WARTHOG 2018, Lecture I-2

Main Exercise 1. We work in the standard setup, but without assuming that F acts trivially on W. Given S a torus, we denote by $X(S) = \text{hom}(S, \mathbb{G}_m)$ the lattice of characters of S.

(a) Assume that S is an F-stable torus. Show that there is a short exact sequence of groups

$$1 \to \mathbf{S}^F \to \begin{array}{ccc} \mathbf{S} & \to & \mathbf{S} \to 1. \\ s & \mapsto & sF(s)^{-1} \end{array}$$

We assume that it induces a short exact sequence of abelian groups

$$0 \to X(\mathbf{S}) \overset{\mathrm{Id}-F}{\to} X(\mathbf{S}) \to X(\mathbf{S}^F) \to 0.$$

Deduce that

$$|\mathbf{S}^F| = |\det(\mathrm{Id} - F \mid X(\mathbf{S}))|.$$

- (b) Let $w \in W$. Show that $wF: t \to wF(t)w^{-1}$ is a Frobenius endomorphism of **T**.
- (c) Application: compute the order of the finite tori \mathbf{T}^{wF} of $\mathrm{Sp}_4(q)$.
- (d) Assume now that **S** is an *F*-stable maximal torus. Show that there exists $g \in \mathbf{G}$ such that
 - $\mathbf{S} = {}^{g}\mathbf{T}$:
 - $g^{-1}F(g) \in N_{\mathbf{G}}(\mathbf{T})$.

The class w of $g^{-1}F(g)$ in W is called a *type* of S.

- (e) Show that if w and w' are types of **S** then w and w' are F-conjugate in W (this means that there is $v \in W$ such that $w' = v^{-1}wF(v)$).
- (f) Show that two maximal tori are conjugate under \mathbf{G}^F if and only if their types are F-conjugate.
- (g) Given **S** a torus of type w, show that (\mathbf{S}, F) is conjugate to (\mathbf{T}, wF) . In particular $\mathbf{S}^F \simeq \mathbf{T}^{wF}$.
- (h) Deduce that $|\mathbf{S}^F| = \det(\operatorname{Id} wF \mid X(\mathbf{T}))$.

WARTHOG 2018, Lecture I-2 supplementary exercises

Exercise 1. Let G be a linear algebraic group and H be a closed subgroup of G.

- (a) Show that if **H** is connected then $(\mathbf{G}/\mathbf{H})^F = \mathbf{G}^F/\mathbf{H}^F$.
- (b) What happens when **H** is not connected?

Exercise 2. Let **G** be a reductive group with Frobenius endomorphism F. Given $r \ge 1$, we can form the reductive group \mathbf{G}^r with Frobenius F_r

$$F_r(g_1,\ldots,g_r) = (F(g_2),F(g_3),\ldots,F(g_r),F(g_1)).$$

- (a) Show that F_r is a Frobenius endomorphism of \mathbf{G}^r .
- (b) Show that the first projection induces an isomorphism $(\mathbf{G}^r)^{F_r} \stackrel{\sim}{\to} \mathbf{G}^{F^r}$.

Exercise 3. Let **L** be a Levi subgroup of GL_n such that $F(\mathbf{L}) = \mathbf{L}$ (with standard Frobenius). Determine \mathbf{L}^F explicitly.

Let A be a finite group and $\phi \in \operatorname{Aut}(A)$ an automorphism of A then for any $x \in A$ we denote by $\mathcal{O}_{A,\phi}(x) = \{a^{-1}x\phi(a) \mid a \in A\}$ the ϕ -conjugacy class of x. Correspondingly we have the ϕ -centraliser $C_{A,\phi}(x) = \{a \in A \mid x = a^{-1}x\phi(a)\}$. Note that these are simply the orbits and stabilisers of the action $\cdot : A \times A \to A$ given by $a \cdot x = a^{-1}x\phi(a)$. We denote by $H^1(\phi, A)$ the set of all ϕ -conjugacy classes. Finally for any $a \in A$ we denote by $a\phi \in \operatorname{Aut}(A)$ the automorphism defined by $(a\phi)(x) = a\phi(x)a^{-1}$ for all $x \in A$.

Exercise 4. Assume A is abelian. Show that $|H^1(\phi, A)| = |A^{\phi}|$.

Exercise 5. Assume $a \in A$. Show that the following hold:

- (a) $\mathcal{O}_{A,\phi}(xa) = \mathcal{O}_{A,a\phi}(x)a$,
- (b) $C_{A,\phi}(xa) = C_{A,a\phi}(x)$.

Exercise 6. Show that we have a well-defined bijection

$$H^1(\phi, A) \to H^1(\phi^{-1}, A)$$

 $\mathcal{O}_{A,\phi}(x) \mapsto \mathcal{O}_{A,\phi^{-1}}(x^{-1}).$

Exercise 7. Assume that **G** acts on an algebraic variety X such that $F(g \cdot x) = F(g) \cdot F(x)$. Let $x \in X^F$. Show that there the map $g \cdot x \longmapsto g^{-1}F(g)$ induces a bijection between

- (a) the \mathbf{G}^F -orbits in $(\mathbf{G} \cdot x)^F$;
- (b) $H^1(F, A)$, where $A = \operatorname{Stab}_{\mathbf{G}}(x)/\operatorname{Stab}_{\mathbf{G}}(x)^{\circ}$.

Exercise 8. Use the previous exercise to show that there are three $SL_2(q)$ -conjugacy classes of unipotent elements in $SL_2(q)$ (but only two $GL_2(q)$ -conjugacy classes).