Matematická analýza 1

Varianta: Cvičná písemka

Čas: 100 minut

Hodnocení: každý příklad bude oceněn nejvýše 10 body

1. Najděte intervaly ryzí monotonie a lokální extrémy funkce

$$f(x) = \frac{x^2}{2} - 8x + 12\ln x - 5.$$

[Funkce f je rostoucí na (0,2) a $(6,+\infty)$ a klesající na (2,6). V bodě 2 nastává ostré lokální maximum a v bodě 6 nastává ostré lokální minimum.]

2. Najděte asymptotu v $+\infty$ funkce

$$f(x) = 2 - x + \frac{4}{x}.$$

[Asymptota $v + \infty$ má rovnici y = -x + 2.]

3. Vypočtěte limitu

$$\lim_{x \to 1} \frac{2x^{2020} - x^{2019} - 1}{\ln x}.$$

[Hledaná limita je 2021.]

4. Určete Taylorův polynom 2. řádu funkce f se středem v bodě x_0 , je-li

$$f(x) = 5 - x - x^2 - 4\cos x$$
, $x_0 = 0$.

[Taylorův polynom má tvar $T_2(x) = 1 - x + x^2$.]

5. Vypočtěte

$$\int (x^2 + x + 1)e^x \, \mathrm{d}x.$$

[Výsledek integrálu je $(x^2 - x + 2)e^x$.]

6. Vypočtěte

$$\int_0^{\frac{\pi}{2}} \sin^2 x \cos^3 x \, \mathrm{d}x.$$

 $[V \acute{y} s ledek integrálu je \frac{2}{15}.]$

- 7. Rozhodněte, která z následujících tvrzení jsou pravdivá/nepravdivá.¹
 - (a) Posloupnost $a_n = \frac{1}{n}$ je nerostoucí.
 - (b) Je-li $T(x) = 1 + 2x + 3x^2$ Taylorův polynom 2. řádu funkce f se středem v bodě 0, pak f''(0) = 3.
 - (c) Splňuje-li kubická funkce $f(x) = ax^3 + bx^2 + cx + d$ nerovnosti f(-1) < 0 < f(1), pak existuje bod $p \in (-1, 1)$ takový, že f(p) = 0.
 - (d) Na intervalu $(0, +\infty)$ platí $\int \frac{1}{x} dx = \ln \left(\frac{x}{2019} \right)$.
 - (e) Platí $\int_{-1}^{1} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{-1}^{1} = -1 1 = -2.$

[Tvrzení a), c), d) jsou pravdivá a tvrzení b), e) jsou nepravdivá.]

 $^{^1{\}rm Za}$ správnou odpověď obdržíte 2 body a za špatnou se 2 body odečtou. Nemusíte však odpovídat na všechny otázky. Maximálně můžete získat 10 bodů a minimálně 0 bodů.