

电力牵引传动与控制

第六章 牵引逆变器主电路及控制

西南交通大学

苟 斌

本科生讲稿

主要内容

- 5.1 两电平牵引逆变器主电路
- 5.2 两电平逆变器PWM技术
- 5.3 三电平牵引逆变器主电路
- 5.4 三电平逆变器PWM技术

牵引逆变器

- 牵引逆变器可以分成电压源型和电流源型两种, 为同步电机供电的大多采用电流源型逆变器,为 异步电机供电的大多采用电压源型逆变器,我国 高速列车全部采用电压源型逆变器。
- 根据输出电平数的不同,电压源型牵引逆变器又可分为两电平和三电平两种。

5.1 电压型三相逆变器

- 口 列车牵引时起逆变作用,将直流电转变成电压频率变化的三相交流电;
- □ 再生制动时起<mark>整流作用</mark>,将三相交流电转变成直流电,由整流器回馈电网。

两电平式逆变器主电路如图所示,每时刻都有三个开关管导通,共有T₁T₂T₃, T₂T₃T₄, T₃T₄T₅, T₄T₅T₆, T₅T₆T₁, T₆T₁T₂, T₁T₃T₅和T₂T₄T₆导通8种工作状态,从而获得三相对称输出电压波形。

• 为了便于分析,电力电子器件采用理想开关表示,定义开关函数为 S_i (i 为A, B, C) ,三相不同开关组合有 2^3 = 8 种工作状态

$$S_A = \begin{cases} 1 & T_1 导通 \\ 0 & T_4 导通 \end{cases}$$

$$S_B = \begin{cases} 1 & T_3 导通 \\ 0 & T_6 导通 \end{cases}$$

$$S_C = \begin{cases} 1 & T_5$$
导通 $0 & T_2$ 导通

简化等效开关电路

两电平牵引逆变器工作状态及相应的电压

Mode	S_{A}	$S_{\rm B}$	$S_{\rm C}$	$u_{\rm an}$	$u_{\rm bn}$	$u_{\rm cn}$	u_{ab}	u_{bc}	$u_{\rm ca}$	矢量
0	0	0	0	0	0	0	0	0	0	$\overline{ec{U}_0}$
1	0	0	1	$-U_{\rm dc}/3$	$-U_{ m dc}/3$	$2U_{\rm dc}/3$	0	- $U_{ m dc}$	$U_{ m dc}$	$\overline{ec{U}_5}$
2	0	1	0	$-U_{\rm dc}/3$	$2U_{\rm dc}/3$	$-U_{ m dc}/3$	- $U_{ m dc}$	$U_{ m dc}$	0	$\overline{ec{U}_3}$
3	0	1	1	$-2U_{\rm dc}/3$	$U_{ m dc}/3$	$U_{ m dc}/3$	- $U_{ m dc}$	0	$U_{ m dc}$	$\overline{ec{U}_{\scriptscriptstyle A}}$

两电平牵引逆变器工作状态及相应的电压

Mode	$S_{\!\!\!A}$	$S_{\rm B}$	$S_{\rm C}$	$u_{\rm an}$	$u_{\rm bn}$	$u_{\rm cn}$	u_{ab}	u_{bc}	$u_{\rm ca}$	矢量
4	1	0	0	$2U_{\rm dc}/3$	$-U_{ m dc}/3$	$-U_{ m dc}/3$	$U_{ m dc}$	0	- $U_{ m dc}$	$ec{U}_1$
5	1	0	1	$U_{ m dc}/3$	$-2U_{\rm dc}/3$	$U_{ m dc}/3$	$U_{ m dc}$	- $U_{ m dc}$	0	$ec{U}_6$
6	1	1	0	$U_{ m dc}/3$	$U_{\rm dc}/3$	$-2U_{\mathrm{dc}}/3$	0	$U_{ m dc}$	- $U_{ m dc}$	$ec{U}_2$
7	1	1	1	0	0	0	0	0	0	$ec{U}_7$

逆变器IGBT T₁开路故障示意图:

逆变器IGBT T₁开路故障波形:

逆变器IGBT T₁&T₃开路故障示意图:

逆变器IGBT T₁&T₃开路故障波形:

逆变器IGBT T₁&T₆开路故障示意图:

逆变器IGBT T₁&T₆开路故障波形:

逆变器IGBT T₁&T₄开路故障示意图:

逆变器IGBT T₁&T₄开路故障波形:

5.2 两电平逆变器控制方式

目前通常采用PWM控制方式

- □正弦PWM
- □ 特定谐波消除PWM
- □ 滞环电流控制PWM
- □ 空间矢量PWM

本节提要

- 空间矢量的定义
- 电压与磁链空间矢量的关系
- 六拍阶梯波逆变器与正六边形空间旋转磁场
- 电压空间矢量的线性组合与SVPWM控制

空间矢量的定义

交流电动机绕组的电压、电 流、磁链等物理量都是随时间变 化的,分析时常用时间相量来表 示,但如果考虑到它们所在绕组 的空间位置,也可以如图所示, 定义为空间矢量 u_{AO} , u_{BO} , u_{CO} 。

电压空间矢量的相互关系

当电源频率不变时,合成空间矢量 u_s 以电源角频率 ω_1 为电气角速度作恒速旋转。当某一相电压为最大值时,合成电压矢量 u_s 就落在该相的轴线上。用公式表示,则有

$$\boldsymbol{u}_{\mathrm{s}} = \boldsymbol{u}_{\mathrm{AO}} + \boldsymbol{u}_{\mathrm{BO}} + \boldsymbol{u}_{\mathrm{CO}}$$

与定子电压空间矢量相仿,可以定义定子电流和磁链的空间矢量 I_s 和 Ψ_s 。

电压与磁链空间矢量的关系 17

三相的电压平衡方程式相加,即得用合成空间 矢量表示的定子电压方程式为

$$\boldsymbol{u}_{\mathrm{s}} = R_{\mathrm{s}} \boldsymbol{I}_{\mathrm{s}} + \frac{\mathrm{d} \boldsymbol{\varPsi}_{\mathrm{s}}}{\mathrm{d} t}$$

式中:

u。一定子三相电压合成空间矢量;

 I_{s} — 定子三相电流合成空间矢量;

Ψ。— 定子三相磁链合成空间矢量。

电压与磁链的近似关系

当电动机转速不是很低时,定子电阻压降所占的成分很小,可忽略不计,则定子合成电压与合成磁链空间矢量的近似关系为

$$u_{\rm s} \approx \frac{\mathrm{d} \Psi_{\rm s}}{\mathrm{d} t}$$

或
$$\Psi_{\rm s} \approx \int u_{\rm s} dt$$

当电动机由三相平衡正弦电压供电时,磁链矢量顶端的运动轨迹呈圆形(一般称为磁链圆),这样的定子磁链旋转矢量可用下式表示

$$\Psi_{\rm s} = \Psi_{\rm m} e^{j\omega_{\rm l}t}$$

其中 Ψ_m 是磁链 Ψ_s 的幅值, ω_1 为其旋转角速度。

$$\mathbf{u}_{s} \approx \frac{\mathrm{d}}{\mathrm{d}t} (\Psi_{m} \mathrm{e}^{j\omega_{l}t}) = j\omega_{l} \Psi_{m} \mathrm{e}^{j\omega_{l}t} = \omega_{l} \Psi_{m} \mathrm{e}^{j(\omega_{l}t + \frac{\pi}{2})}$$

上式表明, 当磁链幅值一定时, u_s 的大小与 ω_1 (或供电电压频率) 成正比, 其方向则与磁链矢量正交, 即磁链圆的切线方向。

磁链矢量在空间旋转一周时, 电压矢量也连续地按磁链圆的 切线方向运动 2π弧度,其轨 迹与磁链圆重合。

电压空间矢量调制技术 21

六拍阶梯波逆变器与正六边形空间旋转磁场

■ 电压空间矢量运动轨迹 在常规的 PWM 变压变频调速系统中,异步电 动机由六拍阶梯波逆变器供电,这时的电压空间矢 量运动轨迹是怎样的呢?

开关状态表

序号	开 关 状 态	开关代码
1	$T_6 T_1 T_2$	100
2	$T_1 T_2 T_3$	110
3	T ₂ T ₃ T ₄	010
4	T ₃ T ₄ T ₅	011
5	$T_4 T_5 T_6$	001
6	$T_5 T_6 T_1$	101
7	$T_1 T_3 T_5$	111
8	$T_2 T_4 T_6$	000

□ 开关控制模式

对于六拍阶梯波的逆变器,在其输出的每个周 期中6种有效的工作状态各出现一次。逆变器每隔 $\pi/3$ 时刻就切换一次工作状态(即换相),而在这 $\pi/3$ 时刻内则保持不变。

电压空间矢量调制技术 24

开关模式分析

设工作周期从100状态开始,这 时T₆、T₁、T₂导通,其等效电 路如图所示。各相对直流电源 中点的电压都是幅值为

$$U_{\mathrm{AO}} = U_{\mathrm{d}} / 2$$
 $U_{\mathrm{BO}} = U_{\mathrm{CO}} = - U_{\mathrm{d}} / 2$

□ 工作状态 100 的合成电压 空间矢量

由图可知,三相的合成空间 矢量为 u_1 , 其幅值等于 U_d , 方向沿A轴(即X轴)。

□ 工作状态 110 的合成电压空间 矢量

 u_1 存在的时间为 $\pi/3$,在这段时 间以后,工作状态转为110,和 上面的分析相似, 合成空间矢量 变成图中的 u_2 ,它在空间上滞 后于 u_1 的相位为 $\pi/3$ 弧度,存在 的时间也是 $\pi/3$ 。

□ 每个周期的六边形合成电压空 间矢量

依此类推,随着逆变器工作状态 的切换, 电压空间矢量的幅值不 变,而相位每次旋转 π/3 ,直到 一个周期结束。

这样,在一个周期中6个电压空 间矢量共转过 2π 弧度,形成一 个封闭的正六边形, 如图所示。

电压空间矢量调制技术 28

□ 电压空间矢量与磁链矢量的关系

一个由电压空间矢量运动所 形成的正六边形轨迹也可以看作是 异步电动机定子磁链矢量端点的运 动轨迹。

设在逆变器工作开始时定子 磁链空间矢量为 ψ_1 ,在第一个 $\pi/3$ 期间, 电动机上施加的电压空间矢 量为 u_1 。

电压空间矢量调制技术 29

 $\boldsymbol{u}_1 \Delta t = \Delta \boldsymbol{\Psi}_1$ 由图可得

也就是说,在 $\pi/3$ 所对应的时 间 Δt 内,施加 u_1 的结果是使 定子磁链 ψ_1 产生一个增量 $\Delta\psi$,方向与 u_1 一致,最后得到新 的磁链 ψ_2 ,而

$$\psi_2 = \psi_1 + \Delta \psi_1$$

依此类推,可以写成 $\Delta \psi$ 的通式

$$\boldsymbol{u}_{\mathrm{i}}\Delta t = \Delta \boldsymbol{\varPsi}_{\mathrm{i}} \qquad i = 1, 2, \dots 6$$

$$\psi_{i+1} = \psi_i + \Delta \psi_i$$

总之,在一个周期内,6个磁链空间矢量呈放射状, 矢量的尾部都在0点,其顶端的运动轨迹也就是6个 电压空间矢量所围成的正六边形。

电压空间矢量调制技术 31

- □ 磁链矢量增量与电压矢量、时间增量的关系
- 如果 u_1 的作用时间 Δt 小于 $\pi/3$, 则 $\Delta \psi_i$ 的幅值也按比例地减小, 如图中的矢量 \overrightarrow{AB} 。
- 在任何时刻,所产生的磁链增量 的方向决定于所施加的电压,其 幅值则正比于施加电压的时间。

电压空间矢量调制技术 32

□电压空间矢量的线性组合与SVPWM控制

如前分析,我们可以得到的结论是:

- 如果交流电动机仅由常规的六拍阶梯波逆变器供电, 磁链轨 迹便是六边形的旋转磁场, 这显然不象在正弦波供电时所产 生的圆形旋转磁场那样能使电动机获得匀速运行。
- ◆ 如果想获得更多边形或逼近圆形的旋转磁场,就必须在每一 个期间内出现多个工作状态,以形成更多的相位不同的电压 空间矢量。为此,必须对逆变器的控制模式进行改造。

□圆形旋转磁场逼近方法

怎样控制PWM的开关时间才能逼近圆形旋转磁场?

线性组合法

逼近圆形时的磁链增量轨迹

电压空间矢量调制技术 34

□圆形旋转磁场逼近方法

设在一段换相周期时间 T₀ 中,可以用两个矢量之和表 示由两个矢量线性组合后的 电压矢量 и。, 新矢量的相位 为 θ 。

电压空间矢量的线性组合

□圆形旋转磁场逼近方法

可根据各段磁链增量的相位求出所需的作用时间 t_1 和 t_2 。 可以看出

$$\boldsymbol{u}_{s} = \frac{t_{1}}{T_{0}}\boldsymbol{u}_{1} + \frac{t_{2}}{T_{0}}\boldsymbol{u}_{2} = \boldsymbol{u}_{s}\cos\theta + j\boldsymbol{u}_{s}\sin\theta$$

□圆形旋转磁场逼近方法

解 t_1 和 t_2 得

$$\frac{t_1}{T_0} = \frac{\mathbf{u}_{\mathrm{s}} \cos \theta}{U_{\mathrm{d}}} - \frac{1}{\sqrt{3}} \cdot \frac{\mathbf{u}_{\mathrm{s}} \sin \theta}{U_{\mathrm{d}}}$$

$$\frac{t_2}{T_0} = \frac{2}{\sqrt{3}} \cdot \frac{\boldsymbol{u}_{\mathrm{s}} \sin \theta}{U_{\mathrm{d}}}$$

□零矢量的使用

换相周期 T_0 应由旋转磁场所需的频率决定, T_0 与 t_1+t_2 未必 相等,其间隙时间可用零矢量 ॥ 或 ॥ 来填补。为了减少功率 器件的开关次数,一般使 u_7 和 u_8 各占一半时间,因此

$$t_7 = t_8 = \frac{1}{2} (T_0 - t_1 - t_2) \ge 0$$

□电压空间矢量的扇区划分

□圆形旋转磁场逼近方法基本思想

- 在常规六拍逆变器中一个扇区仅包含两个开关工作状态。
- 实现SVPWM控制就是要把每一扇区再分成若干个对应于 时间 T。的小区间。按照上述方法插入若干个线性组合的 新电压空间矢量 us, 以获得优于正六边形的多边形(逼近 圆形) 旋转磁场。

□ 开关状态顺序原则

■ 在实际系统中,应该尽量减少开关状态变化时引起的开关 损耗,因此不同开关状态的顺序必须遵守下述原则:每次 切换开关状态时,只切换一个功率开关器件,以满足最小 开关损耗。

□ 插值举例

- 每一个 To 相当于 PWM电压波形中的一个脉冲波
- 例如:

上图所示扇区I内的区间包含 t_1 , t_2 , t_7 和 t_8 共4段,相应的电 压空间矢量为 u_1 , u_2 , u_7 和 u_8 , 即 100, 110, 111 和 000 共 4种开关状态。

□ 矢量顺序模式 1

- ❖ 矢量序列 $V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow V_0$
- $T_0 = T_0, T_7 = 0.$

电压空间矢量调制技术 43

□ 矢量顺序模式 2

- ❖ 矢量序列 $V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow V_1 \rightarrow V_0$
- $T_0 = T_0, T_7 = 0.$

□ 插值举例

为了使电压波形对称,把每种状态的作用时间都一分为二, 因而形成电压空间矢量的作用序列为: 12788721, 其中 1 表 示作用 u_1 , 2 表示作用 u_2 , 这样,在这一个时间内,逆变器三相的开关状态序列为100, 110, 111, 000, 000, 111, 110, 100.

□插值举例

按照最小开关损耗原则进行检查,发现上述1278的顺序是不 合适的。

为此,应该把切换顺序改为81277218,即开关状态序列为000 ,100, 110, 111, 111, 110, 100, 000, 这样就能满足每次 只切换一个开关的要求了。

□ *T*₀ 区间的电压波形

第I扇区内一段区间的开关序列与逆变器三相电压波形

□ 矢量顺序模式 3

- ❖ 矢量序列 $V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow V_7 \rightarrow V_2 \rightarrow V_1 \rightarrow V_0$
- $T_0 = T_7 = T_{0,7}/2$.

电压空间矢量调制技术 48

□小结

归纳起来,SVPWM控制模式有以下特点:

■ 逆变器的一个工作周期分成6个扇区,每个扇区相当于常规 六拍逆变器的一拍。为了使申动机旋转磁场逼近圆形, 每 个扇区再区分成若干个小区间 T_0 , T_0 越短, 旋转磁场越接 近圆形,但 T_0 的缩短受到功率开关器件允许开关频率的制 约。

电压空间矢量调制技术 49

□小结

- 在每个小区间内虽有多次开关状态的切换,但每次切换都只 涉及一个功率开关器件,因而开关损耗较小。
- 每个小区间均以零电压矢量开始,又以零矢量结束。
- 利用电压空间矢量直接生成三相PWM波,计算简便。
- 采用SVPWM控制时,逆变器输出线电压基波最大值为直流 侧电压,这比一般的SPWM逆变器输出电压提高了15%。

5. 3三电平电压型三相逆变器50

三电平电压源型逆变器拓扑结构

三电平逆变器相电压三种输出状态

三电平逆变器等效电路

$$S_A = egin{cases} P & \mathsf{T}_{11}\mathsf{T}_{12}$$
导通 $O & \mathsf{T}_{12}\mathsf{T}_{13}$ 导通 $N & \mathsf{T}_{14}\mathsf{T}_{13}$ 导通

$$S_B = egin{cases} P & T_{21}T_{22}$$
导通 $O & T_{22}T_{23}$ 导通 $O & T_{24}T_{23}$ 导通

$$S_C = egin{cases} P & T_{31}T_{32}$$
导通 $O & T_{32}T_{33}$ 导通 $O & T_{34}T_{33}$ 导通

等效开关电路

三电平逆变器等效电路

- 忽略中点电位的偏移,每一个开关器件所承 受的电压均为0.5U_{do}
- 当上桥臂开关器件导通时,即状态P,下桥
 臂的开关T₁₃、T₁₄各承受0.5U_d电压;
- 当下桥臂开关器件导通时,即状态N,上桥 臂的开关T₁₁、T₁₂各承受0.5U_d的电压;
- 当辅助开关器件导通时,即状态(),主电路中的开关(T₁₁、T₁₄各承受().5U_d的电压。

三电平逆变器特点

- 元件耐压只有两电平式的一半
- 加入零电压. 使电机电压接近于正弦波
- ●每相3个取值,共33=27个状态

5.4 三电平逆变器调制方式 54

- 从一相的输出波形看。由多个不同脉宽的脉 冲波组成。在调制度较小时(如m(0.5),为 了減小谐波影响。应采用PWM方法来调节输 出的基波电压。
- ●目前常采用SPWM和SVPWM技术

三电平逆变器SVPWM

$$U_s = \frac{2}{3}(u_a + u_b e^{j\frac{2}{3}\pi} + u_c e^{j\frac{4}{3}\pi})$$

 三相三电平逆变器 具有3³=27个开关状态。右图给出了对态。右图给出了对应所有开关状态的三电平逆变器空间矢量图

电压空间矢量分类

- ●27个开关状态分为四类矢量:
 - -大穴边形的顶角状态 (PNN、PPN、NPN、NPP 、NNP和PNP) 对应为大开关矢量;
 - -外六边形各边的中点对应六个空间矢量为中 开关矢量;
 - 一内六边形的每一个空间矢量对应着两种可能的开关状态。称为小开关矢量。
 - -还有三种可能的零状态 (000、PPP、NNN) , 分别对应于辅助器件的全导通, 上臂器件 的全导通, 以及下臂器件的全导通, 称为零 开关矢量。

实现三电平逆变器空间矢量调制的步骤:

- □ 判断参考矢量所在区域;
- **□ 根据最近三角矢量原则确定输出矢量**;
- □ 计算各个矢量作用的时间;
- □ 确定开关状态顺序。

三电平NPC空间矢量调制

三电平NPC空间矢量调制

• 在扇区A的区域1中,设定采样周期为 T_s ,

$$m = \frac{\sqrt{3} \left| \vec{U}_{ref} \right|}{\sqrt{2} U_{d}}$$

$$\begin{cases} T_{a0} = \frac{4}{\sqrt{3}} mT_s \sin(\frac{\pi}{3} - \theta) \\ T_{c0} = \frac{4}{\sqrt{3}} mT_s \sin \theta \\ T_0 = \left[1 - \frac{4}{\sqrt{3}} m \sin\left(\theta + \frac{\pi}{3}\right)\right] T_s \end{cases}$$

同理可得其它三个区域及五个扇区的电压矢量作用 时间

本章结束!