Linear Regression

2018년 5월 21일 월요일

https://blog.naver.com/joyfull1

Jaegul Joo - 고려대 교수

집의 크기와 가격의 상관 관계, 단순히 2가지 요소로 여태 쌓인 데이터를 가지고.

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Classification: Discrete-valuel output

Regression: Y or N

이번에는 그냥 실수 값 기준으로.

Training set of
housing prices
(Portland, OR)

Size in feet ² (x)	Price (\$) in 1000's (y)	
-> 2104	460	
1416	232	M=47
 1534	315	
852	178	1
•• <u>•</u>		J
C	~	

Notation:

m = Number of training examples

$$\mathbf{x}'s = \text{"input" variable / features}$$
 $\mathbf{y}'s = \text{"output" variable / "target" variable}$
 $(x,y) - \text{one training example}$
 $(x,y) - \text{one training example}$
 $(x,y) - \text{one training example}$
 $(x,y) - \text{one training example}$

Feature x, y

How do we represent h?
$$h_{a}(x) = \Theta_{b} + \Theta_{b} \times$$

Linear model 이라고 가정

Cost function

=Loss , Objective Function, J(x)

 $\frac{1}{\sqrt{\frac{1}{2m}}} = \frac{1}{\sqrt{\frac{1}{2m}}} = \frac{1}$

Idea: Choose $\underline{\theta_0},\underline{\theta_1}$ so that $\underline{h_{\theta}(x)}$ is close to \underline{y} for our training examples $\underline{(x,y)}$

Miximize J (00,01)

Oo,01

Cost function

Queed error faction

★ , 4
 Train data 로 도출된 그래프와

Test data 를 통하여 cost function 식을 통해 나온 값이 최소가 되도록 변수를 조정한다. (통계학)절대값 대신 제곱을 이용하는 이유는 값이 차이가 큰 상태의 가중치를 많이 주기 위해서 식에 대한 구간의 범위를 나눌 필요도 없고 계산이 편리해서 제곱을 사용한다. M은 평균을 구하기 위해서 2는 미분 할 때 발생하는 값을 제거하기위해.

(2차식 미분 ->2*)

Y=x 를 따르는 데이터라 할 때 결과 값, 그래프

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$

Bias 추가, 입력 ->vector(조합 a,b)

A, B 조합의 에러 Z 축에 찍어서 나타난 모양.

등고선 모형으로 위에서 값을 바라 봤을 때 높이를 표현.

Linear regression with one variable

Gradient descent

가장 낮은 값에 도달 하는 방법.

-> 초기값에서 부터 주변 미분 값 중에 가장 큰 지점을 찾아 간다.

초기값이 다른 점에서 시작하면 다른 값에 수렴 할 수도 있다. but 다른 값이 더 낮은 rate를 가지고 있다. -> Local minimal 문제 발생 근본적인 문제. (그렇게 큰 문제는 아니다.)

편미분을 통해서 x,y 축 방향 각각의 방향을 정한다.

기울기 값이 큼에 따라 이동하는 방향으로 얼마나 갈지 정해진다.

기울기가 가파를 수록 많이 간다.(극점이 멀다), 완만할 수록 (극점이 가깝다). 기울기 음수 -> + 방향, 양수 -> -방향 , so '-'를 붙여 준다. Learning rate (알파) 값이 너무 낮으면 연산 수가 많아진다.

 $J(\theta_0, \theta_1)$ $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 600 0.3 Price \$ (in 1000s) 300 200 500 0.1 -0.1-0.2-0.3 100 Training data -0.4 Current hypothesis 1000 2000 4000 -0.5 -1000 500 1000 1500 Size (feet²)

Machine Learning

Linear Regression with multiple variables

Andrew I

Multiple features

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
× 1	×s	×3	*4	9	
2104	5	1	45	460 7	
1416	3	2	40	232 - M= 47	
1534	3	2	30	315	
852	2	1	36	178	
] / 51	
Notation:	*	*	1	$\chi^{(2)} = \begin{bmatrix} 1416 \\ 3 \end{bmatrix}$	
$\rightarrow n$ = number of features $n=4$					
$\rightarrow x^{(i)}$ = input (features) of i^{th} training example.					
$\rightarrow x_j^{(i)}$ = value of feature j in i^{th} training example. \checkmark 3 = 2					

Hypothesis:

ypotnesis:
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{3}x_{4} + \theta_{4}x_{4}$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}(x) + \theta_{2}(x) + \theta_{3}(x) + \theta_{3}(x)$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}(x) + \theta_{2}(x) + \theta_{3}(x)$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}(x) + \theta_{1}(x)$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}(x) + \theta_{2}(x)$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}(x) + \theta_{2}(x)$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}(x)$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}(x) + \theta_{2}(x)$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}(x)$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}(x)$$

$$\theta_{0}(x) = \theta_{0}(x) + \theta_{1}(x)$$

For convenience of notation, define
$$x_0 = 1$$
. [$(x_0) = 1$]

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_n \end{bmatrix} \in \mathbb{R}^{m_1} \qquad 0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_2 \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_2 \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_2 \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_2 \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_2 \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_2 \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_2 \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_2 \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_1 \\ x_n \end{bmatrix}$$

Multivariate linear regression.

Col Vector 로 정의하고 필요할때 Transpose 한다.

Gradient descent for multiple variables

$$Y = aX1 + bX2 + c;$$

$$F(a,b,c) = 1/2m ((a+2b+c-3)^2 + (2a+5b+c)^2)$$

df/da = 1/2m (2(a+2b+c-3)*1 +.... (편미분 하는 법)

X1	X2	Υ
1	2	3
2	5	4

예측치와 실측치와의 차이가 미분 값에 들어간다.

미분하면 (미분 상수)*(예측치-실측치)*(편미분 인자의 값), 들의 합의 평균으로 구하게 된다. C로 미분한 값은 (예측치-실측치)들의 합이 양수면 C를 낮추게 된다, 음수면 C의 값을 증가시킨다. (편미분 인자의 값)은 배수 값에 해당 된다.

내적 계산을 통해서 한방에 값을 구할 수 있다.

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters:
$$\theta_0, \theta_1, \dots, \theta_n$$

$$\frac{J(\theta_0, \theta_1, \dots, \theta_n)}{\preceq(\bullet)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

새 섹션 1 페이지 8

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

상황에 따라서 위와 같이 여러개의 미분 값을 구해야 할 수도 있다.

Linear Regression with multiple variables

Gradient descent in practice I: Feature Scaling

Examples: m=4.

Hypothesis using matrix

$$w_1x_1 + w_2x_2 + w_3x_3 + \dots + w_nx_n$$

$$\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \\ x_{41} & x_{42} & x_{43} \\ x_{51} & x_{52} & x_{53} \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} x_{11}w_1 + x_{12}w_2 + x_{13}w_3 \\ x_{21}w_1 + x_{22}w_2 + x_{23}w_3 \\ x_{31}w_1 + x_{32}w_2 + x_{33}w_3 \\ x_{41}w_1 + x_{42}w_2 + x_{43}w_3 \\ x_{51}w_1 + x_{52}w_2 + x_{53}w_3 \end{pmatrix}$$

$$H(X) = XW$$

$$\begin{pmatrix}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33} \\
x_{41} & x_{42} & x_{43} \\
x_{51} & x_{52} & x_{53}
\end{pmatrix}
\cdot
\begin{pmatrix}
w_1 \\
w_2 \\
w_3
\end{pmatrix} =
\begin{pmatrix}
x_{11}w_1 + x_{12}w_2 + x_{13}w_3 \\
x_{21}w_1 + x_{22}w_2 + x_{23}w_3 \\
x_{31}w_1 + x_{32}w_2 + x_{33}w_3 \\
x_{41}w_1 + x_{42}w_2 + x_{43}w_3 \\
x_{51}w_1 + x_{52}w_2 + x_{53}w_3
\end{pmatrix}$$

[5, 3] [3, 1] [5, 1]
$$H(X) = XW$$