Formal Methods in Software Development Gauß and Fourier-Motzkin Variable Elimination for Linear Real Arithmetic

Mădălina Erașcu

West University of Timișoara Faculty of Mathematics and Informatics Department of Computer Science

Based on slides of the lecture Satisfiability Checking (Erika Ábrahám), RTWH Aachen

WS 2019/2020

The Xmas problem

There are three types of Xmas presents Santa Claus can make.

- Santa Claus wants to reduce the overhead by making only two types.
- He needs at least 100 presents.
- He needs at least 5 of either type 1 or type 2.
- He needs at least 10 of the third type.
- Each present of type 1, 2, and 3 need 1, 2, resp. 5 minutes to make.
- Santa Claus is late, and he has only 3 hours left.
- Each present of type 1, 2, and 3 costs 3, 2, resp. 1 EUR.
- He has 300 EUR for presents in total.

The Xmas problem

There are three types of Xmas presents Santa Claus can make.

- Santa Claus wants to reduce the overhead by making only two types.
- He needs at least 100 presents.
- He needs at least 5 of either type 1 or type 2.
- He needs at least 10 of the third type.
- Each present of type 1, 2, and 3 need 1, 2, resp. 5 minutes to make.
- Santa Claus is late, and he has only 3 hours left.
- Each present of type 1, 2, and 3 costs 3, 2, resp. 1 EUR.
- He has 300 EUR for presents in total.

$$(p_1 = 0 \lor p_2 = 0 \lor p_3 = 0) \land p_1 + p_2 + p_3 \ge 100 \land (p_1 \ge 5 \lor p_2 \ge 5) \land p_3 \ge 10 \land p_1 + 2p_2 + 5p_3 \le 180 \land 3p_1 + 2p_2 + p_3 \le 300$$

Linear real arithmetic is the first-order theory with signature $\{0,1,+,<\}$ and the domain being the reals \mathbb{R} .

Linear real arithmetic is the first-order theory with signature $\{0,1,+,<\}$ and the domain being the reals \mathbb{R} .

Syntax of linear real arithmetic

```
Terms: t := 0 \mid 1 \mid x \mid t+t
```

Constraints: c ::= t < t

Formulas: $\varphi ::= c \mid \neg \varphi \mid \varphi \wedge \varphi \mid \exists x. \varphi$

Linear real arithmetic is the first-order theory with signature $\{0,1,+,<\}$ and the domain being the reals \mathbb{R} .

Syntax of linear real arithmetic

```
Terms: t ::= 0 \mid 1 \mid x \mid t+t
Constraints: c ::= t < t
```

Formulas: $\varphi ::= c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x. \varphi$

where x stays for a variable.

■ Syntactic sugar for constraints: a - b, $t_1 \le t_2$, $t_1 = t_2$, $t_1 \ne t_2$.

Linear real arithmetic is the first-order theory with signature $\{0,1,+,<\}$ and the domain being the reals \mathbb{R} .

Syntax of linear real arithmetic

```
Terms: t := 0 \mid 1 \mid x \mid t+t
Constraints: c := t < t
```

Formulas:
$$\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x. \varphi$$

- Syntactic sugar for constraints: a b, $t_1 \le t_2$, $t_1 = t_2$, $t_1 \ne t_2$.
- The semantics is standard.

Linear real arithmetic is the first-order theory with signature $\{0,1,+,<\}$ and the domain being the reals \mathbb{R} .

Syntax of linear real arithmetic

```
Terms: t := 0 \mid 1 \mid x \mid t+t
Constraints: c := t < t
```

Formulas:
$$\varphi ::= c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x. \varphi$$

- Syntactic sugar for constraints: a b, $t_1 \le t_2$, $t_1 = t_2$, $t_1 \ne t_2$.
- The semantics is standard.
- Linear real arithmetic is also called linear real algebra.

Linear real arithmetic is the first-order theory with signature $\{0,1,+,<\}$ and the domain being the reals \mathbb{R} .

Syntax of linear real arithmetic

```
Terms: t := 0 \mid 1 \mid x \mid t+t
Constraints: c := t < t
```

Constraints: c := t < t

Formulas: $\varphi ::= c \mid \neg \varphi \mid \varphi \wedge \varphi \mid \exists x. \ \varphi$

- Syntactic sugar for constraints: a b, $t_1 \le t_2$, $t_1 = t_2$, $t_1 \ne t_2$.
- The semantics is standard.
- Linear real arithmetic is also called linear real algebra.
- We consider the satisfiability problem for the quantifier-free fragment QFLRA (or equivalently the existential fragment, i.e., no universal quantifiers and no negation of expressions containing existential quantifiers).

Reminder: In an SMT solver for QFLRA, the theory solver needs to check the satisfiability of sets of constraints $\sum_{k=1}^{N} a_{ik} \cdot x_k \sim_i b_i$, where $a_{i,k}$ and b_i are integer (or rational) constants, x_k are real-valued variables, and $\sim_i \in \{=, \leq, <\}$ for $k=1, \ldots, N$ and $i=1, \ldots, M$. (Note: t > b is equivalent to -t < -b and similarly for >.)

Reminder: In an SMT solver for QFLRA, the theory solver needs to check the satisfiability of sets of constraints $\sum_{k=1}^{N} a_{ik} \cdot x_k \sim_i b_i$, where $a_{i,k}$ and b_i are integer (or rational) constants, x_k are real-valued variables, and $c_i \in \{=, \leq, <\}$ for $k=1, \ldots, N$ and $i=1, \ldots, M$. (Note: t > b is equivalent to -t < -b and similarly for $b \geq 0$.)

Assume that the *i*th constraint is an equation with $a_{ij} \neq 0$ for some $1 \leq j \leq N$: $\sum_{k=1}^{N} a_{ik} \cdot x_k = b_i \quad (a_{i,k}, b_i: integer/rational \ constants, \ x_k: \ variables)$

Reminder: In an SMT solver for QFLRA, the theory solver needs to check the satisfiability of sets of constraints $\sum_{k=1}^{N} a_{ik} \cdot x_k \sim_i b_i$, where $a_{i,k}$ and b_i are integer (or rational) constants, x_k are real-valued variables, and $c_i \in \{=, \leq, <\}$ for $k=1, \ldots, N$ and $i=1, \ldots, M$. (Note: t > b is equivalent to -t < -b and similarly for $b \geq 0$.)

■ Assume that the *i*th constraint is an equation with $a_{ij} \neq 0$ for some $1 \leq j \leq N$:

$$\sum_{k=1}^{N} a_{ik} \cdot x_k = b_i \quad (a_{i,k}, b_i: integer/rational constants, x_k: variables)$$

$$\Rightarrow \quad a_{ij} \cdot x_j = b_i - \sum_{k \in \{1, \dots, j-1, j+1, \dots, N\}} a_{ik} \cdot x_k$$

Reminder: In an SMT solver for QFLRA, the theory solver needs to check the satisfiability of sets of constraints $\sum_{k=1}^{N} a_{ik} \cdot x_k \sim_i b_i$, where $a_{i,k}$ and b_i are integer (or rational) constants, x_k are real-valued variables, and $c_i \in \{=, \leq, <\}$ for $k=1, \ldots, N$ and $i=1, \ldots, M$. (Note: t > b is equivalent to -t < -b and similarly for $b \geq 0$.)

Assume that the *i*th constraint is an equation with $a_{ij} \neq 0$ for some $1 \leq j \leq N$:

$$\sum_{k=1}^{N} a_{ik} \cdot x_k = b_i \quad (a_{i,k}, b_i: integer/rational constants, x_k: variables)$$

$$\Rightarrow \quad a_{ij} \cdot x_j = b_i - \sum_{k \in \{1, \dots, j-1, j+1, \dots, N\}} a_{ik} \cdot x_k$$

$$\Rightarrow \quad x_j = \frac{b_i}{a_{ij}} - \sum_{k \in \{1, \dots, j-1, j+1, \dots, N\}} \frac{a_{ik}}{a_{ij}} \cdot x_k := \beta_j$$

Reminder: In an SMT solver for QFLRA, the theory solver needs to check the satisfiability of sets of constraints $\sum_{k=1}^{N} a_{ik} \cdot x_k \sim_i b_i$, where $a_{i,k}$ and b_i are integer (or rational) constants, x_k are real-valued variables, and $\sim_i \in \{=, \leq, <\}$ for $k=1, \ldots, N$ and $i=1,\ldots,M$. (Note: t>b is equivalent to -t<-b and similarly for \geq .)

■ Assume that the *i*th constraint is an equation with $a_{ij} \neq 0$ for some $1 \leq j \leq N$:

$$\sum_{k=1}^{N} a_{ik} \cdot x_k = b_i \quad (a_{i,k}, b_i: integer/rational constants, x_k: variables)$$

$$\Rightarrow \quad a_{ij} \cdot x_j = b_i - \sum_{k \in \{1, \dots, j-1, j+1, \dots, N\}} a_{ik} \cdot x_k$$

$$\Rightarrow \quad x_j = \frac{b_i}{a_{ij}} - \sum_{k \in \{1, \dots, j-1, j+1, \dots, N\}} \frac{a_{ik}}{a_{ij}} \cdot x_k := \beta_j$$

■ Replace x_j by β_j in all constraints (and multiply the involved constraints by a_{ij} if integer coefficients are wanted).

Reminder: In an SMT solver for QFLRA, the theory solver needs to check the satisfiability of sets of constraints $\sum_{k=1}^{N} a_{ik} \cdot x_k \sim_i b_i$, where $a_{i,k}$ and b_i are integer (or rational) constants, x_k are real-valued variables, and $\sim_i \in \{=, \leq, <\}$ for $k=1, \ldots, N$ and $i=1, \ldots, M$. (Note: t > b is equivalent to -t < -b and similarly for \geq .)

■ Assume that the *i*th constraint is an equation with $a_{ij} \neq 0$ for some $1 \leq j \leq N$:

$$\begin{split} \sum_{k=1}^{n} a_{ik} \cdot x_k &= b_i \quad (a_{i,k}, b_i : integer/rational \ constants, \ x_k : \ variables) \\ \Rightarrow \quad a_{ij} \cdot x_j &= b_i - \sum_{k \in \{1, \dots, j-1, j+1, \dots, N\}} a_{ik} \cdot x_k \\ \Rightarrow \quad x_j &= \frac{b_i}{a_{ij}} - \sum_{k \in \{1, \dots, j-1, j+1, \dots, N\}} \frac{a_{ik}}{a_{ij}} \cdot x_k := \beta_j \end{split}$$

- Replace x_j by β_j in all constraints (and multiply the involved constraints by a_{ij} if integer coefficients are wanted).
- After removing tautologies, this substitutiton leads to an equisatisfiable problem with (at most) M-1 constraints in (at most) N-1 variables (at least the *i*th constraint and x_i are eliminated).

What remains to be solved

■ Let us assume first that after applying Gauß variable elimination as long as possible, *m* non-strict inequalities in *n* variables are left (i.e., there are no strict inequalities):

$$\bigwedge_{1 \le i \le m} \sum_{1 \le j \le n} a_{ij} x_j \le b_i$$

What remains to be solved

■ Let us assume first that after applying Gauß variable elimination as long as possible, m non-strict inequalities in n variables are left (i.e., there are no strict inequalities):

$$\bigwedge_{1 \le i \le m} \sum_{1 \le j \le n} a_{ij} x_j \le b_i$$

■ Input in matrix form: $A\overline{x} \leq \overline{b}$

$$\begin{array}{c} \textit{m} \text{ constraints} & \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & \cdots & a_{1n} \\ a_{21} & a_{22} & \ddots & & \vdots \\ \vdots & & & \ddots & \vdots \\ a_{m1} & a_{22} & \cdots & \cdots & a_{mn} \end{array} \right) \left(\begin{array}{c} x_1 \\ \vdots \\ \vdots \\ x_n \end{array} \right) \leq \left(\begin{array}{c} b_1 \\ \vdots \\ \vdots \\ b_m \end{array} \right)$$

Earliest method for solving linear inequality systems:
 discovered in 1826 by Fourier, re-discovered by Motzkin in 1936

- Earliest method for solving linear inequality systems:
 discovered in 1826 by Fourier, re-discovered by Motzkin in 1936
- Basic idea of variable elimination:
 - Pick a variable and eliminate it, yielding an equisatisfiable formula that does not refer to the eliminated variable any more.
 - Continue until all variables are eliminated.

- Earliest method for solving linear inequality systems:
 discovered in 1826 by Fourier, re-discovered by Motzkin in 1936
- Basic idea of variable elimination:
 - Pick a variable and eliminate it, yielding an equisatisfiable formula that does not refer to the eliminated variable any more.
 - Continue until all variables are eliminated.
- Fourier-Motzkin: Collect requirements on the lower an upper bounds on the variable we want to eliminate.

- For a variable x_n , we can partition the constraints according to the coefficients of x_n :
 - $a_{in} = 0$: constraint i puts no bound on x_n
 - $a_{in} > 0$: constraint *i* puts an upper bound on x_n
 - a_{in} < 0: constraint i puts a lower bound on x_n

- For a variable x_n , we can partition the constraints according to the coefficients of x_n :
 - $a_{in} = 0$: constraint i puts no bound on x_n
 - $a_{in} > 0$: constraint i puts an upper bound on x_n
 - $a_{in} < 0$: constraint i puts a lower bound on x_n

$$\sum_{j=1}^n a_{ij} \cdot x_j \le b_i$$

- For a variable x_n , we can partition the constraints according to the coefficients of x_n :
 - $a_{in} = 0$: constraint i puts no bound on x_n
 - $a_{in} > 0$: constraint *i* puts an upper bound on x_n
 - $a_{in} < 0$: constraint i puts a lower bound on x_n

$$\sum_{j=1}^{n} a_{ij} \cdot x_{j} \leq b_{i}$$

$$\Rightarrow a_{in} \cdot x_{n} \leq b_{i} - \sum_{j=1}^{n-1} a_{ij} \cdot x_{j}$$

- For a variable x_n , we can partition the constraints according to the coefficients of x_n :
 - $a_{in} = 0$: constraint i puts no bound on x_n
 - $a_{in} > 0$: constraint *i* puts an upper bound on x_n
 - $a_{in} < 0$: constraint i puts a lower bound on x_n

$$\sum_{j=1}^{n} a_{ij} \cdot x_{j} \leq b_{i}$$

$$\Rightarrow a_{in} \cdot x_{n} \leq b_{i} - \sum_{j=1}^{n-1} a_{ij} \cdot x_{j}$$

$$(a) \stackrel{a_{in} \geq 0}{\Rightarrow} x_{n} \leq \frac{b_{i}}{a_{in}} - \sum_{i=1}^{n-1} \frac{a_{ij}}{a_{in}} \cdot x_{j} \quad \text{upper bound}$$

(b)
$$\stackrel{a_{in} \leq 0}{\Longrightarrow} x_n \geq \frac{b_i}{a_{in}} - \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} \cdot x_j$$
 lower bound

Category for x_1 ?

- (1) $x_1 x_2 \leq 0$
- (2) $x_1 x_3 \leq 0$
- (3) $-x_1 + x_2 + 2x_3 \le 0$
- (4) $-x_3 \leq -1$

Category for
$$x_1$$
?

(1)
$$x_1 - x_2 \leq 0$$

(2)
$$x_1 - x_3 \leq 0$$

(3)
$$-x_1 + x_2 + 2x_3 \le 0$$

(4)
$$-x_3 \leq -1$$

Upper bound

(1)
$$x_1 - x_2 \leq 0$$

(2)
$$x_1 - x_3 \leq 0$$

$$(3) \quad -x_1 + x_2 + 2x_3 \le 0$$

(4)
$$-x_3 \leq -1$$

Category for x_1 ?

Upper bound

Upper bound

Category for
$$x_1$$
?
(1) $x_1 - x_2 \le 0$ Upper bound

- $(2) \quad x_1 x_3 \le 0 \qquad \qquad \mathsf{Upper\ bound}$
- (3) $-x_1 + x_2 + 2x_3 \le 0$ Lower bound
- $(4) -x_3 \leq -1$

(1)
$$x_1 - x_2 \leq 0$$

(2)
$$x_1 - x_3 \leq 0$$

(3)
$$-x_1 + x_2 + 2x_3 \le 0$$
 Lower bound

(4)
$$-x_3 \leq -1$$

Category for x_1 ?

Upper bound Upper bound

No bound

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them).
- The new problem has a solution iff the old problem has one!

$$\begin{array}{rcl}
-8x + 7y & \leq & 0 \\
-x & \leq & -3 \\
-y + z & \leq & 0 \\
-z & \leq & -10 \\
z & \leq & 20
\end{array}$$

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them).
- The new problem has a solution iff the old problem has one!

$$\begin{array}{rcl}
8x + 7y & \leq & 0 \\
\hline
x & \leq & 3 \\
-y + z & \leq & 0 \\
-z & \leq & -10 \\
z & \leq & 20
\end{array}$$

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them).
- The new problem has a solution iff the old problem has one!

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them).
- The new problem has a solution iff the old problem has one!

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them).
- The new problem has a solution iff the old problem has one!

■ For each pair of a lower bound β_I and an upper bound β_u , we have

$$\beta_l \leq x_n \leq \beta_u$$

Fourier-Motzkin variable elimination

■ For each pair of a lower bound β_I and an upper bound β_u , we have

$$\beta_l \leq x_n \leq \beta_u$$

For each such pair, add the constraint

$$\beta_I \leq \beta_u$$

Category for x_1 ?

- (1) $x_1 x_2 \leq 0$
- (2) $x_1 x_3 \leq 0$
- (3) $-x_1 + x_2 + 2x_3 \le 0$
- (4) $-x_3 \leq -1$

- (1) $x_1 x_2 \leq 0$
- (2) $x_1 x_3 \leq 0$
- (3) $-x_1 + x_2 + 2x_3 \leq 0$
- (4) $-x_3 \leq -1$

Category for x₁?
Upper bound
Upper bound
Lower bound

(1)
$$x_1 - x_2 < 0$$

(2)
$$x_1 - x_3 \leq 0$$

(3)
$$-x_1 + x_2 + 2x_3 \leq 0$$

(4)
$$-x_3 \leq -1$$

(5)
$$2x_3 \le 0$$
 (from 1,3)

Category for x_1 ?
Upper bound
Upper bound
Lower bound

(1)
$$x_1 - x_2 \leq 0$$

(2)
$$x_1 - x_3 \leq 0$$

(3)
$$-x_1 + x_2 + 2x_3 \leq 0$$

(4)
$$-x_3 \leq -1$$

(5) $2x_3 \le 0$ (from 1,3)

(6) $x_2 + x_3 \le 0$ (from 2,3)

Category for x_1 ?
Upper bound
Upper bound
Lower bound

$$\frac{-(1)}{-(2)} \frac{x_1 - x_2 \le 0}{-(2)} \frac{x_1 - x_3 \le 0}{-(2)}$$

$$\frac{(3)}{(3)}$$
 $x_1 + x_2 + 2x_3 \le 0$

$$(4) -x_3 \leq -1$$

Category for x_1 ?

(5)
$$2x_3 \le 0$$
 (from 1,3)

(6)
$$x_2 + x_3 \le 0$$
 (from 2,3)

$$\begin{array}{ccc} -(1) & x_1 - x_2 \le 0 \\ -(2) & x_1 - x_3 \le 0 \end{array}$$

$$-(3)$$
 $x_1 + x_2 + 2x_3 \le 0$

(4)
$$-x_3 \leq -1$$

Category for x_1 ?

eliminate x_1

(5)
$$2x_3 \le 0$$
 (from 1,3)

(6)
$$x_2 + x_3 \le 0$$
 (from 2,3)

(5)
$$2x_3 \le 0$$

(6) $x_2 + x_3 < 0$

Category for x_1 ?

Lower bound eliminate x_1 (from 1,3) Upper bound (from 2,3) Upper bound eliminate x_2

Strict inequalities

The approach works also if we have both non-strict and strict inequalities. All we need to change is that

Strict inequalities

The approach works also if we have both non-strict and strict inequalities. All we need to change is that

- we distinguiosh between strict and non-strict lower and upper bounds (defined by strict respectively non-strict inequalities), and
- for each pair of lower and upper bounds, if any of them is strict then we add the constraint

$$\beta_{I} < \beta_{II}$$

instead of

$$\beta_I \leq \beta_u$$
.

Question: Does this method work also for linear integer arithmetic, i.e., if the variables range over the integers (instead of the reals)?

- Question: Does this method work also for linear integer arithmetic, i.e., if the variables range over the integers (instead of the reals)?
- Answer: No.

- Question: Does this method work also for linear integer arithmetic, i.e., if the variables range over the integers (instead of the reals)?
- Answer: No.
- Reason: The integer domain is not dense.

- Question: Does this method work also for linear integer arithmetic, i.e., if the variables range over the integers (instead of the reals)?
- Answer: No.
- Reason: The integer domain is not dense.
- Question: Does this method work also for non-linear real arithmetic, i.e., if the variables range over the reals but also multiplication is allowed?

- Question: Does this method work also for linear integer arithmetic, i.e., if the variables range over the integers (instead of the reals)?
- Answer: No.
- Reason: The integer domain is not dense.
- Question: Does this method work also for non-linear real arithmetic, i.e., if the variables range over the reals but also multiplication is allowed?
- Answer: No.

- Question: Does this method work also for linear integer arithmetic, i.e., if the variables range over the integers (instead of the reals)?
- Answer: No.
- Reason: The integer domain is not dense.
- Question: Does this method work also for non-linear real arithmetic, i.e., if the variables range over the reals but also multiplication is allowed?
- Answer: No.
- Reason: in general it is not possible to transform constraints containing non-linear polynomial expressions such that we have a single variable on the left-hand-side and a real-arithmetic expression on the right-hand side (we would need complicated case distinctions, fractions and roots).

■ Worst-case complexity:

 $m \rightarrow$

$$m \rightarrow \left(\frac{m}{2}\right)^2 = \frac{m^2}{4}$$

$$m \rightarrow \left(\frac{m}{2}\right)^2 = \frac{m^2}{4}$$
$$\rightarrow \left(\frac{m^2}{4}\right)^2 = \frac{m^4}{4^3}$$

$$m \rightarrow \left(\frac{m}{2}\right)^2 = \frac{m^2}{4}$$

$$\rightarrow \left(\frac{m^2}{4}\right)^2 = \frac{m^4}{4^3}$$

$$\rightarrow \left(\frac{m^4}{4^3}\right)^2 = \frac{m^8}{4^7}$$

$$m \rightarrow \left(\frac{m}{2}\right)^2 = \frac{m^2}{4}$$

$$\rightarrow \left(\frac{\frac{m^2}{4}}{2}\right)^2 = \frac{m^4}{4^3}$$

$$\rightarrow \left(\frac{\frac{m^4}{4^3}}{2}\right)^2 = \frac{m^8}{4^7}$$

$$\rightarrow \dots$$

$$m \rightarrow \left(\frac{m}{2}\right)^2 = \frac{m^2}{4}$$

$$\rightarrow \left(\frac{\frac{m^2}{4}}{2}\right)^2 = \frac{m^4}{4^3}$$

$$\rightarrow \left(\frac{\frac{m^4}{4^3}}{2}\right)^2 = \frac{m^8}{4^7}$$

$$\rightarrow \dots$$

$$\rightarrow 4 \cdot \left(\frac{m}{4}\right)^{2^d}$$

Worst-case complexity:

$$m \rightarrow \left(\frac{m}{2}\right)^2 = \frac{m^2}{4}$$

$$\rightarrow \left(\frac{\frac{m^2}{4}}{2}\right)^2 = \frac{m^4}{4^3}$$

$$\rightarrow \left(\frac{\frac{m^4}{4^3}}{2}\right)^2 = \frac{m^8}{4^7}$$

$$\rightarrow \dots$$

$$\rightarrow 4 \cdot \left(\frac{m}{4}\right)^{2^d}$$

■ Heavy!

$$m \rightarrow \left(\frac{m}{2}\right)^2 = \frac{m^2}{4}$$

$$\rightarrow \left(\frac{\frac{m^2}{4}}{2}\right)^2 = \frac{m^4}{4^3}$$

$$\rightarrow \left(\frac{\frac{m^4}{4^3}}{2}\right)^2 = \frac{m^8}{4^7}$$

$$\rightarrow \dots$$

$$\rightarrow 4 \cdot \left(\frac{m}{4}\right)^{2^d}$$

- Heavy!
- The bottleneck: case-splitting

Requirements on theory solver in the SMT context

- Incrementality?
- 2 Minimal infeasible subsets?
- Backtracking?

Next Lecture: Linear Integer Arithmetic