Constructing Canonical LR(1) Parsing Tables

- In SLR method, the state i makes a reduction by $A\rightarrow\alpha$ when the current token is a:
 - if the $A \rightarrow \alpha$ in the I_i and a is FOLLOW(A)
- In some situations, βA cannot be followed by the terminal a in a right-sentential form when $\beta \alpha$ and the state i are on the top stack. This means that making reduction in this case is not correct.

$$S \rightarrow AaAb$$

$$S \Rightarrow AaAb \Rightarrow Aab \Rightarrow ab$$

 $S \rightarrow BbBa$

$$A \rightarrow \epsilon$$

$$Aab \Rightarrow \epsilon ab$$

Bba
$$\Rightarrow \varepsilon$$
 ba

$$B \rightarrow \epsilon$$

$$AaAb \Rightarrow Aa \varepsilon b$$

$$BbBa \Rightarrow Bb \varepsilon a$$

LR(1) Item

- To avoid some of invalid reductions, the states need to carry more information.
- Extra information is put into a state by including a terminal symbol as a second component in an item.
- A LR(1) item is:

 $A \rightarrow \alpha \cdot \beta, a$

where **a** is the look-head of the LR(1) item (**a** is a terminal or end-marker.)

LR(1) Item (cont.)

- When β (in the LR(1) item $A \rightarrow \alpha \cdot \beta$, a) is not empty, the look-head does not have any affect.
- When β is empty $(A \to \alpha_{\bullet}, a)$, we do the reduction by $A \to \alpha$ only if the next input symbol is **a** (not for any terminal in FOLLOW(A)).
- A state will contain $A \to \alpha_{\bullet}, a_1$ where $\{a_1, ..., a_n\} \subseteq FOLLOW(A)$

 $A \rightarrow \alpha_{\bullet}, a_n$

Canonical Collection of Sets of LR(1) Items

• The construction of the canonical collection of the sets of LR(1) items are similar to the construction of the canonical collection of the sets of LR(0) items, except that *closure* and *goto* operations work a little bit different.

closure(I) is: (where I is a set of LR(1) items)

- every LR(1) item in I is in closure(I)
- if $A \rightarrow \alpha \cdot B\beta$, a in closure(I) and $B \rightarrow \gamma$ is a production rule of G; then $B \rightarrow .\gamma$, b will be in the closure(I) for each terminal b in FIRST(βa).

goto operation

- If I is a set of LR(1) items and X is a grammar symbol (terminal or non-terminal), then goto(I,X) is defined as follows:
 - If $A \to \alpha.X\beta$, a in I then every item in **closure**($\{A \to \alpha X.\beta,a\}$) will be in goto(I,X).

Construction of The Canonical LR(1) Collection

• Algorithm:

```
C is { closure({S'→.S,$}) }
repeat the followings until no more set of LR(1) items can be added to C.
for each I in C and each grammar symbol X
if goto(I,X) is not empty and not in C
add goto(I,X) to C
```

• goto function is a DFA on the sets in C.

A Short Notation for The Sets of LR(1) Items

• A set of LR(1) items containing the following items

$$A \rightarrow \alpha \cdot \beta, a_1$$

. . .

$$A \rightarrow \alpha \cdot \beta, a_n$$

can be written as

$$A \rightarrow \alpha \cdot \beta, a_1/a_2/.../a_n$$

Canonical LR(1) Collection -- Example

$$I_4: S \rightarrow Aa.Ab , \$ \xrightarrow{A} I_6: S \rightarrow AaA.b , \$ \xrightarrow{a} I_8: S \rightarrow AaAb. , \$ A \rightarrow . , b$$

$$I_5: S \to Bb.Ba , \$ \xrightarrow{B} I_7: S \to BbB.a , \$ \xrightarrow{b} I_9: S \to BbBa. , \$ B \to . , a$$

Canonical LR(1) Collection – Example 2

$$S' \rightarrow S \qquad I_0:S' \rightarrow .S, \$ \qquad I_1:S' \rightarrow S., \$ \qquad I_4:L \rightarrow *.R, \$/= \\ 1) S \rightarrow L=R \qquad S \rightarrow .L=R, \$ \qquad R \rightarrow .L, \$/= \\ 2) S \rightarrow R \qquad S \rightarrow .R, \$ \qquad L \rightarrow .*R, \$/= \\ 3) L \rightarrow *R \qquad L \rightarrow .*R, \$/= \\ 4) L \rightarrow id \qquad L \rightarrow .id, \$/= \\ 4) L \rightarrow id \qquad L \rightarrow .id, \$/= \\ 5) R \rightarrow L \qquad R \rightarrow .L, \$ \qquad I_3:S \rightarrow R., \$ \qquad I_5:L \rightarrow id., \$/= \\ I_3:S \rightarrow R., \$ \qquad I_5:L \rightarrow id., \$/= \\ I_5:L \rightarrow id., \$/= \\ I_7:L \rightarrow I_7:L$$

 $I_{s}: R \rightarrow L.,\$/=$

$$\begin{array}{c} I_{9}\text{:S} \to L=R.,\$ \\ I_{10}\text{:R} \to L.,\$ \\ I_{11}\text{:L} \to *.R,\$ \\ R \to .L,\$ \\ L \to .*R,\$ \\ L \to .\text{id},\$ \end{array} \begin{array}{c} R \\ \text{to } I_{13} \\ \text{to } I_{13} \\ \text{to } I_{13} \\ \text{to } I_{10} \\ \text{I}_{7} \text{ and } I_{12} \\ \text{I}_{7} \text{ and } I_{13} \\ \text{I}_{12}\text{:L} \to \text{id.,}\$ \end{array}$$

to I₄

Construction of LR(1) Parsing Tables

- 1. Construct the canonical collection of sets of LR(1) items for G'. $C \leftarrow \{I_0,...,I_n\}$
- 2. Create the parsing action table as follows
 - If a is a terminal, $A \rightarrow \alpha \cdot a\beta$, b in I_i and $goto(I_i,a)=I_j$ then action[i,a] is **shift j**.
 - If $A \rightarrow \alpha_{\bullet}$, a is in I_i , then action[i,a] is **reduce** $A \rightarrow \alpha$ where $A \neq S'$.
 - If $S' \rightarrow S_{\bullet}$, \$\\$ is in I_i , then action[i,\$] is *accept*.
 - If any conflicting actions generated by these rules, the grammar is not LR(1).
- 3. Create the parsing goto table
 - for all non-terminals A, if $goto(I_i,A)=I_j$ then goto[i,A]=j
- 4. All entries not defined by (2) and (3) are errors.
- 5. Initial state of the parser contains $S' \rightarrow .S, \$$

LR(1) Parsing Tables – (for Example2)

	id	*	=	\$	S	L	R
0	s5	s4			1	2	3
1				acc			
2			s6	r5			
3				r2			
4	s5	s4				8	7
5			r4	r4			
6	s12	s11				10	9
7			r3	r3			
8			r5	r5			
9				r1			
10				r5			
11	s12	s11				10	13
12				r4			
13				r3			

no shift/reduce or no reduce/reduce conflict

so, it is a LR(1) grammar