

Regions, Periods, Activities: Uncovering Urban Dynamics via Cross-Modal Representation Learning

Chao Zhang
University of Illinois at Urbana-Champaign
czhang82@illinois.edu

with Keyang Zhang, Quan Yuan, Haoruo Peng, Yu Zheng, Tim Hanratty, Shaowen Wang, and Jiawei Han

Small World, Big Cities, Big Challenges

The ever-increasing urbanization process:

o 1900: 20% people live in cities

1910: 40% people live in cities

2010: 50% people live in cities

2030: 60% people live in cities

2050: 70% people live in cities

City	Shanghai	Tokyo	New York	London
Population	24.3M	13.5M	8.4M	8.7M

Small World, Big Cities, Big Challenges

Life is not that easy in big cities when we try:

Buying a house

Modeling people's activities in the city is key to tackling these challenges!

Why Geo-Tagged Social Media (GTSM)?

An invaluable resource as a result of **human sensing**.

Millions of human sensors probe the city and return semantics-rich data.

Problem Description

Input: a collection of GTSM records

 Each record has: a location, a timestamp, a bag of keywords.

Task: model people's typical activities in different regions and periods

- Multiple retrieval schemas:
 - region + time -> keywords
 - region + keyword -> time
 - time + keyword -> region

"What are happening around my hotel now?"

"Where should I go to hang out with my friends at 9pm?"

Challenges

Data Sparsity

GTSM messages are very short

Many regions have few records

Data Variation

Spatiotemporal variation: people may share the same activity with slightly different locations and timestamps.

Textual variation: people often describe the same activity with different keywords.

E.g., consider two Lakers' fans watching the NBA game at Staples center.

Previous Works

Urban function discovery

- Find regions of similar functions in the city (Cranshaw et. al. AAAI 2010, Yuan et. al. KDD 2012)

Geographical topic discovery

Incorporate location into topic models

(Sizov et al. WSDM 2010, Yin et al. WWW 2011)

An Overview of Our Method: CrossMap

Detect regions and periods where people's activities burst

Map regions, periods, and keywords into the same space

Hotspot Detection: A Mode-Seeking Procedure

- A spatial (temporal) hotspot is a density maxima in the 2D (1D) space
- We design a fast mode seeking procedure to find the hotspots.

Benefits:

- Fast
- No distributional assumptions

Kernel density:
$$f(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K(\frac{\mathbf{x} - \mathbf{x}_i}{h})$$

Cross-Modal Embedding: Designing Philosophy

Map regions, periods, and keywords into the same space:

- Region: a spatial hotspot
- Period: a temporal hotspot

Aim to preserve two types of correlations:

- Co-occurrence: two units are correlated if there co-occur frequently
- 2. **Neighborhood**: two regions (periods) are correlated if they are adjacent

Cross-Modal Embedding: Two Strategies

Reconstruction-based embedding

- Consider each record as a relation
- Mark off one unit i and try to predict it from the observed units

$$p(i|r_{-i}) = \exp(s(i, r_{-i})) / \sum_{j \in X} \exp(s(j, r_{-i}))$$

Overall objective function:

$$O = -\sum_{r \in \mathcal{C}} \sum_{i \in r} \log p(i|r_{-i})$$

Graph-based embedding

- Use a graph to encode the correlations between regions, periods, and activities
- Learn graph node embeddings to preserve the graph structure

$$O = O_{WW} + O_{LL} + O_{TT} + O_{WL} + O_{WT} + O_{LT}$$

$$O_{XY} = \sum_{i \in X} d_i \text{KL}(p'(\cdot|i)||p(\cdot|i)) + \sum_{j \in Y} d_j \text{KL}(p'(\cdot|j)||p(\cdot|j))$$

Experimental Settings

Data sets

- LA: ~1 million geo-tagged tweets in Los Angeles
- NY: ~0.6 million Foursquare checkins in New York City

Compared methods

- LGTA [1]
- MGTM [2]
- o TF-IDF
- o SVD
- Tensor Factorization
- [1] Geographical topic discovery and comparison. 2011 WWW.
- [2] Detecting non-gaussian geographical topics in tagged photo collections. 2014 WSDM.

Illustrative Cases: Cross-Modal Retrieval

Query: "Beach"

Query: "33.9424, -118.4137" (LAX Airport)

Query: "Shopping"

Query = "34.0928, -118.3287" (Hollywood)

Quantitative Evaluation: Attribute Recovery

Mark off one attribute (location, time, or text) and predict it based on the observed ones.

Mean reciprocal ranks:

	Text		Location		Time	
Method	Tweet	4SQ	Tweet	4SQ	Tweet	$\overline{4}$ SQ
LGTA	0.376	0.6107	0.3792	0.6083	-	-
MGTM	0.3874	0.5974	0.4474	0.5753	=	_
TF-IDF	0.62	0.8505	0.4298	0.7097	0.3197	0.3431
SVD	0.4475	0.7137	0.3953	0.646	0.3256	0.3187
Tensor	0.4382	0.6826	0.3871	0.6251	0.3179	0.2983
RECON	0.6877	0.9219	0.6526	0.9044	0.3582	0.3612
GRAPH	0.7011	0.9449	0.6758	0.9168	0.3895	0.3716

Application: Activity Classification

Foursquare checkins belong to nine categories. We predict the category based on the embeddings.

Embedding Visualization

Visualizing the feature vectors generated by LGTA and CrossMap for three activity categories: "Food" (cyan), "Travel & Transport" (blue), and "Residence" (orange).

Summary

- A cross-modal embedding framework for modeling urban dynamics from geo-tagged social media.
 - Perform much better than baselines in attribute prediction and downstream applications
- Interesting future directions
 - Can be easily extended to learn user embeddings for user-level applications
 - Using deep architecture for embedding could further improve the performance at the time cost

Thanks!