VECTEURS GAUSSIENS

Exercice 1 Soit (X,Y) un vecteur gaussien de moyenne μ et de covariance Σ ,

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \qquad \qquad \Sigma = \begin{bmatrix} \Sigma_{1,1} & \Sigma_{1,2} \\ \Sigma_{1,2} & \Sigma_{2,2} \end{bmatrix}.$$

- a) Calculer $\mathbb{E}[X \mid Y]$.
- b) Calculer $\mathbb{E}[(X \mathbb{E}[X \mid Y])^2 \mid Y]$.
- c) Montrer que pour tout t réel,

$$\mathbb{E}[\mathrm{e}^{\mathrm{i}tX}\mid Y] = \mathrm{e}^{\mathrm{i}(\mu_1 + \frac{\Sigma_{1,2}}{\Sigma_{2,2}}(Y - \mu_2)) - \frac{t^2}{2}(\Sigma_{1,1} - \frac{\Sigma_{1,2}^2}{\Sigma_{2,2}})}$$

Exercice 2 Deux variables aléatoires gaussiennes de covariance nulle sont-elles toujours indépendantes ?

Exercice 3 Soit X un vecteur gaussien dans \mathbb{R}^n , de loi $\mathcal{N}(0,\Sigma)$. Soit H un sous-espace vectoriel de \mathbb{R}^n .

- a) Calculer la loi de $p_H(X)$ où p_H est la projection orthogonale sur H.
- b) Montrer que $|p_H(X)|^2$ suit une loi $\chi_2(\dim H)$.
- c) Si K est le supplémentaire orthogonal de K, montrer que $p_H(X)$ et $p_K(X)$ sont indépendants.

Exercice 4 Soit X un vecteur gaussien dans \mathbb{R}^n , de loi $\mathcal{N}(0,\Sigma)$.

- a) Montrer que $\mathbb{E}[|X|^2] = \lambda_1 + \cdots + \lambda_n$ où les λ_i sont les valeurs propres de Σ .
- b) Calculer la loi du couple $(\langle a, X \rangle, \langle b, X \rangle)$ où $a, b \in \mathbb{R}^n$ sont deux vecteurs fixés.

Exercice 5 Soient (X_1, \ldots, X_n) des variables gaussiennes indépendantes centrées réduites.

- a) On pose $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ et $Y_n = (X_1 \bar{X}_n, \dots, X_n \bar{X}_n)$. Montrer que ces deux variables aléatoires sont indépendantes.
- b) Calculer la loi de \bar{X}_n et celle de $|Y_n|^2$.
- c) Trouver la densité de la variable aléatoire

$$T_n = \frac{\bar{X}_n}{\sqrt{|Y_n|^2/(n-1)}}.$$

Exercice 6 Soit (X,Y) un vecteur gaussien centré de covariance

$$\Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$$

où ρ est un nombre réel, $|\rho|<1.$ Montrer que

$$\mathbb{P}(X>0,Y>0) = \frac{1}{4} + \frac{\arcsin(\rho)}{2}.$$

Exercice 7 Soit $X = (X_1, ..., X_n)$ un vecteur gaussien. On suppose que pour tout k, $Cov(X_i, X_{i+k})$ ne dépends pas de i (on adopte la notation cyclique : $X_{n+1} = X_1, X_{n+2} = X_2$ et ainsi de suite). Montrer que la matrice de covariance de X est une matrice circulante.

Exercice 8 Soit $X \sim \mathcal{N}(0, \Sigma)$ un vecteur gaussien dans \mathbb{R}^n .

- a) Calculer $\mathbb{E}[e^{it|X|^2/2}]$ lorsque $\Sigma = I_n$.
- b) Calculer $\mathbb{E}[\mathrm{e}^{\mathrm{i}t|X|^2/2}]$ lorsque Σ est diagonale.
- c) Calculer $\mathbb{E}[\mathrm{e}^{\mathrm{i}t|X|^2/2}]$ dans le cas général.
- d) En déduire $\mathbb{E}[e^{t|X|^2/2}]$.
- e) Soit $X \sim \mathcal{N}(0, I_n)$ et soit M une matrice hermitienne avec ||M|| < 1. Montrer que

$$\mathbb{E}[e^{\frac{\langle X, MX \rangle}{2}}] = \sqrt{\frac{1}{\det(I - M)}}.$$

Exercice 9 $(\star\star)$ Soit X un vecteur gaussien dans \mathbb{R}^n , de loi $\mathcal{N}(0,I_n)$.

- a) Montrer que $\mathbb{E}[n^{-1}|X|^2] = 1$. Quelle est la loi de $|X|^2$?
- b) On fixe $t \in]0,1[$. Montrer qu'il existe une constante c telle que

$$\left| \mathbb{P}\left(\left| \frac{|X|^2}{n} - 1 \right| > t \right) \le 2e^{-cnt}.$$

c) Vérifier que |x-1|>t entraı̂ne que $|x^2-1|>t.$ En déduire que pour tout s>0, si n est assez grand, alors

$$\mathbb{P}(||X| - \sqrt{n}| > s) \leqslant 2e^{-cs^2}.$$

Contrairement à ce que pourrait indiquer l'intuition, un vecteur gaussien en grande dimension n n'est donc pas concentré autour de sa moyenne (ici 0) mais sur les bords de la sphère de rayon \sqrt{n} .

Exercice 10 Soient X, Y deux vecteurs indépendants de loi $\mathcal{N}(0, I_n)$. On pose $\bar{X} = X/|X|$ et $\bar{Y} = Y/|Y|$.

- a) Montrer que, \mathbb{P} -presque sûrement, $|X| \sim \sqrt{n}$.
- b) En déduire que $\langle \bar{X}, \bar{Y} \rangle \to 0$ presque sûrement, et que $\sqrt{n} \langle \bar{X}, \bar{Y} \rangle$ converge en loi vers une limite à identifier.