

Consider the following snapshot of a system:

	Allocation	Max
	ABCD	ABCD
T0	2 1 0 6	6 3 2 7
T1	3 3 1 3	5 4 1 5
T2	2 3 1 2	6 6 1 4
T3	1 2 3 4	4 3 4 5
T4	3 0 3 0	7 2 6 1

What are the contents of the Need matrix?

2. Consider the following snapshot of a system:

	Allocation	Max	Available
	A B C	АВС	АВС
T0	0 1 0	7 5 3	3 3 2
T1	2 2 0	3 2 2	
T2	3 0 2	9 0 2	
T3	2 1 1	2 2 2	
T4	0 0 2	4 3 3	

Answer the following questions using the banker's algorithm:

- a. What are the contents of the Need Matrix?
- b. Is the system in a safe state?
- c. If a request from thread T_0 arrivers for (1,0,0) can be request be granted immediately?

3. Consider the following snapshot of a system:

Allocation	Max	Available
ABCD	ABCD	ABCD
0 0 1 2	0 0 1 2	1 5 2 0
1 0 0 0	1 7 5 0	
1 3 5 4	2 3 5 6	
0 6 3 2	0 6 5 2	
0 0 1 4	0 6 5 6	
	A B C D 0 0 1 2 1 0 0 0 1 3 5 4 0 6 3 2	A B C D A B C D 0 0 1 2 0 0 1 2 1 0 0 0 1 7 5 0 1 3 5 4 2 3 5 6 0 6 3 2 0 6 5 2

Answer the following questions using the banker's algorithm:

- a. What is the content of the matrix Need?
- b. Is the system in a safe state?
- c. If a request from thread T_1 arrives for (0,4,2,0), can the request be granted immediately?

4. Consider the following snapshot of a system:

	Αl	loc	ati	on					
	Α	В	C	D		Α	В	C	D
T0	3	0	1	4		5	1	1	7
T1	2	2	1	0		3	2	1	1
T2	3	1	2	1		3	3	2	1
T3	0	5	1	0		4	6	1	2
T4	4	2	1	2		6	3	2	5

Using the banker's algorithm, determine whether or not each of the following states is unsafe. If the state is safe, illustrate the order in which the threads may complete. Otherwise, illustrate why the state is unsafe.

- a. Available = (0, 3, 0, 1)
- b. Available = (1, 0, 0, 2)

5. Consider the following snapshot of a system:

	Αl	loc	ati	on					
	Α	В	C	D		Α	В	C	D
T0	1	2	0	2		4	3	1	6
T1	0	1	1	2		2	4	2	4
T2	1	2	4	0		3	6	5	1
T3	1	2	0	1		2	6	2	3
T4	1	0	0	1		3	1	1	2

Using the banker's algorithm, determine whether or not each of the following states is unsafe. If the state is safe, illustrate the order in which the threads may complete. Otherwise, illustrate why the state is unsafe.

- a. Available = (2, 2, 2, 3)
- b. Available = (4, 4, 1, 1)
- c. Available = (3, 0, 1, 4)
- d. Available = (1, 5, 2, 2)

6. Consider the following snapshot of a system:

	Allocation	Max	Available
	ABCD	ABCD	ABCD
T0	3 1 4 1	6 4 7 3	2 2 2 4
T1	2 1 0 2	4 2 3 2	
T2	2 4 1 3	2 5 3 3	
T3	4 1 1 0	6 3 3 2	
T4	2 2 2 1	5 6 7 5	

Answer the following questions using the banker's algorithm:

- a. Illustrate that the system is in a safe state by demonstrating an order in which the threads may complete.
- b. If a request from thread T_4 arrives for (2, 2, 2, 4), can the request be granted immediately?
- c. If a request from thread T_2 arrives for (0, 1, 1, 0), can the request be granted immediately?
- d. If a request from thread T_3 arrives for (2, 2, 1, 2), can the request be granted immediately?

The content of the matrix Need is defined to be Max - Allocation:

	Need								
	Α	В	C	D					
T0	4	2	2	1					
T1	2	1	0	2					
T2	4	3	0	2					
T3	3	1	1	1					
T4	4	2	3	1					

a/ The content of the matrix Need is defined to be Max - Allocation:

Need A B C T0 7 4 3 T1 1 0 2 T2 6 0 0 T3 0 1 1 T4 4 3 1

The system is in a safe state since the sequence < T1, T3, T4, T2, T0> satisfies safety criteria.

b/ Check that Request \leq Need₀ (that is, $(1,0,0) \leq (7,4,3) \Rightarrow$ true Check that Request \leq Available (that is, $(1,0,0) \leq (3,3,2) \Rightarrow$ true

	Allocation			Need	Available
	Α	В	C	АВС	АВС
T0	1	1	0	6 4 3	2 3 2
T1	2	2	0	1 0 2	
T2	3	0	2	6 0 0	
T3	2	1	1	0 1 1	
T4	0	0	2	4 3 1	

Executing safety algorithm shows that sequence <T1, T3, T4, T2, T0> satisfies safety requirement.

a/ The content of the matrix Need is defined to be Max - Allocation:

Need ABCD 0 0 0 0 T0 T1 0 7 5 0 T2 1 0 0 2 T3 0 0 2 0 0 6 4 2 T4

b/ The system is in a safe state since the sequence < T0, T2, T3, T4, T1> satisfies safety criteria.

c/ Check that Request \leq Need₁ (that is, $(0,4,2,0) \leq (0,7,5,0) \Rightarrow$ true Check that Request \leq Available (that is, $(0,4,2,0) \leq (1,5,2,0) \Rightarrow$ true

	Allocation	Need		Available				
	ABCD	A B C	D	ABCD				
T0	0 0 1 2	0 0 0	0	1 1 0 0				
T1	1 4 2 0	0 3 3	0					
T2	1 3 5 4	1 0 0	2					
T3	0 6 3 2	0 0 2	0					
T4	0 0 1 4	0 6 4	2					

Executing safety algorithm shows that sequence < T0, T2, T3, T4, T1 >satisfies safety requirement

 $0 \quad 0$

a/ The content of the matrix Need is defined to be Max - Allocation:

	Ne	eed			Available	
	Α	В	C	D	ABCD)
T0	2	1	0	3	0 3 0 1	-
T1	1	0	0	1		
T2	0	2	0	0		
T3	4	1	0	2		
T4	2	1	1	3		

The system is in a safe state since the sequence < T2,T4,T0,T1,T3> satisfies safety criteria.

b/ The content of the matrix Need is defined to be Max - Allocation:

	Ne	eed			А١	/ail	abl	е
	Α	В	C	D	Α	В	C	D
T0	2	1	0	3	1	0	0	2
T1	1	0	0	1				
T2	0	2	0	0				
T3	4	1	0	2				
T4	2	1	1	3				

The system is in a safe state since the sequence < T1,T2,T3,T4,T0> satisfies safety criteria.

a/ The content of the matrix Need is defined to be Max - Allocation:

	Ne	eed			Available
	Α	В	C	D	ABCD
T0	3	1	1	4	2 2 2 3
T1	2	3	1	2	
T2	2	4	1	1	
T3	1	4	2	2	
T4	2	1	1	1	

The system is in a safe state since the sequence < T4, T0, T1, T2, T3> satisfies safety criteria.

b/ The content of the matrix Need is defined to be Max – Allocation:

	Ne	eed			Available
	Α	В	C	D	ABCD
T0	3	1	1	4	4 4 1 1
T1	1	0	0	1	
T2	0	2	0	0	
T3	4	1	0	2	
T4	2	1	1	1	

The system is in a safe state since the sequence < T2, T3, T4, T0, T1> satisfies safety criteria.

c/ The content of the matrix Need is defined to be Max - Allocation:

	Ne	eed			Available	
	Α	В	C	D	ABCD)
T0	3	1	1	4	3 0 1 4	
T1	2	3	1	2		
T2	2	4	1	1		
T3	1	4	2	2		
T4	2	1	1	1		

The system is in a unsafe state because there are not have any sequence satisfies safety criteria.

d/ The content of the matrix Need is defined to be Max – Allocation:

	Ne	eed			А١	/ail	abl	e
	Α	В	C	D	Α	В	C	D
T0	3	1	1	4	1	5	2	2
T1	1	0	0	1				
T2	0	2	0	0				
T3	4	1	0	2				
T4	2	1	1	1				

The system is in a safe state since the sequence < T3, T4, T0, T1, T2> satisfies safety criteria.

a/ The content of the matrix Need is defined to be Max – Allocation:

Need ABCD T0 3 3 3 2 T1 2 1 3 0 T2 0 1 2 0 T3 2 2 2 2 T4 3 4 5 4

The system is in a safe state since the sequence < T2, T3, T4, T0 ,T1> satisfies safety criteria. So the request can be granted.

b/ Check that Request \leq Need₄ (that is, $(2,2,2,4) \leq (3,4,5,4) \Rightarrow$ true Check that Request \leq Available (that is, $(2,2,2,4) \leq (2,2,2,4) \Rightarrow$ true

	Allocation	Need	Available		
	ABCD	ABCD	ABCD		
T0	3 1 4 1	3 3 3 2	0 0 0 0		
T1	2 1 0 2	2 1 3 0			
T2	2 4 1 3	0 1 2 0			
T3	4 1 1 0	2 2 2 2			
T4	4 4 4 5	1 2 3 0			

Executing safety algorithm shows that there are not have any sequence satisfies safety requirement. The system is in unsafe state, so the request can not be granted.

 $0 \quad 0$

c/ Check that Request \leq Need₂ (that is, $(0,1,1,0) \leq (0,1,2,0) \Rightarrow$ true Check that Request \leq Available (that is, $(0,1,1,0) \leq (2,2,2,4) \Rightarrow$ true

	Allocation	Need	Available		
	ABCD	ABCD	ABCD		
T0	3 1 4 1	3 3 3 2	2 1 1 4		
T1	2 1 0 2	2 1 3 0			
T2	2 5 2 3	0 0 1 0			
T3	4 1 1 0	2 2 2 2			
T4	2 2 2 1	3 4 5 4			

Executing safety algorithm shows that sequence <T1, T2, T3, T0, T4> satisfies safety requirement. So the request can be granted.

d/ Check that Request \leq Need₃ (that is, $(2,2,1,2) \leq (2,2,2,2) \Rightarrow$ true Check that Request \leq Available (that is, $(2,2,1,2) \leq (2,2,2,4) \Rightarrow$ true

	Allocation	Need	Available		
	ABCD	ABCD	ABCD		
T0	3 1 4 1	3 3 3 2	0 0 1 2		
T1	2 1 0 2	2 1 3 0			
T2	2 4 1 3	0 1 2 0			
T3	6 3 2 2	0 0 1 0			
T4	2 2 2 1	3 4 5 4			

Executing safety algorithm shows that sequence <T3, T0, T1, T2, T4> satisfies safety requirement.