The shortest vector problem in 3-D

February 3, 2018

In the first version, we assume that we have vectors $\mathbf{u} = (1,0,0)$, $\mathbf{v} = (a,b,0)$ and $\mathbf{w} = (c,d,e)$ and want to find integers i_* , j_* and k_* (not all 0) to minimize

$$||i_*\mathbf{u}+j_*\mathbf{v}+k_*\mathbf{w}||$$
.

Write f(i, j, k) for $||i\mathbf{u} + j\mathbf{v} + k\mathbf{w}||$. Since $f(i, j, k) \ge |ke|$ and f(1, 0, 0) = 1, $|k_*e| \le 1$, so $k_* \le \lfloor 1/e \rfloor$. Since f(i, j, k) = f(-i, -j, -k), we may assume that $k_* \ge 0$. So we check each value k from 0 to $\lfloor 1/e \rfloor$.

Let us write j_k for the optimal value of j given k. Since $f(i, j, k) \ge |kd + jb|$, for each fixed value of k, $|kd + j_k b| \le 1$, so

$$\lceil (1/b)(-1-kd) \rceil \le j_k \le \lfloor (1/b)(1-kd) \rfloor.$$

Given values for k and j, the optimal value for i is the negative of the nearest integer to kc + ja. So the total number of values to check according to this algorithm is

$$\sum_{k=0}^{\lfloor 1/e \rfloor} (\lfloor (1/b)(1-kd) \rfloor - \lceil (1/b)(-1-kd) \rceil + 1).$$

At the cost of a messier formula, one could improve the number of j values that need to be checked for each k value, since $f(i,j,k) \ge \sqrt{(kd+jb)^2 + (ke)^2}$, so $|kd+j_kb| \le \sqrt{1-(ke)^2}$.

In the general case, we have arbitrary \mathbf{u} , \mathbf{v} and \mathbf{w} in \mathbb{R}^3 . One can convert to the case above by rotation and scaling. Alternately, one can apply Gram-Schmidt to find vectors \mathbf{v}_1 and \mathbf{w}_1 and scalars a, b and c such that

- $\mathbf{v} = a\mathbf{u} + \mathbf{v}_1$
- $\mathbf{w} = b\mathbf{u} + c\mathbf{v}_1 + \mathbf{w}_1$
- \mathbf{u} , \mathbf{v}_1 and \mathbf{w} are pairwise orthogonal.

Then one can run a modified version of the argument above with \mathbf{u} , \mathbf{v}_1 and \mathbf{w}_1 .

1 The general problem

In the general version, we again assume that we have vectors $\mathbf{u} = (1,0,0)$, $\mathbf{v} = (a,b,0)$ and $\mathbf{w} = (c,d,e)$, and one additional vector $\mathbf{t} = (x,y,z)$ and want to find integers i_* , j_* and k_* (possibly all 0) to minimize

$$||i_*\mathbf{u}+j_*\mathbf{v}+k_*\mathbf{w}-\mathbf{t}||$$
.

We may assume that $\mathbf{t} = p\mathbf{u} + q\mathbf{v} + r\mathbf{w}$ for some $p, q, r \in [0, 1)$. Write g(i, j, k) for $||i_*\mathbf{u} + j_*\mathbf{v} + k_*\mathbf{w} - \mathbf{t}||$. As in the first part, we can find an upper bound for the min by considering any one choice for i, j and k. For instance, we can let D be $\min\{g(i, j, k) : i, j, k \in \{0, 1\}\}$.

Since $g(i, j, k) \ge |ke - z|, |k_*e - z| \le D$, so

$$\lceil (z-D)/e \rceil \le k_* \le \lfloor (z+D)/e \rfloor.$$

Again, let us write j_k for the optimal value of j given k. Since

$$g(i, j, k) \ge \sqrt{(jb + kd - y)^2 + (ke - z)^2},$$

 $\sqrt{(j_k b + kd - y)^2 + (ke - z)^2} \le D$, which gives that

$$\lceil (1/b)(y - kd - \sqrt{D^2 - (ke - z)^2}) \rceil \le j_k \le \lfloor (1/b)(y - kd + \sqrt{D^2 - (ke - z)^2}) \rfloor.$$

For each given pair of values k, j, the optimal value for i is the negative of the closest integer to ja + kc - x.