

# PROPOSITIONAL LOGIC

Syntactic Approach

#### **AXIOMATIC (FORMAL) SYSTEM**:



$$P = (\Sigma_P, F_P, A_P, R_P)$$

- ∑<sub>P</sub> = Var \_ propos ∪ Connectives ∪ {(,)} vocabulary
   Var \_ propos = {p<sub>1</sub>, p<sub>2</sub>,...} a set of propositional variables
   Connectives = {¬, ∧, ∨, →, ↔, ⊕, ↑, ↓};
- $F_P$  = the set of well formed formulas,
- A<sub>p</sub> = {A1, A2, A3} the set of axioms |
   A1: U → (V → U)
   A2: ((U → (V → Z)) → ((U → V) → (U → Z))
   A3: (U → V) → (¬V → ¬U) (modus tollens)
- R<sub>p</sub> = {mp} the set of inference (deduction) rules containing modus ponens rule.
   notation: U,U → V ⊢<sub>mp</sub> V

with the meaning: "from the facts U and  $U \rightarrow V$  we deduce (infer) V".

### DEDUCTION



**Definition:** Let  $U_1,U_2,...,U_n$  be propositional formulas, called *hypotheses* and V be a formula, called *conclusion*. V is deducible (derivable, inferable) from  $U_1,...,U_n$  and we denote by  $U_1,...,U_n \mid V$ , if there exists a sequence  $(f_1, f_2,...,f_m)$  of formulas such that  $f_m = V$  and  $\forall i \in \{1,...,m\}$  we have a) or b) or c).

- a)  $f_i \in A_P$  (axiom);
- b)  $f_i \in \{U_1,...,U_n\}$  (hypothesis formula);
- c)  $f_{i1}, f_{i2} \vdash_{mp} f_i$ , i1 < i and i2 < i

(formula  $f_i$  is inferred using *modus ponens* rule from two existing formulas)

The sequence  $(f_1, f_2, ..., f_m)$  is called the **deduction of** V from  $U_1, U_2, ..., U_n$ .

**Definition:** A formula  $U \in F_P$ , such that  $\varnothing \vdash U$  (or  $\vdash U$ ) is called *theorem*.

**Remark**: The theorems are the formulas derivable (inferable) only from the axioms and using modus ponens as inference rule.

#### PROPERTIES OF DERIVABILITY RELATION



#### Theorem:

Let R,S be sets of propositional formulas and U,V,Z, be formulas.

The derivability (syntactic consequence) relation has the properties:

#### 1. monotonicity:

if 
$$R \vdash U$$
 and  $R \subseteq S$  then  $S \vdash U$ ;

2. cut:

if 
$$S \vdash V_j$$
,  $\forall j \in \{1,...,n\}, n \in \mathbb{N}$  and  $S \cup \{V_1, V_2,...,V_n\} \vdash U$  then  $S \vdash U$ ;

3. transitivity:

if 
$$S \mid -U$$
 and  $\{U\} \mid -V$  then  $S \mid -V$ ;

4. conjunction in conclusions (right "and"):

if 
$$S \mid U$$
 and  $S \mid V$  then  $S \mid U \wedge V$ ;

disjunction in premises (left "or"):

if 
$$S \cup \{U\} \mid -Z$$
 and  $S \cup \{V\} \mid -Z$  then  $S \cup \{U \vee V\} \mid -Z$ ;

#### **EXAMPLE 1** OF REASONING MODELING: PARTY



# Notations for the propositional variables:

H1: Mary will go to the party if Lucy will go and George will not go.

H2: If John will go to the party then Lucy will go too.

H3: If John is in town he will go to the party.

H4: George is sick and can't go to the party.

H5: Yesterday John has returned in town from Paris.

C(onclusion): Will Mary go to the party?

We have to check whether the following deduction holds. H1, H2, H3, H4, H5 |- C M – Mary will go to the party

L – Lucy will go to the party

G – George will go to the party

J- John will go to the party

Jt – John is in town

#### Propositional formulas:

**H1**:  $L \land \neg G \rightarrow M$ 

**H2**:  $J \rightarrow L$ 

**H3**:  $Jt \rightarrow J$ 

H4:  $\neg G$ 

H5: Jt

C: M

### **EXAMPLE 1 - BUILDING THE DEDUCTION**



The definition of the deduction and the axiomatic system are used.

**f1=H1:** 
$$L \wedge \neg G \rightarrow M$$
 (hypothesis)

**f2=H2:**  $J \rightarrow L$  (hypothesis)

f3=H3:  $Jt \rightarrow J$  (hypothesis)

 $\mathbf{f4} = \mathbf{H4} : \neg G \text{ (hypothesis)}$ 

f5=H5: Jt (hypothesis)

 $U, U \to V \mid_{-mp} V$ 

The deduction (inference) process:

f5,f3  $\mid$ - $_{mp} J$ : **f6** (modus ponens is applied)

 $f6,f2 \mid -mp L : f7 \pmod{ponens is applied}$ 

 $f4,f7 \mid -L \land \neg G : f8$  (conjunction in conclusions)

 $f8,f1 \mid -mp M : f9 = C \pmod{modus ponens is applied}$ 

The sequence of formulas: (f1, f2, f3, f4, f5, f6, f7, f8, f9) is the *deduction* of C from the hypotheses therefore, based on the hypotheses, Mary will go to the party.

### EXAMPLE 2



 $U, U \to V \mid_{-mp} V$ 

Prove that:  $\neg p \lor q, p \lor r, \neg q \vdash r$  holds using the definition of deduction.

We build the sequence (f1,f2,f3, f4, f5,f6,f7) of formulas as follows:

f1: 
$$\neg p \lor q \equiv p \to q$$
  
f2:  $p \lor r \equiv \neg p \to r$   
f3:  $\neg q$   
f4:  $(p \to q) \to (\neg q \to \neg p)$  - axiom A3 (modus tollens)  
f1,f4  $| \neg mp \neg q \to \neg p$   
f5:  $\neg q \to \neg p$   
f6:  $\neg p$   
f2,f6  $| \neg mp r$   
f7:  $r$ 

f7 = r was proved from the hypotheses (f1,f2,f3) using modus ponens and A3.

### PROPERTIES OF PROPOSITIONAL LOGIC



**Soundness theorem** (syntactic validity implies semantic validity):

If 
$$\vdash U$$
 then  $\models U$  (A theorem is a tautology).

Completeness theorem (semantic validity implies syntactic validity):

If 
$$\models U$$
 then  $\models U$  (A tautology is a theorem).

Theorem of soundness and completeness for propositional logic:

$$\vdash U$$
 if and only if  $\models U$ .

Consequences of this theorem are the following properties:

- Propositional logic is *non-contradictory*: we can't have simultaneously  $\vdash U$  and  $\vdash \neg U$ .
- Propositional logic is coherent: not every propositional formula is a theorem.
- Propositional logic is decidable: we can always decide whether a propositional
  formula is a theorem or not. The truth table method is a decision method.

### COMPACTNESS PROPERTY



#### Theorem (compactness 1)

An *infinite set* of propositional formulas has a model *if and only if* each of its subsets has a *finite* model.

#### Theorem (compactness 2)

A propositional formula V is a logical consequence of an *infinite set* of propositional formulas  $S(S \models V)$ 

#### if and only if

there exists a *finite subset* of S:  $\{U_1, U_2, ..., U_n\} \subset S$  such that  $U_1, U_2, ..., U_n = V$ .

### **COMPACTNESS PROPERTY (CONTD.)**



#### Theorem

Let  $S = \{U_1, U_2, ..., U_m, ...\}$  be an infinite set of propositional formula.

1. S is inconsistent if and only if

 $\exists k \in \mathbb{N}^*$ , such that  $\{U_1, U_2, ..., U_k\}$  is inconsistent.

S is consistent if and only if
 {U<sub>1</sub>} is consistent and
 {U<sub>1</sub>,U<sub>2</sub>} is consistent and
 ...
 {U<sub>1</sub>,U<sub>2</sub>,...,U<sub>m</sub>} is consistent and

#### Remarks:

- An infinite set of propositional formulas is inconsistent if and only if
  it has an inconsistent finite subset. This can be proved in a finite number of steps.
- An infinite set of propositional formulas is consistent if and only if all its subsets
   (an infinite number) are consistent. This can't be proved in a finite number of steps.

## PROPOSITIONAL INFERENCE RULES



|                | Inference rule                                          | Theorem                                                                          |
|----------------|---------------------------------------------------------|----------------------------------------------------------------------------------|
| Addition       | U dash U ee V                                           | $\vdash U \rightarrow U \lor V$                                                  |
| Simplification | $U \land V \vdash U$                                    | $ -U \land V \rightarrow U$                                                      |
|                | $U \wedge V \vdash V$                                   | $\vdash U \land V \rightarrow V$                                                 |
| Modus ponens   | $U,U \rightarrow V \mid V$                              | $\vdash U \land (U \rightarrow V) \rightarrow U$                                 |
| Modus tollens  | $U \rightarrow V \vdash \neg V \rightarrow \neg U$      | $\vdash (U \rightarrow V) \rightarrow (\neg V \rightarrow \neg U)$               |
|                | $\neg V, U \rightarrow V \vdash \neg U$                 | $ V \wedge (U \rightarrow V) \rightarrow -U$                                     |
| Syllogism      | $U \rightarrow V, V \rightarrow Z \mid U \rightarrow Z$ | $\vdash (U \rightarrow V) \land (V \rightarrow Z) \rightarrow (U \rightarrow Z)$ |
|                | $U,U \rightarrow V,V \rightarrow Z \vdash Z$            | $ -U \land (U \rightarrow V) \land (V \rightarrow Z) \rightarrow Z$              |
| Resolution     | $U \lor V, \neg U \lor Z \vdash V \lor Z$               | $\vdash (U \lor V) \land (\neg U \lor Z) \rightarrow (V \lor Z)$                 |

#### WHICH RULE OF INFERENCE IS USED IN EACH ARGUMENT BELOW?



| H. Alice is a Math major. (p)                                                  | Addition                                  |  |
|--------------------------------------------------------------------------------|-------------------------------------------|--|
| C. Therefore, Alice is either a Math major or a CSI major. $(p \lor q)$        | $p \vdash p \lor q$                       |  |
| H. Jerry is a Math major <mark>and a CSI major (p∧q)</mark>                    | Simplification                            |  |
| C. Therefore, Jerry is a Math major (p)                                        | $p \land q \vdash p$                      |  |
| H1. If it is rainy, then the pool will be closed. $(p \rightarrow q)$          |                                           |  |
| H2.It is rainy. $(p)$                                                          | Modus ponens                              |  |
| C. Therefore, the pool is closed. (q)                                          | $p, p \rightarrow q \vdash q$             |  |
| H1. If it snows today, the university will close $(p \rightarrow q)$           | Modus tollens                             |  |
| H2. The university is not closed today. $(-q)$                                 |                                           |  |
| C. Therefore, it did not snow today. (-p)                                      | $ \neg q, p \rightarrow q \vdash \neg p $ |  |
| H1. If I go swimming, then I will stay in the sun too long $(p \rightarrow q)$ |                                           |  |
| H2. If I stay in the sun too long, then I will sunburn. $(q \rightarrow r)$    | Syllogism                                 |  |
| C. Therefore, if I go swimming, then I will sunburn. $(p \rightarrow r)$       | $p \to q, q \to r \vdash p \to r$         |  |
| H1.I go swimming or eat an ice cream $(p \lor q)$                              |                                           |  |
| H2.I do not go swimming (-p)                                                   | Resolution                                |  |
| C. Therefore, I eat an ice cream (q)                                           | $p \lor q, \neg p \vdash q$               |  |

### **FALLACIES**



Fallacy: mistaken belief based on unsound argument.

#### Fallacy of affirming the conclusion

- H1. If it is Saturday I go to the swimming pool.  $(p \rightarrow q)$
- H2. I go to the swimming pool. (q)
- C. Is it Saturday? (Can we infer p?)

$$p \rightarrow q, q \not\vdash p$$
 because  $|\neq (p \rightarrow q) \land q \rightarrow p$ 

#### • Fallacy of denying the hypothesis

- H1. If it is Saturday I go to the swimming pool.  $(p \rightarrow q)$
- H2. It is **not** Saturday. (-p)
- C. I do not go to the swimming pool. (Can we infer $(\neg q)$ ?)

$$p \to q, \neg p \not\vdash \neg q$$
 because  $\not\vdash (p \to q) \land \neg p \to \neg q$ 

# **FALLACIES (contd.)**



### Fallacy of affirming a disjunct

H1: I am at home or I am in the city.  $(p \lor q)$ 

H2: I am at home. (P)

C: I am not in the city. (Can we infer  $(\neg q)$ ?)

 $p \lor q, p \not\vdash \neg q$  because  $\not\models (p \lor q) \land p \rightarrow \neg q$ 

### Fallacy of denying a conjunct

H1: I cannot be both at home and in the city.  $\neg (p \land q)$ 

H2: I am **not** at home.  $(\neg p)$ 

C: I am in the city. (Can we infer (q)?)

 $-(p \land q), -p \not\vdash q$  because  $\not\models -(p \land q) \land -p \rightarrow q$ 

### **THEOREM OF DEDUCTION AND ITS REVERSE**



#### Theorem of deduction:

If 
$$U_1,...,U_{n-1},U_n \vdash V$$
, then  $U_1,...,U_{n-1} \vdash U_n \to V$ .

#### Reverse of the theorem of deduction:

If 
$$U_1,...,U_{n-1} | -U_n \to V$$
 then  $U_1,...,U_{n-1},U_n | -V$ .

By applying "n" times the theorem of deduction and its reverse we obtain:

$$U_1,...,U_{n-1},U_n \vdash V$$
 if and only if

$$U_1,...,U_{n-1} \vdash U_n \rightarrow V$$
 if and only if

$$U_1,...,U_{n-2} \vdash U_{n-1} \rightarrow (U_n \rightarrow V)$$
 if and only if

...

$$U_1 \vdash U_2 \rightarrow (...U_{n-1} \rightarrow (U_n \rightarrow V)...)$$
 if and only if

$$\vdash U_1 \rightarrow (U_2 \rightarrow (... \rightarrow (U_n \rightarrow V)...))$$



1. 
$$\vdash U \rightarrow ((U \rightarrow V) \rightarrow V)$$

2. 
$$\vdash (U \rightarrow V) \rightarrow ((V \rightarrow Z) \rightarrow (U \rightarrow Z))$$

- 3.  $|-(U \to (V \to Z)) \to (V \to (U \to Z))|$  permutation of the premises law
- 4.  $\vdash (U \rightarrow (V \rightarrow Z)) \rightarrow (V \land U \rightarrow Z)$  reunion of the premises law
- 5.  $\vdash (U \land V \rightarrow Z) \rightarrow (U \rightarrow (V \rightarrow Z))$  separation of the premises law

# **Proof**



2. 
$$\vdash (U \rightarrow V) \rightarrow ((V \rightarrow Z) \rightarrow (U \rightarrow Z))$$

We begin with the deduction:

$$U, U \rightarrow V, V \rightarrow Z \mid Z \text{ (syllogism)}$$

Application of the theorem of deduction  $==> U \rightarrow V, V \rightarrow Z \mid U \rightarrow Z$ 

Application of the theorem of deduction ==>

$$U \to V \vdash (V \to Z) \to (U \to Z)$$

Application of the theorem of deduction ==>

$$-(U \to V) \to ((V \to Z) \to (U \to Z))$$

### **EXAMPLE 4** – THEOREM OF DEDUCTION



Using the theorem of deduction and its reverse prove:

$$\vdash (p \rightarrow r) \rightarrow ((p \land r \rightarrow q) \rightarrow (p \rightarrow q))$$

### Step1: We apply the reverse of the theorem of deduction to obtain

the initial deduction.

The premise of the main implication is moved from right to the left.

if 
$$|-(p \to r) \to ((p \land r \to q) \to (p \to q))$$
 then  $p \to r |-(p \land r \to q) \to (p \to q)$  then  $p \to r, p \land r \to q |-p \to q$  then  $p \to r, p \land r \to q, p |-q$ 

## **EXAMPLE 4** (CONTD.)



### **Step2:** We prove the deduction obtained at Step1:

$$p 
ightharpoonup r, p 
ightharpoonup r, p 
ightharpoonup q, p 
ightharpoonup q,$$
 building the sequence of formulas: (f1, f2, f3, f4, f5, f6): f1:  $p 
ightharpoonup p$  remise (hypothesis) f2:  $p 
ightharpoonup r$  remise f1, f2  $ightharpoonup mp$   $r$  f3:  $r$  f4: f1  $ightharpoonup f3 = p 
ightharpoonup r$  (conjunction of the conclusions) f5:  $p 
ightharpoonup r 
ightharpoonup q$  r6:  $q$ 

The sequence (f1, f2, f3, f4, f5, f6) is the deduction of q from the premises  $p \to r, p \land r \to q, p$ .

### **EXAMPLE 4** (CONTD.)



### Step2: We prove the deduction obtained at Step1:

$$p \rightarrow r, p \land r \rightarrow q, p \vdash q$$
, building the sequence of formulas: (f1, f2, f3, f4, f5, f6): f1:  $p$  --- premise (hypothesis) f2:  $p \rightarrow r$  --- premise f1, f2  $\vdash_{mp} r$  f3:  $r$  f4: f1  $\land$  f3=  $p \land r$  (conjunction of the conclusions) f5:  $p \land r \rightarrow q$  --- premise f4, f5  $\vdash_{mp} q$  f6:  $q$ 

The sequence (f1, f2, f3, f4, f5, f6) is the deduction of q from the premises  $p \to r$ ,  $p \land r \to q$ , p.

### **EXAMPLE 4** (CONTD.)



**Step3:** We begin with the deduction  $p \to r$ ,  $p \land r \to q$ ,  $p \vdash q$  proved at **Step2** and we apply three times the theorem of deduction.

There are 3!=6 such possibilities (to move the premises to the right side of the meta-symbol  $\vdash$ ) and we prove 6 theorems: T1, T2, T3, T4, T5, T6.

The premises are moved to the right-hand side of  $\vdash$  in the following order:

$$p, p \land r \rightarrow q, p \rightarrow r$$

if 
$$p \to r, p \land r \to q, p \vdash q$$
 then 
$$p \to r, p \land r \to q \vdash p \to q \text{ then}$$
 
$$p \to r \vdash (p \land r \to q) \to (p \to q) \text{ then}$$
 
$$\vdash T1 = (p \to r) \to ((p \land r \to q) \to (p \to q)) \text{ ---- the theorem to be proved.}$$

The following theorems can be also proved:

$$|-T2 = (p \land r \rightarrow q) \rightarrow ((p \rightarrow r) \rightarrow (p \rightarrow q))$$

$$|-T3 = (p \land r \rightarrow q) \rightarrow (p \rightarrow ((p \rightarrow r) \rightarrow q)))$$

$$|-T4 = p \rightarrow ((p \land r \rightarrow q) \rightarrow ((p \rightarrow r) \rightarrow q))$$

$$|-T5 = (p \rightarrow r) \rightarrow (p \rightarrow ((p \land r \rightarrow q) \rightarrow q))$$

$$|-T6 = p \rightarrow ((p \rightarrow r) \rightarrow ((p \land r \rightarrow q) \rightarrow q))$$

# DECISION PROBLEMS



# IN PROPOSITIONAL LOGIC

1. Is a propositional formula a tautology/theorem)?

$$\stackrel{?}{\models}V$$
 or  $\stackrel{?}{\vdash}V$ 

2. Is a propositional formula a logical/syntactic consequence of a set of hypotheses?

$$U_1,...,U_n \stackrel{?}{\models} V$$
 or  $U_1,...,U_n \stackrel{?}{\mid} V$ 

In order to solve these two decision problems, theorem proving methods are applied.

## **CLASSIFICATION OF PROOF METHODS**



| semantic versus syntactic methods                                                                                                                                         | direct versus refutation methods                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>semantic methods</li> <li>the truth table method;</li> <li>the semantic tableaux method;</li> <li>the CNF- conjunctive normal form.</li> </ul>                   | <ul> <li>direct methods: they use directly the formula to be proved</li> <li>the truth table method;</li> <li>the CNF- conjunctive normal form;</li> <li>the definition of deduction;</li> </ul> |
|                                                                                                                                                                           | <ul> <li>the theorem of deduction and its reverse;</li> <li>the sequent calculus method.</li> </ul>                                                                                              |
| syntactic methods                                                                                                                                                         | refutation methods: they model the "reductio                                                                                                                                                     |
| <ul> <li>the definition of deduction;</li> <li>the theorem of deduction and its reverse;</li> <li>the resolution method;</li> <li>the sequent calculus method.</li> </ul> | ad absurdum" (proof by contradiction) and                                                                                                                                                        |