Algorithmische Graphentheorie

Julian Schubert

20. Juli 2021

Inhaltsverzeichnis

1	Wichtige Begriffe	2
2	Eulerkreise 2.1 Eulerkreis finden	2 3
3	Hamiltonkreise	3
4	Handlungsreisen (TSP)	3
5	Lineare Programmierung	3
6	Flussalgorithmen 6.1 Flussvergrößernde Wege	4 5
7	Matchings	6
8	Alternierende und augmentierende Wege	7
9	Wurzelspannbäume	8
10	MinCut - Kleinste Schnitte	9
11	Färbungen und chromatische Zahl	10
12	Festparameter-Berechenbarkeit	12
13	Planare Graphen	13
14	Färbbarkeit Planare Graphen	17

1 Wichtige Begriffe

Definition 1

Ein gerichteter Graph G ist **schwach** zusammenhängend wenn der darunterliegende ungerichtete Graph zusammenhängend ist

Ein gerichteter Graph G ist **stark** zusammenhängend wenn es für jedes Knotenpaar (u, v) einen gerichteten Weg von u nach v gibt

Definition 2: bipartiter Graph

Ein Graph G wird as bipartit bezeichnet, wenn sich seine Knoten in zwei disjunkte Teilmengen A und B aufteilen lassen. Zwischen Den Knoten innerhalb dieser Teilmengen dürfen also keine Kanten existieren.

Definition 3

Vollständig: K_n , n
 Knoten, alle miteinander verbunden

2 Eulerkreise

Definition 4: Eulerkreis

Sei G ein (un-)gerichteter Grpah.

Ein Eulerkreis (-weg) in G ist ein Kreis (Weg), der jede **Kante** genau einmal durchläuft.

Ein Graph heißt eulersch, falls er einen Eulerkreis enthält

Ein Graph der nur einen Eulerweg aber keinen Eulerkreis enthält, ist nicht eulersch!

Eigenschaft 1: Satz von Euler

Sei G ein ungerichteter und zsh. Graph.

Dann gilt: G eulersch \Leftrightarrow alle Knoten haben geraden Grad

Bei gerichteten Graphen: indeg(v) = outdeg(v)

2.1 Eulerkreis finden

Man kann in O(E) testen on G eulersch ist (Knotengrade zählen)

Eulerkreis finden:

Verwalte in jedem Knoten v eien zeiger $\operatorname{curr}[v],$ der auf den ersten unbenutzten Nachbarn w zeigt

3 Hamiltonkreise

Definition 5: Hamiltonkreis NP-schwer

Sei G ein (un-)gerichteter Graph. Ein Hamiltonkreis (-weg) in G ist ein Kreis (Weg), der jeden **Knoten** genau einmal durchläuft.

Eigenschaft 2: Satz von Bondy und Chvátal

Sei G = (V, E) ein ungerichteter Graph mit $|V| \ge 3$

Seien u und v nicht-adjazente Knoen von G mit $\deg(u) + \deg(v) \geq n := |V|$. Dann gilt:

G hamiltons \Leftrightarrow G + uv hamiltonsch

Eigenschaft 3: Satz von Dirac

Sei G=(V,E) ein ungerichteter Graph mit $|V|\geq 3$. Falls jeder Knoten von G Grad $\geq |V|/2$ hat, so ist G hamiltonsch

TODO: Beweisen

4 Handlungsreisen (TSP)

Lösbar mit Algorithmmus von Bellman & Held-Karp

5 Lineare Programmierung

Definition 6: Knotenüberdeckung

Gegeben: Graph G = (V, E)

Gesucht: Knotenüberdeckung, d.h. $V' \subseteq V$, so dass jede Kante minde-

stens einen Endpunkt in V' hat.

Ziel: |V'| minimal

Definition 7: Clique

Gegeben: ungerichteter, ungewichteter Graph G = (V, E)

Gesucht: Clique in G

d.h. $V' \subseteq V$, so dass der von V' induzierte Graph G[V'] vollständig ist (also jeder Knoten eine Verbindung zu jedem anderen Knoten hat) Mit anderen Worten: $V' \subseteq V$, so dass für alle $\{u', v'\} \in \binom{V'}{2}$ gilt $u'v' \in E$

Definition 8: Fluss

Sei G=(V,E) ein gerichteter Graph mit $s,t\in V$. Eine funktion $f:E\to\mathbb{R}_{>0}$ heißt s-t-Fluss (Fluss), wenn für jeden Knoten $v\in V\setminus\{s,t\}$ gilt:

$$\sum_{u \in V \mid uv \in E} f(uv) - \sum_{w \in Vvw \in E} f(vw) = 0$$

Zufluss zum knoten V = Abfluss vom Knoten v, also der Nettozufluss muss gleich Null sein.

Definition 9

Sei G = (V, E) ein gerichteter Graph mit $s, t \in V$.

Seien durch $c: E \to \mathbb{R}_{\geq 0}$ Kantenkapazitäten gegeben. Ein Fluss f ist zulässig, wenn für jede Kante $e \in E$ gilt:

$$0 \le f(e) \le c(e)$$

Der Wert |f| eines Flusses f ist der Nettozufluss zum Knoten t.

6 Flussalgorithmen

Definition 10: Kapazität eines Schnittes

G Graph mit Kap. c: $E \to \mathbb{R}_{>0}$, (S, T) s-t-Schnitt. Dann ist c(S) := c(Raus(S)) die Kapazität von (S, T)

6.1 Flussvergrößernde Wege

- 1. Residualgraph G' bilden:
 - Hinrichtung: Benutzte Kapazität in G
 - Rückrichtung: Übrige Kapazität der Kante

Definition 11

Eins s-t-Weg W in G_f heißt flussvergrößernder Weg für f. Die Residualkapatziät von W ist

$$\triangle_W := min_{e \in W} c_f(e)$$

Ein zulässiger s-t-Fluss in G ist maximal \Leftrightarrow es gibt keinen Flussvergrößenderen Weg in \mathcal{G}_f

Definition 12: Max-Flow-Min-Cut-Theorem

Sei f ein zulässiger s-t-Fluss in einem gerichteten Graphen G mit Kapazitäten $c:E\to\mathbb{R}_{\geq 0}$

Dann sind folgende Bedingugnen äquivalent:

- 1. f ist ein maximaler Fluss in G
- 2. \mathcal{G}_f enthält keine augmentierenden Wege, also Wege über die die Kapazität erhöht werden könnte
- 3. Es gibt einen s-t-Schnitt (S, T) mit |f| = c(S)

Kurz

$$max_{\text{f zul\"{assiger s-t-Fluss}}}|f| = min_{(S, T) \text{ s-t-Schnitt}}c(S)$$

6.2 Algorithmen

Definition 13: FordFulkerson / EdmonsKarp

Suche s-t-weg in G_f und füge das dann den Kanten hinzu. Änderung von EdmonsKarp: Muss der Kürzeste s-t-Weg sein

Edmons Karp führt O(VE) Flussvergrößerungen durch Edmons Karp läuft in $O(VE^2)$

7 Matchings

Definition 14: Matchings

Sei G = (V, E) ein ungerichteter Graph

 $M\subseteq E$ ist eine **Paarung** (engl. matching), wenn je zwei Kanten in M
 keinen gleichen Endpunkt haben

Falls für jede Kante $e \in M$ gilt, dass $M \cup \{e\}$ keine Paarung ist, so ist M nicht erweiterbar (engl. maximal)

Falls für alle Parrungen M' in G gilt, dass $|M'| \leq |M|$, so ist M eine **größte Paarung** (engl. maximum)

Falls jeder Knoten in G durch M gepaart ist, so ist M eine **perfekte Paarung** (engl. perfect matching)

Definition 15: Ganzzahligkeitssatz

Sind alle Kapazitäten ganzzahlig, d.h. $c: E \to \mathbb{N}$, so existiert ein maximaler Fluss, der ganzzahlig ist.

Eigenschaft 4: Satz von Menger

Sei G=(V,E) ein gerichteter Graph und $s,t\in V$. Dann ist die maximale Anzahl kantendisjunkter s-t-Wege gleich der minimalen Kardinalität eines s-t-Schnittes

Kardinalität eines s-t-Schnittes: Anzahl an Kanten die von S nach T Laufen

 \Rightarrow minimale Kardinalität eines s-t-Schnitts = maximale Anzahl an kantendisjunkter s-t-Wege (die Kapazität aller möglichen s-t-Schnitte ist genau so groß wie die Anzahl an möglichen s-t-Wegen)

Eigenschaft 5: Auch von Menger

Sei G = (V, E) ein gerichteter Graph, $s, t \in V, st \notin E$. Dann ist die maximale Anzahl **knotendisjunkter** s-t-Wege gleich der Kardinalität einer kleinsten Knotenmenge, die s und t trennt.

Definition 16: Nachbarschaft

Nachbarschaft von $v \in V$ ist

$$N(v) := \{ u \in V | uv \in E \}$$

Nachbarschaft von $V' \subseteq V$ ist

$$N(V') := \bigcup_{v' \in V'} N(v')$$

Definition 17: Heiratssatz (bewiesen von Philip Hall)

Es existiert ein perfektes Matching \Leftrightarrow Für jedes $D'\subseteq D$ gilt: $|D'|\leq |N(D')|$

Eigenschaft 6

Sei G = (V, E) ein bipartiter Graph Dann lässt sich eine größte Parrung in G in $O(VE^2)$ Zeit bestimmen

In G' können wir |V| s-t-wege in je O(E) zeit berechnen

8 Alternierende und augmentierende Wege

Definition 18: Augmentierender Weg

Ein Weg ist **augmentierend**, wenn die Kanten immer Abwechselnd im Matching und nicht im Matching liegen. Starten und Enden mit einer Kante die nicht im Matching liegt.

Alternierend: Wechselt zwischen im Matching und nicht im Matching

Definition 19: Satz von Berge

Sei G=(V,E) Grpah, $M\subseteq E$ Matching in G.

M ist ein größtes Matching in G \Leftrightarrow es gibt keinen M-augmentierenden Weg.

Eigenschaft 7

In einem bipartiten Graphen G = (V, E) lässt sich in O(VE) ein größtes

Matching bestimmen

Ansatz: Knoten S erstelen mit Kante zu allen Knoten im einen Teil, dann BFS |V|/2 mal ausführen (oder bis kein freier Knoten in B mehr gefunden wird).

Definition 20: Christofides Alfogrithmus

- Ermittle einen minimalen Spannbaum B für G
- Sei U die Menge der Knoten ungeraden Grades in B
- Ermittle kostenminimales perfektes Matching M für G[U]
 - G[u] ist der von U induzierte Graph
 - $-(U, \{vw \in E(g) : v \in U, w \in U\})$
- \bullet Berechne im eulerschen Grpahen $B\cup M$ erst Eulertour und dann Rundtour T wie beim Tree-Doubling
- \Rightarrow liefert eine 3/2-Approximation für Δ -TSP

Definition 21: Kostenminimales perfektes Matching

Gegeben: vollständiger Graph G=(V,E), mit Kantenkosten $c:E\to\mathbb{R}_{\geq 0}$ Gesucht: Perfektes Matching M mit minimalen Kosten $c(M)=\sum_{e\in M}c(e)$ \Rightarrow kann in $O(V^3)$ berechnet werden (ist aber ziemlich kompliziert :(

9 Wurzelspannbäume

Definition 22: Wurzelbaum

Ein gerichteter Graph T=(V,E) mit Knoten $s\in V$ heißt s-**Wurzelbaum**, wenn

- T azyklisch
- indeg(s) = 0
- indeg(v) = 1 für jeden Knoten $v \in V \setminus \{s\}$

Definition 23: Wurzelspannbaum

Sei G=(V,E) ein gerichteter (Multi-) Graph mit Knoten $s\in V$. Ein Teilgraph T von G mit Knotenmenge V heißt s-**Wurzelspannbaum** von

G, wenn T ein s-Wurzelbaum ist.

Eigenschaft 8

Sei G ein gerichteter (Multi-) Graph mit Knoten s

G besitzt einen s-Wurzelspannbaum \Leftrightarrow jeder Knoten $v \in V$ ist von s in G erreichbar.

DFS(s) liefert s-Wurzelspannbaum (falls es einen gibt)

Eigenschaft 9

Sei K Kreis in F und \tilde{T} s-Wurzellspannbaum von G/K. Dann gibt es einen s-Wurzelspannbaum T von G mit

$$c'(T) \le c'(\tilde{T})$$

 $\mathrm{G}/\mathrm{K} \colon \mathrm{K}$ sie Teilmenge von G. Alle Knoten in K
 werden durch einen einzigen Ersetzt.

Algorithmus zur berechnung von s-Wurzelspannbäumen:

- ullet Berechne modifizierte Kantenkosten c'
- Bestimme Teilgraph F
- Falls F azyklisch, gib F zurück
- Ansonsten ermittle Kreis K in F
- Kontrahiere G zu G / K
- Wende Algo rekursiv auf (G/K, c') and
 - -s-Wurzelspannbaum für \tilde{T} für G/K
- \bullet Expandiere \tilde{T} zu s-Wurzelspannbaum T von G
- Gibt T zurück

10 MinCut - Kleinste Schnitte

Definition 24

Gegeben sei ein ungerichteter Multigraph G = (V, E).

Gesucht ist eine Zerlegung (S,T) von V mit $S,T\neq\emptyset$, so dass die Anzahl der Kanten $uv\in E$ mit $u\in S$ und $v\in T$ möglichst klein ist

Beachte: Im Gegensatz zu s-t-Schnitten ist hier kein trennednes Knotenpaar (s,t) vorgegeben

Contract

Sei (S,T) ein kleinster Schnitt. Die Wahrscheinlichkeit das CONTRACT diesen Schnitt findet ist $\geq \frac{2}{n(n-1)}$

FastCut: Für kleine n BruteForce

11 Färbungen und chromatische Zahl

Definition 25: k-Färbung

Sei G = (V, E) ein Graph

Eine k-Färbung ist eine Abbildung $f:V\to\{1,\ldots,k\}$, so dass für alle $uv\in E$ gilt $f(u)\neq f(v)$

 $\chi(G) = \min\{k | G \text{ hat eine k-Färbung }\}$ heißt chromatische Zahl von G

Definition 26: Clique

Eine Clique ist eine Menge $C \subseteq V$, so dass für alle Paare $\{u,v\} \in V$ gilt, dass $uv \in E$

 $\omega(G) = \max\{|C| : C \text{ ist Clique in G }\}$ heißt Cliqzenzahl von G

 \Rightarrow Vollständiger Teilgraph Es gitlt: $\chi(G) \ge \omega(G)$

Definition 27

Eine unabhängige (oder stabile) ist eine Menge $C\subseteq V$, so dass für alle Paare $\{u,v\}\in V$ gilt, dass $uv\notin E$

 $\alpha(G) = \max\{|C|: C \text{ ist unabhänige Menge in G }\}$ heißt Unabhänigkeitszahl (o. Stabilitätszahl) von G

Es gilt:

$$\chi(G) \ge \max\{\omega(G), \frac{n}{\alpha(G)}\}\$$
$$\chi(G) \le \lfloor \frac{1}{2} + \sqrt{2|E| + \frac{1}{4}} \rfloor$$

Definition 28: Komplementgraph

Sei G=(V,E) ein Graph. Dann ist $\bar{G}=(V,\bar{E})$ mit $\bar{E}:=\binom{V}{2}\backslash E$ der Komplementgraph von G

Definition 29

Ein Graph G=(V,E) heißt perfekt, wenn für jeden induzierten Teilgraphen von H Gilt: $\omega(H)=\chi(G)$

Eigenschaft 10

G ist genau dann perfekt, wenn \bar{G} perfekt ist

Loch: Kreis mit ungerader Knotenanzahl

Antiloch: Komplement zum Loch.

Gperfekt \Leftrightarrow kein induzierter Teilgraph von
g ist ungerades Loch oder ungerades Antiloch (für $k \geq 2)$

Definition 30: Chordal

Ein Grpah G=(V,E) heißt chordal, wenn jeder elementare Kreis der Länge ≥ 4 mindestens eine Sehne besitzt, d.h. eine Kante, die zwei nicht aufeinander folgende Knoten des Kreises verbindet

Definition 31: simpliziale Knoten

Ein Knoten v heißt simplizial, falls N(v) Clicque in G Jeder chordale Graph enthält einen simplizialen Knoten

Definition 32: Perfektes Eliminationsschema

Eine Nummerierung (v_1, \ldots, v_n) der Knotenmenge V heißt perfektes Eliminationsschema, wenn für $i = 1, \ldots, n$ gilt: v_i ist simplizial in $G[\{v_i, \ldots, v_n\}]$

Eigenschaft 11

G chordal $\Leftrightarrow G$ hat perfektes Eliminationsschema

Eigenschaft 12

Sei v_1, \ldots, v_n ein perfektes Eliminationsschema. Dann hat jede nicht erweiterbare Clique C in G die Form $C = \{v_i\} \cup (N(v_i) \cap \{v_{i+1}, \ldots, v_n\})$

Eigenschaft 13

Jeder chordale Grpah ist perfekt.

12 Festparameter-Berechenbarkeit

Definition 33: Knotenüberdeckung / Vertex cover

Sei G=(V,E) ein ungereichter Graph. $C\subset V$ heißt Knotenüberdeckung (vertex cover) von G, falls für alle $uv\in E$ gilt $\{u,v\}\cap C\neq\emptyset$

Definition 34: Festparameterberechenbare Probleme

Ein Problem das in $O(f(k) + |I|^C) =: O^*(f(k))$ gelöst werden kann, heißt festparameterberechenbar.

Die Laufzeit soll also abhängen:

- beliebig vom Paremeter k (Schwierigkeit der Instanz I)
- \bullet polynomiell von der Größe |I| der Instanz I

 $\mathbf{FPT}=\mathbf{Klasse}$ der festparameterberechenbaren Probleme Bemerkung: Die Klasse FPT ändert sich nicht, wenn statt +ein \cdot benutzt wird.

Eigenschaft 14

Falls $|E| > k^2$ und $\delta(G) := \max_{v \in V} degv \le k$, so hat G kein k-VC

Fazit

• k - VC kann in $O(nk + 1.38^k k^2)$ Zeit gelöst werden

13 Planare Graphen

Definition 35: offene Jordankurve

Eine offene Jordankurve ist eine homöomorphe Einbettung des Intervalls [0, 1] in einen topologischen Raum, also ohne Kreuzungen und Sprünge

Definition 36: Zeichnung von Graphen

Sei G=(V,E)ein ungerichteter Graph, eine Abbildung ζ heißt Zeichung von G, falls

- für alle $w \in V$ gilt $\zeta(w) \in \mathbb{R}^2$ und Einschränkung von ζ auf V injektiv
- für alle $uv \in E$ gilt $\zeta(uv) = \zeta_{uv}([0,1])$ wobei ζ_{uv} Jordankufve mit $\zeta_{uv}(0) = \zeta(u)$ und $\zeta_{uv}(1) = \zeta(v)$

Knoten \rightarrow Punkte in der Ebene

 $Kanten \rightarrow J-Kurve$

Definition 37: Planar

Ein Graph G ist planar (plättbar), falls er eine ebene zeichung hat (d.h. falls sich die Zeichungen der Kanten höchstens in gemeinsamen Endpunkten schneiden)

Eine Zeichung ζ von G heißt **geradlinig**, falls für alle $e \in E$ gilt ζ_e ist linear (also eine Linie)

Definition 38: Punkte und Facetten

Für einen planaren Graphen G=(V,E) und eine ebene zeichung ζ von G sei

$$G_{\zeta} = \zeta(V) \cup \bigcup_{e \in E} \zeta_e([0,1])$$

die Menge der Punkte von ζ

Die Zusammenhangskomponenten von $\mathbb{R}^2 \backslash G_{\zeta}$ heißen Facetten von ζ \Rightarrow also die Menge aller Knoten und Linien zwischen Knoten

Eigenschaft 15

G planar, π ebene Zeichnung von G, F Innenfacette von π . Dann gibt es auch eine Zeichung π_F von von G, in der E(F) den Rand der Außenfacette bildet

Eigenschaft 16

Das Skelett (der Ecken-Adjazenzgraph) eines konvexen und beschränkten Polyeders ist planar

Definition 39: Eulerscher Polyedersatz

Sei π eine ebene Zeichnung eines Graphen (möglicherweise mit Schleifen und Mehrfachkanten) mit n Knoten, m Kanten, f Facetten und k Zusammenhangskomponenten. Dann gilt:

$$LS_m := n - m + f = k + 1 =: RS_m$$

Eigenschaft 17

Für jeden einfachen planaren Graphen G=(V,E) mit mindestens 3 Knoten gilt $m \leq 3n-6$ und $f \leq 2n-4$

Eigenschaft 18

Der durchschnittliche Knotengrad in einem einfachen planaren Graphen ist kleiner $6\,$

Eigenschaft 19

Ein einfacher planarer Graph hat mindestens einen (genauer: mindestens 3) Knoten vom Grad höchstens $5\,$

Definition 40: Kontraktionen und Minoren

Sei G ein einfacher Graph und sei uv Kante von G Der Graph $G\backslash uv$ entsteht aus G durch (Einfach-) Kontraktion von uv (wobei hier anders als bei Kontraktion bei Multigraphen Mehrfachkanten verschmolzen werden)

Ein Graph H heißt Minor von G (schreibe $H \leq G$), falls er durch eine (evtl. leere) Folge von Kontraktionen aus einem Teilgraphen von G hervorgeht.

Eigenschaft 20

G Planar \Leftrightarrow alle Minoren von G sind planar Alle Graphen mit höchstens vier Knoten sind Planar.

Definition 41: Satz von Kuratowski

Sei G ein einfacher Graph. Dann gilt:

G planar \Leftrightarrow Weder K_5 noch $K_{3,3}$ ist Minor von G

Wobei K_5 vollständiger Kreis mit 5 Knoten und $K_{3,3}$ bipartit mit Seiten verbunden.

Definition 42: Minoren

Eine Klasse $\mathcal G$ von Grpahen heißt minorenabgeschlossen, wenn für alle $G\in\mathcal G$ und alle $H\leq G$ gilt $H\in\mathcal G$

Ein GrpahGeiner Grpahenklasse $\mathcal G$ heißt minorenminimal, wenn für jeden Minorhvon Gmit $H\in\mathcal G$ gitlH=G

 $\mathcal{G}_{\text{plan}}^-$ = Klasse der einfachen nicht-planaren Graphen

Definition 43: Obstruktionsmenge

Es gilt $\{K_5, K_{3,3}\}$ ist Obstruktionsmenge für $\mathcal{G}_{\text{plan}}$

Eigenschaft 21

- Jede minorenabgeschlossene Graphklasse besitzt eine endliche Obstruktionsmenge
- \bullet Für jeden festen Gr
pahen H existiert ein effizienter Algorithmus, der testet, ob für einen gegebenen (größeren) Graphen G gilt, dass $H \leq G$
- Wir können effizient testen, ob ein gegebener Graph G planar ist

- Jeder planare Graph lässt sich geradlinig zeichnen
- Jeder planage Graph lässt sich als Berührgraph von Kreisscheiben (con graph) repräsentieren
- Ein planarer Graph mit $n \geq 3$ Knoten lässt sich in linearzeit geradlinig zeichnen, so dass die Knoten auf Punkte des $(n-2) \times (n-2)$ Gitters abgebildet werden
- Sei G ein 3-fach zsh. planarer Graph mit f Facetten Dann lässt sich G auf einem $(f-1)\times (f-1)$ Gitter geradlinig und konvex zeichnen.
- \bullet Jede streng konvexe Zeichnung des C_n benötigt $\Omega(n^3)$ Platz
- \bullet Jeder 3-fach z
sh. planare Graph hat eine streng konvexe Zeichung auf de
m $O(n^2)\times O(n^2)$ Gitter

Zeichnungen hierzu Skript VL 11 ab Seite 15.

Eigenschaft 22: Planar Seperator Theorem

Sei G ein planarer Graph mit $n \geq 5$ Knoten. Dann existiert eine Zerlegung der Knotenmenge $V = L\dot{\cup}S\dot{\cup}R$ von G, so dass

- $\bullet\,$ Keine Kante zwischen L und R verläuft
- $|L|, |R| \leq \frac{2}{3}n$ und
- $|S| < 2\sqrt{2n}$

Eine solche Zerlegung kann in O(n) Zeit berechnet werden.

Eigenschaft 23

Sie G=(V,E)ein ungerichteter Graph, sei $v\in V$ und sei Mgrößtes Matching in G-v

- \bullet Falls Gkeinen augmentierenden Weg mit Endknoten venthält, so ist M größtes Matching in G
- $\bullet\,$ Ansonsten sei Wein augemtierender Weg. Dann ist $M\Delta E(W)$ größtes Matching in G

Mit einer passenden Repräsentation eines Matchings in G-v kann man in O(E) Zeit ein größtes Matching in G finden.

14 Färbbarkeit Planare Graphen

Eigenschaft 24

Jeder planare Graph ist 4-färbbar

Definition 44: Listenfärbung

Gegenen ein Graph G und für jeden Knoten v von G eine Liste L_v von Farben, so ist eine Listenfärbung von G eine Abbildung

$$\lambda: V \to \bigcup_v L_v \text{ mit } \begin{cases} \lambda(v) \in L_v \\ \lambda(u) \neq \lambda(v) \forall uv \in E(G) \end{cases}$$

Definition 45: Listenfärbbarkeit

Ein Graph G=(V,E) ist k-listenfärbbar, wenn G für jede Wahl von Listen der Länge k eine Listenfärbung hat

Eigenschaft 25

G k-listenfärbbar \Rightarrow k-färbbar Nicht jeder planare Graph ist 4-listenfärbbar Jeder planare Graph ist 5-listenfärbbar

Eigenschaft 26

Sei G ein einfacher Graph mit n Knoten. Dann kann man in O(n) Zeit entscheiden, obb G planar ist.

Wir behandeln in der Vorlesung jedoch einen Algorithmus in $O(n^3)$, der sowohl leichter als auch in der Praxis schneller ist

Eigenschaft 27

G planar \Leftrightarrow jede Zusammenhangskomponente von G is planar G planar \Leftrightarrow jede Zweifachzusammenhangskomponente (ZZK) von G is planar.

Definition 46: Teilstück

Sei C ein Kreis und seien $e, e' \notin C$ Kanten. e und e' heißen äquivalent (bezüglich C), wenn sie durch einen Pfad verbunden sind, der C nicht berührt. Die resultierenden Äquivalenzkalssen heißen Teilstücke (bezüglich C).

Jedes Teilstück hat ≥ 2 Anknüpfpunkte

Definition 47: Separierender Kreis

Ein Kreis heißt separierend, wenn er mindestens zwei Teilstücke induziert

Eigenschaft 28

Sei C ein nicht-separierender Kreis mit Teilstück P. Falls P kein Pfad ist, dann besitzt G einen separierenden Kreis in C', der aus einem Teilpfan von V und einem Pfad in P zwischen zwei Anknüpfpungspunkten von P besteht.

Definition 48: Einander störende Teilstücke

G planar \Rightarrow jedes Teilstück wird entweder komplett im Inneren oder Äuperen von C eingebettet.

Zwei Teilstücke $P \neq Q$ können auf der gleichen Seite von C eingebettet werden \Leftrightarrow es existiert ein Teilpfad γ von C, sodass γ alle Anknüpfpunkte von Q enthält, aber kein innerer Knoten von γ Anknüpfpunkt von P ist.

Zwei Teilstücke, die nicht auf der gleichen Seite von C eingebettet werden können, **stören** einander

Definition 49: Störgraph

Der Störgraph I (bezüglich C) hat als Knoten die Teilstücke. Zwei Teilstücke sind adjazent genau dann, wenn sie einander stören.

Eigenschaft 29

Sei G
 ein Graph mit separienedem Kreis C und Störgraphen I. Der Graph G
 ist genau dann planar, wenn

- $\bullet\,$ für jedes Teilstück P der Graph C + P planar und
- der Störgraph I bipartit ist