

2. The Garden of Forking Data

What proportion of the surface is covered with water?

How should we use the sample?

How to produce a summary?

How to represent uncertainty?

Workflow

- (1) Define generative model of the sample
- (2) Define a specific estimand
- (3) Design a statistical way to produce estimate
- (4) Test (3) using (1)
- (5) Analyze sample, summarize

Begin conceptually: How do the variables influence one another?

proportion of water

W water observations

number of tosses N

L land observations

Begin conceptually: How do the variables influence one another?

N influences W and L

Begin conceptually: How do the variables influence one another?

Generative assumptions: What do the arrows mean exactly?

Workflow

- (1) Define generative model of the sample
- (2) Define a specific estimand
- (3) Design a statistical way to produce estimate
- (4) Test (3) using (1)
- (5) Analyze sample, summarize

Bayesian data analysis

For each possible explanation of the sample,

Count all the ways the sample could happen.

Explanations with more ways to produce the sample are more plausible.

The Garden of Forking Data El jardín de los datos que se bifurcan

For each possible proportion of water on the globe,

Count all the ways the sample of tosses could happen.

Proportions with more ways to produce the sample are more plausible.

A Four-sided Globe

covered 25% by water

Possible d4 globes:

(5) (0) (0)

Observe:

Possible d4 globes:

(2) **(2) (2) (2) (2) (2) (3) (2) (3) (4) (4) (4) (4) (5) (4) (5) (6) (6) (6) (6) (7) (**

Observe:

First Possibility

Second Possibility

Third Possibility

Figure 2.2

Figure 2.2

Figure 2.2

Figure 2.2

Possible globes:

Ways to produce OO

Possible globes:

Ways to produce (CO)

Possible globes:

Ways to produce (C)

Possibility	
[0000]	0%
[OOOO]	25%
	50%
	75%
	100%

Possibility		Ways to produce OO
[0000]	0%	$0 \times 4 \times 0 = 0$
[OOOO]	25%	
	50%	
	75%	
	100%	

Possibility		Ways to produce OO
[0000]	0%	$0 \times 4 \times 0 = 0$
[OOOO]	25%	$1 \times 3 \times 1 = 3$
	50%	
	75%	
	100%	

Possibility		Ways to produce OO
[0000]	0%	$0 \times 4 \times 0 = 0$
$[\bigcirc \bigcirc \bigcirc \bigcirc]$	25%	$1 \times 3 \times 1 = 3$
	50%	$2 \times 2 \times 2 = 8$
	75%	
	100%	

Possibility		Ways to produce OO
[0000]	0%	$0 \times 4 \times 0 = 0$
[OOOO]	25%	$1 \times 3 \times 1 = 3$
	50%	$2 \times 2 \times 2 = 8$
	75%	$3 \times 1 \times 3 = 9$
	100%	$4 \times 0 \times 4 = 0$

Updating

Another draw from the bag:

Possibility

- [0000]

Updating

Another draw from the bag: •

Possibility	Ways to produce •O•
[0000]	$0 \times 4 \times 0 = 0$
$[\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc]$	$1 \times 3 \times 1 = 3$
	$2 \times 2 \times 2 = 8$
	$3 \times 1 \times 3 = 9$
	$4 \times 0 \times 4 = 0$

Updating

Another draw from the bag: •

Possibility	Ways to produce •O	Ways to produce •
[0000]	$0 \times 4 \times 0 = 0$	0
	$1 \times 3 \times 1 = 3$	1
	$2 \times 2 \times 2 = 8$	2
	$3 \times 1 \times 3 = 9$	3
	$4 \times 0 \times 4 = 0$	4

Another draw from the bag:

Possibility	Ways to produce •O•	Ways to produce •	Ways to produce •O•
[0000]	$0 \times 4 \times 0 = 0$	0	$0 \times 0 = 0$
	$1 \times 3 \times 1 = 3$	1	
	$2 \times 2 \times 2 = 8$	2	
	$3 \times 1 \times 3 = 9$	3	
	$4 \times 0 \times 4 = 0$	4	

Another draw from the bag: •

Possibility	Ways to produce •O•	Ways to produce •	Ways to produce •O•
[0000]	$0 \times 4 \times 0 = 0$	0	$0 \times 0 = 0$
	$1 \times 3 \times 1 = 3$	1	$3 \times 1 = 3$
	$2 \times 2 \times 2 = 8$	2	
	$3 \times 1 \times 3 = 9$	3	
	$4 \times 0 \times 4 = 0$	4	

Another draw from the bag:

Possibility	Ways to produce •O•	Ways to produce •	Ways to produce •00
[0000]	$0 \times 4 \times 0 = 0$	0	$0 \times 0 = 0$
	$1 \times 3 \times 1 = 3$	1	$3 \times 1 = 3$
	$2 \times 2 \times 2 = 8$	2	$8 \times 2 = 16$
	$3 \times 1 \times 3 = 9$	3	
	$4 \times 0 \times 4 = 0$	4	

Another draw from the bag:

Possibility	Ways to produce •O•	Ways to produce •	Ways to produce •O•
[0000]	$0 \times 4 \times 0 = 0$	0	$0 \times 0 = 0$
	$1 \times 3 \times 1 = 3$	1	$3 \times 1 = 3$
	$2 \times 2 \times 2 = 8$	2	$8 \times 2 = 16$
	$3 \times 1 \times 3 = 9$	3	$9 \times 3 = 27$
	$4 \times 0 \times 4 = 0$	4	$0 \times 4 = 0$

Possibility	Observations:		0				0		0	
[0000]		0	0	0	0	0	0	0	0	$0 = 0^6 \times 4^3$
$[\bigcirc\bigcirc\bigcirc\bigcirc]$										

Possibility	Observations:		0				0		0	
[0000]		0	0	0	0	0	0	0	0	$0 = 0^6 \times 4^3$
[0000]		1	3	3	3	3	9	9	27	$27 = 1^6 \times 3^3$

Possibility	Observations:		0				0		0	
[0000]		0	0	0	0	0	0	0	0	$0 = 0^6 \times 4^3$
$[\bigcirc\bigcirc\bigcirc\bigcirc]$		1	3	3	3	3	9	9	27	$27 = 1^6 \times 3^3$
		2	4	8	16	32	64	128	256	$512 = 2^6 \times 2^3$

Possibility	Observations:		0				0		0	
[0000]		0	0	0	0	0	0	0	0	$0 = 0^6 \times 4^3$
$[\bigcirc\bigcirc\bigcirc\bigcirc]$		1	3	3	3	3	9	9	27	$27 = 1^6 \times 3^3$
		2	4	8	16	32	64	128	256	$512 = 2^6 \times 2^3$
		3	3	9	27	81	81	243	243	$729 = 3^6 \times 1^3$
		4	0	0	0	0	0	0	0	$0 = 4^6 \times 0^3$

Possibility	Observations:		0				0		0	
[0000]										$0 = 0^6 \times 4^3$
[0000]		1	3	3	3	3	9	9	27	$27 = 1^6 \times 3^3$
		2	4	8	16	32	64	128	256	$512 = 2^6 \times 2^3$
										$729 = 3^6 \times 1^3$
		4	0	0	0	0	0	0	0	$0=4^6\times0^3$

Possibility	Observations:		0				0		0	
[0000]										$0 = 0^6 \times 4^3$
[0000]										$27 = 1^6 \times 3^3$
		2	4	8	16	32	64	128	256	$512 = 2^6 \times 2^3$
		3	3	9	27	81	81	243	243	$729 = 3^6 \times 1^3$
		4	0	0	0	0	0	0	0	$0=4^6\times0^3$

Probability: Non-negative values that sum to one

Suppose W=20, L=10. Then p=0.5 has

$$2^{W} \times 2^{L} = 1,073,741,824$$

ways to produce sample. Better to convert to probability.

Possible	Ways to	Probability of
proportion	produce sample	proportion
0	0	0
0.25	27	0.02
0.5	512	0.40
0.75	729	0.57
1	0	0

Posterior distribution

Possible	Ways to	Probability of
proportion	produce sample	proportion
0	0	0
0.25	27	0.02
0.5	512	0.40
0.75	729	0.57
1	0	0


```
R code 2.1
```

```
sample <- c("W","L","W","W","W","L","W","L","W")
W <- sum(sample=="W") # number of W observed
L <- sum(sample=="L") # number of L observed
p <- c(0,0.25,0.5,0.75,1) # proportions W
ways <- sapply( p , function(q) (q*4)^W * ((1-q)*4)^L )
prob <- ways/sum(ways)
cbind( p , ways , prob )</pre>
```

```
p ways prob
[1,] 0.00 0.000000000
[2,] 0.25 27 0.02129338
[3,] 0.50 512 0.40378549
[4,] 0.75 729 0.57492114
[5,] 1.00 0.0000000
```


Workflow

- (1) Define generative model of the sample
- (2) Define a specific estimand
- (3) Design a statistical way to produce estimate
- (4) Test (3) using (1)
- (5) Analyze sample, summarize

Test Before You Est(imate)

- (1) Code a generative simulation
- (2) Code an estimator
- (3) Test (2) with (1)

Extremely powerful, fun

Generative simulation

$$W,L = f(p, N)$$

```
# function to toss a globe covered p by water N times
sim_globe <- function( p=0.7 , N=9 ) {
    sample(c("W","L"),size=N,prob=c(p,1-p),replace=TRUE)
}</pre>
```

R code 2.3

```
R code 2.3
```

```
# function to toss a globe covered p by water N times
sim_globe <- function( p=0.7 , N=9 ) {</pre>
    sample(c("W","L"),size=N,prob=c(p,1-p),replace=TRUE)
Possible
                                            Probability of each
                                            possible observation
observations
                 Number
```

```
# function to toss a globe covered p by water N times
sim_globe <- function( p=0.7 , N=9 ) {
    sample(c("W","L"),size=N,prob=c(p,1-p),replace=TRUE)
}</pre>
```

R code 2.3

```
sim_globe()
```

R code 2.4

```
[1] "L" "W" "W" "W" "L" "L" "L" "W" "L"
```

```
R code 2.4
```

```
Sim_globe()
[1] "L" "W" "W" "L" "L" "L" "W" "L"
```

replicate(sim_globe(p=0.5,N=9),n=10)

```
[,9]
                                               [,7]
                                 [,5]
                                         [,6]
                                                       [,8]
           [,2] [,3]
                          [,4]
                                                                      [,10]
      ''W''
              "L"
                     "L"
                            ''W''
                                   ''W''
                                           "L"
                                                  "L"
                                                         "W"
                                                                ''W''
                                                                       "L"
[1,]
       ''W''
              "L"
                                                                "L"
                                                                       "L"
                     ''W''
                            "L"
                                   ''W''
                                           "L"
                                                  "L"
                                                         "W"
[2,]
                                   "L"
                                           ''W''
                                                  "L"
                                                         ''W''
                                                                ''W''
       ''W''
              "L"
                     "L"
                            "L"
                                                                       ''W''
[3,]
                                           ''W''
                                                  ''W''
                                                         "W"
                                                                ''W''
       ''W''
              ''W''
                     "L"
                            "W"
                                   "L"
                                                                       ''W''
[4,]
      "L"
                                                                "L"
              "W"
                     ''W''
                            ''W''
                                   ''W''
                                           ''W''
                                                  "L"
                                                         ''W''
                                                                       "L"
[5,]
       "L"
              ''W''
                     "L"
                            "'L"
                                   ''W''
                                           "L"
                                                  "W"
                                                         "W"
                                                                "W"
                                                                        "W"
[6,]
[7,]
       ''W''
              ''W''
                     ''W''
                            "L"
                                   ''W''
                                           ''W''
                                                  ''W''
                                                         "L"
                                                                "L"
                                                                       "L"
                                                  "L"
                                                         ''W''
       "'L"
              "W"
                     "L"
                            "L"
                                   "L"
                                           ''W''
                                                                ''W''
                                                                       ''W''
[8,]
      ''W''
              " L "
                     "L"
                            ''W''
                                   11 L 11
                                           "W"
                                                  "W"
                                                         "W"
                                                                11 L 11
                                                                        "L"
```

```
R code 2.4
```

```
[1] "L" "W" "W" "L" "L" "L" "W" "L"
```

sim_globe()

Test the simulation on extreme settings

EWERNIG

```
# function to compute posterior distribution
compute_posterior <- function( the_sample , poss=c(0,0.25,0.5,0.75,1) ) {
    W <- sum(the_sample=="W") # number of W observed
    L <- sum(the_sample=="L") # number of L observed
    ways <- sapply( poss , function(q) (q*4)^W * ((1-q)*4)^L )
    post <- ways/sum(ways)
    bars <- sapply( post, function(q) make_bar(q) )
    data.frame( poss , ways , post=round(post,3) , bars )
}</pre>
```

```
# function to compute posterior distribution

compute_posterior <- function( the_sample , poss=c(0,0.25,0.5,0.75,1) ) {
    W <- sum(the_sample=="W") # number of W observed
    L <- sum(the_sample=="L") # number of L observed
    ways <- sapply( poss , function(q) (q*4)^W * ((1-q)*4)^L )
    post <- ways/sum(ways)
    bars <- sapply( post, function(q) make_bar(q) )
    data.frame( poss , ways , post=round(post,3) , bars )
}</pre>
```

```
# function to compute posterior distribution
compute_posterior <- function( the_sample , poss=c(0,0.25,0.5,0.75,1) ) {
    W <- sum(the_sample=="W") # number of W observed
    L <- sum(the_sample=="L") # number of L observed

    ways <- sapply( poss , function(q) (q*4)^W * ((1-q)*4)^L )
    post <- ways/sum(ways)
    bars <- sapply( post, function(q) make_bar(q) )
    data.frame( poss , ways , post=round(post,3) , bars )
}</pre>
```

```
# function to compute posterior distribution
compute_posterior <- function( the_sample , poss=c(0,0.25,0.5,0.75,1) ) {
    W <- sum(the_sample=="W") # number of W observed
    L <- sum(the_sample=="L") # number of L observed

    ways <- sapply( poss , function(q) (q*4)^W * ((1-q)*4)^L )
    post <- ways/sum(ways)
    bars <- sapply( post, function(q) make_bar(q) )
    data.frame( poss , ways , post=round(post,3) , bars )
}</pre>
```

```
# function to compute posterior distribution
compute_posterior <- function( the_sample , poss=c(0,0.25,0.5,0.75,1) ) {
    W <- sum(the_sample=="W") # number of W observed
    L <- sum(the_sample=="L") # number of L observed
    ways <- sapply( poss , function(q) (q*4)^W * ((1-q)*4)^L )
    post <- ways/sum(ways)
    bars <- sapply( post, function(q) make_bar(q) )
    data.frame( poss , ways , post=round(post,3) , bars )
}</pre>
```

```
compute_posterior( sim_globe() )
```

- (1) Test the estimator where the answer is known
- (2) Explore different sampling designs
- (3) Develop intuition for sampling and estimation

4-sided globe

[0 0.25 0.5 0.75 1]

4-sided globe

[0 0.25 0.5 0.75 1]

10-sided globe

[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]

4-sided globe

[0 0.25 0.5 0.75 1]

10-sided globe

[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]

20-sided globe

[0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1]

Infinite possibilities

The globe is a polyhedron with an infinite number of sides

The posterior probability of any "side" p is proportional to:

$$p^{W}(1-p)^{L}$$

Infinite possibilities

The globe is a polyhedron with an infinite number of sides

The posterior probability of any "side" p is proportional to:

$$p^{W}(1-p)^{L}$$

Only trick is normalizing to probability. After a little calculus:

Posterior probability of
$$p = \frac{(W + L + 1)!}{W!L!}p^W(1 - p)^L$$

Infinite possibilities

The "Beta" distribution

Posterior probability of $p = \frac{(W+L+1)!}{W!L!}p^W(1-p)^L$

Normalizing constant

relative number of ways to observe sample

Ten tosses of the globe

(1) No minimum sample size

(2) Shape embodies sample size

(3) No point estimate

Intervals
communicate shape
of posterior

Intervals communicate shape of posterior

Intervals
communicate shape
of posterior

Intervals
communicate shape
of posterior

95% is obvious superstition. Nothing magical happens at the boundary.

Letters From My Reviewers

"The author uses these cute 89% intervals, but we need to see the 95% intervals so we can tell whether any of the effects are robust."

That an arbitrary interval contains an arbitrary value is not meaningful. Use the whole distribution.

Workflow

- (1) Define generative model of the sample
- (2) Define a specific estimand
- (3) Design a statistical way to produce estimate
- (4) Test (3) using (1)
- (5) Analyze sample, summarize

From Posterior to Prediction

Implications of model depend upon entire posterior

Must average any inference over entire posterior

This usually requires integral calculus

OR we can just take samples from the posterior

Sampling the posterior

```
post_samples <- rbeta( 1e3 , 6+1 , 3+1 )</pre>
```

R code 2.19

```
dens( post_samples , lwd=4 , col=2 , xlab="proportion water" , adj=0.1 ) curve( dbeta(x,6+1,3+1) , add=TRUE , lty=2 , lwd=3 )
```


Uncertainty ⇒ Causal model ⇒ Implications


```
# now simulate posterior predictive distribution
post_samples <- rbeta(1e4,6+1,3+1)
pred_post <- sapply( post_samples , function(p) sum(sim_globe(p,10)=="W"))
tab_post <- table(pred_post)
for ( i in 0:10 ) lines(c(i,i),c(0,tab_post[i+1]),lwd=4,col=4)</pre>
```


Sampling is Fun & Easy

Sample from posterior, compute desired quantity for each sample, profit

Much easier than doing integrals

Turn a calculus problem into a data summary problem

MCMC produces only samples anyway

Sampling is Handsome & Handy

Things we'll compute with sampling:

Model-based forecasts

Causal effects

Counterfactuals

Prior predictions

Bayesian data analysis

For each possible explanation of the data,

Count all the ways data can happen.

Explanations with more ways to produce the data are more plausible.

Bayesian modesty

No guarantees except logical

Probability theory is a method of logically deducing implications of data under assumptions that you must choose

Any framework selling you more is hiding assumptions

Course Schedule

Week 1	Bayesian inference	Chapters 1, 2, 3
Week 2	Linear models & Causal Inference	Chapter 4
Week 3	Causes, Confounds & Colliders	Chapters 5 & 6
Week 4	Overfitting / Interactions	Chapters 7 & 8
Week 5	MCMC & Generalized Linear Models	Chapters 9, 10, 11
Week 6	Integers & Other Monsters	Chapters 11 & 12
Week 7	Multilevel models I	Chapter 13
Week 8	Multilevel models II	Chapter 14
Week 9	Measurement & Missingness	Chapter 15
Week 10	Generalized Linear Madness	Chapter 16

https://github.com/rmcelreath/stat_rethinking_2023

Obey the workflow! Code a generative model:

```
sim_globe2 <- function( p=0.7 , N=9 , x=0.1 ) {
   true_sample <- sample(c("W","L"),size=N,prob=c(p,1-p),replace=TRUE)
   obs_sample <- ifelse( runif(N) < x ,
        ifelse( true_sample=="W" , "L" , "W" ) , # error
        true_sample ) # no error
   return(obs_sample)
}</pre>
```

R code 2.29

Obey the workflow! Code a generative model:

```
sim_globe2 <- function( p=0.7 , N=9 , x=0.1 ) {
   true_sample <- sample(c("W","L"),size=N,prob=c(p,1-p),replace=TRUE)
   obs_sample <- ifelse( runif(N) < x ,
        ifelse( true_sample=="W" , "L" , "W" ) , # error
        true_sample ) # no error
   return(obs_sample)
}</pre>
```

Obey the workflow! Code a generative model:

```
sim_globe2 <- function( p=0.7 , N=9 , x=0.1 ) {
   true_sample <- sample(c("W","L"),size=N,prob=c(p,1-p),replace=TRUE)

   obs_sample <- ifelse( runif(N) < x ,
        ifelse( true_sample=="W" , "L" , "W" ) , # error
        true_sample ) # no error
   return(obs_sample)
}</pre>
```

Obey the workflow! Code a generative model:

Misclassification estimator

Use the intuition from the generative model to draw out the Garden of Forking Data, build a Bayesian estimator.

Two stages: (1) true samples, (2) misclassification

observed samples 1-in-3 misclassified

Observe — How many ways can this happen?

6 ways to observe water, when true sample is water

1 way to observe water, when true sample is land

 $3 \times 2 + 1 \times 1 = 7$ ways to observe water

Misclassification estimator

$$Pr(\text{water}|p, x) = p(1 - x) + (1 - p)x$$

$$Pr(\text{land}|p, x) = (1 - p)(1 - x) + px$$

Posterior distribution for p given W,L,x:

$$\Pr(p|W,L,x) = \frac{[p(1-x) + (1-p)x]^W \times [(1-p)(1-x) + px]^L}{Z}$$

$$\Pr(p|W,L,x) = \frac{ [p(1-x) + (1-p)x]^W \times [(1-p)(1-x) + px]^L}{Z}$$

Misclassification posterior

Measurement matters

When there is measurement error, better to model it than to ignore it

Same goes for: missing data, compliance, inclusion, etc

Good news: Samples do not need to be *representative* of population in order to provide good estimates of population

What matters is why the sample differs