Lista 4

Arruti, Sergio, Jesús

Ej 79.

Ej 80. Sea Λ una R-Álgebra de Artín y $0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$ una sucesión exacta en $Mod(\Lambda)$ (respectivamente en $mod(\Lambda)$). Pruebe que $\forall X \in Mod(\Lambda)$ (respectivamente $\forall X \in mod(\Lambda)$), se tienen las siguientes sucesiones exactas en Mod(R) (respectivamente en mod(R)).

a)

$$0 \longrightarrow \operatorname{Hom}_{\Lambda}(X,A) \stackrel{f_*}{\longrightarrow} \operatorname{Hom}_{\Lambda}(X,B) \stackrel{g_*}{\longrightarrow} \operatorname{Hom}_{\Lambda}(X,C) \longrightarrow 0.$$

b)

$$0 \longrightarrow \operatorname{Hom}_{\Lambda}(C,X) \xrightarrow{g^*} \operatorname{Hom}_{\Lambda}(B,X) \xrightarrow{f^*} \operatorname{Hom}_{\Lambda}(A,X) \longrightarrow 0.$$

donde

$$f_* = \operatorname{Hom}_{\Lambda}(X, f), \quad f^* = \operatorname{Hom}_{\Lambda}(f, X)$$

 $g_* = \operatorname{Hom}_{\Lambda}(X, g) \quad \text{y} \quad g^* = \operatorname{Hom}_{\Lambda}(g, X)$

Demostración. Como Λ es una R-Álgebra de Artín, entonces por el ejercicio 79 Λ es un anillo artiniano, así $\operatorname{Hom}_{\Lambda}(X, \bullet)$ es un funtor exacto covariante y $\operatorname{Hom}_{\Lambda}(\bullet, X)$ es un funtor exacto contravariante. Por esto se tiene que las sucesiones a) y b) son exactas en $Mod(\Lambda)$, y por 3.1.1 se tiene que para todo $J, K \in Mod(\Lambda)$, $\operatorname{Hom}_{\Lambda}(J, K)$ es un R-submódulo de $\operatorname{Hom}_{R}(J, K)$. Así a) y b) son sucesiones exactas en Mod(R).

Por otra parte si nuestra sucesión es exacta en $mod(\Lambda)$ y $X \in mod(\Lambda)$, por la proposición 3.1.3 y lo anterior, las sucesiones exactas a) y b) estarán compuestas por R-módulos finitamente generados, por lo que a) y b) son sucesiones exactas en mod(R).

Ej 81.

Ej 82.

Ej 83. Pruebe que para un anillo artiniano a izquierda R, se tiene que $mod(_RR) = mod(R)$

Demostración. Por definición $mod({}_RR)$ es la subcategoría plena de mod(R) cuyos objetos son los $A \in mod(R)$ tales que existe una sucesión exacta $P_1 \longrightarrow P_0 \longrightarrow A \longrightarrow 0$ en mod(R) con $P_1, P_0 \in add(R)$.

Como $mod(_RR)$ es subcategoría plena de mod(R), basta ver que si $M \in mod(R)$, entonces $M \in mod(_RR)$.

Sea $M \in mod(R)$ entonces $M = \bigoplus_{m \in A} Rm$ con $A \subset M$ finito, así, conside-

rando |A|=n, se tiene la sucesión exacta

$$A_1 \oplus A_2 \oplus M \xrightarrow{\pi_1} A_2 \oplus M \xrightarrow{\pi_2} M \longrightarrow 0.$$

Donde $A_1 \cong A_2 \cong R$ y π_1, π_2 son proyecciones canonicas, en particular A_1 y A_2 son objetos en add(R) pues $A_1 \coprod A_2 \cong R \coprod R = R^2$, así $M \in mod(_RR)$.

Ej 84.

Ej 85.

Ej 86. ??????

Ej 87.

Ej 88.

Ej 89. Para un anillo R, pruebe que la correspondencia $Soc: Mod(R) \longrightarrow Mod(R)$ donde

es un funtor aditivo que conmuta con productos arbitrarios y preserva monomorfismos.

Demostración. Funtor aditivo:

Sean $f, g \in \text{Hom}_R(X, Y)$ con $X, Y \in Mod(R)$, entonces $f+g \in \text{Hom}_R(X, Y)$ v $F(X \xrightarrow{f+g} Y) = (Soc(X) \xrightarrow{(f+g)|_{Soc}(X)} Soc(Y))$ pero

$$F(f+g) = (f+g)|_{Soc(X)} = f|_{Soc(X)} + g|_{Soc(X)} = F(f) + F(g),$$

pues por 3.3.6 b), $f(Soc(X)) \subset Soc(Y)$ y $g(Soc(X)) \subset Soc(Y)$.

Conmuta con coproductos arbitrarios:

Basta mostrar que $\coprod Soc(M_i)$ es el submódulo simple más grande con-

tenido en $\coprod M_i$.

Supongamos N es semisimple en $\coprod_{i \in A} M_i$, entonces $N = \bigoplus_{j \in F} S_j$ donde S_k es simple en $\coprod_{i \in A} M_i$ para toda $k \in A$ y $F \neq \emptyset$.

Como todo simple en $\coprod_{i \in A} M_i$ es de la forma $\coprod_{i \in A} S_i$ con $S_i \leq M_i$ simple o cero, entonces

$$N = \bigoplus_{i \in F} \coprod_{j \in A} S_{ij} = \coprod_{j \in A} \bigoplus_{i \in F} S_{ij} \subset \coprod_{i \in A} Soc(M_i),$$

pues $Soc(M_i)$ es el submódulo semisimple mas grande contenido en M_i , por lo tanto $Soc(\coprod_{i \in A} M_i) = \coprod_{i \in A} Soc(M_i).$

Ej 90.

Ej 91.

Ej 92. Pruebe que

- a) $Soc(_{\mathbb{Z}}\mathbb{Z}) = Soc(_{\mathbb{Z}}\mathbb{Q}) = 0.$
- b) $\mathbb{Z}_{m\mathbb{Z}}$ es un $\mathbb{Z}\text{-m\'odulo simple}\iff m$ es primo.
- c) $Soc\left(\mathbb{Z}/p^n\mathbb{Z}\right) = p^{n-1}\mathbb{Z}/p^n\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z}$ para todo primo $p \ge n \ge 0$.
- d) $Soc\left(\mathbb{Z}/n\mathbb{Z}\right) \cong \mathbb{Z}/(p_1 \dots p_k)\mathbb{Z}$ donde $n = p_1^{m_1} \dots p_k^{m_k}$ en la descomposición en productos de primos con $p_i \neq p_j$ para toda $i \neq j$.

Demostración. | a)

Por una parte, $\overline{\operatorname{como}}_{\mathbb{Z}}\mathbb{Z}$ no tiene submódulos simples, entonces $Soc(_{\mathbb{Z}}\mathbb{Z})=0.$

Por otra, $Soc(\mathbb{Z}\mathbb{Q})$ es un campo, por lo que tampoco tiene submódulos simples propios, así que $Soc(_{\mathbb{Z}}\mathbb{Z}) = Soc(_{\mathbb{Z}}\mathbb{Q}) = 0.$

b)

Supongamos $\mathbb{Z}_{m\mathbb{Z}}$ es un \mathbb{Z} -módulo simple entonces $k\mathbb{Z}_{m\mathbb{Z}} = \mathbb{Z}_{m\mathbb{Z}}$,

 $\forall k \in \mathbb{Z}$, en particular si m = ab con $a, b \neq 1$ entonces $a^{\mathbb{Z}}/m\mathbb{Z} = \mathbb{Z}/m\mathbb{Z}$ y esto pasa sólo si $\left| \mathbb{Z}_{m\mathbb{Z}} \right| = b < m$ lo cual es una contradicción, por lo tanto m debe ser primo. Si m es primo $\mathbb{Z}_{m\mathbb{Z}}$ es campo y por lo tanto simple.

c)

 $\overline{\text{Sea}} p \text{ primo y } n \geq 2, \text{ entonces } \mathbb{Z}_{p\mathbb{Z}} \text{ es simple en } \mathbb{Z}_{p^n\mathbb{Z}}, \text{ sin embrgo es el}$ único simple, pues si $M \leq \mathbb{Z}/p^n\mathbb{Z}$ es simple, entonces $M = \mathbb{Z}/p^k\mathbb{Z}$ y esto pasa sólo si p^k es primo, es decir, si k=1. Por lo tanto

$$Soc\left(\mathbb{Z}/p^n\mathbb{Z}\right) = \mathbb{Z}/p\mathbb{Z}.$$

 $\begin{array}{c} \boxed{d)} \\ \text{Sea } n = p_1^{m_1} \dots p_k^{m_k} \text{ su descomposición en primos.} \\ \text{Como } n\mathbb{Z} = p_1^{m_1} \dots p_k^{m_k}\mathbb{Z} \text{ entonces } \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/p_1^{m_1} \dots p_k^{m_k}\mathbb{Z}, \text{ en particular} \\ \end{array}$ $\mathbb{Z}/p_j\mathbb{Z} \leq \mathbb{Z}/n\mathbb{Z}$ es simple para toda $j \in \{1, \dots, k\}$, pues $p_j\mathbb{Z} \geq n\mathbb{Z}$.

Por otra parte si M es simple en $\mathbb{Z}/_{n\mathbb{Z}}$, entonces $M=\mathbb{Z}/_{p\mathbb{Z}}$ para algún p primo y $p\mathbb{Z} \geq n\mathbb{Z}$, por lo que p|n es decir, existe $j \in \{1, \dots, k\}$ tal que $p|p_j^{m_j}$, entonces $p = p_j$ y así $M = \mathbb{Z}/p_j\mathbb{Z}$ para algún $j \in \{1, \dots, k\}$. Por lo tanto, como $p_j \mathbb{Z} \geq n \mathbb{Z}$ para toda $j \in \{1, \dots, k\},$

$$Soc\left(\mathbb{Z}_{n\mathbb{Z}}\right) \cong \sum_{i \leq k} \mathbb{Z}_{p_j\mathbb{Z}} = \bigoplus_{j \leq k} \mathbb{Z}_{p_j\mathbb{Z}} \cong \mathbb{Z}_{(p_1 \dots p_k)\mathbb{Z}}.$$

Ej 93.

Ej 94.

Ej 95. Para un anillo R y $M \in Mod(R)$, pruebe que

- a) $ann_R(M) \leq R$.
- b) M es un $(R_{ann_R(M)})$ -módulo fiel.
- c) $\forall f \in \text{Hom}_R(R, M), \quad ann_R(M) \leq Ker(f).$
- d) $\forall N \in Mod(R), N \cong M \Longrightarrow ann_R(M) = ann_R(N).$

Demostración. a

 $ann_R(M) = \{r \in R \mid r \cdot m = 0 \ \forall m \in M\}.$

Sean $r, s \in ann_R(M)$, entonces $(r+s) \cdot m = r \cdot m + s \cdot m = 0$ por lo que $(r+s) \in ann_R(M)$.

Ahora, si $a \in R$, $(zr) \cdot m = z \cdot (r \cdot m) = z \cdot 0 = 0$. Por lo tanto $ann_R(M) \unlhd R$.

 $ann_{R_{ann_R(M)}}(M)=\{r\in R_{ann_R(M)}|\, [r]\cdot m=0\}$ con [r] denotando la clase de $r\in R$ bajo la relación de equivalencia. Ahora, como $[r]\cdot m=0$, entonces

$$0 = (r + ann_R(M)) \cdot m = r \cdot m + 0,$$

y así $r \in ann_R(M)$, es decir, [r] = 0. Por lo tanto M es un $R_{ann_R(M)}$ -módulo fiel.

(c)

Sean $f \in \operatorname{Hom}_R(R, M)$ y $r \in \operatorname{ann}_R(M)$, entonces $r \cdot m = 0 \ \forall m \in M$ así, como f es morfismo $f(r) = r \cdot f(1) = 0$ pues $f(1) \in M$. Por lo tanto $\operatorname{ann}_R(M) \leq \operatorname{Ker}(f)$.

d

Sea $N \in Mod(R)$ tal que existe $h \in Hom_R(M, N)$ isomorfismo. Entonces para cada $n \in N$ existe un único $m \in M$ tal que h(m) = n, así

$$\begin{split} r \in ann_R(M) &\iff r \cdot m = 0 \ \forall m \in M \\ &\iff h(r \cdot m) = 0 \ \forall m \in M \\ &\iff r \cdot h(m) = 0 \ \forall m \in M \\ &\iff r \cdot n = 0 \ \forall n \in N \\ &\iff r \in ann_R(N). \end{split}$$

Ej 96.

Ej 97.

Ej 98. Sea Λ una R-álgebra de Artin. Pruebe que, $\forall M \in mod(\Lambda)$ se tiene que:

- a) M es inescindible $\iff D_{\Lambda}(M)$ es inescindible.
- b) M es simple $\iff D_{\Lambda}(M)$ es simple.
- c) $I_0(D_{\Lambda}(M)) \in mod(\Lambda^{op}).$
- d) $I_0(M) \in mod(\Lambda)$.
- e) $l_{\Lambda^{op}}(D_{\Lambda}(M)) = l_{\Lambda}(M)$.

Demostraci'on. a)

Supongamos $M \neq 0$ es inescindible y supongamos además que $D_{\Lambda}(M) = D_1 \oplus D_2$. Como D_{Λ} y $D_{\Lambda^{op}}$ son equivalencias de categorías y $D_{\Lambda}(M) = D_1 \oplus D_2$, entonces

$$M = D_{\Lambda^{op}}(D_1 \oplus D_2) = D_{\Lambda^{op}}(D_1) \oplus D_{\Lambda^{op}}(D_2).$$

Pero M es inescindible, entonces $D_{\Lambda^{op}}(D_1)=0$ o $D_{\Lambda^{op}}(D_2)=0$, así $D_1=0$ o $D_2=0$, por lo que $D_{\Lambda}(M)$ es inescindible.

Si $D_{\Lambda}(M)$ es inescindible y $M = M_1 \oplus M_2$, entonces

$$M = D_{\Lambda^{op}}(M_1 \oplus M_2) = D_{\Lambda^{op}}(M_1) \oplus D_{\Lambda^{op}}(M_2),$$

y como $D_{\Lambda}(M)$ es inescindible entonces $D_{\Lambda^{op}}(M_1) = 0$ o $D_{\Lambda^{op}}(M_2) = 0$ por lo tanto $M_1 = 0$ o $M_2 = 0$ lo cual implica que M es inescindible. \boxed{b}

Como D_{Λ} y $D_{\Lambda^{op}}$ son equivalencias de categorías, a todo submódulo propio de K de M le corresponde un submódulo propio S de $D_{\Lambda}(M)$, así

$$\begin{split} D_{\Lambda} \text{ es simple} &\iff \forall K \lneq D_{\Lambda}(M) \ K = 0 \\ &\iff S = D_{\Lambda^{op}}(K) \lneq M \cong D_{\Lambda^{op}}(D_{\Lambda}(M)) \quad K = 0 = S \\ &\iff \forall S \lneq M \quad S = 0 \\ &\iff M \text{ es simple.} \end{split}$$

d)

Como $M \in mod(\Lambda)$ y como Λ es un R-álgebra de artín, $M = \coprod_{i=1}^n Rx_i$

con $x_i \in M$. Entonces, aplicando 3.3.5, $I_0(M) \cong \coprod_{i=1}^n I_0(Rx_i)$, es decir,

 $I_0(M) \in mod(\Lambda).$

c)

Como $D_{\Lambda}(M) \in \Lambda^{op}$, entonces aplicando c) en $D_{\Lambda}(M)$ se tiene el resultado.

 \overline{e}

Como Λ es una R-álgebra de artín, $D_{\Lambda}(M)$ y M son artinianos y finitamente generados, por lo que ambos son de longitud finita. Sea F una serie generalizada de composición de M con longitud mínima, entonces tomaremos por $D_{\Lambda}(F)$ como la filtración resultante de aplicar D_{Λ} a cada terimino de F.

Observamos que $D_{\Lambda}(F_i) \leq D_{\Lambda}(F_{i-1})$ para toda $0 \leq i \leq l(M)$ y además por ser equivalencia de categorias $D_{\Lambda}(F_i)/D_{\Lambda}(F_{i-1}) \cong D_{\Lambda}(F_i/F_{i-1})$ que es simple por b), así $D_{\Lambda}(F)$ es una serie generalizada de descomposición de longitud l(M).

Análogamente $D_{\Lambda^{op}}(G)$ con G una serie generalizada de composición de $D_{\Lambda}(M)$ define una serie generalizada de composición de longitud $l(D_{\Lambda^{op}}(G))$ en M, por lo que $l_{\Lambda^{op}}(D_{\Lambda}(M)) = l_{\Lambda}(M)$.