Cognome		
Nome		Non scrivere qui
Matricola		
Laurea	CIV AMB GEST INF ELN TLC MEC	1 2 3 4 5 6

Università degli Studi di Parma Dipartimento di Ingegneria e Architettura Esame di Analisi Matematica 2 — Soluzioni A.A. 2016-2017 — Parma, 7 Febbraio 2017

Compilate l'intestazione in alto a sinistra e scrivete cognome e nome in stampatello anche su ogni altro foglio. Il tempo massimo per svolgere la prova è di tre ore. Al momento della consegna, inserite tutti i fogli dentro a questo foglio.

Esercizio 1. Sia $\alpha \ge 0$. Il limite $\lim_{(x,y)\to(0,0)} \frac{|x|^{\alpha}y}{x^2+y^2}$

- (a) vale $+\infty$ per $\alpha = 0$;
- (b) esiste se e solo se $\alpha > 1$;
- (c) non esiste per $\alpha = 2$.

Soluzione. Il limite proposto esiste se e solo se risulta $\alpha/2 + 1/2 > 1$ da cui segue $\alpha > 1$. La risposta corretta è quindi (b).

Esercizio 2. La funzione $f \in C^2(\mathbb{R}^2)$ ha in $P = (x_0, y_0)$ un punto di massimo relativo. Quale tra le seguenti matrici può essere la matrice hessiana di f in P?

(a)
$$\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$
; (b) $\begin{pmatrix} 1 & 1 \\ -1 & 4 \end{pmatrix}$; (c) $\begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}$.

Soluzione. La matrice hessiana $D^2f(P)$ di una funzione di classe C^2 in un punto di massimo locale P è una matrice simmetrica con autovalori (non necessariamente distinti) $\lambda_1 \leq \lambda_2 \leq 0$ e risulta

$$\det [D^2 f(P)] = \lambda_1 \lambda_2$$
 e $\operatorname{tr} [D^2 f(P)] = \lambda_1 + \lambda_2$.

Denotata allora con A la matrice nei tre casi proposti, risulta

- (a) A simmetrica con det A > 0 e tr A > 0; \implies A ha autovalori positivi $\lambda_2 \ge \lambda_1 > 0$;
- (b) A non simmetrica;
- (c) A simmetrica con det A=0 e tr A<0. \implies A ha autovalori $\lambda_1<0$ e $\lambda_2=0$.

La risposta corretta è quindi (c).

Esercizio 3. Di quale tra le seguenti equazioni differenziali è soluzione la funzione $x(t) = e^{2t} + 2t$?

(a)
$$x'(t) = 2x(t) - 4t;$$
 (b) $x''(t) - 5x'(t) + 6x(t) = 0;$ (c) $x''(t) - 2x'(t) = -4.$

Soluzione. Si ha $x'(t) = 2e^{2t} + 2$ e $x''(t) = 4e^{2t}$ per ogni t. Sostituendo si verifica che la risposta corretta è (c).

Esercizio 4. Sia $f: \mathbb{R}^3 \to \mathbb{R}$ la funzione definita da

$$f(x, y, z) = x + y + z, \qquad (x, y, z) \in \mathbb{R}^3.$$

- (a) Descrivete gli insiemi di livello $\{f = c\}$ $(c \in \mathbb{R})$ di f.
- (b) Determinate massimo e minimo globali di f sull'insieme $K = \{(x, y, z): 2x^2 + y^2 + 3z^2 \le 1\}$.

Soluzione. (a) Gli insiemi di livello $\{f=c\}\ (c\in\mathbb{R})$ sono i piani paralleli di equazione x+y+z=c. Tali piani sono tutti perpendicolari al vettore di componenti (1,1,1).

(b) L'insieme K è chiuso e limitato ed è formato dai punti (x, y, z) racchiusi dall'ellissoide centrato nell'origine di semiassi $a = 1/\sqrt{2}$, b = 1 e $c = 1/\sqrt{3}$. La funzione f è lineare e quindi è di classe $C^{\infty}(\mathbb{R}^3)$. Pertanto, f assume minimo e massimo globale su K per il teorema di Weierstrass. Inoltre, si ha evidentemente

$$(x, y, z) \in K$$
 \iff $(-x, -y, -z) \in K$
 $(x, y, z) \in \mathbb{R}^3$ \Longrightarrow $f(-x, -y, -z) = -f(x, y, z)$

e quindi i punti di minimo e di massimo globali sono antipodali e il minimo e il massimo globali opposti tra loro.

Per determinare tali punti osserviamo che il gradiente di f di non si annulla in alcun punto di \mathbb{R}^3 e quindi il massimo e il minimo globale di f su K devono essere assunti sul bordo ∂K . Posto

$$\Phi(x, y, z) = 2x^2 + y^2 + 3z^2 - 1, \qquad (x, y, z) \in \mathbb{R}^3,$$

risulta $\partial K = \{\Phi(x,y,z) = 0\}$ e $\nabla \Phi(x,y,z) \neq (0,0,0)$ in ogni punto $(x,y,z) \in \partial K$ e quindi ∂K risulta essere una 2-superficie regolare in \mathbb{R}^3 . Per il teorema dei moltiplicatori di Lagrange, nei punti di massimo e minimo il gradiente $\nabla f = (1,1,1)$ di f deve essere parallelo al gradiente $\nabla \Phi(x,y,z) = (4x,2y,6z)$ di Φ . I punti $(x,y,z) \in \mathbb{R}^3$ in cui ∇f e $\nabla \Phi(x,y,z)$ sono paralleli sono i punti (x,y,z) tali che risulti

$$4x = \lambda;$$
 $2y = \lambda;$ $6z = \lambda;$

per qualche $\lambda \in \mathbb{R}$, $\lambda \neq 0$. Imponendo che $\lambda \neq 0$ sia tale che i corrispondenti punti appartengano a ∂K si trova che deve essere $\lambda = \pm 2\sqrt{6/11}$ da cui segue con facili calcoli che i punti di minimo e massimo globale di f su K sono

$$P_{\pm} = \pm \left(\sqrt{\frac{3}{22}}, 2\sqrt{\frac{3}{22}}, \frac{2}{3}\sqrt{\frac{3}{22}}\right)$$

cui corrispondono

$$\min_{K} f = f(P_{-}) = -\sqrt{\frac{11}{6}}$$
 e $\max_{K} f = f(P_{+}) = \sqrt{\frac{11}{6}}$.

Esercizio 5. Sia $\Phi \colon \mathbb{R}^2_+ \to \mathbb{R}^2_+$ il cambio di variabili $(x,y) = \Phi(u,v)$ definito da

$$u = \sqrt{x^2 + y}$$
 e $v = y/x^2$

- (a) Determinate esplicitamente Φ e calcolate lo jacobiano $J\Phi$.
- (b) Disegnate l'insieme

$$K = \{(x,y): x > 0, x^2 \le y \le 2x^2 \text{ e } 1 - x^2 \le y \le 2 - x^2\}$$

e calcolatene la misura (area) |K|.

Soluzione. (a) Per ogni $(u,v) \in (\mathbb{R}_+)^2$, invertendo le relazioni $u = \sqrt{x^2 + y}$ e $v = y/x^2$, si trova una e una sola soluzione $(x,y) \in (\mathbb{R}_+)^2$ data da

$$x = \frac{u}{\sqrt{1+v}} \qquad e \qquad y = \frac{u^2v}{1+v}.$$

Pertanto, la funzione $\Phi \colon (\mathbb{R}_+)^2 \to (\mathbb{R}_+)^2$ di componenti $\Phi = (\Phi^1, \Phi^2)$ definite da

$$\Phi^{1}(u,v) = \frac{u}{\sqrt{1+v}}$$
 e $\Phi^{2}(u,v) = \frac{u^{2}v}{1+v}$

per ogni $(u,v) \in (\mathbb{R}_+)^2$ è biettiva da $(\mathbb{R}_+)^3$ su se stesso. Inoltre, risulta

$$D\Phi(u,v,w) = \begin{pmatrix} \frac{1}{\sqrt{1+v}} & -\frac{u}{2(1+v)^{3/2}} \\ \frac{2uv}{1+v} & \frac{u^2}{(1+v)^2} \end{pmatrix}, \qquad (u,v) \in (\mathbb{R}_+)^2,$$

da cui segue

$$J\Phi(u, v, w) = \frac{u^2}{(1+v)^{3/2}}, \qquad (u, v, w) \in (\mathbb{R}_+)^2.$$

Pertanto Φ è un diffeomorfismo di $(\mathbb{R}_+)^2$ su se stesso come per altro si poteva stabilire anche direttamente osservando che la funzione inversa Φ^{-1} è di classe C^{∞} in $(\mathbb{R}_+)^2$.

(b) L'insieme K è rappresentato (non in scala) nella figura seguente .

L'insieme

$$H = \Phi^{-1}(K) = \{(u, v) \in (\mathbb{R}_+)^2 : 1 \le u \le 2 \text{ e } 1 \le s \le \sqrt{2}\} = [1, 2] \times [1, \sqrt{2}].$$

è un rettangolo compatto contenuto in $(\mathbb{R}_+)^2$. Quindi, anche K è compatto e misurabile e, per la formula di cambiamento di variabili, l'area di K è data da

$$V_2(K) = \int_K 1 \, dV_2(x, y) = \int_H \frac{u^2}{(1+v)^{3/2}} \, dV_2(u, v) =$$

$$= \int_1^{\sqrt{2}} u^2 \, du \cdot \int_1^2 \frac{1}{(1+v)^{3/2}} \, dv = \frac{2}{3} \left(2\sqrt{2} - 1\right) \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right).$$

Esercizio 6. Determinate la soluzione del problema di Cauchy

$$\begin{cases} x'(t) = e^{x(t)} - \frac{1}{e^{x(t)}} \\ x(0) = \log 2. \end{cases}$$

Soluzione. L'equazione differenziale proposta è un'equazione a variabili separabili. La funzione a secondo membro è $f(t,x) = g(t)h(x), (t,x) \in \mathbb{R} \times \mathbb{R}$ con

$$g(t) = 1,$$
 $t \in \mathbb{R}$ e $h(x) = e^x - e^{-x} = \frac{e^{2x} - 1}{e^x},$ $x \in \mathbb{R}$.

La funzione h è infinite volte derivabile in \mathbb{R} cosicché il problema di Cauchy considerato ha soluzione massimale $x \in C^{\infty}(\alpha, \beta)$ con $-\infty \leq \alpha = \alpha(x_0) < 0 < \beta = \beta(x_0) \leq +\infty$. Tale soluzione è prolungamento di ogni altra soluzione del medesimo problema di Cauchy.

Poiché la soluzione massimale relativa al dato iniziale x(0) = 0 è ovviamente la funzione costante x(t) = 0 per ogni $t \in \mathbb{R}$, la soluzione massimale relativa al dato iniziale $x(0) = \log 2 > 0$ verifica la stessa disuguaglianza: x(t) > 0 per ogni $t \in (\alpha, \beta)$. Si ha quindi

$$\frac{e^{x(t)}}{e^{2x(t)} - 1} x'(t) = 1, \qquad \alpha < t < \beta,$$

e ponendo

$$H(y) = \int_{\log 2}^{y} \frac{e^{z}}{e^{2z} - 1} dz = \int_{2}^{e^{y}} \frac{1}{u^{2} - 1} du = \frac{1}{2} \log \left| \frac{u - 1}{u + 1} \right| \Big|_{2}^{e^{y}} = \log \sqrt{\frac{e^{y} - 1}{e^{y} + 1}} - \log \frac{1}{\sqrt{3}}$$

per ogni y > 0, si deduce che la funzione composta $H \circ x$ è in $C^{\infty}(\alpha, \beta)$ e verifica $(H \circ x)'(t) = 1$ per $\alpha < t < \beta$ e $H \circ x(0) = 0$. Per il teorema fondamentale del calcolo deve allora essere

$$(H \circ x)(t) = \log \sqrt{\frac{e^{x(t)} - 1}{e^{x(t)} + 1}} - \log \frac{1}{\sqrt{3}} = t, \quad \alpha < t < \beta,$$

da cui segue con facili calcoli

$$x(t) = \log\left(\frac{3 + e^{2t}}{3 - e^{2t}}\right), \quad \alpha < t < \beta.$$

Restano infine da determinare α e β . Poiché si ha

$$\lim_{y \to 0^+} H(y) = \lim_{y \to 0^+} \log \sqrt{\frac{e^y - 1}{e^y + 1}} - \log \frac{1}{\sqrt{3}} = -\infty,$$

$$\lim_{y \to +\infty} H(y) = \lim_{y \to +\infty} \log \sqrt{\frac{e^y - 1}{e^y + 1}} - \log \frac{1}{\sqrt{3}} = -\log \frac{1}{\sqrt{3}},$$

si conclude che risulta $\alpha = -\infty$ e $\beta = \log \sqrt{3}$.

La soluzione massimale del problema di Cauchy proposto è quindi

$$x(t) = \log\left(\frac{3 + e^{2t}}{3 - e^{2t}}\right), \quad -\infty < t < \log\sqrt{3}.$$