SISMID 2021: Mathematical Models of Infectious Disease

Day 2: Breakout Session on Heterogeneity and Herd Immunity

Population heterogeneity by age influences the herd immunity threshold

Science

REPORTS

Cite as: T. Britton *et al.*, *Science* 10.1126/science.abc6810 (2020).

A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2

Tom Britton^{1*}, Frank Ball², Pieter Trapman¹

	R ₀ =	$R_0 = 2.0$		$R_0 = 2.5$		$R_0 = 3.0$	
Population structure	h_{D}	h_{C}	h_{D}	h_{C}	h_{D}	$h_{\rm C}$	
Homogeneous	50.0	50.0	60.0	60.0	66.7	66.7	
Age structure	46.0	50.0	55.8	60.0	62.5	66.7	
Activity structure	37.7	50.0	46.3	60.0	52.5	66.7	
Age and activity structure	34.6	50.0	43.0	60.0	49.1	66.7	

Racial and ethnic disparities in COVID-19 incidence in the US

Seroprevalence surveys allow us to estimate cumulative incidence of infection*

A **positive** result from this test may mean that a person was **previously infected** with the virus.

NYC serosurvey by Rosenberg et al.

- 100 grocery stores across New York state
- April 19-28, 2020
- 15,000 adults tested with information on race and ethnicity
- Overall cumulative incidence of 14%
- Limitation: single time point

SEIR compartmental model for a homogeneous population

$$\begin{array}{c} \beta I \\ \longrightarrow \end{array} \begin{array}{c} r \\ \longleftarrow \end{array} \begin{array}{c} \gamma \\ \longrightarrow \end{array} \begin{array}{c} \frac{dS}{dt} = -\beta IS \\ \frac{dE}{dt} = \beta IS - rE \end{array}$$

susceptible

latently infected

$$\frac{dI}{dt} = rE - \gamma I$$

infectious

vered
$$\frac{dR}{dt} = \gamma I$$

recovered

(Seroprevalence data)

Structured models address heterogeneity by explicitly modeling the demographic subgroups

$$\frac{d\mathbf{S}}{dt} = -\mathbf{B}\mathbf{I} \circ \mathbf{S}$$

$$\frac{d\mathbf{E}}{dt} = \mathbf{B}\mathbf{I} \circ \mathbf{S} - r\mathbf{E}$$

$$\frac{d\mathbf{I}}{dt} = r\mathbf{E} - \gamma \mathbf{I}$$

$$\frac{d\mathbf{R}}{dt} = \gamma \mathbf{I}$$

$$\mathbf{E}_{0} \longrightarrow \mathbf{I}_{0} \longrightarrow \mathbf{R}_{0}$$

$$\mathbf{R}_{0} \longrightarrow \mathbf{R}_{0}$$

Proportionate mixing assumes the contact rate between groups to be proportional to group activity levels (mean overall contacts per time)

$$\frac{d\mathbf{S}}{dt} = -\mathbf{B}\mathbf{I} \circ \mathbf{S}$$

$$\frac{d\mathbf{E}}{dt} = \mathbf{B}\mathbf{I} \circ \mathbf{S} - r\mathbf{E}$$

$$\mathbf{B} = q \begin{bmatrix} c_{0\leftarrow 0} & \dots & c_{0\leftarrow 2} & \dots & c_{0\leftarrow 4} \\ \vdots & & \vdots & & \vdots \\ c_{4\leftarrow 0} & \dots & c_{4\leftarrow 2} & \dots & c_{4\leftarrow 4} \end{bmatrix}$$

$$\frac{d\mathbf{I}}{dt} = r\mathbf{E} - \gamma \mathbf{I}$$

$$\beta_{i\leftarrow j} = q \frac{a_i a_j}{\sum_k a_k N_k}$$

Without contact survey data like POLYMOD, these assumptions are necessary

Assortative mixing partitions a fraction ϵ of contacts to be exclusively within group (with the rest proportionately distributed)

$$\beta_{i \leftarrow j} = (1 - \epsilon) * q \frac{a_i a_j}{\sum_k a_k N_k} + \epsilon * q \frac{a_i}{N_i}$$

More complexity generally increases model realism, but also parameter count

R₀, R_{eff}, and the herd immunity threshold (HIT) for heterogenous models

 R_0 = dominant eigenvalue of NB/γ

 R_{eff} = dominant eigenvalue of S(t) **B** / γ

HIT = fraction of population that is non-susceptible when $R_{eff} < 1$

Overview of breakout session project

- Fit transmission models structured by race and ethnicity to Long Island and New York City seroprevalence data
- Evaluate the impact of 1) different model structures and 2) variability in seroprevalence across groups on herd immunity thresholds and epidemic final sizes
- Think carefully through model assumptions, accuracy versus transparency versus resolution, etc.

Download code and overview

Overview of the two main functions

- fit.model()
 - Input: seroprevalence data, demographics data, parameters (epsilon, latent period, infectious period)
 - Output: estimated activity level parameters
 - More on model fitting on Day 3
- run.structured.model()
 - Input: desired R0 value, demographics data, parameters (epsilon, latent period, infectious period, activity levels), initial conditions, timespan
 - Output: simulated epidemic trajectory

Schedule

- Work in breakout groups from now until 2:10 PM Pacific / 5:10
 PM Eastern (~1 hour 10 minutes)
 - Read through PDF and code (~20 minutes)
 - Work on questions as a group (~45 minutes)
 - Finalize solutions and figures (if relevant) for your assigned question + be ready to present (~last 5 minutes)

Discuss in big group for the last 20 minutes of class

Solutions to breakout session

A) Long Island proportionate mixing model outputs

```
[1] "Normalized fitted values: 1 4.31 1.956 0.916 2.475"
$'Final epidemic size'
[1] 0.6932
$HIT
[1] 0.3977
$'Cumulative incidence by group at the HIT'
[1] 0.2861 0.7660 0.4828 0.2657 0.5658
```

A) Next-generation matrix

Expected number of infections

A) Epidemic trajectory plot (cumulative incidence by group)

A) Model assumptions

- Transparent and flexible, but with reduced accuracy and resolution compared to more complex models
- Seropositivity implies complete immunity (full protection from reinfection) and immunity does not wane; seroprevalence survey is unbiased
- Variability in exposure is modeled as a function of only one demographic characteristic
- Etc.

B) Assortative mixing model outputs

```
[1] "Normalized fitted values: 1 2.196 1.516 0.941 1.714"
$'Final epidemic size'
[1] 0.8268
$HIT
[1] 0.4955
$'Cumulative incidence by group at the HIT'
[1] 0.3875 0.8342 0.6099 0.3615 0.6871
```

B) Comparing next-generation matrices (proportionate – left vs assortative mixing – right)

B) Comparing epidemic trajectories (proportionate – left vs assortative mixing – right)

Assortative mixing (ε =0.5)

Proportionate mixing

C) NYC model outputs (proportionate mixing – left, assortative mixing – right)

C) Epidemic trajectories for assortative mixing models in Long Island (left) and NYC (right)

C) Long Island versus NYC seroprevalence data

	Long Island	NYC
Non-Hispanic whites Hispanics or Latinos Non-Hispanic Blacks Non-Hispanic Asians	0.087 0.320 0.158 0.084	0.166 0.330 0.252 0.145
Multiracial / other	0.207	0.204
Coefficient of variation (standard deviation / me	0.57 an)	0.33

D) Model outputs for a homogeneous population

```
activities.homogeneous <- fit.model(pop=pop.li, pop.p=pop.p.li, sero.p=rep(0.2,5),
    sero.tested=sero.tested.li,
                             epsilon=0, r.parm=r.parm, g.parm=g.parm)
results.homogeneous <- run.structured.model(RO.value=default.RO, pop=pop.li,
   pop.p=pop.p.li, epsilon=0,
    g.parm=g.parm, fitted.vars=activities.homogeneous)
print(results.homogeneous)
### Output
[1] "Normalized fitted values: 1 0.996 0.989 0.999 1"
$'Final epidemic size'
[1] 0.9414
$HIT
[1] 0.6666
```


D) Model outputs for a highly heterogeneous population

```
activities.heterogeneous <- fit.model(pop=pop.li, pop.p=pop.p.li,
    sero.p=c(0.05,0.8,0.05,0.05,0.05), sero.tested=sero.tested.li,
                               epsilon=0, r.parm=r.parm, g.parm=g.parm)
results.heterogeneous <- run.structured.model(RO.value=default.RO, pop=pop.li,
    pop.p=pop.p.li, epsilon=0,
                                                                  1.00
    g.parm=g.parm, fitted.vars=activities.heterogeneous)
print(results.heterogeneous)
                                                                  0.75
                                                                Proportion recovered
### Output
$'Final epidemic size'
[1] 0.2431
                                                                 0.25
$HIT
[1] 0.1506
                                                                  0.00
                                                                                             100
                                                                                                        150
                                                                                      Days
```

Summary of questions A through D

- Both variability in the data and the choice of model affects HIT and final epidemic size estimates
- All else equal (holding R0 and model type constant), increased variability in the seroprevalence data will generally reduce HITs and final epidemic sizes
- All else equal (holding R0 and data / location constant), assuming proportionate mixing will reduce HITs and final sizes versus assortative mixing models

E) Including non-pharmaceutical interventions (NPIs)

- Scale the transmission rate by a factor beginning when 5% cumulative incidence in the population was reached – representing an established and expanding epidemic
 for a variable duration
- Extensions: allow linear increases / decreases in NPIs, parameterize using mobility data, etc.

