Algoritmos Gulosos

Ricardo Dutra da Silva

Universidade Tecnológica Federal do Paraná

Algoritmos Gulosos

- Formula uma escolha.
- Iterativamente aplica a escolha.
- A escolha é chamada de escolha gulosa.
- Fácil propor um algoritmo.
- Difícil propor um correto.

Algoritmos Gulosos

Pontos importantes para formular a solução gulosa:

- escolha gulosa;
- subproblemas: o que falta resolver após a escolha gulosa;
- subestrutura ótima: soluções ótimas dos subproblemas implicam em solução ótima para o problema.

Entrada

Conjunto de n atividades $A = \{a_1, a_2, \dots, a_n\}$ com intervalo de tempo determinado por início e fim $[a_i.s, a_i.t)$, $a_i.s < a_i.t$.

Saída

Conjunto máximo de atividade $B \subseteq A$ sem sobreposição, ou seja, $\forall_{a,b \in B} [a.s, a.t) \cap [b.s, b.t) = \emptyset$.

Algumas propostas de escolhas gulosas:

- atividade que começa antes;
- atividade com menor intervalo;
- atividade com menos conflitos;
- atividade com menor término;
- atividade com maior começo.

Atividade que começa antes.

Atividade com menor intervalo.

Atividade com menos conflitos.

- Escolha gulosa: atividade com menor término.
- Subproblemas: $A_k = \{a_i \in A | a_i.s \ge a_k.t\}$.

- Escolha gulosa: a₁.
- Solução: $B = \{a_1\}$.
- Subproblema restante: A₁

- Escolha gulosa: a4.
- Solução: $B = \{a_1, a_4\}.$
- Subproblema restante: A₄

a₉

- Escolha gulosa: a₈.
- Solução: $B = \{a_1, a_4, a_8\}$.
- Subproblema restante: A₈

- Escolha gulosa: *a*₁₁.
- Solução: $B = \{a_1, a_4, a_8, a_{11}\}.$
- Subproblema restante: A_{11}

- Supomos as atividades ordenadas por tempo de término.
- Complexidade: T(n) = O(n)

Algoritmo: Selecao(A[1...n])

Teorema

A escolha gulosa pertence a uma solução do problema de seleção de atividades.

Demonstração.

Considere um subproblema A_k qualquer e uma solução ótima B_k para o subproblema. Considere também $a_j \in B_k$ como a tarefa com menor tempo de finalização em B_k , e $a_g \in A_k$ como a escolha gulosa.

Temos duas possibilidades para a solução B_k :

- \bullet $a_j = a_g$ ou
- $a_j \neq a_g$.

Demonstração.

Caso $a_j = a_g$, então a escolha gulosa está na solução trivialmente.

$$a_j = a_g$$

Demonstração.

Caso $a_j \neq a_g$,

sabemos que o término de a_g é anterior o igual ao término de a_j

$$a_g$$
 ... a_j ...

e podemos substituir a_j por a_g mantendo uma solução ótima B_k' $(|B_k'| = |B_k|)$.

$$a_g$$

Teorema

A formulação da solução possui subestrutura ótima. Se B é uma solução ótima para A, então $B_g = B - \{a_g\}$ é uma solução ótima para A_g .

Demonstração.

A solução B possui $|B|=|B_g|+1$ elementos. Para efeito de contradição, vamos supor que B_g não é ótima.

Portanto, temos uma solução melhor B_g^* que podemos substituir no lugar de B_g e ainda incluir a escolha gulosa a_g . Assim,

$$|B| = |B_g| + 1$$

 $< |B_g^*| + 1$
 $< |B^*|$

o que contradiz B ser ótima. Logo, B_g é ótima.