ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE CIENCIAS

9 de abril de 2017

- Nombre: Andrea Chumaña
 - Proyecto Final de Latex.
 - Ejercicio de Complementos de Cálculo.

1 Ejercicio

Suponga que exite un índice $n_0 \in \mathbb{N}$ y un número real K mayor que 0 tal que

$$X_n > K$$

 $\forall n > n_0$, que existe un índice $n \geq n_0$, existe un índice n_1 tal que

$$Y_n < 0$$

 $\forall n>n_0,$ y que la sucesión de término general y_n converge a 0. Demuestre que la sucesión de término general

$$\frac{X_n}{Y_n} \to -\infty$$

Demostración

Supongamos que

Existe $n_0 \in \mathbb{N}$ y que K > 0 tal que

$$X_n \ge K \qquad \forall n \ge n_0,$$
 (1)

Existe $n_1 \in \mathbb{N}$ tal que $\forall n \geq n_1$

$$Yn < 0 \tag{2}$$

$$Yn \to 0$$
 (3)

Para esto supongamos que

$$M < 0 \tag{4}$$

Vamos a demostrar que existe $n \in \mathbb{N}$ tal que $\forall n \geq n_2$

$$\frac{X_n}{Y_n} < M$$

De (1) junto con (4) tenemos

$$\frac{-K}{M} > 0; (5)$$

Así, de (3), existe $n_3 \in \mathbb{N}$ tal que $\forall n \geq n_3$

$$|y_n - 0| < \frac{-K}{M} \tag{6}$$

Sí $n_4 = \max\{n_1, n_3\}$ entonces, $\forall n \geq n_4$;

$$Y_n < 0$$

у

$$|y_n - 0| = |y_n| = -y_n < \frac{-K}{M};$$

 ${\rm es\ decir}$

$$\frac{-1}{Y_n} > \frac{-M}{K} \qquad \forall n \ge n_4 \tag{7}$$

Finalmente, sì

$$n_2 = \max\{n_0, n_4\},\,$$

tenemos que $\forall n \geq n_2,$ se verifica (7)
y (1) tenemos

$$\frac{-X_n}{Y_n} > \frac{-M \cdot K}{K};$$

 $es\ decir$

$$\frac{X_n}{Y_n} < M \qquad \forall n \ge n_2$$

COMO QUERÍAMOS DEMOSTRAR