AMPLIFICATOR AUDIO DE PUTERE

Acest capitol prezintă principalele aspectele ale proiectării amplificatoarelor audio de putere. Se pornește de la o temă de proiectare care stabilește schema bloc a amplificatorului și principalii parametri ai amplificatorului. După proiectarea etajului final, pilot, diferențial, a protecției termice și la scurtcircuit sunt analizate stabilitatea și amplificarea stabilită de rețeaua de reacție negativă.

2.1 TEMA DE PROIECTARE

Tema de proiectare se referă la un amplificator de audiofrecvență de mare putere realizat dintr-un etaj de ieșire în clasă B polarizat cu ajutorul etajului pilot care lucrează în clasă A. Pentru asigurarea unui curent mare de ieșire tranzistoarele finale sunt realizate din două tranzistoare în conexiune darlington.

Amplificarea în tensiune și adaptarea cu sursa de semnal de intrare este realizată cu ajutorul etajului de intrare de tip diferențial care lucrează de asemenea în clasă A. Amplificarea globală a amplificatorului este stabilită prin intermediul reacției negative.

Figura 2.1-1. Schema bloc a amplificatorului audio de putere

2.2 SETURI DE DATE DE INTRARE

Principalii parametri ai amplificatorului audio de putere sunt:

- Puterea nominală pe sarcină P_S (W)
- Rezistența de sarcină $Rs(\Omega)$
- Rezistența de intrare $Ri(K\Omega)$
- Amplificarea în tensiune $A_V(-)$

Sursa de alimentare va asigura următorii parametri:

- Curentul maxim I_{0M} (A)
- Rezistența de ieșire maximă $R_{OM}(\Omega)$
- Tensiunea de alimentare este 220Vac ± 10%

Tabelul 2.2-1. Seturi de date de intrare pentru proiectare

	Amplificator			Sursă de alimentare		
Nr.	P_S	Rs	Ri	A_V	I_{OM}	R_{OM}
	(W)	(Ω)	(KΩ)	(-)	(A)	(Ω)
1	60	2	30	8	7,7	2,6
2	60	3	35	9	6,3	3,8
3	60	4	40	10	5,5	4,9
4	60	5	45	11	4,9	6,0
5	50	3	30	12	5,8	3,9
6	50	4	35	8	5,0	5,0
7	50	5	40	9	4,5	6,1
8	50	6	45	10	4,1	7,2
9	40	4	30	11	4,5	5,1
10	40	5	35	12	4,0	6,3
11	40	6	40	8	3,7	7,4
12	40	7	45	9	3,4	8,5
13	30	5	30	10	3,5	6,4
14	30	6	35	11	3,2	7,6
15	30	7	40	12	2,9	8,7
16	30	8	45	8	2,7	9,8
17	20	6	30	9	2,6	7,9
18	20	7	35	10	2,4	9,1
19	20	8	40	11	2,2	10,2
20	20	9	45	12	2,1	11,4

Setul de date utilizate pentru exemplificare

Pentru proiectarea etajelor amplificatorului audio de putere a fost utilizat setul de parametri următor:

Tabelul 2.2-2. Se	etul de date utilizate i	pentru exemplificare
--------------------------	--------------------------	----------------------

	Amplificator			Sursă de alimentare		
Nr.	P_S	Rs	Ri	A_V	I_{OM}	R_{OM}
	(W)	(Ω)	$(K\Omega)$	(-)	(A)	(Ω)
3	60	4	40	10	5,5	4,9

2.3 ETAJUL FINAL

Este realizat cu două tranzistoare bipolare complementare în conexiune colector comun. Deoarece tehnologia bipolară este axată pe tranzistore de putere de tip npn și pentru creșterea amplificării în curent a etajului final se utilizează pentru cele două tranzistoare finale de putere configurații darlington de tip npn și pnp.

Figura 2.3-1. Configurație darligton de tip npn

Considerăm T₅ și T₇ în regim activ normal RAN.

$$\begin{cases}
V_{BE} = V_{BE5} + V_{BE7} > 0 \\
>0 > 0
\end{cases} => RAN$$

$$V_{CE} = V_{CE7} = V_{CE5} + V_{BE7} > 0$$

Pentru $I_{CB0} = 0 =>$

$$Ic = Ic_5 + Ic_7 = \beta_{F5} I_{B5} + \beta_{F7} I_{B7} = \beta_{F5} I_{B5} + \beta_{F7} I_{E5} =$$

$$= \beta_{F5} I_{B5} + \beta_{F7} \frac{\beta_{F7} + 1}{\beta_{F7}} I_{C5} = \beta_{F5} I_{B5} + \beta_{F7} \frac{\beta_{F7} + 1}{\beta_{F7}} \beta_{F5} I_{B5} =$$

$$= \beta_{F5} I_{B5} \left(1 + \beta_{F7} \frac{\beta_{F7} + 1}{\beta_{F7}} \right) = \beta_{F5} I_{B} \left(1 + \beta_{F7} \frac{\beta_{F7} + 1}{\beta_{F7}} \right)$$

$$\beta_F = \frac{I_C}{I_B} = \beta_{F5} \left(1 + \beta_{F7} \frac{\beta_{F7} + 1}{\beta_{F7}} \right) \approx \beta_{F5} \left(1 + \beta_{F7} \right) \approx \beta_{F5} \cdot \beta_{F7}$$

Principalii parametri ai configurației Darlington de tip npn sunt:

$$\beta_F \approx \beta_{F7} \ \beta_{F5} = \text{mare}$$
 avantaj
$$h_{11} = \frac{V_{BE}}{I_B} = \frac{V_{BE5} + V_{BE7}}{I_{B5}} = h_{11T5} + (1 + \beta_{F5}) h_{11T7} = \text{mare}$$
 avantaj
$$V_{CE, Saturație} = V_{CE7, Saturație} = \text{nu se modifică}$$
 avantaj

 $V_{CE, Saturație} = V_{CE7, Saturație} = \text{nu se modifică}$ avantaj $V_{BE} = 2V_{BE5} = 2V_{BE7} = \text{mare}$ dezavantaj $I_{C6} = I_{D8} = I_{D8}$

Figura 2.3-2. Configurație darligton de tip pnp

Considerăm T₁ și T₂ in RAN.

$$V_{EB} = V_{EB6} > 0$$
 $V_{EC} = V_{CE8} = V_{EC6} + V_{BE8} > 0$ => RAN

Pentru $I_{CB0} = 0 =>$

$$I_C = I_{E8} = (\beta_{F8} + 1) I_{B8} = (\beta_{F8} + 1) I_{C6} =$$

= $(\beta_{F8} + 1) \beta_{F6} I_{B6} = (\beta_{F8} + 1) \beta_{F6} I_{B}$

$$\beta_F = \frac{I_C}{I_R} = (\beta_{F8} + 1) \beta_{F6} \approx \beta_{F8} \beta_{F6}$$

Principalii parametri ai configurației Darlington de tip pnp sunt:

 $\beta_F \approx \beta_{F8} \ \beta_{F6} = \text{mare}$ avantaj

 $h_{11} = h_{116} = \text{nu se modifică}$ avantaj

 $V_{EB} = V_{EB6} = \text{nu se modifică}$ avantaj

 $V_{EC} = V_{CE8} = V_{EC6} + V_{BE8} = \text{mare}$ dezavantaj

Când T_6 se saturează se pierde controlul lui I_{C6} prin I_{B6} iar I_{C6} se închide prin joncțiunea BE a lui T_8 care rămâne în RAN. =>

$$V_{EC. Saturatie} = V_{EC6. Saturatie} + V_{BE8} = 0.2 + 0.6 = 0.8 \text{V}$$

Tehnologia bipolară standard este orientată pe fabricarea tranzistoarelor de tip npn care au conducție verticală și au factorul de amplificare în curent $\beta_F = \text{mare} \ (100 \div 200)$. Tranzistoarele pnp sunt de tip lateral cu conducție orizontală sau tranzistor de substrat cu conducție verticală având β_F mic.

În practică se folosesc configurațiile darlington cu rezistență în paralel cu joncțiunea bază-emitor a tranzistorului bipolar de putere de tip npn (R_{26} și R_{27}). Rolul acestor rezistențe este următorul:

- La funcționarea în clasă "B" în repaus curentul prin T₇ este mic iar curentul de baza va fi și el mic. La curenți mici de colector pentru T₅ amplificarea în curent a tranzistoarelor are o cădere pronunțată ⇒ amplificarea este redusă ⇒ reacția negativă va fi ineficientă asupra neliniarității curbei de transfer.
- La îmbinarea caracteristicilor tranzistoarelor complementare apar distorsiuni de trecere (cross-over) şi pentru micşorarea acestora se face o polarizare iniţială în regim static al tranzistoarelor. Rezistenţa R₂₆ măreşte curentul de colector al tranzistorului T₅ în regim de repaus deoarece la I_{C7} mic, h_{11,T7} e foarte mare şi cea mai mare parte a curentului dat de T₅ trece prin R₂₆ şi astfel T₅ lucrează la curenţi acceptabili cu β_{F5} suficient de mare. La curent de colector mare pentru T₇, h_{11T7} scade exponenţial şi R₂₆ se poate neglija.
- Rezistența R_{26} permite evacuarea sarcinii stocate prin circulația unui curent invers de bază în perioada corespunzătoare blocării \Rightarrow R_{26} îmbunătățește funcționarea la frecvențe înalte, dar nu elimină efectele dacă frecvența de lucru e mai mare ca f_{β} .

Puterea disipată de tranzistorii finali T7,T8

Puterea maximă ce se poate obține la ieșire este:

$$P_0 = E_C \cdot I_{CM}$$

 E_C este tensiunea de alimentare pentru un tranzistor final I_{CM} este curentul de colector maxim al tranzistorilor finali

Figura 2.3-3. Diagramele de funcționare a etajului final în contratimp

Puterea absorbită de la sursa de alimentare este:

$$P_a = 2E_C \cdot I_{med}$$

Imed este curentul mediu absorbit de la sursă

$$I_{med} = k \frac{1}{T} \int_{0}^{T/2} I_{CM} \cdot \sin \frac{2\pi}{T} t dt = k \frac{I_{CM}}{\pi}$$

k este factorul de utilizare a tensiunii de alimentare

$$P_a = 2E_C \cdot I_{med} = 2E_C \cdot k \cdot \frac{I_{CM}}{\pi} = \frac{2k}{\pi} \cdot P_0 = 0,636 \cdot k \cdot P_0$$

Puterea nominală pe sarcină are expresia:

$$P_S = \frac{1}{2} \cdot R_S \cdot (k \cdot I_{CM})^2 = \frac{1}{2} \cdot R_S \cdot k^2 \cdot I^2_{CM} = 0.5 \cdot k^2 \cdot P_0$$

Rs este rezistența de sarcină

Puterea disipată de tranzistorii finali este:

$$P_{d(T_7+T_8)} = P_a - P_u = (0,636k - 0,5k^2) \cdot P_0$$

Randamentul
$$\eta = \frac{P_S}{P_a} = \frac{0.5 \cdot k^2 \cdot P_0}{0.636 \cdot k \cdot P_0} = 0.785 \cdot k$$

Derivând expresia puterii disipate de tranzistorii finali în raport cu k \Rightarrow puterea disipată maximă pe tranzistorii finali $P_{d\max(T7+T8)}$ la k=0,636.

Pentru
$$k = 0.636 \Rightarrow$$

$$P_{d \max(T7+T8)} = [0.636^2 - 0.5 \cdot (0.636)^2] \cdot P_0 = 0.2 \cdot P_0$$

Pentru un singur tranzistor final

$$P_{d \max T7, T8} = \frac{1}{2} \cdot (0.636 \cdot k - 0.5 \cdot k^2) \cdot P_0$$
, pentru k=0.636 \Rightarrow
 $P_{d \max T7, T8} = 0.1 \cdot P_0$

Dimensionarea componentelor etajului final

Pentru dimensionarea componentelor etajului final se impun condițiile:

- Puterea nominală pe sarcină P_S la o frecvență convenabilă, respectiv 1kHz (din setul de date utilizate pentru exemplificare P_S =60)
- Impedanța de sarcină nominală la 1kHz are caracter predominant rezistiv R_S (din setul de date utilizate pentru exemplificare R_S =4 Ω)
- 1. Determinarea valorilor de vârf ale curentului și tensiunii pe sarcină

$$P_S = \frac{{I_S}^2 \cdot R_S}{2} = \frac{{I_S} \cdot V_S}{2} \Rightarrow I_S = \sqrt{\frac{2 \cdot P_S}{R_S}} = \sqrt{\frac{2 \cdot 60}{4}} = 5,4A$$

 $V_S = R_S \cdot I_S = 4\Omega \cdot 5,4A = 21,92V \approx 21,6V$

2. Se admite o pierdere de putere de maxim 10% pe rezistențele de emitor R_{28} și R_{29}

$$R_{28}=R_{29}=0.39\Omega<0.1~{
m X}~4\Omega$$
toleranță $\pm~5\%$

Căderea maximă de tensiune pe R₂₈, R₂₉ este

$$V_{R_{28}} = V_{R_{29}} = R_{28} \cdot I_S = 2,1V$$

$$P_{dR28,R29} = \frac{I_S \cdot V_{R_{28}}}{4} = 2,9W \quad \text{(valoare medie, T}_7,T_8 \text{ lucrează}}$$
 în clasă B). Se aleg R_{28} și R_{29} de 3W.

3. Se alege rezistența pentru circuitul de protecție la suprasarcină

$$R_{30}=0,1\Omega$$

$$V_{R30}=R_{30}\cdot I_S=0,5V$$

$$P_{dR30}=\frac{I_S\cdot V_{R30}}{2}=1,5W$$
 Se alege R_{30} de $2W$.

4. Se aleg tranzistorii finali

S-a optat pentru tranzistori finali bipolari de putere de tip BDY 26 (183T2) având următorii parametri:

$$P_{tot} = 87,5W \qquad V_{CE0}, V_{CER} = 180V \qquad I_C = 6A$$

$$h_{21E} = 20 \div 180 \text{ (la I}_C = 2A) \qquad V_{BE} < 1V \qquad V_{CES} = 0,6V$$

$$f_{Tmin} < 10\text{MHz}$$

 P_{tot} este puterea totală disipată

 V_{CE0} este tensiunea colector emitor cu baza în gol

 $V_{\it CER}$ este tensiunea colector emitor cu rezistență specificată între bază și emitor

I_C este curentul de colector

 h_{2IE} este factorul de amplificare în curent static în conexiunea emitor comun

 V_{BE} este tensiunea bază emitor

 V_{CES} este tensiunea colector emitor în saturație

 f_{Tmin} este frecvența de tăiere minimă

5. Verificarea la străpungere a tranzistorilor finali

$$E_C \le 0.9 V_{CER}$$
, $E_C = 27 V \le 162 = 0.9 V_{CER}$

6. Determinarea tensiunii reziduale pe darlingtonul npn

$$V_{rez} = V_{CEST5} + V_{BET7max}$$

În cazul cel mai defavorabil:

$$\beta_{T7,T8} = 20 \Rightarrow I_{BT7,T8} = \frac{I_{CT7,T8}}{\beta_{T7,T8}} = \frac{I_{S}}{\beta_{T7,T8}} = \frac{5,4A}{20} = 270mA$$

În funcție de $I_{BT7,T8}$ se aleg T₅ și T₆ (BD 139, BD 140)

Pentru BD 139,
$$V_{CEST5} \approx 0.5 \text{V} \implies V_{rez} = 0.5 + 1 = 1.5 \text{V}$$

7. Determinarea tensiunii de alimentare

$$E_C \ge V_S + V_{R30} + V_{R28} + V_{rez} = 25,7V = E_C$$
'
Se alege $E_C = 27V > E_C$ '

8. Calculul energetic al tranzistorilor finali

$$P_0 = E_C \cdot I_{CM} = E_C \cdot I_S = 145W$$

 $k = \frac{E'_C}{E_C} = \frac{25.7}{27} = 0.95$

Amplificator audio de putere

$$P_a = 0.636 \cdot k \cdot P_0 = 87.6W$$

 $P_S = \frac{1}{2} \cdot k^2 \cdot P_0 = 65.4W$
 $P_d = P_a - P_S = 22.2W$

(Puterea disipată pe T_7 si T_8)

Puterea disipată pe un tranzistor final este maximă pentru k=0,636 este $P_{d \max T_7} = P_{d \max T_8} = 0,1 \cdot P_0 = 14,5W$

În cazul nostru pentru k=0,95 puterea disipată pe un tranzistor final este $P_{dT7,T8}=0,5$ (0,636k-0,5 k^2) $P_0=11W$ $\eta=0,785\cdot k=0,75$

9. Dimensionarea rezistențelor R_{26} , R_{27}

Se aleg
$$R_{26}$$
 , $\!R_{27}=39\Omega,$ toleranță $\pm\,5\%$

$$I_{CMT5} = I_{BMT7} + I_{R26} = I_{BMT7} + \frac{V_{BEMT7}}{R_{26}} = 270mA + \frac{1V}{39\Omega} \approx 300mA$$

 I_{CMT5} este curentul de colector maxim al tranzistorului T_5 I_{BMT7} este curentul de bază maxim al tranzistorului T_7 V_{BEMT7} este tensiunea bază emitor maximă a tranzistorului T_7

10. Estimarea sarcinii dinamice pentru T₅,T₆

$$R_{ST5} = [h_{11T7} + \beta_{T7} (R_S + R_{30} + R_{28})] \| R_{26}$$

 $h_{11T7} = \frac{V_{BEMT7}}{I_{BT7}} \cong 3,3 \Omega$
 $R_{ST5} = (3,3 + 20 \cdot 4,49) \| 39 = 27,5 \Omega$

11. Calculul energetic al tranzistorilor complementari

$$P_0 = I_{CMT5} \cdot E_C = 0,3 \cdot 27 = 8,1$$
W
 $P_{d \max} = 0,1$ P₀ = 0,81W

Tranzistoarele BD 139 și BD 140 corespund, având următorii parametri:

$$V_{CE0} = 80V$$
 $I_{C} = 1A$ $P_{tot} = 12,5W$ $V_{CER} = 100V$ $I_{CM} = 1,5A$ $f_{T} = 50MHz$ $V_{EB0} = 5V$ $I_{B} = 0,2A$ $R_{thj-C} \le 10 \,^{\circ}C$ $h_{21E} = 50 \div 200$ $T_{i} = 150 \,^{\circ}C$

12. Calculul frecvenței de tăiere

$$\omega_T = \beta_0 \cdot \omega_\beta \implies$$
Pentru T₇ și T₈ $f_\beta \ge 100 \div 500 kHz$
Pentru T₅ și T₆ $f_\beta \ge 0.35 \div 1.25 MHz$

2.4 ETAJUL PILOT

Figura 2.4-1. Configurația etajului pilot

Figura 2.4-2. Caracteristica de ieșire a etajului pilot

Etajul pilot, conform cu Figura 2.4-1. este de tip emitor comun EC şi lucrează în clasă A. Pentru utilizarea completă a sursei de alimentare a circuitului de putere este necesară o tensiune de excitație vârf la vârf mai mare ca tensiunea de alimentare $V_{ex,vv} > E_C$, condiție greu de realizat.

În figura 2.6 $tg\gamma = R_{sat}$ și $tg\delta = R_{rez}$, definite în raport cu I_{CER} . Se observă că în cazul real excursia tensiunii $V_{ex,vv}$ este mult mai mică decât E_C și asimetrică.

 K_1 și K_2 sunt coeficienții de utilizare ai tensiunii de alimentare pentru tranzistorul T_1 respectiv pentru tranzistorul T_2 .

În schemele cu ieșire pe condensator, datorită inegalității dintre K1 și K2 (în general K1 < K2) apar distorsiuni la nivele mari și apare o componentă continuă (Δu) ce deplasează punctul static de funcționare (PSF-ul) în sensul egalizării factorului de utilizare, Figura 2.4-2.. În schemele în care ieșirea nu se face pe condensator, ca în cazul acestui proiect, apare o curbură a caracteristicilor.

Soluția poate fi folosirea unei tensiuni de alimentare a etajului pilot $E_p > E_c$, fapt ce conduce la complicarea sursei de alimentare sau la soluția de bootstrapare a rezistenței $R_{\rm C}$.

Figura 2.4-3. Bootstraparea rezistenței de colector a etajului pilot

Figura 2.4-4. Caracteristica de ieșire a etajului pilot bootstrapat

Pentru acest montaj se poate considera:

- În regim static rezistența de alimentare este $R_{st} = R_c = R_B + R_G$
- În regim dinamic Z_S pentru etajul pilot este R_{din} .
- În regim dinamic rezistența aparentă de alimentare este $R_{st\ a} = \infty$ și sursa are valoarea $E'_{C} = \infty$

Avantajele utilizării acestei soluții sunt următoarele:

Excursia curentului se limitează la

$$I_{vv} = 2 \cdot I_{ex} < 2 \cdot I_{cQ}$$

- ullet Deoarece $I_{CQ}>I_{ex}$, această soluție este avantajoasă pentru ușurarea regimului termic al etajului pilot.
- Se obţine astfel $k_1 \approx k_2$

Condiția de funcționare a schemei este ca rezistența dinamică

$$R_{din} > R_C = R_B + R_G$$

Dimensionarea componentelor etajului pilot

1. Se calculează curentul de excitație maxim

$$I_{ex \max} = I_{BT_5 \max} = \frac{I_{CT_5 \max}}{\beta_{T_5 \min}} = \frac{300mA}{50} = 6mA$$

Se pot neglija curenții reziduali și se alege

$$I_{CT3} = I_{CQ} = 8mA > I_{ex \max} = 6mA$$

2. Rezistența statică de alimentare

$$R_C = R_B + R_G = R_{13} + R_{12} = \frac{E_C}{I_{CT_3}} = \frac{27V}{8mA} = 3,375K\Omega$$

Alegem $R_{12} = 360\Omega$ si $R_{13} = 3k$

3. Sarcina dinamică a pilotului

$$\begin{split} R_{din} &\approx \frac{R_{13} \cdot h_{11T_6}}{R_{13} + h_{11T_6}} + \left(1 + h_{21E_f} \cdot \frac{R_{13}}{R_{13} + h_{11T_6}}\right) \left(R_S + R_{30}\right) \\ \text{unde} \quad h_{11T_6} &= \frac{\beta_{T_6}}{g_{mT_6}} = \frac{40}{40 \cdot 8} = 125\Omega \text{ si} \\ h_{21E_f} &= h_{21T_6} \cdot h_{21T_8} = 50 \cdot 20 = 1000 \\ h_{11T_6}' &= h_{11T_6} + \left(1 + h_{21E_f}\right) \cdot R_{29} = 125 + (1 + 1000) \cdot 0.39 = 515\Omega \\ \Rightarrow \qquad R_{din} &= \frac{3000 \cdot 125}{3125} + \left(1 + 1000 \cdot \frac{3}{3.515}\right) \cdot 4.1 \approx 3.6K\Omega \end{split}$$

Se verifică
$$R_{din} = 3.6k\Omega > R_B + R_G = 3.36K\Omega$$

4. Tensiunea minimă pe tranzistorul pilot

$$V_{p \min} = V_{BE \min, T8} + V_{CE \min, T6} = 0.6 + 0.2 = 0.8V$$

5. Alegerea tranzistorului pilot

Pentru o funcționare cât mai bună a bootstrapului se alege un tranzistor cu V_{CEsat} și I_{CER} mici.

Se alege BD 139 cu parametri:

$$V_{CE0} = 80V$$
 $I_{C} = 1A$ $P_{tot} = 12,5W$ $V_{CER} = 100V$ $I_{CM} = 1,5A$ $f_{T} = 50MHz$ $V_{EB0} = 5V$ $I_{B} = 0,2A$ $R_{thj\cdot C} \le 10 \,^{\circ}\text{C}$ $h_{21E} = 50 \div 200$ $T_{j} = 150 \,^{\circ}\text{C}$ La $I_{C} = 2 \cdot I_{CQ} = 16mA \rightarrow V_{Cesat} = 0,6V \,$ și $I_{CER} = 0,2mA$

Tensiunea ce trebuie preluată de R₁₅ este

$$V_{R_{15}} = V_{p_{\min}} - V_{CEsat,T3} = 0.8 - 0.6 = 0.2V \Rightarrow R_{15} \cong \frac{V_{R_{15}}}{I_{CQ}} = \frac{0.2V}{8mA} = 25\Omega$$

Calculele impun alegerea lui $R_{15} = 27\Omega$ cu toleranță de 5%

6. Curentul de baza al tranzistorului T₃

Considerând $h_{21E \, mediu, T3} = 100 \implies$

$$I_{BT3} = \frac{8mA}{100} = 80\mu A$$

7. Verificarea funcționării la semnal mic

$$\mu_{BE} = \frac{I_C}{g_m} = \frac{I_{ex}}{40I_{CQ}} = 0,024V = 24\text{mV} < 26\text{mV} = \frac{KT}{q}$$

8. Amplificarea în tensiune a etajului pilot

Etajul pilot este de tip emitor comun cu sarcină distribuită având amplificarea în tensiune:

$$A_{vp} \approx -\frac{R_{din}}{R_{15}} = -\frac{3.6k}{27\Omega} = -133$$

9. Calculul frecvenței de tăiere

$$\omega_T = \beta_0 \cdot \omega_\beta \Rightarrow f_{\beta T_3} \ge 0.35...1,25MHz$$

10. Calculul circuitului de polarizare al tranzistorilor finali

Circuitul de polarizare este alcătuit din tranzistorul T_4 (superdiodă) și potențiometrul R_{14} . Se consideră necesar pentru deschiderea tranzistorilor finali o tensiune de $2 \times 0.7V$.

Pentru tranzistorul T₄ alegem tipul BC 107A având următoarele valori limită absolute:

$$V_{CE0} = 50V \qquad \qquad I_C = 100 \text{mA} \qquad \qquad I_B = 50 \text{mA}$$

$$P_{tot} = 300 mW Tj = 175 ^{\circ}C$$

În PSF tranzistorul T₄ are următorii parametri:

$$I_{C,T4} = 8mA$$
 $V_{CE,T4} \cong 1,4V \Rightarrow I_{B,T4} = \frac{I_{C,T4}}{h_{21E,T4}} \cong \frac{8mA}{220} = 36\mu A$

Se alege prin divizorul de bază curentul:

$$I_d \cong 0.5mA >> I_{B,T4} \Longrightarrow R_{14} = R_1 + R_2 = \frac{1.4V}{0.5mA} = 2.8k\Omega$$

Se alege $R_{14} = 2.5k\Omega$.

2.5 ETAJUL DIFERENŢIAL

Etajul diferențial este alcătuit din două tranzistoare în conexiune EC care lucrează în clasă A și sunt cuplate diferențial. Componentele acestui etaj sunt următoarele:

- Tranzistoarele T₁,T₂
- Rezistentele R₆, R₈, R₉, R₁₁, R₃₁ și D₁, R₇

Principalele funcții ale acestui etaj sunt:

- Obtinerea unei impedante de intrare convenabile.
- Reglează echilibrarea stării de repaus (în absența semnalului) a întregului amplificator de putere
- Permite cuplarea rețelei de reacție negativă

Dimensionarea componentelor etajului diferențial

1. Alegerea tranzistoarelor T_1, T_2

Tranzistoarele T₁, T₂ se aleg de tipul BC178 și se împerechează (se sortează două tranzistoare cu caracteristici cât mai apropiate). Aceste tranzistoare au următoarele valori limită absolute:

$$V_{CE0} = 30V \qquad \qquad I_C = 100 mA \qquad \qquad I_B = 50 mA$$

$$P_{tot} = 300 mW \qquad \qquad Tj = 175 ^{\circ} C$$

2. Dimensionarea rezistenței de colector a tranzistorului T_1 (R_{11})

Se alege
$$R_{CT_1} = R_{11} < Z_{inT3 \text{ min}}$$

$$Z_{inT3\,\text{min}} = h_{1\,leT_3\,\text{min}} + h_{2\,leT_3} \cdot R_{15}$$
 $I_{B,T3max} \cong \frac{2I_{CT3}}{h_{21\,\text{Emediu},T3}} = \frac{2\cdot 8}{100} = 160\,\mu\text{A}$

$$I_{C,T3min} \cong I_{B,T3max} = 160 \mu A$$
 $\Rightarrow g_{m,T3 \min} = 40 \cdot I_{C,T3min} = 6,4 \Rightarrow$

$$h_{11,T3min} = \frac{\beta_{T3 \text{ min}}}{g_{m,T3 \text{ min}}} = \frac{50}{6,4} = 7.8 \text{K} \cong 8 \text{K}$$

Amplificator audio de putere

$$\Rightarrow Z_{inT3 \min} = h_{11eT_2 \min} + h_{21eT_2} \cdot R_{15} = 8K + 100 \cdot 0,027K \cong 11K$$

Pentru polarizarea bazei lui T₃ trebuie ca:

$$(I_{C.T.1} - I_{B.T.3}) \cdot R_{1.1} = V_{BET.3} + V_{R.1.5} \cong 0.7 \text{V} + 8 \text{mA} \cdot 27 \Omega \cong 0.92 \text{V}$$

Din motive de zgomot, pentru a avea factorul de zgomot F = 3dB trebuie ca:

$$I_{CTI} \le 300 \mu A$$
 Se alege $I_{CTI} = I_{CT2} = 250 \mu A$

$$\Rightarrow R_{11} \approx \frac{0.92}{I_{CT1} - I_{BT3}} = \frac{0.92}{250 - 80} = \frac{0.92V}{170mA} = 5.4K$$

Se alege $R_{11} = 5,6$ K cu toleranță de $\pm 5\%$.

3. Verificarea funcționării la semnal mic

$$u_{BE,T1} = \frac{i_{C,T1}}{g_{m,T1}} = \frac{i_{C,T1}}{40 \cdot I_{C,T1}} = \frac{80 \,\mu\text{A}}{40 \cdot 250 \,\mu\text{A}/V} = 8mV$$

4. Determinarea tensiunii stabilizate de D_1

Pentru a simula generatorul de curent din emitor trebuie ca tensiunea stabilizată $V_Z >> V_{BE,TI}$.

Deoarece I_{BT_1} e foarte mic, se poate neglija tensiunea între bază și masă U_{R6} .

Practic
$$V_z = V_{R8} + V_{BE,T1} + V_{R6} \approx V_{R8} + V_{BE,T1}$$

Pentru ca R_8 să se comporte ca un generator de curent continuu trebuie ca V_{R8} = ct, dar $V_{BE,TI}$ variază cu $v_{BE,TI}$ \Rightarrow tensiunea stabilizată de diodă trebuie să fie mult mai mare ca tensiunea bază emitor a tranzistorului T_1 , $V_Z >> v_{BE,TI}$.

Se alege $V_Z = 8.2 \text{V}$, astfel $V_Z \cong 1000 \cdot \text{v}_{BE,T1}$

Pentru tranzistorul T_I curentul de colector și tensiunea colector emitor au valorile:

$$I_{C,TI} = 250 \mu \text{A si } V_{CE} \approx E_C = 27V$$
.

5 Dimensionarea rezistențelor R₆, R₃₁

Se alege $R_6 = R_{31} = 39k\Omega$, $\pm 2\%$ având în vedere că în jurul acestei valori se va situa Z_{intr} a întregului amplificator.

6 Dimensionarea rezistențelor R_9 , R_8

Pentru BC178B din catalog se obține
$$h_{2IE} = 240 \implies I_{B,T1} = \frac{250 \mu A}{240} \approx 1 \mu A$$
.

$$\Rightarrow V_{R_6}=40mV$$
 . Considerând $V_{BE,T1}\approx 0.6V$ $\Rightarrow V_{\frac{1}{2}R9}+V_{R_8}=V_z-V_{BE,T1}-V_{R_6}=7.56V$

Se alege pentru R_9 o valoare de 500Ω și atunci căderea de tensiune suplimentară pe jumătate din rezistența din emitorul lui T_1 este :

$$V_{\frac{1}{2}R9} \approx I_{C,T1} \cdot \frac{1}{2} \cdot R_9 = 62,6 \text{mV}$$
 $\Rightarrow V_{R8} \cong 7,5 \text{V}$

Curentul prin rezistența R₈ este suma curenților de colector ai tranzistorilor T₁, T₂

$$I_{R8} = 2I_{C,TI} = 500 \mu A$$
 \Rightarrow $R_8 = \frac{V_{R8}}{I_{R8}} = \frac{7,5V}{0,5mA} = 15K \Omega, \pm 5\%$

6. Polarizarea diodei D₁

Alegem o diodă zener de tipul PL 8,2V care pentru o funcționare normală trebuie polarizată la $I_z = 5mA$.

$$R_7 = \frac{E_C - V_z}{I_z + I_{R8}} = \frac{27V - 8,2V}{5,5mA} = 3,42K\Omega$$

Se alege $R_7 = 3.3 \text{K}\Omega, \pm 5\%$

7. Determinarea amplificării etajului diferențial

Amplificarea etajului diferențial poate fi aproximată astfel:

$$A_{vdif} \cong -\frac{R_{Sdif}}{\frac{1}{2}R_9}$$

unde R_{Sdif} este rezistența de sarcină a diferențialului

$$R_{Sdif} = \frac{R_{11} \| Z_{in,T1}}{2} = \frac{\frac{R_{11} \cdot Z_{in,T1}}{R_{11} + Z_{in,T1}}}{2} = \frac{\frac{5,6K \cdot 10K}{5,6K + 10K}}{2} = 1,8k\Omega$$

$$\Rightarrow A_{vdif} \cong -\frac{1.8}{0.25} = -7.2 \cong -7$$

2.6 REACŢIA NEGATIVĂ

Se apreciază un factor de transfer pe bucla de reacție optim la frecvențe medii:

$$\beta_r \approx \frac{R_{10}}{R_{10} + R_{31}} \approx \frac{1}{10}$$
 (grad de reacție $\approx 20dB$)

Datorită divizărilor introduse de protecția termică, tensiunea reală de intrare pe diferențial este:

$$V_{in,dif} = D_1 \cdot D_2 \cdot V_{gen}$$
Unde: $D_1 = \frac{R_6}{R_6 + R_5} = 0.95$

$$D_2 = \frac{R_2 \| (R_5 + R_6)}{R_1 + [R_2 \| (R_5 + R_6)]} = 0.89$$

Se alege pentru
$$V_{gen} = 1.5V_{ef}$$
 $\Rightarrow U_{in,dif} = 0.95 \cdot 0.89 \cdot 1.5 = 1.3V_{ef}$

Tensiunea nominală de ieșire este :

$$V_{n} = \frac{I_{S} \cdot (R_{S} + R_{30})}{\sqrt{2}} = 0.7 \cdot I_{S} \cdot (R_{S} + R_{30}) = 0.7 \cdot 5.4A \cdot (4 + 0.1)\Omega = 15.5V$$

Amplificarea cu reacție este
$$A_{Vr} = \frac{V_n}{V_{in.dif}} = \frac{15,5}{1,3} = 12 = \frac{R_{10} + R_{31}}{R_{10}} = 1 + \frac{R_{31}}{R_{10}}$$

$$\Rightarrow \frac{R_{31}}{R_{10}} = 11$$

Deoarece amplificarea în tensiune în buclă deschisă a amplificatorului de putere este dată de etajul pilot și etajul diferențial $A_{v} \approx A_{vp} \cdot A_{vdif} = -126 \cdot (-7) = 882$

Practic
$$A_{vr} \cong \frac{1}{\beta_{rr}}$$
 $\Rightarrow R_{10} \cong \frac{R_{31}}{11} = \frac{39K\Omega}{11} = 3,55K\Omega$

Se adoptă $R_{10} = 3.3K\Omega$, $\pm 5\%$

Frecvența limită pentru T_1 și T_2 este $f_\beta \ge 400 \div 800$ KHz

2.7 STABILITATEA

Datorită complexității schemei nu se poate calcula curba de răspuns datorită numărului mare de tranzistori cu f_T diferită. Datorita lui C_3 , β_r este complex. Soluția cea mai bună este evitarea zonelor de variație rapidă a fazei prin dispersarea, cât este posibil, a f_T a diverselor circuite.

1. Stabilitatea la frecvențe joase

Capacitățile ce intervin la frecvențe joase sunt C₁, C₂, C₃ și C₄

Figura 2.7-1. Circuitul echivalent pentru polii dați de C_1 și C_2

C₁ și C₂ introduc un zero de multiplicitate doi în origine și un pol de gradul doi. Funcția de transfer este următoarea:

$$\frac{V_0}{V_g} = \frac{s^2 C_1 C_2 R_1 R_2}{1 + s[C_1(R_1 + R_g) + C_2(R_1 + R_2)] + s^2 C_1 C_2(R_1 R_2 + R_1 R_g + R_2 R_g)}$$

Polul apare la frecvența:

$$\omega_0 = \frac{1}{\sqrt{C_1 C_2 (R_1 R_2 + R_1 R_g + R_2 R_g)}}$$

Dacă alegem $C_1 = C_2 = 4.7 \mu F$ și considerând pentru adaptare $R_g = 39 K \Omega$, atunci

$$\omega_0 = 2.8 \text{Hz} \text{ și } f_0 = 0.45 \text{Hz}$$

C₃ introduce un pol și un zero. Se alege pentru polul dat de C₃ frecvența cea mai

Se alege $C_3 = 10\mu F$ și rezultă:

$$\tau_{3p} = C_3 R_{10} = 0.036 \implies f_{3p} = \frac{1}{2\pi\tau_{3p}} = 4.4Hz$$

$$\tau_{3z} = C_3 (R_{10} + R_{21}) = 0.366 \implies f_{3z} = \frac{1}{2\pi\tau_{3z}} = 0.44Hz$$

Pentru C₄ se alege o frecvență a polului de 1Hz
$$\Rightarrow C_4 = \frac{1}{2\pi f_4 \cdot R_{dinpilot}} = \frac{1}{2\pi \cdot 3,6 \cdot 10^3} = 44,2 \mu F$$

Se adoptă
$$C_4 = 47 \mu F / 35V$$

Figura 2.7-2. Amplitudinea și faza amplificatorului în funcție de frecvență

Deoarece condițiile $|A| \ge 1$ și $\varphi < 180^\circ$ sunt îndeplinite la frecvențe joase, amplificatorul va fi stabil.

2. Stabilitatea la frecvențe înalte

Pentru analiza stabilității la frecvențe înalte se face diagrama repartițiilor frecvențelor de tăiere f_T a tranzistoarelor.

Figura 2.7-3. Distribuția frecvențelor de tăiere a tranzistoarelor

Se apreciază ca dificilă zona de la 500kHz unde se pot suprapune frecvențele de tăiere a trei tranzistoare T₃, T₅, T₆. La realizarea experimentală dacă apar oscilații se acționează printr-o reacție locală asupra lui T₃.

2.8 PROTECȚIA TERMICĂ

Protecția termică acționează la încălzirea tranzistorilor finali prin limitarea amplitudinii semnalului de intrare. Circuitul de protecție termică este alcătuit din următoarele componente:

- Tranzistorul T₁₃
- Rezistențele R₁, R₂, R₄ și termistorul R₃

Rezistența R_5 s-a ales de $2,2k\Omega$ pentru a nu apare cuplarea direct la masă a bazei lui T_1 , în cazul unei defecțiuni a tranzistorului T_{13} .

Principiul de funcționare se bazează pe cuplarea termică cu tranzistorii finali, a termistorului R_3 (Th40K Ω) care astfel monitorizează temperatura de funcționare a acestora. La temperatura ambiantă R_3 are valoare mare astfel încât divizorul format din R_3 - R_4 menține tranzistorul T_{13} blocat. La creșterea temperaturii valoarea rezistenței termistorului R_3 scade și tinde să deschidă tranzistorul T_{13} care va șunta intrarea, reducând amplitudinea semnalului de intrare și astfel a semnalului de pe tranzistorii finali.

Se alege R₃ cu rezistența nominală $R_{nom} = 40$ kΩ și care la 100°C are rezistența \approx 2,3kΩ.

Se alege temperatura de 100° C a tranzistorilor finali ca prag de acțiune a protecției termice. Pentru ca R_2 să nu modifice semnificativ impedanța de intrare $Z_{intrare}$ se alege de valoare mare R_2 = $120k\Omega$, $\pm 5\%$ aceasta limitând curentul de colector al tranzistorului T_{13} la valoarea:

$$I_{C,T13} \le \frac{V_z}{R_2} = \frac{8,2V}{120k} = 68\mu A$$

Din caracteristica de transconductanță (I_C , V_{BE}) se apreciază pentru $I_{C,T13}=68\,\mu A$ o tensiune bază-emitor: $V_{BE,T13}\approx 0,5V$. Cu aceste date se poate dimensiona rezistența R_4 cu ajutorul ecuației:

$$\frac{R_4}{R_4 + R_3} = \frac{V_{BE,T13}}{V_Z} = \frac{0.5}{8.2} \implies R_4 = \frac{0.5}{7.7}R_3 = 149\Omega$$

Se alege $R_4 = 150\Omega$, $\pm 5\%$

2.9 PROTECȚIA LA SCURTCIRCUIT

Protecția la scurtcircuit a amplificatorului audio de putere se realizează prin șuntarea bazei tranzistoarelor T_5 și T_6 . Pentru semialternanța pozitivă la supracurent detectat prin creșterea tensiunii pe rezistența R_{28} tranzistorul T_9 care este normal blocat se deschide și va reduce semnalul aplicat pe baza lui T_5 .

Sesizarea supracurentului și polarizarea lui T₅ se face prin doua circuite distincte:

- Un circuit cu acțiune rapidă care limitează vârfurile instantanee de curent
- Al doilea circuit cu acțiune întârziată care limitează curentul în cazul unui scurtcircuit de durată

1. Dimensionarea circuitului de protecție la scurtcircuit cu acțiune rapidă

Pentru semialternanța pozitivă tensiunea de pe R_{28} este transmisă prin divizorul R_{18} - R_{19} și dioda D_6 pe baza tranzistorului T_9 . Se alege o valoare limită a curentului la care protecția la scurtcircuit cu acțiune rapidă să intre în funcțiune, $I_{SM} = 7A$. La această valoare a curentului tensiunea pe rezistența R_{28} are valoarea:

$$V_{R28} = I_{SM} \cdot R_{28} = 2,73V$$

Tensiunea de deschidere a lui $T_9 \cong 0.7V$ iar $V_D=0.6V$. În acest caz, raportul de divizare este:

$$\frac{R_{19}}{R_{19} + R_{18}} = \frac{1.3}{2.73} = 0.48 \qquad \Rightarrow \qquad R_{18} = \frac{0.52}{0.48} R_{19} = 1.08 \cdot R_{19}$$

Pentru a avea pe divizor un curent mic, se impune condiția ca $R_{18} + R_{19} \ge 500 \cdot R_{28}$

Se alege R_{19} = 100 Ω , ±5% și rezultă R_{18} = 100 Ω , ±5%.

În acest caz $R_{18} + R_{19} = 200\Omega = 513$ R_{28} ; se verifica condiția de a avea un curent mic pe divizorul R_{18} - R_{19} .

$$I_d = \frac{V_{28}}{R_{18} + R_{19}} = \frac{2,73V}{200\Omega} = 13,65mA$$
; se verifică de asemenea și condiția

de stabilitate a PSF-ului tranzistorului T_9 : $I_d >> I_{BT9}$

2. Dimensionarea circuitului de protecție la scurtcircuit cu acțiune întârziată

Circuitul este o punte formată din: R₂₈, R₅, R₂₄, T₁₁ conectat ca diodă, D₈ și R₂₂.

Figura 2.9-1. Puntea R₂₈, R_S - R₂₄, R₂₂

Figura 2.9-2. Puntea R_{28} , R_S - R_{24} , T_{11} , D_8 , R_{22}

Alimentarea punții pe o diagonală se face cu tensiunea de pe R_{28} și R_{S} . In diagonala cealaltă este conectată joncțiunea baza-emitor a tranzistorului T_{9} .

Divizorul R_{24} - R_{22} polarizează tranzistorul T_9 astfel încât să fie blocat când amplificatorul lucrează normal pe $R_S = 4\Omega$. Când $R_S < 4\Omega$ și scade, puntea se dezechilibrează crescând căderea de tensiune pe R_{28} și T_9 începe să conducă limitând semnalul de pe baza lui T_5 . La scurtcircuit ($R_S = 0\Omega$) întreaga cădere de tensiune de pe R_{28} se transmite pe baza lui T_9 . La un curent de 2A se obține $V_{28} = 0.8V$. Se dimensionează pentru această tensiune divizorul R_{24} - R_{22} . În caz de scurtcircuit curentul va fi limitat la aproximativ 2A.

Căderile de tensiune pe T_{11} și D_8 sunt aproximativ egale cu 0.2V respectiv 0.6V iar tensiunea de deschidere a tranzistorului $T_9 \cong 0.7V$

În acest caz avem $V_{D8}+V_{R22}=V_{BE,T9}$ și atunci $\Rightarrow V_{R22}=0.1V$.

Se alege $R_{24}=0.1R_{22}$ astfel încât pentru scurtcircuit ($R_S=0\Omega$) pe R_{28} va fi necesară pentru deschiderea tranzistorului T_9 o tensiune:

$$V_{R28neces} = 0.1V + 0.6V + 0.2V + 0.01V = 0.91V.$$

Se apreciază că circuitul va limita curentul la:

$$\frac{V_{R28neces}}{R_{28}} = \frac{0.91V}{0.39\Omega} = 2.3A$$

Se alege dioda D₈ din siliciu de comutație de tipul 1N4148, având următorii parametri:

Valori limită absolute: $V_R = 75V$ $I_F = 200 \text{mA}$

 $T_1 = 200$ °C $V_F = 1V$, la $I_F = 10$ mA

Caracteristici electrice: $I_R = 25 \text{nA}$ $V_R = 20 \text{V}$

 $C_{tot} = 4pF \hspace{1cm} t_{rr} = 4ns \label{eq:ctot}$

Se alege constanta de timp, respectiv întârzierea până la acționarea protecției $\tau = 80 \text{ms}$ corespunzătoare unei frecvențe de 2Hz. Se alege o valoare acceptabilă pentru C_5 de $200 \mu F$. În acest caz avem:

$$R_{24} \approx \frac{\tau}{C_5} = 400\Omega$$

Se alege $R_{24} = 390\Omega$, $\pm 5\%$ și rezultă valoarea rezistenței $R_{22} = 3.9k\Omega$, $\pm 5\%$.

Figura 2.9-3. Estimarea răspunsului limitatorului de curent la scurtcircuit

3. Protecția la suprasarcină

Prin aplicarea unei tensiuni de intrare mai mari ca Vg = 1,5V se poate ajunge la suprasarcini și distorsionarea semnalului de ieșire prin limitarea amplitudinii la valoarea tensiunii sursei de alimentare respectiv 27V.

Pentru evitarea acestor suprasarcini de scurtă sau lungă durată între baza tranzistorului pilot și masă, se montează două diode D_2 , D_3 înseriate.

Diodele se aleg din siliciu de comutație de tipul 1N4148, având următorii parametri:

Valori limită absolute: $V_R = 75V$ $I_F = 200 \text{mA}$

Tj = 200°C $V_F = 1V$, $Ia I_F = 10mA$

Caracteristici electrice: $I_R = 25\text{nA}$ $V_R = 20\text{V}$

 $C_{tot} = 4pF$ $t_{rr} = 4ns$

Prin aceasta tensiunea maximă ce poate apare pe baza pilotului în raport cu masa

este: $V_{pilot,max} = 2 \cdot 0,6V = 1,2V$

Curentul maxim prin tranzistorul pilot la care acționează protecția la suprasarcină este:

$$I_{supras} = \frac{0.6V}{27\Omega} = 22\text{mA} >> 8\text{mA}$$

Tensiunea maximă pe finali la care acționează protecția la suprasarcină este:

$$V_{supras} = I_{supras} \cdot R_{din,pilot} = 22\text{mA} \cdot 3,6\text{K}\Omega = 79\text{V} >> 27\text{V}$$

2.10 SIMULAREA AMPLIFICATORULUI ŞI OPTIMIZAREA ETAJELOR CU PSPICE

Simularea amplificatorului audio de putere

Simularea amplificatorului audio de putere a fost efectuată la început din punct de vedere al punctului static de funcționare. Deoarece nu se utilizează condensator la ieșirea pe difuzor este necesară obținerea unei tensiuni la ieșirea pe difuzor cât mai apropiată de 0V prin ajustarea rezistenței semireglabile R_9 care în simulare a fost înlocuită cu două rezistențe obișnuite respectiv R_9 și R_{91} . pentru $R_9 = 250\Omega$ și $R_{91} = 260\Omega$ la ieșirea pe difuzor se obține o componentă continuă de 72,33nV valoare care este suficient de mică.

Comparând PSFurile tranzistoarelor simulate cu cele proiectate se observă abateri destul de mici:

 $I_{CT1} = 241,6\mu A$, $I_{CT2} = 255,2\mu A$ față de $I_{CT1} = I_{CT2} = 250\mu A$

 $I_{BZ-081} = 5,044 \text{mA} \text{ față de } I_Z = 5 \text{mA}$

 $I_{CT3} = 7,734$ mA fată de $I_{CT3} = 8$ mA

 $I_{CT7} = I_{CT8} = 2,467 \text{mA}$, valoare acceptabilă pentru eliminarea distorsiunilor de trecere, obținută prin reglarea rezistenței semireglabile $R_{14} = 2,5 \text{K}\Omega$, care în simulare a fost înlocuită cu două rezistențe fixe $R_{141} = 1,3 \text{K}\Omega$ și $R_{142} = 1,2 \text{K}\Omega$.

După simularea PSFului s-a efectuat o simulare tranzitorie și au fost extrase semnalele din punctele indicate în Figura 2.10-2. iar aceste semnale pot fi vizualizate în Figura 2.10-3. respectiv semnalul de la generatorul de semnal cu amplitudinea de 1V, până la ieșire, respectiv semnalul pe Rs din Figura 2.10-7., cu amplitudinea de 10V. Se deduce ușor că amplificarea în tensiune are valoarea 10, valoare ce corespunde cu cea din tema de proiectare.

Figura 2.10-1. PSFul amplificatorului audio de putere

Figura 2.10-5. Semnalul simulat în colectorul tranzistorului T₃

Figura 2.10-7. Semnalul simulat pe rezistența de sarcină R_S

Optimizarea etajului final

Pentru împerecherea celor două configurații darligton ale etajului final se utilizează circuitul din figura următoare în care se modifică valoarea rezistențelor R_1 și R_2 pentru obținerea unor amplificări în curent uniforme și de valori apropiate. În diagramele următoare este indicată variația amplificării $I_{E(Q1)}/I_{B(Q2)}$ și $I_{E(Q3)}/I_{B(Q4)}$ la modificarea curentului furnizat de generatorul I_1 în plaja $0 \div 10 \text{mA}$ cu increment de 0.1 mA (DC Sweep).

Figura 2.10-8. PSFul etajului final polarizat prin generatorul I₁ la 1mA

Figura 2.10-9. Simularea câștigului static în curent pentru darlingtonul npn IE(Q1)/IB(Q2) și darlingtonul pnp IE(Q3)/IB(Q4), la $R_1=R_2=20KΩ$

Figura 2.10-10. Simularea câștigului static în curent pentru darlingtonul npn IE(Q1)/IB(Q2) și darlingtonul pnp IE(Q3)/IB(Q4), la $R_1=R_2=100\Omega$

Figura 2.10-11. Simularea câștigului static în curent pentru darlingtonul npn IE(Q1)/IB(Q2) și darlingtonul pnp IE(Q3)/IB(Q4), la $R_1=R_2=39\Omega$

Figura 2.10-12. Simularea câștigului static în curent pentru darlingtonul npn IE(Q1)/IB(Q2) și darlingtonul pnp IE(Q3)/IB(Q4), la $R_1=R_2=10\Omega$

Se observă că pentru R_1 = R_2 = 39Ω se obține un bun compromis între câștigul static în curent și liniaritatea caracteristicilor.

Optimizarea etajului pilot

Pentru exemplificarea optimizării etajului pilot utilizăm schema următoare care are avantajul de a fi mai simplă.

Figura 2.10-13. Configurația clasică a etajului pilot

Pentru stabilirea corectă a PSFului tranzistorului pilot se face o simulare cu baleiaj în curent continuu (DC Sweep) în care variabila este sursa V_2 prin componenta V_{OFF} în domeniul $0.2V \div 0.7V$ cu increment 0.1V.

Figura 2.10-14. Simularea curentului prin tranzistorul pilot în funcție de V_{OFF}

Figura 2.10-15. Simularea tensiunii colector-emitor a tranzistorului pilot \hat{n} funcție de V_{OFF}

Se alege polarizarea tranzistorului pilot la V_{CE} =14,31V și $I_{C,T3}$, = 4,4mA corespunzătoare unei tensiuni de ieșire de \cong 15V. Polarizarea pilotului în acest PSF se face cu ajutorul tensiunii de polarizare a bazei V_{OFF} = 0,645V.

Polarizarea tranzistorilor finali se face din raportul rezistențelor R_3 , R_4 . Pentru R_3 = 1,1K Ω și R_4 =1,3K Ω se obține un curent de repaus prin finali de \cong 9mA.

Figura 2.10-16. Simularea PSFului etajului pilot și final la V_{OFF}=0,645V

Pentru compararea efectului conexiunii bootstrap se atacă ambele etaje cu și fără conexiune bootstrap de la aceeași sursă de semnal V_2 .

Figura 2.10-17. Etajul pilot clasic în dreapta și etajul pilot cu bootstrap în stânga sursei de semnal comune V_2

În continuare se simulează semnalul la ieșirea circuitului fără bootstrap V(C1:2) comparativ cu semnalul la ieșirea circuitului cu bootstrap V(Q21:E) pentru amplitudini diferite ale semnalului furnizat de sursa V_2 respectiv V_{AMPL} .

Figura 2.10-18. Simularea semnalului la ieșirea etajului pilot cu bootstrap V(Q21:E) și la ieșirea etajului pilot clasic V(C1:2), la V_{AMPL} =0,05V

Figura 2.10-19. Simularea semnalului la ieșirea etajului pilot cu bootstrap V(Q21:E) și la ieșirea etajului pilot clasic V(C1:2), la V_{AMPL}=0,075V

Figura 2.10-20. Simularea semnalului la ieșirea etajului pilot cu bootstrap V(Q21:E) și la ieșirea etajului pilot clasic V(C1:2), la V_{AMPL}=0,1V

Figura 2.10-21. Simularea semnalului la ieșirea etajului pilot cu bootstrap V(Q21:E) și la ieșirea etajului pilot clasic V(C1:2), la V_{AMPL}=0,11V

Figura 2.10-22. Simularea semnalului la ieșirea etajului pilot cu bootstrap V(Q21:E) și la ieșirea etajului pilot clasic V(C1:2), la V_{AMPL}=0,2V

Se observă comportarea mult mai bună a semnalului la ieșirea circuitului cu bootstrap în special la amplitudini mari ale semnalului de intrare. Pentru simularea răspunsului în frecvență utilizăm un montaj asemănător prezentat în figura de mai jos.

Figura 2.10-23. Circuitul utilizat pentru compararea răspunsului în frecvență și PSFul pentru VDC=0,6449V

Figura 2.10-24. Simularea răspunsului în frecvență a etajului pilot fără bootstrap \Box V(C1:2) și cu bootstrap \Diamond V(Rs1:1)

Este evident că și din punctul de vedere al răspunsului în frecvență circuitul cu bootstrap se comportă mai bine.

Optimizarea etajului diferențial

Optimizarea etajului diferențial se poate face din punct de vedere static și anume al obținerii unei tensiunii pe sarcină la o valoare cât mai aproape de zero. În acest scop în toate simulările rezistența variabilă R9 a fost realizată din R9=250 Ω și R91=260 Ω valori pentru care se obține în repaus o tensiune de 70,57nV (Figura 2.10-1.) valoare suficient de apropiată de 0V.

O altă optimizare a etajului diferențial se poate face din punct de vedere al tipului de amplificator, respectiv neinversor sau inversor, fapt care este stabilit din modul de configurare a reacției negative conform cu Figura 2.10-26..

Figura 2.10-25. Amplificator audio de putere neinversor (stânga) și amplificator audio de putere inversor (dreapta)

La prima vedere comportarea celor două tipuri de amplificatoare pare identică, iar din punct de vedere al reproducerii fazei semnalului suntem tentați să alegem configurația neinversor.

Diferența cea mai importantă dintre cele două tipuri de amplificatoare este dată de răspunsul în frecvență care este mai bun la amplificatorul inversor. Explicația constă în modul de realizare a reacției negative.

La amplificatorul inversor reacția se face prin R₁ și nodul de tensiune 2 iar la amplificatorul neinversor se face prin R₁ și etajul diferențial plasat între nodurile 2 și 3. Deoarece răspunsul în frecvență al etajului diferențial este limitat pe când răspunsul în frecvență al nodului de tensiune este infinit rezultă comportarea mai bună în frecvență a etajului inversor comparativ cu cel neinversor. Pentru a verifica funcționarea acestui principiu configurăm amplificatorul audio de putere de tipul inversor ca în Figura 2.10-27. și refacem simulările PSFului tranzitorii și comparativ a răspunsului în frecvență.

Figura 2.10-26. Simularea PSFului pentru configurația inversoare

Figura 2.10-27. Simularea tranzitorie a semnalelor marcate în Figura 2.10-26.

Se remarcă comparativ cu semnalele de la configurația neinversoare că aceste semnale sunt mai conforme cu semnalul sinusoidal sau altfel spus mai puțin distorsionate și au alunecarea PSFului mult mai mică.

Simularea răspunsului în frecvență a amplificatorului audio de putere neinversor se remarcă prin atenuare pronunțată a frecvențelor joase lucru nedorit la sistemele audio de înaltă fidelitate.

Figura 2.10-28. Simularea răspunsului în frecvență a amplificatorului neinversor cu $C_1, C_2 = 4,7 \mu F$

Pentru îmbunătățirea răspunsului în frecvență se pot majora condensatoarele C_1 și C_2 efectul fiind prezentat în Figura 2.10-29. și 2.10-30.

Figura 2.10-29. Simularea răspunsului în frecvență a amplificatorului neinversor cu C_1 , C_2 =47 μF

Figura 2.10-30. Simularea răspunsului în frecvență a amplificatorului neinversor cu $C_1, C_2 = 470 \mu F$

În continuare este prezentat răspunsul în frecvență al configurației inversoare pentru aceleași valori ale condensatoarelor C_1 , C_2 . Se poate remarca un răspuns acceptabil chiar la valori mici ale condensatoarelor de cuplaj și dependența răspunsului în frecvență numai de valoarea lui C_1 .

Figura 2.10-31. Simularea răspunsului în frecvență a amplificatorului inversor cu $C_1, C_2 = 4,7 \mu F$

Figura 2.10-32. Simularea răspunsului în frecvență a amplificatorului inversor cu C_1 , C_2 =47 μ F

Figura 2.10-33. Simularea răspunsului în frecvență a amplificatorului inversor cu $C_1, C_2 = 470 \mu F$

Simularea la scurtcircuit

Pentru simularea la scurtcircuit se folosește schema electronică completă în care se micșorează valoarea rezistenței de sarcină Rs.

Micşorând rezistența de sarcină Rs se observă că nu apar modificări semnificative în forma semnalelor simulate până la Rs= 1Ω și din aceste considerente se fac simulări la trei valori ale rezistenței de sarcină de 1Ω , $0,1\Omega$ și $0,01\Omega$.

Figura 2.10-34. Schema electrică utilizată pentru simularea tranzitorie în condiții de scurtcircuit

Rezultatele simulării sunt prezentate în figurile următoare în care se păstrează semnalul prin darlingtonul npn, V(R24:2) și semnalul prin rezistența de sarcină V(R30:2) celelalte semnale având modificări nesemnificative. Utilizând formula

 $I_{T7,M} = \frac{V_{R24,M}}{R_{28} + R_{30} + R_S}$ pentru calculul curentului prin darligtonul npn pentru

Rs=0,1 Ω și Rs=0,01 Ω se obține $I_{T7,M} \cong 6A$ apropiat de valoarea proiectată.

Figura 2.10-35. Simularea semnalului prin darlingtonul npn V(R30:2) și rezistența de sarcină V(R24:2) la Rs=1 Ω

Figura 2.10-36. Simularea semnalului prin darlingtonul npn V(R30:2) și rezistența de sarcină V(R24:2) la $Rs=0,1\Omega$

Figura 2.10-37. Simularea semnalului prin darlingtonul npn V(R30:2) și rezistența de sarcină V(R24:2) la $Rs=0.01\Omega$

2. 11 SURSA DE ALIMENTARE

Sursa de alimentare pentru etajul final este constituită dintr-un transformator coborâtor de tensiune care are înfășurarea secundară cu priză mediană. Acest fapt permite ca după redresare și filtrare să se obțină față de masă două tensiuni egale și de semne opuse.

Această configurație are avantajul utilizării unei singure punți redresoare pentru cele două tensiuni.

Figura 2.11-1. Sursa de alimentare a amplificatorului audio de putere

Dimensionarea redresorului

1. Dimensionarea condensatorilor de filtraj

Pentru dimensionarea capacităților de filtraj se estimează curentul mediu consumat de amplificator la 2A și corespunzător acestuia rezistența echivalentă a sursei pe una din tensiuni este $R_{SE}=13\,\Omega$.

Se impune ca frecvența corespunzătoare constantei de timp $t = CR_{SE}$ să fie mult mai mică decât frecvența de tăiere în bandă respectiv 10Hz.

Se alege f=2Hz
$$\Rightarrow C_{1,2} = \frac{1}{2 \cdot \pi \cdot f \cdot R_{SE}} = 6121 \mu F$$

Se alege $C_{1.2} = 6800 \mu F$

2. Dimensionarea punții redresoare

Pentru dimensionarea punții redresoare calculăm tensiunea inversă și curentul maxim prin aceasta:

$$V_{inv} = 1,5 \cdot V_{R \max} = 1,5 \cdot 2 \cdot 27 = 81 \text{V}$$

 $I_{\max} = 3,5 I_{R \max} = 3,5 \cdot 1,41 \cdot 2 = 9,9 \text{A}$

Se alege o punte 20PM1 cu tensiunea inversă de 100V și curentul maxim de 30A.

Dimensionarea transformatorului

1. Datele de calcul ale transformatorului

Principalele date de calcul ale transformatorului sunt:

• Puterea aparentă secundară

Consumul estimat pe un canal este 88W iar pe patru canale 352W. Se ia 360W rotunjind cu puterea consumată de preamplificator și celelalte etaje intermediare.

• Tensiunile în secundar

Pentru etajul final trebuie o tensiune continuă de 2x27Vcc adică $2 \times 27 \cdot 0,707 = 2 \times 19V_{ef}$ valoare eficace.

Pentru preamplificatoare trebuie $22,5V_{ef}$.

• Tensiunea în primar

Tensiunea în primar este $V_1 = 220V_{ef}$.

• Frecventa retelei de alimentare

Frecvența rețelei de alimentare este f = 50Hz

• Factorul de putere al sarcinii

Factorul de putere al sarcinii se consideră $\cos \varphi_2 = 1$.

2. Alegerea miezului

Se alege un miez din tole ștanțate E+I, din tablă de oțel electrotehnic, de grosime 0,5mm, având pierderi specifice în fier $P_{Fs} = 2W/Kg$

3. Intensitățile curenților transformatorului

Se consideră $cos\phi_1=0.9$ și randamentul $\eta=0.9$. Coeficientul k este egal cu 1 pentru transformatoare monofazate și $\sqrt{3}$ pentru transformatoare trifazate.

$$I_{I} = \frac{S_{2} \cdot \cos \varphi_{2}}{k \cdot V_{1} \cdot \eta \cdot \cos \varphi_{1}} = \frac{360 \cdot 1}{1 \cdot 220 \cdot 0,9 \cdot 0,9} = 2A$$

$$I_{2f} = \frac{S_{2}}{k \cdot V_{2}} = \frac{360}{1 \cdot 38} = 9,5A, \qquad I_{2p} = 0,03A$$

4. Secțiunea miezului

Secțiunea miezului transformatorului se determină cu ajutorul relației:

$$S_M = k_S \sqrt{\frac{S_1 k_G}{f \cdot B_M \cdot J}}$$
 unde:

 k_S este un coeficient care ține cont de tipul transformatorului, de tipul bobinajului și de numărul de faze al transformatorului. Conform tabelului următor k_S =6,65.

Tabelul 2.11-1. Determinarea coencientului ks				
Numărul	Tipul	Tipul	k_S	
de faze	transformatorului	bobinajului		
1	Cu coloona	Bobine circulare	4,75	
	Cu coloane În manta (E + I)	Bobine dreptunghiulare	5,7	
			6,65	
3	Cu coloane	Bobine circulare	3,5	
	Cu coloane	Bobine dreptunghiulare	4	

Tabelul 2.11-1. Determinarea coeficientului k_S

$$S_I$$
 este puterea aparentă în primar $S_I = \frac{S_2}{\eta} = \frac{360}{0.9} = 400 \text{W}$

 k_G este raportul între greutățile materialelor active fier respectiv cupru.

Depinde de gradul de solicitare al acestora și anume inducția magnetică în miez respectiv densitatea de curent în cupru. Uzual $k_G = 4 \div 7$ pentru transformatoare calculate pentru preț minim și $k_G = 2 \div 3$ pentru transformatoare calculate pentru greutate totală minimă. Alegem $k_G = 4$.

Inducția în miez B_M și densitatea de curent J se aleg în funcție de puterea aparentă de calcul S.

Tabelul 2.11-2. Determinarea inducției în miez B_M și densității de curent J

S (W)	<100	100÷600	600÷1000	1000÷2500	2500÷6000
$B_M(T)$	0,8÷0,9	0,9÷0,95	0,95÷1	1÷1,2	1,2÷1,3
J (A/mm ²)	2,5÷4	2÷3	1,8÷2,5	1,6÷2,1	1,5÷1,9

Se alege $B_M = 1$ T şi J = 3A/mm².

Secțiunea miezului
$$S_M = 6,65 \cdot \sqrt{\frac{400 \cdot 4}{50 \cdot 1 \cdot 3}} =$$

$$6,65 \cdot \sqrt{\frac{400 \cdot 4}{50 \cdot 1 \cdot 3}} = 6,65 \cdot 3,27 = 21,75 \cong 22 \text{cm}^2.$$

Se aleg tole de tip E cu a=50mm.

5. Numărul de spire al înfășurărilor

Numărul de spire al înfășurărilor este determinat de tensiunea înfășurării și numărul de spire pe volt.

$$n_{\text{s/v}} = \frac{1}{\pi \cdot \sqrt{2} \cdot f \cdot B_M \cdot S_M} = \frac{1}{\pi \cdot 1,41 \cdot 50 \cdot 1 \cdot 0.0022} = 2 \text{ spire/volt.}$$

Numărul de spire al primarului:

$$\mathbf{n}_1 = \frac{V_1}{\pi \cdot \sqrt{2} \cdot f \cdot B_M \cdot S_M} = \mathbf{V}_1 \cdot \mathbf{n}_{\text{s/v}} = 220 \cdot 2 = 440 \text{ spire}$$

Numărul de spire al înfășurării secundare pentru etajul final:

$$n_{2f} = 2 \times V_{2f} \cdot n_{s/v} = 2 \times 0,707 \cdot 27 \cdot 2 = 2 \times 19 \cdot 2 = 2 \times 38 \text{ spire}$$

Numărul de spire al înfășurării secundare pentru preamplificator și etajele intermediare:

$$n_{2p} = V_{2p} \cdot n_{s/v} = 22, 5 \cdot 2 = 45 \text{ spire}$$

6. Secțiunile și diametrele conductoarelor

Secțiunea conductorului din înfășurarea primară este

$$S_{C1} = \frac{I_1}{J} = \frac{2}{3} = 0,66 \text{mm}^2$$

Diametrul conductorului din înfășurarea primară este

$$D_{C1} = \sqrt{\frac{4 \cdot S_{C1}}{\pi}} = 0.91 \text{mm}.$$
 Se alege $D_{C1} = 0.9 \text{mm}.$

Secțiunea conductorului din înfășurarea secundară pentru etajul final este

$$S_{C2f} = \frac{I_{2f}}{I} = \frac{9.5}{3} = 3.16 \text{mm}^2$$

Diametrul conductorului din înfășurarea secundară pentru etajul final este

$$D_{C2f} = \sqrt{\frac{4 \cdot S_{C2f}}{\pi}} = 1,99$$
mm. Se alege $D_{C2f} = 2$ mm.

Secțiunea conductorului din înfășurarea secundară pentru preamplificator și etajele intermediare este

$$S_{C2p} = \frac{I_{2p}}{J} = \frac{0.03}{3} = 0.01 \text{mm}^2$$

Diametrul conductorului din înfășurarea secundară pentru etajul final este

$$D_{C2p} = \sqrt{\frac{4 \cdot S_{C2p}}{\pi}} = 0.11 \text{mm}.$$
 Se alege $D_{C2p} = 0.12 \text{mm}.$

2.12 SCHEMA ELECTRICĂ ȘI LISTA COMPONENTELOR

Figura 2.12-1. Schema electrică

Lista componentelor amplificatorului

Rezistențe

R_1 =3,9 $K\Omega$, 5%	$R_2 = 120K\Omega, 5\%$
$R_3 = Th, 40K\Omega$	$R_4 = 150\Omega, 5\%$
$R_5=2,2K\Omega,5\%$	$R_6 = 39K\Omega, 2\%$
$R_7 = 3.3K\Omega$, 5%	$R_8 = 15K\Omega$, 5%
$R_9 = 500\Omega$	$R_{10} = 3,6K\Omega, 5\%$
$R_{11} = 5.6K\Omega, 5\%$	$R_{12} = 360\Omega, 5\%$
$R_{13} = 3K\Omega, 5\%$	$R_{14}=2,5K\Omega$
$R_{15} = 27\Omega, 5\%$	$R_{16} = 470\Omega, 5\%$
$R_{17} = 470\Omega, 5\%$	$R_{18} = 100\Omega, 5\%$
$R_{19} = 100\Omega, 5\%$	$R_{20} = 100\Omega, 5\%$
$R_{21} = 100\Omega, 5\%$	$R_{22} = 3.9 \text{K}\Omega, 5\%$
$R_{23} = 3.9 \text{K}\Omega, 5\%$	$R_{24} = 390\Omega, 5\%$
$R_{25} = 390\Omega, 5\%$	$R_{26} = 39\Omega, 5\%$
$R_{27} = 39\Omega, 5\%$	$R_{28} = 0.39\Omega/3W$
$R_{29}=0.39\Omega/3W$	$R_{30}=0,1\Omega/2W$
$R_{31} = 39K\Omega, 2\%$	

Condensatori

$C_1 = 4.7 \mu F/35 V$	$C_2 = 4.7 \mu F/35 V$
$C_3 = 10\mu F/35V$	$C_4 = 47 \mu F/35 V$
$C_5 = 200 \mu F/35 V$	$C_6 = 200 \mu F/35 V$

Tranzistori

 $T_1 = BC 178B$ $T_2 = BC 178B$

 $T_3 = BD 139$ $T_4 = BC 107A$

 $T_5 = BD 139$ $T_6 = BD 140$

 $T_7 = BDY \ 26 \ (183T2)$ $T_8 = BDY \ 26 \ (183T2)$

 $T_9 = BC \ 107A$ $T_{10} = BC \ 177A$

 $T_{11} = EFT 353$ $T_{12} = EFT 353$

Diode

 $D_1 = PL\ 8V2 \qquad \qquad D_2 \div D_9 = 1N4148$

EC = 27V

Lista componentelor sursei de alimentare

Condensatori

 $C_1 = 6800 \mu F / 63 V$ $C_2 = 6800 \mu F / 63 V$

Transformator monofazat Punte redresoare

 $V_2 = 2 \times 19 V_{ef}$ 20PM1

 $I_2\!=2A$