Teoremi di tipo "Wolff-Denjoy" in più variabili complesse

22 Settembre 2023 (realisticamente)

Università di Pisa Corso di Laurea Triennale in Matematica

Candidato: Marco Vergamini Relatore: Prof. Marco Abate

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Teorema (Wolff-Denjoy, 1926)

 $Sia\ f: \mathbb{D} \longrightarrow \mathbb{D}\ una\ funzione\ olomorfa.$

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Teorema (Wolff-Denjoy, 1926)

Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Teorema (Wolff-Denjoy, 1926)

Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

ullet la funzione f ha un punto fisso nel disco;

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Teorema (Wolff-Denjoy, 1926)

Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- la funzione f ha un punto fisso nel disco; oppure,
- esiste un unico punto del bordo del disco tale che la successione delle iterate di f converge, uniformemente sui compatti, a quel punto.

Definizione

La distanza di Poincaré (o iperbolica) ω su $\mathbb D$ è data da

$$\omega(z_1, z_2) = \frac{1}{2} \log \frac{1 + \left| \frac{z_1 - z_2}{1 - \bar{z}_1 z_2} \right|}{1 - \left| \frac{z_1 - z_2}{1 - \bar{z}_1 z_2} \right|}$$

per ogni $z_1, z_2 \in \mathbb{D}$.

Definizione

Sia X una varietà complessa e connessa; la pseudodistanza di Kobayashi su X è data da

$$k_X(z,w) = \inf \left\{ \sum_{j=1}^m \omega(\zeta_{j-1},\zeta_j) \middle| \text{esistono } m \in \mathbb{N}, \text{ punti } \zeta_0,\dots,\zeta_m \in \mathbb{D} \text{ e} \right.$$

$$\text{funzioni } \varphi_1,\dots,\varphi_m \in \text{Hol}(\mathbb{D},X) \text{ tali che } \varphi_1(\zeta_0) = z,$$

$$\varphi_m(\zeta_m) = w \text{ e } \varphi_j(\zeta_j) = \varphi_{j+1}(\zeta_j) \text{ per } j = 1,\dots,m-1 \right\}$$

per $z, w \in X$.

Definizione

Sia X una varietà complessa e connessa; la pseudodistanza di Kobayashi su X è data da

$$k_X(z,w) = \inf \left\{ \sum_{j=1}^m \omega(\zeta_{j-1},\zeta_j) \middle| \text{esistono } m \in \mathbb{N}, \text{ punti } \zeta_0,\dots,\zeta_m \in \mathbb{D} \text{ e} \right.$$

$$\text{funzioni } \varphi_1,\dots,\varphi_m \in \text{Hol}(\mathbb{D},X) \text{ tali che } \varphi_1(\zeta_0) = z,$$

$$\varphi_m(\zeta_m) = w \text{ e } \varphi_j(\zeta_j) = \varphi_{j+1}(\zeta_j) \text{ per } j = 1,\dots,m-1 \right\}$$

per $z, w \in X$.

Se k_X è una distanza, diremo che X è Kobayashi-iperbolica.

Teorema (Abate, 1991)

Siano $\Omega \subseteq \mathbb{C}^n$ un dominio limitato e strettamente pseudoconvesso e $f:\Omega \longrightarrow \Omega$ una funzione olomorfa.

Teorema (Abate, 1991)

Siano $\Omega \subseteq \mathbb{C}^n$ un dominio limitato e strettamente pseudoconvesso e $f:\Omega \longrightarrow \Omega$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

Teorema (Abate, 1991)

Siano $\Omega \subseteq \mathbb{C}^n$ un dominio limitato e strettamente pseudoconvesso e $f:\Omega \longrightarrow \Omega$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

1. le orbite di f sono relativamente compatte in Ω ;

Teorema (Abate, 1991)

Siano $\Omega \subseteq \mathbb{C}^n$ un dominio limitato e strettamente pseudoconvesso e $f:\Omega \longrightarrow \Omega$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- 1. le orbite di f sono relativamente compatte in Ω ; oppure,
- 2. esiste un unico punto di $\partial\Omega$ tale che le iterate di f convergono tutte, uniformemente sui compatti, a quel punto.

Teorema (Abate, 1991)

Siano $\Omega \subseteq \mathbb{C}^n$ un dominio limitato e strettamente pseudoconvesso e $f:\Omega \longrightarrow \Omega$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- 1. le orbite di f sono relativamente compatte in Ω ; oppure,
- 2. esiste un unico punto di $\partial\Omega$ tale che le iterate di f convergono tutte, uniformemente sui compatti, a quel punto.

Traccia della dimostrazione: Per un teorema di Balogh e Bonk del 2000, (Ω, k_{Ω}) è uno spazio metrico Gromov-iperbolico.

Teorema (Abate, 1991)

Siano $\Omega \subseteq \mathbb{C}^n$ un dominio limitato e strettamente pseudoconvesso e $f:\Omega \longrightarrow \Omega$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- 1. le orbite di f sono relativamente compatte in Ω ; oppure,
- 2. esiste un unico punto di $\partial\Omega$ tale che le iterate di f convergono tutte, uniformemente sui compatti, a quel punto.

Traccia della dimostrazione: Per un teorema di Balogh e Bonk del 2000, (Ω, k_{Ω}) è uno spazio metrico Gromov-iperbolico.

Allora soddisfa le ipotesi di un teorema di Karlsson del 2001, per cui le orbite sono limitate (in k_{Ω}) o convergono a un unico punto del bordo.

Teorema (Abate, 1991)

Siano $\Omega \subseteq \mathbb{C}^n$ un dominio limitato e strettamente pseudoconvesso e $f:\Omega \longrightarrow \Omega$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- 1. le orbite di f sono relativamente compatte in Ω ; oppure,
- 2. esiste un unico punto di $\partial\Omega$ tale che le iterate di f convergono tutte, uniformemente sui compatti, a quel punto.

Traccia della dimostrazione: Per un teorema di Balogh e Bonk del 2000, (Ω, k_{Ω}) è uno spazio metrico Gromov-iperbolico.

Allora soddisfa le ipotesi di un teorema di Karlsson del 2001, per cui le orbite sono limitate (in k_{Ω}) o convergono a un unico punto del bordo. Per avere la convergenza uniforme sui compatti si applica il teorema di Montel.

Definizione.

Sia X una varietà complessa; la pseudometrica di Kobayashi su X è

$$K_X(x; Z) = \inf\{|v| \mid v \in \mathbb{C}, \text{ esiste } f \in \operatorname{Hol}(\mathbb{D}, X)$$

tale che $f(0) = x, d_0 f(v) = Z\}$

per ogni $x \in X$ e $Z \in T_rX$.

Definizione

Sia X una varietà complessa e connessa; fissiamo due costanti $\lambda \geq 1$ e $\kappa \geq 0$. Sia $I \subseteq \mathbb{R}$ un intervallo;

Definizione

Sia X una varietà complessa e connessa; fissiamo due costanti $\lambda \geq 1$ e $\kappa \geq 0$. Sia $I \subseteq \mathbb{R}$ un intervallo; una curva $\sigma: I \longrightarrow X$ è detta una (λ, κ) -simil-geodetica se:

Definizione

Sia X una varietà complessa e connessa; fissiamo due costanti $\lambda \geq 1$ e $\kappa \geq 0$. Sia $I \subseteq \mathbb{R}$ un intervallo; una curva $\sigma: I \longrightarrow X$ è detta una (λ, κ) -simil-geodetica se:

1. per ogni $s, t \in I$ si ha

$$\frac{1}{\lambda}|t-s| - \kappa \le k_X(\sigma(s), \sigma(t)) \le \lambda|t-s| + \kappa;$$

Definizione

Sia X una varietà complessa e connessa; fissiamo due costanti $\lambda \geq 1$ e $\kappa \geq 0$. Sia $I \subseteq \mathbb{R}$ un intervallo; una curva $\sigma: I \longrightarrow X$ è detta una (λ, κ) -simil-geodetica se:

1. per ogni $s, t \in I$ si ha

$$\frac{1}{\lambda}|t-s| - \kappa \le k_X(\sigma(s), \sigma(t)) \le \lambda|t-s| + \kappa;$$

2. σ è assolutamente continua rispetto a d_X (quindi $\sigma'(t)$ esiste per quasi ogni $t \in I$) e per quasi ogni $t \in I$ si ha

$$K_X(\sigma(t); \sigma'(t)) \le \lambda.$$

Definizione

Sia X una sottovarietà complessa e connessa di una varietà complessa Y, e fissiamo $\lambda \geq 1$ e $\kappa \geq 0.$

Definizione

Sia X una sottovarietà complessa e connessa di una varietà complessa Y, e fissiamo $\lambda \geq 1$ e $\kappa \geq 0$. Diciamo che X è (λ, κ) -visibile se:

Definizione

Sia X una sottovarietà complessa e connessa di una varietà complessa Y, e fissiamo $\lambda \geq 1$ e $\kappa \geq 0$. Diciamo che X è (λ, κ) -visibile se:

1. ogni due punti distinti di X possono essere collegati da una (λ, κ) -simil-geodetica;

Definizione

Sia X una sottovarietà complessa e connessa di una varietà complessa Y, e fissiamo $\lambda \geq 1$ e $\kappa \geq 0$. Diciamo che X è (λ, κ) -visibile se:

- 1. ogni due punti distinti di X possono essere collegati da una (λ, κ) -simil-geodetica;
- 2. per ogni coppia di punti $p, q \in \partial_Y X$ con $p \neq q$, esistono in \overline{X} due intorni V e W, di p e q rispettivamente, con chiusura disgiunta, e un compatto K di X tali che ogni (λ, κ) -simil-geodetica in X che collega un punto di V a un punto di W interseca K.

Condizione di visibilità: le simil-geodetiche "curvano verso l'interno", rimanendo dentro il compatto K.

Definizione

Una varietà complessa X si dice taut se ogni funzione nella chiusura (rispetto alla topologia compatta-aperta) di $\operatorname{Hol}(\mathbb{D}, X)$ in $C^0(\mathbb{D}, X^*)$ è in $\operatorname{Hol}(\mathbb{D}, X)$ oppure è la funzione costante ∞ .

Definizione

Una varietà complessa X si dice taut se ogni funzione nella chiusura (rispetto alla topologia compatta-aperta) di $Hol(\mathbb{D}, X)$ in $C^0(\mathbb{D}, X^*)$ è in $Hol(\mathbb{D}, X)$ oppure è la funzione costante ∞ .

Si può dimostrare che ogni varietà taut è Kobayashi-iperbolica.

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia~X~una~sottovarietà~taut~e~relativamente~compatta~di~una~varietà~complessa~Y~.

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia X una sottovarietà taut e relativamente compatta di una varietà complessa Y. Supponiamo che esista un $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile.

 $Sia\ F: X \longrightarrow X \ una\ funzione\ olomorfa.$

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia X una sottovarietà taut e relativamente compatta di una varietà complessa Y. Supponiamo che esista un $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile.

Sia $F: X \longrightarrow X$ una funzione olomorfa. Allora vale esattamente una delle sequenti affermazioni:

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia X una sottovarietà taut e relativamente compatta di una varietà complessa Y. Supponiamo che esista un $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile.

Sia $F: X \longrightarrow X$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

• le orbite dei punti di X tramite F sono relativamente compatte in X;

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia X una sottovarietà taut e relativamente compatta di una varietà complessa Y. Supponiamo che esista un $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile.

 $Sia\ F: X \longrightarrow X$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- le orbite dei punti di X tramite F sono relativamente compatte in X; oppure,
- esiste un unico punto di $\partial_Y X$ tale che la successione delle iterate di F converge, uniformemente sui compatti, a quel punto.

1. Dato (Z,d) spazio metrico completo e limitato, si può costruire uno spazio Gromov-iperbolico (Con(Z),r) tale che Z è identificato con il bordo.

- 1. Dato (Z,d) spazio metrico completo e limitato, si può costruire uno spazio Gromov-iperbolico (Con(Z),r) tale che Z è identificato con il bordo.
- 2. La metrica di Kobayashi soddisfa una particolare catena di disuguaglianze;

- 1. Dato (Z,d) spazio metrico completo e limitato, si può costruire uno spazio Gromov-iperbolico (Con(Z),r) tale che Z è identificato con il bordo.
- 2. La metrica di Kobayashi soddisfa una particolare catena di disuguaglianze; usando tali disuguaglianze si può dimostrare che k_{Ω} , vicino al bordo, differisce per una costante da una certa funzione g che è sostanzialmente l'equivalente di r per Ω (si dice che k_{Ω} e g sono quasi-isometriche).

- 1. Dato (Z,d) spazio metrico completo e limitato, si può costruire uno spazio Gromov-iperbolico (Con(Z),r) tale che Z è identificato con il bordo.
- 2. La metrica di Kobayashi soddisfa una particolare catena di disuguaglianze; usando tali disuguaglianze si può dimostrare che k_{Ω} , vicino al bordo, differisce per una costante da una certa funzione g che è sostanzialmente l'equivalente di r per Ω (si dice che k_{Ω} e g sono quasi-isometriche).
- 3. Poiché la Gromov-iperbolicità è invariante per quasi-isometrie, questo ci permette di dire che (Ω, k_{Ω}) è Gromov-iperbolico.