

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

SECAM COLOR VIDEO SIGNAL RECORDING DEVICE

Patent number: JP53116733
Publication date: 1978-10-12
Inventor: MORIO MINORU; others: 02
Applicant: SONY CORP
Classification:
- **international:** H04N5/79; H04N9/02; H04N9/40
- **european:**
Application number: JP19770031447 19770322
Priority number(s):

Abstract of JP53116733

PURPOSE: To obtain good reproduced pictures with a good S/N and a superior highpass characteristic, by obtaining chrominance signals from SECAM color video signals through BPF and recording these chrominance signals after frequency division and low-pass conversion.

Data supplied from the **esp@cenet** database - Worldwide

公開特許公報

昭53-116733

⑩Int. Cl.² 識別記号
 H 04 N 5/79
 H 04 N 9/02
 H 04 N 9/40 //
 G 11 B 5/027

⑪日本分類
 97(5) H 4
 97(5) H 13
 102 E 3

厅内整理番号
 6610-59
 6610-59
 6668-55

⑪公開 昭和53年(1978)10月12日
 発明の数 1
 審査請求 未請求

(全 5 頁)

⑩SECAMカラー映像信号の記録装置

東京都品川区北品川6丁目7番
35号 ソニー株式会社内

⑪特願 昭52-31447

⑪発明者 町田征彦

⑪出願 昭52(1977)3月22日

三鷹市井の頭5-16-7

⑪発明者 森尾稔

⑪出願人 ソニー株式会社

東京都渋谷区桜丘町29-24-80

東京都品川区北品川6丁目7番
35号

1

⑪代理人 弁理士 伊藤貞

同 江口武夫

明細書

発明の名称 SECAMカラー映像信号の記録装置

のように不都合を招いてしまう。

特許請求の範囲

SECAMカラー映像信号を記録するにあたり、その搬送色信号を分周及び低域変換して記録するようにしたSECAMカラー映像信号の記録装置。

すなわち、SECAMカラー映像信号の搬送色信号Scは、赤の色差信号によりFM変調されたFM信号Srと、青の色差信号によりFM変調されたFM信号Sbとが、1水平期間ごとに交互に取り出された信号であり、信号Sr、Sbは、第1図及び第2図に示すような規格を有する。また信号Sr、Sbに対する変調指數m_r、m_bは、ブリエンフアシスにより第3図のとおりである。

発明の詳細な説明

VTR(磁気映像再生装置)において、NTSCカラー映像信号を記録再生する場合には、記録時、輝度信号をFM信号に変換すると共に、搬送色信号をそのFM輝度信号の低域側に周波数変換し、この低域変換された搬送色信号と、FM輝度信号との周波数多重化信号を記録している。そして再生時には、記録時とは逆の信号処理によりもとのカラー映像信号を得ている。

そして、このように変調指數m_r、m_bが大きい場合には、信号Sr、Sbは、高次のサイドバンドまで大きなエネルギーを持つことになり、信号Sr、Sbは、第2図に示すように、占有周波数帯域が1.5MHz程度と広くなつてしまふ。

そこで、SECAMカラー映像信号についても、同様の方法で記録再生することが考えられる。

しかし、SECAMカラー映像信号の搬送色信号は、NTSCカラー映像信号の搬送色信号とは変調形式が異なるので、そのような記録再生では、次

として、信号Sr、Sb、すなわち、搬送色信号Scの占有周波数帯域が広いと、これを低域変換し、その高域側にFM輝度信号を位置させると、そのFM輝度信号の占有周波数帯域が全体的に高くなつてしまふ。従つて、そのようなFM輝度信号を記録再生するには、回転ヘッドと、テープとの相

対速度を速くしなければならず、このためには、回転ヘッドの回転半径を大きくしたり、テープ幅を広くしたりしなければならない。VTRの大型化やテープの使用量の増大を招いてしまう。

あるいは、FM輝度信号の占有周波数帯域を全体的に高くする代わりに、FM輝度信号の周波数偏移を小さくしてFM輝度信号の占有周波数帯域を狭くすると、再生された輝度信号のS/Nが低下したり、高域特性が低下したりして再生画質が悪くなってしまう。

また、搬送色信号S_cを、FM信号からAM信号に変換してNTSCカラー映像信号と同様に記録再生することも考えられる。

しかし、搬送色信号S_cの位相は、各水平走査の開始時には、基準位相または逆の位相にロックされ、ドットインターリーブが行われているので、再生時、搬送色信号S_cを、AM信号からFM信号に戻すとき、そのドットインターリーブを行わなければならない。従つて、搬送色信号S_cのFM信号からAM信号への変換、AM信号から

FM信号への再変換、ドットインターリーブなどのため、信号系が複雑化及び大型化してしまう。

この発明は、以上の問題点を一掃したSECAMカラー映像信号用のVTRを提供しようとするものである。

以下、この発明の一例について説明しよう。なお、搬送色信号S_c(FM信号S_r、S_b)は、第2図に示す周波数スペクトルを有するが、以下の説明においては、簡単のため、第4図の周波数スペクトルで代表して示す。すなわち、搬送色信号S_cは、搬送周波数f_c≈4.29MHz(正しくは4.286MHzで、これはベル中心周波数である)、周波数偏移Δf=+470kHz、-390kHz、占有周波数帯域は約1.5MHzとする。

第5図において、記録時には、SECAMカラー映像信号が、入力端子11を通じてローパスフィルタ12に供給されて輝度信号が取り出され、この輝度信号が、AGCアンプ13→クランプ回路14→ブリエンファシス回路15→ダーク及びホワイトクリップ回路16のラインを通じてFM変調回路17に供

給されてFM信号S_yとされ、この信号S_yが、ハイパスフィルタ18を通じて加算回路19に供給される。

また、端子10からのカラー映像信号が、バンドパスフィルタ20に供給されて搬送色信号S_cが取り出され、この信号S_cが、逆ベルフィルタ21に供給されて平坦な周波数特性とされてから分周回路22に供給されて例えば $\frac{1}{4}$ の周波数、すなわち、第6図に示すように、搬送周波数f_d= $\frac{1}{4}f_c \approx 1.07$ MHzで、周波数偏移Δf≈+120kHz、-90kHzの搬送色信号(FM信号)S_dとされる。

ただし、この場合、信号S_dの周波数偏移Δfがもとの信号S_cの $\frac{1}{4}$ になつたので、信号S_dの変調指數m_r、m_bも $\frac{1}{4}$ になり、従つて信号S_dの高次のサイドバンドのエネルギーが減少するので、信号S_dの占有周波数帯域は、信号S_cよりも狭くなり、1MHz程度となる。

そしてこの搬送色信号S_dが、周波数コンバータ23に供給される。

また、フィルタ12からの輝度信号が、記録再生

切り換えスイッチ24の記録側接点Rを通じて同期分離回路25に供給されて水平同期パルスが取り出され、このパルスが、PLL26に供給されて水平同期パルスに同期し、例えば周波数f_s=40f_b=625kHzの交番信号が形成され、この信号が周波数コンバータ23に供給されると共に、発振回路27から周波数f_dの発振信号がコンバータ23に供給され、コンバータ23からは周波数(f_s+f_d)の交番信号が取り出される。そしてこの交番信号が、コンバータ23に供給される。

従つて、コンバータ23において、分周回路22からの搬送色信号S_dは、搬送周波数f_dの搬送色信号S_sに周波数変換され、第7図に示す信号S_sとされる。

そして、この信号S_sが、加算回路19に供給されてフィルタ12からのFM信号S_yに加算される。従つて加算回路19からは、第7図に示すように、高域側にFM信号S_yが分布し、低域側に搬送色信号S_sが分布する周波数多重化信号S_mが取り出される。

そして、この信号 S_m が、記録アンプ 81 を通じ、さらに記録再生切り換えスイッチ 4 の記録側接点 R を通じて例えば 2 つの回転磁気ヘッド (1A)、(1B) に供給される。

このヘッド (1A)、(1B) は、 180° の角間隔を有し、図示はしないが、サーボ回路によつて輝度信号に同期してフレーム周波数で回転しているものであり、このヘッド (1A)、(1B) の回転周面に対しテープ (2) が 180° 強の角範囲にわたつて斜めに巡らされると共に、一定速度で走行させられている。

従つて、信号 S_m は、その 1 フィールドが斜めの 1 本の磁気トラックとしてガードバンドを有してテープ (2) に順次記録される。またこのとき、垂直同期パルスを分周して得られるフレーム周波数のパルスが、テープ (2) の側面間に、再生時のコントロールパルスとして記録される。

一方、再生時には、サーボ回路によつてテープ (2) のトラックに対するヘッド (1A)、(1B) のトラッキングサーボが行われ、ヘッド (1A)、(1B) から

は信号 S_m が取り出される。そして、この信号 S_m が、再生アンプ 84 を通じてバンドパスフィルタ 42 に供給されて FM 信号 S_y が取り出され、この信号 S_y が、リミッタ 43 を通じて FM 復調回路 44 に供給されて輝度信号が復調され、この信号が、ディエンファシス回路 45 を通じて加算回路 46 に供給される。

また、アンプ 81 からの信号 S_m が、ローパスフィルタ 50 に供給されて搬送色信号 S_s が取り出され、この信号 S_s が、周波数コンバータ 52 に供給される。

さらに、ディエンファシス回路 45 からの輝度信号が、スイッチ 4 の再生側接点 P を通じて同期分離回路 47 に供給され、従つて記録時と同様にしてコンバータ 53 から、周波数 ($f_s + f_d$) の交番信号が取り出される。そして、この信号がコンバータ 54 に供給される。

従つて、コンバータ 54 において、搬送色信号 S_s は、搬送周波数 f_d の搬送色信号 S_d に周波数変換

される。

そしてこの信号 S_d が、リミッタ 43 を通じて遙倍回路 54、4 回に順次供給され、それぞれにおいて例えば二乗検波されることにより 2 遥倍され、従つて全体として 4 遥倍されて搬送周波数 f_c の搬送色信号 S_c とされる。

そしてこの信号 S_c が、ベルフィルタ 48 を通じて加算回路 46 に供給され、輝度信号に加算されてもとの SECAM カラー映像信号とされ、これは出力端子 4 に取り出される。

こうして、記録再生が行われるわけであるが、この場合、この発明によれば、第 6 図及び第 7 図に示すように、搬送色信号 S_d 、 S_s の占有周波数帯域は 1 MHz 程度とされ、もとの搬送色信号 S_c (第 2 図及び第 4 図) に比べて狭いので、第 7 図の信号 S_m において、FM 信号 S_y の占有周波数帯域を低くすることができ、従つてヘッド (1A)、(1B) とテープ (2) との相対速度を遅くできるので、ヘッド (1A)、(1B) の回転半径を小さくしたり、テープ (2) の幅を狭くしたりでき、VTR を小型化

できると共に、テープ (2) の使用量を少なくてできる。特に、上述の数値例では、搬送色信号 S_s の占有周波数帯域及びエネルギーが、NTSC あるいは PAL カラー映像信号用の VTR における搬送色信号の占有周波数帯域及びエネルギーとほとんど同じなので、信号処理が容易になり、また NTSC 用あるいは PAL 用の VTR の機構部及び信号系を大體に転用できる。

さらに、FM 信号 S_y における周波数偏移を小さくする必要もないで、輝度信号の S/N の低下や、高域特性の低下がなく、再生画質を優れたものにできる。

また、搬送色信号 S_c が、信号 S_d 、 S_s の状態になるとことにより、信号 S_d 、 S_s の位相が、信号 S_c の $1/2$ になつても、第 8 図に示すように、再生された信号 S_c の位相は、記録されるときの信号 S_c の位相に 1 対 1 で対応し、従つて搬送色信号 S_c の位相及び周波数情報が乱れることがないので、ドットインターリーブを正しく行うことができる。しかも、そのために特殊な回路や構成を必要とし

ない。

なお、記録時における信号 S_c の分周及び周波数変換、再生時における信号 S_b の周波数変換及び倍倍は、それぞれ順序を逆または同時にしてもよい。

図面の簡単な説明

第1図～第4図は SECAM カラー映像信号を説明するための図、第5図はこの発明の一例の系統図、第6図～第8図はその説明のための図である。

40～49は記録系、50～59は再生系である。

特許出願人 ソニー株式会社

代理人 伊藤 嘉

第1図

	本のFM信号 S_r	青のFM信号 S_b
搬送周波数	$f_r = 282 f_L$ $\cong 4.41 \text{ MHz}$	$f_b = 272 f_L$ $= 4.25 \text{ MHz}$
周波数偏移 $4f$	+350 kHz -500 kHz	+500 kHz -350 kHz

f_L = 水平周波数 = 15.625 kHz

第3図

変調基波周波数	m_r	m_b
100 kHz	4.3	3.6
200	3.0	2.4
300	2.3	1.9
400	1.9	1.6
500	1.6	—

第7図

第2図

第4図

第6図

第5圖

第8図

