

Fig. 1

SESQUITERPENE SYNTHASE The part of the property of the part of th	1.5.
SESQUITE SES	

this after their after after their the first n ll., ll dien dem dem dem dem dem

1
U
_ <u>_</u> ==
Ū
111
Lj
₽
Ţ
Đ
27 LJ

298			,	Hinc I	İ			DOMIN REAC PRODU	TION	SPECIFIC ACTIVITY
NH	1 ₃ +	HindIII	Nde 1	Xba 1 342	Cla 1	Xba 1 532		TEAS SPECIFIC	HVS SPECIFIC	nmo I/mg prot • h
TEAS [152	281	379	442		COO ⁻ 548 aa	100%	-	47
I N/C [- · · · · · · ·	HindIII	Nde 1		172		COO-		100	28
HVS [160	268				566 aa	-	100	20
CH1		HindIII						-	100	35
	TEAS		Nde 1	HVS						
CH 2								-	100	22
CH3					Cla 1			100	-	21
CH 4				Hinc I				66	34	40
CH 5 [HindIII						100	-	3
CH 6 [HindIII			Cla 1]		100	0	27
CH 7			Nde 1					NO ENZY	ME ACTIVITY	-
CH 8 [Nde 1		Cla 1			NO ENZY	ME ACTIVITY	-
CH 9 [HindIII	Nde 1		-			-	100	63
CH 10 [Hind III		Hinc I	1			68	34	25
CH 11 [Nde 1	Hinc I	<u> </u>		,	61	39	28
CH 12				Hinc I		, 		73	27	27
CH 13				Xba 1	Cla 1			23	77	60
CH 14 [Nde 1					33	67	ر 37

Fig. 4A

Fig. 4B

Fig. 5

Fig. 6

the street of th

Fig. 7

9/9

GENE CONSTRUCTS	REACTION PRODUCTS
QH1 1 2 3 5 7 INACTIVE INACTIVE	
(QUIESCENT SYNTHASE)	
	\wedge
GCADS 1 2 3 4 5 6 7	
(CADINENE SYNTHASE)	
QCADS1 1 2 3 5 7	

Fig. 8