Ejercicio 16/9/2021

Javier Gómez López

29 de septiembre de 2021

Ejercicio 1. Sean d_2 y d = distancia discreta. Prueba que no son métricamente equivalentes en \mathbb{R}^n .

Dos distancias son equivalentes si

$$\exists \alpha, \beta > 0 : \alpha \cdot d(x, y) \le d'(x, y) \le \beta \cdot d(x, y) \quad \forall x, y \in X$$
 (1)

El caso en el que x = y cumple la desigualdad y es una comprobación trivial. Recordemos que d_2 es una distancia en \mathbb{R}^n que procede de una norma y por tanto es no acotada. Por otro lado, tomando $x \neq y$, tenemos que de ser métricamente equivalentes, tendríamos que

$$d_2(x,y) \le \beta \cdot d(x,y) = \beta \Rightarrow d_2(x,y) \le \beta$$

lo cual es un absurdo y quedaría demostrado.

Ejercicio 2. Sea (X, d) un espacio métrico.

1. Probar que $d' = \min\{1, d\}$ es una distancia en X.

Para ello hay que probar las tres propiedades que deben de cumplir todas las distancias.

$$a) \ d'(x,y) = 0 \Longleftrightarrow \min\{1,d(x,y)\} = 0 \Longleftrightarrow d(x,y) = 0 \Longleftrightarrow_{\substack{\text{d es una distancia}}} x = y$$

- b) $d'(x,y) = \min\{1, d(x,y)\} = \min\{1, d(y,x)\} = d'(y,x) \ \forall x, y \in X.$
- c) Queremos comprobar la desigualad triangular:

$$d'(x,y) \le d'(x,z) + d'(z,y)$$

Podemos afirmar que $d' \leq 1$. Si d'(x,z) = 1 o d'(z,y) = 1 entonces

$$d'(x,z) + d'(z,y) \ge 1 \ge d'(x,y)$$

Ahora supongamos $d^{\prime}(x,z)<1$ y $d^{\prime}(z,y)<1.$ Por tanto

$$d'(x,z) = d(x,z) y d'(z,y) = d(z,y)$$

$$d'(x,y) \le d(x,y) \le d(x,z) + d(z,y) = d'(x,z) + d'(z,y)$$

Y queda demostrado que $d'(x,y) \le d'(x,z) + d'(z,y) \ \forall x,y,z \in X$.

2. Si (X, d) es no acotado, d, d' no son métricamente equivalentes.

Recordemos (1) para definir cuando dos distancias son métricamente equivalentes. Para la parte de la derecha de la desigualdad podemos tomar $\beta=1$. Si existiera $\alpha>0:\alpha\cdot d\leq d'\Rightarrow \alpha\cdot d(x,y)\leq d'(x,y)\leq 1\ \forall x,y\in X$, obtendríamos que

$$d(x,y) \le \frac{1}{\alpha} \quad \forall x, y \in X$$

lo cual es un absurdo. Por tanto, $\nexists \alpha: \alpha \cdot d \leq d'$ y queda probado que no son métricamente equivalentes.