MATHEMATICAL BACKGROUND

OUTLINE

- 1 Sets
- 2 RELATIONS
- 3 FUNCTIONS
- 4 PRODUCTS
- 5 Sums

OUTLINE

- 1 Sets
- 2 RELATIONS
- 3 FUNCTIONS
- 4 PRODUCTS
- 5 SUMS

SETS - BASIC NOTATIONS

$x \in S$	membership
$S \subseteq T$	subset
$S \subset T$	proper subset
$S \subseteq^{fin} T$	finite subset
S = T	equivalence
Ø	the empty set
N	natural numbers
Z	integers
В	$\{true, false\}$

SETS - BASIC NOTATIONS

$S \cap T$	intersection	$\stackrel{\text{def}}{=} \{x \mid x \in S \text{ and } x \in T\}$
$S \cup T$	union	$\stackrel{\text{def}}{=} \{x \mid x \in S \text{ or } x \in T\}$
S-T	difference	$\stackrel{\text{def}}{=} \{x \mid x \in S \text{ and } x \notin T\}$
$\mathcal{P}(S)$	powerset	$\stackrel{def}{=} \{T \mid T \subseteq S\}$
[m, n]	integer range	$\stackrel{def}{=} \{ x \mid m \le x \le n \}$

GENERALIZED UNIONS OF SETS

$$\bigcup \mathcal{S} \stackrel{\text{def}}{=} \{x \mid \exists T \in \mathcal{S}. \ x \in T\}$$

$$\bigcup_{i \in I} S(i) \stackrel{\text{def}}{=} \bigcup \{S(i) \mid i \in I\}$$

$$\bigcup_{i = m}^{n} S(i) \stackrel{\text{def}}{=} \bigcup_{i \in [m,n]} S(i)$$

Here S is a set of sets. S(i) is a set whose definition depends on i. For instance, we may have

$$S(i) = \{x \mid x > i + 3\}$$

Given i = 1, 2, ..., n, we know the corresponding S(i).

GENERALIZED UNIONS OF SETS

$$A \cup B = \bigcup \{A, B\}$$

Proof?

EXAMPLE (2)

Let
$$S(i) = [i, i+1]$$
 and $I = \{j^2 \mid j \in [1, 3]\}$, then

$$\bigcup_{i \in I} S(i) = \{1, 2, 4, 5, 9, 10\}$$

GENERALIZED INTERSECTIONS OF SETS

$$\bigcap \mathcal{S} \stackrel{\text{def}}{=} \{x \mid \forall T \in \mathcal{S}. \ x \in T\}$$

$$\bigcap_{i \in I} S(i) \stackrel{\text{def}}{=} \bigcap \{S(i) \mid i \in I\}$$

$$\bigcap_{i = m}^{n} S(i) \stackrel{\text{def}}{=} \bigcap_{i \in [m,n]} S(i)$$

GENERALIZED UNIONS AND INTERSECTIONS OF EMPTY SETS

$$\bigcup \mathcal{S} \stackrel{\text{def}}{=} \{x \mid \exists T \in \mathcal{S}. \ x \in T\}$$

$$\bigcap \mathcal{S} \stackrel{\text{def}}{=} \{x \mid \forall T \in \mathcal{S}. \ x \in T\}$$

we know

$$\bigcup \emptyset = \emptyset$$

$$\bigcap \emptyset \quad \text{meaningless}$$

 $\bigcap \emptyset$ is meaningless, since it denotes the paradoxical "set of everything" (see Russell's paradox).

OUTLINE

- 1 Sets
- 2 RELATIONS
- 3 FUNCTIONS
- 4 PRODUCTS
- 5 SUMS

RELATIONS

We need to first define the *Cartesian product* of two sets *A* and *B*:

$$A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$$

Here (x, y) is called a *pair*.

Projections over pairs:

$$\pi_0(x, y) = x \text{ and } \pi_1(x, y) = y.$$

Then, ρ is a *relation from A to B* if $\rho \subseteq A \times B$. Or, written as $\rho \in \mathcal{P}(A \times B)$.

RELATIONS

 ρ is a relation from A to B if $\rho \subseteq A \times B$, or $\rho \in \mathcal{P}(A \times B)$.

 ρ is a relation on S if $\rho \subseteq S \times S$.

We say ρ *relates* x *and* y if $(x, y) \in \rho$. Sometimes we write it as $x \rho y$.

 ρ is an *identity relation* if $\forall (x, y) \in \rho$. x = y.

RELATIONS – BASIC NOTATIONS

the identity on
$$S$$
 Id_S $\stackrel{\operatorname{def}}{=}$ $\{(x,x) \mid x \in S\}$ the domain of ρ $\operatorname{dom}(\rho)$ $\stackrel{\operatorname{def}}{=}$ $\{x \mid \exists y. (x,y) \in \rho\}$ the range of ρ $\operatorname{ran}(\rho)$ $\stackrel{\operatorname{def}}{=}$ $\{y \mid \exists x. (x,y) \in \rho\}$ composition of ρ and ρ' $\rho' \circ \rho$ $\stackrel{\operatorname{def}}{=}$ $\{(x,z) \mid \exists y. (x,y) \in \rho \land (y,z) \in \rho'\}$ inverse of ρ ρ^{-1} $\stackrel{\operatorname{def}}{=}$ $\{(y,x) \mid (x,y) \in \rho\}$

RELATIONS – PROPERTIES AND EXAMPLES

$$(\rho_{3} \circ \rho_{2}) \circ \rho_{1} = \rho_{3} \circ (\rho_{2} \circ \rho_{1})$$

$$\rho \circ \operatorname{Id}_{S} = \rho = \operatorname{Id}_{T} \circ \rho, \quad \text{if } \rho \subseteq S \times T$$

$$\operatorname{dom}(\operatorname{Id}_{S}) = S = \operatorname{ran}(\operatorname{Id}_{S})$$

$$\operatorname{Id}_{T} \circ \operatorname{Id}_{S} = \operatorname{Id}_{T \cap S}$$

$$\operatorname{Id}_{S}^{-1} = \operatorname{Id}_{S}$$

$$(\rho^{-1})^{-1} = \rho$$

$$(\rho_{2} \circ \rho_{1})^{-1} = \rho_{1}^{-1} \circ \rho_{2}^{-1}$$

$$\rho \circ \emptyset = \emptyset = \emptyset \circ \rho$$

$$\operatorname{Id}_{\emptyset} = \emptyset = \emptyset^{-1}$$

$$\operatorname{dom}(\rho) = \emptyset \iff \rho = \emptyset$$

RELATIONS – PROPERTIES AND EXAMPLES

$$< \subseteq \le$$

$$< \cup Id_{N} = \le$$

$$\le \cap \ge = Id_{N}$$

$$< \cap \ge = \emptyset$$

$$< \circ \le = <$$

$$\le \circ \le = \le$$

$$\ge = \le^{-1}$$

EQUIVALENCE RELATIONS

 ρ is an *equivalence relation* on S if it is reflexive, symmetric and transitive.

Reflexivity: $Id_S \subseteq \rho$

Symmetry: $\rho^{-1} = \rho$

Transitivity: $\rho \circ \rho \subseteq \rho$

OUTLINE

- 1 Sets
- 2 RELATIONS
- 3 FUNCTIONS
- 4 PRODUCTS
- 5 SUMS

FUNCTIONS

A function f from A to B is a special relation from A to B. A relation ρ is a function if, for all x, y and y', $(x,y) \in \rho$ and $(x,y') \in \rho$ imply y = y'.

Function application f(x) can also be written as f(x).

FUNCTIONS

 \emptyset and Id_S are functions.

If f and g are functions, then $g \circ f$ is a function.

$$(g \circ f) x = g(f x)$$

If f is a function, f^{-1} is *not* necessarily a function. (f^{-1} is a function if f is an injection.)

FUNCTIONS – INJECTION, SURJECTION AND BIJECTION

Injective and non-surjective:

Surjective and non-injective:

Bijective:

Non-injective and non-surjective:

FUNCTIONS – DENOTED BY TYPED LAMBDA EXPRESSIONS

 $\lambda x \in S$. E denotes the function f with domain S such that f(x) = E for all $x \in S$.

EXAMPLE

 $\lambda x \in \mathbb{N}$. x + 3 denotes the function $\{(x, x + 3) \mid x \in \mathbb{N}\}$.

FUNCTIONS – VARIATION

Variation of a function at a single argument:

$$f\{x \leadsto n\} \stackrel{\text{def}}{=} \lambda z. \begin{cases} fz & \text{if } z \neq x \\ n & \text{if } z = x \end{cases}$$

Note that x does not have to be in dom(f).

$$dom(f\{x \leadsto n\}) = dom(f) \cup \{x\}$$

$$ran(f\{x \leadsto n\}) = ran(f - \{(x, n') \mid (x, n') \in f\}) \cup \{n\}$$

EXAMPLE

$$(\lambda x \in [0..2]. x + 1)\{2 \rightsquigarrow 7\} = \{(0,1), (1,2), (2,7)\}\$$

$$(\lambda x \in [0..1]. x + 1)\{2 \rightsquigarrow 7\} = \{(0,1), (1,2), (2,7)\}\$$

FUNCTION TYPES

We use $A \rightarrow B$ to represent the set of all functions from A to B.

 \rightarrow is right associative. That is,

$$A \to B \to C = A \to (B \to C)$$
.

If $f \in A \rightarrow B \rightarrow C$, $a \in A$ and $b \in B$, then $f a b = (f(a))b \in C$.

FUNCTIONS WITH MULTIPLE ARGUMENTS

$$f \in A_1 \times A_2 \times \cdots \times A_n \to A$$

 $f = \lambda x \in A_1 \times A_2 \times \cdots \times A_n. E$
 $f(a_1, a_2, \dots, a_n)$

Currying it gives us a function

$$g \in A_1 \to A_2 \to \cdots \to A_n \to A$$

 $g = \lambda x_1 \in A_1. \ \lambda x_2 \in A_2. \ \dots \lambda x_n \in A_n. \ E$
 $g \ a_1 \ a_2 \ \dots \ a_n$

OUTLINE

- 1 Sets
- 2 RELATIONS
- 3 FUNCTIONS
- 4 PRODUCTS
- 5 SUMS

CARTESIAN PRODUCTS

Recall $A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$. Projections over pairs: $\pi_0(x, y) = x$ and $\pi_1(x, y) = y$.

Generalize to n sets:

$$S_0 \times S_1 \times \cdots \times S_{n-1} = \{(x_0, \dots, x_{n-1}) \mid \forall i \in [0, n-1]. x_i \in S_i\}$$
 We say (x_0, \dots, x_{n-1}) is an *n*-tuple.

Then we have $\pi_i(x_0, ..., x_{n-1}) = x_i$.

TUPLES AS FUNCTIONS

We can view a pair (x, y) as a function

$$\lambda i \in \mathbf{2}.$$
 $\begin{cases} x & \text{if } i = 0 \\ y & \text{if } i = 1 \end{cases}$

where $2 = \{0, 1\}.$

$$A \times B \stackrel{\text{def}}{=} \{f \mid \text{dom}(f) = \mathbf{2}, \text{ and } f \in A \text{ and } f \in B\}$$

(We re-define $A \times B$ in this way, in order to generalize \times later. Functions and relations are still defined based on the old definitions of \times .)

TUPLES AS FUNCTIONS

Similarly, we can view an n-tuple (x_0, \dots, x_{n-1}) as a function

$$\lambda i \in \mathbf{n}.$$

$$\begin{cases} x_0 & \text{if } i = 0 \\ \dots & \dots \\ x_{n-1} & \text{if } i = n-1 \end{cases}$$

where $\mathbf{n} = \{0, 1, \dots, n-1\}.$

$$S_0 \times \cdots \times S_{n-1} \stackrel{\text{def}}{=} \{f \mid \text{dom}(f) = \mathbf{n}, \text{ and } \forall i \in \mathbf{n}. f i \in S_i\}$$

GENERALIZED PRODUCTS

From

$$S_0 \times \cdots \times S_{n-1} \stackrel{\text{def}}{=} \{f \mid \text{dom}(f) = \mathbf{n}, \text{ and } \forall i \in \mathbf{n}. f i \in S_i\}$$

we can generalize $S_0 \times \cdots \times S_{n-1}$ to an infinite number of sets.

$$\prod_{i \in I} S(i) \stackrel{\text{def}}{=} \{ f \mid \text{dom}(f) = I, \text{ and } \forall i \in I. f i \in S(i) \}$$

$$\prod_{i=m}^{n} S(i) \stackrel{\text{def}}{=} \prod_{i \in [m,n]} S(i)$$

GENERALIZED PRODUCTS

Let θ is a function from a set of indices to a set of sets, i.e., θ is an indexed family of sets. We can define $\Pi \theta$ as follows.

$$\Pi \theta \stackrel{\text{def}}{=} \{ f \mid \text{dom}(f) = \text{dom}(\theta), \text{ and } \forall i \in \text{dom}(\theta). f i \in \theta i \}$$

EXAMPLE

Let $\theta = \lambda i \in I$. S(i). Then

$$\Pi \theta = \prod_{i \in I} S(i)$$

GENERALIZED PRODUCTS - EXAMPLES

$$\Pi \theta \stackrel{\text{def}}{=} \{ f \mid \text{dom}(f) = \text{dom}(\theta), \text{ and } \forall i \in \text{dom}(\theta). f i \in \theta i \}$$

EXAMPLE (1)

Let $\theta = \lambda i \in \mathbf{2.B}$. Then

$$\begin{split} \Pi\,\theta &= \{\, \{(0,\mathsf{true}), (1,\mathsf{true})\},\\ &\quad \{(0,\mathsf{true}), (1,\mathsf{false})\},\\ &\quad \{(0,\mathsf{false}), (1,\mathsf{true})\},\\ &\quad \{(0,\mathsf{false}), (1,\mathsf{false})\}\,\, \} \end{split}$$

That is, $\Pi \theta = \mathbf{B} \times \mathbf{B}$.

(Here $\mathbf{B} \times \mathbf{B}$ uses the new definition of \times . If we use its old definition, we will see an elegant correspondence between $\Pi \theta$ and $\mathbf{B} \times \mathbf{B}$.)

GENERALIZED PRODUCTS – EXAMPLES

$$\Pi \theta \stackrel{\text{def}}{=} \{ f \mid \text{dom}(f) = \text{dom}(\theta), \text{ and } \forall i \in \text{dom}(\theta). f i \in \theta i \}$$

EXAMPLE (2)

 $\Pi\emptyset = \{\emptyset\}.$

EXAMPLE (3)

If $\exists i \in dom(\theta)$. $\theta i = \emptyset$, then $\Pi \theta = \emptyset$.

EXPONENTIATION

Recall
$$\prod_{x \in T} S(x) = \prod \lambda x \in T. S(x)$$
.

We write S^T for $\prod_{x \in T} S$ if S is independent of x.

$$S^{T} = \prod_{x \in T} S = \Pi \lambda x \in T. S$$

= $\{ f \mid \text{dom}(f) = T, \text{ and } \forall x \in T. f x \in S \} = (T \to S)$

Recall that $T \to S$ is the set of all functions from T to S.

EXPONENTIATION - EXAMPLE

We sometimes use 2^S for powerset $\mathcal{P}(S)$. Why?

EXPONENTIATION – EXAMPLE

We sometimes use 2^{S} for powerset $\mathcal{P}(S)$. Why?

$$\mathbf{2}^S = (S \to \mathbf{2})$$

For any subset *T* of *S*, we can define

$$f = \lambda x \in S.$$

$$\begin{cases} 1 & \text{if } x \in T \\ 0 & \text{if } x \in S - T \end{cases}$$

Then $f \in (S \rightarrow \mathbf{2})$.

On the other hand, for any $f \in (S \to \mathbf{2})$, we can construct a subset of S.

OUTLINE

- 1 Sets
- 2 RELATIONS
- 3 FUNCTIONS
- 4 PRODUCTS
- 5 Sums

SUMS (OR DISJOINT UNIONS)

EXAMPLE

Let $A = \{1, 2, 3\}$ and $B = \{2, 3\}$.

To define the disjoint union of *A* and *B*, we need to index the elements according to which set they originated in:

$$A' = \{(0,1), (0,2), (0,3)\}$$

 $B' = \{(1,2), (1,3)\}$
 $A+B = A' \cup B'$

SUMS (OR DISJOINT UNIONS)

$$A + B \stackrel{\text{def}}{=} \{(i, x) \mid i = 0 \text{ and } x \in A, \text{ or } i = 1 \text{ and } x \in B\}$$

Injection operations:

$$\iota_{A+B}^{0} \in A \to A+B$$
$$\iota_{A+B}^{1} \in B \to A+B$$

The sum can be generalized to n sets:

$$S_0 + S_1 + \cdots + S_{n-1} \stackrel{\text{def}}{=} \{(i, x) \mid i \in \mathbf{n} \text{ and } x \in S_i\}$$

GENERALIZED SUMS (OR DISJOINT UNIONS)

It can also be generalized to an infinite number of sets.

$$\sum_{i \in I} S(i) \stackrel{\text{def}}{=} \{(i, x) \mid i \in I \text{ and } x \in S(i)\}$$

$$\sum_{i = m}^{n} S(i) \stackrel{\text{def}}{=} \sum_{i \in [m, n]} S(i)$$

The sum of θ is

$$\Sigma \theta \stackrel{\text{def}}{=} \{(i, x) \mid i \in \text{dom}(\theta) \text{ and } x \in \theta i\}$$

So

$$\sum_{i \in I} S(i) = \Sigma \lambda i \in I.S(i)$$

GENERALIZED SUMS (OR DISJOINT UNIONS)

- EXAMPLES

$$\Sigma \theta \stackrel{\text{def}}{=} \{(i, x) \mid i \in \text{dom}(\theta) \text{ and } x \in \theta i\}$$

EXAMPLE (1)

$$\sum_{i \in \mathbf{n}} S(i) = \sum \lambda i \in \mathbf{n}.S(i) = \{(i, x) \mid i \in \mathbf{n} \text{ and } x \in S(i)\}$$

EXAMPLE (2)

Let $\theta = \lambda i \in \mathbf{2.B}$. Then

$$\Sigma\,\theta = \{\ (0, \mathsf{true}), (0, \mathsf{false}), (1, \mathsf{true}), (1, \mathsf{false})\ \}$$

That is, $\Sigma \theta = \mathbf{2} \times \mathbf{B}$.

GENERALIZED SUMS (OR DISJOINT UNIONS)

- EXAMPLES

$$\Sigma \theta \stackrel{\text{def}}{=} \{(i, x) \mid i \in \text{dom}(\theta) \text{ and } x \in \theta i\}$$

EXAMPLE (3)

$$\Sigma \emptyset = \emptyset.$$

EXAMPLE (4)

If $\forall i \in \text{dom}(\theta)$. $\theta i = \emptyset$, then $\Sigma \theta = \emptyset$.

EXAMPLE (5)

Let
$$\theta = \lambda i \in \mathbf{2}$$
. $\begin{cases} \mathbf{B} & \text{if } i = 0 \\ \emptyset & \text{if } i = 1 \end{cases}$, then $\Sigma \theta = \{(0, \mathbf{true}), (0, \mathbf{false})\}$.

More on Generalized Sums (or Disjoint Unions)

$$\Sigma \theta \stackrel{\text{def}}{=} \{(i, x) \mid i \in \text{dom}(\theta) \text{ and } x \in \theta i\}$$

$$\sum_{x \in T} S(x) \stackrel{\text{def}}{=} \Sigma \lambda x \in T.S(x)$$

We can prove $\sum_{x \in T} S = T \times S$ if S is independent of x.

$$\sum_{x \in T} S = \sum \lambda x \in T. S$$

$$= \{(x, y) \mid x \in T \text{ and } y \in S\} = (T \times S)$$