Expérience 1

Résumé

Reproduction et approfondissement des résultats de la première expérience 1 dans l'article [Cleeremans Alex, 2007].

Pourquoi?

Comprendre de quelles manières peuvent émerger des représentations et métareprésentations dans un réseau de neurone connexionniste, en particulier sur des perceptrons multicouches.

Architecture

Description Un premier réseau de perceptron multicouche apprend à discrétiser des chiffres représentés par 20 neurones d'entrées. Il est composé d'une couche cachée de 5 neurones.

Un second réseau de perceptron multicouche apprend à dupliquer toutes les couches du premier réseau en n'ayant que sa couche cachée en entrée.

Schéma

Paramètres

- momentum : 0.9 sur les 2 réseau
- taux d'apprentissage : 0.1 sur les 2 réseau
- 10 chiffres différents présentés
- apprentissage 10 (formes) x 1000 (époques)
- poids initialisés sur [-0.25; 0.25]
- taux d'apprentissage constant
- entrées valent 0 ou 1
- sigmoïde à température 1

Résultats

Principaux

Notes

- la courbe violette est la somme des 3 courbes des couches à reproduire.
- 0.3 est le taux de tolérance pour l'erreur sur un neurone

Conclusion

- la couche cachée et la couche de sortie ne posent aucun problèmes d'apprentissage
- les performances du second réseau dépendent principalement de sa capacité à reproduire les entrées

Conclusion

Formules

RMS proportion pour une époque e est :

$$rms \; proportion_e = \frac{rms_e = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (o_{i,e} - d_i)^2}}{max(rms_{e'}), \; \forall e' \in epochs}$$
 with
$$\begin{cases} n : number \; of \; neurons \; on \; the \; output \; layer \\ o_{i,e} : value \; obtained \; for \; the \; i^{th} \; neuron \; at \; the \; e^{th} \; epoch \\ d_i : value \; desired \; for \; the \; i^{th} \; neuron \end{cases}$$

Algorithmes

RMS proportion pour une époque e est :

$$rms \ proportion_e = \frac{rms_e = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (o_{i,e} - d_i)^2}}{max(rms_{e'}), \ \forall e' \in epochs}$$
 with
$$\begin{cases} n : number \ of \ neurons \ on \ the \ output \ layer \\ o_{i,e} : value \ obtained \ for \ the \ i^{th} \ neuron \ at \ the \ e^{th} \ epoch \\ d_i : value \ desired \ for \ the \ i^{th} \ neuron \end{cases}$$

Références

[Cleeremans Alex, 2007] Cleeremans Alex, Timmermans Bert, P. A. (2007). Consciousness and metarepresentation : A computational sketch. doi:10.1016/j.neunet.2007.09.011.