Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский Политехнический университет Петра Великого Физико-Механический институт

Лабораторная 7

Выполнил студент гр. 5030102/20101:	Бугайцев М.В.	
Преподаватель:	Баженов А. Н.	
Работа принята:	Дата	

Содержание

1	Введение	2
2	Постановка задачи 2.1 Метод решения	2 2
3	Результаты 3.1 3.2	2 2 2
4	Практическая часть 4.1 Генерация данных и расчёт интервалов 4.2 Зависимость индексов Жаккара от сдвига 4.3 Графическое представление	3 3 4
5	Заключение	5

1 Введение

2 Постановка задачи

Сгенерировать 2 выборки X_1 и X_2 мощностью n=1000. Средние и ширины выборок должны отличаться, например

$$X_1 = N(0, 0.95), \quad X_2 = N(1, 1.05),$$
 (1)

где $N(m,\sigma)$ — нормальное распределение.

Для выборок X_1 и X_2 найти внутренние и внешние оценки:

$$Inn X_i = [Q_{1/4}, Q_{3/4}], (2)$$

$$Out X_i = [\min X_i, \max X_i]. \tag{3}$$

Здесь $Q_{1/4}, Q_{3/4}$ — первый и третий квартили.

Определить параметр сдвига a:

$$X_1 + a = X_2. (4)$$

2.1 Метод решения

Варьировать параметр сдвига a и вычислять 2 меры совместности:

$$J_{\text{Inn}} = \frac{\text{Inn}X_1 \wedge \text{Inn}X_2}{\text{Inn}X_1 \vee \text{Inn}X_2},\tag{5}$$

$$J_{\text{Out}} = \frac{\text{Out}X_1 \wedge \text{Out}X_2}{\text{Out}X_1 \vee \text{Out}X_2},\tag{6}$$

Здесь J — индекс Жаккара, \land, \lor — минимум и максимум по включению.

3 Результаты

3.1

Построить графики $J_{\text{Inn}}(a)$, $J_{\text{Out}}(a)$.

3.2

Найти оценки:

$$a_{\rm Inn} = \arg\max_{a} J_{\rm Inn},\tag{7}$$

$$a_{\text{Out}} = \arg\max_{a} J_{\text{Out}}.$$
 (8)

4 Практическая часть

4.1 Генерация данных и расчёт интервалов

Результаты генерации выборок и расчёта внутренних и внешних интервалов представлены в таблице 1:

Таблица 1: Внутренние и внешние интервалы выборок X_1 и X_2

sample	type	low	high
X_1	$_{ m inn}$	-6.6×10^{-1}	5.8×10^{-1}
X_1	out	-2.9×10^{0}	2.6×10^0
X_2	inn	3.1×10^{-1}	1.7×10^{0}
X_2	out	-2.1×10^{0}	4.3×10^{0}

4.2 Зависимость индексов Жаккара от сдвига

Расчёт индексов Жаккара для различных значений параметра a сохранён в таблице 2:

Таблица 2: Значения индексов Жаккара при варьировании параметра a

a	J_{inn}	J_{out}
-1.0×10^{0}	0	4.6×10^{-1}
-9.0×10^{-1}	0	4.8×10^{-1}
-8.0×10^{-1}	0	4.9×10^{-1}
-7.0×10^{-1}	0	5.1×10^{-1}
-6.0×10^{-1}	0	5.3×10^{-1}
-5.0×10^{-1}	0	5.5×10^{-1}
-4.0×10^{-1}	0	5.7×10^{-1}
-3.0×10^{-1}	0	5.9×10^{-1}
-2.0×10^{-1}	2.5×10^{-2}	6.2×10^{-1}
-1.0×10^{-1}	6.7×10^{-2}	6.4×10^{-1}
0	1.1×10^{-1}	6.6×10^{-1}
1.0×10^{-1}	1.6×10^{-1}	6.8×10^{-1}
2.0×10^{-1}	2.2×10^{-1}	7.1×10^{-1}
3.0×10^{-1}	2.8×10^{-1}	7.3×10^{-1}
4.0×10^{-1}	3.5×10^{-1}	7.6×10^{-1}
5.0×10^{-1}	4.2×10^{-1}	7.8×10^{-1}
6.0×10^{-1}	5.0×10^{-1}	8.1×10^{-1}
7.0×10^{-1}	5.9×10^{-1}	8.4×10^{-1}
8.0×10^{-1}	7.0×10^{-1}	8.5×10^{-1}
9.0×10^{-1}	8.2×10^{-1}	8.5×10^{-1}
1.0×10^{0}	9.2×10^{-1}	8.5×10^{-1}
1.1×10^{0}	9.0×10^{-1}	8.5×10^{-1}
1.2×10^{0}	7.7×10^{-1}	8.5×10^{-1}
1.3×10^{0}	6.5×10^{-1}	8.5×10^{-1}
1.4×10^{0}	5.5×10^{-1}	8.5×10^{-1}
1.5×10^{0}	4.7×10^{-1}	8.5×10^{-1}
1.6×10^{0}	3.9×10^{-1}	8.5×10^{-1}
1.7×10^{0}	3.2×10^{-1}	8.5×10^{-1}
1.8×10^{0}	2.5×10^{-1}	8.3×10^{-1}
1.9×10^{0}	1.9×10^{-1}	8.0×10^{-1}
2.0×10^{0}	1.4×10^{-1}	7.7×10^{-1}

4.3 Оценка параметра сдвига

Параметр, при котором индекс Жаккара внутреннего интервала максимально достигает значения:

$$a_{\rm Inn} = 0.9232,$$

а для внешнего интервала:

$$a_{\rm Out} = 0.8519.$$

4.4 Графическое представление

Рис. 1: Графики $J_{\mathrm{Inn}}(a)$ и $J_{\mathrm{Out}}(a)$

5 Заключение