Shao Regression Example

Jun Shao (1993), Linear Model Selection by Cross-validation, Journal of the American Statistical Association Vol. 88, Iss. 422.

Model: $y = X\beta + e$, where $e \sim \text{NID}(0, \mathcal{I}_n)$ and $y = (y_1, ..., y_n)'$. The design matrix $X = (x_{i,j})$ is $n \times p$. Each row of X, $x_i = (x_{i,1}, ..., x_{i,p})$, is normally distributed with mean vector 0 and covariance matrix, $(0.5^{\lfloor i-j \rfloor})_{p \times p}$.

But x_i , i = 1, ..., n are independent, so obervations y_i , i = 1, ..., n are all independent as in the usual OLS setup. The following parameter settings were used, p = 8, $\beta = (3, 1.5, 0, 0, 2, 0, 0, 0)$, $\sigma = 1$ with sample sizes n = 20, 60 and 100.

The function regal() can be used for cross-validation comparisons using the following 13 regression methods.

ABBREVIATION	PACKAGE	DESCRIPTION		
lm	stats	full regression		
stepAIC	stats	backward stagewise using AIC		
stepBIC	stats	backward stagewise using BIC		
LASSO(Cp)	lars	LASSO using Cp		
mcp(AIC)	plus	MCP using AIC		
mcp(BIC)	plus	MCP using BIC		
scad(AIC)	plus	SCAD using AIC		
scad(BIC)	plus	SCAD using BIC		
H(el)	glmnet	elastic net, alpha=0.5		
LASSO(el)	glmnet	elastic net, alpha=1		
RR(el)	glmnet	elastic net, alpha=0.0		
SVM	e1071	SVM		
nn	N/A	Nearest Neighbour		

The command to run regal() is very simple and illustrated in the script below that takes about 191 seconds on an i7 intel PC.

```
n <- 600
Xy <- ShaoReg(n=n)
regal(X=Xy[,1:8], y=Xy[,9], MaxIter=1000, NCores=8, d=n/2)</pre>
```

Dotchart comparisons for the cross-validated EPE

Best 6 Predictors

d = 120

Best 6 Predictors

d = 200

Best 6 Predictors

d = 300

Best 6 Predictors

Complete output from script

> cnames <- ceiling(c(n/10,n/5,n/3,n/2))

> names(out) <- cnames</pre>

> out \$`60`

\$`60`					
	epe	95%MOE	pcorr	cpu	rank
mcp(AIC)	0.9231157	0.003138304	0.9791204	34.20	1
scad(BIC)	0.9244729	0.003163675	0.9790893	42.76	2
scad(AIC)	0.9245924	0.003167385	0.9790866	42.46	3
stepAIC	0.9249067	0.003180808	0.9790794	126.03	4
mcp(BIC)	0.9255312	0.003137149	0.9790651	76.54	5
stepBIC	0.9285235	0.003168719	0.9789967	108.77	6
LASSO(Cp)	0.9307448	0.003163040	0.9789460	18.92	7
lm	0.9323714	0.003180384	0.9789088	16.72	8
H(el)	0.9829861	0.003326783	0.9777508	257.64	9
LASSO(el)	0.9834622	0.003289858	0.9777399	248.75	10
RR(el)	0.9876071	0.003440972	0.9776450	288.17	11
SVM	1.8240708	0.010296910	0.9583034	156.42	12
nn	5.2245576	0.017749256	0.8752842	24.82	13
\$`120`					
	epe	95%MOE	pcorr	cpu	rank
mcp(AIC)	0.9264737	0.002123108	0.9790436	32.81	1
mcp(BIC)	0.9274894	0.002092152	0.9790204	74.76	2
scad(AIC)	0.9282679	0.002139620	0.9790026	41.70	3
stepAIC	0.9303114	0.002125657	0.9789559	121.64	4
scad(BIC)	0.9308115	0.002092328	0.9789444	41.60	5
stepBIC	0.9309227	0.002095361	0.9789419	107.79	6
LASSO(Cp)	0.9339196	0.002108536	0.9788734	18.58	7
lm	0.9373145	0.002155947	0.9787957	16.61	8
H(el)	0.9861349	0.002273696	0.9776787	253.55	9
LASSO(el)	0.9873869	0.002204088	0.9776500	251.47	10
RR(el)	0.9919783	0.002332514	0.9775449	283.61	11
SVM	1.9220552	0.008179312	0.9560121	132.78	12
nn	5.3998603	0.012495376	0.8707899	36.00	13
	3.3330003	0.012193370	0.0707033	30.00	13
\$`200`					
,	epe	95%MOE	pcorr	cpu	rank
mcp(AIC)	_	0.001502143	_	32.72	1
_		0.001513751		41.14	
		0.001540574		117.34	3
		0.001463613			
		0.001466498			5
		0.001480435			6
		0.001492894			7
lm		0.001527525			8
		0.001636829			
H(el)		0.001678348			10
RR(el)		0.001728852			11
SVM		0.001720032			12
nn		0.010093149			13
1111	3.0040141	0.010093149	0.0039300	40.70	13
\$`300`					
, J00	ene	95%MOE	pcorr	cpu	rank
scad(ATC)	=	0.001063763			1
		0.001003703			2
_		0.001093432			3
mcb(DTC)	3.7372070	0.0010423/0	3.7/0/324	, 4 . 10	J

```
scad(BIC) 0.9395212 0.001055631 0.9787453 40.19
stepAIC 0.9422359 0.001096816 0.9786832 111.47
stepBIC 0.9436203 0.001055387 0.9786515 104.87
LASSO(Cp) 0.9438638 0.001089538 0.9786460 18.10
                                                  7
         0.9494607 0.001097444 0.9785179 16.50
                                                  8
LASSO(el) 1.0074498 0.001308288 0.9771906 240.91
H(el)
        1.0105333 0.001359568 0.9771200 245.36
                                                10
RR(el)
         1.0185110 0.001403163 0.9769372 264.06
                                                 11
SVM
         2.3666648 0.007891031 0.9455454 70.22
                                                 12
         6.0857429 0.008976182 0.8529780 54.84
                                                 13
```

The full linear regression was fit and used for the predictions. In each case it ranked 8/13. Consistenly the glmnet regressions (LASSO, RR and H) were next, followed by SVM and lastly by nn.

```
> ranklm <- numeric(4)</pre>
> names(ranklm) <- cnames</pre>
> for (i in 1:4)
  ranklm[i] <- out[[i]]["lm",5]
> ranklm
60 120 200 300
  8 8 8
> EPElm <- numeric(4)</pre>
> names(EPElm) <- cnames</pre>
> for (i in 1:4)
   EPElm[i] <- out[[i]]["lm",1]</pre>
> EPElm
       60
               120
                            200
0.9323714 \ 0.9373145 \ 0.9405785 \ 0.9494607
```



```
#Source: ShaoReg-example.R
MaxIter <- 10^4 #about 1.5 hours
n <- 600
Xy <- ShaoReg(n=n)</pre>
epe <- (1+ncol(Xy)/n)</pre>
totTime <- proc.time()[3]</pre>
out <- NULL
system.time(
  out[[1]] \leftarrow regal(X=Xy[,1:8], y=Xy[,9], MaxIter=MaxIter, NCores=8)
system.time(
  [[2]] \leftarrow regal(X=Xy[,1:8], y=Xy[,9], MaxIter=MaxIter, NCores=8, d=n/5)
system.time(
  out[[3]] \leftarrow regal(X=Xy[,1:8], y=Xy[,9], MaxIter=MaxIter, NCores=8, d=n/3)
system.time(
  out[[4]] \leftarrow regal(X=Xy[,1:8], y=Xy[,9], MaxIter=MaxIter, NCores=8, d=n/2)
(totTime <- proc.time()[3]-totTime)</pre>
paste(round(totTime/3600,2), "hours")
cnames <- ceiling(c(n/10,n/5,n/3,n/2))
names(out) <- cnames
out
EPElm <- numeric(4)</pre>
names(EPElm) <- cnames
for (i in 1:4)
```

```
EPElm[i] <- out[[i]]["lm",1]</pre>
EPElm
ranklm <- numeric(4)</pre>
names(ranklm) <- cnames</pre>
for (i in 1:4)
 ranklm[i] <- out[[i]]["lm",5]
ranklm
EPE <- matrix(numeric(0), ncol=4, nrow=13)</pre>
for (i in 1:4)
 EPE[,i] <- out[[i]][,1]</pre>
EPE <- EPE[-c(6:13),]</pre>
colnames(EPE) <- names(EPElm)</pre>
ti <- paste(
  paste(rownames(out[[1]])[1:5],collapse=","),
  paste(rownames(out[[2]])[1:5],collapse=","),
  paste(rownames(out[[3]])[1:5],collapse=","),
  paste(rownames(out[[4]])[1:5],collapse=","),sep="\n")
dotchart(EPE, main=ti)
```