

Aichemist Session

CHAP 04 분류(2)

CONTENTS

분류

- 01. 결정 트리
- 02. 앙상블 학습
- 03. 랜덤 포레스트
- 04. GBM

→ 4주차는 여기부터!

- 05. XGBoost
- 06. LightGBM
- 07. 베이지안 최적화 기반의 HyperOpt를 이용한 하이퍼 파라미터 튜닝
- 08. 스태킹 앙상블

O5.

XGBoost

XGBoost

: GBM 기반, 단점을 보완하여 각광받는 알고리즘 분류에서 일반적으로 다른 ML보다 뛰어난 예측 성능 가짐

- 주요 장점
- 분류, 회귀 영역에서 뛰어난 예측 성능
- 병렬 수행 및 병렬 수행 등 다양한 기능으로 GBM에 비해 빠른 수행 속도
- 과적하 규제 기능
- 나무 가지치기 : 긍정 이득이 없는 분할 줄임
- 고차건을 : 최적화된 반복 수행 횟수를 채웠거나 최적화가 이뤄지면 반복 중단
- 결손값 자체 처리

XGBoost 패키지

파이썬 래퍼 XGBoost	사이킷런 래퍼 XGBoost
- 사이킷런과 호환되지 않는 초기의 독자적인 XGBoost 전용 패키지 - 고유의 API와 하이퍼 파라미터 사용 - 주로 XGBoost의 고급 기능과 하이퍼파라미터 튜닝 을 수행할 때 사용	- 사이킷런과 연동되어 표준 사이킷런 개발 프로세스 및 유틸리티 사용 가능 - 클래스 : XGBClassifier, XGBRegressor

- 일반 파라미터 : 스레드의 개수나 silent 모드 등 선택, 일반적으로 default값 유지

- 부스터 파라미터 : 트리 최적화, 부스팅, regularization(정규화) 관련

- 학습 태스크 파라미터 : 학습에 사용되는 객체 함수, 평가 지표 등 설정

• 주요 일반 파라미터

booster gbtree(트리 기반 모델, 디폴트) / gblinear(선형 모델)		
silent	0(출력 메시지 x, 디폴트) / 1(출력 메시지 o)	
nthread	CPU의 실행 스레드 개수(디폴트: 전체 스레드 사용)	

• 주요 일반 파라미터

alias : 별칭. 이 이름으로 사용해도 동일한 설정 적용

eta	GBM의 learning rate와 같은 역할, 학습 반영률 0~1(디폴트: 0.3, 보통: 0.01~0.2, alias: learning_rate)
num_boost_rounds	GBM의 n_estimator와 같은 역할, weak learner의 개수
min_child_weight	트리 분할을 결정하는 데이터들의 weight 총합 (디폴트: 1) 클수록 분할 자제, 과적합 제어
gamma	트리의 리프 노드를 추가적으로 나눌지 결정하는 최소 손실 감소 값 (디폴트: 0, alias: min_split_loss) 값이 클수록 기계 제어
max_depth	트리 기반 알고리즘의 max_depth와 같은 역할, 과적합 제어 (디폴트: 6, 보통: 3~10)
sub_sample	GBM의 subsample과 같은 역할, 데이터의 샘플링 비율 0~1(디폴트: 1, 보통: 0.5~1)
colsample_bytree	GBM의 max_features와 같은 역할, 반영할 피처 개수 (디폴트: 1)

• 주요 부스터 파라미터

lambda	L2 Regulation 적용 값, 피처 많을 때 사용 검토 (디폴트: 1, alias: reg_lambda)
alpha	L1 Regulation 적용 값, 피처 많을 때 사용 검토 (디폴트: 0, alias: reg_alpha)
scale_pos_weight	비대칭한 클래스로 구성된 데이터 세트의 균형을 위한 파라미터 (디폴트: 1)

• 주요 학습 태스크 파라미터

	최솟값을 가져야 할 손실 함수를 정의
objective	binary:logistic : 이진 분류 / multi:softmax : 다중 분류 / multi:softprob :
	개별 레이블 클래스에 해당되는 예측 확률 반환
eval_matric	검증에 사용되는 함수 rmse(회귀 디폴트) / mae / logloss / error(분류 디폴트) / merror / mlogloss / auc

• 과적합 제어

- eta↓, num_round↑ - gamma↑

- max_depth ↓ - subsample, colsample_bytree 조절

- min_child_weight↑

- (1) 모듈 임포트, 데이터 로드 및 확인
- (2) 데이터 분리
- (3) XGBoost 모델 학습/예측/평가 (조기 중단 기능)
- (4) 피처 중요도 시각화

(1) 모듈 임포트, 데이터 로드 및 확인

```
# 데이터 로드 및 확인
import xgboost as xgb
from xgboost import plot_importance
import pandas as pd
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings('ignore')
#데이터 로드
dataset = load_breast_cancer()
features = dataset.data
labels = dataset.target
# DF 만들고 살펴보기
cancer_df = pd.DataFrame(data=features, columns=dataset.feature_names)
cancer_df['target'] = (ahels
cancer df.head(3)
```

```
# 레이블 값 분포 확인
print(dataset.target_names)
print(cancer_df['target'].value_counts())

['malignant' 'benign']
1 357
0 212
Name: target, dtype: int64
```

타깃 레이블

- 악성(malignant): 0

- 양성(benign): 1

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 target
0	17.99	10.38	122.8	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	 0
1	20.57	17.77	132.9	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	 0
2	19.69	21.25	130.0	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	 0

3 rows × 31 columns

(2) 데이터 분리

- 피처 / 레이블 데이터 세트 분리, 학습 / 테스트 / 검증 데이터 세트 분리

```
# cacer_df에서 feature용 DataFrame과 Label용 Series 객체 추출
# 앤 마지막 칼럼이 Label. Feature용 DataFrame은 cancer_df의 첫번째 칼럼에서 앤 마지막 두번째 칼럼까지를 :-1 슬라이상으로 추출
# 검증용 데이터 분할하여 XGBoost의 검증 성능 평가, 조기 중단 수행할 예정

X_features = cancer_df.iloc[:, :-1]
y_label = cancer_df.iloc[:, -1]

# 전체 데이터 중 80%는 학습용 데이터, 20%는 테스트용 데이터 추출

X_train, X_test, y_train, y_test = Train_Test_split(X_features, y_label, test_size=0.2, random_state=156)

# 위에서 만든 X_train, y_train을 다시 쪼개서 90%는 학습과 10%는 검증용 데이터로 분리
X_tr, X_val, y_tr, y_val = train_test_split(X_fram, y_frame), test_size=0.1, random_state=156)

# 나눠진 데이터 수 확인
print(X_train.shape, X_test.shape)
print(X_train.shape, X_val.shape)

(455, 30) (114, 30)
(409, 30) (46, 30)
```

- DataFrame을 XGBoost 전용 데이터 객체 Dmatrix로 변경

```
# XGBoost만의 전용 데이터 객체 DMatrix 사용 => Numpy, Pandas 데이터 세트를 Dmatrix로 생성해 모델에 입력해야함!!
# 학습, 검증, 테스트용 DMatrix를 생성
dtr = xgb.DMatrix(data=X_tr, label=y_tr)
dval = xgb.DMatrix(data=X_val, label=y_val)
dtest = xgb.DMatrix(data=X_test, label=y_test)
```

- (3) XGBoost 모델 학습/예측/평가 (조기 중단 기능)
- 하이퍼 파라미터 설정

train-logloss:0.01267

train-logloss:0.01258

[125]

[126]

[127]

[128]

[174]

[175] [176]

eval_metric = logloss 지정

- 평가용 데이터 세트 설정, 학습 수행 (조기 중단)

```
# 평가용 데이터 세트 설정
# 학습 데이터 셋은 'train' 또는 평가 데이터 셋은 'eval'로 명기
eval_list = [(dtr, 'train'),(dval, 'eval')] # 또는 eval_list = [(dval, 'eval')] 만 명기해도 무방
# 학습
# 하이퍼 파라미터와 early stopping 파라미터를 train() 함수의 파라미터로 전달
xgb_model = xgb.train(params = params, dtrain=dtr, num_boost_round=num_rounds, ₩
```

eval-logloss:0.26086

eval-logloss:0.26103

train() 으로 학습

평가용 데이터 세트 지정:

학습용, 검증용 DMatrix

⇒[126] 이후 early_stopping_rounds=50 동안 지표 개선x, 빠져나옴

(3) XGBoost 모델 학습/예측/평가 (조기 중단 기능)

- 예측

```
# 예측 수행 predict()
pred_probs = xgb_model.predict(dtest)
print('predict() 수행 결괏값을 10개만 표시, 예측 확률 값으로 표시됨')
print(np.round(pred_probs[:10], 3))

# 예측 결괏값이 아닌 예측 확률 값 반환, 예측값 결정 로직 추가
# 예측 확률이 0.5보다 크면 1, 그렇지 않으면 0으로 예측값 결정하여 List 객체인 preds에 저장
preds = [ 1 if x > 0.5 else 0 for x in pred_probs]
print('예측값 10개만 표시:', preds[:10])

predict() 수행 결괏값을 10개만 표시, 예측 확률 값으로 표시됨
[0.845 0.008 0.68 0.081 0.975 0.999 0.998 0.998 0.996 0.001]
예측값 10개만 표시: [1, 0, 1, 0, 1, 1, 1, 1, 0]
```

predict() 로 예측, 예측 확률 값 반환

- 평가

```
from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_auc_score
from sklearn.metrics import f1_score, confusion_matrix, precision_recall_curve, roc_curve
def get_clf_eval(y_test, pred=None, pred_proba=None):
    confusion = confusion_matrix(y_test, pred)
    accuracy = accuracy_score(y_test, pred)
    precision = precision_score(y_test, pred)
    recall = recall_score(y_test, pred)
    f1 = f1_score(y_test, pred)
    roc_auc = roc_auc_score(y_test, pred_proba)
    print('오차 행렬')
    print(confusion)
    print('정확도: {0:.4f}, 정밀도: {1:.4f}, 재현율: {2:.4f},\\
F1: {3:.4f}, AUC: {4:.4f}'.format(accuracy, precision, recall, f1, roc_auc))

# 예측 성능 평가
get_clf_eval(y_test, preds, pred_probs)
```

```
오차 행렬
[[34 3]
[ 2 75]]
정확도: 0.9561, 정밀도: 0.9615, 재현율: 0.9740, F1: 0.9677, AUC: 0.9937
```

3장의 get_clf_eval() 함수 적용

(4) 피처 중요도 시각화

- plot_importance()

평가 지표: f 스코어 해당 피처가 트리 분할 시 얼마나 자주 사용되었는지 지표로 나타냄

to_graphviz():

xgboost에서 트리 기반 규칙 구조 시각화 가능

파이썬 래퍼 XGBoost 교차 검증

xgboost.cv(params, dtrain, num_boost_round, nfold, stratified, folds, metrics, obj, feval, maximize, early_stopping_rounds, fpreproc, as_pandas, verbose_eval, show_stdv, seed, call_back, shuffle)

사이킷런 GridSearchCV와 유사

데이터 세트에 대한 교차 검증 수행 후 최적 파라미터 구할 수 있음

이름	설명
params (dict)	부스터 파라미터
dtrain (DMatrix)	학습 데이터
num_boost_round (int)	부스팅 반복 횟수
nfold (int)	CV 폴드 개수
stratified (bool)	CV 수행 시 층화 표본 추출(Stratified sampling) 수행 여부
metrics (string or list of string)	CV 수행 시 모니터링할 성능 평가 지표
early_stopping_rounds (int)	조기 중단을 활성화시킴, 반복 횟수 지정

사이킷런 래퍼 XGBoost 하이퍼 파라미터

• 파이썬 - 사이킷런 파라미터명 차이

파이썬 래퍼 XGBoost	사이킷런 래퍼 XGBoost	
eta	learning_rate	
sub_sample	subsample	
lambda	reg_lambda	
alpha	reg_alpha	
num_boost_round	n-estimators	

• 조기 중단 파라미터

	early_stopping_rounds	평가 지표가 향상될 수 있는 반복 횟수 정의
Ī	eval_metric	조기 중단을 위한 평가 지표
	eval_set	성능 평가를 수행할 데이터 세트 - 학습 데이터가 아닌 별도의 데이터 세트여야 한다

- (1) 기본 학습/예측/평가
- (2) 조기 중단 학습/예측/평가 (early_stopping_rounds=50)
- (3) 조기 중단 학습/예측/평가 (early_stopping_rounds=10)
- (4) 피처 중요도 시각화

(1) 기본 학습/예측/평가

```
# 파이썬 래퍼 XGBoost 실습 예제 노트북 이어서 사용
# 사이킷런 래퍼 XGBoost 클래스인 XGBClassifier 임포트
from xgboost import XGBClassifier
# Warning 메세지를 없애기 위해 eval metric 값을 XGBClassifier 생성 인자로 입력.
#모텔 생성
         = Waster(n_estimators=400, learning_rate=0.05, max_depth=3, eval_metric='logloss')
xgb_wrapper
#학습
xgb_wrapper. (X_train, y_train, verbose=True)
# 예측
w_pred_proba = xgb_wrapper.predict_proba(X_test)[:, 1]
get_clf_eval(y_test, w_preds, w_pred_proba)
오차 행렬
[[34 3]
[ 1 76]]
정확도: 0.9649, 정밀도: 0.9620, 재현율: 0.9870, F1: 0.9744, AUC: 0.9954
```

데이터 세트가 작아서 검증 데이터 분리 또는 교차 검증 등을 적용할 때 성능 수치가 불안정함

(2) 조기 중단 학습/예측/평가 (early_stopping_rounds=50)

```
#조기 중단 수행
from xgboost import XGBClassifier
xgb_wrapper = XGBClassifier(n_estimators=400, learning_rate=0.05, max_depth=3)
evals = [(X_tr, y_tr), (X_val, y_val)] # 파이썬 래퍼와 다르게 맨 앞이 학습용, 뒤 튜플이 검증용 데이터로 자동 인식
xgb_wrapper.fit(X_tr, y_tr, e/any_ctopping_ hounds=50, eval_metric="logloss", eval_set=evals, verbose=True)
ws50_preds = xgb_wrapper.predict(X_test)
ws50 pred proba = xgb wrapper.predict proba(X test)[:, 1]
[125]
      validation 0-logloss:0.01998
                                     validation 1-logloss:0.25714
      validation_0-logloss:0.01973
                                     validation_1-logloss:0.25587
[126]
       validation_0-logloss:0.01946
                                     validation_1-logloss:0.25640
[127]
[174]
       validation_0-logloss:0.01278
                                     validation_1-logloss:0.26229
[175]
       validation_0-logloss:0.01267
                                     validation_1-logloss:0.26086
                                                                     파이썬 래퍼의 조기 중단과 동일하게 학습 마무리
       validation_0-logloss:0.01258
                                     validation 1-logloss:0.26103
[176]
```

평가 get_clf_eval(y_test, ws50_preds, ws50_pred_proba)

오차 행렬 [[34 3] [275]]

정확도: 0.9561, 정밀도: 0.9615, 재현율: 0.9740, F1: 0.9677, AUC: 0.9933

파이썬 래퍼의 조기 중단과 성능 동일

(3) 조기 중단 학습/예측/평가 (early_stopping_rounds=10)

```
# early stopping rounds를 10으로 설정하고 재학습
xgb_wrapper.fit(X_tr, y_tr, early_stopping_rounds=10, eval_metric="logloss", eval_set=evals, verbose=True)
ws10_preds = xgb_wrapper.predict(X_test)
ws10_pred_proba = xgb_wrapper.predict_proba(X_test)[:, 1]
get_clf_eval(y_test, ws10_preds, ws10_pred_proba)
[92]
       validation 0-logloss:0.03152
                                       validation 1-logloss:0.25918
[93]
       validation_0-logloss:0.03107
                                       validation_1-logloss:0.25864
[94]
       validation_0-logloss:0.03049
                                       validation_1-logloss:0.25951
[101]
       validation_0-logloss:0.02751
                                       validation_1-logloss:0.25955
       validation_0-logloss:0.02714
                                      validation_1-logloss:0.25901
[102]
[103]
       validation_0-logloss:0.02668
                                      validation_1-logloss:0.25991
오차 행렬
[[34 3]
[ 3 74]]
정확도: 0.9474, 정밀도: 0.9610, 재현율: 0.9610, F1: 0.9610, AUC: 0.9933
```

조기 중단값이 너무 작아서 아직 성능이 향상될 여지가 있음에도 학습이 멈춰 예측 성능 저하

(4) 피처 중요도 시각화

피처 중요도 시각화
from xgboost import plot_importance
import matplotlib.pyplot as plt
%matplotlib inline
fig, ax = plt.subplots(figsize=(10, 12))
사이킷런 래퍼 클래스를 입력해도 무방
plot_importance(xgb_wrapper, ax=ax)

파이썬 래퍼 클래스와 결과 동일

O6.
LightGBM

LightGBM

: GBM 기반, XGBoost 장점 계승, 단점 보완한 알고리즘

- XGBoost 대비 장점
- 빠른 학습과 예측 수행 시간, 더 작은 메모리 사용량
- XGBoost와 예측 성능은 비슷하지만 기능상 더 다양
- 카테고리형 피처의 자동 변환과 최적 분할
- 기도생트리 분할(Leaf Wise) : 일반적인 트리 분할 방식처럼 생기에 을 맞추는 대신

 $\sqrt{\frac{1}{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j$

7/2/2 2/TLYE

단점 : 가능성 증가

LightGBM 하이퍼 파라미터

• 주요 파라미터

num-iterations	반복 수행하려는 트리의 개수 일정 수준까지 증가 시 예측 성능 향상 (디폴트: 100, 사이킷런 클래스: n_estimator)
learning-rate	부스팅 스텝을 반복적으로 수행할 때 업데이트되는 학습률 0~1(디폴트: 0.1)
max_depth	트리 기반 알고리즘의 max_depth < 0 이면 깊이 제한X (디폴트: -1)
min_data_in_leaf	결정 트리의 min_samples_leaf와 같은 역할 (디폴트: 20, 사이킷런 클래스: min_child_samples)
num_leaves	하나의 트리가 가질 수 있는 최대 리프 개수 (디폴트: 31)
boosting	부스팅의 트리를 생성하는 알고리즘 gbdt(디폴트) : GBM / rf : 랜덤 포레스트

LightGBM 하이퍼 파라미터

bagging_fraction	데이터 샘플링 비율 지정, 과적합 제어 (디폴트: 1, 사이킷런 클래스: 동일)
feature_fraction	개별 트리를 학습할 때마다 무작위로 선택하는 feature의 비율 (디폴트: 1, 사이킷런 클래스: 동일)
lambda_l2	L2 regulation 제어, 과적합 제어(피처 많을 때 적용) (디폴트: 0, 사이킷런 클래스: reg_lambda)
lambda_l1	L1 regulation 제어, 과적합 제어(피처 많을 때 적용) (디폴트: 0, 사이킷런 클래스: reg_alpha)

• 학습 태스크 파라미터

	최솟값 가져야 할 손실 함수 정의
objective	binary:logistic : 이진 분류 / multi:softmax : 다중 분류 / multi:softprob :
	개별 레이블 클래스에 해당되는 예측 확률 반환

- (1) LGBMClassifier 학습/예측/평가
- (2) 피처 중요도 시각화

(1) LGBMClassifier 학습/예측/평가

```
# LightGBM의 파이썬 패키지인 lightgbm에서 LGBMClassifier 임포트 from lightgbm import 【有別版 19855(色)
#모듈 임포트
import pandas as pd
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
# 데이터 로드 및 피처/레이블 분리
dataset = load_breast_cancer()
cancer df = pd.DataFrame(data=dataset.data, columns=dataset.feature names)
cancer df['target']=dataset.target
X_features = cancer_df.iloc[:, :-1]
y label = cancer df.iloc[:, -1]
# 학습/테스트/검증용 데이터 분리
# 전체 데이터 중 80%는 학습용 데이터, 20%는 테스트용 데이터 추출
# 위에서 만든 X_train, y_train을 다시 쪼개서 90%는 학습, 10%는 검증용 데이터로 분리
X_tr, X_val, y_tr, y_val = train_test_split ( from ), y_trg, v, test_size=0.1, random_state=156)
#모델 생성
# 앞서 XGBoost와 동일하게 n_estimators는 400
Igbm_wrapper = [CBMC]occf(ekn_estimators=400, learning_rate=0.05)
#LightGBM도 XGBoost와 동일하게 조기 중단 수행 가능
evals = [(X_tr, y_tr), (X_val, y_val)]
Igbm_wrapper.fit(X_tr, y_tr, early_stopping_rounds=50, eval_metric="logloss", eval_set=evals, verbose=True)
# 예측
preds = Igbm wrapper.predict(X test)
pred_proba = Igbm_wrapper.predict_proba(X_test)[:, 1]
                                                valid 1's binary logloss: 0.260236
[61]
       training's binary logloss: 0.0532381
       training's binary logloss: 0.0514074
[62]
                                                valid 1's binary logloss: 0.261586
      training's binary logloss: 0.00850714 valid 1's binary logloss: 0.280894
```

XGBoost와 동일하게 진행

- 모듈 임포트
- 데이터 로드
- 피처/레이블 데이터 분리
- 학습/테스트/검증용 데이터 분리
- 모델 생성
- 평가용 데이터 지정
- 학습
- 예측
- 평가

```
# 예측 성능 평가
```

get clf eval(v test, preds, pred proba)

오차 행렬 [[34 3] [275]]

정확도: 0.9561, 정밀도: 0.9615, 재현율: 0.9740, F1: 0.9677, AUC: 0.9877

3장 평가 함수 사용

(2) 피처 중요도 시각화

```
# plot_importance()를 이용해 feature 중요도 시각화 from lightgbm import plot_importance import matplotlib.pyplot as plt %matplotlib inline
fig, ax = plt.subplots(figsize=(10,12)) plot_importance(lgbm_wrapper, ax=ax)
```

xgboost와 동일하게 피처 중요도 시각화 내장 API 제공

07.

베이지안 최적화 기반의 HyperOpt를 이용한 하이퍼 파라미터 튜닝

베이지안 최적화 기반의 HyperOpt를 이용한 하이퍼 파라미터 튜닝

부스팅 알고리즘 모델은 하이퍼 파라미터가 많아 Grid Search로 튜닝 시,

대용량 데이터의 경우 기하급수적으로 최적화 시간이 증가

- 하이퍼 파라미터 최적화 방식

Manual Search : 직관, 노하우 등에 의존하여 최적 하이퍼 파라미터를 직접 탐색하는 방법

Grid Search: 특정 탐색 구간의 하이퍼 파라미터 값들을 일정 간격으로 선정하여 탐색하는 방법

Random Search: 특정 탐색 구간의 하이퍼 파라미터 값들을 랜덤 샘플링으로 선정하여 탐색하는 방법

Bayesian optimization

. . .

베이지안 최적화

: 목적 함수 식을 제대로 알 수 없는 블랙 박스 형태의 함수에서 최대 또는 최소 함수 반환 값을 만드는 최적 입력값 전체을 효과적으로 찾아주는 방식 역기 .

- 베이지안 확률 기반 최적화 기법
- 필수 구성 요소:
- ① 대체 모델: 획득 함수의 있为값 바탕으로, 미지의 목적 함수의 형태에 대해 확률적인 추정을 하는 모델
- ② 획득 함수: 선생이 이 목적 함수에 대해 확률적으로 추정한 결과를 바탕으로,

최적 입력값을 찾는 데 있어 가장 유용할 만한 다음 입력값 추천하는 함수

하이퍼 파라미터 튜닝 시, 입력값 = 하이퍼 파라미터

베이지안 최적화

- 검은색 점 : 특정 하이퍼 파라미터 값에 대한 성능 지도 겨라갔

- 관측된 값을 기반으로 대체 모델은 건지하는 를 추정
- 파란색 영역 : 아이스 하는 사고 무를 분산
- 최적 관측값은 기술 Value에서 의 하이퍼 파라미터 가장 높은 값

베이지안 최적화

- 획득 함수는 다음으로 관측할 등이 때 때가이 다 값 계산
- 획득 함수는 이전의 최적 관측값보다 더 실기 최댓값을 가질
- 가능성이 높은 지점을 찾아서 대체 모델에 전달

- 획득 함수로부터 전달된 하이퍼 파라미터를 수행하여 관측된 값을 기반으로 대체 모델은 갱신되어 다시

^혼더청두 예측

HyperOPT

 : 베이지안 최적화를 하이퍼 파라미터 튜닝에 적용할 수 있도록 제공되는 파이썬 패키지 중 하나 대체 모델이 최적 함수를 추정할 때 트리 파르젠 사용
 목적 함수 반환값의
 실수값
 을 가지는 최적 입력값 유추

- 활용 로직
- ① 입력 변수명, 입력값의 검색 공간 설정
- ② 목적 함수 설정
- ③ 목적 함수의 반환값이 눈燥값을 가지게 하는 최적 입력값 유추

HyperOPT

- 입력값의 검색 공간 제공 함수

hyperopt의 hp 모듈: from hyperopt import hp

함수명	설명
hp-suntform()	검색 공간을 범위를 이용해서 설정 매개 변수 : label(파라미터명), low(최솟값), high(최댓값), q(간격)
hp.unctorm()	검색 공간을 정규 분포 형태로 설정 매개 변수 : : label(파라미터명), low(최솟값), high(최댓값)
hp.randint()	검색 공간을 일정 범위 내에서 랜덤한 정숫값으로 설정 매개 변수 : label(파라미터명), upper(최댓값)
hp.loguniform()	반환값 : exp(uniform(low, high)) 반환값의 log 변환된 값이 정규 분포를 띄도록 검색 공간 설정
hp.choice()	검색값에 문자열이 포함되어 있을 경우 설정

HyperOPT

- 목적 함수의 최적 입력값 유추 함수

hyperopt의 fmin 모듈: from hyperopt import fmin

fmin(fn, space, algo, max_evals, trials)

파라미터명	설명		
$+$ \wedge	목적 함수		
Space	search_space와 같은 검색 공간 딕셔너리		
a 130	베이지안 최적화 적용 알고리즘 - tpe.suggest (TPE)		
max-evals	최적 입력값을 찾기 위한 입력값 시도 횟수		
trals	최적 입력값을 찾기 위해 시도한 입력값 및 해당 입력값의 목적 함수 반환값 저장에 사용		
rstate	fmin()을 수행할 때마다 동일한 결괏값을 가질 수 있도록 설정하는 랜덤 시드		

- (1) 입력 변수명, 입력값의 검색 공간 설정
- (2) 목적 함수 생성
- (3) 목적 함수의 반환값이 최솟값을 가지도록 하는 최적 입력값 유추
- (4) Trials 객체 results, vals 속성

(1) 입력 변수명, 입력값의 검색 공간 설정

```
# 입력 변수명과 입력값의 검색 공간 설정
from hyperopt import hp
# -10 ~ 10까지 1 간격을 가지는 입력 변수 x와 -15 ~ 15까지 1 간격으로 입력 변수 y 설정
search_space = {'x': hp. 주시하면('x', -10, 10, 1), 'y': hp.quniform('y', -15, 15, 1)} # 값이 순차적으로 입력되지는 않음
```

(2) 목적 함수 생성

```
from hyperopt import STATUS_OK

# 목적 함수 생성 변숫값과 변수 검색 공간을 가지는 딕셔너리를 인자로 받고, 특정 값을 반환

def objective_func( Sewch-space('x')):
    x = search_space('y')
    y = search_space('y')
    retval = x**2 - 20*y # 목적 함수식

return retval
```

목적 함수 = x^2 - 20y 현 입력값 검색 공간에서 x=0, y=15에 가까울수록 최소 반환값 근사

- (3) 목적 함수의 반환값이 최솟값을 가지도록 하는 최적 입력값 유추
- fmin(), max_evals=5

```
from hyperopt import fmin, tpe, Trials
import numpy as np
# 입력 결괏값을 저장한 Trials 객체값 생성
trial_val = Trais
# 목적 함수의 최솟값을 반환하는 최적 입력 변숫값을 5번의 입력값 시도(max_evals=5)로 찾아냄
best_01 = fmil(fn=objective_func, space=search_space, algo=tpe.suggest, max_evals=5, trials=trial_val,
             rstate = np.random.default_rng(seed=0))
print('best:', best_01)
                                         |■■■■■■■■■■■■■■■■| 5/5 [00:00<00:00, 238.16trial/s, best loss: -224.0]
best: {'x': -4.0, 'y': 12.0}
```

- fmin(), max_evals=20

```
trial_val = Trials()
# max evals=20 로 눌려서 재테스트
best_02 = fmin(fn=objective_func, space=search_space, algo=tpe.suggest, max_evals=20, trials=trial_val,
          rstate = np.random.default_rng(seed=0))
print('best:', best_02)
                           best: {'x': 2.0, 'y': 15.0}
```

x=2, y=15로 최소 반환값 가지도록 하는 최적 입력값에 근사함

- (4) Trials 객체 results, vals 속성
- results 확인

```
# Trials 객체의 result 속성에 파이썬 리스트로 목적 함수 반환값들이 저장됨
# 리스트 내부의 개별 원소는 {'loss': 함수 반환값, 'status': 'b환 상태값}와 같은 딕셔너리
print(trial_val.results)

[{'loss': -64.0, 'status': 'ok'}, {'loss': -184.0, 'status': 'ok'}, {'loss': 56.0, 'status': 'ok'}, {'loss': -224.0, 'status': 'ok'}, {'loss': 61.0, 'status': 'ok'}, {'loss': -296.0, 'status': 'ok'}, {'loss': 64.0, 'status': 'ok'}, {'loss': 64.0, 'status': 'ok'}, {'loss': 100.0, 'status': 'ok'}, {'loss': 60.0, 'status': 'ok'}, {'loss': -39.0, 'status': 'ok'}, {'loss': 1.0, 'status': 'ok'}, {'loss': -164.0, 'status': 'ok'}, {'loss': 21.0, 'status': 'ok'}, {'loss': -56.0, 'status': 'ok'}, {'loss': 284.0, 'status': 'ok'}, {'loss': -171.0, 'status': 'ok'}, {'loss': 0.0, 'status': 'ok'}]

fmin()이 max_evals=20으로 20회 반복 수행 → 20개 딕셔너리를 개별 원소로 가지는 리스트

loss: 한사이다, status: 'ok', status: 'ok'}, (ok-평가 성공적으로 완료, fail-평가 중 오류 발생)
```

- vals 확인

```
# Trials 객체의 vals 속성에 {'입력변수명': 개별 수행 시마다 입력된 값의 리스트} 형태로 저장됨
print(trial_val.vals)

{'x': [-6.0, -4.0, 4.0, -4.0, 9.0, 2.0, 10.0, -9.0, -8.0, -0.0, -0.0, 1.0, 9.0, 6.0, 9.0, 2.0, -2.0, -4.0, 7.0, -0.0], 'y': [5.0, 10.0, -2.0, 12.0, 1.0, 15.0, 7.0, -10.0, 0.0, -5.0, -3.0, 2.0, 4.0, 10.0, 3.0, 3.0, -14.0, -8.0, 11.0, -0.0]}
```

20회 반복 수행 → x, y 각 수행 시마다 사용된 입력값들 리스트

vals: {'입력변수명1': 개별 수행시마다 입력된 값 리스트, …입력 변수마다}

results: [{'loss': 함수 반환값, 'status': 반환 상태값}, ··· 반복 수행 시마다 반환]

- (4) Trials 객체 results, vals 속성
- results, vals 이용한 최적화 경과 보기

```
# Trials 객체의 results, vals 속성 이용해 최적화 경과 보기
# 각 회마다 x, y, loss 값 보여줌
import pandas as pd

# results에서 loss 값들을 추출하여 list로 생성
losses = [loss_dict['loss'] for loss_dict in trial_val.results]

# DF으로 생성
result_df = pd.DataFrame({'x': trial_val.vals['x'], 'y': trial_val.vals['y'], 'losses': losses})
result_df
```

	X	у	losses
0	-6.0	5.0	- 64.0
1	- 4.0	10.0	-184.0
2	4.0	- 2.0	56.0
3	- 4.0	12.0	- 224.0
4	9.0	1.0	61.0
16	- 2.0	-14.0	284.0
17	- 4.0	-8.0	176.0
18	7.0	11.0	-171.0
19	-0.0	-0.0	0.0

Trials 객체의 속성을 이용해 최적화 경과를 직관적으로 볼 수 있음

- (1) 데이터 로드 및 분리
- (2) 입력 변수명, 입력값의 검색 공간 설정
- (3) 목적 함수 생성
- (4) 목적 함수의 반환값이 최솟값을 가지도록 하는 최적 입력값 유추
- (5) 최적 하이퍼 파라미터로 XGBClassifier 재학습/예측/평가

실습1과 같은 흐름,

주의점

- ① 정수형 하이퍼 파라미터 입력시, HyperOPT 반환값이 실수형이면 생생하여 입력
- ② HyperOPT의 목적함수는 文保》 반환하도록 최적화하므로 정확도처럼 클수록 좋은 지표는 一)을 곱해야

(1) 데이터 로드 및 분리

```
# 데이터 로드 및 분리
import pandas as pd
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings('ignore')
dataset = load breast cancer()
cancer df = pd.DataFrame(data=dataset.data, columns=dataset.feature names)
cancer_df['target'] = dataset.target
# 피처, 레이블 분리
X_features = cancer_df.iloc[:, :-1]
v label = cancer df.iloc[:, -1]
# 전체 데이터 중 80%는 학습용 데이터, 20%는 테스트용 데이터 추출
X train, X test, y train, y test=train test split(X features, y label, test size=0.2, random state=156)
# 앞에서 추출한 학습 데이터를 다시 학습과 검증 데이터로 분리
X_tr, X_val, y_tr, y_val= train_test_split(X_train, y_train, test_size=0.1, random_state=156)
```

XGBoost, LightGBM 예제에서 사용한 코드

(2) 입력 변수명, 입력값의 검색 공간 설정

정수형: 사기 원이 수도

실수형: 🧥 🖵 사용

(3) 목적 함수 생성

```
# 목적 함수 생성
from sklearn.model_selection import cross_val_score
from xaboost import XGBClassifier
from hyperopt import STATUS_OK
#!주의1! fmin()에서 입력된 search_space 값으로 입력된 모든 값은 실수형
# XGBClassifier의 정수형 하이퍼 파라미터는 정수형 변환 필요
#!주의2! 정확도는 높을수록 더 좋은 수치. -1 * 정확도를 곱해서 큰 정확도 값일수록 최소가 되도록 변환
def objective_func(search_space):
   # 수행 시간 절약을 위해 nestimators는 100으로 축소
   xgb_clf = XGBClassifier(n_estimators=100, max_depth=(search_space['max_depth']),
                        min_child_weight=int(search_space['min_child_weight']),
                        learning_rate=search_space['learning_rate'],
                        colsample bytree=search space['colsample bytree'].
                        eval metric='logloss')
   accuracy = cross_val_score(xgb_clf, X_train, y_train, scoring='accuracy', cv=3)
   # accuracy는 cv=3 개수만큼 roc-auc 결과를 리스트로 가짐. 이를 평균해서 반환하되 -1을 곱함.
   return {'loss': * np.mcMaccuracy), 'status': STATUS_OK}
```

XGBClassifier 생성, 교차검증

목적 함수 반환값:

교차 검증 기반의 평균 거호 기

정수형 파라미터 명시적 중에 하다

최종 반환값은 평균 정확도* /

(4) 목적 함수의 반환값이 최솟값을 가지도록 하는 최적 입력값 유추

정수형 하이퍼 파라미터가 실수형 값으로 도출됨 주의

```
# 실수형 소수점 5자리까지, 정수형 변환하여 확인
print('colsample_bytree:{0}, learning_rate:{1}, max_depth:{2}, min_child_weight:{3}'.format(
    round(best['colsample_bytree'], 5), round(best['learning_rate'], 5),
    int(best['max_depth']), int(best['min_child_weight'])))
```

colsample_bytree:0.54241, learning_rate:0.12601, max_depth:17, min_child_weight:2

(5) 최적 하이퍼 파라미터로 XGBClassifier 재학습/예측/평가

```
# 최적 하이퍼 파라미터로 XGBClassifier 재학습/예측/평가
xgb wrapper = XGBClassifier(n estimators=400.
                             learning rate=round(best['learning rate'], 5),
                             max_depth=int(best['max_depth']),
                             min_child_weight=int(best['min_child_weight']),
                             colsample_bytree=round(best['colsample_bytree'], 5)
evals = [(X tr. y tr), (X val, y val)]
xgb_wrapper.fit(X_tr, y_tr, early_stopping_rounds=50, eval_metric='logloss',
                 eval set=evals, verbose=True)
preds = xgb wrapper.predict(X test)
pred_proba = xgb_wrapper.predict_proba(X_test)[:, 1]
get_clf_eval(y_test, preds, pred_proba)
       validation_0-logloss:0.58942
                                    validation_1-logloss:0.62048
       validation_0-logloss:0.50801
                                    validation_1-logloss:0.55913
[1]
       validation 0-logloss:0.44160
                                    validation 1-logloss:0.50928
[234]
       validation 0-logloss:0.01324
                                    validation 1-logloss:0.22773
[235]
       validation_0-logloss:0.01322
                                    validation_1-logloss:0.22743
[236]
      validation 0-logloss:0.01320
                                    validation 1-logloss:0.22713
오차 행렬
[[35 2]
[ 2 75]]
                                             F1: 0.9740, AUC:0.9944
정확도: 0.9649, 정밀도: 0.9740, 재현율: 0.9740,
```

get_clf_eval() 3장 평가 함수 사용

앞에서 튜닝하지 않은 결과보다는 약간 좋지만, 데이터 세트가 작기 때문에 불안정한 성능 결과 08.

스태킹 앙상블

스태킹 앙상블

: 개별 알고리즘으로 예측한 데이터 기반으로 다시 예측 수행하는 방식

• 스태킹 앙상블 모델

- 구성모델

① 가(보) 오델: 많은 개별 모델 필요

② 전상에 타 모델: 개별 기반 모델의 예측 데이터를 스타하 형태로 결합해 학습 데이터로 만들어 학습

: 개별 모델의 예측된 데이터 세트를 기반으로 학습하고 예측하는 방식

- (1) 모듈 임포트, 데이터 준비
- (2) 개별, 최종 모델 Classifier 생성
- (3) 개별 모델 학습/예측/평가
- (4) 최종 메타 모델 학습 데이터 생성
- (5) 최종 메타 모델 학습/예측/평가

(1) 모듈 임포트, 데이터 준비

```
# 모듈 임포트
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear model import LogisticRegression
from sklearn.datasets import load_breast_cancer
from sklearn, model selection import train test split
from sklearn.metrics import accuracy_score
# 51018 75
cancer_data = load_breast_cancer()
X data = cancer data.data
y_label = cancer_data.target
# 학습/테스트용 데이터 셋 분리
X_train , X_test , y_train , y_test = train_test_split(X_data , y_label , test_size=0.2 , random_state=0)
```

(2) 개별, 최종 모델 Classifier 생성

```
# 개별 ML 모델 생성
knn_clf = KNeighborsClassifier(n_neighbors=4)
rf_clf = RandomForestClassifier(n_estimators=100, random_state=0)
dt_clf = DecisionTreeClassifier()
ada_clf = AdaBoostClassifier(n_estimators=100)
# 최종 Stacking 모델 생성
lr_final = LogisticRegression(C=10)
```

개별 모델: KNN, 랜덤 포레스트, 결정 트리, 에이다부스트

최종 모델: 로지스틱 회귀

(3) 개별 모델 학습/예측/평가

```
# 개별 모델들 학습

knn_clf: (X_train, y_train)

rf_clf.fit(X_train, y_train)

dt_clf.fit(X_train, y_train)

ada_clf.fit(X_train, y_train)

# 학습된 개별 모델들 각자 예측 데이터 셋을 생성, 정확도 측정

knn_pred = knn_clf.pped(C)(X_test)

rf_pred = rf_clf.predict(X_test)

dt_pred = dt_clf.predict(X_test)

ada_pred = ada_clf.predict(X_test)

print('KNN 정확도: {0:.4f}'.format(accuracy_score(y_test, knn_pred)))

print('결정 트리 정확도: {0:.4f}'.format(accuracy_score(y_test, ada_pred)))

print('에이다부스트 정확도: {0:.4f} :'.format(accuracy_score(y_test, ada_pred)))
```

KNN 정확도: 0.9211

랜덤 포레스트 정확도: 0.9649 결정 트리 정확도: 0.9035 에이다부스트 정확도: 0.9561 :

(4) 최종 메타 모델 학습 데이터 생성

```
# 최종 메타 모델의 학습 데이터 생성
# 개별 알고리즘의 예측값을 옆으로 붙여 피처값으로 만듦

pred = np.array([knn_pred, rf_pred, dt_pred, ada_pred])
print(pred.shape)

# transpose를 이용해 행과 열의 위치 교환. 컬럼 레벨로 각 알고리즘의 예측 결과를 피처로 만듦.
pred = np.transpose(pred)
print(pred.shape)

(4, 114)
(114. 4)
```

(5) 최종 메타 모델 학습/예측/평가

랜덤 포레스트 정확도: 0.9649 결정 트리 정확도: 0.9035 에이다부스트 정확도: 0.9561 :

```
# 최종 메타 모델 학습/예측/평가
| Ir_final.fit(pred, y_test) |
| final = | Ir_final.predict(pred) |
| print('최종 메타 모델의 예측 정확도: {0:.4f}'.format(accuracy_score(y_test , final))) |
| 최종 메타 모델의 예측 정확도: 0.9737 |
| 개별 모델 정확도보다 향상됨 |
| KNN 정확도: 0.9211 |
| 대명 표레스트 포함트: 0.9240 |
| (무조건 좋아지는 것은 아님)
```

CV 세트 기반 스태킹

: 과적합 개선을 위해 개별 모델이 각각 (스타) 으로 메타 모델을 위한 (스타) 스태킹 데이터 생성과 예측을 위한 (스타) 스태킹 데이터를 생성해 이를 기반으로 메타 모델이 학습, 예측하는 방식

- 단계
- ① 개별 기반 모델별로 학습/예측 수행
- 학습 데이터를 K개의 fold로 나눔
- K-1 개의 fold를 학습 데이터로 하여 base 모델 학습 (K번 반복)
 - * 검증 fold 1개를 예측한 결과 (K fold) -> 최종 meta 모델의 다 네이터
 - * 테스트 데이터를 예측한 결과의 평균 -> 최종 meta 모델의 기술보다

CV 세트 기반 스태킹

① 개별 기반 모델별로 학습/예측 수행

CV 세트 기반 스태킹

- ② 최종 메타 모델 학습/예측/평가
- 각 base 모델이 생성한 학습용 데이터를 stacking -> 최종 meta 모델의 하는 데이터 세트
- 각 base 모델이 생성한 테스트용 데이터를 stacking -> 최종 meta 모델의 전시스트 데이터 세트
- 최종 학습용 데이터 + 원본 학습 레이블 데이터로 학습
- 최종 테스트용 데이터로 예측 -> 원본 테스트 레이블 데이터로 평가

실습 - CV 세트 기반 스태킹 구현

- (1) 최종 메타 모델 학습/테스트용 데이터 생성 함수 정의
- (2) 개별 모델로 최종 메타 모델 학습/테스트용 데이터 생성
- (3) 스태킹 학습/테스트용 데이터 생성
- (4) 최종 메타 모델 학습/예측/평가

실습 - CV 세트 기반 스태킹 구현

(1) 최종 메타 모델 학습/테스트용 데이터 생성 함수 정의

```
from sklearn.model selection import KFold
from sklearn.metrics import mean absolute error
# 개별 기반 모델에서 최종 메타 모델의 학습 및 테스트용 데이터 생성 함수
def get_stacking_base_datasets(model, X_train_n, y_train_n, X_test_n, n_folds ):
   #지정된 n folds값으로 KFold 생성
   kf = KFold(n_splits=n_folds, shuffle=False)
   #추후에 메타 모델이 사용할 학습 데이터 반환을 위한 넘파이 배열 초기화
   train fold pred = np.zeros((X train n.shape[0] .1 ))
   test_pred = np.zeros((X_test_n.shape[0],n_folds))
   print(model.__class__.__name__ , ' model 시작 ')
   for folder_counter , (train_index, valid_index) in enumerate(kf.split(X_train_n)):
      # 입력된 화습 데이터에서 기반 모델이 화습/예측할 폴드 데이터 셋 추출
      print('₩t 폴드 세트: '.folder counter.' 시작 ')
      X_tr = X_train_n[train_index]
      y_tr = y_train_n[train_index]
      X te = X train n[valid index]
      # 폴드 세트 내부에서 다시 만들어진 학습 데이터로 기반 모델의 학습 수행
      model.fit(X tr , y tr)
      # 폴드 세트 내부에서 다시 만들어진 검증 데이터로 기반 모델 예측 후 데이터 저장
      train fold pred[valid index, :] = model.predict(X te).reshape(-1.1)
      # 입력된 원본 테스트 데이터를 풀드 세트내 학습된 기반 모델에서 예측 후 테이터 저장.
      test pred[:, folder counter] = model.predict(X test n)
   # 풀드 세트 내에서 원본 테스트 데이터를 예측한 데이터를 평균하여 테스트 데이터로 생성
   test pred mean = np.mean(test pred, axis=1).reshape(-1,1)
   # train fold pred는 최종 메타 모델이 사용하는 학습 데이터, test pred mean은 테스트 데이터
   return train_fold_pred , test_pred_mean
```

실습 - CV 세트 기반 스태킹 구현

(2) 개별 모델로 최종 메타 모델 학습/테스트용 데이터 생성

```
# 각 개별 모델로 최종 메타 모델의 학습/테스트 데이터 생성
knn_train, knn_test = get_stacking_base_datasets(knn_clf, X_train, y_train, X_test, 7)
rf_train, rf_test = get_stacking_base_datasets(rf_clf, X_train, y_train, X_test, 7)
dt_train, dt_test = get_stacking_base_datasets(dt_clf, X_train, y_train, X_test, 7)
ada_train, ada_test = get_stacking_base_datasets(ada_clf, X_train, y_train, X_test, 7)
```

(3) 스태킹 학습/테스트용 데이터 생성

```
# 각 학습/테스트 데이터 합치기
Stack_final_X_train = np. (OMAterate)
Stack_final_X_test = np. (on offerate)
Stack_final_X_test = np. (on offerate)
print('원본 학습 피처 데이터 Shape:',X_train.shape, '원본 테스트 피처 Shape:',X_test.shape)
print('스태킹 학습 피처 데이터 Shape:', Stack_final_X_train.shape,
'스태킹 테스트 피처 데이터 Shape:',Stack_final_X_test.shape)
```

원본 학습 피처 데이터 Shape: (455, 30) 원본 테스트 피처 Shape: (114, 30) 스태킹 학습 피처 데이터 Shape: (455, 4) 스태킹 테스트 피처 데이터 Shape: (114, 4)

(4) 최종 메타 모델 학습/예측/평가

최종 메타 모델의 예측 정확도: 0.9737

```
# 개별 모델의 학습/테스트 데이터로 최종 메타 모델 학/예/평
Ir_final.fit(Stack_final_X_train, y_train)
stack_final = Ir_final.predict(Stack_final_X_test)
print('최종 메타 모델의 예측 정확도: {0:.4f}'.format(@coreay_Score(y_test, stack_final)))
```

폴드 세트: 5 시작 RandomForestClassifier model 시작 폴드 세트: 0 시작 DecisionTreeClassifier model 시작 폭드 세트: 1 시작 AdaBoostClassifier model 시작 폴드 세트: 이 시작 폴드 세트: 5 시작 폭드 세트: 6 시작

KNeighborsClassifier model 시작

폭드 세트: 1 시작

수고하셨습니다