CME302 class notes

Erich Trieschman

2021 Fall quarter

1 Linear algebra review

1.1 Vector products

The inner product, also known as the dot product, results in a scalar

• $x^T y = \sum x_i * y_i$; $x^T y = \|x\|_2 \|y\|_2 \cos \theta$; $x^T y = 0 \Leftrightarrow x \perp y$

The outer product results in a matrix. It is the outer sum of the two vectors, which can be of different lengths.

1.2 Norms

All norms, matrix or vector, satisfy

- Only zero vector has zero norm: $||x||_x = 0 \Leftrightarrow x = 0$
- $\bullet \ \|\alpha x\|_x = |\alpha| \, \|x\|_x$
- $\bullet \ \|x+y\|_x \leq \|x\|_x + \|y\|_x \ (\text{Triangle inequality I}), \ \|x-y\|_x \geq \|x\|_x \|y\|_x \ (\text{Triangle inequality II})$

1.2.1 Vector norms

Types of **vector norms**, $x \in \mathbb{R}^n$ (norm selection can give you solutions with different properties)

• $||x||_1 = \sum_{i=1}^n |x_i|$; $||x||_2 = \sqrt{\sum_{i=1}^n (x_i)^2}$; $||x||_\infty = \max_{i \in i, ..., n} |x_i|$; $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$

Cauchy-Schwarts Inequality: $|x^Ty| \leq ||x||_2 ||y||_2$ (note equality when $x^Ty = 0$)

Holder's Inequality: $|x^Ty| \leq \|x\|_p \, \|y\|_q,$ for p,q , s.t. $\frac{1}{p} + \frac{1}{q} = 1$

1.2.2 Matrix norms

Types of **matrix norms**, $A \in \mathbb{R}^{n \times m}$

- $\bullet \ \|A\|_{\infty} = \sup_{x \neq 0} \frac{\|Ax\|_{\infty}}{\|x\|_{\infty}} = \max_{\|x\|_{\infty} = 1} \|Ax\|_{\infty} = \max_{i} \left\|a_{i}^{T}\right\|_{1}$
- $\bullet \ \left\|A\right\|_p = \sup_{x \neq 0} \frac{\left\|Ax\right\|_p}{\left\|x\right\|_p} = \max_{\left\|x\right\|_p = 1} \left\|Ax\right\|_p$
- $\bullet \ \|A\|_F = \sqrt{\sum_{i,j} a_{ij}^2} = \sqrt{tr(AA^T)} = \sqrt{tr(A^TA)} = \sqrt{\sum_{k=1}^{min(m,n)} \sigma_k^2}$

Submultiplicative inverse: $\|AB\|_p \le \|A\|_p \|B\|_p$. Note: this is not always true for Frobenius norms.

1

 $\textbf{Induced p-norm:} \quad \|Ay\|_p \leq \|A\|_p \, \|y\|_p$

Orthogonally invariant: Orthogonal matrices do not change the norms of vectors or matrices:

• $\|Qx\|_x = \|x\|_x$; $\|QA\|_x = \|A\|_x$, $x \in \{p, F\}$

Other norm properties:

 $\bullet \ \left\|x\right\|_{\infty} \leq \left\|x\right\|_{2} \leq \sqrt{n} \left\|x\right\|_{\infty}; \ \left\|A\right\|_{2} \leq \sqrt{m} \left\|A\right\|_{\infty}; \ \left\|A\right\|_{\infty} \leq \sqrt{n} \left\|A\right\|_{2}$

1.3 Matrix properties

1.3.1 Determinant

The **determinant** represents how the volume of a hypercube is transformed by the matrix.

- For square matrix, $det(\alpha A) = \alpha^n det(A)$; det(AB) = det(A) det(B)
- $det(A) = det(A^T)$; $det(A^{-1}) = \frac{1}{det(A)}$
- For square matrix, A singular $\Leftrightarrow det(A) = 0 \Leftrightarrow$ columns of A are not linearly independent

1.3.2 Trace

The trace of a matrix $A \in \mathbb{R}^{mxn}$, tr(A), is equal to the sum of the entries in its diagonal, $tr(A) = \sum_{i=1}^{n} a_{ii}$. And a few properties of the trace:

- $tr(A) = tr(A^T)$; $tr(A + \alpha B) = tr(A) + \alpha tr(B)$; For two vectors, $u, v \in \mathbb{R}$, $tr(uv^T) = v^T u$
- Trace is invariant under cyclic permutations, that is tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC)

1.3.3 Inverses and transposes

The inverse of the transpose is the transpose of the inverse:

- $A^T(A^{-1})^T = (A^{-1}A)^T = I^T = I$
- $(A^{-1})^T A^T = (AA^{-1})^T = I^T = I$

1.3.4 Sherman-Morrison-Woodbury formula

for $A \in \mathbb{R}^{n \times n}$, $U, V \in \mathbb{R}^{n \times k}$

$$(A + UV^T)^{-1} = A^{-1} - A^{-1}U(I + V^TA^{-1}U)^{-1}V^TA^{-1}$$

Proof: begin with the inverse of the *LHS* multiplied by the *RHS*: $(A+UV^T)(A^{-1}-A^{-1}U(I+V^TA^{-1}U)^{-1}V^TA^{-1})$. Next perform matrix multiplication. The end result will be *I*, implying that the *RHS* is an inverse of $(A+UV^T)$

1.4 Orthogonal matrices

An orthogonal matrix, Q is a matrix whose columns are orthonormal. That is, $q_i^T q_j = 1$ for i = j, and $q_i^T q_j = 0$ for $i \neq j$. Equivalently, $Q^T Q = I$. For square matrices, $Q^T Q = QQ^T = I$

1.5 Projections, reflections, and rotations

1.5.1 Projections

A projection, v, of vector x onto vector y can be written in the form $v = \frac{y^T x}{y^T y} y$. **Projection matrices** are square matrices, P, s.t., $P^2 = P$.

1.5.2 Reflection

- P is a reflection matrix $\Leftrightarrow P^2 = I$
- P can be written in the form $P = I \beta v v^T$, with $\beta = \frac{2}{v^T v}$, and v the vector orthogonal to the line/plane of reflection
- It can be shown that $Px = x \Leftrightarrow v^T x = 0$. These x are called the "fixed points" of P

1.6 Symmetric Positive Definite (SPD) Matrices

For A, SPD, i) $A = A^T$, ii) $x^T Ax > 0 \ \forall x \neq 0$, iii) $a_{ii} > 0$, iv) $\lambda(A) \geq 0$, v) for B nonsingular, $B^T AB$ is also SPD.

When proving properties of SPDs, use the **following tricks:** i) Multiply by e_i since $e_i \neq 0$, ii) Use matrix transpose property, $x^T A^T = (Ax)^T$ to rearrange formulas

1.6.1 B^TAB is also SPD

If $A \text{ SPD} \Rightarrow B^T A B \text{ SPD for } B \text{ nonsingular}$:

$$x^T B^T A B x = (Bx)^T A (Bx) > 0$$
, (since B nonsingular $\Rightarrow Bx \neq 0$)

1.7 Eigenvalues

Observe by definition $Ax = \lambda x \longleftrightarrow Ax - \lambda x = 0 \longleftrightarrow (A - \lambda I)x = 0$. To find lambda, we solve for the system of equations to satisfy $(A - \lambda I)x = 0$

The algebraic multiplicity of an eigenvalue, λ_i , is the number of times that λ_1 appears in $\lambda(A)$

The **geometric multiplicity** of an eigenvalue, λ_i , is the dimension of the space spanned by the eigenvectors of λ_i

Other eigenvalue properties: $\lambda(A) = \lambda(A^T)$; Courant-Fischer minmax theorem: $\lambda_1 = \max_{x \neq 0} \frac{x^T A x}{\|x\|_2^2}$

1.7.1 Determinants and trace

$$det(A) = \prod_{i=1}^{n} \lambda_i \qquad tr(A) = \sum_{i=1}^{n} \lambda_i$$

1.7.2 Triangular matrices

For T triangular, the eigenvalues appear on the diagonal: $t_{ii} = \lambda_i, \forall i \in \{1, \dots, n\}$ Corollary: T nonsingular \Leftrightarrow all $t_{ii} \neq 0$

1.7.3 Gershgorin disc theorem

Gershgorin disc, \mathbb{D}_i , defined

$$\mathbb{D}_i = \{ z \in \mathbb{C} \mid |z - a_{ii}| \le \sum_{i \ne i} |a_{ij}| \}$$

All eigenvalues of $A, \lambda(A) \in \mathbb{C}$ are located in one of its Gershgorin discs. **Proof:**

$$\begin{split} Ax &= \lambda x \longleftrightarrow (A - \lambda I)x = 0 \longleftrightarrow \sum_{j \neq i} a_{ij}x_j + (a_{ii} - \lambda)x_i = 0, \ \forall i \in \{1, \dots, n\} \\ \text{Choose } i \ s.t. |x_i| &= \max_i |x_i| \\ &|(a_{ii} - \lambda)| = |\sum_{j \neq i} \frac{a_{ij}x_j}{x_i}| \leq \sum_{j \neq i} |\frac{a_{ij}x_j}{x_i}| \ , \ \text{by triangle inequality} \\ &|(\lambda - a_{ii})| \leq \sum_{j \neq i} |a_{ij}|, \ \text{since} \ |\frac{x_j}{x_i}| \leq 1 \end{split}$$

2 Matrix Decompositions

2.1 Schur Decomposition

For any $A \in \mathbb{C}^{n \times n}$, $A = QTQ^H$, where Q unitary $(Q^HQ = I), Q \in \mathbb{C}^{n \times n}$, T upper triangular

When $A \in \mathbb{R}^{n \times n}$, $A = QTQ^T$, where Q orthogonal $(Q^TQ = I)$, $Q \in \mathbb{R}^{n \times n}$, T upper triangular

Note: If T is relaxed from strict upper triangular to block upper triangular (blocks of 2×2 or 1×1 on the diagonal), then Q can be selected to be in $\mathbb{R}^{n \times n}$.

2.2 Eigenvalue Decomposition

For A diagonalizable $(A \in \mathbb{R}^{n \times n})$ with n linearly independent eigenvectors), it can be decomposed as

 $A = X\Lambda X^{-1}$, where Λ a diagonal matrix of the eigenvalues of A

For A real symmetric, A can be decomposed as $A = Q\Lambda Q^T$, Q orthogonal

For A unitarily diagonalizable (\Leftrightarrow normal: $A^HA = AA^H$), $A = Q\Lambda Q^H$, Q unitary. When A complex Hermitian $(A = A^H)$, $\Lambda \in \mathbb{R}$

2.3 Singular Value Decomposition

Definition: For any $A \in \mathbb{C}^{m \times n}$ there exist two unitary matrices, $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$, and a diagonal matrix $\Sigma \in \mathbb{R}^{m \times n}$ such that $A = U\Sigma V^H$. When $A \in \mathbb{R}^{m \times n}$, $A = U\Sigma V^T$ with $U, V, \Sigma \in \mathbb{R}$

The singular values, σ_i of Σ are always ≥ 0 . And by convention, they're ordered in decreasing order, so $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$

Derivation: Observe $A^T A$ symmetric: $(A^T A)^T = A^T A$

 A^TA symmetric $\Rightarrow \exists \ Q$ orthogonal and Λ diagonal matrix of λ_i s.t., $A^TA = Q\Lambda Q^T$ $Q^TA^TAQ = Q^TQ\Lambda Q^TQ$ $(AQ)^T(AQ) = \Lambda, \text{ note } AQ \text{ is orthogonal, but not scaled to 1. Instead, each row is scaled to the eigenvalue in that row: <math>\lambda_i = \|Aq_i\|_2^2$

When A is full rank,

$$A = AQQ^{T}$$

$$= (AQ)Q^{T}$$

$$= AQD^{-1}DQ^{T}, \text{ where } D = \begin{bmatrix} \sqrt{\lambda_{1}} & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & \sqrt{\lambda_{n}} \end{bmatrix} \text{ and } D^{-1} = \begin{bmatrix} \frac{1}{\sqrt{\lambda_{1}}} & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & \frac{1}{\sqrt{\lambda_{n}}} \end{bmatrix}$$

$$A = U\Sigma V^{T}, \text{ where } U = AQD^{-1}, \Sigma = D, V^{T} = Q^{T}$$

When A is not full rank, make the tall/thin SVD

And a few properties and remarks of $A \in \mathbb{R}^{n \times m}$ SVD

- $\|A\|_2 = \sigma_1$; $\|A^{-1}\|_2 = \frac{1}{\sigma_n}$ when A nonsingular; $\|A\|_F = \sqrt{\sum_i^{\min\{n,m\}} \sigma_i^2}$; Condition number, $\kappa(A) = \|A\|_2 \|A^{-1}\|_2 = \frac{\sigma_1}{\sigma_n}$
- When A symmetric, $\sigma_i = |\lambda_i|$; When A orthogonal, $\sigma_1 = \cdots = \sigma_n = 1$
- The eigenvalues of A^TA and AA^T are the squares of the singular values of A, $\sigma_1^2, \ldots, \sigma_n^2$
- By construction, V contains the eigenvectors of A^TA and U contains the eigenvectors of AA^T , so $A^TAv_i = \sigma_i^2 v_i$ and $AA^Tu_i = \sigma_i^2 u_i$

3 Error analysis

3.1 Floating point arithmetic

$$\pm (\sum_{i=1}^{t-1} d_i \beta^{-i}) \beta^e$$

Where β is the base (in floating point computation, $\beta = 2$), $d_0 \ge 1$, and $d_i \le \beta - 1$, e is called the **exponent**, this is the location of the decimal place, t - 1 in the summand is called the **precision** and indicates the number of digits (in base β) that can be stored with the number.

3.2 Unit roundoff

The unit roundoff for a floating-point number is

$$u = \frac{1}{2} \times \beta^{-(t-1)}$$
 (distance between the smallest digits stored in a floating-point number)

For double precision floating point numbers (64 bits), $u \approx 10^{-16}$. The relative sensitivity of a problem is often called the **conditioning** of the problem

4

• Sensitivity:
$$\frac{\left\|\tilde{f}(x) - f(x)\right\|_p}{\left\|\tilde{x} - x\right\|_p}; \text{ Relative sensitivity: } \frac{\left\|\tilde{f}(x) - f(x)\right\|_p \|x\|_p}{\left\|\tilde{x} - x\right\|_p \|f(x)\|_p}$$

4 LU Factorization

The LU factorization makes it computationally easier to solve linear equations If we can decompose a matrix, A, into a product of a lower triangular matrix, L, and an upper triangular matrix, U, then to solve Ax = b, we can start by solving Lz = b, and then Ux = z. x, here, is the solution!

4.1 Basic algorithm

- Construct u_1^T equal to the first row of A, a_1^T
- Construct l_1 equal to each of the elements in the first column of A, a_1 , divided by a_{11} , the "pivot"
- Calculate $A' \leftarrow A l_1 u_1^T$. In practice (and somewhat confusingly), A' is now referred to as A
- Repeat the algorithm with the updated A, and the next row/column. Observe each l_i, u_i^T constructed are the rows/columns of the lower and upper triangular matrices of L, U respectively.

4.1.1 Gauss transforms

To compute A = LU, consider $L^{-1}A = U$, with L^{-1} that "zeros-out" the columns of A to get U. Call L^{-1} , G. As with the iterative algorithm above, we can multiply A by iterative G_i 's to get U:

$$L^{-1}A = G_n G_{n-1} \dots G_2 G_1 A = U \longrightarrow A = G_1^{-1} \dots G_n^{-1} U = LU$$

4.2 Pivoting

4.2.1 When pivoting is needed

Notice that this algorithm relies on the pivots, a_{kk} , being nonzero. It turns out this will occur if none of the $k \times k$ blocks of A, A[1:k,1:k], have a determinant of 0. **Proof by induction**: Case k=1:

 $A_1 = L_1U_1 \longleftrightarrow det(A_1) = det(L_1U_1) \longleftrightarrow det(A_1) = det(L_1)det(U_1)$, by property of determinants $det(A_1) = det(U_1)$, since determinant of a triangular matrix is a product of the diagonals and the diagonal of L_1 are 1's $det(A_1) = a_{11} = u_{11} \to so$ when determinant is not zero, we have a nonzero pivot

4.3 Cholesky factorization

The Cholesky factorization is an LU factorization for Symmetric Positive Definite (SPD) matrices, where SPD matrix, $A = GG^T$, with G lower triangular.

4.4 Schur complement

A useful way to think about the LU factorization is with the **Schur complement** matrix structure. First observe A can be written in the following form

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

If we run the LU factorization algorithm for k steps, the resulting A' = A is equal to

$$A = \begin{bmatrix} I & 0 \\ A_{21}A_{11}^{-1} & I \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} - A_{21}A_{11}^{-1} A_{12} \end{bmatrix} \begin{bmatrix} I & A_{21}A_{11}^{-1} \\ 0 & I \end{bmatrix}$$

The bottom-right block of A' = A, $A'_{22} = A_{22}$ is equal to $A_{22} - A_{21}A_{11}^{-1}A_{12}$ from the original matrix. This is called the **Schur complement** of A

4.4.1 Schur complement derivation

At any step in the LU factorization, A can be written in the form

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix}$$

5

From this equality, we can create a system of equations and derive the Schur complement

5 QR factorization

The QR factorization decomposes a matrix, $A \in \mathbb{R}^{m \times n}$, $m \ge n$ into an orthogonal (orthonormal) matrix, Q, and an upper triangular matrix, R. When $A \in \mathbb{C}^{m \times n}$, Q is unitary.

Recall for $Q \in \mathbb{R}$, orthogonal, $Q^TQ = I$; for $Q \in \mathbb{C}$, unitary, $Q^HQ = I$; $||Qx||_2 = ||x||_2$

If A is skinny (i.e., $n \ll m$), QR can take two different forms. $Q \in \mathbb{R}^{m \times m}$ can be square and $R \in \mathbb{R}^{m \times n}$ can be skinny. Or $Q \in \mathbb{R}^{m \times n}$ can be skinny and $R \in \mathbb{R}^{n \times n}$ can be square.

5.1 The QR factorization is unique

Proof that the QR factorization is unique for full rank matrix, A:

$$A = QR \longleftrightarrow Q^TA = R \longleftrightarrow^T Q^TA = R^TR \longleftrightarrow (QR)^TA = R^TR \longleftrightarrow A^TA = R^TR$$

We now have a matrix, A^TA that can be written of the form R^TR , which is the structure of the Cholesky factorization. Suffice to show that A^TA is Symmetric and Positive Definite (SPD) to prove the uniqueness of R.

5.2 Householder reflection

- Construct Q^T for each column in A that projects it onto a corresponding column of an upper right triangular matrix, R.
- E.g., for first column a_1 : Want Q_1^T such that $Q_1^T a_1 = r_1$, where $r_1 = \pm \|a_1\|_2 e_1$ (since Q^T is orthogonal). This equates to finding Q_1^T that reflects a_1 onto e_1
- The key to the iterative part of the algorithm is to construct Q_i^T , i > 1 with an identity matrix in the upper-left $i 1 \times i 1$ quadrant, and a smaller Q_i^{*T} in the lower right $n i \times n i$ quadrant, filling the remaining sections of the matrix with 0's.

The **Householder reflection** maps $a \to ||a||_2 e_1$ with

$$P = I - \beta v v^T$$
, where $v = a - ||a||_2 e_1$, and $\beta = 2/v^T v$

Aside: The fixed points of a reflection, P, remain unchanged when multiplied by the reflection, Px = x. Geometrically, these are the points that are *orthogonal* to the vector v defining the reflection (i.e., $v^Tx = 0$)

5.3 Givens transformation

5.3.1 Givens transformation algorithm

A Givens rotation rotates $u = (u_1, u_2)^T$ to $||u||_2 e_1$. The matrix that does this, G^T , is defined by

$$G^T = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}, c = \frac{u_1}{\|u\|_2}, s = -\frac{u_2}{\|u\|_2}$$

Sequentially, the P_i 's can multiply A to arrive at R

5.4 Gram-Schmidt transformation

Construction of r_{kk}, q_k, r_{kj}

$$a_k = \sum_{i=1}^k r_{ik} q_i = r_{kk} q_k + \sum_{i=1}^{k-1} r_{ik} q_i$$

1. $r_{ik} = q_i^T a_k$ for each $r_{ik}, i < k$, since Q orthonormal and q_{k-1} known

2.
$$z = r_{kk}q_k = q_k - \sum_{i=1}^{k-1} r_{ik}q_i$$

3.
$$r_{kk} = ||z||_2$$
, $q_k = \frac{z}{r_{kk}}$

5.5 QR factorization to solve least-squares problems

When A is tall and thin, it is unlikely that we get a solution to Ax = b. Instead, we choose to solve the least-squares problem, $argmin_x \|Ax - b\|_2$.

Method of normal equations

Want:
$$(b - Ax) \perp \{z | z = Ay\} \longleftrightarrow (b - Ax) \perp range(A) \longleftrightarrow (b - Ax) \perp a_i, \forall i \in A$$

 $a_1^T(b - Ax) = 0, \forall i \in A \longleftrightarrow A^T(b - Ax) = 0 \longleftrightarrow x = (A^TA)^{-1}A^Tb$

QR method for least squares 5.5.2

$$A^T(Ax-b)=0\longleftrightarrow R^TQ^T(Ax-b)=0$$

$$Q^T(Ax-b)=0, \text{ since we assume } A,R \text{ full rank (multiply both sides by } R^{-T})$$

$$Q^TQRx-Q^Tb=0\longleftrightarrow Rx=Q^Tb\longleftrightarrow x=R^{-1}Q^Tb$$

SVD for rank-deficient A

When A not full rank, we add constraint $\min_x ||x||_2$. We can use the "thin" version of the Singular Value Decomposition to solve this

$$(Ax-b)\perp range(A)\longleftrightarrow (Ax-b)\perp range(U), \text{ since } R(A)=R(U) \text{ for } A=U\Sigma V^T$$

$$U^T(Ax-b)=0\longleftrightarrow U^T(U\Sigma V^Tx-b)=0\longleftrightarrow \Sigma V^Tx=U^Tb$$

$$x=V\Sigma^{-1}U^Tb \text{ (the "thin" SVD here provides a nonsingular } \Sigma\in\mathbb{R}^{r\times r}, \text{ so we can take the inverse}$$

Observe for $\min_x \|x\|_2$ that the $x \perp N(A)$ is the shortest vector between N(A) and the vector/plane of solutions to $argmin_x \|Ax - b\|_2$. This value must be in R(V) since $R(V) = N(A)^{\perp}$

6 Iterative methods to find eigenvalues

6.1 Power iteration

Given $\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n \in \lambda(A)$, the **Power iteration** finds λ_1 . This process assumes A is diagonalizable

$$\begin{split} A^k &= \sum_{i=1}^n \lambda_i^k x_i y_i^T \text{ where } Y = X^{-1} \\ A^k &\approx \lambda_1^k x_1 y_1^T \text{ since } \lambda_1 > \lambda_2 \\ A^k q &\approx \lambda_1^k x_1 y_1^T q = \lambda_1^k (y_1^T q) x_1 \text{, since } y_1^T q \text{ is a scalar. Observe } A^k q \parallel x_1 \end{split}$$

This theory is implemented in practice with the following formula

1. q_0 , vector chosen at random

2.
$$z_k = Aq_k = A^kq_0$$
, evaluating for convergence if $z_k \parallel q_k \to z_k^T x_k = \|z\|_2 \|x\|_2$

3.
$$q_{k+1} = \frac{z_k}{\|z_k\|_2} = \frac{A^k q_0}{\|A^k q_0\|_2} \approx (\frac{\lambda_2}{|\lambda_1|})^k x_1$$

Since $A^k q_0 = Aq_k \approx \lambda_1 x_1$, where $||x_1||_2 = 1$ (WLOG) and $q_k ||x_1|$, we can solve for λ :

$$Aq_k \approx \lambda_1 x_1 \Longrightarrow Ax_1 \approx \lambda_1 x_1 \Rightarrow x_1^H Ax_1 \approx \lambda_1$$
Convergence: $O(|\frac{\lambda_1}{\lambda_2}|)^K$), since
$$A^k q_0 = \sum_i \alpha_i A^k x_i = \sum_1 \alpha_i \lambda_i^k x_i = \alpha_1 \lambda_1^k (x_i + \frac{\alpha_2}{\alpha_1} (\frac{\lambda_2}{\lambda_1})^k + \dots + \frac{\alpha_n}{\alpha_1} (\frac{\lambda_n}{\lambda_1})^k) \Longrightarrow ||A^k q_0||_2 = |\alpha_1 \lambda_1^k| (1 + O(\frac{\lambda_2}{\lambda_1})^k)$$

Inverse iteration

Get the eigenvector for the eigenvalue closest to μ . Observe $(A - \mu I)^{-1}$ has the same eigenvectors of A:

$$(A - \mu I)^{-1}x = \lambda x \longleftrightarrow x = (A - \mu I)x = \lambda Ax - \lambda \mu x \longleftrightarrow \lambda Ax = x + \lambda \mu x \longleftrightarrow Ax = \frac{(1 + \lambda \mu)}{\lambda}x$$

Performing the power iteration on $(A - \mu I)^{-1}$, the largest eigenvalue to emerge will be of the form $\frac{1}{\lambda_i - \mu}$, and we get

$$(A - \mu I)^{-1k}q_0 = (A - \mu I)^{-1}q_k \approx \lambda_i x_i$$
, where $\|x_i\|_2 = 1$ (WLOG) and $q_k \| x_i$

Since x_i is also an eigenvalue of A, we can solve $x_i^H A x_i = \lambda_i$ for the λ_i closest in magnitude to μ . Convergence: $O(|\frac{\lambda_i - \mu}{\lambda_j - \mu}|)^k)$, where λ_j is the next closest eigenvalue to μ

6.3 Eigenvalues of similar matrices

Theorem: For S nonsingular and $A = S^{-1}BS$, then i) $\lambda(A) = \lambda(B)$ and ii) x eigenvector of $A \Leftrightarrow S^{-1}x$ eigenvector of B.

6.4 Eigenvalues from invariant subspaces

Theorem: $X \in \mathbb{R}^{n \times m}$ is an invariant subspace of $A \in \mathbb{R}^{n \times n} \Leftrightarrow$ there is a $B \in \mathbb{R}^{n \times m}$ such that AX = XB. **Proof:**

$$\Rightarrow$$
: X invariant $\longrightarrow Ax_i \in X \longrightarrow Ax_i = \sum_{j=1}^m x_j b_{ji} \longrightarrow AX = XB$

Furthermore, when AX = XB, the m eigenvalues of B are also eigenvalues of A: $By = \lambda y \longrightarrow XBy = \lambda Xy \longrightarrow AXy = \lambda Xy$

6.5 Orthogonal iteration

First, consider how to construct orthogonal columns to reveal subsequent eigenvalues. Assume we use power iteration to compute q_1

$$A^k = \lambda_1 x_1 y_1^T + \lambda_2 x_2 y_2^T + \dots$$

$$PA^k = \lambda_1 P x_1 y_1^T + \lambda_2 P x_2 y_2^T + \dots, \text{ where } P = I - x_1 x_1^T$$

$$PA^k = 0 + \lambda_2 P x_2 y_2^T + \dots, \text{ since } Px_1 = Ix_1 - x_1 x_1^T x_1 = x_1 - x_1 = 0$$

$$PA \text{ can now be used to apply the power iteration to to reveal } \lambda_2 \text{ and } (I - x_1^T x_1) x_2$$

The general process is: build P_r , orthogonal projector onto $\{q_1, \ldots, q_{r-1}\}^{\perp}$, use power iteration to reveal (λ_r, q_r) Now consider the QR decomposition of X, observing its connection to the Schur Decomposition:

$$A = X\Lambda X^{-1} = QR\Lambda R^{-1}Q^H = QTQ^H$$
, where upper triangular $T = R\Lambda R^{-1}$

- \bullet The eigenvalues of A are on the diagonal of T
- ullet By construction, each column of Q is projecting the corresponding column of X onto a vector orthogonal to the preceding ones
- The span of the columns of Q, $span\{q_1, \ldots, q_n\}$ will be equal to the span of the columns of X, $span\{x_1, \ldots, x_n\}$.

The process for the **orthogonal iteration** is:

- 1. $AQ_k \to Z$, where k is the iteration and $Q_0 = I$
- 2. $Z \to Q_{k+1}R_{k+1}$, the QR factorization of Z
- 3. Repeat $AQ_{k+1} \to Z$ and eventually $Q_k \to Q$

Note in each iteration we are calculating $Q_{k+1}^H A Q_k = R_{k+1}$

6.5.1 Reveal eigenvectors of A from T

Motivation: $A = X\Lambda X^{-1}$ can be hard to calculate.

$$A=X\Lambda X^{-1}=QR\Lambda R^{-1}Q^H=QTQ^H, \text{ where } T=R\Lambda R^{-1}$$

$$A=QY\Lambda Y^{-1}Q^H, \text{ where } T=Y\Lambda Y^{-1} \text{ is easier to compute}$$

Focusing on $T = Y\Lambda Y^{-1}$, choose some λ_i (we could get from power or QR iteration).

$$Tx = \lambda_i x \longleftrightarrow (T - \lambda_i I)x = 0 \longleftrightarrow (T - \lambda_i I)x = \begin{bmatrix} T_{11} - \lambda_i I & T_{12} & T_{13} \\ 0 & 0 & T_{23} \\ 0 & 0 & T_{33} - \lambda_i I \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \text{ where one diagonal element is } 0$$

And solve with back substitution:

$$X_3 = 0: (T_{33} - \lambda_i I)X_3 = 0$$

 X_2 is a free parameter $\in \mathbb{R}: 0X_2 + T_{33}X_3 = 0 \Longrightarrow 0X_2 = 0$

$$X_1 = -(T_{11} - \lambda_i I)^{-1} T_{12} X_2 : (T_{11} - \lambda_i I) X_1 + T_{12} X_2 + T_{13} X_3 = 0$$

It follows the eigenvectors of A are Qy_i . Note, $(T_{11} - \lambda_i I)$ nonsingular as long as the algebraic multiplicity of λ_i is 1.

6.5.2 Rate of convergence in orthogonal (and QR) iteration

Property: the angle between two subspaces, U and V, is defined as $\|UU^T - VV^T\|_2$ In orthogonal interation, $span\{q_1, \cdots, q_i\} \longrightarrow X, span\{x_1, \cdots, x_i\}$. Convergence is dictated by how quickly these spans converge. The rate of convergence is $O(|\frac{\lambda_{i+1}}{\lambda_i}|^k)$.

6.6 QR iteration

In the QR iteration, we ask if we can go from T_k to T_{k+1} directly. Observe

$$A = Q_k T_k Q_k^H \Longrightarrow T_k = Q_k^H A Q_k$$

$$AQ_k = Q_{k+1} R_{k+1} \Longrightarrow Q_{k+1}^H A = R_{k+1} Q_k^H$$

$$T_k = Q_k^H (Q_{k+1} R_{k+1}) \longrightarrow T_k = U_{k+1} R_{k+1} \text{ for } U_{k+1} = Q_k^H Q_{k+1}$$

$$T_{k+1} = (R_{k+1} Q_k^H) Q_{k+1} \longrightarrow T_{k+1} = R_{k+1} U_{k+1} \text{ for } U_{k+1} = Q_k^H Q_{k+1}$$

So we have an algorithm for $T_k \to T_{k+1}$, this process is the **QR iteration**:

- 1. $T_k \longrightarrow U_{k+1}R_{k+1}$, the QR factorization of T_k
- $2. R_{k+1}U_{k+1} \longrightarrow T_{k+1}$
- 3. Repeat with T_{k+1}

Proof by induction: R_{k+1} is the same in both QR factorization of $A = Q_{k+1}R_{k+1}$ and $T_k = U_{k+1}R_{k+1}$

case 1:
$$A = AQ_0 = Q_1R_1$$
, $A = T_0 = U_1R_1^*$, and $T_1 = Q_k^H A Q_1$
 $U_1R_1^* = Q_0^T Q_1 R_1 = Q_1R_1 \implies R_1^* = R_1$ and $U_1 = Q_0^T Q_1$
case k : Assume $R_k^* = R_k$, $U_k = Q_{k-1}^T Q_k$, and $T_k = Q_k^H A Q_k$

6.7 QR iteration on upper Hessenberg

Each QR iteration step of a dense matrix is $O(n^3)$. If we run for O(k) iterations, then this algorithm is $O(kn^3)$. To reduce flops, we can first convert A to upper Hessenberg ($H = Q^H AQ$) with $O(n^3)$, and proceed with QR iteration on H using Givens rotations with complexity $O(n^2)$ (so overall complexity is reduced to $O(n^3 + kn^2)$):

Choose $Q_1^T = \begin{bmatrix} 1 & 0 \\ 0 & \tilde{P}_1 \end{bmatrix}$ to perform a Householder rotation onto the first two entries of $a_1 \in A$

Observe
$$Q_1^T A Q_1 = \begin{bmatrix} 1 & 0 \\ 0 & \tilde{P_1} \end{bmatrix} A \begin{bmatrix} 1 & 0 \\ 0 & \tilde{P_1}^T \end{bmatrix} = \begin{bmatrix} x & x & \cdots \\ x & x & \cdots \\ 0 & x & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$
 where a_{11} is never changed, the rest of a_1

is only operated on by $\tilde{P_1}$, and the rest of a_1^T is only operated on by $\tilde{P_1^T}$

Continuing on,
$$Q_n^T \dots Q_2^T Q_1^T A Q_1 Q_2 \dots Q_n = H = Q^H A Q$$
 where $Q_k^T = \begin{bmatrix} I_k & 0 \\ 0 & \tilde{P}_k \end{bmatrix}$

H remains upper Hessenberg in QR iteration: This follows since in the first step of QR iteration, H_k is transformed to R_k with givens rotations, $U_k^H H_k = R_k$. And in the second step of QR iteration, H_{k+1} is created as $R_k U_k = H_{k+1} = U_k^H H_k U_k$. Since U_k is a series of givens rotations, these rotations can be constructed/ordered so that H_{k+1} preserves upper Hessenberg.

6.8 QR iteration with shift

QR iteration with shift accelerates convergence. First observe for $\lambda_i \in \lambda(A) \to (\lambda_i - \mu) \in \lambda(A - \mu I)$. The resulting converence is $|[(\lambda_{i+1} - \mu)/(\lambda_i - \mu)]|^k$. Shift does not require that $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$.

QR iteration with shift process:

1.
$$\mu_k = T_k[n, n]$$

2. $(T_k - \mu_k I) \longrightarrow U_{k+1} R_{k+1}$, QR factorization of the shifted T_k

3.
$$R_k U_k + \mu_k I \longrightarrow T_{k+1}$$
, and repeat!

Observe, this shift preserves the original QR iteration:

$$(T_k - \mu_I) = U_{k+1} R_{k+1} \Longrightarrow U_{k+1}^H T_k - \mu_k U_{k+1}^H = R_{k+1}$$

$$T_{k+1} = R_{k+1} U_{k+1} + \mu_k I \Longrightarrow T_{k+1} = (U_{k+1}^H T_k - \mu_k U_{k+1}^H) U_{k+1} + \mu_k I$$

$$T_{k+1} = U_{k+1}^H T_k U_{k+1} - \mu_k I + \mu_k I = U_{k+1}^H T_k U_{k+1}$$

6.8.1 Implicit Q theorem

The **implicit Q theorem** tells us that if i) we get any upper Hessneberg, H_{k+1} from a transformation of $H_k \to H_{k+1}$ of the form $U^T H_k U$ ii) $W e_1 = Q e_1$ for two such transformations, then the columns of W and Q are equal, up to a sign.

Proof: We show for $A = QHQ^T$, Q orthogonal and H upper Hessenberg, that Q, H are determined by A and Qe_1 :

$$AQ = QH, \text{ assume we know } q_1, \dots, q_k \text{ of } Q$$

$$A\left[Q_k \quad X\right] = \begin{bmatrix}Q_k \quad X\end{bmatrix} \begin{bmatrix}H_k \quad X\\0 \quad X\end{bmatrix}, X \text{ unknown and } H_k \in \mathbb{R}^{k \times k}$$

$$Aq_k = \sum_{i=1}^k h_{i,k}q_i + k_{k+1,k}q_{k+1}, \text{ the kth column of } AQ, \text{ where } q_j^T A q_k = h_{j,k}$$

$$k_{k+1,k}q_{k+1} = Aq_k - \sum_{i=1}^k h_{i,k}q_i, \text{ the RHS of which is known}$$

$$\Rightarrow |h_{k+1,k}| = \left\|Aq_k - \sum_{i=1}^k h_{i,k}q_i\right\|_2 \text{ and } q_{k+1} = \frac{Aq_k - \sum_{i=1}^k h_{i,k}q_i}{h_{k+1,k}}$$

6.8.2 Fracis shift

The **Francis** shift is a way of selecting shifts based on the bottom-right 2×2 block in a way that maintains a real-valued matrix. In effect, we double-shift using complex conjugates, $\mu, \overline{\mu}$:

$$\begin{split} H_{k-1} - \mu I &= U_k R_k \\ H_k &= R_k U_k + \mu I \\ H_k - \overline{\mu} I &= U_{k+1} R_{k+1} \\ H_{k+1} &= R_{k+1} U_{k+1} + \overline{\mu} I \\ H_{k+1} &= U_{k+1}^H H_k U_{k+1} = U_{k+1}^H U_k^H H_{k-1} U_k 1 U_{k+1} = (U_k U_{k+1})^H H_{k-1} (U_k U_{k+1}) \end{split}$$

Proof Consider QR factorization to show (U_1U_2) is real

$$(U_k U_{k+1})(R_{k+1} R_k) = H_{k-1}^2 - (\mu + \overline{\mu})H_{k-1} + |\mu|^2 I$$
, where each component of the polynomial is $\in \mathbb{R}$

From uniqueness of QR factorization, (U_1U_2) must be real as well. So at any step of the Francis shift, we want $H_{k+1} = Q^T H_{k-1}Q$

6.9 QR iteration with deflation

If any sub-diagonal element of an upper Hessenberg matrix, H, is 0, it can be written as $H = \begin{bmatrix} H_{11} & H_{12} \\ 0 & H_{22} \end{bmatrix}$ with H_{11} and H_{22} upper Hessenberg and $\lambda(H) = \lambda(H_{11}) \cup \lambda(H_{22})$

Theorem: $\lambda(H) = \lambda(H_{11}) \cup \lambda(H_{22})$ for H block upper triangular. **Proof:**

$$\Longrightarrow Hx = \lambda x \longrightarrow \begin{bmatrix} H_{11} & H_{12} \\ 0 & H_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} H_{11}x_1 + H_{12}x_2 \\ H_{22}x_2 \end{bmatrix} = \begin{bmatrix} \lambda x_1 \\ \lambda x_2 \end{bmatrix}$$
and either $x_2 = 0$ and $\lambda \in \lambda(H_{11})$ or not and $\lambda \in \lambda(H_{22})$

$$\iff H_{11}p_1 = \lambda p_1 \longrightarrow \begin{bmatrix} H_{11} & H_{12} \\ 0 & H_{22} \end{bmatrix} \begin{bmatrix} p_1 \\ 0 \end{bmatrix} = \begin{bmatrix} H_{11}p_1 \\ 0 \end{bmatrix} = \begin{bmatrix} \lambda p_1 \\ 0 \end{bmatrix}$$

$$\iff H_{22}p_2 = \lambda p_2 \longrightarrow \begin{bmatrix} H_{11} & H_{12} \\ 0 & H_{22} \end{bmatrix} \begin{bmatrix} x \\ p_2 \end{bmatrix} = \begin{bmatrix} H_{11}x + H_{12}p_2 \\ H_{22}p_2 \end{bmatrix} = \begin{bmatrix} \lambda x_1 \\ 0 \end{bmatrix}$$
where $H_{11}x + H_{12}p_2 = \lambda x$ for $x = -(H_{11} - \lambda I)^{-1}H_{12}p_2$, making $\lambda \in \lambda(H)$

Theorem: If H is singular unreduced upper Hessenberg, then in QR factorization, H = QR, the last row of R is zero. **Explanation:** When constructing QR iteration, each column of R can be linearly independent from the previous ones (since we're adding a dimension) except for the last one (since H and R must be singluar):

$$h_1 = h_{11}e_1 + h_{21}e_2$$
 $h_2 = h_{12}e_1 + h_{22}e_2 + h_{32}e_3$ $h_{n-1} = \sum_{i=1}^n h_{n-1,i}e_i$

6.10 QR iteration on symmetric matrices

Upper Hessenberg symmetric matrices are tri-diagonal matrices

- Unsymmetric case complexity: Transform to upper Hessenberg: $O(n^3)$; QR iteration step: $O(n^2)$; overall QR iteration: $O(pn^3)$, where p is the number of iterations per eval (assume quadratic convergence)
- Symmetric case complexity: Transform to upper Hessenberg: $O(n^3)$; QR iteration step: O(n); overall QR iteration: $O(pn^2)$, where p is the number of iterations per eval (assume cubic convergence)

7 Finding eigenvalues of sparse matrices

7.1 Arnoldi process

The **Arnoldi process** reveals first k eigenvalues of a sparse matrix as follows:

1. Begin with random $q_1 \in Q$, such that $||q_1||_2 = 1$

Iterate through each of the first k columns of Q with

2.
$$Aq_j = \sum_{k=1}^{j+1} h_{kj} q_k$$
, observing we can recover all h_{ij} for $i \leq j$ since $q_i^T A q_j = h_{ij}$
3. $Aq_j = \sum_{k=1}^{j} h_{kj} q_k + h_{j+1,j} q_{j+1}$

3.
$$Aq_j = \sum_{k=1}^{j} h_{kj} q_k + h_{j+1,j} q_{j+1}$$

4.
$$r = Aq_j - \sum_{k=1}^{j} h_{kj}q_k = h_{j+1,j}q_{j+1}$$
, where only r is unknown

5.
$$\|q_{j+1}\|_2 = 1 \Longrightarrow h_{j+1,j} = \|r\|_2$$
 and $q_{j+1} = \frac{r}{h_{j+1,j}}$

Output: k columns of Q and the upper $k \times k$ block of H, which can be used in the QR iteration to reveal k eigenvalues close to $\lambda(A)$:

$$AQ = QH \Longrightarrow AQ_k = Q_k H_k + h_{k+1,k} q_{k+1} e_k^T, \text{ where } Q_k = Q[:, 1:k], H_k = [1:k, 1:k]$$

$$AQ_k = Q_k X_k \Lambda_k X_k^{-1} + h_{k+1,k} q_{k+1} e_k^T, \text{ where } H_k = X_k \Lambda_k X_k^{-1} \text{ through QR iteration}$$

$$A(Q_k X_k) = (Q_k X_k) \Lambda_k + h_{k+1,k} q_{k+1} x_k^T, \text{ where } x_k^T \text{ is the } k^{th} \text{ column of } X$$

And we get an equation where i) $AQ_k \approx Q_k H_k$, ii) Λ_k contains k eigenvalues close to $\lambda_i \in \lambda(A)$, iii) $(Q_k X_k)$ serve as eigenvectors for those eigenvalues, and iv) $h_{k+1,k} q_{k+1} x_k^T$ represents something like an error term.

7.2 Krylov spaces

A space of sparse Matrix-vector products: $K(A, q, k) = span\{q_1, Aq_1, A^2q_1, \dots, A^kq_1\}$

7.2.1 QR factorization of Krylov subspace contains Q_k from Arnoldi

Proof: We show for $K_k = Q_k R_k$, that R_k is upper triangular.

Start with
$$Q^T K_k = R$$
 upper triangular for $K_k = \begin{bmatrix} | & | & | \\ q_1 & Aq_1 & \dots & A^k q_1 \\ | & | & | & \end{bmatrix}$

$$Q^T k_j = Q^T A^{j-1} q_1 = Q^T Q H^{j-1} Q^T q_1, \text{ since } A^k = Q^T H^k Q$$

$$= H^{j-1} Q^T q_1 = H^{j-1} e_1, \text{ since } Q \text{ orthogonal}$$

$$\Rightarrow r_j \in R = h_1 \in H^{j-1}, \text{ which has top } j \text{ rows nonzero}$$

The last statement can be checked by iteratively checking the first column of H^i . This result indicates that Q_kK_k , produces an upper right triangular matrix since Q_k is the first k columns of Q. This also means Q_k forms a basis for $K(A, q_1, k)$.

7.2.2 Arnoldi process generates a minimal polynomial

Polynomial properties

- If A is diagonalizable, i.e., $A = X\Lambda X^{-1}$, then polynomial $f(A) = Xf(\Lambda)X^{-1}$
- Characteristic polynomial of A is $p_A(z) = det(zI A) = \prod (z \lambda_i)$ and $p_A(\lambda_i) = 0$ for $\lambda_i \in \lambda(A)$
- $f(A) = 0 \Longrightarrow \lambda_i \in \lambda(A)$ are the roots of the polynomial (e.g., $p_A(A) = Xp_A(\Lambda)X^{-1} = 0$

Our hope is that for $p_k(H_k) = 0$, $p_k(A)$ is minimally small. We show $||p_K(A)q_1||_2$ is minimized:

$$f(x) = x^k + f_{k-1}x^{k-1} + \dots + f_0, \text{ for } f \text{ that minimizes } \|f(A)q_1\|_2$$

$$f(A) = (A^k + f_{k-1}A^{k-1} + \dots + f_0)q_1 = A^kq_1 + K_kf, \text{ where } f \text{ is a vector of coefficients}$$

$$= A^kq_1 + Q_ky, \text{ for some } y, \text{ since } Q_k \text{ forms a basis for Krylov space}$$

$$\text{Minimal } \|f(A)q_1\|_2 \Longrightarrow \text{minimal } \|A^kq_1 + Q_ky\|_2, \text{ so we need to choose } y \text{ to minimize polynomial}$$

$$\text{minimal } \|A^kq_1 + Q_ky\|_2 \Longrightarrow Q_k^Tf(A)q_1 = 0$$

$$Q_k^Tf(A)q_1 = Q_k^TQf(A)Q^Tq_1 = \begin{bmatrix} I_k & 0 \end{bmatrix} f(H)e_1 = I_kf(H_k)e_1$$

This proof shows that $||f(A)q_1||_2$ is minimal $\Leftrightarrow I_k f(H_k)e_1 = 0$, which $p_k(H_k)$ achieves since $p_k(H_k) = 0$

7.3 Lanczos process

The Lanczos process is a parallel process to the Arnoldi process, but for symmetric matrices. Reminder: A symmetric upper Hessenberg matrix, T is tri-diagonal. The process follows

1.
$$\alpha_k = q_k^T A q_k \Longrightarrow \alpha_k q_k = A q_k$$

2. $r_k = A q_k - \beta_{k-1} q_{k-1} - \alpha_k q_k \Longrightarrow r_k = \beta_{k-1} q_{k-1}, r_k$ becomes the orthogonal part of $A q_k$
3. $\beta_k = \|r_k\|_2$
4. $q_{k+1} = \frac{r_k}{\beta_k}$

The orthogonalization in step 2 is reduced from O(k) in Arnoldi to O(1) in Lanczos because of the symmetry of A

7.3.1 Process for revealing the max eigenvalue of A

$$\lambda(T_k) \approx \lambda(A)$$

$$\lambda_1 \in \lambda(T_k) = \max_{x \neq 0} \frac{y^T Q_k^T A Q y}{\|y\|_2^2}, \text{ by property that } \lambda_1 \in \lambda(A) = \max_{x \neq 0} \frac{x^T A x}{\|x\|_2^2}$$

$$\implies \text{ want max } x \text{ of the form } Q_k y$$

$$\implies \text{ want max } x \text{ in Krylov space, a subspace of } \mathbb{R}^k$$

$$\implies \lambda_1 \in \lambda(T_k) \leq \lambda_1 \in \lambda(A), \text{ since it is the max in a smaller space}$$

$$\lambda_1 \in \lambda(T_k) = \max_{x \neq 0} \frac{q_1^T p(A) A p(A) q_1}{q_1^T p(A)^2 q_1}, \text{ and see textbook for step from here to next step}$$

$$\Longrightarrow \lambda_1 \in \lambda(T_k) \leq \lambda_1 - (\lambda_1 - \lambda_n) \left(\frac{\tan(\theta)}{T_{k-1}^{Cheb}(1 + 2p_1)}\right), \text{ where } p_1 = \frac{\lambda_1 - \lambda_2}{\lambda_2 - \lambda_n}$$

Observe that the RHS approaches λ_1 when λ_1 is well separated from the other eigenvalues.