Cyclistic Case Study Q1_2021

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for 2021's first quarter.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                               – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                    ✓ purrr
                                 0.3.5
## ✓ tibble 3.1.8
                       √ dplyr
                                  1.0.10
## ✔ tidyr
            1.2.1
                       ✓ stringr 1.4.1
## ✓ readr 2.1.3
                       ✓ forcats 0.5.2
## — Conflicts -
                                                         – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                   masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
  The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Jan21 <- read_csv("202101-divvy-tripdata.csv")
```

```
## Rows: 96834 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
Feb21 <- read_csv("202102-divvy-tripdata.csv")
```

```
## Rows: 49622 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
Mar21 <- read_csv("202103-divvy-tripdata.csv")
```

```
## Rows: 228496 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**. Then, we need to combine all data one dataframe. Then we examine dataframes to find dimensions, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
colnames(Jan21)
```

```
colnames(Feb21)
```

```
colnames(Mar21)
```

Since all column names are the same. We can combine the data for each month into quarters.

```
q1_2021 <- bind_rows(Jan21, Feb21, Mar21)
```

```
dim(q1 2021)
## [1] 374952
                  13
head(q1 2021)
## # A tibble: 6 × 13
                    ridea…¹ started_at
## ride_id
                                                                       start...2 start...3
                                                  ended at
## <chr>
                    <chr> <dttm>
                                                  <dttm>
                                                                       <chr> <chr>
## 1 E19E6F1B8D4C4... electr... 2021-01-23 16:14:19 2021-01-23 16:24:44 Califo... 17660
## 2 DC88F20C2C55F... electr... 2021-01-27 18:43:08 2021-01-27 18:47:12 Califo... 17660
## 3 EC45C94683FE3... electr... 2021-01-21 22:35:54 2021-01-21 22:37:14 Califo... 17660
## 4 4FA453A75AE37... electr... 2021-01-07 13:31:13 2021-01-07 13:42:55 Califo... 17660
## 5 BE5E8EB4E7263... electr... 2021-01-23 02:24:02 2021-01-23 02:24:45 Califo... 17660
## 6 5D8969F88C773... electr... 2021-01-09 14:24:07 2021-01-09 15:17:54 Califo... 17660
```

... with 7 more variables: end station name <chr>, end station id <chr>,

²start station name, ³start station id

start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
member_casual <chr>, and abbreviated variable names ¹rideable_type,

tail(q1 2021)

#

#

nrow(q1_2021)

[1] 374952

```
## # A tibble: 6 × 13
##
    ride id
                     ridea…¹ started_at
                                                   ended at
                                                                        start...2 start...3
                     <chr> <dttm>
    <chr>
##
                                                   <dttm>
                                                                         <chr> <chr>
## 1 081549DEA616C... electr.. 2021-03-14 01:59:38 2021-03-14 03:13:09 Larrab.. TA1309...
## 2 9397BDD14798A... docked... 2021-03-20 14:58:56 2021-03-20 17:22:47 Michig... 13042
## 3 BBBEB8D51AAD4... classi... 2021-03-02 11:35:10 2021-03-02 11:43:37 Kingsb... KA1503...
## 4 637FF754DA0BD... classi... 2021-03-09 11:07:36 2021-03-09 11:49:11 Michig... 13042
## 5 F8F43A0B978A7... classi... 2021-03-01 18:11:57 2021-03-01 18:18:37 Kingsb... KA1503...
## 6 3AE64EA5BF43C... electr... 2021-03-26 17:58:14 2021-03-26 18:06:43 <NA>
## # ... with 7 more variables: end_station_name <chr>, end_station_id <chr>,
     start lat <dbl>, start lng <dbl>, end lat <dbl>, end lng <dbl>,
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
      <sup>2</sup>start station name, <sup>3</sup>start station id
```

summary(q1 2021)

```
##
      ride id
                       rideable_type
                                           started at
##
   Length: 374952
                      Length:374952
                                         Min. :2021-01-01 00:02:05.0
                      Class :character
                                         1st Qu.:2021-01-29 19:27:50.0
##
   Class :character
                      Mode :character
##
   Mode :character
                                         Median :2021-03-08 16:10:06.5
                                         Mean :2021-02-26 11:12:08.9
##
##
                                          3rd Qu.:2021-03-21 13:36:25.0
##
                                          Max. :2021-03-31 23:59:08.0
##
##
      ended at
                                     start station name start station id
##
         :2021-01-01 00:08:39.00
                                    Length: 374952
                                                       Length: 374952
   1st Ou.:2021-01-29 19:40:06.50
                                    Class :character
                                                       Class :character
##
##
   Median :2021-03-08 16:32:02.50
                                    Mode :character
                                                       Mode :character
##
         :2021-02-26 11:33:15.50
##
   3rd Qu.:2021-03-21 14:06:50.25
##
   Max. :2021-04-06 11:00:11.00
##
##
   end station name
                      end station id
                                           start_lat
                                                           start_lng
                                          Min. :41.64
##
   Length: 374952
                      Length: 374952
                                                         Min. :-87.78
##
    Class :character
                       Class :character
                                          1st Qu.:41.88
                                                         1st Qu.:-87.66
##
   Mode :character
                      Mode :character
                                          Median :41.90
                                                         Median :-87.64
##
                                          Mean :41.90
                                                         Mean :-87.65
##
                                          3rd Qu.:41.93
                                                         3rd Qu.:-87.63
##
                                         Max. :42.07
                                                         Max. :-87.53
##
##
                      end lng
      end lat
                                    member casual
##
   Min. :41.54
                   Min. :-88.07
                                    Length: 374952
                   1st Qu.:-87.66
##
   1st Qu.:41.88
                                    Class :character
   Median :41.90
                   Median :-87.64
                                    Mode :character
##
   Mean :41.90
                   Mean :-87.65
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max. :42.08
                   Max. :-87.51
##
   NA's
          : 484
                   NA's
                          :484
```

str(q1 2021)

```
## spc tbl [374,952 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                        : chr [1:374952] "E19E6F1B8D4C42ED" "DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE377
##
   $ ride_id
DB"
##
    $ rideable type
                        : chr [1:374952] "electric bike" "electric bike" "electric bike" ...
                        : POSIXct[1:374952], format: "2021-01-23 16:14:19" "2021-01-27 18:43:08" ...
   $ started at
##
                        : POSIXct[1:374952], format: "2021-01-23 16:24:44" "2021-01-27 18:47:12" .
    $ ended at
    $ start_station_name: chr [1:374952] "California Ave & Cortez St" "California Ave & Cortez St" "California Ave
##
e & Cortez St" "California Ave & Cortez St" ...
    $ start_station_id : chr [1:374952] "17660" "17660" "17660" "17660" ...
    $ end station name : chr [1:374952] NA NA NA NA ...
##
##
    $ end station id
                       : chr [1:374952] NA NA NA NA ...
                       : num [1:374952] 41.9 41.9 41.9 41.9 ...
##
    $ start lat
##
    $ start_lng
                       : num [1:374952] -87.7 -87.7 -87.7 -87.7 -87.7 ...
##
    $ end lat
                        : num [1:374952] 41.9 41.9 41.9 41.9 ...
                        : num [1:374952] -87.7 -87.7 -87.7 -87.7 ...
##
    $ end lng
                        : chr [1:374952] "member" "member" "member" ...
##
    $ member_casual
    - attr(*, "spec")=
##
##
     .. cols(
##
          ride_id = col_character(),
          rideable_type = col_character(),
##
     . .
##
          started at = col datetime(format = ""),
     . .
##
          ended_at = col_datetime(format = ""),
     . .
##
          start_station_name = col_character(),
     . .
##
          start station id = col character(),
     . .
##
          end_station_name = col_character(),
     . .
##
          end_station_id = col_character(),
##
          start_lat = col_double(),
     . .
##
          start lng = col double(),
     . .
##
          end lat = col double(),
     . .
##
          end lng = col double(),
     . .
##
          member casual = col character()
     . .
##
     ..)
    - attr(*, "problems")=<externalptr>
##
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
q1_2021$date <- as.Date(q1_2021$started_at)
q1_2021$month <- format(as.Date(q1_2021$date), "%m")
q1_2021$day <- format(as.Date(q1_2021$date), "%d")
q1_2021$year <- format(as.Date(q1_2021$date), "%Y")
q1_2021$day_of_week <- format(as.Date(q1_2021$date), "%A")
q1_2021$ride_length <- difftime(q1_2021$ended_at,q1_2021$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(q1_2021$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
q1_2021$ride_length <- as.numeric(as.character(q1_2021$ride_length))
is.numeric(q1_2021$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
q1_2021 <- na.omit(q1_2021)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
q1_2021 <- subset(q1_2021, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 1 minute.

```
q1_2021 <- subset (q1_2021, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(q1_2021$ride_length)
```

```
## [1] 1231.463
```

median(q1_2021\$ride_length)

```
## [1] 681
```

max(q1_2021\$ride_length)

```
## [1] 1900899
```

min(q1_2021\$ride_length)

[1] 2

Run a statistical summary of the ride length.

```
summary(q1 2021$ride length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.0 389.2 681.0 1231.5 1250.0 1900899.0
```

Compare the members and casual users

```
aggregate(q1\_2021\$ride\_length \sim q1\_2021\$member\_casual, \ FUN = mean)
```

```
## q1_2021$member_casual q1_2021$ride_length
## 1 casual 2246.2747
## 2 member 800.9471
```

```
aggregate(q1\_2021\$ride\_length \sim q1\_2021\$member\_casual, \ FUN = median)
```

```
## q1_2021$member_casual q1_2021$ride_length
## 1 casual 1073
## 2 member 578
```

```
aggregate(q1_2021$ride_length ~ q1_2021$member_casual, FUN = max)
```

```
## q1_2021$member_casual q1_2021$ride_length
## 1 casual 1900899
## 2 member 88461
```

```
aggregate(q1\_2021\$ride\_length \sim q1\_2021\$member\_casual, \ FUN = min)
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(q1_2021$ride_length ~ q1_2021$member_casual + q1_2021$day_of_week, FUN = mean)
```

```
##
      q1_2021$member_casual q1_2021$day_of_week q1_2021$ride_length
## 1
                                                             1929.1317
                      casual
                                           Friday
## 2
                      member
                                           Friday
                                                              745.5758
## 3
                      casual
                                           Monday
                                                             2486.8692
## 4
                      member
                                           Monday
                                                             791.3900
## 5
                                         Saturday
                                                             2594.2569
                      casual
## 6
                      member
                                         Saturday
                                                              896.5394
## 7
                      casual
                                           Sunday
                                                             2370.6814
## 8
                      member
                                           Sunday
                                                             910.0566
## 9
                      casual
                                         Thursday
                                                             1606.4854
## 10
                      member
                                         Thursday
                                                              719.0917
                                                             2130.6938
## 11
                      casual
                                          Tuesday
## 12
                      member
                                          Tuesday
                                                              783.8548
## 13
                      casual
                                        Wednesday
                                                             1718.6392
## 14
                                        Wednesday
                                                              763.0284
                      member
```

Sort the days of the week in order.

```
 q1\_2021\$day\_of\_week <- ordered(q1\_2021\$day\_of\_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
 x <- aggregate(q1_2021\$ride_length \sim q1_2021\$member_casual + q1_2021\$day_of_week, \ FUN = mean)   head(x)
```

```
q1_2021$member_casual q1_2021$day_of_week q1_2021$ride length
## 1
                     casual
                                         Sunday
                                                           2370.6814
## 2
                                         Sunday
                                                            910.0566
                    member
## 3
                     casual
                                         Monday
                                                           2486.8692
## 4
                     member
                                         Monday
                                                            791.3900
## 5
                                                           2130.6938
                     casual
                                         Tuesday
## 6
                                                            783.8548
                    member
                                         Tuesday
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member_casual weekday number_of_rides average_duration
##
                      <int>
## 1 casual
                          1
                                      19507
                                                        2371.
## 2 casual
                          2
                                      12887
                                                        2487.
## 3 casual
                          3
                                      11615
                                                        2131.
## 4 casual
                          4
                                      10280
                                                        1719.
## 5 casual
                          5
                                       7547
                                                        1606.
## 6 casual
                                      10289
                                                        1929.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(q1_2021$member_casual)
```

```
##
## casual member
## 98939 233219
```

```
table(q1_2021$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 248183 19034 64941
```

```
table(q1_2021$day_of_week)
```

```
## Sunday Monday Tuesday Wednesday Thursday Friday Saturday
## 47247 46732 47091 46423 37738 42944 63983
```

```
table(q1_2021$month)
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(q1_2021$day_of_week,q1_2021$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
          Sunday
                        casual 19507
## 2
          Monday
                        casual 12887
## 3
         Tuesday
                        casual 11615
## 4
      Wednesday
                        casual 10280
## 5
        Thursday
                        casual 7547
                        casual 10289
## 6
          Friday
```

Weekday trends (Monday through Friday).

Weekdays Trends

Weekend trends (Sunday and Saturday).

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(q1_2021$rideable_type,q1_2021$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
   rideable_type member_casual
                             Freq
## 1 classic_bike casual
## 2
     docked bike
                     casual 19033
## 3 electric bike
                     casual 20735
## 4 classic bike
                    member 189012
## 5 docked_bike
                    member
                                1
## 6 electric_bike
                    member 44206
```

Plot for bike user vs bike type.

Riders and Ride Types 150000 150000 The state of the s

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(q1_2021, "q1_2021.csv")