MATH 3430-02 QUIZ 3

Name:

Approximate y(1) of the following initial value problem using Euler's Method for n=2.

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{1 + t^2 + y^2}, \quad y(0) = 0.$$

Below a table is provided to help you. (I recommend first putting the formulae for y_k and y'_k as well as the values of t_k , Δt in the respective entries.)

k	t_k	$y_k =$	$y'_k =$	$\Delta t \text{ (or } h)$
0				
1				
2				

Ans:
$$y_2 =$$

Now consider the choice:

$$a = 1, \qquad b = 1,$$

and the expressions

$$M = \max_{(t,y)\in\mathcal{R}} |f(t,y)|, \qquad \alpha = \min\left\{a, \frac{b}{M}\right\}.$$

Use this information (with suitable calculations) to explain why it is reasonable to use Euler's Method to approximate y(1). (Hint: What guarantees that a solution exists at t = 1 and is unique?)

Is it reasonable to use Euler's Method to approximate y(2019)? (Hint: Does M depend on the choice of a, b? How can you choose a, b to obtain a larger α ?)