Учебни приложения за "Метод на Фурие за гранични задачи за уравнението на Лаплас"

Класически пример за елиптичното уравнение в \mathbb{R}^2 е двумерното уравнение на Лаплас

$$u_{xx} + u_{yy} = 0.$$

С елиптични уравнения се моделират стационарни процеси (т.е. не се променят във времето). Например: стационарно разпределение на температурата в хомогенно тяло, стационарен потенциален поток за несвиваема течност, разпределение на потенциала в електростатично поле, потенциал на нютоново гравитационно поле, статични огъвания на мембрана.

Ще илюстрираме метода на Фурие за някои стандартни гранични задачи – търсим решение на уравнението на Лаплас в ограничена област D, като са зададени определени условия върху цялата граница на областта ∂D .

Уравнението на Лаплас в полярни координати (ρ, φ) : $x = \rho \cos \varphi$ и $y = \rho \sin \varphi$, има вида:

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \varphi^2} = 0,$$

който също позволява да се разделят променливите.

Тук ще покажем как можем да използваме метода на Фурие в случаите, когато областта е: правоъгълник, кръг, сектор, венец, сектор на венец.

1. Учебно приложение "Метод на Фурие за уравнението на Лаплас в правоъгълник"

Да разгледаме в правоъгълника $D = \{0 < x < 2\,,\ 0 < y < 3\} \subset \mathbb{R}^2$ граничната задача

$$\left\{ \begin{array}{l} u_{xx} + u_{yy} = 0 \quad \text{ B } D, \\ u|_{x=0} = 0 \quad \text{ aa } 0 < y < 3, \\ u_{x}|_{x=2} = 0 \quad \text{ aa } 0 < y < 3, \\ u|_{y=0} = 0 \quad \text{ aa } 0 < x < 2, \\ u|_{y=3} = x(4-x)\cos 2\pi x \quad \text{ aa } 0 < x < 2. \end{array} \right.$$

Прилагайки метода на разделяне на променливите, търсим ненулево решение на уравнението от вида

$$u(x, y) = X(x)Y(y).$$

Така получаваме

$$X''Y + XY'' = 0,$$

откъдето следва, че

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = \lambda$$

за някаква константа $\lambda = const.$

Оттук и от хомогенните гранични условия върху x=0 и x=2 в граничната задача, за функцията X получаваме задачата на Шурм-Лиувил

$$\begin{cases} X'' - \lambda X = 0 \\ X(0) = 0 \\ X'(2) = 0 \end{cases}$$

Тази задачата на Щурм-Лиувил има собствени стойности

$$\lambda_k = -\frac{(2k+1)^2 \pi^2}{16}$$

за k = 0, 1, ..., и собствени функции

$$X_k(x) = \sin\frac{(2k+1)\pi x}{4}.$$

Сега, за Y получаваме уравнението

$$Y_k'' + \lambda_k Y_k = 0$$

което има общо решение

$$Y_k(x) = A_k e^{(2k+1)\pi y/4} + B_k e^{-(2k+1)\pi y/4}.$$

Търсим решението u(x,y), като линейна комбинация на функции от вида $X_k Y_k$:

$$u(x,y) = \sum_{k=0}^{\infty} (A_k e^{(2k+1)\pi y/4} + B_k e^{-(2k+1)\pi y/4}) \sin\frac{(2k+1)\pi x}{4},$$

където коефициентите A_k и B_k се определят от граничните условия

$$u|_{y=0} = 0$$
 и $u|_{y=3} = x(4-x)\cos 2\pi x$.

От първото условие намираме, че

$$A_k + B_k = 0,$$

а от второто

$$A_k e^{3(2k+1)\pi/4} + B_k e^{-3(2k+1)\pi/4} = \alpha_k$$

където α_k са коефициентите в развитието в ред на Фурие на функцията $x(4-x)\cos 2\pi x$:

$$x(4-x)\cos 2\pi x = \sum_{k=0}^{\infty} \alpha_k \sin \frac{(2k+1)\pi x}{4}.$$

Така получаваме

$$B_k = -A_k,$$

$$A_k = \frac{1}{8(e^{3(2k+1)\pi/4} - e^{-3(2k+1)\pi/4})} \int_0^2 x(4-x)\cos 2\pi x \sin\left(\frac{(2k+1)\pi x}{4}\right) dx.$$

В конкретния случай бихме могли да пресметнем интеграла точно, но за да спестим усилия ще използваме MatLab за да го намерим приблизително. Във файла "laplace_eq_rct.m" е представен код на MatLab за визуализация на решението чрез пресмятане на парциалната сумата от първите 25 члена на реда.

Разбира се, по подобен начин могат да се решават с разделяне на променливите и задачи, при които имаме други видове гранични условия. За

да получим обаче подходяща задача на Щурм-Лиувил по едната променлива, задължително върху две срещуположни страни на правоъгълника граничните условия трябва да са хомогенни.

В общия случай, когато имаме ненулеви условия върху цялата граница, задачата може да се сведе до решаване на две нови задачи, всяка с хомогенни гранични условия върху една от двете двойки срещуположни страни на правоъгълника. Така получените гранични задачи ще могат да се решат по отделно с вече илюстрирания метод на Фурие. По конкретно, да разгледаме например граничната задача в правоъгълника $D=\{0< x< a\,,\, 0< y< b\}$

$$\begin{cases} u_{xx} + u_{yy} = 0 & \text{B } D, \\ u|_{x=0} = h_1(y) & \text{3a } 0 < y < b, \\ u|_{x=a} = h_2(y) & \text{3a } 0 < y < b, \\ u|_{y=0} = g_1(x) & \text{3a } 0 < x < a, \\ u|_{y=b} = g_2(x) & \text{3a } 0 < x < a. \end{cases}$$

като граничните данни удовлетворяват условията за съгласуване на във върховете на D: $h_1(0)=g_1(0),\,h_2(0)=g_1(a),\,h_1(b)=g_2(0),\,h_2(b)=g_2(a).$ Най-напред ще "нулираме" граничните данни във върховете на правоъгълника. За целта ще представим решението като u(x,y)=v(x,y)+w(x,y), където функцията w удовлетворява условията

$$\begin{cases} w(0,0) = h_1(0) = g_1(0) \\ w(a,0) = h_2(0) = g_1(a) \\ w(0,b) = h_1(b) = g_2(0) \\ w(a,b) = h_2(b) = g_2(a) \end{cases}$$

и е удобно да се търси от вида

$$w(x,y) = a_0 + a_1x + a_2y + a_3xy$$

където коефициентите a_0 , a_1 , a_2 и a_3 се определят подходящо. Забележете, че за така избраната функция w имаме $\Delta w := w_{xx} + w_{yy} = 0$ и следователно v също е хармонична в D.

Сега вече можем да представим v като $v=v_1+v_2$, където функциите v_1 и v_2 са решения на следните две гранични задачи

$$\begin{cases} \Delta v_1 = 0 & \text{ B } D, \\ v_1|_{x=0} = 0 & \text{ 3a } 0 < y < b, \\ v_1|_{x=a} = 0 & \text{ 3a } 0 < y < b, \\ v_1|_{y=0} = \psi_1(x) & \text{ 3a } 0 < x < a, \\ v_1|_{y=b} = \psi_2(x) & \text{ 3a } 0 < x < a, \end{cases} \begin{cases} \Delta v_2 = 0 & \text{ B } D, \\ v_2|_{x=0} = \varphi_1(y) & \text{ 3a } 0 < y < b, \\ v_2|_{x=a} = \varphi_1(y) & \text{ 3a } 0 < y < b, \\ v_2|_{y=0} = 0 & \text{ 3a } 0 < x < a, \\ v_2|_{y=0} = 0 & \text{ 3a } 0 < x < a, \end{cases}$$

като функциите в граничните условия са

$$\psi_1(x) = g_1(x) - w(x,0) , \quad \varphi_1(y) = h_1(y) - w(0,y) ,$$

 $\psi_2(x) = g_2(x) - w(x,b) , \quad \varphi_2(y) = h_2(y) - w(a,y) .$

Функцията w е така построена, че за двете задачи да са изпълнени условията за съгласуване на граничните данни във върховете на правоъгълника

$$\psi_1(0) = \psi_1(a) = \psi_2(0) = \psi_2(a) = 0$$
 и $\varphi_1(0) = \varphi_1(b) = \varphi_2(0) = \varphi_2(b) = 0$.

Функциите v_1 и v_2 можем да построим като към всяка от двете задачи приложим илюстрирания по-рано метод на разделяне на променливите, а за решението на оригиналната задача ще получим

$$u = v_1 + v_2 + w .$$

2. Учебно приложение "Метод на Фурие за уравнението на Лаплас в сектор на венец"

За да приложим метода на Фурие за уравнението на Лаплас в сектор на венец ще използваме полярни координати. Например да разгледаме в областта

$$D = \{(x, y): x > 0, y > 0, 1 < x^2 + y^2 < 9\}$$

граничната задача

$$\begin{cases} u_{xx} + u_{yy} = 0 & \text{ B } D, \\ u_y|_{y=0} = 0 & \text{ sa } x \in (1,3), \\ u|_{x=0} = 0 & \text{ sa } y \in (1,3), \\ u = 0 & \text{ при } x^2 + y^2 = 1, \ x > 0, \ y > 0, \\ u = y^2 \sin 2x & \text{ при } x^2 + y^2 = 9, \ x > 0, \ y > 0. \end{cases}$$

Като въведем полярни координати (ρ,φ) : $x=\rho\cos\varphi$ и $y=\rho\sin\varphi$, областта D се трансформира в правоъгълника

$$D_1 = \{(\rho, \varphi): 1 < \rho < 3, 0 < \varphi < \pi/2\}.$$

След смяната на променливите в уравнението, получаваме

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \varphi^2} = 0.$$

Граничните условия се преобразуват съответно в

$$u_{\varphi}|_{\varphi=0} = 0,$$

 $u|_{\varphi=\pi/2} = 0,$
 $u|_{\rho=1} = 0,$
 $u|_{\rho=3} = 9(\cos\varphi)^2 \sin(6\sin\varphi).$

В правоъгълника D_1 можем да разделим променливите – търсим решения на уравнението от вида

$$u(\rho, \varphi) = R(\rho)\Phi(\varphi).$$

Тогава от уравнението на Лаплас в полярни координати получаваме

$$R''\Phi + \frac{R'}{\rho}\Phi + \frac{R}{\rho^2}\Phi'' = 0$$

и като разделим на $R\Phi$ намираме

$$\frac{\rho^2 R'' + \rho R'}{R} = -\frac{\Phi''}{\Phi} = \lambda,$$

където λ е някаква константа.

Така от граничните условия върху $\varphi=0$ и $\varphi=\pi/2$, за функцията $\Phi(\varphi)$ получаваме задачата на Щурм-Лиувил

$$\begin{cases} \Phi'' + \lambda \Phi = 0 \\ \Phi'(0) = 0 \\ \Phi(\pi/2) = 0 \end{cases}$$

Собствените стойности са

$$\lambda_k = (2k+1)^2$$

за k = 0, 1, ..., а съответните собствени функции са

$$\Phi_k(\varphi) = \cos(2k+1)\varphi.$$

Тогава, за R получаваме линейното уравнение от типа на Ойлер

$$\rho^2 R_k'' + \rho R_k' - \lambda_k R_k = 0,$$

което има общо решение

$$R_k(\rho) = A_k \rho^{2k+1} + B_k \rho^{-2k-1}.$$

Така можем да представим решението на граничната задача във вида

$$u(\rho,\varphi) = \sum_{k=0}^{\infty} (A_k \rho^{2k+1} + B_k \rho^{-2k-1}) \cos(2k+1)\varphi,$$

където коефициентите A_k и B_k определяме от граничните условия върху $\rho=1$ и $\rho=3$. Оттук

$$A_k + B_k = 0,$$

 $A_k 3^{2k+1} + B_k 3^{-2k-1} = \beta_k,$

където β_k са коефициентите в развитието в ред на Фурие на функцията $9(\cos\varphi)^2 \sin(6\sin\varphi)$. Окончателно, с метода на Фурие за решението в полярни координати получаваме

$$u(\rho, \varphi) = \sum_{k=0}^{\infty} A_k(\rho^{2k+1} - \rho^{-2k-1})\cos(2k+1)\varphi,$$

където коефициентите са

$$A_k = \frac{36}{\pi(3^{2k+1} - 3^{-2k-1})} \int_0^{\pi/2} (\cos \varphi)^2 \sin(6\sin \varphi) \cos(2k+1)\varphi \, d\theta.$$

Във файла "laplace_eq_ring_sec.m" е построено приближение на решението чрез пресмятане в MatLab на парциалната сумата от първите N=30 члена на реда.

3. Учебно приложение "Метод на Фурие за уравнението на Лаплас в сектор на кръг"

По подобен начин може да процедираме и в случая когато областта е сектор на кръг вместо на венец. Особеността е, че граничното условие върху вътрешната окръжност на венеца "се заменя" просто с условие за ограниченост на решението в центъра на кръга. Като пример ще разгледаме граничната задача

$$\left\{ \begin{array}{ll} u_{xx} + u_{yy} = 0 & \text{ в } D = \{x > y > 0 \;,\; x^2 + y^2 < 4\}, \\ u|_{y=0} = 0 & \text{ за } 0 < x < \sqrt{2}, \\ u|_{x=y} = 0 & \text{ за } 0 < x < \sqrt{2}, \\ \frac{\partial u}{\partial n} = x^2 y - y^3 & \text{при } x^2 + y^2 = 4,\; x > y > 0. \end{array} \right.$$

В полярни координати тя се свежда до

$$\begin{cases} \Delta u = 0 & \text{в} \ D_1 = \left\{ 0 < \rho < 2 \ , \ 0 < \varphi < \frac{\pi}{4} \right\}, \\ u|_{\varphi=0} = 0 & \text{за } 0 < \rho < 1, \\ u|_{\varphi=\pi/4} = 0 & \text{за } 0 < \rho < 1, \\ u_{\rho|_{\rho=2}} = \sin^2 \varphi \cos \varphi - \cos^3 \varphi & \text{при } 0 < \varphi < \frac{\pi}{4}. \end{cases}$$

Ще отбележим че в получената гранична задача върху страната $\rho = 0$ на правоъгълника D_1 няма зададено гранично условие. Всъщност, полярната смяна има особеност върху правата $\{\rho = 0\}$ и тя е образ само на една точка – центъра x = y = 0. Оказва се, че е достатъчно се наложи само естественото условие решението $u(\rho, \varphi)$ да е ограничено при $\rho \to 0$.

Както преди, търсим решения на уравнението от вида

$$u(\rho, \varphi) = R(\rho)\Phi(\varphi)$$

и от уравнението на Лаплас и получаваме

$$\frac{\rho^2 R'' + \rho R'}{R} = -\frac{\Phi''}{\Phi} = \lambda.$$

където λ е някаква константа. Оттук, в конкретния случай, за функцията $\Phi(\varphi)$ получаваме задачата на Щурм-Лиувил

$$\begin{cases} \Phi'' + \lambda \Phi = 0 \\ \Phi(0) = 0 \\ \Phi(\pi/4) = 0 \end{cases}$$

която има собствени стойности

$$\lambda_k = 16k^2$$

и собствени функции

$$\Phi_k(\varphi) = \sin 4k\varphi$$

за $k = 1, 2, \dots$ Сега, от линейното уравнение

$$\rho^2 R_k'' + \rho R_k' - \lambda_k R_k = 0,$$

получаваме

$$R_k(\rho) = A_k \rho^{4k} + B_k \rho^{-4k}$$

и можем да представим решението на граничната задача като

$$u(\rho,\varphi) = \sum_{k=1}^{\infty} (A_k \rho^{4k} + B_k \rho^{-4k}) \sin 4k\varphi.$$

Тук от условието, че решението $u(\rho,\varphi)$ е ограничено при $\rho\to 0$, следва че коефициентите B_k трябва да са 0, тъй като функциите ρ^{-4k} не са ограничени. Коефициентите A_k определяме от граничното условие върху $\rho=2$. И така, получаваме

$$u(\rho,\varphi) = \sum_{k=1}^{\infty} A_k \rho^{4k} \sin 4k\varphi.$$

където

$$A_k = \frac{2^{2-4k}}{\pi k} \int_{0}^{\pi/4} \cos \varphi (\sin^2 \varphi - \cos^2 \varphi) \sin 4k \varphi \, d\theta.$$

Парциалната сумата от първите N=30 члена на реда са пресметнати с MatLab във файла "laplace eq circ sec.m".

4. Учебно приложение "Метод на Фурие за уравнението на Лаплас във Венец"

Разликата от случая на сектор на венец е, че сега вместо гранични условия в задачата на Щурм-Лиувил, ще искаме функцията $\Phi(\varphi)$ да е 2π периодична.

Например, задачата

$$\left\{ \begin{array}{l} u_{xx} + u_{yy} = 0 \quad \text{ в } D = \{1 < x^2 + y^2 < 4\}, \\ \frac{\partial u}{\partial n} = 0 \quad \text{при } (x,y) \in \{x^2 + y^2 = 1\}, \\ u(x,y) = x \cos \frac{\pi y}{2} \quad \text{при } (x,y) \in \{x^2 + y^2 = 2\}. \end{array} \right.$$

в полярни координати е

$$\begin{cases} \Delta u = 0 & \text{B} \ D_1 = \{1 < \rho < 2\}, \\ u_{\rho|_{\rho=1}} = 0, \\ u|_{\rho=2} = 2\cos\varphi \, \cos(\pi\sin\varphi). \end{cases}$$

Търсим ненулеви решения на уравнението на Лаплас от вида

$$u(\rho, \varphi) = R(\rho)\Phi(\varphi)$$

като функцията $\Phi(\varphi)$ трябва е 2π периодична. Така за $\Phi(\varphi)$ получаваме

$$\left\{ \begin{array}{l} \Phi'' + \lambda \Phi = 0 \\ \Phi(\varphi + 2\pi) = \Phi(\varphi) \end{array} \right.$$

Възможните стойности за λ са $\lambda_k=k^2$ за k=0,1,2,..., а съответните периодични решения имат вида

$$\Phi_k(\varphi) = a_k \cos k\varphi + b_k \sin k\varphi.$$

Тогава от уравнението

$$\rho^2 R'' + \rho R' - \lambda R = 0$$

намираме

$$R_0(
ho)=c_0+d_0\ln
ho$$
 $R_k(
ho)=c_k
ho^k+d_k
ho^{-k}\,$ при $k=1,2,...$

Решението на задачата търсим от вида

$$u(\rho,\varphi) = A_0 + C_0 \ln \rho + \sum_{k=1}^{\infty} \left[(A_k \rho^k + C_k \rho^{-k}) \cos k\varphi + (B_k \rho^k + D_k \rho^{-k}) \sin k\varphi \right].$$

От условието $u_{\rho}|_{\rho=1}=0$ получаваме

$$C_0 = 0$$
, $A_k = C_k$ и $B_k = D_k$ за $k = 1, 2, ...$

Окончателно, коефициентите A_k и B_k определяме от условието $u|_{\rho=2}=2\cos\varphi\cos(\pi\sin\varphi)$. Решението е

$$u(\rho,\varphi) = A_0 + \sum_{k=1}^{\infty} (\rho^k + \rho^{-k}) \left(A_k \cos k\varphi + B_k \sin k\varphi \right),$$

където

$$A_0 = \frac{1}{2\pi} \int_0^{2\pi} 2\cos\varphi \, \cos(\pi\sin\varphi) \, d\theta ,$$

$$A_k = \frac{1}{\pi(2^k + 2^{-k})} \int_0^{2\pi} 2\cos\varphi \, \cos(\pi\sin\varphi) \cos(k\theta) \, d\theta ,$$

$${}_{2\pi}$$

$$B_k = \frac{1}{\pi (2^k + 2^{-k})} \int_0^{2\pi} 2\cos\varphi \, \cos(\pi \sin\varphi) \sin(k\theta) \, d\theta .$$

Графиката на решението е получена в MatLab-файла "laplace_eq_ring.m", където е пресметната сумата от първите N=25 члена на реда.

5. Учебно приложение "Метод на Фурие за уравнението на Лаплас в кръг"

Ще подходим по подобен начин както в случая, когато областта бе венец. Както в случая на сектор, вместо граничното условие върху вътрешната окръжност ще поискаме ограниченост на решението в центъра на кръга.

Да разгледаме задачата

$$\begin{cases} u_{xx} + u_{yy} = 0 & \text{в } D = \{x^2 + y^2 < 16\}, \\ u(x,y) = \cos 2x + \cos y & \text{при } (x,y) \in \partial D = \{x^2 + y^2 = 16\} \end{cases}$$

която записана в полярни координати е

$$\begin{cases} \Delta u = 0 \quad \text{B} \quad D_1 = \{ \rho < 4 \}, \\ u|_{\rho=4} = \cos(4\cos\varphi) + \cos(\sin\varphi). \end{cases}$$

Аналогично на случая на венец, търсим решения на уравнението на Лаплас от вида

$$u(\rho, \varphi) = R(\rho)\Phi(\varphi)$$

с 2π -периодична функция $\Phi(\varphi)$. Повтаряйки разсъжденията от предишния случай, получаваме, че можем да търсим решението във вида

$$u(\rho,\varphi) = A_0 + C_0 \ln \rho + \sum_{k=1}^{\infty} \left[(A_k \rho^k + C_k \rho^{-k}) \cos k\varphi + (B_k \rho^k + D_k \rho^{-k}) \sin k\varphi \right].$$

Сега, тъй като решението $u(\rho,\varphi)$ трябва да е ограничено при $\rho\to 0$, излиза че коефициентите C_k и D_k трябва да са 0, тъй като функциите $\ln\rho$ и ρ^{-k} не са ограничени. Така намираме

$$u(\rho, \varphi) = A_0 + \sum_{k=1}^{\infty} \rho^k \left(A_k \cos k\varphi + B_k \sin k\varphi \right),$$

където коефициентите

$$A_0 = \frac{1}{2\pi} \int_0^{2\pi} \left[\cos(4\cos\varphi) + \cos(\sin\varphi) \right] d\theta;$$

$$A_k = \frac{1}{\pi} \int_0^{2\pi} \left[\cos(4\cos\varphi) + \cos(\sin\varphi) \right] \cos(k\theta) d\theta;$$

$$B_k = \frac{1}{\pi} \int_0^{2\pi} \left[\cos(4\cos\varphi) + \cos(\sin\varphi) \right] \sin(k\theta) d\theta$$

сме определили от граничното условие върху $\rho = 4$.

Във файла "laplace_eq_circle.m" е построена в MatLab графиката на решението, като е пресметната сумата от първите N=20 члена на реда.

