22.01

Electric Fields

"Action At a Distance"

- Particles that don't physically "touch" can stil have electrostatic forces exchanged
 - How does that work if the particles aren't "touching"?
 - * Answer: electric fields

About This Chapter

- Three goals of this chapter
 - 1. Define **electric field**
 - 2. Learn about analytic methods of describing electric fields
 - 3. Learn about how electric fields can affect charged particles

What is an "Electric Field"?

- $\mathbf{Field} =$ an object where each element in some specified \mathbf{domain} is uniquely mapped to another \mathbf{value}
 - Very similar to the concept behind a function
 - **Domain** = the space over which the field is described
 - The value can be scalar or vector
 - * Scalar = a mathematical object that specifies magnitude
 - · Fields where the $associated\ values$ are scalars are called a scalar field
 - * $\mathbf{Vector} = \mathbf{a}$ mathematical object that specifies magnitude and direction
 - · Fields where the $associated\ values$ are vectors are called a vector field
 - · More abstractly, a **vector** is just a mathematical object that contains many **scalar** values
 - * Scalars and vectors each have systems of operators that define how arithmetic works within their world and between
 - Examples
 - * Temperature field in an oven
 - * Pressure field in a pool

- Electric Field = a vector field that maps individual points in space to electrostatic force per unit charge
 - Mathematically, it looks like this

$$\vec{E} = \frac{\vec{F}}{q_0}$$

- where q_0 is an extremely small, positive charge, and \vec{F} is the electrostatic force exerted on the particle of charge q_0
- Notice that, since q_0 is a positive charge, \vec{E} and \vec{F} must point in the same direction
- The SI unit for electric field is $\frac{\vec{N}}{C}$, which is a **vector** object

Procedure For Figuring Out \vec{E}

- 1. Take a particle of a very small, positive charge q_0
- 2. Place that particle at a point \vec{P} near some charged object O
- 3. Determine the electrostatic force between O and the particle of charge q_0 through empirical means
 - Perhaps measure acceleration and use newtonian mechanics to find \vec{F}
- 4. Calculate \vec{E} at \vec{P} by the following equation

$$\vec{E}_{\vec{P}} = \frac{\vec{F}_{\vec{P}}}{q_0}$$

Why Does q_0 Need to be Small?

- The purpose of q_0 is to detect the strength of \vec{E} at any given point
 - If q_0 were large, it would have a non-negligible affect on the electric field is trying to measure!

Electric Field Lines

- Micheal Faraday came up with the idea
- Electric Field Lines = a way of visualizing the details of the electric field around an object
 - Basically just a series of vectors that float in space
 - The direction of the electric field line is the same as that of the electrostatic force
 - * Result of the mathematical definition of \vec{E}

- Two rules
 - 1. The electric field vector must be tangent to the electric field line through that point and in the same direction
 - 2. If the electric field vectors have tails that lie in a plane perpandicular to said electric field vectors, then the magnitude of \vec{E} is visually present by the relative density of electric field vectors, not by the magnitude of them
- Uniform Electric Field = an electric field where all vectors point in the same direction
- Nonuniform Electric Field = an electric field where vector direction varies from point to point

22.02

Electric Field Due to a Point Charge

• Because the strength of the electric field at any given point is

$$\vec{E} = \frac{\vec{F}}{q_0}$$

• we can substitute our particle of charge q_0 to get a formula to use:

$$|\vec{E}| = \frac{\frac{1}{4\pi\epsilon_0} \frac{qq_0}{r^2}}{q_0}$$

$$|\vec{E}| = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

- ullet This formula allows to calculate the magnitude of the electric field at any given point
 - Note that this formula doesn't use q_0 ; we can calculate \vec{E} independent of any empirical data
- Because forces obey superposition(the permittability of treating a vector sum as representative of the whole), we can demonstrate that the electric field obeys superposition

$$\vec{E} = \frac{\sum \vec{F_i}}{q_0}$$

$$\vec{E} = \frac{\vec{F_1} + \vec{F_2} + \vec{F_3} + \ldots + \vec{F_n}}{q_0}$$

$$\vec{E} = \frac{\vec{F_1}}{q0} + \frac{\vec{F_2}}{q0} + \dots + \frac{\vec{F_n}}{q0}$$

$$\vec{E} = \vec{E_1} + \vec{E_2} + \dots + \vec{E_n}$$

$$\vec{E} = \sum \vec{E_i}$$

22.03

Electric Field Due to a Dipole

- **Dipole** = an arrangement of charged particles defined by two particles of equal but opposite charges that are separated by some distance
- **Dipole axis** = the immaginary line that contains the position of each particle in a dipole
- Question: can we come up with a general formula for some point P along the dipole axis?
 - Answer: yes we can(not a reference to Yo' mama Obama)

Solving the Problem

• Since we know that

$$\vec{E} = \sum \vec{E_i}$$

• and there are only two particles,

$$\vec{E} = \vec{E}_{(+)} + \vec{E}_{(-)}$$

• We can use our formula for calculating \vec{E} in a one particle system

$$|\vec{E}_i| = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

- But, in order to do this, we really should define a more useful variable.
- Imagine a 3-dimensional cartesian coordinate system and orient the dipole axis with the z-axis and the midpoint between the two dipole particles with the origin.
- Then, define d as the distance between the two particles in the dipole. The particles would be located at $(0,0,\frac{d}{2})$ and $(0,0,-\frac{d}{2})$
- Then, define z as the z-coordinate of our point P that lies along the dipole axis

• Then, assuming that the negative particle is at $(0,0,-\frac{d}{2})$,

$$|\vec{E}_{(+)}| = \frac{1}{4\pi\epsilon_0} \frac{q}{(z - \frac{d}{2})^2}$$

$$|\vec{E}_{(-)}| = \frac{1}{4\pi\epsilon_0} \frac{q}{(z + \frac{d}{2})^2}$$

- also note that this assumes that $z \ge -\frac{d}{2}$. If $z < -\frac{d}{2}$, our distances would be negative
- But since the distances are squared anyways, it doesn't turn out to be a problem
- So,

$$|\vec{E}| = \frac{1}{4\pi\epsilon_0} \frac{q}{(z - \frac{d}{2})^2} + \frac{1}{4\pi\epsilon_0} \frac{q}{(z + \frac{d}{2})^2}$$

$$|\vec{E}| = \frac{q}{4\pi\epsilon_0} \left[\frac{1}{(z - \frac{d}{2})^2} + \frac{1}{(z + \frac{d}{2})^2} \right]$$

• This is a bit of a bear to simplify, but you end up with

$$|\vec{E}| = \frac{1}{2\pi\epsilon_0} \frac{qd}{z^3} \frac{1}{\left[1 - (\frac{d}{2z})^2\right]^2}$$

• A common simplification is to assume that $|z| \gg d$. If you assume that, the last fraction tends towards 1, meaning we can omit it

$$|\vec{E}| = \frac{1}{2\pi\epsilon_0} \frac{qd}{z^3}$$

• note that this is a *simplification*—it makes calculations easier but doesn't apply as broadly as the prior equation

A Note About the Solution

- If you notice, our final result features a simple product: qd
 - This is given a special name: electric dipole movement
 - It's symbol is \vec{p}
 - It is a vector quantity, since it's scaling a vector \vec{d} by a scalar q
 - * We didn't treat \vec{d} as a vector in the solution above, but technically it is considered a vector that points towards the positive particle in the dipole
 - It is the dipole moment that changes the electric field strength at distant points
 - * In order to increase \vec{p} , you can
 - · increase q
 - · increase d

$ec{E}$ at Distant Points

• The formula for \vec{E} for distant points on the dipole axis is characterized by $\frac{1}{z^3}$