BOAT PRICE PREDICTION

This project focuses on predicting boat prices using various machine learning algorithms. The dataset was sourced from Kaggle and involves multiple steps, including data extraction, transformation, loading (ETL), cleaning, exploratory data analysis (EDA), and model building. The primary objective is to develop and evaluate regression models to accurately predict boat prices based on various features.

1.0 IMPORTING THE LIBRARIES

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import cufflinks as cf
from plotly import _version__
from plotly.offline import download_plotlyjs, init_notebook_mode,plot, iplot

%matplotlib inline

C:\ProgramData\Anaconda3\lib\site-packages\scipy\_init__.py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.0 is required for warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"

# For Notebooks connections
init_notebook_mode(connected=True)

# For offline use
#cf.go_offline()</pre>
```

2.0 DATA EXTRACTION, TRANSFORM AND LOAD (ETL) AND EXPLORATORY

2.1 LOAD, TRANSFORM THE DATASET

- Data extracted manually form Kaggle
- Transform and Load by Pandas(row and columns)
- The url (https://www.kaggle.com/datasets/mexwell/boat-price-prediction/data?select=Boats_No_Price_dataset.csv)

df = pd.read_csv('Boats_Cleaned_dataset.csv')
df.head()

₹		Unnamed:	id	type	boatClass	make	model	year	condition	length_
	0	1	7252689	power	power-center	Aquasport	210 CC	1992	used	2
	1	3	7228300	power	power- sportcruiser	Formula	400 Super Sport	2018	used	4
	2	5	7271336	power	power-deck	Bayliner	Element 180	2020	new	1
	3	6	7222952	power	power- expresscruiser	Regal	32 Express	2015	used	3
	4	8	6824832	power	power-aft	Carver	440 Aft Cabin Motor Yacht	1994	used	4

5 rows × 26 columns

✓ 2.2 DATA EXPLORATORY

df.info()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 18903 entries, 0 to 18902
    Data columns (total 26 columns):
                        Non-Null Count Dtype
     0
                        18903 non-null
         Unnamed: 0
                                       int64
                        18903 non-null int64
     1
         id
     2
                        18903 non-null
         type
                                       obiect
     3
         boatClass
                        18903 non-null
                                       object
     4
         make
                        18903 non-null
                                       object
     5
         model
                        18868 non-null
                                       object
         year
                        18903 non-null
                                       int64
         condition
                        18903 non-null
                                       object
         length_ft
                        18903 non-null
                                       float64
         beam_ft
                        12399 non-null
                                       float64
        dryWeight_lb
                        7094 non-null
                                       float64
        hullMaterial
                        18903 non-null
     11
                                       obiect
                        15951 non-null
        fuelType
                                       object
     12
                        18903 non-null int64
        numEngines
     13
     14
        totalHP
                        18055 non-null
                                       float64
     15
        maxEngineYear
                        2205 non-null
                                       float64
     16
        minEngineYear
                        2174 non-null
                                       float64
     17
         engineCategory 8410 non-null
                                       object
     18
                        18903 non-null float64
        sellerId
                        18903 non-null int64
        city
                        18847 non-null
                                       object
     21 state
                        18903 non-null object
                        10215 non-null
     22 zip
                                       object
     23 created date
                        18903 non-null
                                       object
                        18903 non-null
     24 created_month
                                       int64
     25 created_year
                        18903 non-null int64
    dtypes: float64(7), int64(7), object(12)
    memory usage: 3.7+ MB
```

```
plt.figure(figsize=(12,5))
sns.heatmap(df.isnull(), yticklabels=False, cbar =True, cmap='viridis')
```


→ 3.0 DATA CLEANING AND PROCESSING

→ >> 3.1 DATA CLEANING

• DROP 'Unnamed: 0', 'id', 'created_date', 'created_month' 'sellerId', 'year' AS IS OF NO USE

```
df.drop(['Unnamed: 0', 'id', 'created_date','created_month'], axis=1, inplace=True)
#df.drop(['Unnamed: 0', 'id', 'created_date','created_month', 'year', 'sellerId'], axis=1, inplace=True)

df.head()
```


df.info()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 18903 entries, 0 to 18902
    Data columns (total 22 columns):
                        Non-Null Count Dtype
    #
        Column
                        18903 non-null
     0
                                        object
     1
         boatClass
                        18903 non-null
                                        object
     2
         make
                        18903 non-null
                                        object
     3
         model
                        18868 non-null
                                        object
                        18903 non-null int64
        year
         condition
                        18903 non-null
                                        object
                        18903 non-null
         length_ft
                                        float64
                        12399 non-null
         beam ft
                                        float64
     8
         dryWeight_lb
                        7094 non-null
                                        float64
         hullMaterial
                        18903 non-null
                                        object
     10
        fuelType
                        15951 non-null
                                        object
     11
        numEngines
                        18903 non-null
                                        int64
     12
        totalHP
                        18055 non-null
                                        float64
     13
         {\tt maxEngineYear}
                        2205 non-null
                                        float64
        minEngineYear
                        2174 non-null
                                        float64
        engineCategory
                        8410 non-null
                                        object
                        18903 non-null
     16
        price
                                        float64
                        18903 non-null int64
     17
        sellerId
                        18847 non-null
     18
        city
                                        object
                        18903 non-null
                                        object
     19
        state
     20
        zip
                        10215 non-null
                                        object
     21 created_year
                        18903 non-null int64
    dtypes: float64(7), int64(4), object(11)
    memory usage: 3.2+ MB
```

→ Display all Column with null value

```
cols_with_null = []
for col in df.keys():
    if df[col].isnull().any():
        cols_with_null.append(col)

df[cols_with_null]
```

	model	beam_ft	dryWeight_lb	fuelType	totalHP	maxEngineYear	minEngineYea
0	210 CC	8.50	3000.0	gasoline	150.0	NaN	Nat
1	400 Super Sport	11.00	16100.0	diesel	800.0	2018.0	2018.
2	Element 180	7.42	2000.0	gasoline	75.0	2019.0	2019.
3	32 Express	10.33	12650.0	gasoline	600.0	NaN	Nat
4	440 Aft Cabin Motor Yacht	15.00	32000.0	diesel	700.0	1994.0	1994.
18898	250 Play	8.50	NaN	gasoline	NaN	NaN	Nat
							>

plt.figure(figsize=(12,5))
sns.heatmap(df[cols_with_null].isnull(), yticklabels=False, cbar =True, cmap='viridis')

→ >> 3.2 ADVANCE DATA CLEANING

- FOR OBJECT DATA TYPE
 - o DROP COLUMN WITH ATMOST 100 Unique Value
 - $\circ~$ IF MISSING VALUE IS LESS THAN 3000, REMOVE THE MISSING VALUE ELSE DROP THE COLUMN
- FOR NUMERIC DATA TYPE
 - $\circ~$ IF MISSING VALUE IS UP TO 1000 IN A NUMERIC TYPE COLUMN, DROP THE COLUMN
 - $\circ~$ REMOVE ROW WITH MISSING VALUE FOR NUMERIC TYPE

→ >>>>3.2.1 FOR OBJECT DATA TYPE

>>>>> 3.2.1.1 DROP COLUMN WITH ATMOST 100 Unique Value

```
# CHECK FOR COLUMN OBJECT DT

df_to_drop_col_objType = []
print()
print('+ DROP COLUMN WITH 99 || > unique Value: i.e')
for col in df:
    if df[col].dtypes == 'object' and len(df[col].unique()) >99:
        df_to_drop_col_objType.append(col)

for col in df_to_drop_col_objType:
    print(col, end=' --> consists ')
    print(f'`{len(df[col].unique())}` unique value')
```

```
model --> consists `7900` unique value city --> consists `1150` unique value zip --> consists `1047` unique value
```

7899

→ make
 model

```
plt.figure(figsize=(12,5))

print(df[df_to_drop_col_objType].nunique())
sns.barplot(x=df_to_drop_col_objType, y=df[df_to_drop_col_objType].nunique().values)
```

```
city
          1149
          1046
zip
dtype: int64
<AxesSubplot:>
8000
 7000
6000
5000
 4000
 3000
2000
1000
   0
               make
                                       model
```

```
print('DROP ', df_to_drop_col_objType)
df_clean = df.drop(df_to_drop_col_objType, axis=1)
df_clean
```

→ DR0	OP ['make	e', 'mod	el', 'c	ity', '	zip']
-------	-----------	----------	---------	---------	-------

	type	boatClass	year	condition	length_ft	beam_ft	dryWeight_lb	hullMa [.]
0	power	power-center	1992	used	21.00	8.50	3000.0	fib
1	power	power- sportcruiser	2018	used	40.00	11.00	16100.0	fib
2	power	power-deck	2020	new	18.00	7.42	2000.0	fib
3	power	power- expresscruiser	2015	used	32.00	10.33	12650.0	fib
4	power	power-aft	1994	used	44.00	15.00	32000.0	fib
18898	power	power- pontoon	2013	used	25.00	8.50	NaN	alu
18899	power	power- runabout	2013	used	19.33	8.00	2795.0	fib
18900	power	power-bay	2019	new	22.00	7.67	NaN	fib
18901	power	power- pontoon	2004	used	25.00	8.50	NaN	alu
18902	power	power-cruiser	2002	new	26.58	9.42	6350.0	fib

18903 rows × 18 columns

Start coding or $\underline{\text{generate}}$ with AI.

✓ >>>>> 3.2.1.2 IF MISSING VALUE IS LESS THAN 3000, (FILL WITH MOST FREQUENT VALUE) ELSE DROP THE COLUMN FOR OBJECT DT

```
# Check object data-type column(s) with missing value
df_nan_obj_col = []
for col in df_clean:
    if df_clean[col].dtypes == 'object' and df_clean[col].isnull().any():
        df_nan_obj_col.append(col)
        print(col.upper())
        print(df_clean[col].isnull().value_counts())
        print()
```

→ FUELTYPE

False 15951 True 2952

Name: fuelType, dtype: int64

ENGINECATEGORY True 10493 False 8410

Name: engineCategory, dtype: int64

```
plt.figure(figsize=(8,5))
sns.heatmap(df_clean[df_nan_obj_col].isnull(), yticklabels=False, cbar =True, cmap='viridis')
```


CHECK MISSING Value for 1st OBJECT(FuelType)

print('Missing Value in ',df_nan_obj_col[0], len(df_clean[df_clean[df_nan_obj_col[0]].isnull()]))
print(df_clean[df_nan_obj_col[0]].unique())
df_clean[df_clean[df_nan_obj_col[0]].isnull()].sample(10)

	type	boatClass	year	condition	length_ft	beam_ft	dryWeight_lb	hullMater
12828	power	power- pontoon	2019	new	26.17	8.50	2200.0	alumir
12468	power	power-jon	2019	new	19.17	7.00	1020.0	alumir
13901	power	power- aluminum	2019	new	17.58	8.08	1525.0	alumir
17038	power	power- pontoon	2019	new	24.17	8.50	1920.0	alumir
12554	power	power- pontoon	2019	new	21.92	8.50	1700.0	alumir
13030	power	power- aluminum	2019	new	16.00	6.33	875.0	alumir
11990	power	power-jon	2019	new	14.00	6.00	562.0	alumir
18443	power	power-skiff	2019	new	19.33	7.75	1900.0	fibergl
11255	power	power-jon	2019	new	11.92	4.33	126.0	alumir
11857	power	power-jon	2019	new	14.00	6.00	562.0	alumir

 $\mbox{\tt\#}$ Fill the missing values with the mode (most frequent value) of the column

 $\label{eq:mode_fuelType = df_clean['fuelType'].mode()[0] # Calculate the mode of fuelType \\ df_clean['fuelType'].fillna(mode_fuelType, inplace=True) # Fill missing values with the mode \\ df_clean \\ \end{tabular}$

→

	type	boatClass	year	condition	length_ft	beam_ft	dryWeight_lb	hullMa [.]
0	power	power-center	1992	used	21.00	8.50	3000.0	fib
1	power	power- sportcruiser	2018	used	40.00	11.00	16100.0	fib
2	power	power-deck	2020	new	18.00	7.42	2000.0	fib
3	power	power- expresscruiser	2015	used	32.00	10.33	12650.0	fib
4	power	power-aft	1994	used	44.00	15.00	32000.0	fib

18898	power	power- pontoon	2013	used	25.00	8.50	NaN	alu
18899	power	power- runabout	2013	used	19.33	8.00	2795.0	fib
18900	power	power-bay	2019	new	22.00	7.67	NaN	fib
18901	power	power- pontoon	2004	used	25.00	8.50	NaN	alu
18902	power	power-cruiser	2002	new	26.58	9.42	6350.0	fib

18903 rows × 18 columns

 $\mbox{\tt\#}$ CHECK NaN Value FOR 2ND OBJECT data-type COLUMN with MISSING Value

print('NaN Value in ',df_nan_obj_col[1], len(df_clean[df_clean[df_nan_obj_col[1]].isnull()]))
print(df_clean[df_nan_obj_col[1]].unique())
df_clean[df_clean[df_nan_obj_col[1]].isnull()].sample(10)

NaN Value in engineCategory 10493
['outboard-4s' 'inboard-outboard' 'multiple' 'inboard' nan 'outboard'
'outboard-2s' 'other' 'v-drive' 'electric']

	type	boatClass	year	condition	length_ft	beam_ft	dryWeight_lb	hullMater
3035	power	power- pontoon	2019	new	27.00	NaN	NaN	Of
2050	power	power- aluminum	2019	new	18.75	7.92	1720.0	alumir
8732	power	power- center	2019	used	17.00	7.00	NaN	fibergl
8728	power	power- skiwake	2007	used	22.00	NaN	NaN	fibergl
2472	power	power- pontoon	2006	used	24.00	NaN	NaN	Of
6972	power	power- pontoon	2018	new	25.00	NaN	NaN	Of
3011	power	power-pwc	2019	new	132.00	NaN	NaN	Of
18367	power	power- inflatable	2018	new	10.80	6.33	NaN	
17541	power	power- center	2003	used	19.00	7.67	NaN	fibergl
6613	power	power- cruiser	2018	used	27.00	NaN	NaN	of

 \checkmark The missing Data is greater than the half of the dataset

+ Drop to avoid data misleading

DROP COLUMN print(df_nan_obj_col[1]) df_clean = df_clean.drop([df_nan_obj_col[1]], axis=1) df_clean

→ engineCategory

	type	boatClass	year	condition	length_ft	beam_ft	dryWeight_lb	hullMa [.]
0	power	power-center	1992	used	21.00	8.50	3000.0	fib
1	power	power- sportcruiser	2018	used	40.00	11.00	16100.0	fib
2	power	power-deck	2020	new	18.00	7.42	2000.0	fib
3	power	power- expresscruiser	2015	used	32.00	10.33	12650.0	fib
4	power	power-aft	1994	used	44.00	15.00	32000.0	fib
18898	power	power- pontoon	2013	used	25.00	8.50	NaN	alu
18899	power	power- runabout	2013	used	19.33	8.00	2795.0	fib
18900	power	power-bay	2019	new	22.00	7.67	NaN	fib
18901	power	power- pontoon	2004	used	25.00	8.50	NaN	alu
18902 ←	nower	nower-cruiser	2002	new	26 58	9 42	6350 0	fib

Preview the missing Column plt.figure(figsize=(12,5)) sns.heatmap(df_clean.isnull(), yticklabels=False, cbar =True, cmap='viridis')

3.2.2 FOR NUMERIC DATA TYPE

848 Name: totalHP, dtype: int64

16698

2205

Name: maxEngineYear, dtype: int64

MAXENGINEYEAR

MINENGINEYEAR

True

False

>>>> 3.2.2.1 IF MISSING VALUE IS UP TO 1000 IN A NUMERIC TYPE COLUMN, DROP THE COLUMN

```
df_clean.info()
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 18903 entries, 0 to 18902
    Data columns (total 17 columns):
     # Column
                        Non-Null Count Dtype
                        18903 non-null object
         type
     1
         boatClass
                        18903 non-null
                                        object
                        18903 non-null int64
         year
         condition
                        18903 non-null object
         {\tt length\_ft}
                        18903 non-null float64
                        12399 non-null float64
         beam_ft
         dryWeight_lb
                        7094 non-null
                                        float64
         hullMaterial 18903 non-null
                                        object
     8
         fuelType
                        18903 non-null
                                        object
         numEngines
                        18903 non-null int64
     10
         totalHP
                        18055 non-null
     11 maxEngineYear 2205 non-null
         minEngineYear 2174 non-null
     12
                                        float64
     13 price
                        18903 non-null float64
     14
                        18903 non-null int64
         sellerId
                        18903 non-null object
     15 state
     16 created_year 18903 non-null int64
     dtypes: float64(7), int64(4), object(6)
     memory usage: 2.5+ MB
# Check `int` or `Float` data-type column(s) with missing value
df_nan_num_col = []
for col in df_clean:
    if (df_clean[col].dtypes == 'float64' \ or \ df_clean[col].dtypes == 'int64') \ and \ df_clean[col].isnull().any(): \\
       df_nan_num_col.append(col)
       print(col.upper())
       print(df_clean[col].isnull().value_counts())
       print()

→ BEAM_FT

     False
              6504
     Name: beam_ft, dtype: int64
     DRYWEIGHT_LB
             11809
     True
     False
              7094
    Name: dryWeight_lb, dtype: int64
     TOTALHP
     False
             18055
```

True 16729 False 2174

Name: minEngineYear, dtype: int64

Start coding or generate with AI.

VISUAL COLUMN WITH MISSING VALUE (in NUMERKIC TYPE)
plt.figure(figsize=(9,5))
sns.heatmap(df[df_nan_num_col].isnull(), yticklabels=False, cbar =True, cmap='viridis')

→ <AxesSubplot:>

EXCLUDE COLUMN THAT DOES NOT HAVE UPTO 1,000 MISSING VALUE
df_nan_to_drop_num_col = [col for col in df_nan_num_col if col != 'totalHP']
df_nan_to_drop_num_col

DROP COLUMN THAT HAVE MORE THAN 1,000 MISSING VALUE
print('DROP ', df_nan_to_drop_num_col)
df_clean = df_clean.drop(df_nan_to_drop_num_col, axis=1)
#df_clean.drop(df_nan_num_col, axis=1, inplace=True)
df_clean

DROP ['beam_ft', 'dryWeight_lb', 'maxEngineYear', 'minEngineYear']

blor [beam_ic , di yweight_ib , maxinginerear]													
	type	boatClass	year	condition	length_ft	hullMaterial	fuelType	numEngines	totalHP	price	sellerId	state	creat
0	power	power-center	1992	used	21.00	fiberglass	gasoline	1	150.0	16500.0	217053	FL	
1	power	power- sportcruiser	2018	used	40.00	fiberglass	diesel	2	800.0	539000.0	44260	МІ	
2	power	power-deck	2020	new	18.00	fiberglass	gasoline	1	75.0	26995.0	220570	ОН	
3	power	power- expresscruiser	2015	used	32.00	fiberglass	gasoline	2	600.0	169995.0	34834	SC	
4	power	power-aft	1994	used	44.00	fiberglass	diesel	2	700.0	109900.0	17942	MD	

18898	power	power- pontoon	2013	used	25.00	aluminum	gasoline	0	NaN	31973.0	34647	GA	
18899	power	power- runabout	2013	used	19.33	fiberglass	gasoline	1	0.0	26995.0	6335	МІ	
18900	power	power-bay	2019	new	22.00	fiberglass	gasoline	0	NaN	39995.0	65602	TX	
4		nowor										_	>

df_clean.info()

<</pre>
<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18903 entries, 0 to 18902
Data columns (total 13 columns):

Data	columns (total	l 13 columns):	
#	Column	Non-Null Count	Dtype
0	type	18903 non-null	object
1	boatClass	18903 non-null	object
2	year	18903 non-null	int64
3	condition	18903 non-null	object
4	length_ft	18903 non-null	float64
5	hullMaterial	18903 non-null	object
6	fuelType	18903 non-null	object
7	numEngines	18903 non-null	int64
8	totalHP	18055 non-null	float64

```
9 price 18903 non-null float64
10 sellerId 18903 non-null int64
11 state 18903 non-null object
12 created_year 18903 non-null int64
dtypes: float64(3), int64(4), object(6)
memory usage: 1.9+ MB
```

 \checkmark >>>>> 3.2.2.1 IF MISSING VALUE IS LESS THAN 1000 IN A NUMERIC TYPE COLUMN, REMOVE NaN ROW

```
df_clean = df_clean[df_clean['totalHP'].notnull()]
df_clean
```

₹		type	boatClass	year	condition	length_ft	hullMaterial	fuelType	numEngines	totalHP	price	sellerId	state	creat
	0	power	power-center	1992	used	21.00	fiberglass	gasoline	1	150.0	16500.0	217053	FL	
	1	power	power- sportcruiser	2018	used	40.00	fiberglass	diesel	2	800.0	539000.0	44260	МІ	
	2	power	power-deck	2020	new	18.00	fiberglass	gasoline	1	75.0	26995.0	220570	ОН	
	3	power	power- expresscruiser	2015	used	32.00	fiberglass	gasoline	2	600.0	169995.0	34834	SC	
	4	power	power-aft	1994	used	44.00	fiberglass	diesel	2	700.0	109900.0	17942	MD	
	18895	power	power-house	2005	used	100.00	aluminum	gasoline	2	0.0	425000.0	34888	KY	
	18896	power	power-center	1990	used	28.00	fiberglass	diesel	1	315.0	49000.0	61420	FL	
	18897	power	power-pilot	1973	used	29.00	other	gasoline	1	0.0	10000.0	32168	GA	
	18899	power	power- runabout	2013	used	19.33	fiberglass	gasoline	1	0.0	26995.0	6335	MI	

```
plt.figure(figsize=(12,5))
sns.heatmap(df_clean.isnull(), yticklabels=False, cbar =True, cmap='viridis')
```


4.0 EXPLORATORY DATA ANALYSIS (EDA)

>> 4.1 DATA EXPLORATORY

• Detect Outlier From numeric Column (Price, length_ft, etc)

```
# Check `int` or `Float` data-type column(s)
for col in df_clean:
   if (df_clean[col].dtypes == 'float64' or df_clean[col].dtypes == 'int64'):
        print(col)
```

```
year
length_ft
numEngines
totalHP
price
sellerId
created_year
```

```
#sns.pairplot(df_clean)
#df_clean.corr()
#df_clean.drop('sellerId', axis=1, inplace=True )
df_clean.corr()
```

	year	length_ft	numEngines	totalHP	price	sellerId	created_year
year	1.000000	-0.222239	-0.300089	-0.194967	-0.028056	0.065940	0.275208
length_ft	-0.222239	1.000000	0.351975	0.357813	0.343944	-0.057879	-0.118081
numEngines	-0.300089	0.351975	1.000000	0.625390	0.366473	-0.084159	-0.244772
totalHP	-0.194967	0.357813	0.625390	1.000000	0.589721	-0.024495	-0.213557
price	-0.028056	0.343944	0.366473	0.589721	1.000000	-0.016534	-0.099106
sellerId	0.065940	-0.057879	-0.084159	-0.024495	-0.016534	1.000000	0.060988
created_year	0.275208	-0.118081	-0.244772	-0.213557	-0.099106	0.060988	1.000000

→ >>>> 4.1.1 CHECK FOR PRICE OUTLIER

```
#sns.boxplot(x='price', y='length_ft', data=df_clean)
```

```
plt.scatter(df_clean['price'], df_clean['length_ft'], color = 'red')
```



```
# Remove record with 5,000,000 up ward
print('min price', df_clean['price'].min())
print('MAX Price', df_clean['price'].max())
```

```
min price 500.0

MAX Price 14000000.0
```

```
plt.figure(figsize=(17,9))
sns.displot(df_clean['price'], kde=True)
```



```
plt.figure(figsize=(17,9))
sns.displot(df_clean['price']<150000)]['price'], kde=True)</pre>
```


→ >>>>> REMOVE THE OUTLIER (SET MAX PRICE TO 150,000)

```
# Remove record with 5,000,000 up ward
#df_clean_outlier =df_clean[(df_clean['price'] < 5000000)]</pre>
                                                                # 5m
#df_clean_outlier =df_clean[(df_clean['price'] < 2000000)]</pre>
#df_clean_outlier =df_clean[(df_clean['price'] < 1000000)]</pre>
#df_clean_outlier =df_clean[(df_clean['price'] < 999999)]</pre>
                                                                #1m -1
#df_clean_outlier =df_clean[(df_clean['price'] < 500000)]</pre>
                                                                #500k
#df_clean_outlier =df_clean[(df_clean['price'] < 400000)]</pre>
                                                                #400k
df_clean_outlier = df_clean[(df_clean['price']<300000)]</pre>
                                                              #300k
#df_clean_outlier = df_clean[(df_clean['price']<200000)]</pre>
#df_clean_outlier = df_clean[(df_clean['price']<150000)]</pre>
                                                               #150k
sns.displot(df_clean_outlier['price'], kde=True)
```

<> <seaborn.axisgrid.FacetGrid at 0x1e32b078e80>


```
# Cross Check
print('min price', df_clean_outlier['price'].min())
print('MAX Price', df_clean_outlier['price'].max())
print('Lenght', df_clean_outlier.shape)
df_clean_outlier.sort_values('price', ascending=False).head(20)
```

	type	boatClass	vear	condition	length ft	hullMaterial	fuelTvpe	numEngines	totalHP	price	sellerId	state	created
	-,,,-		,							p. 200	30110.10	50000	
3339	power	power- house	2004	used	84.00	other	other	1	0.0	299999.0	29402	МО	
16160	power	power- cruiser	2015	used	38.50	fiberglass	gasoline	1	430.0	299995.0	35188	ОН	
16383	power	power- cuddy	2018	used	33.00	fiberglass	gasoline	2	600.0	299995.0	14386	FL	
16531	power	power- cruiser	2017	new	36.00	fiberglass	gasoline	2	760.0	299948.0	14353	WI	
13209	power	power- center	2019	new	33.33	fiberglass	gasoline	2	0.0	299900.0	1176	VA	
13163	power	power- center	2019	new	33.33	fiberglass	gasoline	2	0.0	299900.0	1102	FL	
13169	power	power- center	2019	new	33.33	fiberglass	gasoline	2	0.0	299900.0	1107	NC	
13174	power	power- center	2019	new	33.33	fiberglass	gasoline	2	0.0	299900.0	1110	TX	
13179	power	power- center	2019	new	33.33	fiberglass	gasoline	2	0.0	299900.0	1114	TX	
17208	power	power- center	2018	used	29.00	fiberglass	gasoline	2	600.0	299900.0	6654	MA	
13193	power	power- center	2019	new	33.33	fiberglass	gasoline	2	0.0	299900.0	1120	MD	
13197	power	power- center	2019	new	33.33	fiberglass	gasoline	2	0.0	299900.0	1166	FL	
10588	power	power- center	2017	used	34.00	fiberglass	gasoline	3	900.0	299900.0	59565	FL	• • • • • • • • • • • • • • • • • • •

df_clean_outlier.info()

<</pre>
<</pre>
<</pre>

<pr

Data	COTUMNIS (COCA	I IS COIUMIS).	
#	Column	Non-Null Count	Dtype
0	type	17575 non-null	object
1	boatClass	17575 non-null	object
2	year	17575 non-null	int64
3	condition	17575 non-null	object
4	length_ft	17575 non-null	float64
5	hullMaterial	17575 non-null	object
6	fuelType	17575 non-null	object
7	numEngines	17575 non-null	int64
8	totalHP	17575 non-null	float64
9	price	17575 non-null	float64
10	sellerId	17575 non-null	int64
11	state	17575 non-null	object
12	created_year	17575 non-null	int64
dtyp	es: float64(3)	, int64(4), obje	ct(6)
memo	ry usage: 1.9+	MB	

df_clean_outlier.corr()

∓		year	length_ft	numEngines	totalHP	price	sellerId	created_year
	year	1.000000	-0.209106	-0.383953	-0.243446	-0.002013	0.067254	0.277788
	length_ft	-0.209106	1.000000	0.281093	0.211712	0.272732	-0.055802	-0.087105
	numEngines	-0.383953	0.281093	1.000000	0.604972	0.446067	-0.079950	-0.265331
	totalHP	-0.243446	0.211712	0.604972	1.000000	0.420166	-0.028428	-0.232177
	price	-0.002013	0.272732	0.446067	0.420166	1.000000	-0.012126	-0.103600
	sellerId	0.067254	-0.055802	-0.079950	-0.028428	-0.012126	1.000000	0.059163
	created year	0.277788	-0.087105	-0.265331	-0.232177	-0.103600	0.059163	1.000000

plt.scatter(df_clean_outlier['price'], df_clean_outlier['length_ft'], color = 'red')

<matplotlib.collections.PathCollection at 0x1e36060ae50>

→ >>>> 4.1.2 CHECK FOR LENGHT_FT OUTLIER

```
print(df_clean_outlier['length_ft'].min())
df_clean_outlier['length_ft'].max()
```

1.0 277.9

>>>>> REMOVE THE OUTLIER (SET MAX LENGHT_FT TO 100)

```
df_clean_outlier =df_clean_outlier[(df_clean_outlier['length_ft'] < 70)]
print('min length_ft', df_clean_outlier['length_ft'].min())
print('MAX length_ft', df_clean_outlier['length_ft'].max())
print('Lenght', len(df_clean_outlier))
df_clean_outlier.sort_values('length_ft', ascending=False).head(20)</pre>
```

min length_ft 1.0

MAX length_ft 68.0
Lenght 17395

		h+Cl			1 C4	h11Madania1	CualTuna		+-+-111D		11-uTd	-4-4-	
	туре	DOATCIASS	year	condition	Tengtn_+t	hullMaterial	тиеттуре	numengines	тотатнь	price	sellerId	state	createu_
14698	power	power- motor	1990	used	68.00	fiberglass	diesel	2	970.0	195000.0	18223	MD	
16625	power	power- house	1991	used	67.00	steel	gasoline	2	540.0	129900.0	56775	AZ	
11224	power	power- motor	1995	used	65.00	steel	diesel	2	574.0	149000.0	28309	TX	
12555	power	power- house	2014	new	65.00	aluminum	gasoline	2	440.0	39900.0	34439	AZ	
7563	power	power- motor	1991	used	64.00	fiberglass	other	1	0.0	259000.0	34373	PA	
12109	power	power- house	1978	used	63.00	aluminum	gasoline	2	330.0	89500.0	34888	KY	
15666	power	power- house	1999	used	63.00	aluminum	gasoline	1	140.0	166750.0	61430	WA	
13554	power	power- motor	1988	used	63.00	fiberglass	diesel	2	1300.0	249000.0	63935	FL	
5423	power	power- center	2019	new	62.50	fiberglass	gasoline	1	0.0	53837.0	35234	AL	
14017	power	power- flybridge	1999	used	62.00	aluminum	diesel	2	1400.0	250000.0	28311	MA	
12115	power	power- motor	1987	used	62.00	fiberglass	diesel	2	970.0	269900.0	21445	NJ	
18770	power	power- antique	1960	used	62.00	wood	diesel	1	671.0	229000.0	153142	WA	
10469	power	power- motor	1981	used	61.00	fiberglass	diesel	2	0.0	225000.0	52419	LA	· ·

plt.scatter(df_clean_outlier['price'], df_clean_outlier['length_ft'], color = 'red')

<matplotlib.collections.PathCollection at 0x1e36065fa00>

df_clean_outlier[(df_clean_outlier['length_ft'] <= 2)]</pre>

	type	boatClass	year	condition	length_ft	hullMaterial	fuelType	numEngines	totalHP	price	sellerId	state	created_y
2286	power	power- pontoon	2020	new	1.0	other	other	1	0.0	45020.0	46516	MN	2
2314	power	power- pontoon	2019	new	1.0	other	other	1	0.0	29352.0	46516	MN	2
2315	power	power- pontoon	2020	new	1.0	other	other	1	0.0	45020.0	46516	MN	2
2331	power	power- pontoon	2020	new	1.0	other	other	1	0.0	67690.0	46516	MN	2
2340	power	power- pontoon	2018	new	1.0	other	other	1	0.0	37999.0	46516	MN	2
10414	power	power- other	2016	used	2.0	other	gasoline	1	25.0	4899.0	57749	TX	2
11275	power	power- other	2015	used	2.0	other	other	1	250.0	15995.0	1196	sc	2

→ >>>> 4.1.3 CHECK FOR NUMENGINES OUTLIER

plt.scatter(df_clean_outlier['numEngines'], df_clean_outlier['price'], color = 'red')

\checkmark >>>>> REMOVE THE OUTLIER (SET MAX_NO OF NUMENGINES TO 2)

 $\label{lem:df_clean_outlier} \mbox{ df_clean_outlier[df_clean_outlier['numEngines'] < 3] } \mbox{ df_clean_outlier}$

<u>-</u>		type	boatClass	year	condition	length_ft	hullMaterial	fuelType	numEngines	totalHP	price	sellerId	state	creat
	0	power	power-center	1992	used	21.00	fiberglass	gasoline	1	150.0	16500.0	217053	FL	
	2	power	power-deck	2020	new	18.00	fiberglass	gasoline	1	75.0	26995.0	220570	ОН	
	3	power	power- expresscruiser	2015	used	32.00	fiberglass	gasoline	2	600.0	169995.0	34834	SC	
	4	power	power-aft	1994	used	44.00	fiberglass	diesel	2	700.0	109900.0	17942	MD	
	9	power	power- convertible	1971	used	42.00	fiberglass	diesel	2	840.0	59500.0	16876	СТ	
							•••							
1	18894	power	power- pontoon	2017	new	22.33	aluminum	gasoline	1	90.0	37631.0	5103	MI	
1	8896	power	power-center	1990	used	28.00	fiberglass	diesel	1	315.0	49000.0	61420	FL	
1	18897	power	power-pilot	1973	used	29.00	other	gasoline	1	0.0	10000.0	32168	GA	
1		power	power-	2013	used	19.33	fiberglass	gasoline	1	0.0	26995.0	6335	МІ	>

>>>> 4.1.3 CHECK FOR TOTALHP OUTLIER

plt.scatter(df_clean_outlier['totalHP'], df_clean_outlier['price'], color = 'red')

print(df_clean_outlier['totalHP'].min())
df_clean_outlier['totalHP'].max()

⊕ 0.0 2700.0

 $\label{lem:df_clean_outlier} $$ df_clean_outlier['totalHP'] < 400) & (df_clean_outlier['totalHP'] > -1)] $$$

		type	boatClass	year	condition	length_ft	hullMaterial	fuelType	numEngines	totalHP	price	sellerId	state	created_
	0	power	power- center	1992	used	21.00	fiberglass	gasoline	1	150.0	16500.0	217053	FL	
	2	power	power-deck	2020	new	18.00	fiberglass	gasoline	1	75.0	26995.0	220570	ОН	
	11	sail	sail- racercruiser	1986	used	30.00	fiberglass	diesel	1	0.0	25500.0	16876	СТ	
	12	power	power- pontoon	2019	new	23.70	aluminum	gasoline	1	200.0	44507.0	34914	DE	
	13	power	power- motor	2000	used	55.00	fiberglass	diesel	2	0.0	299000.0	6123	FL	
	18894	power	power- pontoon	2017	new	22.33	aluminum	gasoline	1	90.0	37631.0	5103	МІ	
	18896	power	power- center	1990	used	28.00	fiberglass	diesel	1	315.0	49000.0	61420	FL	
4	1000=		4.	1070		22.22		P		^ ^	10000 0	00400	^*	

 \checkmark >>>>> REMOVE THE OUTLIER (SET MAX_NO OF TOTALHP TO 399 and MIN_NO TO 0)

```
df_clean_outlier =df_clean_outlier[(df_clean_outlier['totalHP'] < 400) & (df_clean_outlier['totalHP'] > -1)]
print('min totalHP', df_clean_outlier['totalHP'].min())
print('MAX totalHP', df_clean_outlier['totalHP'].max())
print('Lenght', len(df_clean_outlier))
df_clean_outlier.sort_values('totalHP', ascending=False).head(10)
```

min totalHP 0.0 MAX totalHP 385.0 Lenght 16383

	type	boatClass	year	condition	length_ft	hullMaterial	fuelType	numEngines	totalHP	price	sellerId	state	created_
17088	power	power- runabout	2005	used	28.67	fiberglass	gasoline	1	385.0	31900.0	5913	NJ	
11181	power	power- sportcruiser	1996	used	28.00	fiberglass	gasoline	2	380.0	23500.0	16863	NY	
18821	power	power- bowrider	2015	used	28.00	fiberglass	gasoline	1	380.0	94800.0	67460	FL	
12782	power	power- bowrider	2013	used	27.00	fiberglass	gasoline	1	380.0	84500.0	17929	NJ	
70	power	power- skiwake	2015	used	24.50	fiberglass	gasoline	1	380.0	84900.0	34745	МО	
12886	power	power- bowrider	2018	new	27.00	fiberglass	gasoline	1	380.0	179999.0	42094	MD	
4													

Start coding or generate with AI.

plt.scatter(df_clean_outlier['price'], df_clean_outlier['totalHP'], color = 'red')

<matplotlib.collections.PathCollection at 0x1e361801790>

#plt.scatter(df_clean_outlier['year'], df_clean_outlier['price'], color = 'red')

df_clean_outlier.corr()

_		year	length_ft	numEngines	totalHP	price	sellerId	created_year
	year	1.000000	-0.375466	-0.285977	0.024782	0.102996	0.063617	0.242935
	length_ft	-0.375466	1.000000	0.400038	0.075594	0.571832	-0.049062	-0.158062
	numEngines	-0.285977	0.400038	1.000000	0.003977	0.251977	-0.081409	-0.197148
	totalHP	0.024782	0.075594	0.003977	1.000000	0.039556	-0.002628	-0.150612
	price	0.102996	0.571832	0.251977	0.039556	1.000000	-0.002543	-0.024856
	sellerId	0.063617	-0.049062	-0.081409	-0.002628	-0.002543	1.000000	0.051828
	created_year	0.242935	-0.158062	-0.197148	-0.150612	-0.024856	0.051828	1.000000

#sns.pairplot(df_clean_outlier)

```
#sns.pairplot(df_clean_outlier)
#plt.figure(figsize=(12,5))
#sns.heatmap(train.isnull(), yticklabels=False, cbar =True, cmap='viridis')
```

```
plt.figure(figsize=(14,7))
sns.displot(df_clean_outlier['price'], kde=True)
```


df_clean_outlier

₹		type	boatClass	year	condition	length_ft	hullMaterial	fuelType	numEngines	totalHP	price	sellerId	state	created_
	0	power	power- center	1992	used	21.00	fiberglass	gasoline	1	150.0	16500.0	217053	FL	
	2	power	power-deck	2020	new	18.00	fiberglass	gasoline	1	75.0	26995.0	220570	ОН	
	11	sail	sail- racercruiser	1986	used	30.00	fiberglass	diesel	1	0.0	25500.0	16876	СТ	
	12	power	power- pontoon	2019	new	23.70	aluminum	gasoline	1	200.0	44507.0	34914	DE	
	13	power	power- motor	2000	used	55.00	fiberglass	diesel	2	0.0	299000.0	6123	FL	
	18894	power	power- pontoon	2017	new	22.33	aluminum	gasoline	1	90.0	37631.0	5103	МІ	
	18896	power	power- center	1990	used	28.00	fiberglass	diesel	1	315.0	49000.0	61420	FL	
4	10007			4070		00.00	- 41		4	^ ^	40000 0	00400	^^	

```
#sns.jointplot( x='fico', y='int.rate', data=df,)

#plt.figure(figsize=(11,7))
#sns.lmplot(y='int.rate',x='fico',data=df_clean_outlier, hue='credit.policy',
# col='not.fully.paid', palette='Set1')
```

0,3,5,6, 1,11

→ (1, 11)

Start coding or generate with AI.

→ 5.0 TRANSFORMATION

```
#from sklearn.compose import ColumnTransformer
#from sklearn.preprocessing import OneHotEncoder

#ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder, [0,3,5,6])], remainder='passthrough')
#ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [0,3,5,6])], remainder='passthrough')
#df_clean_outlier_transform = ct.fit_transform(df_clean_outlier)
#X = np.array(ct.fit_transform(X))
```

DIMENSIONAL REDUCTION

from sklearn.decomposition import PCA

```
# to select the number of n_component
for col in df_clean_outlier:
    if df[col].dtypes == 'object':
        print(col)

→ type

     boatClass
     condition
     hullMaterial
     fuelType
     state
# Check for Object type column, get there dummies values, reduce there demensionality to 1,
df_transformed_pca = pd.DataFrame()
for col in df_clean_outlier:
    # Check for obj type
    if df[col].dtypes == 'object':
        dummy_val = pd.get_dummies(df_clean_outlier[col])
        # Reduce the demension to 1
        pca = PCA(n_components=1)
        pca_value = pca.fit_transform(dummy_val)
        pca_value = pd.DataFrame(pca_value, columns=[col+'_pca']) # Convert the numpy data to DataFrame series
         df\_transformed\_pca = pd.concat([df\_transformed\_pca, pca\_value], axis=1) \quad \# \ Add \ to \ existing \ df\_transformed\_pca = pd.concat([df\_transformed\_pca, pca\_value], axis=1) 
df transformed pca
\overline{2}
              type_pca boatClass_pca condition_pca hullMaterial_pca fuelType_pca state_pca
        0
              -0.017634
                               -0.257808
                                                0.907935
                                                                    0.750177
                                                                                   0.979046
                                                                                               0.877958
              -0.017634
                               -0.234319
                                               -0.506279
                                                                    0.750177
                                                                                   0.979046
                                                                                               -0.083853
        1
        2
              1.395879
                               -0.185880
                                               0.907935
                                                                    0.750177
                                                                                   0.291670
                                                                                               -0.080134
        3
              -0.017634
                               0.781600
                                               -0.506279
                                                                   -0.443088
                                                                                   0.979046
                                                                                              -0.074593
        4
              -0.017634
                               -0.189224
                                                0.907935
                                                                    0.750177
                                                                                    0.291670
                                                                                               0.877958
      16378 -0.017634
                               0.781600
                                               -0.506279
                                                                   -0.443088
                                                                                   0.979046
                                                                                              -0.243734
```

Set the index of df_transformed_pca to match the index of df_clean_outlier

-0.257808

-0.185179

-0.203617

-0.254576

df_transformed_pca.index = df_clean_outlier.index

df_transformed_pca.tail(3)

16379 -0.017634

16380 -0.017634

16381 -0.017634

16382 -0.017634

16383 rows × 6 columns

_		type_pca	boatClass_pca	condition_pca	hullMaterial_pca	fuelType_pca	state_pca
	18897	-0.017634	-0.185179	0.907935	-0.503787	0.979046	-0.103041
	18899	-0.017634	-0.203617	0.907935	0.750177	0.979046	-0.243734
	18902	-0.017634	-0.254576	-0.506279	0.750177	0.979046	-0.103041

0.907935

0.907935

0.907935

-0.506279

df_clean_outlier_transformed = pd.concat([df_clean_outlier, df_transformed_pca], axis=1)
df_clean_outlier_transformed.drop(['type', 'condition', 'hullMaterial', 'fuelType', 'boatClass', 'state'], axis=1, inplace=True)
df_clean_outlier_transformed

0.750177

-0.503787

0.750177

0.750177

0.291670

0.979046

0.979046

0.979046

0.877958

-0.103041

-0.243734

-0.103041

	year	length_ft	numEngines	totalHP	price	sellerId	created_year	type_pca	boatClass_pca	condition_pca	hullMaterial_p
0	1992	21.00	1	150.0	16500.0	217053	2019	-0.017634	-0.257808	0.907935	0.750′
2	2020	18.00	1	75.0	26995.0	220570	2019	-0.017634	-0.234319	-0.506279	0.7501
11	1986	30.00	1	0.0	25500.0	16876	2011	1.395879	-0.185880	0.907935	0.7501
12	2019	23.70	1	200.0	44507.0	34914	2019	-0.017634	0.781600	-0.506279	-0.4430
13	2000	55.00	2	0.0	299000.0	6123	2013	-0.017634	-0.189224	0.907935	0.7501
18894	2017	22.33	1	90.0	37631.0	5103	2016	-0.017634	0.781600	-0.506279	-0.4430
18896	1990	28.00	1	315.0	49000.0	61420	2019	-0.017634	-0.257808	0.907935	0.7501
18897	1973	29.00	1	0.0	10000.0	32168	2017	-0.017634	-0.185179	0.907935	-0.5037
18899	2013	19.33	1	0.0	26995.0	6335	2019	-0.017634	-0.203617	0.907935	0.7501
18902	2002	26.58	1	220.0	17900.0	152266	2019	-0.017634	-0.254576	-0.506279	0.7501
16383 rd	ows × 1	3 columns									
4											>

→ 6.0 MODEL AND EVALUATION

· Let's start by splitting our data into a training set and test set

Splitting the dataset into the Training set and Test set

Train using Linear Regression

sns.displot((y_test - ln_predictions))

<seaborn.axisgrid.FacetGrid at 0x1e363988dc0>

from sklearn import metrics

metrics.mean_absolute_error(y_test, ln_predictions)

→ 16750.030399701525

from sklearn.metrics import r2_score, adjusted_rand_score r2_score(y_train, ln_regressor.predict(X_train)), r2_score(y_test, ln_predictions)

→ (0.4840999511126901, 0.4632075629433322)

Start coding or $\underline{\text{generate}}$ with AI.

Train using SVR model

```
#### NORMALIZATION

from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
sc_y = StandardScaler()
sc_X_train = sc_X.fit_transform(X_train)

sc_y_train = sc_y.fit_transform(y_train.values.reshape(len(y_train), -1))
sc_y_train
```

```
[-0.65429086].
           [ 0.31735951]])
### Import SVM library
from sklearn.svm import SVR
svr_regressor = SVR(kernel='rbf')
svr_regressor.fit(sc_X_train, sc_y_train)
T:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:993: DataConversionWarning:
    A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel()
     SVR()
svm_y_pred = sc_y.inverse_transform(svr_regressor.predict(sc_X.transform(X_test)).reshape(len(y_test), -1))
svm\_y\_train = sc\_y.inverse\_transform(svr\_regressor.predict(sc\_X.transform(X\_train)).reshape(len(X\_train), -1))
np.set_printoptions(precision=2)
\texttt{\#y\_pred} = \texttt{sc\_y.inverse\_transform(regressor.predict(sc\_X.transform(X\_test)).reshape(-1,1))}
svm v pred
→ array([[39230.1],
           [62686.64],
           [47447.55],
           [52907.13],
           [14343.28],
           [15495.39]])
r2_score(y_train, svm_y_train), r2_score(y_test, svm_y_pred)
(0.7697508739636432, 0.7485459889347739)
Start coding or generate with AI.
```

Train using DECISION TREE

```
from sklearn.tree import DecisionTreeRegressor decision_regressor = DecisionTreeRegressor()

decision_regressor.fit(X_train, y_train)

DecisionTreeRegressor()

decsn_tree_pred = decision_regressor.predict(X_test)
decsn_tree_pred

array([49995. , 72969.71, 38715. , ..., 40249. , 20579. , 19195. ])

sns.displot((y_test - decsn_tree_pred))
```

<> <seaborn.axisgrid.FacetGrid at 0x1e363b9f280>