ARBORI BINARI ECHILIBRAȚI

0_____

Organizatorice

Arbore binar de căutare

Un arbore binar de căutare este un arbore binar care satisface următoarea proprietate:

Pentru un nod x:

- O Dacă \mathbf{y} este un nod din subarborele $\underline{st\^{a}ng}$ al lui \mathbf{x} , atunci cheie[y] \leq cheie[x]
- O Dacă \mathbf{y} este un nod din subarborele \underline{drept} al lui \mathbf{x} , atunci cheie[x] \leq cheie[y]

- Amestecăm bine de tot și inserăm elementele în arborele binar de căutare. Ce înălțime va avea?

Lema 13.3. Notăm cu T arborele care rezultă prin inserarea a n chei distincte k_1 , k_2 , ..., k_m (în ordine) întrun arbore binar de căutare inițial vid. Cheia k_i este un strămoş al cheii k_m în T, pentru $1 \le i < j \le n$, dacă şi numai dacă:

- SAU $k_i = max\{ k_m : 1 \le l \le i \ si \ k_m < k_m \}$
 - □ 13 e fiu al lui 7 (până la momentul inserării lui 13, 7 era cel mai mare număr mai mic)
 - Ulterior, proprietatea e valabilă și pentru 9 și 14.
 - ☐ Ce trebuia să se întâmple ca 18 să fie fiu al lui 7?

Demonstrație:

'⇒': Presupunem că k_i este un strămoş al lui k_m . Notăm cu T_i arborele care rezultă după ce au fost inserate în ordine cheile k_1, k_2, \ldots, k_i . Drumul de la rădăcină la nodul k_i în T_i este acelaşi cu drumul de la rădăcină la nodul k_i în T_i . De aici, rezultă că, dacă s-ar insera în arborele T_i nodul k_m , acesta (k_m) ar deveni fie fiu stâng, fie fiu drept al nodului k_i . Prin urmare (vezi exercițiul 13.2-6), k_i este fie cea mai mică valoare dintre $k_1, k_2, ..., k_i$ care este mai mare decât k_m , fie cea mai mare valoare dintre cheile $k_1, k_2, ..., k_i$ care este mai mică decât k_m .

 $' \Leftarrow '$: Presupunem că k_i este cea mai mică valoare dintre $k_1, k_2, ..., k_i$ care este mai mare decât k_m . (Cazul când k_i este cea mai mare cheie dintre $k_1, k_2, ..., k_i$ care este mai mică decât k_m se tratează simetric). Compararea cheii k_m cu oricare dintre cheile de pe drumul de la rădăcină la k_i în arborele T produce aceleaşi rezultate ca și compararea cheii k_i cu cheile respective. Prin urmare, pentru inserarea lui k_m , se va parcurge drumul de la rădăcină la k_i , apoi k_m se va insera ca descendent al lui k_i .

Corolarul 13.4. Fie T arborele care rezultă prin inserarea a n chei distincte k_1 , k_2 , ..., k_m (în ordine) într-un arbore binar de căutare inițial vid. Pentru o cheie k_m dată, cu $1 \le j \le n$, definim mulțimile:

- $G_m = \{ k_i : 1 \le i < j \text{ şi } k_m > k_i > k_m \text{ pentru toţi indicii } 1 < i \text{ cu } k_m > k_m \}$
- $L_m = \{ k_i : 1 \le i < j \text{ \emptyset} i \text{ k_m} < k_i < k_m \quad \text{pentru to\emptyset} i \text{ indicii $l < i$} \text{ cu k_m} < k_m \}$

Atunci cheile de pe drumul de la rădăcină la k_m sunt chiar cheile din $G_m \cup L_m$, iar adâncimea oricărei chei k_m din T este $d(k_m, T) = |G_m| + |L_m|$.

Cu negru sunt nodurile care sunt, la inserarea lor, cel mai mic element mai mare decât 19 ($G \rightarrow greater$). Similar, cele cu alb sunt elemente care, la inserarea lor, erau cele mai mari elemente mai mici decât 19 ($L \rightarrow lower$).

Practic, pentru a calcula înălțimea unui arbore, trebuie să calculăm $\max_{1 \le j \le n} (|G_m| + |L_m|)$.

Simplificăm și discutăm cum calculăm de câte ori se modifică, în medie, minimul, dacă inserăm **n** elemente pe rând.

Exercițiu: Care este probabilitatea ca k_i să fie minimul primelor i numere?

Practic, pentru a calcula înălțimea unui arbore, trebuie să calculăm $\max_{1 \le j \le n} (|G_m| + |L_m|)$.

Simplificăm și discutăm cum calculăm de câte ori se modifică, în medie, minimul, dacă inserăm **n** elemente pe rând.

Răspuns: Probabilitatea ca k_i să fie minimul primelor i numere este 1/i.

$$\sum_{i=1}^n rac{1}{i} = H_n$$

Prin urmare, numărul mediu de modificări este

unde $H_m = ln(n) + O(1)$ este al n-lea număr armonic.

→ Avem **log(n)** modificări.

Lema 13.5. Fie k_1 , k_2 , ..., k_m o permutare oarecare a unei mulțimi de n numere distincte și fie |S| variabilă aleatoare reprezentând cardinalul mulțimii.

$$S = \{ k_i : 1 \le i \le n \text{ si } k_m > k_i \text{ pentru orice } l < i \}$$
 (13.1)

Atunci Pr{ $|S| \ge (\beta + 1)H_m$ } $\le 1/(n^2)$, unde H_m este al n-lea număr armonic, iar $\beta \approx 4,32$ verifică ecuația $(\ln \beta - 1)\beta = 2$.

Prin urmare, e foarte probabil să avem maxim O(log(n)) modificări ale minimului.

Teorema 13.6. Înălțimea medie a unui arbore binar de căutare construit aleator cu n chei distincte este O(lg n).

Teorema 13.6. Înălțimea medie a unui arbore binar de căutare construit aleator cu n chei distincte este O(lg n).

Demonstrație: Fie k_1 , k_2 , ..., k_m o permutare oarecare a celor n chei și fie T arborele binar de căutare care rezultă prin inserarea cheilor în ordinea specificată, pornind de la un arbore inițial vid. Vom discuta prima dată probabilitatea ca adâncimea $d(k_m, T)$ a unei chei date k_m să fie cel puțin t, pentru o valoare t arbitrară. Conform caracterizării adâncimii $d(k_m, T)$ din *corolarul* 13.4, dacă adâncimea lui k_m este cel puțin t, atunci cardinalul uneia dintre cele două mulțimi G_m și L_m trebuie să fie cel puțin t/2.

Prin urmare, $Pr\{d(k_m, T) \ge t\} \le Pr\{|G_m| \ge t/2\} + Pr\{|L_m| \ge t/2\}.$

Să examinăm la început $\Pr\{ |G_m| \ge t/2 \}$. Avem

$$\begin{split} & \Pr\{ \ | \ G_m | \ge t/2 \ \} = \Pr\{ \ | \ \{k_i : 1 \le i < j \ \Si \ k_m > k_i > k_m, \ \forall \ l < i \} | \ge t/2 \ \} \\ & \le \Pr\{ \ | \ \{k_i : i \le n \ \Si \ k_m > k_i, \ \forall \ l < i \} | \ge t/2 \ \} \\ & = \Pr\{ \ | \ S | \ge t/2 \ \} \ , \end{split}$$

unde S este definit în relația (13.1.) $S = \{ k_i : 1 \le i \le n \text{ și } k_m > k_i, \forall 1 < i \}$.

În sprijinul acestei afirmații, să observăm că probabilitatea nu va descrește dacă vom extinde intervalul de variație al lui i de la i < j la i \leq n, deoarece, prin extindere, se vor adăuga elemente noi la mulțime. Analog, probabilitatea nu va descrește dacă se renunță la condiția $k_i > k_m$, deoarece, prin aceasta, se înlocuiește o permutare a (de regulă) mai puțin de \mathbf{n} elemente (și anume acele chei k_i care sunt mai mari decât k_m) cu o altă permutare oarecare de n elemente. Folosind o argumentare similară, putem demonstra că

 $\Pr\{ |L_m| | \ge t/2 \} \le \Pr\{ |S| \ge t/2 \}.$

Folosind o argumentare similară, putem demonstra că

$$Pr \{ |L_m| \ge t/2 \} \le Pr\{ |S| \ge t/2 \}$$

și apoi, folosind inegalitatea (13.2), obținem:

$$Pr\{\ d(k_m,\ T) \geq t\ \} \leq 2^* Pr\{\ |\ S| \geq t/2\ \}\ .$$

Dacă alegem $t=2(\beta+1)H_m$, unde H_m este al n-lea număr armonic, iar $\beta\approx 4.32$ verifică ecuația (ln $\beta-1$) $\beta=2$, putem aplica **lema 13.5** pentru a concluziona că

$$\Pr\{\ d(k_m\ ,\ T)\geq 2(\beta+1)H_m\ \}\leq 2^*\Pr\{\ |\ S\ |\ \geq (\beta+1)H_m\ \}\leq 2/n^2\ .$$

Deoarece discutăm despre un arbore binar de căutare construit aleator și cu cel mult n noduri, probabilitatea ca adâncimea oricăruia dintre noduri să fie cel puţin $2(\beta+1)H_m$ este, folosind *inegalitatea lui Boole**, de cel mult n*(2/n²) = 2/n. Prin urmare, în cel puţin 1-2/n din cazuri, înălţimea arborelui binar de căutare construit aleator este mai mică decât $2(\beta+1)H_m$ și în cel mult 2/n din cazuri înălţimea este cel mult n. În concluzie, înălţimea medie este cel mult

$$(2(\beta+1)H_m)(1-2/n) + n(2/n) = O(\lg n).$$

*Inegalitatea lui Boole: Fie

$$A_1, A_2, ..., A_m$$
 în K cu

$$\bigcap_{i=1}^{n-1} A_i \neq 0.$$

$$\bigcap_{i=1}^{n-1} A_i \ge \left(\sum_{i=1}^n Pr(A_i) \right) - n - 1$$
Atunci

: Pr(

Red Black Trees

- Reguli:
 - Fiecare nod e fie roșu, fie negru
 - Rădăcina e mereu neagră
 - Nu putem avea două noduri adiacente roșii
 - Orice drum de la un nod la un descendent NULL are același număr de noduri negre

Red Black Trees

- Red Black Trees (nu veți avea la examen)
 - MIT Video
 - MIT Lecture Notes

Red Black Trees

Red Black Trees AVL

AVL

- Construcția AVL-urilor:
 - pentru fiecare nod, diferența dintre înălțimile fiilor drept și stâng trebuie să fie
 maxim 1

AVL

Factorul de echilibru al unui nod:

AVL - Reechilibrare

- Rotații:
- 1) Rotație stânga-stânga
 - când un nod este inserat în stânga subarborelui stâng
 - se realizează o rotație la dreapta
- 2) Rotație dreapta-dreapta
 - când un nod este inserat în dreapta subarborelui drept
 - se realizează o rotație la stânga
- 3) Rotație dreapta-stânga
 - când un nod este inserat la dreapta subarborelui stâng
 - se realizează două rotații
- 4) Rotație stânga-dreapta
 - când un nod este inserat la stânga subarborelui drept
 - se realizează două rotații

Mai multe informații: https://www.guru99.com/avl-tree.html

AVL

AVL (nu veți avea la examen daaar cand spunem ca un arbore este echilibrat ne referim la definitia de la AVL si anume ca intre oricare 2 frati nu exista diferenta de inaltime mai mare ca 1) H maxima in AVL este ~ 1.43*logn

- Video (MIT).
- Lecture Notes

```
sol = 0; // Inițializăm soluția cu 0, care reprezintă indexul
unde valoarea este mai mică sau egală cu x.
for (t = 1 << 30; t > 0; t>>=1) {
   if (sol + t < v.size() && v[sol + t] <= x) sol += t;
}</pre>
```

```
sol = 0;
for (t = 1 << 30; t > 0; t>>=1) {
   if (sol + t < v.size() && v[sol + t] <=
      x) sol += t;
}</pre>
```

$$x = 32$$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	7														

```
sol = 0; x = 32;
for (t = 1 << 30; t > 0; t>>=1) {
   if (sol + t < v.size() && v[sol + t] <=
      x) sol += t;
}</pre>
```

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
															97

```
sol = 0; x = 32;
for (t = 1 << 30; t > 0; t>>=1) {
   if (sol + t < v.size() && v[sol + t] <=
      x) sol += t;
}</pre>
```

Complexitate?

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	11	20	24	28	30	32	44	49	62	68	82	84	93	97

```
sol = 0; x = 32;
for (t = 1 << 30; t > 0; t>>=1) {
   if (sol + t < v.size() && v[sol + t] <=
      x) sol += t;
}</pre>
```

Complexitate **O(log n)** - recomand cu căldură :)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	11	20	24	28	30	32	44	49	62	68	82	84	93	97

SKIP LISTS

Skip Lists

- Sunt structuri de date echilibrate
- Alte structuri de date eficiente (**log n** sau mai bun):
 - □ Tabele de dispersie (hash tables) nu sunt sortate
 - □ Heap-uri nu putem căuta în ei
 - Arbori binari echilibrați (AVL, Red Black Trees)
- Ajută la o căutare rapidă
- Elementele sunt sortate!

Skip Lists

- Sunt implementate ca liste înlănțuite
- Ideea de implementare:
 - este extinsă pe mai multe nivele (mai multe liste înlănțuite)
 - la fiecare nivel adăugat, **sărim peste o serie de elemente** față de nivelul anterior
 - nivelele au legături între ele

Skip Lists

- Să presupunem că avem doar 2 liste
 - Cum putem alege ce elemente ar trebui transferate în nivelul următor?

Skip Lists 2 liste

- Cum putem alege ce elemente ar trebui transferate în nivelul următor?
 - ☐ Cea mai bună metodă: elemente egal depărtate
 - Costul căutării = $|L_2| + (|L_1| / |L_2|) = |L_2| + (n / |L_2|)$
 - ☐ Când este minim acest cost?

Skip Lists 2 liste

- Cum putem alege ce elemente ar trebui transferate în nivelul următor?
 - Cea mai bună metodă: elemente egal depărtate
 - Costul căutării = $|L_2| + (|L_1| / |L_2|) = |L_2| + (n / |L_2|)$
 - ☐ Când este minim acest cost?

• Când
$$|L_2| = n / |L_2|$$
 \Rightarrow $|L_2| = sqrt(n)$

Skip Lists 2 liste

- Cum putem alege ce elemente ar trebui transferate în nivelul următor?
 - Cea mai bună metodă: elemente egal depărtate
 - Costul căutării = $|L_2| + (|L_1| / |L_2|) = |L_2| + (n / |L_2|)$
 - ☐ Când este minim acest cost?
 - Când $|L_2| = n / |L_2|$ \Rightarrow $|L_2| = sqrt(n)$
 - Deci, costul minim pentru căutare este sqrt(n) + n / sqrt(n) = 2*sqrt(n)
 - □ Complexitate: O(sqrt(n)) -> seamănă un pic cu **Batog**

• Ce se întâmplă când avem mai mult de 2 liste înlănțuite?

- Ce se întâmplă când avem mai mult de 2 liste înlănțuite?
 - Costul căutării se modifică
 - \square 2 liste: $2 * \sqrt{n}$
 - □ 3 liste: ?

- Ce se întâmplă când avem mai mult de 2 liste înlănțuite?
 - Costul căutării se modifică
 - \square 2 liste: $2 * \sqrt{n}$
 - \Box 3 liste: $3 * \sqrt[3]{n}$
 - \Box k liste: $k * \sqrt[k]{n}$

- Ce se întâmplă când avem mai mult de 2 liste înlănțuite?
 - Costul căutării se modifică
 - \square 2 liste: $2 * \sqrt{n}$
 - \Box 3 liste: $3 * \sqrt[3]{n}$
 - \Box k liste: $k * \sqrt[k]{n}$
 - \square logn liste: $logn * {}^{logn}\sqrt{n}$

- Ce se întâmplă când avem mai mult de 2 liste înlănțuite?
 - Costul căutării se modifică
 - \square 2 liste: $2 * \sqrt{n}$
 - \Box 3 liste: $3 * \sqrt[3]{n}$
 - \Box k liste: $k * \sqrt[k]{n}$
 - logn liste: $logn * \sqrt[logn]{n} = ?$ Cu cât este egal? $\sqrt[logn]{n}$

- Ce se întâmplă când avem mai mult de 2 liste înlănțuite?
 - Costul căutării se modifică
 - \square 2 liste: $2 * \sqrt{n}$
 - \Box 3 liste: $3 * \sqrt[3]{n}$
 - \square k liste: $k * \sqrt[k]{n}$
 - □ logn liste: $logn * \sqrt[logn]{n} = 2 * logn$ \Rightarrow Complexitate:

O(logn)!

Skip Lists - Căutare

- 1) Începem căutarea cu primul nivel (cel mai de suas) ansăm în dreapta, până când, dacă am mai avansa, am merge prea departe (adică elementul următor este prea mare)
- 3) Ne mutăm în următoarea listă (mergem în jos)
- 4) Reluăm algoritmul de la pasul 2)

Skip Lists - Căutare

- Începem căutarea cu primul nivel (cel mai de suAsyansăm în dreapta, până când, dacă am mai avansa, am merge prea departe (adică elementul următor este prea mare)
- 3) Ne mutăm în următoarea listă (mergem în jos)
- 4) Reluăm algoritmul de la pasul 2)

Skip Lists - Inserare

- Vrem să inserăm elementul x
- Observație: Lista de jos trebuie să conțină toate elementele!
- x trebuie să fie inserat cu siguranță în nivelul cel mai de jos
 - □ căutăm locul lui x în lista de jos \rightarrow search(x)
 - adăugăm x în locul găsit în lista cea mai de jos
- Cum alegem în câte liste să fie adăugat?

Skip Lists - Inserare

- Vrem să inserăm elementul x
- x trebuie să fie inserat cu siguranță în nivelul cel mai de jos
- Cum alegem în ce altă listă să fie adăugat?
 - Alegem metoda probabilistică:
 - o aruncăm o monedă
 - dacă pică Stema o adăugăm în lista următoare și aruncăm din nou moneda
 - □ dacă pică Banul ne oprim
 - o probabilitatea să fie inserat și la nivelul următor: ½
- În medie:
 - □ ½ elemente nepromovate
 - □ 1/4 elemente promovate 1 nivel
 - □ ⅓ elemente promovate 2 nivele
 - etc.
- Complexitate: O(logn)

Skip Lists - Ştergere

- Stergem elementul x din toate listele care îl conțin
- Complexitate: O(logn)

- Articol
- <u>Video</u><u>MIT</u>
- Notes

Bibliografie

http://ticki.github.io/blog/skip-lists-done-right/

https://www.guru99.com/avl-tree.html

https://www.geeksforgeeks.org/red-black-tree-set-1-introduction-2/

MIT lecture notes on skip lists

Esoteric Data Structures: Skip Lists and Bloom Filters - Stanford University

