MATH 1102 Winter 2020

February 27, 2020

Recall: A $n \times n$, $A\mathbf{v} = \lambda \mathbf{v}$, $\mathbf{v} \neq \mathbf{0}$ $det(A - \lambda I) = 0$ and $E_{\lambda} = ker(A - \lambda I)$

Def 1. Suppose $A \in M_{nn}(F)$ has eigenvalue λ_1 , and $p_A = (\lambda - \lambda_1)^{\alpha_A(\lambda_1)}$ then $q_A(\lambda_1)$ is the algebraic multiplicity of λ_1 . The geometric multiplicity $\gamma_A(\lambda_1)$ of λ_1 is equal to $\dim(E_{\lambda_1})$. If A is clear from context, we write $\alpha_A(\lambda_1) = \alpha(\lambda_1)$, $\gamma_A(\lambda_1) = \gamma(\lambda_1)$

Theorem 1. Suppose $A \in M_{nn}(F)$ has eigenvalue λ_1 . Then, $1 \leq \gamma(\lambda_1) \leq \alpha(\lambda_1) \leq n$

Proof. $(\lambda - \lambda_1)^{\alpha(\lambda)}$ is a factor of $p_A(\lambda)$, a degree n polynomial, Thus $\alpha_A(\lambda_1) \leq n$. Since λ_1 is an eigenvalue, there is some $\mathbf{v} \neq \mathbf{0}$ in E_{λ_1} . Thus $E_{\lambda_1} \neq \{\mathbf{0}\}$, and so $\alpha(\lambda_1) = \dim(E_{\lambda_1}) \geq 1$.

Let $g = \alpha(\lambda_1) = dim(E_{\lambda_1})$, and $\mathbf{v_1} \dots \mathbf{v_g}$ be a basis of E_{λ_1} . By the linear independence to basis theorem, we can find $\mathbf{u_1}, \dots, \mathbf{u_{n-g}} \in F^n$ so that $\mathbf{v_1}, \dots, \mathbf{v_g}, \mathbf{u_1}, \dots, \mathbf{u_{n-g}}$ is a basis of F^n .

Let $P = [\mathbf{v_1} \dots \mathbf{v_g} \ \mathbf{u_1} \dots \mathbf{u_{n-g}}]$. Since the columns of P are a basis of F^n , P is nonsingular and hence invertible. Now that $\mathbf{e_1} \dots \mathbf{e_n} = I = P^{-1}P = P^{-1}[\mathbf{v_1} \dots \mathbf{v_g} \ \mathbf{u_1} \dots \mathbf{u_{n-g}}]$, and so for $1 \le i \le g$, $P^{-1}\mathbf{v_i} = \mathbf{e_i}$.

Let $B = P^{-1}AP$. Since A and B are similar matrices, $p_A(\lambda) = p_B(\lambda)$. Since $B = P^{-1}AP = P^{-1}A[\mathbf{v_1} \dots \mathbf{v_g} \ \mathbf{u_1} \dots \mathbf{u_{n-g}}]$, for $1 \leq i \leq g$, the i^{th} column of B is equal to

$$P^{-1}A\mathbf{v_i} = P^{-1}(\lambda_1 \mathbf{v_i}) \qquad (\text{since } \mathbf{v_i} \in E_{\lambda_1})$$
$$= \lambda_1(P^{-1}\mathbf{v_i})$$
$$= \lambda_1 \mathbf{e_i}$$

Thus,

M is the $(n-g) \times (n-g)$ matrix made up of the lower right corner of the matrix above. Since $\det(M)$ is a polynomial in λ , we have shown that $(\lambda - \lambda_1)^g$ is a factor of $p(A)(\lambda)$.

Since $\alpha(\lambda_1)$ is the greatest power of $(\lambda - \lambda_1)$ that divides $p(A)(\lambda)$. Note that $\mathbf{u} \in \ker(B)$ which means that $B\mathbf{u} = \mathbf{0}$. Thus, we have

$$\gamma(\lambda_1) = g \le \alpha(\lambda_1)$$

Example 1.
$$A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

 $det(A - \lambda I) = \dots = -(\lambda - 8)(\lambda + 1)^{2}$

evalues are 8 (one dimensional), -1 one or two dimensional

$$E_{1} = ker(A+I) = N \begin{pmatrix} \begin{bmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix} \end{pmatrix}$$
By inserction we see that $2\mathbf{v}_{1} + \mathbf{v}_{2} + \mathbf{v}_{3} + \mathbf{v}_{4} + \mathbf{v}_{5} + \mathbf{v}_$

By insertion we see that $2\mathbf{v_1} + \mathbf{v_2} + 2\mathbf{v_3} = \mathbf{0}$ is a basis

$$\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-2\\0 \end{bmatrix} \right\}$$