## Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

secondo appello - 15/07/2024 - A (0)

## Problema 1

Dato il circuito amplificatore in figura di cui sono noti:

- I parametri dei MOSFET:
  - $\circ$  M<sub>1</sub> e M<sub>2</sub>: k<sub>1</sub> = k<sub>2</sub> = 2mA/V<sup>2</sup>,
  - $\circ$  M<sub>3</sub>: k<sub>3</sub> = 1mA/V<sup>2</sup>,
  - $\circ$  M<sub>4</sub>: k<sub>4</sub> = 4mA/V<sup>2</sup>,
  - V<sub>TN</sub> = 2V per tutti i MOS
  - O  $M_3$  ha  $λ_3 = 0.01V^{-1}$  (trascurare λ per tutti gli altri MOSFET)
- I valori delle resistenze:  $R_i = 1k\Omega$ ,  $R_L = 24k\Omega$ ,  $R_D = 8k\Omega$ .
- La tensione di alimentazione: V<sub>DD</sub> = 10V

Dato il circuito in figura, sapendo che la tensione gate-source di M<sub>4</sub> è V<sub>GS4</sub> = 4V, calcolare:

- 1) Il valore della resistenza R<sub>4</sub> e la corrente attraverso M<sub>4</sub>.
- 2) Il punto di polarizzazione di  $M_1$ ,  $M_2$  e  $M_3$ .
- 3) I potenziali dei nodi A, B, C, e D in condizioni DC. (Riportare i valori nello spazio sotto la figura)
- 4) Disegnare il modello ai piccoli segnali e calcolare le transconduttanze di  $M_1$  e  $M_2$ .

Dall'analisi ai piccoli segnali, calcolare:

- 5) Le resistenze di ingresso (R<sub>IN</sub> e di uscita R<sub>OUT</sub>) come evidenziate nel circuito.
- 6) Il guadagno di tensione di modo differenziale rispetto al segnale  $v_1 v_2$ .
- 7) Il guadagno di tensione di modo comune
- 8) II CMRR





$$= \frac{1}{1 + 28m_{1}^{2}} = \frac{$$

## Problema 2

Dato il circuito in figura, realizzato con un amplificatore operazionale e un diodo zener ( $V_{ON}$  = 0V e  $V_Z$  = 4V). Assumendo l'operazionale ideale e R = 10k $\Omega$ :

- 1. Tracciare la transcaratteristica di  $v_0$  in funzione di  $v_s$  e riportarla nel grafico sulla pagina seguente.
- 2. Calcolare la tensione  $v_0$ , la corrente  $i_D$  attraverso il diodo e la tensione  $v_D$  ai capi del diodo con  $v_S = -8V$ .

Assumiamo ora l'operazionale reale con tensione di offset  $V_{OS}$  = -20mV, correnti di bias  $I_{BN}$  = 1 $\mu$ A ,  $I_{BP}$  = 0.5 $\mu$ A e CMRR = 100:

3. Calcolare la tensione di uscita con  $v_S = -1V$ 



HP D7 = OFTE

$$V_{D7} = V_0 - V_- = V_0 - V_S$$
 $V_0 = V_S \left( 1 + \frac{R}{R} \right) = 2V_S$ 
 $V_0 = V_0 = V_S$ 
 $V_0 = V_0 = V_S$ 
 $V_0 = V_0 = V_0 = V_0$ 
 $V_0 = V_0$ 



2) 
$$\sqrt{s} = -8V_1$$
  $\sqrt{s}$ ,  $\sqrt{D}$ ,  $\sqrt{D}$ 

$$T_{D2} = (V \in \mathbb{N} : SORA) = \frac{V_S}{R} + \frac{V_2}{R} = -\frac{8V}{10} + \frac{4V}{10} \times \frac{10}{10} \times \frac{10}{10}$$

SOURAPP. EFFETA'

$$No' = N_{+} \left(1 + \frac{R}{R}\right) = 2N_{S} \left(1 + \frac{1}{CMRR}\right)$$

$$= -2,02V$$

$$No^{(1)} = 2 Vos = -40 mV$$

$$\frac{1}{2}$$
 - 2,05 V

## Problema 3

DATI:  $R_1 = 2k\Omega$ ,  $C_1 = 5\mu F$ ,  $R_2 = 20k\Omega$ ,  $C_2 = 0.5nF$ ,  $R_3 = 1k\Omega$ ,  $C_3 = 1\mu F$ ,  $R_4 = 10k\Omega$ ,  $C_4 = 1nF$  Dato il filtro in figure.

- 1. Trovare la funzione di trasferimento (riportare l'espressione della funzione di trasferimento nella scheda della quarta pagina)
- 2. Tracciare i diagrammi di bode asintotici di modulo e fase (usando i grafici in guarta pagina).





-40 dB

-50 dB

-60 dB

-70 dB

-80 dB

10-1

10<sup>2</sup>

10

10<sup>3</sup>

104

10<sup>6</sup>

10<sup>5</sup>

10<sup>7</sup>

108

