1 Motion on straight line

	Law		Formula		
Displacement	Displacement		$\Delta x = x_1 - x_2$		
Speed and Velocity		Law		Formula	
		Average Speed			$s_{avg} = \frac{distance_{Tot}}{\Delta t}$
		Average Velocity			$v_{avg} = \frac{x_2 - x_1}{t_2 - t_1}$
		Instantaneous Velocity		7	$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$
Law				Formula	
Acceleration	Average Acceleration				$a_{avg} = \frac{\Delta v}{\Delta t}$
	Instantaneous Acceleration				$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$

	Law	Formula
	Missing Δx	$v = v_0 + at$
	Missing v	$x - x_0 = v_0 t + \frac{1}{2} a t^2$
Constant Acceleration	Missing t	$v^2 = v_0^2 + 2a(x - x_0)$
	Missing a	$x - x_0 = \frac{1}{2}(v_0 + v)t$
	Missing v ₀	$x - x_0 = vt - \frac{1}{2}at^2$