第2章: 离散数据的生成模型

目录

生成式分类器

$$p(y = c \mid x, \theta) \propto p(x \mid y = c, \theta) p(y = c \mid \theta)$$

- ❖ 使用此类模型的关键:
 - 确定合适的类条件密度形式 $p(x|y=c,\theta)$,
 - 如何推导出这类模型的未知参数 θ.

贝叶斯概念学习

小孩学习词汇

- ❖例如,孩子学习理解"狗"一词的含义
 - 孩子的父母可能会给出正面的例子,说:
 - ⑩ "看那只可爱的狗!"
 - ❶ 或"小心狗狗"等

概念学习

- *学习一个词汇的意义等价于概念学习
- ❖它相当于二值分类:
 - f (x) =1, 如果x是概念C的实例
 - f (x) =0, 否则
- ❖目标是学习指标函数f
 - f定义了元素是否在集合C中

数字游戏

- *这个游戏是这样的
 - 一个简单的数学概念C,如"素数"
 - 给定一系列随机选择的正面样例
 - $\mathbf{O}D = \{x_1, \ldots, x_N\}$, 从 C 中抽样出来
 - 问新的测试样例x是否属于C

仅用一个样本玩数字游戏

- *假设所有数字都是1到100之间的整数。
- ❖ 概念的一个正样本: 16, 问
 - 哪些是正的? 17? 6? 32? 99?
- ❖ 仅凭一个样本很难判断,你的预测可能会很模糊
 - 17是相似的,因为它是"近在咫尺"
 - 6是相似的,因为它与16有一位数是相同的
 - 32是相似的,因为它也是偶数和2的幂
 - 99似乎并不相似。

用多个样本玩数字游戏

- ❖ 正样本 D={16, 8, 2, 64}
 - 你认为哪些属于正样本? 17? 6? 32? 99?
 - 你可能会猜到隐藏的概念是"二的幂"
 - 这是归纳法的一个例子
- ❖ 你为什么不说概念是"偶数",这两个概念都与证据一致?

归纳法: 一种经典方法

- ❖ 概念的假设空间H:
 - 例如: 奇数、偶数、二的幂等。
- ❖ 版本空间:
 - 与数据D一致的H的子集
- * 版本空间缩小,我们对这个概念越来越确定

利用贝叶斯定理实现归纳法

❖ 贝叶斯理论:

$$p(h \mid D) = \frac{p(D \mid h)p(h)}{p(D)}$$

- ❖根据: p(h|D) (后验概率)
 - 后验估计
- ❖根据: p(D|h) (似然函数)
 - 似然 估计.
- ❖p(h) 为 先验概率

数字游戏模型的似然函数

* 似然函数:

$$p(D \mid h) = \left[\frac{1}{size(h)}\right]^{N} = \left[\frac{1}{\|h\|}\right]^{N}$$

其中,假设h=属于该假设的所有数字的集合

❖ 它表示在假设h为真的条件下,观测到的数据集多大可能属于这个h

最大似然估计 (MLE)

- * ∂h_{two} = "2的幂" = {2, 4, 8, 16, 32, 64};
- $h_{\text{even}} = \text{``} \text{''} \text{''} = \{2, 4, 6, \dots, 98, 100\};$
- ❖ 样本集 D = {16, 8, 2, 64}
- * 计算似然

$$p(D \mid h_{two}) = \left[\frac{1}{6}\right]^4 = 7.7 \times 10^{-4} \qquad p(D \mid h_{even}) = \left[\frac{1}{50}\right]^4 = 1.6 \times 10^{-7}$$

- * **似然比** 几乎是 5000:1
 - 所以, 预测 h 为 h_{two}
- * 这意味着仅用单个最好的假设做预测

先验

- ❖ 给定样本 D = {16, 8, 2, 64},
 - "2的幂但不含32"这个概念与"2的幂"相比,可能性更大
- * 经验告诉我们
 - h1= "2的幂但不含32"似乎"在概念上不自然"
- ❖ 我们把这种经验叫做先验(prior)
 - 先验: p(h1)
 - 通过将小先验概率p(h1)分配给不自然的概念,我们可以来捕捉这种直觉。

后验

❖ 后验概率:

$$p(h \mid D) = \frac{p(D \mid h)p(h)}{\sum_{h' \in H} p(D, h')} = \frac{p(h)\mathbf{I}(D \in h) / |h|^{N}}{\sum_{h' \in H} p(h')\mathbf{I}(D \in h') / |h'|^{N}}$$

- * 在大多数概念的情况下先验是一致的
 - 因此,后验与似然成比例
- ❖ "不自然的"概念,如 "2的幂加37"和 "2的幂但不含32"等
 - 尽管似然性很高,但一般来说,先验概率小
 - 当有足够的数据,后验概率p(h|D)往往在单个概念上达到峰值,用这种方法估计,叫MAP估计

后验预测分布

❖ 贝叶斯平均模型

■ 根据边缘概率规则,可得到:

$$p(\hat{x} \in C|D) = \sum_{i} p(y = 1|\hat{x}, h_i) p(h_i|D) = \sum_{i} p(X|h_i) p(h_i|d)$$

- ❖ 这意味着不只是用"最佳"假设做预测
- *每个假设的概率,可以通过贝叶斯规则得到:

$$P(h_i \mid \mathbf{d}) = \alpha P(\mathbf{d} \mid h_i) P(h_i) .$$

- 这样,学习就简化为概率推理.
- ❖ 贝叶斯平均模型的插件式近似(plug-in approximation)

$$p(\hat{x} \in C|D) = \sum_{i} p(y = 1|\hat{x}, h_i) \delta_{\hat{h}}(h_i) = p(\hat{x}|\hat{h})$$

一个"买糖果"的例子

- * 我们最喜欢的糖果
 - 两种口味: 樱桃和酸橙。
- ❖每一块糖果,不管味道如何,都用相同的不透明纸包装
- *糖果装在大袋子里出售,有五种装法,但从外部无法区分
- * 假设: 装法
 - h1: 100% 樱桃,
 - h2: 75% 樱桃 + 25%酸橙,
 - h3: 50% 樱桃+ 50%酸橙,
 - h4: 25% 樱桃+ 75%酸橙,
 - h5: 100%酸橙.

准备预测糖果的口味

- * 给定每个假设的先验分布
 - $P(h_1) = 0.1$, $P(h_2)=0.2$, $P(h_3)=0.4$, $P(h_4)=0.2$, $P(h_5)=0.1$
- ❖ 从袋中拿出10个糖果都是酸橙味的
 - $P(\mathbf{d} \mid h_1) =$; $P(\mathbf{d} \mid h_2) =$; $P(\mathbf{d} \mid h_3) = 0.5*0.5*...*0.5 = 0.5^{10}, P(\mathbf{d} \mid h_4) =$; $P(\mathbf{d} \mid h_5) =$;
- ❖ 每个假设的后验概率 (P(h_i | d) = αP(d | h_i)P(h_i))
 - $P(h_1 | \mathbf{d}) = 0$
 - $P(h_2 \mid \mathbf{d}) = 0.25^{10*} \ 0.2$
 - $P(h_3 \mid \mathbf{d}) = 0.5^{10*} \ 0.4$
 - $P(h_4 \mid \mathbf{d}) = 0.75^{10*} \ 0.2$
 - $P(h_5 | \mathbf{d}) = 0.1$

预测再拿出的一颗糖果是哪种口味

* 用贝叶斯平均模型进行预测

$$\angle \widehat{\mathsf{T}}: \qquad p(\widehat{x} \in C|D) = \sum_{i} p(y = 1|\widehat{x}, h_i) p(h_i|D) = \sum_{i} p(X|h_i) p(h_i|d)$$

计算: $p(x \in h_5|D) = 0 + 0.25*0.25^{10*} 0.2 + 0.5*0.5^{10*} 0.4 + 0.75*0.75^{10*} 0.2 + 1*0.1$

❖ 插件式近似(plug-in approximation)

公式: $p(\hat{x} \in C|D) = p(\hat{x}|\hat{h})$

计算: *p*(x∈h₅|D)=*p*(x|h₅)=1

贝叶斯预测方法的特点

- * 无论数据集大小, 贝叶斯预测都是最优的。
- * 贝叶斯学习的最优性是有代价的,
 - 对于实际学习问题,假设空间通常非常大或无限大。
- * 在大多数情况下,我们必须采用近似或简化的方法。
 - 常见的近似算法:
 - **[©]最大后验**(MAP) **假设** h_{MAP} = 最大化 P(hi | **d**).
 - ✓ 在糖果例子中,如果连续拿到三个酸橙味糖果,则有: h_{MAP} =h₅
 - **¹0 最大似然(**ML**)** 假设 h_{ML} = 最大化 P(**d** | h_i)P(h_i) = P(**d** | h_i)

β二项分布模型

回顾一下数字游戏

- * 数字游戏:
 - 假设空间 h∈ H 是有限的
 - 给定一系列离散观测值, 计算特别简单:
 - 只需要加、乘和除运算
- ❖ 在许多应用中,未知参数是连续的
 - 假设空间是R^K的(某个子集)
 - 计算变得复杂: 须用积分代替求和

另一种游戏: 拋硬币

- ❖ 观察一系列抛硬币,推断正面朝上的概率。
- * 该模型是许多方法的基础
- * 该模型具有历史重要性
 - 它最早是1763年贝叶斯的论文中提出的

抛硬币模型的似然

- ❖ 设 X_i ~ Ber(θ),
 - X_i = 1 表示 "正面", X_i = 0 表示 "反面",
 - $\theta \in [0,1]$ 为正面朝上的概率
- * 如果数据是独立同分布,则似然:

$$p(D|\theta) = \theta^{N1} (1-\theta)^{N0} \qquad (基于伯努利分布)$$

■ $N_1 = \sum_{i=1}^{N} I(x_i = 1)$ 正面朝上的个数, $N_0 = \sum_{i=1}^{N} I(x_i = 0)$ 反面朝上的个数

抛硬币模型的先验

- * 如果先验具有与似然相同的形式
 - 计算起来更容易、更方便
- * 如果先验看起来像:

$$p(\theta) \propto \theta^{\gamma_1} (1-\theta)^{\gamma_0}$$

❖ 通过简单地将指数相加,就轻松评估后验值:

$$p(\theta \mid D) \propto p(D \mid \theta)p(\theta) = \theta^{N_1}(1-\theta)^{N_0}\theta^{\gamma_1}(1-\theta)^{\gamma_2} = \theta^{N_1+\gamma_1}(1-\theta)^{N_0+\gamma_0}$$

共轭先验

- * 当先验与后验具有相同的形式
 - 先验称为对应似然的共轭先验
- * 对于伯努利分布, 共轭先验是β分布:

$$p(\theta \mid D) \propto \theta^{N_1} (1 - \theta)^{N_0} \times \frac{1}{B(a, b)} \theta^{a-1} (1 - \theta)^{b-1} = \frac{1}{B(a, b)} \theta^{N_1 + a-1} (1 - \theta)^{N_0 + b-1}$$

β分布

*β分布密度函数:

$$Beta(x \mid a, b) = \frac{1}{B(a, b)} x^{a-1} (1 - x)^{b-1} \qquad 0 \le x \le 1$$

- a = b = 1,则成为了*均匀分布*
- a,b < 1,则成为了**双峰分布**,分别在0和1处有"**尖峰**"
- a,b > 1,则成为了*单峰分布*

$$mean = \frac{a}{a+b}$$
, $var = \frac{ab}{(a+b)^2(a+b+1)}$

- *B*(*a*, *b*): β函数
- Γ(x): γ函数

$$\Gamma(x) = \int_0^\infty u^{x-1} e^{-u} du$$

抛硬币模型的后验

*参数的后验估计:

$$p(\theta \mid D) \propto Bin(N_1 \mid \theta, N_0 + N_1)Beta(\theta \mid a, b) = Beta(\theta \mid N_1 + a, N_0 + b)$$

* 后验预测分布

■ 考虑预测单个未来试验中出现头部朝上的概率:

$$p(\widetilde{x} = 1 \mid D) = \int_0^1 p(x = 1, \theta \mid D) d\theta = \int_0^1 p(x = 1 \mid \theta) p(\theta \mid D) d\theta$$
$$= \int_0^1 \theta Beta(\theta \mid a, b) d\theta = E[\theta \mid D] = \frac{a}{a+b}$$

贝叶斯推理适合于在线学习

❖设:数据集 D=D_a + D_b

$$p(\theta \mid D_a, D_b) = p(\theta, D_a, D_b) = p(D_a)p(\theta \mid D_a)p(D_b \mid \theta, D_a)$$

$$\propto p(D_b \mid \theta)p(\theta \mid D_a)$$

$$\propto Bin(N_1^b \mid \theta, N_1^b + N_0^b)Beta(\theta \mid N_1^a + a, N_0^a b)$$

$$\propto Beta(\theta \mid N_1^a + N_1^b + a, N_0^a + N_0^b + b)$$

* 这可以看出, 贝叶斯推理特别适合在线学习

狄利克雷—多项式分布模型

掷骰子模型

- ❖ 我们想估计掷骰子(有K个面)游戏,出现第i个面的概率。
- * 这种模型还被广泛用于
 - 文本数据分析、生物序列数据分析等。

* 这种模型又被称为多努利实验

独热编码 (one-hot encoding)

- **❖ 0-1向量** (每1项只能是0或1,且只能─项为1)
 - **■** (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), *₹*□ (0, 0, 0, 1).
- * 独热编码
 - **●** *变量 x* ∈ {1,2,...,k}
 - 用独热编码表示 **X**

$$\mathfrak{O} x = [I(x = 1), \ldots, I(x = K)]$$

掷一次骰子(K面)的概率分布

- ❖ 用独热编码表示骰子每个面出现的概率:
 - $\bullet \quad \theta = (\theta_1, \, \theta_2, \dots, \, \theta_K)$
- * 概率分布可表示为

$$Cat(x | \theta) = Mu(x | 1, \theta) = \prod_{j=1}^{K} \theta_j^{I(x_j=1)}$$

- 这个分布称为 分类分布(categorical distribution)
- 这个分布也称为多努利分布(multinoulli distribution)
- * 如果 $x \sim Cat(\theta)$, 则 $p(x = j | \theta) = \theta_j$.

掷n次骰子(K面)的概率分布

- * 设 $\mathbf{n} = (n_1, \dots, n_K)$ 为随机向量,表示每个面出现的次数
 - $n_j \ge 0, n_1 + \ldots + n_K = n$.
- ❖ 掷n次骰子服从多项分布

$$Mu(\mathbf{n} \mid n, \theta) = \binom{n}{n_1 \cdots n_k} \prod_{j=1}^K \theta_j^{x_j}$$
 where $\binom{n}{n_1 \cdots n_k} = \frac{n!}{n_1! \ n_2! \cdots n_K!}$

掷n次骰子(K面)模型的似然

- ❖ 设: 掷n次骰子(K面), D = {x₁, ..., x_N},
 - $x_i \in \{1, \ldots, K\}$ 出现的概率为 θ_i
- ❖ 如果数据是独立同分布的,则似然为:

$$p(D \mid \theta) = \prod_{k=1}^K \theta_k^{N_k}$$

- $N_k = \sum_{i=1}^{N} I(y_i = k)$ 为第k面朝上的次数
- * 多项分布的似然与该似然,只相差一个常量系数

掷n次骰子(K面)模型的先验

- * 我们希望找到一个共轭先验
- * 狄利克雷分布正好符合条件
- ❖ 因此,我们采用**狄利克雷分布**作为先验:

$$Dir(\theta \mid \alpha) = \frac{1}{B(\alpha)} \prod_{k=1}^{K} \theta_k^{\alpha_k - 1} I(x \in S_k)$$

狄利克雷分布(Dirichlet distribution)

Dirichlet distribution:
$$Dir(x \mid \alpha) = \frac{1}{B(\alpha)} \prod_{k=1}^K x_k^{\alpha_k - 1} I(x \in S_k) S_k = \left\{ \mathbf{x} : 0 \le X_k \le 1, \sum_{k=1}^K X_k = 1 \right\}$$

$$a = (20, 20, 20).$$
 $a = (3, 3, 20).$ $a = (0.1, 0.1, 0.1).$

$$a = (3, 3, 20)$$

$$a = (0.1, 0.1, 0.1).$$

* $B(\alpha_1,...,\alpha_K)$ 为贝塔函数的自然泛化:

$$B(\alpha) = \frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\alpha_0)} \quad \text{where } \alpha_0 = \sum_{k=1}^{K} \alpha_k$$

where
$$\alpha_0 = \sum_{k=1}^K \alpha_k$$

掷n次骰子(K面)模型的后验

- ❖ 如果,似然为多项分布,先验为**狄利克雷分布**
 - 后验也是**狄利克雷分布**:

$$p(\theta \mid D) \propto p(D \mid \theta) p(\theta) = Dir(\theta \mid \alpha_1 + N_1, \dots, \alpha_K + N_K)$$

- ❖ 可以采用最大后验(MAP)估计分布的参数
 - 求解这个最优问题,可以采用拉格朗日乘数法(Lagrange multiplier)

$$l(\theta, \lambda) = \sum_{k} N_k \log \theta_k + \sum_{k} (\alpha_k - 1) \log \theta_k + \lambda (1 - \sum_{k} \theta_k)$$

$$\widehat{\theta}_k = \frac{N_k + \alpha_k - 1}{N + \alpha_0 - K}$$

掷n次骰子(K面)模型的预测分布

- ❖后验预测分布
 - n次掷骰子后,再掷1次骰子第j面朝上的概率:

$$p(X = j \mid D) = \int p(X = j, \theta \mid D) d\theta$$
$$= \int p(X = j \mid \theta) p(\theta \mid D) d\theta = \frac{\alpha_j + N_j}{\alpha_0 + N}$$

基于词袋模型表示语言序列

- * 这是掷骰子模型的应用例子
- *观察下面序列(儿童童谣的一部分):
 - Mary had a little lamb, little lamb, little lamb,
 - Mary had a little lamb, its fleece as white as snow
- * 预测一下,序列后接下来可能出现的单词
- *基于词袋模型,我们将文本序列表示为向量

词袋模型

- * 构造一个词汇表,包括我们观测文本中的所有单词
- * 构造一个向量, 其每个属性为词汇表中的一个单词, 不考虑词的顺序
- * 假设第i个单词是独立于其他单词进行采样
- ❖ 向量各属性的值 = 该单词出现次数

Token	1	2	3	4	5	6	7	8	9	10
Word	mary	lamb	little	big	fleece	white	black	snow	rain	unk
Count	2	4	4	0	1	1	0	1	0	4

- * 向量中,做如下处理:
 - unk(未知): 文本中其他地方未出现的所有其他单词
 - 删除任何小词,如 "a"、 "as"、 "the"等

预测文本序列后可能出现的词汇

- 如果θ的先验分布为 Dir(θ | α),
- $*N_i$. 表示单词序列中第 j个单词出现的次数
- 中上 $p(\tilde{x}=j|D)=E[\theta_j|D]=\frac{\alpha_j+N_j}{\sum_i \alpha_i+N_j}$

* 设
$$\alpha_{j} = 1$$
, 有:

mary lamb little big fleece white black snow rain unk

 $p(\widetilde{X} = j \mid D) = (\frac{3}{27}, \frac{5}{27}, \frac{5}{27}, \frac{1}{27}, \frac{2}{27}, \frac{2}{27}, \frac{1}{27}, \frac{2}{27}, \frac{1}{27}, \frac{5}{27})$

- *根据预测分布,得到的预测结果:
 - X = 2 ("lamb"), X = 3 ("little") and X = 10 ("unk").

特别注意

- ❖ 单词 "big", "black" 和 "rain" 预测概率非零
 - 注意: 它们在观测的文本中没有出现过

	Token	1	2	3	4	5	6	7	8	9	10
	Token Word	mary	lamb	little	big	fleece	white	black	snow	rain	unk
	Count	2	4	4	0	1	1	0	1	0	4
$p(\widetilde{X} = j \mid$	D) =	$(\frac{3}{27},$	$\frac{5}{27} ,$	$\frac{5}{27} ,$	$\frac{1}{27}$	$\frac{2}{27}$	$\frac{2}{27}$	$\frac{1}{27}$,	$\frac{2}{27},$	$\frac{1}{27} ,$	$\frac{5}{27}$)

朴素贝叶斯分类器

朴素贝叶斯分类器(NBC)

- ❖ 特征向量 x ∈ {1,..., K}^D
- ❖求一个类条件概率分布, p(x|y=c).
 - 这个问题也可以用掷骰子(K面)模型表达
- ❖设 p(x|y = c) 条件独立

$$p(\mathbf{x} | y = c, \mathbf{\theta}) = \prod_{j=1}^{D} p(x_j | y = c, \theta_{jc})$$

❖这个推理模型称为朴素贝叶斯分类器(NBC).

朴素贝叶斯分类器的常用条件密度分布

*特征为实数时,可采用高斯分布:

$$p(x/y = c, \theta) = \Pi^{D}_{j=1}N(x_{j} | \mu_{jc}, \sigma^{2}_{jc})$$

❖ 特征为二值时 x_j ∈ {0, 1},, 可采用伯努利分布:

$$p(x/y = c, \theta) = \Pi^{D}_{j=1}Ber(x_{j} | \mu_{jc})$$

- 这个模型又称为多变量伯努利朴素贝叶斯模型
- ❖ 特征为离散值时 $x_j \in \{1, ..., K\}$,可采用多努利分布(分类分布):

$$p(\boldsymbol{x}/\boldsymbol{y}=\boldsymbol{c},\,\boldsymbol{\theta})=\boldsymbol{\Pi}^{D}_{j=1}Cat(\boldsymbol{x}_{j}\,|\boldsymbol{\mu}_{jc})$$

• μ_{ic} 是c类中 x_i 的K个可能值的直方图

训练朴素贝叶斯分类器

- ❖通常训练朴素贝叶斯分类器的方法.
 - 最大似然估计法(MLE),估计模型参数
 - 最大后验估计法(MAP),估计模型参数

基于最大似然估计的朴素贝叶斯分类器训练

*单个数据的概率

$$p(\mathbf{x}_{i}, y_{i} | \mathbf{\theta}) = p(y_{j} | \pi) \prod_{i} p(x_{ij} | \theta_{j}) = \prod_{c} \pi_{c}^{I(y_{i}=c)} \prod_{j} \prod_{c} p(x_{ij} | \theta_{jc})^{I(y_{i}=c)}$$

- 概率分布形式为狄利克雷分布
- ❖ log似然函数:

$$\log p(D \mid \theta) = \sum_{c=1}^{C} N_c \log \pi_c + \sum_{j=1}^{D} \sum_{c=1}^{C} \sum_{i:y_i=c} \log p(x_{ij} \mid \theta_{jc})$$

* 最大似然求得参数结果:

$$\hat{\pi}_c = \frac{N_c}{N} \qquad \hat{\theta}_{jc} = \frac{N_{jc}}{N_c}$$

案例: 垃圾邮件检测

训练数据:

- ❖ 垃圾邮件 (共9个词)
 - Offer is secret
 - Click secret link
 - Secret sports link
- ❖ 正常邮件 (共15个词)
 - Play sports today
 - Went play sports
 - Secret sports event
 - Sport is today
 - Sport costs money

测试数据:

- * 给定邮件
 - M ="Secret is secret"
- ❖ 请问是垃圾邮件还是正常邮件?

模型参数估计:最大似然估计

- ❖ D : x=SSSHHHHHH, y=11100000
- ❖ 设 : P(S|θ)=θ, P(H|θ)=1-θ

$$p(y_i) = \begin{cases} \theta \ , & \text{if } y_i = 1 \\ 1 - \theta \ \text{if } y_i = 0 \end{cases} = \theta^{y_i} \cdot (1 - \theta)^{1 - y_i}$$

❖ 似然函数:

$$p(D|\theta) = \theta^{count(y_i=1)} \cdot (1-\theta)^{count(1-y_i)}$$

❖ 本问题使用log似然:

$$\log(p(D|\theta)) = 3\log\theta + 5\log(1-\theta)$$

* 计算最大似然:

$$\frac{\partial log P(D|\theta)}{\partial \theta} = \frac{3}{\theta} + \frac{5}{1-\theta} = 0$$

$$\frac{\partial log P(D|\theta)}{\partial \theta} = \frac{3}{\theta} - \frac{5}{1 - \theta} = 0$$

$$\theta = \frac{3}{8}$$

预测给定邮件是否是垃圾邮件

❖ 给定邮件: M ="Secret is secret"

已知:
$$P(spam) = \frac{3}{8} \cdot \qquad P(ham) = \frac{5}{8} \cdot$$

计算:
$$P(M|spam) = P("secret"|spam) \cdot P("is"|spam) \cdot P("secret"|spam) = \frac{3}{9} \cdot \frac{1}{9} \cdot \frac{3}{9} = \frac{1}{81}$$

$$P(M|ham) = \frac{1}{15} \cdot \frac{1}{15} \cdot \frac{1}{15} = \frac{1}{3375}$$

根据贝叶斯公式:
$$P(spam|M) = \frac{P(spam,M)}{P(M)} = \frac{P(spam) \cdot P(M|spam)}{P(M|spam)P(spam) + P(M|ham)P(ham)} = \frac{25}{26}$$

❖ 所以,预测该邮件是垃圾邮件

MLE vs. MAP

$$\hat{\theta} = \operatorname*{argmax}_{\theta} p(D|\theta)$$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \frac{p(D|\theta)p(\theta)}{p(D)} = \underset{\theta}{\operatorname{argmax}} p(D|\theta)p(\theta)$$

最大似然估计存在过拟合问题

* 对于文本分类,如果采用最大似然估计,我们得到:

$$\hat{\theta}_{jc} = \frac{N_{jc}}{N_c}$$

- ❖ 可以看出,这里只考虑词汇在样本中出现的次数
- *如果属于c类的样本中,没有第j个词,则会有: $\hat{\theta}_{jc} = 0$
 - 这就出现了过拟合
- * 可以用拉普拉斯平滑法,解决这个问题

拉普拉斯平滑

- ❖ 似然函数: P(x)= count(x)/N
- * 为了克服过拟合问题,对似然做拉普拉斯平滑
 - P(x) = (count(x) + 1) / (N+2)
 - 基本思路: 假设实际采样前,已有两个样本,一个正样本,一个负样本,因此,分子加1和分母加2
- ❖ 判定邮件是否垃圾邮件: M ="Today is secret"
 - 若采用似然估计: P("Today is Secret" |Spam) =0 , 表明过拟合了
 - 用拉普拉斯平滑:

$$P(M|spam) = \frac{1}{11} \cdot \frac{2}{11} \cdot \frac{3}{11} = 0.0045$$

$$P(M|ham) = \frac{3}{17} \cdot \frac{2}{17} \cdot \frac{2}{17} = 0.0024$$

❖ 所以,预测该邮件是垃圾邮件

特征选择

- * 朴素贝叶斯分类器是拟合多个特征的联合分布
 - 它可能受到过拟合的影响
 - 运行时间复杂度为O(D),对于某些应用程序来说可能太高。
- ❖一种常用的方法是做特征选择,删除"不相关"特征
- * 最简单的方法是分别度量每个特征的相关性
 - 估计相关性的一种方法是计算特征X_i和类标签Y之间的**互信息**
 - 取前K个最相关的特征,K的选择要基于平衡精确性与复杂性
 - 这种方法被称为变量排序、过滤或筛选。

熵 (Entropy)

❖ 熵是一种随机变量的不确定性度量

$$Entropy(X) = \int P(X)uncertainty(X)dX$$

* 定义不确定性

$$uncertainty(X) = \log_2 \frac{1}{P(X)}$$

❖ 设离散随机变量 X有K个状态,其熵表示为:

$$H(X) = \sum_{k=1}^{K} P(X = k) \log_2 \frac{1}{P(X = k)} = -\sum_{k=1}^{K} P(X = k) \log_2 P(X = k)$$

熵计算的例子

- ❖ 对于二值随机变量 X ∈ {0, 1}, 其概率:
 - $p(X = 1) = \theta$ and $p(X = 0) = 1 \theta$.
- * 熵计算如下

$$H(X) = -[P(X=1)\log_2 P(X=1) + P(X=0)\log_2 P(X=0)]$$

= -[\theta\log_2 \theta + (1-\theta)\log_2 (1-\theta)]

* 熵随概率值变化曲线:

- ❖ 一种度量两个随机变量*p和q*的分布的不相似性方法
 - the Kullback-Leibler divergence
 - 也称为相对熵 (relative entropy)

$$KL(p \parallel q) = \sum_{k} p_{k} \log \frac{p_{k}}{q_{k}}$$

❖ 交叉熵(cross entropy):

$$H(p,q) = -\sum_{k} p_{k} \log q_{k}$$

* KL散度与熵和交叉熵的关系:

$$KL(p || q) = \sum_{k} p_{k} \log p_{k} - \sum_{k} p_{k} \log q_{k} = -H(p) + H(p,q)$$

KL距离

- *希望利用KL散度定义两个分布之间的距离
 - 但 KL 散度本身不是距离度量
 - **◎**KL散度不具有对称性: KL(p||q) ≠ KL(q||p)
 - ®KL散度不是恒大于等于0
- * 我们可以定义KL距离如下:
 - 0.5KL(p||q) + 0.5KL(q||p)

互信息(Mutual information)

- *如何判定联合分布p(X, Y)与因子化分布p(X)p(Y)的相似性
 - 可以运用互信息:

$$I(X,Y) = KL(p(X,Y) || p(X)p(Y)) = \sum_{x_j} \sum_{y} p(x_j, y) \log \frac{p(x_j, y)}{p(x_j)p(y)}$$

度量相关性

❖ 度量相关性的一种方法就是计算特征X_i和类标签Y之间的互信息:

$$I(X,Y) = \sum_{x_i} \sum_{y} p(x_j, y) \log \frac{p(x_j, y)}{p(x_j)p(y)}$$

❖ 如果特征是二值的,则互信息可写成:

$$I_{j} = \sum_{c} \left[\theta_{jc} \pi_{c} \log \frac{\theta_{jc}}{\theta_{j}} + (1 - \theta_{jc}) \pi_{c} \log \frac{1 - \theta_{jc}}{1 - \theta_{j}} \right]$$

* $\sharp +$, $\pi_c = p(y=c)$, $\theta_{jc} = p(x_j=1|y=c)$, $\theta_j = p(x_j=1) = \Sigma_c \pi_c \theta_{jc}$

分类文本

- *采用词袋模型
- *从不同的角度去看这个问题,可以得到不同的分类器
- ❖我们来看3个不同的文本分类器
 - 简单分类器
 - 更精确些的分类器
 - 更好的分类器

简单文本分类器

- ❖ 基于词袋模型,用二值向量表示文档,记录每个单词是否存在于文档中
 - 如果单词j出现在文档i中,则 $x_{ij}=1$,否则 $x_{ij}=0$
- * 可以用类条件概率来分类:

$$p(x_i \mid y_i = c, \theta) = \prod_{j=1}^{D} Ber(x_{ij} \mid \theta_{jc}) = \prod_{j=1}^{D} \theta_{jc}^{I(x_{ij})} (1 - \theta_{jc})^{I(1 - x_{ij})}$$

- * 这种方法的问题
 - 忽略了每个单词出现的次数
 - 丢失了一些信息

更精确些的文本分类器

- *考虑了每个单词出现在文档中的次数
- * 设 \mathbf{x}_i 为向量,表示每个单词出现在文档 i 中的次数, $\mathbf{x}_{ij} \in \{0, 1, ..., N_i\}$,
 - N_i 为文档i中总单词数 (Σ^D_{j=1} x_{ij} = N_i)
- *可以使用多项分布来分类.

$$p(x_i \mid y_i = c, \theta) = Mu(x_i \mid N_i, \theta_c) = \frac{N_i!}{\prod_{i=1}^{D} x_{ij}!} \prod_{j=1}^{D} \theta_{jc}^{x_{ij}}$$

- * 假设
 - 文档大小N; 不依赖于类别.
 - 单词j存在于C类文档的概率为: θ_{ic}
 - 对于每个文档类别,参数满足约束: $(\Sigma^{D}_{j=1} \theta_{jc}=1)$

更好的文本分类器

- ❖ 基于多项分布的分类器对于文档分类不是特别好。
 - 单词出现具有突发性。
 - 大多数单词从未出现在任何给定文档中
 - 如果它们出现一次,则可能出现多次
- * 我们可以使用Dirichlet平均多项分布的方法进行分类

$$p(x_i \mid y_i = c, \alpha) = \int Mu(x_i \mid N_i, \theta_c) Dir(\theta_c \mid \alpha_c) d\theta_c = \frac{N_i!}{\prod_{j=1}^{D} x_{ij}!} \frac{B(x_i + \alpha_c)}{B(\alpha_c)}$$

