

Developing an Energy-Harvesting, Failure-Tolerant Sensing Platform for Greenhouse Monitoring

Diana Zhang <a href="m

Tamara Ortega

<tortega@g.clemson.edu>

Josiah Hester

Jacob Sorber

<jhester@clemson.edu> <jsorber@clemson.edu>

Goal: Develop a hardware platform for efficient greenhouse monitoring

Current greenhouse watering methods use about 2x more water than required

Power

- Solar-powered
- Federated supply:

 Powers core & 2 Peripherals

 Each peripheral has its own cap

 Scalable to support more periphs
- Easily Customizable

Design Plan

ULP µC Core

- FRAM -- fast data write
- Programming Interface
- Controls peripherals
- Modular connections
 Power Board, Radio Board, etc

Results & Conclusions

- Modular Design for Prototyping
- Low-Maintenance Sensing
- Flexible, Batteryless Design

Future Work

- Peripheral Development
 Sensors: Leaf Wetness, Temperature, etc.
 Radios
- Developing Network Capabilities

