## Computational complexity 101

The basics,  $\mathcal{P}$  and  $\mathcal{NP}$ 

Julian Lorenz

December 1, 2020

Goethe University

#### **Table of contents**

- 1. Motivation
- 2. Effiziente Berechnung und die Klasse  ${\mathcal P}$
- 3. Effiziente Verifikation und die Klasse  $\mathcal{NP}$
- 4.  $\mathcal{P}$  vs  $\mathcal{NP}$

#### Alles beginnt mit einem Problem...

• Fokus auf Klassifikations- / Entscheidungsproblemen

#### Alles beginnt mit einem Problem...

- Fokus auf Klassifikations- / Entscheidungsproblemen
- Zeit gemessen an der Anzahl elementarer Operationen

#### Alles beginnt mit einem Problem...

- Fokus auf Klassifikations- / Entscheidungsproblemen
- Zeit gemessen an der Anzahl elementarer Operationen

#### 2 Probleme:

- (1) Welche planaren Landkarten sind 3-färbbar?
- (2) Welche *Diophantische Gleichungen* der Form  $Ax^2 + By + C = 0$  können durch positive Ganzzahlen gelöst werden?
  - Gleichung mit ganzzahligen Koeffizienten und Lösungen





3-färbbar



3-färbbar





3-färbbar



Nicht 3-färbbar

















$$G_{\blacksquare} = \{1: [2,3], 2: [1,4], 3: [1,4], 4: [2,3]\}$$

$$= (V = (1,2,3,4), E = ((1,2), (1,3), (2,4), (3,4)))$$

$$= \cdots$$

4

## Binäre Sequenzen

- Jedes endliche Objekt kann durch eine binäre Sequenz beschrieben werden
- $\Rightarrow$  Beschreibung als Eingabe für Algorithmen

### Binäre Sequenzen

- Jedes endliche Objekt kann durch eine binäre Sequenz beschrieben werden
- ⇒ Beschreibung als Eingabe für Algorithmen

#### **Definition**

Sei  $\mathbb{I}$  die Menge aller binären Sequenzen über dem Alphabet  $\{0,1\}$  sowie  $\mathbb{I}_n=\{0,1\}^n$ .

 ${\mathbb I}$  kann als Menge der Eingaben aller Klassifikationsprobleme angesehen werden, wobei jede Teilmenge von  ${\mathbb I}$  ein Klassifikationsproblem beschreibt.

#### Reduktion

#### **Theorem**

Probleme (1) und (2) sind äquivalent.

#### Reduktion

#### **Theorem**

Probleme (1) und (2) sind äquivalent.

• Berechenbare Funktionen  $f, h : \mathbb{I} \to \mathbb{I}$ :

$$(V, E) \in (\mathbf{1}) \Leftrightarrow f(V, E) \in (\mathbf{2}) \text{ und}$$
  
 $(A, B, C) \in (\mathbf{2}) \Leftrightarrow h(A, B, C) \in (\mathbf{1})$ 

6

#### Reduktion

#### Theorem

Probleme (1) und (2) sind äquivalent.

• Berechenbare Funktionen  $f, h : \mathbb{I} \to \mathbb{I}$ :

$$(V, E) \in (1) \Leftrightarrow f(V, E) \in (2)$$
 und  $(A, B, C) \in (2) \Leftrightarrow h(A, B, C) \in (1)$ 

- f, h werden als **Reduktionen** bezeichnet
- Effizient berechenbar

6

# Effiziente Berechnung und die

Klasse  $\mathcal{P}$ 

#### Effizient & Worst-case

• Grundgedanke der Industrie und Wirtschaft

#### **Effizient & Worst-case**

- Grundgedanke der Industrie und Wirtschaft
- Asymptotisches Verhalten als Funktion der Eingabelänge
- (I) Effizient: Laufzeit bei Eingabelänge *n* ist durch eine *polynomielle* Funktion in *n* beschränkt

#### **Effizient & Worst-case**

- Grundgedanke der Industrie und Wirtschaft
- Asymptotisches Verhalten als Funktion der Eingabelänge
- (I) Effizient: Laufzeit bei Eingabelänge *n* ist durch eine *polynomielle* Funktion in *n* beschränkt
- (II) Worst-case Bedingung

- Abgeschlossen unter Addition, Multiplikation und Komposition
- Programme in Sequenz oder verschachtelt

- Abgeschlossen unter Addition, Multiplikation und Komposition
- Programme in Sequenz oder verschachtelt
- In Kontrast zu exponentieller Zeit

- Abgeschlossen unter Addition, Multiplikation und Komposition
- Programme in Sequenz oder verschachtelt
- In Kontrast zu exponentieller Zeit
- AKS sorting Network (1983)
- Benötigt  $C \cdot \log(n)$  Schritte um n Schlüssel zu sortieren

- Abgeschlossen unter Addition, Multiplikation und Komposition
- Programme in Sequenz oder verschachtelt
- In Kontrast zu exponentieller Zeit
- AKS sorting Network (1983)
- Benötigt  $C \cdot \log(n)$  Schritte um n Schlüssel zu sortieren
- C so groß, dass mergesort bis  $\approx 1.2 \cdot 10^{52}$  besser ist
- ⇒ AKS somit in der Praxis bisher unbrauchbar

#### Warum Worst-case?

- Keine Sorgen um die Eingabe machen müssen
- ullet Für alle Instanzen pprox stärkere Aussage

#### Warum Worst-case?

- Keine Sorgen um die Eingabe machen müssen
- ullet Für alle Instanzen pprox stärkere Aussage
- Unbekannter Gegner generiert die Eingabe
- Beispiel: Optimale Strategie in Nullsummenspielen

• Simplex Algorithmus



- Simplex Algorithmus
- Klassische Methode zum Lösen Linearer Programme



- Simplex Algorithmus
- Klassische Methode zum Lösen Linearer Programme
- Effizient in der Praxis



- Simplex Algorithmus
- Klassische Methode zum Lösen Linearer Programme
- Effizient in der Praxis
- Klee-Minty Würfel zeigte 1973 exponentielle Laufzeit



#### Die Klasse $\mathcal{P}$

#### **Definition** (Die Klasse $\mathcal{P}$ )

Eine Funktion  $f: \mathbb{I} \to \mathbb{I}$  ist in der Klasse  $\mathcal{P}$ , falls ein Algorithmus, der f berechnet, und positive Konstanten A, c existieren, so dass für jedes n und jedes  $x \in \mathbb{I}_n$  der Algorithmus, der f(x) berechnet, maximal  $An^c$  elementare Operationen benötigt.

Beispiele: Lineare Programmierung, Planarität, ...

### Effiziente Verifikation und die

Klasse  $\mathcal{NP}$ 

## **Effiziente Verifikation**

ullet Sei  $\mathcal{C}\subset\mathbb{I}$  ein Klassifikationsproblem

#### **Effiziente Verifikation**

- ullet Sei  $\mathcal{C}\subset\mathbb{I}$  ein Klassifikationsproblem
- ullet Effizienter Algorithmus um x auf Eigenschaft  ${\mathcal C}$  zu testen
- Halte für die Eingabe  $x \in \mathbb{I}$ , falls  $x \in \mathcal{C}$

## **Effiziente Verifikation**

- ullet Sei  $\mathcal{C}\subset\mathbb{I}$  ein Klassifikationsproblem
- ullet Effizienter Algorithmus um x auf Eigenschaft  ${\mathcal C}$  zu testen
- Halte für die Eingabe  $x \in \mathbb{I}$ , falls  $x \in \mathcal{C}$
- Orakel / Lösung raten
- Jede Eingabe zu verifizieren ist exponentiell in n













Nicht isomorph!















## Die Klasse $\mathcal{NP}$

## Definition (Die Klasse $\mathcal{NP}$ )

Die Menge C ist in der Klasse  $\mathcal{NP}$ , falls eine Funktion  $V_C \in \mathcal{P}$  und eine Konstante k existieren, so dass gilt

- Falls  $x \in \mathcal{C}$ , dann  $\exists y \text{ mit } |y| \leq k \cdot |x|^k \text{ und } V_{\mathcal{C}}(x,y) = 1$
- Falls  $x \notin \mathcal{C}$ , dann gilt  $\forall y \ V_{\mathcal{C}}(x,y) = 0$

Beispiele: 3-Färbbarkeit, Hamiltionkreis, ...

## Milleniumproblem

Korollar:  $\mathcal{P} \subset \mathcal{NP}$ 

Offenes Problem:  $P = \mathcal{NP}$ ?

#### Milleniumproblem

**Korollar:**  $P \subset \mathcal{NP}$ 

Offenes Problem:  $P = \mathcal{NP}$ ?

- Ersetze polynomielle durch endliche Zeit als Schranke:
- $\Rightarrow \mathcal{P}$  ist analog zu  $\mathcal{R}$  also *Rekursiv* (Entscheidbar)
- $\Rightarrow \mathcal{NP}$  ist analog zu  $\mathcal{RE}$  also Rekursiv aufzählbar

### Milleniumproblem

**Korollar:**  $P \subset \mathcal{NP}$ 

Offenes Problem:  $P = \mathcal{NP}$ ?

- Ersetze polynomielle durch endliche Zeit als Schranke:
- $\Rightarrow \mathcal{P}$  ist analog zu  $\mathcal{R}$  also *Rekursiv* (Entscheidbar)
- $\Rightarrow \mathcal{NP}$  ist analog zu  $\mathcal{RE}$  also  $\textit{Rekursiv aufz\"{a}hlbar}$ 
  - $\mathcal{R} \neq \mathcal{RE}$  bereits gezeigt
  - $\mathcal{NP} \subsetneq R \subsetneq RE$

Annahme:  $P \neq \mathcal{NP}$ 







# Vielen Dank! Fragen?