

## Metodi matematici per l'Informatica Modulo 10 – Algebre di Boole

Docente: Pietro Cenciarelli





### Reticoli

 $(A, \vee, \wedge)$ 

 $V: A \times A \rightarrow A$  join

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$  meet

 $A \lor (B \lor C) = (A \lor B) \lor C$ 

 $A \wedge (B \wedge C) = (A \wedge B) \wedge C$ 

 $A \lor B = B \lor A$   $A \land B = B \land A$ 

 $A \lor (A \land B) = A \land (A \lor B) = A$ 

 $A \lor A = A$   $A \land A = A$ 

 $(A, \leq)$ 

 $\forall a, b \in \mathcal{A}$ 

 $\exists$  sup  $\{a, b\}$  e inf  $\{a, b\}$ 

associativa

commutativa

assorbimento

idempotenza







 $(A, \vee, \wedge)$ 

 $V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $A \lor (B \lor C) = (A \lor B) \lor C$ 

 $A \wedge (B \wedge C) = (A \wedge B) \wedge C$ 

 $A \lor B = B \lor A$   $A \land B = B \land A$ 

 $A \lor (A \land B) = A \land (A \lor B) = A$ 

 $A \lor A = A$   $A \land A = A$ 

 $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$ 

 $A \lor (B \land C) = (A \lor B) \land (A \lor C)$ 

 $(A, \leq)$ 

 $\forall$  a, b  $\in \mathcal{A}$  $\exists$  sup  $\{a, b\}$  e inf  $\{a, b\}$ 







 $(A, \vee, \wedge)$ 

 $V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $A \lor (B \lor C) = (A \lor B) \lor C$ 

 $A \wedge (B \wedge C) = (A \wedge B) \wedge C$ 

 $A \lor B = B \lor A$   $A \land B = B \land A$ 

 $A \lor (A \land B) = A \land (A \lor B) = A$ 

 $A \lor A = A$   $A \land A = A$ 

 $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$ 

 $A \lor (B \land C) = (A \lor B) \land (A \lor C)$ 

 $(A, \leq)$ 

 $\forall$  a, b  $\in \mathcal{A}$ 

 $\exists$  sup  $\{a, b\}$  e inf  $\{a, b\}$ 



 $a \wedge (b \vee c) = a \wedge \bullet = a$ 

 $(a \wedge b) \vee (a \wedge c) = \bullet \neq a$ 

non distributivo!







#### $(A, \vee, \wedge)$

 $V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $A \lor (B \lor C) = (A \lor B) \lor C$ 

 $A \wedge (B \wedge C) = (A \wedge B) \wedge C$ 

 $A \lor B = B \lor A$   $A \land B = B \land A$ 

 $A \lor (A \land B) = A \land (A \lor B) = A$ 

 $A \lor A = A$   $A \land A = A$ 

 $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$ 

 $A \lor (B \land C) = (A \lor B) \land (A \lor C)$ 

#### $(A, \leq)$

 $\forall$  a, b  $\in$   $\mathcal{A}$  $\exists$  sup  $\{a, b\}$  e inf  $\{a, b\}$ 



 $\forall A \subseteq \mathcal{A}$ , A finito,  $\exists \text{ sup } (A) \text{ e inf } (A)$ 

sup 
$$\{a_1, a_2, ... a_n\}$$
  
= sup  $(a1, sup (a2, ...))$ 

sup {} ?







#### $(A, \vee, \wedge)$

 $V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $A \lor (B \lor C) = (A \lor B) \lor C$ 

 $A \wedge (B \wedge C) = (A \wedge B) \wedge C$ 

 $A \lor B = B \lor A$   $A \land B = B \land A$ 

 $A \lor (A \land B) = A \land (A \lor B) = A$ 

 $A \lor A = A$   $A \land A = A$ 

 $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$ 

 $A \lor (B \land C) = (A \lor B) \land (A \lor C)$ 

#### $(A, \leq)$

 $\forall$  a, b  $\in$   $\mathcal{A}$   $\exists$  sup  $\{a, b\}$  e inf  $\{a, b\}$ 



 $\forall A \subseteq \mathcal{A}$ , A finito,  $\exists \text{ sup } (A) \text{ e inf } (A)$ 

 $\sup \{\} = \min (A)$ 

∀ a ∈ {}, a ≤ sup {}
∀ b ∈ A, se a ≤ b ∀ a ∈ {}
allora sup {} ≤ b







#### $(A, \vee, \wedge)$

 $V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $A \lor (B \lor C) = (A \lor B) \lor C$ 

 $A \wedge (B \wedge C) = (A \wedge B) \wedge C$ 

 $A \lor B = B \lor A$   $A \land B = B \land A$ 

 $A \lor (A \land B) = A \land (A \lor B) = A$ 

 $A \lor A = A$   $A \land A = A$ 

 $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$ 

 $A \lor (B \land C) = (A \lor B) \land (A \lor C)$ 

#### $(A, \leq)$

 $\forall$  a, b  $\in$   $\mathcal{A}$   $\exists$  sup  $\{a, b\}$  e inf  $\{a, b\}$ 



 $\forall A \subseteq \mathcal{A}$ , A finito,  $\exists \text{ sup } (A) \text{ e inf } (A)$ 

 $\sup \{\} = \min (A)$ 

 $... \le a_2 \le a_1 \le a_0$ 





 $(A, \vee, \wedge, \perp, \top)$ 

 $V: A \times A \rightarrow A$ 

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $A \lor (B \lor C) = (A \lor B) \lor C$ 

 $A \wedge (B \wedge C) = (A \wedge B) \wedge C$ 

 $A \lor B = B \lor A$   $A \land B = B \land A$   $\forall A \subseteq A$ , A finito,

 $A \lor (A \land B) = A \land (A \lor B) = A$ 

 $A \lor A = A$   $A \land A = A$ 

 $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$ 

 $A \lor (B \land C) = (A \lor B) \land (A \lor C)$ 

 $A \lor \bot = A$   $A \land \top = A$ 

 $(A, \leq)$ 

 $\forall$  a, b  $\in \mathcal{A}$ 

 $\exists$  sup  $\{a, b\}$  e inf  $\{a, b\}$ 

 $\forall A \subseteq \mathcal{A}$ , A finito,  $\exists \text{ sup } (A) \text{ e inf } (A)$ 

 $\sup \{\} = \min (A)$ 

 $\inf \{\} = \max (A)$ 







 $(A, \vee, \wedge, \perp, \top)$ 

 $(A, \leq)$ 

 $V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\forall A \subseteq \mathcal{A}$ , A finito,  $\exists \text{ sup } (A) \text{ e inf } (A)$ 

Lemma: in un reticolo distributivo,  $\forall$  a, b e c se a  $\lor$  b = a  $\lor$  c e a  $\land$  b = a  $\land$  c, allora b = c.

$$b = b \vee (b \wedge a) = b \vee (c \wedge a)$$
 distributiva  
=  $(b \vee c) \wedge (b \vee a)$   
=  $(b \vee c) \wedge (a \vee c)$  distributiva  
=  $(b \wedge a) \vee c = (a \wedge c) \vee c = c$ 





 $(A, \lor, \land, \bot, \top)$ 

 $(A, \leq)$ 

 $V: A X A \rightarrow A$ 

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\forall A \subseteq \mathcal{A}$ , A finito,  $\exists \text{ sup } (A) \text{ e inf } (A)$ 

Lemma: in un reticolo distributivo,  $\forall$  a, b e c se a  $\lor$  b = a  $\lor$  c e a  $\land$  b = a  $\land$  c, allora b = c.







 $(A, \lor, \land, \bot, \top)$ 

 $(A, \leq)$ 

 $V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\forall A \subseteq \mathcal{A}$ , A finito,

 $\exists$  sup (A) e inf (A)

Lemma: in un reticolo distributivo,  $\forall$  a, b e c se a  $\lor$  b = a  $\lor$  c e a  $\land$  b = a  $\land$  c, allora b = c.

*Definizione*: un elemento b un reticolo  $\mathcal{A}$  si dice *complemento* di a  $\in \mathcal{A}$  se a  $\vee$  b =  $\top$  e a  $\wedge$  b =  $\bot$ .

*Teorema*: in un reticolo *distributivo*, ogni elemento ha *al più* un complemento.

(consegue banalmente dal lemma)

...e il vice-versa?







 $(A, \vee, \wedge, \perp, \top)$ 

 $(A, \leq)$ 

 $V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\forall A \subseteq \mathcal{A}$ , A finito,  $\exists \text{ sup } (A) \text{ e inf } (A)$ 

Esistono reticoli *non* distributivi a complemento unico! (Dilwhort)









 $(A, \vee, \wedge, \neg, \perp, \top)$ 

 $(A, \leq)$ 

 $V: A X A \rightarrow A$ 

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\forall A \subseteq \mathcal{A}$ , A finito,  $\exists \text{ sup } (A) \text{ e inf } (A)$ 

Definizione: un'algebra di Boole è un reticolo distributivo, dove ogni elemento ha un complemento.







 $B \cup \overline{B} = A$ 

 $B \cap \overline{B} = \{\}$ 

 $(A, \vee, \wedge, -, \perp, \top)$ 

 $V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\overline{\phantom{a}}: \mathcal{A} \to \mathcal{A}$ 

•

 $a \vee \overline{a} = T$ 

 $a \wedge \overline{a} = \bot$ 

 $(2^{A}, \cup, \cap, -, \{\}, A)$ 

 $\textcolor{red}{\textbf{U}} \,:\, 2^{A} \,\: X \,\: 2^{A} \rightarrow 2^{A}$ 

 $\cap: 2^A \times 2^A \rightarrow 2^A$ 

 $-: 2^A \rightarrow 2^A$ 











$$(2^{A}, \cup, \cap, -, \{\}, A)$$

$$\textcolor{red}{\textbf{U}} \,:\, 2^{A} \,\: X \,\: 2^{A} \rightarrow 2^{A}$$

$$\cap: 2^A \times 2^A \rightarrow 2^A$$

$$-: 2^A \rightarrow 2^A$$





















Ogni algebra di Boole è isomorfa a un algebra di insiemi.

Marshall H. Stone (1936)







$$A \lor (B \lor C) = (A \lor B) \lor C$$

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C$$

 $A \lor B = B \lor A$   $A \land B = B \land A$ 

commutativa

associativa

$$A \lor (A \land B) = A$$
  $A \land (A \lor B) = A$  assorbimento

$$A \wedge (A \vee B) = A$$

$$A \lor A = A$$

$$A \wedge A = A$$

idempotenza

$$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$$

$$A \lor (B \land C) = (A \lor B) \land (A \lor C)$$

distributiva

$$A \lor \bot = A$$

$$A \wedge T = A$$

$$A \vee \overline{A} = T$$

$$A \wedge \overline{A} = \bot$$

complemento







## Convoluzione

 $\bar{\bar{A}} = A$ 

perche entrambi complemento di  $\overline{\mathsf{A}}$ 







# Leggi di De Morgan

$$\overline{A \vee B} = \overline{A} \wedge \overline{B}$$

$$(\overline{A} \wedge \overline{B}) \wedge (A \vee B) = (\overline{A} \wedge \overline{B} \wedge A) \vee (\overline{A} \wedge \overline{B} \wedge B) = \bot \vee \bot = \bot$$

$$(\overline{A} \wedge \overline{B}) \vee (A \vee B) = (\overline{A} \vee A \vee B) \wedge (\overline{B} \vee A \vee B) = T \wedge T = T$$

dunque  $\overline{A} \wedge \overline{B}$  è il complemento di  $A \vee B$ 







# Leggi di De Morgan

$$\overline{A \vee B} = \overline{A} \wedge \overline{B}$$

$$\overline{A \wedge B} = \overline{A} \vee \overline{B}$$

$$\overline{A \wedge B} = \overline{A} \wedge \overline{B}$$

convoluzione

$$= \overline{\overline{A} \vee \overline{B}}$$

De Morgan

$$= \overline{A} \vee \overline{B}$$

convoluzione

