### 4. Simulations

Jørgen Bølstad

STV4022, University of Oslo

- Intro to Simulation
- 2 Basic Programming
- 3 Examples of Simulations
- Summarizing Simulations
- Bootstrapping
- 6 Conclusion

#### Simulation vs. Estimation

- ► A typical goal in statistics is to **estimate parameters** to describe data:
  - Specifying a probability model for the data
  - Estimating plausible parameter values in light of the data and the model
  - In short: model + data → parameter estimates
- ► Simulations turn to this logic on its head:
  - ▶ We specify a probability model and **generate data** from the model
  - ▶ In short: model + parameter values → (fake) data

# Why Simulate?

- 1. Explore patterns of random variation
  - ► Testing and challenging our intuitions about how things work
- 2. Approximate the **sampling distribution** of the data and our estimators
  - ▶ **Bootstrapping:** Estimate uncertainty of estimates
  - ► Monte Carlo studies: Generating data with known parameters and assessing estimator properties (e.g. bias, variance, MSE)
- 3. Illustrate uncertainty in predictions from estimated models
- 4. Assessing models by checking if their predictions make sense
- 5. Other purposes (e.g. fitting Bayesian models)
  - (rstanarm does this, but we will not look at the details)

# Generating Random Data

- A wide range of probability distributions are available in R
  - ► These are functions with different sets of parameters
- The functions to generate data start with d
  - dnorm, dbinom, dunif, etc.
- Recall: The Bernoulli distribution applies to a single binary trial
  - ▶ Its only parameter is the probability of success, p
  - lt equals a Binomial distribution with a single trial (size = 1)

### Simulating random data from the Bernoulli distribution

```
fakedat <- rbinom(30, size = 1, prob = .1) # 30 draws with p = .1
fakedat
## [1] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
sum(fakedat)
## [1] 4</pre>
```

## Reproducible Random Numbers

- R relies on a random number generator (RNG) to generate data
  - ► The data are not completely random, but **pseudo random**:
  - ▶ The sequence of numbers is completely determined by an initial **seed**

```
Set the seed for reproducible random data
```

```
set.seed(1) # Set seed to 1 before starting
rbinom(5, 1, .5) # Take five draws from the Bernoulli distribution
## [1] 0 0 1 1 0
rbinom(5, 1, .5) # Take five different draws
## [1] 1 1 1 1 0
set.seed(1) # Re-set seed to 1
rbinom(5, 1, .5) # Obtain the *same* draws as before
## [1] 0 0 1 1 0
rbinom(5, 1, .5)
## [1] 1 1 1 1 0
```

#### **Functions**

- ► Functions take input(s), perform some operation, and produce outputs
  - ► Inputs are in R referred to as **arguments**
  - Outputs are in R referred to as value
    - R functions can only **return** a single object

### We can easily define our own functions

```
my_function <- function(x = 1) { # x=1 will be used if no x is provided
  y <- x^2
  return(y) # Specify what the function should return
}
my_function(2) # Test the function with x = 2
## [1] 4</pre>
```

### Loops

▶ **Loops** repeat some operation for a specified number of times

```
Running our function for each integer from 1 to 5
for(i in 1:5) { # For each integer from 1 to 5, set i to this number
  print(my_function(i)) # Then perform operations on i
}
## [1] 1
## [1] 4
## [1] 9
## [1] 16
## [1] 25
```

- ► Functions in R are often **vectorized**, removing the need for loops
  - Vectorized operations are a lot faster then explicit loops in R

```
my_function(1:5)
## [1] 1 4 9 16 25
```

#### If ... Else Statements

▶ If statements execute operations only if some condition is true

Printing only numbers whose square is above or equal to 10

```
for(i in 1:5) {
  if (my_function(i) >= 10) {
   print(i)
 } else { # Note: You can drop the else-part when it is not needed
   print("Nope")
## [1] "Nope"
   [1] "Nope"
   [1] "Nope"
## [1] 4
## [1] 5
```

## Subsetting

- Subsetting means selecting some portion of the data
  - ▶ In base R, we use square brackets and add:
    - ► The indexes of the elements we want
    - Or a logical (TRUE/FALSE) vector of the same length as the data

```
Subsetting a (one-dimensional) vector

dat <- 0:8
dat[5:6]

## [1] 4 5
select <- dat > 5 # Create logical vector: Is dat above 5?
select

## [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
dat[select]

## [1] 6 7 8
```

# Simulation of Discrete Probability Model

- ▶ The probability that a baby is girl is ca. 48.8%
- ▶ If 400 babies are born at a hospital in a year, how many will be girls?

```
Simulate a single instance (one particular year)

n_girls <- rbinom(n = 1, size = 400, prob = 0.488)

print(n_girls) # This is what *could* happen in *one* instance

## [1] 198
```

### Repeat simulation 1000 times

```
n_sims <- 10000
n_girls <- rep(NA, n_sims)
for (s in 1:n_sims) {
    n_girls[s] <- rbinom(1, 400, 0.488)
}</pre>
```

# Histogram of the Results



- Accounting for fraternal and identical twins
  - ► Each having a 49.5% change of being girls

### Accounting for twins and repeating 1000 times

```
n_girls <- rep(NA, n_sims)</pre>
for (s in 1:n_sims){
  birth_type <- sample(c("fraternal twin", "identical twin",
                          "single birth"),
    size=400, replace=TRUE, prob=c(1/125, 1/300, 1 - 1/125 - 1/300))
  girls <- rep(NA, 400)
  for (i in 1:400){
    if (birth_type[i] == "single birth"){
      girls[i] \leftarrow rbinom(1, 1, 0.488)
    else if (birth_type[i] == "identical twin"){
      girls[i] <- 2*rbinom(1, 1, 0.495)}
    else if (birth_type[i] == "fraternal twin"){
      girls[i] <- rbinom(1, 2, 0.495)}
  }
  n_girls[s] <- sum(girls)</pre>
}
```

# Histogram of the Results



# Summarizing a Set of Simulations

- ▶ The mean or median summarize the **location** of a distribution
- ▶ Variation is traditionally summarized by the variance or std. dev. (SD)
  - In R, we obtain these using the functions var and sd

### Using the mean and SD to summarize a distribution

```
mean(n_girls)
## [1] 197.778
sd(n_girls)
## [1] 9.797383
```

### The Median Absolute Deviation vs. SD

- ► Gelman et al. suggest using the **median absolute deviation** (MAD)
  - ▶ This is the median absolute deviation from the median of a variable
  - ▶ The median makes this measure more stable than the normal SD
  - ▶ They multiply MAD by 1.483, which yields the SD for the normal dist.
  - ▶ They refer to the resulting measure as MAD SD, in R: mad
  - ▶ You can think of the MAD SD reported by rstanarm as a standard error

### Using the median and MAD SD to summarize a distribution

```
median(n_girls)
## [1] 198
```

mad(n\_girls)

## [1] 10.3782

# Summarizing by Uncertainty Intervals

- We can also summarize distributions in terms of intervals
- ▶ This can be useful both for parameter estimates and predictions

### Using the quantile function to summarize a distribution

```
# An interval containing 95% of the values:
quantile(n_girls, probs = c(.025, .975))
## 2.5% 97.5%
## 178.975 216.000
# An interval containing 50% of the values:
quantile(n_girls, probs = c(.25, .75))
## 25% 75%
## 191 204
```

## Bootstrapping

- ▶ Bootstrapping helps us assess the uncertainty in estimates
  - Useful if we lack measures of uncertainty
    - ▶ Which may happen for complicated frequentist analyses
    - ▶ In contrast, a fully Bayesian analysis always estimates uncertainty
- Bootstrapping is randomly resampling the data with replacement
  - Creates new datasets where each datapoint can appear several times
- ► This is a way to approximate some aspect of the sampling distribution
  - ▶ Illustrates what kind of data might be expected if they were recollected
- ▶ Our estimator can be applied to each new dataset
  - ▶ The distribution of estimates can be used to assess uncertainty
  - ▶ It can be used as an approximate sampling distribution for the estimator

## Example: Bootstrapping a Ratio of Medians

- Estimating the ratio of women's earnings to men's earnings
  - ▶ Data: Survey of 1816 US respondents, 1990 (Gelman et. al ch. 5)

```
Median of women's earnings, divided by the median of men's earnings
```

```
earn <- earnings$earn
male <- earnings$male
print(median(earn[male==0]) / median(earn[male==1]))
## [1] 0.6</pre>
```

- ▶ Point estimate: The median earnings of women is 60% that of men
  - ▶ What is the standard error of this estimate? We don't know!

## Example: Simple bootstrapping code

### A set of bootstrap simulations boot\_ratio <- function(data){</pre> n <- nrow(data) boot <- sample(n, replace=TRUE)</pre> earn\_boot <- data\$earn[boot]</pre> male boot <- data\$male[boot]</pre> ratio\_boot <- median(earn\_boot[male\_boot==0]) /</pre> median(earn\_boot[male\_boot==1]) return(ratio\_boot) } n sims <- 10000 output <- replicate(n\_sims, boot\_ratio(data=earnings))</pre>

## Example: Bootstrapping results

▶ The standard error of our estimated ratio of earnings is .03:

```
round(sd(output), 2)
## [1] 0.03
```

#### **Histogram of output**



hist(output)

## Example: What If We Compared Means Instead?

### Bootstrap simulations for a ratio of means

## Example: What If We Compared Means Instead?

The sampling distribution is now a normal distribution
 We could have calculated the standard error analytically

```
round(sd(output_means), 2)
## [1] 0.02
```

#### Histogram of output\_means



hist(output\_means)

# Challenges and Limitations of Bootstrapping

- ▶ Bootstrapping is easy for data consisting of a simple random sample:
  - ▶ Just resample units with replacement
- ► For **other datastructures**, we face hard choices:
  - ► Time series: Simple resampling will likely be meaningless
  - ▶ Multilevel data: With multiple obs. per cluster, what do we resample?
    - ► E.g.: If survey respondents answer questions about several parties, do we resample individuals or parties within individuals?
    - ► The answers depend on what uncertainty we are trying to approximate
- ► The validity of the bootstrap **depends on the data** and analysis:
  - ▶ If the data contains no black respondents voting for a Republican, the bootstrap of a traditional analysis would suggest the probability of a black person voting Republican is zero and that the uncertainty in this estimate is also zero. This is clearly wrong.

#### **Final Comments**

- ► Simulations are useful for a wide range of tasks in statistics:
  - Assessing models
  - Assessing uncertainty in estimates
  - Assessing uncertainty in predictions
  - ► And more!
- ▶ If you if are unsure if you have understood some statistical concept, or want to know how your model handles a certain situation:
  - Simulations can often provide an answer