Math 4A03 - Assignment 2

September 22, 2020

Question 1:

a) Given $x, y \in \ell^1$, we will show that $x + y \in \ell^1$ and $||x + y||_1 \le ||x||_1 + ||y||_1$.

First fix $t \in \mathbb{N}$ with $x_t = (x(1), \dots, x(t)), y_t = (y(1), \dots, y(t)) \in \mathbb{R}^t$. By the triangle inequality for \mathbb{R}^t we have

$$\sum_{i=1}^{t} |x(i) + y(i)| \le \sum_{i=1}^{t} |x(i)| + \sum_{i=1}^{t} |y(i)|$$

Since each term is a partial sum of the absolute coordinates of x and y, they are monotonically increasing, and so as $t \to \infty$ we have

$$\sum_{i=1}^{t} |x(i)| + \sum_{i=1}^{t} |y(i)| \le \sum_{i=1}^{\infty} |x(i)| + \sum_{i=1}^{\infty} |y(i)| = ||x||_1 + ||y||_1$$

Because $x, y \in \ell^1$, we know that $||x||_1 + ||y||_1$ is a constant meaning $\sum_{i=1}^t |x(i) + y(i)|$ is both uniformly bounded and monotonically increasing. Then, by the monotone convergence theorem, $\sum_{i=1}^{\infty} |x(i) + y(i)|$ is finite and so $x + y \in \ell^1$. Therefore, we can safely conclude

$$||x+y||_1 = \sum_{i=1}^{\infty} |x(i)+y(i)| \le \sum_{i=1}^{\infty} (|x(i)|+|y(i)|) = \sum_{i=1}^{\infty} |x(i)| + \sum_{i=1}^{\infty} |y(i)| = ||x||_1 + ||y||_1$$

b) We will show that $x^n \to x \in \ell^1$ as $n \to \infty$ or equivalently $d(x, x^n) \to 0$ as $n \to \infty$.

First fix some $k \in \mathbb{N}$, then we have

$$d(x, x^k) = \left\| x - x^k \right\|_1 = \sum_{i=1}^{\infty} |x(i) - x^k(i)| = \sum_{i=1}^{k} |x(i) - x^k(i)| + \sum_{i=k+1}^{\infty} |x(i) - x^k(i)|$$

Now, using the facts that $x^k(i) = 0$ when $i \le k$ and $x^k(i) = x(i)$ when i > k, we can simplify our formula to the following

$$\sum_{i=1}^{k} |x(i) - x(i)| + \sum_{i=k+1}^{\infty} |x(i) - 0| = \sum_{i=k+1}^{\infty} |x(i)|$$

Similarly, for k + 1 we have

$$d(x, x^{k+1}) = \sum_{i=k+2}^{\infty} |x(i)|$$

Notice that this means that $d(x, x^n)$ is a monotonically decreasing sequence in ℓ^1 since for any $k \in \mathbb{N}$,

$$d(x, x^k) = \sum_{i=k+1}^{\infty} |x(i)| = \sum_{i=k+2}^{\infty} |x(i)| + |x(k+1)| \ge \sum_{i=k+2}^{\infty} |x(i)| = d(x, x^{k+1})$$

Finally, using the fact that $d(x, x^n)$ is monotonically decreasing and bounded below by an infimum of 0, we have by the monotone convergence theorem that $d(x, x^n) \to 0$ as $n \to \infty$ or equivalently, $x^n \to x \in \ell^1$ as $n \to \infty$.

c) To find such an $x \in \ell^{\infty}$, we need its sequence $(x^n)_{n \in \mathbb{N}}$ to satisfy $d(x, x^n) \not\to 0$ as $n \to \infty$. So we can use any sequence that does not vanish so that $d(x, x^n)$ remains significant as $n \to \infty$. For example, a constant sequence say $x = (13, 13, 13, 13, \dots,)$ where $x(i) = 13, \forall i \in \mathbb{N}$ will do the job. Note that $x \in \ell^{\infty}$ since $\|x\|_{\infty} = \sup_i |x(i)| = 13$ and for each fixed $n \in \mathbb{N}$, we have $\|x^n\|_{\infty} = 13$ and so $x^n \in \ell^{\infty}$ as well, thus, we can safely describe $\lim_{n \to \infty} (x^n)_{n \in \mathbb{N}}$. Now, for all $n \in \mathbb{N}$ we have

$$d(x, x^n) = ||x - x^n||_{\infty} = \sup_{i} |x(i) - x^n(i)| = \sup_{i} |(0, 0, 0, \dots, x(n+1), x(n+2), \dots)|$$
$$= \sup_{i} |(0, 0, 0, \dots, 13, 13, \dots)| = 13$$

So $d(x, x^n) \not\to 0$ as $n \to 0$. Thus, we have $x = (13, 13, 13, 13, \dots, 1) \in \ell^{\infty}$ with $x^n \not\to x$ as $n \to \infty$.