An Introduction to Machine Learning

Sudhakaran Prabakaran, Matt Wayland and Chris Penfold 2017-09-03

Contents

1	About the course	Ę
	1.1 Overview	
	1.2 Registration	
	1.3 Prerequisites	
	1.4 Github	(
	1.5 License	(
	1.6 Contact	
	1.7 Colophon	(
2	Introduction	7
3	Linear models and matrix algebra	ç
	3.1 Exercises	
4	Linear and non linear logistic regression	11
	4.1 Exercises	1
5	Nearest neighbours	13
	5.1 Example one	13
	5.2 Example two	
	5.3 Exercises	15
6	Decision trees and random forests	15
	6.1 Exercises	15
7	Support vector machines	17
	7.1 Exercises	17
8	Artificial neural networks	19
	8.1 Exercises	19
9	Dimensionality reduction	21
	9.1 Linear Dimensionality Reduction	21
	9.2 Nonlinear Dimensionality Reduction	21
	9.3 Exercises	21
10	Clustering	23
	10.1 Introduction	25
	10.2 Distance metrics	
	10.3 Hierarchic agglomerative	
	10.4 K-means	
	10.5 DBSCAN	
	10.6 Summary	

4 CONTENTS

	10.7 Exercises	48
A	Resources A.1 Python	
В	Solutions ch. 3 - Linear models and matrix algebra B.1 Exercise 1	
\mathbf{C}	Solutions ch. 4 - Linear and non-linear logistic regression C.1 Exercise 1	
D	Solutions ch. 5 - Nearest neighbours D.1 Exercise 1 D.2 Exercise 2	
\mathbf{E}	Solutions ch. 6 - Decision trees and random forests E.1 Exercise 1 E.2 Exercise 2	
F	Solutions ch. 7 - Support vector machines F.1 Exercise 1 F.2 Exercise 2	
\mathbf{G}	Solutions ch. 8 - Artificial neural networks G.1 Exercise 1 G.2 Exercise 2	
H	Solutions ch. 9 - Dimensionality reduction H.1 Exercise 1 H.2 Exercise 2	
Ι	Solutions ch. 10 - Clustering I.1 Exercise 1 I.2 Exercise 2	

About the course

1.1 Overview

Machine learning gives computers the ability to learn without being explicitly programmed. It encompasses a broad range of approaches to data analysis with applicability across the biological sciences. Lectures will introduce commonly used algorithms and provide insight into their theoretical underpinnings. In the practical students will apply these algorithms to real biological data-sets using the R language and environment.

During this course you will learn about:

- Some of the core mathematical concepts underpinning machine learning algorithms: matrices and linear algebra; Bayes' theorem.
- Classification (supervised learning): partitioning data into training and test sets; feature selection; logistic regression; support vector machines; artificial neural networks; decision trees; nearest neighbours, cross-validation.
- Exploratory data analysis (unsupervised learning): dimensionality reduction, anomaly detection, clustering.

After this course you should be able to:

- Understand the concepts of machine learning.
- Understand the strengths and limitations of the various machine learning algorithms presented in this course
- Select appropriate machine learning methods for your data.
- Perform machine learning in R.

1.2 Registration

Bioinformatics Training: An Introduction to Machine Learning

1.3 Prerequisites

- Some familiarity with R would be helpful.
- For an introduction to R see An Introduction to Solving Biological Problems with R course.

1.4 Github

bioinformatics-training/intro-machine-learning

1.5 License

GPL-3

1.6 Contact

If you have any **comments**, **questions** or **suggestions** about the material, please contact the authors: Sudhakaran Prabakaran, Matt Wayland and Chris Penfold.

1.7 Colophon

This book was produced using the **bookdown** package (Xie, 2017), which was built on top of R Markdown and **knitr** (Xie, 2015).

Introduction

You can label chapter and section titles using {#label} after them, e.g., we can reference Chapter 2. If you do not manually label them, there will be automatic labels anyway, e.g., Chapter ??.

Figures and tables with captions will be placed in figure and table environments, respectively.

```
par(mar = c(4, 4, .1, .1))
plot(pressure, type = 'b', pch = 19)
```

Reference a figure by its code chunk label with the fig: prefix, e.g., see Figure 2.1. Similarly, you can reference tables generated from knitr::kable(), e.g., see Table 2.1.

```
knitr::kable(
  head(iris, 20), caption = 'Here is a nice table!',
  booktabs = TRUE
)
```


Figure 2.1: Here is a nice figure!

Table 2.1: Here is a nice table!

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa
5.4	3.7	1.5	0.2	setosa
4.8	3.4	1.6	0.2	setosa
4.8	3.0	1.4	0.1	setosa
4.3	3.0	1.1	0.1	setosa
5.8	4.0	1.2	0.2	setosa
5.7	4.4	1.5	0.4	setosa
5.4	3.9	1.3	0.4	setosa
5.1	3.5	1.4	0.3	setosa
5.7	3.8	1.7	0.3	setosa
5.1	3.8	1.5	0.3	setosa

Linear models and matrix algebra

3.1 Exercises

Solutions to exercises can be found in appendix B

Linear and non linear logistic regression

4.1 Exercises

Solutions to exercises can be found in appendix C.

Nearest neighbours

- 5.1 Example one
- 5.2 Example two
- 5.3 Exercises

Solutions to exercises can be found in appendix D.

Decision trees and random forests

6.1 Exercises

Solutions to exercises can be found in appendix E.

Support vector machines

7.1 Exercises

Solutions to exercises can be found in appendix F

Artificial neural networks

8.1 Exercises

Solutions to exercises can be found in appendix G.

Dimensionality reduction

- 9.1 Linear Dimensionality Reduction
- 9.1.1 Principle Component Analysis
- 9.1.2 Horeshoe effect
- 9.2 Nonlinear Dimensionality Reduction
- 9.2.1 t-SNE
- 9.2.2 Gaussian Process Latent Variable Models
- 9.2.3 GPLVMs with informative priors
- 9.3 Exercises

Solutions to exercises can be found in appendix H.

Clustering

10.1 Introduction

Hierarchic (produce dendrogram) vs partitioning methods

- Hierarchic agglomerative
- k-means
- DBSCAN

10.2 Distance metrics

dist function cor as.dist(1-cor(x))

Minkowski distance:

$$distance\left(x,y,p\right) = \left(\sum_{i=1}^{n} abs(x_i - y_i)^p\right)^{1/p} \tag{10.1}$$

Graphical explanation of euclidean, manhattan and max (Chebyshev?)

Table 10.1: Example distance matrix

	A	В	С	D
В	2			
\mathbf{C}	6	5		
D	10	10	5	
\mathbf{E}	9	8	3	4

 $\label{eq:control_problem} Figure 10.1: Example clusters.~**A**, *blobs*; **B**, *aggregation* [@Gionis2007]; **C**, *noisy moons*; **D**, *noisy circles*; **E**, *anisotropic distributions*; **F**, *no structure*.$

Table 10.2: Merge distances for objects in the example distance matrix using three different linkage methods.

Groups	Single	Complete	Average
A,B,C,D,E	0	0	0
(A,B),C,D,E	2	2	2
(A,B),(C,E),D	3	3	3
(A,B)(C,D,E)	4	5	4.5
(A,B,C,D,E)	5	10	8

10.2.1 Image segmentation

10.3 Hierarchic agglomerative

10.3.1 Linkage algorithms

Make one section panel of three dendrograms one table

Single linkage - nearest neighbours linkage Complete linkage - furthest neighbours linkage Average linkage - UPGMA (Unweighted Pair Group Method with Arithmetic Mean)

10.3.2 Example: clustering synthetic data sets

10.3.2.1 Step-by-step instructions

1. Load required packages.

##

cutree

```
library(RColorBrewer)
library(dendextend)
## -----
## Welcome to dendextend version 1.5.2
## Type citation('dendextend') for how to cite the package.
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
## Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
## Or contact: <tal.galili@gmail.com>
##
   To suppress this message use: suppressPackageStartupMessages(library(dendextend))
##
##
## Attaching package: 'dendextend'
## The following object is masked from 'package:ggdendro':
##
       theme_dendro
##
## The following object is masked from 'package:stats':
##
```


Figure 10.2: Dendrograms for the example distance matrix using three different linkage methods.

```
library(ggplot2)
library(GGally)
```

2. Retrieve a palette of eight colours.

```
cluster_colours <- brewer.pal(8,"Dark2")</pre>
```

3. Read in data for **blobs** example.

```
blobs <- read.csv("data/example_clusters/blobs.csv", header=F)</pre>
```

4. Create distance matrix using Euclidean distance metric.

```
d <- dist(blobs[,1:2])</pre>
```

5. Perform hierarchical clustering using the **average** agglomeration method and convert the result to an object of class **dendrogram**. A **dendrogram** object can be edited using the advanced features of the **dendextend** package.

```
dend <- as.dendrogram(hclust(d, method="average"))</pre>
```

6. Cut the tree into three clusters

```
clusters <- cutree(dend,3,order_clusters_as_data=F)</pre>
```

7. The vector **clusters** contains the cluster membership (in this case 1, 2 or 3) of each observation (data point) in the order they appear on the dendrogram. We can use this vector to colour the branches of the dendrogram by cluster.

```
dend <- color_branches(dend, clusters=clusters, col=cluster_colours[1:3])</pre>
```

8. We can use the **labels** function to annotate the leaves of the dendrogram. However, it is not possible to create legible labels for the 1,500 leaves in our example dendrogram, so we will set the label for each leaf to an empty string.

```
labels(dend) <- rep("", length(blobs[,1]))</pre>
```

9. If we want to plot the dendrogram using **ggplot**, we must convert it to an object of class **ggdend**.

```
ggd <- as.ggdend(dend)
```

10. The **nodes** attribute of **ggd** is a data.frame of parameters related to the plotting of dendogram nodes. The **nodes** data.frame contains some NAs which will generate warning messages when **ggd** is processed by **ggplot**. Since we are not interested in annotating dendrogram nodes, the easiest option here is to delete all of the rows of **nodes**.

```
ggd$nodes <- ggd$nodes[!(1:length(ggd$nodes[,1])),]</pre>
```

11. We can use the cluster membership of each observation contained in the vector **clusters** to assign colours to the data points of a scatterplot. However, first we need to reorder the vector so that the cluster memberships are in the same order that the observations appear in the data frame of observations. Fortunately the names of the elements of the vector are the indices of the observations in the data frame and so reordering can be accomplished in one line.

```
clusters <- clusters[order(as.numeric(names(clusters)))]</pre>
```

12. We are now ready to plot a dendrogram and scatterplot. We will use the **ggmatrix** function from the **GGally** package to place the plots side-by-side.

Figure 10.3: Hierarchical clustering of the blobs data set.

```
pm <- ggmatrix(
   plotList, nrow=1, ncol=2, showXAxisPlotLabels = F, showYAxisPlotLabels = F,
   xAxisLabels=c("dendrogram", "scatter plot")
) + theme_bw()
pm</pre>
```

10.3.2.2 Clustering of other synthetic data sets

```
aggregation <- read.table("data/example_clusters/aggregation.txt")</pre>
noisy_moons <- read.csv("data/example_clusters/noisy_moons.csv", header=F)</pre>
noisy_circles <- read.csv("data/example_clusters/noisy_circles.csv", header=F)</pre>
aniso <- read.csv("data/example_clusters/aniso.csv", header=F)</pre>
no_structure <- read.csv("data/example_clusters/no_structure.csv", header=F)
hclust_plots <- function(data_set, n){
  d <- dist(data_set[,1:2])</pre>
  dend <- as.dendrogram(hclust(d, method="average"))</pre>
  clusters <- cutree(dend,n,order_clusters_as_data=F)</pre>
  dend <- color_branches(dend, clusters=clusters, col=cluster_colours[1:n])</pre>
  clusters <- clusters[order(as.numeric(names(clusters)))]</pre>
  labels(dend) <- rep("", length(data_set[,1]))</pre>
  ggd <- as.ggdend(dend)
  ggd$nodes <- ggd$nodes[!(1:length(ggd$nodes[,1])),]</pre>
  plotPair <- list(ggplot(ggd),</pre>
    ggplot(data_set, aes(V1,V2)) +
      geom_point(col=cluster_colours[clusters], size=0.2))
  return(plotPair)
}
plotList <- c(</pre>
```

```
hclust_plots(aggregation, 7),
  hclust_plots(noisy_moons, 2),
  hclust_plots(noisy_circles, 2),
  hclust_plots(aniso, 3),
  hclust_plots(no_structure, 3)
pm <- ggmatrix(</pre>
  plotList, nrow=5, ncol=2, showXAxisPlotLabels = F, showYAxisPlotLabels = F,
  xAxisLabels=c("dendrogram", "scatter plot"),
  yAxisLabels=c("aggregation", "noisy moons", "noisy circles", "anisotropic", "no structure")
) + theme_bw()
pm
```

Example: gene expression profiling of human tissues

10.3.3.1 Basics

```
Load required libraries
```

```
library(RColorBrewer)
library(dendextend)
```

Load data

```
load("data/tissues_gene_expression/tissuesGeneExpression.rda")
```

Inspect data

```
table(tissue)
## tissue
##
   cerebellum
                      colon endometrium hippocampus
                                                           kidnev
                                                                        liver
                         34
                                                                            26
##
            38
                                     15
                                                  31
                                                               39
```

```
##
      placenta
##
```

dim(e)

[1] 22215

189 Compute distance between each sample

```
d <- dist(t(e))</pre>
```

perform hierarchical clustering

```
hc <- hclust(d, method="average")</pre>
plot(hc, labels=tissue, cex=0.5, hang=-1, xlab="", sub="")
```

10.3.3.2 Colour labels

use dendextend library to plot dendrogram with colour labels

Figure 10.4: Hierarchical clustering of synthetic data-sets.

Cluster Dendrogram

Figure 10.5: Clustering of tissue samples based on gene expression profiles.

```
tissue_type <- unique(tissue)
dend <- as.dendrogram(hc)
dend_colours <- brewer.pal(length(unique(tissue)), "Dark2")
names(dend_colours) <- tissue_type
labels(dend) <- tissue[order.dendrogram(dend)]
labels_colors(dend) <- dend_colours[tissue][order.dendrogram(dend)]
labels_cex(dend) = 0.5
plot(dend, horiz=T)</pre>
```

10.3.3.3 Defining clusters by cutting tree

Define clusters by cutting tree at a specific height

```
plot(dend, horiz=T)
abline(v=125, lwd=2, lty=2, col="blue")
hclusters <- cutree(dend, h=125)
table(tissue, cluster=hclusters)</pre>
```

```
##
               cluster
## tissue
                1 2 3
                            5
##
                0 36 0 0
                              0
    cerebellum
##
    colon
                0 0 34
                              0
##
    endometrium 15 0
                     0
                         0
                              0
##
    hippocampus 0 31
                           0 0
                      0
                         0
##
    kidney
                37
                   0
                        0
                            2 0
##
    liver
                0
                   0
                      0 24 2 0
                        0 0 6
##
    placenta
                0
                   0
                      0
```

Select a specific number of clusters.

Figure 10.6: Clustering of tissue samples based on gene expression profiles with labels coloured by tissue type.

Figure 10.7: Clusters found by cutting tree at a height of 125

```
plot(dend, horiz=T)
abline(v = heights_per_k.dendrogram(dend)["8"], lwd = 2, lty = 2, col = "blue")
hclusters <- cutree(dend, k=8)
table(tissue, cluster=hclusters)
##
            cluster
         1 2 3 4 5 6 7 8
## tissue
##
   cerebellum 0 31 0 0 2 0 5 0
##
  colon 0 0 34 0 0 0 0 0
## endometrium 0 0 0 0 15 0 0
## hippocampus 0 31 0 0 0 0 0
##
  kidney 37 0 0 0 2 0 0 0
           0 0 0 24 2 0 0 0
##
   liver
   placenta 0 0 0 0 0 0 6
##
```

10.3.3.4 Heatmap

Base R provides a **heatmap** function, but we will use the more advanced **heatmap.2** from the **gplots** package.

```
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess

Define a colour palette (also known as a lookup table).
heatmap_colours <- colorRampPalette(brewer.pal(9, "PuBuGn"))(100)

Calculate the variance of each gene.
geneVariance <- apply(e,1,var)

Find the row numbers of the 40 genes with the highest variance.
idxTop40 <- order(-geneVariance)[1:40]

Define colours for tissues.
tissueColours <- palette(brewer.pal(8, "Dark2"))[as.numeric(as.factor(tissue))]

Plot heatmap.</pre>
```

10.4 K-means

heatmap.2(e[idxTop40,], labCol=tissue, trace="none",

ColSideColors=tissueColours, col=heatmap_colours)

10.4.1 Algorithm

Pseudocode

10.4. K-MEANS 35

Figure 10.8: Selection of eight clusters from the dendogram $\,$

Figure 10.9: Heatmap of the expression of the 40 genes with the highest variance.

to illustrate range of different types of data that can be clustered - image segmentation

The default setting of the **kmeans** function is to perform a maximum of 10 iterations and if the algorithm fails to converge a warning is issued. The maximum number of iterations is set with the argument **iter.max**.

10.4.2 Choosing initial cluster centres

```
library(RColorBrewer)
point_shapes <- c(15,17,19)
point_colours <- brewer.pal(3,"Dark2")</pre>
point_size = 1.5
center_point_size = 8
blobs <- as.data.frame(read.csv("data/example_clusters/blobs.csv", header=F))</pre>
good_centres <- as.data.frame(matrix(c(2,8,7,3,12,7), ncol=2, byrow=T))</pre>
bad_centres <- as.data.frame(matrix(c(13,13,8,12,2,2), ncol=2, byrow=T))</pre>
good_result <- kmeans(blobs[,1:2], centers=good_centres)</pre>
bad_result <- kmeans(blobs[,1:2], centers=bad_centres)</pre>
plotList <- list(</pre>
ggplot(blobs, aes(V1,V2)) +
  geom_point(col=point_colours[good_result$cluster], shape=point_shapes[good_result$cluster],
             size=point_size) +
  geom_point(data=good_centres, aes(V1,V2), shape=3, col="black", size=center_point_size) +
  theme bw(),
ggplot(blobs, aes(V1,V2)) +
  geom_point(col=point_colours[bad_result$cluster], shape=point_shapes[bad_result$cluster],
             size=point_size) +
  geom_point(data=bad_centres, aes(V1,V2), shape=3, col="black", size=center_point_size) +
  theme_bw()
pm <- ggmatrix(</pre>
  plotList, nrow=1, ncol=2, showXAxisPlotLabels = T, showYAxisPlotLabels = T,
  xAxisLabels=c("A", "B")
) + theme bw()
pm
```

Convergence to a local minimum can be avoided by starting the algorithm multiple times, with different random centres. The **nstart** argument to the **k-means** function can be used to specify the number of random sets and optimal solution will be selected automatically.

10.4.3 Choosing k

```
point_colours <- brewer.pal(9,"Set1")
k <- 1:9
res <- lapply(k, function(i){kmeans(blobs[,1:2], i, nstart=50)})
plotList <- lapply(k, function(i){</pre>
```


Figure 10.10: Iterations of the k-means algorithm

Figure 10.11: Initial centres determine clusters. The starting centres are shown as crosses. **A**, real clusters found; **B**, convergence to a local minimum.

N.B. we have set nstart=50 to run the algorithm 50 times, starting from different, random sets of centroids.

10.4.4 Example: clustering synthetic data sets

Let's see how k-means performs on the other toy data sets. First we will define some variables and functions we will use in the analysis of all data sets.

```
k=1:9
point_shapes <- c(15,17,19,5,6,0,1)
point_colours <- brewer.pal(7,"Dark2")
point_size = 1.5
center_point_size = 8</pre>
```


Figure 10.12: K-means clustering of the blobs data set using a range of values of k from 1-9. Cluster centres indicated with a cross.

Figure 10.13: Variance within the clusters. Total within-cluster sum of squares plotted against k.

10.4.4.1 Aggregation

```
aggregation <- as.data.frame(read.table("data/example_clusters/aggregation.txt"))
res <- lapply(k, function(i){kmeans(aggregation[,1:2], i, nstart=50)})
plot_tot_withinss(res)

plotList <- list(
   plot_clusters(aggregation, res, 3),
   plot_clusters(aggregation, res, 7)
)
pm <- ggmatrix(
   plotList, nrow=1, ncol=2, showXAxisPlotLabels = T, showYAxisPlotLabels = T,
   xAxisLabels=c("k=3", "k=7")</pre>
```


Figure 10.14: K-means clustering of the aggregation data set: variance within clusters.

```
) + theme_bw()
pm
```

10.4.4.2 Noisy moons

```
noisy_moons <- read.csv("data/example_clusters/noisy_moons.csv", header=F)
res <- lapply(k, function(i){kmeans(noisy_moons[,1:2], i, nstart=50)})
plot_tot_withinss(res)
plot_clusters(noisy_moons, res, 2)</pre>
```

10.4.4.3 Noisy circles

```
noisy_circles <- as.data.frame(read.csv("data/example_clusters/noisy_circles.csv", header=F))
res <- lapply(k, function(i){kmeans(noisy_circles[,1:2], i, nstart=50)})
plot_tot_withinss(res)

plotList <- list(
    plot_clusters(noisy_circles, res, 2),
    plot_clusters(noisy_circles, res, 3)
)
pm <- ggmatrix(
    plotList, nrow=1, ncol=2, showXAxisPlotLabels = T,
        showYAxisPlotLabels = T, xAxisLabels=c("k=2", "k=3")
) + theme_bw()
pm</pre>
```


Figure 10.15: K-means clustering of the aggregation data set: scatterplots of clusters for k=3 and k=7. Cluster centres indicated with a cross.

Figure 10.16: K-means clustering of the noisy moons data set: variance within clusters.

Figure 10.17: K-means clustering of the noisy moons data set: scatterplot of clusters for k=2. Cluster centres indicated with a cross.

Figure 10.18: K-means clustering of the noisy circles data set: variance within clusters.

10.5. DBSCAN 45

Figure 10.19: K-means clustering of the noisy circles data set: scatterplots of clusters for k=2 and k=3. Cluster centres indicated with a cross.

10.4.4.4 Anisotropic distributions

```
aniso <- as.data.frame(read.csv("data/example_clusters/aniso.csv", header=F))
res <- lapply(k, function(i){kmeans(aniso[,1:2], i, nstart=50)})
plot_tot_withinss(res)

plotList <- list(
    plot_clusters(aniso, res, 2),
    plot_clusters(aniso, res, 3)
)

pm <- ggmatrix(
    plotList, nrow=1, ncol=2, showXAxisPlotLabels = T,
    showYAxisPlotLabels = T, xAxisLabels=c("k=2", "k=3")
) + theme_bw()
pm</pre>
```

10.4.4.5 No structure

```
no_structure <- as.data.frame(read.csv("data/example_clusters/no_structure.csv", header=F))
res <- lapply(k, function(i){kmeans(no_structure[,1:2], i, nstart=50)})
plot_tot_withinss(res)
plot_clusters(no_structure, res, 4)</pre>
```

10.5 DBSCAN

Density-based spatial clustering of applications with noise

Figure 10.20: K-means clustering of the anisotropic distributions data set: variance within clusters.

Figure 10.21: K-means clustering of the anisotropic distributions data set: scatterplots of clusters for k=2 and k=3. Cluster centres indicated with a cross.

10.5. DBSCAN 47

Figure 10.22: K-means clustering of the data set with no structure: variance within clusters.

Figure 10.23: K-means clustering of the data set with no structure: scatterplot of clusters for k=4. Cluster centres indicated with a cross.

// Identify core points

// Assign border points

// Assign noise points

// Assign core points

Figure 10.24: Illustration of the DBSCAN algorithm.

10.5.1 Algorithm

Abstract DBSCAN algorithm in pseudocode (Schubert et al., 2017)

- 1 Compute neighbours of each point and identify core points
- 2 Join neighbouring core points into clusters
- 3 foreach non-core point do
 Add to a neighbouring core point i

 $\ensuremath{\mathsf{Add}}$ to a neighbouring core point if possible Otherwise, add to noise

- 10.5.2 Choosing parameters
- 10.5.3 Example: clustering synthetic data sets
- 10.5.4 Gene expression

tissue types?

- 10.6 Summary
- 10.6.1 Applications
- 10.6.2 Strengths
- 10.6.3 Limitations

10.7 Exercises

Exercise solutions: I

Solutions to exercises can be found in appendix I.

Appendix A

Resources

A.1 Python

scikit-learn

A.2 Machine learning data set repository

mldata.org

This repository manages the following types of objects:

- Data Sets Raw data as a collection of similarily structured objects.
- Material and Methods Descriptions of the computational pipeline.
- Learning Tasks Learning tasks defined on raw data.
- Challenges Collections of tasks which have a particular theme.

Appendix B

Solutions ch. 3 - Linear models and matrix algebra

Solutions to exercises of chapter 3.

- B.1 Exercise 1
- B.2 Exercise 2

Appendix C

Solutions ch. 4 - Linear and non-linear logistic regression

Solutions to exercises of chapter 4.

- C.1 Exercise 1
- C.2 Exercise 2

Appendix D

Solutions ch. 5 - Nearest neighbours

Solutions to exercises of chapter 5.

- D.1 Exercise 1
- D.2 Exercise 2

Appendix E

Solutions ch. 6 - Decision trees and random forests

Solutions to exercises of chapter 6.

- E.1 Exercise 1
- E.2 Exercise 2

Appendix F

Solutions ch. 7 - Support vector machines

Solutions to exercises of chapter 7.

- F.1 Exercise 1
- F.2 Exercise 2

Appendix G

Solutions ch. 8 - Artificial neural networks

Solutions to exercises of chapter 8.

- G.1 Exercise 1
- G.2 Exercise 2

Appendix H

Solutions ch. 9 - Dimensionality reduction

Solutions to exercises of chapter 9.

- H.1 Exercise 1
- H.2 Exercise 2

Appendix I

Solutions ch. 10 - Clustering

Solutions to exercises of chapter 10.

- I.1 Exercise 1
- I.2 Exercise 2

Bibliography

- Schubert, E., Sander, J., Ester, M., Kriegel, H. P., and Xu, X. (2017). Dbscan revisited, revisited: Why and how you should (still) use dbscan. *ACM Trans. Database Syst.*, 42(3):19:1–19:21.
- Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. ISBN 978-1498716963.
- Xie, Y. (2017). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.4.