

STUDENT NUMBER	
Class	

2013
Higher School Certificate
Trial Examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided
- All necessary working should be shown in every question

Total Marks - 100

Section I

Pages 2-5

10 marks

- Attempt Questions 1–10
- Allow about 20 minutes for this section

Section II

Pages 5-11

90 marks

- Attempt Questions 11–16
- Allow about 2 hours 40 minutes for this section

Assessable Outcomes: A student

01	applies graphical methods to various functions & solves polynomials.
O2	applies a wide variety of techniques involving integration.
O3	applies problem solving techniques with complex numbers.
04	solves conics & determines volumes by methods of integration.
O5	solves restricted motion problems in mechanics & extension 1 harder topics.

ANSWER SHEET TO THE QUESTION PAPER AND YOUR WRITING PAPER.

HAND UP IN ONE TIED BUNDLE.

Section I

10 marks

Attempt Questions 1–10

Allow about 20 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

- 1 The equation of the tangent to $xy^3 + 2y = 4$ at the point (2, 1) is
 - (A) x + 8y = 10
 - (B) x 8y = 10
 - (C) x + 8y = -10
 - (D) x 8y = -10
- 2 If $z = 1 \sqrt{3}i = 2\left(\cos\left(\frac{-\pi}{3}\right) + i\sin\left(\frac{-\pi}{3}\right)\right)$, then what is the value of z^{21} ?
 - (A) 2^{21}
 - (B) -2^{21}
 - (C) $(2^{21})i$
 - (D) $-(2^{21})i$
- 3 When the circle |z (3 + 4i)| = 5 is sketched on the Argand Diagram the maximum value of |z| occurs when z lies at the end of the diameter that passes through the centre and the origin.

What is the maximum value of |z|?

- (A) $\sqrt{5}$
- (B) 5
- (C) 10
- (D) $\sqrt{10}$

4 One rational root exists for $P(x) = 2x^3 - 3x^2 + 4x + 3$ such that $P(\frac{-1}{2}) = 0$.

When P(x) is fully factorised over the complex field, what is the result?

- (A) $(2x+1)(x^2-2x+3)$
- (B) $(2x+1)(x-1+i\sqrt{2})(x+1+i\sqrt{2})$
- (C) $(2x+1)(x+1-i\sqrt{2})(x+1+i\sqrt{2})$
- (D) $(2x+1)(x-1-i\sqrt{2})(x-1+i\sqrt{2})$
- 5 The cubic equation $2y^3 9y^2 + 12y + k = 0$ has two equal roots.

What are the possible values for k?

- (A) -4 and -5
- (B) -4 and 5
- (C) 4 and -5
- (D) 4 and 5

6

Which of the following graphs is the locus of the point P representing the complex number z moving in an Argand diagram such that $|z-2i|=2+\operatorname{Im} z$?

- (A) a circle
- (B) a parabola
- (C) a hyperbola
- (D) a straight line

What is the area bounded by the x axis and the curve $y = x(16 + x^2)^{-0.5}$ between x = 0 and x = 3?

- (A) $3 units^2$
- (B) $log_e 3 units^2$
- (C) $log_e e units^2$
- (D) $log_e 1 units^2$

8 For constant k, the equation $e^{2x} = k\sqrt{x}$ has exactly one solution when there is a common point as well as a common tangent.

What is the value of k?

- (A) 1
- (B) \sqrt{e}
- (C) $2\sqrt{e}$
- (D) e

9 ABCD is a cyclic quadrilateral. Q and P are external points such that Y lies on the line PR and S is the intersection of PR and QC. Assume that PR bisects angle APD and QY bisects angle DQC.

Which of the following is NOT true?

- (A) $\langle QYR$ is a right angle
- (B) ΔQRS is always isosceles
- (C) ABCD is always a kite
- (D) Y is always the midpoint of RS

 $\xrightarrow{} \xrightarrow{} \xrightarrow{} \xrightarrow{} \xrightarrow{}$

In the Argand diagram below vectors \overrightarrow{OP} , \overrightarrow{OQ} , \overrightarrow{OR} , \overrightarrow{OS} represent the complex numbers p, q, r, s respectively where PQRS is a square.

The statement q - s = i(p - r) about lengths of the square is

- (A) always true
- (B) never true
- (C) sometimes true
- (D) not able to be accurately determined

Section II

90 marks

Attempt Questions 11-16

Allow about 2 hours 40 minutes for this section

All necessary working should be shown in every question.

Question 11 (15 marks) Use a SEPARATE writing page.

(a) (i) Find a primitive function for each of
$$\frac{x+1}{x^2+2x+5}$$
 and $\frac{1}{x^2+2x+5}$.

(ii) Hence, or otherwise, find
$$\int \frac{x}{x^2+2x+5} dx$$
.

(b) Evaluate
$$\int_{1}^{3} \frac{dx}{x(x+2)}$$
.

(c) (i) Express
$$(\sec x \tan x)^4$$
 as a product involving $\sec^2 x$.

(ii) Show that
$$\int_0^{\frac{\pi}{4}} \sec^4 x \tan^4 x \, dx = \frac{12}{35}$$
.

(d) Use the *t*-substitution method with
$$t = tan \frac{\theta}{2}$$
 to find the value of

$$\int_0^{\frac{\pi}{2}} \frac{d\theta}{1+\sin\theta+\cos\theta}.$$

(e) (i) Show that
$$U_n = \frac{n-1}{n} U_{n-2}$$
 if $U_n = \int_0^{\frac{\pi}{2}} sin^n x$.

(ii) Hence, or otherwise, prove that
$$k = 32$$
 when $U_4 - U_6 = \frac{\pi}{k}$.

Question 12 (15 marks) Use a SEPARATE writing page.

- (a) (i) Write $\frac{3}{x+2} + x 2$ as a single algebraic fraction.
 - (ii) Sketch $y = \frac{3}{x+2} + x 2$.
 - (iii) Hence, or otherwise, solve the inequality $\frac{x^2-1}{x+2} \le 0$.
- (b) The roots of $x^3 + 2x^2 3x 1 = 0$ are α , β and γ .

 4

 Find an equation whose roots are $\frac{\alpha\beta}{\gamma}$, $\frac{\alpha\gamma}{\beta}$ and $\frac{\beta\gamma}{\alpha}$.
- (c) The points, $P(cp, cp^{-1})$ and $Q(cq, cq^{-1})$, lie on the rectangular hyperbola $xy = c^2$. The chord PQ meets the x axis at C. O is the centre of the hyperbola and R is the midpoint of PQ.
 - (i) Draw a sketch showing all the information.
 - (ii) Find the equation of chord PQ.
 - (iii) Find the co-ordinates of C.
 - (iv) Find the co-ordinates of R.
 - (v) Show that OR = RC.

Question 13 (15 marks) Use a SEPARATE writing page.

- (a) The hyperbola, H has the Cartesian equation $5x^2 4y^2 = 20$. P is an arbitrary point, $(2sec\theta, \sqrt{5} \tan\theta)$.
 - (i) Find the eccentricity of H and state the co-ordinates of its foci, S and S'. 2
 - (ii) State the equations of the directrices and both asymptotes for H.
 - (iii) Sketch the curve, clearly showing all of the above features.
 - (iv) Demonstrate that $P(2sec\theta, \sqrt{5} tan\theta)$ lies on H.
 - (v) Show that the tangent to H at P is

$$\frac{xsec\theta}{2} - \frac{ytan\theta}{\sqrt{5}} = 1.$$

- (vi) The tangent at P cuts the asymptotes at L and M.

 Prove that LP = PM.
- (vii) O is the origin. $\mathbf{2}$ Show that the area of $\triangle OLM$ is independent of the position P on H.
- (b) The function y = f(x) is denoted by $f(x) = x^3 6x$.
 - (i) Sketch the graph of $y = |f(x)| = |x^3 6x|$ on a separate set of axes. 1
 - (ii) Sketch the graph of $y = \frac{1}{f(x)} = (x^3 6x)^{-1}$ on a separate set of axes.

Question 14 (15 marks) Use a SEPARATE writing page.

(a) Consider the region bounded by the two curves $y = 3 - x^2$ and y = -2x.

Suppose two vertical lines, one unit apart, intersect the given region.

(i) The vertical lines are $x = x_1$ and $x = x_1 + 1$.

4

Find the value/s of x_1 so that the area enclosed by the two vertical lines and the two curves is a maximum.

(ii) Show that this enclosed area is $3\frac{11}{12}$ units².

2

Justify that this area is the maximum.

(b) The area bounded by the y axis, the line y = 1 and $y = \sin x$ is revolved about the line y = 1.

4

Using a slicing technique, find the volume of the solid of revolution formed between x = 0 and $x = \frac{\pi}{2}$.

(c) Use the method of cylindrical shells to find the volume of the solid formed when the area enclosed by $y = (x - 2)^2$ and y = 4 is rotated about the y axis.

5

Question 15 (15 marks) Use a SEPARATE writing page.

- (a) (i) Factorise $z^5 + 1$ over the real field.
 - (ii) List the roots of $z^5 + 1 = 0$ in $rcis\theta$ form.
 - (iii) Deduce that $2\cos\frac{\pi}{5} + 2\cos\frac{3\pi}{5} 1 = 0$.
- (b) (i) Using the tan (A B) expansion, show that if $mx = tan^{-1}Q tan^{-1}v$ then $mx = tan^{-1}(\frac{Q-v}{1+Qv})$.
 - (ii) Show that a = 1, b = -1 and c = 0 if $\frac{1}{v + v^3} = \frac{a}{v} + \frac{bv + c}{1 + v^2}$.

(c)

A particle moves in a straight line against a resistance numerically equal to $m(v + v^3)$ where v is its velocity. Initially the particle is at the origin and is travelling with velocity Q, where Q > 0. Assume $\ddot{x} = -m(v + v^3)$.

- (i) Show that the displacement x in terms of v is $x = \frac{1}{m} tan^{-1} (\frac{Q-v}{1+Qv})$.
- (ii) Prove that $t = \frac{1}{2m} \log_e(\frac{Q^2(1+v^2)}{v^2(1+Q^2)})$ where t is the time elapsed.
- (iii) Find an expression for the square of the velocity as a function of time. 1
- (iv) By finding the limiting values of velocity and displacement, explain why this particle eventually slows down and show that this occurs near a point where Q = tan(mx).

5

1

2

Question 16 (15 marks) Use a SEPARATE writing page

- (a) A sequence of polynomials, called the *Bernoulli Polynomials*, is defined by the three conditions:-
 - 1. $B_0(x) = 1$
 - 2. $B'_n(x) = \frac{d}{dx}(B_n(x)) = nB_{n-1}(x)$
 - 3. $\int_0^1 B_n(x) dx = 0$ if $n \ge 1$
 - (i) Show that $B_1(x) = x \frac{1}{2}$.
 - (ii) If $B_n(x+1) B_n(x) = nx^{n-1}$ and $g(x) = B_{n+1}(x+1) B_{n+1}(x)$, prove that

$$g'(x) = (n+1)nx^{n-1}$$
.

Hence show $g(x) = (n+1)x^n + C$, where C is a constant.

(iii) Use the method of mathematical induction to prove that

$$B_n(x+1) - B_n(x) = nx^{n-1}$$
 if $n \ge 1$.

(b) (i) By squaring, or otherwise, show that for $k \ge 0$,

$$2k + 3 > 2\sqrt{k+2} \sqrt{k+1}$$
.

(ii) By decomposing 2k + 3 and factorising $2\sqrt{k+2} \sqrt{k+1} - 2(k+1)$ show that for $k \ge 1$,

$$\frac{1}{\sqrt{k+1}} > 2(\sqrt{k+2} - \sqrt{k+1}).$$

(iii) Hence, or otherwise, show for $n \ge 1$,

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > 2(\sqrt{n+1} - 1).$$

End of paper

OUESTION ÷ V٦

SECTION I: ANSWER SHEET

Wathematics Extension 2

our mis
8 5.
id have by writ
crossed out
what you co l correct and , correct
e your mind and have crossed out what you consider to be the correct answer, the correct answer by writing the word correct and drawing an arrow as follows.

M1 M2

EXIENSION IL

MOLTIPLE CHOICE SECTION I (ONE MARK EACH)

$$P(-\frac{1}{2}) = 0 : Z = -\frac{1}{2}$$

$$S_0 2x + 1 \text{ is } q \quad 2x + 1 \text{ } 2x^3 - 3x^2 + 4x + 3$$

$$Factor \qquad 2x^3 + x^2 - 4x^2$$

$$-4x^2 - 4x^2$$

$$P(x) = (2x + 1)(x^2 - 2x + 3) \text{ over } R$$

$$R = -(-2) \pm \sqrt{4} - 4.13$$

$$= 2 \pm 2\sqrt{2}i = 1 \pm \sqrt{2}i \text{ of } x - 1 - \sqrt{2}i \text{ and } x - 1 + \sqrt{2}i$$
are factors

05 2y3-9g2+12y+k=0 has two roots of de = 0 has the same roit. 6y2-18y+12=0 $y^2 - 3y + 2 = 0$ (y-2)(y-1)=0So y=2 could be a multiple root of y=1 could be 1fy=1 2(1)3-9(1)2+12(1)+k=0 1 y=2 2(2)3-9(2)2 12(2) +k=0 2-9+12+120 16-36+24+10=0 k=+5 k=-4 $(y-1)^{2}(Ay+B)=0$ y=0 k=-5NOTE: (4-2) 2 (ay+6) =0 gwes k=-4 Q6 | z-2i | = 2+ Imz |x+iy-2i| = 2+4 J22+(y-2)2 = 2+y B Points distant y+2 from 2i Distance from 22+ y-4y+4= x+Ay+yx Equidistant 2 ... $x^2 = 8y$ A PARABOLA. DO LOEUS IS A PARABOLA $\int_{6}^{3} \frac{x}{(16+x^{2})^{\frac{1}{2}}} dx = \frac{1}{2} \int_{6}^{3} \frac{2x}{(16+x^{2})^{\frac{1}{2}}} dx$ = lin \(\frac{1}{2}\) \(\frac{1}{10+\vec{2}}\) = V16+9 - V16+0 = 5-4 = 1 units $=\lim_{N\to\infty}\frac{1}{\sqrt{\frac{16}{2}+1}}=\frac{1}{\sqrt{0+1}}=1$ 1= lege so (C) convon pont Q8 Common fargent 00 e = k [1 = e2x y= lvx (C) $e^{2i} = k\sqrt{x}$ e 2x (4x e 2x) Jx 1 $\frac{2y}{x} = 2e^{2x} \quad y = kx^{\frac{1}{2}}$ 2e2x=k Sh= tkx = € 1= 4x / 2e2(4)=k 2et=k SLOPES EQUAL 22x = 1/2 /2 2 Je=k

. Qq. USING LOGIC, THE ANSWER MUST BE C ABOD IS NOT ALWAYS A RITE. If Kayr is 90°, then B and B follow; isoscores + minpon D, B and B are interrelated so is odd one out. HOWEVER, Let <APR=x :- < DPR=x

QA let < PCS= y then < DRB=y (quadrateral proporties < DQC = 180-(180-y-2x)-(80-4) = y+2x =180 +y / x+y = 2x + 2y - 180% <CQY = 1 <DQC = x+y-90 NOW (YRS+ & YSD+ < RYS = 180° (2+9-90)+(180-2-y)+<045=18 - clot 180+<075 = 180 SOKOYS = 90° 180-4-2x QY I RS. NOTE: IF < RYR=90° and < ROY= < YRS= X+4-90

THEN CORY=180-90-(21+y-90) = 180-x-y
= LBSY
& ADRS is isosceles
* IF A ORS is isosceles then DY is an axis of symmet
& Y is midport of RS. (NICE BUZZTON)

Q-5 represents diagonal DS

p-r represents diagonal PR

So i(p-r) represents a votation anticloclarice

So $q-s=\tilde{\epsilon}(p-r)$ will always be true-to: a equal

A B C D A B C C C A (1 Mark each)

QUESTION 11

a i
$$\int \frac{x+1}{x^2+2x+5} = \frac{1}{2} \int \frac{2(x+1)}{x^2+2x+5} dx$$

$$\int \frac{1dx}{x^2+2x+5} = \int \frac{1dx}{x^2+2x+1+4}$$
$$= \frac{1}{2} \ln(x^2+2x+5) + C = \int \frac{1}{(x+1)^2+4} dx$$
$$= \frac{1}{2} \tan^{-1} \frac{x+1}{2} + C$$

ii
$$\int \frac{x+1-1}{x^2+2x+5} = \frac{1}{2}\ln(x^2+2x+5) - \frac{1}{2}tan^{-1}\frac{x+1}{2} + c$$
 ONE MARK EACH total /3

b
$$\frac{1}{x(x+2)} = \frac{a}{x} + \frac{b}{(x+2)} = \frac{\frac{1}{2}}{x} + \frac{-\frac{1}{2}}{(x+2)}$$
 ONE MARK
$$\therefore \int_{1}^{3} \frac{dx}{x(x+2)} = \int_{1}^{3} \frac{\frac{1}{2}}{x} + \frac{-\frac{1}{2}}{(x+2)} dx = \left[\frac{1}{2} \ln x - \frac{1}{2} \ln(x+2)\right]_{1}^{3}$$
 ONE MARK
$$= \frac{1}{2} \left[(\ln 3 - \ln 5) - (\ln 1 - \ln 3) \right]$$

$$= \frac{1}{2} (\ln 9 - \ln 5) = \frac{1}{2} \ln \frac{9}{5}$$
 ONE MARK total /3

c i
$$(\sec x \tan x)^4 = \sec^2 x \cdot \sec^2 x (\tan x)^4 = \sec^2 x (1+\tan^2 x)(\tan x)^4$$

ONE MARK = $\sec^2 x ((\tan x)^4 + (\tan x)^6)$

ii
$$\int_0^{\frac{\pi}{4}} \sec^4 x \tan^4 x \, dx = \int_0^{\frac{\pi}{4}} \sec^2 x \left((\tan x)^4 + (\tan x)^6 \right) \, dx$$
$$= \left[\frac{1}{5} (\tan x)^5 + \frac{1}{7} (\tan x)^7 \right]_0^{\frac{\pi}{4}} \quad \text{ONE MARK}$$
$$= \left(\frac{1}{5} (1)^5 + \frac{1}{7} (1)^7 \right) - \left(\frac{1}{5} (0)^5 + \frac{1}{7} (0)^7 \right)$$
$$= \frac{12}{35} \quad \text{ONE MARK total } /3$$

d
$$t = tan\frac{\theta}{2}$$
 $sin\theta = \frac{2t}{1+t^2}$ $cos\theta = \frac{1-t^2}{1+t^2}$ $d\theta = \frac{2dt}{1+t^2}$

$$\therefore \int_0^{\frac{\pi}{2}} \frac{d\theta}{1+\sin\theta+\cos\theta} = \int_0^1 \frac{\frac{2dt}{1+t^2}}{1+\frac{2t}{1+t^2}+\frac{1-t^2}{1+t^2}} = \int_0^1 \frac{1dt}{1+t} \quad \text{ONE MARK}$$

$$= [\ln(1+t)]_1^3 \quad \text{ONE MARK}$$

$$= \ln 4 - \ln 2$$

$$= \ln 2 \quad \text{ONE MARK}$$

$$\text{total } /3$$

e i Show
$$U_n = \frac{n-1}{n} U_{n-2}$$
.

$$U_{n} = \int_{0}^{\frac{\pi}{2}} \sin^{n}x \, dx = \int_{0}^{\frac{\pi}{2}} \sin^{n-1}x \cdot \frac{d}{dx}(-\cos x) \cdot dx$$
integration by parts ONE MARK
$$= \left[(\sin^{n-1}x)(-\cos x) \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} (n-1) \sin^{n-2}x \cdot -\cos^{2}x \, dx$$

$$= 0 + (n-1) \int_{0}^{\frac{\pi}{2}} \sin^{n-2}x \cdot (1 - \sin^{2}x) dx$$

$$= (n-1) \int_{0}^{\frac{\pi}{2}} (\sin^{n-2}x - \sin^{n}x) \, dx$$

$$U_{n} = (n-1) U_{n-2} - (n-1) U_{n}$$

$$\cdot \cdot \cdot (n-1)U_n + U_n = (n-1) U_{n-2}$$
So $U_n = \frac{n-1}{n} U_{n-2}$

ONE MARK

ii
$$U_4 = \frac{3}{4} \cdot \frac{1}{2} \cdot U_0 = \frac{3}{4} \cdot \frac{1}{2} \cdot \int_0^{\frac{\pi}{2}} dx = \frac{3\pi}{16}$$
 $U_6 = \frac{5}{6} \cdot U_4 = \frac{5\pi}{32}$
So $U_4 - U_6 = \frac{\pi}{32}$ $\therefore k = 32$ ONE MARK total /3

QUESTION 12

a i
$$\frac{3}{x+2} + x - 2 = \frac{3(1) + (x+2)(x-2)}{x+2} = \frac{x^2 - 1}{x+2}$$
 ONE MARK

ii Sketch $y = \frac{3}{x+2}$ and y = x-2 separately and then add ordinates.

 $y = \frac{x^2 - 1}{x + 2}$ has y intercept at $(0, \frac{-1}{2})$ and x intercepts at $x = \pm 1$.

Sketch
$$y = \frac{3}{x+2} + x - 2 = \frac{x^2 - 1}{x+2}$$

iii $\frac{x^2-1}{x+2} \le 0$. Graph is negative for x < -2 or $-1 \le x \le 1$ ONE MARK

total /3

b Find an equation whose roots are $\frac{\alpha\beta}{\gamma} = \frac{\alpha\beta\gamma}{\gamma\gamma}$; $\frac{\alpha\gamma}{\beta} = \frac{\alpha\gamma\beta}{\beta\beta}$ and $\frac{\beta\gamma}{\alpha} = \frac{\beta\gamma\alpha}{\alpha\alpha}$.

Now $\alpha\beta\gamma = 1$ from product $= \frac{-d}{a} = \frac{-(-1)}{1}$. ONE MARK \therefore new roots are $\frac{1}{\alpha^2}, \frac{1}{\beta^2}, \frac{1}{\gamma^2}$

So let
$$y = \frac{1}{x^2}$$
 then $x = \frac{1}{\sqrt{y}}$ ONE MARK
Then $x^3 + 2x^2 - 3x - 1 = 0$ becomes $(\frac{1}{\sqrt{y}})^3 + 2(\frac{1}{\sqrt{y}})^2 - 3(\frac{1}{\sqrt{y}}) - 1 = 0$

$$\therefore \left(\frac{1}{\sqrt{y}}\right)^3 + 2\left(\frac{1}{\sqrt{y}}\right)^2 - 3\left(\frac{1}{\sqrt{y}}\right) - 1 = 0 \text{ is } 1 + 2\sqrt{y} - 3y - \left(\sqrt{y}\right)^3 = 0$$

ONE MARK

$$1 + 2\sqrt{y} - 3y - (\sqrt{y})^3 = 0$$
 can be written as $2\sqrt{y} - y\sqrt{y} = 3y - 1$
Square both sides $4y - 4y^2 + y^3 = 9y^2 - 6y + 1$

Giving
$$y^3 - 13y^2 + 10y - 1 = 0$$

ONE MARK total /4

.

ii $P(cp, cp^{-1})$ and $Q(cq, cq^{-1})$

So equation is
$$y - cp^{-1} = \frac{cq^{-1} - cp^{-1}}{cq - cp} (x - cp)$$
 ONE MARK

$$pq (y - cp^{-1}) = -1(x - cp) becomes$$

$$x + pq y = c (p + q)$$

ONE MARK

iii C is the x intercept so let
$$y = 0$$
 C ($c(p + q)$, 0)

ONE MARK

iv
$$R\left[\frac{cp+cq}{2}, \frac{cp^{-1}-cq^{-1}}{2}\right]$$
 gives $R\left[\frac{c}{2}(p+q), \frac{c}{2}\left(\frac{p+q}{pq}\right)\right]$ ONE MARK

v distance
$$OR^2 = \left[\frac{c}{2}\left(\frac{p+q}{pq}\right)\right]^2 + \left[\frac{c}{2}(p+q)\right]^2$$
 ONE MARK

distance
$$RC^2 = \left[\frac{c}{2}\left(\frac{p+q}{pq}\right)\right]^2 + \left[\frac{c}{2}(p+q) - c(p+q)\right]^2$$
 ONE MARK

$$= \left[\frac{c}{2} \left(\frac{p+q}{pq}\right)\right]^2 + \left[\frac{-c}{2} (p+q)\right]^2 \qquad \text{ONE MARK}$$

$$= \left[\frac{c}{2} \left(\frac{p+q}{pq}\right)\right]^2 + \left[\frac{c}{2} (p+q)\right]^2 = \text{OR}^2 \quad \therefore \text{ OR} = \text{RC} \quad \text{total } /3$$

QUESTION 13

iii

a i
$$b^2 = a^2(e^2 - 1)$$
 $5x^2 - 4y^2 = 20$ becomes $\frac{1}{4}x^2 - \frac{1}{5}y^2 = 1$.
 $5 = 4(e^2 - 1)$ $a = 2$ $b = \sqrt{5}$
 $\frac{9}{4} = e^2$ $\therefore \frac{3}{2} = e$ Foci S and S' $(\pm ae, 0)$ become $(\pm 2, \frac{3}{2}, 0)$
ONE MARK S and S' $(\pm 3, 0)$ ONE MARK

ii directrices $x = \pm \frac{a}{e}$ become $x = \pm \frac{4}{3}$ ONE MARK asymptotes $y = \pm \frac{b}{a}x$ become $y = \pm \frac{1}{2}\sqrt{5}x$ ONE MARK

 $S' - 3^{\dagger} - 2$ $\downarrow 1$ $\downarrow 1$ $\downarrow 2$ $\downarrow 3^{\dagger} S$ $\downarrow S$ $\downarrow Y$ $\downarrow Y$

iv
$$x = 2sec\theta$$
 $5x^2 - 4y^2 = 20$ ONE MARK
$$y = \sqrt{5}tan\theta$$
 LHS = $5x^2 - 4y^2 = 5(2sec\theta)^2 - 4(\sqrt{5}tan\theta)^2$
$$= 20((sec\theta)^2 - (tan\theta)^2) = 20(1) = \text{RHS}$$

v
$$5x^2 - 4y^2 = 20$$
 So $10x - 8y\frac{dy}{dx} = 0$ gives $\frac{dy}{dx} = \frac{5x}{4y}$.

At $P(2sec\theta, \sqrt{5}tan\theta)$ $\frac{dy}{dx} = \frac{5.2sec\theta}{4\sqrt{5}tan\theta} = \frac{\sqrt{5}sec\theta}{2tan\theta}$. ONE MARK

Equation of tangent $y - \sqrt{5}tan\theta = \frac{\sqrt{5}sec\theta}{2tan\theta}(x - 2sec\theta)$

$$-2ytan\theta + \sqrt{5}xsec\theta = 2\sqrt{5}\left((sec\theta)^2 - (tan\theta)^2\right)$$

$$-2ytan\theta + \sqrt{5}xsec\theta = 2\sqrt{5}\left(1\right)$$

$$\frac{1}{2}xsec\theta - \frac{1}{\sqrt{5}}ytan\theta = 1$$
 ONE MARK

vi Solve
$$\frac{1}{2}xsec\theta - \frac{1}{\sqrt{5}}ytan\theta = 1$$
 with $y = \frac{1}{2}\sqrt{5}x$
$$\frac{1}{2}xsec\theta - \frac{1}{\sqrt{5}}(\frac{1}{2}\sqrt{5}x)tan\theta = 1$$

$$x = \frac{2}{sec\theta - tan\theta}$$
 So $y = \frac{1}{2}\sqrt{5}x$ becomes $y = \frac{\sqrt{5}}{sec\theta - tan\theta}$ L is $(\frac{2}{sec\theta - tan\theta}, \frac{\sqrt{5}}{sec\theta - tan\theta})$ ONE MARK

Similarly solve
$$\frac{1}{2}xsec\theta - \frac{1}{\sqrt{5}}ytan\theta = 1$$
 with $y = -\frac{1}{2}\sqrt{5}x$ gives M as $(\frac{2}{sec\theta + tan\theta}, \frac{-\sqrt{5}}{sec\theta + tan\theta})$. ONE MARK

Now if LP = PM, P must be the midpoint of LM.

Midpoint of LM is
$$(\frac{1}{2} \left[\frac{2}{sec\theta - tan\theta} + \frac{2}{sec\theta + tan\theta} \right], \frac{1}{2} \left[\frac{\sqrt{5}}{sec\theta + tan\theta} + \frac{-\sqrt{5}}{sec\theta + tan\theta} \right])$$

$$= (\frac{1}{2} \left[\frac{4sec\theta}{1} \right], \frac{1}{2} \left[\frac{2\sqrt{5}sec\theta}{1} \right)$$

$$= (2sec\theta, \sqrt{5}tan\theta) \text{ which is P} \qquad \text{ONE MARK}$$

So the midpoint of LM is P. \therefore LP = PM

vii Area $\triangle OLM = \frac{1}{2} \times LO \times MO \times sin < LOM$

ONE MARK

Now $\frac{1}{2}$ x L0 x M0 is a constant and independent of θ and so independent of P.

Now < LOM is a combination of the angles that the asymptotes make with the x axis.

That is $tan^{-1}(\frac{\sqrt{5}}{2})$ and $\pi - tan^{-1}(\frac{-\sqrt{5}}{2})$. So sin < LOM is also a constant and \therefore

independent of θ and so independent of P.

ONE MARK

total /13

b
$$f(x) = x^3 - 6x = x(x + \sqrt{6})(x - \sqrt{6})$$

ONE MARK EACH total /2

i

$$y = |f(x)| = |x^3 - 6x|$$

$$y = \frac{1}{f(x)} = (x^3 - 6x)^{-1}$$

QUESTION 14

ONE MARK

a i

AREA =
$$\int_{x_1}^{x_1+1} [(3-x^2) - (-2x)] dx$$
 \therefore A = $\int_{x_1}^{x_1+1} [(3-x^2+2x)] dx$

A = $[3x - \frac{1}{3}x^3 + x^2]_{x_1}^{x_1+1}$

= $x_1 + 3\frac{2}{3} - x_1^2$ ONE MARK

Maximum occurs where $\frac{dA}{dx_1} = 0$ ONE MARK

$$\frac{dA}{dx_1} = -2x_1 + 1 = 0$$

$$\therefore x_1 = \frac{1}{2}$$
ONE MARK

ii
$$A = x_1 + 3\frac{2}{3} - x_1^2 \quad \text{So max A} = (\frac{1}{2}) + 3\frac{2}{3} - (\frac{1}{2})^2 = 3\frac{11}{12}$$
 ONE MARK

Justify the maximum $\frac{dA}{dx_1} = -2x_1 + 1$ \therefore $\frac{d^2A}{dx_1^2} = -2$ concave down

So a maximum occurs at $x_1 = \frac{1}{2}$. ONE MARK

total /6

b The cross-sectional area is the area of a circle. Radius of this circle is 1-y, so $\Delta A = \pi (1-y)^2$. The typical slice volume is $\Delta V = \Delta A \times \Delta x$

Now $y = \sin x$ so $\Delta V = \pi (1 - \sin x)^2$. Δx

Total volume = V =
$$\int \Delta V = \int \pi (1 - \sin x)^2 . dx$$

= $\pi \int_0^{\frac{\pi}{2}} (1 - 2\sin x + \sin^2 x) dx$ But $\sin^2 x = \frac{1}{2} (1 - \cos 2x)$
V = $\pi \int_0^{\frac{\pi}{2}} (1 \frac{1}{2} - 2\sin x - \frac{1}{2}\cos 2x) dx$ ONE MARK
= $\pi \left[\frac{3}{2}x + 2\cos x - \frac{1}{4}\sin 2x \right]_0^{\frac{\pi}{2}}$ ONE MARK
= $\pi (\frac{3}{4}\pi - 2)$ cubic units ONE MARK

total /4

Typical cylindrical shell has cross-sectional area $\Delta A = 2\pi x . (4 - y)$

But
$$y = (x - 2)^2$$
 so

$$\Delta A = 2\pi x \cdot (4 - (x - 2)^2)$$

$$=2\pi x (4x-x^2)$$

ONE MARK

∴ Small shell volume
$$\Delta V = 2\pi x (4x - x^2) \Delta x$$

ONE MARK

Total volume = $V = \int \Delta V = 2\pi \int x (4x - x^2) dx$

$$= 2\pi \int_0^4 (4x^2 - x^3) \, dx$$

ONE MARK

$$=2\pi \left[\frac{4}{3}x^3 - \frac{1}{4}x^4\right]_0^4$$

ONE MARK

$$=\frac{128}{3}\pi$$
 cubic units

ONE MARK

total /5

QUESTION 15

A factor is (z + 1) so $(z + 1)^5 = (z + 1)(z^4 - z^3 + z^2 - z + 1)$

TWO MARKS

ii

Each angle is $2\pi/5$

ONE MARK

Angles are at $\frac{\pi}{5}$, $\frac{3\pi}{5}$, $\frac{-\pi}{5}$, $\frac{-3\pi}{5}$, π

(a)(i) $z^{5}+1=0$ One roof is z=1 $z^{4}-z^{3}+z^{2}-z^{4}$ z+1) z^{5} z^{5}

(a) (ii) $z^{5} = -1$ (a) (iii) Now som of roots for $z^{4} - z^{3} + z^{2} - 2 + 1$ is $z^{-1} = 1$ $z^{4} - z^{3} + z^{2} - 2 + 1$ is $z^{-1} = 1$ $z^{4} - z^{3} + z^{2} - 2 + 1$ is $z^{-1} = 1$ $z^{4} - z^{3} + z^{2} - 2 + 1$ is $z^{-1} = 1$ $z^{4} - z^{3} + z^{2} - z + 1$ is $z^{4} - z + 1$ $z^{4} - z^{4} -$

$$Z_{4}=cis\left(\frac{2\pi}{5}\right)$$

$$Z_{5}=cis\left(\frac{2\pi}{5}\right)$$

(b)
$$Mx = \tan Q + \tan V$$
 $= \tan Q + \tan V$
 $= \tan (\tan V)$
 $= \tan (\tan V)$
 $= \tan \tan V$
 $= \tan \Delta \cos \Delta \cot V$
 $= \tan \Delta \cot V$
 $=$

$$Z_{5} = cis(T)$$

$$\sum_{cis} \frac{3\pi}{5} + cis(-3\pi) = 2\cos\frac{3\pi}{5}$$

$$cis(T) = 2\cos\frac{\pi}{5}$$

(c)
$$\frac{q}{v} + \frac{bv+c}{1+v^2} = \frac{1}{v} + \frac{-v+o}{1+v^2}$$

$$= \frac{1+v^2}{v(1+v^2)} + \frac{-v^2}{v(1+v^2)}$$

$$= \frac{1+v^2-v^2}{v(1+v^2)}$$

$$= \frac{1+v^2-v^2}{v(1+v^2)}$$
= $\frac{1+v^2-v^2}{v(1+v^2)}$
= $\frac{1+v^2-v^2}{v(1+v^2)}$
= $\frac{1+v^2-v^2}{v(1+v^2)}$
= $\frac{1+v^2-v^2}{v(1+v^2)}$

ic = -m (v +v) Ø1500 (F) V dv = -m (++ v2) $\frac{dV}{dx} = -m(11V^2)$ (dV) = (-mobx Mx = fa -10 - fa -1 V x = fn (fn - Q - fn' v) From (b) (1) x= fr tan (0-v) (c) (ji) dr = -in(v+v3) What (dr = -m elt (9. + bv = f-mdt 1 - 120 de = - ent + c tras (b(ii) above In V- = lu(1412) = -mt+C 2hv - hu(1+v2) = -2mt + K du Tron = - 2 mit + K t=0 MO+=K V=Q. So In () = - Int + In 8? of 2mt = du (62 x HV2) t= 1 hsp (1+V)?

t= 1/2 (1+v3)? 2150 (II) × 2m 2 2mt = lu (02(6402) e] e = . Q 2(1+v2) $V^2(1+0^2)e^{2mt}=o^2(1+V^2)$ v2(1+Q2)e2mt-Q2v2=Q2 V2 = Q= (1+p2)=2mi _n2 (a) (iv) Limiting value of relocates $t \Rightarrow \infty$ $e^{2\pi t} \Rightarrow \infty$ $e^{2\pi t} \Rightarrow 0$ e^{2 Men v=0 x=? x= 1 ta (0-1) Vyo x > In tait & mx -> tand a tan (h) -> Q

a i Noting
$$B'_n(x) = \frac{d}{dx}(B_n(x)) = nB_{n-1}(x)$$
 and $B_0(x) = 1$

$$B'_1(x) = \frac{d}{dx}(B_1(x)) = 1.B_0(x)$$

$$\therefore B'_1(x) = 1$$

So
$$B_1(x) = x + C$$

ONE MARK

Now
$$\int_0^1 B_1(x) dx = \int_0^1 (x + C) dx = \int_0^1 x dx + \int_0^1 C dx$$

Noting
$$\int_0^1 B_1(x) dx = 0$$
 then $0 = \int_0^1 x dx + \int_0^1 C dx$ ONE MARK
$$0 = \int_0^1 x dx + C$$

$$\therefore C = -\int_0^1 x dx$$

$$=-[\frac{1}{2}x^2]_0^1=-\frac{1}{2}$$
 ONE MARK

So $B_1(x) = x + C$ becomes $B_1(x) = x - \frac{1}{2}$.

ii
$$g(x) = B_{n+1}(x+1) - B_{n+1}(x)$$
So $g'(x) = B'_{n+1}(x+1) - B'_{n+1}(x)$

Noting that $B'_n(x) = \frac{d}{dx}(B_n(x)) = nB_{n-1}(x)$

$$\therefore g'(x) = B'_{n+1}(x+1) - B'_{n+1}(x)$$

$$g'(x) = (n+1)B_n(x+1) - (n+1)B_n(x)$$

$$= (n+1)[B_n(x+1) - B_n(x)]$$

$$g'(x) = (n+1)[nx^{n-1}] \text{ (given data)} \text{ ONE MARK}$$
Integrate both sides gives $g(x) = (n+1)[nx^{n-1+1}, \frac{1}{n}] + c$

Also $g(x) = (n+1) x^n + c$

ONE MARK

Prove that
$$B_n(x+1) - B_n(x) = nx^{n-1}$$
 if $n \ge 1$.

STEP 1 Show true for
$$n = 1$$

iii

ONE MARK

LHS =
$$1.x^{1-1} = 1$$
 RHS = $B_1(x+1) - B_1(x)$
= RHS = $(x+1-\frac{1}{2}) - (x-\frac{1}{2}) = 1$

STEP 2 Assume true n = k

ONE MARK

$$B_k(x+1) - B_k(x) = kx^{k-1} \dots (*)$$

STEP 3 Prove true n = k + 1

Aim: To prove
$$B_{k+1}(x+1) - B_{k+1}(x) = (k+1)x^{k+1-1} = (k+1)x^k$$

Proof: Now $g(x) = B_{k+1}(x+1) - B_{k+1}(x)$
So $g'(x) = B'_{k+1}(x+1) - B'_{k+1}(x)$
 $= (k+1)B_k(x+1) - (k+1)B_k(x)$

$$= (k+1)[B_k (x+1) - B_k (x)]$$

= $(k+1)[kx^{k-1}]$ from (*) above

ONE MARK

$$\therefore g(x) = (n+1) x^n + c$$

Hence
$$B_{k+1}(x+1) - B_{k+1}(x) = (k+1) x^k + c$$

 $B_{k+1}(1) - B_{k+1}(0) = (k+1) \cdot 0 + c$

$$0 = c$$

ONE MARK

So
$$B_{k+1}(x+1) - B_{k+1}(x) = (k+1) x^k$$
 as required.

STEP 4 The proposition is true for n = 1 and since it is true for n = k + 1 it is true for n = 1 + 1 = 2, and for n = 2 + 1 = 3 and so on for all values of $n \ge 1$.

Hence, by mathematical induction, $B_n(x+1) - B_n(x) = nx^{n-1}$, $n \ge 1$.

ONE MARK

total /10

b i
$$2k+3 > 2\sqrt{k+2}\sqrt{k+1}$$

Squaring LHS =
$$4k^2 + 12k + 9$$
 RHS = $4(k^2 + 3k + 2)$

$$=4k^2+12k+8$$

LHS > RHS
$$\therefore$$
 2k + 3 > 2 $\sqrt{k+2}$ $\sqrt{k+1}$ ONE MARK

ii
$$2k+3 > 2\sqrt{k+2}\sqrt{k+1}$$

So
$$2k+3 = 2k+2+1 > 2\sqrt{k+2}\sqrt{k+1}$$

 $\therefore 1 > 2\sqrt{k+2}\sqrt{k+1} - 2(k+1)$ ONE MARK
 $1 > 2\sqrt{k+1}(\sqrt{k+2} - \sqrt{k+1})$

So
$$\frac{1}{\sqrt{k+1}} > 2(\sqrt{k+2} - \sqrt{k+1})$$
. ONE MARK

iii
$$\frac{1}{\sqrt{k+1}} > 2(\sqrt{k+2} - \sqrt{k+1})$$

$$k=0$$
 $\frac{1}{\sqrt{1}}=1 > 2(\sqrt{2}-1)$

$$k = 1$$
 $\frac{1}{\sqrt{2}} > 2(\sqrt{3} - \sqrt{2})$

$$k = 2 \frac{1}{\sqrt{3}} > 2(\sqrt{4} - \sqrt{3})$$

.....

$$k = n-1$$
 $\frac{1}{\sqrt{n}} > 2(\sqrt{n+1} - \sqrt{n}).$

ONE MARK

Now
$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > 2(\sqrt{2} - 1) + 2(\sqrt{3} - \sqrt{2}) + \dots + 2(\sqrt{n+1} - \sqrt{n})$$

 $> 2\sqrt{2} - 2 + 2\sqrt{3} - 2\sqrt{2} + \dots + 2\sqrt{n} + 2\sqrt{n+1} - 2\sqrt{n}$
 $> 2\sqrt{n+1} - 2$ ONE MARK

So
$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > 2(\sqrt{n+1} - 1)$$
 total /5

OR OTHERWISE, BY MATHS INDUCTION PROVE 1+ \$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \quad \frac{ Stopi Prove true for n=1 (HSC) n=2 n=2 LHS=101= LHS= 1+ 1/2 LHS= 1+ 1/2 + 1/3 = 1+ 1/2 + 1/3 RMS= 2(12-1) = 1+ 0-7071 = 1-7071 = 1+0 7071 1 0.574 = 2.305 = 2(0.44) = 0.828 $RHS = 2(\sqrt{3}-1)$ $RHS = 2(\sqrt{4}-1)$ = 2 (0.732) = 2(i) = 2TROC = 1.464 LHS > RHS LHS) RHS

LHS = 14
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}}$$

From (*) $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > 2(\sqrt{k+1} - 1) + \frac{1}{\sqrt{k+1}}$

From (b)(ii) above
$$\frac{1}{\sqrt{R+1}}$$
 > 2($\sqrt{k+2}$ - $\sqrt{k+1}$)

$$Se \quad 2(\sqrt{k+1} - 1) + \frac{1}{\sqrt{k+1}} > 2(\sqrt{k+2} - \sqrt{k+1})$$

$$> 2(\sqrt{k+1} - 1) + \frac{1}{\sqrt{k+1}} > 2(\sqrt{k+2} - 1) + 2(\sqrt{k+2} - \sqrt{k+1})$$

$$> 2\sqrt{k+2} - 2 + 2\sqrt{k+2} - 2$$

$$> 2(\sqrt{k+2} - 1)$$

Step 4 Since the statement is true for n=1 (and n=2 and n=3)

and because it is true for n=k+1 it ust be true for

n=k+1=2 (and n=2+1=3, and n=3+1=4) and so on for

all values of integer n>0.