

BLACKBOX

ANOMALÍA

o1 ATÍPICO

NO ESPERADO

03 INUSUAL

ANOMALY DETECTION

GRAPH + TIME SERIES

Forecasting

Imputation

Anomaly Detection

Classification

APPLICATION RAG

¿QUÉ ES UNA SERIE DE TIEMPO?

¿QUÉ ES UNA SERIE DE TIEMPO?

TS ANOMALY DETECTION

TS ANOMALY DETECTION

ANOMALY DETECTION TOOLKIT (ADTK)

ANOMALY DETECTION TOOLKIT (ADTK)

```
from adtk.detector import ThresholdAD
threshold_ad = ThresholdAD(high=30, low=15)
anomalies = threshold_ad.detect(s)
```


- SVM
- ISOLATION FOREST
- AUTOENCODER

SVM

Isolation Forest

Fei Tony Liu, Kai Ming Ting Gippsland School of Information Technology Monash University, Victoria, Australia {tony.liu},{kaiming.ting}@infotech.monash.edu.au Zhi-Hua Zhou National Key Laboratory for Novel Software Technology Nanjing University, Nanjing 210093, China zhouzh@lamda.nju.edu.cn

AUTOENCODERS

AEON (PYTHON)

CREDIT CARD
FRAUD
DETECTION
DATASET

github.com/sanchezcarlosjr/jaulacon20

24-anomaly-detection

CONCLUSIONES

LOS LLMS NO SOPORTAN TS

TS AYUDAN A
TOMAR
DECISIONES EN
TIEMPO REAL

REFERENCES

CAVIN, A. (2022). REAL-TIME ANOMALY
DETECTION WITH PYTHON - TOWARDS
DATA SCIENCE. MEDIUM. RETRIEVED FROM
HTTPS://TOWARDSDATASCIENCE.COM/RE
AL-TIME-ANOMALY-DETECTION-WITHPYTHON-36E3455E84E2

COMMUNITY CHANNELS. (2024, MAY 31).
RETRIEVED FROM HTTPS://WWW.AEONTOOLKIT.ORG/EN/LATEST/INDEX.HTML

JIN, M., KOH, H. Y., WEN, Q., ZAMBON, D., ALIPPI, C., WEBB, G. I., ...PAN, S. (2028). A SURVEY ON GRAPH NEURAL NETWORKS FOR TIME SERIES: FORECASTING, CLASSIFICATION, IMPUTATION, AND ANOMALY DETECTION. ARXIV, 2807.08759.

RETRIEVED FROM

HTTPS://ARXIV.ORG/ABS/2807.08759V2

FLATICON. (2024, MAY 31). RETRIEVED FROM HTTPS://WWW.FLATICON.COM

