Wachstum 2.5
Samstag, 13. Mai 2017 13:24
Aufgabe 2.5
a)
Die Aussage ist richtig. Die Funktionen f(n) und g(n) sind verreinigt, also in der Menge befinden sich also alle Funktionen,
die nicht schneller wachsen als f(n) und gleichzeit nicht schneller wachsen als g(n).
Nun addiert man also zwei Funktionen f(n) und g(n). Diese können schneller bzw. gleich schnell wachsen wie die Verreinigung,
man wird also ein c finden, ab dem die Funktionen (kurzzeitig) überholt werden.
b) Die Beziehung der Funktionen von a) ist antisymmetrisch, es gilt
also nicht andersherum. Als Beispiel nehme die Funktionen: f(n) = x * -1(x) + g(n) = x * -1(-1x) ist keine Teilmenge von
der Verreinigungsmenge x.
d)
d) $ \left(\frac{n}{2}\right)^5 \in o(3n^5) \text{ stimmt nicht:} $
$\lim_{n \to \infty} \frac{\left(\frac{n}{2}\right)^5}{3n^5} = \lim_{n \to \infty} \frac{n^5 \cdot \left(\frac{1}{2}\right)^5}{3n^5} = \frac{32}{3}$
$\lim_{n \to \infty} \frac{(2)}{3n^5} = \lim_{n \to \infty} \frac{(2)}{3n^5} = \frac{1}{3}$
=> konstakter Faktor als Ergebniss
$=>\left(\frac{n}{2}\right)^5\in\theta(3n^5) (Theta)$
e)
Die dominierenden Faktoren sind die jeweils die Potenzen. Beide sind gleich (Quadrate), also findet man eine Konstante mit der
der rechte Teil g(x), den linken Teil f(x) überholt.
f) $0.1n + \sqrt[3]{27n^3}$ $0.1 + 3n$
$\lim_{\substack{n \to \infty \\ n \to \infty}} \frac{0.1n + \sqrt[3]{27n^3}}{n} = \lim_{\substack{n \to \infty \\ n \to \infty}} \frac{0.1 + 3n}{n} = 3.0$
=> Aussage stimmt