Sidney Resnick

Adventures in Stochastic Processes

with Illustrations

Birkhäuser

Boston · Basel · Berlin

Table of Contents

CHARDER 1 PROFESSIONAL DATE. DAGGETTE INDESCRIPTION
Chapter 1. Preliminaries: Discrete Index Sets and/or Discrete State Spaces
1.1. Non-negative integer valued random variables $\dots \dots \dots$
1.2. Convolution
1.3. Generating functions
1.3.1. Differentiation of generating functions
1.3.2. Generating functions and moments
1.3.3. Generating functions and convolution
1.3.4. Generating functions, compounding and random sums 15
1.4. The simple branching process
1.5. Limit distributions and the continuity theorem $\dots \dots \dots$
1.5.1. The law of rare events $\dots \dots \dots$
1.6. The simple random walk
1.7. The distribution of a process* $\dots \dots \dots$
1.8. Stopping times*
1.8.1. Wald's identity
1.8.2. Splitting an iid sequence at a stopping time * 48
Exercises for Chapter 1
CHAPTER 2. MARKOV CHAINS
2.1. Construction and first properties 61
2.2. Examples
2.3. Higher order transition probabilities
2.4. Decomposition of the state space
2.5. The dissection principle
2.6. Transience and recurrence
2.7. Periodicity
2.8. Solidarity properties
2.9. Examples
2.10. Canonical decomposition
2.11. Absorption probabilities
2.12. Invariant measures and stationary distributions

^{*}This section contains advanced material which may be skipped on first reading by beginning readers.

vi Contents

2.12.1. Time averages						122
2.13. Limit distributions						126
2.13.1 More on null recurrence and transience*						134
2.14. Computation of the stationary distribution						137
2.15. Classification techniques						142
Exercises for Chapter 2						147
CHAPTER 3. RENEWAL THEORY						
3.1. Basics						174
3.2. Analytic interlude						176
3.2.1. Integration						176
3.2.2. Convolution						178
3.2.3. Laplace transforms						181
3.3. Counting renewals						185
3.4. Renewal reward processes						192
3.5. The renewal equation						197
3.5.1. Risk processes*						205
3.6. The Poisson process as a renewal process						211
3.7. Informal discussion of renewal limit theorems;	·	·	٠	·		
regenerative processes						212
3.7.1 An informal discussion of regenerative processes						215
3.8. Discrete renewal theory						221
3.9. Stationary renewal processes*						224
3.10. Blackwell and key renewal theorems*						230
3.10.1. Direct Riemann integrability*						231
3.10.2. Equivalent forms of the renewal theorems* .						237
3.10.3. Proof of the renewal theorem*						243
3.11. Improper renewal equations						253
3.12. More regenerative processes*	į					259
3.12.1. Definitions and examples*						259
3.12.2. The renewal equation and Smith's theorem*						263
3.12.3. Queueing examples						269
Exercises for Chapter 3						280
Excluses for Chapter 6	•	•	•	•	•	200
Chapter 4. Point Processes						
4.1. Basics					,	300
4.2. The Poisson process						303
4.3. Transforming Poisson processes						308
· ·						

^{*}This section contains advanced material which may be skipped on first reading by beginning readers.

CONTENTS	VI
4.3.1. Max-stable and stable random variables*	313
4.4. More transformation theory; marking and thinning	
4.5. The order statistic property	321
4.6. Variants of the Poisson process	327
4.7. Technical basics*	333
4.7.1. The Laplace functional* $\dots \dots \dots \dots \dots \dots$	336
4.8. More on the Poisson process*	33'
4.9. A general construction of the Poisson process;	
a simple derivation of the order statistic property*	34
4.10. More transformation theory; location dependent thinning*.	
4.11. Records* $\dots \dots \dots$	340
Exercises for Chapter 4	
Chapter 5. Continuous Time Markov Chains	
5.1 Definitions and construction	36′
5.1. Definitions and construction	37
5.2. Stability and explosions	37
5.2.1. The Markov property*	380
5.3. Dissection	380
5.3.1. More detail on dissection*	385
5.4. The backward equation and the generator matrix	39:
5.5. Stationary and limiting distributions	39
5.5.1. More on invariant measures*	40
5.6. Laplace transform methods	
5.7. Calculations and examples	41
5.7.1. Queueing networks	
5.8. Time dependent solutions*	43
5.9. Reversibility	
5.10. Uniformizability	
5.11. The linear birth process as a point process	
Exercises for Chapter 5	44
Crappin C. Drownsky Morrow	
Chapter 6. Brownian Motion	
6.1. Introduction	48
6.2. Preliminaries	48
6.3. Construction of Brownian motion*	48
6.4. Simple properties of standard Brownian motion	49
6.5. The reflection principle and the distribution of the maximum	49
6.6. The strong independent increment property and reflection* .	50
6.7. Escape from a strip	50
*	

^{*}This section contains advanced material which may be skipped on first reading by beginning readers.

viii Contents

6.8. Brownian motion with drift	11
6.9. Heavy traffic approximations in queueing theory 51	14
6.10. The Brownian bridge and the Kolmogorov–Smirnov statistic . 52	24
6.11. Path properties*	39
6.12. Quadratic variation	12
6.13. Khintchine's law of the iterated logarithm for Brownian motion* 54	16
Exercises for Chapter 6	
Chapter 7. The General Random Walk*	
7.1. Stopping times	58
7.2. Global properties	31
7.3. Prelude to Wiener–Hopf: Probabilistic interpretations	
of transforms	34
7.4. Dual pairs of stopping times	38
7.5. Wiener-Hopf decompositions	73
7.6. Consequences of the Wiener-Hopf factorization	31
7.7. The maximum of a random walk	37
7.8. Random walks and the $G/G/1$ queue	91
7.8.1. Exponential right tail	95
7.8.2. Application to $G/M/1$ queueing model	96
7.8.3. Exponential left tail)2
7.8.4. The M/G/1 queue)5
7.8.5. Queue lengths)7
References	13
Index	17

^{*}This section contains advanced material which may be skipped on first reading by beginning readers.