ZPM-FE

Funkcije

Definicije i svojstva Domena i slika funkcije Svojstva funkcije

Kompozicija i inver

Linearna i kvadratna

Linearna funkcija Kvadratna funkcija

Literatura

2. tjedan **Funkcije.**

ZPM-FER

rujan, 2017

Sadržaj

Elementarna matematika

ZPM-FER

Definicije i svojstv: Domena i slika funkcije Svojstva funkcije

Graf funkcije Kompozicija i inver Riješeni zadatci

Linearna i kvadratna funkcija

------Kvadratna funkcija Riješeni zadatci

itaratura

1 Funkcije

- Definicije i svojstva
- Domena i slika funkcije
- Svojstva funkcije
- Graf funkcije
- Kompozicija i inverz
- Riješeni zadatci
- 2 Linearna i kvadratna funkcija
 - Linearna funkcija
 - Kvadratna funkcija
 - Riješeni zadatci
- 3 Literatura

Funkcije – definicije

Elementarna matematika

ZPM-FEF

Punkcije Definicije i svojstv Domena i slika

Svojstva funkcije Graf funkcije

Kompozicija i inver

Riješeni zadatci Linearna i

kvadratna funkcija Linearna funkcij

Litaratur

Definicija funkcije

Funkcija f je preslikavanje koje svakom elementu x skupa A pridružuje (točno jedan) element y skupa B i pišemo $f: A \rightarrow B$ odnosno y = f(x). Tada se skup A zove domena funkcije f, a skup B kodomena.

Realna funkcija jedne realne varijable je funkcija $f: A \to B$ gdje su $A, B \subset \mathbb{R}$.

Primjeri realnih funkcija:

1
$$f(x) = x^2 + 3$$

2
$$g(x) = \sqrt{x-2}$$

3
$$h(x) = e^{2x-1}$$

Domena funkcije

Elementarna matematika

ZPM-FEF

Funkcije Definicije i svojstv Domena i slika funkcije

Graf funkcije Kompozicija i inver

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija Riješeni zadatci

Litaratura

Definicija

Domena realne funkcije $\mathrm{D}(f)$ je skup svih $x \in \mathbb{R}$ za koje zakon pridruživanja ima smisla odnosno za koje je funkcija dobro definirana.

Domena funkcije

Elementarna matematika

ZPM-FEF

FUNKCIJE

Definicije i svojstva

Domera i slika
funkcije

Svojstva funkcije

Graf funkcije

Kompozicija i inver:
Riješeni zadatci

kvadratna funkcija Linearna funkcija Kvadratna funkcij Riješeni zadatci

Literatura

Definicija

Domena realne funkcije $\mathrm{D}(f)$ je skup svih $x \in \mathbb{R}$ za koje zakon pridruživanja ima smisla odnosno za koje je funkcija dobro definirana.

Određivanje domene

Određivanje domene funkcije znači određivanje najvećeg podskupa skupa $\mathbb R$ za koje je izraz definiran. Ponekad se rabi izraz prirodno područje funkcije ili prirodna domena. To znači da u nazivniku ne smije biti 0, da izraz ispod korijena mora biti pozitivan broj, da se računa logaritam samo od strogo pozitivnih brojeva i slično. Prilikom određivanja domene koristite znanje o domenama svih elementarnih funkcija.

Primjer 1.

1
$$f(x) = x^2 + 3$$

Primjer 1.

- $f(x) = x^2 + 3$
 - **Rj**. Ova funkcija je dobro definirana za svaki realan broj pa je $\mathrm{D}(f)=\mathbb{R}.$

Literatura

Primjer 1.

- $f(x) = x^2 + 3$
 - **Rj.** Ova funkcija je dobro definirana za svaki realan broj pa je $\mathrm{D}(f)=\mathbb{R}$.
- 2 $g(x) = \sqrt{x-2}$

Literatura

Primjer 1.

- $f(x) = x^2 + 3$
 - **Rj.** Ova funkcija je dobro definirana za svaki realan broj pa je $D(f) = \mathbb{R}$.
- 2 $g(x) = \sqrt{x-2}$
 - **Rj.** Zbog drugog korijena imamo uvjet da je $x-2 \ge 0$ tj. $x \ge 2$. Dakle, domena je $D(q) = [2, \infty)$.

Primjer 1.

- $f(x) = x^2 + 3$
 - **Rj.** Ova funkcija je dobro definirana za svaki realan broj pa je $\mathrm{D}(f)=\mathbb{R}.$
- 2 $g(x) = \sqrt{x-2}$
 - **Rj.** Zbog drugog korijena imamo uvjet da je $x-2 \ge 0$ tj. $x \ge 2$. Dakle, domena je $D(g) = [2, \infty)$.
- 3 $h(x) = e^{2x-1}$

Primjer 1.

- 1 $f(x) = x^2 + 3$
 - **Rj.** Ova funkcija je dobro definirana za svaki realan broj pa je $\mathrm{D}(f)=\mathbb{R}$.
- 2 $g(x) = \sqrt{x-2}$
 - **Rj.** Zbog drugog korijena imamo uvjet da je $x-2 \ge 0$ tj. $x \ge 2$. Dakle, domena je $D(q) = [2, \infty)$.
- 3 $h(x) = e^{2x-1}$.
 - **Rj.** Domena eksponencijalne funkcije je skup realnih brojeva pa je $D(h) = \mathbb{R}$.

Linearna funkcija Kvadratna funkcija

Literatura

Primjer 2.

Odredite domenu funkcije
$$f(x) = \frac{\sqrt{x-2}}{x^2-9}$$
.

Linearna funkcija Kvadratna funkcij: Riješeni zadatci

Literatura

Primjer 2.

Odredite domenu funkcije $f(x) = \frac{\sqrt{x-2}}{x^2-9}$.

Rješenje. Imamo dva uvjeta na domenu:

- 1 uvjet zbog korijena: $x 2 \ge 0$
- 2. uvjet zbog nazivnika: $x^2 9 \neq 0$ tj. $x \neq \pm 3$

Domena je presjek ova dva uvjeta te dobivamo

$$D(f) = [2, \infty) \setminus \{3\}.$$

Slika funkcije

Elementarna matematika

ZPM-FER

Funkcije Definicije i svojstva Domena i slika funkcije

Graf funkcije Kompozicija i inver

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija Riješeni zadatci

Litaratura

Definicija

Slika funkcije je skup

$$\operatorname{Im}(f) = \{ y \in \mathbb{R} : \exists x \in \operatorname{D}(f) \text{t.d.} y = f(x) \}.$$

Slika funkcije

Elementarna matematika

ZPM-FER

Funkcije Definicije i svojstva Domena i slika funkcije Svojstva funkcije Graf funkcije

Svojstva funkcije Graf funkcije Kompozicija i inver Riješeni zadatci

Linearna i kvadratna funkcija

Litoratura

Definicija

Slika funkcije je skup

$$\operatorname{Im}(f) = \{ y \in \mathbb{R} : \exists x \in \operatorname{D}(f) \text{t.d.} y = f(x) \}.$$

Određivanje slike

Određivanje slike funkcije znači određivanje najvećeg podskupa kodomene za koje je postoji x u domeni takav da je y=f(x). Prilikom određivanja slike koristite znanje o slikama svih elementarnih funkcija, npr. korijen i kvadrat su pozitivni brojevi, slika eksponencijalne funkcije su strogo pozitivni brojevi i slično.

Kvadratna funkcij Riješeni zadatci

reijeseiii zauat

Primjer 3.

1
$$f(x) = x^2 + 3$$
,

Kvadratna funkcija Riješeni zadatci

Literatura

Primjer 3.

- 1 $f(x) = x^2 + 3$,
 - **Rj**. Zbog $x^2 \ge 0$ slijedi $x^2 + 3 \ge 3$ te je slika

$$\operatorname{Im}(f) = [3, \infty).$$

Literatura

Primjer 3.

- 1 $f(x) = x^2 + 3$, **Rj.** Zbog $x^2 \ge 0$ slijedi $x^2 + 3 \ge 3$ te je slika $Im(f) = [3, \infty)$.
- $g(x) = \sqrt{x-2},$

Primjer 3.

- 1 $f(x) = x^2 + 3$,
 - **Rj.** Zbog $x^2 > 0$ slijedi $x^2 + 3 > 3$ te je slika

$$\mathrm{Im}(f)=[3,\infty).$$

- 2 $g(x) = \sqrt{x-2}$
 - **Rj.** Korijen je uvijek pozitivan tj. $\operatorname{Im}(q) = [0, \infty)$.

Lit eratur:

Primjer 3.

- 1 $f(x) = x^2 + 3$, **Rj.** Zbog $x^2 \ge 0$ slijedi $x^2 + 3 \ge 3$ te je slika $Im(f) = [3, \infty)$.
- 2 $g(x) = \sqrt{x-2}$, **Rj.** Korijen je uvijek pozitivan tj. $\operatorname{Im}(g) = [0, \infty)$.
- $h(x) = e^{2x-1}$

Lit eratur:

Primjer 3.

- 1 $f(x) = x^2 + 3$, **Rj.** Zbog $x^2 \ge 0$ slijedi $x^2 + 3 \ge 3$ te je slika $\text{Im}(f) = [3, \infty)$.
- 2 $g(x) = \sqrt{x-2}$, **Rj.** Korijen je uvijek pozitivan tj. $\operatorname{Im}(g) = [0, \infty)$.
- 3 $h(x) = e^{2x-1}$ **Rj.** Im $(h) = (0, \infty)$ jer je eksponencijalna funkcija uvijek pozitivna.

ZPM-FER

Funkcije Definicije i svojstv Domena islika funkcije Svojstva funkcije Graf funkcije

Riješeni zadatci

kvadratna funkcija Linearna funkcij

itavatuva

Nultočka funkcije

Nultočka funkcije je $x \in D(f)$ takav da je f(x) = 0.

Nultočka funkcije

Nultočka funkcije je $x \in D(f)$ takav da je f(x) = 0.

Primjer 4.

Odredite nultočke funkcija:

- If $f(x) = x^2 + 3$ nema nultočke jer jednadžba $x^2 + 3 = 0$ nema realnih rješenja;
- 2 $g(x) = \sqrt{x-2}$ ima nultočku jer je x=2 rješenje jednadžbe $\sqrt{x-2}=0$;
- 3 $h(x) = e^{2x-1}$ nema nultočke jer jednadžba $e^{2x-1} = 0$ nema realnih rješenja;
- 4 $k(x) = \ln(x^2 3)$ ima nultočke jer iz $\ln(x^2 3) = 0$ slijedi da ie $x^2 3 = 1$ ti. $x^2 = 4$. Dakle, nultočke su $x_{1,2} = \pm 2$.

iteratura

Definicija

Neka je $f: A \rightarrow B$.

- Funkcija f je injekcija ako iz $x_1 \neq x_2$ slijedi $f(x_1) \neq f(x_2)$ za sve elemente x_1 i x_2 iz domene A.
- Funkcija f je surjekcija ako za svaki element y skupa B postoji element x skupa A takav da je f(x) = y tj. ako je $B = \operatorname{Im}(f)$.
- \blacksquare Funkcija f je bijekcija ako je injekcija i surjekcija.

Definicija

Neka je $f: A \rightarrow B$.

- Funkcija f je injekcija ako iz $x_1 \neq x_2$ slijedi $f(x_1) \neq f(x_2)$ za sve elemente x_1 i x_2 iz domene A.
- Funkcija f je surjekcija ako za svaki element y skupa B postoji element x skupa A takav da je f(x) = y tj. ako je $B = \operatorname{Im}(f)$.
- \blacksquare Funkcija f je bijekcija ako je injekcija i surjekcija.

Napomena. Primijetimo da definicija injekcije nije praktična za računanje jer sadrži u sebi znak ≠. Zato kod dokazivanja koristimo alternativnu definiciju:

f je injekcija ako iz jednakosti $f(x_1) = f(x_2)$ slijedi da je $x_1 = x_2$.

ZPM-FER

Funkcije

Definicije i svojstv Domena i slika funkcije

funkcje Svojetva funkcija

Graf funkcije Kompozicija i inver

Linearna i kvadratna

Linearna funkcija Kvadratna funkcij

iteratura

Primjer 5.

Pokažite da je funkcija $f(x) = \frac{x+2}{x-1}$ injekcija.

ZPM-FEF

Funkcije Definicije i svojstv Domena i slika

Svojstva funkcije Graf funkcije Kompozicija i inverz

Kompozicija i inverz Riješeni zadatci

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija Riješeni zadatci

Literatura

Primjer 5.

Pokažite da je funkcija $f(x) = \frac{x+2}{x-1}$ injekcija.

Rješenje. Dakle, dokazivanje injekcije započinjemo s jednakosti $f(x_1) = f(x_2)$ odnosno

$$\frac{x_1+2}{x_1-1}=\frac{x_2+2}{x_2-1}$$

te pomnožimo s nazivnicima i dobijemo

$$x_1x_2 + 2x_2 - x_1 - 2 = x_1x_2 - x_2 + 2x_1 - 2$$
.

Sada slijedi

$$3x_1 = 3x_2$$

odnosno $x_1 = x_2$ čime smo dokazali da je f injekcija.

ZPM-FE

Funkcije Definicije i svojs

funkcije Svojstva funkcije Graf funkcije Kompozicija i inverz

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija Riješeni zadatci

Literatura

Ostala svojstva funkcije

- Funkcija f je neparna ako vrijedi f(-x) = -f(x) za svaki $x \in D(f)$.
- Funkcija f je parna ako vrijedi f(-x) = f(x) za svaki $x \in D(f)$.
- Funkcija f je periodična ako postoji T > 0 takav da vrijedi f(x + T) = f(x) za svaki $x \in D(f)$.

Linearna funkcija Kvadratna funkcija Riješeni zadatci

Literatur

Primjer 6.

Ispitajte parnost funkcija:

(a)
$$f(x) = \cos(2x)$$
;

(b)
$$f(x) = \frac{2^x + 3^x}{2^x - 3^x}$$

Rješenje.

(a) f je parna jer je cos parna funkcija tj.

$$f(-x) = \cos(-2x) = \cos(2x) = f(x)$$

(b)

$$f(-x) = \frac{2^{-x} + 3^{-x}}{2^{-x} - 3^{-x}} = \frac{\frac{1}{2^x} + \frac{1}{3^x}}{\frac{1}{2^x} - \frac{1}{3^x}} = -\frac{2^x + 3^x}{2^x - 3^x} = -f(x)$$

pa slijedi da je f neparna funkcija

Graf funkcije

Elementarna matematika

ZPM-FE

Definicije i svojs

Domena islika funkcije Svojstva funkcije

Graf funkcije

Kompozicija i inve Riješeni zadatci

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcij: Riješeni zadatci

itoratura

Graf funkcije f je podskup točaka (x, y) oblika

$$\Gamma_f = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = f(x), x \in D_f\}.$$

Domena funkcije D_f je smještena na osi x dok je slika funkcije smještena na osi y.

Graf funkcije

Elementarna matematika

Graf funkcije f je podskup točaka (x, y) oblika

$$\Gamma_f = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = f(x), x \in D_f\}.$$

Domena funkcije D_f je smještena na osi x dok je slika funkcije smještena na osi v.

Napomena. Važno grafa funkcije leži u činjenici da iz samog grafa možemo saznati domenu, sliku i sva svojstva funkcije.

ZPM-FE

Funkcije

Definicije i svojstva

Domena i slika
funkcije

Svojstva funkcije

Graf funkcije

Linearna i kvadratna

Linearna funkcija Kvadratna funkcija Riješeni zadatci

Literatura

Analiza funkcije pomoću grafa

- Domena je ortogonalna projekcija grafa na os x, a slika je ortogonalna projekcija grafa na os y.
- Funkcija f je injekcija ako njezin graf siječe svaki pravac paralelan s osi x u najviše jednoj točki.
- Funkcija f je surjekcija ako se projekcija grafa na y os podudara s kodomenom funkcije.
- \blacksquare Graf parne funkcije je osno simetričan s obzirom na os y.
- Graf neparne funkcije je centralno simetričan s obzirom na ishodište.

Analiza funkcije pomoću grafa

Elementarna matematika

ZPM-FER

Funkcije

Domena i slika funkcije Svojstva funkcije

Graf funkcije

Kompozicija i inve Riješeni zadatci

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcij Riješeni zadatci

Literatura

- domena funkcije $D_f = \mathbb{R}$ = projekcija grafa na os x
- slika funkcije $Im(f) = [-2, \infty)$ = projekcija grafa na os y
- funkcija nije injekcija = graf siječe pravac paralelan s osi x u dvije točke
 - nema simetrije te funkcija nije niti parna niti_neparna

Literatura

Primjeri

Nacrtajte grafove funkcija:

- f(x) = 1 (konstantna funkcija),
- h(x) = 2x + 3 (linearna funkcija),
- $y(x) = x^2$ (kvadratna funkcija),
- $g(x) = \frac{1}{x}$

Analiza grafova iz prethodnog primjera

- 1 f(x) = 1: $D(f) = \mathbb{R}$, Im(f) = 1, f parna, nije injekcija
- h(x) = 2x + 3: $D(h) = Im(h) = \mathbb{R}$, h bijekcija, niti parna niti neparna
- $y(x) = x^2$: $D(f) = \mathbb{R}$, $Im(f) = [0, \infty)$, f nije injekcija, parna
- $q(x) = \frac{1}{x}$: $D(q) = \mathbb{R} \setminus \{0\}$, $Im(q) = \mathbb{R} \setminus \{0\}$, q bijekcija, g neparna

Kompozicija i inver

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija Riješeni zadatci

Literatura

Kompozicija funkcija

Neka su definirane funkcije $f:A\to B$ i $g:B\to C$. Tada definiramo kompoziciju $g\circ f:A\to C$ sa

$$(g \circ f)(x) = g(f(x)).$$

Inverzna funkcija

Ako je funkcija $f: A \to B$ bijekcija, tada postoji inverzna funkcija $f^{-1}: B \to A$. takva da vrijedi

$$(f \circ f^{-1})(y) = y$$

$$(f^{-1}\circ f)(x)=x.$$

_it eratur

Primjer 6.

Neka je $f(x) = x^2$ i g(x) = x + 1. Odredite kompozicije $f \circ g$ i $g \circ f$, te pronađite inverze f^{-1} i g^{-1} , ukoliko postoje.

Rješenje.

Kompozicije su $(f \circ g)(x) = (x+1)^2 \mid (g \circ f)(x) = x^2 + 1$. Primijetimo da ne vrijedi $f \circ g = g \circ f$.

Funkcija $f: \mathbb{R} \to \mathbb{R}$ nije bijekcija, ali je zato $f: A \to A$ bijekcija ako stavimo $A = \{x \in \mathbb{R} \mid x \ge 0\}$. Tako definirana funkcija f ima inverz $f^{-1}(x) = \sqrt{x}$.

Linearna funkcija g je bijekcija i vrijedi da je $g^{-1}(x) = x - 1$.

iteratur

Primjer - pisanje funkcija u obliku kompozicije

- (a) Funkcija $f(x) = x^3 + 7$ može biti napisana kao kompozicija funkcija $g(x) = x^3 + h(x) = x + 7$ odnosno $f(x) = (h \circ g)(x)$ (uočite da je $(g \circ h)(x) = (x + 7)^3$).
- (b) Funkcija $f(x) = (x+3)^2 + 3$ može biti napisana kao kompozicija $f(x) = (g \circ h \circ g)(x)$ gdje je g(x) = x+3 i $h(x) = x^2$. Taj zapis će nam biti bitan prilikom deriviranja složenih funkcija.

Računanje inverzne funkcije

Elementarna matematika

ZPM-FE

Funkcije Definicije i svojstv

Domena i slika funkcje Svojstva funkcije Graf funkcije

Kompozicija i inver

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija

itaratura

Postupak traženja inverzne funkcije

Krećemo od jednadžbe y=f(x) i želimo izraziti varijablu x pomoću varijable y, tj. dobiti x=g(y). Iz tradicionalnih razloga, umjesto $x=f^{-1}(y)$ pišemo $y=f^{-1}(x)$.

Računanje inverzne funkcije

Elementarna matematika

Postupak traženja inverzne funkcije

Krećemo od jednadžbe y = f(x) i želimo izraziti varijablu xpomoću varijable y, tj. dobiti x = g(y). Iz tradicionalnih razloga, umjesto $x = f^{-1}(y)$ pišemo $y = f^{-1}(x)$.

Primjer 7.

Pronadite inverz funkcije $f(x) = \frac{2x-1}{x+3}$.

Rješenje. Počinjemo s
$$y = \frac{2x-1}{x+3}$$
 i dobivamo

Rješenje. Počinjemo s
$$y = \frac{2x - 1}{x + 3}$$
 i dobivamo $2x - 1 = xy + 3y$ odnosno $x(2 - y) = 3y + 1$. To nam daje $x = \frac{3y + 1}{2 - y}$ pa je $f^{-1}(y) = \frac{3y + 1}{2 - y}$ ili $f^{-1}(x) = \frac{3x + 1}{2 - x}$.

Riješeni zadatci

Elementarna matematika

ZPM-FEF

Funkcije Definicije i svojst

funkcije Svojstva funkcije

Kompozicija i ir

Riješeni zadato

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija

Literatura

Zadatak 1

Odredite domenu funkcije $f(x) = \sqrt{x^2 - 4} + \log(1 - x)$.

Riješeni zadatci

Elementarna matematika

ZPM-FEF

Funkcije

Definicije i svojstva

Domena i slika
funkcije

Svojstva funkcije

Graf funkcije

Kompozicija i inverz

Kompozicija i inv Riješeni zadatci

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcij: Riješeni zadatci

iteratura

Zadatak 1

Odredite domenu funkcije $f(x) = \sqrt{x^2 - 4} + \log(1 - x)$.

Rješenje

- (1) Zbog korijena imamo uvjet $x^2 4 \ge 0$ čije rješenje je interval $x \in \langle -\infty, -2] \cup [2, \infty \rangle$.
- (2) Zbog logaritma imamo uvjet 1 x > 0 te je $x \in \langle -\infty, 1 \rangle$. Presjek tih dvaju skupova je interval

$$D(f) = \langle -\infty, -2 \rangle$$

ZPM-FEF

Funkcij

Definicije i svojstva Domena i slika funkcije Svojstva funkcije

Kompozicija i ir

Riješeni zadato

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija

Literatura

Zadatak 2

Odredite domenu funkcije
$$f(x) = \sqrt{1-x} + \frac{1}{\ln(x^2)}$$
.

Literatur

Zadatak 2

Odredite domenu funkcije $f(x) = \sqrt{1-x} + \frac{1}{\ln(x^2)}$.

Rješenje

- (1) Zbog korijena imamo uvjet $1 x \ge 0$ čije rješenje je interval $x \in \langle -\infty, 1 \rangle$.
- (2) Zbog logaritma imamo uvjet $x^2 > 0$ te je $x \in \mathbb{R} \setminus \{0\}$.
- (3) Zbog nazivnika imamo uvjet $\ln(x^2) \neq 0$ tj. $x^2 \neq 1$ iz čega slijedi da $x \neq \pm 1$.

Presjek ovih triju uvjeta je

$$D(f) = \langle -\infty, -1 \rangle \cup \langle -1, 0 \rangle \cup \langle 0, 1 \rangle.$$

literatura

Zadatak 3

Odredite jesu li sljedeće funkcije parne ili neparne:

- (a) $f(x) = x^{2n}$, $n \in \mathbb{N}$;
- (b) $f(x) = x^{2n-1}, n \in \mathbb{N};$
- (c) f(x) = |5x 1|.

Literatur

Zadatak 3

Odredite jesu li sljedeće funkcije parne ili neparne:

- (a) $f(x) = x^{2n}, n \in \mathbb{N};$
- (b) $f(x) = x^{2n-1}, n \in \mathbb{N};$
- (c) f(x) = |5x 1|.

Rješenje

- (a) $f(-x) = (-x)^{2n} = (-1)^{2n}x^{2n} = x^{2n} = f(x) \Rightarrow f$ je parna;
- (b) $f(-x) = (-x)^{2n-1} = (-1)^{2n-1}x^{2n-1} = -x^{2n-1} = -f(x)$
- $\Rightarrow f$ je neparna;
- (c) $f(-x) = |-5x 1| = |5x + 1| \Rightarrow f$ nije niti parna niti neparna.

ZPM-FEI

Funkcije

Definicije i svojstva Domena i slika funkcije Svojstva funkcije Graf funkcije

Distributed

Linearna i kvadratna funkcija

Kvadratna funkcija

iteratura

Zadatak 4

Da li je funkcija $f(x) = \log(\sqrt{x+2} - 1)$ injekcija?

Literatur

Zadatak 4

Da li je funkcija $f(x) = \log(\sqrt{x+2} - 1)$ injekcija?

Rješenje

Moramo provjeriti da li iz jednakosti $f(x_1) = f(x_2)$ slijedi $x_1 = x_2$. Sada slijedi

$$\log(\sqrt{x_1+2}-1) = \log(\sqrt{x_2+2}-1)$$

$$\sqrt{x_1+2}-1 = \sqrt{x_2+2}-1$$

$$\sqrt{x_1+2} = \sqrt{x_2+2}$$

$$x_1+2 = x_2+2$$

$$x_1 = x_2$$

Dakle, f je injekcija.

District of the second

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija

literatura

Zadatak 5

Ako je
$$f\left(\frac{1}{x}\right) = \frac{2x+3}{3x-2}$$
, koliko je $f^{-1}(x)$?

Zadatak 5

Ako je
$$f\left(\frac{1}{x}\right) = \frac{2x+3}{3x-2}$$
, koliko je $f^{-1}(x)$?

Rješenje

Stavimo li
$$\frac{1}{x} = z \left(x = \frac{1}{z}\right)$$
 dobivamo $f(z) = \frac{2\frac{1}{x} + 3}{3\frac{1}{x} - 2} = \frac{2 + 3z}{3 - 2z}$. Sada to izjednačimo s y i slijedi

$$\frac{2+3z}{3-2z} = y$$
 odnosno $2+3z = 3y-2zy$ pa je $z = f^{-1}(y) = \frac{3y-2}{2}$ ili $f^{-1}(x) = \frac{3x-2}{2}$

$$z = f^{-1}(y) = \frac{3y-2}{2y+3}$$
 iii $f^{-1}(x) = \frac{3x-2}{2x+3}$.

ZPM-FEI

Funkcije Definicije i svojstv

Domena i slika funkcije Svoistva funkcije

Graf funkcije

Riješeni zadato

Linearna i kvadratna

Linearna funkcija Kvadratna funkcija

iteratura

Zadatak 6

Ako je
$$f(x + 1) = \frac{x + 2}{x - 3}$$
, koliko je $f(x - 1)$?

_it eratur

Zadatak 6

Ako je
$$f(x + 1) = \frac{x + 2}{x - 3}$$
, koliko je $f(x - 1)$?

Rješenje

Stavimo li x + 1 = z (x = z - 1) dobivamo $f(z) = \frac{z + 1}{z - 4}$.

Stavimo li z = x - 1 dobivamo $f(x - 1) = \frac{x}{x - 5}$.

Mogli smo odmah staviti y - 1 = x + 1 (x = y - 2) i dobiti

$$f(y-1)=\frac{y}{y-5}.$$

ZPM-FE

Funkcije

Definicije i svojsti

Domena islika funkcije Svojstva funkcije

Svojstva funkcije Graf funkcije

Riješeni zadato

Linearna i kvadratna funkcija

Kvadratna funkcija

iteratura

Zadatak 7

Ako je
$$f(x) = \frac{3x-5}{x+3}$$
, koliko je $f^{-1}(1)$?

Linearna funkcija Kvadratna funkcija Riješeni zadatci

_it eratur:

Zadatak 7

Ako je
$$f(x) = \frac{3x-5}{x+3}$$
, koliko je $f^{-1}(1)$?

Rješenje

Jedan način rješavanja je naći inverznu funkciju i uvrstiti 1. Primijetimo da ustvari ne moramo tražiti inverznu funkciju. Naime ako vrijedi $x=f^{-1}(1)$, tada je f(x)=1. Znači tražimo x takav da je f(x)=1 odnosno rješavamo jednadžbu $\frac{3x-5}{x+3}=1$ i dobijemo x=4.

ZPM-FE

Funkcije

Definicije i svo Domena i slik

funkcije Svojstva funkcije

Graf funkcije Kompozicija i inve

Riješeni zadatci

Linearna i kvadratna

Linearna funkcija Kvadratna funkcija

literatura

Zadatak 8

Ako je
$$f(1+x) = (1-x)^2$$
, koliko je $f(1-x)$?

Literatura

Zadatak 8

Ako je
$$f(1+x) = (1-x)^2$$
, koliko je $f(1-x)$?

Rješenje

Trebamo najprije odrediti f(x). Stavimo li y = 1 + x dobivamo x = y - 1 odnosno $f(y) = (1 - y + 1)^2 = (2 - y)^2$. Sada je $f(1 - x) = (2 - 1 + x)^2 = (x + 1)^2$.

ZPM-FFR

Funkcije

Definicije i svo

Domena islika funkcije Svoistva funkcije

Graf funkcije Kompozicija i inve

Riješeni zadato

Linearna i kvadratna

kvaurauna funkcija Linearna funkcij

rejesem zadate

Zadatak 9

Riješite nejednadžbu
$$f(x-3) > 3$$
 ako je $f(x+1) = \frac{x+1}{x-1}$.

ZPM-FEF

Funkcije Definicije i sv

Domena i slika funkcije Svojstva funkcije Graf funkcije

Kompozicija i inv Riješeni zadatci

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija Riješeni zadatci

Literatura

Zadatak 9

Riješite nejednadžbu f(x-3) > 3 ako je $f(x+1) = \frac{x+1}{x-1}$.

Rješenje

Najprije moramo odrediti funkciju f(x). Stavimo li y = x + 1 (i x = y - 1), dobivamo $f(y) = \frac{y}{y - 2}$. Sada zadana

nejednadžba f(x-3) > 3 prelazi u $\frac{x-3}{x-5} > 3$. Prebacivanjem broja 3 na lijevu stranu dobivamo

$$\frac{2(6-x)}{x-5} > 0.$$

Podjelom na slučajeve, vidimo da su izrazi 6 - x i x - 5 istog predznaka samo na intervalu < 5, 6 > što je rješenje.

Linearna fukcija – definicije, primjer

Elementarna matematika

ZPM-FE

Funkcij

Domena i slika funkcije Svojstva funkcije Graf funkcije Kompozicija i inverz Riješeni zadatci

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija

itoratura

Definicija

Linerna funkcija jedne varijable je funkcija oblika f(x) = ax + b. Graf linearne funkcije je pravac s koeficijentom smjera a i odsječkom b na y osi.

Linearna fukcija – definicije, primjer

Elementarna matematika

ZPM-FE

Funkcije Definicije i svo

Domena i slika funkcije Svojstva funkcije Graf funkcije Kompozicija i inverz Riješeni zadatci

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija Riješeni zadatci

it eratur:

Definicija

Linerna funkcija jedne varijable je funkcija oblika f(x) = ax + b. Graf linearne funkcije je pravac s koeficijentom smjera a i odsječkom b na y osi.

Primier

Graf funkcije f(x) = 2x + 3 je pravac koji prolazi točkom (0,3) i koji ima nagib 2. Više o pravcima u poglavlju *Analitička geometrija*.

Kvadratna funkcija – definicije

Elementarna matematika

ZPM-FEF

Funkcije Definicije i svojst Domena i slika funkcije

Svojstva funkcije Graf funkcije Kompozicija i inverz Riješeni zadatci

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija Riješeni zadatci

Literatur

Kvadratna funkcija

Kvadratna funkcija je funkcija oblika

$$f(x) = ax^2 + bx + c \ (a \neq 0).$$

Graf kvadratne funkcije je parabola okrenuta prema gore ako je a > 0, a prema dolje ako je a < 0.

Tjeme parabole ima koordinate (x_0, y_0) gdje je $x_0 = -\frac{b}{2a}$,

$$y_0 = \frac{4ac - b^2}{4a}.$$

Nultočke su rješenja pripadne kvadratne jednadžbe f(x) = 0,

tj.
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Crtanje grafa kvadratne funkcije

Elementarna matematika

ZPM-FEF

Funkcije
Definicije i svojstva
Domena i slika
funkcije
Svojstva funkcije
Graf funkcije
Kompozicija i invers
Riješeni zadatci

kvadratna funkcija Linearna funkcija Kvadratna funkcija Riješeni zadatci Prilikom crtanja parabole, kvadratnu funkciju $f(x) = ax^2 + bx + c$ svođenjem na potpuni kvadrat zapisujemo u obliku

$$f(x) = a(x - x_0)^2 + y_0.$$

Iz ovoga zapisa lako isčitamo tjeme parabole tj. točku $T(x_0, y_0)$. Sada još nađemo nultočke ili neke druge dvije točke parabole i možemo ju skicirati.

- Graf kvadratne funkcije oblika $f(x) = ax^2 + c$ je parabola s tjemenom na osi y i simetrična je s obzirom na os y.
- Graf funkcije $f(x) = ax^2$ je parabola s tjemenom u ishodištu

Primjeri

Elementarna matematika

ZPM-FEF

Funkcije Definicije i svoj

Domena i slika funkcije Svojstva funkcije Graf funkcije

Graf funkcije Kompozicija i inver:

Riješeni zadatci

Linearna i kvadratna funkcija

Kvadratna funkcija Riješeni zadatci

Literatura

Primjeri

Pogledajmo grafove sljedećih kvadratnih funkcija:

1
$$f(x) = x^2$$
, $T(0, 0)$

$$g(x) = x^2 - 2$$
, $T(0, -2)$

3
$$h(x) = -(x+1)^2$$
, $T(-1, 0)$

4
$$k(x) = -(x-2)^2 + 1$$
,
 $T(2, 1)$.

Riješeni zadatci

Elementarna matematika

ZPIM-FEI

Funkcije

Domena i slika funkcije Svojstva funkcije Graf funkcije Kompozicija i inver Riješeni zadatci

Linearna i kvadratna funkcija

cinearna funkcja Kvadratna funkcji Riješeni zadatci

Literatur

Zadatak 10

Odredite tjeme sljedećih parabola:

(a)
$$y = x^2 + 6x + 8$$
,

(b)
$$y = 2x^2 - 4x + 1$$
,

(c)
$$y = -x^2 + 4x + 2$$

Rješenje.

Provodimo postupak svođenja na potpuni kvadrat.

(a)
$$y = x^2 + 6x + 8 = x^2 + 6x + 9 - 1 = (x + 3)^2 - 1$$

Tjeme je $T(-3, -1)$.

(b)

$$y = 2x^{2} - 4x + 1 = 2(x^{2} - 2x) + 1$$
$$= 2(x^{2} - 2x + 1 - 1) + 1 = 2(x - 1)^{2} - 1$$

Tjeme je T(1, -1).

Kvadratna funkcija

Litaratur

(c)

$$y = -x^{2} + 4x + 2 = -(x^{2} - 4x) + 2 =$$

$$= -(x^{2} - 4x + 4 - 4) + 2 =$$

$$= -(x - 2)^{2} + 4 + 2 = -(x - 2)^{2} + 6$$

Tjeme je T(2, 6).

(c)

$$y = -x^{2} + 4x + 2 = -(x^{2} - 4x) + 2 =$$

$$= -(x^{2} - 4x + 4 - 4) + 2 =$$

$$= -(x - 2)^{2} + 4 + 2 = -(x - 2)^{2} + 6$$

Tjeme je T(2,6).

Napomena. Naravno da tjeme možemo pronaći i korištenjem gotovih formula za koordinate tjemena, ako ih znamo.

Kako pronaći jednadžbu parabole zadane grafom?

Elementarna matematika

ZPM-FEF

Funkcije

Definicije i svojstva Do me na i slika funkcije Svojstva funkcije Graf funkcije Ko mpozicija i inverz Riješeni zadatci

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija

Riješeni zadatci

Zadatak 11

Želimo pronaći jednadžbu kvadratne funkcije čiji graf je zadan slikom:

Kako pronaći jednadžbu parabole zadane grafom?

Elementarna matematika

ZPM-FEI

Funkcije

Do me na i slika funkcije Svojstva funkcije Graf funkcije Ko mpozicija i invers

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija

Literatura

Zadatak 11

Želimo pronaći jednadžbu kvadratne funkcije čiji graf je zadan slikom:

Rješenje.

Iz grafa vidimo da je tjeme u točki T(0,2) na osi y pa je jednadžba oblika $f(x) = ax^2 + 2$. Uvrštavanjem nultočke (1,0) dobijemo a = -2 te je $f(x) = -2x^2 + 2$.

ZPM-FE

Funkcije

Definicije i svojstva Domena i slika funkcije Svojstva funkcije Graf funkcije Kompozicija i inverz Riješeni zadatci

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija

Riješeni zadato

Lit eratura

Zadatak 12

Pronađite jednadžbu kvadratne funkcije čiji graf je zadan slikom:

Domena Islika funkcije Svojstva funkcije Graffunkcije

Kompozicija i inve Riješeni zadatci

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcij

Litaratur

Zadatak 12

Pronađite jednadžbu kvadratne funkcije čiji graf je zadan slikom:

Rješenje.

Iz grafa vidimo da je tjeme u točki T(1,-2) pa je jednadžba oblika $f(x) = a(x-1)^2 - 2$. Uvrštavanjem točke A(2,-1) dobijemo a = 1 te je $f(x) = (x-1)^2 - 2 = x^2 - 2x - 1$.

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija

Riješeni zadato

iteratura

Zadatak 13

Pokažite da je funkcija $f(x) = 2 - x^2$ parna i da nije injekcija. Zadatak riješite grafički i računski. Razmislite da li postoji parna funkcija koja je injekcija.

Literatura

Zadatak 13

Pokažite da je funkcija $f(x) = 2 - x^2$ parna i da nije injekcija. Zadatak riješite grafički i računski. Razmislite da li postoji parna funkcija koja je injekcija.

Rješenje

Grafički: ovo je kvadratna funkcija čiji graf je parabola simetrična s obzirom na os y s tjemenom u $T(0,2) \Rightarrow f$ nije injekcija i f je parna funkcija.

Računski: $f(x_1) = f(x_2) \Rightarrow 2 - x_1^2 = 2 - x_2^2 \Rightarrow x_1^2 = x_2^2 \Rightarrow x_1 = \pm x_2$ Sada zaključujemo da f nije injekcija jer postoje dva različita x-eva s istom vrijednosti funkcije. Vidimo da je $f(-x) = 2 - x^2 = f(x)$ te je f parna.

ZPM-FER

_....

Funkcij

Definicije i svojstva Domena i slika funkcije Svojstva funkcije Graf funkcije

Linearna i

Linearna funkcija

Riješeni zadato

literatura

Zadatak 14

Odredite sliku funkcije $f(x) = \frac{1}{x^2+1}$.

Literatura

Zadatak 14

Odredite sliku funkcije $f(x) = \frac{1}{x^2+1}$.

Rješenje

Budući da je graf kvadratne funkcije $g(x)=x^2+1$ parabola s tjemenom u T(0,1) okrenuta prema gore, jasno je da je slika ove kvadratne funkcije $\mathrm{Im}(g)=[1,+\infty)$. Sada zbog $\frac{1}{\infty}=0$ slijedi

$$g(x) \ge 1 \Rightarrow \frac{1}{g(x)} \le 1;$$

$$g(x) < \infty \implies \frac{1}{g(x)} > 0.$$

Dakle, slika od $f(x) = \frac{1}{a(x)}$ je $\operatorname{Im}(f) = \langle 0, 1]$.

matematika

Zadatak 15

Odredite skup vrijednosti tj. sliku funkcije $f(x) = \frac{2}{x^2 - 2x + 3} + 1$.

Rješenje

Graf kvadratne funkcije $g(x) = x^2 - 2x + 3 = (x - 1)^2 + 2$ je parabola s tjemenom u T(1,2) okrenuta prema gore te je jasno da je slika ove funkcije $\mathrm{Im}(g)=[2,\infty)$. Sada iz $\infty > q(x) \ge 2 \left(\frac{2}{\infty} = 0\right)$ slijedi da je

$$0<\frac{2}{g(x)}\leq 1.$$

Primijetimo $f(x) = \frac{2}{g(x)} + 1$ te dodavanjem 1 cijeloj nejednakosti dobijemo $1 < f(x) = \frac{2}{g(x)} + 1 \le 2$ odnosno slika od f je $\operatorname{Im}(f) = \langle 1, 2 \rangle$.

Literatura l

Elementarna matematika

ZPM-FEF

Funkcije

Domena i slika funkcije Svojstva funkcije Graf funkcije Kompozicija i inverz Riješeni zadatci

Linearna i kvadratna funkcija

Linearna funkcija Kvadratna funkcija Riješeni zadatci

Literatura

Branimir Dakić, Neven Elezović, Matematika u 24 lekcije, Element, Zagreb, 2010.

Fakultet elektrotehnike i računarstva, Zavod za primijenjenu matematiku, Repetitorij elementarne matematike, Element, Zagreb, 2014.

Materijale pripremili:

doc.dr.sc. Domagoj Kovačević doc.dr.sc. Lana Horvat Dmitrović