Introduction to Machine Learning

Latent Variable Models

Mingchen Gao

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA mgao8@buffalo.edu Slides Adapted from Varun Chandola

Outline

Latent Variable Models

Latent Variable Models - Introduction

Mixture Models

Using Mixture Models

Parameter Estimation

Issues with Direct Optimization of the Likelihood or Posterior

Expectation Maximization

EM Operation EM for Mixture Models K-Means as EM

Latent Variable Models

- lacktriangle Consider a probability distribution parameterized by $oldsymbol{ heta}$
- ▶ Generates samples (x) with probability $p(x|\theta)$

2-step generative process

Latent Variable Models

- lacktriangle Consider a probability distribution parameterized by $oldsymbol{ heta}$
- ▶ Generates samples (x) with probability $p(x|\theta)$

2-step generative process

1. Distribution generates the hidden variable

Latent Variable Models

- lacktriangle Consider a probability distribution parameterized by $oldsymbol{ heta}$
- ▶ Generates samples (x) with probability $p(x|\theta)$

2-step generative process

- 1. Distribution generates the hidden variable
- 2. Distribution generates the observation, given the hidden variable

Magazine Example - Sampling an Article

- ▶ Assume that the editor has access to p(x)
- **x** a random variable that denotes an article

Direct Model

▶ Sample from p(x) for an article

Magazine Example - Sampling an Article

- Assume that the editor has access to p(x)
- **x** a random variable that denotes an article

Direct Model

▶ Sample from p(x) for an article

Latent Variable Model

- 1. First sample a topic z from a topic distribution p(z)
- 2. Pick an article from the topic-wise distribution $p(\mathbf{x}|z)$

Latent Variable Models - Introduction

- The observed random variable x depends on a hidden random variable z
- \triangleright z is generated using a *prior* distribution p(z)
- \triangleright x is generated using p(x|z)
- ▶ Different combinations of p(z) and p(x|z) give different latent variable models
 - 1. Mixture Models
 - 2. Factor analysis
 - 3. Probabilistic Principal Component Analysis (PCA)
 - 4. Latent Dirichlet Allocation (LDA)

Mixture Models

A latent discrete state

$$z \in \{1, 2, \dots, K\}$$

- ▶ $p(z) \sim Multinomial(\pi)$
- \blacktriangleright For every state k, we have a probability distribution for ${\bf x}$

$$p(\mathbf{x}|z=k)=p_k(\mathbf{x})$$

Overall, probability for x

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k p_k(\mathbf{x}|\boldsymbol{\theta})$$

- ▶ A convex combination of p_k 's
- \blacktriangleright π_k is the probability of k^{th} mixture component to be true
 - \triangleright Or, contribution of the k^{th} component
 - Or, the mixing weight

6 / 21

CSE 4/574

Using Mixture Models

1. Black-box Density Model

- ▶ Use $p(\mathbf{x}|\boldsymbol{\theta})$ for many things
- ► Example: class conditional density

2. Clustering

- ► Soft clustering
 - 1. First learn the parameters of the mixture model
 - ► Each mixture component corresponds to a cluster k
 - 2. Compute $p(z = k | \mathbf{x}, \boldsymbol{\theta})$ for every input point \mathbf{x} (Bayes Rule)

$$p(z = k|\mathbf{x}, \boldsymbol{\theta}) = \frac{p(z = k|\boldsymbol{\theta})p(\mathbf{x}|z = k, \boldsymbol{\theta})}{\sum_{k'=1}^{K} p(z = k'|\boldsymbol{\theta})p(\mathbf{x}|z = k', \boldsymbol{\theta})}$$

Mingchen Gao

▶ **Given**: A set of scalar observations

$$x_1, x_2, \ldots, x_n$$

▶ **Task**: Find the generative model (form and parameters)

▶ **Given**: A set of scalar observations

$$X_1, X_2, \ldots, X_n$$

▶ Task: Find the generative model (form and parameters)

1. Observe empirical distribution of *x*

▶ **Given**: A set of scalar observations

$$X_1, X_2, \ldots, X_n$$

► Task: Find the generative model (form and parameters)

- Observe empirical distribution of x
- Make choice of the form of the probability distribution (Gaussian)

8 / 21

CSE 4/574

▶ **Given**: A set of scalar observations

$$x_1, x_2, \ldots, x_n$$

► Task: Find the generative model (form and parameters)

- Observe empirical distribution of x
- Make choice of the form of the probability distribution (Gaussian)
- 3. Estimate parameters from the data using MLE or MAP (μ and σ)

8 / 21

CSE 4/574

When Data has Multiple Modes

- Single mode is not sufficient
- In reality data is generated from two Gaussians
- ▶ How to estimate $\mu_1, \sigma_1, \mu_2, \sigma_2$?

When Data has Multiple Modes

- Single mode is not sufficient
- In reality data is generated from two Gaussians
- ▶ How to estimate $\mu_1, \sigma_1, \mu_2, \sigma_2$?
- ▶ What if we knew $z_i \in \{1, 2\}$?
 - ► z_i = 1 means that x_i comes from first mixture component
 - z_i = 2 means that x_i comes from second mixture component
- ► Issue: z_i's are not known beforehand
- ▶ Need to explore 2^N possibilities

Optimizing Likelihood or Posterior is Not Possible

- ► For direct optimization, we find parameters that maximize (log-)likelihood (or (log-)posterior)
- ightharpoonup Easy to optimize if z_i were all known

Mingchen Gao CSE 4/574 10 / 21

Optimizing Likelihood or Posterior is Not Possible

- ► For direct optimization, we find parameters that maximize (log-)likelihood (or (log-)posterior)
- \triangleright Easy to optimize if z_i were all known
- \triangleright What happens when z_i 's are not known
 - Likelihood and posterior will have multiple modes
 - ▶ Non-convex function harder to optimize

Mingchen Gao

Estimating Parameters of a Mixture Model

▶ Recall the we want to maximize the log-likelihood of a data set with respect to θ :

$$\hat{oldsymbol{ heta}} = \mathop{\mathsf{maximize}}_{oldsymbol{ heta}} \ell(oldsymbol{ heta})$$

▶ Log-likelihood for a mixture model can be written as:

$$\ell(\theta) = \sum_{i=1}^{N} \log p(\mathbf{x}_{i}|\theta)$$

$$= \sum_{i=1}^{N} \log \left[\sum_{k=1}^{K} p(z_{k}) p_{k}(\mathbf{x}_{i}|\theta) \right]$$

► Hard to optimize (a summation inside the log term)

A 2 Step Approach

- Repeat until converged:
 - 1. Start with some guess for $oldsymbol{ heta}$ and compute the most likely value for $z_i, orall i$
 - 2. Given $z_i, \forall i$, update θ
- ▶ Does not explicitly maximize the log-likelihood of mixture model
- Can we come up with a better algorithm?

A 2 Step Approach

- Repeat until converged:
 - 1. Start with some guess for $oldsymbol{ heta}$ and compute the most likely value for $z_i, orall i$
 - 2. Given $z_i, \forall i$, update θ
- ▶ Does not explicitly maximize the log-likelihood of mixture model
- ▶ Can we come up with a better algorithm?
 - ► Repeat until converged:
 - 1. Start with some guess for θ and compute the probability of $z_i = k, \forall i, k$
 - 2. Combine probabilities to update heta

Expectation Maximization Algorithm

▶ A principled approach to maximize a function with latent variables

At iteration t, for a given value of $\theta^{(t)}$, let Q be a convex function that is a lower bound of $I(\theta)$

Supplementary Figure 1. Convergence of the EM algorithm. Starting from initial parameters θ^{EO} , the E-step of the EM algorithm constructs a function θ^a that lower-bounds the objective function θ^a $\theta^$

Steps in EM

- ► EM is an iterative procedure
- ightharpoonup Start with some value for θ
- At every iteration t, update θ such that the log-likelihood of the data goes up
 - ▶ Move from θ^{t-1} to θ such that:

$$\ell(oldsymbol{ heta}) - \ell(oldsymbol{ heta}^{t-1})$$

is maximized

EM - Continued

► Complete log-likelihood for any LVM

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{N} \log p(\mathbf{x}_i, \mathbf{z}_i | \boldsymbol{\theta})$$

ightharpoonup Cannot be computed as we do not know z_i

Expected complete log-likelihood

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{t-1}) = \mathbb{E}[\ell(\boldsymbol{\theta}|D, \boldsymbol{\theta}^{t-1})]$$

▶ Expected value of $\ell(\theta|D, \theta^{t-1})$ for all possibilities of \mathbf{z}_i

EM Operation

- 1. Initialize θ
- 2. At iteration t, compute $Q(\theta, \theta^{t-1})$
- 3. Maximize Q() with respect to θ to get θ^t
- 4. Goto step 2

Using EM for MM Parameter Estimation

- EM formulation is generic
- ▶ Calculating (E) and maximizing (M) Q() needs to be done for specific instances

Q for MM

$$Q(\theta, \theta^{t-1}) = \mathbb{E}\left[\sum_{i=1}^{N} \log p(\mathbf{x}_i, z_i | \theta)\right]$$

$$= \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \log \pi_k + \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \log p(\mathbf{x}_i | \theta_k)$$

$$r_{ik} \triangleq p(z_i = k | \mathbf{x}_i, \theta^{t-1})$$

E-Step

▶ Compute r_{ik} , $\forall i, k$

$$r_{ik} = p(z_i = k|\mathbf{x}_i, \boldsymbol{\theta}^{t-1})$$

$$= \frac{\pi_k p(\mathbf{x}_i|\boldsymbol{\theta}_k^{t-1})}{\sum_{k'} \pi_k' p(\mathbf{x}_i|\boldsymbol{\theta}_k'^{t-1})}$$

► Compute *Q*()

M-Step

- ▶ Maximize Q() w.r.t. θ
- ▶ θ consists of $\pi = \{\pi_1, \pi_2, \dots, \pi_K\}$ and $\theta = \{\theta_1, \theta_2, \dots, \theta_K\}$
- ▶ For Gaussian Mixture Model (GMM) $(\theta_k \equiv (\mu_k, \Sigma_k))$:

$$\pi_k = \frac{1}{N} \sum_i r_{ik} \tag{1}$$

$$\mu_k = \frac{\sum_i r_{ik} \mathbf{x}_i}{\sum_i r_{ik}}$$
 (2)

$$\Sigma_k = \frac{\sum_i r_{ik} \mathbf{x}_i \mathbf{x}_i^{\top}}{\sum_i r_{ik}} - \mu_k \mu_k^{\top}$$
 (3)

Is K-Means an EM Algorithm?

- ► Similar to GMM
 - 1. $\Sigma = \sigma^2 \mathbf{I}_D$
 - 2. $\pi_k = \frac{1}{K}$
 - 3. The most probable cluster for x_i is computed as the prototype closest to it (hard clustering)

References

Murphy Book Chapter 21.4