Learning objectives

Different ways to display the same data

Which structure is tidy?

_	country [‡]	year ‡	type [‡]	count [‡]
1	Afghanistan	1999	cases	745
2	Afghanistan	1999	population	19987071
3	Afghanistan	2000	cases	2666
4	Afghanistan	2000	population	20595360
5	Brazil	1999	cases	37737
6	Brazil	1999	population	172006362
7	Brazil	2000	cases	80488
8	Brazil	2000	population	174504898
9	China	1999	cases	212258
10	China	1999	population	1272915272
11	China	2000	cases	213766
12	China	2000	population	1280428583

^	country [‡]	year 🗦	rate
1	Afghanistan	1999	745/19987071
2	Afghanistan	2000	2666/20595360
3	Brazil	1999	37737/172006362
4	Brazil	2000	80488/174504898
5	China	1999	212258/1272915272
6	China	2000	213766/1280428583

*	country	\$	1999	\$	2000	\$
1	Afghanist	an	7	45	26	66
2	Brazil	Brazil		37737		88
3	China	China		212258		66
^	country	19	99	÷ 2	2000	\$
1	Afghanistan		1998707	1	20595	360
2	Brazil	1	7200636	2	174504	398

In a tidy data set:

Each **variable** is saved in its own **column**

3 China

Each **observation** is saved in its own **row**

1272915272 1280428583

Different ways to display the same data

Tidy data

*	country [‡]	year ÷	type 🗦	count
1	Afghanistan	1999	cases	745
2	Afghanistan	1999	population	19987071
3	Afghanistan	2000	cases	2666
4	Afghanistan	2000	population	20595360
5	Brazil	1999	cases	37737
6	Brazil	1999	population	172006362
7	Brazil	2000	cases	80488
8	Brazil	2000	population	174504898
9	China	1999	cases	212258
10	China	1999	population	1272915272
11	China	2000	cases	213766
12	China	2000	population	1280428583

*	country	year 🗦	rate
1	Afghanistan	1999	745/19987071
2	Afghanistan	2000	2666/20595360
3	Brazil	1999	37737/172006362
4	Brazil	2000	80488/174504898
5	China	1999	212258/1272915272
6	China	2000	213766/1280428583

•	country	1999	2000
1	Afghanistan	745	2666
2	Brazil	37737	80488
3	China	212258	213766

_	country	1999 🗼	2000
1	Afghanistan	19987071	20595360
2	Brazil	172006362	174504898
3	China	1272915272	1280428583

In a tidy data set:

Each **variable** is saved in its own **column**

Each **observation** is saved in its own **row**

Exercise

Compute the rate for table2, and table4a + table4b. You will need to perform four operations:

- Extract the number of TB cases per country per year.
- Extract the matching population per country per year.
- Divide cases by population, and multiply by 10000.
- Store back in the appropriate place.

Which representation is easiest to work with? Which is hardest? Why?

pivot_longer()

```
table4a %>% pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "cases")
```

country	year	cases	country	1999	2000
Afghanistan	1999	745	Mgharistarr	7/5	2666
Afghanistan	2000	2666	Brazil	37737	80488
Brazil	1999	377371	China	212258	213766
Brazil	2000	80488			
China	1999	2122581			
China	2000	213766		table4	

pivot_wider()

```
table2 %>%
pivot_wider(names_from = type, values_from = count)
```


table2

separate()

```
table3 %>%
  separate(rate, into = c("cases", "population"))
```

By default, separate() will split values wherever it sees a nonalphanumeric character (i.e. a character that isn't a number or letter)

table2

Exercise – LOTR data

- After tidying the data and completing your analysis, you may want to output a table that has each race in its own column. Let's use the pivot_wider() function to make such a table and save it as "lotr wide"
- 2. OPTIONAL: Use the pivot_longer() function to transform you lotr_wide back to tidy format.

Exercise – coronavirus data

 Convert the coronavirus dataset to a wider format where the confirmed cases, deaths and recovered cases are shown in separate columns

 With this wide format data, make a bar chart of the total number of confirmed cases, deaths, and recoveries per day for the US