Mathematische Methoden für Informatiker

Mitschrift zur Vorlesung Sommer Semester 2019

Bachelor of Science (B.Sc.)

Dozent: Prof. Dr. Ulrike Baumann vorgelegt von

" "

ABDELSHAFI MOHAMED m.abdelshafi@mail.de

MAHMOUD KIKI

mahmoud.kiki@tu-dresden.de

...

Tag der Einreichung: 28. April 2019

Inhaltsverzeichnis

1	Folg	ge und Reihen	2
	1.1	Vorlesung 1	2
		1.1.1 Folge	2
	1.2	Rechnen mit Folgen	3
	1.3	geometrische Summen Formel (Tafelwerk)	5
	1.4	vorlesung 2	7
	1.5	Konvergenzkriterien	10
	1.6	Vorlesung 3	11
	1.7	Grenzwerte rekursive definierte Folgen:	13
	1.8	Reihen:	14
		1.8.1 Rechnen für Reihen	15
	1.9	Vorlesung 4	16
	1.10	Reihen	16
	1.11	Allgemeine harmonische Reihe	17
	1.12	Expotentiale Reihe	18
		Hauptkriterium	
	1.14	Kriterium für Alternierende Reihe	19
	1.15	Quotionkriterium (QK):	19
	1.16	Wurzel kriterium : WK	19
		Vorlesung 5	
		1.17.1 Rechnenregl< für Funktionen (GWS anwenden)	
Lis	t of	Theorems	27
Lis	t of	Theorems	28

Einleitung

Wir schreiben hier die vorlesungen von INF-120-1 (Mathematische Methoden für Informatiker) mit. wenn Ihr Fragen habt oder Fehlern gefunden Sie können gerne uns eine E-mail schreiben oder Sie können einfach bei github eine Issue (link) erstellen. wir freuen uns wenn Sie mit uns mitschreiben möchten, oder helfen mit der Fehlerbehebung.

Abdelshafi Mohamed Mahmoud Kiki

Kapitel 1

Folge und Reihen

1.1 Vorlesung 1

1.1.1 Folge

1.1 Definition (Folgen).

Ein folge ist eine Abbildung

$$f: \mathbb{N} \to \underbrace{\mathbf{M}}_{Menge}: \mathbf{n} \mapsto \underbrace{x_n}_{folgenglied}$$

1.2 Bemerkung.

 $\mathbf{M} = \mathbb{R}$ reelewert Folge

 $\mathbf{M} = \mathbb{C} \quad komplexwertig \ Folge$

 $\mathbf{M} = \mathbb{R}^n$ vertical Folge

Bezeichnung (x_n) mit $(x_n) = \frac{n}{n+1}$

Aufzählung der folglieder: 0 , $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, \dots

1.3 Bemerkung.

zuwerten wird \mathbb{N} durch \mathbb{N} 0,1 ... erstellt.

1.4 Beispiel.

1. Konstante Folge (x_n) mit $x_n = a \in \mathbf{M}, a \dots$

$$x_n = a \in \mathbf{M}$$

- 2. Harmonische Folge (x_n) mit $x_n = \frac{1}{n+1}$ $n \ge 1$
- 3. Geometrische folge (x_n) mit $x_n = q^n$, $q \in \mathbb{R}, \dots$
- 4. Fibonaccifolge (x_n) mit

$$x_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

5. Fibonacci folgen (x_n)

$$X_0 = 0$$

 $X_1 = 1$
 $X_{n+1} = x_n + X_{n-1}$ $(n > 0)$

6. conway folge

7. folge aller Primzahlen:

$$2, 3, 5, 7, 11, 13, \dots$$

1.2 Rechnen mit Folgen

$$(M = \mathbb{R} \quad oder \quad M = \mathbb{C})$$

 $(x_n) + (y_n) := (x_n + y_n)$
 $K(x_n) := (Kx_n) \in \mathbb{R} \quad oder \quad \in \mathbb{C}$

1.5 Bemerkung.

Die Folge bildet ein Vektorraum.

1.6 Definition (Beschränktheit).

- 1. Eine reellwertige Funktion ist in der Mathematik eine Funktion, deren Funktionswerte reelle Zahlen sind.
- 2. Eine reellwertige heißt beschränkt wenn gilt

$$\exists r \in \mathbb{R}_+, \forall r \in \mathbb{N} : \underbrace{|x_n|} \leq r$$
 Betrag einer reellen oder komplexer Zahl

1.7 Beispiel.

$$(x_n)$$
 mit $x_n = (-1)^n \times \frac{1}{n}$
-1, $\frac{1}{2}$, $\frac{-1}{3}$, $\frac{1}{4}$, $\frac{-1}{5}$,...

1.8 Bemerkung.

 (x_n) ist beschränkt mit r = 1 denn $|(-1)^n \frac{1}{n}| = |\frac{1}{n}| \le 1 \leftrightarrow r$

1.9 Beispiel.

$$(x_n)$$
 mit $x_n = (-1)^n$ $\frac{1}{n} + 1$ bechränkt $r = 3/2$
$$-3/2 \le x_n \le 3/2 \quad \forall n \in \mathbb{N}$$

1.10 Beispiel.

Standard:

Die folge
$$\left(\left(1+\frac{1}{n}\right)^n\right)_{n=1}^{\infty}$$
 ist beschränkt durch 3

Zu zeigen: $-3 \le x_n \le 3$ für alle $n \in \mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \cdot b^{n \cdot k} = \sum_{k=0}^n \binom{n}{k} a^{n \cdot k} b^k$$
$$\binom{n}{k} = \frac{n!}{k!(n-k!)} = \frac{n(n-1) - (n-k-1)}{k!}$$
$$\sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots$$

1.3 geometrische Summen Formel (Tafelwerk)

1.11 Definition (Monoton).

Die Folge (x_n) heißt monoton $\{wachsend fallend\}$

wenn
$$gilt: \forall n \in \mathbb{N}: \begin{cases} x_n \leq x_n + 1 \\ x_n \geq X_{n+1} \end{cases}$$

 $man\ spricht\ von\ Streng\ monotonie\ wenn \leq durch > und \geq durch < \dots$

1.12 Bemerkung.

$$x_n \le X_{n+1} \iff x_n - X_{n+1} \le 0 \quad \Leftrightarrow \frac{x_n}{X_{n+1}} \le 1$$

5

1.13 Beispiel.

$$(x_n) \ mit \ X_0 := 1 \ , X_{n+1} := \sqrt{x_n + 6}$$

ist Streng monoton wachsend Beweis mit Vollständiger Induktion

Standard Bsp: $\left(\left(1+\frac{1}{n}\right)^n\right)$ ist streng monoton wachsend

1.14 Bemerkung.

monoton	ja	nein
Beschränkkeit nein	$\binom{\frac{1}{n}}{(n)}$	$(-1)^n$ $(-1)^n$

1.15 Definition (Konvergenz, Divergenz).

 (x_n) heißt **Konvergenz** wenn (x_n) ein grenzwert hat.

 (x_n) heißt **Divergenz** wenn sie keinen grenzwert hat.

1.16 Definition (grenzwert).

 $a \in \mathbb{R}$ heißt grenzwert von (x_n) , wenn gilt:

$$\underbrace{\forall \epsilon > 0}_{beliebes \ klein} \quad \underbrace{\exists \mathbf{N} \in \mathbb{N}}_{beliebes \ klein} \quad \underset{a-\epsilon \le x_n \le a+\epsilon}{\Rightarrow |x_n - a| < \epsilon}$$

 $Sei \varepsilon > 0; \varepsilon fest$

alle folglieder x_n mit $n \geq \mathbb{N} \curvearrowright$

1.4 vorlesung 2

ist die folge beschränkt, monoton?

 (x_n) konvergierend : $\iff \exists a \in \mathbb{R} \quad \forall \epsilon > 0 \quad \exists n \in \mathbb{N} \quad \forall n \in \mathbb{N}$ $n \ge N \Rightarrow |x_n - a| < \epsilon$

1.17 Satz. (x_n) konvergierend : \Rightarrow Der Grenzwert ist eindeutig beschränkt.

1.18 Beweis.

Sei a eine Grenzwert von (x_n) , b eine Grenzwert von (x_n) d.h sei $\epsilon > 0$, ϵ beliebig, ϵ fest

$$\exists N_a \quad \forall n \ge N_a : |x_n - a| < \epsilon \tag{1.18.1}$$

$$\exists N_b \quad \forall n \ge N_b : |x_n - b| < \epsilon \tag{1.18.2}$$

Sei $max \{N_a, N_b\} = N \ dann \ gilt :$

$$n \ge N \Rightarrow |x_n - a| < \epsilon \tag{1.18.3}$$

und

$$|x_n - b| < \epsilon \Rightarrow |x_n - a| + |x_n - b| < 2\epsilon \tag{1.18.4}$$

Annahme :- $a \neq b$, $d.h |a-b| \neq 0$

$$|a - b| = |a + 0 - b|$$

$$= |(a - x_n) + (x_n - b)| \le |x_n - a| + |x_n - b| < 2\epsilon$$

$$also \quad |a - b| < 2\epsilon$$

wähle Z.B

$$\epsilon = \frac{|a-b|}{3} \quad dann \ gilt \ : |a-b| < \frac{2 \ |a-b|}{3}$$

 $\Rightarrow 1 < \frac{2}{3}$ falls Aussage, Widerspruch also ist die Annahme falsch also gilt a = b

1.19 Beispiel.

 x_n mit $x_n = \frac{1}{n}$ (harmonische Folge)

1.20 Beweis.

 $Sei \ \epsilon > 0, \epsilon belibig, \epsilon fest \ gesucht: N \ mit \ n \geq N$ hat den Grenzwert 0

$$\Rightarrow |x_n - a| = |\frac{1}{n} = 0| = \frac{1}{n} < \epsilon \tag{1.20.1}$$

wähle $N := \left\lceil \frac{1}{\epsilon} \right\rceil + 1$

1.21 Beispiel.

 $\epsilon = \frac{1}{100}$, gesucht N mit $n \geq N \Rightarrow \frac{1}{n} < \frac{1}{100}$ wähle N = 101

1.22 Schreibweise.

 x_n hat den Grenzwert a Limes $\lim_{n\to\infty} x_n = a$ x_n geht gegen a für n gegen Unendlich.

1.23 Definition (Nullfolge).

 x_n heißt Nullfolge ,wenn $\lim x_n = 0$ gilt.

1.24 Bemerkung.

Es ist leichter, die konvergente einer Folge zu beweisen, als den Grenzwert auszurechnen.

1.25 Beispiel.
$$x_n = \frac{1}{3} + \left(\frac{11-n}{9-n}\right)^9$$

Behauptung: $\lim_{n\to\infty} x_n = \frac{-2}{3}$

1.26 Lemma.

$$\lim_{n \to \infty} x_n + y_n = \left(\lim_{n \to \infty} x_n\right) + \left(\lim_{n \to \infty} y_n\right) \tag{1.26.1}$$

$$= \lim_{n \to \infty} \left(\left(\frac{1}{3} \right) + \left(\frac{11 - n}{9 + n} \right)^9 \right) = \lim_{n \to \infty} \frac{1}{3} + \lim_{n \to \infty} \left(\frac{11 - n}{9 + n} \right)^9 \tag{1.26.2}$$

$$= \frac{1}{3} + \left(\lim_{n \to \infty} \frac{11 - n}{9 + n}\right)^9 \tag{1.26.3}$$

$$= \frac{1}{3} + \lim_{n \to \infty} \left(\frac{n(\frac{1}{n} - 1)}{n(\frac{9}{n} + 1)} \right)^{9}$$
 (1.26.4)

$$= \frac{1}{3} + \left(\frac{\lim_{n \to \infty} \left(\frac{11}{n}\right)}{\lim_{n \to \infty} \left(\frac{9}{n} + 1\right)}\right)^{9} \tag{1.26.5}$$

$$= \frac{1}{3} + \left(\frac{\lim_{n \to \infty} \frac{11}{n} - \lim_{n \to \infty} 1}{\lim_{n \to \infty} \frac{9}{n} + \lim_{n \to \infty} 1}\right)^{9}$$
(1.26.6)

$$= \left(\frac{\lim_{n \to \infty} 11 \times \lim_{n \to \infty} \left(\frac{1}{n}\right) - 1}{\lim_{n \to \infty} 9 \times \lim_{n \to \infty} \left(\frac{1}{n}\right) + 1}\right)^{9}$$
(1.26.7)

$$\frac{1}{3} + (-1)^9 = \frac{1}{3} - 1 = \frac{-2}{3} \tag{1.26.8}$$

1.27 Definition (Unendliche Grenzwert).

Eine Folge (x_n) hat den unendliche Grenzwert ∞ , wenn gilt:

$$\forall r \in \mathbb{R} \quad \exists N \in N \quad \forall n \ge N : x_n > r$$

1.28 Schreibweise.

 $\lim_{n\to\infty} x_n = \infty$

1.29 Bemerkung.

 ∞ ist keine Grenzwerte und keine reelle Zahl.

1.30 Bemerkung.

Grenzwertsätze gelten nicht für uneigentliche Grenzwerte.

1.31 Bemerkung.

 $gilt \lim_{n \to \infty} x_n = \infty \ dann \ schreibt \ man \lim_{n \to \infty} -x_n = -\infty$

1.32 Beispiel.

 $x_n \ mit \ x_n = q^n$, $q \in \mathbb{R}$, $q \ fest.$

$$\lim_{n \to \infty} q^n = \begin{cases} 0, & |q| < 1 \\ 1, & |q| = 1 \\ \infty, & q > 1 \\ ex.nicht, & q \le -1 \end{cases}$$

1.5 Konvergenzkriterien

(zum Beweis der Existenz eine Grenzwert, nicht zum berechnen von Grenzwert)

(1) x_n konvergent \Rightarrow (x_n) beschränkt.

wenn (x_n) nicht beschränkt $\Rightarrow (x_n)$ nicht konvergent.

- (2) Monotonie Kriterium: wenn (x_n) beschränkt ist können wir fragen ob (x_n) konvergent.
 - (x_n) beschränkt von Monotonie $\Rightarrow (x_n)$ konvergent.

1.33 Beispiel.

 $\left((-1)^n \times \frac{1}{n}\right)$ konvergent (Nullfolge) diese Folge ist beschränkt aber nicht Monoton

$$\lim_{n\to\infty} \left(\left(1 + \frac{1}{n}\right)^n \right)$$

existiert. Diese ist beschränkt und monoton.

$$\Rightarrow \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

existiert.

$$\lim_{n\to\infty} \left(1 + \frac{a}{n}\right) = e^a$$

1.6 Vorlesung 3

1.34 Beispiel.

$$\lim_{n \to \infty} \frac{11+n}{9-n} \quad ? \quad x_n = \frac{11+1}{9-n} = \frac{n}{n} \frac{\frac{11}{n}+1}{\frac{9}{n}-1}$$
 (1.34.1)

$$\lim_{n \to \infty} \left(\frac{11}{n} + 1 \right) = 1 \tag{1.34.2}$$

$$\lim_{n \to \infty} \left(\frac{9}{n} + 1 \right) = -1 \tag{1.34.3}$$

$$\lim_{n \to \infty} (x_n) = \frac{1}{-1} = -1 \tag{1.34.4}$$

1.35 Lemma. Seien $(x_n) = (y_n)$ Folgen auf $\lim_{n \to \infty} (x_n) = \lim_{n \to \infty} (y_n) = a$ und es gelte $x_n \le z_n \le y_n$ für fest alle " $n \in \mathbb{N}$

Dann gilt für die Folge $(Z_n) \lim_{n \to \infty} (z_n) = a$

1.36 Beispiel.

Ist die Folge $(-1)^n \frac{1}{n}$ konvergent ?

$$-\frac{1}{n} \le (-1)^n \left(\frac{1}{n}\right) \le 1\frac{1}{n}$$

$$\lim_{n \to \infty} -\left(\frac{1}{n}\right) = -1$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) = 0 \Rightarrow \lim_{n \to \infty} (-1)^n \frac{1}{n} = 0$$

1.37 Beispiel.

$$x_n \le \frac{a^n}{n!} = \frac{a}{n} \times \frac{a^{a-1}}{n-1!} \tag{1.37.1}$$

 $denn \ x_n = 0 \le \frac{a_n}{n!} \le y_n \ , \ gesucht! \qquad y_n \qquad f\"{u}r \ hinreichend \ großes \ n.$ $\frac{a^n}{n!} = \frac{a}{n} \times \frac{a^{n-1}}{(n-1)!}$ $\le \frac{1}{2} \times \frac{a^{n-1}}{(n-1)!}$ $= \frac{1}{2} \times \frac{a}{(n-1)} \times \frac{a^{n-2}}{(n-2)!}$ $\le \frac{1}{2} \times \frac{1}{2} \times \frac{a^{n-2}}{(n-2)!}$ $\le \frac{1}{2} \times \frac{1}{2} \times \frac{a^{n-3}}{(n-3)!}$ $y_n = (\frac{1}{2})^{n-k} \times \frac{a^k}{k!} \quad k \ ist \ fest$ (1.37.2)

Es gilt $\frac{a^n}{n!} \le y_n$ für hinreichend großes n und $\lim_{n \to \infty} (y_n)$

$$= \lim_{n \to \infty} \left(\frac{1}{2}\right)^{n-k} \times \underbrace{\frac{a^k}{k!}}_{Konst}$$

$$= \lim_{n \to \infty} \left(\frac{1}{2}\right)^n \times \underbrace{\lim_{n \to \infty} \left(\frac{1}{2}\right)^{-k}}_{\in \mathbb{R}} \times \underbrace{\lim_{n \to \infty} \left(\frac{a^k}{k!}\right)}_{\in \mathbb{R}}$$

$$= 0.\left(\frac{1}{2}\right)^{-k} \times \frac{a^k}{k!} = 0$$

$$(1.37.3)$$

1.7 Grenzwerte rekursive definierte Folgen:

man kann oft durch lösen Fixpunktgleichung" berechnen. x_0 , $x_{n+1} = ln(x_n)$

1.38 Beispiel.

$$(x_n)$$
 $x_0 = \frac{7}{5}$, $x_{n+1} = \frac{1}{3}(x_n^2 + 2)$

 $\ddot{U}(x_n)$ ist monoton fallend, beschränkt, konvergent.

$$\lim_{n \to \infty} x_n = a \quad , \quad \lim_{n \to \infty} x_{n+1} = a$$

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \frac{1}{3} (x_n^2 + 2) = \frac{1}{3} \lim_{n \to \infty} (x_n^2 + 2) = \frac{1}{3} (\lim_{n \to \infty} (x_n))^2 + 2)$$

Fixpunktgleichung

 $a = \frac{1}{3}(a^2 + 2)$, gesucht = a

$$3a = a^2 + 2 \Leftrightarrow a^2 - 3a + 2 = 0$$

$$\Leftrightarrow a_{1/2} = \frac{3}{2} \pm \sqrt{\frac{9}{4} - \frac{8}{4}} = \frac{3}{2} \pm \frac{1}{2}$$

Lösung: $a_1 = 2$ (keine Lösung), $a_2 = 1$

1.39 Beispiel.

$$(x_n) \ mit \ (x_0) = c \in \mathbb{R}, c \ fest \ x_{n+1} = \frac{1}{2}(x_n + \frac{c}{x_n})$$

(1) (x_n) beschränkt \checkmark

(2) (x_n) Monoton \checkmark

Also (x_n) konvergent

Sei
$$\lim_{n \to \infty} x_n = a$$
. Dann $\lim_{n \to \infty} x_{n-1} = \lim_{n \to \infty} \frac{1}{2}(x_n) + \frac{c}{x_n} = \frac{1}{2}(a + \frac{a}{c}) = a$

$$\Leftrightarrow 2a = a + \frac{c}{a} \Leftrightarrow a = \frac{c}{a} \Leftrightarrow a^2 = c \Leftrightarrow a = \sqrt{c}$$

1.40 Bemerkung.

Der Nachweis der konvergent der rekursiv definierte Folge darf nicht weggelassen werden, denn $Z.B \ x_0 = 2$, $x_{n+1} = x_n^2$ 2, 4,16,256,... divergent gegen $+ \infty$

Annahme:
$$\lim_{n \to \infty} x_n = a$$
 $\underbrace{\lim_{n \to \infty} x_{n+1}}_{a} = \underbrace{\lim_{n \to \infty} x_n^2}_{a^2} \Rightarrow a \in \{0, 1\}$

1.8 Reihen:

1.41 Definition (Unendliche Reihen).

 $Sei (a_n)$ eine reellefolge (komplexwertig) Folge

$$\sum_{k=0}^{n} a_k = a_a, a_1, \dots, a_n,$$

n-k heißt Partialsumme. (S_n) heißt unendliche Reihe. $schriebweise: (S_n)^{\infty} = bsw(S_n)$

$$\left(\sum_{l=0}^{n} a_l\right)$$

bzw

$$\left(\sum_{l=0}^{\infty} a_l\right)$$

1.42 Bemerkung.

Reihen sind spezielle Folgen, alle konvergent oder divergent.

1.43 Definition (wert der Reihe).

Für eine konvergente Reihen wird der Grenzwert auch wert der Reihe genannt.

1.44 Schreibweise.

$$: \lim_{n \to \infty} S_n =$$

$$\lim_{n \to \infty} \sum_{k=0}^{n} a_k$$

bzw

$$\sum_{k=0}^{\infty} a_k$$

1.45 Beispiel.

Teleskopreihe

$$\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right) in \ Grenzwert \ der \ Reihe \ ist$$

$$\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k-1}\right) = 1$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k-1}\right)$$

$$= \lim_{n \to \infty} \left(\frac{-1}{2}\right) + \frac{1}{2} \left(\frac{1}{3} + \frac{1}{3}\right) \left(-\frac{1}{4}\right) + \right) \dots + \left(\frac{1}{n}\right) - \frac{1}{n+1}$$

$$= \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

1.46 Beispiel.

geometrische Reihe $\sum_{k=0}^{\infty} q^k$ ist für

konvergent . wert der Reihe für |q|<1 $\sum_{k=0}^{\infty}q^k=\frac{1}{1-q}$ für |q|<1 konvergent , werte der Reihe für

$$|q|<1:\sum_{k=0}^n q^k=\dots$$

$$S_n = q^0 + q^1 + \dots + q^n | *q$$

$$-qS_n = q^1 + q^2 + \dots + q^{n+1}$$

$$(1-q)S_n = q^0 - q^{n+1}$$

$$S_n = \frac{1-q^{n+1}}{1-q} = \frac{1}{1-q} (1-q)^{n+1}$$

$$\Rightarrow \lim_{n \to \infty} S_n = \frac{1}{1-q} \times \lim_{n \to \infty} ((1-q)^{n+1})$$

$$= \frac{1}{1-q} (1 - \lim_{n \to \infty} q^{n+1}) = \frac{1}{1-q}$$

1.8.1 Rechnen für Reihen

konvergent Reihe kann man addieren oder subtrahieren mit einem Skalar multiplizieren wie endliche Summen. aber das gilt im Allgemein nicht für das Multiplizieren

1.9 Vorlesung 4

1.10 Reihen

1.47 Beispiel.

 $Zur\ geometrischen\ Reihen$ gesucht:A

$$2A = 1^2 + (\frac{1}{2})^2 + (\frac{1}{4})^2 + \dots + (\frac{1}{k})^2 + \dots$$

$$= \left(\frac{1}{4}\right)^0 + \left(\frac{1}{4}\right)^1 + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{2^2}\right)^3 + \left(\frac{1}{2^2}\right)^k + \dots$$

$$9 = \frac{1}{4} = \frac{1}{1 - \frac{1}{4}} = \frac{1}{\frac{3}{4}} = \frac{4}{3} = 2A \Rightarrow A = \frac{2}{3}$$

1.48 Beispiel.

$$0, 4\overline{3} = \frac{3}{4} + \frac{3}{100} + \frac{3}{10000} + \dots$$

$$\frac{4}{10} + \frac{3}{100} (\frac{1}{10})^0 + \frac{1}{10} + \frac{3}{10^2} + \dots$$

$$= \frac{4}{10} + \frac{3}{100} \times \frac{1}{1 - \frac{1}{10}}$$

$$= \frac{4}{10} + \frac{1}{30} = \frac{12 + 1}{30} = \frac{13}{30}$$

$$(1.48.1)$$

 $wenn \ 0, 4\overline{3} \ erlaubt \ w\"{a}re, \ dann,$

$$\frac{4}{10} + \frac{9}{100} \times \frac{10}{9} = \frac{4}{10} + \frac{1}{10} = \frac{5}{10} = \frac{1}{2} = 0.5$$

1.49 Beispiel.

$$\sum_{R=1}^{\infty} \frac{1}{K} \text{ ist divergent , denn } \lim_{\infty} \sum_{K=1}^{n} \frac{1}{k} \text{ ex. nicht}$$

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \dots + \frac{1}{16} + \dots + \frac{1}{n}$$

$$> 1 + \frac{1}{2} + \underbrace{\frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{10} + \frac{1}{16} + \dots + \frac{1}{n}}_{n \to \infty}$$

$$1 + \frac{1}{2} + \underbrace{\frac{1}{2} + \frac{1}{4} + \frac{1}{2} + \dots + \frac{1}{n}}_{n \to \infty} > \lim_{n \to \infty} s_n = \infty$$

1.11 Allgemeine harmonische Reihe

$$\sum_{K=1}^{\infty} \frac{1}{k^{\alpha}} \quad (\infty \text{fest}) \qquad \alpha > 1 \to \mathbb{R}$$

$$\alpha \leq \to dev$$

1.50 Beispiel.

$$\sum_{k=1}^{\infty} \frac{1}{k^2} \quad ist \ konvergent$$

1.51 Beweis.

mit Monotoniekriterium für Folge

Reihe ist konvergent $\begin{cases} (1) & \sum_{K=1}^{n} \frac{1}{k^2} & ist monoton wachsend; \\ (2) & \sum_{K=1}^{n} \frac{1}{k^2} & ist beschränkt. \end{cases}$

$$\sum_{K=1}^{\infty} \frac{1}{k^2} = \frac{1}{1} + \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{5^2} + \dots + \frac{1}{8^2}$$

$$< 1 + \frac{1}{4} + \underbrace{\frac{1}{2^2} + \frac{1}{2^2}}_{2.\frac{1}{4}} + \underbrace{\frac{1}{4^2} + \dots + \frac{1}{4^2}}_{4.\frac{1}{4^2}} + \underbrace{\frac{1}{4} + \frac{1}{2}.1 + \frac{1}{4}}_{(\frac{1}{2})^2} + \underbrace{\frac{1}{8}}_{(\frac{1}{2})^3} = 1 + \frac{1}{4} + \underbrace{\frac{9}{4}}_{1-\frac{1}{2}-1}$$

1.12 Expotentiale Reihe

$$\sum_{K=0}^{\infty} \frac{1}{k!} = \lim_{n \to \infty} (1 - \frac{1}{n})^n =: e \text{ist konvergent}$$

1.13 Hauptkriterium

$$\sum_{k=0}^{\infty} a_k \quad \text{konvergent} \Rightarrow (a_k) \text{Nullfolge}.$$

$$\lim_{k \to \infty} a_k \neq 0 \Rightarrow \sum_{k=0}^{\infty} a_k \quad \underbrace{nullkonvergent}_{divergend}$$

oder

$$\lim_{k \to -\infty} a_k \quad ex.null$$

1.52 Beispiel.

$$\sum_{K=1}^{\infty} \frac{3k^2+1}{4k^2-1} \quad divergend, \quad aber \quad \sum_{K=1}^{\infty} \frac{1}{k} \quad divergend \quad und \ \frac{1}{k} \ Null \ folge$$

1.53 Beweis.

$$\sum_{K=0}^{\infty} a_k konv. \Rightarrow \underbrace{(a_k Null folge)}_{\lim_{k \to \infty} a_k = 0}$$

$$s_n = \sum_{K=0}^{n} a_k, s_{n+1} = \sum_{k=0}^{n+1} \qquad s_{n+1} = s_n + a_{n+1}$$

$$s = \lim_{n \to \infty} s_n = \lim_{n \to \infty} s_{n+1} \qquad \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} s_{n+1} - \lim_{n \to \infty} s_n = s - s = 0$$

Kriterium für Alternierende Reihe 1.14

1.54 Beweis.

Alternierende $\sum_{K=0}^{\infty} (-1)^k \frac{1}{k}$ ist konvergent $\sum_{K=0}^{\infty} (-1)^k a_k$

wobei (a_k) einer Streng monoton fallend Nullfolge mit $a_k \ge 0$ \Rightarrow Die Reihe ist konvergent. Also $\sum_{K=0}^{\infty} (-1)^k \frac{1}{k}$ ist konvergent.

1.55 Definition (absolute Reihe).

Reihe $\sum_{K=0}^{\infty} a_k$ heißt absolute konvergent wenn $\sum_{K=0}^{\infty} |a_k|$ konvergent ist.

1.56 Beispiel.

$$\sum_{K=1}^{\infty} (-1)^k \frac{1}{k} \text{ ist konvergent , aber nicht absolute konvergent}$$

1.57 Beispiel.

$$\sum_{k=1}^{\infty} (-1)^k \frac{1}{k^2}$$
 ist kovergend und abslote konvergent

1.58 Satz. Reihe $\sum_{K=0}^{\infty} a_k$ abslot konvergent \Rightarrow Reihe $\sum_{K=0}^{\infty} a_k$ ist kovergend

1.59 Bemerkung.

Absolute konvergente Reihe kann man multiplizieren wie endliche summen d Reihen null

Quotionkriterium (QK): 1.15

für endliche Konvergenz

$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$$

 $\langle 1 \Rightarrow \sum_{K=0}^{\infty} a_k$ in absolut konvergent

 $> 1 \Rightarrow \text{ist divergent}$

= 1 Kriterium ist nicht anwendbar

Wurzel kriterium: WK 1.16

für (absolute) konvergent

$$\lim_{k \to \infty} \sqrt[k]{|a_k|}$$

 $\lim_{k\to\infty}\sqrt[k]{|a_k|} < 1 \Rightarrow \sum_{K=0}^{\infty} a_k \text{ in (absolute) konvergent}$

 $> 1 \Rightarrow \text{divergent}$

= 1 Kriterium ist nicht anwendbar

1.60 Beispiel (QK).

$$\sum_{K=0}^{\infty} \frac{1}{k!} \lim_{k \to \infty} \left| d \frac{\frac{1}{(k+1)!}}{\frac{1}{k!}} \right| = \lim_{k \to \infty} \frac{k!}{(k+1)!}$$

$$= \lim_{n \to \infty} \frac{1}{k+1}$$

$$= 0 < 1 \Rightarrow Reihe \quad als \quad konv.$$

1.61 Beispiel (WK).

$$\lim_{k \to \infty} \sqrt[k]{\frac{1}{k!}} = \lim_{k \to \infty} \frac{\sqrt[k]{1}}{\sqrt[k]{k!}} = \frac{1}{\lim_{k \to \infty} \sqrt[k]{k!}} = 0$$

$$< 1$$

$$\Rightarrow Reihe \quad als \quad konv.$$

1.17 Vorlesung 5

Zusammenfassung:

Folgen / Reihen / Konvergenz ? / Grenzwert ?

Neu: Funktionen

Approximation von Funktionen

Potenzreihen Taylorreihen

fourierreihen

Näherungsweise Berechnung

1.62 Definition.

 $f: \mathbb{D} \to \mathbb{R}$ heißt reelle Funktion in einer reellen veränderlichen

1.63 Bemerkung (Definitionsbereich).

Bild von f

$$f(D) = \{ f(x) \mid x \in D \}$$

 $Graph \ von \ f$

$$Graph(f) = \{(x \mid f(x)) \mid x \in D\}$$

1.64 Definition.

 $Sei\ f: D \to \mathbb{R}, D \subseteq \mathbb{R}, a \in D$

f heißt in a stetig , wenn gilt :

$$\forall (X_n): X_n \in D \ und \lim_{n \to \infty} f(x_n) = f(a) \ f \ urder{ulle Folgen}(x_n)$$

Die Folgenglieder sollen in Definitionsbereich liegen (Die in Definitionsbereich liegen können und den Grenzwert a haben)

* Ich weiß, dass $f(x_n)$ existiert $(f(x_n) ex.)$ Folge $f(x_n)ex.$, soll einen Grenzwert besitzen. \checkmark $f(\lim_{n\to\infty} x_n)\checkmark\checkmark$

1.65 Bemerkung.

$$\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)$$

★ Grenzwertbildung und Funktion Wertberechnung sind bei stetig Funktion in der Reihenfolge vertauschbar!

1.66 Berechnung.

$$\lim_{x \to a} f(x)$$

d.h für jede Folge x_n , die gegen a konvergiert, konvergiert die Folge der Funktionierte gegen f(a).

1.67 Bemerkung.

f stetig in $a \Leftrightarrow$

- 1) f(a) und
- 2) $\lim_{x\to a} f(x)$ ex. und
- 3) Grenzwert = Funktionswert $\lim_{x\to a} f(x) = f(a)$

1.68 Beispiel.

1)

$$f(x) = \frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{(x - 1)}$$

Ist f(x) stetig in a = 1?

a) f(1) ex? nein, d.h f ist in a = 1 nicht stetig

b)

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{(x-1)(x+1)}{x-1} = ?$$

Sei (x_n) eine beliebige Folge und $x_n \in D(f)$ und $\lim_{x\to\infty} (x_n) = 1$

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{(x-1)(x+1)}{(x-1)} = \lim_{n \to \infty} (x_n+1) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} 1 = 1 + 1 = 2$$

d.h Grenzwert ex. (und es ist 2).

 $Man\ sagt$, $f\ hat\ an\ der\ stelle\ 1\ eine\ L\"{u}cke.$

1.69 Beispiel.

(2)

$$f(x) = \frac{1}{x} \quad , \quad a = 0$$

(i) betrachte ? $\lim_{x\to 0^-} f(x)$: d.h wir betrachten alle Folgen (x_n)

$$X_n \in D, X_n \le 0 \lim_{n \to \infty} (x_n) = 0$$

$$\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} \frac{1}{x_n}$$

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{1}{x_n}$$

$$= \frac{\lim_{n \to \infty} 1}{\lim_{n \to -\infty} x_n} = \frac{1}{\lim_{n \to -\infty} x_n} = -\infty$$

$$d.h \quad \lim_{x \to 0^{-}} f(x) ex .nicht$$

(ii) Betrachte $\lim_{n\to+0} f(x_n)$, ex .nicht

$$f(x) = \begin{cases} 1, & x \ge 0 \\ \frac{1}{x}, & x < 0 \end{cases} a = 0 , f(0) = 1 ex.$$

$$\lim_{x \to 0^+} f(x) = 1, \lim_{x \to 0^-} f(x) = -\infty ex. \ nicht$$

 $\begin{array}{c|c}
 & & y \\
 & & f(x) \\
\hline
 & & & x \\
\hline
 & & & 2 \\
\hline
 & & & & & x \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & &$

$$f(x) = \underbrace{sgn(x)}_{sprung} = \left\{ \begin{array}{l} +1, & x \ge 0 \\ -1, & x < 0 \end{array} \right\}$$

$$\neq \left\{ \begin{array}{ll} \lim\limits_{x \to 0^{-}} f(x) = -1 & ex. \\ \lim\limits_{x \to 0^{+}} f(x) = 1 & ex. \end{array} \right\} \lim\limits_{x \to 0} f(x) \quad ex. \ nicht \ , \ O \ heißt \ Sprungstelle$$

1.70 Definition.

 $f: \to \mathbb{R}, \quad D \subseteq \mathbb{R} \quad hei\beta t \ \textit{stetig} \ , \ wenn \ f \ f\ddot{u}r \ alle \ a \in D \quad \textit{stetig}$

1.71 Beispiel.

elementare Funktionen und deren Verfügungen sind stetig auf dem gesamten Definitionsbereich.

Z.B

 $Polynom funktion\ ,\ rationale\ Funktionen,\ Winkelfunktionen\ ,\ Potenz funktionen\ ,$ $Wurzelfunktionen\ ,\ Exponential funktionen\ und\ Logarithmus funktion.$

1.72 Beispiel.

 $f: D \to \mathbb{R}: x \to \frac{1}{x} = x^{-1}$ ist stetig auf dem gesamten Defintionsbereich $D = \mathbb{R} \setminus \{0\}$

1.73 Beweis.

Sei $a \in D = \mathbb{R} \setminus \{0\} \ (d.h \ a \neq 0)$

$$f(a) = \frac{1}{a} \tag{1}$$

$$f(a) = \frac{1}{a}$$

$$\lim_{n \to \infty} f(x) = \lim_{n \to \infty} \frac{1}{x}$$
(2)

Sei
$$x_n$$
 eine beliebige Folge und $x_n \in D$ und $\lim_{n \to \infty} x_n = a$,
$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{1}{x_1} = \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} x_2} = \frac{1}{a} \in \mathbb{R}$$
 ex.

Rechnenregln für Funktionen (GWS anwenden) 1.17.1

$$\lim_{x \to \infty} (f(x) \pm g(x)) = \lim_{x \to \infty} f(x) \pm \lim_{x \to \infty} g(x), \text{ wo bei } g(x) \neq 0$$
$$\lim_{n \to \infty} (f(n) \pm g(n)) = \lim_{n \to \infty} f(n) \pm \lim_{n \to \infty} g(n)$$

1.74 Satz.

$$f: D \Rightarrow \mathbb{R}, \quad D \subseteq \mathbb{R} \text{ ist in } a \in D \text{ Stetig } \Leftrightarrow \forall_{\epsilon} > 0 \quad \exists \delta > 0: |x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$$

$$(1.74.1)$$

List of Theorems

1.1	Definition (Folgen)	2
1.6	Definition (Beschränktheit)	4
1.11	Definition (Monoton)	5
1.15	Definition (Konvergenz, Divergenz)	6
1.16	Definition (grenzwert)	6
1.23	Definition (Nullfolge)	8
1.27	Definition (Unendliche Grenzwert)	9
1.41	Definition (Unendliche Reihen)	14
1.43	Definition (wert der Reihe)	14
1.55	Definition (absolute Reihe)	19
1.62	Definition	21
1.64	Definition	21
1.70	Definition	24

List of Theorems

1.4	Beispiel	3
1.7	Beispiel	4
1.9	Beispiel	5
1.10	Beispiel	5
1.13	Beispiel	6
1.19	Beispiel	8
	Beispiel	8
1.25	Beispiel	8
1.32	Beispiel	10
1.33	Beispiel	10
	Beispiel	11
1.36	Beispiel	11
	Beispiel	12
1.38	Beispiel	13
	Beispiel	13
1.45	Beispiel	14
	Beispiel	15
1.47	Beispiel	16
	Beispiel	16
	Beispiel	17
1.50	Beispiel	17
	Beispiel	18
	Beispiel	19
	Beispiel	19
	Beispiel (QK)	20
	Beispiel (WK)	20
	Beispiel	22
	Beispiel	23
	Beispiel	25
	Beispiel	25