C		
Compito n. 1 Nome	$\underline{Cognome}$	Numero di matricola
Corso di Laurea in Information Fisica - Corso A+B - A.A. 2015-2	ca 016 - Recupero II Prova in itinere -	Pisa, 7 Giugno 2016.
l'apposito riquadro e si bar c'è sempre la risposta corret Ciascuna risposta sarà valut	ri la lettera associata al valore nu ta (tolleranza massima $\pm 5 \%$).	criva la formula risolutiva in forma algebrica nel- merico corretto. Tra le alternative numeriche proposte a, 0 punti se sbagliata o non presente. a risoluzione su foglio protocollo.
• Si assumano i seguenti valorificie terrestre $g=9.81~ms^ k_e=1/4\pi\epsilon_0=8.99\times 10^9~Nr$	i per le costanti che compaiono nei 2 , costante di gravitazione univers $^2\mathrm{C}^{-2},\pi=3.14159265.$	problemi: intensità campo gravitazionale sulla superale G = $6.67 \times 10^{-11}~\rm Nm^2 kg^{-2},$ costante di Coulomb
di spazio caratterizzata da un ca	mpo elettrico uniforme 6.80 kN/C	in quiete su un piano orizzontale liscio, in una regione diretto in direzione orizzontale. All'istante iniziale il iano orizzontale. Il piano orizzontale finisce dopo un
1. la velocità del corpo alla fin	e del piano.	
v [m/s] =	A 105 B	3.78 C 5.25 D 13.7 E 72.6
	coefficiente di attrito dinamico μ_d	elinata di 45 gradi rispetto all'orizzontale. Sulla rampa = 1.90. Si considerino la presenza della forza peso e
2. la quota massima rispetto a	l'orizzontale raggiunta dal corpo p	ima di fermarsi.
$h_m [\mathrm{m}] =$		0.168 C 0.139 D 0.132 E 0.241
Problema 2 : Un satellite di mar pari a 5.972×10^{24} kg. Si calcoli:	ssa 54000 kg orbita intorno alla Te	ra con un periodo di 12000 s. La massa della Terra è
3. il raggio dell'orbita.		
R [km] =	A 605 B	4200 C 487 D 11300 E 1990
4. l'energia minima da fornire doppio.	al satellite per portarlo ad orbita	re con moto circolare uniforme su un'orbita di raggio
$\Delta E [GJ] =$	A 121 B	475 C 380 D 653 E 821

Problema 3: Due punti materiali di massa $m_A = 0.900$ kg ed $m_B = 1.50$ kg sono collegati ciascuno ad un filo ideale identico di lunghezza 0.750 m, appesi ad un punto comune. I corpi si trovano inizialmente in quiete con i fili a 10 gradi di inclinazione rispetto alla verticale, da parti opposte, quando vengono lasciati liberi e scendono uno contro l'altro, urtandosi in modo perfettamente elastico. Trascurando ogni forma di attrito, si calcoli:

5. dopo quanto tempo avviene l'urto;

t[s] =	
--------	--

A	1.25	В	0.434

$$C \boxed{1.62}$$

 $E \boxed{4.05}$

6. la quota massima, rispetto al punto più bassa della traiettoria, raggiunta dopo l'urto dalla massa m_A .

$$h_m [cm] =$$

$$C \boxed{3.98}$$

$$D \boxed{2.20}$$

0.820

Problema 4: Un corpo di massa 2.40 kg si trova in quiete e in equilibrio su un piano orizzontale liscio attaccato ad una molla orizzontale di lunghezza a riposo 2.60 m e costante elastica 240 Nm⁻¹. Ad un certo istante il corpo viene urtato da un secondo corpo di massa 1.20 kg che sopraggiunge a velocità 1.60 ms⁻¹ diretta orizzontalmente verso la direzione di compressione della molla. L'urto avviene in modo completamente anelastico. Si trascuri ogni forma di attrito. Trovare:

7. il periodo delle oscillazioni dopo l'urto.

$$T[s] =$$

E 0.770

8. l'ampiezza delle oscillazioni dopo l'urto.

$$A [cm] =$$

$$C$$
 $\boxed{7.23}$

$$D \boxed{6.53}$$

E 53.0

Problema 5: Due cariche positive puntiformi del valore di Q=+1.70 nC sono fissate nelle due posizioni dell'asse y equidistanti dall'origine O. La distanza dall'origine è a=+0.710 m. Un guscio sferico carico isolante di carica complessiva -2Q si trova invece fissato con il centro nell'origine degli assi. Il raggio del guscio sferico è R=a/2. Posizioniamo in quiete una particella di massa $1.70~\mu g$ e carica +3.90 nC nel punto X posto sull'asse x positivo, distante a dall'origine O. La particella viene lasciata libera di muoversi sotto l'azione della sola forza elettrica. Si trascuri la forza di gravità e ogni forma di attrito. Si calcoli:

9. la componente x della forza elettrica che agisce sulla particella nel punto X.

$$F[nN] =$$

$$C \boxed{2780}$$

E -153

Ammettiamo che la particella, una volta accelerata verso l'origine, possa penetrare nel guscio sferico carico attraverso una piccola apertura che non perturba i campi e che non subisca rallentamenti durante il passaggio all'interno. Si calcoli:

10. il modulo della velocità con cui si muove la particella quando si trova a passare per l'origine.

$$v [m/s] =$$

 $E \boxed{2.23}$

