# Appliances\_Energy Data Set

The data set is at 10 min for about 4.5 months. The house temperature and humidity conditions were monitored with a ZigBee wireless sensor network. Each wireless node transmitted the temperature and humidity conditions around 3.3 min. Then, the wireless data was averaged for 10 minutes periods. The energy data was logged every 10 minutes with m-bus energy meters. Weather from the nearest airport weather station (Chievres Airport, Belgium) was downloaded from a public data set from Reliable Prognosis (rp5.ru), and merged together with the experimental data sets using the date and time column. Two random variables have been included in the data set for testing the regression models and to filter out non predictive attributes (parameters).

Lets get started!

### Loading the data

```
In [1]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
In [2]: %matplotlib inline
In [3]: df = pd.read csv('energydata complete.csv')
```

In [4]: df.head()

Out[4]:

|   | date                       | Appliances | lights | T1    | RH_1      | T2   | RH_2      | Т3    | RH_3      |       |
|---|----------------------------|------------|--------|-------|-----------|------|-----------|-------|-----------|-------|
| 0 | 2016-<br>01-11<br>17:00:00 | 60         | 30     | 19.89 | 47.596667 | 19.2 | 44.790000 | 19.79 | 44.730000 | 19.00 |
| 1 | 2016-<br>01-11<br>17:10:00 | 60         | 30     | 19.89 | 46.693333 | 19.2 | 44.722500 | 19.79 | 44.790000 | 19.00 |
| 2 | 2016-<br>01-11<br>17:20:00 | 50         | 30     | 19.89 | 46.300000 | 19.2 | 44.626667 | 19.79 | 44.933333 | 18.92 |
| 3 | 2016-<br>01-11<br>17:30:00 | 50         | 40     | 19.89 | 46.066667 | 19.2 | 44.590000 | 19.79 | 45.000000 | 18.89 |
| 4 | 2016-<br>01-11<br>17:40:00 | 60         | 40     | 19.89 | 46.333333 | 19.2 | 44.530000 | 19.79 | 45.000000 | 18.89 |

5 rows × 29 columns

 $http://localhost: 8888/nbconvert/html/Practice/Linear\%20 Regression\%20 Projects/Appliances\_Energy\_Prediction/Appliances\_Energy\_Prediction\_Proje... \ 2/10$ 

```
In [5]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19735 entries, 0 to 19734
Data columns (total 29 columns):
date
               19735 non-null object
               19735 non-null int64
Appliances
lights
               19735 non-null int64
               19735 non-null float64
T1
RH 1
               19735 non-null float64
               19735 non-null float64
T2
               19735 non-null float64
RH 2
               19735 non-null float64
Т3
RH 3
               19735 non-null float64
T4
               19735 non-null float64
RH 4
               19735 non-null float64
               19735 non-null float64
T5
               19735 non-null float64
RH 5
               19735 non-null float64
T6
RH_6
               19735 non-null float64
T7
               19735 non-null float64
RH 7
               19735 non-null float64
T8
               19735 non-null float64
RH 8
               19735 non-null float64
Т9
               19735 non-null float64
RH 9
               19735 non-null float64
T_out
               19735 non-null float64
Press mm hg
               19735 non-null float64
RH out
               19735 non-null float64
Windspeed
               19735 non-null float64
Visibility
               19735 non-null float64
               19735 non-null float64
Tdewpoint
rv1
               19735 non-null float64
               19735 non-null float64
rv2
dtypes: float64(26), int64(2), object(1)
memory usage: 4.4+ MB
```

http://localhost:8888/nbconvert/html/Practice/Linear%20Regression%20Projects/Appliances\_Energy\_Prediction/Appliances\_Energy\_Prediction\_Proje... 3/10

In [6]: df.head()

Out[6]:

|   | date                       | Appliances | lights | T1    | RH_1      | T2   | RH_2      | Т3    | RH_3      |       |
|---|----------------------------|------------|--------|-------|-----------|------|-----------|-------|-----------|-------|
| 0 | 2016-<br>01-11<br>17:00:00 | 60         | 30     | 19.89 | 47.596667 | 19.2 | 44.790000 | 19.79 | 44.730000 | 19.00 |
| 1 | 2016-<br>01-11<br>17:10:00 | 60         | 30     | 19.89 | 46.693333 | 19.2 | 44.722500 | 19.79 | 44.790000 | 19.00 |
| 2 | 2016-<br>01-11<br>17:20:00 | 50         | 30     | 19.89 | 46.300000 | 19.2 | 44.626667 | 19.79 | 44.933333 | 18.92 |
| 3 | 2016-<br>01-11<br>17:30:00 | 50         | 40     | 19.89 | 46.066667 | 19.2 | 44.590000 | 19.79 | 45.000000 | 18.89 |
| 4 | 2016-<br>01-11<br>17:40:00 | 60         | 40     | 19.89 | 46.333333 | 19.2 | 44.530000 | 19.79 | 45.000000 | 18.89 |

5 rows × 29 columns

Data Cleaning as required

In [9]: df.drop('date',axis=1, inplace=True)

In [10]: df.head()

Out[10]:

|   | Appliances | lights | T1    | RH_1      | T2   | RH_2      | ТЗ    | RH_3      | T4        |     |
|---|------------|--------|-------|-----------|------|-----------|-------|-----------|-----------|-----|
| 0 | 60         | 30     | 19.89 | 47.596667 | 19.2 | 44.790000 | 19.79 | 44.730000 | 19.000000 | 45. |
| 1 | 60         | 30     | 19.89 | 46.693333 | 19.2 | 44.722500 | 19.79 | 44.790000 | 19.000000 | 45. |
| 2 | 50         | 30     | 19.89 | 46.300000 | 19.2 | 44.626667 | 19.79 | 44.933333 | 18.926667 | 45. |
| 3 | 50         | 40     | 19.89 | 46.066667 | 19.2 | 44.590000 | 19.79 | 45.000000 | 18.890000 | 45. |
| 4 | 60         | 40     | 19.89 | 46.333333 | 19.2 | 44.530000 | 19.79 | 45.000000 | 18.890000 | 45. |

5 rows × 28 columns

**Exploratory Data Analysis** 

```
In [32]: plt.figure(figsize=(15,9))
         sns.heatmap(df.isnull(), cbar=False, yticklabels=False, cmap='viridis')
```

Out[32]: <matplotlib.axes.\_subplots.AxesSubplot at 0x11e6f240>



The above heatmap shows no spots, that means we do not have any null data in our dataset

Checking the correlation

```
In [30]:
         plt.figure(figsize=(20,12))
         sns.heatmap(df.corr(), annot=True, cmap='viridis')
Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0xf90ac18>
```



### **Preparing Training & Test Data**

```
In [11]:
         from sklearn.model_selection import train_test_split
In [12]: X_train, X_test, y_train, y_test = train_test_split(df.drop('Appliances', axis
         =1), df['Appliances'], test_size=0.3,
                                                             random state=101)
```

### **Initializing Model & Training the same**

```
In [13]:
         from sklearn.linear_model import LinearRegression
In [14]:
         lm = LinearRegression()
In [15]: | lm.fit(X_train, y_train)
Out[15]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
```

#### Checking the coefficients fo the trained model

```
In [16]:
         print(lm.coef_)
            2.21381857
                       -0.46375014
                                    14.30189183 -16.66308548 -12.75324926
           24.29752924
                        4.869307
                                     -5.11914647 -0.18411024
                                                             -1.00348894
                         6.97473352
            0.2288889
                                     0.2955164
                                                  1.86226864
                                                              -1.53987426
            8.07118621 -4.57404837 -13.32788725 -0.91907821
                                                             -9.84535376
            0.18863666 -1.06362364
                                     1.66923607
                                                  0.2074002
                                                               4.86279984
           -0.03644794 -0.03644794]
```

### **Predicting & Representing the Values**

```
In [17]: prediction = lm.predict(X test)
In [18]:
         plt.scatter(y test, prediction)
         plt.xlabel('Y Values')
         plt.ylabel('Predicted Values')
         plt.title('Y Values Vs Predicted Values')
```





## **Evaluating the Model**

```
In [22]: from sklearn import metrics
```

```
In [23]: print("MAE: ", metrics.mean absolute error(y test, prediction))
           print("MSE: ", metrics.mean_squared_error(y_test, prediction))
           print("RMSE: ", np.sqrt(metrics.mean squared error(y test, prediction)))
           MAE: 53.6273829358
           MSE: 8845.48199288
           RMSE: 94.0504226087
In [24]: df.columns
Out[24]: Index(['Appliances', 'lights', 'T1', 'RH_1', 'T2', 'RH_2', 'T3', 'RH_3', 'T
                    'RH_4', 'T5', 'RH_5', 'T6', 'RH_6', 'T7', 'RH_7', 'T8', 'RH_8', 'T9', 'RH_9', 'T_out', 'Press_mm_hg', 'RH_out', 'Windspeed', 'Visibility',
                    'Tdewpoint', 'rv1', 'rv2'],
                  dtype='object')
In [25]: coefficients = pd.DataFrame(lm.coef_, index=['lights', 'T1', 'RH_1', 'T2', 'RH
           _2', 'T3', 'RH_3', 'T4',
                    'RH_4', 'T5', 'RH_5', 'T6', 'RH_6', 'T7', 'RH_7', 'T8', 'RH_8', 'T9', 'RH_9', 'T_out', 'Press_mm_hg', 'RH_out', 'Windspeed', 'Visibility',
                    'Tdewpoint', 'rv1', 'rv2'], columns=['Coefficients'])
```

In [26]: coefficients

Out[26]:

|             | Coefficients |  |  |  |
|-------------|--------------|--|--|--|
| lights      | 2.213819     |  |  |  |
| T1          | -0.463750    |  |  |  |
| RH_1        | 14.301892    |  |  |  |
| T2          | -16.663085   |  |  |  |
| RH_2        | -12.753249   |  |  |  |
| Т3          | 24.297529    |  |  |  |
| RH_3        | 4.869307     |  |  |  |
| T4          | -5.119146    |  |  |  |
| RH_4        | -0.184110    |  |  |  |
| T5          | -1.003489    |  |  |  |
| RH_5        | 0.228889     |  |  |  |
| Т6          | 6.974734     |  |  |  |
| RH_6        | 0.295516     |  |  |  |
| T7          | 1.862269     |  |  |  |
| RH_7        | -1.539874    |  |  |  |
| Т8          | 8.071186     |  |  |  |
| RH_8        | -4.574048    |  |  |  |
| Т9          | -13.327887   |  |  |  |
| RH_9        | -0.919078    |  |  |  |
| T_out       | -9.845354    |  |  |  |
| Press_mm_hg | 0.188637     |  |  |  |
| RH_out      | -1.063624    |  |  |  |
| Windspeed   | 1.669236     |  |  |  |
| Visibility  | 0.207400     |  |  |  |
| Tdewpoint   | 4.862800     |  |  |  |
| rv1         | -0.036448    |  |  |  |
| rv2         | -0.036448    |  |  |  |

### Residuals

You should have gotten a very good model with a good fit. Let's quickly explore the residuals to make sure everything was okay with our data.

Plot a histogram of the residuals and make sure it looks normally distributed. Use either seaborn distplot, or just plt.hist().





Thus completes our project!