第 12 讲书面作业包括两部分。第一部分为 Lecture 12.pdf 中课后作业题目中的 5 (仅考虑图 31) 和 11 (仅考虑图 33) 题。第二部分为以下题目:

A1. 下图是包含 7 个基本块的流图, 其中 B1 为入口基本块, B7 为出口基本块:

- 1. 指出在该流图中存在的回边,以及该回边所对应的自然循环(即指出循环中所 包含的基本块)。
- 2. 己知基本块 B2 和 B6 入口处的活跃变量(live variables)信息分别为

LiveIn(B2) =
$$\{a,d\}$$
 \emptyset LiveIn(B6) = $\{a,c,d\}$

试计算 LiveIn(B5)=? 并指出在基本块 B4 内第 (7) 条语句之前处的活跃变量信息。

3. 己知基本块 B2 出口处的到达-定值(reaching definitions)信息为

$$Out(B2) = \{1, 2, 4, 5, 8, 11, 13\}$$

试指出在基本块 B4 内第 (8) 条语句使用变量 a 的 UD 链,以及变量 c 的 DU 链。

4. 试从基本块 B4 的 DAG 图,导出一个算术表达式,用来表示结点 c 的计算结果。要求该表达式中的运算数仅包含 DAG 图的叶子结点。(注:基本块入口处活跃变量所对应的叶子结点可表示为a₀, b₀,c₀,...)

参考解答:

如下两张表仅供评阅时参考(答题时并非必需):

	LiveUse	DEF	LiveIn	LiveOut
в1	Ø	{a}	{d}	{a,d}

в2	{a}	{c}	{a,d}	{a,c,d}
в3	{c}	{a}	{c,d}	{a,c,d}
в4	{a}	{b,c,d,e}	{a}	{a,c,d}
в5	{a,d}	Ø	{a,c,d}	{a,c,d}
в6	{a,c}	{e}	{a,c,d}	{c,d}
в7	Ø	Ø	Ø	Ø

	GEN	KILL	IN	OUT
B 1	{1}	Ø	Ø	{1}
B2	{2}	{9}	{1, 2, 4, 5, 8, 9, 11, 13}	{1, 2, 4, 5, 8, 11, 13}
В3	{4}	{1, 14}	{1, 2, 4, 5, 8, 9, 11, 13, 14}	{2, 4, 5, 8, 9, 11, 13}
B4	{5, 7, 8, 9}	{2, 11,13}	{1, 2, 4, 5, 8, 11, 13}	{1, 4, 5, 7, 8, 9}
В5	{11}	{7}	{1, 2, 4, 5, 7, 8, 9, 11, 13}	{1, 2, 4, 5, 8, 9, 11, 13}
В6	{13, 14}	{1,4,8}	{1, 2, 4, 5, 8, 9, 11, 13}	{2, 5, 9, 11, 13, 14}
В7	Ø	Ø	{2, 5, 9, 11, 13, 14}	{2, 5, 9, 11, 13, 14}

- 1. (3分) 该流图中存在唯一的回边 $B5\to B2$, 该回边所对应的自然循环包含基本块 B2, B3, B4, B5和B6。
- (4分) LiveIn(B5) = {a,c,d}。在基本块 B4 内第 (7) 条语句之前处的活跃 变量信息为{a,b}。
- 3. (3分) 在基本块 B4 内第 (8) 条语句使用变量 a 的 UD 链为 $\{1,4\}$, 变量 c 的 DU 链为 $\{4,13,14\}$ 。
 - 4. (3分) $(a_0+2)+4$
 - A2. 给定如下文法 G[S]:

 $(1) S \rightarrow P$

- (2) $P \rightarrow PP \land$
- $(3) P \rightarrow PP \vee$
- $(4) P \rightarrow P \neg$
- (5) $P \rightarrow id$

其中, A、V、A 分别代表逻辑与、或、非等运算符单词, id 代表标识符单词。

文法 G[S] 可用于识别后缀形式 (逆波兰式) 的命题表达式。输入串 $ab \neg \wedge ab$ $c \wedge \vee a \neg cb \wedge \vee \vee \vee$ 对应于中缀式 $a \wedge \neg b \vee ((a \vee b \wedge c) \vee (\neg a \vee (c \wedge b))$, 以下是该命题表达式对应的表达式树:

假设在一个简单的基于寄存器的机器 M 上进行表达式求值,除了load/store指令用于寄存器值的装入和保存外,其余操作均由下列格式的指令完成:

OP reg0, reg1, reg2

OP reg0, reg1

其中, reg0, reg1, reg2处可以是任意的寄存器, OP 为运算符。运行这些指令时, 对reg1和reg2的值做二元运算,或者对reg1的值做一元运算,结果存入reg0。对于load/store指令,假设其格式为:

LD reg, mem /* 取内存或立即数 mem 的值到寄存器 reg */

ST reg, mem /* 存寄存器 reg 的值到内存量 mem */

我们假设M机器指令中,逻辑运算 ^、v、¬ 分别用助记符 AND、OR、NOT 表示。

试说明,为上述表达式树生成机器 M 指令序列时,需要寄存器书目的最小值 n =? 假设这些寄存器分别用助记符 R_0 , R_1 , ..., 和 R_{n-1} 表示,试采用课程中所介绍的方法生成该命题表达式的目标代码(仅含指令AND、OR、NOT、LD和ST,以及仅用寄存器 R_0 , R_1 , ..., 和 R_{n-1})。(给出算法执行结果即可,不必进行目标代码优化)

参考解答:

n = 3°

假设这些寄存器分别用 R_0 , R_1 , 和 R_2 表示,生成该命题表达式的目标代码如下:

LD R0, b

LD R1, c

AND R0, R0, R1

LD R1, a

OR R0, R1, R0

LD R1, c

LD R2, b

AND R1, R1, R2

LD R2, a

NOT R2, R2

OR R1, R2, R1

OR R0, R1, R0

LD R1, a

LD R2, b

NOT R2, R2

AND R1, R1, R2

OR R0, R1, R0

.....

以下是 Lecture 12 文档中的题目

•••••

- 5. 分别对图31和图32的流图:
 - (1) 求出流图中各结点n的支配结点集D(n);
 - (2) 求出流图中的回边;
 - (3) 求出流图中的循环。

图31

图32

参考解答:对于图 31 的流图

(1) 流图中各结点的支配结点集;

$$D(B_1) = \{B_1\}$$

$$D(B_2) = \{B_1, B_2\}$$

$$D(B_3) = \{B_1, B_2, B_3\}$$

$$D(B_4) = \{B_1, B_2, B_3, B_4\}$$

$$D(B_5) = \{B_1, B_2, B_3, B_5\}$$

$$D(B_6) = \{B_1, B_2, B_3, B_6\}$$

$$D(B_7) = \{B_1, B_2, B_7\}$$

$$D(B_8) = \{B_1, B_2, B_7, B_8\}$$

(2) 求出流图中的回边:

 $(B_7 \rightarrow B_2)$

(3) 流图中的循环: 只有对应($B_7 \rightarrow B_2$)的循环

 B_2 , B_3 , B_4 , B_5 , B_6 , B_7

11. 对于图32和图33中的流图,分别给出相应的寄存器相干图。若要保证图着色过程中不会出现将寄存器泄漏到内存中的情形,那么可供分配的物理寄存器的最小数目分别是多少?。

参考解答:对于图 33 的流图,寄存器相干图为

若要保证图着色过程中不会出现将寄存器泄漏到内存中的情形,那么可供分配的物理寄存器的最小数目是4。