Signal and System MATLAB Homework #2

B02901178 江誠敏

May 20, 2015

1 Problem 1

(a) Plot x[n].

Figure 1: Plot of x[n].

(b) Plot the magnitude response of the DFT of x during $[-N_1,N_1]$. The zero frequency should be centered in your plot. Observe the Gibbs phenomenon here.

Figure 2: Plot of the magnitude response.

(c) We define the overlapping factor K so that $n \in \{-KN_1, -KN_1 + 1, \cdots, 0, \cdots, KN_1 - 1, KN_1\}$. Please repeat part (a) and (b) with K = 16 and fixed T_s , then compare the Gibbs phenomenon in (b).

(b) Plot of the magnitude response.

The distortion width is smaller, but the maximum height (i.e the maximum error) remain the same.

2 Problem 2

(a) Plot x[n] when $n \in \mathcal{N}$.

Figure 4: Plot of x[n].

(b) Now let b=0.2 and N=3. Assuming that at n=0 and we initialize the EWMA filter with $x[-1]=\cdots=x[-N]=0$, plot the output of the filter for $n\in\mathcal{N}$.

Figure 5: Plot of the output after filter.

(c) Repeat part (b) with b = 0.2 and N = 10.

Figure 6: Plot of the output after filter.

(d) Comment on the relationship between the filter outputs in parts (b) and (c) with the original signal s[n].

After the filter, the signal looks slightly smoother, but is still similar to the origin input, since the decay rate b is small (so it decay fast!).

Also because the decay rate b is too small, N=3 and N=10 gives almost the same result.

(e) Please repeat parts (b), and (d) with b = 0.5 and N = 3.

Figure 7: Plot of the output after filter.

The output is much smoother and closer to the signal without the noise compare to the input.

(f) What is the effect of increasing b? What about increasing N?

Increasing b tends to make the output smoother.

Increasing N at small N could also let the output become smoother, provided that b is not too small.