PH 4433/6433 HW 3, due Mon. Sept 14

1. Knife-edge Diffraction

In what is known as knife-edge diffraction, an incoming plane wave is partially blocked by a straight edge:

The intensity at the point P with coordinates (x,z) is given by

$$I = \frac{I_0}{8} \left([2C(u) + 1]^2 + [2S(u) + 1]^2 \right)$$

where I_0 is the intensity of the incident wave and

$$u = x\sqrt{\frac{2}{\lambda z}}$$
 $C(u) = \int_0^u \cos(\frac{1}{2}\pi t^2)dt$ $S(u) = \int_0^u \sin(\frac{1}{2}\pi t^2)dt$

- 1. Write a program to calculate I/I_0 using Gauss-Legendre quadrature to do the integrals. In your program, write a separate functions to calculate C(u) and S(u).
- 2. Assume $\lambda = 1$. Plot I/I_0 as a function of x for -5 < x < 5 and comparing (a) z=0.5, (b) z=1, (c) z=2, and (d) z=3. Discuss what value of N is necessary in the Gaussian quadrature to obtain accurate results.

2. Differentiation

Use the 2–, 3–, and 5–point formulas to calculate the first derivatives of the functions $\sin(x)$ and e^x for x=0.1, 10, and 100.

- 1. Print the derivative and the relative error ϵ as a function of h. For what h is the relative error comparable to the machine precision for each x? (use double precision).
- 2. Plot $\log_{10} |\epsilon|$ as a function of $\log_{10} h$. Does the number of decimal places of accuracy agree with what we derived in class?
- 3. On your plots, identify regions where the approximation error dominates and where round-off error dominates. Use xmgrace to estimate the slopes of the plots.

3. Plane pendulum

The period of a plane pendulum of length L is given by

$$T = 2\sqrt{\frac{L}{g}} \int_{-1}^{1} \frac{dx}{\sqrt{1 - x^2}\sqrt{1 - k^2x^2}}$$
 (1)

where g is the acceleration of gravity. The constant k is determined by the highest angle the pendulum reaches, $\theta = \theta_0$:

$$k = \sin(\theta_0/2) \tag{2}$$

As is well known from introductory physics, for small oscillations (θ_0 small) the period $T_s = 2\pi \sqrt{\frac{L}{g}}$.

The form of integral in Eq. 1 is called an elliptic integral of the first kind. It is difficult to calculate using methods such as the trapezoid method because the integrand is singular at $x = \pm 1$. However, it is quite easy to do using Gaussian quadrature. Use Gauss-Chebyshev quadrature, appropriate for integrals of the form

$$S = \int_{-1}^{1} \frac{F(x)}{\sqrt{1 - x^2}} dx \tag{3}$$

Gauss-Chebyshev quadrature is particularly easy because the weights and abscissas can be written exactly. For a N-point quadrature,

$$x_j = \cos\left[\frac{\pi(j-\frac{1}{2})}{N}\right] \qquad W_j = \frac{\pi}{N} \tag{4}$$

Then the approximate integral is simply

$$S \approx \sum_{j=1}^{N} W_j F(x_j) \tag{5}$$

- 1. Set L = g = 1. What is the function F(x) for this problem?
- 2. Write a program to calculate T using Gauss-Chebyshev quadrature.
- 3. Check that you get the small-amplitude period when ϕ_0 is small. Modify the program so that N is chosen automatically to produce a given precision in T (say 10^{-6}). How does the required N depend on θ_0 ?
- 4. Make a plot of T as a function of ϕ_0 in the range $(0,\pi)$.
- 5. Make a plot of T/T_s showing how much the solution differs from the small oscillation result.