8. Функции. Инекция, сюрекция и биекция. Обратни функции. Елементарни функции. Графика на функция

Функции

Функция наричаме съответствие (правило), което на <u>всеки един</u> елемент на едно множество съпоставя <u>точно един</u> елемент в друго множество.

По-точно, функция f наричаме съответствие (правило), което на всеки елемент x на множество D съпоставя точно един елемент, означен чрез f(x), в множество E.

Пишем накратко $f: D \to E$.

Казваме, че f е дефинирана в D и приема стойности в E.

D — дефиниционна област на f,

 $f(D) := \{f(x) : x \in D\}$ — област от стойности на f,

х — независима променлива или аргумент на функцията,

f(x) — зависима променлива и стойността на f в x.

Често с f(x) се означава и самата функция.

Ще разглеждаме функции, за които $D, E \subseteq \mathbb{R}$.

Примери

Пример 1

$$\mathbb{R} \ni x \xrightarrow{f} x^2 \in \mathbb{R}$$

Обикновено пишем: $f(x) = x^2$

Пример 2

$$f(x) = \begin{cases} x, & x \in [0, 1], \\ 2 - x, & x \in (1, 2], \\ 0, & x \notin [0, 2]. \end{cases}$$
 (1)

Пример 3: Всяка редица представлява функция, дефинирана в \mathbb{N} със стойности в \mathbb{R}

 $a: \mathbb{N} \to \mathbb{R}$, но пишем обикновено a_n вместо a(n)

Графика

Всяка функция $f:D\to E$, където $D,E\subseteq \mathbb{R}$, представлява съвкупност от наредени двойки реални числа

Това дава възможност за нагледна геометрична интерпретация на функцията.

<u>Графика</u> на функцията f наричаме множеството от точки в равнината с декартови координати (x, f(x)), където $x \in D$.

Не е графика на функция

Инекция, сюрекция и биекция

Дефиниция

Казваме, че $f: D \to E$, където $D, E \subseteq \mathbb{R}$, е:

- (a) инекция, ако $x_1 \neq x_2, x_1, x_2 \in D \implies f(x_1) \neq f(x_2);$
- (б) сюрекция, ако $\forall y_0 \in E \quad \exists \ x_0 \in D : y_0 = f(x_0), \ \text{т.e.} \ E = f(D);$
- (в) биекция, ако е едновременно инекция и сюрекция.

Относно инекция

Дадена функция е инекция \iff всяка права, успоредна на Ox, пресича графиката на функцията най-много в една точка.

Относно инекция

Относно сюрекция

Дадена функция е сюрекция \iff всяка права, успоредна на Ox, през точка от E пресича графиката на функцията поне в една точка.

Относно сюрекция

Примери

$$f:D\to E$$

$$f(x)=x^2$$
 е инекция, ако $D\subseteq [0,\infty),$

иначе не е; напр. не е върху D = [-1, 1]

$$f(x)=x^2$$
 е сюрекция, ако $D=E=[0,\infty),$ както и ако $D=\mathbb{R}$ и $E=[0,\infty),$

но не e, aко
$$D = [0, \infty)$$
 и $E = \mathbb{R}$;

$$f(x) = x^2$$
 е сюрекция, ако $D = E = [0, 1]$, както и ако $D = [-1, 1]$ и $E = [0, 1]$, но не е, ако $D = [-1, 1]$ и $E = [0, 2]$.

Относно биекция

Функцията $f: D \to E$, където $D, E \subseteq \mathbb{R}$, е биекция

 \iff всяка права, успоредна на Ox, през точка от E пресича графиката на функцията точно в една точка,

т.е. за всяко $y_0 \in E$ уравнението

$$f(x) = y_0 (2$$

има точно едно решение в D ($x \in D$).

Обратни функции

Дефиниция

Нека $f: D \to E$, където $D, E \subseteq \mathbb{R}$, е биекция. Дефинираме функцията $f^{-1}: E \to D$, като за $y \in E$, полагаме $f^{-1}(y) := x$, където $x \in D$ е единственото такова, че f(x) = y.

Функцията f^{-1} се нарича обратна функция на f.

Трябва да правим разлика между $f^{-1}(y)$ и $f(x)^{-1} := \frac{1}{f(x)}$.

Пример

 $f(x) = x^2, x \in [0, 1].$

Tогава f е инекция

и
$$f(D) = [0,1]$$

$$\implies f: [0,1] \to [0,1]$$
 е биекция.

За да намерим обратната функция на f, решаваме уравнението

$$f(x) = y, \quad y \in [0, 1]$$

относно $x \in [0, 1]$,

т.е.

$$x^2$$

$$x^2 = y, \quad x, y \in [0, 1].$$

(4)

Получаваме

$$x = \sqrt{y}, \quad y \in [0, 1]$$

$$(5)$$

$$\Rightarrow f^{-1}(y) = \sqrt{y}, \quad y \in [0, 1]. \implies \text{ } \exists \text{ } (6)$$

Основни свойства на f^{-1}

Основни свойства на f^{-1}

- (a) $f(f^{-1}(y)) = y \quad \forall y \in E$,
- (6) $f^{-1}(f(x)) = x \quad \forall x \in D$.

Връзка между графиките на правата и обратната функция

Te са симетрични относно ъглополовящата на първи и трети квадрант.

Елементарни функции

- Алгебрични полиноми: $a_0 x^n + a_1 x^{n-1} + \cdots + a_n, \ a_i \in \mathbb{R}, \ n \in \mathbb{N}_0$
- Рационални функции: $\frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m}$, $a_i, b_i \in \mathbb{R}, \ n, m \in \mathbb{N}_0$
- Степенна функция: \mathbf{x}^{α} , $\alpha \in \mathbb{R}$
- Показателна функция: a^x , a > 0
- Логаритмична функция: $\log_a x$, a>0, $a\neq 1$
- Тригонометрични функции
- Обратни тригонометрични функции
- Образуваните от тях функции чрез аритметичните действия и композиция

