Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 223.4 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen \ 1B/Oppgave 1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

656.75 656.74 (mu) applied 656.72 656.70 656.69 -

30

Periode (år)

40

60

50

70

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 9.78, tilsynelatende blå størrelseklass $m_B=11.20$

20

10

0

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 9.78, tilsynelatende blå størrelseklass $m_B = 12.20$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=2.26,$ tilsynelatende

blå størrelseklass m_B = 3.68

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 2.26, tilsynelatende blå størrelseklass $m_B=4.68$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.18 og store halvakse a=85.47 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.18 og store halvakse a=86.83 AU.

Filen 1F.txt

Ved bølgelengden 679.12 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 6.20 6.10 Tilsynelatende størrelsklasse m_V 6.00 5.90 5.80 5.70 5.60 5.50 20 40 ò 100 120 140 60 80 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 28.60 solmasser, temperatur på 10.60 Kelvin og tetthet 1.44e-20 kg per kubikkmeter

Gass-sky B har masse på 7.00 solmasser, temperatur på 83.70 Kelvin og tetthet 4.44e-21 kg per kubikkmeter

Gass-sky C har masse på 13.60 solmasser, temperatur på 67.60 Kelvin og

tetthet 3.30e-22 kg per kubikkmeter

Gass-sky D har masse på 20.20 solmasser, temperatur på 59.90 Kelvin og tetthet 8.55e-21 kg per kubikkmeter

Gass-sky E har masse på 5.60 solmasser, temperatur på 25.60 Kelvin og tetthet 9.72e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE B) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

STJERNE C) hele stjerna er elektrondegenerert

STJERNE D) stjernas energi kommer hovedsaklig fra heliumfusjon i sentrum

STJERNE E) stjerna har en degenerert heliumkjerne

Filen 1L.txt

Stjerne A har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V = 2.80

Stjerne B har spektralklasse A1 og visuell tilsynelatende størrelseklasse m_V = 8.37

Stjerne C har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V = 5.12

Stjerne D har spektralklasse G9 og visuell tilsynelatende størrelseklasse m $_{-}$ V = 4.41

Stjerne E har spektralklasse G9 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}=3.35$

Filen 1P.txt

Alle gasspartiklene har fart $100~\mathrm{m/s}$ i tilfeldige (uniformt fordelte) retninger.

$Filen~2A/Oppgave 2A_Figur 1.png$

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 i ż ġ ż 5 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.2260000000000000643929 AU.

Tangensiell hastighet er 74452.820879219594644383 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.012 AU.

Kometens avstand fra jorda i punkt 2 er r2=9.190 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=15.034.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9516 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00101 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=290.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9893 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 508.50 nm.

Filen 4A.txt

Stjernas masse er 1.62 solmasser.

Stjernas radius er 0.47 solradier.

Filen 4C.png

Figur 4C 2.6000 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 200 -200 -400 -600 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 12.92 millioner K

Filen 4G.txt

Massen til det sorte hullet er 2.02 solmasser.

r-koordinaten til det innerste romskipet er r $=6.26~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=11.83~\mathrm{km}.$