

INTERNAL HIGHER TOPOS THEORY

Louis Martini and Sebastian Wolf

May 23, 2023

▶ An ∞ -topos \mathcal{B} supports a very rich logic \rightsquigarrow can develop mathematics internal to \mathcal{B} .

▶ An ∞ -topos $\mathcal B$ supports a very rich logic \leadsto can develop mathematics internal to $\mathcal B$.

 \mathcal{B} -internal mathematics

B-parametrised mathematics

${\cal B}$ -internal mathematics	\leftrightarrow	${\mathcal B}$ -parametrised mathematics
Group object G internal to $\mathcal B$	\leftrightarrow	sheaf $\mathcal{B}^{\mathrm{op}} o \mathrm{Grp}$

▶ An ∞ -topos \mathcal{B} supports a very rich logic \rightsquigarrow can develop mathematics internal to \mathcal{B} .

B -internal mathematics	\leftrightarrow	${\cal B}$ -parametrised mathematics
Group object G internal to $\mathcal B$	\leftrightarrow	sheaf $\mathcal{B}^{\mathrm{op}} o \mathrm{Grp}$
∞ -category C internal to ${\cal B}$	\leftrightarrow	sheaf $\mathcal{B}^{\mathrm{op}} o \mathrm{Cat}_{\infty}$

\mathcal{B} -internal mathematics	\leftrightarrow	${\cal B}$ -parametrised mathematics
Group object G internal to $\mathcal B$	\leftrightarrow	sheaf $\mathcal{B}^{\mathrm{op}} o \mathrm{Grp}$
∞ -category C internal to ${\cal B}$	\leftrightarrow	sheaf $\mathcal{B}^{\mathrm{op}} o \mathrm{Cat}_{\infty}$
presentable ∞ -category E inter-		
nal to ${\cal B}$		

\mathcal{B} -internal mathematics	\leftrightarrow	${\mathcal B}$ -parametrised mathematics
Group object G internal to $\mathcal B$	\leftrightarrow	sheaf $\mathcal{B}^{\mathrm{op}} o \mathrm{Grp}$
∞ -category C internal to ${\cal B}$	\leftrightarrow	sheaf $\mathcal{B}^{\mathrm{op}} o \mathrm{Cat}_{\infty}$
presentable ∞ -category E inter-	\leftarrow	presentable ∞ -category ${\mathcal E}$
nal to ${\cal B}$		tensored over ${\cal B}$

${\cal B}$ -internal mathematics	\leftrightarrow	${\mathcal B}$ -parametrised mathematics
Group object G internal to $\mathcal B$	\leftrightarrow	sheaf $\mathcal{B}^{\mathrm{op}} o \mathrm{Grp}$
∞ -category C internal to ${\cal B}$	\leftrightarrow	sheaf $\mathcal{B}^{\mathrm{op}} o \mathrm{Cat}_{\infty}$
presentable ∞ -category E inter-	\leftarrow	presentable ∞ -category ${\mathcal E}$
nal to ${\cal B}$		tensored over ${\cal B}$
∞ -topos X internal to ${\cal B}$		

${\mathcal B}$ -internal mathematics	\leftrightarrow	${\mathcal B}$ -parametrised mathematics
Group object G internal to $\mathcal B$	\leftrightarrow	sheaf $\mathcal{B}^{\mathrm{op}} o \mathrm{Grp}$
∞ -category C internal to ${\cal B}$	\leftrightarrow	sheaf $\mathcal{B}^{\mathrm{op}} o \mathrm{Cat}_{\infty}$
presentable ∞-category E inter-	\leftarrow	presentable ∞ -category ${\mathcal E}$
nal to ${\cal B}$		tensored over ${\cal B}$
∞ -topos X internal to ${\cal B}$	\leftrightarrow	∞ -topos ${\mathcal X}$ with geometric
·		morphism $f_*\colon \mathcal{X} o \mathcal{B}$

B-internal mathematics	\leftrightarrow	${\mathcal B}$ -parametrised mathematics
Group object G internal to ${\cal B}$	\leftrightarrow	sheaf $\mathcal{B}^{\mathrm{op}} o \mathrm{Grp}$
∞ -category C internal to ${\cal B}$	\leftrightarrow	sheaf $\mathcal{B}^{\mathrm{op}} o \mathrm{Cat}_{\infty}$
presentable ∞-category E inter-	\leftarrow	presentable ∞ -category ${\mathcal E}$
nal to ${\cal B}$		tensored over ${\cal B}$
∞ -topos X internal to $\mathcal B$	\leftrightarrow	∞ -topos ${\mathcal X}$ with geometric
•		morphism $f_*\colon \mathcal{X} o \mathcal{B}$

B-categories

Definition (\mathcal{B} -categories and \mathcal{B} -groupoids)

A $\mathcal B$ -category C is a complete Segal object in $\mathcal B$, i.e. a functor C: $\Delta^{\mathrm{op}} \to \mathcal B$ satisfying the Segal condition and univalence. A $\mathcal B$ -groupoid is a constant simplicial object in $\mathcal B$

$$\leadsto \mathcal{B} \simeq \operatorname{Grpd}(\mathcal{B}) \subset \operatorname{Cat}(\mathcal{B}) \subset \operatorname{Fun}(\Delta^{\operatorname{op}}, \mathcal{B})$$

B-categories

Definition (\mathcal{B} -categories and \mathcal{B} -groupoids)

A $\mathcal B$ -category C is a complete Segal object in $\mathcal B$, i.e. a functor C: $\Delta^{\mathrm{op}} \to \mathcal B$ satisfying the Segal condition and univalence. A $\mathcal B$ -groupoid is a constant simplicial object in $\mathcal B$

$$\leadsto \mathcal{B} \simeq \operatorname{Grpd}(\mathcal{B}) \subset \operatorname{Cat}(\mathcal{B}) \subset \operatorname{Fun}(\Delta^{\operatorname{op}}, \mathcal{B})$$

Proposition (\mathcal{B} -categories are sheaves of ∞ -categories)

There is an equivalence of ∞ -categories $\mathrm{Cat}(\mathcal{B}) \simeq \mathrm{Fun}^{\mathrm{lim}}(\mathcal{B}^{\mathrm{op}}, \mathrm{Cat}_{\infty})$ between the ∞ -category of \mathcal{B} -categories and the ∞ -categories of *sheaves* of ∞ -categories on \mathcal{B} .

Categorical structure of $Cat(\mathcal{B})$

Presentability $Cat(\mathcal{B})$ is presentable \rightsquigarrow has all limits and colimits

Categorical structure of Cat(B)

Presentability $Cat(\mathcal{B})$ is presentable \leadsto has all limits and colimits **Cartesian closure** Have internal hom $\underline{Fun}_{\mathcal{B}}(-,-) \leadsto Functor \mathcal{B}$ -categories

Categorical structure of Cat(B)

Presentability $\operatorname{Cat}(\mathcal{B})$ is presentable \leadsto has all limits and colimits **Cartesian closure** Have internal hom $\operatorname{\underline{Fun}}_{\mathcal{B}}(-,-) \leadsto \operatorname{Functor} \mathcal{B}\text{-categories}$ **Global sections** The geometric morphism $\operatorname{const}\colon \mathcal{S} \leftrightarrows \mathcal{B} : \Gamma$ induces an adjunction

const:
$$Cat_{\infty} \leftrightarrows Cat(\mathcal{B}) : \Gamma$$

 \leadsto can regard ∞ -categories as *constant* $\mathcal B$ -categories. \leadsto every $\mathcal B$ -category has an underlying ∞ -category of global sections.

Categorical structure of $Cat(\mathcal{B})$

Presentability $\operatorname{Cat}(\mathcal{B})$ is presentable \leadsto has all limits and colimits **Cartesian closure** Have internal hom $\operatorname{\underline{Fun}}_{\mathcal{B}}(-,-) \leadsto \operatorname{Functor} \mathcal{B}\text{-categories}$ **Global sections** The geometric morphism $\operatorname{const}\colon \mathcal{S} \leftrightarrows \mathcal{B} : \Gamma$ induces an adjunction

const:
$$Cat_{\infty} \leftrightarrows Cat(\mathcal{B}) : \Gamma$$

- \rightsquigarrow can regard ∞ -categories as *constant* \mathcal{B} -categories.
- \leadsto every $\mathcal{B}\text{-category}$ has an underlying $\infty\text{-category}$ of global sections.
- $(\infty,2)$ -categorical structure $Cat(\mathcal{B})$ is Cat_{∞} -enriched via
 - $\operatorname{Fun}_{\mathcal{B}}(-,-) = \Gamma \underline{\operatorname{Fun}}_{\mathcal{B}}(-,-)$
 - \leadsto can be regarded as an $(\infty,2)$ -category
 - → has an intrinsic notion of adjunctions

Internal limits and colimits

Definition (internal limits and colimits)

I, C \mathcal{B} -categories $\leadsto \lim_{I} : \underline{\operatorname{Fun}}_{\mathcal{B}}(I, C) \to C$ and $\operatorname{colim}_{I} : \underline{\operatorname{Fun}}_{\mathcal{B}}(I, C) \to C$ are the right and left adjoint of the diagonal $\operatorname{diag}_{I} : C \to \underline{\operatorname{Fun}}_{\mathcal{B}}(I, C)$.

Internal limits and colimits

Definition (internal limits and colimits)

 $I,C \text{ \mathcal{B}-categories} \leadsto \lim_{I} \colon \underline{Fun}_{\mathcal{B}}(I,C) \to C \text{ and } \mathrm{colim}_{I} \colon \underline{Fun}_{\mathcal{B}}(I,C) \to C \text{ are the right and left adjoint of the diagonal } \mathrm{diag}_{I} \colon C \to \underline{Fun}_{\mathcal{B}}(I,C).$

Example: colimits indexed by ∞ -categories

 $\mathcal{I} \infty$ -category $\leadsto \operatorname{colim}_{\operatorname{const}(\mathcal{I})} \colon \underline{\operatorname{Fun}}_{\mathcal{B}}(\operatorname{const}(\mathcal{I}),\mathsf{C}) \to \mathsf{C}$ recovers $\operatorname{colim}_{\mathcal{I}} \colon \operatorname{Fun}(\mathcal{I},\Gamma(\mathsf{C})) \to \Gamma(\mathsf{C})$ on global sections.

Internal limits and colimits

Definition (internal limits and colimits)

 $I,C \text{ \mathcal{B}-categories} \leadsto \lim_{I} \colon \underline{Fun}_{\mathcal{B}}(I,C) \to C \text{ and } \mathrm{colim}_{I} \colon \underline{Fun}_{\mathcal{B}}(I,C) \to C \text{ are the right and left adjoint of the diagonal } \mathrm{diag}_{I} \colon C \to \underline{Fun}_{\mathcal{B}}(I,C).$

Example: colimits indexed by ∞ -categories

 $\mathcal{I} \infty$ -category $\leadsto \operatorname{colim}_{\operatorname{const}(\mathcal{I})} \colon \underline{\operatorname{Fun}}_{\mathcal{B}}(\operatorname{const}(\mathcal{I}),\mathsf{C}) \to \mathsf{C}$ recovers $\operatorname{colim}_{\mathcal{I}} \colon \operatorname{Fun}(\mathcal{I},\Gamma(\mathsf{C})) \to \Gamma(\mathsf{C})$ on global sections.

Example: colimits indexed by \mathcal{B} -groupoids

 $A \in \mathcal{B}$ any object $\leadsto \operatorname{colim}_A \colon \underline{\operatorname{Fun}}_{\mathcal{B}}(A,\mathsf{C}) \to \mathsf{C}$ recovers the left adjoint $\pi_! \colon \mathsf{C}(A) \to \mathsf{C}(1) = \Gamma(\mathsf{C})$ of $\pi^* \colon \mathsf{C}(1) \to \mathsf{C}(A)$ on global sections.

The universe \mathcal{B} has descent $\iff A \mapsto \mathcal{B}_{/A}$ defines a sheaf of ∞ -categories on \mathcal{B} $\iff \Omega = \mathcal{B}_{/-}$ defines a \mathcal{B} -category (the *universe* in \mathcal{B})

The universe \mathcal{B} has descent $\iff A \mapsto \mathcal{B}_{/A}$ defines a sheaf of ∞ -categories on \mathcal{B} $\iff \Omega = \mathcal{B}_{/-}$ defines a \mathcal{B} -category (the *universe* in \mathcal{B})

Presheaf \mathcal{B} -categories Can now define $\underline{PSh}(C) = \underline{Fun}_{\mathcal{B}}(C^{\mathrm{op}},\Omega)$ for every \mathcal{B} -category C.

The universe \mathcal{B} has descent $\iff A \mapsto \mathcal{B}_{/A}$ defines a sheaf of ∞ -categories on \mathcal{B} $\iff \Omega = \mathcal{B}_{/-}$ defines a \mathcal{B} -category (the *universe* in \mathcal{B})

Presheaf \mathcal{B} -categories Can now define $\underline{PSh}(C) = \underline{Fun}_{\mathcal{B}}(C^{\mathrm{op}},\Omega)$ for every \mathcal{B} -category C.

Theorem (Universal property of internal presheaves)

There is a fully faithful functor $C \hookrightarrow \underline{PSh}(C)$ (the Yoneda embedding) that exhibits $\underline{PSh}(C)$ as the free cocompletion of C.

The universe \mathcal{B} has descent $\iff A \mapsto \mathcal{B}_{/A}$ defines a sheaf of ∞ -categories on \mathcal{B} $\iff \Omega = \mathcal{B}_{/-}$ defines a \mathcal{B} -category (the *universe* in \mathcal{B})

Presheaf \mathcal{B} -categories Can now define $\underline{PSh}(C) = \underline{Fun}_{\mathcal{B}}(C^{\mathrm{op}},\Omega)$ for every \mathcal{B} -category C.

Theorem (Universal property of internal presheaves)

There is a fully faithful functor $C \hookrightarrow \underline{PSh}(C)$ (the Yoneda embedding) that exhibits $\underline{PSh}(C)$ as the free cocompletion of C.

In particular, the universe Ω is freely generated by the point under internal colimits.

\mathcal{B} -topoi

Definition (\mathcal{B} -topos)

A \mathcal{B} -category X is a \mathcal{B} -topos if it arises as a left exact and accessible localisation

$$X \xrightarrow{} \underline{PSh}(C)$$

B-topoi

Definition (\mathcal{B} -topos)

A $\mathcal B$ -category X is a $\mathcal B$ -topos if it arises as a left exact and accessible localisation

$$X \xrightarrow{\bot} \underline{PSh}(C)$$

Fully faithfulness $X_1 \to \underline{PSh}(C)_1 \times_{\underline{PSh}(C)_0 \times \underline{PSh}(C)_0} (X_0 \times X_0)$ is an equivalence.

B-topoi

Definition (\mathcal{B} -topos)

A $\mathcal B$ -category X is a $\mathcal B$ -topos if it arises as a left exact and accessible localisation

Fully faithfulness $X_1 \to \underline{PSh}(C)_1 \times_{\underline{PSh}(C)_0 \times \underline{PSh}(C)_0} (X_0 \times X_0)$ is an equivalence. Left exactness A $\mathcal B$ -category I is finite if it is (locally in $\mathcal B$) of the form $\mathrm{const}(\mathcal I)$ for some finite ∞ -category $\mathcal I$.

\mathcal{B} -topoi

Definition (\mathcal{B} -topos)

A $\mathcal B$ -category X is a $\mathcal B$ -topos if it arises as a left exact and accessible localisation

Fully faithfulness $X_1 \to \underline{PSh}(C)_1 \times_{\underline{PSh}(C)_0 \times \underline{PSh}(C)_0} (X_0 \times X_0)$ is an equivalence. Left exactness A $\mathcal B$ -category I is finite if it is (locally in $\mathcal B$) of the form $\mathrm{const}(\mathcal I)$ for some finite ∞ -category $\mathcal I$.

Accessibility $X \hookrightarrow \underline{PSh}(C)$ commutes with certain internally filtered colimits.

B-topoi

Definition (\mathcal{B} -topos)

A $\mathcal B$ -category X is a $\mathcal B$ -topos if it arises as a left exact and accessible localisation

$$X \xrightarrow{\bot} \underline{PSh}(C)$$

Example (the initial \mathcal{B} **-topos)**

The universe Ω is the *initial* \mathcal{B} -topos: for every \mathcal{B} -topos X, there is a unique cocontinuous and left exact functor $f^* \colon \Omega \to X$.

The \mathcal{B} -category of \mathcal{B} -categories $A \mapsto \operatorname{Cat}(\mathcal{B}_{/A})$ preserves limits \leadsto obtain the \mathcal{B} -category $\operatorname{Cat}_{\mathcal{B}} = \operatorname{Cat}(\mathcal{B}_{/-})$ of \mathcal{B} -categories.

The \mathcal{B} -category of \mathcal{B} -categories $A \mapsto \operatorname{Cat}(\mathcal{B}_{/A})$ preserves limits \leadsto obtain the \mathcal{B} -category $\operatorname{Cat}_{\mathcal{B}} = \operatorname{Cat}(\mathcal{B}_{/-})$ of \mathcal{B} -categories. Internal slice functor If C has finite limits, one can define a functor

$$C^{\mathrm{op}} \xrightarrow{\mathsf{C}_{/-}} \mathsf{Cat}_{\mathcal{B}}, \quad c \mapsto \mathsf{C}_{/c}.$$

The \mathcal{B} -category of \mathcal{B} -categories $A \mapsto \operatorname{Cat}(\mathcal{B}_{/A})$ preserves limits \leadsto obtain the \mathcal{B} -category $\operatorname{Cat}_{\mathcal{B}} = \operatorname{Cat}(\mathcal{B}_{/-})$ of \mathcal{B} -categories. **Internal slice functor** If C has finite limits, one can define a functor

$$C^{\mathrm{op}} \xrightarrow{\mathsf{C}_{/-}} \mathsf{Cat}_{\mathcal{B}}, \quad c \mapsto \mathsf{C}_{/c}.$$

Definition (descent)

A cocomplete \mathcal{B} -category C with finite limits has descent if $C_{/-}$ is continuous.

The \mathcal{B} -category of \mathcal{B} -categories $A \mapsto \operatorname{Cat}(\mathcal{B}_{/A})$ preserves limits \leadsto obtain the \mathcal{B} -category $\operatorname{Cat}_{\mathcal{B}} = \operatorname{Cat}(\mathcal{B}_{/-})$ of \mathcal{B} -categories. Internal slice functor. If C has finite limits, one can define a functor

$$\mathsf{C}^{\mathrm{op}} \xrightarrow{\mathsf{C}_{/-}} \mathsf{Cat}_{\mathcal{B}}, \quad c \mapsto \mathsf{C}_{/c}.$$

Definition (descent)

A cocomplete $\mathcal B$ -category C with finite limits has descent if $C_{/-}$ is continuous.

Theorem (Chacterisation of \mathcal{B} -topoi via descent)

A \mathcal{B} -category X is a \mathcal{B} -topos if and only if X is presentable and has descent.

Theorem (\mathcal{B} -topoi are equivalent to ∞ -topoi over \mathcal{B})

Theorem (\mathcal{B} -topoi are equivalent to ∞ -topoi over \mathcal{B})

- ► X *B*-topos
 - \leadsto there is a (unique) cocontinuous and left exact functor $f^* \colon \Omega \to \mathsf{X}$
 - \leadsto induces left exact and cocontinuous functor $f^* \colon \mathcal{B} \to \mathcal{X} = \mathsf{X}(1)$ on global sections.

Theorem (\mathcal{B} -topoi are equivalent to ∞ -topoi over \mathcal{B})

- ► X \mathcal{B} -topos \leadsto there is a (unique) cocontinuous and left exact functor $f^* \colon \Omega \to X$ \leadsto induces left exact and cocontinuous functor $f^* \colon \mathcal{B} \to \mathcal{X} = X(1)$ on global sections.
- ▶ $f_* : \mathcal{X} \to \mathcal{B}$ geometric morphism \leadsto can define a \mathcal{B} -topos $\mathsf{X} = \mathcal{X}_{/f^*(-)}$.

Theorem (\mathcal{B} -topoi are equivalent to ∞ -topoi over \mathcal{B})

- ► X \mathcal{B} -topos \leadsto there is a (unique) cocontinuous and left exact functor $f^* \colon \Omega \to \mathsf{X}$ \leadsto induces left exact and cocontinuous functor $f^* \colon \mathcal{B} \to \mathcal{X} = \mathsf{X}(1)$ on global sections.
- ▶ $f_*: \mathcal{X} \to \mathcal{B}$ geometric morphism \leadsto can define a \mathcal{B} -topos $\mathsf{X} = \mathcal{X}_{/f^*(-)}$.
- \rightsquigarrow need only show that X \simeq X(1) $_{/f^*(-)}$ for every \mathcal{B} -topos X.

Theorem (\mathcal{B} -topoi are equivalent to ∞ -topoi over \mathcal{B})

The datum of a \mathcal{B} -topos X is equivalent to that of a geometric morphism of ∞ -topoi $\mathcal{X} \to \mathcal{B}$.

1. $X \mathcal{B}$ -topos, $A \in \mathcal{B}$ object $\rightsquigarrow X_{/-}$ preserves A-indexed limits:

Theorem (\mathcal{B} -topoi are equivalent to ∞ -topoi over \mathcal{B})

The datum of a \mathcal{B} -topos X is equivalent to that of a geometric morphism of ∞ -topoi $\mathcal{X} \to \mathcal{B}$.

1. $X \mathcal{B}$ -topos, $A \in \mathcal{B}$ object $\rightsquigarrow X_{/-}$ preserves A-indexed limits:

$$\begin{array}{ccc} \mathsf{X}(A)^{\mathrm{op}} & \xrightarrow{\mathsf{X}_{/-}} & \mathrm{Cat}(\mathcal{B}_{/A}) \\ \downarrow^{\pi_{!}^{\mathrm{op}}} & & \downarrow^{\pi_{*}} & & \\ \mathsf{X}(1)^{\mathrm{op}} & \xrightarrow{\mathsf{X}_{/-}} & \mathrm{Cat}(\mathcal{B}) & \xrightarrow{\Gamma_{\mathcal{B}}} & \mathrm{Cat}_{\infty} \end{array}$$

Theorem (\mathcal{B} -topoi are equivalent to ∞ -topoi over \mathcal{B})

The datum of a \mathcal{B} -topos X is equivalent to that of a geometric morphism of ∞ -topoi $\mathcal{X} \to \mathcal{B}$.

1. $X \mathcal{B}$ -topos, $A \in \mathcal{B}$ object $\rightsquigarrow X_{/-}$ preserves A-indexed limits:

Theorem (\mathcal{B} -topoi are equivalent to ∞ -topoi over \mathcal{B})

The datum of a \mathcal{B} -topos X is equivalent to that of a geometric morphism of ∞ -topoi $\mathcal{X} \to \mathcal{B}$.

2. $f^*: \Omega \to X$ unique cocontinuous and left exact functor \leadsto commutes with A-indexed colimits:

B-topoi externally

Theorem (\mathcal{B} -topoi are equivalent to ∞ -topoi over \mathcal{B})

The datum of a \mathcal{B} -topos X is equivalent to that of a geometric morphism of ∞ -topoi $\mathcal{X} \to \mathcal{B}$.

2. $f^*: \Omega \to X$ unique cocontinuous and left exact functor \leadsto commutes with A-indexed colimits:

$$\begin{array}{ccc} \mathcal{B} & \xrightarrow{f^*} & \mathsf{X}(1) \\ \pi_! & & \pi_! \\ \uparrow & & & \pi_! \\ \mathcal{B}_{/A} & \xrightarrow{f^*} & \mathsf{X}(A) \end{array}$$

B-topoi externally

Theorem (\mathcal{B} -topoi are equivalent to ∞ -topoi over \mathcal{B})

The datum of a \mathcal{B} -topos X is equivalent to that of a geometric morphism of ∞ -topoi $\mathcal{X} \to \mathcal{B}$.

2. $f^*: \Omega \to X$ unique cocontinuous and left exact functor \leadsto commutes with A-indexed colimits:

$$\mathcal{B} \xrightarrow{f^*} \mathsf{X}(1) \qquad A \longmapsto f^*(A) \simeq \pi_!(1_{\mathsf{X}(A)})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\mathcal{B}_{/A} \xrightarrow{f^*} \mathsf{X}(A) \qquad 1_{\mathcal{B}_{/A}} \longmapsto 1_{\mathsf{X}(A)}$$

Theorem (\mathcal{B} -topoi are equivalent to ∞ -topoi over \mathcal{B})

1) and 2) combined
$$\leadsto$$

$$\mathsf{X}(A) \simeq \mathsf{X}(1)_{/f^*(A)}.$$

Theorem (\mathcal{B} -topoi are equivalent to ∞ -topoi over \mathcal{B})

The datum of a \mathcal{B} -topos X is equivalent to that of a geometric morphism of ∞ -topoi $\mathcal{X} \to \mathcal{B}$.

1) and 2) combined \rightsquigarrow

$$\mathsf{X}(A) \simeq \mathsf{X}(1)_{/f^*(A)}.$$

This can be made functorial in A, so that one obtains

$$\mathsf{X} \simeq \mathsf{X}(1)_{/f^*(-)}.$$

