Gravitational Lensing Theories, Questions and Applications

Renkun Kuang

Outline

- History
- Gravitational Lensing Theories
- Related Questions
- Applications

Outline

- History
- Gravitational Lensing Theories
- Related Questions
- Applications

Predictions from Newtonian and GR

 First proposed by Soldner (1801) using Newtonian theory, given a deflection angle (Appendix-1 for derivation)

$$\alpha = \frac{2GM}{c^2r}$$
 , 0.85 arcsec for the Sun

- Einstein (1911) derived the same result using Equivalence principle and Euclidean metric
- Einstein (1915) derived the new result using General Relativity $\alpha = \frac{4GM}{c^2 r} \ , \ 1.7 \ {\rm arcsec} \ {\rm for} \ {\rm the} \ {\rm Sun}$

Eddington's obs of the Solar Eclipse

• In 1919, Eddington measured a value close to GR's prediction using the data collected during an eclipse, stars with apparent position near the sun become visible.

IX. A determination of the deflection of light by the sun's gravitational field, from observations made at the total eclipse of May 29, 1919 https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1920.0009

The first example for GravLens: 0957+561

- Eddington (1920): Multiple light paths ==> multi images
- Walsh et al., (1979) quasar QSO 957+561 A,B found at z~1.4, two seen images separated by 6 arcsec
- Lens: evidence
- 1. Lensing galaxy at z~0.36
- 2. Similar spectra
- 3. Ratio of optical and radio flux
- 4. VLBI imging: small scale features

Walsh, Carswell & Weymann 1979, 0957+561 A, B: twin quasistellar objects or gravitational lens? https://ui.adsabs.harvard.edu/abs/1979Natur.279..381W/abstract

Outline

- History
- Gravitational Lensing Theories
- Related Questions
- Applications

General Relaticity and light deflection

- Einstein Field equations: $G_{\mu\nu}=R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=\frac{8\pi G}{c^4}T_{\mu\nu}$
- ==> Geodesic equations: $\frac{d^2x^{\beta}}{d\lambda^2} + \Gamma^{\beta}_{\mu\nu} \frac{dx^{\nu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} = 0$ Calculate how gravity bends light by solving geodesic eqution
- To compute the Christoffel symbols $\Gamma^{\beta}_{\mu\nu}$, requires solving for the metric tensor $g_{\mu\nu}$, which requires solving the curvature equations $R_{\mu\nu}=0$, --- ten partial-differential equations.

General Relaticity and light deflection

Or, the velocity of the photon from the Schwarzshild metric,

$$ds^{2} = -(1+2\Phi)dt^{2} + (1-2\Phi)(dx^{2} + dy^{2} + dz^{2})$$

- and Poisson Equation, $\nabla^2 \Phi = 4\pi G \rho$
- and lightlike interval: $g_{\mu\nu}\frac{dx^{\mu}}{d\lambda}\frac{dx^{\nu}}{d\lambda} = 0$

• ==>
$$v = \frac{\sqrt{dx^2 + dy^2 + dz^2}}{dt} = \sqrt{\frac{1 + 2\Phi}{1 - 2\Phi}} \approx 1 + 2\Phi$$

• The gravitational field decreases the speed of propagation https://web.stanford.edu/~oas/SI/SRGR/notes/SchwarzschildSolution.pdf

General Relaticity and light deflection

$$v = \frac{\sqrt{dx^2 + dy^2 + dz^2}}{dt} = \sqrt{\frac{1 + 2\Phi}{1 - 2\Phi}} \approx 1 + 2\Phi \text{ (natural units)} ==>v = c\left(1 + \frac{2}{c^2}\Phi\right) \text{ (SI)}$$

- define refraction index $n = 1 \frac{2}{c^2}\Phi = 1 + \frac{2}{c^2}|\Phi| \ge 1$
- deflection angle: $\hat{\alpha} = -\int \vec{\nabla}_{\perp} n dl = \frac{2}{c^2} \int \vec{\nabla}_{\perp} \Phi dl$
- which is twice of Newtonian prediction (Appendix-1)
- for point mass lens, $\hat{\alpha} = \frac{4GM}{bc^2}$

Thin screen approximation

- Most deflection occurs near to the lens (|z|~b)
- ==> treat all deflection as in the lens plane
- Projected surface density: $\Sigma(\vec{\xi}) = \int \rho(\vec{\xi},z)dz$ Deflection angle: $\hat{\alpha}(\vec{\xi}) = \frac{4G}{c^2} \int \frac{(\vec{\xi} \vec{\xi'})\Sigma(\vec{\xi'})}{|\vec{\xi} \vec{\xi'}|^2} d^2 \vec{\xi'}$
 - In citcular symmetry cases:

$$\hat{\alpha}(\xi) = \frac{4GM(\xi)}{c^2 \xi}$$

$$M(\xi) = 2\pi \int_0^{\xi} \Sigma(\xi') \xi' d\xi'$$

The Lens Equation

connecting the Lens plane and the Source plane

$$\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$$

$$\vec{\alpha}(\vec{\theta}) = \frac{D_{ds}}{D_s} \hat{\alpha}(D_d \vec{\theta})$$

Case 1: Point mass Lens

$$\hat{\alpha}(\xi) = \frac{4GM(\xi)}{c^2 \xi} \qquad ==> \qquad \vec{\alpha}(\vec{\theta}) = \frac{4GM}{c^2} \frac{D_{LS}}{D_S D_L} \frac{\vec{\theta}}{|\vec{\theta}|^2}$$

$$\vec{\alpha}(\vec{\theta}) = \frac{D_{ds}}{D_S} \hat{\alpha}(D_d \vec{\theta})$$

$$\bullet \quad \text{and} \quad \vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$$

- if $\beta = 0$, gives Einstein Radius

$$\theta_E = \sqrt{\frac{4GM}{c^2}} \frac{D_{LS}}{D_S D_L}$$

- Lens equation: $\vec{\beta} = \vec{\theta} \theta_E^2 \frac{\vec{\theta}}{|\vec{\theta}|^2}$
- $\beta > \theta_E$, weakly lensed and weakly distorted image $\beta < \theta_E$, stronly lensed and multi images

$$\theta_{\pm} = \frac{1}{2} \left(\beta \pm \sqrt{\beta^2 + 4\theta_E^2} \right)$$

Wambsganss (1998)

Case 1: Point mass Lens

Hewitt+ 1987, First Einstein Ring discovered in Radio Band & VLA

Hewitt, J., Turner, E., Schneider, D. et al. Unusual radio source MG1131+0456: a possible Einstein ring. Nature 333, 537–540 (1988) doi:10.1038/333537a0

Magnification

 Gravitational lensing preserves surface brightness (), but changes the apparent solid angle of the source ==> magnification

arXiv:astro-ph/9309052v1, https://arxiv.org/pdf/astro-ph/9309052v1.pdf Possible Gravitational Microlensing of a Star in the Large Magellanic Cloud

Magnification

Local properties of the lens mapping, described by its Jacobian matrix A

$$A \equiv \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \left(\delta_{ij} - \frac{\partial \alpha_i(\vec{\theta})}{\partial \theta_j}\right) = \left(\delta_{ij} - \frac{\partial^2 \Psi(\vec{\theta})}{\partial \theta_i \partial \theta_j}\right)$$

$$\mu = \left| \det \left(\frac{\partial \vec{\beta}}{\partial \vec{\theta}} \right) \right|^{-1} \equiv \left| \det \left(\frac{\partial \beta_i}{\partial \theta_j} \right) \right|^{-1}$$

If circularly symmetric,

$$\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta}$$

Case 1: Point mass Lens - Magnification

• Images: $\theta_{\pm} = \frac{1}{2}(\beta \pm \sqrt{\beta^2 + 4\theta_E^2})$

• Magnification:
$$\mu_{\pm} = \left[1 - \left(\frac{\theta_E}{\theta_{\pm}}\right)^4\right]^{-1} = \frac{u^2 + 2}{2u\sqrt{u^2 + 4}} \pm \frac{1}{2}$$

• Total magnification:

$$\mu = |\mu_+| + |\mu_-| = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

• e.g. for source on the Einstein Ring:

$$\beta = \theta_E, u = 1$$
 $\mu = 1.17 + 0.17 = 1.34$

==> magnitude increase 0.319

Shapiro time delay

- Passage through potential also leads to time delay
- without potential: $t_0 = \int \frac{dl}{c}$

• with potential:
$$t_0 = \int \frac{-c}{c}$$
• with potential:
$$t_1 = \int_{src}^{obs} \frac{dl}{v} = \int_{src}^{obs} \frac{dl}{c - \frac{2}{c}|\Phi|}$$

$$= \int_{src}^{obs} \frac{dl/c}{1 - \frac{2}{c^2}|\Phi|} = \int_{src}^{obs} \frac{dl}{c} [1 + \frac{2}{c^2}|\Phi|]$$

- so, $\Delta t = \int_{src}^{obs} \frac{\dot{2}}{c^3} |\Phi| dl \quad ==> \text{Shapiro delay (1964)}$ Total time delay is the sum of the extra path length from the deflection
- and the gravitational time delay

$$t(\vec{\theta}) = \frac{1 + z_d D_d D_s}{c} \left[\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta}) \right] = t_{geom} + t_{grav}$$

Case 2: Singular Isothemal Sphere (SIS)

- Galaxy lenses, the distributed nature of mass
- Simple model assumes that mass ==> particles of ideal gas
- ideal gas:

equation of state: $p = \frac{\rho kT}{m}$

In thermal equilibrium, T is related to the 1-d velocity dispersion:

$$m\sigma_v^2 = kT$$

 $m\sigma_v^2=kT$ In hydrostatic equilibrium, $\frac{p^{'}}{\rho}=-\frac{GM(r)}{r^2}, M^{'}(r)=4\pi r^2\rho$

solve the EOS ==> density profile: $\rho(r) = \frac{\sigma_v^2}{2\pi G} \frac{1}{r^2}$ so mass profile: $M(r) = \frac{2\sigma_v^2 r}{C}$

Case 2: Singular Isothemal Sphere (SIS)

ideal gas:

rotational velocity in circular orbit: $v_{rot}^2(r) = \frac{GM(r)}{r} = 2\sigma_v^2 = constant$

Surface mass density: $v_{rot}^2 = GM/r \rightarrow$

$$dM = \frac{v_{rot}^2}{G}dr = 4\pi r^2 \rho(r) \rightarrow$$

$$\rho(r) = \frac{v_{rot}^2}{4\pi G} \frac{dr}{r^2} \rightarrow$$

$$\Sigma(\xi) = \frac{v_{rot}^2}{4\pi G} \int_{-\infty}^{\infty} \frac{dz}{(z+\xi)^2} = \frac{v_{rot}^2}{4G\xi} = \frac{\sigma_v^2}{2G\xi}$$

$$\hat{\alpha}(\xi) = \frac{4GM(\xi)}{c^2 \xi} \qquad \qquad \rho(r) = \frac{v_{rot}^2 dr}{4\pi G r^2} \rightarrow \\ M(\xi) = 2\pi \int_0^{\xi} \Sigma(\xi') \xi' d\xi' \qquad \qquad \Sigma(\xi) = \frac{v_{rot}^2}{4\pi G} \int_{-\infty}^{\infty} \frac{dz}{(z+\xi)^2} = \frac{v_{rot}^2}{4G\xi} = \frac{\sigma_v^2}{2G\xi}$$

==> constant deflection angle:

$$\hat{\alpha} = 4\pi \frac{\sigma_v^2}{c^2}$$

Case 2: Singular Isothemal Sphere (SIS) using
$$\hat{\alpha} = 4\pi \frac{\sigma_v^2}{c^2}$$
 and lens equation $\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$ $\vec{\alpha}(\vec{\theta}) = \frac{D_{ds}}{D_s} \hat{\alpha}(D_d \vec{\theta})$

$$= > \alpha = \hat{\alpha} \frac{D_{ds}}{D_s} = 4\pi \frac{\sigma_v^2 D_{ds}}{c^2 D_s} = \theta_E$$

for strong lensing, get two images as for point mass $\vec{\beta} = \vec{\theta} - \theta_E \frac{\vec{\theta}}{|\vec{\theta}|}$

$$==> \theta_{\pm}=\beta\pm\theta_{E}$$

Magnification can be very large for source aligned with lens:
$$\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta} = \Rightarrow \quad \mu_{\pm} = \frac{\theta_{\pm}}{\beta} = 1 \pm \frac{\theta_E}{\beta} = \left(1 \mp \frac{\theta_E}{\theta_{\pm}}\right)^{-1}$$

Separation of the two images is typically ~ arcsec for galaxy lenses:

$$\theta_E = 1''.6 \left(\frac{\sigma_v}{200 km s^{-1}}\right)^2 \left(\frac{D_{ds}}{D_s}\right)$$

Notice: in general the core of a galaxy would not be singular

Caustics and Critical lines

 Grav Lens changes the observed brightness of the source, determined by the Jacobian matrix from the lens equation

$$A \equiv \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \left(\delta_{ij} - \frac{\partial \alpha_i(\vec{\theta})}{\partial \theta_j}\right) = \left(\delta_{ij} - \frac{\partial^2 \Psi(\vec{\theta})}{\partial \theta_i \partial \theta_j}\right)$$
$$\mu(\vec{\theta}) = \frac{1}{\det A(\vec{\theta})}$$

- Image at $\vec{\theta}$ is magnified by a factor of $|\mu(\vec{\theta})|$
- Notice that $|\mu(\vec{\theta})|$ diverge at $det A(\vec{\theta}) = 0 ==>$ these points in the image plane form closed curves, which is so called critical lines.
- Corresponding curves in the source plane obtained via the lens equation are called caustics.

Caustics and Critical lines

Gravitational Lens vs Genuine Lens

Grav lens: the observer sees the source at two distinct locations

Grav lens has no well-defined focal length and cannot produce genuine images, the "images" are corresponds merely to a direction of incidence of light on the observer, not a genuine image in the sky

$$\alpha \propto b$$

Outline

- History
- Gravitational Lensing Theories
- Related Questions
- Applications

A galaxy at redshift 0.5 can be modelled as a singular isothermal sphere; its dispersion is 200km/s. A background

source at redshift 2 is lensed by the foreground galaxy into two images with a brightness ratio of 3:1, what are the

angular separation and time delay between the two images? You can assume the usual cosmology.

First assume $H_0 = 69.6 km s^{-1}$, $\Omega_m = 0.286$, $\Omega_{vac} = 0.714$ then the distance of z ~ 0.5 and z ~ 2 can be computed, using theories of SIS model and the time delay function we can esstimate the angular separation ~ 1.2 arcsec and time delay ~ 45 days

Two (N=2) galaxies are aligned perfectly with the Earth and a distant quasar. Each galaxy can be modelled as a singular

isothermal sphere. How many Einstein rings are formed as a result? How will your results generalize when you have N>2 galaxies?

N galaxies ==> 2^{N-1} rings at most

Next step could consider general situation which obs, lens, src are not aligned perfectly and galaxies are not just point mass model ==> gravitational lensing simulation

code: https://github.com/rkkuang/aeroastro/tree/master/gravlen/num_einstain_rings

A background source is multiply-imaged, can the brightest image arrive last?

Using the relation between effective lensing potential and magnification & time delay

Effective lensing potential:
$$\Psi(\vec{\theta}) = \frac{D_{ds}}{D_d D_s} \frac{2}{c^2} \int \Phi(D_d \vec{\theta}, z) dz$$
 $\vec{\nabla}_{\theta} = \vec{\alpha}$ Jacobian matrix: $A = \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \delta_{ij} - \frac{\partial^2 \Psi(\vec{\theta})}{\partial \vec{\theta_i} \partial \vec{\theta_j}} \equiv \delta_{ij} - \Psi_{ij}$ $\mu = |det A|^{-1}$

time delay: $t(\vec{\theta}) = \frac{1+z_d}{c} \frac{D_d D_s}{D_{ds}} \left[\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \Psi(\vec{\theta}) \right] \qquad \mu \leftarrow \Psi \rightarrow t$ Simulation, under a potential, given a $\vec{\beta}$, solve the lens equation for $\vec{\theta_i}$

Simulation, under a potential, given a β , solve the lens equation for θ_i see if $\vec{\theta_k}$ which has maximun magnification also have largest time delay

Study the caustics and critical curves of two singular isothermal spheres lensing a background quasar. Study two cases

1) Both galaxies are at the same redshift and, 2) these two galaxies are at different redshifts.

Mass density ==> Jacobian matrix ==> draw those points which make magnification largest ==> critical lens ==> caustics

case 1) Both galaxies are at the same redshift

$$\vec{\alpha}(\vec{\theta}) = \theta_{E1} \frac{\vec{\theta} - \vec{\rho_1}}{|\vec{\theta} - \vec{\rho_1}|} + \theta_{E2} \frac{\vec{\theta} - \vec{\rho_2}}{|\vec{\theta} - \vec{\rho_2}|}$$

 $\vec{\rho_1}, \vec{\rho_2}$ are positions of lens1, lens2 on the lens plane

$$\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$$

$$A = \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \left(\delta_{ij} - \frac{\partial \alpha_i(\vec{\theta})}{\partial \theta_j}\right) \qquad \mu(\vec{\theta}) = \frac{1}{\det A(\vec{\theta})}$$

Observer

case 1) Both galaxies are at the same redshift

case 2) these two galaxies are at different redshifts

Let lens1 is closer to source,

for lens_i, we have, $\vec{\beta_i} = \vec{\theta_i} - \theta_{Ei} \frac{\vec{\theta_i} - \vec{\rho_i}}{|\vec{\theta_i} - \vec{\rho_i}|}$ in two lenses system, $\vec{\beta_2} = \vec{\theta_1}$

$$\vec{\beta_{1}} = \vec{\theta_{2}} - \theta_{E2} \frac{\vec{\theta_{2}} - \vec{\rho_{2}}}{|\vec{\theta_{2}} - \vec{\rho_{2}}|} - \theta_{E1} \frac{\vec{\theta_{2}} - \theta_{E2} \frac{\vec{\theta_{2}} - \vec{\rho_{2}}}{|\vec{\theta_{2}} - \vec{\rho_{2}}|} - \vec{\rho_{1}}}{\left|\vec{\theta_{2}} - \theta_{E2} \frac{\vec{\theta_{2}} - \vec{\rho_{2}}}{|\vec{\theta_{2}} - \vec{\rho_{2}}|} - \vec{\rho_{1}}\right|}$$

so, the Jacobian matrix can be derived:

$$A = \frac{\partial \vec{\beta_1}}{\partial \vec{\theta_2}}$$

Observer

case 2) these two galaxies are at different redshifts

Outline

- History
- Gravitational Lensing Theories
- Related Questions
- Applications

Gravitational Lensing Applications

- Cosmic telescopes: distant, faint objects observation
- 2-d mass distribution of lenses, dark matter
- Hubble constant, cosmological constant, density parameter
- •

References

- https://lacosmo.com/DeflectionOfLight/index.html
- The Mathematical Theory of Relativity, Arthur Stanley Eddington (P101)
- http://web.mit.edu/6.055/old/S2009/notes/bending-of-light.pdf
- https://www.mathpages.com/rr/s6-03/6-03.htm
- Gravitation and Spacetime, Hans C. Ohanian, Remo Ruffini. 3rd ed
- https://en.wikipedia.org/wiki/Gauss%27s_law_for_gravity
- Lectures On Gravitational Lensing, Narayan & Bartelmann
- https://www.cfa.harvard.edu/~dfabricant/huchra/ay202/lectures/lecture12.pdf
- https://web.stanford.edu/~oas/SI/SRGR/notes/SchwarzschildSolution.pdf

Equations in this slide are generated by a helpful tool KLatexFormular on linux

Appendix-1

- Newtonial prediction
- $\Phi(b,z) = -\frac{GM}{(b^2 + z^2)^{1/2}}$ b: impact factor gravitational potential
 - simplify the calculation by integrating not along the deflected ray but along z axis

$$\alpha = \frac{v_b}{c} = \frac{1}{c} \int \frac{d\Phi}{db} dt = \frac{1}{c^2} \int \frac{d\Phi}{db} dl \approx \frac{1}{c^2} \int \frac{d\Phi}{db} dz$$

$$= \frac{GMb}{c^2} \int \frac{dz}{(b^2 + z^2)^{3/2}}$$

$$= \frac{GMb}{c^2} \left[\frac{z}{b^2 \sqrt{b^2 + z^2}} \Big|_{-\infty}^{+\infty} \right]$$

$$= \frac{2GM}{c^2 b}$$

