华南理工大学《电子技术》(机械类)期末考试试卷

考试时间: 150 分钟

考试日期: 年

月

月 日

	1	111	四	五	六	七	八	九	+	<u></u>	总分
20	6	6	6	10	12	4	8	10	10	8	100

一、选择题(每小题2分,共20分)

- 1. 一个振荡器要能够产生正弦波振荡,电路的组成必须包含()。
 - (a)放大电路, 负反馈电路
 - (b)负反馈电路、选频电路
 - (c)放大电路、正反馈电路、选频电路
- 2. 逻辑电路如图所示,A= "0"时,C脉冲来到后 JK 触发器

().

(a)具有计数功能 (b)置"0" (c)置"1"

- 3. 逻辑图和输入 A, B 的波形如图所示,分析当输出 F 为 "1" 的时刻应是()。
 - (a) t_1
- (b) t_2
- (c) t_3

)。

- 4. 电路如图所示,参数选择合理,若要满足振荡的相应条件,其正确的接法是(
 - (a)1与3相接,2与4相接
 - (b)1与4相接,2与3相接
 - (c)1 与 3 相接, 2 与 5 相接
- 5. 振荡电路如图所示,选频网络是由(
 - (a) L_1 、 C_1 组成的电路
 - (b)L、C组成的电路
 - (c) L_2 、 R_2 组成的电路

)。

- 6. 在运算放大器电路中,引入深度负反馈的目的之一是使运放()。
 - (a)工作在线性区,降低稳定性
 - (b)工作在非线性区,提高稳定性
 - (c)工作在线性区,提高稳定性
- 7. 比较器电路如图 1 所示, 其传输特性为图 2 中()。

- 8. 具有发射极电阻 $R_{\rm E}$ 的典型差动放大电路中, $R_{\rm E}$ 的电流负反馈作用对 ()有效。
 - (a)差模输入信号
 - (b)共模输入信号
 - (c)共模和差模两种输入信号

9. 电路如图所示,二极管为同一型号的理想元件,电阻 $R=4\mathrm{k}\Omega$,电位 $u_\mathrm{A}=1\mathrm{V}$, $u_\mathrm{B}=3\mathrm{V}$,则电位

- 10. 编码器的逻辑功能是()。
 - (a)把某种二进制代码转换成某种输出状态
 - (b)将某种状态转换成相应的二进制代码
 - (c)把二进制数转换成十进制数

二、(6分)

单相桥式整流电路如图所示,已知 $u_2=36\sqrt{2}\sin\omega t(\mathbf{V})$,二极管为理想元件,从示波器上观察到 $u_{\mathbf{O}}$ 的波形如图所示。

- (1)负载电压 u_0 的波形是否正确?为什么?
- (2)如图不正确, 试分析故障的原因;
- (3)求故障时整流电压平均值 $U_{\rm o}$ 的大小。

三、(6分)

已知组合逻辑电路如图所示,试分析其逻辑功能。

四、(6分)

电路如图所示,设二极管 D_1 , D_2 为理想元件,试计算电路中电流 I_1 , I_2 的值。

五、(10分)

已知下图的逻辑电路中各触发器的初始状态均为"0",试分析其逻辑功能(必须有详细步骤)。

六、(12分)

电路如图所示,已知 β =60, r_{be} =2k Ω , U_{BE} =0.6V,要求:

(1)估算此电路的静态工作点;(2)画出该电路的微变等效电路;(3)输出端不接负载 $R_{\rm L}$ 时,求出放大电路的输入电阻、输出电阻、电压放大倍数;(4) 求输出端接负载 $R_{\rm L}=3.9\,{\rm k}\,\Omega$ 时的电压放大倍数。

七、(4分)

电路如图所示,要求: (1)指出级间交流反馈支路,并用瞬时极性法在图上标出极性,判断反馈极性(正,负反馈)和类型; (2)指出 T_1 管的偏置电路。

八、(8分)

单相半波可控桥式整流电路如图所示,交流电源电压 $u_2=\sqrt{2}U_2\sin\omega t$,当控制角 $\alpha_1=60$ °时,输出电压平均值 $U_0=100$ V,问控制角 $\alpha_2=30$ °时,输出电压平均值 U_{02} 应为多少?并定性画出 $\alpha_2=30$ °时输出电压 u_0 的波形(一个半周期)。

九、(10分)

电路如下图所示,求电路中的电压 u_{01} , u_{02} , u_{0} 。

十、(10分)

组合逻辑电路的输入 A , B , C 及输出 F 的波形如下图所示,试列出状态表,写出逻辑式并化简,画出逻辑图。

十一、(8分)

555 集成定时器组成的电路如图所示。已知 $R_2=100$ k Ω , $C_1=0.01$ μ F,按一下按钮 SB,指示灯亮 11s,试问由 555 集成定时器和 R_2 、 C_2 组成的是何种触发器(单稳态、双稳态、无稳态),并求电容器 C_2 的值。

