

AIRBUS

Al Driven Anomaly Detection, Localization and Quantification of Dents on Aircraft Surface

February 2025

Contents

O3 Problem Statement

104 Technical Proposal

Introducing AlonOS

AlonOS is at the forefront of AI innovation and dedicated to revolutionizing how businesses operate and thrive in the digital age. With a commitment to excellence and a passion for driving meaningful change, we specialize in delivering cutting-edge AI solutions that empower organizations to reinvent and optimize their business processes.

Al Native, Domain Led, Agile & Flexible, Outcome Driven

Our founders | Visionaries with an established tenure of 50+ years

Rahul Bhatia
Group Managing Director,

InterGlobe

Promoter and Managing
Director, InterGlobe Aviation
Limited (IndiGo), India's largest
and fastest growing airline

CP Gurnani
Prominent Global IT figure, Ex-CEO
MD Tech Mahindra

50+ years of experience in leading and growing IT business globally Led the turnaround of Satyam to make Tech M a \$7 Bn organization

Our Goal is to build Intelligent Enterprises powered by IntelliOS

AlonOS Capabilities

AI-led Products and Platforms

- Whilter Video
 Personalisation
- Offer and Order management
- Travel and Lifestyle platform
- Cargo- Dynamic Pricing and Revenue management

Data Intelligence Solutions

- Data Advisory
- Data Accelerators
- Data Migration factory
- Data capabilities

Custom IT solutions

- Saas/ Paas
 Implementation and
 Integration services
- Mobile application development
- Legacy offload
- Smart-Infra management

AI-led customer experience

- Conversational AI- Voice,
 Messaging and emailautomation
- Customer 360,
 Interaction analytics
- Domain centric co-pilots

AICORE – Engineering Data Fabric

Building the foundation for MRO

Maintenance Planning Data	S ervice B ulletins	Airworthiness Directives	Aircraft Maintenance Manual	Aircraft Registration	Forecasts / Schedules	Aircraft Maintenance Plan	Engineering Documents
Aircraft / Engine Emitted Data	Compliance	MOD's Compliance Status			Work Packages	Digital Archives	Inventory
Reliability Assessment			OEMS	Airlines			Quality Assurance / Reliability
Lease Type			Lessors	Airpot ^S			Workforce
Leasing Agreement	Lease Return Conditions	Credits / Claims		N.	Maintenance Execution	Tech & Cabin Logs	Defects Management
Lease Value	Audits	Invoice / Payments	Aircrafts / Compliance Records	CCTV/Video Footages	Capability Register	Workorder & Digital Tasks	Aircraft Events [Delays & AOG's]

Al augmented 3D Structured Light Scan for Aircraft Dent Detection and Measurement

Unplanned Maintenance cost airlines in \$20.2B in 2018

Inspection
Process

Key Challenges in Accurate Detection of Aircraft Dents

Dents with complex curves and geometries or in hard to reach areas are tough to measure accurately

Poorly documented dents compromise aircraft structural integrity

Non compliance can lead to fines or grounding

Current Damage Assessment Process

Inspection / Localization

- An aircraft is manually searched for dents / scratches
- To identify where the dent is standardized reference systems, zones and the aircrafts' structural components like stringers (longitudinal members) and frames (transverse) are used

Quantification

 Trace paper and markers are used to mark the size of dent

Documentation

 Results are documented and maintenance ticket is created

Assessment

An assessment of extent of damage (e.g. Class II Damage) helps determine next steps

Sensor Based Methods

Laser Scanning

3D Structured Light

Piezoelectric Sensors

Ultrasonic Testing

A laser beam is projected onto the surface; sensors capture the reflection and create a 3D map. Dent depth is measured based on distortion in the laser beam. Al models analyze the 3D data for detecting dents, offering high precision and consistency.

 A known pattern is projected onto the aircraft surface, and cameras capture how it deforms.
 This creates a 3D point cloud representing the surface geometry, allowing dent detection.

 Al can analyze the 3D model for accurate dent measurements. Sensors generate a voltage when pressed into the dent. This indirect measure of depth is determined by analyzing the force needed to deform the dented area.

 Al interprets sensor data, compensating for material variations and improving depth estimation accuracy.

Accuracy: High

Cost: High

High-frequency sound waves are sent into the surface; reflections from dents are analyzed to calculate the depth. Al interprets ultrasonic data to identify patterns in waveforms that indicate dent depths.

Accuracy: Very High

Cost: High

Accuracy: High **Cost:** Medium

Accuracy: Very High

Cost: Very High

Considerations and Challenges for Aircraft Dent Detection

Distance from Camera to Dent:

- Resolution Limitation: Decreased pixel coverage reduces detail and precision.
- Perspective Distortion: Increases with distance, misrepresenting the dent's shape and size.
- Depth of Field: Limited depth of field may cause blurring, complicating measurement.
- Light and Shadows: Distance impacts lighting, leading to shadows and incorrect estimations.

Dents Located at Edges:

- Geometric Distortion: Curved surfaces near edges distort dent appearance.
- Camera Angle & Field of View: Angling causes incomplete data, reducing accuracy.
- Edge Artifacts: Lens distortion at edges interferes with algorithms.
- Inconsistent Lighting: Edges alter light reflection, confusing depth estimation.
- Identifying rivets holes versus dents when present in the same scan

Curvature Impact:

- Managing uneven surfaces (curved, flat, irregular) and overlapping objects
- Non Uniform Depth Perception: Curved surfaces disrupt accurate depth reading.
- Distortion Due to Camera Angle: Curvature leads to foreshortening, affecting accuracy.
- Lighting & Shadow Effects: Uneven lighting and shadows complicate depth interpretation.

PoC Focus

Problem Statement

This project aims to digitally transform the process of detecting, localizing and quantifying features on aircraft surfaces.

Objectives

Develop an AI-driven solution that can process high quality 3D Point cloud data from aircraft surface scans to detect and classify rivets, uncategorized object and dents and classify them into Class 1, 2 or 3 based on depth.

Acceptance Criteria

Detection Accuracy: Detect Dents, Rivet Holes and uncategorized objects

Depth Quantification Precision: Minimum 90% precision for depth measurement with an acceptable tolerance of ±10%

3D Bounding Box Accuracy: Localization of detected objects within 3D bounding boxes with minimal error

Dent Classification: Correct classification of dents into Class 1,2,3 based on depth and specified criteria

Governance

We propose weekly meetings to ensure alignment and transparency for progress updates, challenges and model performance

Step 0: Access Provisioning and Software Requirements

• Access: Collaborate with Airbus to provision access to required systems and software to access 3D point cloud data

Step 1: Data Processing & Preprocessing

- Noise Removal: Raw point cloud data captured from aircraft may contain noise due to scanning imperfections
 (reflections, shadows, gaps). We will explore using algorithms like Statistical Outlier Removal or radius-based filtering
 to remove outliers and ensure clean data.
- **Surface Normal Estimation**: To better understand the geometry of the surface, we'll explore using a surface normal for each point in the cloud, helping determining deviations from a smooth surface (i.e. potential dents or anomalies)
- **Segmentation**: Explore a multi-stage segmentation approach starting with unsupervised clustering (**DBSCAN**) focusing to identify broad anomaly regions. This approach will be used if the ratio of rivet holes is high.
- **Data Annotation**: The annotation will cover all the dents, objects, and rivets to obtain labeled data that will be used for training

Step 2: Al Model Development

Dent Identification & Localization

- We will explore Convolutional Neural Networks, PointNet++, DGCNN or other deep learning models adapted for 3D point cloud data. These models learn spatial features from the point cloud, allowing for accurate segmentation of dents even on complex, curved surfaces.
 Segmentation provides pixel-level precision in 3D, crucial for dent depth analysis.
- Each detected object will be enclosed in 3D bounding boxes with key values (center coordinates, width, height, depth).

Dent Depth Quantification

We will explore using the difference between the baseline (smooth surface) and the dented area to measure depth accurately.

- We will attempt to use mathematical surface fitting and distance metrics to quantify the depth in microns.
- To predict depth directly based on point cloud- we will attempt **depth regression** models and then explore **sensitivity analysis** for outlier points and irregularities as well as real-time comparison with known rivet hole standards to improve accuracy in depth measurement.

Step 2 : Al Model Development

Classification of Dent

Based on the criteria mentioned about depth we will use advanced decision trees or rule-based AI for classification of Class 1,2 and 3 dents.

Class 1 Dent: Dents \leq 100 µm deep, outside-in, with smooth contours and a ratio A/D \geq 25.

Class 2 Dent: Dents \leq 500 µm deep, applicable to dents both inside-out and outside-in, with rules such as skin thickness \leq 4mm and undamaged areas around the dent.

Class 3 Dent: Any dent that exceeds 500 µm or does not fulfill Class 1 and 2 criteria.

Model Exploration

In cases where model efficacy is uncertain, we will explore additional AI models and techniques such as **anomaly detection**, as well as different models like **DBSCAN**, **Support Vector Machines** (SVM), and Random Forest to refine detection and classification.

Step 3 : Testing & Validation

Data Splitting

We will split the dataset provided by Airbus as training and testing set for rigorous validation.

Performance Metrics Models will be evaluated based on their ability to:

- Accurately classify dents as per categorization criteria
- Quantify depth with high precision
- Detect rivet holes and other features with minimal false positives.
- Introduce a **Confusion matrix** to measure the precision, recall and F1 score of each class of dent detection to provide more insights into the performance of model.

User Acceptance Testing

Testing to be done on additional data by Airbus for validation and check.

Step 4 : Delivery & Deployment

The final solution will be deployed as an API capable of accepting 3D point cloud data and basic UI/UX returning:

- Detected features (Dents and rivet holes)
- Depth measurements for each dent .
- Localization of detected objects
- Classification of each dent into Class 1, 2, or 3.

Key Milestones

Step 1	Final project strategy & Architecture	1 week
Step 2	Feature identification / detection	4 weeks
Step 3	Localisation of the features	2 week
Step 4	Dent Measurements	4 week
Step 5	UI , UX	1 week
Step 6	APIs and Software Interface	1 week
Step 7	Documentation & Handover	1 week

Dependencies & Assumptions

- Availability of software for managing 3D point cloud data.
- To achieve higher model accuracy, we may require additional training data with higher variation or variety of data which would include different structural features (curved surface etc.) and higher volume of data for model improvement.
- As thickness data will not be provided therefore specific ratios criteria D/T will be excluded for the classification purpose.
- Airbus Team may perform UAT on additional data from their end for model validation and accuracy check.

Challenges We Are Attempting to Solve

Managing uneven surfaces (curved, flat, irregular) and overlapping objects: A possible approach is using multi-object detection techniques like **YOLOv4** which can detect objects in crowed spaces or **feature fusion** techniques to combine features from multiple layers of the model to enhance detection

Identifying rivets versus dents when present in the same scan: Can explore an advanced, multi-stage segmentation (apply broader segmentation initially to classify anomalies and non-anomalies to isolate regions of interest and then more refined segmentation like supervised learning and leveraging manually labeled data. Furthermore, **hybrid segmentation** methods combining both classical algorithms and deep learning models can be evaluated to improve accuracy in segmenting the closely spaced objects.

Sample 3-D Point Cloud Data of Aircraft Surface

Aircraft component surface with rivets

Aircraft component surface with dent

Sample Annotated Data of Aircraft Surface

Point Cloud data with Rivets

Sample Synthetic Data & Annotation of Aircraft Surface

Point Cloud data with curved surface

Mesh data with flat surface

Thank you!

