Adidas Sales Forecast.R

DELL

Fri Dec 07 14:06:29 2018

```
#Loading the dataset
library(ggplot2)
library(readr)
library(fpp)
## Loading required package: forecast
## Loading required package: fma
## Loading required package: expsmooth
## Loading required package: lmtest
## Loading required package: zoo
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: tseries
library(fpp2)
## Attaching package: 'fpp2'
## The following objects are masked from 'package:fpp':
##
##
       ausair, ausbeer, austa, austourists, debitcards, departures,
       elecequip, euretail, guinearice, oil, sunspotarea, usmelec
##
#reading data from csv file
data = read.csv("C:/Users/DELL/Downloads/adidas_revenue1.csv")
data
```

##		date	Revenue	US.GDP	Europe.GDP	CHN.GDP.US	Price.Index	NIKE
##	1	2000Q1	1517	12359.09	1728.244	257.6491	246.5	2161.6
##	2	2000Q2	1248	12592.53	1749.600	290.4375	326.4	2272.7
##	3	2000Q3	1677	12607.68	1769.259	310.5510	322.5	2636.7
##	4	2000Q4	1393	12679.34	1789.253	352.6953	321.0	2198.7
##	5	2001Q1	1558	12643.28	1819.140	290.9745	329.4	2170.1
##	6	2001Q2	1368	12710.30	1833.713	322.9186	329.8	2483.3
##	7	2001Q3	1790	12670.11	1845.879	342.3183	313.3	2613.7
##	8	2001Q4	1396	12705.27	1861.936	383.2037	302.1	2336.8
##	9	2002Q1	1638	12822.26	1878.783	317.6722	296.5	2260.3
##	10	2002Q2	1507	12893.00	1893.801	352.7202	301.0	2682.2
##	11	2002Q3	1868	12955.77	1914.837	377.6277	298.9	2796.3
##	12	2002Q4	1510	12964.02	1927.341	422.4808	292.2	2514.7
##	13	2003Q1	1669	13031.17	1933.872	360.3185	294.0	2400.9
##	14	2003Q2	1392	13152.09	1943.995	393.0824	296.3	2985.1
##	15	2003Q3	1853	13372.36	1969.849	426.3864	300.7	3024.9
##	16	2003Q4	1353	13528.71	1988.492	480.4693	309.2	2837.1
##	17	2004Q1	1623	13606.51	2010.120	417.3614	327.1	2904.0
##	18	2004Q2	1401	13706.25	2031.765	467.5954	333.0	3487.1
##	19	2004Q3	1758	13830.83	2046.182	505.7028	332.7	3561.8
##	20	2004Q4	1078	13950.38	2065.015	564.7315	321.3	3148.3
##	21	2005Q1	1674	14099.08	2076.923	488.7694	310.3	3308.2
##	22	2005Q2	1516	14172.69	2101.559	541.2070	311.3	3721.4
		2005Q3	1924	14291.76	2124.553	593.7716	304.9	3862.0
		2005Q4		14373.44	2153.840	669.4382	297.6	3474.7
		2006Q1		14546.12	2179.109	587.2396		3612.8
		2006Q2	2428	14589.58	2214.849	658.7748		4005.4
		2006Q3	2949	14602.63	2240.239			4194.1
##	28	2006Q4	2248	14716.93	2275.903	814.7579	297.4	3821.7
		2007Q1		14726.02	2314.019			3926.9
##	30	2007Q2	2400	14838.66	2338.311	851.0275	301.4	4383.2
##	31	2007Q3	2941	14938.47	2362.323	925.6537		4655.1
		2007Q4	2420	14991.78	2392.426	1077.6908	310.7	4339.5
		2008Q1	2621	14889.45	2416.113			4544.4
		2008Q2		14963.36	2419.735			5088.0
		2008Q3		14891.64	2411.679	1210.5950	335.8	5432.2
		2008Q4		14576.99	2382.319			4590.1
		2009Q1		14375.02	2317.899	1083.2955		4440.8
		2009Q2	2457	14355.56	2310.312			4713.0
		2009Q3	2888	14402.48	2320.823	1318.1139	326.8	4798.5
##	40	2009Q4	2458	14541.90	2339.329	1479.6432	332.5	4405.6
##	41	2010Q1	2674	14604.84	2349.078	1283.5211	338.0	4733.0
##	42	2010Q2	2917	14745.93	2377.207	1465.6673	347.7	5076.9
##	43	2010Q3	3468	14845.46	2396.736	1585.3964	354.0	5175.0
##	44	2010Q4	2931	14939.00	2415.849	1806.4896	431.9	4842.0
		2011Q1		14881.30	2439.892	1596.0131		5079.0
		2011Q2		14989.56	2445.959			5766.0
		2011Q3		15021.15	2454.501			6081.0
		2011Q4		15190.25	2455.081			5546.0
		2012Q1		15291.03	2459.268	1868.2618		5656.0
		2012Q2		15362.42	2457.575			6236.0
		2012Q3		15380.80	2461.767			6474.0
		2012Q4		15384.25	2459.338			5955.0
		·						

```
## 53 2013Q1
                3751 15491.88
                                2462.191
                                          2067.9449
                                                          370.9 6187.0
## 54 2013Q2
                3383 15521.56
                                2480.438 2330.3550
                                                          389.3 6697.0
## 55 2013Q3
                3879 15641.34
                                2492.943
                                          2487.0690
                                                          387.0 6971.0
## 56 2013Q4
                3391 15793.93
                                2503.542 2763.2571
                                                          378.1 6431.0
## 57 201401
                3480 15757.57
                                2523.399
                                          2285.6911
                                                          382.6 6972.0
## 58 2014Q2
                                                          390.0 7425.0
                3400 15935.83
                                2528.024 2542.9235
## 59 2014Q3
                4044 16139.51
                                2545.888
                                                          380.3 7982.0
                                          2693.4092
## 60 2014Q4
                3610 16220.22
                                2567.073 2960.9904
                                                          360.6 7380.0
## 61 2015Q1
                4083 16349.97
                                2600.116 2458.1909
                                                          336.7 7460.0
## 62 2015Q2
                3907 16460.89
                                2616.887 2756.1993
                                                          333.2 7779.0
## 63 2015Q3
                4758 16527.59
                                2637.050 2777.8913
                                                          333.5 8414.0
## 64 2015Q4
                4167 16547.62
                                2656.240 2970.8388
                                                          331.3 7686.0
## 65 2016Q1
                4769 16571.57
                                2672.910 2498.3069
                                                          329.4 8032.0
## 66 201602
                4199 16663.52
                                2683.968
                                          2720.2047
                                                          324.1 8244.0
## 67 2016Q3
                5413 16778.15
                                2699.526 2856.3504
                                                          322.4 9061.0
## 68 2016Q4
                4687 16851.42
                                2725.422 3040.1019
                                                          325.4 8180.0
## 69 2017Q1
                5671 16903.24
                                2745.103 2622.0142
                                                          344.6 8432.0
```

```
#converting into time series data
data<-ts(data, start=c(2000,1), end=c(2017,1), frequency = 4)
data</pre>
```

##			date	Revenue	US.GDP	Europe.GDP	CHN.GDP.US	Price.Index	NIKE
##	2000	Q1	1	1517	12359.09	1728.244	257.6491	246.5	2161.6
##	2000	Q2	2	1248	12592.53	1749.600	290.4375	326.4	2272.7
##	2000	Q3	3	1677	12607.68	1769.259	310.5510	322.5	2636.7
##	2000	Q4	4	1393	12679.34	1789.253	352.6953	321.0	2198.7
##	2001	Q1	5	1558	12643.28	1819.140	290.9745	329.4	2170.1
##	2001	Q2	6	1368	12710.30	1833.713	322.9186	329.8	2483.3
##	2001	Q3	7	1790	12670.11	1845.879	342.3183	313.3	2613.7
##	2001	Q4	8	1396	12705.27	1861.936	383.2037	302.1	2336.8
##	2002	Q1	9	1638	12822.26	1878.783	317.6722	296.5	2260.3
##	2002	Q2	10	1507	12893.00	1893.801	352.7202	301.0	2682.2
##	2002	Q3	11	1868	12955.77	1914.837	377.6277	298.9	2796.3
##	2002	Q4	12	1510	12964.02	1927.341	422.4808	292.2	2514.7
##	2003	Q1	13	1669	13031.17	1933.872	360.3185	294.0	2400.9
##	2003	Q2	14	1392	13152.09	1943.995	393.0824	296.3	2985.1
##	2003	Q3	15	1853	13372.36	1969.849	426.3864	300.7	3024.9
##	2003	Q4	16	1353	13528.71	1988.492	480.4693	309.2	2837.1
##	2004	Q1	17	1623	13606.51	2010.120	417.3614	327.1	2904.0
##	2004	Q2	18	1401	13706.25	2031.765	467.5954	333.0	3487.1
##	2004	Q3	19	1758	13830.83	2046.182	505.7028	332.7	3561.8
##	2004	Q4	20	1078	13950.38	2065.015	564.7315	321.3	3148.3
##	2005	Q1	21	1674	14099.08	2076.923	488.7694	310.3	3308.2
##	2005	Q2	22	1516	14172.69	2101.559	541.2070	311.3	3721.4
##	2005	Q3	23	1924	14291.76	2124.553	593.7716	304.9	3862.0
##	2005	Q4	24	1522	14373.44	2153.840	669.4382	297.6	3474.7
##	2006	Q1	25	2459	14546.12	2179.109	587.2396	292.9	3612.8
##	2006	Q2	26	2428	14589.58	2214.849	658.7748	295.3	4005.4
##	2006	Q3	27	2949	14602.63	2240.239	708.9029	295.9	4194.1
##	2006	Q4	28	2248	14716.93	2275.903	814.7579	297.4	3821.7
##	2007	Q1	29	2538	14726.02	2314.019	739.2749	299.8	3926.9
##	2007	Q2	30	2400	14838.66	2338.311	851.0275	301.4	4383.2
##	2007	Q3	31	2941	14938.47	2362.323	925.6537	305.6	4655.1
##	2007	Q4	32	2420	14991.78	2392.426	1077.6908	310.7	4339.5
##	2008	Q1	33	2621	14889.45	2416.113	988.8873	322.3	4544.4
##	2008	Q2	34	2521	14963.36	2419.735	1148.3868	334.9	5088.0
##	2008	Q3	35	3083	14891.64	2411.679	1210.5950	335.8	5432.2
##	2008	Q4	36	2574	14576.99	2382.319	1299.1836	332.0	4590.1
##	2009	Q1	37	2577	14375.02	2317.899	1083.2955	323.0	4440.8
##	2009	Q2	38	2457	14355.56	2310.312	1229.2481	320.8	4713.0
##	2009	Q3	39	2888	14402.48	2320.823	1318.1139	326.8	4798.5
##	2009	Q4	40	2458	14541.90	2339.329	1479.6432	332.5	4405.6
##	2010	Q1	41	2674	14604.84	2349.078	1283.5211	338.0	4733.0
##	2010	Q2	42	2917	14745.93	2377.207	1465.6673	347.7	5076.9
##	2010	Q3	43	3468	14845.46	2396.736	1585.3964	354.0	5175.0
##	2010	Q4	44	2931	14939.00	2415.849	1806.4896	431.9	4842.0
##	2011	Q1	45	3273	14881.30	2439.892	1596.0131	567.3	5079.0
##	2011	Q2	46	3064	14989.56	2445.959	1841.4921	655.8	5766.0
##	2011	Q3	47	3744	15021.15	2454.501	1998.1746	576.6	6081.0
##	2011	Q4	48	3241	15190.25	2455.081	2198.1463	505.5	5546.0
##	2012	Q1	49	3824	15291.03	2459.268	1868.2618	431.7	5656.0
##	2012	Q2	50	3517	15362.42	2457.575	2081.9618	410.7	6236.0
##	2012	Q3	51	4173	15380.80	2461.767	2186.1221	379.0	6474.0
##	2012	Q4	52	3369	15384.25	2459.338	2424.1446	369.2	5955.0

```
2462.191
## 2013 Q1
             53
                   3751 15491.88
                                              2067.9449
                                                              370.9 6187.0
## 2013 Q2
             54
                   3383 15521.56
                                    2480.438
                                             2330.3550
                                                              389.3 6697.0
## 2013 03
             55
                   3879 15641.34
                                    2492.943
                                              2487.0690
                                                              387.0 6971.0
## 2013 Q4
             56
                   3391 15793.93
                                    2503.542 2763.2571
                                                              378.1 6431.0
## 2014 01
             57
                   3480 15757.57
                                    2523.399
                                              2285.6911
                                                              382.6 6972.0
                   3400 15935.83
                                    2528.024 2542.9235
                                                              390.0 7425.0
## 2014 02
             58
## 2014 Q3
             59
                   4044 16139.51
                                                              380.3 7982.0
                                    2545.888
                                              2693.4092
## 2014 Q4
             60
                   3610 16220.22
                                    2567.073 2960.9904
                                                              360.6 7380.0
## 2015 Q1
                   4083 16349.97
                                    2600.116 2458.1909
                                                              336.7 7460.0
             61
## 2015 Q2
                   3907 16460.89
                                    2616.887
                                             2756.1993
                                                              333.2 7779.0
             62
## 2015 Q3
                                    2637.050 2777.8913
             63
                   4758 16527.59
                                                              333.5 8414.0
## 2015 04
             64
                   4167 16547.62
                                    2656.240
                                                              331.3 7686.0
                                             2970.8388
## 2016 Q1
             65
                   4769 16571.57
                                    2672.910 2498.3069
                                                              329.4 8032.0
## 2016 02
             66
                   4199 16663.52
                                    2683.968
                                              2720.2047
                                                              324.1 8244.0
## 2016 Q3
             67
                   5413 16778.15
                                    2699.526 2856.3504
                                                              322.4 9061.0
                                                              325.4 8180.0
## 2016 04
                   4687 16851.42
                                    2725.422 3040.1019
             68
## 2017 Q1
                   5671 16903.24
                                    2745.103 2622.0142
             69
                                                              344.6 8432.0
```

```
#extracting sales data
y=data[,2]
y
```

```
##
        Qtr1 Qtr2 Qtr3 Qtr4
## 2000 1517 1248 1677 1393
## 2001 1558 1368 1790 1396
## 2002 1638 1507 1868 1510
## 2003 1669 1392 1853 1353
## 2004 1623 1401 1758 1078
## 2005 1674 1516 1924 1522
## 2006 2459 2428 2949 2248
## 2007 2538 2400 2941 2420
## 2008 2621 2521 3083 2574
## 2009 2577 2457 2888 2458
## 2010 2674 2917 3468 2931
## 2011 3273 3064 3744 3241
## 2012 3824 3517 4173 3369
## 2013 3751 3383 3879 3391
## 2014 3480 3400 4044 3610
## 2015 4083 3907 4758 4167
## 2016 4769 4199 5413 4687
## 2017 5671
```

```
#Set training dataset and testing dataset
train_data = window(y,start=c(2000,1), end=c(2013,4))
test_data = window(y,start=2014)
train_data
```

```
##
        Qtr1 Qtr2 Qtr3 Qtr4
## 2000 1517 1248 1677 1393
## 2001 1558 1368 1790 1396
## 2002 1638 1507 1868 1510
## 2003 1669 1392 1853 1353
## 2004 1623 1401 1758 1078
## 2005 1674 1516 1924 1522
## 2006 2459 2428 2949 2248
## 2007 2538 2400 2941 2420
## 2008 2621 2521 3083 2574
## 2009 2577 2457 2888 2458
## 2010 2674 2917 3468 2931
## 2011 3273 3064 3744 3241
## 2012 3824 3517 4173 3369
## 2013 3751 3383 3879 3391
```

test_data

```
## Qtr1 Qtr2 Qtr3 Qtr4

## 2014 3480 3400 4044 3610

## 2015 4083 3907 4758 4167

## 2016 4769 4199 5413 4687

## 2017 5671
```

```
#plot raw dataset
plot(y,main="Adidas Quarterly Sales", lwd=3)
```

Adidas Quarterly Sales

plot(y,main="Adidas Revenue", xlab="year", ylab="\$millions", lwd=3)
lines(ma(y,9),col="orange",lwd=4)

Adidas Revenue

Seasonal plot: Adidas sales

Seasonal plot: Adidas sales

#Autocorrelation
Acf(y, lwd=5, main="Adidas Quarterly Sales")

Adidas Quarterly Sales

#Looking at the raw dataset, ADIDAS sales have a strong seasonal and increasing trend #pattern. Out of four quarters, the third quarter generally has better performance. #It also has a strong correlation with its lagged data.

Forecasts for quarterly


```
#Linear Trend model
reg <- tslm(train_data ~ trend)
fit.tslm=forecast(reg, h=h,level=c(80,95))
summary(fit.tslm)</pre>
```

```
##
## Forecast method: Linear regression model
##
## Model Information:
##
## Call:
## tslm(formula = train_data ~ trend)
##
## Coefficients:
##
  (Intercept)
                      trend
       1040.73
                      47.06
##
##
##
## Error measures:
##
                                 RMSE
                                           MAE
                                                      MPE
                                                              MAPE
                                                                       MASE
                          ME
## Training set -4.05727e-15 330.5585 264.7163 -2.184255 13.04242 1.158009
##
                     ACF1
## Training set 0.1474735
##
## Forecasts:
##
                                      Hi 80
           Point Forecast
                             Lo 80
                                                Lo 95
                                                         Hi 95
## 2014 01
                 3723.344 3270.858 4175.829 3024.130 4422.557
## 2014 Q2
                 3770.407 3317.087 4223.727 3069.903 4470.910
## 2014 Q3
                 3817.470 3363.288 4271.652 3115.635 4519.306
## 2014 Q4
                 3864.534 3409.463 4319.605 3161.324 4567.743
## 2015 Q1
                 3911.597 3455.610 4367.584 3206.973 4616.222
## 2015 Q2
                 3958.661 3501.731 4415.590 3252.579 4664.742
```

```
plot(fit.tslm, ylab="Adidas Quarterly Sales",
        xlab="t")
lines(fitted(reg),col="blue")
lines(y)
```

Forecasts from Linear regression model


```
#trend & seasonal
ts <- tslm(train_data ~ trend + season)
fit.lmts = forecast(ts, h=h)
plot(fit.lmts)
lines(y)</pre>
```

Forecasts from Linear regression model

#STL Decomposition
y.stl <- stl(train_data, t.window=15, s.window="periodic", robust=TRUE)
plot(y.stl)</pre>


```
#STL Forecasting
fit.stl <- forecast(y.stl, method="rwdrift", h=h)
summary(fit.stl)</pre>
```

```
##
## Forecast method: STL + Random walk with drift
##
## Model Information:
## Call: rwf(y = x, h = h, drift = TRUE, level = level)
##
## Drift: 38.3479 (se 22.7383)
## Residual sd: 170.1858
##
## Error measures:
##
                                  RMSE
                           ME
                                            MAE
                                                       MPE
                                                               MAPE
                                                                         MASE
## Training set -7.974611e-12 168.6314 116.8932 -0.5536722 5.136756 0.5113525
##
                      ACF1
## Training set -0.1616575
##
## Forecasts:
##
           Point Forecast
                             Lo 80
                                      Hi 80
                                               Lo 95
                                                        Hi 95
## 2014 Q1
                3664.484 3444.444 3884.524 3327.962 4001.006
## 2014 Q2
                 3496.375 3182.475 3810.276 3016.306 3976.445
## 2014 Q3
                3960.785 3573.038 4348.531 3367.777 4553.792
## 2014 Q4
                3544.392 3092.883 3995.900 2853.869 4234.915
## 2015 Q1
                3817.876 3308.885 4326.866 3039.442 4596.309
## 2015 Q2
                3649.767 3087.646 4211.888 2790.077 4509.457
```

```
plot(fit.stl)
lines(y)
```

Forecasts from STL + Random walk with drift

#SIMPLE EXPONENTIAL SMOOTHING
fit.expo <- ses(train_data, h = 3)
summary(fit.expo)</pre>

```
##
## Forecast method: Simple exponential smoothing
##
## Model Information:
## Simple exponential smoothing
##
## Call:
##
    ses(y = train_data, h = 3)
##
##
     Smoothing parameters:
       alpha = 0.426
##
##
##
     Initial states:
##
       1 = 1465.8592
##
##
     sigma: 338.6906
##
##
        AIC
                AICc
                          BIC
## 881.7929 882.2544 887.8689
##
## Error measures:
##
                      ME
                             RMSE
                                       MAE
                                                 MPE
                                                         MAPE
                                                                  MASE
## Training set 87.89642 332.5876 267.6454 1.968379 11.80674 1.170822
##
                      ACF1
## Training set -0.3854825
##
## Forecasts:
##
           Point Forecast
                             Lo 80
                                      Hi 80
                                                Lo 95
                                                         Hi 95
## 2014 Q1
                 3562.769 3128.719 3996.818 2898.947 4226.590
## 2014 Q2
                 3562.769 3090.974 4034.564 2841.220 4284.317
## 2014 Q3
                 3562.769 3056.032 4069.505 2787.782 4337.756
```

```
plot(fit.expo)
lines(y)
```

Forecasts from Simple exponential smoothing

#HOLT-WINTERS LINEAR
fit.hlinear <- holt(train_data, h=3)
summary(fit.hlinear)</pre>

```
##
## Forecast method: Holt's method
##
## Model Information:
## Holt's method
##
## Call:
##
   holt(y = train_data, h = 3)
##
##
    Smoothing parameters:
      alpha = 0.3108
##
      beta = 1e-04
##
##
##
    Initial states:
##
      1 = 1423.3542
##
      b = 40.7112
##
##
    sigma: 328.1225
##
##
        AIC
                AICc
                          BIC
## 880.1290 881.3290 890.2558
##
## Error measures:
##
                              RMSE
                                        MAE
                                                  MPE
                                                          MAPE
                                                                    MASE
                       ME
## Training set -1.989548 316.1868 258.6053 -2.498491 11.88473 1.131276
##
                      ACF1
## Training set -0.2567311
##
## Forecasts:
           Point Forecast
                            Lo 80
                                      Hi 80
##
                                               Lo 95
                                                        Hi 95
## 2014 Q1
                3705.698 3285.193 4126.204 3062.590 4348.807
## 2014 Q2
                3746.399 3306.039 4186.758 3072.927 4419.870
## 2014 Q3
                 3787.099 3327.732 4246.466 3084.557 4489.640
```

```
plot(fit.hlinear, main = "Holt's Linear Trend")
lines(y)
```

Holt's Linear Trend

Forecasts from Holt-Winters' additive method


```
#ARIMA
y.diff1 = diff(train_data, differences = 1)
adf.test(y.diff1, alternative = "stationary")
```

```
##
## Augmented Dickey-Fuller Test
##
## data: y.diff1
## Dickey-Fuller = -2.4882, Lag order = 3, p-value = 0.3778
## alternative hypothesis: stationary
```

```
plot(y.diff1)
```



```
y.diff2 = diff(train_data, differences = 2)
adf.test(y.diff2, alternative = "stationary")
```

```
## Warning in adf.test(y.diff2, alternative = "stationary"): p-value smaller
## than printed p-value
```

```
##
## Augmented Dickey-Fuller Test
##
## data: y.diff2
## Dickey-Fuller = -5.1456, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
```

```
plot(y.diff2)
```


Acf(train_data)

Series train_data

Pacf(train_data)

Series train_data


```
#Auto ARIMA
y.arima <- auto.arima(train_data)
fit.arima <- forecast(y.arima, h=h)
summary(fit.arima)</pre>
```

```
##
## Forecast method: ARIMA(3,0,0)(0,1,0)[4] with drift
##
## Model Information:
## Series: train data
## ARIMA(3,0,0)(0,1,0)[4] with drift
##
## Coefficients:
##
                                     drift
            ar1
                     ar2
                              ar3
         0.9518 -0.0746 -0.2485 42.2554
##
## s.e. 0.1348
                  0.1953
                           0.1367 15.2852
##
## sigma^2 estimated as 29069: log likelihood=-339.59
## AIC=689.18
                AICc=690.49
                              BIC=698.94
##
## Error measures:
##
                             RMSE
                                       MAE
                                                  MPE
                                                          MAPE
                                                                     MASE
                      ME
## Training set 1.006213 157.8494 123.0373 -0.5617156 5.473664 0.5382301
##
                      ACF1
## Training set 0.02318496
##
## Forecasts:
##
           Point Forecast
                             Lo 80
                                      Hi 80
                                               Lo 95
                                                        Hi 95
## 2014 Q1
                 3889.926 3671.426 4108.427 3555.759 4224.094
## 2014 Q2
                 3649.406 3347.757 3951.056 3188.074 4110.739
## 2014 Q3
                 4179.491 3827.375 4531.608 3640.976 4718.007
## 2014 Q4
                 3685.368 3318.475 4052.261 3124.254 4246.482
## 2015 Q1
                 4144.244 3699.497 4588.992 3464.062 4824.427
## 2015 Q2
                 3857.592 3375.351 4339.833 3120.068 4595.116
```

```
plot(fit.arima)
lines(y)
```

Forecasts from ARIMA(3,0,0)(0,1,0)[4] with drift


```
#Accuracy Summary
a.mean=accuracy(fit.mean,test data)
a.naive=accuracy(fit.naive,test_data)
a.snaive=accuracy(fit.snaive,test_data)
a.linear=accuracy(fit.tslm,test_data)
a.st=accuracy(fit.lmts,test_data)
a.ses=accuracy(fit.expo, test_data)
a.stl=accuracy(fit.stl, test_data)
a.holt=accuracy(fit.hlinear, test data)
a.multi=accuracy(fit.hwm, test_data)
a.add=accuracy(fit.hwa, test data)
a.arima=accuracy(fit.arima, test_data)
a.table<-rbind(a.mean, a.naive, a.snaive, a.linear, a.st, a.ses, a.stl, a.holt, a.multi, a.add,
 a.arima)
row.names(a.table)<-c('Mean training','Mean test', 'Naive training', 'Naive test', 'S. Naive tra
ining', 'S. Naive test', 'Linear training', 'Linear test', 'season-trend training', 'season-trend
 test', 'STL training', 'STL test', "ses training", "ses test", "Holt's Linear training", "Holt's
 Linear test", 'Muti training', 'Multi test', 'add training', 'add test', 'ARIMA training', 'ARIMA
 test')
# order the table according to MASE
a.table<-as.data.frame(a.table)</pre>
a.table<-a.table[order(a.table$MASE),]</pre>
a.table
```

##	ME	RMSE	MAE	MPE	
## add training	5.936575e+00			-0.1179359	
## Muti training	1.308620e+01				
## ses training	-7.974611e-12				
## ARIMA training	1.006213e+00				
## season-trend test	-8.451355e+01				
## add test	1.955155e+01				
## ses test	6.505367e+01				
## ARIMA test	-1.470048e+02				
## Multi test					
	-1.287246e+01				
## season-trend training					
## Linear test	-8.700208e+01				
## S. Naive training	1.647885e+02				
## STL test	7.856461e+01				
## S. Naive test	1.643333e+02				
## Holt's Linear training					
## Linear training					
•	8.789642e+01				
	-1.050652e+02				
## Naive test	3.630000e+02				
## Naive training	3.407273e+01				
## Mean training	6.473790e-14	829.4148	716.7819	-13.6030199	
## Mean test	1.371964e+03	1398.2485	1371.9643	36.2157926	
##	MAPE	MASE	ACF1	Theil's U	
## add training	5.257339 0.49	918508 -0.6	07430929	NA	
## Muti training	5.405616 0.49	925838 -0.6	19884166	NA	
## ses training	5.136756 0.51	13525 -0.1	L61657496	NA	
## ARIMA training	5.473664 0.53	882301 0.6	23184964	NA	
## season-trend test	3.867160 0.60	96424 0.5	45497353	0.3115035	
## add test	4.121876 0.66	77684 0.5	553473346	0.3667693	
## ses test	4.181376 0.69	941210 0.4	158407323	0.4051990	
## ARIMA test	4.552960 0.71	151221 0.3	378847178	0.3348381	
## Multi test	5.376758 0.87	784688 0.3	885913179	0.4257386	
## season-trend training				NA	
	6.009932 0.96			0.5751233	
## S. Naive training	9.220278 1.00	00000 0.7	780659978	NA	
## STL test	6.355203 1.05	97564 -0.2	236360619	0.7812646	
## S. Naive test	6.662843 1.11				
## Holt's Linear training				NA	
## Linear training	13.042421 1.15			NA	
## STL training	11.806736 1.17			NA	
## Holt's Linear test					
	9.198571 1.58				
## Naive training	17.396986 1.68			NA	
-	34.890539 3.13			NA NA	
## Mean test	36.215793 6.06				
ricuit cese	55.215/55 6.00)±0)+0 -0.1	101774400	J. 70 J 71 / 7	