

Solid Figures

Volume = Base Areax Heyn +

T.S.A =
$$2(lb + bh + hl)$$

L.S.A = $2h(l + b) \sim \rightarrow \text{Para of Four wells}$
Vol. = $l \times b \times h$

T.S.A =
$$6a^2$$
 L.S.A = $4a^2$ Vol. = a^3

C.S.A =
$$2\pi rh$$

T.S.A = $(2\pi r(r+h))$
Vol. = $\pi r^2 h$

Solid Figures

Hemi-sphere

$$C.S.A = 2\pi r^2$$

$$T.S.A = 3\pi r^2$$

$$Vol. = \frac{2}{3}\pi r^3$$

Sphere

C.S.A =
$$4\pi r^2$$

Vol. = $\frac{4}{3}\pi r^3$ W

