

(11) Publication number:

2000-003620

(43) Date of publication of application: 07.01.2000

(51)Int.CI.

H01B 1/12 C08F220/02 C08F228/02

(21)Application number: 10-168330

(71)Applicant: SHIKOKU CHEM CORP

(22)Date of filing:

16.06.1998

(72)Inventor: ONO HIROYUKI

ITO KAORI

HIRAO MACHIKO

(54) IMIDAZOLIUM FUSED SALT TYPE ELECTROLYTE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an electrolyte showing high ionic property at room temperature and excellent in thermal stability by using an N-alkyl imidazolium salt obtained by reacting an N-alkyl imidazol compound having alkyl group in only one of 1-position and 3-position with an acid, or polymerizing a reaction product of the N-alkyl imidazol compound with an acid monomer.

SOLUTION: An imidazol compound having a lower alkyl group in only one of 1-position and 3-position such as 1-methylimidazol, 1-ethylimidazol or the like is neutralized with an inorganic acid such as hydrobromic acid, hydrochloric acid, nitric acid, methane sulfonic acid or the like or an organic acid such acetic acid to provide an N-alkyl imidazolium salt. The salt is also used as a polymer by reacting it with an acid monomer such as acrylic acid followed by polymerization. Accordingly, an imidazol room temperature fused salt containing no impurity can be provided. Further, since a salt having various physical properties can be also provided by introducing various anion pairs in synthesis, this is useful as a solid electrolyte material.

LEGAL STATUS

[Date of request for examination]

15.12.2004

[Date of sending the examiner's decision of ... rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-3620 (P2000-3620A)

(43)公開日 平成12年1月7日(2000.1.7)

(51) Int.Cl.7

、識別記号

FΙ

テーマコート*(参考)

H01B 1/12 C08F 220/02

228/02 228/02 H 0 1 B 1/12 C 0 8 F 220/02 228/02 Z 4J100

審査請求 未請求 請求項の数2 OL (全 7 頁)

(21)出顧番号

特顯平10-168330

(22)出顧日

平成10年6月16日(1998.6.16)

特許法第30条第1項適用申請有り 平成10年3月20日 社団法人電気化学会発行の「電気化学会第65回大会講演 要旨集」に発表 (71) 出願人 000180302

四国化成工業株式会社

香川県丸亀市土器町東八丁目537番地1

(72)発明者 大野 弘幸

東京都江戸川区一之江町3002番地ライオン

ズガーデン一之江314

(72)発明者 伊藤 香織

神奈川県横浜市西区戸部町7丁目241番地

(72) 発明者 平尾 満智子

東京都小金井市中町1丁目10番地22号

Fターム(参考) 4J100 AP01P BA56P BC73P CA01 DA55 JA43

(54)【発明の名称】 イミダゾリウム系溶融塩型電解質

(57)【要約】

【課題】 本発明はイミダゾリウム塩を有効成分として使用する電解質において、イミダゾリウム塩に種々のアニオンを導入した化合物を簡便に合成して、多様な物性を備えた室温で高いイオン伝導性を示し、且つ温度安定性に優れた電解質を提供する。

【解決手段】 N-アルキルイミダゾール化合物と酸を 反応させて得られるN-アルキルイミダゾリウム塩、あ るいはN-アルキルイミダゾール化合物と酸モノマーを 反応し、その反応生成物を重合させて得られるN-アル キルイミダゾリウム塩を有効成分とするイミダゾリウム 系溶融塩型電解質。

【特許請求の範囲】

【請求項1】 1位または3位のいずれか一方だけにア ルキル基を有するN-アルキルイダゾール化合物と酸を 反応させて得られるN-アルキルイミダゾリウム塩を有 効成分とするイミダゾリウム系溶融塩型電解質。

【請求項2】 1位または3位のいずれか一方だけにア ルキル基を有するN-アルキルイミダゾール化合物と酸 モノマーを反応し、その反応生成物を重合させて得られ るN-アルキルイミダゾリウム塩を有効成分とするイミ ダゾリウム系溶融塩型電解質。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は室温で高いイオン 伝導性を示し、且つ温度安定性と力学的特性が優れた、 イミダゾリウム系室温溶融塩型電解質に関するものであ

[0002]

【従来の技術】イミダゾリウム化合物を用いて室温溶融 塩を合成する方法としては、1、3-ジアルキルイミダ ゾリウムハライドに、酸アニオンを含む銀塩を反応させ 20 るアニオン交換法が知られている。この方法によれば、 副生成物であるハロゲン化銀が溶媒に難溶性であるた め、精製し易いという利点があるが、使用しうる銀塩の 種類に制約があって所期の室温溶融塩を調製し難いもの であり、また出発物質である1, 3-ジアルキルイミダ ゾリウムハライドを合成し、精製する過程が煩雑である ため、実用化されるに至っていない。

【0003】特開昭60-133669号、同60-1 33670号及び同60-136180号公報には、 1, 3-ジアルキルイミダゾリウムハライド及び1, 2. 3-トリアルキルイミダゾリウムハライドとアルミ ニウムハロゲン化物を使用した電解質が開示されてい る。しかしながら、これらの化合物を用いた電解質は、 室温で高いイオン伝導性を示すものの、アルミニウムハ ロゲン化物が、僅かな水分の混入によって分解したり、 また溶融塩の相状態が温度変化に対して不安定であると いう難点があった。本発明者等は、これらを改善する手 段として既に1、3-ジアルキルイミダゾリウムハライ ド、1、2、3-トリアルキルイミダゾリウムハライド などのイミダゾール誘導体に、酸モノマーなどを反応さ 40 せた溶融塩ポリマーを有効成分と溶融塩型高分子電解質 を提案している。(特開平10-83821号公報) 【0004】近年、溶媒を含まないイオン性液体である

室温溶融塩が、リチウム二次電池用の電解液として期待 されている。イミダゾリウム塩、ピリジニウム塩のよう なオニウム塩のなかには、室温で溶融塩を形成するもの があり、特に有機酸アニオンを対イオンとするイミダゾ リウム塩は、室温における粘度が低いため、その研究例 が増えている。しかしながら、これらのイミダゾリウム うる有機塩に制限があるため、アニオン種の効果に関す

[0005]

【発明が解決しようとする課題】イミダゾリウム塩を有 効成分として使用する電解質において、イミダゾリウム 塩に種々のアニオンを導入した化合物を簡便に合成し て、多様な物性を備えた室温で髙いイオン伝導性を示 し、且つ温度安定性に優れた電解質を提供することを課 題とする。

[0006] 10

・【課題を解決するための手段】電解質として、1位また は3位のいずれか一方だけにアルキル基を有するN-ア ルキルイミダゾール化合物に酸を中和反応させて得られ るN-アルキルイミダゾリウム塩、あるいは前記N-ア ルキルイミダゾール化合物と酸モノマーを反応し、その 反応生成物を重合させて得られるN-アルキルイミダゾ リウム塩を用いることによって、所期の目的を達成しう ることを見い出し本発明を完成するに至った。

【0007】本発明の電解質として使用されるイミダゾ 「リウム系の室温溶融塩は、不純物の含有量が極めて少な いことを特徴とするものである。すなわち、従来知られ ているイミダゾリウム系の室温溶融塩は、無機塩などの 混入によって諸物性、特にイオン伝導性の低下を引き起 こすため、煩雑な精製を余儀なくされていた。単純な塩 を混合する場合は、精製する無機塩の分離精度があまり 向上せず、また難溶性の銀塩を生成させることによっ て、その効率を髙められるものの、銀塩の生成が限られ ているため所期の精製を為し得ないものであった。本発 明によれば、電解質として1位または3位のいずれか一 30 方だけにアルキル基を有するN-アルキルイミダゾール 化合物に酸を中和反応させて得られるN-アルキルイミ ダゾリウム塩、あるいは前記N-アルキルイミダゾール 化合物と酸モノマーを反応し、その反応生成物を重合さ せて得られるN-アルキルイミダゾリウム塩を用いるこ とによって、これらの問題点を一挙に解決し、純度の高 い室温溶融塩を容易に調製することを可能にし、且つ種 々のアニオンを導入した多様な特性を備えた溶融塩を容 易に得ることができる。

[8000]

【発明の実施の形態】この発明におけるN-アルキルイ ミダゾリウム塩は、1位あるいは3位のいずれか一方だ けにアルキル基を有するイミダゾール化合物、例えば1 - メチルイミダゾール、1 - エチルイミダゾール等の1 位あるいは3位のいずれか一方だけに低級アルキル基を 有するイミダゾール化合物と、臭化水素酸、塩酸、硝 酸、弗化ホウ素酸、亜硫酸水、硫酸、メタンスルホン酸・ などの無機酸あるいは酢酸などの有機酸を中和反応させ て得られる化合物である。N-アルキルイミダゾール化 合物と酸を反応させるには、0~20℃の水溶液中にお 塩の合成はかなり煩雑であり、アニオン交換法を応用し、50 いて両者を攪拌混合し、反応溶液から余分の水を溜去

る検討は未だ充分に為されていない。

し、ジエチルエーテルなどの有機溶媒を用いて抽出すれ は良い。なお、酸として酢酸などの有機酸を用いる場合 は、精製の過程で溜去し、減圧乾燥すべきである。

【0009】本発明の室温溶融塩は、N-アルキルイミ ダゾリウム塩に酸モノマーを反応し、これを重合させて N-アルキルイミダゾリウム塩のポリマーとして、使用 することも可能である。N-アルキルイミダゾリウム塩 に反応させる酸モノマーの代表的なものは、アクリル 酸、メタアクリル酸、ビニルスルホン酸などが挙げられ る。

[0010]

【実施例】以下、実施例によってこの発明を具体的に説 明する。なお、これらの試験におけるN-アルキルイミ ダゾール化合物と酸の中和反応の進行は、H-NMR測 定及びDSC測定によって行い、反応前後におけるイミ ダゾールの2位に存在するプロトンの化学シフトを比較 して確認したものであり、またイオン伝導度の温度依存 性(10~60℃)は、2端子交流インピーダンス法に よって行ったものである。

【0011】 [実施例1] N-エチルイミダゾール10 gに47%臭化水素酸水溶液12mlを加え、これを温 度0℃に維持しながら12時間攪拌したのち、減圧乾燥 して余分な水を除去し、この反応生成物を攪拌している 1000mlのジエチルエーテル中に滴下し、析出した 結晶を回収し60℃の温度で48時間乾燥して、N-エ チルイミダゾリウムブロミド (EtImBrと記す) 1 7. 7g(収率93%)を得た。本品のH-NMR測定 及びDSC測定を行った結果は表1に示したとおりであ り、反応前後におけるイミダゾールの2位に存在するプ ロトンの化学シフトが、反応後低磁場にシフトしている ことから反応の進行が確認された。本品は融点59.9 ℃を示し、無機塩などの不純物は皆無であって、そのイ オン伝導度の温度依存性(10~60℃)は、図1に示 したとおりであった。

【0012】[実施例2] N-エチルイミダソール10 gに36%塩酸水溶液10mlを加え、これを温度0℃ に維持しながら12時間攪拌したのち、減圧乾燥して余 分な水を除去し、この反応生成物を攪拌している100 0mlのジエチルエーテル中に滴下し、析出した結晶を 回収し60℃の温度で48時間乾燥して、N-エチルイ ミダゾリウムクロライド(EtImClと記す)13. 5g(収率95%)を得た。本品のH-NMR測定及び DSC測定を行った結果は表1に示したとおりであり、 前記実施例と同様に反応の進行が確認された。本品の融 点57.5℃を示し、無機塩などの不純物は皆無であっ て、そのイオン伝導度の温度依存性(10~60℃) は、図1に示したとおりであった。

【0013】[実施例3] N-エチルイミダゾール10 gに61%硝酸水溶液8m1を加えこれを温度0℃に維 持しながら12時間攪拌したのち、減圧乾燥して余分な

水を除去し、この反応生成物を攪拌している1000m 1のジエチルエーテル中に滴下し、析出した結晶を回収 し60℃の温度で48時間乾燥して、N-エチルイミダ ゾリウム硝酸塩 (EtImNO3と記す) 15.6g (収率92%)を得た。本品のH-NMR測定及びDS C測定を行った結果は表1に示したとおりであり、前記 実施例と同様に反応の進行が確認され、無機塩などの不 純物の含有量は皆無であり、その融点は31.3℃で、 また本品のイオン伝導度の温度依存性(10~60℃) 10 は、図1に示したとおりであった。

.【0014】[実施例4] N-エチルイミダゾール10 gに42%弗化ホウ素酸水溶液18mlを加え、これを 温度0℃に維持しながら12時間攪拌したのち、減圧乾 燥して余分な水を除去し、この反応生成物を攪拌してい る1000mlのジエチルエーテル中に滴下し、析出し た結晶を回収し60°Cの温度で48時間乾燥して、N-エチルイミダゾリウム弗化ホウ素酸塩(EtImBF4 と記す) 18.4g (収率95%)を得た。本品のH-NMR測定及びDSC測定を行った結果は表1に示した とおりであり、前記実施例と同様に反応の進行が確認さ れ、無機塩などの不純物の含有量は皆無であり、そのガ ラス転移温度は-86.4℃、また本品のイオン伝導度 の温度依存性(10~60℃)は、図1に示したとおり であった。

【0015】[実施例5] N-エチルイミダゾール10 gにメタンスルホン酸7mlを加え、これを温度0℃に 維持しながら12時間撹拌したのち、この反応生成物を 攪拌している1000mlのジエチルエーテル中に滴下 し、析出した結晶を回収し60℃の温度で48時間乾燥 して、N-エチルイミダゾリウムメタンスルホン酸塩 (Et ImCH3SO3と記す) 19.5g (収率96 %)を得た。本品のH-NMR測定及びDSC測定を行 った結果は表1に示したとおりであり、前記実施例と同 様に反応の進行が確認され、無機塩などの不純物の含有 量は皆無であり、その融点は55.3℃、また本品のイ オン伝導度の温度依存性(10~60℃)は、図1に示 したとおりであった。

【0016】[実施例6] N-エチルイミダゾール10 gに5%亜硫酸水198mlを加え、これを温度0℃に 維持しながら12時間攪拌したのち、この反応生成物を 攪拌している1000mlのジエチルエーテル中に滴下 し、析出した結晶を回収し60°Cの温度で48時間乾燥 して、N-エチルイミダゾリウム亜硫酸塩(EtImH SO3と記す) 18.6g (収率91%) を得た。本品 のH-NMR測定及びDSC測定を行った結果は表1に 示したとおりであり、前記実施例と同様に反応の進行が 確認され、無機塩などの不純物の含有量は皆無であり、 そのガラス転移温度は−51.7℃、また本品のイオン 伝導度の温度依存性(10~60℃)は、図1に示した 50 とおりであった。

【0017】 [実施例7] N-エチルイミダゾール10gに99.7%酢酸6mlを加え、これを温度0℃に維持しながら12時間攪拌したのち、この反応生成物を攪拌している1000mlのジエチルエーテル中に滴下し、ジエチルエーテルを室温で溜去したのち、真空乾燥を行って析出した結晶を回収し、N-エチルイミダゾリウム酢酸塩(EtlmCH3COOと記す)15.9g(収率98%)を得た。本品のH-NMR測定及びDS*

* C測定を行った結果は表 1 に示したとおりであり、前記実施例と同様に反応の進行が確認され、無機塩などの不純物の含有量は皆無であり、そのガラス転移温度は-5 1. 7 $\mathbb C$ 、また本品のイオン伝導度の温度依存性(10 ~60 $\mathbb C$) は、図 1 に示したとおりであった。

[0018]

【表1】

N-エチルイミダゾリウム塩の化学シフト

	中和させた酸	化学シフト(ppm)
実施例 1	臭化水索酸	9.300
実施例 2	塩酸	9. 298
実施例 3	硝 酸	9. 132
実施例 4	弗化ホウ素酸	9. 019
実施例 5	メタンスルホン酸	9. 129
実施例 6	亜 硫 酸	8.776
実施例 7	酢 酸	7. 568
比較例	なし	7. 565

【0019】 [実施例8] N-メチルイミダゾール10gに47%臭化水素酸14mlを加え、これを温度0℃に維持しながら12時間攪拌したのち、この反応生成物を攪拌している1000mlのジエチルエーテル中に滴下し、ジエチルエーテルを室温で溜去したのち、真空乾燥を行って析出した結晶を回収し、N-メチルイミダゾリウムブロミド(MelmBrと記す)17.1g(収率97%)を得た。本品のH-NMR測定及びDSC測定を行った結果は、表2に示したとおりであり、前記実施例と同様に反応の進行が確認され、無機塩などの不純物の含有量は皆無であり、その融点は71.7℃であって、本品のイオン伝導度の温度依存性(10~60℃)は、図2に示したとおりであった。

クロライド(MeImCIと記す)13.7g(収率95%)を得た。本品のH-NMR測定及びDSC測定を行った結果は表2に示したとおりであり、前記実施例と同様に反応の進行が確認され、無機塩などの不純物の含有量は皆無であり、その融点は40.5℃、また本品のイオン伝導度の温度依存性(10~60℃)は、図2に示したとおりであった。

【0021】 [実施例10] Nーメチルイミダゾール10gに61%硝酸水溶液10m1を加え、これを温度0℃に維持しながら12時間攪拌したのち、この反応生成物を攪拌している1000m1のジエチルエーテル中に滴下し、ジエチルエーテルを室温で溜去したのち、真空乾燥を行って析出した結晶を回収し、Nーメチルイミダゾリウム硝酸塩(Me1mNO3と記す)16.6g(収率94%)を得た。本品のH−NMR測定及びDSC測定を行った結果は表2に示したとおりであり、前記実施例と同様に反応の進行が確認され、無機塩などの不純物の含有量は皆無であり、その融点は69.7℃、また本品のイオン伝導度の温度依存性(10~60℃)

6

7

は、図2に示したとおりであった。

【0.022】 [実施例11] N-メチルイミダゾール10gに42%弗化ホウ素酸水溶液20m1を加え、これを温度0℃に維持しながら12時間攪拌したのち、この反応生成物を攪拌している1000m1のジエチルエーテル中に滴下し、ジエチルエーテルを室温で溜去したのち、真空乾燥を行って析出した結晶を回収し、N-メチルイミダゾリウム弗化ホウ素酸塩(MeImBF4と記す)20.0g(収率97%)を得た。本品のH-NMR測定及びDSC測定を行った結果は表2に示したとおりであり、前記実施例と同様に反応の進行が確認され、無機塩などの不純物の含有量は皆無であり、その融点は36.9℃、また本品のイオン伝導度の温度依存性(10~60℃)は、図2に示したとおりであった。

【0023】 [実施例12] N-メチルイミダゾール10gにメタンスルホン酸8mlを加え、これを温度0℃に維持しながら12時間撹拌したのち、この反応生成物を撹拌している1000mlのジエチルエーテル中に滴下し、ジエチルエーテルを室温で溜去したのち、真空乾燥を行って析出した結晶を回収し、N-メチルイミダゾリウムメタンスルホン酸塩(MelmCH3SO3と記す)20.1g(収率93%)を得た。本品のH-NMR測定及びDSC測定を行った結果は表2に示したとおりであり、前記実施例と同様に反応の進行が確認され、無機塩などの不純物の含有量は皆無であり、その融点は129.5℃、また本品のイオン伝導度の温度依存性(10~60℃)は、図2に示したとおりであった。【0024】 [実施例13] N-メチルイミダゾール1

0gに5%亜硫酸水溶液197mlを加え、これを温度0℃に維持しながら12時間攪拌したのち、この反応生成物を攪拌している1000mlのジエチルエーテル中に滴下し、ジエチルエーテルを室温で溜去したのち、真空乾燥を行って析出した結晶を回収し、N-メチルイミダゾリウム亜硫酸酸塩(MelmHSO3と記す)18.2g(収率91%)を得た。本品のH-NMR測定及びDSC測定を行った結果は表2に示したとおりであり、前記実施例と同様に反応の進行が確認され、無機塩などの不純物の含有量は皆無で、その融点は40.1℃、また本品のイオン伝導度の温度依存性(10~60

℃) は、図2に示したとおりであった。

【0025】 [実施例14] N-メチルイミダゾール10gに99.7%酢酸6m1を加えこれを温度0℃に維持しながら12時間攪拌したのち、この反応生成物を攪拌している1000m1のジエチルエーテル中に滴下し、ジエチルエーテルを室温で溜去したのち、真空乾燥を行って析出した結晶を回収し、N-メチルイミダゾリウム酢酸塩(EtImCH3COOと記す)16.9g(収率98%)を得た。本品のH-NMR測定及びDSC測定を行った結果は表2に示したとおりであり、前記実施例と同様に反応の進行が確認され、無機塩などの不純物の含有量は皆無で、その融点は45.3℃、また本品のイオン伝導度の温度依存性(10~60℃)は、図2に示したとおりであった。

[0026]

【表2】

8

N-メチルイミダゾリウム塩の化学シフト

		中和させた酸	化学シフト(ppm)
実施例	1	臭化水素酸	9.206
実施例	2	塩酸	9.208
実施例	3	硝 酸	9.049
実施例	4	弗化ホウ素酸	8. 9 2 8
実施例	5	メタンスルホン酸	9.048
実施例	6	亜硫酸	8. 581
実施例	7	酢 酸	7. 520
比較例		なし	7.518

【0027】 [実施例15] N-エチルイミダゾール1 0gとビニルスルホン酸(25%水溶液)52gを混合 し、0℃の温度に維持しながら3時間攪拌したのち、溶. 媒を濃縮しエーテルを滴下して、N-エチルイミダゾリ ウムビニルスルホン酸(EtlmVySO3と記す)2 1.5g(収率97%)を合成した。本品の融点は-1 O℃であり、H-NMR測定及びDSC測定を行ったと Cろ、EtlmVySO3の化学シフトは8.986p pmであって(N-エチルイミダゾールは、7.565 ppm)、反応の進行が確認され、無機塩などの不純物×

*は皆無であった。

【0028】 [実施例16] 実施例15において得られ たN-エチルイミダゾリウムビニルスルホン酸1.0g をメタノール中に溶解させ、重合開始剤としてアゾビス イソブチロニトリルを、ビニル基に対して1%の割合で 加え、65°Cの温度で3時間ラジカル重合させて、下式 で示される溶融塩ポリマーを得た。

[0029] 【化1】

【0030】前記N-エチルイミダゾリウムビニルスル ホン酸の溶融塩ポリマーは、無色のガラス状固体であ り、その反応の進行は IRスペクトルにおける910及 び990cm- ロなどのビニル基に基づくピークの消失 によって確認した。本品のガラス転移温度は-40℃で あり、また30℃におけるイオン伝導度は2.5×10 50 のちエーテルを滴下して、N-メチルイミダゾリウムビ

- 5 であって、優れたイオン伝導体になりうるものと認 められた。

【0031】 [実施例17] N-メチルイミダゾール1 0gとビニルスルホン酸(25%水溶液)57gを混合 し、0℃の温度に維持しながら3時間攪拌し、濃縮した

12

ニルスルホン酸(Me I m V y S O 3 と記す)22.3 g (収率92%)を合成した。本品をH - N M R 測定及びD S C 測定を行ったところ、Me I m V y S O 3 の化学シフトは5.860 p p m であり(N - メチルイミダゾールは7.518 p p m)、反応の進行が確認された。

【0032】[実施例18] 実施例17において得られたN-メチルイミダゾリウムビニルスルホン酸1.0gをメタノール中に溶解させ、重合開始剤としてアゾビスイソブチロニトリルを、ビニル基に対して1%の割合で 10加え、65℃の温度で3時間ラジカル重合させて、N-メチルイミダゾリウムビニルスルホン酸の溶融塩ポリマーを得た。前記1-メチルイミダゾリウムビニルスルホン酸の溶融塩ポリマーは、無色のガラス状固体であり、その反応の進行は粘性変化とIRスペクトルによる1640cm⁻¹のピークの消失及びNMRによって確認した。本品のガラス転移温度は7℃であり、また30℃に*

* おけるイオン伝導度は3.0×10^{- 5} であって、良好なイオン伝導体であると認められた。

[0033]

【発明の効果】この発明によれば、不純物を含まないイミダゾール系室温溶融塩を提供しうるものであり、またイミダゾリウム塩の合成と同時に種々の対アニオンを導入しうるので、量産に適しており且つ多岐に亘る物性を備えたイミダゾリウム塩を得ることができる。本発明の溶融塩は室温で高いイオン伝導性を示し、且つ温度安定性並びに力学的特性が優れているので、固体電解質材料として有用なものである。

【図面の簡単な説明】

【図1】N-エチルイミダゾリウム塩のイオン伝導度の 温度依存性を示す相関図。

【図2】N-メチルイミダゾリウム塩のイオン伝導度の 温度依存性を示す相関図。

【図1】

【図2】

