

PREDICCION DE GÉNERO DE PELÍCULAS

Tópicos Avanzados

Grupo:

Anguie Garcia - Mili Galindo - Sonia Ramírez - Lourdes Rodil

Objetivo del proyecto

Clasificar el género cinematográfico de una película en función de su argumento (plot)

1. Adquisión de los datos & EDA

Campos dataset:

- Titulo
- Año estreno
- Rating
- Argumento /plot
- Géneros

Histograma de años de películas

Histograma de rating de películas

Matriz de Correlación

1. Adquisión de los datos & EDA

Mayor correlación positiva es entre "Familia" y "Animation" con un 0.5 y la mayor correlación negativa es entre "Triller" y "Comedy" con un -0.3 :

Limpieza: Para el proyecto no fueron requeridas labores de limpieza de la base de datos, previo al paso de procesamiento, ya que no se evidenciaron datos nulos

3. Preprocesamiento del Texto & 4. Feature Ingineering


```
lemmatizer = WordNetLemmatizer()
# define a function that accepts text and returns a list of lemmas
def split_into_lemmas(text):
    text = text.lower()
    text = re.sub(r'[^a-zA-Z0-9]', ' ', text)
    text = re.sub(r'[^\w\s]', '', text)
    words = [word for word in nltk.word_tokenize(text)]
    return [lemmatizer.lemmatize(word) for word in words]
```

5. Modelación

A continuación, se presenta un resumen de los modelos diseñados:

Nombre del Modelo	Parametros		
Random Forrest Classifier	n_jobs=-1, n_estimators=150, max_depth=15		
XGBoost - (objective: binary logistic)	objective='binary:logistic'		
XGBoost - OneVsRestClassifier	Parametros por defecto: n_estimators=100,learning_rate=0.1, max_depth		
XGBoost -(OneVsRestClassifier)	n_jobs=-1, n_estimators=100,learning_rate=0.3, max_depth=5		
Support Vector Machine	Parametros por defecto		
Red Neuronal	Parametros por defecto		

6. Evaluación

Modelos Evaluados

Como se observa los modelos XGBoost vectorizados con el embedding de Tensorflow, son los que presentan el mejor desempeño sobre el umbral de éxito.

		Modelo	AUC	Tipo
	12	XGBoost 1 – OneVsRestClassifier (Defecto)	0.9005	Embeddings
	13	XGBoost 2- OneVsRestClassifier	0.8986	Embeddings
	10	Random Forest Classifier	0.8706	Embeddings
	11	XGBoost - objective: binary logistic	0.8706	Embeddings
	0	Random Forest Classifier	0.8295	Stemming
	1	XGBoost - objective: binary logistic	0.8295	Stemming
	3	XGBoost 2- OneVsRestClassifier	0.8292	Stemming
	2	XGBoost 1 – OneVsRestClassifier (Defecto)	0.8265	Stemming
	5	Random Forest Classifier	0.8186	Lemmatización
	6	XGBoost - objective: binary logistic	0.8186	Lemmatización
	8	XGBoost 2- OneVsRestClassifier	0.8030	Lemmatización
	7	XGBoost 1 – OneVsRestClassifier (Defecto)	0.7973	Lemmatización
	4	Support Vector Machine	0.5618	Stemming
	9	Support Vector Machine	0.5409	Lemmatización
	14	Red Neuronal	0.5000	Embeddings
	15	Support Vector Machine	0.5000	Embeddings

Gracias