1 Naloga 3

Imamo izraz $F(x,y) = (x^2 + y^2)^3 - 4x^2y^2$. Dobimo

$$F_x = -8xy^2 + 6x(x^2 + y^2)^2 = 2x(3x^4 + 6x^2y^2 + 3y^4 - 4y^2)$$

in

$$F_y = -8x^2y + 6y(x^2 + y^2)^2 = 2y(3x^4 + 6x^2y^2 - 4x^2 + 3y^4)$$

Precej očitno je da je (0,0) singularna točka, saj je tudi F(0,0)=0. Dokazali bomo da je to edina singularna točka. Precej očitno je tudi da če je x=0 je tudi y=0 in obratno. Zato se omejimo na primere $x\neq 0$ in $y\neq 0$.

Rešujemo sistem $F_x=0$ in $F_y=0$ kar se s predpostavko $x\neq 0$ in $y\neq 0$ poenostavi v $3x^4+6x^2y^2+3y^4-4y^2=0$ in $3x^4+6x^2y^2-4x^2+3y^4=0$ Če od prve enačbe odštejemo drugo dobimo $4x^2-4y^2=0$, torej je $x^2=y^2$. Vstavimo v prvo enačbo in dobimo $3x^4+6x^4+3x^4-4x^2=0$ kar preprosto rešimo da dobimo $x=\pm\sqrt{3}$ in enako $y=\pm\sqrt{3}$. S preprostim preizkusom vidimo da te točke niso na krivulji zato niso singularne točke.

Red točke (0,0) je očitno 4 ker je to stopnja najmanjšega monoma.

Sedaj pridobimo tangente kot rešitve F=0 kjer pa vzamemo le monome stopnje 4. Dobimo $-4x^2y^2=0$ od koder dobimo tangenti x=0 in y=0. Določimo presečne večkratnosti obeh tangent.

Če v F vstavimo x=0 dobimo $-y^6=0$, torej je presečna večkratnost enaka 6.

Če vFvstavimo y=0dobimo $x^6=0,$ torej je presečna večkratnost spet enaka 6.