CH4. 분해법

평활법과 분해법

■ 평활법

시계열을 구성하는 각 성분들을 구분하지 않고 평활에 의해 불규칙성분을
 제거하여 미래의 값을 예측

■ 평활법

- 20세기 초에 경제학자들이 경기변동을 예측하려고 시도한데서 비롯된
 전통적인 시계열 분석 방법
- 시계열을 구성하는 각 성분들을 따고 구분한 후 이를 이용하여 미래를 예측
- 계절조정 (seasonal adjustment)을 위해 사용

시계열 성분

- 불규칙성분(또는 우연성분) : *I_t*
 - 시간과 관계없이 랜덤한 원인에 의해 나타나는 변동
 - 여러 가지 복합적인 원인에 의한 변동을 의미
- 추세성분 (또는 경향변동, 장기변동) : T_t
 - 시간이 경과함에 따라 증가하거나 감소하는 등의 어떤 추세를 가지고
 움직이는 장기적인 변동
 - 보통 다항식으로 설명
- 계절성분 : *S_t*
 - 1년, 1개월, 1주일 등의 일정한 주기를 가지고 규칙적으로 반복되는 변동
 - 보통 1년 이내의 주기적인 변동을 의미
 - 삼각함수 또는 지시함수들의 선형결합으로 설명
- 순환성분 : C_t
 - 계절성분과 유사하나 그 변화의 주기가 길 때의 변동(경기변동)

분해법의 기본 가정과 모형

■ 기본 가정

- 시계열이 앞에서 설명한 4가지 성분들로 구성

■ 모형

- 가법모형 (additive model)

$$Z_t = T_t + S_t + C_t + I_t$$

- 계절성분의 진폭이 시계열의 수준에 상관없이 일정할 때 주로 사용
- 승법모형 (multiplicative model)

$$Z_t = T_t \times S_t \times C_t \times I_t$$

- 시계열의 수준에 따라 계절성분의 진폭이 달라질 때 주로 사용
- 로그변환 : $\ln Z_t = \ln T_t + \ln S_t + \ln C_t + \ln I_t$

추세모형에 의한 분해

■ 추세 성분

$$T_t = \beta_0 + \beta_1 t + \dots + \beta_k t^k$$

■ 계절성분 (주기 : *s*)

-
$$S_t = \sum_{i=1}^{s} \delta_i \times IND_{ti}$$
, $IND_{ti} = \begin{cases} 1, & t = i \pmod{s} \\ 0, & etc. \end{cases}$

-
$$S_t = \sum_{i=1}^m A_i \sin\left(\frac{2\pi i}{S}t + \phi_i\right)$$

■ 순환성분

순환성분에 대한 주기를 찾는 문제 때문에 모형을 이용한 분해법에서는
 일반적으로 순환성분은 고려하지 않음

추세모형에 의한 분해 - 가법모형

- 가법모형 $Z_t = T_t + S_t + I_t$
- 추정단계
 - 1. 추세성분 추정
 - $\{Z_t\}$ 에 추세모형 적합 : $Z_t = \beta_0 + \beta_1 t + \dots + \beta_k t^k + \varepsilon_t$
 - 추세성분: $\hat{T}_t = \hat{\beta}_0 + \hat{\beta}_1 t + \dots + \hat{\beta}_k t^k$
 - 2. 계절성분 추정
 - $\{Z_t \hat{T}_t\}$ 에 계절추세모형 적합 : $Z_t \hat{T}_t = \sum_{i=1}^s \delta_i \times IND_{ti} + \varepsilon_t$
 - 계절성분 : $\hat{S}_t = \sum_{i=1}^{S} \hat{\delta}_i \times IND_{ti}$
 - 3. 불규칙 성분 검토 : $\hat{I}_t = Z_t \hat{T}_t \hat{S}_t$
 - 불규칙 성분에 체계적인 정보가 남아 있는지 검토

추세모형에 의한 분해 - 승법모형

- 가법모형 $Z_t = T_t \times S_t \times I_t$
- 추정단계
 - 1. 추세성분 추정
 - $\{Z_t\}$ 에 추세모형 적합 : $Z_t = \beta_0 + \beta_1 t + \dots + \beta_k t^k + \varepsilon_t$
 - $\dot{\tau}$ $\hat{T}_t = \hat{\beta}_0 + \hat{\beta}_1 t + \dots + \hat{\beta}_k t^k$
 - 2. 계절성분 추정
 - $\{Z_t/\hat{T}_t\}$ 에 계절추세모형 적합 : $Z_t/\hat{T}_t = \sum_{i=1}^s \delta_i \times IND_{ti} + \varepsilon_t$
 - 계절성분 : $\hat{S}_t = \sum_{i=1}^{S} \hat{\delta}_i \times IND_{ti}$
 - 3. 불규칙 성분 검토 : $\hat{I}_t = Z_t/(\hat{T}_t \times \hat{S}_t)$
 - 불규칙 성분에 체계적인 정보가 남아 있는지 검토

추세모형에 의한 분해

■ 단점

추세성분과 계절성분이 서로 독립이 아니므로 각 성분들을 3단계에 걸쳐
 추정하는 것은 옳지 않다.

■ 동시추정

$$Z_t = \beta_1 t + \dots + \beta_k t^k + \delta_1 IND_{t1} + \dots + \delta_s IND_{ts} + \varepsilon_t$$

■ 가정

- 모수 $\beta_1, \dots, \beta_k, \delta_1, \dots, \delta_s$ 들이 시간에 따라서 변하지 않음
- 만약 모수가 시간에 따라서 변한다면 평활법을 사용하는 것이 바람직

이동평균법

이동평균법(moving average method)

- 표본평균처럼 관측값 전부에 동일한 가중치를 주는 대신에 최근 m개의 값들 만을 이용하여 평균을 구하는 방법

- 장점:

- 지엽적인 변동을 제거하여 장기적인 추세 파악 가능
- 시계열이 생성되는 시스템에 변화에 쉽게 대처 가능
- 쉬운 계산법
- 예측의 목적보다는 주로 분해법에서 계절조정을 하는데 사용

이동평균법

■ 단순이동평균법(simple moving average method)

- 모형 : $Z_t = \beta_0 + \varepsilon_t$, $\varepsilon_t \sim iid(0, \sigma_{\varepsilon}^2)$
- 모수 β_0 는 시간에 따라 변할 수 있는 미지의 값

$$M_{n,1} = \frac{1}{m}(Z_{n-m+1} + \dots + Z_n)$$

- 기대값:
$$E(M_{n,1}) = \frac{1}{m} \{ E(Z_{n-m+1}) + \dots + E(Z_n) \} = \beta_0$$

이동평균법 - 예측

예측

- n시점에서 l-시차 후의 예측값 : $\hat{Z}_n(l) = M_{n,1}$

■ 예측 갱신

- 새로운 관측값 Z_{n+1} 이 추가될 경우

$$M_{n+1,1} = \frac{1}{m} (Z_{n-m+2} + \dots + Z_{n+1})$$

$$= \frac{1}{m} (Z_{n-m+1} + \dots + Z_n - Z_{n-m+1} + Z_{n+1})$$

$$= M_{n,1} + \frac{1}{m} (Z_{n+1} - Z_{n-m+1})$$

단순이동평균법에 의한 평활

■ 이동평균의 목적

- 예측
- 원 시계열에서 불규칙성분과 계절성분들을 동시에 평활하여 추세성분과
 순환성분을 다른 성분들로부터 분리하고자 할 때 많이 사용

■ 중심이동평균 (centered moving average)

-
$$M_{n,1} = \frac{1}{2l+1} (Z_{n-l} + \dots + Z_n + \dots + Z_{n+l})$$

t	1	2	3	4	5	6	7	8	9	10
Z_t	10	12	8	12	7	5	8	7	9	10
MA(3)										
$MA_c(3)$										

이동평균법 - 예제

■ 단순이동평균과 중심평균이동 비교

이동평균법에 의한 분해 - 가법모형

- 가법모형 $Z_t = T_t + S_t + C_t + I_t$
- 이동평균을 이용한 분해법
 - 1. 추세성분/순환 성분 추정 : $T_t + C_t$
 - $\{Z_t\}$ 에 계절성분의 주기인 s항을 이용하는 이동평균을 적용
 - 계절성분과 불규칙성분이 제거
 - 2. 계절/불규칙 성분 추정 : $\widehat{S_t + I_t} = X_t \widehat{T_t + C_t}$
 - 3. 계절 성분 추정 : \hat{S}_t
 - $\{S_t + I_t\}$ 에 계절성분의 주기 s와 일치하지 않는 개수 항의 이동평균을 적용 => 불규칙성분이 제거

이동평균법에 의한 분해 - 가법모형

- 가법모형 $Z_t = T_t + S_t + C_t + I_t$
- 이동평균을 이용한 분해법
 - 4. 추세성분 추정 : \hat{T}_t
 - $T_t + C_t$ 을 종속변수로 하여 추세다항식을 적합
 - 5. 순환성분 추정 : $\widehat{C}_t = \widehat{T_t + C_t} \widehat{T}_t$
 - 6. 불규칙 성분 검토 : $\hat{I}_t = Z_t \hat{T}_t \hat{S}_t \hat{C}_t$
 - 불규칙 성분에 체계적인 정보가 남아 있는지 검토

이동평균법에 의한 분해 - 가법모형

■ 시점 *t*에서의 추정값

$$\hat{Z}_t = \hat{T}_t + \hat{S}_t + \hat{C}_t$$

■ 시점 n에서의 I-시차 후의 예측값

$$\hat{Z}_n(l) = \hat{T}_n(l) + \hat{S}_n(l) + \hat{C}_n(l)$$

계절조정에 사용되는 이동평균법

X-12 ARIMA

- 대칭(symmetric) (2d+1)항 이동평균

$$MA_t(2d+1) = \frac{1}{2d+1}(Z_{t-d} + \dots + Z_t + \dots + Z_{t+d})$$

- 비대칭(asymmetric) (2d)항 이동평균

$$MA_{t,a}(2d) = \frac{1}{2d}(Z_{t-d+1} + \dots + Z_t + \dots + Z_{t+d})$$

- 대칭(asymmetric) (2d+1)항 가중이동평균

$$\begin{aligned} MA_{t,w}(2d+1) &= w_{-d}Z_{t-d} + w_{-d+1}Z_{t-d+1} + \dots + w_0Z_t + \\ & \dots + w_{d-1}Z_{t+d-1} + w_dZ_{t+d}) \end{aligned}$$

단
$$\sum_{j=-d}^{d} w_j = 1$$
, $w_{-j} = w_j$

계절조정에 사용되는 이동평균법

■ X-12 ARIMA – 주기: 1년(12개월)

t	Z_t	$MA_t(3)$	$MA_t(3 \times 3)$	$MA_t(3 \times 5)$	$MA_{t,a}$ (12)	$MA_t(12 \times 2)$	$MA_{t,H}(5)$
1	10						
2	12	10.000					
3	8	10.667	9.889				10.279
4	12	9.000	9.222	8.867			9.865
5	7	8.000	7.889	8.200	8.083		7.736
6	5	6.667	7.111	7.667	7.917	8.000	5.813
7	8	6.667	7.111	7.600	7.250	7.583	6.824
8	7	8.000	7.778	7.467	7.333	7.292	7.809
9	9	8.667	8.000	7.400	7.333	7.333	9.217
10	10	7.333	7.444	7.200	7.417	7.375	8.159
11	3	6.333	6.444	6.800	8.000	7.708	5.137
12	6	5.667	6.000	6.467	8.417	8.208	5.560
13	8	6.000	6.222	6.667	8.583		6.528
14	4	7.000	7.111	7.333			5.916
15	9	8.333	8.333	8.333			8.558
16	12	9.667	9.556	9.333			10.526
17	8	10.667	10.444	10.200			9.914
18	12	11.000	11.000				11.337
19	13	11.333					
20	9						

계절조정에 사용되는 이동평균법 - 예제

계절조정에 사용되는 이동평균법 - 예제

■ 음식물 출하 지수

End of Document