

Robotics...

Robots are intelligent machines which can take the place of humans.

This field overlaps many fields like,

- **Electronics**
- Computer science
- Mechanics
- > Artificial intelligence

TOP 10 COUNTRIES BY ROBOT DENSITY

(Industrial robots per 10 000 manufacturing workers)

We will focus on...

- > About Programmable devices
- How to program a microcontroller
- Use of software to design and simulate
- Sensors to get details from the environment
- Handling movements
- Prepare a PCB (Printed Circuit Board)

Microcontrollers

Programmable devices, used in embedded systems

- PIC Peripheral Interface Controller

 Microcontrollers manufactured by Microchip
- AVR Microcontrollers developed by Atmel Corp
 AVR not an acronym
 Alf and Vegard's Risc processor.

(Be concerned about allowed voltages and currents)

Features of a microcontroller

A small computer on a single integrated circuit containing ...

- processor core
 Registers
- memory

RAM, ROM, EPROM, EEPROM, Flash EEPROM

programmable input and output peripherals
Ports

etc.

TRIS REGISTER

- Control pins associated with it
- A separate tris for each port
- Mention whether the pin gives output or receive an input (1=input & 0=output)

Eg: In port C: pin 0-inputs others-outputs SET_TRIS_C(0b00000001)

Port Register

- Give output or check pins
- A separate register for each port If a pin is selected to give outputs

1 = give out 5V

0 = give out 0V

If a pin is selected to receive inputs

1 = pin received 5V

0 = pin received 0V

Keep track of time

Circuit Designing and Simulation

> Traditional method

design \rightarrow build circuit \rightarrow test and repeat the process

> Building the circuit takes time, and cost

Simulation software helps to test without building

Proteus Design Suite

Consists of a set of tools

- Schematic design tool
- Circuit simulator
- > PCB layout tools
- And many advanced tools

we will discuss today

Let's Start Designing...

- > Interface
- Selecting components
- Placing components
- Using generators
- >Using instruments
- ➤ Using probes
- Using terminals

Now your chance...

Design a half-wave rectifier

Now your chance...

Make it a full-wave rectifier

Now your chance...

Add a capacitor

Get a PIC Up and Running

Need to check the following

- Power pin (Vdd/Vcc) should be connected to 5V (or 3.6V in some cases)
- Foround pin (Vss/Vee) should be connected to the ground.
- A crystal oscillator should be connected to CLKO and CLK1 pins and both should be grounded using capacitors (or use a resonator).
- MCLR pin should be high.

PIC programming

Software: CCS C, MPLab, MikroC, etc.

Data types in CCS C

- int1Defines a 1 bit number
- int8Defines an 8 bit number
- int16Defines a 16 bit number
- int32Defines a 32 bit number
- charDefines a 8 bit character
- floatDefines a 32 bit floating point number
- **short**By default the same as int1
- **Int**By default the same as int8
- longBy default the same as int16
- voidIndicates no specific type

Operators

+	Addition Operator
+=	Addition assignment operator, x+=y, is the same as x=x+y
& =	Bitwise and assignment operator, x&=y, is the same as x=x&y
&	Address operator
&	Bitwise and operator
۸=	Bitwise exclusive or assignment operator, x^=y, is the same as x=x^y
٨	Bitwise exclusive or operator
=	Bitwise inclusive or assignment operator, xl=y, is the same as x=xly
1	Bitwise inclusive or operator
?:	Conditional Expression operator
	Decrement
/=	Division assignment operator, x/=y, is the same as x=x/y
/	Division operator
==	Equality
>	Greater than operator
>=	Greater than or equal to operator
++	Increment
*	Indirection operator
<u>!</u> =	Inequality
<<=	Left shift assignment operator, x<<=y, is the same as x=x< <y< td=""></y<>
<	Less than operator
<<	Left Shift operator
<=	Less than or equal to operator
&&	Logical AND operator
!	Logical negation operator
II	Logical OR operator
%=	Modules assignment operator x%=y, is the same as x=x%y
%	Modules operator
=	Multiplication assignment operator, x=y, is the same as x=x*y
*	Multiplication operator
~	One's complement operator
>>=	Right shift assignment, x>>=y, is the same as x=x>>y
>>	Right shift operator
->	Structure Pointer operation
-=	Subtraction assignment operator
-	Subtraction operator
sizeof	Determines size in bytes of operand

Syntax

```
Setting TRIS registers:
                SET_TRIS_A(2);
                SET_TRIS_A( 0x02 );
                SET_TRIS_A(0b00000010)
Give outputs:
     OUTPUT_HIGH(PIN_A1);//for only one pin
     OUTPUT_A(5); // for port at once
Cancel outputs:
     OUTPUT_LOW(PIN_A1) );//for only one pin
     OUTPUT_A(0); // for port at once
```

Syntax

Check input:

Eg: If(INPUT(PIN_B2)==0){ //do something}

Delays:

Delay_ms(100);//delay for 100 milliseconds Delay_us(100);//delay for 100 microseconds

Let's do an example

Example: Blinking LED

Use PIC wizard to create a project

- Select a PIC
- Set Oscillator and clock speed
- Define Input & output pins
- etc... (Interrupts, Timers, Other)

Programming and Simulation

Proteus

Pic 18 Simulator

