北京理工大学《数值分析》

2009-2010 学年第二学期期末试卷 (B) 卷 (2008 级计算机系)

班	E级	学号	姓名	成绩	
注意	意: ① 答题方式为闭② 可以使用计算③请将填空题和	器。	填在试卷上,计算是	亚答在答题纸上 。	
<u> </u>	填空题(每空2%	分, 共30分)			
1.	拉格朗日插值公司	式的系数和 $\sum_{i=0}^{n} a_i$	(x) =	°	
2.	若函数 $f(x)=x^7+x^4$	$+3x+5$, $\emptyset f[0]$,1,2,3,4,5,6,7] =	<u> </u>	
3.	对任意初始向量。	X ⁽⁰⁾ 和常数项Λ	I,有迭代公式 x	$\mathbf{M}^{(k+1)} = \mathbf{M}\mathbf{X}^{(k)} + \mathbf{N} \stackrel{\text{def}}{=} \mathbf{I}$	主的向量序列
	$\left\{X^{(k)}\right\}$ 收敛的充分	▶必要条件是	o		
4.	辛普生求积公式的精度为		, n个	水积节点的高斯求	积公式的代数
5.	非线性方程 f(x)=1	-x-sinx=0 在[0,	1]内有一个根,作	使用二分法求误差不	六大于 0.5*10 ⁻⁴
	的根,需要对分的	勺次数是	o		
6.	已知插值节点	((-1,3), (1,1),	(2,-1) ,则 $f(x)$ 日	的二次牛顿基本	上差 商 公 式
	是				
7.	设有矩阵 $A = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$	-3 4],则 A	₁ =•		
8.	要使 $\sqrt{20}$ = 4.4721	1 35 的近似值的	的相对误差小于 0.	2%,至少要取	_位有效数字。
9.	用牛顿下山法求角	军方程 $\frac{x^3}{3}$ - x =	0根的迭代公式是	:	,
	下山条件是		_ •		,
10.	用松弛法 ($\omega = 0$.	9)解方程组{-:	$x_1 + 2x_2 + x_3 = -12$ $x_1 + 4x_2 + 2x_3 = 2$ $x_2 - 3x_2 + 10x_3 = 3$	0 的迭代公式是	Co Maria
				Only the same	

1

- $C_{2}^{(4)} = _{----}$
- 12. 三次样条插值中的自然边界条件是
- 二、选择填空(每题2分,共10分)
- 1. 已知数 $x_1=721$ $x_2=0.721$ $x_3=0.700$ $x_4=7*10^{-2}$ 是由四舍五入得到的,则它们的有效 数字的位数应分别为()。
 - A. 3, 3, 1

B. 3, 3, 3

C. 3, 3, 1, 1

- D. 3, 3, 3, 2
- $10x_1 x_2 3x_3 = 7.2$ 2. 当 a ()时,线性方程组 $\left\{-x_1 + 7x_2 + 3x_3 = 8.3 \text{ 的迭代解一定收敛} . \\ 2x_2 - 4x_2 + ax_3 = 9.2 \right\}$
 - A. >6
- B. =6
- C. <6 D. =|6|
- $\int 3x_1 x_2 + 3x_3 = -1$ 3. 用列主元素法求线性方程组 $\left\{-x_1 + 2x_2 - 9x_3 = 0, 第1次消元时选择主元素为()\right\}$ $|-4x, -3x, +x_3| = 1$
 - A. 3

B. 4

C. -4

- D. -9
- 4. 已知多项式 P(x)过点(0,0), (2,8), (4,64), (11,1331), (15,3375), 它的三阶差商为常 数 1,一阶、二阶差商均不为 0,那么 P(x)是()。
 - A. 二次多项式

B. 不超过二次的多项式

C. 三次多项式

- D. 四次多项式
- 5. 下列说法不正确的是()。
 - A. 二分法不能用于求函数 f(x)=0 的复根。
 - B. 方程求根的迭代解法的迭代函数为 $\varphi(x)$,则迭代收敛的充分条件是 $\varphi(x)<1$ 。
 - C. 用高斯消元法求解线性方程组 AX=B 时, 在没有舍入误差的情况下得到的都是 精确解。
 - D. 如果插值节点相同,在满足插值条件下用不同方法建立的插值公式是等价的。
- 三、计算题(共60分)
- 1. 设 a 为常数,建立计算 \sqrt{a} 的牛顿迭代公式,并求 $\sqrt{115}$ 的近似值,计算结果保留小 数点后5位。(6分)

2. 用三点高斯求积公式求 $I = \int_{-1}^{1} \sqrt{x+1.5} dx$,计算结果保留小数点后 6 位 (6 分)

n	$\pm t_i$	τv_i	
2	0.577 350 269 2	1	
3	0	0.888888889	
3	0.774 596 692	0.555 555 555 6	

3. 对线性代数方程组
$$\begin{cases} 2x_1 - x_2 + x_4 = 1 \\ x_1 - x_3 + 5x_4 = 6 \\ x_2 + 4x_3 - x_4 = 8 \\ -x_1 + 3x_2 - x_3 = 3 \end{cases}$$
 请写出使雅可比迭代法和高斯一赛德

尔迭代法均收敛的迭代格式,要求分别写出迭代格式(不需要迭代计算),并说明收敛的理由。(6分)

4. 用列消元法解下面的线性方程组。(6分)

$$\begin{cases} 2x_1 + x_2 + 2x_3 = 5 \\ 5x_1 - x_2 + x_3 = 8 \\ x_1 - 3x_2 - 4x_3 = -4 \end{cases}$$

- 5. 试用复化辛卜生公式计算定积分 $I = \int_{0.5}^{1} \sqrt{x} \, dx$ (4 等分区间)。(6 分)
- 6. 设 y=sinx, 当取 $x_0=1.74$, $x_1=1.76$, $x_2=1.78$ 建立拉格朗日插值公式计算 x=1.75 的函数值时,函数值 y_0 , y_1 , y_2 应取几位小数? (10 分)
- 7. 设函数 f(x) 在区间[0,3]上具有四阶连续导数,试用埃尔米特插值法求一个次数不高于 3 的多项式 $P_3(x)$,使其满足如下数据表值,并给出截断误差估计公式(10 分)

x	y	y'
0	0	
1	1	3
2	1	

8. 用 Euler 法和改进的欧拉法求解下述初值问题,取 h=0.1,计算到 x=0.5,要求计算 结果保留小数点后 6 位。(10 分)

$$\begin{cases} y' = y - \frac{2x}{y}, & 0 < x < 1 \\ y(0) = 1 \end{cases}$$