Lecture 3:

Camera pose

Recall from last time... Challenges in Visual Recognition

Background clutter

Recall from last time... data-driven approach, kNN

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 4 11 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 1

11 Jan 2016

11 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 3

11 Jan 2016

Recall from last time... Linear classifier

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 5

-8.87 6.04 0.09 5.31 2.9 -4.22 4.48 -4.19 8.02 3.58 3.78 4.49 1.06 -4.37 -0.36 -2.09 -0.72 -2.93

-3.45

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

Recall from last time... Going forward: Loss function/Optimization

-0.51

5.55 -4.34 -1.5 -4.79

Lecture 3 - 6

TODO:

- 1. Define a loss function that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function (optimization)

11 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

1.3

4.9

2.0

2.2

2.5

-3.1

3.2

5.1

-1.7

cat

car

frog

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

Lecture 3 - 7

11 Jan 2016

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

1.3 2.2 cat 5.1 4.9 2.5 car 2.0 -3.1 -1.7 frog

Multiclass SVM loss:

Given an example $\begin{pmatrix} x_i, y_i \end{pmatrix}$ where x_i is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

 $L_i = \sum_{j
eq y_i} \overline{\max(0, s_j - s_{y_i} + 1)}$

Fei-Fei Li & Andrej Karpathy & Justin Johnson

5.1

-1.7

2.9

Multiclass SVM loss:

Given an example $\begin{pmatrix} x_i, y_i \end{pmatrix}$ where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

 $L_i = \sum_{j
eq y_i} \overline{\max(0, s_j - s_{y_i} + 1)}$ $= \max(0.5.1 - 3.2 + 1)$ $+\max(0, -1.7 - 3.2 + 1)$ $= \max(0, 2.9) + \max(0, -3.9)$

= 2.9 + 0= 2.9

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Multiclass SVM loss:

Given an example $\begin{pmatrix} x_i, y_i \end{pmatrix}$ where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ = max(0, 1.3 - 4.9 + 1)+max(0, 2.0 - 4.9 + 1)

 $= \max(0, -2.6) + \max(0, -1.9)$ = 0 + 0= 0

Lecture 3 - 10

11 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 8

11 Jan 2016

cat

car

frog

Losses:

1.3

4.9

2.0

2.2

2.5

-3.1

Lecture 3 - 9

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2	
car	5.1	4.9	2.5	
frog	-1.7	2.0	-3.1	
Losses:	2.9	0	10.9	

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Multiclass SVM loss:

Given an example $\,(x_i,y_i)\,$ where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

Lecture 3 - 11

ı	the SVM loss has the form:
	$L_i = \sum_{j eq y_i} \max(0, s_j - s_{y_i} + 1)$
	= max(0, 2.2 - (-3.1) + 1) +max(0, 2.5 - (-3.1) + 1) = max(0, 5.3) + max(0, 5.6) = 5.3 + 5.6 = 10.9

11 Jan 2016

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

3.2

5.1

-1.7

2.9

cat

car

froq

cat

car

froq

Losses:

Losses:

0

10.9

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ and the full training loss is the mean over all examples in the training data: $L = \frac{1}{N} \sum_{i=1}^{N} L_i$

11 Jan 2016

L = (2.9 + 0 + 10.9)/3

= 4.6 Lecture 3 - 12 Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

3.2

5.1

-1.7

2.9

cat

car

frog

Losses:

10.9

0

Multiclass SVM loss:

Given an example $\,(x_i,y_i)\,$ where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q: what if the sum was instead over all classes? (including j = y i)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 13 11 Jan 2016

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

3.2

5.1

-1.7

2.9

cat

car

frog

Losses:

0

10.9

Multiclass SVM loss:

Given an example $\left(x_i,y_i\right)$ where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q2: what if we used a mean instead of a sum here?

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 14

11 Jan 2016

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

3.2

5.1

-1.7

2.9

0

10.9

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 15

Multiclass SVM loss:

Given an example $\left(x_i,y_i\right)$ where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q3: what if we used

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$

11 Jan 2016

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

Given an example $\left(x_i,y_i\right)$ where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q4: what is the min/max possible loss?

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 16

11 Jan 2016

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

 $\begin{array}{ll} \text{Given an example} & (x_i,y_i) \\ \text{where} & x_i \text{, the image ano} \\ \text{where} & y_i \text{ the (integer) label,} \end{array}$

and using the shorthand for the scores $s = f(x_i, W)$

the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q5: usually at initialization W are small numbers, so all s ~= 0. What is the loss?

Example numpy code:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

def L_i_vectorized(x, y, W): scores = W.dot(x)margins = np.maximum(0, scores - scores[y] + 1)margins[v] = 0loss_i = np.sum(margins) return loss i

f(x,W) = Wx

 $L = rac{1}{N} \sum_{i=1}^{N} \sum_{i
eq v_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

There is a bug with the loss:

$$f(x,W)=Wx$$

$$egin{aligned} f(x,W) &= Wx \ L &= rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0,f(x_i;W)_j - f(x_i;W)_{y_i} + 1) \end{aligned}$$

There is a bug with the loss:

$$f(x, W) = Wx$$

$$L = rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)$$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

3.2

5.1

-1.7

2.9

2.2

2.5

-3.1

 $= \max(0, 1.3 - 4.9 + 1)$ $+\max(0, 2.0 - 4.9 + 1)$ $= \max(0, -2.6) + \max(0, -1.9)$ = 0 + 0= 0

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

With W twice as large:

= max(0, 2.6 - 9.8 + 1) $+\max(0.4.0-9.8+1)$ = max(0, -6.2) + max(0, -4.8)= 0 + 0

Before:

cat

car

froq

Losses:

Fei-Fei Li & Andrej Karpathy & Justin Johnson

1.3

4.9

2.0

0

Lecture 3 - 22

11 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 20

11 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 21

11 Jan 2016

Weight Regularization

\lambda = regularization strength

$$L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1) + \lambda R(W)$$

In common use:

 $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$ L2 regularization $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$ L1 regularization

 $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$ Elastic net (L1 + L2)

Max norm regularization (might see later)

Dropout (will see later)

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 23

11 Jan 2016

L2 regularization: motivation

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

$$w_1^Tx=w_2^Tx=1$$

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 24 11 Jan 2016 Softmax Classifier (Multinomial Logistic Regression)

3.2 cat

5.1 car

-1.7frog

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 25

11 Jan 2016

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

 $s = f(x_i; W)$

11 Jan 2016

3.2 cat 5.1 car

-1.7 frog

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

$$s=f(x_i;W)$$

3.2 cat 5.1 car -1.7froq

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

Softmax function 3.2

cat 5.1 car

-1.7frog

Softmax Classifier (Multinomial Logistic Regression)

3.2

5.1

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i) = rac{e^{\epsilon_k}}{\sum_j e^{\epsilon_j}}$$
 where $s=f(x_i;W)$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y = y_i | X = x_i)$$

-1.7 frog

cat

car

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 29

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $s=f(x_i;W)$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class: $L_i = -\log P(Y = y_i | X = x_i)$

5.1 car

cat

froq

-1.7 in summary:
$$L_i = -\log(rac{e^{\epsilon y_i}}{\sum_j e^{\epsilon_j}})$$

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 30 11 Jan 2016 Softmax Classifier (Multinomial Logistic Regression)

 $L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$

3.2 cat 5.1 car

-1.7frog

unnormalized log probabilities

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 31

11 Jan 2016

Softmax Classifier (Multinomial Logistic Regression)

 $L_i = -\log(\frac{e^{sy_i}}{\sum_i e^{s_j}})$

unnormalized probabilities

3.2 cat 24.5 exp 5.1 164.0 car -1.7 0.18 frog

unnormalized log probabilities

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 32

11 Jan 2016

11 Jan 2016

Softmax Classifier (Multinomial Logistic Regression)

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

probabilities

innormalized probabilities

3.2 0.13 cat exp normalize 5.1 164.0 0.87 car -1.70.18 0.00 frog

unnormalized log probabilities

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 33 11 Jan 2016 Softmax Classifier (Multinomial Logistic Regression)

 $L_i = -\log(\frac{e^{sy_i}}{\sum_i e^{s_j}})$

 \perp L i = -log(0.13) 3.2 0.13 cat exp normalize 5.1 164.0 0.87 car -1.7 0.18 0.00 frog unnormalized log probabilities probabilities

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 34

11 Jan 2016

Softmax Classifier (Multinomial Logistic Regression)

cat

car

frog

 $L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$

 \perp L i = -log(0.13)

11 Jan 2016

0.13 normalize exp 5.1 164.0 0.87 -1.7 0.00

0.18

unnormalized log probabilities

Fei-Fei Li & Andrej Karpathy & Justin Johnson

probabilities

Lecture 3 - 35

Softmax Classifier (Multinomial Logistic Regression)

cat

car

 $L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$ unnormalized probabilities

initialization W are small numbers, so all s ~= 0.

 $\perp L_i = -\log(0.13)$

= 0.89

3.2 normalize exp 5.1 164.0 -1.7 0.18 froq

Fei-Fei Li & Andrej Karpathy & Justin Johnson

0.00 unnormalized log probabilities probabilities

Lecture 3 - 36

0.13

0.87

11 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 37

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 38

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

assume scores: [10, -2, 3][10, 9, 9] [10, -100, -100]

and $y_i = 0$

Q: Suppose I take a datapoint and I jiggle a bit (changing its score slightly). What happens to the loss in both cases?

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 39 11 Jan 2016

Interactive Web Demo time....

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 40

11 Jan 2016

Optimization

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 41

11 Jan 2016

11 Jan 2016

Recap

- We have some dataset of (x,y)
- We have a score function: $s = f(x; W) \stackrel{\text{e.g.}}{=} Wx$
- We have a loss function:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM
$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$
 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L_i = \frac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 42

11 Jan 2016

Strategy #1: A first very bad idea solution: Random search

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 43

11 Jan 2016

Lets see how well this works on the test set...

Assume X test is [3073 x 10000], Y test [10000 x 1] scores = Wbest.dot(Xte cols) # 10 x 10000, the class scores for all test examples # find the index with max score in each column (the predicted class) Yte_predict = np.argmax(scores, axis = 0) # and calculate accuracy (fraction of predictions that are correct) np.mean(Yte_predict == Yte)

> 15.5% accuracy! not bad! (SOTA is ~95%)

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 45 11 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 46

Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the gradient is the vector of (partial derivatives).

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 47

11 Jan 2016

current W:	
[0.34,	
-1.11,	
0.78,	
0.12,	
0.55,	
2.81,	
-3.1,	
-1.5,	
0.33,]	
loss 1.25347	

Fei-Fei Li & Andrej Karpathy & Justin Johnson

gradient dW:
[?, ?, ?, ?, ?, ?, ?, ?,

Lecture 3 - 48

	0 Ic
11 Jan 2016	Fei

current W:

[0.34,	[0.34 + 0.0001,	[?,
-1.11,	-1.11,	?,
0.78,	0.78,	?,
0.12,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?,
-3.1,	-3.1,	?,
-1.5,	-1.5,	?.
0.33,]	0.33,]	?,
loss 1.25347	loss 1.25322	

W + h (first dim):

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 49

11 Jan 2016

gradient dW:

current W:	W + h (first dim):	gradient dW:
[0.34,	[0.34 + 0.0001 ,	[-2.5,
-1.11,	-1.11,	?. 🔨
0.78,	0.78,	?.
0.12,	0.12,	(1.25322 - 1.25347)/0.0001
0.55,	0.55,	= -2.5

0.33,...] 0.33,...] loss 1.25347 loss 1.25322 Fei-Fei Li & Andrej Karpathy & Justin Johnson

2.81,

-3.1.

-1.5,

2.81,

-3.1.

-1.5,

Lecture 3 - 50

 $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

11 Jan 2016

11 Jan 2016

current W:	W + h (second dim):	gradient dW:
[0.34,	[0.34,	[-2.5,
-1.11,	-1.11 + 0.0001 ,	?,
0.78,	0.78,	?,
0.12,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?,
-3.1,	-3.1,	?,
-1.5,	-1.5,	?.
0.33,]	0.33,]	?,]
loss 1.25347	loss 1.25353	

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 51

11 Jan 2016

W + h (second dim): current W: gradient dW: [0.34,[0.34,[-2.5,-1.11, -1.11 + 0.00010.6. 0.78. 0.78. ?, 0.12, 0.12, 0.55, 0.55, (1.25353 - 1.25347)/0.0001 2.81, 2.81, = 0.6 -3.1. -3.1. $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ -1.5, -1.5, 0.33,...] 0.33,...] loss 1.25347 loss 1.25353

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 52

11 Jan 2016

current W:	W + h (third dim):	gradient dW:
[0.34,	[0.34,	[-2.5,
-1.11,	-1.11,	0.6,
0.78,	0.78 + 0.0001 ,	?,
0.12,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?,
-3.1,	-3.1,	?,
-1.5,	-1.5,	?,
0.33,]	0.33,]	?,]

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 53

W + h (third dim): current W: [0.34,[0.34,-1.11,-1.11, 0.78, 0.78 + 0.0001, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, 0.33,...] 0.33,...] loss 1.25347 loss 1.25347

0.6, 0, 、 ?, (1.25347 - 1.25347)/0.0001 = 0 $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

11 Jan 2016

[-2.5,

gradient dW:

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 54

Evaluation the gradient numerically

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

evaluate function at x+h
ix = it.multi_index
old_value = x[ix]
x[ix] = old_value + h # increment by h
thm = f(x) # evalue f(x + h)
x[ix] = old_value # restore to previous grad[ix] = (fxh - fx) / h # the slope
it.iternext() # step to next dimension return grad

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 55

Evaluation the gradient numerically

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- approximate
- very slow to evaluate

```
def eval_numerical_gradient(f, x):
     old_value = x[ix]
x[ix] = old_value + h # increment by h
    fxh = f(x) # evalute f(x + h)
x[ix] = old_value # restore to pre
     grad[ix] = (fxh - fx) / h # the slope
it.iternext() # step to next dimension
```

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 56

11 Jan 2016

This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

want $\nabla_W L$

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 57

11 Jan 2016

This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

Fei-Fei Li & Andrej Karpathy & Justin Johnson

want $\nabla_W L$

Lecture 3 - 58

11 Jan 2016

This is silly. The loss is just a function of W:

$$L=rac{1}{N}\sum_{i=1}^{N}L_{i}+\sum_{k}W_{k}^{2}$$
 $L_{i}=\sum_{j
eq y_{i}}\max(0,s_{j}-s_{y_{i}}+1)$ $s=f(x;W)=Wx$ want $abla_{W}L$ Calculus

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 59

11 Jan 2016

This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

$$\nabla_W L = \dots$$

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 60

11 Jan 2016

11 Jan 2016

current W:		gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	dW = (some function data and W)	[-2.5, 0.6, 0, 0.2, 0.7, -0.5, 1.1, 1.3, -2.1,]

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 61

11 Jan 2016

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

Gradient Descent

Vanilla Gradient Descent while True: weights grad = evaluate gradient(loss fun, data, weights) weights += - step_size * weights_grad # perform parameter update

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 64

Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.

Vanilla Minibatch Gradient Descent while True: data batch = sample training data(data, 256) # sample 256 examples weights_grad = evaluate_gradient(loss_fun, data_batch, weights) weights += - step_size * weights_grad # perform parameter update

Common mini-batch sizes are 32/64/128 examples e.g. Krizhevsky ILSVRC ConvNet used 256 examples

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 65

11 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Example of optimization progress while training a neural network.

(Loss over mini-batches goes down over time.)

Lecture 3 - 66

The effects of step size (or "learning rate")

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 67

11 Jan 2016

Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.

Vanilla Minibatch Gradient Descent while True: data_batch = sample_training_data(data, 256) # sample 256 examples weights_grad = evaluate_gradient(loss_fun, data_batch, weights) weights += - step_size * weights_grad # perfo

Common mini-batch sizes are 32/64/128 examples e.g. Krizhevsky ILSVRC ConvNet used 256 examples we will look at more fancy update formulas (momentum, Adagrad, RMSProp, Adam, ...)

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 68

11 Jan 2016

Next class:

Becoming a backprop ninja and Neural Networks (part 1)

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 76

11 Jan 2016