Time Series

EC420 MSU Online

Justin Kirkpatrick Last updated June 12, 2021

This Deck

Lectures:

- (1) Introducing Time Series
- (2) Functional Forms and Time Trends
- (3) Lag Models: Finite Distributed Lag
- (4) Properties of Time Series Estimators
- (5) Stationarity
- (6) Lag Models: MA and AR
- (7) Asymptotic Properties
- (8) Random Walk

top

We shift gears entirely

- Work with time series
 - Single unit of observation, but many observations
 - Always over time
 - Time flows one way

This video

- Define time series
- Terminology

Time series data is any data that has a temporal order

- Can be ordered by time
- Time only flows one way, which is helpful.

Time series usually implies a single unit of observation with multiple observations

- E.g. it isn't panel data
- ullet But panel data can be thought of as N time-series'.
- ullet For now, one unit of observation, T observations.

Stochastic Process

- A stochastic process or time series process is a sequence of random variables indexed by time
- "Stochastic" means "random"

Each sequence we observe is a realization of the stochastic process

- Just as we pulled a sample from a population, the time series data we do observe can be thought of as a drawn from a population of possible time series' that follow a process.
- The "population" then is the set of all possible time series' that could have been drawn.
- We only get to see one realization of the possible time series.
- We want to learn about the underlying structure that is common to the population
 - How do things change over time?

Let's think about a silly example

How about a "pendulum" sort of process where each observation in time is simply -1 times the previous result, plus a tiny bit of error:

t	Value	
1	2	
2	-2.01	
3	2.005	
4	-2.0072	
5	2.012	

- It doesn't take too many observations in our sample to figure out the process, right?
- Though who knows, maybe observation 6 is -23.71.
- But if we could safely assume that the process can't go completely bonkers, then we could infer things about the population process from our sample.

That's what time series econometrics is all about

- Make safe assumptions
- Observe sample drawn from a population process we want to learn about
- Model process and estimate parameters that describe it

Functional Forms and Time Trends

top

We begin with some simple ways of specifying time

- Just to get us thinking about time series
- To see the parallels with our cross-sectional methods

Many time series have seasonal factors

- Unemployment especially Nov-Dec reflects temporary holiday employment at FedEx or Amazon or Sears
- Census employment every 10 years for 1 year

$$y_t = eta_0 + eta_1 1(Winter) + eta_2 1(Spring) + eta_3 1(Summer) \ + \ eta_4 x_t + eta_5 x_{t-1} + eta_6 1(census) + u_t$$

If there is a natural, smooth progression in the y, we may want to control for it

It may be due to unobserved factors, but much like a fixed effect, we don't have to see it to control for it. t is continuous here:

$$y_t = lpha_0 + lpha_1 x_1 + lpha_2 x_2 + lpha_3 t + u_t$$

- ullet $lpha_3$ is a linear time trend. It says that y_t goes up by $lpha_3$ per t.
- ullet Ignoring this would make y_t correlated with anything that is growing just like y
 - A regression of "number of total posts on Instagram" and "number of drownings in the ocean" will probably be correlated because both tend to grow over time.
- This is an example of a spurious regression problem

Including the time trend t in the regression fixes this

What about the x's when we include a time trend?

$$y_t = \beta_0 + \beta_1 x_{1,t} + \beta_2 t + u_t$$

Remember, we can think of the partialling out:

$$y_t = \alpha_0 + \alpha_1 t + v_t$$

$${ ilde y}_t = y - \hatlpha_0 - \hatlpha_1 t$$

Same for x_t

$$x_t = \delta_0 + \delta_1 t + w_t$$

$$ilde{x}_{1,t} = x_t - \hat{\delta}_0 - \hat{\delta}_1 t$$

These are the y and x time series without their time trends. They are detrended.

Then, when we regress

$$y_t=eta_0+eta_1x_{1,t}+eta_2t+u_t$$

We are doing the equivalent to

$${ ilde y}_t = \gamma_0 + \gamma_1 { ilde x}_1 + \epsilon_t$$

And $\gamma_1=eta_1$. This is the regression of the detrended y on the detrended x.

If we log-transform y_t , we get a trend in percent change which is exponential

Lag Models: Finite Distributed Lag

top

The **static** model

$$y_t = \beta_0 + \beta_1 z_t + u_t$$

- ullet Looks just like our usual OLS model, but instead of i, we have t
- ullet We could run this regression for eta_1

There are many different ways we can account for things that happen over time

- We could let our outcome y in time t, say y_t , be a function of current values of z and past values of z.
- ullet We could let y_t be a function of past values of y_t say y_{t-1}
- ullet We could let y_t be a function of past values of u as well.

We have specific names for the types of time series models we might employ.

- Each one describes a different dynamic process
- Here is one of them: Finite Distributed Lag
- More will come later once we talk about desirable properties of time series

Finite Distributed Lag (FDL) Model

$$y_t = lpha_0 + \delta_1 z_t + \delta_2 z_{t-1} + \delta_3 z_{t-2} + u_t$$

The subscripts are not indicating different z variables. The subscripts refer to the ordering in time.

We call the previous time period the "lag", so this is "y regressed on z, the first lag of z, and the second lag of z"

The FDL is saying that:

- $E[y_t|z_t,z_{t-1},z_{t-2}]$ at time t is explained by contemporaneous z, the previous period's z (which is z_{t-1}), and the z before that, z_{t-2} .
 - "contemporaneous" means "at the same time".
 - \circ Notice that our PRF tells us $E[y_t]$ conditional on a bunch of **lags** (previous values) of z.

In the previous slide's Finite Distributed Lag model:

The marginal effect of z (the effect of increasing z by one unit) is now time-specific

This is a FDL with order two

becuase there are two lags of z in addition to the contemporaneous z

We are essentially "tracing out" the effect of an increase in z at time t

$$y_t = lpha_0 + \delta_1 z_t + \delta_2 z_{t-1} + \delta_3 z_{t-2} + u_t$$

If z_t were one unit higher (permanently):

- ullet $E[y_t]$ would be δ_1 higher
- ullet $E[y_{t+1}]$ would be $\delta_1+\delta_2$ higher
- ullet $E[y_{t+2}]$ would be $\delta_1+\delta_2+\delta_3$ higher
- ullet $E[y_{t+3}], \cdots$ would be $\delta_1 + \delta_2 + \delta_3$ higher

Lag distribution

Lag Models: FDL

We call the contemporaneous effect, δ_1 , the "impact multiplier" If we add up all of the z coefficients, $\delta_1+\delta_2+\delta_3$ then we get the total cumulative changes in y. This is the **long run multiplier**.

Why care about the **long run multiplier**?

If y were "monthly wages" and t were month, then the **long run multiplier** would be the total monthly wage increase due to the one-unit, permanent change in z.

It adds up all of the lagged effects.

A FDL of order q

$$y_t = lpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \cdots + \delta_q z_{t-q} + u_t$$

With Long Run Multiplier (or Long Run Propensity):

$$LRP = \delta_0 + \delta_1 + \cdots + \delta_q$$

This is a **static model** if we set:

$$\delta_2, \delta_3, \cdots, \delta_q = 0$$

Lag Models: FDL

In any time series (and in the FDL)

things tend to be correlated over time. z_t and z_{t-1} are probably not independent z_t and z_{t-1} might even be highly correlated

- ullet so in a regression with z_t and z_{t-1} , we could have multicolinearity problems
- ullet which leads to imprecise estimates (high $se(\hat{\delta_2})$)

Let's look a the properties of the time-series estimators

top

Are time series estimators

- Unbiased?
- Consistent?
- What is the distribution of $\hat{\beta}$?

Let's look at the time series analog to MLR.1-MLR.6

 These will be assumptions we can make about the data that will let us show that time series estimators are unbiased

First, a little notation:

t	x_1	x_2	x_3
1	2	0.20	100
2	3	0.24	100
3	1	0.33	104
4	2	0.31	101

$$x_{2,2}=.24$$

$$\mathbf{x}_{t_1} = \{2, .20, 100\}$$

X = the whole thing.

TS1 - Linear In Parameters:

$$y_t = eta_0 + eta_1 x_{t1} + \dots + eta_k x_{tk} + u_t$$

TS2 - No Perfect Collinearity:

No independent variable (RHS) is constant nor a perfect linear combination of the others.

TS3 - Zero Conditional Mean

$$E[u_t|\mathbf{X}]=0, \quad t=1,2,\cdots,n$$

- Note the ${f X}$. This is saying that u_t is uncorrelated with **every** x in all time periods.
- Even in the future!
- Call this strict exogeneity or nonrandom X

TS3 - Zero Conditional Mean

Strict exogeneity can fail due to:

- Omitted variables
- Measurement error (we will cover this later)
- ullet u_t correlated with x_{t-s} where s is any lag/lead.
 - \circ Let's say x_{t-1} has an effect on y_t and we don't specify a FDL

$$egin{aligned} y_t &= eta_0 + eta_1 x_t + ilde{u}_t \ y_t &= eta_0 + eta_1 x_t + \{\gamma_1 x_{t-s} + u_t\} \end{aligned}$$

Here, γ_1 is the correlation between x_{t-s} and y_t which is not in the model.

The error term we end up with, $ilde{u}_t$ has x_{t-s} in it, and thus $E[ilde{u}_t|\mathbf{X}]
eq 0$

(We could include a lag of (x) with a FDL(s) model and solve this particular problem)

TS3 - Zero Conditional Mean

Strict exogeneity can also fail due to:

- ullet y_t or u_t has an effect on x_{t+1} : $x_{t+1} = \gamma_1 u_t + v_t$
- If \tilde{x}_{t+1} is correlated with y_t , and since y_t is very much correlated with u_t , then x_{t+1} is correlated with u_t and $E[u_t|\mathbf{X}] \neq 0$. We have violated strict exogeneity.

TS3 - Zero Conditional Mean

- ullet If we have the "right" number of lags in a FDL, we are controlling for the effect of past x
 - \circ That means we don't have to worry if x_t is correlated with u_{t-1} in a onelag FDL.
 - Because it is *controlled for* just like when we included the omitted variable that caused bias.
- ullet **But** we do worry about y_t having an effect on x_{t+1} still.
 - A FDL doesn't fix that.
 - This is common in social sciences like economics

TS1 - Linear In Parameters:

$$y_t = eta_0 + eta_1 x_{t1} + \dots + eta_k x_{tk} + u_t$$

TS2 - No Perfect Collinearity:

No independent variable (RHS) is constant nor a perfect linear combination of the others.

TS3 - Zero Conditional Mean:

$$E[u_t|\mathbf{X}]=0$$

Under assumptions TS1, TS2, and TS3 hold, our OLS estimator is **unbiased**.

We need two more assumptions to get a variance of our estimator:

TS4 - Homoskedasticity:

$$Var[u_t|\mathbf{X}] = Var[u_t] = \sigma^2, \quad t=1,2,\cdots,n$$

TS5 - No Serial Correlation

$$Corr(u_t,u_s|\mathbf{X})=0 \quad orall t
eq s$$

- ullet Conditional on ${f X}$, errors at any two times t and s are uncorrelated.
- This is a **huge** assumption
- Let's discuss this...

TS5 - No Serial Correlation

- Serial Correlation is lso known as autocorrelation
- ullet Imagine you have a time series of $y_t = eta_0 + eta_1 x_t + u_t$
- ullet Now, imagine that some unobserved influence increased y_{t+1} by a small amount
 - $\circ \ u_{t+1}' > u_{t+1}'$
 - \circ The new u is a little larger than what would have been without the unobserved influence- Thus far, this is not a problem
- ullet But...if that effect is persistent and $u_{t+2}^\prime > u_{t+2}$
 - \circ Now, what you observe is $u_{t+1}^{\prime}, u_{t+2}^{\prime}$ and those two are correlated.

Serial Correlation

- Another way of thinking of Serial Correlation is this:
 - \circ If knowing that $u_t>0$ told you something about u_{t+1} , then $Corr(u_t,u_{t+1})
 eq 0.$
 - This violates assumption TS5

This was not a problem when we had random sampling in MLR.

- There was no "order" to i.
- But here, we are randomly drawing the series from the population of possible series.

TS5 does *not* require anything of $Corr(x_t, x_{t+1})$

ullet This is about the *unobserved*, not the observed ${f X}$

Under assumptions TS1-TS5

$$Var(\hat{eta}_j|\mathbf{X}) = rac{\sigma^2}{SST_j(1-R_j^2)}, \quad j=1,\cdots,k$$

- This is our usual expression for the variance of the β_i in MLR.
- ullet We estimate $\hat{\sigma}^2$ the same way: $\hat{\sigma}^2 = rac{1}{N-k-1} \sum \hat{u}_t^2$
- ullet (BLUE): the OLS estimator is the Best Linear Unbiased Estimator conditional on ${f X}$

TS6 - Normality and *iid* errors, we have the same inference as before

ullet t-statistic, F-statistic, confidence intervals, and p-values.

Properties of Time Series Estimators

TSR1 - TSR6 are very restrictive

• Remember, we had to assume no serial correlation, nonrandom ${f X}$ with no effect of y_t on x_{t+1} .

If we make these heroic assumptions

- We can use dummy and factor variables just the same
- ullet Natural logs, $ln(x_t)$, are percentage changes just the same
- We can do an event study analysis
 - A time-series with a binary dummy for treatment

We will relax these assumptions in a little bit

Stationarity

top

Chapter 11 introduces stationary time series:

- A stationary time series is a time series where the *joint distribution* of the variables in the time series is the same in each time period.
- If the *joint pdf* of (x_t, x_{t+1}) is the same as the joint distribution of (x_{t+h}, x_{t+1+h}) , then x_t is *stationary*.
- The series can be stationary but also highly correlated. In fact, $x_t = x_{t+1}$ would mean they are perfectly correlated, but they can still be stationary!

If we think of the random sampling in a time series as drawing a chain of observations from the overall population

then we start to see why stationarity is important. It means it doesn't matter where in the "chain" we draw from.

Non-stationarity

• Non-stationarity is not uncommon. Think about our time trend regression:

$$y_t = eta_0 + eta_1 x_{1,t} + eta_2 t + u_t$$

Ignore the $x_{1,t}$ for a moment. It's pretty clear that the joint distribution of (y_t, y_{t+1}) is not the same as (y_{t+h}, y_{t+1+h}) , but we can control for that. Sometimes we can't, and that becomes a problem

A stationary time series $\{x_t: t=1,2,\cdots\}$ is one where the *joint* distribution of (x_t,x_{t+h}) is the same as the joint distribution of $(x_{t+k},x_{t+h+k}) \forall k,h \geq 1$

Remember the idea of a time series being a realization of a sequence? "Pulling a chain" out of a bag of all possible chains?

Joint Distribution includes

- ullet The mean of x_t
- ullet The mean of x_{t+h}
- The variance of x_t
- The variance of x_{t+h}
- The covariance of (x_t, x_{t+h})

Stationary implies *identically distributed*. Imagine h=1. Then x_t and x_{t+1} have the same mean and variance when stationary.

But stationary means even more.

Stationarity says that the relationship over time is stable.

That whatever stochastic process drives the relationship between x_t and x_{t+h} also applies, in a random sense, to x_{t+k} and x_{t+h+k} .

Why is non-stationarity a problem?

(I)f we want to understand the relationship between two or more variables using regression analysis, we need to asssume some sort of stability over time. If we allow the relationship between two variables to change arbitrarily in each time period, then we cannot hope to learn much about how a change in one affects the other(...)

Much of time series econometrics is about being very specific as to how big of a problem this may be, and when it stops being a problem

- If we assume that everything past one lag is uncorrelated, time series is very easy!
- ullet We already saw that assuming y_t has no effect on x_{t+1} made things very easy!

Covariance stationarity

A weaker form of stationarity is covariance stationarity

This holds when:

- 1. $E[x_t]$ is constant
- 2. $Var(x_t)$ is constant
- 3. For any t,h, $Cov(x_t,x_{t+h})$ depends only on h, not on t.

The first two are straightforward. The third simply means that the correlation structure is the same.

- x_1 and x_3 may be correlated...
- ullet ...but x_2 and x_4 have the same correlation
- Correlation is a population concept.

This is sometimes called weak stationarity

TS5, "no correlation in u_t, u_{t+h} ", meets this

Covariance stationarity

Let's pause for a moment

These conditions are all ways of saying that

"regardless of where in the chain our sample is drawn, we can learn about how the chain behaves from our observation".

Weak dependence

Stationarity is about how stable the relationship is between (x_t, x_{t+h})

For a variety of t and h

We need a concept that tells us how large h has to be to say that x_t and x_{t+h} are essentially unrelated

Weak dependence

A **weakly dependent** time series $\{x_t:1,2,\cdots\}$ is one where, as h gets larger, x_t and x_{t+h} become "almost independent".

- If it is covariance stationary and
- ullet $Cov(x_t,x_{t+h}) o 0$ as $h o \infty$
- "Asymptotically uncorrelated"

If a time series is weakly dependent, then we have a Central Limit Theorem (CLT) and Law of Large Numbers (LLN) that can apply

The CLT is what let us say that we could ignore non-normal errors The LLN is what let us say that averages, with large enough N, are unbiased estimates of the population average.

ullet This let us say that $E[\hat{eta}]=eta$

Lag Models: Autoregressive and Moving Average

Lag Models: AR and MA

It will turn out (next section) that weak dependence and covariance stationarity lets us relax some of our TSR assumptions

- So far, we have had to make pretty big assumptions to say our time series estimators are unbiased
- We can relax a little bit

So let's look at two more lag models

and let's see if they have our desired properties

One useful weakly dependent model: Moving Average

$$x_t = e_t + \alpha_1 e_{t-1}$$

- ullet e_t is a random i.i.d. sequence with zero mean and constant variance
- ullet The process $\{x_t\}$ is a Moving Average of order one (MA(1))

$$x_t = e_t + \alpha_1 e_{t-1}$$

\overline{t}	е	X
1	0.7	NA
2	-0.6	-0.25
3	-0.2	-0.50
4	0.6	0.50
5	1.4	1.70

 \boldsymbol{x} has constant mean, constant variance

 x_t and x_{t+h} have the same covariance $orall \ h$

$$Cov(x_t, x_{t+h}) = 0 \quad orall h \geq 2$$

We can go beyond the first lag of e and have a MA(2) or more...

$$x_t = e_t + \alpha_1 e_{t-1} + \alpha_2 e_{t-2}$$

• This is still stationary (try taking expectation of each side)

$$egin{array}{ll} \circ & E[x_t] = E[e_t] + lpha_1 E[e_{t-1}] + lpha_2 E[e_{t-2}] \ \circ &
ightarrow E[x_t] = 0 + 0 + 0 ext{ which does not depend on } t \end{array}$$

- This is still weakly dependent
 - \circ Is there an h where $Cov(x_t, x_{t+h}) = 0$?
 - \circ Yes! h>2 does it.

Another useful model: Autoregressive

$$y_t = \rho_1 y_{t-1} + e_t$$

- ullet $\{e_t: t=1,2,\cdots\}$ is i.i.d. with zero mean and constant variance σ_e^2
- ullet So e_t is independent of y
- ullet Each y_t is equal to some fraction of the previous y_t **and** that new error term, e_t
 - Sometimes called an "innovation"
- ullet There is some y_0 that started it all

Imagine for a moment that $ho_1 >> 1$

• How does y_t behave over time?

The AR(1) process:

$$y_t = \rho_1 y_{t-1} + e_t$$

We can show that, if $ho_1 < 1$, then y_t , our **AR(1)** process, is weakly dependent.

 $oldsymbol{
ho}_1 < 1$ is called a "stable AR(1)" This is largely because $e_t \perp y_{t-1}$ (independent)

$$Var(y_t) = Var(
ho_1 y_{t-1}) + Var(e_t) =
ho_1^2 Var(y_{t-1}) + Var(e_t)$$

$$ightarrow \sigma_y^2 =
ho^2 \sigma_y^2 + \sigma_e^2$$

As long as $ho < 1
ightarrow
ho^2 < 1$, then we can get:

$$\sigma_y^2 = rac{\sigma_e^2}{1-
ho_1^2}$$

Lag Models: AR and MA

Wooldridge 11-1 shows that $Corr(y_t,y_{t+10})>Corr(y_t,y_{t+20})$ when ho<1

Thus, AR(1) is weakly dependent.

The AR(1) model violates strict exogeneity

$$E[u|\mathbf{X}]
eq 0$$

- 1. First, note that E[u|x]=0 is the same as $E[u_tx_t]=0$ when $E[u_t]=0$.
 - \circ Now, our lag of Y is contained in ${f X}$
- 2. So strict exogeneity says $E[u_t y_{t-1}] = 0$
 - Let us assume this holds
- 3. It must also be true that $E[u_t y_{t+1}] = 0$. Does it?

$$egin{array}{ll} \circ & o E[u_t(eta_1 y_t + u_t)] = 0 \ \circ & o E[u_t(eta_1(eta_1 y_{t-1} + u_{t-1}) + u_t)] = 0 \end{array}$$

$$| \circ |
ightarrow E[u_t eta_1^2 y_{t-1} + eta_1 u_t u_{t-1} + u_t^2] = 0$$

The only way strict exogeneity can hold in an AR(1) model with y_{t-1} on the right side is if u_t has no variance.

But how does weakly dependent help?

Asymptotic Properties of TS OLS

top

TS.1' - Linearity and Weak Dependence

$$\{(\mathbf{x}_t, y_t): t=1, 2, \cdots\}$$
 is stationary and weakly dependent

in a model such as:

$$y_t = eta_0 + eta_1 x_{1,t} + eta_2 x_{1,t-1} + \dots + eta_j y_{t-1} + u_t$$

Note that

- ullet ${f x}$ has ${f x}$ and lags of ${f x}$
- ullet ${f x}$ also has lags of y

Really, we just need weak dependence, but Wooldridge includes stationarity

TS.2' - No Perfect Multicolinearity (same as before)

Asymptotic Properties

TS.3' - \mathbf{x}_t is contemporaneously exogenous

$$E[u_t|\mathbf{x}_t]=0$$

We've relaxed that pernicious **strict exogeneity** assumption from before by adding TS.1'

- ullet Remember, **strict exogeneity** was $E[u_t|\mathbf{X}]=0$, all future values of \mathbf{x}_t .
- So as long as TS.1' and TS.3' hold, we don't have to worry about correlation between u_{t-1} and x_t , even when it's because x_t is related to past y_{t-1} !

Asymptotic Properties

With TS.1', TS.2', TS.3', $\hat{\beta}$ is consistent

Not necessarily unbiased, but with larger and larger N, the estimate gets better!

So our **AR(q)** model estimators, if it meets TS.1'-TS.3', are consistent.

• To meet TS.1', it has to be stable

So are our **MA(q)** model estimators.

So are our FDL estimators, even when future values of x_t are affected by y_{t-1}

TS.4' - Contemporaneous homoskedasticity

$$Var(u_t|\mathbf{x}_t) = \sigma^2$$

As opposed to TS.4 - $Var(u_t|\mathbf{X}) = \sigma^2$

TS.5' - No Serial Correlation

$$Corr(u_t, u_s | \mathbf{x}_t, \mathbf{x}_s) = 0 \quad orall t, s$$

As Wooldridge says, ignore the conditioning and just think of whether or not u_t and u_s are correlated.

Note that specifying an **AR(1)** when the real process is **AR(2)** results in serial correlation (because y_{t-2} is in the error and y_t is serially correlated)

Asymptotic Properties

Under TS.1'-TS.5', the errors are asymptotically normally distributed

Which lets us use t-statistics, F-tests, confidence intervals, p-value, etc.

We've skipped assuming normal errors and gone straight to using the **asymptotic properties**.

So we need to be able to say we have a large N

ullet Which means a large T

Asymptotic Properties

Serial correlation in u is not the end of the world. We won't get to the solution, but briefly, here's how it works:

Heteroskedasticity and Autorcorrelation-Consistent Errors

or **HAC**, are calculated for each eta_j by multiplying each "naive" OLS std. error by a correction factor, \hat{v}_j

- \hat{v}_i is a function of two things:
 - $\circ u_t$, as one would expect
 - $\circ \ r_t$, where r_t is the error in $x_{it} = lpha_0 + lpha_1 x_{kt} + \cdots + r_t$
 - \circ When \hat{u}_t covaries with \hat{r}_t (the part of x_{jt} not explained by \mathbf{x}_t), the correction factor \hat{v}_j gets bigger.
 - \circ When lags of $\hat{u}_t imes \hat{r}_t$ covary, \hat{v}_i gets bigger.
 - How many lags to include is a question for another day (1? 2? 10?)

Random Walk

top

A random walk is a highly persistent time series

It is not weakly dependent, so it poses a problem to TS.1'-TS.5'

A random walk is a process that follows:

$$y_t = \rho y_{t-1} + e_t ext{ where } \rho = 1$$

and e is iid, E[e]=0 (mean zero errors) and $Var(e)=\sigma_e^2$

We can write

$$y_t = y_{t-1} + e_t$$

which is the same as

$$y_t = y_{t-2} + e_{t-1} + e_t$$

which generalizes to:

$$y_t = y_0 + e_1 + e_2 + \cdots + e_t$$

A Random Walk has a constant $E[y_t]$

$$y_t = y_0 + e_1 + e_2 + \cdots + e_t$$

means

$$E[y_t] = E[y_0] + 0 + 0 + \cdots + 0$$

But a Random Walk does not have constant variance:

$$Var(y_t) = Var(y_0) + Var(e_1) + Var(e_2) + \cdots + Var(e_t)$$

Which is $t\sigma_e^2$, so it changes over time!

A Random Walk is not stationary and TSR.1'-TSR.5' do not hold!

Nor is a Random Walk covariance-stationary (depends on t), and is not weakly dependent.

So what do we do? First difference

- Note that the e_t term is iid.
- The issue is that the time series is highly persistent.
- $m{\cdot}$ ho=1 means nothing ever "dies out" as $t o\infty$

First differencing eliminates the persistence:

$$y_t - y_{t-1} = \Delta y_t = (y_{t-1} + e_t) - y_{t-1} = e_t$$

And e_t is no longer persistent, no longer fails weak dependence, etc.

Time Series that are weakly dependent after first differencing (FD)

- Are called I(1)
 - Integrated of order one
- I(0) means not integrated (not random walk, no FD necessary)

So how do we know when ho=1 vs ho<1

- Important because the first requires first differencing
- ullet The second, ho < 1, is not highly persistent and is likely to be weakly dependent

The rough method

- Regress the time series y_t on the first lag y_{t-1} with or without drift and see if ho
 eq 1 $\circ y_t = lpha +
 ho y_{t-1} + e_t$ where lpha is the drift term
- ullet Problem is, you only get a consistent estimate of ho if ho < 1

But there's a better way

ullet We just have to handle the strange properties of an estimator that tests for ho=1 but has to assume that ho<1

Dickey-Fuller

- See Ch. 18, Testing for Unit Roots
- Define $\theta=\rho-1$
- ullet Subtract y_{t-1} from both sides of $y_t = lpha +
 ho y_{t-1} + e_t$
- $ullet \ o \Delta y_t = lpha + heta y_{t-1} + e_t$
- Test if $\theta = 0$
- ullet Dickey and Fuller (1979) showed that the distribution of this t-statistic has to be adjusted for the situation where ho=1
 - \circ Adjustment can be expressed as new critical values with ± 2.86 replacing our usual ± 1.96
- ullet Rejecting null hypothesis is equivalent to rejecting that ho=1
 - \circ So rejecting null is rejecting Random Walk, rejecting that y is I(1)

Fail to reject Dickey-Fuller?

- If we fail to reject, then we say the data does not provide evidence against the series being I(1)
- So we first difference it.

Thats It

You've made it to the end of time series

And to the end of the course

Congratulations.