Food Delivery Platform Data Analysis: A SQL Case Study Report

Project Goal: This project aims to extract meaningful insights from a food delivery platform's operational data using SQL queries. The analysis covers various aspects of customer behavior, restaurant performance, and sales trends.

Database Schema (Assumed): The analysis is based on an assumed database schema with the following key tables:

- users: Contains user information (e.g., user id, name).
- **orders:** Stores order details (e.g., order id, user id, r id, date, amount).
- **restaurants:** Contains restaurant information (e.g., r_id, r_name).
- **menu:** Lists menu items with prices (e.g., m_id, f_id, price, r_id).
- **food:** Contains food item details (e.g., f id, f name).
- order_details: Links orders to specific food items (e.g., order id, f id).

Key Findings and Analysis:

1. Customers Who Have Never Ordered:

- a. **Insight:** Identified users who have registered but never placed an order. This information is crucial for targeted marketing campaigns to re-engage dormant users.
- b. **Query Logic:** Utilized a **NOT IN** subquery to filter users whose user_id does not appear in the orders table.

2. Average Price Per Dish:

- a. **Insight:** Calculated the average price for each food item across all restaurants. This helps in understanding pricing strategies and identifying potential outliers.
- b. **Query Logic: Joined** menu and food tables, then used **AVG()** aggregate function **grouped by** food name.

3. Top Restaurant by Number of Orders for a Given Month:

a. **Insight:** Determined the restaurant with the highest number of orders in a specific month (e.g., June). This highlights top-performing restaurants that could be featured or analyzed for success factors.

 Query Logic: Joined orders and restaurants tables, filtered by month, grouped by restaurant, and ordered by count in descending order with a LIMIT 1.

4. Restaurants with Monthly Sales Exceeding a Threshold:

- a. **Insight:** Identified restaurants that achieved a sales revenue greater than a specified amount (e.g., 500) in a particular month (e.g., June 2025). This is vital for performance evaluation and identifying high-revenue partners.
- b. **Query Logic: Joined** orders and restaurants tables, filtered by month and year **(DATE_TRUNC)**, **grouped by** restaurant, and used a **HAVING clause** to filter by total sales.

5. Order Details for a Specific Customer within a Date Range:

- a. Insight: Retrieved comprehensive details for all orders placed by a particular customer (e.g., 'Nitish') within a defined date range (e.g., May 10, 2022, to June 10, 2022). This is useful for customer service, order history review, and personalized recommendations.
- b. **Query Logic:** Involved **multiple joins** (orders, restaurants, order_details, food) and **filtering by** user_id (obtained via a subquery on users) and date.

6. Restaurants with the Most Repeated Customers (Loyalty Analysis):

- a. **Insight:** Identified the restaurant that has the highest number of repeat customers (customers who have ordered more than once). This highlights customer loyalty and satisfaction with a particular restaurant.
- b. **Query Logic:** Used a **subquery** to find user_id and r_id **combinations** with more than one order, then **counted** the distinct user_ids for each r_id to find the top restaurant.

7. Month-over-Month Revenue Growth of the Food Delivery Platform:

- a. **Insight:** Calculated the percentage month-over-month revenue growth for the food delivery platform. This is a critical business metric for understanding financial performance and trends.
- b. Query Logic: Employed a Common Table Expression (CTE) to calculate monthly revenue and then used the LAG() window function to compare current month's revenue with the previous month's to compute growth percentage.

8. Customer's Favorite Food:

a. **Insight:** Determined the most frequently ordered food item for each customer. This information is invaluable for personalized marketing, food recommendations, and understanding individual preferences.

b. Query Logic: Used a CTE to calculate the frequency of each food item ordered by each user. Then, joined with users and food tables and used a subquery within the WHERE clause to select the food with the maximum frequency for each user.

Conclusion:

This SQL case study demonstrates the power of relational databases and SQL queries in extracting actionable insights from transactional data. The queries developed provide a solid foundation for understanding customer behavior, evaluating restaurant performance, and monitoring overall business growth for a food delivery platform. These insights can directly inform business strategies related to marketing, customer retention, restaurant partnerships, and menu optimization.