G. Parmeggiani

Algebra e matematica discreta, a.a. 2020/2021,

Scuola di Scienze - Corso di laurea:

Informatica

Esercizi per casa 1

 $\fbox{1}$ Si trovino il quoziente q ed il resto r della divisione di a con b nei seguenti casi (N.B.: si richiede $r \geq 0$):

1)
$$a = 46 \text{ e } b = 10,$$

2)
$$a = 49 \text{ e } b = 52,$$

3)
$$a = -12 \text{ e } b = 17,$$

4)
$$a = 76 \text{ e } b = -13,$$

5)
$$a = -21 \text{ e } b = 12.$$

 $\fbox{\bf 2}$ Si calcoli MCD(a,b) con l'algoritmo di Euclide nei seguenti casi:

1)
$$a = 126 \text{ e } b = 56$$
,

2)
$$a = 234 \text{ e } b = 273,$$

3)
$$a = -168 \text{ e } b = 180,$$

4)
$$a = 231 \text{ e } b = 165,$$

5)
$$a = -136 \text{ e } b = 48,$$

6)
$$a = -208 \text{ e } b = 286,$$

7)
$$a = 132 \text{ e } b = 180.$$

3 Si calcolino il quoziente q(x) ed il resto r(x) della divisione di f(x) per g(x) in $\mathbb{R}[x]$ nei seguenti casi:

1)
$$f(x) = 12x^5 + 3x^4 + 7x^3 - 11x^2 - 2x - 3$$
 e $g(x) = 3x^3 + x - 3$,

2)
$$f(x) = 12x^6 + 20x^4 + x^2 - 7$$
 e $g(x) = 2x^4 + x^2 + 3x - 1$.

 $\boxed{\textbf{4}}$ In tutti i casi considerati nell'Esercizio 2, indicando con d il massimo comun divisore positivo di a e b, si trovino $m, n \in \mathbb{Z}$ tali che

$$d = m \cdot a + n \cdot b.$$

- $\fbox{\bf 5}$ Si dica quali delle seguenti congruenze sono vere e quali false:
 - 1) $132 \equiv 8 \mod 9$,
 - $2) \quad 132 \equiv 1 \mod 11,$
 - 3) $132 \equiv 0 \mod 12$,
 - 4) $132 \equiv 4 \mod 13$.
- $\boxed{\mathbf{6}}$ Si calcolino le tavole dell'addizione e della moltiplicazione per \mathbb{Z}_3 e per \mathbb{Z}_6 .
- [7] Si risolvano le seguenti congruenze (ossia per ciascuna di esse si dica se ha oppure no soluzioni, e, nel caso le abbia, le si trovino tutte:
 - 1) $2x \equiv 3 \mod 5$,
 - $2) \quad 6x \equiv 9 \mod 15,$
 - 3) $7x \equiv 3 \mod 14$,
 - 4) $4x \equiv 8 \mod 12$,
 - 5) $4x \equiv 2 \mod 12$,
 - 6) $4x \equiv 2 \mod 11$.
- 8 Si calcoli, se esiste
- 1) l'inverso di 7 modulo 10,
- 2) l'inverso di 4 modulo 10,
- 3) l'inverso di 6 modulo 15,
- 4) l'inverso di 8 modulo 15.