ALG2 - 7. cvičení

- 1) Určete charakteristiky okruhů Z2, Z3, Z5, Z6, Z8.
- 2) Nechť $(J, +, \cdot)$ je oborem integrity. Dokažte, že relace asociovanosti || je relací ekvivalence na J.
- 3) Dokažte, že v okruhu (\mathbb{Z} , +, ·) je rovnice ax+by=c řešitelná právě tehdy, když D(a, b) | c.

d

d

- **4)** V okruhu (\mathbb{Z} , +, ·) dokažte:
 - a) $6|(a^3+11a)$ pro všechna $a \in \mathbb{Z}$
 - b) 4a+3 není mocninou žádného čísla ze \mathbb{Z} pro žádné a $\in \mathbb{Z}$
 - c) Pokud $2 \nmid a$, $3 \nmid a$, pak $24 \mid (a^2 1)$
- **5)** Necht' I je obor integrity; a, b, c, $d \in I$. Dokažte, že:
 - a) Pro $c \neq 0$ platí: je-li ac | bc, pak a | b.
 - b) Je-li a || b, c || d, pak ac || bd, ale obecně neplatí (a+c) || (b+d).
 - c) Pro a \neq 0 platí: je-li a || b, ac || bd, pak c || d.
- **6)** Dokažte, že $(\mathbb{Z}, +, \cdot)$ je obor integrity hlavních ideálů.
- 7) Určete všechny hlavní ideály v okruzích \mathbb{Z}_4 , \mathbb{Z}_6 , \mathbb{Z}_{10} .
- 8) Určete, zda jsou okruhy P, P' izomorfní:

P:	+	a	b	C	d	•	a	b
	a	a	b	C	d	a	a	a
	b	b	a	d	C	b	a	b
	C	C	d	a	b	C	а	C
	d	d	C	b	d d c b	d	a a a a	d
P':	+	P	q	r	g p	$\frac{\cdot}{p}$	p	q
	P	r	S	p	q	p	S	p
	a	S	r	a	p	a	p	a

- **9)** Necht' I je obor integrity, a, $b \in I$. Dokažte, že:
 - a) $a \mid b \Leftrightarrow [b] \subseteq [a]$
 - b) $a \mid\mid b \Leftrightarrow [b] = [a]$
- 10) Ověřte, že jestli je J eukleidovským oborem integrity a a, $b \in J$, pak existují čísla c, $d \in J$ tak, že D(a, b) = ac + bd.
- 11) Nalezněte největšího společného dělitele čísel 1152 a 648.
- 12) Nalezněte nejmenší společný násobek čísel 326 a -896.
- **13)** Pomocí Eukleidova algoritmu nalezněte největší společný dělitel čísel 440895 a 332640.