Structural Induction

Recursively (inductively) defined sets

• Define $\{0,1\}^*$ = set of all finite bit strings

```
Base case \ \lambda_0= the empty string  \begin{array}{l} \text{Constructor case} \ \ s\in\{0,1\}^* \ \text{IMLIES} \ S_0\in\{0,1\}^* \ \text{AND} \ S_1\in\{0,1\}^* \\ \text{Ex. } s=001, s_0=0010, s_1=0011 \\ \text{If } \Sigma \ \text{is a finite set of letters, then } \Sigma^* \ \text{is the set of all words that's in } \Sigma  \end{array}
```

• Define brkts by the finite string of matched brackets ⊆ {[,]}

Base case $\lambda \in Brkts$

Constructor case $s \in Brkts \ IMPLIES \ [s] \in Brkts$, $(s \in Brkts.t \in Brkts)IMPLIES \ st \in Brkts$

```
Alternatively (s \in Brkts.t \in Brkts)IMPLIES [s]t \in Brkts
E.x. s = a", t ="b, ["a]"b" \in Brkts
```

• Define S = Set of syntactically correct formulas of propositional logic

Base case propositional variables are in S

Constructor case
$$(f \in S. f' \in S)$$
IMPLIES $\begin{pmatrix} (f \text{ AND } f') \in S \text{ (binary)} \\ \text{AND } (f \text{ OR } f') \in S \text{ (binary)} \\ \text{AND } (\text{NOT } f) \in S \text{ (unary)} \end{pmatrix}$

• Define M = set of syntactically correct moniton formulas of propositional logic

Base case propositional variables are in S

Constructor case $(f \in S, f' \in S)$ IMPLIES $((f \land S) \in S \land S)$

M is the smallest set that containing the base cases and closed under the constructor cases

• Define natural numbers

Base case $0 \in \mathbb{N}$

Constructor case $n \in \mathbb{N}$ IMPLIES $n + 1 \in \mathbb{N}$

• Define binary relations recursively

Base case $(0,0) \in \mathbb{N} \times \mathbb{N}$ Constructor case: $(m,n) \in \mathbb{N} \times \mathbb{N}$ IMPLIES($(m+1,n) \in \mathbb{N} \times \mathbb{N}$ AND $(m,n+1) \in \mathbb{N} \times \mathbb{N}$)

Structural Induction

Let P: S \rightarrow {T, F} be a predicate, where S is a recursively defining set

Prove P(s) for all base cases of the definition

Prove P(s) for the constructor cases assuming it's true for the component

 $\forall s \in S. P(s)$ strong induction

Justifying the correctness of structural induction

Let E_0 be the element of S because of the base case

Let E_i be the element of S obtained from the elements of E_0 by applying the constructor cases i times

$$(E_i = \{ x \in P(S) \mid |x| = i \})$$

When we do structural induction, we are performing strong induction on the size of the elements of S.

Thrm define M set of moninton propositional formulas, $\forall f \in M$. $N_v(f) = \#occurance$ of propositional variables, $N_c(f) = \#occurance$ of propositional connectives. $N_v(f) = 1 + N_c(f)$ Proof For all $f \in M$, let P(f) defined $N_v(f) = 1 + N_c(f)$

Let f be a propositional variable, then $N_v(f) = 1$, $N_c(f) = 0$ Let f = (f'OR f''), assume P(f'), assume P(f'') $N_v(f) = N_v(f') + N_v(f'') = 1 + N_c(f') + 1 + N_c(f'') = 1 + (N_c(f') + N_c(f'') + 1)$ $= 1 + N_c(f)$ Similarly, P(f) holds for f = (f' AND f'') $\forall f \in M. P(f)$ structural induction

()

Thrm recursively define B: the set of binary trees.

Base case: The empty tree $\bot \in B$

Constructor case: $t_1 \in B$, $t_2 \in B$, r is a root IMPLIES $t = t_1 \leftarrow r \rightarrow t_2 \in B$, $t_1 = left(t)$, $t_2 = right(t)$

Define N(l) = #nodes in l

Base case: $N(\bot) = 0$

Constructor case: N(t) = 1 + N(left(t)) + N(right(t))

Define L(l) = #leaves of the tree

Base case: $L(\bot) = 0$, L(f) = 1 if f is a tree with one node (N(f) = 1)

Constructor case: L(f) = L(left(f)) + L(right(f))

Then, a binary tree with n nodes has at most $\left\lceil \frac{n}{2} \right\rceil$.

Proof For all $t \in B$, let P(t) defined $L(t) \le \left\lceil \frac{N(t)}{2} \right\rceil$

Let
$$t = \perp$$
, $L(t) = 0 \le 0 = \left\lceil \frac{0}{2} \right\rceil = \left\lceil \frac{N(t)}{2} \right\rceil$

Let t be the binary tree with only one node, $L(t) = 1 = \left[\frac{1}{2}\right] = \left[\frac{N(t)}{2}\right]$

P(t) holds for base cases

Let $t \in B$, N(t) > 1 be arbitrary, assume P(left(t)) AND P(right(t)), hence

$$\begin{split} L(t) &= L \Big(left(t) \Big) + L \Big(right(t) \Big) \leq \left[\frac{N \Big(left(t) \Big)}{2} \right] + \left[\frac{N \Big(right(t) \Big)}{2} \right] \text{ (IH)} \\ &\leq \frac{N \Big(left(t) \Big) + 1}{2} + \frac{N \Big(right(t) \Big) + 1}{2} \text{ (by definition of ceiling)} \\ &\leq \frac{N(t) + 1}{2} \\ \text{Since } L(t) \in \mathbb{N} \text{ by definition, } L(t) \leq \left[\frac{N(t) + 1}{2} \right] \leq \left[\frac{N(t)}{2} \right] \end{split}$$

P(t) holds for constructor cases

 $\forall t \in B. P(t)$ structural induction

Induction vs Contradiction

Sometimes a proof by induction can be disguised as a proof by contradiction

Thrm every integer greater than 1 can be expressed as a product of primes

Suppose the statement is false, let n be the smallest integer greater than 1 that can't be expressed as a product of primes.

n is not prime because any prime number is a product of itself.

Therefore, $\exists k \in \mathbb{N}. \, \exists m \in \mathbb{N}. \, 1 < k < n \, \text{AND} \, 1 < m < n \, \text{AND} \, km = n \, \text{by the definition of not prime}$

Because n is the smallest integer that is greater than 1 and can't be expressed as product of primes, k,m must be expressed as a product of primes, then n = km are a product of primes

By contradiction, every integer greater than 1 can be expressed as a product of primes