MA2102: LINEAR ALGEBRA

Lecture 34: Adjoint

18th November 2020

Given a finite dimensional inner product space V ,for each $v \in V$ we have a linear map

$$\langle \cdot, v \rangle : V \to F, \quad w \mapsto \langle w, v \rangle.$$

Thus, we have a map

$$\Phi_V: V \to V^*, \ v \mapsto \langle \cdot, v \rangle.$$

Note that $\Phi_V(v_1+v_2)=\Phi_V(v_1)+\Phi_V(v_2)$ and if $\Phi_V(v_1)=\Phi_V(v_2)$, then

$$\langle w, v_1 \rangle = \langle w, v_2 \rangle$$
 for any $w \in V$

whence $v_1 = v_2$. Thus, Φ is injective. It is also surjective as the following result implies.

Theorem [Finite dimensional Riesz representation] Let V be a finite dimensional inner product space. If $T: V \to F$ is a linear map, then there exists $v_0 \in V$ such that $T(v) = \langle v, v_0 \rangle$ for $v \in V$.

Proof.

Let $\{v_1, \dots, v_n\}$ be an orthonormal basis of V. We may write

$$v = \langle v, v_1 \rangle v_1 + \dots + \langle v, v_n \rangle v_n$$

which implies that

$$\begin{split} T(v) &= \langle v, v_1 \rangle T(v_1) + \dots + \langle v, v_n \rangle T(v_n) \\ &= \langle v, \overline{T(v_1)} v_1 \rangle + \dots + \langle v, \overline{T(v_n)} v_n \rangle \\ &= \langle v, \overline{T(v_1)} v_1 + \dots + \overline{T(v_n)} v_n \rangle. \end{split}$$

We may set $v_0 = \overline{T(v_1)}v_1 + \cdots + \overline{T(v_n)}v_n$.

Recall that any map $T: V \to W$ induces a dual map $T^*: W^* \to V^*$. If V and W are finite dimensional inner product spaces, then have canonical bijections $\Phi_V: V \to V^*$ and $\Phi_W: W \to W^*$.

Definition [Adjoint] The map from $W \to V$ defined as the composite

$$W \xrightarrow{\Phi_W} W^* \xrightarrow{T^*} V^* \xrightarrow{(\Phi_V)^{-1}} V$$

is called the adjoint of *T*.

Let us unravel what it means. By definition of Φ_V , it is additive but skew-linear, i.e.,

$$\Phi_{\,V}(cv) = \langle \cdot, cv \rangle_{\,V} = \overline{c} \langle \cdot, v \rangle_{\,V} = \overline{c} \, \Phi_{\,V}(v).$$

Since the adjoint is a composition of three additive maps, it is additive.

Let us compute the effect of T^* on $\langle \cdot, w \rangle_W$, i.e.,

$$\begin{split} T^* \big(\langle \cdot, w \rangle_W \big) (v) &= (\langle \cdot, w \rangle_W) (T(v)) \\ &= \langle T(v), w \rangle_W \\ &= \langle T(\cdot), w \rangle_W (v). \end{split}$$

It follows that

$$cw \xrightarrow{\Phi_W} \langle \cdot, cw \rangle_W = \overline{c} \langle \cdot, w \rangle_W \xrightarrow{T^*} \overline{c} \langle T(\cdot), w \rangle_W \xrightarrow{(\Phi_V)^{-1}} c(\Phi_V)^{-1} \big(\langle T(\cdot), w \rangle_W \big).$$

Thus, the adjoint is a linear map.

Notation The adjoint of T will be denoted by T^* . There should be no confusion between the dual and the adjoint, although they are denoted by the same symbols, since the domains are different.

Question *Is there a cleaner description of the adjoint?*

Let $w \in W$ and consider $T^*(w)$. By construction,

$$(\Phi_V)^{-1}(\langle T(\cdot), w \rangle_W) = T^*(w).$$

Applying Φ_V to both sides we obtain

$$\langle T(\cdot), w \rangle_W = \langle \cdot, T^*(w) \rangle_V.$$

Definition [Adjoint] Given a map $T: V \to W$ between inner product spaces, a linear map $T^*: W \to V$ satisfying

$$\langle T(v), w \rangle_W = \langle v, T^*(w) \rangle_V$$
 (1)

for any $v \in V$, $w \in W$ is called the adjoint of T.

We have seen that such a T^* exists previously. Show that there is only one such linear map satisfying (1).

Examples (1) The adjoint of the identity map $I_V: V \to V$ is I_V . The adjoint of cI_V is $\overline{c}I_V$ (exercise).

- (2) The adjoint of the zero map $0: V \to W$ is the zero map $0: W \to V$.
 - (3) Consider the linear map

$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T(x, y, z) = (x + 2y + 3z, 4x + 5y + 6z)$.

To evaluate $T^*(a, b)$ we compute

$$\langle T(x,y,z),(a,b)\rangle_{\mathbb{R}^2} = (x+2y+3z,4x+5y+6z)\cdot (a,b)$$

= $(a+4b)x+(2a+5b)y+(3a+6b)z$.

The above quantity must equal $\langle (x, y, z), T^*(a, b) \rangle_{\mathbb{R}^3}$, whence

$$T^*(a,b) = (a+4b,2a+5b,3a+6b).$$

(4) Consider the trace map trace : $M_2(\mathbb{R}) \to \mathbb{R}$. To evaluate trace* (μ) we compute

 $= \langle (x,y,z), (a+4b,2a+5b,3a+6b) \rangle_{\mathbb{D}^3}.$

$$\langle \operatorname{trace}(A), \mu \rangle_{\mathbb{R}} = (a+d)\mu$$

$$= \operatorname{trace}(\mu I_2 A) = \operatorname{trace}((\mu I_2)^t A)$$

$$= \langle A, \mu I_2 \rangle_{M_2(\mathbb{R})}.$$

Therefore, trace*(μ) = μI_2 .

Proposition Let V be a finite dimensional inner product space and β be an orthonormal basis of V. If $T: V \to V$, then $[T^*]_{\beta} = [T]_{\beta}^*$. Proof.

If $\beta = \{v_1, \dots, v_n\}$, then any vector can be written as

$$v = \langle v, v_1 \rangle v_1 + \dots + \langle v, v_n \rangle v_n.$$

In particular, for any linear map $L: V \rightarrow V$,

$$L(v_j) = \langle L(v_j), v_1 \rangle v_1 + \dots + \langle L(v_j), v_n \rangle v_n.$$

Thus, the $(i,j)^{\text{th}}$ entry of $[L]_{\beta}$ is given by $\langle L(v_i), v_i \rangle$. Note that

$$\left([\,T^*\,]_\beta\right)_{ij} = \langle\,T^*(v_j),v_i\rangle = \overline{\langle\,v_i,T^*(v_j)\rangle} = \overline{\langle\,T(v_i),v_j\rangle} = \overline{([\,T\,]_\beta)_{ji}}.$$

This completes the proof.

Compare this result with example (1).