Basis

Linear Algebra Essentials

Basis =
$$\{b_1, b_2, ..., b_k\}$$

- 1. bi linearly independent
- 2. Any vector v from VS can be represented as

$$\overrightarrow{v} = \sum_{i}^{k} t_{i} \cdot \overrightarrow{b}_{i}$$

$$\mathbf{b}_1 = (0, 2)$$
 $\mathbf{b}_2 = (1, 1)$ $\mathbf{b}_3 = (3, -3)$

$$\mathbf{b}_1 = (0, 2)$$
 $\mathbf{b}_2 = (1, 1)$ $\mathbf{b}_3 = (3, -3)$

$$\mathbf{b}_2$$
 - 1/3 \mathbf{b}_3 = (1, 1) - (1, -1) = (0, 2) = \mathbf{b}_1 \mathbf{b}_2 - 1/3 \mathbf{b}_3 = \mathbf{b}_1

$$\mathbf{b}_1 = (0, 2)$$
 $\mathbf{b}_2 = (1, 1)$ $\mathbf{b}_3 = (3, -3)$

$$\mathbf{b}_2 - 1/3 \ \mathbf{b}_3 = (1, 1) - (1, -1) = (0, 2) = b_1$$

 $\mathbf{b}_2 - 1/3 \ \mathbf{b}_3 = b_1$

$$b_2 = t b_3$$

$$\mathbf{b}_1 = (0, 2)$$
 $\mathbf{b}_2 = (1, 1)$ $\mathbf{b}_3 = (3, -3)$

$$\mathbf{b}_2$$
 - 1/3 \mathbf{b}_3 = (1, 1) - (1, -1) = (0, 2) = \mathbf{b}_1 \mathbf{b}_2 - 1/3 \mathbf{b}_3 = \mathbf{b}_1

$$b_2 = t b_3$$

$$\begin{cases} 1 = 3t \\ 1 = -3t \end{cases}$$

Linearly independent

Spanning property

$$\mathbf{b}_2 = (1, 1) \quad \mathbf{b}_3 = (3, -3)$$

$$\overrightarrow{v} = \sum_{i}^{k} t_i \cdot \overrightarrow{b}_i$$

Spanning property

$$\mathbf{b}_2 = (1, 1) \quad \mathbf{b}_3 = (3, -3)$$

$$\overrightarrow{v} = \sum_{i}^{k} t_i \cdot \overrightarrow{b}_i$$

Spanning property

$$\mathbf{b}_2 = (1, 1) \quad \mathbf{b}_3 = (3, -3)$$

$$\overrightarrow{v} = \sum_{i}^{k} t_i \cdot \overrightarrow{b}_i$$

$$V = V_2 + V_3$$

= $t_2 b_2 + t_3 b_3$

Basis

k-dimensional vector space

$$\overrightarrow{v} = \sum_{i}^{k} t_i \cdot \overrightarrow{b}_i$$

