Monstegne u judgepengnen 0 s R"; f:0 > 1R. $g(x) = \frac{\partial X_1^{(1)}}{\partial x_1^{(2)}} \exp \left(\frac{\partial x_1}{\partial x_2^{(1)}} \right) + \frac{\partial x_2}{\partial x_1^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac{\partial x_2}{\partial x_2^{(2)}} \left(\frac{\partial x_2}{\partial x_2^{(2)}} \right) + \frac$ 1 anaro unes que n'houghapens noprepre brene 2 - more ven. whoush. sem itis , to fix, - cuemente upouglepine $t_{1}^{*x} = \lambda(\lambda - \tau)x_{3}^{2}; \qquad t_{2}^{*x} = x_{3}^{*x}$ $t_{3}^{*} = \lambda x_{3-3}^{*}; \qquad t_{3}^{*} = x_{3}^{*x}$ 1), f(xy)= xd 7xy = xy-1 + y. xy l lx; x>0,9>0 $f_{\chi}^{\lambda x} = \lambda x_{\beta \zeta} \cdot g \times + x_{\beta \zeta} \times g \times \chi$ 3). $f(xy) = xy(x^2-y^2)$; f(xy) = 0, f(xy) = 0.

1) $f(xy) = xy(x^2-y^2)$; f(xy) = 0. $[x,a] \neq (0,0)$ $-1/x = 3 \left(\frac{x_1 + a_2}{x_3 - a_3} + x \left(\frac{x_2 + a_2}{x_3 - a_3} \right)^{x} \right)$ $= \frac{1}{(x^{2}+y^{2})^{2}} \left((x^{2}-y^{2})(x^{2}+y^{2}) + 4x^{2}y^{2} \right) = \frac{1}{3} \left((x^{2}-y^{2})^{2} + 4x^{2}y^{2} \right)^{2} \left((x^{2}-y^{2})^{2} + 4x^{2}y^{2} \right)^{2}$ $= \frac{(x^{2}+y^{2})^{2}}{(x^{2}+y^{2})^{2}} \left((x^{2}-y^{2})(x^{2}+y^{2}) + 4x^{2}y^{2} \right) = \frac{1}{3} \left((x^{2}-y^{2})^{2} + 4x^{2}y^{2} \right)^{2}$ $f_{xy}^{\prime}(q_0) = \lim_{y \to 0} f_{x}^{\prime}(q_0) - f_{x}^{\prime}(q_0) = \lim_{y \to 0} \frac{y}{y^{\prime}} \cdot (-y^{\prime}_{t_0}) = -1$ $f_{yx}''(0,0) = \lim_{x \to 0} f_{y}'(x_{0}) - f_{y}'(0,0) = \lim_{x \to 0} -\frac{x^{0}}{x^{1}}(-x^{1}) = 1$] O⊆R", +10 → R, ijeli..., n), j+j. $\frac{3}{3} \frac{3}{3} \frac{1}{3} \frac{3}{3} \frac{1}{3} \frac{3}{3} \frac{1}{3} \frac{3}{3} \frac{1}{3} \frac{1}{3} \frac{3}{3} \frac{1}{3} \frac{1$

1). H.y.o. h=2 } try, for e (((())) △ (x,y)=-f(x,0)-(f(x,0)-(f(x,0))=+(x)-+(0) No real. Napouxa no + 3 xg $f(x)-f(o)=f(x^{2})\cdot x=\left(f_{x}^{x}\left(x^{2}\right)-f_{x}^{x}\left(x^{2}o\right)\right)\cdot x$ $\varphi(y) = f_x(x_y, y)$ wing x 4 (g) -4(e) 8(h). h = -2x, (x, y) $\Delta = \int_{xy}^{x} \left(x_{y}, y_{x} \right) - xy$ F y mening o. " y Nomenel spyrnupolicy crane energy $\frac{\Delta}{xy} \rightarrow \int_{yy}^{y} (0,0), \uparrow$ $d^2(\ell) = d \left(df(\ell)\right)(\ell)$ There Le Dyeneyun her agness references 1:0-1R coxpensere u gu and know when. f(x,y)= x2-y2 + 4xy $df = d(x^{2}) - dy^{2} + 4 d(xy) = 2x dx - 2y dy + 4 (y dx + x dy)$ df = d(2x) dx - 2y dy + 4 (y dx + x dy) = $= 2 dx dx - 2 dy dy + 4 (dy dx + dx dy) = 2 (dx)^{2} - 2 dy^{2} + 4$ + 8 (do dy) df (hy hz) = 2x h, -2y hz + 4 (y h, + x hz) = 2 f (dr.dy)