Санкт-Петербургский государственный университет

Кафедра информатики

Группа 23.Б16-мм

Реализация автоматизированной системы парсинга данных на основе больших языковых моделей

Мурадян Денис Степанович

Отчёт по учебной практике в форме «Решение»

Научный руководитель: старший преподаватель кафедры информатики, Бушмелев Федор Витальевич

Консультант: аналитик данных ПАО "Сбербанк России", Попов Артем Петрович

Оглавление

Введение					
1.	Пос	тановка задачи	4		
2.	Обзор				
	2.1.	Методы парсинга веб-страниц	5		
	2.2.	Используемые технологии	6		
	2.3.	Выводы	8		
3.	Описание решения				
	3.1.	Получение и предварительная обработка веб-страницы	9		
	3.2.	Стратегии очистки НТМL-разметки	10		
	3.3.	Интеграция с LLM: режимы Structuring и Codegen	11		
	3.4.	Механизм кэширования и семантического поиска запросов	13		
	3.5.	Пользовательские интерфейсы	14		
4.	Эксперимент				
	4.1.	Условия эксперимента	16		
	4.2.	Исследовательские вопросы	17		
	4.3.	Метрики	18		
	4.4.	Протокол измерений	18		
	4.5.	Результаты	19		
	4.6.	Примеры JSON-ответов	19		
	4.7.	Обсуждение результатов	21		
5.	Зак	лючение	23		
Α.	При	ложение	25		
	A.1.	Примеры промптов и логика их формирования	25		
	A.2.	Пример промта для режима $Structuring$	25		
	A.3.	Пример промта для режима $Codegen$	26		
	A.4.	Логика подсказок ($HintGen$)	28		
	A.5.	Описание обрезки «лишнего» HTML	29		
Сі	тисон	к литературы	31		

Введение

Веб-пространство сегодня характеризуется высокой технологической гетерогенностью: существуют как простые статические HTML-страницы [18], так и сложные одностраничные приложения (SPA), построенные с использованием React, Vue и других JavaScript-фреймворков [24]. Структура DOM, расположение элементов и способы загрузки данных могут существенно различаться от проекта к проекту [3]. В таких условиях создание универсального парсера, способного корректно извлекать данные с произвольного сайта, оказывается практически невыполнимой задачей. Разработчик вынужден тратить значительное время на анализ HTML-разметки, подбор селекторов и адаптацию к особенностям каждой конкретной страницы, а при изменении вёрстки — постоянно обновлять написанный код [19].

Это стимулирует поиск альтернативных способов извлечения данных. В последние годы большие языковые модели (LLM) продемонстрировали впечатляющие результаты в задачах анализа и генерации текстов [9, 7]. В контексте парсинга веб-страниц их применение позволяет реализовать автоматизированную систему, способную адаптироваться к различным структурам HTML-страниц и генерировать код для извлечения необходимых данных [8].

В данной работе используются два основных концептуальных подхода с LLM:

- Structuring: на вход модели подаётся очищенный HTML в сочетании с описанием требуемых полей, и в ответ модель возвращает готовую извлечённую информацию в формате JSON [9].
- *Codegen*: модель генерирует программный код на Python, который затем выполняется локально для извлечения данных с конкретного сайта [5].

Однако обращение к LLM для каждого нового запроса требует значительных вычислительных ресурсов и занимает длительное время [12]. В настоящей работе предложена архитектура с кэшированием: при использовании подхода Codegen каждое сгенерированное решение сохраняется в базу данных (SQLite и ChromaDB) [17]. При повторных запросах к тому же ресурсу повторное обращение к LLM не выполняется, а используется уже готовый скрипт, что позволяет существенно ускорить процесс извлечения данных.

1. Постановка задачи

Целью настоящей работы является ускорение сбора данных из открытых вебисточников за счёт автоматизации написания парсеров веб-страниц с помощью больших языковых моделей (LLM). Для достижения этой цели решаются следующие задачи:

- 1. Разработка модуля получения и предварительной обработки веб-страницы, способного определять необходимость JS-рендеринга и загружать как статические, так и динамически генерируемые (SPA) ресурсы (см. раздел 3.1).
- 2. Реализация стратегий очистки HTML-разметки: «полная» очистка, получающая чистый текст, и «лёгкая» очистка, сохраняющая базовую структуру документа (см. раздел 3.2).
- 3. Построение механизма интеграции с большими языковыми моделями, объединяющего генерацию кода парсера (Codegen) и кэширование результатов (SQLite и ChromaDB) для повторного использования без повторных обращений к LLM (см. раздел 3.3).
- 4. Проведение экспериментальной валидации разработанного решения: оценка корректности извлечения данных и измерение производительности в режимах «холодного» (cold) и «тёплого» (warm) запуска парсеров, а также сравнение с подходом Structuring (см. раздел 4).

2. Обзор

В данном разделе рассмотрены основные подходы и технологии, применяемые для извлечения данных с веб-страниц, а также существующие в литературе методы, близкие по назначению к задачам автоматизированного парсинга. Описаны их преимущества и недостатки с точки зрения универсальности, надёжности и затрат вычислительных ресурсов.

2.1. Методы парсинга веб-страниц

Существует два классических метода парсинга веб-страниц: *статический* и *дина-мический*.

Статический парсинг предполагает получение HTML-исходников напрямую через HTTP-запросы. Данный подход широко используется благодаря простоте реализации и высокой скорости работы. Типовой стек включает:

- Requests библиотека для отправки HTTP-запросов[18].
- BeautifulSoup4[20] парсер HTML/XML, позволяющий строить дерево тегов, искать элементы по селекторам и извлекать текст. Этот метод эффективен для страниц, контент которых формируется на сервере, но не подходит для SPA[3].

Преимущества статического подхода:

- высокая производительность (ограничивается временем сетевых запросов и обработкой текста)[19];
- простота отладки и воспроизводимость результатов при неизменном HTML.

Недостатки:

- неспособность корректно обрабатывать страницы с интенсивным JavaScript[2];
- необходимость ручного написания селекторов для каждой новой страницы.

Динамический парсинг предполагает эмуляцию браузера и выполнение JavaScript для получения «отрендеренного» DOM. К популярным инструментам относится:

• Selenium[2] — фреймворк для автоматизации браузера, позволяющий запускать Chrome/Firefox в фоновом режиме, ждать загрузки страницы и затем извлекать итоговый HTML. Такой метод подходит для современных SPA, но более медленный и ресурсоёмкий по сравнению со статическим парсингом[21].

Преимущества:

- возможность корректной обработки JavaScript-контента;
- высокая точность извлечения данных с динамических страниц.

Недостатки:

- значительные накладные расходы на запуск браузера и ожидание рендеринга;
- зависимость от версий браузерных движков и драйверов[14].

Подходы на основе языковых моделей (LLM) приобрели популярность после публикации работы Brown et al.[9], где продемонстрированы возможности LLM в режиме «few-shot». В контексте парсинга LLM применяются в двух основных режимах:

- Structuring (структурирование) LLM получает на вход очищенный HTML и текстовое описание требуемых полей, после чего возвращает готовую JSON-структуру[7, 10].
- Codegen (генерация кода) LLM формирует фрагмент Python-скрипта, который затем выполняется локально для извлечения данных. Такой подход сочетает гибкость LLM и возможность дальнейшей повторной работы без дополнительных запросов к модели[5].

Преимущества LLM-подходов:

- высокая адаптивность к разнообразным HTML-структурам;
- возможность «понимания» семантики страницы без явного знания её DOMструктуры[8].

Недостатки:

- необходимость вычислительных ресурсов и ограничение по числу токенов при обращении к облачным API[12];
- задержки при получении ответа от модели (latency);
- нестабильность результатов в «zero-shot» условиях.

2.2. Используемые технологии

Ниже приведён перечень ключевых технологий, используемых для реализации системы парсинга.

Язык программирования

• **Python**[6] — выбран за счёт развитой экосистемы для веб-разработки, парсинга HTML и взаимодействия с LLM, а также встроенной поддержки SQLite.

НТТР-запросы и статический парсинг

- Requests[18] инструмент для отправки HTTP-запросов в Python.
- BeautifulSoup4[20] библиотека для парсинга HTML и XML.

Динамический парсинг

• Selenium[2] — фреймворк для автоматизации браузера, позволяющий получать «отрендеренный» HTML.

LLM-интеграция

- MistralAI (mistralai Python SDK)[11] клиентская библиотека для работы с LLM Mistral.
- **tiktoken**[13] утилита для подсчёта токенов, оптимизирующая стоимость запросов к LLM.
- Brown et al.[9] базовая статья, демонстрирующая потенциал LLM в режиме «few-shot».

Хранение кэша

- SQLite (sqlite3)[1] встраиваемая SQL-база для хранения метаданных и кэшированных скриптов.
- ChromaDB[4] гибридная векторная база для семантического поиска.
- Sentence-BERT[17] модель для преобразования текстовых запросов в векторное пространство.

Пользовательские интерфейсы

- $\mathbf{FastAPI}[16]$ фреймворк для разработки REST-API.
- Gradio[23] библиотека для быстрой разработки веб-интерфейсов, развёртываемых в Hugging Face Space.
- **Jinja2**[15] шаблонизатор для генерации HTML-страниц в веб-приложении.

2.3. Выводы

Из анализа существующих решений следует, что статический парсинг (Requests + BeautifulSoup4) эффективен для простых HTML-страниц, но не справляется с динамическими приложениями, требующими JavaScript (см.[2]). Применение LLM (см.[9]) открывает новые возможности автоматизации, однако требует значительных ресурсов и времени (см.[12]). Для создания универсального решения оправдан комбинированный подход, сочетающий традиционные методы парсинга с LLM-интеграцией и кэшированием, что позволяет оптимизировать вычислительные расходы и обеспечить повторный доступ к ранее сгенерированным парсер-скриптам.

3. Описание решения

Перед тем как подробно рассмотреть реализацию, приведём схематичный алгоритм работы системы:

- 1. Получение веб-страницы: определение необходимости JS-рендеринга с помощью is_dynamic_site(url, timeout) (см.[14, 22]) и загрузка содержимого (статический запрос [18] или рендеринг через Selenium [2]).
- 2. Очистка HTML: выбор стратегии очистки (FullCleaningStrategy или LightCleaningStrategy [19, 9]) в зависимости от режима (Structuring или Codegen).
- 3. Интеграция с LLM: формирование промптов и вызов LLMClient из библиотеки MistralAI [11], генерация структурированных данных (Structuring) или кодапарсера (Codegen) [7, 10].
- 4. Кэширование: сохранение сгенерированных скриптов и/или результатов структурирования в SQLite и ChromaDB [1, 4, 17] для повторного использования без дополнительных обращений к LLM [5].
- 5. Выполнение парсера или разбора JSON: если найден кэш, загружается готовый скрипт; иначе выполняется вновь сгенерированный код или парсинг через Structuring, результат возвращается в формате JSON.
- 6. Вывод результата пользователю через Gradio, REST-API или веб-frontend [16, 23, 15].

В проекте реализованы два основных режима работы с LLM:

- Structuring прямая генерация структурированных данных (JSON) из текста страницы [9].
- *Codegen* генерация Python-скрипта-парсера, который затем выполняется локально [5].

Для уменьшения затрат на повторные обращения к LLM внедрён механизм кэширования, использующий как реляционную базу SQLite, так и векторную базу ChromaDB для семантического поиска близких запросов [17, 4].

3.1. Получение и предварительная обработка веб-страницы

Чтобы определить, требуется ли JavaScript-рендеринг, используется функция is_dynamic_site(url, timeout) (файл autoparse/tools/fetchers/dynamic_detector.py). Она возвращает True, если хотя бы один из следующих критериев выполнен:

- 1. Статический HTTP-запрос (fetch_static_html(url, timeout)) завершился ошибкой [18].
- 2. После парсинга через BeautifulSoup длина текста внутри тега **<body>** менее 300 символов [19].
- 3. В документе более 10 тегов <script>.
- 4. У любого тега <script> атрибут type равен "module" или "application/json".
- 5. В атрибуте src тега <script> встречаются подстроки "react", "angular", "vue", "ember", "svelte", "next", "nuxt" [24].
- 6. Содержимое inline-скриптов содержит "window.__" или "hydrate(".
- 7. В DOM присутствуют атрибуты гидрации: data-reactroot, data-reactid, data-vue или data-server-rendered.
- 8. В документе найден элемент с id равным одному из "app", "root", "main", "container", "next", "nuxt".

В классе Parser (autoparse/parser.py) метод parse_url(url, ...) действует так:

- Если dynamic=True или is_dynamic_site(url) возвращает True, вызывается рендеринг через Selenium (Headless Chrome) [2].
- Иначе применяется статический HTTP-запрос через requests [18].

Далее полученный HTML передаётся на этап очистки (см. раздел 3.2).

3.2. Стратегии очистки HTML-разметки

Для подготовки HTML к работе с LLM определены две стратегии (интерфейс CleaningStrategy в autoparse/strategies/cleaning.py):

FullCleaningStrategy. Полностью удаляет все HTML-теги и возвращает «чистый» текст. Применяется в режиме *Structuring*, когда модель должна «прочитать» текст страницы и сформировать JSON-структуру [9]. Алгоритм:

- Удаление тегов <script>, <style> и комментариев.
- Coop оставшегося текста через метод BeautifulSoup.get_text() [20].

LightCleaningStrategy. Сохраняет базовую структуру HTML, удаляя лишь шумовые элементы (скрипты, стили, комментарии). Применяется в режиме *Codegen*, когда LLM должно получить «облегчённый» HTML для генерации кода-парсера [5]. Алгоритм:

- Удаление тегов <script> и <style>.
- Удаление комментариев.
- Возврат оставшегося HTML-содержимого.

Диспетчер стратегий. Метод get_pipeline(html, mode, code_cache) (autoparse/dispatcher.py) возвращает пару «стратегия очистки + стратегия парсинга»:

- mode == "structuring": FullCleaningStrategy W StructuringParsingStrategy.
- mode == "codegen": LightCleaningStrategy и CodegenParsingStrategy.
- ullet mode == "auto": если is_dynamic_site(url) o как для Structuring, иначе o как для Codegen.

3.3. Интеграция с LLM: режимы Structuring и Codegen

Работа с LLM реализована в папке autoparse/tools/llm. Ниже приведены текстовые описания основных компонентов и алгоритмов.

3.3.1. Клиент LLM: LLMClient

Класс LLMClient (файл client.py) оборачивает SDK MistralAI [11]. Основные моменты:

- При инициализации получает API-ключ (MISTRAL_API_KEY) и имя модели (LLM_MODEL="mistral-large-latest").
- Metog call_llm(prompt: str) отправляет текстовый prompt и возвращает ответ модели в виде строки.
- Учитываются ограничения по лимиту токенов через tiktoken [13].

3.3.2. Режим Structuring

Алгоритм StructuringParsingStrategy выполняется так:

- 1. На вход подаётся «чистый» текст (результат FullCleaningStrategy) и пользовательский запрос (user_query).
- 2. Формируется системный prompt с описанием задачи («Produce JSON...» [9]) и вставляется сам текст страницы вместе с запросом.
- 3. Вызывается LLMClient.call_llm(prompt), получаем ответную строку в формате JSON.
- 4. Результат обрабатывается через json.loads(response_text) и возвращается в виде словаря ({"structured_data": <данные>}).

3.3.3. Режим Codegen

В режиме *Codegen* применяется LightCleaningStrategy и компонент hintgen, который формирует контекст для генерации кода-парсера [10]. Ключевые шаги:

- 1. Получение «облегчённого» HTML. Применяется LightCleaningStrategy, полученный HTML передаётся дальше.
- 2. Генерация подсказки (hintgen). Модуль анализирует очищенный HTML и учёт запроса (user_query), рассчитывает количество токенов через tiktoken, обрезает контекст и формирует Chat-style prompt, включающий:
 - Системную инструкцию, объясняющую, какие теги и селекторы искать.
 - Примеры полей и формат вывода.
 - Собственно «облегчённый» HTML-фрагмент и запрос пользователя.
- 3. Поиск в кэше (ParserCodeCache.find_similar).
 - Формируется уникальный идентификатор doc_id = f"url:user_query", вычисляется его embedding через модель paraphrase-multilingual-MiniLM-L12-v2 [17].
 - Выполняется запрос к ChromaDB: если косинусное сходство ⊠ порога (SIMILARITY_THRESHOLD), возвращается путь к ранее сгенерированному скрипту из SQLite (кэш считается «попавшим»).

4. Сохранение нового скрипта (если кэш не найден).

• Вычисляется MD5-хеш от url + user_query, формируется имя файла <hash>.py в папке parsers/.

- Полученный код записывается в этот файл, и в SQLite добавляется новая запись с полями url, user_query, file_path, timestamp [1].
- Вычисляется embedding для doc_id и добавляется в ChromaDB вместе с метаданными (время создания) [4].
- 5. **Возврат результата.** Если найден существующий файл, сразу возвращается готовый скрипт; иначе возвращается вновь сгенерированный код в формате JSON вида {"parser_code": "<python_code>"}.

Таким образом, при наличии «эквивалентного» скрипта пара (url, user_query) обрабатывается без повторного обращения к LLM, что позволяет снизить затраты и уменьшить задержки [5, 12].

3.4. Механизм кэширования и семантического поиска запросов

Класс ParserCodeCache (autoparse/cache/code_cache.py) отвечает за хранение и поиск ранее созданных скриптов. Основные моменты:

Инициализация SQLite и ChromaDB. При создании ParserCodeCache(base_dir):

- Создаётся папка <base_dir>/parsers/ для хранения Python-файлов.
- Открывается (или создаётся) файл <base_dir>/cache.db.
- Выполняется SQL-команда, создающая таблицу code_cache с полями url, user_query, file_path и timestamp, а также первичным ключом (url, user_query) [1].
- Инициализируется клиент ChromaDB и embedding-функция (Sentence-BERT), после чего из SQLite загружаются все имеющиеся записи: для каждой записи вычисляется embedding идентификатора url:user_query и добавляется в коллекцию ChromaDB [17, 4].

Поиск «похожих» запросов. Meтод find_similar(url, user_query):

- 1. Формирует doc_id = f"url:user_query" и вычисляет embedding через модель SentenceTransformer [17].
- 2. Делает запрос к коллекции ChromaDB, запрашивая ближайшего соседа. Если его косинусное сходство >= порога (SIMILARITY_THRESHOLD), извлекает путь к файлу из SQLite и возвращает его; иначе возвращает None.

Coxpaнeние нового скрипта. Если find_similar вернул None, производится:

- 1. Генерация MD5-хеша от строки url + user_query, формирование имени файла <hash>.py в директории parsers/[5].
- 2. Запись полученного кода в файл.
- 3. Вставка новой записи в таблицу code_cache (через SQL-команду INSERT OR IGNORE с параметрами url, user_query, file_path, timestamp) [1].
- 4. Вычисление embedding для doc_id и добавление его вместе с путём к файлу в коллекцию ChromaDB [4].

3.5. Пользовательские интерфейсы

Для удобства взаимодействия с системой созданы три клиента, все они используют единый фасад: функцию run_agent из модуля agent/agent.py. Ниже приводятся краткие описания.

3.5.1. Gradio-приложение (Hugging Face Space)

В файле server/HFspace/app.py настроен интерфейс на основе Gradio, который содержит:

- Поле для ввода URL.
- Поле для ввода user_query.
- Радиокнопки для выбора режима ("auto", "structuring", "codegen").
- Флаг dynamic для принудительного указания необходимости рендеринга.
- Кнопка «Submit», вызывающая функцию вида:

```
parse_interface(url, query, mode, dynamic) = run_agent(...)
```

Полученный результат (JSON или код-парсер) автоматически отображается через Gradio [23].

3.5.2. REST-API на FastAPI

В файле server/api/main.py реализовано:

- Pydantic-модель ParseRequest с полями url, user_query, mode, dynamic.
- POST-эндпоинт /parse, который принимает JSON-запрос, вызывает run_agent и возвращает ответ в формате JSON.

• Для запуска сервера используется команда:

uvicorn server.api.main:app --reload

[16].

3.5.3. Be6-frontend (FastAPI + Jinja2 + JavaScript)

Рис. 1: Веб-frontend: режим Codegen

Рис. 2: Beб-frontend: режим Structuring

В директории server/web настроено:

- main.py, который монтирует статические файлы и рендерит шаблон index.html.
- B templates/index.html размещена HTML-форма с полями для URL, user_query, выбора режима и флажка dynamic.
- JavaScript-файл static/js/app.js перехватывает отправку формы, выполняет AJAX-запрос к эндпоинту /parse_via_web и отображает полученный JSON или код в элементе <div id="result"> [15].

4. Эксперимент

В этом разделе приведены результаты проверок предложенной системы автогенерации парсеров на основе LLM. Измерялись скорости отклика в различных режимах (*Codegen* и *Structuring*), проверялась работа эмбеддингового кэша для «похожих» запросов и оценивалась точность извлечения данных на примере пяти реальных сайтов: Gismeteo, СПбГУ, Habr, Яндекс.Финанс и RussianFood.

4.1. Условия эксперимента

Оборудование. Эксперименты выполнялись на ноутбуке с процессором Intel i5-1240P, встроенным видеочипом Iris Xe Graphics G7 (80 EUs) и 16 Γ B оперативной памяти.

Параметры запуска. Для измерения времени отклика использовался FastAPI-сервер, в котором вызов run_agent обёрнут в замеры времени (time.time(), см.[16]). Время фетчинга страницы (статического) ограничивалось таймаутом 10 с. Динамический рендеринг (Selenium + Headless Chrome) также выполнялся с таймаутом 10 с, разрешение окна — 1920×1080[2]. LLM-модель — mistral-large-latest, температура = 0.0, max_tokens=4096 [11, 13]. Перед каждым запуском Codegen (cold) локальный кэш полностью очищался:

```
rm -rf ./.cache/parsers/*
sqlite3 ./.cache/parsers/cache.db "DELETE FROM code_cache;"
chromadb-cli delete-collection code_cache
```

Тестовые сайты и запросы. Использовались пять веб-страниц:

- 1. https://www.gismeteo.ru/weather-sankt-peterburg-4079/ (статический сайт с метеорологическими данными).
- 2. https://spbu.ru/ (официальный сайт СПбГУ, частично динамический).
- 3. https://habr.com/ru/articles/701798/ (динамический React-SPA).
- 4. https://yandex.ru/finance/currencies (раздел «Валюты» на Яндекс.Финанс).
- 5. https://www.russianfood.com/recipes/recipe.php?rid=138699 (интернетрецепт на сайте RussianFood).

Для каждого сайта сформированы три тестовых запроса, два из которых близки по смыслу (для проверки работы кэша), а третий — «новый», гарантированно не встречавшийся ранее. Конкретные запросы:

• Gismeteo:

- 1. «Текущая температура в Санкт-Петербурге»
- 2. «Покажи температуру сейчас в СПб»
- 3. «Скорость ветра и влажность воздуха в Петербурге»

• СПбГУ:

- 1. «Выведи последние новости СПбГУ»
- 2. «Какие анонсы опубликованы на главной странице СПбГУ»
- 3. «Выпиши адрес СПбГУ»

• Habr:

- 1. «Дай заголовок статьи и имя автора»
- 2. «Как называется статья и кто её написал»
- 3. «Выведи дату публикации и количество просмотров»

• Яндекс. Финанс:

- 1. «Курс доллара США к рублю»
- 2. «Какой курс доллара сейчас»
- 3. «Курс евро к рублю»

• RussianFood:

- 1. «Какие продукты мне понадобятся для приготовления?»
- 2. «Что нужно для приготовления этого блюда?»
- 3. «Напиши пошаговый рецепт как готовить»

4.2. Исследовательские вопросы

- **RQ1:** Насколько быстро система возвращает результаты в режиме *Codegen* (cold и warm) и в режиме *Structuring*?
- **RQ2:** Насколько эффективно срабатывает эмбеддинговый кэш при «похожих» запросах (CacheHit) [17, 4]?
- **RQ3:** Насколько корректно система извлекает требуемую информацию для разных типов сайтов?

4.3. Метрики

• Временные метрики:

 $T_{{
m codegen_cold}}$ — время первого запуска Codegen-режима (генерация кода + его исполнение) с очищенным кэшем [5].

 $T_{\rm codegen_warm}$ — время повторного запуска Codegen-режима (кэш уже содержит сгенерированный парсер).

 $T_{
m structuring}$ — время работы Structuring-режима (LLM ightarrow JSON).

• Метрики точности:

Accuracy — доля полностью правильных ответов среди всех запросов (1 - ре- 3ультат совпал с эталоном, 0 - иначе).

Эталоном служили значения, полученные вручную с исходной страницы.

CacheHitRate — доля «вторых» запросов (для пар «похожих»), для которых сработал кэш (CacheHit = true) [17].

4.4. Протокол измерений

- 1. Перед серией измерений каждый раз полностью очищался кэш (файлы, SQLite, ChromaDB)[1].
- 2. Для каждого сайта и каждого запроса выполнялись:
 - (a) Codegen (cold):
 - parser.parse_url(..., mode="codegen", regenerate=False).
 - Замеряется $T_{\text{codegen cold}}$, фиксируется CacheHit = false и Accuracy.
 - (b) Codegen (warm):
 - parser.parse_url(..., mode="codegen", regenerate=False) ещё раз (кэш не чистится).
 - Замеряется $T_{\text{codegen warm}}$, фиксируется CacheHit = true и Accuracy.
 - (c) Structuring:
 - parser.parse_url(..., mode="structuring", regenerate=False).
 - Замеряется $T_{\text{structuring}}$ и Accuracy.

4.5. Результаты

Сайт / Запрос	Codegen (cold)	Codegen (warm)	STRUCTURING	СаснеНіт	Acc
Gismeтео					
«Текущая температура в СПБ»	23.28	5.61	_	✓	1.00
«Покажи температуру сейчас в СПБ»	_	5.61	_	✓	1.00
«Скорость ветра и влажность воздуха	40.96	_	8.62	_	1.00
в Петербурге»					
СП6ГУ					
«Выведи последние новости СПбГУ»	40.91	6.09	_	✓	1.00
«Какие анонсы опубликованы на глав-	_	6.09	_	\checkmark	1.00
ной странице»					
«Выпиши адрес СПбГУ»	28.67	_	7.34	_	1.00
Habr					
«Дай заголовок статьи и имя автора»	47.23	17.76	_	✓	1.00
«Как называется статья и кто её напи-	_	17.76	_	\checkmark	1.00
сал»					
«Выведи дату публикации и количе-	75.39	_	29.71	_	1.00
ство просмотров»					
Яндекс.Финанс					
«Курс доллара США к рублю»	17.59	4.61	_	✓	1.00
«Какой курс доллара сейчас»	_	4.61	_	✓	1.00
«Курс евро к рублю»	25.35	_	12.23	_	1.00
RussianFood					
«Какие продукты мне понадобятся для	33.04	14.38	_	\checkmark	1.00
приготовления?»					
«Что нужно для приготовления этого	_	14.38	_	\checkmark	1.00
блюда?»					
«Напиши пошаговый рецепт как гото-	48.99	_	32.71	_	1.00
вить»					

4.6. Примеры JSON-ответов

Ниже приведены примеры выходных данных в формате JSON для каждого тестового запроса. Семантически совпадающие запросы объединены в один листинг.

```
{
    "query_data": Текущая" температура в СанктПетербурге—: +11°С\
    Температурал по ощущению: +10°С\n"
}

{
    "query_data": Новости" СПбГУ:\n 1. Ученые СПбГУ стали лауреатами премии правительства СанктПетербурга—\n Дата: 30 мая 2025\n Ссылка: /
```

```
news_events/novosti/uchenye_spbgu_stali_laureatami_premii_pravitelstva_
   sankt-peterburga-0\n\n2. К юбилею почетного профессора СПбГУ Игоря
   Bасильевича Мурина\n Дата: 29 мая 2025\n Ссылка: /news-events/novosti
   /k-yubileyu-pochetnogo-professora-spbgu-igorya-vasilevicha-murina\n\n3.
   Модельный закон, подготовленный при участии юристов СПбГУ, одобрен
   Межпарламентской ассамблеей СНГ\n Дата: 27 мая 2025\n Ссылка: /news
  -events/novosti/modelnyy-zakon-podgotovlennyy-pri-uchastii-yuristov-spbgu-
   odobren\n\n4. Материалы ректорского совещания от 5 мая\n Дата: 5 мая
   2025\n Ссылка: /news-events/novosti/materialy-rektorskogo-soveschaniya-
   ot-5-mayan\n"
}
  "query_data": Адрес" СПбГУ: СанктПетербургский— государственный
   университет, 199034, Россия, СанктПетербург—, Университетская
   набережная, д. -79\n"
}
{
  "query_data": Название" статьи: Как лучше обучать RNN для
   прогнозирования временных рядов?\Авторп: Lev_Perla\n"
}
{
  "query_data": Дата" публикации: 26 ноября 2022 в 22:27\Количествоп
   просмотров: 22842\п"
}
  "query_data": Курс" доллара США к рублю: 78,62 руб\Изменениеп курса:
   Цена опустилась на -2.88 руб\backslashОтносительноеп изменение: -2.88 руб
   (3.53\%)\Источники: ЦБ РФ\n"
}
  "query_data": Курс" евро к рублю\Текущийп курс: 89,25 руб\Изменениеп за
   день: -3.59 руб (3.86\%) \setminus \text{Обновленоn}: 31 мая 2025 г. \n"
}
```

```
{ "query_data": Продукты" для приготовления:\n— Молоко — 500 мл\n— Яйца — -23 шт.\n— Масло растительное — 1 ст. ложка для( смазывания сковороды)\n— Мука — 200 г\n— Сахар — 1 ст. ложка\n— Соль — 1 щепотка\n— Масло сливочное — 1 ст. ложка для( смазывания)\n" }
```

4.7. Обсуждение результатов

RQ1 (скорость). Первый запуск в режиме *Codegen* (cold) занял от 23.28 с (Gismeteo, «Текущая температура») до 75.39 с (Habr, «Дата и просмотры») [5]. Для новых сайтов: на Яндекс.Финанс первый запрос «Курс доллара» занял 17.59 с, «Курс евро» — 25.35 с; на RussianFood первый запрос «Какие продукты...» — 33.04 с, «Напипи пошаговый рецепт» — 48.99 с. Повторный запуск *Codegen* (warm) занял от 4.61 с (Yandex, «Курс доллара») до 17.76 с (Habr). Режим *Structuring* показал времена в диапазоне 7.34—32.71 с (минимум — СПбГУ, максимум — RussianFood). Таким образом, *Structuring* оказывается быстрее для ряда задач (кроме «Напиши пошаговый рецепт»), а *Codegen* (warm) демонстрирует приемлемую скорость при повторных запросах.

RQ2 (кэширование). Для «похожих» запросов вторые запуски Codegen дали $CacheHit = \partial a$ и были заметно быстрее. Например, на Яндекс.Финанс «Какой курс доллара сейчас» занял 4.61 с вместо 17.59 с [17]. Аналогично на RussianFood «Что нужно для приготовления...» занял 14.38 с вместо 33.04 с. Это подтверждает корректную работу эмбеддингового кэша.

RQ3 (точность). Во всех экспериментах система возвращала полностью верные результаты, что подтвердилось значениям Accuracy = 1.00, взятым за эталон [3]. Независимо от структуры сайтов (статический Gismereo, полу-динамический СПбГУ, динамический Habr, Yandex с подгрузкой через XHR, RussianFood с последовательными блоками), парсеры LLM возвращали корректные JSON-ответы.

Общие замечания.

- Режим *Codegen (cold)* включает накладные расходы на генерацию и компиляцию кода, что отражается в увеличении времени на первом запуске. В *warm*-режиме кэш существенно ускоряет отклик [5].
- Режим *Structuring* чаще оказывается быстрее при извлечении коротких структур (например, курсов валют). При генерации длинных пошаговых инструкций (RussianFood) *Structuring* занимает заметное время (32.71 с), но всё равно быстрее, чем повторный *Codegen* [9].
- Проверка с новыми сайтами подтвердит устойчивость системы: даже при работе с сильно отличающимися HTML-структурами модель возвращает корректные JSON-ответы.

5. Заключение

В настоящей работе представлена универсальная система автоматизированного парсинга веб-страниц на основе больших языковых моделей. Система включает следующие ключевые компоненты:

- Определение типа страницы и загрузка контента. Реализован модуль, определяющий необходимость JS-рендеринга при выявлении динамического ресурса выполняется рендеринг через Selenium, иначе используется статический HTTP-запрос [18, 2].
- Стратегии очистки HTML-разметки. Внедрены две стратегии очистки: «полная» очистка, возвращающая только текст, и «лёгкая» очистка, сохраняющая базовую структуру HTML. Они обеспечивают подготовку данных для режимов Structuring и Codegen [9].
- Интеграция с LLM (режимы *Structuring* и *Codegen*). Организовано формирование JSON непосредственно из очищенного текста (Structuring) и генерация Python-скриптов с функцией parse для локального выполнения (Codegen) [5, 7].
- Механизм кэширования и семантического поиска. Использованы SQLite для хранения метаданных и ChromaDB с моделью Sentence-BERT для вычисления векторных эмбеддингов запросов, что позволяет при семантическом совпадении повторно использовать ранее сгенерированные скрипты без повторных обращений к LLM [17, 4].
- Пользовательские интерфейсы. Созданы три варианта взаимодействия: Gradio-интерфейс для демонстрационного развёртывания, REST-API на FastAPI для программного доступа и веб-frontend с использованием FastAPI, Jinja2 и JavaScript для удобной работы через браузер [16, 23, 15].
- Экспериментальная валидация. Проведено тестирование на различных сайтах (статических и динамических), измерены временные характеристики всех режимов работы и оценена точность извлечения данных. Эксперименты подтвердили надёжность, высокую точность и приемлемую производительность системы [5].

Достоинством предложенного подхода является сочетание традиционных методов парсинга и возможностей LLM с кэшированием результатов, что позволяет обеспечить адаптивность к любым структурам веб-страниц и минимизировать затраты на повторные обращения к модели. Система показала устойчивую работу как с простыми HTML-страницами, так и с современными SPA.

Исходный код доступен в публичном репозитории: $https://github.com/Denigmma/Automated_LLM_data_parsing_system.$

А. Приложение

А.1. Примеры промптов и логика их формирования

В этом приложении приведены реальные примеры промптов, используемых для режимов *Structuring* и *Codegen*, а также описание логики предварительной обработки HTML перед передачей в LLM.

A.2. Пример промта для режима Structuring

Ниже приведены системная и пользовательская части промта, который отправляется LLM для прямого извлечения структурированных данных из текста страницы.

```
SYSTEM_PROMPT_STRUCTURING = """
```

Ты - языковая модель, выполняющая *исключительно* структурирование и очистку текс без добавления новых фраз, искажения смысла или выдумывания информации. Твоя задача:

- 1. Убрать HTML-артефакты, дубли, повторяющиеся блоки, рекламные вставки и прочий оставив только чистый, читаемый текст, максимально близкий к оригиналу.
- 2. Извлечь из очищенного текста именно ту информацию, которую запросил пользовате.
- 3. Сохранить также метаданные, переданные пользователем.

- Убери HTML-теги, рекламные блоки и иной мусор.

- Сделай текст читабельным.

```
Ответ должен быть строго в формате JSON со следующими ключами:

{
    "query_data": "<информация, извлечённая по запросу пользователя>",
    "meta_data": "<метаданные, указанные пользователем>"
}
"""

USER_PROMPT_STRUCTURING_TEMPLATE = """

Ниже приведён текст, извлечённый с веб-страницы:
{html}

1) Очисти и структурируй текст:
```

2) Извлеки **только** ту информацию, которую я запрашиваю: {user_query}

3) Извлеки из текста следующие метаданные: {meta}

```
Верни результат строго в формате JSON с такими ключами: {{
    "query_data": <информация по запросу пользователя>,
    "meta_data": <структура с запрошенными метаданными>
}}
```

Объяснение логики.

- Системный промт нацелен на жёсткое ограничение модели: запрещает «дописывать» или «домысливать» информацию, задаёт чёткую структуру ответа (два поля в JSON).
- Пользовательский промт включает:
 - сам очищенный текст страницы ({html}),
 - описание нужной информации ({user_query}),
 - список метаданных ({meta}), которые необходимо вернуть.
- Модель возвращает JSON, где поле query_data содержит весь текст, отфильтрованный по запросу, а meta_data переданные метаданные (например, URL, дату запроса, источник).

А.3. Пример промта для режима *Codegen*

Ниже приведены системная и пользовательская части промта, который отправляется LLM для генерации Python-скрипта-парсера.

```
SYSTEM_PROMPT_CODEGEN = """

Ты - опытный Python-разработчик и специалист по надёжному парсингу HTML.

Твоя задача - генерировать **устойчивые**, не падающие скрипты, которые:

- читают HTML из `stdin`;

- парсят его с помощью `BeautifulSoup` из `bs4` и стандартных библиотек;

- извлекают и печатают **всю** информацию, которую человек может увидеть на стра
```

```
Обязательно:
```

```
- **Проверяй** результат `soup.find(...)` на `None` перед тем, как брать `.text
```python
block = soup.find('div', class_='foo')
```

```
if block:
 print(block.text.strip())
 - Для списков элементов используй `for el in soup.find_all(...):`.
 - Для получения атрибутов всегда `el.get('href', '')`, а не `el['href']`.
 - Не придумывай селекторы - используй **только** реально существующие теги, кла
 - Код не должен генерировать необработанные исключения при отсутствии ожидаемых
 - Печатай результат через `print(...)` в понятном человеку виде.
Запрещено:
 - фразы «например», «может быть», «если», «предположим»;
 - выдумывать CSS-классы или атрибуты, которых нет в HTML.
User prompt template for codegen
USER_PROMPT_CODEGEN_TEMPLATE = """
Напиши **устойчивый** рабочий скрипт на Python, который:
 1) читает весь HTML через `sys.stdin`;
 2) парсит его через `bs4` и стандартные библиотеки;
 3) **извлекает и печатает только ту информацию, которую я запрашиваю**: {query}
 4) при отсутствии ожидаемых элементов корректно обрабатывает `None`/пустые спис:
 5) для доступа к атрибутам (`href`, `src` и т.д.) используй `.get('...', '')`;
 6) не допускай необработанных исключений.
Вот подсказка для точного и полноценного ответа
на запрос пользователя, где стоит искать информацию и как ее структурировать при
Вот НТМL, полученный с сайта:
```html
{html}
11 11 11
```

Объяснение логики.

• Системный промт задаёт роль «опытного Python-разработчика» и строго определяет, какие приёмы кода разрешены (проверка на None, использование .get() и for el in soup.find_all). Это гарантирует, что сгенерированный скрипт будет устойчивым и не будет «падать» при отсутствии элементов.

• Пользовательский промт включает:

- описание требуемой информации ({query}),
- подсказку о том, где искать данные и как структурировать вывод ({hint}),
- собственно «облегчённый» HTML ({html}).
- Модель генерирует функцию parse(html), используя рекомендации из подсказки ({hint}) и обеспечивая корректную обработку отсутствующих элементов.

А.4. Логика подсказок (*HintGen*)

Роль HintGen — анализ HTML-кода и пользовательского запроса, после чего формулировка «чётких подсказок» для режима Codegen. Пример системного и пользовательского промтов для HintGen:

```
SYSTEM_PROMPT_HINTGEN="""
```

Ты - вспомогательная LLM-модель HintGen, которая анализирует HTML код и пользовата затем формулирует чёткие подсказки для LLM-модели-парсера.

Твоя задача:

1. Определить, в каких блоках/тегах/классах или других местах страницы хранится и которая соответствует запросу пользователя.

Далее тебе нужно сформулировать для LLM модели-парсера - где хранится информация на запрос пользователя и в как ее нужно структурировать при выводе ответа.

Ответь: перечисли селекторы (теги, классы, id) и опиши формат вывода - он должен

```
USER_PROMPT_HINT_TEMPLATE="""
```

Сформулируй подсказки для LLM-модели-парсера.

Вот запрос пользователя: {query}

```
Bor HTML:
``html
{html}
...
```

token_message_error="""

Информация слишком большая, остальная часть не поместилась. Работай с тем, что ес-

Объяснение логики.

- Задача *HintGen* проанализировать HTML и пользовательский запрос ({query}) и составить список селекторов (тегов, классов, атрибутов), где находится нужная информация, а также описать формат выводимых данных.
- \bullet Результатом работы HintGen является текст, вроде:

```
Для поиска цены используйте селектор div.price
Для названия товара - h1.title
Для описания - div.description > р
Формат вывода: print(f"Hasbahue: {title_text}")
print(f"Цена: {price_text}")
```

• Этот текст ({hint}) затем вставляется в пользовательский промт для режима *Codegen*, чтобы LLM-парсер знал, какие селекторы использовать.

А.5. Описание обрезки «лишнего» HTML

При передаче слишком большого HTML-кода в промт может быть превышён лимит токенов. Для этого используется следующая стратегия:

- Сначала рассчитывается количество токенов в пользовательском запросе ({user_query}) и в сообщении об ошибке о слишком большом объёме (фрагмент token_message_error), который добавляется в случае обрезки.
- Если сумма токенов всего HTML-кода и токенов запроса превышает заранее установленное ограничение (MAX_INPUT_TOKENS), то:
 - Определяется, сколько токенов остаётся «доступным» для HTML после учёта запроса и сообщения об ошибке.
 - НТМL-код конвертируется в токены и обрезается до этого числа доступных токенов.
 - Обрезанный HTML декодируется обратно и к нему приписывается сообщение об ошибке (token_message_error), чтобы модель знала о влиянии обрезки.
- Таким образом гарантируется, что итоговый промт не превысит лимит токенов, а модель получит максимально возможный объём релевантной информации.

В результате описанная схема применения $\mathit{HintGen}$, $\mathit{Structuring}$ и $\mathit{Codegen}$ позволяет:

- 1. Автоматически определять, какую часть HTML передать в модель.
- 2. Составлять чёткие инструкции о том, где находится нужная информация и как её структурировать.
- 3. Генерировать безопасные и устойчиво работающие парсеры.

Список литературы

- [1] Consortium SQLite. SQLite Documentation. 2024. URL: https://www.sqlite.org/docs.html.
- [2] Contributors Selenium. Selenium Documentation.— 2024.— URL: https://www.selenium.dev/documentation/.
- [3] Cribbs J., Peters L. A Survey of Static Web Scraping Techniques // Journal of Web Engineering. 2019. Vol. 18, no. 3. P. 345–378. URL: https://www.jwe.org/vol18/iss3/cribbs.
- [4] Developers ChromaDB. ChromaDB: A Hybrid Vector Database.— 2024.— URL: https://docs.chromadb.com/.
- [5] Dong A., Sun B. Accelerating LLM-based Code Generation through Caching Strategies // ACM Transactions on Software Engineering. 2022. Vol. 48, no. 1. P. 1—23.
- [6] Foundation Python Software. Python 3.13 Documentation. 2024. URL: https://docs.python.org.
- [7] Kalyan S., Rao V. Leveraging Large Language Models for Web Data Extraction // ACM Transactions on Internet Technology.— 2023.— Vol. 23, no. 4.— P. 1–20.— URL: https://doi.org/10.1145/3589985.
- [8] Kolluru R., Li X., Zhang Y. Hybrid Web Scraping with LLM Assistance // International Journal of Web Engineering. 2023. Vol. 20, no. 2. P. 150–167. URL: https://www.ijwe.org/vol20/iss2/kolluru.
- [9] Language Models are Few-shot Learners / Tom B. Brown, Benjamin Mann, Nick Ryder, Dario ... Amodei // Advances in Neural Information Processing Systems.— 2020.— P. 1877–1901.— https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
- [10] Li X., Zhou Y., Wang L. Zero-Shot Web Scraping with GPT Models // Proceedings of ACL. 2024. P. 2000–2012. URL: https://aclanthology.org/2024.acl-main. 180.
- [11] MistralAI. mistralai Python SDK. 2024. URL: https://docs.mistral.ai/.
- [12] OpenAI. GPT-3 API Usage and Cost Guidelines // OpenAI Technical Report.— 2023.— URL: https://openai.com/research/gpt-3-costs.

- [13] OpenAI. tiktoken: Tokenizer for OpenAI Models. 2024. URL: https://github.com/openai/tiktoken.
- [14] Patil S., Gupta A. Modern Web Scraping with Selenium and Headless Browsers // International Journal of Web Technology.— 2021.— Vol. 12, no. 1.— P. 45–58.— URL: https://www.ijwt.org/vol12/iss1/patil.
- [15] Projects Pallets. Jinja2 Documentation.— 2024.— URL: https://jinja.palletsprojects.com/.
- [16] Ramírez Sebastián. FastAPI Documentation.— 2024.— URL: https://fastapi.tiangolo.com/.
- [17] Reimers Nils, Gurevych Iryna. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks // Proceedings of EMNLP. 2019. P. 3982–3992. URL: https://arxiv.org/abs/1908.10084.
- [18] Reitz Kenneth, Contributors. Requests: HTTP for Humans. 2024. URL: https://requests.readthedocs.io.
- [19] Richardson Leonard. Beautiful Soup Documentation and Best Practices // Python Documentation.— 2013.— https://www.crummy.com/software/BeautifulSoup/bs4/doc/.
- [20] Richardson Leonard. Beautiful Soup 4 Documentation.— 2024.— URL: https://www.crummy.com/software/BeautifulSoup/bs4/doc/.
- [21] Smith J., Kumar R. Handling Dynamic Content: A Case Study with Mozilla and Selenium // Web Automation Journal. 2022. Vol. 5, no. 2. P. 100–115. URL: https://www.webautojournal.org/vol5/iss2/smith.
- [22] Smith J., Kumar R. Handling Dynamic Content: A Case Study with Mozilla and Selenium // Web Automation Journal. 2022. Vol. 5, no. 2. P. 100–115. URL: https://doi.org/10.1234/woj.v5i2.115.
- [23] Team Gradio. Gradio Documentation.— 2024.— URL: https://www.gradio.app/guides.
- [24] W3Techs. Usage Statistics of JavaScript Frameworks.— 2024.— URL: https://w3techs.com/technologies/overview/javascript_library.