

#### Atmosferin Yapısı

- Hava kirliliğinin oluşumu, etkileri ve kontrol yöntemlerini belirleyebilmek:
  - Atmosferi oluşturan gazlar
  - Atmosferin katmanları
  - Bu katmanlardaki fiziksel ve kimyasal reaksiyonlar
- bilinmelidir.

#### Temiz kuru havanın bileşimi

Not: 1 ppm hacim = 0.0001% hacim

| Molekül        | Sembol           | ppm (hacim) | μg/m³                       |
|----------------|------------------|-------------|-----------------------------|
| Azot           | N <sub>2</sub>   | 780000      | 8.95 × 10 <sup>8</sup>      |
| Oksijen        | O <sub>2</sub>   | 209400      | 2.74 × 10 <sup>8</sup>      |
| Argon          | Ar               | 9300        | 1.52 × 10 <sup>7</sup>      |
| Karbon Dioksit | CO <sub>2</sub>  | 315         | 5.67 × 10 <sup>5</sup>      |
| Neon           | Ne               | 18          | 1.49 × 10 <sup>4</sup>      |
| Helyum         | He               | 5.2         | 8.50 × 10 <sup>2</sup>      |
| Metan          | CH <sub>4</sub>  | 1.0 – 1.2   | $6.56 - 7.87 \times 10^{2}$ |
| Kripton        | Kr               | 1.0         | $3.43 \times 10^{3}$        |
| Nitröz Oksit   | N <sub>2</sub> O | 0.5         | $9.00 \times 10^{2}$        |
| Hidrojen       | H <sub>2</sub>   | 0.5         | $4.13 \times 10^{1}$        |
| Ksenon         | Xe               | 0.08        | 4.29 × 10 <sup>2</sup>      |

Kreider J F, Cohen R R H, Cook N E, Curtiss P S, Illangasekare T, Kreith F, Rabl A and Zannetti P (1999) Environmental Engineering, *Mechanical Engineering Handbook*, Ed. F. Kreith, CRC Press LLC, U.S.A.

## Karışım Oranı (C<sub>x</sub>)

1 ppm (vol) pollutant = 
$$\frac{1 \text{ liter pollutant}}{10^6 \text{ liter air}}$$
$$= \frac{(1 \text{ liter/22.4}) \times \text{MW} \times 10^6 \,\mu\text{g/gm}}{10^6 \text{ liters} \times 298^\circ\text{K/273}^\circ\text{K} \times 10^{-3} \,\text{m}^3/\text{liter}}$$
$$= 40.9 \times \text{MW} \,\mu\text{g/m}^3$$

(25 °C ve 760 mm Hg basınç altında)

ppm: milyonda bir (parts per million) ppb: milyarda bir (parts per billion) ppt: trilyonda bir (parts per trillion)

#### Problem

- <u>https://www.co2.earth/</u> web sitesi Ağustos 2019 tarihi için küresel CO₂ konsantrasyonunu 409.95 ppm olarak belirtmiştir.
- > Buna göre atmosferdeki CO<sub>2</sub> konsantrasyonunu μg/m³ olarak hesaplayınız.
- $\triangleright$  MW<sub>CO2</sub> = 44 gr/mol
- $\triangleright$  1 ppmv = 40.9 × MW  $\mu$ g/m<sup>3</sup> = 40.9 × 44 = 1799.6  $\mu$ g/m<sup>3</sup>
- > 408.05 ppmv  $\rightarrow$  1799.6  $\times$  409.95 =  $7.38 \times 10^5 \,\mu\text{g/m}^3$

## Kuru Havanın Molekül Ağırlığı

- $\triangleright M_a = \sum_i C_i M_i$
- $> M_a = C_{N2}M_{N2} + C_{O2}M_{O2} + C_{Ar}M_{Ar} + \cdots$
- $M_a = (0.78).(28 \times 10^{-3}) + (0.21).(32 \times 10^{-3}) + (0.01).(40 \times 10^{-3})$
- $M_a = 28.96 \times 10^{-3} \text{ kg/mol}$

## Bağıl Nem (Relative Humidity) (RH)

$$>RH(\%) = 100.\frac{P_{H2O}}{P_{H2O,sat(T)}}$$

- > RH ≥ 100% → Bulut oluşumu
- ➤ P<sub>H2O</sub> = P<sub>H2O,sat</sub> → Çiğlenme noktası

## Nemli Havanın Molekül Ağırlığı

- $M_{a,nemli} = (1 C_{H2o})M_{a,kuru} + C_{H2o}M_{H2o}$
- > Örneğin, su buharının karışım oranı 0.03 ise nemli havanın molekül ağırlığı nedir?
- $M_{a,nemli} = (1 0.03) \times 28.96 \times 10^{-3} kg/mol + 0.03 \times 18 \times 10^{-3} kg/mol$
- $M_{a.nemli} = 28.63 \times 10^{-3} kg/mol$
- ➤ Nemli hava kuru havadan daha hafiftir.



#### Troposfer

- ➤ Yer yüzeyinden başlayan ilk 11-12 km'lik atmosfer katmanı.
- > Meteorolojik olaylar bu bölgede gerçekleşir.
- ➤ Yükseğe çıkıldıkça sıcaklık yaklaşık 15 °C'den (288 K) -57°C'ye (216 K) düşer.
- ➤ Basınç 1013 mb'dan 20-140 mb'a kadar düşer.



## Sınır Katman Tabaka Yüksekliği (HPBL)

- Karışım Yüksekliği olarak da bilinir.
- Hava kirleticilerinin hava içerisinde tam karışımlı oldukları yüksekliktir.
- Karışım yüksekliğinin belirlenmesi hava kirliliği problemlerinde oldukça önemlidir.



#### Stratosfer

- ➤ 11-50. km'ler arasında troposferin üzerinde yer alır.
- ≥ 20-30. km'ler arasında Ozon tabakası bulunur.
- ➤ Bu tabaka güneşten gelen UV-B ışınlarını tutar.

## Atmosferik Basınç



- $\triangleright P_A = \rho_{H_g}. g. h$
- $ho_{Hg}$ : civanın özgül ağırlığı (13.6 gr/cm³)
- ≥ g : yerçekimi ivmesi (9.8 m/s²)
- h: yükseklik (deniz seviyesinde 76 cm)

Pa =  $1.013 \times 10^5$  Pa = 1013 hPa = 1013 mb = 1 atm = 760 mm Hg = 760 torr

#### Atmosferin Kütlesi

Dünya yer yüzeyindeki ortalama basınç 984 hPa ise toplam atmosfer kütlesini (m<sub>atm</sub>) hesaplayınız.

$$ightharpoonup P = 
ho. g.h = rac{m_{atm}}{V}.g.h = rac{m_{atm}}{A.h}.g.h = rac{m_{atm}.g}{4.\pi.R^2}$$

$$> m_{atm} = \frac{4.\pi R^2 P}{g} = \frac{4.\pi (6400 km)^2 .984 hPa}{9.81 m/s^2} = 5.2 \times 10^{18} kg$$

#### Problem

Toplam atmosferdeki kütlenin ne kadarı troposferdedir?

$$> \frac{P_{tropopoz}}{P_{y\ddot{\mathbf{u}}zey}} = \frac{100 \, hPa}{1000 hPa}$$

- > F<sub>troposfer</sub>: troposfer fonksiyonu
- $ightharpoonup F_{\text{troposfer}} = 1 \frac{P_{tropopoz}}{P_{y\"{u}zey}} = 0.90$
- Toplam atmosferdeki kütlenin ne kadarı stratosferdedir?
- $ightharpoonup P_{\text{stratopoz}} = 0.9 \text{ hPa}$
- $F_{\text{stratosfer}} = \frac{P_{tropopoz} P_{stratopoz}}{P_{y"uzey}} = 0.099$



#### Atmosferik Taşınım

- Atmosfer içinde ısının ya da diğer özelliklerin dikey hareketine Konveksyion (convection) denilir.
- Atmosfer içinde ısının ya da diğer özelliklerin yatay hareketine Adveksiyon (advection) denilir.

#### Atmosferik Taşınım

Atmosferik taşınımda etkin olan kuvvetler:

- > Yerçekimi
- > Basınç gradyanı
- ➤ Coriolis kuvveti

- ➤ Yataydaki taşınım basınç gradyanı ile coriolis kuvveti arasındaki dengeye bağlıdır.
- Dikeydeki taşınım yerçekimi ile basınç gradyanı arasındaki dengeye bağlıdır.





# Hava Parseline Yatayda Etki Eden Kuvvetler

- P-ΔP Fquilibrium flow
- $> \gamma_c = 2. w. V. \sin \lambda$
- $\triangleright \gamma_c$ : coriolis ivmesi
- > w: dünyanın açısal hızı
- V: nesnenin dünyadaki hızı
- $\geq \lambda$ : Enlem
- $\triangleright \gamma_p = -\frac{1}{\rho} \cdot \nabla \cdot P$
- $hightarrow \gamma_p$  : basınç ivmesi
- ▶ ∇: gradyan vektörü
- $\succ \gamma_f$ : sürtünme ivmesi

### 





#### Atmosferik Stabilite

Kuru havanın adiyabatik yükselmesi (Dry adiyabatik lapse rate)

$$\Gamma = -dT / dz = \frac{g}{C_n} = 9.8 \text{ K km}^{-1}$$

- ➤ Adiyabatik: ısı alışverişi yok (dQ=0)
- ➤-dT/dz : lapse rate
- Cp:1.0 x 10<sup>3</sup> J kg<sup>-1</sup> K<sup>-1</sup> (havanın ısı kapasitesi)
- ➤ Sıcaklık her 100 metrede yaklaşık 1°C azalır.





#### Bazı Tanımlar

- > Yatayda hava hareketlerinin kesilmesi: rüzgarsız hava (calm)
- ➤ Dikeyde artan hava sıcaklığı nedeniyle hava hareketinin engellenmesi: inversiyon veya sıcaklık terslemesi (inversion)
- ➤ Yatay ve dikeyde hava hareketinin 24 saatten fazla gerçekleşmesi: durağanlık (stagnation)
- Durağanlık ile birlikte kirletici konsantrasyonlarının artması: epizod (episode)









http://acmg.seas.harvard.edu/people/faculty/djj/book/bookchap4.html

## Rüzgar Hızı

Rüzgar hızının yüksekliğe bağlı değişimi

$$u_z = u_0 \left(\frac{z}{z_0}\right)^p$$

➤ u<sub>z</sub>: z yüksekliğindeki rüzgar hızı (m/s)

➤ u<sub>0</sub>: anomometre yüksekliğindeki rüzgar hızı (m/s)

≥z: yükseklik (m)

≥ z<sub>0</sub>: anomometre yüksekliği (m) (genellikle 10 m.)

p : katsayı (atmosferik kararlılık sınıfına göre değişir)

| Atmosferik | Kararlılık | Sınıfına | Göre p | Değerleri |
|------------|------------|----------|--------|-----------|
|------------|------------|----------|--------|-----------|

| Pasquill Kararlılık<br>Sınıfı | Engebeli arazi için p | Düz arazi için p |
|-------------------------------|-----------------------|------------------|
| A (en kararsız)               | 0.15                  | 0.07             |
| В                             | 0.15                  | 0.07             |
| С                             | 0.20                  | 0.10             |
| D                             | 0.25                  | 0.15             |
| Е                             | 0.40                  | 0.35             |
| F (en kararlı)                | 0.60                  | 0.55             |

