SciLifeLab

What is resequencing?

- You have a reference genome
 - represents one individual
- You generate sequence from other individuals
 - same species
 - closely related species
- You map sequence back to reference
- You identify variation

Example 1: identification of new mutations

- Comparison of tumour vs. normal tissue or comparison of parents vs offspring
- sensitivity to false positives and false negatives is high
- mutations extremely rare
- FP rate >1 per Mb will swamp signal
- samples may be precious

Example 2: SNP discovery

- Sequencing multiple individuals in order to design a SNP array
- High tolerance to false positives and false negatives (they will be validated by array)
- Does not need to be comprehensive lower coverage acceptable
- Only interested in identifying markers to (e.g.) analyze population structure

Example 3: selection mapping SciLifeLab

- Sequencing multiple individuals in order to scan genetic variation for signals of selection
- Looking for regions with reduced levels of SNP variation
- low false positive rate important
 - or selective sweeps will be obscured by noise

Types of reads

• fragment _____

paired-end

mate pair (jumping libraries)

Benefits of each library type

- Fragments
 - fastest runs (one read per fragment)
 - lowest cost
- Paired reads
 - More data per fragment
 - improved mapping and assembly
 - same library steps, more data
 - Insert size limited by fragment length

Benefits of each library type

Mate pairs

- Allows for longer insert sizes
- Very useful for
 - assembly and alignment across duplications and low-complexity DNA
 - identification of large structural variants
 - phasing of SNPs
- More DNA and more complex library preparation
- Not all platforms can read second strand

Steps in resequencing

1) Setup programs, data 2,3,4) map reads to a reference find best placement of reads bam file realign indels remove duplicates 5) recalibrate alignments recalibrate base quality bam file statistical algorithms 6) identify/call variants to detect true variants vcf file

Steps in resequencing

TCGATCC

X

TCGATCC

X

TCGATCC

X

TCGATCC

X

TCGATCC ||x GACCTCATCGATCCCACTG

TCGATCC

X

TCGATCC

X

build an index of the reference sequence for fast access

0 5 10 15

seed length 7

```
GACCTCATCGATCCCACTG
GACCTCA
                          chromosome 1, pos 0
                          chromosome 1, pos 1
 ACCTCAT
  CCTCATC
                          chromosome 1, pos 2
   CTCATCG
                          chromosome 1, pos 3
    TCATCGA
                          chromosome 1, pos 4
     CATCGAT
                          chromosome 1, pos 5
      ATCGATC
                          chromosome 1, pos 6
       TCGATCC
                          chromosome 1, pos 7
                     \rightarrow
        CGATCCC
                          chromosome 1, pos 8
         GATCCCA
                          chromosome 1, pos 9
```


build an index of the reference sequence for fast access

TCGATCC ?

0 5 10 15

```
GACCTCA
                          chromosome 1, pos 0
                          chromosome 1, pos 1
 ACCTCAT
  CCTCATC
                          chromosome 1, pos 2
                          chromosome 1, pos 3
   CTCATCG
    TCATCGA
                          chromosome 1, pos 4
     CATCGAT
                          chromosome 1, pos 5
      ATCGATC
                          chromosome 1, pos 6
       TCGATCC
                          chromosome 1, pos 7
                    \rightarrow
        CGATCCC
                          chromosome 1, pos 8
         GATCCCA
                          chromosome 1, pos 9
```


build an index of the reference sequence for fast access

```
TCGATCC = chromosome 1, pos 7
                 0
                           10
                              15
                 GACCTCATCGATCCCACTG
                 GACCTCA
                                          chromosome 1, pos 0
                                          chromosome 1, pos 1
                  ACCTCAT
                   CCTCATC
                                          chromosome 1, pos 2
                                          chromosome 1, pos 3
                    CTCATCG
                     TCATCGA
                                          chromosome 1, pos 4
                      CATCGAT
                                          chromosome 1, pos 5
                       ATCGATC
                                          chromosome 1, pos 6
                        TCGATCC
                                          chromosome 1, pos 7
                                     \rightarrow
                         CGATCCC
                                          chromosome 1, pos 8
                          GATCCCA
                                          chromosome 1, pos 9
```


Problem: Indexing big genomes/lists of reads requires lots of memory

suffix trees

suffix tree for BANANA

breaks sequence into parts (e.g. B, A, NA) allows efficient searching of substrings in a sequence

Advantage: alignment of multiple identical copies of a substring in the reference is only needed to be done once because these identical copies collapse on a single path

Burroughs-Wheeler transform SciLifeLab

Transformation				
Input	All Rotations	Sorting All Rows in Alphabetical Order by their first letters	Taking Last Column	Output Last Column
^BANANA	^BANANA	ANANA ^B ANA ^BAN A ^BANAN BANANA ^ NANA ^BA NA ^BA NA ^BANA ^BANANA ^BANANA	ANANA ^B ANA ^BAN A ^BANAN BANANA ^ NANA ^BA NA ^BANA ^BANANA ^BANANA	BNN^AA A

algorithm used in computer science for file compression original sequence can be reconstructed identical characters more likely to be consecutive \rightarrow reduces memory required

Mapping algorithms

- BWA (http://bio-bwa.sourceforge.net/)
 - Burroughs-Wheeler Aligner
 - Gapped
- bowtie (http://bowtie-bio.sourceforge.net/index.shtml)
 - fast + memory efficient

Step 2: Algorithms

- BWA (http://bio-bwa.sourceforge.net/)
 - Burroughs-Wheeler Aligner
 - Gapped
- bowtie (http://bowtie-bio.sourceforge.net/index.shtml)
 - fast + memory efficient
- ... and many more for specific purposes

Output from mapping - SAM format

HEADER SECTION

```
@HD VN:1.0 SO:coordinate
@SQ SN:1 LN:249250621 AS:NCBI37 UR:file:/data/local/ref/GATK/human_g1k_v37.fasta M5:1b22b98cdeb4a9304cb5d48026a85128
@SQ SN:2 LN:243199373 AS:NCBI37 UR:file:/data/local/ref/GATK/human_g1k_v37.fasta M5:a0d9851da00400dec1098a9255ac712e
@SQ SN:3 LN:198022430 AS:NCBI37 UR:file:/data/local/ref/GATK/human_g1k_v37.fasta M5:fdfd811849cc2fadebc929bb925902e5
@RG ID:UM0098:1 PL:ILLUMINA PU:HWUSI-EAS1707-615LHAAXX-L001 LB:80 DT:2010-05-05T20:00:00-0400 SM:SD37743 CN:UMCORE
@RG ID:UM0098:2 PL:ILLUMINA PU:HWUSI-EAS1707-615LHAAXX-L002 LB:80 DT:2010-05-05T20:00:00-0400 SM:SD37743 CN:UMCORE
@PG ID:bwa VN:0.5.4
```

ALIGNMENT SECTION

8_96_444_1622 73 scaffold00005 155754 255 54M * 0 0 ATGTAAAGTATTTCCATGGTACACAGCTTGGTCGTAATGTGATTGCTGAGCCAGBC@85)5CBBCCBCCCBC@@7C>CBCCBCCC;57)8(@B@B>ABBCBC7BCC=> NM:i:0

8_80_1315_464 81 scaffold00005 155760 255 54M = 154948 0 AGTACCTCCCTGGTACACAGCTTGGTAAAAATGTGATTGCTGAGCCAGACCTTC B?@? BA=>@>>7;ABA?BB@BAA;@BBBBBBAABABBBCABAB?BBBAB NM:i:0

8_17_1222_1577 73 scaffold00005 155783 255 40M1116N10M * 0 0 GGTAAAAATGTGATTGCTGAGCCAGACCTTCATCATGCAGTGAGAGACGC BB@BA?? >CCBA2AAABBBBBBBBA3@BABA;@A:>B=,;@B=A:BAAAA NM:i:0 XS:A:+ NS:i:0

8_43_1211_347 73 scaffold00005 155800 255 23M1116N27M * 0 0 TGAGCCAGACCTTCATCATGCAGTGAGAGACGCAAACATGCTGGTATTTG #>8<=<06/:09';07A00BAAA0BABBBABBB0=<A0BBBBBBBBCCBB NM:i:2 XS:A:+ NS:i:0

query name ref. seq. position

query seq.

quality. seq.

software

Some very useful programs for manipulation of short reads and alignments:

- SAM Tools (http://samtools.sourceforge.net/)
 - provides various utilities for manipulating alignments in the SAM and BAM format, including sorting, merging, indexing and generating alignments in a per-position format.
- Picard (http://picard.sourceforge.net/)
 - comprises Java-based command-line utilities that manipulate SAM and BAM files
- Genome Analysis Toolkit (http://www.broadinstitute.org/gatk/)
 - GATK offers a wide variety of tools, with a primary focus on variant discovery and genotyping as well as strong emphasis on data quality assurance.
- Integrative Genomics viewer (http://www.broadinstitute.org/igv/)
 - IGV is very useful for visualizing mapped reads

Steps in resequencing

1) Setup programs, data 2,3,4) map reads to a reference find best placement of reads bam file realign indels remove duplicates 5) recalibrate alignments recalibrate base quality bam file statistical algorithms 6) identify/call variants to detect true variants vcf file

Steps in resequencing

step 2: recalibration

- 2.1 realign indels
- 2.2 remove duplicates
- 2.3 recalibrate base quality

2.1 local realignment

- mapping is done one read at a time
- single variants may be split into multiple variants
- solution: realign these regions taking all reads into account

2.1 local realignment

2.2 PCR duplicates

- When two or more reads originate from same molecule (artificial duplicates)
 - not independent observations
 - skew allele frequency and read depth
 - errors double counted
- PCR duplicates occur
 - during library prep, or
 - optical duplicates (one cluster read as two)
- mark or remove

Identify PCR duplicates

- Single or paired reads that map to identical positions
- Picard MarkDuplicates
- Optical duplicates occur close to each other on sequencer
- If low coverage, then duplicates are likely artifacts
- If high coverage, then more duplicates are real

2.3 base quality recalibration

Recalibration Method

- Bin each base by
 - read group
 - called quality
 - position in read
 - local dinucleotide context
- score observed quality per bin
 - # of mismatches +1 / # of observed bases
- scale compared to reported quality

Reported vs empiral quality scoresSciLifeLab

Residual error by machine cycle SciLifeLab

Residual error by dinucleotide

Steps in resequencing

1) Setup programs, data 2,3,4) map reads to a reference find best placement of reads bam file realign indels remove duplicates 5) recalibrate alignments recalibrate base quality bam file statistical algorithms 6) identify/call variants to detect true variants vcf file

Steps in resequencing

Single Nucleotide Variant calling

- Genome Analysis Toolkit (http://www.broadinstitute.org/gatk/)
 - Integrated pipeline for SNP discovery (java)
- FreeBayes (http://bioinformatics.bc.edu/marthlab/FreeBayes)
 - Bayesian SNP calling (C++)

Both programs perform Bayesian population based SNP calling

simple pileup methods

acacagatagacatagacatagacagatgag acacacatagacatagacatagacagatgag acacagatagacatagacatagacagatgag acacagatagacatatacatagacagatgag acacagatagacatatacatagacagatgag acacagatagacatatacatagacagatgag acacagatagacatatacatagacagatgag acacagatagacatatacatagacagatgag acacagatagacatatacatagacagatgag acacagatagacatagacatagacagatgag

Bayesian population based calling

- Assign calls to specific genotypes
- Probability of genotype given data
- Variants at high frequency are more likely real
- Weak single sample calls are combined to discover variants among samples with high confidence
- "haplotype aware" calling also possible
 - infers haplotypes
 - uses info to impute variants

population-based calling

Simultaneous estimation of:

- Allele frequency (AF) spectrum: Pr{AF = i I D}
- The prob. that a variant exists: Pr{AF > 0 | D}
- Assignment of genotypes to each sample

GATK unified genotyper - multi sample aware calling

- Computing, for each sample, for each genotype, likelihoods of data given genotypes.
- Computing, the allele frequency distribution to determine most likely allele count, and emit a variant call if determined.
- If a variant is emitted, assign a genotype to each sample.

VCF format


```
##fileformat=VCFv4.0 ##fileDate=20090805
##source=myImputationProgramV3.1
##reference=1000GenomesPilot-NCBI36
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=., Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50, Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GO, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003
20 14370 rs6054257 G A 29 PASS NS=3; DP=14; AF=0.5; DB; H2 GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51
1/1:43:5:.,.
20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GO:DP:HO 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GO:DP:HQ 1|2:21:6:23,27 2|
1:2:0:18,2 2/2:35:4
20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GO:DP:HO 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
20 1234567 microsat1 GTCT G,GTACT 50 PASS NS=3;DP=9;AA=G GT:GO:DP 0/1:35:4 0/2:17:2 1/1:40:3
```

Discovery of structural variants

1) Read depth analysis

- Depth of coverage can be used to estimate copy number
- Samples may exhibit variation in depth indicative of polymorphic copy number variants
- How many copies of a duplication in the reference?
- How similar are the copies
- Difficult to distinguish homozygotes and heterozygotes.

2) Paired end analysis

- Paired ends have a fixed length between them
- Genomic rearrangements cause them to vary
 - Deletion: reads will map too far apart
 - Insertion: reads will map too close
 - Inversion: reads in wrong orientation
- more reliable with long pairs

3) Split-read alignments

- Base-level breakpoint resolution
- Only works with long reads
 - short reads have many spurious splits
- Caveat: breakpoints may be duplicated
 - reads won't split if single alignment is good

4) De novo assembly to identify structural variants

- Assemble contigs
- Align to reference
- Look for insertions, deletions, rearrangements

Annotation of variants

By comparing with existing annotation for the reference genome it is possible to gain information about localization and expected effect

Annotation of variants

By comparing with existing annotation for the reference genome it is possible to gain information about localization and expected effect

Most commonly used tools are Annovar and SNPEff

Downstream analysis

Software for file handling

BEDTools – enables genome arithmetics – (module add BEDTools)

- Vcftools for manipulations of vcf-files (module add vcftools)
- bcftools for manipulations of bcf-files (module add bcftools)
- bamtools for manipulations of bam-files (module add bamtools)

Annotations to compare with can be extracted from e.g the UCSC browser, ensemble database, etc

Scripting yourself with .. Perl / python / bash / awk

Overview of excercise

- 1. Access to data and programs
- 2. Mapping (BWA)
- 3. Merging alignments (BWA)
- 4. Creating BAM files (Picard)
- 5. Processing files (GATK)
- 6. Variant calling and filtering (GATK)
- 7. Viewing data (IGV)
- X. Optional extras

Steps in resequencing

1) Setup programs, data 2,3,4) map reads to a reference find best placement of reads bam file realign indels remove duplicates 5) recalibrate alignments recalibrate base quality bam file statistical algorithms 6) identify/call variants to detect true variants vcf file

1) Access to data and programs Lab

- Data comes from 1000 genomes pilot project
 - 81 low coverage (2-4 x) Illumina WGS samples
 - 63 Illumina exomes
 - 15 low coverage 454
- ~ 1 Mb from chromosome 17

 Tasks: align a couple of samples to reference, process, reacalibration, variant calling and filtering

1) Access to data and programs

BWA and samtools modules can be loaded:

```
module load bioinfo-tools
module load bwa
module load samtools
```

picard and GATK are are set of java programs:

```
/bubo/sw/apps/bioinfo/GATK/1.5.21/
/bubo/sw/apps/bioinfo/picard/1.69/kalkyl/
```

2) Align each paired end separately SciLiteLab

```
bwa aln \langle ref \rangle \langle fq1 \rangle \rangle \langle sai1 \rangle
bwa aln \langle ref \rangle \langle fq2 \rangle \rangle \langle sai2 \rangle
```

```
<ref> = reference sequence
<fq1> = fastq reads seq 1 of pair
<fq2> = fastq reads seq 2 of pair
<sai1> = alignment of seq 1 of pair
<sai2> = alignment of seq 2 of pair
```

3) Merging alignments

Combine alignments from paired ends into a SAM file

```
bwa sampe \langle ref \rangle \langle sai1 \rangle \langle sai2 \rangle \langle fq1 \rangle \langle fq2 \rangle \rangle align.sam
```

```
<ref> = reference sequence
<sail > = alignment of seq 1 of pair
<sail > = alignment of seq 2 of pair
<fql > = fastq reads seq 1 of pair
<fql > = fastq reads seq 2 of pair
```

4) Creating and editing BAM files SciLifeLab

Create .bam and add read groups (picard)

```
java -Xmx2g -jar /path/AddOrReplaceReadGroups.jar
INPUT=<sam file>
OUTPUT=<bam file>
... more options
• index new BAM file (picard)
java -Xmx2g -jar /path/BuildBamIndex.jar
INPUT=<bam file>
... more options
```

5) Processing files

mark problematic indels (GATK)

```
java -Xmx2g -jar /path/GenomeAnalysisTK.jar
-I <ban file>
-R <ref file>
-T RealignerTargetCreator
-o <intervals file>
```

realign around indels (GATK)

```
java -Xmx2g -jar /path/GenomeAnalysisTK.jar
-I <bam file>
-R <ref file>
-T IndelRealigner
-o <realigned bam>
-targetIntervals <intervals file>
```

5) Processing files

 mark duplicates (picard) java -Xmx2q -jar /path/MarkDuplicates.jar INPUT=<input bam> OUTPUT=<marked bam> METRICS FILE=<metrics file> quality recalibration - compute covariation (GATK) java -Xmx2q -jar /path/GenomeAnalysisTK.jar -T CountCovariates -I <input bam> -R <ref file> -knownSites <vcf file> -cov ReadGroupCovariate -cov CycleCovariate -cov DinucCovariate -cov QualityScoreCovariate -recalFile <calibration csv>

5) Processing files

NEXT:

repeat steps 2-5 for at least another sample!

5) Processing files, variant calling

merge BAM from multiple samples (picard)

```
java -Xmx2g -jar /path/MergeSamFiles.jar
INPUT=<input bam 1> INPUT=<input bam 2> .. INPUT=<input bam N>
OUTPUT=<output bam>
```

unified genotyper (GATK)

```
java -Xmx2g -jar /path/GenomeAnalysisTK.jar
-T UnifiedGenotyper
-R <ref file>
-I <merged bam>
-o <filename.vcf>
-glm BOTH
```

6) Filtering variants

variant filtering

```
java -Xmx2g -jar /path/GenomeAnalysisTK.jar
-T VariantFiltration
-R <reference>
-V <input vcf>
-o <output vcf>
--filterExpression "QD<2.0" --filterName QDfilter
--filterExpression "MQ<40.0" --filterName MQfilter
--filterExpression "FS>60.0" --filterName FSfilter
--filterExpression "HaplotypeScore>13.0" --filterName HSfilter
--filterExpression "MQRankSum<-12.5" --filterName MQRSfilter
--filterExpression "ReadPosRankSum<-8.0" --filterName RPRSfilter</pre>
```

7) Viewing data with IGV SciLifeLab

http://www.broadinstitute.org/igv/

X) Extra

Extra 1: View data in UCSC-browser

Extra 2: Select subset with BEDTools

Extra 3: Annotate variants with annovar

Extra 4: Make a script to run pipeline

pipeline (1)

- 2. Mapping
 - bwa index
 - samtools faidx
 - bwa aln
- 3. Merging alignments
 - bwa sampe
- 4. Creating BAM files
 - picard AddOrReplaceReadGroups
 - picard BuildBamIndex

pipeline (2)

- 5. Processing files (GATK)
 - GATK RealignerTargetCreator
 - GATK IndelRealigner
 - picard MarkDuplicates
 - GATK CountCovariates
 - picard MergeSamFiles
- 6. Variant calling and filtering (GATK)
 - GATK UnifiedGenotyper
 - GATK VariantFiltration
- 7. Viewing data (IGV)

single **BAM** file per sample: indexed, sorted, +read groups merged **BAM** file: +realigned around indels +mark/remo ve duplicates +quality recalibrations **VCF** file: +filtered variants

Naming conventions

Initial file name according to information about the content

NA06984.ILLUMINA.low_coverage.17q

For each step of the pipeline, create a new file

NA06984.ILLUMINA.low_coverage.17q.merge.bam

NA06984.ILLUMINA.low_coverage.17q.merge.realign.bam

NA06984.ILLUMINA.low_coverage.17q.merge.realign.dedup.bam

NA06984.ILLUMINA.low_coverage.17q.merge.realign.dedup.recal.bam

. . .

Thanks!

- + this presentation was made by Matt Webster
- + special thanks to Mike Zody for some slides