

Weather classification & prediction

F20DL UG Group 7

Introduction

Rainfall classification

Sunshine amount prediction

Weather image classification

Analysis of chosen datasets

We chose 3 datasets. 2 tabular datasets and 1 image dataset.

MODELS EXPLORED

Regression

Explored models such as:

- Linear
- Ridge
- Lasso
- Neural Networks

Classification

Explored models such as:

- Decision Trees
- kNN
- Naïve Bayes
- Neural Networks

Clustering

Explored models such as:

- K-Means
- Gaussian Mixture Models

IMPROVED THEIR PERFORMANCE BY

Feature Engineering

Hyperparameter Tuning

Optimal Clustering

Regularization in NN to prevent overfitting

DATASET

BEST NEURAL NETWORK

BEST NON-NEURAL **NETWORK** MODEL

BEST **OVERALL** MODEL

AUSTRALIA WEATHER DATA

LONDON WEATHER DATA

WEATHER IMAGE **RECOGNITION**

Adjusted Neural Network: Accuracy: 95.67%.

Deep Neural Network: RMSE: 3.47, R²: 0.26

Accuracy: 92.67%

CatBoost:

XGBoost:

RMSE: 3.48, R²: 0.25

Deep Neural Network

Adjusted

Neural Network

Five-Layer CNN - 1: Accuracy: 94.09%

XGBoost (with PCA): Accuracy: 80.46%

Five-Layer CNN - 1

In order to verify our results we carried out 5 fold cross-validation.

Conclusions

Preprocessing, feature engineering, and experimentation were crucial.

Neural Networks excel at handling complex patterns.

Ensemble methods like CatBoost and XGBoost provided competitive alternatives.

Advanced ML techniques significantly improve weather-related predictions and classification tasks.

