

Description

The NCE0110AK uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =100V,I_D =10A

$$\begin{split} R_{DS(ON)} < 130 m\Omega & @V_{GS} = 10V \quad (Typ:95 m\Omega) \\ R_{DS(ON)} < 140 m\Omega & @V_{GS} = 4.5V \quad (Typ:100 m\Omega) \end{split}$$

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM10N10-T2	VSM10N10	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	10	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	7	А	
Pulsed Drain Current	I _{DM}	40	А	
Maximum Power Dissipation	P _D	40	W	
Derating factor		0.27	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	20	mJ	
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 175	$^{\circ}\mathbb{C}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	3.8	°C/W	
---	----------------	-----	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	110	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.5	2.0	V
Drain-Source On-State Resistance	-	V _{GS} =10V, I _D =10A	-	95	130	mΩ
	R _{DS(ON)}	V _{GS} =4.5V, I _D =8A		100	140	
Forward Transconductance	g FS	V _{DS} =25V,I _D =6A	3.5	-	-	S
Dynamic Characteristics (Note4)	•					•
Input Capacitance	C _{lss}	V _{DS} =50V,V _{GS} =0V,	-	980	-	PF
Output Capacitance	Coss		-	37	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	27	-	PF
Switching Characteristics (Note 4)						•
Turn-on Delay Time	t _{d(on)}	V_{DD} =50V, R_{L} =15 Ω V_{GS} =10V, R_{G} =2.5 Ω	-	11	-	nS
Turn-on Rise Time	t _r		-	7.4	-	nS
Turn-Off Delay Time	t _{d(off)}		-	35	-	nS
Turn-Off Fall Time	t _f		-	9.1	-	nS
Total Gate Charge	Qg	V _{DS} =50V,I _D =10A,	-	21.5		nC
Gate-Source Charge	Q _{gs}		-	3.2	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	6	-	nC
Drain-Source Diode Characteristics	•					•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =10A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	10	А
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =10A	-	21		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	97		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t\,\leqslant\,\,10$ sec.
- 3. Pulse Test: Pulse Width $\leq 300 \, \mu$ s, Duty Cycle $\leq 2\%$.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance