# Chapter 2 Technical preliminaries: Some basic notions of Hilbert Spaces

## Outline

- Inner product, norm and orthogonality
- 2 Limit, closed spaces, Cauchy sequences, and Hilbert spaces
- 3 The Pythagorean theorem and the Projection lemmas
- 4 Some useful results
- 5 Projection into a finite dimensional subspace (The Normal Equations)

Recommended readings: Tsiatis, ch 2, and Luenberger, ch 3

:

# Inner product

Let V be a vector space and let x and y denote vectors in V.

An (real) inner product is any function that assigns to any pair of vectors x and y, a scalar denoted by  $\langle x,y\rangle$  which satisfies (for any a,b real numbers),

$$\begin{split} \langle x,y\rangle &= \langle y,x\rangle, & \text{(commutative)} \\ \langle ax+bz,y\rangle &= a\langle x,y\rangle + b\langle z,y\rangle, & \text{(linearity)} \\ \langle x,x\rangle &\geq 0 \text{ and } \langle x,x\rangle = 0 \text{ if and only if } x=0. & \text{(positive definitiveness)} \end{split}$$

A vector space together with an inner product is called an inner product space or pre-Hilbert space.

Norm of a vector is  $||x||^2 = \langle x, x \rangle$ , and ||x|| is called the length of x.

**Example 2.1.** In the *n*-dimensional Euclidean space

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n,$$
  
 $\|x\|^2 = x_1^2 + x_2^2 + \ldots + x_n^2.$ 

Cauchy-Schwartz inequality  $\langle x,y\rangle^2 \leq \|x\|^2 \|y\|^2$ .

In the 2-dimensional space,



$$\cos(\alpha) = \frac{x_1}{\|x\|} \operatorname{sg}(y_1)$$

$$= \frac{x_1}{\|x\|} \frac{y_1}{\|y_1\|}$$

$$= \frac{x_1}{\|x\|} \frac{y_1}{\|y\|} = \frac{x_1y_1 + x_2y_2}{\|x\|\|y\|}$$

$$= \frac{\langle x, y \rangle}{\|x\| \|y\|}.$$

In an arbitrary vector space, we define the cosine of the "angle" between two vectors as

$$\cos(\alpha) = \frac{\langle x, y \rangle}{\|x\| \|y\|}.$$

The right hand side has absolute value  $\leq 1$  because of the Cauchy-Schwartz inequality.

In the two dimensional Euclidean space, two vectors are orthogonal if they form a straight angle, i.e. if the cosine of their angle is zero, or equivalently, if their inner product is zero.

In an arbitrary inner product space we say that two vectors  $\boldsymbol{x}$  and  $\boldsymbol{y}$  are orthogonal iff

$$\langle x, y \rangle = 0,$$

and we write  $x \perp y$ .

Let  $x_1,x_2,\ldots$  be a sequence of vectors in a space V, the sequence is said to converge in V if there exists a vector x in V such that

$$\lim_{n \to \infty} ||x_n - x|| = 0,$$

in which case x is called the limit of the sequence.

A subspace M of a pre-Hilbert space V is closed iff the limit of every converging sequence in M is also in M. That is, if  $x_1, x_2, \ldots$  is a sequence of vectors in M which converges to x, then x is in M.

A Cauchy sequence is any sequence of vectors  $x_1,x_2,\ldots$  which satisfies that for all  $\varepsilon>0$  there exists  $n_0$  such that if  $n\geq n_0$  and  $m\geq n_0$ , then

$$||x_n - x_m|| \le \varepsilon.$$

A space V is complete if for every Cauchy sequence  $x_1,x_2,\ldots$  whose elements are in V, there exists a vector x in V such that x is the limit of  $x_1,x_2,\ldots$ , i.e.

$$\lim_{n \to \infty} ||x_n - x|| = 0.$$

A Hilbert space is a complete linear inner product space.

Any Hilbert space V is closed. This follows from the following argument: Suppose that  $\mathbf{x}_1,\mathbf{x}_2,\ldots$  is a sequence of vectors in  $\mathbf{V}$  such that  $\lim_{n\to\infty}\mathbf{x}_n=\mathbf{x}$ . Then, since every converging sequence is a Cauchy sequence, we have that  $\mathbf{x}_1,\mathbf{x}_2,\ldots$  is a Cauchy sequence. Finally, since  $\mathbf{V}$  is a complete space, then the limit of the Cauchy sequence, i. e.  $\mathbf{x}$  must be an element of  $\mathbf{V}$ .

Another result is that a finite dimensional subspace of a Hilbert space is always closed.

For our purposes we will be interested in the spaces

$$\mathcal{L}_2(\theta) \equiv \left\{ b(\cdot) \text{ real valued: } \int b(x)^2 f(x;\theta) dx < \infty \right\},$$

anc

$$\mathcal{L}_2^0(\theta) \equiv \left\{ b(\cdot) \text{ real valued: } \int b(x)^2 f(x;\theta) dx < \infty, \int b(x) f(x;\theta) dx = 0 \right\},$$

where  $\boldsymbol{x}$  is a scalar or a vector.

The spaces  $\mathcal{L}_2(\theta)$  and  $\mathcal{L}_2^0(\theta)$  are Hilbert spaces with inner product given by

$$\langle b_1(X), b_2(X) \rangle_{\theta} = E_{\theta} \left\{ b_1(X)b_2(X) \right\}.$$

Also, in  $\mathcal{L}_2{}^0(\theta)$ 

11

$$||b(X)||_{\theta}^{2} = \operatorname{var}_{\theta}\{b(X)\}.$$

Here and throughout  $E_{\theta}$  and  $\mathrm{var}_{\theta}$  stand for expectation and variance under  $F_{\theta}$ .

### Some notational remarks

If B denotes an arbitrary set of a Hilbert space H, then  $\bar{B}$  denotes the closure of the set B and [B] denotes the linear span of the set B, i. e.

$$\bar{B} = \left\{ v \in H : \exists v_1, v_2, \ldots \in B \text{ such that } \lim_{n \to \infty} v_n = v \right\},$$

and

$$[B] = \left\{ v \in H : \exists v_i \in B \text{ and } a_i \in \mathbb{R}, i = 1, \dots, k \text{ such that } v = \sum_{i=1}^k a_i v_i \right\}.$$

Thus, in particular,  $\overline{[B]}$  denotes the closed linear span of B.

Theorem 2.1 (Pythagorean theorem). Let  $v_1, v_2, \ldots, v_k$  be mutually orthogonal vectors in  $\Omega$ , then

$$\left\| \sum_{i=1}^{k} v_i \right\|^2 = \sum_{i=1}^{k} \|v_i\|^2.$$

Proof.

$$\left\| \sum_{i=1}^{k} v_i \right\|^2 = \left\langle \sum_{i=1}^{k} v_i, \sum_{j=1}^{k} v_j \right\rangle$$
$$= \sum_{i=1}^{k} \sum_{j=1}^{k} \left\langle v_i, v_j \right\rangle$$
$$= \sum_{i=1}^{k} \left\langle v_i, v_i \right\rangle.$$

In the 2-dimensional space,



$$||v_1||^2 + ||v_2||^2 = ||v_1 + v_2||^2.$$

**Lemma 2.1 (The Projection lemma 1).** Let V be a Hilbert space and let M be a closed linear subspace. Then

 $\blacktriangleright$  Corresponding to any vector x in V, there exists a unique vector  $m_0$  in M such that

$$||x - m_0|| \le ||x - m||$$
 for all  $m$  in  $M$ . (1)

 $ightharpoonup m_0$  satisfies (1) if and only if

 $x-m_0\perp m$  for all m in M.

# The Projection lemma 1



Figure 1: The Projection lemma

**Lemma 2.2 (The Projection lemma 2).** Suppose that M is a subspace (not necessarily closed ) of an inner product space V (not necessarily complete) and let x be a vector in V. Then,

▶ If there exists  $m_0$  in M such that

$$||x - m_0|| \le ||x - m|| \text{ for all } m \text{ in } M,$$
 (2)

then  $m_0$  is unique.

 $ightharpoonup m_0$  satisfies (2) if and only if

 $x - m_0 \perp m$  for all m in M.

# Notational remarks

- ▶ The vector  $m_0$  of the Projection Lemmas, when it exists, is called the projection of the vector x into the space M. Throughout, we will denote it with  $\Pi[x \mid M]$ .
- ightharpoonup If a vector v satisfies

 $V \perp m$  for all  $m \in M$ ,

then we say that m is orthogonal to M and we write

 $V \perp M$ .

- $\blacktriangleright\ M^\perp$  is always a closed linear space (i.e. even if M is neither closed nor linear).
- $\blacktriangleright \ \text{ If } v \perp M \text{ then } \Pi[v \mid M] = 0.$
- ▶ If M is a closed linear space of a Hilbert space V then for any v in V there exist unique vectors m in M and  $m^\perp$  in  $M^\perp$  such that

$$v = m + m^{\perp}$$
.

### Notational remarks

- $\blacktriangleright$  The collection of all vectors that are orthogonal to a set M is denoted with  $M^\perp.$
- ▶ If  $M_1$  and  $M_2$  are any subsets, then

$$M_1 + M_2 \equiv \{v_1 + v_2 : v_1 \in M_1 \text{ and } v_2 \in M_2\} \,.$$

▶ If  $M_1$  and  $M_2$  are orthogonal sets (i.e. any vector of  $M_1$  is orthogonal to any vector of  $M_2$ ), then we write

 $M_1 \oplus M_2$  instead of  $M_1 + M_2$ .

 $\blacktriangleright$  Suppose that  $M_a, a \in \mathcal{A}$  is a, not necessarily countable, collection of closed linear spaces. Let

$$M \equiv \overline{\left[ \bigcup_{a \in \mathcal{A}} M_a \right]}.$$

Suppose that

$$\Pi\left[v\mid M_{a}\right]=0\text{ for all }a\in\mathcal{A},$$

then

$$\Pi[v \mid M] = 0.$$

lacktriangleright If  $M_1$  and  $M_2$  are orthogonal closed linear spaces, then

$$\Pi\left[v\mid M_{1}\oplus M_{2}\right]=\Pi\left[v\mid M_{1}\right]+\Pi\left[v\mid M_{2}\right].$$

► A very important implication of the Pythagorean Theorem is that projecting a vector "contracts" it or leaves it the same, i.e.

$$\begin{split} & \|\Pi[x\mid M]\|^2 \leq \|x\|^2, \\ & \|\Pi[x\mid M]\|^2 = \|x\|^2 \text{ iff } x \in M. \end{split}$$

Proof.

$$||x||^2 = ||\Pi[x \mid M]||^2 + ||x - \Pi[x \mid M]||^2$$

$$> ||\Pi[x \mid M]||^2$$

Further.

$$\|\Pi[x \mid M]\|^2 = \|x\|^2 \text{ iff } \|x - \Pi[x \mid M]\|^2 = 0,$$

or equivalently iff  $x \in M$ .

In matrix form, this is

$$\begin{bmatrix} \langle v_1, v_1 \rangle & \langle v_1, v_2 \rangle & \cdots & \langle v_1, v_p \rangle \\ \langle v_2, v_1 \rangle & \langle v_2, v_2 \rangle & \cdots & \langle v_2, v_p \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle v_p, v_1 \rangle & \langle v_p, v_2 \rangle & \cdots & \langle v_p, v_p \rangle \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix} = \begin{bmatrix} \langle x, v_1 \rangle \\ \langle x, v_2 \rangle \\ \vdots \\ \langle x, v_p \rangle \end{bmatrix}.$$

This is called the Gram Matrix

This system of linear equations is called the NORMAL EQUATIONS.

Suppose that M is a subspace of dimension p, spanned by the vectors  $v_1,\dots,v_p$ . Then, since  $\Pi[x\mid M]$  is in M, it must be that

$$\Pi[x \mid M] = \sum_{i=1}^{p} a_i v_i.$$

We will now calculate the values of  $a_1,\ldots,a_p$ . Since  $x-\Pi[x\mid M]\perp v_j$  for  $j=1,\ldots,p$ , we have

$$\left\langle x - \sum_{i=1}^{p} a_i v_i, v_j \right\rangle = 0 \text{ for } j = 1, \dots, p,$$

or equivalently

$$\sum_{i=1}^{p} a_i \langle v_i, v_j \rangle = \langle x, v_j \rangle \text{ for } j = 1, \dots, p.$$

We will often apply the previous result in the following setting.

The Hilbert space V will be  $\mathcal{L}_2^0(\theta)$  and the vectors  $v_1,\dots,v_p$  will be the scores with respect to the components of a parameter vector  $\theta$  indexing a parametric model. That is,

$$v_j = S_{\theta_j}(\theta); \text{ typically, } S_{\theta_j}(\theta) = \frac{\partial \ln f(X;\theta)}{\partial \theta_j} \quad j = 1, \dots, p,$$

and the subspace M is the space generated by the components of the score vector, throughout denoted by  $\Lambda(\theta)$ , and called the TANGENT SPACE FOR THE MODEL AT  $F_{\theta}$ , i. e.

$$\Lambda(\theta) = \left\{ a^T S_{\theta}(\theta) : a \in \mathbb{R}^p \right\},\,$$

where

$$S_{\theta}(\theta) = (S_{\theta_1}(\theta), S_{\theta_2}(\theta), \dots, S_{\theta_p}(\theta))^T.$$

The Gram Matrix in this case is

$$\begin{bmatrix} \langle v_1, v_1 \rangle & \langle v_1, v_2 \rangle & \cdots & \langle v_1, v_p \rangle \\ \langle v_2, v_1 \rangle & \langle v_2, v_1 \rangle & \cdots & \langle v_2, v_p \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle v_p, v_1 \rangle & \langle v_p, v_2 \rangle & \cdots & \langle v_p, v_p \rangle \end{bmatrix}$$

$$= \begin{bmatrix} E_{\theta} [S_{\theta_1}(\theta)S_{\theta_1}(\theta)] & E_{\theta} [S_{\theta_1}(\theta)S_{\theta_2}(\theta)] & \cdots & E_{\theta} [S_{\theta_1}(\theta)S_{\theta_p}(\theta)] \\ E_{\theta} [S_{\theta_2}(\theta)S_{\theta_1}(\theta)] & E_{\theta} [S_{\theta_2}(\theta)S_{\theta_2}(\theta)] & \cdots & E_{\theta} [S_{\theta_2}(\theta)S_{\theta_p}(\theta)] \\ \vdots & \vdots & \ddots & \vdots \\ E_{\theta} [S_{\theta_p}(\theta)S_{\theta_1}(\theta)] & E_{\theta} [S_{\theta_p}(\theta)S_{\theta_2}(\theta)] & \cdots & E_{\theta} [S_{\theta_p}(\theta)S_{\theta_p}(\theta)] \end{bmatrix}$$

$$= E_{\theta} [S_{\theta}(\theta)S_{\theta}(\theta)^T]$$

$$= I(\theta).$$

Then, if the information matrix  $I(\theta)$  is non-singular, the projection of any real valued function b(X) of X in  $\mathcal{L}_2^0(\theta)$  into the tangent space is

$$\Pi_{\theta}[b(X) \mid \Lambda(\theta)] = a^T S_{\theta}(\theta),$$

where

$$a^{T} = \left( E_{\theta} \left[ b(X) S_{\theta_{1}}(\theta) \right], E_{\theta} \left[ b(X) S_{\theta_{2}}(\theta) \right], \dots, E_{\theta} \left[ b(X) S_{\theta_{p}}(\theta) \right] \right) I(\theta)^{-1}$$
$$= E_{\theta} \left[ b(X) S_{\theta}(\theta)^{T} \right] I(\theta)^{-1}.$$

Conclusion: if  $\Lambda(\theta)$  is the tangent space in a parametric model with score vector  $S_{\theta}(\theta)$ , then

$$\Pi_{\theta}[b(X) \mid \Lambda(\theta)] = E_{\theta} \left[ b(X) S_{\theta}(\theta)^{T} \right] I(\theta)^{-1} S_{\theta}(\theta).$$

30

Remembering that  $\|\Pi[x\mid M]\|^2 \leq \|x\|^2$  and that in  $\mathcal{L}_2^0(\theta)$ ,

$$||b(X)||^2 = \operatorname{var}_{\theta}\{b(X)\},\$$

and noticing that

$$\begin{aligned} & \operatorname{var}_{\theta} \left\{ E_{\theta} \left[ b(X) S_{\theta}(\theta)^{T} \right] I(\theta)^{-1} S_{\theta}(\theta) \right\} \\ &= E_{\theta} \left[ b(X) S_{\theta}(\theta)^{T} \right] I(\theta)^{-1} E_{\theta} \left[ b(X)^{T} S_{\theta}(\theta) \right], \end{aligned}$$

we conclude that for any  $b(X) \in \mathcal{L}_2^0(\theta)$ ,

$$\operatorname{var}_{\theta}\{b(X)\} \geq E_{\theta} \left[b(X)S_{\theta}(\theta)^{T}\right] I(\theta)^{-1} E_{\theta} \left[S_{\theta}(\theta)b(X)\right].$$

We can also deduce the following useful result. Suppose that  $b_1(X), \ldots, b_k(X)$  are k vectors in  $\mathcal{L}_2^0(\theta)$ . Define

$$\underline{b}(X) = (b_1(X), \dots, b_k(X))^T,$$

and in a slight abuse of notation define,

$$\Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)] = \begin{bmatrix} \Pi_{\theta} \left[ b_1(X) \mid \Lambda(\theta) \right] \\ \Pi_{\theta} \left[ b_2(X) \mid \Lambda(\theta) \right] \\ \vdots \\ \Pi_{\theta} \left[ b_k(X) \mid \Lambda(\theta) \right] \end{bmatrix}$$

and we have that

$$\underline{b}(X) - \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)] = \begin{bmatrix} b_1(X) - \Pi_{\theta} \left[ b_1(X) \mid \Lambda(\theta) \right] \\ b_2(X) - \Pi_{\theta} \left[ b_2(X) \mid \Lambda(\theta) \right] \\ \vdots \\ b_p(X) - \Pi_{\theta} \left[ b_k(X) \mid \Lambda(\theta) \right] \end{bmatrix}.$$

So.

$$E\left\{ \left(\underline{b}(X) - \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)]\right) \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)]^{T} \right\} = \underbrace{0}_{k \times k},$$

Hence, since any variance-covariance matrix is positive semidefinite, we obtain that

$$\operatorname{var}_{\theta}(\underline{b}(X)) \ge \operatorname{var}_{\theta} \left\{ \prod_{\theta} [\underline{b}(X) \mid \Lambda(\theta)] \right\},$$

and throughout, if A and B are squared conformable matrices then,  $A \geq B$  designates that A-B is positive semidefinite, i.e. for all conformable vectors v,

$$v^T(A-B)v \ge 0.$$

and

$$\underbrace{\operatorname{var}_{\theta}(\underline{b}(X))}_{k \times k} = \operatorname{var}_{\theta} \left\{ (\underline{b}(X) - \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)]) + \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)] \right\} 
= \operatorname{var}_{\theta} \left\{ (\underline{b}(X) - \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)]) \right\} + \operatorname{var}_{\theta} \left\{ \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)] \right\} 
+ E \left\{ (\underline{b}(X) - \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)]) \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)]^{T} \right\} 
+ E \left\{ \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)] (\underline{b}(X) - \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)])^{T} \right\} 
= \operatorname{var}_{\theta} \left\{ (\underline{b}(X) - \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)]) \right\} + \operatorname{var}_{\theta} \left\{ \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)] \right\}.$$

Therefore,

$$\operatorname{var}_{\theta}(\underline{b}(X)) - \operatorname{var}_{\theta} \left\{ \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)] \right\} = \operatorname{var}_{\theta} \left\{ (\underline{b}(X) - \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)]) \right\}.$$

34

### Finally, remembering that

$$\begin{split} \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)] &= \begin{bmatrix} \Pi_{\theta} \left[b_{1}(X) \mid \Lambda(\theta)\right] \\ \Pi_{\theta} \left[b_{2}(X) \mid \Lambda(\theta)\right] \\ \vdots \\ \Pi_{\theta} \left[b_{k}(X) \mid \Lambda(\theta)\right] \end{bmatrix} \\ &= \begin{bmatrix} E_{\theta} \left[b_{1}(X)S_{\theta}(\theta)^{T}\right] I(\theta)^{-1}S_{\theta}(\theta) \\ E_{\theta} \left[b_{2}(X)S_{\theta}(\theta)^{T}\right] I(\theta)^{-1}S_{\theta}(\theta) \\ \vdots \\ E_{\theta} \left[b_{k}(X)S_{\theta}(\theta)^{T}\right] I(\theta)^{-1}S_{\theta}(\theta) \end{bmatrix} \\ &= E_{\theta} \left[\underline{b}(X)S_{\theta}(\theta)^{T}\right] I(\theta)^{-1}S_{\theta}(\theta), \end{split}$$

we have that

$$\operatorname{var}_{\theta} \left\{ \Pi_{\theta}[\underline{b}(X) \mid \Lambda(\theta)] \right\} = E_{\theta} \left[ \underline{b}(X) S_{\theta}(\theta)^{T} \right] I(\theta)^{-1} E_{\theta} \left[ S_{\theta}(\theta) \underline{b}(X)^{T} \right],$$

and we conclude that

$$\mathrm{var}_{\theta}\{\underline{b}(X)\} \geq E_{\theta}\left[\underline{b}(X)S_{\theta}(\theta)^{T}\right]I(\theta)^{-1}E_{\theta}\left[S_{\theta}(\theta)\underline{b}(X)^{T}\right].$$