Models of Distributed Systems

Lecture 1

Overview

- 1 Introduction
 - General Information
 - Models for Distributed Systems
- 2 Petri Nets Definition
- 3 Concurrent transitions
- 4 Behavioural properties
 - Boundness
 - Quasi-liveness
 - Deadlocks
 - Liveness
 - Reversibility

Overview

- 1 Introduction
 - General Information
 - Models for Distributed Systems
- 2 Petri Nets Definition
- 3 Concurrent transitions
- 4 Behavioural properties
 - Roundness
 - Quasi-liveness

 - Liveness
 - Reversibility

Contact

■ Email:otto@infoiasi.ro

Office: C211

Course web page:

http://www.infoiasi.ro/~otto/msd.html

Evaluation

Final Grade =
$$50\%$$
LSA + 50% T

- T written test (a grade from 1 to 10)
- LSA-seminar and laboratory activity (a grade from 0 to 10):
 - written test (40%)
 - homework (30%)
 - activity during laboratory (30%)
 - a scientific paper presentation (bonus)
- Minimal conditions: any student should attend at least 7 laboratories, $LSA \geq 5$,

- a system which consists of several autonomous computational entities/processes/components
- each entity/process/component can have its own local memory/resources
- the entities communicate with each other by message passing or shared memory
- the entities have a common goal (e.g. solving a large computational problem, execution of a certain task)
- characteristics of a distributed system: parallelism, synchronization, communication

- a system which consists of several autonomous computational entities/processes/components
- each entity/process/component can have its own local memory/resources
- the entities communicate with each other by message passing or shared memory
- the entities have a common goal (e.g. solving a large computational problem, execution of a certain task)
- characteristics of a distributed system: parallelism, synchronization,
 communication

- a system which consists of several autonomous computational entities/processes/components
- each entity/process/component can have its own local memory/resources
- the entities communicate with each other by message passing or shared memory
- the entities have a common goal (e.g. solving a large computational problem, execution of a certain task)
- characteristics of a distributed system: parallelism, synchronization,

- a system which consists of several autonomous computational entities/processes/components
- each entity/process/component can have its own local memory/resources
- the entities communicate with each other by message passing or shared memory
- the entities have a common goal (e.g. solving a large computational problem, execution of a certain task)
- characteristics of a distributed system: parallelism, synchronization,
 communication

- a system which consists of several autonomous computational entities/processes/components
- each entity/process/component can have its own local memory/resources
- the entities communicate with each other by message passing or shared memory
- the entities have a common goal (e.g. solving a large computational problem, execution of a certain task)
- characteristics of a distributed system: parallelism, synchronization, communication

Distributed Systems

- distributed systems:
 - mobile telephone networks
 - computer networks
 - industrial control systems
 - distributed manufacturing systems
 - distributed software systems

Models for Distributed Systems

The modelling and verification of distributed systems

- Process Calculi
 - CSP (Communicating Sequential Processes)
 - CCS (Calculus of Communicating Processes)
 - π-calculus
- rewriting logic
- automata
- Petri nets C. A. Petri, 1962

- Carl Adam Petri, 1962
- formal method used for the modelling and verification of distributed/concurrent systems
- bipartite graphs
- explicit representation of the states and events in a system
- intuitive graphical representation
- formal semantics
- expressiveness (concurrency, nondeterminism, communication, synchronization)
- analysis methods for their properties
- software tools for simulation and analysis of properties

- Carl Adam Petri, 1962
- formal method used for the modelling and verification of distributed/concurrent systems
- bipartite graphs
- explicit representation of the states and events in a system
- intuitive graphical representation
- formal semantics
- expressiveness (concurrency, nondeterminism, communication, synchronization)
- analysis methods for their properties
- software tools for simulation and analysis of properties

- Carl Adam Petri, 1962
- formal method used for the modelling and verification of distributed/concurrent systems
- bipartite graphs
- explicit representation of the states and events in a system
- intuitive graphical representation
- formal semantics
- expressiveness (concurrency, nondeterminism, communication, synchronization)
- analysis methods for their properties
- software tools for simulation and analysis of properties

- Carl Adam Petri, 1962
- formal method used for the modelling and verification of distributed/concurrent systems
- bipartite graphs
- explicit representation of the states and events in a system
- intuitive graphical representation
- formal semantics
- expressiveness (concurrency, nondeterminism, communication, synchronization)
- analysis methods for their properties
- software tools for simulation and analysis of properties

- Carl Adam Petri, 1962
- formal method used for the modelling and verification of distributed/concurrent systems
- bipartite graphs
- explicit representation of the states and events in a system
- intuitive graphical representation
- formal semantics
- expressiveness (concurrency, nondeterminism, communication, synchronization)
- analysis methods for their properties
- software tools for simulation and analysis of properties

- Carl Adam Petri, 1962
- formal method used for the modelling and verification of distributed/concurrent systems
- bipartite graphs
- explicit representation of the states and events in a system
- intuitive graphical representation
- formal semantics
- expressiveness (concurrency, nondeterminism, communication, synchronization)
- analysis methods for their properties
- software tools for simulation and analysis of properties

- Carl Adam Petri, 1962
- formal method used for the modelling and verification of distributed/concurrent systems
- bipartite graphs
- explicit representation of the states and events in a system
- intuitive graphical representation
- formal semantics
- expressiveness (concurrency, nondeterminism, communication, synchronization)
- analysis methods for their properties
- software tools for simulation and analysis of properties

- Carl Adam Petri, 1962
- formal method used for the modelling and verification of distributed/concurrent systems
- bipartite graphs
- explicit representation of the states and events in a system
- intuitive graphical representation
- formal semantics
- expressiveness (concurrency, nondeterminism, communication, synchronization)
- analysis methods for their properties
- software tools for simulation and analysis of properties

Overview

- 1 Introduction
 - General Information
 - Models for Distributed Systems
- 2 Petri Nets Definition
- 3 Concurrent transitions
- 4 Behavioural properties
 - Boundness
 - Quasi-liveness

 - Liveness
 - Reversibility

Definition 1

A Petri Nets is a 4-uplu N = (P, T, F, W) such that :

- **11** P a set of places, T a set of transitions, $P \cap T = \emptyset$;
- **2** $F \subseteq (P \times T) \cup (T \times P)$ the flow relation;
- **I** $W: (P \times T) \cup (T \times P) \rightarrow \mathbb{N}$ the weight function $(W(x,y) = 0 \text{ iff } (x,y) \notin F).$

If $x \in P \cup T$, then:

- Pre-set of x: $\bullet x = \{y | (y, x) \in F\}$;
- Post-set of x: $x \bullet = \{y | (x, y) \in F\}$.

If $x \in P \cup T$, then:

- Pre-set of x: $\bullet x = \{y | (y, x) \in F\}$;
- Post-set of x: $x \bullet = \{y | (x, y) \in F\}$.

Definition 2

A net is pure if, for all $x \in P \cup T$, $\bullet x \cap x \bullet = \emptyset$.

If $x \in P \cup T$, then:

- Pre-set of x: $\bullet x = \{y | (y, x) \in F\}$;
- Post-set of x: $x \bullet = \{y | (x, y) \in F\}$.

Definition 2

A net is pure if, for all $x \in P \cup T$, $\bullet x \cap x \bullet = \emptyset$.

Definition 3

A net does not have isolated elements if for all $x \in P \cup T$, $\bullet x \cup x \bullet \neq \emptyset$

Marking of a Petri Net

Definition 4 (Marking, marked net)

- Let N = (P, T, F, W) be a Petri net. A marking of N is a function $M : P \to \mathbb{N}$.
- Let N = (P, T, F, W) be a Petri net net and $M_0 : P \to \mathbb{N}$. (N, M_0) is called a marked Petri net.

The distribution of tokens in the places of the net = the marking of the net (the state of the modelled system)

Producer-Consumer System

- A producer (P) can be in two states: active and inactive;
- A consumer (C) can be in two states: active and inactive;
- If the producer is active, it can produce a product and place it into a buffer; after producing a product, P becomes inactive;
- If the producer is inactive, it can become active again;
- If the consumer is active, and there are at least two products in the buffer, it can consume two products and become inactive;
- If the consumer is inactive, it can become active again

Firing Rule

Definition 5

Let N = (P, T, F, W) be a Petri net, M a marking of N and $t \in T$ a transition of N.

- Transition t is enabled in marking M (M[t)_N) if W(p, t) \leq M(p), for all $p \in \bullet t$.
- If t is enabled in marking M, then t can fire, producing a new marking M' $(M[t]_NM')$, where

$$M'(p) = M(p) - W(p,t) + W(t,p),$$

for all $p \in P$.

Occurrence Sequences

- The extension of the firing rule to sequences of transitions
- Let $\sigma \in T^*$ be a sequence of transitions and M a marking.
 - ϵ (the empty sequence) is a transition sequence enabled in M: $M[\epsilon\rangle M$
 - if u is a transition sequence enabled in M such that M[u] M' and M'[t] M'', then ut is a transition sequence enabled in M and M[ut] M'' ($u \in T^*, M', M''$ markings)
- If $\sigma \in T^*$ and $M[\sigma)$, σ is called an occurrence (firing) sequence from M (or enabled in M).

Occurrence Sequences

Let $\gamma = (N, M_0)$ be a marked Petri net and the following functions:

- \bullet $t^-: P \to \mathbb{N}, t^-(p) = W(p, t), \forall p \in P$
- $t^+: P \to \mathbb{N}, t^+(p) = W(t, p), \forall p \in P$
- $\Delta t: P \to \mathbb{Z}, \Delta t(p) = W(t,p) W(p,t)$

If $\sigma \in T^*$ is a transition sequence, then $\Delta \sigma : P \to \mathbb{Z}$, where:

- if $\sigma = \epsilon$, then $\Delta \sigma$ is the function 0.
- if $\sigma = t_1, \ldots, t_n$, then $\Delta \sigma = \sum_{i=1}^n \Delta t_i$.

Example

Proposition 1

Let t be a transition, $\sigma \in T^*$ and M, M' markings.

- If $M[t\rangle M'$, then $M' = M + \Delta t$.
- If $M[\sigma]M'$, then $M' = M + \Delta \sigma$

Properties of Occurrence Sequences

Notation

If σ is a transition sequence and U a set of transitions, $\sigma|_U$ is the sequence of transitions obtained from σ , by keeping only those transitions which are from U.

Properties of Occurrence Sequences

Notation

If σ is a transition sequence and U a set of transitions, $\sigma|_U$ is the sequence of transitions obtained from σ , by keeping only those transitions which are from U.

Lemma 1

Let N be a Petri net, $U, V \subseteq T$ such that $V \bullet \cap \bullet U = \emptyset$. If $\sigma \in (U \cup V)^*$ such that $M[\sigma]M'$, then $M[\sigma]U \cap V \cap M'$.

Properties of Occurrence Sequences

Notation

If σ is a transition sequence and U a set of transitions, $\sigma|_U$ is the sequence of transitions obtained from σ , by keeping only those transitions which are from U.

Lemma 1

Let N be a Petri net, $U, V \subseteq T$ such that $V \bullet \cap \bullet U = \emptyset$. If $\sigma \in (U \cup V)^*$ such that $M[\sigma \rangle M'$, then $M[\sigma |_U \sigma|_V \rangle M'$.

$$U = \{t_1, t_2\}, V = \{t_3, t_4\} M = (0, 1, 0, 1, 0)$$

 $\sigma = t_2 t_4 t_3 t_1 t_4$

Definition 6

Let $\gamma = (N, M_0)$ be a marked Petri net. A marking M' is reachable from marking M, if there exists a finite occurrence sequence σ such that : $M[\sigma\rangle M'$.

Definition 6

Let $\gamma = (N, M_0)$ be a marked Petri net. A marking M' is reachable from marking M, if there exists a finite occurrence sequence σ such that : $M[\sigma \rangle M'$.

■ The set of markings reachable form M, in γ , is denoted by $[M]_{\gamma}$

Definition 6

Let $\gamma = (N, M_0)$ be a marked Petri net. A marking M' is reachable from marking M, if there exists a finite occurrence sequence σ such that : $M[\sigma \rangle M'$.

■ The set of markings reachable form M, in γ , is denoted by $[M]_{\gamma}$

Definition 7

Marking M is reachable in γ , if M is reachable from the initial marking M_0 .

Definition 6

Let $\gamma = (N, M_0)$ be a marked Petri net. A marking M' is reachable from marking M, if there exists a finite occurrence sequence σ such that : $M[\sigma\rangle M'$.

■ The set of markings reachable form M, in γ , is denoted by $[M]_{\gamma}$

Definition 7

Marking M is reachable in γ , if M is reachable from the initial marking M_0 .

■ The set of reachable markings in γ is denoted by $[M_0\rangle_{\gamma}$

Overview

- 1 Introduction
 - General Information
 - Models for Distributed Systems
- 2 Petri Nets Definition
- 3 Concurrent transitions
- 4 Behavioural properties
 - Boundness
 - Quasi-liveness

 - Liveness
 - Reversibility

Concurrent Transitions

Definition 8

Let N = (P, T, F, W) be a Petri net. A set of transitions $U \subseteq T$ is concurrently enabled in a marking M of N if:

$$(\forall p \in P)(\Sigma_{t \in U}W(p,t) \leq M(p)).$$

Concurrent Transitions

Definition 8

Let N = (P, T, F, W) be a Petri net. A set of transitions $U \subseteq T$ is concurrently enabled in a marking M of N if:

$$(\forall p \in P)(\Sigma_{t \in U}W(p, t) \leq M(p)).$$

$$W(p_1, t_1) + W(p_1, t_2) = 1 \le M(p_1)$$

$$W(p_2, t_1) + W(p_2, t_2) = 2 < M(p_2)$$

Proposition 2

If U is a set of transitions concurrently enabled in M, then any permutation σ of the transitions from U is enabled in M and always the same marking M' is obtained $(M[\sigma\rangle M')$.

Proposition 2

If U is a set of transitions concurrently enabled in M, then any permutation σ of the transitions from U is enabled in M and always the same marking M' is obtained $(M[\sigma\rangle M')$.

The reverse is not true: $M[t_1t_2\rangle M'$ and $M[t_2t_1\rangle M'$ does not always imply that t_1 and t_2 are concurrently enabled:

$$(1,0,0)[t_1\rangle(1,1,0)[t_2\rangle(1,1,1)$$
$$(1,0,0)[t_2\rangle(1,0,1)[t_1\rangle(1,1,1)$$

Proposition 2

If U is a set of transitions concurrently enabled in M, then any permutation σ of the transitions from U is enabled in M and always the same marking M' is obtained $(M[\sigma)M')$.

Proposition 3

Let N be a pure net, $t_1, t_2 \in T$ and M a marking of N. Then t_1 and t_2 are concurrently enabled in M iff $M[t_1t_2\rangle M'$ and $M[t_2t_1\rangle M'$.

Overview

- 1 Introduction
 - General Information
 - Models for Distributed Systems
- 2 Petri Nets Definition
- 3 Concurrent transitions
- 4 Behavioural properties
 - Boundness
 - Quasi-liveness
 - Deadlocks
 - Liveness
 - Reversibility

The Boundness Property

Definition 9

Let $\gamma = (M, M_0)$ be a marked Petri net.

■ A place p is bounded if:

$$(\exists n \in \mathbb{N})(\forall M \in [M_0\rangle)(M(p) \leq n)$$

■ The marked net γ is bounded if each place $p \in P$ is bounded.

Boundness-example

- p₃ unbounded place
- p_1, p_2, p_4, p_5 bounded places

Proposition 4

A marked Petri net $\gamma = (N, M_0)$ is bounded iff the set $[M_0]$ is finite.

MSD (2019) Lecture 1 29 / 45

Proposition 4

A marked Petri net $\gamma = (N, M_0)$ is bounded iff the set $[M_0\rangle$ is finite.

 (\Longrightarrow) Let n such that $(\forall M \in [M_0\rangle)(\forall p \in P)(M(p) \le n)$. The maximum number of markings is $(n+1)^{|P|}$.

 (\longleftarrow) Let $n = max\{M(p)|M \in [M_0\rangle, \ p \in P\}.$

MSD (2019) Lecture 1 29 / 45

Proposition 4

A marked Petri net $\gamma = (N, M_0)$ is bounded iff the set $[M_0]$ is finite.

Proposition 5

If $\gamma = (N, M_0)$ is bounded, there do not exist two markings $M_1, M_2 \in [M_0)$ such that

 $M_1[*]M_2$ and $M_2 > M_1$.

Definition

Definition 10 (quasi-liveness)

Let $\gamma = (N, M_0)$ be a marked Petri net.

- A transition $t \in T$ is quasi-live from marking M, if there exists a marking $M' \in [M]$ such that M'[t].
- A transition $t \in T$ is quasi-live if it is quasi-live from marking M_0 (there exists a reachable marking $M \in [M_0\rangle$ such that $M[t\rangle)$. If a transition is not quasi-live, it is also called a dead transition.
- The marked Petri net γ is quasi-live if all its transitions are quasi-live.

MSD (2019) 30 / 45 Lecture 1

Examples

MSD (2019) Lecture 1 31 / 45

Examples

- t₃, t₄ dead transitions
- \blacksquare t_1 , t_2 quasi-live transitions

Properties: deadlocks

Definition 11 (deadlock)

Let $\gamma = (N, M_0)$ be a marked Petri net.

- **a** A marking M of γ is dead if there does not exist any $t \in T$ such that M[t]. M is also called a deadlock.
- The net γ is deadlock-free, if it does not have any dead reachable markings.

MSD (2019) Lecture 1 32 / 45

Example

Example

 \bullet (0,0,0,1),(0,0,1,0) are dead reachable markings

Liveness-definition

Definition 12 (liveness)

Let N = (P, T, F, W) be a Petri net and $\gamma = (N, M_0)$ a marked Petri net.

- A transition $t \in T$ is live if $\forall M \in [M_0\rangle$, t is quasi-live from M ($\exists M' \in [M\rangle$ such that $M'[t\rangle)$.
- The marked net γ is live if any transition $t \in T$ is live.

Example

Example

- \bullet t_1, t_2, t_3 : are not live
- *t*₄, *t*₅: live
- the net is quasi-live

Home Markings

Definition 13

Let $\gamma = (N, M_0)$ be a marked Petri net and H a marking. H is home marking iff for all $M \in [M_0\rangle, H \in [M\rangle.$

MSD (2019) Lecture 1 36 / 45

Home Markings

Definition 13

Let $\gamma = (N, M_0)$ be a marked Petri net and H a marking. H is home marking iff for all $M \in [M_0)$, $H \in [M)$.

M = (0, 0, 1, 0) home marking

MSD (2019) Lecture 1 36 / 45

Reversibility-definition

Definition 14

The marked net γ is reversible iff its initial marking is a home marking.

Reversibility-definition

Definition 14

The marked net γ is reversible iff its initial marking is a home marking.

MSD (2019) Lecture 1

Reversibility-definition

Definition 14

The marked net γ is reversible iff its initial marking is a home marking.

MSD (2019) Lecture 1

Reversibility-definition

Definition 14

The marked net γ is reversible iff its initial marking is a home marking.

Proposition 6

A Petri net is reversible iff al its reachable markings are home markings

MSD (2019) Lecture 1 37 / 45

Properties in Live Petri Nets

Let $\gamma = (N, M_0)$ be a marked Petri net .

Proposition 7

If γ is live, then it is quasi-live.

Properties in Live Petri Nets

Let $\gamma = (N, M_0)$ be a marked Petri net .

Proposition 7

If γ is live, then it is quasi-live.

Proposition 8

If γ is live and it has at least one transition, then γ is deadlock-free.

- quasi-live net, without deadlocks.
- not live

Properties in Reversible Petri Nets

Proposition 9

A marked reversible net is live iff it is quasi-live.

Properties in Reversible Petri Nets

Proposition 9

A marked reversible net is live iff it is quasi-live.

Proposition 10

A marked reversible net is deadlock-free.

Example

Live but not reversible net:

$$(1,0,0,)[t_1\rangle(0,1,1)[t_2\rangle(1,1,0)[t_3\rangle.$$

The initial marking (1,0,0) is not reachable from (1,1,0).

Example

deadlock-free net, not reversible

■ bounded net, not live

unbounded, live net

unbounded, not live

MSD (2019) Lecture 1 43 /

Theorem 1

Any connected Petri net (there is an undirected path between any pair of elements) which is bounded and live is strongly connected.

Theorem 1

Any connected Petri net (there is an undirected path between any pair of elements) which is bounded and live is strongly connected.

<u>Proof:</u> It can be proven that for any $(x, y) \in F$, there exists a path from y to x.

Case 1: $x \in P, y \in T$.

Let $V = \{t \in T | \text{there exists a path from y to t} \}$ $(y \in V)$

 $U = \{t \in T | \text{there does not exist a path from y to t} \}$

 $V \bullet \cap \bullet U = \emptyset.$

Theorem 1

Any connected Petri net (there is an undirected path between any pair of elements) which is bounded and live is strongly connected.

<u>Proof:</u> It can be proven that for any $(x, y) \in F$, there exists a path from y to x.

Case 1: $x \in P, y \in T$.

Let $V = \{t \in T | \text{there exists a path from y to t} \}$ $(y \in V)$

 $U = \{t \in T | \text{there does not exist a path from y to t} \}$

 $V \bullet \cap \bullet U = \emptyset.$

The reverse does not hold: the net is strongly connected, but it is not live

Models of Distributed Systems

Lecture 2

Overview

- 1 Properties of Petri Nets
 - Fairness

- 2 Analysis Methods for Petri Nets
 - Reachability Graph
 - The strongly connected components graph (SCC graph)
 - Coverability Tree/Graph

Overview

- 1 Properties of Petri Nets
 - Fairness

- 2 Analysis Methods for Petri Nets
 - Reachability Graph
 - The strongly connected components graph (SCC graph)
 - Coverability Tree/Graph

Let σ be an infinite occurrence sequence:

$$\sigma = M_1[t_1\rangle M_2[t_2\rangle M_3\dots$$

- \blacksquare $\mathcal{M}(\sigma)$: the set off all the markings that appear in σ
- \blacksquare $\mathcal{T}(\sigma)$: the set off all the transitions that appear in σ
- **OC**_t(σ): the number of occurrences of t in σ
- **E** $N_t(\sigma)$: the number of times t is enabled (in the markings of) σ :

$$|\{M|M\in\mathcal{M}(\sigma),M[t\rangle\}|$$

Definition 1

Let γ be a marked Petri net and σ an occurrence sequence.

■ Transition t is impartial for σ iff it has infinitely many occurrences in σ :

$$OC_t(\sigma) = \infty$$

■ Transition t is fair for σ iff an infinite number of enablings implies an infinite number of occurrences:

$$EN_t(\sigma) = \infty \Rightarrow OC_t(\sigma) = \infty$$

■ Transition t is just for σ iff a persistent enabling implies an infinite number of occurrences:

$$(\exists i : (\forall k \geq i : M_k[t\rangle)) \Rightarrow (OC_t(\sigma) = \infty)$$

■ Transition t is impartial (fair, just) in γ iff it is impartial (fair, just) for all the infinite occurrence sequences in the net.

MSD (2019) Lecture 2 5/46

Proposition 1

Let γ be a marked Petri net and σ an occurrence sequence.

t is impartial for $\sigma \Rightarrow t$ is fair for $\sigma \Rightarrow t$ is just for σ

Checking fairness properties for a transition *t*:

- check impartial property: check every infinite occurrence sequence; if t is impartial, it is also fair and just, otherwise check fairness;
- check fairness property: check those infinite occurrence sequences where t is enabled an infinite number of times; if t is fair it is also just, otherwise check for just;
- check just property: check those infinite occurrence sequences where t is continuously enabled from a certain marking on: if $OC_t(\sigma)$ is finite, t has no fairness

MSD (2019) Lecture 2 6 / 46

$$\begin{array}{c} [p1+p2+p4] \xrightarrow{t1} \\ \downarrow t3 \end{array} \begin{array}{c} t1 \\ \downarrow p3+p4] \xrightarrow{t2} [p1+p2+p4] \xrightarrow{t1} \\ \downarrow t3 \end{array} \begin{array}{c} t2 \\ \downarrow t3 \end{array} \begin{array}{c} [p1+p2+p4] \xrightarrow{t1} \\ \downarrow t3 \end{array}$$

MSD (2019) Lecture 2 7 / 46

$$[p1+p2+p4] \xrightarrow{t1} [p3+p4] \xrightarrow{t2} [p1+p2+p4] \xrightarrow{t1} [p3+p4] \xrightarrow{t2} [p1+p2+p4] \xrightarrow{t1} \cdots \cdots$$

- \blacksquare t_1 and t_2 are impartial for the first sequence (also fair and just)
- t₃ is not fair for the sequence
- t₃ is just for the sequence
- t₄ fair

$$\begin{array}{c} [p1+p2+p4] \xrightarrow{t3} [p2+p5] \xrightarrow{t4} [p1+p2+p4] \xrightarrow{t3} [p2+p5] \xrightarrow{t4} [p1+p2+p4] \xrightarrow{t3} \cdots \cdots \\ \downarrow t1 & \downarrow t1 & \downarrow t1 \end{array}$$

- t₃ and t₄ are impartial for the sequence (also fair and just)
- t₁ is not fair for the sequence
- t₁ is just for the sequence
- t₂ fair

 t_1 - just, t_2 -fair, t_3 -just t_4 -fair

MSD (2019) Lecture 2 8 / 46

Overview

- 1 Properties of Petri Nets
 - Fairness

- 2 Analysis Methods for Petri Nets
 - Reachability Graph
 - The strongly connected components graph (SCC graph)
 - Coverability Tree/Graph

- the reachability graph describes the state space for Petri nets
- the nodes of the graph are the reachable markings of the net
- the arcs of the graph are labelled by transitions

Definition

Definition 1 (reachability graph)

Let $\gamma = (N, M_0)$ be a marked Petri net

The reachability graph of γ is a directed graph with labelled arcs: $\mathcal{RG}(\gamma) = (V, A, I_A)$, such that

- $V = [M_0\rangle.$
- $\blacksquare A = \{(M, M') | \exists t \in T : M[t\rangle M'\}.$
- \blacksquare $I_A: A \rightarrow T$, $\forall (M, M') \in A: I_A(M, M') = t$, if $M[t\rangle M'$.

A labelled arc $(M, M') \in A$, $I_A(M, M') = t$ is denoted by (M, t, M').

MSD (2019) Lecture 2 11 / 46

MSD (2019) Lecture 2 12 / 46

Proposition 2

Let $\gamma = (N, M_0)$ be a marked Petri net , $\mathcal{RG}(\gamma)$ its reachability graph and $M \in [M_0\rangle$. $M[t_1\rangle M_1[t_2\rangle M_2[t_3\rangle M_3\dots$ is an occurrence sequence enabled in M in γ iff there exists a path in $\mathcal{RG}(\gamma)$:

 $M(M, t_1, M_1)M_1(M_1, t_2, M_2)M_2(M_2, t_3M_3), \ldots$

Proposition 2

Let $\gamma = (N, M_0)$ be a marked Petri net, $\mathcal{RG}(\gamma)$ its reachability graph and $M \in [M_0\rangle$. $M[t_1\rangle M_1[t_2\rangle M_2[t_3\rangle M_3\dots$ is an occurrence sequence enabled in M in γ iff there exists a path in $\mathcal{RG}(\gamma)$: $M(M, t_1, M_1)M_1(M_1, t_2, M_2)M_2(M_2, t_3M_3),\dots$

$m(m, t_1, m_1)m_1(m_1, t_2, m_2)m_2(m_2, t_3m_3), \dots$

Proposition 3

A marked Petri net $\gamma = (N, M_0)$ is bounded iff its reachablity graph $\mathcal{RG}(\gamma)$ has a finite number of nodes.

MSD (2019) Lecture 2 13 / 46

Proposition 4

A marked Petri net $\gamma = (N, M_0)$ is deadlock free iff its reachability graph $\mathcal{RG}(\gamma)$ does not contain nodes without successors.

MSD (2019) Lecture 2 14 / 46

Proposition 4

A marked Petri net $\gamma = (N, M_0)$ is deadlock free iff its reachability graph $\mathcal{RG}(\gamma)$ does not contain nodes without successors.

Proposition 5

A marked Petri net $\gamma = (N, M_0)$ is live iff for each node M, in its reachability graph $\mathcal{RG}(\gamma)$ there exists a path

 $M(M, t_1, M_1)M_1(M_1, t_2, M_2)M_2 \dots M_{k-1}(M_{k-1}, t_k, M_k)M_k$ such that the sequence $t_1, t_2, \dots t_k$ contains all the transitions in γ .

MSD (2019) Lecture 2 14 / 46

Proposition 4

A marked Petri net $\gamma = (N, M_0)$ is deadlock free iff its reachability graph $\mathcal{RG}(\gamma)$ does not contain nodes without successors.

Proposition 5

A marked Petri net $\gamma = (N, M_0)$ is live iff for each node M, in its reachability graph $\mathcal{RG}(\gamma)$ there exists a path $M(M, t_1, M_1)M_1(M_1, t_2, M_2)M_2 \dots M_{k-1}(M_{k-1}, t_k, M_k)M_k$ such that the sequence $t_1, t_2, \dots t_k$ contains all the transitions in γ .

Proposition 6

A marked Petri net $\gamma = (N, M_0)$ is reversible iff its reachability graph $\mathcal{RG}(\gamma)$ is strongly connected.

MSD (2019) Lecture 2 14 / 46

Example

- live net
- bounded net
- reversible net

MSD (2019) Lecture 2 15 / 46

Notations:

- Let DSC be the set of all the directed simple circuits in the graph
- If $sc \in DSC$: $T(sc) = \{t | \exists M, M' \in sc \text{ such that } (M, t, M') \in sc\}$
- If $M \in V$ is a node in the graph, $T(M) = \{t \in T | \exists M' \in V : (M, t, M') \in A\}$

Proposition 7

Let $\gamma = (N, M_0)$ be a bounded marked Petri net, $\mathcal{RG}(\gamma)$ its (finite) reachability graph and t a transition.

- t is impartial iff $\forall sc \in DSC : [t \in T(sc)]$
- t is fair iff \forall sc \in DSC : [$t \in T(sc) \lor \forall M \in sc : t \notin T(M)$]
- t is just iff \forall sc \in DSC : [$t \in T(sc) \lor \exists M \in sc : t \notin T(M)$]

MSD (2019) Lecture 2 16 / 46

 t_1 - just, t_2 -fair, t_3 -just, t_4 -fair

MSD (2019) Lecture 2 17 / 46

Notations

Let $\mathcal{G} = (V, A)$ be a directed graph.

- If $a = (v_1, v_2) \in A$, $s(a) = v_1$, $d(a) = v_2$.
- lacksquare \mathcal{DF} the set of finite paths in \mathcal{G} .
- If v_1, v_2 are nodes, $DF(v_1, v_2)$: the set of finite paths between v_1 and v_2 in \mathcal{G} .
- $\blacksquare \mathcal{DI}$ the set of infinite paths in \mathcal{G} .

Notations

- Let $\mathcal{G} = (V, A)$ be a directed graph. A strongly connected component of \mathcal{G} is a subgraph \mathcal{G}^* induced by the set of nodes $V^* \subset V$, where:
 - V^* is a strongly connected set of nodes $(\forall v_1, v_2 \in V^* : DF(v_1, v_2) \neq \emptyset)$
 - $(\forall V' \subset V)(V' \text{ strongly connected } \land V^* \subset V' \Rightarrow V^* = V')$

MSD (2019) Lecture 2 19 / 46

Notations

- Let $\mathcal{G} = (V, A)$ be a directed graph. A strongly connected component of \mathcal{G} is a subgraph \mathcal{G}^* induced by the set of nodes $V^* \subseteq V$, where:
 - V^* is a strongly connected set of nodes $(\forall v_1, v_2 \in V^* : DF(v_1, v_2) \neq \emptyset)$
 - $(\forall V' \subseteq V)(V' \text{ strongly connected } \land V^* \subseteq V' \Rightarrow V^* = V')$
- A strongly connected component *c* is a terminal strongly connected component iff:

$$(\forall v \in c)(\forall a \in A)(s(a) = v \Rightarrow d(a) \in c)$$

- Let $\mathcal{G} = (V, A)$ be a directed graph. A strongly connected component of \mathcal{G} is a subgraph \mathcal{G}^* induced by the set of nodes $V^* \subseteq V$, where:
 - V^* is a strongly connected set of nodes $(\forall v_1, v_2 \in V^* : DF(v_1, v_2) \neq \emptyset)$
 - $(\forall V' \subseteq V)(V' \text{ strongly connected } \land V^* \subseteq V' \Rightarrow V^* = V')$
- A strongly connected component *c* is a terminal strongly connected component iff:

$$(\forall v \in c)(\forall a \in A)(s(a) = v \Rightarrow d(a) \in c)$$

■ The set of the strongly connected components of \mathcal{G} : SCC_{\mathcal{G}}.

- Let $\mathcal{G} = (V, A)$ be a directed graph. A strongly connected component of \mathcal{G} is a subgraph \mathcal{G}^* induced by the set of nodes $V^* \subseteq V$, where:
 - V^* is a strongly connected set of nodes $(\forall v_1, v_2 \in V^* : DF(v_1, v_2) \neq \emptyset)$
 - $(\forall V' \subseteq V)(V' \text{ strongly connected } \land V^* \subseteq V' \Rightarrow V^* = V')$
- A strongly connected component *c* is a terminal strongly connected component iff:

$$(\forall v \in c)(\forall a \in A)(s(a) = v \Rightarrow d(a) \in c)$$

- The set of the strongly connected components of \mathcal{G} : $SCC_{\mathcal{G}}$.
- The set of the terminal strongly connected components of G: SCC_G^T.

- Let $\mathcal{G} = (V, A)$ be a directed graph. A strongly connected component of \mathcal{G} is a subgraph \mathcal{G}^* induced by the set of nodes $V^* \subseteq V$, where:
 - V^* is a strongly connected set of nodes $(\forall v_1, v_2 \in V^* : DF(v_1, v_2) \neq \emptyset)$
 - $(\forall V' \subseteq V)(V' \text{ strongly connected } \land V^* \subseteq V' \Rightarrow V^* = V')$
- A strongly connected component c is a terminal strongly connected component iff:

$$(\forall v \in c)(\forall a \in A)(s(a) = v \Rightarrow d(a) \in c)$$

- The set of the strongly connected components of \mathcal{G} : $SCC_{\mathcal{G}}$.
- The set of the terminal strongly connected components of \mathcal{G} : $SCC_{\mathcal{G}}^{\mathsf{T}}$.
- \blacksquare The set of strongly connected components $SCC_{\mathcal{G}}$ forms a partition of the nodes of ${\mathcal{G}}$

- Let $\mathcal{G} = (V, A)$ be a directed graph. A strongly connected component of \mathcal{G} is a subgraph \mathcal{G}^* induced by the set of nodes $V^* \subseteq V$, where:
 - V^* is a strongly connected set of nodes $(\forall v_1, v_2 \in V^* : DF(v_1, v_2) \neq \emptyset)$
 - $(\forall V' \subseteq V)(V' \text{ strongly connected } \land V^* \subseteq V' \Rightarrow V^* = V')$
- A strongly connected component c is a terminal strongly connected component iff:

$$(\forall v \in c)(\forall a \in A)(s(a) = v \Rightarrow d(a) \in c)$$

- The set of the strongly connected components of \mathcal{G} : $SCC_{\mathcal{G}}$.
- The set of the terminal strongly connected components of \mathcal{G} : $SCC_{\mathcal{G}}^{\mathsf{T}}$.
- \blacksquare The set of strongly connected components $\textit{SCC}_{\mathcal{G}}$ forms a partition of the nodes of \mathcal{G}
- If $v \in V$, $c_v \in SCC_G$: the component to which the node v belongs.

SCC-graph

Definition 2

A directed graph $\mathcal{G}^* = (V^*, A^*)$ is the SCC-graph corresponding to the directed graph $\mathcal{G} = (V, A)$, iff:

- $V^* = SCC_{\mathcal{G}}$
- $A^* = \{a \in A | c_{s(a)} \neq c_{d(a)}\}$

Properties

Proposition 8

Let G = (V, A) be a directed graph. It holds:

- 1 The SCC-graph coresponding to a graph G is acyclic.
- **2** *V* is finite \implies the set of strongly connected components SCC_G is finite.
- $\exists \quad V \text{ is finite} \Longrightarrow \forall c_1 \in CTC_{\mathcal{G}} \ \exists c_2 \in CTC_{\mathcal{G}}^{\mathsf{T}} : \mathsf{DF}(c_1, c_2) \neq \emptyset.$
- $\forall v_1, v_2 \in V : DF(v_1, v_2) \neq \emptyset \Leftrightarrow DF(c_{v_1}, c_{v_2}) \neq \emptyset.$

Reachability

Proposition 9

Let $\gamma = (N, M_0)$ be a marked Petri net, \mathcal{RG} its reachability graph, $M_1, M_2 \in [M_0\rangle$. It holds:

Home markings

Definition 2

Let $\gamma = (N, M_0)$ be a marked Petri net and X a set of markings. X is a home space iff $\forall M' \in [M_0) : X \cap [M') \neq \emptyset$.

We denote by \mathcal{HM}_{γ} the set of all the home markings of γ and by \mathcal{HS}_{γ} the set of all the home spaces of γ .

Proposition 10

Let $\gamma = (N, M_0)$ be a marked Petri net, \mathcal{RG} its reachability graph, $X \subseteq [M_0\rangle$ and $M \in [M_0\rangle$. It holds:

- 1 $X \in \mathcal{HS} \Leftrightarrow SCC_{\mathcal{RG}}^{\mathsf{T}} \subseteq c_{\mathsf{X}}.$
- $X \in \mathcal{H}S \Rightarrow |SCC_{\mathcal{R}G}^T| \leq |X|.$
- 4 $\mathcal{H}M \neq \emptyset \Leftrightarrow |SCC_{\mathcal{R}G}^{\mathsf{T}}| = 1$
- $M_0 \in \mathcal{H}M \Leftrightarrow |SCC_{\mathcal{R}G}| = 1.$

 $X = \{M2, M3\}$ is a home space, but there are no home markings!

M2, M3 are home markings!

Let $\gamma = (N, M_0)$ be a marked Petri net and $\mathcal{RG} = (V, A, I_A)$ its reachability graph.

Let c ∈ SCC_{RG} a strongly connected component. The set of transitions with the source c:

$$T(c) = \{t \in T | \exists M_1 \in c, \exists M_2 \in V : (M_1, t, M_2) \in A\}$$

$$T(M_1) = \{t_2, t_3\}, T(C_1) = \{t_1, t_2, t_3\}, T(C_2) = \{t_4, t_5\}$$

Liveness, quasi-liveness, dealocks

Proposition 11

Let $\gamma = (N, M_0)$ be a marked Petri net and \mathcal{RG} its reachability graph, $M \in [M_0)$ and $t \in T$. It holds:

- M is a dead marking $\Leftrightarrow c_M \in SCC_{RG}^T$ and $|c_M| = 1$.
- **2** *t* is quasi-live from $M \Leftrightarrow (\exists c \in SCC_{RG})(DF(c_M, c) \neq \emptyset \land t \in T(c))$.
- 3 t is live $\Leftrightarrow \forall c \in SCC_{RG}^T : t \in T(c)$.

Liveness, quasi-liveness, dealocks

 $t_1, t_2 \notin T(C_2)$, they are not live (just quasi-live); $t_4, t_5 \in T(C_2)$, they are live.

Fairness properties

Proposition 12

Let $\gamma = (N, M_0)$ be a bounded marked Petri net and \mathcal{RG} its reachability graph, $M \in [M_0)$ and $t \in \mathcal{T}$. It holds:

- 1 t is impartial $\Leftrightarrow \forall c \in SCC_{RG\setminus\{t\}}$:c is trivial
- **2** *t* is fair $\Leftrightarrow \forall c \in SCC_{\mathcal{R}G\setminus\{t\}}$:[c is trivial $\lor \forall M \in c : t \notin T(M)$]
- $\exists t \text{ is just} \Leftrightarrow \forall c \in SCC_{\mathcal{RG} \setminus \{t\}} : [c \text{ is trivial} \lor \forall sc \in DSC(c) : [\exists M \in sc : t \notin T(M)]]$

Fairness properties

Fairness properties

 t_1 is not impartial, it is fair

Coverability -Example

Coverability Tree/Graph

 For describing the state space of Petri nets with infinite number of reachable markings: coverability trees and coverability graphs

Coverability Tree/Graph

For describing the state space of Petri nets with infinite number of reachable markings: coverability trees and coverability graphs

Definition 3

Let N be a Petri net, M_1 and M_2 two markings. M_2 covers M_1 if $M_2 \ge M_1$ (i.e.

$$M_2(p) \geq M_1(p), \forall p \in P$$

Coverability Tree/Graph

For describing the state space of Petri nets with infinite number of reachable markings: coverability trees and coverability graphs

Definition 3

Let N be a Petri net, M_1 and M_2 two markings. M_2 covers M_1 if $M_2 \geq M_1$ (i.e.

 $M_2(p) \geq M_1(p), \forall p \in P$

Definition 4

Let $\gamma = (N, M_0)$ a marked Petri net and M a marking of N. M is coverable in γ , if there exists $M' \in [M_0)$ which covers M.

Let (ω) be a symbol denoting infinity and $\overline{\mathbb{N}} = \mathbb{N} \cup \{\omega\}$. It holds:

$$\omega + n = \omega - n = \omega, \forall n \in \mathbb{N}.$$

$$\square$$
 $\omega + \omega = \omega - \omega = \omega$.

$$\bullet$$
 $\omega * n = n * \omega = \omega, \forall n \in \mathbb{N}, n > 0 \text{ and } \omega * 0 = 0.$

$$\bullet$$
 $\omega > n$, $\forall n \in \mathbb{N}$.

Let
$$\overline{\mathbb{N}}^P = \{M | M : P \to \overline{\mathbb{N}}\}$$

■ The root of the tree: M_0

- If the successor of a node n (computed as in the case of the reachability graph) is a marking M' and on the path from n to the root there exists a marking M such that $M' \ge M$ and there exists a place p such that M'(p) > M(p), then:
 - $M[\sigma]M'$.
 - It also holds that $M'[\sigma\rangle M''$, M''>M' and $M''(\rho)>M'(\rho)$ (a new marking M'' would appear in the tree).
 - The number of tokens in *p* is infinite.
- Thus, in the covering tree, the marking M' will be replaced with a marking $\overline{M'}$ such that $\overline{M'}(p) = \omega$
- The transitions enabled in a marking will be computed taking into account the fact that some places contain an infinite number of tokens
- The number of nodes is finite (in the worst case, one can obtain markings with ω in all places)

- The root of the tree: M_0
- If the successor of a node n (computed as in the case of the reachability graph) is a marking M' and on the path from n to the root there exists a marking M such that $M' \ge M$ and there exists a place p such that M'(p) > M(p), then:
 - $\blacksquare M[\sigma\rangle M'$.
 - It also holds that $M'[\sigma\rangle M''$, M''>M' and M''(p)>M'(p) (a new marking M'' would appear in the tree).
 - The number of tokens in *p* is infinite.
- Thus, in the covering tree, the marking M' will be replaced with a marking $\overline{M'}$ such that $\overline{M'}(p) = \omega$
- The transitions enabled in a marking will be computed taking into account the fact that some places contain an infinite number of tokens
- The number of nodes is finite (in the worst case, one can obtain markings with ω in all places)

- The root of the tree: M_0
- If the successor of a node n (computed as in the case of the reachability graph) is a marking M' and on the path from n to the root there exists a marking M such that $M' \ge M$ and there exists a place p such that M'(p) > M(p), then:
 - $\blacksquare M[\sigma\rangle M'$.
 - It also holds that $M'[\sigma\rangle M''$, M''>M' and M''(p)>M'(p) (a new marking M'' would appear in the tree).
 - The number of tokens in *p* is infinite.
- Thus, in the covering tree, the marking M' will be replaced with a marking $\overline{M'}$ such that $\overline{M'}(p) = \omega$
- The transitions enabled in a marking will be computed taking into account the fact that some places contain an infinite number of tokens
- The number of nodes is finite (in the worst case, one can obtain markings with ω in all places)

- The root of the tree: M_0
- If the successor of a node n (computed as in the case of the reachability graph) is a marking M' and on the path from n to the root there exists a marking M such that $M' \ge M$ and there exists a place p such that M'(p) > M(p), then:
 - $\blacksquare M[\sigma\rangle M'$.
 - It also holds that $M'[\sigma\rangle M''$, M''>M' and M''(p)>M'(p) (a new marking M'' would appear in the tree).
 - The number of tokens in *p* is infinite.
- Thus, in the covering tree, the marking M' will be replaced with a marking $\overline{M'}$ such that $\overline{M'}(p) = \omega$
- The transitions enabled in a marking will be computed taking into account the fact that some places contain an infinite number of tokens
- The number of nodes is finite (in the worst case, one can obtain markings with ω in all places)

- The root of the tree: M_0
- If the successor of a node n (computed as in the case of the reachability graph) is a marking M' and on the path from n to the root there exists a marking M such that $M' \ge M$ and there exists a place p such that M'(p) > M(p), then:
 - $\blacksquare M[\sigma\rangle M'$.
 - It also holds that $M'[\sigma\rangle M''$, M''>M' and M''(p)>M'(p) (a new marking M'' would appear in the tree).
 - The number of tokens in *p* is infinite.
- Thus, in the covering tree, the marking M' will be replaced with a marking $\overline{M'}$ such that $\overline{M'}(p) = \omega$
- The transitions enabled in a marking will be computed taking into account the fact that some places contain an infinite number of tokens
- The number of nodes is finite (in the worst case, one can obtain markings with ω in all places)

Let T = (V, E) be a tree.

- If $v \in V$ is a node, v^+ denotes the set of the succesors of v. $(v^+ = \{v' \in V | \exists (v, v') \in E\}).$
- \blacksquare d(v, v') denotes the path from v to v'.

Coverability Tree - Definition

Definition 5

Let $\gamma=(N,M_0)$ be a marked Petri net . A coverability tree for γ is a tree $\mathcal{T}_{\gamma}=(V,E,I_V,I_E)$ such that :

- 1. $I_V: V \to \overline{\mathbb{N}}^P$, $I_E: E \to T$;
- 2. the root v_0 of \mathcal{T}_{γ} is labelled by M_0 : $I_V(v_0) = M_0$;
- 3. for every node v labelled by M ($I_V(v) = M$) it holds:
 - 3.1 $|v^+|=0$ (v is a leaf), if there does not exist any $t\in T$ such that M[t) or there exists $v'\in d(v_0,v),\ v\neq v'$ labelled by M;
 - 3.2 $|v^+| = |\{t \in T | M[t\rangle\}|$, otherwise;

- 4. for any $v \in V$ with $|v^+| > 0$, $I_V(v) = M$ and any $t \in T : M[t]$ there exists $v' \in V$, $I_V(v') = M'$ such that :
 - 4.1 $(v, v') \in E$;
 - 4.2 $I_E(v, v') = t$;
 - 4.3 Let $\overline{M} = M + \Delta(t)$. For any $p \in P$ it holds:
 - $-\frac{M'(p)}{\overline{M}} = \omega$, if there exists $v'' \in d_{\mathcal{T}}(v_0, v)$ such that $I_V(v'') = M''$ $\overline{M} \geq M''$ and $\overline{M}(p) > M''(p)$;
 - $M'(p) = \overline{M}(p)$, otherwise;

Coverability Graph

- there are no duplicate nodes in the graph
- $|v^+|=0$ (node without successors), if there does not exists $t\in T$ such that M[t)
- in the definition 5 (4.3) if there exists $v'' \in d(v_0, v)$ all the paths from v_0 to v should be considered

Coverability Graph

```
V = \emptyset (the set of nodes in the graph), done : V \rightarrow \{ \textit{true}, \textit{false} \}
```

- Add a node n_0 to V and label it with M_0 , $done(n_0) = false$
- **2** while (there exists a node $n \in V$ with done(n) == false) {
 - Let *M* be the label of *n*
 - for(t with $M[t\rangle M')$ {
 - let $\overline{M} = M'$
 - for all nodes n'' on the paths from n_0 to n labelled with M'>M'', set $\overline{M}(p)=\omega$ for all p with M'(p)>M''(p)
 - if a node labelled with M does not exists:
 add a new node n with label M
 add an arc from n to n labelled with t
 done(n) = false
 else add an arc from n to the node labelled with M
 - done(n) = true

Example

MSD (2019) Lecture 2 44 / 46

Example

The procedure does not produce a unique graph

Example

The procedure does not produce a unique graph

Models of Distributed Systems

Lecture 3

Overview

1 The Coverability Tree/Graph

2 Decision Problems in Petri Nets

- 3 Linear Algebraic Techniques
 - Place Invariants

Overview

1 The Coverability Tree/Graph

2 Decision Problems in Petri Nets

- 3 Linear Algebraic Techniques
 - Place Invariants

Notations

Let $\gamma = (N, M_0)$ be a marked Petri net and $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree.

■ If $(v_1, v_2) \in E$, $I_E(v_1, v_2) = t$, $I_V(v_1) = M_1$ and $I_V(v_2) = M_2$, then we denote $v_1 : M_1 \stackrel{t}{\rightarrow} v_2 : M_2$.

The relation $\stackrel{t}{\rightarrow}$ can be naturally extended to $\stackrel{w}{\rightarrow}$, where $w \in T^*$.

Notations

Let $\gamma = (N, M_0)$ be a marked Petri net and $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree.

■ If $(v_1, v_2) \in E$, $I_E(v_1, v_2) = t$, $I_V(v_1) = M_1$ and $I_V(v_2) = M_2$, then we denote $v_1 : M_1 \xrightarrow{t} v_2 : M_2$.

The relation $\stackrel{t}{\rightarrow}$ can be naturally extended to $\stackrel{w}{\rightarrow}$, where $w \in T^*$.

■ Let $v \in V$ be a node with $I_V(v) = M$.

$$\Omega(M) = \{ p \in P | M(p) = \omega \}.$$

Notations

Let $\gamma = (N, M_0)$ be a marked Petri net and $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree.

■ If $(v_1, v_2) \in E$, $I_E(v_1, v_2) = t$, $I_V(v_1) = M_1$ and $I_V(v_2) = M_2$, then we denote $v_1 : M_1 \xrightarrow{t} v_2 : M_2$.

The relation $\stackrel{t}{\rightarrow}$ can be naturally extended to $\stackrel{w}{\rightarrow}$, where $w \in T^*$.

■ Let $v \in V$ be a node with $I_V(v) = M$.

$$\Omega(M) = \{ p \in P | M(p) = \omega \}.$$

■ $Lab(\gamma)$ is the set of the node labels in the covering tree corresponding to γ : $Lab(\gamma) = \{I_V(v) | v \in V\}$

Proposition 1

Let $\gamma = (N, M_0)$ be a marked Petri net and $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree. It holds:

- $oldsymbol{1}{\mathbf{I}} \mathcal{T}_{\gamma}$ is finitely branching
- 2 Let $v_{i_0}, v_{i_1}, \ldots, v_{i_m}$ be distinct nodes such that $v_{i_j} \in d(v_0, v_{i_{j+1}})$ for all $0 \le j \le m-1$.
 - 1 If $I_V(v_{i_0}) = I_V(v_{i_1}) = \ldots = I_V(v_{i_m})$, then $m \le 1$;
 - 2 If $I_V(v_{i_0}) < I_V(v_{i_1}) < \ldots < I_V(v_{i_m})$, then $m \le |P|$;
- $\mathcal{T}(\gamma)$ is finite.

- 1 For every node $v: |v^+| = 0$ or $|v^+| = |\{t \in T | I_V(v)[t]\}|$
- 2 $I_V(v_{i_0}) = I_V(v_{i_1})$, so v_{i_1} is a leaf and $v_{i_1} = \dots v_{i_m}$, hence $m \le 1$.
 - 2 $I_V(v_{i_j}) < I_V(v_{i_{j+1}}), I_V(v_{i_{j+1}})$ has at least one additional ω -component to $I_V(v_{i_j})$. There may be at most |P| ω -components. Hence $m \le |P|$.

3 Assume \mathcal{T}_{γ} is infinite.

Konig's Lemma: Any infinite tree which is finitely branching contains an infinite path.

 \mathcal{T}_{γ} finitely branching (1), so there exists an infinite path v_0, v_1, v_2, \dots Consider the infinite sequence:

$$I_V(v_0), I_V(v_1), \ldots, I_V(v_k), \ldots (*)$$

There exists an infinite sub-sequence of (*):

$$I_V(v_{i_0}), I_V(v_{i_1}), \dots (**)$$

such that

$$I_V(v_{i_0}) \leq I_V(v_{i_1}) \leq I_V(v_{i_2}) \dots$$

$$I_{V}(v_{i_0}) \leq I_{V}(v_{i_1}) \leq I_{V}(v_{i_2}) \dots$$

- Assume there does not exist $p \neq q$, $p, q \geq 1$ such that $I_V(v_{i_0}) = I_V(v_{i_0})$
- Consider the first |P| + 2 elements in the sequence:

$$I_V(v_{i_0}) < I_V(v_{i_1}) < \ldots < I_V(v_{i_{|P|+1}})$$

From (2(2)), $|P| + 1 \le |P|$, contradiction!

Lemma 1

Let $\gamma = (N, M_0)$ be a marked Petri net and $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree. If $v_1, v_2 \in V$, $I_V(v_1) = M_1$, $I_V(v_2) = M_2$, $w \in T^*$ and $v_1 : M_1 \stackrel{w}{\to} v_2 : M_2$, then:

$$M_2(p)=(M_1+\triangle w)(p)$$

for all $p \in P \setminus \Omega(M_2)$.

Lemma 1

Let $\gamma = (N, M_0)$ be a marked Petri net and $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree. If $v_1, v_2 \in V$, $I_V(v_1) = M_1$, $I_V(v_2) = M_2$, $w \in T^*$ and $v_1 : M_1 \stackrel{w}{\to} v_2 : M_2$, then:

$$M_2(p) = (M_1 + \triangle w)(p)$$

for all $p \in P \setminus \Omega(M_2)$.

Definition 1

Let $\gamma = (N, M_0)$ be a marked Petri net , $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree and M a marking. M is coverable in \mathcal{T}_{γ} if $(\exists v \in V : M \leq I_V(v))$

Lemma 2

Let $\gamma = (N, M_0)$ be a marked Petri net , $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree and M a reachable marking of γ . Then there exists a node $v \in V$: $I_V(v) \geq M$

Lemma 2

Let $\gamma = (N, M_0)$ be a marked Petri net , $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree and M a reachable marking of γ . Then there exists a node $v \in V : I_V(v) \ge M$

Lemma 3

Let $\gamma = (N, M_0)$ be a marked Petri net , $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree and M a marking of N. Then, it holds: $(\exists v \in V : M \leq I_V(v)) \Rightarrow (\exists M' \in [M_0) : M \leq M')$

Proof:

Let *M* be a marking of *N* and le *v* be a node in the tree with $I_V(v) \ge M$.

In \mathcal{T}_{γ} there exists a path $v_0, v_1, \dots, v_k = v$ and let $t_1, t_2, \dots t_k$ be the labels of the arcs on this path.

Let $I_V(v_i) = M_i$, for all $i \in \{1, ..., k\}$.

- In the marking of ν there are no ω -components: $M_0[t_1t_2\dots t_k]M_k \geq M$
- II In the marking of v there exist $h \omega$ -components.

One can assume:

$$P = \{1, ..., n\}$$

If
$$I_{\nu}(\nu) = M_k$$
, $M_k(1) = \omega$, $M_k(2) = \omega$, ... $M_k(h) = \omega$ and $M_k(i) \neq \omega$, $\forall h + 1 \leq i \leq n$

■ The ω -components have been introduced in the following order: 1, 2, ..., h.

Let:

- **a** α_1 the prefix of the sequence $t_1 \dots t_k$ which caused the introduction of the first ω -component
- **a** $\alpha_1 \alpha_2$ the prefix of sequence $t_1 \dots t_k$ which caused the introduction of the second ω -component
-
- $\alpha_1 \alpha_2 \dots \alpha_h$ the prefix of the sequence $t_1 \dots t_k$ which caused the introduction of the last $(h) \omega$ -component
- \bullet $t_1 t_2 \dots t_k = \alpha_1 \alpha_2 \dots \alpha_h \alpha_{h+1}$

Let

- u_1 the sufix of α_1 which increases the number of tokens in place 1 (and produces $M_k(1) = \omega$)
- u_2 the sufix of $\alpha_1\alpha_2$ which increases the number of tokens in place 2 (produces $M_k(2) = \omega$)
- **...**
- u_h the sufix of $\alpha_1 \alpha_2 \dots \alpha_h$ which increases the number of tokens in place h (produces $M_k(h) = \omega$)
- u_i (1 ≤ i ≤ h) causes the increase of the number of tokens in place i with at least one token.
- the sequence $t_1 \dots t_k = \alpha_1 \dots \alpha_h \alpha_{h+1}$ is not necessary enabled in γ at marking M_0

$$(1,0,3) \stackrel{t_1}{\rightarrow} (0,1,2) \stackrel{t_2}{\rightarrow} \underbrace{(\omega,1,2)}_{(1,1,2)} \stackrel{t_3}{\rightarrow} (\omega,0,2) \stackrel{t_4}{\rightarrow} \underbrace{(\omega,\omega,2)}_{(\omega,2,2)} \stackrel{t_5}{\rightarrow} (\omega,\omega,1)$$

$$\alpha_1 = t_1 t_2, u_1 = t_2$$

$$\alpha_2 = t_3 t_4, u_2 = t_4$$

$$\alpha_3 = t_5$$

A new sequence β will be built with the transitions from $t_1 \dots t_k$ such that β is enabled M_0 and its firing produces a marking M' such that $M' \ge M$:

$$\beta = \alpha_1(u_1)^{n_1} \alpha_2(u_2)^{n_2} \dots \alpha_h(u_h)^{n_h} \alpha_{h+1}$$

Let's assume first that h = 1 (only one ω -component).

We will build a sequence of transitions $\beta = \alpha_1(u_1)^{n_1}\alpha_2$ enabled in γ : $M_0[\beta\rangle M', M' > M$

- lacksquare α_1 is the sequence of transitions that introduces the only ω component
- $M_0 \stackrel{\alpha_1}{\to} W_1 = (\omega, \ldots) \stackrel{\alpha_2}{\to} M_k \ (t_1 \ldots t_k = \alpha_1 \alpha_2)$
- $\blacksquare M_0 \stackrel{u_0}{\to} W \stackrel{u_1}{\to} W_1 = (\omega, \ldots) \stackrel{\alpha_2}{\to} M_k$

 - \blacksquare in γ : $M_0[u_0\rangle W[u_1\rangle \overline{W_1}, \overline{W_1} \geq W, \overline{W_1}(1) > W(1)$
 - in \mathcal{T}_{γ} : $W_1(i) = \overline{W_1}(i)$, for all $i \geq 2$
 - $\overline{W_1}[\alpha_2\rangle_{\gamma}$??
 - $W_1(i) = \overline{W_1}(i) \ge \alpha_2^-(i)$, for $i \ge 2$
 - $\overline{W_1}(1) ? \alpha_2^{-1}(1)$
 - since $\overline{W_1} > W$ it holds that $\overline{W_1}[u_1u_1...\rangle_{\gamma}$

In
$$\gamma$$
: $M_0[u_0\rangle W[u_1\rangle \overline{W_1}, \overline{W_1} \geq W, \overline{W_1}(1) > W(1)$

- α_2 would be enabled in $\overline{W_1}$ in γ except for place 1
- since $\overline{W_1} > W$ it holds that:
 - $\Delta(u_1)(i) \geq 0$ (for i > 1), $\Delta(u_1)(1) > 0$
 - $\overline{W_1}[u_1u_1\ldots\rangle_{\gamma}$
- produce u_1 until we have enough tokens to produce α_2 and to allow M'(1) > M(1) (where M' is the marking resulted after producing α_2):

$$n_1 \geq \alpha_2^-(1) + M(1)$$

- in \mathcal{T}_{γ} : $M_0 \stackrel{\alpha_1}{\to} W_1 = (\omega, ...) \stackrel{\alpha_2}{\to} M_k$ in γ : $M_0[\alpha_1\rangle \overline{W_1}[u_1^{n_1}\rangle \overline{W_1}'[\alpha_2\rangle M' > M$
 - $\overline{W_1}'(i) \ge \overline{W_1}(i) = W_1(i) \ge \alpha_2^-(i)$, for all $i \in \{2, ..., n\}$
 - $\overline{W_1}'(1) = \overline{W_1}(1) + n_1 \Delta(u_1) \ge \overline{W_1}(1) + (M(1) + \alpha_2^-(1))\Delta(u_1)(1) \ge \alpha_2^-(1) + M(1) \ge \alpha_2^-(1)$
 - M' > M

Let's assume that h = 2 (2 ω -components).

We will build a sequence of transitions $\beta = \alpha_1 (u_1)^{n_1} \alpha_2 (u_2)^{n_2} \alpha_3$ enabled in γ : $M_0[\beta\rangle M'$, M' > M

- lacksquare α_1 is the sequence of transitions that introduces the first ω component
- lacksquare α_2 is the sequence of transitions that introduces the first ω component
- $M_0 \stackrel{\alpha_1}{\to} W_1 = (\omega, \ldots) \stackrel{\alpha_2}{\to} W_2 = (\omega, \omega, \ldots) \stackrel{\alpha_3}{\to} M_k (t_1 \ldots t_k = \alpha_1 \alpha_2 \alpha_3)$
- u_1 the suffix of α_1 that introduce the first ω . In γ : $M_0[*\rangle W[u_1\rangle \overline{W_1}, \overline{W_1} > W, \overline{W_1}(1) > W(1)$
- u_2 the suffix of $\alpha_1\alpha_2$ that introduces the second ω : in \mathcal{T}_{γ} : $V \stackrel{u_2}{\to} \overline{W_2}$, $\overline{W_2} \ge V$, $\overline{W_2}(2) > V(2)$ (and $W_2(i) = \overline{W_2}(i)$, for all $i \ge 3$)

In
$$\mathcal{T}_{\gamma}$$
: $M_0 \stackrel{\alpha_1}{\to} W_1 = (\omega, \ldots) \stackrel{\alpha_2}{\to} W_2 = (\omega, \omega, \ldots) \stackrel{\alpha_3}{\to} M_k$
In γ : $M_0[\alpha_1\rangle \overline{W_1}$

- we need to be able to produce $(u_1)^{n_1}\alpha_2(u_2)^{n_2}\alpha_3$ from $\overline{W_1}$ in γ
- $\alpha_3^-(i) \le W_2(i)$, $\forall i \ge 3$ (if we manage to produce a sequence containing $\alpha_1 \alpha_2$ in γ , then we get enough tokens in places, 3...n);
- to also ensure enough tokens for α_3 in place 2, fire u_2 (after we make it possible in γ) n_2 times: $n_2 \ge \alpha_3^-(2) + M(2)$
- the sequence $(u_2)^{n_2}\alpha_3$ would have enough tokens in places $2, \ldots, n$ (if we manage to also produce a sequence containing $\alpha_1\alpha_2$)
- we need to also fire α_2 and to ensure enough tokens in the first place for $(u_2)^{n_2}\alpha_3$
- lacksquare α_2 has enough tokens in places $2, \ldots, n$, if fired after α_1
- in γ we will fire, after α_1 , u_1 so that we have enough tokens in place 1 for α_2 and $(u_2)^{n_2}\alpha_3$:

$$n_1 \ge M(1) + \alpha_2^-(1) + n_2 u_2^-(1) + \alpha_3^-(1)$$

MSD (2019) Lecture 3 18 / 48

$$\beta = \alpha_1(u_1)^{n_1}\alpha_2(u_2)^{n_2}\dots(u_{h-1})^{n_{h-1}}\alpha_h(u_h)^{n_h}\alpha_{h+1}$$

- the transitions in α_{h+1} ensure enough tokens in places h+1, h+2, ...,n (it also holds: $M_k(h+1) > M(h+1), \ldots, M_k(n) > M(n)$)
- the sequence u_h will fire n_h times, where: $n_h > M(h) + \alpha_{h+1}^{-1}(h)$.
- the sequence u_{h-1} will fire n_{h-1} times, where: $n_{h-1} > M(h-1) + \alpha_{h+1}^{-}(h-1) + n_h \cdot u_h^{-1}(h-1) + \alpha_h^{-}(h-1)$
- the sequence u_{h-2} will fire n_{h-2} times, where: $n_{h-2} \ge M(h-2) + \alpha_{h+1}^-(h-2) + n_h \cdot u_h^-(h-2) + \alpha_h^-(h-2) + n_{h-1} \cdot u_{h-1}^-(h-2) + \alpha_{h-1}^-(h-2)$
-

$$\begin{array}{ccc} (\textbf{1},\textbf{0},\textbf{3}) \stackrel{t_1}{\rightarrow} (\textbf{0},\textbf{1},\textbf{2}) \stackrel{t_2}{\rightarrow} (\omega,\textbf{1},\textbf{2}) \stackrel{t_3}{\rightarrow} (\omega,\textbf{0},\textbf{2}) \stackrel{t_4}{\rightarrow} (\omega,\omega,\textbf{2}) \stackrel{t_5}{\rightarrow} (\omega,\omega,\textbf{1}). \\ (\omega,\omega,\textbf{1}) \geq \textit{M} = (\textbf{4},\textbf{3},\textbf{1}). \end{array}$$

În γ the sequence of transitions:

$$\beta = \alpha_1(u_1)^{n_1}\alpha_2(u_2)^n_2\ldots\alpha_h(u_h)^{n_h}\alpha_{h+1}.$$

It holds:

- M₀[β⟩
- $M_0[\beta\rangle M^*, M^* \geq M$

Theorem 1

Let $\gamma = (N, M_0)$ be a marked Petri net , $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree and M a marking of N. It holds: $(\exists \ v \in V : \ M \le I_V(v)) \Leftrightarrow (\exists \ M' \in [M_0\rangle : \ M \le M')$

Theorem 1

Let $\gamma = (N, M_0)$ be a marked Petri net , $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree and M a marking of N. It holds: $(\exists \ v \in V : \ M \le I_V(v)) \Leftrightarrow (\exists \ M' \in [M_0\rangle : \ M \le M')$

Theorem 1

Let $\gamma = (N, M_0)$ be a marked Petri net , $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree and M a marking of N. It holds: $(\exists \ v \in V : \ M \le I_V(v)) \Leftrightarrow (\exists \ M' \in [M_0) : \ M \le M')$

Proposition 2

Let $\gamma = (\Sigma, M_0)$ be a marked Petri net , $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree and $t \in \mathcal{T}$. It holds:

t is quasi-live
$$\Leftrightarrow$$
 $(\exists (v, v') \in E : I_E(v, v') = t)$.

Proposition 3

Let γ be a marked Petri net and $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree. The following relations are equivalent:

- (1) $Lab(\gamma) \subseteq \mathbb{N}^P$;
- (2) $[M_0\rangle = Lab(\gamma);$
- (3) $[M_0\rangle$ is finite.

Overview

1 The Coverability Tree/Graph

2 Decision Problems in Petri Nets

- 3 Linear Algebraic Techniques
 - Place Invariants

Decision Problems

- The boundness problem: given a marked Petri net γ , is γ bounded?
- bounded?
- The reachability problem: given a marked Petri net γ and a marking M, $M \in [M_0)$?
- The liveness problem: given a marked Petri net γ , is γ live?
- The quasi-liveness problem: given a marked Petri net γ , is γ quasi-live?
- The covering problem: given a marked Petri net γ and a marking M, is M coverable in γ ?
- The home marking problem: given a marked Petri net γ and a marking M, is M a home marking?

Decision Problems

- The boundness problem: given a marked Petri net γ , is γ bounded?
- The place boundness problem: given a marked Petri net γ and p a place, is p bounded?
- The reachability problem: given a marked Petri net γ and a marking M, $M \in [M_0)$?
- The liveness problem: given a marked Petri net γ , is γ live?
- The quasi-liveness problem: given a marked Petri net γ , is γ quasi-live?
- The covering problem: given a marked Petri net γ and a marking M, is M coverable in γ ?
- The home marking problem: given a marked Petri net γ and a marking M, is M a home marking?

Decision Problems

- The boundness problem: given a marked Petri net γ , is γ bounded?
- The place boundness problem: given a marked Petri net γ and p a place, is p bounded?
- The reachability problem: given a marked Petri net γ and a marking M, $M \in [M_0)$?
- The liveness problem: given a marked Petri net γ , is γ live?
- The quasi-liveness problem: given a marked Petri net γ , is γ quasi-live?
- The covering problem: given a marked Petri net γ and a marking M, is M coverable in γ ?
- The home marking problem: given a marked Petri net γ and a marking M, is M a home marking?

- The boundness problem: given a marked Petri net γ , is γ bounded?
- The place boundness problem: given a marked Petri net γ and p a place, is p bounded?
- The reachability problem: given a marked Petri net γ and a marking M, $M \in [M_0]$?
- The liveness problem: given a marked Petri net γ , is γ live?
- The quasi-liveness problem: given a marked Petri net γ , is γ quasi-live?
- The covering problem: given a marked Petri net γ and a marking M, is M coverable in γ?
- The home marking problem: given a marked Petri net γ and a marking M, is M a home marking?

- The boundness problem: given a marked Petri net γ , is γ bounded?
- The place boundness problem: given a marked Petri net γ and p a place, is p bounded?
- The reachability problem: given a marked Petri net γ and a marking M, $M \in [M_0]$?
- The liveness problem: given a marked Petri net γ , is γ live?
- The quasi-liveness problem: given a marked Petri net γ , is γ quasi-live?
- The covering problem: given a marked Petri net γ and a marking M, is M coverable in γ?
- The home marking problem: given a marked Petri net γ and a marking M, is M a home marking?

- The boundness problem: given a marked Petri net γ , is γ bounded?
- The place boundness problem: given a marked Petri net γ and p a place, is p bounded?
- The reachability problem: given a marked Petri net γ and a marking M, $M \in [M_0\rangle$?
- The liveness problem: given a marked Petri net γ , is γ live?
- The quasi-liveness problem: given a marked Petri net γ , is γ quasi-live?
- The covering problem: given a marked Petri net γ and a marking M, is M coverable in γ?
- The home marking problem: given a marked Petri net γ and a marking M, is M a home marking?

- The boundness problem: given a marked Petri net γ , is γ bounded?
- The place boundness problem: given a marked Petri net γ and p a place, is p bounded?
- The reachability problem: given a marked Petri net γ and a marking M, $M \in [M_0\rangle$?
- The liveness problem: given a marked Petri net γ , is γ live?
- The quasi-liveness problem: given a marked Petri net γ , is γ quasi-live?
- The covering problem: given a marked Petri net γ and a marking M, is M coverable in γ?
- The home marking problem: given a marked Petri net γ and a marking M, is M a home marking?

Let γ be a marked Petri net and $\mathcal{T}_{\gamma} = (V, E, I_V, I_E)$ its coverability tree.

- A marking M of γ is coverable iff there exists $v \in V$: $I_V(v) = M' \wedge M' \geq M$. (Theorem 1)
- A transition t of γ is quasi-live iff $\exists (v, v') \in E : I_E(v, v') = t$. (Prop. 2)
- γ is bounded iff $Lab(\gamma) \subseteq \mathbb{N}^P$. (Prop. 3)
- A place $p \in P$ is unbounded iff $\exists v \in V$ such that $I_V(v)(p) = \omega$. (Prop. 3)

Decidable Problems

Theorem 2

The boundness, covering and quasi-liveness problems are all decidable for marked Petri nets.

- The reachability problem is decidable.
 - Mayr 1981, Kosaraju 1982, Lambert 1992
 - necessary conditions for reachability can be established, based on the structure on the net
 - there exist special classes of Petri nets for which the reachability problem can be solved in polinomyal time
- The liveness problem is decidable
 - recursive equivalent to the reachability problem (Hack 1975)
 - necessary conditions for liveness can be established, based on the structure on the net

Example

Marking (1,0,3) is not reachable.

Example

- Quasi-live net
- All places are unbounded
- Marking (1,2,3) is coverable

Definition 2

■ A set of markings $E \subseteq N^P$ is a liniar set if there exists a marking M and a finite set of markings $\{N_1, N_2, \ldots, N_m\}$ such that

$$(\forall M' \in E)(\exists k_1,\ldots,k_m \in \mathbb{N})(M'=M+\sum_{i=1}^m k_iN_i)$$

A finite reunion of liniar sets is called a semi-liniar set.

The following problems are deciable:

- Let E be a semi-liniar set. Does E ∩ [M₀⟩ ≠ Ø? (Is there a reachable marking in E?)
- Let *E* be a semi-liniar set. Does $[M_0\rangle \subset E$?

Co-initial Part

■ Let (A, \leq) be a partial ordered set. A co-initial part of A is a subset $F \subseteq A$ such that:

$$\forall a \in A, \exists f \in F : f \leq a$$

■ Given a semi-liniar set of markings E, one can compute a co-initial part of $[M_0) \setminus E$

Algorithm for computing the co-initial part of $[M_0) \setminus E$

Output: F: the finite co-inital part of $[M_0) \setminus E$ begin $F = \emptyset$; $A := E_i$ while $|M_0\rangle \not\subset A$ choose $M \in [M_0) \setminus A$; $F := F \cup \{M\};$ $A := A \cup \{M' \in \mathbb{N}^P | M \leq M'\};$ endwhile // F is the co-initial part of $|M_0\rangle \setminus E$ end

Input: E a semi-liniar set of markings

Algorithm for computing the co-initial part of $|M_0\rangle \setminus E$

- $F \subseteq [M_0) \setminus E$
- $A = E \cup \bigcup_{M \in F} \{M' \in N^P | M \le M'\};$
- A is a semi-liniar set of markings
- The condition of the while loop is decidable
- if $[M_0\rangle \not\subseteq A$, M can be chosen effectively by an exhaustive search in the set of markings (it is decidable whether a marking $M \in [M_0\rangle \setminus A$)
- The algorithm terminates and F is finite: otherwise, F would be infinite: $F = \{M_n\}_{n \in \mathbb{N}}$ (M_n the marking added at the n-th itereration). Then $\exists n_1 < n_2$ with $M_{n_1} < M_{n_2}$; Contradiction.
- When the algorithm terminates: $[M_0\rangle \subseteq A = E \cup \bigcup_{M \in F} \{M' \in N^P | M \le M'\}$ and for every $M' \in [M_0\rangle \setminus E$, $\exists M \in F : M \le M'$

- Let γ be a marked Petri net, P its set of places, M₀ the intitial marking, H a marking.
- Let m = H(P) (the total number of tokens in places, in marking H).
- Let $\mathcal{H}_1 = \{M \in \mathbb{N}^P | M(P) \le m\} \cap [M_0)$ (a finite set of markings, hence a liniar set of markings)
- Let \mathcal{H}_2 be the co-initial part of $[M_0 \setminus \mathcal{H}_1]$ ($\mathcal{H}_2 \subseteq [M_0 \setminus \mathcal{H}_1]$ finite such that $\forall M' \in [M_0 \setminus \mathcal{H}_1]$, there exists $M \in \mathcal{H}_2$ with $M \leq M'$).
- \blacksquare \mathcal{H}_2 can be effectively computed

Theorem 3

H is a home marking w.r.t. M_0 iff H is reachable from any marking in the set $\mathcal{H}_1 \cup \mathcal{H}_2$

Theorem 3

H is a home marking w.r.t. M_0 iff H is reachable from any marking in the set $\mathcal{H}_1 \cup \mathcal{H}_2$

Consequence 1

The home marking problem is decidable for Petri nets.

Overview

1 The Coverability Tree/Graph

2 Decision Problems in Petri Nets

- 3 Linear Algebraic Techniques
 - Place Invariants

Analysis methods for Petri Nets

Analysis methods for the properties of Petri nets:

- reachability tree or covering tress/graphs.
- large dimension of the reachability/covering tree
- there exist analysis methods for the behavioural properties of Petri nets based on their structure
- linear algebraic techniques (invariants)

■ The incidence matrix describes the structure of the net.

- The incidence matrix describes the structure of the net.
- Let N = (P, T, F, W) a marked Petri net If $P = \{p_1, \dots, p_m\}$ and $T = \{t_1, t_2, \dots t_n\}$, then we consider a ordering on places and transitions:

$$p_1 < p_2 < \ldots < p_m \text{ and } t_1 < t_2 < \ldots < t_n.$$

- The incidence matrix describes the structure of the net.
- Let N = (P, T, F, W) a marked Petri net If $P = \{p_1, \dots, p_m\}$ and $T = \{t_1, t_2, \dots t_n\}$, then we consider a ordering on places and transitions:

$$p_1 < p_2 < \ldots < p_m \text{ and } t_1 < t_2 < \ldots < t_n.$$

Definition 3

Let N = (P, T, F, W) be a marked Petri net . The $m \times n$ - dimensional matrix, given by:

$$C(i,j) = W(t_j, p_i) - W(p_i, t_j), \forall 1 \le i \le m, 1 \le j \le n$$

is called the incidence matrix of N.

■ $C(i,j) = \Delta t_i(p_i)$ ⇒ the number of tokens by which transition t_i modifies place p_i .

$$C = \begin{array}{c|cc} & & t1 & t_2 & t3 \\ \hline p_1 & & & 1 & -3 & 0 \\ p_2 & & & -1 & 1 & 0 \\ p_3 & & & 0 & 1 & -1 \\ p_4 & & & 0 & 0 & 0 \end{array}$$

- The components of *C* are integers:
- Any matrix or line/column vector having all the components 0 will be denoted by 0.
- If we represent the function Δt as: $\begin{pmatrix} \Delta t(p_1) \\ \Delta t(p_2) \\ \dots \\ \Delta t(p_n) \end{pmatrix}$ then we can denote

$$C = (\Delta t_1, \Delta t_2, \ldots, \Delta t_n)$$

The state equation

■ Let M be a marking and t_j a transition enabled in M, $M[t_j)M'$. If M is regarded as a m - dimensional column vector, then:

$$M' = M + C \cdot f$$

where f is a n - dimensional column vector, with 1 on line j and 0 otherwise.

The state equation

■ Let M be a marking and t_j a transition enabled in M, $M[t_j)M'$. If M is regarded as a m - dimensional column vector, then:

$$M' = M + C \cdot f$$

where f is a n - dimensional column vector, with 1 on line j and 0 otherwise.

■ Let $\sigma \in T^*$. The characteristic function of σ is $\overrightarrow{\sigma} : \{1, \dots, n\} \to \mathbb{N}$, such that $\overrightarrow{\sigma}(i)$ is the number of occurrences of transition t_i in σ .

 $\overrightarrow{\sigma}$ can be represented as a n-dimensional column vector (called the Parrikh vector of σ).

The state equation

■ Let M be a marking and t_j a transition enabled in M, $M[t_j)M'$. If M is regarded as a m - dimensional column vector, then:

$$M' = M + C \cdot f$$

where *f* is a *n* - dimensional column vector, with 1 on line *j* and 0 otherwise.

■ Let $\sigma \in T^*$. The characteristic function of σ is $\overrightarrow{\sigma} : \{1, \ldots, n\} \to \mathbb{N}$, such that $\overrightarrow{\sigma}(i)$ is the number of occurrences of transition t_i in σ . $\overrightarrow{\sigma}$ can be represented as a n-dimensional column vector (called the Parrikh vector of σ).

Theorem 4 (State equation)

Let N = (P, T, F, W) be a marked Petri net and M, M' two markings. If $M' \in [M]$, then there exists a n-dimensional column vector f such that $M' = M + C \cdot f$

- A place invariant is a weight vector associated to places of the net.

MSD (2019) Lecture 3 41 / 48

- A place invariant is a weight vector associated to places of the net.
- Describes how the tokens are conserved in the places of the net, in all the reachable markings.

MSD (2019) Lecture 3 41 / 48

- A place invariant is a weight vector associated to places of the net.
- Describes how the tokens are conserved in the places of the net, in all the reachable markings.
- They are used to obtain equations/relations that hold in every reachable marking of the net (invariant properties regarding the distribution of tokens in places)
- Based on these relations certain behavioural properties can be deduced, based only on the structure of the net and on its initial marking.

- A place invariant is a weight vector associated to places of the net.
- Describes how the tokens are conserved in the places of the net, in all the reachable markings.
- They are used to obtain equations/relations that hold in every reachable marking of the net (invariant properties regarding the distribution of tokens in places)
- Based on these relations certain behavioural properties can be deduced, based only on the structure of the net and on its initial marking.

Reachable markings:

$$M_0 = (1,0,0)[t_1\rangle$$

$$M_1 = (0, 2, 1)[t_2\rangle$$

$$M_2 = (0, 1, 2)[t_2\rangle$$

$$\mathit{M}_3 = (0,0,3)[\mathit{t}_3\rangle$$

$$\textit{M}_0 = (1,0,0)[\textit{t}_1\rangle \ldots$$

Consider the line vector: i = (3, 1, 1).

Reachable markings:

$$M_0 = (1,0,0)[t_1\rangle$$

$$M_1 = (0, 2, 1)[t_2\rangle$$

$$M_2 = (0, 1, 2)[t_2\rangle$$

$$\mathit{M}_3 = (0,0,3)[\mathit{t}_3\rangle$$

$$\textit{M}_0 = (1,0,0)[\textit{t}_1\rangle \ldots$$

Reachable markings:

$$M_0 = (1,0,0)[t_1\rangle$$

$$M_1 = (0, 2, 1)[t_2\rangle$$

$$M_2 = (0, 1, 2)[t_2\rangle$$

$$M_3=(0,0,3)[t_3\rangle$$

$$M_0=(1,0,0)[t_1\rangle\ldots$$

Consider the line vector: i = (3, 1, 1).

For any marking
$$M \in [M_0\rangle$$
, $M = \begin{pmatrix} M(p_1) \\ M(p_2) \\ M(p_3) \end{pmatrix}$
 $i \cdot M = (3, 1, 1) \cdot M = 3 \cdot M(p_1) + M(p_2) + M(p_3).$

MSD (2019) Lecture 3 42 / 48

Reachable markings:

$$M_0 = (1,0,0)[t_1\rangle$$

$$M_1 = (0, 2, 1)[t_2\rangle$$

$$M_2 = (0, 1, 2)[t_2\rangle$$

$$M_3=(0,0,3)[t_3\rangle$$

$$M_0 = (1,0,0)[t_1\rangle \dots$$

Consider the line vector: i = (3, 1, 1).

For any marking
$$M \in [M_0\rangle$$
, $M = \begin{pmatrix} M(p_1) \\ M(p_2) \\ M(p_3) \end{pmatrix}$

$$i \cdot M = (3,1,1) \cdot M = 3 \cdot M(p_1) + M(p_2) + M(p_3).$$

Remark:
$$i \cdot M_0 = i \cdot M_1 = i \cdot M_2 = i \cdot M_3 = 3$$
.

For all *M*:
$$i \cdot M = 3 \Rightarrow 3 \cdot M(p_1) + M(p_2) + M(p_3) = 3$$
.

MSD (2019) Lecture 3 42 / 48

For a given net, how could a weight vector i be obtained such that for every two reachable markings M, M', it should hold $i \cdot M = i \cdot M'$?

MSD (2019) Lecture 3 43 / 48

For a given net, how could a weight vector i be obtained such that for every two reachable markings M, M', it should hold $i \cdot M = i \cdot M'$?

From the state equation:

$$\exists f: M = M_0 + C \cdot f$$

$$\exists f': M' = M_0 + C \cdot f'$$

For a given net, how could a weight vector i be obtained such that for every two reachable markings M, M', it should hold $i \cdot M = i \cdot M'$?

From the state equation:

$$\exists f: M = M_0 + C \cdot f$$

$$\exists f': M' = M_0 + C \cdot f'$$

■ If $i \cdot M = i \cdot M'$, it would hold: $i \cdot M_0 + i \cdot C \cdot f = i \cdot M_0 + i \cdot C \cdot f'$, so $i \cdot C \cdot (f - f') = 0$.

MSD (2019) Lecture 3 43 / 48

For a given net, how could a weight vector i be obtained such that for every two reachable markings M, M', it should hold $i \cdot M = i \cdot M'$?

From the state equation:

$$\exists f: M = M_0 + C \cdot f$$
$$\exists f': M' = M_0 + C \cdot f'$$

If
$$i \cdot M = i \cdot M'$$
, it would hold: $i \cdot M_0 + i \cdot C \cdot f = i \cdot M_0 + i \cdot C \cdot f'$, so $i \cdot C \cdot (f - f') = 0$.

■ Hence, one should find i such that $i \cdot C = 0$.

Definition 4

Let N = (P, T, F.W) be a marked Petri net . A place invariant (P-invariant) of N is any m-dimensional vector i with integer components, which verifies: $i \cdot C = 0$.

MSD (2019) Lecture 3 43 / 48

$$C = \left(\begin{array}{rrr} -1 & 0 & 1 \\ 2 & -1 & 0 \\ 1 & 1 & -3 \end{array}\right)$$

$$i \cdot C = (3, 1, 1) \cdot \begin{pmatrix} -1 & 0 & 1 \\ 2 & -1 & 0 \\ 1 & 1 & -3 \end{pmatrix} = (0, 0, 0) = \mathbf{0}$$

i = (3, 1, 1) is a P-invariant.

MSD (2019) Lecture 3 44 / 48

Place Invariants - Definitions

Definition 5

Let N = (P, T, F, W) be a marked Petri net.

If i is a P-invariant of N, then the set

$$||i|| = \{ p \in P \mid i(p) \neq 0 \}$$

is called the support set of i.

- The P-invariant i is positive if $i \ge 0$.
- A positive P-invariant $i > \mathbf{0}$ is called minimal if there does not exist other P-invariant i' such that $\mathbf{0} < i' < i$.

MSD (2019) Lecture 3 45 / 48

Remarks

- Any Petri net has at least one P-invariant, $i = \mathbf{0}$, but only non-null invariants should be considered.
- A net is said to have P-invariants if it has at least one non-null P-invariant.
- If i_1, i_2, \dots, i_n are P-invariants and $x_1, x_2, \dots, x_n \in \mathbb{Z}$, then $x_1 \cdot i_1 + x_2 \cdot i_2 + \dots + x_n \cdot i_n$ is also a P-invariant.

MSD (2019) Lecture 3 46 / 48

Properties of P-invariants

Theorem 5

Let $\gamma = (N, M_0)$ be a marked Petri net . If i is a non-null P-invariant, then, for any $M \in [M_0\rangle$, it holds:

$$i \cdot M = i \cdot M_0$$
.

MSD (2019) Lecture 3 47 / 48

Properties of P-invariants

Theorem 5

Let $\gamma = (N, M_0)$ be a marked Petri net . If i is a non-null P-invariant, then, for any $M \in [M_0)$, it holds:

$$i \cdot M = i \cdot M_0$$
.

■ The theorem gives a neccessary conditions for reachability: if M is a marking and there exists a P-invariant i such that $i \cdot M \neq i \cdot M_0$, then $M \not\in [M_0)$

MSD (2019) Lecture 3 47 / 48

The reverse of the theorem is not true: there exists M such that : $i \cdot M = i \cdot M_0$, but M is not reachable:

- $M = (0,0,1,0), M_0 = (1,0,0,0)$
- $i = (\alpha, 0, \alpha, \alpha)$
- $i \cdot M = \alpha = i \cdot M_0$
- $M \not\in [M_0\rangle!$

MSD (2019) Lecture 3 48 / 48

Models of Distributed Systems

Lecture 4

Overview

- 1 Linear Algebraic Techniques
 - Place Invariants
 - Transition Invariants
- 2 Structural Analysis of Petri Nets
 - Siphons
 - Traps
 - Siphons, Traps and Behavioural Properties of Petri Nets
 - The cs property
- 3 Special Classes of Petri Nets
 - S-systems

Overview

- 1 Linear Algebraic Techniques
 - Place Invariants
- - Siphons
 - Traps
- - S-systems

Definition 1

Let N = (P, T, F, W) a marked Petri net . N is covered by P-invariants iff there exists a P-invariant i such that ||i|| = P.

MSD (2019) Lecture 4 4 / 42

Definition 1

Let N = (P, T, F, W) a marked Petri net . N is covered by P-invariants iff there exists a P-invariant i such that ||i|| = P.

t1
$$\underbrace{\begin{array}{c} p2 \\ 2 \\ p1 \end{array}}$$
 $\underbrace{\begin{array}{c} p2 \\ t3 \end{array}}$ $\underbrace{\begin{array}{c} (x,y,z) \cdot \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \\ \end{array}} = \mathbf{0} \Longrightarrow$
P-invariants: $(0,\alpha,\alpha)$

The net is not covered by P-invariants (there does not exists a P-invariant $i > \mathbf{0}$ with $i(p_1) \neq 0$)

MSD (2019) Lecture 4 4/4

Theorem 1

Let $\gamma = (N, M_0)$ be a marked Petri net .

- (1) If i > 0 is a P-invariant of N, then any place $p \in ||i||$ is bounded.
- (2) If γ is covered by P-invariants, then γ is bounded.
 - The reverse of (1) and (2) is not true.

Theorem 2

Let N be a Petri Net and i > 0 is a P-invariant of N. It holds that:

$$\bullet ||i|| = ||i|| \bullet$$

Overview

- 1 Linear Algebraic Techniques
 - Place Invariants
 - Transition Invariants
- 2 Structural Analysis of Petri Nets
 - Siphons
 - Traps
 - Siphons, Traps and Behavioural Properties of Petri Nets
 - The cs property
- 3 Special Classes of Petri Nets
 - S-systems

Transition Invariants

Decribe sequences of transitions which lead from a marking to the same marking.

Definition 2

A marking M of a Petri net N is reproducible if there exists a non-empty sequence of transitions w such that M[w] M.

Transition Invariants - Definitions

Definition 3

Let N = (P, T, F, W) be a marked Petri net . A T-invariant of N is any n-dimensional column vector $j \in \mathbb{Z}^n$ for which $C \cdot j = \mathbf{0}$, where C is the incidence matrix of N.

A net N is said to have T-invariants if it has at least non-null T-invariant.

MSD (2019) Lecture 4 8 / 42

T-invariants and Reproducible Markings

Theorem 3

A Petri net N has positive T-invariants iff N has reproducible markings.

T-invariants and Reproducible Markings

Theorem 3

A Petri net N has positive T-invariants iff N has reproducible markings.

 (\Longrightarrow) : Let $j > \mathbf{0}$ a T-invariant of N. Let M be a marking given by

$$M(p) = \sum_{t_k \in p^{\bullet}} j(k) \cdot W(p, t_k) ,$$

for any $p \in P$.

Consider the sequence of transitions:

$$w=t_1^{j(1)}\dots t_n^{j(n)}$$

It holds: M[w] M'.

Marking M is reproducible.

 (\longleftarrow) Let $M[w\rangle M$. Then $M=M+C\cdot\overrightarrow{w}$. Hence $C\cdot\overrightarrow{w}=\mathbf{0}$ and \overrightarrow{w} is a T-invariant.

MSD (2019) Lecture 4 9 / 42

T-invariants Covering

Definition 4

Let N = (P, T, F, W) be a Petri net. N is covered by T-invariants iff there exists a T-invariant j > 0 with ||j|| = T

MSD (2019) Lecture 4 10 / 42

T-invariants, Liveness and Boundness

Theorem 4

Any live and bounded marked Petri net is covered by T-invariants.

T-invariants, Liveness and Boundness

Theorem 4

Any live and bounded marked Petri net is covered by T-invariants.

In a live and bounded Petri net, there exists a reachable marking $M \in [M_0)$ and a transition sequence σ such that

- lacksquare σ contains all the transitions in T
- $M[\sigma\rangle M$

 $j = \overrightarrow{\sigma}$ is a T-invariant with ||j|| = T.

T-invariants, Liveness and Boundness

Theorem 4

Any live and bounded marked Petri net is covered by T-invariants.

- T-invariants: $(0, \alpha, \alpha)$.
- The net is not live or it is not bounded.

MSD (2019) Lecture 4 11 / 42

Transition Invariants

There exist Petri nets covered by T-invariants which are not live/bounded:

$$\left(\begin{array}{ccc} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \mathbf{0}$$

- T-invariants: $(\alpha, \alpha, \alpha)^T$
- The net is covered by T-invariants but it is not bounded.

Overview

- Linear Algebraic Techniques
 - Place Invariants
 - Transition Invariants
- 2 Structural Analysis of Petri Nets
 - Siphons
 - Traps
 - Siphons, Traps and Behavioural Properties of Petri Nets
 - The cs property
- 3 Special Classes of Petri Nets
 - S-systems

Siphons - definition

Definition 5

Let N = (P, T, F, W) be a Petri net and $R \subseteq P$ a set of places. R is called a siphon if $\bullet R \subseteq R \bullet$. A siphon is proper if $R \neq \emptyset$.

MSD (2019) Lecture 4 14 / 42

Siphons - definition

Definition 5

Let N = (P, T, F, W) be a Petri net and $R \subseteq P$ a set of places. R is called a siphon if $\bullet R \subseteq R \bullet$. A siphon is proper if $R \neq \emptyset$.

 $\{p_1, p_2\}$ is a siphon.

■ Notations: let $R \subseteq P$ be a set of places and M a marking. $M(R) = \sum_{p \in R} M(p)$

MSD (2019) Lecture 4 15 / 42

■ Notations: let $R \subseteq P$ be a set of places and M a marking. $M(R) = \sum_{p \in R} M(p)$

Definition 6

Let N = (P, T, F, W) be a Petri net, $R \subseteq P$ a proper siphon and M a marking of N. R is marked at M, if $M(R) \neq 0$.

MSD (2019) Lecture 4 15 / 42

■ Notations: let $R \subseteq P$ be a set of places and M a marking. $M(R) = \sum_{p \in R} M(p)$

Definition 6

Let N = (P, T, F, W) be a Petri net, $R \subseteq P$ a proper siphon and M a marking of N. R is marked at M, if $M(R) \neq 0$.

Proposition 1 (Fundamental property of siphons)

Let N = (P, T, F, W) be a Petri net and $R \subseteq P$ a proper siphon. Let M be a marking of the net such that M(R) = 0. Then, $\forall M' \in [M]$, M'(R) = 0.

MSD (2019) Lecture 4 15 / 42

 $[\mathit{M}_0\rangle=\{(0,0,1,0),(0,0,0,1)\},\,\{\emph{p}_1,\emph{p}_2\}$ are never marked.

- A necessary condition for reachability is obtained
- If R is a siphon with $M_0(R) = 0$ and $M(R) \neq 0$, then $M \notin [M_0)$.

 $R = \{p_1, p_2\}$ siphon, $M_0(R) = 0 \Rightarrow$ marking M = (1, 0, 0, 1) is not reachable.

MSD (2019) Lecture 4 17 / 42

Proposition 2

Let $\gamma = (N, M_0)$ be a marked Petri net with $W(f) = 1, \forall f \in F$ and M a marking. If M is a dead marking, then the set of places $R = \{p \in P | M(p) = 0\}$ is a proper siphon.

MSD (2019) Lecture 4 18 / 42

Proposition 2

Let $\gamma = (N, M_0)$ be a marked Petri net with $W(f) = 1, \forall f \in F$ and M a marking. If M is a dead marking, then the set of places $R = \{p \in P | M(p) = 0\}$ is a proper siphon.

■ M = (0, 0, 1, 0) is a dead marking, so $\{p_1, p_2, p_4\}$ is a siphon.

Proposition 2

Let $\gamma = (N, M_0)$ be a marked Petri net with $W(f) = 1, \forall f \in F$ and M a marking. If M is a dead marking, then the set of places $R = \{p \in P | M(p) = 0\}$ is a proper siphon.

Proposition 3

Let N = (P, T, F, W) be a Petri net i a P-invariant for N. The support set, ||i||, is a siphon.

MSD (2019) Lecture 4 18 / 42

Overview

- Linear Algebraic Techniques
 - Place Invariants
 - Transition Invariants
- 2 Structural Analysis of Petri Nets
 - Siphons
 - Traps
 - Siphons, Traps and Behavioural Properties of Petri Nets
 - The cs property
- 3 Special Classes of Petri Nets
 - S-systems

Traps-definition

Definition 7

Let N = (P, T, F, W) be a net and $R \subseteq P$ a set of places. R is called a trap if $R \bullet \subseteq \bullet R$. A trap is proper if $R \neq \emptyset$.

MSD (2019) Lecture 4 20 / 42

Traps-definition

Definition 7

Let N = (P, T, F, W) be a net and $R \subseteq P$ a set of places. R is called a trap if $R \bullet \subseteq \bullet R$. A trap is proper if $R \neq \emptyset$.

 $\{p_3, p_4\}$ is a trap.

Traps-definition

Definition 7

Let N = (P, T, F, W) be a net and $R \subseteq P$ a set of places. R is called a trap if $R \bullet \subseteq \bullet R$. A trap is proper if $R \neq \emptyset$.

Proposition 4

Let N = (P, T, F, W) be a net and i a P-invariant of N. The support set, ||i||, is a trap.

Fundamental Property of Traps

Proposition 5

Let N = (P, T, F, W) be a Petri net and $R \subseteq P$ a proper trap. Let M be a marking of the net such that $M(R) \neq 0$. Then, $\forall M' \in [M]$, $M'(R) \neq 0$.

Fundamental Property of Traps

Proposition 5

Let N = (P, T, F, W) be a Petri net and $R \subseteq P$ a proper trap. Let M be a marking of the net such that $M(R) \neq 0$. Then, $\forall M' \in [M]$, $M'(R) \neq 0$.

 $\{p_3, p_4\}$ is a trap.

Places p_3 , p_4 remain marked in any reachable marking.

Fundamental Property of Traps

- A necessary condition for reachability is obtained
- Given a marking M and R a trap with $M_0(R) \neq 0$, if M(R) = 0, then $M \notin [M_0)$

$$R = \{p_1, p_2, p_3\} \text{ trap, } M_0(R) \neq 0.$$

 $M = (0, 0, 0, 1) \notin [M_0 \setminus (M(R) = 0)]$

Characterization of Traps

Proposition 6

A set R of places is a trap iff for any transition t:

$$| \bullet t | \cdot | R \cap t \bullet | \ge | R \cap \bullet t |$$

 $R = \{p_1, p_3, p_4\}$ is not a trap:

$$|\bullet t_2| \cdot |R \cap t_2 \bullet| = 0 < |R \cap \bullet t_2| = 1$$

MSD (2019) Lecture 4 23

Overview

- 1 Linear Algebraic Techniques
 - Place Invariants
 - Transition Invariants
- 2 Structural Analysis of Petri Nets
 - Siphons
 - Traps
 - Siphons, Traps and Behavioural Properties of Petri Nets
 - The cs property
- 3 Special Classes of Petri Nets
 - S-systems

A necessary condition for liveness

Proposition 7

Let $\gamma = (N, M_0)$ be a live marked Petri net . Any siphon R of N is marked at M_0 .

MSD (2019) Lecture 4 25 / 42

A necessary condition for liveness

Proposition 7

Let $\gamma = (N, M_0)$ be a live marked Petri net . Any siphon R of N is marked at M_0 .

 $\{p_1, p_2\}$ is not marked at the initial marking, hence the net is not live.

A necessary condition for liveness

The reverse is not true:

All siphons are marked in the initial marking:

$$| \{p_1, p_2\}$$

The net is not live.

MSD (2019) Lecture 4 26 / 42

Deadlocks

Proposition 8

Let $\gamma = (N, M_0)$ be a marked Petri net with $W(f) = 1, \forall f \in F$. If any proper siphon of N includes a trap marked at M_0 , then γ is deadlock-free.

MSD (2019) Lecture 4 27 / 42

Deadlocks

Proposition 8

Let $\gamma = (N, M_0)$ be a marked Petri net with $W(f) = 1, \forall f \in F$. If any proper siphon of N includes a trap marked at M_0 , then γ is deadlock-free.

- Siphons: $\{p_1, p_2\}, \{p_1, p_2, p_3\},$
- Traps: $\{p_1, p_2\}, \{p_3\}, \{p_1, p_2, p_3\}$

The net is deadlock-free.

MSD (2019) Lecture 4 27 / 42

Deadlocks

The reverse is not true:

- Deadlock-free net
- Proper siphons: $\{p_1, p_2\}$
- Proper traps: {p₃}

Overview

- Linear Algebraic Techniques
 - Place Invariants
 - Transition Invariants
- 2 Structural Analysis of Petri Nets
 - Siphons
 - Traps
 - Siphons, Traps and Behavioural Properties of Petri Nets
 - The cs property
- 3 Special Classes of Petri Nets
 - S-systems

Notations

Let (N, M_0) be a marked Petri net and p a place of N.

- $\blacksquare min_{p\bullet} = min_{t \in p\bullet} W(p, t)$

Min-controlled/ max-controlled siphons

Definition 8

Let (N, M_0) be a marked Petri net . A siphon S is min-controlled (min-cs) if:

$$\forall M \in [M_0\rangle, \exists p \in S : M(p) \geq min_{p \bullet}.$$

 (N, M_0) satisfies the min-cs property if all its siphons satisfy the min-cs property.

Definition 9

A siphon S is max-controlled (max-cs) if:

$$\forall M \in [M_0\rangle, \exists p \in S : M(p) \geq max_{p \bullet}.$$

 (N, M_0) satisfies the max-cs property if all its siphons satisfy the max-cs property.

MSD (2019) 31 / 42 Lecture 4

The cs-property

Definition 10

A Petri net $(N; M_0)$ is said to be satisfying the controlled-siphon property (cs-property) if and only if each minimal siphon of $(N; M_0)$ is min or max controlled.

- a max-controlled siphon is also a min-controlled siphon
- If $\forall t, t' \in p \bullet : W(p, t) = W(p, t')$, then a min-controlled siphon is also a max-controlled siphon.

MSD (2019) Lecture 4 32 / 42

Example

 $\{p_1, p_2\}$ min-cs, not max-cs

 $\{p_3\}$ max-cs,min-cs

The net has the min-cs property and the cs-property

Properties

Proposition 9

If a marked Petri net (N, M_0) is live, then it satisfies the min-cs property.

Proposition 10

If a marked Petri net (N, M_0) satisfies the max-cs property, then it is deadlock-free.

Example

- \blacksquare { p_1, p_2 } min-cs, not max-cs
- lacksquare $\{p_3\}$ max-cs,min-cs
- min-cs, not live
- deadlock-free, not max-cs

Overview

- Linear Algebraic Techniques
 - Place Invariants
 - Transition Invariants
- 2 Structural Analysis of Petri Nets
 - Siphons
 - Traps
 - Siphons, Traps and Behavioural Properties of Petri Nets
 - The cs property
- 3 Special Classes of Petri Nets
 - S-systems

Definition of S-systems

Definition 11

A S-system (state machine) is a marked Petri net (N, M_0) , where N = (S, T, F, W) such that:

- $W(x,y) = 1, \forall (x,y) \in F$
- $| \bullet t | = |t \bullet | = 1 \ \forall t \in T.$

The weight function is usually omitted: N = (S, T, F).

MSD (2019) Lecture 4 37

Proposition 11 (fundamental property of S-systems)

Let (N, M_0) be a S-system. If $M \in [M_0)$, then $M_0(S) = M(S)$.

■ A necessary condition for reachability in S-systems: $M = (0, 1, 0), M(S) \neq M_0(S),$ hence $M \notin [M_0)$

MSD (2019) Lecture 4 38 / 42

Liveness and Boundness in S-systems

Theorem 5 (boundness)

A S-system (N, M₀) is bounded

Liveness and Boundness in S-systems

Theorem 5 (boundness)

A S-system (N, M_0) is bounded

Theorem 6 (liveness)

A S-system (N, M_0) is live iff it is strongly connected and $M_0(S) \neq 0$.

Liveness and Boundness in S-systems

Theorem 5 (boundness)

A S-system (N, M₀) is bounded

Theorem 6 (liveness)

A S-system (N, M_0) is live iff it is strongly connected and $M_0(S) \neq 0$.

Reachability in S-systems

Lemma 1

Let (N, M_0) a strongly connected system and M, M' markings such that M(S) = M'(S). Then $M[*\rangle M'$.

MSD (2019) Lecture 4 40 / 42

Reachability in S-systems

Lemma 1

Let (N, M_0) a strongly connected system and M, M' markings such that M(S) = M'(S). Then $M[*\rangle M'$.

Consequence 1

Let (N, M_0) a strongly connected system and M a marking such that $M(S) = M_0(S)$. Then $M \in [M_0)$.

MSD (2019) Lecture 4 40 / 42

Reachability in live S-systems

Theorem 7 (reachability)

Let (N, M_0) be a strongly connected S-system and M one of its markings. M is reachable iff $M(S) = M_0(S)$

MSD (2019) Lecture 4 41 / 42

Reachability in live S-systems

Theorem 7 (reachability)

Let (N, M_0) be a strongly connected S-system and M one of its markings. M is reachable iff $M(S) = M_0(S)$

(0, 0, 0, 1, 1) reachable from the initial marking.

Lemma 1

Let (N, M_0) be a connected S-system. A vector $i : S \to \mathbb{Z}$ is a P-invariant of N iff $i = (x, x, \dots, x)$.

MSD (2019) Lecture 4 42 / 4

Lemma 1

Let (N, M_0) be a connected S-system. A vector $i : S \to \mathbb{Z}$ is a P-invariant of N iff i = (x, x, ..., x).

Theorem 8

Let (N, M_0) be a strongly connected S-system and M a marking. $M \in [M_0) \Leftrightarrow$ for every P-invariant $i: i \cdot M = i \cdot M_0$

Lemma 1

Let (N, M_0) be a connected S-system. A vector $i : S \to \mathbb{Z}$ is a P-invariant of N iff i = (x, x, ..., x).

Theorem 8

Let (N, M_0) be a strongly connected S-system and M a marking. $M \in [M_0\rangle \Leftrightarrow$ for every P-invariant $i: i \cdot M = i \cdot M_0$

Theorem 9 (reversibility in live S-systems)

A strongly connected S-system is reversible.

Models of Distributed Systems

Lecture 5

Overview

- 1 Special Classes of Petri Nets
 - T-systems

2 Free Choice Petri Nets

Overview

- 1 Special Classes of Petri Nets
 - T-systems

2 Free Choice Petri Nets

Definition of T-systems

Definition 1

A T-system (marked graph) is any marked Petri net (N, M_0) , where N = (P, T, F, W) such that :

- $W(x,y) = 1, \ \forall (x,y) \in F$
- $| \bullet p | = |p \bullet | = 1$, for all $p \in P$.

The weight function is usually omitted: N = (P, T, F).

T-system: (N, M_0)

The Fundamental Property of T-systems

Definition 2

Let γ be a circuit of a Petri net, M a marking, R the set of places from the circuit γ .

- The number of tokens on the circuit, in marking M, is: $M(\gamma) = M(R)$;
- **Circuit** γ is called marked (in marking M), if $M(\gamma) > 0$;
- Circuit γ is called initially marked, if $M_0(\gamma) > 0$.

MSD (2019) Lecture 5 5/30

The Fundamental Property of T-systems

Definition 2

Let γ be a circuit of a Petri net, M a marking, R the set of places from the circuit γ .

- The number of tokens on the circuit, in marking M, is: $M(\gamma) = M(R)$;
- Circuit γ is called marked (in marking M), if $M(\gamma) > 0$;
- Circuit γ is called initially marked, if $M_0(\gamma) > 0$.

Proposition 1 (The Fundamental Property of T-systems)

Let (N, M_0) be a T-system and γ a circuit of the T-system. Then:

$$\forall M \in [M_0\rangle : M(\gamma) = M_0(\gamma)$$

MSD (2019) Lecture 5 5/30

Theorem 1

A T-system (N, M_0) is live iff all of its circuits are initially marked.

Theorem 1

A T-system (N, M_0) is live iff all of its circuits are initially marked.

Proof:

 (\Longrightarrow) Assume there exists a circuit γ such that $M_0(\gamma)=0$. $\forall M\in [M_0\rangle\ M(\gamma)=0$. It contradicts the liveness of the system.

Theorem 1

A T-system (N, M_0) is live iff all of its circuits are initially marked.

Proof:

 (\Longrightarrow) Assume there exists a circuit γ such that $M_0(\gamma)=0$. $\forall M\in [M_0\rangle\ M(\gamma)=0$. It contradicts the liveness of the system.

$$(\longleftarrow)$$
 Let $t \in T$ and $M \in [M_0)$.

Let $P_M = \{p | \exists a \text{ path from p to t and for all the places s on the path:} M(s) = 0\}.$

$$t = t_2, P_M = \{p_2, p_4, p_6\}.$$

MSD (2019) Lecture 5 6 / 30

 $P_M = \{p | \exists a \text{ path from p to t and for all the places s on the path:} M(s) = 0\}$ one can prove $P(k), \forall k \geq 0$:

$$P(k): \forall M \in [M_0\rangle \text{ with} |P_M| = k, \exists M_t: M[*\rangle M_t[t\rangle$$

(Induction on $|P_M|$)

- P(0): Let $M \in [M_0)$ with $|P_M| = 0$, $\forall p \in \bullet t : M(p) > 0$, so M[t).
- Assume P(k) for all k < n. We prove P(n):

Let
$$M \in [M_0)$$
 with $|P_M| = n$.

There exists a maximal path $\pi = t_1 p_1 t_2 \dots p_{m-1} t_m = t$, with $p_1, \dots, p_{m-1} \in P_M$ It holds: $M[t_1)M'$.

It can be proven that:

- $P_{M'} \subset P_M$
- $P_{M'} \neq P_M$

 $P_{M'} \subset P_M \Rightarrow |P_{M'}| = k < |P_M| \Rightarrow \exists M'_t \text{ with } M'[*\rangle M'_t[t\rangle. \text{ Since } M[t_1\rangle M': M[t_1\rangle M'[\sigma'\rangle M'_t[t\rangle.$

MSD (2019) Lecture 5 7/

not live

Boundness

Proposition 2

Let (N, M_0) be a strongly connected T-system. Then (N, M_0) is bounded.

 (N, M_0) strongly connected, so any place p is on a circuit γ . In any reachable marking M, $M(p) \le M(\gamma) = M_0(\gamma)$.

Theorem 2

A live T-system is bounded iff it is strongly connected.

Boundness

- live
- unbounded

Reachability

Theorem 3

Let (N, M_0) be a live T-system. M is reachable iff, for any place invariant i, it holds: $i \cdot M = i \cdot M_0$

Lemma 1

Let (N, M_0) be a connected T-system. A vector $j : T \to \mathbb{Z}$ is a T-invariant of N iff $j = (x, x, \dots, x)^T$.

Liveness in Strongly Connected T-systems

Theorem 4

Let (N, M_0) be a strongly connected T-system. The following statements are equivalent:

- (N, M_0) is live.
- (N, M_0) is deadlock free.
- (N, M_0) contains an infinite occurrence sequence.

Liveness in Strongly Connected T-systems

Theorem 4

Let (N, M_0) be a strongly connected T-system. The following statements are equivalent:

- (N, M_0) is live.
- (N, M_0) is deadlock free.
- (N, M_0) contains an infinite occurrence sequence.

Overview

- 1 Special Classes of Petri Nets
 - T-systems

2 Free Choice Petri Nets

Definition 3

A Petri net is free-choice iff for any two transitions t_1 and t_2 :

$$\bullet t_1 \cap \bullet t_2 \neq \phi \Longrightarrow \bullet t_1 = \bullet t_2$$

Proposition 3

A Petri net is free-choice iff for any two places p_1 and p_2 :

$$p_1 \bullet \cap p_2 \bullet \neq \emptyset \Longrightarrow p_1 \bullet = p_2 \bullet$$

Properties in Free-choice Nets

Proposition 4

Let N be a free-choice Petri net, p be a place and M a marking of N. If $\exists t \in p \bullet : M[t\rangle$, then $(\forall t \in p \bullet)(M[t\rangle)$.

Clusters

Definition 4 (Clusters)

Let x be a node in a Petri net. The cluster of x, denoted by [x], is the minimal set of nodes such that :

- $x \in [x]$
- if a place $p \in [x]$, then $p \bullet \subseteq [x]$
- if a transition $t \in [x]$, then $\bullet t \subseteq [x]$

Clusters

Definition 4 (Clusters)

Let x be a node in a Petri net. The cluster of x, denoted by [x], is the minimal set of nodes such that :

- $x \in [x]$
- if a place $p \in [x]$, then $p \bullet \subseteq [x]$
- if a transition $t \in [x]$, then $\bullet t \subseteq [x]$

Clusters

Definition 4 (Clusters)

Let x be a node in a Petri net. The cluster of x, denoted by [x], is the minimal set of nodes such that :

- $x \in [x]$
- if a place $p \in [x]$, then $p \bullet \subseteq [x]$
- if a transition $t \in [x]$, then $\bullet t \subseteq [x]$

Proposition 5

Let N be a free-choice net and M a marking of N. If t is a transition and $M[t\rangle$, then $M[t'\rangle, \forall t' \in [t]$.

Place liveness in Free Choice Petri Nets

Definition 5

Let $\gamma = (N, M_0)$ be a Petri Net. A place p is quasi-live in a marking M iff there exists a marking $M_p \in [M]$ such that $M_p(p) \neq 0$. If place p is not quasi-live in marking M, then p is dead in M.

Definition 6

Let $\gamma = (N, M_0)$ be a Petri Net. A place p is live from marking M iff it is quasi-live from every reachable marking $M' \in [M]$. Place p is live in γ iff it is live in M_0 ($\forall M \in [M_0]$) there exists a marking $M_p \in [M]$ such that $M_p(p) \neq 0$)

Definition 7

Let $\gamma = (N, M_0)$ be a Petri Net. γ is place-live iff all its places are live.

Proposition 6

A live Petri net is place-live.

Place liveness in Free Choice Petri Nets

Proposition 7

Let N be a free-choice Petri net and M a marking. If $\forall p \in \bullet t$, p is live from M, then t is quasi-live from M.

Proof

- $\bullet \text{ let } \{p_1, \ldots, p_n\} = \bullet t$
- p_1, \ldots, p_n live from $M \Rightarrow M[*\rangle M_1[*\rangle M_2 \ldots M_{n-1}[*\rangle M_n$ with $M_i(p_i) > 0$
- the only transitions that remove tokens from p_1, \ldots, p_n are the transitions in [t]
- if a transition in [t] is enabled in the sequence, t is also is enabled in a marking reachable from M, otherwise M_n(p_i) > 0 for all i, hence M_n[t⟩

Lemma 1

If a free-choice Petri net is place-live, then it is live.

Consequence 1

A free-choice Petri net is live iff it is place-live.

Liveness in Free Choice Petri Nets

Proposition 8

Let N be a non-live free-choice Petri net. There exists a siphon R and a reachable marking M such that M(R) = 0.

Liveness in Free Choice Petri Nets

Proposition 8

Let N be a non-live free-choice Petri net. There exists a siphon R and a reachable marking M such that M(R) = 0.

Proof: if N is not live, it is not place-live, so there exists a place p and a reachable marking L such that p is dead in L.

- Let Dead(M) denote the set of dead places in a marking M.
- Let $M \in [L)$ be a marking such that for all $M' \in [M)$: p' is dead in M iff p' is dead in M' (i.e. Dead(M) = Dead(M')).
- Let R = Dead(M). It holds:
 - 1 $R \neq \emptyset (p \in Dead(M))$
 - 2 if $t \in \bullet R$, then t is dead in M
 - 3 •R ⊆ R• (from 2 and proposition 7)

Liveness in Free Choice Petri Nets

Proposition 8

Let N be a non-live free-choice Petri net. There exists a siphon R and a reachable marking M such that M(R) = 0.

Proof: if N is not live, it is not place-live, so there exists a place p and a reachable marking L such that p is dead in L.

- Let Dead(M) denote the set of dead places in a marking M.
- Let $M \in [L)$ be a marking such that for all $M' \in [M)$: p' is dead in M iff p' is dead in M' (i.e. Dead(M) = Dead(M')).
- Let R = Dead(M). It holds:
 - 1 $R \neq \emptyset (p \in Dead(M))$
 - 2 if $t \in \bullet R$, then t is dead in M
 - 3 •R ⊆ R• (from 2 and proposition 7)

Lemma 2

Let N be a free-choice Petri net. If every proper siphon includes an initially marked trap, then N is live.

Liveness: Commoner's Theorem

Theorem 5 (Commoner)

A marked free-choice Petri net (N, M_0) is live iff any proper siphon includes an initially marked trap.

Liveness: Commoner's Theorem

Theorem 5 (Commoner)

A marked free-choice Petri net (N, M_0) is live iff any proper siphon includes an initially marked trap.

 $\bullet \{p_1, p_2, p_5\} = \{t_1, t_4, t_5\}, \{p_1, p_2, p_5\} \bullet = \{t_1, t_2, t_4, t_5\}.$ $\{p_1, p_2, p_5\} \text{ siphon, does not include a trap marked at } M_0.$

Liveness: Commoner's Theorem

Theorem 5 (Commoner)

A marked free-choice Petri net (N, M_0) is live iff any proper siphon includes an initially marked trap.

- $\bullet \{p_1, p_2, p_4\} = \{t_1, t_2, t_3, t_4\}, \{p_1, p_2, p_4\} \bullet = \{t_1, t_2, t_3, t_4\}.$
- $\bullet\{\rho_1,\rho_3,\rho_4\}=\{t_1,t_2,t_3,t_4\},\,\{\rho_1,\rho_3,\rho_4\}\bullet=\{t_1,t_2,t_3,t_4\}.$
- $\bullet \{p_1, p_2, p_3, p_4\} = \{t_1, t_2, t_3, t_4\}, \{p_1, p_2, p_3, p_4\} \bullet = \{t_1, t_2, t_3, t_4\}.$ every siphon includes a trap marked at M_0 .

Liveness and Deadlocks

Theorem 6

Let (N, M_0) be a bounded, strongly connected marked free-choice Petri net. (N, M_0) is live iff it is deadlock-free.

Liveness and Deadlocks

Theorem 6

Let (N, M_0) be a bounded, strongly connected marked free-choice Petri net. (N, M_0) is live iff it is deadlock-free.

Proof: (\Leftarrow) . Let M be a reachable marking. We show that every transition is quasi-live in M.

- Let M be the marking with the maximum number of dead transitions in it. We show this number is 0.
- M is not dead, there exists a transition t such that M[t)
- The net is strongly connected, there exists a path from t containing all the transitions of the net
- One can prove that for every two consecutive transitions u, v on this path:
 u is not dead in M ⇒ v is not dead in M:
 - there exists $M[\sigma]$ such that u appears infinitely often in σ
 - let $s \in u \bullet$, $s \in \bullet v$: place s can get an infinite number of tokens, unless there exists some transition $v' \in \bullet s$ enabled in some marking $M' \in [M) \Rightarrow M'[v) \Rightarrow v$ is not dead in M

Definition 8

A Petri net N is well-formed if there exists a marking M such that (N, M) is live and bounded.

The Rank Theorem

Theorem 7 (Rank Theorem)

Let N be a free-choice net, C its incidence matrix and C_N the set of clusters of N. N is well-formed iff:

- N is connected and it has at least a place and a transition.
- N is covered by place invariants
- N is covered by transition invariants
- **4** $Rang(C) = |C_N| 1.$

Proposition 9

A well-formed marked free-choice Petri net (N, M₀) is bounded.

Proposition 10

In a well-formed free-choice Petri net, any minimal siphon is a trap.

Example

- place invariant: (1, 1, 1, 1, 1, 1, 1), the net is covered by place invariants
- \blacksquare transition invariant: $(2, 1, 1, 1, 1, 1, 1)^t$, the net is covered by transition invariants
- Rank(C)=6, number of clusters: 5.
- the net is not well-formed

Example

$$\mathbf{C} = \left(\begin{array}{ccccc} -1 & 0 & 0 & 1 & 1 \\ 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 \end{array} \right)$$

- place invariants: $(\alpha, \alpha, \alpha, \alpha)$, the net is covered by place invariants.
- transition invariants: $(\alpha + \beta, \alpha, \beta, \alpha, \beta)$, the net is covered by transition invariants.
- Rank(C)=3, the number of clusters: 4.
- well-formed net

Liveness and Boundness

Theorem 8

A free-choice marked Petri net (N, M_0) is live and bounded iff:

- 1 N is well-formed.

Proof:

←:

- boundness results from Prop. 9
- liveness: Since in well-formed free-choice Petri nets every minimal siphon is also a trap (Prop. 10), then the condition in the Commoner Theorem holds.

Liveness and Boundness

Theorem 9

A free-choice marked Petri net (N, M_0) is live and bounded iff:

- N is well-formed.

$$C = \left(\begin{array}{cccc} -1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 0 & 1 & 1 & -1 \end{array} \right)$$

- place invariants: $(\alpha, \beta, \alpha \beta, \alpha)$, the net is covered by place invariants.
- transition invariants: $(\alpha, \beta, \alpha \beta, \alpha)$, the net is covered by transition invariants.
- Rank(C)=2, the number of clusters: 3.
- Siphons: {p₁, p₂, p₄}, {p₁, p₃, p₄}, {p₁, p₂, p₃, p₄} (marked at M₀)

Example

- well-formed net
- the only siphon, $\{p_1, p_2, p_3, p_4\}$ is marked at M_0
- the net is live and bounded

Algorithm for checking condition 2 in the liveness and boundness theorem

Input: A Petri net (P, T, F) and a set R of places **Output:** The maximal siphon S included in R ($S \subseteq R$) begin S := R while there exists $p \in S$ and $t \in \bullet p$ such that $t \not \in S \bullet p$

 $S := S \setminus \{p\}$

end

- Check if every siphon is marked at M_0 :
 - Let R be the set of places not marked at M_0
 - Let S be the maximal siphon included in R
 - Every siphon is marked at M_0 iff $S = \emptyset$
- Both condition 1 and condition 2 from the liveness and boundness theorem can be checked in polynomial time

Home Markings

Proposition 11

Let (N, M_0) be a marked live free-choice net. If M is a home marking of (N, M_0) , then M marks any proper trap of N.

Home Markings

Proposition 11

Let (N, M_0) be a marked live free-choice net. If M is a home marking of (N, M_0) , then M marks any proper trap of N.

- siphons: $\{p_1, p_2, p_3\}$
- \blacksquare traps: $\{p_1, p_2, p_3\}, \{p_1, p_2\}$
- live net
- \bullet (0, 0, 1) is not a home marking
- the reverse is not true: (1,0,0) marks every trap but it is not a home marking

Home Markings

Theorem 10 (Existence of Home Markings)

Any live and bounded marked free-choice Petri net has home markings.

Theorem 11 (Home Marking Theorem)

Let (N, M_0) be a live and bounded marked free-choice Petri net. A reachable marking $M \in [M_0)$ is home-markging iff it marks any proper trap of N.

Home Markings

Theorem 10 (Existence of Home Markings)

Any live and bounded marked free-choice Petri net has home markings.

Theorem 11 (Home Marking Theorem)

Let (N, M_0) be a live and bounded marked free-choice Petri net. A reachable marking $M \in [M_0)$ is home-markging iff it marks any proper trap of N.

- well-formed net
- the only siphon, $\{p_1, p_2, p_3, p_4\}$ is marked at M_0
- the net is live and bounded
- the only trap: $\{p_1, p_2, p_3, p_4\}$
- every reachable marking is a home-marking (the net is reversible)

Models of Distributed Systems

Lecture 6

Overview

- 1 Asymmetric Choice Petri Nets
- 2 Workflow Modelling: Workflow Nets
 - Workflow Nets
 - The Soundness Property for Workflow Nets
 - Soundness in Special Classes of Workflow Nets
- 3 Other notions of soundness

Overview

- 1 Asymmetric Choice Petri Nets
- 2 Workflow Modelling: Workflow Nets
 - Workflow Nets
 - The Soundness Property for Workflow Nets
 - Soundness in Special Classes of Workflow Nets
- 3 Other notions of soundness

Definition

weaker conditions than the conditions in the definition of free-choice Petri nets

$$(s \bullet \cap p \bullet = \emptyset \text{ or } s \bullet = p \bullet)$$

Definition 1

A Petri net N = (P, T, F) is a asymmetric choice Petri net, iff for every two places and

p it holds: either $p \bullet \cap s \bullet = \emptyset$, or $s \bullet \subseteq p \bullet$ or $p \bullet \subseteq s \bullet$

Example

- the net is not free-choice $(p_1 \bullet \neq p_2 \bullet, p_3 \bullet \neq p_2 \bullet)$
- the net is asymmetric choice: $p_1 \bullet \subseteq p_2 \bullet$, $p_3 \bullet \subseteq p_2 \bullet$

Properties

A sufficient condition for liveness:

Proposition 1

Let (N, M_0) be a marked asymmetric choice net. If every proper siphon of N includes an initially marked trap, than (N, M_0) is live.

The reverse is not true (the Commoner's theorem does not hold in the case of asymmetric choice nets).

Example

- the set of all places is a siphon
- there is no proper trap
- the net is live

Properties

A sufficient condition for well-formedness:

Theorem 1

Let N be an asymmetric choice net, C its incidence matrix and C_N the set of clusters of N. If the following conditions hold, then N is well-formed:

- N is connected and it has at least a place and a transition.
- N is covered by place invariants
- N is covered by transition invariants
- 4 $Rank(C) = |C_N| 1$.

Properties

The reverse of Theorem 1 does not hold:

Rank(C) = 4, $|C_N| = 4$ (condition 4 does not hold), but the net is well-formed M = (1, 0, 0, 0, 0)

Proposition 2

MSD (2019)

Let N be an asymmetric choice net satisfying Conditions (1) to (4) of Theorem 1 and M be a marking of N. (N, M) is live and bounded iff M marks all proper siphons of M. 9/44 Lecture 6

Overview

- 1 Asymmetric Choice Petri Nets
- 2 Workflow Modelling: Workflow Nets
 - Workflow Nets
 - The Soundness Property for Workflow Nets
 - Soundness in Special Classes of Workflow Nets
- 3 Other notions of soundness

Workflow Processes

- Workflow process: a complex process that executes inside an organization:
 - set of tasks executed in a specific order
 - specific data: used, modified, produced during task execution
 - resources: necessary for executing the tasks of the process

Workflow Processes

- Workflow process: a complex process that executes inside an organization:
 - set of tasks executed in a specific order
 - specific data: used, modified, produced during task execution
 - resources: necessary for executing the tasks of the process
- Workflow Management Systems (WFMS): permit the definition of workflow processes and ensure their execution

Workflow Perspectives

- Process perspective: tasks, their order of execution;
- Resource perspective: resources, resource organization, the way in which resources are assigned for the execution of tasks;
- Data perspective:
 - control data (used for controlling the execution of the process)
 - production data (created/used by tasks)

Workflow Components

- Case: workflow instance, the subject of the tasks and operations inside the workflow process
- Task: elementary operation in the workflow process
- Resource: executes the task
- Work item: task + case (a task that is being executed for a specific case)
- Activity: task + case + resource (a task that is executed for a specific case, by a resource)
- Execution control structures (routing constructs): describe the logical dependence between tasks

Execution Control Structures

Sequence:

AND-split

OR-split

AND-join

OR-join

Example

Workflow Specification Languages

- Workflow Management Systems use definitions of workflow processes, expressed in a certain specification language:
- Approaches:
 - Product specific language
 - UML Activity Diagrams
 - Workflow Graphs
 - BPMN
 - XML-based languages: BPEL, XPDL
 - Process algebra
 - Petri nets

- Workflow nets:
 - model the process perspective (abstracts from data and resources)
 - model the execution of one case
- High level Petri nets for modelling the other perspectives of the workflow, besides the process perspective

■ tasks → transitions

- tasks → transitions
- case → a token in the net

- tasks → transitions
- case → a token in the net
- lacktriangledown pre-conditions and post-conditions for the execution of tasks \longrightarrow places

- tasks → transitions
- case → a token in the net
- lacktriangledown pre-conditions and post-conditions for the execution of tasks \longrightarrow places
- work item → transition enabled in a certain marking

- tasks → transitions
- case → a token in the net
- lacktriangledown pre-conditions and post-conditions for the execution of tasks \longrightarrow places
- work item → transition enabled in a certain marking

- tasks → transitions
- case → a token in the net
- lacktriangleright pre-conditions and post-conditions for the execution of tasks \longrightarrow places
- work item → transition enabled in a certain marking
- execution control structures → places or transitions

Workflow Nets Definition

Definition 2

A workflow net (WF-net) is a Petri net PN = (P, T, F) such that :

- **1** P contains an input place i and an output place o such that $\bullet i = \emptyset$ and $o \bullet = \emptyset$.
- **2** For every $n \in P \cup T$, there exists a path in PN from i to n and from n to o.

Remarks

- W(x,y) = 1, for every $(x,y) \in F$.
- If a transition t^* is added to PN such that $\bullet t^* = \{o\}$ and $t^* \bullet = \{i\}$, then the resulting Petri net is strongly connected.

Notations:

■ The initial marking of a WF-net, M₀:

$$M_0(i) = 1, M_0(p) = 0, \forall p \neq i.$$

We write $M_0 = i$

■ The final marking of a WF-net, M_f:

$$M_f(o) = 1, M_f(p) = 0, \forall p \neq o.$$

We write $M_f = o$

MSD (2019) Lecture 6 20 / 44

Soundness

■ In a workflow the execution/processing of a case should always terminate;

- In a workflow the execution/processing of a case should always terminate;
- There do not exist useless tasks (every task should be able to execute at a certain point)

Definition 3

A workflow net PN = (P, T, F) is sound iff:

- $\forall t \in T$, t is quasi-live

Soundness Definition

Example

Closure of a Workflow Net

Definition 4

Let PN = (P, T, F) be a workflow net. The closure of PN is the net $\overline{PN} = (\overline{P}, \overline{T}, \overline{F})$, such that :

- $\overline{P} = P$
- $\overline{T} = T \cup \{t^*\}$
- $\overline{F} = F \cup \{(o, t^*), (t^*, i)\}$

Properties

Lemma 1

Let PN = (P, T, F) be a workflow net for which the termination condition in the definition of soundness holds. Then:

- 2 (PN, i) is bounded.
- the set of reachable markings of (PN, i) is the same as the set of reachable markings of $(\overline{P}N, i)$.
- (PN, i) is quasi-live iff (\overline{PN}, i) is quasi-live.

A Characterization of Soundness

Lemma 2

Let PN = (P, T, F) be a sound WF-net. Then, (\overline{PN}, i) is live and bounded.

Lemma 3

Let PN = (P, T, F) be a WF-net. If (\overline{PN}, i) is live and bounded, then PN is sound.

MSD (2019) Lecture 6 26 / 44

A Characterization of Soundness

Theorem 2

A WF-net PN is sound iff (\overline{PN}, i) is live and bound.

Proposition 3

A WF-net PN is sound iff o is a home marking in (PN, i) and (PN, i) is quasi-live.

Consequence 1

The soundness problem is decidable for WF-nets.

Free-choice Workflow Nets

Definition 5

A worfklow net is free choice iff for every two transitions t_1 and t_2 , $\bullet t_1 \cap \bullet t_2 \neq \emptyset \Longrightarrow$

$$\bullet t_1 = \bullet t_2$$
.

Free-choice Workflow Nets

Definition 5

A worfklow net is free choice iff for every two transitions t_1 and t_2 , $\bullet t_1 \cap \bullet t_2 \neq \emptyset \Longrightarrow$

$$\bullet t_1 = \bullet t_2$$
.

- The following problem can be solved in polynomial time: given a free-choice Petri net, decide if it is live and bounded (Desel & Esparza,1995).
- If PN is a free-choice Petri net, then \overline{PN} is a free-choice Petri net.

- The following problem can be solved in polynomial time: given a free-choice Petri net, decide if it is live and bounded (Desel & Esparza,1995).
- If PN is a free-choice Petri net, then \overline{PN} is a free-choice Petri net.

Consequence 2

The following problem can be solved in polynomial time: given a free-choice workflow net, decide if it is sound.

- The following problem can be solved in polynomial time: given a free-choice Petri net, decide if it is live and bounded (Desel & Esparza,1995).
- If PN is a free-choice Petri net, then PN is a free-choice Petri net.

Consequence 2

The following problem can be solved in polynomial time: given a free-choice workflow net, decide if it is sound.

Lemma 1

A sound free-choice workflow net is safe.

Boundness & Liveness Theorem

A free-choice marked Petri net (N, M_0) is live and bounded iff:

- 1 N is well-formed.

Rank Theorem

Let N be a free-choice net, C its incidence matrix and C_N the set of clusters of N. N is well-formed iff:

- N is connected and it has at least a place and a transition.
- N is covered by place invariants
- 3 N is covered by transition invariants
- **4** *Rang*(C) = $|C_N|$ − 1.

Free-choice Workflow Nets

- place invariants: $(\alpha, \beta, \alpha \beta, \alpha)$, the net is covered by place invariants.
- transition invariants: $(\alpha, \beta, \alpha \beta, \alpha)$, the net is covered by transition invariants.
- Rank(C)=2, the number of clusters: 3.
- well-formed net
- siphons: $\{i, p_1, o\}, \{i, p_2, o\}, \{i, p_1, p_2, o\}$ (marked at M_0)
- live and bounded

MSD (2019) Lecture 6 31 / 44

Well-structured workflow nets

- A path C from an element n_1 to an element n_k , in a Petri net, is any sequence n_1, n_2, \ldots, n_k , such that $(n_i, n_{i+1}) \in F$, for any $1 \le i \le k-1$. $\alpha(C) = \{n_1, n_2, \ldots, n_k\}$.
- C is an elementary path, iff for every n_i and n_j in C, $i \neq j \Rightarrow n_i \neq n_j$.

Definition 6

A Petri net PN is well - handled iff for every pair of elements x and y such that one of the elements is a place and the other is a transition, there do not exist two distinct elementary paths, C_1 and C_2 from x to y such that $\alpha(C_1) \cap \alpha(C_2) = \{x,y\}$.

MSD (2019) Lecture 6 32 / 44

Example

Lemma 4 (Esparza & Silva 1990)

A well-handled Petri net is bounded.

Lemma 4 (Esparza & Silva 1990)

A well-handled Petri net is bounded.

• for workflow nets, it will be required that \overline{PN} is well-handled.

Lemma 4 (Esparza & Silva 1990)

A well-handled Petri net is bounded.

• for workflow nets, it will be required that \overline{PN} is well-handled.

Definition 7

A WF-net PN is well-structured, iff its closure \overline{PN} is well-handled.

Elementary extended non-self controlling Petri nets

Definition 8

A Petri net is elementary extended non-self controlling (ENSeC) iff for any two transitions t_1 and t_2 such that $\bullet t_1 \cap \bullet t2 \neq \emptyset$, there does not exist an elementary path from t_1 to t_2 such that $\bullet t_1 \cap \alpha(C) = \emptyset$.

MSD (2019) Lecture 6 35 / 44

Theorem 3 (van der Aalst 1996)

Let PN be a WF - net. If PN is well-structured, than \overline{PN} is ENSeC.

Theorem 4 (Barkaoui 1995)

The liveness problem can be solved in polynomial time for bounded ENSeC.

Consequence 3

The following problem can be solved in polynomial time: given a well-structured workflow net, decide if it is sound.

 \overline{PN} well-handled \Rightarrow bounded. Liveness can be decided in polynomial time for \overline{PN} , which is FNSeC and bounded.

Overview

- 1 Asymmetric Choice Petri Nets
- 2 Workflow Modelling: Workflow Nets
 - Workflow Nets
 - The Soundness Property for Workflow Nets
 - Soundness in Special Classes of Workflow Nets
- 3 Other notions of soundness

Weak soundness

A WF-net for which holds only the first condition in the definition of soundness (termination) is called weak sound.

Definition 9

A WF-net is weak sound iff $\forall M \in [i\rangle, o \in [M\rangle$

■ The net is not sound (it is not quasi-live), but it is weak sound.

Relaxed soundness

Definition 10

Let N be a WF-net. N is relaxed sound if and only if for each transition t:

$$\exists M, M' \in [i\rangle_N : M[t\rangle M' \land o \in [M'\rangle$$

■ The net is not sound (termination property does not hold), but it is relaxed sound.

Relaxed soundness

The following Petri net PN' is built starting from PN:

- The initial marking of PN': $i + p_{t1NO} + ... + p_{tnNO}$, where t1, ..., tn are all the transitions in PN
- PN is relaxed sound iff for every transition ti, a marking $p_{tiYES} + o + M$ is reachable in PN'. (M is a marking in which only places p_{tkYES} , p_{tjNO} , $k, j \in \{1, ..., n\}$ can contain one token. The set of all such markings is finite.)

Relaxed soundness is decidable for workflow nets.

Lazy soundness

Definition 11

Let N be a WF-net. N is lazy sound if and only if:

- $\forall M \in [i\rangle_N \exists M' \in [M\rangle : M'(o) = 1$ (option to complete)
- $\forall M \in [i\rangle_N : M(o) \leq 1 (proper completion)$

■ The net is not sound, but it is lazy sound.

Lazy soundness is decidable for workflow nets (using the coverabilty tree).

Easy soundness

Definition 12

Let N be a WF-net. N is easy sound if and only if $o \in [i]_N$

■ The net is not sound, but it is easy sound.

Easy soundness is decidable for workflow nets (reachability of marking o is decidable).

Relations between the soundness notions

Proposition 4

A sound WF-net is weak sound.

Proposition 5

A sound WF-net is relaxed sound.

Proposition 6

A relaxed sound WF-net is easy sound.

Proposition 7

A weak sound WF-net is easy sound and lazy sound.

Relations between types of soundness

