

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

ОТЧЁТ

по дисциплине:

«Методы оптимизации»

на тему:

«Решение задачи дискретной оптимизации методом Гомори. Задание 11»

Направление: 01.03.02

Обучающийся: Бронников Егор Игоревич

Группа: ПМ-1901

Санкт-Петербург 2021

Испорченная задача №4

Целевая функция:

$$f = 4x_1 + x_2 \longrightarrow max$$

Ограничения:

$$\begin{cases} 3x_1 - 2x_2 \ge -8 \\ 3x_1 + x_2 \ge 3 \\ 5x_2 \le 8 \\ 3x_1 \le 4 \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

Каноническая форма

1. Вводим слабые переменные $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0, y_4 \ge 0$:

$$3x_1 - 2x_2 - y_1 = -8$$

$$3x_1 + x_2 - y_2 = 3$$

$$5x_2 + y_3 = 8$$

$$3x_1 + y_4 = 4$$

2. Делаем правые части равенств положительными:

$$-3x_1 + 2x_2 + y_1 = 8$$

$$3x_1 + x_2 - y_2 = 3$$

$$5x_2 + y_3 = 8$$

$$3x_1 + y_4 = 4$$

$$x_1 \ge 0, x_2 \ge 0$$

Таким образом, задача сведена к канонической форме.

Отсюда получается:

$$y_1 = 8 + 3x_1 - 2x_2$$

$$y_2 = -3 + 3x_1 + x_2$$

$$y_3 = 8 - 5x_2$$

$$y_4 = 4 - 3x_1$$

Базисное решение:

$$y_1 = 8, y_2 = -3, y_3 = 8, y_4 = 4,$$

 $x_1 = 0, x_2 = 0$

которое не удовлетворяет естественным ограничениям:

$$y_i \ge 0 \ \forall i = \overline{1,4}$$

и поэтому оно не является допустимым.

Двойственный симлекс-метод

1 итерация

Базисные переменные: y_1, y_2, y_3, y_4 . Свободные переменный: x_1, x_2 .

БП	x_1	x_2	y_1	y_2	y_3	y_4	СЧ
f	-4 -3	<u>-1</u> -1	0 0	0 1	0 0	0 0	0 -3
y_1	-3 6	2 2	1 0	0 -2	0 0	0 0	8 6
y_2	-3 <u>3</u>	-1 1	0 0	1 -1	0 0	0 0	-3 <u>3</u>
y_3	0 15	<u>5</u> 5	0 0	0 -5	1 0	0 0	8 15
y_4	3 0	0 0	0 0	0 0	0 0	1 0	4 0
	$\frac{4}{3}$	1					

Меняем свободную переменную x_2 и базисную переменную y_2 местами.

$$x_2 \leftrightarrow y_2$$

2 итерация

Базисные переменные: x_2, y_1, y_3, y_4 . Свободные переменный: x_1, y_2 .

БП	x_1	x_2	y_1	y_2	y_3	y_4	СЧ
f	<u>-1</u> -1	0 0	0 0	$-1 \frac{1}{3}$	$0_{\frac{1}{15}}$	0 0	$3 - \frac{7}{15}$
y_1	<u>-9</u> -9	0 0	1 0	2 3	$0 \frac{3}{5}$	0 0	$2 - \frac{21}{5}$
x_2	<u>3</u> 3	1 0	0 0	-1 -1	$0 - \frac{1}{5}$	0 0	$\frac{3}{5}$
y_3	-15 1	0 0	0 0	$5_{-\frac{1}{3}}$	$1_{-\frac{1}{15}}$	0 0	$-7\frac{7}{15}$
y_4	<u>3</u> 3	0 0	0 0	0 -1	$0 - \frac{1}{5}$	1 0	$4\frac{7}{5}$
	$\begin{bmatrix} rac{1}{15} & & & & & & & & & & & & & & & & & & &$						

Меняем свободную переменную x_1 и базисную переменную y_3 местами.

 $x_1 \leftrightarrow y_3$

3 итерация

Базисные переменные: x_1, x_2, y_1, y_4 .

Свободные переменный: y_2, y_3 .

БП	x_1	x_2	y_1	y_2	y_3	y_4	СЧ	
$\int f$	0 0	0 0	0 0	$-\frac{4}{3}$ $-\frac{4}{3}$	$-\frac{1}{15}$ $-\frac{4}{15}$	$0 - \frac{4}{3}$	$\frac{52}{15}$ $-\frac{51}{12}$	
y_1	0 0	0 0	1 0	-1 -1	$-\frac{3}{5}$ $-\frac{1}{5}$	0 -1	$\frac{31}{5} - \frac{13}{5}$	
x_2	0 0	1 0	0 0	0 0	$\frac{1}{5} 0$	0 0	$\frac{8}{5}$ 0	
x_1	1 0	0 0	0 0	$-\frac{1}{3}$ $-\frac{1}{3}$	$-\frac{1}{15}$ $-\frac{1}{15}$	$0 - \frac{1}{5}$	$\frac{7}{15}$ $-\frac{13}{15}$	
y_4	0 0	0 0	0 0	1 1	$\frac{1}{5}$ $\frac{1}{\underline{5}}$	1 <u>1</u>	$\frac{13}{5} \frac{13}{5}$	$\frac{13}{5}$

Меняем свободную переменную y_2 и базисную переменную y_4 местами.

 $y_2 \leftrightarrow y_4$

Результат вычислений

Базисные переменные: x_1, x_2, y_1, y_2 .

Свободные переменный: y_3, y_4 .

БП	x_1	x_2	y_1	y_2	y_3	y_4	СЧ
f	0	0	0	0	$\frac{1}{5}$	$\frac{4}{3}$	$6\frac{14}{15}$
y_1	0	0	1	0	$-\frac{2}{5}$	1	$8\frac{4}{5}$
x_2	0	1	0	0	$\frac{1}{5}$	0	$1\frac{3}{5}$
x_1	1	0	0	0	0	$\frac{1}{3}$	$1\frac{1}{3}$
y_2	0	0	0	0	$\frac{1}{5}$	$\frac{4}{3}$	$2\frac{3}{5}$

Мы получили начальное нецелочисленное решение:

$$f = 6\frac{14}{15}$$

$$x_1 = 1\frac{1}{3}, x_2 = 1\frac{3}{5}$$

$$y_1 = 8\frac{4}{5}, y_2 = 2\frac{3}{5}, y_3 = 0, y_4 = 0$$

Метод Гомори

1 итерация

Наибольшая дробная часть соответствует переменной $\{x_2\} = \frac{3}{5}$, составим соответствующее дополнительное ограничение. Третья строка записывается следующим образом:

$$x_2 + \frac{1}{5}y_3 = 1\frac{3}{5}$$
 \Rightarrow $x_2 = 1\frac{3}{5} - \frac{1}{5}y_3$
 $\frac{3}{5} - \frac{1}{5}y_3 \le 0$ \Rightarrow $-y_3 \le -3$

Введём слабую переменную y_5 :

$$-y_3 + y_5 = -3$$

Решим задачу двойственным симлекс-методом с дополнительным ограничением и возьмём переменную y_5 в качестве базисной переменной.

Двойственный симплекс-метод

Базисные переменные: x_1, x_2, y_1, y_2, y_5 .

Свободные переменный: y_3, y_4 .

БП	x_1	x_2	y_1	y_2	y_3	y_4	y_5	СЧ
f	0 0	0 0	0 0	0 0	$\frac{1}{5}$ $\frac{1}{5}$	$\frac{4}{3}$ 0	$0 - \frac{1}{5}$	$\frac{104}{15} \frac{3}{5}$
y_1	0 0	0 0	1 0	0 0	$-\frac{2}{5}$ $-\frac{2}{5}$	1 0	$0_{\frac{2}{5}}$	$\frac{44}{5}$ $-\frac{6}{5}$
x_2	0 0	1 0	0 0	0 0	$\frac{1}{5}$ $\frac{1}{5}$	0 0	$0 - \frac{1}{5}$	$\frac{8}{5} \frac{3}{5}$
x_1	1 0	0 0	0 0	0 0	<u>0</u> 0	$\frac{1}{3} 0$	0 0	$\frac{4}{3}$ 0
y_2	0 0	0 0	0 0	0 0	$\frac{1}{5}$ $\frac{1}{5}$	$\frac{4}{3}$ 0	$0 - \frac{1}{5}$	$\frac{13}{5} \frac{3}{5}$
y_5	0 0	0 0	0 0	0 0	-1 1	0 0	1 <u>-1</u>	-3 <u>3</u>
					$\frac{1}{5}$			

Меняем свободную переменную y_3 и базисную переменную y_5 местами.

 $y_3 \leftrightarrow y_5$

Результат вычислений

Базисные переменные: x_1, x_2, y_1, y_2, y_3 .

Свободные переменный: y_4, y_5 .

БП	x_1	x_2	y_1	y_2	y_3	y_4	y_5	СЧ
f	0	0	0	0	0	$\frac{4}{3}$	$\frac{1}{5}$	$\frac{19}{3}$
y_1	0	0	1	0	0	1	$-\frac{2}{5}$	10
x_2	0	1	0	0	0	0	$\frac{1}{5}$	1
x_1	1	0	0	0	0	$\frac{1}{3}$	0	$\frac{4}{3}$
y_2	0	0	0	0	0	$\frac{4}{3}$	$\frac{1}{5}$	2
y_3	0	0	0	0	1	0	-1	3

2 итерация

Наибольшая дробная часть соответствует переменной $\{x_1\} = \frac{1}{3}$, составим соответствующее дополнительное ограничение. Четвёртая строка записывается следующим образом:

$$x_1 + \frac{1}{3}y_4 = 1\frac{1}{3}$$
 \Rightarrow $x_1 = 1\frac{1}{3} - \frac{1}{3}y_4$
 $\frac{1}{3} - \frac{1}{3}y_4 \le 0$ \Rightarrow $-y_4 \le -1$

Введём слабую переменную y_6 :

$$-y_4 + y_6 = -1$$

Решим задачу двойственным симлекс-методом с дополнительным ограничением и возьмём переменную y_6 в качестве базисной переменной.

Двойственный симплекс-метод

Базисные переменные: $x_1, x_2, y_1, y_2, y_3, y_6$.

Свободные переменный: y_4, y_5 .

БП	x_1	x_2	y_1	y_2	y_3	y_4	y_5	y_6	СЧ
f	0 0	0 0	0 0	0 0	0 0	$\frac{4}{3}$ $\frac{4}{3}$	$\frac{1}{5}$ 0	$0 - \frac{4}{3}$	$\frac{19}{3} \frac{4}{3}$
y_1	0 0	0 0	1 0	0 0	0 0	<u>1</u> 1	$-\frac{2}{5} 0$	0 -1	10 1
x_2	0 0	1 0	0 0	0 0	0 0	0 0	$\frac{1}{5} \ 0$	0 0	1 0
x_1	1 0	0 0	0 0	0 0	0 0	$\frac{1}{3}$ $\frac{1}{3}$	0 0	$0 - \frac{1}{3}$	$\frac{4}{3} \frac{1}{3}$
y_2	0 0	0 0	0 0	0 0	0 0	$\frac{4}{3}$ $\frac{4}{3}$	$\frac{1}{5}$ 0	$0 - \frac{4}{3}$	$\frac{2}{3}$
y_3	0 0	0 0	0 0	0 0	1 0	0 0	-1 0	0 0	3 0
y_6	0 0	0 0	0 0	0 0	0 0	-1 1	0 0	1 <u>-1</u>	-1 <u>1</u>
						$\frac{4}{3}$			

Меняем свободную переменную y_4 и базисную переменную y_6 местами.

$$y_4 \leftrightarrow y_6$$

Результат вычислений

Базисные переменные: $x_1, x_2, y_1, y_2, y_3, y_4$.

Свободные переменный: y_5, y_6 .

БП	x_1	x_2	y_1	y_2	y_3	y_4	y_5	y_6	СЧ
f	0	0	0	0	0	0	$\frac{1}{5}$	$\frac{4}{3}$	5
y_1	0	0	1	0	0	0	$-\frac{2}{5}$	1	9
x_2	0	1	0	0	0	0	$\frac{1}{5}$	0	1
x_1	1	0	0	0	0	0	0	$\frac{1}{3}$	1
y_2	0	0	0	0	0	0	$\frac{1}{5}$	$\frac{4}{3}$	$\frac{2}{3}$
y_3	0	0	0	0	1	0	-1	0	3
y_4	0	0	0	0	0	1	0	-1	1

Таким образом, мы получили целочисленное решение:

$$f = 5, x_1 = 1, x_2 = 1$$

Ответ: $f = 5, x_1 = 1, x_2 = 1.$