Optimization for Machine Learning

November 3, 2022 TC2 - Optimisation Université Paris-Saclay, Orsay, France

Anne Auger and Dimo Brockhoff
Inria Saclay – Ile-de-France

What is Optimization?

What is Optimization?

Typically, we aim at

- finding solutions x which minimize f(x) in the shortest time possible (maximization is reformulated as minimization)
- or finding solutions x with as small f(x) in the shortest time possible (if finding the exact optimum is not possible)

Course Overview

Date		Topic
Thu, 3.11.2022	DB	Introduction
Thu, 10.11.2022	AA	Continuous Optimization I: differentiability, gradients, convexity, optimality conditions
Thu, 17.11.2022	AA	Continuous Optimization II: constrained optimization, gradient-based algorithms, stochastic gradient
Thu, 24.11.2022	AA	Continuous Optimization III: stochastic algorithms, derivative-free optimization written test / « contrôle continue »
Thu, 1.12.2022	DB	Discrete Optimization I: graph theory, greedy algorithms
Thu, 8.12.2022	DB	Discrete Optimization II: dynamic programming, branch&bound
Thu 15.12.2022	DB	Written exam

Course Overview

Date		Topic
Thu, 3.11.2022	DB	Introduction
Thu, 10.11.2022	AA	Continuous Optimization I: differentiability, gradients, convexity, optimality conditions
Thu, 17.11.2022	AA	Continuous Optimization II: constrained optimization, gradient-based algorithms, stochastic gradient
Thu, 24.11.2022	AA	Continuous Optimization III: stochastic algorithms, derivative-free optimization written test / « contrôle continue »
Thu, 1.12.2022	DB	Discrete Optimization I: graph theory, greedy algorithms
Thu, 8.12.2022	DB	Discrete Optimization II: dynamic programming, branch&bound
Thu 15.12.2022	DB	Written exam
		classes from 13h30 – 16h45 (2 nd break at end)

Remarks

- possibly not clear yet what the lecture is about in detail
- but there will be always examples and small exercises to learn "on-the-fly" the concepts and fundamentals

Overall goals:

- give a broad overview of where and how optimization is used
- understand the fundamental concepts of optimization algorithms

The Final Exam

- will be a written multiple choice exam
- open book
- 2 hours, starting from 13h30
- counts 60% of overall grade
- please prepare pen&paper

Intermediate Written Exam ("contrôle continu")

- instead of a group project
- one smaller written exam/test of about 20min
 - November 24 (4th lecture)
- goal: spread learning of lecture content over the course
- accounts 40% to overall grade
- might be in part multiple choice

All information also available at

```
http://www.cmap.polytechnique.fr/
~dimo.brockhoff/optimizationSaclay/2022/
```

(in particular the lecture slides)

Overview of Today's Lecture

- More examples of optimization problems
 - introduce some basic concepts of optimization problems such as domain, constraint, ...
- Beginning of continuous optimization part
 - typical difficulties in continuous optimization
 - differentiability
 - ... [we'll see how far we get]

General Context Optimization

Given:

set of possible solutions

Search space

quality criterion

Objective function

Objective:

Find the best possible solution for the given criterion

Formally:

Maximize or minimize

$$\mathcal{F}: \Omega \longmapsto \mathbb{R},$$

$$x \longmapsto \mathcal{F}(x)$$

Constraints

Maximize or minimize

$$\mathcal{F}: \Omega \longmapsto \mathbb{R},$$
$$x \longmapsto \mathcal{F}(x)$$

Maximize or minimize

$$\mathcal{F}: \Omega \mapsto \mathbb{R},$$
 $x \mapsto \mathcal{F}(x)$
where $g_i(x) \leq 0$
 $h_i(x) = 0$

unconstrained

 Ω

example of a

constrained Ω

Constraints explicitly or implicitly define the feasible solution set

[e.g. $||x|| - 7 \le 0$ vs. every solution should have at least 5 zero entries]

Hard constraints *must* be satisfied while soft constraints are preferred to hold but are not required to be satisfied

[e.g. constraints related to manufacturing precisions vs. cost constraints]

Example 1: Combinatorial Optimization

Knapsack Problem

- Given a set of objects with a given weight and value (profit)
- Find a subset of objects whose overall mass is below a certain limit and maximizing the total value of the objects

[Problem of resource allocation with financial constraints]

$$\max \sum_{j=1}^{n} p_j x_j \quad \text{with } x_j \in \{0,1\}$$

$$\text{s.t. } \sum_{j=1}^{n} w_j x_j \le W$$

$$\Omega = \{0,1\}^n$$

Example 2: Combinatorial Optimization

Traveling Salesperson Problem (TSP)

- Given a set of cities and their distances
- Find the shortest path going through all cities

 $\Omega = S_n$ (set of all permutations)

Example 3: A "Manual" Engineering Problem

Optimizing a Two-Phase Nozzle [Schwefel 1968+]

- maximize thrust under constant starting conditions
- one of the first examples of Evolution Strategies

 Ω = all possible nozzles of given number of slices

copyright Hans-Paul Schwefel

[http://ls11-www.cs.uni-dortmund.de/people/schwefel/EADemos/]

Example 4: Continuous Optimization Problem

Computer simulation teaches itself to walk upright (virtual robots (of different shapes) learning to walk, through stochastic optimization (CMA-ES)), by Utrecht University:

We present a control system based on 3D muscle actuation

https://www.youtube.com/watch?v=pgaEE27nsQw

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based Locomotion for Bipedal Creatures", SIGGRAPH Asia, 2013.

Example 5: Constrained Continuous Optimization

Design of a Launcher

$$\Omega = \mathbb{R}^{23}$$

- Scenario: multi-stage launcher brings a satellite into orbit
- Minimize the overall cost of a launch
- Parameters: propellant mass of each stage / diameter of each stage / flux of each engine / parameters of the command law

23 continuous parameters to optimize + constraints

Example 6: An Expensive Real-World Problem

Well Placement Problem

for a given structure, per well:

- angle & distance to previous well
- well depth

structure + \mathbb{R}^3_+ * #wells

 $\sigma \in \Omega$: variable length!

Example 7: Data Fitting – Data Calibration

Objective

- Given a sequence of data points $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, i = 1, ..., N$, find a model "y = f(x)" that "explains" the data experimental measurements in biology, chemistry, ...
- In general, choice of a parametric model or family of functions $(f_{\theta})_{\theta \in \mathbb{R}^n}$

use of expertise for choosing model or only a simple model is affordable (e.g. linear, quadratic)

• Try to find the parameter $\theta \in \mathbb{R}^n$ fitting best to the data

Fitting best to the data

Minimize the quadratic error:

$$\min_{\theta \in \mathbb{R}^n} \sum_{i=1}^N |f_{\theta}(\mathbf{x}_i) - y_i|^2$$

Example 8: Deep Learning

Actually the same idea:

match model best to given data

Model here:

artificial neural nets with many hidden layers (aka deep neural networks)

Parameters to tune:

- weights of the connections (continuous parameter)
- topology of the network (discrete)
- firing function (less common)

Specificity:

large amount of training data, hence often batch learning

Example 9: Hyperparameter Tuning

Scenario:

- many existing algorithms (in ML and elsewhere) have internal parameters
 - "In machine learning, a hyperparameter is a parameter whose value is set before the learning process begins." --- Wikipedia
 - can be model parameters
 - #trees in random forest
 - #nodes in neural net
 - **.** . . .
 - or other generic parameters such as learning rates, ...
- choice has typically a big impact and is not always obvious
- search space often mixed discrete-continuous or even categorical

Example 10: Interactive Optimization

Coffee Tasting Problem

- Find a mixture of coffee in order to keep the coffee taste from one year to another
- Objective function = opinion of one expert

M. Herdy: "Evolution Strategies with subjective selection", 1996

Many Problems, Many Algorithms?

Observation:

- Many problems with different properties
- For each, it seems a different algorithm?

In Practice:

- often most important to categorize your problem first in order to find / develop the right method
- → problem types

Problem Types

- discrete vs. continuous
 - discrete: integer (linear) programming vs. combinatorial problems
 - continuous: linear, quadratic, smooth/nonsmooth, blackbox/DFO, ...
 - both discrete&continuous variables: mixed integer problem
 - categorical variables ("no order")
- unconstrained vs. constrained (and then which type of constraint)

Not covered in this introductory lecture:

- deterministic vs. stochastic outcome of objective function(s)
- one or multiple objective functions

Example: Numerical Blackbox Optimization

Typical scenario in the continuous, unconstrained case:

Optimize
$$f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^k$$

derivatives not available or not useful

General Concepts in Optimization

- search domain
 - discrete or continuous or mixed integer or even categorical
 - finite vs. infinite dimension
- constraints
 - bound constraints (on the variables only)
 - linear/quadratic/non-linear constraints
 - blackbox constraints
 - many more

(see e.g. Le Digabel and Wild (2015), https://arxiv.org/abs/1505.07881)

Further important aspects (in practice):

- deterministic vs. stochastic algorithms
- exact vs. approximation algorithms vs. heuristics
- anytime algorithms
- simulation-based optimization problem / expensive problem

continuous optimization

Continuous Optimization

• Optimize
$$f$$
:
$$\begin{cases} \Omega \subset \mathbb{R}^n \to \mathbb{R} \\ x = (x_1, \dots, x_n) \to f(x_1, \dots, x_n) \end{cases}$$

$$\in \mathbb{R}$$
 unconstrained optimization

- Search space is continuous, i.e. composed of real vectors $x \in \mathbb{R}^n$

Unconstrained vs. Constrained Optimization

Unconstrained optimization

$$\inf \{ f(x) \mid x \in \mathbb{R}^n \}$$

Constrained optimization

- Equality constraints: $\inf \{ f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0, 1 \le k \le p \}$
- Inequality constraints: $\inf \{ f(x) \mid x \in \mathbb{R}^n, g_k(x) \le 0, 1 \le k \le p \}$

where always $g_k : \mathbb{R}^n \to \mathbb{R}$

Example of a Constraint

$$\min_{x \in \mathbb{R}} f(x) = x^2$$
 such that $x \le -1$

Analytical Functions

Example: 1-D

$$f_1(x) = a(x - x_0)^2 + b$$

where $x, x_0, b \in \mathbb{R}, a \in \mathbb{R}$

Generalization:

convex quadratic function

$$f_2(x) = (x - x_0)^T A (x - x_0) + b$$
 where $x, x_0 \in \mathbb{R}^n, b \in \mathbb{R}$, $A \in \mathbb{R}^{\{n \times n\}}$ and A symmetric positive definite (SPD)

Exercise:

What is the minimum of $f_2(x)$?

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

What are the level sets of f_2 ?

Reminder: level sets of a function

$$L_c = \{ x \in \mathbb{R}^n \mid f(x) = c \}$$

(similar to topography lines / level sets on a map)

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

What are the level sets of f_2 ?

- Probably too complicated in general, thus an example here
- Consider $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$, b = 0, n = 2
 - a) Compute $f_2(x)$.
 - b) Plot the level sets of $f_2(x)$.
 - c) More generally, for n=2, if A is SPD with eigenvalues $\lambda_1=9$ and $\lambda_2=1$, what are the level sets of $f_2(x)$?

What Makes a Function Difficult to Solve?

dimensionality

(considerably) larger than three

- non-separability
 dependencies between the objective variables
- ill-conditioning
- ruggedness

non-smooth, discontinuous, multimodal, and/or noisy function

a narrow ridge

cut from 3D example, solvable with an evolution strategy

Curse of Dimensionality

- The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.
- Example: Consider placing 100 points onto a real interval, say [0,1]. To get similar coverage, in terms of distance between adjacent points, of the 10-dimensional space $[0,1]^{10}$ would require $100^{10} = 10^{20}$ points. The original 100 points appear now as isolated points in a vast empty space.
- Consequently, a search policy (e.g. exhaustive search) that is valuable in small dimensions might be useless in moderate or large dimensional search spaces.

Separable Problems

Definition (Separable Problem)

A function *f* is separable if

$$\underset{(x_1,\dots,x_n)}{\operatorname{argmin}} f(x_1,\dots,x_n) = \left(\underset{x_1}{\operatorname{argmin}} f(x_1,\dots),\dots,\underset{x_n}{\operatorname{argmin}} f(\dots,x_n)\right)$$

 \Rightarrow it follows that f can be optimized in a sequence of n independent 1-D optimization processes

Example:

Additively decomposable functions

$$f(x_1, ..., x_n) = \sum_{i=1}^{n} f_i(x_i)$$
Rastrigin function

Non-Separable Problems

Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system

- $f: x \mapsto f(x)$ separable
- $f: x \mapsto f(Rx)$ non-separable

R rotation matrix

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation". Sixth ICGA, pp. 57-64, Morgan Kaufmann [2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

III-Conditioned Problems: Curvature of Level Sets

Consider the convex-quadratic function

$$f(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T H(\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} h_{i,i} x_i^2 + \frac{1}{2} \sum_{i,j} h_{i,j} x_i x_j$$

H is Hessian matrix of f and symmetric positive definite

gradient direction $-f'(x)^T$ Newton direction $-H^{-1}f'(x)^T$

Ill-conditioning means squeezed level sets (high curvature). Condition number equals nine here. Condition numbers up to 10¹⁰ are not unusual in real-world problems.

If $H \approx I$ (small condition number of H) first order information (e.g. the gradient) is sufficient. Otherwise second order information (estimation of H^{-1}) information necessary.

Different Notions of Optimum

Unconstrained case

- local vs. global
 - local minimum x^* : \exists a neighborhood V of x^* such that $\forall x \in V$: $f(x) \ge f(x^*)$
 - global minimum: $\forall x \in \Omega: f(x) \ge f(x^*)$
- strict local minimum if the inequality is strict

Constrained case

- a bit more involved
- hence, later in the lecture ②

Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if $f: \mathbb{R} \to \mathbb{R}$ differentiable, f'(x) = 0 at optimal points

- generalization to $f: \mathbb{R}^n \to \mathbb{R}$?
- generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

optima of such function can be easily approached by certain type of methods

Reminder: Continuity of a Function

 $f: (V, || ||_V) \rightarrow (W, || ||_W)$ is continuous in $x \in V$ if $\forall \epsilon > 0, \exists \eta > 0$ such that $\forall y \in V: ||x - y||_V \leq \eta; ||f(x) - f(y)||_W \leq \epsilon$

Reminder: Differentiability in 1D (n=1)

 $f: \mathbb{R} \to \mathbb{R}$ is differentiable in $x \in \mathbb{R}$ if

$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \text{ exists, } h \in \mathbb{R}$$

Notation:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The derivative corresponds to the slope of the tangent in x.

Reminder: Differentiability in 1D (n=1)

Taylor Formula (Order 1)

If f is differentiable in x then

$$f(x + h) = f(x) + f'(x)h + o(||h||)$$

i.e. for h small enough, $h \mapsto f(x+h)$ is approximated by $h \mapsto f(x) + f'(x)h$

 $h \mapsto f(x) + f'(x)h$ is called a first order approximation of f(x+h)

Reminder: Differentiability in 1D (n=1)

Geometrically:

The notion of derivative of a function defined on \mathbb{R}^n is generalized via this idea of a linear approximation of f(x+h) for h small enough.

How to generalize this to arbitrary dimension?

Gradient Definition Via Partial Derivatives

In $(\mathbb{R}^n, || \ ||_2)$ where $||x||_2 = \sqrt{\langle x, x \rangle}$ is the Euclidean norm deriving from the scalar product $\langle x, y \rangle = x^T y$

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Reminder: partial derivative in x₀

$$f_{i}: y \to f(x_{0}^{1}, ..., x_{0}^{i-1}, y, x_{0}^{i+1}, ..., x_{0}^{n})$$

$$\frac{\partial f}{\partial x_{i}}(x_{0}) = f_{i}'(x_{0})$$

Exercise: Gradients

Exercise:

Compute the gradients of

- a) $f(x) = x_1$ with $x \in \mathbb{R}^n$
- b) $f(x) = a^T x$ with $a, x \in \mathbb{R}^n$
- c) $f(x) = x^T x (= ||x||^2)$ with $x \in \mathbb{R}^n$

Exercise: Gradients

Exercise:

Compute the gradients of

- a) $f(x) = x_1$ with $x \in \mathbb{R}^n$
- b) $f(x) = a^T x$ with $a, x \in \mathbb{R}^n$
- c) $f(x) = x^T x$ (= $||x||^2$) with $x \in \mathbb{R}^n$

Some more examples:

- in \mathbb{R}^n , if $f(x) = x^T A x$, then $\nabla f(x) = (A + A^T) x$
- in \mathbb{R} , $\nabla f(\mathbf{x}) = f'(\mathbf{x})$

Gradient: Geometrical Interpretation

Exercise:

Let $L_c = \{x \in \mathbb{R}^n \mid f(x) = c\}$ be again a level set of a function f(x). Let $x_0 \in L_c \neq \emptyset$.

Compute the level sets for $f_1(x) = a^T x$ and $f_2(x) = ||x||^2$ and the gradient in a chosen point x_0 and observe that $\nabla f(x_0)$ is **orthogonal** to the level set in x_0 .

Again: if this seems too difficult, do it for two variables (and a concrete $a \in \mathbb{R}^2$) and draw the level sets and the gradients.

More generally, the gradient of a differentiable function is orthogonal to its level sets.

Differentiability in \mathbb{R}^n

Taylor Formula – Order One

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + (\nabla f(\mathbf{x}))^{T} \mathbf{h} + o(||\mathbf{h}||)$$

Reminder: Second Order Differentiability in 1D

- Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function and let $f': x \to f'(x)$ be its derivative.
- If f' is differentiable in x, then we denote its derivative as f''(x)
- f''(x) is called the second order derivative of f.

Taylor Formula: Second Order Derivative

- If $f: \mathbb{R} \to \mathbb{R}$ is two times differentiable then $f(x+h) = f(x) + f'(x)h + f''(x)h^2 + o(||h||^2)$ i.e. for h small enough, $h \to f(x) + hf'(x) + h^2f''(x)$ approximates h + f(x+h)
- $h \to f(x) + hf'(x) + h^2f''(x)$ is a quadratic approximation (or order 2) of f in a neighborhood of x

■ The second derivative of $f: \mathbb{R} \to \mathbb{R}$ generalizes naturally to larger dimension.

Hessian Matrix

In $(\mathbb{R}^n, \langle x, y \rangle = x^T y)$, $\nabla^2 f(x)$ is represented by a matrix called the Hessian matrix. It can be computed as

$$\nabla^{2}(f) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \dots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Exercise on Hessian Matrix

Exercise:

Let
$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x}, \mathbf{x} \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}$$
.

Compute the Hessian matrix of f.

If it is too complex, consider
$$f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ x \to \frac{1}{2} x^T A x \end{cases}$$
 with $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$

Second Order Differentiability in \mathbb{R}^n

Taylor Formula – Order Two

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + (\nabla f(\mathbf{x}))^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T (\nabla^2 f(\mathbf{x})) \mathbf{h} + o(||\mathbf{h}||^2)$$

Back to III-Conditioned Problems

We have seen that for a convex quadratic function

$$f(x) = \frac{1}{2}(x - x_0)^T A(x - x_0) + b \text{ of } x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}, A \text{ SPD, } b \in \mathbb{R}^n$$
:

1) The level sets are ellipsoids. The eigenvalues of A determine the lengths of the principle axes of the ellipsoid.

2) The Hessian matrix of f equals to A.

Ill-conditioned convex quadratic problems are problems with large ratio between largest and smallest eigenvalue of *A* which means large ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Gradient Direction Vs. Newton Direction

Gradient direction: $-\nabla f(x)$

Newton direction: $-(H(x))^{-1} \cdot \nabla f(x)$

with $H(x) = \nabla^2 f(x)$ being the Hessian at x

Exercise:

Let again
$$f(x) = \frac{1}{2}x^T A x$$
, $x \in \mathbb{R}^2$, $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$.

Plot the gradient and Newton direction of f in a point $x \in \mathbb{R}^n$ of your choice (which should not be on a coordinate axis) into the same plot with the level sets, we created before.

Gradient Direction Vs. Newton Direction

Gradient direction: $-\nabla f(x)$

Newton direction: $-(H(x))^{-1} \cdot \nabla f(x)$

with $H(x) = \nabla^2 f(x)$ being the Hessian at x

Exercise:

Let again
$$f(x) = \frac{1}{2}x^T A x$$
, $x \in \mathbb{R}^2$, $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$.

Plot the gradient and Newton direction of f in a point $x \in \mathbb{R}^n$ of your choice (which should not be on a coordinate axis) into the same plot with the level sets, we created before.

- remind level sets: axis-parallel ellipsoids, axis-ratio=3
- remind gradient: Ax
- remind Hessian: A

Conclusions

I hope it became clear...

- ...what kind of optimization problems we are interested in
- ...what are level sets and how to plot them
- ...what difficulties a problem can have
- ...what the gradient is (and that it is generally orthogonal to the level sets)
- ...what the Hessian is and
- ...what's the difference between gradient and Newton direction.