Übungsblatt 5

Aufgabe 17 (1+2+2). Konvergieren die folgenden Reihen? Konvergieren sie absolut? Begründen Sie.

(a)
$$\sum_{n=0}^{\infty} \frac{n^2}{2^n}$$
 (b) $\sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1}$ (c) $\sum_{n=0}^{\infty} {2n \choose n} \frac{1}{2^{3n-1}}$

Aufgabe 18 (1+2+2). Bestimmen Sie jeweils den Konvergenzradius der folgenden Potenzreihen.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^n} x^n$$
 (b) $\sum_{n=0}^{\infty} \frac{\sqrt{n2^n}}{(n+1)^4} x^n$ (c) $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n$

Aufgabe 19 (1.5+1.5+2). Wir betrachten ein komplexes Polynom $p(z) = \sum_{i=0}^{d} a_i z^i$, $a_i \in \mathbb{C}$, mit $a_0 \neq 0$.

- (i) Zeigen Sie, dass für jedes $\lambda \in \mathbb{C}$ es ein komplexes Polynom q vom Grad d-1 mit $p(z)-p(\lambda)=(z-\lambda)q(z)$ gibt. (Beachten Sie, dass das Polynom q von abhängen wird.)
 - Hieraus folgt insbesondere: Ist λ eine Nullstelle von p, also $p(\lambda) = 0$, dann kann man den Linearfaktor $z \lambda$ abspalten, d.h. $p(z) = (z \lambda)q(z)$ für ein komplexes Polynom q.
- (ii) Benutzen Sie (i), um zu zeigen, dass ein komplexes Polynom vom Grad d höchstens d komplexe Nullstellen haben kann.
- (iii) Sei ein komplexes Polynom p vom Grad d mit Koeffizienten $a_i \in \mathbb{C}$ gegeben. Sei $x_0 \in \mathbb{C}$. Wir betrachten das folgende Schema:

Zeigen Sie, dass der Algorithmus in diesem Schema für beliebiges p und x_0 als z immer $p(x_0)$ ausrechnet. Zeigen Sie, dass, falls x_0 Nullstelle von p ist, dann $p(x) = (x - x_0)q(x)$ gilt.

Aufgabe 20 (3+1+1). Sei $(s_k)_{k>0}$ eine Folge. Wir setzen $\sigma_n := \frac{1}{n}(s_1 + s_2 + ... + s_n)$.

- (i) Zeigen Sie: Falls $s_k \to s$ für $k \to \infty$, dann $\sigma_n \to s$ für $n \to \infty$.
- (ii) Sei $(s_k = \sum_{i=1}^k a_i)_k$ die Folge der Partialsummen einer Reihe $\sum_{i=1}^\infty a_i$. Zeigen Sie, dass $\sigma_k = \sum_{i=1}^k \sum_{j=1}^i a_j$ gilt. Konvergiert diese Folge σ_k , dann nennt man die Reihe *Cesaro-summierbar* und den Grenzwert von σ_k , den *Cesaro-Grenzwert* dieser Reihe.
- (iii) Zeigen Sie, dass $\sum_{k=1}^{\infty} (-1)^{k+1}$ Cesaro-summierbar ist und berechnen Sie den Cesaro-Grenzwert.

Abgabe am Mittwoch 09.12.20 bis 14 Uhr – bitte nicht vor Dienstag 9 Uhr abgeben

 $^{^{1}}$ Der Fundamentalsatz der Algebra gibt einem dann später, dass es (mit Vielfachheit gezählt) genau d komplexe Nullstellen sind.