# The Weighted Set Cover Problem

- ▶ We are given a set S of size n, and a family  $\mathcal{F}$  of subsets of S
  - ▶ Each set T in  $\mathcal{F}$  has an associated nonnegative cost c(T)
  - ▶ A set cover is a subset C of F such that  $\bigcup_{T \in C} T = S$
  - ▶ The cost of a set cover C is  $\sum_{T \in C} c(T)$
  - ▶ We seek a minimum-cost set cover
  - We assume that F is itself a set cover, so a solution is guaranteed to exist



#### NP-Hardness of Set Cover

- ► The vertex cover problem corresponds to a special case of the set cover problem
  - Let G = (V, E) be an instance of the (unweighted) vertex cover problem
  - ▶ The set *S* of elements to be covered is *E*
  - ▶ The family  $\mathcal{F}$  of subsets of S includes one set  $T_v$  for each vertex in V, namely, the set of all edges incident on v
  - Every set in F has unit cost
- Thus the (unweighted) set cover problem is NP-hard

### A Greedy Algorithm

- ▶ We initialize  $\mathcal{C}$  to  $\emptyset$ , and we repeatedly apply a greedy rule to determine a set in  $\mathcal{F}$  to add to  $\mathcal{C}$ , terminating when  $\mathcal{C}$  is a set cover
- ▶ The greedy rule selects the "best bang for the buck" set
  - ▶ Let S' denote the uncovered elements  $S \setminus (\cup_{T \in C} T)$
  - ▶ We select a set T in  $\mathcal F$  minimizing  $c(T)/|S'\cap T|$

### A Price-Based Analysis of the Greedy Algorithm

- For the purposes of analysis, it is useful to assign a price p(e) to each element e of S, as follows
  - ▶ Let *T* be the first set selected by the algorithm that includes *e*
  - ▶ We set p(e) to the ratio  $c(T)/|S' \cap T|$  in the iteration that selected T
  - ▶ Thus the sum of the prices determined in this iteration is  $\sum_{e \in S' \cap T} p(e) = c(T)$
- ▶ Upon termination, the cost of the set cover C is equal to  $\sum_{e \in S} p(e)$

### An Upper Bound for the Greedy Algorithm

- Let  $e_i$  be the *i*th element of S covered by the greedy algorithm,  $1 \le i \le n$ , breaking ties arbitrarily
- ▶ Let *C*\* denote the cost of a minimum-cost set cover
- ▶ Lemma 1:  $p(e_i) \le C^*/(n-i+1)$ 
  - ▶ In the iteration in which  $e_i$  is covered, we have  $|S'| \ge n i + 1$
  - ▶ The elements in S' can be covered at a cost of at most  $C^*$
  - ▶ Thus  $c(T)/|S' \cap T| \le C^*/(n-i+1)$  for the selected set T

## An Upper Bound for the Greedy Algorithm (cont'd)

▶ Lemma 1 implies that the total cost of the set cover produced by the greedy algorithm is at most

$$\sum_{1 \le i \le n} \frac{C^*}{n - i + 1} = C^* \sum_{1 \le i \le n} \frac{1}{i} = C^* H_n$$

▶ Thus the greedy algorithm achieves an approximation ratio of  $H_n \sim \ln n$ 



### A Bad Example for the Greedy Algorithm

- ▶ Let  $S = \{e_1, ..., e_n\}$
- ▶ Let  $\mathcal{F} = \{T_1, \dots, T_{n+1}\}$  where the sets  $T_i$  are defined as follows
  - ▶ For any integer i such that  $1 \le i \le n$ , we have  $T_i = \{e_i\}$  and  $c(T_i) = \frac{1}{n-i+1}$
  - We have  $T_{n+1} = S$  and  $c(T_{n+1}) = 1 + \varepsilon$  for an arbitrarily small  $\varepsilon > 0$
- How does the greedy algorithm behave on this instance?



### A Bad Example for the Greedy Algorithm (cont'd)

- ▶ In the *i*th round, the greedy algorithm selects  $T_i$  because it has cost ratio 1/(n-i+1)
  - ▶ The sets  $T_j$  with  $1 \le j < i$  have already been selected and thus have infinite cost ratio
  - ▶ For any integer j such that  $i \le j \le n$ , the set  $T_j$  has cost ratio 1/(n-j+1)
  - ▶ The set  $T_{n+1}$  has cost ratio  $(1 + \varepsilon)/(n i + 1)$
- The greedy set cover has cost

$$\sum_{1 \le i \le n} \frac{1}{n - i + 1} = H_n \sim \ln n$$

▶ For  $n \ge 2$ , the optimal set cover has cost  $1 + \varepsilon$ 



### A Bad Example for the Unweighted Case

- Even if we require c(T) = 1 for all sets T in  $\mathcal{F}$ , the worst-case approximation ratio achieved by the greedy algorithm is  $\Omega(\log n)$
- ▶ Let  $S = A \cup B$  where  $A = \{a_1, \ldots, a_{n/2}\}$  and  $B = \{b_1, \ldots, b_{n/2}\}$  are disjoint, and  $n = 2(2^k 1)$  for some integer k > 0
  - Let  $A_0$  denote  $\{a_1\}$ , let  $A_1$  denote  $\{a_2, a_3\}$ , let  $A_2$  denote  $\{a_4, a_5, a_6, a_7\}$ , et cetera
  - ▶ Thus the sets  $A_0, ..., A_{k-1}$  form a partition of A
  - ▶ Similarly, we partition B into sets  $B_0, \ldots, B_{k-1}$
- Let  $\mathcal{F} = \{T_0, \dots, T_{k-1}, A, B\}$  where  $T_i = A_i \cup B_i$  for  $0 \le i < k$



### A Bad Example for the Unweighted Case (cont'd)

- In the first iteration, the greedy algorithm selects  $T_{k-1}$  since it is the largest of the  $T_i$ 's and  $|T_{k-1}| = 2 \cdot 2^{k-1} = 2^k$  while  $|A| = |B| = 2^k 1$
- In the second iteration, the greedy algorithm selects  $T_{k-2}$  since  $|T_{k-2} \cap S'| = 2 \cdot 2^{k-2} = 2^{k-1}$  while  $|A \cap S'| = |B \cap S'| = 2^{k-1} 1$
- ► This continues for *k* iterations, until the greedy algorithm has selected all of the *T<sub>i</sub>*'s
- ▶ There is a set cover {*A*, *B*} of cardinality 2
- ► Thus the worst-case approximation ratio achieved by the greedy algorithm is  $k/2 = \Omega(\log n)$



### Inapproximability of Set Cover

- ▶ Even in the unweighted case, it is known that no polynomial-time algorithm achieves a  $(1 o(1)) \ln n$  approximation ratio for set cover unless P = NP
  - The proof of this claim is beyond the scope of this course
- Thus, assuming P ≠ NP, the greedy algorithm that we have presented provides essentially the best possible polynomial-time approximation guarantee
- Many hardness of approximation results in the literature are based on approximation-preserving reductions from set cover

# Approximating Set Cover via LP Duality

- ► As you might guess, our price-based analysis of the greedy set cover algorithm has a connection to LP duality
- In what follows, we consider two ways to use LP duality to obtain an approximation algorithm for the weighted set cover problem
  - One of these two approaches corresponds to the greedy algorithm presented earlier

### A 0-1 ILP Formulation of Weighted Set Cover

- ▶ We have a 0-1 variable  $x_T$  for each set T in  $\mathcal{F}$
- ▶ For each element *e* in *S*, we have a "covering constraint"

$$\sum_{T \in \mathcal{F}: e \in \mathcal{T}} x_T \ge 1$$

- ▶ The objective is to minimize  $\sum_{T \in \mathcal{F}} c(T)x_T$
- ▶ In the corresponding LP relaxation, for each T in  $\mathcal{F}$  we relax the constraint  $x_T \in \{0,1\}$  to  $x_T \geq 0$ 
  - We refer to the LP relaxation as the primal LP



#### The Dual of the LP Relaxation

- We can mechanically form the dual of the primal LP
- $\triangleright$  We have a nonnegative variable  $y_e$  for each element e in S
- ▶ For each set T in  $\mathcal{F}$ , we have the "packing constraint"

$$\sum_{e\in\mathcal{T}}y_e\leq c(\mathcal{T})$$

▶ The objective is to maximize  $\sum_{e \in S} y_e$ 



### An Algorithm Based on the Primal-Dual Schema

- ▶ Here we proceed as in the development of the price-based approximation algorithm for vertex cover presented in the previous lecture
  - We maintain a feasible solution y that is initialized to the all-zeros vector
  - ▶ The corresponding 0-1 solution, which may be infeasible, sets  $x_T = 1$  if and only if the packing constraint corresponding to T is tight
  - Mhile x is infeasible, we identify an element e of S for which the covering constraint is violated, and we raise  $y_e$  until some packing constraint involving  $y_e$  becomes tight

### An Upper Bound for the Primal-Dual Algorithm

- ▶ Let k denote the maximum, over all elements e in S, of  $|\{T \in \mathcal{F} \mid e \in T\}|$ 
  - ▶ Remark: In the special case of vertex cover, we have k = 2
- ► The primal-dual algorithm achieves an approximation ratio of k for weighted set cover
  - lackbox Let  $\mathcal C$  be the set cover computed by the algorithm
  - ► The cost of C equals  $\sum_{T \in C} c(T)$  which is equal to  $\sum_{T \in C} \sum_{e \in T} y_e \le k \sum_{e \in S} y_e$
  - ▶ The lemma follows since the dual solution y is feasible and has objective function value  $\sum_{e \in S} y_e$

### A Bad Example for the Primal-Dual Algorithm

- ▶ Consider an instance with  $S = \{e_1, ..., e_n\}$  where  $n \ge 3$
- ▶ The family  $\mathcal{F} = \{T_1, \dots, T_{n-1}\}$  of subsets of S, where the  $T_i$ 's are defined as follows
  - $T_1 = S$  and  $c(T_1) = 1 + \varepsilon$  for an arbitrarily small  $\varepsilon > 0$
  - ▶ For any integer i such that  $2 \le i < n$ , we have  $T_i = \{e_2, e_{i+1}\}$  and  $c(T_i) = 1$
- ▶ If the primal-dual algorithm begins by raising  $y_{e_2}$  to 1, then it produces the set cover  $\mathcal{F} \setminus \{T_1\}$  with cost n-1
- ▶ The set cover  $\{T_1\}$  has cost  $1+\varepsilon$



### The "Dual Fitting" Method

- ▶ In the dual fitting method (as applied to a minimization problem), we maintain primal-dual solutions satisfying the following conditions
  - ▶ The primal solution is integral and is feasible upon termination
  - ► The objective function value of the primal solution is at most the objective function value of the dual solution
  - The dual solution is nonnegative but need not be feasible
  - $\blacktriangleright$  If we divide the dual solution by some factor  $\alpha>$  1, it becomes feasible
- Next, we argue that the greedy algorithm presented earlier corresponds to an application of the dual fitting method with α set to H<sub>n</sub>



### Revisiting the Greedy Algorithm

- ▶ Upon termination, let  $y_e$  denote  $p(e)/H_n$  for each e in S
- ▶ Lemma 3: The dual solution *y* is feasible
  - $\blacktriangleright$  Let T be a set in  $\mathcal{F}$
  - ▶ The *i*th item covered in T has price at most c(T)/(|T|-i+1)
  - Thus

$$\sum_{e \in T} y_e \leq \frac{1}{H_n} \sum_{1 \leq i \leq |T|} \frac{c(T)}{|T| - i + 1} = \frac{H_{|T|}}{H_n} \cdot c(T) \leq c(T)$$

### Revisiting the Greedy Algorithm (cont'd)

- ► The greedy algorithm maintains the invariant that the sum of the prices is equal to the cost of the selected sets
- ▶ Thus, upon termination, the cost of the set cover is equal to  $\sum_{e \in S} p(e)$
- ▶ By Lemma 3 and the weak duality theorem, the optimal objective function value for the primal is at least  $(1/H_n)\sum_{e\in S}p(e)$
- ▶ Thus the approximation ratio achieved by the greedy algorithm is at most  $H_n \sim \ln n$

## The Integrality Gap of the Set Cover LP

- ▶ We will prove that the integrality gap of (unweighted) set cover is  $\Omega(\log n)$ , where n denotes the size of the set to be covered
- ► We will construct an infinite family of set cover instances parameterized by a positive integer *k*
- ▶ For any k, the associated set cover instance is defined in terms of the vector space  $\mathbb{F}_2^k$
- lacktriangle We begin by reviewing some basic facts about  $\mathbb{F}_2^k$

# The Vector Space $\mathbb{F}_2^k$

- ▶ The vector space  $\mathbb{F}_2^k$  has  $2^k$  elements
  - ► Each element is a 0-1 vector of length *k*
  - ▶ Addition in  $\mathbb{F}_2$  corresponds to  $\oplus$
  - ▶ Multiplication in  $\mathbb{F}_2$  corresponds to  $\land$
  - ▶ The inner product  $\langle u,v\rangle$  of two vectors u and v in  $\mathbb{F}_2^k$  is defined in the usual manner, except addition and multiplication are performed in  $\mathbb{F}_2$

### The Set Cover Instance $I_k$

- Let V denote  $\mathbb{F}_2^k$  and let  $V^*$  denote V minus the all-zeros vector
- For any u in V, let  $T_u$  denote

$$\{v \in V \mid \langle u, v \rangle = 1\} = \{v \in V^* \mid \langle u, v \rangle = 1\}$$

- ▶ We define the set of elements to be covered as  $V^*$  and the family  $\mathcal{F}$  of subsets of  $V^*$  as  $\{T_u \mid u \in V\}$ 
  - ▶ Thus  $|V^*| = 2^k 1$  and  $|\mathcal{F}| = 2^k$

### A Key Claim

- Lemma 4: Each vector in V\* belongs to exactly half of the sets in F
  - Let v be an arbitrary vector in  $V^*$
  - Let i be an index such that v<sub>i</sub> ≠ 0; such an index exists since v is not the all-zeros vector
  - ▶ Let *u* be a uniformly random vector in *V*
  - We have  $\langle u, v \rangle = \langle u_{-i}, v_{-i} \rangle + u_i$ 
    - ► Here  $u_{-i}$  (resp.,  $v_{-i}$ ) denotes the vector u (resp., v) with component i removed
  - ▶ By deferring the random choice of  $u_i$  until after  $u_{-i}$  has been chosen, it is easy to see that  $\Pr(\langle u, v \rangle = 1) = \frac{1}{2}$

#### A Good Fractional Solution

- ▶ The relaxed set cover LP has a variable  $x_T$  for each set T in  $\mathcal{F}$
- ▶ We claim that by setting each variable  $x_T$  to  $\frac{2}{|\mathcal{F}|}$ , we obtain a feasible solution
  - Fix a vector v in  $V^*$
  - ▶ By Lemma 4, we have  $\sum_{T \in \mathcal{F}: v \in T} x_T = \frac{|\mathcal{F}|}{2} \cdot \frac{2}{|\mathcal{F}|} = 1$
- ▶ This feasible solution has an objective function value of 2
  - We have  $\sum_{T \in \mathcal{F}} x_T = |\mathcal{F}| \cdot \frac{2}{\mathcal{F}} = 2$

### A Lower Bound for any Integral Solution

- ▶ Let  $C = \{T_{u_1}, \ldots, T_{u_\ell}\}$  be a set cover
- ▶ For any i,  $0 \le i \le \ell$ , let  $V_i$  denote  $V \setminus (\cup_{1 \le j \le i} T_{u_j})$
- ▶ Thus  $V_0 = V$  and for  $1 \le i \le \ell$ ,  $V_i$  is the subspace of all vectors v in  $V_{i-1}$  such that  $\langle u_i, v \rangle = 0$
- ▶ Thus the dimension of  $V_i$  is at most one less than the dimension of  $V_{i-1}$  for  $1 \le i \le \ell$
- ▶ Since V has dimension k,  $V_{\ell}$  has dimension at least  $k \ell$
- ▶ Since  $\mathcal C$  is a set cover,  $V_\ell \cap V^* = \emptyset$  and hence the dimension of  $V_\ell$  is zero
- ▶ We conclude that  $\ell \ge k$



## A Lower Bound for the Integrality Gap

- ▶ Instance *I<sub>k</sub>* admits a fractional solution with objective function value 2
- ▶ Any integral solution has objective function value at least *k*
- ▶ The cardinality of the set  $V^*$  to be covered is  $2^k 1$
- ► Thus the integrality gap is at least  $\frac{k}{2}$
- ▶ Letting n denote  $2^k 1$ , we find that the integrality gap is  $\Omega(\log n)$