Banco de Dados I

Motivação

- Sistemas legados
 - Sistemas antigos
 - Bancos de dados mal projetados
- Problemas
 - Consultas lentas
 - Redundância

- Os valores de alguns atributos dependem do valor de outros
- Dados dois conjuntos de atributos X e Y
 - Se os valores de Y devem "seguir" o que o valores de X representam
 - X →Y, ou seja, Y depende funcionalmente de X

- X e Y podem ser um conjunto de atributos
 - $| \circ A_1, ..., A_n \rightarrow B_1, ..., B_n |$
 - CPF → NOME ENDER SEXO
 - MATR CCR SEM → MEDIA
 - O lado direito da dependência pode ser decomposto
 - CPF → NOME ENDER SEXO pode ser representada
 - CPF → NOME
 - CPF → ENDER
 - CPF → SEXO

- X e Y podem ser um conjunto de atributos
 - $\bigcirc A_1, ..., A_n \rightarrow B_1, ..., B_n$
 - CPF → NOME ENDER SEXO
 - MATR CCR SEM → MEDIA
 - O lado esquerdo NÃO PODE
 - MATR CCR SEM → MEDIA
 - MATR → MEDIA
 - CCR → MEDIA
 - SEM → MEDIA

- Os valores de alguns atributos dependem do valor de outros
 - A tabela abaixo foi criada sem um bom projeto

title	year	length	genre	studioName	starName
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	drama	MGM	Vivien Leigh
Wayne's World	1992	95	comedy	Paramount	Dana Carvey
Wayne's World	1992	95	comedy	Paramount	Mike Meyers

A dependência funcional (DF) title year → genre length studioName é respeitada

 Se acrescentarmos starName na dependência, ela não será mais válida

title	year	length	genre	studioName	starName
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	drama	MGM	Vivien Leigh
Wayne's World	1992	95	comedy	Paramount	Dana Carvey
Wayne's World	1992	95	comedy	Paramount	Mike Meyers

title year → genre length studioName starName Implica title year → starName

Regras Dependência Funcional

- Decomposição
 - A₁, ..., A_n → B₁, .., B_n pode ser decomposta
 - \blacksquare $A_1, ..., A_n \rightarrow B_1$
 - $\blacksquare A_1, ..., A_n \rightarrow ...$
 - \blacksquare $A_1, ..., A_n \rightarrow B_n$

Regras Dependência Funcional

- Transitividade
 - A → B e B → C então
 - \blacksquare A \rightarrow C
- Aumento
 - A → B então AX → BX é válida também
- Reflexividade
 - \circ Se $\beta \subseteq \alpha$ então $\alpha \rightarrow \beta$
 - XY → X ou XY → Y ou XY → XY (todas triviais)

Regras Dependência Funcional

- União (consequência da decomposição)
 - A → B e A → C então
 - \blacksquare A \rightarrow B C
- Pseudo-transitividade
 - A → B e BX → W então AX → W

Algoritmo Fechamento dos Atributos

Passo 4: devolva X

- Baseado em um conjunto de DFs, pode-se inferir outras.
 - Calcular o conjunto de fechamento dos atributos

```
Entrada: Conjunto de atributos A e o conjunto de DFs válidas DF Saída: conjunto de fechamento A^+ de A Passo 1: decompor DF até que todos os lados direitos tenha apena 1 atributo Ex.: se existir uma DF igual A \to B C, torna-se A \to B e A \to C Passo 2: X=A (X é igual ao conjunto de atributos para o cálculo) Passo 3: Repita

Procure uma DF \beta \to \alpha tal que \beta \in X

X = X \cup \alpha (acrescenta os atributos em X)

Até X não crescer mais
```

Algoritmo Fechamento dos Atributos

- Suponhamos um conjunto de DF válido
 - $\circ \mathsf{DF} = \{\mathsf{AB} \rightarrow \mathsf{C}, \mathsf{BC} \rightarrow \mathsf{AD}, \mathsf{D} \rightarrow \mathsf{E}, \mathsf{CF} \rightarrow \mathsf{B}\}$
 - Queremos saber se AB→D pode ser inferida

```
Passo 1: DF'={AB→C, BC→A, BC→D, D→E, CF→B}
Passo 2: X={A,B} # lado esquerdo da DF a ser inferida
Passo 3: DF AB→C => {A,B} ∈ X? Sim, então X={A,B} U {C}
    DF BC→A => {B,C} ∈ X? Sim, mas A já está em X
    DF BC→D => {B,C} ∈ X? Sim, então X={A,B,C} U {D}
    DF D→E => {D} ∈ X? Sim, então X={A,B,C,D} U {E}
    DF CF→B => {C,F} ∈ X? Não, nada a fazer
    Repete o passo e verifica se X se altera
Passo 4: devolva X que representa {A,B} +, ou seja, {A,B,C,D,E}
Verificar se o lado direito de AB → D está em {A,B} +, caso sim, a DF é válida. É pois {D} ∈ {A,B,C,D,E}
```

Algoritmo Fechamento dos Atributos

- Exercício
 - Verifique se D→A, pode ser inferida a partir {AB→C,
 BC→AD, D→E, CF→B}

Chaves

- Com o algoritmo é possível verificar/encontrar as chaves de uma relação
 - Dada a relação R(A,B,C,G,H,I) e as DF {A->B, A->C,
 CG->H, CG->I, B->H}
 - Verifique o conjunto fechamento de AG
 - Se todos os atributos de R estiverem em AG⁺ então AG é uma chave.