Modern Fizika Laboratórium Fizika Bsc.

13. Molekulamodellezés

A mérést távoktatásban végezte:

Sándor Szende

A mérés ideje: 2020.04.15, 8.00-12.00

Szerdai csoport

A beadás ideje: 2020. május 22.

1. A mérés célja

A mérés során alapvető molekulaszimulációs módszerekkel ismerkedtünk meg az Avogadro program segítségével. A modellezett számolásokból következtethettünk az adott molekulák tulajdonságaira is.

2. Mérési feladatok

2.1. Benzol rajzolás

Elsőként egy benzolt rajzoltam, amit úgy értem el, hogy beállítottam, hogy a ceruzával C-t akarok rajzolni, és mellé ábrázolja a hidrogéneket is. Előszőr minden C-re 3-as kötést tettem, majd ha rákattintottam a kötésekre, akkor állítottam be, hogy hány kötése legyen az adott atomnak, és így kaptam először egy kicsit csámpás benzolt. Majd előoptimalizáltam, és emiatt szépen átméretezte a program a benzolt, így szépen látszott a szerkezete, ahogy a képen látható:

1. ábra. Graphics-al kimentett kép a benzolról

Majd ellenőriztem a molekulatulajdonságokat, és így látszott, hogy a program szerint is benzolt készítettem:

2. ábra. Képernyőkép a benzolról és tulajdonságairól

Itt vannak pedig a benzol alapmennyiségei:

IUPAC Molekula név	benzol
Molekulatömeg (g/mol)	78.112
Kémiai formula	C_6H_6
Enegia (kJ/mol)	$44.270 \ (0.4588263 \ [eV])$
Dipolmomentum	0
Kötés típusa és hossza (Å)(C-C)	2-rendű, 1.39904
Kötés típusa és hossza (Å)(C-H)	1-rendű, 1.08234
Kötések szöge	120°

1. táblázat. C_6H_6 benzol tulajdonságai

2.2. Z-mátrix megismerése

Itt először is én is lerajzoltam az avogadroval a $C_2H_2^{-2}$ molekulát, majd a kért módon megszámoztam az atomokat a vonalzó segítségével, majd az Extensions->Gaussian menüpontra mentem, ahol is felfedeztem, hogy a Format-ot át lehet állítani a Z-mátrixra, így meg is lett a kért eredmény:

3. ábra. A $C_2 H_2^{-2}$ molekula, és Z-mátrixának együtthatói

A szokott formátumba írva a Z-mátrix a képernyőkép alapján:

$$Z_{C_2H_2^{-2}} = \begin{pmatrix} C & & & & \\ C & 1 & 1.32881 & & \\ H & 1 & 1.08437 & 2 & 120.00846 & \\ H & 2 & 1.08437 & 1 & 120.00845 & 3 & 180.00000 \end{pmatrix}$$

Ha rábíztam az Avogadro-ra a számozást, akkor ugyanezek az értékek jöttek ki, mint ami a Z-mátrixban van, azt leszámítva, hogy a második és 4-ik oszlopban lévő 1-2-es helyett cserélt.

IUPAC Molekula név	etén
Molekulatömeg (g/mol)	28.053
Kémiai formula	C_2H_4
Enegia (kJ/mol)	-0.155 (-0.001606462 [eV])
Dipolmomentum	0
Kötés típusa és hossza (Å)(C-C)	2-rendű, 1.3288
Kötés típusa és hossza (Å)(C-H)	1-rendű, 1.08437
Kötések szöge	120.066° , 120.0105°

2. táblázat. $C_2H_2^{-2}$ alapmennyiségei

2.3. O_2 molekula elektronszerkezete

A program alján található koordinátákat használom arra, hogy beazonosítsam, hogy melyik pálya melyik kvantumszámnak felel meg, ehhez pedig felhasználtam még a Csanád Máté által tartott Atom-és Kvantumfizika jegyzetet is. (A zöld a z, a piros az y, és a kék az x tengely)

IUPAC Molekula név	molekuláris oxigén
Molekulatömeg (g/mol)	31.999
Kémiai formula	O_2
Enegia (kJ/mol)	-394,664.549 (-4090.41085352 [eV])
Dipolmomentum	0
Kötés típusa és hossza (Å)	2-rendű, 1.21452

3. táblázat. O_2 tulajdonságai

L

4. ábra. Az O_2 molekula 1-es pályája

Nos ez a pálya olyan kicsi, hogy nem is tudom milyen, vagy mire hasonlít.

(a) Az O_2 molekula HOMO-2-es pályája

L.

(b) Az O_2 molekula HOMO-2-es pályája elforgatva

Ez a pálya egy p-pályához hasonlít, hiszen ez is két ovális alakú részből áll, de ez úgy fordul, hogy a kötéssel párhuzamos az oldala, és tulajdonképpen a két felhő fele-fele arányban osztozik az oxigén atomokon. Mellékkvantumszámok: l=1,m=1

6. ábra. Az O_2 molekula HOMO-1-es pályája

Ez egy d-pálya, amely két szélén van a két nagyobb felhő, és küzépen egy kisebb, ami gyűrűszerűen fogja közre a kettőskötést. Mellékkvantumszámok: l=2,m=0

7. ábra. Az \mathcal{O}_2 molekula HOMO pályája

Ez is egy d-pálya, hiszen leginkább egy négylevelű lóherére emlékeztet az alakakja, és ez a lóhere egy síkban van az atommagokkal. Mellékkvantumszámok: l=2,m=-2

8. ábra. Az \mathcal{O}_2 molekula LUMO pályája

Ez is egy d-pálya, igazából pont úgy néz ki, mint az előző, csak elforgatva az atommagok körül kb 45° -al. Mellékkvantumszámok: l=2,m=1

2.4. Izotópeffektus vizsgálata IR spektrumokkal

2.4.1. C6H6 sima

IUPAC Molekula név	bicyclo[2.1.1]hexane
Molekulatömeg (g/mol)	82.144
Kémiai formula	$C_6 H_1 0$
Enegia (kJ/mol)	-609,484.836 (-6316.86680384 [eV])
Dipolmomentum	1.575
Kötés típusa és hossza (Å)(C-C)	1-rendű, 1.57485 (f)
Kötés típusa és hossza (Å)(C-H)	1-rendű, 1.09833
Kötés típusa és hossza (Å)(C-H)	1-rendű, 1.0916
Kötés típusa és hossza (Å)(C-H)	1-rendű, 1.08986
Kötés típusa és hossza (Å)(C-C)	1-rendű, 1.5498 (f)
Kötés típusa és hossza (Å)(C-C)	1-rendű, 1.23836 (f)

4. táblázat. C_6H_6 (módosult) tulajdonságai

Elvégeztem pythonban a Lorentz-görbék illesztését a spektrumok grafikonjához, és a következő eredményeket kaptam:

^{*}f=forgatható

9. ábra. Spektogramm, C6H6

Itt jó eredményt kaptam, mert ha összehasonlítom azzal, amit az Avogadro mutat, akkor pont ugyanott vannak a csúcsok, viszont nem voltak mindig ugyanolyan magasak, amit nem teljesen értek, hogy miért. Összehasonlításképp így néz ki az Avogadro-val készült spektogramm:

10. ábra. Spektogramm, C6H6 Avogadro

2.4.2. C6H6 deuterizált

IUPAC Molekula név	bicyclo[2.1.1]hexane
Molekulatömeg (g/mol)	82.144
Kémiai formula	C_6H_10
$\rm Enegia~(kJ/mol)$	594.206 (6.1585128 [eV])
Dipolmomentum	0.365
Kötés típusa és hossza (Å)(C-C)	1-rendű, 1.52422 (f)
Kötés típusa és hossza (Å)(C-H)	1-rendű, 1.11487
Kötés típusa és hossza (Å)(C-H)	1-rendű, 1.11667
Kötés típusa és hossza (Å)(C-H)	1-rendű, 1.1101
Kötés típusa és hossza (Å)(C-C)	1-rendű, 1.52151 (f)
Kötés típusa és hossza (Å)(C-C)	1-rendű, 1.52596 (f)

5. táblázat. C_6H_6 (módosult)' tulajdonságai

Itt is elvégeztem a Lorentz-görbék illesztését, és itt is hasonló problémák merültek fel, mint az előbb, azt leszámítva, hogy itt 3000 körül megjelent még két plusz csúcs, ami az Avogadroban nem:

Lorentz görbék, spektrum készítés: C6H6 molekula deuterizált változat

11. ábra. Spektogramm, C6H6 deuterizált

12. ábra. Spektogramm, C6H6 deuterizált, Avogadro

Összegzésképpen azt mondhatom, hogy a két grafikon nagyon hasonlít egymásra, mind az Avogadroban, mint az én python változatomban, a fő különbség, hogy az Avogadroban nincsenek vonalak a deuterizált változatban 3000 körül, és a sima változatban 1000 körül több vonal figyelhető meg.

2.5. Dipolmomentum

Én a dipolmomentum vizsgálatához a bicyclo[2.1.1]hexane egyszerű változatát választottam, és ahhoz, hogy alátámasszam az irányát, ahhoz az elektronsűrűség ábrázolását választottam, mert szerintem azon látszik a legjobban, hogy ahol a legnagyobb az elektronsűrűség a két egymás melletti C atomnál, onnan indul ki a dipolmomentum vektor. Íme róla a kép:

13. ábra. A dipolmomentumvektor iránya és az elektronsűrűség

Ezek voltak a beállításaim:

14. ábra. Beállítások a dipolmomentumhoz

3. Hivatkozások

- [1]- Molekulamodellezés-Koltai János és Zólyomi Viktor, 2013. április- a labor honlapjáról elérhető
 - [2]-http://www.colby.edu/chemistry/PChem/Hartree.html kJ/mol->eV átváltáshoz
- [3]- $http://atomfizika.elte.hu/atomkvantum/files/atomkvantum_jegyzet.pdf$ az elektronpályák alakjának megállapításához (27-es ábra).