Devoir à la maison n°16 : corrigé

Problème 1 – Intégrales de Wallis et formule de Stirling

Partie I - Intégrales de Wallis

- 1. Le calcul ne pose aucune difficulté, on trouve $I_0=\frac{\pi}{2}$ et $I_1=1$.
- 2. On intègre par parties

$$\begin{split} I_{n+2} &= [-\cos(t)\sin^{n+1}(t)]_0^{\frac{\pi}{2}} + (n+1)\int_0^{\frac{\pi}{2}}\cos^2(t)\sin^n(t)dt \\ &= (n+1)\int_0^{\frac{\pi}{2}}(1-\sin^2(t))\sin^n(t)dt \\ &= (n+1)\int_0^{\frac{\pi}{2}}(\sin^n(t)-\sin^{n+2}(t))dt \\ &= (n+1)I_n - (n+1)I_{n+2} \end{split}$$

D'où la relation de récurrence,

$$\forall n \in \mathbb{N}, (n+2)I_{n+2} = (n+1)I_n$$

3. D'après la relation de récurrence établie précédemment :

$$\begin{split} I_{2n} &= \frac{(2n-1)\times(2n-3)\times\cdots\times3\times1}{(2n)\times(2n-2)\times\cdots\times4\times2} I_0 \\ &= \frac{(2n)\times(2n-1)\times(2n-2)\times(2n-3)\times\cdots\times4\times3\times2\times1}{\left[(2n)\times(2n-2)\times\cdots\times4\times2\right]^2} I_0 \\ &= \frac{(2n)!}{\left[2^nn!\right]^2} I_0 = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2} \end{split}$$

De la même façon,

$$\begin{split} I_{2n+1} &= \frac{(2n) \times (2n-2) \times \dots \times 4 \times 2}{(2n+1) \times (2n-1) \times \dots \times 5 \times 3} I_1 \\ &= \frac{\left[(2n) \times (2n-2) \times \dots \times 4 \times 2 \right]^2}{(2n+1) \times (2n) \times (2n-1) \times (2n-2) \times \dots \times 5 \times 4 \times 3 \times 2} I_1 \\ &= \frac{\left[2^n n! \right]^2}{(2n+1)!} I_1 = \frac{2^{2n} (n!)^2}{(2n+1)!} \end{split}$$

4. Puisque $\forall t \in [0, \frac{\pi}{2}], 0 \leq \sin(t) \leq 1$, on a

$$\forall n \in \mathbb{N}, \sin^{n+1}(t) \leqslant \sin^n(t)$$

Ainsi après intégration sur le segment $[0, \frac{\pi}{2}]$, $I_{n+1} \leqslant I_n$. La suite $(I_n)_{n \in \mathbb{N}}$ est donc décroissante. On a donc en particulier,

$$\forall n \in \mathbb{N}, I_{n+2} \leqslant I_{n+1} \leqslant I_n$$

Soit encore, d'après la relation de récurrence obtenue ci-dessus,

$$\forall n \in \mathbb{N}, \frac{n+1}{n+2}I_n \leqslant I_{n+1} \leqslant I_n$$

5. Par une récurrence sans difficulté, on prouve à l'aide de l'inégalité précédente que pour tout n positif, $I_n > 0$. D'après la question précédente,

$$\forall n \in \mathbb{N}, \frac{n+1}{n+2} \leqslant \frac{I_{n+1}}{I_n} \leqslant 1$$

De plus,

$$\lim_{n\to+\infty}\frac{n+1}{n+2}=1$$

d'où, en appliquant le théorème d'encadrement,

$$\lim_{n\to +\infty}\frac{I_{n+1}}{I_n}=1$$

et donc $I_{n+1} \sim I_n$.

6. On remarque que $\forall n \in \mathbb{N}$,

$$(n+2)I_{n+2}I_{n+1} = (n+1)I_nI_{n+1}$$

La suite $((n+1)I_nI_{n+1})_{n\in\mathbb{N}}$ est donc constante égale à $\frac{\pi}{2}$ car $I_0=\frac{\pi}{2}$ et $I_1=1$.

7. On a $(n+1)I_{n+1}I_n \sim nI_n^2$ d'après ce qui précède. Ainsi,

$$\lim_{n\to +\infty} n I_n^2 = \frac{\pi}{2}$$

Puisque la fonction racine carrée est continue en $\frac{\pi}{2}$ et que I_n est positive,

$$\lim_{n\to +\infty} \sqrt{n} I_n = \sqrt{\frac{\pi}{2}}$$

Ainsi $I_n \sim \sqrt{\frac{\pi}{2n}}$.

Partie II - Formule de Stirling

1. On a
$$v_n = \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right) - 1$$
. Or

$$\ln\left(1+\frac{1}{n}\right) \underset{n\to+\infty}{=} \frac{1}{n} - \frac{1}{2n^2} + \mathcal{O}\left(\frac{1}{n^3}\right)$$

donc $v_n = \mathcal{O}\left(\frac{1}{n^2}\right)$.

- 2. Comme $v_n \sim \frac{1}{n \to +\infty}$ et que la série $\sum_{n\geqslant 1} \frac{1}{n^2}$ converge, la série $\sum_{n\geqslant 1} v_n$ converge. Par télescopage, cela signifie que la suite $(\ln(u_n))_{n\geqslant 1}$ converge vers une limite $\lambda \in \mathbb{R}$. Par continuité de l'exponentielle, la suite $(u_n)_{n\geqslant 1}$ converge vers $l=e^{\lambda}>0$.
- 3. On déduit de la question précédente que n! $\underset{n\to+\infty}{\sim} \frac{n^n e^{-n} \sqrt{n}}{l}$.

En utilisant l'expression factorielle de I_{2n} trouvée en **I.3**, on obtient $I_{2n} \sim \frac{\pi l}{\sqrt{2n}}$. Or d'après la question **I.7**, on a $I_{2n} \sim \frac{\sqrt{\pi}}{n \to +\infty}$. On en déduit $l = \frac{1}{\sqrt{2\pi}}$. Ainsi $n! \sim \sqrt{2\pi} n^n e^{-n} \sqrt{n}$.

SOLUTION 1.

1. En convenant que $A_{n_0-1} = 0$:

$$\begin{split} \sum_{k=n_0}^n \alpha_k B_k &= \sum_{k=n_0}^n (A_k - A_{k-1}) B_k \\ &= \sum_{k=n_0}^n A_k B_k - \sum_{k=n_0}^n A_{k-1} B_k \\ &= \sum_{k=n_0}^n A_k B_k - \sum_{k=n_0-1}^{n-1} A_k B_{k+1} \\ &= A_n B_n + \sum_{k=n_0}^{n-1} A_k (B_k - B_{k+1}) \\ &= A_n B_n - \sum_{k=n_0}^{n-1} A_k b_k \end{split}$$

- 2. a. La série $\sum b_n$, autrement dit la série $\sum B_{n+1} B_n$, est une série télescopique. Elle est donc de même nature que la suite (B_n) , c'est-à-dire convergente.
 - **b.** Tout d'abord, (A_n) est bornée donc $A_nB_n = \mathcal{O}(B_n)$. Puisque (B_n) converge vers 0, il en est de même de la suite (A_nB_n) .

Ensuite, $A_n b_n = \mathcal{O}(b_n)$ et $\sum b_n$ est une série à termes positifs convergente donc la série $\sum A_n b_n$ converge. On en déduit que la suite de ses sommes partielles converge. La suite de terme général $\sum_{k=n_0}^{n-1} A_k b_k$ converge donc. D'après la question 1, la suite de terme général $\sum_{k=n_0}^{n} a_k B_k$ converge donc en tant que somme de deux suites convergentes. Puisque $\sum_{k=n_0}^{n} a_k B_k$ est la somme de partielle de rang n de la série $\sum a_n B_n$, la série $\sum a_n B_n$ converge également.

- c. Posons $a_n = (-1)^n$ pour $n \ge n_0$. Alors A_n vaut 0, -1 ou 1 suivant la parité de n ou n_0 . En particulier, la suite (A_n) est bornée et on peut donc appliquer le résultat de la question précédente. La série $\sum (-1)^n B_n$ converge donc.
- 3. a. Il s'agit de la somme des termes d'une suite géométrique.

$$\sum_{k=1}^{n} e^{ki\theta} = e^{i\theta} \frac{e^{in\theta} - 1}{e^{i\theta} - 1} = e^{\frac{i(n+1)\theta}{2}} \frac{\sin \frac{n\theta}{2}}{\sin \frac{\theta}{2}}$$

b. Cas $\alpha \leqslant 0$. La suite de terme général $\frac{e^{\mathfrak{n}\mathfrak{i}\theta}}{\mathfrak{n}^{\alpha}}$ ne tend pas vers 0. En effet, $\left|\frac{e^{\mathfrak{n}\mathfrak{i}\theta}}{\mathfrak{n}^{\alpha}}\right| = \mathfrak{n}^{-\alpha} \geqslant 1$ pour tout $\mathfrak{n} \in \mathbb{N}^*$.

Cas $\alpha > 1$. La série $\sum \frac{e^{\pi i \theta}}{n^{\alpha}}$ converge absolument. En effet, pour tout $n \in \mathbb{N}^*$, $\left| \frac{e^{\pi i \theta}}{n^{\alpha}} \right| = \frac{1}{n^{\alpha}}$ et la série de Riemann $\sum \frac{1}{n^{\alpha}}$ converge puisque $\alpha > 1$.

Cas $0 < \alpha \le 1$. On utilise les résultats précédents avec $n_0 = 1$, $\alpha_n = e^{in\theta}$ et $B_n = \frac{1}{n}$. D'après la question 3.a, pour tout $n \in \mathbb{N}^*$,

$$|A_n| = \left| e^{\frac{i(n+1)\theta}{2}} \frac{\sin \frac{n\theta}{2}}{\sin \frac{\theta}{2}} \right| \leqslant \frac{1}{\left| \sin \frac{\theta}{2} \right|}$$

La suite (A_n) est donc bornée. La suite (B_n) est clairement décroissante de limite nulle. La question **2.b** permet alors d'affirmer que la série $\sum \alpha_n B_n$ i.e. la série $\sum \frac{e^{in\theta}}{n^{\alpha}}$, converge. Cette série ne converge pas absolument puisque $\left|\frac{e^{in\theta}}{n^{\alpha}}\right| = \frac{1}{n^{\alpha}}$ et que la série $\sum \frac{1}{n^{\alpha}}$ ne converge pas $(\alpha \leqslant 1)$.

4. Rappelons que pour tout $n \ge n_0$

$$\sum_{k=n_0}^{n} a_k B_k = A_n B_n - \sum_{k=n_0}^{n-1} A_k b_k$$

La suite (B_n) converge vers 0 et (A_n) est bornée donc $\lim_{n\to +\infty}A_nB_n=0.$

Puisque (A_n) est bornée, $A_n b_n = \mathcal{O}(|b_n|)$. Or la série $\sum |b_n|$ converge car $\sum_{n\geqslant n_0} b_n$ est absolument convergente. De plus, la

série $\sum |b_n|$ est à termes positifs donc la série $\sum A_n b_n$ converge (absolument). Ainsi la suite de terme général $\sum_{k=n_0}^{n-1} A_k b_k$ converge.

Il s'ensuit que la suite de terme général $\sum_{k=n_0}^{n} a_k B_k$ converge également i.e. que la série $a_n B_n$ converge.