Atelier 'Gérer les FS Ext2/3/4'

man mkfs, man e2fsck, man tune2f, man blkid, man fsck ... 😊 man mount, man In 😊

1. Ajoutez un disque dur de 900 Mo à votre système et découpez-le en 3 partitions primaires de 300 Mo chacune.

Procédé: Voir Billet 'Installation'

Ici, le disque dur créé est supposé être géré par le device /dev/sdc...

2. Listez la documentation des commandes de gestion des FS

#man -k ext2

3. Créez un FS Ext2 en silence sur la 1ère partition avec des blocs de 2 Ko, en vérifiant la présence de mauvais blocs et en dimensionnant la table des i-nodes à 1000 i-nodes.

#mkfs -ext2 -a -b 2048 -c -N 1000 /dev/sdb1

4. Créez un journal, le FS devient donc un Ext3

#tune2fs -j /dev/sdb1
5. Visualisez les caractéristiques du FS.

#tune2fs -I /dev/sdb1 | more

Montez le FS sans activer le journal.

#mount -t ext2 /dev/sdb1 /mnt

#umount / mnt Remontez le FS en tant que Ext3, on active donc la journalisation. #mount -t ext3 /dev/sdb1 /mnt

Montez le FS Ext3 en tant que Ext4. #umount /mnt

#mount -t ext4 /dev/sdb1 /mnt

9. Convertissez le FS Ext3 en Ext4. Mais il ne sera plus montable en Ext3.

10. Les liens:

#umount /mnt #tune2fs -O extents, ininit bg, dir index /dev/sdb1 #e2fsck /dev/sdb1

Créez:

a. Une copie 'network.cp' du fichier /etc/sysconfig/network. #cp /etc/sysconfig/network /etc/sysconfig/network.cp
i Listez les i-nodes relatifs à ces 2 fichiers #ls -li /etc/sysconfig/network

ii. Schématisez la structure interne de ces 2 entrées.

b. Un lien (dur) 'network.ln' sur le fichier /etc/sysconfig/network. #cd /etc/sysconfig/

i. Listez les i-nodes relatifs à ces 2 fichiers

ii. Schématisez la structure interne de ces 2 entrées.

#In network network.In #ls -li /etc/sysconfig/network

Un lien symbolique 'network.lns' sur le fichier /etc/sysconfig/network. #In -s network network.lns

#ls -li

i. Listez les i-nodes relatifs à ces 2 fichiers

- ii. Schématisez la structure interne de ces 2 entrées ainsi que le chemin parcouru dans le FS afin d'exécuter la commande "# cat network.lns".
- ci. Un lien symbolique '/mnt/grub/' vers le dossier /boot/grub.

i. Listez l'i-node relatif à cette nouvelle entrée.

#In -s /mnt/grub/ /boot/grub

ii. Schématisez la structure interne de cette entrée.

Démontez la partition /boot et relistez l'i-node du lien symbolique.

<u>Différences entre liens durs et liens symboliques</u>:

LIENS DURS	LIENS SYMBOLIQUES
Fait référence à un espace sur	Fait référence à une entrée dans
le disque dur.	un répertoire.
La suppression d'un des fichiers liés n'affectera pas l'autre	La suppression du fichier source entraînera un changement de comportement du fichier lié qui ne correspondra plus à un fichier valide et sera donc "cassé" ("broken").
Pour supprimer l'accès aux	Pour supprimer l'accès aux
données du fichier, il faut	données du fichier, il faut
supprimer tous ses liens (via la	supprimer le fichier source
commande rm).	(attention aux fichiers cassés!)

<u>Utilités</u>

- Mise à disposition de fichiers à des utilisateurs sans avoir besoin de dupliquer ces données dans leur espace de travail.
- Dans ce cas, ces utilisateurs travaillent automatiquement sur la version actuelle des fichiers.
- Accès à des fichiers ou dossiers via plusieurs noms possibles:

⇒ Ces quelques écritures sont équivalentes:

```
# cat /boot/grub/grub.conf
# cat /boot/grub/menu.lst
# cat /etc/grub.conf
```

Ex2. /dev/cdrom ~ /dev/sr0

```
# mount /dev/cdrom /media
# mount /dev/sr0 /media
```

```
# cat /etc/rc.d/init.d/network
# cat /etc/init.d/network
# cat /etc/rc.d/rc3.d/S10network
# cat /etc/rc3.d/S10network
# cat /etc/rc.d/rc3.d/S10network
# cat /etc/rc3.d/S10network
```

etc...

Questions de réflexion:

- 1. La commande rm permet, dans tous les cas, de supprimer l'accès aux données physiques d'un fichier. Vrai ou faux et pourquoi ?
- 2. Après avoir créé un répertoire, son nombre de liens égal 2 et sa taille = 4096 bytes. Pourquoi ?
- 3. Si le nombre de liens associé à un répertoire égal 4, qu'est-ce que cela signifie ?
- 4. On ne peut pas créer un lien dur vers un autre FS. Pourquoi?
- 5. Pourquoi ne peut-on pas lier en dur des répertoires entre eux?
- 1. FAUX, si un lien dur a été fait en amont de la commande rm, nous pourrons toujours avoir accès au données physiques du fichier.
- 2. Le nombre de lien est égal à 2 car il possède déjà deux entrées à savoir "." et "..". Et sa taille est de 4096 bytes car c'est la plus petite unité d'allocation pour un bloc.
- 3. Cela signifie que le répertoire possède les entrées "." et ".." ainsi que deux autres répertoires dans son arborescence.
- 4. Un lien dur, c'est lorsque que 2 fichiers possèdent le même id dans la table des i-node. Chaque fs possède sa propre table d'i-node. Ce n'est donc pas possible de créer un lien dur entre leurs fichiers. Par contre un lien symbolique est possible
- 5. C'est le système qui empêche ça car l'on souhaite éviter de se retrouver dans une boucle infini avec le père appelant le fils et le fils le père.

PRINCIPALES COMMANDES MANIPULEES LORS DE CET ATELIER

Principales commandes:

mkfs, blkid, tune2fs, mount, e2fsck, fsck, In