Moths for Computation Theory LECTURES 2,3 3 Paper 10 (comment) 2004 P10 98
JKMM This is VERY MUCH BODKWORK. Even the two riders at the end are lifted from the violes - as fair as I can tell the class don't try them, so this is an experiment. Do we need to rectarate |A|=a, $|B|=\sqrt{a_{nbur}}$ at (*)? I hope it's totally obvious SOLUTION Cartesian product AXB = {(a,b) | a ∈ A, b ∈ B}, where $(a_1,b_1) = (a_2,b_2)$ IFF $a_1 = a_2$ and $b_1 = b_2$ Disjoint union A+B = ({13×A) v ({23×B), or similarly with any other suitable pair of flags). DON'T need discussion of in, (A) etc. $f^{-1} = \{ (b, a) \in (B \times A) \mid (a, b) \in f \} \subseteq (B \times A)$

aths for Computation theory 14 Paper 10 SOLUTION etd). $f \circ g = \{(a,c) \mid \exists b \in B \text{ s.t. } (a,b) \in f \}$ and $(b,c) \in g\} \subseteq (A \times C)$ f must be everywhere defined (TOTAL): $\forall a \in A, \exists b \in B \text{ st } (a,b) \in f.$ f must be single-valued! $(\alpha, b,) \in \mathcal{F}, (\alpha, b_2) \in \mathcal{F} \implies b_1 = b_2$ |A×B|=a.b, |A+B|=a+b, |A→B|=ba. If f, f-1 are BOTH functions: a) f everywhere defined, f-1 single-valued → a ≤ b (r) f single-valued, f' everywhere defined

 \rightarrow $\forall \leq \alpha$.

to for Computation Theory Paper 10 SOLUTION etd) Notation's a problem in both parts - really, anything clear and seinble goes. i) given $f \in A \rightarrow (B \times C)$, define $\phi(f) = (g_1, g_2) \in (A \rightarrow B) \times (A \rightarrow C), WHERE$ $g_1(\alpha) = (f(\alpha))_1, g_2(\alpha) = (f(\alpha))_2.$ of is eindently a BIJECTION (proof!). ii) guen he (A+B) -> C, define $\psi(h) = (k, k_2) \in (A \rightarrow C) \times (B \rightarrow C), WHERE$ $k_1(a) = h(1,a), k_2(b) = h(2,b).$ Again, it is relatively easy to show that it is a BIJECTION. If A, B, C are all FINITE, cardinalities a, b, c: | lhs | = (bc) , | rhs | = b.c. \sqrt{L} \sim \sqrt{J} |lhs| = c a+b, |rhs| = c . c In ii),

ok!