计算机设计与实践 汇编语言程序设计

2023.夏

7 实验目的

进一步熟悉RARS、Logisim等汇编和模拟仿真工具的使用

熟练掌握RISC-V汇编语言,熟悉并理解RISC-V指令系统

了解程序在单周期RISC-V CPU搭建的SoC中的运行过程

实验工具 — Logisim

1. Logisim

电路图设计工具

戳工具

可直接查看组件的值可显示连线当前的值

编辑工具

允许用户重新安排现有组件修改组件属性并添加连线

Ctrl + R: 电路复位

Ctrl + T: 时钟单步

Ctrl + K: 时钟连续

实验工具 — RARS

2. ☐ TheThirdOne / rars

汇编IDE: 编辑器+汇编器+模拟器

.text存储在指令存储器,.data存储在数据存储器如果汇编代码没有定义.data,则不会生成.data段

RISCV-SoC电路

RISCV-SoC采用I/O统一编址的方式,最高的4KB为I/O地址空间

题目1 —基本输入输出

- ◆ 在Logisim运行示例程序Exercise1.asm (Exercise1A.asm for miniLA)
 - 阅读该程序源码,分析程序功能
 - 学习汇编程序如何访问I/O接口及外设
 - 根据实验指导书,运行程序,熟悉实验过程及各工具的使用

题目2 — 简易计算器设计

- ◆ 运用miniRV的指令,编写汇编程序实现8位简易计算器
 - 后续实现CPU后,本程序需要下板演示,故不要使用不实现的指令
 - 输入:操作符、操作数A、操作数B (从拨码开关输入)
 - 输出:运算结果 (显示在数码管DK7~DK0)

拨码开关	SW[23:21]	SW[20:16]	SW[15:8]	SW[7:0]
输入功能	操作符	保留	操作数A	操作数B

◆ 对miniLA,使用<u>calculator.asm</u>完成计算器 (详见指导书lab1-实验概述)

题目2 — 简易计算器设计

• 逻辑运算和求补运算结果以2进制显示, 其他以有符号数显示

SW[23:21]	运算类型	数码管显示内容	
000	A & B	结果以2进制显示	
001	A B	结果以2进制显示	
010	A ^ B	结果以2进制显示	
011	A << B	结果以有符号数显示	
100	A >>s B	结果以有符号数显示	
101	(A == 0) ? B : [B]补	结果以2进制显示	
110	A ÷ B	结果以有符号数显示	

除法使用组成原理中学过的恢复余数法或加减交替法实现

验收&提交

- 课堂验收
 - 课上检查题目2功能是否正确
- ・ 提交内容
 - 题目1: 不需提交
 - 题目2: .asm源文件 (!!!写注释!!!)、汇编生成的.hex机器码
- 将上述文件打包成.zip, 以"学号_姓名.zip"命名提交到作业系统
 - ◆ 注意: **如有雷同,双方均0分!**
- 数据通路表、控制信号表DDL: June 30th 23:30

开始实验

1920

哈 T 大

