Exercice optionnel TD 8

Un disque du compresseur du turbofan (ou turbosoufflante) à trois axes Rolls-Royce RB211-535E4B, utilisé dans le Boeing B-757, a un diamètre de 0.7 m et il est constitué par un alliage métallique avec densité $\rho = 6500 \left[\frac{kg}{m^3}\right]$, module d'Young $E = 500 \left[GPa\right]$, coefficient de Poisson $\nu = 0.3 \left[-\right]$ et limite d'élasticité linéaire $\sigma_0 = 600 \left[MPa\right]$.

- 1. Déterminez la valeur maximale de la vélocité de rotation de la turbine à laquelle l'alliage sort du régime élastique linéaire.
- 2. Evaluez la distance minimale requise entre les aubes du compresseur et la nacelle pour éviter le contact.

Remarque

Nous pouvons modéliser la présence de l'accélération centripète en considérant la présence d'une force de volume $\underline{\mathbf{b}} = \begin{bmatrix} \rho r \omega^2 \\ 0 \\ 0 \end{bmatrix}$ où ω est la vélocité de rotation de la turbine.

Relations utiles

$$\begin{cases} \varepsilon_{rr} = \frac{\partial u_r}{\partial r} \\ \varepsilon_{\theta\theta} = \frac{u_r}{r} + \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} \\ \varepsilon_{zz} = \frac{\partial u_z}{\partial z} \\ \varepsilon_{r\theta} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_{\theta}}{\partial r} - \frac{u_{\theta}}{r} \right) \\ \varepsilon_{\theta z} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial u_z}{\partial \theta} + \frac{\partial u_{\theta}}{\partial z} \right) \\ \varepsilon_{rz} = \frac{1}{2} \left(\frac{\partial u_z}{\partial r} + \frac{\partial u_{\theta}}{\partial z} \right) \end{cases}$$

$$(1)$$

$$\begin{cases}
\sigma_{rr} = \frac{E}{1+\nu} \left(\varepsilon_{rr} + \frac{\nu}{1-2\nu} \left(\varepsilon_{rr} + \varepsilon_{\theta\theta} + \varepsilon_{zz} \right) \right) \\
\sigma_{\theta\theta} = \frac{E}{1+\nu} \left(\varepsilon_{\theta\theta} + \frac{\nu}{1-2\nu} \left(\varepsilon_{rr} + \varepsilon_{\theta\theta} + \varepsilon_{zz} \right) \right) \\
\sigma_{zz} = \frac{E}{1+\nu} \left(\varepsilon_{zz} + \frac{\nu}{1-2\nu} \left(\varepsilon_{rr} + \varepsilon_{\theta\theta} + \varepsilon_{zz} \right) \right) \\
\sigma_{r\theta} = \frac{E}{1+\nu} \varepsilon_{r\theta} \\
\sigma_{\theta z} = \frac{E}{1+\nu} \varepsilon_{\theta z} \\
\sigma_{rz} = \frac{E}{1+\nu} \varepsilon_{rz}
\end{cases} \tag{2}$$

TD 8 (BONUS)

$$\begin{cases} \frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \left(\frac{\partial \sigma_{r\theta}}{\partial \theta} + \sigma_{rr} - \sigma_{\theta} \right) + \frac{\partial \sigma_{rz}}{\partial z} + b_{r} = 0 \\ \frac{\partial \sigma_{r\theta}}{\partial r} + \frac{1}{r} \left(\frac{\partial \sigma_{\theta\theta}}{\partial \theta} + 2\sigma_{r\theta} \right) + \frac{\partial \sigma_{\thetaz}}{\partial z} + b_{\theta} = 0 \\ \frac{\partial \sigma_{rz}}{\partial r} + \frac{1}{r} \left(\frac{\partial \sigma_{\thetaz}}{\partial \theta} + \sigma_{rz} \right) + \frac{\partial \sigma_{zz}}{\partial z} + b_{z} = 0 \end{cases}$$

$$(3)$$