Motivation

- · process sequential data
- · capture history of inputs/states
- share parameters through a very deep computational graph
 - output is a function of the previous output
 - produced using the same update rule applied to the previous outputs.
- different from convolution across time steps

Recurrent Neural Nets

RNN Challenges

- repeated application of the same operation f
 - exploding gradients good ient clipping Remedy vanishing gradients SKi? Connections
- long-term dependencies

Back-Propagation Through Time(BPTT)

- gradient computation for unfolded loss function w.r.t. parameters very expensive
- O(T) where T is history length
- no parallelization (sequential dependence)

Teacher Forcing

- use targets as prior outputs
- time steps decoupled
- training parallelizable

(may also be applied to RNNs with additional hidden-to-hidden connections)

Recursive NNs

- generalization of RNNs
- computational graph structured as deep tree
 - reduces to sequence in RNNs
- can process complex data structures
 - e.g. parse trees

recursive networks

sequence to sequence (same length)

can compute any function computable by a Turing machine (universal function approximator)

sequence to sequence (same length)

lacks important information from past unless o is very high-dimensional & rich

sequence to sequence (same length)

sequence-to-sequence

can model arbitrary distribution over sequences of y given sequences of x

complex structure to fixed-size vector

RNNs

bi-directional sequence to sequence (same length)

bi-directional

sequence to fixed-size vector

encoder (reader): read input sequence, generate hidden state (= encoder part of encoder-decoder architecture)

sequence to sequence (variable length)

Async meaning the model can handle diff inp seq length and can produce diff out seq length.

ወ

ecod

fixed-size ("context") vector to sequence

strange indexing (stressing prediction of next output)

decoder (writer): generate output sequence from hidden state (= decoder part of encoder-decoder architecture)

LSTM

The repeating module in an LSTM contains four interacting layers.

LSTM Forget Gate

Decide what information from cell state is deleted (0) or kept (1).

LSTM Cell State Update

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Delete information and add new one.

Peep Hole Connections

$$\begin{split} f_t &= \sigma\left(W_f \cdot \left[\textbf{\textit{C}}_{\textbf{\textit{t}}-\textbf{\textit{1}}}, h_{t-1}, x_t \right] \ + \ b_f \right) \\ i_t &= \sigma\left(W_i \cdot \left[\textbf{\textit{C}}_{\textbf{\textit{t}}-\textbf{\textit{1}}}, h_{t-1}, x_t \right] \ + \ b_i \right) \end{split}$$

$$o_t = \sigma\left(W_o \cdot [\boldsymbol{C_t}, h_{t-1}, x_t] + b_o\right)$$

Allow gates to look at cell states.

LSTM Cell State

Removing or adding information to the cell state is controlled by gates.

LSTM Input Gate

$$\begin{split} i_t &= \sigma\left(W_i {\cdot} [h_{t-1}, x_t] \ + \ b_i\right) \\ \tilde{C}_t &= \tanh(W_C {\cdot} [h_{t-1}, x_t] \ + \ b_C) \end{split}$$

Decide what new information to store.

LSTM Output Gate

$$o_{t} = \sigma \left(W_{o} \left[h_{t-1}, x_{t} \right] + b_{o} \right)$$
$$h_{t} = o_{t} * \tanh \left(C_{t} \right)$$

Transform state and decide what to output.

Coupled I/F Gates

 $C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$

Only input new values to the state when something older gets forgotten.

Gated Recurrent Units (GRUs)

Combines forget and input gates into a single update gate.

Merges cell state and hidden state.

FastRNN

adding a weighted residual connection

new parameters: $0 \le \alpha$, $\beta \le 1$; typically: $\alpha \ll 1$ and $\beta \approx 1 - \alpha$

RNNs

- work well for sequential data
 - time series (with low sampling rate)
 - texts (translation, discourse, sentiment, ...)
- · support variable-length input
 - including long-term dependencies
- are hard to parallelize

Thidden chuk.

(8) IN 1541 memory cells the First

Cell Wees Rignoid any alternatives?

Cell Wees any Enchia that has range

Ansi- User any which is differentiasis.

