HW7

Carl Mueller CSCI 5254 - Convex Optimization

April 14, 2018

8.16

Formulate the following as a CVX optimization problem:

Find the rectangle

$$R = \{ x \in \mathbf{R}^n \mid l \prec x \prec u \}$$

of maximum volume enclosed in the polyhedron

$$P = \{ x \mid Ax \prec b \}$$

The volume can be expressed as:

Proposition 1.

$$v = \prod_{i=1}^{n} u_i - l_i \tag{1}$$

We want all the 2^n corners do be contained within the polyhedron. This every corner must meet the polyhedron constraint $Ac \leq b$. Where c is the vector of corners. Each of these corners can be be more succinctly represented as the vector based on the upper and lower values of each edge:

If we express x_i as $u_i - l_i$ then this system becomes

$$\sum_{i=1}^{n} a_{ij}(u_j - l_j) \le b_i$$

The problem can be expressed as:

minimize
$$\prod_{i=1}^{n} u_i - l_i$$
subject to
$$\sum_{i=1}^{n} a_{ij} (u_j - l_j) \le b_i$$

The constraint is a posynomial as it is a summation of the monomial $a_{ij}(u_j - l_j)$. To make the problem a non-linear geometric optimization problem, we take the log of the objective:

minimize
$$\sum_{i=1}^{n} log(u_i - l_i)$$
subject to
$$\sum_{i=1}^{n} a_{ij}(u_j - l_j) \le b_i$$