Package 'BinaryEMVS'

October 12, 2022

Title Variable Selection for Binary Data Using the EM Algorithm
Version 0.1
Description Implements variable selection for high dimensional datasets with a binary response variable using the EM algorithm. Both probit and logit models are supported. Also included is a useful function to generate high dimensional data with correlated variables.
Depends R (>= $3.1.3$)
License GPL-3
LazyData true
RoxygenNote 5.0.1
NeedsCompilation no
Author John Snyder [aut, cre]
Maintainer John Snyder <jcs8v6@mail.missouri.edu></jcs8v6@mail.missouri.edu>
Repository CRAN
Date/Publication 2016-01-13 08:49:37
R topics documented:
BinomialEMVS
Index 4
BinomialEMVS Variable Selection For Binary Data Using The EM Algorithm

Description

Conducts EMVS analysis

2 BinomialEMVS

Usage

```
BinomialEMVS(y, x, type = "probit", epsilon = 5e-04, v0s = ifelse(type ==
"probit", 0.025, 5), nu.1 = ifelse(type == "probit", 100, 1000),
nu.gam = 1, lambda.var = 0.001, a = 1, b = ncol(x),
beta.initial = NULL, sigma.initial = 1, theta.inital = 0.5, temp = 1,
p = ncol(x), n = nrow(x), SDCD.length = 50)
```

Arguments

У responses in 0-1 coding X matrix Χ probit or logit model type tuning parameter epsilon tuning parameter, can be vector v0s nu.1 tuning parameter nu.gam tuning parameter lambda.var tuning parameter tuning parameter tuning parameter beta.initial starting values sigma.initial starting value theta.inital startng value temp not sure not sure р

not sure

not sure

Value

SDCD.length

probs is posterior probabilities

Examples

```
#Generate data
set.seed(1)
n=25;p=500;pr=10;cor=.6
X=data.sim(n,p,pr,cor)

#Randomly generate related beta coefficients from U(-1,1)
beta.Vec=rep(0,times=p)
beta.Vec[1:pr]=runif(pr,-1,1)

y=scale(X%*%beta.Vec+rnorm(n,0,sd=sqrt(3)),center=TRUE,scale=FALSE)
prob=1/(1+exp(-y))
y.bin=t(t(ifelse(rbinom(n,1,prob)>0,1,0)))
```

data.sim 3

```
result.probit=BinomialEMVS(y=y.bin,x=X,type="probit")
result.logit=BinomialEMVS(y=y.bin,x=X,type="logit")
which(result.probit$posts>.5)
which(result.logit$posts>.5)
```

data.sim

High Dimensional Correlated Data Generation

Description

Generates an high dimensional dataset with a subset of columns being related to the response, while controlling the maximum correlation between related and unrelated variables.

Usage

```
data.sim(n = 100, p = 1000, pr = 3, cor = 0.6)
```

Arguments

n sample size

p total number of variables

pr the number of variables related to the response

cor the maximum correlation between related and unrelated variables

Value

Returns an nxp matrix with the first pr columns having maximum correlation cor with the remaining p-pr columns

Examples

```
data=data.sim(n=100,p=1000,pr=10,cor=.6)
max(abs(cor(data))[abs(cor(data))<1])</pre>
```

Index

BinomialEMVS, 1

data.sim, 3