2013 G6

Ezra Guerrero Alvarez

November 18, 2021

2013 G6

2013 G6

Let the excircle of triangle ABC opposite the vertex A be tangent to the side BC at the point A_1 . Define the points B_1 on CA and C_1 on AB analogously, using the excircles opposite B and C, respectively. Suppose that the circumcenter of triangle $A_1B_1C_1$ lies on the circumcircle of triangle ABC. Prove that triangle ABC is right-angled.

Let M_A, M_B, M_C be the midpoints of arcs $\widehat{CAB}, \widehat{ABC}, \widehat{BCA}$ and I_A, I_B, I_C be the A, B, C-excenters of $\triangle ABC$ respectively. It is well known that $\triangle ABC$ and $\triangle M_A M_B M_C$ are the orthic and medial triangles of $\triangle I_A I_B I_C$ respectively. Now, since \overline{BC} and $\overline{I_B I_C}$ are anti-parallel and $\overline{I_A A_1} \perp \overline{BC}$, we know the circumcenter O of $\triangle I_A I_B I_C$ lies on $I_A A_1$. Analogously, O lies on $I_B B_1$. Thus, $A_1 B_1 C$ lie on the circle with diameter \overline{OC} . Since $\angle OM_C C = 90^\circ$, M_C also lies on this circle, so we have $A_1 B_1 C M_C$ is cyclic. Analogously, $B_1 C_1 A M_A$ and $C_1 A_1 B M_B$ are cyclic.

These cyclic quads imply there is a spiral similarity with center M_A taking $\overline{C_1B_1}$ to \overline{BC} (and analogous). Since M_A is on the perpendicular bisector of \overline{BC} , it must be on the perpendicular bisector of $\overline{C_1B_1}$ as well (and analogous). Now, if the circumcenter of $\triangle A_1B_1C_1$ lies on the circumcircle of $\triangle ABC$, $\triangle A_1B_1C_1$ must be obtuse. WLOG assume $\angle B_1A_1C_1 > 90^\circ$, then it is clear that the circumcenter must be M_A since it lies on the circle, on the perpendicular bisector and is on the right side of $\overline{B_1C_1}$. Now,

 $\angle BAC = \angle B_1 M_A C_1 = \angle B_1 M A_1 + \angle A_1 M C_1 = 2\angle M_C M_A A_1 + 2\angle A_1 M_A M_B = 2\angle M_C M_A M_B = 180^{\circ} - \angle BAC,$ giving $\angle BAC = 90^{\circ}$.