ME 8253 Spring 2023 Homework #2

Due Date: Monday February 27th, 2023

Please submit your homework through CANVAS as a PDF file. For all problems with calculation, present all calculation details.

Problem 1 (20 points)

Fatigue testing can take an appreciable amount of time. Calculate the number of hours, days, or weeks it would take to apply 10⁶, 10⁷, and 10⁸ cycles for test frequencies of

- (a) 1 Hz (approximate speed of Wöhler's original work). One of Wohler's tests ran for 1.3 x 10⁸ cycles. How long did the test run?
- (b) 30 Hz (speed of many common test machines).
- (c) 150 Hz (speed of some rotating beam test machines).
- (d) 20 kHz, but calculate the time for 10^8 , 10^9 , and 10^{10} cycles.

Problem 2 (40 points)

An as-forged 2 in. diameter 1040 steel rod has an ultimate tensile strength S_u of 100 ksi and a yield strength S_y of 75 ksi and is subjected to constant amplitude cyclic bending. Determine the following using appropriate approximation models:

- (a) the fully reversed fatigue strength at 10^6 cycles,
- (b) S_a and S_m for 10^6 cycles if R = -0.2, and
- (c) S_a and S_m for 10^4 cycles if R = +0.2
- (d) Plot the Constant Life Diagram for (a) and (b). Use the yield strength S_y value for S_y' . Plot the constant stress ratio lines on the diagram.

Problem 3 (40 points)

- (a) Repeat Problem (a)-(d) but with the small as-forged surface thickness machined off.
- (b) Comment on the effect of removing the as-forged surface thickness on fatigue resistance.