Отчёт по задаче Рюкзак

Сапожников Денис

Я написал удобный класс Knapsack со множество методов:

- solve_recover_dp(W) решает рюкзак методом ДП и восстанавливает ответ техникой divide-and-conqueror. O(nW) времени, O(n) памяти.
- solve_recover_meet_in_the_middle(W) решает рюкзак методом meet-in-the-middle. $O(n2^{\frac{n}{2}})$ времени и памяти.
- solve_recover_branch_bound(W) решает рюкзак методом Branch&Bound. $O(2^n)$ времени в худшем случае. Верхняя граница считается $\frac{1}{2}$ -аппроксимацией. Порядок предметов по стоимости. Порядок ветвей если взять предмет + $\frac{1}{2}$ -аппроксимация больше, чем не взять + аппроксимация, то сначала идём в ветвь, где берём предмет, иначе сначала в ветвь, где не берём.
- \bullet solve_recover_approximation_half(W) половинная аппроксимация с лекции.
- solve_recover_approximation_slow (W, ε) первый медленный алгоритм ε -аппроксимации, работает за $O(n \log n + \frac{n^2}{\varepsilon})$, взят с лекции.
- solve_recover_approximation_ibarra (W, ε) алгоритм Ибарры ε -аппроксимации, за $O(n \log n + \frac{n}{\varepsilon^2})$, взят с лекции.
- solve_recover_on_center_optimization($W, kL, kR, middle_solver, *args$).

 Предположительно, оптимальный ответ устроен очень просто, если отсортировать все предметы по удельной стоимости $\frac{c}{w}$: $\underbrace{[1, 1, \ldots, 1, \underbrace{1, 0, 0, 1, \ldots, 1}_{negas, vacmb}, \underbrace{0, 0, \ldots, 0}_{npagas, vacmb}]$.

Пусть m_{half} — граница $\frac{1}{2}$ -аппроксимации, тогда выберем границы центральной части как $[m_{half} - kL; m_{half} + kR]$ и отправим этот набор предметов в $middle\ solver(W-w_{left},*args)$.

Результаты экспериментов:

Потестовые результаты экспериментов доступны в приложенном csv-файле.

• Техника Branch&Bound работала очень долго даже при n=30, поэтому этот эксперимент вышел неудачным. Возможно, стоило хорошо аппроксимировать начальное приближение, чтобы отсечь много веток сразу, но я не успел попробовать.

- Как оказалось, медленный алгоритм аппроксимации давал результат лучше, чем алгоритм Ибарры при одном и том же ε (и даже при больших ε).
- Алгоритм с оптимизацией блока по центру вышел лучше всех, и стал выдавать хорошие результаты даже при meet-in-the-middle с параметрами kL = 15, kR = 30.

Texника Branch&Bound работала долго и в центральной оптимизации.

Но вот медленная аппроксимация выдала очень хорошие результаты, и итоговое решение выделяет блок по центру с параметрами kL=100, kR=500 и аппроксимирует его с точностью 0.05%. Кроме того, было замечено, что при меньших границах иногда результат бывает лучше, поэтому запускается ещё и центральная оптимизация с параметрами kL=50, kR=250 и точностью 0.05%. Ну и для уверенности в себе ещё запускается алгоритм Ибарры с точностью 5% (меньшие значения работали так же по приближению, но дольше, поэтому я решил выдать больше времени на центральную оптимизацию) и центральная оптимизация с meet-in-the-middle(kL=15, kR=30). Среди всех подходов берётся лучший.

id посылки — 49864540.