李代数作业

Misuzu/Yuxuan Liu

 $March\ 2,\ 2025$

${\bf Contents}$

1 第一次作业 1

1 第一次作业

Exercise 1.1. Let F be a field, prove that:

- when $char F \neq 2$, $\mathfrak{sl}(2, F)$ is a simple Lie algebra.
- when char F = 2, $\mathfrak{sl}(2, F)$ is not a simple Lie algebra.

Solution. Let $x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ be basis of $\mathfrak{sl}(2, F)$, then [x, y] = z, [z, x] = 2x, [z, y] = -2y.

- When $\operatorname{char} F \neq 2$: Suppose there exists a non-trivial ideal I of $\mathfrak{sl}(2,F)$, then it contains a nonzero element e = ax + by + cz. Then [x,[x,e]] = -2bx, [y,[y,e]] = -2ay. If a or b is nonzero, then I contains x or y, which implies that $I = \mathfrak{sl}(2,F)$; If a = b = 0, then $e = cz \in I$, which also implies $I = \mathfrak{sl}(2,F)$. Hence $\mathfrak{sl}(2,F)$ is simple Lie algebra.
- When $\operatorname{char} F = 2$: Consider subspace Fz, by simple computation we can see that Fz is non-trivial ideal of $\mathfrak{sl}(2,F)$. Hence $\mathfrak{sl}(2,F)$ is not a simple Lie algebra.

Exercise 1.2. Let dim $\mathfrak{g} < \infty$. Show that dim $C(\mathfrak{g}) \neq \dim \mathfrak{g} - 1$.

Solution. Suppose dim $C(\mathfrak{g}) = \dim \mathfrak{g} - 1 = n - 1$. Let $\{e_1, \dots, e_n\}$ be a basis of \mathfrak{g} s.t. $\{e_1, \dots, e_{n-1}\}$ is basis of $C(\mathfrak{g})$. Since $e_n \in \mathfrak{g} - C(\mathfrak{g})$, there exists e_i , $1 \le i \le n - 1$ s.t. $[e_i, e_n] \ne 0$, which contradicts to $e_i \in C(\mathfrak{g})$. Hence dim $C(\mathfrak{g}) \ne \dim \mathfrak{g} - 1$.

Exercise 1.3. We define $Heis_{2n+1}$ to be the Lie algebra with basis p_i, q_i, c where $[p_i, q_i] = c = -[q_i, p_i], 1 \le i \le n$, and all other bracketed pairs are 0. Classify all finite dimensional Lie algebra for which $\dim C(\mathfrak{g}) = \dim \mathfrak{g} - 2$. Let $\dim \mathfrak{g} = n$ and show either $\mathfrak{g} \simeq Ab_{n-3} \oplus Heis_3$ or $\mathfrak{g} \simeq Ab_{n-2} \oplus \mathfrak{h}$ where \mathfrak{h} is the two-dimensional non-abelian Lie algebra.

Solution. Let $\{e_1, \dots, e_{n-2}, y_1, y_2\}$ be a basis of \mathfrak{g} s.t. $\{e_1, \dots, e_{n-2}\}$ is basis of $C(\mathfrak{g})$. After changing basis we may always assume that $[y_1, y_2] \in C(\mathfrak{g})$ or $[y_1, y_2] \in L(y_1, y_2)$.

- If $[y_1, y_2] \in C(\mathfrak{g})$: Let $c = [y_1, y_2]$, we may assume WLOG that $c = e_{n-2}$. Now $\{y_1, y_2, e_{n-2}\}$ forms the $Heis_3$ and $\{e_1, \dots, e_{n-3}\}$ forms the Ab_{n-3} . Hence $\mathfrak{g} \simeq Ab_{n-3} \oplus Heis_3$.
- If $[y_1, y_2] \in L(y_1, y_2)$: Denote the Lie algebra generated by $\{y_1, y_2\}$ by \mathfrak{h} . By the classification of two-dimensional Lie algebra, we may assume WLOG that $[y_1, y_2] = y_1$. Hence $\mathfrak{g} \simeq Ab_{n-2} \oplus \mathfrak{h}$.

Remark 1.1. We could also consider quotient Lie algebra $\mathfrak{g}/C(\mathfrak{g})$, the process is similar.