Introduction to Statistics and Data Science using *eStat*Chapter 7 Testing Hypothesis for Single Population

7.4 Testing Hypothesis with α and β simultaneously

Jung Jin Lee
Professor of Soongsil University, Korea
Visiting Professor of ADA University, Azerbaijan

- Testing hypothesis so far is a conservative decision-making method.
 - ⇒ critical value that reduces the probability of type one error α (error that rejects the null hypothesis even though it is true).
 - \Rightarrow keep H_0 unless there is sufficient evidence of H_1 which is risky.
 - \Rightarrow probability of type two error (β) was not considered.
- Sometimes it is unclear which should be H_0 and which one should be H_1 .
 - \Rightarrow both α and β are important and should be considered simultaneously.
 - \Rightarrow If the analyst can determine the sample size, testing hypothesis with α and β can be performed.

7.4.1 β and the power of test

[Example 7.4.1] In [Example 7.1.1], calculate the probability of the type 2 error β if the significance level is 5%. Check this result using FeStatU₁. <Answer>

- Hypothesis is $H_0: \mu = 1500$, $H_1: \mu = 1600$,
- Population standard deviation is assumed $\sigma = 200$, and n = 30.
- Decision rule is as follows if α is 5%.

'If
$$\overline{X}$$
 < 1500 + (1.645) $\sqrt{\frac{200^2}{30}}$ = 1560.06, reject H_0 '

• Type 2 error (probability of H_0 is true when H_1 is true) is calculated as: $\beta = P(\overline{X} < 1560.06 \mid H_1 \text{ is true})$

= P(
$$(\overline{X} - 1600) / \sqrt{\frac{200^2}{30}} < (1560.06 - 1600) / \sqrt{\frac{200^2}{30}})$$

= P(Z < -1.09) = 0.137

- <Answer of Ex 7.4.1> Select 'Testing μ C, β ' at $\lceil eStatU \rceil$ menu.
- Enter $\mu_0=1500$, $\mu_1=1600$, $\sigma=200$, $\alpha=0.05$, n=30 and click [Execute] button.
- Result of testing hypothesis, critical value C and β , will be shown.

[Example 7.4.2] In [Example 7.1.1], if the null hypothesis is not changed, but the alternative hypothesis is changed as follows:

$$H_0$$
: $\mu = 1500$, H_1 : $\mu = 1580$

- 1) Calculate the probability of the type 2 error if the significance level is 5%.
- 2) Check this result using **[eStatU]**.
- <Answer>
- 1) Although the alternative hypothesis has been changed to $H_1: \mu = 1580$, decision rule will not be changed because H_1 is the ype as $H_1: \mu > 1580$.

'If
$$\overline{X}$$
 < 1500 + (1.645) $\sqrt{\frac{200^2}{30}}$ = 1560.06, reject H_0 '

Hence, the probability of type 2 error is as follows:

$$\beta = P(\bar{X} < 1560.06 \mid H_1 \text{ is true})$$

$$= P((\overline{X}-1580)/\sqrt{\frac{200^2}{30}} < (1560.06-1580)/\sqrt{\frac{200^2}{30}})$$

$$= P(Z < -0.546) = 0.293$$

7.4.1 β and the power of test

Discriminating ability of two hypothesis is compared by using the power of a test.

Power = 1 - (Probability of the type 2 error) = 1 - β Large power increases discriminating ability of the test.

- Power of a test can be obtained for any μ_1 of H_1 : $\mu = \mu_1$. It means that the power is a function over the value of and it is called a power function.
- A function of the probability that the null hypothesis is correct when the null hypothesis is true is called an operating characteristic function.

Operating characteristic function = $1 - \alpha$

[Example 7.4.3] In [Example 7.1.1], calculate the power of the following alternative hypothesis. Use $\alpha = 0.05$. By using this, approximate the power function.

- 1) $H_1: \mu = 1500$ 2) $H_1: \mu = 1510$ 3) $H_1: \mu = 1520$
- 4) $H_1: \mu = 1530$ 5) $H_1: \mu = 1540$ 6) $H_1: \mu = 1550$
- 7) $H_1: \mu = 1560$ 8) $H_1: \mu = 1570$ 9) $H_1: \mu = 1580$
- 10) $H_1: \mu = 1590$ 11) $H_1: \mu = 1600$ 12) $H_1: \mu = 1610$

<Answer>

1) Although the alternative hypothesis are different, decision rule will not be changed because H_1 is the ype as $H_1: \mu > 1580$.

'If
$$\overline{X}$$
 < 1500 + (1.645) $\sqrt{\frac{200^2}{30}}$ = 1560.06, reject H_0 '

Hence, if we calculate the probability of the type 2 error as [Example 7.4.2], the power of each test is as follows:

<Answer of Ex 7.4.3>

	_	
Alternative Hypothesis	β	Power = 1 - β
1) H_1 : μ = 1500	0.95	0.05
2) H_1 : μ = 1510	0.91	0.09
3) H_1 : μ = 1520	0.86	0.14
4) H_1 : μ = 1530	0.79	0.21
5) H_1 : μ = 1540	0.71	0.29
6) H_1 : μ = 1550	0.61	0.39
7) H_1 : μ = 1560	0.50	0.50
8) H_1 : μ = 1570	0.39	0.61
9) H_1 : μ = 1580	0.29	0.71
10) H_1 : μ = 1590	0.21	0.79
11) H_1 : μ = 1600	0.14	0.86
12) H_1 : μ = 1610	0.09	0.91

Power function

7.4.2 Testing Hypothesis with α and β

[Example 7.4.4] Consider the testing hypothesis on the bulb life such as H_0 : μ = 1500, H_1 : μ = 1570. Find sample size n and decision rule which satisfies α = 5% and β = 10%. Assume σ = 200 hours.

<Answer>

- Let n be the sample size and C be the critical value of a decision rule.
- Probability of the type 1 error α and type 2 error β are defined as follows:

$$\alpha = P(\overline{X} > C \mid H_0 \text{ is true})$$

 $\beta = P(\overline{X} < C \mid H_1 \text{ is true})$

<Answer of Example 7.4.4>

• If H_0 is true, $\overline{X} \sim N(1500, \frac{200^2}{n})$ and if H_1 is true, $\overline{X} \sim N(1570, \frac{200^2}{n})$. If $\alpha = 0.05$ and $\beta = 0.10$, then $z_{0.05} = 1.645$ and $z_{0.10} = -1.280$. Hence n and C should satisfy both of the following equations.

$$C = 1500 + 1.645 \times \frac{200}{\sqrt{n}}$$

 $C = 1570 - 1.280 \times \frac{200}{\sqrt{n}}$

• By solving two system of equations, solution is n=69.8, C=1539.4. i.e., the sample size is 70 approximately and the decision rule is as follows:

'If
$$\overline{X} > 1539.4$$
, then reject H_0 '

<Answer of Ex 7.4.4>

Thank you