Van der Waerden's Theorem - Part 3

1. **Quote.** Do not, however, confuse elementary with simple.

Figure 1: Aleksandr Yakovlevich Khinchin, Soviet mathematician, 1894 - 1959

- 2. **Van der Waerden's Theorem:** Let $l, k \in \mathbb{N}$. Any k-colouring of positive integers contains a monochromatic l-term arithmetic progression. Moreover, there is a natural number N such that any k-colouring of the segment of positive integers [1, N] contains a monochromatic l-term arithmetic progression.
- 3. **Note:** The smallest N guaranteed by the theorem is annotated by W(l, k). We have seen that W(3, 2) = 9 and that W(3, k) exists for any $k \in \mathbb{N}$.
- 4. Two Questions.
 - (a) How big is W(l, k)?
 - (b) If \mathbb{N} is k-coloured can we be sure that a certain colour contains an l-term arithmetic progression?
- 5. **Van der Waerden's Numbers.** In 1951, Paul Erdős and Richard Rado introduced van der Waerden's function:

$$W:(l,k)\to W(l,k)$$
.

The values of van der Waerden's function are called van der Waerden's numbers.

6. Best known lower bounds to Van der Waerden numbers.

$k \text{ # of colours} \setminus l \text{ length}$	3	4	5	6	7	8	9
2	9	35	178	1132	> 3703	> 7484	> 27113
3	27	> 292	> 1209	> 8886	> 43855	> 238400	
4	76	> 1048	> 10437	> 90306	> 387967		
5	> 125	> 2254	> 24045	> 246956			
6	> 207	> 9778	> 56693	> 600486			

7. **Big Question:**

Figure 2: W(l, k): Can you find me?

- 8. **Two Lower Bounds:** It is a convention to write W(l) instead of W(l, 2). Hence,
 - W(3) = 9 and W(4) = 35 (Chvatal, 1970)
 - W(5) = 178 (Stevens and Shantaram, 1978)
 - W(6) = 1132 (Kouril and Paul, 2008)
 - (a) (Berlekamp, 1969) If l is a prime then

$$W(l+1) > l \cdot 2^l.$$

Figure 3: Elwyn Ralph Berlekamp, American mathematician, 1940-

(b) (Szabó, 1990) For any $\varepsilon > 0$,

$$W(l) \ge \frac{2^l}{l^{\varepsilon}}$$

for large enough l.

Figure 4: Zoltán Szabó, Hungarian mathematician, 1965-

9. Upper Bounds.

(a) Prelude

-
$$f_1(x) = DOUBLE(x) = 2x$$

-
$$f_2(x) = \text{EXPONENT}(x) = 2^x$$

Note that

$$f_1^{(2)}(1) = f_1(f_1(1))) = f_1(2 \cdot 1) = 2 \cdot 2 = 2^2 = f_2(2), \ f_1^{(3)}(1) = f_1(2^2) = 2 \cdot 2^2 = f_2(3)$$

and in general

$$f_2(x) = f_1^{(x)}(1).$$

-
$$f_3(x) = \text{TOWER}(x) = 2^{2^{2^{-\cdot^{-2}}}}$$
 $x = f_2^{(x)}(1)$

-
$$f_4(x) = WOW(x) = f_3^{(x)}(1)$$

$$- f_{i+1}(x) = f_i^{(x)}(1)$$

-
$$f_{i+1}(x) = f_i^{(x)}(1)$$

- $f_{\omega}(x) = \text{ACKERMANN}(x) = f_x(x)$

		1	2	3	4	5	6
DOUBLE	f_1	2	4	6	8	10	12
EXPONENT	f_2	2	4	8	16	32	64
TOWER	f_3	2	4	16	65536	265536	:
WOW	f_4	2	4	65536	WOW!	:	:
	f_5	2	4	WOW!	:	•	:
		:	:		:		:
ACKERMANN	f_{ω}	2	4	16	WOW!	•	:

Figure 5: Wilhelm Friedrich Ackermann, German mathematician, 1896 -1962

(b) Van der Waerden's proof implies, for $k \ge 10$

$$W(l) \le ACKERMANN(l)$$
.

(c) Shelah, 1988:

$$W(l) < WOW(l+2)$$
.

Figure 6: Saharon Shelah, Israeli mathematician, 1945-

(d) Gowers, 1998:

$$W(l) \le 2^{2^{2^{2^{2^{l+9}}}}}$$

Figure 7: Sir William Timothy Gowers, British mathematician, 1963-

(e) Ron Graham offers \$ 1000 for a proof or disproof of the bound that

$$W(l) \le 2^{l^2}.$$

Figure 8: Ron Graham, American mathematician, 1935-

10. **Closer to Home:** Given any positive integer r and positive integers k_1, k_2, \ldots, k_r , there is an integer m such that given any partition $\{1, 2, \ldots, m\} = P_1 \cup P_2 \cup \ldots \cup P_r$, there is always a class P_j containing an arithmetic progression of length k_j . Let us denote the least m with this property by $w(r; k_1, k_2, \ldots, k_r)$. Tom Brown in 1974 found the following:

w(3; 2, 3, 3) = 14	w(3; 2, 4, 4) = 40	w(4; 2, 2, 3, 3) = 17	w(4; 2, 3, 3, 3) = 40
w(3; 2, 3, 4) = 21	w(3; 2, 4, 5) = 71	w(4; 2, 2, 3, 4) = 25	
w(3; 2, 3, 5) = 32		w(4; 2, 2, 3, 5) = 43	
w(3; 2, 3, 6) = 40		w(4; 2, 2, 4, 4) = 53	

11. Where to Look for monochromatic arithmetic progressions?

(a) **Prelude:** Let A be a subset of the set of natural numbers \mathbb{N} . For any $n \in \mathbb{N}$ let

$$A(n) = \{1, 2, ..., n\} \cap A \text{ and } a(n) = |A(n)|.$$

We define the upper density $\overline{d}(A)$ of the set A by

$$\overline{d}(A) = \limsup_{n \to \infty} \frac{a(n)}{n}.$$

Similarly, $\underline{d}(A)$, the lower density of A, is defined by

$$\underline{d}(A) = \liminf_{n \to \infty} \frac{a(n)}{n}.$$

We say that A has density d(A) if

$$\underline{d}(A) = \overline{d}(A).$$

Thus

$$d(A) = \lim_{n \to \infty} \frac{a(n)}{n}.$$

Two examples:

- What is the density of the set of all natural numbers divisible by 3?
- What is the density of the set of all powers of 2?

Note: For more examples see: Natural density - Wikipedia

(b) Paul Erdős and Paul Turán conjectured in 1936:Any set of integers with positive density contains a 3-term arithmetic progression.

Figure 9: Paul Turán, Hungarian mathematician, 1910-1976

(c) Roth, 1953:

Any set of integers with positive density contains a 3-term arithmetic progression.

Figure 10: Klaus Friedrich Roth, German-born British mathematician, 1925 -

(d) Szemerédi, 1975:

Any set of integers with positive density contains an arithmetic progression of any length.

Figure 11: Endre Szemerédi, Hungarian-American mathematician, 1940-

(e) Furstenberg, 1977:

Any set of integers with positive density contains an arithmetic progression of any length.

Figure 12: Hillel (Harry) Furstenberg, American-Israeli mathematician, 1935-

12. **Green-Tao Theorem, 2004:** For any $k \in \mathbb{N}$, there is a k-term progression consisting of primes.

Figure 13: Ben Green, 1977-

Figure 14: Terence Chi-Shen Tao, 1975-