

PROGRAM of the

September 3-5, 2012 Munich, Germany www.modelica.org

Editors:

Martin Otter Dirk Zimmer

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Robotics and Mechatronics Center

Program of the 9th International Modelica Conference

Munich, Germany, September 3-5, 2012

Editors:

Prof. Dr.-Ing. Martin Otter and Dr. Dirk Zimmer (DLR-RMC-SR)

Organized by:

Modelica Association and German Aerospace Center (DLR)

c/o PELAB, IDA, <u>Robotics and Mechatronic Center</u> (RMC)

Linköpings Universitet Institute for System Dynamics and Control (SR)

S-58183 Linköping D-82234 Wessling

Sweden Germany

Conference location:

Veranstaltungsforum Fürstenfeld, Fürstenfeld 12 D-82256 Fürstenfeldbruck Germany

Copyright © Modelica Association, 2012

Welcome

The 9th International Modelica Conference is the main event for users, library developers, tool vendors and language designers to share their knowledge and learn about the latest scientific and industrial progress related to Modelica, to the Modelica Association and to the Functional Mockup Interface. Highlights of the conference:

- **80 regular** papers, **22 poster** papers, and **6 libraries** for the Modelica Library Award.
- 2 Keynotes.
- **8 tutorials** (3.5 hours each, <u>descriptions</u>).
- **10 vendor sessions** (45 min. each) where the latest news of Modelica and FMI tools are presented.
- 17 exhibitors in the exhibition area.

Please note that to some of the papers a Modelica library or model is attached. These files are accessible in the electronic proceedings.

The conference provides also the most important news from the Modelica Association:

- The new version of the Modelica language version 3.3 was released on May 9, 2012. There are several papers and a tutorial at the conference that discusses and demonstrates the new features
- The working process of the Modelica Association has been changed and the work is now organized in Modelica Association Projects (MAP) with an extended board. More details are given in the presentation "Modelica News" on Tuesday, September 4, 9:10 9:25.
- The further development of the FMI (Functional Mockup Interface) standard is
 performed in a MAP. A draft version of FMI 2.0 will be available before the
 conference. An overview of this new version is given in a conference paper. In
 two sessions, applications and tool support for FMI are presented and discussed.
- Since July, the Modelica Association provides an open source FMI compliance checker for FMI 1.0 at https://svn.fmi-standard.org/fmi/trunk/Test_FMUs. Its purpose is to check exported FMUs for validity. The checker can also produce reference simulation results with a fixed step explicit Euler method. Shortly after FMI 2.0 is released, the compliance checker will also be available for FMI 2.0.

Finally, we want to acknowledge the support we received from the program board and program committee. We are grateful for the help by the Modelica Association and Monika Klauer from DLR. Last but not least, let us thank all authors for their contributions to this conference.

We wish all participants an enjoyable and successful conference.

Weßling, July 20, 2012

Martin Otter and Dirk Zimmer

Content

Welcome	3
General Conference Schedule	6
Detailed Scientific Program	8
Program of the Vendor Session	14
Tutorials	15
Exhibitors	19
Travel Information and Maps of the Venue	20
Useful Information	24

General Schedule of Monday, September 3

14:00 17:45			Tutorials		
	Ter	Tenne			
17:50 21:00	Welcome	Opening Concert Reception and Dinner Buffet			
	General Schedule of To	ile of Tuesday, September <u>4</u>			
•	Tenne	Stadtsaal	Kleiner Saal	Säulensaal	Seminarraum S1
00:60		Opening			
09:10		Modelica News			
09:25		Keynote 1			
10:10	Coffee Break				
10:40	Exhibition	Hybrid Modelling	Thermofluid Systems	Power and Energy	Electromagnetic Systems I
12:20	Lunch				
13:35	Exhibition	FMI Standard I	Numerical Methods	Climate Systems I	Mechanic Systems I
15:15	Coffee Break				
15:45	Exhibition	Mixed Simulation Techniques I	Embedded and Real-Time Systems	Language and Compilation Concepts I	Mechanic Systems II
17:00	Coffee Break				
17:30	Exhibition		Vendor Session	Session	
19:00	Conference Dinner				

General Schedule of Wednesday, September 5

ı İ	Tenne	Stadtsaal	Kleiner Saal	Säulensaal	Seminarraum S1
08:30		Keynote 2			
09:15					
09:50	Exhibition	Language and Compilation Concepts II	Control	Handling Simulation Output	Electromagnetic Systems II
10:10	Coffee Break				
10:40	Fyhihition	Simulation Tools	Mixed Simulation Techniques II	Automotive Systems	Power Plants
11:55			Poster Session		
12:55	Lunch			ī	
14:00	Exhibition	Optimization Methods	Mechanic Systems III	Climate Systems II	FMI Standard II
15:40					
15:45		Final Assembly Library Awards			
16:00					
16:30	Visit at DLR				
19:00					

Scientific Program of Tuesday, September 4, Part I

	Stadtsaal	Kleiner Saal	Säulensaal	Seminarraum S1
00:60	Opening			
09:10	Modelica News			
	Keynote 1			
	Chair: Martin Otter			
09:25	From Concept to Embedded Code –			
	Advanced Modelica Applications in			
	Aerospace and E-Mobility			
	Dr. Johann Bals			
10:10		•		
	Hybrid Modeling	Thermofluid Systems	Power and Energy	Electromagnetic Systems I
	Chair: Andreas Uhlig	Chair: Hubertus Tummescheit	Chair: John Batteh	Chair: Christoph Clauß
10:40	Fundamentals of Synchronous Control in	Simulation of Non-Newtonian Fluids using	Gas Exchange and Exhaust Condition	Modeling and Simulation of a Linear
	Modelica	Modelica	Modeling of a Diesel Engine using the	Piezoelectric Stepper Motor in MapleSim
			Engine Dynamics Library	
	Hilding Elmqvist, Martin Otter and Sven	Pooyan Jahangiri, Rita Streblow and Dirk	Johan Dahl and Daniel Andersson	Orysia Soroka, Derek Wright, and Orang
	Erik Mattsson	Müller		Vahid
11:05		A Library for Synchronous Control Systems HelmholtzMedia - A Fluid Properties Library Model Library of Polymer Electrolyte	Model Library of Polymer Electrolyte	Magnetic Hysteresis Models for Modelica
	in Modelica		Membrane Fuel Cells for System Hardware	
	Martin Otter, Bernhard Thiele and Hilding	Matthis Thorade and Ali Saadat	And Control Design Kevin L Davies, Robert M. Moore and Guido Johannes Ziske and Thomas Bödrich	Johannes Ziske and Thomas Bödrich
	Elmqvist		Bender	
11:30	State Machines in Modelica	Object-Oriented Library of Switching	The Modeling of Energy Flows in Railway	Motor Management of Permanent Magnet
		Moving Boundary Models for Two-phase	Networks using XML-Infrastructure Data	Synchronous Machines
		Flow Evaporators and Condensers		
	Hilding Elmqvist, Fabien Gaucher, Sven Erik	Javier Bonilla, Luis J. Yebra, Sebastián	Andreas Heckmann and Sebastian Streit	Anton Haumer and Christian Kral
	Mattsson and Francois Dupont	Dormido and François E. Cellier		
11:55	PNIib - An Advanced Petri Net Library for	High-Speed Compressible Flow and Gas	Implementation of a Modelica Library for	An Approach for Modelling Quasi-
	Hybrid Process Modelling	Dynamics	Management based on Economic	stationary Magnetic Circuits
			Models	
	sabrina Projs and Bernhard Bachmann	Micnael Sielemann	Dirk zimmer and Daniel schlabe	иск кааре

Scientific Program of Tuesday, September 4, Part II

	Stadtsaal	Kleiner Saal	Säulensaal	Seminarraum S1
	FMI Standard I	Numerical Methods	Climate Systems I	Mechanic Systems I
	Chair: Ingrid Bausch-Gall	Chair: Hans Olsson	Chair: Wilhelm Tegethoff	Chair: Liping Chen
13:35	13:35 Functional Mockup Interface 2.0: The	On the Formulation of Steady-State	Modelling and Calibration of a Thermal	Modeling and Testing of the Hydro-
	Standard for Tool independent Exchange of Initialization Problems in OO Models of	Initialization Problems in OO Models of	Model for an Automotive Cabin using	mechanical Synchronization System for a
	Simulation Models	Closed Thermo-Hydraulic Systems	HumanComfort Library	Double Clutch Transmission
	Torsten Blochwitz, Martin Otter, Johan	Francesco Casella	Stefan Wischhusen	Hua Huang, Sebastian Nowoisky, René
	åkesson, Martin Arnold,			Knoblich and Clemens Gühmann
14:00	14:00 Generation of Sparse Jacobians for the	Probability-One Homotopy for Robust	Holistic Vehicle Simulation - An application Predicting the Launch Feel of Automatic	Predicting the Launch Feel of Automatic
	Function Mock-Up Interface 2.0	Initialization of Differential-Algebraic	on thermal managament and operation	and Dual Clutch Transmissions
		Equations	strategy	
	Johan Åkesson, Willi Braun, Petter	Michael Sielemann	Claude Bouvy, Sidney Baltzer, Peter Jeck,	Neil Roberts and Mike Dempsey
	Lindholm and Bernhard Bachmann		Jörg Gissing, Thomas Lichius,	
14:25	14:25 Designing Models for Online Use with	Simulating Modelica Models with a Stand-	Modelling of Radiative Heat Transfer in	Modelling of Elastic Gearboxes Using a
	Modelica and FMI	Alone Quantized State Systems Solver	Modelica with a Mobile Solar Radiation	Generalized Gear Contact Model
			Model and a View Factor Model	
	Pål Kittilsen, Svein Olav Hauger and Stein	Federico Bergero, Xenofon Floros, Joaquín	Arnav Pathak, Victor Norrefeldt and	Franciscus van der Linden
	O. Wasbø	Fernández, Ernesto Kofman,	Gunnar Grün	
14:50	14:50 Co-simulation with Communication Step	Fast Simulation of Fluid Models with	VEPZO - Velocity Propagating Zonal Model Revised and Improved Implementation of	Revised and Improved Implementation of
	Size Control in an FMI Compatible Master	Colored Jacobians	for the prediction of airflow pattern and	the Spur Involute Gear Dynamical Model
	Algorithm		temperature distribution	
	Tom Schierz, Martin Arnold and Christoph	Willi Braun, Stephanie Gallardo Yances,	Victor Norrefeldt and Gunnar Grün	Ivan Kosenko and Ilya Gusev
	Clauss	Kilian Link and Bernhard Bachmann		
15:15				

Scientific Program of Tuesday, September 4, Part III

	Stadtsaal	Kleiner Saal	Säulensaal	Seminarraum S1	1
	Mixed Simulation Techniques I	Embedded and Real-Time Systems	Language and Compilation Concepts I	Mechanic Systems II	_
	Chair: François E. Cellier	Chair: Jakob Mauss	Chair: Peter Aronsson	Chair: Mike Dempsey	-
15:45	15:45 Accessing External Data on Local Media and	on Local Media and Functional Development with Modelica: A	Implementation of a Graphical Modelica	Modelling and Simulation of the Coupled	
	Remote Servers Using a Highly Optimized Use-Case Analysis	Use-Case Analysis	Editor with Preserved Source Code	Rigid-flexible Multibody Systems in Mworks	
	File Reader Library		Formatting		
	Jörg Rädler, Manuel Ljubijankic, Christoph Stefan-Alexander Schneider and Tobias	Stefan-Alexander Schneider and Tobias	Tobias A. Mattsson, Jon Sten, Tove	Xie Gang, Zhao Yan, Zhou Fanli and Chen	
	Nytsch-Geusen and Jörg Huber	Ноfтапп	Bergdahl, Jesper Mattsson	Liping	
16:10	16:10 Detailed Geometrical Information of	Translating Modelica to HDL: An	Model-based Requirement Verification: A	A Modelica Library of Anisotropic Flexible	
	Aircraft Fuel Tanks Incorporated into Fuel	Automated Design Flow for FPGA-based	Case Study	Beam Structures for the Simulation of	
	System Simulation Models	Real-Time Simulations		Composite Rotor Blades	
	Ingela Lind and Alexandra Oprea	Christian Köllner, Torsten Blochwitz and	Feng Liang, Wladimir Schamai, Olena	Christian Spieß and Manfred Hajek	
		Thomas Hodrius	Rogovchenko, Sara Sadeghi,		
16:35	16:35 Simulation of Artificial Intelligence Agents	A Modelica Library for Real-Time	A Data-Parallel Algorithmic Modelica	Modeling and Simulation of a Fault-	
	using Modelica and the DLR Visualization	Coordination Modeling	Extension for Efficient Execution on Multi- Tolerant Electromechanical Actuation	Tolerant Electromechanical Actuation	
	Library		Core Platforms	System for Helicopter Swashplates	
	Alexander Schaub, Matthias Hellerer and	Uwe Pohlmann, Stefan Dziwok, Julian Suck, Mahder Gebremedhin, Afshin Hemmati	Mahder Gebremedhin, Afshin Hemmati	Sebastian Seemann and Clemens Schlegel	
	Tim Bodenmüller	Boris Wolf, Chia Choon Loh,	Moghadam, Peter Fritzson,		
17.00					т

Scientific Program of Wednesday, September 5, Part I

	Stadtsaal	Kleiner Saal	Säulensaal	Seminarraum S1
08:30	Keynote 2 Chair: Martin Otter Modeling - Dun vidit 2			
09:15	09:15 Prof. Karl Johan Åström			
	Language and Compilation Concepts II Chair: Sven-Erik Mattsson	Control Chair: Hilding Elmqvist	Handling Simulation Output Chair: Chris Paredis	Electromagnetic Systems II Chair: Anton Haumer
09:20	Survey of Appropriate I for Large Scale Systems Algebraic Equations	A Modelica Sub- and Superset for Safety- Relevant Control Applications	Modelica3D - Platform Independent Simulation Visualization	Towards a Memristor Model Library in Modelica
	Jens Frenkel, Günter Kunze and Peter Fritzson	Bernhard Thiele, Stefan-Alexander Schneider and Pierre R. Mai	Christoph Höger, Alexandra Mehlhase, Christoph Nytsch-Geusen,	Kristin Majetta, Christoph Clauß and Torsten Schmidt
09:45	09:45 Static and Dynamic Debugging of Modelica Models	A Modelica Library for Industrial Control Systems	Proposal for a Standard Time Series File Format in HDF5	Fault Detection of Power Electronic Circuit using Wavelet Analysis in Modelica
10:10	Adrian Pop, Martin Sjölund, Adeel Asghar, 10:10 Peter Fritzson, Francesco Casella	Marco Bonvini and Alberto Leva	Andreas Pfeiffer, Ingrid Bausch-Gall and Martin Otter	Jianbo Gao, Yang Ji, Johann Bals and Ralph Kennel
	Simulation Tools Chair: Dirk Zimmer	Mixed Simulation Techniques II Chair: Bernhard Bachmann	Automotive Systems Chair: Rui Gao	Power Plants Chair: Daniel Bouskela
10:40	PySimulator Environment Infrastructur Andreas Pfei Hartweg, Mc	Using BCVTB for Co-Simulation Between Dymola and MATLAB for Multi-Domain Investgations of Production Plants Irene Hafner, Matthias Rössler, Bernhard Heinzl, Andreas Körner,	Development of New Concept Vehicles Using Modelica and Expectation to Modelica from Automotive Industries Yutaka Hirano	Status of ClaRaCCS: Modelling and Simulation of Coal-Fired Power Plants with CO2 Capture Johannes Brunnemann, Friedrich Gottelt, Kai Wellner, Ala Renz, André Thüring,
11:05	11:05 An OpenModelica Python Interface and its use in PySimulator Anand Kalaiarasi Ganeson, Peter Fritzon, Olena Rogovchenko, Adeel Asghar,	FEM models in System Simulations using Model Order Reduction and Functional Mockup Interface Andreas Gödecke, Monika Mühlbauer, Jörg Nieveler, Iason Vittorias	A Modular Technique for Automotive System Simulation Felix Günther, Georg Mallebrein and Heinz Ulbrich	Start-up Optimization of a Combined Cycle Power Plant Alexandra Lind, Elin Süllberg, Stéphane Velut, Stephanie Gallardo Yances,
11:30	WebMWorks: A General Web-Based Modeling and Simulation Environment for Modelica Liu Ol: Xiona Tifan. Liu Oinahua and Chen	Using Modelica models for Driver-in-the- loop simulators and the Vehicle Dynamics Library Mike Demosev, Garron Fish and Alessandro John Griffin, John Batteh and Johan	Modeling Vehicle Drivability with Modelica and the Vehicle Dynamics Library John Griffin John Batteh and Johan	Modeling and Simulation of a Vertical Wind Power Plant in Dymola/Modelica Joel Petersson. Pär Isaksson. Hubertus
11:55	Liping	Picarelli	Andreasson	Tummescheit and Johan Ylikiiskilä

Scientific Program of Wednesday, September 5, Part II

	Stadtsaal	Kleiner Saal	Säulensaal	Seminarraum S1
		Poster Session		
11:55		See list of posters on the next page		
12:55				
	Optimization Methods	Mechanic Systems III	Climate Systems II	FMI Standard II
	Chair: Michael Tiller	Chair: Martin Otter	Chair: Francesco Casella	Chair: Johan Åkesson
14:00	14:00 First and Second Order Parameter	A Planar Mechanical Library for Teaching	Discontinuous Individual Channel Injection	FMI Implementation in LMS Virtual.Lab
	Sensitivities of a [] Non-stationary	Modelica	into Fin-and-Tube Evaporators for	Motion and Application to a Vehicle
	Biochemical Network Model		Residential Air-Conditioning	Dynamics Case
	Ralf Hannemann-Tamás, Jana Tillack,	Dirk Zimmer	Martin Ryhl Kærn and Brian Elmegaard	Hunor Erdélyi, William Prescott, Stijn
	Moritz Schmitz, Jutta Wyes,			Donders and Jan Anthonis
14:25	Collocation Methods for Optimization in a	DyMoRail: A Modelica Library for modelling Validation and Application of the Room		Generating Functional Mockup Units from
	Modelica Environment	railway buffers	Model of the Modelica Buildings Library	Software Specifications
	Fredrik Magnusson and Johan Åkesson	Elisabeth Dumont and Werner Maurer		Uwe Pohlmann, Wilhelm Schäfer, Hendrik
			Phalak, Wangda Zuo, Michael Wetter	Reddehase,
14:50	14:50 Parallel Multiple-Shooting and Collocation	Natural Frequency Analysis of Modelica	The Indoor Climate Library and its	Functional Mock-up Interface in
	Optimization with OpenModelica	Powertrain Models	Application to Heat and Moisture Transfer	Mechatronic Gearshift Simulation for
			in a Vehicle Cabin	Commercial Vehicles
	Bernhard Bachmann, Lennart Ochel, Vitalij Garron Fish, Mike Dempsey, Juan Gabriel		Victor Norrefeldt, Daniel Andersson, Arnav	Andreas Abel, Torsten Blochwitz,
	Ruge, Mahder Gebremedhin,	Delgado and Neil Roberts	Pathak, Hubertus Thummescheit	Alexander Eichberger, Peter Hamann
15:15	15:15 Optimization Library for Interactive Multi-	Achieving O(n) Complexity for Models from Dynamic modelling of a Condenser/ Water		Using Functional Mock-up Units for
	Criteria Optimization Tasks	Modelica. Mechanics. Multibody	Heater with the ThermoSysPro Library	Nonlinear Model Predictive Control
	Andreas Pfeiffer	Christian Schubert, Jens Frenkel, Günter Kunze and Michael Beitelschmidt	Baligh El Hefni and Daniel Bouskela	Manuel Gräber, Christian Kirches, Dirk Scharff and Wilhelm Teaethoff
15:40				

Final Assembly
Library Awards

List of Posters

Kleiner Saal. Presentation on Wednesday, September 05, 11:55 - 12:55

Modeling a Low-temperature Compressed Air Energy Storage with Modelica	Modeling a Low-temperature Compressed A Toolchain for Real-Time Simulation using Modeling a Drum Motor for Illustrating Air Energy Storage with Modelica the OpenModelica Compiler Wearout Phenomena	Modeling a Drum Motor for Illustrating Wearout Phenomena	Modeling of a Falling Film Evaporator
Marcus Budt, Daniel Wolf and Roland Span Niklas Worschech and Lars Mikelsons	Niklas Worschech and Lars Mikelsons	Olaf Enge-Rosenblatt, Christian Bayer and Joachim Schnüttgen	Alberto de La Calle, Luis J. Yebra and Sebastián Dormido
Natural Unit Representation in Modelica Time Varyir Winding Mi Kevin L. Davies and Christiann J. J. Paredis Edo Drenth	Time Varying Mass and Inertia in Paper Winding Multibody Simulation Edo Drenth	"Green Building" – Modelling renewable building energy systems and electric mobility concepts using Modelica René Unger, Torsten Schwan, Beate	Integration of Modelica Models into an Existing Simulation Software using FMI for Co-Simulation Matthias Pazold, Sebastian Burhenne, Jan
		Mikoleit, Bernard Bäker,	Radon, Sebastian Herkel,
Modelica Code Generation with Polymorphic Arrays and Records Used in Wind Turbine Modeling	Collaborative Complex System Design Applied to an Aircraft System	High-Fidelity Transmission Simulation for Hardware-in-the-Loop Applications	Chemical Process Modeling in Modelica
Roland Samlaus, Peter Fritzson, Adam Zuga, Michael Strobel,	Eric Thomas, Michel Ravachol, Jean Baptiste Quincy and Martin Malmheden	Orang Vahid and Paul Goossens	Ali Baharev and Arnold Neumaier
Derivative-free Optimization of Large Scale Backward simulation - A tool for designing Dynamic Models more efficient mechatronic systems	Backward simulation - A tool for designing more efficient mechatronic systems	ADGenKinetics: An Algorithmically Differentiated Library for Biochemical Networks Modeling via	FMI Add-on for NI VeriStand for HiL Simulation
Sofia Gedda, Christian Andersson, Johan Åkesson and Stefan Diehl	Matthias Liermann	Atiyah Elsheikh	Cosimo Palma and Marco Romanoni
Stochastic Simulation and Inference using Modelica	Modelling of new vehicle suspension concept with integrated electric drive	Variable Structure Modeling for Vehicle Refrigeration Applications	Using Static Parametric Design to Support Systems Engineering of Industrial
Gregory Provan and Alberto Venturini	Jakub Tobolar, Jakob Müller and Alfred Pruckner	Imke Krüger, Alexandra Wehlhase and Gerhard Schmitz	Automation Svstems Hongchao Ji, Lars Mikelsons, Karl Kempf and Dieter Schramm
	Dynamic Modeling and Simulation of a Thermal Simulation of Power-Con Multi-effect Distillation Plant Micro-CHP Systems for Residentia Buildings Charles Parker Manuel Despended Charles Connected Distribution Charles Co	Thermal Simulation of Power-Controlled Micro-CHP Systems for Residential Buildings	
	and Alberto de La Calle	סכמסנומון סנוווופן מוומ סווא ואומוופן	

Program of the Vendor Session on Tuesday, September 4

	Stadtsaal	Kleiner Saal	Säulensaal	Seminarraum S1	Seminarraum S5
	ITI GmbH	Modelon AB	Open Source Modelica Consortium	QTronic GmbH	DeltaTheta
17:30	17:30 SimulationX	Modelica Libraries from	OpenModelica	Model-based system	DelthaTheta SDK, Vertex,
		Modelon		development with Silver and Converge	Converge
				TestWeaver	
	Alex Magdanz	Hubertus Tummescheit,	Peter Fritzson	Jakob Mauss	Peter Harman
		Daniel Andersson and John			
		Griffin			
	Dassault Systèmes	Maplesoft Europe GmbH	Wolfram	JModelica.org	Fraunhofer IWES
18:15	18:15 Dymola	MapleSim	Wolfram System Modeler	JModelica and related tools OneModelica &	OneModelica &
					OneWindStudent
	Hilding Elmqvist and Marc	Paul Goosens and	Jan Brugard	Johan Åkesson, Tove	Michael Strobel, Roland
	Frouin	Chad Schmidtke		Bergdahl and Christian	Samlaus and Adam Zuga
				Andersson	

Tutorials

The tutorials are free and take place on Monday, 14:00 - 17:45.

Tutorial 1 (Room: Fürstenfelder 2/3):

Introduction to Modeling, Simulation, and Parallel Computing with Modelica using OpenModelica

by Peter Fritzson, Olena Rogovchenko, Martin Sjölund, Mahder Gebremedhin, Kristian Stavåker, Linköping University, Sweden

The first part of the tutorial gives an introduction to the Modelica language to people who are familiar with basic programming concepts. It gives a basic introduction to the concepts of modeling and simulation, as well as the basics of object-oriented component-based modeling for the novice, and an overview of modeling and simulation in a number of application areas. The second part presents methods how multi-core computational power can be used for efficient simulation of Modelica models. This includes automatic parallelization of equation-based models, coarse grained explicit parallelization, and execution on GPUs. Depending on the attendees the two parts are presented in parallel or in subsequence. The OpenModelica environment with its graphical user interface and scripting will be used for hands-on exercises.

Tutorial 2 (Room Stadtsaal):

Mathematical Aspects of Modeling and Simulation with Modelica

by Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany

The object-oriented modeling language Modelica provides powerful features that make it possible to build up and simulate very complex even hybrid systems quite easily. But, what happens, if a Modelica tool is not capable to compile and/or correctly simulate the system of interest? Reasons can be i.e. modeling errors, wrong parameter values and/or numerical instabilities. Automatic problem detection is usually not possible and only understanding of symbolical and numerical techniques behind the scene can help resolving this issue. This tutorial provides a basic understanding on the mathematical aspects of object-oriented modeling and simulation. The different phenomena are explained in detail using simple Modelica examples, which can be thoroughly analyzed during hand-out exercises.

Tutorial 3 (Room: Kleiner Saal):

Synchronous Controllers and State Machines in Modelica 3.3

by Hilding Elmqvist, Sven Erik Mattsson, Dassault Systèmes, Sweden, and Martin Otter, Bernhard Thiele, DLR, Germany

Modelica has been extended with synchronous constructs for describing discrete-time controllers as well as state machines for sequential control and hybrid system modeling. Much focus has been given to safe constructs and intuitive and well-defined semantics. The tutorial will introduce the new concepts of Modelica 3.3 and give plenty of examples on how to use them in practice. The principles of partitioning a system model into different clocks (continuous, periodic, non-periodic, multi-rate) will be explained. Parallel and hierarchical state machines will be introduced including submodels within states. The supporting Modelica library will be described and how mapping to various hardware platforms, for hardware-in-the-loop simulation and embedded control, is performed. Hands on exercises, using Dymola, will give the participants a more detailed understanding of the power of the new features for synchronous controllers and state machines.

Tutorial 4 (Room: Seminarraum S1): **Vehicle Dynamics Library Tutorial**

by John Griffin and Johan Andreasson, Modelon AB, Sweden

This tutorial session will allow attendees to be introduced to the capabilities of Dymola and the Vehicle Dynamics Library (VDL). Attendees will have the opportunities to walk-through the library. The benefits of Modelica-based tools will be highlighted through guided, hands-on example experiments. These examples will demonstrate how Dymola/VDL can be successfully used at any phase of the vehicle design process with experiments ranging from the vehicle component to the system level.

Tutorial 5 (Room: Säulensaal):

Dynamic Optimization and FMI Simulation with JModelica.org

by Johan Åkesson and the JModelica.org team, Modelon AB, Sweden

Dynamic optimization is becoming a standard industrial technology to solve a wide range of industrial engineering problems. These include optimal control and model predictive control, model calibration and state estimation as well as design and sizing problems. In this tutorial, participants will get hands on experiences with formulating and solving engineering problems where simulation based on the FMI standard, dynamic optimization based on the Optimica extension and Python scripting are used as building blocks. During the tutorial, we will also discuss challenges and pitfalls in optimization of industrial processes, and we highlight modeling considerations for dynamic optimization. The open source platform JModelica.org is used in the tutorial.

Tutorial 6 (Room: Fürstenfelder 4):

Advanced Analysis of Modelica Models using MapleSim and Maple

by Orang Vahid, Maplesoft, Canada

Since its inception, Modelica has held the promise of letting engineers go further with physical modeling than just running simulations. With recent developments in MapleSim and Maple, users can create and document their own symbolic and numeric analyses of Modelica models in a rich problem-solving environment, in addition to performing traditional simulations.

This tutorial will guide you through the process of loading a Modelica model into Maple and then extracting the model equations into a form amenable to a wide range of analysis. Through hands-on exercises, it will provide you with basic skills in developing your own analyses in Maple, and implementing the results in MapleSim.

Examples will include control design, frequency analysis, vibration attenuation, parameter sweeps, Monte-Carlo and optimization, and sensitivity analysis. Attendees will be provided with an evaluation copy of Maple and MapleSim for use on their own Windows, Mac, or Linux computer.

Tutorial 7 (Room: Seminarraum S5):

Code-Export in SimulationX - Steps from offline model to real-time platform

by Karsten Todtermuschke, ITI Gmbh, Germany

The tutorial provides the creation of a simple powertrain model using elements from the Modelica Standard Library. Different analyzing methods like computation of natural frequencies or error estimates of state variables will be applied to ensure the real-time capability of this model.

Afterwards, a functional mock-up unit (FMU) of a selected component of the powertrain will be created for both Model Exchange and Co-Simulation via code export. This will be followed by a re-import of the generated FMU into the powertrain model.

Finally, the comparison of the created models will show the similarities and differences between Model Exchange and Co-Simulation.

Tutorial 8 (Room Seminarraum S6):

Creating new tools for Modelica using the Modelica SDK

by Peter Harmann, DeltaTheta, UK

Modelica models contain a significant resource of company intellectual property, from parameter data to the connectivity of subsystems in products. Development of Modelica libraries also creates, and requires, a lot of information such as where and how each model definition is utilised. The deltatheta Modelica SDK (Software Development Kit) maximises the use of this information by providing a complete Modelica implementation embedded in a software library. This allows developers to create their own tools and utilities that can access, query, modify, translate and simulate Modelica models.

Participants in this tutorial will learn how to use simple programming tools together with the deltatheta Modelica SDK to create powerful tools that can extract valuable information from their Modelica libraries. All software required will be provided and only basic programming experience is needed.

Exhibitors

BAUSCH-GALL GmbH

Open Modelica

Travel Information and Maps of the Venue

The conference convention center is located in the western part of Munich:

Veranstaltungsforum Fürstenfeld

Fürstenfeld 12 (for your navigation system, use "Zisterzienserweg 1") 82256 Fürstenfeldbruck

Tel.: 08141/6665-140

Arrival by plane:

- Arrival at airport <u>Franz-Josef Strauß</u> From there by taxi (about 40 minutes / 90€) or
- By rental car (car rental desks are located on the arrivals level of the terminal) or
- - Obtain a ticket at the S-Bahn Station ("Einzelfahrt 4-Zonen" 10€). The ticket is sufficient for the whole ride. An "Einzelfahrt" ticket gets automatically stamped and is then valid only at the time when you buy it. It is also possible to buy a "Einzelfahrt" ticket for a particular date (e.g. when you travel back). In this case the date has to be given at the ticket machine.
 - Take the S-Bahn S1 direction "Ostbahnhof", exit in "Laim", trains run every 20 minutes.
 - At station Laim change to S4 direction "Geltendorf (you have to change the platform).
 - Exit at S-Bahn Station Fürstenfeldbruck. A shuttle bus operates between the S4 station and the conference venue in the morning and in the evening (see next page).
 - Alternatively you can walk the 1.1 km from the S-Bahn station to the conference center.

Arrival by train:

- Arrival at Munich Central Station (Hauptbahnhof)
- Obtain a ticket at the S-Bahn Station ("Einzelfahrt 2-Zonen" 5€).
- Take the S-Bahn S4, direction Geltendorf.
- Exit at S-Bahn Station Fürstenfeldbruck. A shuttle bus operates between the S4 station and the conference venue (see next page).
- Alternatively you can walk the 1.1 km from the S-Bahn station to the conference center.

Arrival by car:

- The address: Zisterzienserweg 1, 82256 Fürstenfeldbruck should lead you directly to the parking lot.
- Free parking is available (large parking place directly at the conference location).

Shuttle Service

A free shuttle service is organized between the S4 train station and the conference venue. This is a special service just for the conference. Have a look at a bus with sign "Modelica". The bus operates in the morning and in the evening and drives from the station to the conference venue and vice versa. You have to wait for a maximum of 10-15 minutes.

Operating times:

		S4 arrival/depa	rture times
	Bus operation time	from Munich	to Munich
Monday,	13:00 – 15:00	13:07	
Sept. 3	13.00 - 13.00	13:27	
зери. з		13:47	
		14:07	
	20:00 – 22:00		
			20:51
			21:11
			21:31
		0.07	21:51
Tuesday,	8:00 - 10:00	8:07	
Sept. 4		8:27	
		8:47 9:07	
	21:30 - 23:30		 22:11
			22:31
			22:51
			23:31
Wednesday,	7:30 – 9:30	7:47	
Sept. 5		8:07	
·		8:27	
		8:47	
	14:30 – 16:30		
	14.50 10.50		15:31
			15:51
			16:11
			16:31

Useful Information

For the Conference

The registration desk is close to the door to the right side when you enter the main entrance. It is open:

Monday 13:00 - 20:00 Tuesday 8:30 - 19:00 Wednesday 8:00 - 15:00

Wireless internet is available for the conference participants in the whole conference venue. Logins and passwords can be obtained at the registration desk.

Tutorials take place on Monday 14:00 - 17:45. There is a 15 min. coffee break during every tutorial. Coffee and beverages are served directly at the respective tutorial room.

The Opening Concert takes place on Monday from 17:50 to 18:20. It is performed by the "Abo Sax" Saxophone Quartet from the "Akademische Blasorchester München", www.abo-muc.de.

Reception and dinner buffet takes place on Monday 18:20 - 21:00 in the "Tenne" ground floor. There is enough food to fill your stomach.

Coffee breaks take place in the "Tenne" ground floor. There are three breaks on Tuesday and one break on Wednesday morning.

Lunches on Tuesday and Wednesday are served as buffet on cocktail tables in the "Tenne" ground floor.

The conference dinner takes place on Tuesday 19:00 – 22:30 in the "Tenne" first floor.

For your Stay in the Munich Area

Emergency number is 112. This number will connect you to police, ambulance, or fire department. The emergency number does not require an area code and the phone call is free

German time (CEST) is in Summer (from March to October) two hours ahead of Greenwich Mean Time (UTC + 2 hours).

Supermarkets are usually open 8 a.m. - 8 p.m. on weekdays (Monday to Saturday). Shops are usually open 9.30 a.m. - 8 p.m. on weekdays (Monday to Saturday). On Sunday and public holidays supermarkets and shops are closed. However, gas stations are open on Sunday and most of them have a shop.

Prices in Germany already contain value-added tax (VAT). Additional tips in the amount of 5-10% of the bill are usual in restaurants if you are satisfied with the food.

Post offices and mailboxes are yellow and bear the label "Deutsche Post".

The **tap water** in Bavaria is safe to drink and has a good taste.

The **voltage** in Germany is 220 V, 50 Hz. Round "European" two-pin plugs and sockets are used.

Only **pharmacies** (German: "Apotheke") sell medicines. They are open Monday to Saturday, and a few are open also on Sunday (on Sunday, the door is closed and one has to ring). Opening hours are quite different. The pharmacy closest to the conference location is:

Stadt-Apotheke Hauptstr. 18 82256 Fürstenfeldbruck Mo-Fr.: 8:00 – 18:30

Sat: 8:30 – 13:00

conference area