

Computer Fundamentals

Dr. Safdar Nawaz Khan Marwat DCSE, UET Peshawar

Lecture 8

Microprocessors

- Microprocessor acts as "brain"
- > Key element of all computers
- > Provides mathematical and decision making ability
- > Current microprocessors contain complex circuits
 - Pentium
 - Athlon
 - □ SPARC
 - □ PowerPC
- > Consist of tens of millions of transistors
- Operate at ultra-fast speeds
 - Over a billion operations per second

Microprocessor (cont.)

- > Microprocessors are powerful but require other components
- > Human brain needs other body parts to be useful
 - ☐ Hands
 - ☐ Feet
 - Eyes
 - □ Ears
 - Mouth
- > Microprocessor system requires
 - **...**

Integrated Circuits

- > Commonly known as IC or chip
- > Tiny piece of silicon with several electronic parts
- > Silicon occupies very little IC volume
 - Most of the size due to pins and packaging
- > Components of IC are very small
 - ☐ Smaller than thickness of a human hair

Integrated Circuits (cont.)

- Devices in ICs
 - □ Transistors
 - Diodes
 - Resistors
 - Capacitors
 - Wires
- > And are made of the following material
 - ☐ Silicon semiconductor
 - ☐ Copper conductor
 - ☐ Silicon Dioxide insulator

Microprocessors (cont.)

- Also known as CPU
 - Central Processing Unit
 - ☐ Control Unit
 - Controls resources in computer
 - Instruction set
 - Arithmetic and Logic Unit
 - Simple math operations
 - o Integer unit
 - Have own registers
 - ☐ Floating-Point Unit
 - Also simple math operations
 - Numeric unit
 - Also have own registers

Building Blocks of Microprocessor

Bus Interface Unit

- > Receives instructions and data from main memory
- > Instructions sent to instruction cache
- Data sent to data cache
- > Also receives processed data and sends to main memory

Instruction Decoder

- > Receives programming instructions
 - □ Reads the next instruction in from memory
- > Decodes instructions for understanding at processing units
 - Sends component pieces of instruction to destinations
- Passes on decoded instruction to ALU or FPU

Arithmetic and Logic Unit (ALU)

- > Also known as "Integer Unit"
- > Performs whole-number math
 - □ Calculations (subtract, multiply, divide etc.)
 - □ Comparisons (is greater than, is smaller than, etc.)
 - □ Logical operations (NOT, OR, AND, etc.)
- > Latest microprocessors have two identical ALU's
 - ☐ Perform calculations simultaneously
 - Double the capability

Arithmetic & Logic Unit (ALU) (cont.)

Operations Performed by the Arithmetic Logic Unit

Arithmetic Operations + add =, ≠ equal to, not equal to - subtract >, > greater than, not greater than × multiply <, < less than, not less than + divide ≥, ≱ greater than or equal to, not greater than or equal to ∧ raise by a power ≤, ≴ less than or equal to, not less than or equal to

Floating-Point Unit (FPU)

- Also known as the "Numeric Unit"
- Performs calculations involving numbers with scientific notation
 - ☐ Floating-point numbers
- > Represents extremely small and extremely large numbers
 - ☐ In compact form
- > Floating-point calculations are required for working in
 - ☐ Graphics
 - Engineering
 - □ Science and research
- ALU can do these calculations as well
 - ☐ But very slowly

Registers

- > ALU and FPU have private memory called registers
- > Register also known as accumulator
 - □ Small amount but super-fast
 - Placed right next to ALU/FPU
 - For exclusive use
- > Storage of intermediate and final results from calculations in registers
- > Processed data goes back to data cache from registers
- > Data cache sends data to main memory

Control Unit

- > Manages the whole microprocessor
- > Directs operation of processor
- > Tells the memory, ALU and I/O devices how to respond to program's instructions
 - ☐ Hold instruction set
- > Tasks include
 - Fetching instructions and data
 - Storing data
 - Managing input/output devices

Instruction Set

- > Set of machine instructions
 - Recognizable at microprocessor
 - Executable at microprocessor
 - ☐ The only language microprocessor knows
- > An instruction set includes low-level, a single step-at-a-time instructions
 - □ E.g. add, subtract, multiply, divide
- > Each microprocessor family has its unique instruction set
- > Bigger instruction-sets mean more complex chips
 - ☐ Higher costs
 - Reduced efficiency
 - □ Shorter programs

Machine Cycles

- > Steps by CPU to process data
- > Instruction cycle
 - □ CPU gets the instruction
 - Fetch
 - Decode

- > Execution cycle
 - ☐ CPU performs the instruction
 - Execute
 - o Store

Machine Cycles (cont.)

- > Fetching
 - □ CU must fetch a command or data from computer's memory.
- > Decoding
 - □ CU break down the commands into instructions
- > Executing
 - ☐ CPU carries out the instructions in order
- > Storing
 - Store results in memory (not always required)

Control Unit breaks the command into instruction set the CPU can handle

Machine Cycles (cont.)

- > Billions of cycles per second
- > Pipelining processes more data
 - □ Begins fetching new instruction before current cycle completed
 - 20 instructions simultaneously
 - ☐ Introduced with Intel Pentium IV

Instr. No.	Pipeline Stage						
1	Fetch	Decode	Execute	Store			
2		Fetch	Decode	Execute	Store		
3			Fetch	Decode	Execute	Store	
4				Fetch	Decode	Execute	Store
5					Fetch	Decode	Execute
Clock Cycle	1	2	3	4	5	6	7

Machine Cycles (cont.)

- Multitasking allows multiple instructions
 - CPU makes threads of programs (thread = instruction)
 - Execute one thread from a program at a time
 - User thinks as if each program is being run simultaneously
- > Hyperthreading allows execution of several threads at once
 - Multiple threads executed at one time
 - □ Processor can execute two (rather than one) concurrent streams (or threads) of instructions
 - CPU and simulated CPU
 - □ Processor uses stall time (waiting for instruction or data fetch from slow memory) and execute another thread

Hyperthreading vs. Standard Modes

