Homework 3

Bayesian Network

Due: 11:59 pm, April 4

Exercise 1

Calculate the value of the queries, given the joint distribution below. (10 points)

A	В	C	P(A, B, C)
+a	+b	+c	0.30
+a	+b	-c	0.04
+a	-b	+c	0.10
+a	-b	-c	0.06
-a	+b	+c	0.11
-a	+b	-c	0.05
-a	-b	+c	0.15
-a	-b	-c	0.19

Q1.1 P(+c)

Q1.2 P(+c | -a)

Q1.3 P(+c | -a, +b)

Draw three nodes of a Bayes' net with the following configurations. Shade the nodes corresponding to observed random variables in your answer. (20 points)

- Q2.1. Active Causal Chain
- Q2.2. Active Common Cause
- **Q2.3.** Active Common Effect
- Q2.4. Inactive Causal Chain
- Q2.5. Inactive Common Cause
- **Q2.6.** Inactive Common Effect

Given a Bayesian network below, write **true**, **false**, **or unknown** for the following statements. (20 points)

- **Q3.1.** A and B are independent given C.
- **Q3.2.** A and H are independent given F.
- **Q3.3.** A and H are guaranteed to be independent given E.
- **Q3.4.** E and F are guaranteed to be independent given H.
- **Q3.5.** E and F are independent given C.
- **Q3.6.** E and F are guaranteed to be independent given C and D.
- **Q3.7.** A and F are independent given C and H.
- **Q3.8.** A and F are independent given C and D.
- **Q3.9.** A and F are guaranteed to be independent given C and G.
- **Q3.10.** A and F are guaranteed to be independent given C.

Given a Bayesian network below, answer the following questions. (20 points)

Q4.1. Complete the equation below for calculating the joint probability distribution using the conditional probability tables of each variable.

$$P(A, B, C, D, E) = \underline{\hspace{1cm}}$$

[Variable elimination]

Complete the following steps of variable elimination to get P(D|A=a,E=e). Assume that all variables are discrete. (Hint: slide 99, "Another Variable Elimination Example", of week 6)

- **Q4.2.** Step 1) Initial factors: _____
- **Q4.3.** Step 2) Eliminate B, this introduces the factor ______, and we are left with:
- **Q4.4.** Step 3) Eliminate C: this introduces the factor ______, and we are left with:
- **Q4.5.** Step 4) Join the remaining factors to get f3(D, a, e):
- Q4.6. Step 5) Normalize over D to get:

Given a Bayesian network below, assume you got the following six samples using **Likelihood** Weighting with the evidence C = +c and D = -d. (30 points)

Α	С	P(C A)
+a	+c	0.9
+a	-с	0.1
-a	+c	0.2
-a	-с	0.8

В	D	P(D B)	Α	В	P(B A)
+b	+d	0.9	+a	+b	0.7
+b	-d	0.1	+a	-b	0.3
-b	+d	0.2	-a	+b	0.5
-b	-d	0.8	-a	-b	0.5

A	В	C	D
+a	-b	+c	-d
-a	-b	+c	-d
+a	-b	+c	-d
+a	+b	+c	-d
+a	+b	+c	-d
-a	+b	+c	-d

Q5.1. Complete the following table using the six samples.

Α	В	C	D	Count/N	Weight	Joint
+a	+b	+c	-d	2/6	0.09	0.03
+a	-b	+c	-d			
-a	+b	+c	-d			
-a	-b	+c	-d			

Q5.2. Based on the table of Q5.1, estimate P(B = -b, C = +c, D = -d). Provide all steps to estimate it from the table.

Q5.3. Based on the table of Q5.1, estimate P(B = -b|C = +c, D = -d). Provide all steps to estimate it from the table.

5