Atividade Assíncrona 4 – Aritmética de Números Inteiros no MIPS ARQUITETURA DE COMPUTADORES Luiza Batista Laquini – 2019107786

Atividade 1

Questão 1:

Padrão de bits	Inteiro com sinal	Inteiro sem sinal
0x0000	0	0
0x7fff	32767	32767
0x8000	-32768	32768
0xffff	-1	65535

Padrão de bits	Inteiro com sinal	Inteiro sem sinal
0x0000000	0	0
0x00007fff	32767	32767
0x00008000	32768	32768
0x0000ffff	65535	65535

Questão 2:

Oper1	Oper2	Oper1 + Oper2	Oper1 – Oper2	Exemplo
valor > 0	valor > 0	S	N	1 + 2147483647 = overflow
				1 – 2147483647 = -2147483646
valor > 0	valor < 0	Ν	S	2147483647 + (-2147483648) = -1
				2147483647 – (-2147483648) = overflow
valor < 0	valor > 0	Ν	S	-2147483648 + 2147483647 = -1
				-2147483648 – 2147483647 = overflow
valor < 0	valor < 0	S	N	-2147483648 + (-2147483648) =
				overflow
				-2147483648 – (-2147483648) = 0
0	valor > 0	Ν	N	0 + 2147483647 = 2147483647
				0 – 2147483647 = -2147483647
0	valor < 0	Ν	S	0 + (-2147483648) = -2147483648
				0 - (-2147483648) = overflow
valor > 0	0	N	N	2147483647 + 0 = 2147483647
				2147483647 – 0 = 2147483647
valor < 0	0	N	N	-2147483648 + 0 = -2147483648
				-2147483648 – 0 = -2147483648

Atividade 2

A saída do programa foi:

Soma = -2

Subtração = 2147483647

A explicação para o "-2" é que o bit de sinal se altera com a operação.

Questão 3: Sim, ocorre *overflow* na soma (a + b). O resultado correto seria 4294967294, porém o *signed int* não possui a quantidade de bits suficientes para representar esse número e, portanto, retorna um resultado errado (-2).

Atividade 3

а	b	Resultado impresso	Overflow?	Justificativa
+2000000000	+2000000000	arithmetic overflow	S	A soma excede 32 bits em casas positivas
+2000000000	-2000000000	0	N	A soma de positivo com negativo (independente da ordem) vai sempre resultar em um valor entre os dois operandos, portanto, se as entradas são válidas, não há overflow
-200000000	+1	-1999999999	N	A soma de positivo com negativo (independente da ordem) vai sempre resultar em um valor <u>entre</u> os dois operandos, portanto, se as entradas são válidas, não há overflow
-2000000000	-2000000000	arithmetic overflow	S	A soma excede 32 bits em casas negativas

Atividade 4

а	b	Resultado impresso	Overflow?	Justificativa
+2000000000	+2000000000	0	N	A subtração de duas entradas positivas válidas vai sempre resultar em um valor <u>entre</u> os dois operandos
+200000000	-2000000000	arithmetic overflow	S	A subtração de um positivo com um negativo (nessa ordem) vai se transformar, na verdade, em uma soma de positivos, podendo gerar overflow por exceder os 32 bits em casas positivas
-200000000	+2000000000	arithmetic overflow	S	A subtração de um negativo com um positivo (nessa ordem) vai se transformar, na verdade, em uma soma de negativos, podendo gerar overflow por exceder os 32 bits em casas negativas
-2000000000	-2000000000	0	N	A subtração de duas entradas positivas válidas vai sempre resultar em um valor <u>entre</u> os dois operandos

Atividade 5

а	b	Resultado impresso	Overflow?	Justificativa		
	Adição					
+2000000000	+2000000000	-294967296	S	A soma excede 32 bits em		
		(errado)		casas positivas		
+2000000000	-2000000000	0	N	A soma de positivo com		
				negativo (independente da		
				ordem) vai sempre resultar		
				em um valor <u>entre</u> os dois		
				operandos, portanto, se as entradas são válidas, não		
				há overflow		
-2000000000	+2000000000	0	N	A soma de positivo com		
200000000	120000000	· ·		negativo (independente da		
				ordem) vai sempre resultar		
				em um valor <u>entre</u> os dois		
				operandos, portanto, se as		
				entradas são válidas, não		
				há overflow		
-2000000000	-2000000000	294967296	S	A soma excede 32 bits em		
		(errado)		casas negativas		
	T	Subtração	1			
+2000000000	+2000000000	0	N	A subtração de duas		
				entradas positivas válidas		
				vai sempre resultar em um valor <u>entre</u> os dois		
				operandos		
+2000000000	-2000000000	-294967296	S	A subtração de um positivo		
1200000000	200000000	(errado)		com um negativo (nessa		
		(====,		ordem) vai se transformar,		
				na verdade, em uma soma		
				de positivos, podendo gerar		
				overflow por exceder os 32		
				bits em casas positivas		
-2000000000	+2000000000	294967296	S	A subtração de um negativo		
		(errado)		com um positivo (nessa ordem) vai se transformar,		
				na verdade, em uma soma		
				de negativos, podendo		
				gerar overflow por exceder		
				os 32 bits em casas		
				negativas		
-2000000000	-2000000000	0	N	A subtração de duas		
				entradas positivas válidas		
				vai sempre resultar em um		
				valor entre os dois		
				operandos		

OBS: Nota-se que a diferença entre usar *signed int* e *unsigned int* é que em *unsigned int* não obtemos mensagens específicas de *overflow* e sim resultados errados. Isso acontece porque o bit do sinal é preenchido.

Atividade 6

Questão 4:

Dividendo	Divisor	Quociente	Resto
22	7	3	1
-22	7	-3	-1
22	-7	-3	1
-22	-7	3	-1

Atividade 7

<u>Questão 5:</u> Sim. Os dois números são de 32bits, portanto, a multiplicação entre eles excede 32bits e não pode ser representada, gerando *overflow*.

<u>Questão 6:</u> Não. O resultado exibido foi retirado dos 32bits menos significativos de um resultado de 64bits que não teve como ser representado:

Atividade 8 (multiplicação COM sinal)

а	b	Registrador hi (hexadecimal)	Registrador lo (hexadecimal)
2	1	0x0000000	0x0000002
2	-1	0xffffffff	0xffffffe
2^18	2^14	0x0000001	0x0000000
2^18	-2^14	0xffffffff	0x0000000
2147483647	2147483647		
2147483647	-2147483647		

а	b	Resultado esperado	Resultado obtido
2	1	2	2
2	-1	-2	-2
2^18	2^14	4294967296	0
2^18	-2^14	-4294967296	0
2147483647	2147483647	Overflow	1
2147483647	-2147483647	Overflow	-1

Questão 7: Porque ocorre overflow.

Atividade 9 (multiplicação SEM sinal)

а	b	Registrador hi (hexadecimal)	Registrador lo (hexadecimal)
2	1	0x0000000	0x0000002
2	-1	0x0000001	0xffffffe
2^18	2^14	0x0000001	0x0000000
2^18	-2^14	0x0003ffff	0x0000000
2147483647	2147483647	0x3fffffff	0x0000001
2147483647	-2147483647	0x3fffffff	Oxfffffff

а	b	Resultado esperado	Resultado obtido
2	1	2	2
2	-1	-2	break instruction
2^18	2^14	4294967296	break instruction
2^18	-2^14	-4294967296	break instruction
2147483647	2147483647	Overflow	Overflow
2147483647	-2147483647	Overflow	break instruction

Atividade 10 (divisão COM sinal)

а	b	Quociente impresso	Resto impresso	Erro
11	2	5	1	-
11	-2	-5	1	-
-11	2	-5	-1	-
-11	-2	5	-1	-
-1	2	0	-1	-
11	0	0	0	break instruction
-2147483648	-1	-2147483648	0	Overflow

Atividade 11 (divisão SEM sinal)

а	b	Quociente impresso	Resto impresso	Erro
11	2	5	1	-
11	-2	0	11	Overflow
-11	2	2147483642	1	Overflow
-11	-2	0	-11	Overflow
-1	2	2147483647	1	Overflow
11	0	0	0	break instruction
-2147483648	-1	-2147483648	0	Overflow