Theoretische Informatik 1

22. Mai 2013

Praktikumsaufgabe 3

Lucas Jenss und Tommy Redel in Gruppe 1

1 Eigenschaften von Netzen

1.1 Reversibilität - Lebendigkeit

Unabhängig.

Reversibel + Lebendig

Reversibel + nicht lebendig

Nicht reversibel + nicht lebendig

1.2 Beschränktheit - Lebendigkeit

Unabhängig.

beschrnkt + lebendig

Nicht beschrnkt + lebendig

beschrnkt + nicht lebendig

Nicht beschrnkt + nicht lebendig

1.3 Beschränktheit - Reversibilität

Unabhängig.

beschraenkt + reversibel

Nicht beschraenkt + reversibel

beschraenkt + nicht reversibel

licht beschraenkt, nicht reversibel

1.4 Stelleninvarianten - Lebendigkeit

Unabhängig.

P-Inv + lebendig

keine P-Inv + lebendig

P-Inv + nicht lebendig

keine P-Inv + nicht lebendig

Stelleninvarianten - Reversibilität

Unabhängig.

keine P-Inv + nicht reversibel

Stelleninvarianten - Beschränktheit

Wenn ein Netz eine echt positive Stelleninvariante hat, d.h. I^T , als homogenes Gleichungssystem gelöst, eine Lösung hat, dann muss das Netz beschränkt sein, denn dann bleibt die nach der Invariante gewichtete Tokensumme immer gleich. Demnach gilt Stelleninvariante ⇒ Beschraenktheit.

1.7 Transitionsinvarianten - Lebendigkeit

Eine echt positive Transitionsinvariante und Lebendigkeit sind nur unter Einschränkung verknüpft. Nimmt man eine endliches, beschränktes, lebendiges Netz N, dann muss es für dieses Netz auch eine echt positive Transitionsinvariante geben.

Weitere Zusammenhänge sind nicht erkennbar:

keine T-Inv, tot

keine T-Inv, lebendig

1.8 Transitionsinvarianten - Reversibilität

Transitionsinvarianten beschreiben Zyklen im Markierungsgraphen eines Netzes N=(P,T,W), allerdings unabhängig von der Startmarkierung M_0 des Netzes. Die Existenz einer echt positiven Transitionsinvariante besagt also, dass eine Markierung M_0 existiert, für die es einen endlichen Pfad $M_0 \xrightarrow{t_1} \dots \xrightarrow{t_n} M_{n+1}$ gibt, sodass $M_0=M_{n+1}$.

Eine allgemeine Aussage ist allerdings anhand einer echt positiven Transitionsinvariante nicht treffbar. Es gilt zwar, dass ein reversibles Netz auch eine Transitionsinvariante haben muss, allerdings nicht zwingend eine echt positive.

1.9 Transitionsinvarianten - Beschränktheit

Unabhängig

T-Inv + beschraenkt

keine T-Inv + beschraenkt

T-Inv + nicht beschraenkt

keine T-Inv + nicht beschraenkt

1.10 Transitionsinvarianten - Stelleninvarianten

Die Transitionsinvarianten eines Netzes N=(P,T,W) sind die Stelleninvarianten des Netzes N'=(P',T',W') gdw. W=W' sowie T'=P und P'=T.

1.11 Überdeckungsgraph - Lebendigkeit

Es gilt:

$$\left(\forall m \in UG : m \xrightarrow{t_1} \dots \xrightarrow{t_n} m : T \setminus \{t_1, \dots, t_n\} = \emptyset\right) \Longrightarrow \text{Lebendig}$$

Die umgekehrte Annahme gilt nicht, denn im UG ist es nicht möglich, von einer ω -Markierung wieder zurück zur Ursprungsmarkierung zu gelangen.

1.12 Überdeckungsgraph - Reversibilität

Es gilt:

$$\left(\forall m \in UG : m \xrightarrow{t_1} \dots \xrightarrow{t_n} M_0\right) \Longrightarrow \text{Reversibel}$$

Die umgekehrte Annahme gilt aus dem selben Grund wie für "Überdeckungsgraph - Lebendigkeit" nicht.

1.13 Überdecksungsgraph - Beschränktheit

Ein Netz ist genau dann beschränkt, wenn in seinem Überdeckungsgraphen keine ω -Stellen vorkommen.

1.14 Überdeckungsgraph - Stelleninvarianten

Wenn es im Überdeckungsgraph keine Markierungen gibt, welche ein ω enthalten, dann muss das dazugehörige Netz beschränkt sein. Da wir außerdem bereits wissen, dass ein beschränktes Netz auch immer eine echt positive Stelleninvariante hat, gilt:

 $(\forall m \in UG : \forall x \in m : m \neq \omega) \iff$ echt positive Stelleninvariante

1.15 Überdeckungsgraph - Transitionsinvarianten

Zyklen im Überdeckungsgraphen ohne $\omega \implies$ in Zyklus genutzte Transitionen bilden T-Invariante

1.16 Kondensation des EG und Lebendigkeit

Ein Kondensationsgraph fasst alle stark zusammenhängenden Komponenten zusammen. Dafür müssen die Komponenten lebendig sein. Alle Teile einer Komponente des KG sind lebendig.

$$|KEG| = 1 \iff Lebendigkeit$$

1.17 Kondensation des EG und Reversibilität

Besteht der KEG aus einer Komponente, ist das Netz reversibel.

$$|KEG| = 1 \iff Reversibilitaet$$

1.18 Kondensation des EG und Beschränktheit

Es besteht kein Zusammenhang zwischen der Größe des Kondensationsgraphen und der Beschränktheit des Netzes.

1.19 Kondensation des EG und Stelleninvarianten

Der Kondensationsgraph und positive Stelleninvarianten stehen in keinem Zusammenhang.

1.20 Kondensation des EG und Transitionsinvarianten

 $|KEG| = 1 \Longrightarrow$ echt positive T-Invariante

1.21 Kondensation des EG und Überdeckungsgraph

Der KEG stellt die stark zusammenhängenden Knoten des Überdeckungsgraphen ab.

1.22 Verklemmung und Lebendigkeit

 $lebendig \Longrightarrow verklemmungsfrei$ $verklemmt \Longrightarrow \neg lebendig$

1.23 Verklemmung und Reversibilität

Ist ein S/T-Netz reversibel, hat es keine Verklemmungen. Da durch die verklemmte Stelle die Definition der Reversibilität verletzt wäre.

$$R \Longrightarrow \neg V$$

1.24 Verklemmung und Beschränktheit

Es besteht kein Zusammenhang.

1.25 Verklemmung und Stelleninvarianten

Ist M_0 verklemmt, ist eine P-Invariante vorhanden, in der alle Stellen mit 1 gewichtet sind.

1.26 Verklemmung und Transitionsinvarianten

Echt positive T-Invariante ⇒ keine Verklemmung.

1.27 Verklemmung und Überdeckungsgraph

Senken im $\ddot{\text{U}}\text{G} \Longrightarrow \text{Verklemmung}$.

1.28 Verklemmung und Kondensation des EG

$$|KEG| = 1 \Longrightarrow \neg Verklemmung$$