

Modeling basketball shot likelihoods with Bayesian Binomial-Logit models

Juho Kuikka, Rasmus Siljander

Data

- Player shooting data from years between 2010-2018
- Shot type, Distance from the basket, shot success flag (0 = miss, 1 = shot made)
- Three different shot types
- Shot distances between 15-30

Shot type	Sample size (N)
Jump shot	50000
Fadeaway/Step back	29915
Pullup	50000

How does the distance to the basket affect the likelihood of a successful shot outcome?

- Bernoulli likelihood: $\operatorname{logit}(p_i) \, = \, lpha \, + \, eta x_i$
- Pooled model:

$$p_i \sim binomialLogit(n, lpha + eta x_i)$$

$$lpha \,=\, Nig(0,10^2ig)$$

$$eta=Nig(0,10^2ig)$$

How does the distance to the basket affect the likelihood of a successful shot outcome?

- Hierarchical model:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_i \sim binomial Logit(n, lpha_j + eta_j x_i) \ egin{aligned} eta_0 \sim N(0, 10^2) & lpha_j \sim N(\mu_0, \, \sigma^2) \ egin{aligned} egin{aligned} eta_i \sim Gamma(1, 1) & eta_i \sim N(\mu_0, \, \sigma^2) \end{aligned}$$

Convergence diagnostics Pooled model

Convergence diagnostics hierarchical

Convergence diagnostics hierarchical

Convergence diagnostics hierarchical

Posterior distributions

Posterior distributions

Posterior predictive checking

Posterior predictive checking

Posterior predictive checking

 moderate posterior predictability can be observed

Model comparison and predictive performance

- Visual diagnostics:
 - Posterior predictive plots
 - Residuals

- PSIS LOO diagnostics:
 - Expected log pointwise predictive density (elpd)
 - Pareto k-values

Predictive Performance

Residuals

PSIS LOO Diagnostics

Pooled Model

Computed from 4000 by 16 log-likelihood matrix

Estimate SE elpd_loo -98.1 8.8 p_loo 6.2 2.3 looic 196.1 17.6

Monte Carlo SE of elpd_loo is NA.

Hierarchical Model

Computed from 4000 by 48 log-likelihood matrix

Estimate SE
elpd_loo -243.7 13.8
p_loo 12.7 2.5
looic 487.4 27.5

Monte Carlo SE of elpd_loo is 0.1.

PSIS LOO Diagnostics

Pooled Model

Computed from 4000 by 16 log-likelihood matrix

Monte Carlo SE of elpd_loo is NA.

Hierarchical Model

Computed from 4000 by 48 log-likelihood matrix

Monte Carlo SE of elpd_loo is 0.1.

Pareto k-values

Pooled model

Hierarchical model

Sensitivity analysis - Pooled Model

Sensitivity - Jump Shot

Sensitivity - Fadeaway Shot

Sensitivity - Pullup Shot

The pooled model seemed marginally better - but was it?

- Data structure and sampling issues left model comparison less meaningful
 - Pooled model data =/= Hierarchical data

The pooled data could have been partitioned into shot type groups

shot_made_fla	action_type	shot_dista
0	Jump Shot	26
1	Step Back Jump s	17
1	Pullup Jump shot	23
0	Jump Shot	25
1	Pullup Jump shot	24
1	Jump Shot	25
1	Jump Shot	21
0	Pullup Jump shot	25
1	Fadeaway Jump 9	26
0	Jump Shot	25
0	Fadeaway Jump 9	25
0	Jump Shot	28
0	Fadeaway Jump 9	25

Constructed into success ratios, regardless of shot type

Distance	Throws	Successes
15	n1	s1
16	n2	s2

Size = 16x3

Pooled Model

Estimate

Computed from 4000 by 16 log-likelihood matrix

SE

elpd_loo -98.1 8.8 p_loo 6.2 2.3 looic 196.1 17.6

Monte Carlo SE of elpd_loo is NA.

Hierarchical Model

Computed from 4000 by 48 log-likelihood matrix

Estimate SE elpd_loo -243.7 13.8 p_loo 12.7 2.5 looic 487.4 27.5

Monte Carlo SE of elpd_loo is 0.1.

Conclusion

- Pooled model performed marginally better
- Errors in data set definition mean that meaningful inference is not possible
- Basketball is an extremely complex sport, and univariate modeling may not be plausible at all
- Further reading:

Reich, Brian & Hodges, James & Carlin, Bradley & Reich, Adam. (2006). A Spatial Analysis of Basketball Shot Chart Data. The American Statistician. 60. 3-12. 10.1198/000313006X90305.

Available online <u>here</u>

• Data available at: www.nbasavant.com


```
data {
                                                                                         data {
                                                                                           int<lower=0> N;
                                                                                                                          // number of shot distances per group
  int<lower=0> N;
                                 // Number of shot distances
                                                                                           int<lower=0> J;
                                                                                                                          // number of shot types
  vector[N] distances:
                                 // Vector of shot distances
  int throws[N]:
                                 // Throws per shot distance
                                                                                           vector[N] distances:
                                                                                                                          // Vector of shot distances
                                 // Number of successes per shot distance pair
  int successes[N]:
                                                                                          int throws[N.J]:
                                                                                                                          // Throws per shot distance and shot type
                                                                                           int successes [N, J];
                                                                                                                         // Throws per shot distance and shot type
  real mu0 alpha;
                                 // Priors
  real sigma0 alpha;
                                                                                          real mu0 hyper;
                                                                                                                        // Priors
                                                                                          real sigma0 hyper;
  real mu0_beta;
  real sigma0 beta;
                                                                                         parameters {
                                                                                          real mu0;
                                                                                                                          // prior mean
                                                                                                                         // prior std (constrained to be positive)
                                                                                          real<lower=0> sigma:
parameters {
                                                                                          vector[J] alpha;
                                                                                                                         // shot type alpha
                                  // Model parameters
  real alpha;
                                                                                          vector[J] beta;
                                                                                                                         // shot type beta
  real beta;
                                                                                         model {
transformed parameters {
                                                                                          mu0 ~ normal(mu0 hyper, sigma0 hyper);
                                                                                                                                   // weakly informative prior
  vector[N] logit p = alpha + beta * distances;
                                                                                          sigma ~ gamma(1,1);
                                                                                                                                   // weakly informative prior
                                                                                           for (i in 1:J) {
model {
                                                                                            alpha[i] ~ normal(mu0, sigma); //parameters are modeled from group-specific distributions
                                                                                            beta[i] ~ normal(mu0, sigma);
  alpha ~ normal(mu0_alpha, sigma0_alpha);
                                                    // Weakly informative priors
                                                                                            successes[,i] ~ binomial_logit(throws[,i], alpha[i] + beta[i]*distances);
  beta ~ normal(mu0 beta, sigma0 beta);
  successes ~ binomial_logit(throws, logit_p);
                                                                                         generated quantities {
                                                                                          vector[N*J] log lik;
                                                                                          for (i in 1:J) {
generated quantities {
                                                                                            for (i in 1:N) {
 vector[N] log_lik;
                                                                                              log lik[(j-1)*N + i] = binomial logit lpmf(successes[i,j] | throws[i,j],
  for (i in 1:N){
                                                                                              alpha[i] + beta[i]*distances[i]);
    log lik[i] = binomial logit lpmf(successes[i] | throws[i], logit p[i]);
                                                                                            }
                                                                                          }
```

Stan Code Error

```
p_{ij} \sim BinomialLogit(n, \alpha_j + \beta_j x_i)
\alpha_j \sim N(\mu_0, \sigma^2)
\beta_j \sim N(\mu_0, \sigma^2)
\mu_0 \sim N(0, 10^2)
\sigma \sim Gamma(1, 1)
```

```
model {
  mu0 ~ normal(mu0_hyper,sigma0_hyper);  //
  sigma ~ gamma(1,1);  //

  for (i in 1:J) {
    alpha[i] ~ normal(mu0, sigma);  //parameter
    beta[i] ~ normal(mu0, sigma);
    successes[,i] ~ binomial_logit(throws[,i],
  }
}
```

Stan Code Error

```
p_{ij} \sim BinomialLogit(n, \alpha_j + \beta_j x_i)
\alpha_j \sim N(\mu_0, \sigma^2)
\beta_j \sim N(\mu_0, \sigma^2)
\mu_0 \sim N(0, 10^2)
\sigma \sim Gamma(1, 1)
```