Entry Level Training for AI hardware Design

Chixiao Chen

Al Hardware Perspectives

Soft

Algorithm level Run algorithms on HW constraints

- **Embedded programming level** Interface with your host devices and Al cores
- 3. Hardware driver level According to the intermediate layer Write lib for different functions
- 4. RTL / HDL level for deep learning
- Chip / Board level, make it small!

Algorithm Level

-- Understanding the basic ideas of deep learning

Reading Material

The first CNN paper: Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, november 1998

Hands-on Labs:

(1) Run MNIST on Tensorflow / Caffe https://www.tensorflow.org/tutorials/layers

Extra Materials: Stanford Courses on DNN (Youtube) https://youtu.be/vT1JzLTH4G4

Embedded Program / Hardware SDK Level

-- Try to explore run a state-of-art network on you mobile phone

Reading Material

MobileNet: https://arxiv.org/abs/1704.04861

Hands-on Lab -- Build a mobileNet on you phone

(google/baidu some example online)

Tensorflow iOS: https://www.tensorflow.org/mobile/ios-build

Tensorflow Android: https://www.tensorflow.org/mobile/android build

RTL / HDL level

To understand what's the difference between AI cores and conventional GPU/DSP

Reading Materials: (search and read the two papers via ieeexplore.org)

Vivienne Sze

Designing Hardware for Machine Learning

The important role played by circuit designers

Embedded Deep Neural Network Processing

Algorithmic and processor techniques bring deep learning to IoT and edge devices

Answer the Question: Why do we need to design DNN specific circuits? (compared with CPU and GPU)

RTL / Chip / Board Level

To investigate the what a real hardware communicate with your devices

Reading & Lab

Go through a reference PCle design

mini PCIe FPGA: https://github.com/RHSResearchLLC/PicoEVB

And Investigate the linux kernel development in software:

PCIe DMA driver: https://github.com/RHSResearchLLC/XilinxAR65444

Assignment

-- Pick 3 out of 4 tracks and complete all the reading and labs.

(Embedded Program / Hardware SDK Level is mandatory!!!)

-- Prepare slides that demonstrates your achievements

(20-30 pages, not too much)

-- Due date: March 4th