

Exercise 1 - Python Fundamentals and Data Handling

Name: Sona V

Reg. No: 2021239022

Course: M.Sc. Integrated Computer Science

(a) Use the pd.read_csv() function to read the data into Python. Call the loaded data college. Make sure that you have the directory set to the correct location for the data.

In [2]:	<pre>import pandas as pd</pre>											
In [57]:	<pre>college = pd.read_csv("/content/College.csv") college.head(5)</pre>											
Out[57]:		Unnamed: 0	Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad			
	0	Abilene Christian University	Yes	1660	1232	721	23	52	2885			
	1	Adelphi University	Yes	2186	1924	512	16	29	2683			
	2	Adrian College	Yes	1428	1097	336	22	50	1036			
	3	Agnes Scott College	Yes	417	349	137	60	89	510			
	4	Alaska Pacific University	Yes	193	146	55	16	44	249			

(b) Look at the data used in the notebook by creating and running a new cell with just the code college in it. You should notice that the first column is just the name of each university in a column named something like Unnamed: 0. We don't really want pandas to treat this as data. However, it may be handy to have these names for later. Try the following commands and similarly look at the resulting data frames:

```
college2 = pd. read_csv ('College .csv ', index_col =0)
college3 = college.rename ({'Unnamed : 0': 'College '}, axis
```

```
=1)
college3 = college3 . set_index ('College ')
```

This has used the first column in the file as an index for the data frame. This means that pandas has given each row a name corresponding to the appropriate university. Now you should see that the first data column is Private. Note that the names of the colleges appear on the left of the table. We also introduced a new python object above: a dictionary, which is specified by dictionary (key, value) pairs. Keep your modified version of the data with the following:

```
college = college3
```

```
In [58]: college = college.rename(columns={'Unnamed: 0': 'College'})
    college = college.set_index('College')
    college.head(5)
```

Out[58]:		Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	F
	College								
	Abilene Christian University	Yes	1660	1232	721	23	52	2885	
	Adelphi University	Yes	2186	1924	512	16	29	2683	
	Adrian College	Yes	1428	1097	336	22	50	1036	
	Agnes Scott College	Yes	417	349	137	60	89	510	
	Alaska Pacific University	Yes	193	146	55	16	44	249	

(c) Use the describe() method of to produce a numerical summary of the variables in the data set.

```
In [59]: college.describe()
```

Out[59]:		Apps	Accept	Enroll	Top10perc	Top25perc	F.Unde
	count	777.000000	777.000000	777.000000	777.000000	777.000000	777.0
	mean	3001.638353	2018.804376	779.972973	27.558559	55.796654	3699.9
	std	3870.201484	2451.113971	929.176190	17.640364	19.804778	4850.4
	min	81.000000	72.000000	35.000000	1.000000	9.000000	139.0
	25%	776.000000	604.000000	242.000000	15.000000	41.000000	992.0
	50%	1558.000000	1110.000000	434.000000	23.000000	54.000000	1707.0
	75 %	3624.000000	2424.000000	902.000000	35.000000	69.000000	4005.0
	max	48094.000000	26330.000000	6392.000000	96.000000	100.000000	31643.0

(d) Use the pd.plotting.scatter_matrix() function to produce a scatterplot matrix of the first columns [Top10perc, Apps, Enroll]. Recall that you can reference a list C of columns of a data frame A using A[C]

(e) Use the boxplot() method of college to produce side-by-side boxplots of Outstate versus Private.

In [64]: import matplotlib.pyplot as plt In [65]: fig, ax = plt.subplots(figsize=(8, 8)) college.boxplot('Outstate', by='Private', ax=ax); plt.suptitle('') plt.title('Outstate vs Private') plt.ylabel('Outstate')

Out[65]: Text(0, 0.5, 'Outstate')

(f) Create a new qualitative variable, called Elite, by binning the Top10perc variable into two groups based on whether or not the proportion of students coming from the top 10% of their high school classes exceeds 50%.

```
college['Elite '] = pd.cut(college['Top10perc '], [0 ,0.5 ,1] ,
```

```
labels =['No', 'Yes '])
```

Use the value_counts() method of college['Elite'] to see how many elite universities there are. Finally, use the boxplot() method again to produce side-by-side boxplots of Outstate versus Elite

dtype: int64

```
In [73]: import matplotlib.pyplot as plt
In [67]: fig, ax = plt.subplots(figsize=(8, 8))
    college.boxplot('Outstate', by='Elite', ax=ax);
    plt.suptitle('')
    plt.title('Outstate vs Elite')
    plt.ylabel('Outstate')
```

Out[67]: Text(0, 0.5, 'Outstate')

(g) Use the plot.hist() method of college to produce some histograms with differing numbers of bins for a few of the quantitative variables. The command plt.subplots(2, 2) may be useful: it will divide the plot window into four regions so that four plots can be made simultaneously. By changing the arguments you can divide the screen up in other combinations.

(h) Continue exploring the data, and provide a brief summary of what you discover.

- Private and elite colleges have higher out of state tuition.
- Most colleges get fewer applications but a few get more.