Mordell's Theorem (I/II)

Justin Scarfy

The University of British Columbia

January 31, 2012

Background

In the past few lectures we learned the definition of elliptic curves, absorbed the Nagell-Lutz Theorem, were being introduced to the L-functions of elliptic curves, and got spoiled by a few mouth-watering conjectures.

Background

In the past few lectures we learned the definition of elliptic curves, absorbed the Nagell-Lutz Theorem, were being introduced to the L-functions of elliptic curves, and got spoiled by a few mouth-watering conjectures.

Lecture Plan

Today we shall start discussing a theorem that L. Mordell proved in 1922:

The group of rational points on a non-singular cubic elliptic curve is finitely generated.

January 31, 2012

2 / 29

Background

In the past few lectures we learned the definition of elliptic curves, absorbed the Nagell-Lutz Theorem, were being introduced to the L-functions of elliptic curves, and got spoiled by a few mouth-watering conjectures.

Lecture Plan

Today we shall start discussing a theorem that L. Mordell proved in 1922:

The group of rational points on a non-singular cubic elliptic curve is finitely generated.

The main source I follow is that of Silverman-Tate, in which they employ a technique called heights, and cheerfully partition the π so I can serve them to you by slices.

2 / 29

Background

In the past few lectures we learned the definition of elliptic curves, absorbed the Nagell-Lutz Theorem, were being introduced to the L-functions of elliptic curves, and got spoiled by a few mouth-watering conjectures.

Lecture Plan

Today we shall start discussing a theorem that L. Mordell proved in 1922:

The group of rational points on a non-singular cubic elliptic curve is finitely generated.

The main source I follow is that of Silverman-Tate, in which they employ a technique called heights, and cheerfully partition the π so I can serve them to you by slices.

Disclaimer

I only have time to serve you a finite portion of the π today.

Review

Definition (Non-Singular Cubic Elliptic Curve)

Recall the precise definition of a non-singular cubic elliptic curve E is an equation of the form

$$y^2 = f(x) = x^3 + ax^2 + bx + c \tag{1}$$

with non-zero discrimant:

$$\Delta := -16(4a^3 + 27b^2) \neq 0$$

Review

Definition (Non-Singular Cubic Elliptic Curve)

Recall the precise definition of a non-singular cubic elliptic curve E is an equation of the form

$$y^2 = f(x) = x^3 + ax^2 + bx + c \tag{1}$$

3 / 29

with non-zero discrimant:

$$\Delta := -16(4a^3 + 27b^2) \neq 0$$

Nagell-Lutz Theorem

Let E be a non-singular cubic elliptic curve with the form $y^2=x^3+ax+b,$ $a,b\in\mathbb{Z}$

If $P \in E(\mathbb{Q})$ is a torsion point of order $m \geq 2$, then,

- 1) $x(P), y(P) \in \mathbb{Z}$
- 2) Either 2P = 0 or $y^2 | \Delta := 4a^2 + 27b^2$

Justin Scarfy (UBC) Mordell's Theorem (I/II) January 31, 2012

Heights

Definition (Heights)

For all $x\in\mathbb{Q}$ with $x=\frac{m}{n}$ where (m,n)=1, we define $H:\mathbb{Q}\to\mathbb{Z}^+$ by

$$H(x) := \max\{|m|,|n|\}$$

Heights

Definition (Heights)

For all $x\in\mathbb{Q}$ with $x=\frac{m}{n}$ where (m,n)=1, we define $H:\mathbb{Q}\to\mathbb{Z}^+$ by

$$H(x) := \max\{|m|, |n|\}$$

The Finiteness Property of the Height

The set of all rational numbers whose height is less than a fixed number is finite.

January 31, 2012

Heights

Definition (Heights)

For all $x\in\mathbb{Q}$ with $x=\frac{m}{n}$ where (m,n)=1, we define $H:\mathbb{Q}\to\mathbb{Z}^+$ by

$$H(x) := \max\{|m|, |n|\}$$

The Finiteness Property of the Height

The set of all rational numbers whose height is less than a fixed number is finite.

Heights of Points on Elliptic Curves

For
$$E: y^2 = f(x) = x^3 + ax^2 + bx + c$$
 with $a, b, c \in \mathbb{Z}$ and rational point $P = (x, y)$ on E ,

$$H(P) := H(x)$$

further we define "small h" height: $h: E \to \mathbb{R}_{\geq 0}$ by:

$$h(P) = \log H(P)$$

and finally define the height of point $\mathcal O$ at infinity to be: $H(\mathcal O)=1$ or $h(\mathcal O)=0$

4 / 29

Theorem (Modrell 1922)

The group of rational points $E(\mathbb{Q})$ is finitely generated.

Theorem (Modrell 1922)

The group of rational points $E(\mathbb{Q})$ is finitely generated.

Slice 1

For every $M\in\mathbb{R}$, the set $\{P\in E(\mathbb{Q}): h(P)\leq M\}$ is finite.

Theorem (Modrell 1922)

The group of rational points $E(\mathbb{Q})$ is finitely generated.

Slice 1

For every $M\in\mathbb{R}$, the set $\{P\in E(\mathbb{Q}): h(P)\leq M\}$ is finite.

Slice 2

Let $P_0 \in \mathbb{Q}$ on E be fixed, then there exists a constant κ_0 depending on P_0 and a,b,c such that $h(P+P_0) < 2h(P) + \kappa_0$ for all $P \in E(\mathbb{Q})$.

Theorem (Modrell 1922)

The group of rational points $E(\mathbb{Q})$ is finitely generated.

Slice 1

For every $M\in\mathbb{R}$, the set $\{P\in E(\mathbb{Q}): h(P)\leq M\}$ is finite.

Slice 2

Let $P_0 \in \mathbb{Q}$ on E be fixed, then there exists a constant κ_0 depending on P_0 and a,b,c such that $h(P+P_0) < 2h(P) + \kappa_0$ for all $P \in E(\mathbb{Q})$.

Slice 3

There is a constant κ , depending on a,b,c so that $h(2P) \geq 4h(P) - \kappa$ for all $P \in E(\mathbb{Q})$.

Theorem (Modrell 1922)

The group of rational points $E(\mathbb{Q})$ is finitely generated.

Slice 1

For every $M\in\mathbb{R}$, the set $\{P\in E(\mathbb{Q}): h(P)\leq M\}$ is finite.

Slice 2

Let $P_0\in\mathbb{Q}$ on E be fixed, then there exists a constant κ_0 depending on P_0 and a,b,c such that $h(P+P_0)<2h(P)+\kappa_0$ for all $P\in E(\mathbb{Q})$.

Slice 3

There is a constant κ , depending on a,b,c so that $h(2P) \geq 4h(P) - \kappa$ for all $P \in E(\mathbb{Q})$.

Slice 4

Not ready yet- will be ready and served next week!

Descent Theorem

Let Γ be an abelian group, and suppose that there is a function $h:\Gamma\to\mathbb{R}_{\geq 0}$ with the following three properties:

- a) For every $M \in \mathbb{R}$, the set $\{P \in \Gamma : h(P) \leq M\}$ is finite.
- b) For every $P_0 \in \Gamma$, there is a constant κ_0 with $h(P+P_0) \leq 2h(P) + \kappa_0$.
- c) There is a constant κ so that $h(2P) \geq 4h(P) \kappa$ for all $P \in \Gamma$.

January 31, 2012

Descent Theorem

Let Γ be an abelian group, and suppose that there is a function $h:\Gamma\to\mathbb{R}_{\geq 0}$ with the following three properties:

- a) For every $M \in \mathbb{R}$, the set $\{P \in \Gamma : h(P) \leq M\}$ is finite.
- b) For every $P_0 \in \Gamma$, there is a constant κ_0 with $h(P+P_0) \leq 2h(P) + \kappa_0$.
- c) There is a constant κ so that $h(2P) \geq 4h(P) \kappa$ for all $P \in \Gamma$.

Then, Γ is finitely generated

Descent Theorem

Let Γ be an abelian group, and suppose that there is a function $h:\Gamma\to\mathbb{R}_{\geq 0}$ with the following three properties:

- a) For every $M \in \mathbb{R}$, the set $\{P \in \Gamma : h(P) \leq M\}$ is finite.
- b) For every $P_0 \in \Gamma$, there is a constant κ_0 with $h(P+P_0) \leq 2h(P) + \kappa_0$.
- c) There is a constant κ so that $h(2P) \geq 4h(P) \kappa$ for all $P \in \Gamma$.

Oh, and further suppose that:

d) The subgroup 2Γ has finite index in Γ

Then, Γ is finitely generated

January 31, 2012

Descent Theorem

Let Γ be an abelian group, and suppose that there is a function $h:\Gamma\to\mathbb{R}_{\geq 0}$ with the following three properties:

- a) For every $M \in \mathbb{R}$, the set $\{P \in \Gamma : h(P) \leq M\}$ is finite.
- b) For every $P_0 \in \Gamma$, there is a constant κ_0 with $h(P+P_0) \leq 2h(P) + \kappa_0$.
- c) There is a constant κ so that $h(2P) \geq 4h(P) \kappa$ for all $P \in \Gamma$.

Oh, and further suppose that:

d) The subgroup 2Γ has finite index in Γ

Then, Γ is finitely generated

Proof of the Descent Theorem (1/6)

First we take a representative for each coset of 2Γ in Γ , assume there are n of them, and Let Q_1,Q_2,\ldots,Q_n be representative of the cosets (i.e. For any $P\in\Gamma$, there exists an index i_1 , depending on P, such that $P-Q_{i_1}\in 2\Gamma$).

Proof of the Descent Theorem (2/6)

After all, P has to be in one of the cosets (i.e. We can write $P-Q_{i_1}=2P_1$ for some $P_1\in\Gamma$).

Proof of the Descent Theorem (2/6)

After all, P has to be in one of the cosets (i.e. We can write $P-Q_{i_1}=2P_1$ for some $P_1\in\Gamma$).

Feeding this into the finite state automata yields:

$$P_{1} - Q_{i_{2}} = 2P_{2}$$

$$P_{2} - Q_{i_{3}} = 2P_{3}$$

$$\vdots$$

$$P_{m-1} - Q_{i_{m}} = 2P_{m}$$

where $Q_{i_1},Q_{i_2},\ldots,Q_{i_m}$ are chosen from the coset representation Q_1,Q_2,\ldots,Q_n and P_1,P_2,\ldots,P_m are elements of Γ .

Proof of the Descent Theorem (2/6)

After all, P has to be in one of the cosets (i.e. We can write $P-Q_{i_1}=2P_1$ for some $P_1\in\Gamma$).

Feeding this into the finite state automata yields:

$$P_{1} - Q_{i_{2}} = 2P_{2}$$

$$P_{2} - Q_{i_{3}} = 2P_{3}$$

$$\vdots$$

$$P_{m-1} - Q_{i_{m}} = 2P_{m}$$

where $Q_{i_1}, Q_{i_2}, \dots, Q_{i_m}$ are chosen from the coset representation Q_1, Q_2, \dots, Q_n and P_1, P_2, \dots, P_m are elements of Γ .

Moral: P_i is more-or-less equal to $2P_{i+1}$, the height of P_{i+1} is more-or-less one fourth the height of P_i . So the sequence of points P, P_1, P_2, \ldots should have decreasing height, and from property a), the set will be finite.

7 / 29

Proof of the Descent Theorem (3/6)

From the first equation we see $P=Q_i+2P_1$, and substituting the second equation $P_1=Q_{i_2}+4P_2$ into the first gives $P=Q_{i_1}+2Q_{i_2}+4P_2$

Proof of the Descent Theorem (3/6)

From the first equation we see $P=Q_i+2P_1$, and substituting the second equation $P_1=Q_{i_2}+4P_2$ into the first gives $P=Q_{i_1}+2Q_{i_2}+4P_2$

Continuing in this fashion, we obtain

$$P = Q_{i_1} + 2Q_{i_2} + 4Q_{i_3} + \ldots + 2^{m-1}Q_{i_m} + 2^m P_m$$

In particular, this says that P is in the subgroup of Γ generated by the Q_i 's and P_m .

Proof of the Descent Theorem (3/6)

From the first equation we see $P=Q_i+2P_1$, and substituting the second equation $P_1=Q_{i_2}+4P_2$ into the first gives $P=Q_{i_1}+2Q_{i_2}+4P_2$

Continuing in this fashion, we obtain

$$P = Q_{i_1} + 2Q_{i_2} + 4Q_{i_3} + \ldots + 2^{m-1}Q_{i_m} + 2^m P_m$$

In particular, this says that P is in the subgroup of Γ generated by the Q_i 's and P_m .

Next we show that by choosing m large enough, we can force P_m to have height less than a certain fixed bound. Then the finite set of points with height less than that bound, together with the $Q_i's$, will generate Γ .

Proof of the Descent Theorem (3/6)

From the first equation we see $P=Q_i+2P_1$, and substituting the second equation $P_1=Q_{i_2}+4P_2$ into the first gives $P=Q_{i_1}+2Q_{i_2}+4P_2$

Continuing in this fashion, we obtain

$$P = Q_{i_1} + 2Q_{i_2} + 4Q_{i_3} + \ldots + 2^{m-1}Q_{i_m} + 2^m P_m$$

In particular, this says that P is in the subgroup of Γ generated by the Q_i 's and P_m .

Next we show that by choosing m large enough, we can force P_m to have height less than a certain fixed bound. Then the finite set of points with height less than that bound, together with the $Q_i's$, will generate Γ .

Taking one of the $P_j's$ in the sequence of points P, P_1, P_2, \ldots and examine the relation between the height of P_{j-1} and that of P_j . We want to show that the height of P_j is considerably smaller.

Proof of the Descent Theorem (4/6)

If we apply b) with $-Q_i$ in place of P_0 , we obtain a constant κ_i such that $h(P-Q_i) \leq 2h(P) + \kappa_i$ for all $P \in \Gamma$.

Proof of the Descent Theorem (4/6)

If we apply b) with $-Q_i$ in place of P_0 , we obtain a constant κ_i such that $h(P-Q_i) \leq 2h(P) + \kappa_i$ for all $P \in \Gamma$.

Now we do this for each Q_i , $1 \le i \le n$.

Let κ' be the largest of the κ_i 's, then

 $h(P-Q_i) \leq 2h(P) + \kappa'$ for all $P \in \Gamma$ and all $1 \leq i \leq n$, this can be done as there are only $Q_i's$, and is one place where property (d) that 2Γ has finite index in Γ .

Proof of the Descent Theorem (4/6)

If we apply b) with $-Q_i$ in place of P_0 , we obtain a constant κ_i such that $h(P-Q_i) \leq 2h(P) + \kappa_i$ for all $P \in \Gamma$.

Now we do this for each Q_i , $1 \le i \le n$.

Let κ' be the largest of the κ_i 's, then

 $h(P-Q_i) \leq 2h(P) + \kappa'$ for all $P \in \Gamma$ and all $1 \leq i \leq n$, this can be done as there are only $Q_i's$, and is one place where property (d) that 2Γ has finite index in Γ .

Let κ be the constant from (c), then we deduce:

$$4h(P_j) \le h(2P_j) + \kappa = h(P_{j-1} - Q_{i_j}) + \kappa \le 2h(P_{j-1}) + \kappa' + \kappa$$

which can be rewritten as:

$$h(P_j) \le \frac{1}{2}h(P_{j-1}) + \frac{\kappa' + \kappa}{4} = \frac{3}{4}h(P_{j-1}) - \frac{1}{4}(h(P_{j-1}) - (\kappa' + \kappa))$$

Proof of the Descent Theorem (5/6)

From the previous equation we see that if $h(P_{j-1}) \ge \kappa' + \kappa$, then

$$h(P_j) \le \frac{3}{4}h(P_{j-1})$$

10 / 29

Proof of the Descent Theorem (5/6)

From the previous equation we see that if $h(P_{j-1}) \ge \kappa' + \kappa$, then

$$h(P_j) \le \frac{3}{4}h(P_{j-1})$$

So in the sequence of points P, P_1, P_2, P_3, \ldots , as long as the points P_j satisfies the condition $h(P_j) \geq \kappa' + \kappa$, then the next point in the sequence has much smaller height, namely $h(P_{j+1}) \leq \frac{3}{4}h(P_j)$.

Proof of the Descent Theorem (5/6)

From the previous equation we see that if $h(P_{j-1}) \ge \kappa' + \kappa$, then

$$h(P_j) \le \frac{3}{4}h(P_{j-1})$$

So in the sequence of points P, P_1, P_2, P_3, \ldots , as long as the points P_j satisfies the condition $h(P_j) \geq \kappa' + \kappa$, then then next point in the sequence has much smaller height, namely $h(P_{j+1}) \leq \frac{3}{4}h(P_j)$.

N.B. If you start with a number and keep multiplying it by 3/4, it approaches zero. So eventually we will find an index m such that $h(P_m) \le \kappa' + \kappa$

Proof of the Descent Theorem (5/6)

From the previous equation we see that if $h(P_{j-1}) \ge \kappa' + \kappa$, then

$$h(P_j) \le \frac{3}{4}h(P_{j-1})$$

So in the sequence of points P, P_1, P_2, P_3, \ldots , as long as the points P_j satisfies the condition $h(P_j) \geq \kappa' + \kappa$, then the next point in the sequence has much smaller height, namely $h(P_{j+1}) \leq \frac{3}{4}h(P_j)$.

N.B. If you start with a number and keep multiplying it by 3/4, it approaches zero. So eventually we will find an index m such that $h(P_m) \le \kappa' + \kappa$

We have now shown that every element $P \in \Gamma$ can be written in the form:

$$P = a_1 Q_1 + a_2 Q_2 + \dots + a_n Q_n + 2^m R$$

for certain integers a_1,\ldots,a_n and some point $R\in\Gamma$ satisfying the inequality $h(R)\leq\kappa'+\kappa$

10 / 29

Proof of the Descent Theorem (6/6)

Hence the set

$$\{Q_1, Q_2, \dots, Q_n\} \cup \{R \in \Gamma : h(R) \le \kappa' + \kappa\}$$

generates Γ .

11 / 29

Proof of the Descent Theorem (6/6)

Hence the set

$$\{Q_1, Q_2, \dots, Q_n\} \cup \{R \in \Gamma : h(R) \le \kappa' + \kappa\}$$

generates Γ .

From a) and d), this set is finite, which completes the proof that Γ is finitely generated.

Proof of the Descent Theorem (6/6)

Hence the set

$$\{Q_1, Q_2, \dots, Q_n\} \cup \{R \in \Gamma : h(R) \le \kappa' + \kappa\}$$

generates Γ .

From a) and d), this set is finite, which completes the proof that Γ is finitely generated.

Remark

This Theorem is called a Descent Theorem as the proof imitates the style of Fermat's method of infinite descent: One starts with an arbitrary point $P \in E(\mathbb{Q})$, and by manipulation descents to a smaller point [in terms of height, of course].

First we recall that if $P=\left(x,y\right)$ is a rational point on E, then x and y have the form

$$x = \frac{m}{e^2}$$
 and $y = \frac{n}{e^3}$

for integers m,n,e with e>0 and $\gcd(m,e)=\gcd(n,e)=1.$

This can be shown by mimicking the steps in the proof of Nagell-Lutz Theorem.

First we recall that if $P=\left(x,y\right)$ is a rational point on E, then x and y have the form

$$x = \frac{m}{e^2}$$
 and $y = \frac{n}{e^3}$

for integers m,n,e with e>0 and $\gcd(m,e)=\gcd(n,e)=1.$

This can be shown by mimicking the steps in the proof of Nagell-Lutz Theorem.

Now suppose we write

$$x = \frac{m}{M}$$
 and $y = \frac{n}{N}$

in lowest terms with M > 0 and N > 0.

First we recall that if $P=\left(x,y\right)$ is a rational point on E, then x and y have the form

$$x = \frac{m}{e^2}$$
 and $y = \frac{n}{e^3}$

for integers m, n, e with e > 0 and gcd(m, e) = gcd(n, e) = 1.

This can be shown by mimicking the steps in the proof of Nagell-Lutz Theorem.

Now suppose we write

$$x = \frac{m}{M}$$
 and $y = \frac{n}{N}$

in lowest terms with M > 0 and N > 0.

Substituting into the equation (1) of E yields:

$$\frac{n^2}{N^2} = \frac{m^3}{M^3} + a\frac{m^2}{M^2} + b\frac{m}{M} + c$$

First we recall that if $P=\left(x,y\right)$ is a rational point on E, then x and y have the form

$$x = \frac{m}{e^2}$$
 and $y = \frac{n}{e^3}$

for integers m, n, e with e > 0 and gcd(m, e) = gcd(n, e) = 1.

This can be shown by mimicking the steps in the proof of Nagell-Lutz Theorem.

Now suppose we write

$$x = \frac{m}{M}$$
 and $y = \frac{n}{N}$

in lowest terms with M>0 and N>0.

Substituting into the equation (1) of E yields:

$$\frac{n^2}{N^2} = \frac{m^3}{M^3} + a\frac{m^2}{M^2} + b\frac{m}{M} + c$$

Clearing the denominators gives:

$$M^{3}n^{2} = N^{2}m^{3} + aN^{2}Mm^{2} + bN^{2}M^{2}m + cN^{2}M^{3}$$
 (2)

Since N^2 is a factor of all terms on the R.H.S. of (2), it follows that $N^2|M^3n^2$. But $\gcd(n,N)=1$, so $N^2|M^3$.

Since N^2 is a factor of all terms on the R.H.S. of (2), it follows that $N^2|M^3n^2$. But $\gcd(n,N)=1$, so $N^2|M^3$.

Conversely, we show $M^3 \vert N^2$, in three steps:

Since N^2 is a factor of all terms on the R.H.S. of (2), it follows that $N^2|M^3n^2$. But $\gcd(n,N)=1$, so $N^2|M^3$.

Conversely, we show $M^3 | N^2$, in three steps:

• From (2) we immediately see that $M|N^2m^3$, and since $\gcd(m,M)=1$, we find $M|N^2$.

Since N^2 is a factor of all terms on the R.H.S. of (2), it follows that $N^2|M^3n^2$. But $\gcd(n,N)=1$, so $N^2|M^3$.

Conversely, we show $M^3|N^2$, in three steps:

- From (2) we immediately see that $M|N^2m^3$, and since $\gcd(m,M)=1$, we find $M|N^2$.
- Using the above back to (2), we find $M^2|N^2m^3$, so M|N.

Since N^2 is a factor of all terms on the R.H.S. of (2), it follows that $N^2|M^3n^2$. But $\gcd(n,N)=1$, so $N^2|M^3$.

Conversely, we show $M^3|N^2$, in three steps:

- From (2) we immediately see that $M|N^2m^3$, and since $\gcd(m,M)=1$, we find $M|N^2$.
- Using the above back to (2), we find $M^2|N^2m^3$, so M|N.
- Again by (2), we see that this implies $M^3 | N^2 m^3$, so $M^3 | N^2$.

Since N^2 is a factor of all terms on the R.H.S. of (2), it follows that $N^2|M^3n^2$. But $\gcd(n,N)=1$, so $N^2|M^3$.

Conversely, we show $M^3 | N^2$, in three steps:

- From (2) we immediately see that $M|N^2m^3$, and since $\gcd(m,M)=1$, we find $M|N^2$.
- Using the above back to (2), we find $M^2|N^2m^3$, so M|N.
- \bullet Again by (2), we see that this implies $M^3|N^2m^3$, so $M^3|N^2.$

Therefore, $M^3 = N^2$.

Further, during the proof we showed that M | N.

Since N^2 is a factor of all terms on the R.H.S. of (2), it follows that $N^2|M^3n^2$. But $\gcd(n,N)=1$, so $N^2|M^3$.

Conversely, we show $M^3|N^2$, in three steps:

- From (2) we immediately see that $M|N^2m^3$, and since $\gcd(m,M)=1$, we find $M|N^2$.
- Using the above back to (2), we find $M^2|N^2m^3$, so M|N.
- \bullet Again by (2), we see that this implies $M^3|N^2m^3$, so $M^3|N^2.$

Therefore, $M^3 = N^2$.

Further, during the proof we showed that M | N.

So if we let $e = \frac{N}{M}$, we find that

$$e^2 = \frac{N^2}{M^2} = \frac{M^3}{M^2} = M$$
, and $e^3 = \frac{N^2}{M^3} = \frac{N^3}{N^2} = N$.

Therefore $x=\frac{m}{e^2}$ and $y=\frac{n}{e^3}$ have the desired form.

If the point P is given in lowest terms as $P=\left(\frac{m}{e^2},\frac{n}{e^3}\right)$, then $|e^2|\leq H(P)$ and $|m|\leq H(P)$, and we claim there is a constant K>0, depending on a,b,c such that

$$|n| \le KH(P)^{3/2}$$

If the point P is given in lowest terms as $P=\left(\frac{m}{e^2},\frac{n}{e^3}\right)$, then $|e^2|\leq H(P)$ and $|m|\leq H(P)$, and we claim there is a constant K>0, depending on a,b,c such that

$$|n| \le KH(P)^{3/2}$$

To prove this we just use the fact that the point satisfies the equation: substituting into equation (1) and multiplying by e^6 to clear denominator:

$$n^2 = m^3 + ae^2m^2 + be^4m + ce^6$$

If the point P is given in lowest terms as $P=\left(\frac{m}{e^2},\frac{n}{e^3}\right)$, then $|e^2|\leq H(P)$ and $|m|\leq H(P)$, and we claim there is a constant K>0, depending on a,b,c such that

$$|n| \le KH(P)^{3/2}$$

To prove this we just use the fact that the point satisfies the equation: substituting into equation (1) and multiplying by e^6 to clear denominator:

$$n^2 = m^3 + ae^2m^2 + be^4m + ce^6$$

Taking the absolute value and using the triangle inequality yields:

$$|n^{2}| \le |m^{3}| + |ae^{2}m^{2}| + |be^{4}m| + |ce^{6}|$$

$$\le H(P)^{3} + |a|H(P)^{3} + |b|H(P)^{3} + |c|H(P)^{3}$$

So we can take $K=\sqrt{1+|a|+|b|+|c|}$

If the point P is given in lowest terms as $P=\left(\frac{m}{e^2},\frac{n}{e^3}\right)$, then $|e^2|\leq H(P)$ and $|m|\leq H(P)$, and we claim there is a constant K>0, depending on a,b,c such that

$$|n| \le KH(P)^{3/2}$$

To prove this we just use the fact that the point satisfies the equation: substituting into equation (1) and multiplying by e^6 to clear denominator:

$$n^2 = m^3 + ae^2m^2 + be^4m + ce^6$$

Taking the absolute value and using the triangle inequality yields:

$$|n^{2}| \le |m^{3}| + |ae^{2}m^{2}| + |be^{4}m| + |ce^{6}|$$

$$\le H(P)^{3} + |a|H(P)^{3} + |b|H(P)^{3} + |c|H(P)^{3}$$

So we can take $K=\sqrt{1+|a|+|b|+|c|}$

Now we are ready to have Slice 2.

Slice 2

For P_0 a fixed rational point on E, there is a constant κ_0 , depending on P_0 and on a,b,c such that $h(P+P_0) \leq 2h(P) + \kappa_0$ for all $P \in E(\mathbb{Q})$

Slice 2

For P_0 a fixed rational point on E, there is a constant κ_0 , depending on P_0 and on a,b,c such that $h(P+P_0) \leq 2h(P) + \kappa_0$ for all $P \in E(\mathbb{Q})$

Serving Slice 2 (1/4)

First we remark that if $P_0 = \mathcal{O}$, the slice is trivial.

So we take $P_0 \neq \mathcal{O}$, say $P_0 = (x_0, y_0)$.

Slice 2

For P_0 a fixed rational point on E, there is a constant κ_0 , depending on P_0 and on a,b,c such that $h(P+P_0) \leq 2h(P) + \kappa_0$ for all $P \in E(\mathbb{Q})$

Serving Slice 2 (1/4)

First we remark that if $P_0 = \mathcal{O}$, the slice is trivial.

So we take $P_0 \neq \mathcal{O}$, say $P_0 = (x_0, y_0)$.

To prove the existence of κ_0 , it suffices to prove that the inequality holds for all P except those in a some fixed set; this holds because, for any finite number of P, we just looking at the difference $h(P+P_0)-2h(P)$ and take κ_0 larger than the finite number of values that occur. Hence, it suffices to prove for all points P with $P \notin \{P_0, -P_0, \mathcal{O}\}$.

Slice 2

For P_0 a fixed rational point on E, there is a constant κ_0 , depending on P_0 and on a,b,c such that $h(P+P_0) \leq 2h(P) + \kappa_0$ for all $P \in E(\mathbb{Q})$

Serving Slice 2 (1/4)

First we remark that if $P_0 = \mathcal{O}$, the slice is trivial.

So we take $P_0 \neq \mathcal{O}$, say $P_0 = (x_0, y_0)$.

To prove the existence of κ_0 , it suffices to prove that the inequality holds for all P except those in a some fixed set; this holds because, for any finite number of P, we just looking at the difference $h(P+P_0)-2h(P)$ and take κ_0 larger than the finite number of values that occur. Hence, it suffices to prove for all points P with $P \notin \{P_0, -P_0, \mathcal{O}\}$.

We write P=(x,y), the reason for avoiding both P_0 and $-P_0$ is to have $x\neq x_0$.

We also denote

$$P + P_0 = (\xi, \eta)$$

Serving Slice 2 (2/4)

Now $H(P+P_0)=\xi$, so we need a formula for ξ in terms of (x,y) and (x_0,y_0) :

$$\xi + x + x_0 = \lambda^2 - a, \quad \lambda = \frac{y - y_0}{x - x_0}.$$

Serving Slice 2 (2/4)

Now $H(P+P_0)=\xi$, so we need a formula for ξ in terms of (x,y) and (x_0,y_0) :

$$\xi + x + x_0 = \lambda^2 - a, \qquad \lambda = \frac{y - y_0}{x - x_0}.$$

After writing out this a little bit:

$$\xi = \frac{(y - y_0)^2}{(x - x_0)^2} - a - x - x_0$$

$$= \frac{(y - y_0)^2 - (x - x_0)^2 (x + x_0 + a)}{(x - x_0)^2}$$

Serving Slice 2 (2/4)

Now $H(P+P_0)=\xi$, so we need a formula for ξ in terms of (x,y) and (x_0,y_0) :

$$\xi + x + x_0 = \lambda^2 - a, \qquad \lambda = \frac{y - y_0}{x - x_0}.$$

After writing out this a little bit:

$$\xi = \frac{(y - y_0)^2}{(x - x_0)^2} - a - x - x_0$$

$$= \frac{(y - y_0)^2 - (x - x_0)^2 (x + x_0 + a)}{(x - x_0)^2}$$

$$= \frac{Ay + Bx^2 + Cx + D}{Ex^2 + Fx + G}$$

where A,B,C,D,E,F,G are certain rational numbers which can be expressed in terms of a,b,c and (x_0,y_0) .

Serving Slice 2 (3/4)

Further, we are able to multiply the numerator and denominator by the l.c.d. of A,\ldots,G , and hence we may assume that $A,\ldots,G\in\mathbb{Z}$, which depend only on a,b,c and (x_0,y_0) , After substituting $x=\frac{m}{e^2}$ and $y=\frac{n}{e^3}$ and clearing out the denominators by multiplying the numerator and denominator by e^4 , we find:

$$\xi = \frac{Ane + Bm^2 + Cme^2 + De^4}{Em^2 + Fme^2 + Ge^4}$$

Serving Slice 2 (3/4)

Further, we are able to multiply the numerator and denominator by the l.c.d. of A,\ldots,G , and hence we may assume that $A,\ldots,G\in\mathbb{Z}$, which depend only on a,b,c and (x_0,y_0) , After substituting $x=\frac{m}{e^2}$ and $y=\frac{n}{e^3}$ and clearing out the denominators by multiplying the numerator and denominator by e^4 , we find:

$$\xi = \frac{Ane + Bm^2 + Cme^2 + De^4}{Em^2 + Fme^2 + Ge^4}$$

Notice we have an expression for ξ as an integer divided by an integer: although we are uncertain that it is in the lowest terms, but cancellation will only make the height smaller:

$$H(\xi) \le \max\{|Ane + Bm^2 + Cme^2 + De^4|, |Em^2 + Fme^2 + Ge^4|\}$$

Serving Slice 2 (3/4)

Further, we are able to multiply the numerator and denominator by the l.c.d. of A,\ldots,G , and hence we may assume that $A,\ldots,G\in\mathbb{Z}$, which depend only on a,b,c and (x_0,y_0) , After substituting $x=\frac{m}{e^2}$ and $y=\frac{n}{e^3}$ and clearing out the denominators by multiplying the numerator and denominator by e^4 , we find:

$$\xi = \frac{Ane + Bm^2 + Cme^2 + De^4}{Em^2 + Fme^2 + Ge^4}$$

Notice we have an expression for ξ as an integer divided by an integer: although we are uncertain that it is in the lowest terms, but cancellation will only make the height smaller:

$$H(\xi) \leq \max\{|Ane + Bm^2 + Cme^2 + De^4|, |Em^2 + Fme^2 + Ge^4|\}$$

Further, from above we have the estimates

$$e \le H(P)^{1/2}, \quad n \le KH(P)^{3/2}, \quad m \le H(P)$$

where K depends on only a, b, c.

Serving Slice 2 (4/4)

Using the above and triangle inequality gives

$$|Ane + Bm^{2} + Cme^{2} + De^{4}| \le |Ane| + |Bm^{2}| + |Cme^{2}| + |De^{4}|$$

$$\le (|AK| + |B| + |C| + |D|)H(P)^{2}$$

$$|Em^{2} + Fme^{2} + Ge^{4}| \le |Em^{2}| + |Fme^{2}| + |Ge^{4}|$$

$$\le (|E| + |F| + |G|)H(P)^{2}$$

Serving Slice 2 (4/4)

Using the above and triangle inequality gives

$$|Ane + Bm^{2} + Cme^{2} + De^{4}| \le |Ane| + |Bm^{2}| + |Cme^{2}| + |De^{4}|$$

$$\le (|AK| + |B| + |C| + |D|)H(P)^{2}$$

$$|Em^{2} + Fme^{2} + Ge^{4}| \le |Em^{2}| + |Fme^{2}| + |Ge^{4}|$$

$$\le (|E| + |F| + |G|)H(P)^{2}$$

It follows

$$H(P+P_0) = H(\xi) \le \max\{|AK| + |B| + |C| + |D|, |E| + |F| + |G|\} \frac{H(P)^2}{2}$$

Serving Slice 2 (4/4)

Using the above and triangle inequality gives

$$|Ane + Bm^{2} + Cme^{2} + De^{4}| \le |Ane| + |Bm^{2}| + |Cme^{2}| + |De^{4}|$$

$$\le (|AK| + |B| + |C| + |D|) \frac{H(P)^{2}}{H(P)^{2}}$$

$$|Em^{2} + Fme^{2} + Ge^{4}| \le |Em^{2}| + |Fme^{2}| + |Ge^{4}|$$

$$\le (|E| + |F| + |G|) \frac{H(P)^{2}}{H(P)^{2}}$$

It follows

$$H(P+P_0) = H(\xi) \le \max\{|AK| + |B| + |C| + |D|, |E| + |F| + |G|\} \frac{H(P)^2}{2}$$

Taking the logarithm of both sides yields

$$h(P+P_0) \le 2h(P) + \kappa_0$$

where the constant $\kappa_0 = \log \max\{|AK| + |B| + |C| + |D|, |E| + |F| + |G|\}$ depends only on a,b,c and (x_0,y_0) and does NOT depend on P=(x,y).

The Height of 2P (1/10)

Slice 3

There is a constant κ , depending on a,b,c so that

$$h(2P) \ge 4h(P) - \kappa$$
 for all $P \in E(\mathbb{Q})$

The Height of 2P (1/10)

Slice 3

There is a constant κ , depending on a,b,c so that

$$h(2P) \ge 4h(P) - \kappa$$
 for all $P \in E(\mathbb{Q})$

Serving Slice 3 (1/2)

Mimicking the Serving of Slice 2, we ignore the finite set of points satisfying $2P=\mathcal{O}$ since we can always take κ larger than 4h(P) for all points in that finite set.

The Height of 2P (1/10)

Slice 3

There is a constant κ , depending on a,b,c so that

$$h(2P) \ge 4h(P) - \kappa$$
 for all $P \in E(\mathbb{Q})$

Serving Slice 3 (1/2)

Mimicking the Serving of Slice 2, we ignore the finite set of points satisfying $2P=\mathcal{O}$ since we can always take κ larger than 4h(P) for all points in that finite set.

Let P = (x, y) and write $2P = (\xi, \eta)$.

The duplication formula we derived earlier states that

$$\xi + 2x = \lambda^2 - a$$
, where $\lambda = \frac{f'(x)}{2y}$

The Height of 2P (2/10)

Serving Slice 3 (2/2)

Using $y^2=f(x)$, we obtain an explicit formula for ξ in terms of x :

$$\xi = \frac{(f'(x))^2 - (8x + 4a)f(x)}{4f(x)} = \frac{x^4 + \dots}{4x^3 + \dots}$$

Note that $f(x) \neq 0$ because $2P \neq \mathcal{O}$.

The Height of 2P (2/10)

Serving Slice 3 (2/2)

Using $y^2 = f(x)$, we obtain an explicit formula for ξ in terms of x:

$$\xi = \frac{(f'(x))^2 - (8x + 4a)f(x)}{4f(x)} = \frac{x^4 + \dots}{4x^3 + \dots}$$

Note that $f(x) \neq 0$ because $2P \neq \mathcal{O}$.

Thus, ξ is the quotient of two polynomials in x with integer coefficients. Since the cubic $y^2=f(x)$ is non-singular by assumption, we know that f(x) and f'(x) have NO common (complex) roots, and thus the polynomials in the numerator and the denominator of ξ also have NO common roots.

The Height of 2P (2/10)

Serving Slice 3 (2/2)

Using $y^2 = f(x)$, we obtain an explicit formula for ξ in terms of x:

$$\xi = \frac{(f'(x))^2 - (8x + 4a)f(x)}{4f(x)} = \frac{x^4 + \dots}{4x^3 + \dots}$$

Note that $f(x) \neq 0$ because $2P \neq \mathcal{O}$.

Thus, ξ is the quotient of two polynomials in x with integer coefficients. Since the cubic $y^2=f(x)$ is non-singular by assumption, we know that f(x) and f'(x) have NO common (complex) roots, and thus the polynomials in the numerator and the denominator of ξ also have NO common roots.

Since h(P) = h(x) and $h(2P) = h(\xi)$, we are trying to prove that

$$h(\xi) \ge 4h(x) - \kappa$$

Hence we reduced our task to proving the following slice about heights and quotients of polynomials:

The Height of 2P (3/10)

Slice 3i

Let $\phi(X)$ and $\psi(X)$ be polynomials with integer coefficients and NO common (complex) roots. Let $d = \max\{\deg(\phi), \deg(\psi)\}$

a) There is an integer $R \geq 1$, depending on ϕ and ψ , so that for all rational numbers $\frac{m}{n}$,

$$\gcd\left(n^d\phi\Big(\frac{m}{n}\Big),n^d\psi\Big(\frac{m}{n}\Big)\right)\quad \text{ divides } R$$

b) There are constants κ_1 and κ_2 , depending on ϕ and ψ , so that for all rational numbers $\frac{m}{n}$ which are NOT roots of ψ ,

$$dh\left(\frac{m}{n}\right) - \kappa_1 \le h\left(\frac{\phi(m/n)}{\psi(m/n)}\right) \le dh\left(\frac{m}{n}\right) + \kappa_2$$

The Height of 2P (3/10)

Slice 3i

Let $\phi(X)$ and $\psi(X)$ be polynomials with integer coefficients and NO common (complex) roots. Let $d = \max\{\deg(\phi), \deg(\psi)\}$

a) There is an integer $R \geq 1$, depending on ϕ and ψ , so that for all rational numbers $\frac{m}{n}$,

$$\gcd\left(n^d\phi\Big(\frac{m}{n}\Big),n^d\psi\Big(\frac{m}{n}\Big)\right)\quad \text{ divides }\ R$$

b) There are constants κ_1 and κ_2 , depending on ϕ and ψ , so that for all rational numbers $\frac{m}{n}$ which are NOT roots of ψ ,

$$dh\left(\frac{m}{n}\right) - \kappa_1 \le h\left(\frac{\phi(m/n)}{\psi(m/n)}\right) \le dh\left(\frac{m}{n}\right) + \kappa_2$$

Serving Slice 3i (1/8)

a) First we observe that since ϕ and ψ have degree at most d, both $n^d\phi\left(\frac{m}{n}\right)$ and $n^d\psi\left(\frac{m}{n}\right)$ are integers, so their g.c.d. makes sense.

Serving Slice 3i (2/8)

Next we note that ϕ and ψ are interchangeable, so for correctness, we will take $\deg(\phi):=d$ and $\deg(\psi):=e\leq d$.

Serving Slice 3i (2/8)

Next we note that ϕ and ψ are interchangeable, so for correctness, we will take $\deg(\phi):=d$ and $\deg(\psi):=e\leq d$.

Then we can write:

$$\Phi(m,n) := n^d \phi\left(\frac{m}{n}\right) = a_0 m^d + a_1 m^{d-1} + \dots + a_d n^d,$$

$$\Psi(m,n) := n^d \psi\left(\frac{m}{n}\right) = b_0 m^e n^{d-e} + b_1 m^{e-1} n^{d-n+1} + \dots + b_e n^d$$

So we need to find an estimate for $\gcd(\Phi(m,n),\Psi(m,n))$ which does NOT depend on m OR n.

Serving Slice 3i (2/8)

Next we note that ϕ and ψ are interchangeable, so for correctness, we will take $\deg(\phi) := d$ and $\deg(\psi) := e \leq d$.

Then we can write:

$$\Phi(m,n) := n^d \phi\left(\frac{m}{n}\right) = a_0 m^d + a_1 m^{d-1} + \dots + a_d n^d,$$

$$\Psi(m,n) := n^d \psi\left(\frac{m}{n}\right) = b_0 m^e n^{d-e} + b_1 m^{e-1} n^{d-n+1} + \dots + b_e n^d$$

So we need to find an estimate for $\gcd(\Phi(m,n),\Psi(m,n))$ which does NOT depend on m OR n.

Since $\phi(X)$ and $\psi(X)$ have NO common roots, they are relative prime in the Euclidean ring $\mathbb{Q}[X]$, so they generate the unit ideal:

Serving Slice 3i (2/8)

Next we note that ϕ and ψ are interchangeable, so for correctness, we will take $\deg(\phi) := d$ and $\deg(\psi) := e \leq d$.

Then we can write:

$$\Phi(m,n) := n^d \phi\left(\frac{m}{n}\right) = a_0 m^d + a_1 m^{d-1} + \dots + a_d n^d,$$

$$\Psi(m,n) := n^d \psi\left(\frac{m}{n}\right) = b_0 m^e n^{d-e} + b_1 m^{e-1} n^{d-n+1} + \dots + b_e n^d$$

So we need to find an estimate for $\gcd(\Phi(m,n),\Psi(m,n))$ which does NOT depend on m OR n.

Since $\phi(X)$ and $\psi(X)$ have NO common roots, they are relative prime in the Euclidean ring $\mathbb{Q}[X]$, so they generate the unit ideal:

So we can find polynomials F(X) and G(X) with rational coefficients satisfying

$$F(X)\phi(X) + G(X)\psi(X) = 1 \tag{3}$$

22 / 29

January 31, 2012

Justin Scarfy (UBC) Mordell's Theorem (I/II)

Servicing Slice 3i (3/8)

Now let A be a large enough integer so that AF(X) and AG(X) have integer coefficients, and let $D = \max\{\deg(F), \deg(G)\}$. N.B. A and D do NOT depend on m or n.

Servicing Slice 3i (3/8)

Now let A be a large enough integer so that AF(X) and AG(X) have integer coefficients, and let $D = \max\{\deg(F), \deg(G)\}$.

 $\mathsf{N.B.}\ A$ and D do NOT depend on m or n.

Now we evaluate the identity (3) at $X = \frac{m}{n}$ and multiply both sides by An^{D+d} .

$$n^D A F\left(\frac{m}{n}\right) \cdot n^d \phi\left(\frac{m}{n}\right) + n^D A G\left(\frac{m}{n}\right) \cdot n^d \psi\left(\frac{m}{n}\right) = A n^{D+d}$$

Servicing Slice 3i (3/8)

Now let A be a large enough integer so that AF(X) and AG(X) have integer coefficients, and let $D = \max\{\deg(F), \deg(G)\}$.

 $\mathsf{N.B.}\ A$ and D do NOT depend on m or n.

Now we evaluate the identity (3) at $X = \frac{m}{n}$ and multiply both sides by An^{D+d} .

$$n^D A F\left(\frac{m}{n}\right) \cdot n^d \phi\left(\frac{m}{n}\right) + n^D A G\left(\frac{m}{n}\right) \cdot n^d \psi\left(\frac{m}{n}\right) = A n^{D+d}$$

Let
$$\gamma = \gamma(m, n) := \gcd \Big(\Phi(m, n), \Psi(m, n) \Big)$$

We have:

$$\left\{n^D A F\left(\frac{m}{n}\right)\right\} \Phi(m,n) + \left\{n^D A G\left(\frac{m}{n}\right)\right\} \Psi(m,n) = A n^{D+d}$$

Since the quantities in braces are integers, we see that $\gamma |An^{D+d}$

Serving Slice 3i (4/8)

We also need to show $\gamma|Aa_0^{D+d}$, where a_0 is the leading coefficient of $\phi(X)$. We observe that since γ divides $\Phi(m,n)$, it certainly divides:

$$An^{D+d-1}\Phi(m,n) = Aa_0m^dn^{D+d-1} + Aa_1m^{d-1}n^{D+d} + \dots + Aa_dn^{D+2d-1}.$$

Serving Slice 3i (4/8)

We also need to show $\gamma|Aa_0^{D+d}$, where a_0 is the leading coefficient of $\phi(X)$. We observe that since γ divides $\Phi(m,n)$, it certainly divides:

$$An^{D+d-1}\Phi(m,n) = Aa_0m^dn^{D+d-1} + Aa_1m^{d-1}n^{D+d} + \dots + Aa_dn^{D+2d-1}.$$

But in the sum, every term after the first one contains An^{D+d} as a factor; and we just proved that γ divides An^{D+d} .

Serving Slice 3i (4/8)

We also need to show $\gamma|Aa_0^{D+d}$, where a_0 is the leading coefficient of $\phi(X)$. We observe that since γ divides $\Phi(m,n)$, it certainly divides:

$$An^{D+d-1}\Phi(m,n) = Aa_0m^dn^{D+d-1} + Aa_1m^{d-1}n^{D+d} + \dots + Aa_dn^{D+2d-1}.$$

But in the sum, every term after the first one contains An^{D+d} as a factor; and we just proved that γ divides An^{D+d} .

It follows that γ also divides the first term $Aa_0m^dn^{D+d-1}$. Thus, γ divides $\gcd(An^{D+d}, Aa_0m^dn^{D+d-1})$; and because (m,n)=1, we conclude that γ divides Aa_0n^{D+d-1}

Serving Slice 3i (4/8)

We also need to show $\gamma|Aa_0^{D+d}$, where a_0 is the leading coefficient of $\phi(X)$. We observe that since γ divides $\Phi(m,n)$, it certainly divides:

$$An^{D+d-1}\Phi(m,n) = Aa_0m^dn^{D+d-1} + Aa_1m^{d-1}n^{D+d} + \dots + Aa_dn^{D+2d-1}.$$

But in the sum, every term after the first one contains An^{D+d} as a factor; and we just proved that γ divides An^{D+d} .

It follows that γ also divides the first term $Aa_0m^dn^{D+d-1}$. Thus, γ divides $\gcd(An^{D+d}, Aa_0m^dn^{D+d-1})$; and because (m,n)=1, we conclude that γ divides Aa_0n^{D+d-1}

Now using the fact that γ divides $Aa_0n^{D+d-2}\Phi(m,n)$ and repeating the above argument shows that γ divides $Aa_0^2n^{D+d-2}$; eventually, we reach the conclusion that γ divides Aa_0^{D+d} , finishing the serving of a).

Serving Slice 3i (5/8)

- b) Two inequalities to be proven:
- The upper bound is similar to Slice 2 so it is left as an exercise.
- For the lower bound: as usual, we are cool to exclude some finite set of rational numbers when we prove prove the inequality of this sort: so we assume that the rational number $\frac{m}{n}$ is NOT a root of ϕ .

Serving Slice 3i (5/8)

- b) Two inequalities to be proven:
- The upper bound is similar to Slice 2 so it is left as an exercise.
- For the lower bound: as usual, we are cool to exclude some finite set of rational numbers when we prove prove the inequality of this sort: so we assume that the rational number $\frac{m}{n}$ is NOT a root of ϕ .

For $0 \neq r \in \mathbb{Q}$, it is clear from the definition that $h(r) = h\left(\frac{1}{r}\right)$. So reverting the role of ϕ and ψ if necessary, we may assume that $\deg(\phi) = d$ and $\deg(\psi) = e$ with $e \leq d$.

Serving Slice 3i (5/8)

- b) Two inequalities to be proven:
- The upper bound is similar to Slice 2 so it is left as an exercise.
- For the lower bound: as usual, we are cool to exclude some finite set of rational numbers when we prove prove the inequality of this sort: so we assume that the rational number $\frac{m}{n}$ is NOT a root of ϕ .

For $0 \neq r \in \mathbb{Q}$, it is clear from the definition that $h(r) = h\left(\frac{1}{r}\right)$. So reverting the role of ϕ and ψ if necessary, we may assume that $\deg(\phi) = d$ and $\deg(\psi) = e$ with $e \leq d$.

Continuing from a), the rational number whose height we want to estimate is

$$\xi = \frac{\phi\left(\frac{m}{n}\right)}{\psi\left(\frac{m}{n}\right)} = \frac{n^d \phi\left(\frac{m}{n}\right)}{n^d \psi\left(\frac{m}{n}\right)} = \frac{\Phi(m, n)}{\Psi(m, n)}$$

except when $|\Phi(m,n)|$ and $|\Psi(m,n)|$ have common factors.

Serving Slice 3i (6/8)

We showed in a) that there is some $R \geq 1$, independent of m and n, so that the g.c.d. of $\Phi(m,n)$ and $\Psi(m,n)$ divides R.

Serving Slice 3i (6/8)

We showed in a) that there is some $R \geq 1$, independent of m and n, so that the g.c.d. of $\Phi(m,n)$ and $\Psi(m,n)$ divides R.

This bounds the possible cancellation, and we find that

$$H(\xi) \ge \frac{1}{R} \max\{|\Phi(m,n)|, |\Psi(m,n)|\}$$

$$= \frac{1}{R} \max\left\{ \left| n^d \phi\left(\frac{m}{n}\right) \right|, \left| n^d \psi\left(\frac{m}{n}\right) \right| \right\}$$

$$\ge \frac{1}{2R} \left(\left| n^d \phi\left(\frac{m}{n}\right) \right| + \left| n^d \psi\left(\frac{m}{n}\right) \right| \right)$$

Serving Slice 3i (6/8)

We showed in a) that there is some $R \geq 1$, independent of m and n, so that the g.c.d. of $\Phi(m,n)$ and $\Psi(m,n)$ divides R.

This bounds the possible cancellation, and we find that

$$H(\xi) \ge \frac{1}{R} \max\{|\Phi(m,n)|, |\Psi(m,n)|\}$$

$$= \frac{1}{R} \max\left\{\left|n^d \phi\left(\frac{m}{n}\right)\right|, \left|n^d \psi\left(\frac{m}{n}\right)\right|\right\}$$

$$\ge \frac{1}{2R} \left(\left|n^d \phi\left(\frac{m}{n}\right)\right| + \left|n^d \psi\left(\frac{m}{n}\right)\right|\right)$$

In terms of multiplicative notation, we want to compare $H(\xi)$ to $H\left(\frac{m}{n}\right)^d=\max\{|m|^d,|n|^d\}$, so we consider the quotient:

Serving Slice 3i (7/8)

$$\frac{H(\xi)}{H(m/n)^d} \ge \frac{1}{2R} \cdot \frac{\left(\left|n^d \phi\left(\frac{m}{n}\right)\right| + \left|n^d \psi\left(\frac{m}{n}\right)\right|\right)}{\max\{|m|^d, |n|^d\}}$$
$$= \frac{1}{2R} \cdot \frac{\left(\left|\phi\left(\frac{m}{n}\right)\right| + \left|\psi\left(\frac{m}{n}\right)\right|\right)}{\max\left\{\left|\frac{m}{n}\right|^d, 1\right\}}$$

Serving Slice 3i (7/8)

$$\frac{H(\xi)}{H(m/n)^d} \ge \frac{1}{2R} \cdot \frac{\left(\left|n^d \phi\left(\frac{m}{n}\right)\right| + \left|n^d \psi\left(\frac{m}{n}\right)\right|\right)}{\max\{|m|^d, |n|^d\}}$$
$$= \frac{1}{2R} \cdot \frac{\left(\left|\phi\left(\frac{m}{n}\right)\right| + \left|\psi\left(\frac{m}{n}\right)\right|\right)}{\max\left\{\left|\frac{m}{n}\right|^d, 1\right\}}$$

This suggests that we look at the function p of a real variable t defined by

$$p(t) = \frac{\left|\phi(t)\right| + \left|\psi(t)\right|}{\max\left\{|t|^d, 1\right\}}$$

Justin Scarfy (UBC) Mordell's Theorem (I/II) January 31, 2012

Serving Slice 3i (7/8)

$$\begin{split} \frac{H(\xi)}{H(m/n)^d} &\geq \frac{1}{2R} \cdot \frac{\left(\left|n^d \phi\left(\frac{m}{n}\right)\right| + \left|n^d \psi\left(\frac{m}{n}\right)\right|\right)}{\max\{|m|^d, |n|^d\}} \\ &= \frac{1}{2R} \cdot \frac{\left(\left|\phi\left(\frac{m}{n}\right)\right| + \left|\psi\left(\frac{m}{n}\right)\right|\right)}{\max\left\{\left|\frac{m}{n}\right|^d, 1\right\}} \end{split}$$

This suggests that we look at the function p of a real variable t defined by

$$p(t) = \frac{\left|\phi(t)\right| + \left|\psi(t)\right|}{\max\left\{|t|^d, 1\right\}}$$

Since $\max\{\deg(\phi),\deg(\psi)\}\leq d$, we see that $\lim_{|t|\to\infty}p(t)\neq 0$ and

$$\lim_{|t| \to \infty} p(t) = \begin{cases} |a_0| & \text{if } \deg(\phi) < d\\ |a_0| + |b_0| & \text{if } \deg(\phi) = d \end{cases}$$

Serving Slice 3i (8/8)

So there is a constant C>0 so that p(t)>C for all $t\in\mathbb{R}$

Use the fact in the inequality we derived above, we find that

$$H(\xi) \ge \frac{C}{2R} H\left(\frac{m}{n}\right)^d$$

Serving Slice 3i (8/8)

So there is a constant C > 0 so that p(t) > C for all $t \in \mathbb{R}$

Use the fact in the inequality we derived above, we find that

$$H(\xi) \ge \frac{C}{2R} H\left(\frac{m}{n}\right)^d$$

Finally we see that the constants C and R do NOT depend on m and n, so taking logarithms gives the desired inequality:

$$h(\xi) \ge dh\left(\frac{m}{n}\right) - \kappa_1 \text{ with } \kappa_1 = \log(2R/C).$$

Serving Slice 3*i* (8/8)

So there is a constant C > 0 so that p(t) > C for all $t \in \mathbb{R}$

Use the fact in the inequality we derived above, we find that

$$H(\xi) \ge \frac{C}{2R} H\left(\frac{m}{n}\right)^d$$

Finally we see that the constants C and R do NOT depend on m and n, so taking logarithms gives the desired inequality:

$$h(\xi) \ge dh\left(\frac{m}{n}\right) - \kappa_1 \text{ with } \kappa_1 = \log(2R/C).$$

Remarks

Notice that there are two ideas in the above proof:

- 1) to bound the amount of cancellation;
- 2) to look at $\frac{H(\phi(x)/\psi(x))}{H(x)^d}$ as a function on something compact.

Today we initiated the proof of Modrell's Theorem by partitioning the π into four slices, picked up the definition of heights on the road, and proved the Descend Theorem which connects the π to Modrell.

Today we initiated the proof of Modrell's Theorem by partitioning the π into four slices, picked up the definition of heights on the road, and proved the Descend Theorem which connects the π to Modrell.

Slice 1

For every $M \in \mathbb{R}$, the set $\{P \in E(\mathbb{Q}) : h(P) \leq M\}$ is finite.

Today we initiated the proof of Modrell's Theorem by partitioning the π into four slices, picked up the definition of heights on the road, and proved the Descend Theorem which connects the π to Modrell.

Slice 1

For every $M \in \mathbb{R}$, the set $\{P \in E(\mathbb{Q}) : h(P) \leq M\}$ is finite.

Slice 2

Let $P_0 \in \mathbb{Q}$ on E be fixed, then there exists a constant κ_0 depending on P_0 and a,b,c such that $h(P+P_0) < 2h(P) + \kappa_0$ for all $P \in E(\mathbb{Q})$.

Today we initiated the proof of Modrell's Theorem by partitioning the π into four slices, picked up the definition of heights on the road, and proved the Descend Theorem which connects the π to Modrell.

Slice 1

For every $M \in \mathbb{R}$, the set $\{P \in E(\mathbb{Q}) : h(P) \leq M\}$ is finite.

Slice 2

Let $P_0 \in \mathbb{Q}$ on E be fixed, then there exists a constant κ_0 depending on P_0 and a,b,c such that $h(P+P_0) < 2h(P) + \kappa_0$ for all $P \in E(\mathbb{Q})$.

Slice 3

There is a constant κ , depending on a,b,c so that $h(2P) \geq 4h(P) - \kappa$ for all $P \in E(\mathbb{Q})$.

Today we initiated the proof of Modrell's Theorem by partitioning the π into four slices, picked up the definition of heights on the road, and proved the Descend Theorem which connects the π to Modrell.

Slice 1

For every $M \in \mathbb{R}$, the set $\{P \in E(\mathbb{Q}) : h(P) \leq M\}$ is finite.

Slice 2

Let $P_0 \in \mathbb{Q}$ on E be fixed, then there exists a constant κ_0 depending on P_0 and a,b,c such that $h(P+P_0) < 2h(P) + \kappa_0$ for all $P \in E(\mathbb{Q})$.

Slice 3

There is a constant κ , depending on a,b,c so that $h(2P) \geq 4h(P) - \kappa$ for all $P \in E(\mathbb{Q})$.

Slice 4 (SPOILER)

The index $(E(\mathbb{Q}): 2E(\mathbb{Q})$ is finite.