

Chapitre III – Dérivation

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES	
I – Qu'est-ce-qu'une dérivée?	
1. Nombre dérivé	
2. La tangente	
3. Fonction dérivée	
II – Tables de dérivation	
1. Dérivées usuelles	
2. Opérations sur les dérivées	
3. Dérivées de composées	
III – Étude des variations d'une fonction	,
1. Lien dérivée - variations d'une fonction 6	,
2. Extrema	,

I – Qu'est-ce-qu'une dérivée?

1. Nombre dérivé

À RETENIR

Définition

Soient f une fonction définie sur un intervalle I et deux réels $a \in I$ et $h \neq 0$ tels que $(a+h) \in I$.

La fonction f est **dérivable** en a si la limite ci-dessous existe et est finie :

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Ou en posant x = a + h:

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Si cette limite existe et est finie, alors elle est égale au **nombre dérivé** de f en a, noté f'(a).

ÀLIRE 00

Limite d'une fonction

La notation $\lim_{h\to 0}$ veut simplement dire que l'on rend h aussi proche de 0 que possible (sans pour autant que h soit égal à 0). On dit que l'on "fait tendre h vers 0" et on appelle cela **une limite**.

Attention! Il arrive que cette limite n'existe pas ou ne soit pas finie. Dans ce cas-là, f'(a) n'existe pas et on dit que f n'est pas dérivable en a.

2. La tangente

À RETENIR 🥊

Équation de la tangente

Soient f une fonction définie sur un intervalle I et un réel $a \in I$. Si f est dérivable en a, alors la courbe représentative de f admet une tangente \mathcal{T} au point de coordonnées (a; f(a)).

De plus, f'(a) est le coefficient directeur de \mathcal{T} , et une équation de \mathcal{T} est y = f'(a)(x-a) + f(a).

DÉMONSTRATION @

Équation de la tangente

La tangente \mathcal{T} en un point d'une courbe est une droite. Une équation de droite est de la forme y = mx + p avec m le coefficient directeur et p l'ordonnée à l'origine.

On a déjà le coefficient directeur de \mathcal{T} par la propriété précédente : m = f'(a).

De plus, on sait que $\mathcal T$ passe par le point (a,f(a)) (car c'est la tangente à $\mathcal C_f$ au point d'abscisse a).

Donc l'équation de droite vérifie f(a) = f'(a)a + p. Ce qui donne p = f(a) - af'(a). Au final notre équation est la suivante : $y = xf'(a) + f(a) - af'(a) \iff y = f(a) + (x - a)f'(a)$.

3. Fonction dérivée

À RETENIR 💡

Définition

Soit f une fonction dérivable sur un intervalle I de \mathbb{R} .

On appelle fonction dérivée (ou plus simplement **dérivée**) de f la fonction g qui à tout réel x de I, associe le nombre dérivé f'(x) (i.e. g(x) = f'(x)).

Très souvent, la fonction g sera notée f'.

II - Tables de dérivation

1. Dérivées usuelles

Le tableau suivant est à connaître et nous donne la dérivée de la plupart des fonctions usuelles :

ÀRETENIR *					
Soit λ une constante réelle.					
Fonction	Dérivée	Domaine de dérivabilité			
λ	0	R			
x^n avec $n \in \mathbb{N}^*$	nx^{n-1}	R			
$\frac{1}{x}$	$-\frac{1}{x^2}$	R*			
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	\mathbb{R}^+_*			
e^x	e^x	R			
$\sin(x)$	$\cos(x)$	R			
$\cos(x)$	$-\sin(x)$	R			

2. Opérations sur les dérivées

Le tableau suivant est également à connaître et nous donne la dérivée qui dépend des opérations sur certaines fonctions :

À RETENIR 🦞

Soient deux fonctions u et v et soit λ une constante réelle.

Fonction	Dérivée	Domaine de dérivabilité	
$\lambda \times u$	$\lambda \times u'$	En tout point où u est dérivable.	
u+v	u' + v'	En tout point où u et v sont dérivables.	
$u \times v$	$u' \times v + u \times v'$	En tout point où u et v sont dérivables.	
$\frac{1}{v}$	$-\frac{v'}{v^2}$	En tout point où ν est dérivable et non nulle.	
$\frac{u}{v}$	$\frac{u' \times v - u \times v'}{v^2}$	En tout point où u et v sont dérivables et non nulles.	

3. Dérivées de composées

Le tableau suivant, toujours à connaître, nous donne la dérivée des fonctions composées usuelles (i.e. "f de g de x") :

À RETENIR 🬹

Soit *u* une fonction.

Fonction	Dérivée	Domaine de dérivabilité	
u^n avec $n \in \mathbb{N}^*$	$nu'u^{n-1}$	En tout point où u est dérivable.	
$\frac{1}{u}$	$-\frac{u'}{u^2}$	En tout point où u est dérivable et non nulle.	
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$	En tout point où u est dérivable et strictement positive.	
e^u	$u'e^u$	En tout point où u est dérivable.	
$\sin(u)$	$u'\cos(u)$	En tout point où u est dérivable.	
cos(u)	$-u'\sin(u)$	En tout point où u est dérivable.	

Il est cependant possible de donner une formule plus générale.

À RETENIR 💡

Dérivée d'une composée

Soient f dérivable sur I et g dérivable sur l'ensemble des valeurs prises par f sur I. On a alors $(g \circ f)' = (g' \circ f) \times f'$.

À LIRE 👀

Fonction composée

On rappelle que la fonction $g \circ f$ est la fonction définie pour tout x par $(g \circ f)(x) = g(f(x))$.

III – Étude des variations d'une fonction

1. Lien dérivée - variations d'une fonction

Avec le signe de la dérivée d'une fonction, il est possible d'obtenir le sens de variation de cette fonction.

À RETENIR 🧣

Variations d'une fonction

Soit une fonction f dérivable sur un intervalle I.

- Si f' > 0 sur I, alors f est strictement croissante sur I.
- Si f' < 0 sur I, alors f est strictement décroissante sur I.
- Si f' = 0 sur I, alors f est constante sur I.

2. Extrema

À RETENIR 💡

Étude des extrema

Soient f dérivable sur un intervalle I, et $a \in I$:

- Si f admet un extremum local en a, alors on a f'(a) = 0.
- Si f'(a) = 0 et que le signe de f' est différent avant et après a, alors f'(a) est un extremum local de f.
- Si f'(a) = 0 et qu'on est négatif avant a et positif après, cet extremum local est un minimum local.
- Si f'(a) = 0 et qu'on est positif avant a et négatif après, cet extremum local est un maximum local.

À LIRE 🍑

Avec ceci, il est possible de retrouver la plupart des formules que nous avons vues sur les fonctions du second degré (sens de variation, sommet de la parabole, ...).