Learning with Errors and GSW's Homomorphic Encryption

July 4, 2019

Intuition of LWE

$$14s_1 + 15s_2 + 5s_3 + 2s_4 \approx 8 \pmod{17}$$
 $13s_1 + 14s_2 + 14s_3 + 6s_4 \approx 16 \pmod{17}$
 $6s_1 + 10s_2 + 13s_3 + s_4 \approx 3 \pmod{17}$
 $10s_1 + 4s_2 + 12s_3 + 16s_4 \approx 12 \pmod{17}$
 $9s_1 + 5s_2 + 9s_3 + 6s_4 \approx 9 \pmod{17}$
 $3s_1 + 6s_2 + 4s_3 + 5s_4 \approx 16 \pmod{17}$
 \vdots
 $6s_1 + 7s_2 + 16s_3 + 2s_4 \approx 3 \pmod{17}$

ullet Pick uniformly random $ec{s} \in \mathbb{Z}_q^n$

- ullet Pick uniformly random $ec{s} \in \mathbb{Z}_q^n$
- ullet Take χ to be some discrete Gaussian distribution

- ullet Pick uniformly random $ec{s} \in \mathbb{Z}_q^n$
- ullet Take χ to be some discrete Gaussian distribution
- Input: $A \in \mathbb{Z}_q^{m \times (n+1)}$; sample each row as below:

- ullet Pick uniformly random $ec{s} \in \mathbb{Z}_q^n$
- ullet Take χ to be some discrete Gaussian distribution
- Input: $A \in \mathbb{Z}_q^{m \times (n+1)}$; sample each row as below:
 - pick coefficients $\vec{a} \in \mathbb{Z}_q^n$ at random

- ullet Pick uniformly random $ec{s} \in \mathbb{Z}_q^n$
- ullet Take χ to be some discrete Gaussian distribution
- Input: $A \in \mathbb{Z}_q^{m \times (n+1)}$; sample each row as below:
 - ullet pick coefficients $ec{a} \in \mathbb{Z}_q^n$ at random
 - $\bullet \ \, \mathsf{Sample} \,\, \mathsf{error} \,\, e \leftarrow \chi$

- ullet Pick uniformly random $ec{s} \in \mathbb{Z}_q^n$
- ullet Take χ to be some discrete Gaussian distribution
- Input: $A \in \mathbb{Z}_q^{m \times (n+1)}$; sample each row as below:
 - pick coefficients $\vec{a} \in \mathbb{Z}_q^n$ at random
 - Sample error $e \leftarrow \chi$
 - Set $b = \vec{a} \cdot \vec{s} + e$

- ullet Pick uniformly random $ec{s} \in \mathbb{Z}_q^n$
- ullet Take χ to be some discrete Gaussian distribution
- Input: $A \in \mathbb{Z}_q^{m \times (n+1)}$; sample each row as below:
 - pick coefficients $\vec{a} \in \mathbb{Z}_q^n$ at random
 - Sample error $e \leftarrow \chi$
 - Set $b = \vec{a} \cdot \vec{s} + e$
 - Note that $\begin{pmatrix} b & -\vec{a}^T \end{pmatrix} \begin{pmatrix} 1 \\ \vec{s} \end{pmatrix} = e$

- ullet Pick uniformly random $ec{s} \in \mathbb{Z}_q^n$
- ullet Take χ to be some discrete Gaussian distribution
- Input: $A \in \mathbb{Z}_q^{m \times (n+1)}$; sample each row as below:
 - ullet pick coefficients $ec{a} \in \mathbb{Z}_q^n$ at random
 - $\bullet \ \, \mathsf{Sample} \,\, \mathsf{error} \,\, e \leftarrow \chi$
 - Set $b = \vec{a} \cdot \vec{s} + e$
 - Note that $\begin{pmatrix} b & -\vec{a}^T \end{pmatrix} \begin{pmatrix} 1 \\ \vec{s} \end{pmatrix} = e$
 - Output $\begin{pmatrix} b & -\vec{a}^T \end{pmatrix}$

- ullet Pick uniformly random $ec{s} \in \mathbb{Z}_q^n$
- ullet Take χ to be some discrete Gaussian distribution
- Input: $A \in \mathbb{Z}_q^{m \times (n+1)}$; sample each row as below:
 - ullet pick coefficients $ec{a} \in \mathbb{Z}_q^n$ at random
 - $\bullet \ \, \mathsf{Sample} \,\, \mathsf{error} \,\, e \leftarrow \chi$
 - Set $b = \vec{a} \cdot \vec{s} + e$
 - Note that $\begin{pmatrix} b & -\vec{a}^T \end{pmatrix} \begin{pmatrix} 1 \\ \vec{s} \end{pmatrix} = e$
 - Output $\begin{pmatrix} b & -\vec{a}^T \end{pmatrix}$
- Output: *s*

- ullet Pick uniformly random $ec{s} \in \mathbb{Z}_q^n$
- ullet Take χ to be some discrete Gaussian distribution
- Input: $A \in \mathbb{Z}_q^{m \times (n+1)}$; sample each row as below:
 - ullet pick coefficients $ec{a} \in \mathbb{Z}_q^n$ at random
 - $\bullet \ \, \mathsf{Sample} \,\, \mathsf{error} \,\, e \leftarrow \chi$
 - Set $b = \vec{a} \cdot \vec{s} + e$
 - Note that $\begin{pmatrix} b & -\vec{a}^T \end{pmatrix} \begin{pmatrix} 1 \\ \vec{s} \end{pmatrix} = e$
 - Output $\begin{pmatrix} b & -\vec{a}^T \end{pmatrix}$
- Output: *s*
- Note that $A \begin{pmatrix} 1 \\ \vec{s} \end{pmatrix} = \vec{e}$

Allows secure communication by using the tools below:

pk: "public key" for encryption Enc_{pk}

- pk: "public key" for encryption Enc_{pk}
- sk: "secret key" for decryption Decsk

- pk: "public key" for encryption Enc_{pk}
- sk: "secret key" for decryption Decsk
- evk: "evaluation key"

- pk: "public key" for encryption Enc_{pk}
- sk: "secret key" for decryption Decsk
- evk: "evaluation key"
- $\operatorname{Eval}_{\operatorname{ev}k}(f,\operatorname{Enc}(\mu_1),\ldots,\operatorname{Enc}(\mu_n))=\operatorname{Enc}(f(\mu_1,\ldots,\mu_n))$

Intuitive idea as follows:

 $\bullet \ \ \textit{C} \vec{\textit{v}} \approx \mu \vec{\textit{v}}$

- $C\vec{v} \approx \mu \vec{v}$
- $sk = \vec{v}$

- $C\vec{v} \approx \mu \vec{v}$
- $sk = \vec{v}$
- $C = \operatorname{Enc}(\mu)$

- $C\vec{v} \approx \mu \vec{v}$
- $sk = \vec{v}$
- $C = \operatorname{Enc}(\mu)$
- $(C_1 + C_2)\vec{v} \approx (\lambda_1 + \lambda_2)\vec{v}$

- $C\vec{v} \approx \mu \vec{v}$
- $sk = \vec{v}$
- $C = \operatorname{Enc}(\mu)$
- $(C_1 + C_2)\vec{v} \approx (\lambda_1 + \lambda_2)\vec{v}$
- $(C_1C_2)\vec{v}\approx(\lambda_1\lambda_2)\vec{v}$

- $C\vec{v} \approx \mu \vec{v}$
- $sk = \vec{v}$
- $C = \operatorname{Enc}(\mu)$
- $(C_1 + C_2)\vec{v} \approx (\lambda_1 + \lambda_2)\vec{v}$
- $(C_1C_2)\vec{v}\approx(\lambda_1\lambda_2)\vec{v}$
- $\operatorname{Enc}(\neg(\mu_0 \wedge \mu_1)) = I C_1 C_2$.

• Take $A\vec{s} = \vec{e}$ as given by LWE.

- Take $A\vec{s} = \vec{e}$ as given by LWE.
- Sample $R \in \{\,0,1\,\}^{(n+1) imes m}$ randomly

- Take $A\vec{s} = \vec{e}$ as given by LWE.
- ullet Sample $R \in \set{0,1}^{(n+1) imes m}$ randomly
- Observe $(\mu I_n + RA)\vec{s} \approx \mu \vec{s}$

- Take $A\vec{s} = \vec{e}$ as given by LWE.
- Sample $R \in \{0,1\}^{(n+1) \times m}$ randomly
- Observe $(\mu I_n + RA)\vec{s} \approx \mu \vec{s}$
- Challenge: Error grows too quickly

Terminology

• For the sake of illustration, set $q = 2^4$.

Terminology

- For the sake of illustration, set $q = 2^4$.
- Let $a = \underline{a_3 a_2 a_1 a_0} = \sum 2^i a_i$ represent the base-2 digits of a

Terminology

- For the sake of illustration, set $q = 2^4$.
- Let $a = a_3 a_2 a_1 a_0 = \sum 2^i a_i$ represent the base-2 digits of a
- Similarly, denote base-2 numbers like $\underline{1011} = 8 + 2 + 1 = 11$

GSW's tools - Powersof2

• Powersof2(a) =
$$(2^3 a, 2^2 a, 2a, a) = \begin{pmatrix} 2^3 a \\ 2^2 a \\ 2a \\ a \end{pmatrix}$$

GSW's tools - Powersof2

• Powersof2(a) =
$$(2^3a, 2^2a, 2a, a) = \begin{pmatrix} 2^3a \\ 2^2a \\ 2a \\ a \end{pmatrix}$$

• Powersof2(11) = (1000, 1100, 110, 11)

GSW's tools - Powersof2

• Powersof2(a) =
$$(2^3 a, 2^2 a, 2a, a) = \begin{pmatrix} 2^3 a \\ 2^2 a \\ 2a \\ a \end{pmatrix}$$

- Powersof2(11) = (1000, 1100, 110, 11)
- Powersof2 $(a, b) = (2^3a, 2^2a, 2a, a, 2^3b, 2^2b, 2b, b)$

GSW's tools - BitDecomp

• BitDecomp $(\underline{a_3}\underline{a_2}\underline{a_1}\underline{a_0}) = (a_3 \quad a_2 \quad a_1 \quad a_0)$

GSW's tools - BitDecomp

• BitDecomp
$$(\underline{a_3}\underline{a_2}\underline{a_1}\underline{a_0}) = (a_3 \quad a_2 \quad a_1 \quad a_0)$$

• BitDecomp
$$\left(\frac{a_3 a_2 a_1 a_0}{c_3 c_2 c_1 c_0} \quad \frac{b_3 b_2 b_1 b_0}{d_3 d_2 d_1 d_0} \right) =$$

$$\left(\begin{array}{ccccccc} a_3 & a_2 & a_1 & a_0 & b_3 & b_2 & b_1 & b_0 \\ c_3 & c_2 & c_1 & c_0 & d_3 & d_2 & d_1 & d_0 \end{array} \right)$$

GSW's tools - BitDecomp

- BitDecomp $(\underline{a_3}\underline{a_2}\underline{a_1}\underline{a_0}) = (a_3 \quad a_2 \quad a_1 \quad a_0)$
- BitDecomp $\left(\frac{a_3 a_2 a_1 a_0}{c_3 c_2 c_1 c_0} \quad \frac{b_3 b_2 b_1 b_0}{d_3 d_2 d_1 d_0}\right) =$ $\begin{pmatrix} a_3 & a_2 & a_1 & a_0 & b_3 & b_2 & b_1 & b_0 \\ c_3 & c_2 & c_1 & c_0 & d_3 & d_2 & d_1 & d_0 \end{pmatrix}$
- BitDecomp(A)Powersof2(\vec{b}) = $A\vec{b}$

• BitDecomp
$$^{-1}$$
 $\begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix} = \underline{1001}$

- BitDecomp⁻¹ $(1 \quad 0 \quad 0 \quad 1) = \underline{1001}$
- BitDecomp⁻¹ $(a_3 \ a_2 \ a_1 \ a_0) = \sum 2^i a_i$

- BitDecomp⁻¹ $(1 \ 0 \ 0 \ 1) = \underline{1001}$
- BitDecomp⁻¹ $(a_3 \ a_2 \ a_1 \ a_0) = \sum 2^i a_i$
- BitDecomp⁻¹ $(0 \ 0 \ \underline{10} \ 0) = \underline{0100}$

- BitDecomp⁻¹ $(1 \ 0 \ 0 \ 1) = \underline{1001}$
- BitDecomp⁻¹ $(a_3 \ a_2 \ a_1 \ a_0) = \sum 2^i a_i$
- BitDecomp⁻¹ $\begin{pmatrix} 0 & 0 & \underline{10} & 0 \end{pmatrix} = \underline{0100}$
- APowersof2(\vec{b}) = BitDecomp⁻¹(A) \vec{b}

• Flatten = $BitDecomp \circ BitDecomp^{-1}$

- Flatten = $BitDecomp \circ BitDecomp^{-1}$
- Flatten (<u>110</u> <u>101</u> 1 <u>11</u>)

- Flatten = $BitDecomp \circ BitDecomp^{-1}$
- Flatten (<u>110</u> <u>101</u> 1 <u>11</u>)
- = BitDecomp \circ BitDecomp⁻¹ ($\underline{110}$ $\underline{101}$ $\underline{1}$ $\underline{11}$)

- Flatten = $BitDecomp \circ BitDecomp^{-1}$
- Flatten $(110 \ 101 \ 1 \ 11)$
- = BitDecomp \circ BitDecomp⁻¹ (110 101 1 11)
- $\bullet = \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix}$

- Flatten = $BitDecomp \circ BitDecomp^{-1}$
- Flatten $(110 \ 101 \ 1 \ 11)$
- = BitDecomp \circ BitDecomp⁻¹ (110 101 1 11)
- $\bullet = \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix}$
- Flatten(A) has only 0, 1 entries

- Flatten = $BitDecomp \circ BitDecomp^{-1}$
- Flatten $(110 \ 101 \ 1 \ 11)$
- = BitDecomp \circ BitDecomp⁻¹ ($\underline{110}$ $\underline{101}$ $\underline{1}$ $\underline{11}$)
- $\bullet = \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix}$
- Flatten(A) has only 0, 1 entries
- Flatten(A)Powersof2(\vec{b}) = APowersof2(\vec{b})

Flatten(
$$\mu I_N$$
 + BitDecomp(RA))Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$

Flatten(
$$\mu I_N$$
 + BitDecomp(RA))Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$
= $(\mu I_N$ + BitDecomp(RA))Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$

Flatten(
$$\mu I_N$$
 + BitDecomp(RA))Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$
= $(\mu I_N$ + BitDecomp(RA))Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$
= μ Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$ + BitDecomp(RA)Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$

Flatten(
$$\mu I_N$$
 + BitDecomp(RA))Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$
= $(\mu I_N$ + BitDecomp(RA))Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$
= μ Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$ + BitDecomp(RA)Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$
= μ Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$ + $RA\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$

Flatten(
$$\mu I_N$$
 + BitDecomp(RA))Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$
= $(\mu I_N$ + BitDecomp(RA))Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$
= μ Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$ + BitDecomp(RA)Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$
= μ Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$ + $RA \begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$
 $\approx \mu$ Powersof2 $\begin{pmatrix} 1 \\ \vec{s} \end{pmatrix}$

Choose the following parameters:

• Modulus $q = 2^l$ (to simplify some proofs)

Choose the following parameters:

- Modulus $q = 2^l$ (to simplify some proofs)
- Lattice dimension n

Choose the following parameters:

- Modulus $q = 2^l$ (to simplify some proofs)
- Lattice dimension n
- Error distribution $\chi(\lambda, L)$

Choose the following parameters:

- Modulus $q = 2^l$ (to simplify some proofs)
- Lattice dimension n
- Error distribution $\chi(\lambda, L)$
- $m \in O(n \log q)$

GSW's Construction - Secret Keygen

1 Sample $\vec{s} \leftarrow \mathbb{Z}_q^n$ uniformly. This represents the solution of the LWE system of equations.

GSW's Construction - Secret Keygen

- Sample $\vec{s} \leftarrow \mathbb{Z}_q^n$ uniformly. This represents the solution of the LWE system of equations.

- ② Sample $\vec{e} \leftarrow \chi^m$

- $\textbf{ Generate } A \leftarrow \mathbb{Z}_q^{m \times n} \text{ uniformly }$
- ② Sample $\vec{e} \leftarrow \chi^m$
- **3** Set pk as $A\vec{s} + \vec{e}$ on the first column, followed by the columns of A.

- $\textbf{ 9} \ \, \mathsf{Generate} \ \, A \leftarrow \mathbb{Z}_q^{m \times n} \ \, \mathsf{uniformly}$
- ② Sample $\vec{e} \leftarrow \chi^m$
- **3** Set pk as $A\vec{s} + \vec{e}$ on the first column, followed by the columns of A.
- **4** Observe that $pk \cdot sk = \vec{e}$

Input: μ

• Sample $R \in \{0,1\}^{N \times m}$

Input: μ

- Sample $R \in \{0,1\}^{N \times m}$
- **②** Output Flatten($\mu \cdot I_N + \text{BitDecomp}(R \cdot pk)$)

• We have $\mu Powersof2(sk) + R \cdot pk \cdot sk$

- We have $\mu Powersof2(sk) + R \cdot pk \cdot sk$
- The second term is small.

- We have $\mu Powersof2(sk) + R \cdot pk \cdot sk$
- The second term is small.
- The first coordinate of *sk* is 1.

- We have μ Powersof2(sk) + $R \cdot pk \cdot sk$
- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first components of the first term are $2^{l-1}\mu, 2^{l-2}\mu, \dots, \mu$

- We have μ Powersof2(sk) + $R \cdot pk \cdot sk$
- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first components of the first term are $2^{l-1}\mu, 2^{l-2}\mu, \dots, \mu$
- Recover μ 's least significant bit by $LSB(\mu) = 2^{l-1}\mu$

- We have $\mu Powersof2(sk) + R \cdot pk \cdot sk$
- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first components of the first term are $2^{l-1}\mu, 2^{l-2}\mu, \dots, \mu$
- Recover μ 's least significant bit by $LSB(\mu) = 2^{l-1}\mu$
- Recover μ 's next bit by $2^{l-2}(\mu LSB(\mu))$

- We have μ Powersof2(sk) + $R \cdot pk \cdot sk$
- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first components of the first term are $2^{l-1}\mu, 2^{l-2}\mu, \dots, \mu$
- Recover μ 's least significant bit by $LSB(\mu) = 2^{l-1}\mu$
- Recover μ 's next bit by $2^{l-2}(\mu LSB(\mu))$
- Similar for all other bits of μ .

- We have μ Powersof2(sk) + $R \cdot pk \cdot sk$
- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first components of the first term are $2^{l-1}\mu, 2^{l-2}\mu, \dots, \mu$
- Recover μ 's least significant bit by $LSB(\mu) = 2^{l-1}\mu$
- Recover μ 's next bit by $2^{l-2}(\mu LSB(\mu))$
- ullet Similar for all other bits of $\mu.$
- Decryption breaks down when the error reaches q/4.

GSW's Construction - Security

• BitDecomp⁻¹(C) = μ · BitDecomp⁻¹(I) + R · A

GSW's Construction - Security

- BitDecomp⁻¹(C) = μ · BitDecomp⁻¹(I) + R · A
- Fact: If m is big enough, $(A, R \cdot A)$ is computationally indistinguishable from uniform

GSW's Construction - Security

- $BitDecomp^{-1}(C) = \mu \cdot BitDecomp^{-1}(I) + R \cdot A$
- Fact: If m is big enough, $(A, R \cdot A)$ is computationally indistinguishable from uniform
- \Rightarrow BitDecomp⁻¹(C) hides μ

GSW's Construction - Security

- BitDecomp⁻¹(C) = μ · BitDecomp⁻¹(I) + R · A
- Fact: If m is big enough, $(A, R \cdot A)$ is computationally indistinguishable from uniform
- \Rightarrow BitDecomp⁻¹(C) hides μ
- \Rightarrow $C = \mathsf{Flatten}(C) = \mathsf{BitDecomp} \circ \mathsf{BitDecomp}^{-1}(C)$ hides μ

```
Input: C, \alpha
• Set M_{\alpha} = \mathsf{Flatten}(\alpha I)
```

Input: C, α

- Set $M_{\alpha} = \mathsf{Flatten}(\alpha I)$
- Output Flatten $(M_{\alpha} \cdot C)$

Input: C, α

- Set $M_{\alpha} = \text{Flatten}(\alpha I)$
- Output Flatten($M_{\alpha} \cdot C$)
- Observe $M_{\alpha} \cdot C\vec{v} = M_{\alpha} \cdot (\mu \vec{v} + \vec{e}) = \alpha \mu \vec{v} + M_{\alpha} \cdot e$

Input: C, α

- Set $M_{\alpha} = \mathsf{Flatten}(\alpha I)$
- Output Flatten($M_{\alpha} \cdot C$)
- Observe $M_{\alpha} \cdot C\vec{v} = M_{\alpha} \cdot (\mu \vec{v} + \vec{e}) = \alpha \mu \vec{v} + M_{\alpha} \cdot e$
- Error increases by a factor of N

GSW's Construction - Addition

• Output Flatten($C_1 + C_2$)

GSW's Construction - Addition

- Output Flatten($C_1 + C_2$)
- Error increases by a factor of 2

Output Flatten(C₁C₂)

- Output Flatten(C_1C_2)
- $C_1 \cdot C_2 \vec{v} = C_1(\mu_2 \vec{v} + \vec{e}_2) = \mu_1 \mu_2 \vec{v} + \mu_2 \vec{e}_1 + C_1 \vec{e}_2$

- Output Flatten(C₁C₂)
- $C_1 \cdot C_2 \vec{v} = C_1(\mu_2 \vec{v} + \vec{e}_2) = \mu_1 \mu_2 \vec{v} + \mu_2 \vec{e}_1 + C_1 \vec{e}_2$
- Error increase depends on what's encrypted

- Output Flatten(C_1C_2)
- $C_1 \cdot C_2 \vec{v} = C_1(\mu_2 \vec{v} + \vec{e}_2) = \mu_1 \mu_2 \vec{v} + \mu_2 \vec{e}_1 + C_1 \vec{e}_2$
- Error increase depends on what's encrypted
- May need to assume bounds on the values being computed

GSW's Construction - NAND

• Enc
$$(\neg(\mu_1 \wedge \mu_2))$$
 = Flatten $(I_N - C_1 \cdot C_2)\vec{v}$

GSW's Construction - NAND

- Enc($\neg(\mu_1 \wedge \mu_2)$) = Flatten($I_N C_1 \cdot C_2$) \vec{v}
- Error increased by a factor of N + 1.

GSW's Construction - NAND

- Enc($\neg(\mu_1 \wedge \mu_2)$) = Flatten($I_N C_1 \cdot C_2$) \vec{v}
- Error increased by a factor of N + 1.
- In boolean circuits, final error increases by a factor of $(N+1)^L$

$$ullet$$
 $\frac{q}{B} > 4(N+1)^L$ for NANDs

- $\frac{q}{R} > 4(N+1)^L$ for NANDs
- $\frac{q}{B} > 4(N+T)^L$ for arithmetic circuit, where T is the upper bound on plaintexts

- $\frac{q}{B} > 4(N+1)^L$ for NANDs
- $\frac{q}{B} > 4(N+T)^L$ for arithmetic circuit, where T is the upper bound on plaintexts
- *n* increases linearly with $\log \frac{q}{B}$ for LWE's security

- $\frac{q}{R} > 4(N+1)^L$ for NANDs
- $\frac{q}{B} > 4(N+T)^L$ for arithmetic circuit, where T is the upper bound on plaintexts
- *n* increases linearly with $\log \frac{q}{B}$ for LWE's security
- Pick (q, B, n) accordingly

References

- O. Regev. The Learning with Errors Problem.
- C. Gentry, A. Sahai, B. Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based.