12

Fourier Series

12.1PERIODIC FUNCTIONS

If the value of each ordinate f(t) repeats itself at equal intervals in the abscissa, then f(t) is said to be a periodic function.

If
$$f(t) = f(t + T) = f(t + 2T) = \dots$$
 then T is called the period of the function $f(t)$.

For example:

 $\sin x = \sin (x + 2\pi) = \sin (x + 4\pi) = \dots$ so $\sin x$ is a periodic function with the period 2π . This is also called sinusoidal periodic function.

12.2 FOURIER SERIES

Here we will express a non-sinusoidal periodic function into a fundamental and its harmonics. A series of sines and cosines of an angle and its multiples of the form.

$$\frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + a_3 \cos 3x + \dots + a_n \cos nx + \dots$$

$$+b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + ... + b_n \sin nx + ...$$

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx.$$

is called the *Fourier series*, where $a_1, a_2, ..., a_n, ..., b_1, b_2, b_3, ..., b_n$ are constants.

A periodic function f(x) can be expanded in a Fourier Series. The series consists of the following:

- (i) A constant term a_0 (called d.c. component in electrical work).
- (ii) A component at the fundamental frequency determined by the values of a_1 , b_1 .
- (iii) Components of the harmonics (multiples of the fundamental frequency) determined by a_2 , a_3 ... b_2 , b_3 ... And a_0 , a_1 , a_2 ..., b_1 , b_2 ... are known as *Fourier coefficients* or Fourier constants.

12.3. DIRICHLET'S CONDITIONS FOR A FOURIER SERIES

If the function f(x) for the interval $(-\pi, \pi)$

- (1) is single-valued
- (2) is bounded
- (3) has at most a finite number of maxima and minima.
- (4) has only a finite number of discontinuous
- (5) is $f(x + 2\pi) = f(x)$ for values of x outside $[-\pi, \pi]$, then

$$S_p(x) = \frac{a_0}{2} + \sum_{n=1}^{P} a_n \cos nx + \sum_{n=1}^{P} b_n \sin nx$$

converges to f(x) as $P \to \infty$ at values of x for which f(x) is continuous and to

$$\frac{1}{2}[f(x+0)+f(x-0)]$$
 at points of discontinuity.

12.4. ADVANTAGES OF FOURIER SERIES

- 1. Discontinuous function can be represented by Fourier series. Although derivatives of the discontinuous functions do not exist. (This is not true for Taylor's series).
- 2. The Fourier series is useful in expanding the periodic functions since outside the closed interval, there exists a periodic extension of the function.
- 3. Expansion of an oscillating function by Fourier series gives all modes of oscillation (fundamental and all overtones) which is extremely useful in physics.
- 4. Fourier series of a discontinuous function is not uniformly convergent at all points.
- Term by term integration of a convergent Fourier series is always valid, and it may be valid if the series is not convergent. However, term by term, differentiation of a Fourier series is not valid in most cases.

12.5 USEFUL INTEGRALS

The following integrals are useful in Fourier Series.

(i)
$$\int_0^{2\pi} \sin nx \, dx = 0$$

(iii) $\int_0^{2\pi} \sin^2 nx \, dx = \pi$

$$(ii) \int_0^{2\pi} \cos nx \, dx = 0$$
$$(iv) \int_0^{2\pi} \cos^2 nx \, dx = \pi$$

$$(v) \int_0^{2\pi} \sin nx \cdot \sin mx \, dx = 0$$

$$(vi) \int_0^{2\pi} \cos nx \cos mx \, dx = 0$$

$$(vii) \int_0^{2\pi} \sin nx \cdot \cos mx \, dx = 0$$

$$(viii) \int_0^{2\pi} \sin nx \cdot \cos nx \, dx = 0$$

(ix)
$$\int uv \, dx = uv_1 - u'v_2 + u''v_3 - u'''v_4 + \dots$$

where
$$v_1 = \int v \, dx$$
, $v_2 = \int v_1 \, dx$ and so on $u' = \frac{du}{dx}$, $u'' = \frac{d^2u}{dx^2}$ and so on and

(x) $\sin n \pi = 0$, $\cos n \pi = (-1)^n$ where $n \in I$

12.6 DETERMINATION OF FOURIER COEFFICIENTS (EULER'S FORMULAE)

$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + \dots + a_n \cos nx + \dots$$

$$+b_1 \sin x + b_2 \sin 2x + ... + b_n \sin nx + ...$$
 (1)

(i) To find a_0 : Integrate both sides of (1) from x = 0 to $x = 2\pi$.

$$\int_{0}^{2\pi} f(x)dx = \frac{a_{0}}{2} \int_{0}^{2\pi} dx + a_{1} \int_{0}^{2\pi} \cos x \, dx + a_{2} \int_{0}^{2\pi} \cos 2x \, dx + \dots + a_{n} \int_{0}^{2\pi} \cos nx \, dx + \dots$$

$$+ b_{1} \int_{0}^{2\pi} \sin x \, dx + b_{2} \int_{0}^{2\pi} \sin 2dx + \dots + b_{n} \int_{0}^{2\pi} \sin nx \, dx + \dots$$

$$= \frac{a_{0}}{2} \int_{0}^{2\pi} dx, \qquad \text{(other integrals = 0 by formulae (i) and (ii) of Art. 12.5)}$$

$$\int_{0}^{2\pi} f(x) \, dx = \frac{a_{0}}{2} 2\pi, \qquad \Rightarrow \qquad a_{0} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \, dx$$

$$\dots (2)$$

(ii) To find a_n : Multiply each side of (1) by $\cos nx$ and integrate from x = 0 to $x = 2\pi$.

$$\int_{0}^{2\pi} f(x) \cos nx \, dx = \frac{a_0}{2} \int_{0}^{2\pi} \cos nx \, dx + a_1 \int_{0}^{2\pi} \cos x \cos nx \, dx + \dots + a_n \int_{0}^{2\pi} \cos^2 nx \, dx \dots$$

$$+ b_1 \int_{0}^{2\pi} \sin x \cos nx \, dx + b_2 \int_{0}^{2\pi} \sin 2x \cos nx \, dx + \dots$$

$$= a_n \int_{0}^{2\pi} \cos^2 nx \, dx = a_n \pi \quad \text{(Other integrals = 0, by formulae on Page 851)}$$

$$a_n = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) \cos nx \, dx$$

By taking $n = 1, 2 \dots$ we can find the values of $a_1, a_2 \dots$

(iii) **To find b_n:** Multiply each side of (1) by $\sin nx$ and integrate from x = 0 to $x = 2\pi$.

$$\int_{0}^{2\pi} f(x) \sin nx \, dx = \frac{a_{0}}{2} \int_{0}^{2\pi} \sin nx \, dx + a_{1} \int_{0}^{2\pi} \cos x \sin nx \, dx + \dots + a_{n} \int_{0}^{2\pi} \cos nx \sin nx \, dx + \dots$$

$$+ b_{1} \int_{0}^{2\pi} \sin x \sin nx \, dx + \dots + b_{n} \int_{0}^{2\pi} \sin^{2} nx \, dx + \dots$$

$$= b_{n} \int_{0}^{2\pi} \sin^{2} nx \, dx \qquad \text{(All other integrals = 0, Article No. 12.5)}$$

$$= b_{n} \pi$$

$$\Rightarrow b_{n} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx \, dx \qquad \dots (4)$$

Note: To get similar formula of a_0 , $\frac{1}{2}$ has been written with a_0 in Fourier series.

Example 1. Find the Fourier series representing

$$f(x) = x, 0 < x < 2\pi$$

and sketch its graph from $x = -4 \pi$ to $x = 4 \pi$.

Solution. Let
$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + \dots + b_1 \sin x + b_2 \sin 2x + \dots$$
 ... (1)

853

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{2\pi} x \, dx = \frac{1}{\pi} \left[\frac{x^2}{2} \right]_0^{2\pi} = 2\pi$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_0^{2\pi} x \cos nx \, dx$$

$$= \frac{1}{\pi} \left[x \frac{\sin nx}{n} - 1 \cdot \left(-\frac{\cos nx}{n^2} \right) \right]_0^{2\pi} = \frac{1}{\pi} \left[\frac{\cos 2n\pi}{n^2} - \frac{1}{n^2} \right] = \frac{1}{n^2\pi} (1 - 1) = 0$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_0^{2\pi} x \sin nx \, dx$$

$$= \frac{1}{\pi} \left[x \left(-\frac{\cos nx}{n} \right) - 1 \cdot \left(-\frac{\sin nx}{n^2} \right) \right]_0^{2\pi} = \frac{1}{\pi} \left[-\frac{2\pi \cos 2n\pi}{n} \right] = -\frac{2}{n}$$

Substituting the values of a_0 , a_n , b_n in (1), we get

$$x = \pi - 2 \left[\sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \dots \right]$$
 Ans.

Example 2. Given that $f(x) = x + x^2$ for $-\pi < x < \pi$, find the Fourier expression of f(x).

Deduce that
$$\frac{\pi^2}{6} = I + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$$
 (UP. II Semester; Summer 2003)

Solution. Let
$$x + x^2 = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + ... + b_1 \sin x + b_2 \sin 2x + ...$$
 ...(1)

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (x + x^2) dx$$
 (f(x) = x odd function)
$$= \frac{2}{\pi} \left[\frac{x^3}{3} \right]_0^{\pi} = \frac{2}{\pi} \left[\frac{\pi^3}{3} \right] = \frac{2\pi^2}{3}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (x + x^2) \cos nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 \cos nx \, dx$$
(x \cos nx is odd function)

$$= \frac{2}{\pi} \left[x^2 \frac{(\sin nx)}{n} - (2x) \frac{(-\cos nx)}{n^2} + (2) \left(-\frac{\sin nx}{n^3} \right) \right]_0^{\pi}$$

$$= \frac{2}{\pi} \left[\pi^2 \frac{\sin n\pi}{n} - 2\pi \left(\frac{-\cos n\pi}{n^2} \right) + 2 \left(-\frac{\sin n\pi}{n^3} \right) \right] = \frac{4(-1)^n}{n^2}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (x + x^2) \sin nx \, dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x \sin nx \, dx$$
 (x² sin nx is an odd function)

$$= \frac{2}{\pi} \left[(x) \left(-\frac{\cos nx}{n} \right) - (1) \left(\frac{-\sin nx}{n^2} \right) \right]_{0}^{\pi} = \frac{2}{\pi} \left[-(\pi) \frac{\cos nx}{n} + 2 \frac{\sin n\pi}{n^3} \right]$$

$$= \frac{2}{\pi} \left[-\frac{\pi}{n} \cos n\pi \right] = -\frac{2}{n} (-1)^n = \frac{2}{n} (-1)^{n+1}$$

Substituting the values of a_0 , a_n , b_n in (1) we get

$$x + x^2 = \frac{\pi^2}{3} + 4\left[-\cos x + \frac{1}{2^2}\cos 2x - \frac{1}{3^2}\cos 3x + \dots\right] + 2\left[\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \dots\right] \quad \dots (2)$$

 $x = \pi \text{ in } (2),$ Put

$$\pi + \pi^2 = \frac{\pi^2}{3} + 4 \left[1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots \right]$$
 ... (3)

Put

$$x = -\pi \text{ in (2)}, \ -\pi + \pi^2 = \frac{\pi^2}{3} + 4 \left[1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots \right]$$
 ... (4)

Adding (3) and (4)
$$2\pi^2 = \frac{2\pi^2}{3} + 8\left[1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots\right]$$
$$\frac{4\pi^2}{3} = 8\left[1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots\right]$$

$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 Ans.

Exercise 12.1

1. Find a Fourier series to represent, $f(x) = \pi - x$ for $0 < x < 2\pi$.

Ans.
$$2\left[\sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x + ... + \frac{1}{n}\sin nx + ...\right]$$

2. Find a Fourier series to represent $x - x^2$ from $x = -\pi$ to π and show that

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$
Ans.
$$-\frac{\pi^2}{3} + 4 \left[\frac{\cos x}{1^2} - \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} - \frac{\cos 4x}{4^2} + \dots \right] + 2 \left[\frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + \dots \right]$$
3. Find a Fourier series to represent: $f(x) = x \sin x$, for $0 < x < 2\pi$.

Ans.
$$-1 + \pi \sin x - \frac{1}{2} \cos x + 2 \left[\frac{\cos 2x}{2^2 - 1} + \frac{\cos 3x}{3^2 - 1} + \frac{\cos 4x}{4^2 - 1} + \dots \right]$$

4. Find a Fourier series to represent the function $f(x) = e^x$, for $-\pi < x < \pi$ and hence derive a

series for
$$\frac{\pi}{\sinh \pi}$$
.

Ans. $\frac{2 \sinh \pi}{\pi} \left[\left(\frac{1}{2} - \frac{1}{1^2 + 1} \cos x + \frac{1}{2^2 + 1} \cos 2x - \frac{1}{3^2 + 1} \cos 3x + ... \right) \right] + \left[\frac{1}{1^2 + 1} \sin x - \frac{2}{2^2 + 1} \sin 2x + \frac{3}{3^2 + 1} \sin 3x ... \right]$ and
$$\frac{\pi}{\sinh \pi} = 1 + 2 \left[-\frac{1}{2} + \frac{1}{5} - \frac{1}{10} + ... \right]$$

5. Obtain the Fourier series for $f(x) = e^{-x}$ in the interval $0 \le x < 2\pi$

Ans.
$$\frac{1-e^{-2\pi}}{\pi} \left[\frac{1}{2} + \frac{1}{2}\cos x + \frac{1}{5}\cos 2x + \frac{1}{10}\cos 3x + \frac{1}{2}\sin x + \frac{2}{5}\sin 2x + \frac{3}{10}\sin 3x + \dots \right]$$

6. If
$$f(x) = \left(\frac{\pi - x}{2}\right)^2$$
, $0 < x < 2\pi$, show that $f(x) = \frac{\pi^2}{12} + \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$

7. Prove that
$$x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1) \frac{\cos nx}{n^2}, -\pi < x < \pi$$

Hence show that (i)
$$\sum \frac{1}{n^2} = \frac{\pi}{6}$$
 (ii) $\sum \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$ (iii) $\sum \frac{1}{n^4} = \frac{\pi^4}{90}$

8. If f(x) is a periodic function defined over a period $(0, 2\pi)$ $f(x) = \frac{(3x^2 - 6x\pi + 2\pi^2)}{12}$

Prove that
$$f(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$$
 and hence show that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + ...$

12.7FUNCTION DEFINED IN TWO OR MORE SUB-RANGES

Example 3. Find the Fourier series of the function

$$f(x) = \begin{cases} -1 & \text{for } -\pi < x < -\frac{\pi}{2} \\ 0 & \text{for } -\frac{\pi}{2} < x < \frac{\pi}{2} \\ +1 & \text{for } \frac{\pi}{2} < x < \pi \end{cases}$$

Solution. Let
$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + ... + b_1 \sin x + b_2 \sin 2x + ...$$
 ...(1)

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{-\pi/2} (-1) dx + \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} 0 dx + \frac{1}{\pi} \int_{\pi/2}^{\pi} 1 dx$$
$$= \frac{1}{\pi} \left[-x \right]_{-\pi}^{-\pi/2} + \frac{1}{\pi} \left[x \right]_{\pi/2}^{\pi} = \frac{1}{\pi} \left[\frac{\pi}{2} - \pi - \frac{\pi}{2} \right] = 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{+\pi} f(x) \cos nx \ dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{-\pi/2} (-1) \cos nx \, dx + \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} (0) \cos nx \, dx + \frac{1}{\pi} \int_{\pi/2}^{\pi} (1) \cos nx \, dx$$

$$= -\frac{1}{\pi} \left[\frac{\sin nx}{n} \right]_{-\pi}^{-\pi/2} + \frac{1}{\pi} \left[\frac{\sin nx}{n} \right]_{\pi/2}^{\pi} = -\frac{1}{\pi} \left[-\frac{\sin \frac{n\pi}{2}}{n} + \frac{\sin n\pi}{n} \right] + \frac{1}{\pi} \left[\frac{\sin n\pi}{n} - \frac{\sin \frac{n\pi}{2}}{n} \right] = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{-\pi/2} (-1) \sin nx \, dx + \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} (0) \sin nx \, dx$$

$$+\frac{1}{n}\int_{\pi/2}^{\pi}(1)\sin nx\,dx$$

$$=\pi \left[\frac{\cos nx}{n}\right]_{-\pi}^{-\pi/2} - \frac{1}{\pi} \left[\frac{\cos nx}{n}\right]_{\pi/2}^{\pi}$$

$$= \frac{1}{n\pi} \left[\cos \frac{n\pi}{2} - \cos n\pi\right] - \frac{1}{n\pi} \left(\cos n\pi - \cos \frac{n\pi}{2}\right) = \frac{2}{n\pi} \left[\cos \frac{n\pi}{2} - \cos n\pi\right]$$

$$b_1 = \frac{2}{\pi}, \qquad b_2 = -\frac{2}{\pi}, \qquad b_3 = \frac{2}{3\pi}$$

Putting the values of a_0 , a_n , b_n in (1) we get $f(x) = \frac{1}{\pi} \left[2\sin x - 2\sin 2x + \frac{2}{3}\sin 3x + \dots \right]$

Example 4. Find the Fourier series for the periodic function

$$f(x) = \begin{bmatrix} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{bmatrix}$$
$$f(x + 2\pi) = f(x)$$

Solution. Let $f(x) = \frac{a_0}{2} + a_1 \cos x + a_0 \cos 2x + ... + v_1 \sin x + b_2 \sin 2x + ...$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^0 0.dx + \frac{1}{\pi} \int_0^{\pi} x \, dx = \frac{1}{\pi} \left[\frac{x^2}{2} \right]_0^{\pi} = \frac{1}{\pi} \left(\frac{\pi^2}{2} \right) = \frac{\pi}{2}$$

$$a_n = \frac{1}{\pi} \int_0^{\pi} x \cos nx \, dx = \frac{1}{\pi} \left[x \cdot \frac{\sin nx}{n} - (1) \left(-\frac{\cos nx}{n^2} \right) \right]_0^{\pi} = \frac{1}{\pi} \left(\frac{\cos n\pi}{n^2} \right)_0^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{(-1)^n}{n^2} - \frac{1}{n^2} \right] = -\frac{2}{n^2 \pi} \text{ when } n \text{ is odd}$$

$$= 0, \text{ when } n \text{ is even.}$$

$$b_n = \frac{1}{\pi} \int_0^{\pi} x \sin nx \, dx = \frac{1}{\pi} \left[x \left(-\frac{\cos nx}{n} \right) - (1) \left(-\frac{\sin nx}{n^2} \right) \right]_0^{\pi} = \frac{1}{\pi} \left[-\pi \frac{(-1)^n}{n} \right] = \frac{(-1)^{n+1}}{n}$$

Substituting the values of
$$a_0$$
, a_1 , a_2 ... b_1 , b_2 , ... in (1), we get
$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} ... \right] + \left[\frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} + ... \right]$$
Ans.

At a point of discontinuity, Fourier series gives the value of f(x) as the arithmetic mean of left and right limits.

At the point of discontinuity, x = c

At
$$x = c$$
, $f(x) = \frac{1}{2} [f(c-0) + f(c+0)]$

Example 5. Find the Fourier series for f(x), if $f(x) = \begin{bmatrix} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{bmatrix}$ Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{9}$

Solution. Let $f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + ... + a_n \cos nx + ...$

$$+b_1 \sin x + b_2 \sin 2x + ... + b_n \sin nx + ...$$
 ... (1)

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx$$

Then
$$a_0 = \frac{1}{\pi} \left[\int_{-\pi}^0 (-\pi) \, dx + \int_0^{\pi} x \, dx \right] = \frac{1}{\pi} \left[-\pi(x)_{-\pi}^0 + (x^2/2)_0^{\pi} \right] = \frac{1}{\pi} (-\pi^2 + \pi^2/2) = -\frac{\pi}{2};$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$

$$a_{n} = \frac{1}{\pi} \left[\int_{-\pi}^{0} (-\pi) \cos nx \, dx + \int_{0}^{\pi} x \cos nx \, dx \right] = \frac{1}{\pi} \left[-\pi \left(\frac{\sin nx}{n} \right)_{-\pi}^{0} + \left(\frac{x \sin nx}{n} + \frac{\cos nx}{n^{2}} \right)_{0}^{\pi} \right]$$

$$= \frac{1}{\pi} \left[0 + \frac{1}{n^{2}} \cos n\pi - \frac{1}{n^{2}} \right] = \frac{1}{\pi n^{2}} (\cos n\pi - 1) = \frac{1}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \frac{-2}{n^{2}\pi} \text{ when n is odd}$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

$$b_{n} = \frac{1}{\pi} \left[\int_{-\pi}^{0} (-\pi) \sin nx \, dx + \int_{0}^{\pi} x \sin nx \, dx \right] = \frac{1}{\pi} \left[\left(\frac{\pi \cos nx}{n} \right)_{-\pi}^{0} + \left(-x \frac{\cos nx}{n} + \frac{\sin nx}{n^{2}} \right)_{0}^{\pi} \right]$$

$$= \frac{1}{\pi} \left[\frac{\pi}{n} (1 - \cos n\pi) - \frac{\pi}{n} \cos n\pi \right] = \frac{1}{n} (1 - 2 \cos n\pi) = \frac{1}{n} (1 - 2 (-1)^{n}$$

$$b_{n} = \frac{3}{n} \text{ when } n \text{ is odd}$$

$$= \frac{-1}{n} \text{ when } n \text{ is even}$$

$$f(x) = -\frac{\pi}{4} - \frac{2}{\pi} \left(\cos x + \frac{\cos 3x}{3^{2}} + \frac{\cos 5x}{5^{2}} + \dots \right) + 3 \sin x - \frac{\sin 2x}{2} + \frac{3 \sin 3x}{3} - \frac{\sin 4x}{4} + \dots$$
Putting $x = 0$ in (2), we get $f(0) = -\frac{\pi}{4} - \frac{2}{\pi} \left(1 + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \dots \right)$
Now $f(x)$ is discontinuous at $x = 0$.
But $f(0 - 0) = -\pi$ and $f(0 + 0) = 0$

 $\therefore f(0) = \frac{1}{2} [f(0-0) + f(0+0)] = -\pi/2$

From (3), $-\frac{\pi}{2} = -\frac{\pi}{4} - \frac{2}{\pi} \left[\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right]$

or $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

Proved.

857

Example 6. Find the Fourier series expansion of the periodic function of period 2π -, defined by

$$f(x) = \begin{cases} x & \text{if } -\frac{\pi}{2} < x < \frac{\pi}{2} \\ \pi - 1 & \text{if } \frac{\pi}{2} < x < \frac{3\pi}{2} \end{cases}$$

Solution. Let $f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + ... + b_1 \sin x + b_2 \sin 2x + ...$

Now
$$a_0 = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} x \, dx + \frac{1}{\pi} \int_{\pi/2}^{\frac{3\pi}{2}} (\pi - x) dx = \frac{1}{\pi} \left(\frac{x^2}{2} \right)_{-\pi/2}^{\pi/2} + \frac{1}{\pi} \left(\pi x - \frac{x^2}{2} \right)_{\pi/2}^{\frac{3\pi}{2}}$$
$$= \frac{1}{\pi} \left(\frac{\pi^2}{8} - \frac{\pi^2}{8} \right) + \frac{1}{\pi} \left(\frac{3\pi^2}{2} - \frac{9\pi^2}{8} - \frac{\pi^2}{2} + \frac{\pi^2}{8} \right) = \pi \left(\frac{3}{2} - \frac{9}{8} - \frac{1}{2} + \frac{1}{8} \right) = 0$$

$$\begin{split} a_n &= \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} x \cos nx \, dx + \frac{1}{\pi} \int_{\pi/2}^{\frac{3\pi}{2}} (\pi - x) \cos nx \, dx \\ &= \frac{1}{\pi} \left[x \frac{\sin nx}{n} - (1) \left(-\frac{\cos nx}{n^2} \right) \right]_{-\pi/2}^{\pi/2} + \frac{1}{\pi} \left[(\pi - x) \frac{\sin nx}{n} - (-1) \left(-\frac{\cos nx}{n^2} \right) \right]_{\pi/2}^{\frac{3\pi}{2}} \\ &= \frac{1}{\pi} \left[\frac{\pi}{\pi} \frac{\sin \frac{n\pi}{2}}{n} + \frac{\cos \frac{n\pi}{2}}{n^2} - \frac{\pi}{2} \frac{\sin \frac{n\pi}{2}}{n} - \frac{\cos \frac{n\pi}{2}}{n^2} \right] \\ &+ \frac{1}{\pi} \left[-\frac{\pi}{2} \frac{\sin \frac{3n\pi}{2}}{n} + \frac{\cos \frac{3n\pi}{2}}{n^2} - \frac{\pi}{2} \frac{\sin \frac{n\pi}{2}}{n} + \frac{\cos \frac{n\pi}{2}}{n^2} \right] \\ &= \frac{1}{\pi} \left[-\frac{\pi}{2} \left(\sin \frac{3n\pi}{2} + \sin \frac{n\pi}{2} \right) - \frac{1}{n^2} \left(\cos \frac{3n\pi}{2} - \cos \frac{n\pi}{2} \right) \right] \\ &= \frac{1}{\pi} \left[-\frac{\pi}{n} \sin n\pi \cos \frac{n\pi}{2} + \frac{2}{n^2} \sin \frac{n\pi}{2} \sin n\pi \right] = 0 \\ b_n &= \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} x \sin nx \, dx + \frac{1}{\pi} \int_{\pi/2}^{3\pi/2} (\pi - x) \sin nx \, dx = \frac{2}{\pi} \int_{0}^{\pi/2} x \sin nx \, dx + \frac{1}{\pi} \int_{\pi/2}^{\frac{3\pi}{2}} (\pi - x) \sin nx \, dx \\ &= \frac{2}{\pi} \left[x \left(-\frac{\cos nx}{n} \right) - (1) \left(-\frac{\sin nx}{n^2} \right) \right]_{0}^{\pi/2} + \frac{1}{\pi} \left[(\pi - x) \left(-\frac{\cos nx}{n} \right) - (-1) \left(-\frac{\sin nx}{n^2} \right) \right]_{\pi/2}^{3\pi} \\ &= \frac{2}{\pi} \left[-\frac{\pi}{2} \frac{\cos \frac{n\pi}{2}}{n} + \frac{\sin \frac{n\pi}{2}}{n^2} \right] + \frac{1}{\pi} \left[\frac{\pi}{2} \frac{\cos \frac{3n\pi}{2}}{n} - \frac{\sin \frac{3n\pi}{2}}{n^2} + \frac{\pi}{2} \frac{\cos \frac{n\pi}{2}}{n} + \frac{\sin \frac{n\pi}{2}}{n^2} \right] \\ &= \frac{1}{\pi} \left[-\frac{\pi}{2} \frac{\cos \frac{n\pi}{2}}{n} + \frac{3\sin \frac{n\pi}{2}}{n^2} + \frac{\pi}{2} \frac{\cos 3\frac{n\pi}{2}}{n} - \frac{\sin \frac{3n\pi}{2}}{n^2} \right] \\ &= \frac{1}{\pi} \left[-\frac{\pi}{n} \sin \frac{n\pi}{2} \sin n\pi + \frac{3}{n^2} \sin \frac{n\pi}{2} - \frac{1}{n^2} \sin \frac{3n\pi}{2} \right] \\ &= \frac{1}{\pi} \left[-\frac{\pi}{n} \sin \frac{n\pi}{2} \sin n\pi + \frac{3}{n^2} \sin \frac{n\pi}{2} - \frac{1}{n^2} \sin \frac{3n\pi}{2} \right] \\ &= \frac{1}{\pi} \left[-\frac{\pi}{n} \sin \frac{n\pi}{2} \sin n\pi + \frac{3}{n^2} \sin \frac{n\pi}{2} - \frac{1}{n^2} \sin \frac{3n\pi}{2} \right] \\ &= \frac{1}{\pi} \left[-\frac{\pi}{n} \sin \frac{n\pi}{2} \sin n\pi + \frac{3}{n^2} \sin \frac{n\pi}{2} - \frac{1}{n^2} \sin \frac{3n\pi}{2} \right] \\ &= \frac{1}{\pi} \left[-\frac{\pi}{n} \sin \frac{n\pi}{2} \sin n\pi + \frac{3}{n^2} \sin \frac{n\pi}{2} - \frac{1}{n^2} \sin \frac{3n\pi}{2} \right] \\ &= \frac{1}{\pi} \left[-\frac{\pi}{n} \sin \frac{n\pi}{2} \sin n\pi + \frac{3}{n^2} \sin \frac{n\pi}{2} - \frac{1}{n^2} \sin \frac{3n\pi}{2} \right] \\ &= \frac{1}{\pi} \left[-\frac{\pi}{n} \sin \frac{n\pi}{2} \sin n\pi + \frac{3}{n^2} \sin \frac{n\pi}{2} - \frac{1}{n^2} \sin \frac{3n\pi}{2} \right] \\ &= \frac{1}{\pi} \left[-\frac{\pi}{n} \sin \frac{n\pi}{2} \sin n\pi + \frac{3}{n^2} \sin \frac{n\pi}{2} - \frac{1}{n^2} \sin \frac{3n\pi}{2} \right] \\ &= \frac{1}{\pi} \left[-\frac{\pi}{n} \sin \frac{n\pi}{2} + \frac{3}{n^2} \sin$$

Substituting the values of $a_0, a_1, a_2 \dots b_1, b_2 \dots$ we get $f(x) = \frac{4}{\pi} \left[\frac{\sin x}{1^2} - \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} - \dots \right]$ Ans.

Example 7. Find the Fourier series of the function defined as

$$f(x) = \begin{cases} x + \pi & \text{for } 0 < x < \pi \\ -x - \pi & -\pi < x < 0 \end{cases} \quad and \quad f(x + 2\pi) = f(x).$$

Solution.
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) dx - \frac{1}{\pi} \int_{0}^{\pi} f(x) dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{0} (-x - \pi) dx + \frac{1}{\pi} \int_{0}^{\pi} (x + \pi) dx = \frac{1}{\pi} \left(-\frac{x^2}{2} - \pi x \right)_{-\pi}^{0} + \frac{1}{\pi} \left(\frac{x^2}{2} + \pi x \right)_{0}^{\pi}$$

$$\begin{split} &=\frac{1}{\pi}\left(\frac{\pi^2}{2}-\pi^2\right)+\frac{1}{\pi}\left(\frac{\pi^2}{2}+\pi^2\right)=\pi\left(\frac{1}{2}-1\right)+\pi\left(\frac{1}{2}+1\right)=\pi\\ &a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nx\,dx=\frac{1}{\pi}\int_{-\pi}^{0}f(x)\cos nx\,dx+\frac{1}{\pi}\int_{0}^{\pi}f(x)\cos nx\,dx\\ &=\frac{1}{\pi}\int_{-\pi}^{0}(-x-\pi)\cos nx\,dx+\frac{1}{\pi}\int_{0}^{\pi}(x+\pi)\cos nx\,dx\\ &=\frac{1}{\pi}\left[\left(-x-\pi\right)\frac{\sin nx}{n}-\left(-1\right)\left\{-\frac{\cos nx}{n^2}\right\}\right]_{-\pi}^{0}+\frac{1}{\pi}\left[\left(x+\pi\right)\frac{\sin nx}{n}-\left(1\right)\left\{-\frac{\cos nx}{n^2}\right\}\right]_{0}^{\pi}\\ &=\frac{1}{\pi}\left[-\frac{1}{n^2}+\frac{\left(-1\right)^n}{n^2}\right]+\frac{1}{\pi}\left[-\frac{\left(-1\right)^n}{n^2}-\frac{1}{n^2}\right]=\frac{2}{n^2\pi}\left[\left(-1\right)^n-1\right]\\ &a_n=\frac{-4}{n^2\pi},\quad \text{If n is odd.}\\ &\text{and $a_n=0$} &\text{if n is even.}\\ &b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx\,dx=\frac{1}{\pi}\int_{-\pi}^{0}f(x)\sin nx\,dx+\frac{1}{\pi}\int_{0}^{\pi}f(x)\sin nx\,dx\\ &=\frac{1}{\pi}\left[\left(-x-\pi\right)\left(-\frac{\cos nx}{n}\right)-\left(-1\right)\left(-\frac{\sin nx}{n^2}\right)\right]_{-\pi}^{0}+\frac{1}{\pi}\left[\left(x+\pi\right)\left(-\frac{\cos nx}{n}\right)-\left(1\right)\left(-\frac{\sin nx}{n^2}\right)\right]_{0}^{\pi}\\ &=\frac{1}{\pi}\left[\frac{\pi}{n}\right]+\frac{1}{\pi}\left[-\frac{2\pi}{n}\left(-1\right)^n+\frac{\pi}{n}\right]=\frac{1}{n}\left[(1)-2\left(-1\right)^n+(1)\right]=\frac{2}{n}\left[1-\left(-1\right)^n\right]\\ &=\frac{4}{n},\quad \text{if n is odd.}\\ &=0,\quad \text{if n is even.} \end{split}$$

Fourier series is $f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + ... + b_1 \sin x + b_2 \sin 2x + ...$ $f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left(\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + ... \right) + 4 \left(\frac{\sin x}{1} + \frac{\sin 3x}{3} + ... \right)$ Answers 12.2

1. Find the Fourier series of the function

$$f(x) = \begin{cases} -1 & \text{for } -\pi < x < 0 \\ 1 & \text{for } 0 < x < \pi \end{cases}$$

where $f(x + 2\pi) = f(x)$.

Ans.
$$\frac{4}{\pi} \left[\frac{1}{1} \sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \frac{1}{7} \sin 7x + \dots \right]$$

2. Find the Fourier series for the function

$$f(x) = \begin{cases} -\frac{\pi}{4} & \text{for } -\pi < x < 0 \\ \frac{\pi}{4} & \text{for } 0 < x < \pi \end{cases}$$

and $f(-\pi) = f(0) = f(\pi) = 0$, $f(x) = f(x + 2\pi)$ for all x.

Deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$ **Ans.** $\frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \frac{\sin 7x}{7} + \dots$

3. Find the Fourier series of the function

$$f(x) = \begin{cases} 0 & \text{for } -\pi \le x \le 0 \\ 1 & \text{for } 0 < x < \frac{\pi}{2} \\ 0 & \text{for } \frac{\pi}{2} \le x \le \pi \end{cases}$$

4. Obtain a Fourier series to represent the following periodic function

$$f(x) = 0$$
 when $0 < x < \pi$
 $f(x) = 1$ when $\pi < x < 2\pi$
Ans. $\frac{1}{2} - \frac{2}{\pi} \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + ... \right)$

5. Find the Fourier expansion of the function defined in a single period by the relations.

$$f(x) = \begin{cases} 1 & \text{for } 0 < x < \pi \\ 2 & \text{for } \pi < x < 2\pi \end{cases}$$
and from it deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$

$$\mathbf{Ans.} \qquad \frac{3}{2} - \frac{2}{\pi} \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right)$$

6. Find a Fourier series to represent the function

$$f(x) = \begin{cases} 0 & \text{for } -\pi < x \le 0\\ \frac{1}{4}\pi x & \text{for } 0 < x < \pi \end{cases}$$

and hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

Ans.
$$\frac{\pi^2}{16} + \sum_{n=1}^{\infty} \left(\frac{\left[(-1)^n - 1}{4n^2} \cos nx - \frac{(-1)^n \pi}{4n} \sin nx + \ldots \right] \right)$$

7. Find the Fourier series for f(x), if

$$f(x) = -\pi \text{ for } -\pi < x \le 0$$

$$= x \text{ for } 0 < x < \pi$$

$$= \frac{-\pi}{2} \text{ for } x = 0$$

Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + ... = \frac{\pi^2}{8}$

Ans.
$$-\frac{\pi}{4} - \frac{2}{\pi} \left(\cos x + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \ldots\right) + 3\sin x - \frac{1}{2}\sin 2x + \frac{3}{3}\sin 3x - \frac{1}{4}\sin 4x + \ldots$$

8. Obtain a Fourier series to represent the function

$$f(x) = |x| \quad \text{for } -\pi < x < \pi$$
and hence deduce
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

$$\mathbf{Ans.} \quad \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right]$$

9. Expand as a Fourier series, the function f(x) defined as

$$f(x) = \pi + x \text{ for } -\pi < x < -\frac{\pi}{2}$$

$$= \frac{\pi}{2} \quad \text{for } -\frac{\pi}{2} < x < \frac{\pi}{2}$$

$$= \pi - x \quad \text{for } \frac{\pi}{2} < x < \pi \qquad \qquad \text{Ans. } \frac{3\pi}{8} + \frac{2}{\pi} \left[\frac{1}{1^2} \cos x - \frac{2}{2^2} \cos 2x + \frac{1}{3^2} \cos 3x + \dots \right]$$

10. Obtain a Fourier series to represent the function

$$f(x) = |\sin x| \text{ for } -\pi < x < \pi$$
 { **Hint** $f(x) = -\sin x \text{ for } -\pi < x < 0$ } $= \sin x \text{ for } 0 < x < \pi$ }
$$\mathbf{Ans.} \frac{2}{\pi} - \frac{4}{\pi} \left[\frac{1}{3} \cos 2x + \frac{1}{15} \cos 4x + \frac{1}{35} \cos 6x + \dots \right]$$

11. An alternating current after passing through a rectifier has the form

$$i = I \sin \theta$$
 for $0 < \theta < \pi$
= 0 for $\pi < \theta < 2\pi$
the Fourier series of the function

Find the Fourier series of the function.

Ans.
$$\frac{I}{\pi} - \frac{2I}{\pi} \left(\frac{\cos 2\theta}{3} + \frac{\cos 4\theta}{15} + \dots \right) + \frac{I}{2} \sin \theta$$

12. If
$$f(x) = 0$$
 for $-\pi < x < 0$
= $\sin x$ for $0 < x < \pi$

Prove that
$$f(x) = \frac{1}{\pi} + \frac{\sin x}{2} - \frac{2}{\pi} \sum_{m=1}^{\infty} \frac{\cos 2mx}{4m^2 - 1}$$
.

Hence show that
$$\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} ... \infty = \frac{1}{4} (\pi - 2)$$

12.8(a) EVEN FUNCTION

A function f(x) is said to be even (or symmetric) function if, f(-x) = f(x)

The graph of such a function is symmetric with respect to y-axis [f(x)] axis. Here y-axis is a mirror for the reflection of the curve.

The area under such a curve from $-\pi$ to π is double the area from 0 to π .

$$\therefore \qquad \int_{-\pi}^{\pi} f(x) dx = 2 \int_{0}^{\pi} f(x) dx$$

A function f(x) is called odd (or skew symmetric) function if

$$f(-x) = -f(x)$$

Here the area under the curve from $-\pi$ to π is zero.

$$\int_{-\pi}^{\pi} f(x) dx = 0$$

Expansion of an even function:

$$a_{\theta} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx$$

As f(x) and $\cos nx$ are both even functions.

 \therefore The product of f(x). cos nx is also an even function. page 846

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = 0$$

As sin nx is an odd function so f(x). sin nx is also an odd function. We need not to calculate b_n . It saves our labour a lot.

The series of the even function will contain only cosine terms.

Expansion of an odd function:

$$\boldsymbol{a}_{\boldsymbol{\theta}} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \mathbf{0}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \mathbf{0}$$
 [f(x).cos nx is odd function.]

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx \, dx$$

[f(x). sin nx is even function.]

The series of the odd function will contain only sine terms.

The function shown below is neither odd nor even so it contains both sine and cosine terms **Example 8.** Find the Fourier series expansion of the periodic function of period 2π

$$f(x) = x^2, -\pi \le x \le \pi$$

Hence, find the sum of the series $\frac{1}{l^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$

Solution.

$$f(x) = x^2$$
, $-\pi \le x \le \pi$

This is an even function. $b_n = 0$

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2}{\pi} \left[\frac{x^3}{3} \right]_0^{\pi} = \frac{2\pi^2}{3}$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_0^{\pi} x^2 \cos nx \, dx$$

$$= \frac{2}{\pi} \left[x^2 \left(\frac{\sin nx}{n} \right) - (2x) \left(-\frac{\cos nx}{n^2} \right) + (2) \left(-\frac{\sin nx}{n^3} \right) \right]_0^{\pi}$$

$$= \frac{2}{\pi} \left[\frac{\pi^2 \sin n\pi}{n} + \frac{2\pi \cos n\pi}{n^2} - \frac{2\sin n\pi}{n^3} \right] = \frac{4(-1)^n}{n^2}$$

$$f(x)$$

Fourier series is $f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + a_3 \cos 3x + ... + a_n \cos nx + ...$

$$x^{2} = \frac{\pi^{2}}{3} - 4 \left[\frac{\cos x}{1^{2}} - \frac{\cos 2x}{2^{2}} + \frac{\cos 3x}{3^{3}} - \frac{\cos 4x}{4^{2}} + \dots \right]$$

On putting x = 0, we have

$$0 = \frac{\pi^2}{3} - 4 \left[\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} \dots \right]$$

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} \dots = \frac{\pi^2}{12}$$
Ans.

Example 9. Obtain a Fourier expression for

$$f(x) = x^3$$
 for $-\pi < x < \pi$.

Solution. $f(x) = x^3$ is an odd function.

$$\therefore a_0 = 0 \text{ and } a_n = 0$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx = \frac{2}{\pi} \int_0^{\pi} x^3 \sin nx \, dx$$

$$\left[\int uv = uv_1 - u'v_2 + u''v_3 - u'''v_4 + \dots \right]$$

$$= \frac{2}{\pi} \left[x^3 \left(\frac{\cos nx}{n} \right) - 3x^2 \left(-\frac{\sin nx}{n^2} \right) + 6x \left(\frac{\cos nx}{n^3} \right) - 6 \left(\frac{\sin nx}{n^4} \right) \right]_0^{\pi}$$

$$= \frac{2}{\pi} \left[-\frac{\pi^3 \cos n\pi}{n} + \frac{6\pi \cos n\pi}{n^3} \right] = 2 \cdot (-1)^n \left[-\frac{\pi^2}{n} + \frac{6}{n^3} \right]$$

$$\therefore x^3 = 2 \left[-\left(\frac{\pi^2}{1} + \frac{6}{1^3} \right) \sin x + \left(-\frac{\pi^2}{2} + \frac{6}{2^3} \right) \sin 2x - \left(-\frac{\pi^2}{3} + \frac{6}{3^3} \right) \sin 3x \dots \right]$$
Ans.

12.9 HALF-RANGE SERIES, PERIOD 0 TO π

The given function is defined in the interval $(0, \pi)$ and it is immaterial whatever the function may be outside the interval $(0, \pi)$. To get the series of cosines only we assume that f(x) is an even function in the interval $(-\pi, \pi)$.

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx$$
 and $b_n = 0$

To expand f(x) as a sine series we extend the function in the interval $(-\pi, \pi)$ as an odd function.

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx \quad \text{and} \quad a_n = 0$$

Example 10. Represent the following function by a Fourier sine series:

Solution.
$$b_n = \frac{2}{\pi} \int_0^{\pi} f(t) \sin nt \ dt$$

$$= \frac{2}{\pi} \int_0^{\pi/2} t \sin nt \ dt + \frac{2}{\pi} \int_{\pi/2}^{\pi} \frac{\pi}{2} \sin nt \ dt$$

$$= \frac{2}{\pi} \left[t \left(-\frac{\cos nt}{n} \right) - (1) \left(-\frac{\sin nt}{n^2} \right) \right]_0^{\pi/2} + \frac{2}{\pi} \frac{\pi}{2} \left[-\frac{\cos nt}{n} \right]_{\pi/2}^{\pi}$$

$$= \frac{2}{\pi} \left[-\frac{\pi}{2} \frac{\cos \frac{n\pi}{2}}{n} + \frac{\sin \frac{n\pi}{2}}{n^2} \right] + \left[-\frac{\cos n\pi}{n} + \frac{\cos \frac{n\pi}{2}}{n} \right]$$

$$b_1 = \frac{2}{\pi} \left[-\frac{\pi}{2} \cos \frac{\pi}{2} + \sin \frac{\pi}{2} \right] + \left[-\cos \pi + \cos \frac{\pi}{2} \right] = \frac{2}{\pi} \left[0 + 1 \right] + \left[1 \right] = \frac{2}{\pi} + 1$$

$$b_2 = \frac{2}{\pi} \left[-\frac{\pi}{2} \frac{\cos \pi}{2} + \frac{\sin \pi}{2} \right] + \left[-\frac{\cos 2\pi}{2} + \frac{\cos \pi}{2} \right] = \frac{2}{\pi} \left[-\frac{\pi}{2} \frac{(-1)}{2} + 0 \right] + \left[-\frac{1}{2} - \frac{1}{2} \right]$$

$$= \frac{2}{\pi} \left[\frac{\pi}{4} \right] - 1 = \frac{1}{2} - 1 = -\frac{1}{2}$$

$$b_3 = \frac{2}{\pi} \left[-\frac{\pi}{2} \frac{\cos 3\pi}{2} + \frac{\sin 3\pi}{2} \right] + \left[-\frac{\cos 3\pi}{3} + \frac{\cos 3\pi}{2} \right]$$

$$= \frac{2}{\pi} \left[-\frac{\pi}{2} (0) - \frac{1}{9} \right] + \left[\frac{1}{3} + 0 \right] = -\frac{2}{9\pi} + \frac{1}{3}$$

$$f(t) = \left(\frac{2}{\pi} + 1 \right) \sin t - \frac{1}{2} \sin 2t + \left(-\frac{2}{9\pi} + \frac{1}{3} \right) \sin 3t + \dots$$
Ans.

Example 11. Find the Fourier sine series for the function

$$f(x) = e^{ax} for 0 < x < \pi$$

where a is constant

Solution.
$$b_{n} = \frac{2}{\pi} \int_{0}^{\pi} e^{ax} \sin nx \, dx$$

$$= \frac{2}{\pi} \left[\frac{e^{ax}}{a^{2} + n^{2}} (a \sin n\pi - n \cos nx) \right]_{0}^{\pi}$$

$$\left(\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^{2} + b^{2}} [a \sin bx - b \cos bx] \right)$$

$$= \frac{2}{\pi} \left[\frac{e^{ax}}{a^{2} + n^{2}} (a \sin n\pi - n \cos n\pi) + \frac{n}{a^{2} + n^{2}} \right]$$

$$= \frac{2}{\pi} \frac{n}{a^{2} + n^{2}} \left[-(-1)e^{a\pi} + 1 \right] = \frac{2n}{(a^{2} + n^{2})\pi} \left[1 - (-1)^{n} e^{a\pi} \right]$$

$$b_{1} = \frac{2(1 + e^{a\pi})}{(a^{2} + 1^{2})\pi}, \qquad b_{2} = \frac{2 \cdot 2 \cdot 1(1 - e^{a\pi})}{(a^{2} + 2^{2})\pi}$$

$$e^{ax} = \frac{2}{\pi} \left[\frac{1 + e^{a\pi}}{a^{2} + 1^{2}} \sin x + \frac{2(1 - e^{a\pi})}{a^{2} + 2^{2}} \sin 2x + \dots \right]$$
Ans.

1. Find the Fourier cosine series for the function

$$f(x) = \begin{cases} 1 & \text{for } 0 < x < \frac{\pi}{2} \\ 0 & \text{for } \frac{\pi}{2} < x < \pi. \end{cases}$$

$$\mathbf{Ans.} \ \frac{1}{2} + \frac{2}{\pi} \left[\cos x - \frac{1}{3} \cos 3x + \frac{1}{5} \cos 5x - \dots \right]$$

2. Find a series of cosine of multiples of x which will represent f(x) in $(0, \pi)$ where

$$f(x) = \begin{cases} 0 & \text{for } 0 < x < \frac{\pi}{2} \\ \frac{\pi}{2} & \text{for } \frac{\pi}{2} < x < \pi \end{cases}$$

Deduce that
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$

Ans.
$$\frac{\pi}{4} - \cos x + \frac{1}{3} \cos 3x - \frac{1}{5} \cos 5x + \dots$$

3. Express f(x) = x as a sine series in $0 < x < \pi$.

Ans.
$$2\left[\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - ...\right]$$

4. Find the cosine series for $f(x) = \pi - x$ in the interval $0 < x < \pi$.

Ans.
$$\frac{\pi}{2} + \frac{4}{\pi} \left(\cos x + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right)$$

5. If
$$f(x) = \begin{cases} 0 & \text{for } 0 < x < \frac{\pi}{2} \\ \pi - x, & \text{for } \frac{\pi}{2} < x < \pi \end{cases}$$

Show that: (i)
$$f(x) = \frac{4}{\pi} \left(\sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x - \dots \right)$$

(ii) $f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left(\frac{1}{1^2} \cos 2x + \frac{1}{3^2} \cos 6x + \frac{1}{5^2} \cos 10x + \dots \right)$

(i)
$$f(x) = \frac{4}{\pi} \left(\sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x - \dots \right)$$

(ii)
$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left(\frac{1}{1^2} \cos 2x + \frac{1}{3^2} \cos 6x + \frac{1}{5^2} \cos 10x + \dots \right)$$

6. Obtain the half-range cosine series for $f(x) = x^2$ in $0 < x < \pi$.

Ans.
$$\frac{\pi^2}{3} - \frac{4}{\pi} \left(\cos x - \frac{1}{2^2} \cos 2x + \frac{1}{3^2} \cos 3x - \dots \right)$$

7. Find (i) sine series and (ii) cosine series for the function

$$f(x) = e^x \quad \text{for } 0 < x < \pi.$$

Ans. (i)
$$\frac{2}{\pi} \sum_{1}^{\infty} n \left[\frac{1 - (-1)^n e^{\pi}}{n^2 + 1} \right] \sin nx$$
 (ii) $\frac{e^{\pi} - 1}{\pi} - \frac{2}{\pi} \sum_{1}^{\infty} \frac{1 - (-1)^n e^{\pi}}{n^2 + 1} \cos nx$

8. If f(x) = x + 1, for $0 < x < \pi$, find its Fourier (i) sine series (ii) cosine series. Hence deduce that

(i)
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$
 (ii) $1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$
Ans. (i) $\frac{2}{\pi} \left[(\pi + 2)\sin x - \frac{\pi}{2}\sin 2x + \frac{1}{3}(\pi + 2)\sin 3x - \frac{\pi}{4}\sin 4x + \dots \right]$
(ii) $\frac{\pi}{2} + 1 - 4 \left(\cos x + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right)$

9. Find the Fourier series expansion of the function $f(x) = \cos(sx), -\pi \le x \le \pi$

where s is a fraction. Hence, show that $\cos \theta = \frac{1}{\theta} + \frac{2\theta}{\theta^2 - \pi^2} + \frac{2\theta}{\theta^2 - 4\pi^2} + ...$

Ans.
$$\frac{\sin \pi x}{\pi s} + \frac{1}{\pi} \sum \left(\frac{\sin(s\pi + n\pi)}{s + n} + \frac{\sin(s\pi - n\pi)}{s - n} \right) \cos nx$$

12.10 CHANGE OF INTERVAL AND FUNCTIONS HAVING ARBITRARY PERIOD

In electrical engineering problems, the period of the function is not always 2π but T or 2c. This period must be converted to the length 2π . The independent variable x is also to be changed proportionally.

Let the function f(x) be defined in the interval (-c, c). Now we want to change the function to the period of 2π so that we can use the formulae of a_n , b_n as discussed in article 12.6.

 \therefore 2 c is the interval for the variable x.

 \therefore 1 is the interval for the variable = $\frac{x}{2c}$

 $\therefore 2 \pi$ is the interval for the variable = $\frac{x2\pi}{2c} = \frac{\pi x}{c}$

o put

$$z = \frac{\pi x}{c}$$
 or $x = \frac{zc}{\pi}$

Thus the function f(x) of period 2c is transformed to the function

$$f\left(\frac{cz}{\pi}\right)$$
 or the period of $F(z)$ is 2π

F(z) can be expanded in the Fourier series.

$$F(z) = f\left(\frac{cz}{\pi}\right) = \frac{a_0}{2} + a_1 \cos z + a_2 \cos 2z + \dots + b_1 \sin z + b_2 \sin 2z + \dots$$

where
$$a_0 = \frac{1}{\pi} \int_0^{2\pi} F(z) dz = \frac{1}{\pi} \int_0^{2\pi} f\left(\frac{cz}{\pi}\right) dz$$

$$= \frac{1}{\pi} \int_0^{2c} f(x) d\left(\frac{\pi x}{c}\right) = \frac{1}{c} \int_0^{2c} f(x) dx \qquad \left[\text{Put } z = \frac{\pi x}{c} \right]$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} F(z) \cos nz \, dz = \frac{1}{\pi} \int_0^{2\pi} f\left(\frac{cz}{\pi}\right) \cos nz \, dz$$

$$= \frac{1}{\pi} \int_0^{2c} f(x) \cos \frac{n\pi x}{c} d\left(\frac{\pi x}{c}\right) = \frac{1}{c} \int_0^{2c} f(x) \cos \frac{n\pi x}{c} dx \qquad \left[\text{Put } z = \frac{\pi x}{c} \right]$$

Similarly,
$$b_n = \frac{1}{c} \int_0^{2c} f(x) \sin \frac{n\pi x}{c} dx$$
.

Cor. Half range series [Interval (0, c)]

Cosine series:

$$f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{c} + a_2 \cos \frac{2\pi x}{c} + \dots + a_n \cos \frac{n\pi x}{c} + \dots$$
$$a_0 = \frac{2}{c} \int_0^c f(x) \, dx, \ a_n = \frac{2}{c} \int_0^c f(x) \cos \frac{n\pi x}{c} \, dx$$

where

Sine series:
$$f(x) = b_1 \sin \frac{\pi x}{c} + b_2 \sin \frac{2\pi x}{c} + \dots + b_n \sin \frac{n\pi x}{c} + \dots$$

where

$$b_n = \frac{2}{c} \int_c^2 f(x) \sin \frac{n\pi x}{c} dx.$$

Example 12. A periodic function of period 4 is defined as

$$f(x) = |x|, -2 < x < 2.$$

Find its Fourier series expansion.

$$f(x) = |x| \qquad -2 < x < 2$$

$$f(x) = x$$
$$= -x$$

$$a_0 = \frac{1}{c} \int_{-c}^{c} f(x) dx = \frac{1}{2} \int_{0}^{2} x dx + \frac{1}{2} \int_{-2}^{0} (-x) dx$$

$$= \frac{1}{2} \left[\frac{x^2}{2} \right]_0^2 + \frac{1}{2} \left[\frac{-x^2}{2} \right]_0^0 = \frac{1}{4} (4 - 0) + \frac{1}{4} (0 + 4) = 2$$

$$a_n = \frac{1}{c} \int_{-c}^{c} f(x) \cos \frac{n\pi x}{c} dx = \frac{1}{2} \int_{0}^{2} x \cos \frac{n\pi x}{2} dx + \frac{1}{2} \int_{-2}^{0} (-x) \cos \frac{n\pi x}{2} dx$$

$$= \frac{1}{2} \left[x \left(\frac{2}{n\pi} \sin \frac{n\pi x}{2} \right) - (1) \left(-\frac{4}{n^2 \pi^2} \cos \frac{n\pi x}{2} \right) \right]_0^2$$

$$1 \left[(2 + n\pi x) + (3 + n\pi x) \right]_0^2$$

$$= 2 \left[x \left(n\pi^{5 \text{IM}} - 2 \right) \right] + \left[(-x) \left(\frac{2}{n\pi^{5 \text{I}}} \sin \frac{n\pi x}{2} \right) - (-1) \left(-\frac{4}{n^{2}\pi^{2}} \right) \cos \frac{n\pi x}{2} \right]^{0}$$

867

$$= \frac{1}{2} \left[0 + \frac{4}{n^2 \pi^2} (-1)^n - \frac{4}{n^2 \pi^2} \right] + \frac{1}{2} \left[0 - \frac{4}{n^2 \pi^2} + \frac{4}{n^2 \pi^2} (-1)^n \right]$$

$$= \frac{1}{2} \frac{4}{n^2 \pi^2} [(-1)^n - 1 - 1 + (-1)^n] = \frac{4}{n^2 \pi^2} [(-1)^n - 1]$$

$$= -\frac{8}{n^2 \pi^2} \qquad \text{if } n \text{ is odd.}$$

$$= 0 \qquad \text{if } n \text{ is even}$$

 $b_n = 0$ as f(x) is even function.

Fourier series is

$$f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{c} + c_2 \cos \frac{2\pi x}{c} + \dots + b_1 \sin \frac{\pi x}{c} + b_2 \sin \frac{2\pi x}{c} + \dots$$
$$f(x) = 1 - \frac{8}{\pi^2} \left[\frac{\cos \frac{\pi x}{2}}{1^2} + \frac{\cos \frac{3\pi x}{2}}{3^2} + \frac{\cos \frac{5\pi x}{2}}{5^2} + \dots \right]$$
 Ans.

Example 13. Find Fourier half-range even expansion of the function,

Solution.
$$a_{0} = \frac{2}{l} \int_{0}^{1} f(x) dx = \frac{2}{l} \int_{0}^{1} \left(-\frac{x}{l} + 1 \right) dx$$

$$= \frac{2}{l} \left[-\frac{x^{2}}{2l} + x \right]_{0}^{l} = \frac{2}{l} \left[-\frac{l^{2}}{2l} + 1 \right] = \frac{2l}{l} \left[-\frac{1}{2} + 1 \right] = 1$$

$$a_{n} = \frac{2}{l} \int_{0}^{1} f(x) \cos \frac{n \pi x}{l} dx = \frac{2}{l} \int_{0}^{1} \left(-\frac{x}{l} + 1 \right) \cos \frac{n \pi x}{l} dx$$

$$= \frac{2}{l} \left[\left(-\frac{x}{l} + 1 \right) \left(\frac{l}{n\pi} \sin \frac{n \pi x}{l} \right) - \left(-\frac{1}{l} \right) \left(-\frac{l^{2}}{n^{2} \pi^{2}} \cos \frac{n \pi x}{l} \right) \right]_{0}^{l}$$

$$= \frac{2}{l} \left[0 - \frac{l}{n^{2} \pi^{2}} \cos n\pi + \frac{l}{n^{2} \pi^{2}} \right] = \frac{2}{l} \frac{l}{n^{2} \pi^{2}} [-(-1)^{n} + 1] = \frac{2}{n^{2} \pi^{2}} [1 - (-1)^{n}]$$

$$= \frac{4}{n^{2} \pi^{2}} \quad \text{when } n \text{ is odd.}$$

$$= 0 \quad \text{when } n \text{ is even.}$$

$$f(x) = \frac{1}{2} + \frac{4}{\pi^{2}} \left[\frac{1}{1^{2}} \cos \frac{\pi x}{l} + \frac{1}{3^{2}} \cos \frac{3\pi x}{l} + \frac{1}{5^{2}} \cos \frac{5\pi x}{l} ... \right] \quad \text{Ans.}$$

Example 14. Find the Fourier half-range cosine series of the function

$$f(t) = 2 t, 0 < t < 1$$

$$= 2 (2-t), 1 < t < 2$$
Solution.
$$f(t) = 2t, 0 < t < 1$$

$$= 2 (2-t), 1 < t < 2$$

Let
$$f(t) = \frac{a_0}{2} + a_1 \cos \frac{\pi t}{c} + a_2 \cos \frac{2\pi t}{c} + a_3 \cos \frac{3\pi t}{c} + \dots$$
$$+b_1 \sin \frac{\pi t}{c} + b_2 \sin \frac{2\pi t}{c} + b_3 \sin \frac{3\pi t}{c} + \dots \tag{1}$$

Hence c = 2, because it is half range series.

Here
$$a_0 = \frac{2}{c} \int_0^c f(t) dt = \frac{2}{2} \int_0^1 2t dt + \frac{2}{2} \int_1^2 2(2-t) dt$$

$$= \left[t^2 \right]_0^1 + \left[2 \left(2t - \frac{t^2}{2} \right) \right]_1^2 = 1 + \left[(4t - t^2) \right]_1^2 = 1 + (8 - 4 - 4 + 1) = 2$$

$$a_n = \frac{2}{c} \int_0^c f(t) \cos \frac{n\pi t}{c} dt = \frac{2}{2} \int_0^1 2t \cos \frac{n\pi t}{2} dt + \frac{2}{2} \int_1^2 2(2 - t) \cos \frac{n\pi t}{2} dt$$

$$= \left[2t \left(\frac{2}{n\pi} \sin \frac{n\pi t}{2} \right) - (2) \left(-\frac{4}{n^2 \pi^2} \cos \frac{n\pi t}{2} \right) \right]_0^1$$

$$+ \left[(4 - 2t) \left(\frac{2}{n\pi} \sin \frac{n\pi t}{2} \right) - (-2) \left(-\frac{4}{n^2 \pi^2} \cos \frac{n\pi t}{2} \right) \right]_1^2$$

$$= \left[\frac{4}{n\pi} \sin \frac{n\pi}{2} + \frac{8}{n^2 \pi^2} \cos \frac{n\pi}{2} - \frac{8}{n^2 \pi^2} \right] + \left[0 - \frac{8}{n^2 \pi^2} \cos n\pi - \frac{4}{n\pi} \sin \frac{n\pi}{2} + \frac{8}{n^2 \pi^2} \cos \frac{n\pi}{2} \right]$$

$$= \frac{16}{n^2 \pi^2} \cos \frac{n\pi}{2} - \frac{8}{n^2 \pi^2} - \frac{8}{n^2 \pi^2} \cos n\pi = \frac{8}{n^2 \pi^2} \left[2\cos \frac{n\pi}{2} - 1 - \cos n\pi \right]$$

$$f(t) = 1 + \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \left[2\cos \frac{n\pi}{2} - 1 - \cos n\pi \right] \cos \frac{n\pi t}{2}$$
Ans.

Example 15. Obtain the Fourier cosine series expansion of the periodic function defined by

$$f(t) = \sin\left(\frac{\pi t}{l}\right), \ 0 < t < l$$

$$f(t) = \sin\left(\frac{\pi t}{l}\right), \ 0 < t < l$$

$$a_0 = \frac{2}{l} \int_0^l \sin\left(\frac{\pi t}{l}\right) dt = \frac{2}{l} \left(-\frac{l}{\pi} \cos\frac{\pi t}{l}\right)_0^l = -\frac{2}{\pi} (\cos\pi - \cos 0) = -\frac{2}{\pi} (-1 - 1) = \frac{4}{\pi}$$

$$a_n = \frac{2}{l} \int_0^l \sin\left(\frac{\pi t}{l}\right) \cos\frac{n\pi t}{l} dt = \frac{1}{l} \int_0^1 \left[\sin\left(\frac{\pi t}{l} + \frac{n\pi t}{l}\right) - \sin\left(\frac{n\pi t}{l} - \frac{\pi t}{l}\right) \right] dt$$

$$= \frac{1}{l} \int_{0}^{l} \sin(n+1) \frac{\pi t}{l} dt - \frac{1}{l} \int_{0}^{l} \sin(n-1) \frac{\pi t}{l} dt$$

$$= \frac{1}{l} \left[-\frac{l}{(n+1)\pi} \cos \frac{(n+1)\pi t}{l} \right]_{0}^{l} - \frac{1}{l} \left[\frac{l}{(n-1)\pi} \cos \frac{(n-1)\pi t}{l} \right]_{0}^{l}$$

$$= \frac{-1}{(n+1)\pi} [\cos(n+1)\pi - \cos 0] + \frac{1}{(n-1)\pi} [\cos(n-1)\pi - \cos 0]$$

$$= \frac{1}{(n+1)\pi} [(-1)^{n-1} - 1] + \frac{1}{(n-1)\pi} [(-1)^{n+1} - 1]$$

$$= (-1)^{n+1} \left[-\frac{1}{(n+1)\pi} + \frac{1}{(n-1)\pi} \right] + \frac{1}{(n+1)\pi} - \frac{1}{(n-1)\pi}$$

$$= (-1)^{n+1} \frac{2}{(n^{2} - 1)\pi} - \frac{2}{(n^{2} - 1)\pi} = \frac{2}{(n^{2} - 1)\pi} \left[(-1)^{n+1} - 1 \right]$$

$$= \frac{-4}{(n^{2} - 1)\pi} \quad \text{when } n \text{ is even}$$

$$= 0 \quad \text{when } n \text{ is odd.}$$

The above formula for finding the value of a_1 is not applicable.

$$a_{1} = \frac{2}{l} \int_{0}^{l} \sin \frac{\pi t}{l} \cos \frac{\pi t}{l} dt = \frac{1}{l} \int_{0}^{l} \sin \frac{2\pi t}{l} dt$$

$$= \frac{1}{l} \left(-\frac{l}{2\pi} \cos \frac{2\pi t}{l} \right)_{0}^{l} = -\frac{l}{2\pi l} (\cos 2\pi - \cos 0) = \frac{1}{2\pi} (1 - 1) = 0$$

$$f(t) = \frac{a_{0}}{2} + a_{1} \cos \frac{\pi t}{l} + a_{2} \cos \frac{2\pi t}{l} + a_{3} \cos \frac{3\pi t}{l} + a_{4} \cos \frac{4\pi t}{l} + \dots$$

$$= \frac{2}{\pi} - \frac{4}{\pi} \left[\frac{1}{3} \cos \frac{2\pi t}{l} + \frac{1}{15} \cos \frac{4\pi t}{l} + \frac{1}{35} \cos \frac{6\pi t}{l} + \dots \right]$$
Ans.

Example 16. Find the Fourier series expansion of the periodic function of period 1

$$f(x) = \frac{1}{2} + x, \qquad -\frac{1}{2} < x \le 0$$
$$= \frac{1}{2} - x, \qquad 0 < x < \frac{1}{2}$$

Solution. Let
$$f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{c} + a_2 \cos \frac{2\pi x}{c} + ...$$

 $+b_1 \sin \frac{\pi x}{c} + b_2 \sin 2 \frac{\pi x}{c} + b_3 \sin \frac{3\pi x}{c} + ...$... (1)

Here 2
$$c = 1$$
 or $c = \frac{1}{2}$

$$a_0 = \frac{1}{c} \int_{-c}^{c} f(x) dx = \frac{1}{1/2} \int_{-1/2}^{0} \left(\frac{1}{2} + x\right) dx + \frac{1}{1/2} \int_{0}^{1/2} \left(\frac{1}{2} - x\right) dx$$

$$= 2 \left[\frac{x}{2} + \frac{x^2}{2}\right]_{-1/2}^{0} + \left[\frac{x}{2} - \frac{x^2}{2}\right]_{0}^{1/2} = 2 \left[\frac{1}{4} - \frac{1}{8}\right] + \left[\frac{1}{4} - \frac{1}{8}\right] = \frac{1}{2}$$

$$a_{n} = \frac{1}{c} \int_{-c}^{c} f(x) \cos \frac{n\pi x}{c} dx$$

$$= \frac{1}{1/2} \int_{-1/2}^{0} \left(\frac{1}{2} + x \right) \cos \frac{n\pi x}{1/2} dx + \frac{1}{1/2} \int_{0}^{1/2} \left(\frac{1}{2} - x \right) \cos \frac{n\pi x}{1/2} dx$$

$$= 2 \int_{-1/2}^{0} \left(\frac{1}{2} + x \right) \cos 2n\pi x dx + 2 \int_{0}^{1/2} \left(\frac{1}{2} - x \right) \cos 2n\pi x dx$$

$$= 2 \left[\left(\frac{1}{2} + x \right) \frac{\sin 2n\pi x}{2n\pi} - (1) \left(-\frac{\cos 2n\pi x}{4n^{2}\pi^{2}} \right) \right]_{-1/2}^{0}$$

$$+ 2 \left[\left(\frac{1}{2} - x \right) \frac{\sin 2n\pi x}{2n\pi} - (-1) \left(\frac{-\cos 2n\pi x}{4n^{2}\pi^{2}} \right) \right]_{0}^{1/2}$$

$$= 2 \left[0 + \frac{1}{4n^{2}\pi^{2}} - \frac{(-1)^{n}}{4n^{2}\pi^{2}} \right] + 2 \left[0 - \frac{(-1)^{n}}{4n^{2}\pi^{2}} + \frac{1}{4n^{2}\pi^{2}} \right] = \frac{1}{\pi^{2}} \left[\frac{1}{n^{2}} - \frac{(-1)^{n}}{n^{2}} \right]$$

$$= \frac{2}{n^{2}\pi^{2}} \qquad \text{if } n \text{ is odd}$$

$$= 0 \qquad \text{if } n \text{ is even}$$

$$b_{n} = \frac{1}{c} \int_{-c}^{c} f(x) \sin \frac{n\pi x}{c} dx$$

$$= \frac{1}{1/2} \int_{-1/2}^{0} \left(\frac{1}{2} + x \right) \sin \frac{n\pi x}{1/2} dx + \frac{1}{1/2} \int_{0}^{1/2} \left(\frac{1}{2} - x \right) \sin \frac{n\pi x}{1/2} dx$$

$$= 2 \int_{-1/2}^{0} \left(\frac{1}{2} + x \right) \sin 2n\pi x dx + 2 \int_{0}^{1/2} \left(\frac{1}{2} - x \right) \sin 2n\pi x dx$$

$$= 2 \left[\left(\frac{1}{2} + x \right) \left(-\frac{\cos 2n\pi x}{2n\pi} \right) - (1) \left(-\frac{\sin 2n\pi x}{4n^{2}\pi^{2}} \right) \right]_{-1/2}^{0}$$

$$+ 2 \left[\left(\frac{1}{2} - x \right) \left(-\frac{\cos 2n\pi x}{2n\pi} \right) - (-1) \left(-\frac{\sin 2n\pi x}{4n^{2}\pi^{2}} \right) \right]_{0}^{1/2}$$

$$= 2 \left[-\frac{1}{4n\pi} \right] + \left[\frac{1}{4n\pi} \right] = 0$$

Substituting the values of a_0 , a_1 , a_2 , a_3 , ... b_1 , b_2 , b_3 ... in (1) we have

$$f(x) = \frac{1}{4} + \frac{2}{\pi^2} \left[\frac{\cos 2\pi x}{1^2} + \frac{\cos 6\pi x}{3^2} + \frac{\cos 10\pi x}{5^2} + \dots \right]$$
 Ans.

Example 17. Prove that $\frac{1}{2} - x = \frac{1}{\pi} \sum_{l=1}^{\infty} \frac{1}{n} \sin \frac{2n\pi x}{l}$, 0 < x < l

Solution.
$$f(x) = \frac{1}{2} - x$$

$$a_0 = \frac{1}{1/2} \int_0^1 f(x) dx = \frac{2}{l} \int_0^1 \left(\frac{1}{2} - x \right) dx = \frac{2}{l} \left[\frac{lx}{2} - \frac{x^2}{2} \right]_0^1 = 0$$

$$a_{n} = \frac{1}{1/2} \int_{0}^{1} f(x) \cos \frac{n\pi x}{1/2} dx = \frac{2}{l} \int_{0}^{1} \left(\frac{1}{2} - x \right) \cos \frac{2n\pi x}{1} dx$$

$$= \frac{2}{l} \left[\left(\frac{1}{2} - x \right) \frac{1}{2n\pi} \sin \frac{2n\pi x}{1} - (-1) - \frac{1^{2}}{4n^{2}\pi^{2}} \cos \frac{2n\pi x}{1} \right]_{0}^{1}$$

$$= \frac{2}{l} \left[0 - \frac{1^{2}}{4n^{2}\pi^{2}} \cos 2n\pi + \frac{1^{2}}{4n^{2}\pi^{2}} \right]$$

$$= \frac{2}{l} \frac{1^{2}}{4n^{2}\pi^{2}} (-\cos 2n\pi + 1) = \frac{1}{2n^{2}\pi^{2}} (-1 + 1) = 0$$

$$b_{n} = \frac{1}{l/2} \int_{0}^{1} f(x) \sin \frac{n\pi x}{l/2} dx = \frac{2}{l} \int_{0}^{1} \left(\frac{1}{2} - x \right) \sin \frac{2n\pi x}{1} dx$$

$$= \frac{2}{l} \left[\left(\frac{1}{2} - x \right) \left(-\frac{1}{2n\pi} \cos \frac{2n\pi x}{1} \right) - (-1) \left(-\frac{1^{2}}{4n^{2}\pi^{2}} \sin \frac{2n\pi x}{1} \right)_{0}^{1} \right]$$

$$= \frac{2}{l} \left[\frac{1}{2} \frac{1}{2n\pi} \cos 2n\pi - \frac{1}{2} \cdot \frac{1}{2n\pi} (1) \right] = \frac{2}{l} \left[\frac{1^{2}}{2n\pi} \right] = \frac{1}{n\pi}$$

Fourier series is

$$f(x) = \frac{a_0}{2} + a_1 \cos \frac{n \pi x}{1/2} + a_2 \cos \frac{2n\pi x}{1/2} + a_3 \cos \frac{3n \pi x}{1/2} + \dots$$

$$+b_1 \sin \frac{n \pi x}{1/2} + b_2 \sin \frac{2n\pi x}{1/2} + b_3 \sin \frac{3n \pi x}{1/2} + \dots$$

$$\frac{1}{2} - x = \frac{1}{\pi} \sin \frac{2\pi x}{1} + \frac{1}{2\pi} \sin \frac{4\pi x}{1} + \frac{1}{3\pi} \sin \frac{6\pi x}{1} + \dots$$

$$= \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{2n\pi x}{1}$$
Prove

Example 18. Find the Fourier series corresponding to the function f(x) defined in (-2, 2) as follows

Solution. Here the interval is
$$(-2, 2)$$
 and $c = 2$

$$a_0 = \frac{1}{c} \int_{-c}^{c} f(x) dx = \frac{1}{2} \left[\int_{-2}^{0} 2 dx + \int_{-2}^{0} x dx \right]$$

$$= \frac{1}{2} \left[\left[\left[2x \right]_{-2}^{0} + \left(\frac{x^2}{2} \right)_{0}^{2} \right] = \frac{1}{2} \left[4 + 2 \right] = 3$$

$$a_n = \frac{1}{c} \int_{-c}^{c} f(x) \cos \left(\frac{n \pi x}{c} \right) dx = \frac{1}{2} \left[\int_{-2}^{0} 2 \cdot \cos \frac{n \pi x}{2} dx + \int_{0}^{2} x \cos \frac{n \pi x}{2} dx \right]$$

$$= \frac{1}{2} \left[\frac{4}{n \pi} \left(\sin \frac{n \pi x}{2} \right)_{-2}^{0} + \left(x \frac{2}{n \pi} \sin \frac{n \pi x}{2} + \frac{4}{n^2 \pi^2} \cos \frac{n \pi x}{2} \right)_{0}^{2} \right]$$

$$= \frac{1}{2} \left[\frac{4}{n^2 \pi^2} \cos n\pi - \frac{4}{n^2 \pi^2} \right] = \frac{2}{n^2 \pi^2} [(-1)^n - 1]$$

$$= \frac{4}{n^2 \pi^2} \qquad \text{when } n \text{ is odd}$$

$$= 0 \qquad \text{when } n \text{ is even.}$$

$$b_n = \frac{1}{c} \int_{-c}^{c} f(x) \sin \frac{n \pi x}{c} dx = \frac{1}{2} \int_{-2}^{0} 2 \sin \frac{n \pi x}{2} dx + \frac{1}{2} \int_{0}^{2} x \sin \frac{n \pi x}{2} dx$$

$$= \frac{1}{2} \left[2 \left(-\frac{2}{n \pi} \cos \frac{n \pi x}{2} \right) \right]_{-2}^{0} + \frac{1}{2} \left[x \left(-\frac{2}{n \pi} \cos \frac{n \pi x}{2} \right) + (1) \frac{4}{n^2 \pi^2} \sin \frac{n \pi x}{2} \right]_{0}^{2}$$

$$= \frac{1}{2} \left[-\frac{4}{n \pi} + \frac{4}{n \pi} \cos n \pi \right] + \frac{1}{2} \left[-\frac{4}{n \pi} \cos n \pi + \frac{4}{n^2 \pi^2} \sin n \pi \right] = \frac{1}{2} \left[-\frac{4}{n \pi} \right] = -\frac{2}{n \pi}$$

$$f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{c} + a_2 \cos \frac{2\pi x}{c} + a_3 \cos \frac{3\pi x}{c} + \dots$$

$$+ b_1 \sin \frac{\pi x}{c} + b_2 \sin \frac{2\pi x}{c} + b_3 \sin \frac{3\pi x}{c} + \dots$$

$$= \frac{3}{2} - \frac{4}{\pi^2} \left\{ \frac{1}{1^2} \cos \frac{\pi x}{2} + \frac{1}{3^2} \cos \frac{3\pi x}{2} + \dots \right\}$$

$$- \frac{2}{n \pi} \left\{ \frac{1}{1^2} \sin \frac{\pi x}{2} + \frac{1}{2} \sin \frac{2\pi x}{2} + \frac{1}{2} \sin \frac{3\pi x}{2} + \dots \right\}$$

$$- \frac{2}{n \pi} \left\{ \frac{1}{1^2} \sin \frac{\pi x}{2} + \frac{1}{2} \sin \frac{2\pi x}{2} + \frac{1}{2} \sin \frac{3\pi x}{2} + \dots \right\}$$
Ans.

Example 19. Expand $f(x) = e^x$ in a cosine series over $(0, 1)$.

Solution.

$$f(x) = e^x$$
 and $c = 1$

$$a_0 = \frac{2}{c} \int_{0}^{c} f(x) dx = \frac{2}{1} \int_{0}^{1} e^x dx = 2(e - 1)$$

$$a_n = \frac{2}{c} \int_{0}^{c} f(x) \cos \frac{n\pi x}{c} dx = \frac{2}{1} \int_{0}^{1} e^x \cos \frac{n\pi x}{1} dx$$

$$= 2 \left[\frac{e^x}{n^2 \pi^2 + 1} [(-1)^n e - 1] \right]$$

 $f(x) = \frac{a_0}{2} + a_1 \cos \pi x + a_2 \cos 2\pi x + a_3 \cos 3\pi x + \dots$

$$e^{x} = e - 1 + 2 \left[\frac{-e - 1}{\pi^{2} + 1} \cos \pi x + \frac{e - 1}{4\pi^{2} + 1} \cos 2\pi x + \frac{-e - 1}{9\pi^{2} + 1} \cos 3\pi x + \dots \right]$$
 Ans.

Exercise 12.4

1. Find the Fourier series to represent f(x), where

$$f(x) = -a \qquad -c < x < 0$$

$$= a \qquad 0 < x < c \qquad \mathbf{Ans.} \quad \frac{4a}{\pi} \left[\sin \frac{\pi x}{c} + \frac{1}{3} \sin \frac{3\pi x}{c} + \frac{1}{5} \sin \frac{5\pi x}{c} + \dots \right]$$

2. Find the half-range sine series for the function f(x) = 2x - 1 0 < x < 1.

Ans.
$$-\frac{2}{\pi} \left[\sin \pi x + \frac{1}{2} \sin 4\pi x + \frac{1}{3} \sin 6\pi x + \dots \right]$$

3. Express f(x) = x as a cosine, half range series in 0 < x < 2.

Ans.
$$1 - \frac{8}{\pi^2} \left[\frac{1}{1^2} \cos \frac{\pi x}{2} + \frac{1}{3^2} \cos \frac{3\pi x}{2} + \frac{1}{5^2} \cos \frac{5\pi x}{2} + \dots \right]$$

4. Find the Fourier series of the function

$$f(x) = \begin{bmatrix} -2 & \text{for} & -4 < x < -2 \\ x & \text{for} & -2 < x < 2 \\ 2 & \text{for} & 2 < x < 4 \end{bmatrix}$$

Ans.
$$\frac{4}{\pi} + \frac{8}{\pi^2} \sin \frac{\pi x}{4} - \frac{2}{\pi} \sin \frac{2\pi x}{4} + \left(\frac{4}{3\pi} - \frac{8}{3^2\pi}\right) \sin \frac{3\pi x}{4} - \frac{2}{2\pi} \sin \frac{4\pi x}{4} + \dots$$

5. Find the Fourier series to represent

$$f(x) = x^2 - 2$$
 from $-2 < x < 2$.

Ans.
$$-\frac{2}{3} - \frac{16}{\pi^2} \left[\cos \frac{\pi x}{2^2} - \frac{1}{4} \cos \pi x + \frac{1}{9} \cos \frac{3\pi x}{2} ... \right]$$

6. If $f(x) = e^{-x} - c < x < c$, show that

$$f(x) = (e^{c} - e^{-c}) \left\{ \frac{1}{2c} - c \left(\frac{1}{c^{2} + \pi^{2}} \cos \frac{\pi x}{c} - \frac{1}{c^{2} + 4\pi^{2}} \cos \frac{2\pi x}{c} + \dots \right) - \pi \left(\frac{1}{c^{2} + \pi^{2}} \sin \frac{\pi x}{c} - \frac{1}{c^{2} + 4\pi^{2}} \sin \frac{2\pi x}{c} + \dots \right) \right\}$$

7. A sinusodial voltage E sin ωt is passed through a half wave rectifier which clips the negative portion of the wave. Develop the resulting portion of the function

$$u(t) = 0 \qquad \text{when} \qquad -\frac{T}{2} < t < 0$$

$$= E \sin \omega t \qquad \text{when} \qquad 0 < t < \frac{T}{2} \qquad \left(T = \frac{2\pi}{\omega}\right)$$

$$\mathbf{Ans.} \quad \frac{E}{\pi} + \frac{E}{2} \sin \omega t - \frac{2E}{\pi} \left[\frac{1}{1.3} \cos 2\omega t + \frac{1}{3.5} \cos 4\omega t + \frac{1}{5.7} \cos 6\omega t + \dots\right]$$

8. A periodic square wave has a period 4. The function generating the square is

$$f(t) = 0$$
 for $-2 < t < -1$
= k for $-1 < t < 1$
= 0 for $1 < t < 2$

Find the Fourier series of the function.

Ans.
$$f(t) = \frac{k}{2} + \frac{2k}{\pi} \left[\cos \frac{\pi t}{2} - \frac{1}{3} \cos \frac{3\pi t}{2} + \dots \right]$$

9. Find a Fourier series to represent x^2 in the interval (-l, l).

Ans.
$$\frac{l^2}{3} - \frac{4l^2}{\pi^2} \left[\cos \pi x - \frac{\cos \pi x}{2^2} + \frac{\cos 3\pi x}{3^2} \dots \right]$$

12.11. PARSEVAL'S FORMULA

$$\int_{-c}^{c} [f(x)]^{2} dx = c \left\{ \frac{1}{2} a_{0}^{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}) \right\}$$

Solution. We know that $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{c} + b_n \sin \frac{n\pi x}{c} \right)$ (1)

Multiplying (1) by f(x), we get

$$[f(x)]^{2} = \frac{a_{0}}{2}f(x) + \sum_{n=1}^{\infty} a_{n}f(x)\cos\frac{n\pi x}{c} + \sum_{n=1}^{\infty} b_{n}f(x)\sin\frac{n\pi x}{c} \qquad \dots (2)$$

Integrating term by term from -c to c, we have

$$\int_{-c}^{c} [f(x)]^{2} dx = \frac{a_{0}}{2} \int_{-c}^{c} f(x) dx + \sum_{n=1}^{\infty} a_{n} \int_{-c}^{c} f(x) \cos \frac{n\pi x}{c} + \sum_{n=1}^{\infty} b_{n} \int_{-c}^{c} f(x) \sin \frac{n\pi x}{c} dx \qquad \dots (3)$$

We have the following results

$$a_0 = \frac{1}{c} \int_{-c}^{c} f(x) dx \qquad \Rightarrow \qquad \int_{-c}^{c} f(x) dx = c \, a_0$$

$$a_n = \frac{1}{c} \int_{-c}^{c} f(x) = \cos \frac{n\pi x}{c} dx \qquad \Rightarrow \qquad \int_{-c}^{c} f(x) \cos \frac{n\pi x}{c} dx = c \, a_n$$

$$b_n = \frac{1}{c} \int_{-c}^{c} f(x) \sin \frac{n\pi x}{c} dx \qquad \Rightarrow \qquad \int_{-c}^{c} f(x) \sin \frac{n\pi x}{c} dx = c \, b_n$$

On putting these integrals in (3), we get

$$\int_{-c}^{c} [f(x)]^{2} dx = c \frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} c a_{n}^{2} + \sum_{n=1}^{\infty} c b_{n}^{2} = c \left[\frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}) \right]$$

This is the Parseval's formula

Note. 1. If
$$0 < x < 2c$$
, then $\int_0^{2c} [f(x)]^2 dx = c \left[\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right]$

2. If
$$0 < x < c$$
 (Half range cosine series), $\int_0^c [f(x)]^2 = \frac{c}{2} \left[\frac{a_0^2}{2} + \sum_{n=1}^{\infty} a_n^2 \right]$

3. If
$$0 < x < c$$
 (Half range sine series),
$$\int_0^c [f(x)]^2 dx = \frac{c}{2} \left[\frac{a_0^2}{2} + \sum_{n=1}^{\infty} b_n^2 \right]$$

4. R.M.S. =
$$\left\{ \frac{\int_{a}^{b} [f(x)]^{2} dx}{b-a} \right\}^{\frac{1}{2}}$$

Example 20. By using the sine series for f(x) = 1 in $0 \le x \le \pi$ show that

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$

Solution. sine series is $f(x) = \sum b_n \sin nx$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx$$

$$= \frac{2}{\pi} \int_0^{\pi} (1) \sin nx \, dx = \frac{2}{\pi} \left(\frac{-\cos nx}{n} \right)_0^{\pi} = \frac{-2}{n\pi} [\cos n\pi - 1] = \frac{-2}{n\pi} [(-1)^n - 1]$$

$$= \frac{2}{n\pi} \qquad \text{if } n \text{ is odd.}$$

$$= 0 \qquad \text{if n is even}$$

Then, the sine series is

$$1 = \frac{4}{\pi} \sin x + \frac{4}{3\pi} \sin 3x + \frac{4}{5\pi} \sin 5x + \frac{4}{7\pi} \sin 7x + \dots$$

$$\int_{0}^{c} \left[f(x)^{2} dx = \frac{c}{2} \left[b_{1}^{2} + b_{2}^{2} + b_{3}^{2} + b_{4}^{2} + b_{5}^{2} + \dots \right] \right]$$

$$\int_{0}^{\pi} (1)^{2} dx = \frac{\pi}{2} \left[\left(\frac{4}{\pi} \right)^{2} + \left(\frac{4}{3\pi} \right)^{2} + \left(\frac{4}{5\pi} \right)^{2} + \left(\frac{4}{7\pi} \right)^{2} + \dots \right]$$

$$\left[x \right]_{0}^{\pi} = \left(\frac{\pi}{2} \right) \left(\frac{16}{\pi^{2}} \right) \left[1 + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{7^{2}} + \dots \right]$$

$$\pi = \frac{\pi}{2} \left(\frac{16}{\pi^{2}} \right) \left[1 + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{7^{2}} + \dots \right]$$

$$\frac{\pi^{2}}{8} = 1 + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{7^{2}} + \dots$$

Proved.

Example 21. If
$$f(x) = \begin{cases} \pi x & , & 0 < x < 1 \\ \pi (2 - x) & , & 1 < x < 2 \end{cases}$$

using half range cosine series, show that $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots = \frac{\pi^4}{96}$

Solution. Half range cosine series is

$$f(x) = \frac{a_0}{2} + \sum a_n \cos \frac{n\pi x}{c}$$
where $a_0 = \frac{2}{c} \int_0^c f(x) dx = \frac{2}{2} \left[\int_0^1 \pi x \, dx + \int_1^2 \pi (2 - x) \, dx \right]$

$$= \pi \left(\frac{x^2}{2} \right)_0^1 + \pi \left(2x - \frac{x^2}{2} \right)_1^2 = \frac{\pi}{2} + \pi \left[(4 - 2) - \left(2 - \frac{1}{2} \right) \right]$$

$$= \pi$$

$$a_n = \frac{2}{c} \int_0^c f(x) \cos \frac{n\pi x}{c} \, dx$$

$$= \frac{2}{2} \left[\int_0^1 \pi x \cos \frac{n\pi x}{2} \, dx + \int_1^2 \pi (2 - x) \cos \frac{n\pi x}{2} \, dx \right]$$

$$= \pi \left[\frac{x \frac{\sin \pi x}{2}}{\frac{n\pi}{2}} - \left(\frac{-\cos \frac{n\pi x}{2}}{\frac{n^2 \pi^2}{4}} \right) \right]_0^1 + \pi \left[(2 - c) \frac{\sin \frac{n\pi x}{2}}{\frac{n\pi}{2}} - (-1) \left(\frac{-\cos \frac{n\pi x}{2}}{\frac{n^2 \pi^2}{4}} \right) \right]_1^1$$

$$= \pi \left[\frac{2}{n\pi} \sin \frac{n\pi}{2} + \frac{4}{n^2 \pi^2} \cos \frac{n\pi}{2} - \frac{4}{n^2 \pi^2} \right] + \pi \left[0 - \frac{4}{n^2 \pi^2} \cos n\pi - \frac{2}{n\pi} \sin \frac{n\pi}{2} + \frac{4}{n^2 \pi^2} \cos \frac{n\pi}{2} \right]$$

$$= \pi \left[\frac{8}{n^2 \pi^2} \cos \frac{n\pi}{2} - \frac{4}{n^2 \pi^2} - \frac{4}{n^2 \pi^2} \cos n\pi \right] = \frac{4}{n^2 \pi^2} \left[2 \cos \frac{n\pi}{2} - 1 - \cos n\pi \right]$$

$$a_{1} = 0, \ a_{2} = \frac{-4}{\pi}, \ a_{3} = 0, \ a_{4} = 0, \ a_{5} = 0, \ a_{6} = \frac{-4}{9\pi}$$

$$\int_{0}^{c} [f(x)^{2} dx = \frac{c}{2} \left[\frac{a_{0}^{2}}{2} + a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + \dots \right]$$

$$\int_{0}^{1} (\pi x)^{2} dx + \int_{1}^{2} \pi^{2} (2 - x)^{2} dx = \frac{2}{2} \left[\frac{\pi^{2}}{2} + \frac{16}{\pi^{2}} + \frac{16}{81\pi^{2}} + \dots \right]$$

$$\pi^{2} \left[\frac{x^{3}}{3} \right]_{0}^{1} - \pi^{2} \left[\frac{(2 - x)^{3}}{3} \right]_{1}^{2} = \frac{\pi^{2}}{2} + \frac{16}{\pi^{2}} + \frac{16}{81\pi^{2}} + \dots \right]$$

$$\frac{\pi^{2}}{3} - \pi^{2} \left(0 - \frac{1}{3} \right) = \frac{\pi^{2}}{2} + \frac{16}{\pi^{2}} \left[1 + \frac{1}{81} + \dots \right]$$

$$\frac{2\pi^{2}}{3} - \frac{\pi^{2}}{2} = \frac{16}{\pi^{2}} \left[1 + \frac{1}{3^{4}} + \frac{1}{5^{4}} + \dots \right]$$

$$\frac{\pi^{2}}{6} = \frac{16}{\pi^{2}} \left[1 + \frac{1}{3^{4}} + \frac{1}{5^{4}} + \dots \right]$$

$$\frac{\pi^{4}}{96} = 1 + \frac{1}{3^{4}} + \frac{1}{5^{4}} + \dots$$
Ans.

Example 22. Prove that for $0 < x < \pi$

(a)
$$x(\pi - x) = \frac{\pi^2}{6} - \left[\frac{\cos x}{I^2} + \frac{\cos 4x}{2^2} + \frac{\cos 6x}{3^2} + \dots \right]$$
(b)
$$x(\pi - x) = \frac{8}{\pi} \left[\frac{\sin x}{I^2} + \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} + \dots \right]$$

Deduce from (a) and (b) respectively that

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90} \qquad (d) \sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi}{945}$$

Solution. Half range cosine series

$$a_0 = \frac{2}{\pi} \int_0^{\pi} x(\pi - x) = \frac{2}{\pi} \left[\frac{\pi x^2}{2} - \frac{x^3}{3} \right]_0^{\pi} = \frac{2}{\pi} \left[\frac{\pi^3}{2} - \frac{\pi^3}{3} \right] = \frac{\pi^2}{3}$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} x(\pi - x) \cos nx \, dx$$

$$= \frac{2}{\pi} \left[(\pi x - x^2) \frac{\sin nx}{n} - (\pi - 2x) \left(\frac{-\cos nx}{n^2} \right) + (-2) \left(\frac{-\sin nx}{n^3} \right) \right]_0^{\pi}$$

$$= \frac{2}{\pi} \left[0 - \frac{\pi(-1)^n}{n^2} + 0 - \frac{\pi}{n^2} \right] = \frac{2}{\pi} \left(\frac{\pi}{n^2} \right) [-(-1)^n - 1]$$

$$= -\frac{4}{n^2} \qquad \text{when } n \text{ is even}$$

$$= 0 \qquad \text{when } n \text{ is odd}$$

Hence,
$$x(\pi - x) = \frac{\pi^2}{6} - \left[\frac{\cos 2x}{1^2} + \frac{\cos 4x}{2^2} + \dots \right] \implies x(\pi - x) = \frac{\pi^2}{6} - 4 \left[\frac{\cos 2x}{2^2} + \frac{\cos 4x}{4^2} + \dots \right]$$

By Parseval's formula

$$\frac{2}{\pi} \int_0^{\pi} x^2 (\pi - x)^2 dx = \frac{a_0^2}{2} + \sum a_n^2$$

$$\frac{2}{\pi} \int_0^{\pi} (\pi^2 x^2 - 2\pi x^3 + x^4) dx = \frac{1}{2} \left(\frac{\pi^4}{9}\right) + 16 \left[\frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \dots\right]$$

$$\frac{2}{\pi} \left[\frac{\pi^2 x^3}{3} - \frac{2\pi x^4}{4} + \frac{x^5}{5}\right]_0^{\pi} = \frac{\pi^4}{18} + \left[\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots\right]$$

$$-\frac{2}{\pi} \left[\frac{\pi^5}{3} - \frac{2\pi^5}{4} + \frac{x^5}{5}\right] = \frac{\pi^4}{18} + \left[\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots\right]$$

$$\frac{\pi^4}{15} = \frac{\pi^4}{18} + \sum_{n=1}^{\infty} \frac{1}{n^4} \implies \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

(b) Half range sine series

$$b_{n} = \frac{2}{\pi} \int_{0}^{\pi} x(\pi - x) \sin nx \, dx$$

$$= \frac{2}{\pi} \left[(\pi x - x^{2}) \left(\frac{-\cos nx}{n} \right) - (\pi - 2x) \left(\frac{-\sin nx}{n^{2}} \right) + (-2) \frac{\cos nx}{n^{3}} \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left[-2 \frac{(-1)^{n}}{n^{3}} + \frac{2}{n^{3}} \right] = \frac{4}{\pi n^{3}} \left[-(-1)^{n} + 1 \right]$$

$$= \frac{8}{n^{3}\pi} \qquad \text{when } n \text{ is odd}$$

$$= 0 \qquad \text{when } n \text{ is even.}$$

$$8 \left[\sin x + \sin 3x + \sin 5x \right]$$

$$\therefore x(\pi - x) = \frac{8}{\pi} \left[\frac{\sin x}{1^3} + \frac{\sin 3x}{3^3} + \frac{\sin 5x}{5^3} + \dots \right]$$

By Parseval's formula

$$\frac{2}{\pi} \int_0^{\pi} x^2 (\pi - x)^2 dx = \sum b_n^2$$

$$\frac{\pi^2}{15} = \frac{64}{\pi^2} \left[\frac{1}{1^6} + \frac{1}{3^6} + \frac{1}{5^6} + \dots \right]$$

$$\frac{\pi^4}{960} = \frac{1}{1^6} + \frac{1}{3^6} + \frac{1}{5^6}$$
Let
$$S = \frac{1}{1^6} + \frac{1}{2^6} + \frac{1}{3^6} + \frac{1}{4^6} + \dots = \left(\frac{1}{1^6} + \frac{1}{3^6} + \frac{1}{5^6} + \dots \right) + \left(\frac{1}{2^6} + \frac{1}{4^6} + \frac{1}{6^6} + \dots \right)$$

$$S = \frac{\pi^4}{960} + \left(\frac{1}{2^6} + \frac{1}{4^6} + \frac{1}{6^6} + \dots \right) = \frac{\pi^4}{960} + \frac{1}{2^6} \left[\frac{1}{1^6} + \frac{1}{2^6} + \frac{1}{3^6} + \dots \right]$$

$$S = \frac{\pi^4}{960} + \frac{S}{64}$$

$$S - \frac{S}{64} = \frac{\pi^4}{960} \quad \text{or} \quad \frac{63S}{64} = \frac{\pi^4}{960}$$

$$S = \frac{\pi^4}{960} \times \frac{64}{63} = \frac{\pi^4}{945}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^4}{945}$$
Proved.

Exercise 12.5

1. Prove that 0 < x < c,

$$x = \frac{c}{2} - \frac{4c}{\pi^2} \left(\cos \frac{\pi x}{c} + \frac{1}{3^2} \cos \frac{3\pi x}{c} + \frac{1}{5^2} \cos \frac{5\pi x}{c} + \dots \right)$$

and deduce that

(i)
$$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots = \frac{\pi^4}{96}$$
 (ii) $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots = \frac{\pi^4}{90}$

12.12. FOURIER SERIES IN COMPLEX FORM

Fourier series of a function f(x) of period 2l is

$$f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{l} + a_2 \cos \frac{2\pi x}{l} + \dots + a_n \cos \frac{n\pi x}{l} + \dots$$
$$+ b_1 \sin \frac{\pi x}{l} + b_2 \sin \frac{2\pi x}{l} + \dots + b_n \sin \frac{n\pi x}{l} + \dots$$
 (1)

We know that $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ and $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$

On putting the values of $\cos x$ and $\sin x$ in (1), we get

$$f(x) = \frac{a_0}{2} + a_1 \frac{e^{\frac{i\pi x}{l}} + e^{\frac{-i\pi x}{l}}}{2} + a_2 \frac{e^{\frac{2i\pi x}{l}} + e^{\frac{-2i\pi x}{l}}}{2} + \dots + b_1 \frac{e^{\frac{i\pi x}{l}} - e^{\frac{i\pi x}{l}}}{2i} + b_2 \frac{e^{\frac{2i\pi x}{l}} - e^{\frac{-2i\pi x}{l}}}{2i} + \dots$$

$$= \frac{a_0}{2} + (a_1 - ib_1)e^{\frac{i\pi x}{l}} + (a_2 - ib_2)e^{\frac{2i\pi x}{l}} + \dots + (a_1 + ib_1)e^{\frac{-i\pi x}{l}} + (a_2 + ib_2)e^{\frac{-2i\pi x}{l}} + \dots$$

$$= c_0 + c_1 e^{\frac{i\pi x}{l}} + c_2 e^{\frac{2i\pi x}{l}} + \dots + c_{-1} e^{\frac{-i\pi x}{l}} + c_2 e^{\frac{2i\pi x}{l}} + \dots$$

$$= c_0 + \sum_{n=1}^{\infty} c_n e^{\frac{in\pi x}{l}} + \sum_{n=1}^{\infty} c_{-n} e^{\frac{-in\pi x}{l}}$$

$$c_n = \frac{1}{2} (a_n - ib_n), \ c_{-n} = \frac{1}{2} (a_n + ib_n)$$
where
$$c_0 = \frac{a_0}{2} = \frac{1}{2l} \frac{1}{l} \int_0^{2l} f(x) dx$$

$$c_n = \frac{1}{2} \left[\frac{1}{l} \int_0^{2l} f(x) \cos \frac{n\pi x}{l} dx - \frac{i}{l} \int_0^{2l} f(x) \sin \frac{n\pi x}{l} dx \right] \Rightarrow c_n = \frac{1}{2l} \int_0^{2l} f(x) \left\{ \cos \frac{n\pi x}{l} - i \sin \frac{n\pi x}{l} \right\} dx$$

$$c_n = \frac{1}{2l} \int_0^{2l} f(x) e^{\frac{-in\pi x}{l}} dx$$

$$c_{-n} = \frac{1}{2l} \int_0^{2l} f(x) e^{\frac{-in\pi x}{l}} dx$$

Example 23. Obtain the complex form of the Fourier series of the function

$$f(x) = \begin{cases} 0 & -\pi \le x \le 0 \\ 1 & 0 \le x \le \pi \end{cases}$$
Solution.
$$c_0 = \frac{1}{2\pi} \int_0^{\pi} dx = \frac{1}{2}$$

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

$$= \frac{1}{2\pi} \left[\int_{-\pi}^0 0.e^{-inx} dx + \int_0^{\pi} 1.e^{-inx} dx \right] = \frac{1}{2\pi} \int_0^{\pi} e^{-inx} dx = \frac{1}{2\pi} \left[\frac{e^{-inx}}{-in} \right]_0^{\pi}$$

$$= -\frac{1}{2n\pi i} \left[e^{-in\pi} - 1 \right] = \frac{1}{2n\pi i} \left[\cos n\pi - i \sin n\pi - 1 \right] = -\frac{1}{2n\pi i} \left[(-1)^n - 1 \right]$$

$$= \begin{cases} \frac{1}{in\pi}, & n \text{ is odd} \\ 0, & n \text{ is even} \end{cases}$$

$$f(x) = \frac{1}{2} + \frac{1}{i\pi} \left[\frac{e^{ix}}{1} + \frac{e^{3ix}}{3} + \frac{e^{5ix}}{5} + \dots \right] + \frac{1}{i\pi} \left[\frac{e^{-ix}}{-1} + \frac{e^{-3ix}}{-3} + \frac{e^{-5ix}}{-5} + \dots \right]$$

$$= \frac{1}{2} - \frac{1}{i\pi} \left[(e^{ix} - e^{-ix}) + \frac{1}{3} (e^{3ix} - e^{-3ix}) + \frac{1}{5} (e^{5ix} - e^{-5ix}) + \dots \right]$$
Ans

Exercise 12.6

Find the complex form of the Fourier series

1.
$$f(x) = e^{-x}, -1 \le x \le 1$$
 Ans. $\sum_{n=-\infty}^{\infty} \frac{(-1)^n (1 - in\pi)}{1 + n^2 \pi^2} \sinh 1.e^{in\pi x}$
2. $f(x) = e^{ax}, -1 < x < 1$ Ans. $\frac{2}{\pi} - \frac{2}{\pi} \left[\frac{e^{2it} + e^{-2it}}{1.3} + \frac{e^{4it} + e^{-4it}}{3.5} + \frac{e^{6it} + e^{-6it}}{5.7} + \dots \right]$
3. $f(x) = \cos ax, -\pi < x < \pi$ Ans. $\frac{a}{\pi} \sin a\pi \sum_{n=-\infty}^{\infty} \frac{(-1)^n e^{inx}}{a^2 - n^2}$

12.13 PRACTICAL HARMONIC ANALYSIS

Sometimes the function is not given by a formula, but by a graph or by a table of corresponding values. The process of finding the Fourier series for a function given by such values of the function and independent variable is known as **Harmonic Analysis**. The Fourier constants are evaluated by the following formulae:

(1)
$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx$$

$$= 2 \frac{1}{2\pi - 0} \int_0^{2\pi} f(x) dx \qquad \left[\text{Mean} = \frac{1}{b - a} \int_a^b f(x) dx \right]$$
or
$$a_0 = 2 \text{ [mean value of } f(x) \text{ in } (0, 2, \pi) \text{]}$$
(2)
$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx = 2 \frac{1}{2\pi - 0} \int_0^{2\pi} f(x) \cos nx \, dx$$

$$b_n = 2 \text{ [mean value of } f(x) \cos nx \text{ in } (0, 2\pi) \text{]}$$

(3)
$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx = 2 \frac{1}{2\pi - 0} \int_0^{2\pi} f(x) \sin nx \, dx$$
$$b_n = 2 \text{ [mean value of } f(x) \sin nx \text{ in } (0, 2\pi) \text{]}$$

Fundamental of first harmonic. The term $(a_1 \cos x + b_1 \sin x)$ in Fourier series is called the fundamental or first harmonic.

Second harmonic. The term $(a_2 \cos 2 x + b_2 \sin 2 x)$ in Fourier series is called the second harmonic and so on.

Example 24. Find the Fourier series as far as the second harmonic to represent the function given by table below:

х	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
f(x)	2.34	3.01	3.69	4.15	3.69	2.20	0.83	0.51	0.88	1.09	1.19	1.64

Solution

x°	sin x	sin 2x	cos x	cos 2x	f(x)	f(x)	f(x)	f(x)	f(x)
						sinx	sin2x	cosx	cos2x
0°	0	0	1	1	2.34	0	0	2.340	2.340
30°	0.50	0.87	0.87	0.50	3.01	1.505	2.619	2.619	1.505
60°	0.87	0.87	0.50	-0.50	3.69	3.210	3.210	1.845	-1.845
90°	1.00	0	0	-1.00	4.15	4.150	0	0	-4.150
120°	0.87	- 0.87	-0.50	-0.50	3.69	3.210	-3.210	-1.845	-1.845
150°	0.50	-0.87	-0.87	0.50	2.20	1.100	-1.914	-1.914	1.100
180°	0	0	-1	1.00	0.83	0	0	-0.830	0.830
210°	-0.50	0.87	-0.87	0.50	0.51	-0.255	0.444	-0.444	0.255
240°	-0.87	0.87	-0.50	-0.50	0.88	-0.766	0.766	-0.440	-0.440
270°	-1.00	0	0	-1.00	1.09	-1.090	0	0	-1.090
300°	-0.87	- 0.87	0.50	-0.50	1.19	-1.035	-1.035	0.595	-0.595
330°	-0.50	-0.87	0.87	0.50	1.64	-0.820	-1.427	1.427	0.820
					25.22	9.209	-0.547	3.353	-3.115

$$a_0 = 2 \times \text{Mean of } f(x) = 2 \times \frac{25.22}{12} = 4.203$$

 $a_1 = 2 \times \text{Mean of } f(x) \cos x = 2 \times \frac{3.353}{12} = 0.559$
 $a_2 = 2 \times \text{Mean of } f(x) \cos 2x = 2 \times \frac{-3.115}{12} = -0.519$
 $b_1 = 2 \times \text{Mean of } f(x) \sin x = 2 \times \frac{9.209}{12} = 1.535$
 $b_2 = 2 \times \text{Mean of } f(x) \sin 2x = 2 \times \frac{-0.547}{12} = -0.091$

Fourier series is

$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + \dots + b_1 \sin x + b_2 \sin 2x + \dots$$

= 2.1015 + 0.559 \cos x - 0.519 \cos 2x + \dots + 1.535 \sin x - 0.091 \sin 2x + \dots \text{ Ans.}

Example 31. A machine completes its cycle of operations every time as certain pulley completes a revolution. The displacement f(x) of a point on a certain portion of the machine is given in the table given below for twelve positions of the pulley, x being the angle in degree turned through by the pulley. Find a Fourier series to represent f(x) for all values of x.

x	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°	
f(x)	7.976	8.026	7.204	5.676	3.674	1.764	0.552	0.262	0.904	2.492	4.736	6.824	

Solution.

x	sin x	sin	sin	cos x	cos	cos	f(x)	$f(x) \times$					
		2x	3x		2x	<i>3x</i>		sin x	sin 2x	sin 3x	cos x	cos 2x	cos 3x
30°	0.50	0.87	1	0.87	0.50	0	7.976	3.988	6.939	7.976	6.939	3.988	0
60°	0.87	0.87	0	0.50	- 0.50	- 1	8.026	6.983	6.983	0	4.013	4.013	- 8.026
90°	1.00	0	- 1	0	- 1	0	7.204	7.204	0	- 7.204	0	- 7.204	0
120°	0.87	- 0.87	0	- 0.50	- 0.50	1	5.676	4.938	- 4.939	0	- 2.838	- 2.838	5.676
150°	0.50	- 0.87	1	- 0.87	0.50	0	3.674	1.837	- 3.196	- 3.196	- 3.196	1.837	0
180°	0	0	0	- 1	1	- 1	1.764	0	0	- 1.764	- 1.764	1.764	- 1.764
210°	- 0.50	0.87	- 1	- 0.87	0.50	0	0.552	- 0.276	0.480	0.480	-0.480	0.276	0
240°	- 0.87	0.87	0	- 0.50	- 0.50	1	0.262	- 0.228	0.228	- 0.131	- 0.131	0.131	0.262
270°	- 1.00	0	1	0	- 1.00	0	0.904	- 0.904	0	0	0	- 0.904	0
300°	- 0.87	- 0.87	0	0.50	- 0.50	- 1	2.492	- 2.168	- 2.168	1.246	1.246	-1.296	- 2.492
330°	- 0.50	- 0.87	- 1	0.87	0.50	0	4.736	-2.368	- 4.120	4.120	4.120	2.368	0
360°	0	0	0	1	1	1	6.824	0	0	0	6.824	6.824	6.824
						Σ	50.09	19.206	0.207	0.062	14.733	0.721	0.460

$$a_0 = 2 \times \text{Mean value of } f(x) = 2 \times \frac{50.09}{12} = 8.34$$

$$a_1 = 2 \times \text{Mean value of } f(x) \cos x = 2 \times \frac{14.733}{12} = 2.45$$

$$a_2 = 2 \times \text{Mean value of } f(x) \cos 2x = 2 \times \frac{0.721}{12} = 0.12$$

$$a_3 = 2 \times \text{Mean value of } f(x) \cos 3x = 2 \times \frac{0.460}{12} = 0.08$$

$$b_1 = 2 \times \text{Mean value of } f(x) \sin x = 2 \times \frac{19.206}{12} = 3.16$$

$$b_2 = 2 \times \text{Mean value of } f(x) \sin 2x = 2 \times \frac{0.207}{12} = 0.03$$

$$b_3 = 2 \times \text{Mean value of } f(x) \sin 3x = 2 \times \frac{0.062}{12} = 0.01$$

Fourier series is

$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + a_3 \cos 3x + \dots + b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \dots$$

= 4.17 + 2.45\cos x + 0.12 \cos 2 x + 0.08 \cos 3 x + \dots
+ 3.16 \sin x + 0.03 \sin 2 x + 0.01\sin 3 x + \dots \text{Ans.}

Example 32. Obtain the constant terms and the coefficients of the first sine and cosine terms in the Fourier series of f(x) as given in the following table.

x	0	1	2	3	4	5
f(x)	9	18	24	28	26	20

Solution.

x	$\frac{x \pi}{3}$	$\sin \frac{\pi x}{3}$	$\cos\frac{\pi x}{3}$	f(x)	$f(x)\sin\frac{\pix}{3}$	$f(x)\cos\frac{\pi x}{3}$
0	0	0	1.0	9	0	9
1	$\frac{\pi}{3}$	0.87	0.5	18	15.66	9
2	$\frac{2\pi}{3}$	0.87	- 0.5	24	20.88	- 12
3	$\frac{3\pi}{3}$	0	-1.0	28	0	- 28
4	$\frac{4\pi}{3}$	- 0.87	- 0.5	26	- 22.62	- 13
5	$\frac{5\pi}{3}$	- 0.87	0.5	20	- 17.4	10
				$\Sigma = 125$	$\Sigma = -3.468$	$\Sigma = 25$

$$a_0 = 2 \text{ Mean value of } f(x) = 2 \times \frac{125}{6} = 41.67$$

$$a_1 = 2 \text{ Mean value of } f(x) \cos \frac{\pi x}{3} = 2 \times \frac{-25}{6} = -8.33$$

$$b_1 = 2 \text{ Mean value of } f(x) \sin \frac{\pi x}{3} = 2 \times \frac{-3.48}{6} = -1.16$$
Fourier series is
$$f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{3} + ... + b_1 \sin \frac{\pi x}{3} + ...$$

$$= 20.84 - 8.33 \cos \frac{\pi x}{3} + ... - 1.16 \sin \frac{\pi x}{3} + ...$$
Ans.

Exercise 12.7

1. In a machine the displacement f(x) of a given point is given for a certain angle x° as follows:

884

x°	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
f(x)	7.9	8.0	7.2	5.6	3.6	1.7	0.5	0.2	0.9	2.5	4.7	6.8

Find the coefficient of sin 2 *x* in the Fourier series representing the above variations.

Ans. -0.072

2. The displacement f(x) of a part of a machine is tabulated with corresponding angular moment 'x' of the crank. Express f(x) as a Fourier series upto third harmonic.

x°	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
f(x)	1.80	1.10	0.30	0.16	0.50	1.30	2.16	1.25	1.30	1.52	1.76	2.00

Ans.
$$f(x) = 1.26 + 0.04 \cos x + 0.53 \cos 2x - 0.01 \cos 3x + \dots$$

 $-0.63 \sin x - 0.23 \sin 2x + 0.085 \sin 3x + \dots$

3. The following values of y give the displacement in cms of a certain machine part of the rotation x of the flywheel. Expand f(x) in the form of a Fourier series.

x	0	$\frac{\pi}{6}$	$\frac{2\pi}{6}$	$\frac{3\pi}{6}$	$\frac{4\pi}{6}$	$\frac{5\pi}{6}$
f(x)	0	9.2	14.4	17.8	17.3	11.7

Ans.
$$f(x) = 11.733 - 7.733 \cos 2x - 2.833 \cos 4x + \dots$$

 $-1.566 \sin 2x - 0.116 \sin 4x + \dots$

4. Analyse harmonically the data given below and express y in Fourier series upto the second harmonic.

х	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
у	1.0	1.4	1.9	1.7	1.5	1.2	1.0