Параллельные алгоритмы 20250211_02

Основные понятия

Якобовский Михаил Владимирович

Круг рассматриваемых систем

□ Системы на основе объединенных сетью типовых вычислительных узлов – системы с распределенной оперативной памятью

□ Системы с доступом всех процессоров к общей оперативной памяти

- □ Графические ускорители
- □ ПЛИС
- □ Нейрокомпьютеры
- □ Другие ...

процессор

цамять

Оптический векторно-матричный умножитель 8-10¹² операций умножения и сложения в секунду (8TMips)

Энергопотребление процессора составляет 40 Вт (5 мВт на 1 млрд. операций в секунду)

Д.Колисниченко. Оптические процессоры. /

URL: http://dkws.narod.ru/linux/etc/optical/cpu.html

Рассматриваемые системы

 □ Системы на основе объединенных сетью типовых вычислительных узлов – системы с распределенной оперативной памятью

 Системы с доступом всех процессоров к общей оперативной памяти

процессор

вычислительный узел

Гибридные вычислительные системы

Модели выполнения программ и методы взаимодействия процессов

- □ Выполнение программы на вычислительной системе с распределённой оперативной памятью
 - Передача сообщений

- □ Выполнение программы на вычислительной системе с общей оперативной памятью
 - Семафоры

Модель выполнения программы на распределенной памяти

- При запуске указывается число требуемых процессоров Np и название программы
- На выделенных для расчета узлах запускается Np кoпий программы
 - Например, на двух узлах запущены три копии программы. Копия программы с номером 1 не имеет непосредственного доступа к оперативной памяти копий 0 и 2:

Вычислительный узел 1 Вычислительный узел 2

- □ В каждой копии программы известны значения двух переменных
 - Np одинаковое во всех копиях число копий
 - rank из диапазона [0 ... Np-1] уникальный номер копии
- Любые две копии программы могут непосредственно обмениваться данными с помощью функций передачи сообщений Send/Recv

Синхронный метод передачи сообщений

Асинхронные методы передачи сообщений

Асинхронные

Асинхронные

Асинхронные буферизованные

Методы передачи данных

□ Синхронный метод
Send(адрес данных, размер, номер процессора)
Recv(адрес данных, размер, номер процессора)

- □ Асинхронные методы
 - Небуферизованный
 ASend(адрес данных, размер, номер процессора)
 ARecv(адрес данных, размер, номер процессора)
 ASync
 - Буферизованный
 ABSend(адрес данных, размер, номер процессора)

Топологии вычислительных систем

- □ Диаметр графа максимальная длина кратчайшего пути в графе
- □ Центр графа такая вершина, что максимальное расстояние между ней и любой другой вершиной является наименьшим из всех возможных
- □ Радиус графа длина максимального пути от его центра

Топологии вычислительных систем

Топология «гиперкуб степени 4»

Топология «звезда»

Топология «клика»

Топология «троичное дерево»

Минимизация радиуса и диаметра графа

Пример графа из 32 процессоров с диаметром и радиусом равными 4

Минимизация радиуса и диаметра графа

Пример графа "пирамида" из 64 процессоров с диаметром и радиусом равными 6

Многомерный тор

Рис. 3.4. Соединение узлов в трехмерный тор в сети SCI

Воеводин Вл.В., Жуматий С.А. "Вычислительное дело и кластерные системы". М.: Изд во МГУ, **2007.** - **150** с. **ISBN 978-5-211-05440-0.**

Толстое дерево

Топология Dragonfly

□ https://parallel.ru/computers/reviews/CrayXC40.html

Топология Dragonfly

□ https://parallel.ru/computers/reviews/CrayXC40.html

Свойства канала передачи данных

$$T(n)=n*T_{nepedayu\ байта}+T_{nameнmhocmu}$$

Время передачи данных (мкс)

Свойства канала передачи данных

$$T(n)=n*T_{nepedayu\ байта}+T_{namenmhocmu}$$

Время передачи данных (мкс)

Число передаваемых байт 6.8 Гбайт/с За 0.7 мкс передаётся 5 Кбайт

Контакты

Якобовский М.В.

чл.-корр. РАН, проф., д.ф.-м.н., заместитель директора по научной работе Института прикладной математики им. М.В. Келдыша Российской академии наук

mail: lira@imamod.ru

web: http://lira.imamod.ru