Predictive Model & Financial Calculation Framework

Jose Carlo Burga

This document outlines the full suite of predictive models, data workflows, and financial logic supporting the investment case and operations for Ajayu Agri Fintech.

MODEL OVERVIEW & FUNCTIONAL FLOW

Model Name	Purpose	Key Outputs	Used For	Core Formula	
1. Credit Scoring Model	Evaluate farmer creditworthiness using production, location, export alignment, and climate risk	Risk score, recommended loan amount and interest rate	Lending qualification and pricing	$egin{aligned} ext{RiskScore} &= \sigma(eta_0 + \ \sum_{i=1}^n eta_i X_i) \end{aligned}$	Write something
2. FOB Revenue Forecasting	Predict district- level export performance (monthly, by product)	Revenue outlook, volatility score	Adjust credit ceilings, target products and locations	$\hat{Y}_t = lpha + \sum_{i=1}^p \phi_i Y_{t-i} + \sum_{j=1}^q heta_j \epsilon_{t-j} + \gamma Z_t$	
3. Parametric Insurance Trigger	Identify payout triggers using weather and price anomalies	Insurance flag, premium range	Automated coverage and pricing	$egin{aligned} \operatorname{Trigger} &= 1 ext{ if } X_t otin [\mu - k\sigma, \mu + k\sigma] \end{aligned}$	
4. Farmer Segmentation	Cluster farmers by productivity, exporter alignment, and tech adoption	Segment label (A/B/C), onboarding tier	Tailored Ioan + grant bundles	$rg\min_{S} \sum_{i=1}^k \sum_{x \in S_i} \ x - \mu_i\ ^2$	
5. Repayment Behavior Model	Predict likelihood of timely repayment	Probability of repayment	Risk management and early warning	(P(y=1	X) = \frac{1} {1 + e^{- \beta^T X]})

Predictive Model & Financial Calculation Framework

Jose Carlo Burga

This document outlines the full suite of predictive models, data workflows, and financial logic supporting the investment case and operations for Ajayu Agri Fintech.

DATA PIPELINE FLOW

Input Datasets:

- ENA (Encuesta Nacional Agropecuaria): Farmer profiles, crops, yields, access to inputs (source)
- CENAGRO 2012: Land use, farmer classification, national geostatistics (source)
- **SUNAT G3:** Monthly FOB export revenue by product (<u>G3 Excel</u>)
- SUNAT G5: Export destinations per product and value (G5 Excel)
- SUNAT G6: Country codes and destination market classification (e.g., US, EU, APEC) (G6 Excel)
- UBIGEO Tables: Region/province/district geocodes (INEI catalog)
- Climate Data: SENAMHI, NOAA APIs precipitation, drought index, temperature

Predictive Model & Financial Calculation Framework

Jose Carlo Burga

This document outlines the full suite of predictive models, data workflows, and financial logic supporting the investment case and operations for Ajayu Agri Fintech.

FEATURE ENGINEERING (from Ajayu PPTX Architecture)

Key derived features used in predictive models:

Feature	Source(s) from	How It's Engineered
	Pipeline	
FOB_Alignment_Score	SUNAT G3, UBIGEO	Compare monthly district-level FOB trends against
		national top 15 crop FOB vectors (correlation or
		cosine similarity)
Climate_Risk_Index	Climate Data, UBIGEO	Compute normalized multi-year anomaly scores
		(e.g., SPI, temperature z-scores)
Traceability_Link	ENA, SUNAT G5/G6,	Binary flag indicating if farmer/product is part of a
	Exporter registry	known export supply chain
Tech_Adoption_Index	ENA, CENAGRO	Scored on irrigation, mechanization, fertilizer use,
		and mobile access
Digital_Engagement	Ajayu platform	Frequency of interaction, onboarding success,
	(mobile onboarding	message exchange
	logs)	
Market_Exposure	SUNAT G5 + G6	Proportion of production linked to US/EU/APEC
		exports by destination
Historical_Default_Rate	Ajayu repayment logs	Aggregated repayment behavior by UBIGEO-
	(ongoing)	product-time cluster
Onboarding_Segment	Derived from ENA,	Clustering via KMeans or HDBSCAN on productivity,
	CENAGRO, FOB	tech, geography, and risk

These features feed into model input pipelines and dynamically update risk and pricing decisions.

Predictive Model & Financial Calculation Framework

Jose Carlo Burga

This document outlines the full suite of predictive models, data workflows, and financial logic supporting the investment case and operations for Ajayu Agri Fintech.

FINANCIAL LOGIC & CALCULATIONS

Ajayu's financial framework integrates predictive analytics to estimate revenue generation, capital allocation efficiency, and platform scalability. All projections are derived from Al-driven farmer segmentation, credit scoring, and export-alignment forecasts.

A. Revenue Model (Predictive Basis)

- **Platform Fee Prediction**: Based on expected onboarding and engagement scores, farmers are projected to yield \$5/month × engagement probability.
- Loan Revenue Estimation: Using the credit scoring model, loan disbursement is dynamically optimized. The blended return (6%) is applied over predictive deployment curves.

Example Y1 (5,000 farmers with 80% engagement and 90% disbursement rate):

- Platform: $5,000 \times $60 \times 0.8 = $240,000$
- Loans: $$7.5M \times 0.9 \times 6\% = $405,000$
- Total: ~\$645,000, scalable to \$1.45M including insurance-trigger volatility and product clustering

B. Valuation Formula (Model-Driven Multiples)

- Valuation = Expected Revenue × Revenue Multiple
- Multiples:
 - Seed: 6–8× for early-stage risk with tech/data edge
 - Series A: 6–8× with traction and geographic expansion
 - Series B: 7–10× due to regional scale and embedded ETF infrastructure

C. Capital Allocation Strategy (Al-Optimized)

- 70%: Loan capital driven by segmented farmer credit models
- 20%: Platform development prioritized by usage telemetry and model load factors
- 10%: Operations scaled according to model-predicted growth trajectories

D. Market Size Estimation (Data-Grounded TAM)

- 900,000 export-aligned farmers mapped via ENA, CENAGRO, SUNAT
- Avg. loan need: \$2,000 → \$1.6B modeled lending volume
- Adding platform fees, insurance probability: \$2B+ total addressable market

Predictive Model & Financial Calculation Framework

Jose Carlo Burga

This document outlines the full suite of predictive models, data workflows, and financial logic supporting the investment case and operations for Ajayu Agri Fintech.

OUTPUT & SYSTEM INTEGRATION

Ajayu Digital Platform

- Mobile onboarding via WhatsApp
- Exporter-led clustering via traceability APIs
- Geo-located loan + grant decisions
- Dynamic dashboard with model outputs + alerts

Investor Reports

- Dashboard showing:
 - Capital deployment and return
 - Insurance trigger history
 - o FOB-export alignment per region

Institutional Alignment

• Designed to complement AGAP exporters, COFIDE lending strategy, and future ETF fund indexing

Predictive Model & Financial Calculation Framework

Jose Carlo Burga

This document outlines the full suite of predictive models, data workflows, and financial logic supporting the investment case and operations for Ajayu Agri Fintech.

ARCHITECHTURE WORKFLOW

Predictive Model & Financial Calculation Framework

Jose Carlo Burga

This document outlines the full suite of predictive models, data workflows, and financial logic supporting the investment case and operations for Ajayu Agri Fintech.

PYTHON DATA PROCESSING

```
1. Clean and Normalize ENA by UBIGEO
ena = pd.read_csv('ENA_2023.csv')
ena['UBIGEO'] = ena['REGION'].astype(str).str.zfill(2) + ena['PROVINCIA'].astype(str).
ena = ena.dropna(subset=['CULTIVO_PRINCIPAL', 'RENDIMIENTO'])
2. Merge with CENAGRO for Land Use Mapping
cenagro = pd.read_csv('CENAGRO_2012.csv')
data = ena.merge(cenagro, on='UBIGEO', how='left')
3. Integrate G3 Export Revenue by Crop and Geography
g3 = pd.read_excel('cdro_G3.xlsx', sheet_name='2023')
g3['FOB'] = pd.to_numeric(g3['FOB'], errors='coerce')
g3 = g3.groupby(['PRODUCTO', 'UBIGEO', 'MES'])['FOB'].sum().reset_index()
data = data.merge(g3, on=['PRODUCTO', 'UBIGEO'], how='left')
4. Link Destination Markets (G5 + G6)
g5 = pd.read_excel('cdro_G5.xlsx')
g6 = pd.read_excel('cdro_G6.xlsx')
g5 = g5.merge(g6, on='PAIS_CODIGO', how='left')
g5_filtered = g5[g5['REGION_DESTINO'].isin(['EE.UU.', 'APEC', 'UE'])]
5. Add Climate Index and Anomalies
climate = fetch_climate_data(df['UBIGEO'], df['MES'])
data = data.merge(climate, on=['UBIGEO', 'MES'], how='left')
data['anomaly_flag'] = (data['RAINFALL'] < threshold_low) | (data['RAINFALL'] > thresh
6. Historical FOB Alignment Curve
fob_curves = g3.groupby(['PRODUCTO', 'UBIGEO', 'MES'])['FOB'].mean().unstack('MES').fi
7. Final Model Feed Format
model_input = data[['UBIGEO', 'PRODUCTO', 'RENDIMIENTO', 'FOB', 'anomaly_flag', 'SEGME
```

Predictive Model & Financial Calculation Framework

Jose Carlo Burga

This document outlines the full suite of predictive models, data workflows, and financial logic supporting the investment case and operations for Ajayu Agri Fintech.

```
1. Credit Scoring Model (XGBoost)
 python
                                                                               'в Edit
  import pandas as pd
  import xgboost as xgb
 from sklearn.model_selection import train_test_split
 from sklearn.metrics import roc_auc_score
 # Load data
 df = pd.read_csv('farmer_credit_dataset.csv')
 # Features and label
 X = df[['age', 'region_code', 'production_volume', 'fob_alignment_score',
          'prev_loan_access', 'climate_risk_index']]
 y = df['default']
 # Train model
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
 model = xgb.XGBClassifier(n_estimators=100, max_depth=4)
 model.fit(X_train, y_train)
  # Predict risk
 new_farmer = pd.DataFrame([{
     'production_volume': 12.5,
     'fob_alignment_score': 0.78,
     'prev_loan_access': 1,
  }])
  risk_score = model.predict_proba(new_farmer)[0][1]
```

Predictive Model & Financial Calculation Framework

Jose Carlo Burga

This document outlines the full suite of predictive models, data workflows, and financial logic supporting the investment case and operations for Ajayu Agri Fintech.

Predictive Model & Financial Calculation Framework

Jose Carlo Burga

This document outlines the full suite of predictive models, data workflows, and financial logic supporting the investment case and operations for Ajayu Agri Fintech.

```
3. Parametric Insurance Trigger (Anomaly Detection)

python

python

import pandas as pd
from sklearn.ensemble import IsolationForest

# Load historical FOB prices or rainfall
df = pd.read_csv('climate_and_price_data.csv')

# Train isolation forest for anomaly detection
clf = IsolationForest(contamination=0.05)
df['anomaly'] = clf.fit_predict(df[['rainfall_mm', 'fob_price_usd']])

# Trigger logic
df['trigger_insurance'] = df['anomaly'] == -1
```

Predictive Model & Financial Calculation Framework

Jose Carlo Burga

This document outlines the full suite of predictive models, data workflows, and financial logic supporting the investment case and operations for Ajayu Agri Fintech.

Predictive Model & Financial Calculation Framework

Jose Carlo Burga

This document outlines the full suite of predictive models, data workflows, and financial logic supporting the investment case and operations for Ajayu Agri Fintech.

```
5. Loan Repayment Behavior Predictor (Logistic Regression)

    Copy

                                                                                         7 Edit
  python
  import pandas as pd
  from sklearn.linear_model import LogisticRegression
  from sklearn.model_selection import train_test_split
  # Load repayment data
  df = pd.read_csv('repayment_behavior.csv')
  X = df[['loan_amount', 'platform_engagement_score', 'expected_yield', 'historical_repayment_rate']
  y = df['repayment_on_time']
  # Train logistic regression model
  X_train, X_test, y_train, y_test = train_test_split(X, y)
  model = LogisticRegression()
  model.fit(X_train, y_train)
  # Predict repayment probability
  repayment_prob = model.predict_proba(X_test)[:, 1]
```