Data Science Presentation – What's Cooking?

- By Ameya Deolalkar

Introduction:

- This project solves a **Kaggle Competition: What's Cooking?**. Project leverages Natural Language processing(NLP) techniques to predict a cuisine from a list of ingredients
- Problem Statement: Use recipe ingredients to categorize the cuisine

The usual...:

Read .json data into pandas dataframe, define the features and dependent variable

```
[ { "id": 10259, "cuisine": "greek", "ingredients": [ "romaine lettuce", "black olives", "grape tomatoes", "garlic", "pepper", "purple onion", "seasoning", "garbanzo beans" ]
```

	cuisine	id	ingredients
0	greek	10259	[romaine lettuce, black olives, grape tomatoes
1	southern_us	25693	[plain flour, ground pepper, salt, tomatoes, g
2	filipino	20130	[eggs, pepper, salt, mayonaise, cooking oil, g
3	indian	22213	[water, vegetable oil, wheat, salt]
4	indian	13162	[black pepper, shallots, comflour, cayenne pe
/			

Implementation 1:

The initial approach is to implement a Naive Bayes model on training and testing data tokenized using CountVectorizer

Evaluation metric: accuracy score, Result: Accuracy score 0.7198 (71.98%)

Experiments to reduce error:

- **Use of stop_words** Stop top 10 repeating words
 - Result Accuracy score: 0.7269
- Use of max_df = 5000, max_features = 2100

Result – Accuracy score: 0.7272 (72.72%)

Implementation 2:

Feature Engineering – length of ingredient list

Logistic Regression – Has lower asymptotic error when number of features is large

TF-IDF Vectorizer – Frequency of an ingredient appearing in a cuisine is compared to its frequency across all cuisines

Result – Accuracy score: 0.7331 (73%)

Experiments to reduce error:

- Find top 20 common ingredients between cuisines that are being confused the most
- Set max_features to 700 which is approximately the mean of the frequency of occurrence of top 20 common ingredients in the cuisines selected
- Iterate for different max_features to find the best value
- Result: Accuracy Score 0.7560 (75.60%)

Implementation 3:

- One-vs-rest classifier: The strategy consists in fitting one classifier per class. For each classifier, the class is fitted against all the other classes.
- Result: Accuracy Score 0.7865 (78.65%)

Conclusion

Progress Timeline

Kaggle score: 72.50

Position: 225

Kaggle score: 76.67

Position: 208

Kaggle score: 78.77

Position: 88