Série 5 Travaux dirigés d'algèbre tensoriel

Exercice 1

Un point M est repéré en coordonnées cylindriques par les variables ρ, φ, z (Fig(1)).

FIGURE 1 – Figure d'étude

- 1. Déterminer l'expression du vecteur position $OM\left(\rho,\varphi,z\right)$ d'un point M quelconque sur la base cartésienne (i,j,k).
- 2. Déterminer les vecteurs e_1,e_2,e_3 de la base naturelle et les représenter sur un schéma.
- 3. Démontrer que ces vecteurs sont orthogonaux entre eux.
- 4. Calculer les normes des vecteurs de la base naturelle.

Exercice 2

On considère un système de coordonnées paraboloïdales d'un espace ponctuel E_3 : $x = uvcos\varphi$; $y = uvsin\varphi$; $z = \frac{1}{2} (v^2 - u^2)$ où x, y, z sont les coordonnées cartésiennes. Les coordonnées curvilignes sont notées dans l'ordre $u^1 = u$; $u^2 = v$; $u^3 = \varphi$.

- 1. Écrire l'expression du vecteur position $OM(u, v, \varphi)$ d'un point M de l'espace E_3 .
- 2. Déterminer les vecteurs e_1, e_2, e_3 de la base naturelle sur la base cartésienne (i, j, k).
- 3. Démontrer que ces vecteurs sont orthogonaux entre eux.
- 4. Calculer leur norme.
- 5. Déterminer l'élément linéaire de E_3 .