Fall'19 CSCE 629

Analysis of Algorithms

Fang Song
Texas A&M U

Lecture 11

- Elements of DP
- Matrix-chain multiplication

Credit: based on slides by K. Wayne

Dynamic Programming: recap

- Break up a problem into a series of overlapping subproblems
- There is an ordering on the subproblems, and a relation showing how to solve a subproblem given answers to "smaller" ones.

An implicit DAG: nodes=subproblems, edges = dependencies

Top-down

- DP is about smart recursion (i.e. without repetition) by momoization
- Usually easy to express by building up a table iteratively

Credit: Mary Wootters

A DP recipe

1. Formulate the problem recursively (key step!)

- a) Specification. Describe what problems to solve (not how)
- b) Recursion. Give a recursive formula for the whole problem in terms answers to smaller instances of the same problem
- c) Step back and double check!

2. Build solutions to your recurrence (kinda routine)

- a) Identify subproblems
- b) Choose a memoization data structure
- c) Identify dependencies and find a good order (DAG in topological order)
- d) Write down your algorithm
- e) Analyze time (and space)
- f) Further improvements if possible

We usually go with bottom-up approach in this class

Matrix chain multiplication

In which **order** to multiply a sequence of rectangular matrices?

$$A \times (B \times C)$$

VS.

$$(A \times B) \times C$$

- Both correct: associativity
- Does the order matter?
- What we care: # of multiplications of numbers

Review: matrix multiplication

• Matrices $X_{m \times n}$ and $Y_{n \times k}$

Compatible: # column(X) = # row(Y)

$$z_{ij} = \sum_{\ell=1}^{n} x_{i\ell} \, y_{\ell j}$$

n multiplications of real numbers

• Computing $Z = X_{m \times n} Y_{n \times k}$: mnk scaler multiplications

Let's forget about Strassen's divide-&-conquer algorithm for now

Why order matters ...

 $A: 30 \times 1$ $B: 1 \times 40$ \times \times

$$((AB)(CD))$$
 VS. $(A((BC)D))$

41200 scalar mult.

1400 scalar mult.

Matrix chain order problem

- Input. Matrices A_1, \dots, A_n
 - A_i size $d_{i-1} \times d_i$
- Output. Optimal order for computing $\Pi_i A_i$
 - Minimum # of scalar multiplications
- Brute-force

$$P(1) = 1, P(n) = \sum_{k=1}^{n-1} P(k)P(n-k)$$

• Exercise. Prove $P(n) = \Omega(2^n)$

DP1: develop a recursion

- Input. Matrices A_1, \dots, A_n
 - A_i size $d_{i-1} \times d_i$
- Output. Optimal order for computing $\Pi_i A_i$
 - Minimum # of scalar multiplications

1a. specification

Def. $M(i,j) = \min \# \text{ of mult. needed to compute } P_{ij} := A_i A_{i+1} \dots A_j$

- Goal. Find M(1,n)
- Basis: M(i, i) = 0
- Recursion: how to define M(i,j) recursively?

1b.b recursion

DP1: develop a recursion

• Assuming optimal order divides at $k A_i ... A_j$

$$(P_{ik})_{d_{i_{-1}}} \times d_{k}$$
 $(A_{i} ... A_{k})(A_{k+1} ... A_{j})$
 $M(i,k)$
 $M(k+1,j)$

- Cost to compute P_{ik} : M(i,k)
- Cost to compute $P_{k+1,j}$: M(k+1,j)
- Cost to compute: $P_{ik} \times P_{kj}$: $d_{i-1} \times d_k \times d_j$

computing $Z = X_{m \times n} Y_{n \times k}$: mnk scaler multiplications

$$M(i,j) = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \left\{ M(i,k) + M(k+1,j) + d_{i-1}d_k d_j \right\} \text{ otherwise} \end{cases}$$

• How many subproblems in total? $O(n^2)$

DP2: build solutions bottom up

- Same column: everything below
- Go along diagonal!
- 2a. Identify subproblems
- 2b. Choose a memoization data structure
- 2c. Identify dependencies and find a good order

DP2: build solutions bottom up

M	1	2	3	4	5
1	3				4
2	X	7		2	
3	X	X	0		
4	X	X	X		
5	X	X	X	X	Ç

```
MatrixChain (n)
//M(i,j) memoize subproblem values
For i = 2, ..., n
   M[i,i] \leftarrow 0
For l = 1, ..., n - 1 // diagonals
   For i = 1, ..., n - l //row
       j = i + l // the column of row i on l-th diag.
       M[i,j] \leftarrow \infty
       For k = i, ... j - 1
           M[i,j]
           = min\{M[i,j], M[i,k] + M[k+1,j] + d_{i-1}d_kd_i\}
```

2d.Write down your algorithm2e.Analyze time (and space)

• Running time: $O(n^3)$

Example

	1	2	3	4
1	0	1200	700	1400
2	X	0	400	650
3	Х	Х	0	10,000
4	X	X	X	0

 $A_1:30\times 1$

 $A_2: 1 \times 40$

 $A_3:40\times10$

 $A_4: 10 \times 25$

$$M(1,2) = 30 \times 1 \times 40$$

$$M(2,3) = 1 \times 40 \times 10$$

$$M(3,4) = 40 \times 10 \times 25$$

$$M(1,3) = \min\{M(1,2) + 30 \times 40 \times 10, \\ M(2,3) + 30 \times 1 \times 10\}$$

$$M(2,4) = \min\{M(2,3) + 1 \times 10 \times 25, M(3,4) + 1 \times 40 \times 25\}$$

$$M(1,4) = \min\{...\}$$

DP3: constructing an optimal solution

```
MatrixChain (n)
M(i, j) memoize subproblem values
 S[i, j] memoize optimal split index
For l =
   For i = 1, ..., n - l
      j = i + l // the column of row i on l-th diag.
       For k = i, ... j - 1
          M[i,j] = min\{M[i,j], M[i,k] + M[k+1,j], d_{i-1}d_kd_i\}
       Record the optimal k: S[i, j] \leftarrow k
```

Exercise. Find the optimal order of multiplication from S