Natanael Magalhães Cardoso, nUSP: 8914122

Item 1.2

Figura 1: Esquema do circuito

Item 1.2.a

$$||G(j\omega)|| = \left|\left|\frac{V_S}{V_E}\right|\right|$$

onde V_S é a tensão no capacitor e V_E é a tensão no gerador.

$$\varphi(j\omega) = \varphi_{V_S} - \varphi_{V_E}$$

onde φ_{V_S} é a fase da tensão no capacitor e φ_{V_E} é a fase da tensão no gerador.

Item 1.2.b

$$||G(j\omega)|| = \left|\left|\frac{4.22V}{5.0V}\right|\right| = 0.84$$

Itens 1.2.c, 1.2.d

f [Hz]	V_E [V]	V_S [V]	φ_{V_S,V_E} [°]	G(f)
10	3.54	3.53	-0.36	0.997
50	3.54	3.53	-1.81	0.997
100	3.54	3.52	-3.61	0.99
300	3.54	3.45	-10.70	0.98
500	3.54	3.37	-17.47	0.95
700	3.54	3.22	-23.91	0.91
1k	3.54	2.98	-32.31	0.84
1.2k	3.54	2.81	-37.14	0.79
1.3k	3.54	2.73	-39.41	0.77
1.4k	3.54	2.65	-41.47	0.75
1.5k	3.54	2.57	-43.40	0.73
1.6k	3.54	2.48	-45.19	0.70
1.7k	3.54	2.40	-46.98	0.68
1.8k	3.54	2.33	-48.50	0.66
2k	3.54	2.19	-51.51	0.62
3k	3.54	1.65	-62.06	0.47
6k	3.54	0.91	-75.09	0.26
10k	3.54	0.55	-80.96	0.16

Tabela 1: Tabela com os valores de tensão, defasagem e ganho para cada valor de frequência obtidos pela simulação.

Item 1.2.e

f [Hz]	φ_{V_S,V_E} [°]	G(f)
10	-0.36	1.0
50	-1.80	1.0
100	-3.60	1.0
300	-10.67	0.98
500	-17.44	0.95
700	-23.74	0.92
1k	-32.14	0.85
1.2k	-37.02	0.80
1.3k	-39.24	0.77
1.4k	-41.34	0.75
1.5k	-43.30	0.73
1.6k	-45.15	0.71
1.7k	-46.89	0.68
1.8k	-48.52	0.66
2k	-51.49	0.62
3k	-62.05	0.47
6k	-75.14	0.25
10k	-80.96	0.16

Tabela 2: Tabela com os valores teóricos de defasagem e ganho para cada valor de frequência obtidos pela planílha disponibilizada como material complementar.

Item 1.2.f

Figura 2: Gráfico da simulação do circuito (AC Sweep). Em verde, a defasagem V_E , em azul escuro a defasagem V_S . As curvas PR1, PR2 e PR3 são referentes às pontas de provas da figura 1.

(i) Gráfico do Ganho

Figura 3: A figura (a) mostra o gráfico teórico do ganho, plotado a partir da planilha disponibilizada como *material complementar*. Já a figura (b) mostra o gráfico plotado a partir dos valores simulados da tabela 1.

(ii) Gráfico da Fase

Figura 4: A figura (a) mostra o gráfico teórico da defasagem, plotado a partir da planilha disponibilizada como *material complementar*. Já a figura (b) mostra o gráfico plotado a partir dos valores simulados da tabela 1.

Item 1.2.g

As curvas teóricas e simuladas são muito parecidas. O modelo é adequado.

Item 1.2.h

Na tabela 1, o ponto mais próximo de 45° na coluna de defasagem está na 12^{a} linha. Para esta fase, a frequência vale 1.6 kHz. Portanto,

$$f_c = 1.6 \text{ kHz}$$

Item 1.2.i

$$f_c = \frac{1}{2\pi RC} = \frac{1}{2\pi (1 \ k\Omega)(100 \ nF)} = 1591.55 \ Hz$$

Item 1.2.j

A determinação da frequência de corte pelo valor mais próximo da tabela 1 foi próximo ao valor calculado pela equação do item anterior.

$$\epsilon = \left\| \frac{1600 - 1591.55}{1591.55} \right\| \cdot 100 = 0.53\%$$

Item 1.2.k

Uma das aplicações deste circuito é usá-lo como um filtro.

Item 2

Observação: O item 2 do *Guia Experimental* não informa os valores de todos os componentes. Por isso, eu usei os valores descritos no item 2 da *Introdução Teórica*.

Figura 5: Esquema do circuito com os medidores de tensão

Item 2.1.a

Equações (11) e (12)

Itens 2.1.b, 2.1.c

Figura 6: Gráfico da fase gerado pela simulação AC Sweep. Os valoes $PR\{1, 2, 3, 4\}$ da legenda são referentes aos medidores da figura 5. $PR2 \equiv PR4$.

f [Hz]	$V_E [V_{RMS}]$	V_S $[V_{RMS}]$	φ_{V_S,V_E} [°]	G(f)
1k	3.54	$7.18 \cdot 10^{-3}$	66.60	$2.03 \cdot 10^{-3}$
3k	3.54	$1.98 \cdot 10^{-2}$	80.09	$5.59 \cdot 10^{-3}$
5k	3.54	$4.28 \cdot 10^{-2}$	82.16	$1.21 \cdot 10^{-2}$
7k	3.54	$1.12 \cdot 10^{-1}$	79.33	$3.16 \cdot 10^{-2}$
8k	3.54	$2.34 \cdot 10^{-1}$	39.82	$6.61 \cdot 10^{-2}$
8.5k	3.54	$3.59 \cdot 10^{-1}$	11.39	$1.01\cdot 10^{-1}$
8.8k	3.54	$6.58 \cdot 10^{-1}$	-6.29	$1.86 \cdot 10^{-1}$
9k	3.54	$8.35 \cdot 10^{-1}$	-17.81	$2.36 \cdot 10^{-1}$
9.2k	3.54	$9.55 \cdot 10^{-1}$	-29.34	$2.70 \cdot 10^{-1}$
9.3k	3.54	$8.77 \cdot 10^{-1}$	-34.72	$2.48 \cdot 10^{-1}$
9.4k	3.54	$7.47 \cdot 10^{-1}$	-40.87	$2.11 \cdot 10^{-1}$
9.6k	3.54	$5.40 \cdot 10^{-1}$	-46.19	$1.53\cdot 10^{-1}$
10k	3.54	$3.23 \cdot 10^{-1}$	-54.00	$9.12\cdot 10^{-2}$
11k	3.54	$1.61 \cdot 10^{-1}$	-73.54	$4.55\cdot 10^{-2}$
12k	3.54	$1.09 \cdot 10^{-1}$	-84.90	$3.08 \cdot 10^{-2}$
15k	3.54	$6.72 \cdot 10^{-2}$	-87.96	$1.90 \cdot 10^{-2}$
20k	3.54	$4.17 \cdot 10^{-2}$	-89.10	$1.18 \cdot 10^{-2}$

Tabela 3: Tabela com os valores simulados para tensão de entrada, tensão de saída, fase e ganho.

Item 2.1.d

f [Hz]	$arphi_{V_S,V_E}$ [°]	$\ G(f)\ $
1k	66.60	$2.07 \cdot 10^{-3}$
3k	80.62	$6.39 \cdot 10^{-3}$
5k	82.34	$1.34 \cdot 10^{-2}$
7k	79.97	$3.12 \cdot 10^{-2}$
8k	74.13	$6.06 \cdot 10^{-2}$
8.5k	65.10	$1.02 \cdot 10^{-1}$
8.8k	51.21	$1.61 \cdot 10^{-1}$
9k	30.99	$2.27 \cdot 10^{-1}$
9.2k	-4.12	$2.73 \cdot 10^{-1}$
9.3k	-22.73	$2.56 \cdot 10^{-1}$
9.4k	-37.70	$2.23 \cdot 10^{-1}$
9.6k	-56.34	$1.61 \cdot 10^{-1}$
10k	-71.80	$9.62 \cdot 10^{-2}$
11k	-82.23	$4.73 \cdot 10^{-2}$
12k	-85.31	$3.19 \cdot 10^{-2}$
15k	-88.06	$1.70 \cdot 10^{-2}$
20k	-89.10	$1.01 \cdot 10^{-2}$

Tabela 4: Valor térioricos da fase e do ganho para o circuito obtidos pela planilha.

Item 2.1.e Gráfico do Ganho

Figura 7: A figura (a) mostra o gráfico teórico do ganho, plotado a partir da planilha disponibilizada como *material complementar*. Já a figura (b) mostra o gráfico plotado a partir dos valores simulados da tabela 3.

Gráfico da Fase

Figura 8: A figura (a) mostra o gráfico teórico da fase, plotado a partir da planilha disponibilizada como *material complementar*. Já a figura (b) mostra o gráfico plotado a partir dos valores simulados da tabela 3.

Item 2.1.f

Figura 9: Gráfico de G(f) indicando os pontos de intersecção da frequência de ressonância e de corte com a curva G(f).

Para obter o valor da frequência de ressonância a partir dos dados experimentais, basta olhar para o valor máximo de G_f e ver a frequência naquele ponto.

$$G_R = G(f_R) = \max(G) \approx 0.27 \Rightarrow f_R \approx 9.2 \text{ kHz}$$

Com o valor do ganho mámixo, é possível obter as frequências de corte olhando para os valores de frequência no conjunto $\{f_C \in \mathbb{R} : G(f_C) = G_R/\sqrt{2}\}.$

$$G_C = \frac{G_R}{\sqrt{2}} \approx 0.19 \Rightarrow \begin{cases} f_{C_1} \approx 8.8 \text{ kHz} \\ f_{C_2} \approx 9.5 \text{ kHz} \end{cases}$$

A faixa de passagem é dada por

$$\Delta f = f_{C_2} - f_{C_1} = (9.5 - 8.8) \text{ kHz} = 0.7 \text{ kHz}$$

O índice de mérito é dado por

$$Q = \frac{f_R}{f_{C_2} - f_{C_1}} = \frac{9.2 \text{ kHz}}{(9.5 \text{ kHz}) - (8.8 \text{ kHz})} \approx 13.14$$

Item 2.1.g

Calculando a frequência de ressonância

$$f_R = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{(3 \text{ mH})(100 \text{ nF})}} = 9.19 \text{ kHz}$$

O erro é dado por

$$\epsilon = \left\| \frac{9200 - 9189}{9189} \right\| \cdot 100 = 0.12\%$$

Item 2.1.h

A desafasem é estritamente decrescente no intervalo da faixa de passagem. Neste intervalo, o módulo da fase vai de 0° a 45° . Depois da frequência de corte superior, o módulo da fase aumenta com uma taxa menor.

Item 2.1.i

A fase tenderia a 90°.