1 Elementare DSV

1.1 Energie

Die Leistung und Energie eines Signals x(k) $k \in [k_1, k_2]$

$$E_{k_1,k_2} = \sum_{k=k_1}^{k_2} |x(k)|^2 = (k_2 - k_1 + 1)P_{k_1,k_2}$$
 (1)

Parsevallsche Gleichung ZDFT:

$$E_{-\infty,\infty} = \sum_{-\infty}^{\infty} |x(k)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\Omega})|^2 d\Omega \quad (2)$$

Parsevallsche Gleichung DFT:

$$E = \sum_{k=0}^{N-1} |x(k)|^2 = \frac{1}{N} \sum_{n=0}^{N-1} |X(n)|^2$$
 (3)

1.2 Faltung

1.2.1 Lineare Faltung

$$g(k) * u(k) = \sum_{\nu=0}^{k} g(\nu)u(k-\nu) = \sum_{\nu=0}^{k} g(k-\nu)u(\nu) \quad (4)$$

1.2.2 Zyklische Faltung

 $x_1(k)$ und $x_2(k)$ durch **Zero-Padding** auf $N = N_1 + N_2 - 1$

$$x_1(k) \circledast x_2(k) = \sum_{\nu=0}^{N-1} x_1(\nu) x_2([k-\nu]_{modN}) = \sum_{\nu=0}^{N-1} x_1([k-\nu]_{modN}) x_2(\nu)$$
(5)

1.3 Korrelation

 $x_1(k) \in [0, N_1 - 1]$ und $x_2(k) \in [0, N_2 - 1]$ nicht kommutativ sondern an der y-Achse gespiegelt $(r_{x_1x_2}(\lambda) = r_{x_2x_1}(-\lambda))$.

$$r_{x_1 x_2}(\lambda) = \sum_{k = -\infty}^{\infty} x_1^*(k) x_2(k + \lambda)$$
 (6)

Korrelation durch schnelle Faltung:

- 1. Beide Signale Zero-Padding auf $N=N_1+N_2-1$
- 2. x_1 Spiegeln
- 3. Faltung ausführen

$$r_{x_1 x_2}(\lambda) = x_1^*(-\lambda) * x_2(\lambda)$$
 (7)

- Nicht-Erwartungstreue Schätzung $\hat{\varphi}_{x1x2}$
- Erwartungstreue Schätzung $\hat{\varphi}'_{x1x2}$
- Normierung auf $N = max(N_1, N_2)$

$$\hat{\varphi}_{x_1 x_2} = \frac{1}{N} r_{x_1 x_2}(\lambda) \tag{8}$$

$$\hat{\varphi}'_{x_1 x_2} = \frac{1}{N - |\lambda|} r_{x_1 x_2}(\lambda) \tag{9}$$

Korrelationskoeffizient:

1.4 Blocksignalverarbeitung

Der *i*-te Block $x^{(i)}(k)$ der Länge L mit Versch. abstand D wird als Multiplikation mit Fensterfunktion w(k) beschrieben

$$Allg.: x^{(i)}(k) = x(k + (i-1)D) \cdot w(k) \quad k \in [0, L-1]$$
(10)

Überlapp $D_{\%}$

$$D_{\%} = \frac{L - D}{L} 100\% \tag{11}$$

1.4.1 Overlapp-Add Verfahren

Schnelle Faltung g(k)*u(k) $N_u >> N_g$ Aufteilung u(k) nichtüberlappend (**nahtlos**) $\to D = L$ Zero-Padding $u^{(i)}(k)$ auf $N = L + N_g$

1.4.2 Overlapp-Save Verfahren

Schnelle Faltung $g(k)*u(k)\ N_u>>N_g$ z. B
 Überlapp = $N_g-1\to D=L-N_g+1$

$$u^{(i)}(k) = u(k + (i-1)D) \quad k \in [0, L-1]$$
 (12)

1.5 Simultane Transformation

$$x_1(k) = Re[y(k)] = \frac{1}{2}(y(k) + y^*(k))$$
 (13)

$$x_2(k) = Im[y(k)] = \frac{1}{2i}(y(k) - y^*(k))$$
 (14)

$$x_1(k) = x(2k) \tag{15}$$

$$x_2(k) = x(2k+1) (16)$$

$$y(k) = x_1(k) + jx_2(k) (17)$$

$$X_1(n) = \frac{1}{2}(Y(n) + Y^*([-n]_{modN}))$$
 (18)

$$X_2(n) = \frac{1}{2i}(Y(n) - Y^*([-n]_{modN}))$$
 (19)

2 Stochastische Prozesse

2.1 Wahrscheinlichkeitsdichtefunktion

Wahrscheinlickkeit $P(x_u \le x \le x_o)$, dass $x \in [x_u, x_o]$

$$P(x_u \le x \le x_o) = \int_{x_u}^{x_o} f_x(\alpha) d\alpha \tag{20}$$

$$bzw. F_x(\alpha) = \int_{-\infty}^{\alpha} f_x(u)du$$
 (21)

$$\int_{-\infty}^{\infty} f_x(u)du = 1 \tag{22}$$

Gaußverteilung (Normalverteilung)

$$f_x(\alpha) = \frac{1}{\sigma_x \cdot \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \cdot \left(\frac{\alpha - \mu_x}{\sigma_x}\right)^2}$$
 (23)

2.2 Erwartungswert μ_x , Varianz σ_x^2

Formeln gelten nur für **stationäre** Zufallsvariablen bzw stochastische Prozesse

$$\mu_x = E[x] = \int_{-\infty}^{\infty} \alpha f_x(\alpha) d\alpha = \sum_{\nu} a_{\nu} P_{\nu}$$
(24)

$$\sigma_x^2 = E[(x - \mu_x)^2] = E[x^2] - \mu_x^2 = \int_{-\infty}^{\infty} (\alpha - \mu_x)^2 f_x(\alpha) d\alpha$$
(25)

Für 2 Stoch. unabh. Variablen $f_x(\alpha)$ und $f_y(\beta)$ gilt

$$f_{xy}(\alpha, \beta) = f_x(\alpha) \cdot f_y(\beta)$$
 (26)

$$\mu_{xy} = \mu_x + \mu_y \tag{27}$$

$$\sigma_{xy}^2 = \sigma_x^2 + \sigma_y^2 \tag{28}$$

2.3 Stationärer Stochastischer Prozess

P. stationär, wenn seine statistischen Eigenschaften zeitinvariant sind

Einzelner stationärer Stochastischer Prozess:

$$f_{x(k)}(\alpha) = f_{x(k+k_0)}(\alpha) = f_x(\alpha)$$
 (29)

Ein Prozess wird zu zwei verschiedene Zeitpunkte k_1 und k_2

$$f_{x(k_1)x(k_2)}(\alpha) = f_{x(k_1+k_0)x(k_2+k_0)}(\alpha)$$
 (30)

Zwei Prozesse x und y wird zu zwei verschiedene Zeitpunkte k_1 und k_2

$$f_{x(k_1)y(k_2)}(\alpha) = f_{x(k_1+k_0)y(k_2+k_0)}(\alpha)$$
 (31)

Autokorrelations $\varphi_{xx}(\lambda)$ und Kreuzkorrelation $\varphi_{xy}(\lambda)$

$$\varphi_{xx}(\lambda) = E[x^*(k)x(k+\lambda)] \tag{32}$$

$$\varphi_{xy}(\lambda) = E[x^*(k)y(k+\lambda)] \tag{33}$$

Definition schwache Stationarität

- $\mu_x = E[x(k)] = const.$
- $\varphi_{xx}(\lambda) = \varphi_{xx}(-\lambda)$ (= gerade Symmetrie)
- $\varphi_{xx}(0) \ge |\varphi_{xx}(\lambda)|$ (max(Autokorr.) im Ursprung)
- $\varphi_{xx}(0) = E[|x(k)|^2]$ (= mittlere Leistung)
- $\bullet \quad \varphi_{xx}(0) = \sigma_x^2 + |\mu_x|^2$
- aus Stationarität folgt Unkorreliertheit

2.4 Ergodizität

Scharmittelwert und Zeitmittelwert sind aquivalent

	Zeitmittelwert(Schätzung)	Scharmittelwert
lin. Mittelw μ_x	$\mu_x = \frac{1}{N} \sum_{k=0}^{N-1} x(k)$	E[x(k)]
Varianz σ_x^2	$\sigma_x^2 = \frac{1}{N} \sum_{k=0}^{N-1} x(k) - \mu_x ^2$	$E[x(k) - \mu_x ^2]$
AKorr. $\varphi_{xx}(\lambda)$	$\frac{1}{N} \sum_{k=0}^{N-1} x^*(k) x(k+\lambda)$	$E[x^*(k)x(k+\lambda)]$
KKorr. $\varphi_{xy}(\lambda)$	$\varphi_{xy}(\lambda) = \frac{1}{N} \sum_{k=0}^{N-1} x^*(k) y(k+\lambda)$	$E[x^*(k)y(k+\lambda)]$

	Zeitmittelwert	Scharmittelwert
lin. Mittelw	$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{N} x(k)$	E[x(k)]
Varianz σ_x^2	$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{N} x(k) - \mu_x ^2$	$E[x(k) - \mu_x ^2]$
AKorr. $\varphi_{xx}(\lambda)$	$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{N} x^*(k)x(k+\lambda)$	$E[x^*(k)x(k+\lambda)]$
KKorr. $\varphi_{xy}(\lambda)$	$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{N} x^*(k)y(k+\lambda)$	$E[x^*(k)y(k+\lambda)]$

2.5 Leistungsdichtespektrum LDS

LDS = DFT der Stochastischen Prozesse Autoleistungsdichtespektrum $\phi_{xx}(e^{j\Omega})$ und Kreuzeistungsdichtespektrum $\phi_{xy}(e^{j\Omega})$

$$\phi_{xx}(e^{j\Omega}) = \mathcal{F}\{\varphi_{xx}(\lambda)\}\tag{34}$$

$$\phi_{xx}(e^{j\Omega}) = \sum_{\lambda = -\infty}^{\infty} \varphi_{xx}(\lambda)e^{-j\Omega\lambda}$$
 (35)

$$\varphi_{xx}(\lambda) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi_{xx}(e^{j\Omega}) e^{j\Omega\lambda} d\Omega \tag{36}$$

$$\phi_{xy}(e^{j\Omega}) = \sum_{\lambda = -\infty}^{\infty} \varphi_{xy}(\lambda)e^{-j\Omega\lambda}$$
 (37)

$$\varphi_{xy}(\lambda) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi_{xy}(e^{j\Omega}) e^{j\Omega\lambda} d\Omega$$
 (38)

Mittlere Leistung $\varphi_{xx}(0)$

$$\varphi_{xx}(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi_{xx}(e^{j\Omega}) d\Omega$$
 (39)

Weißes Rauschen (Mittelwertfrei)

$$\phi_{xx}(e^{j\Omega}) = \phi_0 \tag{40}$$

$$\varphi_{xx}(0) = \phi_0 \gamma_0(\lambda) \tag{41}$$

2.6 LTI-Systeme

Mit konst. Mittelwerten $E[u(k-\nu)] = \mu_x$ und $E[y(k)] = \mu_y$

$$\mu_y = \mu_u \sum_{\nu = -\infty}^{\infty} h(\nu) = \mu_u H(e^{j0})$$
 (42)

Zusätzliche Beziehungen

$$\varphi_{uy}(\lambda) = h(\lambda) * \varphi_{uu}(\lambda) \tag{43}$$

$$\varphi_{yu}(\lambda) = h(-\lambda)^* * \varphi_{uu}(\lambda) \tag{44}$$

$$\varphi_{yy}(\lambda) = h(\lambda) * \varphi_{yy}(\lambda) = h^*(-\lambda) * \varphi_{yy}(\lambda)$$
 (45)

$$\varphi_{yy}(\lambda) = h^*(-\lambda) * h(\lambda) * \varphi_{uu}(\lambda)$$
(46)

•
$$\phi_{uy}(e^{j\Omega}) = H(e^{j\Omega})\phi_{uu}(e^{j\Omega})$$

•
$$\phi_{uu}(e^{j\Omega}) = H^*(e^{j\Omega})\phi_{uu}(e^{j\Omega})$$

•
$$\phi_{yy}(e^{j\Omega}) = H^*(e^{j\Omega})H(e^{j\Omega})\phi_{uu}(e^{j\Omega}) = \left|H(e^{j\Omega})\right|^2\phi_{uu}(e^{j\Omega})$$
trumauflösung Energiegehalt $E = E_{ZP}$

3 Spektralschätzung

Spektralschätzung mit FFT

Umrechnung $n \leftrightarrow f$

$$f_n = n \frac{f_A}{N} \tag{47}$$

Umrechnung $\Omega \leftrightarrow n$

$$\Omega_n = 2\pi \frac{n}{N} = \omega T_a \tag{48}$$

Umrechnung $\omega \leftrightarrow n$

$$\omega_n = 2\pi f_A \frac{n}{N} \tag{49}$$

Spektrum Zeitbereich
$$n=0 \qquad \text{Konstante } x(0) = \frac{1}{N}X(0)$$

$$n=\tilde{n} \qquad x_{\tilde{n}}(k) = \frac{1}{N}(X(\tilde{n})e^{-j\frac{2\pi k\tilde{n}}{N}} + X(N-\tilde{n})e^{-j\frac{2\pi k(N-\tilde{n})}{N}}$$

$$n=\frac{N}{2} \qquad e^{jk\pi} = (-1)^k$$

3.2 Leck-Effekt

Kein Ganzzahliges Vielfaches fällt in das Beobachtungsfenster

Bsp: Sinus $x(t) = sin(w_0 t) \cdot w(t)$ mit $w(t) = rect(\frac{t-T/2}{T})$

$$x_{w}(k) = x(k)w(k) \circ - \bullet X_{w}(n) = X(n) * W(n)$$

$$sin(w_{0}t) \circ - j\pi(\delta_{0}(w + w_{0}) - \delta_{0}(w - w_{0}))$$

$$rect(\frac{t - T/2}{T}) \circ - Tsi(w\frac{T}{2})e^{-jw\frac{T}{2}}$$

$$X(jw) = \frac{2}{2\pi}[j\pi(\delta_{0}(w + w_{0}) - \delta_{0}(w + w_{0}))] * si(w\frac{T}{2})e^{-jw\frac{T}{2}}]$$

$$X(jw) = j\frac{T}{2}[si((w + w_{0})\frac{T}{2})e^{-j(w + w_{0})\frac{T}{2}} - si((w - w_{0})\frac{T}{2})e^{-j(w - w_{0})\frac{T}{2}}]$$

3.3 Zeitfenster

Rechteck um bei k=0 beginnend (um $\frac{N}{2}$ verschoben)

$$rect(k-\frac{N}{2})$$
o— $\frac{sin(N\frac{\Omega}{2})}{sin(\frac{\Omega}{2})}e^{-j\Omega\frac{N-1}{2}}$ (50)

- Breite der Hauptkeule $\Omega_B = \frac{4\pi}{N}$
- Höhe der Hauptkeule $A_B = N$
- Nullstellen $\Omega_{0\nu} = \frac{2\pi}{N} \nu \quad \nu \in \mathbb{Z} \setminus \{0\}$

Zero-Padding

Zero-Padding = Annäherung an die ZDFT \rightarrow feinere Spek-

Spektralschätzung Stoch. Prozesse

Periodogramm

$$\hat{\phi}_{Per} = \frac{1}{N} |X(n)|^2 \tag{51}$$

Mittlere Leistung P mittels Periodogramm

$$P = \frac{1}{N} \sum_{n=0}^{N-1} \hat{\phi}_{Per} = \frac{1}{N^2} \sum_{n=0}^{N-1} |X(n)|^2$$
 (52)

Falls nur Spektrum von $n \in [0, N/2]$ gegeben

$$P = \frac{1}{N} (\hat{\phi}_{Per}(0) + 2 \sum_{n=0}^{N/2-1} \hat{\phi}_{Per} + \hat{\phi}_{Per}(\frac{N}{2})) \quad (53)$$

$$P = \frac{1}{N^2} (|X(0)|^2 + 2\sum_{n=0}^{N/2-1} |X(n)|^2 + |X(N/2)|^2)$$
 (54)

Falls nur best. Frequenzintervall $P \in [f_u, f_0] \to [n_1, n_2]$

$$P = \frac{2}{N} \sum_{n=n_1}^{n_2} \hat{\phi}_{Per} = \frac{2}{N^2} \sum_{n=n_1}^{n_2} |X(n)|^2$$
 (55)

Auch hier tritt Leck-Effekt auf \rightarrow Minderung mit Fensterfunktion w(t) ABER: Verlust von Energie => Modifikation d. Schätzung mit Korrekturfaktor U (hängt von w(t) ab) Spezialfall: w(t) = rect(t) => U = 1

$$\hat{\phi}_{Per,m} = \frac{1}{NU} |X_m(n)|^2 \tag{56}$$

$$U = \frac{1}{N} \sum_{k=0}^{N-1} |w(t)|^2$$
 (57)

3.5.1 Weißes Rauschen

LDS ist Konstante $\phi_{xx,WR}(n) = \phi_{xx,WR} = const.$

$$P = \frac{1}{N} \sum_{n=0}^{N-1} \phi_{xx,WR}(n) = \phi_{xx,WR}$$
 (58)

3.6 Welch-Methode

Zerlegung von x(k) der Länge N in K Sequenzen $x^{(i)}(k)$ der Länge L. Die Startzeitpunkte liegen im Abstand D Es gilt N = L + D(K - 1)

$$x^{(i)}(k) = x(k+iD) \quad k \in [0, L-1]$$
 (59)

z.B Fensterung + Zero-Padding $\tilde{L} = L + L_{ZP}$

$$\hat{\phi}_{Per}^{(i)}(n) = \frac{1}{LU} \left| X^{(i)}(n) \right|^2 \tag{60}$$

$$U = \frac{1}{L} \sum_{k=0}^{N-1} |w(t)|^2$$
 (61)

Das LDS ergiebt sich aus Mittelung aller K Periodogramme

$$\hat{\phi}_W(n) = \frac{1}{K} \sum_{i=0}^{K-1} \hat{\phi}^{(i)}(n)$$
 (62)

$$P = \frac{1}{\tilde{L}} \sum_{n=0}^{\tilde{L}-1} \hat{\phi}_W(n)$$
 (63)

 $K \uparrow => Varianz d. Schätzung \downarrow => Qualität \uparrow$

 $L\downarrow =>$ Frequenzauflösung \downarrow

 $D \downarrow => \ddot{\text{U}} \text{berlapp} \uparrow => \text{K} \uparrow => \text{Rechenaufwand} \uparrow$

4 Digitale-Filter

$$H(z) = \frac{Y(z)}{U(z)} = \frac{\sum_{\mu=0}^{m} b_{\mu} z^{-\mu}}{\sum_{\nu=0}^{m} a_{\nu} z^{-\nu}}$$
(64)

Darstellung Linearfaktoren für n=2

$$H(z) = \frac{b_0(z - z_{01})(z - z_{02})}{a_0(z - z_{\infty 1})(z - z_{\infty 2})}$$
(65)

Jeder Linearfaktor kann als von der Frequenz Ω abhängiger Drehzeiger

- Pole verstärkt Amplitudengang
- Nullstelle dämpft Amplitudengang
- Pole und Nullstellen treten immer konj. komplex auf
- $(e^{j\Omega} z_{01}) = D_{01}e^{j\phi_{01}}$ und $(e^{j\Omega} z_{02}) = D_{02}e^{j\phi_{02}}$
- $(e^{j\Omega} z_{\infty 1}) = D_{\infty 1}e^{j\phi_{01}}$ und $(e^{j\Omega} z_{01}) = D_{\infty 2}e^{j\phi_{\infty 2}}$

- Amplitudengang: $|H(e^{j\Omega})| = \left|\frac{b_0}{a_0}\right| \left|\frac{D_{01}D_{02}}{D_{\infty 1}D_{\infty 2}}\right|$
- Phasengang: $arg(H(e^{j\Omega})) = arg(\frac{b_0}{a_0}) + \phi_{01} + \phi_{02} \phi_{\infty 1} \phi_{\infty 2}$

4.1 Rekursiver Glätter

Vergangenheitswert y(k-1) wird mit Faktor $a \in [0, 1]$

$$y(k) = ay(k-1) + (1-a)u(k)$$
(66)

$$H(z) = \frac{1-a}{1-az^{-1}} = \frac{(1-a)z}{z-a}$$
 (67)

Vom Verhalten entspricht er einem Tiefpass 1. Ordnung mit Grenzfrequen
z Ω_g (a lässt sich aus Ω_g berechnen)

$$H(e^{j\Omega}) = \frac{1-a}{1-ae^{-j\Omega}} \tag{68}$$

$$\Omega_g = 2\pi \frac{f_g}{f_A} \qquad (69)$$

$$a = 2 - \cos(\Omega_g) - \sqrt{(2 - \cos(\Omega_g))^2 - 1}$$
 (70)

4.2 Arithmetischer Mittelwert Glätter

$$y(k) = \frac{1}{N} \sum_{\nu=0}^{N-1} u(k-\nu)$$
 (71)

$$H(z) = \frac{1}{N} \sum_{\nu=0}^{N-1} z^{-\nu} = \frac{1}{N} \frac{z^{-N} - 1}{z^{-1} - 1}$$
 (72)

4.3 **Notch-Filter**

$$H(z) = \frac{(z - e^{j\Omega_0})(z - e^{-j\Omega_0})}{(z - r_{\infty}e^{j\Omega_0})(z - r_{\infty}e^{-j\Omega_0})}$$
(73)

Vorgabe Kerbe bei Frequenz f_N und -3dB Breite Δf und gegebener Abtastfrequenz f_A

$$\Omega_0 = \frac{2\pi f_N}{f_A} \tag{74}$$

$$\Delta\Omega = \frac{2\pi\Delta f}{f_A} \tag{75}$$

Einsetzen in Übertragungsfunktion H(z), Kerbentiefe $+A_B[dB]$

$$H(z) = b \frac{1 - 2cos(\Omega_0)z^{-1} + z^{-2}}{1 - 2bcos(\Omega_0)z^{-1} + (2b - 1)z^{-2}}$$
 (76)

$$b = \frac{1}{1 + \frac{\sqrt{1 - G_B^2}}{G_B} tan(\frac{\Delta\Omega}{2})} mit \ G_B = 10^{\frac{-A_B}{20}}$$
 (77)

Kammfilter 4.4

Zu jeder Nullstelle z_{0n} einen Pol $z_{\infty n}$ im Radius $r_{\infty} < 1$ pla-

p = Ordnung, (K) = Kerbenbildend, (R) = Resonanzbildend

$$z_{\infty n}^{(K)} = r_{\infty} e^{j\frac{2\pi n}{p}} \tag{78}$$

$$z_{0n}^{(K)} = e^{j\frac{2\pi n}{p}} \tag{79}$$

$$z_{\infty n}^{(R)} = e^{j\frac{(\pi + 2\pi n)}{p}} \tag{80}$$

$$z_{\infty n}^{(R)} = r_{\infty} e^{j\frac{(2\pi n)}{p}} \tag{81}$$

Kerbenbildend Kammfilter $H_{(K)}(z)$

Dimensionierung b, sodass zwischen Kerben 0dB(=1)

$$H_{(K)}(z) = \frac{1 + r_{\infty}^{p}}{2} \cdot \frac{1 - z^{-p}}{1 - r_{\infty}^{p} z^{-p}}$$
 (82)

Resonanzbildender Kammfilter $H_{(R)}(z)$

Dimensionierung b, sodass zwischen Kerben 0dB(=1)

$$H_{(R)}(z) = \frac{1 - r_{\infty}^{p}}{2} \cdot \frac{1 + z^{-p}}{1 - r_{\infty}^{p} z^{-p}}$$
(83)

Goertzel-Algorithmus 4.5

Bestimmung eines einzelnen DFT-Spektralwert X(n). Gleicher Rechenaufwand wie FFT aber Blocklänge N muss keine 2er Potenz sein. $\tilde{x}(k) = [x(0..N-1) \ 0]$ (N-ter Wert 0 setzen)

$$n_0 = \frac{f_0}{f_A} N$$

$$X(n_0) = y(k) = x(k) * h(k)|_{k=N}$$
(84)
(85)

$$X(n_0) = y(k) = x(k) * h(k)|_{k=N}$$
(85)

$$X(n_0) = y_n(k) = \sum_{\nu=0}^{k} \tilde{x}(\nu) e^{j\frac{2\pi}{N}(k-\nu)n}$$
 (86)

IIR-Filter 4.6

$$H(z) = \frac{Y(z)}{U(z)} = \frac{\sum_{\mu=0}^{m} b_{\mu} z^{-\mu}}{\sum_{\nu=0}^{n} a_{\nu} z^{-\nu}}$$
(87)

Gruppenlaufzeit τ = Verzögerungszeit des Systems aufgelöst nach Frequenzen

$$\tau = -\frac{d}{df}\varphi \tag{88}$$

IIR-Entwurfsmethoden 4.6.1

Entwurfsmethode	Besonderheiten des Amplitudengangs (vorgegebenes Toleranzschema)
Butterworth	 maximal flacher Verlauf im Durchlassbereich
	- monoton fallender Verlauf
Tschebyscheff Typ I	 oszilliert im Durchlassbereich mit p Extrema (mit p = Filterordnung,
	"equiripple"-Verhalten)
	 monoton fallend im Übergangs- und Sperrbereich
Tschebyscheff Typ II	 oszilliert im Sperrbereich ("equiripple"-Verhalten)
	 monoton fallend im Durchlass- und Übergangsbereich
	- Nullstellen im Sperrbereich
Cauer	- oszilliert im Durchlass- und Sperrbereich ("equiripple"-Verhalten)
	 monoton fallend im Übergangsbereich
	- hohe Sperrdämpfung

4.7 FIR-Filter

grundsätzlich Stabil, Ordnung m \rightarrow m Pole im Ursprung

$$H(z) = \frac{Y(z)}{U(z)} = \sum_{\mu=0}^{m} b_{\mu} z^{-\mu}$$
 (89)

$$H(z) = \frac{b_0 \Pi_{\mu=1}^m (z - z_{0\mu})}{z^m}$$
 (90)

$$h(k) = b_k \quad k \in [0, m] \tag{91}$$

Gewollte Eigenschaft: lineare Phase

$$\tau_g = -\frac{d}{d\Omega} arg(H(e^{j\Omega})) = const.$$
(92)

lineare Phase wenn Nullstellen von H(z)

- auf Einheitskreis
- in am Einheitskreis gespiegelten Paaren z_{01} und $\frac{1}{z_{01}^*}$ auftreten

Für linearphasige FIR-Filter der Ordnung p gilt für Impulsantwort h(k) eine der beiden Symmetrien

- h(k) = h(p k) (gerade Symmetrie)
- h(k) = -h(p-k) (ungerade Symmetrie)

4.8 Toleranzschema

- $A_{pass} = 20 \log \left(\frac{1 + \delta_D}{1 \delta_D} \right)$
- $A_{Stop} = |20 \log(\delta_S)|$
- $F_{pass} = \frac{\Omega_D}{2\pi} f_A$
- $F_{stop} = \frac{\Omega_S}{2\pi} f_A$

1. Kanonische-Form (IIR)

Hälfte der Speicherzellen $a_0 = 1$

2. Kanonische-Form (IIR) 4.10

3. Kanonische-Form (IIR) 4.11

$$H(z) = \prod_{\nu=0}^{N_K} H_{\nu}(z) \tag{93}$$

$$H_{\nu}(z)^{(1)} = \frac{b_{0\nu} + b_{1\nu}z^{-1}}{1 + a_{1\nu}z^{-1}} \tag{94}$$

$$H_{\nu}(z)^{(1)} = \frac{b_{0\nu} + b_{1\nu}z^{-1}}{1 + a_{1\nu}z^{-1}}$$

$$H_{\nu}(z)^{(2)} = \frac{b_{0\nu} + b_{1\nu}z^{-1} + b_{2\nu}z^{-2}}{1 + a_{1\nu}z^{-1} + a_{2\nu}z^{-2}}$$
(94)

4.12 4. Kanonische-Form (IIR)

$$H(z) = b_0 + \sum_{\nu=1}^{N_P} H\nu(z)$$
 (96)

Trasversalfilter (FIR) 4.13

Kann effizient durch MAC-Befehl realisiert werden. Für linearphasige reelwertige FIR-Filter kann die Symmetrie der b_k genutzt werden.

SOS-Faustregel (IIR) 4.14

Aufteilung der Pole-Nullstellen in Biquads, sodass sich Einflüsse auf Frequenzgang ausgleichen. Vorgehen:

• Beginnen mit Pol der am dichtesten am EHK liegt

Abtastung 5

Dezimator Ganzzahliges M

Dezimator = Kompressor

Das Spektrum $X(e^{j\tilde\Omega})$ des ursprünglichen Signals x(k) wird um M dezimiert, was zum Spektrum $X_d(e^{j\Omega})$ führt.

$$x_d(k) = x_c(kMT_A) (97)$$

$$X(e^{j\tilde{\Omega}}) = \frac{1}{T_A} \sum_{v=-\infty}^{\infty} X_c(j\frac{\tilde{\Omega}}{T_A} - \nu \frac{2\pi}{T_A})$$
 (98)

$$X_d(e^{j\Omega}) = \frac{1}{MT_A} \sum_{\mu = -\infty}^{\infty} X_c(e^{j\frac{\Omega}{MT_A} - \mu \frac{2\pi}{MT_A}})$$
 (99)

$$X_d(e^{j\Omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j\frac{\Omega}{M} - i\frac{2\pi}{M}})$$
 (100)

(101)

- Skalierung der Frequenzachse um $\frac{\Omega}{M}$
- Verringerung der Periodisierung
- Skalierung des Spektrums mit $\frac{1}{M}$
- Falls Nyquist-Kriterium $\frac{f_A}{M}>2\tilde{f}_{max}$ nicht erfüllt \to Hohe Frequenzanteile Tiefpass-Filtern

5.2 Interpolator Ganzzahliges M

Interpolator = Expander

Expander hängt hinter jedem Abtastwert von x(k) L-1 0er an. $x_e(k) = [x(k/L)\ zeros(1,L-1)]$

$$x_i(k) = x_c(k\frac{T_A}{L}) \tag{102}$$

$$X_e(e^{j\tilde{\Omega}}) = \sum_{\nu = -\infty}^{\infty} x(\nu)e^{-j\Omega\nu L}$$
 (103)

$$X_e(e^{j\Omega}) = X(e^{j\Omega L}) \tag{104}$$

- Spektrum $X_e(e^{j\Omega}) = X(e^{j\Omega L})$ läuft von $-\pi/L...\pi/L$
- Keine Skalierung des Spektrums

5.3 Änderung nicht Ganzzahlig

Zusammenfassung der Tiefpässe zu einem mit V=L und Grenzfrequenz $\Omega_{g,i\&d}=min(\frac{\pi}{L},\frac{\pi}{M})$

$$\Omega_{nachher} = \Omega_{vorher} \frac{M}{L} \tag{105}$$

6 Korrespondenztabellen

6.1 Zeitdiskrete Fouriertransformation

Zeitdiskrete Fouriertransformation ist Grenzwert der DFT für $N\to\infty$ und kann aus der Z-Trafo über $z:=e^{j\Omega}$ gewonnen werden.

$$\Omega = \omega T_A = \frac{\omega}{f_A} = 2\pi \frac{f}{f_A} \tag{106}$$

Zeitbereich	Frequenzbereich
$x(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\Omega}) e^{j\Omega k} d\Omega$	$X(e^{j\Omega}) = \sum_{k=-\infty}^{\infty} x(k)e^{-j\Omega k}$
$a \cdot x_1(k) + b \cdot x_2(k)$	$a \cdot X_1(e^{j\Omega}) + b \cdot X_2(e^{j\Omega})$
$x(k-k_d)$	$e^{-j\Omega k_d}X(e^{j\Omega})$
$e^{j\Omega_0 k}x(k)$	$X(e^{j(\Omega-\Omega_0)})$
	$X(e^{-j\Omega})$
x(-k)	$(=X^*(e^{j\Omega}) \text{ für } x(k) \in \mathbb{R})$
$x_1(k) * x_2(k)$	$X_1(e^{j\Omega})X_2(e^{j\Omega})$
$x_1(k)x_2(k)$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(e^{j\Theta}) X_2(e^{j(\Omega-\Theta)}) d\Theta$

Zeitbereich	Frequenzbereich
$\gamma_0(k)$ (Dirac)	1
$\gamma_{-1}(k)$ (Sprung)	$\frac{1}{1 - e^{-j\Omega}} + \sum_{\nu = -\infty}^{\infty} \pi \gamma_0 (\Omega + 2\pi \nu)$
1	$\sum_{\nu=-\infty}^{\infty} 2\pi \gamma_0 (\Omega + 2\pi \nu)$
$\gamma_0(k-k_0)$	$e^{-j\Omega k_0}$
$a^k \gamma_{-1}(k) \left(a < 1 \right)$	$rac{1}{1-ae^{-j\Omega}}$
$rac{\sin(\Omega_c k)}{\pi k}$	$X(e^{j\Omega}) = \begin{cases} 1, & \Omega < \Omega_c \\ 0, & \Omega_c < \Omega \le \pi \end{cases}$
$x(k) = \begin{cases} 1, & 0 \le k \le M \\ 0, & sonst \end{cases}$	$\frac{\sin(\Omega(M+1)/2)}{\sin(\Omega/2)}e^{-j\Omega\frac{M}{2}}$
	$\sum_{\nu=-\infty}^{\infty} [\pi e^{j\varphi} \gamma_0 (\Omega - \Omega_0 + 2\pi\nu)]$
$\cos(\Omega_0 k + \varphi)$	$+\pi e^{-j\varphi}\gamma_0(\Omega+\Omega_0+2\pi\nu)]$

6.2 DFT

DFT nimmt implizit unendlich periodische Fortsetzung des Signals an. Zu beachten: $-1_{modN} = -1 + N$, $-2_{modN} = -2 + N$, ... (solange Addition von N bis positiv!). Math. Modulo: $\tilde{x}(k) = x([k]_{modN}) \ [n]_{modN} = n - N \lfloor \frac{n}{N} \rfloor$

Zeitbereich	Frequenzbereich
$x(k) = IDFT_N\{X(n)\}$	$X(n) = DFT_N\{x(k)\}$
$= \frac{1}{N} \sum_{n=0}^{N-1} X(n) e^{j\frac{2\pi}{N}kn}$	$= \sum_{k=0}^{N-1} x(k)e^{-j\frac{2\pi}{N}kn}$
$a \cdot x_1(k) + b \cdot x_2(k)$	$a \cdot X_1(n) + b \cdot X_2(n)$
$x([k-k_0]_{modN})$	$e^{-j\frac{2\pi nk_0}{N}}X(n)$
$e^{-j\frac{2\pi nk_0}{N}}x(k)$	$X([n+k_0]_{modN})$
$x([-k]_{modN})$	$X([-n]_{modN})$
$x^*(k)$	$X^*([-n]_{modN})$
$x^*([-k]_{modN})$	$X^*(n)$
$x_1(k) \circledast x_2(k)$	$X_1(n)X_2(n)$
$x_1(k)x_2(k)$	$\frac{1}{N}X_1(n) \circledast X_2(n)$
$x_g(k) = \frac{x(k) + \tilde{x}(-k)}{2}$	$X_g(n) = \frac{X(n) + X(-n)}{2}$
$x_u(k) = \frac{x(k) - \tilde{x}(-k)}{2}$	$X_u(n) = \frac{X(n) - X(-n)}{2j}$

6.3 **Z-Transformation** (einseitig)

$$x(0) = \lim_{z \to \infty} X(z) \tag{107}$$

$$x(0) = \lim_{z \to \infty} X(z)$$

$$\lim_{k \to \infty} x(k) = \lim_{z \to 1+} (z - 1)X(z)$$
(107)
$$(108)$$

Zeitbereich	Z-Bereich
$x(k) = \frac{1}{2\pi j} \oint_C X(z) z^{k-1} dz$	$X(z) = \sum_{k=0}^{\infty} x(k)z^{-k}$
$a \cdot x_1(k) + b \cdot x_2(k)$	$a \cdot X_1(z) + b \cdot X_2(z)$
x(k-i)	$z^{-i} \cdot X(z)$
	$z^{i} \cdot X(z) - \sum_{\mu=0}^{i-i} z^{i-\mu} x(\mu)$
x(k+i)	(meistens $z^i \cdot X(z)$)
$x_1(k) * x_2(k)$	$X_1(z)X_2(z)$
$\sum_{\mu=0}^{k} x(\mu)$	$\frac{z}{z-1}X(z)$
$z_0^k x(k)$	$X(\frac{z}{z_0})$
$x_1(k)x_2(k)$	$\frac{1}{2\pi} \oint_C X_1(w) X_2(\frac{z}{w}) w^{-1} dw$
kx(k)	$-z\frac{d}{dz}X(z)$
$k^2x(k)$	$z^2 \frac{d^2}{dz^2} X(z) + z \frac{d}{dz} X(z)$
$x^*(k)$	$X^*(z^*)$

Alle
$$x(k) = 0$$
 für $k < 0$.

Zeitbereich	Z-Bereich
$\gamma_0(k)$	1
z_0^k	$\frac{z}{z-z_0}$
$\gamma_{-1}(k)$	$\frac{z}{z-1}$
$\cos(\Omega_0 k + \varphi)$	$\frac{z(z\cos(\varphi)-\cos(\Omega_0+\varphi))}{z^2-2z\cos(\Omega_0)+1}$
$\cos(\Omega_0 k)$	$\frac{z(z-\cos(\Omega_0))}{z^2-2z\cos(\Omega_0)+1}$
$\sin(\Omega_0 k)$	$\frac{z\sin(\Omega_0)}{z^2 - 2z\cos(\Omega_0) + 1}$
k	$\frac{z}{(z-1)^2}$
kz_0^k	$\frac{zz_0}{(z-z_0)^2}$
$k^2 z_0^k$	$\frac{zz_0(z+z_0)}{(z-z_0)^3}$
$\binom{k}{n} = \frac{k!}{(k-n)!n!}$. ,
$(=0, \forall k < n)$	$\frac{z}{(z-1)^{n+1}}$