jméno a příjmení	login	cvičící
		Fuchs / Hliněná / Tůma

IDM, 3.1.2024

T	1	9	3	1	5	6	Σ
'	1	4	9	_ T	0	U	4

Zkouška se skládá ze dvou částí, testu za **20 bodů** a písemky za **60 bodů**. Z testu musíte získat **aspoň 15 bodů**, v opačném případě písemka nebude hodnocena a celá zkouška bude hodnocena 0 body.

TEST

Každá otázka je za 2 body. Odpovědi napište na tento list do vymezeného prostoru pod otázkou.

1. Znegujte následující tvrzení; Nejvýše tři relace nejsou tranzitivní.

Odpověď: čtyři nebo více relací nejsou tranzitivní

2. Rozhodněte, zda pro množinu $M = \{1,2,3,4\}$ a relaci $R = \{[1,2],[2,3],[3,1]\}$ platí formule

$$\forall a, b \in M : ([a, b] \in R \land [b, a] \in R) \Rightarrow [b, b] \in R.$$

Odpověď:

- 3. Najděte alespoň jednu dvojici přirozených čísel m, n, pro kterou platí: $m < n \Rightarrow m 3 = n$. Odpověď:
- 4. Rozhodněte, zda platí: $\forall A,B\colon 2\in A\Rightarrow 2\in A\cap B.$ Odpověď:
- 5. Uveďte příklad množin A,B, pro které platí $\{\emptyset\}\in A\setminus B.$ Odpověď:
- 6. $A=\{2\}, B=\{1,\{2\}\}$. Určete $A\triangle B$. Odpověď:
- 7. $S = \{[a,b],[b,c],[d,d]\}$. Určete $S^{-1} \circ S$. Odpověď:
- 8. $R = \{[a,a], [a,b], [b,a], [b,c], [c,b][c,c]\}$. Je R tranzitivní relace na množině $M = \{a,b,c,d\}$? Odpověď:
- 9. Na množině $M=\{a,b,c\}$ určete operaci \circ tak, aby grupoid (M,\circ) měl právě dva podgrupoidy. $Odpověď: \qquad \text{nechat uzavřené áčko a porušit všechen zbytek}$
- 10. Nakreslete svaz na množině $\{a,b,c,d,e\}$, který je distributivní a není komplementární. Odpověď:

PÍSEMKA

Každý příklad je za 10 bodů. Písemku vypracujte na vlastní papíry. U každého příkladu přehledně napište postup řešení a jasně označte výsledek.

1. Nechť $M = \{1, 2, 3, 4, 5, 6\}$. Najděte všechny dvojice množin X, Y, pro které platí:

$$X \cup Y = M \land (M \setminus X) \cap Y = \{1, 2, 3\} \land |X \setminus Y| = 2.$$

 ${\bf 2.}\;\;$ Dokažte, že pro všechna přirozená čísla n platí:

$$2+4+6+8+\cdots+(4n+2)=2(n+1)(2n+1)$$
.

- **3.** Je zadána relace $R = \{[m, n] \in \mathbb{Z}^2 : 2 | (mn) \}$. Zjistěte, zda relace R na množině \mathbb{Z} je a) reflexivní, b) ireflexivní, c) symetrická, d) antisymetrická, e) tranzitivní. Svoje tvrzení zdůvodněte.
- 4. Nechť

$$A = \{m \in \mathbb{N} \colon 1 \leq m \leq 6\}, \ B = \{m \in \mathbb{N} \colon 4 \leq m < 11\},$$

$$R = \{[m,n] \in A \times B \colon 5 | (m+n)\}, \ S = \{[m,n] \in B \times A \colon m+n = 12\}.$$

Určete vyjmenováním prvků relaci a) R, b) S, c) $R \circ S$, d) $S \circ R$.

5. Na množině $M = \{a, b, c, d\}$ je dána operace o tabulkou:

0	$\mid a \mid$	b	c	d
a	a	a	\underline{a}	d
b	b	b	\underline{b}	d
c	<u>a</u>	\underline{b}	$c \over$	\underline{d}
d	d	d	\underline{d}	d

- a) Vypište všechny podgrupoidy grupoidu (M, \circ) .
- **b)** Je (M, \circ) pologrupa?
- c) Je (M.e) grupa?
- 6. a) Najděte minimální kostru grafu na obrázku. Postup vyznačte do obrázku.

b) Určete přirozená čísla a, b, c tak, aby množina $\{a, b, c, 2, 3, 4\}$ uspořádaná relací dělitelnosti byl komplementární svaz. Nakreslete hasseovský diagram tohoto svazu.