- T. Nelson.

CSE341 Programming Languages

Lecture 11 – December 17, 2015 Prolog

© 2012 Yakup Genç

SWI-Prolog

- http://www.swi-prolog.org/
- Available for:

Linux, Windows, MacOS

Prolog

- Prolog:
 "Programming in Logic" (PROgrammation en LOgique)
- One (and maybe the only one) successful logic programming languages
- Useful in Al applications, expert systems, natural language processing, database query languages
- Declarative instead of procedural: "What" instead of "How"

Logic Programming

Program

Axioms (facts): true statements

Input to Program
 query (goal): statement true (theorems) or false?

Thus
 Logic programming systems = deductive databases
 datalog

Example

Axioms:

0 is a natural number. (Facts)
For all x, if x is a natural number, then so is the successor of x.

• Query (goal).

Is 2 natural number? (can be proved by facts)

Is -1 a natural number? (cannot be proved)

Another Example

Axioms:

The factorial of 0 is 1. (Facts)

If m is the factorial of n - 1, then n * m is the factorial of n.

Query:

The factorial of 2 is 3?

First-Order Predicate Calculus

Logic used in logic programming:

First-order predicate calculus

First-order predicate logic

Predicate logic

First-order logic

$$\forall x (x \neq x+1)$$

Second-order logic

$$\forall S \ \forall \ x \ (x \in S \lor x \notin S)$$

First-Order Logic: Review

Slides from Tuomas Sandholm of CMU

First-order Logic

- First-order logic (FOL) models the world in terms of
 - Objects, which are things with individual identities
 - Properties of objects that distinguish them from other objects
 - Relations that hold among sets of objects
 - Functions, which are a subset of relations where there is only one "value" for any given "input"

Examples:

- Objects: Students, lectures, companies, cars ...
- Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
- Properties: blue, oval, even, large, ...
- Functions: father-of, best-friend, second-half, one-more-than ...

User Provides

- Constant symbols, which represent individuals in the world
 - Mary
 - **–** 3
 - Green
- Function symbols, which map individuals to individuals
 - father-of(Mary) = John
 - color-of(Sky) = Blue
- Predicate symbols, which map individuals to truth values
 - greater(5,3)
 - green(Grass)
 - color(Grass, Green)

FOL Provides

Variable symbols

– E.g., x, y, foo

Connectives

– Same as in PL: not (¬), and (∧), or (∨), implies (→), if and only if (biconditional \leftrightarrow)

Quantifiers

- Universal $\forall x$ or (Ax)
- Existential ∃x or (Ex)

Sentences built from Terms and Atoms

• A **term** (denoting a real-world individual) is a constant symbol, a variable symbol, or an n-place function of n terms.

x and $f(x_1, ..., x_n)$ are terms, where each x_i is a term.

A term with no variables is a ground term

- An atomic sentence (which has value true or false) is an nplace predicate of n terms
- A complex sentence is formed from atomic sentences connected by the logical connectives:

 $\neg P$, $P \lor Q$, $P \land Q$, $P \rightarrow Q$, $P \leftrightarrow Q$ where P and Q are sentences

- A quantified sentence adds quantifiers ∀ and ∃
- A well-formed formula (wff) is a sentence containing no "free" variables. That is, all variables are "bound" by universal or existential quantifiers.

 $(\forall x)P(x,y)$ has x bound as a universally quantified variable, but y is free.

A BNF for FOL

```
S := \langle Sentence \rangle;
<Sentence> := <AtomicSentence> |
          <Sentence> <Connective> <Sentence> |
          <Quantifier> <Variable>,... <Sentence> |
          "NOT" <Sentence> |
          "(" <Sentence> ")";
<AtomicSentence> := <Predicate> "(" <Term>, ... ")" |
                    <Term> "=" <Term>;
<Term> := <Function> "(" <Term>, ... ")" |
          <Constant> |
          <Variable>;
<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT";
<Quantifier> := "EXISTS" | "FORALL" ;
<Constant> := "A" | "X1" | "John" | ... ;
<Variable> := "a" | "x" | "s" | ... ;
<Predicate> := "Before" | "HasColor" | "Raining" | ... ;
<Function> := "Mother" | "LeftLegOf" | ... ;
```

Quantifiers

Universal quantification

- $(\forall x)P(x)$ means that P holds for **all** values of x in the domain associated with that variable
- E.g., $(\forall x)$ dolphin(x) \rightarrow mammal(x)

Existential quantification

- (∃ x)P(x) means that P holds for some value of x in the domain associated with that variable
- E.g., ($\exists x$) mammal(x) ∧ lays-eggs(x)
- Permits one to make a statement about some object without naming it

Translating English to FOL

Every gardener likes the sun.

 $\forall x \text{ gardener}(x) \rightarrow \text{likes}(x,\text{Sun})$

You can fool some of the people all of the time.

 $\exists x \ \forall t \ person(x) \land time(t) \rightarrow can-fool(x,t)$

You can fool all of the people some of the time.

 $\forall x \exists t (person(x) \rightarrow time(t) \land can-fool(x,t))$ $\forall x (person(x) \rightarrow \exists t (time(t) \land can-fool(x,t))$ Equivalent

All purple mushrooms are poisonous.

 $\forall x \text{ (mushroom(x)} \land \text{purple(x))} \rightarrow \text{poisonous(x)}$

No purple mushroom is poisonous.

 $\neg \exists x \ purple(x) \land mushroom(x) \land poisonous(x)$ $\forall x \ (mushroom(x) \land purple(x)) \rightarrow \neg poisonous(x)$ Equivalent

There are exactly two purple mushrooms.

 $\exists x \exists y \; mushroom(x) \land purple(x) \land mushroom(y) \land purple(y) \land \neg(x=y) \land \forall z \ (mushroom(z) \land purple(z)) \rightarrow ((x=z) \lor (y=z))$

Clinton is not tall.

¬tall(Clinton)

First-Order Predicate Calculus: Example

```
natural(0)
    \forall X, natural(X) \rightarrow natural(successor(x))
• \forall X \text{ and } Y, \text{ parent}(X,Y) \rightarrow \text{ancestor}(X,Y).
   \forall A, B, and C, ancestor (A,B) and ancestor (B,C) \rightarrow
   ancestor (A, C).
    \forall X \text{ and } Y, \text{ mother}(X,Y) \rightarrow \text{parent}(X,Y).
    \forall X \text{ and } Y, father (X,Y) \rightarrow \text{parent}(X,Y).
   father (bill, jill).
   mother (jill, sam).
   father (bob, sam).
```

Dec 17, 2015 CSE341 Lecture 11 21

 \forall N and M, factorial (N-1,M) \rightarrow factorial (N,N*M).

• factorial(0,1).

First-Order Predicate Calculus: Statements

Symbols in statements:

- Constants (a.k.a. atoms)
 numbers (e.g., 0) or names (e.g., bill).
- Predicates
 Boolean functions (true/false). Can have arguments. (e.g. parent (X, Y)).
- Functions
 non-Boolean functions (successor (X)).
- Variablese.g., X.
- Connectives (operations)

```
and, or, not implication (\rightarrow):a\rightarrow b (b \text{ or not } a) equivalence (\leftrightarrow):a\leftrightarrow b (a\rightarrow b \text{ and } b\rightarrow a)
```

First-Order Predicate Calculus: Statements

Quantifiers

```
universal quantifier "for all" ∀
existential quantifier "there exists" ∃
bound variable (a variable introduced by a quantifier)
free variable
```

Punctuation symbols

```
parentheses (for changing associativity and precedence.) comma period
```

- Arguments to predicates and functions can only be terms:
 - Contain constants, variables, and functions.
 - Cannot have predicates, qualifiers, or connectives.

Problem Solving

- Program = Data + Algorithms
- Program = Object.Message(Object)
- Program = Functions Functions
- Algorithm = Logic + Control

Programmers: facts/axioms/statements

Logic programming systems: prove goals from axioms

- We specify the logic itself, the system proves.
 - Not totally realized by logic programming languages. Programmers must be aware of how the system proves, in order to write efficient, or even correct programs.
- Prove goals from facts:
 - Resolution and Unification

Proving things

- A proof is a sequence of sentences, where each sentence is either a premise or a sentence derived from earlier sentences in the proof by one of the rules of inference.
- The last sentence is the **theorem** (also called goal or query) that we want to prove.
- Example for the "weather problem"

1 Hu	Premise	"It is humid"
2 Hu→Ho	Premise	"If it is humid, it is hot"
3 Но	Modus Ponens(1,2)	"It is hot"
4 (Ho∧Hu)→R	Premise	"If it's hot & humid, it's raining"
5 Ho∧Hu	And Introduction(1,3)	"It is hot and humid"
6 R	Modus Ponens(4,5)	"It is raining"

D5c 17, 2015 CSE341 Lecture 11

Horn Clause

- First-order logic too complicated for an effective logic programming system.
- Horn Clause: a fragment of first-order logic

- Variables in head: universally quantified
 Variables in body only: existentially quantified
- Need "or" in head? Multiple clauses

• First-Order Logic:

```
natural(0). \forall X, natural(X) \rightarrow natural(successor(x)).
```


Horn Clause:

```
natural(0).

natural(successor(x)) \leftarrow natural(X).
```

First-Order Logic:

```
factorial(0,1). \forall N and \forall M, factorial(N-1,M) \rightarrow factorial(N,N*M).
```


Horn Clause:

```
factorial (0,1).
factorial (N,N*M) \leftarrow factorial (N-1,M).
```

Horn Clause:

```
ancestor(X,Y) \leftarrow parent(X,Y).

ancestor(A,C) \leftarrow ancestor(A,B) and ancestor(B,C).

parent(X,Y) \leftarrow mother(X,Y).

parent(X,Y) \leftarrow father(X,Y).

father(bill,jill).

mother(jill,sam).

father(bob,sam).
```

First-Order Logic:

 \forall X, mammal(X) \rightarrow legs(X,2) or legs(X,4).

Horn Clause:

 $legs(X, 4) \leftarrow mammal(X)$ and not legs(X, 2).

 $legs(X,2) \leftarrow mammal(X)$ and not legs(X,4).

Prolog syntax

```
• :- for ←
  , for and
   ancestor (X,Y): - parent (X,Y).
   ancestor (X,Y): - ancestor (X,Z), ancestor (Z,Y).
   parent (X,Y) := mother(X,Y).
   parent (X,Y): - father (X,Y).
   father (bill, jill).
   mother (jill, sam).
   father (bob, sam).
```

Prolog BNF Grammar

```
clause list> <query> | <query>
<clause list> ::= <clause> | <clause list> <clause>
<clause> ::= clause> ::= clause> :- 
<predicate list> ::= <predicate> | <predicate list> , <predicate>
< <atom> ( <term list> )
<term list> ::= <term> | <term list> , <term>
<term> ::= <numeral> | <atom> | <variable> | <structure>
<structure> ::= <atom> ( <term list> )
<query> ::= ?- credicate list>.
<atom> ::= <small atom> | ' <string> '
<small atom> ::= <lowercase letter> | <small atom> <character>
<variable> ::= <uppercase letter> | <variable> <character>
<lowercase letter> ::= a | b | c | ... | x | y | z
<up><uppercase letter> ::= A | B | C | ... | X | Y | Z |
<numeral> ::= <digit> | <numeral> <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<character> ::= <lowercase letter> | <uppercase letter> |
                     <digit> | <special>
<special> ::= + | - | * | / | \ | ^ | ~ | : | . | ? | | # | $ | &
<string> ::= <character> | <string> <character>
```

Resolution and Unification

Resolution

 Resolution: Using a clause, replace its head in the second clause by its body, if they "match".

```
• a \leftarrow a_1, ..., a_n.

b \leftarrow b_1, ..., b_i, ..., b_m.

if b_i matches a;

b \leftarrow b_1, ..., a_1, ..., a_n, ..., b_m.
```

Resolution: Another view

 Resolution: Combine two clauses, and cancel matching statements on both sides.

```
• a \leftarrow a_1, ..., a_n.

b \leftarrow b_1, ..., b_i, ..., b_m.

a_1, b \leftarrow a_1, ..., a_n, b_1, ..., b_i, ..., b_m.
```

Problem solving in logic programming systems

Program:

Statements/Facts (clauses).

Goals:

Headless clauses, with a list of subgoals.

Problem solving by resolution:

- Matching subgoals with the heads in the facts, and replacing the subgoals by the corresponding bodies.
- Cancelling matching statements.
- Recursively do this, till we eliminate all goals. (Thus original goals proved.)

Example

• Program:

```
mammal(human).
```

• Goal:

```
\leftarrow mammal(human).
```

• Proving:

```
mammal(human) ← mammal(human).
     ←.
```

Example

• Program:

```
legs(X,2) \leftarrow mammal(X), arms(X,2).
legs(X,4) \leftarrow mammal(X), arms(X,0).
mammal(horse).
arms(horse,0).
```

Goal:

```
\leftarrow legs (horse, 4).
```

• Proving: ?

Unification

- Unification: Pattern matching to make statements identical (when there are variables).
- Set variables equal to patterns: instantiated.
- In previous example:

legs(X,4) and legs(horse,4) are unified.

(X is instantiated with horse.)

Unification: Example

Euclid's algorithm for greatest common divisor

• Program:

```
gcd(U, 0, U).

gcd(U, V, W) \leftarrow not zero(V), gcd(V, U mod V, W).
```

Goals:

```
\leftarrow \gcd(15,10,X).
```

Unification: Example

```
gcd(U,0,U).
    gcd(U,V,W) ← not zero(V), gcd(V, U mod V, W).
1. gcd(15,10,X) does not match the first clause...
2. gcd(15,10,X) matches the second clause
1. ← not zero(10), gcd(10, 15 mod 10, X)
2. ← gcd(10, 5, X)
3. ← not zero(5), gcd(5, 10 mod 5, X)
4. ← gcd(5, 0, X)
```

Things unspecified

- The order to resolve subgoals.
- The order to use clauses to resolve subgoals.
- Possible to implement systems that don't depend on the order, but too inefficient.
- Thus programmers must know the orders used by the language implementations. (Search Strategies)

Example

• Program:

```
ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).
ancestor(X,Y) :- parent(X,Y).
parent(X,Y) :- mother(X,Y).
parent(X,Y) :- father(X,Y).
father(bill,jill).
mother(jill,sam).
father(bob,sam).
```

Goals:

```
← ancestor(bill, sam).
← ancestor(X, bob).
```

Prolog Search Strategy

- Applies resolution in strictly linear fashion
 - Replacing goals left to right
 - Considering clauses top to bottom order
 - → A depth-first search on a tree of possible choices...

Prolog Search Strategy

```
    ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).
    ancestor(X, X).
```

(3) parent (amy, bob).

Prolog Loops and Controls...

```
?- printpieces([1, 2]).

[][1,2]

[1][2]

[1,2] []

no
```

Backtracking...

Prolog Loops and Controls...

- num(0).
- (2) num(X) :- num(Y), X is Y + 1.

