Solution série 1 SC analyse descriptive

EX1:

On rappelle la formule d'une moyenne mobile d'ordre impair $MM_{2q+1}\left(Y_{t}\right)=\frac{1}{2q+1}\sum_{k=-q}^{q}Y_{t+k}$. exemple: $MM_{3}\left(X_{2}\right)=\frac{1}{3}\times\left(4+6+5\right)=5$, ...etc

Quand on a l'ordre pair 2q, on prend les 2q+1 valeurs et on applique la même formule en multipliant les deux extrémités par 0.5.

exemple $MM_4(X_3) = \frac{1}{4} \times (\frac{4}{2} + 6 + 5 + 3 + \frac{7}{2}) = 4.87$

	-	(- /	4 (2	41
t	X_t	$MM_3(X_t)$	$MM_5\left(X_t ight)$	$MM_4\left(X_t\right)$
1	4			
2	6	5		
3	5	4.66	5	4.87
4	3	5	5. 2	5. 12
5	7	5	4.8	4.87
6	5	5. 33	4.4	4. 75
7	4	4	5	4.62
8	3	4. 33		
9	6			

$\overline{\text{EX2}}$

2-Estimation de la tendance par moindres carrés. Je vous rappelle les formules, on veut trouver la droite d'équation $T_t = at + b$ à partir des X_t .

La méthode des MC nous donne

$$a = \frac{\overline{tX_t} - \overline{tX_t}}{\overline{t^2} - \overline{t}^2}, b = \overline{X_t} - a\overline{t}$$

$\mid t \mid$	1	2	3	4	5	6	7	8	\sum
X_t	0	-1	4	3	4	5	6	5	26
t^2	1	4	9	16	25	36	49	64	204
tX_t	0	-2	12	12	20	30	42	40	154

d'où $\overline{X_t} = 3.25, \overline{t^2} = 25.5, \overline{tX_t} = 19.25$ et $\overline{t} = 4.5$, alors a = 0.88 et b = -0.71. Donc l'équation de la tendance est

$$T_t = 0.88t - 0.71$$

Pour l'estimation des coefficients saisonniers, on complète le tableau suivant

t	X_t	T_t	$X_t - T_t$	S_t		
1	0	0.17	-0.17	0.69	Saison	1
2	-1	1.05	-2.05	-0.69	$ann\'{e}e1$	
3	4	1.93	2.07	0.69	$ann\'{e}e1$ $ann\'{e}e2$	2
4	3	2.81	0.19	-0.69	$ann\'{e}e2$ $ann\'{e}e3$	(
5	4	3.69	0.31	0.69		(
6	5	4.57	0.43	-0.69	année4	
7	6	5.45	0.55	0.69	moy	(
8	5	6.33	-1.33	-0.69		

Saison	1	2
$ann\'ee1$	-0.17	-2.05
$ann\'ee2$	2.07	0.19
$ann\'ee3$	0.31	0.43
$ann\'ee4$	0.55	-1.33
moy	0.69	-0.69

3) Prévision pour l'année suivante c.à.d pour t=9 et $t=10\,$

$$\hat{X}_9 = T_9 + S_9$$

$$= 0.88 \times 9 - 0.71 + S_1$$

$$= 7.21 + 0.69$$

$$= 7.9$$

et $\widehat{X}_{10} = 7.4$.

4) Lissage exponentiel simple: la formule est $\widehat{X}_n(h) = \alpha X_n + (1 - \alpha) \widehat{X}_{n-1}(h)$

, 0						()	10	(, ,,	. , ,
X_t	0	-1	4	3	4	5	6	5		
$LES(\alpha = 0.7)$	0	-0.7	2.59	2.27	3.48	4.54	5.56	5.16	5.16	5.16