

OLIMPIADA DE FIZICĂ ETAPA NAŢIONALĂ 30 IANUARIE – 4 FEBRUARIE 2011 ARAD

Pagina 1 din 6

BAREM – PROBA TEORETICĂ

Subject 1 – Natură vie	Parţial	Punctaj
1. Barem subject 1		10
A. Deoarece în enunț se precizează că $h \ll R$ (raza spirelor), rezultă că viteza furnicii, paralelă cu axa optică, este mult mai mică decât viteza ei de-a lungul spirelor resortului.		
La un moment dat, furnica ajunge în E, unde viteza ei este $v = \frac{2\pi BE }{T}$.	0,25	
Imaginea ei în acel moment este în C și are viteza $v_i = \frac{2\pi CD }{T}$.	0,25	5
Din condiția $v_i = \frac{1}{2}v$, rezultă $ CD = \frac{1}{2} BE \iff \beta = \frac{1}{2}$	0,5	
Din formulele lentilelor subţiri		
$\frac{x_2}{x_1} = -\frac{1}{2} \text{ și } \frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f} \text{ , rezultă } x_1 = -3f \text{ .}$	2	
Deci furnica se deplasează pe distanța AE față de axa optică, egală cu $3f-2f=f$	0,5	
Dacă <i>n</i> este numărul de rotații ale furnicii, atunci $\Delta t = nT = \frac{f}{h}T$	1	
Numeric: $\Delta t = \frac{10^{-1} \cdot 30}{5 \cdot 10^{-3}} = 600 \text{ s} = 10 \text{ min}$	0,5	

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

OLIMPIADA DE FIZICĂ ETAPA NAŢIONALĂ 30 IANUARIE – 4 FEBRUARIE 2011 ARAD

Pagina 2 din 6

Subiect 1 – Natură vie	Parţial	Punctaj
B. Accelerația se datorează modificării direcției vectorului \vec{u} . Într-un timp Δt		
foarte mic, unghiul δ este foarte mic.		
\vec{v} \vec{u} \vec{v}		
Din desen se observă că $I_1L_1 = IL - IP - LL_1$	0.5	
$I_1 L_1 = D - (u + v \cos \alpha) \cdot \Delta t$	0,5	4
Deoarece Δt este foarte mic, $(u + v \cos \alpha) \cdot \Delta t$ este neglijabil. Ca urmare $I_1 L_1 \cong D$	0,5	4
Folosind teorema sinusurilor obţinem: $\frac{II_1}{\sin \delta} = \frac{I_1 L_1}{\sin \alpha}$,	1	
de unde $\sin \delta = \frac{II_1 \sin \alpha}{I_1 L_1} = \frac{v\Delta t \cdot \sin \alpha}{D}$		
$a = \frac{\left \Delta \vec{u} \right }{\Delta t}$	0,5	
$a = \frac{u \cdot \delta}{\Delta t}$	0,5	
$Deci \ a = \frac{uv \sin \alpha}{D}$	1	
Oficiu		1

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

OLIMPIADA DE FIZICĂ ETAPA NAŢIONALĂ 30 IANUARIE – 4 FEBRUARIE 2011 ARAD

Pagina 3 din 6

Subject 2 – Ascuns sub covor	Parţial	Punctaj
2. Barem subject 2		10
a) Pentru covorașul târât pe plan: \overrightarrow{F}		
$N = mg\cos\alpha$	0,25	
$F_f = \mu_1 N$	0,25	
$F - mg\sin\alpha - \mu_1 mg\cos\alpha = 0 \tag{1}$	0,5	
Similar, pentru covorașul superior când este suprapus perfect peste cel inferior:		4
$F - mg\sin\alpha - \mu_2 mg\cos\alpha = 0$ Din (1) şi (2) rezultă $\mu_1 = \mu_2$ (3)	0,5	
Pentru covorașul de dedesubt în momentul în care coboară cu accelerație nulă (cele	0,5	
două covorașe perfect suprapuse):		
$N_2 = mg\cos\alpha$	0,25	
$N_1 = 2mg\cos\alpha$	0,25	
$F_{f1} = \mu_1 N_1 : F_{f2} = \mu_2 N_2$	0,5	
$mg\sin\alpha - \mu_1 2mg\cos\alpha - \mu_2 mg\cos\alpha = 0 \tag{4}$	0,5	
Din (3) și (4) rezultă $\mu_1 = \mu_2 = \frac{tg\alpha}{3}$ (5)	0,25	
Numeric: $\mu_1 = \mu_2 = \frac{\sqrt{3}}{9} \cong 0.19$	0,25	

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

OLIMPIADA DE FIZICĂ ETAPA NAŢIONALĂ 30 IANUARIE - 4 FEBRUARIE 2011 **ARAD**

Pagina 4 din 6		
Subject 2 – Ascuns sub covor	Parţial	Punctaj
b) Înlocuind (5) în (1) obținem:		
$\frac{F}{mg} = \frac{4}{3}\sin\alpha$	1	
mg = 3	1	2
F = 2		
Numeric: $\frac{F}{mg} = \frac{2}{3} \approx 0.67$	1	
c) Pentru covorașul inferior, când		
lungimea porțiunii pe care se suprapun \vec{N}		
covorașele este x:		
N_{21}		
F_{i22}		
T vz		
$V_{i_{21}}$ $V_{i_{2}}$		
→ /		
\vec{N} \vec{F}_2		
$\vec{E} \cdot \vec{N}$		
G		
<u> </u>		
$N_2 = m \frac{x}{\ell} g \cos \alpha \; ; \; N_1 = m \left(1 + \frac{x}{\ell} \right) g \cos \alpha \tag{6}$	0,5	
$ma = mg\sin\alpha - \mu_1 N_1 - \mu_2 N_2 \tag{7}$	0,5	3
Din (5), (6) şi (7) rezultă: $a = \frac{2}{3}g\sin\alpha\left(1 - \frac{x}{\ell}\right)$	0,25	
Rezultă: $a = \frac{10}{3} \left(1 - \frac{x}{\ell} \right) \text{m/s}^2$	0,25	
↑ a(m/s²)		
4		
]		
3		
2	1,5	
1		
0 1 x/2		
Oficiu		1

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

OLIMPIADA DE FIZICĂ ETAPA NAŢIONALĂ 30 IANUARIE – 4 FEBRUARIE 2011 ARAD

Pagina 5 din 6

Subject 3 – Tracţiune	Parţial	Punctaj
3. Barem subject 3		10
A.a) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	0,5 0,25 0,5 0,25	2
$\Delta x_i = \frac{(n+1-i)m(a+\mu g)}{k}$	0,5	
b) $F = (n+1)m(a + \mu g)$	1	1
B. $ \vec{F_{f_1}} = \mu N_1 $ $ N_1 = G + F_{f_2} + T $ $ F_{f_2} = \mu N_2 $	1 1 0,25 0,5 0,25	6

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

OLIMPIADA DE FIZICĂ ETAPA NAŢIONALĂ 30 IANUARIE – 4 FEBRUARIE 2011 ARAD

Pagina 6 din 6

Subject 3 – Tracțiune	Parţial	Punctaj
$N_2 = ma_1$	0,5	
$a_1 = a_2$	0,75	
$a_1 = \frac{g(1-2\mu)}{3}$	0,5	
$a_1 = 2 \mathrm{m/s^2}$	0,25	
$a_1 = 2 \text{ m/s}^2$ $a_{corp} = \frac{g(1 - 2\mu)}{3} \sqrt{2}$	0,75	
$a_{corp} = 2\sqrt{2} \text{ m/s}^2$	0,25	
Oficiu		1

Subiecte propuse de:

prof. Liviu Arici – Colegiul Național "Nicolae Bălcescu", Brăila

prof. Liviu Blanariu — Centrul Național de Evaluare și Examinare, București

prof. Viorel Popescu – Colegiul Național "Ion C. Brătianu", Pitești

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.