Voice Problem Detection - Detailed Report

1. Project Objective

The project aims to develop a system that can detect potential voice-related problems based on speech patterns and spoken content. It uses both linguistic features (pauses, hesitations) and text-based representations (BoW and TF-IDF) to classify or understand speech anomalies.

2. Feature Engineering

- a. Temporal & Linguistic Features:
- Pauses are extracted based on punctuation (e.g., `., ?!`) to infer speaking rhythm.
- Hesitation Words like "uh", "um", and "err" are detected using regular expressions, indicating potential speech fluency issues.
- b. Text Vectorization Techniques:
- i. Bag of Words (BoW):
- Implemented using CountVectorizer from scikit-learn.
- Captures word frequencies across spoken sentences.
- ii. TF-IDF:
- Implemented using TfidfVectorizer.
- Focuses on rare terms for distinguishing different speech patterns.

3. Machine Learning Models Used

a. KMeans Clustering:

Voice Problem Detection - Detailed Report			
- Used on delay data to distinguish between fluent and disfluent speech sections.			
b. Text-based Feature Models:			
- BoW and TF-IDF vector outputs are used to feed into classification models.			
4. Model Pipeline Summary			

- 1. Audio Input -> Speech Recognizer (recognize_google)
- 2. Transcription -> Cleaned text sentence
- 3. Pause + Hesitation Detection -> Regex + timing simulation
- 4. Text Vectorization -> CountVectorizer and TfidfVectorizer
- 5. ML Clustering/Classification -> KMeans or classifiers
- 6. Output -> Highlights disfluencies and hesitation patterns

5. Potential Next Steps for Clinical Robustness

- a. Improve Ground Truth:
- Collect labeled datasets of pathological vs. normal speech.
- b. Expand Feature Set:
- Add acoustic signal features.
- c. Apply Supervised Learning:
- Use models like logistic regression, SVM, or ensemble classifiers.

Voice Problem Detection - Detailed Report

- d. Deep Learning Integration:
- Use LSTM, BERT, or CNN models.
- e. Clinical Trial Integration:
- Test with speech-language pathologists in real-world scenarios.

6. Conclusion

Component	Technique Used	
Audio Input	Microphone + Google Speech API	1
Pause Detect	tion Punctuation-based rules	1
Hesitation Wo	ords Regex-based matching	1
Vectorization	BoW (CountVectorizer), TF-IDF	1
Clustering	KMeans for unsupervised pause ma	apping
Output	Fluency markers, potential alerts	