

Introduction to Digital Design

Week 11: Register-Transfer Level Design

> Yao Zheng Assistant Professor University of Hawai'i at Mānoa Department of Electrical Engineerin

Overview

- RTL Introduction
 - Modern digital design involves creating processor-level components
 - · High-level state machines
- RTL design process
 - · Capture behavior: Use HLSM
 - Convert to circuit: A. Create datapath B. Connect DP to controller C. Derive controller FSM
- More RTL design
 - · More components, arrays, timers, control vs. data dominated
- Determining fastest clock frequency
 - By finding critical path
- Behavioral-level design C to gates
 - By using method to convert C (subset) to high-level state machine

2

RTL Design Involving Register File or Memory

- · HLSM array: Ordered list of items
 - Ex: Local storage: A[4](8-bit) 4 8-bit items
 - Accessed using notation "A[i]", i is index
 - A[0] := 9; A[1] := 8; A[2] := 7; A[3] := 22
 - Array contents now: <9, 8, 7, 22>
 - X := A[1] will set X to 8
 - Note: First element's index is 0
- Array can be mapped to instantiated register file or memory

28

RTL Example: Video Compression – Sum of Absolute **Differences**

Each is a pixel, assume represented as 1 byte (actually, a color picture might have 3 bytes per pixel, for intensity of red, green, and blue components of pixel)

- · Need to quickly determine whether two frames are similar enough to just send difference for second frame
 - Compare corresponding 16x16 "blocks"
 - · Treat 16x16 block as 256-byte array
 - Compute the absolute value of the difference of each array item
 - Sum those differences if above a threshold, send complete frame for second frame; if below, can use difference method (using another technique, not described)

31

Inputs: A, B [256](8 bits); go (bit)
Outputs: sad (32 bits)
Local storage: sum, sadreg (32 bits); i (9 bits) Array Example: Video Compression—Sum-of-**Absolute Differences** 32 32 sadreg

Circuit vs. Microprocessor

- Circuit: Two states (S2 & S3) for each i, 256 i's → 512 clock cycles
- Microprocessor: Loop (for i = 1 to 256), but for each i, must move memory to local registers, subtract, compute absolute value, add to sum, increment i – say 6 cycles per array item \Rightarrow 256*6 = 1536 cycles
- Circuit is about 3 times (300%) faster (assuming equal cycle lengths)
- Later, we'll see how to build SAD circuit that is much faster

Common RTL Design Pitfall Involving Storage Updates

- Questions
 - Value of Q after state A?
 - Final state is C or D?
- Answers
- Q is NOT 99 after state A
- Q is 99 in state B, so final state is C
- Storage update actions in state occur simultaneously on next clock edge
 - · Thus, order actions are written is
 - · A's actions same if:
 - Q:=R R:=99 or - R:=99 Q:=R

Local storage R, Q (8 bits) С R<100 В Α (R<100) R:=R+1 D R<100 _в (с Л Α 100 99

Common RTL Design Pitfall Involving Storage Updates New HLSM Local storage: R, Q (8 bits)

using extra state so read of R occurs after write of R

5.5 **Determining Clock Frequency** · Designers of digital circuits often want fastest performance Means want high clock frequency • Frequency limited by longest 2 ns register-to-register delay - Known as critical path If clock is any faster, incorrect data may be stored into register - Longest path on right is 2 ns Ignoring wire delays, and register setup and hold times, for simplicity 43

Converting from C to High-Level State Machine • If-then-else Becomes state with condition check, transitioning to "then" statements if condition true, or to "else" statements if condition · While loop statement - Becomes state with condition check, transitioning to while loop's statements if true, then transitioning back to condition

Summary

- RTL Introduction
 - Modern digital design involves creating processor-level components
 - · High-level state machines
- RTL design process
 - Capture behavior: Use HLSM
 - Convert to circuit: A. Create datapath B. Connect DP to controller C. Derive controller FSM
- More RTL design
 - More components, arrays, timers, control vs. data dominated
- Determining fastest clock frequency
 - · By finding critical path
- Behavioral-level design C to gates
 - By using method to convert C (subset) to high-level state

52