Project Title: - Used Car Price Prediction

Introduction: -

The Prices of new cars increasing globally. Due to the increased price of new cars, The customers of used cars sales are on global increase.

I will be trying to develop the model to predict the best price to the vehicle.

By studying the variety of features, effectively we can determine the worthiness of used car

Problem Statement: -

Predicting the price of used cars given by the features

Flow Chart: -

- 1. Data Collection
- 2. Data Cleaning
- 3. Data Visualisation
- 4. Train and Test Machine Learning Models
- 5. Compare the accuracy of the Machine Learning Model and Select the best one

Data Collection: -

The Dataset that is used is from Kaggle.

For accurate and real time analysis, Data is Prepared from Scratch. The Data is Collected from QuikrCar Website.

The Data set Having 9 Columns like

Dataset:

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Manual	0
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Manual	0
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Manual	0
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	Manual	0
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	Manual	0

Data Cleaning: -

- 1. Loading the Data Set
- 2. After Loading the Data set the shape of the Data set is (301,9) 301 rows and 9 columns
- 3. We have to Check for the Duplicates, NULL Values and the Data Types
- 4. Check all the columns are unique

Here I found all the Datatypes, Columns, and also no Null values and Duplicates

Exploratory Data Analysis:

Data Visualisations

1. Check for the outliers, Here I found there are no outliers in the data

- 2. After clear analysis of data, it is observed that we have
 - Cars from 98 different brands
 - Most Cars are manufactured in the year 2015 to 2017 and Least Cars are manufactur ed in the year 2003 to 2005

• Observed the occurrences of present price and selling price

The Occurences of Present Price is high at 0 to 20

The Occurences of Selling Price is high at 0 to 10

• Here, Petrol cars are more than Deisel and CNG

• Manual transmission are compared to Automatic

• Dealers seller types are more than Individual

 There is Strong relationhip between (selling_price ,present_price), (Kms_driven,selling price) and (fuel_type ,Selling_price)
Weak relationship between (selling price,owner)

Model Building:

1. Encoding the Categorical Data

	Year	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner
0	2014	5.59	27000	0	0	0	0
1	2013	9.54	43000	1	0	0	0
2	2017	9.85	6900	0	0	0	0
3	2011	4.15	5200	0	0	0	0
4	2014	6.87	42450	1	0	0	0
296	2016	11.60	33988	1	0	0	0
297	2015	5.90	60000	0	0	0	0
298	2009	11.00	87934	0	0	0	0
299	2017	12.50	9000	1	0	0	0
300	2016	5.90	5464	0	0	0	0

301 rows × 7 columns

2. Dropping the Irrelevant column Car_Type for building a model

- 3. The test set is 20% of overall dataset
- 4. The Performance metrics after running the model with Linear Regression Method

5. The Performance metrics after running the model with Random Forest Regressor Method

6. The Performance metrics r2_score increased in Random Forest regressor method when compared to Linear Regression method

Conclusion:

According to this Used Car Prediction Dataset Random Forest Regressor is the Best fit Model