HOMEWORK #1 GRADES

HOMEWORK #3

- Due 10/13 @ 11:59 PM ET on Gradescope
- 4 questions
 - Feature selection
 - Closed form Linear Regression
 - SGD-based Linear Regression
 - Comparison of closed form and SGD

REMINDER: PROJECT

- Proposal due 10/23: 1-2 pages of problem, dataset, what you plan to do
- Spotlight slides due 10/30
- Spotlight: | | / | in class
- Presentation: 11/29 and 12/4
- Report and deliverable due 12/13

LINEAR REGRESSION (PART IV)

CS 334: Machine Learning

LINEAR REGRESSION

- Closed form (direct solution)
- Iterative algorithms: Gradient descent (GD) and Stochastic gradient descent (SGD)
- Regularization: Ridge and Lasso
- Assessment

REVIEW: REGRESSION: LEAST SQUARES

- Find parameters that minimizes some cost function
- Residual: difference between actual Y and predicted Y
- Least squares: minimize residual sum of squares (RSS or SSR)

$$RSS(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i)^2)$$
$$= \frac{1}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

How to find the solution?

REVIEW: MODEL REGULARIZATION

$$\min_{\beta} L(\mathbf{X}\boldsymbol{\beta}, \mathbf{y}) + \lambda \text{penalty}(\boldsymbol{\beta})$$

- Basic Idea: Add penalty term on model parameters to "shrink" the coefficients towards zero
- Called regularization
- Less prone to overfitting (prediction accuracy)
- Achieve a simpler model, get the "right" model complexity (interpretability)

REVIEW: POPULAR PENALTIES

Name	Penalty function	
Ridge	$ eta _2$	
Lasso	$ eta _1$	
Lo regularization	$ \beta _0$	
Elastic net	$\alpha \beta _1 + (1-\alpha) \beta _2$	

REVIEW: EFFECT OF SELECTION ON COEFFICIENTS

Term	LS	Best Subset	Ridge	Lasso
Intercept	2.465	2.477	2.452	2.468
lcavol	0.680	0.740	0.420	0.533
lweight	0.263	0.316	0.238	0.169
age	-0.141		-0.046	
lbph	0.210		0.162	0.002
svi	0.305		0.227	0.094
lcp	-0.288		0.000	
gleason	-0.021		0.040	
pgg45	0.267		0.133	
Test Error	0.521	0.492	0.492	0.479
Std Error	0.179	0.143	0.165	0.164

How did this happen?

FIGURE 1.1. Scatterplot matrix of the prostate cancer data. The first row shows the response against each of the predictors in turn. Two of the predictors, svi and gleason, are categorical.

REVIEW: RIDGE VS. LASSO: COEFFICIENT PATHS

RIDGE VS. LASSO: OPTIMIZATION

ELASTIC NET REGULARIZATION

Compromise between ridge and lasso

$$\min_{\beta} L(\mathbf{X}\boldsymbol{\beta}, \mathbf{y}) + \lambda(\alpha||\boldsymbol{\beta}||_2 + (1-\alpha)||\boldsymbol{\beta}||_1)$$

- Selects variables like lasso
- Shrinks coefficients of correlated predictions like ridge
- Computational advantages over general L_q penalties

RIDGE VS LASSO VS ELASTIC NET

RIDGE & LASSO REGULARIZATION: NOTES

- If intercept term is included in regression, this coefficient is left unpenalized
- Can center the data, only perform regression on other coefficients
- Penalty term can be unfair if predictors are on different scales
 - Normalization

LINEAR REGRESSION

- Closed form (direct solution)
- Iterative algorithms: Gradient descent (GD) and Stochastic gradient descent (SGD)
- Regularization: Ridge and Lasso
- Assessment

LINEAR REGRESSION: ASSESSING THE ACCURACY

- Residual error
- R² statistic

MEASURE OF FIT: R²

• "Goodness" of fit measure
$$R^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \bar{y})^2}$$

- Interpretation: The proportion of variability in y explained by the model
- Always lies between 0 and 1

UNDERSTANDING MLR

- · Coefficients have a nice interpretation and show level of correlation
- Correlation != causality
 - Any correlation (association) could be caused by other variables in the background

CORRELATION DOES NOT IMPLY CAUSALITY

LINEAR REGRESSION: SKLEARN

- sklearn.linear_model.LinearRegression
- sklearn.linear_model.Ridge
- sklearn.linear_model.Lasso
- sklearn.linear_model.ElasticNet
- sklearn.linear_model.SGDRegressor

FEATURE SELECTION

CS 334: Machine Learning

PROSTATE CANCER DATASET

How would you choose a subset of relevant features to predict lpsa (besides using LASSO)?

FIGURE 1.1. Scatterplot matrix of the prostate cancer data. The first row shows the response against each of the predictors in turn. Two of the predictors, svi and gleason, are categorical.

FEATURE SELECTION METHODS

- Filter methods agnostic to the models (preprocessing)
- Wrapper methods evaluate on the model (model selection)
- Embedded methods part of the learning algorithm (model training), e.g. LASSO

FEATURE SELECTION METHODS

FILTER FEATURE SELECTION

- Based on heuristics but much faster than wrapper methods
- · Use statistical measure to assign a score to each feature
- Methods are often univariate and consider the feature independently with regard to the dependent variable.

FILTER FEATURE MEASURES

• Pearson correlation (population and sample):

$$ho_{X,Y} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$

$$r_{xy} = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

- Between I and I
- Measures linear correlation between two variables, scale and location invariant
- Can be used to rank features in order of their correlation with the labels
- Or to evaluate pair-wise redundancy between features

PEARSON CORRELATION

Scatter plots showing the Pearson correlation from -1 to 1.

FILTER FEATURE MEASURES

Mutual information criterion (information gain)

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}.$$

- Measures "the amount of information" about one variable through observing the other variable
- High mutual information means high relevance

MUTUAL INFORMATION

FEATURE SELECTION METHODS

- Filter methods agnostic to the models (preprocessing)
- Wrapper methods evaluate on the model (model selection)
- Embedded methods part of the learning algorithm (model training)

SELECTING THE BEST FEATURES

- Brute force method: try all combinations and evaluate performance,
 pick the best combination
 - How to evaluate the performance?
 - How many combinations are there?

FEATURE SELECTION FOR LINEAR REGRESSION

- Use RSS or R² on training data to select the best model given the same size
- Use cross-validation to select the best size

SELECTING THE BEST FEATURES

- Brute force method: try all combinations and evaluate performance,
 pick the best combination
 - How to evaluate the performance?
 - How many combinations are there?

SELECTING THE BEST FEATURES

- Brute force method: try all combinations and evaluate performance, pick the best combination
 - How to evaluate the performance?
 - How many combinations are there?

Computationally infeasible for large number of features

WRAPPER METHOD

- Some form of searching (forward or backward)
 - Greedily add / remove features
 - Evaluate performance using cross-validation

STEPWISE SELECTION

- Forward: Start with 0 features and sequentially add feature that best improves fit
 - Can be used whenever
- Backward: Start with full model, remove feature that is least detrimental to fit
 - Can only be used when N > p

FEATURE SELECTION COMPARISON

Figure 3.6 (Hastie et al.)

FEATURE SELECTION: RECAP

Filter methods	Wrapper methods	Embedded methods
Generic set of methods which do	Evaluates on a specific machine	Embeds (fix) features during
not incorporate a specific	learning algorithm to find	model building process. Feature
machine learning algorithm.	optimal features.	selection is done by observing
		each iteration of model training
		phase.
Much faster compared to	High computation time for a	Sits between Filter methods and
Wrapper methods in terms of	dataset with many features	Wrapper methods in terms of
time complexity		time complexity
Less prone to over-fitting	High chances of over-fitting	Generally used to reduce over-
	because it involves training of	fitting by penalizing the
	machine learning models with	coefficients of a model being too
	different combination of	large.
	features	
Examples – Correlation, Chi-	Examples - Forward Selection,	Examples - LASSO, Elastic Net,
Square test, ANOVA,	Backward elimination, Stepwise	Ridge Regression etc.
Information gain etc.	selection etc.	