

Documento Científico

Departamento Científico de Endocrinologia (2019-2021)

Desreguladores Endócrinos: Informações para o Pediatra

Departamento Científico de Endocrinologia

Presidente: Crésio de Aragão Dantas Alves **Secretária:** Kassie Regina Neves Cargnin

Conselho Científico: Cristiano Castanheira Candido da Silva, Leila Cristina Pedroso de Paula,

Marilza Leal Nascimento, Maristela Estevão Barbosa, Raphael Del Roio

Liberatore Jr, Renata Machado Pinto, Ricardo Fernando Arrais

Colaborador convidado: Carlos Augusto Mello da Silva

Introdução

Você pode não ter se dado conta, mas os pais, cada vez mais, têm trazido o tema dos desreguladores endócrinos (DE) nos seus questionamentos durante a consulta médica, muitas vezes estimulados pela imprensa leiga ou por equívocos de entendimento. "- Por quê as crianças têm sido mais precoces? - É tudo culpa do frango? - Minha filha quer usar maquiagem, pode?" É compreensível esta dificuldade, por se tratar de um tema relativamente recente e palpitante. Mas, tudo leva a crer que a incidência de doenças pediátricas endocrinológicas vem aumentando nos últimos anos (criptorquidia, hi-

pospadia, puberdade precoce...), talvez devido à exposição aos DE.

Apenas em 1996, a Comissão Europeia definiu o conceito de DE, que foi aprimorada em 2002 pela Organização Mundial da Saúde (OMS)¹. Em 2014 a *Endocrine Society* em conjunto com a IPEN, uma rede global de mais de 700 organizações não-governamentais, lançou um documento científico acerca deste tema².

Tendo em vista a importância e atualidade desse tema, o Departamento Científico de Endocrinologia da Sociedade Brasileira de Pediatria decidiu redigir um Documento para informar os pediatras acerca este assunto, e permitir assim que todos esclareçam o público leigo.

O que é um desregulador endócrino (DE)?

DE é uma substância química, natural ou sintética, presente no meio-ambiente, que tem a capacidade de mimetizar ou de interferir com a síntese, secreção, transporte, ligação, ação ou eliminação de hormônios.

Como agem os DE?

Os DE possuem vários mecanismos de ação:

 Imitando a ação de um hormônio produzido naturalmente pelo organismo, como o estró-

- geno ou a testosterona, desencadeando deste modo reações semelhantes (efeito agonista).
- Bloqueando os receptores nas células que recebem os hormônios, impedindo assim a ação dos hormônios naturais (efeito antagonista).
- Afetando a síntese, o transporte, o metabolismo, a ligação a proteínas carreadoras e a excreção dos hormônios, alterando as concentrações dos hormônios naturais.

Por meio destes mecanismos, mesmo em microdoses, os DE podem interferir na regulação do crescimento e desenvolvimento corporal, metabolismo, reprodução, imunidade e comportamento.

A Figura 1 ilustra como age um DE.

Figura 1. Mecanismo de ação dos desreguladores endócrinos.

Onde os DE estão presentes?

Existem de 85 a 100.000 substâncias químicas que fazem parte das atividades cotidianas da humanidade nos dias atuais, das quais centenas podem funcionar como DE. A exposição hu-

mana aos DE é ubíqua e ocorre via ingestão de alimentos e água, inalação de gases e partículas no ar e através da pele. Os DE também podem ser transferidos da gestante ao feto através da placenta, ou para o lactente através do leite materno³. A exposição prolongada à luz pode interferir na ação de alguns DE³⁻⁵.

Quais são os principais DE?

Os principais DE, que afetam os humanos, são descritos a seguir.

- Dietilbestrol: estrógeno sintético foi prescrito entre 1940 e 1971 para gestantes por teoricamente reduzir complicações da gestação. Entretanto, na década de 1970 esta prática foi suspensa, pois além de se comprovar a sua ineficácia, estudos de seguimento demonstraram aumento do risco de carcinoma de células claras vaginal, assim como aumento das taxas de infertilidade, aborto espontâneo e parto prematuro em meninas e mulheres que haviam sido expostas ao dietilbestrol intraútero³.
- Bisfenol-A (BPA): químico industrial inicialmente sintetizado, em 1890, pelo químico Alexander Dianin e que tem sido utilizado para fabricar plásticos e resinas desde a década de 1960. Sua atividade estrogênica já tinha sido descrita em 1930, mas é muito menor do que a do dietilbestrol. Pode ser encontrado em uma série de produtos, desde garrafas plásticas tipo PET, papel térmico usado em notas de cartão bancário ou contas, camada interna de latas de alimentos e líquidos, equipamentos médicos, retardante de chamas e plásticos e polímeros utilizados na indústria de automóveis. Por ser praticamente onipresente, resulta em exposição extensa, fazendo com que mais de 95% das pessoas tenham níveis mensuráveis de BPA. O seu uso foi proibido em mamadeiras na Europa e no Brasil, em 2011. A regulamentação da sua utilização em outros plásticos vem se tornando cada vez mais restrita, especialmente em países europeus. Ao contrário dos pesticidas, ele não é lipossolúvel, e é de fácil metabolização, logo a redução da exposição pode rapidamente reduzir a carga corporal.
- Ftalatos: substâncias utilizadas em plásticos (como os utilizados em garrafas plásticas PET) e em uma ampla gama de produtos tais como adesivos, detergentes e produtos de cuidado pessoal como sabonetes, shampoos e esmaltes.

- PBDE (Polybrominated diphenyl ethers): substâncias usadas como retardantes de chama em tecidos, plásticos e automóveis. É importante enfatizar que eles não são quimicamente ligados a estes compostos, sendo mais provável que eles se desprendam para o ambiente³.
- Parabenos: ésteres do ácido p-hidroxibenzoico amplamente usados como preservativos em cosméticos, alimentos e medicações, por sua ação antimicrobiana. Eles são facilmente absorvidos pelo corpo humano. Maiores concentrações urinárias de parabenos são encontradas em mulheres do que em homens, talvez pelo maior uso de produtos cosméticos no sexo feminino. Parabenos podem interferir com os receptores ativados por proliferador de peroxissoma (PPAR). Eles também podem modular a atividade de enzimas que metabolizam os hormônios naturais (p. ex., aromatase) assim como interferir na esteredoigênese.
- Pesticidas: moléculas sintéticas criadas com o objetivo de serem tóxicas para fungos, animais ou plantas prejudiciais à agricultura ou ao homem. Alguns podem ser também conhecidos como POP (persistent organic pollutants), pois são compostos estáveis que não degradam e tendem a persistir no meio ambiente e bioacumular. Muitos são lipofílicos e ficam depositados no tecido adiposo, passando de animal para animal, na cadeia alimentar. Tanto o inseticida DDT (dichlorodiphenyltrichloroethyleno), como o seu metabólito DDE podem se acumular no tecido adiposo humano.

O quimioterápico mitotano, utilizado no tratamento de carcinoma adrenal na criança, tem alta homologia com o DDT e reconhecida ação como DE, agindo não somente na esteredoigênese provocando insuficiência adrenal, mas também com ação indiscriminada em outras glândulas, causando hipotireoidismo e telarca associada a avanço de idade óssea por ação estrógeno-like. Outros tipos de pesticidas podem ter menor ação como DE, entretanto os neonicotinoides têm contribuído para o colapso maciço da população de abelhas.

 Metais pesados: uma série de metais pesados se mostrou contaminante na população e demonstrou potencial ação como DE, como o mercúrio, chumbo, cádmio, cobre, níquel e arsênico.

O cádmio é usado em baterias recarregáveis, como pigmento em tintas, na produção de plásticos e em praguicidas. Por competir com o ferro e o zinco ele pode provocar restrição de crescimento intrauterino.

Tanto o mercúrio quanto o chumbo provocam predominantemente manifestações neurológicas, muitas vezes graves, mas estudos feitos em mineradores demonstraram que níveis elevados de chumbo estão associados a alteração da função tireoidiana e prejuízo na função testicular.

O mercúrio é liberado como um cofator da queima de carvão, da incineração de lixo e de outros processos industriais. Ele também é encontrado em termômetros quebrados, fábricas de fabricação de lâmpadas fluorescentes e, pela eliminação na água, ele acumula em peixes, especialmente os grandes e predatórios, como o atum, o tubarão e o peixe-espada.

O chumbo antigamente era utilizado nas tubulações de água, banheiras, brinquedos e tintas. As crianças representam uma população vulnerável pois a incorporação de chumbo por unidade de peso é maior, a ingestão de poeira é maior e a barreira hemato-encefálica ainda não está totalmente desenvolvida. Para percebermos a atualidade desta ameaça, basta ver o resultado de testes realizados em 500 produtos infantis em cinco cidades chinesas que demonstrou que 16% destes continha conteúdo de chumbo acima do limite regulamentar seguro.

- Melamina: substância utilizada em laminados, resinas, colas, tintas, móveis e em alguns utencílios de cozinha como pratos e copos por ser passível de utilização em micro-ondas e lava-louças. Ela ficou conhecida pelas trágicas consequências do seu uso em alimentos. Devido ao seu alto conteúdo nitrogenado, ela foi adicionada a fórmulas ou derivados do leite para aumentar falsamente seu conteúdo proteico.

Em 2007, o acréscimo de farinha enriquecida com melanina em rações foi associado à morte de animais nos Estados Unidos da América (EUA). Em 2008, se descobriu que a melamina era a causa de aumento de litíase renal, insuficiência renal e morte em crianças na China. Investigadores revelaram que o composto era adicionado ilegalmente a fórmulas infantis. Desde então, uma série de estudos têm demonstrado potenciais efeitos de DE, com efeitos reprodutivos e antropométricos.

- Fitoestrógenos: substâncias com ação estrogênica produzidas naturalmente por plantas. Isoflavonas, tais como a genisteína, são encontradas em sojas, legumes e lentilhas. Em 2012, a Coorte do Avon Longitudinal Study of Parents and Children analisou o tipo de leite ingerido na primeira infância com a idade da menarca em 2920 meninas caucasianas. Eles encontraram uma correlação maior da idade da menarca com índice de massa corpórea ou idade da menarca materna mas, neste estudo o consumo antes dos 6 meses de idade de fórmula de soja esteve associado a uma discreta redução da média de idade da menarca, em média 12 anos e 4 meses em comparação com 12 anos e 8 meses do grupo do aleitamento materno ou fórmula não derivada de soja4.

Qual a importância dos DE na pediatria?

A exposição aos DE é um continuum na vida dos seres vivos, entretanto, como o ser humano está no topo da cadeia alimentar, ele é um dos mais expostos a estas substâncias químicas. Gestantes e crianças são a população mais vulnerável aos DE. Existem evidências crescentes que a exposição a DE, quando ocorre durante períodos críticos do desenvolvimento embriológico, pode provocar mudanças permanentes no programming da expressão gênica, um conceito similar aquele proposto por David Barker sobre restrição de crescimento intrauterino influenciar a prevalência de síndrome metabólica na vida adulta.

Isto talvez justifique os números crescentes de doenças endocrinológicas na infância, mas cabe lembrar que os efeitos de longo prazo podem ser sentidos muito tempo após a exposição e ter até mesmo consequência na geração futura³.

Um estudo avaliou os níveis urinários de ftalatos durante a gestação em 64 pares de mães--bebês e correlacionou com a metilação genômica do DNA no sangue do cordão dos bebês ao nascimento. O aumento da exposição a ftalatos nas mães aumentou a metilação no DNA de genes envolvidos na resposta androgênica, resposta estrogênica e espermatogênese.

Usualmente DE têm ações estrogênicas e/ou anti-androgênicas e mais raramente ações androgênicas e/ou antiestrogênicas. Existem estudos correlacionando DE com uma série de patologias e abaixo relacionamos alguns.

Quais são os distúrbios endócrinos relacionados aos DE?

- Obesidade: nos últimos anos, tem se demonstrado que alguns DE podem interferir no metabolismo e na função de adipócitos, resultando em desbalanço na regulação do peso corporal, levando à obesidade. Estes DE têm sido cunhados de "obesogênicos"⁶. Os DE obesogênicos agem por uma série de mecanismos, tais como: aumento do número ou do tamanho de adipócitos; mudança da secreção dos hormônios que regulam o apetite, a saciedade ou a preferência por um determinado tipo de alimento; modificação da taxa metabólica basal, do metabolismo lipídico ou da sensibilidade insulínica. A suceptibilidade a DE obesogênicos, assim como a qualquer DE, depende do momento da exposição, sendo maior quando esta exposição é intraútero ou durante a infância, como já bem demonstrado com o caso do dietilbestrol na década de 40. Compostos com potencial ação obesogênica, além do DES, estão presentes em plásticos como o BPA, em preservativos como os parabenos, na agricultura como os POPs, dentre outros. Estudo que avaliou a concentração urinária de BPA em crianças achou discreto aumento em crianças com sobrepeso. Tanto modelos animais como estudos em humanos, principalmente em trabalhadores de turnos noturnos, evidenciam alteração metabólica, aumento do peso e aumento da resistência insulínica com a exposição à luz noturna, assim como a supressão dos níveis de melatonina e alteração da leptina plasmática⁵.

Também se fala em uma "espiral viciosa", em que DE obesogênicos aumentariam o peso, consequentemente aumentariam o tecido adiposo com o depósito de DE lipofílicos que também teriam ação obesogênica em um efeito tipo "bola de neve" ou "espiral viciosa" – Figura 2.

Figura 2. "Espiral viciosa" dos disruptores endócrinos obesogênicos (adaptado de referência 6).

 Diabetes mellitus: em roedores, o BPA estimula a secreção das células B pancreáticas e prejudica a sinalização de insulina no fígado, músculos e tecido adiposo, levando à resistência insulínica e redução na função das células B. Em humanos, há relatos epidemiológicos associando *Diabetes melitus* tipo 2 com a exposição aguda acidental a pesticidas, BPA, ftalatos, dioxinas e metais pesados, dentre outros.

Revisão sitemática e metanálise recente encontrou associação entre níveis séricos de dioxinas, pesticidas e PBDE com diabetes tipo 2, pré-diabetes e resistência insulínica, com um risco relativo de 1,91 a 2,397. Entretanto, há um somatório de fatores etiológicos para o desenvolvimento de diabetes e mais estudos são necessários para determinar a importância dos DE (fatores de risco ambientais), da genética além de fatores como dieta e atividade física.

- Dislipidemia: a administração perinatal de ftalato em cobaias foi associada a aumento dos ácidos graxos livres e redução do HDL. Juntamente com a obesidade e predisposição ao diabetes, parecem fazer parte da síndrome metabólica.
- Disturbios da puberdade: estudos em meninas demonstraram que a exposição aos ftalatos parecem estar associados à puberdade precoce. Hashemipour fez um estudo de caso-controle comparando níveis de metabólitos de ftalatos em meninas com puberdade precoce central e um grupo controle de meninas com puberdade em tempo normal, e os níveis foram estatisticamente mais altos no primeiro grupo. Entretanto, revisão recente demonstrou que os efeitos dos DE no tempo puberal dependem da janela de exposição, do sexo e do composto ao qual houve a exposição8.

Entre 1999 e 2000, 526 gestantes participaram de um estudo de Coorte (CHAMACOS1) para avaliar níveis de DDT, DDE, dioxina e bisfenóis durante a gestação e acompanhamento prospectivo das crianças nascidas destas gestações. Dos meninos acompanhados, 149 foram avaliados até os 12 anos de idade. Neste estudo prospectivo a concentração materna prénatal de DDT/DDE, PCB e dioxina foi associada à alteração nas concentrações hormonais, talvez devido a modificações do IMC ainda na infância.

- Alteração da função testicular: BPA, Dioxinas, pesticidas e o dietilbestrol também se associaram à diminuição do efeito androgênico (por menor síntese de testosterona) com manifestações clínicas como micropênis, criptorquidia e hipospádia¹º. Ftalatos também parecem interferir na função testicular, diminuindo os níveis de testosterona³. A associação entre DE e qualidade do esperma é controversa. Entretanto uma revisão sistemática com metanálise encontrou associação consistente entre ftalatos e risco de anormalidades na qualidade do esperma. BPA, dioxinas e pesticidas também apresentaram associação, entretanto não tão consistentes³.
- Tireoidopatias: a exposição precoce a ftalatos em gestantes esteve associada com alterações em hormônios tireoidianos³. Dados epidemiológicos revelam a associação da exposição a pesticidas legais com alteração do eixo hipotálamo-hipófise-tireoide em neonatos, podendo influenciar nos níveis de T3, T4 e TSH.

Quais são os danos endócrinos dos DE no desenvolvimento do sistema nervoso?

Os DE atuam nesse processo por vários mecanismos como mudanças na biossíntese e metabolismo dos esteroides, metilação do DNA e alteração dos receptores dos hormônios.

Desse modo, o neurodesenvolvimento também é sensível à desregulação endócrina. O hipotálamo é importante tanto na fisiologia reprodutiva como no comportamento, pelos eixos hipotálamo-hipófise-gônadas, com os esteroides, e hipotálamo-hipófise-tireóide, com o TSH e tiroxina. Agentes químicos (xenobióticos) que atuam sobre estes dois eixos impactam o cérebro e o comportamento, produzindo dismorfismo sexual cerebral, masculinização/feminilização das vias neuroendócrinas e alterações do comportamento, em geral, e do reprodutivo em particular.

Quais são algumas das dificuldades na avaliação dos DE?

Estudos recentes sugerem que a mistura de diferentes DE pode ter efeitos cumulativos e sinérgicos nas pessoas, entretanto, muitas vezes estas associações não são claras. Uma série de fatores pode ser responsável pela dificuldade em associar consistentemente os DE às manifestações clínicas: a heterogeneidade nos estudos clínicos pela diversidade de protocolos utilizados considerando o método de detecção do DE; a falta de fatores de controle para confundidores; a definição da população exposta e não exposta; a exposição simultânea e contínua a diferentes variedades de DE; diferente efeito dependendo do estágio do desenvolvimento em que houve exposição ao DE; estudo de populações com background genético não-idêntico; efeitos epigenéticos que podem se manifestar em gerações subsequentes e a falta de estudos de intervenção¹¹.

Nos últimos anos, têm sido descritos efeitos deletérios dos DE no crescimento, desenvolvimento, metabolismo e reprodução, muitas vezes em estudos "in vitro", em cobaias ou epidemiológicos. Há falta de estudos, como ensaios clínicos, para confirmar estes achados e são necessárias mais pesquisas neste sentido. Entretanto, cabe ressaltar, que muitos dos achados ocorreram após "acidentes com intoxicação evidente" e que ensaios clínicos, apesar de maior robustez, não seriam éticos nestas circunstâncias.

Como fazer a anamnese ambiental?

O pediatra deve ser capaz de estabelecer os possíveis nexos entre a exposição a condições ambientais adversas e manifestações clínicas observadas em seus pacientes.

A Sociedade Brasileira de Pediatria (SBP), por seu Departamento Científico de Toxicologia e Saúde Ambiental, elaborou um modelo de anamnese ambiental, adaptado às condições brasileiras, disponível no site da SBP em <u>www.sbp.com.</u> <u>br/fileadmin/user_upload/_21802d-DC_-Anamnese_Ambiental_em_Pediatria.pdf</u>

Quais são as recomendações para reduzir ou evitar a exposição aos DE?

A exposição aos DE ocorre em casa, no trabalho, na fazenda, no ar que respiramos, na comida e bebida que ingerimos. Entretanto, algumas medidas podem reduzir, e muito, esta exposição¹¹⁻¹³. Por exemplo:

- Cuidados básicos, como "deixar os sapatos do lado de fora" e lavar as mãos são efetivos em reduzir o contato com alguns dos DE.
- Evite usar pesticidas na sua casa, quintal e mantenha sua casa limpa para prevenir formigas ou infestação de baratas.
- Dê preferência aos alimentos orgânicos livres de agrotóxicos.
- Priorize cozinhar em casa e reduza a quantidade de fast food e alimentos processados.
- Ao ingerir peixes de água doce e frutos do mar.
 Procurar saber qual a procedência.
- Evite o consumo de vísceras e fígado no primeiro ano de vida.
- Gestantes devem evitar o contato e a inalação de produtos químicos.
- Não aqueça potes de plástico no micro-ondas.
 Leite quente não deve ser servido em mamadeiras de plástico. Em casa, prefira recipientes de vidro, aço inoxidável e porcelana. Evite uso de potes ou panelas de artesanato com tinta de origem desconhecida.
- Evite beber a água que esteve armazenada em uma garrafa PET exposta previamente a alta temperatura, como, por exemplo dentro de um carro ao sol.
- Evite o consumo de bebidas quentes, assim como chá e café, em recipientes plásticos, uma vez que estes compostos se misturam com o líquido quando aquecidos.

- Evite levar ao freezer alimentos e bebidas acondicionadas no plástico. A liberação do composto também é mais intenso quando há um resfriamento do plástico.
- Descarte utensílios de plástico lascados ou arranhados. Evite lavá-los com detergentes fortes ou colocá-los na máquina de lavar louças.
- Procure o selo #BPAFree nas embalagens de plástico, que indicam que este plástico é livre de bisfenol A e ftalatos. Evite o uso de plásticos com os códigos de reciclagem #3, #6 e #7, porque eles contêm DE, especialmente no período peri-gestacional e de lactação. Veja na Figura 3, os plásticos seguros e plásticos a evitar.
- Não queime plásticos, derivados do petróleo e fluidos industriais.
- Evite tocar nas notas de caixas ou de máquinas de cartão de crédito impressas em papel térmico.
- Gestantes e mulheres aleitando devem evitar o consumo de peixes ricos em mercúrio, como atum, cavala, tubarão e peixe-espada.
- Forneça às crianças somente brinquedos com o selo do INMETRO.
- Não dê para a criança pequena, mordedores ou brinquedos de plástico macio, já que eles têm um potencial de possuírem DE.
- Evite reforma de casas contruídas antes de 1978 (exposição ao chumbo).
- Evite fumar ou conviver com fumantes (exposição ao cádmio entre outros).
- Ao utilizar cremes, desodorantes, protetores solares e outros produtos de higiene pessoal dê preferencia aos sem parabenos.
- Escolha produtos de higiene pessoal ou de limpeza que sejam sem fragrância.
- Fique atento aos produtos cosméticos, especialmente aos infantis. Conforme orientado pela ANVISA ela permite a inclusão de substâncias de gosto ruim (amargo) em todos produtos cosméticos infantis, para evitar que a criança leve o produto à boca. Além disso, estes produtos para a população pediátrica, como maquiagem ou esmalte, quando formulados com

- as substâncias adequadas para a faixa etária, devem ser facilmente removidos com água. Em população não mais pediátrica procure utilizar esmaltes que não contenham ftalatos.
- Não reutilize as embalagens vazias dos saneantes, pois elas sempre ficam com algum resíduo do produto. Jogue-as fora no lixo seletivo.
- Para evitar a exposição a pesticidas, caso não tenha acesso a alimentos orgânicos: tenha uma horta em casa; lave frutas e legumes e antes deixe-os de molho por 10 minutos em uma solução de 1 parte de vinagre para 3 partes de água, descasque frutas e vegetais; retire a gordura visível da carne antes do preparo.
- Acostume você e seu filho com pouca exposição à luz durante a noite. Caso mantenha uma luz de segurança, deixe-a longe da cabeceira.
 Evite televisão no quarto ou desligue telas (TV, tablet, celular) duas horas antes de dormir.
- E o frango? Estudo americano evidenciou níveis de DE menores na carne de frango do que na de gado. O pensamento corrente de que frangos crescem rapidamente à base de hormônios é um engano. Na verdade, o tipo de criação, intensiva, com muita luz e sem espaço para locomoção é que provoca este ganho de peso acelerado nos aviários de grandes empresas.

Figura 3. Plásticos seguros e plásticos à evitar:

Conclusão

Os seres humanos têm sido, diária e simultaneamente, expostos ao longo de suas vidas a uma pletora de químicos e DE em diferentes concentrações. Testes de comprovação da presença de DE no sangue, urina e outros tecidos confirmam a presença de uma variedade de DE na maioria dos indivíduos no mundo todo. Mesmo tendo em mente o nível de evidência dos estudos atuais acerca dos DE, considerando os possíveis efeitos deletérios dos DE na saúde da criança, parece uma atitude de bom senso prestar atenção aos DE na população mais vulnerável, como gestantes, bebês e crianças pequenas.

Assim como estas fases da vida são uma "janela de vulnerabilidade" para a ação dos DE, as modificações comportamentais no sentido de proteção humana podem servir como uma "janela de oportunidade" para fazer diferença na saúde de nossas crianças e futuras gerações. Principio da precaução: "Quando uma atividade representa ameaças de danos à saúde humana ou ao meio ambiente, medidas de precaução devem ser tomadas, mesmo se as relações de causa e efeito não sejam plenamente estabelecidas cientificamente" http://www.nrdc.org/health/effects/qendoc.asp

Lembre-se que:

- DE podem afetar não só o indivíduo exposto, mas também as gerações subsequentes.
- Nem sempre é fácil a relação entre causa e efeito.
- A exposição fetal pode provocar uma mudança permanente na função.
- Possuem clara relação com obesidade, doenças do trato reprodutivo e alguns tipos de cânceres
- Medidas para a redução da exposição humana aos DE são urgentes, faça a sua parte.

BIBLIOGRAFIA SELECIONADA

- Locatelli M, Sciascia F, Cifelli R, Malatesta L, Bruni P, Croce F. Analytical methods for the endocrine disruptor compounds determination in environmental water samples. J Chromatogr. 2016;1434:1-18.
- 02. Gore A, Crews D, Doan LL, Merril ML, Patisaul H, Zota A. tradução Boguzewski C. Introdução aos disruptores endócrinos (DEs): Um guia para governos e organizações de interesse público. 2014 acessível em https//www.endocrino.org.br ou www.endocrine.org
- 03. Monneret C. What is na endocrine disruptor? C R Biologies 340 (2017):403-405.
- 04. Adgent MA, Daniels JL, Rogan WJ, Adair L, Edwards LJ, Westreich D, Maisonet M, Marcus M. Early-life exposure and age at menarche. Pediatr Perinatol Epidemiol. 2012; 26: 163-175.
- 05. Russart KLG, Nelson RJ. Light at night as na environmental endocrine disruptor. Physiol Behav. 2018;190:82-89.
- 06. Jacobson MH, Woodward M, Bao W, Liu B, Trasandre L. Urinary Bisphenol and obesity prevalence among U.S. children and adolescents. J Endoc Soc. 2019; 3:1715-1726.
- Song Y, Chou EL, Baecker A, You NCY, Song Y, Sun Q, Liu S. Endocrine-disrupting chemicals, risk of type 2 diabetes, and diabetes-related metabolic traits: A systematic review and meta-analysis. J Diab. 2016;8:516-532.

- 08. Greenspan LC, Lee MM. Endocrine disrupters and pubertal timing. Curr Opin Endocrinol Diab Obes. 2018;25(1): 49-54.
- 09. Eskenazi B, Rauch AS, Tenerelli R, Huen K, Holland NT, Lustig RH, Kogut K, Bradman A, Sjodin A, Harley KG. In utero and childhood DDT, DDE, PBDE and PCBs exposure and sex hormones in adolescent boys: The CHAMACOS study. Int J Hyg Environ Health. 2017;220: 364-372.
- Lymperi S, Giwercman A. Endocrine disruptors and testicular function. Metab Clin Exper. 2018;85: 79-90.
- Gore AC, Chappel VA, Fenton SE, Flaws JÁ, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endoc Rev. 2015: E1-150
- Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord. 2020;21(1):127-147.
- Revista consumo e saúde, Manual de orientação aos consumidores: Educação para o consumo saudável. edição número 45, 2017.

Diretoria

Triênio 2019/2021

PRESIDENTE-Luciana Rodrigues Silva (BA)

1º VICE-PRESIDENTE: Clóvis Francisco Constantino (SP)

2º VICE-PRESIDENTE: Edson Ferreira Liberal (RJ)

SECRETÁRIO GERAL: Sidnei Ferreira (RJ)

1º SECRETÁRIO: Ana Cristina Ribeiro Zöllner (SP)

2º SECRETÁRIO: Paulo de Jesus Hartmann Nader (RS)

3° SECRETÁRIO: Virgínia Resende Silva Weffort (MG)

DIRETORIA FINANCEIRA: Maria Tereza Fonseca da Costa (RJ)

2ª DIRETORIA FINANCEIRA: Cláudio Hoineff (RJ)

3ª DIRETORIA FINANCEIRA: Hans Walter Ferreira Greve (BA)

DIRETORIA DE INTEGRAÇÃO REGIONAL Fernando Antônio Castro Barreiro (BA)

COORDENADORES REGIONAIS

NORTE: Bruno Acatauassu Paes Barreto (PA) Adelma Alves de Figueiredo (RR)

NORDESTE: Anamaria Cavalcante e Silva (CE) Eduardo Jorge da Fonseca Lima (PE) SUDESTE:

Rodrigo Aboudib Ferreira Pinto (ES) Isabel Rey Madeira (RJ)

SUL: Darci Vieira Silva Bonetto (PR) Helena Maria Correa de Souza Vieira (SC)

CENTRO-OESTE:
Regina Maria Santos Marques (GO)
Natasha Sihessarenko Fraife Barreto (MT)

COMISSÃO DE SINDICÂNCIA

COMISSÃO DE SINDICÂNCIA TITULARES: Gilberto Pascolat (PR) Aníbal Augusto Gaudéncio de Melo (PE) Maria Sidneuma de Melo Ventura (CE) Isabel Rey Madeira (RJ) SUPLENTES: Paulo Tadeu Falanghe (SP) Tânia Denise Resener (RS) João Coriolano Rego Barros (SP) Marisa Lopes Miranda (SP) Joaquim João Caetano Menezes (SP)

CONSELHO FISCAL

CONSELECT FISCAL TITULARES: Núbia Mendonça (SE) Nelson Grisard (SC) Antônio Márcio Junqueira Lisboa (DF) SUPLENTES:

Adelma Alves de Figueiredo (RR) João de Melo Régis Filho (PE) Darci Vieira da Silva Bonetto (PR)

ASSESSORES DA PRESIDÊNCIA PARA POLÍTICAS

PÚBLICAS: COORDENAÇÃO: Maria Tereza Fonseca da Costa (RJ)

Maria Tereza Fonseca da Costa (RI)
MEMBROS:
Clóvis Francisco Constantino (SP)
Maria Albertina Santiago Rego (MG)
Donizetti Dimer Giamberardino Filho (PR)
Sérgio Tadeu Martins Marba (SP)
Alda Elizabeth Boehler Iglesias Azevedo (MT)
Evelyn Eisenstein (RI)
Paulo Augusto Moreira Camargos (MG)
João Coriolano Rego Barros (SP)
Alexandre Lopes Miralha (AM)
Virginia Weffort (MG)
Themis Reverbel da Silveira (RS)

DIRETORIA DE QUALIFICAÇÃO E CERTIFICAÇÃO PROFISSIONAL

Maria Marluce dos Santos Vilela (SP) Edson Ferreira Liberal (RJ)

COORDENAÇÃO DE CERTIFICAÇÃO PROFISSONAL José Hugo de Lins Pessoa (SP)

COORDENAÇÃO DE ÁREA DE ATUAÇÃO Mauro Batista de Morais (SP) Kerstin Tanigushi Abagge (PR) Ana Alice Ibiapina Amaral Parente (RJ)

COORDENAÇÃO DO CEXTEP
(COMISSÃO EXECUTIVA DO TÍTULO
DE ESPECIALISTA EM PEDIATRIA)
COORDENAÇÃO:
Hélicio Villas Simões (RJ)
MEMBROS:
Ricardo do Rego Barros (RJ)
Clovis Francisco Constantino (SP)
Ana Cristina Ribeiro Zöllner (SP)
Carla Príncipe Pires C. Vianna Braga (RJ)
Flavia Nardes dos Santos (RJ)
Cristina Ortiz Sobrinho Valete (RJ)

Grant Wall Barbosa de Carvalho Filho (RJ) Sidnei Ferreira (RJ) Silvio Rocha Carvalho (RJ)

COMISSÃO EXECUTIVA DO EXAME PARA OBTENÇÃO DO TÍTULO DE ESPECIALISTA EM PEDIÁTRIA AVALIAÇÃO SERIADA COORDENAÇÃO:
Eduardo Jorge da Fonseca Lima (PE) Victor Horácio de Souza Costa Junior (PR)

Victor Horacio de Souza Costa Junior (PR)
MEMBROS:
Henrique Mochida Takase (SP)
João Carlos Batista Santana (RS)
Luciana Cordeiro Souza (PE)
Luciano Amedée Péret Filho (MG)
Mara Morelo Rocha Felix (RI)
Marilucia Rocha de Almeida Picanço (DF)
Vera Hermina Kalika Koch (SP)

DIRETORIA DE RELAÇÕES INTERNACIONAIS Nelson Augusto Rosario Filho (PR) Sergio Augusto Cabral (RJ)

REPRESENTANTE NA AMÉRICA LATINA

DIRETORIA DE DEFESA DA PEDIATRIA COORDENAÇÃO: Fabio Augusto de Castro Guerra (MG)

Fabio Augusto de Castro Guerra (MG)
MEMBROS:
Gilberto Pascolat (PR)
Paulo Tadeu Falanghe (SP)
Cidadio Orestes Britto Filho (PB)
João Cândido de Souza Borges (CE)
Anenisia Coelho de Andrade (PI)
Isabel Rey Madeira (RJ)
Donizett Dimer Giamberardino Filho (PR)
Jocileide Sales Campos (CE)
Maria Nazareth Ramos Silva (RJ)
Gloira Tereza Lima Barreto Lopes (SE)
Corina Maria Nina Viana Batista (AM)

DIRETORIA DOS DEPARTAMENTOS CIENTÍFICOS E COORDENAÇÃO DE DOCUMENTOS CIENTÍFICOS Dirceu Solé (SP)

DIRETORIA-ADJUNTA DOS DEPARTAMENTOS CIENTÍFICOS Emanuel Savio Cavalcanti Sarinho (PE)

DOCUMENTOS CIENTÍFICOS DOCUMENTOS Luciana Rodrigues Silva (BA) Dirceu Solé (SP) Emanuel Sávio Cavalcanti Sarinho (PE) Joel Alves Lamounier (MG)

DIRETORIA DE CURSOS, EVENTOS E PROMOÇÕES Lilian dos Santos Rodrigues Sadeck (SP)

MEMBROS: Ricardo Queiroz Gurgel (SE) Paulo César Guimarães (RJ) Cléa Rodrigues Leone (SP)

COORDENAÇÃO DO PROGRAMA DE REANIMAÇÃO NEONATAL Maria Fernanda Branco de Almeida (SP) Ruth Guinsburg (SP)

COORDENAÇÃO PALS – REANIMAÇÃO PEDIÁTRICA Alexandre Rodrigues Ferreira (MG) Kátia Laureano dos Santos (PB)

COORDENAÇÃO BLS – SUPORTE BÁSICO DE VIDA Valéria Maria Bezerra Silva (PE)

COORDENAÇÃO DO CURSO DE APRIMORAMENTO EM NUTROLÓGIA PEDIÁTRICA (CANP) Virgínia Resende Silva Weffort (MG)

PEDIATRIA PARA FAMÍLIAS

Nilza Maria Medeiros Perin (SC) Normeide Pedreira dos Santos (BA) Marcia de Freitas (SP)

Luciana Rodrigues Silva (BA)

PROGRAMA DE ATUALIZAÇÃO CONTINUADA À DISTÂNCIA Luciana Rodrigues Silva (BA) Edson Ferreira Liberal (R) Natasha Sihessarenko Fraife Barreto (MT) Ana Alice Ibiapina Amaral Parente (RJ)

DIRETORIA DE PUBLICAÇÕES Fábio Ancona Lopez (SP)

EDITORES DA REVISTA SBP CIÊNCIA Joel Alves Lamounier (MG) Altacílio Aparecido Nunes (SP) Paulo Cesar Pinho Ribeiro (MG) Flávio Diniz Capanema (MG)

EDITORES DO JORNAL DE PEDIATRIA (JPED) COORDENAÇÃO: Renato Procianoy (RS)

Renato Procianoy (15.7)
MEMBROS:
Crésio de Aragão Dantas Alves (BA)
Paulo Augusto Moreira Camargos (MG)
João Guilherme Bezerra Alves (PE)
Marco Aurélio Palazzi Sáfadi (SP)

Magda Lahorgue Nunes (RS) Gisélia Alves Pontes da Silva (PE) Dirceu Solé (SP) Antônio Jose Ledo Alves da Cunha (RJ)

EDITORES REVISTA RESIDÊNCIA PEDIÁTRICA Clemax Couto Sant'Anna (RJ) Marilene Augusta Rocha Crispino Santos (RJ)

EDITORA ADJUNTA: Márcia Garcia Alves Galvão (RJ)

CONSELHO EDITORIAL EXECUTIVO: CONSELHO EDITORIAL EXECUTIVO: Sidnei Ferreira (RJ) Isabel Rey Madeira (RJ) Mariana Tschoepke Aires (RJ) Mariana Tschiam Bazhuni Pombo March (RJ) Silvio da Rocha Carvalho (RJ) Rafaela Baroni Aurilio (RJ) Leonardo Rodrigues Campos (RJ) Álvaro Jorge Madeiro Leite (CE) Eduardo Jorge da Fonseca Lima (PE) Marcia C. Bellotti de Oliveira (RJ)

CONSULTORIA EDITORIAL:

Ana Cristina Ribeiro Zöllner (SP) Fábio Ancona Lopez (SP) Dirceu Solé (SP) Joel Alves Lamounier (MG)

EDITORES ASSOCIADOS:

Danilo Blank (RS)
Paulo Roberto Antonacci Carvalho (RJ)
Renata Dejtiar Waksman (SP)

COORDENAÇÃO DO PRONAP Fernanda Luísa Ceragioli Oliveira (SP) Tulio Konstantyner (SP) Cláudia Bezerra de Almeida (SP)

COORDENAÇÃO DO TRATADO DE PEDIATRIA Luciana Rodrigues Silva (BA) Fábio Ancona Lopez (SP)

DIRETORIA DE ENSINO E PESQUISA Joel Alves Lamounier (MG)

COORDENAÇÃO DE PESQUISA Cláudio Leone (SP)

COORDENAÇÃO DE GRADUAÇÃO COORDENAÇÃO: Rosana Fiorini Puccini (SP)

MEMBROS: Rosana Alves (ES) Suzy Santana Cavalcante (BA) Angélica Maria Bicudo-Zeferino (SP) Silvia Wanick Sarinho (PE)

COORDENAÇÃO DE RESIDÊNCIA E ESTÁGIOS EM PEDIATRÍA COORDENAÇÃO:

Ana Cristina Ribeiro Zöllner (SP)

Ana Cristina Ribeiro Zolliner (SP)
MEMBROS:
Eduardo Jorge da Fonseca Lima (PE)
Fátima Maria Lindoso da Silva Lima (GO)
Paulo de Jesus Hartmann Nader (RS)
Victor Horácio da Costa Junior (PR)
Silvio da Rocha Carvalho (RI) Tânia Denise Resener (RS) Delia Maria de Moura Lima Herrmann (AL) Helita Regina F. Cardoso de Azevedo (BA) Jefferson Pedro Piva (RS)

Sérgio Luís Amantéa (RS) Susana Maciel Wuillaume (RJ) Aurimery Gomes Chermont (PA) Luciano Amedée Péret Filho (MG)

COORDENAÇÃO DE DOUTRINA PEDIÁTRICA Luciana Rodrigues Silva (BA) Hélcio Maranhão (RN)

COORDENAÇÃO DAS LIGAS DOS ESTUDANTES Adelma Figueiredo (RR) André Luis Santos Carmo (PR) Marynea Silva do Vale (MA) Fernanda Wagner Fredo dos Santos (PR)

MUSEU DA PEDIATRIA COORDENAÇÃO: Edson Ferreira Liberal (RJ) MEMBROS:

Mario Santoro Junior (SP) José Hugo de Lins Pessoa (SP)

REDE DA PEDIATRIA COORDENAÇÃO:

COORDENAÇAO: Luciana Rodrigues Silva (BA) Rubem Couto (MT) AC - SOCIEDADE ACREANA DE PEDIATRA: Ana Isabel Coelho Montero

All - SOCIEDADE ALAGOANA DE PEDIATRIA: Ana Carolina de Carvalho Ruela Pires AM - SOCIEDADE AMAZONENSE DE PEDIATRIA: Elena Marta Amaral dos Santos

AP - SOCIEDADE AMAPAENSE DE PEDIATRIA: Rosenilda Rosete de Barros BA - SOCIEDADE BAIANA DE PEDIATRIA:

Dolores Fernandez Fernandez
CE - SOCIEDADE CEARENSE DE PEDIATRIA:

DF - SOCIEDADE DE PEDIATRIA DO DISTRITO FEDERAL: Dennis Alexander Rabelo Burns ES - SOCIEDADE ESPIRITOSSANTENSE DE PEDIATRIA:

Roberta Paranhos Fragoso

GO - SOCIEDADE GOIANA DE PEDIATRIA: Marise Helena Cardoso Tófoli

MA - SOCIEDADE DE PUERICULTURA E PEDIATRIA DO MARANHÃO: Marynea Silva do Vale

MG - SOCIEDADE MINEIRA DE PEDIATRIA: Cássio da Cunha Ibiapina

MS - SOCIEDADE DE PED. DO MATO GROSSO DO SUL: Carmen Lucia de Almeida Santos

MT - SOCIEDADE MATOGROSEENSE DE PEDIATRIA:

Isabel Cristina Lopes dos Santos
PA - SOCIEDADE PARAENSE DE PEDIATRIA: Vilma Francisca Hutim Gondim de Souza

PB - SOCIEDADE PARAIBANA DE PEDIATRIA: Leonardo Cabral Cavalcante

PE - SOCIEDADE DE PEDIATRIA DE PERNAMBUCO: Katia Galeão Brandt

PI - SOCIEDADE DE PEDIATRIA DO PIAUÍ: Anenisia Coelho de Andrade

PR - SOCIEDADE PARANAENSE DE PEDIATRIA: Kerstin Taniguchi Abagge RJ - SOCIEDADE DE PEDIATRIA DO ESTADO

DO RIO DE JANEIRO: Katia Telles Nogueira

RN - SOCIEDADE DE PEDIATRIA RIO GRANDE DO NORTE: Katia Correia Lima

RO - SOCIEDADE DE PEDIATRIA DE RONDÔNIA: Wilmerson Vieira da Silva RR - SOCIEDADE RORAIMENSE DE PEDIATRIA:

Adelma Alves de Figueiredo RS - SOCIEDADE DE PEDIATRIA DO RIO GRANDE DO SUL: Sérgio Luis Amantea

SC - SOCIEDADE CATARINENSE DE PEDIATRIA:

SE - SOCIEDADE CATAMINASE DE PEDIATRA Rosamaria Medeiros e Silva SE - SOCIEDADE SERGIPANA DE PEDIATRIA: Ana Jovina Barreto Bispo

SP - SOCIEDADE DE PEDIATRIA DE SÃO PAULO: Sulim Abramovici TO - SOCIEDADE TOCANTINENSE DE PEDIATRIA:

DIRETORIA DE PATRIMÔNIO COORDENAÇÃO: DIRETORIA DE PATRIMONIO COORDEN Fernando Antônio Castro Barreiro (BA) Cláudio Barsanti (SP) Edson Ferreira Liberal (RJ) Sergio Antônio Bastos Sarrubo (SP) Maria Tereza Fonseca da Costa (RJ)

ACADEMIA BRASILEIRA DE PEDIATRIA PRESIDENTE: Mario Santoro Júnior (SP) VICE-PRESIDENTE: Luiz Eduardo Vaz Miranda (RJ) SECRETÁRIO GERAL: JECKETAKIO GERAL: Jefferson Pedro Piva (RS) DIRETORA DE COMUNICAÇÃO Conceição Ap. de Mattos Segre (SP)

DEPARTAMENTOS CIENTÍFICOS

- · Adolescência · Aleitamento Materno

- Aleitiamento Mater
 Alergia
 Bioética
 Cardiologia
 Emergéncia
 Endocrinologia
 Gastroenterologia
 Gastroenterologia
 Genética
 Hematologia
 Imunizações
 Imunnologia Clínica
 Infectologia
- Infectologia
 Medicina da Dor e Cuidados Paliativos
- NefrologiaNeonatologia
- Neonatólogia
 Neurologia
 Nutrologia
 Oncologia
 Oncologia
 Pediatria Ambulatorial
 Ped. Desenvolvimento e Comportamento
 Pneumologia
 Reumatologia
 Rewardia Saúde Escolar
 Saúde Escolar
 Segurança
 Sono
 Suporte Nutricional

- Suporte Nutricional

Terapia Intensiva Toxicologia e Saúde Ambiental

GRUPOS DE TRABALHO

GRUPOS DE TRABALHO

- Atividade física

- Cirurgia pediátrica

- Doenças raras

- Drogas e violência na adolescência

- Metodologia científica

- Oftalmologia pediátrica

- Pediatria e humanidade

- Saúde mental