

Query Optimization

Overview of Query Optimization

- \bullet *Plan*: *Tree of R.A. ops, with choice of alg for each op.*
 - Each operator typically implemented using a `pull' interface: when an operator is `pulled' for the next output tuples, it `pulls' on its inputs and computes them.
- Two main issues in query optimization:
 - For a given query, what plans are considered?
 - Algorithm to search plan space for cheapest (estimated) plan.
 - How is the cost of a plan estimated?
- * Ideally: Want to find best plan. Practically: Avoid worst plans!
- We will study the System R approach.

Highlights of System R Optimizer

Impact:

- Most widely used currently; works well for < 10 joins.
- Cost estimation: Approximate art at best.
 - Statistics, maintained in system catalogs, used to estimate cost of operations and result sizes.
 - Considers combination of CPU and I/O costs.
- Plan Space: Too large, must be pruned.
 - Only the space of *left-deep plans* is considered.
 - Left-deep plans allow output of each operator to be <u>pipelined</u> into the next operator without storing it in a temporary relation.
 - Cartesian products avoided.

Schema for Examples

Sailors (*sid*: integer, *sname*: string, *rating*: integer, *age*: real) Reserves (*sid*: integer, *bid*: integer, *day*: dates, *rname*: string)

- Similar to old schema; rname added for variations.
- * Reserves:
 - Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
- Sailors:
 - Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Motivating Example

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5

bid=100 rating > 5

sid=sid

Reserves Sailors

RA Tree:

- **Cost:** 500+500*1000 I/Os
- By no means the worst plan!
- Misses several opportunities: selections could have been `pushed' earlier, no use is made of any available indexes, etc.
- * Goal of optimization: To find more efficient plans that compute the same answer.

Alternative Plans 1 (No Indexes)

- (Scan; write to temp T1)

 (Sort-Merge Join)

 (Scan; rating > 5 write to temp T2)

 Reserves Sailors
- * Main difference: push selects.
- With 5 buffers, cost of plan:
 - Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats, uniform distribution).
 - Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
 - Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250)
 - Total: 3560 page I/Os.
- If we used BNL join, join cost = 10+4*250, total cost = 2770.
- * If we 'push' projections, T1 has only *sid*, T2 only *sid* and *sname*:
 - T1 fits in 3 pages, cost of BNL drops to under 250 pages, total < 2000.

Alternative Plans 2 With Indexes

- * With clustered index on *bid* of Reserves, we get 100,000/100 = 1000 tuples on 1000/100 = 10 pages.
- INL with <u>pipelining</u> (outer is not materialized).
 - -Projecting out unnecessary fields from outer doesn't help.
- v Join column *sid* is a key for Sailors.
 - -At most one matching tuple, unclustered index on sid OK.
- v Decision not to push *rating>5* before the join is based on availability of *sid* index on Sailors.
- v Cost: Selection of Reserves tuples (10 I/Os); for each, must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

Cost Estimation

- For each plan considered, must estimate cost:
 - Must estimate *cost* of each operation in plan tree.
 - Depends on input cardinalities.
 - We've already discussed how to estimate the cost of operations (sequential scan, index scan, joins, etc.)
 - Must also estimate size of result for each operation in tree!
 - Use information about the input relations.
 - For selections and joins, assume independence of predicates.

Statistics and Catalogs

- Need information about the relations and indexes involved. *Catalogs* typically contain at least:
 - # tuples (NTuples) and # pages (NPages) for each relation.
 - # distinct key values (NKeys) and NPages for each index.
 - Index height, low/high key values (Low/High) for each tree index.
- Catalogs updated periodically.
 - Updating whenever data changes is too expensive; lots of approximation anyway, so slight inconsistency ok.
- More detailed information (e.g., histograms of the values in some field) are sometimes stored.

Size Estimation and Reduction Factors

SELECT attribute list FROM relation list ❖ Consider a query block: | WHERE term1 AND ... AND termk

- Maximum # tuples in result is the product of the cardinalities of relations in the FROM clause.
- * *Reduction factor (RF)* associated with each *term* reflects the impact of the term in reducing result size. Result cardinality = Max # tuples * product of all RF's.
 - Implicit assumption that *terms* are independent!
 - Term col=value has RF 1/NKeys(I), given index I on col
 - Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))
 - Term col>value has RF (High(I)-value)/(High(I)-Low(I))

Summary

- Query optimization is a critical task in relational RDBMSs
- * Must understand query optimization in order to fully understand the performance impact of a given database design (relations, indexes) on a workload (set of queries).
- Two parts to optimizing a query:
 - Consider a set of alternative plans.
 - Must prune search space; typically, left-deep plans only.
 - Must estimate cost of each plan that is considered.
 - Must estimate size of result and cost for each plan node.
 - *Key issues*: Statistics, indexes, operator implementations.