# Directed containers, what are they good for?

Danel Ahman, Inria Paris

(based on joint work with James Chapman and Tarmo Uustalu)



Edinburgh, 20 November 2017

#### **Outline**

D. Ahman, J. Chapman, T. Uustalu. When is a Container a Comonad? (FoSSaCS'12, LMCS 2014)

D. Ahman, T. Uustalu.

Distributive laws of directed containers (Progress in Inf. 2013)

D. Ahman, T. Uustalu.

Update Monads: Cointerpreting Dir. Cons. (TYPES'13)

D. Ahman, T. Uustalu.

Coalgebraic update lenses (MFPS'14)

D. Ahman, T. Uustalu.

Directed containers as categories (MSFP'16)

D. Ahman, T. Uustalu. **Taking Updates Seriously** (BX'17)

### **Directed containers**

(and directed polynomials)

#### **Container syntax of datatypes**

- Many datatypes can be represented in terms of
  - shapes
  - positions in shapes
- Containers provide us with a handy syntax to analyse them
- Examples: lists, streams, colists, trees, zippers, etc.



#### **Directing containers?**

- Containers often exhibit a natural notion of subshape
- Natural questions arise:
  - What is the appropriate specialisation of containers?
  - Does this admit a nice categorical theory?
  - What else is this structure useful for?



#### Directed containers

A directed container is given by

```
• S : \mathbf{Set} (shapes)
• P : S \to \mathbf{Set} (positions)
```

#### and

- $\downarrow : \sqcap s : S. Ps \rightarrow S$  (subshape)
- o: Π{s: S}. Ps
- $\oplus$ :  $\Pi\{s:S\}$ .  $\Pi p:Ps.P(s\downarrow p)\to Ps$  (subshape positions)

#### such that

- $s \downarrow 0 = s$
- $s \downarrow (p \oplus p') = (s \downarrow p) \downarrow p'$
- $p \oplus \{s\}$  o = p
- $o\{s\} \oplus p = p$
- $(p \oplus \{s\} p') \oplus p'' = p \oplus (p' \oplus p'')$

#### **Directed containers**

A directed container is given by

```
• S : Set (shapes)
```

• 
$$P: S \to \mathbf{Set}$$
 (positions)

and

• 
$$\downarrow$$
 :  $\Pi s$  :  $S$  .  $P$   $s \to S$  (subshape)

• 
$$o: \Pi\{s: S\}$$
.  $Ps$  (root position)

• 
$$\oplus$$
:  $\Pi\{s:S\}$ .  $\Pi p:Ps.P(s\downarrow p)\to Ps$  (subshape positions)

such that

• 
$$s \downarrow o = s$$

• 
$$s \downarrow (p \oplus p') = (s \downarrow p) \downarrow p'$$

• 
$$p \oplus_{\{s\}} o = p$$

• 
$$o_{\{s\}} \oplus p = p$$

• 
$$(p \oplus_{\{s\}} p') \oplus p'' = p \oplus (p' \oplus p'')$$

#### **Directed polynomials**

A polynomial (in one variable) is given by

$$1 \stackrel{!}{\longleftarrow} \overline{P} \stackrel{s}{\longrightarrow} S \stackrel{!}{\longrightarrow} 1$$

#### where

- S: **Set** (or more generally, in suitable  $\mathcal{C}$ ) (shapes)
- $\overline{P}$ : **Set** (or more generally, in suitable C) (total positions)
- $\overline{P} \cong \Sigma s: S. Ps$

#### **Directed polynomials**

• A polynomial (in one variable) is given by

$$1 \stackrel{!}{\longleftarrow} \overline{P} \stackrel{s}{\longrightarrow} S \stackrel{!}{\longrightarrow} 1$$

where

- S: **Set** (or more generally, in suitable  $\mathcal{C}$ ) (shapes)
- $\overline{P}$  : **Set** (or more generally, in suitable  $\mathcal{C}$ ) (total positions)

(a polynomial)

- $\overline{P} \cong \Sigma s: S. P s$
- A directed polynomial is given by
  - $s: \overline{P} \longrightarrow S$
  - $\downarrow : \overline{P} \longrightarrow S$
  - o:  $S \longrightarrow \overline{P}$  s.t.  $s \circ o = id_S$  and  $\downarrow \circ o = id_S$
  - ...
  - def. is remarkably symmetric in s and ↓ (more on this later)

#### Non-empty lists and streams

Non-empty lists are represented as

```
• S \stackrel{\text{def}}{=} \text{Nat} (shapes)

• Ps \stackrel{\text{def}}{=} [0..s] (positions)

• s \downarrow p \stackrel{\text{def}}{=} s - p (subshapes)

• o_{\{s\}} \stackrel{\text{def}}{=} 0 (root position)

• p \oplus_{\{s\}} p' \stackrel{\text{def}}{=} p + p' (subshape positions)
```

• Streams are represented similarly

```
• S \stackrel{\text{def}}{=} 1 (shapes)
• P * \stackrel{\text{def}}{=} \text{Nat} (positions)
```

• ...

• Another example is lists with cyclic shifts as "sublists"











#### Non-empty lists with a focus

- Zippers tree-like data-structures consisting of
  - a context and a focal subtree
- Non-empty lists with a focus
  - $S \stackrel{\text{def}}{=} \text{Nat} \times \text{Nat}$  (shapes)
    - $P(s_0, s_1) \stackrel{\text{def}}{=} [-s_0...s_1] = [-s_0...-1] \cup [0...s_1]$  (positions)

- $(s_0, s_1) \downarrow p \stackrel{\text{def}}{=} (s_0 + p, s_1 p)$  (subshapes)
  - $o_{\{s_0,s_1\}} \stackrel{\mathsf{def}}{=} 0 \tag{root}$
- $p \oplus_{\{s_0,s_1\}} p' \stackrel{\mathsf{def}}{=} p + p'$  (subshape positions)

#### **Directed container morphisms**

A directed container morphism

$$t \lhd q: (S \lhd P_{\mathsf{q}} \sqcup_{\mathsf{q}} \circ_{\mathsf{q}} \oplus) \longrightarrow (S' \lhd P'_{\mathsf{q}} \sqcup_{\mathsf{q}} \circ_{\mathsf{q}} \oplus)$$

is given by

- $t: S \rightarrow S'$
- $q: \Pi\{s: S\}.P'(ts) \to Ps$

#### such that

- $t(s \downarrow q p) = ts \downarrow' p$
- $o_{\{s\}} = q(o'_{\{ts\}})$
- $q p \oplus_{\{s\}} q p' = q (p \oplus'_{\{ts\}} p')$
- Identities and composition are defined component-wise
- Directed containers form a category DCont

# **Directed container morphisms**

A directed container morphism

$$t \triangleleft q: (S \triangleleft P, \downarrow, o, \oplus) \longrightarrow (S' \triangleleft P', \downarrow', o', \oplus')$$

is given by

- $t: S \rightarrow S'$
- $q: \Pi\{s: S\}.P'(ts) \to Ps$

such that

- $t(s \downarrow q p) = t s \downarrow' p$
- $o_{\{s\}} = q(o'_{\{ts\}})$
- $q p \oplus_{\{s\}} q p' = q (p \oplus'_{\{t s\}} p')$
- Identities and composition are defined component-wise
- Directed containers form a category **DCont**

# **Directed containers**

=

**containers** ∩ **comonads** 

#### Interpretation of directed containers

Any directed container

$$(S \triangleleft P, \downarrow, \circ, \oplus)$$

defines a functor/comonad

$$[\![S \lhd P, \bot, \circ, \oplus]\!]^{\operatorname{dc}} \stackrel{\mathsf{def}}{=} (D, \varepsilon, \delta)$$

where

- $D: \mathbf{Set} \to \mathbf{Set}$  (or in any cat. with enough pullbacks)  $DX \stackrel{\mathsf{def}}{=} \Sigma s: S. (Ps \to X)$
- $\varepsilon_X : DX \to X$  $\varepsilon_X (s, v) \stackrel{\text{def}}{=} v (o_{\{s\}})$
- $\delta_X : DX \to DDX$  $\delta_X (s, v) \stackrel{\text{def}}{=} (s, \lambda p. (s \downarrow p, \lambda p'. v (p \oplus_{\{s\}} p'))$

#### Interpretation of directed containers

Any directed container

$$(S \triangleleft P, \downarrow, o, \oplus)$$

defines a functor/comonad

$$\llbracket S \lhd P, \downarrow, o, \oplus 
bracket^{\operatorname{def}} \ \ (D, \varepsilon, \delta)$$

where

- D: **Set**  $\to$  **Set** (or in any cat. with enough pullbacks)  $DX \stackrel{\text{def}}{=} \Sigma s: S. (Ps \to X)$
- $\varepsilon_X : DX \to X$  $\varepsilon_X (s, v) \stackrel{\text{def}}{=} v (o_{\{s\}})$
- $\delta_X : DX \to DDX$  $\delta_X (s, v) \stackrel{\text{def}}{=} (s, \lambda p. (s \downarrow p, \lambda p'. v (p \oplus_{\{s\}} p')))$

#### Interpretation of dir. cont. morphisms

• Any directed container morphism

$$t \lhd q: (S \lhd P_{\mathsf{q}} \sqcup_{\mathsf{q}} \circ_{\mathsf{q}} \oplus) \longrightarrow (S' \lhd P'_{\mathsf{q}} \sqcup_{\mathsf{q}} \circ_{\mathsf{q}} \oplus)$$

defines a natural transformation/comonad-morphism

$$\llbracket t \lhd q \rrbracket^{\operatorname{lc}} : \llbracket S \lhd P, \downarrow, \circ, \circ \rrbracket^{\operatorname{lc}} \longrightarrow \llbracket S' \lhd P', \downarrow, \circ, \circ', \circ \rrbracket^{\operatorname{lc}}$$

by

- $\llbracket \rrbracket^{dc}$  preserves the identities and composition
- $[-]^c$  is a functor from [-] Cont to [-] Company [-]

#### Interpretation of dir. cont. morphisms

Any directed container morphism

$$t \triangleleft q : (S \triangleleft P, \downarrow, o, \oplus) \longrightarrow (S' \triangleleft P', \downarrow', o', \oplus')$$

defines a natural transformation/comonad morphism

$$\llbracket t \lhd q \rrbracket^{\operatorname{dc}} : \llbracket S \lhd P, \downarrow, o, \oplus \rrbracket^{\operatorname{dc}} \longrightarrow \llbracket S' \lhd P', \downarrow', o', \oplus' \rrbracket^{\operatorname{dc}}$$

by

- $\llbracket \rrbracket^{dc}$  preserves the identities and composition
- $[-]^{dc}$  is a functor from **DCont** to [Set\_Set] **Comonads**(Set)

#### Interpretation is fully faithful

• Every natural transformation/comonad-morphism

$$\tau: \llbracket S \lhd P, \bot, \circ, \ominus \rrbracket \rrbracket^{\operatorname{lc}} \longrightarrow \llbracket S' \lhd P', \bot, \circ, \circ, \ominus' \rrbracket^{\operatorname{lc}}$$

defines a directed container morphism

$$\lceil \tau \rceil^{\circ c} : (S \lhd P_{\circ} \downarrow_{\circ} \circ_{\circ} \oplus) \longrightarrow (S' \lhd P'_{\circ} \downarrow_{\circ} \circ_{\circ} \oplus)$$

satisfying

- $\lceil [t \triangleleft q] \rceil^{\operatorname{dc} \neg \operatorname{dc}} = t \triangleleft q$
- $\bullet \ \llbracket \ulcorner \tau \urcorner^{\mathrm{dc}} \rrbracket^{\mathrm{dc}} = \tau$
- $[-]^{c}$  is a fully faithful functor

#### Interpretation is fully faithful

Every natural transformation/comonad morphism

$$\tau: \llbracket S \lhd P, \downarrow, \diamond, \oplus \rrbracket^{\mathrm{dc}} \longrightarrow \llbracket S' \lhd P', \downarrow', \diamond', \oplus' \rrbracket^{\mathrm{dc}}$$

defines a directed container morphism

$$\lceil \tau^{\neg dc} : (S \lhd P, \downarrow, o, \oplus) \longrightarrow (S' \lhd P', \downarrow', o', \oplus')$$

satisfying

- $\lceil [t \triangleleft q] \rceil^{\operatorname{dc} \neg \operatorname{dc}} = t \triangleleft q$
- $\bullet \ \llbracket \ulcorner \tau \urcorner^{\mathrm{dc}} \rrbracket^{\mathrm{dc}} = \tau$
- ullet  $[-]^{dc}$  is a fully faithful functor

#### Directed containers = cons. $\cap$ cmnds.

• Any comonad  $(D, \varepsilon, \delta)$ , such that  $D = [S \triangleleft P]^c$ , determines

$$\lceil (D, \varepsilon, \delta), S \triangleleft P \rceil \stackrel{\mathsf{def}}{=} (S \triangleleft P, \downarrow, \mathsf{o}, \oplus)$$

where

$$s\downarrow p\stackrel{\mathsf{def}}{=} \mathsf{snd}\left(t^\delta\, s
ight)p \quad \mathsf{o}_{\{s\}}\stackrel{\mathsf{def}}{=} q^arepsilon_{\{s\}} * \quad p\oplus_{\{s\}} p'\stackrel{\mathsf{def}}{=} q^\delta_{\{s\}}(p,p')$$

[−] satisfies

$$\lceil \llbracket S \lhd P, \downarrow, o, \oplus \rrbracket^{\mathrm{dc}}, S \lhd P \rceil = (S \lhd P, \downarrow, o, \oplus)$$

 $\llbracket \lceil (D, \varepsilon, \delta), S \triangleleft P \rceil \rrbracket^{dc} = (D, \varepsilon, \delta)$ 

• The following is a pullback in **CAT**:

**Constructions on directed containers** 

#### **Constructions on directed containers**

- Coproduct of directed containers
- Cofree directed containers
- Focussing of a container
- Strict directed containers and their categorical product
- Distributive laws between directed containers
- Composition of directed containers
- Bidirected containers (dependently typed group structure)
  - $(-)^{-1} : \Pi\{s : S\}. \Pi p : P s. P(s \downarrow p)$  + two equations
  - Which comonads do these correspond to? Hopf algebra like?

#### **Update monads**

(update your state instead of overwriting it!)

#### Cointerpretation of directed containers

• In addition to the interpretation functor

$$[-]^c : \mathsf{Cont} \longrightarrow [\mathsf{Set}, \mathsf{Set}]$$

one can also define a cointerpretation functor

$$\langle\!\langle - \rangle\!\rangle^{\mathrm{c}} : \mathsf{Cont}^{\mathrm{op}} \longrightarrow [\mathsf{Set}, \mathsf{Set}]$$

given by

$$\langle \langle S \lhd P \rangle \rangle^{c} \stackrel{\text{def}}{=} \Pi s : S. (P s \times X)$$

which lifts to  $\langle\!\langle - \rangle\!\rangle^{\mathrm{dc}}$  making the following a pullback in **CAT** 



#### Dependently typed update monads

- In more detail, given a directed container  $(S \triangleleft P, \downarrow, o, \oplus)$  the corresponding dependently typed update monad is given by
  - $T: \mathbf{Set} \longrightarrow \mathbf{Set}$  $T X \stackrel{\text{def}}{=} \langle \langle S \lhd P, \downarrow, o, \oplus \rangle \rangle^{\operatorname{dc}} X = \Pi s : S. (P s \times X)$
  - $\eta_X : X \longrightarrow TX$  $\eta_X x \stackrel{\text{def}}{=} \lambda s. (o, x)$
  - $\mu_X : T T X \longrightarrow T X$   $\mu_X f \stackrel{\text{def}}{=} \lambda s. \operatorname{let} (p, g) = f s \operatorname{in}$  $\operatorname{let} (p', x) = g (s \downarrow p) \operatorname{in} (p \oplus p', x)$
- Intuitively
  - S set of states
  - (P, o, ⊕) dependently typed monoid of updates
- Use cases: non-overflowing buffers, non-underflowing stacks

#### **Dependently typed update monads**

The dependently typed update monad

$$TX \stackrel{\text{def}}{=} \Pi s : S. (Ps \times X)$$

arises as the free model monad for a Lawvere theory whose models are given by a carrier M: **Set** and two operations

$$\mathsf{lkp}: (S \to M) \longrightarrow M \qquad \mathsf{upd}: (\Pi s: S. \, P \, s) \times M \longrightarrow M$$

subject to three natural equations

- $\operatorname{lkp}(\lambda s. \operatorname{upd}_{\lambda s. o_{\{s\}}}(m)) = m$
- $lkp(\lambda s. upd_f(lkp(\lambda s'. m(s')))) = lkp(\lambda s. upd_f(m(s \downarrow (f s))))$
- $\operatorname{upd}_f(\operatorname{upd}_g(m)) = \operatorname{upd}_{\lambda s, (f s) \oplus (g(s \downarrow f s))}(m)$

### Simply typed update monads

• If P: **Set**, then we get a simply typed update monad

$$TX \stackrel{\text{def}}{=} S \rightarrow (P \times X)$$

- In this case,
  - $(P, o, \oplus)$  is a monoid in the standard sense
  - $\downarrow : S \times P \longrightarrow S$  is an action of  $(P, o, \oplus)$  on S
- This monad is the compatible composition of the monads

$$T_{\text{reader}} X \stackrel{\text{def}}{=} S \to X$$
  $T_{\text{writer}} X \stackrel{\text{def}}{=} P \times X$ 

- There is a one-to-one correspondence between
  - monoid actions  $\downarrow : S \times P \longrightarrow S$
  - distributive laws  $\theta: T_{\mathsf{writer}} \circ T_{\mathsf{reader}} \longrightarrow T_{\mathsf{reader}} \circ T_{\mathsf{writer}}$

#### **Update lenses**

(the dual of update monads)

#### **Update lenses**

A dependently typed update lens is a coalgebra for the comonad

$$DX \stackrel{\text{def}}{=} [S \triangleleft P, \downarrow, o, \oplus]^{dc} X = \Sigma s : S. (Ps \rightarrow X)$$

that is, a carrier M: **Set** and operations

$$lkp : M \longrightarrow S$$
 upd :  $(\Pi s : S. P s) \times M \longrightarrow M$ 

satisfying natural equations relating lkp and upd

- Equivalently, they are comodels for the Law. th. shown earlier
- Intuitively
  - M set of sources, i.e., the database
  - S set of views
  - (P, o, ⊕) dependently typed monoid of source updates

| Directed containers as ( | (small) | ) categories |
|--------------------------|---------|--------------|

# Directed containers as (small) categories

- Given a directed container  $(S \triangleleft P, \downarrow, o, \oplus)$  we get a corresponding small category  $\mathcal{C}_{(S \triangleleft P, \downarrow, o, \oplus)}$  as follows
  - ob $(\mathcal{C}_{(S \triangleleft P, \downarrow, o, \oplus)}) \stackrel{\text{def}}{=} S$
  - $C_{(S \triangleleft P, \downarrow, o, \oplus)}(s, s') \stackrel{\text{def}}{=} \Sigma p : P s. (s \downarrow p = s')$
  - identities are given using o
  - composition is given using ⊕
- Vice versa, every small category  $\mathcal C$  gives us a corresponding directed container  $(S_{\mathcal C} \lhd P_{\mathcal C}, \downarrow_{\mathcal C}, o_{\mathcal C}, \oplus_{\mathcal C})$
- But then, is it simply the case that Set ≅ DCont?

# Directed containers as (small) categories

- Given a directed container  $(S \triangleleft P, \downarrow, o, \oplus)$  we get a corresponding small category  $\mathcal{C}_{(S \triangleleft P, \downarrow, o, \oplus)}$  as follows
  - ob $(\mathcal{C}_{(S \triangleleft P, \downarrow, o, \oplus)}) \stackrel{\text{def}}{=} S$
  - $C_{(S \triangleleft P, \downarrow, o, \oplus)}(s, s') \stackrel{\text{def}}{=} \Sigma p : P s. (s \downarrow p = s')$
  - identities are given using o
  - composition is given using ⊕
- Vice versa, every small category  $\mathcal C$  gives us a corresponding directed container  $(S_{\mathcal C} \lhd P_{\mathcal C}, \downarrow_{\mathcal C}, o_{\mathcal C}, \oplus_{\mathcal C})$

#### Directed container morphisms as cofunctors

• Given a directed container morphism

$$t \triangleleft q : (S \triangleleft P, \downarrow, o, \oplus) \longrightarrow (S' \triangleleft P', \downarrow', o', \oplus')$$

 $F_{t \lhd q} : \mathcal{C}_{(S \lhd P, \downarrow, o, \oplus)} \longrightarrow \mathcal{D}_{(S' \lhd P', \downarrow', o', \oplus')}$ 

we do not get a functor, but instead a cofunctor [Aguiar'97]

given by a mapping on objects

$$(F_{t \triangleleft a})_0 : \mathsf{ob}(\mathcal{C}) \longrightarrow \mathsf{ob}(\mathcal{D})$$

and a lifting operation on morphisms

$$s \xrightarrow{(F_{t \lhd q})_1(s,p)} \circledast \quad \text{in } \mathcal{C}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(F_{t \lhd q})_0(s) \xrightarrow{p} \qquad \qquad s' \qquad \qquad \text{in } \mathcal{D}$$

#### **Constructions on directed containers**

- On the one hand, we can relate existing constructions on directed containers to constructions (small) categories
- For example, the symmetry of directed polynomials in

$$s: \overline{P} \longrightarrow S$$
 and  $\downarrow : \overline{P} \longrightarrow S$ 

manifests as every category having an opposite category

- On the other hand, the (small) categories view also provides new constructions on directed containers and comonads
- For example, factorisation of dcontainer/comonad morphisms

#### **Factorisation of morphisms**

• Given a directed container morphism

$$t \triangleleft q : (S \triangleleft P, \downarrow, o, \oplus) \longrightarrow (S' \triangleleft P', \downarrow', o', \oplus')$$

we can factorise it in **DCont** as

$$(S \triangleleft P, \downarrow, o, \oplus) \xrightarrow{\mathsf{id}_s \triangleleft q} (S \triangleleft P' \circ t, \downarrow'', o'', \oplus'') \xrightarrow{t \triangleleft \lambda s. \mathsf{id}_{P'(ts)}} (S' \triangleleft P', \downarrow', o', \oplus')$$

which can be characterised as the following pullback in Cont

$$(S \triangleleft P) \xrightarrow{\operatorname{id}_{S} \triangleleft q} (S \triangleleft P' \circ t) \xrightarrow{t \triangleleft \lambda s. \operatorname{id}_{P'(ts)}} (S' \triangleleft P')$$

$$\operatorname{id}_{S} \triangleleft \lambda ...? \downarrow \qquad \operatorname{pb.} \qquad \qquad \downarrow \operatorname{id}_{S'} \triangleleft \lambda ...?$$

$$(S \triangleleft \lambda ... 0) \xrightarrow{t \triangleleft \lambda ... \operatorname{id}_{0}} (S' \triangleleft \lambda ... 0)$$

which corresponds to the full image factorisation of functors

Notably, this works for any comonads that preserve pullbacks!

#### **Conclusion**

- So, directed containers, what are they good for?
- They and their morphisms
  - describe datastructures with a notion of subshape
  - characterise containers that carry a comonad structure
  - admit a variety of natural constructions
  - give a natural updates-based refinement of the state monad
  - give a natural updates-based refinement of asymmetric lenses
  - provide a type-theoretic syntax for categories and cofunctors