Model-Based Reinforcement Learning

CMPT 729 G100

Jason Peng

Overview

- Model-Based RL
- DYNA
- Model Representations
- Uncertainty Estimation
- MPC

Taxonomy of RL Algorithms

- Policy-Based Methods
- Value-Based Methods
- Actor-Critic Methods
- Model-Based Methods

Reinforcement Learning

RL Algorithms

Sample Complexity

Simulation

Learning Agile Robotic Locomotion Skills by Imitating Animals [Peng et al. 2020]

Sample Complexity

Simulation

Learning Agile Robotic Locomotion Skills by Imitating Animals [Peng et al. 2020]

Sample Complexity

Simulation Real World

Learning Agile Robotic Locomotion Skills by Imitating Animals [Peng et al. 2020]

Sim-to-Real

Simulation (Low-Fidelity)

Simulation (High-Fidelity)

Real World

Reinforcement Learning for Robust Parameterized Locomotion Control of Bipedal Robots [Li et al. 2021]

Dynamics Model

Why Learn a Dynamics Model?

Simple Dynamics

Complex Dynamics

Dynamics Model

• Learn a dynamics model:

$$f(\mathbf{s'}|\mathbf{s}, \mathbf{a}) \approx p(\mathbf{s'}|\mathbf{s}, \mathbf{a})$$

Learning Dynamics Model

• Collect data with a base policy π_0

- Dataset: $\mathcal{D} = \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s'})\}$
- Fit a dynamics model via supervised learning

$$\underset{f}{\operatorname{arg max}} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} \left[\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a}) \right]$$

Model-Based RL

• Collect data with a base policy π_0

- Dataset: $\mathcal{D} = \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s'})\}$
- Fit a dynamics model via supervised learning

$$\underset{f}{\operatorname{arg max}} \ \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s'}) \sim \mathcal{D}} \left[\log f(\mathbf{s'} | \mathbf{s}, \mathbf{a}) \right]$$

• Train new policy π by simulating with $f(\mathbf{s'}|\mathbf{s},\mathbf{a})$

Distribution Shift

• Data distribution is different from the policy's distribution

$$\mathcal{D} \sim p(\mathbf{s}, \mathbf{a} | \pi_0) \neq p(\mathbf{s}, \mathbf{a} | \pi)$$

- Model $f(\mathbf{s'}|\mathbf{s}, \mathbf{a})$ trained on \mathcal{D}
 - Low error under $p(\mathbf{s}, \mathbf{a} | \pi_0)$
 - High error under $p(\mathbf{s}, \mathbf{a} | \pi)$
- Can we make

$$p(\mathbf{s}, \mathbf{a} | \pi_0) = p(\mathbf{s}, \mathbf{a} | \pi)$$
?

Model-Based RL

• Collect data with a base policy π_0

- Dataset: $\mathcal{D} = \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s'})\}$
- Fit a dynamics model via supervised learning

$$\underset{f}{\operatorname{arg max}} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} \left[\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a}) \right]$$

ullet Train new policy π by simulating with f

ALGORITHM: DYNA

- 1: $\pi^0 \leftarrow \text{initialize policy}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $\pi^k(\mathbf{a}|\mathbf{s})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$
- 6: Fit dynamics model: $f = \arg \max_{f} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} [\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a})]$
- 7: $\pi^{k+1} \leftarrow \text{train policy by simulating rollouts with } f(\mathbf{s}'|\mathbf{s},\mathbf{a})$
- 8: end for
- 9: return π^n

ALGORITHM: DYNA

- 1: $\pi^0 \leftarrow \text{initialize policy}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $\pi^k(\mathbf{a}|\mathbf{s})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$
- 6: Fit dynamics model: $f = \arg \max_{f} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} [\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a})]$
- 7: $\pi^{k+1} \leftarrow \text{train policy by simulating rollouts with } f(\mathbf{s}'|\mathbf{s},\mathbf{a})$
- 8: end for
- 9: return π^n

ALGORITHM: DYNA

- 1: $\pi^0 \leftarrow \text{initialize policy}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $\pi^k(\mathbf{a}|\mathbf{s})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$
- 6: Fit dynamics model: $f = \arg \max_{f} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} [\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a})]$
- 7: $\pi^{k+1} \leftarrow \text{train policy by simulating rollouts with } f(\mathbf{s}'|\mathbf{s},\mathbf{a})$
- 8: end for
- 9: return π^n

ALGORITHM: DYNA

- 1: $\pi^0 \leftarrow \text{initialize policy}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $\pi^k(\mathbf{a}|\mathbf{s})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$
- 6: Fit dynamics model: $f = \arg \max_{f} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} [\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a})]$
- 7: $\pi^{k+1} \leftarrow \text{train policy by simulating rollouts with } f(\mathbf{s}'|\mathbf{s}, \mathbf{a})$
- 8: end for
- 9: return π^n

ALGORITHM: DYNA

- 1: $\pi^0 \leftarrow \text{initialize policy}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $\pi^k(\mathbf{a}|\mathbf{s})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$
- 6: Fit dynamics model: $f = \arg \max_{f} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} [\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a})]$
- 7: $\pi^{k+1} \leftarrow \text{train policy by simulating rollouts with } f(\mathbf{s}'|\mathbf{s},\mathbf{a})$
- 8: end for
- 9: return π^n

ALGORITHM: DYNA

- 1: $\pi^0 \leftarrow \text{initialize policy}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $\pi^k(\mathbf{a}|\mathbf{s})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$
- 6: Fit dynamics model: $f = \arg \max_{f} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} [\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a})]$
- 7: $\pi^{k+1} \leftarrow \text{train policy by simulating rollouts with } f(\mathbf{s}'|\mathbf{s},\mathbf{a})$
- 8: end for
- 9: return π^n

ALGORITHM: DYNA

- 1: $\pi^0 \leftarrow \text{initialize policy}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $\pi^k(\mathbf{a}|\mathbf{s})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$
- 6: Fit dynamics model: $f = \arg \max_{f} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} [\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a})]$
- 7: $\pi^{k+1} \leftarrow \text{train policy by simulating rollouts with } f(\mathbf{s}'|\mathbf{s}, \mathbf{a})$
- 8: end for
- 9: return π^n

ALGORITHM: DYNA

- 1: $\pi^0 \leftarrow \text{initialize policy}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $\pi^k(\mathbf{a}|\mathbf{s})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$
- 6: Fit dynamics model: $f = \arg \max_{f} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} [\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a})]$
- 7: $\pi^{k+1} \leftarrow \text{train policy by simulating rollouts with } f(\mathbf{s}'|\mathbf{s},\mathbf{a})$
- 8: end for
- 9: return π^n

ALGORITHM: DYNA

- 1: $\pi^0 \leftarrow \text{initialize policy}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $\pi^k(\mathbf{a}|\mathbf{s})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$
- 6: Fit dynamics model: $f = \arg \max_{f} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} [\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a})]$
- 7: $\pi^{k+1} \leftarrow \text{train policy by simulating rollouts with } f(\mathbf{s}'|\mathbf{s}, \mathbf{a})$
- 8: end for

use any RL algorithm

(e.g. policy gradient, Q-learning, SAC, etc.)

9: return π^n

ALGORITHM: DYNA

- 1: $\pi^0 \leftarrow \text{initialize policy}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $\pi^k(\mathbf{a}|\mathbf{s})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$
- 6: Fit dynamics model: $f = \arg \max_{f} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} [\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a})]$
- 7: $\pi^{k+1} \leftarrow \text{train policy by simulating rollouts with } f(\mathbf{s}'|\mathbf{s},\mathbf{a})$
- 8: end for
- 9: return π^n

keep data from

all iterations

Model Representation

- How do we represent $f(\mathbf{s'}|\mathbf{s}, \mathbf{a})$?
- MDP with small discrete states and actions → lookup table

Deterministic Models

• How do we represent $f(\mathbf{s'}|\mathbf{s}, \mathbf{a})$?

$$\underset{f}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} \left[||\mathbf{s}' - f(\mathbf{s}, \mathbf{a})||^2 \right]$$

What if the dynamics are stochastic?

$$\mathbf{s}$$

Stochastic Models

• How do we represent $f(\mathbf{s'}|\mathbf{s}, \mathbf{a})$?

$$\underset{f}{\operatorname{arg max}} \ \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} \left[\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a}) \right]$$

Stochastic Models

• How do we represent $f(\mathbf{s'}|\mathbf{s}, \mathbf{a})$?

$$\underset{f}{\operatorname{arg max}} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} \left[\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a}) \right]$$

Conditional Generative Model

- Variational Autoencoders (VAEs)
- Generative Adversarial Networks (GANs)
- Flow Models
- Diffusion Models
- Etc.

Reward Model

- If reward function is unknown, augment model to predict both states and rewards
- For most tasks, reward function is available/specified by a human

dynamics model

$$f(\mathbf{s'}|\mathbf{s},\mathbf{a})$$

reward model

$$h(r|\mathbf{s}, \mathbf{a}, \mathbf{s}')$$

ALGORITHM: DYNA

- 1: $\pi^0 \leftarrow \text{initialize policy}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $\pi^k(\mathbf{a}|\mathbf{s})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$
- 6: Fit dynamics model: $f = \arg \max_{f} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} [\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a})]$
- 7: $\pi^{k+1} \leftarrow \text{train policy by simulating rollouts with } f(\mathbf{s}'|\mathbf{s}, \mathbf{a})$
- 8: end for

9: return π^n

generate trajectories with model

Dyna, an Integrated Architecture for Learning, Planning, and Reacting [Sutton 1991]

Drift

- Same action sequence in the real env and the model can lead to very different trajectories
- Autoregressive model → compounding error

Drift

Model-Based RL

(a) Example task domains.

(b) NAF and DDPG on multi-target reacher.

(c) NAF and DDPG on peg insertion.

DYNA

ALGORITHM: DYNA

- 1: $\pi^0 \leftarrow \text{initialize policy}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $\pi^k(\mathbf{a}|\mathbf{s})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$
- 6: Fit dynamics model: $f = \arg \max_{f} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} [\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a})]$
- 7: $\pi^{k+1} \leftarrow \text{train policy by simulating rollouts with } f(\mathbf{s}'|\mathbf{s}, \mathbf{a})$
- 8: end for

use any RL algorithm

9: return π^n (e.g. policy gradient, Q-learning, SAC, etc.)

Dyna, an Integrated Architecture for Learning, Planning, and Reacting [Sutton 1991]

use any RL algorithm (e.g. policy gradient, Q-learning, SAC, etc.)

Compute gradients using autodiff and solve with gradient ascent

SuperTrack: Motion Tracking for Physically Simulated Characters Using Supervised Learning [Fussell et al. 2021]

A1 Quadruped Walking

UR5 Multi-Object Visual Pick Place

XArm Visual Pick and Place

Sphero Ollie Visual Navigation

DayDreamer: World Models for Physical Robot Learning [Wu et al. 2022]

DayDreamer: World Models for Physical Robot Learning [Wu et al. 2022]

DayDreamer: World Models for Physical Robot Learning [Wu et al. 2022]

Model Exploitation

ALGORITHM: DYNA

- 1: $\pi^0 \leftarrow \text{initialize policy}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $\pi^k(\mathbf{a}|\mathbf{s})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$
- 6: Fit dynamics model: $f = \arg \max_{f} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} [\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a})]$

Policy can exploit errors in model

- 7: $\pi^{k+1} \leftarrow \text{train policy by simulating rollouts with } f(\mathbf{s}'|\mathbf{s}, \mathbf{a})$
- 8: end for
- 9: return π^n

Aleatoric (Statistical Uncertainty)

Epistemic (Model Uncertainty)

Aleatoric (Statistical Uncertainty)

Aleatoric (Statistical Uncertainty)

Epistemic (Model Uncertainty)

Epistemic

Aleatoric (Statistical Uncertainty)

Epistemic (Model Uncertainty)

Policy can exploit model uncertainty

Can we estimate the model uncertainty?

- Can we estimate the model uncertainty?
- Bayesian inference:

What is the likelihood of a function given the data

- Can we estimate the model uncertainty?
- Bayesian inference:

What is the likelihood of a function given the data

- Can we estimate the model uncertainty?
- Bayesian inference:

What is the likelihood of a function given the data

High Likelihood

- Can we estimate the model uncertainty?
- Bayesian inference:

$$p(f|\mathcal{D}) = \frac{p(f,\mathcal{D})}{p(\mathcal{D})}$$

- Can we estimate the model uncertainty?
- Bayesian inference:

$$p(f|\mathcal{D}) = \frac{p(f, \mathcal{D})}{p(\mathcal{D})}$$
$$= \frac{p(\mathcal{D}|f)p(f)}{p(\mathcal{D})}$$

Supervised Learning

$$\underset{f}{\operatorname{arg max}} \log p(f|\mathcal{D}) = \underset{f}{\operatorname{arg max}} \log \frac{p(\mathcal{D}|f)p(f)}{p(\mathcal{D})}$$

Supervised Learning

$$\arg\max_{f} \frac{\log p(f|\mathcal{D}) = \arg\max_{f} \ \log \frac{p(\mathcal{D}|f)p(f)}{p(\mathcal{D})}}{= \arg\max_{f} \ \log p(\mathcal{D}|f) + \log p(f) - \log p(\mathcal{D})}$$
 Posterior Likelihood Prior Constant

Supervised Learning

$$\arg\max_{f} \ \log p(f|\mathcal{D}) = \arg\max_{f} \ \log \frac{p(\mathcal{D}|f)p(f)}{p(\mathcal{D})}$$

$$= \arg\max_{f} \ \log p(\mathcal{D}|f) + \log p(f) - \log p(\mathcal{D})$$
Likelihood

Maximum Likelihood

$$\underset{f}{\operatorname{arg max}} \ \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} \left[\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a}) \right]$$

Supervised Learning

Supervised Learning

Uncertainty Estimation

- Maximum likelihood only gives a point-wise approximation of the posterior
- To estimate model uncertainty, need to approximate the full posterior

• Approximate posterior with ensemble

$$\mathcal{D} \square$$
 MLE \square

Ensemble

- Approximate posterior with ensemble
- Models should be consistent under the data distribution

Ensemble

- Approximate posterior with ensemble
- Models should be consistent under the data distribution
- Models will hopefully disagree on out-of-distribution samples

How to train ensemble?

Bootstrapping

- Split dataset into subsets
- Train a separate model for each subset

How to train ensemble?

Bootstrapping

- Split dataset into subsets
- Train a separate model for each subset

In practice:

- Initialize models with different random parameters
- Train all models using the same dataset
- Stochasticity from SGD leads to diverse models

Sample random model for every transition

- Sample random model for every transition
- Penalize policy for model disagreement

$$r(\mathbf{s}, \mathbf{a}, \mathbf{s'})$$

- Sample random model for every transition
- Penalize policy for model disagreement

$$r_p(\mathbf{s}, \mathbf{a}, \mathbf{s'}) = \begin{cases} -\kappa & \text{if } d(\mathbf{s}, \mathbf{a}) > \alpha \\ r(\mathbf{s}, \mathbf{a}, \mathbf{s'}) & \text{otherwise} \end{cases}$$

- Sample random model for every transition
- Penalize policy for model disagreement

$$r_p(\mathbf{s}, \mathbf{a}, \mathbf{s'}) = \begin{cases} -\kappa & \text{if } d(\mathbf{s}, \mathbf{a}) > \alpha \\ r(\mathbf{s}, \mathbf{a}, \mathbf{s'}) & \text{otherwise} \end{cases}$$

- Sample random model for every transition
- Penalize policy for model disagreement

$$r_p(\mathbf{s}, \mathbf{a}, \mathbf{s'}) = \begin{cases} -\kappa & \text{if } d(\mathbf{s}, \mathbf{a}) > \alpha \\ r(\mathbf{s}, \mathbf{a}, \mathbf{s'}) & \text{otherwise} \end{cases}$$

- Sample random model for every transition
- Penalize policy for model disagreement

$$r_p(\mathbf{s}, \mathbf{a}, \mathbf{s'}) = \begin{cases} -\kappa & \text{if } d(\mathbf{s}, \mathbf{a}) > \alpha \\ r(\mathbf{s}, \mathbf{a}, \mathbf{s'}) & \text{otherwise} \end{cases}$$

Model disagreement:

$$d(\mathbf{s}, \mathbf{a}) = \max_{i,j} D\left(f_i(\cdot|\mathbf{s}, \mathbf{a}), f_j(\cdot|\mathbf{s}, \mathbf{a})\right)$$

- Sample random model for every transition
- Penalize policy for model disagreement
- Termination based on disagreement

Uncertainty Estimation

- Ensembles
- Bayesian Neural Networks
- Dropout
- Normalized Maximum Likelihood
- Test Time Augmentation
- Etc...

Model-Predictive Control

Model-Based Policy Learning

Q-Learning

Use dynamics model to predict expected return of every action

$$\underset{\mathbf{a}_{0:k}}{\operatorname{arg max}} \ \mathbb{E}_{\tau \sim f(\tau | \mathbf{s}_0 = \mathbf{s}, \mathbf{a}_{0:k})} \left[R(\tau) \right]$$

Use dynamics model to predict expected return of every action

$$\underset{\mathbf{a}_{0:k}}{\operatorname{arg max}} \ \mathbb{E}_{\tau \sim f(\tau \mid \mathbf{s}_0 = \mathbf{s}, \mathbf{a}_{0:k})} \left[R(\tau) \right]$$

• Apply optimal action sequence $\mathbf{a}^*_{0:k}$ in real environment

$$\mathbf{s}_0$$
 \mathbf{a}_0 \mathbf{s}_1 \mathbf{a}_1 \mathbf{s}_2 \mathbf{s}_k \mathbf{a}_k \mathbf{s}_{k+1}

Use dynamics model to predict expected return of every action

$$\underset{\mathbf{a}_{0:k}}{\operatorname{arg max}} \ \mathbb{E}_{\tau \sim f(\tau | \mathbf{s}_0 = \mathbf{s}, \mathbf{a}_{0:k})} \left[R(\tau) \right]$$

- Apply optimal action sequence $\mathbf{a}^*_{0:k}$ in real environment
- Model Predictive Control (MPC)
 - Apply only the first action in the real environment
 - Replan every timestep

How to solve optimization problem every timestep?

$$\underset{\mathbf{a}_{0:k}}{\operatorname{arg max}} \ \mathbb{E}_{\tau \sim f(\tau | \mathbf{s}_0 = \mathbf{s}, \mathbf{a}_{0:k})} \left[R(\tau) \right]$$

- Black-Box Optimization
 - CEM, random shooting, etc.
- If differentiable model and reward function, use gradient ascent
- Can incorporate other model-based RL improvements
 - Uncertainty estimation, ensembles, etc.

Learning Latent Dynamics for Planning from Pixels [Hafner et al. 2019]

Deep Dynamics Models for Learning Dexterous Manipulation [Nagabandi et al. 2019]

Deep Dynamics Models for Learning Dexterous Manipulation [Nagabandi et al. 2019]

Model-Based RL

Policy Learning

- Learn model + policy
- Runtime policy inference is fast
- Policy is task-specific
- Typically better asymptotic performance

Online Planning

- Learn model
- Runtime planning can be slow
- Model can be task-agnostic
- May need many samples during online planning to find good plans

Summary

- Model-Based RL
- DYNA
- Model Representations
- Uncertainty Estimation
- MPC