THEORETICAL PART:

Theorem (The Fundamental Theorem of Algebra):

If p is a polynomial of degree n, with $n \ge 1$, then p has **at least one zero**. That is, the equation p(x) = 0 has at least one solution. It is important to note that the zero of p, and consequently the solution of p(x) = 0, may be a non-real complex number.

Theorem (The Linear Factors Theorem):

Given the polynomial $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$, where $n \ge 1$ and $a_n \ne 0$, p can be factored as $p(x) = a_n (x - c_1)(x - c_2) \cdots (x - c_n)$, where c_1, c_2, \cdots, c_n are constants (possibly non-real complex constants and not necessarily distinct). In other words, an n-th degree polynomial can be factored as a product of n linear factors.

CAUTION:

The Linear Factors Theorem does not tell us the following things:

- 1. The theorem does not tell us that a polynomial has all real zeros.
- 2. The theorem does not tell us that a polynomial has *n* distinct zeros.
- 3. The theorem does tell us that any polynomial can be written as a product of linear factors; it does not tell us how to determine the linear factors.

Theorem (Interpreting the Linear Factors Theorem):

The graph of an n-th degree polynomial function has at most n x-intercepts and at most n-1 turning points. This also means that an n-th degree polynomial function has at most n zeros.

Definition (Multiplicity of Zeros):

If the linear factor (x-c) appears k > 0 times inn the factorization of a polynomial (or as $(x-c)^k$), we say the number c is a **zero of multiplicity** k.

PROPERTIES (Geometric Meaning of Multiplicity):

If c is a real zero of multiplicity k of a polynomial p (alternatively, if $(x - c)^k$ is a factor of p), the graph of p will touch the x-axis at (c, 0) and

- 1. cross through the x-axis if k is odd, or
- 2. stay on the same side of the *x*-axis if *k* is even.

Further, if k > 1, the graph of p will "flatten out" near (c, 0).

Theorem (The Conjugate Roots Theorem):

Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ be a polynomial with only real coefficients. If the complex number a + bi is a zero of p, then so is the complex number a - bi. In terms of the linear factors of p, this means that if x - (a + bi) is a factor of p, then so x - (a - bi).

PRACTICAL PART:

1. Sketch the graph of the polynomial $f(x) = (x + 2)(x + 1)^2(x - 3)^3$

2. Given that 4-3i is a zero of the polynomial $f(x) = x^4 - 8x^3 + 200x - 625$ factor f completely.

$$C_1 = 4 - 3i$$
 $\int 2 exos of f(x)$
 $(x - 4 + 3i)(x - 4 - 3i) = x^2 - 4x - 3ix - 4x + 16 + 12i + 3ix - 12i + 9 = x^2 - 8x + 25$
Long division; $x^4 - 8x^3 + 200x - 625 | x^2 - 8x + 25$

$$-\frac{12x^{2}+300x-632}{x^{4}-8x^{3}+25x^{2}}$$

$$-\frac{12x^{2}+300x-632}{x^{2}-8x+52}$$

Hence,
$$x^{14} - 8x^{3} + 200x - 6z5 = (x^{2} - 8x + 25)(x^{2} - 25) =$$

$$= (x^{2} - 8x + 25)(x - 5)(x + 5)$$

$$x^{2} - 8x + 25 = (x - (4 - 3i))(x - (4 + 3i))(x - 5)(x + 5)$$
Therefore, $f(x) = (x - (4 - 3i))(x - (4 + 3i))(x - 5)(x + 5)$

3. Construct a fourth-degree real-coefficient polynomial function f with zeros of 2, -5, and 1+i such that f(1)=12. We well to consider a complex

conjugate root too.

$$C_1 = 4+i$$
 $C_3 = 2$
 $C_2 = 4-i$ $C_{4} = -5$
 $f(x) = a(x-2)(x+5)(x-(4+i))(x-(4-i))$
 $f(1) = a\cdot(-1)\cdot 6\cdot(x+-i)(x++i) = 12$
 $-6a\cdot 1 = 12$

Therefore, $a = 4-4$ degree real-coeff. pd. fur

Therefore, a 4-th degree real-coeff. pol. function is f(x) = -2(x-2)(x+5)(x-(4+i))(x-(4-i))

4. Use all available methods to factor the following polynomial function completely, and then sketch the graph of the polynomial function.

sketch the graph of the polynomial function.

$$f(x) = x^5 + 4x^4 + x^3 - 10x^2 - 4x + 8$$

Let $x = 1$. $f(x) = 4x + 10x^2 - 4x + 8 = 0$.

Synthetic division:

5. Use all available methods to solve the following polynomial equation:

$$2x^{3}-5x^{2}-2x^{2}+15x=0$$

$$2x(2x^{3}-5x^{2}-2x+15)=0$$

$$2x^{3}-5x^{2}-2x+15=0$$

$$2x^{3}-5x^{2}-2x+15=0$$

$$2x^{3}-5x^{2}-2x+15=0$$

$$2x^{3}-5x^{2}-2x+15=0$$

$$2x^{3}-5x^{2}-2x+15=0$$

$$2x^{3}-5x^{2}-2x+15=0$$

$$2x^{3}-3x^{2}-2x+15=0$$
Hence, a possible zero is $-\frac{3}{2}$.
$$2\cdot(-\frac{3}{2})^{3}-5(-\frac{3}{2})^{2}+2\cdot\frac{3}{2}+15=-\frac{27}{4}-\frac{45}{4}+3+15=$$

$$=-18+18=0$$

$$2x^{3}-5x^{2}-2x+15=0$$

$$2x^{3}-5x^{2}-2x$$

