INCOME AND SUBSTITUTION EFFECTS

[See Chapter 5 and 6]

Two Demand Functions

- Marshallian demand $x_i(p_1,...,p_n,m)$ describes how consumption varies with prices and income.
 - Obtained by maximizing utility subject to the budget constraint.
- Hicksian demand $h_i(p_1,...,p_n,\underline{u})$ describes how consumption varies with prices and utility.
 - Obtained by minimizing expenditure subject to the utility constraint.

CHANGES IN INCOME

Changes in Income

- An increase in income shifts the budget constraint out in a parallel fashion
- Since p_1/p_2 does not change, the optimal *MRS* will stay constant as the worker moves to higher levels of utility.

Increase in Income

• If both x_1 and x_2 increase as income rises, x_1 and x_2 are normal goods

Increase in Income

If x₁ decreases as income rises, x₁ is an inferior good

As income rises, the individual chooses to consume less x_1 and more x_2

Note that the indifference curves do not have to be "oddly" shaped. The preferences are convex

Quantity of x_1

Changes in Income

 The change in consumption caused by a change in income from m to m' can be computed using the Marshallian demands:

$$\Delta x_1 = x_1(p_1, p_2, m') - x_1(p_1, p_2, m)$$

- If $x_1(p_1,p_2,m)$ is increasing in m, i.e. $\partial x_1/\partial m \ge 0$, then good 1 is normal.
- If $x_1(p_1,p_2,m)$ is decreasing in m, i.e. $\partial x_1/\partial m < 0$, then good 1 is inferior.

Engel Curves

• The Engel Curve plots demand for x_i against income, *m*.

OWN PRICE EFFECTS

Changes in a Good's Price

- A change in the price of a good alters the slope of the budget constraint
- When the price changes, two effects come into play
 - substitution effect
 - income effect
- We separate these effects using the Slutsky equation.

Changes in a Good's Price

Demand Curves

 The Demand Curve plots demand for x_i against p_i, holding income and other prices constant.

Changes in a Good's Price

• The total change in x_1 caused by a change in its price from p_1 to p_1 can be computed using Marshallian demand:

$$\Delta x_1 = x_1(p_1', p_2, m) - x_1(p_1, p_2, m)$$

Two Effects

Suppose p₁ falls.

1. Substitution Effect

- The relative price of good 1 falls.
- Fixing utility, buy more x_1 (and less x_2).

2. Income Effect

- Purchasing power also increases.
- Agent can achieve higher utility.
- Will buy more/less of x₁ if normal/inferior.

Substitution Effect

Substitution Effect

 The substitution effect caused by a change in price from p₁ to p₁' can be computed using the Hicksian demand function:

Sub. Effect =
$$h_1(p_1', p_2, \underline{U}) - h_1(p_1, p_2, \underline{U})$$

Income Effect

Income Effect

 The income effect caused by a change in price from p₁ to p₁' is the difference between the total change and the substitution effect:

$$[x_1(p_1', p_2, m) - x_1(p_1, p_2, m)] - [h_1(p_1', p_2, \underline{U}) - h_1(p_1, p_2, \underline{U})]$$

Increase in a Good 1's Price

- Marshallian demand
 - Fix prices (p_1,p_2) and income m.
 - Induces utility $\underline{\mathbf{u}} = \mathbf{v}(p_1, p_2, \mathbf{m})$
 - When we vary p₁ we can trace out Marshallian demand for good 1
- Hicksian demand (or compensated demand)
 - Fix prices (p₁,p₂) and utility <u>u</u>
 - By construction, $h_1(p_1,p_2,\underline{u}) = x_1(p_1,p_2,m)$
 - When we vary p₁ we can trace out Hicksian demand for good 1.

- For a normal good, the Hicksian demand curve is less responsive to price changes than is the uncompensated demand curve
 - the uncompensated demand curve reflects both income and substitution effects
 - the compensated demand curve reflects only substitution effects

Normal Goods

- Picture shows price rise.
- SE and IE go in same direction

Inferior Good

- Picture shows price rise.
- SE and IE go in opposite directions.

Inferior Good (Giffen Good)

- Picture shows price rise
- IE opposite to SE, and bigger than SE

SLUTSKY EQUATION

Slutsky Equation

• Suppose p_1 increase by Δp_1 .

1. Substitution Effect.

- Holding utility constant, relative prices change.
- Increases demand for \mathbf{x}_1 by $\frac{\partial h_1}{\partial p_1} \Delta p_1$

2. Income Effect

- Agent's income falls by $x_1^* \times \Delta p_1$.
- Reduces demand by $x_1^* \frac{\partial x_1^*}{\partial m} \Delta p_1$

Slutsky Equation

- Fix prices (p₁,p₂) and income m.
- Let $\underline{u} = v(p_1, p_2, m)$.
- Then

$$\frac{\partial}{\partial p_1} x_1^*(p_1, p_2, m) = \frac{\partial}{\partial p_1} h_1(p_1, p_2, \underline{u}) - x_1^*(p_1, p_2, m) \cdot \frac{\partial}{\partial m} x_1^*(p_1, p_2, m)$$

- SE always negative since h₁ decreasing in p₁.
- IE depends on whether x₁ normal/inferior.

Example: $u(x_1, x_2) = x_1 x_2$

From UMP

$$x_1^*(p_1, p_2, m) = \frac{m}{2p_1}$$
 and $v(p_1, p_2, m) = \frac{m^2}{4p_1p_2}$

From EMP

$$h_1(p_1, p_2, \underline{u}) = \left(\frac{p_2}{p_1}\underline{u}\right)^{1/2}$$
 and $e(p_1, p_2, \underline{u}) = 2(\underline{u}p_1p_2)^{1/2}$

LHS of Slutsky:

$$\frac{\partial}{\partial p_1} x_1^*(p_1, p_2, m) = -\frac{1}{2} m p_1^{-2}$$

RHS of Slutsky:

$$\frac{\partial}{\partial p_1} h_1 - x_1^* \cdot \frac{\partial}{\partial m} x_1^* = -\frac{1}{2} \underline{u}^{1/2} p_1^{-3/2} p_2^{1/2} - \frac{1}{4} m p_1^{-2} = -\frac{1}{4} m p_1^{-2} - \frac{1}{4} m p_1^{-2}$$

CROSS PRICE EFFECTS

Changes in a Good's Price

• The total change in x_2 caused by a change in the price from p_1 to p_1 can be computed using the Marshallian demand function:

$$\Delta x_2 = x_2^*(p_1', p_2, m) - x_2^*(p_1, p_2, m)$$

Substitutes and Complements

- Let's start with the two-good case
- Two goods are <u>substitutes</u> if one good may replace the other in use
 - examples: tea & coffee, butter & margarine
- Two goods are <u>complements</u> if they are used together
 - examples: coffee & cream, fish & chips

Gross Subs/Comps

· Goods 1 and 2 are gross substitutes if

$$\frac{\partial x_1^*}{\partial p_2} > 0$$
 and $\frac{\partial x_2^*}{\partial p_1} > 0$

They are gross complements if

$$\frac{\partial x_1^*}{\partial p_2} < 0$$
 and $\frac{\partial x_2^*}{\partial p_1} < 0$

Gross Complements

Gross Substitutes

Gross Substitutes: Asymmetry

- Partial derivatives may have opposite signs:
 - Let x_1 =foreign flights and x_2 =domestic flights.
 - An increase in p₁ may increase x₂ (sub effect)
 - An increase in p₂ may reduce x₁ (inc effect)
- Quasilinear Example: $U(x,y) = \ln x + y$
 - From the UMP, demands are

$$x_1 = p_2/p_1$$
 and $x_2 = (m - p_2)/p_2$

We therefore have

$$\partial x_1/\partial p_2 > 0$$
 and $\partial x_2/\partial p_1 = 0$

Net Subs/Comps

Goods 1 and 2 are net substitutes if

$$\frac{\partial h_1}{\partial p_2} > 0$$
 and $\frac{\partial h_2}{\partial p_1} > 0$

They are net complements if

$$\frac{\partial h_1}{\partial p_2} < 0$$
 and $\frac{\partial h_2}{\partial p_1} < 0$

- Partial derivatives cannot have opposite signs
 - Follows from Shepard's Lemma (see EMP notes)
- Two goods are always net substitutes.
 - Moving round indifference curve.

Gross Comps & Net Subs

Substitution and Income Effect

Suppose p₁ rises.

1. Substitution Effect

- The relative price of good 2 falls.
- Fixing utility, buy more x_2 (and less x_1)

2. Income Effect

- Purchasing power decreases.
- Agent can achieve lower utility.
- Will buy more/less of x_2 if inferior/normal.

Increase in a Good 1's Price

Slutsky Equation

• Suppose p_1 increase by Δp_1 .

1. Substitution Effect.

- Holding utility constant, relative prices change.
- Increases demand for \mathbf{x}_2 by $\frac{\partial h_2}{\partial p_1} \Delta p_1$

2. Income Effect

- Agent's income falls by $x_1^* \times \Delta p_1$.
- Reduces demand by $x_1^* \frac{\partial x_2^*}{\partial m} \Delta p_1$

Slutsky Equation

- Fix prices (p₁,p₂) and income m.
- Let $\underline{u} = v(p_1, p_2, m)$.
- Then

$$\frac{\partial}{\partial p_1} x_2^*(p_1, p_2, m) = \frac{\partial}{\partial p_1} h_1(p_1, p_2, \underline{u}) - x_1^*(p_1, p_2, m) \cdot \frac{\partial}{\partial m} x_1^*(p_1, p_2, m)$$

- SE depends on net complements or substitutes
- IE depends on whether x₁ is normal/inferior.

Example: $u(x_1,x_2)=x_1x_2$

From UMP

$$x_2^*(p_1, p_2, m) = \frac{m}{2p_2}$$
 and $v(p_1, p_2, m) = \frac{m^2}{4p_1p_2}$

From EMP

$$h_2(p_1, p_2, \underline{u}) = \left(\frac{p_1}{p_2}\underline{u}\right)^{1/2}$$
 and $e(p_1, p_2, \underline{u}) = 2(\underline{u}p_1p_2)^{1/2}$

LHS of Slutsky:

$$\frac{\partial}{\partial p_1} x_2^*(p_1, p_2, m) = 0$$

RHS of Slutsky:

$$\frac{\partial}{\partial p_1} h_2 - x_1^* \cdot \frac{\partial}{\partial m} x_2^* = \frac{1}{2} \underline{u}^{1/2} p_1^{-1/2} p_2^{-1/2} - \frac{1}{4} m p_1^{-1} p_2^{-1} = \frac{1}{4} m p_1^{-1} p_2^{-1} - \frac{1}{4} m p_1^{-1} p_2^{-1}$$

DEMAND ELASTICITIES

Demand Elasticities

- So far we have used partial derivatives to determine how individuals respond to changes in income and prices.
 - The size of the derivative depends on how the variables are measured (e.g. currency, unit size)
 - Makes comparisons across goods, periods, and countries very difficult.
- Elasticities look at percentage changes.
 - Independent of units.

Income Elasticities

 The income elasticity equals the percentage change in x₁ caused by a 1% increase in income.

$$e_{x_1,m} = \frac{\Delta x_1 / x_1}{\Delta m / m} = \frac{dx_1}{dm} \frac{m}{x_1} = \frac{\partial \ln x_1}{\partial \ln m}$$

- Normal good: e_{1,m} > 0
- Inferior good: $e_{1,m} < 0$
- Luxury good: $e_{1,m} > 1$
- Necessary good: e_{1,m} < 1

Marshallian Demand Elasticities

• The own price elasticity of demand e_{x_1,p_1} is

$$e_{x_1, p_1} = \frac{\Delta x_1 / x_1}{\Delta p_1 / p_1} = \frac{\partial x_1}{\partial p_1} \cdot \frac{p_1}{x_1} = \frac{\partial \ln x_1}{\partial \ln p_1}$$

- If $|e_{x_1,p_1}| < -1$, demand is elastic
- If $|e_{x1,p1}| > -1$, demand is inelastic
- If $e_{x_1,p_1} > 0$, demand is Giffen

Marshallian Demand Elasticities

• The cross-price elasticity of demand $(e_{x2,p1})$ is

$$e_{x_2, p_1} = \frac{\Delta x_2 / x_2}{\Delta p_1 / p_1} = \frac{\partial x_2}{\partial p_1} \cdot \frac{p_1}{x_2} = \frac{\partial \ln x_2}{\partial \ln p_1}$$

Elasticities: Interesting Facts

 If demand is elastic, a price rise leads to an increase in spending:

$$\frac{\partial}{\partial p_1}[p_1 x_1^*] = x_1^* + p_1 \frac{\partial x_1^*}{\partial p_1} = x_1^* [1 + e_{x_1, p_1}] < 0$$

Elasticities: Interesting Facts

Demand is homoegenous of degree zero.

$$x_1^*(kp_1, kp_2, km) = x_1^*(p_1, p_2, m)$$

Differentiating with respect to k,

$$p_1 \cdot \frac{\partial x_1^*}{\partial p_1} + p_2 \cdot \frac{\partial x_1^*}{\partial p_2} + m \cdot \frac{\partial x_1^*}{\partial m} = 0$$

Letting k=1 and dividing by x*₁,

$$e_{x_1,p_1} + e_{x_1,p_2} + e_{x_1,m} = 0$$

 A 1% change in all prices and income will not change demand for x₁.

Elasticities: Engel Aggregation

Take the budget constraint

$$m = p_1 x_1 + p_2 x_2$$

Differentiating,

$$1 = p_1 \cdot \frac{\partial x_1}{\partial m} + p_2 \cdot \frac{\partial x_2}{\partial m}$$

• Divide and multiply by x_1m and x_2m

$$1 = p_1 \cdot \frac{\partial x_1}{\partial m} \cdot \frac{x_1 m}{x_1 m} + p_2 \cdot \frac{\partial x_2}{\partial m} \cdot \frac{x_2 m}{x_2 m} = s_1 e_{x_1, m} + s_2 e_{x_2, m}$$

where $s_1=p_1x_1/m$ is expenditure share.

- Food is necessity (income elasticity<1)
 - Hence income elasticity for nonfood>1

Some Price Elasticities

Specific Brands:

```
+ Coke -1.71
```

♣ Pepsi -2.08

♣ Tide Detergent -2.79

Some Price Elasticities

Narrow Categories:

♣ Transatlantic Air Travel	-1.30
♣ Tourism in Thailand	-1.20
♣ Ground Beef	-1.02
∔ Pork	-0.78
∔ Milk	-0.54
 ∔ Eggs	-0.26

Some Price Elasticities

Broad Categories:

Recreation	-1.30
Clothing	-0.89
∔ Food	-0.67
 Imports	-0.58
Transportation	-0.56

CONSUMER SURPLUS

- How do we determine how our utility changes when there is a change in prices.
- What affect would a carbon tax have on welfare?
- Cannot look at utilities directly (ordinal measure)
- Need monetary measure.

• One way to evaluate the welfare cost of a price increase (from p_1 to p_1) would be to compare the expenditures required to achieve a given level of utilities \underline{U} under these two situations

Initial expenditure = $e(p_1, p_2, \underline{U})$

Expenditure after price rise = $e(p'_1, p_2, \underline{U})$

• Clearly, if $p_1' > p_1$ the expenditure has to increase to maintain the same level of utility:

$$e(p_1',p_2,\underline{U}) > e(p_1,p_2,\underline{U})$$

 The difference between the new and old expenditures is called the <u>compensating</u> <u>variation</u> (CV):

$$CV = e(p_1', p_2, \underline{U}) - e(p_1, p_2, \underline{U})$$

where $\underline{U} = v(p_1, p_2, m)$.

From Shepard's Lemma:

$$\frac{\partial e(p_1, p_2, \underline{U})}{\partial p_1} = h_1(p_1, p_2, \underline{U})$$

CV equals the integral of the Hicksian demand

$$CV = e(p_1, p_2, \underline{U}) - e(p_1, p_2, \underline{U})$$

$$= \int_{p_1}^{p_1'} \frac{\partial}{\partial p_1} E(z, p_2, \underline{U}) dz = \int_{p_1}^{p_1'} h_1(z, p_2, \underline{U}) dz$$

• This integral is the area to the left of the Hicksian demand curve between p_1 and p_1 '

- Consumer surplus equals the area under the Hicksian demand curve above the current price.
- CS equals welfare gain from reducing price from p₁=∞ to current market price.
- That is, CS equals the amount the person would be willing to pay for the right to consume the good at the current market price.

A Problem

- Problem: Hicksian demand depends on the utility level which is not observed.
- Answer: Approximate with Marchallish demand.
- From the Slutsky equation, we know the Hicksian and Marshallian demand functions have approximately the same slope when the good forms only a small part of the consumption bundle (i.e. when income effects are small)

Quasilinear Utility

- Suppose $u(x_1,x_2)=v(x_1)+x_2$
- From UMP, Marshallian demand for x₁

$$v'(x_1)=p_1/p_2$$

From EMP, Hicksian demand for x1,

$$v'(h_1)=p_1/p_2$$

- Hence $x_1(p_1,p_2,m)=h_1(p_1,p_2,u)$.
- And

$$CV = \int_{p_1}^{p_1'} h_1(z, p_2, \underline{U}) dz = \int_{p_1}^{p_1'} x_1^*(z, p_2, m) dz$$

- We will define <u>consumer surplus</u> as the area below the Marshallian demand curve and above price
 - It shows what an individual would pay for the right to make voluntary transactions at this price
 - Changes in consumer surplus measure the welfare effects of price changes