6/3/25, 10:30 AM group05.html

CSE 280 Challenge Set 05

(c) BYU-Idaho

Question 1

For each relation below, determine which property they satisfy. Each relation has the domain of \mathbf{R} . Remember to use a digraph if you need help.

Relation	Reflexive, Anti-Reflexive or Neither	Symmetric, Anti-Symmetric or Neither	Transitive	Equivalence
$_aR_b, ext{ if } a^2=b^2$				
${}_aR_b, ext{ if } \lfloor a floor = b$				
$_{a}R_{b}, ext{ if } a-b\geq 0$				
$_aR_b$, if $-a-b=1$				
aR_b , if $a-b=5$				

Question 2

Determine if each of the following relations are equivalences and why. The domain for these relations is $\{A, B, C, D\}$?

- $\{(A,B),(B,A),(C,D),(D,C)\}$
- $\{(A,A),(B,B),(C,C),(D,D),(A,B),(B,A),(C,D),(D,C)\}$
- $\{(A,B),(B,C),(C,B),(B,A),(A,A),(B,B),(C,C),(D,D)\}$
- $\{(A, A), (B, B), (C, C), (D, D), (A, B), (B, C), (A, D), (A, C), (D, C)\}$

6/3/25, 10:30 AM group05.html

Question 3

For the following parts, assume that the domain of each relation is $\{A, B, C\}$. There may be more than one correct answer for each part.

Part 1

Draw a digraph of a relation that satisfies only the reflexive property.

Part 2

Draw a digraph of a relation that satisfies only the symmetric property.

Part 3

Draw a digraph of a relation that is an equivalence.

Part 4

Draw a digraph of a relation that satisifies both reflexive and transitive properties only.

Part 5

Draw a digraph of a relation that is both an equivalance and anti-symmetric (this is not a trick question ... it is possible).

Question 4

Part 1

Define the relationship ${}_aR_b$ if a and b have the same remainder when divided by 5. The domain of a and b is \mathbf{Z} . Identify all of the equivalence classes and their contents.

Part 2

Identify the equivalence classes for all of the equivalence relations from Question 1 above.