3.3 空间平面及其方程

本节主要内容:

- 平面的点法式方程
- 平面的一般式方程
- 平面的截距式方程
- 平面的三点式方程
- 两平面间的关系和平面束

1. 平面的点法式方程

【法向量】垂直于平面的非零向量.

如图, 平面 π 的法向量 $\vec{n} = (A, B, C)$,

$$M_0(x_0, y_0, z_0) \in \pi$$
:

平面的点

法式方程

$$M(x,y,z) \in \pi \Leftrightarrow \overline{M_0M} \perp \vec{n} \Leftrightarrow \overline{M_0M} \cdot \vec{n} = 0$$

$$\mathbb{BI} A(x-x_0) + B(y-y_0) + C(z-z_0) = 0 +$$

【求平面方程最主要的方法】(记住!):

- (1) 在平面上找出一个点;
- (2) 找出一个与平面垂直的非零向量(法向量).

【例1】 求过点(1,1,1), 且垂直于平面 x-y+z=7 和3x+2y-12z+5=0 的平面方程.

[
$$\vec{\mathbf{R}}$$
] $\vec{n}_1 = (1, -1, 1), \ \vec{n}_2 = (3, 2, -12);$

取法向量

$$\vec{n} = \vec{n}_1 \times \vec{n}_2$$

$$= \left(\begin{vmatrix} -1 & 1 \\ 2 & -12 \end{vmatrix}, - \begin{vmatrix} 1 & 1 \\ 3 & -12 \end{vmatrix}, \begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix} \right)$$

$$= (10, 15, 5) = 5(2, 3, 1);$$

平面方程为

$$2(x-1)+3(y-1)+(z-1)=0$$
,

化简得

$$2x + 3y + z - 6 = 0$$
.

2. 平面的一般方程

由平面的点法式方程

$$A(x-x_{0}) + B(y-y_{0}) + C(z-z_{0}) = 0$$

$$\Rightarrow Ax + By + Cz - (Ax_{0} + By_{0} + Cz_{0}) = 0$$

$$Ax + By + Cz + D = 0$$

其中法向量为 $\vec{n} = (A, B, C)$.

几种特殊情况(可通过法向量考虑):

(1)
$$D = 0$$
: 平面过原点; $(-(Ax_0 + By_0 + Cz_0) = D)$

- (2) A = 0: 平面平行x轴;
- (3) A = 0, D = 0: 平面通过x轴.
- (4) A = 0, B = 0: 平面平行xOy平面.

其它情况可以类似讨论

【例2】 指出下列平面的特殊位置

(1)
$$2x + y + z = 0$$
;

(2)
$$x + 2z = 0$$
;

(3)
$$3x - y = 1$$
;

(4)
$$y = 1$$
.

- 【解】(1) 过原点; (2) 过 y 轴;
 - (3) 平行z轴; (4) 平行zOx平面.

【例4】 求过x轴且与平面x-y+2z=0垂直的平面.

【解】平面为 By + Cz = 0: 平面的法向 $\vec{n} = (0, B, C)$; 由条件知 $(0, B, C) \perp (1, -1, 2)$, B = 2C, 平面方程为 2y + z = 0.

3. 平面的截距式方程

如果
$$abc \neq 0$$
, 则平面方程 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ 过 $A(a,0,0)$, $B(0,b,0)$, $C(0,0,c)$

三点.

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
平面截距式方程
$$x = \frac{b}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

$$x = \frac{b}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

$$x = \frac{b}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

a,b,c 分别称平面在三个坐标轴上的截距.

截距式方程便于画图

【例】 将平面方程10x + 5y + 4z - 20 = 0 化为截距式方程

【解】令 y=z=0 得: x=2

令 x=z=0 得: y=4

令 x=y=0 得: z=5

截距方程为

$$\frac{x}{2} + \frac{y}{4} + \frac{z}{5} = 1$$

4. 平面的三点式方程

几何上,不共线的三点确定唯一的一个平面,

设有不共线的三点 $P_1(x_1,y_1,z_1), P_2(x_2,y_2,z_2), P_3(x_3,y_3,z_3)$ 它们确定了一个平面,设 P(x,y,z) 为该平面上任意一点,则向量 $\overline{P_1P}, \overline{P_1P_2}, \overline{P_1P_3}$ 共面,它们的混合积为零,所以

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

$$P_1$$

具体求解时也可以先求出法向量,再求平面方程

【例】 求过三点 A(2,-1,4), B(-1,3,-2) 和 C(0,2,3) 的平面方程.

[解]
$$\overrightarrow{AB} = (-3, 4, -6), \overrightarrow{AC} = (-2, 3, -1);$$

取
$$\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC}$$

$$= (\begin{vmatrix} 4 & -6 \\ 3 & -1 \end{vmatrix}, -\begin{vmatrix} -3 & -6 \\ -2 & -1 \end{vmatrix}, \begin{vmatrix} -3 & 4 \\ -2 & 3 \end{vmatrix})$$

$$= (14, 9, -1);$$

平面方程为

$$14(x-2) + 9(y+1) - (z-4) = 0,$$

化简得

$$14x + 9y - z - 15 = 0.$$

5. 两平面间的关系(通过法向量确定)和平面束

 $若n_1$ 与 n_2 平行,则 π_1 与 π_2 要么重合要么平行. 否则相交

(1)
$$\pi_1$$
与 π_2 重合 $\Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2};$

(2)
$$\pi_1 = \pi_2 + \pi_3 + \pi_4 \Leftrightarrow \frac{A_1^2}{A_2} = \frac{B_1^2}{B_2} = \frac{C_1^2}{C_2} \neq \frac{D_1^2}{D_2};$$

(3)
$$\pi_1$$
与 π_2 相交 $\Leftrightarrow A_1:B_1:C_1 \neq A_2:B_2:C_2$;

(4)
$$\pi_1 \perp \pi_2 \iff A_1 A_2 + B_1 B_2 + C_1 C_2 = 0;$$

平面束

当两个平面
$$\pi_1$$
: $A_1x + B_1y + C_1z + D_1 = 0$ 相交时, π_2 : $A_2x + B_2y + C_2z + D_2 = 0$ 相交时, 交线 l 的方程由方程组 $\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$ 所确定, π_1 与 π_2 是过这条直线 l 的两个平面.

[同轴平面束]经过同一条直线的所有平面的集合.

 π_1 与 π_2 相交于直线l,则方程

$$\lambda_{1}(A_{1}x + B_{1}y + C_{1}z + D_{1}) + \lambda_{2}(A_{2}x + B_{2}y + C_{2}z + D_{2}) = 0$$
$$\lambda_{1}, \lambda_{2}$$
不全为零 (*)

- (1) $\lambda_1 \neq 0$, $\lambda_2 = 0$, (*) 表示平面 π_1
- (2) $\lambda_1 = 0$, $\lambda_2 \neq 0$, (*)表示平面 π_2
- (3) $\lambda_1 \neq 0$, $\lambda_2 \neq 0$, (*)表示过直线 l 的其它平面

直线l 上任一点都满足方程(*),即(*)表示的平面通过直线l,结合 λ_1 , λ_2 的任意性可知,方程(*)为过直线 l 的同轴平面束。

例题: 见课本P79例题3.4

作业 P88 习题3

16, 17, 20, 22

3.4 空间直线及其方程

本节主要内容:

- 直线的点向式方程
- 直线的一般式方程
- 直线与平面间的关系
- 两直线间的关系

1. 直线的点向式方程

【直线的方向向量】

平行于直线的一个非零向量.

设空间直线 L 的方向向量

$$\vec{d}=(m,n,p),$$

 $M(x,y,z) \in L \Leftrightarrow \overrightarrow{M_0M} / / \overrightarrow{d}$

$$\Leftrightarrow \frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$$

直线的点向式(对称式)方程

有时记过 M_0 点且方向向量为 \vec{d} 的直线记为 $L(M_0, \vec{d})$

$$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$$

直线的点向式(对称式)方程

【注】
$$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p} + m, n, p$$
 可以为 0;

m n p $x-x_0=0$, 将 $\frac{x-x_0}{m}$ 视为 $\frac{0}{0}$ 即可.

若只有一个不为零,可理解为两个特殊平面的交线,

例,
$$\frac{x-0}{0} = \frac{y-0}{0} = \frac{z-0}{1}$$
 为 $\begin{cases} x = 0 \\ y = 0 \end{cases} (|t| < +\infty)$, 即 z 轴.

【例】 求过 A(1,2,3), B(3,2,1) 两点的直线方程.

【解】 取
$$\vec{d} = \overrightarrow{AB} = (2, 0, -2);$$
 直线方程为
$$\frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$$

【例】 求过A(1,0,-1)点且与两平面 $\pi_1: x+2y-z=0$, $\pi_2: 2x-y-z=1$ 平行的直线方程.

【解】 取 L 的方向向量

$$\vec{d} = \vec{n}_1 \times \vec{n}_2 = (\begin{vmatrix} 2 & -1 \\ -1 & -1 \end{vmatrix}, -\begin{vmatrix} 1 & -1 \\ 2 & -1 \end{vmatrix}, \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix})$$

$$= (-1, -1, -5);$$

直线
$$L$$
 方程为 $\frac{x-1}{1} = \frac{y}{1} = \frac{z+1}{5}$

直线的参数方程

在直线的点向式方程
$$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$$
中令比值为 t ,即 $\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p} = t$,则有
$$\begin{cases} x = x_0 + m t \\ y = y_0 + n t \\ z = z_0 + p t \end{cases}$$

直线的参数方程,其中t为参数

【例】 求 A(1,2,3) 在平面 $\pi: x-y+2z+1=0$ 的投影点 A' 的坐标.

【解】 过点 A且垂直 π 的直线的参数式方程为

$$\begin{cases} x = 1 + t \\ y = 2 - t \\ z = 3 + 2t \end{cases}$$

代入平面 π 的方程中得

$$1+t-(2-t)+2(3+2t)+1=0,$$

 $t=-1;$

将 t = -1 代回直线的方程得到

$$x = 0$$
, $y = 3$, $z = 1$;

即 A'(0,3,1).

直线的两点式方程

已知直线过两个相异点 $P_0(x_0,y_0,z_0)$ 和 $P_1(x_1,y_1,z_1)$,则该直线是过点 P_0 ,并且以 $\overline{P_0P_1}$ 为方向向量,则该直线方程为

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$$

直线的两点式方程

2. 直线的一般方程

空间直线 L可看成两平面的交线:

$$L: \begin{cases} A_1x + B_1y + C_1z + D_1 = \mathbf{0} & (\pi_1) \\ A_2x + B_2y + C_2z + D_2 = \mathbf{0} & (\pi_2) \end{cases}$$

其中 $A_1: B_1: C_1 \neq A_2: B_2: C_2$
其中 L 的方向向量 $\vec{d} = \vec{n}_1 \times \vec{n}_2$
 \vec{n}_2 \vec{n}_1
 \vec{n}_2 \vec{n}_3 \vec{n}_4 \vec{n}_4 \vec{n}_5 程

21

【例】 将直线 L: $\begin{cases} x+y+z+1=0 \\ 2x-y+3z+4=0 \end{cases}$ 化为点向式(对称式)方程.

【解】 取 $\vec{d} = (1,1,1) \times (2,-1,3) = (4,-1,-3);$

在直线上令
$$z = 0$$
, 得
$$\begin{cases} x + y + 1 = 0 \\ 2x - y + 4 = 0 \end{cases}$$

$$x=-\frac{5}{3}, y=-\frac{2}{3};$$

L的方程:

$$\frac{x+\frac{5}{3}}{4} = \frac{y+\frac{2}{3}}{-1} = \frac{z}{-3}$$

3. 直线与平面间的关系

若
$$L: \frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p},$$

 $\pi: Ax+By+Cz+D=0,$

【直线与平面的特殊位置关系判定】

(1)
$$L \in \pi \Leftrightarrow \vec{d} \perp \vec{n} \perp (x_0, y_0, z_0) \in \pi$$

$$\Leftrightarrow mA + nB + pC = 0 \perp Ax_0 + By_0 + Cz_0 + D = 0$$

(2)
$$L//\pi \Leftrightarrow \vec{d} \perp \vec{n} \perp (x_0, y_0, z_0) \notin \pi$$

$$\Leftrightarrow mA + nB + pC = 0 \perp Ax_0 + By_0 + Cz_0 + D \neq 0$$

(3)
$$L$$
与 π 相交 $\Leftrightarrow \vec{d}$ 与 \vec{n} 不垂直 $\Leftrightarrow mA + nB + pC \neq 0$

(4)
$$L \perp \pi \Leftrightarrow \vec{d} / / \vec{n} \Leftrightarrow \frac{A}{m} = \frac{B}{n} = \frac{C}{p}$$

4. 两直线间的关系

$$L_1: \frac{x-x_1}{m_1} = \frac{y-y_1}{n_1} = \frac{z-z_1}{p_1}; \quad L_2: \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{p_2}$$

其中
$$\vec{d}_1 = (m_1, n_1, p_1), \vec{d}_2 = (m_2, n_2, p_2),$$

$$P_2(x_2, y_2, z_2)$$

$$P_1 = (x_1, y_1, z_1), P_2 = (x_2, y_2, z_2)$$

直线 L_1 与 L_2 要么共面要么异面,判别方法如下: $L_1 P_1(x_1,y_1,z_1)$

$$L_1$$
与 L_2 共面 $\Leftrightarrow \vec{d}_1, \vec{d}_2, \overrightarrow{P_1P_2}$ 共面 $\Leftrightarrow \begin{vmatrix} m_1 & n_1 & p_1 \\ m_2 & n_2 & p_2 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \end{vmatrix} = 0$

两直线共面时,有重合、平行和相交三种情形

$$L_1: \frac{x-x_1}{m_1} = \frac{y-y_1}{n_1} = \frac{z-z_1}{p_1}; \quad L_2: \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{p_2}$$

(1)
$$L_1 = L_2 \Leftrightarrow \vec{d}_1 / / \vec{d}_2 / / \overrightarrow{P_1 P_2} \Leftrightarrow m_1 : n_1 : p_1$$

= $m_2 : n_2 : p_2 = (x_2 - x_1) : (y_2 - y_1) : (z_2 - z_1)$

(2)
$$L_1 / / L_2 \Leftrightarrow \vec{d}_1 / / \vec{d}_2 \nearrow (\overline{P_1 P_2} \Leftrightarrow m_1 : n_1 : p_1 = m_2 : n_2 : p_2 \neq (x_2 - x_1) : (y_2 - y_1) : (z_2 - z_1)$$

(3)
$$L_1$$
与 L_2 相交于一点 $\Leftrightarrow \vec{d}_1, \vec{d}_2, \overrightarrow{P_1P_2}$ 共面且 \vec{d}_1 》《 \vec{d}_2

$$\Leftrightarrow \begin{vmatrix} m_1 & n_1 & p_1 \\ m_2 & n_2 & p_2 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \end{vmatrix} = 0 \coprod m_1 : n_1 : p_1 \neq m_2 : n_2 : p_2$$

作业 P88 习题3

25(2)(4), 27(1)(3), 28