Assignment 2 AI1110

I Sai Pradeep AI21BTECH11013

Abstract—This document contains the solution to problem 1(ix) in 12th ICSE 2019 Paper

Question 1(ix): Two balls are drawn from an urn containing 3 white,5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?

Solution: Let $X = \{0, 1, 2\}$ be a random variable representing the colour of the ball, and let Y = $\{0,1\}$ be a random variable representing the draw number. Let P_7 be the probability that atleast one of the balls drawn is red. See Tables (I) and (II)

Event	Description	
X = 0	colour of the ball drawn is Black	
X = 1	colour of the ball drawn is White	
X=2	colour of the ball drawn is Red	
Y = 0	The first draw of the balls	
Y = 1	The second draw of the balls	

TABLE I

Probability	Value
$P_1 = \Pr\left(X = 0 Y = 0\right)$	$\frac{2}{10} = \frac{1}{5}$
$P_2 = \Pr\left(X = 1 Y = 0\right)$	$\frac{3}{10}$
P_3 = Pr $(X = 0 Y = 1) \times Pr (X = 0 Y = 0)$	$\frac{1}{9} \times \frac{1}{5} = \frac{1}{45}$
P_4 = Pr $(X = 0 Y = 1) \times Pr (X = 1 Y = 0)$	$\frac{2}{9} \times \frac{3}{10} = \frac{1}{15}$
$P_5 = \Pr(X = 1 Y = 1) \times \Pr(X = 0 Y = 0)$	$\frac{3}{9} \times \frac{2}{10} = \frac{1}{15}$
$P_6 = \Pr(X = 1 Y = 1) \times \Pr(X = 1 Y = 0)$	$\frac{2}{9} \times \frac{3}{10} = \frac{1}{15}$
P_{7}	?

TABLE II

$$P_7 = 1 - (P_3 + P_4 + P_5 + P_6) \tag{1}$$

$$= 1 - \left(\frac{1}{45} + \frac{1}{15} + \frac{1}{15} + \frac{1}{15}\right)$$
 (2)
= 1 - \frac{2}{9} (3)

$$=1-\frac{2}{9}$$
 (3)

$$=\frac{7}{9} \tag{4}$$

Hence, the probability that atleast one of the balls drawn from the urn is red is $\frac{7}{9}$.

for the input probabilities. The desired probability is then obtained from Table (II) as