

工科数学试卷汇总

高数、线代、概率、复变

作者: sikouhjw、xajzh

组织: 临时组织起来的重排小组

时间: May 13, 2019

版本: 1.00

确实,时 间和空间 是有限的。确实,我们总会有 分开的时候。但是正因为这样, 我们才会努力学习,我们才会 努力前进。我们的信仰是 享受数学。因为"数 学穿越时空"。

 \Diamond

"不论一个人的数学水平有多高,只要对数学拥有一颗真诚的心,他就在自己的心灵上得到了升华。"—SCIbird

目 录

1	声明		1							
2	高等数学试卷汇总									
	2.1	高数 (一) 期中	2							
		2.1.1 2018-2019 A7	2							
		2.1.2 2018-2019 A7 答案	3							
	2.2	高数 (一) 期终	5							
		2.2.1 2018-2019 A15	5							
		2.2.2 2018-2019 A15 答案	5							
	2.3	高数 (二) 期中	5							
		2.3.1 2017-2018	5							
		2.3.2 2017-2018 答案	5							
		2.3.3 2018-2019 B10	5							
	2.4	高数 (二) 期终	5							
		2.4.1 2014-2015	5							
		2.4.2 2014-2015 答案	7							
		2.4.3 2017-2018 A	7							
		2.4.4 2017-2018 A 答案	9							
		2.4.5 2017-2018 B	9							
		2.4.6 2017-2018 B 答案	9							
	2.5	额外的练习	9							
3	线性代数试卷汇总 1									
	3.1	2018-2019 14B	10							
4	概率统计试卷汇总 1									
5	复变函数试卷汇总									
	5.1	2018-2019A	12							
	5.2	2018-20194	13							

第1章 声明

本汇总不得用于商业用途,最新版下载地址: Github,不保证题目、答案的正确性,如有错误可通过 QQ 群 1 或者邮箱 2 联系我们

¹⁹⁹¹⁸³²²²⁶

 $^{^{2}489765924@}qq.com$

第2章 高等数学试卷汇总

2.1 高数 (一) 期中

2.1.1 2018-2019 A7

一、选择题

1. 微分方程 $(y')^3 + 3\sqrt{y''} + x^4y''' = \sin x$ 的阶数是 ()	
--	--

(C) 2

(D) 3

2. 没 $f(x,y) = x - y - \sqrt{x^2 + y^2}$, 则 $f_x(3,4) = ($)

(B)
$$\frac{2}{5}$$

(D) $\frac{1}{5}$

3. 微分方程 $y' = \frac{y}{x}$ 的一个特解是()

(B)
$$e^y = x$$

(B)
$$\frac{\mathrm{d}x + \mathrm{d}y}{2}$$

5. 设直线 $L: \begin{cases} x+3y+2z+1=0 \\ 2x-y-10z+3=0 \end{cases}$, 平面 $\eta: 4x-2y+z-2=0$, 则 ()

(A) L 在 η 上

(B) *L* 平行于 η

(C) L 垂直于 η (D) L 与 η 斜交

6. 方程 $y' + 3xy = 6x^2y$ 是()

(A) 二阶微分方程

(B) 非线性微分方程

(C) 一阶线性非齐次微分方程

(D) 可分离变量的微分方程

7. 曲面 $\frac{x^2}{9} - \frac{y^2}{4} + \frac{z^2}{4} = 1$ 与平面 x = y 的交线是()

(A) 两条直线

(B) 双曲线

(C) 椭圆

(D) 抛物线

8. 设 $z = e^{x^2y}$,则 $\frac{\partial^2 z}{\partial x \partial y} = ($)

(B) e^{x^2y}

(A) $2y (1 + x^3) e^{x^2 y}$ (C) $2x (1 + x^2 y) e^{x^2 y}$

(D) $2xe^{x^2y}$

9. 下列结论正确的是()

(A) $\vec{a} \times (\vec{b} - \vec{c}) = \vec{a} \times \vec{b} - \vec{a} \times \vec{c}$

(B) 若 $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ 且 $\vec{a} \neq \vec{0}$, 则 $\vec{b} = \vec{c}$

(C) $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$

(D) 若 $|\vec{a}| = 1$, $|\vec{b}| = 1$, 则 $|\vec{a} \times \vec{b}| = 1$

二、填空题

- 1. 平面过点 (2,0,0), (0,1,0), (0,0,0.5), 则该平面的方程是
- 2. $y_1 \neq y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_2 \neq y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_1 + y_2 \neq y'' + p(x)y' + q(x)y = f(x)$ 是_____方程的解

2.1 高数 (一) 期中 -3/15-

- 3. 设 $z = y \arctan x$, 则 $\operatorname{grad} z|_{(1,2)} =$ _____
- 4. 过点 P(0,2,4) 且与两平面 x + 2z = 1 和 y 2z = 2 平行的直线方程是

- 7. 已知平面 η_1 : $A_1x + B_1y + C_1z + D_1 = 0$ 与平面 η_2 : $A_2x + B_2y + C_2z + D_2 = 0$, 则 $\eta_1 \perp \eta_2$ 的充要条件是
- 8. 微分方程 y'' + 2y' + 5y = 0 的通解为 y =
- 9. 设 $z = e^{xy} + \cos\left(x^2 + y\right)$, 则 $\frac{\partial z}{\partial y} =$

三、大题

- 1. 求方程 $\frac{dz}{dx} = -z + 4x$ 的通解
- 2. 求曲线 $2z + 1 = \ln(xy) + e^z$ 在点 $M_0(1, 1, 0)$ 处的切平面和法线方程
- 3. 设由方程组 $\begin{cases} x+y+z=0\\ x^2+y^2+z^2=1 \end{cases}$ 确定了隐函数 x=x(z),y=y(z), 求 $\frac{\mathrm{d}x}{\mathrm{d}z},\frac{\mathrm{d}y}{\mathrm{d}z}$
- 5. 设 $z = x^2y + \sin x + \varphi(xy + 1)$, 且 $\varphi(u)$ 具有一阶连续导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

2.1.2 2018-2019 A7 答案

一、选择题

1. 微分方程 $(y')^3 + 3\sqrt{y''} + x^4y''' = \sin x$ 的阶数是 (D)

设
$$f(x, y) = x - y - \sqrt{x^2 + y^2}$$
,则 $f_x(3, 4) = (B)$

3. 微分方程
$$y' = \frac{y}{x}$$
 的一个特解是 (A)

(A)
$$y = 2x$$
 (B) $e^y = x$

$$(C) y = x^2$$

(D)
$$y = \ln x$$

$$(A) \frac{\mathrm{d}x + \mathrm{d}y}{3}$$

(B)
$$\frac{dx + dy}{2}$$

(C)
$$\frac{dx + dy}{1}$$

(D)
$$3(dx + dy)$$

5. 设直线 $L: \begin{cases} x+3y+2z+1=0 \\ 2x-y-10z+3=0 \end{cases}$, 平面 $\eta: 4x-2y+z-2=0$, 则 (C)

- (A) L 在 η 上 (B) L 平行于 η (C) L 垂直于 η (D) L 与 η 斜交
- 6. 方程 $y' + 3xy = 6x^2y$ 是(D)
 - (A) 二阶微分方程

(B) 非线性微分方程

(C) 一阶线性非齐次微分方程

- (D) 可分离变量的微分方程
- 7. 曲面 $\frac{x^2}{9} \frac{y^2}{4} + \frac{z^2}{4} = 1$ 与平面 x = y 的交线是(B)

2.1 高数 (一) 期中

(A) 两条直线

(B) 双曲线

(C) 椭圆

(D) 抛物线

-4/15-

8. 设 $z = e^{x^2y}$,则 $\frac{\partial^2 z}{\partial x \partial y} = (C)$

(A)
$$2y \left(1 + x^3\right) e^{x^2 y}$$

(B) e^{x^2y}

(C)
$$2x \left(1 + x^2 y\right) e^{x^2 y}$$

(D) $2xe^{x^2y}$

9. 下列结论正确的是(A)

(A)
$$\vec{a} \times (\vec{b} - \vec{c}) = \vec{a} \times \vec{b} - \vec{a} \times \vec{c}$$

(B) 若 $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ 且 $\vec{a} \neq \vec{0}$. 则 $\vec{b} = \vec{c}$

(C)
$$\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$$

(D) 若 $|\vec{a}| = 1$, $\left| \vec{b} \right| = 1$, 则 $\left| \vec{a} \times \vec{b} \right| = 1$

二、填空题

1. 平面过点 (2,0,0), (0,1,0), (0,0,0.5), 则该平面的方程是 $\frac{x}{2} + y + 2z = 1$

2. $\forall y_1 \neq y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_2 \neq y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_1 + y_2 \neq y'' + p(x)y' + q(x)y = f(x)$ 是 y'' + p(x)y' + q(x)y = 2f(x) 方程的解

3. $\mbox{if } z = y \arctan x$, $\mbox{if } \mbox{grad } z|_{(1,2)} = \mbox{d} x + \frac{\pi}{4} \, dy$

4. 过点 P(0,2,4) 且与两平面 x+2z = 1 和 y-2z = 2 平行的直线方程是 $\frac{x}{-2} = \frac{y-2}{2} = \frac{z-4}{1}$

5. 设 $f(x, y) = \arcsin \frac{y}{x}$, 则 $f_y(1, 0) = \underline{1}$ 6. $y = e^x$ 是微分方程 y'' + py' + 6y = 0 的一个特解, 则 $p = \underline{-7}$

7. 已知平面 η_1 : $A_1x + B_1y + C_1z + D_1 = 0$ 与平面 η_2 : $A_2x + B_2y + C_2z + D_2 = 0$, 则 $\eta_1 \perp \eta_2$ 的充要条件是 $A_1A_2 + B_1B_2 + C_1C_2 = 0$

8. 微分方程 y'' + 2y' + 5y = 0 的通解为 $y = C_1 e^{-x} \sin(2x) + C_2 e^{-x} \cos(2x)$

9. $\forall z = e^{xy} + \cos\left(x^2 + y\right), \text{ } \exists \frac{\partial z}{\partial y} = xe^{xy} - \sin\left(x^2 + y\right)$

三、大题

1. 求方程 $\frac{dz}{dx} = -z + 4x$ 的通解 解 运用一阶线性非齐次微分方程公式,得

$$z = e^{-\int dx} \left(\int 4x e^{\int dx} dx + C \right) = e^{-x} \left(\int 4x e^x dx + C \right)$$
$$= e^{-x} \left(4(x-1)e^x + C \right) = 4(x-1) + Ce^{-x}$$

2. 求曲线 $2z + 1 = \ln(xy) + e^z$ 在点 $M_0(1, 1, 0)$ 处的切平面和法线方程

3. 设由方程组 $\begin{cases} x+y+z=0\\ x^2+y^2+z^2=1 \end{cases}$ 确定了隐函数 x=x(z), y=y(z), 求 $\frac{\mathrm{d}x}{\mathrm{d}z}, \frac{\mathrm{d}y}{\mathrm{d}z}$

2.2 高数 (一) 期终 -5/15-

解 对方程组
$$\begin{cases} x + y + z = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases}$$
 两式求微分, 得

$$\begin{cases} dx + dy + dz = 0 \\ 2x dx + 2y dy + 2z dz = 0 \end{cases}$$

解得

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}z} = -\frac{x+2z}{2x+z} \\ \frac{\mathrm{d}y}{\mathrm{d}z} = -\frac{y+2x}{2y+z} \end{cases}$$

4. 求方程 $y'' + 6y' + 13y = e^t$ 的通解

解 方程 $y''+6y'+13y=e^t$ 对应的齐次方程 y''+6y'+13y=0 的特征方程为 $r^2+6r+13=0$,解得 $r=-3\pm2i$,那么齐次方程的通解为 $C_1e^{-3t}\sin(2t)+C_2e^{-3t}\cos(2t)$ 设特解为 ae^t ,代入方程 $y''+6y'+13y=e^t$ 后解得 $a=\frac{1}{20}$

综上, 方程
$$y'' + 6y' + 13y = e^t$$
 的通解为 $C_1e^{-3t}\sin(2t) + C_2e^{-3t}\cos(2t) + \frac{e^x}{20}$

5. 设
$$z = x^2y + \sin x + \varphi(xy+1)$$
, 且 $\varphi(u)$ 具有一阶连续导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 解 $\frac{\partial z}{\partial x} = 2xy + \cos x + y\varphi'(xy+1)$, $\frac{\partial z}{\partial y} = x^2 + x\varphi'(xy+1)$

2.2 高数 (一) 期终

- 2.2.1 2018-2019 A15
- 2.2.2 2018-2019 A15 答案
- 2.3 高数 (二) 期中
- 2.3.1 2017-2018
- 2.3.2 2017-2018 答案
- 2.3.3 2018-2019 B10
- 2.4 高数 (二) 期终
- 2.4.1 2014-2015
- 一、选择题 (每小题 3 分, 共 24 分)
 - 1. 方程 $y'' 3y' + 2y = e^x$ 的待定特解 y* 的一个形式是 y* = ()
 (A) e^x (B) ax^2e^x (C) ae^x

(D) axe^x

2.4 高数 (二) 期终 -6/15-

2. 过点 (3, 1, -2) 且通过直线 $\frac{x-4}{5} = \frac{y+3}{2} = \frac{z}{1}$ 的平面方程 () (B) $\frac{x-3}{8} = \frac{y-1}{-9} = \frac{z+2}{-22}$ (D) $\frac{x-3}{5} = \frac{y-1}{2} = \frac{z+2}{1}$ (A) 5x + 2y + z - 15 = 0(C) 8x - 9y - 22z - 59 = 03. $\c y f(x,y) = \ln\left(x + \frac{y}{2x}\right), \c y(1,0) = ($ (C) $\frac{1}{3}$

4. $D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 2\}$,利用二重积分的性质, $\iint_D \frac{1}{\sqrt{x^2 + v^2 + 2xv + 16}} dx dy$

的最佳估值区间为 () (A) $\left[\frac{2}{5},\frac{1}{2}\right]$ (B) $\left[\frac{1}{5},\frac{1}{2}\right]$ (C) $\left[\frac{2}{5},1\right]$ (D) $\left[\frac{1}{2},1\right]$ 5. Ω 由柱面 $x^2+y^2=1$ 、平面 z=1 及三个坐标面围成的在第一卦限内的闭区域,则

 $\iiint xy \, \mathrm{d}V = (\quad)$

(A) $\int_0^{\pi} d\theta \int_0^1 d\rho \int_0^1 \rho^3 \sin\theta \cos\theta dz$ (B) $\int_0^{2\pi} \int_0^1 d\rho \int_0^1 \rho^2 \sin\theta \cos\theta dz$ (C) $\int_0^{\frac{\pi}{2}} d\theta \int_0^1 d\rho \int_0^1 \rho^2 \sin\theta \cos\theta dz$ (D) $\int_0^{\frac{\pi}{2}} d\theta \int_0^1 d\rho \int_0^1 \rho^3 \sin\theta \cos\theta dz$ 6. 设 $L \not\equiv xoy$ 平面上的有向曲线,下列曲线积分中,() 是与路径无关的

(B) $\int_{\mathbf{r}} y \, \mathrm{d}x - x \, \mathrm{d}y$ (A) $\int_{I} 3yx^2 dx + x^3 dy$ (B) $\int_{L} y \, \mathrm{d}x - x \, \mathrm{d}y$ (D) $\int_{L} 3yx^{2} \, \mathrm{d}x + y^{3} \, \mathrm{d}y$ (C) $\int_{\Gamma} 2xy \, dx - x^2 \, dy$

7. 设 L 为圆周 $\begin{cases} x = a \cos t \\ y = a \sin t \end{cases}$ $(0 \leqslant t \leqslant 2\pi)$, 则 $\oint_L (x^2 + y^2) ds = ($)

(C) $2\pi a^3$ (D) $3\pi a^3$

8. 下列级数中收敛的是 () (A) $\sum_{i=1}^{\infty} \frac{n}{n+1}$ (B) $\sum_{i=1}^{\infty} \frac{1}{n\sqrt{n+1}}$ (C) $\sum_{i=1}^{\infty} \frac{1}{2(n+1)}$ (D) $\sum_{i=1}^{\infty} \frac{1}{\sqrt{n+1}}$

二、填空题 (每空 3 分, 共 24 分)

1. 微分方程 $\frac{dy}{dx} = -3y + e^{2x}$ 的通解是 y =______

5. 设 D 为平面闭区域: $x^2 + y^2 \le 1$, 则 $\iint_D \sqrt{x^2 + y^2} \, dx \, dy$ 化为极坐标系下二次积分的表达

2.4 高数 (二) 期终 -7/15-

8. 级数
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} x^n$$
 的收敛半径为______

三、综合题 (请写出求解过程, 8 小题, 共 52 分)

- 1. 求过点 (2,1,1), 且与直线 $\begin{cases} x-y+3z-7=0\\ 3x+5y-2z+1=0 \end{cases}$ 垂直的平面方程. $(6\, \%)$
- 2. 设 $z = f(e^{x+y}, \sin(xy))$, 且 f 具有一阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$. (6分)
- 3. 计算 $\iint_{\Gamma} (x^2 + y) dx dy$, D 是曲线 $y = x^2, x = y^2$ 围成的闭区域. (8分)
- 4. 计算 $\iint_{\Omega} (x^2 + y^2) dx dy dz$, 其中 Ω 是由圆锥面 $z^2 = x^2 + y^2$ 及平面 z = 2 围成的闭区域.
- 5. 计算 $\int_{\Gamma} x^3 dx + 3zy^2 dy x^2y dz$, 其中 Γ 是从点 A(2,2,1) 到原点 O 的直线段 AO. (6分)
- 6. 空间区域 Ω 由开口向下的旋转抛物面 $z = 1 x^2 y^2$ 与平面 z = 0 所围, Ω 的表面取外侧 为 Σ , 利用高斯公式计算 $\iint_{\Sigma} x^2 y z^2 \, dy \, dz - x y^2 z^2 \, dz \, dx + z(1 + x y z) \, dx \, dy$. (8分)
- 7. 判断级数 $\sum_{i=0}^{\infty} \frac{n^e}{e^n}$ 的敛散性. (6分)
- 8. 求幂级数 $\sum_{n=0}^{\infty} (2n+1)x^{2n} (x \in (-1,1))$ 的和函数. (6分)

2.4.2 2014-2015 答案

2.4.3 2017-2018 A

一、选择题 (每小题 3 分, 共 24 分)

1. 微分方程 $y'' - 6y' + 9y = (6x^2 + 2)e^x$ 的待定特解的一个形式可为() (A) $y^* = (ax^2 + bx + c) e^x$ (B) $y^* = x (ax^2 + bx + c) e^x$ (C) $y^* = x^2 (ax^2 + bx + c) e^x$ (D) $y^* = x^2 (x^2 + 1) e^x$

(C)
$$y^* = x^2 (ax^2 + bx + c) e^x$$

(B)
$$y'' = x \left(ax + bx + c \right) c$$

(C)
$$y^* = x^2 (ax^2 + bx + c) e^x$$

(D)
$$y^* = x^2 (x^2 + 1) e^x$$

2. 设向量 \vec{a} 的三个方向角为 $\alpha \setminus \beta \setminus \gamma$, 且已知 $\alpha = 60^{\circ} \setminus \beta = 120^{\circ}$, 则 $\gamma = ($)

(A)
$$120^{\circ}$$

(B)
$$60^{\circ}$$

$$(C) 45^{\circ}$$

(D)
$$30^{\circ}$$

3. 设 $z = \arctan e^{xy}$,则 $\frac{\partial z}{\partial y} = ($)

(A)
$$-\frac{xe^{xy}}{\sqrt{1 - e^{2xy}}}$$
 (B) $\frac{xe^{xy}}{\sqrt{1 - e^{2xy}}}$ (C) $-\frac{xe^{xy}}{1 + e^{2xy}}$ (D) $\frac{xe^{xy}}{1 + e^{2xy}}$

(B)
$$\frac{xe^{xy}}{\sqrt{1 - e^{2xy}}}$$

(C)
$$-\frac{xe^{xy}}{1+e^{2xy}}$$

(D)
$$\frac{xe^{xy}}{1 + e^{2xy}}$$

4. *D* 为平面区域 $x^2 + y^2 \le 4$, 利用二重积分的性质, $\iint_D (x^2 + 4y^2 + 9) dx dy$ 的最佳估值区 间为()

- (A) $[36\pi, 52\pi]$
- (B) $[36\pi, 100\pi]$
- (C) $[52\pi, 100\pi]$ (D) $[9\pi, 25\pi]$

5. 设 $\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 2, x \ge 0\}$,则以下等式错误的是 () (A) $\iint_{\Omega} x^2 y \, dv = 0$ (B) $\iint_{\Omega} (x + y) \, dv = 0$ (C) $\iint_{\Omega} z \, dv = 0$ (D) $\iint_{\Omega} xy \, dv = 0$

(A)
$$\iiint_{\Omega} x^2 y \, \mathrm{d}v = 0$$

(B)
$$\iiint (x+y) \, \mathrm{d}v = 0$$

(C)
$$\iiint_{C} z \, \mathrm{d}v = 0$$

(D)
$$\iiint_{\mathbb{R}} xy \, \mathrm{d}v = 0$$

2.4 高数 (二) 期终 -8/15-

6. 设 L 为直线 $y = y_0$ 上从点 $A(0, y_0)$ 到点 $B(3, y_0)$ 的有向直线段,则 $\int_{L} 2 \, dy = ($)

(A) 6

(B) $6y_0$

(C) $3y_0$

7. Σ 为平面 x + y + z = 1 与三坐标面所围区域表面的外侧, 则 $\iint_{\Sigma} (2y + 3z) \, dy \, dz + (x + y + z) \, dy \, dz$ 2z) dz dx + (y + 1) dx dy = ()

(A) 0

(C) $\frac{2}{2}$

(D) $\frac{5}{3}$

8. 交错级数 $\sum_{i=1}^{\infty} (-1)^{n-1} \frac{1}{3^{n-1}}$ ()

(A) 发散

(B) 条件收敛

(C)绝对收敛

(D) 无法确定

二、填空题 (每空 3 分, 共 24 分)

1. 以 $y_1 = e^x$, $y_2 = xe^x$ 为特解的阶数最低的常系数齐次线性微分方程是_

2. 直线
$$L: \begin{cases} x = 3t - 2 \\ y = t + 2 \end{cases}$$
 和平面 $\pi: 2x + 3y + 3z - 8 = 0$ 的交点是
$$z = 2t - 1$$
3. 设 $z = xy^3$, 则 d $z = \frac{2x + 3y + 3z - 8}{2}$

4. 交换二次积分的积分次序后, $\int_0^2 dy \int_{y^2}^{2y} f(x, y) dx =$ ______

5. $\[\[\] \] \Omega = \{ -1 \le x \le 1, -1 \le y \le 3, 0 \le z \le 2 \} \]$, $\[\] \[\] \$

6. 设 L 为由三点 (0,0), (3,0), (3,2) 围成的平面区域 D 的正向边界曲线, 由格林公式知 $\int_{-1}^{1} (3x$ y + 4) dx + (5y + 3x - 6) dy =

7. 设 Σ 是 上 半 圆 锥 面 $z = \sqrt{x^2 + y^2} (0 \leqslant z \leqslant 1)$,则曲 面 积 分 $\iint_{\Sigma} (x^2 + y^2) dS =$ ______

8. 级数 $\sum_{n=0}^{\infty} \left(\frac{1}{n(n+1)} - \frac{1}{2^n} \right)$ 的和为_____

三、综合题 (8 小题, 共 52 分)

1. 求方程 $\frac{dy}{dr} = \frac{xy}{1+x^2}$ 的通解. (6分)

2. 设 $z = \ln(x^2 - y)$, 而 $y = \tan x$, 求 $\frac{dz}{dx}$. (6分)

3. 计算 $\iint_D (x^2 + y^2) dx dy$, D 为曲线 $x^2 - 2x + y^2 = 0$, y = 0 围成的在第一象限的闭区域. (

4. 计算三重积分 $\iint_{\Omega}z\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$,其中 Ω 是由圆锥面 $z=\sqrt{x^2+y^2}$ 与球面 $z=\sqrt{2-x^2-y^2}$

5. 用高斯公式计算 $\iint_{\Sigma} \left(a^2x + x^3\right) dy dz + y^3 dz dx + z^3 dx dy$, 其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2$

6. 用格林公式计算 $\oint_C x^2 y \, dx - xy^2 \, dy$, 其中 C 为圆周 $x^2 + y^2 = 4$, 取正向. (8分)

7. 判断级数 $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}(2n-1)}$ 的敛散性. (6分)

2.5 额外的练习 —9/15—

8. 在区间 (-1,1) 内求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的和函数 s(x). (6分)

- 2.4.4 2017-2018 A 答案
- 2.4.5 2017-2018 B
- 2.4.6 2017-2018 B 答案
- 2.5 额外的练习

第3章 线性代数试卷汇总

3.1 2018-2019 14B

—,	选择题	(毎颗	3	分。	#	2.1	分)
\			\mathcal{L}	719	\sim		<i>JJ 1</i>

第4章 概率统计试卷汇总

第5章 复变函数试卷汇总

5.1 2018-2019A

一、选择题 (每小题 3 分, 共 15 分)

1.
$$\frac{(\sqrt{3} - i)^4}{(1 - i)^8} = ($$

$$(A) - \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$(C) \frac{1}{8} \left(-1 + \sqrt{3}i \right)$$

- (A) 处处不可导
- (C) 处处解析
- 3. 下列等式正确的是(

(A)
$$\operatorname{Ln} i = \left(2k\pi - \frac{\pi}{2}\right)i$$
, $\ln i = \frac{\pi}{2}i$
(C) $\operatorname{Ln} i = \left(2k\pi + \frac{\pi}{2}\right)i$, $\ln i = \frac{\pi}{2}i$

(C) Ln i =
$$\left(2k\pi + \frac{\tilde{\pi}}{2}\right)$$
 i, ln i = $\frac{\tilde{\pi}}{2}$

4.
$$z = 0$$
 是函数 $\frac{1 - \cos z}{z - \sin z}$ 的 ()

- (A) 本性奇点
- (B) 可去奇点
- (C) 二级极点

(B) $-\frac{1}{9}\left(1+\sqrt{3}i\right)$

(D) 仅在 (0,0) 点可导

(D) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$

(D) 一级极点

(B) 仅在 $6x^2 = 9y^2$ 上可导, 处处不解析

(B) Ln i = $\left(2k\pi + \frac{\pi}{2}\right)$ i, ln i = $-\frac{\pi}{2}$ i (D) Ln i = $\left(2k\pi - \frac{\pi}{2}\right)$ i, ln i = $-\frac{\pi}{2}$ i

- 5. 设 C 为 z = (1 i)t, t 从 1 到 0 的一段, 则 $\int_{C} \overline{z} dz = ($)
 - (A) 1
- (B) 1

- (C) -i
- (D) i

二、填空题 (每小题 3 分, 共 15 分)

- 1. 若 z + |z| = 2 + i,则 z =2. 若 C 为正向圆周 $|z| = \frac{1}{2}$,则 $\oint_C \frac{1}{z 2} dz =$
- 3. 若 $z = 2 \pi i$, 则 $e^z =$
- 4. 若 $f(z) = \cos z^2$, 则 f(z) 在 z = 0 处泰勒展开式中 z^4 项的系数 $a_4 =$
- 5. 函数 $f(t) = \sin t$ 的拉普拉斯变换 F(s) =

三、计算题 (70分)

- 1. 设 u(x,y) = x 2xy 且 f(0) = 0, 求解析函数 f(z) = u + iv. (10分)
- 2. 计算积分 $\oint_C \frac{2e^x}{z^5} dz$ 的值, 其中 C 为正向圆周 |z| = 1. (7分)
- 3. 计算积分 $\oint_C \frac{3z+5}{z^2-z} dz$ 的值, 其中 C 为正向圆周 $|z| = \frac{1}{2}$. (7分)
 4. 求函数 $\frac{1-\cos z}{z^3}$ 在有限奇点处的留数. (7分)
- 5. 求函数 $\frac{2z^2+1}{z^2+2z}$ 在有限奇点处的留数. (7分)

- 6. 将 $f(z) = \frac{z}{(z-2)(z-6)}$ 在 2 < |z| < 6 内展开为洛朗级数. (10 分)
- 7. 若函数 $f(z) = ay^3 + bx^2y + i(x^3 + cxy^2)$ 是复平面上的解析函数,求 a, b, c 的值. (12 分)
- 8. 利用拉普拉斯变换解常微分方程初值问题: $\begin{cases} x''(t) + 6x'(t) + 9x(t) = e^{-3t} \\ x(0) = 0, x'(0) = 0 \end{cases}$. (10 分)

5.2 2018-2019A 答案

一、选择题 (每小题 3 分, 共 15 分)

1.
$$\frac{(\sqrt{3}-i)^4}{(1-i)^8} = (D)$$

$$(A) - \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

(C)
$$\frac{1}{8}\left(-1+\sqrt{3}\mathrm{i}\right)$$

- 2. 设 $f(z) = 2x^3 + 3y^3i$, 则 f(z) (B)
 - (A) 处处不可导
 - (C) 处处解析
- 3. 下列等式正确的是(C)

(A) Ln i =
$$\left(2k\pi - \frac{\pi}{2}\right)$$
 i, ln i = $\frac{\pi}{2}$ i

(A) Ln i =
$$\left(2k\pi - \frac{\pi}{2}\right)$$
 i, ln i = $\frac{\pi}{2}$ i
(C) Ln i = $\left(2k\pi + \frac{\pi}{2}\right)$ i, ln i = $\frac{\pi}{2}$ i

4.
$$z = 0$$
 是函数 $\frac{1 - \cos z}{z - \sin z}$ 的 (D)

- (A) 本性奇点
- (B) 可去奇点
- (C) 二级极点

 $(B) -\frac{1}{8} \left(1 + \sqrt{3}i \right)$

(D) 仅在 (0,0) 点可导

(D) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$

(D) 一级极点

(B) 仅在 $6x^2 = 9y^2$ 上可导, 处处不解析

(B) Ln i = $\left(2k\pi + \frac{\pi}{2}\right)$ i, ln i = $-\frac{\pi}{2}$ i (D) Ln i = $\left(2k\pi - \frac{\pi}{2}\right)$ i, ln i = $-\frac{\pi}{2}$ i

- 5. 设 C 为 z = (1 i)t, t 从 1 到 0 的一段, 则 $\int_{C} \overline{z} dz = (A)$
 - (A) 1
- (B) 1

- (C) -i
- (D) i

二、填空题 (每小题 3 分, 共 15 分)

- 2. 若 C 为正向圆周 $|z| = \frac{1}{2}$,则 $\oint_C \frac{1}{z-2} dz = 0$
- 3. 若 $z = 2 \pi i$, 则 $e^z = _{-e^2}$
- 4. 若 $f(z) = \cos z^2$, 则 f(z) 在 z = 0 处泰勒展开式中 z^4 项的系数 $a_4 = -\frac{1}{2}$
- 5. 函数 $f(t) = \sin t$ 的拉普拉斯变换 $F(s) = \frac{1}{s^2 + 1}$

三、计算题 (70 分)

1. 设 u(x, y) = x - 2xy 且 f(0) = 0, 求解析函数 f(z) = u + iv. (10分)

解解析函数的 u, v 必定满足 C. - R. 方程, 即

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

2. 计算积分 $\oint_C \frac{2e^x}{z^5} dz$ 的值, 其中 C 为正向圆周 |z| = 1. (7分)

解 根据高阶导数公式 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$, 那么

$$\oint_C \frac{2e^z}{(z-0)^5} dz = \frac{2\pi i}{4!} (2e^z)^{(4)} \Big|_{z=0} = \frac{\pi i}{6}$$

3. 计算积分 $\oint_C \frac{3z+5}{z^2-z} dz$ 的值, 其中 C 为正向圆周 $|z| = \frac{1}{2}$. (7分)

解

$$\oint_{C} \frac{3z+5}{z^{2}-z} dz = 2\pi i \operatorname{Res}_{z=0} \frac{3z+5}{z(z-1)} = 2\pi i \left. \frac{3z+5}{z-1} \right|_{z=0} = -10\pi i$$

4. 求函数 $\frac{1-\cos z}{z^3}$ 在有限奇点处的留数. (7分)

解 对 $\cos z$ 进行洛朗展开, $\cos z = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$, 那么 $1 - \cos z = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^{2n}}{(2n)!}$ 那么 $\frac{1 - \cos z}{z^3} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^{2n-3}}{(2n)!}$, 根据洛朗系数公式, $\underset{z=0}{\text{Res}} \frac{1 - \cos z}{z^3} = c_{-1} = \frac{1}{2}$

5. 求函数 $\frac{2z^2+1}{z^2+2z}$ 在有限奇点处的留数. (7分)

解

$$\operatorname{Res}_{z=0} \frac{2z^2+1}{z^2+2z} = \left. \frac{2z^2+1}{z+2} \right|_{z=0} = \frac{1}{2}, \operatorname{Res}_{z=-2} \frac{2z^2+1}{z^2+2z} = \left. \frac{2z^2+1}{z} \right|_{z=-2} = -\frac{9}{2}$$

6. 将 $f(z) = \frac{z}{(z-2)(z-6)}$ 在 2 < |z| < 6 内展开为洛朗级数. (10 分)解

$$f(z) = \frac{z}{4} \left(\frac{1}{z - 6} - \frac{1}{z - 2} \right) = \frac{z}{4} \left(-\frac{1}{6} \frac{1}{1 - z/6} - \frac{1}{z} \frac{1}{1 - 2/z} \right)$$
$$= \frac{z}{4} \left(-\frac{1}{6} \sum_{n=0}^{\infty} (z/6)^n - \frac{1}{z} \sum_{n=0}^{\infty} (2/z)^n \right)$$
$$= -\frac{1}{4} \left(\sum_{n=0}^{\infty} (z/6)^{n+1} + \sum_{n=0}^{\infty} (2/z)^n \right)$$

7. 若函数 $f(z) = ay^3 + bx^2y + i(x^3 + cxy^2)$ 是复平面上的解析函数,求 a, b, c 的值. (12 分)

解 若 f(z) 为解析函数,则其实部、虚部满足 C. – R. 方程,设 $u=ay^3+bx^2y$, $v=x^3+cxy^2$,则有

$$\begin{cases} \frac{\partial u}{\partial x} = 2bxy = 2cxy = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = 3ay^2 + bx^2 = -3x^2 - cy^2 = -\frac{\partial v}{\partial x} \end{cases}$$

解得

$$\begin{cases} a = 1 \\ b = c = -3 \end{cases}$$

8. 利用拉普拉斯变换解常微分方程初值问题: $\begin{cases} x''(t) + 6x'(t) + 9x(t) = e^{-3t} \\ x(0) = 0, x'(0) = 0 \end{cases}$. (10 分)

解 设 $\mathcal{L}[x] = X(s)$, 对等式两边作拉普拉斯变换

$$\mathcal{L}[x'' + 6x' + 9x] = s^2 X(s) - sx(0) - x'(0) + 6sX(s) - 6x(0) + 9X(s)$$
$$= s^2 X(s) + 6sX(s) + 9X(s) = \frac{1}{s+3}$$

那么有 $X(s) = \frac{1}{(s+3)^3}$,根据拉普拉斯变换的微分性质 $F''(s) = \mathcal{L}[t^2 f(t)]$

$$\frac{1}{(s+3)^3} = \frac{1}{2} \left(\frac{1}{s+3} \right)^{"} = \frac{\mathcal{L}[t^2 e^{-3t}]}{2}$$

那么
$$x(t) = \frac{t^2 e^{-3t}}{2}$$