

ELEC 390 - Lab 06

Department of Electrical and Computer Engineering Queen's University

Composed By

Nicholas Seegobin (20246787)

Zeerak Asim (20237955)

Lauren Steel (20218337)

Saman Saeidi (20217992)

Section 03

Date of Submission

2023 March 30th

Part 1

Python Code

Figure 1: Screenshots of python code for lab 6 part 1.

Output

```
(base) laurensteel@Laurens-MacBook-Air-2 LAB6 % python3 ELEC390_LAB6.py
y_pred is: [0 0 0 ... 1 1 1]
y_clf_prob is: [[0.74526709 0.25473291]
[0.65850971 0.34149029]
[0.85358772 0.14641228]
...
[0.22771514 0.77228486]
[0.42167698 0.57832302]
[0.02403196 0.97596804]]
Accuracy: 0.7315384615384616
F1 score: 0.7986151182919792
the AUC is: 0.7937239007614837
```

Figure 2: Output form the python code part 1.

From Figure 2 shown above we can see that the accuracy of the model is approximately 0.714615.

Figure 3: Confusion Matrix

Above in Figure 3 is the Confusion matrix produced by the code seen in Figure 1.

As seen in Figure 2 the F1 score is approximately 0.798615 and the AUC is 0.793723.

Finally, Figure 4 shown below is the ROC model.

Figure 4: ROC Model

Part 2

Python Code

Figure 5: Screenshots of the python code for lab 6 part 2.

Output

Below in Figure 6 is a screenshot of the output developed by the code from Figure 5. As we can see in the image the accuracy of the model is approximately 0.636153.

(base) laurensteel@Laurens-MacBook-Air-2 LAB6 % /usr/bin/env /usr/bin/python3 /Users/laurensteel/.vscode/extensions/ms-python.python-2022.16.1/pythonFiles/lib/python/debugpy/adapter/../../debugpy/launcher 49466 — /Users/laurensteel/Documents/3X/W23/390design/LAB6/ELEC390_LAB6B.py Accuracy is: 0.6361538461538462
■ Company of the compa

Figure 6: Output from the python code part 2.

Training Data

Figure 7 is a representation of the training data and its decision boundary.

Figure 7: Training data (reduced to 2 dimensions) and its decision boundary produced from the python code part 2.

Compare the accuracy of Part 2 with Part 1. What is your observation and why?

As seen in the data presented above the accuracy of the model in part 1 is approximately 0.714615 while the accuracy of the model in part 2 is approximately 0.636153. Overall, a higher accuracy value is better because it shows that the model is making correct predictions more frequently. This makes sense as the model in part 2 only uses 2 components of the PCA instead of all the data.