ADDITIVE COMBINATORICS COURSE PROBLEMS 1

- (1) Prove the Fourier inversion theorem for finite abelian groups.
- (2) Let $c_1, \ldots, c_k \in \mathbb{Z}$. For a finite subset $A \subset \mathbb{Z}$, let $N_k(A)$ denote the number of $x_1, \ldots, x_k \in A$ such that

$$c_1x_1 + \dots + c_kx_k = 0.$$

Express $N_k(A)$ in terms of the Fourier transform $\widehat{\mathbf{1}}_A$ of the characteristic function of A.

(3) By considering the set

$$\left\{ n \in [N] : n = \sum_{0 \le i \le k} a_i 3^i \text{ such that } a_i \in \{0, 1\} \right\},\,$$

or otherwise, prove the lower bound $r_3(N) \gg N^{\log 2/\log 3}$.

- (4) The purpose of this question is to prove that there exists a function $c:(0,1] \to (0,1]$ such that if $A \subset [N]$ has density at least α , then A contains at least $c(\alpha)N^2$ three term arithmetic progressions (including trivial ones with common difference 0).
 - (a) Explain why it suffices to assume that N is sufficiently large in terms of α .
 - (b) Use Roth's theorem to prove that that there exists $M \in \mathbb{N}$, depending only on α , such that any subset of [M] of density at least $\alpha/2$ contains a non-trivial three term arithmetic progression.
 - (c) By dividing [N] into disjoint arithmetic progressions of common difference d and lengths between M and 2M, for $d \leq N/10M$, show that A contains at least

$$\frac{\alpha N^2}{80M^2}$$

three term arithmetic progressions.

(d) Show that that no three term arithmetic progression is counted more than 2M times, and conclude that A contains at least $\alpha N^2/(60M^3)$ three term arithmetic progressions.