Развитие теории систем для принятия решений при управлении предприятиями и организациями

Ю. С. Васильев¹, В. Н. Волкова², В. Н. Козлов¹, А. А. Ефремов³ Санкт-Петербургский политехнический университет Петра Великого ¹saiu@ftk.spbstu.ru, ²violetta_volkova@list.ru, ³eartm@mail.ru

Аннотация. В 2018 году исполняется 20 лет Научнопедагогической школе «Системный анализ в проектировании и управлении», развиваемой в Санкт-Петербургском политехническом университете Петра Великого. В этой статье характеризуется основной вклад, который за прошедшие 20 лет ученые, объединяемые школой, внесли в развитие теории систем и теории организационного управления.

Ключевые слова: классификация; модель; моделирование оргшанизационное управление; принятие решений; системный анализ; теория систем

I. Введение

Истоки и краткая история становления Научнопедагогической школы «Системный анализ в проектировании и управлении» кратко рассмотрены в материалах ежегодно проводимых с 1998 года конференций с таким же названием [13], в которых принимают участие ученые, развивающие теорию систем и системный анализ в различных вузах и научных организациях России, Украины, Норвегии, Польши, США, Финляндии и др. стран.

За прошедшие 20 лет ученые, объединяемые школой, получили ряд новых научных результатов, развивающих теорию систем, системный анализ и другие научные направления. Эти результаты представляются на сайте *saenco*.neva.ru (*S*ystem *A*nalysis in *En*gineering and *Co*ntrol) и кратко характеризуются в данной статье.

Рассматривается концепция выбора методов моделирования систем на основе идеи многоуровневой аксиоматики, соответствующей разным классам систем и проблем; применение определения системы, основанного на системно-целевом подходе, для обоснования структур систем; предложена классификация закономерностей теории систем, классификация методов моделирования систем, включающая методы, развиваемые учеными, объединяемыми школой. Приводимые результаты являются определенным вкладом в теорию систем, способствующим развитию теории организационного управления.

II. Обоснование выбора методов моделирования систем на основе классификации систем и проблем

Предлагались различные классификации систем и проблем, решаемых с помощью системных представлений: *по сложности* и *величине*, по *виду отображаемого объекта*

(технические, биологические, экономические и т._п. системы); по виду научного направления, используемого для их моделирования (математические, физические, химические и др.). Проведен анализ классификаций.

В теории принятия решений принята классификация по степени неопределенности (1-й столбец в табл.1). В классификации *Г. Саймона* и *А. Ньюэлла* предлагалось группирование систем и проблем по признаку структуризованности (хорошо структуризованные, плохо структуризованные и неструктуризованные). По аналогии с этой классификацией *Ф. Е. Темниковым* было предложено разделение систем по степени организованности — хорошо организованные, плохо организованные или диффузные и самоорганизующиеся (третий столбец в табл. 1).

Предложена концепция многоуровневой аксиоматики, в соответствии с которой для разных классов проблем и систем необходимы различные аксиоматики [6] (примеры приведены в правом столбце табл. 1), а соответственно и различные методы моделирования.

ТАБЛИЦА I КЛАССИФИКАЦИИ СИСТЕМ И ПРОБЛЕМ ПРИНЯТИЯ РЕШЕНИЙ

Признаки классификации			
Степень неопреде- ленности	Степень структуриро- ванности	Степень организован- ности	Аксиоматики
С достаточной определен- ностью	Хорошо структуризо- ванныеоге	Хорошо организо- ванные	Аксиоматика Евклида (Евдокса), Аристотеля
С неопределенностьтю	Плдохо структуризо- ванные	Плохо организо- ванные	Аксиоматики теории вероятностей и мат. статистики
С большой начальной неопрределенностью	Нестуртуризо- ванные	Самоорга- низующиеся / развиваю- щиеся	Аксиоматики теории множеств, мат. логики, Закономерности теории систем

Предложенная концепция позволяет обоснованно выбирать методы моделирования при принятии решений в системах организационного управления: для проблем с достаточной определенностью, хорошо структуризованных, относящихся к классу хорошо организованных систем, применяются методы классической математики, основанные на аксиомах Евклида (Евдокса) и формальной

логике Аристотеля. Для плохо организованных проблем и систем — статистические методы. Для класса проблем с большой неопределенностью, характерных для самоорганизующихся / развивающихся систем, необходимы методы и модели, основанные на диалектической логике, и закономерностях теории систем.

III. ЗАКОНОМЕРНОСТИ СТРОЕНИЯ, ФУНКЦИОНИРОВАНИЯ И РАЗВИТИЯ СИСТЕМ

Проведен анализ работ, в которых исследовались особенности самоорганизующихся систем как открытых систем с активными элементами и объясняющие их закономерностии строения, функционирования и развития систем, и предложена классификация закономерностей (рис. 1).

Рис. 1. Закономерности теории систем

Эти закономерности важно исследовать и учитывать при принятии решений в социально-экономических системах. В частности, при управлении инновационными процессами.

IV. Применение определения оистемы для обоснования ее структуры

Взгляд на определение системы как на средство исследования позволил осознать целесообразность использования для ряда прикладных проблем определения, основанного на системно-целевом подходе [3], в котором объект не расчленяется на элементы, т. е. не разрушается, а представляется в виде укрупненных компонент:

$$S_{def} \equiv \langle Z, STR, TECH, COND, N \rangle$$

где $Z = \{z\}$ – совокупность или структура целей;

 $STR = \{STR_{\rm np}, STR_{\rm opr}, ...\}$ — совокупность структур, реализующих цели (например, для социально-экономической организации: STR_{np} — производственная, $STR_{\rm opr}$ — организационная и т. п.);

 $TECH = \{meth, means, alg, ... \}$ — технологии (методы meth, средства means, алгоритмы alg и т. п.), реализующие

систему, обеспечивающие ее существование и функционирование;

 $COND = \{\phi_{ex}, \phi_{in}\}$ — условия существования системы, т. е. факторы, влияющие на ее создание и функционирование (ϕ_{ex} — внешние, ϕ_{in} — внутренние).

N — «наблюдатели», т. е. лица, принимающие и исполняющие решения, осуществляющие структуризацию целей, корректировку структур, выбор методов и средств моделирования и т. п.

Определение может быть дополнено компонентами «среда» SR и «временной интервал» Δt .

Это определение помогает начать исследование сложного объекта, сохраняя его целостность.

Например, на основе этого определения обоснована структура информационно-управляющего комплекса организации (рис. 2).

Рис. 2. Структура информационно-управляющего комплекса

V. Классификация методов и моделей теории систем

При проектировании сложных технических комплексов и принятии управленческих решений в социально-экономических системах перевод вербального описания в формальное, интерпретация модели и получаемых результатов становятся неотъемлемой частью практически каждого этапа моделирования сложной развивающейся системы. Для перевода вербального описания в формальное в различных областях деятельности применяются методы типа «мозговой атаки», «сценариев», «дерева целей» и т. п., активизирующие использование интуиции и опыта лиц, формирующих модели и принимающих решения. Эти методы вначале называли качественными, методами выработки коллективных решений.

В свою очередь, развитие математики шло по пути расширения средств постановки и решения трудноформализуемых задач. Наряду с детерминированными, аналитическими методами классической математики возникла теория вероятностей и математическая статистика. Для задач с большой степенью неопределенности

инженеры стали привлекать *теорию множеств*, математическую логику, математическую лингвистику, теорию графов.

Постепенно сложился «спектр» методов – от вербального описания до методов классической математики. Анализ процессов изобретательской деятельности, опыта формирования сложных моделей принятия решений показал, что человек попеременно выбирает методы из левой и правой частей «спектра». Поэтому было предложено [5] «переломить» этот «спектр» методов примерно в середине, где графические методы смыкаются с методами структуризации, т. е. разделить методы моделирования систем на два больших класса: методы формализованного представления систем (МФПС) и методы, направленные на активизацию интуиции и опыта специалистов (МАИС). Возможные клас-

сификации этих двух групп методов приведены на рис. 4. Приведенная классификация МФПС, предложенная **Ф.Е. Темниковым**, развивалась. Возможны и другие классификации МФПС.

Стали разрабатываться *специальные методы* системного анализа, сочетающие средства МАИС и МФПС. В самостоятельные классы выделены имитационные модели, в числе которых имитационное динамическое моделирование (System Dynamics Symulation Modeling), имитационное компьютерное моделирование; модели представления и извлечения знаний и др.

Классификация моделей по методам моделирования систем, предложенная в [5] и развитая в [16], приведена на рис. 3.

Рис. 3. Классификации методов теории систем

Наибольшее распространение получили следующие специальные методы моделирования систем, развиваемые учеными, объединяемыми характеризуемой школой системного анализа или сотрудничающими с ней: ситуационное моделирование (предложено **Д.А. Поспеловым**, раз-Л.С. Болотова /Загадская/ [2]); комбинаторное моделирование (предложено и развивается **М.Б.** Игнатьевым [1]); логико-лингвистическое моделирование (Б.Л. Кукор [14]); логико-рефлексивное моделирование (И.Б. Арефьев [1]); теория информационного поля и информационный подход к моделированию и анализу систем (А.А. Денисов [8-10]); подход, базирующийся на идее постепенной формализации задач (проблемных ситуаций) с неопределенностью путем поочередного использования средств МАИС и МФПС [4]; системно-структурный синтез (Ю.И. Лыпарь [15]); когнитивное моделирование (Г.В. Горелова [7]; концептуальное метамоделирование (**В.В. Нечаев** [18] и **С.П. Никаноров** [19]), методы динамической оптимизации крупномасштабных систем и синтеза робастного управления (*В.Н. Шашихин* [20]).

Основной концепцией школы является развитие методологических основ и терминологического аппарата теории систем и системного анализа на базе широкого спектра математических методов. В развитие теории негладких нелинейных операторов, предложенной им в 1980-е гг., В.Н. Козлов продолжил исследования концепции нелинейных операторов как важного направления математических методов теории систем и системного анализа; проводит исследования по применению метода негладких операторов для задач управления системами с распределенными параметрами, проектирования систем управления различными динамическими объектами, развивает теорию устойчивости систем с неопределенностью; разработал теоретические основы преодоления неопределенности на основе конвергенции методов и моделей [12]. Исследуемые понятия и закономерности теории систем являются основой для создания методик системного анализа, моделей организации сложных экспертиз [16, 17].

VI. Применение информационной теории A.A. Денисова для разработки м етодов организации Сложных эекспертиз

В развитие предложенной в 1970-е гг. теории информационного поля [8] и ее дискретного варианта [9] разработаны методы организации сложных экспертиз [16, 17]:

1) метод оценки степени целесоответствия анализируемых компонентов исследуемых систем, позволяющий получать обобщенную оценку в многокритериальных задачах с разнородными критериями; используется предложенная A.A. Денисовым информационная оценка потенциал (значимость) H_i компоненты:

$$H_i = -q_i \log (1 - p_i'),$$

где p_i' — вероятность достижения цели при использовании оцениваемой компоненты; q_i — вероятность использования оцениваемой компоненты при реализации соответствующей подцели; применяется для сравнительного анализа нововведений, информационных систем, при формировании «портфеля заказов» и т. п.

- 2) метод сравнительного анализа сложных систем в течение определенного начального периода их проектирования (внедрения, развития) путем сопоставления изменения информационных оценок во времени; применяется для сравнительного анализа разнородных нововведений, технических комплексов, проектов и т. п., позволяя принимать решения о целесообразности продолжения их внедрения, разработки, дальнейшего инвестирования и т. п.;
- 3) метод оценки ситуаций, описываемых информационными уравнениями в статике и динамике; применяется при проведении маркетинговых исследований, анализе рыночных ситуаций с учетом взаимного влияния товаров, сравнительного анализа проектов с учетом взаимовлияния в процессе проектирования и др.

Разработаны модели макроэкономического управления [10].

ЗАКЛЮЧЕНИЕ

Рассмотренные результаты вносят определенный вклад в развитие теории систем и системного анализа, способствуют развитию теории организационного управления, используются для разработки методик системного анализа целей и моделей принятия решений при управлении предприятиями и организациями [4, 9, 12, 16, 17, 20 и др.].

Список литературы

- [1] Арефьев И.Б. Логико–рефлексивное моделирование технологии изготовления промышленных деталей. Калиниград, Из-во БФУ им. И. Канта. 2012.
- [2] Болотова Л.С. Системы поддержки принятия решений: учебник и практикум / под ред. Э.С. Болотова и В.Н. Волковой. М.: Издательство Юрайт, 2017. Ч. 1. 257 с. Ч 2. 260 с.
- [3] Волкова В.Н. Развитие определения системы // Системный анализ в проектировании и управлении»: сб. Матер. Международной научно-практической конференции. СПб.: Изд-во СПбГПУ, 2001. С. 12–14.
- [4] Волкова В.Н. Постепенная формализация моделей принятия решений. СПб.: Изд-во СПбГПУ, 2006. 120 с.
- [5] Волкова В.Н. Классификация моделей систем // Системный анализ в экономитке – 2012: Материалы научно-практич. конф. Пленарные доклады. М.: ЦЭМИ РАН, 2012. С. 83–89.
- [6] Волкова В.Н. Об аксиоматическом построении теории систем // Системный анализ в проектировании и управлении: сб. научных трудов XVIII Междунар. науч.-практич. конф. Ч. 1. – СПб.: Изд-во Политехн. ун-та, 2014. – С. 13–17.
- [7] Горелова Г.В., Захарова Е.Н., Радченко С.А. Исследование слабоструктурированных проблем социально-экономических систем: когнитивный подход Ростов н/Д: Изд-во РГУ, 2006. 332 с.
- [8] Денисов А.А. Теоретические основы кибернетики: Информационное поле. Л.: ЛПИ, 1975. 40 с.
- [9] Денисов А.А. Современные проблемы системного анализа: учебник. СПб.: 3-е изд. Изд-во Политехн. ун-та, 2008. 304 с.
- [10] Денисов А.А. Макроэкономическое управление и моделирование: Пособие для начинающих реформаторов. СПб.: НПО "Омега", 1997. 40 с.
- [11] Ignatyev M.B. Linguo-Combinatorial Simulation of Complex Systems // Journal of Mathematics and System Science. USA, January, 2012. Vol. 2. Number 1, p 58–66.
- [12] Козлов В.Н. Системный анализ, оптимизация и принятие решений М.: Проспект, 2010. 176 с.
- [13] Козлов В.Н., Волкова В.Н. Научно-педагогическая школа «Системный анализ в проектировании и управлении» // Системный анализ в проектировании и управлении: Сб. науч. трудов XIX Междунар. науч.-практич. конф. Ч. 1. СПб.: Изд-во Политехн. унта, 2015. 488 с. С. 5–16.
- [14] Кукор Б.Л. Семиотика системного анализа и семантическая система логико-лингвистической модели предметной области // Системный анализ в проектировании и управлении: сб. науч. трудов XIII Междунар. научно-практич. конф. СПб.: Изд-во Политехн. ун-та, 2009. Ч. 1. С. 164–169.
- [15] Лыпарь Ю.И. Системно-структурный синтез аналоговых электронных систем высокого качества // Системный анализ в проектировании и управоении: сб. научных трудов XVIII Международной научно-практической конференции. СПб.: Изд-во Политехн. ун-та, 2014. С. 132-135.
- [16] Моделирование систем и процессов. учебик для академического бакалавриата / Под ред. В.Н. Волковой и В.Н. Козлова. М.: Издательство Юрайт, 2015. 449 с.
- [17] Моделирование систем и процессов. Практикум: учеб. пособие для академического бакалавриата / Под ред. В.Н. Волковой. М.: Издательство Юрайт, 2016. 295 с.
- [18] Нечаев В.В. Введение в теорию метамоделирования систем. М.: Междунар. изд-во «Информациология», 1997. 64 с.
- [19] Никаноров С.П. Теоретико-системные конструкты для концептуального анализа и проектирования. Сер.: Концептуальный анализ и проектирование. История направления. М.: Концепт, 2006.
- [20] Шашихин В.Н. Интегральные динамические системы: Модели. Анализ. Синтез.. СПб.: Изд-во СПбГПУ, 2003. 214 с.