Colle 0

Cisaille à découpe au vol - Corrigé

Mise en situation

Schéma-bloc du système

Question 1 Représenter le schéma-blocs du système. Indiquer les grandeurs d'entrée et de sortie de chaque bloc.

D'après P. Dubois, C. Gamelon..

B2-04

B2-06

Équation de comportement dynamique

Fonction de transfert du vérin

Question 2 Transformer les deux équations précédentes dans le domaine de Laplace. En déduire l'expression de la fonction de transfert : $H_v(p) = \frac{X(p)}{Q(p)}$, que l'on mettra sous la forme : $H_v(p) = \frac{k}{p(ap^2 + bp + 1)}$.

Correction

D'une part,
$$mp^2X(p) = S\Delta P(p) - fpX(p) \Leftrightarrow \frac{p (mp+f)}{S}X(p) = \Delta P(p)$$
.

D'autre part : $Q(p) = SpX(p) + \frac{V}{2B}p\Delta P(p) \Leftrightarrow 2B\frac{Q(p) - SpX(p)}{Vp} = \Delta P(p)$.

On a donc : $\frac{p (mp+f)}{S}X(p) = 2B\frac{Q(p) - SpX(p)}{Vp} \Leftrightarrow \frac{p (mp+f)}{S}X(p) + \frac{2BSpX(p)}{Vp} = \frac{2BQ(p)}{Vp}$

$$\Leftrightarrow \left(\frac{p (mp+f)}{S} + \frac{2BSp}{Vp}\right)\frac{Vp}{2B} = \frac{Q(p)}{X(p)} \Leftrightarrow \left(\frac{p (mp+f)}{S}\frac{Vp}{2B} + Sp\right) = \frac{Q(p)}{X(p)}.$$

On a donc, $H_v(p) = \frac{1}{p\left(\frac{(mp+f)}{S}\frac{Vp}{2B} + S\right)} = \frac{1}{p\left(\frac{Vm}{2BS}p^2 + \frac{fV}{2BS}p + S\right)} = \frac{1}{p\left(\frac{Vm}{2BS}p^2 + \frac{fV}{2BS}p + S\right)}.$

Au final, $k = \frac{1}{S}$, $a = \frac{Vm}{2BS^2}$ et $b = \frac{fV}{2BS^2}$.

Détermination des paramètres canoniques à partir du diagramme de Bode

Question 3 Donner l'expression littérale du gain fréquentiel en décibel $GdB(\omega)$ en fonction des notations K_v , ω_0 et ξ , (ne pas développer le dénominateur pour le calcul

du module de $H_v(j\omega)$). Quelle est sa valeur pour $\omega = \omega_0$?

Correction $H_{v}(j\omega) = \frac{K_{v}}{j\omega\left(1 + \frac{2\xi}{\omega_{0}}j\omega - \frac{\omega^{2}}{\omega_{0}^{2}}\right)}$ En conséquence, $G_{dB}(\omega) = 20\log\left|\frac{K_{v}}{j\omega\left(1 + \frac{2\xi}{\omega_{0}}j\omega - \frac{\omega^{2}}{\omega_{0}^{2}}\right)}\right| = 20\log K_{v} - 20\log|j\omega| - 20\log\left|1 + \frac{2\xi}{\omega_{0}}j\omega - \frac{\omega^{2}}{\omega_{0}^{2}}\right|$ $= 20\log K_{v} - 20\log\omega - 20\log\left|\sqrt{\left(1 - \frac{\omega^{2}}{\omega_{0}^{2}}\right)^{2} + \left(\frac{2\xi\omega}{\omega_{0}}\right)^{2}}\right|$

Question 4 Déterminer l'asymptote de la courbe de gain lorsque ω tend vers 0. Quelle est sa pente? Pour quelle valeur de ω coupe-t-elle l'horizontale à 0 dB?

Correction

On a
$$G_{\mathrm{dB}}\left(\omega\right)=20\log K_v-20\log\omega-20\log\left|\sqrt{\left(1-\frac{\omega^2}{\omega_0^2}\right)^2+\left(\frac{2\xi\omega}{\omega_0}\right)^2}\right|.$$

Au final, $G_{dB}(\omega_0) = 20 \log K_v - 20 \log \omega_0 - 20 \log 2\xi$.

Lorsque ω tend vers 0, le gain tend $20 \log K_v - 20 \log \omega$. La pente est donc de -20 dB/decade. Elle coupe l'horizontale à 0 dB en $\omega = K_v$.

Question 5 Déterminer l'asymptote de la courbe de gain lorsque ω tend vers l' ∞ . Quelle est sa pente? Pour quelle valeur de ω coupe-t-elle l'asymptote précédente?

Correction

On a
$$G_{\text{dB}}(\omega) = 20 \log K_v - 20 \log \omega - 20 \log \left| \sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \left(\frac{2\xi\omega}{\omega_0}\right)^2} \right|$$

Lorsque ω tend vers l'infini, le gain tend $20 \log K_v - 20 \log \omega$, G_{dB} tend vers = $20 \log K_v - 20 \log \omega - 20 \log \omega^2 = 20 \log K_v + 40 \log \omega^0 - 20 \log \omega^2 = 20 \log K_v + 40 \log \omega^0 - 60 \log \omega$.

La pente est donc de -60 dB/decade.

L'intersection des deux asymptotes a lieu quand

 $20 \log K_v - 20 \log \omega = 20 \log K_v + 40 \log \omega_0 - 60 \log \omega \Leftrightarrow \log \omega = \log \omega_0$. Ainsi, l'intersection des asymptotes a lieu en $\omega = \omega_0$.

Question 6 Déduire des résultats précédents et du diagramme de Bode de $H_v(p)$ donné sur la feuille réponse les valeurs des paramètres K_v , ω_0 et ξ (on tracera les asymptotes avec leur pente réelle).

Xavier Pessoles

Sciences Industrielles de l'Ingénieur – PSI*

Correction

Par lecture du graphe, on obtient $\omega_0 = 140 \,\text{rad/s}$ et $K_v = 1000 \,\text{s} \,\text{m}^{-2}$. $G_{\text{dB}}(\omega_0) = 20 \log K_v - 20 \log \omega_0 - 20 \log 2\xi \Leftrightarrow 37 = 20 \log 1000 - 20 \log 140 - 20 \log 2\xi \Leftrightarrow 37 = 60 - 20 \log 140 - 20 \log 2\xi \Leftrightarrow \frac{37 - 60 + 20 \log 140}{-20} = \log 2\xi \Leftrightarrow \xi \approx 0,05$.

Question 7 Donner l'expression littérale de la phase $\varphi(\omega)$ en fonction des notations ω_0 et ξ . Déterminer ses limites lorsque ω tend vers 0 et lorsque ω tend vers l'infini. Tracer le diagramme asymptotique de phase. Calculer les valeurs de la phase en degrés pour la pulsation propre ω_0 puis pour 100 et 200 rad s⁻¹. Tracer la courbe de phase.

$$\varphi(\omega) = \arg K_v - \arg(j\omega) - \arg\left(1 + \frac{2\xi}{\omega_0}j\omega - \frac{\omega^2}{\omega_0^2}\right) = 0 - \frac{\pi}{2} - \arg\left(\left(1 - \frac{\omega^2}{\omega_0^2}\right) + \frac{2\xi\omega}{\omega_0}j\right)$$
Lorsque ω tend vers $0, \varphi(\omega)$ tend vers $-\frac{\pi}{2}$

Lorsque ω tend vers 0, $\varphi(\omega)$ tend vers $-\frac{\pi}{2}$.

Lorsque ω tend vers l'infini, – $\arg\left(\left(1-\frac{\omega^2}{\omega_0^2}\right)+\frac{2\xi\omega}{\omega_0}j\right)$ tend vers π donc – $\arg(...)$ tend vers – π .

Explication graphique de prof de SII...

Au final, lorsque ω tend vers l'infini, $\varphi(\omega)$ tend vers $-\frac{3\pi}{2}$.

Détermination des gains K_c , K_a et K_d

Question 8 Quelle valeur K doit-on donner au produit des gains $K_cK_aK_d$ (préciser les unités). On note K_0 le produit KK_v (gain en boucle ouverte). Quelle est la valeur de K_0 ? Quelle est la marge de phase ainsi obtenue?

Correction

Étant donné l'exigence demandée, le gain de la FTBO doit être de -6 dB lorsque la phase vaut -180°. On a déjà vu que pour cette phase, le gain décibel de H_v vaut 37 dB. Le gain dB vaut 20 log K + 20 log $|H_v|$. On cherche donc K tel que 20 log K + 20 log $|H_v|$ = -6. Au final, $K = 7 \cdot 10^{-3} \text{m}^2 \text{ s}^{-1}$. Par suite, $K_0 = 7 \cdot \text{s}^{-1}$.

Erreur de traînage

Question 9 Donner l'expression de l'écart $\varepsilon(p)$ en fonction de E(p) et H(p). La tôle se déplace à vitesse constante v, quelle est la transformée E(p) de e(t)? Donner l'expression de $\varepsilon(p)$ en fonction de v et des paramètres canoniques.

Correction

On peut redémontrer le résultat suivant : $\varepsilon(p) = \frac{E(p)}{1 + FTBO(p)} = \frac{E(p)}{1 + H(p)}$. Exprimons $\varepsilon(p)$: $\varepsilon(p) = E(p) - X(p) = E(p) - H(p)\varepsilon(p)$; donc $\varepsilon(p)(1 + H(p)) = E(p) \Longleftrightarrow \varepsilon(p) = \frac{E(p)}{1 + H(p)}$. Le consigne étant une vitesse, on a donc $E(p) = \frac{v}{v^2}$. On a donc : $\varepsilon(p) = \frac{v}{v^2}$ $\frac{v}{p^{2}} \frac{1}{1 + \frac{K_{v}K_{c}K_{a}K_{d}}{p\left(1 + \frac{2\xi}{\omega_{0}}p + \frac{p^{2}}{\omega_{0}^{2}}\right)}}.$

Question 10 On appelle erreur de traînage ε_t la différence entre l'entrée et la sortie en régime permanent pour une entrée en rampe. Donner l'expression de ε_t . Faire l'application numérique avec $v = 1 \,\mathrm{m \, s^{-1}}$ et $K_0 = 7$ (unité SI).

Correction

L'entrée en vitesse précédente correspondant à une entrée en rampe, on a donc ε_t = $\lim_{t \to +\infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) = \lim_{p \to 0} p \frac{v}{p^2} \frac{1}{1 + \frac{K_v K_c K_a K_d}{p \left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}} = \lim_{p \to 0} \frac{v}{p + \frac{K_v K_c K_a K_d}{\left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}}$

 $\frac{v}{K_v K_c K_a K_d} = \frac{1}{7} \simeq 0.14 \,\text{m}$. Pour compenser cette erreur, il suffit de régler la butée de la tôle

Identification temporelle

Question 11 Déterminer l'expression de la réponse temporelle de ce système soumis à une entrée identique à celle de la cisaille (déplacement de la tôle à vitesse constante : $v = 1 \,\mathrm{m \, s^{-1}}$).

Question 12 Déterminer les valeurs numériques de K_f et T à l'aide de relevés sur la courbe.

0.7 0,5 0,3 0,2

0,9

Correction

Première solution : cf cours pour un système du premier ordre soumis à une rampe. Seconde solution : se raccrocher à ce que l'on sait (peut-être) pour un premier ordre soumis à un échelon... en effet, la rampe peut être assimilée à un premier ordre intégré. Ainsi, pour un système du premier ordre soumis à un échelon d'amplitude v, la valeur finale est vK_f . Ainsi, en intégrant, la pente en régime permanent sera de vK_f .

La pente étant de 1 on a $K_f = 1$.

Reste à savoir que l'asymptote coupe l'axe des abscisses en T. Après lecture, $T=0.15\,\mathrm{s}$.

Question 13 Vérifier que l'on a la même erreur de traînage.

Correction

Même erreur que précédemment.

Question 14 Quel réglage peut-on envisager sur la cisaille pour compenser cette erreur?

Correction

Il est possible de décaler la butée de 14 cm et ainsi supprimer l'écart de trainage.

