Wirtschaftsmathematik I

WS 2015/16

Übung 8

1. Berechnen Sie die Determinanten folgender Matrizen!

a)
$$A = \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix}$$

c) $C = \begin{pmatrix} 0 & 0 & 2 & 5 \\ 0 & 7 & 1 & -4 \\ -1 & 3 & 2 & 4 \\ 0 & 0 & 0 & 4 \end{pmatrix}$
b) $B = \begin{pmatrix} 3 & 1 & 0 \\ -1 & 2 & 4 \\ 4 & 1 & 5 \end{pmatrix}$
d) $D = \begin{pmatrix} 0 & 0 & 2 & 5 \\ 0 & 7 & 1 & -4 \\ -1 & 3 & 2 & 4 \end{pmatrix}$

- 2. Überprüfen Sie, ob die Vektoren $a=\begin{pmatrix}3\\1\\0\end{pmatrix},\ b=\begin{pmatrix}-1\\2\\4\end{pmatrix}$ und $c=\begin{pmatrix}4\\1\\5\end{pmatrix}$ eine Basis von \mathbb{R}^3 bilden.
- 3. Für welche $a \in \mathbb{R}$ ist folgendes Gleichungssystem eindeutig lösbar?

$$ax + y + z = 1$$
$$-2x + y + z = 2$$
$$2x + 3y - az = 3$$

4. Sei
$$A = \begin{pmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{pmatrix}$$
. Existiert A^{-1} ? Wenn ja, bestimmen Sie A^{-1} .

5. Bestimmen Sie den Rang der folgenden Matrizen.

wobei $n \in \mathbb{N}; c, x \in \mathbb{R}$.

- 6. Wahr oder falsch? Begründen Sie!
 - a) "Ein lineares Gleichungssystem der Form Ax=0 ist stets lösbar."
 - b) "Vier Vektoren des Raumes \mathbb{R}^3 sind stets linear abhängig."
 - c) "Ob eine $n \times n$ -Matrix invertierbar ist, lässt sich am Rang erkennen."
 - d) "Ist $\det A \neq 0,$ so kennt man den Rang einer $n \times n\text{-Matrix.}$ "
 - e) "Für zwei Matrizen A, B gilt stets: rang(A + B) = rang(A) + rang(B)."