Perth Modern School

Yr 12 Maths Specialist

Page 1

37 marks 7 Questions Classpads allowed! Friday 9 February 2018
TIME: 5 mins reading 40 minutes working ↑ TS∃T Year 12 Specialist

EXCEPTIONAL SCHOOL

INGERNATE MODERN SCHOOL

INGERNATIONAL SCHOOL

Su ammos

Теасћег:

Some useful For Note: All part questions worth more than 2 marks require working to obtain full marks.

$1 + \tan^2 x = \sec^2 x$	$I = x^{2} \text{dis} + x^{2} \text{sos}$
$\frac{\lambda}{\lambda}$ for k an integer	$\frac{p}{p} \operatorname{mis} i + \frac{4\pi \zeta + \theta}{p} \operatorname{soo} \bigg)^{\frac{1}{p} \cdot \epsilon} = \frac{\epsilon}{p} z$
θn tris $i + \theta n$ soo = $n(\theta \text{ sio})$	$ z = z \sin(n\theta)$
	De Moivres theorem
$\frac{1}{\theta \operatorname{sio}} = (\theta -) \operatorname{sio}$	$cis(\theta_1 + \theta_2) = cis(\theta_1 cis(\theta_2))$
$(\overline{\iota}_{\theta}^{1} - \overline{\iota}_{\theta}^{1})$ sio $\frac{\overline{\iota}_{d}}{\overline{\iota}_{d}} = \frac{\overline{\iota}_{z}}{\overline{\iota}_{z}}$	$(z_1\theta + z_1\theta)\sin_2(z_1\eta - z_2)z$
$(\theta -)$ sign $\tau = \overline{z}$	θ sig $\eta = (\theta$ mis $i + \theta$ sog) $\eta = id + D = z$
	Polar form
$\underline{z}^{1}\underline{z} = \underline{z}^{1}\underline{z}$	$z_1 + z_2 = z_1 + z_2$
$\frac{z z }{z} = \frac{1}{z} = z - z$	z = = <u>=</u> =
$\operatorname{arg}\left(\frac{z}{z}\right) = \operatorname{arg}\left(z_{1}\right) - \operatorname{arg}\left(z_{2}\right)$	$\operatorname{arg}\left(z_{1}z_{2}\right) = \operatorname{arg}\left(z_{1}\right) + \operatorname{arg}\left(z_{2}\right)$
$ \frac{ \overline{\tau}_2 }{ \overline{\tau}_2 } = \frac{ \overline{\tau}_2 }{ \overline{\tau}_2 } $	= = = = = = =
$\pi \geq \theta > \pi - , \ \frac{d}{n} = \theta \text{ and } , \theta = (z) \text{g.i.f.}$	$ A = \sqrt{1 + 2Q_2 + Q_2} = V$ Now
$iq - v = \overline{z}$	iQ + v = z
	Cartesian form
	rmulae
	00 1100

 $((A-k)\operatorname{mis} - (A+k)\operatorname{mis})\frac{1}{2} = A\operatorname{mis} k \operatorname{soo} \qquad ((A+k)\operatorname{soo} - (A-k)\operatorname{soo})\frac{1}{2} = A\operatorname{mis} k \operatorname{mis}$

 $\cos A \cos B = \frac{1}{2} (\cos(A - B) + \cos(A + B))$

 \sqrt{x} uis $x \cos \pm \sqrt{x} \cos x$ uis = $(\sqrt{x} \pm x)$ uis

 $4 \text{ tips } x \text{ tips } \pm 4 \text{ soo } x \text{ soo} = (4 \pm 4 \text{ soo}) \text{ soo}$

 $((A-h)\operatorname{mis} + (A+h)\operatorname{mis}) \frac{1}{2} = A \operatorname{soo} h \operatorname{mis}$

 $\tan 2x = 1 = \tan 2$

 $x \cos x \operatorname{mis} 2 = x 2 \operatorname{mis}$

 $x_z \text{mis} - x_z \text{sos} = x_z \text{sos}$ $1 + \tan_5 x = \sec_5 x$

 $x^2 \text{mis } 2 - 1 =$ $1 - x^2 \cos 2 =$

Note: All part questions worth more than 2 marks require working to obtain full marks.

Q1) (2, 2, 2, 2 & 1 = 9 marks)

If w = 2 - 2i and z = 9 - 5i determine exactly a) NZ 8-28 (Real term / Imaginar

b) $\frac{w}{z}$ $\frac{2-2i}{9-5i} \left(\frac{9+5i}{9+5i}\right) = \frac{28-8i}{106}$ / numerator / denominator

c) zw 28 +8: Real / Imagines

d) WZ 28-8i / Real / Imaginary

e) What do you notice about (c) and (d)?

Conjugates of each other metrons conjugates

Q2 (2 & 2 = 4 marks)

Express each of the following into Cartesian form, a+bi

a) $7cis\left(\frac{2\pi}{3}\right) = 7\left(6s - \frac{2\pi}{3} + 1sin - \frac{2\pi}{3}\right) = -\frac{7}{2} - \frac{7\sqrt{3}}{2}i$

Vexpords cis Vexpords cis

b)

1200380°-125030°c = 653 -6i

Vreal part V Imagina, part.

Yr 12 Maths Specialist

Determine z in polar form given that w and zw have been drawn below.

$$\frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^$$

(a) Determine all the roots of the equation $z^5 = 1 - i$, expressing them all in polar form with $v \ge 0$ and $v \ge 0$ and $v \ge 0$ between all the roots of the equation $z^5 = 1 - i$, expressing them all in polar form with $v \ge 0$ and $v \ge 0$ and

c) The roots form the vertices of a pentagon. Determine the value for the perimeter of the pentagon to two decimal places

$$Sin_{\overline{s}}^{\overline{s}} = \frac{x}{2^{10}} \quad x = 2^{10} \text{ sin}_{\overline{s}}^{\overline{s}}$$

$$V = 2^{10} \quad x = 2^{10}$$

Q6 (5 marks)
Determine, **using de Moivre's theorem**, an expression for $\sin 3\theta$ in terms of $\sin \theta$ only. {Hint: start with $(\cos\theta + i\sin\theta)^3$ }

$$51n30 = -51n^30 + 3(05051n0)$$

= $-51n^30 + 3(1-51n^20)51n0$
= $-51n^30 + 351n0 - 351n^30$
= $351n0 - 451n^30$

$$\sqrt{equalis}$$
 $(cos0 + 1sin0)^3$ to cis30 $\sqrt{expands}$ $(cos0 + 1sin0)^3$

Page 5

Yr 12 Maths Specialist

Perth Modern School

Consider the points A and B in the complex plane. The perpendicular bisector of the line AB is represented by Im(z) = 3Re(z) - 1

If point A is 5+ci and point B is d-7i in the complex plane, determine the values of the

Midpoid AB =
$$(\frac{5 \pm d}{2}, \frac{c-7}{2})$$
 $(\frac{-7}{2} = \frac{3}{3}(\frac{5 \pm d}{2}) - 1$
 $M_{AB} = \frac{c+7}{5-d} = -\frac{1}{3}$

Use simultaneous (= -124

I determines midpoint in terms of cool I determines gradient in terms of coch obtains one equation and (ie midpoid into line egn)

obtains stude equation and (ie m,×m2=-1) V Solver for C = d