

MAT 2051 TD 1

Exercice 1. Soit $(\omega, \lambda, k) \in \mathbb{R}^3$. Résoudre les systèmes suivants

(1)
$$\begin{cases} x+2y = 1 \\ -2x+3y = 4 \\ 3x+5y = \lambda \end{cases}$$
 (2)
$$\begin{cases} x+\omega y+z = 1 \\ x+y+kz = 0 \\ x+\omega y+2kz = 1 \end{cases}$$

Exercice 2.

On considère le système : (1)
$$\begin{cases} 2x-y+3z &= 1\\ x-4y+5z &= 0\\ x+5y-4z &= -1 \end{cases}$$

- 1) Donnez la forme matricielle et la forme vectorielle du système (1)
- 2) Calculez le rang du système (1)
- 3) Déterminez une base de l'ensemble des solutions du système homogène associé au système (1)

Exercice 3.

Soient f l'application linéaire de \mathbb{R}^2 dans lui-même et $B = \{ (-1,1); (2,3) \}$.

- 1) Montrer que B est une base de \mathbb{R}^2 .
- 2) Calculer les composantes de u = (4,3) dans la base B.
- 3) Sachant que la matrice de f par rapport à la base B est $\begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$, a-t-on f(u) = (13,2) ?

Exercice 4.

On considère la base canonique $B = \{e_1, e_2, e_3\}$ de \mathbf{R}^3 et on note $B' = \{e_2, e_3, e_1\}$.

Soit φ l'application linéaire de ${f R}^3$ dans lui-même dont la matrice par rapport à la base B

$$est A_1 = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 0 & 3 \\ 1 & 2 & -2 \end{pmatrix}$$

- 1) Ecrire la matrice A, de φ par rapport à la base B.
- 2) Déterminer P la matrice de passage de la base B à la base B'
- 3) Calculer $P A_2$ et $A_1 P$,

Que remarquez-vous ? Ce résultat est-il prévisible ? Justifier votre réponse.

Exercice 5.

Soit f l'application linéaire de \mathbf{R}^2 dans lui-même dont la matrice par rapport à la base canonique de \mathbf{R}^2 est $A = \begin{pmatrix} 2 & 4 \\ 3 & -2 \end{pmatrix}$.

- 1) Montrer que f admet deux valeurs propres réelles.
- 2) Déterminer une base B_1 de \mathbf{R}^2 formée de vecteurs propres de f.
- 3) Ecrire la matrice f par rapport à la base B_1
- 4) f est-elle diagonalisable dans \mathbf{R} ?

Exercice 6.

Soit f l'application linéaire de \mathbb{R}^3 dans lui-même dont la matrice par rapport à la base

canonique
$$B$$
 de \mathbf{R}^3 est $A = \begin{pmatrix} 2 \omega & \omega & 1 \\ 0 & -1 & \omega \\ 0 & 0 & 2 \omega \end{pmatrix}$ où $\omega \in \mathbf{R}$.

- 1) Déterminer les valeurs propres de f;
- 2) Calculer $\dim \left(Ker(f 2\omega Id_{\mathbf{R}^3}) \right)$
- 3) Si $\omega = -1$, déterminer une base de $Ker(f 2\omega Id_{\mathbf{p}^3})$
- 4) Déterminer une base de l'espace propre E_{-1}

Exercice 7.

Soient f et g deux endomorphismes de \mathbb{R}^3 .

- 1) Montrer que si u_0 est un vecteur propre de f, alors $3u_0$ est vecteur propre de f
- 2) Montrer que si u_0 est à la fois un vecteur propre de f et de g alors u_0 un vecteur propre de (f+g)
- 3) Montrer que si u_0 est à la fois un vecteur propre de f et de g alors u_0 un vecteur propre de $(g \circ f)$
- 4) Si $f^3=f\circ f\circ f$ et λ est la valeur propre associée au vecteur propre u_0 de f , calculer $f^3(u_0)$

Exercice 8.

Soient $\lambda \in \mathbf{R}$ et f un endomorphisme de \mathbf{R}^3 tels que :

$$f \neq Id_{\mathbf{R}^3}$$
, $f \neq -Id_{\mathbf{R}^3}$ et $\forall u \in \mathbf{R}^3, (f \circ f)(u) = u$

- 1) Montrez que si λ est une valeur propre de f alors $\lambda = -1$ ou $\lambda = 1$.
- 2) Montrez qu'il existe $u_0 \in \mathbf{R}^3$ tel que $\left(u_0 f(u_0)\right)$ soit un vecteur propre de f .
- 3) Montrez qu'il existe $v_0 \in \mathbf{R}^3$ tel que $\left(v_0 + f(v_0)\right)$ soit un vecteur propre de f.

Exercice 9.

Soit A la matrice associée à un endomorphisme f de \mathbf{R}^3 par rapport à la base canonique de \mathbf{R}^3 . Le polynôme caractéristique associé à la matrice A est $P(X) = -X^3 + 3X^2 - 4$.

- 1) Calculer P(-1)
- 2) A quelle(s) condition(s) la matrice A est-elle diagonalisable sur R ?

Exercice 10.

Déterminez les suites numériques (u_n) et (v_n) définies par :

$$\begin{cases} u_{n+1} = -10u_n - 28v_n \\ v_{n+1} = 6u_n + 16v_n \end{cases} \text{ pour tout } n \in \mathbf{N} \text{ , } u_0 = v_0 = 1$$

(Indication : Ecrire le système sous forme matricielle puis diagonaliser la matrice associée)

Exercice 11.

On considère
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
 la matrice associée à un endomorphisme f de \mathbf{R}^3

par rapport à la base canonique B de \mathbb{R}^3 .

- 1) Vérifiez que u = (1,1,1) est vecteur propre de f
- 2) Déterminez les valeurs propres de A.
- 3) Montrer que A est diagonalisable dans \mathbf{R} .
- 4) Déterminer une matrice P telle que $P^{-1}AP = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- 5) Pour $n \in \mathbb{N}^*$, calculer A^n .
- 6) On considère les trois suites (x_n) , (y_n) et (z_n) définies par :

$$x_0 = -y_0 = z_0 = 1 \text{ et pour tout } n \in \mathbf{N} \text{ , (*)} \begin{cases} x_{n+1} = -x_n + y_n + z_n \\ y_{n+1} = x_n - y_n + z_n \\ z_{n+1} = x_n + y_n - z_n \end{cases}$$

Exprimez x_n , y_n et z_n en fonction de n.

Exercice 12.

On considère $A = \begin{pmatrix} 2 & 0 & 4 \\ 3 & 4 & 12 \\ 1 & -2 & 5 \end{pmatrix}$ la matrice associée à un endomorphisme f de \mathbf{R}^3 par

rapport la base canonique B de \mathbb{R}^3 .

- 1) Déterminer le polynôme caractéristique P_A associé à la matrice A;
- 2) Déterminer les valeurs propres de A;
- 3) A est-elle diagonalisable ? si oui, déterminer une base par rapport à laquelle la matrice associée à f soit diagonale.

Exercice 13.

Etudier la diagonalisation sur R, des matrices suivantes :

$$\begin{pmatrix} 3 & -2 \\ 2 & 2 \end{pmatrix}, \quad \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & -2 & 0 \\ 1 & 0 & -1 \\ 0 & 2 & 0 \end{pmatrix}, \quad \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 & 0 \\ 3 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ et } 2 \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix},$$

Exercice 14.

Etudier, selon les valeurs des paramètres $(a,b,c) \in \mathbf{R}^3$, la diagonalisation sur \mathbf{R} , des matrices suivantes :

$$\begin{pmatrix} 1 & a & 1 \\ 0 & 1 & b \\ 0 & 0 & c \end{pmatrix}; \begin{pmatrix} a & 0 & b \\ 0 & a+b & 0 \\ b & 0 & a \end{pmatrix} \text{ et } \begin{pmatrix} a & c & b \\ c & a+b & c \\ b & c & a \end{pmatrix}$$

Exercice 15.

On cherche à déterminer la solution du système différentiel : (S) $\begin{cases} x'(t) = x(t) + y(t) \\ y'(t) = 2x(t) \end{cases}$ qui satisfait les conditions x(0) = 2 et y(0) = 1, où $x'(t) = \frac{dx}{dt}$ et $y'(t) = \frac{dy}{dt}$.

On pose $A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$

- 1) Montrer que -1 et 2 sont les seules valeurs propres de A;
- 2) Montrer qu'il existe une base B' de \mathbb{R}^2 tel que $\begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} = P^{-1} \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} P$ où P est la matrice de passage de la base canonique de \mathbb{R}^2 à la base B'.
- 3) On rappelle que si $M(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}$ où a,b,c et d sont des fonctions dérivables sur

R alors par définition, $M(t) = \frac{dM}{dt} = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}$.

On pose $P^{-1}\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} X(t) \\ Y(t) \end{pmatrix}$ et $D = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$ Prouver alors qu'on a :

$$(S) \Leftrightarrow \begin{pmatrix} X'(t) \\ Y'(t) \end{pmatrix} = D \begin{pmatrix} X(t) \\ Y(t) \end{pmatrix} \text{ puis en déduire que } \begin{cases} X(t) = K_1 e^{-t} \\ Y(t) = K_2 e^{2t} \end{cases} \text{ où } (K_1, K_2) \in \mathbf{R}^2.$$

4) Donner l'expression de (x(t), y(t)) solution du système (S) satisfaisant aux conditions x(0) = 2 et y(0) = 1.

Exercice 16. (Pendules couplés)

On sait que la solution générale de l'équation différentielle : $x''(t) + \omega^2 x(t) = 0$ est de la forme : $x(t) = A\cos(\omega t + \varphi)$ où A et φ sont des constantes.

Dans un système de deux pendules couplés, nous sommes amenés à résoudre le système

différentiel suivant : (S)
$$\begin{cases} \alpha \ \ddot{\theta_1} = -(mg\,l + k\,a^2\,)\,\theta_1 + k\,a^2\,\theta_2 \\ \alpha \ \ddot{\theta_2} = k\,a^2\,\theta_1 - (mg\,l + k\,a^2\,)\,\theta_2 \end{cases}$$

où $\ddot{\theta} = \frac{d^2\theta}{dt^2}$ et a, g, k, l, m, α sont des constantes réelles positives non nulles.

On cherche à résoudre le système différentiel (S) de deux façons différentes

1) En diagonalisant la matrice
$$A = \begin{pmatrix} -mgl-ka^2 & \frac{ka^2}{\alpha} \\ \frac{ka^2}{\alpha} & \frac{-mgl-ka^2}{\alpha} \end{pmatrix}$$

2) En remarquant que
$$(S) \Leftrightarrow \begin{cases} \alpha \stackrel{\cdots}{\theta_1} = -m g l \theta_1 - k a^2 (\theta_1 - \theta_2) \\ \alpha \stackrel{\cdots}{\theta_2} = -m g l \theta_2 + k a^2 (\theta_1 - \theta_2) \end{cases}$$

puis en posant : $u = \theta_1 + \theta_2$ et $v = \theta_1 - \theta_2$