

IEL – protokol k projektu

Jan Schoř xschorj00

12. prosince 2024

Obsah

1	Příklad 1	2
2	Příklad 2	3
3	Příklad 3	4
4	Příklad 4	6
5	Příklad 5	7
6	Shrnutí výsledků	8

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
F	125	65	510	500	550	250	300	800	330	250

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu Théveninovy věty.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
F	130	180	350	600	195	650	80

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu uzlových napětí (U_A, U_B, U_C) .

	-			•			- \	,,	- /
sk.	U_1 [V]	U_2 [V]	I[A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
Α	120	50	0.7	53	49	65	39	32	48

Tvorba rovnice pro každý uzel (A, B, C) podle I. K.Z.:

$$\begin{split} A: \quad & \frac{U_1 - U_A}{R_1} - \frac{U_A + U_2 - U_B}{R_3} + \frac{U_B - U_A}{R_4} - \frac{U_A}{R_2} = 0 \\ B: \quad & \frac{U_A + U_2 - U_B}{R_3} + I - \frac{U_B - U_C}{R_6} - \frac{U_B - U_A}{R_4} = 0 \\ C: \quad & \frac{U_B - U_C}{R_6} - I - \frac{U_C}{R_5} = 0 \end{split}$$

Úprava rovnic pro dosazení do matice:

$$A: \quad -\left(\frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_2}\right)U_A + \left(\frac{1}{R_3} + \frac{1}{R_4}\right)U_B + 0U_C = \frac{U_2}{R_3} - \frac{U_1}{R_1}$$

$$B: \quad \left(\frac{1}{R_3} + \frac{1}{R_4}\right)U_A - \left(\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_6}\right)U_B + \frac{1}{R_6}U_C = -I - \frac{U_2}{R_3}$$

$$C: \quad 0U_A + \frac{1}{R_6}U_B - \left(\frac{1}{R_5} + \frac{1}{R_6}\right)U_C = I$$

Maticový tvar rovnic:

$$\begin{bmatrix} -\left(\frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_2}\right) & \frac{1}{R_3} + \frac{1}{R_4} & 0 \\ \frac{1}{R_3} + \frac{1}{R_4} & -\left(\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_6}\right) & \frac{1}{R_6} \\ 0 & \frac{1}{R_6} & -\left(\frac{1}{R_5} + \frac{1}{R_6}\right) \end{bmatrix} \begin{bmatrix} U_A \\ U_B \\ U_C \end{bmatrix} = \begin{bmatrix} \frac{U_2}{R_3} - \frac{U_1}{R_1} \\ -I - \frac{U_2}{R_3} \\ I \end{bmatrix}$$

Po dosazení hodnot získáme výsledek U_A, U_B, U_C :

$$U_A = 49.2546 \text{ V}$$

 $U_B = 59.9700 \text{ V}$
 $U_C = 10.5480 \text{ V}$

Napětí mezi uzlem U_A a stanoveným referenčním uzlem je rovno napětí na rezistoru R_2 . Pomocí Ohmova zákona dokážeme vypočítat proud I_{R2} :

$$\begin{split} I_{R2} &= \frac{U_A}{R_2} \\ I_{R2} &= 1.0052 \, \mathrm{A} \\ U_{R2} &= U_A = 49.2546 \, \mathrm{V} \end{split}$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{L_1} = U_{L_1} \cdot \sin(2\pi f t + \varphi_{L_1})$ určete $|U_{L_1}|$ a φ_{L_1} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega})$.

									200
sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	C_2 [µF]	f [Hz]
F	2	3	12	10	170	80	150	90	65

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	L [H]	$R [\Omega]$	$i_L(0)$ [A]
	F	25	10	50	8
	F	}			
			٦.		
t = 0 s			,		
s	-70		Υ		
3 \	V		200 r		
			\approx		
u +					
($\overline{\Box}$				
٧					

Shrnutí výsledků

Příklad	Skupina	Výsledky	
1	F	$U_{R3} = I$	$R_3 =$
2	F	$U_{R4} = I$	$R_4 =$
3	A	$U_{R2} = I$	$R_2 =$
4	F	$ U_{L_1} = \zeta$	$ olimits_{L_1} = olimits_{L_1} $
5	F	$i_L =$	