2M x 32 SDRAM

512K x 32bit x 4 Banks Synchronous DRAM LVTTL

Revision 1.3

October 2001

Samsung Electronics reserves the right to change products or specification without notice.

Revision History

Revision 1.3 (October 24, 2000)

• Removed CAS Latency 1 from the spec.

Revision 1.2 (August 7, 2000) - Target

Added CAS Latency 1

Revision 1.1 (March 14, 2001)

Added K4S643232E-55

Revision 1.0 (October 20, 2000)

• Removed Note 5 in page 9. tRDL is set to 2CLK in any case regardless of using AP or frequency

Revision 0.4 (August 24, 2000)

• Updated DC spec

Revision 0.3 (August 1, 2000)

• Changed the wording of tRDL related note for User's clear understanding

Revision 0.2 (July 18, 2000) - Preliminary

- Removed K4S643232E-40/55/7C
- Changed tSH of K4S643232E-45 from 0.7ns to 1.0ns

Revision 0.0 (March 14, 2000) - Target Spec.

Initial draft

512K x 32Bit x 4 Banks Synchronous DRAM

FEATURES

- 3.3V power supply
- LVTTL compatible with multiplexed address
- · Four banks operation
- · MRS cycle with address key programs
 - -. CAS latency (2 & 3)
 - -. Burst length (1, 2, 4, 8 & Full page)
 - -. Burst type (Sequential & Interleave)
- All inputs are sampled at the positive going edge of the system clock
- Burst read single-bit write operation
- · DQM for masking
- · Auto & self refresh
- 15.6us refresh duty cycle

GENERAL DESCRIPTION

The K4S643232E is 67,108,864 bits synchronous high data rate Dynamic RAM organized as 4 x 524,288 words by 32 bits, fabricated with SAMSUNG's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock. I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst length and programmable latencies allow the same device to be useful for a variety of high bandwidth, high performance memory system applications.

ORDERING INFORMATION

Part NO.	Max Freq.	Interface	Package
K4S643232E-TC/L45	222MHz		
K4S643232E-TC/L50	200MHz		86
K4S643232E-TC/L55	183MHz	LVTTL	TSOP(II)
K4S643232E-TC/L60	166MHz		1301 (11)
K4S643232E-TC/L70	143MHz		

^{*} Samsung Electronics reserves the right to change products or specification without notice.

PIN CONFIGURATION (Top view)

86Pin TSOP (II) (400mil x 875mil) (0.5 mm Pin pitch)

PIN FUNCTION DESCRIPTION

Pin	Name	Input Function
CLK	System clock	Active on the positive going edge to sample all inputs.
CS	Chip select	Disables or enables device operation by masking or enabling all inputs except CLK, CKE and DQM.
CKE	Clock enable	Masks system clock to freeze operation from the next clock cycle. CKE should be enabled at least one cycle prior to new command. Disables input buffers for power down mode.
A0 ~ A10	Address	Row/column addresses are multiplexed on the same pins. Row address: RA0 ~ RA10, Column address: CA0 ~ CA7
BA0,1	Bank select address	Selects bank to be activated during row address latch time. Selects bank for read/write during column address latch time.
RAS	Row address strobe	Latches row addresses on the positive going edge of the CLK with RAS low. Enables row access & precharge.
CAS	Column address strobe	Latches column addresses on the positive going edge of the CLK with CAS low. Enables column access.
WE	Write enable	Enables write operation and row precharge. Latches data in starting from CAS, WE active.
DQM0 ~ 3	Data input/output mask	Makes data output Hi-Z, tsHz after the clock and masks the output. Blocks data input when DQM active.
DQ0 ~ 31	Data input/output	Data inputs/outputs are multiplexed on the same pins.
VDD/Vss	Power supply/ground	Power and ground for the input buffers and the core logic.
VDDQ/Vssq	Data output power/ground	Isolated power supply and ground for the output buffers to provide improved noise immunity.
NC	No Connection	This pin is recommended to be left No connection on the device.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-1.0 ~ 4.6	V
Voltage on VDD supply relative to Vss	Vdd, Vddq	-1.0 ~ 4.6	V
Storage temperature	Тѕтс	-55 ~ + 150	°C
Power dissipation	Po	1	W
Short circuit current	los	50	mA

Note: Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded.

Functional operation should be restricted to recommended operating condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS

Recommended operating conditions (Voltage referenced to Vss = 0V, TA = 0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	Vdd, Vddq	3.0	3.3	3.6	V	
Input logic high voltage	ViH	2.0	3.0	VDDQ+0.3	V	1
Input logic low voltage	VIL	-0.3	0	0.8	V	2
Output logic high voltage	Voн	2.4	-	-	V	Iон = -2mA
Output logic low voltage	Vol	-	-	0.4	V	IOL = 2mA
Input leakage current	ILI	-10	-	10	uA	3

Notes : 1. VIH (max) = 5.6V AC.The overshoot voltage duration is ≤ 3 ns.

- 2. VIL (min) = -2.0V AC. The undershoot voltage duration is \leq 3ns.
- 3. Any input $0V \le VIN \le VDDQ$,

Input leakage currents include Hi-Z output leakage for all bi-directional buffers with Tri-State outputs.

4. The VDD condition of K4S643232E-45/50/55/60 is $3.135V \sim 3.6V$

CAPACITANCE (VDD = 3.3V, TA = $23^{\circ}C$, f = 1MHz, VREF = $1.4V \pm 200$ mV)

Pin	Symbol	Min	Max	Unit
Clock	Cclk	•	4	pF
RAS, CAS, WE, CS, CKE, DQM	CIN	-	4.5	pF
Address	CADD	-	4.5	pF
DQ0 ~ DQ31	Соит	•	6.5	pF

DC CHARACTERISTICS

(Recommended operating condition unless otherwise noted, TA = 0 to 70°C, VIH(min)/VIL(max)=2.0V/0.8V)

Parameter	Symbol	Test Condition	CAS		Spe	eed			Unit	Note
raidilletei	Symbol	rest condition	Latency	-45	-50	-55	-60	-70	Oilit	NOLE
Operating Current	Icc1	Burst Length =1	3	180	175	175	170	155	mA	2
(One Bank Active)	ICC1	$trc \ge trc(min), tcc \ge tcc(min), Io = 0mA$	2	150	150	150	150	150	IIIA	2
Precharge Standby Current in	Icc2P	CKE ≤ VIL(max), tcc = 15ns				3		•	mA	
power-down mode	Icc2PS	CKE & CLK ≤ VIL(max), tcc = ∞				2			mA	
Precharge Standby Current	Icc2N	CKE \geq VIH(min), $\overline{\text{CS}} \geq$ VIH(min), tcc = 15ns Input signals are changed one time during 30	Ons			20			mA	
in non power-down mode	Icc2NS	CKE \geq VIH(min), CLK \leq VIL(max), tcc = ∞ Input signals are stable				10			IIIA	
Active Standby Current	ІссзР	CKE ≤ VIL(max), tcc = 15ns				7			mA	
in power-down mode	Icc3PS	CKE ≤ ViL(max), tcc = ∞				5			IIIA	
Active Standby Current in non power-down mode	Icc3N	CKE \geq VIH(min), $\overline{\text{CS}} \geq$ VIH(min), tcc = 15ns Input signals are changed one time during 30	Ons			55			mA	
(One Bank Active)	Icc3NS	CKE \geq VIH(min), CLK \leq VIL(max), tcc = ∞ Input signals are stable				40			IIIA	
Operating Current	Icc4	lo = 0 mA, Page Burst	3	200	190	190	180	170	mA	2
(Burst Mode)	1004	All bank Activated, tccd = tccd(min)	2	150	150	150	150	150	IIIA	2
Refresh Current	Icc5	trc ≥ trc(min)	3	195	190	190	185	165	mA	3
Troncon ouron	1003		2	160	160	160	160	160	111/4	3
Self Refresh Current	Icce	CKE < 0.2V				3		mA	4	
Jen Kenesh Gunent	1000	ONE 3 0.2 V				450			uA	5

Notes: 1. Unless otherwise notes, Input level is CMOS(VIH/VIL=VDDQ/VSSQ) in LVTTL.

- 2. Measured with outputs open.
- 3. Refresh period is 64ms.
- 4. K4S643232E-TC**
- 5. K4S643232E-TL**

AC OPERATING TEST CONDITIONS (VDD = $3.3V \pm 0.3V$, TA = 0 to 70° C)

Parameter	Value	Unit
AC input levels (Vih/Vil)	2.4/0.4	V
Input timing measurement reference level	1.4	V
Input rise and fall time	tr/tf = 1/1	ns
Output timing measurement reference level	1.4	V
Output load condition	See Fig. 2	

(Fig. 1) DC output load circuit

(Fig. 2) AC output load circuit

Notes : 1. The V_{DD} condition of K4S643232E-45/50/55/60 is $3.135V \sim 3.6V$

OPERATING AC PARAMETER

(AC operating conditions unless otherwise noted)

D		Ol					Vers	sion					1114	Nata
Parameter		Symbol	-4	15	-5	50	-5	55	-6	60	-7	0	Unit	Note
CAS Latency		CL	3	2	3	2	3	2	3	2	3	2	CLK	
CLK cycle time		tCC(min)	4.5	10	5	10	5.5	10	6	10	7	10	ns	
Row active to row active	delay	tRRD(min)	2	2	2	2	2	2	2	2	2	2	CLK	1
RAS to CAS delay		tRCD(min)	4	2	3	2	3	2	3	2	3	2	CLK	1
Row precharge time		tRP(min)	4	2	3	2	3	2	3	2	3	2	CLK	1
Down active times		tRAS(min)	9	5	8	5	7	5	7	5	7	5	CLK	1
Row active time		tRAS(max)				100							us	
Row cycle time		tRC(min)	13	7	11	7	10	7	10	7	10	7	CLK	1
Last data in to row prech	arge	tRDL(min)					2	2					CLK	2
Last data in to new col.ad	ddress delay	tCDL(min)					•	1					CLK	2
Last data in to burst stop		tBDL(min)					•	1					CLK	2
Col. address to col. addre	ess delay	tCCD(min)					•	1					CLK	3
Mode Register Set cycle	time	tMRS(min)	2					CLK						
Number of valid	CAS La	itency=3					2	2					ea	4
output data	CAS La	itency=2					•	1					Ва	4

Note: 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next higher integer. Refer to the following ns-unit based AC table.

Parameter	Symbol			Unit			
Farameter	Symbol	-45	-50	-55	-60	-70	Oilit
Row active to row active delay	tRRD(min)	9	10	11	12	14	ns
RAS to CAS delay	tRCD(min)	18	15	16.5	18	20	ns
Row precharge time	tRP(min)	18	15	16.5	18	20	ns
Row active time	tRAS(min)	40.5	40	38.5	42	49	ns
Row active time	tRAS(max)			100			us
Row cycle time	tRC(min)	58.5	55	55	60	70	ns

- 2. Minimum delay is required to complete write.
- 3. All parts allow every cycle column address change.
- 4. In case of row precharge interrupt, auto precharge and read burst stop.

AC CHARACTERISTICS (AC operating conditions unless otherwise noted)

Param	eter	Symbol	-4	1 5	-4	50	-4	55	-6	60	-7	' 0	Unit	Note
i aran	ietei	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Onne	Note
CLK cycle time	CAS Latency=3	tcc	4.5	1000	5	1000	5.5	1000	6	1000	7	1000	ns	1
OLIV Cycle time	CAS Latency=2	100	10	1000	10	1000	10	1000	10	1000	10	1000	113	'
CLK to valid	CAS Latency=3	tsac	-	4.0	-	4.5	-	5.0	-	5.5	-	5.5	ns	1, 2
output delay	CAS Latency=2	ISAC	-	6	-	6	-	6	-	6	-	6	113	1, 2
Output data hold tim	e	tон	2	-	2	-	2	-	2	-	2	-	ns	2
CLK high pulse	CAS Latency=3	tch	1.75	-	2	-	2	-	2.5	-	3	-	ns	3
width	CAS Latency=2	ton	3	-	3	-	3	-	3	-	3	-	113	3
CLK low	CAS Latency=3	tcL	1.75	-	2	-	2	-	2.5	-	3	-	ns	3
pulse width	CAS Latency=2	IOL	3	-	3	-	3	-	3	-	3	-	113	
Input setup time	CAS Latency=3	tss	1.2	-	1.5	-	1.5	-	1.5	-	1.75	-	ns	3
input setup time	CAS Latency=2	155	2.5	-	2.5	-	2.5	-	2.5	-	2.5	-	115	3
Input hold time		tsн	1	-	1	-	1	-	1	-	1	-	ns	3
CLK to output in Low	ı-Z	tslz	1	-	1	-	1	-	1	-	1	-	ns	2
CLK to output	CAS latency=3	tshz	-	4.0	-	4.5	-	5.0	-	5.5	-	5.5	ns	_
in Hi-Z	CAS latency=2	TOFIZ	-	6	-	6	-	6	-	6	-	6	113	

Note: 1. Parameters depend on programmed CAS latency.

- 2. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.
- 3. Assumed input rise and fall time (tr & tf)=1ns.

If tr & tf is longer than 1ns, transient time compensation should be considered,

i.e., [(tr + tf)/2-1]ns should be added to the parameter.

SIMPLIFIED TRUTH TABLE

C	ommand		CKEn-1	CKEn	cs	RAS	CAS	WE	DQM	BA 0,1	A10/AP	, A9 ~ A0	Note
Register	Mode regist	ter set	Н	Х	L	L	L	L	Х		OP cod	е	1,2
	Auto refresi	h	Н	Н	L	L	L	Н	Х		Х		3
Refresh		Entry	11	L	١	J	<u> </u>		^		^		3
Kellesii	Self refresh	Exit	L	Н	L	Η	Н	Ι	Х		Х		3
		LXII	_	11	Ι	Χ	Х	Х	^		^		3
Bank active & row	addr.		Н	Χ	L	Ы	Н	Ι	Χ	V	V Row address		
Read &	Auto precha	arge disable	Н	Х	L	Н	L	Н	Х	V	V Column address		
column address	Auto precha	arge enable	11	^	J		_	•	^	V	H (A0 ~ A7)		
Write &	Auto precha	arge disable	Н	X	L	Н	L	L	Х	V Column address			4
column address	Auto precha	arge enable	11	^	J	-	_	ı	^	H address (A ₀ ~ A ₇)		4,5	
Burst Stop			Н	Χ	L	Η	Н	L	Χ		Х		6
Precharge	Bank select	tion	Н	X	L	L	Н	L	Х	V	L	X	
recharge	All banks			Λ	_	_	''	_	Λ	Х	Н	Λ	
		Entry	Н	L	Н	Х	Х	Х	Х				
Clock suspend or active power down	า	Litty		1	L	٧	V	V	Χ		X		
		Exit	L	Н	Х	Χ	Х	Х	Х				
		Entry	Н	L	Н	Χ	Х	Х	Х				
Precharge power	down mode	Linity		_	L	Н	Н	Н	^		Х		
i roonargo power	down mode	Exit	L	Н	Н	Χ	Х	Χ	Х		,		
		LAIR	_		L	V	V	V					
DQM			Н			Х	T	1	V		Χ		7
No operation com	la aparation command		Н	Х	Н	Χ	Х	Х	Х		Х		
140 operation com	manu		11	^	L	Н	Н	Н	^				

(V=Valid, X=Don't care, H=Logic high, L=Logic low)

Notes: 1. OP Code: Operand code

 $A_0 \sim A_{10} \& BA_0 \sim BA_1$: Program keys. (@ MRS)

- 2. MRS can be issued only at all banks precharge state.
 - A new command can be issued after 2 CLK cycles of MRS.
- 3. Auto refresh functions are as same as CBR refresh of DRAM.
 - The automatical precharge without row precharge command is meant by "Auto". Auto/self refresh can be issued only at all banks precharge state.
- 4. BA0 ~ BA1 : Bank select addresses.
 - If both BAo and BA1 are "Low" at read, write, row active and precharge, bank A is selected.
 - If both BAo is "Low" and BA1 is "High" at read, write, row active and precharge, bank B is selected.
 - If both BAo is "High" and BA1 is "Low" at read, write, row active and precharge, bank C is selected.
 - If both BAo and BA1 are "High" at read, write, row active and precharge, bank D is selected.
 - If A10/AP is "High" at row precharge, BA0 and BA1 is ignored and all banks are selected.
- 5. During burst read or write with auto precharge, new read/write command can not be issued.
 - Another bank read/write command can be issued after the end of burst.

 New row active of the associated bank can be issued at tRP after the end of burst.
- 6. Burst stop command is valid at every burst length.
- 7. DQM sampled at positive going edge of a CLK and masks the data-in at the very CLK (Write DQM latency is 0), but makes Hi-Z state the data-out of 2 CLK cycles after. (Read DQM latency is 2)

MODE REGISTER FIELD TABLE TO PROGRAM MODES

Register Programmed with MRS

Address	BAo ~ BA1	A ₁₀ /AP	A 9	A8	A7	A6	A 5	A4	Аз	A2	A 1	A ₀
Function	RFU	RFU	W.B.L	Т	М		CAS Laten	су	BT	В	urst Lengtl	h

Test Mode				CAS	Laten	су	Bu	Burst Length					
A8	A7	Туре	A6	A5 A4 Latency		Аз	Type	A2	A 1	A ₀	BT = 0	BT = 1	
0	0	Mode Register Set	0	0	0	Reserved	0	Sequential	0	0	0	1	1
0	1	Reserved	0	0	1	Reserved	1	Interleave	0	0	1	2	2
1	0	Reserved	0	1	0	2			0	1	0	4	4
1	1	Reserved	0	1	1	3			0	1	1	8	8
Write Burst Length			1	0	0	Reserved			1	0	0	Reserved	Reserved
A 9	A9 Length		1	0	1	Reserved			1	0	1	Reserved	Reserved
0	Burst		1	1	0	Reserved			1	1	0	Reserved	Reserved
1	Single Bit		1	1	1	Reserved			1	1	1	Full Page	Reserved

Full Page Length: x32 (256)

POWER UP SEQUENCE

SDRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.

- 1. Apply power and start clock. Must maintain CKE= "H", DQM= "H" and the other pins are NOP condition at the inputs.
- 2. Maintain stable power, stable clock and NOP input condition for a minimum of 200us.
- 3. Issue precharge commands for all banks of the devices.
- 4. Issue 2 or more auto-refresh commands.
- 5. Issue a mode register set command to initialize the mode register.
- cf.) Sequence of 4 & 5 is regardless of the order.

The device is now ready for normal operation.

Note: 1. If A9 is high during MRS cycle, "Burst Read Single Bit Write" function will be enabled.

2. RFU (Reserved for future use) should stay "0" during MRS cycle.

BURST SEQUENCE (BURST LENGTH = 4)

Initial A	Address		Sean	ontial		Interleave						
A1	A ₀	Sequential Interleave										
0	0	0	1	2	3	0	1	2	3			
0	1	1	2	3	0	1	0	3	2			
1	0	2	3	0	1	2	3	0	1			
1	1	3	0	1	2	3	2	1	0			

BURST SEQUENCE (BURST LENGTH = 8)

Ini	Sequential								Interleave									
A2	A1	Ao		Jequential Interieave														
0	0	0	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
0	0	1	1	2	3	4	5	6	7	0	1	0	3	2	5	4	7	6
0	1	0	2	3	4	5	6	7	0	1	2	3	0	1	6	7	4	5
0	1	1	3	4	5	6	7	0	1	2	3	2	1	0	7	6	5	4
1	0	0	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3
1	0	1	5	6	7	0	1	2	3	4	5	4	7	6	1	0	3	2
1	1	0	6	7	0	1	2	3	4	5	6	7	4	5	2	3	0	1
1	1	1	7	0	1	2	3	4	5	6	7	6	5	4	3	2	1	0

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com