(21) International Application Number:

cestershire LE11 3BX (GB).

(22) International Filing Date:

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:		(11) International Publication Number:	WO 94/00891
H01Q 15/00, H01P 1/20 G02B 5/26	ΑĻ	(43) International Publication Date:	6 January 1994 (06.01.94)

PCT/GB92/01172

29 June 1992 (29.06.92)

(71) Applicant (for all designated States except US): LOUGH	IBO-
ROUGH UNIVERSITY OF TECHNOLOGY	GB/

ROUGH UNIVERSITY OF TECHNOLOGY [GB/GB]; Loughborough, Leiœstershire LE11 3TF (GB).

(72) Inventor; and
(75) Inventor/Applicant (for US only): VARDAXOGLOU, John,

(74) Agents: RAYNOR, Simon, Mark et al.; Abel & Imray, Northumberland House, 303-306 High Holborn, London WC1V 7LH (GB).

Costas [GB/GB]; 63 William Street, Loughborough, Lei-

(81) Designated States: JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, MC, NL, SE).

Published
With international search report.

(54) Title: RECONFIGURABLE FREQUENCY SELECTIVE SURFACES

(57) Abstract

A reconfigurable frequency selective surface comprises at least two arrays (1, 2) of elements (3), the arrays (1, 2) being arranged in close proximity with one another so that elements (3) of a first array (9) are closely coupled with elements (3) of a second array (2) adjacent to the first array (1). The first array (1) is displaceable with respect to the second array (2) to adjust the frequency response of the surface.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NE	
BE	Belgium	GN	Guinea	NL	Niger
BF	Burkina Faso	GR	Grecce		Netherlands
BG	Bulgaria	HU	Hungary	NO	Norway
BJ	Benin	1E	Ireland	NZ	New Zealand
BR	Brazil	IT.		PL	Poland
BY	Belarus	-	ltaly	PT	Portugal
CA	Canada	JP	Japan	RO	Romania
CF		КP	Democratic People's Republic	RU	Russian Federation
	Central African Republic		of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
cs	Czechoslovakia	LV	Latvia	TG	
CZ	Czech Republic	MC	Monaco	ÜÄ	Togo
DE	Germany	MG	Madagascar		Ukraine
DK	Denmark	ML	Mali	US	United States of America
ES	Spain	MN		UZ	Uzbekistan
61	Finland	MILE	Mongolia	VN	Vict Nam

DEICHTOIN JAIN DANNON A 1 1

WO 94/00891 PCT/GB92/01172

- 1 -

Reconfigurable frequency selective surfaces

The present invention relates to a reconfigurable frequency selective surface and a method of reconfiguring the frequency response of a frequency selective surface.

A frequency selective surface (FSS) is an array of 5 antenna elements that acts as a passive electromagnetic filter. The surface may comprise an array of electrically conductive elements on a dielectric substrate or, alternatively, a plurality of apertures in a conductive surface. Electromagnetic waves incident on a surface 10 comprising an array of conductive elements are reflected from the surface only in a narrow band of frequencies and are transmitted at other frequencies. With an array of apertures, electromagnetic waves are transmitted only in 15 a narrow band of frequencies. Such surfaces can be used as multiplexers or radomes in communications systems and can operate at microwave frequencies, including mm-waves, up to infrared and optical frequencies.

designed to operate in a particular frequency range,
which is determined by the size and the arrangement of
the antenna elements and the size of the array. The
operating frequency of a particular surface cannot be
changed and therefore, when it is necessary to change
the frequency of operation, the original surface has to
be replaced with another having a different frequency
response. This is undesirable in practice since the

15

25

surface is generally permanently mounted in an antenna installation and must be accurately aligned. Further, when a single array of very long dipoles is used, an inductive effect is introduced due to the relative 5 proximity of the ends of adjacent dipoles, which destroys the resonance.

According to the present invention, there is provided a reconfigurable frequency selective surface comprising at least two arrays of elements, the arrays 10 being arranged in close proximity with one another so that elements of a first array are closely coupled with elements of a second array adjacent to the first array, the first array being displaceable with respect to the second array to adjust the frequency response of the surface.

The frequency selective surface allows the frequency response of an antenna installation to be reconfigured without having to replace one surface with another. The inductive effect, found with single arrays, does not 20 occur, and there is no major deterioration in the band widths or band spacing ratio as the displacement in-The response of the reconfigurable surface is creases. therefore stable throughout the frequency range.

The first and second arrays may be substantially parallel with one another.

The array elements may be conductive elements on a dielectric substrate, or apertures in a conductive substrate, or a combination of the above.

WO 94/00891 PCT/GB92/01172

The first and second arrays may have a separation of no more than 0.03 wavelengths, and preferably no more than 0.003 wavelengths of the electromagnetic waves having the resonant frequency of the surface. For example, when microwaves of frequency 30GHz are to be reflected, the separation is advantageously no more than 0.225mm and preferably no more than 0.025mm.

The first array may be displaceable relative to the second array in a direction parallel to the surfaces of the arrays. Alternatively, the frequency selective surface may be reconfigured by rotating the first array with respect to the second array, or by altering the distance and/or the medium separating the first array from the second array. Using that configuration, there is no limit to the distance separating the arrays.

The array elements may be parallel linear dipoles, and the at least one array may be displaceable in the longitudinal direction of the linear dipoles.

provided a method of reconfiguring a frequency selective surface comprising at least two arrays of elements arranged in close proximity with one another so that the elements of a first array are closely-coupled with elements of a second array adjacent to the first array, wherein the first array is displaced with respect to the second array to adjust the frequency response of the surface.

According to the present invention there is further

provided a method of reconfiguring a beam associated with a grating lobe, wherein the periodicity of a reconfigurable frequency selective surface as described above is adjusted by altering the relative positions of the first and second arrays of the frequency selective surface.

Embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, of which:

Figure 1 is a perspective view of a frequency selective 10 surface;

Figure 2 is a cross-section through the surface;

Figure 3 is a diagrammatic view of a part of the surface;

Figure 4 shows the frequency response of a frequency

selective surface, and

15 Figure 5 shows the variation of the frequency response as the surface is reconfigured.

As shown in figure 1, the frequency selective surface consists of two parallel arrays 1,2 of elements 3. The array elements 3 may be electrically conductive elements, such as dipoles printed on a dielectric substrate or, alternatively, they may be apertures, such as slots, formed in a conductive surface (Babinet's compliment of the former). The two arrays 1,2 are arranged in close proximity with one another, so that the elements 3 of the first array 1 are closely coupled with

the elements of the second array 2. The separation S of the arrays is as small as possible, whilst ensuring that the elements of the first array 1 are electrically insulated from the elements of the second array 2, and will generally be of the order of 0.03 wavelengths or less, although this will depend on the particular array design, and the dielectric constant of the substrate.

The second array 2 is displaceable relative to the first array 1 by a small distance DS. In the embodiment shown in figure 1, the second array 2 can be displaced transversely, parallel to the surfaces of the arrays, in the direction of the Y-axis. Other types of displacement are, however, possible: for example, the second array 2 could be displaced in the direction of the X-axis or the Z-axis (thereby altering the distance S separating the two arrays) or it could be rotated about the Z-axis, or displaced in any combination of those directions.

when the arrays 1,2 are aligned accurately with one another (so that DS=0), the elements 3 of the first array 1 lie directly over the elements of the second array 2, thereby shadowing the second array 2 from the incident electromagnetic waves. The frequency response of the surface is then similar to that of a single array and, as shown in figure 4, includes a narrow reflection band and upper and lower transmission bands. The letters f_R denote the reflection band centre frequency, which corresponds to the resonant frequency of the surface, and the letters f_T denote the frequency of the lower

5

20

25

The frequencies f_R and f_T of the transmission band. reflection and transmission bands are determined by the length of the antenna elements 3 and the size of the array.

As shown in figures 2 and 3, the first array 1 has a plurality of elements 3 of length L1, and the second array 2 has a plurality of elements of length L2. The separation D1,D2 and the arrangement of the elements in each of the arrays is similar, so that when DS=0 the elements of the second array 2 lie in the shadows of the 10 elements of the first array 1.

When, as shown in figure 2, the second array 2 is displaced transversely in the direction Y by a distance DS, the ends of the elements 3 of the second array 2 then extend by a small distance DL beyond the ends of the elements of the first array 1. Since the elements of the two arrays are closely coupled, this produces an increase in the overall effective length of each element, which affects the frequency response of the surface. As shown in figure 5, the reflection frequency f_R of the surface is shifted by an amount that is approximately proportional to the displacement DS. The frequency response of the surface can similarly be translated by displacing the second array 2 in the X or Z directions, by rotating it about the Z-axis, or by any combination of those movements.

An example of the results that can be achieved with a particular reconfigurable frequency selective surface

will now be described. The particular frequency selective surface consists of two arrays 1,2 of linear dipoles 3, printed in a square lattice on a 0.037mm thick dielectric substrate of dielectric constant 3. 5 geometry of the lattice unit cell is shown in figure 3, wherein L represents the length of the antenna element, W the element's width, and D the side length of the unit cell (equal to the separation of adjacent antenna elements). In the first array 1, L=4.3mm, W=0.4mm and In the second array 2, L=3.25mm, W=0.4mm and D=6mm. 10 Each array is square, having sides of length D=6mm. 20cm, and the separation S between the arrays is about 0.225mm.

The measured and theoretical response of the surface to microwaves of frequency 12-40GHz at both normal incidence and a TE incidence of 45°, with the electric field parallel to the dipoles, is shown in figure 5. By comparison, the variation in the frequency response of a single array with increasing dipole length is shown as a solid line at the top of the graph.

When the two arrays are substantially aligned, with DS in the range 0 to 0.625mm, the frequency response of the surface is similar to that of a single array having the dimensions and lattice arrangement of the first array 1. Resonance takes place at frequencies of about 31GHz and 27GHz for normal and TE:45° states of incidence respectively. A frequency shift takes place as the transverse displacement DS of the second array 2 is

increased, maximum measured frequency shifts of 36% and 22% for normal and TE:45° states of incidence respectively being achieved at a displacement of DS=3mm. At that displacement, the elements 3 of the second array 2 completely fill the gaps between the elements of the first array 1, and so a further increase in the displacement DS has no further effect on the frequency response of the surface.

Reducing the separation S of the arrays, thereby increasing the coupling between the elements, allows greater frequency shifts to be achieved. For example, with a separation of 0.025mm, frequency shifts of up to 60% can theoretically be obtained. The theoretical frequency shift at a separation S of 0.025mm is also shown in figure 5. There is no deterioration in the band widths or band spacing ratio (f_R/f_T) of the surface as the displacement increases and the response of the surface is therefore stable throughout the frequency range.

20 Various modifications of the apparatus described above are, of course, possible. Many different array geometries could be used and each array may consist either of a plurality of conductors on a dielectric substrate, or a perforated plate, or a combination of 25 both. The antenna elements may be dipoles, crossdipoles, tripoles, Jerusalem crosses, squares, open-ended loops or any other type of antenna element. The elements need not necessarily be arranged periodically and the

WO 94/00891 PCT/GB92/01172

arrays may be planar or curved. The frequency selective surface may further consist of two or more closely—coupled arrays of elements, and the respective arrays may either be displaced in a direction parallel to the surfaces of the arrays, or rotated or their separation altered, or the medium separating the arrays may be adjusted (for example, by adjusting its dielectric constant).

The relative displacement of the two arrays may be

controlled in various different ways. For example,

piezoelectric actuators can be used to control the

precise relative movement of the arrays, and the arrays

can be printed directly onto the piezoelectric material.

The frequency selective surface may have piezoelectric

actuators positioned at some sub-areas of its surface,

i.e. not everywhere on its surface. Such an arrangement

could, for example, be used to align a FSS on a satel
lite. Alternatively, the arrays can be mounted at a

small separation and air pumped from the gap between the

arrays to alter their separation.

Another application of the reconfigurable frequency selective surface is to reconfigure the beam associated with grating lobes. Grating lobes are radiated by the frequency selective surface when the wavelength at which the surface is operating is approximately equal to or smaller than the separation of the elements in the surface (the periodicity of the surface). The spatial position of the grating lobes depends in part on the

periodicity of the surface, and since the periodicity can be adjusted by moving one of the arrays relative to the other one, the direction of the beam associated with those lobes can be adjusted simply by altering the relative positions of the arrays. The operating frequency can be kept fixed, and the transmitted or reflected beam can be scanned over a range or adjusted according to the changes in the periodicity, thereby providing a periodicity scan array. Claims:

- A reconfigurable frequency selective surface
 comprising at least two arrays of elements, the arrays
 being arranged in close proximity with one another so
 that elements of a first array are closely coupled with
 elements of a second array adjacent to the first array,
 the first array being displaceable with respect to the
 second array to adjust the frequency response of the
 surface.
- 10 2. A surface as claimed in claim 1, in which the first and second arrays are substantially parallel with one another.
- 3. A surface according to claim 1 or claim 2, in which the elements are conductive elements on a dielectric 15 substrate.
 - 4. A surface according to claim 1 or claim 2, in which the elements are apertures in a conductive substrate.
- A surface according to any one of the preceding claims, in which the first and second arrays have a
 separation of no more than 0.03 wavelengths of the electromagnetic waves having the resonant frequency of the surface.

- 6. A surface according to claim 5, in which the first and second arrays have a separation of no more than 0.003 wavelengths of the electromagnetic waves having the resonant frequency of the surface.
- 7. A surface according to any one of the preceding claims, in which the first array is displaceable relative to the second array in a direction parallel to the surfaces of the arrays.
- 8. A surface according to any one of the preceding
 10 claims, in which the separation of the first array with
 respect to the second array is adjustable.
 - 9. A surface according to any one of the preceding claims, in which the medium separating the arrays is adjustable.
- 15 10. A surface according to any one of the preceding claims, in which the first array is rotatable with respect to the second array.
- 11. A surface according to any one of the preceding claims, in which the elements are parallel linear 20 dipoles.
 - 12. A surface according to claim 11, in which the first array is displaceable with respect to the second array in

the longitudinal direction of the linear dipoles.

- 13. A method of reconfiguring a frequency selective surface comprising at least two arrays of elements arranged in close proximity with one another so that the elements of a first array are closely-coupled with elements of a second array adjacent to the first array, wherein the first array is displaced with respect to the second array to adjust the frequency response of the surface.
- 10 14. A method according to claim 13, in which the first array is displaced relative to the second array in a direction parallel to the surfaces of the arrays.
- 15. A method according to claim 13 or claim 14, in which the separation of the first array with respect to the second array is adjusted.
 - 16. A method according to any one of claims 13 to 15, in which the medium separating the arrays is adjusted.
- 17. A method according to any one of claims 13 to 16, in which the first array is rotated with respect to the second array.
 - 18. A method according to any one of claims 13 to 17, in which the array elements are parallel linear dipoles and

the first array is displaced in the longitudinal direction of the linear dipoles.

19. A method of reconfiguring a beam associated with a grating lobe, wherein the periodicity of a reconfigurable frequency selective surface according to any one of claims 1 to 12 is adjusted by altering the relative positions of the first and second arrays of the frequency selective surface.

SUBSTITUTE SHEET

Fig.2.

SUBSTITUTE SHEET

CURCTITUTE CHEET

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 92/01172

I. CLASSIFI	CATION OF SUBJECT MATTER (if several classification sy	mbols apply, indicate all)*	
	5 H01Q15/00; H01P1/20;	assification and IPC G02B5/26	
		i	
II. FIELDS			
	Minimum Docume		
Classification	on System :	Classification Symbols	
Int.Cl.	5 H01Q; H01P;	G02B	
	Documentation Searched other to the Extent that such Documents a	than Minimum Documentation are Included in the Fields Searched ⁸	
		<i>11</i>	
III. DOCUM	MENTS CONSIDERED TO BE RELEVANT 9		
Category °		ate, of the relevant passages 12	Relevant to Claim No.13
Х	EP,A,O 468 623 (BRITISH AEROSP 29 January 1992		1-3, 7-10, 13-17,19
Υ	see abstract see column 3, line 22 - line 4 1,2 see column 4, line 4 - line 39	•	11,12,18
Y	US,A,4 307 404 (YOUNG)	•	11,12,18
	22 Décember 1981 see column 1, line 38 - line 6 3,7-9	68; figures	
A	GB,A,600 433 (BOOKER) 8 April 1948		1,13,19
	see page 1, left column, line column, line 87; figures 1-6	21 - right	
		-/	
"A" do	al categories of cited documents: 10 occument obtaining the general state of the art which is not onsidered to be of particular relevance	"T" later document published after the intern or priority date and not in conflict with t cited to understand the principle or theor invention	ne application but y underlying the
fi. 60	urlier document but published on or after the international ling date ocument which may throw doubts on priority claim(s) or hich is cited to establish the publication date of another	"X" document of particular relevance: the cla cannot be considered novel or cannot be involve an inventive step "Y" document of particular relevance; the cla	considered to
70* d	ocument referring to an oral disclosure, use, exhibition or ther means	cannot be considered to involve an inven document is combined with one or more ments, such combination being obvious t	tive step when the other such docu-
P de	ocument published prior to the international filing date but after than the priority date claimed	in the art. "&" document member of the same patent fa	nily
i I	TIFICATION		W
Date of th	e Actual Completion of the International Search 26 FEBRUARY 1993	Date of Mailing of this International Sea	
		Signature of Authorized Officer	
Internation	EUROPEAN PATENT OFFICE	ANGRABEIT F.F.K.	

W Door	International Application No				
	MENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)				
Category °	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.			
A .	CONFERENCE PROCEEDINGS 19TH EUROPEAN MICROWAVE CONFERENCE September 1989, LONDON/UK pages 863 - 868 VARDAXOGLOU ET AL. 'SINGLE AND DOUBLE LAYER FSS OF TRIPOLE ARRAYS' see page 865, paragraph 3.2 - page 866; figure 1	1,5,6			
E	GB,A,2 253 519 (LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY) 9 September 1992 see the whole document	1-19			
		-			
	•	1			
		1			
		1			
		[

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

GB 9201172 SA 61614

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 26/02/93

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A-0468623	29-01-92	None	
US-A-4307404	22-12-81	None	
GB-A-600433		None	
GB-A-2253519	09-09-92	None	

THIS PAGE BLANK (USPTO)