

1 TO WHOM IT MAY CONCERN:

2

3 BE IT KNOWN THAT I, JOHN M. POPOVICH, a
4 citizen of the United States of America, residing in
5 Solana Beach, in the County of San Diego, State of
6 California, have invented a new and useful improvement
7 in

8

9 **ELECTRONIC ASSEMBLY/SYSTEM WITH REDUCED COST, MASS, AND**
10 **VOLUME AND INCREASED EFFICIENCY AND POWER DENSITY**

11

12

13

14

15

16

17

18

19

20

21

22

23

1 **BACKGROUND OF THE INVENTION**

2

3 This application is a continuation-in-part of
4 prior pending U.S. application serial number 10/625,185
5 filed July 23, 2003.

6 The methods described and claimed herein
7 relate generally to provision of electronic-optical
8 packages, and more particularly to provision of grids
9 or arrays of such packages supported in such manner as
10 to facilitate their installation and use as in closely
11 assembled or packed configurations.

12 Large-scale LED displays are typified by the
13 use of T 1 $\frac{3}{4}$ (5mm) packaged LEDs soldered to rigid
14 printed circuit boards. Such circuit board/modules
15 typically contain a large number of LEDs and must be
16 replaced to correct for the failure of even a single
17 LED. In addition to cost, weight and volume issues or
18 problems, these displays are limited in resolution as a
19 result of the LED package size (typically 0.2 inches in
20 diameter), or about 300 times the plan form area of a
21 bare LED (8000 times the volume), and they are limited
22 in brightness by the small number of LEDs that can be
23 placed in a given area, and also by the thermal

24

1 resistance of the package and module design. The
2 resolution limit is a function of spacing that is
3 further restricted by package (LED) size. The
4 brightness limit is a function of the number of LEDs
5 per unit area and their individual light output, which
6 is further dependent on the thermal resistance between
7 the LED junction and the local environment. Also,
8 existing LED signage and displays have limited ability
9 to tailor the radiation emission pattern to the needs
10 of the target/audience and thereby increase efficiency.
11 Increased efficiency allows for reduced system and
12 operating cost and/or more radiation delivered to the
13 target.

14 There is need for improvements in the
15 provision and operation of LED display assemblies that
16 overcome problems of heating and inability to
17 adequately transfer or dispose of heat generated by LED
18 operation; problems of inadequate LED support on
19 substrates or circuit boards; problems resulting from
20 lack of flexibility of the LED support means;
21 difficulties in manufacturing close packed LED
22 displays; and other problems and difficulties as will
23 appear.

24

SUMMARY OF THE INVENTION

2

3 It is a major object of the methods disclosed
4 herein to provide ways for overcoming the above
5 identified problems. Basically, the improved method
6 includes:

7 a) forming an array, or grid of electrical
8 conductors,

9 b) providing light emitting diodes located
10 in association with the array and in electrical
11 communication with the conductors that provide power
12 for LED operation.

13 c) the array operable or operated to
14 receive heat from the diodes during diode operation,
15 and the array or grid configured for passing coolant
16 fluid for transfer of heat to the fluid.

17 As will appear, the electrical conductors
18 typically and advantageously may be provided in the
19 form of insulated metallic wires which may be
20 interwoven or configured to act as electrical and
21 thermal conductors, and that also may serve as
22 structural supports for arrays of LEDs. The LEDs may
23 be selectively removed or replaced on such supports.

24 Another aspect of the improved method
25 includes provision of an LED supporting means, such as

1 a grid characterized by ease of conformance to selected
2 shape, curvature, or complex configuration after the
3 LED array is attached to the grid, the grid having
4 flexibility to enable such compliance to desired
5 shaping.

6 Another object is to effect and/or guide flow
7 of coolant fluid through or along a shape compliant
8 screen incorporating such LEDs. In this regard, the
9 screen is amenable to fitting to

- 10 i) a substrate on which LED bases are
11 placed, and/or
- 12 ii) a superstrate provided in
13 association with the screen and
14 LEDs, to provide structural
15 strength to the assembly.

16 Yet another aspect of the improved is to
17 provide a first protective sheet facing the diodes to
18 pass light emitted by the diode array; and to provide a
19 second sheet at the opposite side of the screen and
20 diodes, the first and second sheets forming an
21 enclosure within which coolant fluid is flowable. The
22 screen itself may be dark or darkened to increase
23 viewing contrast with the LED array, during its
24 operation.

25 A further feature is provision of the
26 electrical conductors to include primary conductors

1 extending generally in one direction, and secondary
2 conductors extending generally in another direction,
3 the LEDs mounted on the primary conductors, and having
4 terminals extending to the secondary conductors for
5 electrical association thereto. In this regard,
6 secondary conductors are typically provided to have one
7 of the following:

- 8 i) substantial spacing therebetween to
9 pass coolant fluid through the
10 screen,
- 11 ii) reduced spacing therebetween, to
12 pass coolant fluid primarily
13 parallel to the screen,
- 14 iii) cross sections which are
15 substantially less than the cross
16 sections of primary conductors
17 which support diodes,
- 18 iv) junctions with diode wires.

19 Yet another feature is provision of a screen
20 display incorporating diodes or diode devices, wherein
21 each diode is provided to include a light emitter or
22 emitters, a transparent container having a window area,
23 the emitter supported within the container, and a
24 reflector within the container to reflect emitted light
25 toward said window. As will appear, an electrical lead
26 or leads may be provided to extend with helical

1 configuration within the container, such as a glass
2 tube, to the emitter or emitters. The lead or leads
3 may be formed to have flattened, or generally
4 rectangular cross sections for stable support of the
5 emitter or emitters.

6 The improved may include provision of a
7 metallic base carrying the container, and through which
8 said lead or leads extend. The base typically is
9 formed to have an edge portion defining a recess for
10 reception of a support for the diode, allowing diode
11 rotation about the support. Multiple of the diodes may
12 be supported by a conductor or conductors in a screen,
13 and to have their windows oriented to face in the same
14 or selected directions. The diodes may be rotated, or
15 be rotatable, about axes defined by their supporting
16 conductors.

17 Additional features include provision of
18 certain power providing conductors that comprise first,
19 second, and third pairs of wires to transmit electrical
20 energization to red, green and blue LED pixels,
21 respectively; provision of LED primary, secondary and
22 tertiary wires electrically connected to the red, green
23 and blue pixels, respectively, said primary wires clamp
24 connected to said first pair of wires, said secondary
25 wires clamp connected to said second pair of wires, and
26 said tertiary wires clamp connected to said third pair

1 of wires; provision for clamped nesting of such
2 primary, secondary and tertiary wires; provision of
3 certain conductors that extend at an acute angle or
4 angles relative to others of said conductors; provision
5 of protector means such as a plate or plate, or a
6 screen or screens at the front or rear of the grid, and
7 with air passing openings, as will appear.

8 The method as disclosed also includes:

9 a) providing multiple LEDs in a display
10 array, and

11 b) selectively electrically energizing the
12 LEDs in the array to adjust the display.

13 c) cooling the display array.

14 A further aspect of the includes selectively
15 adjusting the positioning of the LEDs in the array to
16 controllably vary the overall display.

17 These and other objects and advantages of the
18 invention, as well as the details of an illustrative
19 embodiment, will be more fully understood from the
20 following specification and drawings, in which:

22 DRAWING DESCRIPTION

24 Fig. 1 is a perspective view showing
25 provision of one form of grid or screen incorporating

1 LEDs, and Fig. 1a is similar but shows coolant flow
2 through the screen;

3 Fig. 2 is a perspective view showing
4 provision of another form of grid or screen
5 incorporating LEDs, and showing coolant flow primarily
6 adjacent and across the screen and diodes;

7 Fig. 3 is a view like Fig. 2 but showing
8 coolant flow primarily through the screen and past
9 diodes;

10 Fig. 4 is a top plan view of an array of
11 diodes on a screen similar to that of Fig. 1, and
12 showing open spaces between conductors to pass coolant
13 fluids;

14 Fig. 5 is a top plan view of an array of
15 diodes on a screen, similar to that of Fig. 2, the
16 conductors provided in closely packed relation;

17 Fig. 6 is a view like that of Fig. 5, but
18 showing a different configuring of electrical
19 conductors;

20 Figs. 7 and 8 are perspective views of two
21 different forms of LEDs as provided;

22 Figs. 9-12 are perspective views of sections
23 of electrical conductors as provided;

24 Fig. 13 shows weaving of electrical
25 conductors;

1 Fig. 14 is an edge view taken on lines 14-14
2 of Fig. 13;

3 Fig. 15 is a perspective view of a ball grid
4 connection to a screen;

5 Fig. 16 is a plan view of a ball grid
6 connection to a screen;

7 Fig. 17 is an elevation showing a ball grid
8 connection to a screen;

9 Fig. 18 is a perspective view showing yet
10 another screen configuration;

11 Fig. 19 is an edge view of the screen of Fig.
12 18; and

13 Figs. 20-23 show arrangements of electrical
14 conductors forming screens, and arrays of LEDs mounted
15 thereon;

16 Fig. 24 is a view showing screen cooling;

17 Fig. 25 is a section taken through an LED
18 package as provided;

19 Fig. 26 is a section taken on lines 26-26 of
20 Fig. 25;

21 Fig. 27 is a view showing a display provided
22 to embody multiple LED packages of the type shown in
23 Figs. 25 and 26;

24 Fig. 28 is a view showing a display provided
25 to embody multiple LED packages as shown in Figs. 25
26 and 26, the packages mounted on a conductor screen of

1 the type shown in Fig. 1; and Fig. 28a is a
2 modification;

3 Fig. 29 shows an LED package mounted on a
4 screen conductor and transmitting light to a reflector;

5 Fig. 30 is a schematic diagram of a sign that
6 incorporates the LED supporting grid, and with address
7 wires provided to extend at acute angles;

8 Fig. 31 is a perspective view of a wire
9 bundle as provided;

10 Fig. 32 is a cross section taken through the
11 Fig. 31 wire bundle;

12 Fig. 33 is a section taken on lines 33-33 of
13 Fig. 32;

14 Fig. 34 is a view of protective metallic
15 plate, with air passing openings;

16 Fig. 35 is a section taken through a grid as
17 described, with protective mesh at front and rear sides
18 thereof;

19 Fig. 36 is a view like Fig. 35, showing use
20 of air passing louvers;

21 Fig. 37 is a plan view showing multiple light
22 emitter packages supported by wires, in an array;

23 Fig. 38 is an enlarged view of a portion of
24 the Fig. 37 array;

25 Fig. 39 is a view of two light emitter
26 packages in Fig. 38, but in rotated positions;

1 Fig. 40 is an end view of a connector as
2 shown in Figs. 38 and 39;

3 Fig. 41 is an end view of a conductor conduit
4 supporting conductor wire terminal holders;

5 Fig. 42 is a top plan view taken on lines 42-
6 42 of Fig. 41;

7 Fig. 43 is a perspective view of a conductor
8 wire channel, as also seen in Fig. 41;

9 Fig. 44 is a view showing retraction of
10 conductor wires;

11 Fig. 45 is an enlarged and rotated view of
12 Fig. 42;

13 Fig. 46 is a front elevation showing
14 locations of pixel packages on a fragmentary grid of
15 addressing wires arrayed at 45° relative to conductor
16 wires;

17 Fig. 47 is an enlarged view, like Fig. 44,
18 but taken at the opposite end of the grid;

19 Fig. 48 is a schematic perspective view
20 showing pixel package adjustment rotation about the
21 package axes;

22 Fig. 49 is a schematic perspective view
23 showing pixel package with adjustment rotation capacity
24 about the axis of the package supporting conductor;

25 Fig. 50 shows in schematic form a
26 representative grid having supporting wires or

1 conductors, and pixel packages adjusted at different
2 angles, as for use in a billboard;

3 Fig. 51 is a schematic view showing pixel
4 packages on a grid, and with control electronic
5 circuitry integrated into the packages;

6 Fig. 52 is a schematic view like Fig. 51,
7 with control circuitry in zones or modules at edges of
8 the grid;

9 Fig. 53 is a fragmentary view showing wire
10 conduit wire conduit tensioning;

11 Fig. 54 is a schematic view showing use of
12 bowed end wall mirrors in a pixel package;

13 Fig. 55 is a view like Fig. 54, but rotated
14 90° about the package axis.

15

16 DETAILED DESCRIPTION

17

18 Fig. 1 shows a screen 10 forming a grid of
19 electrical conductors. As illustrated, the conductors
20 include like primary conductors 11 extending generally
21 in one direction, and designated as an X-direction; and
22 secondary conductors 12 extending generally in another
23 direction, designated as a Y-direction. As shown, the
24 primary conductors preferably have overall diameters d_1
25 or cross sections greater than the overall diameters d_2

1 or cross sections of the secondary conductors, and the
2 latter extend over and under the conductor 11 in a
3 weaving or mesh relationship as at 12a and 12a'. There
4 is space as at 15 between successive parallel
5 conductors 11; and there is space as at 16 between
6 successive undulating conductors 12, whereby coolant
7 can flow downwardly through the screen via spaces 15
8 and 16 and near or adjacent diodes, to remove heat
9 generated by diode operation.

10 Light emitting diodes are located or mounted
11 in an array on various conductors, as shown on crests
12 of conductor 12, and in such manner that each diode is
13 in electrical communication with two conductors,
14 establishing a circuit path from a conductor 11 to a
15 conductor 12, via the diode internal circuit. See
16 conductor energization controls 20 and 21 for two
17 representation diodes 22 and 23, with circuit paths
18 (for diode 22) at 24, 11a, 22, 25, junction 26, 12a,
19 12b and 27; and circuit paths (for diode 23) at 28,
20 11b, 23, 29, junction 30, 12a, 12b, and 29. Controls
21 20 and 29 are interconnected so that diodes 22 and 23
22 can be selectively energized in timed relation. Diode
23 22 is mounted on the top side or crest of conductor
24 11a, and diode 23 is mounted on the top side of
25 conductor 11b. Other diodes as shown are similarly
26 mounted and selectively controlled by controls

1 indicated in bank 31, controls 20 and 21 considered as
2 part of that bank. Electrical connections to metallic
3 wires in the conductors are made by removal of or
4 penetration through conductor insulation. Wires 25 and
5 29 extend in the Y-direction, and may be insulated.
6 Junctions as at 26 and 30 are provided on all crests of
7 secondary conductors 12, and all LEDs are mounted on
8 conductors 11, and protectively between sequential
9 crests of conductors 12.

10 The electrical conductors may comprise
11 insulated metal wires that act as electrical and
12 thermal conductors and that also serve as structural
13 load conductors, for arrays of such diodes. See for
14 example Fig. 9 showing metallic conductor 40 having a
15 square cross section, and a layer 41 of dielectric
16 insulation thereon; Fig. 10 showing metallic conductor
17 42 having tubular cross section with bore 42a, and a
18 cylindrical layer 43 of insulation thereon; Fig. 11
19 showing circular cross section metallic wire at 44,
20 tubular insulation layer 45, tubular cross section
21 metallic wire 46, and tubular layer of insulation 47;
22 and Fig. 12 showing solid metallic wire 48 and
23 insulation 49 thereon, 48 being circular and 49 being
24 tubular. Fig. 7 shows a six-sided LED body 80 with
25 electrical terminal areas 81 and 82; and Fig. 8 shows a
26 similar LED body with terminal areas 83 and 84.

1 Fig. 1a is like Fig. 1, showing an array of
2 LEDs 23 and 24 staggered in the Y-direction at one side
3 of the screen defined by the interwoven conductors 11
4 and 12. Coolant such as air flows at 54, downwardly
5 toward and over the diodes and through the screen
6 defined by spaced conductors 11 and 12. Air may also
7 be caused to flow generally parallel to the screen, as
8 in the X or Y direction, to cool the screen and diodes.
9 Heat generated by the diodes is carried away by coolant
10 flow. Note diode wire junctions 60 with and at the
11 tops of the supporting conductors 12, maximally exposed
12 to coolant flow for heat transfer to coolant. The
13 conductors 11 are large enough in diameter to support
14 the mounted and exposed diodes 22 and 23 and other
15 similar diodes, arrayed as shown.

16 In Figs. 2 and 5, the conductors 11 are
17 generally the same as the conductors 11 in Fig. 1, and
18 are spaced apart as seen at 60. The conductors 12 are
19 arranged in side by side pairs, as seen for example at
20 12' and 12', and 12'' and 12''. Successive pairs of
21 such conductors pass over and under conductors 11, as
22 shown. Like pairs 12' pass together over a conductor
23 11, along its length, and like successive pairs 12''
24 pass together over the next conductor 11, along its
25 length in staggered relation in the X-direction in
26 relation to closest pairs 12'; and portions of the

1 pairs 12'' nest between portions of the pairs 12', at
2 locations 62 between conductors 11, as is clear from
3 Fig. 5. A close packed assembly is thereby achieved.
4 As before, LEDs 23 are mounted on exposed tops of
5 sequentially alternate conductors 11b; and LEDs 22 are
6 likewise mounted on exposed tops of sequentially
7 alternate conductors 11a. Each LED has a wire 63
8 connecting it to the top of a conductor 12 in a pair of
9 such conductors, as at a junction as seen at 64.
10 Insulation is removed or penetrated to enable
11 electrical communication between LED wire 63 and the
12 metal wire within a conductor.

13 In Fig. 2, coolant is shown flowing at 66
14 parallel to the plane of the conductor formed screen;
15 and in Fig. 3, coolant is shown flowing at 67 generally
16 normal to the plane of the conductor formed screen, and
17 through the screen, for removing heat from the LEDs and
18 screen, such heat produced by LED operation. Fig. 3 is
19 generally like Fig. 5, except that the pairs of
20 conductors 12' and 12' are spaced from the pairs 12''
21 and 12'' to form air passing openings.

22 Fig. 4, which is an assembly similar to that
23 shown in Fig. 1, illustrates provision of spaces 66
24 formed between successive straight conductors 11 in the
25 Y-direction, and between undulant over and under
26 extending conductors 12 in the X-direction. Those

1 spaces facilitate flow of coolant fluid through the
2 screen or grid of conductors. The X and Y directions
3 are substantially normal to one another.

4 It will be understood that the screen as
5 shown facilitates its bending or warping, particularly
6 about an axis or axes parallel to the X-direction
7 extents of conductors 11 to conform the screen to
8 desired shape or shapes. This may alter the perceived
9 LED illumination emanating from different portions of
10 the screen, as may be desired.

11 In Fig. 6, the conductors 11 are arranged to
12 extend in spaced parallel relation in the X-direction,
13 as in Fig. 1. Successive conductors 12 are closely
14 packed, so that portions 12_a' of conductors 12_a closely
15 nest between portions 12_b' of conductors 12_b,
16 conductors 12_a alternating between conductors 12_b. LEDs
17 23 are located on the exposed tops of conductors 11_b,
18 whereas LEDs 22 are located on the tops of conductors
19 11_a which alternate between conductors 11_b. Wires from
20 LEDs 22 extend to junctions 26 at the tops of
21 conductors 12_b overlying conductors 11_b, whereas wires
22 from the LEDs 23 extend to junctions 30 at the tops of
23 conductors overlying conductors 11_a.

24 Figs. 13 and 14 show a mesh 90 of interwoven
25 conductors 11 and 12, with LEDs 91 at the crests of
26 conductors 11, which have wave-like configuration , as

1 do conductors 12. This facilitates bending or warping
2 of the screen or mesh about axes extending in both the
3 X and Y direction, to accommodate to desired curved
4 shaping as on object 92. LED wires 91a extend to
5 junctions 94 on conductors 12.

6 Figs. 15 and 16 show a screen or mesh 100,
7 similar to mesh 90 in Figs. 13 and 14, with X direction
8 conductors 101 interwoven with Y direction conductors
9 102. A substrate 103 extends beneath the mesh, and
10 dielectric spacers such as spheres or balls 104 are
11 located between 100 and 103 to engage and position them
12 relative to one another. In Fig. 16, LEDs 106 mounted
13 on crests of conductors 101, have wires 106a extending
14 to junctions 107 on crests of conductors 102.

15 Fig. 17 shows positioning balls 110 between
16 the tops of conductors 12 woven above and below
17 conductors 11. Balls 110 also serve as protection and
18 spacing means. LEDs are mounted on conductors 11
19 between conductors 12. A superstrate 111 may be
20 located at the tops of the balls 110. Superstrate 111
21 may be a transparent plate, to pass light emitted by
22 the LEDs.

23 Figs. 18 and 19 show a mesh 120 similar to
24 that seen at 90 in Figs. 13 and 14. The "open-weave"
25 conductors are seen at 111 and 112; and LEDs 113 are
26 mounted on crests of certain conductors such as 111.

1 LED wires 130 extend to junctions 131 on conductors
2 112. The latter may have concentric configuration.

3 Figs. 20-23 show alternative screen and LED
4 configurations.

5 Fig. 24 shows a screen 120 like any of the
6 described screens, with cooling air 121 blown at 122
7 into a space 123 below the screen, to flow adjacent the
8 screen and upwardly through the screen. A housing is
9 seen at 124. Actuators 125 and 126 may be provided to
10 actively and repeatedly displace, deform or warp the
11 screen, as for an active sign display.

12 Referring now to Figs. 25 and 26, the
13 illustrated LED or LED "pixel" package, or diode
14 package 150 includes a light emitter or emitters 151
15 within a transparent container, one example being a
16 glass tube 152 having a hemispherical end 152a. A
17 window area 152b is defined by tube 152, or container,
18 for transmission of emitted light in a direction or
19 directions 153. A reflector 154 is located within the
20 tube, and has a reflecting surface 154a for reflecting
21 emitted light in a forward direction 153, through the
22 window and to the exterior. The reflector may have
23 edges 154b engaging or supported by the tube interior
24 wall 152c.

25 An electrical lead or leads indicated at 156
26 extends with helical configuration into the tube and

1 within the tube, to the emitter or emitters, that
2 configuration providing support. The lead or leads
3 preferably has or have a flattened or generally
4 rectangular configuration seen in Fig. 26. Wires
5 contained in the lead or leads may include "red",
6 "green" and "blue" (relating to emitted light
7 color) and an additional wire, such as an electrical
8 neutral or return wire, to the emitter or emitters.
9 The wires may consist of AWC32 copper multifilar and/or
10 AWC26 copper wire or AWG26 4 conductor insulated copper
11 multifilar wire helically wound around a rectangular
12 cross-section AWG18 insulated copper wire. A metallic,
13 as for example aluminum base 157, has an edge recess
14 158 receiving the end of the tube 152, and supporting
15 the tube. Specularly reflecting aluminum walls 159 and
16 160 are provided in the tube, and support the reflector
17 154, as at endwise locations 161 and 162.

18 The base 157 defines a through opening 163
19 passing the lead or leads; the base also defines an end
20 recess 164 filled with potting compound 165 as for
21 example epoxy resin. The lead or leads pass through
22 that compound. The base also has an edge portion
23 defining an annular recess 168, for reception of a
24 package support or support portion 169, as for example
25 a portion of the conductor 11a as seen in Fig. 1. The
26 recess 168 preferably has cylindrical wall

1 configuration, allowing rotation of the diode about an
2 axis 170 defined by the recess or conductor. Diode or
3 pixel replacement is also facilitated. Lead wires may
4 be connected to conductors 11 and 12 of the screen, as
5 referred to above.

6 Fig. 27 shows the LED packages 150 of Figs.
7 25 and 26 arranged in a display sequence or
8 configuration. Fig. 28 shows the Fig. 25 and 26 LED
9 packages mounted to mesh defining conductors 11 and 12,
10 so that the LED packages are carried by the mesh
11 conductors 11 and are rotatable about axes 170, as
12 referred to. Integrated pixel electronics is thereby
13 provided. Note leads 156 connected at 156a to
14 conductors 12. Fig. 29 shows LED package 150 mounted
15 on a conductor 11, and transmitting light to a
16 reflector 180.

17 Fig. 30 shows a sign or array employing LED
18 packages as disclosed. The display incorporates
19 vertical conductors 300, with representative addressing
20 wires 301 and 302 extending at acute angles, for
21 example 45° across and relative to wires 300. Wires
22 301 are extensive of wires 302 in a geometric sense.
23 Other addressing wires are indicated in broken lines,
24 as at 302a. LED packages are shown at 303 carried by
25 wires 300. This configuration, shown schematically,
26 achieves reduced lengths of addressing wires, as

1 compared with horizontal wires. Connections 304 and
2 305 to wires 300, 301, and 302a are made at the screen,
3 i.e. array perimeter.

4 Figs. 31-33 are sections showing details of
5 construction of the LED addressing wires which may be
6 of multifilar construction. Referring to Fig. 31, wire
7 301, numerals 306 and 307 refer to LED red light
8 emitting pair; 308 and 309 refer to green emitting
9 pair; and 310 and 311 refer to blue light emitting
10 pair. A pair of red AWG 18 insulated copper wires is
11 used to activate the red LEDs for a row of pixels.
12 This wire pair and its neighboring wire pairs may be
13 helically wound around an insulated central core that
14 may serve as a tensile element. AWG 26 insulated
15 copper wires from the pixel may be nested between wire
16 pairs of like color. An insulated metal retainer may
17 be used to compress the pixel wires against the power
18 supply wires.

19 Numerals 313-315 designate three insulated
20 copper wires from the three pixels, respectively,
21 nested between the referenced wire pairs. A small
22 amount of insulation is removed at wire regions to
23 establish electrical connection between 313 and 306 and
24 307; between 314 and 308 and 309; and between 315 and
25 310 and 311.. A stainless steel retainer 316 extends
26 about the wire assembly, and holds the wires in

1 compression at the central regions, for example as seen
2 at 317, 318, and 319 in Figs. 32 and 33. The retainer
3 may take the form of a split ring fastener that engages
4 the wires 313-315 and may yieldably deform them at
5 their contact points 317-319.

6 Fig. 34 schematically shows a metal plate 316
7 that may be used and positioned as an absorber of
8 sunlight that passes through a display sign array
9 incorporating devices as described above. It also
10 blocks light transmitted toward the rear of the sign
11 array. As such, the plate 316 may be regarded as
12 overlapping the array at the rear thereof. The angled
13 slits 316a that extend through the plate pass cooler
14 air (possibly blower induced) flowing in the space
15 between the plate and the array. Plate 316 also
16 provides mechanical protection at the back of the
17 display. Fig. 34 also represents a side view of an
18 array of overlapping elements that absorb sunlight and
19 extraneous radiation while allowing the passage of
20 cooling air. The array creates a thermal chimney
21 effect to further increase cooling air flow and this
22 effect may be further enhanced by the use of array
23 surfaces with high absorptivity for sunlight and low
24 emissstivity in the longwave infrared region. In
25 addition the array provides mechanical protection for
26 signage and display elements.

1 Fig. 35 is a section showing protective
2 metallic screens 317 at the back and front sides of the
3 display array schematically indicated at 318. Such
4 screens may pass cooling air, blower driven at 319.
5 Fig. 36 is like Fig. 35, but shows louvers or slots 320
6 in place of screens 317.

7 Screens may be used in place of circuit
8 boards and conductors on or as film circuitry. Screens
9 can provide power and signal conduits as at 300 or 302
10 in Fig. 30, with reduced cost, mass, and volume, while
11 providing paths between the conduits for flow of
12 cooling fluids to allow systems/products with greatly
13 reduced thermal resistance and/or increased power
14 density operation. Screens may also allow optical
15 communication between circuit elements via open regions
16 between the wires. Screens greatly simplify the
17 manufacture of 3D electronics, allow mechanical
18 compliance, and may behave somewhat elastically to
19 provide pressure type electrical contacts. Screens may
20 have diodes electrically connected to the junctions
21 between crossing wires and/or be in contact with
22 electronic circuitry on chip or chips that provides
23 diodes and/or electrically switchable elements to
24 control the flow of electrons through the screen array.
25 Connection schemes such as solder and including ball
26 grid arrays are also a possible means of connection.

1 Screen and chip arrangements include "Z Fold"
2 serpentine/sinuous screen with chips between each layer
3 and spiral/helical screens with chips between each
4 layer/rotation. Screens are also good candidates for
5 neural net architectures. Connection with input/output
6 elements may be via ends/edges of screens and employ
7 contact means such as solder, conductive adhesive,
8 and/or mechanical/pressure contact. See 304 and 305 in
9 Fig. 30.

10 Fig. 28a shows modifications in the manner of
11 supporting LEDs and their electrical connections, in an
12 array. The LEDs appear at 500 and are adjustably,
13 and/or removably supported on conductors 501, which may
14 be power conductors, as described in Fig. 25.
15 Addressing wires or conductors, are shown at 502, and
16 may take the multi-filer form as shown in Figs. 31-33.
17 Wires 502 extend at acute angles (for example 45°)
18 relative to conductors 501, extending in direction or
19 directions 504. Coolant gas passing spaces between
20 structure appear at 505. Local electronic circuitry,
21 in the LED packages are seen at 506. Pixel package
22 circuitry is indicated at 507 in the packages. Local
23 addressing wire branches 502a extend (i.e. branch) from
24 the wires 502 to 156, as described above. Wires 502 and
25 conductors 501 form the grid or screen. Linking
26 connectors 540 may be provided as sown to connect

1 successive conductors 501, so as to allow or restrict
2 flexing of the screen or array.

3 Figs. 37-39 show rows and columns of light
4 emitting packages (LEDs) 401 generally of the type
5 referred to above, and supported by conductor wires 402
6 running vertically, in the drawing. Addressing
7 (control) wires appear at 403, and run at acute angles,
8 as for example 45°, relative to wires 402. Wires 402
9 and 403 form a grid, with coolant fluid passing
10 passages 406 through the structure. The packages 401
11 contain internal mirrors 407 and 408 convex toward one
12 another to reflect LED emitted light. Clips 409 are
13 connected to bulges 410 on wires 402, to retain the
14 wires in spaced relation as shown, and to block wire
15 402 rotation about their axes. Fig. 40 is an end view
16 of a clip. The LED packages are electrically connected
17 to wire 402 (that extend through grooves 412 in the
18 bases of the LEDs), and to wires 403, via leads 413.
19 See also circuitry 506 and 507, as described above.

20 Figs. 41-43 show a wire conduit 415, in the
21 form of a metallic channel, for example. It supports
22 or contains closely spaced conductor wires 402a in zone
23 416, and closely spaced addressing wires 403a, in zone
24 417, outside the display or grid, or at the edges of
25 the grid. The items 402a and 403a sown in Fig. 41
26 represent wire cross sections, or wire passing openings

1 in a plastic sheet, or plate, or support 417, carried
2 by the conduit. Numeral 419 may represent a conduit
3 support. See also Fig. 53 showing stabilizing tension
4 springs 420 and 421 connected at 420a and 421a to
5 support 419.

6 Fig. 42, a top plan view, also shows studs
7 422 forming wire terminals carried by conduit 415.

8 Figs. 44 and 47 show conductor wires 402
9 having bends 402b and receiving bosses or retainers
10 425. See also address wires 403 that loop at 403a
11 about retainers 425. A holder 426 extends crosswise of
12 402 to hold them in position. Fig. 45, like Fig. 42,
13 also shows wire bends 402b looping about retainers 425.
14 Retainers 422 also anchor the addressing wires 403,
15 having connections 403a.

16 Fig. 46 schematically shows parallel
17 conductor wires 432 extending vertically, and
18 addressing wires 433 extending at 45° angles relative
19 to wires 432, thereby forming a grid. LEDs i.e. pixel
20 packages 440 are carried by the grid, as described
21 above, and electrically connected to the wires 432 and
22 433. Electronic controls to control the LEDs are
23 indicated at 437. A frame for the grid is shown at
24 438.

25 Fig. 48 schematically shows a pixel package
26 440 peripherally attached to a conductor wire 432, as

1 via an annular groove 440a in 440, allowing adjustable
2 rotation of 440 (see arrows 442) about the package axis
3 443. Fig. 49 shows adjustable rotation of the package
4 440 about the lengthwise axis of conductor 432. See
5 arrows 444. Fig. 50 schematically shows an array 446
6 of LED packages 440, with the packages in different
7 rows having different adjusted angularities, for
8 variably directing emitted light in selected
9 directions.

10 Fig. 51 schematically shows an array 450 of
11 pixel packages 451, which have electronic control
12 circuitry 452 within the pixel envelopes. In Fig. 52,
13 the modified array 450a of LED pixel packages 451a has
14 control circuitry 452a at edges of the array. Array
15 wires 453 and 454 form grids.

16 Figs. 54 and 55 show LED pixel package
17 elements the same as in Figs. 38 and 39. Emitted
18 radiation is within included angle α , in Fig. 55.
19 Azimuth or radiation is reduced by vertical axis
20 parabolic mirror trough, indicated at 460.

21 A preferred form of the invention appears in
22 Figs. 25-33 and Figs. 37-39.

23 As disclosed herein large-screen modular
24 displays and signs are enabled, along with various
25 curvatures and complex geometric forms. Also, large

1 scale video displays, and projection displays as for
2 billboards are made possible. Low volume, low mass, low
3 cost, high brightness, high resolution and high
4 efficiency are enabled. Double sided displays can be
5 provided. LEDs can be placed on opposite sides of the
6 screen, and the screen can serve as a pattern for LED
7 placement.

8 LED bases can be placed on a transparent
9 substrate, or the screen can be provided as a polymer
10 film or sheet.

11 Screen and superstrate may collectively
12 provide mechanical, structural strength. Superstrate
13 may be thin or layered to allow second or third flexure
14 modes. Superstrates may be thin to reduce sideways
15 transmission of radiation from LEDs. Some LED sideways
16 light transmission can be provided for integrating
17 between pixels.

18 Provision is made for use of means to use
19 conductive/red LEDs. Screen elements can be connected
20 to side faces of LEDs via conductive adhesives, solder,
21 amalgams, indium, stabilite²², and conductive grease.
22 A metallic superstrate can be used.

23 Red LEDs can be provided with two conductors
24 on same side (UEC red on sapphire)

25 Superstrates may have high refractive indices
26 to increase usable radiation (polycarbonate 1.59)

1 Superstrates may have transparent adhesive
2 layer, thermoplastic, thermoset, pressure sensitive
3 features.

4 The screen can be deformed after weaving,
5 during manufacture, or deform screen before and/or
6 during weaving. Screen warp and woof wires of
7 different metals can be used to reduce the possibility
8 of electrical shorting.

9 Another modification comprises an array of
10 light emitting diodes periodically placed on the weft
11 wires of a woven aluminum and/or copper screen (wire
12 cloth) with the weft wires acting as one conductor, and
13 the warp wires acting as the opposite conductor. The
14 wires may be electrically isolated at their crossing
15 points by such means as anodic coatings and/or by the
16 addition of inorganic or organic over-coatings. The
17 LEDs can be activated by pulsed and/or continuous
18 current and may be addressed as a whole or in groups or
19 individually as in an active video display by control
20 of conductor energization. Woven wire screen provides
21 a very low cost substrate.

22 Additional benefits include efficient heat
23 transport, low mass, low volume, reel to reel
24 manufacturing with screen travel between reels and
25 roll-up on a reel with LEDs placed in position. This
26 allows freedom of display shape, transportable in a

1 roll, ability to be held in tension, in a wide range of
2 materials and sizes.

3 A video display may include an X-Y grid of
4 light emitting diodes placed on an aluminum woven
5 screen suspended or placed between a transparent
6 polycarbonate sheet and another enclosing sheet on the
7 opposite side. An aluminum sheet with gaps between the
8 screen and the enclosing sheet become sufficient to
9 allow forced air to enter and flow upward between the
10 polycarbonate sheet and the screen, through the screen
11 and exiting at the top rearmost part of the screen.

12 Conductor wires act as structural conductors,
13 electrical conductors, and thermal conductors, and may
14 also be provided with a black region made especially
15 effective because of "cavity effect". Wires may vary
16 in size, materials, coatings etc. with axis, e.g.
17 stainless steel wire may be used in tension in one axis
18 direction and copper or aluminum wire of smaller
19 diameter may be used in opposite axis direction (i.e.
20 X-Y axes).

21 Manufacture may include placement of a screen
22 on PTFE coated needle/cone array/drum to allow coating
23 of die/wire bond/adhesive attach/screen without
24 clogging holes; then forcing fluid through the screen
25 to prevent clogging. Screens can be spaced apart by
26 use of beads or spheres.

1 Electrostatic or electromagnetic powering of
2 LEDs is possible, and particularly pulsed operation, as
3 with LED video displays. High applied voltage allows
4 smaller conductor cross sections.

5 LEDs with junction faces on metal, or with
6 good junction heat transfer/thermal capacitance, can
7 withstand very high voltage spikes.

8 Patterned superstrate and/or substrate may
9 act as one conductor and screen or substrate as another
10 conductor.

11 Anisotropic screens may be provided with
12 wires along one axis of a different material than wires
13 extending along another axis (thickness, form, alloy.
14 Tensile strength and flexibility may be more important
15 in one axis e.g. opposite roll axis or row axis;
16 dissimilar metals are more apt to form dielectric
17 regions at points of contact and this may be encouraged
18 via processing and/or choice of material properties and
19 coatings; a current flow in one LED row may be
20 several times greater than current flow in another LED
21 row.

22 Advantages and benefits of the Fig. 25 to 28
23 described LED device construction include:

24 SPATIAL TUNING: Benefits accruing from the
25 ability to aim the radiation from the emitters to the
26 target include a reduction in emitter cost and/or

1 electrical system cost and/or operating cost and/or
2 increased radiation delivered to the target. The
3 herein described pixel package can be rotated as for
4 example 360 degrees around it's axis and 360 degrees
5 around an axis perpendicular to its' axis, and as a
6 consequence has complete freedom of movement in both
7 elevation and azimuth.

8 HORIZONTAL AXIS OPTICS: The target audience
9 for signage and billboards typically moves horizontally
10 as in vehicles. Horizontal axis optics provide for
11 optimum control as the horizontal angular aperture is
12 typically much greater than the vertical angular
13 aperture.

14 ANGULAR APERTURE CONTROL: Minimizing the
15 radiation beyond the angular extent needed for the task
16 is an important element in minimizing cost. Maximizing
17 the aperture to emitter size ratio allows a
18 minimization of the angular extent of the output
19 radiation. The herein described pixel design allows
20 for a minimization of the output radiation by
21 minimizing the emitter array size via close emitter
22 spacing and a narrow gauge substrate and by maximizing
23 the aperture size for a given pixel spacing.

24 BIFACIAL DISPLAY: Bifacial displays are
25 possible with a single array of bifacial pixels or via
26 a forward and rearward spaced pixel arrays, which may

1 provide or allow differing energizing content to the
2 displays. The pixel package allows mounting in front
3 of or in back of the display "plane". This allows
4 one face to use pixel packages mounted on the front of
5 the vertical wires and facing forward, and the opposite
6 face to use pixel packages mounted on the opposite side
7 of the wires and facing rearward. The packages may be
8 displaced vertically to allow clearance.

9 TRANSPARENT DISPLAY: Displays can be made
10 with a wide range of transparency to suit a variety of
11 end uses.

12 OPTICAL EFFICIENCY: The pixel design allows
13 for use of a linear emitter array coupled with a
14 visible mirror film parabolic trough, to control
15 radiation in the vertical axis. Horizontal axis
16 radiation may be controlled by end reflectors of
17 similar material and these may be curved to aid in the
18 control of the angular extent of the radiation in the
19 horizontal axis. This design minimizes the average
20 number of reflections and provides for high efficiency
21 for each reflection. The pixel optical system may be
22 contained within a cylindrical glass envelope for
23 environmental protection. Additional benefits of such
24 an envelope include:

25 1) functioning as a circular compressive
26 element to constrain the elastically deformed 3M VMF

1 and thereby cause it to form a parabolic curve; (The
2 film is typically specularly reflecting film such as 3M
3 visible mirror film. The reflecting film may be paired
4 with/attached to additional film/s to provide the
5 desired mechanical and other properties. The film/s
6 may also be adhered to the container walls and/or
7 constrained by lands/ridges/bumps along the container
8 walls.)

9 2) functioning as a container for a wide
10 range of liquids, gels, solids, and/or smaller
11 containers;

12 3) functioning as a refractive optical
13 element.

14 CONTRAST RATIO: Increasing the contrast
15 ratio allows an improvement in visibility and/or a
16 reduction in radiative power for a given visibility.
17 The herein described configuration allows high contrast
18 ratio viewing by:

19 1) Minimizing the angular extent of the
20 output radiation and increasing the aperture area of
21 the output radiation reduces the probability of
22 sunlight or other extraneous radiation being reflected
23 from the 'display' to the target/viewer,

24 2) Optical porosity (low solidity), which
25 allows a portion of the radiation that would impinge on
26 and possibly be reflected into the target on a high

1 solidity display pass through and be absorbed on a
2 subsidiary surface/s,

3 3) Insuring all surfaces within the targets
4 field of view have very low reflectivity by means such
5 as coating and texturing.

6 DETECTOR/DETECTOR ARRAY: The described pixel
7 may also operate as detectors, alone or in conjunction
8 with emitters.

9 The lifetime and efficiency of semiconductor
10 devices (LEDs) degrades strongly with increasing
11 temperature. Provision is made for reducing the
12 thermal resistance between the emitters and the local
13 environment, and thereby increasing lifetime,
14 reliability, durability, and efficiency and reduce
15 operating cost, pursuant to provision of the following:

16 1) A low solidity array which allows a
17 portion of the solar load to be diverted to subsidiary
18 surfaces and thereby make a smaller contribution to
19 array heating. In addition, the open design allows
20 airflow in and around the array and in very close
21 thermal communication with the emitters.

22 2) Wind enhanced cooling. A porous array
23 allows the passage of and the ability to transfer heat
24 to the local air stream. Wind speed increases strongly
25 with increasing height and high mounted signage and
26 displays may benefit greatly from this cooling.

1 3) Thermally induced convection cooling
2 caused by the wire array, the pixel packages, and by
3 proper design of subsidiary surfaces behind the array
4 (horizontal axis overlapping slats/louvers).

5 4) Solar assisted cooling may be promoted
6 by proper design of subsidiary louvered absorber array
7 behind the screen. Louver surfaces with a high
8 absorptivity for sunlight and a low infrared emissivity
9 may be used to further increase airflow.

10 5) The pixel package enables use of a
11 rectangular copper substrate for LED mounting. This
12 substrate acts as a thermal, electrical, and structural
13 conduit and its cross section may be easily sized to
14 provide sufficiently low thermal resistance. The pixel
15 package is thermally coupled to the row and column
16 wires to aid in the transport of heat to the local
17 environment. In addition, the pixel package may be
18 liquid filled to allow reduced LED operating
19 temperature.

20 6) Active cooling may be used if necessary,
21 but its need and its cost may be greatly reduced by the
22 aforementioned features.

23

24 Provision is made for use of active and/or
25 passively addressed pixels. Local (pixel based)
26 electronics may be included in the pixel package and

1 placed on the emitter substrate, behind the reflector,
2 in the aluminum bushing and/or in the hemispherical
3 cap. Local electronics may vary with application and
4 include capacitors, resistors, inductors, diodes,
5 transistors, standard integrated circuits such as 555
6 timers or application specific integrated circuits.
7 Multiplexing may be used to reduce the cost of the
8 electrical system, and the ability to multiplex is
9 greatly increased by minimizing the pixel output
10 radiation required by means discussed in the above
11 optics section.

12 Provision is made for use of in-field
13 replaceable pixels that may be made to be replaceable
14 from either side of the screen.

15 Use of vertically oriented column/common
16 wires and 45 degree oriented row/addressing wires to
17 allows large scale seamless signage and displays with
18 all pixels/electronics addressable/accessible from the
19 top or the bottom of the screen.

20 Control electronics may be integrated into
21 pixel packages; and/or control electronics may be
22 concentrated in modules or zones at edge or edges of
23 the arrays.

24 Provision is made for use of robust
25 signage/displays created by arranging a parallel array
26 of large diameter vertically oriented common/column

1 wires in tension between horizontal upper and lower
2 rigid members. The upper end of each vertical wire may
3 be formed into a loop and affixed to and electrically
4 isolated from the upper rigid horizontal member. The
5 lower end of each vertical wire may be formed into a
6 loop and elastically attached to and electrically
7 isolated from the lower rigid member by a stainless
8 steel extension spring. Both upper and lower mounts
9 may serve to prevent rotation of the vertical wires
10 around their own axes. A parallel array of 45 degree
11 row wires may be connected in tension between the upper
12 and lower rigid horizontal members by means analogous
13 to those described for the vertical wire array. The 45
14 degree row wires may be constructed of a large diameter
15 electrically insulated central wire helically wound
16 with a 6 strand small diameter multifilar insulated
17 wire array. The multifilar wire array includes paired
18 red, green, and blue wires. The 45 degree wire array
19 may be placed behind the vertical wire array and the
20 pixel packages may be mounted in front of the vertical
21 wires. The pixel packages may be mechanically
22 connected to the vertical wires by plastic deformation
23 of the pixel package aluminum bushing and/or the wire
24 and/or by adhesives. The pixel common wire may be
25 electrically connected to the large diameter vertical
26 common wire through the aluminum bushing via

1 wirebonding or pressure welding or directly to the
2 larger diameter wire by soldering or pressure type
3 connection. Red, green, and blue wires emanating from
4 the pixel may be connected to the 45 degree row wires
5 by soldering or by pressure type contacts.

6 The row and column wires may be constructed
7 of aluminum to reduce cost and weight for a given
8 strength, electrical and thermal conduction. In
9 addition, electrically insulative coatings adhere
10 better and have longer life on aluminum than copper.

11 Signage and displays of simple or complex
12 face or form (circular or hyperbolic cylinders, cones
13 and conoids, hyperbolic paraboloids) may be assembled
14 on site or shop fabricated by simple techniques that
15 lend themselves to manual or automated fabrication.

16 Other important advantages are listed as
17 follows:

18 1. Organic Light Emitting Diodes: (OLEDs)
19 may be used as light emitters alone or in conjunction
20 with inorganic LEDs. OLEDs may be easier to apply to
21 screen type substrates and may allow reduced product
22 cost.

23 2. Multiplexing: The ability to tailor the
24 angular extent of the radiation output and the
25 increased contrast provided by the OnScreen design

1 allows a greater degree of multiplexing and a
2 concurrent reduction in system cost.

3 3. 45° Scanning: 45° scanning reduces line
4 artifacts compared to vertical or horizontal scanning
5 and thereby allows higher apparent resolution for a
6 given number of pixels and/or a reduced number of
7 pixels for a given apparent resolution.

8 4. In Field Pixel Replaceability: The
9 ability to replace individual pixels in the field
10 allows reduced maintenance cost.

11 5. Freedom of Form: Array construction
12 allows a wide variety of signage/display forms. One
13 example is a vertical axis cylindrical display viewed
14 from the inside and/or the outside and with varying
15 degree of array transparency determined by design.

16 6. Shop Or Site Fabrication: The light
17 weight and flexible nature of the OnScreen array
18 coupled with the mechanism of flexible local linkage
19 allows for shop fabrication of large area arrays.

20 7. Pixel Level Voltage Reduction: Pixel
21 ''on-board'' reduction allows higher array supply
22 voltages and thereby lower current levels and reduced
23 self-heating of array wiring and/or reduced wire cross-
24 sectional area.

25

26