0.5 Unitary and Hermitian Matricies

1. Let
$$A = \begin{bmatrix} 1 & 0 & 4 \\ 17 & 10 & 18 \end{bmatrix}$$
, find A^T

2. Let
$$A = \begin{bmatrix} 3 + 2i & 2e^{\pi i/3} & 4 \\ 1 - 7i & 10 & -3i \end{bmatrix}$$
, find A^* . Remember if $z = re^{i\theta}$ then $z^* = re^{-i\theta}$

3. Recall
$$A^{\dagger} = (A^*)^T = (A^T)^*$$
. Let $A = \begin{bmatrix} 3 + 2i & 2e^{\pi i/3} & 4 \\ i & 10 & -3i \end{bmatrix}$, find A^{\dagger}

4. A matrix
$$U$$
 is Unitary if $U^{\dagger}U=I$. Is the matrix $A=\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$ unitary?

5. A matrix
$$H$$
 is Hermitian if $H = H^{\dagger}$. Is the matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$ hermitian?

Answers

1.
$$\begin{bmatrix} 1 & 17 \\ 0 & 10 \\ 4 & 18 \end{bmatrix}$$

1.
$$\begin{bmatrix} 1 & 17 \\ 0 & 10 \\ 4 & 18 \end{bmatrix}$$
2.
$$\begin{bmatrix} 3 - 2i & 2e^{-\pi i/3} & 4 \\ 1 + 7i & 10 & 3i \end{bmatrix}$$

3.
$$\begin{bmatrix} 3 - 2i & -i \\ 2e^{-\pi i/3} & 10 \\ 4 & 3i \end{bmatrix}$$

4. Yes since
$$AA^{\dagger}=\begin{bmatrix}1&0\\0&i\end{bmatrix}\begin{bmatrix}1&0\\0&-i\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}=I$$

5. No since
$$A^\dagger = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$$
 , So $A \neq A^\dagger$