AYUSH PANDEY

Graduate Student. Caltech

@ apandey@caltech.edu

1200 E. California Blvd MC 136-93

Pasadena, CA

% ayush-pandey.github.io

EXPERIENCE

California Institute of Technology

Electrical Engineering

May - Oct 2016

Pasadena, CA

- → Information-Performance Tradeoffs in Control. Mentor: Prof. V. Kostina
- Worked on optimal control design with communication constraints —
 Rate-limited feedback, stochastic system parameters, noisy feedback channel.
 - ightarrow Adaptive Quantizer Design for Fixed Rate-Limited Control. Mentor: Dr. Anatoly Khina, Postdoctoral scholar with Prof. Babak Hassibi
- Studied adaptive quantizer designs for fixed rate-limited feedback channels.

California Institute of Technology

Laser Interferometer Gravitational Wave Observatory (LIGO)

May - July 2015

Pasadena, CA

- \rightarrow Quantization Noise Analysis in Advanced LIGO Digital Control System. Mentors : Dr. Chris Wipf, Prof. Rana Adhikari
- Developed a MATLAB tool to analyze quantization noise levels of thousands of digital filters in Advanced LIGO controller. Also, designed a noise shaping filter to reduce noise at low bandwidths.

Indian Institute of Technology, Kharagpur

Autonomous Ground Vehicle (AGV) Research Group

2013-2017

♀ India

Student Research Group Leader

• Led a team of 40 undergraduate students to various international autonomous robotics competitions. Contributed significantly in the control system design of three different autonomous robots.

PUBLICATIONS

Technical Reports

- Pandey, Ayush, Chirstopher Wipf, et al. (2015). "Quantization Noise Anlysis in Advanced LIGO Digital Control System". In: LIGO DCC, Presented at LIGO Livingston Laboratory, Louisiana, USA. LIGO DCC.
- Pandey, Ayush and Victoria Kostina (2016). "Information Performance Tradeoffs in Control". In: arXiv preprint arXiv:1611.01827. arXiv.

Conference Proceedings

- Pandey, Ayush, Subhamoy Mahajan, et al. (2015). "Low cost autonomous navigation and control of a mechanically balanced bicycle with dual locomotion mode". In: *Transportation Electrification* Conference (ITEC), 2015 IEEE International. IEEE Xplore.
- Pandey, Ayush, Siddharth Jha, and Debashish Chakravarty (2017).
 "Modeling and Control of an Autonomous Three Wheeled Mobile Robot with Front Steer". In: Robotic Computing (IRC), IEEE International Conference on. IEEE Xplore.

RESEARCH INTERESTS

Control theory and its applications to systems and synthetic biology

EDUCATION

Ph.D. in Electrical Engineering

California Institute of Technology

2017 -

Advisors - Prof. Richard Murray

M.Tech. in Control Engineering & B.Tech. in Instrumentation Engineering

PATENT

P

"Autonomous Two-Wheeler with Dual Mode of Locomotion" (co-inventor) Indian Patent Pending 201631025904, Filed Oct. 2016 Developed a passively stable autonomous bicycle.

In the media: The Washington Post| Economic Times | India Today TV Report

AWARDS

Research fellowship

Selected for SURF program at California Institute of Technology (2015 and 2016).

Gold award winner
Won a prize of \$800

Won a prize of \$8000 at national engineering innovation competition organized by KPIT.

Best senior thesis award
For best B.Tech project in
Instrumentation Engineering.

COMPUTER SKILLS

Programming Languages
MATLAB, C, Python
C++, HTML, Assembly Lang
Softwares

Atmel Studio, Arduino IDE Git, SVN, Proteus, LabVIEW

