Quiz-3 Oct 21

Due 22 Oct at 23:55 Points 25 Questions 10

Available 21 Oct at 10:00 - 23 Oct at 6:00 2 days Time limit 80 Minutes

Instructions

Quiz-3 consists of 10 MCQ/MAQ questions. The time limit for this quiz is 80 minutes. It covers the contents of first two MPI lectures (i.e., Lec7 and Lec 8 slides).

This quiz was locked 23 Oct at 6:00.

Attempt history

	Attempt	Time	Score
LATEST	Attempt 1	52 minutes	17 out of 25

Score for this quiz: 17 out of 25

Submitted 22 Oct at 22:55

This attempt took 52 minutes.

Since MPI_Recv can use wildcards for source and tag, a receiver process actually can't distinguish between two messages if such wildcards are used.

Which of the following statement(s) is(are) TRUE? In order for a process to find out its rank, it can call MPI_Comm_size function. Correct! A communicator is a collection of processes that can send messages to one another. Correct! The communicator MPI_COMM_WORLD consists of all the processes started when the program execution begins. Only one communicator can exist in an MPI program.

Which of the following statement(s) is(are) TRUE? MPI is useful for an implementation of MIMD/SPMD parallelism. In MPI programs, processes communicate only by shared memory.

Correct!

A single MPI program is usually written that can run with a general number of processes.

Correct!

MPI is a message passing library specification, not a language or compiler specification.

Correct!

It is necessary to specify explicitly which part of the MPI code will run with specific processes.

Question 4

0 / 2 pts

Suppose we have three processes, A, B, and C in a communicator, and A is broadcasting two floats, x and y, within the communicator. Suppose further that on process A, x=5 and y=10. See the following table. When the broadcast is completed on all three processes, which of the following is TRUE regarding the values of x and y?

Time	Process A	Process B	Process C
1	MPI_Bcast &x	Local work	Local work
2	MPI_Bcast &y	Local work	Local work
3	Local work	MPI_Bcast &y	MPI_Bcast &x
4	Local work	MPI_Bcast &x	MPI_Bcast &y

Process
$$A$$
: = 5, y = 10; Process B : x = 5, y = 10; Process C : x = 10, y = 5;

u Answered

Process
$$A$$
: $x=5,y=10$; Process B : $x=5,y=10$; Process C : $x=5,y=10$;

Process A: x=5, y=10; Process B: x=10, y=5; Process C: x=10, y=5;

orrect answer

Process A: x=5,y=10; Process B: x=10,y=5; Process C: x=5,y=10;

Question 5

2 / 2 pts

Which statement is TRUE for the following MPI function?

MPI_Recv(buf,2,MPI_FLOAT,1,MPI_ANY_TAG,MPI_COMM_WORLD,&status);

- The tag of the message is 2.
- The rank of the sending MPI process is not determined.

Correct!

The function call receives a message with any tag from a certain sender.

The function call receives message from any source with any tag.

Question 6

2 / 3 pts

Regarding the MPI collective communication functions, which of the following statement(s) is(are) TRUE?

Correct!

Every MPI collective communication function takes one of its arguments as a communicator that defines the group of processes participating in the corresponding collective operation.

orrect answer

Correct!

A collective communication function must be called by all the processes in the communicator to participate in the collective operation.

MPI collective communication functions are non-blocking.

Question 7

0 / 2 pts

Given the following code segment, which of the following statements is TRUE?

```
int a[10],b[10],myrank;

MPI_Status status;

MPI_Request requests[2];
.....

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if(my_rank == 0){

    MPI_Send(a,10,MPI_INT,1,1,MPI_COMM_WORLD);

    MPI_Send(b,10,MPI_INT,1,2,MPI_COMM_WORLD);
}

else if(myrank==1){

    MPI_Irecv(b,10,MPI_INT,0,2,MPI_COMM_WORLD,&request[0]);

    MPI_Irecv(a,10,MPI_INT,0,1,MPI_COMM_WORLD,&request[1]);
}
```

The two MPI_Send functions can finish in any order. For example, the second MPI_Send function can finish before the first one does.

There is an error in the code, as there are no matching receive functions to MPI_Send functions. orrect answer

The two MPI_Irecv functions can finish in any order. For example, the second MPI_Irecv function can finish before the first one does.

u Answered

The code execution could cause a deadlock.

3 / 3 pts **Question 9**

Correct!

Upon execution of the following code segment using 4 MPI processes, which of the following statements is TRUE after executing the printf
statement?

```
#define SIZE 4
......
int send_buf[SIZE] = {0, 1, 2, 3};
int recv_buf[SIZE] = {0};
int my_rank;
.....

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Scan(send_buf, recv_buf, 3, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
printf("[MPI process %d] recv_buf[%d] = %d\n", my_rank, my_rank,
recv_buf[my_rank]);

Process with rank 0 output: [MPI process 0] recv_buf[0] = 2

Process with rank 3 output: [MPI process 3] recv_buf[3] = 12

Process with rank 1 output: [MPI process 1] recv_buf[1] = 3

Process with rank 2 output: [MPI process 2] recv_buf[2] = 6
```

Question 10 2 / 2 pts

Assume an MPI program has N processes in its <code>MPI_COMM_WORLD</code> communicator, and each of these N processes stores a row of an $N \times N$ matrix, \mathbf{A} , in a vector \mathbf{a} . That is process 0 stores row 0 of \mathbf{A} in vector \mathbf{a} , process 1 stores row 1 of \mathbf{A} in vector \mathbf{a} , and so on. Now, we want to set up a vector, \mathbf{b} , on each process that stores one of the columns of \mathbf{A} , that is, process 0 stores column 0 of \mathbf{A} in vector \mathbf{b} , process 1 stores column 1 of \mathbf{A} in vector \mathbf{b} , and so on. Which of the following operations would be able to achieve this in an efficient manner?

Quiz score: 17 out of 25