The Macroeconomic Impact of Climate Change: Global vs. Local Temperature

Adrien Bilal

Stanford University I

Diego Känzig

Northwestern University

November 2024

Introduction

- Climate change is often portrayed as an existential threat
- Yet empirical estimates imply small, 1-2% GDP loss per 1°C (Nordhaus 1992, Dell et al. 2012, Burke et al. 2015, Nath et al. 2023)
- All focus on within-country, local temperature panel variation

Questions

- Are the economic consequences of climate change truly so small?
- Or is local temperature an incomplete representation of climate change?

- Provide new macroeconomic estimates of the impact of temperature
 - ▶ Novel focus on global temperature rather than local temperature
 - ▶ Use natural climate variability and time series variation
 - ▶ 1°C global temperature implies a 12% decline in world GDP vs. 1% for local temperature

- Provide new macroeconomic estimates of the impact of temperature
 - ► Novel focus on global temperature rather than local temperature
 - Use natural climate variability and time series variation
 - ▶ 1°C global temperature implies a 12% decline in world GDP vs. 1% for local temperature
- Reconcile global and local temperature estimates
 - Global temperature shocks predict strong rise in damaging extreme events
 - Local temperature shocks do not

- Provide new macroeconomic estimates of the impact of temperature
 - ▶ Novel focus on global temperature rather than local temperature
 - Use natural climate variability and time series variation
 - ▶ 1°C global temperature implies a 12% decline in world GDP vs. 1% for local temperature
- Reconcile global and local temperature estimates
 - ► Global temperature shocks predict strong rise in damaging extreme events
 - Local temperature shocks do not
- Quantify the Social Cost of Carbon & the welfare cost of climate change
 - ► Use reduced-form impacts to estimate damage functions in NGM (=DICE)
 - for global temperature vs. \$178/tCO2 for local temperature
 - ► Adding 2°C to 2024 temperature by 2100 implies a in permanent consumption
 - ▶ Imply that unilateral decarbonization policy is optimal

- Provide new macroeconomic estimates of the impact of temperature
 - ▶ Novel focus on global temperature rather than local temperature
 - ▶ Use natural climate variability and time series variation
 - ▶ 1°C global temperature implies a 12% decline in world GDP vs. 1% for local temperature
- Reconcile global and local temperature estimates
 - ► Global temperature shocks predict strong rise in damaging extreme events
 - Local temperature shocks do not
- Quantify the Social Cost of Carbon & the welfare cost of climate change
 - Use reduced-form impacts to estimate damage functions in NGM (=DICE)
 - ► SCC = \$1,367/tCO2 for global temperature vs. \$178/tCO2 for local temperature
 - ▶ Adding 2°C to 2024 temperature by 2100 implies a 25% welfare loss in permanent consumption
 - ► Imply that unilateral decarbonization policy is optimal

Economic Growth

Global Temperature and

Global temperature and economic growth

Notes: Global average temperature (including sea surface) from NOAA, world real GDP from PWT

- Global temperature and world GDP both trending up over our sample
- May bias estimated effects of temperature on output
- Focus on temperature shocks

Measuring temperature shocks

- Use approach by Hamilton (2018)
- Estimate transient component in temperature as forecast error

$$\widehat{T_{t+h}^{\text{shock}}} = T_{t+h} - (\hat{\beta}_0 + \hat{\beta}_1 T_t + \ldots + \hat{\beta}_{p+1} T_{t-p}),$$

- What drives variation around temperature trend?
 - Solar cycles & volcanic eruptions
 - Internal climate variability
- Choose h = 2 (and p=2) to allow for **persistent** climatic phenomena
 - ► e.g. El Niño events
 - Results robust to alternative choices

Global temperature shocks

Estimating the effects of global temperature shocks

Estimate dynamic causal effects to global temperature shocks using local projections (Jordà 2005)

$$y_{t+h} - y_{t-1} = \alpha_h + \theta_h T_t^{\text{shock}} + \mathbf{x}_t' \boldsymbol{\beta}_h + \varepsilon_{t+h},$$

where

- \triangleright y_t is (log) world real GDP per capita
- $ightharpoonup T_t^{\rm shock}$ is the temperature shock
- \triangleright θ_h is the dynamic causal effect at horizon h
- \triangleright \mathbf{x}_t is a vector of controls

The effects of global temperature shocks

 $\it Notes: 68$ and 90% confidence bands based on robust standard errors

Global temperature shocks

- ► Significant & persistent impact
- After a 1°C shock
 - ► GDP per capita falls by 2% on impact
 - ightharpoonup Effect builds up to > 10% after 6 years
 - ► Impact persists even 10 years out
 - ► B/c internal temperature persistence

7 / 35

▶ Internal persistence of temperature

Global Temperature Shocks in the Panel of Countries

A new climate-economy panel

- New climate-economy panel dataset covering 173 countries
 - ▶ Main sample starts in 1960; for some countries we can go back until 1900
- Economic data from PWT & JST Macrohistory database
 - Real GDP pc, population, capital, investment, productivity
- Temperature data from Berkeley earth
 - Allows for timely updates
- Extreme weather data from ISIMIP
 - Use gridded data from to construct country-level measures

Estimating the effects of global temperature shocks in the panel

- Estimate the dynamic causal effects to global temperature shocks in the panel
- Use panel local projections (Jordà et al 2020)

$$y_{i,t+h} - y_{i,t-1} = \alpha_{i,h} + \theta_h T_t^{\text{shock}} + \mathbf{x}_t' \boldsymbol{\beta}_h + \mathbf{x}_{i,t}' \boldsymbol{\gamma}_h + \varepsilon_{i,t+h},$$

where

- $y_{i,t}$ is (log) real GDP per capita in country i
- $ightharpoonup T_t^{\text{shock}}$ is the temperature shock
- \bullet θ_h is the dynamic causal effect at horizon h
- \triangleright \mathbf{x}_t is a vector of global controls, $\mathbf{x}_{i,t}$ are country controls
- Can estimate responses to global and local temperature shocks

Global temperature shocks in the panel

 $\it Notes:$ Point estimate with 68 and 90% confidence bands based on Driscoll-Kraay SE

- Global temperature shocks
 - Substantial impact in panel
 - ► GDP per capita falls by over 10%
- Effect in panel pprox effect in time series

▶ Bootstrap

Four identification concerns

1. Omitted variable bias (global)

► Temperature shocks may happen to coincide with adverse *global* economic shocks

2. Reverse causality

Economic activity may lead to emissions and changes in temperature

3. External validity

Estimates may change over time and by source of global temperature variation

4. Omitted variable bias (regional)

Temperature shocks may happen to coincide with adverse regional economic shocks

Accounting for concern #1: Omitted variable bias (global)

Notes: 68 and 90% confidence bands based on robust standard errors. No additional controls: two lags of GDP and global temperature. Baseline: add indicators for global economic recessions. Expanded set of controls: add global oil prices and the US treasury yield.

Construction of T shock and jackknife

Four identification concerns

1. Omitted variable bias (global)

► Temperature shocks may happen to coincide with adverse *global* economic shocks

2. Reverse causality

► Economic activity may lead to emissions and changes in temperature

3. External validity

Estimates may change over time and by source of global temperature variation

4. Omitted variable bias (regional)

Temperature shocks may happen to coincide with adverse regional economic shocks

Accounting for concern #2: Reverse causality

 $\it Notes: 68$ and 90% confidence bands based on robust standard errors.

- Control for reverse causality
 - ► Feedback of GDP on T via emissions
 - ► Climate models: CO2, CH4 and SO2
- Results virtually unchanged
 - ► Emissions fluctuations too small

Four identification concerns

1. Omitted variable bias (global)

► Temperature shocks may happen to coincide with adverse global economic shocks

2. Reverse causality

► Economic activity may lead to emissions and changes in temperature

3. External validity

► Estimates may change over time and by source of global temperature variation

4. Omitted variable bias (regional)

Temperature shocks may happen to coincide with adverse regional economic shocks

Accounting for concern #3: External validity

Notes: Point estimate with 68 and 90% confidence bands based on Driscoll-Kraay SE

Four identification concerns

1. Omitted variable bias (global)

► Temperature shocks may happen to coincide with adverse global economic shocks

2. Reverse causality

► Economic activity may lead to emissions and changes in temperature

3. External validity

Estimates may change over time and by source of global temperature variation

4. Omitted variable bias (regional)

► Temperature shocks may happen to coincide with adverse *regional* economic shocks

Accounting for concern #4: Omitted variable bias (regional)

Notes: Point estimate with 68 and 90% confidence bands based on Driscoll-Kraay SE

in the Panel of Countries

Global vs. Local Temperature

Global vs. local temperature shocks

- How do global temperature shocks compare to local, country-level temperature shocks?
 - ► Virtually all previous work uses local temperature shocks
- To maximize comparability, estimate responses using same specification
- Just replace global shock with local temperature shock

$$y_{i,t+h} - y_{i,t-1} = \alpha_{i,h} + \theta_h T_{i,t}^{\text{shock}} + \mathbf{x}_t' \boldsymbol{\beta}_h + \mathbf{x}_{i,t}' \boldsymbol{\gamma}_h + \varepsilon_{i,t+h}$$

Alternatively, can also control for time FE

$$y_{i,t+h} - y_{i,t-1} = \alpha_{i,h} + \delta_{t,h} + \theta_h T_{i,t}^{\text{shock}} + \mathbf{x}'_{i,t} \gamma_h + \varepsilon_{i,t+h}$$

▶ Local temperature variation 19/35

Impact of global vs. local temperature shocks

 $\it Notes:$ Point estimate with 68 and 90% confidence bands based on Driscoll-Kraay SE

- Effect of local temperature shocks
 - Is in line with previous literature
 - ► Much smaller than global T shocks
- With time FE: no difference
 - ► Nature of T shock rather than controls

▶ More

Reconciling cross-sectional & time-series evidence

- What can explain the large difference between local and global shocks?
- 1. Global temperature fundamentally different from local temperature?
 - ► Global temperature: better summary statistic of state of climate system
 - ▶ Better captures the frequency, intensity, and distribution of extreme weather events
- 2. Economic spillovers due to trade linkages and spatially correlated local temperature?
 - Omitted variable in standard panel regression
 - ► Test with external, trade-weighted temperature → Details

Reconciling cross-sectional & time-series evidence

- What can explain the large difference between local and global shocks?
- 1. Global temperature fundamentally different from local temperature?
 - ► Global temperature: better summary statistic of state of climate system
 - ▶ Better captures the frequency, intensity, and distribution of extreme weather events
- 2. Economic spillovers due to trade linkages and spatially correlated local temperature?
 - Omitted variable in standard panel regression
 - ► Test with external, trade-weighted temperature → Details
 - ► Rule out spillovers: external temperature has small effects on country GDP
 - * Under moderate openness cannot expect to get much more than direct local temperature effect

Extreme events help rationalize the GDP impact of global temperature

- Response of climatic extremes
 - Much larger under global shocks
 - ► Rise in
 - ★ Extreme heat
 - ★ Droughts
 - ★ Extreme precipitation
 - * Extreme wind
 - ► Local shocks: barely significant
- Temperature response after shock
 - Similar for local & global shocks

Extreme events help rationalize the GDP impact of global temperature

Notes: Predicted effect on GDP based on aggregating local impacts. Interact frequency response of extremes to global temperature with estimated damages of extremes.

- Aggregating local impacts
 - implies large damages
 - ▶ up to 2/3 of global **T** effect
 - persistent rise in extremes key
- Challenging to capture all local margins
 - key advantage of global T approach

Mechanisms

- Which elements of GDP respond? → More
 - ► Capital stock and investment fall substantially with some lag
 - ▶ Productivity falls immediately and persistently
- Consistent with both capital and productivity damages

Heterogeneity

- So far focus on aggregate/average effect of global temperature shocks
- How are effects distributed across countries?
- Run local projections by country characteristics/different regions
 - ► Southeast Asia and Sub-Saharan Africa most adversely affected
 - But substantial negative effects even in Europe & North America
 - ► Positive effects in Central & East Asia
 - Warmer countries are more adversely affected

A Model of Climate Change

A Neoclassical growth model

Households solve

$$V_0(K_0) = \max_{\{C_t, K_t\}_t} \int_0^\infty e^{-
ho t} U(C_t) dt$$
 subject to $C_t + \dot{K}_t = w_t + r_t K_t$
 K_0 given

Firms solve

$$\max_{\mathcal{K}_t^D, L_t^D} \mathbf{Z}_t (\mathcal{K}_t^D)^\alpha (L_t^D)^{1-\alpha} - (r_t + \delta) \mathcal{K}_t^D - w_t L_t^D$$

- Prices r_t , w_t clear markets: $K_t = K_t^D$ and $1 = L_t^D$
- ullet Excess temperature relative to baseline \hat{T}_t affects productivity

$$Z_t = Z_0 \exp\left(\int_0^t \zeta_s \hat{T}_{t-s} ds\right)$$

Estimating damage function

- ullet Use reduced-form GDP and capital IRFs to identify damage function ζ_s
- Leverage identification result: for small temperature shocks

$$\hat{y}_t = \underbrace{\hat{z}_t}_{ ext{direct effect}} + \underbrace{\alpha \int_0^\infty \mathcal{K}_{t,s} \hat{z}_s ds}_{ ext{indirect effect through capital}}$$

- Recover sequence of productivity following a temperature shock in data
- ullet Then obtain ζ_s as innovations to $\hat{z_t}$ using estimated temperature reponse to temperature shock
 - ► Accounts for internal persistence of realized temperature

► Target transitory shocks 27/35

Damage functions from global temperature shocks

Damage functions from temperature shocks

- Model matches output and capital responses reasonably well
- Global temperature implies large productivity and capital depreciation damages
 - ► -4% productivity
 - Persistent effects on productivity even when shock is transitory
- Local temperature implies small productivity and capital depreciation damages
 - ► -0.25% productivity
 - Consistent with smaller economic impact estimated in data and literature

Climate change and the Social Cost of Carbon

- With estimated damage functions can evaluate climate change and SCC counterfactuals
- Climate change
 - Specify excess global temperature path $\{\hat{T}_t\}_{t\geq 0}$
 - ightharpoonup Use 2024 as t=0 and add 2°C by 2100 so 3°C above pre-industrial levels
 - Conservative relative to business-as-usual (IPCC)
- SCC: \$ losses associated with emitting 1 ton of CO2
 - ightharpoonup Consider excess global temperature $\{\hat{T}_t^{\text{SCC}}\}_{t\geq 0}$ induced by a 1 ton of CO2 pulse (Dietz et al. 2021)
 - SCC = equivalent variation to make households indifferent between steady-state and the CO2 pulse

Climate Change

The Welfare Impact of

The impact of climate change

- Global shocks ⇒ large impacts
 - ► 2100 $C, Y \downarrow 40\%$
 - ▶ 25% welfare loss
 - ► SCC = \$1,367/tCO2
- Local shocks ⇒ small impacts
 - ► 2100 *C*, *Y* ↓ 6%
 - ► 3% welfare loss
 - ► SCC = \$178/tCO2
 - ► In line with previous findings
- Difference driven by
 - Global vs. local shocks
 - ▶ Not cap. dep. damages

The impact of past climate change under global temperature estimates

- Use 1960 as t=0 and realized excess global temperature path $\{\hat{T}_t\}_{t\geq 0}$ up to 2019
- Output would be 19% higher today had historical climate change not occurred
- Damages rise to 25% by 2040 due to delayed impacts

▶ Back

Sensitivity

- Magnitudes robust w.r.t.
 - Discount rate
 - Warming scenario
 - Climate sensitivity
- Still large effects under
 - Moderate warming of 2°C
 - ► Large discount rate of 4%
- In plausible pessimistic cases
 - ► Welfare loss ≥ 30%
 - ► SCC ≥ \$2,000/tCO2

Policy Implications

Policy implications

- Most large-scale decarbonization policies in the IRA cost \$80/tCO2 (Bistline et al. 2023)
 - ▶ Below typical worldwide traditional SCC estimates, e.g. \$178/tCO2 with local temperature
 - ▶ But higher than US-only Domestic Cost of Carbon, e.g. \$36/tCO2 with local temperature
 - ► So unilateral, non-cooperative policy is not cost-effective
- Our estimates with global temperature entirely reverse this trade-off
 - ► Even the US-only Domestic Cost of Carbon is \$273/tCO2
 - Higher than the cost of decarbonization
 - ► So unilateral, non-cooperative decarbonization policy becomes cost-effective

Conclusion

Conclusion

- We evaluate the macroeconomic impact of climate change
- Propose focus on more direct proxy of climate change: global temperature
- Global temperature shocks have much larger effects than local temperature shocks
 - Because they lead to substantial increase in extreme climatic events
- Use evidence to discipline simple NGM at core of IAMs
- Implied SCC of \$1,367/tCO2 and welfare cost of 25%
 - ▶ 5-6 times larger than previous estimates
 - ▶ Magnitudes are comparable to a permanent 1929 Great Depression
 - Imply that unilateral decarbonization policy is optimal

Thank you!

Appendix

Literature

Temperature and economic growth: Dell et al. 2012, 2014; Burke et al. 2015; Newell et al., 2021; Nath et al. 2023; Bansal and Ochoa 2011; Berg et al. 2023

► Empirical impact of global temperature on world GDP + structural model + SCC and welfare

Economic impact of storms and heatwaves: Deschênes and Greenstone 2011; Deryugina 2013; Hsiang and Jina 2014; Bilal and Rossi-Hansberg 2023; Phan and Schwartzman 2023; Tran and Wilson 2023

Link global temperature shocks to extreme events

Integrated assessment modeling/cost of climate change: Nordhaus 2013; Desmet and Rossi-Hansberg 2015; Desmet et al. 2021; Cruz and Rossi-Hansberg 2023; Rudik et al. 2022; Conte et al. 2022; Krusell and Smith 2022; Bilal and Rossi-Hansberg 2023; Stern et al. 2022

► Find large SCC in a NGM/IAM once use global temperature impact in estimation

▶ Back 36/35

Persistence of output response reflects persistence of temperature shock

Notes: Point estimate with 68 and 90% confidence bands based on robust standard errors

Bootstrapped confidence bands

• Taking estimation uncertainty in temperature shocks into account:

Accounting for concern #1: Omitted variable bias (global)

Notes: 68 and 90% confidence bands based on robust standard errors. Jackknife: censor one shock value at the time to zero.

▶ Back

Forecastablity

- Temperature shocks not forecastable by past macro and financial variables
 - even true when allowing for long lags

Table: Granger-causality tests

Variable	p-value
Real GDP	0.494
Population	0.801
Brent price	0.756
Commodity price index	0.664
Treasury 1Y	0.830
Overall	0.825

Global vs. local temperature shocks

- Construct temperature shocks using same Hamilton filter
- Use population-weighted country-level temperature

- Local temperature shocks more volatile
- Only weakly correlated with global temperature shocks

▶ Back

Time fixed effects

▶ Back

Ocean vs. land temperature shocks

• Ocean surface temperature drives our aggregate effects

► Back to extreme events 43/35

The role of economic spillovers

(b) Local temperature vs. trade-weighted

[▶] Back to two explanations
▶ Back to extreme events

The local temperature response

(b) Imposing same persistence

[▶] Back to two explanations
▶ Back to extreme events

The effect on ocean vs. land temperature

The impact of extreme events on GDP

Mechanisms

▶ Back 48/35

Heterogeneity

Years

▶ Back

Years

Years

Heterogeneity

(b) By income per capita

▶ Back

Targeting response to persistent vs. transitory shocks

- Can target GDP/capital IRFs after either persistent or transitory temperature shock
- When targeting IRFs after persistent shocks
 - Assumes that households expect future temperature impacts
 - Baseline estimation
- Alternative: target IRFs after transitory temperature shock (Sims 1986)
 - Assumes that households are surprised every period
 - Only affects estimation of capital depreciation shocks
- Both cases account for internal persistence of realized temperature
- Only differ in expectations of future temperature
 - Productivity shocks unaffected since read off data directly
 - Capital depreciation shocks potentially affected

Back

Damage functions from local temperature shocks

