LECTURE # 1

Introduction:

Non electrolytic substances

* Will not dissociate into ions on dissolving in solvent like water. eg. C₆H₆, diethyl ether

Electrolytic substances

- * Will dissociate on dissolving in water into ions.
- * Solution will be conductor of electricity.

Eg. Salt like NaCl, BaCl₂

* Hg,Cl, dissolve but dissociate negligible.

When an electrolyte is dissolved in a solvent(water), it spontaneously dissociates into oppositly charged ions, partially or sometimes fully

$$NaCl_{(aq)} \rightleftharpoons Na^{+}(aq) + Cl^{-}(aq)$$
 $CH_{3}COOH_{(aq)} \rightleftharpoons CH_{3}COO^{-}(aq) + H^{+}(aq)$

The degree of dissociation of an electrolyte (α) is the fraction of one mole of the electrolyte that has dissociated under the given conditions. The value of α depends on

- (A) nature of the electrolyte
- (B) nature of the solvent
- (C) the dilution
- (D) temperature

(a) Nature of electrolyte:

Electrolytes 100% dissociated at all reasonable concentrations under normal temperatures - **strong electrolytes**.

Strong acids(generally $HCIO_4$, HI, HBr, HCI, H_2SO_4 , HNO_3), strong bases (generally (NaOH, KOH, RbOH, CsOH and $Ba(OH)_2$) and all type of salts (SASB, SAWB, WASB, or WAWB)are all examples of strong electrolytes.

electrolytes not 100% dissociated - **weak electrolytes**. weak acids (CH₃COOH, HCN), weak bases(NH₃, Zn(OH)₂) are examples.

Electrolytic substances:

- 1. For strong electrolyte ∞ is considered to be unity because of 100% ionisation.
- 2. For weak electrolyte In most practical cases $\alpha <<< 10\%$ or $\alpha < 0.1$ (generally valid if $K_{aa} < 10^{-3}$)

(b) Nature of solvent :

A solvent having high value of **dielectric constant** and high **solvation(**in water **hydration)** will favour dissociation.

(c) Temperature:

On increasing temperature generally degree of dissociation increases.

(d) Ditultion:

For some electrolytes degree of dissociation increases by dilution (Ostwald's dilution law)

ACIDS BASES AND SALTS:

1. Arrhenius concept:

Arrhenius Acid: Substance which generate H⁺ ion on dissolving in water (H⁺ generator) eg. HNO₃, HClO₄, HCl, HI, HBr, H₂SO₄, H₃PO₄ etc.

If acid release only one H+ ion is known as mono basic/monoprotic symbol - H.A.

If two H^+ ion releases then known as dibasic/diprotic symbol $\to H_2A$

If triprotic / tribasic eg. H₃PO₄ (symbol H₃A)

- H₂BO₂ is not Arhenius acid.
- * Due to high charge density, H⁺ ion in water is extremely hydrated (in form of H₃O⁺, H₅O₂⁺, H₇O₃⁺)
- * The structure of solid HClO₄ is studied by X-ray, It is found to be consisting of H_3O^+ and ClO_4^- . HClO₄ + H₂O \rightleftharpoons H₃O⁺ + ClO₄ (better representation)

Arrhenius base:

Any substance which releases OH ion in water (OH ion generator)

- → mono acidic base : CsOH, RbOH, NH, OH symbol BOH
- → diacidic base : Ba(OH)₂, Ca(OH)₂ symbol B(OH)₂
- → Tri-basic base : Fe(OH)₃
- OH ion also in hydrated form of H₃O₂, H₇O₄, H₅O₃

2. Bronsted - Lowery concept : (Conjugate acid - base concept) (Protonic concept)

Acid-2

Base-1

Acid: H+ doner Base: H+ acceptor

 $HA + H_2O \longrightarrow H_3O^+(aq) + A^-(aq)$ Hydronium ion

 NH_3 + H_2O \Longrightarrow NH_4^+ + OH^- Base-2 HCI + H_2O \Longrightarrow H_3O^+ + CI^-

** Congugate acid - base pair

Acid-1

Acid - base which differ only in one proton.

(i) (ii) (iii) (iv)	Acid HCI H ₂ SO ₄ HSO ₄ H ₂ O	Congugate base CI HSO ₄ SO ₂ ²⁻ OH
(1) (2) (3)	Base NH ₃ H ₂ O RNH ₂	Congugate acid NH ₄ + H ₃ O+ RNH ₃ +

 $H_{3}O \Longrightarrow H^{+} + OH^{-}$

- (i) Strong acid will have weak conjuagate base.
- (ii) Reaction will always proceeds from strong acid to weak acid or from strong base to weak base.

Amphoteric (amphiprotic): Can act as acid as well as base.

HCI +
$$H_2O$$
 \Longrightarrow H_3O^+ + Cl^- Base NH₃ + H_2O \Longrightarrow NH₄⁺ + OH⁻ Acid

- **Q.** If equal concentrations are mixed (of products & reactants) then which of the reaction will proceed to the right and which will proceed to the left.
- (A) H_2SO_4 (aq) + NH_3 (aq) \rightleftharpoons NH_4^+ (aq) + HSO_4^- (aq)
- (B) $HCO_3^-(aq) + SO_4^{2-}(aq) \rightleftharpoons HSO_4^-(aq) + CO_3^{2-}(aq)$
- Q. (a) Write conjugate acids of

$$SO_4^{2-}$$
, RNH_2 , NH_2^{-} , $C_2H_5OC_2H_5$, F^-

(b) Write conjugate basis of

(c) Write conjugate acids and conjugate basis of amphoteric species.

3. Lewis concept (electronic concept):

An acid is any molecule/ion which can accept an electron pair with the formation of a coordinate bond. A base is any molecule/ion which has a lone pair of electrons which can be donated.

- Acid → e⁻ pair acceptor
 - ** BF₃, AICI₃
 - ** H+, Fe2+, Na+
 - ** SF₄, PF₃
- Base → (One electron pair donate) \Rightarrow

Ex. In the reaction

 $C_2H_5NH_2 + HI \rightleftharpoons (C_2H_5NH_3)^+I^-$. which reactant would be considered as Bronsted acid, is it also an (A) Arrhenous acid is it also a lewis acid.

Ans. [HI, yes, no]

(B) What about the other species (C₂H₅NH₂) in the above reaction is it Arrhenius base is it Bronsted base, is it lewis base.

Ans. [No, yes, yes]

Ostwald's Dilution Law (for weak electrolyte's)

When a weak electrolyte A+B- is dissolved is water and if α is the degree of dissociation then

initial conc

conc-at eq.

$$C(1-\alpha)$$
 $C\alpha$ $C\alpha$

Then according to law of mass action,

$$\mathsf{K}_{\mathsf{eq}} = \frac{[\mathsf{A}^+][\mathsf{B}^-]}{[\mathsf{A}\mathsf{B}]} = \frac{\mathsf{C}\alpha.\mathsf{C}\alpha}{\mathsf{C}(1-\alpha)} = \frac{\mathsf{C}\alpha^2}{(1-\alpha)} = \mathsf{dissociation} \text{ constant of the weak electrolyte}$$

$$[C = \frac{1}{V}, \text{ then V} = 1/C(\text{volume of solution is which 1 mole is present}) \text{ is called } \textbf{dilution}, \text{ so } k_{eq} = \frac{\alpha^2}{(1-\alpha)V}]$$

If
$$\alpha$$
 is negligible in comparision to unity $1-\alpha \simeq 1$. so $k_{eq} = \alpha^2 C \implies \alpha = \sqrt{\frac{k_{eq}}{c}} = \sqrt{k_{eq} \cdot V}$

as concentration increases $\Rightarrow \alpha$ decreases \Rightarrow dilution decreases and at infinite dilution α reaches its maximum value, unity. $C \downarrow$, $\alpha \uparrow but (C\alpha) \downarrow$

LECTURE # 2

Acidity and pH scale:

Acidic stength means the tendency of an acid to give H_3O^+ or H^+ ions in water and basic strength means the tendency of a base to give OH^- ions in water. So more the tendency of the substance to give H^+ or OH^- ions, more will be the acidic or basic strength of the substance.

The concentration of H⁺ ions is written in a simplyfied scale introduced by Sorenson known as pH scale. pH is negative logarithm of activity of H⁺ ions.

$$\therefore$$
 pH = - log a_{H^+} (where a_{H^+} is the activity of H⁺ ions)

Activity of H⁺ ions is the concentration of free H⁺ ions or H₂O⁺ ions in a solution.

For dilute solutions $[H^+] \le 1M$ concentration can be taken as activity of H^+ ions while for higher concentrations the activity would be much less than the concentration itself, so is calculated experimentally.

The pH scale was marked from 0 to 14 with central point at 7 at 25°C taking water as solvent. If the temperature and the solvent are changed, the pH range of the scale will also change. For example

$$0-14$$
 at 25°C $0-13$ at 80°C ($K_w = 10^{-13}$)

[Note: pH can also be negative or > 14]

 $pH = - log [H^+];$ $[H^+] = 10^{-pH}$ $pOH = - log [OH^-];$ $[OH^-] = 10^{-pOH}$ pKa = - log Ka ; $Ka = 10^{-pKa}$ pKb = - log Kb ; $Kb = 10^{-pKb}$

PROPERTIES OF WATER:

1. Acid/base nature:

Water - an acid as well as base according to Arhenius and Bronsted-Lowry theory but according to Lewis concept it can only be taken as base only.

In pure water
$$[H^+] = [OH^-]$$
 so it is Neutral.

2. Moler concentration / Molarity of water :

No. of moles/liter of water =
$$\frac{\text{mass of } 1 - \text{litre water in garms}}{\text{molecular mass of water}}$$

$$\text{Molarity} = \text{No. of moles/litre} = \frac{1000 \text{gm}}{18 \text{gm}} = 55.55 \text{ mole /litre} = 55.55 \text{ M} \text{ (density} = 1 \text{ gm/cc)}$$

3. Ionic product of water :

According to Arrhenius concept

$$H_2O \rightleftharpoons H^+ + OH^-$$
 so, ionic product of water, $\mathbf{k}_{\mathbf{w}} = [H^+][OH^-] = 10^{-14}$ at 25° (exp.) increasing temp $\Rightarrow \mathbf{k}_{\mathbf{w}}$ increases (dissociation of water, is endothermic, so on increasing temperature $\mathbf{K}_{\mathbf{e}a}$ increases)

Now
$$pH = -log[H^+] = 7$$
 and $pOH = log[OH^-] = 7$ for water at 25° (exp.)
 $pH = 7 = pOH$ \Rightarrow neutral
 $pH < 7$ or $pOH > 7$ \Rightarrow acidic
 $pH > 7$ or $pOH < 7$ \Rightarrow Basic

Note. lonic product of water is always a constant whatever has been dissolved in water since its an equilibrium constant so will be dependent only on temperature.

4. Degree of dissociation of water :

$$H_2O \Longrightarrow H^+ + OH^- \qquad \Rightarrow \qquad \alpha = \frac{\text{no. of moles dissociated}}{\text{Total No. of moles initially taken}} = \frac{10^{-7}}{55.55} = 18 \times 10^{-10} \, \text{or } 1.8 \times 10^{-7} \%$$

5. Absolute dissociation constant of water :

$$H_2O \Longrightarrow H^+ + OH^ K_a = K_b = \frac{[H^+][OH^-]}{[H_2O]} = \frac{10^{-7} \times 10^{-7}}{55.55} = 1.8 \times 10^{-16}$$

So,
$$pK_a = pK_b = -\log(1.8 \times 10^{-16}) = 16 - \log 1.8 = 15.74$$

Note: For a conujugate acid base pair prove that

$$pK_a + pK_b = pK_w (pK_w = -\log K_w) = 14$$
 or $K_a \times K_b = K_w$

Note: pK_2 of H_2O^+ ions = -1.74

Note:
$$pK_b$$
 of OH ions = -1.74

Q. A For a conujugate acid base pair prove that

$$pK_a + pK_b = pK_w (pK_w = -\log K_w) = 14$$
 or $K_a \times K_b = K_w$

Sol. let B is Bronsted-lowry Base

$$B + H2O \Longrightarrow BH^+ + OH^- \implies K_b = \frac{[BH^+][OH^-]}{[B]} \qquad ...(1)$$

$$BH^+ \rightleftharpoons H^+ + B \qquad \Rightarrow \qquad K_a = \frac{[H^+] \times [B]}{[BH^+]} \qquad ...(2)$$

$$K_a \times K_b = [H^+] [OH^-] = K_w$$

 $\Rightarrow -\log K_a - \log K_b = -\log K_w \Rightarrow pK_a + pK_b = pK_w = 14 \text{ at } 25^{\circ}\text{C}$

- 2. At a temperature under high pressure $K_w(H_2O) = 10^{-10}$, A solution of pH 5.4 under these conditions is said to be:
 - (A) acidic
- (B) basic
- (C) neutral
- (D) amphitoric
- **Q.** Which is stronger acid H_3O^+ or acetic acid $(K_a = 1.8 \times 10^{-5})$

∴
$$pK_a(H_3O^+) < pK_a$$
 (acetic acid)

so, H₃O+ is stronger acid than acetic acid

pH Calculations of Different Types of Solutions:

- (a) Strong acid solution:
 - If concentration is greater than 10⁻⁶ M (i) In this case H⁺ ions coming from water can be neglected, so [H+] = normality of strong acid solution
 - (ii) If concentration is less than 10⁻⁶ M In this case H⁺ ions coming from water cannot be neglected and since water is a weak electrolyte so its dissociation equilibrium will be disturbed much more than dissociation equilibrium of strong acid.

So [H⁺] = normality of strong acid + H⁺ ions coming from water in presence of this strong acid

(b) Strong base solution:

Using similar method as in part (a) calculate first [OH-] and then use [H+] × [OH-] = 10⁻¹⁴

- Caculate pH of a soultion obtanied by dissolving 490 mg of H₂SO₄ in water, so total volume of solution becomes 100 ml.
- Molarity = $\frac{490 \times 10^{-3}}{98 \times 100} \times 1000 = \frac{1}{20} = 0.05$ Sol. Normality = $2 \times \text{molarity} = 0.1$

 $pH = - log 10^{-1} = 1$

- Q. Calculate pH of 10⁻⁷ M of NaOH solution
- Sol. $[OH^{-}]$ from NaOH = 10^{-7} $[OH^{-}]$ from water = x < 10^{-7} M (due to common ion effect) H₂O ← OH⁻ + H⁺ $(x + 10^{-7})$ x $K_w = [H^+][OH^-] = 10^{-14} = x (x + 10^{-7})$ $x^{2} + 10^{-7}x - 10^{-14} = 0$ $x = \frac{\sqrt{5} - 1}{2} \times 10^{-7} = 0.618 \times 10^{-7}$ $(\sqrt{5} = 2.236)$

$$[OH^{-}] = 10^{-7} + 0.618 \times 10^{-7} = 1.618 \times 10^{-7}$$

 $pOH = 7 - log (1.618) = 6.8$
 $pH = 14 - 6.8 = 7.2$

- **Ex.** abla Calculate the α of water and pH of 10^{-7} M HCl solution.
- $[H^+]_{HCI} = 10^{-7} M$ Sol. $H_2O \rightleftharpoons H^+$ + OH $(10^{-7} + x)$ x $K_w = [H^+][OH^-]$ $10^{-14} = x (10^{-7} + x)$ \Rightarrow x² + 10⁻⁷x - 10⁻¹⁴ = 0 $x = 0.618 \times 10^{-7}$ Net $[H^+] = 10^{-7} + x$ $= 10^{-7} + 0.618 \times 10^{-7}$ $= 1.618 \times 10^{-7}$ \therefore pH = 7 - log 1.618

=
$$7 - 0.2 = 6.8$$
 $\alpha = \frac{x}{\frac{1000}{18}} \times 100\%$

 $= 0.618 \times 1.8 \times 10^{-9} / 0.618 \times 1.8 \times 10^{-7} \%$

% change in α of water

$$= \frac{(1-0.618) \times 1.8 \times 10^{-9}}{1.8 \times 10^{-9}} \times 100\% = 38.2\%$$

Ex. Calculate pH of 10⁻⁸M HCl solution.

Sol.
$$H_2O \rightleftharpoons H^+ + OH^-$$

 $10^{-8} + x \times x$

$$K_w = [H^+][OH^-]$$

 $10^{-14} = x(x \times 10^{-8})$

$$\Rightarrow$$
 x² + x × 10⁻⁸ - 10⁻¹⁴ = 0

$$x = \frac{-10^{-8} \pm \sqrt{10^{-16} + 4 \times 10^{-14}}}{2}$$

$$= \frac{-10^{-8} + 10^{-7} \sqrt{4 + \frac{1}{100}}}{2}$$

$$= \frac{(\sqrt{401} - 1)10^{-8}}{2} = 0.95 \times 10^{-7}$$

[pH] =
$$10.5 \times 10^{-8} = 1.05 \times 10^{-7}$$

$$[pH] = 7 - \log 1.05 \approx 6.98$$

$$10^{-9}$$
 M HCl pH ≈ 7

$$10^{-16}$$
 M HCl pH ≈ 7

Ex. Calculate amount of water added to the solution of pH = 2.1. So that pH may get increased to

$$4(\log 2 = 0.3)$$

Sol.
$$[H^+]_f = 10^{-4} \text{ M}$$

$$[H^+]_i = 8 \times 10^{-3} \text{ M}$$

$$V_i = 1Lt. = 1000 \text{ m}$$

no. of moles =
$$(8 \times 10^{-3}) \times (1)$$

Finalley no. of moles =
$$10^{-4} \times V_f$$

$$8 \times 10^{-3} = 10^{-4} V_f$$

$$\Rightarrow$$
 80 = V_f

Volume of water added = $80 - 1 = 79 \ell$

LECTURE # 3

(c) pH of mixture of two strong acids :

> If V₁ volume of a strong acid solution of normality N₁ is mixed with V₂ volume of another strong acid solution of normality N2, then

Number of H⁺ ions from I-solution = N₁V₁

Number of H⁺ ions from II-solution = $N_2 V_2$

If final normality is N and final volume is V, then

$$NV = N_1 V_1 + N_2 V_2$$

[dissociation equilibrium of none of these acids will be disturbed as both are strong acid]

$$[H^+] = N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$$

(d) pH of mixture of two strong bases :

similar to above calculation

$$[OH^{-}] = N = \frac{N_1V_1 + N_2V_2}{V_1 + V_2}$$

- Calculate pH of mixture of (400ml, $\frac{1}{200}$ M H₂SO₄) + (400ml, $\frac{1}{100}$ M HCl) +(200 ml of water) Q.
- $N_1^{}V_1^{} = \frac{1}{100} \times \frac{400}{1000} = \frac{4}{1000}$, $N_2^{}V_2^{} = \frac{4}{1000}$, H⁺ ions from water will be neglected Sol.

$$N_1V_1 + N_2V_2 = 8 \times 10^{-3}$$

$$[H^+] = \frac{8 \times 10^{-3}}{1} = 8 \times 10^{-3}$$

$$pH = 3 - log 8 = 2.1$$

- Q. A 200 ml of 0.1 M HCl solution is added to a 500 ml solution of H₂SO₄ containing 4.9 gm/lt and water is added to the resultant solution so that the final volume becomes one litre. Calculate the pH of resultant solution. $(\log 7 = 0.84)$
- $N_{HCI} = 0.1 \ N, \qquad V_{HCI} = 200 \ ml$ me. of $\ HCI = 20$ Sol.

me. of
$$H_2SO_4 = \frac{4.9}{49} \times 500 = 50$$

$$\therefore \qquad [H_3O^+] = \frac{20 + 50}{1000} = 0.07$$

$$pH = -\log(0.07) = 1.16$$

- Ex. \$\infty\$ 500 ml of 10⁻⁵ M NaOH is mixed with 500 ml of 2.5 x 10⁻⁵ M of Ba(OH)₂. Inresulting solution 99 L water is added. Calculate pH.
- $[OH^{-}] = = \frac{.500 \times 10^{-5} + 500 \times 2 \times 2.5 \times 10^{-5}}{.1000}$ Sol.

$$= 3 \times 10^{-5} \text{ M}$$

$$M_1 = 3 \times 10^{-5} M$$

$$V_1 = 1 L$$

$$V_2 = 100 L$$

no. of moles of [OH-] initially = no. of moles of [OH]- of

$$3 \times 10^{-5} = M_2 \times 100$$

$$M_2 = .3 \times 10^{-7} < 10^{-6}$$

$$H_2O \implies H^{-1} + OH^-$$

$$x (x + 3 \times 10^{-7})$$

$$K_w = x (x + 3 \times 10^{-7}) = 10^{-14}$$

$$\therefore x = \left(\frac{\sqrt{13} - 3}{2}\right) \times 10^{-7}$$

[OH⁻] _{Net} =
$$\left[3 + \frac{\sqrt{13} - 3}{2}\right] \times 10^{-7}$$

$$= \left\lceil \frac{3 + \sqrt{13}}{2} \right\rceil \times 10^{-7} = 2.36 \times 10^{-7}$$

(e) pH of mixture of a strong acid and a strong base :

There will be neutralisation of the acid and the base, and the solution will be acidic or basic depending on which component has been taken in excess.

If V_1 volume of a strong acid solution of normality N_1 is mixed with V_2 volume of a strong base solution of normality N_2 , then

Number of H⁺ ions from I-solution = N_1V_1

Number of OH^- ions from II-solution = N_2V_2

If $N_1V_1 > N_2V_2$, then solution will be acidic in nature and

$$[H^+] = N = \frac{N_1 V_1 - N_2 V_2}{V_1 + V_2}$$

If $N_2V_2 > N_1V_1$, then solution will be basic in nature and

$$[OH^{-}] = N = \frac{N_2 V_2 - N_1 V_1}{V_1 + V_2}$$

Q.
$$\cong$$
 Calculate pH of mixture of (400ml, $\frac{1}{200}$ M Ba(OH)₂) + (400ml, $\frac{1}{50}$ M HCl) + (200ml of Water)

Sol.
$$[H^{+}] = \frac{400 \times \frac{1}{50} - 400 \times \frac{1}{200} \times 2}{1000} = 4 \times 10^{-3}$$
, so $pH = 3 - 2 \log 2 = 2.4$

Q. 560 ml of HCl gas (measured at STP) is added to a 500 ml solution of 0.01 M NaOH. Calculate pH of resutting solution. (
$$\log 2 = 0.3$$
)

Sol. moles of HCl =
$$\frac{560}{22400} = \frac{1}{40}$$
,

m eq of HCl =
$$\frac{1}{40} \times 1000 = 25$$

meq. of NaOH =
$$500 \times 0.01 = 5$$

.. Resulting solution is acidic

$$[H^+] = \frac{25 - 5}{500} = \frac{20}{500} = \frac{1}{25}$$

$$\therefore$$
 pH = log (25) = 1.4

(f) pH of a weak acid(monoprotic) solution :

We have to use Ostwald's Dilution law(as have been derived earlier)

$$\begin{array}{ccc} & \text{HA} & \longrightarrow & \text{H}^+ + \text{OH}^- \\ \text{t=o} & \text{C} & \text{O} & \text{O} \end{array}$$

teq.
$$C(1-\alpha)$$
 $C\alpha$ $C\alpha$ $K_a = \frac{[H^+][OH]}{[HA]} = \frac{C\alpha^2}{1-\alpha}$

$$\text{if }\alpha <<1 \ \Rightarrow (1-\alpha \) \ \approx \ 1 \quad \Rightarrow \quad \ \ \, K_{_{a}} \approx \ C\alpha ^{2} \qquad \Rightarrow \qquad \alpha = \sqrt{\frac{K_{_{a}}}{C}} \ \ \text{(is valid if }\alpha <0.1 \text{ or 10\%)}$$

$$[\text{H}^{\scriptscriptstyle +}] = C\alpha \ = C\,\sqrt{\frac{\text{K}_{\text{a}}}{C}} \ = \sqrt{\text{K}_{\text{a}} \times C} \qquad \text{So pH = } \frac{1}{2}\big(\text{pK}_{\text{a}} - \text{logC}\big)$$

on increasing the dilution

$$\mathsf{C} \downarrow \ \Rightarrow \alpha \uparrow$$

 \Rightarrow C \downarrow $\Rightarrow \alpha \uparrow$ and [H+] $\downarrow \Rightarrow$ pH \uparrow

- Calculate pH of (a) 10⁻¹ M CH₂COOH (b) 10⁻³ M CH₂COOH (c) 10⁻⁶ M CH₂COOH Q. Take $K_{3} = 2 \times 10^{-5}$.
- Sol.

(a)
$$CH_3COOH \longrightarrow CH_3COO^- + H^+$$

 $C \qquad 0 \qquad 0$
 $C(1-\alpha) \qquad C\alpha \qquad C\alpha$

$$K_a = \frac{C\alpha^2}{1-\alpha} \Rightarrow \alpha = \sqrt{\frac{K_a}{C}} = \sqrt{\frac{2 \times 10^{-5}}{10^{-1}}} = \sqrt{2 \times 10^{-4}}$$
 $(\alpha << 0.1)$

So,
$$[H^+] = 10^{-1} \times \sqrt{2} \times 10^{-2} \Rightarrow pH = 3 - \frac{1}{2} \log 2 = 2.85$$

(b)
$$\alpha = \sqrt{\frac{K_a}{C}} = \sqrt{\frac{2 \times 10^{-5}}{10^{-3}}} = \sqrt{2 \times 10^{-2}}$$
 $(\alpha > 0.1)$

So we have to do the exact calculations

$$K_a = \frac{C\alpha^2}{1-\alpha}$$
 $\Rightarrow 2 \times 10^{-5} = \frac{10^{-3} \times \alpha^2}{1-\alpha}$ $\Rightarrow \alpha = 13.14\%$

$$[H^+] = 10^{-3} \times 0.1314 = 1.314 \times 10^{-4}$$
 $\Rightarrow pH = 4 - log (1.314) \approx 3.8$

(c) If approximation is used then,
$$\alpha = \sqrt{\frac{2 \times 10^{-5}}{10^{-6}}} = \sqrt{20} > 1$$
,

so we have to do the exact calculation, $2 \times 10^{-5} = 10^{-6} \frac{\alpha^2}{1 \text{ s}} \Rightarrow \alpha \approx 0.95 \text{ or } 95\%$

$$[H^+] = 0.95 \times 10^{-6} = 9.5 \times 10^{-7} \implies pH = 7 - \log(9.5) = 6.022$$

** At very low concentricity (∞ dilution) weak electrolyte will be almost 100% dissociate, so behave as strong electrolyte

[pH of 10^{-6} M HCl \simeq pH of 10^{-6} M CH₃COOH \simeq 6; pH of 10^{-8} M HCl = pH of 10^{-8} M CH₃COOH]

pH of a solution of a polyprotic weak acid:

Let us take a weak diprotic acid (H_aA) in water whose concentration is c M. Diprotic acid is the one, which is capable of giving 2 protons in water.

In an aqueous solution of a diprotic acid, following equilbria exist.

where α_1 is the degree of ionization (dissociation) of H₂A in presence of HA and α_2 is the degree of ionisation

Knowing the values of K_{a_1} , K_{a_2} and c, the values of α_1 and α_2 can be calculated using equations (i) and (ii). After getting the values of α_1 and α_2 [H₂O⁺] can be calculated as.

$$[H_3O^+]_T = C\alpha_1 + C\alpha_1\alpha_2$$

Approximation

For diprotic acids, $K_{a_2} << K_{a_1}$ and α_2 would be even smaller than α_1 .

$$\therefore$$
 1 – $\alpha_2 \approx 1$ and 1 + $\alpha_2 \approx 1$

$$K_{a_1} = \frac{C\alpha_1 \times \alpha_1}{1 - \alpha_1}$$
 So $[H^+] = C\alpha_1$

This is an expression similar to the expression for a weak monoprotic acid. Hence, even for a diprotic acid (or a polyprotic acid) the $[H_3O^+]$ can be calculated from its first equilibrium constant expression along provided $K_{a_2} << K_{a_4}$.

Finally, if the total $[H_3O^+]$ from the acid is less than 10^{-6} M, the contribution of H_3O^+ from water should be taken into account for calculating pH while if it is > 10^{-6} M, then $[H_3O^+]$ contribution from water can be ignored. Using this $[H_3O^+]$, pH of the solution can be calculated.

Q.. \ge calculate pH of 0.1M H₂S solution that K_{a1} = 10^{-7}

$$\alpha = \sqrt{\frac{K_a}{c}}$$

$$H_2S \Longrightarrow H^+ + H S^-$$

$$C \qquad O \qquad O$$

$$C(1-\alpha) \quad C\alpha \quad C\alpha \qquad (C\alpha = C_1)$$

$$\alpha = \sqrt{\frac{K_{a1}}{c}} = \sqrt{\frac{10^{-7}}{10^{-1}}} = 10^{-3}$$

$$\alpha = 10^{-3} \times 10^{-1} = 10^{-4} \quad \therefore \quad [H^+] = 10^{-4} \quad \text{and} \quad pH = 4$$

$$HS^- \Longrightarrow H^+ \quad + \quad S^{2-}$$

$$C_1 \qquad C_1$$

$$C_1(1-\alpha_1) \qquad C_1 + C_1\alpha_1 \qquad C_1\alpha_1$$

$$K_{a2} = \frac{C_1(1+\alpha_1)C_1\alpha_1}{C_1(1-\alpha_1)} \hspace{1cm} 1+\alpha \, \cong \, 1$$

$$1-\alpha \cong 1$$

$$\alpha_{_{1}} = \frac{10^{-14}}{10^{-4}} = 10^{-10}$$
net [H⁺] = C₁+ C₁ $\alpha_{_{1}}$

$$=10^{-4}+10^{-4}\times10^{-14}=10^{-4}+10^{-14}$$
 pH = 4 for H_2S \longrightarrow $2H^+$ + S^{2-} $K=K_{a1}K_{a2}$ $=10^{-21}$

$$K = 10^{-21} = \frac{[S^{2-}] \times 10^{-8}}{10^{-1}}$$

LECTURE # 4

(h) pH of a mixture of two weak acid(both monoprotic) solutions :

let the acid are HA
$$_1$$
 & HA $_2$ and their **final** concentrations are C $_1$ & C $_2$ respectively, then HA $_1$ \Longrightarrow H $^+$ + A $_1$ \Longrightarrow H $^+$ + A $_2$ \Longrightarrow H $^+$ + A $_2$ \Longrightarrow H $^+$ + A $_2$ \Longrightarrow H $_2$ \Longrightarrow H $_2$ \Longrightarrow H $_3$ + A $_2$ \Longrightarrow H $_2$ \Longrightarrow H $_3$ + A $_3$ + A $_2$ \Longrightarrow H $_3$ + A $_3$ + A $_3$ \Longrightarrow H $_3$ + A $_4$ + A $_2$ \Longrightarrow H $_3$ + A $_$

$$\Rightarrow \frac{\mathsf{K}_{\mathsf{a1}}}{\mathsf{K}_{\mathsf{a2}}} = \frac{\alpha_1}{\alpha_2}$$

$$[\mathsf{H}^{+}] = \mathsf{C}_{1}\alpha_{1} + \mathsf{C}_{2}\alpha_{2} = \frac{\mathsf{C}_{1}\mathsf{K}_{a1}}{\sqrt{\mathsf{C}_{1}\mathsf{K}_{a1} + \mathsf{C}_{2}\mathsf{K}_{a2}}} + \frac{\mathsf{C}_{2}\mathsf{K}_{a2}}{\sqrt{\mathsf{C}_{1}\mathsf{K}_{a1} + \mathsf{C}_{2}\mathsf{K}_{a2}}} \quad \Rightarrow \quad [\mathsf{H}^{+}] = \sqrt{\mathsf{C}_{1}\mathsf{K}_{a1} + \mathsf{C}_{2}\mathsf{K}_{a2}}$$

If the dissociation constant of one of the acid is very much greater than that of the second acid then contribution from the second acid can be neglected.

So,
$$[H^+] = C_1 \alpha_1 + C_2 \alpha_2 \approx C_1 \alpha_1$$

** If water is again considered third weak acid in solution of two weak acid then

$$[H^{+}] = \sqrt{K_{a1}C_{1} + K_{a2}C_{2} + K_{w}}$$

$$C_{w} = \frac{1000}{18} = 55.5$$

$$K_{aw} = 1.8 \times 10^{-16}$$

$$C_{w}K_{aw} = 10^{-14} = K_{w}$$

$$[H^{+}] = \sqrt{C_{1}K_{a1} + C_{2}K_{a2} + 10^{-14}}$$

Ex. Calculate pH of solution obtained by mixing equal vol. of 0.02 M HOCI & 0.2 M CH₃COOH solution

given that
$$K_{a1}$$
 (HOCI) = 2 × 10⁻⁴ (log2 = 0.3)
 K_{a2} (CH₃COOH) = 2 × 10⁻⁵

also calculate OH⁻, OCI-, CH₃COO-

Sol. Final solution volume become double

$$C_1 = 0.01,$$
 $C_2 = 0.1$
 $[H^+] = \sqrt{K_{a1}C_1 + K_{a2}C_2}$

$$= \sqrt{2 \times 10^{-4} \times 0.01 + 2 \times 10^{-5} \times 0.1} = \sqrt{2 \times 10^{-6} + 2 \times 10^{-6}} = 2 \times 10^{-3}$$

$$pH = 3 - log2 = 3 - 0.3 = 2.7$$

$$\alpha_1 = \frac{2 \times 10^{-4}}{2 \times 10^{-3}} = 10^{-1}$$
; $\alpha_2 = \frac{2 \times 10^{-5}}{2 \times 10^{-3}} = 10^{-2}$

HOCI
$$\Longrightarrow$$
 H⁺ + OCI⁻
 $C_1(1-\alpha_1)$ $C_1\alpha_1+C_2\alpha_2$ $C_1\alpha_1$
 $[OCI^-] = C_1\alpha_1$
 $= 0.01 \times 10^{-1}$
 $= 1 \times 10^{-3}$

$$\begin{array}{lll} \text{CH}_3\text{COOH} & \Longrightarrow & \text{H}^+ & + \text{ CH}_3\text{COO}^- \\ \text{C}_2(1-\alpha_2) & \text{C}_1\alpha_1 + \text{C}_2\alpha_2 & \text{C}_2\alpha_2 \\ & \text{[CH}_3\text{COO}^-] = \text{C}_2 \,\alpha_2 \\ & = 0.1 \, \times \, 10^{-2} \\ & = 1 \, \times \, 10^{-3} \end{array}$$

$$[OH^-] = \frac{K_w}{[H^+]} = \frac{10^{-14}}{2 \times 10^{-3}} = 5 \times 10^{-12} M$$

[HOCI] =
$$10^{-2}(1 - 0.1) = 9 \times 10^{-3} \text{ M}$$

[CH₃COOH] = $10^{-1} (1 - 0.01) \approx 10^{-1}$

(i) pH of a mixture of weak acid(monoprotic) and a strong acid solution :

For the first approximation we can neglect the H⁺ ions coming from the weak acid solution and calculate the pH of the solution from the concentration of the strong acid only.

To be precise we have to take the effect of presence of strong acid on the dissociation equilibrium of the weak acid.

If
$$[SA] = C_1$$
 and $[WA] = C_2$, then $[H^+]$ from $SA = C_1$ and $[H^+]$ from $WA = C_2$
Let HA is a weak acid

$$t = t_{\text{(eq)}} \ C_2(1-\alpha) \ C_2\alpha + C_1 \qquad C_2\alpha \qquad \qquad K_a = \frac{(C_2\alpha + C_1)C_2\alpha}{C_2(1-\alpha)} \quad (\alpha <<<1)$$

(The weak acids dissocia\tion will be further suppressed because of presence of strong acid) $K_2 = (C_2\alpha + C_4)\alpha$

Finally, if the total [H⁺] from the acid is greater than 10⁻⁶ M, then contribution from the water can be neglected, if not then we have to take [H+] from the water also.

** If a strong acid of low conc is added in water then [H+] of solution can be calculated as

$$[H^+] = \frac{C_1 + \sqrt{C_1^2 + 4K_w}}{2}$$

 $K_aC = K_w$ for water and this solution can be treated as SA + WA solution.

Ex.
$$^{\sim}$$
 Calculate pH 10⁻¹ M HCl if 10⁻³ M CH₃OOH [K_a = 2 x 10⁻⁵]

Sol. CH₃COOH
$$\rightleftharpoons$$
 CH₃COO⁻ + H⁺

$$(C_1 - \alpha) \qquad C\alpha \qquad 10^{-1} + C\alpha$$

$$C \qquad 10^{-1}$$

H⁺ ion can be treated completely from HCl due to less dissociation of CH₃COOH and its low conc.

$$2 \times 10^{-5} = \frac{C\alpha \times 10^{-1}}{C}$$
 \Rightarrow $\alpha = 2 \times 10^{-4}$

$$[H^{+}]_{CH_{3}COOH} = C\alpha = 2 \times 10^{-7}$$

Ex. In mixture [HCI] =
$$10^{-4}$$
 M & [CH₃COOH] = 10^{-2} M, K_a (CH₃COOH) = 2×10^{-5}

Sol.
$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$$

 $C \qquad \qquad C\alpha \qquad 10^{-4} + C\alpha$

$$K_a = 2 \times 10^{-5} = \frac{C\alpha(C\alpha + 10^{-4})}{C}$$

$$10^{-2} \alpha^{2} + 10^{-4} \alpha - 2 \times 10^{-5} = 0$$

$$\alpha^{2} + 10^{-2} \alpha - 2 \times 10^{-3} = 0$$

$$\Rightarrow \qquad \alpha = \frac{-10^{-2} + \sqrt{10^{-4} + 8 \times 10^{-3}}}{2} = \frac{9 \times 10^{-2} - 10^{-2}}{2} = 4 \times 10^{-2} \qquad = 0.04 < 0.1$$

[H⁺]
$$CH_3COOH = C\alpha = 10^{-2} \times 4 \times 10^{-2}$$

[H⁺]
$$_{\text{CH}_3\text{COOH}} = \text{C}\alpha = 10^{-2} \times 4 \times 10^{-2}$$

[H⁺]_{net} = 5 × 10⁻⁴ \Rightarrow pH = 4 - log 5 = 3.3
[OH⁻] = 2 × 10⁻¹¹; [CH₃COO⁻] = 4 × 10⁻⁴

$$[OH^{-}] = 2 \times 10^{-11}$$
; $[CH_{3}COO^{-}] = 4 \times 10^{-4}$

% [H⁺] from [CH₃COOH] =
$$\frac{4 \times 10^{-4}}{5 \times 10^{-4}} \times 100 = 80\%$$

% [H⁺] from H₂O =
$$\frac{2 \times 10^{-11}}{5 \times 10^{-4}} \times 100 = 4 \times 10^{-6}$$
 %

Ex. (Calculate pH [HS-], [S2-], [CI-] in a solution which is 0.1 M HCI & 0.1 M H₂S given that $\rm K_{a1}(H_2S)=10^{-7}~K_{a2}~(H_2S)=10^{-14}.$ Also calculate α_1 & α_2

$$C_1 = C_2 = 0.1$$

(most of [H+] comes from HCI)

$$H_2S$$
 \Longrightarrow 0.1(1 – α_1)

$$0.1 \alpha_1$$

$$\mathsf{K}_{\mathsf{a}\mathsf{1}} = \frac{\mathsf{C}\alpha_\mathsf{1} \times \mathsf{10}^{-\mathsf{1}}}{\mathsf{C}(\mathsf{1} - \alpha_\mathsf{1})} \qquad \Rightarrow \qquad \frac{\mathsf{10}^{-\mathsf{7}}}{\mathsf{10}^{-\mathsf{1}}} = \alpha_\mathsf{1} \qquad \Rightarrow \qquad \alpha_\mathsf{1} = \mathsf{10}^{-\mathsf{6}}$$

$$\Rightarrow \frac{10}{10}$$

$$\frac{0^{-7}}{0^{-1}} = \alpha_1 \implies$$

$$\alpha_1 = 10^{-6}$$

HS⁻
$$C_1\alpha_1(1-\alpha_2)$$

$$\Rightarrow$$
 S²⁻ + H⁻

$$10^{-14} = 0.1 \times \alpha_2$$

 \Rightarrow

$$\alpha_2 = 10^{-13}$$

$$[S^{2-}] = C\alpha_1 \alpha_2] = 10^{-6} \times 10^{-1} \times 10^{-13} = 10^{-20} M$$

Calculate pH, [H $^+$], [OH $^-$], [CH $_3$ COO $^-$] [CH $_3$ COOH] [OH $^-$], [H $_2$ S] Ex.

[S2-] in a solution obtained by mixing equal vol. of 0.2 M H₂S & 0.02 M acitic acid given that

$$K_a (CH_3COOH) = 2 \times 10^{-5}$$

$$K_a(H_2S) = 10^{-7}$$

$$K_a(H_2S) = 10^{-7}$$

 $K_a(H_2S) = 10^{-14}$

Sol. [H⁺] =
$$\sqrt{10^{-1} \times 10^{-7} + 10^{-2} \times 2 \times 10^{-5}}$$

$$= \sqrt{(0.1+2) \times 10^{-7}}$$

$$=\sqrt{2.1 \times 10^{-7}} = \sqrt{21} \times 10^{-4}$$

$$pH = 4 - \frac{1}{-} \log 21$$

$$[H_2S] = 0.1$$

$$[CH_3COOH] = 0.01$$
 in new solution

* The only first [H+] of H₂S is considered.

$$pH = 4 - \frac{1}{2} \log 21$$

(a) acitic acid =
$$\frac{2 \times 10^{-5}}{\sqrt{21} \times 10^{-4}} = \frac{2}{\sqrt{21}} \times 10^{-1} = 0.0436$$

$$(\alpha_1)_{H_2S} = \frac{10^{-7}}{[H^+]} = \frac{10^{-7}}{\sqrt{21} \times 10^{-4}} = 0.218 \times 10^{-3}$$

 $[HS^{-}] = C\alpha_1 = 0.1 \times 0.218 \times 10^{-3} = 2.18 \times 10^{-5} M$

$$10^{-14} = \frac{\sqrt{21} \times 10^{-4}}{2.18 \times 10^{-5}} = \frac{[S^{2-}]}{10^{-1}}$$

$$[S^{2-}] = \frac{2.18 \times 10^{-15}}{4.56}$$

$$2.18 \times 10^{-5} \times \alpha_2 = \frac{2.18 \times 10^{-15}}{4.56} = \frac{10^{-10}}{4.56}$$

Calculate conc. of H_3PO_4 , $H_2PO_4^-$, $H_2PO_4^{2-}$, PO_4^{3-} , $[H^+]$; pH, $[OH^-]$ of 0.1 M H_3PO_4 acid solution Ex.

given
$$K_{a_2} = 10^{-3}$$
, $K_{a_2} = 10^{-7}$, $K_{a_3} = 10^{-12}$

Sol.
$$H_3PO_4$$
 \Longrightarrow $H_2PO_4^-$ + H^+ X

$$K_{a1} = \frac{x^2}{0.1 - x} = 10^{-3}$$

$$x = 0.01 = [H^+] = [H_2PO_4^-]$$

and
$$[HPO_4^{2-}] = 10^{-7} M$$

$$K_{a3} = \frac{[H^+][PO_4^{3-}]}{[HPO_4^{2-}]} \Rightarrow 10^{-12} = \frac{(0.01)[PO_4^{3-}]}{10^{-7}}$$

$$[PO_4^{3-}] = 10^{-17} \text{ M}$$

 $[OH^-] = 10^{-12} \text{ M}$

LECTURE # 5

- (k) pH of a mixture of a weak acid/ weak base with weak/strong base/acid respectively. For this type of mixtures there can be two cases in general,
- if the acids and bases are mixed in equal amounts(equivalents) (i)
- if the acids and bases are mixed in different amounts (equivalents)

First case will lead to phenomenon of SALT HYDROLYSIS and second case will lead to formation of BUFFER SOLUTIONS.

Salt Hydrolysis (Reverse of neutralisation)Salt +Water ⇒ acid +base

When acids and bases are mixed in equal amounts(equivalents), then we will be having salt solutions only in the water and we have to calculate pH of salt solutions.

When a salt is added to water, the solid salt first dissolves and breaks into ions completely(unless otherwise specified). The ions of the salt may or may not react with water, the cations when react with water will always produce H₃O+ ions and the anions on reaction with water will produce OH- ions. Depending on the extent of hydrolysis and on the amounts of H₃O+ and OH- ions the solution can be acidic, basic or neutral. If salt is BA, then

$$BA(s) \longrightarrow BA(aq) \longrightarrow B^{+}(aq) + A^{-}(aq)$$

$$A^{-}(aq) + H_{2}O(1) \iff HA(aq) + OH^{-}(aq)$$
 (anionic hydrolysis

$$\begin{array}{ll} A^{-}(aq) + H_{2}O(I) & \Longrightarrow HA(aq) + OH^{-}(aq) & (anionic hydrolysis) \\ B^{+}(aq) + 2H_{2}O(I) & \Longrightarrow BOH (aq) + H_{3}O^{+}(aq) & (cationic hydrolysis) \end{array}$$

ANIONIC HYDROLYSIS

Anions can function as a base on reaction with water and hydrolyze as follows:

$$A^{-}(aq) + H_{2}O(I) \Longrightarrow HA(aq) + OH(aq)$$

The extent of hydrolysis of a given anion depends on its basic strength

Complete hydrolysis (a)

The anions, which are stronger base than OH⁻ and the conjugate acids of the anions are weaker acid than H₂O, they will show complete hydrolysis in aqueous medium. For example

$$H^+ + H_9O \longrightarrow H_9 + OH^-$$

(b) Hydrolysis to a limited extent

The anions, which are weaker base than OH⁻ and the conjugate acids are stronger acid than H₂O but weaker acid than H₃O+ will hydrolyse to a limited extent in aqueous medium

For Example

Other examples are CH₃COO-, NO-₂, S²⁻ etc.

(c) No hydrolysis

The anions that are weaker base than OH^- and the conjugate acids are stronger than both H_2O and H_3O^+ do not hydrolyse at all.

Other examples include SO₄²⁻, NO₃⁻, ClO₄⁻ etc.

CATIONIC HYDROLYSIS

Cations can function as acid on reaction with water and hydrolyze as follows.

$$B^+(aq) + 2H_2O(I) \Longrightarrow BOH(aq) H_3O^+(aq)$$

The extent of hydrolysis of a given cation depends on its acidic strength.

(a) Complete hydrolysis

The cations, which are stronger acid than H_3O^+ and their conjugate bases are very much weaker than H_2O will show complete hydrolysis. Example is PH_4^+ ion.

$$PH_4^+ + H_2O \longrightarrow H_3O^+ + PH_3$$

(b) Hydrolysis to a limited extent

The cations, which weaker acid than H_3O^+ ion and their conjugate bases are stonger than H_2O but weaker than OH^- , show hydrolysis to a limited extent. For example

$$NH_4^+ + 2H_2O \longrightarrow NH_4OH + H_3O^+$$

Other ions showing hydrolysis to limited extent are C₆H₅NH₃+, CH₃NH₃+ etc.

(c) No hydrolysis

The cations, which are weaker acid than H_3O^+ and their conjugate bases are stronger than both H_2O and OH^- do not hydrolyze at all. Example is alkali and alkaline earth metal ions.

There are four types of salt.

- (i) Salt of strong acid and strong base
- (ii) Salt of strong acid and weak base
- (iii) Salt of weak acid and strong base
- (iv) Salt of weak acid and weak base

Salts of first type does not undergo hydrolysis and rest three types undergo hydrolysis.

(i) Salt of strong acid and strong base

Neither of the ions will undergo hydrolysis so the solution contain only the equilibrium of ionization of water.

$$2H_3O(I) \rightleftharpoons H_3O^+ + OH^-$$

Thus, the pH of solution will be 7(neutral solution).

(ii) Salt of strong acid and weak base

The examples can be $NH_4CI, (NH_4)_2 SO_4, NH_4CI, C_6H_5NH_4^+CI^-, CuSO_4, ZnCI_3, FeCI_3, AlCI_3,$ Only the cation will undergo hydrolysis and the solution will be acidic in nature. for example in the solution of NH_4CI of concentration c, we will have

(h - degree of hydrolysis)

$$\label{eq:Khamma} K_{h} = \frac{[NH_{4}OH][H^{+}]}{[NH_{4}^{+}]} = \text{called hydrolysis constant of the salt}$$

$$NH_4OH \longrightarrow NH_4^+ + OH^-, \qquad K_b = \frac{[NH_4^+][OH^-]}{[NH_4OH]}$$

$$\label{eq:h2O} \mathsf{H}_2\mathsf{O} \ensuremath{\Longrightarrow} \mathsf{H}^+ + \mathsf{OH}^-, \qquad \qquad \mathsf{K}_{_{\!\!W}} = [\mathsf{H}^+] \; [\mathsf{OH}^-]$$

From above equations we can get

$$K_h \times K_b = K_w$$

$$K_h = \frac{ch.ch}{c(1-h)} = \frac{ch^2}{(1-h)}$$
 (genarally 1-h $_{\simeq}$ 1) so we get, $\Rightarrow h = \sqrt{\frac{K_h}{c}}$

$$\Rightarrow \qquad [H^*] = ch = \sqrt{K_h \times c} = \sqrt{\frac{K_w}{K_b} \times c}$$

$$\Rightarrow \qquad \mathbf{pH} = -\log [\mathrm{H^+}] = -\frac{1}{2} [\log \mathrm{K_w} - \log \mathrm{K_b} + \log \mathrm{c}] = \frac{1}{2} [\mathbf{pK_w} - \mathbf{pK_b} - \log \mathbf{c}]$$

(iii) Salt of weak acid and strong base

The examples can be CH₃COONa, KCN, Na₂C₂O₄, K₃PO₄ Similar to above analysis we will get

$$K_h = \frac{\text{ch.ch}}{\text{c}(1-h)} = \frac{\text{ch}^2}{(1-h)}$$
 (genarally 1-h \approx 1) so we get, $\Rightarrow h = \sqrt{\frac{K_h}{c}}$

$$K_h \times K_s = K_w$$

$$[OH^-] = ch = \sqrt{K_h \times c} = \sqrt{\frac{K_w}{K_a} \times c}$$

$$pH = -\log [H^+] = -\frac{1}{2}[\log K_w + \log K_a - \log C] = \frac{1}{2}[pK_w + pK_a + \log C]$$

(iv) Salt of weak acid and weak base

Examples can include CH_3COONH_4 , NH_4CN , $Ca(CH_3COO)_2$, MgC_2O_4 $CH_3COO^- + NH_4^+ + H_2O \Longrightarrow CH_3COOH + NH_4OH$

$$t = 0$$
 c c 0 0 at eq. $c - ch$ ch ch

$$K_h = \frac{[CH_3COOH][NH_4OH]}{[CH_3COO^-][NH_4^+]}$$
(i)

$$CH_{3}COOH \longrightarrow CH_{3}COO^{-} + H^{+}, \qquad K_{a} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]} \qquad(ii)$$

$$NH_4OH \longrightarrow NH_4^+ + OH^-, \qquad K_b = \frac{[NH_4^+][OH^-]}{[NH_4OH]} \qquad(iii)$$

$$H_2O \Longrightarrow H^+ + OH^-,$$
 $K_w = [H^+] [OH^-]$ (iv)
So, $\mathbf{K}_h \times \mathbf{K}_a \times \mathbf{K}_h = \mathbf{K}_w$,

$$\Rightarrow \qquad K_h = \frac{ch.ch}{c(1-h).c(1-h)} = \left(\frac{h}{1-h}\right)^2 \qquad \qquad \Rightarrow \left(\frac{h}{1-h}\right) = \sqrt{K_h}$$

from (ii) equation

$$[H^{+}] = K_{a} \frac{[CH_{3}COOH]}{[CH_{3}COO^{-}]} = K_{a} \frac{ch}{c(1-h)} = K_{a} \times \frac{h}{1-h} = K_{a} \times \sqrt{K_{h}} = K_{a} \times \sqrt{\frac{K_{w}}{K_{a} \times K_{b}}} = \sqrt{\frac{K_{w} \times K_{a}}{K_{b}}}$$

$$pH = -\log[H^{+}] = \frac{1}{2}[pK_{w} + pK_{a} - pK_{b}]$$

Ex. \cong Equal vol. of 0.2 M NH₄OH (or ammonia) of 0.1 M H₂SO₄ are mixed calculate pH of final solution. Given: K_p of NH₃ = 1.8 × 10⁻⁵

Sol. pH =
$$\frac{1}{2}$$
[14 - 4.7 + 1] = $\frac{10.26}{2}$ = 5.13

Ex. \cong Calculate pH of 0.01 M ammonium chlorate solution given that K_b (NH₃ = 1.8 × 10⁻⁵).

Sol. pH =
$$1/2 (14 - 4.74 + 2)$$

= $1/2 (16 - 4.74) = \frac{11.26}{2} = 5.63$

- Q. Calculate pH of solution obtain by mixing 400 mL of 0.01 M $C_6H_5NH_2 + 400$ M of 0.01 M HCl + 1200 of NaOH. Equilibrium constant of $C_6H_5NH_2$ with any strong acid is 10^4 .
- Q. Caluclate degree of hydrolysis(h) and pH of solution obtanied by dissolving 0.1 mole of CH₃ COONa in water to get 100ml of solution(take K₃ of acetic acid = 2 ×10⁻⁵), (log2 = 0.3)

Sol.
$$C = \frac{0.1}{100} = 1 \times 10^{-3}$$

$$K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{2 \times 10^{-5}} = 5 \times 10^{-10} \; , \; \Rightarrow h = \sqrt{\frac{K_h}{c}} = \sqrt{\frac{5 \times 10^{-10}}{2 \times 10^{-5}}} \; = 5 \times 10^{-3} = 0.5\%$$

$$pH = \frac{1}{2} [pK_w + pK_a + \log C] = \frac{1}{2} [14 + 5 - \log 2 + \log (10^{-3})] = \frac{1}{2} (15.7) = 7.85$$

- Q. \triangle Calculate pH of 10^{-2} M Ba(Lac)₂, given that K_a of lactic acid = 10^{-4} .
- **Sol.** $C = 2 \times 10^{-2} \,\text{M}$ (concentration of lacted ion, as it is the one which will be hydrolysed) Lac⁻ + H₂O \Longrightarrow Lactic acid + OH⁻ 2×10^{-2}

pH =
$$\frac{1}{2}$$
[14 + 4 + log (2 ×10⁻²)] = $\frac{1}{2}$ [16 + log 2] = 8.15

Q. $\stackrel{\frown}{\triangle}$ Calcluate pH of 10^{-2} M NH₄CN Solution given K_a of HCN = 5×10^{-10} and K_b of NH₃(aq .) = 2×10^{-5} .

Sol.
$$pH = \frac{1}{2}[14 + pK_a - pK_b] = \frac{1}{2}[14 + 10 - \log 5 - 5 + \log 2] = \frac{1}{2}[18.6] = 9.3$$

$$\frac{h}{1-h} = \sqrt{K_h} = \sqrt{\frac{K_w}{K_a \times K_b}} = \sqrt{\frac{10^{-14}}{5 \times 10^{-10} \times 2 \times 10^{-5}}} = 1 \qquad \Rightarrow 2h = 1 \qquad \Rightarrow h = \frac{1}{2} = 0.5$$

Q. M If the equilibrium constant for reaction of HCN with NaOH is 10¹⁰, then calculate pH of 10⁻³ M NaCN soulition.

Sol.
$$HCN + NaOH \Longrightarrow H_2O + NaCN$$
 $k = 10^{10}$ $\Rightarrow CN^- + H_2O \Longrightarrow HCN + OH^-$ $K_h = 10^{-10}$ $t = 10^{-3}M$ $t = 10^{-3}(1-h)$ $t = 10^{-3}h$

$$K_h = 10^{-10} = \frac{10^{-3} h \times 10^{-3} h}{10^{-3} (1-h)} \qquad \Rightarrow h = \sqrt{\frac{K_h}{c}} = \sqrt{10^{-7}} \; , \; \Rightarrow [H^*] = \frac{10^{-14}}{10^{-3} \sqrt{10^{-7}}}$$

$$pH = 7 + \frac{1}{2}log10 = 7.5$$

- Q. Calculate pH of soultion obtained by mixing equal volumes of 0.02M CH $_3$ COOH and 0.02 M NaOH 0.02M CH $_3$ COOH and 0.02 M NaOH given that pK $_a$ of CH $_3$ COOH =4.74
- **Sol.** $pH = \frac{1}{2} [14 + pK_a + \log c] = \frac{1}{2} [14 + 4.74 + \log (10^{-2})] = 8.37$

Q. 10 ml of 0.2 M H₂SO₄ is mixed with 20 ml of 0.2 M Ba(OH)₂ solution, the solution obtained is filtered and the obtanied solution after filtering is reacted with some of 20 ml of 0.2 M CH₂COOH solution. Calculate pH of final solution.(given that pK₃ of CH₃COOH = 4.74)

Sol.
$$H_2SO_4 + Ba(OH)_2 \longrightarrow BaSO_4 + 2H_2O$$

Solution is containing 2 mmole of Ba(OH), in 30ml volume,

$$Ba(OH)_a + 2 CH_aCOOH \Longrightarrow (CH_aCOO)_a Ba + 2H_aO$$

$$Ba(OH)_2 + 2 CH_3COOH \Longrightarrow (CH_3COO)_2 Ba + 2H_2O$$

t = 0 2 mmole 4 mmole 0 -

Finally it is a solution of a salt of type SBWA, having concentration of the anion being hydrolysed equal to

$$[CH_3 COO^{-}] = \frac{4 \times 10^{-3}}{50} \times 1000 = 8 \times 10^{-2}, \text{ so}$$

$$pH = \frac{1}{2}[14 + 4.74 - 2 + 3 \log 2] = 8.82$$

LECTURE # 6

Hydrolysis of ployvalent anions or cations

The hydrolysis of these species will take place in steps(just like dissociation of weak acids). Out of different steps generally first step hydrolysis dominants mainly because of two reasons

- The hydrolysis constant of second and further steps is generally negligible in comparison to first step hydrolysis constant.
- (b) The second and further step hydrolysis will be suppressed in presence of ions produced due to first step hydrolysis.

For a polyprotic acid (H₂S, H₃PO₄, H₂CO₃, H₂CO₄) we already know that the disscociation always takes place in steps, so for example for H₃PO₄

$$H_3 PO_4 \longrightarrow H^+ + H_2 PO_4^-$$
 $K_{a1} = \frac{[H^+][H_2 PO_4^-]}{[H_3 PO_4]}$... (1)

$$H_2PO_4^- \iff H^+ + HPO_4^{2-}$$
 $K_{a2} = \frac{[H^+][HPO_4^{2-}]}{[H_2PO_4^-]}$... (2)

$$H_2PO_4^{2-} \longrightarrow H^+ + PO_4^{3-}$$
 $K_{a3} = \frac{[H^+][PO_4^{3-}]}{[HPO_4^{2-}]}$... (3)

For all acids we always have $K_{a1} >> K_{a2} >> K_{a3}$

pH of the solution can be caculated from Ist step only because [H+] from IInd & IIIrd step can be neglected as

- $K_{a1} >> K_{a2} >> K_{a3}$ (a)
- [H+] from Ist dissociation will suppress the dissociation of IInd & IIIrd step.

Now for the hydrolysis of polyvalent ions (of salts like K₂PO₄, Na₂CO₄, ZnSO₄, FeCl₃, (NH₄)₂C₂O₄ or ions like $PO_4^{3-}C_2O_4^{2-}, Zn^{2+}, Fe^{3+}etc.)$

$$PO_4^{3-} + H_2O \Longrightarrow HPO_4^{2-} + OH_0^{-}$$

c(1-h) ch ch
$$K_{h_1} = \frac{[OH^-][HPO_4^{2-}]}{[PO_4^{3-}]}$$
 ...(4)

$$HPO_4^{2-} + H_2O \Longrightarrow H_2PO_4^{-} + OH^{-}$$
 $K_{h_2} = \frac{[OH^{-}][H_2PO_4^{-}]}{[HPO_4^{2-}]}$...(5)

$$H_2PO_4^- + H_2O \longrightarrow H_3PO_4 + OH^-$$

$$K_{h_3} = \frac{[OH^-][H_3PO_4]}{[H_2PO_4^-]} \qquad ...(6)$$

$$H_2O \longrightarrow H^+ + OH^-,$$
 $K_{w} = [H^+][OH^-]$...(7)

From above equations we get,

$$K_{a1} \times K_{h3} = K_{w}$$

 $K_{a1} \times K_{h2} = K_{w}$
 $K_{a2} \times K_{b3} = K_{w}$

 $\mathbf{K}_{a1} \times \mathbf{K}_{h2} = \mathbf{K}_{w}$ $\mathbf{K}_{a3} \times \mathbf{K}_{h1} = \mathbf{K}_{w}$ Generally pH is calculated only using the first step Hydrolysis

$$K_{h1} = \frac{Ch.Ch}{C(1-h)} = \frac{Ch^2}{1-h} \approx Ch^2$$

$$h = \sqrt{\frac{K_{h1}}{c}} \qquad \Rightarrow [OH^-] = ch = \sqrt{K_{h1} \times c} \quad \Rightarrow [H^+] = \frac{K_w}{[OH^-]} = K_w \sqrt{\frac{K_{a3}}{K_w c}} = \sqrt{\frac{K_w \times K_{a3}}{c}}$$

So
$$pH = \frac{1}{2}[pK_w + pK_{a3} + logC]$$

Hydrolysis of Amphiprotic Anion.

(Cation is not Hydrolysed)

NaHCO₃, NaHS, etc., can undergo ionisation to from H⁺ ion and can undergo hydrolysis to form OH⁻ (Na⁺ ion is not hydrolysed)

(a) (i)
$$HCO_3^- + H_2O \stackrel{\text{ionisation}}{=} CO_3^{2-} + H_3O^+$$
 acid

(ii)
$$HCO_3^- + H_2O \xrightarrow{\text{hydrolysis}} H_2CO_3 + OH_{\text{base}}$$

$$pH\left(HCO_{3}^{-}\right) = \left(\frac{pK_{a_{1}} + pK_{a_{2}}}{2}\right)$$

Similarly for H₂PO₄ and HPO₄²⁻ amphiprotic anions. (b)

$$pH_{(H_2PO_4^-)} = \left(\frac{pK_{a_1} + pK_{a_2}}{2}\right) \qquad \text{ and } \qquad pH_{(HPO_4^{2^-})} = \left(\frac{pK_{a_2} + pK_{a_3}}{2}\right)$$

The pH of
$$H_3PO_4 = \frac{1}{2} (pK_{a1} - log C)$$
 : $K_{a1} >> K_{a2} >> K_{a3}$

pH of NaH₂PO₄ =
$$\frac{1}{2}$$
 (pK_{a1} + pK_{a2})

pH of Na₂HPO₄ =
$$\frac{1}{2}$$
 (pK_{a2} + pK_{a3}) \therefore sec ionisation can neglect

pH of Na₃PO₄ =
$$\frac{1}{2}$$
 (pKw + pKa₃ + log C) : Sec hydrolysis can neglect
= $7 + \frac{1}{2}$ pKa₃ + $\frac{1}{2}$ log C

Q. Calculate the pH of a 0.1 M K_3PO_4 solution. The third dissociation constant of orthophosphoric acid is 1.5×10^{-12} . (log3 = 0.48, log 2 = 0.3)

Sol.
$$PO_4^{3-}$$
 + H_2O \Longrightarrow HPO_4^{2-} + $OH^ pH = 7 + \frac{1}{2}pK_{a3} + \frac{1}{2}\log C = 7 + \left(\frac{12 - \log 1.5}{2}\right) + \frac{1}{2}(\log 0.1)$

$$= 7 + 5.91 - 0.5 = 12.41$$

LECTURE # 7

Buffer Solution:

(if the acids and bases are mixed in different amounts (equivalents))

Buffer solutions are those, which resist a change in pH upon addition of small amount of acid or base. this does not mean that the pH will not change, and all it means is that the pH change would be less than the change that would have occurred had it not been a buffer.

BUFFER CAN BE FORMED IN THREE WAYS.

Acidic buffer:

- (i) Mixing of SAWB salt and weak acid. CH₂COOH + CH₂COONa
- (ii) Mixing of WA and strong base [Condition [WA] > [SB]]

$$\begin{array}{ccc} \text{CH}_3\text{COOH} + \text{NaOH} & \longrightarrow & \text{CH}_3\text{COONa} + \text{H}_2\text{O} \\ 1 & 0.5 & & \\ 0.5 & 0 & 0.5 & 0.5 \\ \hline \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

buffer

(iii) Mixture of SBWA salt and strong [condition [Salt] > [SA]]

To calculate the pH of a buffer solution made up of a weak acid and its salt with a strong base. We have

$$\mathsf{CH_{3}COOH} \overset{\longleftarrow}{\longleftarrow} \mathsf{CH_{3}COO}^{-} + \mathsf{H}^{\scriptscriptstyle{+}} \qquad \qquad \mathsf{K_{a}} = \frac{[\mathsf{CH_{3}COO}^{-}][\mathsf{H}^{\scriptscriptstyle{+}}]}{[\mathsf{CH_{3}CO_{2}H}]} = \frac{[\mathsf{Salt}][\mathsf{H}^{\scriptscriptstyle{+}}]}{[\mathsf{Acid}]} \Rightarrow \ [\mathsf{H}^{\scriptscriptstyle{+}}] = \mathsf{K_{a}} \times \frac{[\mathsf{Acid}]}{[\mathsf{Salt}]}$$

Taking log of both sides. $\log [H^+] = \log K_a + \log \frac{[Acid]}{[Salt]}$

$$\therefore pH = pK_a + log \frac{[Salt]}{[Acid]}$$

This is known as the **Henderson's equation of a buffer**.

For a buffer made up of weak base and its salt with a strong acid the Henderson's equation looks like this:

$$pOH = pK_b + log \frac{[Salt]}{[Base]}$$

Use of various relations:

Let us consider three situations, (i) a solution of CH_3COOH (ii) a solution of CH_3COONa and (iii) a solution of CH_3COOH and CH_3COONa (buffer). In all the three solutions, there will be some CH_3COO and CH_3COOH . But the relations used for calculating the pH differs. For (i), the relation used is : pH = $\frac{1}{2}$ (pK₃ – log c); for (ii)

the relation used is : $\frac{1}{2} (pK_w + pK_a + log c)$ and for (iii), the relation used is $pH = pK_a + log \frac{[Salt]}{[Acid]}$

To understand as to when a particular relation is to be used, the following chart should be kept in mind.

$$pH = \frac{1}{2} \left(pK_a - log C \right) \qquad \qquad pH = pK_a + log \frac{[CH_3COO^-]}{[CH_3COOH]} \qquad \qquad pH = \frac{1}{2} \left(pK_a + pK_w + log C \right)$$

Although it is difficult to give an exact limit up to which a buffer can be used, it is generally accepted that a buffer solution can be used for practical purposes when its [Salt]/[Acid] lies within the range of 0.1 to 10 (as shown above).

Therefore, it can be concluded that a particular weak acid (or base) can be employed for making useful buffer solution of pH (or pOH) lying within the range of (pK $_a$ ± 1) or (pK $_b$ ± 1). For example, acetic acid (pK $_a$ = 4.75 at 25°C) and sodium acetate mixture can be used for preparing buffer solutions whose pH values are roughly in the range of 3.75 to 5.75. Outside this range, the buffer capacity of acetic acid–sodium acetate solution is too small to be used for any practical purpose.

Effect of dilution on the pH of buffer solution:

For acidic buffer of HA and A-.

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

On increase in dilution [A-] and [HA] decreased upto equal extent, so there will be no effect on dilution (generally).

Effect of addition of small amount of strong acid:

In acidic buffer of HA(n, moles) and A⁻ (n, moles), x moles of strong acid (H⁺) is added.

Before addition of strong acid, $pH_1 = pK_a + log \frac{[n_2]}{[n_1]}$

After addition of strong acid, $pH_2 = pK_a + log \frac{[n_2 - x]}{[n_1 + x]}$

In basic buffer of B(n, moles) and BH+(n, moles), x moles of strong acid(H+) is added.

Before addition of strong acid, $pOH_1 = pK_b + log \frac{[n_1]}{[n_2]}$

After addition of strong acid,

$$pOH_2 = pK_b + log \frac{[n_1 + x]}{[n_2 - x]}$$

Effect of addition of small amount of strong base :

In acidic buffer of HA(n, moles) and A⁻ (n, moles), x moles of strong base (OH⁻) is added.

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

Before addition of strong base, $pH_1 = pK_a + log \frac{[n_2]}{[n_1]}$

After addition of strong base,
$$pH_2 = pK_a + log \frac{[n_2 + x]}{[n_1 - x]}$$

In basic buffer of B(n₂ moles) and BH⁺(n₄ moles), x moles of strong base(OH⁻) is added.

Before addition of strong base,
$$pOH_1 = pK_b + log \frac{[n_2]}{[n_1]}$$

After addition of strong base,
$$pOH_2 = pK_b + log \frac{[n_2 - x]}{[n_1 + x]}$$
.

Q. Calculate the amount of $(NH_4)_2SO_4$ in grams which must be added to 500ml of 0.2 M NH_3 to yeild a solution of pH =9.3. Given pK_b for $NH_3 = 4.7$

Sol.
$$pOH = pK_b + log \frac{[Cojugateacid]}{[Base]}$$

$$4.7 = 4.7 + log \frac{x}{0.2}$$
 \Rightarrow x = 0.2, so concentration of $(NH_4)_2SO_4$ required = 0.1 M

- \therefore moles of SO₄ needed = 0.05
- \therefore weight of $(NH_4)_2SO_4$ needed = 132 × 0.05 = 6.6 gm
- Q. The pH of a blood stream is maintained by a proper balance of H_2CO_3 and $NaHCO_3$. What volume of 5 M $NaHCO_3$ solution should be mixed with 10 ml of a sample of solution which is 2.5 M in H_2CO_3 (assume no $NaHCO_3$), in order to maitain a pH = 7.4.(pK_a for H_2CO_3 = 6.7, log 2 = 0.3)

Sol.
$$pH = pK_a + log \frac{[HCO_3^-]}{[H_2CO_3]}$$
 $\Rightarrow 7.4 = 6.7 + log \frac{[HCO_3^-]}{[H_2CO_3]}$ $\Rightarrow \frac{[HCO_3^-]}{[H_2CO_3]} = 5 \Rightarrow \frac{n_{HCO_3^-}}{n_{H_2CO_3}} = 5$
 $\Rightarrow 5 \times 2.5 \times 10 \times 10^{-3} = 5 \times V$ \Rightarrow required volume = 25 ml

4 gm of NaOH were dissolved in 1 litre of a solution containing 1 mole of CH₃COOH and 1 mole of CH₃COONa. Calculate [H⁺] in the resultant solution.(Given K₃(CH₂COOH) =1.8×10⁻⁵).

Sol. NaOH + CH₃COOH
$$\longrightarrow$$
 CH₃COONa + H₂O
t = 0 0.1 1.0 1.0
On completion 0 0.9 1.1

$$[H^{+}] = K_a \times \frac{[CH_3COO^{-}]}{[CH_3COOH]} = 1.8 \times 10^{-5} \times \frac{0.9}{1.1} = 1.47 \times 10^{-5} M$$

LECTURE # 8

Q. The total phosphate conc. in a blood sample is determined to be 3×10^{-3} M. If the pH of the blood sample is 7.4. What are the conc. of $H_2PO_4^{-2}$ & HPO_4^{-2} in the blood? (K_{a2} of $H_3PO_4 = 8 \times 10^{-8}$, log 2 = 0.1).

Sol. Let
$$[H_2PO_A^{-1}] = y$$
 & $[HPO_A^{2-1}] = x$ \Rightarrow $x + y = 0.003$

$$pH = pK_{a2} + log\left(\frac{x}{y}\right)$$

$$\Rightarrow$$
 7.4 = 7.1 + log $\left(\frac{x}{y}\right)$ \Rightarrow $y = \left(\frac{x}{2}\right)$

$$\therefore$$
 x = 0.002 M = [HPO₂²⁻] & y = 0.001 M = [H₂PO₂⁻]

Q. A buffer solution of pH = 9.56 was obtained by mixing 2 mole of NH₃(eq.) and 1 mole of NH₄Cl to form 1 liter solution. To 200ml of this solution, 10 ml of 10 M NaOH is added. Caculate pH of this resulting solution.

Sol.
$$pOH = pK_b + log \frac{[NH_4^+]}{[NH_3]}$$

$$\Rightarrow$$
 pOH = 14 - 9.56 = 4.44 = pK_b + log $\frac{1}{2}$ \Rightarrow pK_b = 4.74

In 200 ml of this solution, no. of moles $NH_4Cl = 0.2$ and no. of moles of $NH_3(eq) = 0.4$

no. of moles of NaOH added = 0.1

$$NH_4CI + NaOH \longrightarrow NH_4OH + NaCI$$

0.2 0.1 0.4

0.1 0 0.5
$$pOH = pK_b + log \frac{[NH_4^+]}{INH_0 I} = 4.74 + log \frac{0.1}{0.5} = 4.04$$

$$pH = 14 - 4.04 = 9.96$$

Q. You are given 0.1 M CH₃COOH in a beaker and to that 0.1 M solution NaOH is gradually added from a burrete. Calculate the pH of the solution in a beaker when acid is 25% neutralized. (Given pK_a (acetic acid) = 4.74)

Sol. CH₃COOH + NaOH
$$\longrightarrow$$
 CH₃COONa + H₂O 0.1 0 0.1-0.025 0.1-0.025

$$pH = pK_a + log \frac{salt}{acid} = 4.74 + log \frac{0.025}{0.075} = 4.263$$

If HA is neutralized by SB then at any stage of neutralization

pH = pK_a + log
$$\frac{\alpha}{1-\alpha}$$
, where α is % neutralization

.. for any weak acid at his half equivalance point, pH = pk_a, Similarly for a weak base, at 50% neutralization, pOH = pk_b.

- Q. A 40ml solution of a weak base(BOH) is titrated with 0.1 M HCl the pH of the solution is found to be 10.04 and 9.14 after adding 5ml and 20 ml of the acid respectively. Calculate pK_b of base. (log 2 = 0.3)
- **Sol.** In first case pOH = 14 10.04 = 3.96 and in second case pOH = 14 9.14 = 4.86 number of mmoles of salt = 5 mmole number of mmoles of base = (40C 0.5) mmole

(i)
$$3.96 = pK_b + log \frac{0.5}{40C - 0.5}$$

(II)
$$4.86 = pK_b + log \frac{2}{40C - 2}$$

$$\begin{array}{l} \Rightarrow 3.96 - log \; \frac{0.5}{40C - 0.5} \; = 4.86 - log \; \frac{2}{40C - 2} \quad \Rightarrow log \left(\frac{2}{40C - 2} \times \frac{40C - 0.5}{0.5} \right) = 0.9 = log \; 8 \\ \Rightarrow 40C - 0.5 = 2(40C - 2) \quad \Rightarrow \quad C = 0.0875 \\ \Rightarrow 3.96 = pK_b + log \; (0.0875) \quad \Rightarrow \quad pK_b = 5.02 \end{array}$$

Buffer Capacity:

It is defined as the amount of a strong acid or strong base required to change the pH of a buffer by one unit. Let there be a buffer solution of volume 1 L with 'b' mole of salt and 'a' mol of salt. The pH of the buffer would be given by

$$pH = pK_a + log \frac{b}{a}$$

On adding x mole of a strong acid (monobasic), the pH changes to pH = pK_a + log $\frac{b-x}{(a+x)}$.

$$\therefore \qquad \Delta pH = \log \frac{b}{a} \log \frac{b-x}{(a+x)}$$

Differentiating with respect to x we get

$$\frac{d\Delta pH}{dx} = \frac{1}{2.303} \frac{1}{\frac{b}{(a)} \times \left(\frac{a+x}{b-x}\right)} \times \frac{b(a+b)}{a} \times \frac{1}{(b-x)^2}$$
$$= \frac{1}{2.303} \frac{a+b}{(a+x)(b-x)}$$

Taking the inverse

 $\frac{dx}{d\Delta pH} = 2.303 \frac{(a+x)(b-x)}{a+b} \, . \, \text{This is defined as buffer capacity. It is the ratio of the small amount of t$

acid or base added to the change in pH caused in the buffer.

Maximum buffer capacity:

It can be proved that the maximum buffer is achieved when the salt and acid or base concentration is equal. Differentiating buffer capacity with respect to 'b', the amount of salt present in the and equating it to zero, gives

$$\frac{d}{db} \left(\frac{dx}{d\Delta \rho H} \right) = 2.303 \frac{\left[-1 \times (b-x) \right] + \left[1 \times (a-b+x) \right]}{a} = 0$$

a-b+2x=0; since x is very small we ignore 2x and we get

a - b = 0

$$b = a \Rightarrow [Acid] = [Conjugate base]$$

The buffer shows maximum buffer capacity when the amount of acid or base and the salt are same.

- Q. Calculate the batter capacity of 1lt of
 - (i) 0.1M CH₃COOH and 0.1M CH₃COONa
 - (ii) 0.2M CH₃COOH and 0.2M CH₃COONa

$$pK_aCH_3COOH = 4.74$$

which will you bay a better buffer

Solution

$$\frac{\delta x}{dph} = 2.303 \frac{(a+x)(b-x)}{a+b} = 2.303 \frac{ab}{a+b}$$
 x << a,b

(i) Buffer capacity =
$$\frac{0.1 \times 0.1}{0.1 + 0.1}$$
 = 0.05 x 2.303 (ii) Buffer capacity = $\frac{0.2 \times 0.2}{0.2 + 0.2}$ = 0.1 x 2.303

Second buffer solution can be said better buffer

ACID-BASE TITRATION:

Titration of SA us SB: (A)

Till allott of SA us SD.	
40 ml 0.1 M HCl,	NaOH 0.1 M
Volume of NaOH added	pH of solution
0 ml	1
10 ml	1.22
20 ml	1.48
30 ml	1.48
39 ml	1.84
39.9 ml	2.90
40.0 ml	3.90
40.1 ml	7
41 ml	10.1
50 ml	11.1
60 ml	12.05
60 ml	12.30

- \Rightarrow Indication should change it colour sharply for indication of reaction to be complete so its pH - range should lie perfectly with in sharp change to avoid experimental error.
- MeOH and HpH both can use for titration of SA and SB. \Rightarrow
- (B) Titration of SB is WA:

Volume of NaOH	рН	
0	2.5	
5 ml	4.2	
10 ml	4.7	
15 ml	4.7	
19 ml	4.7	
20 ml	7 +	
21 ml	12.	
30 ml	13.	
In sharp change of titration HPh is suitable indicator.		

- $7 + 1/2 (4.7) + 1/2 \log (1/4) = 9.05$
- 12.4 13.23
- Initially fast change in pH is due to free ions availabel fram weak acid.
- Slow down of pH change is due to Buffer formation, which is maximum at pH = pKa.
- Near equivalence point pH again increases fastly due to salt formation.
- After equiv. point pH changes very sharply due to presence of strong base.

Titration of SA + wB (C)

Sharp change between 4 to 7

(D) Titration of W.A. S.B. salt + S.A.

50 mL of 0.1 M CH₃COONa is titrated with 0.1 M HCl. Calculate pH when Vol. of HCl added is.

- (a) 0 mL
- (c) 25 mL
- (e) 50 mL
- (g) 75 mL

- (b) 10 mL
- (d) 40 mL
- (f) 60 mL

pKa of
$$CH_3COOHO = 4.74$$

(a)
$$pH = 1/2 (pK_w + pK_a + log c)$$

= 1/2 (14 + 4.74 - 1) = 8.87

(b)
$$CH_3COONa + HCI \longrightarrow NaCI + CH_3COOH$$

 $5 \text{ mm} \quad 1 \text{ mm} \quad 0 \quad 0$
 $4 \text{ mm} \quad 0 \quad 1 \text{ mm} \quad -$
 $pH = pka + log 4$

$$pH = pka + log 4$$

= 4.74 + 0.6 = 5.34

- (c) pH = pka = 4.74
- (d) pH = pka + log 1/4 = 4.14
- (e) equivalent point, WA'S solution $[CH_3COOH] = 5/100 = 1/20$

pH = 1/2 (pka – log C) = 1/2 (4.74 + 2 – 0.7)
=
$$\frac{6.04}{2}$$
 = 3.02

(f)
$$[HCI] = 1/100$$
 $pH = 2.1$

(g)
$$[HCI] = \frac{2.5}{125}$$
 $pH = 1.7$

(E) W.B.S.A salt + S.B. $(NH_4CI) + NaOH)$

Volume of NaOH added

- Q. 25 ml; 10⁻⁴ M NH₄OH solution is titrated against 10⁻³ M solution of HCl. Calculate the pH of solution at equivalent point. Also calculate the % of NH₄OH present in the form of NH₄+ ion at this point. $(K_b(NH_aOH) = 1.8 \times 10^{-5})$
- Sol. NH₄OH + HCl ----- NH₄Cl + H₂O For equivalent point $\mathbf{N}_1 \mathbf{V}_1 = \mathbf{N}_2 \mathbf{V}_2$ $V_2 = 2.5 \text{ ml}^2$
 - total vol. of solution at equivalent point *:* .

$$= 25 + 2.5 = 27.5 \text{ ml}$$

$$\therefore$$
 [NH₄+] = 9.7 × 10⁻⁵ M

$$K_h = \frac{10^{-14}}{1.8 \times 10^{-5}} = ch^2$$

$$h = 2.47 \times 10^{-3}$$

$$\therefore$$
 [H⁺] = ch = 2.247 × 10⁻⁷ M

$$pH = 6.65$$
 Ans.

% of NH₄OH as NH₄⁺ = 99.7753. Ans.

LECTURE # 9

(F) Titration of Poly protic acid v/s S.B.:

50 mL of 0.1 M H₃PO₄ agent 0.1 M NaOH. Calculate pH when vol. of NaOH added is

- (a) 0 mL
- (b) 25 mL
- (c) 50 mL
- (d) 75 mL
- (e) 100 mL

- (f) 125 mL
- (g) 150 mL
- (h) 200 mL
- (i) 90 mL
- $pka_1 = 3$ $pka_2 = 7$, $pka_3 = 11$ (a) pH = 1/2 (pka₁ – log C)

$$= 1/2 (3 + 1) = 2$$

(b)

Volume of NaOH

$$H_3PO_4 + NaOH \Longrightarrow NaH_2PO_4 + H_2O$$

 $t = 0$ 5 M mol 2.5 M mol 0 -
2.5 M mol - 2.5 M mol
 $pH = pka_1 + log 1/1 = pka_1 = 3$

(c) solution of H₂PO₄⁻ amphoteric specis

$$pH = \frac{pKa_1 + pKa_2}{2} = \frac{3+7}{2} = 5$$

- $NaH_2PO_4 + NaOH \longrightarrow Na_2HPO_4 + H_2O$ 2.5 M mol 0 5 M mol t = 0
- 2.5 M mol 2.5 M mol -

(e) HPO₄²⁻ solution (amphoteric speces)

$$pH = \frac{pKa_2 + pKa_3}{2} = 9$$

(f)
$$Na_2HPO_4 + NaOH \longrightarrow Na_3PO_4 + H_2O$$

 5 2.5 0 $-$
 2.5 2.5 $-$

$$pH = pka_3 + 10 g 1/1 = 0$$

(g)
$$3^{rd}$$
 eq. pt Na_3PO_4 solution $[Na_3PO_4] = 5/200 = 1/40$ pH = $1/2\{pk_w + pk_3 + log C\}$ = $1/2 (14 + 11 - 2 + 0.4) = 11.7$

(H) 200 mL hydrolysis of Na₃PO₄ can be neglected in Presence of NaOH [NaOH] = 5/250 = 1/50pOH = 1.7

$$pH = 12.3$$

(i) 90 mL

$$NaH2PO4 + NaOH \longrightarrow Na2HPO4 + H2O$$

$$5 \qquad 4 \qquad 0$$

$$1 \qquad 0 \qquad 4$$

$$pH = pka2 + log 4 = 7.6$$

Predict graph for (Na₂CO₃ + HCI) . (W.A.S.B Vs S.B.) Ex.

Sol.
$$Na_2CO_3 + HCI \longrightarrow NaHCO_3 + NaCI$$

$$pH = \frac{pKa_1 + pKa_2}{2} \square 9$$

$$Na_2HCO_3 + NaCl \longrightarrow H_2CO_3 + NaCl$$

pH = 1/2 {log C + pka₁} \square 3.5 - 4

Q. 1.06 gm of Na₂CO₃ is dissolved in 100 ml water. This solution is titrated against a 0.05 M HCl. Calcualte the pH when.

$$K_{\star} = 4.2 \times 10^{-3}$$

$$K_1 = 4.2 \times 10^{-7}$$

 $K_2 = 4.8 \times 10^{-11}$

Sol. m mole of Na₂CO₃ taken =
$$\frac{1.06}{106}$$
 × 1000 = 10

m mole of HCl taken = $200 \times 0.05 = 10$ (a)

$$pH = \frac{pKa_1 + pKa_2}{2} = \frac{6.38 + 10.32}{2} = 8.35$$
 Ans.

(b) m moles of HCl =
$$400 \times 0.05 = 20$$

$$Na_{2}CO_{3} + 2HCI \longrightarrow H_{2}CO_{3} + 2NaCI$$

$$H_{2}CO_{3} \Longrightarrow H^{+} + HCO_{3}^{-}$$

$$0.02 \times \times \times$$

$$\frac{x^{2}}{0.02 - x} = 4.2 \times 10^{-7}$$

Indicators are the substance, which indicates the end-point of a titration by changing their colour. They are in general, either weak organic acids or weak organic bases having characteristically different colours in the ionised and unionised forms. For example, methyl organce is a weak base (having red colour in ionised form and yellow colour in the unionised form) and phenolphthalein is a weak acid (having pink colour in the ionized form while its unionised form is colourless)

pH = 4.04

Ans.

Let us consider the equilibrium between the ionised and unionsed form of an acid indicator (HIn)

 $x = 9.165 \times 10^{-5} M = [H^{+}]$

$$\therefore K_{HIn} = \frac{[H^+][In^-]}{[HIn]} [K_{HIn} = indicator constant or dissociation constant of indicator]$$

or
$$[H^+] = K_{HIn} \times \frac{[HIn]}{[In]}$$

Taking negative logarithm of both sides

$$- \qquad \log [H^{+}] = \log K_{HIn} - \log \frac{[HIn]}{[In]}$$

$$\therefore \qquad \mathsf{pH} = \mathsf{pKH}_{\mathsf{In}} = \log \; \frac{[\mathsf{In}^{-}]}{[\mathsf{HIn}]} \qquad \qquad \Rightarrow \qquad \mathsf{pH} = \mathsf{pK}_{\mathsf{HIn}} + \log \; \frac{[\mathsf{Ionised\,form}]}{[\mathsf{Unionised\,form}]}$$

In general, the intensity of a coloured solution depends on the concentration of the colour imparting species. If the solution contains two coloured species, then the colour of the solution depends on the relative concentration of the colour imparting species. When the solution contains two coloured species as HIn and In¯, then it is seen that the solution acquires a distinct colour of In¯ only when the concentration of In¯ is approximately at least 10 times greater than the concentration of HIn and vice versa. Let us consider two cases.

Case-I

In order for the solution to show colour due to In the minimum ratio of $\frac{[In]}{[HIn]}$ should be 10.

$$\therefore pH = pK_{Hin} + log (10) = pK_{Hin} + 1$$

At this stage, the percentage of the indicator in In form would be given by

$$\frac{[In^{-}]}{[In^{-}] + [HIn]} \times 100 = \frac{10}{10 + 1} \times 100 \approx 91.$$

Thus, nearly 91% of the indicator has been present in the ionised form (In $^-$). In fact pH = pK $_{HIn}$ + 1 is the minimum pH up to which the solution has a distinct colour characteristic of In $^-$. At pH greater than this value, some more indicator will be present in the ionised form. Thus at pH \geq pK $_{Hin}$ + 1, the solution has a colour characteristic of In $^-$.

Case - II

In order for the solution to show colour due to HIn, the minimum ratio of $\frac{[In]}{[HIn]}$ should be $\frac{1}{10}$.

∴ pH = pK_{Hin} + log
$$\frac{1}{10}$$
 = pK_{Hin} = -1.

At this stage, the percentage of the indicator in In form would be given by

$$\frac{[In^{-}]}{[In^{-}] + [HIn]} \times 100 = \frac{1}{10 + 1} \times 100 \approx 9.1$$

Thus, nearly 9.1% of the indicator has been present in the ionised from (In $^-$) and $_{\approx}$ 91% of the indicator is present in the uionzed from (HIn). In factr pH = pK $_{\rm Hin}$ – 1 is the maximum pH up to which the solution has a distinct colour characteristic of HIn. At pH smaller than this value, some more indicator will be present in the unionised form. Thus at pH < pK $_{\rm Hin}$ = 1, the solution has a colour characteristic of HIn.

Universal Indicator:

A mixture of the following indicator can be used to determine the approximate pH of the solution in the range 4 to 11. Methykl red, α -naphtholphthalein, thymolphathalein, phenolphthalein and bromothymol blue.

This mixture gives different colour at different pH values of the solution. These are:

pH 4 5 6 7 8 9 10 11 colour Red Orange red Yellow Green yellow Green Blue green Blue violet Red violet

- Q. A weak acid type indicator was found to be 60% dissociated at pH = 9. What will be the percent dissociation at pH = 8.
- **Sol.** HIn ← H+ In-

$$K_{ln} = \frac{[H^+][ln^-]}{[Hln]} = \frac{10^{-9} \times 60}{40}$$

$$K_{ln} = \frac{10^{-8} \times x}{1 - x} = \frac{10^{-9} \times 60}{40} = \frac{10^{-9} \times 3}{2}$$

$$\therefore \qquad \text{Percent dissociation} = \frac{300}{23} = 13.04.$$

- Q. In indicator HIn has a standard ionisation constant of 10^{-10} . The acid form of the indicator is yellow and the alkaline form is red. The yellow colour is visible when the ratio of yellow form to red form is 30 to 1 and the red colour is predominant when the ratio of red form to yellow form is 2 to 1. What is the pH range of indicator. (log2 = 0.3, log3 = 0.48)
- **Sol.** HIn \rightleftharpoons H⁺ + In⁻

$$K_{ln} = \frac{[H^+][ln^-]}{[Hln]}$$

When yellow: red = 30:1

$$\Rightarrow \qquad [H^{+}]_{1} = 10^{-10} \times \frac{[H ln]}{[ln^{-}]} = 30 \times 10^{-10} \qquad \Rightarrow \qquad pH_{1} = 8.52$$

When red: yellow = 2:1

$$10^{-10} = [H^+]_2 \left(\frac{2}{1}\right).$$
 \Rightarrow $pH_2 = 10.3$

pH of 0.1 M solution of NaA is 8.92. Caculate pk_a of HA if a drop of HPh (pk_a = 9.52) be added to the above solution predict whether the pink colour will visible or not under the medical fact our eyes can see the pink coler if the molar % ionised from of indicator is 25% or more.

Sol.
$$pH = \frac{1}{2} (pk_a + pk_w + \log c)$$

$$8.92 = 7 + \frac{1}{2} pk_a + \frac{1}{2} (-1)$$

$$\frac{1}{2} pk_a = 8.92 - 6.5 = 2.42$$

$$pk_a = 4.84$$

$$pH = pk_a (indicator) + log \frac{ionised}{unionised}$$

$$8.92 = 9.52 + log \frac{ionised}{unionised}$$

$$\frac{[IN]}{IN} = \frac{ionised}{IN} = \frac{1}{IN}$$

Since [IN] = 20% Colour will not be visible.

SIGNIFICANCE OF INDICATORS:

Indicators work in specific pH range i.e. they change their colour distinctly once a specific pH range is crossed. e.g. phenolphthalein works in pH range 8–10 while methyl orange in the range 3 to 4.4

Extent of reaction of different bases with acid (HCI) using these two indicators is summarised below

	Phenolphthalein	Methyl Orange
NaOH	100% reaction is indicated	100% reaction is indicated
	NaOH + HCl → NaCl + H ₂ O	$NaOH + HCI \rightarrow NaCI + H_2O$
Na ₂ CO ₃	50% reaction upto NaHCO ₃ stage is indicated	100% reaction is indicated
	$Na_2CO_3 + HCI \rightarrow NaHCO_3 + NaCI$	$Na_2CO_3 + 2HCI \rightarrow 2NaCI + H_2O + CO_2$
NaHCO ₃	No reaction is indicated	100% reaction is indicated
		NaHCO₂ + HCI → NaCl + H₂O + CO₂.

Isoelectric Point of amino acids:

Isoelectric point is the point when the net charge is equal to zero :

$$\Rightarrow \quad \text{At isoelectric point ,} \qquad [\text{Anionic form}] = [\text{Cationic form}]$$

$$[\text{H}^+] = \sqrt{\text{K}_{a1} \text{K}_{a2}}$$

$$\text{pH} = \frac{\text{pK}_{a1} + \text{pK}_{a2}}{2} \, .$$

Q. Calculate the pH of glycine at its is isoelectric point what % of 0.01 M neutral solution of glycine is present in it s cationic form.

H | H - C - COOH (pK_{a1} = 2.35, pK_{a2}= 9.78) |
$$^{\dagger}_{N}$$
NH₃

Sol. At isoelectric point, pH =
$$\frac{pK_{a1} + pK_{a2}}{2} = \frac{2.35 + 9.78}{2} = 6.065$$
.

Now,
$${}^{+}\text{H}_{3}\text{N} - \text{CH}_{2} - \text{COO}^{-}$$
 + H_{2}O \Longrightarrow ${}^{+}\text{H}_{3}\text{N} - \text{CH}_{2} - \text{COOH}$ + OH^{-} (C)

$$K_h = \frac{K_w}{K_{a1}} = \frac{[C][OH^-]}{[G]}$$

$$\Rightarrow \qquad \qquad \frac{[C]}{[G]} \times 100 \ = \frac{K_w \times 100}{K_{a_1} [OH^-]} \ = \frac{K_w [H^+] \times 100}{K_{a_1} \times K_w} \ = \frac{10^{-6.065} \times 100}{10^{-2.35}} \ = 0.0193\%.$$

LECTURE # 10

Solubility(s) and Solubility Product(k_{sp})

This is generally used for sparingly soluble salts, We will be dealing with the solubilities in the following tyupe of solutions

- 1. Simple solution in H₂O
- 2. Effect of common ions on solubility
- 3. Simultaneous solubility
- 4. Precipitate₁ + electrolyte₂ Precipitate₂ + electrolyte₃
- 5. Condition for precipitation
- 6. Solubility in a buffer solution
- 7. Solubilty due to complex formation

Solubility product($k_{_{SP}}$) is a type of equilibrium constant, so will be dependent only on temperature for a particular salt.

Following examples will illustrate the different type of solubilities and the effects of different factors or situations on solubility of a salt.

1. Simple Solubility

Let the salt is $A_x B_y$, in solution in water, let the solubility in $H_2 O =$'s' M, then

$$\begin{array}{ccc}
A_x B_y & & & \\
& & \\
- & & \\
& & \\
\end{array} x A^{y+} + y B^{-x}$$

$$\therefore K_{SP} = (xs)^x (ys)^y = x^x \cdot y^y \cdot (s)^{x+y}$$

Q.

Q. Calculate
$$k_{SP}$$
 of $Li_3Na_3[AlF_6]_2$
Sol. $K_{SP} = 3^3.3^3.2^2 (s)^8 = 3^6.4.(s)^8 = 2916 s^8$

Solubility product of $CaCO_3$ is 9 × 10⁻⁸ calcultate its solubility in gm/lt. Q.

Sol.
$$CaCO_3 \longrightarrow Ca^{2+} + CO_3^{2-}$$

 $K_{sp} = s^2 = 9 \times 10^{-8}$
 $s = 3 \times 10^{-4}$ mol/lt. $= 3 \times 10^{-4} \times 100 = 0.03$ gm/lt.

Q. Calculate solubility of PbI₂ in water at 25°C which is 80% dissociated $K_{\infty}[PbI_2] = 2.048 \times 10^{-9}$

Sol. PbI₂(s)
$$\stackrel{2}{\Longrightarrow}$$
 Pb²⁺ + 2l⁻
0.8s 1.6s
 $K_{sp} = (0.8s) (1.6s)^2 = 2.048 \times 10^{-9}$
 $s = 10^{-3}$ mol/lt.

2. Effect of common ions on solubility:

Because of the presence of common ion the solubility of the salt decreases.

Q. Calculate solubility of silver oxalate in 10^{-2} M potassium oxlalate solution. Given that K_{sp} of silver oxalate = 10^{-10} .

Sol. $[C_2O_4^{2-}] = 10^{-2} + x$, where x is the solubility of silver oxalate, this can be neglected in comparison to 10^{-2} . So,

$$K_{sp} = 10^{-10} = 10^{-2} \times (2x)^2$$
 $\Rightarrow \frac{10^{-8}}{2 \times 2} = x^2$ $\Rightarrow x = 5 \times 10^{-5}$

Q. If K_{sp} of $SrF_2 = 8 \times 10^{-10}$. Calculate its solubility in 0.1 M NaF solution.

Sol. If x be the solubility of SrF₂ in presence of NaF, then

$$SrF_2 \Longrightarrow Sr^{2+} + 2F^ NaF \longrightarrow Na^+ + F^-$$

 $x = 2x$ $0.1 = 0 = 0$
 $x = (2x + 0.1) = 0 = 0.1 = (0.1 + 2x)$

$$K_{sp} = x (2x + 0.1)^2 = 8 \times 10^{-10}$$
.

Neglecting 2x with respect to 0.1, as we have solubility of SrF_2 in pure water in the range of 10^{-3} , in presence of common ions from NaF the solubility will get further decreased so we can easily neglect F^- ions from SrF_2 , then we will have

$$\Rightarrow \frac{K_{sp}}{[F^{-}]^{2}} = [Sr^{2+}] \qquad \Rightarrow \frac{K_{SP}}{(0.1)^{2}} = x = \text{solubility of } SrF_{2} = 8 \times 10^{-8}$$

3. Calculation of simultaneous Solubility

Q. Calculate simultaneous solubility of silverthiocyanate and sliver bromide in water given that K_{SP} of silver thiocyanate = 10^{-12} and K_{SP} of silver bromide = 5×10^{-13} respectively.

Sol. Let the solubility of AgSCN be x and that of AgBr is y, then

AgSCN
$$\implies$$
 Ag⁺ + SCN⁻ $x + y + y = 0$ AgBr \implies Ag⁺ + Br $y + y = 0$ AgBr $y + y = 0$ Ag AgBr $y + y = 0$ AgBr $y + y =$

Q. The ratio of solubility products of barium sulphate and barium chromate is 1 : 2.4. When pure water is saturated with both the solids simultaneously the total $[Ba^{2+}]$ is found to be 1.85 ×10⁻⁵. Caculate K_{sp} of the compounds.

Sol. Let the solubilities of the salts be x and y respectively, then

BaSO₄
$$\Longrightarrow$$
 Ba²⁺ + SO₄²⁻ $x + y = x$
 $x + y = 1.85 \times 10^{-5}$
 $K_{sp1} = x (x+y)$
 $\frac{1}{2.4} = \frac{x}{y}$
 $X + y = 1.85 \times 10^{-5}$
 $X = \frac{1.8 \times 10^{-5}}{3.4}$
 $X = \frac{(1.85)^2}{3.4} \times 10^{-10} = 1 \times 10^{-10} \text{ and } K_{sp2} = 2.4 \times 10^{-10}$

LECTURE # 11

4. Condition of precipitation

For precipitation ionic product should be greater than K_{sp}

Q. You are given 10⁻⁵ M NaCl solution and 10⁻⁸ M AgNO₃ solution, they are mixed in 1:1 volume ratio, predict whether AgCl will be precipitated or not, if solubility product of AgCl is = 10^{-10} mole per litre.

Sol. Ionic product =
$$\frac{10^{-5}}{2} \times \frac{10^{-8}}{2} = 25 \times 10^{-15} < K_{sp}$$

Hence no precipitation will take place.

5. Selective Precipitation

Q. 2 × 10⁻⁴ moles of Mn²⁺ and Cu²⁺ each is present in one litre solution of 10⁻³ M HClO₄, which is saturated with H2S. Whether or not each of the ions will be precipitaed? Given that concentration of H2S in its saturated solution is = 0.1 M, net dissociation constant of $H_2S = 10^{-21}$,

 K_{sp} for MnS = 2.5× 10⁻¹⁰ and K_{sp} for (CuS) = 8.5×10⁻³⁶ H_2 S \Longrightarrow 2H⁺ + S²⁻ 10^{-1} 10⁻³ x

Sol.
$$H_2^{Sp} \Longrightarrow 2H^+ + S^{2-} + S^{2-} + S^{2-} = 10^{-3} \times 10^{-3} \times 10^{-3}$$

$$K = \frac{x \times (10^{-3})^2}{[H_2S]} = 10^{-21}$$
 \Rightarrow $[S^{2-}] = 10^{-16}M$

Ionic Product of CuS = $[Cu^{2+}][S^{2-}] = 2 \times 10^{-4} \times 10^{-16} = 2 \times 10^{-20} > K_{SP}$ of CuS

Ionic Product of MnS = 2×10^{-20} < K_{SP} of MnS

CuS will be precipitated

Ex. A solution containing

 $[Cl^-] = [Br^-] = [I^-] = 10^{-2} \text{ M}$ (initally) to this solution $[AgNO_3]$ is added gradually.

Calculate

- (a) which can will get ppt. final
- (b) concentration of Ag⁺ ion when 1st ion start ppting.
- (c) conc. of [I-] & [Cl-] ion when AgBr start ppting.
- (d) conc. of [Br-] & [I-] ion when AgCl start ppting.

 K_{SP} of [AgI] = 10^{-17} , K_{SP} of [AgBr] = 10^{-13} , K_{SP} of [AgCI] = 10^{-10}

(a) For the precipitation of I-ion

[Ag+] [I-] =
$$K_{SP}$$
 [AgI]
[Ag+] = $\frac{10^{-17}}{10^{-2}}$ = 10^{-15}

For the precipitation of Br-ion

$$[Ag^+] = \frac{10^{-13}}{10^{-2}} = 10^{-11}$$

For the precipitation of CI⁻ ion

$$[Ag^+] = \frac{10^{-10}}{10^{-2}} = 10^{-8}$$

1st AgI will be precipitated

(b)
$$[Ag^+] > 10^{-15}$$

(c)
$$[Ag^+] = 10^{-11}$$

$$[Cl^-] = 10^{-2}$$
 (: ppt. is not formed)

$$[Ag^{+}] = [I^{-}] = K_{SP} (AgI)$$

$$10^{-10}$$
 [I⁻] = 10^{-17}

$$[I^{-}] = 10^{-6} \text{ M}$$

% remaining iodide =
$$\frac{10^{-6}}{10^{-2}} \times 100 = 10^{-2} \% = 0.01 \%$$

% ppt. of $[I^-] = 99.99\%$

(d)
$$[Ag^+] = 10^{-8}$$
;

$$[Ag^+][I^-] = K_{SP} \text{ of } AgI$$

$$\Rightarrow \qquad [I^{-}] = \frac{10^{-17}}{10^{-8}} = 10^{-5} \text{ M}; \qquad [Br^{-}] = \frac{10^{-13}}{10^{-8}} = 99.9\%$$

$$[Br^{-}] = \frac{10^{-13}}{10^{-8}} = 99.9\%$$

6. Solubility in appropriate buffer solutions.

Appropriate buffer means that the components of buffer should not interfere with the salt or only H⁺ or OH⁻ ions should be interacting with the ions of the salt.

The Solubility of Pb(OH)₂ in water is 6.7×10^{-6} M. Calculate its solubility in buffer solution of pH = 8 **Q.1**

Pb (OH)₂ solubility in water =
$$6.7 \times 10^{-6}$$
, $K_{sp} = 4s^3 = 4 \times 300 \times 10^{-18} = 1.2 \times 10^{-15}$

$$Pb(OH)_2 \longrightarrow Pb^{2+} + 2OH^{-}$$

Let
$$[Pb^{2+}] = x$$
, then $K_{sp} = x [C]$

Let
$$[Pb^{2+}] = x$$
, then $K_{sp} = x [OH^{-}]^{2}$
1.2 ×10⁻¹⁵ = x × 10⁻¹² \Rightarrow x = 1.2 × 10⁻³ M

- **Q.2** Calculate solubility of AgCN in a buffer solution of pH = 3, given that $K_{so}(AgCN) = 1.2 \times 10^{-15} K_a$ for $HCN = 4.8 \times 10^{-10}$.
- Sol. let the new solubility be = x

 $[Aq^{\dagger}] = x = [CN^{-}]$, but some of CN⁻ ions will react with H⁺ ions from the buffer so,

$$x = [CN^-] + [HCN]$$

$$K_a = 4.8 \times 10^{-10} = \frac{[H^+][CN^-]}{[HCN]}$$

$$\mathsf{K_a} = 4.8 \times 10^{-10} = \frac{[\mathsf{H}^+][\mathsf{CN}^-]}{[\mathsf{HCN}]} \qquad \Rightarrow \qquad [\mathsf{HCN}] \ = \frac{10^{-3}[\mathsf{CN}^-]}{4.8 \times 10^{-10}} \ = \ \frac{[\mathsf{CN}^-] \times 10^7}{4.8}$$

$$x = \frac{[CN^{-}] \times 10^{7}}{4.8} + CN^{-}$$
 (CN- concentration can be neglegted in comparison to first term.)

$$K_{sp} = x \cdot \frac{4.8x}{10^7} = 1.2 \times 10^{-15}$$
 \Rightarrow $x = 5 \times 10^{-5}$

- Caculate solubility of MnS in a buffer of pH = 6. Given that for H_2S , $K_{a1} = 10^{-7}$ & $K_{a2} = 10^{-14}$ and solubility of **Q.3** MnS in water is 10⁻⁸ M.
- let the solubility be = xSol.

$$[Mn^{2+}] = x = S^{2-}$$
, but free $[S^{2-}] < x$

$$x = [S^{2-}] + [HS^{-}] + [H_2S]$$

$$H_2S \Longrightarrow H^+ + HS^- \qquad K_{a1} = \frac{[H^+][HS^-]}{[H_2S]}$$

$$[H_aS] = [H^+][HS^-]K_a^{-1}$$

$$[H_2S] = [H^+] [HS^-] K_a^{-1}$$

 $[H_2S] = 10^{-6} \times (10^{-7})^{-1} [HS^-] = 10 [HS^-]$

$$K_{a2} = \frac{[H^+][S^{2-}]}{[HS^-]}$$
, $[HS^-] = 10^{-6} \times [S^{2-}] \times 10^{+14} = 10^8 [S^{2-}]$

$$[H_2S] = 10 [HS^-] = 10^{+9} [S^{2-}]$$

$$x = [S^{2-}] (1 + 10^8 + 10^9)$$

1 can be neglected

$$[S^{2-}] = \frac{x}{11 \times 10^8} = \frac{x}{11} \times 10^{-8}$$

$$K_{sp} = 10^{-16} = \frac{x^2}{11} \times 10^{-8} \implies x^2 = 11 \times 10^{-8} \implies x = 3.32 \times 10^{-4}$$

What must be [H+] in a satarated H2S solution, so as to precipitred Pb2+ ions but not Zn2+ ions Ex. from a solution in which each ions is present at a contration of 0.1 M. Given that K_a for $H_2S = 1.1 \times 10^{-21} K_{sn}$ for $ZnS = 1.0 \times 10^{-21}$

LECTURE # 12

- 7. Precipitate -1 + Ion-2

 → Precipitate -2 + Ion-1
- Q. 2M solution of Na₂CO₃ is boiled in a closed container with excess of CaF₂. Very little amount of CaCO₃ and NaF are formed. If the solubility product of CaCO₃ is x and molar solubility of CaF₂ is y. Find the molar concentration of F- in resulting solution after equilibrium is attained.
 - $Na_2CO_3(aq) + CaF_2(s)$ \Longrightarrow $2NaF(aq) + CaCO_3(s)$ t = 0

2 - a

where a is very small

Sol.

 $CaCO_3$, $K_{SP} = x = [Ca^{2+}][CO_3^{2-}]$

$$[Ca^{2+}] = \frac{x}{2}$$

 CaF_2 , $K_{SP} = 4y^3 = \left(\frac{x}{2}\right)[F^-]^2 \Rightarrow [F^-] = \sqrt{\frac{8y^3}{x^3}}$

The solubility product of $Ag_2C_2O_4$ at 25°C is 1.3 × 10⁻¹². A solution of $K_2C_2O_4$ containing 0.15 moles in Q. 500 ml water is shaken at 25°C with excess Ag₂CO₃ till the following equilibrium is reached.

 $Ag_2CO_3(s) + K_2C_2O_4 \longrightarrow Ag_2C_2O_4(s) + K_2CO_3$

At, equilibrium, the solution contains 0.02 mole of K₂CO₃. Assuming the degree of dissociation of $\rm K_2CO_3$ and $\rm K_2C_2O_4$.

- $Ag_2CO_3(s)$ + $C_2O_4^{2-} \Longrightarrow A_2C_2O_4(s) + CO_3^{2-}$ 0.3 -Sol.
 - $\therefore K = \frac{K_{SP} (Ag_2CO_3)}{K_{SP} (Ag_2C_2O_4)} = \frac{[CO_3^{2^{-}}]}{[C_2O_4^{2^{-}}]}$
 - $\Rightarrow \frac{K_{SP}}{1.3 \times 10^{-11}} = \frac{0.04}{0.26} \Rightarrow K_{SP} = 2 \times 10^{-12}$
- 8. Effect on solubility because of complex formation
- Q. What must be the concentaration of aq. NH_3 (eq.) which must be added to a solution containing $4 \times 10^{-3} M$ Ag⁺ and 0.001 M NaCl, to prevent the precipitation of AgCl. Given that $K_{sp}(AgCl) = 1.8 \times 10^{-10}$ and the

formation constant of $[Ag(NH_3)_2]^+$ is $K_{formation} = \frac{10^8}{6}$.

Sol. Caculate silver ion concentration which can be allowed to remain in the solution,

 $1.8 \times 10^{-10} = [Ag^+][Cl^-]$

 $[Ag^+] = \frac{1.8 \times 10^{-10}}{0.001} = 1.8 \times 10^{-7} M,$ This quantity is so small that almost all the Ag+ ion will be consumed.

$$Ag^{+} + 2NH_{3} \Longrightarrow [Ag(NH_{3})_{2}]^{+} K = \frac{10^{8}}{6}$$

 4×10^{-3} b 0

1.8 × 10⁻⁷ (b-8×10⁻³) 4×10⁻³ K =
$$\frac{10^8}{6}$$
 = $\frac{4 \times 10^{-3}}{1.8 \times 10^{-7} \times (b-8 \times 10^{-3})^2}$ $\Rightarrow b = 0.0445$

Q. How much solid Na₂S₂O₃ should be added to 1 lt of water so that 5×10^{-4} mol Cd(OH)₂ would just barely dissolve. K₁ & K₂ for S₂O₃²⁻ complexation with Cd²⁺ are 8.3×10^3 and 2.5×10^2 respectively. K_{SP} of Cd(OH)₂ = 4.5×10^{-15}

Sol.
$$Cd(OH)_2$$
 \Longrightarrow Cd^{2+} + $2OH^-$
 5×10^{-4} 1×10^{-3}
 Cd^{2+} + $2S_2O_3^{2-}$ \Longrightarrow $Cd(S_2Cr_3)_2^{2-}$
 $5 \times 10^{-4} - x$ $n - 2x$ x
 $= 0$

$$K_{1}K_{2} = (8.3 \times 10^{3}) (2.5 \times 10^{2}) = \frac{5 \times 10^{-4}}{[Cd^{2+}](n - 2x)^{2}}$$

$$K_{SP} = 4.5 \times 10^{-15} = [OH^{-}]^{2} [Cd^{2+}]$$

$$\Rightarrow \qquad (8.3 \times 10^{3} \times 2.5 \times 10^{2}) \times (4.5 \times 10^{-15}) = \frac{(10^{-3})^{2} \times (5 \times 10^{-4})}{(n - 2x)^{2}}$$

$$\Rightarrow n - 2x = 0.2314$$

$$n = 0.2314 + 2(5 \times 10^{-4}) = 0.2324$$

- **6. Amphoterism**: The hydroxides of certain metals can function as both bases and acids.
 - eg. $Zn(OH)_2$, $Al(OH)_3$, $Sn(OH)_2$, $Cr(OH)_2$ $Zn(OH)_2$ (s) $\Longrightarrow Zn^{2+}$ (aq.) + $2OH^-$ (aq.) $Zn(OH)_2$ (s) + $2OH^-$ (aq.) $\Longrightarrow Zn(OH)_4^{2-}$ (aq.)

If the [OH-] is very small, then Zn²⁺ is present in high concentration.

On the other hand at high hydroxide concentration $Zn(OH)_4^{2-}$ is present in high concentration. In other words, solubility at $Zn(OH)_2$ is greater in an acidic or basic solution than in neutral water.

Q. (a) At what minimum concentration OH⁻ will 10⁻³ mole of Zn(OH)₂ go into solution as Zn(OH)₄²⁻ in 1 L solution. (b) At what maximum concentration of OH⁻ with 10⁻³ moles of Zn(OH)₂ go into solution as Zn²⁺ in 1 L solution.

Given:
$$Zn(OH)_4^{-2}$$
 (aq.) $\Longrightarrow Zn^{2+}$ (aq) + $4OH^-$ (aq) $K = 10^{-15}$
 $Zn(OH)_2$ (s) $\Longrightarrow Zn^{2+}$ (aq) + $2OH^-$ (aq) $K_{SP} = 10^{-17}$

Sol. (a) If 10^{-3} mole $Zn(OH)_2$ go into $Zn(OH)_4^{2-}$. $Zn(OH)_2$ (s) $+ 2OH^-$ (aq) $\Longrightarrow Zn(OH)_4^{2-}$ (aq)

$$10^{-2} = \frac{10^{-3}}{[OH^-]^2}$$
 \Rightarrow $[OH^-] = 0.316 M$

(b) If 10^{-3} mole $Zn(OH)_2$ go into Zn^{2+} . $Zn(OH)_2$ (s) $\Longrightarrow Zn^{2+}$ (aq) $+ 2OH^-$ (aq) $10^{-17} = 10^{-3} \times [OH^-]^2 \Rightarrow [OH^-] = 10^{-7} \text{ M}$

CHEMISTRY LECTURE NOTES

COURSE: VIJAY (R)

(LECTURE No. 1 TO 12)

TOPIC: IONIC EQUILIBRIUM

(2012-13)