#### Seri bahan kuliah Algeo #5

## Sistem Persamaan Linier (SPL)

Pokok bahasan: Metode Eliminasi Gauss-Jordan

Bahan Kuliah IF2123 Aljabar Linier dan Geometri

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI-ITB

### Metode Eliminasi Gauss-Jordan

- Merupakan pengembangan metode eliminasi Gauss
- Operasi baris elementer (OBE) diterapkan pada matriks augmented sehingga menghasilkan matriks eselon baris tereduksi.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix} \sim OBE \sim \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & * \\ 0 & 1 & 0 & \dots & 0 & * \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \vdots & 1 & * \end{bmatrix}$$

 Tidak diperlukan lagi substitusi secara mundur untuk memperoleh nilainilai variabel. Nilai variabel langsung diperoleh dari matriks augmented akhir.

- Metode eliminasi Gauss-Jordan terdiri dari dua fase:
  - 1. Fase maju (forward phase) atau fase eliminasi Gauss
    - Menghasilkan nilai-nilai 0 di bawah 1 utama

$$\begin{bmatrix} 2 & 3 & -1 & 5 \\ 4 & 4 & -3 & 3 \\ -2 & 3 & -1 & 1 \end{bmatrix} \sim \frac{\mathsf{OBE}}{\cdots} \sim \begin{bmatrix} 1 & 3/2 & -1/2 & 5/2 \\ 0 & 1 & 1/2 & 7/2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

- 2. Fase mundur (backward phase)
  - Menghasilkan nilai-nilai 0 di atas satu utama

$$\begin{bmatrix} 1 & 3/2 & -1/2 & 5/2 \\ 0 & 1 & 1/2 & 7/2 \\ 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{\text{R1} - (3/2)\text{R2}} \begin{bmatrix} 1 & 0 & -5/4 & -11/4 \\ 0 & 1 & 1/2 & 7/2 \\ 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{\text{R1} + (5/4)\text{R3}} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Matriks eselon baris tereduksi

Dari matriks *augmented* terakhir, diperoleh  $x_1 = 1$ ,  $x_2 = 2$ ,  $x_3 = 3$ 

#### Contoh 1: Selesaikan SPL berikut dengan eliminasi Gauss-Jordan

$$x_1 - x_2 + 2x_3 - x_4 = -1$$
  
 $2x_1 + x_2 - 2x_3 - 2x_4 = -2$   
 $-x_1 + 2x_2 - 4x_3 + x_4 = 1$   
 $3x_1 - 3x_4 = -3$ 

#### Penyelesaian:

$$\begin{bmatrix} 1 & -1 & 2 & -1 & -1 \\ 2 & 1 & -2 & -2 & -2 \\ -1 & 2 & -4 & 1 & 1 \\ 3 & 0 & 0 & -3 & -3 \end{bmatrix} \xrightarrow{R2 - 2R1} \begin{bmatrix} 1 & -1 & 2 & -1 & -1 \\ 0 & 3 & -6 & 0 & 0 \\ 0 & 1 & -2 & 0 & 0 \\ 0 & 3 & -6 & 0 & 0 \end{bmatrix} \xrightarrow{R2 / 3} \begin{bmatrix} 1 & -1 & 2 & -1 & -1 \\ 0 & 1 & -2 & 0 & 0 \\ 0 & 3 & -6 & 0 & 0 \end{bmatrix} \xrightarrow{R3 - R2} \xrightarrow{R3 - R2}$$

Matriks eselon baris tereduksi

Matriks augmented terakhir sudah berbentuk eselon baris tereduksi:

Persamaan yang diperoleh:

$$x_1 - x_4 = -1$$
 (i)

$$x_2 - 2x_3 = 0$$
 (ii)

Dari (ii) diperoleh:

$$x_2 = 2x_3$$

Dari (i) diperoleh:

$$x_1 = x_4 - 1$$

Misalkan  $x_3 = r dan x_4 = s$ , maka solusi SPL tersebut adalah:

$$x_1 = s - 1$$
,  $x_2 = 2r$ ,  $x_3 = r$ ,  $x_4 = s$ , yang dalam hal ini r,  $s \in R$ 

Contoh 2: Selesaikan SPL berikut dengan eliminasi Gauss-Jordan

$$-2x_3 + 7x_5 = 12$$

$$2x_1 + 4x_2 - 10x_3 + 6x_4 + 12x_5 = 28$$

$$2x_1 + 4x_2 - 5x_3 + 8x_4 - 5x_5 = -1$$

Penyelesaian:

$$\begin{bmatrix} 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -10 & 6 & 12 & 28 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix} \xrightarrow{R1 \leftrightarrow R2} \begin{bmatrix} 2 & 4 & -10 & 6 & 12 & 28 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix} \xrightarrow{R1/2} \sim$$

$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix} \xrightarrow{R3-2R1} \begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 0 & 0 & 5 & 0 & -17 & -29 \end{bmatrix} \xrightarrow{R2/(-2)} \sim$$

$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & -7/2 & -6 \\ 0 & 0 & 5 & 0 & -17 & -29 \end{bmatrix} \xrightarrow{R3-5R2} \begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & -7/2 & -6 \\ 0 & 0 & 0 & 0 & 1/2 & 1 \end{bmatrix} \xrightarrow{R3/(1/2)} \sim$$

$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & -7/2 & -6 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix} \begin{matrix} \mathsf{R1} - \mathsf{6R3} \\ \sim \\ \mathsf{R2} + 7/2 \ \mathsf{R3} \end{matrix} \begin{bmatrix} 1 & 2 & -5 & 3 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} \begin{matrix} \mathsf{R1} + \mathsf{5R2} \\ \sim \\ \mathsf{R2} + \mathsf{7/2} \ \mathsf{R3} \end{matrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 3 & 0 & 7 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

Matriks eselon baris tereduksi

Dari matriks augmented yang terakhir diperoleh persamaan:

$$x_1 + 2x_2 + 3x_4 = 7$$
 (i)  
 $x_3 = 1$  (ii)  
 $x_5 = 2$  (iii)

Misalkan  $x_2 = s$  dan  $x_4 = t$ , maka solusi SPL adalah:

$$x_1 = 7 - 2s - 3t$$
,  $x_2 = s$ ,  $x_3 = 1$ ,  $x_4 = t$ ,  $x_5 = 2$ , s dan  $t \in R$ 

## Sistem Persamaan Linier Homogen

• Sistem persamaan linier homogen berbentuk:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = 0$$
  
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = 0$   
 $\vdots$   $\vdots$   $\vdots$   $\vdots$   $\vdots$   $\vdots$   $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = 0$ 

- $x_1 = 0$ ,  $x_2 = 0$ , ...,  $x_n = 0$  selalu menjadi solusi SPL homogen. Jika ini merupakan satu-satunya solusi, solusi nol ini disebut solusi trivial.
- Jika ada solusi lain selain  $x_1 = 0$ ,  $x_2 = 0$ , ...,  $x_n = 0$ , maka solusi tersebut dinamakan solusi non-trivial.

**Contoh 3**: Selesaikan SPL homogen dengan matriks augmented sebagai berikut dengan eliminasi Gauss-Jordan

$$\begin{bmatrix} 0 & 2 & 2 & 4 & 0 \\ 1 & 0 & -1 & -3 & 0 \\ 2 & 3 & 1 & 1 & 0 \\ -2 & 1 & 3 & -2 & 0 \end{bmatrix}$$

Penyelesaian:

$$\begin{bmatrix} 0 & 2 & 2 & 4 & 0 \\ 1 & 0 & -1 & -3 & 0 \\ 2 & 3 & 1 & 1 & 0 \\ -2 & 1 & 3 & -2 & 0 \end{bmatrix} R1 \leftrightarrow R2 \begin{bmatrix} 1 & 0 & -1 & -3 & 0 \\ 0 & 2 & 2 & 4 & 0 \\ 2 & 3 & 1 & 1 & 0 \\ -2 & 1 & 3 & -2 & 0 \end{bmatrix} R3 - 2R1 \begin{bmatrix} 1 & 0 & -1 & -3 & 0 \\ 0 & 2 & 2 & 4 & 0 \\ R4 + 2R1 \begin{bmatrix} 0 & -1 & -3 & 0 \\ 0 & 2 & 2 & 4 & 0 \\ 0 & 3 & 3 & 7 & 0 \\ 0 & 1 & 1 & -8 & 0 \end{bmatrix}$$

Matriks augmented yang terakhir sudah dalam bentuk eselon baris tereduksi:

$$\begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Diperoleh persamaan-persamaan berikut:

$$x_1 - x_3 = 0 \rightarrow x_1 = x_3$$
  
 $x_2 + x_3 = 0 \rightarrow x_2 = -x_3$   
 $x_4 = 0$ 

Misalkan  $x_3 = t$ , maka solusi SPL adalah  $x_1 = t$ ,  $x_2 = -t$ ,  $x_3 = t$ ,  $x_4 = 0$ ,  $t \in R$ . Perhatikan bahwa untuk t = 0, maka  $x_1 = 0$ ,  $x_2 = 0$ ,  $x_3 = 0$ ,  $x_4 = 0$ . Namun ini bukan satu-satunya solusi. Untuk t selain t terdapat banyak kemungkinan solusi SPL. Sehingga dikatakan SPL homogen ini memiliki solusi non-trivial.

- Di dalam sebuah SPL sembarang A**x** = **b**, sebuah SPL disebut konsisten jika ia mempunyai paling sedikit satu solusi (baik solusi tunggal atau solusi banyak).
- Sebaliknya, sebuah SPL disebut inkonsisten jika ia tidak memiliki solusi.

- SPL homogen Ax = 0 selalu konsisten karena ia sedikitnya mengandung solusi trivial.
- Jadi, di dalam SPL homogen berlaku salah satu sifat sebagai berikut:
  - 1. SPL homogen memiliki solusi trivial
  - 2. SPL homogen memiliki tak berhingga solusi

## Menghitung Matriks Balikan dengan Eliminasi Gauss-Jordan

- Misalkan A adalah matriks persegi berukuran n x n. Balikan (*inverse*) matriks A adalah  $A^{-1}$  sedemikian sehingga  $AA^{-1} = A^{-1}A = I$ .
- Metode eliminasi Gauss-Jordan (G-J) dapat digunakan untuk menghitung matriks balikan.
- Untuk matriks A yang berukuran n x n, matriks balikannya, yaitu  $A^{-1}$  dicari dengan cara berikut:

$$\begin{bmatrix} A|I \end{bmatrix} \sim \begin{bmatrix} I|A^{-1} \end{bmatrix}$$

yang dalam hal ini *I* adalah matriks identitas berukuran n x n.

Metode eliminasi Gauss-Jordan diterapkan secara simultan untuk A maupun I.

**Contoh 4**: Tentukan balikan dari matriks A berikut:  $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$ 

Penyelesaian:

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R2-2R1} \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ \sim & 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & -2 & 5 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{R3+2R2} \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ \sim & 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & | & -40 & 16 & 9 \\ 0 & 1 & 0 & | & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{pmatrix} = (I|A^{-1})$$

Jadi, balikan matriks A adalah

$$A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

#### Periksa bahwa

$$AA^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

**Contoh 5**: Tentukan balikan dari matriks A berikut:  $A = \begin{bmatrix} 1 & 0 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{bmatrix}$ 

Penyelesaian:

$$\begin{pmatrix} 1 & 6 & 4 & 1 & 0 & 0 \\ 2 & 4 & -1 & 0 & 1 & 0 \\ -1 & 2 & 5 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R2-2R1} \begin{pmatrix} 1 & 6 & 4 & 1 & 0 & 0 \\ \sim & \begin{pmatrix} 1 & 6 & 4 & 1 & 0 & 0 \\ 0 & -8 & -9 & -2 & 1 & 0 \\ 0 & 8 & 9 & 1 & 0 & 1 \end{pmatrix} \xrightarrow{R2/(-8)} \sim$$

$$\begin{pmatrix}
1 & 6 & 4 & 1 & 0 & 0 \\
0 & 1 & 9/8 & 2/8 & -1/8 & 0 \\
0 & 8 & 9 & 1 & 0 & 1
\end{pmatrix}
\xrightarrow{R3-8R2}
\begin{pmatrix}
1 & 6 & 4 & 1 & 0 & 0 \\
0 & 1 & 9/8 & 2/8 & -1/8 & 0 \\
0 & 0 & 0 & -1 & 1 & 1
\end{pmatrix}$$

Ada baris bernilai 0

Karena ada baris yang bernilai 0, maka A tidak memiliki balikan.

- Jika A tidak memiliki balikan, maka A dikatakan matriks singular.
- Pada SPL Ax = b, jika A tidak mempunyai balikan, maka Ax = b tidak memiliki solusi yang tunggal (unik).

 Namun, jika A mempunyai balikan, maka SPL Ax = b memiliki solusi unik.

 Pada SPL homogen Ax = 0, SPL hanya memiliki solusi trivial jika A memiliki balikan. Jika A tidak memiliki balikan, maka SPL memiliki solusi non-trivial. **Contoh 6**: SPL homogen berikut memiliki solusi trivial (artinya solusinya hanyalah  $x_1 = 0$ ,  $x_2 = 0$ ,  $x_3 = 0$ ).

$$\begin{array}{l}
 x_1 + 2x_2 + 3x_3 = 0 \\
 2x_1 + 5x_2 + 3x_3 = 0 \\
 x_1 + 8x_3 = 0
 \end{array}
 \qquad A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}
 \qquad A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

Matriks A SPL di atas sudah dihitung pada Contoh 4 memiliki balikan.

Tetapi SPL homogen berikut memiliki solusi non-trivial (artinya, ada solusi lain selain  $x_1 = 0$ ,  $x_2 = 0$ ,  $x_3 = 0$ )

$$x_1 + 6x_2 + 4x_3 = 0$$
  
 $2x_1 + 4x_2 - x_3 = 0$   
 $-x_1 + 2x_2 + 5x_3 = 0$   
 $A = \begin{bmatrix} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{bmatrix}$   $A^{-1}$  tidak ada

Matriks A SPL di atas sudah dihitung pada Contoh 5 tidak memiliki balikan.

# Penyelesaian SPL dengan menggunakan matriks balikan

• Tinjau SPL  $A\mathbf{x} = \mathbf{b}$ . Kalikan kedua ruas persamaan dengan  $A^{-1}$ 

$$(A^{-1})Ax = (A^{-1}) b$$
  
 $/x = A^{-1} b$  (karena  $A^{-1}A = I$ )  
 $x = A^{-1} b$  (karena  $/x = x$ )

• Jadi, solusi SPL  $A\mathbf{x} = \mathbf{b}$  adalah  $\mathbf{x} = A^{-1} \mathbf{b}$ 

#### Contoh 7. Selesaikan SPL berikut

$$x_1 + 2x_2 + 3x_3 = 5$$
  
 $2x_1 + 5x_2 + 3x_3 = 3$   
 $x_1 + 8x_3 = 1$ 

#### Penyelesaian:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$
 sudah dihitung balikannya pada Contoh 4 yaitu  $A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$ 

maka

$$\mathbf{x} = A^{-1} \mathbf{b} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

 Metode penyelesaian SPL dengan menggunakan matriks balikan sangat berguna untuk menyelesaikan <u>sejumlah</u> SPL Ax = b dengan A yang sama tetapi dengan b yang berbeda-beda, seperti contoh ini:

$$x_1 + 2x_2 + 3x_3 = 5$$
  $x_1 + 2x_2 + 3x_3 = 10$   $x_1 + 2x_2 + 3x_3 = -4$   $2x_1 + 5x_2 + 3x_3 = 3$   $2x_1 + 5x_2 + 3x_3 = 0$   $2x_1 + 5x_2 + 3x_3 = 12$   $x_1 + 8x_3 = 1$   $x_1 + 8x_3 = -2$   $x_1 + 8x_3 = 5$  (ii) (iii)

• Tiga buah SPL di atas memiliki A yang sama namun **b** yang berbedabeda. Cukup sekali mencari  $A^{-1}$  maka solusi setiap SPL dapat dihitung dengan cara mengalikan  $A^{-1}$  dengan setiap **b**, yaitu x =  $A^{-1}$  **b**.

## Latihan

1. Selesaikan SPL berikut dengan metode eliminasi Gauss-Jordan

(a) 
$$x - y + 2z - w = -1$$
  
 $2x + y - 2z - 2w = -2$   
 $-x + 2y - 4z + w = 1$   
 $3x - 3w = -3$ 

(b) SPL dalam bentuk matriks augmented

#### 2. Tentukan balikan matriks berikut (jika ada)

(b) 
$$\begin{bmatrix} 2 & -4 & 0 & 0 \\ 1 & 2 & 12 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & -1 & -4 & -5 \end{bmatrix}$$

(c) 
$$\begin{bmatrix} -1 & 0 & 1 & 0 \\ 2 & 3 & -2 & 6 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

$$\begin{bmatrix} k_1 & 0 & 0 & 0 \\ 0 & k_2 & 0 & 0 \\ 0 & 0 & k_3 & 0 \\ 0 & 0 & 0 & k_4 \end{bmatrix}$$

Catatan: k1, k2, k3, dan k4 tidak sama dengan nol