M1970 – Machine Learning II Redes Probabilísticas Discretas

Sixto Herrera (sixto.herrera@unican.es) José M. Gutiérrez, Mikel Legasa

Grupo de Meteorología Univ. de Cantabria – CSIC MACC / IFCA

Aprendizaje Estructural:

Aprender la estructura (grafo) a partir del dataset

Aprendizaje Estructural:

Aprender la estructura (grafo) a partir del dataset

- · Determinar las independencias a nivel local.
 - · Utilizando tests de independencia.
 - · A menudo primero buscando la Markov Blanket
- Algoritmos (Específicos), basados en Inductive Causation:
 PC, Grow-Shrink, Incremental Association Markov Blanket...

- 1) (Identificar pares dependientes)
- 1.1) Para cada par A, B buscar $S \subset X$ t.q. $A \perp B \mid S$.
- 1.2) Si ∄ S, colocar un arco no dirigido A B

- 1) (Identificar pares dependientes)
- 1.1) Para cada par A, B buscar $S \subset X$ t.q. $A \perp B \mid S$.
- 1.2) Si ∄ S, colocar un arco no dirigido A B
- 2) (Identificar v-estructuras)
- 2.1) Para cada par A, B no adyacentes con vecino común C.
- 2.2) Si C \notin S: dirigir A C, C B como A \rightarrow C \leftarrow B.
- 2.3) Si $C \in S$: no hacer nada.

- 1) (Identificar pares dependientes)
- 1.1) Para cada par A, B buscar $S \subset X$ minimal t.q. $A \perp B \mid S$.
- 1.2) Si ∄ S, colocar un arco no dirigido A B
- 2) (Identificar y construir v-estructuras)
- 2.1) Para cada par A, B no adyacentes con vecino común C.
- 2.2) Si C \notin S: dirigir A C, C B como A \rightarrow C \leftarrow B.
- 2.3) Si $C \in S$: no hacer nada.
- 3) (Dirigir arcos) Repetir para los arcos no dirigidos:
- 3.1) Si A B y hay un camino estrictamente dirigido de A a B: Fijar dirección de A B a A \rightarrow B.
- 3.2) Si A y B no son adyacentes pero \exists C t.q A \rightarrow C y C B: Fijar dirección de C B a C \rightarrow B.
- 4. Devolver el grafo (Partially Directed Acyclic Graph).

(todos dependientes)

 $A \perp B$

 $A \perp D \mid C$

 $B \perp D \mid C$

1) B C

(todos dependientes)

 $A \perp B$

 $A \perp D \mid C$

 $B \perp D \mid C$

1)

B C D

2) V-estructura sobre C:

CSIC

(todos dependientes)

 $A \perp B$

 $A \perp D \mid C$

 $B \perp D \mid C$

1)

A В D

V-estructura sobre C:

Master Universitario Oficial Data Science con el apoyo del

CSIC

Test de Independencia

Test χ^2 :

$$X^{2}(X, Y \mid \mathbf{Z}) = \sum_{i=1}^{R} \sum_{j=1}^{C} \sum_{k=1}^{L} \frac{(n_{ijk} - m_{ijk})^{2}}{m_{ijk}}, \text{ where } m_{ijk} = \frac{n_{i+k} n_{+jk}}{n_{++k}}$$

Para las L combinaciones de padres **Z** y los R, C estados de X,Y, respectivamente

Otros:

Mutual Information, correlación...

Ejercicios:

- 1) En el algoritmo Inductive Causation, ¿Por qué es necesario el paso 3.1?
- 2) En el algoritmo Inductive Causation, ¿Por qué es necesario el paso 3.2?
- 3) ¿Puede aplicarse Inductive Causation para un problema suficientemente grande?
- 4) Recorre manualmente los pasos del algoritmo IC para construir un DAG con 4 nodos: Inteligencia (I), Dificultad de Examen (D), Nota (N), Nota Media (M). Debe construir el DAG

 D
 .

5) **Bnlearn** implementa el algoritmo PC, función *pc.stable()*, aplícalo al dataset survey utilizando el argumento *debug* = *TRUE*, explora los argumentos *alpha*, *max.sx*.

Aprendizaje Estructural:

Aprender la estructura (grafo) a partir del dataset

- 1) Determinar "score", medida de bondad de ajuste.
- 2) Maximizar el "score".
- Algoritmos: (¡No específicos de RB!)
 Cualquiera de optimización, e.g. hill-climbing.

Algoritmo Hill-Climbing

- 1) Inicializar grafo G (e.g. $G = \emptyset$)
- 2) maxscore ← score(G)

Algoritmo Hill-Climbing

- 1) Inicializar grafo G (e.g. $G = \emptyset$)
- 2) maxscore ← score(G)
- 3) Repetir **mientras** maxscore aumente:
 - 3.1) **Para cada** operador $\omega(G)$:
 - 3.1.1) G' $\leftarrow \omega(G)$
 - 3.1.2) **Si** score(G') > score(G) maxscore ← score(G') $G \leftarrow G'$

Operadores $\omega()$:

- a) añadir arco
- b) borrar arco
- c) invertir arco

4) Devolver G (Directed Acyclic Graph)

Score de bondad de ajuste

G que maximice $P(G \mid \mathcal{D})$

$$P(G \mid \mathcal{D}) = \frac{P(G, \mathcal{D})}{P(\mathcal{D})} = \frac{P(\mathcal{D} \mid G)P(G)}{P(\mathcal{D})}.$$

Score de bondad de ajuste

G que maximice $P(G \mid \mathcal{D})$

$$P(G \mid \mathcal{D}) = \frac{P(G, \mathcal{D})}{P(\mathcal{D})} = \frac{P(\mathcal{D} \mid G)P(G)}{P(\mathcal{D})}.$$

$$P(\mathcal{D} \mid G) = \int P(\mathcal{D} \mid G, \Theta) P(\Theta \mid G) \ d\Theta =$$

$$\prod_{i=1}^{p} \left(\int P(X_i \mid \pi(X_i), \Theta(X_i)) P(\Theta(X_i) \mid \pi(X_i)) \ d\Theta(X_i) \right).$$

 $\Theta(X_i)$: Parámetros CPT

G que maximice

$$BIC(G, \mathcal{D}) = \sum_{i=1}^{p} \left[\log \Pr(X_i \mid \Pi_{X_i}) - \frac{|\Theta_{X_i}|}{2} \log n \right]$$

Con:

$$|\mathcal{D}| = n.$$

 $|\Theta_{X_i}|$ el número de parámetros.

G que maximice $P(G \mid \mathcal{D})$

Ejemplo:

De:

$$\Pr(\mathtt{A},\mathtt{S},\mathtt{E},\mathtt{O},\mathtt{R},\mathtt{T}) = \Pr(\mathtt{A})\Pr(\mathtt{S})\Pr(\mathtt{E}\mid\mathtt{A},\mathtt{S})\Pr(\mathtt{O}\mid\mathtt{E})\Pr(\mathtt{R}\mid\mathtt{E})\Pr(\mathtt{T}\mid\mathtt{O},\mathtt{R})$$

Obtenemos:

G que maximice $P(G \mid \mathcal{D})$

Ejemplo:

De:

$$\Pr(\mathtt{A},\mathtt{S},\mathtt{E},\mathtt{O},\mathtt{R},\mathtt{T}) = \Pr(\mathtt{A})\Pr(\mathtt{S})\Pr(\mathtt{E}\mid\mathtt{A},\mathtt{S})\Pr(\mathtt{O}\mid\mathtt{E})\Pr(\mathtt{R}\mid\mathtt{E})\Pr(\mathtt{T}\mid\mathtt{O},\mathtt{R})$$

Obtenemos:

$$\begin{split} \operatorname{BIC} &= \log \widehat{\Pr}(\mathtt{A}, \mathtt{S}, \mathtt{E}, \mathtt{O}, \mathtt{R}, \mathtt{T}) - \frac{d}{2} \log n = \\ &= \left[\log \widehat{\Pr}(\mathtt{A}) - \frac{d_{\mathtt{A}}}{2} \log n \right] + \left[\log \widehat{\Pr}(\mathtt{S}) - \frac{d_{\mathtt{S}}}{2} \log n \right] + \\ &+ \left[\log \widehat{\Pr}(\mathtt{E} \mid \mathtt{A}, \mathtt{S}) - \frac{d_{\mathtt{E}}}{2} \log n \right] + \left[\log \widehat{\Pr}(\mathtt{O} \mid \mathtt{E}) - \frac{d_{\mathtt{O}}}{2} \log n \right] + \\ &+ \left[\log \widehat{\Pr}(\mathtt{R} \mid \mathtt{E}) - \frac{d_{\mathtt{R}}}{2} \log n \right] + \left[\log \widehat{\Pr}(\mathtt{T} \mid \mathtt{O}, \mathtt{R}) - \frac{d_{\mathtt{T}}}{2} \log n \right] \end{split}$$

X ₁	p(x ₁)
0	<u>0.3</u>
1	0.7

$$p(0,1,1,1,0,0) = p(x_1=0)$$

X ₁	X ₂	p(x ₂ x ₁)
0	0	0.4
0	1	<u>0.6</u>
1	0	0.1
1	1	0.9

X ₁	p(x ₁)
0	0.3
1	0.7

$$p(0,1,1,1,0,0) = p(x_1=0)p(x_2=1|x_1=0)$$

X ₁	p(x ₁)
0	<u>0.3</u>
1	0.7

X ₁	X ₂	p(x ₂ x ₁)	X ₁	X ₃	p(x ₃ x ₁)	X ₂	X ₄	p(x ₄ x ₂)	X ₃	X ₆	b(x ^e x³)
0	0	0.4	0	0	0.2	0	0	0.3	0	0	0.1
0	1	<u>0.6</u>	0	1	<u>0.8</u>	0	1	0.7	0	1	0.9
1	0	0.1	1	0	0.5	1	0	0.2	1	0	<u>0.4</u>
1	1	0.9	1	1	0.5	1	1	<u>0.8</u>	1	1	0.6

X ₂	X ₃	X ₅	p(x ₅ x ₂ ,x ₃)
0	0	0	0.4
0	0	1	0.6
0	1	0	0.5
0	1	1	0.5
1	0	0	0.7
1	0	1	0.3
1	1	0	0.2
1	1	1	0.8

$$p(0,1,1,1,0,0) = p(x_1=0)p(x_2=1|x_1=0)p(x_3=1|x_1=0)p(x_4=1|x_2=1)$$

$$p(x_6=0|x_3=1)p(x_5=0|x_2=1,x_3=1) =$$

$$0.3 \times 0.6 \times 0.8 \times 0.8 \times 0.4 \times 0.2 = 0.009216$$

Ejercicios:

- 5) En los algoritmos score-based se utilizan tres operadores para los arcos: adición, borrado e inversión. ¿Por qué es necesario este último?
- 6) Explica el término final en la expresión del BIC:

$$BIC(G, \mathcal{D}) = \sum_{i=1}^{p} \left[\log \Pr(X_i \mid \Pi_{X_i}) - \frac{|\Theta_{X_i}|}{2} \log n \right]$$

¿Qué pasaría si este término no existiera?

7) **Bnlearn** implementa el algoritmo hill-climbing, función *hc()*, aplícalo al dataset survey utilizando el argumento debug = TRUE. Explora los argumentos start, maxp y k.

Referencias de ampliación:

D. Koller, N. Friedman: *Probabilistic Graphical Models*

D. Heckerman, D. Geiger, D. M. Chickering: Learning Bayesian Networks: The combination of Knowledge and Statistical Data