

Global United Technology Services Co., Ltd.

Report No.: GTS201607000010E01

FCC REPORT

Applicant: Quantum Creations LLC.

Address of Applicant: 16410 NE 19th Avenue Suite 102 North, Miami Beach, Florida

United States 33162

Equipment Under Test (EUT)

Product Name: Mini PC

Model No.: A-1062-ABP, A-1062-ABP-1, A-1062-ABP-2, A-1062-ABP-3,

A-1062-ABP-4, A-1062-ABP-5, A-1062-ABP-6, A-1062-ABP-7,

A-1062-ABP-8

Trade Mark: AZULLE

FCC ID: 2AFJI20161062

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.407:2015

Date of sample receipt: July 11, 2016

Date of Test: July 12-21, 2016

Date of report issue: July 22, 2016

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo V Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	July 22, 2016	Original

Prepared By:	Yours. Liu	Date:	July 22, 2016	
	Project Engineer			
Check By:	Andy w	<i>Date:</i> —	July 22, 2016	

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	CO	NTENTS	3
4	TES	ST SUMMARY	4
4	4.1	MEASUREMENT UNCERTAINTY	4
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE TEST FACILITY	_
	5.4 5.5	TEST LOCATION	
	5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7	DEVIATION FROM STANDARDS	
5	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	6
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
5	5.10	TEST INSTRUMENTS LIST	7
5	TES	ST RESULTS AND MEASUREMENT DATA	9
	5.1	ANTENNA REQUIREMENT:	
	5.2	CONDUCTED EMISSIONS	
	5.3	EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
•	5.4 5.5	TRANSMIT POWER	
	5.6	BAND EDGE	
	5.7	RADIATED EMISSION	
	5.8	FREQUENCY STABILITY	
6	TES	ST SETUP PHOTO	45
7	EU	CONSTRUCTIONAL DETAILS	47

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	PASS
AC Power Line Conducted Emission	15.207	PASS
Peak Transmit Power	15.407(a)(1)	PASS
Power Spectral Density	15.407(a)(1)	PASS
Undesirable Emission	15.407(b)(6), 15.205/15.209	PASS
Radiated Emission	15.205/15.209	PASS
Band Edge	15.205	PASS
Frequency Stability	15.407(f)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 40GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

Remark: Test according to ANSI C63.10:2013 and ANSI C63.4:2014

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 Client Information

Applicant:	Quantum Creations LLC.		
Address of Applicant:	16410 NE 19th Avenue Suite 102 North, Miami Beach, Florida United States 33162		
Manufacturer:	SHENZHEN MELE STAR TECHNOLOGY LIMITED		
Address of Manufacturer:	3F,Bldg#1,28 Cuijing Road, Pingshan New District, Shenzhen, PR China.		
Factory:	Shenzhen MeLE Precision Technology Limited		
Address of Factory:	3F East,Bldg#1,28 Cuijing Road, Pingshan New District, Shenzhen, PR China.		

5.2 General Description of EUT

Product Name:	Mini PC
Model No.:	A-1062-ABP, A-1062-ABP-1, A-1062-ABP-2, A-1062-ABP-3,
	A-1062-ABP-4, A-1062-ABP-5, A-1062-ABP-6, A-1062-ABP-7,
	A-1062-ABP-8
Operation Frequency:	802.11a/802.11n(HT20)/802.11ac(HT20): 5180MHz ~ 5240MHz;
	802.11n(HT40)/ 802.11ac(HT40): 5190MHz ~ 5230MHz
	802.11ac(HT80): 5210MHz
Channel numbers:	802.11a/802.11n(HT20)/802.11ac(HT20): 4;
	802.11n(HT40)/ 802.11ac(HT40): 2
	802.11ac(HT80): 1
Channel separation:	802.11a/802.11n(HT20)/802.11ac(HT20): 20MHz;
	802.11n(HT40)/ 802.11ac(HT40): 40MHz
	802.11ac(HT80): 80MHz
Modulation technology:	OFDM
Antenna Type:	Integral Antenna
Antenna gain:	2.0dBi (declare by Applicant)
Power supply:	SWITCHING ADAPTER:
	Model No.:S12B22-120A100-04
	Input: AC 100~240V~50/60Hz 0.5A
	Output: DC 12V 1A

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.3 Test mode

Transmitting mode	Keep the EUT in transmitting with modulation.
	EUT was test with 99% duty cycle at its maximum power control level.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, sBaoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Description of Support Units

None.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.10 Test Instruments list

Rad	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 27 2016	Mar. 26 2017
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 29 2016	June 28 2017
4	Spectrum analyzer	Agilent	E4447A	GTS516	June 29 2016	June 28 2017
5	Spectrum Analyzer	Agilent	E4440A	GTS533	Nov. 18 2015	Nov. 17 2016
6	BiConiLog Antenna	SCHWARZBECK MESS- ELEKTRONIK	VULB9163	GTS214	Feb. 21 2016	Feb. 20 2017
7	Double -ridged waveguide horn	SCHWARZBECK MESS- ELEKTRONIK	9120D-829	GTS208	June 29 2016	June 28 2017
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 27 2016	Mar. 26 2017
9	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
10	Coaxial Cable	GTS	N/A	GTS213	Mar. 27 2016	Mar. 26 2017
11	Coaxial Cable	GTS	N/A	GTS211	Mar. 27 2016	Mar. 26 2017
12	Coaxial cable	GTS	N/A	GTS210	Mar. 27 2016	Mar. 26 2017
13	Coaxial Cable	GTS	N/A	GTS212	Mar. 27 2016	Mar. 26 2017
14	Amplifier(100kHz- 3GHz)	HP	8347A	GTS204	June 29 2016	June 28 2017
15	Amplifier(2GHz- 20GHz)	HP	8349B	GTS206	June 29 2016	June 28 2017
16	Amplifier (18-40GHz)	MITEQ	AMF-6F-18004000- 29-8P	GTS534	June 29 2016	June 28 2017
17	Band filter	Amindeon	82346	GTS219	Mar. 27 2016	Mar. 26 2017
18	Constant temperature and humidity box	Oregon Scientific	BA-888	GTS248	Mar. 27 2016	Mar. 26 2017
19	D.C. Power Supply	Instek	PS-3030	GTS232	Mar. 27 2016	Mar. 26 2017
20	Universal radio communication tester	Rohde & Schwarz	CMU200	GTS235	Mar. 27 2016	Mar. 26 2017
21	Splitter	Agilent	11636B	GTS237	Mar. 27 2016	Mar. 26 2017
22	Power Meter	Anritsu	ML2495A	GTS540	June 29 2016	June 28 2017
23	Power Sensor	Anritsu	MA2411B	GTS541	June 29 2016	June 28 2017

Con	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	June 29 2016	June 28 2017
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	June 29 2016	June 28 2017
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	June 29 2016	June 28 2017
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 29 2016	June 28 2017
5	LISN	SCHWARZBECK MESS- ELEKTRONIK	NSLK 8127	GTS226	June 29 2016	June 28 2017
6	Coaxial Cable	GTS	N/A	GTS227	June 29 2016	June 28 2017
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Gen	General used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Barometer	ChangChun	DYM3	GTS257	July 06 2016	July 05 2017

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement:

FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is Integral antenna. The best case gain of the antenna is 2.0dBi.

5.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz			
Limit:	Limit (dRu\/)			
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm	n of the frequency.		
Test procedure	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.			
Test setup:	Refere	nce Plane		
	AUX Equipment Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power	
Test Instruments:	Refer to section 5.10 for detail	ls		
Test mode:	Refer to section 5.3 for details. All of list mode were tested, and found the 802.11n(HT40) mode as the worst case. Only the data of worst case is reported.			
	теропеа.			

Measurement Data

An initial pre-scan was performed on the line and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Line:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 0010 Test Mode : WiFi mode Test Engineer: Boy

000	Freq	Read	LISN Factor					Remark
	MHz	dBuV	dB	d₿	dBuV	dBuV	dB	
1		50.17						
2			0.14					•
3	0.375	41. 44		0.10				
4	0.466	41.82	0.12	0.11	42.05	56.58	-14.53	QP
5	1.800	37. 77	0.12	0.14	38.03	56.00	-17.97	QP
6	5.535	38.38	0.22	0.15	38.75	60.00	-21.25	QP

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Neutral:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 0010 Test Mode : WiFi mode Test Engineer: Boy

0.50	Freq	Read	LISN Factor				Over Limit	Remark
	MHz	dBuV	dB	d₿	dBuV	dBuV	d₿	
1 2 3 4 5 6	0. 440 1. 744 2. 962	49. 73 42. 71 42. 39 36. 32 37. 72 39. 11	0.06 0.06 0.09 0.11	0. 11 0. 14 0. 15	42. 88 42. 56 36. 55 37. 98	57.59 57.07 56.00 56.00	-14.71 -14.51 -19.45	QP QP QP QP

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.3 Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	FCC Part15 E Section 15.407			
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General UNII Test Procedures New Rules v01			
Limit:	N/A			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
	Ground Reference Plane			
Test procedure:	According to KDB 789033 D02 General UNII Test Procedures New Rules v01.			
Test Instruments:	Refer to section 5.10 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Measurement Data:

Report No.: GTS201607000010E01

СП	Eroguenov	99% Occ	upied Bandwi	dth (MHz)	26dB Occupied Bandwidth (MHz)		
CH. No.	Frequency (MHz)	802.11a	802.11n(HT 20)	802.11ac(H T20)	802.11a	802.11n(HT 20)	802.11ac(H T20)
36	5180.00	16.518	17.768	17.749	20.333	21.311	21.378
40	5200.00	16.518	17.732	17.733	20.216	21.326	21.036
48	5240.00	16.481	17.714	17.736	20.007	21.344	21.583

CH. Frequency		99% Occupied E	Bandwidth (MHz)	26dB Occupied Bandwidth (MHz	
No.	(MHz)	802.11n(HT40)	802.11ac(HT40)	802.11n(HT40)	802.11ac(HT40)
38	5190.00	35.893	35.896	39.666	39.667
46	5230.00	35.926	35.938	39.791	39.609

CH.	Frequency	99% Occupied Bandwidth (MHz)	26dB Occupied Bandwidth (MHz)
No.	(MHz)	802.11ac(HT80)	802.11ac(HT80)
42	5210.00	74.836	80.100

Test plots as followed:

5.4 Output Transmit Power

Test Requirement:	FCC Part15 E Section 15.407			
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General UNII Test Procedures New Rules v01			
Limit:	For the band 5.15-5.25 GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 250 mW.			
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane			
Test procedure:	Measurement using an RF average power meter			
	 (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter. (iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is 			
	the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent).			
Test Instruments:	Refer to section 5.10 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Measurement Data

	802.11a mode									
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result				
36	5180.00	10.75	0.04	10.79	23.98	Pass				
40	5200.00	10.75	0.04	10.79	23.98	Pass				
48	5240.00	11.49	0.04	11.53	23.98	Pass				

	802.11n(HT20) mode									
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result				
36	5180.00	9.77	0.04	9.81	23.98	Pass				
40	5200.00	9.70	0.04	9.74	23.98	Pass				
48	5240.00	10.64	0.04	10.68	23.98	Pass				

	802.11ac(HT20) mode									
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result				
36	5180.00	8.17	0.04	8.21	23.98	Pass				
40	5200.00	8.21	0.04	8.25	23.98	Pass				
48	5240.00	8.59	0.04	8.63	23.98	Pass				

	802.11n(HT40) mode									
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result				
38	5190.00	8.96	0.04	9.00	23.98	Pass				
46	5230.00	9.57	0.04	9.61	23.98	Pass				

	802.11 ac(HT40) mode									
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result				
38	5190.00	7.72	0.04	7.76	23.98	Pass				
46	5230.00	8.32	0.04	8.36	23.98	Pass				

	802.11 ac(HT80)								
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Limit (dBm)	Result				
42	5210.00	5.03	0.04	5.07	23.98	Pass			

Note: Output Power = Measured Power + Duty Factor

Duty Factor = 10 log (1/Duty Cycle)

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General UNII Test Procedures New Rules v01
Limit:	11dBm/MHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test procedure:	 Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power". Use the peak search function on the instrument to find the peak of the spectrum. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum. b) If Method SA-3 Alternative was used and the linear mode was used in step E)2)g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. The result is the PPSD.
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

	802.11a mode								
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result				
36	5180.00	2.59	2.63	11.00	Pass				
40	5200.00	2.27	2.31	11.00	Pass				
48	5240.00	2.12	2.15	11.00	Pass				

	802.11n(HT20) mode								
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result				
36	5180.00	1.18	1.22	11.00	Pass				
40	5200.00	0.59	0.63	11.00	Pass				
48	5240.00	1.16	1.20	11.00	Pass				

	802.11ac(HT20) mode								
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result				
36	5180.00	0.14	0.18	11.00	Pass				
40	5200.00	-0.04	0.00	11.00	Pass				
48	5240.00	1.19	1.23	11.00	Pass				

	802.11n(HT40) mode								
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD - (dBm/MHz)	Limit (dBm/MHz)	Result				
38	5190.00	-2.96	-2.92	11.00	Pass				
46	5230.00	-1.30	-1.26	11.00	Pass				

	802.11ac(HT40) mode								
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result				
38	5190.00	-2.38	-2.34	11.00	Pass				
46	5230.00	-2.66	-2.62	11.00	Pass				

	802.11ac(HT80) mode							
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result			
42	5210.00	-7.77	-7.73	11.00	Pass			

Note: Total PPSD = Measured PPSD + 10 log (1/Duty Cycle)

Total PPSD=Measured PPSD+0.04

Test plots as followed:

5.6 Band Edge

_							
Test Requirement:	FCC Part15 E Section 15.407 and 5.205						
Test Method:	ANSI C63.10:201	ANSI C63.10:2013					
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver setup:			_				
	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Above 10112	AV	1MHz	3MHz	Average Value		
Limit:		1			T		
	Frequen		Limit (dBuV		Remark		
	30MHz-88	MHz	40.0		Quasi-peak Value		
	88MHz-216		43.5		Quasi-peak Value		
	216MHz-96	0MHz	46.0)	Quasi-peak Value		
	960MHz-1	GHz	54.0		Quasi-peak Value		
	Above 10	SH _Z	54.0		Average Value		
	Above 10)	74.0)	Peak Value		
	 Undesirable emission limits: (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band. (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 						
Test Procedure:	(3) For transmitters operating in the 5.47-5.725 GHz band: all emissions						

 ${\it Xixiang Road, Baoan District, Shenzhen, Guangdong, China}$

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	Report No.: G10201007000010201
	have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Amplifier
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

According to KDB 789033 D02V01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement Data:

Mode:		802	.11a	Frequ	Frequency:)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	34.73	17.18	51.91	68.20	-16.29	PK
V	5150.00	37.82	17.18	55.00	68.20	-13.20	PK
Mo	ode:	802	.11a	Frequ	iency:	5180)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	25.91	17.18	43.09	54.00	-10.91	AV
V	5150.00	27.72	17.18	44.90	54.00	-9.10	AV
Mo	ode:	802.11a		Frequency:		5240MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	33.53	17.20	50.73	68.20	-17.47	PK
V	5350.00	34.21	17.20	51.41	68.20	-16.79	PK
Mc	ode:	802	.11a	Frequ	iency:	5240MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	24.34	17.20	41.54	54.00	-12.46	AV
V	5350.00	25.61	17.20	42.81	54.00	-11.19	AV

Mo	ode:	802.11r	n(HT20)	Frequ	iency:	5180)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	35.63	17.18	52.81	68.20	-15.39	PK
V	5150.00	37.56	17.18	54.74	68.20	-13.46	PK
				1			
Mo	ode:	802.11r	n(HT20)		iency:	5180)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detecto
Н	5150.00	25.49	17.18	42.67	54.00	-11.33	AV
V	5150.00	27.44	17.18	44.62	54.00	-9.38	AV
Mo	ode:	802.11r	n(HT20)	Frequ	uency:	5240)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detecto
Н	5350.00	33.87	17.20	51.07	68.20	-17.13	PK
V	5350.00	34.81	17.20	52.01	68.20	-16.19	PK
Mode:		802.11r	n(HT20)	Frequ	iency:	5240MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detecto
Н	5350.00	24.64	17.20	41.84	54.00	-12.16	AV
V	5350.00	25.37	17.20	42.57	54.00	-11.43	AV

N	lode:	802.11ac(l	HT20)	Frequ	uency:	5180N	ИНz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	34.86	17.18	52.04	68.20	-16.16	PK
V	5150.00	36.92	17.18	54.10	68.20	-14.10	PK
N	lode:	802.11ac(I	HT20)	Frequ	uency:	5180	ИHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	25.03	17.18	42.21	54.00	-11.79	AV
V	5150.00	27.15	17.18	44.33	54.00	-9.67	AV
M	lode:	802.11ac(HT20)		Frequency:		5240MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	33.95	17.20	51.15	68.20	-17.05	PK
V	5350.00	35.02	17.20	52.22	68.20	-15.98	PK
			•				•
N	lode:	802.11ac(l	HT20)	Frequ	uency:	5240N	ИНz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	24.08	17.20	41.28	54.00	-12.72	AV
V	5350.00	24.98	17.20	42.18	54.00	-11.82	AV

Me	ode:	802.11r	n(HT40)	Frequ	iency:	5190)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	35.29	17.18	52.47	68.20	-15.73	PK
V	5150.00	37.01	17.18	54.19	68.20	-14.01	PK
M	ode:	802.11r	n(HT40)	Frequ	uency:	5190)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	25.02	17.18	42.20	54.00	-11.80	AV
V	5150.00	27.30	17.18	44.48	54.00	-9.52	AV
N.4	ode:	002.44	·// IT 40)			5000)MHz
Antenna Pol.	Frequency (MHz)	802.11r Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	34.36	17.20	51.56	68.20	-16.64	PK
V	5350.00	35.42	17.20	52.62	68.20	-15.58	PK
M	ode:	802.11r	n(HT40)	Frequ	uency:	5230MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	24.85	17.20	42.05	54.00	-11.95	AV
V	5350.00	25.61	17.20	42.81	54.00	-11.19	AV

				_			
Me	ode:	802.11ac(HT40)		Frequency:		5190	MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	35.48	17.18	52.66	68.20	-15.54	PK
V	5150.00	37.22	17.18	54.40	68.20	-13.80	PK
Me	ode:	802.11a	c(HT40)	Frequ	iency:	5190	MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	25.59	17.18	42.77	54.00	-11.23	AV
V	5150.00	27.41	17.18	44.59	54.00	-9.41	AV
Me	ode:	802.11ac(HT40)		Frequency:		5230MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	34.29	17.20	51.49	68.20	-16.71	PK
V	5350.00	35.66	17.20	52.86	68.20	-15.34	PK
Me	ode:	802.11a	c(HT40)	Frequ	iency:	5230	MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	24.35	17.20	41.55	54.00	-12.45	AV
V	5350.00	25.81	17.20	43.01	54.00	-10.99	AV

M	ode:	802.11a	c(HT80)	Frequ	iency:	5210	MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	35.27	17.18	52.45	68.20	-15.75	PK
V	5150.00	36.89	17.18	54.07	68.20	-14.13	PK
М	ode:	802.11a	c(HT80)	Frequ	iency:	5210	MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	25.18	17.18	42.36	54.00	-11.64	AV
V	5150.00	26.73	17.18	43.91	54.00	-10.09	AV
М	ode:	802.11ac(HT80)		Frequency:		5210MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	34.67	17.20	51.87	68.20	-16.33	PK
V	5350.00	35.82	17.20	53.02	68.20	-15.18	PK
M	ode:	802.11a	c(HT80)	Frequ	iency:	5210	MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	24.84	17.20	42.04	54.00	-11.96	AV
V	5350.00	25.94	17.20	43.14	54.00	-10.86	AV

5.7 Radiated Emission

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205			
Test Method:	ANSI C63.10:20	013				
Test Frequency Range:	30MHz to 40GH	łz				
Test site:	Measurement D	Distance: 3m (S	emi-Anecho	ic Chambe	r)	
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	30MHz- 1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3MHz	Peak Value	
		AV	1MHz	3MHz	Average Value	
Limit:	Freque 30MHz-8		Limit (dBuV) 40.0		Remark Quasi-peak Value	
	88MHz-2		43.5		Quasi-peak Value	
	216MHz-9		46.0		Quasi-peak Value	
	960MHz-		54.0		Quasi-peak Value	
	Frequency Limit (dBm/MHz) R					
	Above 1		-27.		Peak Value	
Test Procedure:	1GHz and meter cambro position of 2. The EUT vantenna, vantenna to 3. The anten the ground Both horiz make the result of the limit specified I for the emist the limit specified I for the limit specified I for the limit speak, quasin a data second to the limit speak, quasin a data second to the limit speak, quasin a data second limit speak, quas	of the EUT. est procedure as test procedure as placed on the 1.5 meters for a cer. The table with highest rad was set 3 meter which was mount ower. In a height is varied to determine to ontal and vertice measurement. Suspected emisted the rotable tail of find the maximum esceiver system and width with sion level of the pecified, then ten the EUT would be a 10dB margin si-peak or average test procedure as test procedure as test setup.	s below: e: ne top of a reabove 1GHz vas rotated diation. The saway from the don the tried from one the maximum reading was turn the security of the security	otating table) above the 360 degree In the interfe top of a variate where to fe In value of the ons of the a IT was arraid It to heights ed from 0 deleated Detect Hold Mode. The above topped Otherwise The above tested one as specified It we, the EUT	e (0.8m for below ground at a 3 s to determine the arence-receiving table-height our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 degrees to 360 s. Function and the peak the emissions that	

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	Report No.: GTS201607000010E01
	The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
	The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
	4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
	Repeat step 4 for test frequency with the test antenna polarized horizontally.
	6. Remove the transmitter and replace it with a substitution antenna
	7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
	Repeat step 7 with both antennas horizontally polarized for each test frequency.
	9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:
	EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi) where:
	Pg is the generator output power into the substitution antenna.
Test setup:	Below 1GHz

Measurement Data:

Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
30.21	40.49	14.33	0.55	30.10	25.27	40.00	-14.73	Vertical
54.26	33.11	15.05	0.81	29.96	19.01	40.00	-20.99	Vertical
135.98	56.74	10.45	1.48	29.48	39.19	43.50	-4.31	Vertical
290.02	48.33	14.86	2.31	29.93	35.57	46.00	-10.43	Vertical
331.36	49.95	15.79	2.53	29.82	38.45	46.00	-7.55	Vertical
633.91	34.60	20.58	3.85	29.27	29.76	46.00	-16.24	Vertical
30.53	26.87	14.33	0.56	30.10	11.66	40.00	-28.34	Horizontal
56.79	27.41	14.89	0.83	29.94	13.19	40.00	-26.81	Horizontal
129.02	54.60	11.12	1.43	29.52	37.63	43.50	-5.87	Horizontal
148.96	52.66	10.26	1.56	29.41	35.07	43.50	-8.43	Horizontal
325.60	46.38	15.59	2.49	29.85	34.61	46.00	-11.39	Horizontal
633.91	34.65	20.58	3.85	29.27	29.81	46.00	-16.19	Horizontal

Above 1GHz:

Only the data of worst case at each channel plan (nominal bandwidth =20MHz, 40MHz, 80MHz) is reported.

802.11 n(HT20) mode										
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Over limit(dB)	Detector		
	Н	10360.00	26.90	21.64	48.54	54(Note3)	-5.46	PK		
26	Н	15540.00	27.08	21.80	48.88	54(Note3)	-5.12	PK		
36	V	10360.00	28.65	21.64	50.29	54(Note3)	-3.71	PK		
	V	15540.00	28.88	21.80	50.68	54(Note3)	-3.32	PK		
	Н	10400.00	27.03	21.67	48.70	54(Note3)	-5.30	PK		
40	Н	15600.00	28.12	21.83	49.95	54(Note3)	-4.05	PK		
40	V	10400.00	28.85	21.67	50.52	54(Note3)	-3.48	PK		
	V	15600.00	26.86	21.83	48.69	54(Note3)	-5.31	PK		
	Н	10480.00	27.32	21.64	48.96	54(Note3)	-5.04	PK		
40	Н	15720.00	25.39	22.16	47.55	54(Note3)	-6.45	PK		
48	V	10480.00	26.98	21.64	48.62	54(Note3)	-5.38	PK		
	V	15720.00	25.73	22.16	47.89	54(Note3)	-6.11	PK		

802.11n(HT40) mode										
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Over limit(dB)	Detector		
	Н	10380.00	28.66	21.64	50.30	54(Note3)	-3.70	PK		
38	Н	15570.00	28.51	21.80	50.31	54(Note3)	-3.69	PK		
30	V	10380.00	26.99	21.64	48.63	54(Note3)	-5.37	PK		
	V	15570.00	28.18	21.80	49.98	54(Note3)	-4.02	PK		
	Н	10460.00	28.38	21.67	50.05	54(Note3)	-3.95	PK		
46	Н	15690.00	27.23	21.83	49.20	54(Note3)	-4.80	PK		
40	V	10460.00	27.17	21.67	48.84	54(Note3)	-5.16	PK		
	V	15690.00	25.38	21.83	47.35	54(Note3)	-6.65	PK		

	802.11ac(HT80) mode										
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Over limit(dB)	Detector			
	Н	10420.00	28.56	21.65	50.21	54(Note3)	-3.79	PK			
42	Н	15630.00	28.37	21.81	50.18	54(Note3)	-3.82	PK			
42	V	10420.00	26.87	21.65	48.52	54(Note3)	-5.48	PK			
	V	15630.00	28.07	21.81	49.88	54(Note3)	-4.12	PK			

Note:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

5.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)				
Test Method:	ANSI C63.10:2013, FCC Part 2.1055				
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified				
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.				
Test setup:	Spectrum analyzer FUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector				
Test Instruments:	Refer to section 5.10 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data:

		Frequen	cy stability versus T	emp.	
		Power	Supply: AC 120V/60)Hz	
Temp.	Operating	0 minute	2 minute	5 minute	10 minute
(°C)	Frequency	Measured	Measured	Measured	Measured
(0)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
	5180	5179.9857	5179.9858	5179.9857	5179.9859
-30	5200	5199.9871	5199.9873	5199.9870	5199.9875
-30	5220	5219.9867	5219.9869	5219.9867	5219.9869
	5240	5239.9881	5239.9884	5239.9880	5239.9886
	5180	5179.9876	5179.9878	5179.9876	5179.9879
-20	5200	5199.9883	5199.9885	5199.9882	5199.9886
-20	5220	5219.9897	5219.9901	5219.9896	5219.9904
	5240	5239.9889	5239.9891	5239.9889	5239.9892
	5180	5179.9902	5179.9904	5179.9901	5179.9907
-10	5200	5199.9892	5199.9892	5199.9892	5199.9892
-10	5220	5219.9901	5219.9903	5219.9901	5219.9903
	5240	5239.9911	5239.9914	5239.9910	5239.9916
	5180	5179.9862	5179.9863	5179.9862	5179.9864
0	5200	5199.9863	5199.9863	5199.9862	5199.9863
U	5220	5219.9870	5219.9871	5219.9870	5219.9872
	5240	5239.9878	5239.9879	5239.9877	5239.9881
	5180	5179.9876	5179.9877	5179.9876	5179.9877
10	5200	5199.9910	5199.9916	5199.9908	5199.9920
10	5220	5219.9903	5219.9907	5219.9902	5219.9910
	5240	5239.9895	5239.9897	5239.9895	5239.9898
	5180	5179.9899	5179.9900	5179.9898	5179.9901
20	5200	5199.9901	5199.9902	5199.9900	5199.9903
20	5220	5219.9910	5219.9912	5219.9909	5219.9914
	5240	5239.9908	5239.9909	5239.9907	5239.9910
	5180	5179.9852	5179.9853	5179.9852	5179.9853
20	5200	5199.9857	5199.9858	5199.9857	5199.9858
30	5220	5219.9861	5219.9862	5219.9861	5219.9862
	5240	5239.9868	5239.9869	5239.9868	5239.9870
	5180	5179.9869	5179.9869	5179.9869	5179.9869
40	5200	5199.9887	5199.9890	5199.9886	5199.9892
40	5220	5219.9887	5219.9889	5219.9886	5219.9890
	5240	5239.9885	5239.9886	5239.9885	5239.9887
·	5180	5179.9889	5179.9890	5179.9889	5179.9890
50	5200	5199.9892	5199.9893	5199.9892	5199.9893
50	5220	5219.9898	5219.9899	5219.9898	5219.9900
	5240	5239.9899	5239.9900	5239.9899	5239.9900
			The worst case		
Ter	mp. (°C)	Operating Frequency (MHz)	Measured Frequency (MHz)	Frequency To	lerance(PPM)
	30	5180	5179.9852	2.	86
30					

Frequency stability versus Voltage Temperature: 25°C					
Supply	Frequency	Measured	Measured	Measured	Measured
(VAC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
102	5180	5179.9872	5179.9870	5179.9870	5179.9871
	5200	5199.9886	5199.9881	5199.9882	5199.9883
	5220	5219.9879	5219.9877	5219.9878	5219.9878
	5240	5239.9894	5239.9889	5239.9890	5239.9891
120	5180	5179.9886	5179.9883	5179.9884	5179.9884
	5200	5199.9891	5199.9888	5199.9889	5199.9889
	5220	5219.9908	5219.9901	5219.9903	5219.9904
	5240	5239.9895	5239.9892	5239.9893	5239.9893
138	5180	5179.9908	5179.9902	5179.9904	5179.9905
	5200	5199.9892	5199.9892	5199.9892	5199.9892
	5220	5219.9901	5219.9899	5219.9900	5219.9900
	5240	5239.9914	5239.9909	5239.9910	5239.9911
			The worst case		
Power Supply (VAC)		Operating Frequency (MHz)	Measured Frequency (MHz)	Frequency Tolerance(PPM)	
102		5180	5179.9870	2.51	