Data Exploration

October 30, 2025

1 Data Exploration

Jakob Balkovec Date: Oct 30th 2025

This notebook explores the newly constructed dataset (master.csv) to get more insights into the data and the relationship between features.

```
[]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt

from pathlib import Path
  from scipy import stats
  from scipy.stats import spearmanr, pearsonr, shapiro
  from sklearn.impute import SimpleImputer
  from sklearn.feature_selection import mutual_info_regression
  from sklearn.ensemble import RandomForestRegressor
  from sklearn.model_selection import train_test_split
  from sklearn.metrics import r2_score, mean_squared_error
  from statsmodels.tsa.stattools import acf, pacf, grangercausalitytests
  import statsmodels.api as sm

pd.set_option("display.max_columns", 200)
```

```
[82]: CSV = Path(r'/Users/jbalkovec/Desktop/MDR/Temporal/Pipeline/data/master/

ofinal_master.csv')

df = pd.read_csv(CSV)
```

1.1 Data Health and Typing

1.1.1 Missing Values

```
[83]: numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
non_numeric_cols = [c for c in df.columns if c not in numeric_cols]

missing_pct = df.isna().mean().sort_values(ascending=False)
print(missing_pct.head(20))
```

```
SM label
                       1.000000
soil_temp_50cm
                       0.504705
soil_temp_20cm
                       0.504411
soil_temp_100cm
                       0.503774
soil moisture 100cm
                       0.412067
soil_moisture_50cm
                       0.412067
soil moisture 20cm
                       0.412067
soil_temp_10cm
                       0.257181
soil_temp_5cm
                       0.256887
SM_prev
                       0.245221
soil_moisture_10cm
                       0.245074
soil_moisture_5cm
                       0.245074
rh_max
                       0.243457
rh_min
                       0.243457
rh_mean
                       0.236300
air_temp_avg
                       0.014410
air_temp_max
                       0.012597
air_temp_min
                       0.012009
precipitation
                       0.007793
sur temp min
                       0.007254
dtype: float64
```

1.1.2 Coverage

```
[84]: coverage = df.groupby("station_id")["date"].agg(["min", "max", "nunique"]).

sort_values("min")
display(coverage.head(10))
```

```
min max nunique
station_id
4223 2007-01-01 2025-10-23 6871
4237 2007-01-01 2025-10-23 6871
4136 2007-07-31 2025-10-23 6660
```

1.1.3 **Dupes**

```
[85]: dupes = df.duplicated(subset=["station_id", "date"]).sum()
print("Duplicate station_id+date rows:", dupes)
```

Duplicate station_id+date rows: 0

1.2 Summary Statistics

```
[86]: summary = df[numeric_cols].describe(percentiles=[.01,.05,.25,.5,.75,.95,.99]).T
    summary["missing_pct"] = df[numeric_cols].isna().mean()
    summary["n_unique"] = df[numeric_cols].nunique()
    summary
```

[0.0]					,
[86]:	count	mean	std	min	\
station_id	20402.0	4199.314773	44.451429	4136.000000	
crx_vn	20402.0	2.238869	0.787300	-9.000000	
longitude	20402.0	-120.965163	2.580151	-123.810000	
latitude	20402.0	47.827505	0.509056	47.420000	
air_temp_max	20145.0	14.934435	9.143370	-16.600000	
air_temp_min	20157.0	3.500064	6.142418	-32.600000	
air_temp_mean	20401.0	9.240069	7.071791	-25.745134	
air_temp_avg	20108.0	8.960339	6.960261	-22.600000	
precipitation	20243.0	5.913002	14.727061	0.000000	
solar_radiation	20401.0	11.560944	9.297579	-20.481429	
sur_temp_max	20254.0	22.352923		-14.500000	
sur_temp_min	20254.0	2.221764	6.821601	-37.200000	
sur_temp_avg	20401.0	10.110846	8.676265	-26.000000	
rh_max	15435.0	93.114001	6.983558	29.600000	
rh_min	15435.0	55.193424	24.126065	4.000000	
rh_mean	15581.0	78.199175	16.172867	21.400000	
soil_moisture_5cm	15402.0	0.205727	0.109677	-0.215476	
soil_moisture_10cm	15402.0	0.193313	0.127687	-1.084310	
soil_moisture_20cm	11995.0	0.167664	0.125750	-0.595357	
soil_moisture_50cm	11995.0	0.314161	0.469134	-0.341286	
soil_moisture_100cm	11995.0	0.151735	0.088690	-0.040143	
soil_temp_5cm	15161.0	10.645617	7.278076	-6.40000	
soil_temp_10cm	15155.0	10.466513	6.906450	-4.700000	
soil_temp_20cm	10111.0	9.976689	6.885590	-2.300000	
soil_temp_50cm	10105.0	9.924265	6.445534	-1.000000	
soil_temp_100cm	10124.0	9.891328	6.333417	-0.500000	
LST	20402.0	287.044649		263.120717	
NDVI	20402.0	0.632356	0.182936	0.040046	
Rain_sat	20402.0	0.174667	0.173268	0.000057	
DOY	20402.0	182.429272	104.977055	1.000000	
Rain_3d	20402.0	17.600299	33.621158	0.000000	
SM_prev	15399.0	0.205722	0.109686	-0.215476	
SM_label	0.0	NaN	NaN	NaN	
		. 04	-04		 0//
	4400 000	1%	5%	25%	50% \
station_id	4136.000				
crx_vn	1.301				2000
longitude	-123.810				
latitude	47.420				
air_temp_max	-3.500			00000 13.90	
air_temp_min	-14.400				0000
air_temp_mean	-8.100				0000
air_temp_avg	-7.500				0000
precipitation	0.000				0000
${ t solar_radiation}$	0.070				0000
sur_temp_max	-2.900	000 0.400	0000 10.20	00000 20.80	0000

sur_temp_min	-16.247000	-8.800000	-1.900000	2.400000	
sur_temp_avg	-8.600000	-2.700000	3.600000	9.600000	
rh_max	64.800000	79.500000	91.400000	95.500000	
rh_min	11.500000	17.300000	35.600000	53.800000	
rh_mean	35.900000	45.200000	68.500000	81.400000	
soil_moisture_5cm	0.016000	0.027000	0.118000	0.218000	
soil_moisture_10cm	-0.041317	0.040000	0.102000	0.179000	
soil_moisture_20cm	-0.203329	-0.062426	0.068000	0.200214	
soil_moisture_50cm	0.007000	0.021000	0.074000	0.193000	
soil_moisture_100cm	-0.025103	0.027000	0.059000	0.169000	
soil_temp_5cm	-0.500000	0.000000	4.300000	10.300000	
soil_temp_10cm	-0.300000	0.400000	4.300000	10.200000	
soil_temp_20cm	-0.100000	0.600000	3.500000	9.700000	
soil_temp_50cm	0.300000	1.000000	3.800000	9.800000	
soil_temp_100cm	0.600000	1.200000	3.800000	9.800000	
LST	267.104231	271.600885	278.163592	287.287636	
NDVI	0.095186	0.318498	0.484122	0.655129	
Rain_sat	0.006154	0.013472	0.047857	0.103872	
DOY	4.000000	19.000000	92.000000	183.000000	
Rain_3d	0.000000	0.000000	0.000000	3.300000	
SM_prev	0.016000	0.027000	0.118000	0.218000	
SM_label	NaN	NaN	NaN	NaN	
	75%	95%	99%	max	\
station_id	4237.000000	4237.000000	4237.000000	4237.000000	
crx_vn	2.622000	2.623000	2.623000	2.623000	
longitude	-117.530000	-117.530000	-117.530000	-117.530000	
latitude	48.540000	48.540000	48.540000	48.540000	
air_temp_max	22.000000	30.500000	34.700000	42.400000	
air_temp_min	8.100000	12.500000	14.644000	19.100000	
air_temp_mean	14.900000	20.200000	23.000000	30.300000	
air_temp_avg	14.500000	19.900000	23.000000	30.200000	
precipitation	4.600000	32.700000	69.474000	235.400000	
solar_radiation	18.610000	27.430000	32.310000	114.319656	
sur_temp_max	33.300000	49.135000	58.600000	88.000000	
sur_temp_min	7.100000	12.100000	15.100000	73.900000	
sur_temp_avg	16.800000	23.800000	28.500000	77.000000	
rh_max	97.000000	99.200000	100.000000	100.000000	
rh_min	76.000000	93.300000	96.200000	100.000000	
rh_mean	92.200000	96.800000	98.800000	128.113082	
soil_moisture_5cm	0.290000	0.356000	0.438999	1.112151	
soil_moisture_10cm	0.307000	0.360000	0.402000	0.984601	
soil_moisture_20cm	0.001000	0.324000	0.349000	0.616028	
soil_moisture_50cm	0.261000				
	0.261000	1.605768	2.224887	2.379667	
soil_moisture_100cm			2.224887 0.282000	2.379667 0.421357	
soil_moisture_100cm soil_temp_5cm	0.260000 0.234000 16.900000	1.605768 0.259000 22.000000	0.282000 25.500000	0.421357 30.000000	
soil_moisture_100cm	0.260000 0.234000	1.605768 0.259000	0.282000	0.421357	

soil_temp_20cm	16.100000	20.800000	23.100000	25.000000
soil_temp_50cm	15.700000	19.600000	22.200000	24.000000
soil_temp_100cm	15.600000	19.700000	22.000000	23.500000
LST	294.881098	305.659376	309.226752	313.908222
NDVI	0.800980	0.860101	0.878411	0.890417
Rain_sat	0.274082	0.525570	0.762871	0.940472
DOY	273.000000	347.000000	362.000000	366.000000
Rain_3d	19.200000	83.700000	164.000000	398.400000
SM_prev	0.290000	0.356000	0.439001	1.112151
SM_label	NaN	NaN	NaN	NaN
_				
	missing_pct	n_unique		
station_id	0.000000	3		
crx_vn	0.00000	13		
longitude	0.000000	3		
latitude	0.000000	3		
air_temp_max	0.012597	508		
air_temp_min	0.012009	417		
air_temp_mean	0.000049	697		
air_temp_avg	0.014410	435		
precipitation	0.007793	799		
solar_radiation	0.000049	3573		
sur_temp_max	0.007254	784		
sur_temp_min	0.007254	514		
sur_temp_avg	0.000049	703		
rh_max	0.243457	451		
rh_min	0.243457	916		
rh_mean	0.236300	852		
soil_moisture_5cm	0.245074	1790		
soil_moisture_10cm	0.245074	1210		
soil_moisture_20cm	0.412067	2462		
soil_moisture_50cm	0.412067	2617		
soil_moisture_100cm	0.412067	2168		
soil_temp_5cm	0.256887	328		
soil_temp_10cm	0.257181	295		
= • =	0.504411	270		
soil_temp_20cm	0.504705			
soil_temp_50cm		250		
soil_temp_100cm	0.503774	241		
LST	0.000000	672		
NDVI	0.000000	672		
Rain_sat	0.000000	672		
DOY	0.000000	366 7074		
Rain_3d	0.000000	7271		
SM_prev	0.245221	1787		
SM_label	1.000000	0		

1.2.1 Station Level

```
[87]: station stats = df.
       Groupby("station_id")[["air_temp_mean", "precipitation", "NDVI", "LST",
      ⇒"soil moisture 10cm", "soil temp 10cm"]].
      →agg(["mean","std","min","max","median"])
     station_stats.head(10)
[87]:
                                                             precipitation \
                air_temp_mean
                        mean
                                   std
                                                   max median
                                                                      mean
                                             min
     station_id
     4136
                    7.375954 8.346016 -25.745134
                                                  28.2
                                                          7.2
                                                                  1.264803
     4223
                    10.025086 6.578159 -13.100000
                                                  28.4
                                                                  5.699590
                                                          9.6
     4237
                    10.261650 5.717956 -5.500000
                                                  30.3
                                                          9.9
                                                                 10.683904
                                                 NDVI
                      std min
                                  max median
                                                 mean
                                                            std
                                                                     min
     station_id
                 3.272197
                           0.0
                                 38.0
                                        0.0 0.433758 0.118023 0.040046
     4136
     4223
                 11.360698
                           0.0
                               135.4
                                         0.3 0.744890 0.130592
                                                                0.291836
     4237
                 21.532642
                                235.4
                           0.0
                                        0.5 0.712321 0.107359
                                                                0.318498
                                          LST
                            median
                                         mean
                                                     std
                                                                min
                     max
                                                                            max
     station_id
     4136
                 0.624729 0.451759
                                    289.381878 13.765826
                                                          263.120717
                                                                     313.908222
     4223
                                                          265.883202
                 0.890417
                          0.782172
                                    285.935077
                                                8.619238
                                                                     299.915973
     4237
                 0.856568 0.718435
                                    285.888766
                                                7.486844
                                                          271.057854
                                                                    298.428487
                           soil_moisture_10cm
                    median
                                        mean
                                                   std
                                                            min
                                                                      max
     station_id
     4136
                 290.248893
                                     4223
                 286.679144
                                     4237
                 286.169535
                                     0.136701 0.055205 0.013000 0.342808
                      soil_temp_10cm
                median
                                                     max median
                                mean
                                          std min
     station_id
                            9.883998 8.042649 -4.7
     4136
                 0.204
                                                    26.7
                                                            8.7
     4223
                 0.299
                           10.089284
                                     6.418051 -0.2
                                                    22.6
                                                           10.1
     4237
                           11.431102 5.980328 -0.5
                 0.149
                                                    24.4
                                                           11.2
                                          Location
                                    ID
                                    4136
                                          Spokane
                                    4223
                                          Darrington
```

ID	Location		
4237	Quinalt		

1.3 Missingness structure

1.3.1 Column

```
[88]: ax = missing_pct.plot(kind="barh", figsize=(8,10), title="Missingness by_u column")

plt.gca().invert_yaxis()

plt.tight_layout()

plt.show()
```


1.3.2 Month

Average missingness across numeric columns by month

1.3.3 Station

```
[90]: miss_by_station = df.groupby("station_id")[numeric_cols].apply(lambda x: x.

→isna().mean().mean()).sort_values(ascending=False)

miss_by_station.head(20)
```

[90]: station_id 4237 0.254561 4223 0.139978 4136 0.129812 dtype: float64

1.4 Distributions and outliers

```
[]: to_plot = ["air_temp_mean", "precipitation", "NDVI", "LST", |

¬"soil_moisture_10cm", "soil_temp_10cm"]
     n = len(to_plot)
     fig, axes = plt.subplots(2, 3, figsize=(14, 8))
     axes = axes.flatten()
     for i, col in enumerate(to_plot):
         if col in df.columns:
             s = df[col].dropna()
             axes[i].hist(s, bins=50, color="steelblue", alpha=0.75, __
      ⇔edgecolor="black")
             axes[i].set_title(col, fontsize=10)
             axes[i].set_xlabel(col)
             axes[i].set_ylabel("Count")
             sample = s.sample(min(5000, len(s)), random_state=42)
             W, p = shapiro(sample)
             axes[i].text(
                 0.95, 0.95,
                 f"W=\{W:.3f\}\np=\{p:.1e\}",
                 transform=axes[i].transAxes,
                 ha="right", va="top",
                 fontsize=9,
                 bbox=dict(boxstyle="round,pad=0.3", facecolor="white", alpha=0.7)
             )
     for j in range(i + 1, len(axes)):
         fig.delaxes(axes[j])
     plt.suptitle("Feature Distributions with Shapiro-Wilk Normality Test", __
      \rightarrowfontsize=14, y=1.02)
     plt.tight_layout()
     plt.show()
```



```
[95]: z = np.abs(stats.zscore(num_imputed[to_plot], nan_policy='omit'))
outlier_mask = (z > 4).any(axis=1)
print("Rows with extreme outliers (|z|>4):", outlier_mask.sum())
```

Rows with extreme outliers (|z|>4): 338

1.5 Relationships among variables

1.5.1 Pairwise Correlations

```
print(f"Spearman rho={s.correlation:.3f}, Pearson r={p.statistic:.3f}_  | \{x\} | \{x\} | \{y\} ")
```

```
Spearman rho=0.905, Pearson r=0.902 | LST vs soil_temp_10cm

Spearman rho=-0.169, Pearson r=-0.076 | NDVI vs soil_moisture_10cm

Spearman rho=0.836, Pearson r=0.813 | air_temp_mean vs LST

Spearman rho=0.466, Pearson r=0.424 | precipitation vs Rain_sat

Spearman rho=0.082, Pearson r=0.094 | DOY vs NDVI
```

1.5.2 Partial correlation

```
[97]: def partial_corr(x, y, z):
    df_temp = pd.concat([x, y, z], axis=1).dropna()
    df_temp = df_temp.replace([np.inf, -np.inf], np.nan).dropna()

    x_clean = df_temp.iloc[:, 0]
    y_clean = df_temp.iloc[:, 1]
    z_clean = df_temp.iloc[:, 2]

    X = sm.add_constant(z_clean)

    x_resid = sm.OLS(x_clean, X).fit().resid
    y_resid = sm.OLS(y_clean, X).fit().resid

    return np.corrcoef(x_resid, y_resid)[0, 1]

if set(["LST","soil_temp_10cm","air_temp_mean"]).issubset(df.columns):
    r_pc = partial_corr(df["LST"], df["soil_temp_10cm"], df["air_temp_mean"])
    print("Partial_corr(LST, soil_temp_10cm | air_temp_mean) = ", round(r_pc,3))
```

Partial corr(LST, soil_temp_10cm | air_temp_mean) = 0.667

1.5.3 Mutual Information with Target Moisture

```
[98]: target = "soil_moisture_5cm"
     candidates = [c for c in numeric_cols if c not in ["SM_label", "SM_prev"] and c !
      ←= target]
     tmp = df[[target]+candidates].dropna()
     X = tmp[candidates].values
     y = tmp[target].values
     mi = mutual_info_regression(X, y, random_state=42)
     mi_series = pd.Series(mi, index=candidates).sort_values(ascending=False)
     print(mi_series.head(15))
     soil_moisture_10cm
                            1.377020
     soil_moisture_20cm
                            1.196677
     soil moisture 50cm
                            1.071256
     soil_moisture_100cm
                            1.034546
     LST
                            0.975481
```

```
NDVI
                       0.869984
Rain_sat
                       0.822915
DOY
                       0.712436
soil_temp_100cm
                       0.669966
soil_temp_50cm
                       0.653823
soil_temp_20cm
                       0.621326
soil_temp_10cm
                       0.588288
soil_temp_5cm
                       0.541468
air_temp_max
                       0.401960
sur_temp_avg
                       0.399798
```

dtype: float64

1.5.4 Multicollinearity check (VIF)

```
[100]: from statsmodels.stats.outliers_influence import variance_inflation_factor
      vif_cols = [c for c in candidates if df[c].notna().mean() > 0.95 and c not in_
       →["station_id", "longitude", "latitude"]] # keep columns with enough data
      X_vif = df[vif_cols].dropna()
      X_vif = sm.add_constant(X_vif)
      vif = pd.Series([variance_inflation_factor(X_vif.values, i)
                        for i in range(1, X_vif.shape[1])], index=vif_cols)
      vif.sort_values(ascending=False).head(15)
```

[100]:	air_temp_mean	40089.431329
	air_temp_max	16892.554034
	air_temp_min	7635.823314
	air_temp_avg	133.792083
	sur_temp_avg	80.830218
	sur_temp_min	34.521055
	sur_temp_max	33.600195
	LST	6.274421
	solar_radiation	3.427530
	Rain_3d	2.703573
	precipitation	2.364963
	NDVI	2.294379
	Rain_sat	2.070332
	DOY	1.128381
	crx_vn	1.088601
	J+	

dtype: float64

1.6 Temporal Analysis and Seasonality

1.6.1 Daily, Weekly, Monthly Trends

1.6.2 Seasonal Cycle

1.7 Cross-correlation and Lag Analysis

```
[104]: ts = df.set_index("date").sort_index()
    series = ts.groupby(pd.Grouper(freq="D"))[
        ["soil_moisture_10cm", "precipitation", "Rain_3d", "NDVI", "LST",
        "air_temp_mean"]
    ].mean()

sm_series = series["soil_moisture_10cm"].dropna()
    lag_acf = acf(sm_series, nlags=30, missing="drop")
    lag_pacf = pacf(sm_series, nlags=30, method="ywm")

fig, axes = plt.subplots(1, 2, figsize=(12, 4))
    axes[0].stem(range(len(lag_acf)), lag_acf, basefmt=" ")
    axes[0].set_title("ACF | soil_moisture_10cm")
    axes[0].set_xlabel("Lag (days)")
    axes[0].set_ylabel("Correlation")
```

```
axes[1].stem(range(len(lag_pacf)), lag_pacf, basefmt=" ")
axes[1].set_title("PACF | soil_moisture_10cm")
axes[1].set_xlabel("Lag (days)")
axes[1].set_ylabel("Partial correlation")
plt.tight_layout()
plt.show()
def xcorr(x, y, max_lag=14):
    x, y = x.dropna(), y.dropna()
    idx = x.index.intersection(y.index)
    x, y = x.loc[idx], y.loc[idx]
    res = \{\}
    for lag in range(-max_lag, max_lag + 1):
        if lag < 0:
            r = np.corrcoef(x[-lag:], y[:len(y)+lag])[0, 1]
        elif lag > 0:
            r = np.corrcoef(x[:-lag], y[lag:])[0, 1]
        else:
            r = np.corrcoef(x, y)[0, 1]
        res[lag] = r
    return pd.Series(res)
drivers = ["precipitation", "Rain_3d", "LST", "air_temp_mean", "NDVI"]
n = len(drivers)
fig, axes = plt.subplots(2, 3, figsize=(14, 8))
axes = axes.flatten()
for i, driver in enumerate(drivers):
    if driver in series:
        xr = xcorr(series[driver], series["soil_moisture_10cm"], max_lag=14)
        axes[i].plot(xr.index, xr.values, marker="o", color="steelblue")
        axes[i].axhline(0, color="black", linewidth=0.8)
        axes[i].set_title(f"{driver} vs soil_moisture_10cm", fontsize=10)
        axes[i].set_xlabel("Lag days (driver leads if >0)")
        axes[i].set_ylabel("Correlation")
for j in range(i + 1, len(axes)):
    fig.delaxes(axes[j])
plt.suptitle("Cross-Correlation Functions", fontsize=14, y=1.02)
plt.tight layout()
plt.show()
```


1.8 Stationary and Stohastic Properties

```
[105]: # to mute the warning for obvious stationarity...
import warnings
from statsmodels.tsa.stattools import adfuller, kpss
from statsmodels.tools.sm_exceptions import InterpolationWarning

def adf_kpss_report(s, name):
    s = s.dropna()
    print(f"=== {name} ===")
```

```
adf_stat, adf_p, *_ = adfuller(s, autolag="AIC")
           print(f"ADF p-value: {adf_p:.4g} (p<0.05 suggests stationarity)")</pre>
           with warnings.catch_warnings():
               warnings.simplefilter("ignore", category=InterpolationWarning)
               kpss_stat, kpss_p, *_ = kpss(s, nlags="auto")
           print(f"KPSS p-value: {kpss_p:.4g} (p<0.05 suggests non-stationarity)")</pre>
           print()
       for col in ["soil_moisture_10cm","precipitation","NDVI","LST","air_temp_mean"]:
           if col in series:
               adf_kpss_report(series[col], col)
      === soil_moisture_10cm ===
      ADF p-value: 1.257e-07 (p<0.05 suggests stationarity)
      KPSS p-value: 0.1 (p<0.05 suggests non-stationarity)</pre>
      === precipitation ===
      ADF p-value: 2.852e-13 (p<0.05 suggests stationarity)
      KPSS p-value: 0.1 (p<0.05 suggests non-stationarity)</pre>
      === NDVI ===
      ADF p-value: 2.07e-09 (p<0.05 suggests stationarity)
      KPSS p-value: 0.1 (p<0.05 suggests non-stationarity)</pre>
      === LST ===
      ADF p-value: 8.753e-15 (p<0.05 suggests stationarity)
      KPSS p-value: 0.1 (p<0.05 suggests non-stationarity)</pre>
      === air_temp_mean ===
      ADF p-value: 7.395e-07 (p<0.05 suggests stationarity)
      KPSS p-value: 0.1 (p<0.05 suggests non-stationarity)</pre>
[106]: sm_diff = series["soil_moisture_10cm"].diff()
       adf_kpss_report(sm_diff, "soil_moisture_10cm diff1")
      === soil_moisture_10cm diff1 ===
      ADF p-value: 0 (p<0.05 suggests stationarity)
      KPSS p-value: 0.1 (p<0.05 suggests non-stationarity)</pre>
      ADF p-value: 0 (p<0.05 suggests stationarity)
      KPSS p-value: 0.1 (p<0.05 suggests non-stationarity)</pre>
```

```
[107]: def granger_summary(data, x, y, maxlag=5):
          gtest = grangercausalitytests(data[[x, y]], maxlag=maxlag)
          res = []
          for lag, val in gtest.items():
              pval = val[0]['ssr_ftest'][1]
               res.append((lag, pval))
          return pd.DataFrame(res, columns=["lag", "p_value"]).set_index("lag")
      gdf = series[["soil_moisture_10cm","precipitation"]].dropna()
      g_summary = granger_summary(gdf, "soil_moisture_10cm", "precipitation", "
        →maxlag=5)
      print(g_summary)
      Granger Causality
      number of lags (no zero) 1
      ssr based F test:
                                F=82.8747 , p=0.0000 , df_denom=5131, df_num=1
      ssr based chi2 test:
                             chi2=82.9231 , p=0.0000 , df=1
      likelihood ratio test: chi2=82.2606 , p=0.0000
                                                      , df=1
                                F=82.8747 , p=0.0000 , df_denom=5131, df_num=1
      parameter F test:
      Granger Causality
      number of lags (no zero) 2
      ssr based F test:
                                F=70.4712 , p=0.0000 , df_denom=5128, df_num=2
      ssr based chi2 test: chi2=141.0799, p=0.0000 , df=2
                                                      , df=2
      likelihood ratio test: chi2=139.1759, p=0.0000
      parameter F test:
                                F=70.4712 , p=0.0000
                                                      , df_denom=5128, df_num=2
      Granger Causality
      number of lags (no zero) 3
      ssr based F test:
                                F=45.0052, p=0.0000, df denom=5125, df num=3
      ssr based chi2 test:
                             chi2=135.2000, p=0.0000 , df=3
      likelihood ratio test: chi2=133.4498, p=0.0000
                                                      , df=3
      parameter F test:
                                F=45.0052 , p=0.0000 , df_denom=5125, df_num=3
      Granger Causality
      number of lags (no zero) 4
      ssr based F test:
                                F=33.9172 , p=0.0000 , df_denom=5122, df_num=4
      ssr based chi2 test:
                           chi2=135.9073, p=0.0000 , df=4
      likelihood ratio test: chi2=134.1385, p=0.0000
                                                      df=4
      parameter F test:
                                F=33.9172 , p=0.0000
                                                      , df_denom=5122, df_num=4
      Granger Causality
      number of lags (no zero) 5
      ssr based F test:
                                F=27.5220 , p=0.0000 , df_denom=5119, df_num=5
      ssr based chi2 test: chi2=137.9055, p=0.0000 , df=5
      likelihood ratio test: chi2=136.0844, p=0.0000
                                                      , df=5
      parameter F test:
                               F=27.5220 , p=0.0000 , df_denom=5119, df_num=5
```

```
p_value
lag
1 1.227102e-19
2 6.423502e-31
3 1.061708e-28
4 5.622131e-28
5 1.374883e-27
```

1.9 Feature Engineering Suggestions

```
[108]: # lags
       for col, lags in [("soil_moisture_10cm",[1,2,3,7]),
                         ("precipitation", [1,2,3]),
                         ("LST", [1,2,3]),
                         ("NDVI",[1,7,14])]:
           if col in df:
               for L in lags:
                   df[f"{col}_lag{L}"] = df.groupby("station_id")[col].shift(L)
       # rolling aggregates
       roll_cfg = [("precipitation", "sum", [3,7,14]),
                   ("air_temp_mean", "mean", [3,7]),
                   ("LST", "mean", [3,7]),
                   ("soil_moisture_10cm", "mean", [3,7])]
       for col, func, ws in roll_cfg:
           if col in df:
               for w in ws:
                   if func == "sum":
                       df[f"{col}_roll{w}_sum"] = df.groupby("station_id")[col].
        →rolling(w).sum().reset_index(level=0, drop=True)
                   else:
                       df[f"{col}_roll{w}_mean"] = df.groupby("station_id")[col].

¬rolling(w).mean().reset_index(level=0, drop=True)
       # thermal indices
       if set(["air_temp_max", "air_temp_min"]).issubset(df.columns):
           df["diurnal_range"] = df["air_temp_max"] - df["air_temp_min"]
       # vegetation dynamics
       if "NDVI" in df.columns:
           df["NDVI_diff1"] = df.groupby("station_id")["NDVI"].diff(1)
```

1.10 Predictive Sanity Check

```
[109]: target = "soil_moisture_5cm"
      drop_cols = ["date", "source_file", "SM_label", "station_id"]
       # keep only numeric non-object columns
      Xcols = [c for c in df.columns if c not in drop_cols + [target] and df[c].dtype_
       tmp = df[[target] + Xcols].dropna()
      X = tmp[Xcols]
      y = tmp[target]
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
       ⇒random state=42)
      rf = RandomForestRegressor(n_estimators=300, random_state=42, n_jobs=-1)
      rf.fit(X_train, y_train)
      pred = rf.predict(X_test)
      print("R2:", r2_score(y_test, pred))
      print("RMSE:", mean_squared_error(y_test, pred) ** 0.5)
      print("n_features:", len(rf.feature_importances_), "==", len(Xcols))
      fi = pd.Series(rf.feature_importances_, index=Xcols).
        ⇒sort_values(ascending=False)
      print(fi.head(20))
      R2: 0.9732363636565442
```

RMSE: 0.019558826359290397 $n_{features}: 55 == 55$ SM_prev 0.971461 precipitation 0.003460 soil_moisture_10cm 0.002471 soil_moisture_10cm_roll7_mean 0.002115 soil_moisture_10cm_roll3_mean 0.002107 soil_moisture_10cm_lag2 0.002005 soil_moisture_10cm_lag3 0.001502 soil_moisture_10cm_lag1 0.001480 precipitation_lag1 0.001236 soil moisture 20cm 0.001061 soil_moisture_10cm_lag7 0.001053 precipitation_roll3_sum 0.000872 Rain_3d 0.000788 Rain_sat 0.000489 precipitation_lag2 0.000449 precipitation_roll14_sum 0.000422 soil_temp_5cm 0.000417

```
      rh_min
      0.000409

      DOY
      0.000373

      soil_temp_100cm
      0.000355

      dtype: float64
```

Since that looks a little too good to be true, here's a quick "sanity" check to confirm that

```
[110]: Xcols noprev = [c for c in Xcols if c != "SM prev"]
       rf.fit(X_train[Xcols_noprev], y_train)
       pred_noprev = rf.predict(X_test[Xcols_noprev])
       print("R2 (no SM_prev):", r2_score(y_test, pred_noprev))
       print("RMSE (no SM_prev):", mean_squared_error(y_test, pred_noprev) ** 0.5)
      R2 (no SM_prev): 0.9781621550186491
      RMSE (no SM_prev): 0.017667500830155898
      Alright yeah, that's crazy good...
[111]: print([c for c in X.columns if 'lag' in c or 'roll' in c])
      ['soil_moisture_10cm_lag1', 'soil_moisture_10cm_lag2',
      'soil_moisture_10cm_lag3', 'soil_moisture_10cm_lag7', 'precipitation_lag1',
      'precipitation_lag2', 'precipitation_lag3', 'LST_lag1', 'LST_lag2', 'LST_lag3',
      'NDVI_lag1', 'NDVI_lag7', 'NDVI_lag14', 'precipitation_roll3_sum',
      'precipitation_roll7_sum', 'precipitation_roll14_sum',
      'air_temp_mean_roll3_mean', 'air_temp_mean_roll7_mean', 'LST_roll3_mean',
      'LST_roll7_mean', 'soil_moisture_10cm_roll3_mean',
      'soil_moisture_10cm_roll7_mean']
      Ok...that list looks good
[112]: sample = df[df["station id"] == df["station id"].unique()[0]].
        ⇔sort_values("date")
       bad = (sample["LST_lag1"] == sample["LST"].shift(-1)).sum()
```

Leaky LST_lag1 rows: 6221

print("Leaky LST_lag1 rows:", bad)

This explains it...about 6221 rows in the dataset use future values when constructing lag features...in other words they're peaking ahead of time