



ecture 6: MIMO Channel Characterization

Florian Kaltenberger

### Last lecture



- Wideband channels
  - Wideband vs narrowband channels
  - System theoretic description of wideband channels
  - WSSUS model
  - Condesed parameters
  - Direction channel description

### Wideband channels: definition



- A communication system is narrowband if
  - The symbol duration  $T_s$  is larger than the maximum delay (or the delay spread) in the channel  $\Delta \tau$
  - ⇒ Receiver cannot distinguish different echos
- A communication system is wide-band if
  - The symbol duration  $T_{\rm s}$  is *smaller* than the maximum delay (or the delay spread) in the channel  $\Delta \tau$
  - ⇒ One transmitted symbol can spread over more than one symbol at the receiver

### Stochastic channel characterization



 The autocorrelation function of a stochastic process h(t) is defined as

$$R_h(t,t') = \mathcal{E}\{h(t)h^*(t')\}$$

A stochastic process h(t) is wide-sense stationary (WSS) iff

$$R_h(t,t') = R_h(t-t') = R_h(\Delta t)$$

• The power spectrum  $S_h(\nu)$  of a WSS process h(t) is given by the Fourier transform of the autocorrelation function

$$S_h(\nu) = \mathcal{F}(R_h(\Delta t))$$

### Stochastic channel characterization



• Autocorrelation function of  $H(\nu) = \mathcal{F}(h(t))$ 

$$R_{H}(\nu,\nu') = \mathcal{E}\{H(\nu)H^{*}(\nu')\}$$

• Iff h(t) is WSS then  $H(\nu)$  is uncorrelated scattering (US)

$$R_H(\nu,\nu') = \delta(\nu-\nu')S_h(\nu)$$

## Linear time-variant system



 Linear time-variant systems are characterized by one of the four system functions



# Correlation functions and condensed parameters



## Summary



- In wideband communication systems, multipath propagation results in inter-symbol interference (ISI)
- Wideband channels fade also in frequency, causing frequency-selective fading
- Wideband channels can be mathematically described as linear time-variant systems (LTV)
- Wideband channels are wide-sense stationary (WSS) with uncorrelated scattering (US) iff
  - their second order statistics (autocorrelation function) do not change over time
  - contributions with different delays are uncorrelated

### This lecture



- Multiple-Input Multiple-Output (MIMO) channels
  - Definitions
  - System model
  - Mutual coupling and correlation
  - Double directional channel characterization
  - Angular power spectra
- Channel Sounding
  - Time and frequency domain sounding
  - Directionally resolved measurements
  - Parameter estimation methods

### **Definitions**





SISO: Single-Input Single-Output

SIMO: Single-Input Multiple-Output

MISO: Multiple-Input Single-Output

MIMO: Multiple-Input Multiple-Output

## System Model



### MIMO input-output realtion

$$\mathbf{y}(t) = \int_{-\infty}^{\infty} \mathbf{H}(t, \tau) \mathbf{x}(t - \tau) d\tau + \mathbf{n}(t),$$

#### where

- $\mathbf{x}(t) = [x_0(t), \dots, x_{N_{TX}-1}(t)]^T$  is the transmitted signal
- $\mathbf{n}(t) = [n_0(t), \dots, n_{N_{\mathsf{RX}}-1}(t)]^T$  is the AWGN (i.i.d.)
- $\mathbf{y}(t) = [r_0(t), \dots, r_{N_{\mathsf{RX}}-1}(t)]^T$  is the received signal

• 
$$\mathbf{H}(t,\tau) = \begin{bmatrix} h_{0,0}(t,\tau) & \dots & h_{0,N_{\mathsf{TX}}-1}(t,\tau) \\ \vdots & \ddots & \vdots \\ h_{N_{\mathsf{RX}},0}(t,\tau) & \dots & h_{N_{\mathsf{RX}}-1,N_{\mathsf{TX}}-1}(t,\tau) \end{bmatrix}$$

is the MIMO channel response

### Benefits of MIMO



- Array Gain
  - Increase Power (RX)
  - Beamforming (TX)
- Diversity
  - Mitigate Fading
  - Space-Time Coding
- Spatial Multiplexing
  - Multiply Data Rates
  - Spatially Orthogonal Codes

## Capacity of a MIMO channel



Capacity of a MIMO channel

$$C = \log_2 \left[ \det \left( \mathbf{I}_{N_{\mathsf{TX}}} + \frac{\bar{\gamma}}{N_{\mathsf{TX}}} \mathbf{H} \mathbf{R}_x \mathbf{H}^H \right) \right],$$

where  $\bar{\gamma}$  is the mean SNR and  $\mathbf{R}_x$  is the correlation matrix of the transmitted data

• If channel is know at transmitter,  $\mathbf{R}_x$  can be matched to the channel and

$$C = \sum_{k=1}^{\min(N_{\mathsf{Tx}}, N_{\mathsf{Rx}})} \log_2 \left[ 1 + \frac{P_k}{\sigma_n^2} \sigma_k^2 \right],$$

where  $P_k$  is the results of the power allocation (waterfilling),  $\sigma_n^2$  is the noise variance and  $\sigma_k$  are the singular values of the channel **H** 

## Capacity of a MIMO channel (2)



- Capacity C of the channel is proportional to the rank (=number of non-zero singular values) of the channel matrix H
- In the ideal case (full channel rank), capacity C thus scales with min(N<sub>Tx</sub>, N<sub>Rx</sub>)
- The factor  $r = C/\log(\text{SNR})$  is also known as multiplexing gain.

## Diversity and Multiplexing Tradeoff



Fundamental Tradeof in MIMO sytems [1]



### What is included in **H**?



- Depending on the application/ scenario, H might include the effects of the antenna array or not.
- In other words, H models either (1) the physical channel between antennas or (2) the composite channel between the antenna ports.
- In case (2), we must include the effect of *mutual coupling*!

## Mutual coupling (1)



- Radiation pattern of each single antenna is influenced by neighboring antennas [2]
- Changes in the input impedance of the individual antenna elements in an array
- Property of the antenna array only (antenna spacing and layout, antenna design)
- Can be modeled using mutual impedance, S-parameters, coupling matrix, or element pattern

## Mutual coupling (2)



# Individual antenna patterns influenced by mutual coupling for antenna spacings $d = \lambda/4$ and $d = \lambda/2$ [2]



## Mutual coupling (3)



# Individual antenna patterns influenced by mutual coupling for antenna spacings $d=3\lambda/4$ and $d=\lambda$ [2]





### **Definition (Correlation Coefficient)**

For two complex random variables x and y the correlation coefficient  $\rho_{x,y}$  is defined as

$$\rho_{x,y} = \frac{\mathcal{E}\{xy^*\} - \mathcal{E}\{x\}\mathcal{E}\{y^*\}}{\sqrt{\left(\mathcal{E}\{x^2\} - \mathcal{E}\{x\}^2\right)\left(\mathcal{E}\{y^2\} - \mathcal{E}\{y\}^2\right)}}$$

- If x and y have zero mean and unit variance  $\rho_{x,y} = \mathcal{E}\{xy^*\}$
- x and y are uncorrelated if  $\rho_{x,y} = 0$ . Practically  $\rho_{x,y} < 0.5$  is sufficient.

### Correlation Coefficient: Example



What is the minimum distance so that the signals received by two isotropic antennas are uncorrelated?

$$x(t)$$
 Rayleigh fading random variable,  $y(t) = x(t + \Delta t) = x(t + \frac{d}{v})$ 

$$ho_{x,y} = \mathcal{E}\{x(t)y^*(t)\} = J_0^2(2\pi\nu_{\sf max}\Delta t) = J_0^2(2\pi d/\lambda)$$



## Correlation Coefficient: Example



Correlation between antenna elements for non-isotropic power distribution with  $\varphi_0 = 60^\circ$  and linear antenna array [3]





### **Correlation Matrices**



Autocorrelation function of a SISO channel

$$R_h(t,t',\tau,\tau') = \mathcal{E}\left\{h(t,\tau)h^*(t',\tau')\right\}$$

Autocorrelation function of a MIMO channel

$$R_h(t,t',\tau,\tau',n,n',m,m') = \mathcal{E}\left\{h_{n,m}(t,\tau)h_{n',m'}^*(t',\tau')\right\}$$

Can also be written as a correlation matrix

$$\mathbf{R}(t,t',\tau,\tau') = \mathcal{E}\left\{ vec(\mathbf{H}(t,\tau)) \ vec(\mathbf{H}(t',\tau'))^H \right\}$$

• Size of  $\mathbf{R}(t, t', \tau, \tau')$  is  $N_{TX}N_{RX} \times N_{TX}N_{RX}$ 

### The double directional channel description (1)



- Correlation matrices fully describe the second order statistics of the channels
- However, they are dependent on the antenna geometry (number and layout of antennas)
- It is desirable to have an antenna-independent description of the channel

### The double-directional channel description (2)





$$h(t, \tau, \Omega, \Psi) = \sum_{l=0}^{N-1} h_l(t, \tau, \Omega, \Psi)$$
$$h_l(t, \tau, \Omega, \Psi) = |a_l| e^{j\varphi_l} \delta(\tau - \tau_l) \delta(\Omega - \Omega_l) \delta(\Psi - \Psi_l)$$

where  $\Omega$  is the angle of departure and  $\Psi$  is the angle of arrival

### The double-directional channel description (3)



- The MIMO channel matrix can be calculated from the double-directional channel description
- First include the antenna patterns (including mutual coupling)

$$\bar{h}_{n,m}(t,\tau,\varphi,\psi) = G_{\mathsf{Tx}}^{(m)}(\varphi)h(t,\tau,\varphi,\psi)G_{\mathsf{Rx}}^{(n)}(\psi),$$

#### where

- $G_{\mathrm{Tx}}^{(m)}(\varphi)$  is the antenna pattern of the n-th transmit antenna and
- $G_{\rm Rx}^{(n)}(\psi)$  is the antenna pattern of the m-th receive antenna.

### The double-directional channel description (3)



• Then we transform from the angular to the spatial domain

$$\begin{split} h_{n,m}(t,\tau) &= h_{n,m}(t,\tau,\vec{x}_m,\vec{y}_n) \\ &= \iint \bar{h}_{n,m}(t,\tau,\varphi,\psi) e^{2\pi j/\lambda \langle \vec{\zeta},\vec{x}_m \rangle} e^{2\pi j/\lambda \langle \vec{\xi},\vec{y}_m \rangle} \, \mathrm{d}\varphi \, \mathrm{d}\psi, \end{split}$$

#### where

- $\bullet \ \, \vec{\zeta} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} \text{, and } \vec{\xi} = \begin{pmatrix} \cos \psi \\ \sin \psi \end{pmatrix} \text{,}$
- $\vec{x}_0, \dots, \vec{x}_{N_{TX}-1}$  are the transmit antenna locations,
- $\vec{y}_0, \dots, \vec{y}_{N_{\text{DY}}-1}$  are the receive antenna locations, and
- $\langle .,. \rangle$  denotes the scalar product.

### **Angular Power Spectra**



 The full autocorrelation function of a double-direction channel is given by

$$S(t,\tau,\Omega,\Psi,t',\tau',\Omega',\Psi') = \mathcal{E}\left\{h(t,\tau,\Omega,\Psi)h(t',\tau',\Omega',\Psi')^*\right\}$$

 If the channel is WSS-US and also contributions from different directions are uncorrelated<sup>1</sup>

$$S(t,\tau,\Omega,\Psi,t',\tau',\Omega',\Psi') = P(\Delta t,\tau,\Omega,\Psi)\delta(\tau-\tau')\delta(\Omega-\Omega')\delta(\Psi-\Psi')$$

 Equivalently, in this case the correlation function of the MIMO channel (including the antenna array) is WSS in the antenna domain

$$R_h(t, t', \tau, \tau', n, n', m, m') = R_h(\Delta t, \tau, n - n', m - m')\delta(\tau - \tau')$$

<sup>&</sup>lt;sup>1</sup>This assumption is sometimes also called homogeneous

## **Angular Power Spectra**



• For  $\Delta t = 0$  we get the double directional delay power spectrum

$$DDDPS(\tau, \Omega, \Psi) = P(0, \tau, \Omega, \Psi)$$

ullet Integrating over au gives the double directional power spectrum

$$extit{DDPS}(\Omega, \Psi) = \int extit{DDDPS}( au, \Omega, \Psi) ext{d} au$$

• Integrating over  $\Omega$  or  $\Psi$  gives the angular power spectrum at TX or RX

$$APS_{RX}(\Omega) = \int DDPS(\Omega, \Psi) d\Psi$$
  $APS_{TX}(\Psi) = \int DDPS(\Omega, \Psi) d\Omega$ 

## Angular Power Spectra: Example





### References





Lizhong Zheng and David N. C. Tse,

"Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels,"

*IEEE Transactions on information theory*, vol. 49, no. 5, pp. 1073-1096, 2003.



H. Nishimoto, Y. Ogawa, T. Nishimura, and T. Ohgane, "Measurement-based performance evaluation of mimo spatial multiplexing in a multipath-rich indoor environment." *IEEE Trans. Antennas Propag.*, vol. 55, no. 12, pp. 3677–3689, Dec. 2007.



J. Fuhl, A.F. Molisch, and E. Bonek,

"Unified channel model for mobile radio systems with smart antennas."

Radar, Sonar and Navigation, IEE Proceedings, vol. 145, no. 1, pp. 32-41, Feb. 1998.