

EXAMINATION FOR THE DEGREES OF M.A. AND B.Sc.

Mathematics 2A - Multivariable Calculus

An electronic calculator may be used provided that it does not have a facility for either textual storage or display, or for graphical display.

Candidates must attempt all questions.

1. (i) The function f is defined by $f(x,y) = e^x \sin 2y$. Compute all second order partial derivatives of f and verify that f solves the Helmholtz equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + 3f = 0.$$

(ii) Let F(x,y) = g(r(x,y)). Using the chain rule, express the partial derivatives of F in terms of the derivatives of g and r. Use your result to calculate the derivatives $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ in the case $r(x,y) = \sqrt{x^2 + y^2}$ and $g(u) = \log u$.

(iii) Consider the following partial differential equation

$$y\frac{\partial f}{\partial x} + x\frac{\partial f}{\partial y} = (x^2 + y^2)f,$$

for $f: \mathbb{R}^2 \to \mathbb{R}$. By writing f(x,y) = F(u(x,y),v(x,y)) with u(x,y) = xy and $v(x,y) = y^2 - x^2$, construct the general solution to the PDE.

2. (i) Let $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$ and $r: \mathbb{R}^3 \to \mathbb{R}$ be a vector and scalar field respectively, with $r(x, y, z) = \sqrt{x^2 + y^2 + z^2}$. Let $\phi: \mathbb{R} \to \mathbb{R}$ be a differentiable function of one variable. Establish the result

$$\nabla \cdot (\phi(r)\mathbf{f}) = \phi(r)\nabla \cdot \mathbf{f} + \phi'(r)\hat{\mathbf{r}} \cdot \mathbf{f}$$

where $\hat{\mathbf{r}} = (x, y, z)/r$.

(470)

(ii) Use your result from part (i) to evaluate to a real number the expression

$$\nabla \cdot \left(r^2 \left(\boldsymbol{\omega} \times \mathbf{r}\right)\right)$$

where ω is a constant vector.

5

3

3

6

3. (i) Let \mathcal{D} be the region of the annulus between circles centred at the origin with radii 1 and 3, lying between the lines y = x and y = -x with $y \ge 0$. Decide whether \mathcal{D} is regular or not and give reasons for your answer. By making a change to polar coordinates, evaluate the integral

$$\iint_{\mathcal{D}} xy \, dx dy.$$

(ii) Define what is meant by the notation, $\frac{\partial(u,v)}{\partial(x,y)}$. Let \mathcal{A} be the region between the y-axis, the x-axis, the curve y=1/x and the curves $y=\sqrt{x^2-1}$ and $y=\sqrt{x^2+1}$. Sketch \mathcal{A} in the x-y plane. Change variables to u=xy and $v=(y^2-x^2)/2$ and sketch \mathcal{A} in the u-v plane. Hence evaluate the integral

$$\iint_{A} (x^3y + y^3x) \, dx dy.$$

(iii) Evaluate the volume integral

$$\iiint_{\mathcal{V}} z \, dx dy dz,$$

where V is the region between the planes x = 0, y = 0, z = 0 and x + y + z = 1.

4. (i) State Green's Theorem. Use it to evaluate the integral

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r},$$

where the vector field $\mathbf{F}(x,y) = (e^{-x} + y^2, e^{-y} + x^2)$ and the curve \mathcal{C} consists of the arc of $y = \sin x$ from (0,0) to $(\pi,0)$ and the line segment from $(\pi,0)$ to (0,0).

(ii) Evaluate the surface integral

$$\iint_{S} \sqrt{x^2 + y^2} \ dS,$$

where S is the cone-shaped surface given by the equations $z=4-2\sqrt{x^2+y^2},$ $0 \le z \le 4.$

(iii) State Gauss' Divergence Theorem. Use it to evaluate the integral

$$\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} \ dS,$$

where the vector field $\mathbf{F}(x,y,z) = (xz^2, x^2y - z^3, y^2z + z^2/2)$ and \mathbf{n} is the outward pointing unit normal to the surface \mathcal{S} of the region bounded by the hemisphere $z = \sqrt{a^2 - x^2 - y^2}$ with radius a and the planes x = 0, y = 0 and z = 0.

6

8

4

8

5

7