PROBLEM SET 2

Due: Tue, Feb 18, 6.00 PM

Topics: variation of the constant, power series expansion, calculus with linear maps

- 1. Find a formula for the general solution to $(x^2+1)y'-(1-x)^2y=h(x)$, then specialize to the case $h(x)=xe^{-x}, y(0)=1$.
- 2. By using the method of undetermined coefficients, find the first four nonzero coefficients in the power series expansion of the solution to

$$(x^{2}+1)y' - (1-x)^{2}y = xe^{-x}, y(0) = 1.$$

Check your answer by expanding the solution to the preceding problem in a power series.

- **3.** We saw in class that the exponential function $x \mapsto e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ is analytic at $x_0 = 0$. Prove that the exponential function is analytic at any $x_0 \in \mathbb{R}$.
- **4.** Let $f \in C^{\infty}(\mathbb{R})$ be a smooth function, let h > 0 and let $x_0 \in \mathbb{R}$. Prove that

$$\sup_{x \in [x_0 - h; x_0 + h]} \left| f(x) - \sum_{j=0}^k \frac{f^{(j)}(x_0)}{j!} x^j \right| \le Ch^{k+1}$$

for some constant $C = C_{f,k} > 0$ that depends on the function f and the order $k \in \mathbb{N}$, but that is independent of h > 0. Does this imply that f is analytic at x_0 ?

- **5.** Let V be the real vector space of real valued smooth functions on \mathbb{R} . Let f be a smooth function and let $M_f: V \to V$ be the linear map defined by $M_f(y) = fy$. Let $D: V \to V$ be the first order differential operator defined by D(y) = y'.
 - a) Show that, as a composition of linear maps, we have $DM_f = M_{f'} + M_f D$.
 - b) For two functions f and g, show that

$$(M_f D + M_g)(D + M_x) = M_f D^2 + M_{xf+g} D + M_{f+xg}.$$

Conclude that, no matter which f and g you choose, $ker(l) \neq \{0\}$, where

$$l(y) = fy'' + (xf + g)y' + (f + xg)y.$$

6. Find the unique polynomial solution to the equation y'' - xy' + 2y = 0 with initial conditions y(0) = -1, y'(0) = 0.