ERGM and SAR

Julien Manuel Neves

March 12, 2019

Model

Let G be the observed network and assume it is derived from the following distribution

$$P(G = g \mid \theta, \phi) = \frac{\exp\{\theta^T s(g) + \phi\xi\}}{c(\theta, \phi)}$$

where ξ is some vector of unobservables characteristics for the agents and s(y) a vector of statistics for the network.

Let's assume that we are trying to estimate the following model

$$Y = \lambda GY + X\beta + \underbrace{\psi\xi + \nu}_{\xi}$$

where $\nu \sim N(0, \sigma_{\nu}^2)$.

The issue we face is that G is obviously endogenous and therefore we can't use the following moment conditions:

$$\mathbb{E}\left\{H'\epsilon(\lambda,\beta,\psi)\right\} = 0$$

where $H = \{X, GX, G^2X, ...\}.$

Estimation

To solve the endogeneity problem, first we need to fit an Exponential Random Graph Model (ERGM) using our G and MCMC. This should yields some, hopefully consistent, sample estimates $\hat{\theta}$ and $\hat{\xi}$.

Using these estimates, let's define the following ERGM

$$P(\tilde{G} = g \mid \theta, \phi) = \frac{\exp\left\{\hat{\theta}^T s(g)\right\}}{c(\theta, \phi)}$$

Let \tilde{G} be some realization of the previous distribution. Since \tilde{G} should technically get rid of ξ , do we expect that the following holds

$$\mathbb{E}\left\{\mathbb{E}\left\{\tilde{H}'\epsilon(\lambda,\beta,\psi)\mid \tilde{G}\right\}\right\}=0$$

where $H = \{X, \tilde{G}X, \tilde{G}^2X, \ldots\}$? If so, can't we simply to use NLLS without having to do any method of simulated moments?

If instead, we are assuming that there is some function $\pi(\theta)$, that might not be known, such that

 $\mathbb{E}\left\{\mathbb{E}\left\{\tilde{H}'\epsilon(\lambda,\beta,\psi)\mid \tilde{G}\right\}\right\}=\pi(\theta)$

Then, how do we generate $\epsilon(\lambda, \beta, \psi)$ without observing ξ ? What kind of distributional assumption would we make for ϵ ?