INTRODUCTION TO HOMOLOGICAL ALGEBRA

ROBERT CARDONA, MASSY KHOSHBIN, AND SIAVASH MORTEZAVI

1. MATH 697 Notes

R Proposition 2.18:

- (1) A sequence $0 \to A \xrightarrow{f} B$ is exact if and only if f is injective.
- (2) A sequence $B \xrightarrow{g} C \to 0$ is exact if and only if g is surjective.
- (3) A sequence $0 \to A \xrightarrow{h} B \to 0$ is exact if and only if h is an isomorphism.

DF §10.5 Proposition 24: (The Short Five Lemma) Let α, β, γ be homomorphisms of short exact sequences:

(1) If α and γ are injective then so is β .

Proof. Let $b \in B$ such that $\beta(b) = 0$. We want to show that b = 0. Observe that $g'(\beta(b)) = g'(0) = 0$. By commutativity we have $\gamma(g(b)) = g'(\beta(b)) = g'(0) = 0$. Since γ is injective we know g(b) = 0 so $b \in \ker g$ but since we are in an exact sequence we have im $f = \ker g$ and hence $b \in \operatorname{im} f$. By definition there exists $a \in A$ with f(a) = b. Now $f'(\alpha(a)) = \beta(f(a)) = \beta(b) = 0$. Since f' is injective, it follows that $\alpha(a) = (f')^{-1}(0) = 0$. Now we have $a = \alpha^{-1}(0)$ and so a = 0. So 0 = f(a) = b.

(2) If α and γ are surjective then so is β .

Proof. Let $b' \in B'$ then $g'(b') \in C'$. Since γ is surjective there excists $c \in C$ such that $\gamma(c) = g'(b')$. Since this is an exact sequence, g is surjective so there exists $b \in B$ such that g(b) = c. By equality we have $\gamma(c) = \gamma(g(b)) = g'(b')$. Now observe that

$$g'(b' - \beta(b)) = g'(b') - g'(\beta(b)) = g'(b') - \gamma(g(b)) = g'(b') - g'(b') = 0$$

So in particular $b' - \beta(b) \in \ker g'$ but by exactness im $f' = \ker g'$ so there exists $a' \in A'$ such that $f'(a') = b' - \beta(b)$. But since α is surjective, there exists $a \in A$ such that $\alpha(a) = a'$. Now $f'(a') = f'(\alpha(a)) = b' - \beta(b)$. By commutativity $f'(\alpha(a)) = \beta(f(a)) = b' - \beta(b)$ so $\beta(f(a)) + \beta(b) = b'$ and we have $\beta(f(a) + b) = b'$.

П

(3) If α and γ are isomorphisms then so is β (and then the two sequences are isomorphism).

Proof. Follows from (1) and (2).

R Proposition 2.72: (Five Lemma) Consider the commutative diagram with exact rows.

$$A_{1} \xrightarrow{f} A_{2} \xrightarrow{g} A_{3} \xrightarrow{h} A_{4} \xrightarrow{k} A_{5}$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma} \qquad \downarrow^{\delta} \qquad \downarrow^{\varepsilon}$$

$$B_{1} \xrightarrow{f'} B_{2} \xrightarrow{g'} B_{3} \xrightarrow{h'} B_{4} \xrightarrow{k'} B_{5}$$

- (1) If β and δ are surjective and ε is injective, then γ is surjective.
- (2) If β and δ are injective and α is surjective, then γ is injective.
- (3) If α, β, δ and ε are isomorphisms, then γ is an isomorphism.

R Exercise 2.14: Let $A \xrightarrow{f} B \xrightarrow{g} C$ be a sequence of module maps. Prove that gf = 0 if and only if im $f \subseteq \ker g$. Give an example of such a sequence that is not exact.

Date: August 14, 2013.

L

Proof. Suppose gf=0, that is, f(g(a))=0 for all $a\in A$. Let $b\in \operatorname{im} f$ then by definition there exists $a\in A$ such that f(a)=b. But we know by hypothesis that 0=g(f(a))=g(b) so $b\in \ker g$. Conclude that $\operatorname{im} f\subseteq \ker g$. Conversely, suppose that $\operatorname{im} f\subseteq \ker g$. Let $a\in A$ and observe that $f(a)\in \operatorname{im} f$. By hypothesis $f(a)\in \ker g$ so g(f(a))=0. Since a was arbitrary conclude gf=0.

Consider the sequence of module maps $\mathbb{Z}/4\mathbb{Z} \xrightarrow{f} \mathbb{Z}/3\mathbb{Z} \xrightarrow{g} \mathbb{Z}/2\mathbb{Z}$ where $f(\overline{x}) = 2\overline{x}$ and $g(\overline{y}) = \overline{y}$. Observe that im $f = \mathbb{Z}/3\mathbb{Z}$ and $\ker g = \{0\}$. Since im $f \neq \ker g$ it follows that this is **not** an exact sequence.

R Exercise 2.15:

(1) Prove that $f: M \to N$ is surjective if and only if $\operatorname{coker} f = \{0\}$.

Proof. Suppose $f:M\to N$ is surjective then for $n\in N$, there exists $m\in M$ such that f(m)=n. By definition coker $f=M/\inf f=M/M=0$. Conversely, suppose that coker f=0, i.e., $M/\inf f=0$ implying that if $m+\inf f\in M/\inf f$ then $m+\inf f=0$ or equivalently $m\in \inf f$. Since m is arbitrary, conclude $M=\inf f$ and hence f is surjective by definition.

(2) If $f: M \to N$ is a map, prove that there is an exact sequence

$$0 \to \ker f \to M \xrightarrow{f} N \to \operatorname{coker} f \to 0.$$

Proof. Define $h: \ker f \to M$ by h(m) = m, that is, map each element to itself. It follows immediately that im $h = \ker f$. Define $g: N \to \operatorname{coker} f = N/\operatorname{im} f$ by $g(n) = n + \operatorname{im} f$, that is, the canonical/projection mapping. Observe that $\ker g = \operatorname{im} f$. Conclude that the following sequence is in fact exact:

$$0 \xrightarrow{\text{identity}} \ker f \xrightarrow{h} M \xrightarrow{f} N \xrightarrow{g} \operatorname{coker} f \xrightarrow{\operatorname{zero}} . \quad \Box$$

R Exercise 2.16:

(1) If $0 \to M \to 0$ is an exact sequence, prove that $M = \{0\}$.

Proof. Consider $0 \xrightarrow{f} M \xrightarrow{g} 0$. Since f is surjective then for $m \in M$ there exists $x \in 0$ such that f(x) = m but x must be 0 so m = 0.

(2) If $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ is an exact sequence, prove that f is surjective if and only if h is injective.

Proof. Suppose f is surjective. Then $\operatorname{im} f = B = \ker g$ but this immediately implies that $\operatorname{im} g = 0 = \ker h$ so h is injective by definition. Conversely, suppose h is injective. Then $\ker h = 0 = \operatorname{im} g$ which immediately implies $\ker g = B = \operatorname{im} f$. Conclude by definition f is surjective.

(3) Let $A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} D \xrightarrow{\delta} E$ be exact. If α and δ are isomorphisms, prove that $C = \{0\}$.

Proof. Observe that, by previous exercise, β is surjective and γ is injective so we have im $\beta = C$ and $\ker \gamma = 0$. Result follows by exactness: $C = \operatorname{im} \beta = \ker \gamma = 0$. Conclude $C = \{0\}$.

R Exercise 2.17: If $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D \xrightarrow{k} E$ is exact, prove that there is an exact sequence $0 \to \operatorname{coker} f \xrightarrow{\alpha} C \xrightarrow{\beta} \ker k \to 0$, where $\alpha: b + \operatorname{im} f \mapsto g(b)$ and $\beta: c \mapsto h(c)$.

Proof. Observe that $\ker \beta = \{c \in C : \beta(c) = h(c) = 0\} = \ker h = \operatorname{im} g$ by exactness and since α can run through any $b \in B$ conclude $\operatorname{im} \alpha = \operatorname{im} g = \ker \beta$

AM Proposition 2.10: (Snake Lemma) Let

$$0 \longrightarrow M' \stackrel{g}{\longrightarrow} M \stackrel{h}{\longrightarrow} M'' \longrightarrow 0$$

$$\downarrow^{f'} \qquad \downarrow^{f} \qquad \downarrow^{f''}$$

$$0 \longrightarrow N' \stackrel{g'}{\longrightarrow} N \stackrel{h'}{\longrightarrow} N'' \longrightarrow 0$$

be a commutative diagram of R-modules and homomorphisms, with the rows exact. Then there exists a sequence

$$0 \to \ker(f') \xrightarrow{\overline{u}} \ker(f) \xrightarrow{\overline{v}} \ker(f'') \xrightarrow{d} \operatorname{coker}(f') \xrightarrow{\overline{u}'} \operatorname{coker}(f) \xrightarrow{\overline{v}'} \operatorname{coker}(f'') \to 0$$

in which \overline{u} , \overline{v} are restrictions of u, v, and \overline{u}' , \overline{v}' are induced by u', v'.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY LONG BEACH E-mail address: mrrobertcardona@gmail.com and massy255@gmail.com and siavash.mortezavi@gmail.com