Statystyczna analiza danych

Wykład 1

STATYSTYCZNA ANALIZA DANYCH

III semestr studiów inżynierskich w PJATK, 2022/23

Prowadzący: dr hab. Elżbieta Ferenstein

dr Andrzej Sierociński

Cel wykładu - poznanie podstaw analizy danych

- statystyka opisowa
- modelowanie probabilistyczne
- wnioskowanie statystyczne

Tematyka wykładu SAD

- Metody graficzne prezentacji danych jakościowych i ilościowych. Statystyki próbkowe. Histogramy a gęstości prawdopodobieństwa, kwantyle, wykresy kwantylowe.
- Prawdopodobieństwo, niezależność zdarzeń, twierdzenie Bayes'a.
- Zmienne losowe, rozkłady prawdopodobieństwa i ich parametry, wybrane rozkłady prawdopodobieństwa.
- Podstawowe statystyki i ich własności, przedziały ufności, testy parametryczne dla średnich i wariancji jednej i dwu populacji, regresja liniowa jednowymiarowa.

Informacje praktyczne

Kontakt:

elaw@pjwstk.edu.pl asier@pjwstk.edu.pl

Konsultacje: po umówieniu lub po (przed) wykładzie

Wykłady umieszczone są na

ftp/public/elaw/Informatyka dzienne

Ćwiczenia umieszczone są w katalogach Cx na

ftp/public/asier/Informatyka dzienne

Zaliczenie ćwiczeń: skala punktowa: 100 punktów = 90 punktów za 2 kolokwia plus 10 punktów za aktywność (m.in. obecności na ćwiczeniach)

Ocena z ćwiczeń: \geq 91 pkt: bdb; \geq 81pkt: db+; \geq 71: db; \geq 61: dost +; \geq 51: dost.

Ocena dostateczna zalicza ćwiczenia i jest warunkiem dopuszczenia do egzaminu.

Ćwiczenia laboratoryjne - 30% czasu, 70% czasu – ćwiczenia rachunkowe.

Na ćwiczeniach obowiązuje znajomość materiału omawianego na wykładach.

Egzamin: zadania z zakresu wykładu i ćwiczeń.

Wymagania wstępne: Analiza I i II, Matematyka Dyskretna. Software: Excel.

Literatura

Literatura podstawowa

- Jacek Koronacki, Jan Mielniczuk: *Statystyka dla studentów kierunków technicznych i przyrodniczych*, Wydawnictwa Naukowo-Techniczne 2001.
- David S. Moore, George P. McCabe: *Introduction to the Practice of Statistics*, W.H. Freeman&Co., 2000.
- Jay L. Devore: Probability and Statistics for Engineers and the Sciences, 1987.

Literatura uzupełniająca

- Janina Jóźwiak, Jarosław Podgórski: Statystyka od podstaw, PWE, Warszawa 2001(3), wyd. V (VI).
- Przemysław Grzegorzewski i inn.: Rachunek prawdopodobieństwa i statystyka, WSISiZ, Warszawa 2001.
- Amir D. Aczel: Statystyka w zarządzaniu, PWN, Warszawa 2000.
- K. Bobecka, P. Grzegorzewski, J. Pusz: Zadania z rachunku prawdopodobieństwa i statystyki, WSISiZ, Warszawa 2003.
- Mieczysław Sobczyk: Statystyka, PWN 2005.

Podręczniki w wersji elektronicznej (e-booki)

- http://www.stat.rice.edu/~dobelman/textfiles/DistributionsHandbook.pdf
- http://davidmlane.com/hyperstat/index.html

STATYSTYKA OPISOWA

Techniki wstępnej analizy danych i ich prezentacji:

- gromadzenie, przechowywanie danych, analiza danych surowych
- prezentacja danych: tabele, wykresy, parametry liczbowe obliczane dla danych.

Cel:

- charakteryzacja danych w zwięzłej formie odzwierciedlająca pewne ich cechy, np. średni dochód, średnie zużycie paliwa, ..
- odnalezienie różnego rodzaju regularności (nieregularności) ukrytych w danych, zależności między podzbiorami danych.

- Obejrzenie danych surowych nieprzetworzonych,
 niepogrupowanych, niezorganizowanych.
- Poznanie sposobu i celu zebrania danych:
- jaką cechę mierzono (obserwowano) ?,
- w jakich jednostkach ?,
- ile wykonano obserwacji (liczebność zbioru danych), w jakich warunkach – czy nie zgubiono części danych, dane brakujące, czy jest możliwość przekłamań ?
- czy celem zebrania danych ma być odpowiedź na konkretne pytania ?

- □ Cel badania statystycznego: poznanie charakterystyk dużej zbiorowości obiektów (osoby, przedmioty, zjawiska, możliwe wyniki eksperymentów ...) na podstawie obserwacji cech (danych) jedynie niektórych wylosowanych obiektów
- Populacja: zbiór obiektów badanych ze względu na określoną cechę nazywaną zmienną
- Próbka: zbiór cech zbadanych obiektów populacji

Rodzaje i przykłady cech statystycznych

Ilościowe

- Ciągłe: wzrost, waga itp.
- Dyskretne: liczba dzieci, liczba reklamacji itp.

Jakościowe

- O kategoriach uporządkowanych: miasta (małe, średnie, duże), rodziny (bezdzietne, wielodzietne) itp.
- Nominalne: grupa krwi, płeć, kolor oczu itp.

- **Badanie statystyczne pełne** (kompletne, całkowite, wyczerpujące) to badanie oparte o dane obejmujące wszystkie jednostki populacji.
- Badanie statystyczne częściowe (niekompletne, niepełne) to badanie oparte o dane obejmujące wybrane jednostki populacji.
- **Próba** to podzbiór populacji generalnej wykorzystywany w badaniu częściowym.
- **Próba reprezentatywna** to próba wybrana w sposób losowy i mająca dostateczną liczebność.

Aby wyniki badania próby można było odnieść do zbiorowości generalnej (uogólnić) próba <u>musi być</u> reprezentatywna.

Populacja	badana cecha (zmienna)	zebrane dane (próbka)		
zbiór detali	jakość detalu	zbiór jakości zbadanych detali		
zbiór komputerów w sieci	liczba awarii kompu- tera w danym okresie	zbiór liczb awarii wybranych komputerów w danym czasie		
 zbiór projektów przysłanych na konkurs 	ocena projektu	zbiór ocen wybranych projektów		
 zbiór osób w zespole pracowników 	staż pracy	zbiór staży pracy (lat pracy) wylosowanych osób		

Opracowanie materiału statystycznego

- •Szereg szczegółowy (wyliczający) uporządkowany ciąg obserwowanych wartości badanej cechy statystycznej.
- •Szereg rozdzielczy (strukturalny) materiał statystyczny podzielony na grupy (klasy) według wybranego kryterium, zapisany w postaci tabelarycznej, z podaniem liczebności (lub częstości) każdej z wyodrębnionych grup,.
- •Szeregi rozdzielcze są wynikiem operacji grupowania danych.
- W przypadku cechy mierzalnej z małą liczbą wariantów cechy tworzy się szeregi rozdzielcze punktowe.
- •Gdy wariantów jest dużo buduje się szeregi rozdzielcze **przedziałowe**.
- Szereg rozdzielczy cechy mierzalnej opisuje rozkład empiryczny badanej cechy.

Przykład (szereg rozdzielczy punktowy)

Liczba pracowników w poszczególnych przedsiębiorstwach pewnego koncernu wynosi:

```
100; 125; 170; 144; 144; 235; 301; 100; 100; 170; 144; 235; 100; 301; 170; 301; 125; 125; 235, 125:125; 100; 144; 301; 144; 144; 170; 144; 144; 144.
```

Są to tzw. dane surowe. Opisują cechę mierzalną skokową.

Po uporządkowaniu danych (np. rosnąco) dostajemy szereg wyliczający (zapisany 2 wierszach tabeli).

Ponieważ w zbiorze danych mamy tylko 5 wariantów cechy tworzymy szereg rozdzielczy punktowy postaci

Grupa	Liczebność
100	5
125	5
144	9
170	4
235	3
301	4
SUMA	30

Przykład (szereg rozdzielczy przedziałowy)

Powierzchnie użytkowe (w m²) badanych sklepów przedstawia uporządkowany szereg wartości cechy:

```
76; 81; 83; 85; 87; 91; 93; 94; 95; 97; 99; 104; 111; 112; 113; 114; 116; 118; 119; 120; 121; 122; 123; 125; 126; 127; 128; 128; 129; 130; 131; 132; 133; 133; 135; 135; 136; 137; 138; 138; 141; 141; 141; 141; 143; 144; 146; 146; 148; 148; 152; 155; 158; 159; 161; 162; 163; 165; 166; 167; 178; 179; 179; 182; 184; 184; 193, 198; 200.
```

Powierzchnia jest cechą mierzalną ciągłą, dlatego przeprowadzimy grupowanie statystyczne danych tworząc szereg rozdzielczy, z przedziałami klasowymi o rozpiętości 20 m² i początkiem pierwszego przedziału klasowego równym 70 m².

Otrzymany szereg rozdzielczy (liczebności) ma postać:

przedział	70-90	90-110	110-130	130-150	150-170	170-190	190-210
liczebność	5	7	17	21	10	6	3

(przyjęto przedziały lewostronnie domknięte, prawostronnie otwarte)

Szereg rozdzielczy częstości uzyskujemy zastępując liczebności przez odpowiadające im częstości (częstości względne)

częstość = (liczebność grupy) / (liczebność łączna) (
$$w_i = \frac{n_i}{N}$$
)

Szereg rozdzielczy częstości dla prezentowanych danych ma postać

przedział	70-90	90-110	110-130	130-150	150-170	170-190	190-210
częstość	0,07	0,10	0,25	0,30	0,14	0,09	0,04

w ujęciu procentowym

przedział	70-90	90-110	110-130	130-150	150-170	170-190	190-210
częstość	7%	10%	25%	30%	14%	9%	4%

Szeregi rozdzielcze skumulowane

przedział	70-90	90-110	110-130	130-150	150-170	170-190	190-210
liczebność skumulowana	5	12	29	50	60	66	69
przedział	70-90	90-110	110-130	130-150	150-170	170-190	190-210
częstość skumulowana	0,07	0,17	0,42	0,72	0,87	0,96	1,00
przedział	70-90	90-110	110-130	130-150	150-170	170-190	190-210
częstość skumulowana (%)	7%	17%	42%	72%	87%	96%	100%

Przykład. W 30 rzutach kostką sześcienną otrzymano liczby oczek:

wartość (liczba oczek)
 1
 2
 3
 4
 5
 6

 liczność (liczba wystąpień)
 5
 4
 6
 3
 5
 7

 częstość

$$\frac{5}{30}$$
 $\frac{4}{30}$
 $\frac{6}{30}$
 $\frac{3}{30}$
 $\frac{5}{30}$
 $\frac{7}{30}$

Diagram liczebności Wykres słupkowy

Liczba oczek

Wykres kołowy

Metody opisu danych jakościowych

wykres słupkowy, wykres kołowy

Przykład. Liczby studentów w kraju na różnych

kierunkach studiów w roku ak. 1990/91 oraz 1997/98

podane są w tabeli. Wykonamy:

- wstępną analizę danych
- wykresy słupkowe (procentowe, ilościowe)
- wykresy kołowe

Tablica danych

Grupa	rok 199	90/91	rok1997/98		
kierunków	liczba	%	liczba	%	
pedagogiczne	99552	18,3	91100	7,2	
humanistyczne	69088	12,7	110565	8,7	
prawne i nauki społeczne	133824	24,6	566475	44,8	
nauki ścisłe i przyrodnicze	144704	26,6	292110	23,1	
medyczne	81600	15,0	95550	7,6	
pozostałe	15232	2,8	109200	8,6	
ogółem	544000	100,0	1265000	100,0	

Opis danych surowych:

- 2 próbki o licznościach $n_1 = 544000$ oraz $n_2 = 1265000$
- cecha jakościowa: grupa kierunków studiów
- 6 kategorii (atrybutów) cechy
- atrybuty: grupa kierunków pedagogicznych, humanistycznych, medycznych,

Najliczniejsze grupy kierunków:

- nauki ścisłe i przyrodnicze w 1990/91 roku
- prawo i nauki społeczne w 1997/98 roku

Procentowy udział klasy

(liczność klasy / liczność próbki) * 100% = częstość * 100%

Wykres słupkowy

Wykres słupkowy procentowego udziału grup kierunków studiów w roku akad. 1990/91

□ rok 1990/91

Wykres słupkowy procentowego udziału grup kierunków studiów w roku akad. oraz 1997/98

□ rok1997/98

Połączony wykres słupkowy

Wykres kołowy

Wykres kołowy procentowego udziału grup kierunków studiów w roku akad. 1990/91

Kąt wycinka koła dla grupy humanistycznej =

$$0,127 \times 360^{\circ} = 45,72^{\circ}$$

Kąt wycinka koła odpowiadającego określonej kategorii = Liczebność kategorii / liczebność próbki)×360°.

częstość kategorii x 100% =

= (pole wycinka / pole koła) x 100%

Wykres kołowy

Wykres kołowy procentowego udziału grup kierunków studiów w roku akad. 1997/98

Wykresy kołowe

Wykres kołowy procentowego udziału grup kierunków studiów w roku akad. 1990/91

Wykres kołowy procentowego udziału grup kierunków studiów w roku akad. 1997/98

Wykres słupkowy

Przykład

Wykres kołowy

Przykład

Tablica xx. Wartość eksportu krajów członkowskich UE w okresie2006 I-X (ceny bieżące w mld EUR)

Źródło:

Ograniczenia wykresów kołowych:

- można przedstawić jedynie dane procentowe
- w próbce musi być co najmniej 1 obserwacja każdej kategorii (bo łączna suma pól wycinków musi stanowić 100 % pola koła)
- mało czytelne przy dużej liczbie kategorii
- analiza dwóch wykresów kołowych bardziejkłopotliwa niż połączonego wykresu słupkowego.

METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH

Wykresy: diagramy, histogramy, łamane częstości, wykresy przebiegu.

Przykład. W stu kolejnych rzutach kostką sześcienną otrzymano wyniki (próbkę cechy dyskretnej o liczności 100):

522632531253625446164552461443424244 114531565615624552545511225526355414 5514321261216513615662235524

Rozkład liczby oczek w próbce

Wartość (l. oczek) 1 2 3 4 5 6 **Liczność** (l. wystąpień) 16 19 9 17 25 14

Rozkład częstości liczby oczek w próbce

Wartość (I. oczek) 1 2 3 4 5 6 **Częstość** 0,16 0,19 0,09 0,17 0,25 0,14

Zwięzły opis próbki: **rozkład cechy w próbce**, tzn. zapisanie jakie wartości wystąpiły w próbce i ile razy, lub z jaką częstością.

Diagram liczebności

Diagram częstości

Przykład. Wiek 25 osób, które ubezpieczyły się w III filarze emerytalnym w pewnym zakładzie pracy: 30, 49, 33, 35, 37, 20, 31, 30, 36, 46, 39, 40, 38, 41, 35, 37, 24, 27, 36, 43, 45, 25, 32, 29, 28.

- 21 różnych wartości: diagram rozkładu lat nieczytelny.
- Agregacja danych: przedziały wiekowe zawierające
 wszystkie obserwacje, liczba obserwacji w tych przedziałach.

Tabela liczności i częstości

Przedział	Obserwacje	Liczność	Częstość
(19;25]	20,24,25	3	12%
(25;31]	27,28,29,30,30,31	6	24%
(31;37]	32,33,35,35,36,36,37,37	8	32%
(37;43]	38,39,40,41,43	5	20%
(43;49]	45,46,49	3	12%

Histogram częstości wieku

Na osiach poziomych: granice klas wiekowych (przedziałów) wysokości słupków = procentowy udział każdej klasy w próbce

Wysokość słupka = częstość klasy x 100%.
Pole słupka =

stała długość przedziału x częstość x 100

Histogram liczebności: wysokość słupka = liczność klasy

Histogram częstości: wysokość słupka = częstość klasy

Niech $x_1, x_2, ..., x_n$ będzie n – elementową próbką.

Rozstępem z próbki nazywamy liczbę

$$R = x_{max} - x_{min} := x_{(n)} - x_{(1)}.$$

Przy większej liczności próbki (n > 30), w celu ułatwienia analizy danych, wartości liczbowe próbki grupuje się w **klasach** (przedziałach najczęściej o jednakowej długości), przyjmując uproszczone założenie, że wszystkie wartości znajdujące się w danej klasie są identyczne ze środkiem przedziału. W wyniku grupowania otrzymujemy szereg rozdzielczy i histogram.

SZEREG ROZDZIELCZY i HISTOGRAM

Szeregiem rozdzielczym nazywamy ciag par

$$(\bar{x}_i, n_i), i = 1, \ldots, k,$$

gdzie \bar{x}_i jest środkiem i – tej klasy.

Ciąg $\{n_i\}$ nazywamy rozkładem liczności przy danej liczbie klas.

Początkowy wybór długości przedziałów:

$$h = 2.64 \cdot IQR \cdot n^{-1/3}$$

n = liczność próbki

IQR = rozstęp międzykwartylowy = zakres 50% środkowych wartości w próbce (po uporządkowaniu rosnąco)

Długość klasy - h

 $h \cong \frac{R}{k}$, bo musi zachodzić $h \cdot k \ge R$.

Punkty stanowiące granice poszczególnych klas ustala się z dokładnością do $\frac{d}{2}$, gdzie d jest dokładnością pomiaru (lub przyjmuje się przedziały jednostronnie otwarte, aby każdy element próbki należał tylko do jednej klasy).

Oznaczmy przez n_i liczność i – tej klasy. Stąd

$$\sum_{i=1}^k n_i = n.$$

Liczba klas - k.

Liczność próbki n	Liczba klas k
30 - 60	6-8
60 - 100	7 –10
100 - 200	9 –12
200 – 500	11 - 17
500 - 1500	16 - 25

Na ogół nie stosuje się liczby klas k większej od 30.

Praktyczna metoda ustalania liczby klas **k** i szerokości **h** w próbie o liczności **n** i rozstępie **R**

•
$$k = \lfloor \sqrt{n} \rfloor \ lub \lceil \sqrt{n} \rceil$$

•
$$h = \left\lceil \frac{R}{k} \right\rceil$$

- Zalecane jest stosowanie przedziałów grupowania postaci (;] (otwarto - domkniętych)
- Pierwszy przedział może, w razie potrzeby, być domknięty – [;].

Mała długość przedziału to: nieregularność histogramu

Duża długość przedziału to: za duże wygładzenie histogramu

Przy ustaleniu kompromisu pomiędzy zbyt dużym wygładzeniem histogramu (redukcją informacji) a dużą nieregularnością histogramu pomocne są dodatkowe informacje o naturze obserwowanego zjawiska, np. obserwacje z kilku różnych populacji mogą dawać histogramy wielomodalne.

■ Początek histogramu: najmniejsza obserwacja stanowi środek pierwszego przedziału. Uśredniając kilka histogramów o nieznacznie przesuniętych początkach można uniezależnić się od wpływu początku histogramu na jego kształt. Przykład. Wkładka topikowa bezpiecznika o natężeniu znamionowym 20A winna, zgodnie z normą, wytrzymać bez przepalenia się natężenie 28A w ciągu 1 godziny. W celu sprawdzenia zgodności z normą, z partii wkładek topikowych tego typu pobrano losowo 40 sztuk i zanotowano czasy przepalenia się wkładki przy natężeniu prądu 28A. Otrzymano następujące wyniki w minutach:

51 58 64 69 61 56 41 48 56 61 75 55 46 57 70 55 47 62 55 60 54 57 65 60 53 54 49 58 62 59 53 50 58 63 64 59 52 51 65 60

Dla przedstawionej próbki zbudować szereg rozdzielczy oraz narysować histogram i łamaną częstości.

Rozwiązanie.

Zauważmy, że $x_{min} = 41$ oraz $x_{max} = 75$.

Stąd rozstęp z próbki: R = 75 - 41 = 34.

Ponieważ liczność próbki n=40, to wygodnie jest przyjąć liczbę klas $k=7\,$ oraz szerokość klasy h=5.

Tym samym otrzymujemy szereg rozdzielczy:

Nr klasy i	Kla	asa	$\overline{\mathcal{X}}_i$	n_i	W_i	N_{i}	W_{i}
1	40,5	45,5	43	1	0,025	1	0,025
2	45,5	50,5	48	5	0,125	6	0,150
3	50,5	55,5	53	10	0,250	16	0,400
4	55,5	60,5	58	12	0,300	28	0,700
5	60,5	65,5	63	9	0,225	37	0,925
6	65,5	70,5	68	2	0,050	39	0,975
7	70,5	75,5	73	1	0,025	40	1,000

Histogram oraz łamana liczności

WSKAŹNIKI SUMARYCZNE

WSKAŹNIKI POŁOŻENIA (miary położenia, parametry położenia) charakteryzują najbardziej reprezentatywne dane, centralną "tendencję" danych, określają "środek" próbki:

Niech: x_1, x_2, \ldots, x_n - próbka o liczności n.

Wartość średnia w próbce (średnia próbkowa, średnia próbki)

$$\overline{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Przykład. Miesięczny dochód 10-ciu osób (w tys. PLN):

Dochód (PLN)	[1, 1,5]	(1,5, 2]	(2, 2,5]	(2,5, 3]
Liczba osób	2	2	4	2

Średnia na podstawie danych zgrupowanych:

$$\overline{x} = \sum_{i=1}^{k} \frac{n_i \widetilde{x}_i}{n} = \frac{2 \times 1,25 + 2 \times 1,75 + 4 \times 2,25 + 2 \times 2,75}{10} = 2,05$$

Mediana w próbce (mediana próbki, mediana próbkowa)

Niech
$$x_{(1)} \le x_{(2)} \le ... \le x_{(n-1)} \le x_{(n)}$$

uporządkowane w sposób rosnący wartości próbki:

$$x_{(1)} = \min\{x_1, x_2, ..., x_n\}, ..., x_{(n)} = \max\{x_1, x_2, ..., x_n\}$$

$$x_{med} = x_{((n+1)/2)},$$
 gdy n jest nieparzyste

$$\mathbf{x}_{med}$$
 = $x_{((n+1)/2)}$, gdy n jest nieparzyste
 \mathbf{x}_{med} = $\frac{1}{2}(x_{(n/2)} + x_{(n/2+1)})$, gdy n jest parzyste.

Przykład. Miesięczny dochód 11-tu osób:

Dochód (PLN)	2000	2500	3500	19000
Liczba osób	4	4	2	1

Średnie wynagrodzenie tej grupy osób to:

$$\bar{x} = \frac{1}{11}(4 \times 2000 + 4 \times 2500 + 2 \times 3500 + 19000) = 4000$$

2000, 2000, 2000, 2000, 2500, <u>2500,</u> 2500, 2500, 3500, 3500, 19000

Mediana = 2500

Średnia wrażliwa na obserwacje odstające:

 $\overline{x}=4000>3500=x_{(10)},~x_{(11)}=19000$ - średnia nie odzwierciedla "typowego" dochodu.

Mediana odporna (mało wrażliwa) na obserwacje odstające:

 $x_{med} = x_{(6)} = 2500$ - mediana jest lepszą miarą przeciętnego

wynagrodzenia niż średnia

Średnia ucinana (ucięta) (z parametrem k)

$$\overline{x}_{tk} = \frac{1}{n-2k} \sum_{i=k+1}^{n-k} x_{(i)},$$

stosowana gdy wartości odstające są wynikiem błędu (błędne przetworzenie danych lub błędy przyrządów pomiarowych).

Ostrzeżenie: obserwacje odstające mogą być bardzo istotne, np. są wynikiem rozregulowania procesu produkcji

Średnia winsorowska (z parametrem k)

$$\overline{x}_{wk} = \frac{1}{n} \left[(k+1)x_{(k+1)} + \sum_{i=k+2}^{n-k-1} x_{(i)} + (k+1)x_{(n-k)} \right]$$

Stosowana w sytuacjach gdy wartości skrajne (k najmniejszych lub k największych) niepewne co do ich prawdziwych wartości (np. zostały utracone z bazy danych; nie mogły być zaobserwowane w przypadku badania czasu życia lub czasu bezawaryjnej pracy urządzenia gdy eksperymentator ma ograniczony czas obserwowania zjawiska.

Moda – najczęściej występująca wartość (lub wartości) w próbce.

WSKAŹNIKI ROZPROSZENIA (miary rozproszenia,

parametry rozproszenia) charakteryzują rozrzut danych, rozproszenie wartości próbki wokół parametru położenia.

Rozstęp próbki

$$R = x_{(n)} - x_{(1)},$$

Wariancja próbki (w próbce)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2},$$

Przykład. Miesięczny dochód 10-ciu osób (w tys. PLN):

Dochód (PLN)	[1, 1,5]	(1,5, 2]	(2, 2,5]	(2,5, 3]
Liczba osób	2	2	4	2

Wariancja na podstawie danych zgrupowanych:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{k} n_{i} (\widetilde{x}_{i} - \bar{x})^{2} = 0.2889.$$

Odchylenie standardowe w próbce (próbki)

$$s = \sqrt{s^2}$$

Odchylenie przeciętne od wartości średniej

$$d_1 = \frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|$$

Dolny (pierwszy) kwartyl

 Q_1 = mediana podpróbki składającej się z elementów próbki "mniejszych" od mediany x_{med} .

Górny (trzeci) kwartyl

 Q_3 = mediana podpróbki składającej się z elementów próbki "większych" od mediany (w próbce uporządkowanej rosnąco są to elementy występujące na pozycjach po pozycji mediany.

Rozstęp międzykwartylowy

$$IQR = Q_3 - Q_1.$$

WYKRES RAMKOWY (pudełkowy)

ilustruje wzajemne położenie pięciu wskaźników sumarycznych:

$$x_{(1)} = x_{min}, Q_1, x_{med}, Q_3, x_{(n)} = x_{max}.$$

Obserwacja potencjalnie odstająca Z wykresu odczytujemy następujące wskaźniki:

- Q₁ = 0,1 = rzut na oś poziomą lewego boku prostokąta
- Q₃ = 0,7 = rzut na oś poziomą prawego boku prostokąta
- Q₂ = 0,3 = rzut na oś poziomą pionowego odcinka wewnątrz prostokąta
- IQR = długość podstawy prostokąta

Wąsy wykresu ramkowego = linie po obu stronach prostokąta.

Rzut lewego wąsa na oś poziomą = przedział $[x_*, Q_1]$, gdzie

$$x_* = \min\{ x_k: Q_1 - 3/2 \cdot IQR \le x_k \le Q_1 \},$$

podobnie określamy rzut prawego wąsa = przedział $[Q_3,x^*]$, gdzie

$$x^* = \max\{x_k: Q_3 \le x_k \le Q_3 + 3/2 \cdot IQR \}$$

Count = 100

Average = 2,02544

Median = 1,46467

Variance = 3,16395

Standard deviation = 1,77875

Minimum = 0.0150559

Maximum = 8,05684

Range = 8,04179

Lower quartile = 0,638618

Upper quartile = 3,23695

Interquartile range = 2,59833

Coeff. of variation = 87,8206%

Box-and-Whisker Plot

Histogram

Box-and-Whisker Plot

Summary Statistics for RAND1

Count = 100

Average = -0,110696

Median = -0.0516888

Variance = 1,07775

Standard deviation = 1,03815

Minimum = -3,36516

Maximum = 2,26235

Range = 5,62751

Lower quartile = -0,726224

Upper quartile = 0,680553

Interquartile range = 1,40678

Stnd. skewness = -1,86072

Coeff. of variation = -937,836%

Box-and-Whisker Plot

Box- and -W his ker Plot

