Multilinear Algebra

Professor David Barrett Transcribed by Thomas Cohn

Recall: a k-tensor on vector space V is a multilinear map $f: \underbrace{V \times \cdots \times V}_{V^k} \to \mathbb{R}$.

Defn: $\mathcal{L}^k(V)$ is defined to be the set of all k-tensors on V.

 $\textbf{Defn: } \operatorname{Sym}^k(V) \stackrel{\operatorname{def}}{=} \Big\{ f \in \mathscr{L}^k(V) : f \text{ is symmetric} \Big\}$

Defn: $\mathcal{A}^k(V) \stackrel{\text{def}}{=} \Big\{ f \in \mathscr{L}^k(V) : f \text{ is alternating} \Big\}$. Sometimes written as $\text{Alt}^k(V)$.

Recall: $\mathcal{L}^1(V) = \operatorname{Sym}^1(V) = A^1 = V^*$.

Suppose $\vec{a_1}, \ldots, \vec{a_n}$ are a basis for V. We can write $\vec{a} \in V$ as $\vec{a} = \sum_{j=1}^n c_j \vec{a_j}$. So for $f \in \mathcal{L}^k$,

$$f(\vec{v_1}, \dots, \vec{v_k}) = f\left(\sum_{j_1=1}^n c_{1,j_1} \vec{a_{j_1}}, \dots, \sum_{j_k=1}^n c_{k,j_k} \vec{a_{j_k}}\right)$$

$$= c_{1,1} f\left(\vec{a_1}, \sum_{j_2=1}^n c_{2,j_2} \vec{a_{j_2}}, \dots, \sum_{j_k=1}^n c_{n,j_k} \vec{a_{j_k}}\right)$$

$$+ c_{1,2} f\left(\vec{a_2}, \sum_{j_2=1}^n c_{2,j_2} \vec{a_{j_2}}, \dots, \sum_{j_k=1}^n c_{n,j_k} \vec{a_{j_k}}\right)$$

$$+ \vdots$$

$$+ c_{1,n} f\left(\vec{a_n}, \sum_{j_2=1}^n c_{2,j_2} \vec{a_{j_2}}, \dots, \sum_{j_k=1}^n c_{n,j_k} \vec{a_{j_k}}\right)$$

$$\dots = \sum_{j_1, j_2, \dots, j_k \in \{1, \dots, n\}} c_{1,j_1} c_{2,j_2} \cdots c_{k,j_k} f(\vec{a_{j_1}}, \dots, \vec{a_{j_k}})$$

Where the final sum is over every possible combination of one coefficient from every j_{ℓ} . So f is determined by $f(\vec{a_{j_1}}, \dots, \vec{a_{j_k}})$.

Let
$$I = (i_1, ..., i_k) \in \{1, ..., n\}^k = \underbrace{\{1, ..., n\} \times \cdots \times \{1, ..., n\}}_{k}$$
.

Defn:
$$\phi_I : \left(\sum_{j_1=1}^n c_{1,j_1} \vec{a_{j_1}}, \dots, \sum_{j_k=1}^n C_{k,j_k} \vec{a_{j_k}} \right) \mapsto c_{1,j_1} \cdots c_{k,j_k}.$$

Exer: $\phi_I \in \mathcal{L}^k(V)$

Exer:
$$\phi_I(\vec{a_J}) = \left\{ \begin{array}{ll} 1 & I = J \\ 0 & I \neq J \end{array} \right.$$

Exer: $\{\phi_I : I \in \{1, \dots, n\}^k\}$ is linearly independent.

Prop:
$$f \in \mathscr{L}^k(V) \Rightarrow f = \sum_I f(\vec{a_I})\phi_I$$

Proof follows from the uniqueness result before.

Thus, $\{\phi_I\}_{I\in\{1,\ldots,n\}^k}$ is a <u>basis</u> for $\mathscr{L}^k(V)$. $\dim(\mathscr{L}^k(V))=n^k=(\dim V)^k$.

We can pick any constants C_I , and get $f = \sum c_I \phi_I$ with $f(\vec{a_I}) = c_I$.

Defn: Given
$$f \in \mathcal{L}^k(V)$$
, $g \in \mathcal{L}^\ell(V)$, we say $f \otimes g \in \mathcal{L}^{k+\ell}(V)$, where $(f \otimes g)(\vec{v_1}, \dots, \vec{v_{k+\ell}}) = f(\vec{v_1}, \dots, \vec{v_k})g(\vec{v_{k+1}}, \dots, \vec{v_{k+\ell}})$.

Some rules:

- $f \otimes (g \otimes h) = (f \otimes g) \otimes h$
- $(cf) \otimes g = c(f \otimes g) = f \otimes (cg)$ $(f+g) \otimes h = (f \otimes h) + (g \otimes h)$
- $-f\otimes (g+h) = (f\otimes g) + (f\otimes h)$

Also, $\phi_I = \phi_{i_1} \otimes \cdots \otimes \phi_{i_k}$ with each $\phi_{i_\ell} \in \mathcal{L}^1(V) = V^*$.

So $T: V \to W$ linear induces $T^*: \mathcal{L}^k(W) \to \mathcal{L}^k(V)$ by $(T^*f)(\vec{v_1}, \dots, \vec{v_k}) = f(T(\vec{v_1}), \dots, T(\vec{v_k}))$. Rules:

- T^* is linear
- $T^*(f \otimes g) = T^*f \otimes T^*g$
- $-(S \circ T)^* f = T^* (S^* f)$

Let $f \in Alt^k(V)$ and $|\{i_1, \dots, i_k\}| < k$ (i.e., there's a repitition). Then $f(a_I) = 0$.

Defn: $I \in \{1, ..., n\}^k$ is ascending $\stackrel{\text{def}}{\Leftrightarrow} 1 \le i_1 < i_2 < \cdots < i_k$

Defn: $J = \{1, \ldots, n\}^k$ and $|\{j_1, \ldots, j_k\}| = k \Rightarrow \exists !$ ascending $\sigma \in S_k$ s.t. $J = I_{\sigma} \stackrel{\text{def}}{=} (i_{\sigma(1)}, \ldots, i_{\sigma(k)})$.

$$f = \sum_{I \in \{1, \dots, n\}^k} f(a_I)\phi_I$$

$$= \sum_{I \in \{1, \dots, n\}^k} \left[\sum_{\sigma \in S_k} f(\vec{a_{I\sigma}})\phi_{I\sigma} \right]$$

$$= \sum_{I \text{ asc.}} \left[\sum_{\sigma \in S_k} \operatorname{sgn}_{\sigma} f(\vec{a_I})\phi_{I\sigma} \right]$$

$$= \sum_{I \text{ asc.}} \left[f(\vec{a_I}) \sum_{\sigma \in S_k} \operatorname{sgn}_{\sigma} \phi_{I\sigma} \right]$$

$$= \sum_{I \text{ asc.}} f(\vec{a_I})\psi_I$$

Thus, $\{\psi_I\}_{I \text{ asc.}}$ forms a basis for $\mathcal{A}^k(V)$.

 $k > n \Rightarrow \mathcal{A}^k(V) = \{0\}.$

 $1 \le k \le n \Rightarrow \dim \mathcal{A}^k(V)$ is the number of ascending k-tuples in $\{1,\ldots,n\}$.

Specialize to $V = \mathbb{R}^n$. For $M = (\vec{x_1}, \dots, \vec{x_n}) \in \text{Mat}(n, n)$, we have $\det(M) = \psi_{(1,\dots,n)}(\vec{x_1}, \dots, \vec{x_n})$.

Check: det $I_n = \psi_{(1,...,n)}(\vec{e_1},...,\vec{e_n}) = 1.$

We want some sort of product $\mathcal{A}^k \wedge \mathcal{A}^\ell \to \mathcal{A}^{k+\ell}$.