

independent stochastic processes

 ${\bf Canonical\ name} \quad {\bf Independent Stochastic Processes}$

Date of creation 2013-03-22 15:24:36 Last modified on 2013-03-22 15:24:36

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771) Entry type Definition Classification msc 60G07 Two stochastic processes $\{X(t) \mid t \in T\}$ and $\{Y(t) \mid t \in T\}$ are said to be if for any positive integer $n < \infty$, and any sequence $t_1, \ldots, t_n \in T$, the random vectors $\boldsymbol{X} := (X(t_1), \ldots, X(t_n))$ and $\boldsymbol{Y} := (Y(t_1), \ldots, Y(t_n))$ are independent. This means, for any two n-dimensional Borel sets $A, B \subseteq \mathbb{R}^n$, we have

 $P\Big[\boldsymbol{X}^{-1}(A)\cap\boldsymbol{Y}^{-1}(B)\Big]=P\Big[\boldsymbol{X}^{-1}(A)\Big]P\Big[\boldsymbol{Y}^{-1}(B)\Big].$