- 115. Consider the χ^2 distribution with ν degrees of freedom, χ^2_{ν} .
 - (a) Use the definition of the moment generating function (MGF) to prove the MGF of χ^2_{ν} is

$$M_{\chi^2_{\nu}}(t) = \left(\frac{1}{1-2t}\right)^{\nu/2}, \quad t < \frac{1}{2}$$

- (b) Use the MGF to find the mean of the χ^2_{ν} distribution.
- (c) Let $Y_1,...,Y_n$ be independent χ^2 random variables with degrees of freedom $\nu_i, i=1,...,n$, respectively; that is, for $i=1,...,n,Y_i\sim\chi^2_{\nu_i}$. Prove that $W=\sum_{i=1}^nY_i$ has a χ^2_{ν} distribution where $\nu=\sum_{i=1}^nv_i$.