Lecture 12: Lyapunov Theory

goals: intro to Lyapanov theory

- · understand how basic underlying ideas are useful far beyond just stability analysis
- · automate search for Lyapunov functions using SOS programming + SDP

What is Lyapunor theory?

- · used to make conclusions about properties of.

 dynamical systems, without explicitly finding the

 trajectories

 Lyapunor (1890s)
- - · analytical solution to ODE only in a few special cases

- · typical Lyapunor theorem:
 - if there exists a function $V: \mathbb{R}^n \longrightarrow \mathbb{R}$ satisfying some conditions on V and \dot{V}
 - , then the system sutisfies some property (e.g. stability)
- · useful way beyond stability
 - · bounds on performance indeces
 - · rates of convergence or & growth
 - · regions of attraction
 - · robustness to uncertain dynamics, disturbances
 - · bounds on reachable sets
 - · set invariance
 - · safety, collission avoidance, construint satisfaction
 - · input loutput analysis (passivity, dissipativity)
 - · feedback control design
 - · etc.

Stability Detruitions

Consider the dynamical system

$$\dot{\chi}(t) = f(\chi(t)) \qquad (*)$$

- · assume f satisfies standard conditions for existence + uniqueness of solutions (e.g. Lipschitz continuity)
- · a point $X \in \mathbb{R}^n$ is called an equilibrium if f(X) = 0
 - for analysis can assume $\bar{x} = 0$ wlog with a simple coordinate transformation

Definition: An equilibrium point K=0 of (*) is called stable (in the sense of Lyapunor) if for any e > 0, there exists S(e) > 0 such that

Definition An equilibrium point X = 0 of (X) is ealled asymptotically stable if D X is stable

D X is stable

D X = 0 such that

 $\|x|_{t\to\infty}\|<\alpha \implies \lim_{t\to\infty}x|_{t\to\infty}=0$ i.e., $\bar{x}=0$ is locally attractive.

X is called globally asymptotically stable it lim x(t) = 0 for every initial state.

Definition An equilibrium point $\bar{x}=0$ is called exponentially stable if $\exists m \neq 0, \forall \neq 0, \neq 0 \leq t$. $||x|t_0|| < S \implies ||x|t_1|| = me ||x|t_0||$ $||x|t_0|| < S \implies ||x|t_1|| = me$

. analogous defn. for global exponential stability

Definition: An equilibrium $\overline{x}=0$ is called unstable it it is not stable, i.e. if $\exists \ z = 0$ such that $\forall \ S > 0$ with ||x|to||| < S, $\exists \ \text{finite} \ t^* \ge t_0$ such that $||x|t^*||| \ge \varepsilon$

Definition The solution x(t) of (*) is called bounded if $\exists \beta(x_0)$ such that $||x(t)-x(t_0)|| < \beta \ \forall t$

- · useful when (*) has no equilibria, or has limit cycles
- · many variants of stability for different types of systems

Generalized Energy Functions

Definition: A function V: IR" -> IR is called positive definite (PP) it

- · V(Z) Z O YZER
- $V(z) = 0 \iff z = 0$
- · V(z) -> 00 as ||z|| -> 00 (radial unboundedness)

 · => sublevel sets of V are bounded

EX V(z) = zTPz is PD iH Pto

Definition A function $V:\mathbb{R}^n \to \mathbb{R}$ is locally positive definite n if $J=\infty$ such that V is PD on $\{X \mid ||X|| \leq E\}$.

* Consider $\dot{x} = f(x)^{N}$ and a function $V: \mathbb{R}^{N} \longrightarrow \mathbb{R}$.

The derivative of V along the system trajectories is given by

 $\dot{V}(x) = \nabla V(x)^{T} f(x)$

Basic Lyapunov Theorem

- (1) If V is LPP and $V \leq O$ locally, then $\overline{\chi} = 0$ is stable (in the sense of Lyapanov)
- 3 If V is LPD and $-\mathring{V}$ is LPD, then $\overline{x}=0$ is locally asymptotically stable
- 3 If V is PD and $-\dot{V}$ is PD, then $\bar{\chi}=0$ is globally asymptotically stable
- If V is PD and $V(x) \leq -2V(x)$ for some 200, then x=0 is globally exponentially stable

- not necessary to solve $\dot{x} = f(x)$, just need to find a Lyapunov function (satisfying the conditions)
 remarkable!
- · can interpret V as a generalized energy function, that dissipates energy along all system trajectories
 - · e.g. total energy of a mechanical system with friction losses
 - · Lyapanov's brilliant idea: V doesn't have to come from physics!
- · converse also holds: if an equilibrium is stable, then there's a Lyapunov function that proves it

How to find V?

- · classical; choose a form (typically quadratic) and try to verify properties by hand
- · modern: Search for parameters of V using convex optimization!

· When V and f are polynomials, all conditions can be expressed as polynomial nonnegativity, replaced w/ SOS constraints

Ex Suppose we can find a polynomial V sit. V(0) = 0 $V(x) - 2x^{T}x$ is SOS for some 270 $-\nabla V(x)^{T}f(x)$ is SOS

then \$ =0 is stable.

Searching for coefficients of V for a given f is an SDP feasibility problem!

· Essentially identical results hold for discrete time dynamical systems

 $X_{t+1} = f(X_t) \qquad t = 0, 1, \dots,$

if we interpret V as $V(x_{t+1}) - V(x_t)$ = $V(f(x_t)) - V(x_t)$

Ex If V is LPD and $V(f(x)) \leq V(x)$ while locally, then equilibrium $\overline{X} = 0$ of $X_{t+1} = f(x_t)$ is stable $\overline{X} = f(\overline{X})$ for DT systems

Ex Global Asymptotic | Exponential Stability of Linear Systems

· Consider X = Ax and Lyapunov function condidate $V(x) = x^T P x$, $P = P^T$

· V PD <=> Pro

 $= X^T A^T P X + X^T P A X$

= xT (ATP + PA) x

=> - i PD <=> ATP+PAYO

· x = Ax globally asymptotically stable => FPYO such that ATP+PAYO (LMIs in P!)

· (=7 YQ=QT>0, JP=PT>0: ATP+PA+Q=0

· Consider X+1 = Ax+, Lyapunor func. candidate V(x) = xTPx

 $= \chi_t^T \left(A^T P A - P \right) \chi_t$

=>-"v" PD => ATPA-PYO

· Xtil = Axt GAS (=> JPYO: ATPA-PYO (inp!)

· E-7 fQ=QTro, IP=PTro: ATPA-P+Q=0

<=> (/i(A) (< | ∀i=1,..., h

Ex Jet engine compressor model (Moore + Greitzer 1986)

- · compressor stall (disruption of air flow to engine)

 Can cause engine failure, crashes
- dynamic model of pressure related variables $\dot{x} = -y \frac{3}{2}x^2 \frac{1}{2}x^3$ $\dot{y} = 3x y$ nonlinear obe
- Is the origin stable? Can we find $V \le t$. V(o) = 0 $V(x,g) \epsilon \phi(x,g) \epsilon SOS \quad \text{for some } \epsilon > 0, \phi LPD$ $-\nabla V(x,g)^T f(x,g) \epsilon SOS$
- · Using SOSTOOLS/YALMIP to transform to SDP, we obtain Lyapunor function

 $V(x_{1}g) = 4.58 x^{2} - 1.578 xy + 1.78y^{2} - 0.13 x^{3} + 2.52 x^{2}y$ $-0.34 xy^{2} + 0.61 y^{3} + 0.48x^{4} - 0.05 x^{3}y + 0.44 x^{2}y^{2}$ $+ 0.0000019 xy^{3} + 0.09 y^{4}$

globally origin (asymptotically) stable

Ex Robust stability of linear systems

· Consider the system $x_{t+1} = A x_t$, where A is unknown but assumed to lie in a set

$$A \in \bar{A} = conva(A_1, ..., A_m)$$

We'd like to know if the system is robustly stable, i.e. stable for every matrix in \overline{A} .

· No analytical solution!

• Set of stable dynamics matrices non-convex generally, cannot simply check stability of A_i i=1,...,m $E \times A_i = \begin{bmatrix} 0.2 & 0.3 & 0.7 \\ 0.9 & 0 & 0 \end{bmatrix}$, $A_2 = \begin{bmatrix} 0.3 & 0.9 & 0.4 \\ 0.5 & 0 & 0 \\ 0 & 0.9 & 0 \end{bmatrix}$ stable

but \(\frac{3}{5} A_1 + \frac{7}{5} A_2 \quad \text{not} \stable!

· Determining when a system is robustly stable is hard in general, but Lyapunov theory gives an efficiently checkable sufficient condition:

Theorem Let A,, ..., An ER. If FPYO such that

ATPAi - PYO Yi=1,..., m

Huen 0(4) < 1 YAGA = conv (A,,..., An)

then g(A) < 1 $\forall A \in \overline{A} = conv(A_{11}...,A_{m})$ $\leq c.c.$ robust stability Proof: Consider an arbitrary point in conv(A11..., Am)

 $A = \sum_{i} d_{i} A_{i}$, $d_{i} \ge 0$, $\sum_{i} d_{i} = 1$.

Suppose we can find a quadratic Lyapunor function that simultaneously certifies stability of each matrix generating the convex hull, i.e. 3740:

ATPA-PYO ti=1,..., m.

Taking the Schur complement gives

 $\begin{bmatrix} P & A_i \\ A_i & P^{-1} \end{bmatrix} \neq 0 \qquad \forall i = 1, ..., m$

Multiplying by Li 20 and summing gires

TP AT] 70

and via Matherse Schur complement again ATPA-PXO.
Hence A is stable, which implies robust stability.

proved stability for an infinite # of systems!

Ex Sector bounded nonlinearities

e Consider the system

$$\dot{x} = Ax + B\phi(t, Cx)$$

where
$$B \in \mathbb{R}^{n \times m}$$
, $\phi = \begin{bmatrix} \phi_{1}(t_{1}C_{1}^{T}x) \\ \vdots \\ \phi_{m}(t_{1}C_{m}^{T}x) \end{bmatrix}$

· separates linear + nonlinear, time-rarying parts

* Assume that $\phi_i(t,\cdot)$ is sector bounded in sector $[l_i, u_i]$ with $p_i = \phi_i(t, q_i)$

$$(P_i - u_i q_i)(P_i - l_i q_i) \leq 0$$
 $\forall q_i \in \mathbb{R}$ with $P_i = \phi_i(t_i, q_i)$

· sector [-1, 1] => | \$\phi_i(t, e_i) | \le | \q_i \\ \phi_i \end{array}

- . Is the system stable for every possible nonlinearity in the sector bound?
- . Let's look for a quadratic Lyapunor function that establishes global exponential stability $V(x) = x^T P x \qquad P \neq 0$

we want: V(x) = - 2 V(x) +x, for some gren 270

 $\dot{V}(x) + \lambda V(x) = \dot{x}^T P x + x^T P \dot{x} + \lambda x^T P x$ $= (Ax + Bp)^T P x + x^T P (Ax + Bp) + \lambda x^T P x$ $= (Ax + Bp)^T P x + x^T P x$

we want this expression ≤ 0 whenever the nonlinearities satisfy $(P_i - u_i q_i)(P_i - l_i q_i) \leq 0$ i = 1, ..., m $q_i = C_i^T x$

 $Q_{i}(4P) = \begin{bmatrix} x \\ P \end{bmatrix}^{T} \begin{bmatrix} \sigma_{i} C_{i}C_{i}^{T} & - V_{i}C_{i}e_{i}^{T} \end{bmatrix} \begin{bmatrix} x \\ P \end{bmatrix} \leq 0 \quad i = 1,...,m$

where $\sigma_i = l_i u_i$, $J_i = \frac{l_i + u_i}{2}$, $e_i = i th$ standard basis rector

· Now we can use the S-Procedure to get a sufficient condition:

$$V(x) + 2V(x) \leq 0$$
 whenever $Q_i(x,p) \leq 0$ $i=1,...,m$ if $\exists t_1,...,t_m \geq 0$ such that

$$\begin{bmatrix} ATP + PA + \alpha P - \overset{\sim}{\nearrow} \hat{\tau}_i \sigma_i c_i c_i^T & PB + \overset{\sim}{\nearrow} \hat{\tau}_i v_i c_i c_i^T \\ BTP + \overset{\sim}{\nearrow} \hat{\tau}_i v_i e_i c_i^T & - \overset{\sim}{\nearrow} \hat{\tau}_i e_i e_i^T \end{bmatrix} \leq 0$$

- an LMI in variables $P = P^T > 0$, $t_1, ..., t_m$, problem data $A, B, \lambda, l_i, u_i, l_i = 1, ..., m$
- · if we find feasible P, Ti, we certify global exponential stability for a large class of nonlinear, time-varying systems, a very strong result!
- · Historical note: when there's only one nonlinearity, the exact S-Procedure applies, known as the Lur'e problem