Analysis of next generation sequencing data for microbial diversity studies

13.06.2017

Christiane Hassenrück, PhD
Tropical Marine Microbiology
Leibniz Centre for Tropical Marine Research
christiane.hassenrueck@leibniz-zmt.de

Assessing microbial diversity

- Cultivation
- Clone libraries
- Next generation sequencing

Sequence-based

Assessing microbial diversity

- Cultivation
- Clone libraries
- Next generation sequencing

- Sequence-based
- Marker gene: small-subunit ribosomal DNA
 - Universal
 - Conserved and hypervariable regions
 - Mutation rate close to species divergence

Operational taxonomic units

• OTUs...

...are defined as sequences of sufficient similarity that are distinct from other sequences

... are dependend on the amplified region and analysis method

...are NOT comparable across studies

...do NOT represent species

...do NOT represent genome divergence

Illumina paired-end sequencing

- 16S screening
- PCR-based (amplicon) sequencing
- 2x300bp reads
- High sample throughput
- Low sequencing depth

Primer selection

- Target group: bacteria, archaea, universal prokaryotic, eukaryotes
- PCR bias: primer coverage
- Fragment length: insert size
- Taxonomic resolution: sequence variability

Primer selection

- Target group: bacteria, archaea, universal prokaryotic, eukaryotes
- PCR bias: primer coverage
- Fragment length: insert size
- Taxonomic resolution: sequence variability

Target group	Region	Primer pair	Fragment size	Primer sequence	Reference
Archaea	V4-V6	Arch349F Arch915R	~510bp	GYGCASCAGKCGMGAAW GTGCTCCCCCGCCAATTCCT	Amann et al. 1990 Klindworth et al. 2013
Bacteria	V3-V4	341F 785R	~420bp	CCTACGGGNGGCWGCAG GACTACHVGGGTATCTAATCC	Klindworth et al. 2013
Prokaryotes	V4-V5	Bact515F 926R	~410bp	GTGYCAGCMGCCGCGGTAA CCGYCAATTYMTTTRAGTTT	Parada et al. 2016
Eukaryotes	V4	TAReukFor TAReukRev	~380bp	CCAGCASCYGCGGTAATTCC ACTTTCGTTCTTGATYRA	Logares et al. 2012

Sequence generation

Sequence generation

Fastq format

@Sequence accession
Sequence...

+

Base quality scores....

→ Simple text files!

Bioinformatic data analysis

- 1. Sequence preprocessing:
 - Adapter, Barcode and Primer removal
 - Quality control
 - Merging
- 2. OTU generation
- 3. Taxonomic classification

Sequencing errors

Sequencing errors

Sequencing errors

 In downstream processing estimated based on sequence abundance and alignment quality Removal based on base quality scores

Adapter Barcode Read 1 Overlap Read 2 Barcode Adapter Primer prward

Hierarchical clustering

- Better defined OTUs than heuristic clustering
- Very slow
- mothur

Hierarchical clustering

- Better defined OTUs than heuristic clustering
- Very slow
- mothur

Heuristic clustering

- Fast compared to hierarchical clustering
- Low reproducibility
- usearch, qiime

- Swarming (swarm, OBITools)
 - Fast
 - Variable OTU cut-off
 - High reproducibility
 - Dimension of swarms depending on sequencing space

- Swarming (swarm, OBITools)
 - Fast
 - Variable OTU cut-off
 - High reproducibility
 - Dimension of swarms depending on sequencing space

- Minimum entropy decomposition (MED)
 - Fast
 - Omits stochastic variation
 - Sub-species resolution (SNPs)
 - No rare biosphere

- Swarming (swarm, OBITools)
 - Fast
 - Variable OTU cut-off
 - High reproducibility
 - Dimension of swarms depending on sequencing space

- Minimum entropy decomposition (MED)
 - Fast
 - Omits stochastic variation
 - Sub-species resolution (SNPs)
 - No rare biosphere

- Denoising (dada2)
 - Probability that any unique sequence was created by sequencing error
 - High taxonomic resolution
 - Less rare (spurious?) OTUs than swarm
 - Requires very high quality sequences as input

Taxonomic classification

Domain;Phylum;Class;Order;Family;Genus

Bacteria; Proteobacteria; Gamma proteobacteria; Chromatiales; Chromatiaceae; Nitrosococcus

Taxonomic classification

Domain; Phylum; Class; Order; Family; Genus

Bacteria; Proteobacteria; Gammaproteobacteria; Chromatiales; Chromatiaceae; Nitrosococcus

Taxonomic classification

Domain; Phylum; Class; Order; Family; Genus Bacteria; Proteobacteria; Gammaproteobacteria; Chromatiales; Chromatiaceae; Nitrosococcus Last Common Ancestor: **Nitrosococcus** Chromatiaceae Thiohalocapsa Gammaproteobacteria Alteromonadaceae Chimeras: **Bacteroidetes** e.g. no common path beyond domain level? Chimera detection programs

Taxonomic reference databases: Silva, RDP, Greengenes, etc.

Available programs

- Complete analysis pipelines:
 - Mothur: https://github.com/mothur/mothur, https://www.mothur.org/
 - Qiime (Qiime2): http://qiime2.org/, https://qiime2.org/
 - Dada2: https://github.com/benjjneb/dada2,
 http://www.nature.com/nmeth/journal/v13/n7/full/nmeth.3869.html
 - Silvangs: https://www.arb-silva.de/ngs/
- Stepwise analysis:
 - Cutadapt: https://github.com/marcelm/cutadapt
 - Trimmomatic: http://www.usadellab.org/cms/?page=trimmomatic
 - PEAR: https://sco.h-its.org/exelixis/web/software/pear/
 - Bbmap: https://sourceforge.net/projects/bbmap/
 - Swarm: https://github.com/torognes/swarm
 - MED: http://merenlab.org/2014/11/04/med/
 - SINA: https://www.arb-silva.de/aligner/

16S Example workflow

Useful links and literature

Tutorials:

- Gitlab: https://gitlab.leibniz-zmt.de/chh/bioinf
- Amplicon workflow bioconductor: https://f1000research.com/articles/5-1492/v2

Forums:

- http://seganswers.com/
- https://omictools.com/

Primer selection:

- Parada et al. 2016: https://www.ncbi.nlm.nih.gov/pubmed/26271760
- Eloe-Fadrosh et al. 2016: https://www.ncbi.nlm.nih.gov/pubmed/27572438
- Silva test prime: https://www.arb-silva.de/search/testprime/

• Taxonomy:

- https://www.arb-silva.de/aligner/
- https://www.arb-silva.de/browser/

Data analysis

Concepts of microbial diversity

Alpha diversity:

- Diversity within one sample
- Richness
- Evenness

Concepts of microbial diversity

Alpha diversity:

- Diversity within one sample
- Richness
- Evenness

Beta diversity:

- Diversity between samples (comparison)
- Dissimilarity
- Shared OTUs

Pitfalls of NGS data analysis

Library size bias: coverage of microbial diversity

Pitfalls of NGS data analysis

- Library size bias: coverage of microbial diversity
- Rare sequences: detection limit of method

Pitfalls of NGS data analysis

- Library size bias: coverage of microbial diversity
- Rare sequences: detection limit of method
- Compositionality: spurious correlations

Alpha diversity

- Alpha diversity indices:
 - Chao1
 - ACE
 - Richness
 - Shannon
 - Inverse Simpson

Influence of rare OTUs

Alpha diversity

- Alpha diversity indices:
 - Chao1
 - ACE
 - Richness
 - Shannon
 - Inverse Simpson

Influence of rare OTUs

- Unifying concept: Hill numbers
 - Richness (q = 0)
 - Exponential Shannon (q = 1)
 - Inverse Simpson (q = 2)

$$D = \left(\sum_{i=1}^{S} p_i^{q}\right)^{1/(1-q)}$$

Alpha diversity

- Alpha diversity indices:
 - Chao1
 - ACE
 - Richness
 - Shannon
 - Inverse Simpson

Influence of rare OTUs

- Unifying concept: Hill numbers
 - Richness (q = 0)
 - Exponential Shannon (q = 1)
 - Inverse Simpson (q = 2)

$$D = \left(\sum_{i=1}^{S} p_i^{q}\right)^{1/(1-q)}$$

- Sequencing depth and rare biosphere?
 - Subsample sequences to equal library sizes
 - Correct the number of singletons per sample
 - Use rarefaction curves to estimate covered diveristy by available sequencing depth

Rarefaction curves

• Dissimilarity vs. distance

	OTU1	OTU2	OTU3	OTU4
S1	14	2	14	14
S2	10	14	0	8
S3	0	5	0	2
S4	0	0	1	0

• Dissimilarity vs. distance

	OTU1	OTU2	OTU3	OTU4
S1	14	2	14	14
S2	10	14	0	8
S3	0	5	0	2
S4	0	0	1	0
	•		<u> </u>	

Asymmetrical vs. symmetrical **Bray-Curtis** vs. euclidean

	S1	S2	S3	S4		S1	S2	S3	S4
S1	0					0			
S2	0 0.5	0			S2	19.8	0		
S3	0.8	0.6 1	0		S3	23.3	14.7	0	
S4	1.0	1	1	0	S4	23.8	19	5.5	0

• Dissimilarity vs. distance

	OTU1	OTU2	OTU3	OTU4
S1	14	2	14	14
S2	10	14	0	8
S3	0	5	0	2
S4	0	0	1	0
	•	4	_ \	

Asymmetrical vs. symmetrical **Bray-Curtis** vs. euclidean

		S2				S1	S2	S3	S4
S1	0				S1	0			
S2	0.5	0			S2	19.8	0		
S3	0.8	0.6	0		S3	23.3	14.7	0	
S4	1.0	1	1	0	S4	23.8	14.7 19	5.5	0

- Zeros in ecology: Is this species really not there or did we just not find it?
- → double zeros not relevant

Dissimilarity vs. distance

- Zeros in ecology: Is this species really not there or did we just not find it?
- → double zeros not relevant

Ordination

 Visualization of a multidimensional matrix in a reduced set of dimensions (e.g. 2)

Ordination

- Visualization of a multidimensional matrix in a reduced set of dimensions (e.g. 2)
- Non-metric multidimensional scaling (NMDS)

 Testing statistical differences between environmental conditions for each OTU

- Testing statistical differences between environmental conditions for each OTU
- Compositionality correction: Centered log-ratio transformation (clr) $log(x_i) log(n\sqrt{product(x_1 ... xn)})$

- Testing statistical differences between environmental conditions for each OTU
- Compositionality correction: Centered log-ratio transformation (clr) $log(x_i) log(n\sqrt{product(x_1 ... xn)})$
- P-value correction:

Family-wise error rate Significance threshold per comparison
$$\frac{FWER}{n} = 1 - (1 - alpha)^n + \frac{\text{Number of comparisons}}{\frac{n}{1}} = \frac{\text{Number of comparisons}}{\frac{n}{1}} = \frac{1}{0.05} = \frac{1}{1} = \frac{1}{0.05} = \frac{1}{0.05}$$

- Testing statistical differences between environmental conditions for each OTU
- Compositionality correction: Centered log-ratio transformation (clr) $log(x_i) log(n\sqrt{product(x_1 ... xn)})$
- P-value correction:

Implementation: ALDEx2
 (http://www.microbiomejournal.com/content/2/1/15,
 https://github.com/ggloor/ALDEx2)

Useful links and literature

Tutorials:

- GUSTAME: https://sites.google.com/site/mb3gustame/
- Github: https://github.com/chassenr/Tutorials/tree/master/R_course_MPI
- Vegan: http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf

Alpha diversity:

- Chao et al. 2014: http://onlinelibrary.wiley.com/doi/10.1890/13-0133.1/abstract
- Chiu and Chao 2016: https://www.ncbi.nlm.nih.gov/pubmed/26855872
- iNEXT: https://cran.r-project.org/web/packages/iNEXT/iNEXT.pdf

Recent advances in NGS data analysis

- Mini reviews:
 - http://www.sciencedirect.com/science/article/pii/S1047279716300722, http://www.sciencedirect.com/science/article/pii/S1047279716300734
- SPIECEASI: https://github.com/zdk123/SpiecEasi
- Random forests: https://rpubs.com/michberr/randomforestmicrobe
- Balance trees: http://msystems.asm.org/content/2/1/e00162-16

Thank you for your attention!

Any questions?