Approche par comparaison de modèles

Rémi Courset

remi.courset@univ-grenoble-alpes.fr

Données & exercices du TD :

webcom.upmf-grenoble.fr/LIP/Perso/DMuller/M2R/ACM/TD

Sous R

- Télécharger les modules dans le dossier de travail
 - PRE.R
 - outliersFunction.R

Base Commune.r

```
rm(list=ls()) # Nettoyer l'espace de travail
source("PRE.R") # Pour utiliser le module PRE
source("outliersFunction.R") # Pour utiliser le module Outlier
ExoX<-read.table("Exox.txt",header=TRUE,sep="\t",dec=",") # Pour importer les données
```

Données & exercices du TD :

webcom.upmf-grenoble.fr/LIP/Perso/DMuller/M2R/ACM/TD

CM1

•Trente quatre étudiants réalisent un examen de psychologie cognitive. Calculez un PRE (Proportion de Réduction de l'Erreur) correspondant à l'hypothèse selon laquelle la moyenne à cet examen est supérieure à 10. Dans cet exercice, on admettra que les conditions d'applications ont déjà été vérifiées et que l'étude des observations déviantes a déjà été réalisée.

- •Calculez un F permettant de savoir si la moyenne des étudiants est significativement différente de 10.
- → Faire sur Excel

Modèle simple : test de la moyenne (b_0) contre une valeur spécifique (B_0)

	dus) au carré	Erreurs (rési				
	$(Pourc_i - b_0)^2$ MA	$(Pourc_i - B_0)^2$ MC	Pourc MA (=b ₀)	Pourc MC (=B ₀)	Pourc _i	Sujet
- L'erreur du MC était	125.44	444.78	59.89	50	71.09	1
2004 40	292.88	729.19	59.89	50	77.00	2
3291.43	0.31	109.08	59.89	50	60.45	3
	124.75	1.63	59.89	50	48.72	4
- Avec le MA, elle devient	402.36	103.40	59.89	50	39.83	5
1823.73	25.21	23.70	59.89	50	54.87	6
1023.73	47.74	8.88	59.89	50	52.98	7
	86.16	0.37	59.89	50	50.61	8
En proportion, cette	43.21	271.03	59.89	50	66.46	9
erreur est diminuée de	12.66	180.83	59.89	50	63.45	10
	448.53	965.26	59.89	50	81.07	11
(0004 40 4000 70)	152.29	6.00	59.89	50	47.55	12
(3291.43 – 1823.73)	8.76	48.04	59.89	50	56.94	13
3291.43	53.36	295.67	59.89	50	67.19	14
0201.70	0.08	103.53	59.89	50	60.17	15
	1823.73	3291.43			898.38	Somme
soit 0.44 donc 44%					59.89	Moyenne

^{=&}gt; La Proportion de Réduction de l'Erreur (PRE) = 0.44 (taille de l'effet)

Formules de bases et test du modèle simple

$$SCR = SCE_C - SCE_A$$
 \longrightarrow Réduction SCE (équivaut à SC effet « dans l'anova »)

$$PRE = \frac{\left(SCE_C - SCE_A\right)}{SCE_C} = \frac{SCR}{SCE_C} \longrightarrow \begin{array}{c} \text{Proportion de Réduction de l'Erreur ou taille de} \\ \text{l'effet (« équivaut » au } \eta^2) \end{array}$$

$$F = \frac{PRE/(PA - PC)}{(1 - PRE)/(N - PA)} = \frac{SCR/(PA - PC)}{SCE_A/(N - PA)} = \frac{SC_{EFFET}/(PA - PC)}{SC_{ERREUR}/(N - PA)}$$

CM1

Modèles à un facteur continu : régression simple

$$Prc_{i} = b_{0} + b_{1}BEPC_{i} + e_{i}$$
 $Prc_{i} = 39.30 + 1.83BEPC_{i}$

Avec R: mc <- Im(Pourcentage~1,DF) # « 1 » veut juste dire modèle simple

Avec R: ma <- Im(Pourcentage~1+BEPC,DF) # (ou Pourcentage~BEPC) anova(mc,ma) # Demande de comparer ces deux modèles

```
Model 1: Pourcentage ~ 1
Model 2: Pourcentage ~ BEPC
Res.Df RSS Df Sum of Sq F Pr(>F)
1 14 1823.7
2 13 1162.4 1 661.32 7.396 0.01753 *
```

Cette comparaison de modèles nous indique que la diminution de la SCE en passant du modèle C au modèle A est significative.

Autrement dit, l'effet de BEPC sur Pourcentage est significatif

Modèles à un facteur continu : régression simple

```
Prc_i = 39.30 + 1.83BEPC_i
Prc_i = b_0 + b_1 BEPC_i + e_i
  Avec R : ma <- Im(Pourcentage~BEPC,DF)
         summary(ma)
      Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                             7.9551 4.94 0.00027 ***
      (Intercept) 39.3016
                             0.6739 2.72 0.01753 *
      BEPC
               1.8328
      Residual standard error: 9.456 on 13 degrees of freedom
      Multiple R-squared: 0.3626, Adjusted R-squared: 0.3136
      F-statistic: 7.396 on 1 and 13 DF, p-value: 0.01753
   Avec R : anova(ma)
      Response: Pourcentage
                 Df Sum Sq Mean Sq F value Pr(>F)
      BEPC
                1 661.32 661.32 7.396 0.01753 *
      Residuals 13 1162.41 89.42
                                                              9
```

Elements utiles dans l'exo 2

•La corrélation entre taille et performance est égale à la racine carre du PRE (dans la régression simple !)

Pour le prouver :

cor(exo2\$taille,exo2\$perf)

CM2 & CM3

Points importants

- Déviants (Cook, RSS, Levier)
- •Conditions d'application (normalité, homogénéité et indépendance des résidus)
- Codage de la VI catégorielle

Type de distribution des résidus

Types de problèmes et types de transformations

- Transformer les données pour atteindre la normalité
 - Pour les distributions « plates » : inverse (1/Y)
 - Pour les distributions « asymétriques + » : log (+10) ou 1/Y
 - Pour les distributions « asymétriques » : racine carré
- Transformer les données pour atteindre une variance constante des résidus (homoscédasticité)
 - Cône des résidus ouvert à droite : inverse
 - Cône des résidus ouvert à gauche : racine carré

Points importants

- #Pour regarder les outliers
 outliers(interference ~ condc,DF)
- # Residuals normality
 hist(residuals(fit1)) # residuals histogram
 qqnorm(residuals(fit1))
 qqline(residuals(fit1)) # QQ plot
- # Homogeneity of variance plot(fitted(fit1),residuals(fit1)) plot(fitted(fit1),abs(residuals(fit1)^.5)) abline(lm((abs(residuals(fit1)))^.5~fitted(fit1)))

Points importants

#Pour centrer la VI

- # 4) Testez la même hypothèse dans le module test t # t.test (DF\$interference ~ DF\$condc,var.equal=TRUE)
- # 5) Testez la même hypothèse dans le module ANOVA ma1=aov(DF\$interference~DF\$condc) summary(ma1)

CM3

Famille de contrastes orthogonaux

	FBm	FBnm	NoFB	
C1	2	-1		$\sum_{k} \lambda_{1.k} = 0 \Rightarrow (2-1-1=0)$
$(=\lambda_{1.k})$	$(=\lambda_{1.1})$	$(=\lambda_{1.2})$	$(=\lambda_{1.3})$	$\sum_{k} \frac{1}{k} = 0 = 2 \left(\sum_{k} 1 - 1 = 0 \right)$
C2	0	1	-1	$\sum_{k} \lambda_{2.k} = 0 \Rightarrow (0+1-1=0)$
$(=\lambda_{2.k})$	$(=\lambda_{2.1})$	1 (=λ _{2.2})	$(=\lambda_{2.3})$	$\sum_{k} n_{2.k} = 0 = 2 (0 + 1 + 1 = 0)$
	2*0 = 0	-1*1 = -1	-1*-1 = 1	$\sum_{k} \lambda_{1.k} \lambda_{2.k} = 0 \Rightarrow (0 - 1 + 1 = 0)$

Ceci est une famille de contrastes orthogonaux car elle respecte deux règles :

Règle 1 : Règle 2 :
$$\sum_{k} \lambda_{k} = 0 \quad \text{et} \quad \sum_{k} \lambda_{1.k} \lambda_{2.k} = 0 \quad \text{(les contrastes sont orthogonaux deux à deux)}$$

Nous utiliserons toujours k-1 contrastes orthogonaux pour coder une variable catégorielle (où k = nb de modalités de la VI)

Tests des contrastes

	C1	C2	M
BS	-1	-1	38,247
SM	0	2	56,766
HS	1	-1	64,903

	Estimate	Std. Error	t value	Pr(> t)
Intercept	53.305	3.153	16.908	< 2e-16 ***
c1	13.328	3.817	3.492	0.000907 ***
<i>c</i> 2	1.730	2.254	0.768	0.445781

- Interprétation de $b_0 = 53.3$: prédiction pour C1 et C2 = 0, ces deux contrastes étant centrés, cela correspond à une condition moyenne. 53.3 est donc la moyenne
- Interprétation de b₁ = 13.328 : pour toute augmentation d'une unité, notre prédiction augmente de 13.328. Il y a 2 unités de différence entre BS et HS, 13.328 correspond donc à 1/2 de la différence entre la moyenne de BS et HS.
- Interprétation de $b_2 = 1.730$: pour toute augmentation d'une unité, notre prédiction augmente de 1.730. Il y a 3 unités de différence entre BS/HS et SM, 1.730 correspond donc à 1/3 de la différence entre la moyenne de BS/HS et SM.

CM4

Illustration

(adresse pour trouver des contrastes orthogonaux : http://www.bolderstats.com/orthogCodes/)

Codes de contraste

	O renf	1 renf	2 renf	3 renf
Mod	-1	1	1	-1
Res1	-1	0	0	1
Res2	0	-1	1	0

$$Mot_i = b_0 + b_1 Mod_i + b_2 Res1_i + b_3 Res2_i + e_i$$

Test du résidu

3b) Test du résidu => nous allons mettre ensemble tout ce qui n' est pas le modèle théorique :

MA:
$$Chgt_i = b_0 + b_1 Mod_i + b_2 Res1_i + b_3 Res2_i + e_i$$
 $SCE_A = 1531.63$

Test du résidu =>
$$SCR = SCE_C - SCE_A = 1591.64 - 1531.63 = 60$$

$$F = \frac{SCR/(pa-pc)}{SCE_{A}/(N-pa)} = \frac{\frac{60}{(4-2)}}{1531.63/(20-4)} = 0.31$$

- Modèle significatif ET résidu non significatif => hypothèse vérifiée
- Nous pourrions également être encore plus durs avec nous-mêmes en testant le F du résidu avec un ddl de l'effet = 1

$$=>$$
 dans ce cas $F(1,16) = 0.63$

Exercice 6 & 7

CM5 & CM6

Interprétation en présence ou non d'un modèle interactif

$$Y_i = b_0 + b_1 X_i + b_2 Z_i + e_i$$

- ✓ b_0 sera notre prédiction quant à la valeur de Y lorsque X = 0 et Z = 0
- ✓ b_1 sera la pente de X LORSQUE Z est tenu constant
- ✓ b_2 sera la pente de Z LORSQUE X est tenu constant

$$Y_i = b_0 + b_1 X_i + b_2 Z_i + b_3 X_i * Z_i + e_i$$

✓ b_0 sera notre prédiction quant à la valeur de Y lorsque X = 0 et Z = 0

Ensuite, parce qu'un produit de X et Z est présent dans l'équation :

- ✓ b_1 sera la pente de X LORSQUE Z = 0 (EFFET SIMPLE de X pour valeur 0 de Z)
- ✓ b_2 sera la pente de Z LORSQUE X = 0 (EFFET SIMPLE de Z pour valeur 0 de X)
- ✓ b₃ correspondra au changement de pente pour un changement d'une unité sur l'autre variable. L'effet de X dépend-il des valeurs de Z? L'effet de Z dépend-il des valeurs de X?

 25

Effets simples du type d'item pour Non bruit

Encore une fois utilisation d'un codage = 0 pour la condition d'intérêt, d'où :

- ✓ Nonbruit : non bruit = 0 et bruit = 1
- √ Typec : Inc = 0.5 et Cont = 0.5 et nonbtype = Nonbruit*Typec

$$nbcorr_i = b_0 + b_1 typec_i + b_2 nonbruit_i + b_3 nonbruit_i * typec_i + e_i$$

 $nbcorr_i = (b_0 + b_2 nonbruit_i) + (b_1 + b_3 nonbruit_i) typec_i + e_i$

Le test de b_1 sera l'effet du type d'item lorsque nonbruit = 0 donc <u>lorsqu'il n'y a pas</u> de bruit

```
Standard
                Parameter
                                                           Tolerance
Variable.
           DF
                                       t Value Pr > |t|
                               Error
                 Estimate
Intercept
                             0.79895
                                         28.94
                                                  < .0001
                 23.12500
                                                             1.00000
                                         1.77
nonbru i t
                             1.12989
                                                  0.0807
                  2.00000
                                                             0.50000
                             1.59790
                                          9.61
                                                  < .0001
typec
                 15.35000
                                                             0.50000
nonbtype
                                         -2.17
                                                  0.0333
                             2.25977
                 -4.90000
```

$$nbcorr_{i} = (23.13 + 2nonbruit_{i}) + (15.35 - 4.90nonbruit_{i})typec_{i}$$

- Pour b_1 on retrouve 15.35, c'est-à-dire l'effet simple que nous voulions
- Ce test indique que lorsqu'il n'y a pas de bruit la performance est significativement meilleure pour les items contrôles, t(76) = 9.61, p < .001

CM6