Trabajo Práctico 4

PARTE A: Integrales de Línea

NOTA: Muchos ejercicios de este trabajo práctico han sido tomados del libro "Cálculo de varias variables" de Thomas, décimosegunda edición, Ed. Pearson.

$$\int_{C} f \, ds = \int_{a}^{b} f(\mathbf{r}(t)) ||\mathbf{r}'(t)|| dt \quad \text{Integral de línea de un campo escalar}$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt \quad \text{Integral de línea de un campo vectorial}$$

Curvas

1. Relacione la ecuaciones vectoriales con los gráficos dados:

a)
$$\mathbf{r}(t) = (t, 1 - t, 0), 0 \le t \le 1.$$

b)
$$\mathbf{r}(t) = \mathbf{i} + \mathbf{j} + t\mathbf{k}, -1 \le t \le 1.$$

c)
$$\mathbf{r}(t) = (2\cos t, 2\sin t, 0), \ 0 \le t \le 2\pi.$$

d)
$$\mathbf{r}(t) = t\mathbf{i}, -1 \le t \le 1.$$

e)
$$\mathbf{r}(t) = t\mathbf{i} + t\mathbf{j} + t\mathbf{k}, \ 0 \le t \le 2.$$

f)
$$\mathbf{r}(t) = t\mathbf{j} + (2 - 2t)\mathbf{k}, \ 0 \le t \le 1.$$

g)
$$\mathbf{r}(t) = (0, t^2 - 1, 2t), -1 \le t \le 1.$$

h)
$$\mathbf{r}(t) = (2\cos t, 0, 2\sin t), \ 0 \le t \le \pi.$$

Integrales de línea de campos escalares

- 2. Calcule:
 - a) $\int_C (x+y)ds$, donde C es el segmento de recta $\mathbf{r}(t) = (t,1-t,0), \ 0 \le t \le 1$.
 - b) $\int_C (xy + y + z)ds$, donde C es el segmento de recta $\mathbf{r}(t) = (2t, t, 2 2t)$, $0 \le t \le 1$.
 - c) $\int_{C} xds$, donde C es el segmento de recta $\mathbf{r}(t) = (t, \frac{t}{2}), \ 0 \le t \le 4$.
 - *d*) la integral de $f(x,y,z) = \frac{\sqrt{3}}{x^2 + y^2 + z^2}$ sobre la curva dada por $\mathbf{r}(t) = (t,t,t), 1 \le t \le \infty$.
 - *e*) la integral de $f(x, y, z) = x + \sqrt{y} z^2$, sobre la trayectoria que va de (0, 0, 0) a (1, 1, 1), por $C = C_1 \cup C_2$, con C_1 : $\mathbf{r}_1(t) = (t, t^2, 0)$, $0 \le t \le 1$ y C_2 : $\mathbf{r}_2(t) = (1, 1, t)$, $0 \le t \le 1$.
 - f) $\int_{C} (x + \sqrt{y})ds$, donde C está dada en la figura.

- *g*) la integral de $f(x, y, z) = -\sqrt{x^2 + z^2}$, sobre la circunferencia C: $\mathbf{r}(t) = (0, a \cos t, a \sin t)$, $0 \le t \le 2\pi$.
- *h*) la integral de línea de $f(x, y) = ye^{x^2}$ a lo largo de la curva $\mathbf{r}(t) = 4t\mathbf{i} 3t\mathbf{j}$, $-1 \le t \le 2$.
- i) $\int_C f(x,y)ds$ donde $f(x,y) = \frac{\sqrt{y}}{x}$ y C viene dada por $\mathbf{r}(t) = t^3\mathbf{i} + t^4\mathbf{j}$, $\frac{1}{2} \le t \le 1$.
- *j*) la integral de $f(x, y) = x^2 y$ sobre la parte de C dada por $x^2 + y^2 = 4$ en el primer cuadrante, desde (0, 2) hasta $(\sqrt{2}, \sqrt{2})$.
- k) el área de uno de los lados de la "pared" que es ortogonal a la curva 2x + 3y = 6, $0 \le x \le 6$, y está sobre la curva y bajo la superficie f(x, y) = 4 + 3x + 2y.
- 3. Un alambre curvo de densidad $\delta(x,y,z)=15\sqrt{y+2}$ está colocado sobre la curva C: $\mathbf{r}(t)=(t^2-1)\mathbf{j}+2t\mathbf{k}, -1\leq t\leq 1.$
 - a) Calcule la masa del alambre.
 - b) Calcule el centro de masa del alambre.
 - c) Represente el alambre y su centro de masa juntos.
- 4. Encuentre la masa de un alambre delgado, colocado a lo largo de la curva $\mathbf{r}(t) = (\sqrt{2}t, \sqrt{2}t, 4-t^2), 0 \le t \le 1$, si la densidad es $\delta = 3t$.

2

Campos vectoriales, Gradientes e Integrales de Campos Vectoriales

5. Represente gráficamente cada uno de los siguientes campos vectoriales en \mathbb{R}^2 .

a)
$$\mathbf{F}(x, y) = (-y, x)$$

b)
$$\mathbf{F}(x, y) = (x, y)$$

c)
$$\mathbf{F}(x, y) = -\frac{x}{x^2 + y^2} \mathbf{i} - \frac{y}{x^2 + y^2} \mathbf{j}$$

d)
$$\mathbf{F}(x, y) = (0, x)$$

6. Determine el campo gradiente generado por:

a)
$$f(x, y, z) = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$$

b)
$$f(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$$

c)
$$g(x, y, z) = e^z - \ln(x^2 + y^2)$$

$$d) g(x, y, z) = xy + yz + xz$$

7. Encuentre las integrales de línea de \mathbf{F} desde (0,0,0) hasta (1,1,1) sobre cada una de las siguientes trayectorias (vea la figura), donde $\mathbf{F}(x,y,z)$ viene dado por

•
$$\mathbf{F}(x, y, z) = (y + z, z + x, x + y)$$

•
$$\mathbf{F}(x, y, z) = (xy, yz, xz)$$

- a) La trayectoria es el segmento C_1 que va de (0,0,0) a (1,1,1).
- b) La trayectoria C_2 , dada por $\mathbf{r}_2(t)=(t,t^2,t^4), 0\leq t\leq 1.$
- c) La trayectoria $C_3 \cup C_4$, donde C_3 es el segmento de recta desde (0,0,0) hasta (1,1,0) y C_4 , el segmento de recta desde (1,1,0) hasta (1,1,1).

8. Evalúe: $\int \sqrt{x+y} \, dx$, sobre la trayectoria que muestra la figura:

- 9. Calcule las siguientes integrales a lo largo de la curva C dada por $\mathbf{r}(t) = (\cos t, \sin t, -\cos t)$, $0 \le t \le \pi$.
 - a) $\int_C xz dx$
 - b) $\int_C xz \, dy$
 - c) $\int_C xz dz$
- 10. Dado el campo vectorial **F** de la figura 1 (abajo):
 - *a*) Si *C* es una circunferencia unitaria centrada en el origen recorrida en sentido antihorario, la integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ ¿es positiva, negativa o nula? (Debe responder sin hacer cálculos).
 - *b*) Marque en el gráfico una curva suave C_1 tal que $\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$ sea nula.
- 11. Sea F dado por el gráfico de la figura 2 (abajo). Indique si cada una de las integrales de línea de F a lo largo de C_1 y C_2 es positiva, nula o negativa.

- 12. Calcule el trabajo realizado por $\mathbf{F} = (xy, y, -yz)$ a lo largo de $\mathbf{r}(t) = (t, t^2, t), \ 0 \le t \le 1$, cuando t crece.
- 13. Calcule el trabajo realizado por $\mathbf{F} = (z, x, y)$ a lo largo de $\mathbf{r}(t) = (\operatorname{sen} t, \cos t, t), \ 0 \le t \le 2\pi$, cuando t crece.
- 14. Evalúe: $\int_C (x y)dx + (x + y)dy$, sobre la trayectoria en sentido contrario a las manecillas del reloj, a lo largo del triángulo con vértices en (0,0), (1,0) y (0,1).
- 15. Determine el trabajo realizado por la fuerza $\mathbf{F}(x, y) = (xy, y x)$ en la trayectoria recta desde (1, 1) hasta (2, 3).
- 16. Calcule la circulación y el flujo de los campos $\mathbf{F}_1(x,y) = (x,y)$ y $\mathbf{F}_2(x,y) = (-y,x)$ alrededor y a través de las curvas C_1 y C_2 , dadas respectivamente por $\mathbf{r}_1(t) = (\cos t, \sin t)$, $0 \le t \le 2\pi$, y $\mathbf{r}_2(t) = (\cos t, 4 \sin t)$, $0 \le t \le 2\pi$.
- 17. Calcule el flujo del campo de velocidades $\mathbf{F} = (x + y, -x^2 y^2)$ a lo largo de cada una de las siguientes trayectorias desde (1,0) hasta (-1,0) en el plano xy:
 - a) la parte superior de la circunferencia $x^2 + y^2 = 1$;

- b) el segmento de recta desde (1,0) hasta (-1,0);
- c) el segmento de recta desde (1,0) hasta (0,-1), seguido por el segmento de recta desde (0,-1) hasta (-1,0).
- 18. Obtenga la circulación del campo $\mathbf{F} = (y, x + 2y)$ alrededor de cada una de las siguientes trayectorias cerradas:

- c) Use una trayectoria diferente de las de los incisos a y b, que sea cerrada y simple.
- 19. Trace el campo radial dado por $\mathbf{F}(x, y) = x\mathbf{i} + y\mathbf{j}$ junto con sus componentes horizontales y verticales, en un conjunto representativo de puntos de la circunferencia $x^2 + y^2 = 1$.
- 20. Trace el campo de rotación dado por $\mathbf{F}(x,y) = -\frac{y}{\sqrt{x^2+y^2}}\mathbf{i} + \frac{x}{\sqrt{x^2+y^2}}\mathbf{j}$ junto con sus componentes horizontales y verticales en un conjunto representativo de puntos del disco $x^2 + y^2 = 4$.
- 21. Encuentre un campo vectorial $\mathbf{F}(x, y) = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$ en el plano xy con la propiedad de que en cada punto $(x, y) \neq (0, 0)$, \mathbf{F} sea un vector unitario que apunta hacia el origen. (El campo no está definido en el origen.)
- 22. Calcule la circulación de $\mathbf{F} = (2x, 2z, 2y)$ a lo largo de la curva C que es la unión de C_1 : $\mathbf{r}_1(t) = (\cos t, \sin t, t), \ 0 \le t \le \frac{\pi}{2}, C_2$: $\mathbf{r}_2(t) = (0, 1, (\frac{\pi}{2})(1-t)), \ 0 \le t \le 1$ y C_3 : $\mathbf{r}_3(t) = (t, (1-t), 0), \ 0 \le t \le 1$.

Campos conservativos

- 23. ¿Cuáles de los siguientes campos son conservativos? En caso de serlo halle la función potencial.
 - a) $\mathbf{F} = (y \operatorname{sen} z, x \operatorname{sen} z, xy \cos z)$
 - b) $\mathbf{F} = -y\mathbf{i} + x\mathbf{j}$
 - c) $\mathbf{F} = (y + z, x + z, x + y)$
- 24. Encuentre una función potencial para el campo vectorial $\mathbf{F} = (y \operatorname{sen} z, x \operatorname{sen} z, xy \operatorname{cos} z)$.

5

25. Encuentre una función potencial para el campo vectorial

$$\mathbf{F} = \frac{y}{1 + x^2 y^2} \mathbf{i} + \left(\frac{x}{1 + x^2 y^2} + \frac{z}{\sqrt{1 - y^2 z^2}} \right) \mathbf{j} + \left(\frac{y}{\sqrt{1 - y^2 z^2}} + \frac{1}{z} \right) \mathbf{k}$$

26. Compruebe que el integrando es una forma diferencial exacta y calcule la integral.

$$\int_{(0,0,0)}^{(1,2,3)} 2xydx + (x^2 - z^2)dy - 2yzdz.$$

27. Sea el campo vectorial $\mathbf{F}(x, y, z) = (3x^2, \frac{z^2}{y}, 2z \ln y)$.

- *a*) Dé el dominio de definición *D* de **F** (el mayor posible, en el sentido de la inclusión). Verifique que se trata de una región abierta, conexa y simplemente conexa.
- b) Mediante el criterio de componentes, compruebe que $3x^2 dx + \frac{z^2}{y} dy + 2z \ln y dz$ es una forma diferencial exacta en *D*.
- c) Encuentre una función potencial para F.
- d) Evalúe la integral.
- 28. Demuestre que el valor de la integral $\int_A^B z^2 dx + 2y dy + 2xz dz$ no depende de la trayectoria desde A hasta B, con A y B, puntos en \mathbb{R}^3 .
- 29. Determine el trabajo realizado por $\mathbf{F} = (x^2 + y, y^2 + x, ze^z)$ para las siguientes trayectorias desde (1,0,0) hasta (1,0,1):
 - a) El segmento de recta x = 1, y = 0, $0 \le z \le 1$.
 - b) La hélice $\mathbf{r}(t) = (\cos t, \sin t, (\frac{t}{2\pi})), \ 0 \le t \le 2\pi$.
 - c) El eje x desde (1,0,0) hasta (0,0,0), seguido de la parábola $z=x^2$, y=0 desde (0,0,0) hasta (1,0,1).
- 30. Sea $\mathbf{F} = \nabla f$, con $f(x,y) = x^3y^2$, y sea C la trayectoria en el plano xy, que va desde (-1,1) hasta (1,1), y que consiste en el segmento de recta desde (-1,1) hasta (0,0), seguido del segmento de recta desde (0,0) hasta (1,1). Evalúe $\int_C \mathbf{F} \cdot d\mathbf{r}$ de dos maneras:
 - a) Encuentre parametrizaciones para los segmentos que forman a C y evalúe la integral.
 - b) Use f como una función potencial para F.

Aplicaciones

- 31. Demuestre que el trabajo realizado por un campo de fuerza constante $\mathbf{F} = (a, b, c)$ al mover una partícula a lo largo de cualquier trayectoria desde A hasta B es $W = \mathbf{F} \cdot \overrightarrow{AB}$.
- 32. a) Encuentre una función potencial para el campo gravitacional

$$\mathbf{F} = -GmM \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{(x^2 + y^2 + z^2)^{3/2}}$$

(G, m y M son constantes).

b) Sean P_1 y P_2 puntos que se encuentran a distancias s_1 y s_2 desde el origen. Demuestre que el trabajo realizado por el campo gravitacional del inciso anterior, para mover una partícula desde P_1 hasta P_2 , es

$$GmM\left(\frac{1}{s_2}-\frac{1}{s_1}\right).$$

33. En algunas ramas de las ciencias naturales, como climatología, mecánica de fluidos, magnetismo, es usual encontrarse con campos vectoriales que representen fuentes de energía, sumideros, vórtices, y combinaciones de los anteriores. Es por ello que resulta de gran interés contar con modelos matemáticos que permitan estudiar estos fenómenos de manera adecuada.

Figura 1. Fuente, vórtice y dipolo (superposición de fuente y sumidero separados una distancia dada).

Para modelar una fuente bidimensional consideramos un campo vectorial que a cada punto del plano le asigne el vector posición de dicho punto, es decir:

$$\mathbf{F}_1(x,y) = x\mathbf{i} + y\mathbf{j}.$$

Para modelar un vórtice en sentido anti horario, tomamos un campo que a cada punto del plano le asigne su vector posición, pero rotado 90° en sentido anti horario:

$$\mathbf{F}_2(x, y) = -y\mathbf{i} + x\mathbf{j}.$$

a) Calcule la circulación del campo fuente \mathbf{F}_1 a lo largo de la curva C_1 , que es el cuarto de circunferencia con centro en el origen y radio r=2 en el primer cuadrante (en sentido anti horario). Interprete el resultado.

Rta: C_1 se puede parametrizar por $\mathbf{r}(t) = (2\cos t, 2\sin t), 0 \le t \le \frac{\pi}{2}$.

$$\int_{C_1} \mathbf{F}_1 \cdot d\mathbf{r} = \int_0^{\frac{\pi}{2}} \mathbf{F}_1(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_0^{\frac{\pi}{2}} (2\cos t, 2\sin t) \cdot (-2\sin t, 2\cos t) dt = 0.$$

b) Calcule la circulación del vórtice F_2 a lo largo de la curva C_2 , que es el segmento de recta en el primer cuadrante entre las circunferencias de radios r=1 y r=4, a 45° de inclinación con respecto al semieje x positivo. Interprete el resultado.

Rta: C_2 se puede parametrizar por $\mathbf{r}(t) = (t\cos(\frac{\pi}{4}), t\sin(\frac{\pi}{4})), 1 \le t \le 4$.

$$\int_{C_2} \mathbf{F}_2 \cdot d\mathbf{r} = \int_0^4 \mathbf{F}_2(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_0^4 (-t \operatorname{sen}(\frac{\pi}{4}), t \cos(\frac{\pi}{4})) \cdot (t \cos(\frac{\pi}{4}), \operatorname{sen}(\frac{\pi}{4})) dt = 0.$$

34. El campo eléctrico generado por un dipolo formado por dos cargas opuestas, q y -q, ubicadas respectivamente en los puntos (1,0) y (-1,0), viene dado por

$$\mathbf{E}(x,y) = \frac{q}{4\pi\varepsilon_0} \left(\frac{x-1}{((x-1)^2 + y^2)^{\frac{3}{2}}} + \frac{x+1}{((x+1)^2 + y^2)^{\frac{3}{2}}}, \frac{y}{((x-1)^2 + y^2)^{\frac{3}{2}}} + \frac{y}{((x+1)^2 + y^2)^{\frac{3}{2}}} \right).$$

- *a*) Halle la función potencial electrostático *V* en cada punto del plano.
- *b*) Superponga un gráfico de curvas de nivel de *V* con un gráfico del campo vectorial E. Encuentre una relación entre las líneas de flujo del campo E y las líneas equipotenciales (es decir, las curvas de nivel de la función potencial *V*).
- c) Repita este ejercicio para el campo eléctrico generado por una única carga puntual (fuente).

Teorema de Green

- 35. Verifique el teorema de Green para: $\mathbf{F} = (-y, x)$ con dominio en el disco R dado por $x^2 + y^2 \le a^2$ y su circunferencia frontera C dada por $\mathbf{r}(t) = (a\cos t, a\sin t), 0 \le t \le 2\pi$, con a > 0.
- 36. Verifique el teorema de Green para: $\mathbf{F} = (-x^2y, xy^2)$ con dominio en el disco R dado por $x^2 + y^2 \le a^2$ y su circunferencia frontera C dada por $\mathbf{r}(t) = (a\cos t, a\sin t)$, $0 \le t \le 2\pi$, con a > 0.
- 37. Utilice el teorema de Green para calcular la circulación en sentido antihorario y el flujo hacia fuera para cada uno de los siguientes campos F y curvas *C*.
 - a) $\mathbf{F} = (x^2 + 4y, x + y^2)$; C, frontera del cuadrado acotado por las rectas x = 0, x = 1, y = 0 e y = 1.
 - b) $\mathbf{F} = (xy + y^2, x y)$; C, dada en la figura 1.
 - c) $\mathbf{F} = (x + 3y)\mathbf{i} + (2x y)\mathbf{j}$; C, dada en la figura 2.

- 38. Calcule la circulación en contra de las manecillas del reloj y el flujo hacia fuera del campo $\mathbf{F} = (xy, y^2)$ alrededor y sobre la frontera de la región encerrada por las curvas $y = x^2$ y y = x en el primer cuadrante.
- 39. Determine el trabajo realizado por la fuerza $\mathbf{F} = (2xy^3, 4x^2y^2)$ al mover una vez una partícula en sentido antihorario, a lo largo de curva C que es la frontera de la región en el primer cuadrante encerrada por el eje x, la recta x = 1 y la curva $y = x^3$.
- 40. Aplicando el teorema de Green calcule:
 - a) $\oint_C (y^2 dx + x^2 dy)$, donde C es la frontera del triángulo delimitado por x = 0, x + y = 1 e y = 0.

- b) El área de la región encerrada por la elipse parametrizada por $\mathbf{r}(t) = (a\cos t, b\sin t), \ 0 \le t \le 2\pi$. Recuerde que si una curva suave por partes, cerrada simple en el plano, C, encierra una región plana R, el área de R se puede hallar como $\frac{1}{2} \oint x \, dy y \, dx$.
- c) El área de la región encerrada por la astroide $\mathbf{r}(t) = (\cos^3 t)\mathbf{i} + (\sin^3 t)\mathbf{j}$, $0 \le t \le 2\pi$.
- 41. Sea *C* la frontera de una región sobre la cual se cumple el teorema de Green. Use el mismo para calcular
 - a) $\oint f(x) dx + g(y) dy$
 - b) $\oint ky dx + hx dy$, k y h son constantes.
- 42. Sea A el área y \bar{x} la coordenada x del centroide de la placa plana que se encuentra en la región R acotada por la curva suave por partes C, simple y cerrada en el plano xy. Demuestre que

$$\frac{1}{2} \oint_C x^2 dy = -\oint_C xy \, dx = \frac{1}{3} \oint_C x^2 dy - xy \, dx = A\bar{x}.$$

43. Suponiendo que todas las derivadas necesarias existen y son continuas, demuestre que si f(x, y) satisface la ecuación de Laplace

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0,$$

entonces

$$\oint_C \frac{\partial f}{\partial y} dx - \frac{\partial f}{\partial x} dy = 0$$

para todas las curvas cerradas C, a las cuales se aplica el teorema de Green.

44. El teorema de Green se cumple para una región *R* con un número finito de agujeros, siempre que las curvas de la frontera sean simples cerradas y suaves, y que integremos sobre cada componente de la frontera en la dirección en que *R* se mantiene a izquierda mientras avanzamos.

a) Sean $f(x, y) = \ln(x^2 + y^2)$ y C la circunferencia $x^2 + y^2 = a^2$. Evalúe la integral de flujo

$$\oint_C \nabla f \cdot \mathbf{n} \, ds.$$

b) Sea *K* una curva arbitraria suave simple cerrada en el plano, que no pase por el punto (0, 0). Utilice el teorema de Green para demostrar que

$$\oint_K \nabla f \cdot \mathbf{n} \, ds$$

tiene dos posibles valores, dependiendo de que (0,0) esté adentro o afuera de K.

9

Ejercicios tomados en exámenes

- 45. Enuncie en forma completa y demuestre el Teorema de Green (un caso particular).
- 46. Dados el campo escalar $f(x, y) = \ln(x^2 + y^2)$ y el campo vectorial $\mathbf{F} = \nabla f$, indique justificando cada respuesta:
 - a) cuáles son los dominios de f y F.
 - *b*) Calcule la integral $\int_C \nabla f \cdot \mathbf{T} ds$ donde *C* es la circunferencia de ecuación $x^2 + y^2 = 4$ recorrida en sentido positivo.
 - c) Indique si F es o no conservativo en su dominio.
- 47. *a*) Calcule el flujo del campo vectorial $\mathbf{F}(x, y, z) = (-y, x, z)$ a lo largo de la curva C que es la intersección del cilindro $x^2 + y^2 = 4$ y el plano x + y + z = 1.
 - b) Indique, justificando su respuesta, si el campo vectorial F es o no conservativo.
 - c) Halle la divergencia de **F** en el punto (0, 0, 0) e interprete.
- 48. Sea $f(x, y, z) = x y^2 z^2$ una función que representa la densidad de un material en cada punto del alambre fino cuyos puntos se encuentran sobre la curva dada por $\mathbf{r}(t) = (t+1, \cos t, \sin t), 0 \le t \le \pi$. Calcule la masa del mismo.
- 49. La curva presentada en el siguiente gráfico está dada por
 - $\mathbf{r}(t) = (3 \operatorname{sen}(2t) \cos(t), 3 \operatorname{sen}(2t) \operatorname{sen}(t)), \ (0 \le t \le \frac{\pi}{2}).$

La misma encierra una región plana *R*. Halle el área de *R*.

Sugerencia: aplique el teorema de Green y prefiera el campo vectorial $\mathbf{F}(x, y) = \left(-\frac{y}{2}, \frac{x}{2}\right)$.

Selección: 1 2afk 5ad 6ab 7ac 8 11 12 18 23 26 35 37ac 39 49