

A20 System Configuration

V1.0

2013-03-15

1

Revision History

Version	Date	Section/ Page	Changes
V1.0	2013-03-15		Initial version

目录

目习	ζ		3
1	系统(Sys	stem)	7
	1.1	[platform]	7
	1.2	[target]	7
	1.3	[pm_para]	7
	1.4	[card_boot]	8
	1.5	[card0_boot_para]	8
	1.6	[card2_boot_para]	9
	1.7	[twi_para]	9
	1.8	[uart_para]	9
	1.9	[uart_force_debug]	10
	1.10	[jtag_para]	
	1.11	[clock]	11
2	SDRAM		12
	2.1	[dram_para]	12
3	EMAC		14
4	GMAC		16
	4.1	[gmac_para]	16
5	I2C 总线		18
	5.1	[twi0_para]	18
	5.2	[twi1_para]	18
	5.3	[twi2_para]	18
	5.4	[twi3_para]	19
6	UART 总	.线	20
	6.1	[uart_para0]	20
	6.2	[uart_para1]	20
	6.3	[uart_para2]	21
	6.4	[uart_para3]	21
	6.5	[uart_para4]	22
	6.6	[uart_para5]	22
	6.7	[uart_para6]	23
	6.8	[uart_para7]	23
7	SPI 总线		25
	7.1	[spi0_para]	25
	7.2	[spi1_para]	25
	7.3	[spi2_para]	26

	7.4	[spi3_para]	26
	7.5	[spi_devices]	27
	7.6	[spi_board0]	27
8	电阻屏	F(rtp)	28
	8.1	[rtp_para]	28
9	电容屏	F(ctp)	29
	9.1	[ctp_para]	29
10	触	±摸按键(touch key)	30
	10.1	[tkey_para]	30
11	프	b达(motor)	31
	11.1	[motor_para]	31
12	闪]存(nand flash)	
	12.1		
13	显	是示初始化(disp init)	34
	13.1	[disp_init]	34
14	L	CD 屏 0	36
	14.1		36
15	L	CD 屏 1	40
	15.1	[lcd1_para]	
16		ıta	
17	T	V	
	17.1	[tv_out_dac_para]	42
	17.2	[tvout_para]	42
	17.3	[tvin_para]	
18	Н	DMI	44
	18.1	[hdmi_para]	
19	摄	聂像头(CSI)	45
	19.1	[camera_list_para]	
	19.2	[csi0_para]	46
	19.3	[csi1_para]	
20	SI	D/MMC	
	20.1	[mmc0_para]	
	20.2	[mmc1_para]	52
	20.3	[mmc2_para]	52
	20.4	[mmc3_para]	
21	SI	IM 卡	
	21.1	[smc_para]	
22	U	SB 控制标志	
	22.1	[usbc0]	56
	22.2	[usbc1]	57

	22.3	[usbc2]	58
23	US	B Device	59
	23.1	[usb_feature]	59
	23.2	[msc_feature]	59
24	重え	力感应(G-Sensor)	60
	24.1	[gsensor_para]	60
25	WI	FI	61
	25.1	[wifi_para]	61
	25.2	sdio 接口 wifi rtl8723as demo	61
	25.3	usb 接口 wifi rtl8188eu demo	62
26	3G.		63
	26.1	[3g_para]	63
27	gyr	oscope	64
	27.1	[gy_para]	64
28	光原	惑(light sensor)	65
	28.1	[ls_para]	
29	罗拉	性(Compass)	66
	29.1	[compass_para]	
30	蓝	于(blueteeth)	67
	30.1	[bt_para]	
31	数与	字音频总线(I2S)	68
	31.1	[i2s_para]	68
32	数与	字音频总线(S/PDIF)	69
	32.1	[spdif_para]	69
33	内旨	置音频(codec)	70
	33.1	[audio_para]	70
34	红外	7h(ir)	71
	34.1	[ir para]	71
35	PM		72
	35.1	[pmu para]	
36	动品	- ローコー	
	36.1	[dvfs table]	

备注

- 1. 蓝色为模块芯片引脚配置,黑色为模块内部控制配置项;
- 2. GPIO 配置的形式描述:
 - Port:端口+组内序号<功能分配><内部电阻状态><驱动能力><输出电平状态>;
- 3. 配置举例中的管脚不一定为真实可用的,实际使用时需向技术支持人员询问;

1 系统(System)

1.1[platform]

配置项	配置项含义
eraseflag	量产时是否擦除。0: 不擦, 1: 擦除(仅仅
	对量产工具,升级工具无效)

配置举例:

[platform]

eraseflag = 1

1.2[target]

配置项	配置项含义
boot_clock=xx	启动频率, xx 表示多少 MHZ
dcdc2_vol=1400	Dcdc2(CPU)的输出电压,mV
dcdc3_vol=1400	Dcdc3(GPU)的输出电压,mV
storage_type = -1	启动介质选择
	0: nand
	1: card0
	2: card2
	-1: (defualt) 自动扫描启动介质:

配置举例:

[target]

boot_clock = 1008 dcdc1_vol = 300 dcdc2_vol = 1400 dcdc3_vol = 1250 storage_type = -1

1.3[pm_para]

	│
7022 /1	

standby_mode = 1

1: super standby
2: normal standby

配置举例:

[pm_para]

standby_mode = 1

1.4[card_boot]

配置项	配置项含义
logical_start=40960	启动卡逻辑起始扇区
sprite_gpio0=	卡量产 gpio led 灯配置

配置举例:

[card_boot]

logical_start = 40960

sprite_gpio0 =

1.5[card0_boot_para]

配置项	配置项含义
card_ctrl=0	卡量产相关的控制器选择 0
card_high_speed=1	速度模式 0 为低速, 1 为高速
card_line=4	代表 4 线卡
sdc_d1= port:PF0<2><1> <default><default></default></default>	sdc 卡数据 1 线信号的 GPIO 配置
sdc_d0= port:PF1<2><1> <default><default></default></default>	sdc 卡数据 0 线信号的 GPIO 配置
sdc_clk= port:PF2<2><1> <default><default></default></default>	sdc 卡时钟信号的 GPIO 配置
sdc_cmd= port:PF3<2><1> <default><default></default></default>	sdc 命令信号的 GPIO 配置
sdc_d3= port:PF4<2><1> <default><default></default></default>	sdc 卡数据 3 线信号的 GPIO 配置
sdc_d2= port:PF5<2><1> <default><default></default></default>	sdc 卡数据 2 线信号的 GPIO 配置

配置举例:

card_ctrl = 0 card_high_speed = 1 card_line = 4

sdc_d1= port:PF0<2><1><default><default>sdc_d0= port:PF1<2><1><default><default>sdc_clk= port:PF2<2><1><default><default>sdc_cmd= port:PF3<2><1><default><default>

sdc_d3 = port:PF4<2><1><default><default> sdc_d2 = port:PF5<2><1><default><default>

1.6 [card2_boot_para]

配置项	配置项含义
card_ctrl=2	卡启动控制器选择 2
card_high_speed=xx	速度模式 0 为低速, 1 为高速
card_line=4	4线卡
sdc_cmd = port:PC6<3><1>	sdc 命令信号的 GPIO 配置
sdc_clk = port:PC7<3><1>	sdc 卡时钟信号的 GPIO 配置
$sdc_d0 = port: PC8 < 3 > < 1 >$	sdc 卡数据 0 线信号的 GPIO 配置
sdc_d1 = port:PC9<3><1>	sdc 卡数据 1 线信号的 GPIO 配置
sdc_d3= port:PC10<3><1>	sdc 卡数据 3 线信号的 GPIO 配置
sdc_d2= port:PC11<3><1>	sdc 卡数据 2 线信号的 GPIO 配置

配置举例:

sdc_d3

card_ctrl =2card_high_speed = 1card_line = 4 = port:PC6<3><1> sdc cmd = port:PC7<3><1> sdc_clk sdc_d0 = port:PC8<3><1> = port:PC9<3><1> sdc_d1 sdc d2 = port:PC10<3><1>

1.7 **[twi_para]**

配置项	配置项含义
twi_port	Boot 的 twi 控制器编号
twi_scl	Boot 的 twi 的时钟的 GPIO 配置
twi_sda	Boot 的 twi 的数据的 GPIO 配置

配置举例:

 $twi_port = 0$

twi_scl = port:PB0<2><default><default><default> twi_sda = port:PB1<2><default><default><default>

= port:PC11<3><1>

1.8[uart_para]

配置项	配置项含义
uart_debug_port=	Boot 串口控制器编号
uart_debug_tx=	Boot 串口发送的 GPIO 配置
uart_debug_rx=	Boot 串口接收的 GPIO 配置

配置举例:

uart_debug_port = 0

uart_debug_tx = port:PB22<2> uart_debug_rx = port:PB23<2>

1.9[uart_force_debug]

配置项	配置项含义
uart_debug_port	
uart_debug_tx	
uart_debug_rx	

配置举例:

[uart_force_debug]

uart_debug_port = 0

uart_debug_tx = port:PF2<4><1><default><default>
uart_debug_rx = port:PF4<4><1><default><default>

1.10[jtag_para]

配置项	配置项含义
jtag_enable=	JTAG 使能
jtag_ms	测试模式选择输入(TMS) 的 GPIO 配置
jtag_ck	测试时钟输入(TMS)的 GPIO 配置
jtag_do	测试数据输出(TDO)的 GPIO 配置
jtag_di	测试数据输入(TDI)的 GPIO 配置

配置举例:

[jtag_para]

jtag_enable = 1

jtag_ms = port:PB14<3>

jtag_ck = port:PB15<3> jtag_do = port:PB16<3> jtag_di = port:PB17<3>

1.11 [clock]

配置项	配置项含义
Pll3 =297	Video0 时钟频率
P114 =300	Ve 时钟频率
Pll6 =600	Peripherals 时钟频率
Pll7 =297	Video1 时钟频率
Pll8 =360	GPU (通信) 时钟频率

配置举例:

[clock]

pll3 = 297 pll4 = 300 pll6 = 600 pll7 = 297 pll8 = 360

2 SDRAM

2.1[dram_para]

配置项	配置项含义
dram_baseaddr =xx	DRAM 的基地址
dram_clk =xx	DRAM 的时钟频率,单位为 MHz;它为 24 的
	整数倍,最低不得低于 120,
dram_type =xx	DRAM 类型:
	2 为 DDR2
	3 为 DDR3
dram_rank_num =xx	DRAM 控制器内部参数,由原厂来进行调
	节,请勿修改
dram_chip_density =xx	DRAM 控制器内部参数,由原厂来进行调
	节,请勿修改
dram_io_width =xx	DRAM 控制器内部参数,由原厂来进行调
June has widely and	节,请勿修改
dram_bus_width =xx	DRAM 控制器内部参数,由原厂来进行调 节,请勿修改
dram_cas =xx	DRAM 控制器内部参数,由原厂来进行调
draii_cas =xx	节,请勿修改
dram zq=xx	DRAM 控制器内部参数,由原厂来进行调
1	节,请勿修改
dram odt en=xx	DRAM 控制器内部参数,由原厂来进行调
	节,请勿修改
dram_size =xx	DRAM 控制器内部参数,由原厂来进行调
	节,请勿修改
dram_tpr0=xx	DRAM 控制器内部参数,由原厂来进行调
	节,请勿修改
dram_tpr1=xx	DRAM 控制器内部参数,由原厂来进行调
	节,请勿修改
dram_tpr2=xx	DRAM 控制器内部参数,由原厂来进行调
	节,请勿修改
dram_tpr3=xx	DRAM 控制器内部参数,由原厂来进行调
	节,请勿修改
dram_tpr4=xx	DRAM 控制器内部参数,由原厂来进行调

	节,请勿修改
dram_tpr5=xx	DRAM 控制器内部参数,由原厂来进行调
	节,请勿修改
dram_emr1 =xx	DRAM 控制器内部参数,由原厂来进行调
	节,请勿修改
dram_emr2 =xx	DRAM 控制器内部参数,由原厂来进行调
	节,请勿修改
dram_emr3 =xx	DRAM 控制器内部参数,由原厂来进行调
	节,请勿修改

配置举例:

[dram_para]

dram baseaddr = 0x40000000

dram_clk = 408 dram_type = 3

 $\begin{array}{ll} dram_rank_num & = 0xffffffff \\ dram_chip_density & = 0xffffffff \\ dram_io_width & = 0xffffffff \\ dram_bus_width & = 0xffffffff \\ \end{array}$

dram_cas = 9

 $dram_zq = 0x7f$

 $dram_odt_en = 0$

 $dram_size = 0xffffffff$ $dram_tpr0 = 0x42d899b7$

 $\begin{array}{ll} dram_tpr1 & = 0xa090 \\ dram_tpr2 & = 0x22a00 \end{array}$

 $\begin{array}{ll} dram_tpr3 & = 0x0 \\ dram_tpr4 & = 0x0 \\ dram_tpr5 & = 0x0 \end{array}$

 $dram_emr1 = 0x4$ $dram_emr2 = 0x10$ $dram_emr3 = 0x0$

3 EMAC

配置项	配置项含义
emac_used	
emac_rxd3	
emac_rxd2	
emac_rxd1	
emac_rxd0	
emac_txd3	
emac_txd2	
emac_txd1	
emac_txd0	
emac_rxclk	
emac_rxerr	
emac_rxdV	
emac_mdc	
emac_mdio	
emac_txen	
emac_txclk	
emac_crs	
emac_col	
emac_reset	

配置举例:

[emac_para] =0emac_used emac rxd3 = port:PA00<2><default><default> emac rxd2 = port:PA01<2><default><default> = port:PA02<2><default><default> emac_rxd1 = port:PA03<2><default><default> emac_rxd0 emac txd3 = port:PA04<2><default><default> emac_txd2 = port:PA05<2><default><default> emac txd1 = port:PA06<2><default><default> $emac_txd0$ = port:PA07<2><default><default> emac rxclk = port:PA08<2><default><default><default> = port:PA09<2><default><default> emac_rxerr = port:PA10<2><default><default> emac rxdV

emac_mdc = port:PA11<2><default><default><default><default><emac_mdio = port:PA12<2><default><default><default><default><emac_txen = port:PA13<2><default><default><default><default><emac_txelk = port:PA14<2><default><default><default><default><emac_crs = port:PA15<2><default><default><default><default><emac_crs = port:PA16<2><default><default><default><default><emac_reset = port:PA17<1><default><default><default><default><

4 GMAC

4.1[gmac_para]

配置项	配置项含义
gmac_used=0	Gmac 模块是否使能: 1: enable0: disable
gmac_txd0=xx	Gmac tx0 的 GPIO 配置
gmac_txd1=xx	Gmac tx1 的 GPIO 配置
gmac_txd2=xx	Gmac tx2 的 GPIO 配置
gmac_txd3=xx	Gmac tx3 的 GPIO 配置
gmac_txd4=xx	Gmac tx4 的 GPIO 配置
gmac_txd5=xx	Gmac tx5 的 GPIO 配置
gmac_txd6=xx	Gmac tx6 的 GPIO 配置
gmac_txd7=xx	Gmac tx7 的 GPIO 配置
gmac_txclk=xx	Gmac MII 接口发送时钟
gmac_txen=xx	Gmac 发送使能 GPIO 配置
gmac_gtxclk=xx	Gmac GMII 接口发送时钟
gmac_rxd0=xx	Gmac rx0 的 GPIO 配置
gmac_rxd1=xx	Gmac rx1 的 GPIO 配置
gmac_rxd2=xx	Gmac rx2 的 GPIO 配置
gmac_rxd3=xx	Gmac rx3 的 GPIO 配置
gmac_rxd4=xx	Gmac rx4 的 GPIO 配置
gmac_rxd5=xx	Gmac rx5 的 GPIO 配置
gmac_rxd6=xx	Gmac rx6 的 GPIO 配置
gmac_rxd7=xx	Gmac rx7 的 GPIO 配置
gmac_rxdv=xx	Gmac 接收数有效使能
gmac_rxclk=xx	Gmac 接收时钟
gmac_txerr=xx	Gmac 发送错误使能
gmac_rxerr=xx	Gmac 接收错误使能
gmac_col=xx	Gmac 冲突检测(仅用于半双工)
gmac_crs=xx	Gmac 载波监测(仅用于半双工)
gmac_clkin=xx	Gmac GMII 外部时钟
gmac_mdc=xx	Gmac 配置接口时钟
gmac_mdio=xx	Gmac 配置接口数据 I/O

配置举例:

[gmac_para]	
gmac_used	= 0
gmac_txd0	= port:PA00<2> <default><default></default></default>
gmac_txd1	= port:PA01<2> <default><default></default></default>
gmac_txd2	= port:PA02<2> <default><default></default></default>
gmac_txd3	= port:PA03<2> <default><default></default></default>
gmac_txd4	= port:PA04<2> <default><default></default></default>
gmac_txd5	= port:PA05<2> <default><default></default></default>
gmac_txd6	= port:PA06<2> <default><default></default></default>
gmac_txd7	= port:PA07<2> <default><default></default></default>
gmac_txclk	= port:PA08<2> <default><default></default></default>
gmac_txen	= port:PA09<2> <default><default></default></default>
gmac_gtxclk	= port:PA10<2> <default><default></default></default>
gmac_rxd0	= port:PA11<2> <default><default></default></default>
gmac_rxd1	= port:PA12<2> <default><default></default></default>
gmac_rxd2	= port:PA13<2> <default><default></default></default>
gmac_rxd3	= port:PA14<2> <default><default></default></default>
gmac_rxd4	= port:PA15<2> <default><default></default></default>
gmac_rxd5	= port:PA16<2> <default><default></default></default>
gmac_rxd6	= port:PA17<2> <default><default></default></default>
gmac_rxd7	= port:PA18<2> <default><default></default></default>
gmac_rxdv	= port:PA19<2> <default><default></default></default>
gmac_rxclk	= port:PA20<2> <default><default></default></default>
gmac_txerr	= port:PA21<2> <default><default></default></default>
gmac_rxerr	= port:PA22<2> <default><default><default></default></default></default>
gmac_col	= port:PA23<2> <default><default><default></default></default></default>
gmac_crs	= port:PA24<2> <default><default><default></default></default></default>
gmac_clkin	= port:PA25<2> <default><default></default></default>
gmac_mdc	= port:PA26<2> <default><default><default></default></default></default>
gmac_mdio	= port:PA27<2> <default><default></default></default>

5 I2C 总线

主控有 4 个 I2C (twi) 控制器

5.1[twi0_para]

配置项	配置项含义
twi0_used =xx	TWI 使用控制: 1 使用, 0 不用
twi0_scl =xx	TWI SCK 的 GPIO 配置
twi0_sda=xx	TWI SDA 的 GPIO 配置

配置举例:

 $twi0_used = 1$

twi0_scl = port:PH14<2><default><default><default> twi0_sda = port:PH15<2><default><default><default>

5.2[twi1_para]

配置项	配置项含义
twi1_used =xx	TWI 使用控制: 1 使用, 0 不用
twi1_scl =xx	TWI SCK 的 GPIO 配置
twi1_sda=xx	TWI SDA 的 GPIO 配置

配置举例:

[tw1_para]

twi1_used = 1

twi1_scl = port:PH16<2><default><default><default> twi1_sda = port:PH17<2><default><default><default>

5.3[twi2_para]

配置项	配置项含义
twi2_used =xx	TWI 使用控制: 1 使用, 0 不用
twi2_scl =xx	TWI SCK 的 GPIO 配置
twi2_sda=xx	TWI SDA 的 GPIO 配置

配置举例:

[twi2_para]

 $twi2_used = 1$

twi2_scl = port:PH18<2><default><default><default><twi2_sda = port:PH19<2><default><default><default>

5.4[twi3_para]

配置项	配置项含义
twi3_used =xx	TWI 使用控制: 1 使用, 0 不用
twi3_scl =xx	TWI SCK 的 GPIO 配置
twi3_sda=xx	TWI SDA 的 GPIO 配置

配置举例:

[twi2_para]

 $twi2_used = 1$

twi2_scl = port:PB05<4><default><default><default> twi2_sda = port:PB06<4><default><default><default>

6 UART 总线

主控有 8 路 uart 总线,其中 uart1 支持完整的 8 线通讯,而其他 7 路支持 4 线或者 2 线通讯(但十分不建议用 uart0 作为控制台以外的用途),实例中,有些路仅仅写出 2 路的配置形式,但实际使用时只要将其按照 4 路的格式补全,也能支持 4 线通讯。

6.1 [uart_para0]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart_tx =xx	UART TX 的 GPIO 配置
uart_rx=xx	UART RX 的 GPIO 配置

配置举例:

[uart_para0]

uart_used = 1
uart_port = 0
uart_type = 2

uart_tx = port:PB22<2> <1><default><default> uart_rx = port:PB23<2> <1><default><default>

6.2[uart_para1]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart_tx =xx	UART TX 的 GPIO 配置
uart_rx=xx	UART RX 的 GPIO 配置
uart_rts=xx	UART RTS 的 GPIO 配置
uart_cts=xx	UART CTS 的 GPIO 配置
uart_dtr=xx	UART DTR 的 GPIO 配置
uart_dsr=xx	UART DSR 的 GPIO 配置
uart_dcd=xx	UART DCD 的 GPIO 配置

uart_ring=xx UART RING 的 GPIO 配置

配置举例:

[uart_para1]

uart_used= 0uart_port= 1uart_type= 8

uart_tx = port:PA10<4><1><default><default> uart_rx = port:PA11<4><1><default><default> = port:PA12<4><1><default><default> uart rts uart_cts = port:PA13<4><1><default><default> uart_dtr = port:PA14<4><1><default><default> = port:PA15<4><1><default><default> uart_dsr uart dcd = port:PA16<4><1><default><default> = port:PA17<4><1><default><default> uart_ring

6.3[uart_para2]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart_tx =xx	UART TX 的 GPIO 配置
uart_rx=xx	UART RX 的 GPIO 配置
uart_rts=xx	UART RTS 的 GPIO 配置
uart_cts=xx	UART CTS 的 GPIO 配置

配置举例:

[uart_para2]

 $uart_used$ = 0 $uart_port$ = 2 $uart_type$ = 4

uart_tx= port:PI18<3><1><default><default>uart_rx= port:PI19<3><1><default><default>uart_rts= port:PI16<3><1><default><default>uart_cts= port:PI17<3><1><default><default>

6.4[uart_para3]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart_tx =xx	UART TX 的 GPIO 配置
uart_rx=xx	UART RX 的 GPIO 配置
uart_rts=xx	UART RTS 的 GPIO 配置
uart_cts=xx	UART CTS 的 GPIO 配置

配置举例:

[uart_para3]

 $uart_used$ = 0 $uart_port$ = 3 $uart_type$ = 4

uart_tx= port:PH00<4><1><default><default>uart_rx= port:PH01<4><1><default><default>uart_rts= port:PH02<4><1><default><default>uart_cts= port:PH03<4><1><default><default>

6.5[uart_para4]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart_tx =xx	UART TX 的 GPIO 配置
uart_rx=xx	UART RX 的 GPIO 配置

配置举例:

[uart_para4]

uart_used= 0uart_port= 4uart_type= 2

uart_tx = port:PH04<4><1><default><default>
uart_rx = port:PH05<4><1><default><default>

6.6[uart_para5]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart_tx =xx	UART TX 的 GPIO 配置
uart_rx=xx	UART RX 的 GPIO 配置

配置举例:

[uart_para5]

 $uart_used$ = 0 $uart_port$ = 5 $uart_type$ = 2

uart_tx = port:PH06<4><1><default><default>
uart_rx = port:PH07<4><1><default><default>

6.7[uart_para6]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart_tx =xx	UART TX 的 GPIO 配置
uart_rx=xx	UART RX 的 GPIO 配置

配置举例:

[uart_para6]

uart_used= 0uart_port= 6uart_type= 2

uart_tx = port:PA12<4><1><default><default>
uart_rx = port:PA13<4><1><default><default>

6.8[uart_para7]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用

uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart_tx =xx	UART TX 的 GPIO 配置
uart_rx=xx	UART RX 的 GPIO 配置

配置举例:

[uart_para7]

uart_used= 0uart_port= 7uart_type= 2

uart_tx = port:PA14<4><default><default><default>< uart_rx = port:PA15<4><default><default><default>

7 SPI 总线

7.1[spi0_para]

配置项	配置项含义
spi_used =xx	SPI 使用控制: 1 使用, 0 不用
spi_cs_bitmap =xx	启用哪路 cs, bit 位表示
spi_cs0 =xx	SPI CS0 的 GPIO 配置
spi_cs1 =xx	SPI CS1 的 GPIO 配置
spi_sclk =xx	SPI CLK 的 GPIO 配置
spi_mosi=xx	SPI MOSI 的 GPIO 配置
spi_miso=xx	SPI MISO 的 GPIO 配置

配置举例:

[spi0_para]

spi_used = 0 spi_cs_bitmap = 1

spi_cs0 = port:PI10<2><default><default><default><spi_cs1 = port:PI14<2><default><default><default><default><spi_mosi = port:PI12<2><default><default><default><default><default><spi_miso = port:PI13<2><default><default><default><default><default>

7.2[spi1_para]

配置项	配置项含义
spi_used =xx	SPI 使用控制: 1 使用, 0 不用
spi_cs_bitmap =xx	启用哪路 cs, bit 位表示
spi_cs0 =xx	SPI CS0 的 GPIO 配置
spi_cs1 =xx	SPI CS1 的 GPIO 配置
spi_sclk =xx	SPI CLK 的 GPIO 配置
spi_mosi=xx	SPI MOSI 的 GPIO 配置
spi_miso=xx	SPI MISO 的 GPIO 配置

配置举例:

[spi1_para]

 spi_used = 0 spi_cs_bitmap = 1

7.3[spi2_para]

配置项	配置项含义
spi_used =xx	SPI 使用控制: 1 使用, 0 不用
spi_cs_bitmap =xx	启用哪路 cs, bit 位表示
spi_cs0 =xx	SPI CS0 的 GPIO 配置
spi_cs1 =xx	SPI CS1 的 GPIO 配置
spi_sclk =xx	SPI CLK 的 GPIO 配置
spi_mosi=xx	SPI MOSI 的 GPIO 配置
spi_miso=xx	SPI MISO 的 GPIO 配置

配置举例:

spi_used = 0 spi_cs_bitmap = 1

spi_cs0 = port:PB14<2><default><default><default><spi_sclk = port:PB15<2><default><default><default><default><spi_mosi = port:PB16<2><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default<<default><default<<default><default<<default<<default</d><default</d></d></d></d></d></d></d></d>

7.4[spi3_para]

配置项	配置项含义
spi_used =xx	SPI 使用控制: 1 使用, 0 不用
spi_cs_bitmap =xx	启用哪路 cs, bit 位表示
spi_cs0 =xx	SPI CS0 的 GPIO 配置
spi_cs1 =xx	SPI CS1 的 GPIO 配置
spi_sclk =xx	SPI CLK 的 GPIO 配置
spi_mosi=xx	SPI MOSI 的 GPIO 配置
spi_miso=xx	SPI MISO 的 GPIO 配置

配置举例:

[spi3_para]

spi_used = 0 spi_cs_bitmap = 1

spi_cs0= port:PA05<3><default><default><default>spi_sclk= port:PI06<3><default><default><default><default>spi_mosi= port:PI07<3><default><default><default><default>spi_miso= port:PI08<3><default><default><default><default>spi_cs1= port:PA09<3><default><default><default>

7.5[spi_devices]

配置项	配置项含义
spi_dev_num=xx	该项目直接和下面的[spi_board0]相关,它指
	定主板连接 spi 设备的数目, 假如有 N 个 SPI
	设备那么[spi_devices]中就要有N个
	([spi_board0]到[spi_board(N-1)])配置

7.6[spi_board0]

配置项	配置项含义	
modalias=xx	Spi 设备名字	
max_speed_hz =xx	最大传输速度(HZ)	
bus_num =xx	Spi 设备控制器序号	
chip_select=xx	理论上可以选 0, 1, 2, 3, 目前只支持 1, 2	
	(芯片没引出接口)	
mode=xx SPI MOSI 的 GPIO 配置可选值 0-3		

8 电阻屏(rtp)

8.1[rtp_para]

配置项	配置项含义	
rtp_used=xx	该模块在方案中是否启用,	
rtp_screen_size =xx	屏幕尺寸设置,以斜对角方向长度为准,以	
	寸为单位	
rtp_regidity_level=xx	表屏幕的硬度,以指覆按压,抬起时开始计	
	时,多少个 10ms 时间单位之后,硬件采集不	
	到数据为准;通常,我们建议的屏,5寸屏设	
	为5,7寸屏设为7,对于某些供应商提供的屏,	
	硬度可能不合要求, 需要适度调整	
rtp_press_threshold_enable=xx	是否开启压力的们门限制,建议选0不开启	
rtp_press_threshold=xx	这配置项当rtp_press_threshold_enable为1时	
	才有效,其数值可以是0到0xFFFFFF的任	
	意数值,数值越小越敏感,推荐值为 0xF	
rtp_sensitive_level=xx	敏感等级,数值可以是 0 到 0xF 之间的任意	
	数值,数值越大越敏感,0xF 为推荐值	
rtp_exchange_x_y_flag=xx	当屏的 x,y 轴需要转换的时候,这个项目该置	
	1,一般情况下则该置0	

9 电容屏(ctp)

9.1[ctp_para]

配置项	配置项含义	
ctp_used=xx	该选项为是否开启电容触摸,支持的话置1,	
	反之置 0	
ctp_name	ctp 的名字	
ctp_twi_id=xx	用于选择 i2c adapter, 可选 1, 2	
ctp_twi_addr =xx	指明 i2c 设备地址,与具体硬件相关	
ctp_screen_max_x=xx	触摸板的 x 轴最大坐标	
ctp_screen_max_y=xx	触摸板的y轴最大坐标	
ctp_revert_x_flag=xx	是否需要翻转 x 坐标,需要则置 1,反之置 0	
ctp_revert_y_flag=xx	是否需要翻转 y 坐标,需要则置 1,反之置 (
ctp_exchange_x_y_flag	是否需要x轴y轴坐标对换	
ctp_int_port=xx	电容屏中断信号的 GPIO 配置	
ctp_wakeup=xx	电容屏唤醒信号的 GPIO 配置	

配置举例:

[ctp_para]

ctp_used = 1

 $ctp_twi_id = 1$

 ctp_twi_addr = 0x5d

 $ctp_screen_max_x = 1280$

ctp_screen_max_y = 800

ctp_revert_x_flag = 1

ctp_revert_y_flag = 1

 $ctp_exchange_x_y_flag = 1$

ctp_int_port = port:PA03<6><default><default><default>

ctp_wakeup = port:PA02<1><default><1>

注意事项:

若要支持新的电容触控 ic, 在原有电容触控 ic 的代码基础上, 须结合 A31 bsp 层的配置情况, 作相应修改。具体说来,

- 1. 在 sys config 中: ctp twi id 应与硬件连接一致;
- 2. 在驱动部分代码中: sysconfig 中的其他子健也要正确配置,在程序中,要对这些配置进行相应的处理;

10 触摸按键(touch key)

10.1[tkey_para]

配置项	配置项含义
tkey_used =xx	支持触摸按键的置 1, 反之置 0
tkey_twi_id=xx	用于选择 i2c adapter, 可选 1, 2
tkey_twi_addr=xx	指明 i2c 设备地址,与具体硬件相关
tkey_int=xx	触摸按键中断信号的 GPIO 配置

配置举例:

 $tkey_used$ = 0 $tkey_twi_id$ = 2 $tkey_twi_addr$ = 0x62

tkey_int = port:PI13<6><default><default><default>

注意事项:

若支持,则将 tkey_used 置 1 并配置相应子键值;否则,tkey_used 置 0;

11马达(motor)

11.1 [motor_para]

配置项	配置项含义
motor_used =xx	是否启用马达,启用置1,反之置0
motor_shake=xx	马达使用的 GPIO 配置

配置举例:

 $motor_used = 1$

motor_shake = port:power3<1><default><1>

注意事项:

motor_shake = port:power3<1><default><default><1>

默认 io 口的输出应该为 1,这样就不会初始化之后就开始震动了。

12 闪存(nand flash)

12.1[nand_para]

配置项	配置项含义
nand_used =xx	nand 模块使能标志
nand_we =xx	nand 写时钟信号的 GPIO 配置
nand_ale =xx	nand 地址使能信号的 GPIO 配置
nand_cle =xx	nand 命令使能信号的 GPIO 配置
nand_ce1 =xx	nand 片选 1 信号的 GPIO 配置
nand_ce0 =xx	nand 片选 0 信号的 GPIO 配置
nand_nre =xx	nand 读时钟信号的 GPIO 配置
nand_rb0=xx	nand Read/Busy 1 信号的 GPIO 配置
nand_rb1 =xx	nand Read/Busy 0 信号的 GPIO 配置
nand_d0=xx	nand 数据总线信号的 GPIO 配置
nand_d1=xx	1
nand_d2=xx	/
nand_d3=xx	1
nand_d4=xx	
nand_d5=xx	
nand_d6=xx	/
nand_d7=xx	/
nand_wp	/
nand_ce2=xx	nand 片选 2 信号的 GPIO 配置
nand_ce3=xx	nand 片选 3 信号的 GPIO 配置
nand_ce4=xx	
nand_ce5=xx	
nand_ce6=xx	
nand_ce7=xx	
nand_spi=xx	
nand_ndqs=xx	nand ddr 时钟信号的 GPIO 配置
good_block_ratio=xx	

配置举例:

[nand_para]

nand_used = 1

nand_we	= port:PC00<2> <default><default><default></default></default></default>
nand_ale	= port:PC01<2> <default><default><default></default></default></default>
nand_cle	= port:PC02<2> <default><default><default></default></default></default>
nand_ce1	= port:PC03<2> <default><default><default></default></default></default>
nand_ce0	= port:PC04<2> <default><default><default></default></default></default>
nand_nre	= port:PC05<2> <default><default><default></default></default></default>
nand_rb0	= port:PC06<2> <default><default></default></default>
nand_rb1	= port:PC07<2> <default><default><default></default></default></default>
nand_d0	= port:PC08<2> <default><default></default></default>
nand_d1	= port:PC09<2> <default><default></default></default>
nand_d2	= port:PC10<2> <default><default></default></default>
nand_d3	= port:PC11<2> <default><default></default></default>
nand_d4	= port:PC12<2> <default><default><default></default></default></default>
nand_d5	= port:PC13<2> <default><default></default></default>
nand_d6	= port:PC14<2> <default><default></default></default>
nand_d7	= port:PC15<2> <default><default></default></default>
nand_wp	= port:PC16<2> <default><default><default></default></default></default>
nand_ce2	= port:PC17<2> <default><default></default></default>
nand_ce3	= port:PC18<2> <default><default></default></default>
nand_ce4	=
nand_ce5	= 3
nand_ce6	=
nand_ce7	=
nand_spi	= port:PC23<3> <default><default><default></default></default></default>
nand_ndqs	= port:PC24<2> <default><default><default></default></default></default>
good_block_ratio	= 0

13 显示初始化(disp init)

13.1[disp_init]

配置项	配置项含义	
disp_init_enable=xx	是否进行显示的初始化设置	
disp_mode =xx	显示模式:	
	0:screen0 <screen0,fb0></screen0,fb0>	
screen0_output_type=xx	屏 0 输出类型(0:none; 1:lcd; 2:tv; 3:hdmi;	
	4:vga)	
screen0_output_mode =xx	屏 0 输出模式(used for tv/hdmi output, 0:480i	
	1:576i 2:480p 3:576p 4:720p50 5:720p60	
	6:1080i50 7:1080i60 8:1080p24 9:1080p50	
	10:1080p60 11:pal 14:ntsc)	
screen1_output_type=xx	屏 1 输 出 类 型 (0:none; 1:lcd; 2:tv; 3:hdmi;	
*	4:vga)	
screen1_output_mode=xx	屏 1 输出模式(used for tv/hdmi output, 0:480i	
	1:576i 2:480p 3:576p 4:720p50 5:720p60	
	6:1080i50 7:1080i60 8:1080p24 9:1080p50	
	10:1080p60 11:pal 14:ntsc)	
fb0_format=xx	fb0 的格式(4:RGB655 5:RGB565 6:RGB556	
	7:ARGB1555 8:RGBA5551 9:RGB888	
	10:ARGB8888 12:ARGB4444)	
fb0_pixel_sequence=xx	fb0 的 pixel sequence(0:ARGB 1:BGRA	
	2:ABGR 3:RGBA)	
fb0_scaler_mode_enable=xx	fb0 是否使用 scaler mode,即使用 FE	
fb0_width=xx	fb0 的宽度,为 0 时将按照输出设备的分辨率	
fb0_height=xx	fb0 的高度,为 0 时将按照输出设备的分辨率	
fb1_format=xx	fb1 的格式(4:RGB655 5:RGB565 6:RGB556	
	7:ARGB1555 8:RGBA5551 9:RGB888	
	10:ARGB8888 12:ARGB4444)	
fb1_pixel_sequence=xx	fb1 的 pixel sequence(0:ARGB 1:BGRA	
	2:ABGR 3:RGBA)	
fb1_scaler_mode_enable=xx	fb1 是否使用 scaler mode,即使用 FE	
fb1_width=xx	Fb1 的宽度,为 0 时将按照输出设备的分辨率	
fb1_height=xx	Fb1 的高度,为 0 时将按照输出设备的分辨	
	率	

lcd0_backlight	Lcd0 的背光初始值, 0~255
lcd1_backlight	Lcd1 的背光初始值,0~255
lcd0_bright	Lcd0 的亮度值,0~100
lcd0_contrast	Lcd0 的对比度,0~100
lcd0_saturation	Lcd0 的饱和度,0~100
lcd0_hue	Lcd0 的色度,0~100
lcd1_bright	Lcd1 的亮度值,0~100
lcd1_contrast	Lcd1 的对比度,0~100
lcd1_saturation	Lcd1 的饱和度,0~100
lcd1_hue	Lcd1 的色度,0~100

配置举例:

[disp init]

[disp_init]	
disp_init_enable	= 1
disp_mode	= 0
screen0_output_type	= 1
screen0_output_mode	= 4
screen1_output_type	= 1
screen1_output_mode	= 4
fb0_format	= 10
fb0_pixel_sequence	= 0
fb0_scaler_mode_enable	= 0
fb0_width	= 0
fb0_height	= 0
fb1_format	= 10
fb1_pixel_sequence	= 0
fb1_scaler_mode_enable	= 0
fb1_width	= 0
fb1_height	= 0
lcd0_backlight	= 197
lcd1_backlight	= 197
lcd0_bright	= 50
lcd0_contrast	= 50
lcd0_saturation	= 57
lcd0_hue	= 50
lcd1_bright	= 50
lcd1_contrast	= 50
lcd1_saturation	= 57
lcd1_hue	= 50

14 LCD 屏 0

14.1[lcd0_para]

配置项	配置项含义
lcd used=xx	是否使用 lcd0
lcd_if=xx	lcd interface(0:hv(sync+de); 1:8080; 2:ttl;
	3:lvds, 4:dsi; 5:edp)
lcd_x=xx	lcd active width
lcd_y =xx	lcd active height
lcd_dclk_freq=xx	pixel clock, in MHZ unit
lcd_pwm_freq=xx	pwm freq, in HZ unit
lcd_pwm_pol =xx	pwm polarity, 0:positive; 1:negative
lcd_pwm_max_limit=xx	Lcd pwm max limit(<=255)
lcd_hbp=xx	hsync back porch
lcd_ht=xx	hsync total cycle
lcd_vbp=xx	vsyne back porch
lcd_vt=xx	vysnc total cycle
lcd_hv_vspw=xx	vysne plus width
lcd_hv_hspw=xx	hsync plus width
lcd_hv_if =xx	hv interface(0:parallel; 8:serial(8bit/3cycle);
	10:dummyrgb(8bit/4cycle);11:rgbdummy(8bit/
	4cycle); 12: ccir656)
lcd_hv_srgb_seq=xx	serial RGB output sequence
lcd_hv_syuv_seq=xx	serial YUV output sequence
lcd_hv_syuv_fdly	serial YUV output F line delay(0: no delay;1:
	delay 2line[CCIR NTSC]; 2: delay 3line[CCIR
	PAL])
lcd_lvds_if=xx	0:single channel; 1:dual channel
lcd_lvds_colordepth=xx	0:8bit; 1:6bit
lcd_lvds_mode=xx	0:NS mode; 1:JEIDA mode
lcd_lvds_io_polarity=xx	0:normal; 1:pn cross
lcd_dsi_if=xx	0:video mode; 1:command mode
lcd_dsi_lane=xx	1/2/3/4lane
lcd_dsi_format=xx	0:RGB888; 1:RGB666; 2:RGB666P;
	3:RGB565
lcd_dsi_eotp=xx	0:no ending symbol 1:insert ending symbol;

lcd_dsi_te=xx	0:disable te mode; 1:rising te mode; 2:falling te	
	mode	
lcd_cpu_if=xx	cpu i/f mode(0:18bit; 1:16bit mode0; 2:16bit	
	mode1; 3:16bit mode2;4:16bit mode3; 5:9bit;	
	6:8bit 256K; 7:8bit 65K;)	
lcd_cpu_te=xx	0:disable te mode; 1:enable rising te mode;	
	2:enable falling te mode	
lcd_frm=xx	0:disable; 1:enable rgb666 dither; 2:enable	
	rgb656 dither	
lcd_edp_tx_ic=xx	0:anx9804; 1:anx6345	
lcd_edp_tx_rate=xx	1:1.62G; 2:2.7G; 3:5.4G	
lcd_edp_tx_lane=xx	1/2/4lane	
lcd_io_phase=xx	0:noraml; 1:intert phase(0~3bit: vsync phase;	
	4~7bit:hsync phase;8~11bit:dclk phase;	
	12~15bit:de phase)	
deu_mode=xx	Parameter for deu. 0:smoll lcd screen; 1:large	
	lcd screen(larger than 10inch)	
lcdgamma4iep=xx	Smart Backlight parameter, lcd gamma vale *	
	10;	
smart_color=xx	90:normal lcd screen 65:retina lcd	
	screen(9.7inch) (0~100)	
lcd_bl_en=xx	LCD_BL_EN 的 GPIO 配置	
lcd_power=xx	LCD_VCC control 的 GPIO 配置	
lcd_pwm=xx	lcd PWM 的 GPIO 配置 (PWM0 固定使用	
	PB02, PWM1 固定使用 PI03,用户无需修改	
	该项)	
lcd_gpio_scl	iic SCL	
lcd_gpio_sda	iic SDA	
lcd_gpio_0/1/2/3=xx	LCD 额外需要使用的 GPIO 配置	
lcdd0~23=xx	lcd 数据的 GPIO 配置	
lcdclk=xx	lcd 信号的 GPIO 配置(具体信号与实际电路	
	相关)	
lcdde=xx	lcd 信号的 GPIO 配置(具体信号与实际电路	
	相关)	
lcdhsyne=xx	lcd 信号的 GPIO 配置(具体信号与实际电路	
	相关)	
lcdvsync=xx	lcd 信号的 GPIO 配置(具体信号与实际电路	
	相关)	

配置举例:

F1 10 3	
[lcd0_para]	
lcd_used	= 1
lcd_if	= 0
lcd_x	= 1280
lcd_y	= 800
lcd_dclk_freq	= 70
lcd_pwm_freq	= 50000
lcd_pwm_pol	= 0
lcd_pwm_max_limit	= 150
lcd_hbp	= 20
lcd_ht	= 1418
lcd_hspw	= 10
lcd_vbp	= 10
lcd_vt	= 814
lcd_vspw	= 5
lcd_hv_if	= 0
lcd_hv_srgb_seq	= 0
lcd_hv_syuv_seq	= 0
lcd_hv_syuv_fdly	= 0
lcd_lvds_if	= 0
lcd_lvds_colordepth	= 1
lcd_lvds_mode	= 0
lcd_lvds_io_polarity	= 0
lcd_dsi_if	= 0
lcd_dsi_lane	= 0
lcd_dsi_format	= 0
lcd_dsi_eotp	= 0
lcd_dsi_te	= 0
lcd_cpu_if	= 0
lcd_cpu_te	= 0
lcd_frm	= 1
lcd_edp_tx_ic	= 0
lcd_edp_tx_rate	=0
lcd_edp_tx_lane	= 0
lcd_io_phase	=0x00
deu_mode	= 0
lcdgamma4iep	= 22
Smart_color	= 90
lcd_bl_en	= port:PA25<1><0> <default><1></default>
lcd_power	= port:power2<1><0> <default><1></default>


```
= port:PH13<2><0><default><default>
lcd pwm
lcd_gpio_scl
lcd_gpio_sda
lcd_gpio_0
lcd_gpio_1
lcd_gpio_2
lcd_gpio_3
lcdd0
                      = port:PD00<2><0><default><default>
lcdd1
                      = port:PD01<2><0><default><default>
lcdd2
                      = port:PD02<2><0><default><default>
lcdd3
                      = port:PD03<2><0><default><default>
lcdd4
                      = port:PD04<2><0><default><default>
lcdd5
                      = port:PD05<2><0><default><default>
lcdd6
                      = port:PD06<2><0><default><default>
lcdd7
                      = port:PD07<2><0><default><default>
lcdd8
                      = port:PD08<2><0><default><default>
lcdd9
                      = port:PD09<2><0><default><default>
lcdd10
                      = port:PD10<2><0><default><default>
lcdd11
                      = port:PD11<2><0><default><default>
lcdd12
                      = port:PD12<2><0><default><default>
lcdd13
                      = port:PD13<2><0><default><default>
lcdd14
                      = port:PD14<2><0><default><default>
lcdd15
                      = port:PD15<2><0><default><default>
lcdd16
                      = port:PD16<2><0><default><default>
lcdd17
                      = port:PD17<2><0><default><default>
lcdd18
                      = port:PD18<2><0><default><default>
lcdd19
                      = port:PD19<2><0><default><default>
lcdd20
                      = port:PD20<2><0><default><default>
lcdd21
                      = port:PD21<2><0><default><default>
lcdd22
                      = port:PD22<2><0><default><default>
lcdd23
                      = port:PD23<2><0><default><default>
lcdclk
                      = port:PD24<2><0><default><default>
lcdde
                      = port:PD25<2><0><default><default>
                      = port:PD26<2><0><default><default>
lcdhsync
lcdvsync
                      = port:PD27<2><0><default><default>
```


15 LCD 屏 1

15.1[lcd1_para]

所有配置跟 lcd0 一样

16 sata

配置项	配置项含义
sata_used	
sata_ power_en	

配置举例:

[sata_para]

sata_used = 1

sata_power_en =

17 TV

17.1[tv_out_dac_para]

配置项	配置项含义
dac_used	
dac0_src	
dac1_src	
dac2_src	
dac3_src	

配置举例:

[tv_out_dac_para]

 dac_used
 = 1

 dac0_src
 = 4

 dac1_src
 = 5

 dac2_src
 = 6

 dac3_src
 = 0

17.2[tvout_para]

配置项	配置项含义
tvout_used=xx	
tvout_channel_num=xx	

配置举例:

[tvout_para]

tvout_used = 1 tvout_channel_num = 1

17.3[tvin_para]

配置项	配置项含义
tvin_used	

tvin_channel_num

配置举例:

[tvin_para]

tvin_used = 0

tvin_channel_num = 4

18 HDMI

18.1[hdmi_para]

配置项	配置项含义	
para_used =xx	是否使用 hdmi	

摄像头(CSI) **19**

19.1[camera_list_para]

配置项	配置项含义

配置举例:

siv121d

= 1
= 0
= 1
=0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 1
= 0
=0
=0
=0
=0
= 0
= 0

=0

19.2[csi0_para]

留空,不要填写,如下: [csi0_para] csi_used = 0

19.3[csi1_para]

特别注意事项:

在A31以及后续项目中(因为内核对 GPIO 资源的管理有修改), 如果两个 sensor 制作 2 合 1 模组的时候**请注意将两个模组的 reset** 控制脚分开(包括), stby 控制脚也分开, 仅有电源, 数据线、clock 线、地可以复用。如果是使用 RAW 格式的 sensor, 硬件上需要 CSI_D[11:2]共 10 条数据线,请不要将 CSI_D3 和 CSI_D2 用做 GPIO 功能,模组上的 D[3:2]也要注意从 sensor 端引出来。

配置项	配置项含义
csi_used =xx	是否使用 csi1
csi_twi_id =xx	csi 使用的 IIC 通道序号,查看具体方案原理
7	图,使用 twi0 填 0
csi_mname=xx	csi 使用的模组名称,需要与驱动匹配,可以
	查看驱动目录里面的 readme 目前有 gc0307,
	gc0308, gc2035, gt2005, hi253, ov5640, s5k4ec
	可选
csi_twi_addr=xx	csi 使用的模组的 IIC 地址 (8bit 地址),可以
	查看驱动目录里面的 readme
csi_if	配置目前使用模组的接口时序:
	0:8bit 数据线,带 Hsync,Vsync
	1:16bit 数据线,带 Hsync,Vsync
	2:24bit 数据线,带 Hsync,Vsync
	3:8bit 数据线,BT656 内嵌同步,单通道

	4:8bit 数据线,BT656 内嵌同步,双通道
	5:8bit 数据线,BT656 内嵌同步,四通道
csi_mode	配置 csi 接收 buffer 的模式:
	0: 一个 CSI 接收对应一个 buffer
	1: 两个 CSI 接收内容拼接成一个 buffer
csi_dev_qty	配置 csi 目前连接的器件数量,目前只能配置
	为1或2
csi_vflip	配置 csi 接收图像默认情况下,上下颠倒情
	况:
	0: 正常
	1: 上下颠倒
csi_hflip	配置 csi 接收图像默认情况下,左右颠倒情
	况:
	0: 正常
	1: 左右颠倒
csi_stby_mode	配置 csi 在进入 standby 时的处理:
	0:不关闭电源,只拉 standby io
	1: 关闭电源,同时拉 standy io
csi_iovdd	配置 csi iovdd 电源来源:
	请查看对应方案原理图 ,一般填写的名字
	为"axp22_XldoN"等(注意带英文字符的双引
	号,不使用 axp 电源供电时候请务必留空引
	号"")
	如 EVB 上,配置成"axp22_eldo3"
csi_avdd	配置 csi avdd 电源来源:
	请查看对应方案原理图 ,一般填写的名字
	为" axp22_XldoN "等(注意带英文字符的双引
	号,不使用 axp 电源供电时候请务必留空引
	号""), 这个地方请特别注意 ,因为此电源对
	于 sensor 图像质量关系较大,对于高像素
	sensor 建 议 使 用 axp22_ldoio0 或
	axp22_ldoio1 这两组电源或者采用外挂带
	EN 控制的 LDO
csi_dvdd	配置 csi dvdd 电源来源:
	请查看对应方案原理图 ,一般填写的名字
	为"axp22_XldoN"等(注意带英文字符的双引
	号,不使用 axp 电源供电时候请务必留空引
	号"")
csi_vol_iovdd	配置 csi iovdd 电源电压

	如果 csi iovdd 配置不为空时会配置对应的
	axp 电源为相应电压
	配置为 2800 表示 2.8V , 范围不要超过
	1800~2800,请查看具体 sensor 的 datasheet
	填写此电压
csi vol avdd	配置 csi avdd 电源电压
	如果 csi avdd 配置不为空时会配置对应的
	axp 电源为相应电压
	配置为 2800 表示 2.8V ,一般不要修改此数值
csi vol dvdd	配置 csi dvdd 电源电压
	如果 csi_dvdd 配置不为空时会配置对应的
	axp 电源为相应电压
	配置为 1500 表示 1.5V , 范围不要超过
	1200~1800,请查看具体 sensor 的 datasheet
	填写此电压
csi_pck=xx	模组送给 csi 的 clock 的 GPIO 配置
csi ck=xx	csi 送给模组的 clock 的 GPIO 配置
csi hsync=xx	模组送给 csi 的行同步信号 GPIO 配置
csi vsync=xx	模组送给 csi 的帧同步信号 GPIO 配置
csi d0=xx	模组送给 csi 的 8bit/16bit/24bit 数据的 GPIO
	配置, 使用 YUV 格式的 sensor 方案中,
csi d23=xx	csi d0/d1/d2/d3 会被配置成普通 GPIO,用
_	来控制 sensor 的 pwdn/reset 信号,使用 RAW
	格式的 sensor 只能用 csi_d0/d1 作 GPIO 用
csi_reset=xx	控制模组的 reset 的 GPIO 配置, 默认值为 reset
	有效(高或低有效需要取决于模组)
csi_power_en=xx	控制模组的电源的GPIO配置,若
	csi_stby_mode 配置成 0,则 csi_power_en 的
	默认值一般配置成 1;若 csi_stby_mode 配置
	成 1,则 csi_power_en 的默认值一般配置成 0。
csi_stby=xx	控制模组的 standby 的 GPIO 配置,默认值为
	standby 有效(高或低有效需要取决于模组)
csi_reset_b=xx	如果有两个模组同时连接到一个 CSI, 需要
	额外的 IO 控制;控制模组的 reset 的 GPIO
	配置,默认值为 reset 有效(高或低有效需要
	取决于模组)
csi_power_en_b=xx	如果有两个模组同时连接到一个 CSI, 需要
	额外的 IO 控制;控制模组的电源的 GPIO 配
	置,若 csi_stby_mode 配置成 0,则

	csi_power_en 的默认值一般配置成 1;若
	csi_stby_mode 配置成 1,则 csi_power_en 的
	默认值一般配置成 0。
csi_stby_b=xx	如果有两个模组同时连接到一个 CSI, 需要
	额外的 IO 控制;控制模组的 standby 的 GPIO
	配置,默认值为 standby 有效(高或低有效需
	要取决于模组)

配置举例:

[csi1_para]

 csi_used = 1 csi_mode = 0 csi_dev_qty = 2 csi_stby_mode = 0

csi_mname = "ov5640"

 $\begin{array}{lll} csi_twi_id & = 0 \\ csi_twi_addr & = 0x78 \\ csi_if & = 0 \\ csi_vflip & = 0 \\ csi_hflip & = 1 \end{array}$

csi_iovdd = "axp22_eldo3" csi_avdd = "axp22_dldo4" csi_dvdd = "axp22_eldo2"

 csi_vol_iovdd = 2800 csi_vol_avdd = 2800 csi_vol_dvdd = 1800

csi_flash_pol = 1

csi_mname_b = "gc0307"

csi_twi_id_b = 0 csi_twi_addr_b = 0x42 csi_if_b = 0 csi_vflip_b = 1 csi_hflip_b = 1

csi_iovdd_b = "axp22_eldo3" csi_avdd_b = "axp22_dldo4" csi_dvdd_b = "axp22_eldo2"

 $csi_vol_iovdd_b = 2800$


```
csi vol avdd b
                    = 2800
csi_vol_dvdd_b
                    = 1800
csi_flash_pol_b
                   = 1
csi pck
                    = port:PE00<2><default><default><default>
csi mck
                     = port:PE01<2><default><default>
                    = port:PE02<2><default><default><default>
csi_hsync
                    = port:PE03<2><default><default><
csi vsync
csi_d0
csi_d1
csi_d2
csi d3
csi d4
                    = port:PE08<2><default><default><
csi_d5
                    = port:PE09<2><default><default><default>
                    = port:PE10<2><default><default><default>
csi_d6
                    = port:PE11<2><default><default><default>
csi d7
csi d8
                    = port:PE12<2><default><default>
                    = port:PE13<2><default><default>
csi_d9
csi_d10
                    = port:PE14<2><default><default>
csi d11
                    = port:PE15<2><default><default>
                   = port:PE04<1><default><default><0>
csi reset
csi_power_en
                    = port:PE05<1><default><default><1>
csi_stby
csi flash
csi_af_en
csi reset b
                   = port:PE06<1><default><default><0>
csi_power_en_b
csi stby b
                    = port:PE07<1><default><default><1>
csi flash b
csi_af_en_b
```


20 SD/MMC

20.1[mmc0_para]

配置项	配置项含义
sdc_used=xx	SDC 使用控制: 1 使用, 0 不用
sdc_detmode=xx	检测模式: 1-gpio 检测, 2-data3 检测, 3-无
	检测, 卡常在(不卡拔插), 4 - manual
	mode(from proc file system node)
bus_width=xx	位宽:1-1bit,4-4bit
sdc_d1=xx	SDC DATA1 的 GPIO 配置
sdc_d0=xx	SDC DATA0 的 GPIO 配置
sdc_clk=xx	SDC CLK 的 GPIO 配置
sdc_cmd=xx	SDC CMD 的 GPIO 配置
sdc_d3=xx	SDC DATA3 的 GPIO 配置
sdc_d2=xx	SDC DATA2 的 GPIO 配置
sdc_det=xx	SDC DET 的 GPIO 配置
sdc_use_wp=xx	SDC 写保护配置: 1 使用, 0 不用
sdc_wp=xx	SDC WP 的 GPIO 配置
sdc_isio=xx	是否是 sdio card,0:不是, 1: 是
sdc_regulator=xx	假如过卡支持 SD3.0 或者 emmc4.5 的
	UHS-I/DDR 、 HS200 , 这 里 就 要 写 成
	sdc_regulator = "axp22_eldo2"

配置举例:	
[mmc0_para]	
sdc_used	= 1
sdc_detmode	= 1
bus_width	= 4
sdc_d1	= port:PF0<2><1> <default><default></default></default>
sdc_d0	= port:PF1<2><1> <default><default></default></default>
sdc_clk	= port:PF2<2><1> <default><default></default></default>
sdc_cmd	= port:PF3<2><1> <default><default></default></default>
sdc_d3	= port:PF4<2><1> <default><default></default></default>
sdc_d2	= port:PF5<2><1> <default><default></default></default>
sdc_det	= port:PH1<0><1> <default><default></default></default>
sdc_use_wp	= 0

sdc_wp

20.2[mmc1_para]

配置项	配置项含义
sdc_used=xx	SDC 使用控制: 1 使用, 0 不用
sdc_detmode=xx	检测模式: 1-gpio 检测, 2-data3 检测, 3-无
	检测, 卡常在(不卡拔插), 4 - manual
	mode(from proc file system node)
bus_width=xx	位宽: 1-1bit, 4-4bit
sdc_d1=xx	SDC DATA1 GPIO 配置
sdc_d0=xx	SDC DATA0 GPIO 配置
sdc_clk=xx	SDC CLK GPIO 配置
sdc_cmd=xx	SDC CMD GPIO 配置
sdc_d3=xx	SDC DATA3 GPIO 配置
sdc_d2=xx	SDC DATA2 GPIO 配置
sdc_det=xx	SDC DET GPIO 配置
sdc_use_wp=xx	SDC 写保护配置: 1 使用, 0 不用
sdc_wp=xx	SDC WP GPIO 配置

配置举例:

[mmc1_para]

sdc_used = 1 sdc_detmode = 1 bus_width = 4

sdc_cmd= port:PH22<5><1><default><default>sdc_clk= port:PH23<5><1><default><default>sdc_d0= port:PH24<5><1><default><default>sdc_d1= port:PH25<5><1><default><default>sdc_d2= port:PH26<5><1><default><default>sdc_d3= port:PH27<5><1><default><default>sdc_det= port:PH2<0><1><default><default>

 $sdc_use_wp = 0$ $sdc_wp =$

20.3[mmc2_para]

配置项	配置项含义
sdc_used=xx	SDC 使用控制: 1 使用, 0 不用

sdc_detmode=xx	检测模式: 1-gpio 检测, 2-data3 检测, 3-无
	检测,卡常在(不卡拔插),4-manual
	mode(from proc file system node)
bus_width=xx	位宽: 1-1bit, 4-4bit
sdc_d1=xx	SDC DATA1 GPIO 配置
sdc_d0=xx	SDC DATA0 GPIO 配置
sdc_clk=xx	SDC CLK GPIO 配置
sdc_cmd=xx	SDC CMD GPIO 配置
sdc_d3=xx	SDC DATA3 GPIO 配置
sdc_d2=xx	SDC DATA2 GPIO 配置
sdc_det=xx	SDC DET GPIO 配置
sdc_use_wp=xx	SDC 写保护配置: 1 使用, 0 不用
sdc_wp=xx	SDC WP GPIO 配置

配置举例:

[mmc2_para]

 sdc_used = 1 $sdc_detmode$ = 1 bus_width = 4

sdc_cmd= port:PH22<5><1><default><default>sdc_clk= port:PH23<5><1><default><default>sdc_d0= port:PH24<5><1><default><default>sdc_d1= port:PH25<5><1><default><default>sdc_d2= port:PH26<5><1><default><default>sdc_d3= port:PH27<5><1><default><default>sdc_det= port:PH2<0><1><default><default>

sdc_use_wp = 0

sdc_wp =

20.4[mmc3_para]

配置项	配置项含义
sdc_used=xx	SDC 使用控制: 1 使用, 0 不用
sdc_detmode=xx	检测模式: 1-gpio 检测, 2-data3 检测, 3-无
	检测, 卡常在(不卡拔插), 4 - manual
	mode(from proc file system node)
bus_width=xx	位宽: 1-1bit, 4-4bit
sdc_d1=xx	SDC DATA1 GPIO 配置
sdc_d0=xx	SDC DATA0 GPIO 配置

sdc_clk=xx	SDC CLK GPIO 配置
sdc_cmd=xx	SDC CMD GPIO 配置
sdc_d3=xx	SDC DATA3 GPIO 配置
sdc_d2=xx	SDC DATA2 GPIO 配置
sdc_det=xx	SDC DET GPIO 配置
sdc_use_wp=xx	SDC 写保护配置: 1 使用, 0 不用
sdc_wp=xx	SDC WP GPIO 配置

配置举例:

[mmc3_para]

 sdc_used = 1 $sdc_detmode$ = 1 bus_width = 4

sdc_cmd= port:PH22<5><1><default><default>sdc_clk= port:PH23<5><1><default><default>sdc_d0= port:PH24<5><1><default><default>sdc_d1= port:PH25<5><1><default><default><default>sdc_d2= port:PH26<5><1><default><default><default>sdc_d3= port:PH27<5><1><default><default><default>sdc_det= port:PH2<0><1><default><default>

 $sdc_use_wp = 0$ $sdc_wp = 0$

21 SIM 卡

21.1[smc_para]

配置项	配置项含义
smc_used =xx	
smc_rst=xx	
smc_vppen=xx	
smc_vppp=xx	
smc_det=xx	
smc_vccen=xx	
smc_sck=xx	
smc_sda=xx	

配置举例:

[smc_para]

 $smc_used = 0$

smc_rst = port:PH13<5><default><default><default><smc_vppen = port:PH14<5><default><default><default><default><smc_vppp = port:PH15<5><default><default><default><default><smc_det = port:PH16<5><default><default><default><default><default><smc_vccen = port:PH17<5><default><default><default><default><smc_sck = port:PH18<5><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><defa

22 USB 控制标志

22.1[usbc0]

配置项	配置项含义
usb_used =xx	USB 使能标志(xx=1 or 0)。置 1,表示系统中
	USB 模块可用,置0,则表示系统USB禁用。
	此标志只对具体的 USB 控制器模块有效。
usb_port_type =xx	USB 端口的使用情况。(xx=0/1/2)
	0: device only 1: host only 2: OTG
usb_detect_type=xx	USB 端口的检查方式。
	0: 无检查方式 1: vbus/id 检查
usb_id_gpio=xx	USB ID pin 脚配置。具体请参考 gpio 配置说
	明。《配置与 GPIO 管理.doc》
usb_det_vbus_gpio=xx	USB DET_VBUS pin 脚配置。如果 GPIO 提
	供 pin,请参考 gpio 配置说明《配置与 GPIO
	管理.doc》。如果的 AXP 提供 pin,则配置为:
	"axp_ctrl"。
usb_drv_vbus_gpio=xx	USB DRY_VBUS pin 脚配置。具体请参考
	gpio 配置说明。《配置与 GPIO 管理.doc》
usb_restrict_gpio=xx	USB 限流控制 pin 脚
	USB RESTRICT_GPIO pin 脚配置。具体请参
	考 gpio 配置说明。《配置与 GPIO 管理.doc》
usb_host_init_state=xx	host only 模式下,Host 端口初始化状态。
	0: 初始化后 USB 不工作 1: 初始化后 USB
	工作
usb_restric_flag=xx	Usb 限流标志位
	0: 不使能限流功能 1: 使能限流功能
usb_restric_voltage=xx	限流开启的条件
	电压值小于设置值,则开启限流
usb_restric_capacity=xx	限流开启的条件
	电量值小于设置值,则开启限流

配置举例:

[usbc0]

usb_used = 1 usb_port_type = 2

usb_detect_type = 1

usb_id_gpio= port:PH4<0><1><default><default>usb_det_vbus_gpio= port:PH5<0><0><default><default>usb_drv_vbus_gpio= port:PB9<1><0><default><0>usb_restrict_gpio= port:PH26<1><0><default><0>

usb_host_init_state= 0usb_restric_flag= 0

usb_restric_voltage = 3550000

usb_restric_capacity = 5

22.2[usbc1]

配置项	配置项含义
usb_used =xx	USB 使能标志(xx=1 or 0)。置 1,表示系统中
	USB 模块可用,置 0,则表示系统 USB 禁用。
	此标志只对具体的 USB 控制器模块有效。
usb_port_type =xx	USB 端口的使用情况。(xx=0/1/2)
	0: device only 1: host only 2: OTG
usb_detect_type=xx	USB 端口的检查方式。
	0: 无检查方式 1: vbus/id 检查
usb_id_gpio=xx	USB ID pin 脚配置。具体请参考 gpio 配置说
	明。《配置与 GPIO 管理.doc》
usb_det_vbus_gpio=xx	USB DET_VBUS pin 脚配置。具体请参考
*	gpio 配置说明。《配置与 GPIO 管理.doc》
usb_restrict_gpio=xx	USB 限流控制 pin 脚
	USB RESTRICT_GPIO pin 脚配置。具体请参
	考 gpio 配置说明。《配置与 GPIO 管理.doc》
usb_drv_vbus_gpio=xx	USB DRY_VBUS pin 脚配置。具体请参考
	gpio 配置说明。《配置与 GPIO 管理.doc》
usb_host_init_state=xx	host only 模式下,Host 端口初始化状态。
	0: 初始化后 USB 不工作 1: 初始化后 USB
	工作
usb_restric_flag=xx	Usb 限流标志位
	0:表不设限流,1开启限流

配置举例:

[usbc1]

usb_used = 1 usb_port_type = 1

usb_detect_type = 0 usb_id_gpio = usb_det_vbus_gpio =

usb_drv_vbus_gpio = port:PH6<1><0><default><0> usb_restrict_gpio = port:PH26<1><0><default><0>

usb_host_init_state = 1 usb_restric_flag = 0

22.3[usbc2]

配置项	配置项含义
usb_used =xx	USB 使能标志(xx=1 or 0)。置 1,表示系统中
	USB 模块可用,置0,则表示系统USB禁用。
	此标志只对具体的 USB 控制器模块有效。
usb_port_type =xx	USB 端口的使用情况。(xx=0/1/2)
	0: device only 1: host only 2: OTG
usb_detect_type=xx	USB 端口的检查方式。
	0: 无检查方式 1: vbus/id 检查
usb_id_gpio=xx	USB 限流控制 pin 脚
	USB ID pin 脚配置。具体请参考 gpio 配置说
	明。《配置与 GPIO 管理.doc》
usb_det_vbus_gpio=xx	USB DET_VBUS pin 脚配置。具体请参考
	gpio 配置说明。《配置与 GPIO 管理.doc》
usb_drv_vbus_gpio=xx	USB DRY_VBUS pin 脚配置。具体请参考
	gpio 配置说明。《配置与 GPIO 管理.doc》
usb_restrict_gpio=xx	USB RESTRICT_GPIO pin 脚配置。具体请参
	考 gpio 配置说明。《配置与 GPIO 管理.doc》
usb_host_init_state=xx	host only 模式下,Host 端口初始化状态。
	0: 初始化后 USB 不工作 1: 初始化后 USB
	工作
usb_restric_flag=xx	Usb 限流标志位
	0: 表不设限流,1 开启限流

配置举例:

[usbc2]

usb_used= 1usb_port_type= 1usb_detect_type= 0usb_id_gpio=

usb_det_vbus_gpio =

usb_drv_vbus_gpio = port:PH3<1><0><default><0> usb_restrict_gpio = port:PH26<1><0><default><0>

usb_host_init_state = 1 usb_restric_flag = 0

23 USB Device

23.1[usb_feature]

配置项	配置项含义
vendor_id=xx	USB 厂商 ID
mass_storage_id =xx	U 盘 ID
adb_id =xx	USB 调试桥 ID
manufacturer_name=xx	USB厂商名
product_name=xx	USB 产品名
serial_number=xx	USB 序列号

配置举例:

[usb_feature]

 $\begin{array}{ll} vendor_id & = 0x18D1 \\ mass_storage_id & = 0x0001 \\ adb_id & = 0x0002 \end{array}$

manufacturer_name = "USB Developer"

product_name = "Android" serial_number = "20080411"

23.2[msc_feature]

配置项	配置项含义
vendor_name=xx	U盘 厂商名
product_name=xx	U盘产品名
release=xx	发布版本
luns=xx	U 盘逻辑单元的个数(PC 可以看到的 U 盘盘
	符的个数)

配置举例:

[msc_feature]

vendor_name = "USB 2.0"

product_name = "USB Flash Driver"

release = 100 luns = 2

24 重力感应(G-Sensor)

24.1[gsensor_para]

配置项	配置项含义
gsensor_used=xx	是否支持 gsensor
gsensor_twi_id =xx	I2C 的 BUS 控 制 选 择 , 0 :
	TWI0;1:TWI1;2:TWI2
gsensor_twi_addr=xx	芯片的 I2C 地址
gsensor_int1=xx	中断 1 的 GPIO 配置
gsensor_int2=xx	中断 2 的 GPIO 配置

配置举例:

[gsensor_para]

gsensor_used = 1 gsensor_twi_id = 2 gsensor_twi_addr = 0x18

gsensor_int1 = port:PA09<6><1><default><default>

gsensor_int2 =

25 WIFI

25.1[wifi_para]

配置项	配置项含义
wifi_used =xx	是否要使用 wifi
wifi_sdc_id =xx	sdio wifi 选用的是哪个 sdc 作为接口
wifi_usbc_id =xx	usb wifi 选用的是哪个 usb 作为接口
wifi_usbc_type=xx	usb 接口类型,1 为 ehci,0 为 ohci
wifi_mod_sel =xx	具体选择哪一款模组
	1-bcm40181; 2-bcm40183;
	3-rtl8723as; 4-rt l8189es;
	5 - rtl8192cu; 6 - rtl8188eu;
	7 – rtl8723au;
wifi_power=xx	给模组供电的 axp 引脚名

说明: [wifi para]下的配置项是 usb 和 sdio 接口 wifi 共用的。

25.2sdio 接口 wifi rtl8723as demo

```
rtk_rtl8723as_wl_dis = port:PG10<1><default><default><0>
rtk_rtl8723as_bt_dis = port:PG11<1><default><default><0>
rtk_rtl8723as_wl_host_wake = port:PG12<0><default><default><0>
rtk_rtl8723as_bt_host_wake = port:PG17<0><default><default><0>
```

以上配置意思是要使用序号为 3 的 SDIO 接口 rtl8723as 模组,选用 SDC1 接口。 SDC1 对应是 mmc1,需要确定[mmc1_para]配置项如下:

[mmc1_para]

sdc_used = 1 sdc_detmode = 4 sdc buswidth = 4

 sdc_clk
 = port:PG00<2><1><2><default>

 sdc_cmd
 = port:PG01<2><1><2><default>

 sdc_d0
 = port:PG02<2><1><2><default>

 sdc_d1
 = port:PG03<2><1><2><default>

 sdc_d2
 = port:PG04<2><1><2><default>

 sdc_d3
 = port:PG05<2><1><2><default>

sdc_det = 0
sdc_wp = 0
sdc_isio = 1

sdc_regulator = "none"

25.3usb 接口 wifi rtl8188eu demo

[wifi_para]

wifi_used = 1wifi_sdc_id = 1

wifi_usbc_id = 1

wifi_usbc_type = 1 wifi_mod_sel = 6

wifi power = "axp22 aldo1"

以上配置意思是要使用序号为 6 的 ehci USB 接口 rtl8188eu 模组, 选用 usb1 接口。需要确定 [usbc1]配置项如下:

[usbc1]

usb_used = 1

usb_port_type = 1 usb_detect_type = 0

usb_id_gpio =

usb_det_vbus_gpio =

usb_drv_vbus_gpio =

usb_restrict_gpio =

usb_host_init_state = 0

26 3G

26.1[3g_para]

配置项	配置项含义
3g_used	3G 使能标志位。
	0: 禁用; 1: 使能
3g_usbc_num	3G 使用到的 USB 控制器编号。
	0: USB0; 1: USB1; 2: USB2; 3: USB3 等
3g_uart_num	3G 使用到的 UART 控制器编号。
	0: UART0; 1: UART1; 2: UART2; 3: UART3 等
3g_pwr	
3g_wakeup	
3g_int	

配置举例:

[3g_para]

 $3g_used = 1$

 $3g_usbc_num = 2$

 $3g_uart_num = 0$

3g_pwr =

3g_wakeup =

3g_int =

27 gyroscope

27.1[gy_para]

配置项	配置项含义
gy_used=xx	是否支持 gyr
gy_twi_id=xx	I2C 的 BUS 控 制 选 择 , 0 :
	TWI0;1:TWI1;2:TWI2
gy_twi_addr=xx	芯片的 I2C 地址
gy_int1=xx	中断 1 的 GPIO 配置
gy_int2=xx	中断 2 的 GPIO 配置

配置举例:

[gy_para]

 gy_used = 1 gy_twi_id = 2 gy_twi_addr = 0x6a

gy_int1 = port:PA10<6><1><default><default>

gy_int2 =

28 光感(light sensor)

28.1[ls_para]

配置项	配置项含义
ls_used =xx	是否支持 ls
ls_twi_id=xx	I2C 的 BUS 控 制 选 择 , 0 : TWI0;1:TWI1;2:TWI2
ls twi addr =xx	芯片的 I2C 地址
ls_int=xx	中断的 GPIO 配置

配置举例:

[ls_para]

 $\begin{array}{ll} ls_used & = 1 \\ ls_twi_id & = 2 \\ ls_twi_addr & = 0x23 \end{array}$

ls_int = port:PA12<6><1><default><default>

29 罗盘(Compass)

29.1[compass_para]

配置项	配置项含义
compass_used=xx	是否支持 compass
compass_twi_id=xx	I2C 的 BUS 控 制 选 择 , 0 : TWI0;1:TWI1;2:TWI2
	1 W 10,1.1 W 11,2.1 W 12
compass_twi_addr =xx	芯片的 I2C 地址
compass_int =xx	中断的 GPIO 配置

配置举例:

[compass_para]

 $\begin{array}{lll} compass_used & = 1 \\ compass_twi_id & = 2 \\ compass_twi_addr & = 0x0d \end{array}$

compass_int = port:PA11<6><1><default><default>

30 蓝牙(blueteeth)

30.1 [bt_para]

配置项	配置项含义
bt_used=xx	BLUETOOTH 使用控制: 1 使用, 0 不用
bt_uart_id=xx	BLUETOOTH 使用的 UART 控制器号
bt_wakeup =xx	BT WAKEUP GPIO 配置
bt_gpio=xx	BT 可选 GPIO 配置
bt_rst=xx	BT RESET GPIO 配置

配置举例:

[bt_para]

 bt_used = 0 bt_uart_id = 2

bt_wakeup = port:PI20<1><default><default><default><default> bt_gpio = port:PI21<1><default><default><default><default> bt_rst = port:PB05<1><default><default><default>

31 数字音频总线(I2S)

31.1[i2s_para]

配置项	配置项含义
i2s_used=xx	xx 为 0 时加载该模块, 为 0 是不加载
i2s_channel=xx	声道控制
i2s_mclk =xx	I2sMCLK 信号的 GPIO 配置
i2s_bclk=xx	I2sBCLK 信号的 GPIO 配置
i2s_lrclk =xx	I2sLRCK 信号的 GPIO 配置
i2s_dout0	I2S out0 的 GPIO 配置
i2s_dout1	暂不使用
i2s_dout2	暂不使用
i2s_dout3	暂不使用
i2s_din	I2sIN 信号的 GPIO 配置

配置举例:

 $i2s_used = 0$

 $i2s_{channel} = 2$

i2s_mclk= port:PB5<2><1><default><default>i2s_bclk= port:PB6<2><1><default><default>i2s_lrclk= port:PB7<2><1><default><default>i2s_dout0= port:PB8<2><1><default><default>

i2s_dout1 == i2s_dout2 == i2s_dout3 ==

i2s din = port:PB12<2><1><default><default>

32 数字音频总线(S/PDIF)

32.1[spdif_para]

配置项	配置项含义
spdif_used=xx	xx 为 0 时加载该模块, 为 0 是不加载
spdif_dout =xx	Spdif out 的 gpio 控制
spdif_din=xx	

配置举例:

[spdif_para]

spdif_used = 1

spdif_mclk =

spdif_dout = port:PH28<3><1><default><default>

spdif_din =

33 内置音频(codec)

33.1[audio_para]

配置项	配置项含义
audio_used =xx	Audiocodec 是否使用,
	1: 打开(默认) 0: 关闭
audio_pa_ctrl=xx	喇叭的 gpio 口控制。

配置举例:

[audio_para]

audio_used = 1

audio_pa_ctrl = port:PA18<1><default><default><0>

34 红外(ir)

34.1[ir_para]

配置项	配置项含义
ir_used=xx	是否支持 ir
ir0_rx =xx	ir 的接收管脚 GPIO 配置

配置举例:

[ir_para]

ir_used = 1

ir_rx = port:PL04<2><1><default><default>

35 PMU 电源

35.1[pmu_para]

配置项	配置项含义
pmu_used=xx	Pmu 使能标志(xx=1 or 0),
	0: 不使用, 1: 使用
pmu_twi_addr=xx	Pmu 设备地址
pmu_twi_id=xx	Pmu 挂载的 i2c 控制器号,
	0: twi0, 1: twi1, 2: twi2
pmu_irq_id=xx	Pmu 中断号, 0: NMI,
	1: 1号中断 2: 2号中断 ······
pmu_battery_rdc=xx	电池内阻, mΩ, 根据实际测试填写
pmu_battery_cap=xx	电池容量, mAh, 根据实际测试填写
pmu_batdeten	PMU 电池检测功能使能, 0: 不自动检测 1:自
	动检测
pmu_runtime_chgcur=xx	设置开机充电电流, mA,
	300/450/600/750/900/1050/1200
	/1350/1500/1650/1800/1950
pmu_earlysuspend_chgcur=xx	设置关屏充电电流, mA,
	300/450/600/750/900/1050/1200
	/1350/1500/1650/1800/1950
pmu_suspend_chgcur=xx	设置休眠充电电流,mA,
	300/450/600/750/900/1050/1200
	/1350/1500/1650/1800/1950
pmu_shutdown_chgcur=xx	设置关机充电电流,mA
	300/450/600/750/900/1050/1200
	/1350/1500/1650/1800/1950
pmu_init_chgvol=xx	设置充电目标电压, mV, 4100/4220/4200/4240
pmu_init_chgend_rate=xx	设置结束充电电流的比率,%,10,15
pmu_init_chg_enabled=xx	设置充电功能, 0: 关闭, 1: 打开
pmu_init_adc_freq=xx	设置 adc 采样率,Hz,100/200/400/800
pmu_init_adc_freqts=xx	设置 TS 引脚采样率,Hz, 100/200/400/800
pmu_init_chg_pretime=xx	设置预充电超时时间, min, 40/50/60/70
pmu_init_chg_csttime=xx	设置恒流充电超时时间, min, 360/480/600/720
pmu_batt_cap_correct	完成一次完成充放电后,电池容量是否自校正功

	能使能,0:关闭 1: 开启
Pmu_bat_regu_en = x	充电完成后,bat regulator 是否常开,0:关闭,
	1: 常开
pmu_bat_para1=xx	设置空载电池电压为 3.13V 对应的百分比,%
pmu_bat_para2=xx	设置空载电池电压为 3.27V 对应的百分比,%
pmu_bat_para3=xx	设置空载电池电压为 3.34V 对应的百分比,%
pmu_bat_para4=xx	设置空载电池电压为 3.41V 对应的百分比,%
pmu_bat_para5=xx	设置空载电池电压为 3.48V 对应的百分比,%
pmu_bat_para6=xx	设置空载电池电压为 3.52V 对应的百分比,%
pmu_bat_para7=xx	设置空载电池电压为 3.55V 对应的百分比,%
pmu_bat_para8=xx	设置空载电池电压为 3.57V 对应的百分比,%
pmu_bat_para9=xx	设置空载电池电压为 3.59V 对应的百分比,%
pmu_bat_para10=xx	设置空载电池电压为 3.61V 对应的百分比,%
pmu_bat_para11=xx	设置空载电池电压为 3.63V 对应的百分比,%
pmu_bat_para12=xx	设置空载电池电压为 3.64V 对应的百分比,%
pmu_bat_para13=xx	设置空载电池电压为 3.66V 对应的百分比,%
pmu_bat_para14=xx	设置空载电池电压为 3.7V 对应的百分比,%
pmu_bat_para15=xx	设置空载电池电压为 3.73V 对应的百分比,%
pmu_bat_para16=xx	设置空载电池电压为 3.77V 对应的百分比,%
pmu_bat_para17=xx	设置空载电池电压为 3.78V 对应的百分比,%
pmu_bat_para18=xx	设置空载电池电压为 3.8V 对应的百分比,%
pmu_bat_para19=xx	设置空载电池电压为 3.82V 对应的百分比,%
pmu_bat_para20=xx	设置空载电池电压为 3.84V 对应的百分比,%
pmu_bat_para21=xx	设置空载电池电压为 3.85V 对应的百分比,%
pmu_bat_para22=xx	设置空载电池电压为 3.87V 对应的百分比,%
pmu_bat_para23=xx	设置空载电池电压为 3.91V 对应的百分比,%
pmu_bat_para24=xx	设置空载电池电压为 3.94V 对应的百分比,%
pmu_bat_para25=xx	设置空载电池电压为 3.98V 对应的百分比,%
pmu_bat_para26=xx	设置空载电池电压为 4.01V 对应的百分比,%
pmu_bat_para27=xx	设置空载电池电压为 4.05V 对应的百分比,%
pmu_bat_para28=xx	设置空载电池电压为 4.08V 对应的百分比,%
pmu_bat_para29=xx	设置空载电池电压为 4.1V 对应的百分比,%
pmu_bat_para30=xx	设置空载电池电压为 4.12V 对应的百分比,%
pmu_bat_para31=xx	设置空载电池电压为 4.14V 对应的百分比,%
pmu_bat_para32=xx	设置空载电池电压为 4.15V 对应的百分比,%
pmu_usbvol_limit=xx	设置 usb 限压功能, 0: 关闭, 1: 打开
pmu_usbvol=xx	设置 usb 限 压 电 压 , mV ,
	4000/4100/4200/4300/4400/4500/4600/4700
pmu_usbvol_pc =xx	设置连接至 PC 时 USB 限压值, mV,

	4000/4100/4200/4300/4400/4500/4600/4700
pmu_usbcur_limit=xx	设置 usb 限流功能, 0: 关闭, 1: 打开
pmu_usbcur=xx	设置 usb 限流电流, mA, 500/900,若设置为 0,
	则不限流
pmu_usbcur_pc =xx	设置连接至 PC 时 USB 限流值, mA。500/900,
	若设置为0,则不限流
pmu_pwroff_vol=xx	设置启动过程中硬件保护电压, mV,
	2600/2700/2800/2900/3000/3100/3200/3300
pmu_pwron_vol=xx	设置开机状态下的硬件保护电压, mV,
	2600/2700/2800/2900/3000/3100/3200/3300
pmu_pekoff_time=xx	设置硬件关机时长, ms, 4000/6000/8000/10000
pmu_pekoff_func=xx	设置长按键强制关机后是否自动启动功能,0:
	不自动启动 1: 自动启动
pmu_pekoff_en=xx	设置长按键硬件关机功能, 0: 关闭, 1: 打开
pmu_peklong_time=xx	设置长按键中断时间, ms, 1000/1500/2000/2500
pmu_pekon_time=xx	设置开机时间,ms, 128/1000/2000/3000
pmu_pwrok_time=xx	设置电源启动完成后 pwrok 信号延时, ms,
	8/16/32/64
pmu_battery_warning_level1 =xx	设置电池低电第一级报警门限: 可设范围
	5%~20%, 1%/step
pmu_battery_warning_level2=xx	设置电池低电第二级报警门限:可设范围
	1%~15%, 1%/step
pmu_restvol_time=xx	设置电池电量更新时间间隔值,可设范围
	30s/60s/120s
pmu_restvol_adjust_time =xx	设置校正电池电量时间间隔值 1, 可设范围
	30s/60s/120s
pmu_ocv_cou_adjust_time=xx	设置校正电池电量时间间隔值,可设范围
	30s/60s/120s
pmu_chgled_func=xx	设置 CHGLED 引脚功能, 0: 由驱动程序控制,
	1: 由充电逻辑控制
pmu_chgled_type	设置 CHGLD 由充电逻辑控制时,只是方式。0:
	方式 A 1: 方式 B
pmu_vbusen_func	设置 N_VBUEN 引脚功能, 0: 作为输出功能 1:
	作为输入功能
pmu_reset	设置长按键 16s 后是否复位 PMU, 0: 不复位 1:
	复位
pmu_IRQ_wakeup	设置在 PMU 待机和关机情况下,IRQ 是否唤醒
	PMU 功能: 0: 不唤醒 1: 唤醒
pmu_hot_shutdowm	设置 PMU 内部温度过高是否自动关机保护功
	能, 0: 不关机 1: 关机

pmu_inshort

设置 ACIN 和 VBUS 是否短路功能,0-由 PMU 自动检测 1:驱动设置为短路功能

配置举例:	
pmu_used	= 1
pmu_twi_addr	=0x34
pmu_twi_id	= 1
pmu_irq_id	=0
pmu_battery_rdc	= 100
pmu_battery_cap	=0
pmu_batdeten	= 1
pmu_runtime_chgcur	= 600
pmu_earlysuspend_chgcur	= 900
pmu_suspend_chgcur	= 1500
pmu_shutdown_chgcur	= 1500
pmu_init_chgvol	= 4200
pmu_init_chgend_rate	= 15
pmu_init_chg_enabled	= 1
pmu_init_adc_freq	= 800
pmu_init_adcts_freq	= 800
pmu_init_chg_pretime	= 70
pmu_init_chg_csttime	= 720
pmu_batt_cap_correct	= 1
pmu_bat_regu_en	= 0
pmu_bat_para1	= 0
pmu_bat_para2	= 0
pmu_bat_para3	= 0
pmu_bat_para4	= 0
pmu_bat_para5	=0
pmu_bat_para6	=0
pmu_bat_para7	=0
pmu_bat_para8	= 2
pmu_bat_para9	= 5
pmu_bat_para10	= 8
pmu_bat_para11	= 9
pmu_bat_para12	= 10
pmu_bat_para13	= 13
pmu_bat_para14	= 16
pmu_bat_para15	= 26

pmu_bat_para16	= 36
pmu_bat_para17	= 41
pmu_bat_para18	= 46
pmu_bat_para19	= 50
pmu_bat_para20	= 53
pmu_bat_para21	= 57
pmu_bat_para22	= 61
pmu_bat_para23	= 67
pmu_bat_para24	= 73
pmu_bat_para25	= 78
pmu_bat_para26	= 84
pmu_bat_para27	= 88
pmu_bat_para28	= 92
pmu_bat_para29	= 93
pmu_bat_para30	= 94
pmu_bat_para31	= 95
pmu_bat_para32	= 100
pmu_usbvol_limit	= 1
pmu_usbcur_limit	= 0
pmu_usbvol	= 4400
pmu_usbcur	= 0
pmu_usbvol_pc	= 4400
pmu_usbcur_pc	= 900
pmu_pwroff_vol	= 3300
pmu_pwron_vol	= 2600
pmu_pekoff_time	= 6000
pmu_pekoff_func	= 0
pmu_pekoff_en	= 1
pmu_peklong_time	= 1500
pmu_pekon_time	= 1000
pmu_pwrok_time	= 64
pmu_battery_warning_level1	= 15
pmu_battery_warning_level2	= 0
pmu_restvol_adjust_time	= 30
pmu_ocv_cou_adjust_time	= 60
pmu_chgled_func	= 0
pmu_chgled_type	= 0
pmu_vbusen_func	= 1
pmu_reset	= 0

pmu_IRQ_wakeup = 0 pmu_hot_shutdowm = 1 pmu_inshort = 0 power_start = 0

36 动态电压频率(dvfs)

36.1 [dvfs_table]

配置项	配置项含义
max_freq	系统最高运行频率
min_freq	系统最低运行频率
LV_count	动态电压频率等级
LVx_freq	x:从1到LV_count;当前等级最高可运行频
	率
LVx_volt	x: 从 1 到 LV_count; 当前等级最高可运行电
	压

说明:

一般的方案不要随便修改这组参数。

配置举例:

[dvfs_table]

 $max_freq = 912000000$

 $min_freq = 60000000$

 $LV_{count} = 7$

LV1_freq = 1008000000

 $LV1_volt = 1450$

LV2_freq = 912000000

LV2 volt = 1400

 $LV3_freq = 864000000$

 $LV3_volt = 1300$

 $LV4_freq = 720000000$

LV4 volt = 1200

LV5_freq = 528000000 LV5_volt = 1100

LV6_freq = 312000000

 $LV6_volt = 1000$

LV7_freq = 144000000

 $LV7_{volt} = 1000$