

(Analysis of Variance: ANOVA)

40503011 สถิติสำหรับวิศวกรและนักวิทยาศาสตร์

ในการทดสอบสมมุติฐานเกี่ยวกับค่าเฉลี่ยระหว่างประชากรสองชุดที่ เป็นอิสระต่อกัน ตัวสถิติทดสอบที่ใช้คือตัวสถิติ Z หรือตัวสถิติ T ซึ่งขึ้นอยู่กับ การแจกแจงของประชากร ขนาดของตัวอย่าง และการทราบค่าความแปรปรวน ของประชากรหรือไม่

แต่ถ้ามีตัวอย่างสุ่มจากประชากรมากกว่า 2 ประชากร (k กลุ่ม เมื่อ $k \geq 2$) โดยความแปรปรวนของ k ประชากรไม่ต่างกัน และต้องการทดสอบ ความแตกต่างระหว่างค่าเฉลี่ยของประชากรทั้ง k กลุ่มพร้อมกัน เทคนิคที่จะ นำมาใช้ในการทดสอบสมมติฐานนี้เรียกว่า **การวิเคราะห์ความแปรปรวน**

การวิเคราะห์ความแปรปรวนมาจากภาษาอังกฤษว่า Analysis of Variance เขียนแทนด้วย ANOVA ซึ่งเป็นวิธีแยกความผันแปรรวมของข้อมูล ออกเป็นส่วนๆ ตามแหล่งที่มา (Source of Variation: SOV) โดยที่มาของ ความแปรปรวนนั้นแบ่งได้เป็น 2 ลักษณะ คือ ทราบและไม่ทราบสาเหตุ โดย แหล่งความผันแปรที่ทราบสาเหตุอาจมี 1 แหล่งหรือมากกว่าก็ได้ตัวอย่างเช่น

1. นักวิชาการเกษตรต้องการเปรียบเทียบผลผลิตของข้าวโพด 3 พันธุ์ จึงทำการทดลอง ปลูกข้าวโพดทั้ง 3 พันธุ์นั้น พันธุ์ละหลายๆ แปลง โดยแต่ละพันธุ์นั้นพยายามที่จะให้ปุ๋ย น้ำ และการดูแลรักษาให้สม่ำเสมอกัน เมื่อถึงเวลาเก็บผลผลิตได้ข้อมูลดังตารางที่ 9.1

พันธุ์ข้าวโพด						
ก	ข	P				
36	57	50				
33	53	41				
48	43	47				
	54	42				
	48					

- 2. อาจารย์ท่านหนึ่งสุ่มนักเรียนที่มีผลการเรียนใกล้เคียงกันทั้งเพศหญิงและเพศชายมา จำนวนหนึ่ง แบ่งเป็น 3 กลุ่ม และทดลองสอนด้วยวิธีการสอน 3 วิธี ได้แก่
 - **กลุ่มที่ 1** สอนเนื้อหาในห้องเรียนและให[้]นักเรียนทำแบบฝึกหัดด้วยตนเองนอกเวลา
 - **กลุ่มที่ 2** ให[้]นักเรียนศึกษาเนื้อหาด้วยตนเอง แต่ผู้สอนควบคุมการทำแบบฝึกหัด
 - **กลุ่มที่ 3** สอนเนื้อหาและฝึกทำแบบฝึกหัดภายในเวลา

9.2 การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียว

(One-way Analysis of Variance)

การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียวเป็นการวิเคราะห์ ความแปรปรวน เมื่อทราบแหล่งที่ทำให้เกิดความผันแปรเพียง 1 แหล่ง

ข้อตกลงเบื้องต้น

- 1. ประชากรทุกกลุ่มมีการแจกแจงแบบปรกติ
- 2. ประชากรทุกกลุ่มเป็นอิสระต[่]อกัน
- 3. ความแปรปรวนของประชากรทุกกลุ่มเท[่]ากัน

9.2 การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียว

(One-way Analysis of Variance)

สมมติฐานของการทดสอบ

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

 H_1 : มีคาเฉลี่ยอยางน้อย 1 คู่ที่ตางกัน

		ประชากร				
	1	2	3	• • •	k	
	x_{11}	x_{21}	x_{31}	•••	\mathcal{X}_{k1}	
	X_{12}	X_{22}	X_{32}	• • •	x_{k2}	
	•	•	•	•••	• •	
	X_{1n_1}	X_{2n_2}	X_{3n_3}	• • •	\mathcal{X}_{kn_k}	
ขนาดตัวอย่าง	n_1	n_2	n_3	• • •	n_k	N
ผลรวม	$\mathcal{X}_{1.}$	$X_{2.}$	$x_{3.}$	• • •	\mathcal{X}_{k} .	<i>X</i>
ค่าเฉลี่ย	$\overline{x}_{1.}$	$\overline{x}_{2.}$	$\overline{x}_{3.}$	• • •	$\overline{\mathcal{X}}_{k}$.	$\overline{x}_{}$

9.2 การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียว

(One-way Analysis of Variance)

เมื่อ
$$x_{i.} = \sum_{j=1}^{n_i} x_{ij}$$
 แทนผลรวมของค่าสังเกตที่เลือกมาจากประชากรที่ i \overline{X}_i แทนค่าเฉลี่ยของตัวอย่างจากประชากรที่ i

$$x$$
.. แทนผลรวมของค่าสังเกตทั้งหมด

$$\overline{\mathcal{X}}_{...}$$
 แทนค่าเฉลี่ยรวม

$$n_i$$
 แทนจำนวนหน่วยทดลองที่ได้รับ treatment i

ตัวสถิติที่ในการทดสอบ

การหาตัวสถิติทดสอบจะพิจารณาจากการแยกผลรวมกำลังสองของความ แตกต[่]างของค[่]าเฉลี่ยและค[่]าสังเกตุออกเป็นส[่]วน ๆ ได[้]ดังนี้

$$\sum_{i=1}^{k} \sum_{j=1}^{n_j} (x_{ij} - \overline{x}_{..})^2 = \sum_{i=1}^{k} (\overline{x}_{i.} - \overline{x}_{..})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_j} (x_{ij} - \overline{x}_{i.})^2$$

$$SST = SSA + SSW$$

โดยที่
$$SST = \sum_{i=1}^k \sum_{j=1}^{n_j} (x_{ij} - \overline{x}_{..})^2 = \sum_{i=1}^k \sum_{j=1}^{n_j} x_{ij}^2 - \frac{x_{..}^2}{N}$$
 ; $CT = \frac{x_{..}^2}{N}$

$$SSA = \sum_{i=1}^{k} (\overline{x}_{i.} - \overline{x}_{..})^{2} = \sum_{i=1}^{k} \frac{x_{i.}^{2}}{n_{i}} - \frac{x_{..}^{2}}{N}$$

$$SSW = SST - SSA$$

ตัวสถิติที่ในการทดสอบ

จากนั้นหาผลรวมกำลังสองเฉลี่ย (Mean square) ได[้]ดังนี้

$$MSA = \frac{SSA}{k-1}$$

 $MSA = \frac{SSA}{k-1}$ โดย k-1 คือองศาความเป็นอิสระของประชากร

$$MSW = \frac{SSW}{n-k}$$

 $MSW = \frac{SSW}{n-k}$ โดย N-k คือองศาความเป็นอิสระของความคลาดเคลื่อน

และตัวสถิติทดสอบ คือ
$$F=rac{MSA}{MSW}$$

โดยจะปฏิเสธสมมติฐาน
$$H_0$$
 เมื่อ 1. $F>f_{lpha,(k-1,n-k)}$

1.
$$F > f_{\alpha,(k-1,n-k)}$$

2. p – value <
$$\alpha$$

ตัวสถิติที่ในการทดสอบ

เพื่อความสะดวกในการหาค[่]าสถิติ F จะเขียนเป็นตารางวิเคราะห์ ความแปรปรวน (ANOVA) ได้ดังนี้

SOV	df	SS	MS	F
ระหว่างกลุ่ม (Anomg)	$df_A = k - 1$	SSA	$MSA = \frac{SSA}{k-1}$	$F_{cal} = \frac{MSA}{MSW}$
ภายในกลุ่ม (Within)	$df_W = N - k$	SSW	$MSW = \frac{SSW}{N - k}$	
รวม	$df_T = N - 1$	SST		

ถ้า
$$F_{cal} > f_{\alpha,(df_A,df_W)}$$
 จะปฏิเสธสมมติฐานหลัก (H_0)

ตัวอย่างที่ 9.1 สุ่มผ้าทอด้วยเส้นใยสังเคราะห์ที่มีฝ้ายผสมอยู่ 15, 20, 25, 30 และ 35 เปอร์เซ็นต์ มา อย่างละ 5 ฝืน โดยทดสอบสภาพความยืดหยุ่นของผ้าแต่ละฝืนได้ผลดังตารางที่ 9.4

ตารางที่ 9.4 ความยืดหยุ่นของผ้าที่มีฝ้ายผสมอยู่แตกต่างกัน

		% ฝ้าย				
	15	20	25	30	35	
	7	12	14	19	7	
	7	17	18	25	10	
	15	12	18	22	11	
	11	18	19	19	15	
	9	18	19	23	11	
ผลรวม	49	77	88	108	54	X = 376
ค่าเฉลี่ย	9.8	15.4	17.6	21.6	10.8	\overline{X} = 15.04

จงทดสอบว่าผ้าที่มีปริมาณฝ้ายผสมอยู่แตกต่างกันมีความยืดหยุ่นแตกต่างกันหรือไม่ ที่ระดับนัยสำคัญ 0.05

วิธีทำ

สมมติฐานการทดสอบ คือ

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ (ผ้าที่มีฝ้ายผสมอยู่แตกต่างกันให**้**ความยืดหยุ่นไม่ต่างกัน)

 H_1 : มีค่าเฉลี่ยอย่างน้อย 1 คู่ที่ต่างกัน

การคำนวณมีดังนี้

$$k = 5$$
, $n_1 = n_2 = \cdots = n_5 = 5$, $df_T = 24$, $df_A = 4$, $df_W = 20$

$$CT = \frac{376^2}{25} = 5,655.04$$

$$SST = 7^2 + 7^2 + 15^2 + \dots + 15^2 + 11^2 - CT = 636.96$$

$$SSA = \frac{49^{2}}{5} + \frac{77^{2}}{5} + \frac{88^{2}}{5} + \frac{108^{2}}{5} + \frac{54^{2}}{5} - CT = 475.76$$

$$SSW = 636.96 - 475.76 = 161.20$$

$$MSA = \frac{475.76}{4} = 118.94, \quad MSW = \frac{161.20}{20} = 8.06$$

$$F_{cal} = \frac{118.94}{8.06} = 14.76$$

ANOVA

SOV	df	SS	MS	F
ระหว่างกลุ่มที่มีฝ้ายผสมตางกัน	4	475.76	118.94	14.76
ภายในกลุ่มที่มีฝ้ายผสมอยู่เทากัน	20	161.20	8.06	
รวม	24	636.96		

คาวิกฤต คือ $f_{0.05,(4,20)}=2.87$ เนื่องจาก $F_{cal}>f_{0.05,(4,20)}$ จึงปฏิเสธ H_0 ดังนั้นสรุปว่าผ้าที่มีปริมาณฝ้าย ผสมอยู่แตกต่างกัน มีคาเฉลี่ยของความยืดหยุ่นแตกต่างกันอย่างมีนัยสำคัญที่ระดับ 0.05

ตัวอย่าง 1 นักวิชาการผู[้]วิจัยสนใจศึกษาวาคะแนนสอบเฉลี่ยวิชาความถนัดเชิงกลของ นักศึกษาระดับ ป.วส. ชั้นปีที่ 2 ของวิทยาลัยชางกล 3 แห่ง แตกต่างกันหรือไม่ โดยได้สุ่ม ตัวอย่างนักศึกษาวิทยาลัยละ 7 คน การทดสอบปรากฏผลดังนี้

วิทยาลัย						
1	2	3				
20	30	22				
31	28	35				
25	25	27				
29	30	24				
30	24	32				
22	26	24				
27	20	25				
184	183	189				

$$\sum_{i=1}^{k} \sum_{j=1}^{n_j} x_{ij}^2 = 15040$$

$$\sum_{i=1}^{k} \sum_{j=1}^{n_j} x_{ij}^2 = x.. = 556$$

จงทดสอบสมมุติฐานที่ระดับนัยสำคัญ 0.05

- 1. ตั้งสมมติฐานในการทดสอบ $H_0: \mu_1 = \mu_2 = \mu_3$ $H_1:$ มีค่าเฉลี่ยอย่างน้อย 1 คู่แตกต่าง
- 2. คำนวณตัวสถิติทดสอบ 2.1 CT=

$$2.4 SSW = SST - SSA =$$

3. ANOVA

SOV	df	SS	MS	F

4 สรุปผล

ตัวอย่าง 2 โรงงานอุตสาหกรรม 3 โรง ผลิตชิ้นส่วนอิเลคทรอนิคส์สำหรับใช้ใน คอมพิวเตอร์ชนิดหนึ่งเหมือนๆ กัน ในการเปรียบเทียบเส้นผ่านศูนย์กลางของชิ้นส่วน ดังกล่าวที่ผลิต ได้สุ่มเลือกตัวอย่างชิ้นส่วนที่ผลิตจากโรงงานทั้ง 3 มาเพื่อวัดเส้นผ่าน ศูนย์กลางผลปรากฏดังนี้

 5	์ โรงงานอุตสาหกรรม	7	
1	2	3	$k n_j$ 2
 1.9	1.2	1.7	$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_{ij}^{2} = 0$
1.8	1.5	1.8	v
2.1	1.3	1.6	
2.0	1.7	1.4	
1.7		1.8	
1.7			
11.2	5.7	8.3	$X_{} = 25.2$

จงตรวจสอบวามีความแตกต่างระหว่างค่าเฉลี่ยเส้นผ่านศูนย์กลางของชิ้นส่วนอีเลคทรอ นิคส์ที่ผลิตมาจากแต่ละโรงงานหรือไม่ที่ระดับนัยสำคัญ 0.05

รวม

- $H_0: \mu_1 = \mu_2 = \mu_3 \quad H_1:$ มีค่าเฉลี่ยอย่างน้อย 1 คู่แตกต่าง
- 2. คำนวณตัวสถิติทดสอบ 2.1 CT=
- 2.2 SST=
- 2.3 SSA=
- 2.4 SSW = SST SSA =
- 3. ANOVA

SOV	df	SS	MS	F

4 สรุปผล

9.3 การเปรียบเทียบเชิงซ้อน

จากการวิเคราะห์ความแปรปรวน ถ้าปฏิเสธ H₀ แสดงว่ามีค่าเฉลี่ยของประชากร อย่างน้อย 1 คู่ที่แตกต่างกัน ดังนั้นจึงควรทำการวิเคราะห์ต่อเพื่อพิจารณาว่ามีค่าเฉลี่ยคู่ ใดบ้างที่ต่างกัน การทดสอบหลังจากการวิเคราะห์ความแปรปรวน เรียกว่า การเปรียบเทียบ เชิงซ้อน (Multiple Comparisons)

การเปรียบเทียบเชิงซ้อนมีหลายวิธี ในที่นี้จะกล่าวถึงเพียงวิธี Least Significant Difference โดยเรียกย่อว่า LSD

วิธี LSD เป็นการทดสอบความแตกต่างระหว่างค่าเฉลี่ยของประชากรแบบจับคู่ โดยมี จำนวนคู่ทดสอบทั้งหมด kC_2 คู่ แต่ละคู่จะมีสมมติฐานการทดสอบ สูตรการคำนวณ รวมทั้งเกณฑ์การตัดสินใจดังนี้

$$H_0: \mu_i = \mu_j$$
 ; $i, j = 1, 2, ..., k; i \neq j$
 $H_1: \mu_i \neq \mu_j$

9.3 การเปรียบเทียบเชิงซ้อน

การคำนวณค[่]า LSD ที่ระดับนัยสำคัญ lpha

$$LSD = t_{\frac{\alpha}{2}, df_W} \sqrt{MSW \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

ถ้า $n_i=n_j=n$ สำหรับทุกค่า i,j=1,2,...,k; i
eq j แล้ว

$$LSD = t_{\frac{\alpha}{2}, df_W} \sqrt{\frac{2MSW}{n}}$$

เกณฑ์การตัดสินใจคือ จะปฏิเสธสมมติฐาน $H_0: \mu_i = \mu_j$ เมื่อ $\left| \overline{X}_{i.} - \overline{X}_{j.} \right| \geq LSD$

จากตัวอย่าง 9.1

% ฝ้ายที่ผสมในเนื้อผ้า							
15	20	25	30	35			
7	12	14	19	7			
7	17	18	25	10			
15	12	18	22	11			
11	18	19	19	15			
9	18	19	23	11			

% ฝ้ายที่ผสมในเนื้อผ้า	15	20	25	30	35
$\overline{X}_{i.}$	9.8	15.4	17.6	21.6	10.8
n_i	5	5	5	5	5

SOV	df	SS	MS	F
ระหว่างกลุ่มที่มีฝ้ายผสมต่างกัน	4	475.76	118.94	14.76
ภายในกลุ่มที่มีฝ้ายผสมอยู่เท่ากัน	20	161.20	8.06	
รวม	24	636.96		

ค่าวิกฤต คือ
$$f_{0.05,(4,20)}=2.87$$

 $F_{cal} > f_{0.05,(4,20)}$ จึงปฏิเสธ H_0

เนื่องจาก k=5 จึงทำการจับคู่ทดสอบทั้งหมด $^5C_2=10$ คู่ การคำนวณค่า LSD

เนื่องจาก $n_1=n_2=n_3=n_4=n_5=5\,$ ดังนั้นค่า LSD สำหรับใช้เปรียบเทียบในทุกคู่ของค่าเฉลี่ย คือ

$$LSD_{0.05} = t_{0.025,20} \sqrt{\frac{2MSW}{n}} = 2.086 \sqrt{\frac{2(8.06)}{5}} = 2.086(1.795) = 3.7$$

เปรียบเทียบความแตกต่างระหว่างค่าเฉลี่ยแต่ละคู่ $\left|\overline{X}_{i.} - \overline{X}_{j.}\right|$ กับค่า LSD

$$LSD_{0.05} = t_{0.025,20} \sqrt{\frac{2MSW}{n}} = 2.086 \sqrt{\frac{2(8.06)}{5}} = 2.086(1.795) = 3.7$$

$H_0: \mu_i = \mu_j, H_1: \mu_i \neq \mu_j$	$\left \overline{X}_{i.} - \overline{X}_{j.} \right $
$H_0: \ \mu_1 = \mu_2, H_1: \ \mu_1 \neq \mu_2$	$\left \overline{X}_{1.} - \overline{X}_{2.} \right = 9.8 - 15.4 = 5.6^*$
$H_0: \mu_1 = \mu_3, H_1: \mu_1 \neq \mu_3$	$\left \overline{X}_{1.} - \overline{X}_{3.} \right = 9.8 - 17.6 = 7.8^*$
$H_0: \mu_1 = \mu_4, H_1: \mu_1 \neq \mu_4$	$\left \overline{X}_{1.} - \overline{X}_{4.} \right = 9.8 - 21.6 = 11.8^*$
$H_0: \mu_1 = \mu_5, H_1: \mu_1 \neq \mu_5$	$\left \overline{X}_{1.} - \overline{X}_{5.} \right = 9.8 - 10.8 = 1.0$
$H_0: \mu_2 = \mu_3, H_1: \mu_2 \neq \mu_3$	$\left \overline{X}_{2.} - \overline{X}_{3.} \right = 15.4 - 17.6 = 2.2$
$H_0: \mu_2 = \mu_4, H_1: \mu_2 \neq \mu_4$	$\left \overline{X}_{2.} - \overline{X}_{4.} \right = \left 15.4 - 21.6 \right = 6.2^*$
$H_0: \mu_2 = \mu_5, H_1: \mu_2 \neq \mu_5$	$\left \overline{X}_{2.} - \overline{X}_{5.} \right = \left 15.4 - 10.8 \right = 4.6^*$
$H_0: \mu_3 = \mu_4, H_1: \mu_3 \neq \mu_4$	$\left \overline{X}_{3.} - \overline{X}_{4.} \right = 17.6 - 21.6 = 4.0^*$
$H_0: \mu_3 = \mu_5, H_1: \mu_3 \neq \mu_5$	$\left \overline{X}_{3.} - \overline{X}_{5.} \right = 17.6 - 10.8 = 6.8^*$
$H_0: \mu_4 = \mu_5, H_1: \mu_4 \neq \mu_5$	$\left \overline{X}_{4.} - \overline{X}_{5.} \right = 21.6 - 10.8 = 10.8^*$

* หมายถึงความแตกต่างระหว่างค่าเฉลี่ย $\left|\overline{X}_{i.}-\overline{X}_{j.}\right|$ มีค่ามากกว่าค่า LSD จึงปฏิเสธ H_0

เพื่อให้การสรุปผลทำได[้]ง่ายขึ้น อาจใช้วิธีเรียงลำดับค่าเฉลี่ยจากน้อยไปมากแล้วลากเส้น เชื่อมโยงคู่ของค่าเฉลี่ยที่ไม่แตกต่างกันไว้ด้วยกัน ดังนั้นค่าเฉลี่ยที่อยู่บนเส้นตรงเดียวกัน จะไม[่]ต่างกันทางสถิติ

% ฝ้ายที่ผสมในเนื้อผ้า	15	35	20	25	30
สถิติ	$\overline{X}_{1.}$	$\overline{X}_{5.}$	$\overline{X}_{2.}$	$\overline{X}_{3.}$	$\overline{X}_{4.}$
ค่าเฉลี่ย	9.8	10.8	15.4	17.6	21.6

สรุปผลได้ว่า ที่ระดับนัยสำคัญ 0.05

- (1) ผ้าที่มีฝ้ายผสมอยู่ 30% ให้ความยืดหยุ่นดีที่สุดและแตกต่างจากผ้าที่มีฝ้ายผสมอยู่ 15%, 20%, 25%, และ 35 %
- (2) ผ้าที่มีฝ้ายผสมอยู่ 20% และ 25% มีความยืดหยุ่นไม่แตกต่างกัน แต่มีความ ยืดหยุ่นมากกว่าผ้าที่มีฝ้ายผสมอยู่ 15% หรือ 35%
- (3) ผ้าที่มีฝ้ายผสมอยู่ 15% มีความยืดหยุ่นไม่แตกต่างจากผ้าที่มีฝ้ายผสมอยู่ 35%

ตัวอย่าง 3 บริษัทผลิตกระดาษแห่งหนึ่งพบว่า ความเหนียวของกระดาษขึ้นอยู่กับความเข้มข้นของเยื่อไม้ ที่ใช้ทำเยื่อกระดาษ จึงทำการทดลองผลิตกระดาษโดยใช้ความเข้มข้นของเยื่อไม้ต่างกัน ได้แก่ 5% 10% 1 5% และ 20% แล้วทำการวัดค่าความเหนียวของกระดาษที่เลือกจากแต่ละกลุ่ม ได้ข้อมูลตามตาราง

	5%	10%	15%	20%	$k \frac{n_j}{n_j}$
	9	12	13	19	$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}^{2} = 5079$
	10	11	15	23	$k n_j$
	8	13	15	19	$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} = x = 319$
	11	14	17	20	<i>I J I</i>
	8	15	17	21	
	8			21	
total	54	65	77	123	_
n	6	5	5	6	

จงทดสอบสมมติฐานที่ระดับนัยสำคัญ 0.05 ว่าค่าความเหนียวของกระดาษขึ้นกับความเข้มข้นของเยื่อไม้ ที่แตกต่างกันหรือไม่

$$H_0: \mu_1 = \mu_2 = \mu_3 - H_1:$$
มีค่าเฉลี่ยอย่างน้อย $H_0: \mu_1 = \mu_2 = \mu_3 - H_1:$ มีค่าเฉลี่ยอย่างน้อย 1 คู่แตกต่าง

2. คำนวณตัวสถิติทดสอบ
$$2.1 \ CT = \frac{319^2}{22} = 4625.5$$

2.2 SST=
$$5079 - 4625.5 = 453.5$$

2.3 SSA= $\left(\frac{54^2}{6} + \frac{65^2}{5} + \frac{77^2}{5} + \frac{123^2}{6}\right) - 4625.5 = 412.8$

3. ANOVA

SOV	df	SS	MS	F
ระหว่างกลุ่ม (Among of group)	3	412.8	137.6	60.85
ภายในกลุ่ม (within group)	18	40.7	2.261	
รวม (Total)	21	453.5		

4 สรุปผล

ตัวอย่าง 4 จากตัวอยางที่ 3 จงทดสอบสมมติฐานวาระดับความเข้มข้นเยื่อกระดาษระดับใดที่ ส่งผลให**้**คาเฉลี่ยความเหนียวของกระดาษแตกต่างกันโดยใช[้]วิธี LSD ที่ระดับนัยสำคัญ 0.05

Difference	Difference	$LSD = t_{0.025,18} \sqrt{MSW\left(\frac{1}{n_i} + \frac{1}{n_i}\right)}$
of Levels	of Means	$\left(\begin{array}{ccc} n_{i} & n_{j} \end{array} \right)$
10% - 5%	4.000	$2.101\sqrt{2.261(\frac{1}{6} + \frac{1}{5})} = 1.913$
15% - 5%	6.400	$2.101\sqrt{2.261(\frac{1}{6} + \frac{1}{5})} = 1.913$
20% - 5%	11.500	$2.101\sqrt{2.261(\frac{1}{6} + \frac{1}{6})} = 1.824$
15% - 10%	2.400	$2.101\sqrt{2.261(\frac{1}{5} + \frac{1}{5})} = 1.99$
20% - 10%	7.500	$2.101\sqrt{2.261(\frac{1}{5} + \frac{1}{6})} = 1.913$
20% - 15%	5.100	$2.101\sqrt{2.261(\frac{1}{5} + \frac{1}{6})} = 1.913$

ตัวอย่าง 9.2 ในการทดลองเผาอิฐที่มีความหนาแน่นเท่ากัน 17 ก้อน ด้วยไฟที่มีอุณหภูมิ ต่างกัน 4 ระดับ คือ 100, 125, 150 และ 175° F แล้ววัดความหนาแน่นของอิฐหลังจาก ที่ทำการเผาตามกรรมวิธีทำอิฐเรียบร้อยแล้ว จงทดสอบสมมติฐานที่ระดับนัยสำคัญ 0.01 ว่าอุณหภูมิที่ใช้เผาอิฐมีผลกระทบต่อความหนาแน่นของอิฐหลังจากการเผาไฟหรือไม่

อุณหภูมิ (° F)					
100	125	150	175		
21.8	22.2	21.9	21.6		
21.9	21.9	21.8	21.7		
21.7	22.3	21.8	21.8		
21.6	22.0	21.6			
21.7		21.5			

การอ่านผลวิเคราะห์จาก EXCEL

ตัวอย่าง 9.2 ในการทดลองเผาอิฐที่มีความหนาแน่นเท่ากัน 17 ก้อน ด้วยไฟที่มีอุณหภูมิ ต่างกัน 4 ระดับ คือ 100, 125, 150 และ 175° F แล้ววัดความหนาแน่นของอิฐหลังจาก ที่ทำการเผาตามกรรมวิธีทำอิฐเรียบร้อยแล้ว จงทดสอบสมมติฐานที่**ระดับนัยสำคัญ 0.01** ว่าอุณหภูมิที่ใช้เผาอิฐมีผลกระทบต่อความหนาแน่นของอิฐหลังจากการเผาไฟหรือไม่

SUMMARY							
Groups	Count	Sum	Average	Variance			
Temp100	5	108.7	21.74	0.013			
Temp125	4	88.4	22.1	0.033333			
Temp150	5	108.6	21.72	0.027			
Temp175	3	65.1	21.7	0.01			
ANOVA							
Source of							
Variation	SS	df	MS	F	P-value	F crit	
Between Groups	0.437647	3	0.145882	6.773109	0.005445	5.73938	
Within Groups	0.28	13	0.021538				
Total	0.717647	16					2

การอ่านผลวิเคราะห์จาก EXCEL

สมมติฐานในการทดสอบ

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

 H_1 : มีค่าเฉลี่ยอย่างน้อย 1 คู่ที่แตกต่าง

ค่าสถิติมีค่าเท่ากับ 6.773

ค่าวิกฤต มีค่าเท่ากับ 5.73938

SUMMARY						
Groups	Count	Sum	Average	Variance		
Temp100	5	108.7	21.74	0.013		
Temp125	4	88.4	22.1	0.033333		
Temp150	5	108.6	21.72	0.027		
Temp175	3	65.1	21.7	0.01		
ANOVA					_	
Source of			•			
Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.437647	3	0.145882	6.773109	0.005445	5.73938
Within Groups	0.28	13	0.021538			
Total	0.717647	16				

สามารถสรุปผลได้ว่า การเผาอิฐที่อุณหภูมิต่างกันทำให้ค่าเฉลี่ยความหนาแน่นหลังเผาอิฐแตกต่างกันอย่างมีนัยสำคัญ ที่ระดับ 0.01 7. สุ่มหัวเทียนที่ใช้กับรถจักรยานยนต์ขนาด 125 ซีซี 4 ยี่ห้อ มายี่ห้อละ 5 อัน เพื่อตรวจสอบคุณภาพ ของหัวเทียนแต่ละยี่ห้อ โดยวัดระยะทางที่รถวิ่งได้จากการใช้หัวเทียนนั้นๆ และนำข้อมูล ระยะทางมาวิเคราะห์ความแปรปรวน โดยผลการวิเคราะห์ข้อมูลบางส่วนแสดงในตาราง ANOVA ข้างล่างนี้

ตารางวิเคราะห์ความแปรปรวนสำหรับระยะทาง (กิโลเมตร)

SOV	df	SS	MS	F
ระหว่างกลุ่มหัวเทียนต่างยี่ห้อ	ก)	4)	น)	A)
ภายในกลุ่มหัวเทียนยี่ห้อเคียวกัน	ข)	ข)	14,713.69	
รวม	ค)	310,500.76		

จงหาค่าต่างๆ ในตารางวิเคราะห์ความแปรปรวนข้างต้น และ ซ) สรุปผลการวิเคราะห์ความ แปรปรวน ที่ระดับนัยสำคัญ $\alpha=0.05$

จาก ตัวอย่างเอกสารเพิ่มเติม

แบบฝึกหัดข้อ 4 เพื่อการปรับปรุงคุณภาพของเทปบันทึกเสียง ผู้ผลิตจึงทดลองเคลือบเทป บันทึกเสียงด้วยสารเคลือบที่แตกต่างกัน 4 ชนิด คือ A, B, C และ D หลังจากนั้นทดลอง บันทึกเสียงและวัดระดับเสียงที่เพื่ยนเฉลี่ย ได้ข้อมูลดังนี้ **จงทดสอบที่ระดับนัยสำคัญ 0.05**

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
Α	5	60	12	9.5
В	4	68	17	10
C	7	112	16	2
D	6	84	14	2.8

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	72.36364	3	24.12121	4.618956	0.014483	3.159908
Within Groups	94	18	5.222222			
Total	166 3636	21				

จง	ตอบคำถามต่อไปนี้
1.	สมมติฐานในการทดสอบ
2.	ค่าสถิติทดสอบมีค่าเท่ากับ
3.	ค่าวิกฤตมีค่าเท่ากับ
4.	สามารถสรุปผลการทดสอบสมมติฐานได้ว่า

้าปฏิเสธสมมติฐาน จงแสดงวิธีการตรวจสอบว่ามีชนิดใดบ้างที่ให้ผลแตกต่างกัน	
	-
	-
	-
	-
	-
	-
	-
	-