Engineering Calculator with KEyboard and Refined Tools

ECKERT

Console User Interface

(Scientific Stack Calculator)

User's manual

For version 2018-08

Aug 22, 2018

© 2014-2018 Yuishin Kikuchi

INDEX

N	\cap	Т	11	\neg	\Box
II	v	1	1/	اب	Ľ

This is the user's manual of ECKERT.

0. Introduction	
0-1. What is ECKERT	1
0-2. Audiences	1
0-3. Supporting functions	2
0-4. Operating environments	2
0-5. Disclaimer	2
1. Preparation	2
1-1. Installation and Uninstallation	2
1-2. How to read this manual	2
1-3. Format of this manual	3
2. Display and Operation	4
2-1. Launch and End	4
2-2. Display of calculation mode	4
2-3. Calculation mode and states display	6
2-4. Stack display	8
2-5. Message display	11
2-6. Configuration mode display	12
2-7. Fundamental operation	13
2-8. Input numeric values	14
2-9. Examples of value input	16
2-10. When the error message is displayed	17
3. Settings	18
3-1. Settings in configuration mode	18
3-2. Settings in calculation mode	20
3-3. Next/previous pages in stack	27
3-4. Next/previous pages in register	28
3-5. View full string of data	30
3-6. Version display	31
4. Fundamental operations ~ four arithmetics	32
4-1. Elementary stack operation	
4-2. Four arithmetics	35

	4-3. Multiple arithmetics	38
	4-4. Elementary functions	40
5.	Mathematical functions	41
	5-1. How to use math functions	41
	5-2. Exponent and logarithm	41
	5-3. Trigonometric functions	42
	5-4. Hyperbolic functions	43
	5-5. Stats functions	44
	5-6. Integer roundings	44
	5-7. Functions for integers	45
6.	Useful functions	46
	6-1. Percent calculations	46
	6-2. Time conversion	47
	6-3. DMS conversion	48
	6-4. Whole stack calculations	48
	6-5. Multiply by prefix	50
	6-6. Divide by prefix	51
	6-7. Angle conversion	52
	6-8. Angle calculation	52
	6-9. Ratio	52
	6-10. Random numbers	53
	6-11. Cast	53
	6-12. Calculations for engineers	54
	6-13. Health calculations	54
7.	Complex calculations	55
	7-1. Display of complex numbers	55
	7-2. How to make complex numbers	56
	7-3. Complex calculations	58
	7-4. Disassemble complex	59
	7-5. Complex functions	59
8.	Logical calculations	60
	8-1. Unsigned decimal and Boolean	60
	8-2. Bit length	60
	8-3. N-ary number switching	61
	8-4. Input binary and Boolean	61
	8-5 Fundamental logical calculations	62.

INDEX

	8-6. Bit shift	63
	8-7. Rotate	63
	8-8. Other functions that support unsigned integer	64
	8-9. Whole-stack logical calcultions	64
9. \	Vector calculations	65
	9-1. Display of vectors	65
	9-2. Making of vector	65
	9-3. Extract element from tuple	68
	9-4. Four arithmetics of vectors	70
	9-5. Inner / outer product	70
	9-6. Norms of vectors	71
	9-7. Transpose vectors	71
10.	. Matrix calculations	72
	10-1. Display of matrices	72
	10-2. Making of matrices	72
	10-3. Get element or tuple from matrix	75
	10-4. Four arithmetics of matrices	78
	10-5. Determinant and inverse matrix	79
	10-6. Transpose matrix	79
	10-7. Other matrix functions	79
11.	Register operations	80
	11-1. What is register	80
	11-2. Register display	81
	11-3. Store to selected register	82
	11-4. Load from selected register	84
	11-5. Delete selected register	86
	11-6. Register calculation	87
	11-7. Register clear	89
	11-8. Strings and registers	89
12.	Stack operations	90
	12-1. Special stack operations	90
	12-2. Fundamental stack operations	90
	12-3. Order changing functions	90
	12-4. Duplicate and overwrite functions	95
	12-5. Removal functions	101
	12-6 Other stack operations	105

13.	. Unit conversions	106
	13-1. Supporting units	106
	13-2. How to use unit conversion function	106
	13-3. Units of length	107
	13-4. Units of length inverse	108
	13-5. Units of area	109
	13-6. Units of area inverse	110
	13-7. Units of volume	111
	13-8. Units of volume inverse	112
	13-9. Units of time	113
	13-10. Units of time inverse	114
	13-11. Units of mass	115
	13-12. Units of velocity	115
	13-13. Units of acceleration	116
	13-14. Units of force	116
	13-15. Units of pressure	117
	13-16. Units of energy	117
	13-17. Units of temperature	118
14.	Math / Scientific constants	119
	14-1. Input constants	119
	14-2. Math constants	119
	14-3. Fundamental physical constants	120
	14-4. Electromagnetics	121
	14-5. Nuclear physics	121
	14-6. Physicochemistry	124
	14-7. Agreement value	125
	14-8. Planck unit	125
	14-9. Astronomy	125
15.	Other functions	126
	15-1. All clear	126
	15-2. All reset	126
	15-3. Undo / redo	126
	15-4. JSON output	127
	15-5. Macro function	
	15-6. Test precisions	129
	15-7. Special startup	129

INDEX

16.	Messages	130
	16-1. Error messages	130
	16-2. Notice messages	131
	16-3. Confirm messages	131
17.	Technical information	132
	17-1. Data types	132
	17-2. Calculation precision	132
	17-3. Mathematical definitions	133
18.	Troubleshootings	135
	18-1. I have no idea to operate this software	135
	18-2. I'd like to view full data	135
	18-3. I'd like to change rational or floating display	135
	18-4. I'd like to change complex display	135
	18-5. I'd like to view all values in the stack and the registers	135
	18-6. I saw doubtful calculation result	136
	18-7. Stopped by errors	137
	18-8. I found doubtful behaviors.	137

0. Introduction

0-1. What is ECKERT

ECKERT is a calculator software with keyboard interface, whose name is short for *Engineering Calculator with KEyboard and Refined Tools*.

```
Engineering Calculator with KEyboard and Refined Tools
(C) 2014-2018 Yuishin Kikuchi
HOMURA: (FF) (Rad) (Hex) (Dword) [i.a/b]
Std: 9/15, Stack: 6, History: 0/10
  TYPE
                                           VALUE
 6: Integer
                                             12
5: Floating
                                            1.5
4: Complex
                                     3/25 - i4/25
                                  [[2, 3], [3, 4]]
Z: Matrix
Y: Rational
X: Tuple(Col) :
                           (1 + i2, 2 + i3, 3 + i4)
MAKE COLUMN TUPLE
Ready to operate
              -----
```

Watching the display, type keywords and values to calculate. This software adopts RPN (Reverse Polish Notation), so you do not have to use parenthnesses to determine calculation priorities.

0-2. Audiences

ECKERT is recommended for following users:

Physical or Chemical scientists, electrical scientists, machine engineer, architect, civil engineer, medical scientists, pharmacists, sologists and so on.

0-3. Supporting functions

ECKERT has many functions such as following:

SI prefix, binary prefix [1]	Percent calculation	Logical calculations
Rational calculations	Include/exclude tax	Vector calculations
Complex calculations	Multiply/divide by prefix	Matrix calculations
Exponent and logarithm	Multiply/divide by 2π	Register functions [2]
Trigonometric func	Decibel conversion	Unit conversions [3]
Hyperbolic func	Base conversion	Math/sci constants [3]

- [1] Numeric formats such as '12k' (12 kilos) or '32u' (32 micros) and so on.
- [2] You can store data from stack to register, also can load/delete from register.
- [3] 2014 CODATA

0-4. Operating environments

Windows 7, Windows 8, Windows 8.1 and the latter versions.

0-5. Disclaimer

This software and the manual of this software is copyrighted to Yuishin Kikuchi.

ECKERT is FREE FOR USE and NO WARRANTY.

If you find bugs or unnatural specifications, please send messages to me.

ECKERT introduction page

http://sfoftime.web.fc2.com/eckert

E-mail to:

only.my.truth@gmail.com

I NEED YOUR HELP

This user's manual was translated from Japanese version. If you find the English in the document something wrong, please send reports to me, thanks.

これは日本語からの翻訳です。不自然な英語表現にお気づきの際はご連絡ください。

1. Preparation

1-1. Installation and Uninstallation

You can find eckert86.exe and eckert64.exe in the package. The both are executable files. The file eckert86.exe is for 32-bit Windows system and the file eckert64.exe is for 64-bit Windows system. Please check your system.

Each exe file is independent so you can delete unnecessary one. This software does not change registories in your system. Thus, this is portable.

The installation of thie software is just copying.

The uninstallation is just delete. You can also delete the config file.

1-2. How to read this manual

This manual explains whole functions of ECKERT and it is just user's manual so the fundmental mathematical definitions are omitted.

If you do not know RPN calculator, please read chapter 2 and 4 first. If you get used to the operations, read chapter 5, 6, 7 and 11.

If you know about RPN calculator, you can read chapter 4 diagonally to make comprehension of the operations of this software.

To configurate display digits or value format, please read chapter 3.

1. Preparation

1-3. Format of this manual

This manual uses following format:

IMPORTANT Important thngs

NOTICE Things to notice

Input> (Notation)

Type the right text and press enter.

This software adopts stack concept, which is one of data storage structures. (Please read chapter 3 to get more information about stack). This manual uses tables like following to describe a state of a stack.

#	TYPE	VALUE	
4			
Z			Suu
Υ	Integer	12	ex
Х	Floating	1.5	4

Suuplementary explanation

The column TYPE means data type and the column VALUE means data value.

This document uses list in following format to show functions.

Function	Keyword	R	D	Computation
٨ ٠٠٠	ADD	2	2 2	Y + X
Add	+	2		
Subtract	SUB	2	2	Y - X
	-	2	2 2	I - X

The column Function means function name and the column Keyword means command to call corresponding function.

Please refer chapter 4 to get more information about reading list like above one.

2-1. Launch and End

Just double click the executable file to launch.

Type "EXIT", "QUIT", or "Q" and press enter to terminate the program. Inputs are non-capital-sensitive except for numerical value input.

Function	Keyword	
	EXIT	
Terminate	QUIT	
	Q	

Special start up is available. Please refer chapter 15.

2-2. Display of calculation mode

The following chart is the display of calculation mode:

```
Engineering Calculator with KEyboard and Refined Tools
(C) 2014-2018 Yuishin Kikuchi
HOMURA: (FF) (Rad) (Hex) (Dword) [i.a/b]
Std: 9/15, Stack: 6, History: 0/10
 # TYPE
                                                     VALUE
                                                        12
 6: Integer
 5: Floating
                                                       1.5
 4: Complex
                                              3/25 - i4/25
                                          [[2, 3], [3, 4]]
 Z: Matrix
 Y: Rational
                                 (1 + i2, 2 + i3, 3 + i4)
 X: Tuple(Col) :
MAKE COLUMN TUPLE
Ready to operate
```

The first two lines mean name of this software and the copyright.

Following a split line, calculation config and states display.

```
HOMURA: (FF) (Rad) (Hex) (Dword) [i.a/b]
Std: 9/15, Stack: 6, History: 0/9
```

Below a doubly split line, you can find stack display there.

```
# TYPE : VALUE

6: Integer : 12
5: Floating : 1.5
4: Complex : 3/25 - i4/25
Z: Rational : 2.1/4
Y: Matrix : [[2, 3], [3, 4]]
X: Tuple(Col) : (1 + i2, 2 + i3, 3 + i4)
```

The right column is data number, the center is data type, and the left is value.

Below the stack display is 2-line message are.

```
TRANSPOSE
Ready to operate
```

The bottom of the display is input field.

```
> _
```

Go on to the next section to make comprehension of reading the display.

2-3. Calculation mode and states display

You can find 2-line calculation mode and states display.

HOMURA: (FF) (Rad) (Hex) (Dword) [i.a/b] Std: 9/15, Stack: 6, History: 0/9

In the first line, you can notice symbols in the following table:

Symbol	Meaning	Class
(AD)	Auto Decimal display	Danimal
(FD)	Force Decimal display	Decimal
(FF)	Force Fractional display	display
(Deg)	Degree mode	
(Rad)	Radian mode	Angle mode
(Gra)	Grade mode	
(Bin)	Binary display	
(Oct)	Octal display	Umaiamad
(Sdec)	Signed decimal display	Unsigned integer display
(Udec)	Unsigned decimal display	integer display
(Hex)	Hexadecimal display	
(Byte)	8-bit mode	
(Word)	16-bit mode	Logical
(Dword)	32-bit mode	calculation
(Qword)	64-bit mode	
[Reg]	Register display	
[Eul]	Euler display	
[Eul(Pi)]	Euler display (π radian)	
[i.a/b]	Mixed fractional display	

(Symbol) selected in each class is always displayed.

[Symbol] is displayed if the mode is enabled.

HOMURA: (FF) (Rad) (Hex) (Dword) [i.a/b]

You can see display above and you get force fractional display, radian, hexadecimal display, 32-bit and mixed fractional display mode.

There are three sections in the second line. The first consists of decimal display mode and display digits.

Symbol	Mode
Std	Standard display
Fix	Fixed display
Sci	Scientific display
Eng	Engineering display

The fraction "Int/Int" in the first section means this: the first means the current display digits and the second is the number of max digits you can set in the selected display mode. To change the number of digits, please read chapter 3.

If you see above, you get that the decimal display mode is standard display mode and the current number of selected (standard) display digits is 6 and the maximum number of digits you can set is 15. The second is the number of elements in the stack. If the number is zero, Empty is displayed.

If you see like above, there are 11 elements in the stack. The third is history display.

Display	Meaning	
OFF	History is disabled	
Init	Initial state	
Int/Int	(Discribed later)	

The fraction "Int/int" in the second section means this: the first integer is the times that you have called undo and the second integer is the items in the history.

You see above display and you get that you have undo 4 times and the number of items in the stack is 10, so you can redo 10 times totally.

2-4. Stack display

Learn the concept of stack.

# TYPE	:	VALUE
-:	:	
-:	:	
-:	:	
Z:	:	
Y: Integer	:	12
X: Floating	:	1.5

Stack is one of the data containers. This software has one stack.

In each line in the stack display contains item number, data type and value. A data type means a kind of a number. If a data type is integer, Integer is displayed in the TYPE column and if the type is rational number, Rational is displayed.

This manual shows the stack like below:

#	TYPE	VALUE
4		
Z		
Υ	Integer	12
Х	Floating	1.5

IMPORTANT

The stack size is unlimited.

X is the bottom of the stack. Y is the second bottom and Z is the third bottom. After that, the data numbers are displayed as integers such as 4, 5.... The data in X is called just X, the data in Y is just Y, and so on.

Go on to the next page and make comprehension of stack graphically.

You can see a stack like a pile of cards. You draw one by one from the top of the pile and you put into the pile one by one.

Please look at the left chart. There are some cards. You put a card '1' and card '2' in turn.

This situation is expressed like below:

#	TYPE	VALUE
Z		
Υ	Integer	1
Х	Integer	2

The next chart means the top of the pile is removed from the previous chart. In other words, X is dropped from the stack.

#	TYPE	VALUE
Z		
Υ		
Х	Integer	1

See addition with stack.

You draw 2 cards from the top and you put the value of 1 + 2 on the top.

This is the fundamental flow of calculation with stack.

#	TYPE	VALUE
Z		
Υ	Integer	1
Х	Integer	2

Addition operated

#	TYPE	VALUE
Z		
Υ		
Χ	Integer	3

There are 3 fundamental operations: add (push), remove (drop) and execution.

Here is the type of data types:

Display	Meaning
Error	String value means error
String	String value
Integer	Integer
Floating	Floating point number
Rational	Rational number
Infinity	Infinity
Complex	Complex number
Boolean	Boolean (true of false)
Byte	8-bit unsigned integer
Word	16-bit unsigned integer
Dword	32-bit unsigned integer
Qword	64-bit unsigned integer
Tuple[Row]	Row vector
Tuple(Col)	Column vector
Matrix	Matrix

2-5. Message display

In the message display, the last called function and error / notice / confirm message are displayed.

TRANSPOSE Ready to operate

In the first line is called function and the second line is the other messages.

If unoperatable commands such as division by zero is input, the operation is stopped and an error message is displayed in the second line.

[!] ADD Y+X Error: Too few arguments

If there is error or notice message, the message is displayed second line with a symbol in the first line.

Symbol	Meaning
[!]	Operation is terminated by error
[i]	Unordinal operation
[C]	Waiting input or confirm

For more information, please read chapter 16.

If [?] is displayed, it means that there are software bugs. Please send me a bug report.

2-6. Configuration mode display

Type "CONFIG" to go to configuration display.

```
Engineering Calculator with KEyboard and Refined Tools
(C) 2014-2018 Yuishin Kikuchi

CONFIGURATION MODE

Interface
History size (hist): 10
Display width (width): 60
Display lines (lines): 6
Management
Load config (load)
Save config (save)
Reset config (reset)

ECKERT Config
Type "calc" or "homura" to quit config
```

```
Interface
History size (hist): 10
Display width (width): 60
Display lines (lines): 6
```

Maximum history size, display width and the number of stack display lines are shown. Please read chapter 3 to configurate these.

```
Management
Load config (load)
Save config (save)
Reset config (reset)
```

Those are command for config management.

2-7. Fundamental operation

Input keywords or values to operate. Only half-width (one byte) characters are supported.

Type one or several space-splitted keywords or values and hit enter to calculate or configurate. If the number of tokens, which are keywords or numerical values, is not single, each token is processed in turn.

This way, "type and enter" is the flow of the operations. Please notice that the display changes only pressing enter. Then, only SI or binary prefixes are case-sensitive, the others are not.

This software supports only printable characters input.

For instance, type like below to operate 'add' and 'multiply' in turn.

Some keywords are aliases, in other words, some ones are connected with the same function. And more, there are some keywords depend on calculation modes.

Type numerical values to input. You can put space-splitted values in order.

You can even mix values and keywords.

Go on to the next section to get how to input numeric values.

2-8. Input numeric values

This section shows how to input numeric values in this software.

2-8-1. Integer

Just type an integer value.

2-8-2. Decimal

Type a value with decimal point.

You can omit integer part (like ".2") or decimal part (like "1.").

2-8-3. Exponential

Type a decimal value and append 'E' and a decimal exponent.

For instance, 6.02×10^{-23} is expressed like "6.02E-23" and 1.01325×10^5 is expressed like "1.01325E5".

2-8-4. Imaginary unit

Positive imaginary unit is "i" or "+i" and negative imaginary unit is "-i".

Non-case-sensitive.

2-8-5. Imaginary number

Type integer, decimal or exponential with prefix 'i'.

Non-case-sensitive.

2-8-6. Infinity

Positive infinity is "INF", "+INF" or "+INFINITY".

Negative infinity is "-INF" or "-INFINITY".

2-8-7. Boolean

True value is "TRUE" or "T" and false value is "FALSE" or "F".

2-8-8. Unsigned decimal value

Type "u" and postfix non-signed integer.

2-8-9. Binary value

Type "0b" and postfix binary expression using 0 and 1.

2-8-10. Octal value

Type "00" and postfix octal expression using 0 to 7.

2-8-11. Hexadecimal value

Type "0x" and postfix hexadecimal expression using 0 to 9 and A to F.

2-8-12. Value with SI or binary prefix

You can append SI or binary prefix to integer, decimal, exponential and imaginary value. SI and binary prefixes are case-sensitive.

Symbol	Name	Value			Value	Name	Symbol
da	DECA	1.0E+01	SI	IS	1.0E-01	DECI	d
h	НЕСТО	1.0E+02	SI prefix greater than 1	SI prefix less than 1	1.0E-02	CENTI	С
K, k	KILO	1.0E+03	x gr	x les	1.0E-03	MILLI	m
М	MEGA	1.0E+06	eater	ss tha	1.0E-06	MICRO	u
G	GIGA	1.0E+09	· thai	an 1	1.0E-09	NANO	n
Т	TERA	1.0E+12	1 1		1.0E-12	PICO	р
Р	PETA	1.0E+15			1.0E-15	FEMTO	f
Е	EXA	1.0E+18			1.0E-18	ATTO	а
Z	ZETTA	1.0E+21			1.0E-21	ZEPTO	z
Υ	YOTTA	1.0E+24			1.0E-24	YOCTO	у
Ki, ki	KIBI	1024^1	Bir			_	
Mi, mi	MEBI	1024^2	Binary prefix				
Gi, gi	GIBI	1024^3	pref				
Ti, ti	TEBI	1024^4	ΪΧ				
Pi, pi	PEBI	1024^5					
Ei, ei	EXBI	1024^6					
Zi, zi	ZEBI	1024^7					
Yi, yi	YOBI	1024^8					

You can use binary prefixes alias.

2-9. Examples of value input

Examples here:

Integer	Input> -3	Infinity	Input> -inf
Prefixed	Input> 3k	Boolean	Input> t
Exponential	Input> 2.998e8	Unsigned	Input> u65536
Imaginary unit	Input> -i	Binary	Input> 0b1010
Imaginary num	Input> i12	Octal	Input> 0o100
Imag with sign	Input> -i5	Hexadecimal	<pre>Input> 0xFFFE</pre>

You can also input math or scientific constants with keywords. Please read chapter 14 to get more information.

Name	Keyword	Value
PI	PI	3.141 592 653 589 79
Napier's constant	Е	2.718 281 828 459 05
Euler-Mascheroni constant	EG	0.577 215 664 901 533

In addition to these, you can input string value. Use double quotation to input string value.

You can use string to put memos in the register or use macro function.

2-10. When the error message is displayed

When the error occurs while operating some functions, the operating and the left unoperated functions are cancelled. This means, the state is the before one cancelled operation. And then, the error

messages are shown.

If you see error messages, you can operate as usual. Input commands and if the operations are

successful, error messages are disappeared.

Even if operating space-splitted tokens, the functions called one by one, so this software do not stop

the operations if no errors.

Input> 5 0 /

(You can make sense of the notation if you read chapter 4.)

For instance, if you input like above, the error "division by zero" occurs. But the push operations

are done, so the value 5 and the value 0 is added into the stack and the division cancelled with the

stack keeped.

If the error messages are shown, undo and redo are recommended. Please read chapter 15 to get

more information.

If you look at the list of error messages, please read chapter 16.

When unsupported inputs are detected, the error message below is displayed:

[!] OPERATIONAL ERROR Error: Unsupported operation or notation

If you see this, please check the spelling.

And then, even if the keyword is supported, you can see this when the calculation mode or state is

not inappropriate, or greater than one settings-changing keywords.

17

3. Settings

IMPORTANT

Please read this chapter after making comprehension of fundamental operations.

3-1. Settings in configuration mode

You can set max history size, display width and the number of lines of stack display in configuration mode.

Please type the keyword "CONFIG" to go to config mode. Input keyword "HOMURA" or "CALC" to return to calculation mode.

3-1-1. Max history size

Type "HIST" and an integer. You can input splitted-tokens like "hist 10". You can set the size to 0 to disable history function.

The default max history size is 10.

Type below to set the max history size to 20.

3-1-2. Display width

Type "WIDTH" and an integer. You can input splitted-tokens like "width 79". If the value is less than the least width, the least width is set.

The default display width is 79 and the least size is 60.

Type below to set the display width to 69.

3-1-3. Number of stack lines

Type "LINES" and an integer. You can input splited-tokens like "lines 11". If the value is less than the least number, the least number is set.

The default number of stack lines is 11 and the least is 4.

Type below to set the number of stack lines to 20.

Input> lines 20

3-1-4. Management of config

You can save configurations as a config file. You can use the following functions to manage config file.

Function	Keyword
Load config file	LOAD
Save config file	SAVE
Deset config	RESET
Reset config	RST

If the config file exists, this software loads it on startup. So the max history size and display width are restored automatically.

You can load config file explicitly with "LOAD" function.

The function "RESET" sets all settings in config mode to default. However, this function does not save or change a config file.

3-1-5. Functions in configuration mode

Here is the list of keywords for configuration mode:

Function	Keyword
Config mode	CONFIG
Calculation mode	CALC
Calculation mode	HOMURA
History size	HIST
Display width	WIDTH
Number of stack lines	LINES
Load config file	LOAD
Save config file	SAVE
Pagat config	RESET
Reset config	RST

3-2. Settings in calculation mode

Angle mode, type display and number of display digits can be changed in calculation mode.

3-2-1. Rational display mode

When the decimal display is set to standard, you can choose rational number display following:

Audo Decimal display

If a rational number can be displayed as finite decimal display, show a decimal. In other cases, show a fraction.

■ Force Decimal display

All rational numbers are displayed as decimal.

■ Force Fractional display

All rational numbers are displayed as fraction.

To choose mode, use the followingkeywords:

Mode	Keyword	Symbol
Auto Decimal display	AD	(AD)
Force Decimal display	FD	(FD)
Force Fractional display	FF	(FF)

The default rational display mode is Force Decimal.

3-2-2. Angle mode

You can choose angle unit with setting angle mode. Angle mode affects trigonometric functions. To choose mode, use the keywords below:

Mode	Keyword	Symbol
Degree	DEG	(Deg)
Radian	RAD	(Rad)
Crada	GRAD	(Cn2)
Grade	GRA	(Gra)

This mode is connected with "SIN", "ARG" and so on.

The default angle mode is Radian.

3-2-3. N-ary number display mode

You can select the display of 8-bit, 16-bit, 32-bit and 64-bit data.

To choose mode, use the following keywords:

Mode	Keyword	Symbol
Binary display	BIN	(Bin)
Octal display	ОСТ	(0ct)
Signed decimal display	SDEC	(Sdec)
Unsigned decimal display	UDEC	(Udec)
Hexadecimal display	HEX	(Hex)

The default N-ary number display mode is Hexadecimal.

3-2-4. N-bit input mode

You can choose the binary size to input from 8, 16, 32 or 64 bits. If unsigned decimal with 'u' is detected, the value is generated as selected bit mode.

To choose mode, use the keywords below:

Mode	Keyword	Symbol
8-bit mode	BYTE	(Byte)
(byte)	DTIE	(byte)
16-bit mode	WORD	(Hond)
(word)	WORD	(Word)
32-bit mode	DWORD	(Duand)
(dword)	DWORD	(Dword)
64-bit mode	QWORD	(Owond)
(qword)	QWOND	(Qword)

The default size is 32-bit.

3-2-5. Type display

You can switch the type display in the stack display on/off. Input "TYPE" without any other keywords to switch.

The default type display is enabled.

3-2-6. Register display

You can enable or disable the register display. Use the keywords "REG" or "REGISTER" to switch the display. Register is displayed above the stack. If the register display is enabled, the stack display gets smaller.

When register display is enabled, the symbol [Reg] is displayed.

The default setting is disabled.

3-2-7. Euler display

You can switch the complex number display: a + ib (rectangular) or $r \exp(i\theta)$ (polar) style. Use the keyword "EULER" or "EUL" to switch.

If the Euler display is enabled, the symbol [Eul] is displayed.

The argument of Euler display is depends on angle mode.

Mode	Expression	Display
Rectangular	5 + 12 <i>i</i>	5 + i12
Polar	13∠67[deg]	12 ove/ 1:07 d)
(Degree)	13267[deg]	13 exp(+i67.d)
Polar	12 (1 2[13 exp(+i1.3)
(Radian)	13∠1.3[rad]	13 exp(+i0.41 Pi)
Polar	12 (75[]	12 0/1/1375 (1)
(Grade)	13∠75[gra]	13 exp(+i75.g)

If you select radian, you can convert the argument to π radians. To switch the display, type "PIRAD" or "PRAD". When π radian mode is enabled and Euler display is also enabled, then the symbol [Eul(Pi)] is displayed.

The default setting is disabled.

3-2-8. Mixed fractional display

You can get mixed fractional display. Use "FRACTION" or "FRAC" to enable/disable mixed fractional display.

The display of rational number is below:

Value	Provisional	Mixed	Decimal
+3/2	3/2	1.1/2	1.5
-6/5	-6/5	-1.1/5	-1.2

If the mode is enabled, the symbol [i.a/b] is displayed.

The default setting is disabled.

3-2-9. Decimal display

You can choose decimal display mode. There are four modes: standard, fixed, exponential and engineering.

Standard display

Value display changes flexibly.

Rational number display depends on the rational display mode.

■ Fixed display

Fix the digits of decimal part.

Integer and rational number is displayed as decimal.

■ Scientific display

All scalars are displayed as scientific notation such as "1.2E+10". The range of mantissa m is $0 \le m < 10$.

Integer and rational number is displayed as decimal.

■ Engineering display

All scalars are displayed as scientific notation such as "12E+10". The range of mantissa m is $0 \le m < 1000$.

Integer and rational number is displayed as decimal.

To choose display mode, use the following keywords:

Display	Keyword	Symbol
Standard display	STD	Std
Fixed display	FIX	Fix
Scientific display	SCI	Sci
Engineering display	ENG	Eng

Rational number is displayed as decimal without in standard mode.

The default display mode is standard.

3-2-10. Decimal digits

You can change the digits of decimal. Here is the list of "digit" meaning:

Mode	Meaning of "digits"
Standard	Significant digits
Fixed	Digits of decimal part
Scientific	Significant digits
Engineering	Significant digits

Use the keyword "DISP" or "DIGIT" and input an integer to set the number of digits. If you would set to 3 digits, type below:

You can set digits in each mode.

The maximum number of digits exists in each mode. Too large number is read as max and too small number does as minimum.

Mode	Minimum	Maximum
Standard	1	15
Fixed	0	15
Scientific	1	15
Engineering	1	15

Example: 10 times of π (31.4159265358979)

Std: 5/15 31.416 Fix: 5/15 31.41593 Sci: 5/15 3.1416E+01 Eng: 5/15 31.416E+00

The default numbers of digits are all 9.

And then, if you put other tokens after digit settings like "disp 10 36", these are ignored.

3-2-11. Keywords of settings in calculation mode Here is the list of keywords of settings in calculation mode:

Mode	Keyword	Symbol
Auto Decimal display	AD	(AD)
Force Decimal display	FD	(FD)
Force Fractional display	FF	(FF)
Degree mode	DEG	(Deg)
Radian mode	RAD	(Rad)
C11-	GRA	(Cnn)
Grade mode	GRAD	(Gra)
Binary display	BIN	(Bin)
Octal display	ОСТ	(Oct)
Signed decimal display	SDEC	(Sdec)
Unsigned decimal display	UDEC	(Udec)
Hexadecimal display	HEX	(Hex)
8-bit mode	BYTE	(Byte)
16-bit mode	WORD	(Word)
32-bit mode	DWORD	(Dword)
64-bit mode	QWORD	(Qword)
Type display	TYPE	
Register display	REG	[Reg]
Eular dianlay	EULER	Fr11
Euler display	EUL	[Eul]
π radian argument display	PIRAD	[Eul(Pi)]
it Tadian argument display	PRAD	[EUI(PI)]
Mixed fraction display	FRACTION	[i a/b]
Whixed fraction display	FRAC	[i.a/b]
Standard decimal display	STD	Std
Fixed decimal display	FIX	Fix
Scientific decimal display	SCI	Sci
Engineering decimal display	ENG	Eng
Set number of digits	DISP	
Set number of digits	DIGIT	

3-3. Next/previous pages in stack

If there are many elements in the stack, you cannot see the all data.

Std: 9/15	, Stack: 11,	History: 0/10			
# TYPE ^ 6: Intege 5: Intege 4: Intege Z: Intege Y: Intege X: Intege	r : r : r : r :		VALUE ^ 6 7 8 9 10		
PUSH Integer Ready to operate					

If you need to see unshown data, use stack page function. There are 11 data in stack but only 6 is shown in the chart above.

Use the keyword "NEXT" or "N" to turn to the next page.

Std:	9/15,	Stack: 11,	History: 0/10		
#	TYPE	:		VALUE	
-:		:			
11:	Integer	:		1	
10:	Integer	:		2	
9:	Integer	:		3	
8:	Integer	:		4	
7:	Integer	:		5	
V				V	
NEXT PAGE of STACK					
Ready to operate					

Use the keyword "PREV" or "P" to turn to the previous page.

If you would like to return to first page, use the keyword "FIRST" or "FST".

If a stack-changing function is called, the page is set to first.

Here is the list of stack page-flipping:

Function	Keyword
Next page of steels	NEXT
Next page of stack	N
Dravious page of stock	PREV
Previous page of stack	Р
First page of steels	FIRST
First page of stack	FST

3-4. Next/previous pages in register

This software has registers which is used for saving location of data. There are 26 registers in this software: RA to RZ. You can not view all registers at once without changing the number of stack lines. Look at the following chart. RA to RC are displayed but the others are not.

Std: 9/15,	Stack: 3,	History: 0/10			
# TYPE	:		VALUE		
RA: Floatir	ng :	3	.14159265		
RB:	:				
RC:	:				
Z: Integer	:		4		
Y: Integer	:		5		
X: Integer	:		6		
PUSH Integer Ready to operate					

3. Settings

You can change the register page.

Type "REGNEXT" or "RN" to change to next page of registers.

Std: 9/15,	Stack: 3,	History: 0/3	
# TYPE	:		VALUE
RD:	:		
RE:	:		
RF:	:		
Z: Integer	:		4
Y: Integer	:		5
X: Integer	:		6
NEXT PAGE of Ready to ope			

On the other hand, type "REGPREV" or "RP" to change to previous page of registers. The keyword "REGFIRST" or "RF" is for returning to first page of the registers.

Here is the list of register page functions:

Function	Keyword
Novt many of magistans	REGNEXT
Next page of registers	RN
Durania wa ma a a f maniatana	REGPREV
Previous page of registers	RP
First page of registers	REGFIRST
First page of registers	RF

3-5. View full string of data

In case of the value display is too long, only the left part is displayed. The following chart is the stack which has a complex number consists of 2 rationals but the right part is omited.

# TYPE	:	VALUE
_·		
	:	
-:	•	
7:	:	
Y:	:	
X: Complex	: 2432902008176640000/2432902008176	64000

To view full data, use the keywords "VIEW" or "V".

Function	Keyword
View full data	VIEW
view full data	V

```
STACK VIEW
=========

X: Complex:
2432902008176640000/2432902008176640001 + i243290200817664000
0/2432902008176640001

(Press Return or Enter)
```

View mode shows data, which are displayed in calculation mode.

Press Enter to return to calculation mode.

3. Settings

3-6. Version display

Type the keyword "VER" or "VERSION" to display current version.

Function	Keyword	
Vorsion display	VERSION	
Version display	VER	

If you find bugs in this app, please send reports to me with the version.

IMPORTANT

This chapter includes the most important things about operating this software, such as RPN. So please read carefully.

4-1. Elementary stack operation

First of all, let's input an integer.

Input> 12

#	TYPE	VALUE			
4					
Z					\supset
Υ			J	Added into	
Х	Integer	12		the bottom	ل

12 is added into X in the stack display area.

Next, type one more integer.

Input> 9

#	TYPE	VALUE			
4					
Z				A 44-4 :4-	7
Υ	Integer	12		Added into the bottom	
Х	Integer	9	4	ine bottom	ل

The data 9 is added into X.

This way, addition is executed into X.

The next, input decimals.

Input> 1.6 6.0e-23

#	TYPE	VALUE	
4	Integer	12	
Z	Integer	9	
Υ	Floating	1.6	Added in turn
Х	Floating	6E-23	

This way, just write numbers to add into the stack. The addition into the bottom of the stack is called push.

Type "DROP" or "\(\frac{1}{2}\)" to remove the data at the bottom of the stack. The removal of the bottom of the bottom of the stack is called drop.

Input> ¥

#	TYPE	VALUE	
4			
Z	Integer	12	The bettern is
Υ	Integer	9	The bottom is
Х	Floating	1.6	removed

Just hit enter without any input to duplicate the bottom of the stack (X) and push.

The keyword "COPY" call the same function.

Input> (Just hit Enter)

#	TYPE	VALUE	
4	Integer	12	
Z	Integer	9	
Υ	Floating	1.6	Duplicated
Х	Floating	1.6	

Type "CLEAR" or "CLR" to empty the stack.

Input> clear

#	TYPE	VALUE	
4			
Z			
Υ			Emptied
Х			

Here is the list of keywords described in this section:

Function	Keyword	R	D
Push		0	0
Duan	DROP	1 1	1
Drop	¥	1	1
Duplicate	DUD	1	1
[1]	DUP	1	1
Clear stack	CLEAR	N>0	NI
	CLR	N>0	N

[1] You can call the function just hitting enter without any input.

Let us calculate four arithmetics after getting this section.

4-2. Four arithmetics

The four arithmetics are the basics of calculating with this software.

Use following keywords to calculate the four arithmetics:

Function	Keyword	R	D	Computation
A 44	ADD	2	,	V I V
Add	+	2	2	Y + X
Subctract	SUB	2	2	Y - X
Subcliact	-			I - X
Multiply	MUL	2	2	$Y \times X$
Multiply	*			
Divide	DIV	2	2	Y/X
Divide	/	_		
Modulo	MOD	2	2 2	Y mod X
Modulo	%			1 mou x
Quotient and	QM	2	2	$Y \leftarrow Y \div X$
remainder	, Au	_		$X \leftarrow Y \mod X$

Let us try following the tutlrial.

The first step is a simple addition. Challenge "2 + 3". Push 2 numbers as following:

Input> 2 3

#	TYPE	VALUE	
4			
Z			
Υ	Integer	2	Added in turn
Х	Integer	3	Added in turn

Input> +

#	TYPE	VALUE	
4			Addition requires
Z			2 data.
Υ			2 dropped. 1 result
Х	Integer	5	pushed.

You can see X is 5, which is the tresult of Y+X (2+3). The previous Y and X are removed. Your inputs mean the pushing 2 and 3 before adding.

Following this, try this:

Input> 9 -

#	TYPE	VALUE		
4			/	
Z				Push and
Υ				subtraction at
Х	Integer	-4	4	one time.

You get X is -4. You have pushed 9 and called subtraction. You can see this software calculates with using the bottom of the stack.

Function	Keyword	R	D	Computation
٨٨٨	ADD	2	2	Y + X
Add	+			

This manual uses tables like above one. The column R is the number of required data. If you call the function without the stack containing enough data, error messages are displayed. The column D is the number of dropped data.

Addition requires 2 data. Once the function is called, 2 data are dropped and the result of Y + X is pushed. The other arithmetics are similar with addition.

In the case of not-enough data, you see error messages like following:

Engineering Calculator with KEyboard and Refined Tools (C) 2014-2018 Yuishin Kikuchi
HOMURA: (FF) (Rad) (Hex) (Dword) Std: 9/15, Stack: 1, History: 0/8
TYPE : VALUE
-: :
-: :
-: :
Z: :
Υ: :
X: Integer : 5
[!] ADD Y+X Error: Too few arguments
> _

4-3. Multiple arithmetics

Let us try higher-level.

Calculate the area of the trapezoid: the upper base is 2, the lower is 1, the hight is 5. The formula of of calculating this is:

$$5 \times (2 + 1) \div 2$$

You can read this like the multiplication of 5 and (2 + 1). First, push 5 and the result of 2 + 1, and call multiply. The final step is halfing.

Type as following to calculate at one time.

However, this expression is difficult for the beginners. I divided this into the steps: $(1) \sim (5)$. Read carefully and operate to understand easily.

(1) Push 5, 2 and 1

#	TYPE	VALUE	
4			
Z	Integer	5	
Υ	Integer	2	Pushed in
Х	Integer	1	turn

(2) Add

Input> +

#	TYPE	VALUE		Unused value
4				remains
Z				
Υ	Integer	5		Addition
Х	Integer	3	\leq	requires 2.

(3) Multiply

Input> *

#	TYPE	VALUE	
4			
Z			
Υ			Multiplication
Х	Integer	15	requires 2.

(4) Push 2

Input> 2

#	TYPE	VALUE	
4			
Z			
Υ	Integer	15	Pushed into
Х	Integer	2	\leftarrow the bottom

(5) Divide

Input> /

			1
#	TYPE	VALUE	
4			
Z			
Υ			Division
Х	Rational	7.5	requires 2.

You can calculate with pushing and calling functions in appropriate order without parentheses.

4-4. Elementary functions

Here is the list of elementary functions without the four arithmetics:

Function	Keyword	R	D	Computation
Increment	INC	1	1	V + 1
increment	++	Т		<i>X</i> + 1
Decrement	DEC	1	1	<i>X</i> – 1
Decrement			1	$\lambda - 1$
Absolute value	ABS	1	1	X
Nagata	PM	1	1	-X
Negate	NEG	T		
Invert (incl. matrix)	INV	1	1	X^{-1}

You can increment or decrement only integers. Increment is adding 1 and decrement is adding -1. For example, type this to find the inverse of 5:

These functions require 1 argument.

5-1. How to use math functions

This software supports many math functions. Please notice that the usages of these functions are similar with the usage of the ones of four arithmetics. Push first and call functions.

Some functions have restricted domains.

5-2. Exponent and logarithm

Use the following keywords with operating exponents and logarithms.

Function	Keyword	R	D	Computation
Square	SQ	1	1	X^2
Square root	SQRT	1	1	\sqrt{X}
Cubic root	CBRT	1	1	³ √ <i>X</i>
Hypotenuse	НҮРОТ	2	2	$\sqrt{ Y ^2 + X ^2}$
	POW			
Power	۸	2	2	Y^X
	**			
N-th root	NRT	2	2	$\sqrt[X]{Y}$
Exponent	EXP	1	1	$\exp(X)$
Power of 10	TPOW	1	1	10 ^X
Power of 2	BPOW	1	1	2^X
Logarithm of X to base Y	LOGB	2	2	$\log_Y(X)$
Natural logarithm	LN	1	1	$\log_e(X)$
Common logarithm	LOG	1	1	$\log_{10}(X)$
Binary logarithm	LB	1	1	$\log_2(X)$

5-3. Trigonometric functions

Here is the list of trigonometric and inverse trigonometric functions:

Function	Keyword	R	D	Computation
Sine	SIN	1	1	sin(X)
Cosine	cos	1	1	cos(X)
Tangent	TAN	1	1	tan(X)
Arcsine	ASIN	1	1	arcsin(X)
Arccosine	ACOS	1	1	arccos(X)
Arctangent	ATAN	1	1	arctan(X)

These keywords depend on the angle mode. If you input "sin" in degree mode, this software calls "sin (degree)".

The radian trigonometric functions are here:

Function	Keyword	R	D	Computation
Sine (Radian)	SINR	1	1	sin(X[rad])
Cosine (Radian)	COSR	1	1	cos(X[rad])
Tangent (Radian)	TANR	1	1	tan(X[rad])
Arcsine (Radian)	ASINR	1	1	arcsin(X)[rad]
Arccosine (Radian)	ACOSR	1	1	arccos(X) [rad]
Arctangent (Radian)	ATANR	1	1	arctan(X) [rad]

The degree trigonometric functions are here:

Function	Keyword	R	D	Computation
Sine (Degree)	SIND	1	1	sin(X[deg])
Cosine (Degree)	COSD	1	1	cos(X[deg])
Tangent (Degree)	TAND	1	1	tan(X[deg])
Arcsine (Degree)	ASIND	1	1	arcsin(X)[deg]
Arccosine (Degree)	ACOSD	1	1	arccos(X) [deg]
Arctangent (Degree)	ATAND	1	1	arctan(X) [deg]

The grade trigonometric functions are here:

Function	Keyword	R	D	Computation
Sine (Grade)	SING	1	1	sin(X[gra])
Cosine (Grade)	COSG	1	1	cos(X[gra])
Tangent (Grade)	TANG	1	1	tan(X[gra])
Arcsine (Grade)	ASING	1	1	arcsin(X)[gra]
Arccosine (Grade)	ACOSG	1	1	arccos(X) [gra]
Arctangent (Grade)	ATANG	1	1	arctan(X)[gra]

EX 1 sin(30) (mode dependent)

Input> 30 sin

EX 2 cos(52[deg])

Input> 52 tand

5-4. Hyperbolic functions

Use following keywords to calculate hyperbolic functions:

Function	Keyword	R	D	Computation
Hyperbolic sine	SINH	1	1	sinh(X)
Hyperbolic cosine	COSH	1	1	cosh(X)
Hyperbolic tangent	TANH	1	1	tanh(X)
Inverse hyperbolic sine	ASINH	1	1	asinh(X)
Inverse hyperbolic cosine	ACOSH	1	1	acosh(X)
Inverse hyperbolic tangent	ATANH	1	1	atanh(X)

EX cosh(1.2)

Input> 1.2 cosh

5-5. Stats functions

Stats functions are here:

Function	Keyword	R	D	Computation
Beta function	ВЕТА	2	2	B(Y,X)
Gamma function	GAMMA	1	1	Γ(X)
Logarithm of gamma function	LNGAMMA	1	1	$\log_{\mathrm{e}} \Gamma(X) $
Error function	ERF	1	1	erf(X)
Complementary error function	ERFC	1	1	$1 - \operatorname{erf}(X)$

Input> 0.5 1.6 beta

Input> 2 gamma

5-6. Integer roundings

Integer roundings are here:

Function	Keyword	R	D	Computation
Elear function	FLOOR	1	1	
Floor function	FLR	1	1	
Ceiling function	CEIL	1	1	[X]
Downd	ROUND	1	1	
Round	RND	1	1	[X + 0.5]

Input> -2.2 flr

EX 2
$$[\pi]$$

Input> pi ceil

5-7. Functions for integers

Functions for integers such as GCD and LCM are here:

Function	Keyword	R	D	Computation
Eastorial	FACT	1	1	771
Factorial	!	1	1	<i>X</i> !
Greatest common divisor	GCD	1	1	GCD(Y,X)
Least common multiple	LCM	1	1	LCM(Y, X)
Permutations	PERM	1	1	$_{Y}$ P $_{X}$
Combinations [binomial coefficient]	СОМВ	1	1	$_{Y}C_{X}={Y\choose X}$

 $\begin{array}{ccccc} \mathrm{EX} \ 1 & {}_5\mathrm{P}_2 \\ \hline & \boxed{\mathrm{Input}} & \mathbf{5} \ \mathbf{2} \ \mathrm{perm} \end{array}$

EX 2 LCM(12,50)

Input> 12 50 lcm

6-1. Percent calculations

Percent calculations such as including tax are here:

Function	Keyword	R	D	Computation
V margant of V	PERC	2	1	. X
X percent of Y PC	2	1	$Y \times \frac{X}{100}$	
Dalta paraant hatwaan V and V	DPERC	2	2 2	$\frac{X-Y}{Y} \times 100$
Delta percent between Y and X DP	DP	۷		
Include tax	INTAX	2	2	$Y \times \frac{100 + X}{100}$
Exclude tax	EXTAX	2	2	$Y \times \frac{100}{100 + X}$

These functions support only scalars.

6-2. Time conversion

Conversions between sec, min, hour, day and week are here.

Function	Keyword	R	D	Computation
Seconds to ninutes	STOM	1	1	X/60
Seconds to hours	STOH	1	1	X/3600
Seconds to days	STOD	1	1	X/86400
Seconds to weeks	STOW	1	1	X/604800
Minutes to seconds	MTOS	1	1	$X \times 60$
Minutes to hours	МТОН	1	1	X/60
Minutes to days	MTOD	1	1	X/1440
Minutes to weeks	MTOW	1	1	X/10080
Hours to seconds	HTOS	1	1	<i>X</i> × 3600
Hours to minutes	НТОМ	1	1	$X \times 60$
Hours to days	HTOD	1	1	X/24
Hours to weeks	HTOW	1	1	X/168
Days to seconds	DTOS	1	1	X × 86400
Days to minutes	DTOM	1	1	<i>X</i> × 1440
Days to hours	DTOH	1	1	X × 24
Days to weeks	DTOW	1	1	X/7
Weeks to seconds	WTOS	1	1	<i>X</i> × 604800
Weeks to minutes	WTOM	1	1	X × 10080
Weeks to hours	WTOH	1	1	X × 168
Weeks to days	WTOD	1	1	$X \times 7$

These functions support only scalars.

EX 2 45 mins to hours

Input> 45 mtoh

EX 1 65536 secs to days

Input> 65536 stod

6-3. DMS conversion

DMS conversion divides a scalar value into degrees / minutes / seconds.

Inverse DMS conversion combines degrees / minutes / seconds into a value.

Function	Keyword	R	D	Computation
Decimal deg to deg/min/sec	TODMS	1	1	$Z \leftarrow D$ $Y \leftarrow M$ $X \leftarrow S$
Deg/min/sec to decimal deg	DMSTO	3	3	$Z + \frac{Y}{60} + \frac{X}{3600}$

These functions support only scalars.

EX 1 4096 sec to h:m:s

EX 2 30°20′10″ to degrees

Input> 4096 stoh todms

Input> 30 20 10 dmsto

6-4. Whole stack calculations

You can find sum or infinite product in the stack.

Function	Keyword	R	D	Computation
Sum	SUM	N>1	N	$\sum_{i=1}^{n} x_i$
Infinite product	PROD	N>1	N	$\prod\nolimits_{i=1}^{n} x_{i}$
Arithmetic average	AVR	N>1	N	$\frac{1}{n} \sum_{i=1}^{n} x_i$
Geometric average	GAVR	N>1	N	$\sqrt[n]{\prod_{i=1}^n x_i}$
Harmonic average	HAVR	N>1	N	$\frac{n}{\sum_{i=1}^{n} x_i^{-1}}$

If there are errors in the process of the functions, the calculation is cancelled and the stack keeps on.

Other versions available:

Function	Keyword	R	D	Computation
Partial sum	PSUM	N>2	M+1	
Partial product	PPROD	N>2	M+1	
Partial arithmetic average	PAVR	N>2	M+1	
Partial geometric average	PGAVR	N>2	M+1	
Partial harmonic average	PHAVR	N>2	M+1	
Sum without drop	SUMW	N>1	0	
Infinite product without drop	PRODW	N>1	0	
Arithmetic average without drop	AVRW	N>1	0	
Geometric average without drop	GAVRW	N>1	0	
Harmonic average without drop	HAVRW	N>1	0	
Partial sum without drop	PSUMW	N>2	1	
Partial product without drop	PPRODW	N>2	1	
Partial arithmetic average without drop	PAVRW	N>2	1	
Partial geometric average without drop	PGAVRW	N>2	1	
Partial harmonic average without drop	PHAVRW	N>2	1	

6-5. Multiply by prefix

Multiplication by prefix means the removal of prefix. For instance, if you have to get meter from kilometer, multiply by 1000, which means kilo.

Here is the list of multiplications by prefix:

Function	Keyword	R	D	Computation
Multiply by yocto	УОСТО	1	1	$X \times 10^{-24}$
Multiply by zepto	ZEPTO	1	1	$X \times 10^{-21}$
Multiply by atto	ATTO	1	1	$X \times 10^{-18}$
Multiply by femto	FEMTO	1	1	$X \times 10^{-15}$
Multiply by pico	PICO	1	1	$X \times 10^{-12}$
Multiply by nano	NANO	1	1	$X \times 10^{-09}$
Multiply by micro	MICRO	1	1	$X \times 10^{-06}$
Multiply by milli	MILLI	1	1	$X \times 10^{-03}$
Multiply by centi	CENTI	1	1	$X \times 10^{-02}$
Multiply by deci	DECI	1	1	$X \times 10^{-01}$
Multiply by deca	DECA	1	1	$X \times 10^{+01}$
Multiply by hecto	НЕСТО	1	1	$X \times 10^{+02}$
Multiply by kilo	KILO	1	1	$X \times 10^{+03}$
Multiply by mega	MEGA	1	1	$X \times 10^{+06}$
Multiply by giga	GIGA	1	1	$X \times 10^{+09}$
Multiply by tera	TERA	1	1	$X \times 10^{+12}$
Multiply by peta	PETA	1	1	$X \times 10^{+15}$
Multiply by exa	EXA	1	1	$X \times 10^{+18}$
Multiply by zetta	ZETTA	1	1	$X \times 10^{+21}$
Multiply by yotta	YOTTA	1	1	$X \times 10^{+24}$
Multiply by kibi	KIBI	1	1	$X \times 2^{10}$
Multiply by mebi	MEBI	1	1	$X \times 2^{20}$
Multiply by gibi	GIBI	1	1	$X \times 2^{30}$
Multiply by tebi	TEBI	1	1	$X \times 2^{40}$
Multiply by pebi	PEBI	1	1	$X \times 2^{50}$
Multiply by exbi	EXBI	1	1	$X \times 2^{60}$
Multiply by zebi	ZEBI	1	1	$X \times 2^{70}$
Multiply by yobi	YOBI	1	1	$X \times 2^{80}$

6-6. Divide by prefix

Division by prefix means the addition of prefix. For instance, if you have to get millimeter from meter, divide by 0.001, which means milli.

Here is the list of divisions by prefix:

Function	Keyword	R	D	Computation
Divide by yocto	тоуосто	1	1	$X/10^{-24}$
Divide by zepto	TOZEPTO	1	1	$X/10^{-21}$
Divide by atto	TOATTO	1	1	$X/10^{-18}$
Divide by femto	TOFEMTO	1	1	$X/10^{-15}$
Divide by pico	TOPICO	1	1	$X/10^{-12}$
Divide by nano	TONANO	1	1	$X/10^{-09}$
Divide by micro	TOMICRO	1	1	$X/10^{-06}$
Divide by milli	TOMILLI	1	1	$X/10^{-03}$
Divide by centi	TOCENTI	1	1	$X/10^{-02}$
Divide by deci	TODECI	1	1	$X/10^{-01}$
Divide by deca	TODECA	1	1	$X/10^{+01}$
Divide by hecto	ТОНЕСТО	1	1	$X/10^{+02}$
Divide by kilo	TOKILO	1	1	$X/10^{+03}$
Divide by mega	TOMEGA	1	1	$X/10^{+06}$
Divide by giga	TOGIGA	1	1	$X/10^{+09}$
Divide by tera	TOTERA	1	1	$X/10^{+12}$
Divide by peta	TOPETA	1	1	$X/10^{+15}$
Divide by exa	TOEXA	1	1	$X/10^{+18}$
Divide by zetta	TOZETTA	1	1	$X/10^{+21}$
Divide by yotta	TOYOTTA	1	1	$X/10^{+24}$
Divide by kibi	TOKIBI	1	1	$X/2^{10}$
Divide by mebi	TOMEBI	1	1	$X/2^{20}$
Divide by gibi	TOGIBI	1	1	$X/2^{30}$
Divide by tebi	TOTEBI	1	1	X/2 ⁴⁰
Divide by pebi	TOPEBI	1	1	$X/2^{50}$
Divide by exbi	TOEXBI	1	1	$X/2^{60}$
Divide by zebi	TOZEBI	1	1	$X/2^{70}$
Divide by yobi	TOYOBI	1	1	X/2 ⁸⁰

6-7. Angle conversion

Angle conversions here:

Function	Keyword	R	D	Computation
Radian to degree	RTOD	1	1	180Χ/π
Radian to grace	RTOG	1	1	$200X/\pi$
Degree to radian	DTOR	1	1	$\pi X / 180$
Degree to grade	DTOG	1	1	10 <i>X</i> /9
Grade to radian	GTOR	1	1	$\pi X/200$
Grade to degree	GTOD	1	1	9 <i>X</i> /10

6-8. Angle calculation

Complementary / supprementaly angle:

Function	Keyword	R	D	Computation
Complementary angle [1]	CANG	1	1	
Complementary angle (Radian)	CANGR	1	1	$\pi/2-X$
Complementary angle (Degree)	CANGD	1	1	90 – <i>X</i>
Complementary angle (Grade)	CANGG	1	1	100 - X
Supplementary angle [1]	SANG	1	1	
Supplementary angle (Radian)	SANGR	1	1	$\pi - X$
Supplementary angle (Degree)	SANGD	1	1	180 – X
Supplementary angle (Grade)	SANGG	1	1	200 – X

[1] Depends on angle mode

6-9. Ratio

Convert a rational number into two integers.

Function	Keyword	R	D	Computation
Ratio	RATIO	1	1	$Y \leftarrow Numerator$
Katio	KAIIU	1	1 1	$X \leftarrow Denominator$

6-10. Random numbers

You can generate random numbers:

Function	Keyword	R	D	Computation
Random integer	RAND	0	0	Push Int
Random floating	FRAND	0	0	Push Flt

IMPORTANT

A random integer has 63 bits and random floating is generated from a random integer.

The algorithm of random generator is mersenne twister.

6-11. Cast
You can cast data types:

Function	Keyword	R	D	Computation
Cast into integer	TOINT	1	1	
Cast into floating	TOFLT	1	1	
Cast into rational	TORAT	1	1	
Cast into bool	TOBOOL	1	1	
Cast into byte	TOBYTE	1	1	
Cast into word	TOWORD	1	1	
Cast into dword	TODWORD	1	1	
Cast into qword	TOQWORD	1	1	
Cast into word (Sign extend)	TOSWORD	1	1	
Cast into dword (Sign extend)	TOSDWORD	1	1	
Cast into qword (Sign extend)	TOSQWORD	1	1	

IMPORTANT

You can approximate floating to rational with "cast into rational".

The approximation is using continued fraction.

6-12. Calculations for engineers

These are useful calculations for engineers:

Function	Keyword	R	D	Computation
Multiply by 2π	TPIX	1	1	$2\pi X$
Divide by 2π	DTPI	1	1	$X/2\pi$
Parallel	PARA	1	1	$(Y^{-1} + X^{-1})^{-1}$
To decibel	TODB	1	1	$10\log_{10} X $
Decibel to	DBTO	1	1	$10^{\frac{X}{10}}$

6-13. Health calculations

These calculations are extras:

Function	Keyword	R	D	Computation
Discomfort index	DISCOM	2	2	$0.81Y - 0.01X \times (0.99Y - 14.3) + 46.3$
Body mass index	BMI	2	2	$X/(Y/100)^2$

7-1. Display of complex numbers

This software displays complex numbers as following:

Mode	Expression	Display
Default	5 + 12 <i>i</i>	5 + i12
Euler	13∠67[deg]	13 exp(+i67.d)
(degree)	13207 [deg]	13 exp(+107.u)
Euler	12 (1 2[4]	13 exp(+i1.3)
(radian)	13∠1.3[rad]	13 exp(+i0.41 Pi)
Euler	12 /7[[ma]	12 ovn/ii7E g)
(grade)	13∠75[gra]	13 exp(+i75.g)

Type "EULER" or "EUL" to toggle Euler mode. If Euler mode is enabled, complex numbers are shown as polar display.

The argument display depends on angle mode. Use the keywords "DEG", "RAD" or "GRA" to change angle mode.

If you select radian, you can convert the argument to π radians. To switch the display, type "PIRAD" or "PRAD".

Function	Keyword
Fulan Hanlan	EULER
Euler display	EUL
Degree mode	DEG
Radian mode	RAD
Grade mode	GRAD
Grade mode	GRA
1' 1 _	PIRAD
π radian mode	PRAD

When Euler display is on, even scalars are treated as complex numbers so its argument is displayed if its value is not 0.

7-2. How to make complex numbers

There are three ways to make complex numbers.

IMPORTANT

Real and imaginary part accept only scalars.

7-2-1. Input imaginary and add or subtract

Try to make "2+i3".

Input> 2 i3 +

7-2-2. Make complex from real and imaginary part

Push real and imaginary part in turn and make complex. Use the keyword "MKCMP" or "MKC" to make complex from rectangular.

Input> 2 3

#	TYPE	VALUE	
4			
Z			Real.
Υ	Integer	2	
Х	Integer	3	Imaginary.

Input> mkc

	ı		1		
#	TYPE	VALUE			
4					
Z				C1	
Υ				Complex	
Х	Complex	2 + i3	4	generated.	ل

7-2-3. Make complex from absolute value and argument

Push absolute value and argument in turn and make complex. Use the keyword "MKE" to make complex from polar.

This keyword depends on angle mode. For example, make 1.5∠30° in degree mode.

Input> 1.5 30

#	TYPE	VALUE		
4				$\overline{}$
Z			Absolute	.]
Υ	Floating	1.5		
Х	Integer	30	Argument	t.

Input> mke

#	TYPE	VALUE	
4			
Z			
Υ			Complex
Х	Complex	1.29903811 + i0.75	generated.

Radian version is "MKER".

Degree version is "MKED".

Grade version is "MKEG".

You can generate complex with following keywords:

Function	Keyword	R	D	Computation	
Make complete from most an ovlan	MKCMP	2	2	W + JW	
Make complex from rectangular	MKC	2		Y + iX	
Make complex from polar	MKE	2	2	$Y \angle X$	
Make complex from polar (radian)	MKER	2	2	<i>Y∠X</i> [rad]	
Make complex from polar (degree)	MKED	2	2	<i>Y∠X</i> [deg]	
Make complex from polar (grade)	MKEG	2	2	<i>Y∠X</i> [gra]	

7-3. Complex calculations

You can operate complex calculations:

Function	Keyword	R	D	Computation
Real part	RE	1	1	Re(X)
Imaginary part	IM	1	1	Im(X)
Complex argument	ARG	1	1	arg X
Complex argument (radian)	ARGR	1	1	arg X [rad]
Complex argument (degree)	ARGD	1	1	arg X [deg]
Complex argument (grade)	ARGG	1	1	arg X [gra]
Complex conjugation	СОИЈ	1	1	conj(X)

Complex magnitude is "ABS".

EX 1
$$arg(1+i2)$$
 EX 3 $conj(6+i3)$ Input> 1 2 mkc arg Input> 6 3 mkc conj EX 2 $Re(15 \angle 32^\circ)$ Input> 15 32 mked re

7-4. Disassemble complex

You can disassemble complex numbers:

Function	Keyword	R	D	Computation
Dool and imaginary	DETM	1	1	$Y \leftarrow \operatorname{Re}(X)$
Real and imaginary	REIM		1	$X \leftarrow \operatorname{Im}(X)$
Magnitude and argument	MAGA	1	1	$Y \leftarrow X $
wagiitude and argument	MAGA	1	Т	$X \leftarrow \arg X$
Magnitude and argument (radian)	MAGAR	1	1	$Y \leftarrow X $ $X \leftarrow \arg X [rad]$
iviagintude and argument (radian)				$X \leftarrow \arg X [\text{rad}]$
Magnitude and argument (degree)	MAGAD	1	1	$Y \leftarrow X $
wagiitude and argument (degree)	MAGAD		1	$X \leftarrow \arg X [\deg]$
Magnitude and argument (grade)	MAGAG	1	1	$Y \leftarrow X $
iviagintude and argument (grade)			1	$X \leftarrow \arg X [\operatorname{gra}]$

EX 1 $15\angle32^{\circ}$ to Re/Im part

Input> 15 32 mked reim

EX 2 5 + i3 to magnitude and arg (deg)

Input> 5 3 mkc magad

7-5. Complex functions

This software supports complex functions:

- Square root, cubic root
- Power, logarithm
- Trigonometric functions
- Hyperbolic functions

Complex trigonometric functions are available only in radian.

8-1. Unsigned decimal and Boolean

This software displays unsigned decimal and Boolean as following:

Type/mode	Value	Display
Dooloon	TRUE	Т
Boolean	FALSE	F
Binary mode	255	0b11111111
Octal mode	255	0377
Signed decimal mode	255	-1
Unsigned decimal mode	255	255
Hexadecimal mode	255	0xFF

8-2. Bit length

You can operate logical calculations in calculation mode.

This software supports 8, 16, 32, 64 bits. The bit length setting is shown in the display. Switch the mode to change the bit length.

Mode	Keyword	Symbol	
8-bit mode	BYTE	(Byta)	
(byte)	DITE	(Byte)	
16-bit mode	WORD	(Word)	
(word)	WORD	(word)	
32-bit mode	DWORD	(Duand)	
(dword)	DWOND	(Dword)	
64-bit mode	OHORD	(Owond)	
(qword)	QWORD	(Qword)	

Set bit length and the bit length symbol changes.

Please notice that if you input too large value for selected bit length, the software masks its lower N-bit (N is selected length) and push the result.

8-3. N-ary number switching

You can find N-ary number mode in the display.

Use the keywords to switch N-ary number display mode:

Mode	Keyword	Symbol
Binary display	BIN	(Bin)
Octal display	ОСТ	(0ct)
Signed decimal display	SDEC	(Sdec)
Unsigned decimal display	UDEC	(Udec)
Hexadecimal display	HEX	(Hex)

Set N-ary and the N-ary symbol changes.

8-4. Input binary and Boolean

Input value as binary (unsigned integer) to operate logical calculations.

Boolean: True value is "TRUE" or "T" and false value is "FALSE" or "F".

Unsigned: Type "u" and postfix non-signed integer.

Binary: Type "0b" and postfix binary expression using 0 and 1.

Octal value: Type "0o" and postfix octal expression using 0 to 7.

Hex value: Type "0x" and postfix hexadecimal expression using 0 to 9 and A to F.

The input data is shown as selected N-ary display mode. For example, input binary "0b1010" and the display is "0x0000000A" in hexadecimal mode.

Input> 0b1010

#	TYPE	VALUE
4		
Z		
Υ		
Х	Dword	0x0000000A

You can push binaries and Booleans at one time.

Input> t f

#	TYPE	VALUE
4		
Z	Dword	0x0000000A
Υ	Boolean	Т
Х	Boolean	F

8-5. Fundamental logical calculations

Here is the list of fundamental logical calculations:

Function	Keyword	R	D	Computation	
Bitwise NOT	NOT	1	1	$ar{X}$	
Bitwise NOT	~			Λ	
Bitwise AND	AND	2	2	$Y \wedge X$	
Ditwise AND	&	۷			
Bitwise OR	OR	2	2	$Y \vee X$	
Ditwise OK	1			IVA	
Bitwise XOR	XOR	2	2	$Y \oplus X$	
Bitwise NAND	NAND	2	2	$\overline{Y \wedge X}$	
Bitwise NOR	NOR	2	2	$\overline{Y \vee X}$	

EX 1 0x1234 & 0b0111

Input> 0x1234 0b0111 and

EX 2 not(65535)

Input> u65535 not

8-6. Bit shift Bit shifts are here:

Function	Keyword	R	D	Computation	
Shift left	SHL	1	1	X << 1	
Sinit left	<<	1		X << 1	
Shift logical right	SHR	1	1	X >> 1	
Sinit logical right	>>			X >> 1	
Shift arithmatic right	SAR	1	1	X >>> 1	
Shift arithmetic right	>>>	1	1	X >>> 1	
Shift Left (N times)	SHLC	2	2	X << N	
Shift Right (N times)	SHRC	2	2	X >> N	
Shift Arithmetic	SARC 2	J	2	X >>> N	
Right (N times)		2		X >>> N	
Shift byte left	SBL	1	1	X << 8	
Shift byte right	SBR	1	1	X >> 8	
Shift nibble left	SNL	1	1	X << 4	
Shift nibble right	SNR	1	1	X >> 4	

EX 1 0x1234 & 0b0111

Input> 0x1234 0b0111 and

EX 2 not(65535)

Input> u65535 not

8-7. Rotate

Bit rotates are here:

Function	Keyword	R	D	Computation	
Rotate left	ROL	1	1	Rotate X Left	
Rotate right	ROR	1	1	Rotate X Right	

EX rol(31)

Input> u31 rol

8-8. Other functions that support unsigned integer

Function	Keyword	R	D	Computation	
Increment	INC	1	1	X + 1	
merement	++	1			
Decrement	DEC	1	1	X-1	
Decrement		1			
A 4.4	ADD	2	2	Y + X	
Add	+	2			
Culatina at	SUB	2	2	Y - X	
Subtract	-				
Multiple	MUL	2	2	VVV	
Multiply	*	2		$Y \times X$	
Divide	DIV	2	2	Y/X	
Divide	/	2			
Nagata	NEG	1	1	-X	
Negate	PM				

IMPORTANT

The addition of 2 Booleans is XOR, and the multiplication of 2 Booleans is AND. If you increment Boolean, the result is always true.

8-9. Whole-stack logical calcultions

You can operate logical calculations for whole-stack.

Function	Keyword	R	D	Computation
All AND	ALLAND	N>1	N	$x_1 \wedge x_2 \dots$
All OR	ALLOR	N>1	N	$x_1 \lor x_2 \dots$
All XOR	ALLXOR	N>1	N	$x_1 \oplus x_2 \dots$

9-1. Display of vectors

This software displays vectors as following:

Туре	Math expr.	Display
Horizontal [Row]	[1 2 3]	[1, 2, 3]
Vertical (Col)	$\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$	(3, 2, 1)

9-2. Making of vector

You can include scalars, complex numbers or even binaries in vectors.

The input of vectors is complicated. I recommend using register function. Please read chapter 11 to get more information.

You can make vector with the following keywords:

Function	Keyword	R	D	Computation
Make row tuple	MRTUP	N	N	Push Tup.R
Make column tuple	MCTUP	N	N	Push Tup.C

There are three steps for making a vector:

- 1. Push elements of a vector
 - ... Push data in turn.
- 2. Push the number of elements the vector contains
 - ... Set the dimension of the vector.
- 3. Call making function
 - ... The vector is pushed.

NOTICE

You can include integers, floatings, rationals, complexes, Booleans and unsigned integers in a vector.

So, let us make row tuple [1 + i2 6].

(1) Push elements

Input> 1 2 mkc 6

#	TYPE	VALUE	
4			
Z			
Υ	Complex	1 + i2	
Х	Integer	6	Push in turn.

(2) Push number of elements

Input> 2

#	TYPE	VALUE	
4			
Z	Complex	1 + i2	
Υ	Integer	6	
Х	Integer	2	Dimension.

(3) Make row tuple

Input> mrtup

#	TYPE	VALUE		
4				
Z				$\overline{}$
Υ			J	ke row
Х	Tuple[Row]	[1 + i2, 6]	<u>tı</u>	uple.

Making column tuple is similar with this case.

You can make unit vectors easily.

Function	Keyword	R	D	Computation
Make row unit tuple	MRUTUP	2	2	Push Tup.R
Make column unit tuple	MCUTUP	2	2	Push Tup.C

These functions requires 2 arguments: a dimension and a position.

- 1. Push a integer as a dimension
- 2. Push a integer as a position (starting with 1)
- 3. Call making function

Make (0 1 0).

(1) Push the dimension

Input> 3

#	TYPE	VALUE	
4			
Z			
Υ			
Х	Integer	3	Dimension.

(2) Push the position

Input> 2

#	TYPE	VALUE	
4			
Z			
Υ	Integer	3	2
Х	Integer	2	Position.

(3) Make column unit tuple

Input> mcutup

#	TYPE	VALUE	
4			
Z			
Υ			
Х	Tuple(Col)	(0, 1, 0)	Generated.

9-3. Extract element from tuple

Use the keyword "TGET" to extract one element from a tuple.

Please make sure Y is a tuple and X is an integer as a position (starting with 1) to extract.

Function	Keyword	R	D	Computation
Get element from tuple	TGET	2	2	Extract

This function drops 2 data, so the vector from that you extract is dropped. I recommend storing the tuple to a register and call to extract.

Please read chapter 11 to make comprehension of using register function.

You can crave a tuple into elements.

Function	Keyword	R	D	Computation
Charterin	CUT	1 1	1	
Crave up	CRAVE	Т	T	

The used tuple is dropped and the extracted elements are pushed in turn.

Let us extract the second element from (6 9 12).

(0) Make sure that the tuple exists

#	TYPE	VALUE
4		
Z		
Υ		
Х	Tuple[Col]	(6, 9, 12)

(1) Set a position.

Input> 2

#	ТҮРЕ	VALUE	
4			
Z			
Υ	Tuple[Col]	(6, 9, 12)	
Х	Integer	2	Position.

(2) Extract

Input> tget

#	TYPE	VALUE	
4			
Z			
Υ			
Х	Integer	9	Extracted.

9-4. Four arithmetics of vectors

The four aritmetics keywords of vectors are same as those of scalars.

Please check that the calculations are defined.

9-5. Inner / outer product

Use the keywords to calculate inner / outer product:

Function	Keyword	R	D	Computation
Innorma dust	INNER	2		$ec{Y}\cdotec{X}$
Inner product	DOT	2	2	Y·X
Outon mad duct	OUTER	2	2	$\vec{Y} \times \vec{X}$
Outer product	CROSS		2	$Y \times X$

Outer product suppots only 3-dimensional tuples.

9-6. Norms of vectors

Here is the keywords of norms of vectors:

Function	Keyword	R	D	Computation
Euclid norm	NORM	1	1	$\sqrt{\sum_{i=1}^{\infty} x_i ^2}$
Euclid norm squared	NSQ	1	1	$\sum\nolimits_{i=1}^{\infty} \lvert x_i \rvert^2$
Lp-norm	PNORM	2	2	$\left(\sum_{i=1}^{\infty} y_i ^x\right)^{1/x}$
Max norm	MAXNORM	1	1	$\max(x_1 , x_2 , x_n)$

Euclid norm, Euclid norm squared ana maxnorm require one vector.

For example, type following to find the Euclid norm of [3 5 7]:

Lp-norm requires one vector and an integer as a dimension.

Type following to find the third norm of [7 8 9]:

9-7. Transpose vectors

Use the keyword "TRANS" to transpose vectors.

Function	Keyword	R	D	Computation
Transpose	TRANS	1	1	X^T

This function supports matrices.

10-1. Display of matrices

This software handles matrices as tuples of row tuples.

Math expr.	Display		
$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$	[[1, 2, 3], [4, 5, 6], [7, 8, 9]]		

10-2. Making of matrices

This software supports matrix calculations. Matrices of this software can include scalars, complexes, Booleans and unsigned integers.

The input of matrices is complicated. I recommend using register function. Please read chapter 11 to get more information.

Use the keyword "MKMAT" to make a matrix.

Function	Keyword	R	D	Computation
Make matrix	MKMAT	N	N	Push Mat

There are three steps for making a vector:

- 1. Prepare same dimensional and directional vectors.
 - ... Make sure vectors are all row or all column.
- 2. Push an integer as a number of vectors.
 - ... The integer must be greater than zero.
- 3. Call making function
 - ... Make a matrix from vectors.

NOTICE

Matrices include row tuples. The data types that tuples cannot include are not supported in matrices.

Let us input matrix A:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

(1-1) Make two row vectors

Input> 1 2 2 mrtup 3 4 2 mrtup

#	TYPE	VALUE	
4			
Z			
Υ	Tuple[Row]	[1, 2]	
Х	Tuple[Row]	[3, 4]	Added in turn.

(1-2) Set a number of vectors

Input> 2

#	TYPE	VALUE	
4			
Z	Tuple[Row]	[1, 2]	
Υ	Tuple[Row]	[3, 4]	
Х	Integer	2	Number.

(1-3) Make matrix

Input> mkmat

#	TYPE	VALUE	
4			
Z			
Υ			
Χ	Matrix	[[1, 2], [3, 4]]	Generated.

(2-1) Push two column tuple

Input> 1 3 2 mctup 2 4 2 mctup

#	TYPE	VALUE	
4			
Z			
Υ	Tuple(Col)	(1, 3)	Pushed in
Χ	Tuple(Col)	(2, 4)	turn.

(2-2) Set a number of vectors

Input> 2

#	TYPE	VALUE	
4			
Z	Tuple(Col)	(1, 3)	
Υ	Tuple(Col)	(2, 4)	(); i
Х	Integer	2	Number.

(2-3) Make matrix

Input> mkmat

#	TYPE	VALUE	
4			
Z			
Υ			
Х	Matrix	[[1, 2], [3, 4]]	Generated.

Make sure the sizes and directions of all vectors to make a matrix are same.

You can make a unit matrix easily. Use the keyword "MKUMAT".

Function	Keyword	R	D	Computation
Make unit matrix	MKUMAT	1	1	Push Mat

Set an integer as a dimension and call the function. For instance, input this to make 3-dim unit matrix:

Input> 3 mkumat

10-3. Get element or tuple from matrix

Get a tuple or a element from matrix to use following keywords:

Function	Keyword	R	D	Computation
Get element from matrix	MGET	3	3	Extract
Get row tuple from matrix	MGETR	2	2	Extract
Get column tuple from matrix	MGETC	2	2	Extract

These functions drop a matrix. I recommend using register function.

Please read chapter 11 to get more information about registers.

You can crave up matrices.

Function	Keyword	R	D	Computation
Cravia via	CUT	1	1	
Crave up	CRAVE	1	1	

A matrix is craved up into row tuples and they are pushed in turn.

Go on to the next pages to get usages of "MGET", "MGETR" and "MGETC".

10-3-1. Get element from matrix

Use the keyword "MGET" to get an element from a matrix.

Make sure Z is matrix, Y is position i, X is position j. The position counting starts with 1.

Try to extract element (1,2) from matrix [[1, 2], [3, 4]].

(0) Matrix is pushed

#	TYPE	VALUE
4		
Z		
Υ		
Х	Matrix	[[1, 2], [3, 4]]

(1) Select a position of an element

Input> 1 2

#	TYPE	VALUE	
4			Position i.
Z	Matrix	[[1, 2], [3, 4]]	T OSITION 1.
Υ	Integer	1	
Х	Integer	2	Position j.

(2) Get an element from matrix

Input> mget

ı				•
	#	TYPE	VALUE	
	4			
	Z			
	Υ			
	Χ	Integer	2	Extracted.

10-3-2. Get tuple from matrix

You can get a tuple from a matrix. "MGETR" is the row tuple version and "MGETC" is the column tuple version.

Make sure Y is matrix and X is position. The position counting starts with 1.

Try to extract second column tuple from [[1, 2], [3, 4]].

(0) Matrix is pushed

#	TYPE	VALUE
4		
Z		
Υ		
Х	Matrix	[[1, 2], [3, 4]]

(1) Select a position

Input> 2

#	TYPE	VALUE	
4			
Z			
Υ	Matrix	[[1, 2], [3, 4]]	
Х	Integer	2	Position.

(2) Get a column tuple from matrix

Input> mgetc

#	TYPE	VALUE	
4			
Z			
Υ			
Χ	Tuple(Col)	(2, 4)	Extracted.

10-4. Four arithmetics of matrices

The four arithmetics keywords are similar with those of scalars.

EX 1

$$\begin{bmatrix} 3 & 7 \\ 9 & 5 \end{bmatrix} - \begin{bmatrix} 2 & 6 \\ 2 & 4 \end{bmatrix}$$

Input> 3 7 2 mrtup 9 5 2 mrtup 2 mkmat
Input> 2 6 2 mrtup 2 4 2 mrtup 2 mkmat

Input> -

EX 2

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{pmatrix} 5 \\ 6 \end{pmatrix}$$

Input> 1 2 2 mrtup 3 4 2 mrtup 2 mkmat

Input> 5 6 2 mctup

Input> *

10-5. Determinant and inverse matrix

Here is determinant and finding inverse matrix:

Function	Keyword	R	D	Computation
Determinant	DET	1	1	det X
Invert	INV	1	1	X^{-1}

These functions support only square matrices. You cannot find inverse matrix of A if the determinant of A is zero.

EX

$$\begin{bmatrix} \sqrt{2} & 1 \\ 1 & \sqrt{2} \end{bmatrix}^{-1}$$

Input> 2 sqrt 1 2 mrtup 1 2 sqrt 2 mrtup 2 mkmat inv

10-6. Transpose matrix

Here is the list of transpose functions:

Function	Keyword	R	D	Computation
Transpose	TRANS	1	1	X^T
Homeitian transpaga	HTRANS	1	1	$conj(X^T)$
Hermitian transpose	HCONJ	1		conj(x ·)

Hermitian transpose function transposes matrix or vector and conjugate each element in it.

10-7. Other matrix functions

Here is the list of other matrix functions:

Function	Keyword	R	D	Computation
Trace	TRACE	1	1	tr(X)

Trace function supports only square matrices.

11-1. What is register

A register is kind of a memory. Each register in this software is independent of the stack. You can calculate more quickly with register function. There are 26 registers: $RA \sim RZ$.

	(Rad) (Hex) (Dword) [Reg] Stack: 3, History: 0/10	
# TYPE RA: Floating RB: RC:	: : : :	VALUE 3.14159265
Z: Integer Y: Integer X: Integer	: : :	4 3 2
PUSH Integer Ready to ope	rate	

You can store one data to each register and can load or delete any time.

Even if the stack is changed or cleared, the registers keep on.

Registers can hold any data: scalars, vectors, errors even strings.

This manual uses following tables:

#	TYPE	VALUE		
RA				Registers
RB			4	$RA \sim RZ$.
Z				
Υ				
Х				

This table shows X, Y and Z in a stack and RA and RB in registers.

11-2. Register display

Type "REGISTER" or "REG" to switch register display.

If register display is enabled, the symbol [Reg] is displayed.

You can change display page of registers:

Function	Keyword
Creitale magistan digulary	REGISTER
Switch register display	REG
Nove many of magistans	REGNEXT
Next page of registers	RN
Dunning of an interes	REGPREV
Previous page of registers	RP
First as a seferal stars	REGFIRST
First page of registers	RF

See also chapter 3 and chapter 4.

IMPORTANT

Switching register display function and register page changing functions do not affect registers. So you can use registers without displaying registers.

11-3. Store to selected register

You can store X to selected register. Then X is dropped.

Use the following keywords to storing functions:

Function	Keyword	R	D
Store to RA	STRA		
Store to RB	STRB	1	1
		1	1
Store to RZ	STRZ		

Use the format "STR?" and replace "?" by one alphabet.

Let us store the integer 5 to RA.

(1) Push

Input> 5

#	TYPE	VALUE	
RA			
RB			
Z			
Υ			Store from
Х	Integer	5	only X.

(2) Store to RA

Input> stra

			i
#	TYPE	VALUE	
RA	Integer	5	Stored.
RB			
Z			
Υ			
Х			

If the selected register has data, the data is overwritten.

(1) Initial state

#	TYPE	VALUE	Already
RA	Integer	5	stored.
RB			
Z			
Υ			
Х	Integer	7	

(2) Push

Input> 9

#	TYPE	VALUE	
RA	Integer	5	
RB			
Z			
Υ	Integer	7	Store from
Х	Integer	9	$\left \left\langle \right \right $ only X.

(3) Overwrite RA

Input> stra

#	TYPE	VALUE	
RA	Integer	9	Overwritten
RB			
Z			
Υ			
Х	Integer	7	

Cases of RB - RZ are similar with this.

11-4. Load from selected register

You can load from selected register to X. The selected register keeps its data. If it has no data, error message is displayed.

Use the following keywors to load:

Function	Keyword	R	D
Load RA	LDRA		
Load RB	LDRB	0	0
		0	0
Load RZ	LDRZ		

Use the format "LDR?" and replace "?" by one alphabet.

Try to add RA and RB.

(1) Initial state

#	TYPE	VALUE	
RA	Integer	9	Stored.
RB	Integer	4	
Z			
Υ			
Х			

(2) Load RA

Input> ldra

#	TYPE	VALUE	
RA	Integer	9	
RB	Integer	4	
Z			
Υ			Load RA
Х	Integer	9	$\left\langle \begin{array}{c} \text{to X.} \end{array} \right\rangle$

(3) Load RB

Input> ldrb

#	TYPE	VALUE	
RA	Integer	9	
RB	Integer	4	
Z			
Υ	Integer	9	Load RB
Х	Integer	4	to X.

(4) Add

Input> +

#	TYPE	VALUE	
RA	Integer	9	
RB	Integer	4	
Z			
Υ			Addition
Х	Integer	13	requires 2.

Cases of RC \sim RZ are similar with this.

11-5. Delete selected register

You can remove data in selected register.

Use the following keywords to delete selected register:

Function	Keyword	R	D
Delete RA	DELRA		
Delete RB	B DELRB		0
	0		Ø
Delete RZ	DELRZ		

Use the format "DELR?" and replace "?" by one alphabet.

(1) Initial state

#	TYPE	VALUE	
RA	Integer	9	Stored.
RB	Integer	4	
Z			
Υ			
Х			

(2) RA をデリート Input> delra

#	TYPE	VALUE	
RA			Deleted.
RB	Integer	4	
Z			
Υ			
Х			

11-6. Register calculation

You can calculate with selected register and store the result to it.

Here is the list of register calculations:

Function	Keyword	R	D	Computation
Docistor in successor	IR?	0	^	$R \leftarrow R + 1$
Register increment	++R?	0	0	
Dagistar dagrament	DR?	0	0	D , D 1
Register decrement	R?	٥	ט	$R \leftarrow R - 1$
Decision of divisor	ADDR?	1	1	$R \leftarrow R + X$
Register addition	+R?			
Decistor subtraction	SUBR?	1	1	$R \leftarrow R - X$
Register subtraction	-R?	1		
Docistan multiplication	MULR?	1	1	D D V
Register multiplication	egister multiplication *R?	1 1	$R \leftarrow R \times X$	
Dociston division	DIVR?	1	1	$R \leftarrow R/X$
Register division	/R?	1		

Operate register calculations to drop one data and overwrite selected register with the result.

Example: register addition and register increment

(1) Initial state

			_
#	TYPE	VALUE	
RA	Integer	9	Stored.
RB	Integer	4	
Z			
Υ			
Х			

(2) Increment RA

Input> ira

#	TYPE	VALUE	
RA	Integer	10	Incremented.
RB	Integer	4	
Z			
Υ			
Х			

(3) Push

Input> 1.2

#	TYPE	VALUE	
RA	Integer	10	
RB	Integer	4	
Z			
Υ			Operate with
Х	Floating	1.2	$\left \left\langle \right \right X.$

(4) Increment RB

Input> +rb

			-
#	TYPE	VALUE	
RA	Integer	10	
RB	Floating	5.2	Added.
Z			
Υ			
Х			

11-7. Register clear

You can clear all registers:

Function	Keyword	R	D	Computation
Danistan alaan	REGCLEAR	0	0	
Register clear	RCLR			

If you would like to delte one or some registers, use delete functions.

IMPORTANT

You can clear registers and stack with the keyword "AC". It is all clear function.

11-8. Strings and registers

The registers accept strings. You can put a landmark to registers with strings.

The macro and registers combo is very affective.

See also chapter 15.

12-1. Special stack operations

You can remove, insert or duplicate data or change the order of elements in the stack. There are many special stack operations.

12-2. Fundamental stack operations

Here is the list of fundamental stack operations:

Function	Keyword	R	D
Dron	DROP	1	1
Drop	¥	1	
Duplicate [1]	DUP	1	1
Clear	CLEAR	N ₂ Q	N
Clear	CLR	N>0	

[1] Press enter without any input to call the function

12-3. Order changing functions

Here is the list of order changing functions:

Function	Keyword	R	D
Suran	SWAP	2	0
Swap	\$	2	
Rotate	ROT	3	0
Unrotate	UNROT	3	0
Roll	ROLL	N	1
Roll D	ROLLD	N	1

The details are next pages:

12-3-1. Swap

Swap function swaps 2 data at bottom of the stack. This function requires 2 arguments. The keywords are "SWAP" and "\$".

(1) Initial state

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Integer	3
Х	Rational	9/4

(2) Swap

Input> swap

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Rational	9/4
Х	Integer	3

12-3-2. Rotate

Rotate function rotates Z, Y and X. This function requires 3 arguments.

$$\begin{pmatrix} Z \\ Y \\ X \end{pmatrix} \to \begin{pmatrix} Y \\ X \\ Z \end{pmatrix}$$

The keyword is "ROT".

(1) Initial state

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Integer	3
Х	Rational	9/4

(2) Rotate

Input> rot

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Rational	9/4
Х	Integer	3

12-3-3. Unrotate

Rotate function rotates Z, Y and X reversely. This function requires 3 arguments.

$$\begin{pmatrix} Z \\ Y \\ X \end{pmatrix} \to \begin{pmatrix} X \\ Z \\ Y \end{pmatrix}$$

The keyword is "UNROT".

12-3-4. Roll

Roll function rotates data from selected position through X. The selected data is moved to X. The keyword is "ROLL".

(1) Initial state

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Integer	3
Х	Rational	9/4

(2) Set a position

Input> 3

#	TYPE	VALUE
4	Integer	256
Z	Rational	9/4
Υ	Integer	3
Х	Integer	3

(3) Roll

Input> roll

#	TYPE	VALUE
4		
Z	Integer	3
Υ	Rational	9/4
Х	Integer	256

12-3-5. Roll D

Roll function rotates data from selected position through X reversely. X is moved to selected position.

The keyword is "ROLLD".

12-4. Duplicate and overwrite functions

Here is the list of duplicate and overwrite functions:

Function	Keyword	R	D
Over	OVER	2	0
Over	0		
Pick	PICK	N	0
Unpick	UNPICK	N	1
	XY		
Duplicate last 2 items	YX	2	0
	DUP2		
Dunlicate traige	DUPDUP	1	0
Duplicate twice	DD		ע
Duplicate last N-1 items and push N	NDUPN	1	1

The details are next pages:

12-4-1. Over

Over function duplicates Y and push it.

The keywords are "OVER" and "O".

(1) Initial state

#	TYPE	VALUE
4		
Z		
Υ	Integer	16
Х	Integer	32

(2) Over

Input> o

#	TYPE	VALUE
4		
Z	Integer	16
Υ	Integer	32
Х	Integer	16

12-4-2. Pick

Pick function duplicates data in selected position.

The keyword is "PICK".

(1) Initial state

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Integer	3
Х	Rational	9/4

(2) Set a position

Input> 3

#	TYPE	VALUE
4	Integer	256
Z	Integer	3
Υ	Rational	9/4
Х	Integer	3

(3) Pick

Input> pick

#	TYPE	VALUE
4	Integer	256
Z	Integer	3
Υ	Rational	9/4
Х	Integer	256

12-4-3. Unpick

Unpick function replaces data in selected position X by Y.

The keyword is "UNPICK".

(1) Initial state

#	TYPE	VALUE
4		
Z		
Υ	Integer	256
Х	Integer	3

(2) Push

Input> 64

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Integer	3
Х	Integer	64

(3) Push a position

Input> 2

#	TYPE	VALUE
4	Integer	256
Z	Integer	3
Υ	Integer	64
Х	Integer	2

(4) Unpick

Input> unpick

#	TYPE	VALUE
4		
Z		
Υ	Integer	64
Х	Integer	3

12-4-4. Duplicate last 2 items

Duplicate last 2 items function duplicates \boldsymbol{Y} and \boldsymbol{X} and push them in turn.

The keywords are "XY", "YX" and "DUP2".

(1) Initial state

#	TYPE	VALUE
4		
Z		
Υ	Integer	16
Х	Integer	32

(2) Duplicate last 2 items

Input> xy

#	TYPE	VALUE
4	Integer	16
Z	Integer	32
Υ	Integer	16
Х	Integer	32

12-4-5. Duplicate twice

Duplicate twice function operate duplicate function twice. The keywords are "dupdup" and "dd".

12-4-6. Duplicate last N-1 items and push N

Duplicate last N-1 items and push N function drops X and duplicate Y X times and then push X.

The keyword is "NDUPN".

(1) Initial state

#	TYPE	VALUE
4		
Z		
Υ	Integer	16
Х	Integer	32

(2) Set a number of items

Input> 2

#	TYPE	VALUE
4		
Z	Integer	16
Υ	Integer	32
Х	Integer	2

(3) Duplicate last N-1 items and push N

Input> ndupn

#	TYPE	VALUE
4	Integer	16
Z	Integer	32
Υ	Integer	32
Х	Integer	2

12-5. Removal functions

Here is the list of removal functions:

Function	Keyword	R	D
Dron 2 itoms	DROP2	2	1
Drop 2 items	¥¥		2
Dran 2 itama	DROP3	3	3
Drop 3 items	¥¥¥	3	5
Drop N items	DROPN	N+1	N+1
Nip	NIP	2	2
Nip N-th item	NIPN	N	2

The details are here:

12-5-1. Drop 2 items

Drop 2 items function drops 2 items.

The keywords are "DROP2" and "¥¥".

12-5-2. Drop 3 items

Drop 3 items function drops 3 items.

The keywords are "DROP3" and "\$\$\$\$".

12-5-3. Drop N items

Drop N items function drops X + 1 items.

The keyword is "DROPN".

(1) Initial state

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Integer	3
Х	Rational	9/4

(2) Push a number of items to drop

Input> 2

#	TYPE	VALUE
4	Integer	256
Z	Integer	3
Υ	Rational	9/4
Х	Integer	2

(3) Drop N items

Input> dropn

#	TYPE	VALUE
4		
Z		
Υ		
Х	Integer	256

12-5-4. Nip

Nip function removes Y.

The keyword is "NIP".

(1) Initial state

#	TYPE	VALUE
4		
Z		
Υ	Integer	16
Х	Integer	32

(2) Nip

Input> nip

#	TYPE	VALUE
4		
Z		
Υ		
Х	Integer	32

12-5-5. Nip N-th item

Nip N function removes data in the position X-1.

The keyword is "NIPN".

(1) Initial state

#	TYPE	VALUE
4		
Z	Integer	64
Υ	Integer	16
Х	Integer	32

(2) Set a position

Input> 3

#	TYPE	VALUE
4	Integer	64
Z	Integer	16
Υ	Integer	32
Х	Integer	3

(3) Nip N

Input> nipn

#	TYPE	VALUE
4		
Z		
Υ	Integer	16
Х	Integer	32

12-6. Other stack operations

Here is the list of ther stack operations:

Function	Keyword	R	D
Number of stack items	DEPTH	0	0

Number of stack items function pushes the number of data in stack.

IMPORTANT

See also chapter 6 to get more information about conversions.

13-1. Supporting units

This software supports the units as following:

length	volume	mass	pressure
inv of length	inv of volume	velocity	energy
area	time	acceleration	temperature
inv of area	inv of time	force	

NOTICE

These conversion functions support only scalars.

13-2. How to use unit conversion function

Type "CONV" or "CV" to call unit conversion. Then type 2 units to convert. The keyword "REC" calls previous conversion.

Function	Keyword	R	D	Computation
Linit conversion	CONV	1 1	Unit convension	
Unit conversion	CV	1	1	Unit conversion
Unit conversion (redo)	REC	1	1	Unit conversion

You can convert X with calling the function and type "from unit" and "to unit".

For example, type this to convert inches into centimeter.

IMPORTANT

If the each unit has different dimension, the combination is error.

13-3. Units of length

Here is the list of units of length:

Unit		Keyword	Ratio
Meter	[m]	М	1
Kilometer	[km]	KM	1 E+03
Centimeter	[cm]	СМ	1 E-02
Millimeter	[mm]	MM	1 E-03
Nautical mile [1]	[nmi]	NMI	1 852
Yard [1]	[yd]	YD	0.914 4
Feet [1]	[ft]	FT	0.304 8
Inch [1]	[in]	IN	0.025 4
Mile [1]	[mi]	MI	1 609.344
Fathom [2]	[fath]	FATH	1.828 8
Shaku [3]		SHAKU	10/33
Sun [3]		SUN	1/33
Ken [3]		KEN	20/11
Jou [3]		JOU	100/33
Chou [3]		CHOU	1200/11
<i>Ri</i> [3]		RI	43200/11

^[1] International unit

^[2] British fathom

^[3] These are Japanese traditional units.

13-4. Units of length inverse

Here is the list of units of length inverse:

Unit		Keyword	Ratio
Per meter	[1/m]	/M	1
Per kilometer	[1/km]	/KM	1 E-03
Per centimeter	[1/cm]	/CM	1 E+02
Per millimeter	[1/mm]	/MM	1 E+03
Per nautical mile	[1/nmi]	/NMI	1/1852
Per yard	[1/yd]	/YD	1250/1143
Per feet	[1/ft]	/FT	1250/381
Per inch	[1/in]	/IN	5000/127
Per mile	[1/mi]	/MI	125/201168
Per fathom	[1/fath]	/FATH	625/1143
Per Shaku		/SHAKU	3.3
Per Sun		/SUN	33
Per Ken		/KEN	0.55
Per Jou		/J0U	0.33
Per Chou		/CHOU	11/1200
Per Ri		/RI	11/43200

13-5. Units of area
Here is the list of units of area:

Unit		Keyword	Ratio
Square meter	$[m^2]$	M2	1
Square kilometer	[km ²]	KM2	1 E+06
Square centimeter	[cm ²]	CM2	1 E-04
Square millimeter	[mm ²]	MM2	1 E-06
Are	[a]	ARE	1 E+02
Hectare	[ha]	НА	1 E+04
Acre	[ac]	ACRE	4 046.856 422 4
Square yard	[yd ²]	YD2	0.836 127 36
Square feet	[ft ²]	FT2	9.290 304 E-02
Square inch	[in ²]	IN2	6.451 6 E-04
Square mile	[mi ²]	MI2	2 589 988.110 336
Tsubo		TSUB0	400/121
Isse		ISSE	12000/121
Ittan		ITTAN	120000/121
Choubu	•	CHOUBU	1200000/121

13-6. Units of area inverse Here is the list of units of area inverse:

Unit		Keyword	Ratio
Per square meter	$[1/m^2]$	/M2	1
Per square kilometer	[1/km ²]	/KM2	1 E-06
Per square centimeter	$[1/cm^2]$	/CM2	1 E+04
Per square millimeter	$[1/\text{mm}^2]$	/MM2	1 E+06
Per are	[1/a]	/ARE	1 E-02
Per hectare	[1/ha]	/HA	1 E-04
Per acre	[1/ac]	/ACRE	78125/316160658
Per square yard	$[1/yd^2]$	/YD2	1562500/1306449
Per square feet	[1/ft ²]	/FT2	1562500/145161
Per square inch	$[1/in^2]$	/IN2	25000000/16129
Per square mile	$[1/mi^2]$	/MI2	15625/40468564224
Per Tsubo		/TSUBO	121/400
Per Isse		/ISSE	121/12000
Per Ittan		/ITTAN	121/120000
Per Choubu		/CHOUBU	121/1200000

13-7. Units of volume Here is the list of units of volume:

Unit		Keyword	Ratio
Cubic meter	[m ³]	M3	1
Cubic kilometer	[km ³]	KM3	1 E+09
Cubic centimeter	[cm ³]	CM3	1 E-06
Cubic millimeter	[mm ³]	MM3	1 E-09
Litter (Cubic decimeter)	[L]	L	1 E-03
Deciliter	[dL]	DL	1 E-04
Kilolitter	[kL]	KL	1
Millilitter	[mL]	ML	1 E-06
Cubic yard	[yd³]	YD3	0.764 554 857 984
Cubic feet	[ft ³]	FT3	0.028 316 846 592
Cubic inch	[in ³]	IN3	1.638 706 4 E-05
Cubic mile	$[mi^3]$	MI3	4 168 181 825.440 579 584
Imperial gallon	[gal _{imp}]	IMG	4.546 09 E-03
US gallon	[gal _{us}]	USG	3.785 411 784 E-03
Gou		GOU	2401/13310000
Shou		SHOU	2401/1331000
Itto		ITTO	2401/133100
Koku		коки	2401/13310

13-8. Units of volume inverse

Here is the list of units of volume inverse:

Unit		Keyword	Ratio
Per cubic meter	$[1/m^3]$	/M3	1
Per cubic kilometer	[1/km ³]	/KM3	1 E-09
Per cubic centimeter	[1/cm ³]	/CM3	1 E+06
Per cubic millimeter	[1/mm ³]	/MM3	1 E+09
Per litter (Per cubic decimeter)	[1/L]	/L	1 E+03
Per deciliter	[1/dL]	/DL	1 E+04
Per kilolitter	[1/kL]	/KL	1
Per millilitter	[1/mL]	/ML	1 E+06
Per cubic yard	$[1/yd^3]$	/YD3	1953125000/1493271207
Per cubic feet	[1/ft ³]	/FT3	1953125000/55306341
Per cubic inch	$[1/in^3]$	/IN3	125000000000/2048383
Per cubic mile	[1/mi ³]	/MI3	1953125/8140980127813632
Per imperial gallon	[1/gal _{imp}]	/IMG	100000000/454609
Per US gallon	$[1/gal_{us}]$	/USG	125000000000/473176473
Per Gou		/GOU	13310000/2401
Per Shou		/SHOU	1331000/2401
Per Itto		/ITTO	133100/2401
Per Koku	_	/KOKU	13310/2401

13-9. Units of time

Here is the list of units of time:

Unit		Keyword	Ratio
Casand	[a]	SEC	1
Second	[s]	S	1
Minute	[min]	MIN	60
Hour	[h]	HOUR	3 600
Hour	[11]	Н	3 000
Dov	[4]	DAY	86 400
Day	[d]	D	80 400
Week	[wk]	WEEK	604 800
Week	[WK]	WK	004 600
Normal waar	[1111]	YEAR	31 536 000
Normal year	mal year [yr]		31 330 000
Gregolian year		GYEAR	31 556 952
Julian year		JYEAR	31 557 600

13-10. Units of time inverse

Here is the list of units of time inverse:

Unit		Keyword	Ratio
Dangaaand	[1 /a]	/SEC	1
Per second	[1/s]	/S	1
Per minute	[1/min]	/MIN	1/60
Per hour	[1 /b]	/HOUR	1/3600
rei noui	[1/h]	/H	1/3000
Dor day	[1/d]	/DAY	1/86400
Per day		/D	1/00400
Per week	[1 /v.d.]	/WEEK	1/60/1900
Pei week	[1/wk]	/WK	1/604800
Dan mammal year	[1 /]	/YEAR	1/21526000
Per normal year	[1/yr]	/YR	1/31536000
Per Gregolian year		/GYEAR	1/31556952
Per Julian year		/JYEAR	1/31557600

13-11. Units of mass

Here is the list of units of mass:

Uni	it	Keyword	Ratio
Kilogram	[kg]	KG	1
Gram	[g]	G	1 E-03
Milligram	[mg]	MG	1 E-06
Metric ton	[t]	TON	1 E+03
Long ton	[l. t.]	LTON	1 016.046 908 8
Short ton	[s. t.]	STON	907.184 74
Ounce	[oz av]	OZ	0.028 349 523 125
Pound	[lb av]	LB	0.453 592 37
Kan		KAN	3.75
Ryou		RYOU	3.75 E-02
Momme		MOMME	3.75 E-03
Kin		KIN	0.6

13-12. Units of velocity

Here is the list of units of velocity:

Unit		Keyword	Ratio
Meter per second	[m/s]	M/S	1
Meter per minute	[m/min]	M/MIN	1/60
Kilometer per second	[km/s]	KM/S	1 E+03
TZ'1 / 1 [1 /1]		KM/H	5/18
Kilometer per hour	[km/h]	KPH	5/10
Inch per second	[ips]	IPS	0.025 4
Feet per second	[fps]	FPS	0.304 8
Mile per hour	[mph]	MPH	0.447 04
Knot (Nautical mile per hour)	[kn]	KN	463/900

13-13. Units of acceleration

Here is the list of units of acceleration:

Unit		Keyword	Ratio	
Meter per second per second	$[m/s^2]$	M/S2	1	
Kilometer per hour per second	[km/h/s]	KM/H/S	E /40	
Knometer per nour per second	[KIII/II/S]	KPH/S	5/18	
Gal / Galileo	[Gal]	GAL	1 E-02	
(Centimeter per second per second)	[Gai]	UAL	1 6-02	
Inch per second per second	[ips ²]	IPS2	0.025 4	
Feet per second per second	[fps ²]	FPS2	0.304 8	
Mile per hour per second	[mph/s]	MPH/S	0.447 04	
Knot per second	[lm/c]	KN/S	463/900	
(Nautical mile per hour per second)	[kn/s]	NIV/ 3	403/900	

13-14. Units of force

Here is the list of units of force:

Unit		Keyword	Ratio
Newton	[N]	NEWTON	1
(Kilogram meter per second per second)	[11]	NEWTON	1
Dynne	[dyn]	DYN	1 E-05
(Gram centimeter per second per second)	[uyii]	DIN	1 6-03
Kilogram weight	[kgf]	KGF	9.806 65
Gram weight	[æf]	GF	9.806 65
Gram weight	[gf]	GF.	E-03

13-15. Units of pressure

Here is the list of units of pressure:

Unit		Keyword	Ratio
Pascal	[Pa]	PA	1
(Newton per square meter)	[ruj	. , ,	_
Hectopascal	[hPa]	HPA	1 E+02
Kilopascal	[kPa]	KPA	1 E+03
Megapascal	[MPa]	MPA	1 E+06
Bar	[ban]	BAR	1 E+05
(Megadyne per square centimeter)	[bar]	DAK	1 E+03
Millimeter of mercury	[mmHg]	MMHG	101325/760
Inch of mercury	[inHg]	INHG	3 386.388 64

13-16. Units of energy

Here is the list of units of energy:

Unit		Keyword	Ratio
Joule (Newton meter)	[J]	J	1
Kilojoule	[kJ]	КЈ	1 E+03
Megajoule	[MJ]	МЈ	1 E+06
Electronvolt	[eV]	EV	1.602 176 620 8 E-19
Kilo-electronvolt	[keV]	KEV	1.602 176 620 8 E-16
Mega-electronvolt	[MeV]	MEV	1.602 176 620 8 E-13
Giga-electronvolt	[GeV]	GEV	1.602 176 620 8 E-10
Thermochemical calorie	[cal _{th}]	CAL	4.184
Kilocalorie	[kcal _{th}]	KCAL	4 184
Ton of TNT	[t _{TNT}]	TTNT	4.184 E+09
Kilowatt hour	[kWh]	KWH	3.6 E+06
British thermal unit	[Btu]	BTU	1055.06

13-17. Units of temperature

Here is the list of units of temperature:

Units		Keyword	Ratio	Zero
Kelvin	[K]	KEL	1	0
Celsius	[°C]	DEGC	1	-273.15
Rankine	[°R]	DEGR	5/9	0
Fahrenheit	[°F]	DEGF	5/9	-459.67

The values of absolute temperature of Celsius and Fahrenheit are not same. For instance, conversion from Celcius to Fahrenheit is following:

$$\theta$$
[°C] = $(\theta + 273.15) \times \frac{9}{5} - 459.67$ [°F]

14. Math / Scientific constants

14-1. Input constants

This software supports many math / scientific constants. Type a keyword to push a constant.

IMPORTANT

The source of the values of scientific constants is 2014 CODATA

14-2. Math constants

Here is the list of math constants:

Name	Keyword	Value
PI	PI	3.141 592 653 589 79
Napier's constant	E	2.718 281 828 459 05
Euler-Mascheroni constant	EG	0.577 215 664 901 533

14-3. Fundamental physical constants

Here is the list of fundamental constants in physics:

Name		Symbol	Keyword	Value
Speed of light in yearm		[m /a]	LIGHT	299 792 458
Speed of light in vacum	c_0	[m/s]	С0	299 /92 438
Magnetic constant	.,	[U/m]	MAGNETIC	1.256 637 061 436
wiagnetic constant	μ_0	[H/m]	MU0	E-06
Electric constant		[E/m]	ELECTRIC	8.854 187 817 620
Electric constant	ε_0	[F/m]	EPS0	E-12
Characteristic impedance of yearm	7	[0]	IMPEDANCE	376.730 313 461
Characteristic impedance of vacum	Z_0	$[\Omega]$	Z0	3/6./30 313 461
Gravitation constant	C	$[m^3/kg/s^2]$	GRAVITATION	6.674 08
Gravitation constant	G_0	[III / Kg/S]	NEWTONIAN	E-11
Dlamely constant	h	[ما]	PLANCK	6.626 070 040
Planck constant	n	[J · s]	Н	E-34
Dadward Blanck constant	ħ	[1 a]	RPLANCK	1.054 571 800
Reduced Planck constant	n	[J · s]	HBAR	E-34

14-4. Electromagnetics

Here is the list of constants in electromagnetics:

Name	Symbol		Keyword	Value										
Elementem, change	a [C]		ECHARGE	1.602 176 620 8										
Elementary charge	е	[C]	EVOLT	E-19										
Magnetic flux quentum	ф	[Wb]	Q.FLUX	2.067 833 831										
Magnetic flux quantum	Φ ₀	[vvb]	Q.FLUX	E-15										
Conductance quantum	C	[c]	Q.CONDUCT	7.748 091 731 0										
Conductance quantum							G_0 [S] Q.COM		d ₀ [5] Q.CONDOCT	u ₀ [5] Q.CONDOCT		10 [3] Q.CONDOCT	Q.CONDUCT	E-05
Resistance quantum	R_0	$[\Omega]$	Q.RESIST	12 906.403 727 8										
Josephson constant	K_I	[Hz/V]	JOSEPHSON	483 597.852 5										
Josephson constant	Νj	11/ [11Z/ V]	JUSEPHSUN	E-09										
von Klitzing constant	R_K	$[\Omega]$	KLITZING	25 812.807 455 5										
Dohr magnatan		[I /T]	B.MAGNETON	927.400 999 4										
Bohr magneton	μ_B	[J/T]	D.MAGINE TON	E-26										
Nuclear magneter	.,	[ו /יד]	N.MAGNETON	5.050 783 699										
Nuclear magneton	μ_N	[J/T]	IN. PIAGINE I UN	E-27										

14-5. Nuclear physics

Here is the list of constants in nuclear physics:

Name	Sy	mbol	Keyword	Value
Fine-structure constant	α		FSTRUCT	7.297 352 566 4
Tine-structure constant	и		FSTRUCT	E-03
Rydberg constant	R_{∞}	$[m^{-1}]$	RYDBERG	10 973 731.568 508
D.1		r 1	D DADTUC	0.529 177 210 67
Bohr radius	a_0	[m]	B.RADIUS	E-10
II-utus susus		[1]	HADTDEE	4.359 744 650
Hartree energy	E_h	[J]	HARTREE	E-18

14. Math / Scientific constants

Constants connected with electron:

Name	Symbol		Keyword	Value
Mass of electron	222	العما	E.MASS	9.109 383 56
Wass of electron	m_e	[kg]	E.MASS	E-31
Compton wavelength of electron	2	[m]	E.COMPTON	2.426 310 236 7
Comploir wavelength of electron	λ_e	[III]		E-12
Classical electron radius	laccical alcotron maline	E.RADIUS	2.817 940 322 7	
Classical electron facilis	r_e	[m]	L.NADIO3	E-15
Magnetic moment of electron		[J/T]	E.MAGNETIC	-928.476 462 0
wagnetic moment of electron	μ_e	[]/ 1]	E.MAGNETIC	E-26
Gyromagnetic ratio of electron γ_e [s ⁻¹ T ⁻¹]	E.GYRO	1.760 859 644		
Gyromagnetic ratio of electron	γ_e	[5 1 -]	E.GINU	E+11

Constants connected with proton:

Name	Symbol		Keyword	Value			
Mass of proton	m	[ابم]	P.MASS	1.672 621 898			
iviass of proton	m_p	n_p [kg] P.M	r.III.33	E-27			
Compton wavelength of proton	1	[m]	P.COMPTON	1.321 409 853 96			
Compton wavelength of proton	oton λ_p [m]	[m]		E-15			
Magnetic moment of proton	.,	[r /m]	D MACNETTO	1.410 606 787 3			
Magnetic moment of proton	μ_p	[J/T]	P.MAGNETIC	E-26			
Cymana anatia natia of mustan	1/	. [1m-1]	r -1m-11		[-1m-1] D CVD	P.GYRO	2.675 221 900
Gyromagnetic ratio of proton	Υp	$[s^{-1}T^{-1}]$	P.UIKU	E+08			

14. Math / Scientific constants

Constants connected with neutron:

Name	Symbol		Keyword	Value
Mass of neutron	222	[ابم]	N.MASS	1.674 927 471
Iviass of neuron	m_n	[kg]	CCAMIN	E-27
Compton wavelength of neutron	2	[m]	N.COMPTON	1.319 590 904 81
Compton wavelength of neutron	λ_n	[m]	N. COMPTON	E-15
Magnetic memort of neutron		[ɪ /亚]	N MACNETTO	-0.966 236 50
Magnetic moment of neutron	μ_n	[J/T]	N.MAGNETIC	E-26
Caramagnatia ratio of nautron		$[s^{-1}T^{-1}]$	N.GYRO	1.832 471 72
Gyromagnetic ratio of neutron	Υ'n	[S I -]	UAYD.NI	E+08

Other constants in nuclear physics:

Name	Symbol		Keyword	Value
Mass of muon	m	[ابم]	MU.MASS	1.883 531 594
Iviass of muon	m_{μ} [kg]		MU.MASS	E-28
Magnetic moment of muon	,, [I /T]		MU.MAGNETIC	-4.490 448 26
iviagnetic moment of muon	μ_{μ}	[J/T]	MO.MAGNETIC	E-26
Mass of tauon	222	. D1 T	TAU.MASS	3.167 47
iviass of tauon	$m_{ au}$	[kg]	CCAM, UAT	E-27

14-6. Physicochemistry

Here is the list of constants in physicochemistry:

Name		Symbol	Keyword	Value
Boltzmann constant	k	[J/K]	BOLTZMANN	1.380 648 52 E-23
Avogadro constant	N_A	[mol ⁻¹]	AVOGADRO	6.022 140 857 E+23
Atomic mass constant	$m_{ m u}$	[kg]	DALTON	1.660 539 040 E-27
Faraday constant	F	[C/mol]	FARADAY	96 485.332 89
Molar gas constant	R	$[J \cdot K^{-1} \cdot mol^{-1}]$	GAS	8.314 4598
Molar volume [1] (Cubic meter)	$V_{ m m}$	[m ³ /mol]	MOLV	22.413 962 E-03
Molar volume [1] (Litter)	V_{m}	[L/mol]	MOLVL	22.413 962
Loschmidt's constant [1]	n_0	[m ⁻³]	LOSCHMIDT	2.686 7811 E+25

^[1] In 0 degrees centigrade and standard atomospheric pressure (273.15K, 1 atm).

Here is the list of constants in thermal radiation:

Name	Symbol		Keyword	Value
Stafan Daltzmann aanstant	tefan-Boltzmann constant σ [W·m ⁻² ·K ⁻⁴]		CTEFAN	5.670 367
Stefan-Boltzmann constant	σ		STEFAN	E-08
First radiation constant			E DAD	3.741 771 790
First radiation constant	c_1	$[W \cdot m^2]$	F.RAD	E-16
Second radiation constant		[m V]	S.RAD	1.438 777 36
Second radiation constant	c_2	[m · K]	3.KAD	E-02

14-7. Agreement value

Here is the list of agreement values:

Name	Symbol		Keyword	Value
Standard gravity	g_n	$[m/s^2]$	GRAVITY	9.806 65
Standard atmosphere	1 atm	[Pa]	ATM	10 1325
Zero degrees Celsius in Kelvin	0°C	[K]	ZEROD	273.15

14-8. Planck unit

Here is the list of Planck unit:

Name	Sy	mbol	Keyword	Value
Planck mass	222	[]+~]	PL.MASS	2.176 470
Planck mass	$m_{ m P}$	[kg]	PL.MA33	E-08
Planck energy	$E_{ m P}$	[GeV]	PL.ENERGY	1.220 910
Planck energy	Еp	[Gev]	PL.ENERGY	E+19
Dlanak tamparatura	Planck temperature $T_{\rm P}$ [K] PL.TEMP		DI TEMD	1.416 808
Flanck temperature			PL.IEMP	E+32
Dlandr lanath	1	[202]	PL.LENGTH	1.616 229
Planck length	$l_{ m P}$	[m]	PL.LENGIH	E-35
Diamata diama		PL.TIME	5.391 16	
rianck unie	Planck time $t_{\rm P}$ [s]		PL.IIME	E-44

14-9. Astronomy

Here is the list of constants of astronomy:

Name	Symbol		Keyword	Value
Astronomical unit	AU	[m]	ASTRO	149 597 870 700
Parsec	рс	[m]	PARSEC	3.085 677 581 E+16
Light year	ly	[m]	LYEAR	9 460 730 472 580 800

15-1. All clear

You can clear stack and registers with all clear function.

Function	Keyword
All clear	AC
Stack clear	CLEAR
Stack clear	CLR
Dagiston alogn	REGCLEAR
Register clear	RCLR

You can use undo after you call clear functions.

15-2. All reset

Type "RESET" or "RST" to reset all settings without those in config mode. Call the function and type "YES" or "NO" to confirm.

15-3. Undo / redo

Undo and redo function is available:

Function	Keyword
Undo	UNDO
Undo	U
Redo	REDO
Keuo	R

See also chapter 2 and chapter 3.

15-4. JSON output

Type "JSON" or "OUT" to output JSON formatted text file.

Function	Keyword	R	D	Computation
ICON outsut	JSON	9	0	
JSON output	OUT	٥	0	

This software output files to the directory it exists. The format of file name is following:

YYYY: Gregorian year MMDD: Month and day

HHMMSS: Hour, minute, second

Output JSON file and its file name is displayed in message area.

You can save stack and registers states.

15-5. Macro function

This software supports macro with strings.

Function	Keyword	R	D	Computation
Run macro	RUN	1	1	

Macro function reads X as a string and operate.

Here is an example of using macro function:

#	TYPE	VALUE
4		
Z		
Υ		
Х	String	2 3 +

(2) Run macro

Input> run

#	TYPE	VALUE
4		
Z		
Υ		
Х	Integer	5

You can make easy user defined function with macro function.

For example, the macro string of RA + $\sqrt{RB \times RC}$ is "ldra ldrb ldrc * sqrt +". You store it to RE. Set RA, RB and RC. Then load RE and run macro to calculate RA + $\sqrt{RB \times RC}$.

NOTICE

You cannot include keyword "RUN", which is macro, in a string for macro function. This specification is for avoiding infinite loop.

Similarly, you cannot include mode-changing, display-changing keywords.

15-6. Test precisions

You can test precisions of this software.

Function	Keyword	R	D	Computation
Radix of floating	RADIX	0	0	Push Int
Machine epsilon	EPS	0	0	Push Flt

These functions are for debugging.

15-7. Special startup

This software supports command line arguments.

Argument	Setting
-d	Do not clear display
-j	JSON file output
-jd	JSON display (console)
	Split for JSON expression

If you would like to keep display buffers, use -d option.

JSON file output and JSON display uses --. Write expressions after --. Example:

Replace -j into -jd to display upon console.

16. Messages

16-1. Error messages

The list of error messages in this software is following:

Message		
Bad argument count		
Bad argument type		
Bad element		
Bad matrix size		
Bad tuple size		
Determinant is zero		
Division by zero		
Empty input		
Failed to output file		
Final page of register		
Final page of stack		
First page of register		
First page of stack		
From to : INVALID		
Invalid conversion		
Invalid input		
Invalid range		
Invalid value		
Latest history		
Logarithm of zero		
Maximum integer		
Minimum integer		
Negative-th power of zero		
No history		
No older history		
Not a positive integer		
Registers are empty		

Display		
Selected register is empty		
Stack and registers are empty		
Stack is empty		
Too few arguments		
Too large or small input		
Too large to operate		
Unsupported in current version		
Unsupported operation or notation		
Zero-th power of zero		

16-2. Notice messages

The list of notice messages is following:

Display
Error calculation
Floating overflow
Integer overflow
Rational overflow

16-3. Confirm messages

The list of confirm messages is here:

Display
Cancelled
Done
From to
Input integer
Maximum value set
Minimum value set
OK? Y/N
Setting completed

17. Technical information

17-1. Data types

The list of data types this software supports is following:

Class		Type name	Explanation	Value range
Number	Scalar	Integer	Integer	64-bit integer
		Floating	Floating point number	long double
		Rational	Rational number	Pair of 64-bit integers
		Complex	Complex number	Pair of scalars
Binary (Unsigned decimal)		Boolean	Boolean	True, False
		Byte	Byte	Unsigned 8-bit
		Word	Word	Unsigned 16-bit
		Dword	Double word	Unsigned 32-bit
		Qword	Quad word	Unsigned 64-bit
	1	Tunlo	Vector	Tuple of scalars or
Tuple		Tuple	Vector	tuple of binaries
		Matrix	Matrix	Tuple of tuples
number	Not a	Infinity	Infinity	Positive, negative, complex
		String	String	String
er	ت	Error	Error String	String

If integer overflow occurs, the calculation is retried as floating point number.

If floating-point overflow occurs, the result of calculation is handled as Infinity.

17-2. Calculation precision

The concept of this software is useful for engineers, but no accuracy assurances. So this software is not suitable for high precision calculations.

The internal precision of this software is displayed with calculation settings. The data are using binaries, so floating-point calculations cause calculation errors. Then, this software does not correct calculation errors.

17-3. Mathematical definitions

Mathematical definitions this software adopts is following:

17-3-1. Remainde of integers (Modulo)

Remainde of integers is defined as:

A/B	Quotient	Remainder
Neg / Neg	(-A)÷(-B)	-((-A) mod (-B))
Neg / Pos	-((-A)÷B)	-((-A) mod B)
Zero / Non-zero	0	0
Pos / Neg	-(A÷(-B))	(-A) mod B
Pos / Pos	A÷B	A mod B

17-3-2. Odd number-th root of negative value

The odd number-th root, such as cubic root or 5th root of negative value is not defined in range of real number. For instance, the cubic root of -1 is not -1.

The odd number-th root is defined in complex number:

$$\sqrt[N]{a+ib} = \sqrt[N]{r} \exp(i\theta/N)$$

$$= \sqrt[N]{r}(\cos\theta/N + i\sin\theta/N)$$

17-3-3. Definition of complex numbers

Complex absolution and argument are defined as:

$$abs(a+ib) = r = \sqrt{a^2 + b^2}$$

$$arg(a+ib) = \theta = \begin{cases} atan(b/a) & (a > 0) \\ \pi/2 & (a = 0, b > 0) \\ -\pi/2 & (a = 0, b < 0) \\ \pi - atan(b/a) & (a < 0, b > 0) \\ atan(b/a) - \pi & (a < 0, b < 0) \\ all real number & (a = b = 0) \end{cases}$$

This is the basics of complex functions.

17-3-4. Complex functions

The list of definitions of complex functions is following:

Function	Definition	
Square	$\sqrt{a+ib} = \sqrt{r} \exp(i\theta/2)$	
root	$= \sqrt{r}(\cos\theta/2 + i\sin\theta/2)$	
Cubic	$\sqrt[3]{a+ib} = \sqrt[3]{r} \exp(i\theta/3)$	
root	$= \sqrt[3]{r}(\cos\theta/3 + i\sin\theta/3)$	
Exponent	$\exp(a+ib) = \exp(a)(\cos b + i\sin b)$	
Natural	$\ln(a+ib) = \ln r + i\theta$	
logarithm		
Power	$(a+ib)^{c+id} = r^c e^{-d\theta} \{\cos(c\theta + d \ln r)$	
rowei	$+i\sin(c\theta+d\ln r)$	
SIN	sin(a+ib) = sin a cosh b + i cos a sinh b	
COS	$\cos(a+ib) = \cos a \cosh b - i \sin a \sinh b$	
TAN	$\tan(a+ib) = \frac{1}{2} \cdot \frac{\sin 2a}{\cos^2 a + \sinh^2 b} + i\frac{1}{2} \cdot \frac{\sinh 2b}{\cos^2 a + \sinh^2 b}$	
ASIN	$\arcsin(Z) = -i \ln \left(\sqrt{1 - Z^2} + Zi \right)$	
ACOS	$\arccos(Z) = -i \ln \left(Z + i \sqrt{1 - Z^2} \right)$	
ATAN	$\arctan(Z) = \frac{i}{2} \ln \left(\frac{i+Z}{i-Z} \right) (Z \neq \pm i)$	
SINH	$\sinh(a+ib) = \sinh a \cos b + i \cosh a \sin b$	
COSH	$\cosh(a+ib) = \cosh a \cos b + i \sinh a \sin b$	
TANH	$\tanh(a+ib) = \frac{\sinh 2a}{\cosh 2a + \cos 2b} + i \frac{\sin 2b}{\cosh 2a + \cos 2b}$	
ASINH	$a\sinh Z = \ln\left(Z + \sqrt{Z^2 + 1}\right)$	
ACOSH	$a\cosh Z = \ln(Z + \sqrt{Z + 1}\sqrt{Z - 1})$	
ATANH	$\operatorname{atanh} Z = \frac{1}{2} \ln \left(\frac{1+Z}{1-Z} \right) (Z \neq \pm 1)$	

18. Troubleshootings

18-1. I have no idea to operate this software

Please restart this software and read chapter 4.

This software adopts RPN-style (stack). You can make comprehension of it with reading chapter 4 so please read it carefully.

18-2. I'd like to view full data

If you find "..." in the display, type "v" to show full data (view mode). Press enter to return to calculation mode from view mode.

18-3. I'd like to change rational or floating display

Use the following keywords to change rational or floating display:

Mode	Keyword
Auto decimal display	AD
Force decimal display	FD
Force floating display	FF
Standard decimal display	STD
Fixed decimal display	FIX
Scientific decimal display	SCI
Engineering decimal display	ENG

Please read chapter 3 to get more information.

18-4. I'd like to change complex display

Type "EUL" to switch complex number display. The argument of complex display depends on angle mode.

Please read chapter 3 to get more information.

18-5. I'd like to view all values in the stack and the registers

JSON output function is recommended. Please read chapter 15.

If you would like to look at some data, try page-flipping function. Please read chapter 3 to get more information.

18-6. I saw doubtful calculation result

Restart the software and retry.

Supported numbers in this software are expressed in binary so the calculations may have small errors. I think the answer is 0.1 but this shows 0.0999... that is within the spec.

18-6-1. Check keywords

Did not you type wrong spelling? Check the keywords.

18-6-2. Check display mode

Were not you confused by display mode? Try another display mode and check the value.

Please read chapter 3 to change modes.

18-6-3. Check angle mode

Did you noticed the unit of angle in your calculation? Trigonometric functions depend on angle mode. So a called trigonometric function is determined by a keyword and angle mode.

Please read chapter 3 to change modes.

18-6-4. Check range of value

Some functions may cause large errors depending on range of value. For instance, input a large value to trigonometric functions to make unreliable results.

See also chapter 17.

18-6-5. Check the order of calculations

If the expression is changeable in math, calculators may make small errors. Please calculate by changing orders with consideration of less error.

18-7. Stopped by errors

Check types or values of data. For instance, the factorial of floating-point number is not defined.

18-7-1. Check types

You can check the type of data in the second left column in the stack display. If types are not shown, type "TYPE" to display. Check types of arguments of functions.

18-7-2. Check values

Did you input error value? Some functions have undefined input. For example, logarithm of 0 is undefined.

18-7-3. Check sizes of vectors and matrices

Please notice that the calculations of vectors or matrices are defined.

18-7-4. Read error messages

The messages may help you to detect operational errors.

18-8. I found doubtful behaviors

If you find bugs or unnatural specifications, please send messages to me.

ECKERT introduction page

http://sfoftime.web.fc2.com/eckert

E-mail to:

only.my.truth@gmail.com

Copyright Yuishin Kikuchi