A Proofs of Lemmas

Lemma 1. The future-reach $fr(\varphi)$ of an STL formula φ is defined by:

$$fr(p) = 0$$
 $fr(\varphi \wedge \varphi') = \max(fr(\varphi), fr(\varphi'))$
 $fr(\neg \varphi) = fr(\varphi)$ $fr(\varphi \mathbf{U}_I \varphi') = \sup(I) + \max(fr(\varphi), fr(\varphi')).$

For any bound $\tau > t + fr(\varphi)$, $\sigma, t \models_{\tau} \varphi$ iff $\sigma, t \models_{\infty} \varphi$, where $dom(\sigma) \supseteq [0, \tau)$.

Proof. The proof is by structural induction on φ .

 $-(\varphi = p)$: $\sigma, t \models_{\tau} p$ iff $t < \tau$ and $p(\sigma(t)) = true$ iff, because $t = t + fr(p) < \tau$, $t < \infty$ and $p(\sigma(t)) = true$ iff $\sigma, t \models_{\infty} p$.

 $-(\varphi = \neg \phi)$: $\sigma, t \models_{\tau} \neg \phi$ iff $\sigma, t \not\models_{\tau} \phi$ iff, because $\tau > t + fr(\neg \phi) = t + fr(\phi)$, by induction hypothesis, iff $\sigma, t \not\models_{\infty} \phi$ iff $\sigma, t \models_{\infty} \neg \phi$.

 $-(\varphi = \phi \wedge \phi')$: Since $\tau > t + fr(\phi \wedge \phi') = t + \max(fr(\phi), fr(\phi')), \tau > t + fr(\phi)$ and $\tau > t + fr(\phi')$. Therefore, $\sigma, t \models_{\tau} \phi \wedge \phi'$ iff $\sigma, t \models_{\tau} \phi$ and $\sigma, t \models_{\tau} \phi'$ iff, by induction hypothesis, $\sigma, t \models_{\infty} \phi$ and $\sigma, t \models_{\infty} \phi'$ iff $\sigma, t \models_{\infty} \phi \wedge \phi'$.

 $-(\varphi = \phi \mathbf{U}_I \phi') : \text{Since } \tau > t + fr(\phi \mathbf{U}_I \phi') = t + \sup(I) + \max(fr(\phi), fr(\phi')), \text{ for any } u \leq t + \sup(I), \ \tau > u + fr(\phi) \text{ and } \tau > u + fr(\phi'). \text{ Let } t' - t \in I. \text{ Clearly, } t' \leq t + \sup(I), \text{ and for } t'' \in [t, t'], \ t'' \leq t + \sup(I). \text{ Therefore, } \sigma, t \models_{\tau} \phi \mathbf{U}_I \phi' \text{ iff } (\exists t' \geq t) \ t' < \tau, \ t' - t \in I, \ \sigma, t' \models_{\tau} \phi', \ (\forall t'' \in [t, t']) \ \sigma, t'' \models_{\tau} \phi \text{ iff, by the above observation and induction hypothesis, } (\exists t' \geq t) \ t' < \infty, \ t' - t \in I, \ \sigma, t' \models_{\infty} \phi', \ (\forall t'' \in [t, t']) \ \sigma, t'' \models_{\infty} \phi \text{ iff } \sigma, t \models_{\infty} \phi \mathbf{U}_I \phi'.$

Lemma 2. Given a signal σ , a proposition p, and an interval $J \subseteq \text{dom}(\sigma)$: (1) If J is open and p is stable for J, then there is no variable point in J. (2) If there is no variable point in J, then p is stable for J.

Proof. (1) Each time point $t \in J$ is not a variable point, because t has a stable open neighborhood in J, namely, J itself.

(2) Suppose that p is not stable for J. Then, there exist different time points u < u' in J such that $p(\sigma(u)) \neq p(\sigma(u'))$. Let

$$K_u = \{t \in J \mid p(\sigma(t)) = p(\sigma(u))\}.$$

Observe that $u \leq \sup(K_u) \leq u'$. Therefore, $\sup(K_u) \in J$. Furthermore, for any $t \in J$ with $t > \sup(K_u)$, $p(\sigma(t)) = p(\sigma(u'))$, but any open neighborhood of $\sup(K_u)$ intersects with K_u . Therefore, $\sup(K_u)$ is not a variable point. \square

Lemma 3. For a signal σ and an interval $J \subseteq \text{dom}(\sigma)$: (1) φ is stable for J iff $\neg \varphi$ is stable for J. (2) If φ and φ' are stable for J, then $\varphi \wedge \varphi'$ is stable for J.

Proof. (1) φ is stable for J, iff $\sigma, u \models_{\tau} \varphi \iff \sigma, u' \models_{\tau} \varphi$ for any $u, u' \in J$, iff $\sigma, u \not\models_{\tau} \varphi \iff \sigma, u' \not\models_{\tau} \varphi$ for any $u, u' \in J$, iff $\sigma, u \models_{\tau} \neg \varphi \iff \sigma, u' \models_{\tau} \neg \varphi$ for any $u, u' \in J$, iff $\neg \varphi$ is stable for J.

(2) Suppose that φ and φ' are stable for J. Then, $\sigma, u \models_{\tau} \varphi \iff \sigma, u' \models_{\tau} \varphi$, and $\sigma, u \models_{\tau} \varphi' \iff \sigma, u' \models_{\tau} \varphi'$, for any $u, u' \in J$. Therefore, $\sigma, u \models_{\tau} \varphi$ and $\sigma, u \models_{\tau} \varphi'$ iff $\sigma, u' \models_{\tau} \varphi$ and $\sigma, u' \models_{\tau} \varphi'$. Consequently, $\sigma, u \models_{\tau} \varphi \wedge \varphi'$ iff $\sigma, u' \models_{\tau} \varphi \wedge \varphi'$, for any $u, u' \in J$.

Lemma 12. [4], Lemma 4.3] For intervals I and J of nonnegative real numbers, $t \in J - I$ iff $(\exists t' \geq t)$ $t' \in J$ and $t' \in t + I$.

Proof. (\Rightarrow) By definition, $t \in J - I$ iff t = j - i for some $j \in J$ and $i \in I$, where $i, j \geq 0$. Observe that $j \geq t$ and $j = t + i \in t + I$.

 (\Leftarrow) Since $t' \in t+I$, t' = t+i for some $i \in I$. Since $t' \in J$, $t = t'-i \in J-I$. \square

Lemma 13. For intervals K, J, and I, if either $K \subseteq J - I$ or $K \subseteq (J - I)^{\complement}$ holds, then for any $u_1, u_2 \in K$, $u_1 \in J - I$ iff $u_2 \in J - I$.

Proof. Suppose $u_1 \in J - I$. Since $u_1 \in K$, $K \cap (J - I) \neq \emptyset$. Because either $K \subseteq J - I$ or $K \subseteq (J - I)^{\complement}$ holds, we must have $K \subseteq J - I$. As a consequence, $u_2 \in K \subseteq J - I$. The other direction is exactly the same.

Lemma 4. An STL formula $\varphi \mathbf{U}_I \varphi'$ is stable for a partition $\mathcal{Q} = \{K_j\}_{j \in [M]}$ of time domain $[0,\tau)$, if: (i) φ and φ' are stable for a partition $\mathcal{P} = \{J_i\}_{i \in [N]}$, (ii) either $K_i \subseteq J_i - I$ or $K_j \subseteq (J_i - I)^{\complement}$ for any K_j and J_i , and (iii) $\mathcal{Q} \sqsubseteq \mathcal{P}$.

Proof. Let $u_1, u_2 \in K_j$. By definition, $\sigma, u_1 \models_{\tau} \varphi \mathbf{U}_I \varphi'$ iff $(\exists t_1' \geq u_1) \ t_1' < \tau$, $t_1' \in u_1 + I$, $\sigma, t_1' \models_{\tau} \varphi'$, and $(\forall t_1'' \in [u_1, t_1']) \ \sigma, t_1'' \models_{\tau} \varphi$. Suppose $t_1' \in J_i$. Then:

$$(\exists t_1' \geq u_1) \ t_1' < \tau, \ t_1' \in u_1 + I, \ \text{and} \ t_1' \in J_i$$

iff $(\exists t_1' \geq u_1) \ t_1' \in J_i \cap [0, \tau) \ \text{and} \ t_1' \in u_1 + I$
iff $u_1 \in (J_i \cap [0, \tau)) - I$ iff $u_1 \in J_i - I$,

because of Lemma 12 and $J_i \subseteq [0,\tau)$. By Lemma 13, $u_2 \in J_i - I$. Similarly, $u_2 \in J_i - I$ iff $(\exists t'_2 \ge u_2)$ $t'_2 < \tau$, $t'_2 \in u_2 + I$, and $t'_2 \in J_i$. Thus, $t'_1, t'_2 \in J_i$. Since φ and φ' are stable for \mathcal{P} , σ , $t'_1 \models_{\tau} \varphi'$ iff σ , $t'_2 \models_{\tau} \varphi'$. Since $\mathcal{Q} \sqsubseteq \mathcal{P}$, u_1 and u_2 are elements of the same interval in \mathcal{P} . Thus, $(\forall t''_1 \in [u_1, t'_1])$ σ , $t''_1 \models_{\tau} \varphi$ iff $(\forall t''_2 \in [u_2, t'_2])$ σ , $t''_2 \models_{\tau} \varphi$. Therefore, σ , $u_1 \models_{\tau} \varphi \cup_{I} \varphi'$ iff σ , $u_2 \models_{\tau} \varphi \cup_{I} \varphi'$. \square

Lemma 5. [4], Lemma 4.18] For a finite set $T \subseteq [0,\tau)$ and an interval I, let $T_I = \bigcup_{u \in T \cup \{\tau\}} \{u - v \mid v \in e(I)\} \cap [0,\tau)$. For partitions $\mathcal{P}_{\tau}(T) = \{J_i\}_{i \in [N]}$ and $\mathcal{P}_{\tau}(T_I) = \{K_j\}_{j \in [M]}$, $K_j \subseteq J_i - I$ or $K_j \subseteq (J_i - I)^{\complement}$ holds for any K_j and J_i .

Proof. Let $T_I \cup \{0, \tau\} = \{u_0, \dots, u_{m+1}\}$, where $0 = u_0 < \dots < u_m < u_{m+1} = \tau$. Suppose that the lemma does not hold for K_j in $\mathcal{P}_{\tau}(T_I)$ and J_i in $\mathcal{P}_{\tau}(T)$; that is, K_j intersects both $J_i - I$ and $(J_i - I)^{\complement}$. Then, K_j must include an endpoint of $J_i - I$. Observe that $T_I \cup \{0, \tau\}$ contains all such endpoints. By definition, K_j is either $\{u_i\}$ or (u_i, u_{i+1}) , and only $\{u_i\}$ can include an endpoint in $T_I \cup \{0, \tau\}$. However, $\{u_i\} \subseteq J_i - I$ and $\{u_i\} \subseteq (J_i - I)^{\complement}$ cannot hold at the same time. \square

Lemma 6. Given a signal σ , an STL formula φ , and a finite set $T \subseteq [0, \tau)$, if φ is stable for $\mathcal{P}_{\tau}(T)$, there exists a minimal subset $\min_{\varphi}^{\sigma}(T) \subseteq T$ such that for any strict subset $U \subset \min_{\varphi}^{\sigma}(T)$, φ is not stable for $\mathcal{P}_{\tau}(U)$.

Proof. Let $T \cup \{0,\tau\} = \{u_0,\ldots,u_{m+1}\}$, $0 = u_0 < \cdots < u_m < u_{m+1} = \tau$. Let $min_{\varphi}^{\sigma}(T) = \{u_i \in T \mid \sigma, u_i \models_{\tau} \varphi \text{ is not equal to } \sigma, v_i \models_{\tau} \varphi \text{ or } \sigma, v_{i-1} \models_{\tau} \varphi\}$, where $v_i = (u_i + u_{i+1})/2$, $0 \le i \le m$. Observe that φ is stable for $\mathcal{P}_{\tau}(min_{\varphi}^{\sigma}(T))$ and for any strict subset $U \subset min_{\varphi}^{\sigma}(T)$, φ cannot be stable for $\mathcal{P}_{\tau}(U)$.

Lemma 7. [4], Proposition 3.10] For intervals K_1 and K_2 , where $K_1 \cap K_2 = \emptyset$ and $\sup(K_1) = \inf(K_2)$, $\varphi \cup_I^{K_1 \cup K_2} \varphi' \equiv \varphi \cup_I^{K_1} \varphi' \vee (\square_{>0}^{K_1} \varphi \wedge \varphi \cup_I^{K_2} \varphi')$.

Proof. Let σ be a signal, $t \geq 0$, and $K = K_1 \cup K_2$. Then, $\sigma, t \models_{\tau} \varphi \mathbf{U}_I^K \varphi'$ iff $(\exists t' \geq t) \ t' \in [0,\tau) \cap K, t' \in t+I, \sigma, t' \models_{\tau} \varphi', (\forall t'' \in [t,t'] \cap K) \ \sigma, t'' \models_{\tau} \varphi$. Because $t' \in [0,\tau) \cap K$ iff $t' \in [0,\tau) \cap (K_1 \cup K_2)$ iff either $t' \in [0,\tau) \cap K_1$ or $t' \in [0,\tau) \cap K_2$, the statement can be equivalently rewritten as:

 $(\exists t' \geq t) \ t' \in [0,\tau) \cap K_1, t' \in t+I, \sigma, t' \models_{\tau} \varphi', (\forall t'' \in [t,t'] \cap K) \ \sigma, t'' \models_{\tau} \varphi$ or $(\exists t' \geq t) \ t' \in [0,\tau) \cap K_2, t' \in t+I, \sigma, t' \models_{\tau} \varphi', (\forall t'' \in [t,t'] \cap K) \ \sigma, t'' \models_{\tau} \varphi$

When $t' \in K_1$, because $t' \leq \inf(K_2)$ and $K_1 \cap K_2 = \emptyset$, $[t, t'] \cap K = [t, t'] \cap K_1$. When $t' \in K_2$, because $\sup(K_1) \leq t' < \tau$, $[t, t'] \cap K = ([t, t'] \cap K_2) \cup ([t, \tau) \cap K_1)$. Therefore, the above statement can be equivalently rewritten as:

 $(\exists t' \geq t) \ t' \in [0,\tau) \cap K_1, t' \in t+I, \sigma, t' \models_{\tau} \varphi', (\forall t'' \in [t,t'] \cap K_1) \ \sigma, t'' \models_{\tau} \varphi$ or $(\exists t' \geq t) \ t' \in [0,\tau) \cap K_2, t' \in t+I, \sigma, t' \models_{\tau} \varphi', (\forall t'' \in [t,t'] \cap K_2) \ \sigma, t'' \models_{\tau} \varphi,$ $(\forall t'' \in [t,\tau) \cap K_1) \ \sigma, t'' \models_{\tau} \varphi$

Observe that $(\forall t'' \in [t,\tau) \cap K_1) \ \sigma, t'' \models_{\tau} \varphi \ \text{iff} \ \sigma, t \models_{\tau} \square_{\geq 0}^{K_1} \varphi$. Therefore, the above is equivalent to: $\sigma, t \models_{\tau} \varphi \mathbf{U}_I^{K_1} \varphi'$ or $(\sigma, t \models_{\tau} \varphi \mathbf{U}_I^{K_2} \varphi' \text{ and } \sigma, t \models_{\tau} \square_{\geq 0}^{K_1} \varphi)$. Consequently, $\sigma, t \models_{\tau} \varphi \mathbf{U}_I^K \varphi'$ iff $\sigma, t \models_{\tau} \varphi \mathbf{U}_I^{K_1} \varphi' \lor (\square_{\geq 0}^{K_1} \varphi \land \varphi \mathbf{U}_I^{K_2} \varphi')$. \square

Lemma 8. For a partition $\mathcal{P} = \{J_i\}_{i \in [N]}$ and its time sample $\{v_i\}_{i \in [N]}$, where φ and φ' are stable for \mathcal{P} , let $L_k = \bigcup_{j=k}^N J_k$ for $k \in [N]$. (1) σ , $v_i \models_{\tau} \varphi \mathbf{U}_I^{L_k} \varphi'$ iff σ , $v_i \models_{\tau} \varphi \mathbf{U}_I^{J_k} \varphi' \vee (\square_{\geq 0}^{J_k} \varphi \wedge \varphi \mathbf{U}_I^{L_{k+1}} \varphi')$. (2) σ , $v_i \models_{\tau} \varphi \mathbf{U}_I^{J_k} \varphi'$ iff $v_i \in J_k - I$, σ , $v_k \models_{\tau} \varphi$, and σ , $v_k \models_{\tau} \varphi'$. (3) σ , $v_i \models_{\tau} \square_{\geq 0}^{J_k} \varphi$ iff σ , $v_k \models_{\tau} \varphi$.

Proof. (1) Because $L_k = J_k \cup L_{k+1}$ for $k \in [N]$, by Lemma \overline{O} , $\sigma, v_i \models_{\tau} \varphi \mathbf{U}_I^{L_k} \varphi'$ iff $\sigma, v_i \models_{\tau} \varphi \mathbf{U}_I^{J_k} \varphi' \vee (\square_{>0}^{J_k} \varphi \wedge \varphi \mathbf{U}_I^{L_{k+1}} \varphi')$.

(2) $\sigma, v_i \models_{\tau} \varphi \mathbf{U}_I^{J_k} \varphi'$ iff $(\exists t' \geq v_i)$ $t' \in [0, \tau) \cap J_k, t' \in v_i + I, \sigma, t' \models_{\tau} \varphi', (\forall t'' \in [v_i, t'] \cap K) \sigma, t'' \models_{\tau} \varphi$ iff, because $J_k \subseteq [0, \tau)$, and because φ and φ' are stable for J_k , by Lemma 12, $v_i \in J_k - I$, $\sigma, v_k \models_{\tau} \varphi$, and $\sigma, v_k \models_{\tau} \varphi'$.

stable for J_k , by Lemma 12, $v_i \in J_k - I$, $\sigma, v_k \models_{\tau} \varphi$, and $\sigma, v_k \models_{\tau} \varphi'$. (3) $\sigma, v_i \models_{\tau} \square_{\geq 0}^{J_k} \varphi$ iff $\neg((\exists t' \geq v_i) \ t' \in [0, \tau) \cap J_k, t' \in v_i + [0, \infty), \sigma, t' \models_{\tau} \neg \varphi)$ iff, since φ is stable for J_k and $v_i \in [0, \tau) \cap J_k - [0, \infty)$, by Lemma 12, $\sigma, v_k \models_{\tau} \varphi$. \square

Lemma 14. Suppose that φ and φ' are stable for $\mathcal{P} = \{J_i\}_{i \in [N]}$, $\chi_{\varphi}^k = \top$ iff $\sigma, v_k \models_{\tau} \varphi, \chi_{\varphi'}^k = \top$ iff $\sigma, v_k \models_{\tau} \varphi'$, and $L_k = \bigcup_{j=k}^N J_k$, for each $k \in [N]$. For \mathcal{P} 's time sample $\{v_i\}_{i \in [N]}$, for $i \leq k \leq N$, $tr_i(\varphi \mathbf{U}_I \varphi', k) = \top$ iff $\sigma, v_i \models_{\tau} \varphi \mathbf{U}_I^{L_k} \varphi'$.

Lemma 9. Suppose that each $\psi \in \text{sub}(\varphi)$ of an STL formula φ is stable for a partition $\mathcal{P} = \{J_i\}_{i \in [N]}$. The following conditions are equivalent: (i) $\chi_{\psi}^i = \top$ iff $(\forall t \in J_i) \ \sigma, t \models_{\tau} \psi$. (ii) every condition in $\Gamma_{\varphi}(\mathcal{P}, \mathcal{X}) \cup \Gamma_{\Pi}(\sigma, \mathcal{S}_{\mathcal{P}}, \mathcal{X})$ holds.

Proof. Let $\{v_i\}_{i\in[N]}$ be a time sample of \mathcal{P} , and $L_k = \bigcup_{j=k}^N J_k$ for each $k\in[N]$. First, $\sigma, v_i \models_{\tau} \psi$ iff $(\forall t \in J_i) \ \sigma, t \models_{\tau} \psi$, because each subformula $\psi \in \text{sub}(\varphi)$ is stable for \mathcal{P} . The proof is by structural induction on φ . $-(\varphi = p): (\Rightarrow) \chi_p^i = \top \text{ iff } \sigma, v_i \models_{\tau} p \text{ iff } v_i < \tau \land p(\sigma(v_i)) = \top \text{ iff, because}$ $v_i < \tau, p(\sigma(v_i)) = \top$. Therefore, the condition $\chi_p^i = p(\sigma(v_i))$ holds. (\Leftarrow) Suppose $\chi_p^i = p(\sigma(v_i))$ holds. Then, $\chi_p^i = \top$ iff $p(\sigma(v_i)) = \top$ iff $(\forall t \in J_i) \ \sigma, t \models_{\tau} p$. $-(\varphi = \neg \phi)$: $(\Rightarrow) \chi^{i}_{\neg \phi} = \vec{\bot}$ iff $\sigma, v_{i} \models_{\tau} \neg \phi$ iff $\sigma, v_{i} \not\models_{\tau} \phi$ iff, by induction hypothesis, $\chi^i_\phi = \bot$. Thus, $\chi^i_{\neg \phi} = \neg \chi^i_\phi$. (\Leftarrow) Suppose $\chi^i_{\neg \phi} = \neg \chi^i_\phi$. Then, $\chi^i_{\neg \phi} = \top$ iff $\chi_{\phi}^{i} = \bot$ iff, by induction hypothesis, $\sigma, v_{i} \not\models_{\tau} \phi$ iff $(\forall t \in J_{i}) \sigma, t \models_{\tau} \neg \phi$. $- (\varphi = \phi \land \phi') \colon (\Rightarrow) \chi^{i}_{\phi \land \phi'} = \top \text{ iff } \sigma, v_i \models_{\tau} \phi \land \phi' \text{ iff } \sigma, v_i \models_{\tau} \phi \text{ and } \sigma, v_i \models_{\tau} \phi'$ iff, by induction hypothesis, $\chi^i_{\phi} = \top$ and $\chi^i_{\phi'} = \top$. Therefore, $\chi^i_{\phi \wedge \phi'} = \chi^i_{\phi} \wedge \chi^i_{\phi'}$. (\Leftarrow) Suppose $\chi^{i}_{\phi \wedge \phi'} = \chi^{i}_{\phi} \wedge \chi^{i}_{\phi'}$. Then, $\chi^{i}_{\phi \wedge \phi'} = \top$ iff $\chi^{i}_{\phi} \wedge \chi^{i}_{\phi'} = \top$ iff, by induction hypothesis, $\sigma, v_{i} \models_{\tau} \phi$ and $\sigma, v_{i} \models_{\tau} \phi'$ iff $\sigma, v_{i} \models_{\tau} \phi \wedge \phi'$ iff $(\forall t \in J_{i}) \sigma, t \models_{\tau} \phi \wedge \phi'$. $-(\varphi = \phi \mathbf{U}_{I} \phi')$: (\Rightarrow) $\chi^{i}_{\phi \mathbf{U}_{I} \phi'} = \top$ iff $\sigma, v_{i} \models_{\tau} \phi \mathbf{U}_{I} \phi'$ iff, because $v_{i} \in L_{i}$, $\sigma, v_i \models_{\tau} \phi \mathbf{U}_I^{L_i} \phi'$ iff, by induction hypothesis and Lemma 14, $tr_i(\phi \mathbf{U}_I \phi', i) = \top$. Thus, $\chi_{\phi \mathbf{U}_I \phi'}^i = tr_i(\phi \mathbf{U}_I \phi', i)$ holds. (\Leftarrow) Suppose $\chi_{\phi \mathbf{U}_I \phi'}^i = tr_i(\phi \mathbf{U}_I \phi', i)$ holds. Then, $\chi^i_{\phi \mathbf{U}_I \phi'} = \top$ iff $tr_i(\phi \mathbf{U}_I \phi', i) = \top$ iff, by induction hypothesis and Lemma 14, $\sigma, v_i \models_{\tau} \phi \mathbf{U}_I^{L_i} \phi'$ iff $\sigma, v_i \models_{\tau} \phi \mathbf{U}_I \phi'$ iff $(\forall t \in J_i) \sigma, t \models_{\tau} \phi \mathbf{U}_I \phi'$. \square

Lemma 10. For a formula φ and a finite set $V \subseteq [0,\tau)$, if $V = \mathcal{T}_{\varphi}^{\sigma}(T)$ for a set of variable points T, then every condition in $\Omega_{\varphi}(V,\mathcal{X},\sigma)$ holds.

Proof. By Theorem 1 each subformula of φ is stable for $\mathcal{T}_{\varphi}^{\sigma}(T)$. By Lemma 9 $\Gamma_{\varphi}(\mathcal{P}_{\tau}(V), \sigma[\mathcal{S}_{\mathcal{P}_{\tau}(V)}]))$ holds for $V = \mathcal{T}_{\varphi}^{\sigma}(T)$, and $\chi_{\psi}^{i} = \top$ iff $(\forall t \in J_{i}) \sigma, t \models_{\tau} \psi$ for each $\psi \in \text{sub}(\varphi)$. Suppose $k = n + 1 \vee \bigvee_{j=1,2} (\chi_{\phi_{j}}^{2k} \neq \chi_{\phi_{j}}^{2k+2})$. Then, $t_{k} = \tau$ or the truth of ϕ_{j} changes at time t_{k} ; i.e., for $U = \min_{\phi}^{\sigma}(\mathcal{I}(\phi)) \cup \min_{\phi'}^{\sigma}(\mathcal{I}(\phi')) \cup \{\tau\}$ in Def. 9 $t_{k} \in U$. By construction, $\bigcup_{u \in U} \{u - v \mid v \in e(I)\} \cap [0, \tau) \subseteq V$. Thus, the condition $v = 0 \vee t_{k} - v < 0 \vee \bigvee_{j=1}^{k-1} (t_{k} - v = t_{j})$ holds. \square

Lemma 11. If every condition in $\Omega_{\varphi}(V, \mathcal{X}, \sigma)$ holds, then each $\psi \in \text{sub}(\varphi)$ is stable for $\mathcal{P}_{\tau}(V)$, provided that each $p \in \text{Props}(\varphi)$ is stable for $\mathcal{P}_{\tau}(V)$.

Proof. By structural induction on φ . The case of $\varphi = p$ is by assumption. The cases of $\varphi = \neg \phi$ and $\varphi = \phi \land \phi'$ are immediate by induction hypothesis. Consider $\varphi = \phi \, \mathbf{U}_I \, \phi'$. By assumption, the condition $(k = n + 1 \lor \bigvee_{j=1,2} (\chi_{\phi_j}^{2k} \neq \chi_{\phi_j}^{2k+2})) \to (v = 0 \lor t_k - v < 0 \lor \bigvee_{j=1}^{k-1} (t_k - v = t_j))$ in $\Delta_{\varphi}(V)$ holds for each $t_k \in V \cup \{0, \tau\}$ and $v \in e(I)$. By induction hypothesis, any subformula of ϕ and ϕ' is stable for $\mathcal{P}_{\tau}(V)$. By Lemma Θ , $\chi_{\phi_j}^k = \top$ iff $(\forall t \in J_k) \ \sigma, t \models_{\tau} \phi_j$ for j = 1, 2. Thus, the premise of the above condition holds if either $t_k = \tau$ or the truth value of ϕ_j changes at time t_k , and in that case, $t_k - v \in V$, provided $t_k - v \geq 0$. Therefore, by Lemma Φ , Lemma Φ , and Corollary Φ is stable for $\mathcal{P}_{\tau}(V)$. \Box