# MACHINE LEARNING ASSIGNMENT-4 WRITTEN EXERCIZE

Submitted by:

Nishika Chopra nc2259 N18598308 Karanpreet Sign Wadhwa ksw352 N13337853

Answer 1:

a) Value of x at-

Local minima: -1.397 Global minima: 2.147



## b) Values of x and f(x) for 6 iterations at:

Start: -4,-512

Iteration 1: -3.488,-328.769 Iteration 2: -3.15923,-236.315 Iteration 3: -2.92292,-180.885 Iteration 4: -2.74203,-144.237 Iteration 5: -2.5978,-118.395 Iteration 6: -2.4794,-99.3144 Last 6 values of x and f(x) for 1200 iterations:

```
Iteration 1: -1.39718,-5.34058e-05
Iteration 2: -1.39718,-5.34058e-05
Iteration 3: -1.39718,-5.34058e-05
Iteration 4: -1.39718,-5.34058e-05
Iteration 5: -1.39718,-5.34058e-05
Iteration 6: -1.39718,-5.34058e-05
```

Yes, the value of x has converged to a minimum value of x=-1.39718. This is the local minima.

#### c) Values of x and f(x) for 6 iterations at:

```
Start: 4,320
Iteration 1: 3.68, 229.114
Iteration 2: 3.45089, 174.489
Iteration 3: 3.2764, 138.329
Iteration 4: 3.13807, 112.818
Iteration 5: 3.02525, 93.9812
Iteration 6: 2.93127, 79.5871
```

Last 6 values of x and f(x) for 1200 iterations:

```
Iteration 1: 2.14718, 0.000106812
Iteration 2: 2.14718, 0.000106812
Iteration 3: 2.14718, 0.000106812
Iteration 4: 2.14718, 0.000106812
Iteration 5: 2.14718, 0.000106812
Iteration 6: 2.14718, 0.000106812
```

Yes, the value of x has converged to a minimum value of x=2.14718. This is the global minima.

```
d) Values of x and f(x) for 6 iterations at: (x=-4 \text{ and } n=0.01)
```

Start: -4,-512

Iteration 1: 1.12,-23.167 Iteration 2: 1.35167,-23.646 Iteration 3: 1.58813,-21.204 Iteration 4: 1.80017,-15.9785 Iteration 5: 1.95995,-9.85533 Iteration 6: 2.05851,-5.04623

Last 6 values of x and f(x) for 1200 iterations:

(x=-4 and n=0.01)

Iteration 1: 2.14718,-3.8147e-06

Iteration 2: 2.14718,-3.8147e-06 Iteration 3: 2.14718,-3.8147e-06 Iteration 4: 2.14718,-3.8147e-06 Iteration 5: 2.14718,-3.8147e-06 Iteration 6: 2.14718,-3.8147e-06

When we compare these values to the ones obtained by taking value of learning factor as 0.001 we find that in the first case the minimum value of x was found at local minima while in this case the value of x is found at global minima. This happened due to the fact that we increased the value of the learning factor and it skipped the local minima and hence converged at global minima.

#### e) Values of x and f(x)when n=0.1:

Start:-4,-512

Iteration 1: 47.2,826733

Iteration 2: -82626.1,-4.51279e+15

Iteration 3: 4.51279e+14,inf

Iteration 4: -inf,-nan

Iteration 5: -nan,-nan

Iteration 6-100: -nan,-nan

Due to very high learning factor the minima was skipped and thus we could not achieve any minimum value for x.

#### Answer 2)

a) In stochastic gradient we update weights after each sample. Thus, after 100 epochs for 500 samples we will have to update 500x100= 50000 times.

b)





## Answer 3)

## a) NeuralNetRK

For negative values we will use neural NeuralNetRK since it will take negative and real values.

## b) NeuralNetCK

It is given that: sum of the yi is 1. Therefore, for K outputs the sum of all the outputs will be equal to 1. This is known as softmax which gives estimated probabilities for the K labels of x.

#### c) NeuralNetCK

In this problem, there are multiple classes namely face, cat and tree. There are three output values p1,p2 and p3 which are probabilities of the image being a face,cat or tree respectively. Thus according to the definition NeuralNetCK would be the most appropriate in this case because it is used to classify when there are more than 2 classes (K>2). Moreover, it gives the probability of an example belonging to a class and the sum of the outputs has to be 1.

#### d) NeuralNetRZeroOne

In this text classification problem, there are K outputs in the range of  $\{0,1\}$ . Each output is an element in the set  $\{0,1\}$  and thus it will have some real values. Also the output is either 0 or 1. Thus NeuralNetRZeroOne suits this perfectly.

#### Answer 4)

a) In Random forests, trees are created with different attributes and the values encoded do not matter. Different trees with their roots as attributes are created and the tree with highest efficiency is chosen. Contrastingly, in neural nets the product of input and weights are taken. Therefore if we assign random weights, the product will be wrong, and similarly the output will also come out to be wrong. Hence, it would be fine to do label encoding if we were using a random forest, rather than a neural net.

| b) (i)                                                                                                                                                                           |                  |                |       |        |      |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-------|--------|------|--------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                  | -                |                |       |        |      |        |                | The second secon |
|                                                                                                                                                                                  |                  |                |       |        |      |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                  | (6.)             |                | 0.    |        |      |        |                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ons 4) (1) We would replace the stalk  (b) Shape attribute with 2 attributes  called Si and S2 where iff  Stalk-shape = tapering Si = 1 and  iff Stalk-shape = enlarging, Si = 1 |                  |                |       |        |      |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                  | )8               | shape          | atte  | skute  | win  | th 2   | . atto         | 1 butes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                  | cal              | ed             | $S_1$ | and    | S2   | , wh   | ere            | iff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                  | Stalk            | shape          | = +0  | lperin | 9 -  | Sis    | =1             | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                  | W.               |                | Stalk | Shape  | U= / | enlarg | ing,           | S2=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                  |                  |                |       |        |      | Ü      | 0,             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                  | Transfe          | armed          | date  | aset 5 | A.   |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                  | 3                | Z <sub>1</sub> | $Z_2$ | $Z_3$  | Zy   | Sı     | S <sub>2</sub> | Lasel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                  |                  |                |       |        |      |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                  | $\chi_{(\iota)}$ | O              | 0     | 0      | 1    | 1      | 0              | 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                  | )(2)             | 0              | O     | ١      | O    | 0      | )              | 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                  |                  |                |       |        |      |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                  |                  |                |       |        |      |        |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                  |                  |                |       |        |      |        | -              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                  |                  |                |       |        |      |        |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

(ii) An ordinal attribute whose values are low, medium, and high are relational and they have a particular order between them. For example it the attribute is temperature whose values are low, medium and high, these values are interrelated to each other and thus can be encoded.

Low<Medium<High

Hence we can assign them values as 1,2 and 3.

We apply one hot encoding when the values that are close to each other in the label encoding correspond to target values that aren't close (non - linear data). Whereas we apply label encoding when we can come up with a label encoder that assigns close labels to similar categories: This leads to less splits in the tress hence reducing the execution time

(iii) For nominal attributes with only two values, it's generally fine to just represent the two values as 0 and 1 (or -1 and +1), rather than using one-hot encoding as there are can only be two values for the attribute. If one is true the other will be false and vice versa. The attribute can have only two values and thus there is no point of using one hot encoding.