UNIVERSIDADE FEDERAL ALFENAS (UNIFAL)

Bacharelado em Ciência da Computação

Disciplina DCE692 - Pesquisa operacional	Método de entrega Nenhum
Professor Iago Augusto de Carvalho (iago.carvalho@unifal-mg.edu.br)	

Tema: Revisão para prova 01

Esta lista não deverá ser entregue. Ela não contará nenhum ponto para a avaliação dos alunos

Exercício 1

Observe o tableau abaixo que representa um modelo de programação linear e responda:

$$\begin{bmatrix} 1 & -20 & 30 & -5 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 3 & 1 & 0 & 0 & 10 \\ 0 & 3 & -1 & 0 & 0 & 1 & 0 & 15 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 5 \end{bmatrix}$$

- a) Quantas variáveis tem este modelo?
- b) Quantas restrições tem este modelo? Quais são elas?
- c) Identifique os vetores (ou matrizes) \mathbf{A} , \mathbf{B} , \mathbf{y} e \mathbf{c}

Exercício 2

Observe o modelo de programação linear abaixo e faça o que se pede:

$$\begin{array}{lll} \max & 3x+2y \\ & 4x+2y & \leq 15 \\ & x+2y & \leq 8 \\ & x+y & \leq 5 \\ & x & \geq 0 \\ & y & \geq 0 \end{array}$$

- a) Desenhe o modelo em um plano 2D, indicando
 - Qual linha representa cada restrição
 - A área de soluções viáveis
- b) Qual é o valor da solução ótima?
- c) Qual é a solução ótima?
- d) Represente este modelo como um tableau do algoritmo simplex

Exercício 3

Mariazinha é gerente de logística do Ministério da Saúde. Hoje pela manhã, o Ministério recebeu 3 novos lotes de vacina contra a COVID-19, sendo que cada lote foi recebido em um aeroporto diferente. Mariazinha deve, então, distribuir as vacinas que chegaram entre algumas cidades no entorno dos aeroportos. No total, foram recebidas

- 500 doses de vacina no aeroporto A
- 300 doses de vacina no aeroporto B
- 200 doses de vacina no aeroporto C

Estas vacinas devem ser entregues nas cidades D, E, F, G e H, de tal forma que

- A cidade D está pedindo 100 vacinas
- A cidade E está pedindo 500 vacinas
- A cidade F está pedindo 50 vacinas
- A cidade G está pedindo 150 vacinas
- A cidade H está pedindo 250 vacinas

Mariazinha quer fazer a entrega das vacinas da forma mais barata possível. O custo para transportar uma dose de vacina de um aeroporto para uma cidade é dado pela tabela abaixo.

	Cidade					
Aeroporto	D	Е	F	G	Н	
A	5	8	12	3	7	
В	10	5	9	8	9	
\mathbf{C}	12	15	5	4	13	

Para resolver este problema, Mariazinha resolveu utilizar técnicas de programação linear. Entretanto, ela não é muito bom em modelagem. Ajude Mariazinha a modelar este problema, apresentando:

- a) A função objetivo do problema de programação linear
- b) As restrições que incidem sobre este problema
- c) O problema tem solução? Por quê?
- d) Considere que é possível pedir um lote adicional de vacina para um dos três aeroportos.
 - Quantas vacinas Mariazinha deverá pedir de forma a tornar o problema viável?

Gabarito

Exercício 1

a) São três variáveis: $x_1, x_2 \in x_3$

b) São três restrições. Elas são:

• $2x_1 + 2x_2 + 3x_3 \le 10$

• $3x_1 - x_2 \le 15$

• $x_1 \le 5$

c)
$$A = \begin{bmatrix} 2 & 2 & 3 \\ 3 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 10 \\ 15 \\ 5 \end{bmatrix}$, $y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $c = \begin{bmatrix} 20 & -30 & 5 \end{bmatrix}$

Exercício 2

a)

b) O valor da solução ótima é 12,5

c) A solução ótima é o ponto (x = 2.5, y = 2.5)

d)

$$\begin{bmatrix} 1 & -3 & -2 & 0 & 0 & 0 & 0 \\ 0 & 4 & 2 & 1 & 0 & 0 & 15 \\ 0 & 1 & 2 & 0 & 1 & 0 & 8 \\ 0 & 1 & 1 & 0 & 0 & 1 & 5 \end{bmatrix}$$

Exercício 3

a) Podemos modelar este problema como o Problema do Transporte. Assim, a função objetivo visa a minimização dos custos de transporte das vacinas. Seja $\mathcal A$ o conjunto de aeroportos e $\mathcal C$ o conjunto de cidades. A função objetivo pode ser descrita como

$$\min \sum_{i \in A} \sum_{j \in C} w_{ij} x_{ij},$$

onde w_{ij} representa o custo de enviar uma dose de vacina do aeroporto $i \in A$ até a cidade $j \in C$ e x_{ij} representa a quantidade de vacinas a serem enviadas do aeroporto $i \in A$ para a cidade $j \in C$ e x_{ij} .

b) Existem dois conjuntos de restrições. A primeira delas diz respeito a capacidade máxima de envio de vacinas, limitando a quantidade de doses que podem ser enviadas a partir de um aeroporto. Elas podem ser descritas como

$$\sum_{j \in C} x_{ij} \le a_i, \quad \forall i \in A,$$

onde a_i representa o número de vacinas disponíveis no aeroporto $i \in A$. Já o segundo conjunto de restrições indica que a demanda de todas as cidades devem ser atendidas, sendo representada como

$$\sum_{i \in A} x_{ij} \ge b_j, \quad \forall j \in C,$$

onde b_j representa a demanda da cidade $j \in C.$

- c) Não possui solução, pois a demanda das cidades é superior a quantidade disponível para transporte nos aeroportos.
- d) Um total de (100 + 500 + 50 + 150 + 250) (500 + 300 + 200) = 1050 1000 = 50 vacinas