Oscillators

- An oscillator is an electronic system.
- It comprises active and passive circuit elements and sinusoidal produces repetitive waveforms at the output without the application of a *direct external input signal to the circuit*.
- It converts the dc power from the source to ac power in the load. A rectifier circuit converts ac to dc power, but an oscillator converts dc noise signal/power to its ac equivalent.

Difference between an amplifier and an oscillator:

Schematic block diagrams showing the difference between an amplifier and an oscillator

Need of an Oscillator

- An oscillator circuit is capable of producing ac voltage of desired frequency and waveshape.
- To test performance of electronic circuits, it is called signal generator.
- It can produce sine, square, pulse, triangular, or sawtooth waveshape.
- High frequency oscillator are used in broadcasting.
- Microwave oven uses an oscillator.
- Used for induction heating and dielectric heating.

Types of Oscillators

- Sinusoidal or non-sinusoidal.
- An oscillator generating square wave or a pulse train is called multivibrator:
 - Bistable multivibrator (Flip-Flop Circuit).
 - Monostable multivibrator.
 - 3. Astable multivibrator (Free-running).
- Depending upon type of feedback, we have
 - 1. Tuned Circuit (*LC*) oscillators.
 - 2. RC oscillators, and
 - 3. Crystal oscillators.

Using Positive Feedback

The gain with positive feedback is given

as

$$A_f = \frac{A}{1 - A\beta}$$

By making $1 - A\beta = 0$, or $A\beta = 1$, we get gain as infinity.

This condition $(A\beta = 1)$ is known as Barkhausen Criterion of oscillations.

It means you get output without any input!

What happens to the output?

There are three possibilities.

(1) If $A\beta$ < 1, we get decaying of damped oscillations.

(2) If $A\beta > 1$, we get growing oscillations.

(3) If $A\beta = 1$, we get sustained oscillations. In this case, the circuit supplies its own input signal.

Wherefrom comes the starting voltage?

- Each resistor is a noise generator.
- The feedback network is a resonant circuit giving maximum feedback voltage at frequency f_0 , providing phase shift of 0° only at this frequency.
- The initial loop gain $A\beta > 1$.
- The oscillations build up only at this frequency.
- After the desired output is reached, Aβ reduces to unity.

Tank Circuit

LC parallel circuit is called tank circuit.

Once excited, it oscillates at

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

The energy keeps oscillating between electric potential energy and magnetic filed energy.

Damped oscillations are produced.

Hartley Oscillator

Hartley Oscillator

When the tank circuit resonates, the circulating current flows through L_1 in series with L_2 . Hence the equivalent inductance is

$$L = L_1 + L_2$$

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

The feedback factor is

$$\beta = \frac{L_2}{L_1}$$

Colpitts Oscillator

- An excellent circuit.
- Widely used in commercial signal generators.
- Uses two capacitors instead of the inductive voltage divider.

$$C = \frac{C_1 C_2}{C_1 + C_2}$$

$$\beta = \frac{1/\omega C_2}{1/\omega C_1} = \frac{C_1}{C_2}$$

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

RC Oscillators

- Two types :
 - RC Phase shift Oscillator.
 - 2. Wein Bridge Oscillator.

RC Phase shift Oscillator

Phase Shift Network R_6 C_5 For total phase identical sections of 60°. $f_0 = \frac{1}{2\pi RC\sqrt{6}}$

A phase-lead or phases-lag circuit can provide phase shift between 0° and 90°.

For total phase shift 180°, we use three identical sections each giving a phase shift of 60°.

Not very popular, as the frequency cannot be adjusted over large range.

Wien Bridge Oscillator

$$\frac{R_4}{R_3} = \frac{R_1}{R_2} + \frac{C_2}{C_1} \quad \text{and} \quad \omega_0 = \frac{1}{\sqrt{R_1 C_1 R_2 C_2}} \quad \text{or} \quad f_0 = \frac{1}{2\pi \sqrt{R_1 C_1 R_2 C_2}}$$
If $R_1 = R_2 = R$ and $C_1 = C_2 = C$, then $f_0 = \frac{1}{2\pi RC}$ and $\frac{R_4}{R_3} = 2$

Multivibrators

- A multivibrator produces an output voltage that alternates between a HIGH and LOW level.
- An astable multivibrator produces a continuous train of pulses.
- A bistable multivibrator is stable at the HIGH or LOW state, but can be triggered to the opposite state.