PIEO Trees for Fun and Profit

We assume familiarity with [Mohan et al., 2023], adopt its notational conventions, and borrow its definitions!

1 Structure & Semantics

Definition 1.1. For sets S, D, and predicates F over D, let **PIEO**(S, D, F) denote the set of *PIEO*s that

- (1) hold entries in S, decorated with meta-data in D
- (2) are ordered by Rk
- (3) support predicates in F
- (4) admit partial functions

pop :
$$PIEO(S, D, F) \times F \rightarrow S \times PIEO(S, D, F)$$

push : $PIEO(S, D, F) \times S \times D \times Rk \rightarrow PIEO(S, D, F)$
proj : $PIEO(S, D, F) \times F \rightarrow PIFO(S)$

Maps push and pop are as usual. The *projection* proj(p, f) is the PIFO of entries in p with data satisfying f. For $p \in PIEO(S, D, F)$, $s \in S$, and $f \in F$, we write

- (1) |p| for the number of entries in p
- (2) $|p|_s$ for the number of times s occurs in p
- (3) $|p|_{s,f}$ for the number of times s occurs in p with associated $d \in D$ such that f(d) holds

We fix an opaque set **Data** and a collection \mathcal{F} of predicates defined on it. These predicates come with a total order \leq and the property that, $\forall d \in \mathbf{Data}$ and $f, f' \in \mathcal{F}, f \leq f' \land f(d) \implies f'(d)$.

Definition 1.2. The set of *PIEO trees* over $t \in \textbf{Topo}$, denoted **PIEOTree**(t), is defined inductively by

$$\begin{array}{c} p \in \mathsf{PIEO}(\mathsf{Pkt},\mathsf{Data},\mathcal{F}) \\ \mathsf{Leaf}(p) \in \mathsf{PIEOTree}(*) \end{array} \qquad \begin{array}{c} n \in \mathbb{N} & ts \in \mathsf{Topo}^n & p \in \mathsf{PIEO}(\{1,\dots,n\},\mathsf{Data},\mathcal{F}) \\ \forall i \in [1,n]. \ qs[i] \in \mathsf{PIEOTree}(ts[i]) \\ \\ \mathsf{Internal}(qs,p) \in \mathsf{PIEO}(\mathsf{Node}(ts)) \end{array}$$

Definition 1.3. Define pop : $PIEOTree(t) \times \mathcal{F} \rightarrow Pkt \times PIEOTree(t)$ by

$$\frac{\mathsf{pop}(p,f) = (\mathsf{pkt},p')}{\mathsf{pop}(\mathsf{Leaf}(p),f) = (\mathsf{pkt},\mathsf{Leaf}(p'))} \frac{\mathsf{pop}(p,f) = (i,p') \quad \mathsf{pop}(qs[i],f) = (\mathsf{pkt},q')}{\mathsf{pop}(\mathsf{Internal}(qs,p),f) = (\mathsf{pkt},\mathsf{Internal}(qs[q'/i],p'))}$$

Definition 1.4. Define push : $PIEOTree(t) \times Pkt \times Data \times Path(t) \rightarrow PIEOTree(t)$ by

$$\frac{\operatorname{push}(p,\operatorname{pkt},d,r)=p'}{\operatorname{push}(\operatorname{Leaf}(p),\operatorname{pkt},d,r)=\operatorname{Leaf}(p')} \frac{\operatorname{push}(p,i,d,r)=p'}{\operatorname{push}(\operatorname{Internal}(qs,p),\operatorname{pkt},d,(i,r)::pt)=\operatorname{Internal}(qs[q'/i],p')}$$

Definition 1.5. Let $t \in \textbf{Topo}$. A control over t is a triple (s, q, z), where $s \in St$ is the current state, q is a PIEO tree of topology t, and

$$z: \mathsf{St} \times \mathsf{Pkt} \to \mathsf{Data} \times \mathsf{Path}(t) \times \mathsf{St}$$

is a function called the scheduling transaction.

Definition 1.6. Define $|\cdot|$: **PIEOTree** $(t) \to \mathbb{N}$ by

$$|\operatorname{Leaf}(p)| = |p|$$
 $|\operatorname{Internal}(qs, p)| = \sum_{i=1}^{|qs|} |qs[i]|$

We say that $q \in \mathbf{PIEOTree}(t)$ is well-formed w.r.t $f \in \mathcal{F}$, denoted $\vdash_f q$, if it adheres to the following rules.

$$\frac{\forall i \in [1, |qs|], \ \vdash_f qs[i] \land |p|_{i,f} = |qs[i]|}{\vdash_f \mathsf{Internal}(qs, p)}$$

We say q is well-formed, denoted $\vdash q$, if there exists $f \in \mathcal{F}$ such that, for all $f' \geq f$, $\vdash_{f'} q$.

2 Projection

Definition 2.1. For $f \in \mathcal{F}$, define $\operatorname{proj}_f : \operatorname{PIEOTree}(t) \to \operatorname{PIFOTree}(t)$ by

$$\frac{p' = \operatorname{proj}(p, f)}{\operatorname{proj}_f(\operatorname{Leaf}(p)) = \operatorname{Leaf}(p')} \qquad \frac{p' = \operatorname{proj}(p, f) \qquad \forall i \in [1, |qs|], \ qs'[i] = \operatorname{proj}_f(qs[i])}{\operatorname{proj}_f(\operatorname{Internal}(qs, p)) = \operatorname{Internal}(qs', p')}$$

Lemma 2.2. For $q \in \mathsf{PIEOTree}(t)$ and $f \in \mathcal{F}$, $\mathsf{pop}(q, f)$ is undefined if and only if $\mathsf{pop}(\mathsf{proj}_f(q))$ is undefined.

Proof. TODO: structural induction on q

Lemma 2.3. For $q \in \mathsf{PIEOTree}(t)$ and $f \in \mathcal{F}$,

$$pop(q, f) = (pkt, q') \implies pop(proj_f(q)) = (pkt, proj_f(q'))$$

Proof. TODO!

Lemma 2.4. For $q \in \mathsf{PIEOTree}(t)$, $\mathsf{pkt} \in \mathsf{Pkt}$, $d \in \mathsf{Data}$, $pt \in \mathsf{Path}(t)$, and $f \in \mathcal{F}$,

$$\operatorname{proj}_{f}(\operatorname{push}(q,\operatorname{pkt},d,\operatorname{pt})) = \begin{cases} \operatorname{push}(\operatorname{proj}_{f}(q),\operatorname{pkt},\operatorname{pt}) & f(d) \text{ holds true} \\ \operatorname{proj}_{f}(q) & \text{otherwise} \end{cases}$$

Proof. TODO! □

3 Embedding & Simulation

Definition 3.1. Let $t_1, t_2 \in \textbf{Topo}$. We call a relation $R \subseteq \textbf{PIEOTree}(t_1) \times \textbf{PIEOTree}(t_2)$ a *simulation* if, for all pkt $\in \textbf{Pkt}$, $f \in \mathcal{F}$, and $q_1 R q_2$,

- (1) If $pop(q_1, f)$ is undefined, then so is $pop(q_2, f)$
- (2) If $pop(q_1, f) = (pkt, q'_1)$, then $pop(q_2) = (pkt, q'_2)$ such that $q'_1 R q'_2$.
- (3) For all $pt_1 \in \mathbf{Path}(t_1)$ and $d \in \mathbf{Data}$, there exists $pt_2 \in \mathbf{Path}(t_2)$ such that

$$push(q_1, pkt, d, pt_1) R push(q_2, pkt, d, pt_2)$$

If such a simulation exists, we say that q_1 is simulated by q_2 , and we write $q_1 \leq q_2$.

Remark 3.2. For all further discussion, we assume our embeddings are injective.

Definition 3.3. For t_1 , $t_2 \in \textbf{Topo}$, let f be an embedding from t_1 to t_2 . We lift f to a map \overline{f} from **PIEOTree** (t_1) to **PIEOTree** (t_2) inductively.

- For $t_1 = *$, define $\overline{f}(q) = q$. This is well-defined by [Mohan et al., 2023, Lemma 5.2].
- For $t_1 = \text{Node}(ts_1)$, $n = |ts_1|$, q = Internal(qs, p), construct $\overline{f}_{\alpha}(q) \in \text{PIEOTree}(t_2/\alpha)$ for each prefix α of f(i) for some $i \in [1, n]$. Inductively, we'll build up from f(i)'s to ϵ and set $\overline{f}(q) = \overline{f}_{\epsilon}(q)$.
 - Let $\alpha = f(i)$ for some $i \in [1, n]$. We'll set $\overline{f}_{\alpha}(q) = \overline{f}_i(qs[i])$, where f_i embeds t_1/i into $t_2/f(i)$ as per [Mohan et al., 2023, Lemma 5.2]. This well-defined by the injectivity of f.
 - Let α point to a transient node, say with m children. For $1 \leq j \leq m$ such that $\alpha \cdot j$ is not a prefix of some f(i), define $\overline{f}(q)_{\alpha \cdot j}$ to be the PIEO tree with empty PIEOs on all leaves and internal nodes. With this and recursion, we know $\overline{f}(q)_{\alpha \cdot j} \in \mathsf{PIEOTree}(t_2/(\alpha \cdot j))$ for all $j \in [1, m]$. We create a new PIEO p_{α} as follows:
 - (1) Start with p_{α} empty
 - (2) For each i in p such that $\alpha \cdot j$ is a prefix of f(i), push j into p_{α} with i's data and rank Finally, for all $j \in [1, m]$, set $qs_{\alpha}[j] = \overline{f}(q)_{\alpha \cdot j}$ and $\overline{f}(q)_{\alpha} = \operatorname{Internal}(qs_{\alpha}, p_{\alpha})$.

Theorem 3.4. Let $t_1, t_2 \in \textbf{Topo}$. If f embeds t_1 into t_2 , then

$$R = \{(q, f(q)) \mid q \in \mathsf{PIEOTree}(t_1)\}$$

is a simulation.

References

[Mohan et al., 2023] Mohan, A., Liu, Y., Foster, N., Kappé, T., and Kozen, D. (2023). Formal abstractions for packet scheduling.