

Assign 2, Individual, Feb 28 AoE Assign 1 Marks are yet to be out!

An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition

DANIEL JURAFSKY & JAMES H. MARTIN

Neural Language Models

CH07

An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition

DANIEL JURAFSKY & JAMES H. MARTIN

Naive Bayes and Sentiment Classification CH04

Bayesian Classifier
Naïve Bayes
Logistic Regression (Linear)
Neural Network (non-Linear)

Learning to Classify: Boolean Classifiers

Tokens
Sentences
Documents
Objects
Data Point

$$f: D \rightarrow \{0,1\}$$
 $f(x)$ a Boolean Function

Learning to Classify: Boolean Classifiers

Tokens
Sentences
Documents
Objects
Data Point

 $f: D \longrightarrow R^{[0,1]}: f(x)$ probability value

 $f: D \to R^{[-1,1]}: f(x)$ confidence score

Learning to Classify: Boolean Classifiers

Tokens
Sentences
Documents
Objects
Data Point

 $f: D \rightarrow \{0,1\}^{R[0,1]}$

Mixture or Overlapping Classification

Bayesian Classifier

Naïve Bayes

Logistic Regression (Linear)

Neural Network (non-Linear)

Bayesian Inference

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} = \frac{P(E|H)P(H)}{\sum_{H \in \mathcal{H}} P(E|H)P(H)}$$

E: Event | Evidence H: Hopothesis

Posterior

Evidence → Hypothesis

An event happened. Was it according to my belief?

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} = \frac{P(E|H)P(H)}{\sum_{H \in \mathcal{H}} P(E|H)P(H)}$$

E: Event | Evidence

H: *Hopothesis*

Prior

P(Hypothesis)

How much your belief is probable regardless of the event (before the event)?

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} = \frac{P(E|H)P(H)}{\sum_{H \in \mathcal{H}} P(E|H)P(H)}$$

E: *Event* | *Evidence*

H: *Hopothesis*

Likelihood!

Hypothesis -> Evidence

If I want to build the world according to belief, what events happen?

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} = \frac{P(E|H)P(H)}{\sum_{H \in \mathcal{H}} P(E|H)P(H)}$$

E: Event | Evidence | Language | H: Hopothesis | Model

Marginal Likelihood!

Normalized over all Hypothesis

The chance that the event happens considering all beliefs

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} = \frac{P(E|H)P(H)}{\sum_{H \in \mathcal{H}} P(E|H)P(H)}$$

E: Event | Evidence

H: *Hopothesis*

Example

Iran vs. Canada

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} = \frac{P(E|H)P(H)}{\sum_{H \in \mathcal{H}} P(E|H)P(H)}$$

E: Event | Evidence H: Hopothesis

Hypothesis in Iran

Priors = $P(H_i) = 1/4$

Hypothesis in Canada

Priors = $P(H_i) \rightarrow Not uniform! \rightarrow P(H_i) = [0.25, 0.3, 0.05, 0.4]$

Evidence -> Hypothesis

We see a sunny day in Iran! What is the season?

```
P(Spring | Sunny) = ?
P(Summer | Sunny) = ?
P(Fall | Sunny) =?
P(Winter | Sunny) =?
```


Evidence → Hypothesis

We see a sunny day in Iran! What is the season?

$$P(Spring | Sunny) = \frac{P(Sunny|H0)P(H0)}{P(Sunny)} = \frac{P(H0)}{P(Sunny)} \times 0.5$$

$$P(Summer \mid Sunny) = \frac{P(Sunny|H1)P(H1)}{P(Sunny)} = \frac{P(H1)}{P(Sunny)} \times 0.7$$

$$P(\text{Fall } | \text{Sunny}) = \frac{P(\text{Sunny}|\text{H2})P(\text{H2})}{P(\text{Sunny})} = \frac{P(\text{H2})}{P(\text{Sunny})} \times 0.3$$

$$P(Winter \mid Sunny) = \frac{P(Sunny|H3)P(H3)}{P(Sunny)} = \frac{P(H3)}{P(Sunny)} \times 0.1$$

Maximum Posterior: Argmax P(H_i | Sunny)

Evidence → Hypothesis

We see a sunny day in Canada! What is the season?

```
P(Spring | Sunny) = ?
P(Summer | Sunny) = ?
P(Fall | Sunny) =?
P(Winter | Sunny) =?
```


Evidence → Hypothesis

We see a sunny day in Canada! What is the season?

$$P(Spring | Sunny) = \frac{P(Sunny|H0)P(H0)}{P(Sunny)} = \frac{0.25}{P(Sunny)} \times 0.5$$

We see a sunny day in Canada! What is the season?

$$P(Summer \mid Sunny) = \frac{P(Sunny|H1)P(H1)}{P(Sunny)} = \frac{0.3}{P(Sunny)} \times 0.7$$

$$P(Spring \mid Sunny) = \frac{P(Sunny|H0)P(H0)}{P(Sunny)} = \frac{0.25}{P(Sunny)} \times 0.5$$

$$P(\text{Fall } | \text{Sunny}) = \frac{P(\text{Sunny}|\text{H2})P(\text{H2})}{P(\text{Sunny})} = \frac{0.05}{P(\text{Sunny})} \times 0.3$$

$$P(Summer \mid Sunny) = \frac{P(Sunny|H1)P(H1)}{P(Sunny)} = \frac{0.3}{P(Sunny)} \times 0.7$$

$$P(Winter \mid Sunny) = \frac{P(Sunny|H3)P(H3)}{P(Sunny)} = \frac{0.4}{P(Sunny)} \times 0.1$$

$$P(\text{Fall} \mid \text{Sunny}) = \frac{P(\text{Sunny} \mid \text{H2})P(\text{H2})}{P(\text{Sunny})} = \frac{0.05}{P(\text{Sunny})} \times 0.3$$

Maximum Posterior: Argmax P(H_i Sunny) = 0.4 P(Sunny) = 0.4 P(Sunny) × 0.1

MAP vs. MLE

Maximum a Posteriori vs. Maximum Likelihood Estimation

$$argmax P(H|E) = \frac{P(E|H)P(H)}{P(E)} = \frac{P(E|H)P(H)}{\sum_{H \in \mathcal{H}} P(E|H)P(H)}$$

E: Event | Evidence H: Hopothesis

MAP = MLE

Priors are Uniformly Distributed

$$argmax P(H|E) = \frac{P(E|H)P(H)}{P(E)} = \frac{P(E|H)P(H)}{\sum_{H \in \mathcal{H}} P(E|H) P(H)}$$

E: Event | Evidence

H: *Hopothesis*

MAP << MLE

MAP is more general optimization method! Priors are not uniform, MLE is weighted by Prior

$$argmax P(H|E) = \frac{P(E|H)P(H)}{P(E)} = \frac{P(E|H)P(H)}{\sum_{H \in \mathcal{H}} P(E|H) P(H)}$$

E: Event | Evidence H: Hopothesis

MAP & MLE

Point estimates, i.e., give single real values as probabilities!

$$argmax P(H|E) = \frac{P(E|H)P(H)}{P(E)} = \frac{P(E|H)P(H)}{\sum_{H \in \mathcal{H}} P(E|H)P(H)}$$

E: Event | Evidence H: Hopothesis

Bayesian Inference

Probability Density Function $P(a < x < b) = \int_{a}^{b} f(x) dx$

$$argmax P(H|E) = \frac{P(E|H)P(H)}{P(E)} = \frac{P(E|H)P(H)}{\sum_{H \in \mathcal{H}} P(E|H) P(H)}$$

the output is not a single value but a probability density function (when H is a continuous variable) or a probability mass function (when H is a discrete variable).

Tokens
Sentences
Documents
Objects
Data Point

Events Evidences

Classes Labels Hypotheses

$$argmax P(c|d) = \frac{P(d|c)P(c)}{P(d)} = \frac{P(d|c)P(c)}{\sum_{c \in C} P(d|c)P(c)}$$

Document Classification

Sentiment (Review) Analysis (happy, sad, neutral)
Misinformation Analysis (fake-real, reliable-unreliable)

Anguage Modeling!

Bayes 4 Document Classification

Document (Event) → Classes (Hypothesis)

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d) = \underset{c \in C}{\operatorname{argmax}} \frac{P(d|c)P(c)}{P(d)} = \underset{c \in C}{\operatorname{argmax}} P(d|c)P(c)$$

Bayes 4 Document Classification

Document (Event) \rightarrow Classes (Hypothesis) Document (Event): stream of tokens $w_1, w_2, ..., w_n$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(d|c)P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} P(w_{1}, w_{2}, ..., w_{n} | c) P(c)$$

Bayes 4 Document Classification

Document (Event) \rightarrow Classes (Hypothesis) Document (Event): stream of tokens $w_1, w_2, ..., w_n$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(d|c)P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} P(w_1, w_2, ..., w_n | c) P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} \left[\underset{\text{bigram}}{\operatorname{unigram}} \right] P(c)$$

Naïve Bayes 4 Document Classification

Document (Event) \rightarrow Classes (Hypothesis) Document (Event): stream of tokens $w_1, w_2, ..., w_n$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(d|c)P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} P(W_1, W_2, ..., W_n | c) P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} \text{ [unigram] } P(c)$$

Naïve Bayes 4 Document Classification

Document (Event) \rightarrow Classes (Hypothesis) Document (Event): stream of tokens $w_1, w_2, ..., w_n$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(d|c)P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} P(w_1, w_2, ..., w_n | c) P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} \text{ [unigram] } P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} \prod_{i=1}^{n} P(w_i | c) P(c)$$

Naïve Bayes 4 Document Classification

Document (Event) \rightarrow Classes (Hypothesis) Document (Event): stream of tokens $w_1, w_2, ..., w_n$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(d|c)P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} P(w_1, w_2, ..., w_n | c) P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} [\operatorname{unigram}] P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} \prod_{i=1}^{n} P(w_i | c) P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{i=1}^{n} P(w_i | c)$$

Naïve Bayes 4 Document Classification

Document (Event) \rightarrow Classes (Hypothesis) Document (Event): stream of tokens $w_1, w_2, ..., w_n$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(d|c)P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} P(w_1, w_2, ..., w_n | c) P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} \text{ [unigram] } P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} \log \sum_{i=1}^{n} P(w_i | c) P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} P(c) \log \sum_{i=1}^{n} P(w_i | c)$$

•	Documents (Sentence)	Sentiment Class (Label)
	S ₀ : just plain boring	Neg (-)
	S ₁ : entirely predictable and lacks energy	Neg (-)
Train	S ₂ : no surprises and very few laughs	Neg (-)
	S ₃ : very powerful	Pos (+)
	S ₄ : the most fun film of the summer	Pos (+)
Test	S ₅ : predictable with no fun	?)

	Documents (Sentence)	Sentiment Class (Label)
	S ₀ : just plain boring	Neg (-)
	S ₁ : entirely predictable and lacks energy	Neg (-)
Train	S ₂ : no surprises and very few laughs	Neg (-)
	S ₃ : very powerful	Pos (+)
	S ₄ : the most fun film of the summer	Pos (+)
Test	S ₅ : predictable with no fun	?

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(\mathsf{S5}|c)P(c) = \underset{c \in C}{\operatorname{argmax}} [\mathsf{unigram}] P(c) = \underset{c \in \{+,-\}}{\operatorname{argmax}} P(c) \prod_{i=1}^{n} P(w_i|c)$$

	Documents (Sentence)	Sentiment Class (Label)
	S ₀ : just plain boring	Neg (-)
	S ₁ : entirely predictable and lacks energy	Neg (-)
Train	S ₂ : no surprises and very few laughs	Neg (-)
	S ₃ : very powerful	Pos (+)
	S ₄ : the most fun film of the summer	Pos (+)
Test	S ₅ : predictable with no fun	?

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(\mathsf{S5}|c)P(c) = \underset{c \in C}{\operatorname{argmax}} [\mathsf{unigram}] P(c) = \underset{c \in \{+,-\}}{\operatorname{argmax}} P(c) \prod_{i=1}^{n} P(w_i|c)$$

$$P(-|S5) = P(S5|-) P(-) \propto P(-) [P(predictable|-) P(with|-) P(no|-) P(fun|-)] = ? P(+|S5) = P(S5|+) P(+) \propto P(+) [P(predictable|+) P(with|+) P(no|+) P(fun|+)] = ?$$

	Documents (Sentence)	Sentiment Class (Label)
	S ₀ : just plain boring	Neg (-)
	S ₁ : entirely predictable and lacks energy	Neg (-)
Train	S ₂ : no surprises and very few laughs	Neg (-)
	S ₃ : very powerful	Pos (+)
	S ₄ : the most fun film of the summer	Pos (+)
Test	S ₅ : predictable with no fun	?

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(\mathsf{S5}|c)P(c) = \underset{c \in C}{\operatorname{argmax}} [\mathsf{unigram}] P(c) = \underset{c \in \{+,-\}}{\operatorname{argmax}} P(c) \prod_{i=1}^{n} P(\mathsf{w}_{i}|c)$$

$$P(-|S5) = P(S5|-) P(-) \propto P(-) [P(predictable|-) P(with|-) P(no|-) P(fun|-)] = ? P(+|S5) = P(S5|+) P(+) \propto P(+) [P(predictable|+) P(with|+) P(no|+) P(fun|+)] = ?$$

	Documents (Sentence)	Sentiment Class (Label)
	S ₀ : just plain boring	Neg (-)
	S ₁ : entirely predictable and lacks energy	Neg (-)
Train	S ₂ : no surprises and very few laughs	Neg (-)
	S ₃ : very powerful	Pos (+)
	S ₄ : the most fun film of the summer	Pos (+)
Test	S ₅ : predictable with no fun	?

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(\mathsf{S5}|c)P(c) = \underset{c \in C}{\operatorname{argmax}} [\mathsf{unigram}] P(c) = \underset{c \in \{+,-\}}{\operatorname{argmax}} P(c) \prod_{i=1}^{n} P(\mathsf{w}_{i}|c)$$

$$P(-|S5) = P(S5|-) P(-) \propto P(-) [P(predictable|-) P(with|-) P(no|-) P(fun|-)] = \frac{3}{5}$$

 $P(+|S5) = P(S5|+) P(+) \propto P(+) [P(predictable|+) P(with|+) P(no|+) P(fun|+)] = \frac{3}{5}$

	Documents (Sentence)	Sentiment Class (Label)
	S ₀ : just plain boring	Neg (-)
	S ₁ : entirely predictable and lacks energy	Neg (-)
Train	S ₂ : no surprises and very few laughs	Neg (-)
/	S ₃ : very powerful	Pos (+)
	S ₄ : the most fun film of the summer	Pos (+)
Test	S ₅ : predictable with no fun	?

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(\mathsf{S5}|c) P(c) = \underset{c \in C}{\operatorname{argmax}} [\mathsf{unigram}] P(c) = \underset{c \in \{+,-\}}{\operatorname{argmax}} P(c) \prod_{i=1}^{n} P(\mathsf{w}_{i}|c)$$

```
P(-|S5) = P(S5|-) P(-) \propto P(-) [P(predictable|-) P(with|-) P(no|-) P(fun|-)] = ?

P(+|S5) = P(S5|+) P(+) \propto P(+) [P(predictable|+) P(with|+) P(no|+) P(fun|+)] = ?
```

	Documents (Sentence)	Sentiment Class (Label)
	S ₀ : just plain boring	Neg (-)
	S ₁ : entirely predictable and lacks energy	Neg (-)
Train	S ₂ : no surprises and very few laughs	Neg (-)
	S ₃ : very powerful	Pos (+)
	S ₄ : the most fun film of the summer	Pos (+)
Test	S ₅ : predictable with no fun	?

Neg (-) : just plain boring entirely predictable and lacks energy no surprises and very few laughs Pos (+) : very powerful the most fun film of the summer

$$P(\text{predictable}|-) = \frac{\#preditable}{\#total\ tokens\ in\ (-)} = \frac{1}{14}; P(\text{with}|-) = \frac{\#with}{\#total\ tokens\ in\ (-)} = \frac{0}{14}; P(\text{no}|-) = \frac{\#no}{\#total\ tokens\ in\ (-)} = \frac{1}{14}; P(\text{fun}|-) = \frac{\#fun}{\#total\ tokens\ in\ (-)} = \frac{0}{14}$$

$$P(\text{predictable}|+) = \frac{\#preditable}{\#total\ tokens\ in\ (+)} = \frac{0}{9}; P(\text{with}|+) = \frac{\#with}{\#total\ tokens\ in\ (+)} = \frac{0}{9}; P(\text{no}|+) = \frac{\#no}{\#total\ tokens\ in\ (+)} = \frac{0}{9}; P(\text{fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1}{9}$$

Naïve Bayes + Smoothing: Example

	Documents (Sentence)	Sentiment Class (Label)
	S ₀ : just plain boring	Neg (-)
	S ₁ : entirely predictable and lacks energy	Neg (-)
Train	S ₂ : no surprises and very few laughs	Neg (-)
	S ₃ : very powerful	Pos (+)
	S ₄ : the most fun film of the summer	Pos (+)
Test	S ₅ : predictable with no fun	Neg (-)

Neg (-) : just plain boring entirely predictable and lacks energy no surprises and very few laughs Pos (+) : very powerful the most fun film of the summer

$$\text{P(predictable}|-) = \frac{\#preditable}{\#total\ tokens\ in\ (-)} = \frac{1}{14} + \frac{1}{23}; \ \text{P(with}|-) = \frac{\#with}{\#total\ tokens\ in\ (-)} = \frac{0+1}{14+23}; \ \text{P(no}|-) = \frac{\#no}{\#total\ tokens\ in\ (-)} = \frac{1+1}{14+23}; \ \text{P(fun}|-) = \frac{\#fun}{\#total\ tokens\ in\ (-)} = \frac{0+1}{14+23}; \ \text{P(predictable}|+) = \frac{\#preditable}{\#total\ tokens\ in\ (+)} = \frac{0+1}{9+23}; \ \text{P(with}|+) = \frac{\#with}{\#total\ tokens\ in\ (+)} = \frac{0+1}{9+23}; \ \text{P(no}|+) = \frac{\#no}{\#total\ tokens\ in\ (+)} = \frac{0+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{1+1}{9+23}; \ \text{P(fun}|+) = \frac{\#fun}{\#total\ tokens\ in\ (+)} = \frac{\#f$$

Naïve Bayes + Smoothing: Example

	Documents (Sentence)	Sentiment Class (Label)
	S ₀ : just plain boring	Neg (-)
	S ₁ : entirely predictable and lacks energy	Neg (-)
Train	S ₂ : no surprises and very few laughs	Neg (-)
	S ₃ : very powerful	Pos (+)
	S ₄ : the most fun film of the summer	Pos (+)
Test	Spredictable with no fun	Neg (-)

Neg (-): just plain boring entirely predictable and lacks energy no surprises and very few laughs Pos (+): very powerful the most fun film of the summer

P(-|S5) = P(S5|-) P(-)
$$\propto$$
 P(-) [P(predictable|-) P(with|-) P(no|-) P(fun|-)] = $\frac{3}{5} \times \frac{2}{37} \times \frac{1}{37} \times \frac{2}{37} \times \frac{1}{37} = 0.00000128057$
P(+|S5) = P(S5|+) P(+) \propto P(+) [P(predictable|+) P(with|+) P(no|+) P(fun|+)] = $\frac{2}{5} \times \frac{1}{32} \times \frac{1}{32} \times \frac{1}{32} \times \frac{2}{32} = 0.000000762939453$

Naïve Bayes 4 LM! How?

Naïve Bayes 4 LM

classify the context into the class of next token!

 $P(W_n|W_1, W_2, ..., W_{n-1})$

	Documents (Sentence)	Next Word Class (Label)
	S ₀ : just plain	boring
	S ₁ : entirely predictable and lacks	energy
Train	S ₂ : no surprises and very few	laughs
	S ₃ : very	powerful
	S ₄ : the most fun film of the	summer
Test	S ₅ : predictable with no	(?)

Emotion Analysis & Opinion Mining

Motivation

Online Marketing Customer Feedback

Age and geographic differences in the levels of happiness!

Dodds and Danforth. Measuring the happiness of large-scale written expression: Songs, blogs, and presidents. Journal of Happiness Studies, 2010

Emotion Analysis & Opinion Mining

Definition

Document → <aspect, opinion, sentiment>

Aspect, Property, Feature, ... What

Opinion, Believe, ... Why?

Sentiment, Feeling, ... How?

Emotion Analysis & Opinion Mining

Example

 $Document \rightarrow \langle aspect, opinion, sentiment \rangle$

"food was great but the service was poor." \rightarrow <food, great, pos> \rightarrow <service, poor, neg>

Example

```
Document → <aspect, opinion, sentiment>
```

"food was great but the service was poor." \rightarrow <Pos> \rightarrow <Neg>

Literature

Lexicon-based: avoids statistical learning altogether!

Classify documents by counting words against positive and negative sentiment word lists(Taboada et al., 2011).

General Inquirer (Stone et al., 1966) LIWC (Pennebaker et al., 2007) MPQA Subjectivity Lexicon (Wilson et al., 2005).

E.g., the MPQA has 6885 words: 2718 positive, 4912 negative

- + : admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great
- : awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate

Literature

Lexicon-based falls short

Irrealis mood (https://en.wikipedia.org/wiki/Irrealis mood)
"It would be nice if you acted like you understood."

"That's not bad for the first day."

"This is not the worst thing that can happen."

"Disturbingly good"

Sarcasm & Irony
"That's just what I needed today!"
"Nice perfume. How long did you marinate in it?"

Literature

Machine Learning-based: statistical learning!

Naïve Bayes Binary Naïve Bayes

Per document, occurrence matters more than frequency word counts → word occurrence

Literature

Binary Naïve Bayes

Per document, occurrence matters more than frequency word counts → word occurrence

Bagging Model for Product Title Quality with Noise CIKM AnalyticCup 2017

Tam T.Nguyen

Ryerson University nthanhtam@gmail.com Hossein Fani

University of New Brunswick hossein.fani@gmail.com Ebrahim Bagheri

Ryerson University ebrahim.bageri@gmail.com Gilbero Titericz

Airbnb, Inc. giba1978@gmail.com

>

R

0

B

L

E

M

is_clear

"hot sexy red clutch rug sack travel backpack unisex cheap with free gift"

US_CONCÍSE Hot Sexy Tom Clovers We

"Hot Sexy Tom Clovers Womens Mens Classy Look Cool Simple Style Casual Canvas Crossbody Messenger Bag Handbag Fashion Bag Tote Handbag Gray"

