

SISTEMAS SECUENCIALES

FUNDAMENTOS DE DISEÑO DIGITAL OPTATIVA I. ISISA AUTOR: Claudia A. López R.

SISTEMAS COMBINACIONALES

SISTEMAS DIGITALES

> SISTEMAS SECUENCIALES

SEÑAL DE RELOJ

SEÑAL DE RELOJ (CLK, CK): es una señal eléctrica con forma de onda cuadrada con una frecuencia y periodo determinados y una amplitud de 0 a 5 volts.

La señal de reloj se genera a través de:

- I. Generador de funciones
- 2. Multivibradores
 - LM555
 - Cristales

TAREA. REALIZAR UN TRABAJO DE INVESTIGACION SOBRE:

LM 555 EN SU CONFIGURACION MONOESTABLE Y ASTABLE CRISTALES EN SU CONFIGURACION SERIE Y PARALELO

SEÑAL MONOESTABLE

MEMORIAS DIGITALES

Circuito compuesto de compuertas lógicas conectadas de tal forma que permiten almacenar un bit.

- celda de memoria
- multivibrador biestable
- registro
- Latch
- Flip-flops

Las memorias digitales son en esencia circuitos secuenciales, por lo cual la salida de estos depende de la entrada y de la salida en un tiempo anterior.

MEMORIAS DIGITALES

Circuito compuesto de compuertas lógicas conectadas de tal forma que permiten almacenar un bit.

- celda de memoria
- multivibrador biestable
- registro
- Latch
- Flip-flops

Las memorias digitales son en esencia circuitos secuenciales, por lo cual la salida de estos depende de la entrada y de la salida en un tiempo anterior.

ELEMENTO BASICO DE MEORIA

LATCH (CERROJO)

ELEMENTO BASICO DE MEORIA

LATCH (CERROJO)

Qt	Qt+I	Qt+I
0	0	1
Ι	1	0
Q		Q
0		1
I		0

No contiene terminales separadas para lectura y escritura de datos.

LATCH SR

R	S	Q	Q
1	0		
0	0		
0	1		
- 1	1		
- 1	0		
- 1	-1		
0	1		
0	0		

LATCH SR

R	S	Q	Q	
0	0	*		S: SET - I log R: RESET- 0 log
0		-	0	IX. IXLUET - 0 10g
1	0	0	1	
-	1	C	<u>_</u>	

Tabla de verdad

R	S	Q	Q
1	0	0	1
0	0	1	- 1
0	- 1	1	0
- 1	-		0
- 1	0	0	1
-	1	0	- 1
0	1	-	0
0	0	ı	-1

* estado no permitido

FLIP-FLOP Memoria latch sincronizada a través de una señal de CK

* circuito detector de flanco flanco positivo CKP=I flanco negativo

FLIP-FLOP Memoria latch sincronizada a través de una señal de CK

FLIP-FLOP Memoria latch sincronizada a través de una señal de CK

FLIP-FLOP

Memoria latch sincronizada a través de una señal de CK

Simbología

FLIP-FLOP Memoria latch sincronizada a través de una señal de CK

Simbología

FLIP-FLOP

Memoria latch sincronizada a través de una señal de CK

Los Flip-Flops se describen a través de:

- I) Tabla de verdad
- 2) Tabla característica
- 3) Tabla de excitación
- 4) Ecuación característica

FLIP-FLOP Memoria latch sincronizada a través de una señal de CK

Los Flip-Flops se describen a tray

- I) Tabla de verdad
- 2) Tabla característica
- 3) Tabla de excitación
- 4) Ecuación característica

Describe el funcionamiento general del circuito lógico. Esta compuesta de todas las combinaciones de las entradas y la salida para cada combinación

FLIP-FLOP Memoria latch sincronizada a través de una señal de CK

Los Flip-Flops se describen a través de:

- I) Tabla de verdad
- 2) Tabla característica
- 3) Tabla de excitación
- 4) Ecuación característica

Describe el funcionamiento completo del circuito lógico considerando el estado anterior. Esta compuesta de todas las combinaciones de las entradas y el estado anterior y la salida para cada combinación de entrada.

FLIP-FLOP Memoria latch sincronizada a través de una señal de CK

Los Flip-Flops se describen a través de:

- I) Tabla de verdad
- 2) Tabla característica
- 3) Tabla de excitación
- 4) Ecuación característica

Se deriva de la tabla característica y sirve para el diseño de sistemas secuenciales. Se construye a partir de lo que se necesita en la salida y lo que deben de tener las entradas para obtener dichas salidas.

FLIP-FLOP Memoria latch sincronizada a través de una señal de CK

Los Flip-Flops se describen a través de:

- I) Tabla de verdad
- 2) Tabla característica
- 3) Tabla de excitación
- 4) Ecuación característica

Función lógica que describe al Flip-Flop.

Tabla de verdad

S	R	Q
0	0	Qt
0	- 1	0
- 1	0	- 1
- 1	1	*

Tabla característica

S	R	Qt	Q
0	0	0	0
0	0		
0		0	0
0		1	0
- 1	0	0	1
- 1	0	1	Т
- 1		0	*
			*

ecuación

$$Q(S R Qt) = \sum m(1,4,5,6,7)$$
* \longrightarrow se consideran como estados de no importa
$$Q = S + RQt$$

Tabla de verdad

S	R	Q
0	0	Qt
0	- 1	0
- [0	- 1
-	1	*

Qt	Qt+I	S	R
0	0	0	X
0	1		0
Ι	0	0	1
- 1	- 1	X	0

FLIP-FLOP JK

Tabla de verdad

J	K	Q
0	0	Qt
0	1	0
- 1	0	1
	- 1	Qt

Tabla característica

ecuación	Q	Qt	K	J
característica	0	0	0	0
			0	0
$Q(J K Qt) = \sum_{i=1}^{n} m(1,4,5,6,i)$	0	0	-	0
	0		1	0
$O \overline{V}O + \overline{VO} +$		0	0	1
$Q = \overline{K}Qt + J\overline{Qt}$	-		0	-
	- 1	0		1
	0			

Qt	Qt+I	J	K
0	0	0	×
0	1		X
- 1	0	X	-
- 1	1	X	0

FLIP-FLOP T

Tabla de verdad

Т	Q
0	Qt
1	Qt

Tabla característica

T	Qt	Q
0	0	0
0	1	- 1
- 1	0	-1
- 1	1	0

ecuación característica

$$Q(T Qt) = \sum m(1,2)$$

$$Q = \overline{T}Qt + T\overline{Qt}$$

Qt	Qt+I	Т
0	0	0
0	Ι	
1	0	1
1	Ι	0

FLIP-FLOP D

Tabla de verdad

D	Q
0	0
1	1

Tabla característica

D	Qt	Q
0	0	0
0	1	0
1	0	-
- 1	1	- 1

ecuación característica

$$Q(D Qt) = \sum m(2,3)$$
$$Q = D\overline{Qt} + DQt$$

Qt	Qt+I	D
0	0	0
0	Ι	
1	0	0
1	1	1

Cualquiera de los cuatro tipos de Flip-Flops tienen dos entras llamadas asíncronas:

Cualquiera de los cuatro tipos de Flip-Flops tienen dos entras llamadas asíncronas:

- SET o Preset

Si **PRE** esta activado **Q=I** y **Q=0** sin importar los valores en las entradas síncronas

Cualquiera de los cuatro tipos de Flip-Flops tienen dos entras llamadas asíncronas:

- SET o Preset
- CLEAR o Reset

Cualquiera de los cuatro tipos de Flip-Flops tienen dos entras llamadas asíncronas:

- SET o Preset
- CLEAR o Reset

Si CLR esta activado Q=0 y Q=1 sin importar los valores en las entradas síncronas