Асимптоты. О-символика.

1. Найти естественную область определения функции, заданной формулой. Найти вертикальные, горизонтальные и наклонные асимптоты. Построить эскиз графика.

a)
$$f(x) = \sqrt{\frac{x^3 - 1}{x + 1}}$$
, b) $f(x) = x + \frac{\sin x}{x}$.

- 2. (а) Следует ли из того, что $f(x) = O(x^3)$ при $x \to 0$, что $f(x) = O(x^2)$ при $x \to 0$.
 - (b) Следует ли из того, что $f(x) = O(x^3)$ при $x \to 0$, что $f(x) = O(x^3)$ при $x \to +\infty$.
 - (c) Следует ли из того, что $f(x) = o(x^2)$ при $x \to 0$, что $f(x) = o(x^3)$ при $x \to 0$.
 - (d) Следует ли из того, что $f(x) = O(x^3)$ при $x \to 0$, что $f(x) = o(x^2)$ при $x \to 0$.
- 3. Какие из следующих утверждений верны при $x \to 0$?
 - (a) Если $f_1(x) = o(g(x))$ и $f_2(x) = o(g(x))$, то $f_1(x) + f_2(x) = o(g(x))$;
 - (b) Если $f_1(x) = O(g(x))$ и $f_2(x) = O(g(x))$, то $f_1(x) \cdot f_2(x) = O(g(x))$;
 - (c) Если $f_1(x) = O(g_1(x))$ и $f_2(x) = o(g_2(x))$, то $f_1(x) \cdot f_2(x) = o(g_1(x) \cdot g_2(x))$.
- 4. Пусть известно, что f(x) = 1 + 2x + o(x) при $x \to 0$. Найти $\lim_{x \to 0} f(x)$.
- 5. Пусть известно, что $f(x) = 1 + 3x + O(x^2)$ при $x \to 0$. Найти $\lim_{x \to 0} \frac{f(x) 1}{x}$.
- 6. Пусть $f(y) = y + 2y^2 + o(y^2)$ при $y \to 0$. Представить $f(3x + x^2)$ в виде $P(x) + o(x^2)$ при $x \to 0$, где P(x) многочлен степени не выше второй.