

SDS 384 11: Theoretical Statistics

Lecture 5: Martingale inequalities

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

• So far we have looked at sums of random variables. What if want to study properties of functions of independent random variables?

- So far we have looked at sums of random variables. What if want to study properties of functions of independent random variables?
- Consider *n* independent random variables $X = (X_1, \dots X_n)$.

- So far we have looked at sums of random variables. What if want to study properties of functions of independent random variables?
- Consider *n* independent random variables $X = (X_1, ... X_n)$.
- We want to bound $f(X_1, ..., X_n) E[f(X_1, ..., X_n)]$

- So far we have looked at sums of random variables. What if want to study properties of functions of independent random variables?
- Consider *n* independent random variables $X = (X_1, ... X_n)$.
- We want to bound $f(X_1, ..., X_n) E[f(X_1, ..., X_n)]$
- $\bullet \ \ \mathsf{Define} \ \ Y_k = E[f(X)|X_1,\dots,X_k] \ \ \mathsf{for} \ \ k \in \{1,\dots,n-1\}$

- So far we have looked at sums of random variables. What if want to study properties of functions of independent random variables?
- Consider *n* independent random variables $X = (X_1, ... X_n)$.
- We want to bound $f(X_1, ..., X_n) E[f(X_1, ..., X_n)]$
- Define $Y_k = E[f(X)|X_1, \dots, X_k]$ for $k \in \{1, \dots, n-1\}$
- $Y_0 = E[f(X)]$ and $Y_n = f(X)$

- So far we have looked at sums of random variables. What if want to study properties of functions of independent random variables?
- Consider *n* independent random variables $X = (X_1, \dots X_n)$.
- We want to bound $f(X_1, ..., X_n) E[f(X_1, ..., X_n)]$
- Define $Y_k = E[f(X)|X_1, \dots, X_k]$ for $k \in \{1, \dots, n-1\}$
- $Y_0 = E[f(X)]$ and $Y_n = f(X)$
- Now $f(X) E[f(X)] = \sum_{i=0}^{n-1} \underbrace{(Y_{i+1} Y_i)}_{D_i}$

- So far we have looked at sums of random variables. What if want to study properties of functions of independent random variables?
- Consider *n* independent random variables $X = (X_1, ... X_n)$.
- We want to bound $f(X_1, ..., X_n) E[f(X_1, ..., X_n)]$
- Define $Y_k = E[f(X)|X_1, \dots, X_k]$ for $k \in \{1, \dots, n-1\}$
- $Y_0 = E[f(X)]$ and $Y_n = f(X)$
- Now $f(X) E[f(X)] = \sum_{i=0}^{n-1} \underbrace{(Y_{i+1} Y_i)}_{D_i}$
- This forms a Martingale difference sequence.

Definition

A sequence of random variables $\{Y_i\}$ adapted to a filtration \mathcal{F}_i is a martingale if, for all i,

$$E|Y_i| < \infty$$
 $E[Y_{i+1}|\mathcal{F}_i] = Y_i$

• A filtration $\{\mathcal{F}_i\}$ is a sequence of nested $\sigma-$ fields, i.e. $\mathcal{F}_i\subseteq\mathcal{F}_{i+1}.$

Definition

A sequence of random variables $\{Y_i\}$ adapted to a filtration \mathcal{F}_i is a martingale if, for all i,

$$E|Y_i| < \infty$$
 $E[Y_{i+1}|\mathcal{F}_i] = Y_i$

- A filtration $\{\mathcal{F}_i\}$ is a sequence of nested σ fields, i.e. $\mathcal{F}_i \subseteq \mathcal{F}_{i+1}$.
- Y_i is adapted to \mathcal{F}_i means that each Y_i is measurable w.r.t \mathcal{F}_i .

Definition

A sequence of random variables $\{Y_i\}$ adapted to a filtration \mathcal{F}_i is a martingale if, for all i,

$$E|Y_i| < \infty$$
 $E[Y_{i+1}|\mathcal{F}_i] = Y_i$

- A filtration $\{\mathcal{F}_i\}$ is a sequence of nested $\sigma-$ fields, i.e. $\mathcal{F}_i\subseteq\mathcal{F}_{i+1}.$
- Y_i is adapted to \mathcal{F}_i means that each Y_i is measurable w.r.t \mathcal{F}_i .
- If $\mathcal{F}_i = \sigma(X_1, \dots, X_i)$, then we say that $\{Y_i\}$ forms a martingale sequence w.r.t $\{X_i\}$.

Definition

A sequence of random variables $\{Y_i\}$ adapted to a filtration \mathcal{F}_i is a martingale if, for all i,

$$E|Y_i| < \infty$$
 $E[Y_{i+1}|\mathcal{F}_i] = Y_i$

- A filtration $\{\mathcal{F}_i\}$ is a sequence of nested $\sigma-$ fields, i.e. $\mathcal{F}_i\subseteq\mathcal{F}_{i+1}.$
- Y_i is adapted to \mathcal{F}_i means that each Y_i is measurable w.r.t \mathcal{F}_i .
- If $\mathcal{F}_i = \sigma(X_1, \dots, X_i)$, then we say that $\{Y_i\}$ forms a martingale sequence w.r.t $\{X_i\}$.
- If $\mathcal{F}_i = \sigma(Y_1, \dots, Y_i)$, then we say that $\{Y_i\}$ forms a martingale sequence.

Example-partial sums of i.i.d sequences

Example

Let $\{X_i\}_{i=1}^{\infty}$ be a sequence of i.i.d random variables with $E[X_1] = \mu$. Let $\mathcal{F}_i = \sigma(X_1, \dots, X_i)$. Then $\{Y_i = \sum_{k=1}^i X_k - i\mu\}$ is a martingale sequence w.r.t $\{X_i\}$.

Example-partial sums of i.i.d sequences

Example

Let $\{X_i\}_{i=1}^{\infty}$ be a sequence of i.i.d random variables with $E[X_1] = \mu$. Let $\mathcal{F}_i = \sigma(X_1, \dots, X_i)$. Then $\{Y_i = \sum_{k=1}^i X_k - i\mu\}$ is a martingale sequence w.r.t $\{X_i\}$.

• Y_i is measurable w.r.t \mathcal{F}_i .

Example-partial sums of i.i.d sequences

Example

Let $\{X_i\}_{i=1}^{\infty}$ be a sequence of i.i.d random variables with $E[X_1] = \mu$. Let $\mathcal{F}_i = \sigma(X_1, \dots, X_i)$. Then $\{Y_i = \sum_{k=1}^i X_k - i\mu\}$ is a martingale sequence w.r.t $\{X_i\}$.

- Y_i is measurable w.r.t \mathcal{F}_i .
- Finally,

$$E[Y_{i+1}|\mathcal{F}_i] = E[X_{i+1} + \sum_{k=1}^{i} X_k - (i+1)\mu|\mathcal{F}_i]$$
$$= \mu + \sum_{k=1}^{i} X_k - (i+1)\mu = Y_i$$

Doob construction

Example

Let $\{X_i\}_{i=1}^{\infty}$ be a sequence of random variables. Let $Y_i = E[f(X)|X_1,\ldots,X_i]$ and assume that $E[|f(X)|] < \infty$. Then $\{Y_i\}_{i=0}^n$ is a martingale sequence w.r.t $\{X_i\}_{i=1}^n$.

Doob construction

Example

Let $\{X_i\}_{i=1}^{\infty}$ be a sequence of random variables. Let $Y_i = E[f(X)|X_1,\ldots,X_i]$ and assume that $E[|f(X)|] < \infty$. Then $\{Y_i\}_{i=0}^n$ is a martingale sequence w.r.t $\{X_i\}_{i=1}^n$.

• $E[|Y_i|] = E[|E[f(X)|X_1,...,X_i]|] \le E[|f(X)|] < \infty$. (Use Jensen on |(.)|)

Doob construction

Example

Let $\{X_i\}_{i=1}^{\infty}$ be a sequence of random variables. Let $Y_i = E[f(X)|X_1,\ldots,X_i]$ and assume that $E[|f(X)|] < \infty$. Then $\{Y_i\}_{i=0}^n$ is a martingale sequence w.r.t $\{X_i\}_{i=1}^n$.

- $E[|Y_i|] = E[|E[f(X)|X_1,...,X_i]|] \le E[|f(X)|] < \infty$. (Use Jensen on |(.)|)
- Furthermore,

$$E[Y_{i+1}|X_1,\ldots,X_i] = E[E[f(X)|X_1,\ldots,X_{i+1}]|X_1,\ldots,X_i]$$

= $E[f(X)|X_1,\ldots,X_i] = Y_i$ The tower property

Doob construction - examples

Example

We are throwing m balls into n bins. At step i we place ball i into a bin chosen uniformly at random. Call the index of the bin X_i . Let Z denote the number of empty bins. $E[Z|X_1,...X_i]$ is a martingale.

- Whats the big deal, just write $Y_i = 1(Bin \ i \text{ is empty})$
- $Z = \sum_{i} Y_{i}$, and so I can compute expectation easily.
- Can we use traditional concentration arguments to say Z EZ is small?

Doob construction - examples

Example

Consider a random graph G(n,p) where the edge between i,j is added with probability p, independent of any other edges. We are interested in the Chromatic number of this graph (χ) , i.e. the minimum number of colors to "properly" color this graph, i.e. no two nodes connected by an edge should have the same color.

- Let the vertices be labeled as 1,..., n
- Let G_i denote the graph induced by nodes $1, \ldots i$.
- Set $E[\chi|G_1,\ldots,G_i]$ is a martingale.
- This is also called a vertex exposure filtration.
- See "Sharp concentration of the chromatic number on random graphs $G_{n,p}$ " by Shamir and Spencer

Likelihood ratio

Example

Let f,g be two densities such that g is absolutely continuous w.r.t f. Suppose $\{X_i\}_{i=1}^{\infty} \stackrel{iid}{\sim} f$ and Y_n is the likelihood ratio $\prod_{i=1}^n \frac{g(X_i)}{f(X_i)}$ for the first n datapoints. Then $\{Y_n\}$ forms a Martingale sequence w.r.t $\{X_n\}$.

Likelihood ratio

Example

Let f,g be two densities such that g is absolutely continuous w.r.t f. Suppose $\{X_i\}_{i=1}^{\infty} \stackrel{iid}{\sim} f$ and Y_n is the likelihood ratio $\prod_{i=1}^n \frac{g(X_i)}{f(X_i)}$ for the first n datapoints. Then $\{Y_n\}$ forms a Martingale sequence w.r.t $\{X_n\}$.

• First recall that $E[|Y_n|] = E[Y_n] = 1$

Likelihood ratio

Example

Let f,g be two densities such that g is absolutely continuous w.r.t f. Suppose $\{X_i\}_{i=1}^{\infty} \stackrel{iid}{\sim} f$ and Y_n is the likelihood ratio $\prod_{i=1}^n \frac{g(X_i)}{f(X_i)}$ for the first n datapoints. Then $\{Y_n\}$ forms a Martingale sequence w.r.t $\{X_n\}$.

- First recall that $E[|Y_n|] = E[Y_n] = 1$
- •

$$E[Y_{n+1}|X_1,\ldots,X_n] = E\left[\left.\prod_{i=1}^{n+1} \frac{g(X_i)}{f(X_i)}\right| X_1,\ldots,X_n\right]$$
$$= \prod_{i=1}^n \frac{g(X_i)}{f(X_i)} E\left[\frac{g(X_{n+1})}{f(X_{n+1})}\right] = Y_n$$

Definition

A sequence $\{D_i\}$ of random variables adapted to a filtration $\{\mathcal{F}_i\}$ is a Martingale Difference Sequence if,

$$E[|D_i|]<\infty \qquad E[D_{i+1}|\mathcal{F}_i]=0$$

Definition

A sequence $\{D_i\}$ of random variables adapted to a filtration $\{\mathcal{F}_i\}$ is a Martingale Difference Sequence if,

$$E[|D_i|] < \infty \qquad E[D_{i+1}|\mathcal{F}_i] = 0$$

• Let $\{Y_i\}$ be a martingale sequence.

Definition

A sequence $\{D_i\}$ of random variables adapted to a filtration $\{\mathcal{F}_i\}$ is a Martingale Difference Sequence if,

$$E[|D_i|] < \infty$$
 $E[D_{i+1}|\mathcal{F}_i] = 0$

- Let $\{Y_i\}$ be a martingale sequence.
- Then $D_{i+1} = Y_{i+1} Y_i$ define a Martingale Difference Sequence.
- $E[D_{i+1}|\mathcal{F}_i] = E[Y_{i+1}|\mathcal{F}_i] E[Y_i|\mathcal{F}_i] = Y_i Y_i = 0.$

Q

Definition

A sequence $\{D_i\}$ of random variables adapted to a filtration $\{\mathcal{F}_i\}$ is a Martingale Difference Sequence if,

$$E[|D_i|] < \infty$$
 $E[D_{i+1}|\mathcal{F}_i] = 0$

- Let $\{Y_i\}$ be a martingale sequence.
- Then $D_{i+1} = Y_{i+1} Y_i$ define a Martingale Difference Sequence.
- $E[D_{i+1}|\mathcal{F}_i] = E[Y_{i+1}|\mathcal{F}_i] E[Y_i|\mathcal{F}_i] = Y_i Y_i = 0.$
 - $E[Y_{i+1}|\mathcal{F}_i] = Y_i$ because of the martingale property,
 - $E[Y_i|\mathcal{F}_i] = Y_i$ since Y_i is measurable w.r.t the filtration \mathcal{F}_i .

Concentration inequalities

Theorem

Consider a Martingale sequence $\{D_i\}$ (adapted to a filtration $\{\mathcal{F}_i\}$) that satisfies $E[e^{\lambda D_i}|\mathcal{F}_{i-1}] \leq e^{\lambda^2 \nu_i^2/2}$ a.s. for any $|\lambda| < 1/b_i$.

- The sum $\sum_{i} D_{i}$ is sub-exponential with parameters $(\sqrt{\sum_{k} \nu_{k}^{2}, b_{*}})$ where $b_{*} := \max_{i} b_{i}$.
- Hence for all t > 0,

$$P\left[|\sum_{i=1}^{n} D_{i}| \ge t\right] \le \begin{cases} 2e^{-\frac{t^{2}}{2\sum_{k}\nu_{k}^{2}}} & \text{If } 0 \le t \le \frac{\sum_{k}\nu_{k}^{2}}{b_{*}}\\ 2e^{-\frac{t}{2b_{*}}} & \text{If } t > \frac{\sum_{k}\nu_{k}^{2}}{b_{*}} \end{cases}$$

a

Let
$$X := \sum_{i=1}^{n} D_i$$
.

$$\begin{split} E[e^{\lambda \sum_{i} D_{i}}] &= E[E[e^{\lambda \sum_{i} D_{i}} | \mathcal{F}_{n-1}]] = E[e^{\lambda \sum_{i=1}^{n-1} D_{i}} E[e^{\lambda D_{n}} | \mathcal{F}_{n-1}]] \\ &\leq E[e^{\lambda \sum_{i=1}^{n-1} D_{i}}] e^{\lambda^{2} \nu_{n}^{2}/2} & \text{If } |\lambda| < 1/b_{n} \\ &\leq E[e^{\lambda \sum_{i=1}^{n-2} D_{i}}] e^{\lambda^{2} (\nu_{n-1}^{2} + \nu_{n}^{2})/2} & \text{If } |\lambda| < 1/b_{n}, 1/b_{n-1} \\ &\leq e^{\sum_{i} \lambda^{2} \nu_{i}^{2}/2} & \text{If } |\lambda| < \min_{i} 1/b_{i} \end{split}$$

Using our previous theorem on sub-exponential random variables, the result is proven in one direction. The other direction is identical leading to the factor of 2.

Azuma-Hoeffding

Corollary (Azuma-Hoeffding)

Let $\{D_k\}$ be a Martingale Difference Sequence adapted to the filtration $\{\mathcal{F}_k\}$ and suppose $|D_k| \leq b_k$ a.s. for all $k \geq 1$. Then $\forall t \geq 0$,

$$P\left[\left|\sum_{k=1}^{n} D_{k}\right| \ge t\right] \le 2e^{-\frac{t^{2}}{2\sum_{k} b_{k}^{2}}}$$

Proof.

- We can rework the last proof. We need $|E[e^{\lambda D_n}|\mathcal{F}_{n-1}]|$.
- This is bounded by $e^{\lambda^2 b_n^2/2}$, since D_n is mean zero sub-gaussian with $\sigma = b_n$.

McDiarmid's inequality

Theorem

Let $f: \mathcal{X}^n \to \mathbb{R}$ satisfy the following bounded difference condition $\forall x_1, \dots, x_n, x_i' \in \mathcal{X}$:

$$|f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n)-f(x_1,\ldots,x_{i-1},x_i',x_{i+1},\ldots,x_n)| \leq B_i,$$

then,
$$P(|f(X) - E[f(X)]| \ge t) \le 2 \exp\left(-\frac{2t^2}{\sum_i B_i^2}\right)$$

 Note that this boils down to Hoeffding's when f is the sum of bounded random variables.

Proof.

• Define $Y_i = E[f(X)|\mathcal{F}_i]$ and $D_i = Y_i - Y_{i-1}$.

Proof.

- Define $Y_i = E[f(X)|\mathcal{F}_i]$ and $D_i = Y_i Y_{i-1}$.
- Since $\{Y_i\}$ is a Martingale sequence w.r.t $\{X_i\}$, $\{D_i\}$ is a Martingale difference sequence.

Proof.

- Define $Y_i = E[f(X)|\mathcal{F}_i]$ and $D_i = Y_i Y_{i-1}$.
- Since $\{Y_i\}$ is a Martingale sequence w.r.t $\{X_i\}$, $\{D_i\}$ is a Martingale difference sequence.
- We have:

$$D_{i} = E[f(X)|\mathcal{F}_{i}] - E[f(X)|\mathcal{F}_{i-1}]$$

$$= E[f(X)|X_{1},...,X_{i}] - E[f(X)|X_{1},...,X_{i-1}]$$

$$\leq \sup_{X} (E[f(X)|X_{1},...,X] - E[f(X)|X_{1},...,X_{i-1}]) =: U_{i}$$

$$D_{i} \geq \inf_{X} (E[f(X)|X_{1},...,X] - E[f(X)|X_{1},...,X_{i-1}]) =: L_{i}$$

$$U_{i} - L_{i} \leq B_{i}$$

Proof.

• We also have:

$$U_i - L_i \leq B_i$$

• How?

$$U_{i} - L_{i} = \sup_{x} E[f(X)|X_{1}, \dots, x] - \inf_{y} E[f(X)|X_{1}, \dots, y]$$

$$= \sup_{x,y} (E[f(X)|X_{1}, \dots, x] - E[f(X)|X_{1}, \dots, y])$$

$$= \sup_{x,y} \int (f(x_{1:i-1}, x, X_{i+1:n}) - f(x_{1:i-1}, y, X_{i+1:n}))dP(X_{i+1:n})$$

$$\leq \sup_{x,y} \int |f(x_{1:i-1}, x, X_{i+1:n}) - f(x_{1:i-1}, y, X_{i+1:n})|dP(X_{i+1:n})$$

$$\leq B_{i}$$

- Now apply Azuma-Hoeffding.
- So, where is independence being used?

Example

Consider an i.i.d random variable sequence $\{X_k\}_{k=1}^{\infty}$ with $|X_k| \leq b$. Define the mean absolute deviation:

$$U = \frac{1}{\binom{n}{2}} \sum_{j < k} |X_j - X_k|$$

As we will see later, the above is a type of a pairwise U-Statistics. We want to bound |U - E[U]|.

Note that the summands are not independent.

Example

Consider an i.i.d random variable sequence $\{X_k\}_{k=1}^{\infty}$ with $|X_k| \leq b$. Define the mean absolute deviation:

$$U = \frac{1}{\binom{n}{2}} \sum_{j < k} |X_j - X_k|$$

As we will see later, the above is a type of a pairwise U-Statistics. We want to bound |U - E[U]|.

- Note that the summands are not independent.
- Also note that $||X_i X_j| |X_i X_j'|| \le |X_j X_j'| \le 2b$

Example

Consider an i.i.d random variable sequence $\{X_k\}_{k=1}^{\infty}$ with $|X_k| \leq b$. Define the mean absolute deviation:

$$U = \frac{1}{\binom{n}{2}} \sum_{j < k} |X_j - X_k|$$

As we will see later, the above is a type of a pairwise U-Statistics. We want to bound |U - E[U]|.

- Note that the summands are not independent.
- Also note that $||X_i X_j| |X_i X_j'|| \le |X_j X_j'| \le 2b$
- So $|U(x_1,...,x_i,...,x_n) U(x_1,...,x_i',...,X_n)| \le \frac{(n-1)2b}{\binom{n}{2}} = \frac{4b}{n}$

Example

Consider an i.i.d random variable sequence $\{X_k\}_{k=1}^{\infty}$ with $|X_k| \leq b$. Define the mean absolute deviation:

$$U = \frac{1}{\binom{n}{2}} \sum_{j < k} |X_j - X_k|$$

As we will see later, the above is a type of a pairwise U-Statistics. We want to bound |U - E[U]|.

- Note that the summands are not independent.
- \bullet Also note that $||X_i-X_j|-|X_i-X_j'||\leq |X_j-X_j'|\leq 2b$
- So $|U(x_1,...,x_i,...,x_n) U(x_1,...,x_i',...,X_n)| \le \frac{(n-1)2b}{\binom{n}{2}} = \frac{4b}{n}$
- Use McDiarmid's inequality, $P(|U E[U]| \ge t) \le 2 \exp\left(\frac{-nt^2}{8b^2}\right)$

Example: Number of triangles in an Erdos Renyi graph

Example

Consider an Erdős Rényi (ER(p)) random graph. What can we say about the number of triangles Δ ?

- Let n be the number of nodes. $m = \binom{n}{2}$ be the number of ordered pairs. Call this set E.
- An ER(p) graph chooses the edges randomly as iid Bernoulli r.v.s $\{X_e : e \in E\}$ with $P(X_e = 1) = p$.
- Let $\mathcal{T} \subset E^3$ be the set of 3-tuples of node pairs which can form a triangle. e.g. $\{(i,j),(j,k),(k,i)\}\in\mathcal{T}.$ $|\mathcal{T}|=\binom{n}{3}.$
- We have $f(X) = \sum_{\{e_1, e_2, e_3\} \in \mathcal{T}} X_{e_1} X_{e_2} X_{e_3}$.

Example: Number of triangles in an Erdos Renyi graph-Cont.

Example

Consider an Erdős Rényi (ER(p)) random graph. What can we say about the number of triangles Δ ?

- If I switch $X_e = 1$ to 0 how much can f(X) change?
- It changes by all triangles incident on that edge. The maximum number of such triangles is n-2. So L=n-2.
- Hence $P(|f(X) E[f(X)]| \ge t) \le 2e^{-\frac{2t^2}{m(n-2)^2}}$
- $E[f(X)] = \binom{n}{3} p^3$. If we set $t = \Theta(n^2 \log n)$, then the error probability goes to zero.
- But in order for this to give concentration we need, $t/n^3 \rho^3 \to 0$, i.e. $n\rho >> n^{2/3}$

Example: Number of triangles in an Erdos Renyi graph-Cont.

Example

Consider an Erdős Rényi (ER(p)) random graph. What can we say about the number of triangles Δ ?

- One can however use Chen-Stein method to show that f(X) is approximately $Poisson\left(\binom{n}{3}p^3\right)$.
- So the above should hold as long as $np \to \infty$. But McDiarmid requires a much stronger condition!
- What if we could plug in the expected value of the Lipschitz constant, i.e. np²?
- Then the exponent would be e^{-2t^2/n^4p^4} . Taking $t=n^2p^2$, we see that concentration would amount to having $np >> \log n$ which matches with the Poisson limit argument.

Example: Number of triangles in an Erdos Renyi graph-Cont.

Example

Consider a random graph G(n,p) where the edge between i,j is added with probability p, independent of any other edges. We are interested in the Chromatic number of this graph (χ) , i.e. the minimum number of colors to "properly" color this graph, i.e. no two nodes connected by an edge should have the same color.

- We need independent RVs Z_1, \ldots, Z_i so that we can construct a Doob martingale $E[\chi|Z_1, \ldots, Z_i]$ and apply McDiarmid's inequality.
- Let Z_i be the edges from node i to nodes $1, \ldots, i-1$.
- χ cannot decrease by more than 1, because if the graph without node i can be colored by k colors, then the graph with node i can be colored using k+1 colors.
- Similarly, it can't increase by more than 1, because you can just color node i with a new color, thereby increasing the chromatic number by 1.

Lipschitz functions of Gaussian random variables

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is L-Lipschitz w.r.t the Euclidean norm if

$$|f(x) - f(y)| \le L||x - y||_2 \qquad \forall x, y \in \mathbb{R}^n$$

Theorem

Let (X_1, \ldots, X_n) be a vector of iid N(0,1) random variables. Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-Lipschitz w.r.t the Euclidean norm. Then f(X) - E[f(X)] is sub-gaussian with parameter at most L, i.e. $\forall t \geq 0$,

$$P(|f(X) - E[f(X)]| \ge t) \le e^{-\frac{t^2}{2L^2}}$$

• A L Lipschitz function of a vector of i.i.d N(0,1) random variables concentrate like a $N(0,L^2)$ random variable, irrespective of how long the vector is.