

Search of beta decays with ultra-low Q value for neutrino mass determination Zhuang Ge

20210325

Department of Physics, University of Jyväskylä

JYU. Since 1863. 2025/9/5

Determination of neutrino mass from single β^{\pm}/EC decay

Current direct neutrino mass probes: Ground-state to ground-state (gs-to-gs) decays (β-:Tritium, ¹⁸⁷Re; EC: ¹⁶³Ho)

- Lower Q-value, higher sensitivity to neutrino mass
- Model independent method

Tritium (β⁻decay)

 $E_0 = Q_0 - E_{rec}$ (recoil corrections: 1.72 eV) 3H

Endpoint energy E₀ ~18.57 keV

Our Purpose: Search for low Q-value decays

 $Q \rightarrow 0$, and Q < 1 keV (ultra-low)

¹⁶³Ho (Electron Capture)

Search for slightly positive Q-value decays

Ground-state to excited-state decay Q-value (Q*) for potential candidates:

J. Suhonen, Phys. Scr. 89, 054032 (2014) N. D. Gamage et al., Hyp. Int. **240**, 43 (2019)

- Ground-state to Ground-state (GS-to-GS) decay Q-value
 - → mass difference gs-to-gs decay
 - **Project:** typical uncertainty > 1 keV
 - 1. β -decay of ³H: Q-value = 18.59201(7) keV E. G. Myers et al , Phys. Rev. Lett. 114 (2015)
 - 2. β -decay of ¹⁸⁷Re: Q-value = 2.492(30)(15) keV D. A. Nesterenko, et al., Phys. Rev. C 90, 042501(R) (2014).
 - 3. EC in 163 Ho: O-value = 2.858(10)(50) keV
 - S. Eliseev et al , Phys. Rev. Lett. 115, 62501 (2015)

KATRIN.

Project8 MARE

ECHo. HOLMES. **NuMECS**

- **Excitation energy of daughter excited state**
 - → From gamma spectroscopy

typical uncertainty ~100 eV

- 1. β -decay of 115 In(9/2+) \rightarrow 115 Sn*(9/2+): Q*-value = 0.147(10) keV V. A. Zheltonozhsky et al. 2018 EPL 121 12001
- 2. β -decay of ¹³⁵Cs(7/2⁻) \rightarrow ¹³⁵Ba*(11/2⁺): Q*-value = 0.44(31) keV A. De Roubin, J. Kostensalo, T. Eronen et al., Phys. Rev. Lett., 124 (22), 222503.

$$\mathbf{Q}^* = \mathbf{Q}_0 - \mathbf{E}^*$$

To search for other low O-value decay candidates (especially ultra-low, <1 keV)

Ground-state to excited-state decay Q-value (Q*) needed to be measured with a precision of ~100 eV

Relys on Penning trap spectrometer: JYFLTRAP

Parent (GS) B/EC Daughter* **Excited state GS-to-GS Excitation energy E*** **O-value** \rightarrow mass difference Daughter (GS)

Summary of measured Q-values of potential candidates at JYFLTRAP

• List of measured promising low Q-value decay candidates for neutrino mass determination

								· · · · · · · · · · · · · · · · · · ·	
	Parent	T1/2	Daughter	E* (keV)	decay type	Q* (keV)	Decay	Q ₀ (keV)	dQ0 (keV)
	146Pm(3-)	5.53(5) y	146Nd(2+)	1470.63(6)	1st FNU	1.3(4.2)	EC	1472.000	4.000
	149Gd(7/2-)	9.28(10) dy	149Eu(5/2+)	1312(4)	1st FNU	2(6.4)	EC	1314.100	4.000
	155Tb(3/2+)	5.32(6) dy	155Gd{3/2+}	815.731(3)	Allowed{?}	4.2(10.1)	EC	820.000	10.000
	159Dy(3/2-)	144.4(2) dy	159Tb(5/2-)	363.5449(14)	Allowed	1.7(1.2)	EC	365.200	1.200
			159Tb(11/2+)	362.050(40)	3rd FU	3.2(1.2)	EC	365.200	1.200
	161Ho(5/2-)	18.479(4) hr	161Dy{7/2+}	858.502(7)	1st FNU	1.0(2.2)	EC	858.500	2.200
			161Dy{3/2-}	858.7919(18)	Allowed	-0.3(2.2)	EC	858.500	2.200
	72As(2-)	26.0(1)h	72Ge{1}	4358.7(3)	Allowed{?}	-2.8(4.0)	EC	4356.000	4.000
Cook on the	1		72Ge(3-)	3325.01(3)	Allowed	8.9(4.0)	β+	4356.000	4.000
<u>Submitte</u>	<u>a case:</u>		72Ge(2+)	3327(3)	1st FNU	6.9(5.0)	β+	4356.000	4.000
arXiv:210	<u>)3.08729</u> [n	iucl-ex]	72Ge{1+}	3338.0(3)	1st FNU{?}	-4.1(4.0)	β+	4356.000	4.000
			72Ge{2-}	3341.76(4)	Allowed{?}	-7.9(4.0)	β+	4356.000	4.000
	159Gd(3/2-)	26.24(9) h	159Tb{1/2+}	971	1st FNU{?}	0.0(1.8)	β-	970.900	0.800
	77As(3/2-)	38.79(5) h	77Se(5/2+)	680.1035(17)	1st FNU	3.1(1.7)	β-	683.200	1.700
	76As(2-)	26.24(9) h	76Se{2-}	2968.4(7)	Allowed{?}	-7.8(1.1)	β-	2960.600	0.900
	153Tb(5/2+)	2.34(1)dy	153Gd(5/2-)	548.7645(18)	1st FNU	-1.2(4.0)	β+	1569.000	4.000
			153Gd{5/2}	551.092(19)	Allowed{?}	-3.5(4.0)	β+	1569.000	4.000
	111In(9/2+)	3dy	111Cd(3/2+)	864.8(3)	2nd FU	-6.6(3.0)	EC	860.2	3.4
			111Cd(3/2+)	864.8(3)	2nd FU	-4.6(3.0)	EC	860.2	3.4
			111Cd(3/2+)	855.6(1.0)	2nd FU	4.6(3.2)	EC	860.2	3.4
			111Cd(7/2+)	853.94(7)	Allowed	6.3(3.0)	EC	860.2	3.4
	131I(7/2+)	8dy	131Xe{9/2+}	971.22(13)	Allowed{?}	-0.42(0.61)	β-	970.80	0.60
			131Xe(7/2+)	973.11(14)	Allowed	-2.31(0.62)	β-	970.80	0.60
	155Eu(5/2+)	5yr	155Gd(9/2-)	251.7056(10)	1st FU	0.1(1.8)	β-	252.00	2.40

Q₀ from: M. Wang et al., Chinese Physics C 45, 030003 (2021)

 $E^*\ from:\ \textit{National nuclear data center, Available at https://www.nndc.bnl.gov}$

The Ion Guide Isotope Separator On-Line facility (IGISOL)

J. Ärje, J. Äystö et al., PRL 54 (1985) 99

JYFLTRAP double Penning trap

JYFLTRAP double Penning trap

Q-value measurements

Phase-imaging Ion Cyclotron Resonance (PI-ICR) technique S. Eliseev et al., Phys. Rev. Lett. 110, 082501 (2013).

Cyclotron frequency:

$$v_c = v_+ + v_- = \frac{qB}{2\pi m}$$

Frequency ratio:

$$r = \frac{v_{c,c}}{v_{c,p}}$$

Q-value:

$$Q = M_p - M_d = (r - 1)(M_d - m_e)c^2$$
parent daughter

Phase-imaging Ion Cyclotron Resonance (PI-ICR)

Einzel lens

S. Eliseev et al., Phys. Rev. Lett. **110**, 082501 (2013).

D. A. Nesterenko, et al., European Physical Journal A 54, 0 (2018).

$$\alpha_c = \alpha_- + \alpha_+$$

cyclotron frequency:

$$u_c = \nu_+ + \nu_- = \frac{\alpha_c + 2\pi n}{2\pi t}$$

Puzzles in potential candidates ⁷²As, ¹¹¹In

E* from: National nuclear data center, Available at https://www.nndc.bnl.gov

Q-value of potential candidate ⁷²As, ¹¹¹In

GS-to-GS Q-values to ~ 100 eV precision to determine whether the cases are suitable for neutrino mass determination

Required to be measured directly with high accuracy and precision

Results and conclusion

Q-values (in keV) for the decay candidate to the excited states of the daughter nucleus ⁷²Ge

3325.01(3) 8.9(4) 3327(3) 6.9(5)		-3.42(8)	43
3338.0(3) -4.1(4) 3341.76(4) -7.9(4) 4358.7(3) -2.8(4)	(0) (0)	-5.4(30) -16.41(31) -20.17(8) -15.11(31)	1.8 53 238 49

Ruling out 72 As as potential candidate

Confidence of being negative

five potential ultra-low Q-value β^+ -decay or electron capture transitions are energetically forbidden, precluding all the transitions as possible candidates for the electron neutrino mass determination

However, the discovery of small negative Q-values opens up the possibility to use 72 As for the study of virtual β - γ transitions.

Collaboration list

T. Eronen, ¹ Z. Ge, ¹ A. de Roubin, ² J. Kostensalo, ¹ J. Kotila, ^{3, 4} J. Suhonen, ¹ D. A. Nesterenko, ¹ M. Hukkanen, ^{1, 2}

O. Beliuskina,¹ R. de Groote,¹ C. Delafosse,¹ S. Geldhof,¹, W. Gins,¹ A. Kankainen,¹ Á. Koszorús,⁵ I. D. Moore,¹ H. Penttilä,¹ A. Raggio,¹ S. Rinta-Antila,¹ V. Virtanen,¹ A. P. Weaver,⁶ A. Zadvornaya,¹ A. Jokinen¹ and the IGISOL collaboration

1 Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland 2 Centre d'Etudes Nucléaires de Bordeaux Gradignan, UMR 5797 CNRS/IN2P3 - Université de Bordeaux, 19 Chemin du Solarium, CS 10120, F-33175 Gradignan Cedex, France 3 Finnish Institute for Educational Research, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland 4 Center for Theoretical Physics, Sloane Physics Laboratory Yale University, New Haven, Connecticut 06520-8120, USA 5 Department of Physics, University of Liverpool, Liverpool, L69 7ZE, United Kingdom 6 School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4JG, United Kingdom

Thank you for your attention

Financial Support

Academy of Finland projects No. 306980, 312544, 275389, 284516, 295207, 314733 and 320062. EU Horizon 2020 research and innovation program under grant No. 771036 (ERC CoG MAIDEN)

Acknowledgements

the staff of the accelerator laboratory of University of Jyväskylä (JYFL-ACCLAB)

J. Jaatinen and R. Seppälä, for preparing the production target

JYU. Since 1863. 2025/9/5