Programming Assignment-I

- Write a program in any of the language(C / C++ / Java / JavaScript/ Python / R / SciLab / Matlab), to simulate the pure pursuit problem explained in the following pages.
- Find out whether the fighter aircraft will be able to reach with in the firing distance from bomber.
- Upload the program screenshot and the output screenshots on github and submit the github link as assignment.
- Try to run the same program by changing the parameter including VF, XB/YB, initial positions of bomber/fighter. And share the data and results.

Simulation of pure pursuit problem(1/4)

- •A fighter aircraft sights an enemy bomber and flies directly towards it, for destroying it.
- •The bomber keeps on flying. It has got option of flying hapahazard/curved or in a line(let us assume straight line).
- •Further lets assume, both the planes are flying in a straight lines in the 2-D plane.
- •The fighter speed vf is 20km/min
- •The target path (a function of time) is specified
- •After a fixed time Δt the bomber changes its direction.

Time, t	0	1	2	3	4	5	6	7	8	9	10	11	12
XB(t)	80	90	99	108	116	125	133	141	151	160	169	179	180
YB (t)	0	-2	-5	-9	-15	-18	-23	-29	-28	-25	-21	-20	-17

Simulation of pure pursuit problem(2/4)

- Lets assume distance in Kms and time in minutes
- •The coordinates of bombers are represented using XB(t),YB(t) and fighter be XF(t), YF(t).
- Initial conditions
- -XF(0)=0, YF(50)=0
- -XB(0)=80, YB(0)=0
- •Target is to compute the position of pursuer viz xf(t),yf(t), until the fighter is within 10kms of bomber.
- •Once bomber is in the range of pursuer(10kms), the fighter can fire a missile.
- If it doesn't happens within 12 minutes, the pursuit is abandoned and the target(bomber is considered escaped).

Simulation of pure pursuit problem(3/4)

- Strategy
- -The fighter looks at the target(bomber) at instant t, aligns its velocity vector with the line of sight(i.e.) points itself towards the target).
- -It continues to fly in that director for one minute(t+1).
- -At time (t+1), assess and realign itself.
- -The distance DIST(t) at a given time t between the target and the pursuer is given by

DIST
$$(t) = \sqrt{(YB(t) - YF(t))^2 + (XB(t) - XF(t))^2}$$

-The angle θ of the line from the fighter to the target at a given time (t) is given by

$$\sin \theta = \frac{YB(t) - YF(t)}{DIST(t)}$$

$$\cos \theta = \frac{XB(t) - XF(t)}{DIST(t)}$$

-Using above formulae the position at (t+1) for the fighter is given by

$$XF(t+1) = XF(t) + VF \cos \theta$$

 $YF(t+1) = YF(t) + VF \sin \theta$

Simulation of pure pursuit problem(4/4)

DIST
$$(t) = \sqrt{(YB(t) - YF(t))^2 + (XB(t) - XF(t))^2}$$

$$\sin \theta = \frac{YB(t) - YF(t)}{\text{DIST}(t)}$$

$$\cos \theta = \frac{XB(t) - XF(t)}{\text{DIST}(t)}$$

$$XF(t+1) = XF(t) + VF \cos \theta$$

$$YF(t+1) = YF(t) + VF \sin \theta$$