滴滴LBS系统架构实践

盛克华 2016.11.20

Agenda

- 坐标流
- Nearby检索
- 围栏判定
- 供需系统

坐标流

- 目的
 - 端实时上报经纬度,持续跟踪司机、乘客位置
- 原理&实现
 - TCP长连接
 - 根据心跳调整流量权重
 - 流量降频
 - 坐标漂移过滤
 - 多下游推送

坐标流

- 使用方
 - 几乎所有后端服务
- 性能
 - C++、异步处理
 - 入□50W QPS
 - 转发量50W*N QPS, 延迟<10ms

坐标流

- 使用示例
 - 坐标轨迹
 - 出租车遗失物品追回

Nearby检索

- 目的
 - 给定点+半径,搜索范围内符合要求的点
- 应用场景
 - 显示周围可接单小车
 - 实时分析周围供需情况进行调价
 - 派单系统

Nearby检索

- 原理&实现
 - Geohash
 - 支持自适应缩放检索
 - 支持多条件检索
 - 分布式架构
 - 检索耗时<5ms, 单实例为6W QPS, C++实现

地理围栏

- 目的
 - 判定给定点是否在给定多边形内
- 应用场景
 - 区域化业务开通(滴滴车站、小巴、车站/机场)
 - 围栏消息播报
 - 车辆特征判定,例如区域限行、进出机场等
 - 各种运营事件支持,例如发优惠券、奖励等

地理围栏

• 原理

- 最小外接矩形、最大内接矩形
- 多边形射线法判定
- Rtree索引进行性能优化

地理围栏

- 内部实现
 - 可视化围栏编辑器
 - 10w围栏数据,单次查询<10ms,单实例3W+QPS

- 目的
 - 构建全球六边形格子体系,使用唯一GID描述一块区域
 - 根据GID来存取此区域相关数据

• 上海格子全图

- 原理
 - 经纬度 -> 数学计算 -> GID(格子编号)
- 数据
 - 空车司机数
 - 载客司机数
 - 乘客数
 - 订单数
 - 未播订单数
 - 预测订单数
 - 预测司机数
 - 等等

- 查询原理
 - K层邻域查询
 - 圆、多边形覆盖格子集合查询

• 运力差实时展示

• 上海运力差

• 历史数据展示

• 架构图

- 内部实现
 - 历史数据1PB
 - 100W Grids/s的访问QPS,全国格子总数约为5千万
 - 平均取100个格子、5个细项数据的平均耗时为30ms
 - 支持格子邻域查询等多种复杂操作
 - C++、Golang、Codis、Kafka、Hbase

THANK YOU

与卓越的人一起共事,成为卓越的人 欢迎自荐: <u>shengkehua@didichuxing.com</u>

北京嘀嘀无限科技发展有限公司 北京市海淀区东北旺路8号院尚东·数字山谷B1号楼