# DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning (arxiv)

### **Key Highlights**

#### 問題

- 這篇論文旨在解決什麼問題? 這篇論文旨在通過強化學習(Reinforcement Learning, RL)提升大型語言模型(Large Language Models, LLMs)的推理能力,特別是針對實現測試時的擴展和推理表現,達到與OpenAI的o1系列模型相當的挑戰。
- 現有的方法有哪些,這些方法有什麼局限性? 現有的方法包括基於過程的獎勵模型,強化學習方法及搜尋算法(如蒙特卡洛樹搜尋,Beam Search)。然而,這些方法的推理性能並未能達到與OpenAI的o1系列模型相當的水平。傳統方法極度依賴於大量的監督數據,這些數據的收集非常耗時。

#### 解決方案

- 這篇論文提出了什麼解決方案? 論文提出兩個主要方法:(1) DeepSeek-R1-Zero 沒有監督微調,直接應用強化學習於基礎模型,(2) DeepSeek-R1 包含冷啟動數據的多階段培訓管道,包括RL、SFT及額外的RL階段。
- 這個想法的靈感來自哪裡?是否受其他論文影響? 該方法的靈感來自於OpenAI o1 系列在推理時擴展的成功,通過思維鏈推理。這項工作基於Group Relative Policy Optimization (GRPO) 並探討了純RL訓練的途徑,避免依賴監督數據。
- 什麼理論基礎支持這種方法?該方法使用GRPO算法進行成本效益良好的RL訓練,基於規則的獎勵系統(準確性和格式獎勵),以及一種能在RL過程中自然進展的結構化樣板方法,沒有內容特定的偏見。

#### 實驗

- **實驗表現如何?** DeepSeek-R1在多項標杆測試中達到與OpenAI-o1-1217相當的表現:79.8%(AIME 2024),97.3%(MATH-500),96.3百分位(Codeforces)。DeepSeek-R1-Zero在AIME 2024中的表現從15.6%顯著提升至71.0%。精簡的小模型同樣展示了強勁的表現,7B模型在AIME 2024中達到55.5%。
- **該方法有哪些限制或假設?** 方法假設基於規則的獎勵系統足夠,並避免使用神經獎勵模型,因為擔心獎勵投機問題。它需要大量的計算資源來進行大規模RL訓練,並且對提示詞設計敏感。

#### 創新

• 這篇論文有什麼重要或新穎的發現? 論文證明推理能力可以純粹通過RL而非監督微調來實現,展示了如自我驗證和反思等復雜行為的自然發展。論文有效地將大型模型中的推理模式蒸餾到小型模型,而不是直接將RL應用於小型模型。

#### 評論 / 評析

- 這篇論文有什麼局限性? 論文承認了一些局限性:語言混合問題,非推理任務表現相比DeepSeek-V3有所下降,對提示詞設計敏感,並且由於評估時間限制,在軟體工程任務上的改進有限。
- 這篇論文是否有效支持其主張? 論文通過多重標杆測試提供了全面的實驗驗證,並包含與強勁基線模型的比較。然而,一些結果依賴於官方報導而非直接評估,且論文缺乏與傳統方法相比的計算成本和訓練效率的詳細分析。

## **Comprehensive Analysis**

No section notes.

### References

No references found.