Report No: CCISE170504706

FCC REPORT

Applicant: LAVA INTERNATIONAL (H.K) LIMITED

Address of Applicant: UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST,

JORDAN KL, HK

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: iris 60

Trade mark: LAVA

FCC ID: 2AEE8LAVAIRIS60

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 10 May, 2017

Date of Test: 10 May, to 12 Jun., 2017

Date of report issued: 15 Jun., 2017

Test Result: Pass *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	15 Jun., 2017	Original

Tested by:

Date: 15 Jun., 2017

Test Engineer

Reviewed by: Date: 15 Jun., 2017

Project Engineer

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

3 Contents

			Page
1	С	COVER PAGE	1
2	٧	/ERSION	2
3	С	CONTENTS	3
4	Т	EST SUMMARY	4
5	G	GENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	Measurement Uncertainty	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	Т	EST RESULTS AND MEASUREMENT DATA	
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	
7	Т	EST SETUP PHOTO	17
8	Е	EUT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result	
Conducted Emission	Part 15.107	Pass	
Radiated Emission	Part 15.109	Pass	

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	LAVA INTERNATIONAL (H.K) LIMITED
Address of Applicant:	UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN KL, HK
Manufacturer	LAVA INTERNATIONAL (H.K) LIMITED
Address of Manufacturer:	UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN KL, HK

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	iris 60
Power supply:	Rechargeable Li-ion Battery DC3.8V-2500mAh
	Model: CLV-15
AC adapter :	Input: AC100-300V 50/60Hz 0.15A
	Output: DC 5.0V, 1A

5.3 Test Mode

Operating mode	Detail description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

Report No: CCISE170504706

5.5 Description of Support Units

Manufacturer	nufacturer Description		Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
HP	Printer	CB495A	05257893	DoC
MERCURY	Wireless router	MW150R	12922104015	FCC ID
NAKAMICHI	Bluetooth earphone	T8	N/A	FCC ID

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax:+86-755-23116366 Email: info@ccis-cb.com

5.8 Test Instruments list

Radiated Emission:								
Item Test Equipment		Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018		
6	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018		
7	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018		
8	EMI Test Software AUDIX		E3	N/A	N/A	N/A		
9	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018		
10	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018		

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018				
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018				
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.10	07				
Test Method:	ANSI C63.4:2014					
Test Frequency Range:	150kHz to 30MHz	150kHz to 30MHz				
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	Fragueney range (MHz)	Li	mit (dBµV)			
	Frequency range (MHz)	Quasi-peak		Average		
	0.15-0.5	66 to 56*		56 to 46*		
	0.5-5	56		46		
	0.5-30	60		50		
	* Decreases with the logarith	m of the frequency	<u>'.</u>			
Test setup:	Reference Plan	ne				
	Remark E.U.T Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	AC power				
Test procedure	 The E.U.T and simulators line impedance stabilization 500hm/50uH coupling impedance. The peripheral devices are a LISN that provides a 500 termination. (Please refers photographs). Both sides of A.C. line are interference. In order to fir positions of equipment an according to ANSI C63.4: 	on network (L.I.S.N.) pedance for the mede also connected to ohm/50uH coupling to the block diagrate checked for maximal the maximum end all of the interface). The provi- asuring equal the main particular in the main particular in the term of the term condumission, the exables muses and the particular in the main in the exables muses in the exables indicate in the exables in the exables in the exables in the exable	ide a uipment. bower through e with 50ohm est setup and ucted e relative ust be changed		
Test environment:		nid.: 56%	Press.:	101kPa		
Test Instruments:	Refer to section 5.7 for detail	ls	<u>i</u>	<u> </u>		
	Refer to section 5.3 for details					
Test mode:	Refer to section 5.3 for detail	IS				

Measurement data:

Line:

Site

CCIS Shielding Room FCC PART15 B QP LISN LINE Condition EUT : Mobile Phone

Model : iris 60

Test Mode : PC mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
1.50	MHz	dBu∜	<u>dB</u>	<u>ab</u>	dBu∀	dBu∜	<u>dB</u>	
1	0.154	22.17	0.14	10.78	33.09	55.78	-22.69	Average
2	0.158	28.48	0.14	10.78	39.40	65.56	-26.16	QP
2	0.170	26.64	0.14	10.77	37.55	64.94	-27.39	QP
4	0.258	14.53	0.16	10.75	25.44	51.51	-26.07	Average
4 5 6 7	2.540	17.59	0.33	10.94	28.86	46.00	-17.14	Average
6	3.173	25.44	0.33	10.91	36.68	56.00	-19.32	QP
7	3.700	25.58	0.34	10.90	36.82	56.00	-19.18	QP
8	10.508	20.02	0.29	10.93	31.24	50.00	-18.76	Average
9	17.661	34.60	0.30	10.90	45.80	60.00	-14.20	QP
10	17.661	31.47	0.30	10.90	42.67	50.00	-7.33	Average
11	18.232	33.78	0.31	10.91	45.00	60.00	-15.00	QP
12	18.232	30.54	0.31	10.91	41.76	50.00	-8.24	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT Mobile Phone Model : 1718 00 Test Mode : PC mode Power Rating : AC 120V/60Hz Fowironment : Temp: 23 °C Huni:56% Atmos:101KPa iris 60

Remark

18.232

18.232

33.05

30.22

LISN Cable Read Limit Over Level Factor Freq Limit Remark Level Loss Line MHz dBuV dBuV dBuV dB dB dB 0.154 21.88 0.12 10.78 32.78 55.78 -23.00 Average 23 65.34 -26.53 QP 54.77 -26.23 Average 27.91 0.13 0.162 10.77 38.81 17.63 10.77 0.174 28.54 0.14 4567 12.38 22.10 51.51 -28.21 Average 56.00 -22.89 QP 0.258 10.75 23.30 0.17 0.521 0.25 10.76 33.11 1.065 20.45 0.26 10.88 31.59 56.00 -24.41 QP 46.00 -18.26 Average 56.00 -18.90 QP 3.258 16.51 0.32 10.91 27.74 8 3.310 25.87 0.32 37.10 10.91 60.00 -15.39 QP 9 17.661 33.44 0.27 10.90 44.61 0.27 10 10.90 17.661 30.84 42.01 50.00 -7.99 Average

Notes:

11

12

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

10.91

10.91

44.23

41.40

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

60.00 -15.77 QP

50.00 -8.60 Average

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

0.27

6.2 Radiated Emission

0.2 Radiated Ellission										
Test Requirement:	FCC Part 15 B Section 15.109									
Test Method:	ANSI C63.4:2014									
Test Frequency Range:	30MHz to 26000	30MHz to 26000MHz								
Test site:	Measurement D	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver setup:	Frequency Detector RBW VBW Rema									
	30MHz-1GHz	Quasi-		120kHz		300kHz Quasi-peak				
	Above 1GHz	Pea		1MHz	3MF		Peak Value			
Limit:	Frequenc	RMS 1MHz 3MH Frequency Limit (dBuV/m @3m)				72	Average Value Remark			
LITTIL.						(Quasi-peak Value			
	88MHz-216N			43.5			Quasi-peak Value			
	216MHz-960			46.0			Quasi-peak Value			
	960MHz-1G			54.0			Quasi-peak Value			
				54.0			Average Value			
	Above 1GI	72		74.0			Peak Value			
	Antenna Tower Search Antenna RF Test Receiver Ground Plane Above 1GHz									
	**************************************	EUT (Turntable)	3m							

Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.								
		The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.							
	ground horizon	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.							
	4. For each suspected emission, the EUT was arranged to its worst and then the antenna was tuned to heights from 1 meter to 4 meter and the rotatable table was turned from 0 degrees to 360 degrees find the maximum reading.								
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.								
	6. If the emission level of the EUT in peak mode was 10dB lower than th limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.								
Test environment:	Temp.:	Temp.: 25 °C Humid.: 55% Press.: 1 01kPa							
Test Instruments:	Refer to se	Refer to section 5.7 for details							
Test mode:	Refer to se	Refer to section 5.3 for details							
Test results:	Passed								
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded								

Measurement Data:

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL

Condition EUT : Mobile Phone

Model : iris 60
Test mode : PC Mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Mike
REMARK :

Freq								Remark
MHz	dBu∀	dB/π	<u>dB</u>	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
89.905	46.87	8.15	2.04	29.57	27.49	43.50	-16.01	QP
121.976	42.39	11.92	2.19	29.38	27.12	43.50	-16.38	QP
167.824	50.87	9.82	2.64	29.07	34.26	43.50	-9.24	QP
239.987	42.68	11.80	2.82	28.59	28.71	46.00	-17.29	QP
366.823	47.33	14.78	3.09	28.64	36.56	46.00	-9.44	QP
631.688	34.82	18.69	3.89	28.84	28.56	46.00	-17.44	QP
	MHz 89.905 121.976 167.824 239.987 366.823	Freq Level MHz dBuV 89.905 46.87 121.976 42.39 167.824 50.87 239.987 42.68 366.823 47.33	### Revel Factor MHz dBuV dB/m 89.905 46.87 8.15 121.976 42.39 11.92 167.824 50.87 9.82 239.987 42.68 11.80 366.823 47.33 14.78	Freq Level Factor Loss MHz dBuV dB/m dB 89.905 46.87 8.15 2.04 121.976 42.39 11.92 2.19 167.824 50.87 9.82 2.64 239.987 42.68 11.80 2.82 366.823 47.33 14.78 3.09	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 89.905 46.87 8.15 2.04 29.57 121.976 42.39 11.92 2.19 29.38 167.824 50.87 9.82 2.64 29.07 239.987 42.68 11.80 2.82 28.59 366.823 47.33 14.78 3.09 28.64	MHz dBuV dB/m dB dB dBuV/m 89.905 46.87 8.15 2.04 29.57 27.49 121.976 42.39 11.92 2.19 29.38 27.12 167.824 50.87 9.82 2.64 29.07 34.26 239.987 42.68 11.80 2.82 28.59 28.71 366.823 47.33 14.78 3.09 28.64 36.56	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 89.905 46.87 8.15 2.04 29.57 27.49 43.50 121.976 42.39 11.92 2.19 29.38 27.12 43.50 167.824 50.87 9.82 2.64 29.07 34.26 43.50 239.987 42.68 11.80 2.82 28.59 28.71 46.00 366.823 47.33 14.78 3.09 28.64 36.56 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 89.905 46.87 8.15 2.04 29.57 27.49 43.50 -16.01 121.976 42.39 11.92 2.19 29.38 27.12 43.50 -16.38 167.824 50.87 9.82 2.64 29.07 34.26 43.50 -9.24 239.987 42.68 11.80 2.82 28.59 28.71 46.00 -17.29 366.823 47.33 14.78 3.09 28.64 36.56 46.00 -9.44

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : Mobile Phone Condition

: Mobile Phone

Model : iris 60
Test mode : PC Mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Mike
REMARK :

	Freq		Antenna Factor					Over Limit	
2	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	39.576	45.34	16.75	1.21	29.90	33.40	40.00	-6.60	QP
2	122.834	48.22	11.95	2.20	29.37	33.00	43.50	-10.50	QP
3	167.824	47.93	9.82	2.64	29.07	31.32	43.50	-12.18	QP
4	378.584	41.76	15.22	3.09	28.69	31.38	46.00	-14.62	QP
4 5	625.078	35.86	18.64	3.90	28.86	29.54	46.00	-16.46	QP
6	747.483	34.26	20.32	4.35	28.49	30.44	46.00	-15.56	QP

Above 1GHz

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile Phone Model : iris 60
Test mode : PC mode
Power Rating : AC 120V / 60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Mike REMARK :

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
3	MHz	dBu₹	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	3315.740	48.49	27.05	5.54	41.37	39.71	74.00	-34.29	Peak
2	3315.740	38.59	27.05	5.54	41.37	29.81	54.00	-24.19	Average
	3912.134	48.95	31.53	6.10	41.80	44.78	74.00	-29.22	Peak
4	3912.134	38.98	31.53	6.10	41.80	34.81	54.00	-19.19	Average
5	4999.149	49.48	36.90	6.94	41.88	51.44	74.00	-22.56	Peak
6	4999.149	39.46	36.90	6.94	41.88	41.42	54.00	-12.58	Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile Phone Condition

: Mobile Phone

Model : iris 60
Test mode : PC mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Mike
REMARK :

THURTH									
	Freq		Antenna Factor					Over Limit	
2	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	3315.740	48.98	27.05	5.54	41.37	40.20	74.00	-33.80	Peak
2	3315.740	39.06	27.05	5.54	41.37	30.28	54.00	-23.72	Average
3	3927.389	48.49	31.63	6.10	41.80	44.42	74.00	-29.58	Peak
4	3927.389	38.56	31.63	6.10	41.80	34.49	54.00	-19.51	Average
5	4999.149	49.70	36.90	6.94	41.88	51.66	74.00	-22.34	Peak
6	4999.149	39.74	36.90	6.94	41.88	41.70	54.00	-12.30	Average