EXAMEN ADMITERE INFORMATICĂ – iulie 2013

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

Subjectul I (30 puncte)

- a) Ce înțelegeți prin *complexitate* a unui algoritm? Dați câte un exemplu sugestiv de algoritm (împreună cu complexitatea lui) pentru *complexitate ca durată de executare* (timp) și *complexitate ca spațiu de memorie utilizat*.
- b) Definiți noțiunea de subprogram de tip funcție. Dați un exemplu sugestiv de definire și apel într-un limbaj de programare.
- c) Definiți șirul lui Fibonacci și scrieți un algoritm pentru determinarea elementului de pe poziția *k* din șirul lui Fibonacci. Nu se vor folosi tablouri pentru memorarea elementelor șirului.

Subjectul II (30 puncte)

Se dă următorul algoritm:

```
Citeste n;
Citeste v;
Pentru i←1,n-1 executa
  d ←v:
  Citeste a:
  Daca a≠0 atunci
    gasit←fals;
    Cattimp (d≤v·a) si (¬ gasit) executa
     Daca ([d/a] ·a=d) si ([d/v] ·v=d) atunci
        gasit ← adevarat
     altfel
        d ←d+1;
     SfDaca;
   SfCattimp;
  SfDaca;
  v \leftarrow d;
SfPentru;
Tipareste v;
```

Se cere:

- a) Ce se va afișa dacă se citesc valorile:
 - 5, 8, 24, 16, 64, 192?
- b) Determinați un set de date de intrare nenule care să înceapă cu valoarea 4 astfel încât valoarea afișată să fie egală cu 1002.
- c) Determinați un set de date de intrare nenule care să înceapă cu valorile 3 și 25 astfel încât valoarea afișată să fie egală cu 225.

Observație. Prin "¬" s-a notat operatorul logic NOT (negația logică).

Subjectul III (30 puncte)

Se citește un șir X de n numere naturale pozitive, citirea șirului terminându-se la introducerea valorii 0. (Exemplu: dacă valorile introduse sunt 1, 2, 3, 0 atunci șirul citit va fi $X = (x_1 = 1, x_2 = 2, x_3 = 3)$, iar lungimea șirului citit va fi n = 3), unde $1 \le n \le 500$, $1 \le x_i \le 10000$. Să se scrie un program care construiește și afișează șirul $Y = ((y_1, f_1), (y_2, f_2), ..., (y_k, f_k))$ unde

- $y_1, y_2, ... y_k$ reprezintă, în ordine crescătoare, numerele distincte din șirul X cu proprietatea că suma cifrelor fiecărui număr y_i ($\forall i, 1 \le i \le k$) este un număr prim.
- f_i ($\forall i, 1 \le i \le k$) reprezintă numărul de apariții a valorii y_i în șirul X.

Şirul Y se va construi direct ordonat (după valorile y_i), fără a se face ordonarea după construcție.

Se vor scrie:

- a). Subprogram pentru citirea unui sir.
- b). Subprogram pentru verificarea dacă un număr este prim.
- c). Subprogram pentru determinarea sumei cifrelor unui număr.
- d). Subprogram pentru inserarea în șirul Y a unei valori cu proprietatea cerută.
- e). Subprogram pentru construirea șirului Y.
- f). Subprogram pentru tipărirea unui șir.
- g). Programul principal.

Exemple:

- Pentru şirul X = (142, 13, 89, 21, 91, 11, 8, 142, 21) se obţine Y = ((11, 1), (21, 2), (89, 1), (142, 2)).
- Pentru şirul X = (6, 15, 103) se va tipări mesajul 'Sirul Y este vid'.

Programul se poate scrie într-unul dintre limbajele studiate la liceu (Pascal, C++ etc). Folosiți comentarii pentru a ușura înțelegerea soluției date (explicarea semnificației identificatorilor folosiți, descrierea detaliilor de implementare etc).

UNIVERSITATEA BABEȘ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ

EXAMEN ADMITERE – iulie 2013 INFORMATICĂ

BAREM

Corectare INFORMATICĂ

SUBIECT I

a) 8p din care	
- complexitate durata de executare	2p
- complexitate <i>spațiu de memorare</i>	2p
- fiecare exemplu	2p
b) 10p din care	-
- notiunea de subprogram de tip funcție	5p
- exemplu definire	3p
- exemplu apel	2p
c) 12p din care	•
– definire şir Fibonacci	3 p
– algoritm	9p
(pentru soluție cu tablou se acordă maxim 4p)	•
· 17	

SUBIECT II

a) Se afiseaza valoarea 192.	4 p
justificare	4 p
b) 4 1002 1002 1002 1002	6р
justificare	5p
c) 3 25 9 15	6 p
justificare	5p

SUBIECT III

a). Subprogram pentru citirea unui șir	3 p
b). Subprogram pentru verificarea dacă un număr este prim	4 p
c). Subprogram pentru determinarea sumei cifrelor unui număr	4 p
d). Subprogram pentru inserarea în șirul <i>Y</i> a unei valori cu proprietatea cerută	6р
e). Subprogram pentru construirea şirului <i>Y</i>	3 p
f). Subprogram pentru tipărirea unui șir	3р
g). Program principal	2p
Stil	5 p

 comentarii, structurare, indentare, folosirea subprogramelor, apelul corect al subprogramelor, comunicarea între subprograme şi programul apelant prin parametri.

Comisia de admitere