SMA 333/ SMA 803 Cálculo III - Lista 2

Prof. Dr. Nivaldo G. Grulha Jr

Estagiária PAE: Thaís Maria Dalbelo

- 1. Podemos afirmar que se a sequência $\{a_n\}$ satisfaz $\lim_{n\to\infty} |a_n| = |a|$ então $\lim_{n\to\infty} a_n = a$?
- 2. Mostre, pela definição de limite que $\lim_{n\to\infty} \frac{2n-1}{3n-2} = \frac{2}{3}$.
- 3. Mostre, pela definição de limite que $\lim_{n\to\infty}\frac{n^2+n+1}{2n-3}=\infty$. Sugestão: Use o fato que $\frac{n^2+n+1}{2n-3}>\frac{n^2+n}{2n}$.
- 4. Verifique se é possível construir duas sequências $\{a_n\}$ e $\{b_n\}$ tais que $\lim_{n\to\infty} a_n = a$ e $\lim_{n\to\infty} a_n + b_n = c$ mas $\lim_{n\to\infty} b_n$ não existe.
- 5. Se R\$1000,00 forem investidos a uma taxa de juros de 6% compostos anualmente, depois de n anos o investimento valerá $a_n = 1000(1,06)^n$. Essa sequência converge ou diverge?
- 6. Mostre que se $\lim_{n\to\infty} a_{2n} = a$ e $\lim_{n\to\infty} a_{2n+1} = a$ então $\{a_n\}$ é convergente e $\lim_{n\to\infty} a_n = a$.
- 7. Considere uma sequência de termo geral a_n e suponha que $\lim_{n\to\infty} a_n = a$. Prove que

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a.$$

8. Suponha que $a_n > 0$ para todo $n \in \mathbb{N}$ e $\lim_{n \to \infty} a_n = a$. Então

$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \dots a_n} = a.$$

Sugestão: Utilize o exercício 7 e a identidade $x = e^{\ln x}$.

- 9. Mostre que:
 - (a) $\lim_{n\to\infty} (\frac{1}{n} + \frac{2}{n} + \dots + \frac{n}{n}) = \infty;$
 - (b) $\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}\right) = \frac{1}{2}$;
 - (c) $\lim_{n\to\infty} \left(\frac{1}{n^3} + \frac{2}{n^3} + \dots + \frac{n}{n^3}\right) = 0;$
 - (d) $\lim_{n\to\infty} \left(\frac{1}{n^5} + \frac{2}{n^5} + \dots + \frac{n^2}{n^5}\right) = 0$

- 10. Sejam $\{a_n\}$ uma sequência de Cauchy e $\{a_{2n}\}$ uma subsequência de $\{a_n\}$ convergente para a. Mostre que a sequência $\{a_n\}$ converge para a.
- 11. Seja $\{a_n\}$ uma sequência que tem a seguinte propriedade:

$$|a_{n+1} - a_n| \le \frac{1}{2^n}, \quad n \in \mathbb{N}.$$

Mostre que $\{a_n\}$ é convergente.