No.	SOLUTION	MARKS
1	Let P_n be the statement $\sum_{k=1}^{n} (2k-1) = n^2$	
	STEP 1: Prove that P_1 is true. When $n = 1$, LHS = $2(1)-1=1$	1
	and $RHS = (1)^2 = 1$	1
	Hence LHS = RHS. Therefore P_1 is true.	1
	STEP 2: Assume that P_n is true for an arbitrary $n \in \mathbb{Z}^+$.	2
	P_n : $\sum_{k=1}^{n} (2k-1) = n^2$	
	STEP 3: Prove that P_{n+1} is true.	
	P_{n+1} : $\sum_{k=1}^{n+1} (2k-1) = (n+1)^2$	2
	$L.H.S. = \sum_{k=1}^{n+1} (2k-1)$	
	$= \sum_{k=1}^{n} (2k-1) + 2(n+1) - 1$	3
	$=(n)^2+2(n+1)-1$	2
	$= n^2 + 2n + 1$	2
	$=(n+1)^2$	
	Hence P_n is true implies P_{n+1} is true. Since P_1 is true, it follows by the principle of mathematical induction that P_n is true for all $n \in \mathbb{Z}^+$	1