Principal Component Analysis (PCA)

Recimo da smo sproveli anketu i zabeležili visinu i težinu grupe ljudi

Principal Component Analysis (PCA)

- PCA konstruiše mali broj linearnih obeležja koja sumarizuju ulazne podatke
- Ideja je da se rotiraju ose (linearna transformacija koja definiše novi koordinatni sistem), tako da u ovom sistemu
 - Identifikujemo dominantne dimenzije (informacije)
 - Odbacimo manje dimenzije (šum)

Koordinatni sistem

- Koordinatni sistem je definisan skupom ortonormalnih vektora (međusobno ortogonalni jedinični vektori)
- Dužina projekcije tačke x na jedinični vektor v je x^Tv

Primer: Euklidski koordinatni sistem

• Definisan je vektorima v_1,\dots,v_D , gde vektor v_i ima i-tu koordinatu 1, a sve ostale koordinate 0

• Ulazni vektor x ima komponente $x_i = x^T v_i$ i možemo pisati

$$x = \sum_{i=1}^{D} x_i v_i = \sum_{i=1}^{D} (x^T v_i) v_i$$

Koordinatni sistem

• Isto se može uraditi sa bilo kojom ortonormalnom bazom v_1, \dots, v_D :

$$x = \sum_{i=1}^{D} z_i v_i = \sum_{i=1}^{D} (x^T v_i) v_i$$

gde su koordinate u bazi v_1, \dots, v_D date sa $z_i = (x^T v_i)$

 Cilj PCA je da konstruiše intuitivniju bazu gde je većina koordinati mala

- Male koordinate tretiramo kao slučajne fluktuacije i postavljamo ih na 0
- Nadamo se da smo ovim smanjili dimenzionalnost, a sačuvali većinu važnih informacija

Zadatak

- Projektovati *D*-dimenzioni prostor u *K*-dimenzioni prostor $x^{(i)} \in \mathbb{R}^D \to z^{(i)} \in \mathbb{R}^K \ (K \leq D)$
- 1. Pronaći ose novog koordinatnog sistema: v_1, v_2, \dots, v_D
- 2. Transformisati x u novi prostor (koordinate transformisanog vektora su $z_1, z_2, ..., z_D$)
- 3. Recimo da su prvih $K \leq D$ koordinati informativne. Odbacićemo preostale koordinate da bismo dobili ulazni vektor redukovane dimenzionalnosti:

$$z = \begin{bmatrix} z_1 \\ z_2 \\ \dots \\ z_K \end{bmatrix} = \begin{bmatrix} x^T v_1 \\ x^T v_2 \\ \dots \\ x^T v_K \end{bmatrix} = \Phi(x)$$