범주형 데이터 다루기: Label Encoding & One-Hot Encoding

Label Encoding

Food Name	Categorical #	Calories	
Apple	1	95	
Chicken	2	231 50	
Broccoli	3		

One Hot Encoding

Apple	Chicken	Broccoli	Calories	
1	0	0	95	
0	1	0	231	
0	0	1	50	

인코딩을 사용하는 이유

- 분석을 위해 사용하는 모델들은 수치형 데이터만 다룰 수 있음
- 따라서, String형으로 된 범주형 변수는 모델이 인식할 수 있도록 일련의 변환 과정을 거쳐야 함 -> 이러한 과정을 인코딩(Encoding)이라고 함

범주형 데이터란?

• 수치형 변수 - 연령 변수와 같이 어떠한 범위 내 수치 값을 갖는 변수

- 범주형 변수 성별 변수와 같이 고정된 목록 중 하나의 값을 갖는 변수
 - 명목형 변수(Nominal) 성별과 혈액형처럼 값이 달라짐에 따라 좋거나 나쁘다고 할 수 없는 경우
 - 。 순서형 변수(Oridinal) 학점과 만족도 조사처럼 값이 커지거나 작아짐에 따라 좋거나 나쁘다고 할 수 있는 경우

```
1 import pandas as pd
2 import numpy as np
3
4 data = {
5 "Temperature": ["Hot", "Cold", "Very Hot", "Warm", "Hot", "Warm", "Warm", "Hot", "Hot", "Cold"],
6 "Color": ["Red", "Yellow", "Blue", "Blue", "Red", "Yellow", "Red", "Yellow", "Yellow", "Yellow"],
7 "Target": [1, 1, 1, 0, 1, 0, 1, 0, 1, 1]}
8
9 df = pd.DataFrame(data, columns = ["Temperature", "Color", "Target"])
10 df
```

$\overline{\Rightarrow}$

	Temperature	Color	Target
0	Hot	Red	1
1	Cold	Yellow	1
2	Very Hot	Blue	1
3	Warm	Blue	0
4	Hot	Red	1
5	Warm	Yellow	0
6	Warm	Red	1
7	Hot	Yellow	0
8	Hot	Yellow	1
9	Cold	Yellow	1

```
1 # Label Encoding
2 from sklearn.preprocessing import LabelEncoder
3
4 print(df['Temperature'].unique())
5 print()
6
7 # LabelEncoder를 객체로 생성
8 encoder = LabelEncoder()
9
10 # fit, transform 메소드를 통한 레이블 인코딩
11 encoder.fit(df['Temperature'])
12
13 df["Temp_Label_Encoder"] = encoder.transform(df['Temperature'])
14 df
```

['Hot' 'Cold' 'Very Hot' 'Warm']

	Temperature	Color	Target	Temp_Label_Encoder
0	Hot	Red	1	1
1	Cold	Yellow	1	0
2	Very Hot	Blue	1	2
3	Warm	Blue	0	3
4	Hot	Red	1	1
5	Warm	Yellow	0	3
6	Warm	Red	1	3
7	Hot	Yellow	0	1
8	Hot	Yellow	1	1
9	Cold	Yellow	1	0

- 각 카테고리를 0과 1로 구성된 벡터로 표현하는 기법
 - 이때, 카테고리의 수만큼 벡터가 생성되므로 각 카테고리가 새로운 변수가 되어 표현되며, 숫자의 크고 작은 특성(중요도)을 없앨 수 있음
 - 카테고리가 너무 많은 변수의 경우 데이터의 cardinality를 증가시켜 모델의 성능을 저하시킬 수 있다는 단점이 있음

```
1 from sklearn.preprocessing import OneHotEncoder
2
3 oh = OneHotEncoder()
4 encoder = oh.fit_transform(df['Temperature'].values.reshape(-1,1)).toarray() # 인코딩하기 전에 2차원 데이터로 변환
5
6 df_OneHot = pd.DataFrame(encoder, columns=["Temp_OneHot_Encoder_" + str(oh.categories_[0][i]) for i in range (len(oh.categories_[0]))])
7
8 df1 = pd.concat([df, df_OneHot], axis=1)
9 df1
```


,	Temperature	Color	Target	Temp_Label_Encoder	Temp_OneHot_Encoder_Cold	Temp_OneHot_Encoder_Hot	Temp_OneHot_Encoder_Ve
() Hot	Red	1	1	0.0	1.0	
1	Cold	Yellow	1	0	1.0	0.0	
2	2 Very Hot	Blue	1	2	0.0	0.0	
3	3 Warm	Blue	0	3	0.0	0.0	
4	l Hot	Red	1	1	0.0	1.0	
Ę	5 Warm	Yellow	0	3	0.0	0.0	
6	. Warm	Red	1	3	0.0	0.0	
7	7 Hot	Yellow	0	1	0.0	1.0	
8	B Hot	Yellow	1	1	0.0	1.0	
4							>

~ <<<참조자료 사이트>>>

- 1.메타, 메타러닝이란 뭘까?
- 2."하나를 알려주면 열을 안다" [특별기획 AI 2030] ② 메타학습
- 3.EDA (Exploratory Data Analysis) 탐색적 데이터 분석
- 4. <u>범주형 데이터 다루기 : Encoding 기법 (1)</u>
- 5.데이터 전처리: 레이블 인코딩과 원핫 인코딩
- 6. 범주형 데이터 다루기: Encoding 기법 (2)
- 7.Confusion Matrix(혼돈 행렬)과 분류 성능 평가 지표
- 8.파이썬 머신러닝 완벽가이드 평가, 정확도

- 9.파이썬에서의 머신러닝 모델 평가 방법
- 10.평가(정확도, 오차 행렬, 정밀도, 재현율)
- 11.의미를 이해하는 통계학과 데이터 분석
- 12.ROC Curve
- 13.<u>파이썬 ROC 커브, AUC 면적 구하기 예제</u>