For a complete statement and proof for four versions of universal coefficiennt theorem, see Section 2.6 in Lecture Notes in Algebraic Topology: $https://www.maths.ed.ac.uk/{\sim}viranick/papers/davkir.pdf$

Today: X = IRIP?

nonorientable \Rightarrow Scannot be embedded in IR3 embedded in IR4. can't be realized as a Lie group. Universal cover of degree 2 $\pi:S^2 \to IRIP^2$

									_
ョ	η	,	2	3	4	5	6	n>1	
-/	πη (IRIP²)	Z/17_	Z	Z	2/2/2	2/2	2/12	$\pi_n(S^2)$	_
cellular ho	mology	0 -	Z		Z'e			→ 0	e' (e') ((R[p')=1
⇒	n	o	1	2	,	1>2			
7	Ha (IRIP3)	72	2/2/	0		0			
0 ← Honz(C,Z)← Homz(C,Z)← Homz(Co,Z)←0									
			Z'e**			e'*		Z'e°↑	

$$0 \leftarrow Hom_{\mathbb{Z}}(C_{1}, \mathbb{Z}) \leftarrow Hom_{\mathbb{Z}}(C_{0}, \mathbb{Z}) \leftarrow 0$$

$$\mathbb{Z}[e^{1}] \qquad \mathbb{Z}[e^{1}] \qquad \mathbb{Z}[e^{0}] \qquad \mathbb{Z}[e^{0}$$

$$\Rightarrow \frac{n \quad 0 \quad 1 \quad 2 \quad n > 2}{H^{n}(\mathbb{RP}^{2}) \quad Z \quad 0 \quad Z_{12} = 0} \Rightarrow H^{*}(\mathbb{RP}^{1}) = \mathbb{Z}[x]/(2x, x^{2})$$

Let X be a topo space.

Prop. Universal coefficient thm for cohomology (Z-coefficient)

 \Rightarrow $H^{n}(X) \cong Hom_{\mathbb{Z}}(H_{n}(X),\mathbb{Z}) \oplus Ext_{\mathbb{Z}}(H_{n-1}(X),\mathbb{Z})$ Lemma 3.8. Let A be a K-algebra, and let $(M_{i})_{i\in I}$ be a family of A-modules.

$$\operatorname{Ext}_A^m\left(\bigoplus_{i\in I}M_i,-\right)\to\prod_{i\in I}\operatorname{Ext}_A^m(M_i,-)$$

$$\operatorname{Ext}_A^m\left(-,\prod_{i\in I}M_i\right) \to \prod_{i\in I}\operatorname{Ext}_A^m(-,M_i)$$

Hn(X) is finitely generated for all n, e.p. if X has the homotopy type of a CW-complex with finitely many cells in each degree

we have
$$H_n(X) \stackrel{\text{torsion shift}}{\longrightarrow} H^n(X)$$

e.g. $H_n(X) \cong \mathbb{Z}^{bn} \oplus T_n \implies H^n(X) \cong \mathbb{Z}^{bn} \oplus T_n$

$$\frac{\mathbb{Z}/_{12}}{2} - \operatorname{coefficient} \quad (co) \operatorname{homology}: \\
0 \longrightarrow C_{1} \longrightarrow C_{1} \longrightarrow C_{1} \longrightarrow C_{2} \longrightarrow 0 \\
2 /_{12} e^{1} \qquad 2 /_{12} e^{2} \qquad 2 /_{12} e^{2}$$

$$e' \longmapsto 0 \\
e' \longmapsto 0 \\
e' \longmapsto 0$$

$$\frac{1}{H_{n}(\mathbb{RP}^{2}, \frac{2}{2}/_{2})} \frac{2}{2} /_{12} \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2} = 0$$

$$0 \longleftarrow \operatorname{Hom}_{2}(C_{1}, \frac{2}{2}/_{2}) \longleftarrow \operatorname{Hom}_{2}(C_{1}, \frac{2}{2}/_{2}) \leftarrow \operatorname{Hom}_{2}(C_{2}, \frac{2}{2}/_{2}) \leftarrow 0$$

$$\frac{2}{2} /_{2} e^{2} \qquad 2 /_{2} e^{2} \qquad 2 /_{2} e^{2}$$

$$0 \longleftarrow \operatorname{Hom}_{2}(C_{1}, \frac{2}{2}/_{2}) \leftarrow \operatorname{Hom}_{2}(C_{2}, \frac{2}{2}/_{2}) \leftarrow 0$$

$$\frac{2}{2} /_{2} e^{2} \qquad 2 /_{2} e^{2}$$

				0 ←		e	
n	O	1	2	n>2		H*(1RIP*, Z/2Z)=	Z/2,[a]/2,
H,(RP², 2/22)	2/17/	2/12/	2/22/	0		, , , , , , , , , , , , , , , , , ,	deg a=1
					- ' '		ag a-

Verify a + o [Hatcher Ex.3.8]

Example 3.8. The closed nonorientable surface N of genus g can be treated in similar fashion if we use \mathbb{Z}_2 coefficients. Using the Δ -complex structure shown, the edges a_i give a basis for $H_1(N;\mathbb{Z}_2)$, and the dual basis elements $\alpha_i \in H^1(N;\mathbb{Z}_2)$ can be represented by cocycles with values given by counting intersections with the arcs labeled α_i in the figure. Then one computes that $\alpha_i \vee \alpha_i$ is the nonzero element of $H^2(N;\mathbb{Z}_2) \approx \mathbb{Z}_2$ and $\alpha_i \vee \alpha_j = 0$ for $i \neq j$. In particular when $\alpha_i = 1$ we have $N_i = \mathbb{R}^{D^2}$ and the cur production

lar, when g=1 we have $N=\mathbb{R}P^2$, and the cup product of a generator of $H^1(\mathbb{R}P^2;\mathbb{Z}_2)$ with itself is a generator of $H^2(\mathbb{R}P^2;\mathbb{Z}_2)$.

 \Rightarrow

natural SES
$$0 \longrightarrow H_n(X) \otimes_{\mathbb{Z}} R \xrightarrow{\mu} H_n(X,R) \longrightarrow \text{Tor}_n(H_{n-1}(X),R) \longrightarrow 0$$
(unnatural) splits
$$Tor_n^{A}(M,N) = H_n(M \otimes_{\mathbb{Z}} R)$$

 \Rightarrow $H_n(X,R) \cong H_n(X) \otimes_{\mathbb{Z}} R \oplus Tor_i(H_{n-i}(X),R)$

E_{X} .	n	0	1	2	N > 2
— / (.	Hn (IRIP')	7/	7/127/	0	0
	Ha (RIP', IR)	IR	0	0	0
	H, (IRIP2, C)	Э	0	0	0
	H, (IRIP2, 24,221)	72/274	2/22	2/27/	0
	H, (IRIP2, 242321)	Z/21/	7/27/	2/27/	υ
	H, (IRIP2,(24,226))	(Z/2Z/)33	(Z/2Z)**	(Z/27/83	0

Remark. $S^* \to \mathbb{R}^{\mathbb{P}^*}$ is cover, but $H_n(S^*, \mathbb{R}) \not\equiv H_n(\mathbb{R}^{\mathbb{P}^*}, \mathbb{R})$, so for every cover we need to recompute its (w)homology group.

X: topo spoce A: PID R: an A-module

Prop. Universal coefficient thm for cohomology natural SES:

 $o \longrightarrow Ext'_{A}(H_{n-1}(X,A),R) \longrightarrow H^{n}(X,R) \xrightarrow{h} Hom_{A}(H_{n}(X,A),R) \rightarrow o$ (unnotural) splits

 \Rightarrow $H^{n}(X,R) \cong Hom_{A}(H_{n}(X,A),R) \oplus Ext_{A}(H_{n-1}(X,A),R)$

e.p. when A=Z,

 $H^{n}(X,R) \cong Hom_{\mathbb{Z}}(H_{n}(X),R) \oplus Ext_{\mathbb{Z}}^{'}(H_{n-1}(X),R)$

when A=R is a field.

 $H^{n}(X,R) \cong Hom_{R}(H_{n}(X,R),R)$

For Hn(X) is finitely generated for all n, e.p. if X has the homotopy type of a CW-complex with finitely many cells in each degree.

we have $H_1(X,F) \cong H^*(X,F)$

Rmk. F field,

 $b_i(F)_i = d_{im_F} H_i(x,F) = d_{im_F} H^i(x,F)$

b. (2/22) \$ b. (C) but \$\chi(2/22) = \chi(C) = V - e + f for surfaces.

Ex compute it twice!

n	0	1	2	N>2
Hn (IRIP')	7/	0	Z/27/	0
H"(RIP", IR)	IR	0	0	0
H"(IRIP2, C)	Ю	0	0	O
H"(IRIP2, 24,22)	Z/2Z/	2/2/2	71/271	0
H^(IRIP2, 2432)	Z/23Z	21/2/2	71/271	0
H^(1RIP2,(21/20)8)	(Z/ _{2Z/}) ³³	(Z/ _{2Z/})33	(Z/27)°	0

Characteristic class I'm new in this field, so in the beginning we just pick up props special vector bundle of tautological line bundle Y_2' on $IRIP^2$ and apply them. tangent bundle $T(IRIP^2)=TX$

Stiefel-Whitney class

$$\omega(\chi') = 1 + \alpha$$

Prop. for a real v.b. }, } is orientable (w, ()=0

 \S is spin $\iff \omega_1(\S) = 0, \omega_2(\S) = 0$

Cor For line bundle, orientable ⇒ spin ⇒ w(5)=0 ⇒ w(5)=1 ⇔ trivial

Cor, 82', TX is not orientable.

Thm (Pontryagin & Thom) fix a cpt smooth mfld M (without boundary), then

∃ cpt smooth mfld N with boundary 7N ≅M ⇒ all SW-numbers of Mare of Cor. IRP is not a boundary. || RP is not a boundary.

IRIP²ⁿ⁻¹ is a boundary.