

REPUBLIQUE DU BENIN

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE (MESRS

Année 2022-2023

Premières années FC, FM et et MA

Durée: 2h

RATTRAPAGE DE CA

Exercice 1 (12 pts)

ZAA = 1+ 0 ZBM = 31

Le circuit de la figure ci-dessous est alimenté sous une tension $\mathcal{Z}_{BN} = 3$, $u = 240\sqrt{2\cos{(\omega t - \frac{\pi}{2})}}$. Les impédances des éléments du circuit sont :

$$R_1 = 1 \Omega$$
; $L_1\omega = 1 \Omega$ $R_2 = 3 \Omega$; $L_2\omega = 3 \Omega$; $1/C\omega = 3 \Omega$.

- 1. Ecrire l'impédance complexe de chacune des branches du circuit :
- 2. Exprimer l'impédance complexe de l'ensemble du circuit sous la forme : $\underline{Z} = R + jX$; (Expliciter les valeurs de R et X)
- 3. Déterminer l'expression complexe <u>I</u> de l'intensité i du courant fourni par l'alimentation;
- 4. Calculer la valeur complexe de la tension \underline{U}_1 aux bornes de l'ensemble (R_1, L_1) .
- 5. Calculer la valeur complexe \underline{I}_1 de l'intensité i qui traverse le condensateur ;
- 6. Déterminer la valeur complexe \underline{I}_2 de l'intensité i_2 de courant traversant la bobine

Exercice 2 (8pts)

On considère deux courants sinusoïdaux de même fréquence $f=50\ Hz$ et de valeurs instantanées respectives en mA suivantes :

$$i_1 = 150\sqrt{2\cos\omega t}$$
 et $i_1 = 200\sqrt{2\cos(\omega t + \frac{\pi}{4})}$

- 1. Calculez la valeur efficace et l'angle de phase à l'origine de chacun de ces courants et leur pulsation ω ;
- 2. En utilisant la méthode complexe, déterminez la valeur efficace I_3 et l'angle de phase à l'origine θ_3 du courant $i_3 = i_2 2i_1$;

NB: Mettez les bonnes unités dans vos résultats