DIGITAL LOGIC EXAMPLE PROBLEMS

Α	В	С	0	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

$$O = f(A, B, C)$$

How do I express this truth table?

$$A'B'C + A'BC' + AB'C' + AB'C + ABC' + ABC = O$$

This is the sum of products

Α	В	С	0	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

$$O = f(A, B, C)$$

An alternative way is to express the product of sums.

For the rows where the output is zero, we take the sum of the inverse of the inputs.

$$(A+B+C)*(A+B'+C') = O$$

The two are equivalent:

$$A'B'C + A'BC' + AB'C' + AB'C + ABC' + ABC = (A+B+C)*(A+B'+C') = O$$

Just for fun

```
The two are equivalent:

A'B'C + A'BC' + AB'C' + AB'C' + ABC' + ABC' + ABC = (A+B+C)*(A+B'+C') = O

A'B'C + A'BC' + AB'C' + AB'C + ABC' + ABC = (A'+A)(B'C+BC')+A(BC+B'C'+B'C+BC') = B'C + BC' + A

(A+B+C)*(A+B'+C') = A+AB'+AC' + AB+BC' + AC+B'C

= A+A(B'+B)+A(C'+C) + BC' + B'C = A+B'C+BC'
```

Multiplexer circuit

- 1. Selects one data channel (from many input channels)
- 2. Maps the selected channel to the output channel

Sum-of-Products circuit

D₁ ... D₄ : Data channels
A, B : Control lines
F : Output channel

If we want a multiplexer that chooses one of eight possible outputs, how many control signal bits do we need?

If we want a multiplexer that chooses one of three possible outputs, how many control signal bits do we need?

Decoder circuit

1. Given *n* control lines

2. Select one of 2^n outputs to activate

Simple AND-gate circuit

 $D_1 \dots D_8$: Output channels

A, B, C : Control lines

Note: n control lines, 2^n outputs

Laws of Boolean Logic

Regulate circuit function Identity

Law $1 \land A = A, A \in \{0,1\}$

Example: Select D_2 : A,C=0; B=1

How many control signal bits are needed to choose one of 32 possible outputs

What should the control signal bits be to choose output 30

Majority Function

→ Returns 1 if a majority of inputs are high (=1)

Formula: M(A,B,C) = A'BC + AB'C + ABC' + ABC

Truth Table

Α	В	С	М
0	0	O	O
0	O	7	Q
0	1	0	0
Q	7	1	1
1	O	0	Q
1	0	1	1
1	1	0	1
1	1	1	1

⇒ SOP Circuit:

[Note: $\overline{A} = NOT(A)$]

Application: In the Space Shuttle, 3 redundant circuits each compute the same function f. If a MAJORITY of circuit outputs agree (=1), then the 1-valued result is assumed to be correct.

Comparator circuit

1. Given two n-bit vectors A and B

A B Out		Output	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

2. Output 1 if A = B, or 0 otherwise

Laws of Boolean Logic Example: Comparator for Bit ioutputs 0 if $A_i = B_i$

NOR S-R Latch

What is this used for?

Memory cell.

How does it work

The output becomes one when S is asserted. It remains at 1 after S is deasserted and until R is asserted

An S-R latch begins in the state on the left, with Q = 0 and Q'=1

What is the value of Q when S is set to 1
What is the value of Q when S is subsequently set to 0

What is the value of Q when R is subsequently set to 1 What is the value of Q when R is subsequently set to 0