# 9318 ass1

# Q1

1) List the tuples in the complete data cube of R in a tabular form with 4 attributes, i.e., Location, Time, Item, SUM(Quantity)?

# Answer:

| cuboid | Location  | Time | Item     | SUM(Quantity) |
|--------|-----------|------|----------|---------------|
| LTI    | Sydney    | 2005 | PS2      | 1400          |
| LTI    | Sydney    | 2006 | PS2      | 1500          |
| LTI    | Sydney    | 2006 | Wii      | 500           |
| LTI    | Melbourne | 2005 | XBox 360 | 1700          |
| LT     | Sydney    | 2005 | ALL      | 1400          |
| LT     | Sydney    | 2006 | ALL      | 2000          |
| LT     | Melbourne | 2005 | ALL      | 1700          |
| LI     | Sydney    | ALL  | PS2      | 2900          |
| LI     | Sydney    | ALL  | Wii      | 500           |
| LI     | Melbourne | ALL  | XBox 360 | 1700          |
| TI     | ALL       | 2005 | PS2      | 1400          |
| TI     | ALL       | 2006 | PS2      | 1500          |
| TI     | ALL       | 2006 | Wii      | 500           |
| TI     | ALL       | 2005 | XBox 360 | 1700          |
| L      | Sydney    | ALL  | ALL      | 3400          |
| L      | Melbourne | ALL  | ALL      | 1700          |
| T      | ALL       | 2005 | ALL      | 3100          |
| T      | ALL       | 2006 | ALL      | 2000          |
| Ι      | ALL       | ALL  | PS2      | 2900          |
| Ι      | ALL       | ALL  | Wii      | 500           |
| Ι      | ALL       | ALL  | XBox 360 | 1700          |
|        | ALL       | ALL  | ALL      | 5100          |

2) Write down an equivalent SQL statement that computes the same result (i.e., the cube). You can only use standard SQL constructs, i.e., no CUBE BY clause.

# Answer:

SELECT L, T, I, SUM(Quantity)

FROM Sales

GROUP BY L, T, I

**UNION ALL** 

SELECT L, T, ALL, SUM(Quantity)

FROM Sales

GROUP BY L, T

**UNION ALL** 

SELECT L, ALL, I, SUM(Quantity)

**FROM Sales** 

GROUP BY L, I

UNION ALL

SELECT ALL, T, I, SUM(Quantity)

FROM Sales

GROUP BY T, I

**UNION ALL** 

SELECT L, ALL, ALL, SUM(Quantity)

FROM Sales

GROUP BY L

**UNION ALL** 

SELECT ALL, T, ALL, SUM(Quantity)

**FROM Sales** 

**GROUP BY T** 

UNION ALL

SELECT ALL, ALL, I, SUM(Quantity)

**FROM Sales** 

**GROUP BY I** 

**UNION ALL** 

SELECT ALL, ALL, ALL, SUM(Quantity)

FROM Sales

#### 3) Consider the following ice-berg cube query

# Answer:

| cuboid | Location | Time | Item | Quantity |
|--------|----------|------|------|----------|
| LT     | Sydney   | 2006 | ALL  | 2000     |
| LI     | Sydney   | ALL  | PS2  | 2900     |
| L      | Sydney   | ALL  | ALL  | 3400     |
| T      | ALL      | 2005 | ALL  | 3100     |
| T      | ALL      | 2006 | ALL  | 2000     |
| I      | ALL      | ALL  | PS2  | 2900     |
|        | ALL      | ALL  | ALL  | 5100     |

4)Assume that we adopt a MOLAP architecture to store the full data cube of R, with the following mapping functions

# Answer:

We can get the map 3 \* 4 \* L + 4 \* T + I = 12L + 4T + I = f(Location, Time, Item)

| Location | Time | Item | SUM(Quantity) | f(L, T, I) |
|----------|------|------|---------------|------------|
| 1        | 1    | 1    | 1400          | 17         |
| 1        | 2    | 1    | 1500          | 21         |
| 1        | 2    | 3    | 500           | 23         |
| 2        | 1    | 2    | 1700          | 30         |
| 1        | 1    | 0    | 1400          | 16         |
| 1        | 2    | 0    | 2000          | 20         |
| 2        | 1    | 0    | 1700          | 28         |
| 1        | 0    | 1    | 2900          | 13         |
| 1        | 0    | 3    | 500           | 15         |
| 2        | 0    | 2    | 1700          | 26         |
| 0        | 1    | 1    | 1400          | 5          |
| 0        | 2    | 1    | 1500          | 9          |
| 0        | 2    | 3    | 500           | 11         |
| 0        | 1    | 2    | 1700          | 6          |
| 1        | 0    | 0    | 3400          | 12         |
| 2        | 0    | 0    | 1700          | 24         |
| 0        | 1    | 0    | 3100          | 4          |
| 0        | 2    | 0    | 2000          | 8          |
| 0        | 0    | 1    | 2900          | 1          |
| 0        | 0    | 3    | 500           | 3          |
| 0        | 0    | 2    | 1700          | 2          |
| 0        | 0    | 0    | 5100          | 0          |

So we have the final result.

| offset | quantity |
|--------|----------|
|--------|----------|

| 17 | 1400 |
|----|------|
| 21 | 1500 |
| 23 | 500  |
| 30 | 1700 |
| 16 | 1400 |
| 20 | 2000 |
| 28 | 1700 |
| 13 | 2900 |
| 15 | 500  |
| 26 | 1700 |
| 5  | 1400 |
| 9  | 1500 |
| 11 | 500  |
| 6  | 1700 |
| 12 | 3400 |
| 24 | 1700 |
| 4  | 3100 |
| 8  | 2000 |
| 1  | 2900 |
| 3  | 500  |
| 2  | 1700 |
| 0  | 5100 |
|    |      |

# Q2

Consider the given similarity matrix. You are asked to perform group average hierarchical clustering on this dataset. You need to show the steps and final result of the clustering algorithm. You will show the final results by drawing a dendrogram. The dendrogram should clearly show the order in which the points are merged.

# Answer:

Using the formula to calculate the similarity of two clusters (group average), which is

the average of pair-wise similarity between points in the two clusters.

So first we get the larger one, which is p2 and p5.

$$Sim(1,25) = 2 * (0.10 + 0.35 + 0.98) / 6 = 0.477$$

$$Sim(3,25) = 2 * (0.64 + 0.85 + 0.98) / 6 = 0.823$$

$$Sim(4,25) = 2 * (0.76 + 0.47 + 0.98) / 6 = 0.737$$

|     | P1   | P3   | P4   | P25   |
|-----|------|------|------|-------|
| P1  | 1.00 | 0.41 | 0.55 | 0.477 |
| P3  |      | 1.00 | 0.44 | 0.823 |
| P4  |      |      | 1.00 | 0.737 |
| P25 |      |      |      | 1.00  |

$$Sim(1,235) = 2 * (0.10 + 0.41 + 0.35 + 0.64 + 0.98 + 0.85) / 12 = 0.555$$
  
 $Sim(4,235) = 2 * (0.47 + 0.44 + 0.76 + 0.64 + 0.98 + 0.85) / 12 = 0.69$   
Then it become

|      | P1   | P4   | P235  |
|------|------|------|-------|
| P1   | 1.00 | 0.55 | 0.555 |
| P4   |      | 1.00 | 0.69  |
| P235 |      |      | 1.00  |

So the final result is



Q3

1) Assume that the stopping criterion is till the algorithm converges to the final k clusters. Can you insert several lines of pseudo-code to the algorithm to implement this logic? You

are not allowed to change the first 7 lines though.

#### Answer:

When there is no change of the centers then it can stop.

Red one means what I add

logic: using lastC to record the previous centers' condition, if after the update then there is no change in C, it can stop.

```
8 lastC <- C</li>
9 For each group g
10 ci <- ComputeCenter(g);</li>
11 if lastC = C then
12 canStop = True
11 return G
2)
```

# Answer:

The first for loop, every points can find the nearest center, as the location of each point does not change and the location of each center does not change, we can get the best cost(gi), which is the smallest. So the cost must smaller than previous iteration.

In the second for loop we need to find the new center which is nearest to its neighbors. As the center will change, so every point is nearest to its center, then the cost can decrease as well. So the cost must smaller than previous iteration. So the cost of every cluster can decrease.

As a result, the cost of k clusters as evaluated at the end of each iteration never increases.

3) Prove that the cost of clusters obtained by k-means algorithm always converges to a local minima. You can make use of the previous conclusion even if you have not proved it.

# Answer:

As we all know EM algorithm can converge to a local minima. If we use the squared loss as the loss function

$$J(\mu_1, \mu_2, \dots, \mu_k) = \frac{1}{2} \sum_{j=1}^K \sum_{i=1}^N (x_i - \mu_j)^2$$

Here is the E-step, we need to assign each point to its nearest cluster.

$$\gamma_{nk} = \left\{ egin{aligned} 1, & ext{if } k = argmin_j ||x_n - \mu_j||^2 \ 0, & ext{otherwise} \end{aligned} 
ight.$$

Here is the M-step, we need to update the center according to its points.

$$\mu_k = \frac{\sum_n \gamma_{nk} x_n}{\sum_n \gamma_{nk}}$$

So we want to minimize the loss function. In the E-step, we need to find the most nearest  $\gamma$  and in the M-step we fix the  $\gamma$  then update  $\mu$ . So it can converge to a local minima.