Problem Sheet 4 Math40003 Linear Algebra and Groups

- 1. (a) Which of these sets of vectors are linearly independent? Which span \mathbb{R}^3 ?
 - (i) (5,3,0), (2,1,1)

- (ii) (1,0,1), (-1,1,0), (0,1,1)
- (iii) (1,3,1), (2,1,1), (-1,7,-5) (iv) (1,-3,2), (2,-1,1), (2,-5,4), (1,2,5)
- (b) For which a, b, c are the vectors (1, 3, 1), (2, 1, 1), (a, b, c) linearly dependent?
- 2. *Let V be a finite-dimensional vector space. For each of the following statements, say whether it is true or false. If it is true, give a justification; otherwise find a counterexample.
 - (a) If $\{v_1,\ldots,v_n\}$ is a basis, for V, and $\{x_1,\ldots,x_r\}$ is a linearly independent subset of V with r < n, and if $v_i \notin Span\{x_1, \ldots, x_r\}$ for all i, then $\{x_1,\ldots,x_r,v_{r+1},\ldots,v_n\}$ is a basis for V.
 - (b) If U is a subspace of V, then U + U = U.
 - (c) If U and W are subspaces of V, and $\dim U + \dim W = \dim V$, then $U \cap W =$ $\{0_V\}.$
 - (d) If dim V = n and $v_1 \in V$, then there exist vectors v_2, \ldots, v_n in V such that $\{v_1,\ldots,v_n\}$ spans V.
 - (e) If W is a subspace of V, then $\dim W \leq \dim V$ and $\dim W = \dim V$ if and only if W = V.
- 3. Which of the following sets of vectors in \mathbb{R}^4 are linearly independent? Extend those which are linearly independent to a basis of \mathbb{R}^4 .

 - (i) (1,2,3,0), (-1,2,3,0) (ii) (1,2,3,0), (-1,2,3,0), (0,1,2,3)
 - (iii) (1, 1, -1, -1), (1, -1, 1, -1), (-1, 1, 1, -1), (0, 1, 2, -3)
- 4. Let $V = \mathbb{R}^{\mathbb{R}}$ (the vector space of functions from \mathbb{R} to \mathbb{R}). Show that the functions

$$f_1(x) = 1$$
, $f_2(x) = 1 + x + x^2$, $f_3(x) = \sin x$, $f_4(x) = \cos x$

are linearly independent. Which of the following functions lie in $\langle f_1, f_2, f_3, f_4 \rangle$?

$$5 - 3x - 3x^2$$
, $\tan x$, $10 - x - x^2 + \sin(x + \pi/3)$.

- 5. (a) Write down an infinite number of different bases of \mathbb{R}^2 (in finite time).
 - (b) Find a basis for $W = \langle x^2 1, x^2 + 1, 4, 2x 1, 2x + 1 \rangle \leq \mathbb{R}[x]$.

Recall: $\mathbb{R}[x]$ is the set of real polynomials in variable x

- 6. Let $M_{3,3}$ denote the vector space of all 3×3 matrices over \mathbb{R} .
 - (i) Find a basis of $M_{3,3}$ consisting of invertible matrices.
 - (ii) Let $W = \{A \in M_{3,3} : A^t = A\}$. Show $W \leq V$ and compute dim W.
 - (iii) Let $W \subset M_{3,3}$ be the set of matrices whose columns, rows, and both diagonals add to 0. Show $W \leq V$ and find a basis for W.