) Users Manual: LC573100 Series Users Manual.
 - (B) Development Tool Manual: LC573100 Series Development Tool Manual.
- (2) Development Tools
- Tools for application development of the LC573100 Series.
 - (A) Personal computer (MS-DOS based).
 - (B) Cross assembler (LC573100.EXE).
 - (C) Mask option generator (SU573100.EXE).
- Tools to evaluate application development of the LC573100 Series.
 - (A) EVA chip (LC5797).
- NOTE 1) As RAM capacity differs between EVA chip (LC5797) and the LC573100 Series, always check before programming and debugging.

LC573100 : 64×4 bits LC5797 : 256×4 bits

NOTE 2) Always keep the DPH value in mind when programming. Only DPH 0 to 3 may be used as the RAM address.

If DPH other than '0' to '3' is used as RAM address when programming, SANYO will not be liable for any trouble caused.

- (B) EVA chip board (TB5730).
- NOTE) The application evaluation board is the evaluation board made by the user.
 - (C) Evaluation board [EVA420 (Monitor ROM : ER-573000)]
 - (D) Display and mask option data control board [DCB-1A (REV3.6)]

Development Support System Outline

(A) Block Diagram

(LC573104A)

Die Specifications

Chip size: 3.51mm×3.19mm

Chip thickness : $480\mu m$ Pad size : $120\mu m \times 120\mu m$

Pad Layout

Pad coordinates

MFP2	24S pir	assignme	ent			MFP2	4S pir	assignme	ent	
	Pad	Pin	Х	/ Y			Pad	Pin 🧷	Х	Y
	No.	Name	(μm)	(μm)	<i>0</i> 00000	0.825 (-60)	No.	Namé	(μm)	(μm)
17	1	V_{DD}	1465	# 1365		6	14	\$2,	360	-1395
18	2	CA	1155	1365		7	15	S3	560	-1395
19	3	P20	- /305	1365	Vij	8	16	S 4	760	-1395
20	4	P21	- 1485	1365		- 1	<i>≱</i> 17:/	TEST	960	-1395
21	5	P00	_1485	1110		l	18	TEST	1140	-1395
22	6	P01 🥖	<u>-</u> 1485	870		9	<i>-</i> 19	M1	1560	-1395
23	7	P02 💉 🧷	-1485	565			20	M2	1560	- 905
24	8	P03	- 1485	325	1 5	11	21	M3	1560	- 685
1	9	P10	- 1485	20	ŕ	712	22	M4	1560	- 445
2	10	P1/1	-1485	- 220	38000	13	23	RES	1465	330
3	11.1 12	₽12	÷1485	- 480	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14	24	Vss	1465	570
4	12	P13	-1485	1 395	And Street	15	25	CF1	1465	755
5	13	S1	∴41 0	» – 1395 "	Jegell is	16	26	CF2	1465	1155
É	r o'r	2000	40.00	E.	*12					

- The chip center is the origin of the above pad coordinates. The X, Y values represent the coordinate of the pad center.
- When dipping the MFP24S package in solder to mount on boards, contact SANYO for instructions, etc.
- \bullet Chip substrate should be connected to V_{SS} or left open.

Pin Function

MFP24S Pin No.	Pin name	Input/ Output	Function description	Option	Reset status
17	V_{DD}	-	Supply voltage. See Fig 1.		
14	Vss	_	Ground. See Fig 1.		A Comment
15	CF1	Input	User for system clock oscillation. • 455kHz ceramic resonator is connected between CF1 and	.,	A Property of the second
16	CF2	Output	CF2 for oscillation. Stops oscillation when receiving CR oscillation stop command.		
5	S1	Input	Input port S.	(1) 'L' level HOLD Tr	Pull-down resistor ON.
6	S2		LSI system is reset by charging VDD to S1 to S4	YES/NO	• Reset signal ENABLE
7	S3		simultaneously (Mask option).	(2) Reset by St to S4.	
8	S4		Data is loaded in accumulator.	11	
9	M1	Input	Input port M.	'L' level ḤOLD Tr YES/NO	• Pull-down resistor ON.
10	M2		Data loaded in accumulator.		
11	МЗ			// //	1
12	M4			1/ 6"	
21	P00	Input/	Input/output port.	7 70 3	11
22	P01	Output	Data loaded in accumulator.		J. 35
23	P02		Output pin to output data from accumulator.		And the second s
24	P03		(P-ch Open Drain Output)	3000 WATE WATE	1
1	P10	Input/	Input/output port.	19 Than 17	j ^r
2	P11	Output	Data loaded in accumulator.	6 6 W //	
3	P12		Output pin to output data from accumulator.		
4	P13		(P-ch Open Drain Output)		
19	P20	Input/	Input/output port.	(m. 11	
20	P21	Output	Data loaded in accumulator.		
			Output pin to output data from accumulator.		
			(P-ch Open Drain Output)	and the second	
			LED direct drivable pin.	11	
18	CA	Output	Remote control carrier output.	Fixed carrier output/	At reset 'L' level.
		'		Carrier output by timer	At fixed carrier output
					38kHz-1/3 duty.
13	RES	Input	Reset input. Internal pull-up resistor		

Supply connections

Mask Option

(1) Input port option

(2) Reset signal option by S port

(3) Carrier standard clock generation circuit option for remote control

(4) Watchdog timer circuit option

Specifications

Absolute Maximum Ratings

			·	
Parameter	Symbol	Conditions	Ratings	Unit
	V_{DD}		-0.3 to +7.0	V
Supply voltage	V _{DD1}		-0.3 to $V_{\mbox{DD}}$	V
	V_{DD2}		-0.3 to $V_{\mbox{DD}}$	V
Input voltage	V _{IN}	S1 to S4, M3 to M4, RES, P00 to P03, P10 to P13, P20, P21, CF1 (P00 to P03, P10 to P13, P20, P21 are input mode)	–0.3 to V _{DD} +0.3	>
Output voltage	Vout	CA, P90 to P03 P10 to P13, P20, P21, CF2 (P00 to P03, P10 to P13, P20 P21 are output mode)	–0.3 to V _{DD} +0.3	>
	lout1	CA (per 1 pin)	25	mA
Output current	IOUT2	P00 to P03, P10 to P13 (per 1 pin)	500	μA
(Per 1 pin)	IOUT3	P20, P21 (Per 1 pin)	10	mA
	loŭt4	Output pins other than listed above (per 1 pin)	500	μA
Total output current of all pins except CA	₃∂1ĄĹL	All pins totaled (except for CA pin)	25	mA
Operating temperature	<i>∫ ∫</i> Topr ≜		-30 to +70	°C
Storage temperature	Tstg		-40 to +125	°C

Recommended Operating Ranges at Ta = 30 to +70°C, V_{SS}=0V

Parameter	Symbol	Conditions		Ratings		Unit
raiametei	Conditions		min	typ	max	Offic
Supply voltage	V _{DD}	A STATE OF THE STA	2.3		6.0	V
Input high-level voltage	УІНИ	S1 to S4, M1 to M4, P00 to P03, P10 to P13, P20,	0.7V _{DD}		V_{DD}	V
Input low-level voltage	V _{IL1}	P21 (P0, P1, P2 ports are input mode)	0		0.3V _{DD}	V
Input high-level voltage	V _{IH2}	RES	0.75V _{DD}		V_{DD}	V
Input low-level voltage	V _{IL2}	TALS	0		0.25V _{DD}	V
Operation frequency	fopg/	At CR oscillation, Fig. 2	380	455	500	kHz

Fig. 2 CR Oscillation Circuit

Electrical Characteristics at Ta =–30 to +70°C, V_{SS} =0V

Parameter	Cumbal	Conditions	F	Ratings		Unit
Parameter	Symbol	Conditions	min	typ	max	Unit
	R _{IN} 1A	V_{DD} =2.9V, V_{IL} =0.4V, S1 to S4, M1 to M4, 'L' level Hold Tr, Fig. 3	150	300	1000	kΩ
Input impedance	R _{IN} 1B	V _{DD} =2.9V, V _{IL} =0.4V, S1 to S4, M1 to M4, 'L' level pull-down Tr, Fig. 3	30	50	100	kΩ
	R _{IN} 2	V _{DD} =2.9V, RES	10	and the second	300	kΩ
Output high-level voltage	V _{OH} 1	V _{DD} =2.9V, I _{OH} =–450μA, P00 to P03, P10 to P13	V _{DD} -0.45		All the Control of th	V
Output off-leak current	I _{OFF}	V _{DD} =2.9V, P00 to P03, P10 to P13	/ 48		1.0	μA
Output on-leak current	l _{OFF}	V _{IN=} V _{DD}	-1.0		7	ĮμΑ
Output high-level voltage	V _{OH} 2	V _{DD} =2.9V, I _{OH} =–10mA, P20, P21	Vpp-0.5	- SQ#	a de la companya de l	V
Output off-leak current	I _{OFF}	V3 0V P30 P31		R.A.	1.0	μA
Output on-leak current	I _{OFF}	V _{DD} =2.9V, P20, P21	-1.0	Ž.	13	μA
Output current (H)	I _{OH} 1	V _{DD} =3.0V, V _{OH} =V _{DD} -1.5V, CA	6	1,2	3 de la companya de	mA
Output current (L)	I _{OL} 1	V _{DD} =3.0V, V _{OH} =0.9V, CA		5		mA
HALT-mode supply current	I _{DD} 1	V _{DD} =3.0V, 455kHz CR oscillation, Ccd=Ccg=1 50nF Ta≤50°C, Fig.5		/ /80	300	μA
Operating current	I _{DD} 2	V _{DD} =3.0V, 455=kHz CR oscillation, Ccd=Ccg=450pF, Ta≤50°C, Fig.5		150	500	μA
Supply leak current 1	ILEAK1	\/3.0\/	gage feet	0.2	1	μA
Supply leak current 2	ILEAK2	V _{DD} =3.0V Ta =50 °C	and the second	1	5	μA
Oscillator start-up voltage	V _{ST}	Ccd=Ccg=150pF, 455kHz CR oscillation, Fig. 4			2.3	V
Oscillator sustaining voltage	V _{SUS}		2.0			V
Oscillator start-up time	^t ST	V _{DD} =2.3V, Ccd=Ccg=150pF, 455kHz CR oscillation, Fig. 4			30	ms

Recommended Oscillators.

Oscillator	Manufacturer	Part number	Ccg	Ccd
455kHz ceramic	Kyocera	KBR-455BK/Y	150pF	150pF
oscillator	Murata	CSB455E	150pF	150pF
	Fuji Ceramics	POE-455	150pF	150pF

Electrical Characteristics at Ta = -30 to +70°C, $V_{SS}=0$ V

Danier dan				F	Ratings		Unit
Parameter	Symbol	Conditions		min	typ	max	Unit
	R _{IN} 1A	VDD=5.0V, V _{IL} =0.4V, S1 to S4, M1 to M4, Hold Tr, Fig. 3		70	200	600	kΩ
Input impedance	R _{IN} 1B	V _{DD} ≆5.0V, S⊅ to S4, M1 to M4, 'L' level pu ⊱Fig. 3	ll-down Tr,	30	50	100	kΩ
	R _{IN} 2	V _{DD} =5.0√, RES		10		300	kΩ
Output high-level voltage	A ^{OH} 1	V _{DD} =5:0V, I _{OH} =-750μA, P00 to P03, P10	to P13	V _{DD} -0.75			V
Output off-leak current	HOFF	V _{DD} =5.0V, P00 to P03, P10 to P13	V _{IN} =V _{SS}			1.0	μΑ
Output on-leak current	loff	V DD -3.6V, 1 00 ю 1 03, 1 10 ю 1 13	$V_{IN}=V_{DD}$	-1.0			μΑ
Output high-level voltage	VOH ²	V _{DD} =5.0V, I _{OH} =-10mA, P20, P21		V _{DD} -0.5			V
Output off-leak current	inoff l	V _{DD} =5.0V, P20, P21	V _{IN} =V _{SS}			1.0	μΑ
Output on-leak current	I _{OFF}	VDD=3.0V, F20, F21	$V_{IN}=V_{DD}$	-1.0			μΑ
Output current (H)	loh1	V _{DD} =5.0V, V _{OH} =V _{DD} -2.5V, CA		10	20		mA
Output current (L)	1 _{OL} 1	V _{DD} =5.0V, V _{OL} =0.9V, CA		2	5		mA
HALT-mode supply current	/ _{ADD} 1	V _{DD} =5.0V, 455kHz CR oscillation, Ccd=Cc Ta≤50°C, Fig.5	g=150pF,		300	400	μA
Operating current	I _{DD} 2	V _{DD} =5.0V, 455kHz CR oscillation, Ccd=Cc Ta≤50°C, Fig.5	g=150pF,		400	500	μA
Supply leak current 1	I _{LEAK} 1	\/ E 0\/	Ta=25°C		0.2	1	μA
Supply leak current 2	I _{LEAK} 2	V _{DD} =5.0V	Ta=50°C		1	5	μA
Oscillator start-up voltage	VST	- Ccd=Ccg=150pF, 455kHz CR oscillation, Fig. 4				2.3	V
Oscillator sustaining voltage	V _{SUS}			2.0			V
Oscillator start-up time	t _{ST}	V _{DD} =2.3V, Ccd=Ccg=150pF, 455kHz CR oscillation, Fig. 4				30	ms

Fig. 3: S1 to S4, M1 to M4 input structure

Fig. 5 : Supply current measuring circuit

Fig. 4: Oscillator start-up voltage, Oscillator sustaining voltage, and Oscillator start-up time measuring circuit.

Note: CR is 455kHz, S-PORT: M-PORT: Input lead Tr is ON. RES terminal that resistor built-in and is OPEN. I/O-PORT is set at Output Mode and data is 'H'.

LC573100 Series Instruction Set

The instruction set uses the following abbreviations and symbols.

	1.1		11
AC	: Accumulator	M	: Memory
ACn	: Accumulator bit n	M (DP)	: Memory addressed by DP
CF	: Carry flag	{M (DP)}	: Contents of memory addressed by DP
DP	: Data pointer	PC	Program counter
DPL	: Data pointer low nibble	₽ Cn ∕	Program counter bit n
DPH	: Data pointer high nibble	PAGE /	: Page latch
EDP	: Data pointer save register	STSn 🖋 🖟	: Status register n
EDPL	: Data pointer save register low nibble	(STSm)	: Status register n content
EDPH	: Data pointer save register high nibble	[P()]	: Contents of port ()
SP	: Strobe pointer	X / J	: Immediate data
TREG	: Temporary register	Xn	: Immediate data bit n
SCFn	: Start conditioning flag n	[®] PDF	: Input port pull-down flag
CTLn	: Control register n	SFR	: Special function register
HEFn	: Hold enable flag n	(SFR)	: Contents of special function register
ROM	: ROM data	CSTF	: Chrono start flag
CFCF	: Ceramic resonator oscillator control flag	SPC	: Strobe pointer control bit
()	: Contents	CCF	: Carrier output control flag
[]	: Contents	()	: Complement of contents
V	: Logical OR	[]	: Complement of contents
\forall	: Logical exclusive-OR	ф n	: Output from stage n of 15-stage divider
٨	Logical AND	WDT	: Watchdog timer
\leftarrow	/:/Transfer direction, result /		

• The special function registers are abbreviated as follows.

TCON Timer control register

TLOW: Timer/counter register low byte THIGH: Timer/counter register high byte

CTL4 : Control register 4

P0 : Port P0 P1 : Port P1 P2 : Port P2

LC573100 Series Instructions

nstruction	Mnemonic	Instruction code	Function	Bytes	Cycles	Function description	Status flag affected
느	TAAT	0000 0001	AC, TRGE ← ROM	1	2	Contents of ROM on current page, addressed by PC whose low-orderd 8 bits are replaced with contents of AC and M (DP), are loaded to AC and TREG	uncoted
	MTR	0001 0010	M (DP) ← TREG	1	1	Stores the conternts of TREG memory location pointed to by DP	
	ASR0	0001 1000	$AC_n \leftarrow AC_{n+1}, AC_3 \leftarrow 0$	1	1	Shifts the contents of the AC right and enter printo the MSB.	
ulator	ASR1	0001 1001	$AC_n \leftarrow AC_{n+1}, AC_3 \leftarrow 1$	1	1	Shifts the contents of the AC right and enter 1 into the MSB.	7
Accumulator	ASL0	0001 1010	$AC_n \leftarrow AC_{n-1}, AC_0 \leftarrow 0$	1	1	Shifts the contents of the AC left and enter 0 into the LSB.	,
	ASL1	0001 1011	$AC_n \leftarrow AC_{n-1}, AC_0 \leftarrow 1$	1	1	Shifts the contents of the AC left and enter kinto the LSR	
	INC	1001 1000	$AC, M (DP) \leftarrow M (DP)+1$	1	1	Memory M (DP) contents incremented it and loaded to AC and M (DP).	
	DEC	1001 1001	AC, M (DP) ← M (DP)–1	1	1	Memory M (DP) contents decremented = 2 and loaded to AC and M (DP).	
	ADC	1000 0000	$AC \leftarrow (AC) + [M \ (DP)] + CF$	1	1	AC, memory M (DP) and CF contents are binary-added and the result loaded to AC.	CF
	ADC*	1000 1000	$AC, M (DP) \leftarrow (AC)+[M (DP)]+CF$	1	1	AC, memory M (DP) and CF contents are binary added and the result loaded to AC M (DP).	CF
	ADCI X	1001 0000 X ₃ X ₂ X ₁ X ₀	$AC \leftarrow (AC) + X + CF$	2	2	AC, immediate data and CR contents are binary-added, and the result loaded to AC.	CF
	SBC	1000 0001	$AC \leftarrow (AC) + \overline{[M\ (DP)]} + CF$	1	1,4	AC, memory M (DP) and CE contents are binary-subtracted, and the result loaded to AC.	CF
	SBC*	1000 1001	$AC, M (DP) \leftarrow (AC) + \overline{[M (DP)]} + CF$	1	A	AC, memory N (DP) and CF contents are binary-subtracted, and the result loaded to AC and M (DP).	CF
	SBCI X	1001 0001 X ₃ X ₂ X ₁ X ₀	$AC \leftarrow (AC) + \overline{X} + CF$	2	2	AC; immediate data and CF contents are binary-subtracted and the result toaded to AC.	CF
	ADD	1000 0010	$AC \leftarrow (AC)+[M (DP)]$	1	17	AC and methory M (DP) contents are binary-added and the result loaded to Ac.	CF
Arithmetic	ADD*	1000 1010	$AC, M (DP) \leftarrow (AC)+[M (DP)]$	14	M	AC and memory M (DP) contents are binary-added and the result loaded to	CF
Ar	ADDI X	1001 0010 X ₃ X ₂ X ₁ X ₀	$AC \leftarrow (AC) + X$	2	2):	AC and immediate data contents are binary-added and the result loaded to AC.	CF
	SUB	1000 0011	$AC \leftarrow (AC) + \overline{[M(DP)]} + 1$		M	AC and memory M (DP) contents are binary-subtracted and the result loaded to AC.	CF
	SUB*	1000 1011	AC, M (DP) ← (AC)+[M (DP)]+1	1	1	AC and memory M (DP) contents are binary-subtracted and the result loaded to AC and M (DP).	CF
	SUBI X	1001 0011 X ₃ X ₂ X ₁ X ₀	$AC \leftarrow (AC) + \overline{X} + 1$	2	2	AC and immediate data contents are binary-subtracted and the result loaded in AC.	CF
	ADN	1000 0100	AC ← (AC)+[M (DF)]	1	1	AC and memory M (DP) contents are binary-added and the result loaded to AC.	
	ADN*	1000 1100	AC, M (DP) ← (AC)+[M (BP)]	1	1	AC and memory M (DP) contents are binary-added and the result loaded to AC and M (DP).	
	ADNI X	1001 0100 X ₃ X ₂ X ₁ X ₀	AC ←A(AC)+X	2	2	AC and immediate data contents are binary-added and the result loaded in AC.	
	AND	1000 0101	AC (AC) (M (DP)]	1	1	AC and memory M (DP) contents are ANDed and the result loaded to AC.	
	AND*	1000 1101	$AC_{\bullet}M$ $(DP) \leftarrow (AC) \land [M$ $(DP)]$	1	1	AC and memory M (DP) contents are ANDed and the result loaded to AC and M (DP).	
	ANDI X	1,001 0101 X ₃ X ₂ X ₁ X ₀	AC + (AC)∧X	2	2	AC and immediate data contents are ANDed and the result loaded to AC.	
	EOR	1000 0410	ÃC ← (AC) ← [M (DP)]	1	1	AC and memory M (DP) are exclusive ORed and the result loaded to AC.	
gal	EOR*	1000 1110	AC, M ² (DP) ← (AC) → [M (DP)]	1	1	AC and memory M (DP) are exclusive ORed, and the result loaded to AC and M (DP).	
Logical	EORI X	1001 0110 X ₃ X ₂ X ₁ X ₀	AC (AC) + X	2	2	AC and immediate data are exclusive ORed and the result loaded to AC.	
	OR	1000 0111	$AC \leftarrow (AC) \lor [M (DP)]$	1	1	AC and memory M (DP) are ORed and the result loaded to AC.	
	OR*	1000 1111	$AC, M (DP) \leftarrow (AC) \vee [M (DP)]$	1	1	AC and memory M (DP) are ORed and the result loaded to AC and M (DP).	
	ORI X	1001 0111	$AC \leftarrow (AC) \lor X$	2	2	AC and immediate data are ORed and the result loaded to AC.	

Continued on next page.

Continued from preceding page.

nstruction	Mnemonic	Instruction code	Function	Bytes	Cycles	Function description					
=	SDPL	0001 1100	DPL ← (AC)	1	1	AC contents loaded to DPL.	affected				
	SDPH	0001 1101	$DPH \leftarrow (AC)$	1	1	AC contents loaded to DPH.					
	LDPL	1111 1101	AC ← (DPL)	1	1	DPL contents loaded to AC.					
	LDPH	1111 1110	AC ← (DPH)	1	1	DPH contents loaded to AC.	1				
	MDPL X	1011 X ₃ X ₂ X ₁ X ₀	DPL ← X	1	1	Immediate data X loaded to DPL.					
Data Pointer	MDPH X	1100 X ₃ X ₂ X ₁ X ₀	DPH ← X	1	1	Immediate data X loaded to DPH.					
Data	EDPL EDPH	0001 1110	$(DPL) \leftrightarrow (EDPL)$ $(DPH) \leftrightarrow (EDPH)$	1	1	DPL and EDPL contents exchanged. DPH and EDPH contents exchanged.					
	IDPL	1001 1010	DPL ← (DPL)+1	1	1	DPL contents ingremented *1					
	IDPH	1001 1100	DPH ← (DPH)+1	1	1	DPH contents incremented +1.					
	DDPL	1001 1011	DPL ← (DPL)–1	1	1	DRE contents decremented =1.					
	DDPH	1001 1101	DPH ← (DPH)–1	1	1	DPH contents decremented -1.					
	SSP	1010 1110	$SP \leftarrow (AC)$		1	AC contents to added to SP.					
	LSP	1010 1010	AC ← (SP)	1	1	SP contents loaded to AC.					
SP	MSP X	1110 X ₃ X ₂ X ₁ X ₀	SP ← X	1		Immigdiate data X loaded to SP.					
	ISP	1001 1110	SP ← (SP)+1	10		SP contents incremented +1.					
	DSP	1001 1111	SP ← (SP)-1		6	SP contents decremented –1.					
	LHLT	1010 1011	$AC \leftarrow (STS2), STS2 \leftarrow 0$			STS2 contents loaded to AC and STS2 is reset.	SCF1 to SCF4				
	L500 CSP	0000 0100	$AC \leftarrow (STSI), SCFO \leftarrow 0$ $CSTF \leftarrow 0$	⁶ 1 1	1	STS Contents loaded to AC and SCF0 is reset.	SCF0 CSTF				
	CST	0000 0101	C8TF ←1	1 1 á	1	CSTF set.	CSTF				
Flag	RC5	0000 0110		1	1	HEF0 reset to inhibit Halt mode release by overflow from the divider circuit.	HEF0				
	SC5	0000 0 1 1	PEF0 ← 0 HEFβ%— 1	1	1	HEF0 set enabling overflow from the divider circuit to release the Halt mode.	HEF0				
	RCF	1111, 8000	OFF-0	1	1	CF reset.	CF				
	SCF	1111 0001	GF. ← 1	1	1	CF set.	CF				
	LDA	1010 1001	AG - [M (DP)]	1	1	Memory M (DP) contents transferred to AC.					
ansfer	STA 3	1010 1401	M (DP) ← (AC)	1	1	AC contents stored in memory M (DP).					
Data transfer	ĽDI X	0-0-1-1 X ₃ X ₂ X ₁ X ₀	AC $\leftarrow X$	1	1	Immediate data X loaded to AC.					
	MVI X	0 0 1 0 X ₃ X ₂ X ₁ X ₀	M (DP) ← X	1	1	Immediate data X loaded to memory M (DP).					

Continued on next page.

Continued from preceding page.

nstruction	Mnemonic	Instruction co	ode	Function	Bytes	Cycles		Function description	Status flag affected				
_	HALT	0000 00	000	CPU operation halts	1	1	Halts CPU operation. HALT mode is released under the following conditions. HALT mode is cancelled by the interaction of SIC X, and SC5 commands.						
	SCI X	1101 X ₃ X ₂	2 ^X 1 ^X 0	CTL2 ← X	1	1	X ₀ to X ₃		HEF1 to HEF4				
 - 								HFE1 is set to enable release of HALT mode by overflow signal from divider circuit following CF.oscillation circuit.	A.				
CPU control								HFE2 is set enabling signal rise at input parts to release HALT mode.	7				
5								HFE3 is set enabling signal rise at input port M to release HALT / mode.					
								HFE4 is set enabling \$110 second outse to release HALT.					
	NOP		111	No operation	1	1	No operation.						
	IPS		111	$AC \leftarrow [P(S)]$	1	1		at input port S loaded to AC.					
	IPM		000	$AC \leftarrow [P(M)]$	1	1	ف	at input port M loaded to AC					
	SPDR X	1111 01	X ₁ X ₀	$PDF \leftarrow X$	1	1	A STATE OF THE STA		PDF				
						٥	Bit content	Operation					
					,gi		X ₀ =0	S-Terminal Pull down Tr OFF					
				g.	adore de la constanta	į į	X ₀ =1	S Ferminal Pull down TrON.					
				and the state of t		å An	X1=0	M-Terminal Pull down Tr OFF. M-Terminal Pull down Tr ON.					
	OUT		100	(I) Country of the second of t	38		X ₍₌ 1						
Input/Output	OUT	1111 11	100	(1) Cannot be used when SPC =0&SP=0H to CH, EH, FH	13		CH, EH, FI	7 6					
Input				(2) When SP=0&SP=D, CTL3 ← (AC)	Salaya Salaya	1000	J.	<i>j</i>	CFCF CCF				
				(3) When SPC=1 SFR ← (AC)	***	Man.	A Section of the sect	s transferred to special function register SFR.					
	TWRT	0000 00	10	(1) Cannot be used when SPC =0&SP=0H to CH, EH, FH	~1	1	CH, EH, FI	,					
				(2) When SPC=0&SP=0 CPL3 ← ROM	e kirili s		1 -		CFCF CCF				
				(3) When SPC=1 SFR ← ROM	Salar Barre	7	-	4 bits or 8 bits data of ROM, on the current page, addressed by PC order 8 bits are replaced by AC and M (DP) contents is transferred					
			September 1				to special for	unction register SFR					
	IN	0001 01	11	(1) Cannot be used at SPC =0&SP=0H to CH, EH, FH	1	1	Cannnot be	used. (Causes error when IN is executed at SPC=0&SP=0H to H.)					
		A de	A	(2) When SPC=0&SP=D AC ← (STS3)			STS3 conte	ents transferred to AC.					
				(\$).When SPC=1 AC (SFR)			Special fun	ction register SFR contents transferred to AC.					

Continued on next page.

Continued from preceding page.

Instruction	Mnemonic	Instruction code	Function	Bytes	Cycles					
	JMP X	$X_7X_6X_5X_4$ $X_3X_2X_1X_0$	$(PC_{10} to PC_0) \leftarrow X_{10} to X_0$	2		Loads data specified by X ₁₀ to X ₀ to PC and jumps unconditionally.				
	BAB0 X		$(PC_{10} \text{ to } PC_0) \leftarrow X_{10} \text{ to } X_0$	2		When AC bit 0 is '1', data specified by X_{10} to X_0 is loaded to PC and jumps. At '0', PC is incremented +2.				
	BAB1 X	0101 1X ₁₀ X ₉ X ₈ X ₇ X ₆ X ₅ X ₄ X ₃ X ₂ X ₁ X ₀	$\begin{array}{l} \text{If AC}_1 \text{=1 then} \\ (\text{PC}_{10} \text{ to PC}_0) \leftarrow \text{X}_{10} \text{ to X}_0 \end{array}$	2	2	When AC bit 1 is '1', data specified by X ₁₀ to X ₀ is loaded to PC and jumps. At '0', PC is incremented +2.				
	BAB2 X		$(PC_{10} \text{ to } PC_0) \leftarrow X_{10} \text{ to } X_0$	2	2	When AC bit 2 is '1', data specified by X10 to X0 is loaded to PC and jumps At '0', PC is incremented +2.	7			
	BAB3 X	0111 1X ₁₀ X ₉ X ₈ X ₇ X ₆ X ₅ X ₄ X ₃ X ₂ X ₁ X ₀	If AC_3 =1 then $(PC_{10} \text{ to } PC_0) \leftarrow X_{10} \text{ to } X_0$	2		When AC bit 3 is '1', data specified by X ₁₀ to X ₀ is leaded to PC and jumps' At '0', PC is incremented +2.				
	BAZ X		$(PC_{10} \text{ to } PC_0) \leftarrow X_{10} \text{ to } X_0$	2		When AC is '0', data specified by X ₁₀ to X ₈ is loaded to PC and jumps. When AC is not '0', PC is incremented +2.				
utine	BANZ X	0101 0X ₁₀ X ₉ X ₈ X ₇ X ₆ X ₅ X ₄ X ₃ X ₂ X ₁ X ₀	If AC $\neq 0$ then (PC ₁₀ to PC ₀) \leftarrow X ₁₀ to X ₀	2	2	When AC is not '0', data specified by X ₁₀ to X ₀ is leaded to PC and umps. When AC is '0', PC is incremented +2.				
g/subro	BCNH X	0110 0X ₁₀ X ₉ X ₈ X ₇ X ₆ X ₅ X ₄ X ₃ X ₂ X ₁ X ₀	$\begin{array}{l} \text{If CF} \neq 1 \text{ then} \\ (\text{PC}_{10} \text{ to PC}_0) \leftarrow X_{10} \text{ to } X_0 \end{array}$	2	2	When CF is '0', data specified by 10 to 35 is loaded to PC and jumps. When CF is '1', PC is incremented +2.				
Branching/subroutine	BCH X	0111 0X ₁₀ X ₉ X ₈ X ₇ X ₆ X ₅ X ₄ X ₃ X ₂ X ₁ X ₀		2	2	When CF is '1', data specified by X ₁₀ to X ₀ is loaded to PC and jumps. When CF is '0, 'PC is incremented +2.				
8	PAGE	0001 0001	PAGE ← [M (DP)]	1	1	Memory M (OP) contents loaded to PAGE latch.				
	JMP*	0001 0000	$\begin{array}{l} PC_{10} \ to \ PC_{08} \leftarrow (PAGE) \\ PC_{07} \ to \ PC_{04} \leftarrow (AC) \\ PC_{03} \ to \ PC_{00} \leftarrow [M \ (DP)] \end{array}$	1	1	Unconditionally jumps to page specified by PAGE and address whose low- order 8 bits are specified by contents of AC and memory M (DP).				
	ROM0	1100 1000 0010 0000	PC ₁₁ ← 0	2	2	Select ROM bank 0.				
	ROM1	1100 1000 0010 0001	PC ₁₁ ← 1	2	2	Select ROM banks				
	JSR X	1010 0X ₁₀ X ₉ X ₈ X ₇ X ₆ X ₅ X ₄ X ₃ X ₂ X ₁ X ₀		2	2	Current PC+2 contents are saved in STACK, data specified by X ₁₀ to X ₀ is loaded to PC and sub-soutine is called.				
	RST	0001 0011	PC ← (STACK)	1	1 00	Returns PC contents saved in STACK to PC and returns from sub-routine.				
	SPC0	1100 1001 0010 0000	SPC ← 0	2	30%	Resets strobe confer control bit (SPC) to '0'.	SPC			
aneons	SPC1	1100 1001 0010 0001	SPC ← 1	2	2	Sets stroke pointer control bit (SPC) to '1'.	SPC			
Miscellaneous	CSEC	1111 1011	φ11 to φ15 ← 0,	1	1	Resets high-order 4 bits of divider circuit.	SCF0 SCF4			
	RWDT	1111 1001	(WDT) ← Ø	1	1	Resets Watchdog Timer counter.				

LC573100 Series Instructions Map

Lower	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F	
0	HALT TAAT TWRT - CSP CST RC5 SC5								JMP X								
1	JMP*	PAGE	MTR	RTS	-	-	-	IN	ASR0	ASR1	ASL0	ASL1	SDPL	SDPH	EDPL	EDPH	
2	MVI X																
3	LDI X																
4				BA	ZX				BABO X								
5				BCN	IH X				BAB1X								
6				BCN	IH X				BAB2 X								
7				BC	ΗХ				BAB3 X								
8	ADC	SBC	ADD	SUB	ADN	AND	EOR	OR	ADC*	SBC*	ADD*	SUB*	ADN*	AND*	EOR*	OR*	
9	ADCI	SBCI	ADDI	SUBI	ADNI	ANDI	EORI	ORI	INC	DEC	IDPL	DDPL	IDPH	DDPH	ISP	DSP	
А				JSI	R X				IPM 🥖	ŁDA	LSP	LHLT	L500	,∕STA	SSP	IPS	
В								MDF	PL X	e ^e 		a de la composição de l		a ₂			
С		MDF	PH X			-	-	ROMX SPCX -									
D		şic.x															
Е	/MŠP X																
F	RCF	SCF	NOP	NOP		SPE	R X	11	450	RWDT	- 1	CSEC	OUT	LDPL	LDPH	NOP	

XXX : 1 Byte-1 Cycle instruction ROMX : ROM0 instruction (C820H),

XXX : 2 Byte-2 Cycle instruction SPCX: SPC0 instruction (C920H), SPC1 instruction (C921H)

XXX: 1 Byte-2 Cycle instruction

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co. Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 2001. Specifications and information herein are subject to change without notice.