Lecture 3: Model-Free Policy Evaluation: Policy Evaluation Without Knowing How the World Works¹

Emma Brunskill

CS234 Reinforcement Learning

Winter 2019

¹Material builds on structure from David SIlver's Lecture 4: Model-Free Prediction. Other resources: Sutton and Barto Jan 1 2018 draft Chapter/Sections: 5.1; 5.5; 6:1-6:3

Today's Plan

前回まで: Markov reward と decision process

- Last Time:
 - Markov reward / decision processes
 - Policy evaluation & control when have true model (of how the world works)
- Today

今日はモデルフリー型の方策評価の話

- Policy evaluation without known dynamics & reward models
- Next Time:
 - Control when don't have a model of how the world works

世界がどう動くかわからないモデル ベース型の場合は次回 そうではない? MDP(マルコフ決定過程)モデルがわからない場 合の期待リターンを推定する

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Dynamic programming

動的計画法

- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples

モンテカルロ推定

- Metrics to evaluate and compare algorithms

評価のアルゴリズムについて

- Definition of Return, G_t (for a MRP)
 - Discounted sum of rewards from time step *t* to horizon

値引き合計
$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$

- Definition of State Value Function, $V^{\pi}(s)$
 - ullet Expected return from starting in state s under policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] = \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots |s_t = s]$$

- Definition of State-Action Value Function, $Q^{\pi}(s,a)$
 - \bullet Expected return from starting in state s, taking action a and then following policy π

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | s_t = s, a_t = a]$$

= $\mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots | s_t = s, a_t = a]$

◆ロ > ◆園 > ◆豆 > ◆豆 > 豆 のQで

動的計画法について

- Initialize $V_0^{\pi}(s) = 0$ for all s
- For k = 1 until convergence
 - For all s in S

$$V_k^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

Dynamic Programming for Policy π , Value Evaluation

- Initialize $V_0^{\pi}(s) = 0$ for all s
- For k = 1 until convergence
 - For all s in S

$$V_k^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

- $V_k^\pi(s)$ is exact value of k-horizon value of state s under policy π
- $V_k^{\pi}(s)$ is an estimate of infinite horizon value of state s under policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] \approx \mathbb{E}_{\pi}[r_t + \gamma V_{k-1}|s_t = s]$$

なんでイコールではない? 最終的に収束するから

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

bootstrap:外部の入力を必要とせず に実行される自己開始型のプロセス

= Expectation

• Bootstrapping: Update for V uses an estimate

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

Bootstrapping: Update for V uses an estimate

Policy Evaluation: $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$

- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- Dynamic Programming
 - $V^{\pi}(s) \approx \mathbb{E}_{\pi}[r_t + \gamma V_{k-1}|s_t = s]$
 - Requires model of MDP M
 - Bootstraps future return using value estimate
 - Requires Markov assumption: bootstrapping regardless of history
- What if don't know dynamics model P and/ or reward model R?
- Today: Policy evaluation without a model
 - Given data and/or ability to interact in the environment
 - ullet Efficiently compute a good estimate of a policy π

今日の議題:モデルフリー型の方策評 価

This Lecture Overview: Policy Evaluation

- Dynamic Programming
- Evaluating the quality of an estimator
- Monte Carlo policy evaluation
 - Policy evaluation when don't know dynamics and/or reward model
 - Given on policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

Monte Carlo (MC) Policy Evaluation

- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- ullet $V^\pi(s)=\mathbb{E}_{T\sim\pi}[G_t|s_t=s]$ Tは方策piによって生み出される軌跡(訪れる一連の状態のことでいい?)
 - \bullet Expectation over trajectories ${\cal T}$ generated by following π
- Simple idea: Value = mean return
- If trajectories are all finite, sample set of trajectories & average returns

Tが有限の場合は、シンプルに平均を とってreturnを決めましょう

- If trajectories are all finite, sample set of trajectories & average returns
- Does not require MDP dynamics/rewards 環境からリターンをサンブリングできるだけでいい
- No bootstrapping

V_k-1 を覚えておく必要なし

- Does not assume state is Markov
- Can **only** be applied to episodic MDPs
 - Averaging over returns from a complete episo 果の平均値(100分)は推定値として
 スッチャゥ
 - Requires each episode to terminate

一連のepisodeに関するデータのみ経 験できる必要がある 「人生は一度きり」

先生の例:

空港までの所要時間を考える際、いつ も同じ方策(高速道路使う)ででた結 果の平均値(100分)は推定値として 妥当だよね

(4日) (個) (注) (注) 注 りの(

Monte Carlo (MC) On Policy Evaluation

- ullet Aim: estimate $V^\pi(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \dots$ where the actions are sampled from π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- MC computes empirical mean return

経験平均リターンの計算

- Often do this in an incremental fashion
 - After each episode, update estimate of V^{π}

First-Visit Monte Carlo (MC) On Policy Evaluation

最初にsに訪れた時のreturnのみ考え るモンテカルロ法

Initialize N(s)=0, G(s)=0 $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each state $\frac{\text{VIB}}{\text{S}}$ risited in episode i
 - For **first** time *t* that state *s* is visited in episode *i*
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Bias, Variance and MSE

推定方策V^pi(s)をどうやって評価するかの指標の話

によってパラメータ設定され、観測 データから分布P(x|)を決定するモ デルについて考える

- Consider a statistical model that is parameterized by θ and that determines a probability distribution over observed data $P(x|\theta)$
- Onsider a statistic $\hat{\theta}$ that provides an estimate of θ and is a function of observed data x
 - E.g. for a Gaussian distribution with known variance, the average of a set of i.i.d data points is an estimate of the mean of the Gaussian
- Definition: the bias of an estimator $\hat{\theta}$ is:

$$extit{Bias}_{ heta}(\hat{ heta}) = \mathbb{E}_{ extit{x}| heta}[\hat{ heta}] - heta$$

bias:真の値からのずれ

• Definition: the variance of an estimator $\hat{\theta}$ is:

$$extstyle Var(\hat{ heta}) = \mathbb{E}_{ extstyle extstyle | heta}[(\hat{ heta} - \mathbb{E}[\hat{ heta}])^2]^{ extstyle extstyle$$

ullet Definition: mean squared error (MSE) of an estimator $\hat{ heta}$ is:

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias_{\theta}(\hat{\theta})^{2}$$

First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each state s visited in episode i
 - For **first** time *t* that state *s* is visited in episode *i*
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Properties:

- ullet V^π estimator is an unbiased estimator of true $\mathbb{E}_\pi[G_t|s_t=s]$
- ullet By law of large numbers, as $N(s) o \infty$, $V^\pi(s) o \mathbb{E}_\pi[G_t | s_t = s]$

大数の法則から、推定値V^piは真の値 に収束する

Every-Visit Monte Carlo (MC) On Policy Evaluation

一つのepisode中でsに訪れた時全ての returnを考慮するモンテカルロ法

Initialize N(s)=0, G(s)=0 $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each state s visited in episode i
 - For **every** time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each state s visited in episode i
 - For every time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$

But consistent estimator and often has better MSE

• Update estimate $V^{\pi}(s) = G(s)/N(s)$

Properties:

- V^{π} every-vist MC estimator is an **biased** estimator.?
- V every-vist ivic estimator is an biased eq
- 同じところに訪れたらindependentでなくなるからunbiasedになるなんで?同じデータ使うと創刊に引っ張られているなが生まれる。?
 - first-visitと違いV/piにバイアスがかかるが、推定値はconsistentになりMSEはよくなる。データ数多いから?

Incremental Monte Carlo (MC) On Policy Evaluation

After each episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots$

- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots$ as return from time step t onwards in ith episode
- For state s visited at time step t in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Update estimate

$$V^{\pi}(s) = V^{\pi}(s) \frac{N(s) - 1}{N(s)} + \frac{G_{i,t}}{N(s)} = V^{\pi}(s) + \frac{1}{N(s)} (G_{i,t} - V^{\pi}(s))$$

増分モンテカルロ法

Incremental Monte Carlo (MC) On Policy Evaluation, Running Mean

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For state s visited at time step t in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Update estimate

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

• $\alpha = \frac{1}{N(s)}$: identical to every visit MC

- オンライン推薦システムみたいに、状況が変わる場合に経験的にこの方法が 採用される
- $\alpha > \frac{1}{N(s)}$: forget older data, helpful for non-stationary domains

□▶ ◀鬪▶ ◀돌▶ ◀돌▶ = = = の९♡

Check Your Understanding: MC On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- For each state s visited in episode i
 - For **first or every** time t that state s is visited in episode i
 - N(s) = N(s) + 1, $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Example:

- Mars rover: $R = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? $V = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \end{bmatrix}$
- Every visit MC estimate of s_2 ?

MC Policy Evaluation

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

平均の取り方について

= Expectation

□ = Terminal state

MC Policy Evaluation

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

MC updates the value estimate using a **sample** of the return to approximate an expectation

Q:レアな状態の場合推定としてよく ならないんじゃないか? A:そうですね。high variance にな ります

= Expectation

□ = Terminal state

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Monte Carlo (MC) Policy Evaluation Key Limitations

推定値はふつうvarianceが高い 減らすためには大量のデータ必要

- Generally high variance estimator
 - Reducing variance can require a lot of data
- Requires episodic settings
 - Episode must end before data from that episode can be used to update the value function

episode が終わったデータのみ、価値 観数の更新に使える

Monte Carlo (MC) Policy Evaluation Summary

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- Simple: Estimates expectation by empirical average (given episodes sampled from policy of interest) or reweighted empirical average (importance sampling)
- Updates value estimate by using a sample of return to approximate the expectation
- No bootstrapping
- Converges to true value under some (generally mild) assumptions

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Dynamic programming
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

- "If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning."
 Sutton and Barto 2017
- Combination of Monte Carlo & dynamic programming methods
- Model-free
- Bootstraps and samples

episodeが終了したデータでも終了し ていないデータでも使用可能

- Can be used in episodic or infinite-horizon non-episodic settings
- Immediately updates estimate of V after each (s, a, r, s') tuple

Vの更新に使うのは 現在の状態 s アクション a return r 次の状態 s' のタブル

Temporal Difference Learning for Estimating V

目的:方策piのもとでの価値観数V^pi

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- Recall Bellman operator (if know MDP models)

$$B^{\pi}V(s) = r(s,\pi(s)) + \gamma \sum_{s' \in S} p(s'|s,\pi(s))V(s')$$

• In incremental every-visit MC, update estimate using 1 sample of return (for the current *i*th episode)

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

• Insight: have an estimate of V^{π} , use to estimate expected return

$$V^{\pi}(s) = V^{\pi}(s) + lpha([r_t + \gamma V^{\pi}(s_{t+1})] - V^{\pi}(s))$$
 ਸ਼ੁਸ਼ੰਸਾਰਾ ਯਾਗ ਪ੍ਰਸ਼ਾਵਿ ਗਿਆ ਸ਼ਿਲ੍ਹੀ ਸ਼ੁਸ਼ੰਸਾਰਾ ਸ਼ਿਲ੍ਹੀ ਸ਼ੁਸ਼ੰਸਾਰਾ ਸ਼ਿਲ੍ਹੀ ਸ਼ੁਸ਼ੰਸਾਰਾ ਸ਼ਿਲ੍ਹੀ ਸ਼ੁਸ਼ੰਸਾਰਾ ਸ਼ਿਲ੍ਹੀ ਸ਼ੁਸ਼ੰਸਾਰਾ ਸ਼ਿਲ੍ਹੀ ਸ਼ੁਸ਼ੰਸਾਰਾ ਸ਼ਿਲ੍ਹੀ ਸਿੰਤ ਸ਼ਿਲ੍ਹੀ ਸ਼ਿਲ੍

Temporal Difference [TD(0)] Learning

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π • $s_1, a_1, r_1, s_2, a_2, r_2, ...$ where the actions are sampled from π
- Simplest TD learning: update value towards estimated value

$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha([r_t + \gamma V^{\pi}(s_{t+1})] - V^{\pi}(s_t))$$

TD target kが添え字

TD error:

$$\delta_t = r_t + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

- Can immediately update value estimate after (s, a, r, s') tuple
- Don't need episodic setting

terminate する必要なし!

Temporal Difference [TD(0)] Learning Algorithm

Input:
$$lpha$$
 Initialize $V^{\pi}(s)=0$, $\forall s\in S$ Loop

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

Check Your Understanding: TD Learning

Input: α Initialize $V^{\pi}(s) = 0$, $\forall s \in S$ Loop

Q:前回やったQ(行動価値関数)と似てるように見えるけど何が違うの? A:TD学習は方策を固定します

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{= 1}} V^{\pi}(s_t)$ TD target ないようにする

Example:

- Mars rover: $R = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? [1 1 1 0 0 0 0]
- Every visit MC estimate of V of s2? 1
- TD estimate of all states (init at 0) with $\alpha=1$? $V=\begin{bmatrix}1&0&0&0&0&0&0\end{bmatrix}$

Temporal Difference Policy Evaluation

$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha([r_t + \gamma V^{\pi}(s_{t+1})] - V^{\pi}(s_t))$$

TD updates the value estimate by bootstrapping, uses estimate of $V(s_{t+1})$

Actions

- 次の状態での価値V(s_t+1)を使うの | bootstrapping?

States

= Expectation

□ = Terminal state

どうしてTD法がモンテカルロ法と動的 計画法のハイブリッドかみたいな話を ここでしていたが、よくわからなかっ た

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Dynamic programming
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
 - Given off-policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

Check Your Understanding: For Dynamic Programming, MC and TD Methods, Which Properties Hold?

どの性質を満たしているかの確認 DP, MC, TDごとに

現在のドメインのモデルがない場合に 使用可能か

- Usable when no models of current domain
- Handles continuing (non-episodic) domains episodic でないドメインを扱えるか
- Handles Non-Markovian domains
- Converges to true value in limit ¹
- Unbiased estimate of value

マルコフ性を保持しないドメインを扱 えるか

制限内で真の値に収束するか(マルコ フ性は仮定する)

推定値にバイアスはないか

¹For tabular representations of value function. More on this in later-lectures

Some Important Properties to Evaluate Policy Evaluation Algorithms

- Usable when no models of current domain
 - DP: No MC: Yes TD: Yes
- Handles continuing (non-episodic) domains
 - DP: Yes MC: No TD: Yes
- Handles Non-Markovian domains.
 - DP: No MC: Yes TD: No
- Converges to true value in limit 2 consistent estimator かどうか
 - DP: Yes MC: Yes TD: Yes
- Unbiased estimate of value
 - DP: NA MC: Yes TD: No

ここでMCがYesになっているけど、こ れはfirst-visitの時のみ

0:モデルフリー型でどのアルゴリズ ムでも真の値に収束しないものってあ A:ある。関数近似した場合とか 今は全状態の価値観数を計算できてい るが、状態数が多くなった場合に関数 近似を行う

Q:TDが unbiased でない理由は? A:推定値を計算するのに次の状態の 価値を使用するから、これがよくない 真のV^piの値を用いない(推定値で代 用している)から

0:最後の二つの違いって? A:unbiasedは、データ数に制限があ るときに真の値に収束するか consistencvは、データが無限にある ときに、直の値に収束するか否か

²For tabular representations of value function. More on this in later lectures Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

Some Important Properties to Evaluate Model-free Policy Evaluation Algorithms

モデルフリー型方策を評価するアルゴ リズムで大事なことは3つ

- Bias/variance characteristics
- Data efficiency
- Computational efficiency

Bias/Variance of Model-free Policy Evaluation Algorithms

- Return G_t is an unbiased estimate of $V^{\pi}(s_t)$
- ullet TD target $[r_t + \gamma V^\pi(s_{t+1})]$ is a biased estimate of $V^\pi(s_t)$
- But often much lower variance than a single return G_t
- Return function of multi-step sequence of random actions, states & rewards
- TD target only has one random action, reward and next state
- MC
 - Unbiased
 - High variance
 - Consistent (converges to true) even with function approximation
- TD
 - Some bias
 - Lower variance
 - TD(0) converges to true value with tabular representation
 - TD(0) does not always converge with function approximation

s_1	<i>S</i> ₂	s_3	S_4	s_5	<i>s</i> ₆	S ₇
$R(s_1) = +1$ Okay $Field\ Site$	$R(s_2) = 0$	$R(s_3)=0$	$R(s_4) = 0$	$R(s_5)=0$		$R(s_7) = +10$ Fantastic Field Site

- Mars rover: $R = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? [1 1 1 0 0 0 0]
- Every visit MC estimate of V of s_2 ? 1
- ullet TD estimate of all states (init at 0) with lpha=1 is $[1\ 0\ 0\ 0\ 0\ 0]$
- TD(0) only uses a data point (s, a, r, s') once
- Monte Carlo takes entire return from s to end of episode

TD(0)は一つのデータ組(s,a,r,s')し か使用しないのに対し、モンテカルロ はスタートからepisodeの最後までを

Batch MC and TD

- Batch (Offline) solution for finite dataset
 - Given set of *K* episodes
 - Repeatedly sample an episode from K
 - Apply MC or TD(0) to the sampled episode
- What do MC and TD(0) converge to?

MC, TD(0)は何に収束するか

AB Example: (Ex. 6.4, Sutton & Barto, 2018

は十分小さいものとする

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - *B*,1 (observed 6 times)
 - B, 0
- What are V(A), V(B)?

AB Example: (Ex. 6.4, Sutton & Barto, 2018)

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - B,1 (observed 6 times)
 - B, 0
- V(B) = 0.75 by TD or MC
- What about V(A)?

V(B)は,MCだと6/8,TDだと同じく6/8に 収束する

Batch MC and TD: Converges

 Monte Carlo in batch setting converges to min MSE (mean squared MCはAを含むepisodeでreturnが0なの error)

- Minimize loss with respect to observed returns
- In AB example, V(A) = 0
- TD(0) converges to DP policy V^{π} for the MDP with the maximum likelihood model estimates
 - Maximum likelihood Markov decision process model

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} \mathbb{1}(s_{k,t} = s, a_{k,t}^{|r(s)|A| = 1 \choose r(A)=0})$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} \mathbb{1}(s_{k,t} = s, a_{k,t} = a) r_{t,k}$$

- Compute V^{π} using this model
- In AB example, V(A) = 0.75

TDだとV(B)の推定値をもとにしてV(A) を推定する。今回は =1,V(B)=3/4 な ので、V(A)=3/4

Some Important Properties to Evaluate Model-free Policy Evaluation Algorithms

どっちのほうがいいのか?

- Data efficiency & Computational efficiency
- In simplest TD, use (s, a, r, s') once to update V(s)
 - O(1) operation per update
 - In an episode of length L, O(L)
- In MC have to wait till episode finishes, then also O(L)
- MC can be more data efficient than simple TD
- But TD exploits Markov structure
 - If in Markov domain, leveraging this is helpful

このスライドの説明だとTDぼろ負けの ように見えるが...

Alternative: Certainty Equivalence V^{π} MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each (s, a, r, s') tuple
 - Recompute maximum likelihood MDP model for (s, a)

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} \mathbb{1}(s_{k,t} = s, a_{k,t} = a, s_{k,t+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} \mathbb{1}(s_{k,t} = s, a_{k,t} = a) r_{t,k}$$

• Compute V^{π} using MLE MDP ³ (e.g. see method from lecture 2)

MLE: Most Likelihood Estimation

受業はここまで

 $^{^{3}}$ Requires initializing for all (s, a) pairs

Alternative: Certainty Equivalence V^{π} MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each (s, a, r, s') tuple
 - Recompute maximum likelihood MDP model for (s, a)

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} 1(s_{k,t} = s, a_{k,t} = a, s_{k,t+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{t=1}^{K} \sum_{t=1}^{L_k-1} 1(s_{k,t} = s, a_{k,t} = a) r_{t,k}$$

- Compute V^{π} using MLE MDP ⁴ (e.g. see method from lecture 2)
- Cost: Updating MLE model and MDP planning at each update $(O(|S|^3))$ for analytic matrix solution, $O(|S|^2|A|)$ for iterative methods)
- Very data efficient and very computationally expensive
- Consistent
- Can also easily be used for off-policy evaluation

s_1	<i>S</i> ₂	s_3	S_4	s_5	s ₆	S ₇
R(s ₁) = +1 Okay Field Site	$R(s_2) = 0$	$R(s_3)=0$	$R(s_4) = 0$	$R(s_5)=0$		R(s ₇) = +10 Fantastic Field Site

- Mars rover: $R = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? [1 1 1 0 0 0 0]
- Every visit MC estimate of V of s_2 ? 1
- ullet TD estimate of all states (init at 0) with lpha=1 is $[1\ 0\ 0\ 0\ 0\ 0]$
- What is the certainty equivalent estimate? $\hat{r} = [1 \ 0 \ 0 \ 0 \ 0 \ 0],$ $\hat{p}(terminate|s_1, a_1) = \hat{p}(s_1|s_2, a_1) = \hat{p}(s_2|s_3, a_1) = 1,$ $V = [1 \ 1 \ 0 \ 0 \ 0]$

Some Important Properties to Evaluate Policy Evaluation Algorithms

方策評価アルゴリズムで大事なこと

マルコフ性の頑健性

- Robustness to Markov assumption
- Bias/variance characteristics
- Data efficiency データの効率性
- Computational efficiency

```
計算効率性
```

bias / variance の characteristics(って何?)

Summary: Policy Evaluation

方策評価についてのまとめ

- Dynamic Programming
- Monte Carlo policy evaluation
 - Policy evaluation when we don't have a model of how the world works
 - Given on policy samples
 - Given off policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Dynamic programming
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
 - Given off-policy samples

方策なしのサンプルが与えられた場合

- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

MC Off Policy Evaluation

action を起こすのにコストがかかる 場合がある

- Sometimes trying actions out is costly or high stakes
- Would like to use old data about policy decisions and their outcomes to estimate the potential value of an alternate policy

過去のデータを、方策を決定するため に使えないだろうか

Monte Carlo (MC) Off Policy Evaluation

目的:得られた方策pi 2から、方策 pi 1. 価値関数V^pi 1 を推定する

- Aim: estimate value of policy π_1 , $V^{\pi_1}(s)$, given episodes generated under behavior policy π_2
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π_2
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π

• $V^\pi(s)=\mathbb{E}_\pi[G_t|s_t=s]$ 異なる方策からのデータがある(ここでいうbehavior policy pi_2 の み?)

- Have data from a different policy, behavior policy π_2
- If π_2 is stochastic, can often use it to estimate the value of an alternate policy (formal conditions to follow) pi_2/が確率的である場合、代わりの方策の価値を推定するために使える(?)
- Again, no requirement that have a model nor that state is Markov

モデルもマルコフ性もいらない

Monte Carlo (MC) Off Policy Evaluation: Distribution Mismatch

方策によってepisodeもreturnも異な りますよね

• Distribution of episodes & resulting returns differs between policies

Importance Sampling

Goal:確率分布p(x)下でのf(x)の期待 値を推定する

- Goal: estimate the expected value of a function f(x) under some probability distribution p(x), $\mathbb{E}_{x \sim p}[f(x)]$
- Have data x_1, x_2, \ldots, x_n sampled from distribution q(s) データを分布q(s)からサンブルする
- Under a few assumptions, we can use samples to obtain an unbiased estimate of $\mathbb{E}_{x \sim a}[f(x)]$

$$\mathbb{E}_{x \sim q}[f(x)] = \int_{x} q(x)f(x)$$

Importance Sampling (IS) for Policy Evaluation

• Let h_i be episode j (history) of states, actions and rewards

$$h_j = (s_{j,1}, a_{j,1}, r_{j,1}, s_{j,2}, a_{j,2}, r_{j,2}, \dots, s_{j,L_j(terminal)})$$

Importance Sampling (IS) for Policy Evaluation

• Let h_i be episode j (history) of states, actions and rewards

$$h_j = (s_{j,1}, a_{j,1}, r_{j,1}, s_{j,2}, a_{j,2}, r_{j,2}, \dots, s_{j,L_j(terminal)})$$

$$p(h_{j}|\pi, s = s_{j,1}) = p(a_{j,1}|s_{j,1})p(r_{j,1}|s_{j,1}, a_{j,1})p(s_{j,2}|s_{j,1}, a_{j,1})$$

$$p(a_{j,2}|s_{j,2})p(r_{j,2}|s_{j,2}, a_{j,2})p(s_{j,3}|s_{j,2}, a_{j,2}) \dots$$

$$= \prod_{t=1}^{L_{j}-1} p(a_{j,t}|s_{j,t})p(r_{j,t}|s_{j,t}, a_{j,t})p(s_{j,t+1}|s_{j,t}, a_{j,t})$$

$$= \prod_{t=1}^{L_{j}-1} \pi(a_{j,t}|s_{j,t})p(r_{j,t}|s_{j,t}, a_{j,t})p(s_{j,t+1}|s_{j,t}, a_{j,t})$$

Importance Sampling (IS) for Policy Evaluation

• Let h_j be episode j (history) of states, actions and rewards, where the actions are sampled from π_2

$$h_j = (s_{j,1}, a_{j,1}, r_{j,1}, s_{j,2}, a_{j,2}, r_{j,2}, \dots, s_{j,L_j(terminal)})$$

$$V^{\pi_1}(s) \approx \sum_{j=1}^n \frac{p(h_j|\pi_1,s)}{p(h_j|\pi_2,s)} G(h_j)$$

???

Importance Sampling for Policy Evaluation

- Aim: estimate $V^{\pi_1}(s)$ given episodes generated under policy π_2
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π_2
- Have access to $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π_2
- Want $V^{\pi_1}(s) = \mathbb{E}_{\pi_1}[G_t|s_t = s]$
- IS = Monte Carlo estimate given off policy data
- Model-free method
- Does not require Markov assumption
- ullet Under some assumptions, unbiased & consistent estimator of V^{π_1}
- Can be used when agent is interacting with environment to estimate value of policies different than agent's control policy
- More later this quarter about batch learning

Today's Plan

- Last Time:
 - Markov reward / decision processes
 - Policy evaluation & control when have true model (of how the world works)
- Today
 - Policy evaluation when don't have a model of how the world works
- Next Time:
 - Control when don't have a model of how the world works

次回は世界がどう動くかについてのモ デルがない場合のコントロールについ て