CS582 Machine Learning - Project 1

Professor: Mohamed Abdelrazik

Team:

Tam Van Vo - 610746

Quynh Pham - 610716

Samsher Bahadur Rana - 611060

Van Vong Tran - 610772

Yared Geberetsadik Beyene - 110466

Project Colab URL:

https://colab.research.google.com/drive/1iqL0DPrwJ2okp3muu7IZ-pl4RKnbMr-1

Dataset:

https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

Ref:

https://www.dataquest.io/blog/kaggle-getting-started/

▼ Install auto-sklearn

```
# !apt-get install swig -y
# !pip install Cython numpy
# !pip install auto-sklearn
```

Load all libs

```
from random import randrange import numpy as np import seaborn as sns import pandas as pd import pandas.util.testing as tm import matplotlib.pyplot as plt from sklearn import preprocessing
```

→ Step 1: Data Loading

!git clone https://github.com/votamvan/cs582.git

```
fatal: destination path 'cs582' already exists and is not an empty directory.
```

```
#from google.colab import files
#uploaded = files.upload()

df_train = pd.read_csv('/content/cs582/data/house-prices/train.csv')

df_test = pd.read_csv('/content/cs582/data/house-prices/test.csv')

df_train.sample(5)
```

₽		Td	MSSubClass	MS7oning	LotFrontage	LotArea	Stroot	Alloy	LotShano	LandContour	Utilities	LotConfig	Lan
_		Iu	MOSUDCIASS	MSZOIIIIIg	Lotri ontage	LULAI Ca	311 661	AIICy	Localiape	LandContour	ottittes	Loccoming	Laii
	1382	1383	70	RM	60.0	7200	Pave	NaN	Reg	LvI	AllPub	Corner	
	585	586	20	RL	88.0	11443	Pave	NaN	Reg	LvI	AllPub	Inside	
	1450	1451	90	RL	60.0	9000	Pave	NaN	Reg	LvI	AllPub	FR2	
	13	14	20	RL	91.0	10652	Pave	NaN	IR1	LvI	AllPub	Inside	
	455	456	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	Inside	

5 rows × 81 columns

→ SalePrice

```
print ("SalePrice Skew = ", df_train.SalePrice.skew())
ax = plt.hist(df_train.SalePrice, color='blue')
```



```
target = np.log(df_train.SalePrice)
print ("SalePrice Skew is:", target.skew())
ax = plt.hist(target, color='blue')
```


→ Handle Numerical Data

```
numeric_features = df_train.select_dtypes(include=[np.number])
corr = numeric_features.corr()
print("Correlation with SalePrice")
print (corr['SalePrice'].sort_values(ascending=False)[:5])
print (corr['SalePrice'].sort_values(ascending=False)[-5:])
```

```
Correlation with SalePrice
SalePrice
               1.000000
OverallQual
               0.790982
GrLivArea
               0.708624
GarageCars
               0.640409
GarageArea
               0.623431
Name: SalePrice, dtype: float64
YrSold
                -0.028923
OverallCond
                -0.077856
MSSubClass
                -0.084284
EnclosedPorch -0.128578
KitchenAbvGr
                -0.135907
Name: SalePrice, dtype: float64
```

The median sales price strictly increases as Overall Quality increases.


```
ax = plt.scatter(x=df_train['GarageArea'], y=target)
```



```
print('Remove outliers')
df_train = df_train[df_train['GarageArea'] < 1200]
target = np.log(df_train.SalePrice)
ax = plt.scatter(x=df_train['GarageArea'], y=target)</pre>
```


→ Handle non-numerial data

```
'Street', 'Alley'
'Grv1':0, 'Pave':1,'NA':-1

'LotShape'
'Reg':3,'IR1':2,'IR2':1,'IR3':0

'LandContour'
'Lv1':1,'Bnk':0,'Low':0,'HLS':0

'Utilities'
'AllPub': 3,'NoSewr': 2,'NoSeWa': 1,'ELO':0

'BsmtFinType1','BsmtFinType2','GarageFinish'
'GLQ':5,'ALQ':4,'BLQ':3,'Rec':2,'LwQ':1,'Unf':0, 'RFn':1,'Fin':2

'PavedDrive'
'N':0,'Y':1,'P':0.5

'ExterQual','ExterCond','BsmtQual','BsmtCond','BsmtExposure','HeatingQC','KitchenQual','FireplaceQu','GarageQual','GarageCond','PoolQC'
'Gd':3, 'TA':2, 'Ex':4, 'Fa':1, 'NA':-1, 'Po':0, 'No':0,'Mn':1,'Av':2
```

```
'CentralAir'
'N':0,'Y':1
```

```
def ranking_features(df,feature,di):
  for feature in features:
      df[feature].replace(di, inplace=True)
      df[feature]=df[feature].fillna(-1)
  return df
di = {'Grvl':0, 'Pave':1,'NA':-1,'Reg':3,'IR1':2,'IR2':1,
      'IR3':0, 'Lv1':1, 'Bnk':0, 'Low':0, 'HLS':0, 'AllPub': 3,
      'NoSewr': 2, 'NoSeWa': 1, 'ELO':0, 'GLQ':5, 'ALQ':4, 'BLQ':3,
      'Rec':2, 'LwQ':1, 'Unf':0, 'RFn':1, 'Fin':2, 'N':0, 'Y':1,
      'P':0.5,'Gd':3, 'TA':2, 'Ex':4, 'Fa':1, 'Po':0, 'No':0,'Mn':1,'Av':2}
features = ['Street','Alley','LotShape','LandContour','Utilities','BsmtFinType1',
            'BsmtFinType2','GarageFinish','PavedDrive','ExterQual','ExterCond',
            'BsmtQual', 'BsmtCond', 'BsmtExposure', 'HeatingQC', 'KitchenQual', 'FireplaceQu',
            'GarageQual', 'GarageCond', 'PoolQC', 'CentralAir']
df_train = ranking_features(df_train,features,di)
df_test = ranking_features(df_test,features,di)
```

Encode Street data

Encode SaleCondition

enc_condition

→ Handle null data

```
def unique_nullcount(df):
 rows = []
 for (i, j) in df.iteritems():
     rows.append([i, df_train[i].nunique(), df_train[i].isna().sum()])
 df = pd.DataFrame(rows, columns=["Feature", "Unique value", "Count null"])
 .sort_values(["Unique value","Count null"], ascending = (True,True))
 pd.set_option('display.max_rows', df.shape[0]+1)
 return df
def unique_value_list(df,feature, ct):
 features = df[df[feature] < ct]['Feature']</pre>
 for i in features:
      print(i, df_train[i].unique())
df = unique_nullcount(df_train.select_dtypes(include=[np.number]))
print(df[df['Count null']>0])
             Feature Unique value Count null
C→
     41 GarageYrBlt
                                97
     2
        LotFrontage
                               110
                                           258
     13
        MasVnrArea
                               325
                                             8
df_train.LotFrontage=df_train.LotFrontage.fillna(0.0)
df_train.MasVnrArea=df_train.MasVnrArea.fillna(0.0)
df_train.GarageYrBlt=df_train.GarageYrBlt.fillna(df_train.GarageYrBlt.mode()[0])
df_test.LotFrontage=df_test.LotFrontage.fillna(0.0)
df_test.MasVnrArea=df_test.MasVnrArea.fillna(0.0)
df_test.GarageYrBlt=df_test.GarageYrBlt.fillna(df_test.GarageYrBlt.mode()[0])
df = unique_nullcount(df_train.select_dtypes(include=[np.number]))
print(df[df['Count null']>0])
    Empty DataFrame
     Columns: [Feature, Unique value, Count null]
     Index: []
```

Step 3: Data Preparation

→ Finalize dataset

We categorize

```
data = df_train.select_dtypes(include=[np.number]).interpolate().dropna()
X_all = data.drop(['SalePrice', 'Id'], axis=1)
y_all = np.log(df_train.SalePrice)
mean_y = np.mean(y_all)
y_all[y_all <= mean_y] = 0
y_all[y_all > mean_y] = 1
y_all = y_all.astype(int)
# Standardization of datasets
#X, X_test, y, y_test = train_test_split(X, y,test_size=0.33, random_state=42)
X,y=X_all, y_all
scaler = preprocessing.StandardScaler().fit(X)
X = scaler.transform(X)
```

Step 4: Choose Model

- 1. Get best estimator
- 2. Training Curve and Validation Curve

General Functions

plt.show()

```
from sklearn.model_selection import GridSearchCV
def best_estimator(estimator,tuned_parameters,X,y,cv):
 grid = GridSearchCV(estimator, tuned_parameters,
                      cv = cv, scoring = 'accuracy', n_jobs=-1)
 grid.fit(X,y)
 best_estimator = grid.best_estimator_
 print(f'Best score: {grid.best_score_}')
 print(grid.best_estimator_)
 return best_estimator
#show complexity curve (validation curve) and learning curve
import matplotlib.pyplot as plt
from sklearn.model_selection import learning_curve
from sklearn.model_selection import validation_curve
from sklearn.model_selection import KFold
from sklearn.model_selection import ShuffleSplit
from sklearn.neighbors import KNeighborsClassifier
def plot_learning_curve(estimator, title, X, y, ax=None,
                        cv=None, train_sizes=np.linspace(.1, 1.0, 5)):
   if ax is None: _, ax = plt.subplots(figsize=(20, 5))
   ax.set_title(title+' Learning Curve')
   train_sizes, train_scores, test_scores = learning_curve(estimator, X, y,
                                                             cv=cv, n_jobs=-1, train_sizes=train_sizes)
   train_scores_mean = np.mean(train_scores, axis=1)
   train_scores_std = np.std(train_scores, axis=1)
   test_scores_mean = np.mean(test_scores, axis=1)
   test_scores_std = np.std(test_scores, axis=1)
   # Plot learning curve
   ax.grid()
   ax.fill_between(train_sizes, train_scores_mean - train_scores_std,
                      train_scores_mean + train_scores_std, alpha=0.1, color="r")
   ax.fill_between(train_sizes, test_scores_mean - test_scores_std,
                      test_scores_mean + test_scores_std, alpha=0.1, color="g")
   ax.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score")
   ax.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score")
   ax.legend(loc="best")
   ax.set_xlabel("Training examples")
   ax.set_ylabel("Score")
   return plt
def plot_validation_curve(estimator, title, X, y, ax=None, cv=None, param_name=None, param_range=None):
   if ax is None: _, ax = plt.subplots(figsize=(20, 5))
   ax.set title(title+' Validation Curve')
   train_scores, test_scores = validation_curve(estimator, X, y, param_name=param_name,
                                                 param_range=param_range,
                                                 scoring="accuracy", cv=cv, n jobs=-1)
   train_scores_mean = np.mean(train_scores, axis=1)
   train_scores_std = np.std(train_scores, axis=1)
   test_scores_mean = np.mean(test_scores, axis=1)
   test_scores_std = np.std(test_scores, axis=1)
   # Plot learning curve
   ax.grid()
   ax.semilogx(param_range, train_scores_mean, 'o-', color="r", label="Training score")
   ax.fill_between(param_range, train_scores_mean - train_scores_std,
                      train_scores_mean + train_scores_std, alpha=0.1, color="r")
   ax.semilogx(param_range, test_scores_mean, 'o-', color="g", label="Cross-validation score")
   ax.fill_between(param_range, test_scores_mean - test_scores_std,
                      test_scores_mean + test_scores_std, alpha=0.1, color="g")
   ax.legend(loc="best")
   ax.set_xlabel(param_name)
   ax.set_ylabel("Score")
   return plt
def show TV curve(estimator, title, X,y, param name, param range, cv) :
 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 5))
 plot_learning_curve(estimator, title, X, y, ax=ax1, cv=cv)
 plot_validation_curve(estimator, title, X, y, ax=ax2, cv=cv,
                        param_name=param_name, param_range=param_range)
```

→ 1/ KNN

```
from sklearn.neighbors import KNeighborsClassifier
weight_options = ["uniform", "distance"]
k_{range} = np.arange(1,30)
tuned_parameters = dict(n_neighbors = k_range, weights = weight_options)
knn_estimator = best_estimator(KNeighborsClassifier(), tuned_parameters,X,y,10)
     Best score: 0.9127147766323024
 \Box
     KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                              metric_params=None, n_jobs=None, n_neighbors=12, p=2,
                              weights='distance')
param_range = [1,3,5,12,20]
show_TV_curve(KNeighborsClassifier(12), 'KNN model', X, y, 'n_neighbors', param_range, 10)
\Box
                                KNN model Learning Curve
                                                                                                       KNN model Validation Curve
                                                                                1.00

    Training score

    Training score

                                                         Cross-validation score
                                                                                                                                 Cross-validation score
        0.94
                                                                                0.98
                                                                                0.96
        0.92
                                                                                0.92
                                                                                0.90
        0.88
                                                                                0.88
```

From the Validation Curve, by increasing the n_neighbors value we getting better training score and CV score. But after n_neighbors> 12, the curves going down. So after this point if we increasing the k doesn't improve the model

0.86

10°

- 2/ SVC

0.86

```
from sklearn.svm import LinearSVC
tuned_parameters = {
    'C': [0.001, 0.1, 1, 10, 100]
svc_estimator = best_estimator(LinearSVC(), tuned_parameters,X,y,5)
    Best score: 0.9257731958762887
     LinearSVC(C=0.001, class_weight=None, dual=True, fit_intercept=True,
               intercept_scaling=1, loss='squared_hinge', max_iter=1000,
               multi_class='ovr', penalty='12', random_state=None, tol=0.0001,
               verbose=0)
cv = ShuffleSplit(n_splits=10, test_size=0.3, random_state=0)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 5))
title = f"Learning Curve of Linear SVM, C={svc_estimator.C})"
plot_learning_curve(svc_estimator, title, X, y, ax=ax1, cv=cv)
plot_validation_curve(svc_estimator, "Validation Curve of Linear SVM", X, y, ax=ax2,
                      param_name="C", param_range=[0.001, 0.1, 1, 10, 100])
plt.show()
                                                                                      Validation Curve of Linear SVM Validation Curve
```


Training examples

10¹

n neighbors

→ 3/ Logistic

```
from sklearn.linear_model import LogisticRegression
tuned_parameters = {
    'C': np.logspace(-3,3,7),
    'penalty':['11','12']# 11 lasso 12 ridge
}
log_estimator = best_estimator(LogisticRegression(), tuned_parameters,X,y,10)
```

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be chan FutureWarning)

```
param_range = np.logspace(-3,3,7)
show_TV_curve(LogisticRegression(C=0.1),'Logistic model',X,y,'C',param_range,10)
```


→ 4/ Decision Tree

```
from sklearn.tree import DecisionTreeClassifier
tuned_parameters = {
    'max_depth':np.arange(1,30)
}
dt_estimator = best_estimator(DecisionTreeClassifier(), tuned_parameters,X,y,5)
```

```
param_range = [1,3,5,12,20]
show_TV_curve(DecisionTreeClassifier(max_depth=5),'DT model',X,y,'max_depth',param_range,10)
```


From the validation curve we can see with max_depth in between 5-7, model has pretty good performance but by increasing the depth, the model becomes overfitting

→ 5/ MLP

```
param_range = [1, 10, 100,180]
show_TV_curve(MLPClassifier(hidden_layer_sizes=10),'MLP model',X,y,'hidden_layer_sizes',param_range,10)
```

/usr/local/lib/python3.6/dist-packages/sklearn/neural_network/multilayer_perceptron.py:566: ConvergenceWarning: Stochas

validation_fraction=0.1, verbose=False, warm_start=False)

% self.max_iter, ConvergenceWarning)

From the validation curve we can see with hidden_layer_sizes = 10, model has pretty good performance but by increasing the size, the model become overfitting

→ Step 5: AUC curve

```
from sklearn.metrics import roc_curve
from sklearn import metrics
def plot_roc_curve(estimators, titles, X, y, ax=None):
   if ax is None: _, ax = plt.subplots(figsize=(5, 5))
   for i, estimator in enumerate(estimators):
     y_pred = estimator.predict(X)
     fpr, tpr, _ = roc_curve(y, y_pred)
     ax.plot(fpr, tpr, label=f"{titles[i]}, AUC=" + "{:.2f}".format(metrics.auc(fpr, tpr)))
   ax.set_title('ROC curve')
   ax.legend(loc='best')
   ax.set_xlabel('False positive rate')
   ax.set_ylabel('True positive rate')
   ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
   return plt
estimators = [svc_estimator,dt_estimator,knn_estimator,log_estimator,mlp_estimator]
titles = ['SVM','DT','KNN','LOG','MLP']
plot_roc_curve(estimators, titles, X_test, y_test)
plt.show()
```

₽

KNN has highest score but it seems to be overfitting.

→ Step 6: Ensemble

By Voting

C→ Voting Score = 0.9521829521829522

→ Step 7: Apply AutoML

```
Accuracy score 0.9376299376299376
                  precision
                               recall f1-score
                                                   support
                                 0.95
               0
                       0.94
                                            0.94
                                                       270
               1
                       0.93
                                 0.92
                                            0.93
                                                       211
                                            0.94
                                                       481
        accuracy
                       0.94
                                 0.94
                                            0.94
                                                       481
       macro avg
                                 0.94
                                            0.94
                                                       481
    weighted avg
                       0.94
```