Math 20–1: Exponents Unit

Practice Test

(Laws of Exponents · Negative/Zero Exponents · Rational Exponents & Radicals · Scientific Notation)

Instructions. Show work in the space beside each question. Calculators permitted unless instructed otherwise. For Numerical Response, print your answer in the boxes from left to right (no commas or units).

Multiple Choice (1–10)

- 1) The base and exponent in $(-2)^4$ are respectively
 - A. 2 and -4
 - B. 2 and 4
 - C. -2 and -4
 - D. -2 and 4
- 2) The coefficient in the expression $-\frac{3x^5}{2}$ is
 - A. -3
 - B. $-\frac{3}{2}$
 - C. $\frac{3}{2}$
 - D. -5
- 3) a^0 is equivalent to
 - A. 0
 - B. 1
 - C. -a
 - D. -1
- 4) Which of the following simplify to a^6 ?
- I. $a^3 \cdot a^3$ II. $(a^2)^3$ III. $a^{12} \div a^6$ IV. $a^8 \cdot a^{-2}$

- A. I only
- B. I and II only
- C. I, II and III only
- D. I, II, III and IV

- 5) $3a^5 \cdot 2a^{-2}$ simplifies to
 - A. $6a^{7}$
 - B. $6a^{3}$
 - C. $-6a^3$
 - D. $5a^{3}$
- 6) $\frac{6x^3}{2x^{-4}}$ can be simplified to
 - A. $4x^{-7}$
 - B. $3x^{7}$
 - C. $4x^{7}$
 - D. $3x^{-1}$
- 7) $5a^{-2}$ is equivalent to
 - A. $5a^2$
 - B. $a^{-2}/5$
 - C. $\frac{1}{5a^2}$
 - D. $\frac{5}{a^2}$
- 8) $\left(x^{\frac{1}{2}}y^{-\frac{3}{4}}\right)^4$ equals
 - A. x^2y^3
 - B. $x^{-2}y^3$
 - C. $\frac{x^2}{y^3}$
 - D. $\frac{x^4}{y^3}$
- 9) $4^{-\frac{3}{2}}$ equals

 - A. 8 B. $\frac{1}{8}$
 - C. $\frac{1}{16}$
 - D. 16
- 10) Expressed in radical form, $x^{\frac{5}{3}}$ is
 - A. $\sqrt{x^5}$
 - B. $\sqrt[3]{x^5}$
 - C. $\sqrt[5]{x^3}$
 - D. $x\sqrt[3]{x^2}$

Numerical Response (11–14)

Record your answer in the boxes.

11) Use the information:

$$(3^a)^2 = 3^8,$$

$$(3^a)^2 = 3^8$$
, $(x^3)^b = x^{15}$, $5^c \div 5^2 = 5^7$, $t^4 \cdot t^d = t^{11}$.

$$5^c \div 5^2 = 5^7,$$

$$t^4 \cdot t^d = t^{11}$$

Write a in the first box, b in the second, c in the third, and d in the fourth.

- 12) $\frac{8a^5b^{-2}}{2a^{-1}b^3}$ can be written as a^xb^y . Enter x then y.
- 13) Write 0.000376 in scientific notation as $a \times 10^n$ and then record a + n.
- 14) $(-2p^3q^{-1})(-3p^2q^4)(4p^{-5}q^2) = a p^x q^y$ with a > 0. Record x + y.

Multiple Choice (15–18)

15) Which statement is true (assume a > 0)?

A.
$$a^{-\frac{1}{2}} < 0$$

B.
$$\frac{1}{a^{3/2}} < 0$$

C.
$$(-a)^{2/3} < 0$$

D.
$$-a^{2/3} < 0$$

16) Expressed in radical form, $x^{\frac{3}{2}}$ is

A.
$$\sqrt[3]{x^2}$$

B.
$$\sqrt{x^3}$$

C.
$$\frac{1}{\sqrt{x^3}}$$

D.
$$x^2\sqrt{x}$$

17) $(2.5 \times 10^{-2})(4.0 \times 10^{3})$ equals

A.
$$1.0 \times 10^{1}$$

B.
$$1.0 \times 10^2$$

C.
$$10 \times 10^{2}$$

D.
$$0.10 \times 10^{3}$$

18) Solve for x: $5^{2x+1} = 125$.

Written Response — 5 marks

Show clear steps and use exponent laws.

- 1. A sheet of paper is 9.0×10^{-5} m thick. How many sheets are needed to make a stack 2.4 m high? Round to the nearest thousand. (2 marks)
- 2. Compare magnitudes using scientific notation.
 - (a) Estimate the total number of hairs on all people on Earth if the population is 8.0×10^9 and the average person has 1.2×10^5 hairs. Give scientific notation (coefficient to the nearest hundredth).
 - (b) The planet Mercury has mass $3.30 \times 10^{23} \,\mathrm{kg}$ and an electron has mass $9.11 \times 10^{-31} \,\mathrm{kg}$. Approximately how many electrons have the same mass as Mercury? Give scientific notation (coefficient to the nearest hundredth).

Answer Key

- 1) D 10) B
- 2) B 11) 4 5 9 7
- 3) B 12) $\boxed{6}$ $\boxed{-5}$
- 4) D 13) -0.24
- 5) B 14) 5
- 6) B 15) \overline{D}
- 7) D 16) B
- 8) C 17) B
- 9) B 18) B

Notes/Justification

- 2) Coefficient is the numeric multiplier: $-\frac{3}{2}$.
- 4) I: a^{3+3} ; II: $(a^2)^3 = a^6$; III: a^{12-6} ; IV: a^{8-2} .
- 5) $3 \cdot 2 = 6$, $a^{5-2} = a^3$.
- 6) $\frac{6}{2} = 3$, $x^{3-(-4)} = x^7$.
- 7) a^{-2} moves to denominator: $5/a^2$.
- 8) $(x^{1/2})^4 = x^2$ and $(y^{-3/4})^4 = y^{-3}$.
- 9) $4^{-3/2} = (\sqrt{4})^{-3} = 2^{-3} = 1/8$.
- 10) $x^{5/3} = \sqrt[3]{x^5}$.
- 11) Exponents: $2a = 8 \Rightarrow a = 4$; $(x^3)^b = x^{3b} = x^{15} \Rightarrow b = 5$; $5^{c-2} = 5^7 \Rightarrow c = 9$; $4 + d = 11 \Rightarrow d = 7$.
- 12) 8/2 = 4; $a^{5-(-1)} = a^6$; $b^{-2-3} = b^{-5}$ so x = 6, y = -5.
- 13) $0.000376 = 3.76 \times 10^{-4} \Rightarrow a + n = 3.76 + (-4) = -0.24$.
- 14) Coefficient (-2)(-3)(4) = 24; p exponent 3 + 2 5 = 0; q exponent -1 + 4 + 2 = 5; x + y = 5.
- 15) For a > 0, $a^{2/3} > 0$ so $-a^{2/3} < 0$; others are positive.
- 16) $x^{3/2} = \sqrt{x^3}$.
- 17) Multiply coefficients and add exponents: (2.5)(4.0) = 10.0 and $10^{-2+3} = 10^1$, giving 1.0×10^2 .
- 18) $125 = 5^3$, so $2x + 1 = 3 \Rightarrow x = 1$.
- WR1) $\frac{2.4}{9.0 \times 10^{-5}} \approx 2.667 \times 10^4 \approx 26700$ sheets.
- WR2(a) $(8.0 \times 10^9)(1.2 \times 10^5) = 9.6 \times 10^{14} \approx 9.60 \times 10^{14}$ hairs.
- WR2(b) $\frac{3.30 \times 10^{23}}{9.11 \times 10^{-31}} = 3.62 \times 10^{53} \approx 3.62 \times 10^{53}$ electrons.