Experiment No: 7

Name: SOP & POS

Aim: plot the following Bolean function in a map as well as impliment in he logic diagram

f = AD+BD+B'C+AB'D

Objectives: To study the Simplification of Boolean function Sop & pos forms. Chemonstriale the relationship between a boolean function and the currespon-- ding logic diagram using map reduction methord)

components: Bread Board/kit, 7408, 704, 7032 THROYY:

- a) Convert the given function in Standard Sop form. Enter into K-map and seduce it.
- 5) Convert the given function in Standard pos form. Enter into K-map and reduce it
- i) verify that (a f b) is equal. convert the given function into Stenderd SOP form.

F=A'D+BD+B'C+AB'D Since it is in the sop convert into Stanterd Sop.

* Add the variable B for the missing terms.

AID = AID (B+B)) = AIDB + AIDB)

* Add the variable A for missing terms.

BD = BDC A1+A) = A1BD + ABD BIC = BIC (AI+A) = ABIC + AIBIC

Trum table of SOP FMIn: D+B+cl

		and the second of the second of the second		,
C	B	D	Blc	D+ B10
0	0	0	\circ	0
0	0	1.	0	0
0	1	0	\circ	0
ð	l	1	0	1
1	0	٥	1	l
1	0	1	l	1
)	1	٥	0	0
1	\	l	0)

* Add the variable C for the missing terms.

 $A^{\dagger}DB = A^{\dagger}DB(C^{\dagger}+C) = A^{\dagger}BC + A^{\dagger}DBC$ $A^{\dagger}DB^{\dagger} = A^{\dagger}DB^{\dagger}(C^{\dagger}+C) = A^{\dagger}BC^{\dagger} + A^{\dagger}DB^{\dagger}C$ $A^{\dagger}BD = A^{\dagger}BD(C^{\dagger}+C) = A^{\dagger}BDC^{\dagger} + A^{\dagger}BCD$ $A^{\dagger}BD = A^{\dagger}BD(C^{\dagger}+C) = A^{\dagger}BDC^{\dagger} + A^{\dagger}BCD$ $A^{\dagger}BD = A^{\dagger}BD(C^{\dagger}+C) = A^{\dagger}BDC^{\dagger} + A^{\dagger}BDC$ $A^{\dagger}BD = A^{\dagger}BD(C^{\dagger}+C) = A^{\dagger}BDC^{\dagger} + A^{\dagger}BDC$

* Add the variable D for the missing terms

AIBIC = A'BIC (DI+D) = AIBICDI + AIBICD

ABIC = A BIC (DI+D) = ABICDI + ABICD

* combine the above four variable terms all together.

F= A18 C1D+ A18CD+ A181 CD+ A181 CD+ A18 C1D+
A18CD+ A181 CD+ A181 CD+ A181 CD+ A181 CD+
A181 CD+ A181 CD+ A181 CD+ A181 CD+

1e F= m C1,2,3,5,7,9,10,11,13,15)

1e F= m (0,4,6,8,12,14)

Procedure

- 1. connect all made as parter circuit diagrams 2. Switch on power supply.
- 3. Apply different combinations of inputs and observe the output. Compare the output with the truth table

bes ult

Pifferent logic circuits all constructed and their truth tables are verified.

POS FMax = (C+D)(b/+D)

C ,	B	· D	C+D	B+D	(C+D) (B+D)
6	0	O'	0	. 1	0
0	0)	1	1	
0	1	0	0	0	6
0	1	, , t .	. <u>1</u> /	, H	-11 11 60 0 460
1	. 0	0	. le.	1	-0 2 J
1				a hara per	
l	1	0	1	0	U
1	· ·		1	1	1

The above truth table shows both are equal but in sop minimized equation needs 3 gates pos minimized equation needs 4 gales.

So here sop minimized equation needs Agales.

Economical.

