Continuous data – regression diagnostics and transformations

Vocabulary and Notation

- Each subject has an observed value, a fitted value, and a residual
- Observed value = y
 - The actual observed value of the outcome variable in the dataset
- Fitted value = \hat{y}
 - The predicted value of the outcome variable (on the line)
- Residual = e
 - The vertical distance between the point and the regression line
 - Difference between y and \hat{y}

Vocabulary and Notation

• Proper notation for regression line:

$$\hat{y} = 3 + 0.5x$$
 or $y = 3 + 0.5x + e$

X	y	\widehat{y}	e
1	2	3.5	-1.5
2	8	4	4
4	3	5	-2
6	7	6	1
6	5	6	-1
8	8	7	1
9	6	7.5	-1.5

Assumptions of Linear Regression

- Independence of the observations
- Linearity of the relationship between the two variables
- Constant variance of the residuals
- Normality of the residuals

Independence

What it means

- The observed outcomes in the dataset are independent
- One subject's outcome doesn't impact any other subjects' outcomes

How to assess it

- Knowledge of the study design and data collection
- Subject matter knowledge

How to fix it

- You can't! Avoid this problem at the study design phase
- Advanced statistical methodologies exist to handle correlated outcomes

Assumptions of Linear Regression

- Independence of the observations
- Linearity of the relationship between the two variables
- Constant variance of the residuals
- Normality of the residuals

Linearity

What it means

- Relationship between x and y is linear
- Linear regression won't pick up on non-linear associations

How to assess it

 Make a scatterplot of x and y, visual check for linear trend

How to fix it

- Transform x or y to make the relationship linear
- Use circle/ladder of powers to determine appropriate transformation

Circle/Ladder of Powers

Power	Transformation	
3	x^3	up the ladder
2	χ^2	
1	\boldsymbol{x}	start here
1/2	\sqrt{x}	
0	$\log(x)$	down the ladder
-1/2	$\frac{1}{\sqrt{x}}$	
-1	$\frac{1}{x}$	
-2	$\frac{1}{x^2}$	

Example: GNP vs. Birth Rate

Power	Transformation
2	x^2
1	x
1/2	\sqrt{x}
0	log(x)
-1/2	$\frac{1}{\sqrt{x}}$
-1	$\frac{1}{x}$

Example: GNP vs. Birth Rate

Power	Transformation
2	x^2
1	x
1/2	\sqrt{x}
0	log(x)
-1/2	$\frac{1}{\sqrt{x}}$
-1	$\frac{1}{x}$

Example: GNP vs. Birth Rate

Power	Transformation
2	x^2
1	x
1/2	\sqrt{x}
0	$\log(x)$
-1/2	$\frac{1}{\sqrt{x}}$
-1	$\frac{1}{x}$

Assumptions of Linear Regression

- Independence of the observations
- Linearity of the relationship between the two variables
- Constant variance of the residuals
- Normality of the residuals

Constant Variance of the Residuals

What it means

- For a small range of x values, consider the residuals for all subjects whose observed x falls in that range. We want the variance of those residuals to be the same for all ranges of x.
- Also called homoscedasticity

Constant Variance of the Residuals

What it means

- For a small range of x values, consider the residuals for all subjects whose observed x falls in that range. We want the variance of those residuals to be the same for all ranges of x.
- Also called homoscedasticity

How to assess it

- Make a residual plot, looking for a random cloud of points
- Trends in the residual plot (especially a cone shape) reveal heteroscedasticity

How to fix it

- Transformations of x or y can sometimes help
 - log transformation of y is particularly helpful if you see a cone shape

Residual Plot

- Plot fitted values on the x-axis and residuals on the y-axis.
- Want to see a random cloud of points with no trends

Slide 15

Assumptions of Linear Regression

- Independence of the observations
- Linearity of the relationship between the two variables
- Constant variance of the residuals
- Normality of the residuals

Normality of the Residuals

What it means

 The distribution of residuals follows a bellshaped curve

How to assess it

- Make a normal QQ plot, visually check that the points fall approximately on a straight line
- If the points deviate a lot from the line, there is evidence that the residuals are not normally distributed

How to fix it

- Usually fixing nonlinearity and/or heteroscedasticity will fix any issues with non-normality of residuals
- Small departures from normality actually aren't that big of a deal

Normal QQ Plot

- Plot residuals on the y-axis vs. "theoretical quantiles" on the x-axis
- Remember: In a normal distribution, we expect a certain percentage of our data to fall within 1, 2, 3,... standard deviations of the mean (68-95-99.7 rule)
- Think about making a histogram of the residuals. In essence, QQ plot checks if the right percentage of residuals fall into each bucket of a normal distribution
- Want points on QQ plot to fall on a straight line

Normal QQ Plot

Assumptions of Linear Regression

- Independence of the observations
- Linearity of the relationship between the two variables
- Constant variance of the residuals
- Normality of the residuals

Assessing Model Fit: R²

- Output for linear regression model gives us a number called R²
 - Falls between 0 and 1
 - R² = correlation²
- R² = "percent of variation in the outcome that can be explained by the predictor"
- Basically tells you how well the line is capturing the trend in the points
- Can use it to compare two models higher R² indicates better fit

Transformations

- Pros: Can satisfy regression assumptions, improve model fit, make better predictions
- Cons: Interpretability of the model becomes more difficult

Example: Suppose we performed a log transformation of x. Regression model then relates log(x) to y. Interpretation of slope is then "on average, for every 1 unit increase in the log of (predictor variable), we expect a (slope) increase in (outcome variable)".

Example: Suppose we transform y to y^2 . Regression model then relates x to y^2 . Interpretation of slope is then "on average, for every 1 unit increase in (predictor variable), we expect a (slope) increase in (outcome variable) squared".

Model Building

- Building a regression model is just as much an art as it is a science
- There's no specific recipe for the perfect model
- Weigh interpretability vs. fit for the goals of your project
- Aim for a model that is parsimonious (as simple/interpretable as possible) while still being valid (satisfying assumptions)

FEV Data

 Information on respiratory health and exposure to secondhand smoke in 654 children

Variable	Description
Age	Age (years)
FEV	Forced expiratory volume (liters). FEV is the amount of air a person can exhale in the first second of a forceful breath.
Hgt	Height (inches)
Sex	Sex (Male, Female)
Smoke	Exposure to second-hand smoke (No, Yes)

Find the dataset (fev.xlsx) and the full data dictionary (fev Data Dictionary.pdf) in the Data Module on the Canvas site

• Fit a linear regression model relating age to forced expiratory volume (FEV). Assess whether the assumptions of the model are satisfied, and make any necessary transformations.


```
Linear regression model relating age and FEV:
Call:
lm(formula = FEV ~ Age, data = fev)
Residuals:
               10 Median
     Min
-1.59219 -0.39643 -0.03783 0.3200
Coefficients:
             Estimate Std. Error t value Pro
(Intercept) -0.024841
                        0.086523
                                            0.774
             0.275217 \leftarrow 0.008303 33.146
Age
                                           <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6386 on 652 degrees of freedom
Multiple R-squared: 0.6276 Adjusted R-squared: 0.627
F-statistic: 1099 on 1 and 652 DF, p-value: < 2.2e-16
```

$$\widehat{FEV} = -0.025 + 0.275*age$$

On average, every 1 year increase in age is associated with a 0.275 liter increase in FEV.

62.8% of the variation in FEV is explained by age.

Cone shape in residuals plot usually means log transformation in outcome variable

Example: log(FEV) vs. Age

Example: log(FEV) vs. Age

```
Linear regression model relating age and log(FEV):
Call:
lm(formula = logFEV ~ Age, data = fev)
Residuals:
                  Median
    Min
-0.56168 -0.12843 -0.00435
Coefficients:
(Intercept) -0.023022
                        0.027560
                                            0.404
             0.096177 \leftarrow 0.002645 \quad 36.364
                                           <2e-16 ***
Age
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2034 on 652 degrees of freeder
Multiple R-squared: 0.6698 Adjusted R-squared: 0.6693
F-statistic: 1322 on 1 and 652 DF, p-value: < 2.2e-16
```

```
log(\widehat{FEV}) = -0.023 + 0.096*age
```

On average, every 1 year increase in age is associated with a 0.096 liter increase in log(FEV).

67.0% of the variation in log(FEV) is explained by age.

Example: log(FEV) vs. Age

• Fit a linear regression model relating height to forced expiratory volume (FEV). Assess whether the assumptions of the model are satisfied, and make any necessary transformations.


```
Linear regression model relating height and FEV:
Call:
lm(formula = FEV ~ Hgt, data = fev)
Residuals:
    Min
                  Median
-0.59184 -0.13483 -0.00818
Coefficients:
             Estimate Std. Error t value Pr
(Intercept) -8.643255
             0.211977 \leftarrow 0.001753
Hat
                                   120.9
                                           <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
Residual standard error: 0.2162 on 652 degrees of freedom
Multiple R-squared: 0.9573 Adjusted R-squared: 0.9573
F-statistic: 1.462e+04 on 1 and 652 DF, p-value: < 2.2e-16
```

$$\widehat{FEV} = -8.643 + 0.212*height$$

On average, every 1 inch increase in height is associated with a 0.212 liter increase in FEV.

95.7% of the variation in FEV is explained by height.

Example: FEV vs. Height²

Example: FEV vs. Height²

```
Linear regression model relating age and log(FEV):
Call:
lm(formula = FEV ~ Hgt2, data = fev)
Residuals:
                 Median
    Min
-0.56360 -0.12192 0.00504
Coefficients:
(Intercept) -2.76441875
            0.00189324 0.00001365 138.71
Hqt2
                                             <2e-16 ***
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 0.1894 on 652 degrees of freed
Multiple R-squared: 0.9672, Adjusted R-squared: 0.9672
F-statistic: 1.924e+04 on 1 and 652 DF, p-value: < 2.2e-16
```

```
\widehat{FEV} = -2.764 + 0.002*height^2
```

On average, every 1 inch² increase in height² is associated with a 0.002 liter increase in FEV.

96.7% of the variation in FEV is explained by height².

Example: FEV vs. Height²

Important Points

- Four assumptions of linear regression
- How to check each assumption
- Transforming data to meet assumptions
 - Interpretation of model output
- Trade-off between model fit and interpretability