Hyper-parameter optimization for strategy calibration

Yacine Debbabi

November 28, 2020

Contents

L	Objectives	1
2	Optimization on finite parameter sample set	1
3	An explanatory model	2
4	A need for robust objective functions	2

1 Objectives

Let us denote by G(X; h) the (random) profit obtained from running a trading strategy with (random) market data X and using the strategy hyperparameter h. We assume $G(X; h) \sim N(\mu(h), \sigma^2(h))$. Our objective is to choose h to maximize a risk-penalized gain, i.e.

$$\hat{h} = \operatorname{argmax}_{h} \frac{\mu(h)}{\sigma(h)^{\beta}},\tag{1}$$

where $\beta \in [0, 1/2]$ is a coefficient controlling the amount of risk penalization. Note that the objective function is not directly observable for a given h. The function value must be estimated by sampling several realizations for X. This yields noisy observations.

Our objective is to discuss (a) how to select an optimum over a finite set of hyperparameter values, and (b) how to efficiently search the parameter space.

2 Optimization on finite parameter sample set

We estimate the objective function for a given hyperparameter value h as $\hat{\mu}_n(h)/\hat{\sigma}_n^{\beta}(h)$, where

$$\hat{\mu}_n(h) = \frac{1}{n} \sum_{i=1}^n G(X_i; h),$$
(2)

$$\hat{\sigma}_n^2(h) = \frac{1}{n-1} \sum_{i=1}^n (G(X_i; h) - \hat{\mu}_n(h))^2, \tag{3}$$

and $X_1, ..., X_n$ are drawn from the distribution of X.

3 An explanatory model

The model assumes a response function follows a binomial distribution, i.e. $f(X;h) \sim B(p(h))$. Say we observe n realizations of that random variable on a grid of hyperparameter values $h_1, ..., h_p$. We can estimate $\hat{p}(h) = \sum_{i=1}^{n} f(X_i; h)$. We try to

$$\hat{h} = \operatorname{argmax}_{h} \mathbb{E}\left[f(X; h)\right] / \operatorname{Var}\left[f(X; h)\right]^{\beta/2}$$
(4)

4 A need for robust objective functions

Optimization problems relying on a data-dependent objective function might be prone to producing spurrious results. Examples of possible issues include:

- Objective function values can be non robust against minor changes in the underlying dataset,
- The objective function might exhibit large discontinuities that are data dependent.

How can we guarantee robustness of the results?

Interesting links:

• Robust statistics