Formulating and simulating a hypothesis

STATISTICAL THINKING IN PYTHON (PART 2)

Justin Bois

Lecturer at the California Institute of Technology

2008 US swing state election results

¹ Data retrieved from Data.gov (https://www.data.gov/)

Hypothesis testing

 Assessment of how reasonable the observed data are assuming a hypothesis is true

Null hypothesis

Another name for the hypothesis you are testing

ECDFs of swing state election results

¹ Data retrieved from Data.gov (https://www.data.gov/)

Percent vote for Obama

	PA	ОН	PA — OH difference	
mean	45.5%	44.3%	1.2%	
median	44.0%	43.7%	0.4%	
standard deviation	9.8%	9.9%	-0.1%	

¹ Data retrieved from Data.gov (https://www.data.gov/)

60.08,	40.64,	36.07,	41.21,	31.04,	43.78,	44.08,	46.85,
44.71,	46.15,	63.10,	52.20,	43.18,	40.24,	39.92,	47.87,
37.77,	40.11,	49.85,	48.61,	38.62,	54.25,	34.84,	47.75,
43.82,	55.97,	58.23,	42.97,	42.38,	36.11,	37.53,	42.65,
50.96,	47.43,	56.24,	45.60,	46.39,	35.22,	48.56,	32.97,
57.88,	36.05,	37.72,	50.36,	32.12,	41.55,	54.66,	57.81,
54.58,	32.88,	54.37,	40.45,	47.61,	60.49,	43.11,	27.32,
44.03,	33.56,	37.26,	54.64,	43.12,	25.34,	49.79,	83.56,
40.09,	60.81,	49.81,	56.94,	50.46,	65.99,	45.88,	42.23,
45.26,	57.01,	53.61,	59.10,	61.48,	43.43,	44.69,	54.59,
48.36,	45.89,	48.62,	43.92,	38.23,	28.79,	63.57,	38.07,
40.18,	43.05,	41.56,	42.49,	36.06,	52.76,	46.07,	39.43,
39.26,	47.47,	27.92,	38.01,	45.45,	29.07,	28.94,	51.28,
50.10,	39.84,	36.43,	35.71,	31.47,	47.01,	40.10,	48.76,
31.56,	39.86,	45.31,	35.47,	51.38,	46.33,	48.73,	41.77,
41.32,	48.46,	53.14,	34.01,	54.74,	40.67,	38.96,	46.29,
38.25,	6.80,	31.75,	46.33,	44.90,	33.57,	38.10,	39.67,
40.47,	49.44,	37.62,	36.71,	46.73,	42.20,	53.16,	52.40,
58.36,	68.02,	38.53,	34.58,	69.64,	60.50,	53.53,	36.54,
49.58,	41.97,	38.11					

Pennsylvania

Ohio

¹ Data retrieved from Data.gov (https://www.data.gov/)


```
60.08, 40.64, 36.07, 41.21, 31.04, 43.78, 44.08, 46.85,
44.71, 46.15, 63.10, 52.20, 43.18, 40.24, 39.92, 47.87,
37.77, 40.11, 49.85, 48.61, 38.62, 54.25, 34.84, 47.75,
43.82, 55.97, 58.23, 42.97, 42.38, 36.11, 37.53, 42.65,
50.96, 47.43, 56.24, 45.60, 46.39, 35.22, 48.56, 32.97,
57.88, 36.05, 37.72, 50.36, 32.12, 41.55, 54.66, 57.81,
54.58, 32.88, 54.37, 40.45, 47.61, 60.49, 43.11, 27.32,
44.03, 33.56, 37.26, 54.64, 43.12, 25.34, 49.79, 83.56,
40.09, 60.81, 49.81, 56.94, 50.46, 65.99, 45.88, 42.23,
45.26, 57.01, 53.61, 59.10, 61.48, 43.43, 44.69, 54.59,
48.36, 45.89, 48.62, 43.92, 38.23, 28.79, 63.57, 38.07,
40.18, 43.05, 41.56, 42.49, 36.06,
                                   52.76, 46.07, 39.43,
39.26, 47.47, 27.92, 38.01, 45.45, 29.07, 28.94, 51.28,
50.10, 39.84, 36.43, 35.71, 31.47, 47.01, 40.10, 48.76,
31.56, 39.86, 45.31, 35.47, 51.38, 46.33, 48.73, 41.77,
41.32, 48.46, 53.14, 34.01, 54.74, 40.67, 38.96, 46.29,
38.25, 6.80, 31.75, 46.33, 44.90, 33.57, 38.10, 39.67,
40.47, 49.44, 37.62, 36.71, 46.73, 42.20, 53.16, 52.40,
58.36, 68.02, 38.53, 34.58, 69.64, 60.50, 53.53, 36.54,
49.58, 41.97, 38.11
```

¹ Data retrieved from Data.gov (https://www.data.gov/)


```
59.10, 38.62, 51.38, 60.49, 6.80, 41.97, 48.56, 37.77,
48.36, 54.59, 40.11, 57.81, 45.89, 83.56, 40.64, 46.07,
28.79, 55.97, 33.57, 42.23, 48.61, 44.69, 39.67, 57.88,
48.62, 54.66, 54.74, 48.46, 36.07, 43.92, 49.85, 53.53,
48.76, 41.77, 36.54, 47.01, 52.76, 49.44, 34.58, 40.24,
44.08, 46.29, 49.81, 69.64, 60.50, 27.32, 45.60, 63.10,
35.71, 39.86, 40.67, 65.99, 50.46, 37.72, 50.96, 42.49,
31.56, 38.23, 37.26, 41.21, 37.53, 46.85, 44.03, 41.32,
45.88, 40.45, 32.12, 35.22, 49.79, 43.12, 43.18, 45.45,
25.34, 46.73, 44.90, 56.94, 58.23, 39.84, 36.05, 43.05,
38.25, 40.47, 31.04, 54.25, 46.15, 57.01, 52.20, 47.75,
36.06, 47.61, 51.28, 43.43, 42.97,
                                   38.01, 54.64, 45.26,
47.47, 34.84, 49.58, 48.73, 29.07, 54.58, 27.92, 34.01,
38.07, 31.47, 36.11, 39.26, 41.56, 52.40, 40.18, 47.87,
46.33, 46.39, 43.11, 38.53, 33.56, 42.65, 68.02, 35.47,
40.09, 36.43, 36.71, 60.08, 50.36, 39.43, 28.94, 58.36,
42.20, 47.43, 44.71, 43.78, 39.92, 37.62, 63.57, 53.61,
40.10, 46.33, 53.16, 32.88, 38.96, 41.55, 56.24, 38.11,
42.38, 38.10, 43.82, 45.31, 60.81, 54.37, 53.14, 32.97,
61.48, 50.10, 31.75
```

¹ Data retrieved from Data.gov (https://www.data.gov/)

59.10,	38.62,	51.38,	60.49,	6.80,	41.97,	48.56,	37.77,
48.36,	54.59,	40.11,	57.81,	45.89,	83.56,	40.64,	46.07,
28.79,	55.97,	33.57,	42.23,	48.61,	44.69,	39.67,	57.88,
48.62,	54.66,	54.74,	48.46,	36.07,	43.92,	49.85,	53.53,
48.76,	41.77,	36.54,	47.01,	52.76,	49.44,	34.58,	40.24,
44.08,	46.29,	49.81,	69.64,	60.50,	27.32,	45.60,	63.10,
35.71,	39.86,	40.67,	65.99,	50.46,	37.72,	50.96,	42.49,
31.56,	38.23,	37.26,	41.21,	37.53,	46.85,	44.03,	41.32,
45.88,	40.45,	32.12,	35.22,	49.79,	43.12,	43.18,	45.45,
25.34,	46.73,	44.90,	56.94,	58.23,	39.84,	36.05,	43.05,
38.25,	40.47,	31.04,	54.25,	46.15,	57.01,	52.20,	47.75,
36.06,	47.61,	51.28,	43.43,	42.97,	38.01,	54.64,	45.26,
47.47,	34.84,	49.58,	48.73,	29.07,	54.58,	27.92,	34.01,
38.07,	31.47,	36.11,	39.26,	41.56,	52.40,	40.18,	47.87,
46.33,	46.39,	43.11,	38.53,	33.56,	42.65,	68.02,	35.47,
40.09,	36.43,	36.71,	60.08,	50.36,	39.43,	28.94,	58.36,
42.20,	47.43,	44.71,	43.78,	39.92,	37.62,	63.57,	53.61,
40.10,	46.33,	53.16,	32.88,	38.96,	41.55,	56.24,	38.11,
42.38,	38.10,	43.82,	45.31,	60.81,	54.37,	53.14,	32.97,
61.48,	50.10,	31.75					

"Pennsylvania"

"Ohio"

Permutation

Random reordering of entries in an array

Generating a permutation sample

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 2)

Test statistics and p-values

STATISTICAL THINKING IN PYTHON (PART 2)

Justin Bois

Lecturer at the California Institute of Technology

Are OH and PA different?

¹ Data retrieved from Data.gov (https://www.data.gov/)

Hypothesis testing

 Assessment of how reasonable the observed data are assuming a hypothesis is true

Test statistic

- A single number that can be computed from observed data and from data you simulate under the null hypothesis
- It serves as a basis of comparison between the two

Permutation replicate

```
np.mean(perm_sample_PA) - np.mean(perm_sample_OH)
```

1.122220149253728

np.mean(dem_share_PA) - np.mean(dem_share_OH) # orig. data

1.1582360922659518

Mean vote difference under null hypothesis

¹ Data retrieved from Data.gov (https://www.data.gov/)

Mean vote difference under null hypothesis

¹ Data retrieved from Data.gov (https://www.data.gov/)

p-value

- The probability of obtaining a value of your test statistic that
 is at least as extreme as what was observed, under the
 assumption the null hypothesis is true
- NOT the probability that the null hypothesis is true

The p-value tells you that there is about a 0.6% chance that you would get the difference of means observed in the experiment if frogs were exactly the same. A p-value below 0.01 is typically said to be "statistically significant," but: warning! warning! You have computed a p-value; it is a number. I encourage you not to distill it to a yes-or-no phrase. p = 0.006 and p = 0.0000000006 are both said to be "statistically significant," but they are definitely not the same!

Statistical significance

Determined by the smallness of a p-value

Null hypothesis significance testing (NHST)

Another name for what we are doing in this chapter

statistical significance? practical significance

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 2)

Bootstrap hypothesis tests

STATISTICAL THINKING IN PYTHON (PART 2)

Justin Bois

Lecturer at the California Institute of Technology

Pipeline for hypothesis testing

- Clearly state the null hypothesis
- Define your test statistic
- Generate many sets of simulated data assuming the null hypothesis is true
- Compute the test statistic for each simulated data set
- The p-value is the fraction of your simulated data sets for which the test statistic is at least as extreme as for the real data

Michelson and Newcomb: speed of light pioneers

¹ Michelson image: public domain, Smithsonian ² Newcomb image: US Library of Congress

Michelson and Newcomb: speed of light pioneers

299,852 km/s

299,860 km/s

¹ Michelson image: public domain, Smithsonian ² Newcomb image: US Library of Congress

The data we have

Michelson:

Newcomb:

mean = 299,860 km/s

¹ Data: Michelson, 1880

Null hypothesis

 The true mean speed of light in Michelson's experiments was actually Newcomb's reported value

Shifting the Michelson data

Calculating the test statistic

```
def diff_from_newcomb(data, newcomb_value=299860):
    return np.mean(data) - newcomb_value

diff_obs = diff_from_newcomb(michelson_speed_of_light)
diff_obs
```

-7.599999999767169

Computing the p-value

0.1603999999999999

One sample test

- Compare one set of data to a single number

Two sample test

- Compare two sets of data

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 2)

