Lecture 6

Organic Chemistry: Fundamentals and Applications (CSO201A)

Dr. Srinivas Dharavath

Assistant Professor
Department of Chemistry
Indian Institute of Technology, Kanpur
Kanpur- 208016

E-mail: srinivasd@iitk.ac.in

IUPAC Nomenclature of Cyclic Compounds

You will be able to name any organic compound as per IUPAC rules

$$HC$$
 CH_2
 CH

Functional Group Containing Molecules

Molecules with functional groups:

- 1. Choose the longest carbon chain containing functional group (FG) as the parent chain.
- 2. The functional group (FG) must get a lowest number possible.
- 3. Remove 'e' from ane/ene/yne and add the name of the FG: → but-3-en-1-oicacid.
- 3. If a molecules contains more than one FG, one is chosen as principal FG and others as substituents.
- 4. If more than one identical FG present (except db/tb): full parent alkane's name+o-di/tri/tetra-FG suffix

$CII \rightarrow undec$
$C12 \rightarrow dodec$
€13→ t ride c
C14→ tetradec
C15→ pentadec
C16 hexadec
C17→ heptadec
C18→ octadec
C19→ nonadec
C20→ eicos

Functional groups	<u>prefix</u>	<u>suffix</u>
1.ałkenes → C-C: db 2. alkynes → C-C: tb	- -	ene yne
1. Nitro → -NO ₂ ✓ 2. Alkoxy → -OR ✓ 3. Halo → -X (F, Cl, Br,I)	nitro alkoxy halo	- - *

Functional Group Containing Molecules

functional groups

- 1. Carboxylic acid→ -COOH
- 1a. Sulphonic acid → -SO₃H
- 1b. Ester→ -COO®
- 1c. Acid halide → -COX= 13 V.T.
- 1d. Amide → -CONH2
- 1e. Nitrile → -CN
- 2. Aldehyde→ -CHO
- 3. Ketone \rightarrow -CO-
- 4. Alcohol → -OH
- 5. Amine \rightarrow -NH₂

prefix

carboxy

sulpho

Alkoxy carbonyl

halo carbonyl

carbamoyl

cyano__

formyl/oxo_

0X0

hydroxy

amino

suffix

oic acid___

sulphonic acid

oate

oyl halide

amide

nitrile

al

one //

ol

amine

Molecules with functional groups:

- 1. Choose the longest carbon chain containing functional group (FG) as the parent chain.
- 2. The functional group (FG) must get a lowest number possible (except –OH, -CO-, -NH₂).
- 3. If FG suffix starts with \rightarrow (a,i,o,u,y), then remove "e" of ane/ene/yne: \rightarrow but-3-en-1-oicacid.
- 4. If a molecule contains more than one FG, one is chosen as principal FG and others as substituents.

6-carbamoyl-3-(chlorocarbonyl)-5-(methoxycarbonyl)-4,7-dimethyl-8-oxooctanoic acid

methyl 7-bromo-2-ethyl-5-[hydroxy(nitro)methyl]-3-methylheptanoate

7-(chlorocarbonyl)-5-cyano-6-ethyl-3,4,8-trimethylnonanoic acid

4-(butan-2-yl)-5-hydroxy-3,7-dimethyl-6-nitrooctanamide

Molecules with functional groups:

- 5. Unbranched chain with 3/more same FGs→hexane-1,3,6-tricarboxylic acid. ✓
- 6. Branched chain with 3/more same FG: Parent chain includes 2FG and 1FG as substituent.
- 7. If substituent is oxygen derivative of CH_3/CH_2 : its carbon is also becoming part of parent chain.

5. Alicyclic Compounds

Carbocyclic Compounds:

- 1. Add prefix "cyclo" before the equivalent alkane/alkene/alkyne chain.
- 2. Substituents numbering: priority to alphabetical order (ethyl>methyl)→ alkylcycloalkanes
- 3. C-Numbering: priority to carbon with more branched>carbon with less branches
- 4. Lowest set of locant rule

1-ethyl-2-methyldyclohexang

Carbocyclic Compounds:

- 5. Cycloalkane: attached alkyl group contains equal or a lower number of carbons than the cycloalkane.
- 6. Alkane: attached alkyl group contains more number of carbons than the cycloalkane (Ring→Sub).
- 7. Alkane: If the side chain consists of a functional group/multiple bonds (Ring > Sub).
- 8. Cycloalkenes/ynes: 1,2 number to the multiple bond, path \rightarrow substituent gets lower number possible.

6. Benzene Aromatic Compounds

Aromatic Benzenoid Compounds:

- 1. Base name is 'benzene' and "Sub+benzene".
- 2. Lowest number to the substituent and is a prefix to the 'benzene'.
- 3. If 2/more substituents: "lowest set of locant rule"
- 4. Assign numbers to substituents in alphabetical order.

1-chloro-2-methylbenzene

4-chloro-1-ethyl-2-methylbenzene

Aromatic Benzenoid Compounds:

- 5. If FG is present in the branch, benzene becomes substituent (phenyl).
- 6. Subs/branches locants to be written same as in alphabetical order before.

$$1\hbox{-}bromo\hbox{-}2\hbox{-}ethyl\hbox{-}4\hbox{-}nitrobenzene$$

3-isopropyl-5-methylbenzene-1-sulfonic acid

IUPAC Advanced Course: Review

Molecules with Functional Groups:

- 1. Choose the longest carbon chain containing functional group (FG) as parent chain.
- 2. The functional group (FG) must get a lowest number possible (except –OH, -CO-, -NH₂).
- 3. If FG suffix starts with \rightarrow (a,i,o,u,y), then remove "e" of ane/ene/yne: \rightarrow \rightarrow but-3-en-1-oicacid.
- 4. If a molecules contains more than one FG, one is chosen as principal FG and others as substituents.
- 5. Unbranched chain with $2/\text{more same FG} \rightarrow \text{alkane-1,3,6-hexane tricarboxylic acid.}$
- 6. Branched chain with 2/more same FG: Parent chain includes 2FG and 1FG as substituent.
- 7. If substituent is oxygen derivative of CH₃/CH₂: its carbon is also becoming part of parent chain.

Carbocyclic Compounds (Alicyclic):

- 1. Add prefix "cyclo" before the equivalent alkane/alkene/alkyne chain.
- 2. Substituents numbering: priority to alphabetical order (ethyl>methyl) → alkylcycloalkanes
- 3. C-Numbering: priority to carbon with more branched>carbon with less branches
- 4. Lowest set of locant rule ~
- 5. Cycloalkane: attached alkyl group contains equal or a lower number of carbons than the cycloalkane
- 6. Linear Alkane: attached alkyl group contains more number of carbons than the cycloalkane (Ring→S).
- 7. Linear Alkane: If the side chain consists of a functional group/multiple bonds (Ring \rightarrow S)
- 8. Cycloalkenes/ynes: 1,2 number to the multiple bond, substituent gets lower number possible.

Aromatic Benzenoid Compounds:

- 1. Base name is 'benzene'
- 2. Lowest number to the substituent/FG and is a prefix to the 'benzene'.
- 3. If 2/more substituents: "lowest set of locant rule"
- 4. Assign numbers to substituents in alphabetical order
- 5. If FG is present in the branch, benzene becomes substituent (phenyl).

PRACTICE

$$H_2C$$
 CH_2
 CH_2
 CH_3
 CH_3
 CH_2
 CH_3
 CH_3

PRACTICE

$$\begin{array}{c} \text{CH}_2 & \text{CH}_3 \\ \text{CH}_2 & \text{CH}_3 \\ \text{CH}_3 & \text{CH} & \text{CH}_2 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \text{CH}_4 & \text{CH}_2 & \text{CH}_2 \\ \text{CH}_5 & \text{CH}_5 & \text{CH}_5 \\ \text{CH}_5 & \text{CH}_5 & \text{CH}_5 \\ \text{CH}_6 & \text{CH}_5 & \text{CH}_5 \\ \text{CH}_6 & \text{CH}_6 & \text{CH}_6 \\ \text{CH}_6 & \text$$