Def An isomorphism from a group G to itself is ralled an automorphism of G.

Example:
$$\phi: (R, +) \longrightarrow (R, +)$$
 where $\lambda \neq 0$

rs an automorphism

Example:
$$\phi: (\mathbb{R}^2, +) \longrightarrow (\mathbb{R}^2, +)$$
 is an automorphism $(a, b) \longrightarrow (b, a)$

Def: Let G be a group $a \in G$. The inner outsmorphism of G induced by a is defined by:

(verify that of a is an automorphism)

Example:
$$G = (SL_2(IR) -)$$
 $M \in SL_2(IR) = G$.
 $\phi_M(A) = MAM^{-1}$ conjugation by M
 $\phi_M(A) = MAM^{-1}$ conjugation by M

D4 = { Ro Rgo Rgo Rego Rego Fo F45 Fgo Fist} Example: $R_{\theta} \longrightarrow R_{g_0} R_{\theta} R_{g_0} = R_{\theta}$ $F_{\theta} \longrightarrow R_{g_0} F_{\theta} R_{g_0}^{-1} = R_{g_0} (R_{g_0} F_{\theta}) = R_{f_0} F_{\theta}$ Prgo: = Forgo More precisely.

pro sends Ro to Ro sends For-Fgo Fgo-Fo F45 - F135 F135 - F45

Aut (G) = set of all automorphisms of G Inn (G) = set of all mner automorphisms of G Thm Aut (G) and Inn (G) are both groups under the operation of function composition and $Inn(G) \leq Aut(G)$

Example. Inn (D4) = $\{ \varphi_{R}, \varphi_{R_{1}}, \varphi_{R_{1}}, \varphi_{R_{2}}, \varphi_$

 $\Rightarrow \phi_{R270} = \phi_{R90}$ $\phi_{F90}(x) = F_{90} \times F_{90}^{-1} = (F_0 R_{180}) \times (R_{180} F_0^{-1}) = F_0 R_{180} \times R_{190}^{-1} F_0^{-1}$ $= F_0 \times F_0^{-1} = \phi_{F0}(x)$ $\Rightarrow \phi_{F90} = \phi_{F0} \quad \text{Similarly} \quad \phi_{F40} = \phi_{F35}^{-1}$

Exercise; verify that ϕ_{Ro} ϕ_{Ro} ϕ_{Fo} ϕ_{Far} are all different.

Idag

Thm Aut (Zn) = U(n) note: Inn (Zn) = {id} proof: let &: Zn -> Zn be an Bomophism. Then x(0) = 0 and x(1) is a generator of $Z_n \Rightarrow \alpha(1) = k$ where gcd(k,n) = 1note if $\alpha(x) = k$ then $\alpha(m) = \alpha(1^m) = \alpha(1) = km$ Therefore Aut $(Z_n) = \{\phi(k) \mid \phi(k) : Z_n - Z_n \}$ $m \rightarrow mk \mod n$ $\gcd(k, n) = 1$ Define $\phi: U(n) \longrightarrow Aut(Z_n)$ $k \longrightarrow \phi(k)$ Verify that & B an Bomorphism · \$\phi\$ is 1-1 and onto $\phi(k_1k_2)(m) = k_1k_2m \mod n$ $\downarrow M$ $\phi(k_1)\phi(k_2)(m) = \phi(k)(k_2m \mod n) = k_1k_2m \mod n$