

# $\alpha$ -amminazioni asimmetriche con esteri azodicarbossilici

Seminario di Tecniche Chimiche Avanzate

Mattia Bondanza

21 gennaio 2018

Università di Pisa

#### α-amminazioni

Una  $\alpha$ -amminazione è una reazione che introduce un gruppo amminico in posizione  $\alpha$  ad un carbonile.

Danno accesso a  $\alpha$ -ammino carbonili come, ad esempio  $\alpha$ -amminoacidi non naturali o molti composti biologicamente attivi.

1

#### α-amminazioni

Sia la maggior parte dei composti all'azoto che il  $C-\alpha$  a un gruppo carbonilico hanno caratteri marcatamente nucleofilici.

Per ottenere una reazione bisogna quindi:

(a) utilizzare composti elettrofili all'azoto

(b) utilizzare una miscela di un nucleofilo all'azoto e di un ossidante<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Angewandte Chemie International Edition, 2017, **56**, 12416–12423.

#### α-amminazioni

L'uso di reagenti elettrofilici è stato ampiamente studiato, applicato a molti substrati ma necessita di elaborazioni successive per rivelare la funzionalità amminica introdotta; i più comuni reattivi elettrofili sono gli azodicarbossilati, le idrossilammine e le solfonilazidi.

L'uso di reagenti nucleofilici è un campo emergente, è applicato principalmente a carbonili reattivi (aldeidi, chetoni,  $\alpha,\beta$ -dicarbonili, ecc.) ed è richiesto l'impiego di un equivalente stechiometrico di ossidante.

#### α-amminazioni con azodicarbossilati

I reagenti elettrofili all'azoto più diffusi sono gli azodicarbossilati:

$$R \rightarrow 0$$
  $N \rightarrow 0$   $R$ 

- in molti casi sono commercialmente disponibili,
- sono elettrofili energici e reagiscono efficacemente con molti substrati,
- l'elaborazione successiva è fortemente dipendente azodicarbossilato utilizzato,
- l'introduzione di unità amminiche secondarie o terziarie richiede diversi step sintetici.

# Elaborazione dei prodotti di aA degli azodicarbossilati



Per rivelare la funzionalità amminica dai prodotti di amminazione derivanti dagli azodicarbossilati sono necessari due passaggi:

- (i) la rimozione dei gruppi protettori sull'unità idrazinica,
- (ii) la fissione del legame NH-NH<sub>2</sub>.

# Elaborazione dei prodotti di $\alpha A$ degli azodicarbossilati

La rimozione dei gruppi protettori può essere effettuata in condizioni blande se  $R^1 = {}^tBu$ ; richiede invece condizioni molto drastiche se  $R^1 = {}^iPr$ , Et; quando  $R^1 = Bn$  è possibile applicare protocolli idrogenolitici.

| COOR <sup>1</sup>   | Condizioni di sblocco               | Problemi                   |
|---------------------|-------------------------------------|----------------------------|
|                     |                                     |                            |
| COOEt               | KOH 2.5 M in <sup>i</sup> PrOH,     | basse rese,                |
|                     | riflusso, 4 h                       | retro-amminazione          |
| COO <sup>i</sup> Pr | conc. HCl, reflux, 23 h             | degradazione del substrato |
| Boc                 | HCl o TFA in solvente               |                            |
|                     | organico RT, $1-3$ h                | -                          |
| Cbz                 | Pd/C (10%), H <sub>2</sub> in MeOH, | (t                         |
|                     | RT                                  | (retro-amminazione)        |

# Elaborazione dei prodotti di aA degli azodicarbossilati

La fissione del legame  $NH-NH_2$  richiede normalmente condizioni idrogenolitiche. I catalizzatori più usati sono stati il Ni/Raney, Pd/C e  $Rh/C^2$ . Alcuni autori sostengono che quando non si utilizzi Rh/C si registri una estensiva formazione del prodotto deamminato (fissione del legame C-NH)<sup>3</sup>.

In ogni caso sulla molecola non possono essere presenti gruppi sensibili all'idrogenazione catalitica ( $-C \equiv N, C = C, C \equiv C, ...$ )

<sup>&</sup>lt;sup>2</sup> Advanced Synthesis & Catalysis, 2011, **353**, 2945–2952.

<sup>&</sup>lt;sup>3</sup>HETEROCYCLES, 2012, **84**, 879.

#### α-amminazioni asimmetriche

Quando la reazione è condotta su un substrato la avente un  $C_{\alpha}$  prochirale, si possono formare due prodotti che si differenziano per la configurazione assoluta del nuovo centro stereogenico, ovvero sono enantiomeri o epimeri.

Lo sviluppo di metodi per controllare il decorso stereochimico di questo tipo di reazioni è importante in quanto questi composti sono studiati per applicazioni in ambito biologico.

#### α-amminazioni diasereoselettive

I primi lavori nel settore hanno riguardato amminazioni diastereoselettive. Evans *et al.* propongono ad esempio l'amminazione di un'ammide utilizando un ossazolidinone chirale come gruppo protettore<sup>4</sup>.

Questo approccio è svantaggioso in quanto richiede l'uso di una quantità stechiometrica sia di base che di ausiliario chirale.

9

<sup>&</sup>lt;sup>4</sup> Tetrahedron, 1988, 44, 5525-5540.

Per superare i difetti degli approcci diastereoselettivi Evans *et al.* propongono una versione enantioselettiva della reazione. La funzionalità carbossilica viene protetta con un ossazolidinone non chirale e viene introdotto un sistema catalitico chirale, basato sul complesso di magnesio 4 che trasferisce chiralità al prodotto<sup>5</sup>.

La reazione risulta ancora limitata nello scopo e necessita di un sistema di protezione della funzionalità carbossilica per funzionare.

<sup>&</sup>lt;sup>5</sup> Journal of the American Chemical Society, 1997, **119**, 6452–6453.

I gruppi di B. List e K. Jørgensen svilupparono in maniera contemporanea un nuovo protocollo di  $\alpha$ -amminazione asimmetrica per aldeidi, chetoni e altri carbonili facilmente enolizzabili basata sull'uso della (L)-prolina (5) come organocatalizzatore chirale<sup>6,7</sup>.

<sup>&</sup>lt;sup>6</sup> Journal of the American Chemical Society, 2002, **124**, 5656–5657.

<sup>&</sup>lt;sup>7</sup> Angewandte Chemie International Edition, 2002, **41**, 1790–1793.

La reazione di  $\alpha$ -amminazione asimmetrica basata sulla prolina è stata studiata intensamente e si è proposto un probabile stato di transizione (7) confermato sia da evidenze sperimentali<sup>8</sup> che da calcoli DFT<sup>9</sup>.

Lo stato di transizione proposto implica che la reazione proceda per la formazione dell'enammina del composto carbonilico su cui attacca l'elettrofilo.

<sup>&</sup>lt;sup>8</sup> Organic Letters, 2011, **13**, 5644–5647.

<sup>&</sup>lt;sup>9</sup>Chemical Physics, 2015, **455**, 65–72.

Le catalisi via formazione dell'enammina è intrinsecamente limitata a substrati facilmente enolizzabili.

Sono stati proposti metodi basati sulla semplice catalisi basica, in particolare sull'utilizzo di derivati degli alcaloidi di cincona.

Uno dei primi esempi è riportato da Jørgensen et al.:

In questo caso la chiralità è trasferita dal catalizzatore al prodotto attraverso la formazione all'equilibrio di un enolato avente come controione il catalizzatore protonato<sup>10</sup>.

$$\begin{array}{c} \text{Base} \\ \text{R} \\ \text{X} \end{array} \\ \begin{bmatrix} \text{O} \\ \text{R} \\ \text{X} \end{bmatrix} \begin{bmatrix} \text{H} - \text{Base} \end{bmatrix} \xrightarrow{\text{DTBAD( 3 )}} \begin{bmatrix} \text{R} \\ \text{R} \\ \text{Boc} \end{bmatrix} \begin{bmatrix} \text{O} \\ \text{H} - \text{Base} \end{bmatrix} \xrightarrow{\text{scambio}} \begin{bmatrix} \text{O} \\ \text{di protone} \\ \text{HN} \\ \text{N} \\ \text{Boc} \end{bmatrix}$$

In queste condizioni è possibile amminare anche composti carbonilici poco reattivi.

Lo specifico meccanismo di induzione asimmetrica dipende dalla base catalitica usata; i solventi hanno una forte influenza.

 $<sup>^{10}\,</sup> The$  Journal of Organic Chemistry, 2009, **74**, 8935–8938.

Dei substrati particolarmente interessanti per queste reazioni sono i 2-ossindoli; pur essendo formalmente dei *lattami* hanno un'acidità al  $C_{\alpha}$  notevolmente superiore a normali ammidi<sup>11</sup>.

Molti 3-ammino-2-ossindoli sono composti con interesse biologico.

<sup>&</sup>lt;sup>11</sup> The Journal of Organic Chemistry, 1991, **56**, 4218–4223.

Sono stati sviluppati diversi protocolli per l'amminazione di questi composti che si differenziano per:

- l'azodicarbossilato usato,
- il sistema catalitico usato,
- il livello di sostituzione tollerato alle posizioni 1 e 3 del sistema 2-ossindolico,
- il grado di induzione asimmetrica raggiunto dalla reazione.

Il primi protocolli proposti sono quelli di Chen *et al.*<sup>12</sup> e Zhou *et al.*<sup>13</sup> in cui sono usati i derivati dimerici degli alcoloidi di cincona (DHQD)<sub>2</sub>PHAL e (DHQD)<sub>2</sub>PYR.

<sup>&</sup>lt;sup>12</sup> Organic Letters, 2009, **11**, 3874–3877.

<sup>&</sup>lt;sup>13</sup>Chemical Communications, 2009, 6753.

Un protocollo successivo proposto da Barbas III *et al.*<sup>14</sup> propone l'utilizzo di un sistema catalitico non commerciale (9) per amminare 3-aril-2-ossindoli.

<sup>&</sup>lt;sup>14</sup> Organic Letters, 2010, **12**, 5696–5699.

Il protocollo che ad oggi ha si presenta come il più generale è quello proposto da Shibasaki et al. $^{15}$ .

Questo protocollo utilizza però un sistema catalitico basato sul nikel

La reazione è stata utilizzata per effettuare una sintesi formale del composto biologicamente attivo AG-041R.

<sup>&</sup>lt;sup>15</sup>HETEROCYCLES, 2012, **84**, 879.

# Domande?

#### Source

I sorgenti di questa presentazione sono liberamente scaricabili da:

github.com/Biondilbiondo/seminarioLTCA

