Examenul de bacalaureat național 2019 Proba E.d) Fizică BAREM DE EVALUARE ȘI DE NOTARE

Model

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ (45 de puncte) Subiectul I

Nr.Item	Soluţie, rezolvare	Punctaj
l.1.	b	3p
2.	C	3p
3.	d	3p
4.	a	3p
5.	b	3p
TOTAL pentru Subiectul I		15p

A. Subjectul al II-lea

II.a.	Pentru:	_	3р
	reprezentarea corectă a forțelor ce acționează asupra corpului.	3р	
b.	Pentru:		4р
	$T_1 = m_A g$	1p	
	$T_{\scriptscriptstyle 1} = m_{\scriptscriptstyle \mathrm{B}} g + F_{\scriptscriptstyle \mathrm{e}0}$	1p	
	$F_{e0} = k \cdot \Delta \ell_0$	1p	
	rezultat final $\Delta \ell_0 = 2$ cm	1p	
C.	Pentru:		4p
	$m_{A}g - T_{2} = m_{A}a$	1p	
	$T_2 - m_{\rm B}g = m_{\rm B}a$	1p	
	$a = \frac{m_A - m_B}{m_A + m_B} g$	1p	
	rezultat final $a = 2 \text{m/s}^2$	1p	
d.	Pentru:		4p
	$F_a = 2T_2$	3р	
	rezultat final $F_a = 4.8 \text{ N}$	1p	
TOTAL	pentru Subjectul al II-lea		15p

A. Subiectul al III-lea

III.a.	Pentru:	4p
	$E_{t_0} = E_{c_0} + E_{p_0}$ 1p	
	$E_{t_0} = E_{c_0} + E_{p_0}$ 1p $E_{c_0} = \frac{mv_0^2}{2}$ 1p	
	$E_{p_0} = mgh_0$	
	rezultat final $E_{t_0} = 14 \text{ J}$ 1p	
b.	Pentru:	4p
	$E_t = E_{t_0}$	
	$E_t = mgh_{\text{max}}$ 2p	
	rezultat final $h_{\text{max}} = 7 \text{m}$	

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

C.	Pentru:	4p
	$L_{G} = mg(h_{max} - h_{0})$ rezultat final $L_{G} = 10 \text{ J}$ 1p	
	rezultat final $L_{\rm G}=10{\rm J}$	
d.	Pentru:	3p
	$E_{t_0} = E_{t_t}$	
	$E_{t_r} = \frac{mv_r^2}{2}$	
	rezultat final $v_f \cong 11.8 \text{ m/s}$	
TOTAL	pentru Subiectul al III-lea	15p

B. ELEM	ENTE DE TERMODINAMICĂ	45 de	e puncte)
Subjectu	TI .		
	Soluţie, rezolvare		Punctaj
l.1.	C		3p
2.	b		3p
3.	a		3p
4.	d		3p
5. TOTAL	b pentru Subiectul I		3p
IOIAL	pentru Subiectui i		15p
B. Subie	ctul al II-lea		
II.a.	Pentru:		3р
	$pV\mu$	_	_
	$m_1 = \frac{\rho V \mu}{R T_1}$	2р	
		1p	
b.	Pentru:	ıρ	4p
J.			46
	$\rho_2 = \frac{p\mu}{RT_2}$	3р	
	-	•	
	rezultat final $\rho_2 = 70 \mathrm{kg \cdot m^{-3}}$	1p	
C.	Pentru:		4p
	$m_{2} = m_{2}$	1	
	$pv = \frac{1}{\mu} R I_2$	1p	
	$pV = \frac{m_2}{\mu} RT_2$ $m_2 = \frac{pV\mu}{RT_2}$		
	$m_2 = \frac{PP}{RT_2}$	1p	
		1	
		1p	
		1p	
d.	Pentru:		4p
	$\frac{p}{r} = \frac{p_2}{r}$	2p	
	$\frac{\rho}{T_2} = \frac{\rho_2}{T_1}$ $\rho_2 = \rho \frac{T_1}{T_2}$	-1-	
	$n = n^{T_1}$	1	
	$P_2 - P \frac{T_2}{T_2}$	1p	
		1p	
TOTAL	pentru Subiectul al II-lea	٠,٣	15p
	ctul al III-lea		
III.a.	Pentru:		4p
		4p	_
b.	Pentru:		3р
		1p	
	$U_1 = 3p_1V_1$	1p	
	rezultat final $U_1 = 1200 \text{ J}$	1p	
C.	Pentru:	<u> </u>	4p
			F
	$L_{12} = vRT_1 \ln \frac{V_2}{V_1}$	2р	
		1n	
		1p	
		1p	
d.	Pentru:		4p
		2р	
	$T_4 = \frac{p_4 V_1}{v P}$	1	
1	$I_4 = \frac{1}{\nu R}$	1p	

1p

15p

rezultat final $Q_{41} = 600J$

TOTAL pentru Subiectul al III-lea

C. PROD Subiectu	UCEREA ŞI UTILIZAREA CURENTULUI CONTINUU	(45 d	le puncte)
Nr.Item	Soluţie, rezolvare		Punctaj
I.1.	d		3p
2.	a		
3.	C		3p 3p 3p 3p
4.	b		3p
5.	C		3p
	pentru Subiectul I		15p
	ctul al II-lea		_
II.a.	Pentru:		3р
	$R_3 = \frac{U_3}{I_3}$	2p	
	I_3	2ρ	
	rezultat final $R_3 = 6 \Omega$	1p	
b.	Pentru:		4p
	$U_2 = U_3$	1p	٦.
		۱,۲	
	$I_2 = \frac{U_2}{R_2}$	2p	
	2	·	
	rezultat final $I_2 = 0.9 \text{ A}$	1p	
C.	Pentru:		4p
	$R_{\rm e} = R_1 + R_p$	1p	
	·	•	
	$R_{\rm e} = R_1 + \frac{R_2 \cdot R_3}{R_2 + R_3}$	2p	
	_ •		
	rezultat final $R_e = 4 \Omega$	1p	
d.	Pentru:		4p
	$E = I \cdot R_e$	1p	
	$I = I_2 + I_3$	1p	
	$E = (I_2 + I_3) \cdot R_e$	1p	
	rezultat final $E = 5.4 \text{ V}$	1p	
ΤΟΤΔΙ	pentru Subiectul al II-lea	١٢	15p
	ctul al III-lea		iop
III.a.	Pentru:		3р
	$=$ U^2		٦,
	$R_1 = \frac{O}{P_1}$	2p	
	•		
	rezultat final $R_1 = 5 \Omega$	1p	
b.	Pentru:		4p
	$I_2 = \frac{P_2}{II}$	25	
	$V_2 = \overline{U}$	3р	
	rezultat final: $I_2 = 2,5 \text{ A}$	1p	
C.	Pentru:	٠٣_	4p
J.	$W_R = I_R \cdot U \cdot \Delta t$	1p	٦.
		ıμ	
	$I_1 = \frac{P_1}{U}$	1p	
		·	
	$I_R = I_2 - I_1$	1p	
	rezultat final $W_R = 1500 \mathrm{J}$	1p	
d.	Pentru:	·	4p
	$\eta = \frac{P_1 + P_2 + P_R}{P_{baterie}}$	2p	
		4	
	$P_{baterie} = E \cdot I_2$	1p	
	rezultat final $\eta \cong 33 \%$	1p	
TOTAL	pentru Subiectul al III-lea		15p

D. OPTICĂ Subiectul I

Nr.Item	Soluţie, rezolvare	Punctaj
l.1.	c	3p
2.	b	3p
3.	С	3p
4.	a	3p
5.	d	3p
TOTAL pentru Subiectul I		15p

D. Subiectul al II-lea

II.a.	Pentru:	4p
	$f = \frac{X_1 X_2}{X_1 - X_2} $ 3p	
	rezultat final: $f = 25 \text{ cm}$	
b.	Pentru:	3р
	$C = \frac{1}{f}$	
	rezultat final: $C = 4 \text{ m}^{-1}$	
C.	Pentru:	4p
	$\frac{x_2}{x_1} = \frac{y_2}{y_1}$	
	rezultat final: $-y_2 = 4 \text{ mm}$	
d.	Pentru:	4p
	$d = f + f_2 $ 3p	
	rezultat final: $d = 45 \mathrm{cm}$	
TOTAL	pentru Subiectul al II-lea	15p

D. Subiectul al III-lea

III.a.	Pentru:	4p
	$\sin i = \frac{d}{2R}$	
	rezultat final: $i = 60^{\circ}$	
b.	Pentru:	3р
	$\delta = i - r$	
	i=2r	
	rezultat final: δ = 30 $^{\circ}$	
C.	Pentru:	4p
	$\sin i = n \sin r$ 2p	
	$r = \frac{i}{2}$	
	rezultat final: $n \cong 1,73$	
d.	Pentru:	4p
	$2\ell = \mathbf{v} \cdot \Delta t$; $\ell = AO$	
	$\ell = 2R\cos r $ 1p	
	v = c/n	
	rezultat final: $\Delta t = 1$ ns 1p	
TOTAL	pentru Subiectul al III-lea	15p