Intro

- Silicon wafers that comprise an array of chips are susceptible to defects.
- While some defects are expected (yield < 100%), systematic patterns of defective chips in a wafer are indicative of problems in the process line.
- The 'pattern' of defective chips in a wafer is indicative of the nature/location of the problem.
- Typically wafer maps are reviewed manually and dispositioned into error types.
- This project looks at training a conv-net to identify and classify defects in semiconductor wafers

[•] Wang et al, IEEE Transactions on Semiconductor Manufacturing, 2020

Dataset – Defect Types

- Public dataset from fab in China
- Each wafer map is a 54x54 array of values identifying each location as a functional die, defective die or offwafer. Each label is a one-hot encoded vector indicating the presence (or absence) of 8 different defect types.
- There are wafers with 0, 1, 2, 3 and 4 defect types.

Dataset – 2 Defects Types in a Wafer

- Public dataset from fab in China
- Each wafer map is a 54x54 array of values identifying each location as a functional die, defective die or offwafer. Each label is a one-hot encoded vector indicating the presence (or absence) of 8 different defect types.
- There are wafers with 0, 1, 2, 3 and 4 defect types.

Dataset – 3 Defects Types in a Wafer

- Public dataset from fab in China
- Each wafer map is a 54x54 array of values identifying each location as a functional die, defective die or offwafer. Each label is a one-hot encoded vector indicating the presence (or absence) of 8 different defect types.
- There are wafers with 0, 1, 2, 3 and 4 defect types.

Dataset – 4 Defects Types in a Wafer

- Public dataset from fab in China
- Each wafer map is a 54x54 array of values identifying each location as a functional die, defective die or offwafer. Each label is a one-hot encoded vector indicating the presence (or absence) of 8 different defect types.
- There are wafers with 0, 1, 2, 3 and 4 defect types.

Dataset – Counts and Splits

Model Architecture

LOSS

Binary Crossentropy

FC (8 units) + Sigmoid		
FC + ReLu		
GlobalAveragePooling2D		
MaxPool2D		
ReLu		
BatchNorm		
Conv2D		
MaxPool2D		
ReLu		
BatchNorm		
Conv2D		
Random Flip		

[•] loffe & Szegedy (2015) arXiv: 1502.03167v3 • Li et al (2018) arXiv: 1801.05134v1

Hyperparameter Exploration

Hyperparameter Values Explored

C1_filterSize	3, 5, 7		
C1_numFilters	16, 32, 64		
C1_stride	1, 2		
P1_filterSize	2		
P1_stride	2		
C2_filterSize	3, 5		
C2_numFilters	64, 128		
C2_stride	1, 2		
P2_filterSize	2		
P2_stride	2		
FC1_numUnits	32, 64		
FC2_numUnits	8		
Total Combinations	<mark>288</mark>		

Training Parameters

Optimizer	Adam (parm vals)	
Batch Size	512	
Learning Rate	0.01	
Epochs	<mark>10</mark>	

Hyperparameter Exploration: Selected Training Curves

Hyperparameter Exploration: Loss v.s. HP values

Hyperparameter Exploration: Selected HP Values

The 2 Lowest Loss Hyperparameter Combinations

Loss	<mark>0.0541</mark>	<mark>0.0561</mark>
C1_filterSize	7	7
C1_numFilters	<mark>64</mark>	<mark>32</mark>
C1_stride	2	2
P1_filterSize	2	2
P1_stride	2	2
C2_filterSize	5	5
C2_numFilters	64	64
C2_stride	2	2
P2_filterSize	2	2
P2_stride	2	2
FC1_numUnits	64	64
FC2_numUnits	8	8
Total Parameters	<mark>110,472</mark>	<mark>57,460</mark>

Final Model Shapes

Full Training

Examples of Mis-labeled Wafers

Feature Maps from the 1st Con Layer: **DONUT**

Feature Maps from the 1st Con Layer: EDGE-LOCAL

Feature Maps from the 1st Con Layer: EDGE-RING

Feature Maps from the 1st Con Layer: LOCAL

Feature Maps from the 1st Con Layer: CENTER

Feature Maps from the 1st Con Layer: SCRATCH

Feature Maps from the 1st Con Layer: RANDOM

Feature Maps from the 1st Con Layer: NEAR-FULL

