# Lab4 Solution&Hint

YAO ZHAO

### Lab4.A: Brknight

- Recently Andrea is obsessed with a Roguelike game named Brknight.
- The map of Brknight can be seen as a directed acyclic graph (DAG) with N points and M edges, in which there exists one single starting point and multiple terminal points. A point is a terminal point iff Andrea can go nowhere from it.
- Andrea's squad is at point 1 (the starting point) and has Combat Effectiveness (CE)  $\mathcal{C}$  initially. At point i, she would encounter a stage with dangerous level  $h_i$ , and if Andrea's CE is less than  $h_i$ , she would lose immediately. Otherwise, she would complete the stage successfully and can choose one reward among the three below:
  - ▶ Recruit an operator: Andrea's current CE would increase by  $a_i (0 \le a_i \le 10^9)$
  - ▶ Obtain a powerful collection: Andrea's current CE would multiply by  $b_i (2 \le b_i \le 10^9)$
  - ▶ Reset her squad: Andrea's current CE would become  $c_i (0 \le c_i \le 10^9)$
- After that, if this point is a terminal point, Andrea will fight against a BOSS. Otherwise, she would choose an edge from point *i* to another point *j* and move to *j*.
- If Andrea can make her way to the BOSS, tell her the maximum possible CE module  $10^9 + 7$  when she fights the BOSS.





3 2

3 4



Initial c = 3

**Point 1:** c≥ h1 c=3 -> c=3+a1=7

**Move to Point 3:** c≥h3 c=7->c=c3=18

Move to Point 2: c≥h2 c=18->c=18\*b2=54

**Move to Point 4:** c≥h4 c=54->c=54\*b4=270



**270** 

$$0 \le a_i \le 10^9$$

$$2 \le b_i \le 10^9$$

$$0 \le c_i \le 10^9$$

$$0 \le h_i \le 10^9$$

$$0 \le C \le 10^9$$

$$1 < N \le 10000$$

long: -9223372036854775808~9223372036854775807 [-2^63~2^63-1] 10<sup>18</sup>

The CE maybe become a huge number:  $10^9*10^9...*10^9=10^{90009}$ 

10001

How to accumulate and compare?

Notice:

$$0 \le a_i \le 10^9$$
  
 $2 \le b_i \le 10^9$   
 $0 \le c_i \le 10^9$   
 $0 \le h_i \le 10^9$ 

If  $CE \ge 10^9$ , always win the point i and choose  $b_i$ , then  $CE = CE^* b_i$  If  $CE < 10^9$ , always choose the maximum of  $CE + a_i$ ,  $CE^* b_i$ ,  $c_i$ 

We can use  $\log$  to compare since CE maybe become a huge number If  $CE \ge 10^9$ ,  $CE_{log} = CE_{log} + \log b_i$  If  $CE < 10^9$ ,  $CE_{log} = \log(\max(CE + a_i, CE^* b_i, c_i))$ 

Try to find all topo order and get the maximum answer

```
put node 1 to queue Q
While Q is not empty:
  get a node e from Q
  if the actual CE \ge e.h:
     choose the best reward and update e.CE_mod and e.CE_log
     if e.out_degree ==0 record to the answer and the answer_log
    for each child c of node:
       c.indegree ← c.indegree -1
       if (e.CE_log > c.CE_log): update c.CE_mod and c.CE_log
       if c.indegree == 0 :put c to Q
  else:
     for each child c of node:
       c.indegree ← c.indegree -1
Find the maximum answer_log and output the responds answer
```

## Lab4.B: Precarious Computing

- ▶ Sky has N expendable computers 1,2, ..., N lining up from left to right.
- The  $i^{th}$  computer can only be powered up for  $a_i$  seconds and generates  $b_i$  income per second when powered. If the total workload exceeds  $a_i$  seconds, the computer will blow up Sky's bedroom. It is guaranteed that  $a_i$  is unique.
- Sky has a special cable. He can only power up a consecutive interval of computers at a time. Sky can change the powered interval at anytime.
- ▶ Unfortunately, the cable is also expendable and can only function for *M* seconds. How much income can Sky obtain if he operates optimally? Sky does not want any splendid explosion since he still needs the bedroom to sleep.



Sample Output 1

10 30 44 32 6 1 7 18 27 21 40 48 97 39 32 23 18 32 34 34 21 5

44 32 6 1 7 18 27 21 40 48 **97 39 32 23 18 32 34 34 21 5** 

1s, computer 1..10, income:335

43 31 5 0 6 17 26 20 39 47 **97 39 32** 23 18 32 34 34 21 5

5s, computer 1..3, income:168\*5

38 26 0 0 6 17 26 20 39 47 97 39 32 23 **18 32 34 34 21 5** 

6s, computer 5..10, income:144\*6

38 26 0 0 0 11 20 14 33 41 **97 39** 32 23 18 32 34 34 21 5

18s, computer 1..2, income:136\*18

20 8 0 0 0 11 20 14 33 41 97 39 32 23 18 32 34 34 21 5

1s+5s+6s+18s = 30s Total income: 4487



### ST table

#### Creating ST table:



0 13 14 4 13 1 5 7



$$Log_28 = 3$$

#### Query:



$$Max(14,13) = 14$$

L=2, index1 =2----

R=7,index2 =7-2^2+1=4



$$0 \le a_i \le 10^9$$
  $a_i$  is unique  $1 \le b_i \le 10^4$ 

First, use ST to get the minimum in  $a_i$  [1, N]



Mini  $a_i$ : 1 $\rightarrow$ min\_a

Mini  $a_i$  index : 4  $\rightarrow$  min\_index

divide to 2 intervals: [1,min\_index-1] and [min\_index+1,N] add a property base\_value = min\_a for above intervals Income += min\_a\*sum(1,N)

Compare sum(1,min\_index-1) and sum(min\_index+1,N)
Get the larger one, for example [1,min\_index-1]
Query the min\_a in [1,min\_index-1]
Income += (min\_a-base\_value)\*sum(1, min\_index-1)
Continue divide to 2 intervals
add a property base\_value = min\_a for above intervals

...

### How to improve efficiency?

Add a property like base\_value, you don't need to modify ai

Query any range sum

Prefix sum (Lab4:算法常用解题技巧.pdf)

Get the largest Prefix sum———

Priority queue (Maximum heap)